<<list-links "[tag[(Geometrische) Bedeutung der zweiten Ableitung]sort[scriptorder]]">>
Eine (obere) Hessenbergmatrix ist eine quadratische Matrix $$H \in \mathbb{C}^{n\times n}$$,
deren Einträge unterhalb der ersten Nebendiagonalen gleich Null sind:
<$latex text="
\begin{pmatrix}
h_{1,1} & h_{1,2} & h_{1,3} & ... & h_{1,n} \\
h_{2,1} & h_{2,2} & h_{2,3} & ... & h_{2,n} \\
0 & h_{3,2} & h_{3,3} & ... & h_{3,n} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \dots & 0 & h_{n,n-1} & h_{n,n} \\
\end{pmatrix}
" displayMode="true"></$latex>
{
"tiddlers": {
"$:/Acknowledgements": {
"title": "$:/Acknowledgements",
"text": "TiddlyWiki incorporates code from these fine OpenSource projects:\n\n* [[The Stanford Javascript Crypto Library|http://bitwiseshiftleft.github.io/sjcl/]]\n* [[The Jasmine JavaScript Test Framework|http://pivotal.github.io/jasmine/]]\n* [[Normalize.css by Nicolas Gallagher|http://necolas.github.io/normalize.css/]]\n\nAnd media from these projects:\n\n* World flag icons from [[Wikipedia|http://commons.wikimedia.org/wiki/Category:SVG_flags_by_country]]\n"
},
"$:/core/copyright.txt": {
"title": "$:/core/copyright.txt",
"type": "text/plain",
"text": "TiddlyWiki created by Jeremy Ruston, (jeremy [at] jermolene [dot] com)\n\nCopyright (c) 2004-2007, Jeremy Ruston\nCopyright (c) 2007-2020, UnaMesa Association\nAll rights reserved.\n\nRedistribution and use in source and binary forms, with or without\nmodification, are permitted provided that the following conditions are met:\n\n* Redistributions of source code must retain the above copyright notice, this\n list of conditions and the following disclaimer.\n\n* Redistributions in binary form must reproduce the above copyright notice,\n this list of conditions and the following disclaimer in the documentation\n and/or other materials provided with the distribution.\n\n* Neither the name of the copyright holder nor the names of its\n contributors may be used to endorse or promote products derived from\n this software without specific prior written permission.\n\nTHIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 'AS IS'\nAND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE\nIMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE\nDISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE\nFOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL\nDAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR\nSERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER\nCAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,\nOR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE\nOF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE."
},
"$:/core/icon": {
"title": "$:/core/icon",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" viewBox=\"0 0 128 128\"><path d=\"M64 0l54.56 32v64L64 128 9.44 96V32L64 0zm21.127 95.408c-3.578-.103-5.15-.094-6.974-3.152l-1.42.042c-1.653-.075-.964-.04-2.067-.097-1.844-.07-1.548-1.86-1.873-2.8-.52-3.202.687-6.43.65-9.632-.014-1.14-1.593-5.17-2.157-6.61-1.768.34-3.546.406-5.34.497-4.134-.01-8.24-.527-12.317-1.183-.8 3.35-3.16 8.036-1.21 11.44 2.37 3.52 4.03 4.495 6.61 4.707 2.572.212 3.16 3.18 2.53 4.242-.55.73-1.52.864-2.346 1.04l-1.65.08c-1.296-.046-2.455-.404-3.61-.955-1.93-1.097-3.925-3.383-5.406-5.024.345.658.55 1.938.24 2.53-.878 1.27-4.665 1.26-6.4.47-1.97-.89-6.73-7.162-7.468-11.86 1.96-3.78 4.812-7.07 6.255-11.186-3.146-2.05-4.83-5.384-4.61-9.16l.08-.44c-3.097.59-1.49.37-4.82.628-10.608-.032-19.935-7.37-14.68-18.774.34-.673.664-1.287 1.243-.994.466.237.4 1.18.166 2.227-3.005 13.627 11.67 13.732 20.69 11.21.89-.25 2.67-1.936 3.905-2.495 2.016-.91 4.205-1.282 6.376-1.55 5.4-.63 11.893 2.276 15.19 2.37 3.3.096 7.99-.805 10.87-.615 2.09.098 4.143.483 6.16 1.03 1.306-6.49 1.4-11.27 4.492-12.38 1.814.293 3.213 2.818 4.25 4.167 2.112-.086 4.12.46 6.115 1.066 3.61-.522 6.642-2.593 9.833-4.203-3.234 2.69-3.673 7.075-3.303 11.127.138 2.103-.444 4.386-1.164 6.54-1.348 3.507-3.95 7.204-6.97 7.014-1.14-.036-1.805-.695-2.653-1.4-.164 1.427-.81 2.7-1.434 3.96-1.44 2.797-5.203 4.03-8.687 7.016-3.484 2.985 1.114 13.65 2.23 15.594 1.114 1.94 4.226 2.652 3.02 4.406-.37.58-.936.785-1.54 1.01l-.82.11zm-40.097-8.85l.553.14c.694-.27 2.09.15 2.83.353-1.363-1.31-3.417-3.24-4.897-4.46-.485-1.47-.278-2.96-.174-4.46l.02-.123c-.582 1.205-1.322 2.376-1.72 3.645-.465 1.71 2.07 3.557 3.052 4.615l.336.3z\" fill-rule=\"evenodd\"/></svg>"
},
"$:/core/images/add-comment": {
"title": "$:/core/images/add-comment",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-add-comment tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M56 56H36a8 8 0 100 16h20v20a8 8 0 1016 0V72h20a8 8 0 100-16H72V36a8 8 0 10-16 0v20zm-12.595 58.362c-6.683 7.659-20.297 12.903-36.006 12.903-2.196 0-4.35-.102-6.451-.3 9.652-3.836 17.356-12.24 21.01-22.874C8.516 94.28 0 79.734 0 63.5 0 33.953 28.206 10 63 10s63 23.953 63 53.5S97.794 117 63 117c-6.841 0-13.428-.926-19.595-2.638z\"/></svg>"
},
"$:/core/images/advanced-search-button": {
"title": "$:/core/images/advanced-search-button",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-advanced-search-button tc-image-button\" viewBox=\"0 0 128 128\"><g fill-rule=\"evenodd\"><path d=\"M74.565 87.985A47.776 47.776 0 0148 96C21.49 96 0 74.51 0 48S21.49 0 48 0s48 21.49 48 48c0 9.854-2.97 19.015-8.062 26.636l34.347 34.347a9.443 9.443 0 010 13.36 9.446 9.446 0 01-13.36 0l-34.36-34.358zM48 80c17.673 0 32-14.327 32-32 0-17.673-14.327-32-32-32-17.673 0-32 14.327-32 32 0 17.673 14.327 32 32 32z\"/><circle cx=\"48\" cy=\"48\" r=\"8\"/><circle cx=\"28\" cy=\"48\" r=\"8\"/><circle cx=\"68\" cy=\"48\" r=\"8\"/></g></svg>"
},
"$:/core/images/auto-height": {
"title": "$:/core/images/auto-height",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-auto-height tc-image-button\" viewBox=\"0 0 128 128\"><path d=\"M67.987 114.356l-.029-14.477a4 4 0 00-2.067-3.494l-15.966-8.813-1.933 7.502H79.9c4.222 0 5.564-5.693 1.786-7.58L49.797 71.572 48.01 79.15h31.982c4.217 0 5.564-5.682 1.795-7.575L49.805 55.517l-1.795 7.575h31.982c4.212 0 5.563-5.67 1.805-7.57l-16.034-8.105 2.195 3.57V35.614l9.214 9.213a4 4 0 105.656-5.656l-16-16a4 4 0 00-5.656 0l-16 16a4 4 0 105.656 5.656l9.13-9.13v15.288a4 4 0 002.195 3.57l16.035 8.106 1.804-7.57H48.01c-4.217 0-5.564 5.682-1.795 7.574l31.982 16.059 1.795-7.575H48.01c-4.222 0-5.564 5.693-1.787 7.579l31.89 15.923 1.787-7.578H47.992c-4.133 0-5.552 5.504-1.933 7.501l15.966 8.813-2.067-3.494.029 14.436-9.159-9.158a4 4 0 00-5.656 5.656l16 16a4 4 0 005.656 0l16-16a4 4 0 10-5.656-5.656l-9.185 9.184zM16 20h96a4 4 0 100-8H16a4 4 0 100 8z\"/></svg>"
},
"$:/core/images/blank": {
"title": "$:/core/images/blank",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-blank tc-image-button\" viewBox=\"0 0 128 128\"/>"
},
"$:/core/images/bold": {
"title": "$:/core/images/bold",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-bold tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M41.146 51.81V21.87h26.353c2.51 0 4.93.21 7.26.628 2.33.418 4.392 1.165 6.185 2.24 1.793 1.076 3.227 2.57 4.302 4.482 1.076 1.913 1.614 4.363 1.614 7.35 0 5.379-1.613 9.263-4.84 11.653-3.227 2.39-7.35 3.586-12.37 3.586H41.146zM13 0v128h62.028a65.45 65.45 0 0016.762-2.151c5.438-1.434 10.278-3.645 14.52-6.633 4.244-2.988 7.62-6.842 10.13-11.563 2.51-4.721 3.764-10.308 3.764-16.762 0-8.008-1.942-14.85-5.826-20.527-3.884-5.677-9.77-9.65-17.658-11.921 5.737-2.75 10.069-6.275 12.997-10.577 2.928-4.303 4.392-9.681 4.392-16.135 0-5.976-.986-10.995-2.958-15.059-1.972-4.063-4.75-7.32-8.336-9.77-3.585-2.45-7.888-4.213-12.907-5.289C84.888.538 79.33 0 73.235 0H13zm28.146 106.129V70.992H71.8c6.095 0 10.995 1.404 14.7 4.212 3.705 2.81 5.558 7.5 5.558 14.073 0 3.347-.568 6.096-1.703 8.247-1.136 2.151-2.66 3.854-4.572 5.11-1.912 1.254-4.123 2.15-6.633 2.688-2.51.538-5.139.807-7.888.807H41.146z\"/></svg>"
},
"$:/core/images/cancel-button": {
"title": "$:/core/images/cancel-button",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-cancel-button tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M64 76.314l-16.97 16.97a7.999 7.999 0 01-11.314 0c-3.118-3.118-3.124-8.19 0-11.313L52.686 65l-16.97-16.97a7.999 7.999 0 010-11.314c3.118-3.118 8.19-3.124 11.313 0L64 53.686l16.97-16.97a7.999 7.999 0 0111.314 0c3.118 3.118 3.124 8.19 0 11.313L75.314 65l16.97 16.97a7.999 7.999 0 010 11.314c-3.118 3.118-8.19 3.124-11.313 0L64 76.314zM64 129c35.346 0 64-28.654 64-64 0-35.346-28.654-64-64-64C28.654 1 0 29.654 0 65c0 35.346 28.654 64 64 64zm0-16c26.51 0 48-21.49 48-48S90.51 17 64 17 16 38.49 16 65s21.49 48 48 48z\"/></svg>"
},
"$:/core/images/chevron-down": {
"title": "$:/core/images/chevron-down",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-chevron-down tc-image-button\" viewBox=\"0 0 128 128\"><g fill-rule=\"evenodd\"><path d=\"M64.053 85.456a7.889 7.889 0 01-5.6-2.316L2.473 27.16a7.92 7.92 0 010-11.196c3.086-3.085 8.105-3.092 11.196 0L64.05 66.344l50.382-50.382a7.92 7.92 0 0111.195 0c3.085 3.086 3.092 8.105 0 11.196l-55.98 55.98a7.892 7.892 0 01-5.595 2.317z\"/><path d=\"M64.053 124.069a7.889 7.889 0 01-5.6-2.316l-55.98-55.98a7.92 7.92 0 010-11.196c3.086-3.085 8.105-3.092 11.196 0l50.382 50.382 50.382-50.382a7.92 7.92 0 0111.195 0c3.085 3.086 3.092 8.104 0 11.196l-55.98 55.98a7.892 7.892 0 01-5.595 2.316z\"/></g></svg>"
},
"$:/core/images/chevron-left": {
"title": "$:/core/images/chevron-left",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-chevron-left tc-image-button\" viewBox=\"0 0 128 128\"><g fill-rule=\"evenodd\"><path d=\"M47.544 64.053c0-2.027.77-4.054 2.316-5.6l55.98-55.98a7.92 7.92 0 0111.196 0c3.085 3.086 3.092 8.105 0 11.196L66.656 64.05l50.382 50.382a7.92 7.92 0 010 11.195c-3.086 3.085-8.105 3.092-11.196 0l-55.98-55.98a7.892 7.892 0 01-2.317-5.595z\"/><path d=\"M8.931 64.053c0-2.027.77-4.054 2.316-5.6l55.98-55.98a7.92 7.92 0 0111.196 0c3.085 3.086 3.092 8.105 0 11.196L28.041 64.05l50.382 50.382a7.92 7.92 0 010 11.195c-3.086 3.085-8.104 3.092-11.196 0l-55.98-55.98a7.892 7.892 0 01-2.316-5.595z\"/></g></svg>"
},
"$:/core/images/chevron-right": {
"title": "$:/core/images/chevron-right",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-chevron-right tc-image-button\" viewBox=\"0 0 128 128\"><g fill-rule=\"evenodd\"><path d=\"M83.456 63.947c0 2.027-.77 4.054-2.316 5.6l-55.98 55.98a7.92 7.92 0 01-11.196 0c-3.085-3.086-3.092-8.105 0-11.196L64.344 63.95 13.963 13.567a7.92 7.92 0 010-11.195c3.086-3.085 8.105-3.092 11.196 0l55.98 55.98a7.892 7.892 0 012.317 5.595z\"/><path d=\"M122.069 63.947c0 2.027-.77 4.054-2.316 5.6l-55.98 55.98a7.92 7.92 0 01-11.196 0c-3.085-3.086-3.092-8.105 0-11.196l50.382-50.382-50.382-50.382a7.92 7.92 0 010-11.195c3.086-3.085 8.104-3.092 11.196 0l55.98 55.98a7.892 7.892 0 012.316 5.595z\"/></g></svg>"
},
"$:/core/images/chevron-up": {
"title": "$:/core/images/chevron-up",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-chevron-up tc-image-button\" viewBox=\"0 0 128 128\"><g fill-rule=\"evenodd\"><path d=\"M63.947 44.544c2.027 0 4.054.77 5.6 2.316l55.98 55.98a7.92 7.92 0 010 11.196c-3.086 3.085-8.105 3.092-11.196 0L63.95 63.656l-50.382 50.382a7.92 7.92 0 01-11.195 0c-3.085-3.086-3.092-8.105 0-11.196l55.98-55.98a7.892 7.892 0 015.595-2.317z\"/><path d=\"M63.947 5.931c2.027 0 4.054.77 5.6 2.316l55.98 55.98a7.92 7.92 0 010 11.196c-3.086 3.085-8.105 3.092-11.196 0L63.95 25.041 13.567 75.423a7.92 7.92 0 01-11.195 0c-3.085-3.086-3.092-8.104 0-11.196l55.98-55.98a7.892 7.892 0 015.595-2.316z\"/></g></svg>"
},
"$:/core/images/clone-button": {
"title": "$:/core/images/clone-button",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-clone-button tc-image-button\" viewBox=\"0 0 128 128\"><g fill-rule=\"evenodd\"><path d=\"M32.265 96v24.002A7.996 7.996 0 0040.263 128h79.74a7.996 7.996 0 007.997-7.998v-79.74a7.996 7.996 0 00-7.998-7.997H96V48h12.859a2.99 2.99 0 012.994 2.994v57.865a2.99 2.99 0 01-2.994 2.994H50.994A2.99 2.99 0 0148 108.859V96H32.265z\"/><path d=\"M40 56h-7.993C27.588 56 24 52.418 24 48c0-4.41 3.585-8 8.007-8H40v-7.993C40 27.588 43.582 24 48 24c4.41 0 8 3.585 8 8.007V40h7.993C68.412 40 72 43.582 72 48c0 4.41-3.585 8-8.007 8H56v7.993C56 68.412 52.418 72 48 72c-4.41 0-8-3.585-8-8.007V56zM8 0C3.58 0 0 3.588 0 8v80c0 4.419 3.588 8 8 8h80c4.419 0 8-3.588 8-8V8c0-4.419-3.588-8-8-8H8zM19 16A2.997 2.997 0 0016 19.001v57.998A2.997 2.997 0 0019.001 80h57.998A2.997 2.997 0 0080 76.999V19.001A2.997 2.997 0 0076.999 16H19.001z\"/></g></svg>"
},
"$:/core/images/close-all-button": {
"title": "$:/core/images/close-all-button",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-close-all-button tc-image-button\" viewBox=\"0 0 128 128\"><g fill-rule=\"evenodd\"><path d=\"M28 111.314l-14.144 14.143a8 8 0 01-11.313-11.313L16.686 100 2.543 85.856a8 8 0 0111.313-11.313L28 88.686l14.144-14.143a8 8 0 0111.313 11.313L39.314 100l14.143 14.144a8 8 0 01-11.313 11.313L28 111.314zM28 39.314L13.856 53.457A8 8 0 012.543 42.144L16.686 28 2.543 13.856A8 8 0 0113.856 2.543L28 16.686 42.144 2.543a8 8 0 0111.313 11.313L39.314 28l14.143 14.144a8 8 0 01-11.313 11.313L28 39.314zM100 39.314L85.856 53.457a8 8 0 01-11.313-11.313L88.686 28 74.543 13.856A8 8 0 0185.856 2.543L100 16.686l14.144-14.143a8 8 0 0111.313 11.313L111.314 28l14.143 14.144a8 8 0 01-11.313 11.313L100 39.314zM100 111.314l-14.144 14.143a8 8 0 01-11.313-11.313L88.686 100 74.543 85.856a8 8 0 0111.313-11.313L100 88.686l14.144-14.143a8 8 0 0111.313 11.313L111.314 100l14.143 14.144a8 8 0 01-11.313 11.313L100 111.314z\"/></g></svg>"
},
"$:/core/images/close-button": {
"title": "$:/core/images/close-button",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-close-button tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M65.086 75.41l-50.113 50.113c-3.121 3.121-8.192 3.126-11.316.002-3.118-3.118-3.123-8.19.002-11.316l50.114-50.114L3.659 13.982C.538 10.86.533 5.79 3.657 2.666c3.118-3.118 8.19-3.123 11.316.002l50.113 50.114L115.2 2.668c3.121-3.121 8.192-3.126 11.316-.002 3.118 3.118 3.123 8.19-.002 11.316L76.4 64.095l50.114 50.114c3.121 3.121 3.126 8.192.002 11.316-3.118 3.118-8.19 3.123-11.316-.002L65.086 75.409z\"/></svg>"
},
"$:/core/images/close-others-button": {
"title": "$:/core/images/close-others-button",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-close-others-button tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M64 128c35.346 0 64-28.654 64-64 0-35.346-28.654-64-64-64C28.654 0 0 28.654 0 64c0 35.346 28.654 64 64 64zm0-16c26.51 0 48-21.49 48-48S90.51 16 64 16 16 37.49 16 64s21.49 48 48 48zm0-16c17.673 0 32-14.327 32-32 0-17.673-14.327-32-32-32-17.673 0-32 14.327-32 32 0 17.673 14.327 32 32 32zm0-16c8.837 0 16-7.163 16-16s-7.163-16-16-16-16 7.163-16 16 7.163 16 16 16z\"/></svg>"
},
"$:/core/images/copy-clipboard": {
"title": "$:/core/images/copy-clipboard",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-copy-clipboard tc-image-button\" viewBox=\"0 0 128 128\"><g fill-rule=\"evenodd\"><rect width=\"33\" height=\"8\" x=\"40\" y=\"40\" rx=\"4\"/><rect width=\"17\" height=\"8\" x=\"40\" y=\"82\" rx=\"4\"/><rect width=\"17\" height=\"8\" x=\"40\" y=\"54\" rx=\"4\"/><rect width=\"33\" height=\"8\" x=\"40\" y=\"96\" rx=\"4\"/><rect width=\"12\" height=\"8\" x=\"40\" y=\"68\" rx=\"4\"/><path d=\"M40 16H24c-4.419 0-8 3.59-8 8a8.031 8.031 0 000 .01v95.98a8.03 8.03 0 000 .01c0 4.41 3.581 8 8 8h80a7.975 7.975 0 005.652-2.34 7.958 7.958 0 002.348-5.652v-16.016c0-4.414-3.582-7.992-8-7.992-4.41 0-8 3.578-8 7.992V112H32V32h64v8.008C96 44.422 99.582 48 104 48c4.41 0 8-3.578 8-7.992V23.992a7.963 7.963 0 00-2.343-5.651A7.995 7.995 0 00104.001 16H88c0-4.41-3.585-8-8.007-8H48.007C43.588 8 40 11.582 40 16zm4-1.004A4.001 4.001 0 0148 11h32c2.21 0 4 1.797 4 3.996v4.008A4.001 4.001 0 0180 23H48c-2.21 0-4-1.797-4-3.996v-4.008z\"/><rect width=\"66\" height=\"16\" x=\"62\" y=\"64\" rx=\"8\"/><path d=\"M84.657 82.343l-16-16v11.314l16-16a8 8 0 10-11.314-11.314l-16 16a8 8 0 000 11.314l16 16a8 8 0 1011.314-11.314z\"/></g></svg>"
},
"$:/core/images/delete-button": {
"title": "$:/core/images/delete-button",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-delete-button tc-image-button\" viewBox=\"0 0 128 128\"><g fill-rule=\"evenodd\" transform=\"translate(12)\"><rect width=\"105\" height=\"16\" y=\"11\" rx=\"8\"/><rect width=\"48\" height=\"16\" x=\"28\" rx=\"8\"/><rect width=\"16\" height=\"112\" x=\"8\" y=\"16\" rx=\"8\"/><rect width=\"88\" height=\"16\" x=\"8\" y=\"112\" rx=\"8\"/><rect width=\"16\" height=\"112\" x=\"80\" y=\"16\" rx=\"8\"/><rect width=\"16\" height=\"112\" x=\"56\" y=\"16\" rx=\"8\"/><rect width=\"16\" height=\"112\" x=\"32\" y=\"16\" rx=\"8\"/></g></svg>"
},
"$:/core/images/done-button": {
"title": "$:/core/images/done-button",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-done-button tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M42.26 111.032c-2.051.001-4.103-.78-5.668-2.345L2.662 74.758a8 8 0 01-.005-11.32c3.118-3.117 8.192-3.12 11.32.007l28.278 28.278 72.124-72.124a8.002 8.002 0 0111.314-.001c3.118 3.118 3.124 8.19 0 11.315l-77.78 77.78a7.978 7.978 0 01-5.658 2.343z\"/></svg>"
},
"$:/core/images/down-arrow": {
"title": "$:/core/images/down-arrow",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-down-arrow tc-image-button\" viewBox=\"0 0 128 128\"><path d=\"M64.177 100.069a7.889 7.889 0 01-5.6-2.316l-55.98-55.98a7.92 7.92 0 010-11.196c3.086-3.085 8.105-3.092 11.196 0l50.382 50.382 50.382-50.382a7.92 7.92 0 0111.195 0c3.086 3.086 3.092 8.104 0 11.196l-55.98 55.98a7.892 7.892 0 01-5.595 2.316z\"/></svg>"
},
"$:/core/images/download-button": {
"title": "$:/core/images/download-button",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-download-button tc-image-button\" viewBox=\"0 0 128 128\"><g fill-rule=\"evenodd\"><path d=\"M64 128c35.346 0 64-28.654 64-64 0-35.346-28.654-64-64-64C28.654 0 0 28.654 0 64c0 35.346 28.654 64 64 64zm0-16c26.51 0 48-21.49 48-48S90.51 16 64 16 16 37.49 16 64s21.49 48 48 48z\" class=\"tc-image-download-button-ring\"/><path d=\"M34.35 66.43l26.892 27.205a4.57 4.57 0 006.516 0L94.65 66.43a4.7 4.7 0 000-6.593 4.581 4.581 0 00-3.258-1.365h-8.46c-2.545 0-4.608-2.087-4.608-4.661v-15.15c0-2.575-2.063-4.662-4.608-4.662H55.284c-2.545 0-4.608 2.087-4.608 4.662v15.15c0 2.574-2.063 4.661-4.608 4.661h-8.46c-2.545 0-4.608 2.087-4.608 4.662a4.69 4.69 0 001.35 3.296z\"/></g></svg>"
},
"$:/core/images/edit-button": {
"title": "$:/core/images/edit-button",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-edit-button tc-image-button\" viewBox=\"0 0 128 128\"><g fill-rule=\"evenodd\"><path d=\"M95.627 10.059l-5.656 5.657 11.313 11.313 5.657-5.656-11.314-11.314zm5.657-5.657l1.966-1.966c3.123-3.122 8.194-3.129 11.319-.005 3.117 3.118 3.122 8.192-.005 11.32l-1.966 1.965-11.314-11.314zm-16.97 16.97l-60.25 60.25a8.12 8.12 0 00-.322.342c-.1.087-.198.179-.295.275-5.735 5.735-10.702 22.016-10.702 22.016s16.405-5.09 22.016-10.702c.095-.096.186-.193.272-.292a8.12 8.12 0 00.345-.325l60.25-60.25-11.314-11.313zM35.171 124.19c6.788-.577 13.898-2.272 23.689-5.348 1.825-.573 3.57-1.136 6.336-2.04 16-5.226 21.877-6.807 28.745-7.146 8.358-.413 13.854 2.13 17.58 8.699a4 4 0 006.959-3.946c-5.334-9.406-13.745-13.296-24.933-12.744-7.875.39-14.057 2.052-30.835 7.533-2.739.894-4.46 1.45-6.25 2.012-19.46 6.112-30.77 7.072-39.597 1.747a4 4 0 10-4.132 6.85c6.333 3.82 13.754 5.12 22.438 4.383z\"/></g></svg>"
},
"$:/core/images/erase": {
"title": "$:/core/images/erase",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-erase tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M60.087 127.996l63.015-63.015c6.535-6.535 6.528-17.115-.003-23.646L99.466 17.702c-6.539-6.538-17.117-6.532-23.646-.003L4.898 88.62c-6.535 6.534-6.528 17.115.003 23.646l15.73 15.73h39.456zm-34.95-7.313l-14.324-14.325c-3.267-3.268-3.268-8.564-.008-11.824L46.269 59.07l35.462 35.462-26.15 26.15H25.137z\"/></svg>"
},
"$:/core/images/excise": {
"title": "$:/core/images/excise",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-excise tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M56 107.314l-2.343 2.343a8 8 0 11-11.314-11.314l16-16a8 8 0 0111.314 0l16 16a8 8 0 11-11.314 11.314L72 107.314v14.284c0 3.536-3.582 6.402-8 6.402s-8-2.866-8-6.402v-14.284zM0 40.007C0 35.585 3.59 32 8 32c4.418 0 8 3.588 8 8.007v31.986C16 76.415 12.41 80 8 80c-4.418 0-8-3.588-8-8.007V40.007zm32 0C32 35.585 35.59 32 40 32c4.418 0 8 3.588 8 8.007v31.986C48 76.415 44.41 80 40 80c-4.418 0-8-3.588-8-8.007V40.007zm48 0C80 35.585 83.59 32 88 32c4.418 0 8 3.588 8 8.007v31.986C96 76.415 92.41 80 88 80c-4.418 0-8-3.588-8-8.007V40.007zm-24-32C56 3.585 59.59 0 64 0c4.418 0 8 3.588 8 8.007v31.986C72 44.415 68.41 48 64 48c-4.418 0-8-3.588-8-8.007V8.007zm56 32c0-4.422 3.59-8.007 8-8.007 4.418 0 8 3.588 8 8.007v31.986c0 4.422-3.59 8.007-8 8.007-4.418 0-8-3.588-8-8.007V40.007z\"/></svg>"
},
"$:/core/images/export-button": {
"title": "$:/core/images/export-button",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-export-button tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M8.003 128H119.993a7.984 7.984 0 005.664-2.349v.007A7.975 7.975 0 00128 120V56c0-4.418-3.59-8-8-8-4.418 0-8 3.58-8 8v56H16V56c0-4.418-3.59-8-8-8-4.418 0-8 3.58-8 8v64c0 4.418 3.59 8 8 8h.003zm48.62-100.689l-8.965 8.966c-3.125 3.125-8.195 3.13-11.319.005-3.118-3.118-3.122-8.192.005-11.319L58.962 2.346A7.986 7.986 0 0164.625 0l-.006.002c2.05-.001 4.102.78 5.666 2.344l22.618 22.617c3.124 3.125 3.129 8.195.005 11.319-3.118 3.118-8.192 3.122-11.319-.005l-8.965-8.966v61.256c0 4.411-3.582 8-8 8-4.41 0-8-3.582-8-8V27.311z\"/></svg>"
},
"$:/core/images/file": {
"title": "$:/core/images/file",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-file tc-image-button\" viewBox=\"0 0 128 128\"><path d=\"M111.968 30.5H112V120a8 8 0 01-8 8H24a8 8 0 01-8-8V8a8 8 0 018-8h57v.02a7.978 7.978 0 015.998 2.337l22.627 22.627a7.975 7.975 0 012.343 5.516zM81 8H24v112h80V30.5H89c-4.418 0-8-3.578-8-8V8z\"/><rect width=\"64\" height=\"8\" x=\"32\" y=\"36\" rx=\"4\"/><rect width=\"64\" height=\"8\" x=\"32\" y=\"52\" rx=\"4\"/><rect width=\"64\" height=\"8\" x=\"32\" y=\"68\" rx=\"4\"/><rect width=\"64\" height=\"8\" x=\"32\" y=\"84\" rx=\"4\"/><rect width=\"64\" height=\"8\" x=\"32\" y=\"100\" rx=\"4\"/><rect width=\"40\" height=\"8\" x=\"32\" y=\"20\" rx=\"4\"/></svg>"
},
"$:/core/images/fixed-height": {
"title": "$:/core/images/fixed-height",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-fixed-height tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M60 35.657l-9.172 9.171a4 4 0 11-5.656-5.656l16-16a4 4 0 015.656 0l16 16a4 4 0 01-5.656 5.656L68 35.657v57.686l9.172-9.171a4 4 0 115.656 5.656l-16 16a4 4 0 01-5.656 0l-16-16a4 4 0 115.656-5.656L60 93.343V35.657zM16 116h96a4 4 0 100-8H16a4 4 0 100 8zm0-96h96a4 4 0 100-8H16a4 4 0 100 8z\"/></svg>"
},
"$:/core/images/fold-all-button": {
"title": "$:/core/images/fold-all-button",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-fold-all tc-image-button\" viewBox=\"0 0 128 128\"><g fill-rule=\"evenodd\"><rect width=\"128\" height=\"16\" rx=\"8\"/><rect width=\"128\" height=\"16\" y=\"64\" rx=\"8\"/><path d=\"M64.03 20.004c-2.05 0-4.102.78-5.667 2.344L35.746 44.966c-3.125 3.124-3.13 8.194-.005 11.318 3.118 3.118 8.192 3.122 11.319-.005l16.965-16.965 16.966 16.965c3.124 3.125 8.194 3.13 11.318.005 3.118-3.118 3.122-8.191-.005-11.318L69.687 22.348a7.986 7.986 0 00-5.663-2.346zM64.03 85.002c-2.05-.001-4.102.78-5.667 2.344l-22.617 22.617c-3.125 3.125-3.13 8.195-.005 11.319 3.118 3.118 8.192 3.122 11.319-.005l16.965-16.966 16.966 16.966c3.124 3.125 8.194 3.13 11.318.005 3.118-3.118 3.122-8.192-.005-11.319L69.687 87.346A7.986 7.986 0 0064.024 85z\"/></g></svg>"
},
"$:/core/images/fold-button": {
"title": "$:/core/images/fold-button",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-fold tc-image-button\" viewBox=\"0 0 128 128\"><g fill-rule=\"evenodd\"><rect width=\"128\" height=\"16\" rx=\"8\"/><path d=\"M64.03 25.004c-2.05 0-4.102.78-5.667 2.344L35.746 49.966c-3.125 3.124-3.13 8.194-.005 11.318 3.118 3.118 8.192 3.122 11.319-.005l16.965-16.965 16.966 16.965c3.124 3.125 8.194 3.13 11.318.005 3.118-3.118 3.122-8.191-.005-11.318L69.687 27.348a7.986 7.986 0 00-5.663-2.346zM64.005 67.379c-2.05 0-4.102.78-5.666 2.344L35.722 92.34c-3.125 3.125-3.13 8.195-.006 11.32 3.118 3.117 8.192 3.121 11.32-.006L64 86.69l16.965 16.965c3.125 3.125 8.195 3.13 11.319.005 3.118-3.118 3.122-8.192-.005-11.319L69.663 69.723A7.986 7.986 0 0064 67.377z\"/></g></svg>"
},
"$:/core/images/fold-others-button": {
"title": "$:/core/images/fold-others-button",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-fold-others tc-image-button\" viewBox=\"0 0 128 128\"><g fill-rule=\"evenodd\"><rect width=\"128\" height=\"16\" y=\"56.031\" rx=\"8\"/><path d=\"M86.632 79.976c-2.05 0-4.102.78-5.666 2.345L64 99.286 47.034 82.321a7.986 7.986 0 00-5.662-2.346l.005.001c-2.05 0-4.102.78-5.666 2.345l-22.618 22.617c-3.124 3.125-3.129 8.195-.005 11.319 3.118 3.118 8.192 3.122 11.319-.005l16.966-16.966 16.965 16.966a7.986 7.986 0 005.663 2.346l-.005-.002c2.05 0 4.102-.78 5.666-2.344l16.965-16.966 16.966 16.966c3.125 3.124 8.194 3.129 11.319.005 3.118-3.118 3.122-8.192-.005-11.319L92.289 82.321a7.986 7.986 0 00-5.663-2.346zM86.7 48.024c-2.05 0-4.102-.78-5.666-2.345L64.07 28.714 47.103 45.679a7.986 7.986 0 01-5.663 2.346l.005-.001c-2.05 0-4.101-.78-5.666-2.345L13.162 23.062c-3.125-3.125-3.13-8.195-.005-11.319 3.118-3.118 8.192-3.122 11.319.005L41.44 28.714l16.966-16.966a7.986 7.986 0 015.662-2.346l-.005.002c2.05 0 4.102.78 5.666 2.344l16.966 16.966 16.966-16.966c3.124-3.124 8.194-3.129 11.318-.005 3.118 3.118 3.122 8.192-.005 11.319L92.358 45.679a7.986 7.986 0 01-5.663 2.346z\"/></g></svg>"
},
"$:/core/images/folder": {
"title": "$:/core/images/folder",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-folder tc-image-button\" viewBox=\"0 0 128 128\"><g fill-rule=\"evenodd\"><path d=\"M55.694 128H8C3.58 128 0 124.414 0 119.996V48.004C0 43.584 3.584 40 7.999 40H16v-8c0-4.418 3.578-8 8-8h32a8 8 0 018 8v8h40.001c4.418 0 7.999 3.586 7.999 8.004V59.83l-8-.082v-7.749A4 4 0 0099.997 48H56V36c0-2.21-1.793-4-4.004-4H28.004A4 4 0 0024 36v12H12.003A4 4 0 008 52v64a4 4 0 004.003 4h46.76l-3.069 8z\"/><path d=\"M23.873 55.5h96.003c4.417 0 7.004 4.053 5.774 9.063l-13.344 54.374c-1.228 5.005-5.808 9.063-10.223 9.063H6.08c-4.417 0-7.003-4.053-5.774-9.063L13.65 64.563c1.228-5.005 5.808-9.063 10.223-9.063zm1.78 8.5h87.994c2.211 0 3.504 2.093 2.891 4.666l-11.12 46.668c-.614 2.577-2.902 4.666-5.115 4.666H12.31c-2.211 0-3.504-2.093-2.891-4.666l11.12-46.668C21.152 66.09 23.44 64 25.653 64z\"/></g></svg>"
},
"$:/core/images/full-screen-button": {
"title": "$:/core/images/full-screen-button",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-full-screen-button tc-image-button\" viewBox=\"0 0 128 128\"><path d=\"M0 8a8 8 0 018-8h32a8 8 0 110 16H16v24a8 8 0 11-16 0V8zM128 120a8 8 0 01-8 8H88a8 8 0 110-16h24V88a8 8 0 1116 0v32zM8 128a8 8 0 01-8-8V88a8 8 0 1116 0v24h24a8 8 0 110 16H8zM120 0a8 8 0 018 8v32a8 8 0 11-16 0V16H88a8 8 0 110-16h32z\"/></svg>"
},
"$:/core/images/github": {
"title": "$:/core/images/github",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-github tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M63.938 1.607c-35.336 0-63.994 28.69-63.994 64.084 0 28.312 18.336 52.329 43.768 60.802 3.202.59 4.37-1.388 4.37-3.088 0-1.518-.056-5.55-.087-10.897-17.802 3.871-21.558-8.591-21.558-8.591-2.911-7.404-7.108-9.375-7.108-9.375-5.81-3.973.44-3.895.44-3.895 6.424.453 9.803 6.606 9.803 6.606 5.709 9.791 14.981 6.963 18.627 5.322.582-4.138 2.236-6.963 4.063-8.564-14.211-1.617-29.153-7.117-29.153-31.672 0-6.995 2.495-12.718 6.589-17.195-.66-1.621-2.856-8.14.629-16.96 0 0 5.37-1.722 17.597 6.57 5.104-1.424 10.58-2.132 16.022-2.16 5.438.028 10.91.736 16.022 2.16 12.22-8.292 17.582-6.57 17.582-6.57 3.493 8.82 1.297 15.339.64 16.96 4.102 4.477 6.578 10.2 6.578 17.195 0 24.618-14.966 30.035-29.22 31.62 2.295 1.98 4.342 5.89 4.342 11.87 0 8.564-.079 15.476-.079 17.576 0 1.715 1.155 3.71 4.4 3.084 25.413-8.493 43.733-32.494 43.733-60.798 0-35.394-28.657-64.084-64.006-64.084\"/></svg>"
},
"$:/core/images/gitter": {
"title": "$:/core/images/gitter",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-gitter tc-image-button\" viewBox=\"0 0 18 25\"><path d=\"M15 5h2v10h-2zM10 5h2v20h-2zM5 5h2v20H5zM0 0h2v15H0z\"/></svg>"
},
"$:/core/images/globe": {
"title": "$:/core/images/globe",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-globe tc-image-button\" viewBox=\"0 0 128 128\"><g fill-rule=\"evenodd\"><path d=\"M72.811 37.128v2.554c0 2.196.978 6.881 0 8.832-1.466 2.928-4.65 3.54-6.394 5.867-1.182 1.577-4.618 10.601-3.69 12.92 3.969 9.922 11.534 3.187 17.962 9.293.864.821 2.887 2.273 3.296 3.296 3.29 8.223-7.576 15.009 3.757 26.3 1.245 1.24 3.813-3.817 4.079-4.614.852-2.563 6.725-5.45 9.088-7.053 2.02-1.37 4.873-2.667 6.328-4.745 2.27-3.244 1.48-7.514 3.098-10.745 2.139-4.274 3.828-9.635 5.998-13.966 3.898-7.781 4.721 2.093 5.067 2.439.358.357 1.011 0 1.517 0 .094 0 1.447.099 1.516 0 .65-.935-1.043-17.92-1.318-19.297-1.404-7.01-6.944-15.781-11.865-20.5-6.274-6.015-7.09-16.197-18.259-14.954-.204.022-5.084 10.148-7.777 13.512-3.728 4.657-2.47-4.153-6.526-4.153-.081 0-1.183-.103-1.253 0-.586.88-1.44 3.896-2.306 4.417-.265.16-1.722-.239-1.846 0-2.243 4.3 8.256 2.212 5.792 7.952-2.352 5.481-6.328-1.997-6.328 8.56M44.467 7.01c9.685 6.13.682 12.198 2.694 16.215 1.655 3.303 4.241 5.395 1.714 9.814-2.063 3.608-6.87 3.966-9.623 6.723-3.04 3.044-5.464 8.94-6.79 12.911-1.617 4.843 14.547 6.866 12.063 11.008-1.386 2.311-6.746 1.466-8.437.198-1.165-.873-3.593-.546-4.417-1.78-2.613-3.915-2.26-8.023-3.625-12.128-.938-2.822-6.313-2.12-7.844-.593-.523.522-.33 1.792-.33 2.505 0 5.285 7.12 3.316 7.12 6.46 0 14.636 3.927 6.534 11.14 11.336 10.036 6.683 7.844 7.303 14.946 14.404 3.673 3.673 7.741 3.686 9.425 9.294 1.602 5.331-9.327 5.339-11.716 7.448-1.123.991-2.813 4.146-4.219 4.615-1.792.598-3.234.496-4.944 1.78-2.427 1.82-3.9 4.932-4.02 4.81-2.148-2.147-3.52-15.479-3.89-18.257-.588-4.42-5.59-5.54-6.986-9.03-1.57-3.927 1.524-9.52-1.129-13.761-6.52-10.424-11.821-14.5-15.35-26.292-.942-3.148 3.342-6.529 4.877-8.833 1.877-2.816 2.662-5.854 4.746-8.635C22.147 24.19 40.855 9.461 43.857 8.635l.61-1.625z\"/><path d=\"M64 126c34.242 0 62-27.758 62-62 0-34.242-27.758-62-62-62C29.758 2 2 29.758 2 64c0 34.242 27.758 62 62 62zm0-6c30.928 0 56-25.072 56-56S94.928 8 64 8 8 33.072 8 64s25.072 56 56 56z\"/></g></svg>"
},
"$:/core/images/heading-1": {
"title": "$:/core/images/heading-1",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-heading-1 tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M14 30h13.25v30.104H61.7V30h13.25v75.684H61.7V71.552H27.25v34.132H14V30zm70.335 13.78c2.544 0 5.017-.212 7.42-.636 2.403-.424 4.576-1.13 6.52-2.12 1.942-.99 3.603-2.261 4.981-3.816 1.378-1.555 2.28-3.463 2.703-5.724h9.858v74.2h-13.25V53.32H84.335v-9.54z\"/></svg>"
},
"$:/core/images/heading-2": {
"title": "$:/core/images/heading-2",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-heading-2 tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M6 30h13.25v30.104H53.7V30h13.25v75.684H53.7V71.552H19.25v34.132H6V30zm119.52 75.684H74.85c.07-6.148 1.555-11.519 4.452-16.112 2.897-4.593 6.855-8.586 11.872-11.978a133.725 133.725 0 017.526-5.141 59.6 59.6 0 007.208-5.353c2.19-1.908 3.993-3.975 5.406-6.201 1.413-2.226 2.155-4.788 2.226-7.685 0-1.343-.159-2.774-.477-4.293a11.357 11.357 0 00-1.855-4.24c-.919-1.307-2.19-2.403-3.816-3.286-1.625-.883-3.745-1.325-6.36-1.325-2.403 0-4.399.477-5.989 1.431-1.59.954-2.862 2.261-3.816 3.922-.954 1.66-1.66 3.622-2.12 5.883-.46 2.261-.724 4.7-.795 7.314H76.23c0-4.099.548-7.897 1.643-11.395 1.095-3.498 2.738-6.519 4.93-9.063 2.19-2.544 4.857-4.54 8.002-5.989C93.95 30.724 97.606 30 101.775 30c4.523 0 8.303.742 11.342 2.226 3.039 1.484 5.494 3.357 7.367 5.618 1.873 2.261 3.198 4.717 3.975 7.367.777 2.65 1.166 5.176 1.166 7.579 0 2.968-.46 5.653-1.378 8.056a25.942 25.942 0 01-3.71 6.625 37.5 37.5 0 01-5.3 5.565 79.468 79.468 0 01-6.148 4.77 165.627 165.627 0 01-6.36 4.24 94.28 94.28 0 00-5.883 4.028c-1.802 1.343-3.374 2.738-4.717 4.187-1.343 1.449-2.261 2.986-2.756 4.611h36.146v10.812z\"/></svg>"
},
"$:/core/images/heading-3": {
"title": "$:/core/images/heading-3",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-heading-3 tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M6 30h13.25v30.104H53.7V30h13.25v75.684H53.7V71.552H19.25v34.132H6V30zm88.885 32.224c1.979.07 3.957-.07 5.936-.424 1.979-.353 3.745-.972 5.3-1.855a10.365 10.365 0 003.763-3.657c.954-1.555 1.431-3.463 1.431-5.724 0-3.18-1.078-5.724-3.233-7.632-2.155-1.908-4.929-2.862-8.32-2.862-2.12 0-3.958.424-5.513 1.272a11.318 11.318 0 00-3.869 3.445c-1.025 1.449-1.784 3.074-2.279 4.876a18.335 18.335 0 00-.636 5.565H75.381c.141-3.604.813-6.943 2.014-10.017 1.201-3.074 2.844-5.742 4.93-8.003 2.084-2.261 4.61-4.028 7.578-5.3C92.871 30.636 96.228 30 99.973 30a29.2 29.2 0 018.533 1.272c2.791.848 5.3 2.085 7.526 3.71s4.01 3.692 5.353 6.201c1.343 2.509 2.014 5.388 2.014 8.639 0 3.745-.848 7.014-2.544 9.805-1.696 2.791-4.346 4.823-7.95 6.095v.212c4.24.848 7.544 2.95 9.911 6.307s3.551 7.438 3.551 12.243c0 3.533-.707 6.696-2.12 9.487a21.538 21.538 0 01-5.724 7.102c-2.403 1.943-5.194 3.445-8.374 4.505-3.18 1.06-6.537 1.59-10.07 1.59-4.31 0-8.074-.618-11.289-1.855s-5.9-2.986-8.056-5.247c-2.155-2.261-3.798-4.982-4.929-8.162-1.13-3.18-1.731-6.713-1.802-10.6h12.084c-.141 4.523.972 8.286 3.34 11.289 2.366 3.003 5.917 4.505 10.652 4.505 4.028 0 7.402-1.148 10.123-3.445 2.72-2.297 4.081-5.565 4.081-9.805 0-2.897-.565-5.194-1.696-6.89a10.97 10.97 0 00-4.452-3.869c-1.837-.883-3.904-1.431-6.2-1.643a58.067 58.067 0 00-7.05-.212v-9.01z\"/></svg>"
},
"$:/core/images/heading-4": {
"title": "$:/core/images/heading-4",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-heading-4 tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M8 30h13.25v30.104H55.7V30h13.25v75.684H55.7V71.552H21.25v34.132H8V30zm76.59 48.548h22.471V45.9h-.212L84.59 78.548zm43.46 9.54h-9.54v17.596H107.06V88.088h-31.8V76.11l31.8-44.626h11.448v47.064h9.54v9.54z\"/></svg>"
},
"$:/core/images/heading-5": {
"title": "$:/core/images/heading-5",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-heading-5 tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M6 30h13.25v30.104H53.7V30h13.25v75.684H53.7V71.552H19.25v34.132H6V30zm77.755 1.484h38.372v10.812H92.765L88.95 61.164l.212.212c1.625-1.837 3.692-3.233 6.201-4.187 2.509-.954 5-1.431 7.473-1.431 3.675 0 6.96.618 9.858 1.855 2.897 1.237 5.335 2.968 7.314 5.194s3.48 4.858 4.505 7.897c1.025 3.039 1.537 6.325 1.537 9.858 0 2.968-.477 6.024-1.43 9.169a25.161 25.161 0 01-4.559 8.586c-2.085 2.58-4.752 4.7-8.003 6.36-3.25 1.66-7.137 2.491-11.66 2.491-3.604 0-6.943-.477-10.017-1.431-3.074-.954-5.777-2.385-8.109-4.293-2.332-1.908-4.187-4.258-5.565-7.049-1.378-2.791-2.138-6.06-2.279-9.805h12.084c.353 4.028 1.731 7.12 4.134 9.275 2.403 2.155 5.583 3.233 9.54 3.233 2.544 0 4.7-.424 6.466-1.272 1.767-.848 3.198-2.014 4.293-3.498 1.095-1.484 1.873-3.215 2.332-5.194.46-1.979.69-4.099.69-6.36 0-2.05-.284-4.01-.849-5.883-.565-1.873-1.413-3.516-2.544-4.929-1.13-1.413-2.597-2.544-4.399-3.392-1.802-.848-3.904-1.272-6.307-1.272-2.544 0-4.929.477-7.155 1.431-2.226.954-3.834 2.738-4.823 5.353H75.805l7.95-40.598z\"/></svg>"
},
"$:/core/images/heading-6": {
"title": "$:/core/images/heading-6",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-heading-6 tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M6 30h13.25v30.104H53.7V30h13.25v75.684H53.7V71.552H19.25v34.132H6V30zm106.587 20.246c-.283-3.039-1.36-5.494-3.233-7.367-1.873-1.873-4.399-2.809-7.579-2.809-2.19 0-4.08.406-5.67 1.219a12.435 12.435 0 00-4.029 3.233c-1.095 1.343-1.979 2.88-2.65 4.611a37.696 37.696 0 00-1.643 5.459 46.08 46.08 0 00-.9 5.671 722.213 722.213 0 00-.478 5.247l.212.212c1.625-2.968 3.87-5.176 6.731-6.625 2.862-1.449 5.954-2.173 9.275-2.173 3.675 0 6.96.636 9.858 1.908 2.897 1.272 5.353 3.021 7.367 5.247 2.014 2.226 3.551 4.858 4.611 7.897 1.06 3.039 1.59 6.325 1.59 9.858 0 3.604-.583 6.943-1.749 10.017-1.166 3.074-2.844 5.76-5.035 8.056-2.19 2.297-4.805 4.081-7.844 5.353-3.039 1.272-6.395 1.908-10.07 1.908-5.441 0-9.91-1.007-13.409-3.021-3.498-2.014-6.254-4.77-8.268-8.268-2.014-3.498-3.41-7.597-4.187-12.296-.777-4.7-1.166-9.77-1.166-15.211 0-4.452.477-8.94 1.431-13.462.954-4.523 2.526-8.639 4.717-12.349 2.19-3.71 5.07-6.731 8.64-9.063C92.676 31.166 97.075 30 102.304 30c2.968 0 5.76.495 8.374 1.484 2.615.99 4.93 2.367 6.943 4.134 2.014 1.767 3.657 3.887 4.93 6.36 1.271 2.473 1.978 5.23 2.12 8.268h-12.085zm-11.66 46.852c2.19 0 4.099-.442 5.724-1.325a12.869 12.869 0 004.081-3.445c1.095-1.413 1.908-3.056 2.438-4.929.53-1.873.795-3.798.795-5.777s-.265-3.887-.795-5.724c-.53-1.837-1.343-3.445-2.438-4.823-1.095-1.378-2.456-2.491-4.08-3.339-1.626-.848-3.534-1.272-5.725-1.272-2.19 0-4.116.406-5.777 1.219-1.66.813-3.056 1.908-4.187 3.286-1.13 1.378-1.979 2.986-2.544 4.823-.565 1.837-.848 3.78-.848 5.83 0 2.05.283 3.993.848 5.83.565 1.837 1.413 3.48 2.544 4.929a12.39 12.39 0 004.187 3.445c1.66.848 3.586 1.272 5.777 1.272z\"/></svg>"
},
"$:/core/images/help": {
"title": "$:/core/images/help",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-help tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M36.055 111.441c-5.24 4.396-15.168 7.362-26.555 7.362-1.635 0-3.24-.06-4.806-.179 7.919-2.64 14.062-8.6 16.367-16.014C8.747 92.845 1.05 78.936 1.05 63.5c0-29.547 28.206-53.5 63-53.5s63 23.953 63 53.5-28.206 53.5-63 53.5c-10.055 0-19.56-2-27.994-5.559zm35.35-33.843a536.471 536.471 0 00.018-4.682 199.02 199.02 0 00-.023-3.042c.008-1.357.595-2.087 3.727-4.235.112-.077 1.085-.74 1.386-.948 3.093-2.133 5.022-3.786 6.762-6.187 2.34-3.228 3.558-7.077 3.558-11.649 0-13.292-9.86-21.952-21.455-21.952-11.103 0-22.499 9.609-24.066 22.295a6.023 6.023 0 1011.956 1.477c.806-6.527 6.972-11.726 12.11-11.726 5.265 0 9.408 3.64 9.408 9.906 0 3.634-1.1 5.153-5.111 7.919l-1.362.93c-2.682 1.84-4.227 3.1-5.7 4.931-2.109 2.62-3.242 5.717-3.258 9.314.013.892.02 1.86.022 2.981a470.766 470.766 0 01-.022 4.943 6.023 6.023 0 1012.046.12l.003-.395zm-6.027 24.499a7.529 7.529 0 100-15.058 7.529 7.529 0 000 15.058z\"/></svg>"
},
"$:/core/images/home-button": {
"title": "$:/core/images/home-button",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-home-button tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M112.985 119.502c.01-.165.015-.331.015-.499V67.568c3.137 2.948 8.076 2.884 11.134-.174a7.999 7.999 0 00-.002-11.316L70.396 2.343A7.978 7.978 0 0064.734 0a7.957 7.957 0 00-5.656 2.343L33 28.42V8.007C33 3.585 29.41 0 25 0c-4.418 0-8 3.59-8 8.007V44.42L5.342 56.078c-3.125 3.125-3.12 8.198-.002 11.316a7.999 7.999 0 0011.316-.003l.344-.343v52.945a8.11 8.11 0 000 .007c0 4.418 3.588 8 8 8h80c4.419 0 8-3.59 8-8a8.11 8.11 0 00-.015-.498zM97 112V51.574L64.737 19.31 33 51.048V112h64z\"/></svg>"
},
"$:/core/images/import-button": {
"title": "$:/core/images/import-button",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-import-button tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M114.832 60.436s3.235-3.27 6.921.417c3.686 3.686.231 7.14.231 7.14l-42.153 42.92s-30.765 32.367-58.798 4.333C-7 87.213 24.59 55.623 24.59 55.623L67.363 12.85s22.725-24.6 43.587-3.738c20.862 20.862-3.96 43.09-3.96 43.09l-35.04 35.04S49.903 112.546 36.426 99.07c-13.476-13.477 11.83-35.523 11.83-35.523l35.04-35.04s3.902-3.902 7.78-.023c3.879 3.878.118 7.921.118 7.921l-35.04 35.04s-13.212 13.212-8.872 17.551c4.34 4.34 16.77-9.653 16.77-9.653l35.04-35.04s16.668-14.598 3.966-27.3c-13.893-13.892-27.565 3.702-27.565 3.702l-42.91 42.91s-23.698 23.698-3.658 43.738 43.012-4.385 43.012-4.385l42.895-42.533z\"/></svg>"
},
"$:/core/images/info-button": {
"title": "$:/core/images/info-button",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-info-button tc-image-button\" viewBox=\"0 0 128 128\"><g fill-rule=\"evenodd\" transform=\"translate(.05)\"><path d=\"M64 128c35.346 0 64-28.654 64-64 0-35.346-28.654-64-64-64C28.654 0 0 28.654 0 64c0 35.346 28.654 64 64 64zm0-16c26.51 0 48-21.49 48-48S90.51 16 64 16 16 37.49 16 64s21.49 48 48 48z\"/><circle cx=\"64\" cy=\"32\" r=\"8\"/><rect width=\"16\" height=\"56\" x=\"56\" y=\"48\" rx=\"8\"/></g></svg>"
},
"$:/core/images/italic": {
"title": "$:/core/images/italic",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-italic tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M66.711 0h22.41L62.408 128H40z\"/></svg>"
},
"$:/core/images/left-arrow": {
"title": "$:/core/images/left-arrow",
"created": "20150315234410875",
"modified": "20150315235324760",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-left-arrow tc-image-button\" viewBox=\"0 0 128 128\"><path d=\"M0 64.177c0-2.026.771-4.054 2.317-5.6l55.98-55.98a7.92 7.92 0 0111.195.001c3.086 3.085 3.092 8.104.001 11.195L19.111 64.175l50.382 50.382a7.92 7.92 0 010 11.195c-3.086 3.086-8.105 3.092-11.196.001l-55.98-55.98A7.892 7.892 0 010 64.177z\"/></svg>"
},
"$:/core/images/line-width": {
"title": "$:/core/images/line-width",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-line-width tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M16 18h96a2 2 0 000-4H16a2 2 0 100 4zm0 17h96a4 4 0 100-8H16a4 4 0 100 8zm0 21h96a6 6 0 000-12H16a6 6 0 100 12zm0 29h96c5.523 0 10-4.477 10-10s-4.477-10-10-10H16c-5.523 0-10 4.477-10 10s4.477 10 10 10zm0 43h96c8.837 0 16-7.163 16-16s-7.163-16-16-16H16c-8.837 0-16 7.163-16 16s7.163 16 16 16z\"/></svg>"
},
"$:/core/images/link": {
"title": "$:/core/images/link",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-link tc-image-button\" viewBox=\"0 0 128 128\"><g fill-rule=\"evenodd\"><path d=\"M42.263 69.38a31.919 31.919 0 006.841 10.13c12.5 12.5 32.758 12.496 45.255 0l22.627-22.628c12.502-12.501 12.497-32.758 0-45.255-12.5-12.5-32.758-12.496-45.254 0L49.104 34.255a32.333 32.333 0 00-2.666 3.019 36.156 36.156 0 0121.94.334l14.663-14.663c6.25-6.25 16.382-6.254 22.632-.004 6.248 6.249 6.254 16.373-.004 22.631l-22.62 22.62c-6.25 6.25-16.381 6.254-22.631.004a15.93 15.93 0 01-4.428-8.433 11.948 11.948 0 00-7.59 3.48l-6.137 6.137z\"/><path d=\"M86.35 59.234a31.919 31.919 0 00-6.84-10.13c-12.5-12.5-32.758-12.497-45.255 0L11.627 71.732c-12.501 12.5-12.496 32.758 0 45.254 12.5 12.5 32.758 12.497 45.255 0L79.51 94.36a32.333 32.333 0 002.665-3.02 36.156 36.156 0 01-21.94-.333l-14.663 14.663c-6.25 6.25-16.381 6.253-22.63.004-6.25-6.249-6.255-16.374.003-22.632l22.62-22.62c6.25-6.25 16.381-6.253 22.631-.003a15.93 15.93 0 014.428 8.432 11.948 11.948 0 007.59-3.48l6.137-6.136z\"/></g></svg>"
},
"$:/core/images/linkify": {
"title": "$:/core/images/linkify",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-linkify-button tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M17.031 31.919H9.048V96.85h7.983v6.92H0V25h17.031v6.919zm24.66 0h-7.983V96.85h7.983v6.92H24.66V25h17.03v6.919zM67.77 56.422l11.975-3.903 2.306 7.096-12.063 3.903 7.628 10.379-6.12 4.435-7.63-10.467-7.45 10.2-5.943-4.523L58.1 63.518 45.95 59.35l2.306-7.096 12.064 4.17V43.825h7.45v12.596zM86.31 96.85h7.982V31.92H86.31V25h17.031v78.77H86.31v-6.92zm24.659 0h7.983V31.92h-7.983V25H128v78.77h-17.031v-6.92z\"/></svg>"
},
"$:/core/images/list-bullet": {
"title": "$:/core/images/list-bullet",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-list-bullet tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M11.636 40.273c6.427 0 11.637-5.21 11.637-11.637C23.273 22.21 18.063 17 11.636 17 5.21 17 0 22.21 0 28.636c0 6.427 5.21 11.637 11.636 11.637zm0 34.909c6.427 0 11.637-5.21 11.637-11.637 0-6.426-5.21-11.636-11.637-11.636C5.21 51.91 0 57.12 0 63.545c0 6.427 5.21 11.637 11.636 11.637zm0 34.909c6.427 0 11.637-5.21 11.637-11.636 0-6.427-5.21-11.637-11.637-11.637C5.21 86.818 0 92.028 0 98.455c0 6.426 5.21 11.636 11.636 11.636zM34.91 22.818H128v11.637H34.91V22.818zm0 34.91H128v11.636H34.91V57.727zm0 34.908H128v11.637H34.91V92.636z\"/></svg>"
},
"$:/core/images/list-number": {
"title": "$:/core/images/list-number",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-list-number tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M33.84 22.356H128v11.77H33.84v-11.77zm0 35.31H128v11.77H33.84v-11.77zm0 35.311H128v11.77H33.84v-11.77zM.38 42.631v-2.223h.998c.826 0 1.445-.14 1.858-.42.413-.28.619-.948.619-2.002V22.769c0-1.442-.193-2.336-.58-2.683-.385-.347-1.477-.52-3.275-.52v-2.143c3.502-.147 6.252-.955 8.25-2.423h2.117v22.865c0 .921.15 1.575.449 1.963.3.387.949.58 1.948.58h.998v2.223H.38zm-.3 35.356v-1.902c7.19-6.554 10.786-12.58 10.786-18.08 0-1.562-.326-2.81-.979-3.744-.652-.934-1.524-1.402-2.616-1.402-.893 0-1.655.317-2.287.952-.633.634-.95 1.364-.95 2.192 0 .974.247 1.829.74 2.563.106.16.16.28.16.36 0 .147-.16.28-.48.4-.213.08-.752.308-1.618.681-.839.374-1.358.561-1.558.561-.24 0-.512-.37-.819-1.111A6.2 6.2 0 010 57.064c0-1.949.849-3.544 2.547-4.785 1.698-1.242 3.798-1.862 6.302-1.862 2.463 0 4.53.67 6.202 2.012 1.67 1.341 2.506 3.093 2.506 5.256a8.644 8.644 0 01-.849 3.724c-.566 1.201-1.92 3.053-4.064 5.556a165.471 165.471 0 01-6.272 6.938h11.445l-1.019 5.726h-2.117c.08-.28.12-.534.12-.76 0-.388-.1-.631-.3-.731-.2-.1-.599-.15-1.198-.15H.08zm12.124 19.207c1.745.04 3.236.637 4.474 1.792 1.239 1.154 1.858 2.773 1.858 4.855 0 2.99-1.132 5.393-3.396 7.208-2.263 1.815-5 2.723-8.209 2.723-2.01 0-3.669-.384-4.974-1.151C.652 111.853 0 110.849 0 109.607c0-.774.27-1.398.809-1.872.54-.474 1.128-.71 1.768-.71.639 0 1.162.2 1.568.6.406.4.782 1.055 1.128 1.962.466 1.268 1.239 1.902 2.317 1.902 1.265 0 2.287-.477 3.066-1.431.78-.955 1.169-2.686 1.169-5.196 0-1.709-.12-3.023-.36-3.944-.24-.921-.792-1.382-1.658-1.382-.586 0-1.185.307-1.797.921-.493.494-.932.741-1.319.741-.333 0-.602-.147-.809-.44-.206-.294-.31-.574-.31-.841 0-.32.104-.594.31-.821.207-.227.69-.594 1.449-1.102 2.876-1.922 4.314-4.017 4.314-6.287 0-1.188-.306-2.092-.919-2.713a3.001 3.001 0 00-2.217-.93c-.799 0-1.525.263-2.177.79-.653.528-.979 1.158-.979 1.892 0 .641.253 1.235.76 1.782.172.2.259.367.259.5 0 .121-.57.428-1.708.922-1.139.494-1.854.74-2.147.74-.413 0-.75-.333-1.009-1-.26-.668-.39-1.282-.39-1.842 0-1.749.93-3.224 2.787-4.425 1.858-1.202 3.965-1.802 6.322-1.802 2.064 0 3.851.447 5.363 1.341 1.511.895 2.267 2.116 2.267 3.664 0 1.362-.57 2.623-1.708 3.784a13.387 13.387 0 01-3.945 2.784z\"/></svg>"
},
"$:/core/images/list": {
"title": "$:/core/images/list",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-list tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M87.748 128H23.999c-4.418 0-7.999-3.59-7.999-8.007V8.007C16 3.585 19.588 0 24 0h80c4.419 0 8 3.59 8 8.007V104H91.25c-.965 0-1.84.392-2.473 1.025a3.476 3.476 0 00-1.029 2.476V128zm8-.12l15.88-15.88h-15.88v15.88zM40 15.508A3.502 3.502 0 0143.5 12h55c1.933 0 3.5 1.561 3.5 3.509v.982A3.502 3.502 0 0198.5 20h-55a3.498 3.498 0 01-3.5-3.509v-.982zM32 22a6 6 0 100-12 6 6 0 000 12zm8 9.509A3.502 3.502 0 0143.5 28h55c1.933 0 3.5 1.561 3.5 3.509v.982A3.502 3.502 0 0198.5 36h-55a3.498 3.498 0 01-3.5-3.509v-.982zm0 16A3.502 3.502 0 0143.5 44h55c1.933 0 3.5 1.561 3.5 3.509v.982A3.502 3.502 0 0198.5 52h-55a3.498 3.498 0 01-3.5-3.509v-.982zm0 16A3.502 3.502 0 0143.5 60h55c1.933 0 3.5 1.561 3.5 3.509v.982A3.502 3.502 0 0198.5 68h-55a3.498 3.498 0 01-3.5-3.509v-.982zm0 16A3.502 3.502 0 0143.5 76h55c1.933 0 3.5 1.561 3.5 3.509v.982A3.502 3.502 0 0198.5 84h-55a3.498 3.498 0 01-3.5-3.509v-.982zm0 16A3.502 3.502 0 0143.5 92h55c1.933 0 3.5 1.561 3.5 3.509v.982A3.502 3.502 0 0198.5 100h-55a3.498 3.498 0 01-3.5-3.509v-.982zm0 16A3.505 3.505 0 0143.497 108h33.006A3.497 3.497 0 0180 111.509v.982A3.505 3.505 0 0176.503 116H43.497A3.497 3.497 0 0140 112.491v-.982zM32 38a6 6 0 100-12 6 6 0 000 12zm0 16a6 6 0 100-12 6 6 0 000 12zm0 16a6 6 0 100-12 6 6 0 000 12zm0 16a6 6 0 100-12 6 6 0 000 12zm0 16a6 6 0 100-12 6 6 0 000 12zm0 16a6 6 0 100-12 6 6 0 000 12z\"/></svg>"
},
"$:/core/images/locked-padlock": {
"title": "$:/core/images/locked-padlock",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-locked-padlock tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M96.472 64H105v32.01C105 113.674 90.674 128 73.001 128H56C38.318 128 24 113.677 24 96.01V64h8c.003-15.723.303-47.731 32.16-47.731 31.794 0 32.305 32.057 32.312 47.731zm-15.897 0H48.44c.002-16.287.142-32 15.719-32 15.684 0 16.977 16.136 16.415 32zM67.732 92.364A8.503 8.503 0 0064.5 76a8.5 8.5 0 00-3.498 16.25l-5.095 22.77H72.8l-5.07-22.656z\"/></svg>"
},
"$:/core/images/mail": {
"title": "$:/core/images/mail",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-mail tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M122.827 104.894a7.986 7.986 0 01-2.834.516H8.007c-.812 0-1.597-.12-2.335-.345l34.163-34.163 20.842 20.842a3.998 3.998 0 003.418 1.134 4.003 4.003 0 003.395-1.134L88.594 70.64c.075.09.155.176.24.26l33.993 33.994zm5.076-6.237c.064-.406.097-.823.097-1.247v-64c0-.669-.082-1.318-.237-1.94L94.23 65.006c.09.075.177.154.261.239l33.413 33.413zm-127.698.56A8.023 8.023 0 010 97.41v-64c0-.716.094-1.41.271-2.071l33.907 33.906L.205 99.218zM5.93 25.684a8.012 8.012 0 012.078-.273h111.986c.766 0 1.507.108 2.209.308L64.083 83.837 5.93 25.683z\"/></svg>"
},
"$:/core/images/menu-button": {
"title": "$:/core/images/menu-button",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-menu-button tc-image-button\" viewBox=\"0 0 128 128\"><rect width=\"128\" height=\"16\" y=\"16\" rx=\"8\"/><rect width=\"128\" height=\"16\" y=\"56\" rx=\"8\"/><rect width=\"128\" height=\"16\" y=\"96\" rx=\"8\"/></svg>"
},
"$:/core/images/mono-block": {
"title": "$:/core/images/mono-block",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-mono-block tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M23.965 32.967h.357c.755 0 1.328.192 1.72.577.39.384.586.947.586 1.688 0 .824-.206 1.418-.618 1.782-.413.363-1.094.545-2.045.545h-6.31c-.965 0-1.65-.178-2.056-.535-.405-.356-.608-.954-.608-1.792 0-.811.203-1.391.608-1.74.406-.35 1.09-.525 2.055-.525h.734l-.86-2.453H8.471l-.902 2.453h.734c.95 0 1.632.178 2.044.535.413.356.619.933.619 1.73 0 .824-.206 1.418-.619 1.782-.412.363-1.094.545-2.044.545h-5.41c-.964 0-1.649-.182-2.054-.545-.406-.364-.608-.958-.608-1.782 0-.741.195-1.304.587-1.688.391-.385.964-.577 1.719-.577h.356l5.62-15.641H6.835c-.95 0-1.632-.182-2.044-.546-.412-.363-.619-.95-.619-1.76 0-.825.207-1.42.619-1.783.412-.363 1.094-.545 2.044-.545h7.863c1.244 0 2.118.67 2.62 2.013v.063l6.647 18.2zM12.98 17.326l-3.04 8.848h6.08l-3.04-8.848zm22.402 9.372v6.395h3.145c2.223 0 3.788-.245 4.697-.734.908-.49 1.362-1.307 1.362-2.453 0-1.16-.433-1.985-1.3-2.474-.866-.49-2.383-.734-4.55-.734h-3.354zm10.693-2.327c1.524.559 2.642 1.324 3.355 2.295.713.972 1.07 2.212 1.07 3.722 0 1.272-.308 2.432-.923 3.48-.615 1.049-1.496 1.909-2.642 2.58a7.499 7.499 0 01-2.254.849c-.832.174-2.01.262-3.533.262H30.202c-.922 0-1.583-.182-1.981-.545-.399-.364-.598-.958-.598-1.782 0-.741.189-1.304.566-1.688.378-.385.93-.577 1.657-.577h.356V17.326h-.356c-.727 0-1.28-.196-1.657-.587-.377-.392-.566-.965-.566-1.72 0-.81.203-1.401.608-1.771.406-.37 1.062-.556 1.971-.556h9.645c2.95 0 5.19.573 6.72 1.72 1.53 1.145 2.296 2.823 2.296 5.031 0 1.09-.234 2.052-.703 2.883-.468.832-1.163 1.513-2.086 2.045zM35.381 17.2v5.284h2.83c1.72 0 2.932-.203 3.638-.609.706-.405 1.06-1.09 1.06-2.054 0-.909-.319-1.573-.955-1.992-.636-.42-1.667-.63-3.093-.63h-3.48zm35.863-3.816c.28-.503.566-.86.86-1.07.293-.21.664-.314 1.111-.314.685 0 1.17.182 1.457.545.287.364.43.986.43 1.866l.042 5.452c0 .964-.157 1.614-.472 1.95-.314.335-.884.503-1.709.503-.587 0-1.037-.14-1.352-.42-.314-.28-.584-.796-.807-1.551-.364-1.328-.944-2.282-1.74-2.862-.797-.58-1.901-.87-3.313-.87-2.153 0-3.802.727-4.948 2.18-1.147 1.454-1.72 3.558-1.72 6.311 0 2.74.58 4.844 1.74 6.311 1.16 1.468 2.817 2.202 4.97 2.202 1.467 0 3.085-.49 4.854-1.468 1.768-.978 2.883-1.467 3.344-1.467.545 0 1.003.23 1.373.692.37.46.556 1.034.556 1.719 0 1.23-1.084 2.39-3.25 3.48-2.167 1.09-4.606 1.636-7.318 1.636-3.662 0-6.625-1.21-8.89-3.627-2.264-2.419-3.396-5.578-3.396-9.478 0-3.76 1.146-6.884 3.438-9.372 2.293-2.488 5.2-3.732 8.723-3.732.992 0 1.97.112 2.935.335.964.224 1.992.574 3.082 1.049zm10.22 19.583V17.326h-.356c-.755 0-1.328-.196-1.72-.587-.39-.392-.586-.965-.586-1.72 0-.81.21-1.401.629-1.771.42-.37 1.097-.556 2.034-.556h5.178c2.922 0 5.06.126 6.416.377 1.356.252 2.51.671 3.46 1.258 1.691 1.007 2.988 2.443 3.89 4.31.9 1.865 1.352 4.021 1.352 6.467 0 2.586-.514 4.847-1.541 6.783-1.028 1.936-2.485 3.4-4.372 4.393-.853.447-1.852.772-2.998.975-1.147.203-2.852.304-5.116.304h-6.269c-.965 0-1.65-.178-2.055-.535-.406-.356-.608-.954-.608-1.792 0-.741.195-1.304.587-1.688.391-.385.964-.577 1.72-.577h.356zm5.41-15.725v15.725h1.195c2.642 0 4.592-.646 5.85-1.94 1.258-1.292 1.887-3.28 1.887-5.965 0-2.641-.64-4.612-1.918-5.912-1.28-1.3-3.205-1.95-5.777-1.95-.335 0-.59.003-.765.01a7.992 7.992 0 00-.472.032zm35.067-.126h-9.75v5.368h3.69v-.252c0-.797.175-1.39.524-1.782.35-.392.88-.587 1.594-.587.629 0 1.142.178 1.54.534.4.357.598.808.598 1.353 0 .028.007.118.021.272.014.154.021.308.021.462v4.34c0 .936-.167 1.607-.503 2.013-.335.405-.88.608-1.635.608-.713 0-1.251-.19-1.615-.567-.363-.377-.545-.936-.545-1.677v-.377h-3.69v6.269h9.75v-2.495c0-.937.178-1.608.534-2.013.357-.405.94-.608 1.75-.608.798 0 1.367.2 1.71.597.342.399.513 1.073.513 2.024v5.074c0 .755-.146 1.258-.44 1.51-.293.251-.873.377-1.74.377h-17.172c-.923 0-1.583-.182-1.982-.545-.398-.364-.597-.958-.597-1.782 0-.741.189-1.304.566-1.688.377-.385.93-.577 1.656-.577h.357V17.326h-.357c-.712 0-1.261-.2-1.646-.598-.384-.398-.576-.968-.576-1.709 0-.81.203-1.401.608-1.771.405-.37 1.062-.556 1.97-.556h17.173c.853 0 1.43.13 1.73.388.3.258.45.772.45 1.54v4.698c0 .95-.174 1.631-.524 2.044-.35.412-.915.618-1.698.618-.81 0-1.394-.21-1.75-.629-.357-.419-.535-1.097-.535-2.033v-2.202zM19.77 47.641c.267-.504.55-.86.85-1.07.3-.21.675-.314 1.122-.314.685 0 1.17.181 1.457.545.287.363.43.985.43 1.866l.042 5.451c0 .965-.157 1.615-.472 1.95-.314.336-.891.504-1.73.504-.587 0-1.045-.144-1.373-.43-.329-.287-.598-.8-.807-1.541-.378-1.342-.958-2.3-1.74-2.873-.783-.573-1.88-.86-3.292-.86-2.153 0-3.799.727-4.938 2.181-1.14 1.454-1.709 3.557-1.709 6.311s.598 4.882 1.793 6.385C10.599 67.248 12.294 68 14.488 68c.503 0 1.077-.06 1.72-.179a23.809 23.809 0 002.264-.555v-3.313h-2.37c-.95 0-1.624-.175-2.023-.524-.398-.35-.597-.93-.597-1.74 0-.84.199-1.437.597-1.793.399-.357 1.073-.535 2.024-.535h7.569c.978 0 1.667.175 2.065.524.398.35.598.937.598 1.762 0 .74-.2 1.31-.598 1.708-.398.399-.975.598-1.73.598h-.335v5.242c0 .447-.05.758-.147.933-.098.174-.293.353-.587.534-.797.476-2.062.895-3.795 1.258a25.576 25.576 0 01-5.263.546c-3.662 0-6.625-1.21-8.89-3.628-2.264-2.418-3.397-5.577-3.397-9.477 0-3.76 1.147-6.884 3.44-9.372 2.292-2.488 5.199-3.732 8.721-3.732.979 0 1.954.112 2.925.335.972.224 2.003.573 3.093 1.049zm15.84 3.941v4.823h6.857v-4.823h-.336c-.754 0-1.331-.195-1.73-.587-.398-.391-.597-.964-.597-1.719 0-.825.206-1.419.619-1.782.412-.364 1.093-.545 2.044-.545h5.41c.95 0 1.624.181 2.023.545.398.363.597.957.597 1.782 0 .755-.192 1.328-.576 1.72-.385.39-.947.586-1.688.586h-.357v15.642h.357c.755 0 1.328.192 1.719.576.391.385.587.947.587 1.688 0 .825-.203 1.419-.608 1.782-.405.364-1.09.546-2.055.546h-5.41c-.964 0-1.649-.179-2.054-.535-.405-.357-.608-.954-.608-1.793 0-.74.2-1.303.598-1.688.398-.384.975-.576 1.73-.576h.335v-6.186h-6.856v6.186h.335c.755 0 1.331.192 1.73.576.398.385.597.947.597 1.688 0 .825-.206 1.419-.618 1.782-.412.364-1.094.546-2.044.546h-5.41c-.964 0-1.65-.179-2.055-.535-.405-.357-.608-.954-.608-1.793 0-.74.196-1.303.587-1.688.392-.384.965-.576 1.72-.576h.356V51.582h-.356c-.741 0-1.304-.195-1.688-.587-.385-.391-.577-.964-.577-1.719 0-.825.2-1.419.598-1.782.398-.364 1.073-.545 2.023-.545h5.41c.936 0 1.614.181 2.033.545.42.363.63.957.63 1.782 0 .755-.2 1.328-.598 1.72-.399.39-.975.586-1.73.586h-.335zm31.754 0v15.642h3.523c.95 0 1.632.178 2.044.534.412.357.618.933.618 1.73 0 .811-.21 1.402-.629 1.772-.419.37-1.097.556-2.033.556H58.433c-.95 0-1.632-.182-2.044-.546-.412-.363-.619-.957-.619-1.782 0-.81.203-1.39.608-1.74.406-.35 1.09-.524 2.055-.524h3.523V51.582h-3.523c-.95 0-1.632-.181-2.044-.545-.412-.363-.619-.95-.619-1.761 0-.825.203-1.412.608-1.761.406-.35 1.09-.524 2.055-.524h12.455c.992 0 1.684.174 2.075.524.392.35.587.936.587 1.761 0 .81-.202 1.398-.608 1.761-.405.364-1.09.545-2.054.545h-3.523zm30.496 0v11.994c0 1.873-.122 3.228-.367 4.067a5.876 5.876 0 01-1.227 2.244c-.74.852-1.768 1.495-3.082 1.929-1.314.433-2.893.65-4.738.65-1.3 0-2.555-.126-3.764-.378a16.843 16.843 0 01-3.491-1.132c-.615-.28-1.017-.643-1.206-1.09-.188-.448-.283-1.175-.283-2.18v-4.32c0-1.202.175-2.04.525-2.516.349-.475.957-.713 1.824-.713 1.244 0 1.929.915 2.054 2.747.014.321.035.566.063.733.168 1.622.545 2.73 1.133 3.324.587.594 1.523.89 2.81.89 1.593 0 2.714-.422 3.364-1.268.65-.845.975-2.386.975-4.623V51.582H88.93c-.95 0-1.632-.181-2.044-.545-.413-.363-.619-.95-.619-1.761 0-.825.2-1.412.598-1.761.398-.35 1.086-.524 2.065-.524h10.693c.979 0 1.667.174 2.065.524.399.35.598.936.598 1.761 0 .81-.206 1.398-.619 1.761-.412.364-1.093.545-2.044.545h-1.761zm14.644 0v6.353l6.48-6.478c-.728-.084-1.238-.29-1.531-.619-.294-.328-.44-.85-.44-1.562 0-.825.198-1.419.597-1.782.398-.364 1.073-.545 2.023-.545h5.137c.95 0 1.625.181 2.023.545.399.363.598.957.598 1.782 0 .769-.2 1.345-.598 1.73-.398.384-.982.576-1.75.576h-.483l-6.101 6.06c1.132.839 2.167 1.94 3.103 3.302.937 1.363 2.034 3.456 3.292 6.28h.692c.825 0 1.44.188 1.845.566.405.377.608.943.608 1.698 0 .825-.206 1.419-.619 1.782-.412.364-1.093.546-2.044.546h-2.579c-1.132 0-2.048-.762-2.746-2.286-.126-.28-.224-.503-.294-.67-.923-1.958-1.768-3.467-2.537-4.53a16.616 16.616 0 00-2.705-2.914l-1.97 1.887v3.92h.335c.755 0 1.331.193 1.73.577.398.385.597.947.597 1.688 0 .825-.206 1.419-.618 1.782-.413.364-1.094.546-2.045.546h-5.41c-.964 0-1.649-.179-2.054-.535-.405-.357-.608-.954-.608-1.793 0-.74.196-1.303.587-1.688.391-.384.965-.576 1.72-.576h.356V51.582h-.357c-.74 0-1.303-.195-1.687-.587-.385-.391-.577-.964-.577-1.719 0-.825.2-1.419.598-1.782.398-.364 1.072-.545 2.023-.545h5.41c.936 0 1.614.181 2.033.545.42.363.63.957.63 1.782 0 .755-.2 1.328-.598 1.72-.399.39-.975.586-1.73.586h-.336zM13.44 96.326l4.005-11.889c.251-.782.6-1.352 1.048-1.709.447-.356 1.041-.534 1.782-.534h3.271c.95 0 1.632.182 2.044.545.413.363.619.957.619 1.782 0 .755-.2 1.328-.598 1.72-.398.39-.975.587-1.73.587h-.335l.587 15.641h.357c.754 0 1.32.192 1.698.577.377.384.566.947.566 1.687 0 .825-.2 1.42-.598 1.783-.398.363-1.072.545-2.023.545h-4.718c-.95 0-1.624-.178-2.023-.535-.398-.356-.597-.954-.597-1.793 0-.74.192-1.303.576-1.687.385-.385.954-.577 1.709-.577h.335l-.293-12.79-3.061 9.52c-.224.712-.542 1.226-.954 1.54-.413.315-.982.472-1.709.472-.727 0-1.303-.157-1.73-.472-.426-.314-.751-.828-.975-1.54l-3.04-9.52-.294 12.79h.336c.755 0 1.324.192 1.709.577.384.384.576.947.576 1.687 0 .825-.202 1.42-.608 1.783-.405.363-1.076.545-2.013.545H2.621c-.937 0-1.608-.182-2.013-.545-.405-.364-.608-.958-.608-1.783 0-.74.192-1.303.577-1.687.384-.385.954-.577 1.708-.577h.336l.608-15.641h-.336c-.754 0-1.331-.196-1.73-.588-.398-.39-.597-.964-.597-1.719 0-.825.206-1.419.619-1.782.412-.363 1.093-.545 2.044-.545h3.27c.728 0 1.311.175 1.752.524.44.35.8.923 1.08 1.72l4.109 11.888zm30.454 2.054V86.828H42.74c-.922 0-1.583-.182-1.981-.546-.398-.363-.598-.95-.598-1.76 0-.812.2-1.402.598-1.773.398-.37 1.059-.555 1.981-.555h5.955c.909 0 1.566.185 1.97.555.406.37.609.961.609 1.772 0 .741-.192 1.31-.577 1.709-.384.398-.933.598-1.646.598h-.356v19.038c0 .657-.07 1.069-.21 1.237-.14.167-.454.251-.943.251h-2.097c-.67 0-1.143-.07-1.415-.21-.273-.14-.507-.384-.703-.733l-8.722-15.327v11.385h1.216c.909 0 1.559.175 1.95.524.392.35.587.93.587 1.74 0 .825-.199 1.42-.597 1.783-.399.363-1.045.545-1.94.545h-6.017c-.909 0-1.566-.182-1.971-.545-.406-.364-.608-.958-.608-1.783 0-.74.188-1.303.566-1.687.377-.385.936-.577 1.677-.577h.336V86.828h-.336c-.713 0-1.265-.2-1.656-.598-.392-.398-.587-.968-.587-1.709 0-.81.206-1.401.618-1.772.413-.37 1.066-.555 1.96-.555h3.44c.824 0 1.383.108 1.677.325.293.216.622.653.985 1.31l7.989 14.551zM64.66 86.366c-1.803 0-3.218.727-4.245 2.18-1.028 1.455-1.541 3.474-1.541 6.06 0 2.586.517 4.613 1.551 6.08 1.034 1.468 2.446 2.202 4.235 2.202 1.804 0 3.222-.73 4.257-2.19 1.034-1.461 1.551-3.492 1.551-6.092 0-2.586-.513-4.605-1.54-6.06-1.028-1.453-2.45-2.18-4.268-2.18zm0-4.864c3.44 0 6.27 1.23 8.492 3.69 2.223 2.46 3.334 5.598 3.334 9.414 0 3.844-1.104 6.99-3.313 9.436-2.208 2.446-5.046 3.669-8.513 3.669-3.424 0-6.255-1.234-8.491-3.701-2.237-2.467-3.355-5.602-3.355-9.404 0-3.83 1.108-6.971 3.323-9.424 2.216-2.454 5.057-3.68 8.523-3.68zM87.461 98.17v4.298h2.16c.908 0 1.555.175 1.94.524.384.35.576.93.576 1.74 0 .825-.196 1.42-.587 1.783-.392.363-1.035.545-1.93.545h-7.254c-.922 0-1.583-.182-1.981-.545-.399-.364-.598-.958-.598-1.783 0-.74.189-1.303.566-1.687.378-.385.93-.577 1.657-.577h.356V86.828h-.356c-.713 0-1.262-.2-1.646-.598-.385-.398-.577-.968-.577-1.709 0-.81.203-1.401.608-1.772.406-.37 1.063-.555 1.971-.555h8.66c3.424 0 6.014.657 7.768 1.97 1.754 1.315 2.631 3.25 2.631 5.809 0 2.697-.873 4.738-2.62 6.122-1.748 1.384-4.34 2.076-7.78 2.076h-3.564zm0-11.343v6.625h2.977c1.65 0 2.89-.28 3.722-.839.832-.559 1.248-1.397 1.248-2.516 0-1.048-.43-1.855-1.29-2.421-.86-.566-2.086-.85-3.68-.85h-2.977zm27.267 20.568l-1.636 1.636a12.37 12.37 0 011.772-.44c.58-.098 1.15-.147 1.709-.147 1.104 0 2.268.164 3.491.492 1.223.329 1.967.493 2.233.493.447 0 1.03-.15 1.75-.45.72-.301 1.206-.452 1.458-.452.517 0 .947.2 1.29.598.342.398.513.898.513 1.5 0 .796-.472 1.474-1.415 2.033-.944.56-2.1.839-3.47.839-.937 0-2.139-.22-3.607-.66-1.467-.441-2.53-.661-3.187-.661-.992 0-2.11.272-3.354.817-1.244.546-2.013.818-2.307.818a2.14 2.14 0 01-1.53-.597c-.42-.399-.63-.878-.63-1.437 0-.391.134-.807.4-1.247.265-.44.733-1.01 1.404-1.709l2.118-2.139c-2.335-.852-4.194-2.386-5.578-4.602-1.384-2.215-2.075-4.763-2.075-7.642 0-3.802 1.104-6.909 3.312-9.32 2.209-2.411 5.053-3.617 8.534-3.617 3.467 0 6.304 1.209 8.513 3.627 2.208 2.418 3.312 5.522 3.312 9.31 0 3.774-1.097 6.884-3.291 9.33-2.195 2.446-4.977 3.67-8.345 3.67a22.5 22.5 0 01-1.384-.043zm1.195-21.03c-1.803 0-3.218.727-4.246 2.18-1.027 1.455-1.54 3.474-1.54 6.06 0 2.586.516 4.613 1.55 6.08 1.035 1.468 2.447 2.202 4.236 2.202 1.803 0 3.222-.73 4.256-2.19 1.035-1.461 1.552-3.492 1.552-6.092 0-2.586-.514-4.605-1.541-6.06-1.028-1.453-2.45-2.18-4.267-2.18z\"/></svg>"
},
"$:/core/images/mono-line": {
"title": "$:/core/images/mono-line",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-mono-line tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M60.437 84.523h.908c1.922 0 3.381.489 4.378 1.468.997.979 1.495 2.411 1.495 4.298 0 2.1-.525 3.612-1.575 4.538-1.05.925-2.785 1.388-5.206 1.388h-16.07c-2.456 0-4.2-.454-5.232-1.361-1.032-.908-1.548-2.43-1.548-4.565 0-2.065.516-3.542 1.548-4.432 1.032-.89 2.776-1.334 5.232-1.334h1.869l-2.19-6.247H20.983l-2.296 6.247h1.87c2.42 0 4.155.453 5.205 1.361 1.05.908 1.575 2.376 1.575 4.405 0 2.1-.525 3.612-1.575 4.538-1.05.925-2.785 1.388-5.206 1.388H6.781c-2.456 0-4.2-.463-5.233-1.388C.516 93.9 0 92.389 0 90.289c0-1.887.498-3.32 1.495-4.298.997-.979 2.456-1.468 4.378-1.468h.908l14.308-39.83h-4.271c-2.42 0-4.156-.462-5.206-1.387-1.05-.926-1.575-2.42-1.575-4.485 0-2.1.525-3.613 1.575-4.538 1.05-.926 2.785-1.388 5.206-1.388h20.021c3.168 0 5.392 1.708 6.674 5.125v.16l16.924 46.343zm-27.976-39.83L24.72 67.225h15.483l-7.742-22.53zM89.506 68.56v16.284h8.008c5.66 0 9.646-.623 11.96-1.869 2.313-1.245 3.47-3.328 3.47-6.246 0-2.955-1.103-5.055-3.31-6.3-2.207-1.246-6.069-1.869-11.586-1.869h-8.542zm27.229-5.926c3.88 1.423 6.727 3.372 8.542 5.846 1.815 2.474 2.723 5.633 2.723 9.477 0 3.239-.783 6.193-2.35 8.862-1.565 2.67-3.808 4.859-6.726 6.567-1.709.997-3.622 1.718-5.74 2.163-2.118.445-5.116.667-8.996.667h-27.87c-2.349 0-4.03-.463-5.045-1.388-1.014-.926-1.521-2.438-1.521-4.538 0-1.887.48-3.32 1.441-4.298.961-.979 2.367-1.468 4.218-1.468h.907v-39.83h-.907c-1.851 0-3.257-.498-4.218-1.494-.961-.997-1.441-2.456-1.441-4.378 0-2.065.516-3.568 1.548-4.512 1.032-.943 2.705-1.414 5.018-1.414h24.56c7.51 0 13.214 1.459 17.111 4.377 3.898 2.92 5.847 7.19 5.847 12.814 0 2.776-.597 5.223-1.789 7.341-1.192 2.118-2.963 3.853-5.312 5.206zm-27.23-18.26v13.455h7.208c4.378 0 7.466-.516 9.264-1.549 1.797-1.032 2.696-2.776 2.696-5.232 0-2.313-.81-4.004-2.43-5.072-1.619-1.068-4.244-1.602-7.874-1.602h-8.863z\"/></svg>"
},
"$:/core/images/new-button": {
"title": "$:/core/images/new-button",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-new-button tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M56 72H8.007C3.591 72 0 68.418 0 64c0-4.41 3.585-8 8.007-8H56V8.007C56 3.591 59.582 0 64 0c4.41 0 8 3.585 8 8.007V56h47.993c4.416 0 8.007 3.582 8.007 8 0 4.41-3.585 8-8.007 8H72v47.993c0 4.416-3.582 8.007-8 8.007-4.41 0-8-3.585-8-8.007V72z\"/></svg>"
},
"$:/core/images/new-here-button": {
"title": "$:/core/images/new-here-button",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-new-here-button tc-image-button\" viewBox=\"0 0 128 128\"><g fill-rule=\"evenodd\"><path d=\"M55.838 20.935l-3.572.938c-3.688.968-8.23 4.43-10.136 7.731L3.37 96.738c-1.905 3.3-.771 7.524 2.534 9.432l33.717 19.466c3.297 1.904 7.53.78 9.435-2.521l38.76-67.134c1.905-3.3 2.632-8.963 1.623-12.646L83.285 20.88c-1.009-3.68-4.821-5.884-8.513-4.915l-7.603 1.995.043.287c.524 3.394 2.053 7.498 4.18 11.55.418.163.829.36 1.23.59a8.864 8.864 0 014.438 8.169c.104.132.21.264.316.395l-.386.318a8.663 8.663 0 01-1.082 3.137c-2.42 4.192-7.816 5.608-12.051 3.163-4.12-2.379-5.624-7.534-3.476-11.671-2.177-4.394-3.788-8.874-4.543-12.964z\"/><path d=\"M69.554 44.76c-5.944-7.476-10.74-17.196-11.955-25.059-1.68-10.875 3.503-18.216 15.082-18.04 10.407.158 19.975 5.851 24.728 13.785 5.208 8.695 2.95 17.868-6.855 20.496l-2.037-7.601c4.232-1.134 4.999-4.248 2.24-8.853-3.37-5.626-10.465-9.848-18.146-9.965-6.392-.097-8.31 2.62-7.323 9.01.999 6.465 5.318 15.138 10.582 21.65l-.072.06c.559 1.553-4.17 6.44-5.938 4.888l-.005.004-.028-.034a1.323 1.323 0 01-.124-.135 2.618 2.618 0 01-.149-.205z\"/><rect width=\"16\" height=\"48\" x=\"96\" y=\"80\" rx=\"8\"/><rect width=\"48\" height=\"16\" x=\"80\" y=\"96\" rx=\"8\"/></g></svg>"
},
"$:/core/images/new-image-button": {
"title": "$:/core/images/new-image-button",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-new-image-button tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M81.362 73.627l15.826-27.41a2.626 2.626 0 00-.962-3.59l-50.01-28.872a2.626 2.626 0 00-3.588.961L30.058 36.49l10.04-5.261c3.042-1.595 6.771.114 7.55 3.46l3.607 17.702 9.88.85a5.25 5.25 0 014.571 3.77c.034.115.1.344.199.671.165.553.353 1.172.562 1.843.595 1.914 1.23 3.85 1.872 5.678.207.588.412 1.156.614 1.701.625 1.685 1.209 3.114 1.725 4.207.255.54.485.977.726 1.427.214.212.547.425 1.011.622 1.141.482 2.784.74 4.657.758.864.008 1.71-.034 2.492-.11.448-.043.753-.085.871-.104.315-.053.625-.077.927-.076zM37.47 2.649A5.257 5.257 0 0144.649.725l63.645 36.746a5.257 5.257 0 011.923 7.178L73.47 108.294a5.257 5.257 0 01-7.177 1.923L2.649 73.47a5.257 5.257 0 01-1.924-7.177L37.471 2.649zm42.837 50.49a5.25 5.25 0 105.25-9.092 5.25 5.25 0 00-5.25 9.093zM96 112h-7.993c-4.419 0-8.007-3.582-8.007-8 0-4.41 3.585-8 8.007-8H96v-7.993C96 83.588 99.582 80 104 80c4.41 0 8 3.585 8 8.007V96h7.993c4.419 0 8.007 3.582 8.007 8 0 4.41-3.585 8-8.007 8H112v7.993c0 4.419-3.582 8.007-8 8.007-4.41 0-8-3.585-8-8.007V112zM33.347 51.791c7.428 7.948 9.01 10.69 7.449 13.394-1.56 2.703-13.838-2.328-16.094 1.58-2.256 3.908-.907 3.258-2.437 5.908l19.73 11.39s-5.605-8.255-4.235-10.628c2.515-4.356 8.77-1.256 10.365-4.019 2.414-4.181-5.103-9.639-14.778-17.625z\"/></svg>"
},
"$:/core/images/new-journal-button": {
"title": "$:/core/images/new-journal-button",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-new-journal-button tc-image-button\" viewBox=\"0 0 128 128\"><g fill-rule=\"evenodd\"><path d=\"M102.545 112.818v11.818c0 1.306 1.086 2.364 2.425 2.364h6.06c1.34 0 2.425-1.058 2.425-2.364v-11.818h12.12c1.34 0 2.425-1.058 2.425-2.363v-5.91c0-1.305-1.085-2.363-2.424-2.363h-12.121V90.364c0-1.306-1.086-2.364-2.425-2.364h-6.06c-1.34 0-2.425 1.058-2.425 2.364v11.818h-12.12c-1.34 0-2.425 1.058-2.425 2.363v5.91c0 1.305 1.085 2.363 2.424 2.363h12.121zM60.016 4.965c-4.781-2.76-10.897-1.118-13.656 3.66L5.553 79.305A9.993 9.993 0 009.21 92.963l51.04 29.468c4.78 2.76 10.897 1.118 13.655-3.66l40.808-70.681a9.993 9.993 0 00-3.658-13.656L60.016 4.965zm-3.567 27.963a6 6 0 106-10.393 6 6 0 00-6 10.393zm31.697 17.928a6 6 0 106-10.392 6 6 0 00-6 10.392z\"/><text class=\"tc-fill-background\" font-family=\"Helvetica\" font-size=\"47.172\" font-weight=\"bold\" transform=\"rotate(30 25.742 95.82)\"><tspan x=\"42\" y=\"77.485\" text-anchor=\"middle\"><<now \"DD\">></tspan></text></g></svg>"
},
"$:/core/images/opacity": {
"title": "$:/core/images/opacity",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-opacity tc-image-button\" viewBox=\"0 0 128 128\"><g fill-rule=\"evenodd\"><path d=\"M102.362 65a51.595 51.595 0 01-1.942 6H82.584a35.867 35.867 0 002.997-6h16.78zm.472-2c.423-1.961.734-3.963.929-6H87.656a35.78 35.78 0 01-1.368 6h16.546zm-3.249 10a51.847 51.847 0 01-3.135 6H75.812a36.205 36.205 0 005.432-6h18.341zm-4.416 8c-1.424 2.116-3 4.12-4.71 6H60.46a35.843 35.843 0 0012.874-6h21.834zm-7.513-34h16.107C101.247 20.627 79.033 0 52 0 23.281 0 0 23.281 0 52c0 25.228 17.965 46.26 41.8 51h20.4a51.66 51.66 0 0015.875-6H39v-2h42.25a52.257 52.257 0 007.288-6H39v-2h4.539C27.739 83.194 16 68.968 16 52c0-19.882 16.118-36 36-36 18.186 0 33.222 13.484 35.656 31zm.22 2h16.039a52.823 52.823 0 010 6H87.877a36.483 36.483 0 000-6z\"/><path d=\"M76 128c28.719 0 52-23.281 52-52s-23.281-52-52-52-52 23.281-52 52 23.281 52 52 52zm0-16c19.882 0 36-16.118 36-36S95.882 40 76 40 40 56.118 40 76s16.118 36 36 36z\"/><path d=\"M37 58h53v4H37v-4zm3-8h53v4H40v-4zm0-8h53v4H40v-4zm-8 24h53v4H32v-4zm-2 8h53v4H30v-4zm-3 8h53v4H27v-4z\"/></g></svg>"
},
"$:/core/images/open-window": {
"title": "$:/core/images/open-window",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-open-window tc-image-button\" viewBox=\"0 0 128 128\"><g fill-rule=\"evenodd\"><path d=\"M16 112h88.994c3.87 0 7.006 3.59 7.006 8 0 4.418-3.142 8-7.006 8H7.006C3.136 128 0 124.41 0 120a9.321 9.321 0 010-.01V24.01C0 19.586 3.59 16 8 16c4.418 0 8 3.584 8 8.01V112z\"/><path d=\"M96 43.196V56a8 8 0 1016 0V24c0-4.41-3.585-8-8.007-8H72.007C67.588 16 64 19.582 64 24c0 4.41 3.585 8 8.007 8H84.57l-36.3 36.299a8 8 0 00-.001 11.316c3.117 3.117 8.19 3.123 11.316-.003L96 43.196zM32 7.999C32 3.581 35.588 0 40 0h80c4.419 0 8 3.588 8 8v80c0 4.419-3.588 8-8 8H40c-4.419 0-8-3.588-8-8V8z\"/></g></svg>"
},
"$:/core/images/options-button": {
"title": "$:/core/images/options-button",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-options-button tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M110.488 76a47.712 47.712 0 01-5.134 12.384l6.724 6.724c3.123 3.123 3.132 8.192.011 11.313l-5.668 5.668c-3.12 3.12-8.186 3.117-11.313-.01l-6.724-6.725c-3.82 2.258-7.98 4-12.384 5.134v9.505c0 4.417-3.578 8.007-7.992 8.007h-8.016C55.58 128 52 124.415 52 119.993v-9.505a47.712 47.712 0 01-12.384-5.134l-6.724 6.725c-3.123 3.122-8.192 3.131-11.313.01l-5.668-5.668c-3.12-3.12-3.116-8.186.01-11.313l6.725-6.724c-2.257-3.82-4-7.98-5.134-12.384H8.007C3.591 76 0 72.422 0 68.01v-8.017C0 55.58 3.585 52 8.007 52h9.505a47.712 47.712 0 015.134-12.383l-6.724-6.725c-3.123-3.122-3.132-8.191-.011-11.312l5.668-5.669c3.12-3.12 8.186-3.116 11.313.01l6.724 6.725c3.82-2.257 7.98-4 12.384-5.134V8.007C52 3.591 55.578 0 59.992 0h8.016C72.42 0 76 3.585 76 8.007v9.505a47.712 47.712 0 0112.384 5.134l6.724-6.724c3.123-3.123 8.192-3.132 11.313-.01l5.668 5.668c3.12 3.12 3.116 8.186-.01 11.312l-6.725 6.725c2.257 3.82 4 7.979 5.134 12.383h9.505c4.416 0 8.007 3.578 8.007 7.992v8.017c0 4.411-3.585 7.991-8.007 7.991h-9.505zM64 96c17.673 0 32-14.327 32-32 0-17.673-14.327-32-32-32-17.673 0-32 14.327-32 32 0 17.673 14.327 32 32 32z\"/></svg>"
},
"$:/core/images/paint": {
"title": "$:/core/images/paint",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-paint tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M83.527 76.19C90.43 69.287 91.892 59 87.91 50.665l37.903-37.902c2.919-2.92 2.913-7.659 0-10.572a7.474 7.474 0 00-10.572 0L77.338 40.093c-8.335-3.982-18.622-2.521-25.526 4.383l31.715 31.715zm-2.643 2.644L49.169 47.119S8.506 81.243 0 80.282c0 0 3.782 5.592 6.827 8.039 14.024-5.69 37.326-24.6 37.326-24.6l.661.66S19.45 90.222 9.18 92.047c1.222 1.44 4.354 4.053 6.247 5.776 5.417-1.488 34.733-28.57 34.733-28.57l.661.66-32.407 31.022 5.285 5.286L56.106 75.2l.662.66s-27.864 30.536-28.684 32.432c0 0 6.032 6.853 7.569 7.824.702-2.836 27.884-33.485 27.884-33.485l.661.66s-20.597 23.755-24.964 36.732c3.21 3.549 7.5 5.137 10.926 6.298-2.19-11.817 30.724-47.487 30.724-47.487z\"/></svg>"
},
"$:/core/images/palette": {
"title": "$:/core/images/palette",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-palette tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M80.247 39.182a93.52 93.52 0 00-16.228-1.4C28.662 37.781 0 57.131 0 81.002c0 9.642 4.676 18.546 12.58 25.735C23.504 91.19 26.34 72.395 36.89 63.562c15.183-12.713 26.538-7.828 26.538-7.828l16.82-16.552zm26.535 9.655c13.049 7.913 21.257 19.392 21.257 32.166 0 9.35.519 17.411-11.874 25.08-10.797 6.681-3.824-6.536-11.844-10.898s-19.946 1.308-18.213 7.906c3.2 12.181 19.422 11.455 6.314 16.658-13.107 5.202-18.202 4.476-28.403 4.476-7.821 0-15.315-.947-22.243-2.68 9.844-4.197 27.88-12.539 33.354-19.456C82.788 92.409 87.37 80 83.324 72.484c-.194-.359 11.215-11.668 23.458-23.647zM1.134 123.867l-.66.002c33.479-14.94 22.161-64.226 58.818-64.226.317 1.418.644 2.944 1.062 4.494-25.907-4.166-23.567 48.031-59.22 59.73zm.713-.007c38.872-.506 78.152-22.347 78.152-44.813-9.27 0-14.073-3.48-16.816-7.942-16.597-7.003-30.365 45.715-61.336 52.755zm65.351-64.008c-4.45 4.115 4.886 16.433 11.318 11.318l45.27-45.27c11.317-11.318 0-22.635-11.318-11.318-11.317 11.318-33.518 34.405-45.27 45.27z\"/></svg>"
},
"$:/core/images/permalink-button": {
"title": "$:/core/images/permalink-button",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-permalink-button tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M80.483 48l-7.387 32h-25.58l7.388-32h25.58zm3.694-16l5.624-24.358c.993-4.303 5.29-6.996 9.596-6.002 4.296.992 6.988 5.293 5.994 9.602L100.598 32h3.403c4.41 0 7.999 3.582 7.999 8 0 4.41-3.581 8-8 8h-7.096l-7.387 32H104c4.41 0 7.999 3.582 7.999 8 0 4.41-3.581 8-8 8H85.824l-5.624 24.358c-.993 4.303-5.29 6.996-9.596 6.002-4.296-.992-6.988-5.293-5.994-9.602L69.402 96h-25.58L38.2 120.358c-.993 4.303-5.29 6.996-9.596 6.002-4.296-.992-6.988-5.293-5.994-9.602L27.402 96h-3.403C19.59 96 16 92.418 16 88c0-4.41 3.581-8 8-8h7.096l7.387-32H24C19.59 48 16 44.418 16 40c0-4.41 3.581-8 8-8h18.177l5.624-24.358c.993-4.303 5.29-6.996 9.596-6.002 4.296.992 6.988 5.293 5.994 9.602L58.598 32h25.58z\"/></svg>"
},
"$:/core/images/permaview-button": {
"title": "$:/core/images/permaview-button",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-permaview-button tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M81.483 48l-1.846 8h-5.58l1.847-8h5.58zm3.694-16l5.624-24.358c.993-4.303 5.29-6.996 9.596-6.002 4.296.992 6.988 5.293 5.994 9.602L101.598 32h2.403c4.41 0 7.999 3.582 7.999 8 0 4.41-3.581 8-8 8h-6.096l-1.847 8h7.944c4.41 0 7.999 3.582 7.999 8 0 4.41-3.581 8-8 8H92.364l-1.846 8H104c4.41 0 7.999 3.582 7.999 8 0 4.41-3.581 8-8 8H86.824l-5.624 24.358c-.993 4.303-5.29 6.996-9.596 6.002-4.296-.992-6.988-5.293-5.994-9.602L70.402 96h-5.58L59.2 120.358c-.993 4.303-5.29 6.996-9.596 6.002-4.296-.992-6.988-5.293-5.994-9.602L48.402 96h-5.58L37.2 120.358c-.993 4.303-5.29 6.996-9.596 6.002-4.296-.992-6.988-5.293-5.994-9.602L26.402 96h-2.403C19.59 96 16 92.418 16 88c0-4.41 3.581-8 8-8h6.096l1.847-8h-7.944C19.59 72 16 68.418 16 64c0-4.41 3.581-8 8-8h11.637l1.846-8H24C19.59 48 16 44.418 16 40c0-4.41 3.581-8 8-8h17.177l5.624-24.358c.993-4.303 5.29-6.996 9.596-6.002 4.296.992 6.988 5.293 5.994 9.602L57.598 32h5.58L68.8 7.642c.993-4.303 5.29-6.996 9.596-6.002 4.296.992 6.988 5.293 5.994 9.602L79.598 32h5.58zM53.904 48l-1.847 8h5.58l1.846-8h-5.579zm22.039 24l-1.847 8h-5.58l1.847-8h5.58zm-27.58 0l-1.846 8h5.579l1.847-8h-5.58z\"/></svg>"
},
"$:/core/images/picture": {
"title": "$:/core/images/picture",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-picture tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M112 68.233v-48.23A4.001 4.001 0 00107.997 16H20.003A4.001 4.001 0 0016 20.003v38.31l9.241-14.593c2.8-4.422 9.023-5.008 12.6-1.186l18.247 20.613 13.687-6.407a8 8 0 018.903 1.492 264.97 264.97 0 002.92 2.739 249.44 249.44 0 006.798 6.066 166.5 166.5 0 002.106 1.778c2.108 1.747 3.967 3.188 5.482 4.237.748.518 1.383.92 2.044 1.33.444.117 1.046.144 1.809.05 1.873-.233 4.238-1.144 6.723-2.547a36.016 36.016 0 003.205-2.044c.558-.4.93-.686 1.07-.802.376-.31.765-.577 1.165-.806zM0 8.007A8.01 8.01 0 018.007 0h111.986A8.01 8.01 0 01128 8.007v111.986a8.01 8.01 0 01-8.007 8.007H8.007A8.01 8.01 0 010 119.993V8.007zM95 42a8 8 0 100-16 8 8 0 000 16zM32 76c15.859 4.83 20.035 7.244 20.035 12S32 95.471 32 102.347c0 6.876 1.285 4.99 1.285 9.653H68s-13.685-6.625-13.685-10.8c0-7.665 10.615-8.34 10.615-13.2 0-7.357-14.078-8.833-32.93-12z\"/></svg>"
},
"$:/core/images/plugin-generic-language": {
"title": "$:/core/images/plugin-generic-language",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M61.207 68.137c-4.324 2.795-6.999 6.656-6.999 10.921 0 7.906 9.19 14.424 21.042 15.336 2.162 3.902 8.598 6.785 16.318 7.01-5.126-1.125-9.117-3.742-10.62-7.01C92.805 93.487 102 86.967 102 79.059c0-8.53-10.699-15.445-23.896-15.445-6.599 0-12.572 1.729-16.897 4.524zm12.794-14.158c-4.324 2.795-10.298 4.524-16.897 4.524-2.619 0-5.14-.272-7.497-.775-3.312 2.25-8.383 3.69-14.067 3.69l-.255-.002c4.119-.892 7.511-2.747 9.478-5.13-6.925-2.704-11.555-7.617-11.555-13.228 0-8.53 10.699-15.445 23.896-15.445C70.301 27.613 81 34.528 81 43.058c0 4.265-2.675 8.126-6.999 10.921zM64 0l54.56 32v64L64 128 9.44 96V32L64 0z\"/></svg>"
},
"$:/core/images/plugin-generic-plugin": {
"title": "$:/core/images/plugin-generic-plugin",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M40.397 76.446V95.34h14.12l-.001-.005a6.912 6.912 0 005.364-11.593l.046-.023a6.912 6.912 0 119.979.526l.086.055a6.914 6.914 0 004.408 10.948l-.023.092h21.32V75.568l-.15.038a6.912 6.912 0 00-11.593-5.364l-.022-.046a6.912 6.912 0 11.526-9.979l.055-.086a6.914 6.914 0 0010.948-4.408c.079.018.158.038.236.059v-15.74h-21.32l.023-.094a6.914 6.914 0 01-4.408-10.947 10.23 10.23 0 00-.086-.055 6.912 6.912 0 10-9.979-.526l-.046.023a6.912 6.912 0 01-5.364 11.593l.001.005h-14.12v12.847A6.912 6.912 0 0129.5 59.843l-.054.086a6.912 6.912 0 10-.526 9.979l.023.046a6.912 6.912 0 0111.455 6.492zM64 0l54.56 32v64L64 128 9.44 96V32L64 0z\"/></svg>"
},
"$:/core/images/plugin-generic-theme": {
"title": "$:/core/images/plugin-generic-theme",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M29.408 91.472L51.469 69.41l-.004-.005a2.22 2.22 0 01.004-3.146c.87-.87 2.281-.872 3.147-.005l9.465 9.464a2.22 2.22 0 01-.005 3.147c-.87.87-2.28.871-3.147.005l-.005-.005-22.061 22.062a6.686 6.686 0 11-9.455-9.455zM60.802 66.38c-2.436-2.704-4.465-5.091-5.817-6.869-6.855-9.014-10.313-4.268-14.226 0-3.913 4.268 1.03 7.726-2.683 10.741-3.713 3.015-3.484 4.06-9.752-1.455-6.267-5.516-6.7-7.034-3.823-10.181 2.877-3.147 5.281 1.808 11.159-3.785 5.877-5.593.94-10.55.94-10.55s12.237-25.014 28.588-23.167c16.351 1.848-6.186-2.392-11.792 17.226-2.4 8.4.447 6.42 4.998 9.968 1.394 1.086 6.03 4.401 11.794 8.685l20.677-20.676 1.615-4.766 7.84-4.689 3.151 3.152-4.688 7.84-4.766 1.615-20.224 20.223c12.663 9.547 28.312 22.146 28.312 26.709 0 7.217-3.071 11.526-9.535 9.164-4.693-1.715-18.768-15.192-28.753-25.897l-2.893 2.893-3.151-3.152 3.029-3.029zM63.953 0l54.56 32v64l-54.56 32-54.56-32V32l54.56-32z\"/></svg>"
},
"$:/core/images/preview-closed": {
"title": "$:/core/images/preview-closed",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-preview-closed tc-image-button\" viewBox=\"0 0 128 128\"><g fill-rule=\"evenodd\"><path d=\"M.088 64a7.144 7.144 0 001.378 5.458C16.246 88.818 39.17 100.414 64 100.414c24.83 0 47.753-11.596 62.534-30.956A7.144 7.144 0 00127.912 64C110.582 78.416 88.304 87.086 64 87.086 39.696 87.086 17.418 78.416.088 64z\"/><rect width=\"4\" height=\"16\" x=\"62\" y=\"96\" rx=\"4\"/><rect width=\"4\" height=\"16\" x=\"78\" y=\"93\" rx=\"4\" transform=\"rotate(-5 80 101)\"/><rect width=\"4\" height=\"16\" x=\"46\" y=\"93\" rx=\"4\" transform=\"rotate(5 48 101)\"/><rect width=\"4\" height=\"16\" x=\"30\" y=\"88\" rx=\"4\" transform=\"rotate(10 32 96)\"/><rect width=\"4\" height=\"16\" x=\"94\" y=\"88\" rx=\"4\" transform=\"rotate(-10 96 96)\"/><rect width=\"4\" height=\"16\" x=\"110\" y=\"80\" rx=\"4\" transform=\"rotate(-20 112 88)\"/><rect width=\"4\" height=\"16\" x=\"14\" y=\"80\" rx=\"4\" transform=\"rotate(20 16 88)\"/></g></svg>"
},
"$:/core/images/preview-open": {
"title": "$:/core/images/preview-open",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-preview-open tc-image-button\" viewBox=\"0 0 128 128\"><g fill-rule=\"evenodd\"><path d=\"M64.11 99.588c-24.83 0-47.754-11.596-62.534-30.957a7.148 7.148 0 010-8.675C16.356 40.596 39.28 29 64.11 29c24.83 0 47.753 11.596 62.534 30.956a7.148 7.148 0 010 8.675c-14.78 19.36-37.703 30.957-62.534 30.957zm46.104-32.007c1.44-1.524 1.44-3.638 0-5.162C99.326 50.9 82.439 44 64.147 44S28.968 50.9 18.08 62.42c-1.44 1.523-1.44 3.637 0 5.16C28.968 79.1 45.855 86 64.147 86s35.179-6.9 46.067-18.42z\"/><path d=\"M63.5 88C76.479 88 87 77.479 87 64.5S76.479 41 63.5 41 40 51.521 40 64.5 50.521 88 63.5 88z\"/></g></svg>"
},
"$:/core/images/print-button": {
"title": "$:/core/images/print-button",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-print-button tc-image-button\" viewBox=\"0 0 128 128\"><g fill-rule=\"evenodd\"><path d=\"M112 71V30.5h-.032c-.035-2-.816-3.99-2.343-5.516L86.998 2.357A7.978 7.978 0 0081 .02V0H24a8 8 0 00-8 8v63h8V8h57v14.5c0 4.422 3.582 8 8 8h15V71h8z\"/><rect width=\"64\" height=\"8\" x=\"32\" y=\"36\" rx=\"4\"/><rect width=\"64\" height=\"8\" x=\"32\" y=\"52\" rx=\"4\"/><rect width=\"40\" height=\"8\" x=\"32\" y=\"20\" rx=\"4\"/><path d=\"M0 80.005C0 71.165 7.156 64 16 64h96c8.836 0 16 7.155 16 16.005v31.99c0 8.84-7.156 16.005-16 16.005H16c-8.836 0-16-7.155-16-16.005v-31.99zM104 96a8 8 0 100-16 8 8 0 000 16z\"/></g></svg>"
},
"$:/core/images/quote": {
"title": "$:/core/images/quote",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-quote tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M51.219 117.713V62.199H27.427c0-8.891 1.683-16.401 5.047-22.53 3.365-6.127 9.613-10.754 18.745-13.878V2c-7.45.961-14.36 3.184-20.728 6.669-6.368 3.484-11.835 7.87-16.401 13.157C9.524 27.113 5.98 33.241 3.456 40.21.933 47.18-.21 54.63.03 62.56v55.153H51.22zm76.781 0V62.199h-23.791c0-8.891 1.682-16.401 5.046-22.53 3.365-6.127 9.613-10.754 18.745-13.878V2c-7.45.961-14.359 3.184-20.727 6.669-6.369 3.484-11.836 7.87-16.402 13.157-4.566 5.287-8.11 11.415-10.634 18.384-2.523 6.97-3.665 14.42-3.424 22.35v55.153H128z\"/></svg>"
},
"$:/core/images/refresh-button": {
"title": "$:/core/images/refresh-button",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-refresh-button tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M106.369 39.433c10.16 20.879 6.57 46.764-10.771 64.106-21.87 21.87-57.327 21.87-79.196 0-21.87-21.87-21.87-57.326 0-79.196a8 8 0 1111.314 11.314c-15.621 15.62-15.621 40.947 0 56.568 15.62 15.621 40.947 15.621 56.568 0C97.72 78.79 99.6 58.175 89.924 42.73l-6.44 12.264a8 8 0 11-14.166-7.437L84.435 18.76a8 8 0 0110.838-3.345l28.873 15.345a8 8 0 11-7.51 14.129l-10.267-5.457zm-8.222-12.368c-.167-.19-.336-.38-.506-.57l.96-.296-.454.866z\"/></svg>"
},
"$:/core/images/right-arrow": {
"title": "$:/core/images/right-arrow",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-right-arrow tc-image-button\" viewBox=\"0 0 128 128\"><path d=\"M99.069 64.173c0 2.027-.77 4.054-2.316 5.6l-55.98 55.98a7.92 7.92 0 01-11.196 0c-3.085-3.086-3.092-8.105 0-11.196l50.382-50.382-50.382-50.382a7.92 7.92 0 010-11.195c3.086-3.085 8.104-3.092 11.196 0l55.98 55.98a7.892 7.892 0 012.316 5.595z\"/></svg>"
},
"$:/core/images/rotate-left": {
"title": "$:/core/images/rotate-left",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-rotate-left tc-image-button\" viewBox=\"0 0 128 128\"><g fill-rule=\"evenodd\"><rect width=\"32\" height=\"80\" rx=\"8\"/><rect width=\"80\" height=\"32\" x=\"48\" y=\"96\" rx=\"8\"/><path d=\"M61.32 36.65c19.743 2.45 35.023 19.287 35.023 39.693a4 4 0 01-8 0c0-15.663-11.254-28.698-26.117-31.46l3.916 3.916a4 4 0 11-5.657 5.657L49.172 43.142a4 4 0 010-5.657l11.313-11.313a4 4 0 115.657 5.656l-4.821 4.822z\"/></g></svg>"
},
"$:/core/images/save-button": {
"title": "$:/core/images/save-button",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-save-button tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M120.783 34.33c4.641 8.862 7.266 18.948 7.266 29.646 0 35.347-28.653 64-64 64-35.346 0-64-28.653-64-64 0-35.346 28.654-64 64-64 18.808 0 35.72 8.113 47.43 21.03l2.68-2.68c3.13-3.13 8.197-3.132 11.321-.008 3.118 3.118 3.121 8.193-.007 11.32l-4.69 4.691zm-12.058 12.058a47.876 47.876 0 013.324 17.588c0 26.51-21.49 48-48 48s-48-21.49-48-48 21.49-48 48-48c14.39 0 27.3 6.332 36.098 16.362L58.941 73.544 41.976 56.578c-3.127-3.127-8.201-3.123-11.32-.005-3.123 3.124-3.119 8.194.006 11.319l22.617 22.617a7.992 7.992 0 005.659 2.347c2.05 0 4.101-.783 5.667-2.349l44.12-44.12z\"/></svg>"
},
"$:/core/images/size": {
"title": "$:/core/images/size",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-size tc-image-button\" viewBox=\"0 0 128 128\"><path d=\"M92.343 26l-9.171 9.172a4 4 0 105.656 5.656l16-16a4 4 0 000-5.656l-16-16a4 4 0 10-5.656 5.656L92.343 18H22a4 4 0 00-4 4v70.343l-9.172-9.171a4 4 0 10-5.656 5.656l16 16a4 4 0 005.656 0l16-16a4 4 0 10-5.656-5.656L26 92.343V22l-4 4h70.343zM112 52v64l4-4H52a4 4 0 100 8h64a4 4 0 004-4V52a4 4 0 10-8 0z\"/></svg>"
},
"$:/core/images/spiral": {
"title": "$:/core/images/spiral",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-spiral tc-image-button\" viewBox=\"0 0 128 128\"><path d=\"M64.534 68.348c3.39 0 6.097-2.62 6.476-5.968l-4.755-.538 4.75.583c.377-3.07-1.194-6.054-3.89-7.78-2.757-1.773-6.34-2.01-9.566-.7-3.46 1.403-6.14 4.392-7.35 8.148l-.01.026c-1.3 4.08-.72 8.64 1.58 12.52 2.5 4.2 6.77 7.2 11.76 8.27 5.37 1.15 11.11-.05 15.83-3.31 5.04-3.51 8.46-9.02 9.45-15.3 1.05-6.7-.72-13.63-4.92-19.19l.02.02c-4.42-5.93-11.2-9.82-18.78-10.78-7.96-1.01-16.13 1.31-22.59 6.43-6.81 5.39-11.18 13.41-12.11 22.26-.98 9.27 1.87 18.65 7.93 26.02 6.32 7.69 15.6 12.56 25.74 13.48 10.54.96 21.15-2.42 29.45-9.4l.01-.01c8.58-7.25 13.94-17.78 14.86-29.21.94-11.84-2.96-23.69-10.86-32.9-8.19-9.5-19.95-15.36-32.69-16.27-13.16-.94-26.24 3.49-36.34 12.34l.01-.01c-10.41 9.08-16.78 22.1-17.68 36.15-.93 14.44 4.03 28.77 13.79 39.78 10.03 11.32 24.28 18.2 39.6 19.09 15.73.92 31.31-4.56 43.24-15.234 12.23-10.954 19.61-26.44 20.5-43.074a4.785 4.785 0 00-4.52-5.03 4.778 4.778 0 00-5.03 4.52c-.75 14.1-7 27.2-17.33 36.45-10.03 8.98-23.11 13.58-36.3 12.81-12.79-.75-24.67-6.48-33-15.89-8.07-9.11-12.17-20.94-11.41-32.827.74-11.52 5.942-22.15 14.43-29.54l.01-.01c8.18-7.17 18.74-10.75 29.35-9.998 10.21.726 19.6 5.41 26.11 12.96 6.24 7.273 9.32 16.61 8.573 25.894-.718 8.9-4.88 17.064-11.504 22.66l.01-.007c-6.36 5.342-14.44 7.92-22.425 7.19-7.604-.68-14.52-4.314-19.21-10.027-4.44-5.4-6.517-12.23-5.806-18.94.67-6.3 3.76-11.977 8.54-15.766 4.46-3.54 10.05-5.128 15.44-4.44 5.03.63 9.46 3.18 12.32 7.01l.02.024c2.65 3.5 3.75 7.814 3.1 11.92-.59 3.71-2.58 6.925-5.45 8.924-2.56 1.767-5.61 2.403-8.38 1.81-2.42-.516-4.42-1.92-5.53-3.79-.93-1.56-1.15-3.3-.69-4.75l-4.56-1.446L59.325 65c.36-1.12 1.068-1.905 1.84-2.22.25-.103.48-.14.668-.13.06.006.11.015.14.025.01 0 .01 0-.01-.01a1.047 1.047 0 01-.264-.332c-.15-.29-.23-.678-.18-1.11l-.005.04c.15-1.332 1.38-2.523 3.035-2.523-2.65 0-4.79 2.144-4.79 4.787s2.14 4.785 4.78 4.785z\"/></svg>"
},
"$:/core/images/stamp": {
"title": "$:/core/images/stamp",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-stamp tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M49.733 64H16.01C11.584 64 8 67.583 8 72.003V97h112V72.003A8 8 0 00111.99 64H78.267A22.813 22.813 0 0175.5 53.077c0-6.475 2.687-12.324 7.009-16.497A22.818 22.818 0 0087 22.952C87 10.276 76.703 0 64 0S41 10.276 41 22.952c0 5.103 1.669 9.817 4.491 13.628 4.322 4.173 7.009 10.022 7.009 16.497 0 3.954-1.002 7.675-2.767 10.923zM8 104h112v8H8v-8z\"/></svg>"
},
"$:/core/images/star-filled": {
"title": "$:/core/images/star-filled",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-star-filled tc-image-button\" viewBox=\"0 0 128 128\"><path d=\"M61.836 96.823l37.327 27.287c2.72 1.99 6.379-.69 5.343-3.912L90.29 75.988l-1.26 3.91 37.285-27.345c2.718-1.993 1.32-6.327-2.041-6.33l-46.113-.036 3.3 2.416L67.176 4.416c-1.04-3.221-5.563-3.221-6.604 0L46.29 48.603l3.3-2.416-46.113.036c-3.362.003-4.759 4.337-2.04 6.33L38.72 79.898l-1.26-3.91-14.216 44.21c-1.036 3.223 2.622 5.901 5.343 3.912l37.326-27.287h-4.078z\"/></svg>"
},
"$:/core/images/storyview-classic": {
"title": "$:/core/images/storyview-classic",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-storyview-classic tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M8.007 0A8.01 8.01 0 000 8.007v111.986A8.01 8.01 0 008.007 128h111.986a8.01 8.01 0 008.007-8.007V8.007A8.01 8.01 0 00119.993 0H8.007zm15.992 16C19.581 16 16 19.578 16 23.992v16.016C16 44.422 19.588 48 24 48h80c4.419 0 8-3.578 8-7.992V23.992c0-4.414-3.588-7.992-8-7.992H24zm0 48C19.581 64 16 67.59 16 72c0 4.418 3.588 8 8 8h80c4.419 0 8-3.59 8-8 0-4.418-3.588-8-8-8H24zm0 32C19.581 96 16 99.59 16 104c0 4.418 3.588 8 8 8h80c4.419 0 8-3.59 8-8 0-4.418-3.588-8-8-8H24z\"/></svg>"
},
"$:/core/images/storyview-pop": {
"title": "$:/core/images/storyview-pop",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-storyview-pop tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M8.007 0A8.01 8.01 0 000 8.007v111.986A8.01 8.01 0 008.007 128h111.986a8.01 8.01 0 008.007-8.007V8.007A8.01 8.01 0 00119.993 0H8.007zm15.992 16C19.581 16 16 19.578 16 23.992v16.016C16 44.422 19.588 48 24 48h80c4.419 0 8-3.578 8-7.992V23.992c0-4.414-3.588-7.992-8-7.992H24zm-7.99 40C11.587 56 8 59.578 8 63.992v16.016C8 84.422 11.584 88 16.01 88h95.98c4.424 0 8.01-3.578 8.01-7.992V63.992c0-4.414-3.584-7.992-8.01-7.992H16.01zM24 96C19.581 96 16 99.59 16 104c0 4.418 3.588 8 8 8h80c4.419 0 8-3.59 8-8 0-4.418-3.588-8-8-8H24zm0-32C19.581 64 16 67.59 16 72c0 4.418 3.588 8 8 8h80c4.419 0 8-3.59 8-8 0-4.418-3.588-8-8-8H24z\"/></svg>"
},
"$:/core/images/storyview-zoomin": {
"title": "$:/core/images/storyview-zoomin",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-storyview-zoomin tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M8.007 0A8.01 8.01 0 000 8.007v111.986A8.01 8.01 0 008.007 128h111.986a8.01 8.01 0 008.007-8.007V8.007A8.01 8.01 0 00119.993 0H8.007zm15.992 16A8 8 0 0016 24.009V71.99C16 76.414 19.588 80 24 80h80a8 8 0 008-8.009V24.01c0-4.423-3.588-8.009-8-8.009H24z\"/></svg>"
},
"$:/core/images/strikethrough": {
"title": "$:/core/images/strikethrough",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-strikethrough tc-image-button\" viewBox=\"0 0 128 128\"><g fill-rule=\"evenodd\"><path d=\"M92.794 38.726h15.422c-.229-6.74-1.514-12.538-3.856-17.393-2.342-4.855-5.54-8.881-9.596-12.08-4.055-3.199-8.767-5.54-14.136-7.025C75.258.743 69.433 0 63.15 0a62.76 62.76 0 00-16.364 2.142C41.474 3.57 36.733 5.74 32.564 8.653c-4.17 2.913-7.511 6.626-10.025 11.138-2.513 4.512-3.77 9.853-3.77 16.022 0 5.597 1.115 10.252 3.342 13.965 2.228 3.712 5.198 6.74 8.91 9.081 3.713 2.342 7.911 4.227 12.595 5.655a194.641 194.641 0 0014.308 3.77c4.855 1.085 9.624 2.142 14.308 3.17 4.683 1.028 8.881 2.37 12.594 4.027 3.713 1.656 6.683 3.798 8.91 6.425 2.228 2.628 3.342 6.055 3.342 10.281 0 4.456-.914 8.111-2.742 10.967a19.953 19.953 0 01-7.197 6.768c-2.97 1.657-6.311 2.828-10.024 3.513a60.771 60.771 0 01-11.052 1.028c-4.57 0-9.025-.571-13.366-1.713-4.34-1.143-8.139-2.913-11.394-5.312-3.256-2.4-5.884-5.455-7.883-9.168-1.999-3.712-2.998-8.139-2.998-13.28H15c0 7.426 1.342 13.852 4.027 19.278 2.684 5.426 6.34 9.881 10.966 13.365 4.627 3.484 9.996 6.083 16.107 7.797 6.112 1.713 12.595 2.57 19.449 2.57 5.597 0 11.223-.657 16.878-1.97 5.655-1.314 10.767-3.428 15.336-6.34 4.57-2.914 8.31-6.683 11.224-11.31 2.913-4.626 4.37-10.195 4.37-16.707 0-6.054-1.115-11.08-3.342-15.079-2.228-3.998-5.198-7.31-8.91-9.938-3.713-2.627-7.911-4.712-12.595-6.254a170.83 170.83 0 00-14.308-4.027 549.669 549.669 0 00-14.308-3.17c-4.683-.971-8.881-2.2-12.594-3.684-3.713-1.485-6.683-3.399-8.91-5.74-2.228-2.342-3.342-5.398-3.342-9.168 0-3.998.771-7.34 2.313-10.024 1.543-2.685 3.599-4.826 6.17-6.426 2.57-1.599 5.51-2.741 8.824-3.427a49.767 49.767 0 0110.11-1.028c8.453 0 15.393 1.97 20.819 5.912 5.426 3.94 8.596 10.31 9.51 19.106z\"/><path d=\"M5 54h118v16H5z\"/></g></svg>"
},
"$:/core/images/subscript": {
"title": "$:/core/images/subscript",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-subscript tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M2.272 16h19.91l21.649 33.675L66.414 16h18.708L53.585 61.969l33.809 49.443H67.082L43.296 74.93l-24.187 36.48H0L33.808 61.97 2.272 16zM127.91 128.412H85.328c.059-5.168 1.306-9.681 3.741-13.542 2.435-3.86 5.761-7.216 9.978-10.066a112.388 112.388 0 016.325-4.321 50.09 50.09 0 006.058-4.499c1.841-1.603 3.356-3.34 4.543-5.211 1.188-1.871 1.812-4.024 1.871-6.46 0-1.128-.133-2.33-.4-3.607a9.545 9.545 0 00-1.56-3.564c-.772-1.098-1.84-2.019-3.207-2.761-1.366-.743-3.148-1.114-5.345-1.114-2.02 0-3.697.4-5.033 1.203-1.337.801-2.406 1.9-3.208 3.296-.801 1.396-1.395 3.044-1.781 4.944-.386 1.9-.609 3.95-.668 6.147H86.486c0-3.445.46-6.637 1.38-9.577.921-2.94 2.302-5.478 4.143-7.617 1.841-2.138 4.083-3.815 6.726-5.033 2.643-1.217 5.716-1.826 9.22-1.826 3.802 0 6.979.623 9.533 1.87 2.554 1.248 4.617 2.822 6.191 4.722 1.574 1.9 2.688 3.965 3.341 6.192.653 2.227.98 4.35.98 6.37 0 2.494-.386 4.75-1.158 6.77a21.803 21.803 0 01-3.118 5.568 31.516 31.516 0 01-4.454 4.677 66.788 66.788 0 01-5.167 4.009 139.198 139.198 0 01-5.346 3.563 79.237 79.237 0 00-4.944 3.386c-1.514 1.128-2.836 2.3-3.964 3.518-1.129 1.218-1.9 2.51-2.317 3.876h30.379v9.087z\"/></svg>"
},
"$:/core/images/superscript": {
"title": "$:/core/images/superscript",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-superscript tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M2.272 16h19.91l21.649 33.675L66.414 16h18.708L53.585 61.969l33.809 49.443H67.082L43.296 74.93l-24.187 36.48H0L33.808 61.97 2.272 16zM127.91 63.412H85.328c.059-5.168 1.306-9.681 3.741-13.542 2.435-3.86 5.761-7.216 9.978-10.066a112.388 112.388 0 016.325-4.321 50.09 50.09 0 006.058-4.499c1.841-1.603 3.356-3.34 4.543-5.211 1.188-1.871 1.812-4.024 1.871-6.46 0-1.128-.133-2.33-.4-3.607a9.545 9.545 0 00-1.56-3.564c-.772-1.098-1.84-2.019-3.207-2.761-1.366-.743-3.148-1.114-5.345-1.114-2.02 0-3.697.4-5.033 1.203-1.337.801-2.406 1.9-3.208 3.296-.801 1.396-1.395 3.044-1.781 4.944-.386 1.9-.609 3.95-.668 6.147H86.486c0-3.445.46-6.637 1.38-9.577.921-2.94 2.302-5.478 4.143-7.617 1.841-2.138 4.083-3.815 6.726-5.033 2.643-1.217 5.716-1.826 9.22-1.826 3.802 0 6.979.623 9.533 1.87 2.554 1.248 4.617 2.822 6.191 4.722 1.574 1.9 2.688 3.965 3.341 6.192.653 2.227.98 4.35.98 6.37 0 2.494-.386 4.75-1.158 6.77a21.803 21.803 0 01-3.118 5.568 31.516 31.516 0 01-4.454 4.677 66.788 66.788 0 01-5.167 4.009 139.198 139.198 0 01-5.346 3.563 79.237 79.237 0 00-4.944 3.386c-1.514 1.128-2.836 2.3-3.964 3.518-1.129 1.218-1.9 2.51-2.317 3.876h30.379v9.087z\"/></svg>"
},
"$:/core/images/tag-button": {
"title": "$:/core/images/tag-button",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-tag-button tc-image-button\" viewBox=\"0 0 128 128\"><g fill-rule=\"evenodd\"><path d=\"M18.164 47.66l.004 4.105c.003 3.823 2.19 9.097 4.885 11.792l61.85 61.85c2.697 2.697 7.068 2.69 9.769-.01L125.767 94.3a6.903 6.903 0 00.01-9.77L63.928 22.683c-2.697-2.697-7.976-4.88-11.796-4.881l-27.076-.007a6.902 6.902 0 00-6.91 6.91l.008 9.96.287.033c3.73.411 8.489-.044 13.365-1.153a9.702 9.702 0 0111.14-3.662l.291-.13.128.285a9.7 9.7 0 013.3 2.17c3.796 3.796 3.801 9.945.012 13.734-3.618 3.618-9.386 3.777-13.204.482-5.365 1.122-10.674 1.596-15.309 1.237z\"/><path d=\"M47.633 39.532l.023.051c-9.689 4.356-21.584 6.799-30.396 5.828C5.273 44.089-1.028 36.43 2.443 24.078 5.562 12.976 14.3 4.361 24.047 1.548c10.68-3.083 19.749 1.968 19.749 13.225h-8.623c0-4.859-3.078-6.573-8.735-4.94-6.91 1.995-13.392 8.383-15.694 16.577-1.915 6.818.417 9.653 7.46 10.43 7.126.785 17.531-1.352 25.917-5.121l.027.06.036-.017c1.76-.758 6.266 6.549 3.524 7.74a2.8 2.8 0 01-.075.03z\"/></g></svg>"
},
"$:/core/images/theme-button": {
"title": "$:/core/images/theme-button",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-theme-button tc-image-button\" viewBox=\"0 0 128 128\"><g fill-rule=\"evenodd\"><path d=\"M55.854 66.945a122.626 122.626 0 01-3.9-4.819c-11.064-14.548-16.645-6.888-22.96 0-6.315 6.888 1.664 12.47-4.33 17.335-5.993 4.866-5.623 6.552-15.737-2.35-10.115-8.9-10.815-11.351-6.172-16.43 4.644-5.08 8.524 2.918 18.01-6.108 9.485-9.026 1.517-17.026 1.517-17.026S42.03-2.824 68.42.157c26.39 2.982-9.984-3.86-19.031 27.801-3.874 13.556.72 10.362 8.066 16.087 1.707 1.33 6.428 4.732 12.671 9.318-6.129 5.879-11.157 10.669-14.273 13.582zm11.641 12.947c16.013 17.036 37.742 37.726 45.117 40.42 10.432 3.813 15.388-3.141 15.388-14.79 0-7.151-23.83-26.542-43.924-41.769-7.408 7.156-13.376 12.953-16.58 16.139z\"/><path d=\"M11.069 109.828L46.31 74.587a3.56 3.56 0 115.037-5.032l15.098 15.098a3.56 3.56 0 11-5.032 5.037l-35.24 35.241c-4.171 4.17-10.933 4.17-15.104 0-4.17-4.17-4.17-10.933 0-15.103zM124.344 6.622l5.034 5.034-7.49 12.524-7.613 2.58L61.413 79.62l-5.034-5.034 52.861-52.862 2.58-7.614 12.524-7.49z\"/></g></svg>"
},
"$:/core/images/timestamp-off": {
"title": "$:/core/images/timestamp-off",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-timestamp-off tc-image-button\" viewBox=\"0 0 128 128\"><g fill-rule=\"evenodd\"><path d=\"M58.25 11C26.08 11 0 37.082 0 69.25s26.08 58.25 58.25 58.25c32.175 0 58.25-26.082 58.25-58.25S90.425 11 58.25 11zm0 100.5C34.914 111.5 16 92.586 16 69.25 16 45.92 34.914 27 58.25 27s42.25 18.92 42.25 42.25c0 23.336-18.914 42.25-42.25 42.25zM49.704 10a5 5 0 010-10H66.69a5 5 0 015 5c.006 2.757-2.238 5-5 5H49.705z\"/><path d=\"M58.25 35.88c-18.777 0-33.998 15.224-33.998 33.998 0 18.773 15.22 34.002 33.998 34.002 18.784 0 34.002-15.23 34.002-34.002 0-18.774-15.218-33.998-34.002-33.998zm-3.03 50.123H44.196v-34H55.22v34zm16.976 0H61.17v-34h11.025v34z\"/></g></svg>"
},
"$:/core/images/timestamp-on": {
"title": "$:/core/images/timestamp-on",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-timestamp-on tc-image-button\" viewBox=\"0 0 128 128\"><g fill-rule=\"evenodd\"><path d=\"M58.25 11C26.08 11 0 37.082 0 69.25s26.08 58.25 58.25 58.25c32.175 0 58.25-26.082 58.25-58.25S90.425 11 58.25 11zm0 100.5C34.914 111.5 16 92.586 16 69.25 16 45.92 34.914 27 58.25 27s42.25 18.92 42.25 42.25c0 23.336-18.914 42.25-42.25 42.25zM49.704 10a5 5 0 010-10H66.69a5 5 0 015 5c.006 2.757-2.238 5-5 5H49.705z\"/><path d=\"M13.41 27.178a5.005 5.005 0 01-7.045-.613 5.008 5.008 0 01.616-7.047l9.95-8.348a5 5 0 016.429 7.661l-9.95 8.348zm89.573 0a5.005 5.005 0 007.045-.613 5.008 5.008 0 00-.616-7.047l-9.95-8.348a5 5 0 00-6.428 7.661l9.95 8.348zM65.097 71.072c0 3.826-3.09 6.928-6.897 6.928-3.804.006-6.9-3.102-6.903-6.928 0 0 4.76-39.072 6.903-39.072s6.897 39.072 6.897 39.072z\"/></g></svg>"
},
"$:/core/images/tip": {
"title": "$:/core/images/tip",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-tip tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M64 128.242c35.346 0 64-28.654 64-64 0-35.346-28.654-64-64-64-35.346 0-64 28.654-64 64 0 35.346 28.654 64 64 64zm11.936-36.789c-.624 4.129-5.73 7.349-11.936 7.349-6.206 0-11.312-3.22-11.936-7.349C54.33 94.05 58.824 95.82 64 95.82c5.175 0 9.67-1.769 11.936-4.366zm0 4.492c-.624 4.13-5.73 7.349-11.936 7.349-6.206 0-11.312-3.22-11.936-7.349 2.266 2.597 6.76 4.366 11.936 4.366 5.175 0 9.67-1.769 11.936-4.366zm0 4.456c-.624 4.129-5.73 7.349-11.936 7.349-6.206 0-11.312-3.22-11.936-7.349 2.266 2.597 6.76 4.366 11.936 4.366 5.175 0 9.67-1.769 11.936-4.366zm0 4.492c-.624 4.13-5.73 7.349-11.936 7.349-6.206 0-11.312-3.22-11.936-7.349 2.266 2.597 6.76 4.366 11.936 4.366 5.175 0 9.67-1.769 11.936-4.366zM64.3 24.242c11.618 0 23.699 7.82 23.699 24.2S75.92 71.754 75.92 83.576c0 5.873-5.868 9.26-11.92 9.26s-12.027-3.006-12.027-9.26C51.973 71.147 40 65.47 40 48.442s12.683-24.2 24.301-24.2z\"/></svg>"
},
"$:/core/images/transcludify": {
"title": "$:/core/images/transcludify",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-transcludify-button tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M0 59.482c.591 0 1.36-.089 2.306-.266a10.417 10.417 0 002.75-.932 6.762 6.762 0 002.306-1.907c.651-.828.976-1.863.976-3.104V35.709c0-2.01.414-3.74 1.242-5.19.828-1.448 1.833-2.66 3.016-3.636s2.425-1.7 3.726-2.173c1.3-.473 2.424-.71 3.37-.71h8.073v7.451h-4.88c-1.241 0-2.232.207-2.97.621-.74.414-1.302.932-1.686 1.552a4.909 4.909 0 00-.71 1.996c-.089.71-.133 1.39-.133 2.04v16.677c0 1.715-.325 3.134-.976 4.258-.65 1.123-1.434 2.025-2.35 2.705-.917.68-1.863 1.168-2.839 1.464-.976.296-1.818.473-2.528.532v.178c.71.059 1.552.207 2.528.443.976.237 1.922.68 2.839 1.33.916.651 1.7 1.583 2.35 2.795.65 1.212.976 2.853.976 4.923v16.144c0 .65.044 1.33.133 2.04.089.71.325 1.375.71 1.996.384.621.946 1.139 1.685 1.553.74.414 1.73.62 2.972.62h4.879v7.452h-8.073c-.946 0-2.07-.237-3.37-.71-1.301-.473-2.543-1.197-3.726-2.173-1.183-.976-2.188-2.188-3.016-3.637-.828-1.449-1.242-3.179-1.242-5.19V74.119c0-1.42-.325-2.572-.976-3.46-.65-.886-1.419-1.581-2.306-2.084a8.868 8.868 0 00-2.75-1.02C1.36 67.377.591 67.288 0 67.288v-7.806zm24.66 0c.591 0 1.36-.089 2.306-.266a10.417 10.417 0 002.75-.932 6.762 6.762 0 002.306-1.907c.65-.828.976-1.863.976-3.104V35.709c0-2.01.414-3.74 1.242-5.19.828-1.448 1.833-2.66 3.016-3.636s2.425-1.7 3.726-2.173c1.3-.473 2.424-.71 3.37-.71h8.073v7.451h-4.88c-1.241 0-2.232.207-2.97.621-.74.414-1.302.932-1.686 1.552a4.909 4.909 0 00-.71 1.996c-.089.71-.133 1.39-.133 2.04v16.677c0 1.715-.325 3.134-.976 4.258-.65 1.123-1.434 2.025-2.35 2.705-.917.68-1.863 1.168-2.839 1.464-.976.296-1.818.473-2.528.532v.178c.71.059 1.552.207 2.528.443.976.237 1.922.68 2.839 1.33.916.651 1.7 1.583 2.35 2.795.65 1.212.976 2.853.976 4.923v16.144c0 .65.044 1.33.133 2.04.089.71.325 1.375.71 1.996.384.621.946 1.139 1.685 1.553.74.414 1.73.62 2.972.62h4.879v7.452h-8.073c-.946 0-2.07-.237-3.37-.71-1.301-.473-2.543-1.197-3.726-2.173-1.183-.976-2.188-2.188-3.016-3.637-.828-1.449-1.242-3.179-1.242-5.19V74.119c0-1.42-.325-2.572-.976-3.46-.65-.886-1.419-1.581-2.306-2.084a8.868 8.868 0 00-2.75-1.02c-.946-.177-1.715-.266-2.306-.266v-7.806zm43.965-3.538L80.6 52.041l2.306 7.097-12.063 3.903 7.628 10.378-6.12 4.435-7.63-10.467-7.45 10.201-5.943-4.524 7.628-10.023-12.152-4.17 2.306-7.096 12.064 4.17V43.347h7.451v12.596zm34.425 11.344c-.65 0-1.449.089-2.395.266-.946.177-1.863.488-2.75.931a6.356 6.356 0 00-2.262 1.908c-.62.828-.931 1.862-.931 3.104v17.564c0 2.01-.414 3.74-1.242 5.189-.828 1.449-1.833 2.661-3.016 3.637s-2.425 1.7-3.726 2.173c-1.3.473-2.424.71-3.37.71h-8.073v-7.451h4.88c1.241 0 2.232-.207 2.97-.621.74-.414 1.302-.932 1.686-1.553a4.9 4.9 0 00.71-1.995c.089-.71.133-1.39.133-2.04V72.432c0-1.715.325-3.134.976-4.258.65-1.124 1.434-2.01 2.35-2.661.917-.65 1.863-1.124 2.839-1.42.976-.295 1.818-.502 2.528-.62v-.178c-.71-.059-1.552-.207-2.528-.443-.976-.237-1.922-.68-2.839-1.33-.916-.651-1.7-1.583-2.35-2.795-.65-1.212-.976-2.853-.976-4.923V37.66c0-.651-.044-1.331-.133-2.04a4.909 4.909 0 00-.71-1.997c-.384-.62-.946-1.138-1.685-1.552-.74-.414-1.73-.62-2.972-.62h-4.879V24h8.073c.946 0 2.07.237 3.37.71 1.301.473 2.543 1.197 3.726 2.173 1.183.976 2.188 2.188 3.016 3.637.828 1.449 1.242 3.178 1.242 5.189v16.943c0 1.419.31 2.572.931 3.46a6.897 6.897 0 002.262 2.084 8.868 8.868 0 002.75 1.02c.946.177 1.745.266 2.395.266v7.806zm24.66 0c-.65 0-1.449.089-2.395.266-.946.177-1.863.488-2.75.931a6.356 6.356 0 00-2.262 1.908c-.62.828-.931 1.862-.931 3.104v17.564c0 2.01-.414 3.74-1.242 5.189-.828 1.449-1.833 2.661-3.016 3.637s-2.425 1.7-3.726 2.173c-1.3.473-2.424.71-3.37.71h-8.073v-7.451h4.88c1.241 0 2.232-.207 2.97-.621.74-.414 1.302-.932 1.686-1.553a4.9 4.9 0 00.71-1.995c.089-.71.133-1.39.133-2.04V72.432c0-1.715.325-3.134.976-4.258.65-1.124 1.434-2.01 2.35-2.661.917-.65 1.863-1.124 2.839-1.42.976-.295 1.818-.502 2.528-.62v-.178c-.71-.059-1.552-.207-2.528-.443-.976-.237-1.922-.68-2.839-1.33-.916-.651-1.7-1.583-2.35-2.795-.65-1.212-.976-2.853-.976-4.923V37.66c0-.651-.044-1.331-.133-2.04a4.909 4.909 0 00-.71-1.997c-.384-.62-.946-1.138-1.685-1.552-.74-.414-1.73-.62-2.972-.62h-4.879V24h8.073c.946 0 2.07.237 3.37.71 1.301.473 2.543 1.197 3.726 2.173 1.183.976 2.188 2.188 3.016 3.637.828 1.449 1.242 3.178 1.242 5.189v16.943c0 1.419.31 2.572.931 3.46a6.897 6.897 0 002.262 2.084 8.868 8.868 0 002.75 1.02c.946.177 1.745.266 2.395.266v7.806z\"/></svg>"
},
"$:/core/images/twitter": {
"title": "$:/core/images/twitter",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-twitter tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M41.626 115.803A73.376 73.376 0 012 104.235c2.022.238 4.08.36 6.166.36 12.111 0 23.258-4.117 32.105-11.023-11.312-.208-20.859-7.653-24.148-17.883a25.98 25.98 0 0011.674-.441C15.971 72.881 7.061 62.474 7.061 49.997c0-.108 0-.216.002-.323a25.824 25.824 0 0011.709 3.22c-6.936-4.617-11.5-12.5-11.5-21.433 0-4.719 1.274-9.142 3.5-12.945 12.75 15.579 31.797 25.83 53.281 26.904-.44-1.884-.67-3.85-.67-5.868 0-14.22 11.575-25.75 25.852-25.75a25.865 25.865 0 0118.869 8.132 51.892 51.892 0 0016.415-6.248c-1.93 6.012-6.029 11.059-11.366 14.246A51.844 51.844 0 00128 25.878a52.428 52.428 0 01-12.9 13.33c.05 1.104.075 2.214.075 3.33 0 34.028-26 73.265-73.549 73.265\"/></svg>"
},
"$:/core/images/underline": {
"title": "$:/core/images/underline",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-underline tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M7 117.421h114.248V128H7v-10.579zm97.871-18.525V0h-16.26v55.856c0 4.463-.605 8.576-1.816 12.338-1.212 3.762-3.03 7.046-5.452 9.851-2.423 2.806-5.452 4.974-9.086 6.504-3.635 1.53-7.939 2.296-12.912 2.296-6.25 0-11.159-1.786-14.73-5.356-3.57-3.571-5.356-8.417-5.356-14.538V0H23v65.038c0 5.356.542 10.234 1.626 14.633 1.084 4.4 2.965 8.194 5.643 11.382 2.678 3.188 6.185 5.643 10.52 7.365 4.337 1.721 9.756 2.582 16.26 2.582 7.27 0 13.582-1.435 18.938-4.304 5.356-2.87 9.755-7.365 13.199-13.486h.382v15.686h15.303z\"/></svg>"
},
"$:/core/images/unfold-all-button": {
"title": "$:/core/images/unfold-all-button",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-unfold-all tc-image-button\" viewBox=\"0 0 128 128\"><g fill-rule=\"evenodd\"><rect width=\"128\" height=\"16\" rx=\"8\"/><rect width=\"128\" height=\"16\" y=\"64\" rx=\"8\"/><path d=\"M63.945 60.624c-2.05 0-4.101-.78-5.666-2.345L35.662 35.662c-3.125-3.125-3.13-8.195-.005-11.319 3.118-3.118 8.192-3.122 11.319.005L63.94 41.314l16.966-16.966c3.124-3.124 8.194-3.129 11.318-.005 3.118 3.118 3.122 8.192-.005 11.319L69.603 58.279a7.986 7.986 0 01-5.663 2.346zM64.004 124.565c-2.05 0-4.102-.78-5.666-2.345L35.721 99.603c-3.125-3.125-3.13-8.195-.005-11.319 3.118-3.118 8.191-3.122 11.318.005L64 105.255l16.966-16.966c3.124-3.124 8.194-3.129 11.318-.005 3.118 3.118 3.122 8.192-.005 11.319L69.662 122.22a7.986 7.986 0 01-5.663 2.346z\"/></g></svg>"
},
"$:/core/images/unfold-button": {
"title": "$:/core/images/unfold-button",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-unfold tc-image-button\" viewBox=\"0 0 128 128\"><g fill-rule=\"evenodd\"><rect width=\"128\" height=\"16\" rx=\"8\"/><path d=\"M63.945 63.624c-2.05 0-4.101-.78-5.666-2.345L35.662 38.662c-3.125-3.125-3.13-8.195-.005-11.319 3.118-3.118 8.192-3.122 11.319.005L63.94 44.314l16.966-16.966c3.124-3.124 8.194-3.129 11.318-.005 3.118 3.118 3.122 8.192-.005 11.319L69.603 61.279a7.986 7.986 0 01-5.663 2.346zM64.004 105.682c-2.05.001-4.102-.78-5.666-2.344L35.721 80.721c-3.125-3.125-3.13-8.195-.005-11.319 3.118-3.118 8.191-3.122 11.318.005L64 86.373l16.966-16.966c3.124-3.125 8.194-3.13 11.318-.005 3.118 3.118 3.122 8.192-.005 11.319l-22.617 22.617a7.986 7.986 0 01-5.663 2.346z\"/></g></svg>"
},
"$:/core/images/unlocked-padlock": {
"title": "$:/core/images/unlocked-padlock",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-unlocked-padlock tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M48.627 64H105v32.01C105 113.674 90.674 128 73.001 128H56C38.318 128 24 113.677 24 96.01V64h6.136c-10.455-12.651-27.364-35.788-4.3-55.142 24.636-20.672 45.835 4.353 55.777 16.201 9.943 11.85-2.676 22.437-12.457 9.892-9.78-12.545-21.167-24.146-33.207-14.043-12.041 10.104-1.757 22.36 8.813 34.958 2.467 2.94 3.641 5.732 3.865 8.134zm19.105 28.364A8.503 8.503 0 0064.5 76a8.5 8.5 0 00-3.498 16.25l-5.095 22.77H72.8l-5.07-22.656z\"/></svg>"
},
"$:/core/images/up-arrow": {
"title": "$:/core/images/up-arrow",
"created": "20150316000544368",
"modified": "20150316000831867",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-up-arrow tc-image-button\" viewBox=\"0 0 128 128\"><path d=\"M63.892.281c2.027 0 4.054.77 5.6 2.316l55.98 55.98a7.92 7.92 0 010 11.196c-3.086 3.085-8.104 3.092-11.196 0L63.894 19.393 13.513 69.774a7.92 7.92 0 01-11.196 0c-3.085-3.086-3.092-8.105 0-11.196l55.98-55.98A7.892 7.892 0 0163.893.28z\"/></svg>"
},
"$:/core/images/video": {
"title": "$:/core/images/video",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-video tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M64 12c-34.91 0-55.273 2.917-58.182 5.833C2.91 20.75 0 41.167 0 64.5c0 23.333 2.91 43.75 5.818 46.667C8.728 114.083 29.091 117 64 117c34.91 0 55.273-2.917 58.182-5.833C125.09 108.25 128 87.833 128 64.5c0-23.333-2.91-43.75-5.818-46.667C119.272 14.917 98.909 12 64 12zm-9.084 32.618c-3.813-2.542-6.905-.879-6.905 3.698v31.368c0 4.585 3.099 6.235 6.905 3.698l22.168-14.779c3.813-2.542 3.806-6.669 0-9.206L54.916 44.618z\"/></svg>"
},
"$:/core/images/warning": {
"title": "$:/core/images/warning",
"tags": "$:/tags/Image",
"text": "<svg width=\"22pt\" height=\"22pt\" class=\"tc-image-warning tc-image-button\" viewBox=\"0 0 128 128\"><path fill-rule=\"evenodd\" d=\"M57.072 11c3.079-5.333 10.777-5.333 13.856 0l55.426 96c3.079 5.333-.77 12-6.928 12H8.574c-6.158 0-10.007-6.667-6.928-12l55.426-96zM64 37c-4.418 0-8 3.582-8 7.994v28.012C56 77.421 59.59 81 64 81c4.418 0 8-3.582 8-7.994V44.994C72 40.579 68.41 37 64 37zm0 67a8 8 0 100-16 8 8 0 000 16z\"/></svg>"
},
"$:/language/Buttons/AdvancedSearch/Caption": {
"title": "$:/language/Buttons/AdvancedSearch/Caption",
"text": "advanced search"
},
"$:/language/Buttons/AdvancedSearch/Hint": {
"title": "$:/language/Buttons/AdvancedSearch/Hint",
"text": "Advanced search"
},
"$:/language/Buttons/Cancel/Caption": {
"title": "$:/language/Buttons/Cancel/Caption",
"text": "cancel"
},
"$:/language/Buttons/Cancel/Hint": {
"title": "$:/language/Buttons/Cancel/Hint",
"text": "Discard changes to this tiddler"
},
"$:/language/Buttons/Clone/Caption": {
"title": "$:/language/Buttons/Clone/Caption",
"text": "clone"
},
"$:/language/Buttons/Clone/Hint": {
"title": "$:/language/Buttons/Clone/Hint",
"text": "Clone this tiddler"
},
"$:/language/Buttons/Close/Caption": {
"title": "$:/language/Buttons/Close/Caption",
"text": "close"
},
"$:/language/Buttons/Close/Hint": {
"title": "$:/language/Buttons/Close/Hint",
"text": "Close this tiddler"
},
"$:/language/Buttons/CloseAll/Caption": {
"title": "$:/language/Buttons/CloseAll/Caption",
"text": "close all"
},
"$:/language/Buttons/CloseAll/Hint": {
"title": "$:/language/Buttons/CloseAll/Hint",
"text": "Close all tiddlers"
},
"$:/language/Buttons/CloseOthers/Caption": {
"title": "$:/language/Buttons/CloseOthers/Caption",
"text": "close others"
},
"$:/language/Buttons/CloseOthers/Hint": {
"title": "$:/language/Buttons/CloseOthers/Hint",
"text": "Close other tiddlers"
},
"$:/language/Buttons/ControlPanel/Caption": {
"title": "$:/language/Buttons/ControlPanel/Caption",
"text": "control panel"
},
"$:/language/Buttons/ControlPanel/Hint": {
"title": "$:/language/Buttons/ControlPanel/Hint",
"text": "Open control panel"
},
"$:/language/Buttons/CopyToClipboard/Caption": {
"title": "$:/language/Buttons/CopyToClipboard/Caption",
"text": "copy to clipboard"
},
"$:/language/Buttons/CopyToClipboard/Hint": {
"title": "$:/language/Buttons/CopyToClipboard/Hint",
"text": "Copy this text to the clipboard"
},
"$:/language/Buttons/Delete/Caption": {
"title": "$:/language/Buttons/Delete/Caption",
"text": "delete"
},
"$:/language/Buttons/Delete/Hint": {
"title": "$:/language/Buttons/Delete/Hint",
"text": "Delete this tiddler"
},
"$:/language/Buttons/Edit/Caption": {
"title": "$:/language/Buttons/Edit/Caption",
"text": "edit"
},
"$:/language/Buttons/Edit/Hint": {
"title": "$:/language/Buttons/Edit/Hint",
"text": "Edit this tiddler"
},
"$:/language/Buttons/Encryption/Caption": {
"title": "$:/language/Buttons/Encryption/Caption",
"text": "encryption"
},
"$:/language/Buttons/Encryption/Hint": {
"title": "$:/language/Buttons/Encryption/Hint",
"text": "Set or clear a password for saving this wiki"
},
"$:/language/Buttons/Encryption/ClearPassword/Caption": {
"title": "$:/language/Buttons/Encryption/ClearPassword/Caption",
"text": "clear password"
},
"$:/language/Buttons/Encryption/ClearPassword/Hint": {
"title": "$:/language/Buttons/Encryption/ClearPassword/Hint",
"text": "Clear the password and save this wiki without encryption"
},
"$:/language/Buttons/Encryption/SetPassword/Caption": {
"title": "$:/language/Buttons/Encryption/SetPassword/Caption",
"text": "set password"
},
"$:/language/Buttons/Encryption/SetPassword/Hint": {
"title": "$:/language/Buttons/Encryption/SetPassword/Hint",
"text": "Set a password for saving this wiki with encryption"
},
"$:/language/Buttons/ExportPage/Caption": {
"title": "$:/language/Buttons/ExportPage/Caption",
"text": "export all"
},
"$:/language/Buttons/ExportPage/Hint": {
"title": "$:/language/Buttons/ExportPage/Hint",
"text": "Export all tiddlers"
},
"$:/language/Buttons/ExportTiddler/Caption": {
"title": "$:/language/Buttons/ExportTiddler/Caption",
"text": "export tiddler"
},
"$:/language/Buttons/ExportTiddler/Hint": {
"title": "$:/language/Buttons/ExportTiddler/Hint",
"text": "Export tiddler"
},
"$:/language/Buttons/ExportTiddlers/Caption": {
"title": "$:/language/Buttons/ExportTiddlers/Caption",
"text": "export tiddlers"
},
"$:/language/Buttons/ExportTiddlers/Hint": {
"title": "$:/language/Buttons/ExportTiddlers/Hint",
"text": "Export tiddlers"
},
"$:/language/Buttons/SidebarSearch/Hint": {
"title": "$:/language/Buttons/SidebarSearch/Hint",
"text": "Select the sidebar search field"
},
"$:/language/Buttons/Fold/Caption": {
"title": "$:/language/Buttons/Fold/Caption",
"text": "fold tiddler"
},
"$:/language/Buttons/Fold/Hint": {
"title": "$:/language/Buttons/Fold/Hint",
"text": "Fold the body of this tiddler"
},
"$:/language/Buttons/Fold/FoldBar/Caption": {
"title": "$:/language/Buttons/Fold/FoldBar/Caption",
"text": "fold-bar"
},
"$:/language/Buttons/Fold/FoldBar/Hint": {
"title": "$:/language/Buttons/Fold/FoldBar/Hint",
"text": "Optional bars to fold and unfold tiddlers"
},
"$:/language/Buttons/Unfold/Caption": {
"title": "$:/language/Buttons/Unfold/Caption",
"text": "unfold tiddler"
},
"$:/language/Buttons/Unfold/Hint": {
"title": "$:/language/Buttons/Unfold/Hint",
"text": "Unfold the body of this tiddler"
},
"$:/language/Buttons/FoldOthers/Caption": {
"title": "$:/language/Buttons/FoldOthers/Caption",
"text": "fold other tiddlers"
},
"$:/language/Buttons/FoldOthers/Hint": {
"title": "$:/language/Buttons/FoldOthers/Hint",
"text": "Fold the bodies of other opened tiddlers"
},
"$:/language/Buttons/FoldAll/Caption": {
"title": "$:/language/Buttons/FoldAll/Caption",
"text": "fold all tiddlers"
},
"$:/language/Buttons/FoldAll/Hint": {
"title": "$:/language/Buttons/FoldAll/Hint",
"text": "Fold the bodies of all opened tiddlers"
},
"$:/language/Buttons/UnfoldAll/Caption": {
"title": "$:/language/Buttons/UnfoldAll/Caption",
"text": "unfold all tiddlers"
},
"$:/language/Buttons/UnfoldAll/Hint": {
"title": "$:/language/Buttons/UnfoldAll/Hint",
"text": "Unfold the bodies of all opened tiddlers"
},
"$:/language/Buttons/FullScreen/Caption": {
"title": "$:/language/Buttons/FullScreen/Caption",
"text": "full-screen"
},
"$:/language/Buttons/FullScreen/Hint": {
"title": "$:/language/Buttons/FullScreen/Hint",
"text": "Enter or leave full-screen mode"
},
"$:/language/Buttons/Help/Caption": {
"title": "$:/language/Buttons/Help/Caption",
"text": "help"
},
"$:/language/Buttons/Help/Hint": {
"title": "$:/language/Buttons/Help/Hint",
"text": "Show help panel"
},
"$:/language/Buttons/Import/Caption": {
"title": "$:/language/Buttons/Import/Caption",
"text": "import"
},
"$:/language/Buttons/Import/Hint": {
"title": "$:/language/Buttons/Import/Hint",
"text": "Import many types of file including text, image, TiddlyWiki or JSON"
},
"$:/language/Buttons/Info/Caption": {
"title": "$:/language/Buttons/Info/Caption",
"text": "info"
},
"$:/language/Buttons/Info/Hint": {
"title": "$:/language/Buttons/Info/Hint",
"text": "Show information for this tiddler"
},
"$:/language/Buttons/Home/Caption": {
"title": "$:/language/Buttons/Home/Caption",
"text": "home"
},
"$:/language/Buttons/Home/Hint": {
"title": "$:/language/Buttons/Home/Hint",
"text": "Open the default tiddlers"
},
"$:/language/Buttons/Language/Caption": {
"title": "$:/language/Buttons/Language/Caption",
"text": "language"
},
"$:/language/Buttons/Language/Hint": {
"title": "$:/language/Buttons/Language/Hint",
"text": "Choose the user interface language"
},
"$:/language/Buttons/Manager/Caption": {
"title": "$:/language/Buttons/Manager/Caption",
"text": "tiddler manager"
},
"$:/language/Buttons/Manager/Hint": {
"title": "$:/language/Buttons/Manager/Hint",
"text": "Open tiddler manager"
},
"$:/language/Buttons/More/Caption": {
"title": "$:/language/Buttons/More/Caption",
"text": "more"
},
"$:/language/Buttons/More/Hint": {
"title": "$:/language/Buttons/More/Hint",
"text": "More actions"
},
"$:/language/Buttons/NewHere/Caption": {
"title": "$:/language/Buttons/NewHere/Caption",
"text": "new here"
},
"$:/language/Buttons/NewHere/Hint": {
"title": "$:/language/Buttons/NewHere/Hint",
"text": "Create a new tiddler tagged with this one"
},
"$:/language/Buttons/NewJournal/Caption": {
"title": "$:/language/Buttons/NewJournal/Caption",
"text": "new journal"
},
"$:/language/Buttons/NewJournal/Hint": {
"title": "$:/language/Buttons/NewJournal/Hint",
"text": "Create a new journal tiddler"
},
"$:/language/Buttons/NewJournalHere/Caption": {
"title": "$:/language/Buttons/NewJournalHere/Caption",
"text": "new journal here"
},
"$:/language/Buttons/NewJournalHere/Hint": {
"title": "$:/language/Buttons/NewJournalHere/Hint",
"text": "Create a new journal tiddler tagged with this one"
},
"$:/language/Buttons/NewImage/Caption": {
"title": "$:/language/Buttons/NewImage/Caption",
"text": "new image"
},
"$:/language/Buttons/NewImage/Hint": {
"title": "$:/language/Buttons/NewImage/Hint",
"text": "Create a new image tiddler"
},
"$:/language/Buttons/NewMarkdown/Caption": {
"title": "$:/language/Buttons/NewMarkdown/Caption",
"text": "new Markdown tiddler"
},
"$:/language/Buttons/NewMarkdown/Hint": {
"title": "$:/language/Buttons/NewMarkdown/Hint",
"text": "Create a new Markdown tiddler"
},
"$:/language/Buttons/NewTiddler/Caption": {
"title": "$:/language/Buttons/NewTiddler/Caption",
"text": "new tiddler"
},
"$:/language/Buttons/NewTiddler/Hint": {
"title": "$:/language/Buttons/NewTiddler/Hint",
"text": "Create a new tiddler"
},
"$:/language/Buttons/OpenWindow/Caption": {
"title": "$:/language/Buttons/OpenWindow/Caption",
"text": "open in new window"
},
"$:/language/Buttons/OpenWindow/Hint": {
"title": "$:/language/Buttons/OpenWindow/Hint",
"text": "Open tiddler in new window"
},
"$:/language/Buttons/Palette/Caption": {
"title": "$:/language/Buttons/Palette/Caption",
"text": "palette"
},
"$:/language/Buttons/Palette/Hint": {
"title": "$:/language/Buttons/Palette/Hint",
"text": "Choose the colour palette"
},
"$:/language/Buttons/Permalink/Caption": {
"title": "$:/language/Buttons/Permalink/Caption",
"text": "permalink"
},
"$:/language/Buttons/Permalink/Hint": {
"title": "$:/language/Buttons/Permalink/Hint",
"text": "Set browser address bar to a direct link to this tiddler"
},
"$:/language/Buttons/Permaview/Caption": {
"title": "$:/language/Buttons/Permaview/Caption",
"text": "permaview"
},
"$:/language/Buttons/Permaview/Hint": {
"title": "$:/language/Buttons/Permaview/Hint",
"text": "Set browser address bar to a direct link to all the tiddlers in this story"
},
"$:/language/Buttons/Print/Caption": {
"title": "$:/language/Buttons/Print/Caption",
"text": "print page"
},
"$:/language/Buttons/Print/Hint": {
"title": "$:/language/Buttons/Print/Hint",
"text": "Print the current page"
},
"$:/language/Buttons/Refresh/Caption": {
"title": "$:/language/Buttons/Refresh/Caption",
"text": "refresh"
},
"$:/language/Buttons/Refresh/Hint": {
"title": "$:/language/Buttons/Refresh/Hint",
"text": "Perform a full refresh of the wiki"
},
"$:/language/Buttons/Save/Caption": {
"title": "$:/language/Buttons/Save/Caption",
"text": "ok"
},
"$:/language/Buttons/Save/Hint": {
"title": "$:/language/Buttons/Save/Hint",
"text": "Confirm changes to this tiddler"
},
"$:/language/Buttons/SaveWiki/Caption": {
"title": "$:/language/Buttons/SaveWiki/Caption",
"text": "save changes"
},
"$:/language/Buttons/SaveWiki/Hint": {
"title": "$:/language/Buttons/SaveWiki/Hint",
"text": "Save changes"
},
"$:/language/Buttons/StoryView/Caption": {
"title": "$:/language/Buttons/StoryView/Caption",
"text": "storyview"
},
"$:/language/Buttons/StoryView/Hint": {
"title": "$:/language/Buttons/StoryView/Hint",
"text": "Choose the story visualisation"
},
"$:/language/Buttons/HideSideBar/Caption": {
"title": "$:/language/Buttons/HideSideBar/Caption",
"text": "hide sidebar"
},
"$:/language/Buttons/HideSideBar/Hint": {
"title": "$:/language/Buttons/HideSideBar/Hint",
"text": "Hide sidebar"
},
"$:/language/Buttons/ShowSideBar/Caption": {
"title": "$:/language/Buttons/ShowSideBar/Caption",
"text": "show sidebar"
},
"$:/language/Buttons/ShowSideBar/Hint": {
"title": "$:/language/Buttons/ShowSideBar/Hint",
"text": "Show sidebar"
},
"$:/language/Buttons/TagManager/Caption": {
"title": "$:/language/Buttons/TagManager/Caption",
"text": "tag manager"
},
"$:/language/Buttons/TagManager/Hint": {
"title": "$:/language/Buttons/TagManager/Hint",
"text": "Open tag manager"
},
"$:/language/Buttons/Timestamp/Caption": {
"title": "$:/language/Buttons/Timestamp/Caption",
"text": "timestamps"
},
"$:/language/Buttons/Timestamp/Hint": {
"title": "$:/language/Buttons/Timestamp/Hint",
"text": "Choose whether modifications update timestamps"
},
"$:/language/Buttons/Timestamp/On/Caption": {
"title": "$:/language/Buttons/Timestamp/On/Caption",
"text": "timestamps are on"
},
"$:/language/Buttons/Timestamp/On/Hint": {
"title": "$:/language/Buttons/Timestamp/On/Hint",
"text": "Update timestamps when tiddlers are modified"
},
"$:/language/Buttons/Timestamp/Off/Caption": {
"title": "$:/language/Buttons/Timestamp/Off/Caption",
"text": "timestamps are off"
},
"$:/language/Buttons/Timestamp/Off/Hint": {
"title": "$:/language/Buttons/Timestamp/Off/Hint",
"text": "Don't update timestamps when tiddlers are modified"
},
"$:/language/Buttons/Theme/Caption": {
"title": "$:/language/Buttons/Theme/Caption",
"text": "theme"
},
"$:/language/Buttons/Theme/Hint": {
"title": "$:/language/Buttons/Theme/Hint",
"text": "Choose the display theme"
},
"$:/language/Buttons/Bold/Caption": {
"title": "$:/language/Buttons/Bold/Caption",
"text": "bold"
},
"$:/language/Buttons/Bold/Hint": {
"title": "$:/language/Buttons/Bold/Hint",
"text": "Apply bold formatting to selection"
},
"$:/language/Buttons/Clear/Caption": {
"title": "$:/language/Buttons/Clear/Caption",
"text": "clear"
},
"$:/language/Buttons/Clear/Hint": {
"title": "$:/language/Buttons/Clear/Hint",
"text": "Clear image to solid colour"
},
"$:/language/Buttons/EditorHeight/Caption": {
"title": "$:/language/Buttons/EditorHeight/Caption",
"text": "editor height"
},
"$:/language/Buttons/EditorHeight/Caption/Auto": {
"title": "$:/language/Buttons/EditorHeight/Caption/Auto",
"text": "Automatically adjust height to fit content"
},
"$:/language/Buttons/EditorHeight/Caption/Fixed": {
"title": "$:/language/Buttons/EditorHeight/Caption/Fixed",
"text": "Fixed height:"
},
"$:/language/Buttons/EditorHeight/Hint": {
"title": "$:/language/Buttons/EditorHeight/Hint",
"text": "Choose the height of the text editor"
},
"$:/language/Buttons/Excise/Caption": {
"title": "$:/language/Buttons/Excise/Caption",
"text": "excise"
},
"$:/language/Buttons/Excise/Caption/Excise": {
"title": "$:/language/Buttons/Excise/Caption/Excise",
"text": "Perform excision"
},
"$:/language/Buttons/Excise/Caption/MacroName": {
"title": "$:/language/Buttons/Excise/Caption/MacroName",
"text": "Macro name:"
},
"$:/language/Buttons/Excise/Caption/NewTitle": {
"title": "$:/language/Buttons/Excise/Caption/NewTitle",
"text": "Title of new tiddler:"
},
"$:/language/Buttons/Excise/Caption/Replace": {
"title": "$:/language/Buttons/Excise/Caption/Replace",
"text": "Replace excised text with:"
},
"$:/language/Buttons/Excise/Caption/Replace/Macro": {
"title": "$:/language/Buttons/Excise/Caption/Replace/Macro",
"text": "macro"
},
"$:/language/Buttons/Excise/Caption/Replace/Link": {
"title": "$:/language/Buttons/Excise/Caption/Replace/Link",
"text": "link"
},
"$:/language/Buttons/Excise/Caption/Replace/Transclusion": {
"title": "$:/language/Buttons/Excise/Caption/Replace/Transclusion",
"text": "transclusion"
},
"$:/language/Buttons/Excise/Caption/Tag": {
"title": "$:/language/Buttons/Excise/Caption/Tag",
"text": "Tag new tiddler with the title of this tiddler"
},
"$:/language/Buttons/Excise/Caption/TiddlerExists": {
"title": "$:/language/Buttons/Excise/Caption/TiddlerExists",
"text": "Warning: tiddler already exists"
},
"$:/language/Buttons/Excise/Hint": {
"title": "$:/language/Buttons/Excise/Hint",
"text": "Excise the selected text into a new tiddler"
},
"$:/language/Buttons/Heading1/Caption": {
"title": "$:/language/Buttons/Heading1/Caption",
"text": "heading 1"
},
"$:/language/Buttons/Heading1/Hint": {
"title": "$:/language/Buttons/Heading1/Hint",
"text": "Apply heading level 1 formatting to lines containing selection"
},
"$:/language/Buttons/Heading2/Caption": {
"title": "$:/language/Buttons/Heading2/Caption",
"text": "heading 2"
},
"$:/language/Buttons/Heading2/Hint": {
"title": "$:/language/Buttons/Heading2/Hint",
"text": "Apply heading level 2 formatting to lines containing selection"
},
"$:/language/Buttons/Heading3/Caption": {
"title": "$:/language/Buttons/Heading3/Caption",
"text": "heading 3"
},
"$:/language/Buttons/Heading3/Hint": {
"title": "$:/language/Buttons/Heading3/Hint",
"text": "Apply heading level 3 formatting to lines containing selection"
},
"$:/language/Buttons/Heading4/Caption": {
"title": "$:/language/Buttons/Heading4/Caption",
"text": "heading 4"
},
"$:/language/Buttons/Heading4/Hint": {
"title": "$:/language/Buttons/Heading4/Hint",
"text": "Apply heading level 4 formatting to lines containing selection"
},
"$:/language/Buttons/Heading5/Caption": {
"title": "$:/language/Buttons/Heading5/Caption",
"text": "heading 5"
},
"$:/language/Buttons/Heading5/Hint": {
"title": "$:/language/Buttons/Heading5/Hint",
"text": "Apply heading level 5 formatting to lines containing selection"
},
"$:/language/Buttons/Heading6/Caption": {
"title": "$:/language/Buttons/Heading6/Caption",
"text": "heading 6"
},
"$:/language/Buttons/Heading6/Hint": {
"title": "$:/language/Buttons/Heading6/Hint",
"text": "Apply heading level 6 formatting to lines containing selection"
},
"$:/language/Buttons/Italic/Caption": {
"title": "$:/language/Buttons/Italic/Caption",
"text": "italic"
},
"$:/language/Buttons/Italic/Hint": {
"title": "$:/language/Buttons/Italic/Hint",
"text": "Apply italic formatting to selection"
},
"$:/language/Buttons/LineWidth/Caption": {
"title": "$:/language/Buttons/LineWidth/Caption",
"text": "line width"
},
"$:/language/Buttons/LineWidth/Hint": {
"title": "$:/language/Buttons/LineWidth/Hint",
"text": "Set line width for painting"
},
"$:/language/Buttons/Link/Caption": {
"title": "$:/language/Buttons/Link/Caption",
"text": "link"
},
"$:/language/Buttons/Link/Hint": {
"title": "$:/language/Buttons/Link/Hint",
"text": "Create wikitext link"
},
"$:/language/Buttons/Linkify/Caption": {
"title": "$:/language/Buttons/Linkify/Caption",
"text": "wikilink"
},
"$:/language/Buttons/Linkify/Hint": {
"title": "$:/language/Buttons/Linkify/Hint",
"text": "Wrap selection in square brackets"
},
"$:/language/Buttons/ListBullet/Caption": {
"title": "$:/language/Buttons/ListBullet/Caption",
"text": "bulleted list"
},
"$:/language/Buttons/ListBullet/Hint": {
"title": "$:/language/Buttons/ListBullet/Hint",
"text": "Apply bulleted list formatting to lines containing selection"
},
"$:/language/Buttons/ListNumber/Caption": {
"title": "$:/language/Buttons/ListNumber/Caption",
"text": "numbered list"
},
"$:/language/Buttons/ListNumber/Hint": {
"title": "$:/language/Buttons/ListNumber/Hint",
"text": "Apply numbered list formatting to lines containing selection"
},
"$:/language/Buttons/MonoBlock/Caption": {
"title": "$:/language/Buttons/MonoBlock/Caption",
"text": "monospaced block"
},
"$:/language/Buttons/MonoBlock/Hint": {
"title": "$:/language/Buttons/MonoBlock/Hint",
"text": "Apply monospaced block formatting to lines containing selection"
},
"$:/language/Buttons/MonoLine/Caption": {
"title": "$:/language/Buttons/MonoLine/Caption",
"text": "monospaced"
},
"$:/language/Buttons/MonoLine/Hint": {
"title": "$:/language/Buttons/MonoLine/Hint",
"text": "Apply monospaced character formatting to selection"
},
"$:/language/Buttons/Opacity/Caption": {
"title": "$:/language/Buttons/Opacity/Caption",
"text": "opacity"
},
"$:/language/Buttons/Opacity/Hint": {
"title": "$:/language/Buttons/Opacity/Hint",
"text": "Set painting opacity"
},
"$:/language/Buttons/Paint/Caption": {
"title": "$:/language/Buttons/Paint/Caption",
"text": "paint colour"
},
"$:/language/Buttons/Paint/Hint": {
"title": "$:/language/Buttons/Paint/Hint",
"text": "Set painting colour"
},
"$:/language/Buttons/Picture/Caption": {
"title": "$:/language/Buttons/Picture/Caption",
"text": "picture"
},
"$:/language/Buttons/Picture/Hint": {
"title": "$:/language/Buttons/Picture/Hint",
"text": "Insert picture"
},
"$:/language/Buttons/Preview/Caption": {
"title": "$:/language/Buttons/Preview/Caption",
"text": "preview"
},
"$:/language/Buttons/Preview/Hint": {
"title": "$:/language/Buttons/Preview/Hint",
"text": "Show preview pane"
},
"$:/language/Buttons/PreviewType/Caption": {
"title": "$:/language/Buttons/PreviewType/Caption",
"text": "preview type"
},
"$:/language/Buttons/PreviewType/Hint": {
"title": "$:/language/Buttons/PreviewType/Hint",
"text": "Choose preview type"
},
"$:/language/Buttons/Quote/Caption": {
"title": "$:/language/Buttons/Quote/Caption",
"text": "quote"
},
"$:/language/Buttons/Quote/Hint": {
"title": "$:/language/Buttons/Quote/Hint",
"text": "Apply quoted text formatting to lines containing selection"
},
"$:/language/Buttons/RotateLeft/Caption": {
"title": "$:/language/Buttons/RotateLeft/Caption",
"text": "rotate left"
},
"$:/language/Buttons/RotateLeft/Hint": {
"title": "$:/language/Buttons/RotateLeft/Hint",
"text": "Rotate image left by 90 degrees"
},
"$:/language/Buttons/Size/Caption": {
"title": "$:/language/Buttons/Size/Caption",
"text": "image size"
},
"$:/language/Buttons/Size/Caption/Height": {
"title": "$:/language/Buttons/Size/Caption/Height",
"text": "Height:"
},
"$:/language/Buttons/Size/Caption/Resize": {
"title": "$:/language/Buttons/Size/Caption/Resize",
"text": "Resize image"
},
"$:/language/Buttons/Size/Caption/Width": {
"title": "$:/language/Buttons/Size/Caption/Width",
"text": "Width:"
},
"$:/language/Buttons/Size/Hint": {
"title": "$:/language/Buttons/Size/Hint",
"text": "Set image size"
},
"$:/language/Buttons/Stamp/Caption": {
"title": "$:/language/Buttons/Stamp/Caption",
"text": "stamp"
},
"$:/language/Buttons/Stamp/Caption/New": {
"title": "$:/language/Buttons/Stamp/Caption/New",
"text": "Add your own"
},
"$:/language/Buttons/Stamp/Hint": {
"title": "$:/language/Buttons/Stamp/Hint",
"text": "Insert a preconfigured snippet of text"
},
"$:/language/Buttons/Stamp/New/Title": {
"title": "$:/language/Buttons/Stamp/New/Title",
"text": "Name as shown in menu"
},
"$:/language/Buttons/Stamp/New/Text": {
"title": "$:/language/Buttons/Stamp/New/Text",
"text": "Text of snippet. (Remember to add a descriptive title in the caption field)."
},
"$:/language/Buttons/Strikethrough/Caption": {
"title": "$:/language/Buttons/Strikethrough/Caption",
"text": "strikethrough"
},
"$:/language/Buttons/Strikethrough/Hint": {
"title": "$:/language/Buttons/Strikethrough/Hint",
"text": "Apply strikethrough formatting to selection"
},
"$:/language/Buttons/Subscript/Caption": {
"title": "$:/language/Buttons/Subscript/Caption",
"text": "subscript"
},
"$:/language/Buttons/Subscript/Hint": {
"title": "$:/language/Buttons/Subscript/Hint",
"text": "Apply subscript formatting to selection"
},
"$:/language/Buttons/Superscript/Caption": {
"title": "$:/language/Buttons/Superscript/Caption",
"text": "superscript"
},
"$:/language/Buttons/Superscript/Hint": {
"title": "$:/language/Buttons/Superscript/Hint",
"text": "Apply superscript formatting to selection"
},
"$:/language/Buttons/ToggleSidebar/Hint": {
"title": "$:/language/Buttons/ToggleSidebar/Hint",
"text": "Toggle the sidebar visibility"
},
"$:/language/Buttons/Transcludify/Caption": {
"title": "$:/language/Buttons/Transcludify/Caption",
"text": "transclusion"
},
"$:/language/Buttons/Transcludify/Hint": {
"title": "$:/language/Buttons/Transcludify/Hint",
"text": "Wrap selection in curly brackets"
},
"$:/language/Buttons/Underline/Caption": {
"title": "$:/language/Buttons/Underline/Caption",
"text": "underline"
},
"$:/language/Buttons/Underline/Hint": {
"title": "$:/language/Buttons/Underline/Hint",
"text": "Apply underline formatting to selection"
},
"$:/language/ControlPanel/Advanced/Caption": {
"title": "$:/language/ControlPanel/Advanced/Caption",
"text": "Advanced"
},
"$:/language/ControlPanel/Advanced/Hint": {
"title": "$:/language/ControlPanel/Advanced/Hint",
"text": "Internal information about this TiddlyWiki"
},
"$:/language/ControlPanel/Appearance/Caption": {
"title": "$:/language/ControlPanel/Appearance/Caption",
"text": "Appearance"
},
"$:/language/ControlPanel/Appearance/Hint": {
"title": "$:/language/ControlPanel/Appearance/Hint",
"text": "Ways to customise the appearance of your TiddlyWiki."
},
"$:/language/ControlPanel/Basics/AnimDuration/Prompt": {
"title": "$:/language/ControlPanel/Basics/AnimDuration/Prompt",
"text": "Animation duration"
},
"$:/language/ControlPanel/Basics/AutoFocus/Prompt": {
"title": "$:/language/ControlPanel/Basics/AutoFocus/Prompt",
"text": "Default focus field for new tiddlers"
},
"$:/language/ControlPanel/Basics/Caption": {
"title": "$:/language/ControlPanel/Basics/Caption",
"text": "Basics"
},
"$:/language/ControlPanel/Basics/DefaultTiddlers/BottomHint": {
"title": "$:/language/ControlPanel/Basics/DefaultTiddlers/BottomHint",
"text": "Use [[double square brackets]] for titles with spaces. Or you can choose to <$button set=\"$:/DefaultTiddlers\" setTo=\"[list[$:/StoryList]]\">retain story ordering</$button>"
},
"$:/language/ControlPanel/Basics/DefaultTiddlers/Prompt": {
"title": "$:/language/ControlPanel/Basics/DefaultTiddlers/Prompt",
"text": "Default tiddlers"
},
"$:/language/ControlPanel/Basics/DefaultTiddlers/TopHint": {
"title": "$:/language/ControlPanel/Basics/DefaultTiddlers/TopHint",
"text": "Choose which tiddlers are displayed at startup"
},
"$:/language/ControlPanel/Basics/Language/Prompt": {
"title": "$:/language/ControlPanel/Basics/Language/Prompt",
"text": "Hello! Current language:"
},
"$:/language/ControlPanel/Basics/NewJournal/Title/Prompt": {
"title": "$:/language/ControlPanel/Basics/NewJournal/Title/Prompt",
"text": "Title of new journal tiddlers"
},
"$:/language/ControlPanel/Basics/NewJournal/Text/Prompt": {
"title": "$:/language/ControlPanel/Basics/NewJournal/Text/Prompt",
"text": "Text for new journal tiddlers"
},
"$:/language/ControlPanel/Basics/NewJournal/Tags/Prompt": {
"title": "$:/language/ControlPanel/Basics/NewJournal/Tags/Prompt",
"text": "Tags for new journal tiddlers"
},
"$:/language/ControlPanel/Basics/NewTiddler/Title/Prompt": {
"title": "$:/language/ControlPanel/Basics/NewTiddler/Title/Prompt",
"text": "Title of new tiddlers"
},
"$:/language/ControlPanel/Basics/NewTiddler/Tags/Prompt": {
"title": "$:/language/ControlPanel/Basics/NewTiddler/Tags/Prompt",
"text": "Tags for new tiddlers"
},
"$:/language/ControlPanel/Basics/OverriddenShadowTiddlers/Prompt": {
"title": "$:/language/ControlPanel/Basics/OverriddenShadowTiddlers/Prompt",
"text": "Number of overridden shadow tiddlers"
},
"$:/language/ControlPanel/Basics/RemoveTags": {
"title": "$:/language/ControlPanel/Basics/RemoveTags",
"text": "Update to current format"
},
"$:/language/ControlPanel/Basics/RemoveTags/Hint": {
"title": "$:/language/ControlPanel/Basics/RemoveTags/Hint",
"text": "Update the tags configuration to the latest format"
},
"$:/language/ControlPanel/Basics/ShadowTiddlers/Prompt": {
"title": "$:/language/ControlPanel/Basics/ShadowTiddlers/Prompt",
"text": "Number of shadow tiddlers"
},
"$:/language/ControlPanel/Basics/Subtitle/Prompt": {
"title": "$:/language/ControlPanel/Basics/Subtitle/Prompt",
"text": "Subtitle"
},
"$:/language/ControlPanel/Basics/SystemTiddlers/Prompt": {
"title": "$:/language/ControlPanel/Basics/SystemTiddlers/Prompt",
"text": "Number of system tiddlers"
},
"$:/language/ControlPanel/Basics/Tags/Prompt": {
"title": "$:/language/ControlPanel/Basics/Tags/Prompt",
"text": "Number of tags"
},
"$:/language/ControlPanel/Basics/Tiddlers/Prompt": {
"title": "$:/language/ControlPanel/Basics/Tiddlers/Prompt",
"text": "Number of tiddlers"
},
"$:/language/ControlPanel/Basics/Title/Prompt": {
"title": "$:/language/ControlPanel/Basics/Title/Prompt",
"text": "Title of this ~TiddlyWiki"
},
"$:/language/ControlPanel/Basics/Username/Prompt": {
"title": "$:/language/ControlPanel/Basics/Username/Prompt",
"text": "Username for signing edits"
},
"$:/language/ControlPanel/Basics/Version/Prompt": {
"title": "$:/language/ControlPanel/Basics/Version/Prompt",
"text": "~TiddlyWiki version"
},
"$:/language/ControlPanel/EditorTypes/Caption": {
"title": "$:/language/ControlPanel/EditorTypes/Caption",
"text": "Editor Types"
},
"$:/language/ControlPanel/EditorTypes/Editor/Caption": {
"title": "$:/language/ControlPanel/EditorTypes/Editor/Caption",
"text": "Editor"
},
"$:/language/ControlPanel/EditorTypes/Hint": {
"title": "$:/language/ControlPanel/EditorTypes/Hint",
"text": "These tiddlers determine which editor is used to edit specific tiddler types."
},
"$:/language/ControlPanel/EditorTypes/Type/Caption": {
"title": "$:/language/ControlPanel/EditorTypes/Type/Caption",
"text": "Type"
},
"$:/language/ControlPanel/Info/Caption": {
"title": "$:/language/ControlPanel/Info/Caption",
"text": "Info"
},
"$:/language/ControlPanel/Info/Hint": {
"title": "$:/language/ControlPanel/Info/Hint",
"text": "Information about this TiddlyWiki"
},
"$:/language/ControlPanel/KeyboardShortcuts/Add/Prompt": {
"title": "$:/language/ControlPanel/KeyboardShortcuts/Add/Prompt",
"text": "Type shortcut here"
},
"$:/language/ControlPanel/KeyboardShortcuts/Add/Caption": {
"title": "$:/language/ControlPanel/KeyboardShortcuts/Add/Caption",
"text": "add shortcut"
},
"$:/language/ControlPanel/KeyboardShortcuts/Caption": {
"title": "$:/language/ControlPanel/KeyboardShortcuts/Caption",
"text": "Keyboard Shortcuts"
},
"$:/language/ControlPanel/KeyboardShortcuts/Hint": {
"title": "$:/language/ControlPanel/KeyboardShortcuts/Hint",
"text": "Manage keyboard shortcut assignments"
},
"$:/language/ControlPanel/KeyboardShortcuts/NoShortcuts/Caption": {
"title": "$:/language/ControlPanel/KeyboardShortcuts/NoShortcuts/Caption",
"text": "No keyboard shortcuts assigned"
},
"$:/language/ControlPanel/KeyboardShortcuts/Remove/Hint": {
"title": "$:/language/ControlPanel/KeyboardShortcuts/Remove/Hint",
"text": "remove keyboard shortcut"
},
"$:/language/ControlPanel/KeyboardShortcuts/Platform/All": {
"title": "$:/language/ControlPanel/KeyboardShortcuts/Platform/All",
"text": "All platforms"
},
"$:/language/ControlPanel/KeyboardShortcuts/Platform/Mac": {
"title": "$:/language/ControlPanel/KeyboardShortcuts/Platform/Mac",
"text": "Macintosh platform only"
},
"$:/language/ControlPanel/KeyboardShortcuts/Platform/NonMac": {
"title": "$:/language/ControlPanel/KeyboardShortcuts/Platform/NonMac",
"text": "Non-Macintosh platforms only"
},
"$:/language/ControlPanel/KeyboardShortcuts/Platform/Linux": {
"title": "$:/language/ControlPanel/KeyboardShortcuts/Platform/Linux",
"text": "Linux platform only"
},
"$:/language/ControlPanel/KeyboardShortcuts/Platform/NonLinux": {
"title": "$:/language/ControlPanel/KeyboardShortcuts/Platform/NonLinux",
"text": "Non-Linux platforms only"
},
"$:/language/ControlPanel/KeyboardShortcuts/Platform/Windows": {
"title": "$:/language/ControlPanel/KeyboardShortcuts/Platform/Windows",
"text": "Windows platform only"
},
"$:/language/ControlPanel/KeyboardShortcuts/Platform/NonWindows": {
"title": "$:/language/ControlPanel/KeyboardShortcuts/Platform/NonWindows",
"text": "Non-Windows platforms only"
},
"$:/language/ControlPanel/LayoutSwitcher/Caption": {
"title": "$:/language/ControlPanel/LayoutSwitcher/Caption",
"text": "Layout"
},
"$:/language/ControlPanel/LoadedModules/Caption": {
"title": "$:/language/ControlPanel/LoadedModules/Caption",
"text": "Loaded Modules"
},
"$:/language/ControlPanel/LoadedModules/Hint": {
"title": "$:/language/ControlPanel/LoadedModules/Hint",
"text": "These are the currently loaded tiddler modules linked to their source tiddlers. Any italicised modules lack a source tiddler, typically because they were setup during the boot process."
},
"$:/language/ControlPanel/Palette/Caption": {
"title": "$:/language/ControlPanel/Palette/Caption",
"text": "Palette"
},
"$:/language/ControlPanel/Palette/Editor/Clone/Caption": {
"title": "$:/language/ControlPanel/Palette/Editor/Clone/Caption",
"text": "clone"
},
"$:/language/ControlPanel/Palette/Editor/Clone/Prompt": {
"title": "$:/language/ControlPanel/Palette/Editor/Clone/Prompt",
"text": "It is recommended that you clone this shadow palette before editing it"
},
"$:/language/ControlPanel/Palette/Editor/Delete/Hint": {
"title": "$:/language/ControlPanel/Palette/Editor/Delete/Hint",
"text": "delete this entry from the current palette"
},
"$:/language/ControlPanel/Palette/Editor/Names/External/Show": {
"title": "$:/language/ControlPanel/Palette/Editor/Names/External/Show",
"text": "Show color names that are not part of the current palette"
},
"$:/language/ControlPanel/Palette/Editor/Prompt/Modified": {
"title": "$:/language/ControlPanel/Palette/Editor/Prompt/Modified",
"text": "This shadow palette has been modified"
},
"$:/language/ControlPanel/Palette/Editor/Prompt": {
"title": "$:/language/ControlPanel/Palette/Editor/Prompt",
"text": "Editing"
},
"$:/language/ControlPanel/Palette/Editor/Reset/Caption": {
"title": "$:/language/ControlPanel/Palette/Editor/Reset/Caption",
"text": "reset"
},
"$:/language/ControlPanel/Palette/HideEditor/Caption": {
"title": "$:/language/ControlPanel/Palette/HideEditor/Caption",
"text": "hide editor"
},
"$:/language/ControlPanel/Palette/Prompt": {
"title": "$:/language/ControlPanel/Palette/Prompt",
"text": "Current palette:"
},
"$:/language/ControlPanel/Palette/ShowEditor/Caption": {
"title": "$:/language/ControlPanel/Palette/ShowEditor/Caption",
"text": "show editor"
},
"$:/language/ControlPanel/Parsing/Caption": {
"title": "$:/language/ControlPanel/Parsing/Caption",
"text": "Parsing"
},
"$:/language/ControlPanel/Parsing/Hint": {
"title": "$:/language/ControlPanel/Parsing/Hint",
"text": "Here you can globally disable/enable wiki parser rules. For changes to take effect, save and reload your wiki. Disabling certain parser rules can prevent <$text text=\"TiddlyWiki\"/> from functioning correctly. Use [[safe mode|https://tiddlywiki.com/#SafeMode]] to restore normal operation."
},
"$:/language/ControlPanel/Parsing/Block/Caption": {
"title": "$:/language/ControlPanel/Parsing/Block/Caption",
"text": "Block Parse Rules"
},
"$:/language/ControlPanel/Parsing/Inline/Caption": {
"title": "$:/language/ControlPanel/Parsing/Inline/Caption",
"text": "Inline Parse Rules"
},
"$:/language/ControlPanel/Parsing/Pragma/Caption": {
"title": "$:/language/ControlPanel/Parsing/Pragma/Caption",
"text": "Pragma Parse Rules"
},
"$:/language/ControlPanel/Plugins/Add/Caption": {
"title": "$:/language/ControlPanel/Plugins/Add/Caption",
"text": "Get more plugins"
},
"$:/language/ControlPanel/Plugins/Add/Hint": {
"title": "$:/language/ControlPanel/Plugins/Add/Hint",
"text": "Install plugins from the official library"
},
"$:/language/ControlPanel/Plugins/AlreadyInstalled/Hint": {
"title": "$:/language/ControlPanel/Plugins/AlreadyInstalled/Hint",
"text": "This plugin is already installed at version <$text text=<<installedVersion>>/>"
},
"$:/language/ControlPanel/Plugins/AlsoRequires": {
"title": "$:/language/ControlPanel/Plugins/AlsoRequires",
"text": "Also requires:"
},
"$:/language/ControlPanel/Plugins/Caption": {
"title": "$:/language/ControlPanel/Plugins/Caption",
"text": "Plugins"
},
"$:/language/ControlPanel/Plugins/Disable/Caption": {
"title": "$:/language/ControlPanel/Plugins/Disable/Caption",
"text": "disable"
},
"$:/language/ControlPanel/Plugins/Disable/Hint": {
"title": "$:/language/ControlPanel/Plugins/Disable/Hint",
"text": "Disable this plugin when reloading page"
},
"$:/language/ControlPanel/Plugins/Disabled/Status": {
"title": "$:/language/ControlPanel/Plugins/Disabled/Status",
"text": "(disabled)"
},
"$:/language/ControlPanel/Plugins/Downgrade/Caption": {
"title": "$:/language/ControlPanel/Plugins/Downgrade/Caption",
"text": "downgrade"
},
"$:/language/ControlPanel/Plugins/Empty/Hint": {
"title": "$:/language/ControlPanel/Plugins/Empty/Hint",
"text": "None"
},
"$:/language/ControlPanel/Plugins/Enable/Caption": {
"title": "$:/language/ControlPanel/Plugins/Enable/Caption",
"text": "enable"
},
"$:/language/ControlPanel/Plugins/Enable/Hint": {
"title": "$:/language/ControlPanel/Plugins/Enable/Hint",
"text": "Enable this plugin when reloading page"
},
"$:/language/ControlPanel/Plugins/Install/Caption": {
"title": "$:/language/ControlPanel/Plugins/Install/Caption",
"text": "install"
},
"$:/language/ControlPanel/Plugins/Installed/Hint": {
"title": "$:/language/ControlPanel/Plugins/Installed/Hint",
"text": "Currently installed plugins:"
},
"$:/language/ControlPanel/Plugins/Languages/Caption": {
"title": "$:/language/ControlPanel/Plugins/Languages/Caption",
"text": "Languages"
},
"$:/language/ControlPanel/Plugins/Languages/Hint": {
"title": "$:/language/ControlPanel/Plugins/Languages/Hint",
"text": "Language pack plugins"
},
"$:/language/ControlPanel/Plugins/NoInfoFound/Hint": {
"title": "$:/language/ControlPanel/Plugins/NoInfoFound/Hint",
"text": "No ''\"<$text text=<<currentTab>>/>\"'' found"
},
"$:/language/ControlPanel/Plugins/NotInstalled/Hint": {
"title": "$:/language/ControlPanel/Plugins/NotInstalled/Hint",
"text": "This plugin is not currently installed"
},
"$:/language/ControlPanel/Plugins/OpenPluginLibrary": {
"title": "$:/language/ControlPanel/Plugins/OpenPluginLibrary",
"text": "open plugin library"
},
"$:/language/ControlPanel/Plugins/ClosePluginLibrary": {
"title": "$:/language/ControlPanel/Plugins/ClosePluginLibrary",
"text": "close plugin library"
},
"$:/language/ControlPanel/Plugins/PluginWillRequireReload": {
"title": "$:/language/ControlPanel/Plugins/PluginWillRequireReload",
"text": "(requires reload)"
},
"$:/language/ControlPanel/Plugins/Plugins/Caption": {
"title": "$:/language/ControlPanel/Plugins/Plugins/Caption",
"text": "Plugins"
},
"$:/language/ControlPanel/Plugins/Plugins/Hint": {
"title": "$:/language/ControlPanel/Plugins/Plugins/Hint",
"text": "Plugins"
},
"$:/language/ControlPanel/Plugins/Reinstall/Caption": {
"title": "$:/language/ControlPanel/Plugins/Reinstall/Caption",
"text": "reinstall"
},
"$:/language/ControlPanel/Plugins/Themes/Caption": {
"title": "$:/language/ControlPanel/Plugins/Themes/Caption",
"text": "Themes"
},
"$:/language/ControlPanel/Plugins/Themes/Hint": {
"title": "$:/language/ControlPanel/Plugins/Themes/Hint",
"text": "Theme plugins"
},
"$:/language/ControlPanel/Plugins/Update/Caption": {
"title": "$:/language/ControlPanel/Plugins/Update/Caption",
"text": "update"
},
"$:/language/ControlPanel/Plugins/Updates/Caption": {
"title": "$:/language/ControlPanel/Plugins/Updates/Caption",
"text": "Updates"
},
"$:/language/ControlPanel/Plugins/Updates/Hint": {
"title": "$:/language/ControlPanel/Plugins/Updates/Hint",
"text": "Available updates to installed plugins"
},
"$:/language/ControlPanel/Plugins/Updates/UpdateAll/Caption": {
"title": "$:/language/ControlPanel/Plugins/Updates/UpdateAll/Caption",
"text": "Update <<update-count>> plugins"
},
"$:/language/ControlPanel/Plugins/SubPluginPrompt": {
"title": "$:/language/ControlPanel/Plugins/SubPluginPrompt",
"text": "With <<count>> sub-plugins available"
},
"$:/language/ControlPanel/Saving/Caption": {
"title": "$:/language/ControlPanel/Saving/Caption",
"text": "Saving"
},
"$:/language/ControlPanel/Saving/DownloadSaver/AutoSave/Description": {
"title": "$:/language/ControlPanel/Saving/DownloadSaver/AutoSave/Description",
"text": "Permit automatic saving for the download saver"
},
"$:/language/ControlPanel/Saving/DownloadSaver/AutoSave/Hint": {
"title": "$:/language/ControlPanel/Saving/DownloadSaver/AutoSave/Hint",
"text": "Enable Autosave for Download Saver"
},
"$:/language/ControlPanel/Saving/DownloadSaver/Caption": {
"title": "$:/language/ControlPanel/Saving/DownloadSaver/Caption",
"text": "Download Saver"
},
"$:/language/ControlPanel/Saving/DownloadSaver/Hint": {
"title": "$:/language/ControlPanel/Saving/DownloadSaver/Hint",
"text": "These settings apply to the HTML5-compatible download saver"
},
"$:/language/ControlPanel/Saving/General/Caption": {
"title": "$:/language/ControlPanel/Saving/General/Caption",
"text": "General"
},
"$:/language/ControlPanel/Saving/General/Hint": {
"title": "$:/language/ControlPanel/Saving/General/Hint",
"text": "These settings apply to all the loaded savers"
},
"$:/language/ControlPanel/Saving/Hint": {
"title": "$:/language/ControlPanel/Saving/Hint",
"text": "Settings used for saving the entire TiddlyWiki as a single file via a saver module"
},
"$:/language/ControlPanel/Saving/GitService/Branch": {
"title": "$:/language/ControlPanel/Saving/GitService/Branch",
"text": "Target branch for saving"
},
"$:/language/ControlPanel/Saving/GitService/CommitMessage": {
"title": "$:/language/ControlPanel/Saving/GitService/CommitMessage",
"text": "Saved by TiddlyWiki"
},
"$:/language/ControlPanel/Saving/GitService/Description": {
"title": "$:/language/ControlPanel/Saving/GitService/Description",
"text": "These settings are only used when saving to <<service-name>>"
},
"$:/language/ControlPanel/Saving/GitService/Filename": {
"title": "$:/language/ControlPanel/Saving/GitService/Filename",
"text": "Filename of target file (e.g. `index.html`)"
},
"$:/language/ControlPanel/Saving/GitService/Path": {
"title": "$:/language/ControlPanel/Saving/GitService/Path",
"text": "Path to target file (e.g. `/wiki/`)"
},
"$:/language/ControlPanel/Saving/GitService/Repo": {
"title": "$:/language/ControlPanel/Saving/GitService/Repo",
"text": "Target repository (e.g. `Jermolene/TiddlyWiki5`)"
},
"$:/language/ControlPanel/Saving/GitService/ServerURL": {
"title": "$:/language/ControlPanel/Saving/GitService/ServerURL",
"text": "Server API URL"
},
"$:/language/ControlPanel/Saving/GitService/UserName": {
"title": "$:/language/ControlPanel/Saving/GitService/UserName",
"text": "Username"
},
"$:/language/ControlPanel/Saving/GitService/GitHub/Caption": {
"title": "$:/language/ControlPanel/Saving/GitService/GitHub/Caption",
"text": "~GitHub Saver"
},
"$:/language/ControlPanel/Saving/GitService/GitHub/Password": {
"title": "$:/language/ControlPanel/Saving/GitService/GitHub/Password",
"text": "Password, OAUTH token, or personal access token (see [[GitHub help page|https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line]] for details)"
},
"$:/language/ControlPanel/Saving/GitService/GitLab/Caption": {
"title": "$:/language/ControlPanel/Saving/GitService/GitLab/Caption",
"text": "~GitLab Saver"
},
"$:/language/ControlPanel/Saving/GitService/GitLab/Password": {
"title": "$:/language/ControlPanel/Saving/GitService/GitLab/Password",
"text": "Personal access token for API (see [[GitLab help page|https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html]] for details)"
},
"$:/language/ControlPanel/Saving/GitService/Gitea/Caption": {
"title": "$:/language/ControlPanel/Saving/GitService/Gitea/Caption",
"text": "Gitea Saver"
},
"$:/language/ControlPanel/Saving/GitService/Gitea/Password": {
"title": "$:/language/ControlPanel/Saving/GitService/Gitea/Password",
"text": "Personal access token for API (via Gitea’s web interface: `Settings | Applications | Generate New Token`)"
},
"$:/language/ControlPanel/Saving/TiddlySpot/Advanced/Heading": {
"title": "$:/language/ControlPanel/Saving/TiddlySpot/Advanced/Heading",
"text": "Advanced Settings"
},
"$:/language/ControlPanel/Saving/TiddlySpot/BackupDir": {
"title": "$:/language/ControlPanel/Saving/TiddlySpot/BackupDir",
"text": "Backup Directory"
},
"$:/language/ControlPanel/Saving/TiddlySpot/ControlPanel": {
"title": "$:/language/ControlPanel/Saving/TiddlySpot/ControlPanel",
"text": "~TiddlySpot Control Panel"
},
"$:/language/ControlPanel/Saving/TiddlySpot/Backups": {
"title": "$:/language/ControlPanel/Saving/TiddlySpot/Backups",
"text": "Backups"
},
"$:/language/ControlPanel/Saving/TiddlySpot/Caption": {
"title": "$:/language/ControlPanel/Saving/TiddlySpot/Caption",
"text": "~TiddlySpot Saver"
},
"$:/language/ControlPanel/Saving/TiddlySpot/Description": {
"title": "$:/language/ControlPanel/Saving/TiddlySpot/Description",
"text": "These settings are only used when saving to http://tiddlyspot.com or a compatible remote server"
},
"$:/language/ControlPanel/Saving/TiddlySpot/Filename": {
"title": "$:/language/ControlPanel/Saving/TiddlySpot/Filename",
"text": "Upload Filename"
},
"$:/language/ControlPanel/Saving/TiddlySpot/Heading": {
"title": "$:/language/ControlPanel/Saving/TiddlySpot/Heading",
"text": "~TiddlySpot"
},
"$:/language/ControlPanel/Saving/TiddlySpot/Hint": {
"title": "$:/language/ControlPanel/Saving/TiddlySpot/Hint",
"text": "//The server URL defaults to `http://<wikiname>.tiddlyspot.com/store.cgi` and can be changed to use a custom server address, e.g. `http://example.com/store.php`.//"
},
"$:/language/ControlPanel/Saving/TiddlySpot/Password": {
"title": "$:/language/ControlPanel/Saving/TiddlySpot/Password",
"text": "Password"
},
"$:/language/ControlPanel/Saving/TiddlySpot/ReadOnly": {
"title": "$:/language/ControlPanel/Saving/TiddlySpot/ReadOnly",
"text": "The ~TiddlySpot service is currently only available in read-only form. Please see http://tiddlyspot.com/ for the latest details. The ~TiddlySpot saver can still be used to save to compatible servers."
},
"$:/language/ControlPanel/Saving/TiddlySpot/ServerURL": {
"title": "$:/language/ControlPanel/Saving/TiddlySpot/ServerURL",
"text": "Server URL"
},
"$:/language/ControlPanel/Saving/TiddlySpot/UploadDir": {
"title": "$:/language/ControlPanel/Saving/TiddlySpot/UploadDir",
"text": "Upload Directory"
},
"$:/language/ControlPanel/Saving/TiddlySpot/UserName": {
"title": "$:/language/ControlPanel/Saving/TiddlySpot/UserName",
"text": "Wiki Name"
},
"$:/language/ControlPanel/Settings/AutoSave/Caption": {
"title": "$:/language/ControlPanel/Settings/AutoSave/Caption",
"text": "Autosave"
},
"$:/language/ControlPanel/Settings/AutoSave/Disabled/Description": {
"title": "$:/language/ControlPanel/Settings/AutoSave/Disabled/Description",
"text": "Do not save changes automatically"
},
"$:/language/ControlPanel/Settings/AutoSave/Enabled/Description": {
"title": "$:/language/ControlPanel/Settings/AutoSave/Enabled/Description",
"text": "Save changes automatically"
},
"$:/language/ControlPanel/Settings/AutoSave/Hint": {
"title": "$:/language/ControlPanel/Settings/AutoSave/Hint",
"text": "Attempt to automatically save changes during editing when using a supporting saver"
},
"$:/language/ControlPanel/Settings/CamelCase/Caption": {
"title": "$:/language/ControlPanel/Settings/CamelCase/Caption",
"text": "Camel Case Wiki Links"
},
"$:/language/ControlPanel/Settings/CamelCase/Hint": {
"title": "$:/language/ControlPanel/Settings/CamelCase/Hint",
"text": "You can globally disable automatic linking of ~CamelCase phrases. Requires reload to take effect"
},
"$:/language/ControlPanel/Settings/CamelCase/Description": {
"title": "$:/language/ControlPanel/Settings/CamelCase/Description",
"text": "Enable automatic ~CamelCase linking"
},
"$:/language/ControlPanel/Settings/Caption": {
"title": "$:/language/ControlPanel/Settings/Caption",
"text": "Settings"
},
"$:/language/ControlPanel/Settings/EditorToolbar/Caption": {
"title": "$:/language/ControlPanel/Settings/EditorToolbar/Caption",
"text": "Editor Toolbar"
},
"$:/language/ControlPanel/Settings/EditorToolbar/Hint": {
"title": "$:/language/ControlPanel/Settings/EditorToolbar/Hint",
"text": "Enable or disable the editor toolbar:"
},
"$:/language/ControlPanel/Settings/EditorToolbar/Description": {
"title": "$:/language/ControlPanel/Settings/EditorToolbar/Description",
"text": "Show editor toolbar"
},
"$:/language/ControlPanel/Settings/InfoPanelMode/Caption": {
"title": "$:/language/ControlPanel/Settings/InfoPanelMode/Caption",
"text": "Tiddler Info Panel Mode"
},
"$:/language/ControlPanel/Settings/InfoPanelMode/Hint": {
"title": "$:/language/ControlPanel/Settings/InfoPanelMode/Hint",
"text": "Control when the tiddler info panel closes:"
},
"$:/language/ControlPanel/Settings/InfoPanelMode/Popup/Description": {
"title": "$:/language/ControlPanel/Settings/InfoPanelMode/Popup/Description",
"text": "Tiddler info panel closes automatically"
},
"$:/language/ControlPanel/Settings/InfoPanelMode/Sticky/Description": {
"title": "$:/language/ControlPanel/Settings/InfoPanelMode/Sticky/Description",
"text": "Tiddler info panel stays open until explicitly closed"
},
"$:/language/ControlPanel/Settings/Hint": {
"title": "$:/language/ControlPanel/Settings/Hint",
"text": "These settings let you customise the behaviour of TiddlyWiki."
},
"$:/language/ControlPanel/Settings/NavigationAddressBar/Caption": {
"title": "$:/language/ControlPanel/Settings/NavigationAddressBar/Caption",
"text": "Navigation Address Bar"
},
"$:/language/ControlPanel/Settings/NavigationAddressBar/Hint": {
"title": "$:/language/ControlPanel/Settings/NavigationAddressBar/Hint",
"text": "Behaviour of the browser address bar when navigating to a tiddler:"
},
"$:/language/ControlPanel/Settings/NavigationAddressBar/No/Description": {
"title": "$:/language/ControlPanel/Settings/NavigationAddressBar/No/Description",
"text": "Do not update the address bar"
},
"$:/language/ControlPanel/Settings/NavigationAddressBar/Permalink/Description": {
"title": "$:/language/ControlPanel/Settings/NavigationAddressBar/Permalink/Description",
"text": "Include the target tiddler"
},
"$:/language/ControlPanel/Settings/NavigationAddressBar/Permaview/Description": {
"title": "$:/language/ControlPanel/Settings/NavigationAddressBar/Permaview/Description",
"text": "Include the target tiddler and the current story sequence"
},
"$:/language/ControlPanel/Settings/NavigationHistory/Caption": {
"title": "$:/language/ControlPanel/Settings/NavigationHistory/Caption",
"text": "Navigation History"
},
"$:/language/ControlPanel/Settings/NavigationHistory/Hint": {
"title": "$:/language/ControlPanel/Settings/NavigationHistory/Hint",
"text": "Update browser history when navigating to a tiddler:"
},
"$:/language/ControlPanel/Settings/NavigationHistory/No/Description": {
"title": "$:/language/ControlPanel/Settings/NavigationHistory/No/Description",
"text": "Do not update history"
},
"$:/language/ControlPanel/Settings/NavigationHistory/Yes/Description": {
"title": "$:/language/ControlPanel/Settings/NavigationHistory/Yes/Description",
"text": "Update history"
},
"$:/language/ControlPanel/Settings/NavigationPermalinkviewMode/Caption": {
"title": "$:/language/ControlPanel/Settings/NavigationPermalinkviewMode/Caption",
"text": "Permalink/permaview Mode"
},
"$:/language/ControlPanel/Settings/NavigationPermalinkviewMode/Hint": {
"title": "$:/language/ControlPanel/Settings/NavigationPermalinkviewMode/Hint",
"text": "Choose how permalink/permaview is handled:"
},
"$:/language/ControlPanel/Settings/NavigationPermalinkviewMode/CopyToClipboard/Description": {
"title": "$:/language/ControlPanel/Settings/NavigationPermalinkviewMode/CopyToClipboard/Description",
"text": "Copy permalink/permaview URL to clipboard"
},
"$:/language/ControlPanel/Settings/NavigationPermalinkviewMode/UpdateAddressBar/Description": {
"title": "$:/language/ControlPanel/Settings/NavigationPermalinkviewMode/UpdateAddressBar/Description",
"text": "Update address bar with permalink/permaview URL"
},
"$:/language/ControlPanel/Settings/PerformanceInstrumentation/Caption": {
"title": "$:/language/ControlPanel/Settings/PerformanceInstrumentation/Caption",
"text": "Performance Instrumentation"
},
"$:/language/ControlPanel/Settings/PerformanceInstrumentation/Hint": {
"title": "$:/language/ControlPanel/Settings/PerformanceInstrumentation/Hint",
"text": "Displays performance statistics in the browser developer console. Requires reload to take effect"
},
"$:/language/ControlPanel/Settings/PerformanceInstrumentation/Description": {
"title": "$:/language/ControlPanel/Settings/PerformanceInstrumentation/Description",
"text": "Enable performance instrumentation"
},
"$:/language/ControlPanel/Settings/ToolbarButtonStyle/Caption": {
"title": "$:/language/ControlPanel/Settings/ToolbarButtonStyle/Caption",
"text": "Toolbar Button Style"
},
"$:/language/ControlPanel/Settings/ToolbarButtonStyle/Hint": {
"title": "$:/language/ControlPanel/Settings/ToolbarButtonStyle/Hint",
"text": "Choose the style for toolbar buttons:"
},
"$:/language/ControlPanel/Settings/ToolbarButtonStyle/Styles/Borderless": {
"title": "$:/language/ControlPanel/Settings/ToolbarButtonStyle/Styles/Borderless",
"text": "Borderless"
},
"$:/language/ControlPanel/Settings/ToolbarButtonStyle/Styles/Boxed": {
"title": "$:/language/ControlPanel/Settings/ToolbarButtonStyle/Styles/Boxed",
"text": "Boxed"
},
"$:/language/ControlPanel/Settings/ToolbarButtonStyle/Styles/Rounded": {
"title": "$:/language/ControlPanel/Settings/ToolbarButtonStyle/Styles/Rounded",
"text": "Rounded"
},
"$:/language/ControlPanel/Settings/ToolbarButtons/Caption": {
"title": "$:/language/ControlPanel/Settings/ToolbarButtons/Caption",
"text": "Toolbar Buttons"
},
"$:/language/ControlPanel/Settings/ToolbarButtons/Hint": {
"title": "$:/language/ControlPanel/Settings/ToolbarButtons/Hint",
"text": "Default toolbar button appearance:"
},
"$:/language/ControlPanel/Settings/ToolbarButtons/Icons/Description": {
"title": "$:/language/ControlPanel/Settings/ToolbarButtons/Icons/Description",
"text": "Include icon"
},
"$:/language/ControlPanel/Settings/ToolbarButtons/Text/Description": {
"title": "$:/language/ControlPanel/Settings/ToolbarButtons/Text/Description",
"text": "Include text"
},
"$:/language/ControlPanel/Settings/DefaultSidebarTab/Caption": {
"title": "$:/language/ControlPanel/Settings/DefaultSidebarTab/Caption",
"text": "Default Sidebar Tab"
},
"$:/language/ControlPanel/Settings/DefaultSidebarTab/Hint": {
"title": "$:/language/ControlPanel/Settings/DefaultSidebarTab/Hint",
"text": "Specify which sidebar tab is displayed by default"
},
"$:/language/ControlPanel/Settings/DefaultMoreSidebarTab/Caption": {
"title": "$:/language/ControlPanel/Settings/DefaultMoreSidebarTab/Caption",
"text": "Default More Sidebar Tab"
},
"$:/language/ControlPanel/Settings/DefaultMoreSidebarTab/Hint": {
"title": "$:/language/ControlPanel/Settings/DefaultMoreSidebarTab/Hint",
"text": "Specify which More sidebar tab is displayed by default"
},
"$:/language/ControlPanel/Settings/LinkToBehaviour/Caption": {
"title": "$:/language/ControlPanel/Settings/LinkToBehaviour/Caption",
"text": "Tiddler Opening Behaviour"
},
"$:/language/ControlPanel/Settings/LinkToBehaviour/InsideRiver/Hint": {
"title": "$:/language/ControlPanel/Settings/LinkToBehaviour/InsideRiver/Hint",
"text": "Navigation from //within// the story river"
},
"$:/language/ControlPanel/Settings/LinkToBehaviour/OutsideRiver/Hint": {
"title": "$:/language/ControlPanel/Settings/LinkToBehaviour/OutsideRiver/Hint",
"text": "Navigation from //outside// the story river"
},
"$:/language/ControlPanel/Settings/LinkToBehaviour/OpenAbove": {
"title": "$:/language/ControlPanel/Settings/LinkToBehaviour/OpenAbove",
"text": "Open above the current tiddler"
},
"$:/language/ControlPanel/Settings/LinkToBehaviour/OpenBelow": {
"title": "$:/language/ControlPanel/Settings/LinkToBehaviour/OpenBelow",
"text": "Open below the current tiddler"
},
"$:/language/ControlPanel/Settings/LinkToBehaviour/OpenAtTop": {
"title": "$:/language/ControlPanel/Settings/LinkToBehaviour/OpenAtTop",
"text": "Open at the top of the story river"
},
"$:/language/ControlPanel/Settings/LinkToBehaviour/OpenAtBottom": {
"title": "$:/language/ControlPanel/Settings/LinkToBehaviour/OpenAtBottom",
"text": "Open at the bottom of the story river"
},
"$:/language/ControlPanel/Settings/TitleLinks/Caption": {
"title": "$:/language/ControlPanel/Settings/TitleLinks/Caption",
"text": "Tiddler Titles"
},
"$:/language/ControlPanel/Settings/TitleLinks/Hint": {
"title": "$:/language/ControlPanel/Settings/TitleLinks/Hint",
"text": "Optionally display tiddler titles as links"
},
"$:/language/ControlPanel/Settings/TitleLinks/No/Description": {
"title": "$:/language/ControlPanel/Settings/TitleLinks/No/Description",
"text": "Do not display tiddler titles as links"
},
"$:/language/ControlPanel/Settings/TitleLinks/Yes/Description": {
"title": "$:/language/ControlPanel/Settings/TitleLinks/Yes/Description",
"text": "Display tiddler titles as links"
},
"$:/language/ControlPanel/Settings/MissingLinks/Caption": {
"title": "$:/language/ControlPanel/Settings/MissingLinks/Caption",
"text": "Wiki Links"
},
"$:/language/ControlPanel/Settings/MissingLinks/Hint": {
"title": "$:/language/ControlPanel/Settings/MissingLinks/Hint",
"text": "Choose whether to link to tiddlers that do not exist yet"
},
"$:/language/ControlPanel/Settings/MissingLinks/Description": {
"title": "$:/language/ControlPanel/Settings/MissingLinks/Description",
"text": "Enable links to missing tiddlers"
},
"$:/language/ControlPanel/StoryView/Caption": {
"title": "$:/language/ControlPanel/StoryView/Caption",
"text": "Story View"
},
"$:/language/ControlPanel/StoryView/Prompt": {
"title": "$:/language/ControlPanel/StoryView/Prompt",
"text": "Current view:"
},
"$:/language/ControlPanel/Stylesheets/Caption": {
"title": "$:/language/ControlPanel/Stylesheets/Caption",
"text": "Stylesheets"
},
"$:/language/ControlPanel/Stylesheets/Expand/Caption": {
"title": "$:/language/ControlPanel/Stylesheets/Expand/Caption",
"text": "Expand All"
},
"$:/language/ControlPanel/Stylesheets/Hint": {
"title": "$:/language/ControlPanel/Stylesheets/Hint",
"text": "This is the rendered CSS of the current stylesheet tiddlers tagged with <<tag \"$:/tags/Stylesheet\">>"
},
"$:/language/ControlPanel/Stylesheets/Restore/Caption": {
"title": "$:/language/ControlPanel/Stylesheets/Restore/Caption",
"text": "Restore"
},
"$:/language/ControlPanel/Theme/Caption": {
"title": "$:/language/ControlPanel/Theme/Caption",
"text": "Theme"
},
"$:/language/ControlPanel/Theme/Prompt": {
"title": "$:/language/ControlPanel/Theme/Prompt",
"text": "Current theme:"
},
"$:/language/ControlPanel/TiddlerFields/Caption": {
"title": "$:/language/ControlPanel/TiddlerFields/Caption",
"text": "Tiddler Fields"
},
"$:/language/ControlPanel/TiddlerFields/Hint": {
"title": "$:/language/ControlPanel/TiddlerFields/Hint",
"text": "This is the full set of TiddlerFields in use in this wiki (including system tiddlers but excluding shadow tiddlers)."
},
"$:/language/ControlPanel/Toolbars/Caption": {
"title": "$:/language/ControlPanel/Toolbars/Caption",
"text": "Toolbars"
},
"$:/language/ControlPanel/Toolbars/EditToolbar/Caption": {
"title": "$:/language/ControlPanel/Toolbars/EditToolbar/Caption",
"text": "Edit Toolbar"
},
"$:/language/ControlPanel/Toolbars/EditToolbar/Hint": {
"title": "$:/language/ControlPanel/Toolbars/EditToolbar/Hint",
"text": "Choose which buttons are displayed for tiddlers in edit mode. Drag and drop to change the ordering"
},
"$:/language/ControlPanel/Toolbars/Hint": {
"title": "$:/language/ControlPanel/Toolbars/Hint",
"text": "Select which toolbar buttons are displayed"
},
"$:/language/ControlPanel/Toolbars/PageControls/Caption": {
"title": "$:/language/ControlPanel/Toolbars/PageControls/Caption",
"text": "Page Toolbar"
},
"$:/language/ControlPanel/Toolbars/PageControls/Hint": {
"title": "$:/language/ControlPanel/Toolbars/PageControls/Hint",
"text": "Choose which buttons are displayed on the main page toolbar. Drag and drop to change the ordering"
},
"$:/language/ControlPanel/Toolbars/EditorToolbar/Caption": {
"title": "$:/language/ControlPanel/Toolbars/EditorToolbar/Caption",
"text": "Editor Toolbar"
},
"$:/language/ControlPanel/Toolbars/EditorToolbar/Hint": {
"title": "$:/language/ControlPanel/Toolbars/EditorToolbar/Hint",
"text": "Choose which buttons are displayed in the editor toolbar. Note that some buttons will only appear when editing tiddlers of a certain type. Drag and drop to change the ordering"
},
"$:/language/ControlPanel/Toolbars/ViewToolbar/Caption": {
"title": "$:/language/ControlPanel/Toolbars/ViewToolbar/Caption",
"text": "View Toolbar"
},
"$:/language/ControlPanel/Toolbars/ViewToolbar/Hint": {
"title": "$:/language/ControlPanel/Toolbars/ViewToolbar/Hint",
"text": "Choose which buttons are displayed for tiddlers in view mode. Drag and drop to change the ordering"
},
"$:/language/ControlPanel/Tools/Download/Full/Caption": {
"title": "$:/language/ControlPanel/Tools/Download/Full/Caption",
"text": "Download full wiki"
},
"$:/language/Date/DaySuffix/1": {
"title": "$:/language/Date/DaySuffix/1",
"text": "st"
},
"$:/language/Date/DaySuffix/2": {
"title": "$:/language/Date/DaySuffix/2",
"text": "nd"
},
"$:/language/Date/DaySuffix/3": {
"title": "$:/language/Date/DaySuffix/3",
"text": "rd"
},
"$:/language/Date/DaySuffix/4": {
"title": "$:/language/Date/DaySuffix/4",
"text": "th"
},
"$:/language/Date/DaySuffix/5": {
"title": "$:/language/Date/DaySuffix/5",
"text": "th"
},
"$:/language/Date/DaySuffix/6": {
"title": "$:/language/Date/DaySuffix/6",
"text": "th"
},
"$:/language/Date/DaySuffix/7": {
"title": "$:/language/Date/DaySuffix/7",
"text": "th"
},
"$:/language/Date/DaySuffix/8": {
"title": "$:/language/Date/DaySuffix/8",
"text": "th"
},
"$:/language/Date/DaySuffix/9": {
"title": "$:/language/Date/DaySuffix/9",
"text": "th"
},
"$:/language/Date/DaySuffix/10": {
"title": "$:/language/Date/DaySuffix/10",
"text": "th"
},
"$:/language/Date/DaySuffix/11": {
"title": "$:/language/Date/DaySuffix/11",
"text": "th"
},
"$:/language/Date/DaySuffix/12": {
"title": "$:/language/Date/DaySuffix/12",
"text": "th"
},
"$:/language/Date/DaySuffix/13": {
"title": "$:/language/Date/DaySuffix/13",
"text": "th"
},
"$:/language/Date/DaySuffix/14": {
"title": "$:/language/Date/DaySuffix/14",
"text": "th"
},
"$:/language/Date/DaySuffix/15": {
"title": "$:/language/Date/DaySuffix/15",
"text": "th"
},
"$:/language/Date/DaySuffix/16": {
"title": "$:/language/Date/DaySuffix/16",
"text": "th"
},
"$:/language/Date/DaySuffix/17": {
"title": "$:/language/Date/DaySuffix/17",
"text": "th"
},
"$:/language/Date/DaySuffix/18": {
"title": "$:/language/Date/DaySuffix/18",
"text": "th"
},
"$:/language/Date/DaySuffix/19": {
"title": "$:/language/Date/DaySuffix/19",
"text": "th"
},
"$:/language/Date/DaySuffix/20": {
"title": "$:/language/Date/DaySuffix/20",
"text": "th"
},
"$:/language/Date/DaySuffix/21": {
"title": "$:/language/Date/DaySuffix/21",
"text": "st"
},
"$:/language/Date/DaySuffix/22": {
"title": "$:/language/Date/DaySuffix/22",
"text": "nd"
},
"$:/language/Date/DaySuffix/23": {
"title": "$:/language/Date/DaySuffix/23",
"text": "rd"
},
"$:/language/Date/DaySuffix/24": {
"title": "$:/language/Date/DaySuffix/24",
"text": "th"
},
"$:/language/Date/DaySuffix/25": {
"title": "$:/language/Date/DaySuffix/25",
"text": "th"
},
"$:/language/Date/DaySuffix/26": {
"title": "$:/language/Date/DaySuffix/26",
"text": "th"
},
"$:/language/Date/DaySuffix/27": {
"title": "$:/language/Date/DaySuffix/27",
"text": "th"
},
"$:/language/Date/DaySuffix/28": {
"title": "$:/language/Date/DaySuffix/28",
"text": "th"
},
"$:/language/Date/DaySuffix/29": {
"title": "$:/language/Date/DaySuffix/29",
"text": "th"
},
"$:/language/Date/DaySuffix/30": {
"title": "$:/language/Date/DaySuffix/30",
"text": "th"
},
"$:/language/Date/DaySuffix/31": {
"title": "$:/language/Date/DaySuffix/31",
"text": "st"
},
"$:/language/Date/Long/Day/0": {
"title": "$:/language/Date/Long/Day/0",
"text": "Sunday"
},
"$:/language/Date/Long/Day/1": {
"title": "$:/language/Date/Long/Day/1",
"text": "Monday"
},
"$:/language/Date/Long/Day/2": {
"title": "$:/language/Date/Long/Day/2",
"text": "Tuesday"
},
"$:/language/Date/Long/Day/3": {
"title": "$:/language/Date/Long/Day/3",
"text": "Wednesday"
},
"$:/language/Date/Long/Day/4": {
"title": "$:/language/Date/Long/Day/4",
"text": "Thursday"
},
"$:/language/Date/Long/Day/5": {
"title": "$:/language/Date/Long/Day/5",
"text": "Friday"
},
"$:/language/Date/Long/Day/6": {
"title": "$:/language/Date/Long/Day/6",
"text": "Saturday"
},
"$:/language/Date/Long/Month/1": {
"title": "$:/language/Date/Long/Month/1",
"text": "January"
},
"$:/language/Date/Long/Month/2": {
"title": "$:/language/Date/Long/Month/2",
"text": "February"
},
"$:/language/Date/Long/Month/3": {
"title": "$:/language/Date/Long/Month/3",
"text": "March"
},
"$:/language/Date/Long/Month/4": {
"title": "$:/language/Date/Long/Month/4",
"text": "April"
},
"$:/language/Date/Long/Month/5": {
"title": "$:/language/Date/Long/Month/5",
"text": "May"
},
"$:/language/Date/Long/Month/6": {
"title": "$:/language/Date/Long/Month/6",
"text": "June"
},
"$:/language/Date/Long/Month/7": {
"title": "$:/language/Date/Long/Month/7",
"text": "July"
},
"$:/language/Date/Long/Month/8": {
"title": "$:/language/Date/Long/Month/8",
"text": "August"
},
"$:/language/Date/Long/Month/9": {
"title": "$:/language/Date/Long/Month/9",
"text": "September"
},
"$:/language/Date/Long/Month/10": {
"title": "$:/language/Date/Long/Month/10",
"text": "October"
},
"$:/language/Date/Long/Month/11": {
"title": "$:/language/Date/Long/Month/11",
"text": "November"
},
"$:/language/Date/Long/Month/12": {
"title": "$:/language/Date/Long/Month/12",
"text": "December"
},
"$:/language/Date/Period/am": {
"title": "$:/language/Date/Period/am",
"text": "am"
},
"$:/language/Date/Period/pm": {
"title": "$:/language/Date/Period/pm",
"text": "pm"
},
"$:/language/Date/Short/Day/0": {
"title": "$:/language/Date/Short/Day/0",
"text": "Sun"
},
"$:/language/Date/Short/Day/1": {
"title": "$:/language/Date/Short/Day/1",
"text": "Mon"
},
"$:/language/Date/Short/Day/2": {
"title": "$:/language/Date/Short/Day/2",
"text": "Tue"
},
"$:/language/Date/Short/Day/3": {
"title": "$:/language/Date/Short/Day/3",
"text": "Wed"
},
"$:/language/Date/Short/Day/4": {
"title": "$:/language/Date/Short/Day/4",
"text": "Thu"
},
"$:/language/Date/Short/Day/5": {
"title": "$:/language/Date/Short/Day/5",
"text": "Fri"
},
"$:/language/Date/Short/Day/6": {
"title": "$:/language/Date/Short/Day/6",
"text": "Sat"
},
"$:/language/Date/Short/Month/1": {
"title": "$:/language/Date/Short/Month/1",
"text": "Jan"
},
"$:/language/Date/Short/Month/2": {
"title": "$:/language/Date/Short/Month/2",
"text": "Feb"
},
"$:/language/Date/Short/Month/3": {
"title": "$:/language/Date/Short/Month/3",
"text": "Mar"
},
"$:/language/Date/Short/Month/4": {
"title": "$:/language/Date/Short/Month/4",
"text": "Apr"
},
"$:/language/Date/Short/Month/5": {
"title": "$:/language/Date/Short/Month/5",
"text": "May"
},
"$:/language/Date/Short/Month/6": {
"title": "$:/language/Date/Short/Month/6",
"text": "Jun"
},
"$:/language/Date/Short/Month/7": {
"title": "$:/language/Date/Short/Month/7",
"text": "Jul"
},
"$:/language/Date/Short/Month/8": {
"title": "$:/language/Date/Short/Month/8",
"text": "Aug"
},
"$:/language/Date/Short/Month/9": {
"title": "$:/language/Date/Short/Month/9",
"text": "Sep"
},
"$:/language/Date/Short/Month/10": {
"title": "$:/language/Date/Short/Month/10",
"text": "Oct"
},
"$:/language/Date/Short/Month/11": {
"title": "$:/language/Date/Short/Month/11",
"text": "Nov"
},
"$:/language/Date/Short/Month/12": {
"title": "$:/language/Date/Short/Month/12",
"text": "Dec"
},
"$:/language/RelativeDate/Future/Days": {
"title": "$:/language/RelativeDate/Future/Days",
"text": "<<period>> days from now"
},
"$:/language/RelativeDate/Future/Hours": {
"title": "$:/language/RelativeDate/Future/Hours",
"text": "<<period>> hours from now"
},
"$:/language/RelativeDate/Future/Minutes": {
"title": "$:/language/RelativeDate/Future/Minutes",
"text": "<<period>> minutes from now"
},
"$:/language/RelativeDate/Future/Months": {
"title": "$:/language/RelativeDate/Future/Months",
"text": "<<period>> months from now"
},
"$:/language/RelativeDate/Future/Second": {
"title": "$:/language/RelativeDate/Future/Second",
"text": "1 second from now"
},
"$:/language/RelativeDate/Future/Seconds": {
"title": "$:/language/RelativeDate/Future/Seconds",
"text": "<<period>> seconds from now"
},
"$:/language/RelativeDate/Future/Years": {
"title": "$:/language/RelativeDate/Future/Years",
"text": "<<period>> years from now"
},
"$:/language/RelativeDate/Past/Days": {
"title": "$:/language/RelativeDate/Past/Days",
"text": "<<period>> days ago"
},
"$:/language/RelativeDate/Past/Hours": {
"title": "$:/language/RelativeDate/Past/Hours",
"text": "<<period>> hours ago"
},
"$:/language/RelativeDate/Past/Minutes": {
"title": "$:/language/RelativeDate/Past/Minutes",
"text": "<<period>> minutes ago"
},
"$:/language/RelativeDate/Past/Months": {
"title": "$:/language/RelativeDate/Past/Months",
"text": "<<period>> months ago"
},
"$:/language/RelativeDate/Past/Second": {
"title": "$:/language/RelativeDate/Past/Second",
"text": "1 second ago"
},
"$:/language/RelativeDate/Past/Seconds": {
"title": "$:/language/RelativeDate/Past/Seconds",
"text": "<<period>> seconds ago"
},
"$:/language/RelativeDate/Past/Years": {
"title": "$:/language/RelativeDate/Past/Years",
"text": "<<period>> years ago"
},
"$:/language/Docs/ModuleTypes/allfilteroperator": {
"title": "$:/language/Docs/ModuleTypes/allfilteroperator",
"text": "A sub-operator for the ''all'' filter operator."
},
"$:/language/Docs/ModuleTypes/animation": {
"title": "$:/language/Docs/ModuleTypes/animation",
"text": "Animations that may be used with the RevealWidget."
},
"$:/language/Docs/ModuleTypes/authenticator": {
"title": "$:/language/Docs/ModuleTypes/authenticator",
"text": "Defines how requests are authenticated by the built-in HTTP server."
},
"$:/language/Docs/ModuleTypes/bitmapeditoroperation": {
"title": "$:/language/Docs/ModuleTypes/bitmapeditoroperation",
"text": "A bitmap editor toolbar operation."
},
"$:/language/Docs/ModuleTypes/command": {
"title": "$:/language/Docs/ModuleTypes/command",
"text": "Commands that can be executed under Node.js."
},
"$:/language/Docs/ModuleTypes/config": {
"title": "$:/language/Docs/ModuleTypes/config",
"text": "Data to be inserted into `$tw.config`."
},
"$:/language/Docs/ModuleTypes/filteroperator": {
"title": "$:/language/Docs/ModuleTypes/filteroperator",
"text": "Individual filter operator methods."
},
"$:/language/Docs/ModuleTypes/global": {
"title": "$:/language/Docs/ModuleTypes/global",
"text": "Global data to be inserted into `$tw`."
},
"$:/language/Docs/ModuleTypes/info": {
"title": "$:/language/Docs/ModuleTypes/info",
"text": "Publishes system information via the [[$:/temp/info-plugin]] pseudo-plugin."
},
"$:/language/Docs/ModuleTypes/isfilteroperator": {
"title": "$:/language/Docs/ModuleTypes/isfilteroperator",
"text": "Operands for the ''is'' filter operator."
},
"$:/language/Docs/ModuleTypes/library": {
"title": "$:/language/Docs/ModuleTypes/library",
"text": "Generic module type for general purpose JavaScript modules."
},
"$:/language/Docs/ModuleTypes/macro": {
"title": "$:/language/Docs/ModuleTypes/macro",
"text": "JavaScript macro definitions."
},
"$:/language/Docs/ModuleTypes/parser": {
"title": "$:/language/Docs/ModuleTypes/parser",
"text": "Parsers for different content types."
},
"$:/language/Docs/ModuleTypes/route": {
"title": "$:/language/Docs/ModuleTypes/route",
"text": "Defines how individual URL patterns are handled by the built-in HTTP server."
},
"$:/language/Docs/ModuleTypes/saver": {
"title": "$:/language/Docs/ModuleTypes/saver",
"text": "Savers handle different methods for saving files from the browser."
},
"$:/language/Docs/ModuleTypes/startup": {
"title": "$:/language/Docs/ModuleTypes/startup",
"text": "Startup functions."
},
"$:/language/Docs/ModuleTypes/storyview": {
"title": "$:/language/Docs/ModuleTypes/storyview",
"text": "Story views customise the animation and behaviour of list widgets."
},
"$:/language/Docs/ModuleTypes/texteditoroperation": {
"title": "$:/language/Docs/ModuleTypes/texteditoroperation",
"text": "A text editor toolbar operation."
},
"$:/language/Docs/ModuleTypes/tiddlerdeserializer": {
"title": "$:/language/Docs/ModuleTypes/tiddlerdeserializer",
"text": "Converts different content types into tiddlers."
},
"$:/language/Docs/ModuleTypes/tiddlerfield": {
"title": "$:/language/Docs/ModuleTypes/tiddlerfield",
"text": "Defines the behaviour of an individual tiddler field."
},
"$:/language/Docs/ModuleTypes/tiddlermethod": {
"title": "$:/language/Docs/ModuleTypes/tiddlermethod",
"text": "Adds methods to the `$tw.Tiddler` prototype."
},
"$:/language/Docs/ModuleTypes/upgrader": {
"title": "$:/language/Docs/ModuleTypes/upgrader",
"text": "Applies upgrade processing to tiddlers during an upgrade/import."
},
"$:/language/Docs/ModuleTypes/utils": {
"title": "$:/language/Docs/ModuleTypes/utils",
"text": "Adds methods to `$tw.utils`."
},
"$:/language/Docs/ModuleTypes/utils-node": {
"title": "$:/language/Docs/ModuleTypes/utils-node",
"text": "Adds Node.js-specific methods to `$tw.utils`."
},
"$:/language/Docs/ModuleTypes/widget": {
"title": "$:/language/Docs/ModuleTypes/widget",
"text": "Widgets encapsulate DOM rendering and refreshing."
},
"$:/language/Docs/ModuleTypes/wikimethod": {
"title": "$:/language/Docs/ModuleTypes/wikimethod",
"text": "Adds methods to `$tw.Wiki`."
},
"$:/language/Docs/ModuleTypes/wikirule": {
"title": "$:/language/Docs/ModuleTypes/wikirule",
"text": "Individual parser rules for the main WikiText parser."
},
"$:/language/Docs/PaletteColours/alert-background": {
"title": "$:/language/Docs/PaletteColours/alert-background",
"text": "Alert background"
},
"$:/language/Docs/PaletteColours/alert-border": {
"title": "$:/language/Docs/PaletteColours/alert-border",
"text": "Alert border"
},
"$:/language/Docs/PaletteColours/alert-highlight": {
"title": "$:/language/Docs/PaletteColours/alert-highlight",
"text": "Alert highlight"
},
"$:/language/Docs/PaletteColours/alert-muted-foreground": {
"title": "$:/language/Docs/PaletteColours/alert-muted-foreground",
"text": "Alert muted foreground"
},
"$:/language/Docs/PaletteColours/background": {
"title": "$:/language/Docs/PaletteColours/background",
"text": "General background"
},
"$:/language/Docs/PaletteColours/blockquote-bar": {
"title": "$:/language/Docs/PaletteColours/blockquote-bar",
"text": "Blockquote bar"
},
"$:/language/Docs/PaletteColours/button-background": {
"title": "$:/language/Docs/PaletteColours/button-background",
"text": "Default button background"
},
"$:/language/Docs/PaletteColours/button-border": {
"title": "$:/language/Docs/PaletteColours/button-border",
"text": "Default button border"
},
"$:/language/Docs/PaletteColours/button-foreground": {
"title": "$:/language/Docs/PaletteColours/button-foreground",
"text": "Default button foreground"
},
"$:/language/Docs/PaletteColours/dirty-indicator": {
"title": "$:/language/Docs/PaletteColours/dirty-indicator",
"text": "Unsaved changes indicator"
},
"$:/language/Docs/PaletteColours/code-background": {
"title": "$:/language/Docs/PaletteColours/code-background",
"text": "Code background"
},
"$:/language/Docs/PaletteColours/code-border": {
"title": "$:/language/Docs/PaletteColours/code-border",
"text": "Code border"
},
"$:/language/Docs/PaletteColours/code-foreground": {
"title": "$:/language/Docs/PaletteColours/code-foreground",
"text": "Code foreground"
},
"$:/language/Docs/PaletteColours/download-background": {
"title": "$:/language/Docs/PaletteColours/download-background",
"text": "Download button background"
},
"$:/language/Docs/PaletteColours/download-foreground": {
"title": "$:/language/Docs/PaletteColours/download-foreground",
"text": "Download button foreground"
},
"$:/language/Docs/PaletteColours/dragger-background": {
"title": "$:/language/Docs/PaletteColours/dragger-background",
"text": "Dragger background"
},
"$:/language/Docs/PaletteColours/dragger-foreground": {
"title": "$:/language/Docs/PaletteColours/dragger-foreground",
"text": "Dragger foreground"
},
"$:/language/Docs/PaletteColours/dropdown-background": {
"title": "$:/language/Docs/PaletteColours/dropdown-background",
"text": "Dropdown background"
},
"$:/language/Docs/PaletteColours/dropdown-border": {
"title": "$:/language/Docs/PaletteColours/dropdown-border",
"text": "Dropdown border"
},
"$:/language/Docs/PaletteColours/dropdown-tab-background-selected": {
"title": "$:/language/Docs/PaletteColours/dropdown-tab-background-selected",
"text": "Dropdown tab background for selected tabs"
},
"$:/language/Docs/PaletteColours/dropdown-tab-background": {
"title": "$:/language/Docs/PaletteColours/dropdown-tab-background",
"text": "Dropdown tab background"
},
"$:/language/Docs/PaletteColours/dropzone-background": {
"title": "$:/language/Docs/PaletteColours/dropzone-background",
"text": "Dropzone background"
},
"$:/language/Docs/PaletteColours/external-link-background-hover": {
"title": "$:/language/Docs/PaletteColours/external-link-background-hover",
"text": "External link background hover"
},
"$:/language/Docs/PaletteColours/external-link-background-visited": {
"title": "$:/language/Docs/PaletteColours/external-link-background-visited",
"text": "External link background visited"
},
"$:/language/Docs/PaletteColours/external-link-background": {
"title": "$:/language/Docs/PaletteColours/external-link-background",
"text": "External link background"
},
"$:/language/Docs/PaletteColours/external-link-foreground-hover": {
"title": "$:/language/Docs/PaletteColours/external-link-foreground-hover",
"text": "External link foreground hover"
},
"$:/language/Docs/PaletteColours/external-link-foreground-visited": {
"title": "$:/language/Docs/PaletteColours/external-link-foreground-visited",
"text": "External link foreground visited"
},
"$:/language/Docs/PaletteColours/external-link-foreground": {
"title": "$:/language/Docs/PaletteColours/external-link-foreground",
"text": "External link foreground"
},
"$:/language/Docs/PaletteColours/foreground": {
"title": "$:/language/Docs/PaletteColours/foreground",
"text": "General foreground"
},
"$:/language/Docs/PaletteColours/menubar-background": {
"title": "$:/language/Docs/PaletteColours/menubar-background",
"text": "Menu bar background"
},
"$:/language/Docs/PaletteColours/menubar-foreground": {
"title": "$:/language/Docs/PaletteColours/menubar-foreground",
"text": "Menu bar foreground"
},
"$:/language/Docs/PaletteColours/message-background": {
"title": "$:/language/Docs/PaletteColours/message-background",
"text": "Message box background"
},
"$:/language/Docs/PaletteColours/message-border": {
"title": "$:/language/Docs/PaletteColours/message-border",
"text": "Message box border"
},
"$:/language/Docs/PaletteColours/message-foreground": {
"title": "$:/language/Docs/PaletteColours/message-foreground",
"text": "Message box foreground"
},
"$:/language/Docs/PaletteColours/modal-backdrop": {
"title": "$:/language/Docs/PaletteColours/modal-backdrop",
"text": "Modal backdrop"
},
"$:/language/Docs/PaletteColours/modal-background": {
"title": "$:/language/Docs/PaletteColours/modal-background",
"text": "Modal background"
},
"$:/language/Docs/PaletteColours/modal-border": {
"title": "$:/language/Docs/PaletteColours/modal-border",
"text": "Modal border"
},
"$:/language/Docs/PaletteColours/modal-footer-background": {
"title": "$:/language/Docs/PaletteColours/modal-footer-background",
"text": "Modal footer background"
},
"$:/language/Docs/PaletteColours/modal-footer-border": {
"title": "$:/language/Docs/PaletteColours/modal-footer-border",
"text": "Modal footer border"
},
"$:/language/Docs/PaletteColours/modal-header-border": {
"title": "$:/language/Docs/PaletteColours/modal-header-border",
"text": "Modal header border"
},
"$:/language/Docs/PaletteColours/muted-foreground": {
"title": "$:/language/Docs/PaletteColours/muted-foreground",
"text": "General muted foreground"
},
"$:/language/Docs/PaletteColours/notification-background": {
"title": "$:/language/Docs/PaletteColours/notification-background",
"text": "Notification background"
},
"$:/language/Docs/PaletteColours/notification-border": {
"title": "$:/language/Docs/PaletteColours/notification-border",
"text": "Notification border"
},
"$:/language/Docs/PaletteColours/page-background": {
"title": "$:/language/Docs/PaletteColours/page-background",
"text": "Page background"
},
"$:/language/Docs/PaletteColours/pre-background": {
"title": "$:/language/Docs/PaletteColours/pre-background",
"text": "Preformatted code background"
},
"$:/language/Docs/PaletteColours/pre-border": {
"title": "$:/language/Docs/PaletteColours/pre-border",
"text": "Preformatted code border"
},
"$:/language/Docs/PaletteColours/primary": {
"title": "$:/language/Docs/PaletteColours/primary",
"text": "General primary"
},
"$:/language/Docs/PaletteColours/select-tag-background": {
"title": "$:/language/Docs/PaletteColours/select-tag-background",
"text": "`<select>` element background"
},
"$:/language/Docs/PaletteColours/select-tag-foreground": {
"title": "$:/language/Docs/PaletteColours/select-tag-foreground",
"text": "`<select>` element text"
},
"$:/language/Docs/PaletteColours/sidebar-button-foreground": {
"title": "$:/language/Docs/PaletteColours/sidebar-button-foreground",
"text": "Sidebar button foreground"
},
"$:/language/Docs/PaletteColours/sidebar-controls-foreground-hover": {
"title": "$:/language/Docs/PaletteColours/sidebar-controls-foreground-hover",
"text": "Sidebar controls foreground hover"
},
"$:/language/Docs/PaletteColours/sidebar-controls-foreground": {
"title": "$:/language/Docs/PaletteColours/sidebar-controls-foreground",
"text": "Sidebar controls foreground"
},
"$:/language/Docs/PaletteColours/sidebar-foreground-shadow": {
"title": "$:/language/Docs/PaletteColours/sidebar-foreground-shadow",
"text": "Sidebar foreground shadow"
},
"$:/language/Docs/PaletteColours/sidebar-foreground": {
"title": "$:/language/Docs/PaletteColours/sidebar-foreground",
"text": "Sidebar foreground"
},
"$:/language/Docs/PaletteColours/sidebar-muted-foreground-hover": {
"title": "$:/language/Docs/PaletteColours/sidebar-muted-foreground-hover",
"text": "Sidebar muted foreground hover"
},
"$:/language/Docs/PaletteColours/sidebar-muted-foreground": {
"title": "$:/language/Docs/PaletteColours/sidebar-muted-foreground",
"text": "Sidebar muted foreground"
},
"$:/language/Docs/PaletteColours/sidebar-tab-background-selected": {
"title": "$:/language/Docs/PaletteColours/sidebar-tab-background-selected",
"text": "Sidebar tab background for selected tabs"
},
"$:/language/Docs/PaletteColours/sidebar-tab-background": {
"title": "$:/language/Docs/PaletteColours/sidebar-tab-background",
"text": "Sidebar tab background"
},
"$:/language/Docs/PaletteColours/sidebar-tab-border-selected": {
"title": "$:/language/Docs/PaletteColours/sidebar-tab-border-selected",
"text": "Sidebar tab border for selected tabs"
},
"$:/language/Docs/PaletteColours/sidebar-tab-border": {
"title": "$:/language/Docs/PaletteColours/sidebar-tab-border",
"text": "Sidebar tab border"
},
"$:/language/Docs/PaletteColours/sidebar-tab-divider": {
"title": "$:/language/Docs/PaletteColours/sidebar-tab-divider",
"text": "Sidebar tab divider"
},
"$:/language/Docs/PaletteColours/sidebar-tab-foreground-selected": {
"title": "$:/language/Docs/PaletteColours/sidebar-tab-foreground-selected",
"text": "Sidebar tab foreground for selected tabs"
},
"$:/language/Docs/PaletteColours/sidebar-tab-foreground": {
"title": "$:/language/Docs/PaletteColours/sidebar-tab-foreground",
"text": "Sidebar tab foreground"
},
"$:/language/Docs/PaletteColours/sidebar-tiddler-link-foreground-hover": {
"title": "$:/language/Docs/PaletteColours/sidebar-tiddler-link-foreground-hover",
"text": "Sidebar tiddler link foreground hover"
},
"$:/language/Docs/PaletteColours/sidebar-tiddler-link-foreground": {
"title": "$:/language/Docs/PaletteColours/sidebar-tiddler-link-foreground",
"text": "Sidebar tiddler link foreground"
},
"$:/language/Docs/PaletteColours/site-title-foreground": {
"title": "$:/language/Docs/PaletteColours/site-title-foreground",
"text": "Site title foreground"
},
"$:/language/Docs/PaletteColours/static-alert-foreground": {
"title": "$:/language/Docs/PaletteColours/static-alert-foreground",
"text": "Static alert foreground"
},
"$:/language/Docs/PaletteColours/tab-background-selected": {
"title": "$:/language/Docs/PaletteColours/tab-background-selected",
"text": "Tab background for selected tabs"
},
"$:/language/Docs/PaletteColours/tab-background": {
"title": "$:/language/Docs/PaletteColours/tab-background",
"text": "Tab background"
},
"$:/language/Docs/PaletteColours/tab-border-selected": {
"title": "$:/language/Docs/PaletteColours/tab-border-selected",
"text": "Tab border for selected tabs"
},
"$:/language/Docs/PaletteColours/tab-border": {
"title": "$:/language/Docs/PaletteColours/tab-border",
"text": "Tab border"
},
"$:/language/Docs/PaletteColours/tab-divider": {
"title": "$:/language/Docs/PaletteColours/tab-divider",
"text": "Tab divider"
},
"$:/language/Docs/PaletteColours/tab-foreground-selected": {
"title": "$:/language/Docs/PaletteColours/tab-foreground-selected",
"text": "Tab foreground for selected tabs"
},
"$:/language/Docs/PaletteColours/tab-foreground": {
"title": "$:/language/Docs/PaletteColours/tab-foreground",
"text": "Tab foreground"
},
"$:/language/Docs/PaletteColours/table-border": {
"title": "$:/language/Docs/PaletteColours/table-border",
"text": "Table border"
},
"$:/language/Docs/PaletteColours/table-footer-background": {
"title": "$:/language/Docs/PaletteColours/table-footer-background",
"text": "Table footer background"
},
"$:/language/Docs/PaletteColours/table-header-background": {
"title": "$:/language/Docs/PaletteColours/table-header-background",
"text": "Table header background"
},
"$:/language/Docs/PaletteColours/tag-background": {
"title": "$:/language/Docs/PaletteColours/tag-background",
"text": "Tag background"
},
"$:/language/Docs/PaletteColours/tag-foreground": {
"title": "$:/language/Docs/PaletteColours/tag-foreground",
"text": "Tag foreground"
},
"$:/language/Docs/PaletteColours/tiddler-background": {
"title": "$:/language/Docs/PaletteColours/tiddler-background",
"text": "Tiddler background"
},
"$:/language/Docs/PaletteColours/tiddler-border": {
"title": "$:/language/Docs/PaletteColours/tiddler-border",
"text": "Tiddler border"
},
"$:/language/Docs/PaletteColours/tiddler-controls-foreground-hover": {
"title": "$:/language/Docs/PaletteColours/tiddler-controls-foreground-hover",
"text": "Tiddler controls foreground hover"
},
"$:/language/Docs/PaletteColours/tiddler-controls-foreground-selected": {
"title": "$:/language/Docs/PaletteColours/tiddler-controls-foreground-selected",
"text": "Tiddler controls foreground for selected controls"
},
"$:/language/Docs/PaletteColours/tiddler-controls-foreground": {
"title": "$:/language/Docs/PaletteColours/tiddler-controls-foreground",
"text": "Tiddler controls foreground"
},
"$:/language/Docs/PaletteColours/tiddler-editor-background": {
"title": "$:/language/Docs/PaletteColours/tiddler-editor-background",
"text": "Tiddler editor background"
},
"$:/language/Docs/PaletteColours/tiddler-editor-border-image": {
"title": "$:/language/Docs/PaletteColours/tiddler-editor-border-image",
"text": "Tiddler editor border image"
},
"$:/language/Docs/PaletteColours/tiddler-editor-border": {
"title": "$:/language/Docs/PaletteColours/tiddler-editor-border",
"text": "Tiddler editor border"
},
"$:/language/Docs/PaletteColours/tiddler-editor-fields-even": {
"title": "$:/language/Docs/PaletteColours/tiddler-editor-fields-even",
"text": "Tiddler editor background for even fields"
},
"$:/language/Docs/PaletteColours/tiddler-editor-fields-odd": {
"title": "$:/language/Docs/PaletteColours/tiddler-editor-fields-odd",
"text": "Tiddler editor background for odd fields"
},
"$:/language/Docs/PaletteColours/tiddler-info-background": {
"title": "$:/language/Docs/PaletteColours/tiddler-info-background",
"text": "Tiddler info panel background"
},
"$:/language/Docs/PaletteColours/tiddler-info-border": {
"title": "$:/language/Docs/PaletteColours/tiddler-info-border",
"text": "Tiddler info panel border"
},
"$:/language/Docs/PaletteColours/tiddler-info-tab-background": {
"title": "$:/language/Docs/PaletteColours/tiddler-info-tab-background",
"text": "Tiddler info panel tab background"
},
"$:/language/Docs/PaletteColours/tiddler-link-background": {
"title": "$:/language/Docs/PaletteColours/tiddler-link-background",
"text": "Tiddler link background"
},
"$:/language/Docs/PaletteColours/tiddler-link-foreground": {
"title": "$:/language/Docs/PaletteColours/tiddler-link-foreground",
"text": "Tiddler link foreground"
},
"$:/language/Docs/PaletteColours/tiddler-subtitle-foreground": {
"title": "$:/language/Docs/PaletteColours/tiddler-subtitle-foreground",
"text": "Tiddler subtitle foreground"
},
"$:/language/Docs/PaletteColours/tiddler-title-foreground": {
"title": "$:/language/Docs/PaletteColours/tiddler-title-foreground",
"text": "Tiddler title foreground"
},
"$:/language/Docs/PaletteColours/toolbar-new-button": {
"title": "$:/language/Docs/PaletteColours/toolbar-new-button",
"text": "Toolbar 'new tiddler' button foreground"
},
"$:/language/Docs/PaletteColours/toolbar-options-button": {
"title": "$:/language/Docs/PaletteColours/toolbar-options-button",
"text": "Toolbar 'options' button foreground"
},
"$:/language/Docs/PaletteColours/toolbar-save-button": {
"title": "$:/language/Docs/PaletteColours/toolbar-save-button",
"text": "Toolbar 'save' button foreground"
},
"$:/language/Docs/PaletteColours/toolbar-info-button": {
"title": "$:/language/Docs/PaletteColours/toolbar-info-button",
"text": "Toolbar 'info' button foreground"
},
"$:/language/Docs/PaletteColours/toolbar-edit-button": {
"title": "$:/language/Docs/PaletteColours/toolbar-edit-button",
"text": "Toolbar 'edit' button foreground"
},
"$:/language/Docs/PaletteColours/toolbar-close-button": {
"title": "$:/language/Docs/PaletteColours/toolbar-close-button",
"text": "Toolbar 'close' button foreground"
},
"$:/language/Docs/PaletteColours/toolbar-delete-button": {
"title": "$:/language/Docs/PaletteColours/toolbar-delete-button",
"text": "Toolbar 'delete' button foreground"
},
"$:/language/Docs/PaletteColours/toolbar-cancel-button": {
"title": "$:/language/Docs/PaletteColours/toolbar-cancel-button",
"text": "Toolbar 'cancel' button foreground"
},
"$:/language/Docs/PaletteColours/toolbar-done-button": {
"title": "$:/language/Docs/PaletteColours/toolbar-done-button",
"text": "Toolbar 'done' button foreground"
},
"$:/language/Docs/PaletteColours/untagged-background": {
"title": "$:/language/Docs/PaletteColours/untagged-background",
"text": "Untagged pill background"
},
"$:/language/Docs/PaletteColours/very-muted-foreground": {
"title": "$:/language/Docs/PaletteColours/very-muted-foreground",
"text": "Very muted foreground"
},
"$:/language/EditTemplate/Body/External/Hint": {
"title": "$:/language/EditTemplate/Body/External/Hint",
"text": "This tiddler shows content stored outside of the main TiddlyWiki file. You can edit the tags and fields but cannot directly edit the content itself"
},
"$:/language/EditTemplate/Body/Placeholder": {
"title": "$:/language/EditTemplate/Body/Placeholder",
"text": "Type the text for this tiddler"
},
"$:/language/EditTemplate/Body/Preview/Type/Output": {
"title": "$:/language/EditTemplate/Body/Preview/Type/Output",
"text": "output"
},
"$:/language/EditTemplate/Field/Remove/Caption": {
"title": "$:/language/EditTemplate/Field/Remove/Caption",
"text": "remove field"
},
"$:/language/EditTemplate/Field/Remove/Hint": {
"title": "$:/language/EditTemplate/Field/Remove/Hint",
"text": "Remove field"
},
"$:/language/EditTemplate/Field/Dropdown/Caption": {
"title": "$:/language/EditTemplate/Field/Dropdown/Caption",
"text": "field list"
},
"$:/language/EditTemplate/Field/Dropdown/Hint": {
"title": "$:/language/EditTemplate/Field/Dropdown/Hint",
"text": "Show field list"
},
"$:/language/EditTemplate/Fields/Add/Button": {
"title": "$:/language/EditTemplate/Fields/Add/Button",
"text": "add"
},
"$:/language/EditTemplate/Fields/Add/Button/Hint": {
"title": "$:/language/EditTemplate/Fields/Add/Button/Hint",
"text": "Add the new field to the tiddler"
},
"$:/language/EditTemplate/Fields/Add/Name/Placeholder": {
"title": "$:/language/EditTemplate/Fields/Add/Name/Placeholder",
"text": "field name"
},
"$:/language/EditTemplate/Fields/Add/Prompt": {
"title": "$:/language/EditTemplate/Fields/Add/Prompt",
"text": "Add a new field:"
},
"$:/language/EditTemplate/Fields/Add/Value/Placeholder": {
"title": "$:/language/EditTemplate/Fields/Add/Value/Placeholder",
"text": "field value"
},
"$:/language/EditTemplate/Fields/Add/Dropdown/System": {
"title": "$:/language/EditTemplate/Fields/Add/Dropdown/System",
"text": "System fields"
},
"$:/language/EditTemplate/Fields/Add/Dropdown/User": {
"title": "$:/language/EditTemplate/Fields/Add/Dropdown/User",
"text": "User fields"
},
"$:/language/EditTemplate/Shadow/Warning": {
"title": "$:/language/EditTemplate/Shadow/Warning",
"text": "This is a shadow tiddler. Any changes you make will override the default version from the plugin <<pluginLink>>"
},
"$:/language/EditTemplate/Shadow/OverriddenWarning": {
"title": "$:/language/EditTemplate/Shadow/OverriddenWarning",
"text": "This is a modified shadow tiddler. You can revert to the default version in the plugin <<pluginLink>> by deleting this tiddler"
},
"$:/language/EditTemplate/Tags/Add/Button": {
"title": "$:/language/EditTemplate/Tags/Add/Button",
"text": "add"
},
"$:/language/EditTemplate/Tags/Add/Button/Hint": {
"title": "$:/language/EditTemplate/Tags/Add/Button/Hint",
"text": "add tag"
},
"$:/language/EditTemplate/Tags/Add/Placeholder": {
"title": "$:/language/EditTemplate/Tags/Add/Placeholder",
"text": "tag name"
},
"$:/language/EditTemplate/Tags/ClearInput/Caption": {
"title": "$:/language/EditTemplate/Tags/ClearInput/Caption",
"text": "clear input"
},
"$:/language/EditTemplate/Tags/ClearInput/Hint": {
"title": "$:/language/EditTemplate/Tags/ClearInput/Hint",
"text": "Clear tag input"
},
"$:/language/EditTemplate/Tags/Dropdown/Caption": {
"title": "$:/language/EditTemplate/Tags/Dropdown/Caption",
"text": "tag list"
},
"$:/language/EditTemplate/Tags/Dropdown/Hint": {
"title": "$:/language/EditTemplate/Tags/Dropdown/Hint",
"text": "Show tag list"
},
"$:/language/EditTemplate/Title/BadCharacterWarning": {
"title": "$:/language/EditTemplate/Title/BadCharacterWarning",
"text": "Warning: avoid using any of the characters <<bad-chars>> in tiddler titles"
},
"$:/language/EditTemplate/Title/Exists/Prompt": {
"title": "$:/language/EditTemplate/Title/Exists/Prompt",
"text": "Target tiddler already exists"
},
"$:/language/EditTemplate/Title/Relink/Prompt": {
"title": "$:/language/EditTemplate/Title/Relink/Prompt",
"text": "Update ''<$text text=<<fromTitle>>/>'' to ''<$text text=<<toTitle>>/>'' in the //tags// and //list// fields of other tiddlers"
},
"$:/language/EditTemplate/Title/References/Prompt": {
"title": "$:/language/EditTemplate/Title/References/Prompt",
"text": "The following references to this tiddler will not be automatically updated:"
},
"$:/language/EditTemplate/Type/Dropdown/Caption": {
"title": "$:/language/EditTemplate/Type/Dropdown/Caption",
"text": "content type list"
},
"$:/language/EditTemplate/Type/Dropdown/Hint": {
"title": "$:/language/EditTemplate/Type/Dropdown/Hint",
"text": "Show content type list"
},
"$:/language/EditTemplate/Type/Delete/Caption": {
"title": "$:/language/EditTemplate/Type/Delete/Caption",
"text": "delete content type"
},
"$:/language/EditTemplate/Type/Delete/Hint": {
"title": "$:/language/EditTemplate/Type/Delete/Hint",
"text": "Delete content type"
},
"$:/language/EditTemplate/Type/Placeholder": {
"title": "$:/language/EditTemplate/Type/Placeholder",
"text": "content type"
},
"$:/language/EditTemplate/Type/Prompt": {
"title": "$:/language/EditTemplate/Type/Prompt",
"text": "Type:"
},
"$:/language/Exporters/StaticRiver": {
"title": "$:/language/Exporters/StaticRiver",
"text": "Static HTML"
},
"$:/language/Exporters/JsonFile": {
"title": "$:/language/Exporters/JsonFile",
"text": "JSON file"
},
"$:/language/Exporters/CsvFile": {
"title": "$:/language/Exporters/CsvFile",
"text": "CSV file"
},
"$:/language/Exporters/TidFile": {
"title": "$:/language/Exporters/TidFile",
"text": "\".tid\" file"
},
"$:/language/Docs/Fields/_canonical_uri": {
"title": "$:/language/Docs/Fields/_canonical_uri",
"text": "The full URI of an external image tiddler"
},
"$:/language/Docs/Fields/bag": {
"title": "$:/language/Docs/Fields/bag",
"text": "The name of the bag from which a tiddler came"
},
"$:/language/Docs/Fields/caption": {
"title": "$:/language/Docs/Fields/caption",
"text": "The text to be displayed on a tab or button"
},
"$:/language/Docs/Fields/color": {
"title": "$:/language/Docs/Fields/color",
"text": "The CSS color value associated with a tiddler"
},
"$:/language/Docs/Fields/component": {
"title": "$:/language/Docs/Fields/component",
"text": "The name of the component responsible for an [[alert tiddler|AlertMechanism]]"
},
"$:/language/Docs/Fields/current-tiddler": {
"title": "$:/language/Docs/Fields/current-tiddler",
"text": "Used to cache the top tiddler in a [[history list|HistoryMechanism]]"
},
"$:/language/Docs/Fields/created": {
"title": "$:/language/Docs/Fields/created",
"text": "The date a tiddler was created"
},
"$:/language/Docs/Fields/creator": {
"title": "$:/language/Docs/Fields/creator",
"text": "The name of the person who created a tiddler"
},
"$:/language/Docs/Fields/dependents": {
"title": "$:/language/Docs/Fields/dependents",
"text": "For a plugin, lists the dependent plugin titles"
},
"$:/language/Docs/Fields/description": {
"title": "$:/language/Docs/Fields/description",
"text": "The descriptive text for a plugin, or a modal dialogue"
},
"$:/language/Docs/Fields/draft.of": {
"title": "$:/language/Docs/Fields/draft.of",
"text": "For draft tiddlers, contains the title of the tiddler of which this is a draft"
},
"$:/language/Docs/Fields/draft.title": {
"title": "$:/language/Docs/Fields/draft.title",
"text": "For draft tiddlers, contains the proposed new title of the tiddler"
},
"$:/language/Docs/Fields/footer": {
"title": "$:/language/Docs/Fields/footer",
"text": "The footer text for a wizard"
},
"$:/language/Docs/Fields/hide-body": {
"title": "$:/language/Docs/Fields/hide-body",
"text": "The view template will hide bodies of tiddlers if set to: ''yes''"
},
"$:/language/Docs/Fields/icon": {
"title": "$:/language/Docs/Fields/icon",
"text": "The title of the tiddler containing the icon associated with a tiddler"
},
"$:/language/Docs/Fields/library": {
"title": "$:/language/Docs/Fields/library",
"text": "Indicates that a tiddler should be saved as a JavaScript library if set to: ''yes''"
},
"$:/language/Docs/Fields/list": {
"title": "$:/language/Docs/Fields/list",
"text": "An ordered list of tiddler titles associated with a tiddler"
},
"$:/language/Docs/Fields/list-before": {
"title": "$:/language/Docs/Fields/list-before",
"text": "If set, the title of a tiddler before which this tiddler should be added to the ordered list of tiddler titles, or at the start of the list if this field is present but empty"
},
"$:/language/Docs/Fields/list-after": {
"title": "$:/language/Docs/Fields/list-after",
"text": "If set, the title of the tiddler after which this tiddler should be added to the ordered list of tiddler titles, or at the end of the list if this field is present but empty"
},
"$:/language/Docs/Fields/modified": {
"title": "$:/language/Docs/Fields/modified",
"text": "The date and time at which a tiddler was last modified"
},
"$:/language/Docs/Fields/modifier": {
"title": "$:/language/Docs/Fields/modifier",
"text": "The tiddler title associated with the person who last modified a tiddler"
},
"$:/language/Docs/Fields/name": {
"title": "$:/language/Docs/Fields/name",
"text": "The human readable name associated with a plugin tiddler"
},
"$:/language/Docs/Fields/plugin-priority": {
"title": "$:/language/Docs/Fields/plugin-priority",
"text": "A numerical value indicating the priority of a plugin tiddler"
},
"$:/language/Docs/Fields/plugin-type": {
"title": "$:/language/Docs/Fields/plugin-type",
"text": "The type of plugin in a plugin tiddler"
},
"$:/language/Docs/Fields/revision": {
"title": "$:/language/Docs/Fields/revision",
"text": "The revision of the tiddler held at the server"
},
"$:/language/Docs/Fields/released": {
"title": "$:/language/Docs/Fields/released",
"text": "Date of a TiddlyWiki release"
},
"$:/language/Docs/Fields/source": {
"title": "$:/language/Docs/Fields/source",
"text": "The source URL associated with a tiddler"
},
"$:/language/Docs/Fields/subtitle": {
"title": "$:/language/Docs/Fields/subtitle",
"text": "The subtitle text for a wizard"
},
"$:/language/Docs/Fields/tags": {
"title": "$:/language/Docs/Fields/tags",
"text": "A list of tags associated with a tiddler"
},
"$:/language/Docs/Fields/text": {
"title": "$:/language/Docs/Fields/text",
"text": "The body text of a tiddler"
},
"$:/language/Docs/Fields/throttle.refresh": {
"title": "$:/language/Docs/Fields/throttle.refresh",
"text": "If present, throttles refreshes of this tiddler"
},
"$:/language/Docs/Fields/title": {
"title": "$:/language/Docs/Fields/title",
"text": "The unique name of a tiddler"
},
"$:/language/Docs/Fields/toc-link": {
"title": "$:/language/Docs/Fields/toc-link",
"text": "Suppresses the tiddler's link in a Table of Contents tree if set to: ''no''"
},
"$:/language/Docs/Fields/type": {
"title": "$:/language/Docs/Fields/type",
"text": "The content type of a tiddler"
},
"$:/language/Docs/Fields/version": {
"title": "$:/language/Docs/Fields/version",
"text": "Version information for a plugin"
},
"$:/language/Docs/Fields/_is_skinny": {
"title": "$:/language/Docs/Fields/_is_skinny",
"text": "If present, indicates that the tiddler text field must be loaded from the server"
},
"$:/language/Filters/AllTiddlers": {
"title": "$:/language/Filters/AllTiddlers",
"text": "All tiddlers except system tiddlers"
},
"$:/language/Filters/RecentSystemTiddlers": {
"title": "$:/language/Filters/RecentSystemTiddlers",
"text": "Recently modified tiddlers, including system tiddlers"
},
"$:/language/Filters/RecentTiddlers": {
"title": "$:/language/Filters/RecentTiddlers",
"text": "Recently modified tiddlers"
},
"$:/language/Filters/AllTags": {
"title": "$:/language/Filters/AllTags",
"text": "All tags except system tags"
},
"$:/language/Filters/Missing": {
"title": "$:/language/Filters/Missing",
"text": "Missing tiddlers"
},
"$:/language/Filters/Drafts": {
"title": "$:/language/Filters/Drafts",
"text": "Draft tiddlers"
},
"$:/language/Filters/Orphans": {
"title": "$:/language/Filters/Orphans",
"text": "Orphan tiddlers"
},
"$:/language/Filters/SystemTiddlers": {
"title": "$:/language/Filters/SystemTiddlers",
"text": "System tiddlers"
},
"$:/language/Filters/ShadowTiddlers": {
"title": "$:/language/Filters/ShadowTiddlers",
"text": "Shadow tiddlers"
},
"$:/language/Filters/OverriddenShadowTiddlers": {
"title": "$:/language/Filters/OverriddenShadowTiddlers",
"text": "Overridden shadow tiddlers"
},
"$:/language/Filters/SessionTiddlers": {
"title": "$:/language/Filters/SessionTiddlers",
"text": "Tiddlers modified since the wiki was loaded"
},
"$:/language/Filters/SystemTags": {
"title": "$:/language/Filters/SystemTags",
"text": "System tags"
},
"$:/language/Filters/StoryList": {
"title": "$:/language/Filters/StoryList",
"text": "Tiddlers in the story river, excluding <$text text=\"$:/AdvancedSearch\"/>"
},
"$:/language/Filters/TypedTiddlers": {
"title": "$:/language/Filters/TypedTiddlers",
"text": "Non wiki-text tiddlers"
},
"GettingStarted": {
"title": "GettingStarted",
"text": "\\define lingo-base() $:/language/ControlPanel/Basics/\nWelcome to ~TiddlyWiki and the ~TiddlyWiki community\n\nBefore you start storing important information in ~TiddlyWiki it is vital to make sure that you can reliably save changes. See https://tiddlywiki.com/#GettingStarted for details\n\n!! Set up this ~TiddlyWiki\n\n<div class=\"tc-control-panel\">\n\n|<$link to=\"$:/SiteTitle\"><<lingo Title/Prompt>></$link> |<$edit-text tiddler=\"$:/SiteTitle\" default=\"\" tag=\"input\"/> |\n|<$link to=\"$:/SiteSubtitle\"><<lingo Subtitle/Prompt>></$link> |<$edit-text tiddler=\"$:/SiteSubtitle\" default=\"\" tag=\"input\"/> |\n|<$link to=\"$:/DefaultTiddlers\"><<lingo DefaultTiddlers/Prompt>></$link> |<<lingo DefaultTiddlers/TopHint>><br> <$edit tag=\"textarea\" tiddler=\"$:/DefaultTiddlers\"/><br>//<<lingo DefaultTiddlers/BottomHint>>// |\n</div>\n\nSee the [[control panel|$:/ControlPanel]] for more options.\n"
},
"$:/language/Help/build": {
"title": "$:/language/Help/build",
"description": "Automatically run configured commands",
"text": "Build the specified build targets for the current wiki. If no build targets are specified then all available targets will be built.\n\n```\n--build <target> [<target> ...]\n```\n\nBuild targets are defined in the `tiddlywiki.info` file of a wiki folder.\n\n"
},
"$:/language/Help/clearpassword": {
"title": "$:/language/Help/clearpassword",
"description": "Clear a password for subsequent crypto operations",
"text": "Clear the password for subsequent crypto operations\n\n```\n--clearpassword\n```\n"
},
"$:/language/Help/default": {
"title": "$:/language/Help/default",
"text": "\\define commandTitle()\n$:/language/Help/$(command)$\n\\end\n```\nusage: tiddlywiki [<wikifolder>] [--<command> [<args>...]...]\n```\n\nAvailable commands:\n\n<ul>\n<$list filter=\"[commands[]sort[title]]\" variable=\"command\">\n<li><$link to=<<commandTitle>>><$macrocall $name=\"command\" $type=\"text/plain\" $output=\"text/plain\"/></$link>: <$transclude tiddler=<<commandTitle>> field=\"description\"/></li>\n</$list>\n</ul>\n\nTo get detailed help on a command:\n\n```\ntiddlywiki --help <command>\n```\n"
},
"$:/language/Help/deletetiddlers": {
"title": "$:/language/Help/deletetiddlers",
"description": "Deletes a group of tiddlers",
"text": "<<.from-version \"5.1.20\">> Deletes a group of tiddlers identified by a filter.\n\n```\n--deletetiddlers <filter>\n```\n"
},
"$:/language/Help/editions": {
"title": "$:/language/Help/editions",
"description": "Lists the available editions of TiddlyWiki",
"text": "Lists the names and descriptions of the available editions. You can create a new wiki of a specified edition with the `--init` command.\n\n```\n--editions\n```\n"
},
"$:/language/Help/fetch": {
"title": "$:/language/Help/fetch",
"description": "Fetch tiddlers from wiki by URL",
"text": "Fetch one or more files over HTTP/HTTPS, and import the tiddlers matching a filter, optionally transforming the incoming titles.\n\n```\n--fetch file <url> <import-filter> <transform-filter>\n--fetch files <url-filter> <import-filter> <transform-filter>\n--fetch raw-file <url> <transform-filter>\n--fetch raw-files <url-filter> <transform-filter>\n```\n\nThe \"file\" and \"files\" variants fetch the specified files and attempt to import the tiddlers within them (the same processing as if the files were dragged into the browser window). The \"raw-file\" and \"raw-files\" variants fetch the specified files and then store the raw file data in tiddlers, without applying the import logic.\n\nWith the \"file\" and \"raw-file\" variants only a single file is fetched and the first parameter is the URL of the file to read.\n\nWith the \"files\" and \"raw-files\" variants, multiple files are fetched and the first parameter is a filter yielding a list of URLs of the files to read. For example, given a set of tiddlers tagged \"remote-server\" that have a field \"url\" the filter `[tag[remote-server]get[url]]` will retrieve all the available URLs.\n\nFor the \"file\" and \"files\" variants, the `<import-filter>` parameter specifies a filter determining which tiddlers are imported. It defaults to `[all[tiddlers]]` if not provided.\n\nFor all variants, the `<transform-filter>` parameter specifies an optional filter that transforms the titles of the imported tiddlers. For example, `[addprefix[$:/myimports/]]` would add the prefix `$:/myimports/` to each title.\n\nPreceding the `--fetch` command with `--verbose` will output progress information during the import.\n\nNote that TiddlyWiki will not fetch an older version of an already loaded plugin.\n\nThe following example retrieves all the non-system tiddlers from https://tiddlywiki.com and saves them to a JSON file:\n\n```\ntiddlywiki --verbose --fetch file \"https://tiddlywiki.com/\" \"[!is[system]]\" \"\" --rendertiddler \"$:/core/templates/exporters/JsonFile\" output.json text/plain \"\" exportFilter \"[!is[system]]\"\n```\n\nThe following example retrieves the \"favicon\" file from tiddlywiki.com and saves it in a file called \"output.ico\". Note that the intermediate tiddler \"Icon Tiddler\" is quoted in the \"--fetch\" command because it is being used as a transformation filter to replace the default title, while there are no quotes for the \"--savetiddler\" command because it is being used directly as a title.\n\n```\ntiddlywiki --verbose --fetch raw-file \"https://tiddlywiki.com/favicon.ico\" \"[[Icon Tiddler]]\" --savetiddler \"Icon Tiddler\" output.ico\n```\n\n"
},
"$:/language/Help/help": {
"title": "$:/language/Help/help",
"description": "Display help for TiddlyWiki commands",
"text": "Displays help text for a command:\n\n```\n--help [<command>]\n```\n\nIf the command name is omitted then a list of available commands is displayed.\n"
},
"$:/language/Help/import": {
"title": "$:/language/Help/import",
"description": "Import tiddlers from a file",
"text": "Import tiddlers from TiddlyWiki (`.html`), `.tiddler`, `.tid`, `.json` or other local files. The deserializer must be explicitly specified, unlike the `load` command which infers the deserializer from the file extension.\n\n```\n--import <filepath> <deserializer> [<title>] [<encoding>]\n```\n\nThe deserializers in the core include:\n\n* application/javascript\n* application/json\n* application/x-tiddler\n* application/x-tiddler-html-div\n* application/x-tiddlers\n* text/html\n* text/plain\n\nThe title of the imported tiddler defaults to the filename.\n\nThe encoding defaults to \"utf8\", but can be \"base64\" for importing binary files.\n\nNote that TiddlyWiki will not import an older version of an already loaded plugin.\n"
},
"$:/language/Help/init": {
"title": "$:/language/Help/init",
"description": "Initialise a new wiki folder",
"text": "Initialise an empty [[WikiFolder|WikiFolders]] with a copy of the specified edition.\n\n```\n--init <edition> [<edition> ...]\n```\n\nFor example:\n\n```\ntiddlywiki ./MyWikiFolder --init empty\n```\n\nNote:\n\n* The wiki folder directory will be created if necessary\n* The \"edition\" defaults to ''empty''\n* The init command will fail if the wiki folder is not empty\n* The init command removes any `includeWikis` definitions in the edition's `tiddlywiki.info` file\n* When multiple editions are specified, editions initialised later will overwrite any files shared with earlier editions (so, the final `tiddlywiki.info` file will be copied from the last edition)\n* `--editions` returns a list of available editions\n"
},
"$:/language/Help/listen": {
"title": "$:/language/Help/listen",
"description": "Provides an HTTP server interface to TiddlyWiki",
"text": "Serves a wiki over HTTP.\n\nThe listen command uses NamedCommandParameters:\n\n```\n--listen [<name>=<value>]...\n```\n\nAll parameters are optional with safe defaults, and can be specified in any order. The recognised parameters are:\n\n* ''host'' - optional hostname to serve from (defaults to \"127.0.0.1\" aka \"localhost\")\n* ''path-prefix'' - optional prefix for paths\n* ''port'' - port number on which to listen; non-numeric values are interpreted as a system environment variable from which the port number is extracted (defaults to \"8080\")\n* ''credentials'' - pathname of credentials CSV file (relative to wiki folder)\n* ''anon-username'' - the username for signing edits for anonymous users\n* ''username'' - optional username for basic authentication\n* ''password'' - optional password for basic authentication\n* ''authenticated-user-header'' - optional name of header to be used for trusted authentication\n* ''readers'' - comma separated list of principals allowed to read from this wiki\n* ''writers'' - comma separated list of principals allowed to write to this wiki\n* ''csrf-disable'' - set to \"yes\" to disable CSRF checks (defaults to \"no\")\n* ''root-tiddler'' - the tiddler to serve at the root (defaults to \"$:/core/save/all\")\n* ''root-render-type'' - the content type to which the root tiddler should be rendered (defaults to \"text/plain\")\n* ''root-serve-type'' - the content type with which the root tiddler should be served (defaults to \"text/html\")\n* ''tls-cert'' - pathname of TLS certificate file (relative to wiki folder)\n* ''tls-key'' - pathname of TLS key file (relative to wiki folder)\n* ''debug-level'' - optional debug level; set to \"debug\" to view request details (defaults to \"none\")\n* ''gzip'' - set to \"yes\" to enable gzip compression for some http endpoints (defaults to \"no\")\n\nFor information on opening up your instance to the entire local network, and possible security concerns, see the WebServer tiddler at TiddlyWiki.com.\n\n"
},
"$:/language/Help/load": {
"title": "$:/language/Help/load",
"description": "Load tiddlers from a file",
"text": "Load tiddlers from TiddlyWiki (`.html`), `.tiddler`, `.tid`, `.json` or other local files. The processing applied to incoming files is determined by the file extension. Use the alternative `import` command if you need to specify the deserializer and encoding explicitly.\n\n```\n--load <filepath> [noerror]\n--load <dirpath> [noerror]\n```\n\nBy default, the load command raises an error if no tiddlers are found. The error can be suppressed by providing the optional \"noerror\" parameter.\n\nTo load tiddlers from an encrypted TiddlyWiki file you should first specify the password with the PasswordCommand. For example:\n\n```\ntiddlywiki ./MyWiki --password pa55w0rd --load my_encrypted_wiki.html\n```\n\nNote that TiddlyWiki will not load an older version of an already loaded plugin.\n"
},
"$:/language/Help/makelibrary": {
"title": "$:/language/Help/makelibrary",
"description": "Construct library plugin required by upgrade process",
"text": "Constructs the `$:/UpgradeLibrary` tiddler for the upgrade process.\n\nThe upgrade library is formatted as an ordinary plugin tiddler with the plugin type `library`. It contains a copy of each of the plugins, themes and language packs available within the TiddlyWiki5 repository.\n\nThis command is intended for internal use; it is only relevant to users constructing a custom upgrade procedure.\n\n```\n--makelibrary <title>\n```\n\nThe title argument defaults to `$:/UpgradeLibrary`.\n"
},
"$:/language/Help/notfound": {
"title": "$:/language/Help/notfound",
"text": "No such help item"
},
"$:/language/Help/output": {
"title": "$:/language/Help/output",
"description": "Set the base output directory for subsequent commands",
"text": "Sets the base output directory for subsequent commands. The default output directory is the `output` subdirectory of the edition directory.\n\n```\n--output <pathname>\n```\n\nIf the specified pathname is relative then it is resolved relative to the current working directory. For example `--output .` sets the output directory to the current working directory.\n\n"
},
"$:/language/Help/password": {
"title": "$:/language/Help/password",
"description": "Set a password for subsequent crypto operations",
"text": "Set a password for subsequent crypto operations\n\n```\n--password <password>\n```\n\n''Note'': This should not be used for serving TiddlyWiki with password protection. Instead, see the password option under the [[ServerCommand]].\n"
},
"$:/language/Help/render": {
"title": "$:/language/Help/render",
"description": "Renders individual tiddlers to files",
"text": "Render individual tiddlers identified by a filter and save the results to the specified files.\n\nOptionally, the title of a template tiddler can be specified. In this case, instead of directly rendering each tiddler, the template tiddler is rendered with the \"currentTiddler\" variable set to the title of the tiddler that is being rendered.\n\nA name and value for an additional variable may optionally also be specified.\n\n```\n--render <tiddler-filter> [<filename-filter>] [<render-type>] [<template>] [<name>] [<value>]\n```\n\n* ''tiddler-filter'': A filter identifying the tiddler(s) to be rendered\n* ''filename-filter'': Optional filter transforming tiddler titles into pathnames. If omitted, defaults to `[is[tiddler]addsuffix[.html]]`, which uses the unchanged tiddler title as the filename\n* ''render-type'': Optional render type: `text/html` (the default) returns the full HTML text and `text/plain` just returns the text content (ie it ignores HTML tags and other unprintable material)\n* ''template'': Optional template through which each tiddler is rendered\n* ''name'': Name of optional variable\n* ''value'': Value of optional variable\n\nBy default, the filename is resolved relative to the `output` subdirectory of the edition directory. The `--output` command can be used to direct output to a different directory.\n\nNotes:\n\n* The output directory is not cleared of any existing files\n* Any missing directories in the path to the filename are automatically created.\n* When referring to a tiddler with spaces in its title, take care to use both the quotes required by your shell and also TiddlyWiki's double square brackets : `--render \"[[Motovun Jack.jpg]]\"`\n* The filename filter is evaluated with the selected items being set to the title of the tiddler currently being rendered, allowing the title to be used as the basis for computing the filename. For example `[encodeuricomponent[]addprefix[static/]]` applies URI encoding to each title, and then adds the prefix `static/`\n* The `--render` command is a more flexible replacement for both the `--rendertiddler` and `--rendertiddlers` commands, which are deprecated\n\nExamples:\n\n* `--render \"[!is[system]]\" \"[encodeuricomponent[]addprefix[tiddlers/]addsuffix[.html]]\"` -- renders all non-system tiddlers as files in the subdirectory \"tiddlers\" with URL-encoded titles and the extension HTML\n\n"
},
"$:/language/Help/rendertiddler": {
"title": "$:/language/Help/rendertiddler",
"description": "Render an individual tiddler as a specified ContentType",
"text": "(Note: The `--rendertiddler` command is deprecated in favour of the new, more flexible `--render` command)\n\nRender an individual tiddler as a specified ContentType, defaulting to `text/html` and save it to the specified filename.\n\nOptionally the title of a template tiddler can be specified, in which case the template tiddler is rendered with the \"currentTiddler\" variable set to the tiddler that is being rendered (the first parameter value).\n\nA name and value for an additional variable may optionally also be specified.\n\n```\n--rendertiddler <title> <filename> [<type>] [<template>] [<name>] [<value>]\n```\n\nBy default, the filename is resolved relative to the `output` subdirectory of the edition directory. The `--output` command can be used to direct output to a different directory.\n\nAny missing directories in the path to the filename are automatically created.\n\nFor example, the following command saves all tiddlers matching the filter `[tag[done]]` to a JSON file titled `output.json` by employing the core template `$:/core/templates/exporters/JsonFile`.\n\n```\n--rendertiddler \"$:/core/templates/exporters/JsonFile\" output.json text/plain \"\" exportFilter \"[tag[done]]\"\n```\n"
},
"$:/language/Help/rendertiddlers": {
"title": "$:/language/Help/rendertiddlers",
"description": "Render tiddlers matching a filter to a specified ContentType",
"text": "(Note: The `--rendertiddlers` command is deprecated in favour of the new, more flexible `--render` command)\n\nRender a set of tiddlers matching a filter to separate files of a specified ContentType (defaults to `text/html`) and extension (defaults to `.html`).\n\n```\n--rendertiddlers '<filter>' <template> <pathname> [<type>] [<extension>] [\"noclean\"]\n```\n\nFor example:\n\n```\n--rendertiddlers '[!is[system]]' $:/core/templates/static.tiddler.html ./static text/plain\n```\n\nBy default, the pathname is resolved relative to the `output` subdirectory of the edition directory. The `--output` command can be used to direct output to a different directory.\n\nAny files in the target directory are deleted unless the ''noclean'' flag is specified. The target directory is recursively created if it is missing.\n"
},
"$:/language/Help/save": {
"title": "$:/language/Help/save",
"description": "Saves individual raw tiddlers to files",
"text": "Saves individual tiddlers identified by a filter in their raw text or binary format to the specified files.\n\n```\n--save <tiddler-filter> <filename-filter>\n```\n\n* ''tiddler-filter'': A filter identifying the tiddler(s) to be saved\n* ''filename-filter'': Optional filter transforming tiddler titles into pathnames. If omitted, defaults to `[is[tiddler]]`, which uses the unchanged tiddler title as the filename\n\nBy default, the filename is resolved relative to the `output` subdirectory of the edition directory. The `--output` command can be used to direct output to a different directory.\n\nNotes:\n\n* The output directory is not cleared of any existing files\n* Any missing directories in the path to the filename are automatically created.\n* When saving a tiddler with spaces in its title, take care to use both the quotes required by your shell and also TiddlyWiki's double square brackets : `--save \"[[Motovun Jack.jpg]]\"`\n* The filename filter is evaluated with the selected items being set to the title of the tiddler currently being saved, allowing the title to be used as the basis for computing the filename. For example `[encodeuricomponent[]addprefix[static/]]` applies URI encoding to each title, and then adds the prefix `static/`\n* The `--save` command is a more flexible replacement for both the `--savetiddler` and `--savetiddlers` commands, which are deprecated\n\nExamples:\n\n* `--save \"[!is[system]is[image]]\" \"[encodeuricomponent[]addprefix[tiddlers/]]\"` -- saves all non-system image tiddlers as files in the subdirectory \"tiddlers\" with URL-encoded titles\n"
},
"$:/language/Help/savetiddler": {
"title": "$:/language/Help/savetiddler",
"description": "Saves a raw tiddler to a file",
"text": "(Note: The `--savetiddler` command is deprecated in favour of the new, more flexible `--save` command)\n\nSaves an individual tiddler in its raw text or binary format to the specified filename.\n\n```\n--savetiddler <title> <filename>\n```\n\nBy default, the filename is resolved relative to the `output` subdirectory of the edition directory. The `--output` command can be used to direct output to a different directory.\n\nAny missing directories in the path to the filename are automatically created.\n"
},
"$:/language/Help/savetiddlers": {
"title": "$:/language/Help/savetiddlers",
"description": "Saves a group of raw tiddlers to a directory",
"text": "(Note: The `--savetiddlers` command is deprecated in favour of the new, more flexible `--save` command)\n\nSaves a group of tiddlers in their raw text or binary format to the specified directory.\n\n```\n--savetiddlers <filter> <pathname> [\"noclean\"]\n```\n\nBy default, the pathname is resolved relative to the `output` subdirectory of the edition directory. The `--output` command can be used to direct output to a different directory.\n\nThe output directory is cleared of existing files before saving the specified files. The deletion can be disabled by specifying the ''noclean'' flag.\n\nAny missing directories in the pathname are automatically created.\n"
},
"$:/language/Help/savewikifolder": {
"title": "$:/language/Help/savewikifolder",
"description": "Saves a wiki to a new wiki folder",
"text": "<<.from-version \"5.1.20\">> Saves the current wiki as a wiki folder, including tiddlers, plugins and configuration:\n\n```\n--savewikifolder <wikifolderpath> [<filter>]\n```\n\n* The target wiki folder must be empty or non-existent\n* The filter specifies which tiddlers should be included. It is optional, defaulting to `[all[tiddlers]]`\n* Plugins from the official plugin library are replaced with references to those plugins in the `tiddlywiki.info` file\n* Custom plugins are unpacked into their own folder\n\nA common usage is to convert a TiddlyWiki HTML file into a wiki folder:\n\n```\ntiddlywiki --load ./mywiki.html --savewikifolder ./mywikifolder\n```\n"
},
"$:/language/Help/server": {
"title": "$:/language/Help/server",
"description": "Provides an HTTP server interface to TiddlyWiki (deprecated in favour of the new listen command)",
"text": "Legacy command to serve a wiki over HTTP.\n\n```\n--server <port> <root-tiddler> <root-render-type> <root-serve-type> <username> <password> <host> <path-prefix> <debug-level>\n```\n\nThe parameters are:\n\n* ''port'' - port number on which to listen; non-numeric values are interpreted as a system environment variable from which the port number is extracted (defaults to \"8080\")\n* ''root-tiddler'' - the tiddler to serve at the root (defaults to \"$:/core/save/all\")\n* ''root-render-type'' - the content type to which the root tiddler should be rendered (defaults to \"text/plain\")\n* ''root-serve-type'' - the content type with which the root tiddler should be served (defaults to \"text/html\")\n* ''username'' - the default username for signing edits\n* ''password'' - optional password for basic authentication\n* ''host'' - optional hostname to serve from (defaults to \"127.0.0.1\" aka \"localhost\")\n* ''path-prefix'' - optional prefix for paths\n* ''debug-level'' - optional debug level; set to \"debug\" to view request details (defaults to \"none\")\n\nIf the password parameter is specified then the browser will prompt the user for the username and password. Note that the password is transmitted in plain text so this implementation should only be used on a trusted network or over HTTPS.\n\nFor example:\n\n```\n--server 8080 $:/core/save/all text/plain text/html MyUserName passw0rd\n```\n\nThe username and password can be specified as empty strings if you need to set the hostname or pathprefix and don't want to require a password.\n\n\n```\n--server 8080 $:/core/save/all text/plain text/html \"\" \"\" 192.168.0.245\n```\n\nUsing an address like this exposes your system to the local network. For information on opening up your instance to the entire local network, and possible security concerns, see the WebServer tiddler at TiddlyWiki.com.\n\nTo run multiple TiddlyWiki servers at the same time you'll need to put each one on a different port. It can be useful to use an environment variable to pass the port number to the Node.js process. This example references an environment variable called \"MY_PORT_NUMBER\":\n\n```\n--server MY_PORT_NUMBER $:/core/save/all text/plain text/html MyUserName passw0rd\n```\n"
},
"$:/language/Help/setfield": {
"title": "$:/language/Help/setfield",
"description": "Prepares external tiddlers for use",
"text": "//Note that this command is experimental and may change or be replaced before being finalised//\n\nSets the specified field of a group of tiddlers to the result of wikifying a template tiddler with the `currentTiddler` variable set to the tiddler.\n\n```\n--setfield <filter> <fieldname> <templatetitle> <rendertype>\n```\n\nThe parameters are:\n\n* ''filter'' - filter identifying the tiddlers to be affected\n* ''fieldname'' - the field to modify (defaults to \"text\")\n* ''templatetitle'' - the tiddler to wikify into the specified field. If blank or missing then the specified field is deleted\n* ''rendertype'' - the text type to render (defaults to \"text/plain\"; \"text/html\" can be used to include HTML tags)\n"
},
"$:/language/Help/unpackplugin": {
"title": "$:/language/Help/unpackplugin",
"description": "Unpack the payload tiddlers from a plugin",
"text": "Extract the payload tiddlers from a plugin, creating them as ordinary tiddlers:\n\n```\n--unpackplugin <title>\n```\n"
},
"$:/language/Help/verbose": {
"title": "$:/language/Help/verbose",
"description": "Triggers verbose output mode",
"text": "Triggers verbose output, useful for debugging\n\n```\n--verbose\n```\n"
},
"$:/language/Help/version": {
"title": "$:/language/Help/version",
"description": "Displays the version number of TiddlyWiki",
"text": "Displays the version number of TiddlyWiki.\n\n```\n--version\n```\n"
},
"$:/language/Import/Imported/Hint": {
"title": "$:/language/Import/Imported/Hint",
"text": "The following tiddlers were imported:"
},
"$:/language/Import/Listing/Cancel/Caption": {
"title": "$:/language/Import/Listing/Cancel/Caption",
"text": "Cancel"
},
"$:/language/Import/Listing/Hint": {
"title": "$:/language/Import/Listing/Hint",
"text": "These tiddlers are ready to import:"
},
"$:/language/Import/Listing/Import/Caption": {
"title": "$:/language/Import/Listing/Import/Caption",
"text": "Import"
},
"$:/language/Import/Listing/Select/Caption": {
"title": "$:/language/Import/Listing/Select/Caption",
"text": "Select"
},
"$:/language/Import/Listing/Status/Caption": {
"title": "$:/language/Import/Listing/Status/Caption",
"text": "Status"
},
"$:/language/Import/Listing/Title/Caption": {
"title": "$:/language/Import/Listing/Title/Caption",
"text": "Title"
},
"$:/language/Import/Listing/Preview": {
"title": "$:/language/Import/Listing/Preview",
"text": "Preview:"
},
"$:/language/Import/Listing/Preview/Text": {
"title": "$:/language/Import/Listing/Preview/Text",
"text": "Text"
},
"$:/language/Import/Listing/Preview/TextRaw": {
"title": "$:/language/Import/Listing/Preview/TextRaw",
"text": "Text (Raw)"
},
"$:/language/Import/Listing/Preview/Fields": {
"title": "$:/language/Import/Listing/Preview/Fields",
"text": "Fields"
},
"$:/language/Import/Listing/Preview/Diff": {
"title": "$:/language/Import/Listing/Preview/Diff",
"text": "Diff"
},
"$:/language/Import/Listing/Preview/DiffFields": {
"title": "$:/language/Import/Listing/Preview/DiffFields",
"text": "Diff (Fields)"
},
"$:/language/Import/Listing/Rename/Tooltip": {
"title": "$:/language/Import/Listing/Rename/Tooltip",
"text": "Rename tiddler before importing"
},
"$:/language/Import/Listing/Rename/Prompt": {
"title": "$:/language/Import/Listing/Rename/Prompt",
"text": "Rename to:"
},
"$:/language/Import/Listing/Rename/ConfirmRename": {
"title": "$:/language/Import/Listing/Rename/ConfirmRename",
"text": "Rename tiddler"
},
"$:/language/Import/Listing/Rename/CancelRename": {
"title": "$:/language/Import/Listing/Rename/CancelRename",
"text": "Cancel"
},
"$:/language/Import/Listing/Rename/OverwriteWarning": {
"title": "$:/language/Import/Listing/Rename/OverwriteWarning",
"text": "A tiddler with this title already exists."
},
"$:/language/Import/Upgrader/Plugins/Suppressed/Incompatible": {
"title": "$:/language/Import/Upgrader/Plugins/Suppressed/Incompatible",
"text": "Blocked incompatible or obsolete plugin."
},
"$:/language/Import/Upgrader/Plugins/Suppressed/Version": {
"title": "$:/language/Import/Upgrader/Plugins/Suppressed/Version",
"text": "Blocked plugin (due to incoming <<incoming>> not being newer than existing <<existing>>)."
},
"$:/language/Import/Upgrader/Plugins/Upgraded": {
"title": "$:/language/Import/Upgrader/Plugins/Upgraded",
"text": "Upgraded plugin from <<incoming>> to <<upgraded>>."
},
"$:/language/Import/Upgrader/State/Suppressed": {
"title": "$:/language/Import/Upgrader/State/Suppressed",
"text": "Blocked temporary state tiddler."
},
"$:/language/Import/Upgrader/System/Suppressed": {
"title": "$:/language/Import/Upgrader/System/Suppressed",
"text": "Blocked system tiddler."
},
"$:/language/Import/Upgrader/System/Warning": {
"title": "$:/language/Import/Upgrader/System/Warning",
"text": "Core module tiddler."
},
"$:/language/Import/Upgrader/System/Alert": {
"title": "$:/language/Import/Upgrader/System/Alert",
"text": "You are about to import a tiddler that will overwrite a core module tiddler. This is not recommended as it may make the system unstable."
},
"$:/language/Import/Upgrader/ThemeTweaks/Created": {
"title": "$:/language/Import/Upgrader/ThemeTweaks/Created",
"text": "Migrated theme tweak from <$text text=<<from>>/>."
},
"$:/language/AboveStory/ClassicPlugin/Warning": {
"title": "$:/language/AboveStory/ClassicPlugin/Warning",
"text": "It looks like you are trying to load a plugin designed for ~TiddlyWiki Classic. Please note that [[these plugins do not work with TiddlyWiki version 5.x.x|https://tiddlywiki.com/#TiddlyWikiClassic]]. ~TiddlyWiki Classic plugins detected:"
},
"$:/language/BinaryWarning/Prompt": {
"title": "$:/language/BinaryWarning/Prompt",
"text": "This tiddler contains binary data"
},
"$:/language/ClassicWarning/Hint": {
"title": "$:/language/ClassicWarning/Hint",
"text": "This tiddler is written in TiddlyWiki Classic wiki text format, which is not fully compatible with TiddlyWiki version 5. See https://tiddlywiki.com/static/Upgrading.html for more details."
},
"$:/language/ClassicWarning/Upgrade/Caption": {
"title": "$:/language/ClassicWarning/Upgrade/Caption",
"text": "upgrade"
},
"$:/language/CloseAll/Button": {
"title": "$:/language/CloseAll/Button",
"text": "close all"
},
"$:/language/ColourPicker/Recent": {
"title": "$:/language/ColourPicker/Recent",
"text": "Recent:"
},
"$:/language/ConfirmCancelTiddler": {
"title": "$:/language/ConfirmCancelTiddler",
"text": "Do you wish to discard changes to the tiddler \"<$text text=<<title>>/>\"?"
},
"$:/language/ConfirmDeleteTiddler": {
"title": "$:/language/ConfirmDeleteTiddler",
"text": "Do you wish to delete the tiddler \"<$text text=<<title>>/>\"?"
},
"$:/language/ConfirmOverwriteTiddler": {
"title": "$:/language/ConfirmOverwriteTiddler",
"text": "Do you wish to overwrite the tiddler \"<$text text=<<title>>/>\"?"
},
"$:/language/ConfirmEditShadowTiddler": {
"title": "$:/language/ConfirmEditShadowTiddler",
"text": "You are about to edit a ShadowTiddler. Any changes will override the default system making future upgrades non-trivial. Are you sure you want to edit \"<$text text=<<title>>/>\"?"
},
"$:/language/ConfirmAction": {
"title": "$:/language/ConfirmAction",
"text": "Do you wish to proceed?"
},
"$:/language/Count": {
"title": "$:/language/Count",
"text": "count"
},
"$:/language/DefaultNewTiddlerTitle": {
"title": "$:/language/DefaultNewTiddlerTitle",
"text": "New Tiddler"
},
"$:/language/Diffs/CountMessage": {
"title": "$:/language/Diffs/CountMessage",
"text": "<<diff-count>> differences"
},
"$:/language/DropMessage": {
"title": "$:/language/DropMessage",
"text": "Drop here (or use the 'Escape' key to cancel)"
},
"$:/language/Encryption/Cancel": {
"title": "$:/language/Encryption/Cancel",
"text": "Cancel"
},
"$:/language/Encryption/ConfirmClearPassword": {
"title": "$:/language/Encryption/ConfirmClearPassword",
"text": "Do you wish to clear the password? This will remove the encryption applied when saving this wiki"
},
"$:/language/Encryption/PromptSetPassword": {
"title": "$:/language/Encryption/PromptSetPassword",
"text": "Set a new password for this TiddlyWiki"
},
"$:/language/Encryption/Username": {
"title": "$:/language/Encryption/Username",
"text": "Username"
},
"$:/language/Encryption/Password": {
"title": "$:/language/Encryption/Password",
"text": "Password"
},
"$:/language/Encryption/RepeatPassword": {
"title": "$:/language/Encryption/RepeatPassword",
"text": "Repeat password"
},
"$:/language/Encryption/PasswordNoMatch": {
"title": "$:/language/Encryption/PasswordNoMatch",
"text": "Passwords do not match"
},
"$:/language/Encryption/SetPassword": {
"title": "$:/language/Encryption/SetPassword",
"text": "Set password"
},
"$:/language/Error/Caption": {
"title": "$:/language/Error/Caption",
"text": "Error"
},
"$:/language/Error/EditConflict": {
"title": "$:/language/Error/EditConflict",
"text": "File changed on server"
},
"$:/language/Error/Filter": {
"title": "$:/language/Error/Filter",
"text": "Filter error"
},
"$:/language/Error/FilterSyntax": {
"title": "$:/language/Error/FilterSyntax",
"text": "Syntax error in filter expression"
},
"$:/language/Error/FilterRunPrefix": {
"title": "$:/language/Error/FilterRunPrefix",
"text": "Filter Error: Unknown prefix for filter run"
},
"$:/language/Error/IsFilterOperator": {
"title": "$:/language/Error/IsFilterOperator",
"text": "Filter Error: Unknown operand for the 'is' filter operator"
},
"$:/language/Error/FormatFilterOperator": {
"title": "$:/language/Error/FormatFilterOperator",
"text": "Filter Error: Unknown suffix for the 'format' filter operator"
},
"$:/language/Error/LoadingPluginLibrary": {
"title": "$:/language/Error/LoadingPluginLibrary",
"text": "Error loading plugin library"
},
"$:/language/Error/NetworkErrorAlert": {
"title": "$:/language/Error/NetworkErrorAlert",
"text": "`<h2>''Network Error''</h2>It looks like the connection to the server has been lost. This may indicate a problem with your network connection. Please attempt to restore network connectivity before continuing.<br><br>''Any unsaved changes will be automatically synchronised when connectivity is restored''.`"
},
"$:/language/Error/RecursiveTransclusion": {
"title": "$:/language/Error/RecursiveTransclusion",
"text": "Recursive transclusion error in transclude widget"
},
"$:/language/Error/RetrievingSkinny": {
"title": "$:/language/Error/RetrievingSkinny",
"text": "Error retrieving skinny tiddler list"
},
"$:/language/Error/SavingToTWEdit": {
"title": "$:/language/Error/SavingToTWEdit",
"text": "Error saving to TWEdit"
},
"$:/language/Error/WhileSaving": {
"title": "$:/language/Error/WhileSaving",
"text": "Error while saving"
},
"$:/language/Error/XMLHttpRequest": {
"title": "$:/language/Error/XMLHttpRequest",
"text": "XMLHttpRequest error code"
},
"$:/language/InternalJavaScriptError/Title": {
"title": "$:/language/InternalJavaScriptError/Title",
"text": "Internal JavaScript Error"
},
"$:/language/InternalJavaScriptError/Hint": {
"title": "$:/language/InternalJavaScriptError/Hint",
"text": "Well, this is embarrassing. It is recommended that you restart TiddlyWiki by refreshing your browser"
},
"$:/language/InvalidFieldName": {
"title": "$:/language/InvalidFieldName",
"text": "Illegal characters in field name \"<$text text=<<fieldName>>/>\". Fields can only contain lowercase letters, digits and the characters underscore (`_`), hyphen (`-`) and period (`.`)"
},
"$:/language/LayoutSwitcher/Description": {
"title": "$:/language/LayoutSwitcher/Description",
"text": "Open the layout switcher"
},
"$:/language/LazyLoadingWarning": {
"title": "$:/language/LazyLoadingWarning",
"text": "<p>Trying to load external content from ''<$text text={{!!_canonical_uri}}/>''</p><p>If this message doesn't disappear, either the tiddler content type doesn't match the type of the external content, or you may be using a browser that doesn't support external content for wikis loaded as standalone files. See https://tiddlywiki.com/#ExternalText</p>"
},
"$:/language/LoginToTiddlySpace": {
"title": "$:/language/LoginToTiddlySpace",
"text": "Login to TiddlySpace"
},
"$:/language/Manager/Controls/FilterByTag/None": {
"title": "$:/language/Manager/Controls/FilterByTag/None",
"text": "(none)"
},
"$:/language/Manager/Controls/FilterByTag/Prompt": {
"title": "$:/language/Manager/Controls/FilterByTag/Prompt",
"text": "Filter by tag:"
},
"$:/language/Manager/Controls/Order/Prompt": {
"title": "$:/language/Manager/Controls/Order/Prompt",
"text": "Reverse order"
},
"$:/language/Manager/Controls/Search/Placeholder": {
"title": "$:/language/Manager/Controls/Search/Placeholder",
"text": "Search"
},
"$:/language/Manager/Controls/Search/Prompt": {
"title": "$:/language/Manager/Controls/Search/Prompt",
"text": "Search:"
},
"$:/language/Manager/Controls/Show/Option/Tags": {
"title": "$:/language/Manager/Controls/Show/Option/Tags",
"text": "tags"
},
"$:/language/Manager/Controls/Show/Option/Tiddlers": {
"title": "$:/language/Manager/Controls/Show/Option/Tiddlers",
"text": "tiddlers"
},
"$:/language/Manager/Controls/Show/Prompt": {
"title": "$:/language/Manager/Controls/Show/Prompt",
"text": "Show:"
},
"$:/language/Manager/Controls/Sort/Prompt": {
"title": "$:/language/Manager/Controls/Sort/Prompt",
"text": "Sort by:"
},
"$:/language/Manager/Item/Colour": {
"title": "$:/language/Manager/Item/Colour",
"text": "Colour"
},
"$:/language/Manager/Item/Fields": {
"title": "$:/language/Manager/Item/Fields",
"text": "Fields"
},
"$:/language/Manager/Item/Icon/None": {
"title": "$:/language/Manager/Item/Icon/None",
"text": "(none)"
},
"$:/language/Manager/Item/Icon": {
"title": "$:/language/Manager/Item/Icon",
"text": "Icon"
},
"$:/language/Manager/Item/RawText": {
"title": "$:/language/Manager/Item/RawText",
"text": "Raw text"
},
"$:/language/Manager/Item/Tags": {
"title": "$:/language/Manager/Item/Tags",
"text": "Tags"
},
"$:/language/Manager/Item/Tools": {
"title": "$:/language/Manager/Item/Tools",
"text": "Tools"
},
"$:/language/Manager/Item/WikifiedText": {
"title": "$:/language/Manager/Item/WikifiedText",
"text": "Wikified text"
},
"$:/language/MissingTiddler/Hint": {
"title": "$:/language/MissingTiddler/Hint",
"text": "Missing tiddler \"<$text text=<<currentTiddler>>/>\" -- click {{||$:/core/ui/Buttons/edit}} to create"
},
"$:/language/No": {
"title": "$:/language/No",
"text": "No"
},
"$:/language/OfficialPluginLibrary": {
"title": "$:/language/OfficialPluginLibrary",
"text": "Official ~TiddlyWiki Plugin Library"
},
"$:/language/OfficialPluginLibrary/Hint": {
"title": "$:/language/OfficialPluginLibrary/Hint",
"text": "The official ~TiddlyWiki plugin library at tiddlywiki.com. Plugins, themes and language packs are maintained by the core team."
},
"$:/language/PageTemplate/Description": {
"title": "$:/language/PageTemplate/Description",
"text": "the default ~TiddlyWiki layout"
},
"$:/language/PageTemplate/Name": {
"title": "$:/language/PageTemplate/Name",
"text": "Default ~PageTemplate"
},
"$:/language/PluginReloadWarning": {
"title": "$:/language/PluginReloadWarning",
"text": "Please save {{$:/core/ui/Buttons/save-wiki}} and reload {{$:/core/ui/Buttons/refresh}} to allow changes to ~JavaScript plugins to take effect"
},
"$:/language/RecentChanges/DateFormat": {
"title": "$:/language/RecentChanges/DateFormat",
"text": "DDth MMM YYYY"
},
"$:/language/Shortcuts/Input/AdvancedSearch/Hint": {
"title": "$:/language/Shortcuts/Input/AdvancedSearch/Hint",
"text": "Open the ~AdvancedSearch panel from within the sidebar search field"
},
"$:/language/Shortcuts/Input/Accept/Hint": {
"title": "$:/language/Shortcuts/Input/Accept/Hint",
"text": "Accept the selected item"
},
"$:/language/Shortcuts/Input/AcceptVariant/Hint": {
"title": "$:/language/Shortcuts/Input/AcceptVariant/Hint",
"text": "Accept the selected item (variant)"
},
"$:/language/Shortcuts/Input/Cancel/Hint": {
"title": "$:/language/Shortcuts/Input/Cancel/Hint",
"text": "Clear the input field"
},
"$:/language/Shortcuts/Input/Down/Hint": {
"title": "$:/language/Shortcuts/Input/Down/Hint",
"text": "Select the next item"
},
"$:/language/Shortcuts/Input/Tab-Left/Hint": {
"title": "$:/language/Shortcuts/Input/Tab-Left/Hint",
"text": "Select the previous Tab"
},
"$:/language/Shortcuts/Input/Tab-Right/Hint": {
"title": "$:/language/Shortcuts/Input/Tab-Right/Hint",
"text": "Select the next Tab"
},
"$:/language/Shortcuts/Input/Up/Hint": {
"title": "$:/language/Shortcuts/Input/Up/Hint",
"text": "Select the previous item"
},
"$:/language/Shortcuts/SidebarLayout/Hint": {
"title": "$:/language/Shortcuts/SidebarLayout/Hint",
"text": "Change the sidebar layout"
},
"$:/language/Switcher/Subtitle/theme": {
"title": "$:/language/Switcher/Subtitle/theme",
"text": "Switch Theme"
},
"$:/language/Switcher/Subtitle/layout": {
"title": "$:/language/Switcher/Subtitle/layout",
"text": "Switch Layout"
},
"$:/language/Switcher/Subtitle/language": {
"title": "$:/language/Switcher/Subtitle/language",
"text": "Switch Language"
},
"$:/language/Switcher/Subtitle/palette": {
"title": "$:/language/Switcher/Subtitle/palette",
"text": "Switch Palette"
},
"$:/language/SystemTiddler/Tooltip": {
"title": "$:/language/SystemTiddler/Tooltip",
"text": "This is a system tiddler"
},
"$:/language/SystemTiddlers/Include/Prompt": {
"title": "$:/language/SystemTiddlers/Include/Prompt",
"text": "Include system tiddlers"
},
"$:/language/TagManager/Colour/Heading": {
"title": "$:/language/TagManager/Colour/Heading",
"text": "Colour"
},
"$:/language/TagManager/Count/Heading": {
"title": "$:/language/TagManager/Count/Heading",
"text": "Count"
},
"$:/language/TagManager/Icon/Heading": {
"title": "$:/language/TagManager/Icon/Heading",
"text": "Icon"
},
"$:/language/TagManager/Icons/None": {
"title": "$:/language/TagManager/Icons/None",
"text": "None"
},
"$:/language/TagManager/Info/Heading": {
"title": "$:/language/TagManager/Info/Heading",
"text": "Info"
},
"$:/language/TagManager/Tag/Heading": {
"title": "$:/language/TagManager/Tag/Heading",
"text": "Tag"
},
"$:/language/Tiddler/DateFormat": {
"title": "$:/language/Tiddler/DateFormat",
"text": "DDth MMM YYYY at hh12:0mmam"
},
"$:/language/UnsavedChangesWarning": {
"title": "$:/language/UnsavedChangesWarning",
"text": "You have unsaved changes in TiddlyWiki"
},
"$:/language/Yes": {
"title": "$:/language/Yes",
"text": "Yes"
},
"$:/language/Modals/Download": {
"title": "$:/language/Modals/Download",
"subtitle": "Download changes",
"footer": "<$button message=\"tm-close-tiddler\">Close</$button>",
"help": "https://tiddlywiki.com/static/DownloadingChanges.html",
"text": "Your browser only supports manual saving.\n\nTo save your modified wiki, right click on the download link below and select \"Download file\" or \"Save file\", and then choose the folder and filename.\n\n//You can marginally speed things up by clicking the link with the control key (Windows) or the options/alt key (Mac OS X). You will not be prompted for the folder or filename, but your browser is likely to give it an unrecognisable name -- you may need to rename the file to include an `.html` extension before you can do anything useful with it.//\n\nOn smartphones that do not allow files to be downloaded you can instead bookmark the link, and then sync your bookmarks to a desktop computer from where the wiki can be saved normally.\n"
},
"$:/language/Modals/SaveInstructions": {
"title": "$:/language/Modals/SaveInstructions",
"subtitle": "Save your work",
"footer": "<$button message=\"tm-close-tiddler\">Close</$button>",
"help": "https://tiddlywiki.com/static/SavingChanges.html",
"text": "Your changes to this wiki need to be saved as a ~TiddlyWiki HTML file.\n\n!!! Desktop browsers\n\n# Select ''Save As'' from the ''File'' menu\n# Choose a filename and location\n#* Some browsers also require you to explicitly specify the file saving format as ''Webpage, HTML only'' or similar\n# Close this tab\n\n!!! Smartphone browsers\n\n# Create a bookmark to this page\n#* If you've got iCloud or Google Sync set up then the bookmark will automatically sync to your desktop where you can open it and save it as above\n# Close this tab\n\n//If you open the bookmark again in Mobile Safari you will see this message again. If you want to go ahead and use the file, just click the ''close'' button below//\n"
},
"$:/config/NewJournal/Title": {
"title": "$:/config/NewJournal/Title",
"text": "DDth MMM YYYY"
},
"$:/config/NewJournal/Text": {
"title": "$:/config/NewJournal/Text",
"text": ""
},
"$:/config/NewJournal/Tags": {
"title": "$:/config/NewJournal/Tags",
"text": "Journal\n"
},
"$:/language/Notifications/Save/Done": {
"title": "$:/language/Notifications/Save/Done",
"text": "Saved wiki"
},
"$:/language/Notifications/Save/Starting": {
"title": "$:/language/Notifications/Save/Starting",
"text": "Starting to save wiki"
},
"$:/language/Notifications/CopiedToClipboard/Succeeded": {
"title": "$:/language/Notifications/CopiedToClipboard/Succeeded",
"text": "Copied to clipboard!"
},
"$:/language/Notifications/CopiedToClipboard/Failed": {
"title": "$:/language/Notifications/CopiedToClipboard/Failed",
"text": "Failed to copy to clipboard!"
},
"$:/language/Search/DefaultResults/Caption": {
"title": "$:/language/Search/DefaultResults/Caption",
"text": "List"
},
"$:/language/Search/Filter/Caption": {
"title": "$:/language/Search/Filter/Caption",
"text": "Filter"
},
"$:/language/Search/Filter/Hint": {
"title": "$:/language/Search/Filter/Hint",
"text": "Search via a [[filter expression|https://tiddlywiki.com/static/Filters.html]]"
},
"$:/language/Search/Filter/Matches": {
"title": "$:/language/Search/Filter/Matches",
"text": "//<small><<resultCount>> matches</small>//"
},
"$:/language/Search/Matches": {
"title": "$:/language/Search/Matches",
"text": "//<small><<resultCount>> matches</small>//"
},
"$:/language/Search/Matches/All": {
"title": "$:/language/Search/Matches/All",
"text": "All matches:"
},
"$:/language/Search/Matches/Title": {
"title": "$:/language/Search/Matches/Title",
"text": "Title matches:"
},
"$:/language/Search/Search": {
"title": "$:/language/Search/Search",
"text": "Search"
},
"$:/language/Search/Search/TooShort": {
"title": "$:/language/Search/Search/TooShort",
"text": "Search text too short"
},
"$:/language/Search/Shadows/Caption": {
"title": "$:/language/Search/Shadows/Caption",
"text": "Shadows"
},
"$:/language/Search/Shadows/Hint": {
"title": "$:/language/Search/Shadows/Hint",
"text": "Search for shadow tiddlers"
},
"$:/language/Search/Shadows/Matches": {
"title": "$:/language/Search/Shadows/Matches",
"text": "//<small><<resultCount>> matches</small>//"
},
"$:/language/Search/Standard/Caption": {
"title": "$:/language/Search/Standard/Caption",
"text": "Standard"
},
"$:/language/Search/Standard/Hint": {
"title": "$:/language/Search/Standard/Hint",
"text": "Search for standard tiddlers"
},
"$:/language/Search/Standard/Matches": {
"title": "$:/language/Search/Standard/Matches",
"text": "//<small><<resultCount>> matches</small>//"
},
"$:/language/Search/System/Caption": {
"title": "$:/language/Search/System/Caption",
"text": "System"
},
"$:/language/Search/System/Hint": {
"title": "$:/language/Search/System/Hint",
"text": "Search for system tiddlers"
},
"$:/language/Search/System/Matches": {
"title": "$:/language/Search/System/Matches",
"text": "//<small><<resultCount>> matches</small>//"
},
"$:/language/SideBar/All/Caption": {
"title": "$:/language/SideBar/All/Caption",
"text": "All"
},
"$:/language/SideBar/Contents/Caption": {
"title": "$:/language/SideBar/Contents/Caption",
"text": "Contents"
},
"$:/language/SideBar/Drafts/Caption": {
"title": "$:/language/SideBar/Drafts/Caption",
"text": "Drafts"
},
"$:/language/SideBar/Explorer/Caption": {
"title": "$:/language/SideBar/Explorer/Caption",
"text": "Explorer"
},
"$:/language/SideBar/Missing/Caption": {
"title": "$:/language/SideBar/Missing/Caption",
"text": "Missing"
},
"$:/language/SideBar/More/Caption": {
"title": "$:/language/SideBar/More/Caption",
"text": "More"
},
"$:/language/SideBar/Open/Caption": {
"title": "$:/language/SideBar/Open/Caption",
"text": "Open"
},
"$:/language/SideBar/Orphans/Caption": {
"title": "$:/language/SideBar/Orphans/Caption",
"text": "Orphans"
},
"$:/language/SideBar/Recent/Caption": {
"title": "$:/language/SideBar/Recent/Caption",
"text": "Recent"
},
"$:/language/SideBar/Shadows/Caption": {
"title": "$:/language/SideBar/Shadows/Caption",
"text": "Shadows"
},
"$:/language/SideBar/System/Caption": {
"title": "$:/language/SideBar/System/Caption",
"text": "System"
},
"$:/language/SideBar/Tags/Caption": {
"title": "$:/language/SideBar/Tags/Caption",
"text": "Tags"
},
"$:/language/SideBar/Tags/Untagged/Caption": {
"title": "$:/language/SideBar/Tags/Untagged/Caption",
"text": "untagged"
},
"$:/language/SideBar/Tools/Caption": {
"title": "$:/language/SideBar/Tools/Caption",
"text": "Tools"
},
"$:/language/SideBar/Types/Caption": {
"title": "$:/language/SideBar/Types/Caption",
"text": "Types"
},
"$:/SiteSubtitle": {
"title": "$:/SiteSubtitle",
"text": "a non-linear personal web notebook"
},
"$:/SiteTitle": {
"title": "$:/SiteTitle",
"text": "My ~TiddlyWiki"
},
"$:/language/Snippets/ListByTag": {
"title": "$:/language/Snippets/ListByTag",
"tags": "$:/tags/TextEditor/Snippet",
"caption": "List of tiddlers by tag",
"text": "<<list-links \"[tag[task]sort[title]]\">>\n"
},
"$:/language/Snippets/MacroDefinition": {
"title": "$:/language/Snippets/MacroDefinition",
"tags": "$:/tags/TextEditor/Snippet",
"caption": "Macro definition",
"text": "\\define macroName(param1:\"default value\",param2)\nText of the macro\n\\end\n"
},
"$:/language/Snippets/Table4x3": {
"title": "$:/language/Snippets/Table4x3",
"tags": "$:/tags/TextEditor/Snippet",
"caption": "Table with 4 columns by 3 rows",
"text": "|! |!Alpha |!Beta |!Gamma |!Delta |\n|!One | | | | |\n|!Two | | | | |\n|!Three | | | | |\n"
},
"$:/language/Snippets/TableOfContents": {
"title": "$:/language/Snippets/TableOfContents",
"tags": "$:/tags/TextEditor/Snippet",
"caption": "Table of Contents",
"text": "<div class=\"tc-table-of-contents\">\n\n<<toc-selective-expandable 'TableOfContents'>>\n\n</div>"
},
"$:/language/ThemeTweaks/ThemeTweaks": {
"title": "$:/language/ThemeTweaks/ThemeTweaks",
"text": "Theme Tweaks"
},
"$:/language/ThemeTweaks/ThemeTweaks/Hint": {
"title": "$:/language/ThemeTweaks/ThemeTweaks/Hint",
"text": "You can tweak certain aspects of the ''Vanilla'' theme."
},
"$:/language/ThemeTweaks/Options": {
"title": "$:/language/ThemeTweaks/Options",
"text": "Options"
},
"$:/language/ThemeTweaks/Options/SidebarLayout": {
"title": "$:/language/ThemeTweaks/Options/SidebarLayout",
"text": "Sidebar layout"
},
"$:/language/ThemeTweaks/Options/SidebarLayout/Fixed-Fluid": {
"title": "$:/language/ThemeTweaks/Options/SidebarLayout/Fixed-Fluid",
"text": "Fixed story, fluid sidebar"
},
"$:/language/ThemeTweaks/Options/SidebarLayout/Fluid-Fixed": {
"title": "$:/language/ThemeTweaks/Options/SidebarLayout/Fluid-Fixed",
"text": "Fluid story, fixed sidebar"
},
"$:/language/ThemeTweaks/Options/StickyTitles": {
"title": "$:/language/ThemeTweaks/Options/StickyTitles",
"text": "Sticky titles"
},
"$:/language/ThemeTweaks/Options/StickyTitles/Hint": {
"title": "$:/language/ThemeTweaks/Options/StickyTitles/Hint",
"text": "Causes tiddler titles to \"stick\" to the top of the browser window"
},
"$:/language/ThemeTweaks/Options/CodeWrapping": {
"title": "$:/language/ThemeTweaks/Options/CodeWrapping",
"text": "Wrap long lines in code blocks"
},
"$:/language/ThemeTweaks/Settings": {
"title": "$:/language/ThemeTweaks/Settings",
"text": "Settings"
},
"$:/language/ThemeTweaks/Settings/FontFamily": {
"title": "$:/language/ThemeTweaks/Settings/FontFamily",
"text": "Font family"
},
"$:/language/ThemeTweaks/Settings/CodeFontFamily": {
"title": "$:/language/ThemeTweaks/Settings/CodeFontFamily",
"text": "Code font family"
},
"$:/language/ThemeTweaks/Settings/EditorFontFamily": {
"title": "$:/language/ThemeTweaks/Settings/EditorFontFamily",
"text": "Editor font family"
},
"$:/language/ThemeTweaks/Settings/BackgroundImage": {
"title": "$:/language/ThemeTweaks/Settings/BackgroundImage",
"text": "Page background image"
},
"$:/language/ThemeTweaks/Settings/BackgroundImageAttachment": {
"title": "$:/language/ThemeTweaks/Settings/BackgroundImageAttachment",
"text": "Page background image attachment"
},
"$:/language/ThemeTweaks/Settings/BackgroundImageAttachment/Scroll": {
"title": "$:/language/ThemeTweaks/Settings/BackgroundImageAttachment/Scroll",
"text": "Scroll with tiddlers"
},
"$:/language/ThemeTweaks/Settings/BackgroundImageAttachment/Fixed": {
"title": "$:/language/ThemeTweaks/Settings/BackgroundImageAttachment/Fixed",
"text": "Fixed to window"
},
"$:/language/ThemeTweaks/Settings/BackgroundImageSize": {
"title": "$:/language/ThemeTweaks/Settings/BackgroundImageSize",
"text": "Page background image size"
},
"$:/language/ThemeTweaks/Settings/BackgroundImageSize/Auto": {
"title": "$:/language/ThemeTweaks/Settings/BackgroundImageSize/Auto",
"text": "Auto"
},
"$:/language/ThemeTweaks/Settings/BackgroundImageSize/Cover": {
"title": "$:/language/ThemeTweaks/Settings/BackgroundImageSize/Cover",
"text": "Cover"
},
"$:/language/ThemeTweaks/Settings/BackgroundImageSize/Contain": {
"title": "$:/language/ThemeTweaks/Settings/BackgroundImageSize/Contain",
"text": "Contain"
},
"$:/language/ThemeTweaks/Metrics": {
"title": "$:/language/ThemeTweaks/Metrics",
"text": "Sizes"
},
"$:/language/ThemeTweaks/Metrics/FontSize": {
"title": "$:/language/ThemeTweaks/Metrics/FontSize",
"text": "Font size"
},
"$:/language/ThemeTweaks/Metrics/LineHeight": {
"title": "$:/language/ThemeTweaks/Metrics/LineHeight",
"text": "Line height"
},
"$:/language/ThemeTweaks/Metrics/BodyFontSize": {
"title": "$:/language/ThemeTweaks/Metrics/BodyFontSize",
"text": "Font size for tiddler body"
},
"$:/language/ThemeTweaks/Metrics/BodyLineHeight": {
"title": "$:/language/ThemeTweaks/Metrics/BodyLineHeight",
"text": "Line height for tiddler body"
},
"$:/language/ThemeTweaks/Metrics/StoryLeft": {
"title": "$:/language/ThemeTweaks/Metrics/StoryLeft",
"text": "Story left position"
},
"$:/language/ThemeTweaks/Metrics/StoryLeft/Hint": {
"title": "$:/language/ThemeTweaks/Metrics/StoryLeft/Hint",
"text": "how far the left margin of the story river<br>(tiddler area) is from the left of the page"
},
"$:/language/ThemeTweaks/Metrics/StoryTop": {
"title": "$:/language/ThemeTweaks/Metrics/StoryTop",
"text": "Story top position"
},
"$:/language/ThemeTweaks/Metrics/StoryTop/Hint": {
"title": "$:/language/ThemeTweaks/Metrics/StoryTop/Hint",
"text": "how far the top margin of the story river<br>is from the top of the page"
},
"$:/language/ThemeTweaks/Metrics/StoryRight": {
"title": "$:/language/ThemeTweaks/Metrics/StoryRight",
"text": "Story right"
},
"$:/language/ThemeTweaks/Metrics/StoryRight/Hint": {
"title": "$:/language/ThemeTweaks/Metrics/StoryRight/Hint",
"text": "how far the left margin of the sidebar <br>is from the left of the page"
},
"$:/language/ThemeTweaks/Metrics/StoryWidth": {
"title": "$:/language/ThemeTweaks/Metrics/StoryWidth",
"text": "Story width"
},
"$:/language/ThemeTweaks/Metrics/StoryWidth/Hint": {
"title": "$:/language/ThemeTweaks/Metrics/StoryWidth/Hint",
"text": "the overall width of the story river"
},
"$:/language/ThemeTweaks/Metrics/TiddlerWidth": {
"title": "$:/language/ThemeTweaks/Metrics/TiddlerWidth",
"text": "Tiddler width"
},
"$:/language/ThemeTweaks/Metrics/TiddlerWidth/Hint": {
"title": "$:/language/ThemeTweaks/Metrics/TiddlerWidth/Hint",
"text": "within the story river"
},
"$:/language/ThemeTweaks/Metrics/SidebarBreakpoint": {
"title": "$:/language/ThemeTweaks/Metrics/SidebarBreakpoint",
"text": "Sidebar breakpoint"
},
"$:/language/ThemeTweaks/Metrics/SidebarBreakpoint/Hint": {
"title": "$:/language/ThemeTweaks/Metrics/SidebarBreakpoint/Hint",
"text": "the minimum page width at which the story<br>river and sidebar will appear side by side"
},
"$:/language/ThemeTweaks/Metrics/SidebarWidth": {
"title": "$:/language/ThemeTweaks/Metrics/SidebarWidth",
"text": "Sidebar width"
},
"$:/language/ThemeTweaks/Metrics/SidebarWidth/Hint": {
"title": "$:/language/ThemeTweaks/Metrics/SidebarWidth/Hint",
"text": "the width of the sidebar in fluid-fixed layout"
},
"$:/language/TiddlerInfo/Advanced/Caption": {
"title": "$:/language/TiddlerInfo/Advanced/Caption",
"text": "Advanced"
},
"$:/language/TiddlerInfo/Advanced/PluginInfo/Empty/Hint": {
"title": "$:/language/TiddlerInfo/Advanced/PluginInfo/Empty/Hint",
"text": "none"
},
"$:/language/TiddlerInfo/Advanced/PluginInfo/Heading": {
"title": "$:/language/TiddlerInfo/Advanced/PluginInfo/Heading",
"text": "Plugin Details"
},
"$:/language/TiddlerInfo/Advanced/PluginInfo/Hint": {
"title": "$:/language/TiddlerInfo/Advanced/PluginInfo/Hint",
"text": "This plugin contains the following shadow tiddlers:"
},
"$:/language/TiddlerInfo/Advanced/ShadowInfo/Heading": {
"title": "$:/language/TiddlerInfo/Advanced/ShadowInfo/Heading",
"text": "Shadow Status"
},
"$:/language/TiddlerInfo/Advanced/ShadowInfo/NotShadow/Hint": {
"title": "$:/language/TiddlerInfo/Advanced/ShadowInfo/NotShadow/Hint",
"text": "The tiddler <$link to=<<infoTiddler>>><$text text=<<infoTiddler>>/></$link> is not a shadow tiddler"
},
"$:/language/TiddlerInfo/Advanced/ShadowInfo/Shadow/Hint": {
"title": "$:/language/TiddlerInfo/Advanced/ShadowInfo/Shadow/Hint",
"text": "The tiddler <$link to=<<infoTiddler>>><$text text=<<infoTiddler>>/></$link> is a shadow tiddler"
},
"$:/language/TiddlerInfo/Advanced/ShadowInfo/Shadow/Source": {
"title": "$:/language/TiddlerInfo/Advanced/ShadowInfo/Shadow/Source",
"text": "It is defined in the plugin <$link to=<<pluginTiddler>>><$text text=<<pluginTiddler>>/></$link>"
},
"$:/language/TiddlerInfo/Advanced/ShadowInfo/OverriddenShadow/Hint": {
"title": "$:/language/TiddlerInfo/Advanced/ShadowInfo/OverriddenShadow/Hint",
"text": "It is overridden by an ordinary tiddler"
},
"$:/language/TiddlerInfo/Fields/Caption": {
"title": "$:/language/TiddlerInfo/Fields/Caption",
"text": "Fields"
},
"$:/language/TiddlerInfo/List/Caption": {
"title": "$:/language/TiddlerInfo/List/Caption",
"text": "List"
},
"$:/language/TiddlerInfo/List/Empty": {
"title": "$:/language/TiddlerInfo/List/Empty",
"text": "This tiddler does not have a list"
},
"$:/language/TiddlerInfo/Listed/Caption": {
"title": "$:/language/TiddlerInfo/Listed/Caption",
"text": "Listed"
},
"$:/language/TiddlerInfo/Listed/Empty": {
"title": "$:/language/TiddlerInfo/Listed/Empty",
"text": "This tiddler is not listed by any others"
},
"$:/language/TiddlerInfo/References/Caption": {
"title": "$:/language/TiddlerInfo/References/Caption",
"text": "Backlinks"
},
"$:/language/TiddlerInfo/References/Empty": {
"title": "$:/language/TiddlerInfo/References/Empty",
"text": "No tiddlers link to this one"
},
"$:/language/TiddlerInfo/Tagging/Caption": {
"title": "$:/language/TiddlerInfo/Tagging/Caption",
"text": "Tagging"
},
"$:/language/TiddlerInfo/Tagging/Empty": {
"title": "$:/language/TiddlerInfo/Tagging/Empty",
"text": "No tiddlers are tagged with this one"
},
"$:/language/TiddlerInfo/Tools/Caption": {
"title": "$:/language/TiddlerInfo/Tools/Caption",
"text": "Tools"
},
"$:/language/Docs/Types/application/javascript": {
"title": "$:/language/Docs/Types/application/javascript",
"description": "JavaScript code",
"name": "application/javascript",
"group": "Developer",
"group-sort": "2"
},
"$:/language/Docs/Types/application/json": {
"title": "$:/language/Docs/Types/application/json",
"description": "JSON data",
"name": "application/json",
"group": "Developer",
"group-sort": "2"
},
"$:/language/Docs/Types/application/x-tiddler-dictionary": {
"title": "$:/language/Docs/Types/application/x-tiddler-dictionary",
"description": "Data dictionary",
"name": "application/x-tiddler-dictionary",
"group": "Developer",
"group-sort": "2"
},
"$:/language/Docs/Types/image/gif": {
"title": "$:/language/Docs/Types/image/gif",
"description": "GIF image",
"name": "image/gif",
"group": "Image",
"group-sort": "1"
},
"$:/language/Docs/Types/image/jpeg": {
"title": "$:/language/Docs/Types/image/jpeg",
"description": "JPEG image",
"name": "image/jpeg",
"group": "Image",
"group-sort": "1"
},
"$:/language/Docs/Types/image/png": {
"title": "$:/language/Docs/Types/image/png",
"description": "PNG image",
"name": "image/png",
"group": "Image",
"group-sort": "1"
},
"$:/language/Docs/Types/image/svg+xml": {
"title": "$:/language/Docs/Types/image/svg+xml",
"description": "Structured Vector Graphics image",
"name": "image/svg+xml",
"group": "Image",
"group-sort": "1"
},
"$:/language/Docs/Types/image/x-icon": {
"title": "$:/language/Docs/Types/image/x-icon",
"description": "ICO format icon file",
"name": "image/x-icon",
"group": "Image",
"group-sort": "1"
},
"$:/language/Docs/Types/text/css": {
"title": "$:/language/Docs/Types/text/css",
"description": "Static stylesheet",
"name": "text/css",
"group": "Developer",
"group-sort": "2"
},
"$:/language/Docs/Types/text/html": {
"title": "$:/language/Docs/Types/text/html",
"description": "HTML markup",
"name": "text/html",
"group": "Text",
"group-sort": "0"
},
"$:/language/Docs/Types/text/plain": {
"title": "$:/language/Docs/Types/text/plain",
"description": "Plain text",
"name": "text/plain",
"group": "Text",
"group-sort": "0"
},
"$:/language/Docs/Types/text/vnd.tiddlywiki": {
"title": "$:/language/Docs/Types/text/vnd.tiddlywiki",
"description": "TiddlyWiki 5",
"name": "text/vnd.tiddlywiki",
"group": "Text",
"group-sort": "0"
},
"$:/language/Docs/Types/text/x-tiddlywiki": {
"title": "$:/language/Docs/Types/text/x-tiddlywiki",
"description": "TiddlyWiki Classic",
"name": "text/x-tiddlywiki",
"group": "Text",
"group-sort": "0"
},
"$:/languages/en-GB/icon": {
"title": "$:/languages/en-GB/icon",
"type": "image/svg+xml",
"text": "<svg xmlns=\"http://www.w3.org/2000/svg\" viewBox=\"0 0 60 30\" width=\"1200\" height=\"600\">\n<clipPath id=\"t\">\n\t<path d=\"M30,15 h30 v15 z v15 h-30 z h-30 v-15 z v-15 h30 z\"/>\n</clipPath>\n<path d=\"M0,0 v30 h60 v-30 z\" fill=\"#00247d\"/>\n<path d=\"M0,0 L60,30 M60,0 L0,30\" stroke=\"#fff\" stroke-width=\"6\"/>\n<path d=\"M0,0 L60,30 M60,0 L0,30\" clip-path=\"url(#t)\" stroke=\"#cf142b\" stroke-width=\"4\"/>\n<path d=\"M30,0 v30 M0,15 h60\" stroke=\"#fff\" stroke-width=\"10\"/>\n<path d=\"M30,0 v30 M0,15 h60\" stroke=\"#cf142b\" stroke-width=\"6\"/>\n</svg>\n"
},
"$:/languages/en-GB": {
"title": "$:/languages/en-GB",
"name": "en-GB",
"description": "English (British)",
"author": "JeremyRuston",
"core-version": ">=5.0.0\"",
"text": "Stub pseudo-plugin for the default language"
},
"$:/core/modules/commander.js": {
"title": "$:/core/modules/commander.js",
"text": "/*\\\ntitle: $:/core/modules/commander.js\ntype: application/javascript\nmodule-type: global\n\nThe $tw.Commander class is a command interpreter\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nParse a sequence of commands\n\tcommandTokens: an array of command string tokens\n\twiki: reference to the wiki store object\n\tstreams: {output:, error:}, each of which has a write(string) method\n\tcallback: a callback invoked as callback(err) where err is null if there was no error\n*/\nvar Commander = function(commandTokens,callback,wiki,streams) {\n\tvar path = require(\"path\");\n\tthis.commandTokens = commandTokens;\n\tthis.nextToken = 0;\n\tthis.callback = callback;\n\tthis.wiki = wiki;\n\tthis.streams = streams;\n\tthis.outputPath = path.resolve($tw.boot.wikiPath,$tw.config.wikiOutputSubDir);\n};\n\n/*\nLog a string if verbose flag is set\n*/\nCommander.prototype.log = function(str) {\n\tif(this.verbose) {\n\t\tthis.streams.output.write(str + \"\\n\");\n\t}\n};\n\n/*\nWrite a string if verbose flag is set\n*/\nCommander.prototype.write = function(str) {\n\tif(this.verbose) {\n\t\tthis.streams.output.write(str);\n\t}\n};\n\n/*\nAdd a string of tokens to the command queue\n*/\nCommander.prototype.addCommandTokens = function(commandTokens) {\n\tvar params = commandTokens.slice(0);\n\tparams.unshift(0);\n\tparams.unshift(this.nextToken);\n\tArray.prototype.splice.apply(this.commandTokens,params);\n};\n\n/*\nExecute the sequence of commands and invoke a callback on completion\n*/\nCommander.prototype.execute = function() {\n\tthis.executeNextCommand();\n};\n\n/*\nExecute the next command in the sequence\n*/\nCommander.prototype.executeNextCommand = function() {\n\tvar self = this;\n\t// Invoke the callback if there are no more commands\n\tif(this.nextToken >= this.commandTokens.length) {\n\t\tthis.callback(null);\n\t} else {\n\t\t// Get and check the command token\n\t\tvar commandName = this.commandTokens[this.nextToken++];\n\t\tif(commandName.substr(0,2) !== \"--\") {\n\t\t\tthis.callback(\"Missing command: \" + commandName);\n\t\t} else {\n\t\t\tcommandName = commandName.substr(2); // Trim off the --\n\t\t\t// Accumulate the parameters to the command\n\t\t\tvar params = [];\n\t\t\twhile(this.nextToken < this.commandTokens.length && \n\t\t\t\tthis.commandTokens[this.nextToken].substr(0,2) !== \"--\") {\n\t\t\t\tparams.push(this.commandTokens[this.nextToken++]);\n\t\t\t}\n\t\t\t// Get the command info\n\t\t\tvar command = $tw.commands[commandName],\n\t\t\t\tc,err;\n\t\t\tif(!command) {\n\t\t\t\tthis.callback(\"Unknown command: \" + commandName);\n\t\t\t} else {\n\t\t\t\tif(this.verbose) {\n\t\t\t\t\tthis.streams.output.write(\"Executing command: \" + commandName + \" \" + params.join(\" \") + \"\\n\");\n\t\t\t\t}\n\t\t\t\t// Parse named parameters if required\n\t\t\t\tif(command.info.namedParameterMode) {\n\t\t\t\t\tparams = this.extractNamedParameters(params,command.info.mandatoryParameters);\n\t\t\t\t\tif(typeof params === \"string\") {\n\t\t\t\t\t\treturn this.callback(params);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif(command.info.synchronous) {\n\t\t\t\t\t// Synchronous command\n\t\t\t\t\tc = new command.Command(params,this);\n\t\t\t\t\terr = c.execute();\n\t\t\t\t\tif(err) {\n\t\t\t\t\t\tthis.callback(err);\n\t\t\t\t\t} else {\n\t\t\t\t\t\tthis.executeNextCommand();\n\t\t\t\t\t}\n\t\t\t\t} else {\n\t\t\t\t\t// Asynchronous command\n\t\t\t\t\tc = new command.Command(params,this,function(err) {\n\t\t\t\t\t\tif(err) {\n\t\t\t\t\t\t\tself.callback(err);\n\t\t\t\t\t\t} else {\n\t\t\t\t\t\t\tself.executeNextCommand();\n\t\t\t\t\t\t}\n\t\t\t\t\t});\n\t\t\t\t\terr = c.execute();\n\t\t\t\t\tif(err) {\n\t\t\t\t\t\tthis.callback(err);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n};\n\n/*\nGiven an array of parameter strings `params` in name:value format, and an array of mandatory parameter names in `mandatoryParameters`, returns a hashmap of values or a string if error\n*/\nCommander.prototype.extractNamedParameters = function(params,mandatoryParameters) {\n\tmandatoryParameters = mandatoryParameters || [];\n\tvar errors = [],\n\t\tparamsByName = Object.create(null);\n\t// Extract the parameters\n\t$tw.utils.each(params,function(param) {\n\t\tvar index = param.indexOf(\"=\");\n\t\tif(index < 1) {\n\t\t\terrors.push(\"malformed named parameter: '\" + param + \"'\");\n\t\t}\n\t\tparamsByName[param.slice(0,index)] = $tw.utils.trim(param.slice(index+1));\n\t});\n\t// Check the mandatory parameters are present\n\t$tw.utils.each(mandatoryParameters,function(mandatoryParameter) {\n\t\tif(!$tw.utils.hop(paramsByName,mandatoryParameter)) {\n\t\t\terrors.push(\"missing mandatory parameter: '\" + mandatoryParameter + \"'\");\n\t\t}\n\t});\n\t// Return any errors\n\tif(errors.length > 0) {\n\t\treturn errors.join(\" and\\n\");\n\t} else {\n\t\treturn paramsByName;\t\t\n\t}\n};\n\nCommander.initCommands = function(moduleType) {\n\tmoduleType = moduleType || \"command\";\n\t$tw.commands = {};\n\t$tw.modules.forEachModuleOfType(moduleType,function(title,module) {\n\t\tvar c = $tw.commands[module.info.name] = {};\n\t\t// Add the methods defined by the module\n\t\tfor(var f in module) {\n\t\t\tif($tw.utils.hop(module,f)) {\n\t\t\t\tc[f] = module[f];\n\t\t\t}\n\t\t}\n\t});\n};\n\nexports.Commander = Commander;\n\n})();\n",
"type": "application/javascript",
"module-type": "global"
},
"$:/core/modules/commands/build.js": {
"title": "$:/core/modules/commands/build.js",
"text": "/*\\\ntitle: $:/core/modules/commands/build.js\ntype: application/javascript\nmodule-type: command\n\nCommand to build a build target\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.info = {\n\tname: \"build\",\n\tsynchronous: true\n};\n\nvar Command = function(params,commander) {\n\tthis.params = params;\n\tthis.commander = commander;\n};\n\nCommand.prototype.execute = function() {\n\t// Get the build targets defined in the wiki\n\tvar buildTargets = $tw.boot.wikiInfo.build;\n\tif(!buildTargets) {\n\t\treturn \"No build targets defined\";\n\t}\n\t// Loop through each of the specified targets\n\tvar targets;\n\tif(this.params.length > 0) {\n\t\ttargets = this.params;\n\t} else {\n\t\ttargets = Object.keys(buildTargets);\n\t}\n\tfor(var targetIndex=0; targetIndex<targets.length; targetIndex++) {\n\t\tvar target = targets[targetIndex],\n\t\t\tcommands = buildTargets[target];\n\t\tif(!commands) {\n\t\t\treturn \"Build target '\" + target + \"' not found\";\n\t\t}\n\t\t// Add the commands to the queue\n\t\tthis.commander.addCommandTokens(commands);\n\t}\n\treturn null;\n};\n\nexports.Command = Command;\n\n})();\n",
"type": "application/javascript",
"module-type": "command"
},
"$:/core/modules/commands/clearpassword.js": {
"title": "$:/core/modules/commands/clearpassword.js",
"text": "/*\\\ntitle: $:/core/modules/commands/clearpassword.js\ntype: application/javascript\nmodule-type: command\n\nClear password for crypto operations\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.info = {\n\tname: \"clearpassword\",\n\tsynchronous: true\n};\n\nvar Command = function(params,commander,callback) {\n\tthis.params = params;\n\tthis.commander = commander;\n\tthis.callback = callback;\n};\n\nCommand.prototype.execute = function() {\n\t$tw.crypto.setPassword(null);\n\treturn null;\n};\n\nexports.Command = Command;\n\n})();\n",
"type": "application/javascript",
"module-type": "command"
},
"$:/core/modules/commands/deletetiddlers.js": {
"title": "$:/core/modules/commands/deletetiddlers.js",
"text": "/*\\\ntitle: $:/core/modules/commands/deletetiddlers.js\ntype: application/javascript\nmodule-type: command\n\nCommand to delete tiddlers\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.info = {\n\tname: \"deletetiddlers\",\n\tsynchronous: true\n};\n\nvar Command = function(params,commander,callback) {\n\tthis.params = params;\n\tthis.commander = commander;\n\tthis.callback = callback;\n};\n\nCommand.prototype.execute = function() {\n\tif(this.params.length < 1) {\n\t\treturn \"Missing filter\";\n\t}\n\tvar self = this,\n\t\twiki = this.commander.wiki,\n\t\tfilter = this.params[0],\n\t\ttiddlers = wiki.filterTiddlers(filter);\n\t$tw.utils.each(tiddlers,function(title) {\n\t\twiki.deleteTiddler(title);\n\t});\n\treturn null;\n};\n\nexports.Command = Command;\n\n})();\n",
"type": "application/javascript",
"module-type": "command"
},
"$:/core/modules/commands/editions.js": {
"title": "$:/core/modules/commands/editions.js",
"text": "/*\\\ntitle: $:/core/modules/commands/editions.js\ntype: application/javascript\nmodule-type: command\n\nCommand to list the available editions\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.info = {\n\tname: \"editions\",\n\tsynchronous: true\n};\n\nvar Command = function(params,commander) {\n\tthis.params = params;\n\tthis.commander = commander;\n};\n\nCommand.prototype.execute = function() {\n\tvar self = this;\n\t// Output the list\n\tthis.commander.streams.output.write(\"Available editions:\\n\\n\");\n\tvar editionInfo = $tw.utils.getEditionInfo();\n\t$tw.utils.each(editionInfo,function(info,name) {\n\t\tself.commander.streams.output.write(\" \" + name + \": \" + info.description + \"\\n\");\n\t});\n\tthis.commander.streams.output.write(\"\\n\");\n\treturn null;\n};\n\nexports.Command = Command;\n\n})();\n",
"type": "application/javascript",
"module-type": "command"
},
"$:/core/modules/commands/fetch.js": {
"title": "$:/core/modules/commands/fetch.js",
"text": "/*\\\ntitle: $:/core/modules/commands/fetch.js\ntype: application/javascript\nmodule-type: command\n\nCommands to fetch external tiddlers\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.info = {\n\tname: \"fetch\",\n\tsynchronous: false\n};\n\nvar Command = function(params,commander,callback) {\n\tthis.params = params;\n\tthis.commander = commander;\n\tthis.callback = callback;\n};\n\nCommand.prototype.execute = function() {\n\tif(this.params.length < 2) {\n\t\treturn \"Missing subcommand and url\";\n\t}\n\tswitch(this.params[0]) {\n\t\tcase \"raw-file\":\n\t\t\treturn this.fetchFiles({\n\t\t\t\traw: true,\n\t\t\t\turl: this.params[1],\n\t\t\t\ttransformFilter: this.params[2] || \"\",\n\t\t\t\tcallback: this.callback\n\t\t\t});\n\t\t\tbreak;\n\t\tcase \"file\":\n\t\t\treturn this.fetchFiles({\n\t\t\t\turl: this.params[1],\n\t\t\t\timportFilter: this.params[2],\n\t\t\t\ttransformFilter: this.params[3] || \"\",\n\t\t\t\tcallback: this.callback\n\t\t\t});\n\t\t\tbreak;\n\t\tcase \"raw-files\":\n\t\t\treturn this.fetchFiles({\n\t\t\t\traw: true,\n\t\t\t\turlFilter: this.params[1],\n\t\t\t\ttransformFilter: this.params[2] || \"\",\n\t\t\t\tcallback: this.callback\n\t\t\t});\n\t\t\tbreak;\n\t\tcase \"files\":\n\t\t\treturn this.fetchFiles({\n\t\t\t\turlFilter: this.params[1],\n\t\t\t\timportFilter: this.params[2],\n\t\t\t\ttransformFilter: this.params[3] || \"\",\n\t\t\t\tcallback: this.callback\n\t\t\t});\n\t\t\tbreak;\n\t}\n\treturn null;\n};\n\nCommand.prototype.fetchFiles = function(options) {\n\tvar self = this;\n\t// Get the list of URLs\n\tvar urls;\n\tif(options.url) {\n\t\turls = [options.url]\n\t} else if(options.urlFilter) {\n\t\turls = this.commander.wiki.filterTiddlers(options.urlFilter);\n\t} else {\n\t\treturn \"Missing URL\";\n\t}\n\t// Process each URL in turn\n\tvar next = 0;\n\tvar getNextFile = function(err) {\n\t\tif(err) {\n\t\t\treturn options.callback(err);\n\t\t}\n\t\tif(next < urls.length) {\n\t\t\tself.fetchFile(urls[next++],options,getNextFile);\n\t\t} else {\n\t\t\toptions.callback(null);\n\t\t}\n\t};\n\tgetNextFile(null);\n\t// Success\n\treturn null;\n};\n\nCommand.prototype.fetchFile = function(url,options,callback,redirectCount) {\n\tif(redirectCount > 10) {\n\t\treturn callback(\"Error too many redirects retrieving \" + url);\n\t}\n\tvar self = this,\n\t\tlib = url.substr(0,8) === \"https://\" ? require(\"https\") : require(\"http\");\n\tlib.get(url).on(\"response\",function(response) {\n\t var type = (response.headers[\"content-type\"] || \"\").split(\";\")[0],\n\t \tdata = [];\n\t self.commander.write(\"Reading \" + url + \": \");\n\t response.on(\"data\",function(chunk) {\n\t data.push(chunk);\n\t self.commander.write(\".\");\n\t });\n\t response.on(\"end\",function() {\n\t self.commander.write(\"\\n\");\n\t if(response.statusCode === 200) {\n\t\t self.processBody(Buffer.concat(data),type,options,url);\n\t\t callback(null);\n\t } else {\n\t \tif(response.statusCode === 302 || response.statusCode === 303 || response.statusCode === 307) {\n\t \t\treturn self.fetchFile(response.headers.location,options,callback,redirectCount + 1);\n\t \t} else {\n\t\t \treturn callback(\"Error \" + response.statusCode + \" retrieving \" + url)\t \t\t\n\t \t}\n\t }\n\t \t});\n\t \tresponse.on(\"error\",function(e) {\n\t\t\tconsole.log(\"Error on GET request: \" + e);\n\t\t\tcallback(e);\n\t \t});\n\t});\n\treturn null;\n};\n\nCommand.prototype.processBody = function(body,type,options,url) {\n\tvar self = this;\n\t// Collect the tiddlers in a wiki\n\tvar incomingWiki = new $tw.Wiki();\n\tif(options.raw) {\n\t\tvar typeInfo = type ? $tw.config.contentTypeInfo[type] : null,\n\t\t\tencoding = typeInfo ? typeInfo.encoding : \"utf8\";\n\t\tincomingWiki.addTiddler(new $tw.Tiddler({\n\t\t\ttitle: url,\n\t\t\ttype: type,\n\t\t\ttext: body.toString(encoding)\n\t\t}));\n\t} else {\n\t\t// Deserialise the file to extract the tiddlers\n\t\tvar tiddlers = this.commander.wiki.deserializeTiddlers(type || \"text/html\",body.toString(\"utf8\"),{});\n\t\t$tw.utils.each(tiddlers,function(tiddler) {\n\t\t\tincomingWiki.addTiddler(new $tw.Tiddler(tiddler));\n\t\t});\n\t}\n\t// Filter the tiddlers to select the ones we want\n\tvar filteredTitles = incomingWiki.filterTiddlers(options.importFilter || \"[all[tiddlers]]\");\n\t// Import the selected tiddlers\n\tvar count = 0;\n\tincomingWiki.each(function(tiddler,title) {\n\t\tif(filteredTitles.indexOf(title) !== -1) {\n\t\t\tvar newTiddler;\n\t\t\tif(options.transformFilter) {\n\t\t\t\tvar transformedTitle = (incomingWiki.filterTiddlers(options.transformFilter,null,self.commander.wiki.makeTiddlerIterator([title])) || [\"\"])[0];\n\t\t\t\tif(transformedTitle) {\n\t\t\t\t\tself.commander.log(\"Importing \" + title + \" as \" + transformedTitle)\n\t\t\t\t\tnewTiddler = new $tw.Tiddler(tiddler,{title: transformedTitle});\n\t\t\t\t}\n\t\t\t} else {\n\t\t\t\tself.commander.log(\"Importing \" + title)\n\t\t\t\tnewTiddler = tiddler;\n\t\t\t}\n\t\t\tself.commander.wiki.importTiddler(newTiddler);\n\t\t\tcount++;\n\t\t}\n\t});\n\tself.commander.log(\"Imported \" + count + \" tiddlers\")\n};\n\nexports.Command = Command;\n\n})();\n",
"type": "application/javascript",
"module-type": "command"
},
"$:/core/modules/commands/help.js": {
"title": "$:/core/modules/commands/help.js",
"text": "/*\\\ntitle: $:/core/modules/commands/help.js\ntype: application/javascript\nmodule-type: command\n\nHelp command\n\n\\*/\n(function(){\n\n/*jshint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.info = {\n\tname: \"help\",\n\tsynchronous: true\n};\n\nvar Command = function(params,commander) {\n\tthis.params = params;\n\tthis.commander = commander;\n};\n\nCommand.prototype.execute = function() {\n\tvar subhelp = this.params[0] || \"default\",\n\t\thelpBase = \"$:/language/Help/\",\n\t\ttext;\n\tif(!this.commander.wiki.getTiddler(helpBase + subhelp)) {\n\t\tsubhelp = \"notfound\";\n\t}\n\t// Wikify the help as formatted text (ie block elements generate newlines)\n\ttext = this.commander.wiki.renderTiddler(\"text/plain-formatted\",helpBase + subhelp);\n\t// Remove any leading linebreaks\n\ttext = text.replace(/^(\\r?\\n)*/g,\"\");\n\tthis.commander.streams.output.write(text);\n};\n\nexports.Command = Command;\n\n})();\n",
"type": "application/javascript",
"module-type": "command"
},
"$:/core/modules/commands/import.js": {
"title": "$:/core/modules/commands/import.js",
"text": "/*\\\ntitle: $:/core/modules/commands/import.js\ntype: application/javascript\nmodule-type: command\n\nCommand to import tiddlers from a file\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.info = {\n\tname: \"import\",\n\tsynchronous: true\n};\n\nvar Command = function(params,commander,callback) {\n\tthis.params = params;\n\tthis.commander = commander;\n\tthis.callback = callback;\n};\n\nCommand.prototype.execute = function() {\n\tvar self = this,\n\t\tfs = require(\"fs\"),\n\t\tpath = require(\"path\");\n\tif(this.params.length < 2) {\n\t\treturn \"Missing parameters\";\n\t}\n\tvar filename = self.params[0],\n\t\tdeserializer = self.params[1],\n\t\ttitle = self.params[2] || filename,\n\t\tencoding = self.params[3] || \"utf8\",\n\t\ttext = fs.readFileSync(filename,encoding),\n\t\ttiddlers = this.commander.wiki.deserializeTiddlers(null,text,{title: title},{deserializer: deserializer});\n\t$tw.utils.each(tiddlers,function(tiddler) {\n\t\tself.commander.wiki.importTiddler(new $tw.Tiddler(tiddler));\n\t});\n\tthis.commander.log(tiddlers.length + \" tiddler(s) imported\");\n\treturn null;\n};\n\nexports.Command = Command;\n\n})();\n",
"type": "application/javascript",
"module-type": "command"
},
"$:/core/modules/commands/init.js": {
"title": "$:/core/modules/commands/init.js",
"text": "/*\\\ntitle: $:/core/modules/commands/init.js\ntype: application/javascript\nmodule-type: command\n\nCommand to initialise an empty wiki folder\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.info = {\n\tname: \"init\",\n\tsynchronous: true\n};\n\nvar Command = function(params,commander) {\n\tthis.params = params;\n\tthis.commander = commander;\n};\n\nCommand.prototype.execute = function() {\n\tvar fs = require(\"fs\"),\n\t\tpath = require(\"path\");\n\t// Check that we don't already have a valid wiki folder\n\tif($tw.boot.wikiTiddlersPath || ($tw.utils.isDirectory($tw.boot.wikiPath) && !$tw.utils.isDirectoryEmpty($tw.boot.wikiPath))) {\n\t\treturn \"Wiki folder is not empty\";\n\t}\n\t// Loop through each of the specified editions\n\tvar editions = this.params.length > 0 ? this.params : [\"empty\"];\n\tfor(var editionIndex=0; editionIndex<editions.length; editionIndex++) {\n\t\tvar editionName = editions[editionIndex];\n\t\t// Check the edition exists\n\t\tvar editionPath = $tw.findLibraryItem(editionName,$tw.getLibraryItemSearchPaths($tw.config.editionsPath,$tw.config.editionsEnvVar));\n\t\tif(!$tw.utils.isDirectory(editionPath)) {\n\t\t\treturn \"Edition '\" + editionName + \"' not found\";\n\t\t}\n\t\t// Copy the edition content\n\t\tvar err = $tw.utils.copyDirectory(editionPath,$tw.boot.wikiPath);\n\t\tif(!err) {\n\t\t\tthis.commander.streams.output.write(\"Copied edition '\" + editionName + \"' to \" + $tw.boot.wikiPath + \"\\n\");\n\t\t} else {\n\t\t\treturn err;\n\t\t}\n\t}\n\t// Tweak the tiddlywiki.info to remove any included wikis\n\tvar packagePath = $tw.boot.wikiPath + \"/tiddlywiki.info\",\n\t\tpackageJson = JSON.parse(fs.readFileSync(packagePath));\n\tdelete packageJson.includeWikis;\n\tfs.writeFileSync(packagePath,JSON.stringify(packageJson,null,$tw.config.preferences.jsonSpaces));\n\treturn null;\n};\n\nexports.Command = Command;\n\n})();\n",
"type": "application/javascript",
"module-type": "command"
},
"$:/core/modules/commands/listen.js": {
"title": "$:/core/modules/commands/listen.js",
"text": "/*\\\ntitle: $:/core/modules/commands/listen.js\ntype: application/javascript\nmodule-type: command\n\nListen for HTTP requests and serve tiddlers\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Server = require(\"$:/core/modules/server/server.js\").Server;\n\nexports.info = {\n\tname: \"listen\",\n\tsynchronous: true,\n\tnamedParameterMode: true,\n\tmandatoryParameters: [],\n};\n\nvar Command = function(params,commander,callback) {\n\tvar self = this;\n\tthis.params = params;\n\tthis.commander = commander;\n\tthis.callback = callback;\n};\n\nCommand.prototype.execute = function() {\n\tvar self = this;\n\tif(!$tw.boot.wikiTiddlersPath) {\n\t\t$tw.utils.warning(\"Warning: Wiki folder '\" + $tw.boot.wikiPath + \"' does not exist or is missing a tiddlywiki.info file\");\n\t}\n\t// Set up server\n\tthis.server = new Server({\n\t\twiki: this.commander.wiki,\n\t\tvariables: self.params\n\t});\n\tvar nodeServer = this.server.listen();\n\t$tw.hooks.invokeHook(\"th-server-command-post-start\",this.server,nodeServer,\"tiddlywiki\");\n\treturn null;\n};\n\nexports.Command = Command;\n\n})();\n",
"type": "application/javascript",
"module-type": "command"
},
"$:/core/modules/commands/load.js": {
"title": "$:/core/modules/commands/load.js",
"text": "/*\\\ntitle: $:/core/modules/commands/load.js\ntype: application/javascript\nmodule-type: command\n\nCommand to load tiddlers from a file or directory\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.info = {\n\tname: \"load\",\n\tsynchronous: false\n};\n\nvar Command = function(params,commander,callback) {\n\tthis.params = params;\n\tthis.commander = commander;\n\tthis.callback = callback;\n};\n\nCommand.prototype.execute = function() {\n\tvar self = this,\n\t\tfs = require(\"fs\"),\n\t\tpath = require(\"path\");\n\tif(this.params.length < 1) {\n\t\treturn \"Missing filename\";\n\t}\n\tvar tiddlers = $tw.loadTiddlersFromPath(self.params[0]),\n\t\tcount = 0;\n\t$tw.utils.each(tiddlers,function(tiddlerInfo) {\n\t\t$tw.utils.each(tiddlerInfo.tiddlers,function(tiddler) {\n\t\t\tself.commander.wiki.importTiddler(new $tw.Tiddler(tiddler));\n\t\t\tcount++;\n\t\t});\n\t});\n\tif(!count && self.params[1] !== \"noerror\") {\n\t\tself.callback(\"No tiddlers found in file \\\"\" + self.params[0] + \"\\\"\");\n\t} else {\n\t\tself.callback(null);\n\t}\n\treturn null;\n};\n\nexports.Command = Command;\n\n})();\n",
"type": "application/javascript",
"module-type": "command"
},
"$:/core/modules/commands/makelibrary.js": {
"title": "$:/core/modules/commands/makelibrary.js",
"text": "/*\\\ntitle: $:/core/modules/commands/makelibrary.js\ntype: application/javascript\nmodule-type: command\n\nCommand to pack all of the plugins in the library into a plugin tiddler of type \"library\"\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.info = {\n\tname: \"makelibrary\",\n\tsynchronous: true\n};\n\nvar UPGRADE_LIBRARY_TITLE = \"$:/UpgradeLibrary\";\n\nvar Command = function(params,commander,callback) {\n\tthis.params = params;\n\tthis.commander = commander;\n\tthis.callback = callback;\n};\n\nCommand.prototype.execute = function() {\n\tvar wiki = this.commander.wiki,\n\t\tfs = require(\"fs\"),\n\t\tpath = require(\"path\"),\n\t\tupgradeLibraryTitle = this.params[0] || UPGRADE_LIBRARY_TITLE,\n\t\ttiddlers = {};\n\t// Collect up the library plugins\n\tvar collectPlugins = function(folder) {\n\t\t\tvar pluginFolders = $tw.utils.getSubdirectories(folder) || [];\n\t\t\tfor(var p=0; p<pluginFolders.length; p++) {\n\t\t\t\tif(!$tw.boot.excludeRegExp.test(pluginFolders[p])) {\n\t\t\t\t\tpluginFields = $tw.loadPluginFolder(path.resolve(folder,\"./\" + pluginFolders[p]));\n\t\t\t\t\tif(pluginFields && pluginFields.title) {\n\t\t\t\t\t\ttiddlers[pluginFields.title] = pluginFields;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t},\n\t\tcollectPublisherPlugins = function(folder) {\n\t\t\tvar publisherFolders = $tw.utils.getSubdirectories(folder) || [];\n\t\t\tfor(var t=0; t<publisherFolders.length; t++) {\n\t\t\t\tif(!$tw.boot.excludeRegExp.test(publisherFolders[t])) {\n\t\t\t\t\tcollectPlugins(path.resolve(folder,\"./\" + publisherFolders[t]));\n\t\t\t\t}\n\t\t\t}\n\t\t};\n\t$tw.utils.each($tw.getLibraryItemSearchPaths($tw.config.pluginsPath,$tw.config.pluginsEnvVar),collectPublisherPlugins);\n\t$tw.utils.each($tw.getLibraryItemSearchPaths($tw.config.themesPath,$tw.config.themesEnvVar),collectPublisherPlugins);\n\t$tw.utils.each($tw.getLibraryItemSearchPaths($tw.config.languagesPath,$tw.config.languagesEnvVar),collectPlugins);\n\t// Save the upgrade library tiddler\n\tvar pluginFields = {\n\t\ttitle: upgradeLibraryTitle,\n\t\ttype: \"application/json\",\n\t\t\"plugin-type\": \"library\",\n\t\t\"text\": JSON.stringify({tiddlers: tiddlers})\n\t};\n\twiki.addTiddler(new $tw.Tiddler(pluginFields));\n\treturn null;\n};\n\nexports.Command = Command;\n\n})();\n",
"type": "application/javascript",
"module-type": "command"
},
"$:/core/modules/commands/output.js": {
"title": "$:/core/modules/commands/output.js",
"text": "/*\\\ntitle: $:/core/modules/commands/output.js\ntype: application/javascript\nmodule-type: command\n\nCommand to set the default output location (defaults to current working directory)\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.info = {\n\tname: \"output\",\n\tsynchronous: true\n};\n\nvar Command = function(params,commander,callback) {\n\tthis.params = params;\n\tthis.commander = commander;\n\tthis.callback = callback;\n};\n\nCommand.prototype.execute = function() {\n\tvar fs = require(\"fs\"),\n\t\tpath = require(\"path\");\n\tif(this.params.length < 1) {\n\t\treturn \"Missing output path\";\n\t}\n\tthis.commander.outputPath = path.resolve(process.cwd(),this.params[0]);\n\treturn null;\n};\n\nexports.Command = Command;\n\n})();\n",
"type": "application/javascript",
"module-type": "command"
},
"$:/core/modules/commands/password.js": {
"title": "$:/core/modules/commands/password.js",
"text": "/*\\\ntitle: $:/core/modules/commands/password.js\ntype: application/javascript\nmodule-type: command\n\nSave password for crypto operations\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.info = {\n\tname: \"password\",\n\tsynchronous: true\n};\n\nvar Command = function(params,commander,callback) {\n\tthis.params = params;\n\tthis.commander = commander;\n\tthis.callback = callback;\n};\n\nCommand.prototype.execute = function() {\n\tif(this.params.length < 1) {\n\t\treturn \"Missing password\";\n\t}\n\t$tw.crypto.setPassword(this.params[0]);\n\treturn null;\n};\n\nexports.Command = Command;\n\n})();\n",
"type": "application/javascript",
"module-type": "command"
},
"$:/core/modules/commands/render.js": {
"title": "$:/core/modules/commands/render.js",
"text": "/*\\\ntitle: $:/core/modules/commands/render.js\ntype: application/javascript\nmodule-type: command\n\nRender individual tiddlers and save the results to the specified files\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar widget = require(\"$:/core/modules/widgets/widget.js\");\n\nexports.info = {\n\tname: \"render\",\n\tsynchronous: true\n};\n\nvar Command = function(params,commander,callback) {\n\tthis.params = params;\n\tthis.commander = commander;\n\tthis.callback = callback;\n};\n\nCommand.prototype.execute = function() {\n\tif(this.params.length < 1) {\n\t\treturn \"Missing tiddler filter\";\n\t}\n\tvar self = this,\n\t\tfs = require(\"fs\"),\n\t\tpath = require(\"path\"),\n\t\twiki = this.commander.wiki,\n\t\ttiddlerFilter = this.params[0],\n\t\tfilenameFilter = this.params[1] || \"[is[tiddler]addsuffix[.html]]\",\n\t\ttype = this.params[2] || \"text/html\",\n\t\ttemplate = this.params[3],\n\t\tvarName = this.params[4],\n\t\tvarValue = this.params[5],\n\t\ttiddlers = wiki.filterTiddlers(tiddlerFilter);\n\t$tw.utils.each(tiddlers,function(title) {\n\t\tvar parser = wiki.parseTiddler(template || title),\n\t\t\tvariables = {currentTiddler: title};\n\t\tif(varName) {\n\t\t\tvariables[varName] = varValue || \"\";\n\t\t}\n\t\tvar widgetNode = wiki.makeWidget(parser,{variables: variables}),\n\t\t\tcontainer = $tw.fakeDocument.createElement(\"div\");\n\t\twidgetNode.render(container,null);\n\t\tvar text = type === \"text/html\" ? container.innerHTML : container.textContent,\n\t\t\tfilepath = path.resolve(self.commander.outputPath,wiki.filterTiddlers(filenameFilter,$tw.rootWidget,wiki.makeTiddlerIterator([title]))[0]);\n\t\tif(self.commander.verbose) {\n\t\t\tconsole.log(\"Rendering \\\"\" + title + \"\\\" to \\\"\" + filepath + \"\\\"\");\n\t\t}\n\t\t$tw.utils.createFileDirectories(filepath);\n\t\tfs.writeFileSync(filepath,text,\"utf8\");\n\t});\n\treturn null;\n};\n\nexports.Command = Command;\n\n})();\n",
"type": "application/javascript",
"module-type": "command"
},
"$:/core/modules/commands/rendertiddler.js": {
"title": "$:/core/modules/commands/rendertiddler.js",
"text": "/*\\\ntitle: $:/core/modules/commands/rendertiddler.js\ntype: application/javascript\nmodule-type: command\n\nCommand to render a tiddler and save it to a file\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.info = {\n\tname: \"rendertiddler\",\n\tsynchronous: false\n};\n\nvar Command = function(params,commander,callback) {\n\tthis.params = params;\n\tthis.commander = commander;\n\tthis.callback = callback;\n};\n\nCommand.prototype.execute = function() {\n\tif(this.params.length < 2) {\n\t\treturn \"Missing filename\";\n\t}\n\tvar self = this,\n\t\tfs = require(\"fs\"),\n\t\tpath = require(\"path\"),\n\t\ttitle = this.params[0],\n\t\tfilename = path.resolve(this.commander.outputPath,this.params[1]),\n\t\ttype = this.params[2] || \"text/html\",\n\t\ttemplate = this.params[3],\n\t\tname = this.params[4],\n\t\tvalue = this.params[5],\n\t\tvariables = {};\n\t$tw.utils.createFileDirectories(filename);\n\tif(template) {\n\t\tvariables.currentTiddler = title;\n\t\ttitle = template;\n\t}\n\tif(name && value) {\n\t\tvariables[name] = value;\n\t}\n\tfs.writeFile(filename,this.commander.wiki.renderTiddler(type,title,{variables: variables}),\"utf8\",function(err) {\n\t\tself.callback(err);\n\t});\n\treturn null;\n};\n\nexports.Command = Command;\n\n})();\n",
"type": "application/javascript",
"module-type": "command"
},
"$:/core/modules/commands/rendertiddlers.js": {
"title": "$:/core/modules/commands/rendertiddlers.js",
"text": "/*\\\ntitle: $:/core/modules/commands/rendertiddlers.js\ntype: application/javascript\nmodule-type: command\n\nCommand to render several tiddlers to a folder of files\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar widget = require(\"$:/core/modules/widgets/widget.js\");\n\nexports.info = {\n\tname: \"rendertiddlers\",\n\tsynchronous: true\n};\n\nvar Command = function(params,commander,callback) {\n\tthis.params = params;\n\tthis.commander = commander;\n\tthis.callback = callback;\n};\n\nCommand.prototype.execute = function() {\n\tif(this.params.length < 2) {\n\t\treturn \"Missing filename\";\n\t}\n\tvar self = this,\n\t\tfs = require(\"fs\"),\n\t\tpath = require(\"path\"),\n\t\twiki = this.commander.wiki,\n\t\tfilter = this.params[0],\n\t\ttemplate = this.params[1],\n\t\toutputPath = this.commander.outputPath,\n\t\tpathname = path.resolve(outputPath,this.params[2]),\t\t\n\t\ttype = this.params[3] || \"text/html\",\n\t\textension = this.params[4] || \".html\",\n\t\tdeleteDirectory = (this.params[5] || \"\").toLowerCase() !== \"noclean\",\n\t\ttiddlers = wiki.filterTiddlers(filter);\n\tif(deleteDirectory) {\n\t\t$tw.utils.deleteDirectory(pathname);\n\t}\n\t$tw.utils.each(tiddlers,function(title) {\n\t\tvar parser = wiki.parseTiddler(template),\n\t\t\twidgetNode = wiki.makeWidget(parser,{variables: {currentTiddler: title}}),\n\t\t\tcontainer = $tw.fakeDocument.createElement(\"div\");\n\t\twidgetNode.render(container,null);\n\t\tvar text = type === \"text/html\" ? container.innerHTML : container.textContent,\n\t\t\texportPath = null;\n\t\tif($tw.utils.hop($tw.macros,\"tv-get-export-path\")) {\n\t\t\tvar macroPath = $tw.macros[\"tv-get-export-path\"].run.apply(self,[title]);\n\t\t\tif(macroPath) {\n\t\t\t\texportPath = path.resolve(outputPath,macroPath + extension);\n\t\t\t}\n\t\t}\n\t\tvar finalPath = exportPath || path.resolve(pathname,encodeURIComponent(title) + extension);\n\t\t$tw.utils.createFileDirectories(finalPath);\n\t\tfs.writeFileSync(finalPath,text,\"utf8\");\n\t});\n\treturn null;\n};\n\nexports.Command = Command;\n\n})();\n",
"type": "application/javascript",
"module-type": "command"
},
"$:/core/modules/commands/save.js": {
"title": "$:/core/modules/commands/save.js",
"text": "/*\\\ntitle: $:/core/modules/commands/save.js\ntype: application/javascript\nmodule-type: command\n\nSaves individual tiddlers in their raw text or binary format to the specified files\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.info = {\n\tname: \"save\",\n\tsynchronous: true\n};\n\nvar Command = function(params,commander,callback) {\n\tthis.params = params;\n\tthis.commander = commander;\n\tthis.callback = callback;\n};\n\nCommand.prototype.execute = function() {\n\tif(this.params.length < 1) {\n\t\treturn \"Missing filename filter\";\n\t}\n\tvar self = this,\n\t\tfs = require(\"fs\"),\n\t\tpath = require(\"path\"),\n\t\twiki = this.commander.wiki,\n\t\ttiddlerFilter = this.params[0],\n\t\tfilenameFilter = this.params[1] || \"[is[tiddler]]\",\n\t\ttiddlers = wiki.filterTiddlers(tiddlerFilter);\n\t$tw.utils.each(tiddlers,function(title) {\n\t\tvar tiddler = self.commander.wiki.getTiddler(title),\n\t\t\ttype = tiddler.fields.type || \"text/vnd.tiddlywiki\",\n\t\t\tcontentTypeInfo = $tw.config.contentTypeInfo[type] || {encoding: \"utf8\"},\n\t\t\tfilepath = path.resolve(self.commander.outputPath,wiki.filterTiddlers(filenameFilter,$tw.rootWidget,wiki.makeTiddlerIterator([title]))[0]);\n\t\tif(self.commander.verbose) {\n\t\t\tconsole.log(\"Saving \\\"\" + title + \"\\\" to \\\"\" + filepath + \"\\\"\");\n\t\t}\n\t\t$tw.utils.createFileDirectories(filepath);\n\t\tfs.writeFileSync(filepath,tiddler.fields.text,contentTypeInfo.encoding);\n\t});\n\treturn null;\n};\n\nexports.Command = Command;\n\n})();\n",
"type": "application/javascript",
"module-type": "command"
},
"$:/core/modules/commands/savelibrarytiddlers.js": {
"title": "$:/core/modules/commands/savelibrarytiddlers.js",
"text": "/*\\\ntitle: $:/core/modules/commands/savelibrarytiddlers.js\ntype: application/javascript\nmodule-type: command\n\nCommand to save the subtiddlers of a bundle tiddler as a series of JSON files\n\n--savelibrarytiddlers <tiddler> <tiddler-filter> <pathname> <skinnylisting>\n\nThe tiddler identifies the bundle tiddler that contains the subtiddlers.\n\nThe tiddler filter specifies the plugins to be included.\n\nThe pathname specifies the pathname to the folder in which the JSON files should be saved. The filename is the URL encoded title of the subtiddler.\n\nThe skinnylisting specifies the title of the tiddler to which a JSON catalogue of the subtiddlers will be saved. The JSON file contains the same data as the bundle tiddler but with the `text` field removed.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.info = {\n\tname: \"savelibrarytiddlers\",\n\tsynchronous: true\n};\n\nvar Command = function(params,commander,callback) {\n\tthis.params = params;\n\tthis.commander = commander;\n\tthis.callback = callback;\n};\n\nCommand.prototype.execute = function() {\n\tif(this.params.length < 2) {\n\t\treturn \"Missing filename\";\n\t}\n\tvar self = this,\n\t\tfs = require(\"fs\"),\n\t\tpath = require(\"path\"),\n\t\tcontainerTitle = this.params[0],\n\t\tfilter = this.params[1],\n\t\tbasepath = this.params[2],\n\t\tskinnyListTitle = this.params[3];\n\t// Get the container tiddler as data\n\tvar containerData = self.commander.wiki.getTiddlerDataCached(containerTitle,undefined);\n\tif(!containerData) {\n\t\treturn \"'\" + containerTitle + \"' is not a tiddler bundle\";\n\t}\n\t// Filter the list of plugins\n\tvar pluginList = [];\n\t$tw.utils.each(containerData.tiddlers,function(tiddler,title) {\n\t\tpluginList.push(title);\n\t});\n\tvar filteredPluginList;\n\tif(filter) {\n\t\tfilteredPluginList = self.commander.wiki.filterTiddlers(filter,null,self.commander.wiki.makeTiddlerIterator(pluginList));\n\t} else {\n\t\tfilteredPluginList = pluginList;\n\t}\n\t// Iterate through the plugins\n\tvar skinnyList = [];\n\t$tw.utils.each(filteredPluginList,function(title) {\n\t\tvar tiddler = containerData.tiddlers[title];\n\t\t// Save each JSON file and collect the skinny data\n\t\tvar pathname = path.resolve(self.commander.outputPath,basepath + encodeURIComponent(title) + \".json\");\n\t\t$tw.utils.createFileDirectories(pathname);\n\t\tfs.writeFileSync(pathname,JSON.stringify(tiddler),\"utf8\");\n\t\t// Collect the skinny list data\n\t\tvar pluginTiddlers = JSON.parse(tiddler.text),\n\t\t\treadmeContent = (pluginTiddlers.tiddlers[title + \"/readme\"] || {}).text,\n\t\t\tdoesRequireReload = !!self.commander.wiki.doesPluginInfoRequireReload(pluginTiddlers),\n\t\t\ticonTiddler = pluginTiddlers.tiddlers[title + \"/icon\"] || {},\n\t\t\ticonType = iconTiddler.type,\n\t\t\ticonText = iconTiddler.text,\n\t\t\ticonContent;\n\t\tif(iconType && iconText) {\n\t\t\ticonContent = $tw.utils.makeDataUri(iconText,iconType);\n\t\t}\n\t\tskinnyList.push($tw.utils.extend({},tiddler,{\n\t\t\ttext: undefined,\n\t\t\treadme: readmeContent,\n\t\t\t\"requires-reload\": doesRequireReload ? \"yes\" : \"no\",\n\t\t\ticon: iconContent\n\t\t}));\n\t});\n\t// Save the catalogue tiddler\n\tif(skinnyListTitle) {\n\t\tself.commander.wiki.setTiddlerData(skinnyListTitle,skinnyList);\n\t}\n\treturn null;\n};\n\nexports.Command = Command;\n\n})();\n",
"type": "application/javascript",
"module-type": "command"
},
"$:/core/modules/commands/savetiddler.js": {
"title": "$:/core/modules/commands/savetiddler.js",
"text": "/*\\\ntitle: $:/core/modules/commands/savetiddler.js\ntype: application/javascript\nmodule-type: command\n\nCommand to save the content of a tiddler to a file\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.info = {\n\tname: \"savetiddler\",\n\tsynchronous: false\n};\n\nvar Command = function(params,commander,callback) {\n\tthis.params = params;\n\tthis.commander = commander;\n\tthis.callback = callback;\n};\n\nCommand.prototype.execute = function() {\n\tif(this.params.length < 2) {\n\t\treturn \"Missing filename\";\n\t}\n\tvar self = this,\n\t\tfs = require(\"fs\"),\n\t\tpath = require(\"path\"),\n\t\ttitle = this.params[0],\n\t\tfilename = path.resolve(this.commander.outputPath,this.params[1]),\n\t\ttiddler = this.commander.wiki.getTiddler(title);\n\tif(tiddler) {\n\t\tvar type = tiddler.fields.type || \"text/vnd.tiddlywiki\",\n\t\t\tcontentTypeInfo = $tw.config.contentTypeInfo[type] || {encoding: \"utf8\"};\n\t\t$tw.utils.createFileDirectories(filename);\n\t\tfs.writeFile(filename,tiddler.fields.text,contentTypeInfo.encoding,function(err) {\n\t\t\tself.callback(err);\n\t\t});\n\t} else {\n\t\treturn \"Missing tiddler: \" + title;\n\t}\n\treturn null;\n};\n\nexports.Command = Command;\n\n})();\n",
"type": "application/javascript",
"module-type": "command"
},
"$:/core/modules/commands/savetiddlers.js": {
"title": "$:/core/modules/commands/savetiddlers.js",
"text": "/*\\\ntitle: $:/core/modules/commands/savetiddlers.js\ntype: application/javascript\nmodule-type: command\n\nCommand to save several tiddlers to a folder of files\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar widget = require(\"$:/core/modules/widgets/widget.js\");\n\nexports.info = {\n\tname: \"savetiddlers\",\n\tsynchronous: true\n};\n\nvar Command = function(params,commander,callback) {\n\tthis.params = params;\n\tthis.commander = commander;\n\tthis.callback = callback;\n};\n\nCommand.prototype.execute = function() {\n\tif(this.params.length < 1) {\n\t\treturn \"Missing filename\";\n\t}\n\tvar self = this,\n\t\tfs = require(\"fs\"),\n\t\tpath = require(\"path\"),\n\t\twiki = this.commander.wiki,\n\t\tfilter = this.params[0],\n\t\tpathname = path.resolve(this.commander.outputPath,this.params[1]),\n\t\tdeleteDirectory = (this.params[2] || \"\").toLowerCase() !== \"noclean\",\n\t\ttiddlers = wiki.filterTiddlers(filter);\n\tif(deleteDirectory) {\n\t\t$tw.utils.deleteDirectory(pathname);\n\t}\n\t$tw.utils.createDirectory(pathname);\n\t$tw.utils.each(tiddlers,function(title) {\n\t\tvar tiddler = self.commander.wiki.getTiddler(title),\n\t\t\ttype = tiddler.fields.type || \"text/vnd.tiddlywiki\",\n\t\t\tcontentTypeInfo = $tw.config.contentTypeInfo[type] || {encoding: \"utf8\"},\n\t\t\tfilename = path.resolve(pathname,encodeURIComponent(title));\n\t\tfs.writeFileSync(filename,tiddler.fields.text,contentTypeInfo.encoding);\n\t});\n\treturn null;\n};\n\nexports.Command = Command;\n\n})();\n",
"type": "application/javascript",
"module-type": "command"
},
"$:/core/modules/commands/savewikifolder.js": {
"title": "$:/core/modules/commands/savewikifolder.js",
"text": "/*\\\ntitle: $:/core/modules/commands/savewikifolder.js\ntype: application/javascript\nmodule-type: command\n\nCommand to save the current wiki as a wiki folder\n\n--savewikifolder <wikifolderpath> [<filter>]\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.info = {\n\tname: \"savewikifolder\",\n\tsynchronous: true\n};\n\nvar fs,path;\nif($tw.node) {\n\tfs = require(\"fs\");\n\tpath = require(\"path\");\n}\n\nvar Command = function(params,commander,callback) {\n\tthis.params = params;\n\tthis.commander = commander;\n\tthis.callback = callback;\n};\n\nCommand.prototype.execute = function() {\n\tif(this.params.length < 1) {\n\t\treturn \"Missing wiki folder path\";\n\t}\n\tvar wikifoldermaker = new WikiFolderMaker(this.params[0],this.params[1],this.commander);\n\treturn wikifoldermaker.save();\n};\n\nfunction WikiFolderMaker(wikiFolderPath,wikiFilter,commander) {\n\tthis.wikiFolderPath = wikiFolderPath;\n\tthis.wikiFilter = wikiFilter || \"[all[tiddlers]]\";\n\tthis.commander = commander;\n\tthis.wiki = commander.wiki;\n\tthis.savedPaths = []; // So that we can detect filename clashes\n}\n\nWikiFolderMaker.prototype.log = function(str) {\n\tif(this.commander.verbose) {\n\t\tconsole.log(str);\n\t}\n};\n\nWikiFolderMaker.prototype.tiddlersToIgnore = [\n\t\"$:/boot/boot.css\",\n\t\"$:/boot/boot.js\",\n\t\"$:/boot/bootprefix.js\",\n\t\"$:/core\",\n\t\"$:/library/sjcl.js\",\n\t\"$:/temp/info-plugin\"\n];\n\n/*\nReturns null if successful, or an error string if there was an error\n*/\nWikiFolderMaker.prototype.save = function() {\n\tvar self = this;\n\t// Check that the output directory doesn't exist\n\tif(fs.existsSync(this.wikiFolderPath) && !$tw.utils.isDirectoryEmpty(this.wikiFolderPath)) {\n\t\treturn \"The unpackwiki command requires that the output wiki folder be empty\";\n\t}\n\t// Get the tiddlers from the source wiki\n\tvar tiddlerTitles = this.wiki.filterTiddlers(this.wikiFilter);\n\t// Initialise a new tiddlwiki.info file\n\tvar newWikiInfo = {};\n\t// Process each incoming tiddler in turn\n\t$tw.utils.each(tiddlerTitles,function(title) {\n\t\tvar tiddler = self.wiki.getTiddler(title);\n\t\tif(tiddler) {\n\t\t\tif(self.tiddlersToIgnore.indexOf(title) !== -1) {\n\t\t\t\t// Ignore the core plugin and the ephemeral info plugin\n\t\t\t\tself.log(\"Ignoring tiddler: \" + title);\n\t\t\t} else {\n\t\t\t\tvar type = tiddler.fields.type,\n\t\t\t\t\tpluginType = tiddler.fields[\"plugin-type\"];\n\t\t\t\tif(type === \"application/json\" && pluginType) {\n\t\t\t\t\t// Plugin tiddler\n\t\t\t\t\tvar libraryDetails = self.findPluginInLibrary(title);\n\t\t\t\t\tif(libraryDetails) {\n\t\t\t\t\t\t// A plugin from the core library\n\t\t\t\t\t\tself.log(\"Adding built-in plugin: \" + libraryDetails.name);\n\t\t\t\t\t\tnewWikiInfo[libraryDetails.type] = newWikiInfo[libraryDetails.type] || [];\n\t\t\t\t\t\t$tw.utils.pushTop(newWikiInfo[libraryDetails.type],libraryDetails.name);\n\t\t\t\t\t} else {\n\t\t\t\t\t\t// A custom plugin\n\t\t\t\t\t\tself.log(\"Processing custom plugin: \" + title);\n\t\t\t\t\t\tself.saveCustomPlugin(tiddler);\n\t\t\t\t\t}\t\t\t\t\n\t\t\t\t} else {\n\t\t\t\t\t// Ordinary tiddler\n\t\t\t\t\tself.saveTiddler(\"tiddlers\",tiddler);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t});\n\t// Save the tiddlywiki.info file\n\tthis.saveJSONFile(\"tiddlywiki.info\",newWikiInfo);\n\tself.log(\"Writing tiddlywiki.info: \" + JSON.stringify(newWikiInfo,null,$tw.config.preferences.jsonSpaces));\n\treturn null;\n};\n\n/*\nTest whether the specified tiddler is a plugin in the plugin library\n*/\nWikiFolderMaker.prototype.findPluginInLibrary = function(title) {\n\tvar parts = title.split(\"/\"),\n\t\tpluginPath, type, name;\n\tif(parts[0] === \"$:\") {\n\t\tif(parts[1] === \"languages\" && parts.length === 3) {\n\t\t\tpluginPath = \"languages\" + path.sep + parts[2];\n\t\t\ttype = parts[1];\n\t\t\tname = parts[2];\n\t\t} else if(parts[1] === \"plugins\" || parts[1] === \"themes\" && parts.length === 4) {\n\t\t\tpluginPath = parts[1] + path.sep + parts[2] + path.sep + parts[3];\n\t\t\ttype = parts[1];\n\t\t\tname = parts[2] + \"/\" + parts[3];\n\t\t}\n\t}\n\tif(pluginPath && type && name) {\n\t\tpluginPath = path.resolve($tw.boot.bootPath,\"..\",pluginPath);\n\t\tif(fs.existsSync(pluginPath)) {\n\t\t\treturn {\n\t\t\t\tpluginPath: pluginPath,\n\t\t\t\ttype: type,\n\t\t\t\tname: name\n\t\t\t};\n\t\t}\n\t}\n\treturn false;\n};\n\nWikiFolderMaker.prototype.saveCustomPlugin = function(pluginTiddler) {\n\tvar self = this,\n\t\tpluginTitle = pluginTiddler.fields.title,\n\t\ttitleParts = pluginTitle.split(\"/\"),\n\t\tdirectory = $tw.utils.generateTiddlerFilepath(titleParts[titleParts.length - 1],{\n\t\t\tdirectory: path.resolve(this.wikiFolderPath,pluginTiddler.fields[\"plugin-type\"] + \"s\")\n\t\t}),\n\t\tpluginInfo = pluginTiddler.getFieldStrings({exclude: [\"text\",\"type\"]});\n\tthis.saveJSONFile(directory + path.sep + \"plugin.info\",pluginInfo);\n\tself.log(\"Writing \" + directory + path.sep + \"plugin.info: \" + JSON.stringify(pluginInfo,null,$tw.config.preferences.jsonSpaces));\n\tvar pluginTiddlers = JSON.parse(pluginTiddler.fields.text).tiddlers; // A hashmap of tiddlers in the plugin\n\t$tw.utils.each(pluginTiddlers,function(tiddler) {\n\t\tself.saveTiddler(directory,new $tw.Tiddler(tiddler));\n\t});\n};\n\nWikiFolderMaker.prototype.saveTiddler = function(directory,tiddler) {\n\tvar fileInfo = $tw.utils.generateTiddlerFileInfo(tiddler,{\n\t\tdirectory: path.resolve(this.wikiFolderPath,directory),\n\t\twiki: this.wiki\n\t});\n\t$tw.utils.saveTiddlerToFileSync(tiddler,fileInfo);\n};\n\nWikiFolderMaker.prototype.saveJSONFile = function(filename,json) {\n\tthis.saveTextFile(filename,JSON.stringify(json,null,$tw.config.preferences.jsonSpaces));\n};\n\nWikiFolderMaker.prototype.saveTextFile = function(filename,data) {\n\tthis.saveFile(filename,\"utf8\",data);\n};\n\nWikiFolderMaker.prototype.saveFile = function(filename,encoding,data) {\n\tvar filepath = path.resolve(this.wikiFolderPath,filename);\n\t$tw.utils.createFileDirectories(filepath);\n\tfs.writeFileSync(filepath,data,encoding);\n};\n\nexports.Command = Command;\n\n})();\n",
"type": "application/javascript",
"module-type": "command"
},
"$:/core/modules/commands/server.js": {
"title": "$:/core/modules/commands/server.js",
"text": "/*\\\ntitle: $:/core/modules/commands/server.js\ntype: application/javascript\nmodule-type: command\n\nDeprecated legacy command for serving tiddlers\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Server = require(\"$:/core/modules/server/server.js\").Server;\n\nexports.info = {\n\tname: \"server\",\n\tsynchronous: true\n};\n\nvar Command = function(params,commander,callback) {\n\tvar self = this;\n\tthis.params = params;\n\tthis.commander = commander;\n\tthis.callback = callback;\n};\n\nCommand.prototype.execute = function() {\n\tif(!$tw.boot.wikiTiddlersPath) {\n\t\t$tw.utils.warning(\"Warning: Wiki folder '\" + $tw.boot.wikiPath + \"' does not exist or is missing a tiddlywiki.info file\");\n\t}\n\t// Set up server\n\tthis.server = new Server({\n\t\twiki: this.commander.wiki,\n\t\tvariables: {\n\t\t\tport: this.params[0],\n\t\t\thost: this.params[6],\n\t\t\t\"root-tiddler\": this.params[1],\n\t\t\t\"root-render-type\": this.params[2],\n\t\t\t\"root-serve-type\": this.params[3],\n\t\t\tusername: this.params[4],\n\t\t\tpassword: this.params[5],\n\t\t\t\"path-prefix\": this.params[7],\n\t\t\t\"debug-level\": this.params[8]\n\t\t}\n\t});\n\tvar nodeServer = this.server.listen();\n\t$tw.hooks.invokeHook(\"th-server-command-post-start\",this.server,nodeServer,\"tiddlywiki\");\n\treturn null;\n};\n\nexports.Command = Command;\n\n})();\n",
"type": "application/javascript",
"module-type": "command"
},
"$:/core/modules/commands/setfield.js": {
"title": "$:/core/modules/commands/setfield.js",
"text": "/*\\\ntitle: $:/core/modules/commands/setfield.js\ntype: application/javascript\nmodule-type: command\n\nCommand to modify selected tiddlers to set a field to the text of a template tiddler that has been wikified with the selected tiddler as the current tiddler.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar widget = require(\"$:/core/modules/widgets/widget.js\");\n\nexports.info = {\n\tname: \"setfield\",\n\tsynchronous: true\n};\n\nvar Command = function(params,commander,callback) {\n\tthis.params = params;\n\tthis.commander = commander;\n\tthis.callback = callback;\n};\n\nCommand.prototype.execute = function() {\n\tif(this.params.length < 4) {\n\t\treturn \"Missing parameters\";\n\t}\n\tvar self = this,\n\t\twiki = this.commander.wiki,\n\t\tfilter = this.params[0],\n\t\tfieldname = this.params[1] || \"text\",\n\t\ttemplatetitle = this.params[2],\n\t\trendertype = this.params[3] || \"text/plain\",\n\t\ttiddlers = wiki.filterTiddlers(filter);\n\t$tw.utils.each(tiddlers,function(title) {\n\t\tvar parser = wiki.parseTiddler(templatetitle),\n\t\t\tnewFields = {},\n\t\t\ttiddler = wiki.getTiddler(title);\n\t\tif(parser) {\n\t\t\tvar widgetNode = wiki.makeWidget(parser,{variables: {currentTiddler: title}});\n\t\t\tvar container = $tw.fakeDocument.createElement(\"div\");\n\t\t\twidgetNode.render(container,null);\n\t\t\tnewFields[fieldname] = rendertype === \"text/html\" ? container.innerHTML : container.textContent;\n\t\t} else {\n\t\t\tnewFields[fieldname] = undefined;\n\t\t}\n\t\twiki.addTiddler(new $tw.Tiddler(tiddler,newFields));\n\t});\n\treturn null;\n};\n\nexports.Command = Command;\n\n})();\n",
"type": "application/javascript",
"module-type": "command"
},
"$:/core/modules/commands/unpackplugin.js": {
"title": "$:/core/modules/commands/unpackplugin.js",
"text": "/*\\\ntitle: $:/core/modules/commands/unpackplugin.js\ntype: application/javascript\nmodule-type: command\n\nCommand to extract the shadow tiddlers from within a plugin\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.info = {\n\tname: \"unpackplugin\",\n\tsynchronous: true\n};\n\nvar Command = function(params,commander,callback) {\n\tthis.params = params;\n\tthis.commander = commander;\n\tthis.callback = callback;\n};\n\nCommand.prototype.execute = function() {\n\tif(this.params.length < 1) {\n\t\treturn \"Missing plugin name\";\n\t}\n\tvar self = this,\n\t\ttitle = this.params[0],\n\t\tpluginData = this.commander.wiki.getTiddlerDataCached(title);\n\tif(!pluginData) {\n\t\treturn \"Plugin '\" + title + \"' not found\";\n\t}\n\t$tw.utils.each(pluginData.tiddlers,function(tiddler) {\n\t\tself.commander.wiki.addTiddler(new $tw.Tiddler(tiddler));\n\t});\n\treturn null;\n};\n\nexports.Command = Command;\n\n})();\n",
"type": "application/javascript",
"module-type": "command"
},
"$:/core/modules/commands/verbose.js": {
"title": "$:/core/modules/commands/verbose.js",
"text": "/*\\\ntitle: $:/core/modules/commands/verbose.js\ntype: application/javascript\nmodule-type: command\n\nVerbose command\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.info = {\n\tname: \"verbose\",\n\tsynchronous: true\n};\n\nvar Command = function(params,commander) {\n\tthis.params = params;\n\tthis.commander = commander;\n};\n\nCommand.prototype.execute = function() {\n\tthis.commander.verbose = true;\n\t// Output the boot message log\n\tthis.commander.streams.output.write(\"Boot log:\\n \" + $tw.boot.logMessages.join(\"\\n \") + \"\\n\");\n\treturn null; // No error\n};\n\nexports.Command = Command;\n\n})();\n",
"type": "application/javascript",
"module-type": "command"
},
"$:/core/modules/commands/version.js": {
"title": "$:/core/modules/commands/version.js",
"text": "/*\\\ntitle: $:/core/modules/commands/version.js\ntype: application/javascript\nmodule-type: command\n\nVersion command\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.info = {\n\tname: \"version\",\n\tsynchronous: true\n};\n\nvar Command = function(params,commander) {\n\tthis.params = params;\n\tthis.commander = commander;\n};\n\nCommand.prototype.execute = function() {\n\tthis.commander.streams.output.write($tw.version + \"\\n\");\n\treturn null; // No error\n};\n\nexports.Command = Command;\n\n})();\n",
"type": "application/javascript",
"module-type": "command"
},
"$:/core/modules/config.js": {
"title": "$:/core/modules/config.js",
"text": "/*\\\ntitle: $:/core/modules/config.js\ntype: application/javascript\nmodule-type: config\n\nCore configuration constants\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.preferences = {};\n\nexports.preferences.notificationDuration = 3 * 1000;\nexports.preferences.jsonSpaces = 4;\n\nexports.textPrimitives = {\n\tupperLetter: \"[A-Z\\u00c0-\\u00d6\\u00d8-\\u00de\\u0150\\u0170]\",\n\tlowerLetter: \"[a-z\\u00df-\\u00f6\\u00f8-\\u00ff\\u0151\\u0171]\",\n\tanyLetter: \"[A-Za-z0-9\\u00c0-\\u00d6\\u00d8-\\u00de\\u00df-\\u00f6\\u00f8-\\u00ff\\u0150\\u0170\\u0151\\u0171]\",\n\tblockPrefixLetters:\t\"[A-Za-z0-9-_\\u00c0-\\u00d6\\u00d8-\\u00de\\u00df-\\u00f6\\u00f8-\\u00ff\\u0150\\u0170\\u0151\\u0171]\"\n};\n\nexports.textPrimitives.unWikiLink = \"~\";\nexports.textPrimitives.wikiLink = exports.textPrimitives.upperLetter + \"+\" +\n\texports.textPrimitives.lowerLetter + \"+\" +\n\texports.textPrimitives.upperLetter +\n\texports.textPrimitives.anyLetter + \"*\";\n\nexports.htmlEntities = {quot:34, amp:38, apos:39, lt:60, gt:62, nbsp:160, iexcl:161, cent:162, pound:163, curren:164, yen:165, brvbar:166, sect:167, uml:168, copy:169, ordf:170, laquo:171, not:172, shy:173, reg:174, macr:175, deg:176, plusmn:177, sup2:178, sup3:179, acute:180, micro:181, para:182, middot:183, cedil:184, sup1:185, ordm:186, raquo:187, frac14:188, frac12:189, frac34:190, iquest:191, Agrave:192, Aacute:193, Acirc:194, Atilde:195, Auml:196, Aring:197, AElig:198, Ccedil:199, Egrave:200, Eacute:201, Ecirc:202, Euml:203, Igrave:204, Iacute:205, Icirc:206, Iuml:207, ETH:208, Ntilde:209, Ograve:210, Oacute:211, Ocirc:212, Otilde:213, Ouml:214, times:215, Oslash:216, Ugrave:217, Uacute:218, Ucirc:219, Uuml:220, Yacute:221, THORN:222, szlig:223, agrave:224, aacute:225, acirc:226, atilde:227, auml:228, aring:229, aelig:230, ccedil:231, egrave:232, eacute:233, ecirc:234, euml:235, igrave:236, iacute:237, icirc:238, iuml:239, eth:240, ntilde:241, ograve:242, oacute:243, ocirc:244, otilde:245, ouml:246, divide:247, oslash:248, ugrave:249, uacute:250, ucirc:251, uuml:252, yacute:253, thorn:254, yuml:255, OElig:338, oelig:339, Scaron:352, scaron:353, Yuml:376, fnof:402, circ:710, tilde:732, Alpha:913, Beta:914, Gamma:915, Delta:916, Epsilon:917, Zeta:918, Eta:919, Theta:920, Iota:921, Kappa:922, Lambda:923, Mu:924, Nu:925, Xi:926, Omicron:927, Pi:928, Rho:929, Sigma:931, Tau:932, Upsilon:933, Phi:934, Chi:935, Psi:936, Omega:937, alpha:945, beta:946, gamma:947, delta:948, epsilon:949, zeta:950, eta:951, theta:952, iota:953, kappa:954, lambda:955, mu:956, nu:957, xi:958, omicron:959, pi:960, rho:961, sigmaf:962, sigma:963, tau:964, upsilon:965, phi:966, chi:967, psi:968, omega:969, thetasym:977, upsih:978, piv:982, ensp:8194, emsp:8195, thinsp:8201, zwnj:8204, zwj:8205, lrm:8206, rlm:8207, ndash:8211, mdash:8212, lsquo:8216, rsquo:8217, sbquo:8218, ldquo:8220, rdquo:8221, bdquo:8222, dagger:8224, Dagger:8225, bull:8226, hellip:8230, permil:8240, prime:8242, Prime:8243, lsaquo:8249, rsaquo:8250, oline:8254, frasl:8260, euro:8364, image:8465, weierp:8472, real:8476, trade:8482, alefsym:8501, larr:8592, uarr:8593, rarr:8594, darr:8595, harr:8596, crarr:8629, lArr:8656, uArr:8657, rArr:8658, dArr:8659, hArr:8660, forall:8704, part:8706, exist:8707, empty:8709, nabla:8711, isin:8712, notin:8713, ni:8715, prod:8719, sum:8721, minus:8722, lowast:8727, radic:8730, prop:8733, infin:8734, ang:8736, and:8743, or:8744, cap:8745, cup:8746, int:8747, there4:8756, sim:8764, cong:8773, asymp:8776, ne:8800, equiv:8801, le:8804, ge:8805, sub:8834, sup:8835, nsub:8836, sube:8838, supe:8839, oplus:8853, otimes:8855, perp:8869, sdot:8901, lceil:8968, rceil:8969, lfloor:8970, rfloor:8971, lang:9001, rang:9002, loz:9674, spades:9824, clubs:9827, hearts:9829, diams:9830 };\n\nexports.htmlVoidElements = \"area,base,br,col,command,embed,hr,img,input,keygen,link,meta,param,source,track,wbr\".split(\",\");\n\nexports.htmlBlockElements = \"address,article,aside,audio,blockquote,canvas,dd,div,dl,fieldset,figcaption,figure,footer,form,h1,h2,h3,h4,h5,h6,header,hgroup,hr,li,noscript,ol,output,p,pre,section,table,tfoot,ul,video\".split(\",\");\n\nexports.htmlUnsafeElements = \"script\".split(\",\");\n\n})();\n",
"type": "application/javascript",
"module-type": "config"
},
"$:/core/modules/deserializers.js": {
"title": "$:/core/modules/deserializers.js",
"text": "/*\\\ntitle: $:/core/modules/deserializers.js\ntype: application/javascript\nmodule-type: tiddlerdeserializer\n\nFunctions to deserialise tiddlers from a block of text\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nUtility function to parse an old-style tiddler DIV in a *.tid file. It looks like this:\n\n<div title=\"Title\" creator=\"JoeBloggs\" modifier=\"JoeBloggs\" created=\"201102111106\" modified=\"201102111310\" tags=\"myTag [[my long tag]]\">\n<pre>The text of the tiddler (without the expected HTML encoding).\n</pre>\n</div>\n\nNote that the field attributes are HTML encoded, but that the body of the <PRE> tag is not encoded.\n\nWhen these tiddler DIVs are encountered within a TiddlyWiki HTML file then the body is encoded in the usual way.\n*/\nvar parseTiddlerDiv = function(text /* [,fields] */) {\n\t// Slot together the default results\n\tvar result = {};\n\tif(arguments.length > 1) {\n\t\tfor(var f=1; f<arguments.length; f++) {\n\t\t\tvar fields = arguments[f];\n\t\t\tfor(var t in fields) {\n\t\t\t\tresult[t] = fields[t];\t\t\n\t\t\t}\n\t\t}\n\t}\n\t// Parse the DIV body\n\tvar startRegExp = /^\\s*<div\\s+([^>]*)>(\\s*<pre>)?/gi,\n\t\tendRegExp,\n\t\tmatch = startRegExp.exec(text);\n\tif(match) {\n\t\t// Old-style DIVs don't have the <pre> tag\n\t\tif(match[2]) {\n\t\t\tendRegExp = /<\\/pre>\\s*<\\/div>\\s*$/gi;\n\t\t} else {\n\t\t\tendRegExp = /<\\/div>\\s*$/gi;\n\t\t}\n\t\tvar endMatch = endRegExp.exec(text);\n\t\tif(endMatch) {\n\t\t\t// Extract the text\n\t\t\tresult.text = text.substring(match.index + match[0].length,endMatch.index);\n\t\t\t// Process the attributes\n\t\t\tvar attrRegExp = /\\s*([^=\\s]+)\\s*=\\s*(?:\"([^\"]*)\"|'([^']*)')/gi,\n\t\t\t\tattrMatch;\n\t\t\tdo {\n\t\t\t\tattrMatch = attrRegExp.exec(match[1]);\n\t\t\t\tif(attrMatch) {\n\t\t\t\t\tvar name = attrMatch[1];\n\t\t\t\t\tvar value = attrMatch[2] !== undefined ? attrMatch[2] : attrMatch[3];\n\t\t\t\t\tresult[name] = value;\n\t\t\t\t}\n\t\t\t} while(attrMatch);\n\t\t\treturn result;\n\t\t}\n\t}\n\treturn undefined;\n};\n\nexports[\"application/x-tiddler-html-div\"] = function(text,fields) {\n\treturn [parseTiddlerDiv(text,fields)];\n};\n\nexports[\"application/json\"] = function(text,fields) {\n\tvar incoming,\n\t\tresults = [];\n\ttry {\n\t\tincoming = JSON.parse(text);\n\t} catch(e) {\n\t\tincoming = [{\n\t\t\ttitle: \"JSON error: \" + e,\n\t\t\ttext: \"\"\n\t\t}]\n\t}\n\tif(!$tw.utils.isArray(incoming)) {\n\t\tincoming = [incoming];\n\t}\n\tfor(var t=0; t<incoming.length; t++) {\n\t\tvar incomingFields = incoming[t],\n\t\t\tfields = {};\n\t\tfor(var f in incomingFields) {\n\t\t\tif(typeof incomingFields[f] === \"string\") {\n\t\t\t\tfields[f] = incomingFields[f];\n\t\t\t}\n\t\t}\n\t\tresults.push(fields);\n\t}\n\treturn results;\n};\n\n/*\nParse an HTML file into tiddlers. There are three possibilities:\n# A TiddlyWiki classic HTML file containing `text/x-tiddlywiki` tiddlers\n# A TiddlyWiki5 HTML file containing `text/vnd.tiddlywiki` tiddlers\n# An ordinary HTML file\n*/\nexports[\"text/html\"] = function(text,fields) {\n\t// Check if we've got a store area\n\tvar storeAreaMarkerRegExp = /<div id=[\"']?storeArea['\"]?( style=[\"']?display:none;[\"']?)?>/gi,\n\t\tmatch = storeAreaMarkerRegExp.exec(text);\n\tif(match) {\n\t\t// If so, it's either a classic TiddlyWiki file or an unencrypted TW5 file\n\t\t// First read the normal tiddlers\n\t\tvar results = deserializeTiddlyWikiFile(text,storeAreaMarkerRegExp.lastIndex,!!match[1],fields);\n\t\t// Then any system tiddlers\n\t\tvar systemAreaMarkerRegExp = /<div id=[\"']?systemArea['\"]?( style=[\"']?display:none;[\"']?)?>/gi,\n\t\t\tsysMatch = systemAreaMarkerRegExp.exec(text);\n\t\tif(sysMatch) {\n\t\t\tresults.push.apply(results,deserializeTiddlyWikiFile(text,systemAreaMarkerRegExp.lastIndex,!!sysMatch[1],fields));\n\t\t}\n\t\treturn results;\n\t} else {\n\t\t// Check whether we've got an encrypted file\n\t\tvar encryptedStoreArea = $tw.utils.extractEncryptedStoreArea(text);\n\t\tif(encryptedStoreArea) {\n\t\t\t// If so, attempt to decrypt it using the current password\n\t\t\treturn $tw.utils.decryptStoreArea(encryptedStoreArea);\n\t\t} else {\n\t\t\t// It's not a TiddlyWiki so we'll return the entire HTML file as a tiddler\n\t\t\treturn deserializeHtmlFile(text,fields);\n\t\t}\n\t}\n};\n\nfunction deserializeHtmlFile(text,fields) {\n\tvar result = {};\n\t$tw.utils.each(fields,function(value,name) {\n\t\tresult[name] = value;\n\t});\n\tresult.text = text;\n\tresult.type = \"text/html\";\n\treturn [result];\n}\n\nfunction deserializeTiddlyWikiFile(text,storeAreaEnd,isTiddlyWiki5,fields) {\n\tvar results = [],\n\t\tendOfDivRegExp = /(<\\/div>\\s*)/gi,\n\t\tstartPos = storeAreaEnd,\n\t\tdefaultType = isTiddlyWiki5 ? undefined : \"text/x-tiddlywiki\";\n\tendOfDivRegExp.lastIndex = startPos;\n\tvar match = endOfDivRegExp.exec(text);\n\twhile(match) {\n\t\tvar endPos = endOfDivRegExp.lastIndex,\n\t\t\ttiddlerFields = parseTiddlerDiv(text.substring(startPos,endPos),fields,{type: defaultType});\n\t\tif(!tiddlerFields) {\n\t\t\tbreak;\n\t\t}\n\t\t$tw.utils.each(tiddlerFields,function(value,name) {\n\t\t\tif(typeof value === \"string\") {\n\t\t\t\ttiddlerFields[name] = $tw.utils.htmlDecode(value);\n\t\t\t}\n\t\t});\n\t\tif(tiddlerFields.text !== null) {\n\t\t\tresults.push(tiddlerFields);\n\t\t}\n\t\tstartPos = endPos;\n\t\tmatch = endOfDivRegExp.exec(text);\n\t}\n\treturn results;\n}\n\n})();\n",
"type": "application/javascript",
"module-type": "tiddlerdeserializer"
},
"$:/core/modules/editor/engines/framed.js": {
"title": "$:/core/modules/editor/engines/framed.js",
"text": "/*\\\ntitle: $:/core/modules/editor/engines/framed.js\ntype: application/javascript\nmodule-type: library\n\nText editor engine based on a simple input or textarea within an iframe. This is done so that the selection is preserved even when clicking away from the textarea\n\n\\*/\n(function(){\n\n/*jslint node: true,browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar HEIGHT_VALUE_TITLE = \"$:/config/TextEditor/EditorHeight/Height\";\n\nfunction FramedEngine(options) {\n\t// Save our options\n\toptions = options || {};\n\tthis.widget = options.widget;\n\tthis.value = options.value;\n\tthis.parentNode = options.parentNode;\n\tthis.nextSibling = options.nextSibling;\n\t// Create our hidden dummy text area for reading styles\n\tthis.dummyTextArea = this.widget.document.createElement(\"textarea\");\n\tif(this.widget.editClass) {\n\t\tthis.dummyTextArea.className = this.widget.editClass;\n\t}\n\tthis.dummyTextArea.setAttribute(\"hidden\",\"true\");\n\tthis.parentNode.insertBefore(this.dummyTextArea,this.nextSibling);\n\tthis.widget.domNodes.push(this.dummyTextArea);\n\t// Create the iframe\n\tthis.iframeNode = this.widget.document.createElement(\"iframe\");\n\tthis.parentNode.insertBefore(this.iframeNode,this.nextSibling);\n\tthis.iframeDoc = this.iframeNode.contentWindow.document;\n\t// (Firefox requires us to put some empty content in the iframe)\n\tthis.iframeDoc.open();\n\tthis.iframeDoc.write(\"\");\n\tthis.iframeDoc.close();\n\t// Style the iframe\n\tthis.iframeNode.className = this.dummyTextArea.className;\n\tthis.iframeNode.style.border = \"none\";\n\tthis.iframeNode.style.padding = \"0\";\n\tthis.iframeNode.style.resize = \"none\";\n\tthis.iframeDoc.body.style.margin = \"0\";\n\tthis.iframeDoc.body.style.padding = \"0\";\n\tthis.widget.domNodes.push(this.iframeNode);\n\t// Construct the textarea or input node\n\tvar tag = this.widget.editTag;\n\tif($tw.config.htmlUnsafeElements.indexOf(tag) !== -1) {\n\t\ttag = \"input\";\n\t}\n\tthis.domNode = this.iframeDoc.createElement(tag);\n\t// Set the text\n\tif(this.widget.editTag === \"textarea\") {\n\t\tthis.domNode.appendChild(this.iframeDoc.createTextNode(this.value));\n\t} else {\n\t\tthis.domNode.value = this.value;\n\t}\n\t// Set the attributes\n\tif(this.widget.editType) {\n\t\tthis.domNode.setAttribute(\"type\",this.widget.editType);\n\t}\n\tif(this.widget.editPlaceholder) {\n\t\tthis.domNode.setAttribute(\"placeholder\",this.widget.editPlaceholder);\n\t}\n\tif(this.widget.editSize) {\n\t\tthis.domNode.setAttribute(\"size\",this.widget.editSize);\n\t}\n\tif(this.widget.editRows) {\n\t\tthis.domNode.setAttribute(\"rows\",this.widget.editRows);\n\t}\n\tif(this.widget.editTabIndex) {\n\t\tthis.iframeNode.setAttribute(\"tabindex\",this.widget.editTabIndex);\n\t}\n\tif(this.widget.editAutoComplete) {\n\t\tthis.domNode.setAttribute(\"autocomplete\",this.widget.editAutoComplete);\n\t}\n\tif(this.widget.isDisabled === \"yes\") {\n\t\tthis.domNode.setAttribute(\"disabled\",true);\n\t}\t\n\t// Copy the styles from the dummy textarea\n\tthis.copyStyles();\n\t// Add event listeners\n\t$tw.utils.addEventListeners(this.domNode,[\n\t\t{name: \"click\",handlerObject: this,handlerMethod: \"handleClickEvent\"},\n\t\t{name: \"input\",handlerObject: this,handlerMethod: \"handleInputEvent\"},\n\t\t{name: \"keydown\",handlerObject: this.widget,handlerMethod: \"handleKeydownEvent\"},\n\t\t{name: \"focus\",handlerObject: this,handlerMethod: \"handleFocusEvent\"}\n\t]);\n\t// Insert the element into the DOM\n\tthis.iframeDoc.body.appendChild(this.domNode);\n}\n\n/*\nCopy styles from the dummy text area to the textarea in the iframe\n*/\nFramedEngine.prototype.copyStyles = function() {\n\t// Copy all styles\n\t$tw.utils.copyStyles(this.dummyTextArea,this.domNode);\n\t// Override the ones that should not be set the same as the dummy textarea\n\tthis.domNode.style.display = \"block\";\n\tthis.domNode.style.width = \"100%\";\n\tthis.domNode.style.margin = \"0\";\n\t// In Chrome setting -webkit-text-fill-color overrides the placeholder text colour\n\tthis.domNode.style[\"-webkit-text-fill-color\"] = \"currentcolor\";\n};\n\n/*\nSet the text of the engine if it doesn't currently have focus\n*/\nFramedEngine.prototype.setText = function(text,type) {\n\tif(!this.domNode.isTiddlyWikiFakeDom) {\n\t\tif(this.domNode.ownerDocument.activeElement !== this.domNode) {\n\t\t\tthis.updateDomNodeText(text);\n\t\t}\n\t\t// Fix the height if needed\n\t\tthis.fixHeight();\n\t}\n};\n\n/*\nUpdate the DomNode with the new text\n*/\nFramedEngine.prototype.updateDomNodeText = function(text) {\n\tthis.domNode.value = text;\n};\n\n/*\nGet the text of the engine\n*/\nFramedEngine.prototype.getText = function() {\n\treturn this.domNode.value;\n};\n\n/*\nFix the height of textarea to fit content\n*/\nFramedEngine.prototype.fixHeight = function() {\n\t// Make sure styles are updated\n\tthis.copyStyles();\n\t// Adjust height\n\tif(this.widget.editTag === \"textarea\") {\n\t\tif(this.widget.editAutoHeight) {\n\t\t\tif(this.domNode && !this.domNode.isTiddlyWikiFakeDom) {\n\t\t\t\tvar newHeight = $tw.utils.resizeTextAreaToFit(this.domNode,this.widget.editMinHeight);\n\t\t\t\tthis.iframeNode.style.height = (newHeight + 14) + \"px\"; // +14 for the border on the textarea\n\t\t\t}\n\t\t} else {\n\t\t\tvar fixedHeight = parseInt(this.widget.wiki.getTiddlerText(HEIGHT_VALUE_TITLE,\"400px\"),10);\n\t\t\tfixedHeight = Math.max(fixedHeight,20);\n\t\t\tthis.domNode.style.height = fixedHeight + \"px\";\n\t\t\tthis.iframeNode.style.height = (fixedHeight + 14) + \"px\";\n\t\t}\n\t}\n};\n\n/*\nFocus the engine node\n*/\nFramedEngine.prototype.focus = function() {\n\tif(this.domNode.focus && this.domNode.select) {\n\t\tthis.domNode.focus();\n\t\tthis.domNode.select();\n\t}\n};\n\n/*\nHandle a focus event\n*/\nFramedEngine.prototype.handleFocusEvent = function(event) {\n\tif(this.widget.editCancelPopups) {\n\t\t$tw.popup.cancel(0);\t\n\t}\n};\n\n/*\nHandle a click\n*/\nFramedEngine.prototype.handleClickEvent = function(event) {\n\tthis.fixHeight();\n\treturn true;\n};\n\n/*\nHandle a dom \"input\" event which occurs when the text has changed\n*/\nFramedEngine.prototype.handleInputEvent = function(event) {\n\tthis.widget.saveChanges(this.getText());\n\tthis.fixHeight();\n\tif(this.widget.editInputActions) {\n\t\tthis.widget.invokeActionString(this.widget.editInputActions);\n\t}\n\treturn true;\n};\n\n/*\nCreate a blank structure representing a text operation\n*/\nFramedEngine.prototype.createTextOperation = function() {\n\tvar operation = {\n\t\ttext: this.domNode.value,\n\t\tselStart: this.domNode.selectionStart,\n\t\tselEnd: this.domNode.selectionEnd,\n\t\tcutStart: null,\n\t\tcutEnd: null,\n\t\treplacement: null,\n\t\tnewSelStart: null,\n\t\tnewSelEnd: null\n\t};\n\toperation.selection = operation.text.substring(operation.selStart,operation.selEnd);\n\treturn operation;\n};\n\n/*\nExecute a text operation\n*/\nFramedEngine.prototype.executeTextOperation = function(operation) {\n\t// Perform the required changes to the text area and the underlying tiddler\n\tvar newText = operation.text;\n\tif(operation.replacement !== null) {\n\t\tnewText = operation.text.substring(0,operation.cutStart) + operation.replacement + operation.text.substring(operation.cutEnd);\n\t\t// Attempt to use a execCommand to modify the value of the control\n\t\tif(this.iframeDoc.queryCommandSupported(\"insertText\") && this.iframeDoc.queryCommandSupported(\"delete\") && !$tw.browser.isFirefox) {\n\t\t\tthis.domNode.focus();\n\t\t\tthis.domNode.setSelectionRange(operation.cutStart,operation.cutEnd);\n\t\t\tif(operation.replacement === \"\") {\n\t\t\t\tthis.iframeDoc.execCommand(\"delete\",false,\"\");\n\t\t\t} else {\n\t\t\t\tthis.iframeDoc.execCommand(\"insertText\",false,operation.replacement);\n\t\t\t}\n\t\t} else {\n\t\t\tthis.domNode.value = newText;\n\t\t}\n\t\tthis.domNode.focus();\n\t\tthis.domNode.setSelectionRange(operation.newSelStart,operation.newSelEnd);\n\t}\n\tthis.domNode.focus();\n\treturn newText;\n};\n\nexports.FramedEngine = FramedEngine;\n\n})();\n",
"type": "application/javascript",
"module-type": "library"
},
"$:/core/modules/editor/engines/simple.js": {
"title": "$:/core/modules/editor/engines/simple.js",
"text": "/*\\\ntitle: $:/core/modules/editor/engines/simple.js\ntype: application/javascript\nmodule-type: library\n\nText editor engine based on a simple input or textarea tag\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar HEIGHT_VALUE_TITLE = \"$:/config/TextEditor/EditorHeight/Height\";\n\nfunction SimpleEngine(options) {\n\t// Save our options\n\toptions = options || {};\n\tthis.widget = options.widget;\n\tthis.value = options.value;\n\tthis.parentNode = options.parentNode;\n\tthis.nextSibling = options.nextSibling;\n\t// Construct the textarea or input node\n\tvar tag = this.widget.editTag;\n\tif($tw.config.htmlUnsafeElements.indexOf(tag) !== -1) {\n\t\ttag = \"input\";\n\t}\n\tthis.domNode = this.widget.document.createElement(tag);\n\t// Set the text\n\tif(this.widget.editTag === \"textarea\") {\n\t\tthis.domNode.appendChild(this.widget.document.createTextNode(this.value));\n\t} else {\n\t\tthis.domNode.value = this.value;\n\t}\n\t// Set the attributes\n\tif(this.widget.editType) {\n\t\tthis.domNode.setAttribute(\"type\",this.widget.editType);\n\t}\n\tif(this.widget.editPlaceholder) {\n\t\tthis.domNode.setAttribute(\"placeholder\",this.widget.editPlaceholder);\n\t}\n\tif(this.widget.editSize) {\n\t\tthis.domNode.setAttribute(\"size\",this.widget.editSize);\n\t}\n\tif(this.widget.editRows) {\n\t\tthis.domNode.setAttribute(\"rows\",this.widget.editRows);\n\t}\n\tif(this.widget.editClass) {\n\t\tthis.domNode.className = this.widget.editClass;\n\t}\n\tif(this.widget.editTabIndex) {\n\t\tthis.domNode.setAttribute(\"tabindex\",this.widget.editTabIndex);\n\t}\n\tif(this.widget.editAutoComplete) {\n\t\tthis.domNode.setAttribute(\"autocomplete\",this.widget.editAutoComplete);\n\t}\n\tif(this.widget.isDisabled === \"yes\") {\n\t\tthis.domNode.setAttribute(\"disabled\",true);\n\t}\n\t// Add an input event handler\n\t$tw.utils.addEventListeners(this.domNode,[\n\t\t{name: \"focus\", handlerObject: this, handlerMethod: \"handleFocusEvent\"},\n\t\t{name: \"input\", handlerObject: this, handlerMethod: \"handleInputEvent\"}\n\t]);\n\t// Insert the element into the DOM\n\tthis.parentNode.insertBefore(this.domNode,this.nextSibling);\n\tthis.widget.domNodes.push(this.domNode);\n}\n\n/*\nSet the text of the engine if it doesn't currently have focus\n*/\nSimpleEngine.prototype.setText = function(text,type) {\n\tif(!this.domNode.isTiddlyWikiFakeDom) {\n\t\tif(this.domNode.ownerDocument.activeElement !== this.domNode || text === \"\") {\n\t\t\tthis.updateDomNodeText(text);\n\t\t}\n\t\t// Fix the height if needed\n\t\tthis.fixHeight();\n\t}\n};\n\n/*\nUpdate the DomNode with the new text\n*/\nSimpleEngine.prototype.updateDomNodeText = function(text) {\n\tthis.domNode.value = text;\n};\n\n/*\nGet the text of the engine\n*/\nSimpleEngine.prototype.getText = function() {\n\treturn this.domNode.value;\n};\n\n/*\nFix the height of textarea to fit content\n*/\nSimpleEngine.prototype.fixHeight = function() {\n\tif(this.widget.editTag === \"textarea\") {\n\t\tif(this.widget.editAutoHeight) {\n\t\t\tif(this.domNode && !this.domNode.isTiddlyWikiFakeDom) {\n\t\t\t\t$tw.utils.resizeTextAreaToFit(this.domNode,this.widget.editMinHeight);\n\t\t\t}\n\t\t} else {\n\t\t\tvar fixedHeight = parseInt(this.widget.wiki.getTiddlerText(HEIGHT_VALUE_TITLE,\"400px\"),10);\n\t\t\tfixedHeight = Math.max(fixedHeight,20);\n\t\t\tthis.domNode.style.height = fixedHeight + \"px\";\n\t\t}\n\t}\n};\n\n/*\nFocus the engine node\n*/\nSimpleEngine.prototype.focus = function() {\n\tif(this.domNode.focus && this.domNode.select) {\n\t\tthis.domNode.focus();\n\t\tthis.domNode.select();\n\t}\n};\n\n/*\nHandle a dom \"input\" event which occurs when the text has changed\n*/\nSimpleEngine.prototype.handleInputEvent = function(event) {\n\tthis.widget.saveChanges(this.getText());\n\tthis.fixHeight();\n\tif(this.widget.editInputActions) {\n\t\tthis.widget.invokeActionString(this.widget.editInputActions);\n\t}\n\treturn true;\n};\n\n/*\nHandle a dom \"focus\" event\n*/\nSimpleEngine.prototype.handleFocusEvent = function(event) {\n\tif(this.widget.editCancelPopups) {\n\t\t$tw.popup.cancel(0);\n\t}\n\tif(this.widget.editFocusPopup) {\n\t\t$tw.popup.triggerPopup({\n\t\t\tdomNode: this.domNode,\n\t\t\ttitle: this.widget.editFocusPopup,\n\t\t\twiki: this.widget.wiki,\n\t\t\tforce: true\n\t\t});\n\t}\n\treturn true;\n};\n\n/*\nCreate a blank structure representing a text operation\n*/\nSimpleEngine.prototype.createTextOperation = function() {\n\treturn null;\n};\n\n/*\nExecute a text operation\n*/\nSimpleEngine.prototype.executeTextOperation = function(operation) {\n};\n\nexports.SimpleEngine = SimpleEngine;\n\n})();\n",
"type": "application/javascript",
"module-type": "library"
},
"$:/core/modules/editor/factory.js": {
"title": "$:/core/modules/editor/factory.js",
"text": "/*\\\ntitle: $:/core/modules/editor/factory.js\ntype: application/javascript\nmodule-type: library\n\nFactory for constructing text editor widgets with specified engines for the toolbar and non-toolbar cases\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar DEFAULT_MIN_TEXT_AREA_HEIGHT = \"100px\"; // Minimum height of textareas in pixels\n\n// Configuration tiddlers\nvar HEIGHT_MODE_TITLE = \"$:/config/TextEditor/EditorHeight/Mode\";\nvar ENABLE_TOOLBAR_TITLE = \"$:/config/TextEditor/EnableToolbar\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nfunction editTextWidgetFactory(toolbarEngine,nonToolbarEngine) {\n\n\tvar EditTextWidget = function(parseTreeNode,options) {\n\t\t// Initialise the editor operations if they've not been done already\n\t\tif(!this.editorOperations) {\n\t\t\tEditTextWidget.prototype.editorOperations = {};\n\t\t\t$tw.modules.applyMethods(\"texteditoroperation\",this.editorOperations);\n\t\t}\n\t\tthis.initialise(parseTreeNode,options);\n\t};\n\n\t/*\n\tInherit from the base widget class\n\t*/\n\tEditTextWidget.prototype = new Widget();\n\n\t/*\n\tRender this widget into the DOM\n\t*/\n\tEditTextWidget.prototype.render = function(parent,nextSibling) {\n\t\t// Save the parent dom node\n\t\tthis.parentDomNode = parent;\n\t\t// Compute our attributes\n\t\tthis.computeAttributes();\n\t\t// Execute our logic\n\t\tthis.execute();\n\t\t// Create the wrapper for the toolbar and render its content\n\t\tif(this.editShowToolbar) {\n\t\t\tthis.toolbarNode = this.document.createElement(\"div\");\n\t\t\tthis.toolbarNode.className = \"tc-editor-toolbar\";\n\t\t\tparent.insertBefore(this.toolbarNode,nextSibling);\n\t\t\tthis.renderChildren(this.toolbarNode,null);\n\t\t\tthis.domNodes.push(this.toolbarNode);\n\t\t}\n\t\t// Create our element\n\t\tvar editInfo = this.getEditInfo(),\n\t\t\tEngine = this.editShowToolbar ? toolbarEngine : nonToolbarEngine;\n\t\tthis.engine = new Engine({\n\t\t\t\twidget: this,\n\t\t\t\tvalue: editInfo.value,\n\t\t\t\ttype: editInfo.type,\n\t\t\t\tparentNode: parent,\n\t\t\t\tnextSibling: nextSibling\n\t\t\t});\n\t\t// Call the postRender hook\n\t\tif(this.postRender) {\n\t\t\tthis.postRender();\n\t\t}\n\t\t// Fix height\n\t\tthis.engine.fixHeight();\n\t\t// Focus if required\n\t\tif(this.editFocus === \"true\" || this.editFocus === \"yes\") {\n\t\t\tthis.engine.focus();\n\t\t}\n\t\t// Add widget message listeners\n\t\tthis.addEventListeners([\n\t\t\t{type: \"tm-edit-text-operation\", handler: \"handleEditTextOperationMessage\"}\n\t\t]);\n\t};\n\n\t/*\n\tGet the tiddler being edited and current value\n\t*/\n\tEditTextWidget.prototype.getEditInfo = function() {\n\t\t// Get the edit value\n\t\tvar self = this,\n\t\t\tvalue,\n\t\t\ttype = \"text/plain\",\n\t\t\tupdate;\n\t\tif(this.editIndex) {\n\t\t\tvalue = this.wiki.extractTiddlerDataItem(this.editTitle,this.editIndex,this.editDefault);\n\t\t\tupdate = function(value) {\n\t\t\t\tvar data = self.wiki.getTiddlerData(self.editTitle,{});\n\t\t\t\tif(data[self.editIndex] !== value) {\n\t\t\t\t\tdata[self.editIndex] = value;\n\t\t\t\t\tself.wiki.setTiddlerData(self.editTitle,data);\n\t\t\t\t}\n\t\t\t};\n\t\t} else {\n\t\t\t// Get the current tiddler and the field name\n\t\t\tvar tiddler = this.wiki.getTiddler(this.editTitle);\n\t\t\tif(tiddler) {\n\t\t\t\t// If we've got a tiddler, the value to display is the field string value\n\t\t\t\tvalue = tiddler.getFieldString(this.editField);\n\t\t\t\tif(this.editField === \"text\") {\n\t\t\t\t\ttype = tiddler.fields.type || \"text/vnd.tiddlywiki\";\n\t\t\t\t}\n\t\t\t} else {\n\t\t\t\t// Otherwise, we need to construct a default value for the editor\n\t\t\t\tswitch(this.editField) {\n\t\t\t\t\tcase \"text\":\n\t\t\t\t\t\tvalue = \"Type the text for the tiddler '\" + this.editTitle + \"'\";\n\t\t\t\t\t\ttype = \"text/vnd.tiddlywiki\";\n\t\t\t\t\t\tbreak;\n\t\t\t\t\tcase \"title\":\n\t\t\t\t\t\tvalue = this.editTitle;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\tdefault:\n\t\t\t\t\t\tvalue = \"\";\n\t\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t\tif(this.editDefault !== undefined) {\n\t\t\t\t\tvalue = this.editDefault;\n\t\t\t\t}\n\t\t\t}\n\t\t\tupdate = function(value) {\n\t\t\t\tvar tiddler = self.wiki.getTiddler(self.editTitle),\n\t\t\t\t\tupdateFields = {\n\t\t\t\t\t\ttitle: self.editTitle\n\t\t\t\t\t};\n\t\t\t\tupdateFields[self.editField] = value;\n\t\t\t\tself.wiki.addTiddler(new $tw.Tiddler(self.wiki.getCreationFields(),tiddler,updateFields,self.wiki.getModificationFields()));\n\t\t\t};\n\t\t}\n\t\tif(this.editType) {\n\t\t\ttype = this.editType;\n\t\t}\n\t\treturn {value: value || \"\", type: type, update: update};\n\t};\n\n\t/*\n\tHandle an edit text operation message from the toolbar\n\t*/\n\tEditTextWidget.prototype.handleEditTextOperationMessage = function(event) {\n\t\t// Prepare information about the operation\n\t\tvar operation = this.engine.createTextOperation();\n\t\t// Invoke the handler for the selected operation\n\t\tvar handler = this.editorOperations[event.param];\n\t\tif(handler) {\n\t\t\thandler.call(this,event,operation);\n\t\t}\n\t\t// Execute the operation via the engine\n\t\tvar newText = this.engine.executeTextOperation(operation);\n\t\t// Fix the tiddler height and save changes\n\t\tthis.engine.fixHeight();\n\t\tthis.saveChanges(newText);\n\t};\n\n\t/*\n\tCompute the internal state of the widget\n\t*/\n\tEditTextWidget.prototype.execute = function() {\n\t\t// Get our parameters\n\t\tthis.editTitle = this.getAttribute(\"tiddler\",this.getVariable(\"currentTiddler\"));\n\t\tthis.editField = this.getAttribute(\"field\",\"text\");\n\t\tthis.editIndex = this.getAttribute(\"index\");\n\t\tthis.editDefault = this.getAttribute(\"default\");\n\t\tthis.editClass = this.getAttribute(\"class\");\n\t\tthis.editPlaceholder = this.getAttribute(\"placeholder\");\n\t\tthis.editSize = this.getAttribute(\"size\");\n\t\tthis.editRows = this.getAttribute(\"rows\");\n\t\tthis.editAutoHeight = this.wiki.getTiddlerText(HEIGHT_MODE_TITLE,\"auto\");\n\t\tthis.editAutoHeight = this.getAttribute(\"autoHeight\",this.editAutoHeight === \"auto\" ? \"yes\" : \"no\") === \"yes\";\n\t\tthis.editMinHeight = this.getAttribute(\"minHeight\",DEFAULT_MIN_TEXT_AREA_HEIGHT);\n\t\tthis.editFocusPopup = this.getAttribute(\"focusPopup\");\n\t\tthis.editFocus = this.getAttribute(\"focus\");\n\t\tthis.editTabIndex = this.getAttribute(\"tabindex\");\n\t\tthis.editCancelPopups = this.getAttribute(\"cancelPopups\",\"\") === \"yes\";\n\t\tthis.editInputActions = this.getAttribute(\"inputActions\");\n\t\tthis.editRefreshTitle = this.getAttribute(\"refreshTitle\");\n\t\tthis.editAutoComplete = this.getAttribute(\"autocomplete\");\n\t\tthis.isDisabled = this.getAttribute(\"disabled\",\"no\");\n\t\t// Get the default editor element tag and type\n\t\tvar tag,type;\n\t\tif(this.editField === \"text\") {\n\t\t\ttag = \"textarea\";\n\t\t} else {\n\t\t\ttag = \"input\";\n\t\t\tvar fieldModule = $tw.Tiddler.fieldModules[this.editField];\n\t\t\tif(fieldModule && fieldModule.editTag) {\n\t\t\t\ttag = fieldModule.editTag;\n\t\t\t}\n\t\t\tif(fieldModule && fieldModule.editType) {\n\t\t\t\ttype = fieldModule.editType;\n\t\t\t}\n\t\t\ttype = type || \"text\";\n\t\t}\n\t\t// Get the rest of our parameters\n\t\tthis.editTag = this.getAttribute(\"tag\",tag) || \"input\";\n\t\tthis.editType = this.getAttribute(\"type\",type);\n\t\t// Make the child widgets\n\t\tthis.makeChildWidgets();\n\t\t// Determine whether to show the toolbar\n\t\tthis.editShowToolbar = this.wiki.getTiddlerText(ENABLE_TOOLBAR_TITLE,\"yes\");\n\t\tthis.editShowToolbar = (this.editShowToolbar === \"yes\") && !!(this.children && this.children.length > 0) && (!this.document.isTiddlyWikiFakeDom);\n\t};\n\n\t/*\n\tSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n\t*/\n\tEditTextWidget.prototype.refresh = function(changedTiddlers) {\n\t\tvar changedAttributes = this.computeAttributes();\n\t\t// Completely rerender if any of our attributes have changed\n\t\tif(changedAttributes.tiddler || changedAttributes.field || changedAttributes.index || changedAttributes[\"default\"] || changedAttributes[\"class\"] || changedAttributes.placeholder || changedAttributes.size || changedAttributes.autoHeight || changedAttributes.minHeight || changedAttributes.focusPopup || changedAttributes.rows || changedAttributes.tabindex || changedAttributes.cancelPopups || changedAttributes.inputActions || changedAttributes.refreshTitle || changedAttributes.autocomplete || changedTiddlers[HEIGHT_MODE_TITLE] || changedTiddlers[ENABLE_TOOLBAR_TITLE] || changedAttributes.disabled) {\n\t\t\tthis.refreshSelf();\n\t\t\treturn true;\n\t\t} else if (changedTiddlers[this.editRefreshTitle]) {\n\t\t\tthis.engine.updateDomNodeText(this.getEditInfo().value);\n\t\t} else if(changedTiddlers[this.editTitle]) {\n\t\t\tvar editInfo = this.getEditInfo();\n\t\t\tthis.updateEditor(editInfo.value,editInfo.type);\n\t\t}\n\t\tthis.engine.fixHeight();\n\t\tif(this.editShowToolbar) {\n\t\t\treturn this.refreshChildren(changedTiddlers);\n\t\t} else {\n\t\t\treturn false;\n\t\t}\n\t};\n\n\t/*\n\tUpdate the editor with new text. This method is separate from updateEditorDomNode()\n\tso that subclasses can override updateEditor() and still use updateEditorDomNode()\n\t*/\n\tEditTextWidget.prototype.updateEditor = function(text,type) {\n\t\tthis.updateEditorDomNode(text,type);\n\t};\n\n\t/*\n\tUpdate the editor dom node with new text\n\t*/\n\tEditTextWidget.prototype.updateEditorDomNode = function(text,type) {\n\t\tthis.engine.setText(text,type);\n\t};\n\n\t/*\n\tSave changes back to the tiddler store\n\t*/\n\tEditTextWidget.prototype.saveChanges = function(text) {\n\t\tvar editInfo = this.getEditInfo();\n\t\tif(text !== editInfo.value) {\n\t\t\teditInfo.update(text);\n\t\t}\n\t};\n\n\t/*\n\tHandle a dom \"keydown\" event, which we'll bubble up to our container for the keyboard widgets benefit\n\t*/\n\tEditTextWidget.prototype.handleKeydownEvent = function(event) {\n\t\t// Check for a keyboard shortcut\n\t\tif(this.toolbarNode) {\n\t\t\tvar shortcutElements = this.toolbarNode.querySelectorAll(\"[data-tw-keyboard-shortcut]\");\n\t\t\tfor(var index=0; index<shortcutElements.length; index++) {\n\t\t\t\tvar el = shortcutElements[index],\n\t\t\t\t\tshortcutData = el.getAttribute(\"data-tw-keyboard-shortcut\"),\n\t\t\t\t\tkeyInfoArray = $tw.keyboardManager.parseKeyDescriptors(shortcutData,{\n\t\t\t\t\t\twiki: this.wiki\n\t\t\t\t\t});\n\t\t\t\tif($tw.keyboardManager.checkKeyDescriptors(event,keyInfoArray)) {\n\t\t\t\t\tvar clickEvent = this.document.createEvent(\"Events\");\n\t\t\t\t clickEvent.initEvent(\"click\",true,false);\n\t\t\t\t el.dispatchEvent(clickEvent);\n\t\t\t\t\tevent.preventDefault();\n\t\t\t\t\tevent.stopPropagation();\n\t\t\t\t\treturn true;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\t// Propogate the event to the container\n\t\tif(this.propogateKeydownEvent(event)) {\n\t\t\t// Ignore the keydown if it was already handled\n\t\t\tevent.preventDefault();\n\t\t\tevent.stopPropagation();\n\t\t\treturn true;\n\t\t}\n\t\t// Otherwise, process the keydown normally\n\t\treturn false;\n\t};\n\n\t/*\n\tPropogate keydown events to our container for the keyboard widgets benefit\n\t*/\n\tEditTextWidget.prototype.propogateKeydownEvent = function(event) {\n\t\tvar newEvent = this.document.createEventObject ? this.document.createEventObject() : this.document.createEvent(\"Events\");\n\t\tif(newEvent.initEvent) {\n\t\t\tnewEvent.initEvent(\"keydown\", true, true);\n\t\t}\n\t\tnewEvent.keyCode = event.keyCode;\n\t\tnewEvent.which = event.which;\n\t\tnewEvent.metaKey = event.metaKey;\n\t\tnewEvent.ctrlKey = event.ctrlKey;\n\t\tnewEvent.altKey = event.altKey;\n\t\tnewEvent.shiftKey = event.shiftKey;\n\t\treturn !this.parentDomNode.dispatchEvent(newEvent);\n\t};\n\n\treturn EditTextWidget;\n\n}\n\nexports.editTextWidgetFactory = editTextWidgetFactory;\n\n})();\n",
"type": "application/javascript",
"module-type": "library"
},
"$:/core/modules/editor/operations/bitmap/clear.js": {
"title": "$:/core/modules/editor/operations/bitmap/clear.js",
"text": "/*\\\ntitle: $:/core/modules/editor/operations/bitmap/clear.js\ntype: application/javascript\nmodule-type: bitmapeditoroperation\n\nBitmap editor operation to clear the image\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports[\"clear\"] = function(event) {\n\tvar ctx = this.canvasDomNode.getContext(\"2d\");\n\tctx.globalAlpha = 1;\n\tctx.fillStyle = event.paramObject.colour || \"white\";\n\tctx.fillRect(0,0,this.canvasDomNode.width,this.canvasDomNode.height);\n\t// Save changes\n\tthis.strokeEnd();\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "bitmapeditoroperation"
},
"$:/core/modules/editor/operations/bitmap/resize.js": {
"title": "$:/core/modules/editor/operations/bitmap/resize.js",
"text": "/*\\\ntitle: $:/core/modules/editor/operations/bitmap/resize.js\ntype: application/javascript\nmodule-type: bitmapeditoroperation\n\nBitmap editor operation to resize the image\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports[\"resize\"] = function(event) {\n\t// Get the new width\n\tvar newWidth = parseInt(event.paramObject.width || this.canvasDomNode.width,10),\n\t\tnewHeight = parseInt(event.paramObject.height || this.canvasDomNode.height,10);\n\t// Update if necessary\n\tif(newWidth > 0 && newHeight > 0 && !(newWidth === this.currCanvas.width && newHeight === this.currCanvas.height)) {\n\t\tthis.changeCanvasSize(newWidth,newHeight);\n\t}\n\t// Update the input controls\n\tthis.refreshToolbar();\n\t// Save the image into the tiddler\n\tthis.saveChanges();\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "bitmapeditoroperation"
},
"$:/core/modules/editor/operations/bitmap/rotate-left.js": {
"title": "$:/core/modules/editor/operations/bitmap/rotate-left.js",
"text": "/*\\\ntitle: $:/core/modules/editor/operations/bitmap/rotate-left.js\ntype: application/javascript\nmodule-type: bitmapeditoroperation\n\nBitmap editor operation to rotate the image left by 90 degrees\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports[\"rotate-left\"] = function(event) {\n\t// Rotate the canvas left by 90 degrees\n\tthis.rotateCanvasLeft();\n\t// Update the input controls\n\tthis.refreshToolbar();\n\t// Save the image into the tiddler\n\tthis.saveChanges();\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "bitmapeditoroperation"
},
"$:/core/modules/editor/operations/text/excise.js": {
"title": "$:/core/modules/editor/operations/text/excise.js",
"text": "/*\\\ntitle: $:/core/modules/editor/operations/text/excise.js\ntype: application/javascript\nmodule-type: texteditoroperation\n\nText editor operation to excise the selection to a new tiddler\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports[\"excise\"] = function(event,operation) {\n\tvar editTiddler = this.wiki.getTiddler(this.editTitle),\n\t\teditTiddlerTitle = this.editTitle;\n\tif(editTiddler && editTiddler.fields[\"draft.of\"]) {\n\t\teditTiddlerTitle = editTiddler.fields[\"draft.of\"];\n\t}\n\tvar excisionTitle = event.paramObject.title || this.wiki.generateNewTitle(\"New Excision\");\n\tthis.wiki.addTiddler(new $tw.Tiddler(\n\t\tthis.wiki.getCreationFields(),\n\t\tthis.wiki.getModificationFields(),\n\t\t{\n\t\t\ttitle: excisionTitle,\n\t\t\ttext: operation.selection,\n\t\t\ttags: event.paramObject.tagnew === \"yes\" ? [editTiddlerTitle] : []\n\t\t}\n\t));\n\toperation.replacement = excisionTitle;\n\tswitch(event.paramObject.type || \"transclude\") {\n\t\tcase \"transclude\":\n\t\t\toperation.replacement = \"{{\" + operation.replacement+ \"}}\";\n\t\t\tbreak;\n\t\tcase \"link\":\n\t\t\toperation.replacement = \"[[\" + operation.replacement+ \"]]\";\n\t\t\tbreak;\n\t\tcase \"macro\":\n\t\t\toperation.replacement = \"<<\" + (event.paramObject.macro || \"translink\") + \" \\\"\\\"\\\"\" + operation.replacement + \"\\\"\\\"\\\">>\";\n\t\t\tbreak;\n\t}\n\toperation.cutStart = operation.selStart;\n\toperation.cutEnd = operation.selEnd;\n\toperation.newSelStart = operation.selStart;\n\toperation.newSelEnd = operation.selStart + operation.replacement.length;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "texteditoroperation"
},
"$:/core/modules/editor/operations/text/make-link.js": {
"title": "$:/core/modules/editor/operations/text/make-link.js",
"text": "/*\\\ntitle: $:/core/modules/editor/operations/text/make-link.js\ntype: application/javascript\nmodule-type: texteditoroperation\n\nText editor operation to make a link\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports[\"make-link\"] = function(event,operation) {\n\tif(operation.selection) {\n\t\toperation.replacement = \"[[\" + operation.selection + \"|\" + event.paramObject.text + \"]]\";\n\t\toperation.cutStart = operation.selStart;\n\t\toperation.cutEnd = operation.selEnd;\n\t} else {\n\t\toperation.replacement = \"[[\" + event.paramObject.text + \"]]\";\n\t\toperation.cutStart = operation.selStart;\n\t\toperation.cutEnd = operation.selEnd;\n\t}\n\toperation.newSelStart = operation.selStart + operation.replacement.length;\n\toperation.newSelEnd = operation.newSelStart;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "texteditoroperation"
},
"$:/core/modules/editor/operations/text/prefix-lines.js": {
"title": "$:/core/modules/editor/operations/text/prefix-lines.js",
"text": "/*\\\ntitle: $:/core/modules/editor/operations/text/prefix-lines.js\ntype: application/javascript\nmodule-type: texteditoroperation\n\nText editor operation to add a prefix to the selected lines\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports[\"prefix-lines\"] = function(event,operation) {\n\tvar targetCount = parseInt(event.paramObject.count + \"\",10);\n\t// Cut just past the preceding line break, or the start of the text\n\toperation.cutStart = $tw.utils.findPrecedingLineBreak(operation.text,operation.selStart);\n\t// Cut to just past the following line break, or to the end of the text\n\toperation.cutEnd = $tw.utils.findFollowingLineBreak(operation.text,operation.selEnd);\n\t// Compose the required prefix\n\tvar prefix = $tw.utils.repeat(event.paramObject.character,targetCount);\n\t// Process each line\n\tvar lines = operation.text.substring(operation.cutStart,operation.cutEnd).split(/\\r?\\n/mg);\n\t$tw.utils.each(lines,function(line,index) {\n\t\t// Remove and count any existing prefix characters\n\t\tvar count = 0;\n\t\twhile(line.charAt(0) === event.paramObject.character) {\n\t\t\tline = line.substring(1);\n\t\t\tcount++;\n\t\t}\n\t\t// Remove any whitespace\n\t\twhile(line.charAt(0) === \" \") {\n\t\t\tline = line.substring(1);\n\t\t}\n\t\t// We're done if we removed the exact required prefix, otherwise add it\n\t\tif(count !== targetCount) {\n\t\t\t// Apply the prefix\n\t\t\tline = prefix + \" \" + line;\n\t\t}\n\t\t// Save the modified line\n\t\tlines[index] = line;\n\t});\n\t// Stitch the replacement text together and set the selection\n\toperation.replacement = lines.join(\"\\n\");\n\tif(lines.length === 1) {\n\t\toperation.newSelStart = operation.cutStart + operation.replacement.length;\n\t\toperation.newSelEnd = operation.newSelStart;\n\t} else {\n\t\toperation.newSelStart = operation.cutStart;\n\t\toperation.newSelEnd = operation.newSelStart + operation.replacement.length;\n\t}\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "texteditoroperation"
},
"$:/core/modules/editor/operations/text/replace-all.js": {
"title": "$:/core/modules/editor/operations/text/replace-all.js",
"text": "/*\\\ntitle: $:/core/modules/editor/operations/text/replace-all.js\ntype: application/javascript\nmodule-type: texteditoroperation\n\nText editor operation to replace the entire text\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports[\"replace-all\"] = function(event,operation) {\n\toperation.cutStart = 0;\n\toperation.cutEnd = operation.text.length;\n\toperation.replacement = event.paramObject.text;\n\toperation.newSelStart = 0;\n\toperation.newSelEnd = operation.replacement.length;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "texteditoroperation"
},
"$:/core/modules/editor/operations/text/replace-selection.js": {
"title": "$:/core/modules/editor/operations/text/replace-selection.js",
"text": "/*\\\ntitle: $:/core/modules/editor/operations/text/replace-selection.js\ntype: application/javascript\nmodule-type: texteditoroperation\n\nText editor operation to replace the selection\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports[\"replace-selection\"] = function(event,operation) {\n\toperation.replacement = event.paramObject.text;\n\toperation.cutStart = operation.selStart;\n\toperation.cutEnd = operation.selEnd;\n\toperation.newSelStart = operation.selStart;\n\toperation.newSelEnd = operation.selStart + operation.replacement.length;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "texteditoroperation"
},
"$:/core/modules/editor/operations/text/save-selection.js": {
"title": "$:/core/modules/editor/operations/text/save-selection.js",
"text": "/*\\\ntitle: $:/core/modules/editor/operations/text/save-selection.js\ntype: application/javascript\nmodule-type: texteditoroperation\n\nText editor operation to save the current selection in a specified tiddler\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports[\"save-selection\"] = function(event,operation) {\n\tvar tiddler = event.paramObject.tiddler,\n\t\tfield = event.paramObject.field || \"text\";\n\tif(tiddler && field) {\n\t\tthis.wiki.setText(tiddler,field,null,operation.text.substring(operation.selStart,operation.selEnd));\n\t}\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "texteditoroperation"
},
"$:/core/modules/editor/operations/text/wrap-lines.js": {
"title": "$:/core/modules/editor/operations/text/wrap-lines.js",
"text": "/*\\\ntitle: $:/core/modules/editor/operations/text/wrap-lines.js\ntype: application/javascript\nmodule-type: texteditoroperation\n\nText editor operation to wrap the selected lines with a prefix and suffix\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports[\"wrap-lines\"] = function(event,operation) {\n\t// Cut just past the preceding line break, or the start of the text\n\toperation.cutStart = $tw.utils.findPrecedingLineBreak(operation.text,operation.selStart);\n\t// Cut to just past the following line break, or to the end of the text\n\toperation.cutEnd = $tw.utils.findFollowingLineBreak(operation.text,operation.selEnd);\n\t// Add the prefix and suffix\n\toperation.replacement = event.paramObject.prefix + \"\\n\" +\n\t\t\t\toperation.text.substring(operation.cutStart,operation.cutEnd) + \"\\n\" +\n\t\t\t\tevent.paramObject.suffix + \"\\n\";\n\toperation.newSelStart = operation.cutStart + event.paramObject.prefix.length + 1;\n\toperation.newSelEnd = operation.newSelStart + (operation.cutEnd - operation.cutStart);\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "texteditoroperation"
},
"$:/core/modules/editor/operations/text/wrap-selection.js": {
"title": "$:/core/modules/editor/operations/text/wrap-selection.js",
"text": "/*\\\ntitle: $:/core/modules/editor/operations/text/wrap-selection.js\ntype: application/javascript\nmodule-type: texteditoroperation\n\nText editor operation to wrap the selection with the specified prefix and suffix\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports[\"wrap-selection\"] = function(event,operation) {\n\tif(operation.selStart === operation.selEnd) {\n\t\t// No selection; check if we're within the prefix/suffix\n\t\tif(operation.text.substring(operation.selStart - event.paramObject.prefix.length,operation.selStart + event.paramObject.suffix.length) === event.paramObject.prefix + event.paramObject.suffix) {\n\t\t\t// Remove the prefix and suffix\n\t\t\toperation.cutStart = operation.selStart - event.paramObject.prefix.length;\n\t\t\toperation.cutEnd = operation.selEnd + event.paramObject.suffix.length;\n\t\t\toperation.replacement = \"\";\n\t\t\toperation.newSelStart = operation.cutStart;\n\t\t\toperation.newSelEnd = operation.newSelStart;\n\t\t} else {\n\t\t\t// Wrap the cursor instead\n\t\t\toperation.cutStart = operation.selStart;\n\t\t\toperation.cutEnd = operation.selEnd;\n\t\t\toperation.replacement = event.paramObject.prefix + event.paramObject.suffix;\n\t\t\toperation.newSelStart = operation.selStart + event.paramObject.prefix.length;\n\t\t\toperation.newSelEnd = operation.newSelStart;\n\t\t}\n\t} else if(operation.text.substring(operation.selStart,operation.selStart + event.paramObject.prefix.length) === event.paramObject.prefix && operation.text.substring(operation.selEnd - event.paramObject.suffix.length,operation.selEnd) === event.paramObject.suffix) {\n\t\t// Prefix and suffix are already present, so remove them\n\t\toperation.cutStart = operation.selStart;\n\t\toperation.cutEnd = operation.selEnd;\n\t\toperation.replacement = operation.selection.substring(event.paramObject.prefix.length,operation.selection.length - event.paramObject.suffix.length);\n\t\toperation.newSelStart = operation.selStart;\n\t\toperation.newSelEnd = operation.selStart + operation.replacement.length;\n\t} else {\n\t\t// Add the prefix and suffix\n\t\toperation.cutStart = operation.selStart;\n\t\toperation.cutEnd = operation.selEnd;\n\t\toperation.replacement = event.paramObject.prefix + operation.selection + event.paramObject.suffix;\n\t\toperation.newSelStart = operation.selStart;\n\t\toperation.newSelEnd = operation.selStart + operation.replacement.length;\n\t}\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "texteditoroperation"
},
"$:/core/modules/filterrunprefixes/all.js": {
"title": "$:/core/modules/filterrunprefixes/all.js",
"text": "/*\\\ntitle: $:/core/modules/filterrunprefixes/all.js\ntype: application/javascript\nmodule-type: filterrunprefix\n\nUnion of sets without de-duplication.\nEquivalent to = filter run prefix.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter prefix function\n*/\nexports.all = function(operationSubFunction) {\n\treturn function(results,source,widget) {\n\t\tresults.push.apply(results, operationSubFunction(source,widget));\n\t};\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filterrunprefix"
},
"$:/core/modules/filterrunprefixes/and.js": {
"title": "$:/core/modules/filterrunprefixes/and.js",
"text": "/*\\\ntitle: $:/core/modules/filterrunprefixes/and.js\ntype: application/javascript\nmodule-type: filterrunprefix\n\nIntersection of sets.\nEquivalent to + filter run prefix.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter prefix function\n*/\nexports.and = function(operationSubFunction,options) {\n\treturn function(results,source,widget) {\n\t\t// This replaces all the elements of the array, but keeps the actual array so that references to it are preserved\n\t\tsource = options.wiki.makeTiddlerIterator(results.toArray());\n\t\tresults.clear();\n\t\tresults.pushTop(operationSubFunction(source,widget));\n\t};\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filterrunprefix"
},
"$:/core/modules/filterrunprefixes/else.js": {
"title": "$:/core/modules/filterrunprefixes/else.js",
"text": "/*\\\ntitle: $:/core/modules/filterrunprefixes/else.js\ntype: application/javascript\nmodule-type: filterrunprefix\n\nEquivalent to ~ filter run prefix.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter prefix function\n*/\nexports.else = function(operationSubFunction) {\n\treturn function(results,source,widget) {\n\t\tif(results.length === 0) {\n\t\t\t// Main result so far is empty\n\t\t\tresults.pushTop(operationSubFunction(source,widget));\n\t\t}\n\t};\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filterrunprefix"
},
"$:/core/modules/filterrunprefixes/except.js": {
"title": "$:/core/modules/filterrunprefixes/except.js",
"text": "/*\\\ntitle: $:/core/modules/filterrunprefixes/except.js\ntype: application/javascript\nmodule-type: filterrunprefix\n\nDifference of sets.\nEquivalent to - filter run prefix.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter prefix function\n*/\nexports.except = function(operationSubFunction) {\n\treturn function(results,source,widget) {\n\t\tresults.remove(operationSubFunction(source,widget));\n\t};\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filterrunprefix"
},
"$:/core/modules/filterrunprefixes/filter.js": {
"title": "$:/core/modules/filterrunprefixes/filter.js",
"text": "/*\\\ntitle: $:/core/modules/filterrunprefixes/filter.js\ntype: application/javascript\nmodule-type: filterrunprefix\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.filter = function(operationSubFunction,options) {\n\treturn function(results,source,widget) {\n\t\tif(results.length > 0) {\n\t\t\tvar resultsToRemove = [];\n\t\t\tresults.each(function(result) {\n\t\t\t\tvar filtered = operationSubFunction(options.wiki.makeTiddlerIterator([result]),widget);\n\t\t\t\tif(filtered.length === 0) {\n\t\t\t\t\tresultsToRemove.push(result);\n\t\t\t\t}\n\t\t\t});\n\t\t\tresults.remove(resultsToRemove);\n\t\t}\n\t}\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filterrunprefix"
},
"$:/core/modules/filterrunprefixes/intersection.js": {
"title": "$:/core/modules/filterrunprefixes/intersection.js",
"text": "/*\\\ntitle: $:/core/modules/filterrunprefixes/intersection.js\ntype: application/javascript\nmodule-type: filterrunprefix\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter prefix function\n*/\nexports.intersection = function(operationSubFunction) {\n\treturn function(results,source,widget) {\n\t\tif(results.length !== 0) {\n\t\t\tvar secondRunResults = operationSubFunction(source,widget);\n\t\t\tvar firstRunResults = results.toArray();\n\t\t\tresults.clear();\n\t\t\t$tw.utils.each(firstRunResults,function(title) {\n\t\t\t\tif(secondRunResults.indexOf(title) !== -1) {\n\t\t\t\t\tresults.push(title);\n\t\t\t\t}\n\t\t\t});\n\t\t}\n\t};\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filterrunprefix"
},
"$:/core/modules/filterrunprefixes/or.js": {
"title": "$:/core/modules/filterrunprefixes/or.js",
"text": "/*\\\ntitle: $:/core/modules/filterrunprefixes/or.js\ntype: application/javascript\nmodule-type: filterrunprefix\n\nEquivalent to a filter run with no prefix.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter prefix function\n*/\nexports.or = function(operationSubFunction) {\n\treturn function(results,source,widget) {\n\t\tresults.pushTop(operationSubFunction(source,widget));\n\t};\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filterrunprefix"
},
"$:/core/modules/filterrunprefixes/reduce.js": {
"title": "$:/core/modules/filterrunprefixes/reduce.js",
"text": "/*\\\ntitle: $:/core/modules/filterrunprefixes/reduce.js\ntype: application/javascript\nmodule-type: filterrunprefix\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter prefix function\n*/\nexports.reduce = function(operationSubFunction,options) {\n\treturn function(results,source,widget) {\n\t\tif(results.length > 0) {\n\t\t\tvar accumulator = \"\";\n\t\t\tvar index = 0;\n\t\t\tresults.each(function(title) {\n\t\t\t\tvar list = operationSubFunction(options.wiki.makeTiddlerIterator([title]),{\n\t\t\t\t\t\tgetVariable: function(name) {\n\t\t\t\t\t\t\tswitch(name) {\n\t\t\t\t\t\t\t\tcase \"currentTiddler\":\n\t\t\t\t\t\t\t\t\treturn \"\" + title;\n\t\t\t\t\t\t\t\tcase \"accumulator\":\n\t\t\t\t\t\t\t\t\treturn \"\" + accumulator;\n\t\t\t\t\t\t\t\tcase \"index\":\n\t\t\t\t\t\t\t\t\treturn \"\" + index;\n\t\t\t\t\t\t\t\tcase \"revIndex\":\n\t\t\t\t\t\t\t\t\treturn \"\" + (results.length - 1 - index);\n\t\t\t\t\t\t\t\tcase \"length\":\n\t\t\t\t\t\t\t\t\treturn \"\" + results.length;\n\t\t\t\t\t\t\t\tdefault:\n\t\t\t\t\t\t\t\t\treturn widget.getVariable(name);\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t});\n\t\t\t\tif(list.length > 0) {\n\t\t\t\t\taccumulator = \"\" + list[0];\n\t\t\t\t}\n\t\t\t\t++index;\n\t\t\t});\n\t\t\tresults.clear();\n\t\t\tresults.push(accumulator);\t\n\t\t}\n\t}\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filterrunprefix"
},
"$:/core/modules/filters/addprefix.js": {
"title": "$:/core/modules/filters/addprefix.js",
"text": "/*\\\ntitle: $:/core/modules/filters/addprefix.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for adding a prefix to each title in the list. This is\nespecially useful in contexts where only a filter expression is allowed\nand macro substitution isn't available.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.addprefix = function(source,operator,options) {\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\tresults.push(operator.operand + title);\n\t});\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/addsuffix.js": {
"title": "$:/core/modules/filters/addsuffix.js",
"text": "/*\\\ntitle: $:/core/modules/filters/addsuffix.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for adding a suffix to each title in the list. This is\nespecially useful in contexts where only a filter expression is allowed\nand macro substitution isn't available.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.addsuffix = function(source,operator,options) {\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\tresults.push(title + operator.operand);\n\t});\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/after.js": {
"title": "$:/core/modules/filters/after.js",
"text": "/*\\\ntitle: $:/core/modules/filters/after.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator returning the tiddler from the current list that is after the tiddler named in the operand.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.after = function(source,operator,options) {\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\tresults.push(title);\n\t});\n\tvar index = results.indexOf(operator.operand);\n\tif(index === -1 || index > (results.length - 2)) {\n\t\treturn [];\n\t} else {\n\t\treturn [results[index + 1]];\n\t}\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/all/current.js": {
"title": "$:/core/modules/filters/all/current.js",
"text": "/*\\\ntitle: $:/core/modules/filters/all/current.js\ntype: application/javascript\nmodule-type: allfilteroperator\n\nFilter function for [all[current]]\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.current = function(source,prefix,options) {\n\tvar currTiddlerTitle = options.widget && options.widget.getVariable(\"currentTiddler\");\n\tif(currTiddlerTitle) {\n\t\treturn [currTiddlerTitle];\n\t} else {\n\t\treturn [];\n\t}\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "allfilteroperator"
},
"$:/core/modules/filters/all/missing.js": {
"title": "$:/core/modules/filters/all/missing.js",
"text": "/*\\\ntitle: $:/core/modules/filters/all/missing.js\ntype: application/javascript\nmodule-type: allfilteroperator\n\nFilter function for [all[missing]]\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.missing = function(source,prefix,options) {\n\treturn options.wiki.getMissingTitles();\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "allfilteroperator"
},
"$:/core/modules/filters/all/orphans.js": {
"title": "$:/core/modules/filters/all/orphans.js",
"text": "/*\\\ntitle: $:/core/modules/filters/all/orphans.js\ntype: application/javascript\nmodule-type: allfilteroperator\n\nFilter function for [all[orphans]]\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.orphans = function(source,prefix,options) {\n\treturn options.wiki.getOrphanTitles();\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "allfilteroperator"
},
"$:/core/modules/filters/all/shadows.js": {
"title": "$:/core/modules/filters/all/shadows.js",
"text": "/*\\\ntitle: $:/core/modules/filters/all/shadows.js\ntype: application/javascript\nmodule-type: allfilteroperator\n\nFilter function for [all[shadows]]\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.shadows = function(source,prefix,options) {\n\treturn options.wiki.allShadowTitles();\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "allfilteroperator"
},
"$:/core/modules/filters/all/tags.js": {
"title": "$:/core/modules/filters/all/tags.js",
"text": "/*\\\ntitle: $:/core/modules/filters/all/tags.js\ntype: application/javascript\nmodule-type: allfilteroperator\n\nFilter function for [all[tags]]\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.tags = function(source,prefix,options) {\n\treturn Object.keys(options.wiki.getTagMap());\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "allfilteroperator"
},
"$:/core/modules/filters/all/tiddlers.js": {
"title": "$:/core/modules/filters/all/tiddlers.js",
"text": "/*\\\ntitle: $:/core/modules/filters/all/tiddlers.js\ntype: application/javascript\nmodule-type: allfilteroperator\n\nFilter function for [all[tiddlers]]\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.tiddlers = function(source,prefix,options) {\n\treturn options.wiki.allTitles();\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "allfilteroperator"
},
"$:/core/modules/filters/all.js": {
"title": "$:/core/modules/filters/all.js",
"text": "/*\\\ntitle: $:/core/modules/filters/all.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for selecting tiddlers\n\n[all[shadows+tiddlers]]\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar allFilterOperators;\n\nfunction getAllFilterOperators() {\n\tif(!allFilterOperators) {\n\t\tallFilterOperators = {};\n\t\t$tw.modules.applyMethods(\"allfilteroperator\",allFilterOperators);\n\t}\n\treturn allFilterOperators;\n}\n\n/*\nExport our filter function\n*/\nexports.all = function(source,operator,options) {\n\t// Get our suboperators\n\tvar allFilterOperators = getAllFilterOperators();\n\t// Cycle through the suboperators accumulating their results\n\tvar results = [],\n\t\tsubops = operator.operand.split(\"+\");\n\t// Check for common optimisations\n\tif(subops.length === 1 && subops[0] === \"\") {\n\t\treturn source;\n\t} else if(subops.length === 1 && subops[0] === \"tiddlers\") {\n\t\treturn options.wiki.each;\n\t} else if(subops.length === 1 && subops[0] === \"shadows\") {\n\t\treturn options.wiki.eachShadow;\n\t} else if(subops.length === 2 && subops[0] === \"tiddlers\" && subops[1] === \"shadows\") {\n\t\treturn options.wiki.eachTiddlerPlusShadows;\n\t} else if(subops.length === 2 && subops[0] === \"shadows\" && subops[1] === \"tiddlers\") {\n\t\treturn options.wiki.eachShadowPlusTiddlers;\n\t}\n\t// Do it the hard way\n\tfor(var t=0; t<subops.length; t++) {\n\t\tvar subop = allFilterOperators[subops[t]];\n\t\tif(subop) {\n\t\t\t$tw.utils.pushTop(results,subop(source,operator.prefix,options));\n\t\t}\n\t}\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/backlinks.js": {
"title": "$:/core/modules/filters/backlinks.js",
"text": "/*\\\ntitle: $:/core/modules/filters/backlinks.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for returning all the backlinks from a tiddler\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.backlinks = function(source,operator,options) {\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\t$tw.utils.pushTop(results,options.wiki.getTiddlerBacklinks(title));\n\t});\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/before.js": {
"title": "$:/core/modules/filters/before.js",
"text": "/*\\\ntitle: $:/core/modules/filters/before.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator returning the tiddler from the current list that is before the tiddler named in the operand.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.before = function(source,operator,options) {\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\tresults.push(title);\n\t});\n\tvar index = results.indexOf(operator.operand);\n\tif(index <= 0) {\n\t\treturn [];\n\t} else {\n\t\treturn [results[index - 1]];\n\t}\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/commands.js": {
"title": "$:/core/modules/filters/commands.js",
"text": "/*\\\ntitle: $:/core/modules/filters/commands.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for returning the names of the commands available in this wiki\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.commands = function(source,operator,options) {\n\tvar results = [];\n\t$tw.utils.each($tw.commands,function(commandInfo,name) {\n\t\tresults.push(name);\n\t});\n\tresults.sort();\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/compare.js": {
"title": "$:/core/modules/filters/compare.js",
"text": "/*\\\ntitle: $:/core/modules/filters/compare.js\ntype: application/javascript\nmodule-type: filteroperator\n\nGeneral purpose comparison operator\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.compare = function(source,operator,options) {\n\tvar suffixes = operator.suffixes || [],\n\t\ttype = (suffixes[0] || [])[0],\n\t\tmode = (suffixes[1] || [])[0],\n\t\ttypeFn = $tw.utils.makeCompareFunction(type,{defaultType: \"number\"}),\n\t\tmodeFn = modes[mode] || modes.eq,\n\t\tinvert = operator.prefix === \"!\",\n\t\tresults = [];\n\tsource(function(tiddler,title) {\n\t\tif(modeFn(typeFn(title,operator.operand)) !== invert) {\n\t\t\tresults.push(title);\n\t\t}\n\t});\n\treturn results;\n};\n\nvar modes = {\n\t\"eq\": function(value) {return value === 0;},\n\t\"ne\": function(value) {return value !== 0;},\n\t\"gteq\": function(value) {return value >= 0;},\n\t\"gt\": function(value) {return value > 0;},\n\t\"lteq\": function(value) {return value <= 0;},\n\t\"lt\": function(value) {return value < 0;}\n}\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/contains.js": {
"title": "$:/core/modules/filters/contains.js",
"text": "/*\\\ntitle: $:/core/modules/filters/contains.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for finding values in array fields\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.contains = function(source,operator,options) {\n\tvar results = [],\n\t\tfieldname = (operator.suffix || \"list\").toLowerCase();\n\tif(operator.prefix === \"!\") {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(tiddler) {\n\t\t\t\tvar list = tiddler.getFieldList(fieldname);\n\t\t\t\tif(list.indexOf(operator.operand) === -1) {\n\t\t\t\t\tresults.push(title);\n\t\t\t\t}\n\t\t\t} else {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t} else {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(tiddler) {\n\t\t\t\tvar list = tiddler.getFieldList(fieldname);\n\t\t\t\tif(list.indexOf(operator.operand) !== -1) {\n\t\t\t\t\tresults.push(title);\n\t\t\t\t}\n\t\t\t}\n\t\t});\n\t}\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/count.js": {
"title": "$:/core/modules/filters/count.js",
"text": "/*\\\ntitle: $:/core/modules/filters/count.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator returning the number of entries in the current list.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.count = function(source,operator,options) {\n\tvar count = 0;\n\tsource(function(tiddler,title) {\n\t\tcount++;\n\t});\n\treturn [count + \"\"];\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/days.js": {
"title": "$:/core/modules/filters/days.js",
"text": "/*\\\ntitle: $:/core/modules/filters/days.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator that selects tiddlers with a specified date field within a specified date interval.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.days = function(source,operator,options) {\n\tvar results = [],\n\t\tfieldName = operator.suffix || \"modified\",\n\t\tdayInterval = (parseInt(operator.operand,10)||0),\n\t\tdayIntervalSign = $tw.utils.sign(dayInterval),\n\t\ttargetTimeStamp = (new Date()).setHours(0,0,0,0) + 1000*60*60*24*dayInterval,\n\t\tisWithinDays = function(dateField) {\n\t\t\tvar sign = $tw.utils.sign(targetTimeStamp - (new Date(dateField)).setHours(0,0,0,0));\n\t\t\treturn sign === 0 || sign === dayIntervalSign;\n\t\t};\n\n\tif(operator.prefix === \"!\") {\n\t\ttargetTimeStamp = targetTimeStamp - 1000*60*60*24*dayIntervalSign;\n\t\tsource(function(tiddler,title) {\n\t\t\tif(tiddler && tiddler.fields[fieldName]) {\n\t\t\t\tif(!isWithinDays($tw.utils.parseDate(tiddler.fields[fieldName]))) {\n\t\t\t\t\tresults.push(title);\n\t\t\t\t}\n\t\t\t}\n\t\t});\n\t} else {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(tiddler && tiddler.fields[fieldName]) {\n\t\t\t\tif(isWithinDays($tw.utils.parseDate(tiddler.fields[fieldName]))) {\n\t\t\t\t\tresults.push(title);\n\t\t\t\t}\n\t\t\t}\n\t\t});\n\t}\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/duplicateslugs.js": {
"title": "$:/core/modules/filters/duplicateslugs.js",
"text": "/*\\\ntitle: $:/core/modules/filters/duplicateslugs.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter function for [duplicateslugs[]]\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.duplicateslugs = function(source,operator,options) {\n\tvar slugs = Object.create(null), // Hashmap by slug of title, replaced with \"true\" if the duplicate title has already been output\n\t\tresults = [];\n\tsource(function(tiddler,title) {\n\t\tvar slug = options.wiki.slugify(title);\n\t\tif(slug in slugs) {\n\t\t\tif(slugs[slug] !== true) {\n\t\t\t\tresults.push(slugs[slug]);\n\t\t\t\tslugs[slug] = true;\n\t\t\t}\n\t\t\tresults.push(title);\n\t\t} else {\n\t\t\tslugs[slug] = title;\n\t\t}\n\t});\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/each.js": {
"title": "$:/core/modules/filters/each.js",
"text": "/*\\\ntitle: $:/core/modules/filters/each.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator that selects one tiddler for each unique value of the specified field.\nWith suffix \"list\", selects all tiddlers that are values in a specified list field.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.each = function(source,operator,options) {\n\tvar results =[] ,\n\tvalue,values = {},\n\tfield = operator.operand || \"title\";\n\tif(operator.suffix === \"value\" && field === \"title\") {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(!$tw.utils.hop(values,title)) {\n\t\t\t\tvalues[title] = true;\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t} else if(operator.suffix !== \"list-item\") {\n\t\tif(field === \"title\") {\n\t\t\tsource(function(tiddler,title) {\n\t\t\t\tif(tiddler && !$tw.utils.hop(values,title)) {\n\t\t\t\t\tvalues[title] = true;\n\t\t\t\t\tresults.push(title);\n\t\t\t\t}\n\t\t\t});\n\t\t} else {\n\t\t\tsource(function(tiddler,title) {\n\t\t\t\tif(tiddler) {\n\t\t\t\t\tvalue = tiddler.getFieldString(field);\n\t\t\t\t\tif(!$tw.utils.hop(values,value)) {\n\t\t\t\t\t\tvalues[value] = true;\n\t\t\t\t\t\tresults.push(title);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t});\n\t\t}\n\t} else {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(tiddler) {\n\t\t\t\t$tw.utils.each(\n\t\t\t\t\toptions.wiki.getTiddlerList(title,field),\n\t\t\t\t\tfunction(value) {\n\t\t\t\t\t\tif(!$tw.utils.hop(values,value)) {\n\t\t\t\t\t\t\tvalues[value] = true;\n\t\t\t\t\t\t\tresults.push(value);\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t);\n\t\t\t}\n\t\t});\n\t}\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/eachday.js": {
"title": "$:/core/modules/filters/eachday.js",
"text": "/*\\\ntitle: $:/core/modules/filters/eachday.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator that selects one tiddler for each unique day covered by the specified date field\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.eachday = function(source,operator,options) {\n\tvar results = [],\n\t\tvalues = [],\n\t\tfieldName = operator.operand || \"modified\";\n\t// Function to convert a date/time to a date integer\n\tvar toDate = function(value) {\n\t\tvalue = (new Date(value)).setHours(0,0,0,0);\n\t\treturn value+0;\n\t};\n\tsource(function(tiddler,title) {\n\t\tif(tiddler && tiddler.fields[fieldName]) {\n\t\t\tvar value = toDate($tw.utils.parseDate(tiddler.fields[fieldName]));\n\t\t\tif(values.indexOf(value) === -1) {\n\t\t\t\tvalues.push(value);\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t}\n\t});\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/editiondescription.js": {
"title": "$:/core/modules/filters/editiondescription.js",
"text": "/*\\\ntitle: $:/core/modules/filters/editiondescription.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for returning the descriptions of the specified edition names\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.editiondescription = function(source,operator,options) {\n\tvar results = [];\n\tif($tw.node) {\n\t\tvar editionInfo = $tw.utils.getEditionInfo();\n\t\tif(editionInfo) {\n\t\t\tsource(function(tiddler,title) {\n\t\t\t\tif($tw.utils.hop(editionInfo,title)) {\n\t\t\t\t\tresults.push(editionInfo[title].description || \"\");\t\t\t\t\n\t\t\t\t}\n\t\t\t});\n\t\t}\n\t}\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/editions.js": {
"title": "$:/core/modules/filters/editions.js",
"text": "/*\\\ntitle: $:/core/modules/filters/editions.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for returning the names of the available editions in this wiki\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.editions = function(source,operator,options) {\n\tvar results = [];\n\tif($tw.node) {\n\t\tvar editionInfo = $tw.utils.getEditionInfo();\n\t\tif(editionInfo) {\n\t\t\t$tw.utils.each(editionInfo,function(info,name) {\n\t\t\t\tresults.push(name);\n\t\t\t});\n\t\t}\n\t\tresults.sort();\n\t}\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/else.js": {
"title": "$:/core/modules/filters/else.js",
"text": "/*\\\ntitle: $:/core/modules/filters/else.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for replacing an empty input list with a constant, passing a non-empty input list straight through\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.else = function(source,operator,options) {\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\tresults.push(title);\n\t});\n\tif(results.length === 0) {\n\t\treturn [operator.operand];\n\t} else {\n\t\treturn results;\n\t}\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/decodeuricomponent.js": {
"title": "$:/core/modules/filters/decodeuricomponent.js",
"text": "/*\\\ntitle: $:/core/modules/filters/decodeuricomponent.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for applying decodeURIComponent() to each item.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter functions\n*/\n\nexports.decodeuricomponent = function(source,operator,options) {\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\tvar value = title;\n\t\ttry {\n\t\t\tvalue = decodeURIComponent(title);\n\t\t} catch(e) {\n\t\t}\n\t\tresults.push(value);\n\t});\n\treturn results;\n};\n\nexports.encodeuricomponent = function(source,operator,options) {\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\tresults.push(encodeURIComponent(title));\n\t});\n\treturn results;\n};\n\nexports.decodeuri = function(source,operator,options) {\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\tvar value = title;\n\t\ttry {\n\t\t\tvalue = decodeURI(title);\n\t\t} catch(e) {\n\t\t}\n\t\tresults.push(value);\n\t});\n\treturn results;\n};\n\nexports.encodeuri = function(source,operator,options) {\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\tresults.push(encodeURI(title));\n\t});\n\treturn results;\n};\n\nexports.decodehtml = function(source,operator,options) {\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\tresults.push($tw.utils.htmlDecode(title));\n\t});\n\treturn results;\n};\n\nexports.encodehtml = function(source,operator,options) {\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\tresults.push($tw.utils.htmlEncode(title));\n\t});\n\treturn results;\n};\n\nexports.stringify = function(source,operator,options) {\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\tresults.push($tw.utils.stringify(title,(operator.suffix === \"rawunicode\")));\n\t});\n\treturn results;\n};\n\nexports.jsonstringify = function(source,operator,options) {\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\tresults.push($tw.utils.jsonStringify(title,(operator.suffix === \"rawunicode\")));\n\t});\n\treturn results;\n};\n\nexports.escaperegexp = function(source,operator,options) {\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\tresults.push($tw.utils.escapeRegExp(title));\n\t});\n\treturn results;\n};\n\nexports.escapecss = function(source,operator,options) {\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\t// escape any character with a special meaning in CSS using CSS.escape()\n\t\tresults.push(CSS.escape(title));\n\t});\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/enlist.js": {
"title": "$:/core/modules/filters/enlist.js",
"text": "/*\\\ntitle: $:/core/modules/filters/enlist.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator returning its operand parsed as a list\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.enlist = function(source,operator,options) {\n\tvar allowDuplicates = false;\n\tswitch(operator.suffix) {\n\t\tcase \"raw\":\n\t\t\tallowDuplicates = true;\n\t\t\tbreak;\n\t\tcase \"dedupe\":\n\t\t\tallowDuplicates = false;\n\t\t\tbreak;\n\t}\n\tvar list = $tw.utils.parseStringArray(operator.operand,allowDuplicates);\n\tif(operator.prefix === \"!\") {\n\t\tvar results = [];\n\t\tsource(function(tiddler,title) {\n\t\t\tif(list.indexOf(title) === -1) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t\treturn results;\n\t} else {\n\t\treturn list;\n\t}\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/field.js": {
"title": "$:/core/modules/filters/field.js",
"text": "/*\\\ntitle: $:/core/modules/filters/field.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for comparing fields for equality\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.field = function(source,operator,options) {\n\tvar results = [],indexedResults,\n\t\tfieldname = (operator.suffix || operator.operator || \"title\").toLowerCase();\n\tif(operator.prefix === \"!\") {\n\t\tif(operator.regexp) {\n\t\t\tsource(function(tiddler,title) {\n\t\t\t\tif(tiddler) {\n\t\t\t\t\tvar text = tiddler.getFieldString(fieldname);\n\t\t\t\t\tif(text !== null && !operator.regexp.exec(text)) {\n\t\t\t\t\t\tresults.push(title);\n\t\t\t\t\t}\n\t\t\t\t} else {\n\t\t\t\t\tresults.push(title);\n\t\t\t\t}\n\t\t\t});\n\t\t} else {\n\t\t\tsource(function(tiddler,title) {\n\t\t\t\tif(tiddler) {\n\t\t\t\t\tvar text = tiddler.getFieldString(fieldname);\n\t\t\t\t\tif(text !== null && text !== operator.operand) {\n\t\t\t\t\t\tresults.push(title);\n\t\t\t\t\t}\n\t\t\t\t} else {\n\t\t\t\t\tresults.push(title);\n\t\t\t\t}\n\t\t\t});\n\t\t}\n\t} else {\n\t\tif(operator.regexp) {\n\t\t\tsource(function(tiddler,title) {\n\t\t\t\tif(tiddler) {\n\t\t\t\t\tvar text = tiddler.getFieldString(fieldname);\n\t\t\t\t\tif(text !== null && !!operator.regexp.exec(text)) {\n\t\t\t\t\t\tresults.push(title);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t});\n\t\t} else {\n\t\t\tif(source.byField && operator.operand) {\n\t\t\t\tindexedResults = source.byField(fieldname,operator.operand);\n\t\t\t\tif(indexedResults) {\n\t\t\t\t\treturn indexedResults\n\t\t\t\t}\n\t\t\t}\n\t\t\tsource(function(tiddler,title) {\n\t\t\t\tif(tiddler) {\n\t\t\t\t\tvar text = tiddler.getFieldString(fieldname);\n\t\t\t\t\tif(text !== null && text === operator.operand) {\n\t\t\t\t\t\tresults.push(title);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t});\n\t\t}\n\t}\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/fields.js": {
"title": "$:/core/modules/filters/fields.js",
"text": "/*\\\ntitle: $:/core/modules/filters/fields.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for returning the names of the fields on the selected tiddlers\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.fields = function(source,operator,options) {\n\tvar results = [],\n\t\tfieldName,\n\t\tsuffixes = (operator.suffixes || [])[0] || [],\n\t\toperand = $tw.utils.parseStringArray(operator.operand);\n\t\n\tsource(function(tiddler,title) {\n\t\tif(tiddler) {\n\t\t\tif(suffixes.indexOf(\"include\") !== -1) {\n\t\t\t\tfor(fieldName in tiddler.fields) {\n\t\t\t\t\t(operand.indexOf(fieldName) !== -1) ? $tw.utils.pushTop(results,fieldName) : \"\";\n\t\t\t\t}\n\t\t\t} else if (suffixes.indexOf(\"exclude\") !== -1) {\n\t\t\t\tfor(fieldName in tiddler.fields) {\n\t\t\t\t\t(operand.indexOf(fieldName) !== -1) ? \"\" : $tw.utils.pushTop(results,fieldName);\n\t\t\t\t}\n\t\t\t} // else if\n\t\t\telse {\n\t\t\t\tfor(fieldName in tiddler.fields) {\n\t\t\t\t\t$tw.utils.pushTop(results,fieldName);\n\t\t\t\t}\n\t\t\t} // else\n\t\t} // if (tiddler)\n\t});\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/filter.js": {
"title": "$:/core/modules/filters/filter.js",
"text": "/*\\\ntitle: $:/core/modules/filters/filter.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator returning those input titles that pass a subfilter\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.filter = function(source,operator,options) {\n\tvar filterFn = options.wiki.compileFilter(operator.operand),\n\t\tresults = [],\n\t\ttarget = operator.prefix !== \"!\";\n\tsource(function(tiddler,title) {\n\t\tvar list = filterFn.call(options.wiki,options.wiki.makeTiddlerIterator([title]));\n\t\tif((list.length > 0) === target) {\n\t\t\tresults.push(title);\n\t\t}\n\t});\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/format/date.js": {
"title": "$:/core/modules/filters/format/date.js",
"text": "/*\\\ntitle: $:/core/modules/filters/format/date.js\ntype: application/javascript\nmodule-type: formatfilteroperator\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.date = function(source,operand,options) {\n\tvar results = [];\t\n\tsource(function(tiddler,title) {\n\t\tvar value = $tw.utils.parseDate(title);\n\t\tif(value && $tw.utils.isDate(value) && value.toString() !== \"Invalid Date\") {\n\t\t\tresults.push($tw.utils.formatDateString(value,operand || \"YYYY MM DD 0hh:0mm\"));\n\t\t}\n\t});\t\n\treturn results;\n};\n\n})();",
"type": "application/javascript",
"module-type": "formatfilteroperator"
},
"$:/core/modules/filters/format/relativedate.js": {
"title": "$:/core/modules/filters/format/relativedate.js",
"text": "/*\\\ntitle: $:/core/modules/filters/format/relativedate.js\ntype: application/javascript\nmodule-type: formatfilteroperator\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.relativedate = function(source,operand,options) {\n\tvar results = [];\t\n\tsource(function(tiddler,title) {\n\t\tvar value = $tw.utils.parseDate(title);\n\t\tif(value && $tw.utils.isDate(value) && value.toString() !== \"Invalid Date\") {\n\t\t\tresults.push($tw.utils.getRelativeDate((new Date()) - (new Date(value))).description);\n\t\t}\n\t});\t\n\treturn results;\n};\n\n})();",
"type": "application/javascript",
"module-type": "formatfilteroperator"
},
"$:/core/modules/filters/format.js": {
"title": "$:/core/modules/filters/format.js",
"text": "/*\\\ntitle: $:/core/modules/filters/format.js\ntype: application/javascript\nmodule-type: filteroperator\nFilter operator for formatting strings\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar formatFilterOperators;\n\nfunction getFormatFilterOperators() {\n\tif(!formatFilterOperators) {\n\t\tformatFilterOperators = {};\n\t\t$tw.modules.applyMethods(\"formatfilteroperator\",formatFilterOperators);\n\t}\n\treturn formatFilterOperators;\n}\n\n/*\nExport our filter function\n*/\nexports.format = function(source,operator,options) {\n\t// Dispatch to the correct formatfilteroperator\n\tvar formatFilterOperators = getFormatFilterOperators();\n\tif(operator.suffix) {\n\t\tvar formatFilterOperator = formatFilterOperators[operator.suffix];\n\t\tif(formatFilterOperator) {\n\t\t\treturn formatFilterOperator(source,operator.operand,options);\n\t\t} else {\n\t\t\treturn [$tw.language.getString(\"Error/FormatFilterOperator\")];\n\t\t}\n\t} else {\n\t\t// Return all unchanged if the suffix is missing\n\t\tvar results = [];\n\t\tsource(function(tiddler,title) {\n\t\t\tresults.push(title);\n\t\t});\n\t\treturn results;\n\t}\n};\n\n})();",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/get.js": {
"title": "$:/core/modules/filters/get.js",
"text": "/*\\\ntitle: $:/core/modules/filters/get.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for replacing tiddler titles by the value of the field specified in the operand.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.get = function(source,operator,options) {\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\tif(tiddler) {\n\t\t\tvar value = tiddler.getFieldString(operator.operand);\n\t\t\tif(value) {\n\t\t\t\tresults.push(value);\n\t\t\t}\n\t\t}\n\t});\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/getindex.js": {
"title": "$:/core/modules/filters/getindex.js",
"text": "/*\\\ntitle: $:/core/modules/filters/getindex.js\ntype: application/javascript\nmodule-type: filteroperator\n\nreturns the value at a given index of datatiddlers\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.getindex = function(source,operator,options) {\n\tvar data,title,results = [];\n\tif(operator.operand){\n\t\tsource(function(tiddler,title) {\n\t\t\ttitle = tiddler ? tiddler.fields.title : title;\n\t\t\tdata = options.wiki.extractTiddlerDataItem(tiddler,operator.operand);\n\t\t\tif(data) {\n\t\t\t\tresults.push(data);\n\t\t\t}\n\t\t});\n\t}\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/getvariable.js": {
"title": "$:/core/modules/filters/getvariable.js",
"text": "/*\\\ntitle: $:/core/modules/filters/getvariable.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for replacing input values by the value of the variable with the same name, or blank if the variable is missing\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.getvariable = function(source,operator,options) {\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\tresults.push(options.widget.getVariable(title) || \"\");\n\t});\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/has.js": {
"title": "$:/core/modules/filters/has.js",
"text": "/*\\\ntitle: $:/core/modules/filters/has.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for checking if a tiddler has the specified field or index\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.has = function(source,operator,options) {\n\tvar results = [],\n\t\tinvert = operator.prefix === \"!\";\n\n\tif(operator.suffix === \"field\") {\n\t\tif(invert) {\n\t\t\tsource(function(tiddler,title) {\n\t\t\t\tif(!tiddler || (tiddler && (!$tw.utils.hop(tiddler.fields,operator.operand)))) {\n\t\t\t\t\tresults.push(title);\n\t\t\t\t}\n\t\t\t});\n\t\t} else {\n\t\t\tsource(function(tiddler,title) {\n\t\t\t\tif(tiddler && $tw.utils.hop(tiddler.fields,operator.operand)) {\n\t\t\t\t\tresults.push(title);\n\t\t\t\t}\n\t\t\t});\n\t\t}\n\t}\n\telse if(operator.suffix === \"index\") {\n\t\tif(invert) {\n\t\t\tsource(function(tiddler,title) {\n\t\t\t\tif(!tiddler || (tiddler && (!$tw.utils.hop(options.wiki.getTiddlerDataCached(tiddler,Object.create(null)),operator.operand)))) {\n\t\t\t\t\tresults.push(title);\n\t\t\t\t}\n\t\t\t});\n\t\t} else {\n\t\t\tsource(function(tiddler,title) {\n\t\t\t\tif(tiddler && $tw.utils.hop(options.wiki.getTiddlerDataCached(tiddler,Object.create(null)),operator.operand)) {\n\t\t\t\t\tresults.push(title);\n\t\t\t\t}\n\t\t\t});\n\t\t}\n\t}\n\telse {\n\t\tif(invert) {\n\t\t\tsource(function(tiddler,title) {\n\t\t\t\tif(!tiddler || !$tw.utils.hop(tiddler.fields,operator.operand) || (tiddler.fields[operator.operand].length === 0)) {\n\t\t\t\t\tresults.push(title);\n\t\t\t\t}\n\t\t\t});\n\t\t} else {\n\t\t\tsource(function(tiddler,title) {\n\t\t\t\tif(tiddler && $tw.utils.hop(tiddler.fields,operator.operand) && (tiddler.fields[operator.operand].length !== 0)) {\n\t\t\t\t\tresults.push(title);\n\t\t\t\t}\n\t\t\t});\t\t\t\t\n\t\t}\n\t}\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/haschanged.js": {
"title": "$:/core/modules/filters/haschanged.js",
"text": "/*\\\ntitle: $:/core/modules/filters/haschanged.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator returns tiddlers from the list that have a non-zero changecount.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.haschanged = function(source,operator,options) {\n\tvar results = [];\n\tif(operator.prefix === \"!\") {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(options.wiki.getChangeCount(title) === 0) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t} else {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(options.wiki.getChangeCount(title) > 0) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t}\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/indexes.js": {
"title": "$:/core/modules/filters/indexes.js",
"text": "/*\\\ntitle: $:/core/modules/filters/indexes.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for returning the indexes of a data tiddler\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.indexes = function(source,operator,options) {\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\tvar data = options.wiki.getTiddlerDataCached(title);\n\t\tif(data) {\n\t\t\t$tw.utils.pushTop(results,Object.keys(data));\n\t\t}\n\t});\n\tresults.sort();\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/insertbefore.js": {
"title": "$:/core/modules/filters/insertbefore.js",
"text": "/*\\\ntitle: $:/core/modules/filters/insertbefore.js\ntype: application/javascript\nmodule-type: filteroperator\n\nInsert an item before another item in a list\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nOrder a list\n*/\nexports.insertbefore = function(source,operator,options) {\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\tresults.push(title);\n\t});\n\tvar target = options.widget && options.widget.getVariable(operator.suffix || \"currentTiddler\");\n\tif(target !== operator.operand) {\n\t\t// Remove the entry from the list if it is present\n\t\tvar pos = results.indexOf(operator.operand);\n\t\tif(pos !== -1) {\n\t\t\tresults.splice(pos,1);\n\t\t}\n\t\t// Insert the entry before the target marker\n\t\tpos = results.indexOf(target);\n\t\tif(pos !== -1) {\n\t\t\tresults.splice(pos,0,operator.operand);\n\t\t} else {\n\t\t\tresults.push(operator.operand);\n\t\t}\n\t}\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/is/binary.js": {
"title": "$:/core/modules/filters/is/binary.js",
"text": "/*\\\ntitle: $:/core/modules/filters/is/binary.js\ntype: application/javascript\nmodule-type: isfilteroperator\n\nFilter function for [is[binary]]\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.binary = function(source,prefix,options) {\n\tvar results = [];\n\tif(prefix === \"!\") {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(!options.wiki.isBinaryTiddler(title)) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t} else {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(options.wiki.isBinaryTiddler(title)) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t}\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "isfilteroperator"
},
"$:/core/modules/filters/is/blank.js": {
"title": "$:/core/modules/filters/is/blank.js",
"text": "/*\\\ntitle: $:/core/modules/filters/is/blank.js\ntype: application/javascript\nmodule-type: isfilteroperator\n\nFilter function for [is[blank]]\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.blank = function(source,prefix,options) {\n\tvar results = [];\n\tif(prefix === \"!\") {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(title) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t} else {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(!title) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t}\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "isfilteroperator"
},
"$:/core/modules/filters/is/current.js": {
"title": "$:/core/modules/filters/is/current.js",
"text": "/*\\\ntitle: $:/core/modules/filters/is/current.js\ntype: application/javascript\nmodule-type: isfilteroperator\n\nFilter function for [is[current]]\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.current = function(source,prefix,options) {\n\tvar results = [],\n\t\tcurrTiddlerTitle = options.widget && options.widget.getVariable(\"currentTiddler\");\n\tif(prefix === \"!\") {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(title !== currTiddlerTitle) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t} else {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(title === currTiddlerTitle) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t}\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "isfilteroperator"
},
"$:/core/modules/filters/is/draft.js": {
"title": "$:/core/modules/filters/is/draft.js",
"text": "/*\\\ntitle: $:/core/modules/filters/is/draft.js\ntype: application/javascript\nmodule-type: isfilteroperator\n\nFilter function for [is[draft]] analagous to [has[draft.of]]\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.draft = function(source,prefix,options) {\n\tvar results = [];\n\tif(prefix === \"!\") {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(!tiddler || !$tw.utils.hop(tiddler.fields,\"draft.of\")) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t} else {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(tiddler && $tw.utils.hop(tiddler.fields,\"draft.of\") && (tiddler.fields[\"draft.of\"].length !== 0)) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\t\t\t\t\n\t}\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "isfilteroperator"
},
"$:/core/modules/filters/is/image.js": {
"title": "$:/core/modules/filters/is/image.js",
"text": "/*\\\ntitle: $:/core/modules/filters/is/image.js\ntype: application/javascript\nmodule-type: isfilteroperator\n\nFilter function for [is[image]]\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.image = function(source,prefix,options) {\n\tvar results = [];\n\tif(prefix === \"!\") {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(!options.wiki.isImageTiddler(title)) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t} else {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(options.wiki.isImageTiddler(title)) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t}\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "isfilteroperator"
},
"$:/core/modules/filters/is/missing.js": {
"title": "$:/core/modules/filters/is/missing.js",
"text": "/*\\\ntitle: $:/core/modules/filters/is/missing.js\ntype: application/javascript\nmodule-type: isfilteroperator\n\nFilter function for [is[missing]]\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.missing = function(source,prefix,options) {\n\tvar results = [];\n\tif(prefix === \"!\") {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(options.wiki.tiddlerExists(title)) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t} else {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(!options.wiki.tiddlerExists(title)) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t}\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "isfilteroperator"
},
"$:/core/modules/filters/is/orphan.js": {
"title": "$:/core/modules/filters/is/orphan.js",
"text": "/*\\\ntitle: $:/core/modules/filters/is/orphan.js\ntype: application/javascript\nmodule-type: isfilteroperator\n\nFilter function for [is[orphan]]\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.orphan = function(source,prefix,options) {\n\tvar results = [],\n\t\torphanTitles = options.wiki.getOrphanTitles();\n\tif(prefix === \"!\") {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(orphanTitles.indexOf(title) === -1) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t} else {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(orphanTitles.indexOf(title) !== -1) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t}\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "isfilteroperator"
},
"$:/core/modules/filters/is/shadow.js": {
"title": "$:/core/modules/filters/is/shadow.js",
"text": "/*\\\ntitle: $:/core/modules/filters/is/shadow.js\ntype: application/javascript\nmodule-type: isfilteroperator\n\nFilter function for [is[shadow]]\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.shadow = function(source,prefix,options) {\n\tvar results = [];\n\tif(prefix === \"!\") {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(!options.wiki.isShadowTiddler(title)) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t} else {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(options.wiki.isShadowTiddler(title)) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t}\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "isfilteroperator"
},
"$:/core/modules/filters/is/system.js": {
"title": "$:/core/modules/filters/is/system.js",
"text": "/*\\\ntitle: $:/core/modules/filters/is/system.js\ntype: application/javascript\nmodule-type: isfilteroperator\n\nFilter function for [is[system]]\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.system = function(source,prefix,options) {\n\tvar results = [];\n\tif(prefix === \"!\") {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(!options.wiki.isSystemTiddler(title)) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t} else {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(options.wiki.isSystemTiddler(title)) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t}\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "isfilteroperator"
},
"$:/core/modules/filters/is/tag.js": {
"title": "$:/core/modules/filters/is/tag.js",
"text": "/*\\\ntitle: $:/core/modules/filters/is/tag.js\ntype: application/javascript\nmodule-type: isfilteroperator\n\nFilter function for [is[tag]]\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.tag = function(source,prefix,options) {\n\tvar results = [],\n\t\ttagMap = options.wiki.getTagMap();\n\tif(prefix === \"!\") {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(!$tw.utils.hop(tagMap,title)) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t} else {\n\t\tsource(function(tiddler,title) {\n\t\t\tif($tw.utils.hop(tagMap,title)) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t}\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "isfilteroperator"
},
"$:/core/modules/filters/is/tiddler.js": {
"title": "$:/core/modules/filters/is/tiddler.js",
"text": "/*\\\ntitle: $:/core/modules/filters/is/tiddler.js\ntype: application/javascript\nmodule-type: isfilteroperator\n\nFilter function for [is[tiddler]]\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.tiddler = function(source,prefix,options) {\n\tvar results = [];\n\tif(prefix === \"!\") {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(!options.wiki.tiddlerExists(title)) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t} else {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(options.wiki.tiddlerExists(title)) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t}\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "isfilteroperator"
},
"$:/core/modules/filters/is/variable.js": {
"title": "$:/core/modules/filters/is/variable.js",
"text": "/*\\\ntitle: $:/core/modules/filters/is/variable.js\ntype: application/javascript\nmodule-type: isfilteroperator\n\nFilter function for [is[variable]]\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.variable = function(source,prefix,options) {\n\tvar results = [];\n\tif(prefix === \"!\") {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(!(title in options.widget.variables)) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t} else {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(title in options.widget.variables) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t}\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "isfilteroperator"
},
"$:/core/modules/filters/is.js": {
"title": "$:/core/modules/filters/is.js",
"text": "/*\\\ntitle: $:/core/modules/filters/is.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for checking tiddler properties\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar isFilterOperators;\n\nfunction getIsFilterOperators() {\n\tif(!isFilterOperators) {\n\t\tisFilterOperators = {};\n\t\t$tw.modules.applyMethods(\"isfilteroperator\",isFilterOperators);\n\t}\n\treturn isFilterOperators;\n}\n\n/*\nExport our filter function\n*/\nexports.is = function(source,operator,options) {\n\t// Dispatch to the correct isfilteroperator\n\tvar isFilterOperators = getIsFilterOperators();\n\tif(operator.operand) {\n\t\tvar isFilterOperator = isFilterOperators[operator.operand];\n\t\tif(isFilterOperator) {\n\t\t\treturn isFilterOperator(source,operator.prefix,options);\n\t\t} else {\n\t\t\treturn [$tw.language.getString(\"Error/IsFilterOperator\")];\n\t\t}\n\t} else {\n\t\t// Return all tiddlers if the operand is missing\n\t\tvar results = [];\n\t\tsource(function(tiddler,title) {\n\t\t\tresults.push(title);\n\t\t});\n\t\treturn results;\n\t}\n};\n\n})();",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/limit.js": {
"title": "$:/core/modules/filters/limit.js",
"text": "/*\\\ntitle: $:/core/modules/filters/limit.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for chopping the results to a specified maximum number of entries\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.limit = function(source,operator,options) {\n\tvar results = [];\n\t// Convert to an array\n\tsource(function(tiddler,title) {\n\t\tresults.push(title);\n\t});\n\t// Slice the array if necessary\n\tvar limit = Math.min(results.length,parseInt(operator.operand,10));\n\tif(operator.prefix === \"!\") {\n\t\tresults = results.slice(-limit);\n\t} else {\n\t\tresults = results.slice(0,limit);\n\t}\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/links.js": {
"title": "$:/core/modules/filters/links.js",
"text": "/*\\\ntitle: $:/core/modules/filters/links.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for returning all the links from a tiddler\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.links = function(source,operator,options) {\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\t$tw.utils.pushTop(results,options.wiki.getTiddlerLinks(title));\n\t});\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/list.js": {
"title": "$:/core/modules/filters/list.js",
"text": "/*\\\ntitle: $:/core/modules/filters/list.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator returning the tiddlers whose title is listed in the operand tiddler\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.list = function(source,operator,options) {\n\tvar results = [],\n\t\ttr = $tw.utils.parseTextReference(operator.operand),\n\t\tcurrTiddlerTitle = options.widget && options.widget.getVariable(\"currentTiddler\"),\n\t\tlist = options.wiki.getTiddlerList(tr.title || currTiddlerTitle,tr.field,tr.index);\n\tif(operator.prefix === \"!\") {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(list.indexOf(title) === -1) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t} else {\n\t\tresults = list;\n\t}\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/listed.js": {
"title": "$:/core/modules/filters/listed.js",
"text": "/*\\\ntitle: $:/core/modules/filters/listed.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator returning all tiddlers that have the selected tiddlers in a list\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.listed = function(source,operator,options) {\n\tvar field = operator.operand || \"list\",\n\t\tresults = [];\n\tsource(function(tiddler,title) {\n\t\t$tw.utils.pushTop(results,options.wiki.findListingsOfTiddler(title,field));\n\t});\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/listops.js": {
"title": "$:/core/modules/filters/listops.js",
"text": "/*\\\ntitle: $:/core/modules/filters/listops.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operators for manipulating the current selection list\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nOrder a list\n*/\nexports.order = function(source,operator,options) {\n\tvar results = [];\n\tif(operator.operand.toLowerCase() === \"reverse\") {\n\t\tsource(function(tiddler,title) {\n\t\t\tresults.unshift(title);\n\t\t});\n\t} else {\n\t\tsource(function(tiddler,title) {\n\t\t\tresults.push(title);\n\t\t});\n\t}\n\treturn results;\n};\n\n/*\nReverse list\n*/\nexports.reverse = function(source,operator,options) {\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\tresults.unshift(title);\n\t});\n\treturn results;\n};\n\n/*\nFirst entry/entries in list\n*/\nexports.first = function(source,operator,options) {\n\tvar count = $tw.utils.getInt(operator.operand,1),\n\t\tresults = [];\n\tsource(function(tiddler,title) {\n\t\tresults.push(title);\n\t});\n\treturn results.slice(0,count);\n};\n\n/*\nLast entry/entries in list\n*/\nexports.last = function(source,operator,options) {\n\tvar count = $tw.utils.getInt(operator.operand,1),\n\t\tresults = [];\n\tsource(function(tiddler,title) {\n\t\tresults.push(title);\n\t});\n\treturn results.slice(-count);\n};\n\n/*\nAll but the first entry/entries of the list\n*/\nexports.rest = function(source,operator,options) {\n\tvar count = $tw.utils.getInt(operator.operand,1),\n\t\tresults = [];\n\tsource(function(tiddler,title) {\n\t\tresults.push(title);\n\t});\n\treturn results.slice(count);\n};\nexports.butfirst = exports.rest;\nexports.bf = exports.rest;\n\n/*\nAll but the last entry/entries of the list\n*/\nexports.butlast = function(source,operator,options) {\n\tvar count = $tw.utils.getInt(operator.operand,1),\n\t\tresults = [];\n\tsource(function(tiddler,title) {\n\t\tresults.push(title);\n\t});\n\treturn results.slice(0,-count);\n};\nexports.bl = exports.butlast;\n\n/*\nThe nth member of the list\n*/\nexports.nth = function(source,operator,options) {\n\tvar count = $tw.utils.getInt(operator.operand,1),\n\t\tresults = [];\n\tsource(function(tiddler,title) {\n\t\tresults.push(title);\n\t});\n\treturn results.slice(count - 1,count);\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/lookup.js": {
"title": "$:/core/modules/filters/lookup.js",
"text": "/*\\\ntitle: $:/core/modules/filters/lookup.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator that looks up values via a title prefix\n\n[lookup:<field>[<prefix>]]\n\nPrepends the prefix to the selected items and returns the specified field value\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.lookup = function(source,operator,options) {\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\tresults.push(options.wiki.getTiddlerText(operator.operand + title) || operator.suffix);\n\t});\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/match.js": {
"title": "$:/core/modules/filters/match.js",
"text": "/*\\\ntitle: $:/core/modules/filters/match.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for checking if a title matches a string\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.match = function(source,operator,options) {\n\tvar results = [],\n\t\tsuffixes = (operator.suffixes || [])[0] || [];\n\tif(suffixes.indexOf(\"caseinsensitive\") !== -1) {\n\t\tif(operator.prefix === \"!\") {\n\t\t\tsource(function(tiddler,title) {\n\t\t\t\tif(title.toLowerCase() !== (operator.operand || \"\").toLowerCase()) {\n\t\t\t\t\tresults.push(title);\n\t\t\t\t}\n\t\t\t});\n\t\t} else {\n\t\t\tsource(function(tiddler,title) {\n\t\t\t\tif(title.toLowerCase() === (operator.operand || \"\").toLowerCase()) {\n\t\t\t\t\tresults.push(title);\n\t\t\t\t}\n\t\t\t});\n\t\t}\n\t} else {\n\t\tif(operator.prefix === \"!\") {\n\t\t\tsource(function(tiddler,title) {\n\t\t\t\tif(title !== operator.operand) {\n\t\t\t\t\tresults.push(title);\n\t\t\t\t}\n\t\t\t});\n\t\t} else {\n\t\t\tsource(function(tiddler,title) {\n\t\t\t\tif(title === operator.operand) {\n\t\t\t\t\tresults.push(title);\n\t\t\t\t}\n\t\t\t});\n\t\t}\n\t}\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/math.js": {
"title": "$:/core/modules/filters/math.js",
"text": "/*\\\ntitle: $:/core/modules/filters/math.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operators for math. Unary/binary operators work on each item in turn, and return a new item list.\n\nSum/product/maxall/minall operate on the entire list, returning a single item.\n\nNote that strings are converted to numbers automatically. Trailing non-digits are ignored.\n\n* \"\" converts to 0\n* \"12kk\" converts to 12\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.negate = makeNumericBinaryOperator(\n\tfunction(a) {return -a}\n);\n\nexports.abs = makeNumericBinaryOperator(\n\tfunction(a) {return Math.abs(a)}\n);\n\nexports.ceil = makeNumericBinaryOperator(\n\tfunction(a) {return Math.ceil(a)}\n);\n\nexports.floor = makeNumericBinaryOperator(\n\tfunction(a) {return Math.floor(a)}\n);\n\nexports.round = makeNumericBinaryOperator(\n\tfunction(a) {return Math.round(a)}\n);\n\nexports.trunc = makeNumericBinaryOperator(\n\tfunction(a) {return Math.trunc(a)}\n);\n\nexports.untrunc = makeNumericBinaryOperator(\n\tfunction(a) {return Math.ceil(Math.abs(a)) * Math.sign(a)}\n);\n\nexports.sign = makeNumericBinaryOperator(\n\tfunction(a) {return Math.sign(a)}\n);\n\nexports.add = makeNumericBinaryOperator(\n\tfunction(a,b) {return a + b;}\n);\n\nexports.subtract = makeNumericBinaryOperator(\n\tfunction(a,b) {return a - b;}\n);\n\nexports.multiply = makeNumericBinaryOperator(\n\tfunction(a,b) {return a * b;}\n);\n\nexports.divide = makeNumericBinaryOperator(\n\tfunction(a,b) {return a / b;}\n);\n\nexports.remainder = makeNumericBinaryOperator(\n\tfunction(a,b) {return a % b;}\n);\n\nexports.max = makeNumericBinaryOperator(\n\tfunction(a,b) {return Math.max(a,b);}\n);\n\nexports.min = makeNumericBinaryOperator(\n\tfunction(a,b) {return Math.min(a,b);}\n);\n\nexports.fixed = makeNumericBinaryOperator(\n\tfunction(a,b) {return Number.prototype.toFixed.call(a,Math.min(Math.max(b,0),100));}\n);\n\nexports.precision = makeNumericBinaryOperator(\n\tfunction(a,b) {return Number.prototype.toPrecision.call(a,Math.min(Math.max(b,1),100));}\n);\n\nexports.exponential = makeNumericBinaryOperator(\n\tfunction(a,b) {return Number.prototype.toExponential.call(a,Math.min(Math.max(b,0),100));}\n);\n\nexports.power = makeNumericBinaryOperator(\n\tfunction(a,b) {return Math.pow(a,b);}\n);\n\nexports.log = makeNumericBinaryOperator(\n\tfunction(a,b) {\n\t\tif(b) {\n\t\t\treturn Math.log(a)/Math.log(b);\n\t\t} else {\n\t\t\treturn Math.log(a);\n\t\t}\n\t}\n);\n\nexports.sum = makeNumericReducingOperator(\n\tfunction(accumulator,value) {return accumulator + value},\n\t0 // Initial value\n);\n\nexports.product = makeNumericReducingOperator(\n\tfunction(accumulator,value) {return accumulator * value},\n\t1 // Initial value\n);\n\nexports.maxall = makeNumericReducingOperator(\n\tfunction(accumulator,value) {return Math.max(accumulator,value)},\n\t-Infinity // Initial value\n);\n\nexports.minall = makeNumericReducingOperator(\n\tfunction(accumulator,value) {return Math.min(accumulator,value)},\n\tInfinity // Initial value\n);\n\nfunction makeNumericBinaryOperator(fnCalc) {\n\treturn function(source,operator,options) {\n\t\tvar result = [],\n\t\t\tnumOperand = $tw.utils.parseNumber(operator.operand);\n\t\tsource(function(tiddler,title) {\n\t\t\tresult.push($tw.utils.stringifyNumber(fnCalc($tw.utils.parseNumber(title),numOperand)));\n\t\t});\n\t\treturn result;\n\t};\n}\n\nfunction makeNumericReducingOperator(fnCalc,initialValue) {\n\tinitialValue = initialValue || 0;\n\treturn function(source,operator,options) {\n\t\tvar result = [];\n\t\tsource(function(tiddler,title) {\n\t\t\tresult.push(title);\n\t\t});\n\t\treturn [$tw.utils.stringifyNumber(result.reduce(function(accumulator,currentValue) {\n\t\t\treturn fnCalc(accumulator,$tw.utils.parseNumber(currentValue));\n\t\t},initialValue))];\n\t};\n}\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/minlength.js": {
"title": "$:/core/modules/filters/minlength.js",
"text": "/*\\\ntitle: $:/core/modules/filters/minlength.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for filtering out titles that don't meet the minimum length in the operand\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.minlength = function(source,operator,options) {\n\tvar results = [],\n\t\tminLength = parseInt(operator.operand || \"\",10) || 0;\n\tsource(function(tiddler,title) {\n\t\tif(title.length >= minLength) {\n\t\t\tresults.push(title);\n\t\t}\n\t});\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/modules.js": {
"title": "$:/core/modules/filters/modules.js",
"text": "/*\\\ntitle: $:/core/modules/filters/modules.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for returning the titles of the modules of a given type in this wiki\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.modules = function(source,operator,options) {\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\t$tw.utils.each($tw.modules.types[title],function(moduleInfo,moduleName) {\n\t\t\tresults.push(moduleName);\n\t\t});\n\t});\n\tresults.sort();\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/moduletypes.js": {
"title": "$:/core/modules/filters/moduletypes.js",
"text": "/*\\\ntitle: $:/core/modules/filters/moduletypes.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for returning the names of the module types in this wiki\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.moduletypes = function(source,operator,options) {\n\tvar results = [];\n\t$tw.utils.each($tw.modules.types,function(moduleInfo,type) {\n\t\tresults.push(type);\n\t});\n\tresults.sort();\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/next.js": {
"title": "$:/core/modules/filters/next.js",
"text": "/*\\\ntitle: $:/core/modules/filters/next.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator returning the tiddler whose title occurs next in the list supplied in the operand tiddler\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.next = function(source,operator,options) {\n\tvar results = [],\n\t\tlist = options.wiki.getTiddlerList(operator.operand);\n\tsource(function(tiddler,title) {\n\t\tvar match = list.indexOf(title);\n\t\t// increment match and then test if result is in range\n\t\tmatch++;\n\t\tif(match > 0 && match < list.length) {\n\t\t\tresults.push(list[match]);\n\t\t}\n\t});\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/plugintiddlers.js": {
"title": "$:/core/modules/filters/plugintiddlers.js",
"text": "/*\\\ntitle: $:/core/modules/filters/plugintiddlers.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for returning the titles of the shadow tiddlers within a plugin\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.plugintiddlers = function(source,operator,options) {\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\tvar pluginInfo = options.wiki.getPluginInfo(title) || options.wiki.getTiddlerDataCached(title,{tiddlers:[]});\n\t\tif(pluginInfo && pluginInfo.tiddlers) {\n\t\t\t$tw.utils.each(pluginInfo.tiddlers,function(fields,title) {\n\t\t\t\tresults.push(title);\n\t\t\t});\n\t\t}\n\t});\n\tresults.sort();\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/prefix.js": {
"title": "$:/core/modules/filters/prefix.js",
"text": "/*\\\ntitle: $:/core/modules/filters/prefix.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for checking if a title starts with a prefix\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.prefix = function(source,operator,options) {\n\tvar results = [];\n\tif(operator.prefix === \"!\") {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(title.substr(0,operator.operand.length) !== operator.operand) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t} else {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(title.substr(0,operator.operand.length) === operator.operand) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t}\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/previous.js": {
"title": "$:/core/modules/filters/previous.js",
"text": "/*\\\ntitle: $:/core/modules/filters/previous.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator returning the tiddler whose title occurs immediately prior in the list supplied in the operand tiddler\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.previous = function(source,operator,options) {\n\tvar results = [],\n\t\tlist = options.wiki.getTiddlerList(operator.operand);\n\tsource(function(tiddler,title) {\n\t\tvar match = list.indexOf(title);\n\t\t// increment match and then test if result is in range\n\t\tmatch--;\n\t\tif(match >= 0) {\n\t\t\tresults.push(list[match]);\n\t\t}\n\t});\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/range.js": {
"title": "$:/core/modules/filters/range.js",
"text": "/*\\\ntitle: $:/core/modules/filters/range.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for generating a numeric range.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.range = function(source,operator,options) {\n\tvar results = [];\n\t// Split the operand into numbers delimited by these symbols\n\tvar parts = operator.operand.split(/[,:;]/g),\n\t\tbeg, end, inc, i, fixed = 0;\n\tfor (i=0; i<parts.length; i++) {\n\t\t// Validate real number\n\t\tif(!/^\\s*[+-]?((\\d+(\\.\\d*)?)|(\\.\\d+))\\s*$/.test(parts[i])) {\n\t\t\treturn [\"range: bad number \\\"\" + parts[i] + \"\\\"\"];\n\t\t}\n\t\t// Count digits; the most precise number determines decimal places in output.\n\t\tvar frac = /\\.\\d+/.exec(parts[i]);\n\t\tif(frac) {\n\t\t\tfixed = Math.max(fixed,frac[0].length-1);\n\t\t}\n\t\tparts[i] = parseFloat(parts[i]);\n\t}\n\tswitch(parts.length) {\n\t\tcase 1:\n\t\t\tend = parts[0];\n\t\t\tif (end >= 1) {\n\t\t\t\tbeg = 1;\n\t\t\t}\n\t\t\telse if (end <= -1) {\n\t\t\t\tbeg = -1;\n\t\t\t}\n\t\t\telse {\n\t\t\t\treturn [];\n\t\t\t}\n\t\t\tinc = 1;\n\t\t\tbreak;\n\t\tcase 2:\n\t\t\tbeg = parts[0];\n\t\t\tend = parts[1];\n\t\t\tinc = 1;\n\t\t\tbreak;\n\t\tcase 3:\n\t\t\tbeg = parts[0];\n\t\t\tend = parts[1];\n\t\t\tinc = Math.abs(parts[2]);\n\t\t\tbreak;\n\t}\n\tif(inc === 0) {\n\t\treturn [\"range: increment 0 causes infinite loop\"];\n\t}\n\t// May need to count backwards\n\tvar direction = ((end < beg) ? -1 : 1);\n\tinc *= direction;\n\t// Estimate number of resulting elements\n\tif((end - beg) / inc > 10000) {\n\t\treturn [\"range: too many steps (over 10K)\"];\n\t}\n\t// Avoid rounding error on last step\n\tend += direction * 0.5 * Math.pow(0.1,fixed);\n\tvar safety = 10010;\n\t// Enumerate the range\n\tif (end<beg) {\n\t\tfor(i=beg; i>end; i+=inc) {\n\t\t\tresults.push(i.toFixed(fixed));\n\t\t\tif(--safety<0) {\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t} else {\n\t\tfor(i=beg; i<end; i+=inc) {\n\t\t\tresults.push(i.toFixed(fixed));\n\t\t\tif(--safety<0) {\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n\tif(safety<0) {\n\t\treturn [\"range: unexpectedly large output\"];\n\t}\n\t// Reverse?\n\tif(operator.prefix === \"!\") {\n\t\tresults.reverse();\n\t}\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/reduce.js": {
"title": "$:/core/modules/filters/reduce.js",
"text": "/*\\\ntitle: $:/core/modules/filters/reduce.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator evaluates a subfilter for each item, making the running total available in the variable `accumulator`, and the current index available in the variable `index`\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.reduce = function(source,operator,options) {\n\t// Accumulate the list\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\tresults.push(title);\n\t});\n\t// Run the filter over each item\n\tvar filterFn = options.wiki.compileFilter(operator.operand),\n\t\taccumulator = operator.operands[1] || \"\";\n\tfor(var index=0; index<results.length; index++) {\n\t\tvar title = results[index],\n\t\t\tlist = filterFn.call(options.wiki,options.wiki.makeTiddlerIterator([title]),{\n\t\t\t\tgetVariable: function(name) {\n\t\t\t\t\tswitch(name) {\n\t\t\t\t\t\tcase \"currentTiddler\":\n\t\t\t\t\t\t\treturn \"\" + title;\n\t\t\t\t\t\tcase \"accumulator\":\n\t\t\t\t\t\t\treturn \"\" + accumulator;\n\t\t\t\t\t\tcase \"index\":\n\t\t\t\t\t\t\treturn \"\" + index;\n\t\t\t\t\t\tcase \"revIndex\":\n\t\t\t\t\t\t\treturn \"\" + (results.length - 1 - index);\n\t\t\t\t\t\tcase \"length\":\n\t\t\t\t\t\t\treturn \"\" + results.length;\n\t\t\t\t\t\tdefault:\n\t\t\t\t\t\t\treturn options.widget.getVariable(name);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t});\n\t\tif(list.length > 0) {\n\t\t\taccumulator = \"\" + list[0];\n\t\t}\n\t}\n\tif(results.length > 0) {\n\t\treturn [accumulator];\n\t} else {\n\t\treturn [];\n\t}\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/regexp.js": {
"title": "$:/core/modules/filters/regexp.js",
"text": "/*\\\ntitle: $:/core/modules/filters/regexp.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for regexp matching\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.regexp = function(source,operator,options) {\n\tvar results = [],\n\t\tfieldname = (operator.suffix || \"title\").toLowerCase(),\n\t\tregexpString, regexp, flags = \"\", match,\n\t\tgetFieldString = function(tiddler,title) {\n\t\t\tif(tiddler) {\n\t\t\t\treturn tiddler.getFieldString(fieldname);\n\t\t\t} else if(fieldname === \"title\") {\n\t\t\t\treturn title;\n\t\t\t} else {\n\t\t\t\treturn null;\n\t\t\t}\n\t\t};\n\t// Process flags and construct regexp\n\tregexpString = operator.operand;\n\tmatch = /^\\(\\?([gim]+)\\)/.exec(regexpString);\n\tif(match) {\n\t\tflags = match[1];\n\t\tregexpString = regexpString.substr(match[0].length);\n\t} else {\n\t\tmatch = /\\(\\?([gim]+)\\)$/.exec(regexpString);\n\t\tif(match) {\n\t\t\tflags = match[1];\n\t\t\tregexpString = regexpString.substr(0,regexpString.length - match[0].length);\n\t\t}\n\t}\n\ttry {\n\t\tregexp = new RegExp(regexpString,flags);\n\t} catch(e) {\n\t\treturn [\"\" + e];\n\t}\n\t// Process the incoming tiddlers\n\tif(operator.prefix === \"!\") {\n\t\tsource(function(tiddler,title) {\n\t\t\tvar text = getFieldString(tiddler,title);\n\t\t\tif(text !== null) {\n\t\t\t\tif(!regexp.exec(text)) {\n\t\t\t\t\tresults.push(title);\n\t\t\t\t}\n\t\t\t}\n\t\t});\n\t} else {\n\t\tsource(function(tiddler,title) {\n\t\t\tvar text = getFieldString(tiddler,title);\n\t\t\tif(text !== null) {\n\t\t\t\tif(!!regexp.exec(text)) {\n\t\t\t\t\tresults.push(title);\n\t\t\t\t}\n\t\t\t}\n\t\t});\n\t}\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/removeprefix.js": {
"title": "$:/core/modules/filters/removeprefix.js",
"text": "/*\\\ntitle: $:/core/modules/filters/removeprefix.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for removing a prefix from each title in the list. Titles that do not start with the prefix are removed.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.removeprefix = function(source,operator,options) {\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\tif(title.substr(0,operator.operand.length) === operator.operand) {\n\t\t\tresults.push(title.substr(operator.operand.length));\n\t\t}\n\t});\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/removesuffix.js": {
"title": "$:/core/modules/filters/removesuffix.js",
"text": "/*\\\ntitle: $:/core/modules/filters/removesuffix.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for removing a suffix from each title in the list. Titles that do not end with the suffix are removed.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.removesuffix = function(source,operator,options) {\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\tif(title && title.substr(-operator.operand.length) === operator.operand) {\n\t\t\tresults.push(title.substr(0,title.length - operator.operand.length));\n\t\t}\n\t});\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/sameday.js": {
"title": "$:/core/modules/filters/sameday.js",
"text": "/*\\\ntitle: $:/core/modules/filters/sameday.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator that selects tiddlers with a modified date field on the same day as the provided value.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.sameday = function(source,operator,options) {\n\tvar results = [],\n\t\tfieldName = operator.suffix || \"modified\",\n\t\ttargetDate = (new Date($tw.utils.parseDate(operator.operand))).setHours(0,0,0,0);\n\t// Function to convert a date/time to a date integer\n\tsource(function(tiddler,title) {\n\t\tif(tiddler) {\n\t\t\tif(tiddler.getFieldDay(fieldName) === targetDate) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t}\n\t});\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/search.js": {
"title": "$:/core/modules/filters/search.js",
"text": "/*\\\ntitle: $:/core/modules/filters/search.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for searching for the text in the operand tiddler\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.search = function(source,operator,options) {\n\tvar invert = operator.prefix === \"!\";\n\tif(operator.suffixes) {\n\t\tvar hasFlag = function(flag) {\n\t\t\t\treturn (operator.suffixes[1] || []).indexOf(flag) !== -1;\n\t\t\t},\n\t\t\texcludeFields = false,\n\t\t\tfieldList = operator.suffixes[0] || [],\n\t\t\tfirstField = fieldList[0] || \"\", \n\t\t\tfirstChar = firstField.charAt(0),\n\t\t\tfields;\n\t\tif(firstChar === \"-\") {\n\t\t\tfields = [firstField.slice(1)].concat(fieldList.slice(1));\n\t\t\texcludeFields = true;\n\t\t} else if(fieldList[0] === \"*\"){\n\t\t\tfields = [];\n\t\t\texcludeFields = true;\n\t\t} else {\n\t\t\tfields = fieldList.slice(0);\n\t\t}\n\t\treturn options.wiki.search(operator.operand,{\n\t\t\tsource: source,\n\t\t\tinvert: invert,\n\t\t\tfield: fields,\n\t\t\texcludeField: excludeFields,\n\t\t\tcaseSensitive: hasFlag(\"casesensitive\"),\n\t\t\tliteral: hasFlag(\"literal\"),\n\t\t\twhitespace: hasFlag(\"whitespace\"),\n\t\t\tanchored: hasFlag(\"anchored\"),\n\t\t\tregexp: hasFlag(\"regexp\"),\n\t\t\twords: hasFlag(\"words\")\n\t\t});\n\t} else {\n\t\treturn options.wiki.search(operator.operand,{\n\t\t\tsource: source,\n\t\t\tinvert: invert\n\t\t});\n\t}\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/shadowsource.js": {
"title": "$:/core/modules/filters/shadowsource.js",
"text": "/*\\\ntitle: $:/core/modules/filters/shadowsource.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for returning the source plugins for shadow tiddlers\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.shadowsource = function(source,operator,options) {\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\tvar source = options.wiki.getShadowSource(title);\n\t\tif(source) {\n\t\t\t$tw.utils.pushTop(results,source);\n\t\t}\n\t});\n\tresults.sort();\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/slugify.js": {
"title": "$:/core/modules/filters/slugify.js",
"text": "/*\\\ntitle: $:/core/modules/filters/slugify.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for slugifying a tiddler title\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.slugify = function(source,operator,options) {\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\tresults.push(options.wiki.slugify(title));\n\t});\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/sort.js": {
"title": "$:/core/modules/filters/sort.js",
"text": "/*\\\ntitle: $:/core/modules/filters/sort.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for sorting\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.sort = function(source,operator,options) {\n\tvar results = prepare_results(source);\n\toptions.wiki.sortTiddlers(results,operator.operand || \"title\",operator.prefix === \"!\",false,false);\n\treturn results;\n};\n\nexports.nsort = function(source,operator,options) {\n\tvar results = prepare_results(source);\n\toptions.wiki.sortTiddlers(results,operator.operand || \"title\",operator.prefix === \"!\",false,true);\n\treturn results;\n};\n\nexports.sortan = function(source, operator, options) {\n\tvar results = prepare_results(source);\n\toptions.wiki.sortTiddlers(results, operator.operand || \"title\", operator.prefix === \"!\",false,false,true);\n\treturn results;\n};\n\nexports.sortcs = function(source,operator,options) {\n\tvar results = prepare_results(source);\n\toptions.wiki.sortTiddlers(results,operator.operand || \"title\",operator.prefix === \"!\",true,false);\n\treturn results;\n};\n\nexports.nsortcs = function(source,operator,options) {\n\tvar results = prepare_results(source);\n\toptions.wiki.sortTiddlers(results,operator.operand || \"title\",operator.prefix === \"!\",true,true);\n\treturn results;\n};\n\nvar prepare_results = function (source) {\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\tresults.push(title);\n\t});\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/sortsub.js": {
"title": "$:/core/modules/filters/sortsub.js",
"text": "/*\\\ntitle: $:/core/modules/filters/sortsub.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for sorting by a subfilter\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.sortsub = function(source,operator,options) {\n\t// Compile the subfilter\n\tvar filterFn = options.wiki.compileFilter(operator.operand);\n\t// Collect the input titles and the corresponding sort keys\n\tvar inputTitles = [],\n\t\tsortKeys = [];\n\tsource(function(tiddler,title) {\n\t\tinputTitles.push(title);\n\t\tvar r = filterFn.call(options.wiki,function(iterator) {\n\t\t\titerator(options.wiki.getTiddler(title),title);\n\t\t},{\n\t\t\tgetVariable: function(name) {\n\t\t\t\tif(name === \"currentTiddler\") {\n\t\t\t\t\treturn title;\n\t\t\t\t} else {\n\t\t\t\t\treturn options.widget.getVariable(name);\n\t\t\t\t}\n\t\t\t}\n\t\t});\n\t\tsortKeys.push(r[0] || \"\");\n\t});\n\t// Rather than sorting the titles array, we'll sort the indexes so that we can consult both arrays\n\tvar indexes = new Array(inputTitles.length);\n\tfor(var t=0; t<inputTitles.length; t++) {\n\t\tindexes[t] = t;\n\t}\n\t// Sort the indexes\n\tvar compareFn = $tw.utils.makeCompareFunction(operator.suffix,{defaultType: \"string\",invert: operator.prefix === \"!\"});\n\tindexes = indexes.sort(function(a,b) {\n\t\treturn compareFn(sortKeys[a],sortKeys[b]);\n\t});\n\t// Make the results array in order\n\tvar results = [];\n\t$tw.utils.each(indexes,function(index) {\n\t\tresults.push(inputTitles[index]);\n\t});\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/splitbefore.js": {
"title": "$:/core/modules/filters/splitbefore.js",
"text": "/*\\\ntitle: $:/core/modules/filters/splitbefore.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator that splits each result on the first occurance of the specified separator and returns the unique values.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.splitbefore = function(source,operator,options) {\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\tvar parts = title.split(operator.operand);\n\t\tif(parts.length === 1) {\n\t\t\t$tw.utils.pushTop(results,parts[0]);\n\t\t} else {\n\t\t\t$tw.utils.pushTop(results,parts[0] + operator.operand);\n\t\t}\n\t});\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/storyviews.js": {
"title": "$:/core/modules/filters/storyviews.js",
"text": "/*\\\ntitle: $:/core/modules/filters/storyviews.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for returning the names of the story views in this wiki\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.storyviews = function(source,operator,options) {\n\tvar results = [],\n\t\tstoryviews = {};\n\t$tw.modules.applyMethods(\"storyview\",storyviews);\n\t$tw.utils.each(storyviews,function(info,name) {\n\t\tresults.push(name);\n\t});\n\tresults.sort();\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/strings.js": {
"title": "$:/core/modules/filters/strings.js",
"text": "/*\\\ntitle: $:/core/modules/filters/strings.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operators for strings. Unary/binary operators work on each item in turn, and return a new item list.\n\nSum/product/maxall/minall operate on the entire list, returning a single item.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.length = makeStringBinaryOperator(\n\tfunction(a) {return [\"\" + (\"\" + a).length];}\n);\n\nexports.uppercase = makeStringBinaryOperator(\n\tfunction(a) {return [(\"\" + a).toUpperCase()];}\n);\n\nexports.lowercase = makeStringBinaryOperator(\n\tfunction(a) {return [(\"\" + a).toLowerCase()];}\n);\n\nexports.sentencecase = makeStringBinaryOperator(\n\tfunction(a) {return [$tw.utils.toSentenceCase(a)];}\n);\n\nexports.titlecase = makeStringBinaryOperator(\n\tfunction(a) {return [$tw.utils.toTitleCase(a)];}\n);\n\nexports.trim = function(source,operator,options) {\n\tvar result = [],\n\t\tsuffix = operator.suffix || \"\",\n\t\toperand = (operator.operand || \"\"),\n\t\tfnCalc;\n\tif(suffix === \"prefix\") {\n\t\tfnCalc = function(a,b) {return [$tw.utils.trimPrefix(a,b)];}\n\t} else if(suffix === \"suffix\") {\n\t\tfnCalc = function(a,b) {return [$tw.utils.trimSuffix(a,b)];}\n\t} else {\n\t\tif(operand === \"\") {\n\t\t\tfnCalc = function(a) {return [$tw.utils.trim(a)];}\n\t\t} else {\n\t\t\tfnCalc = function(a,b) {return [$tw.utils.trimSuffix($tw.utils.trimPrefix(a,b),b)];}\n\t\t}\n\t}\n\tsource(function(tiddler,title) {\n\t\tArray.prototype.push.apply(result,fnCalc(title,operand));\n\t});\n\treturn result;\n};\n\nexports.split = makeStringBinaryOperator(\n\tfunction(a,b) {return (\"\" + a).split(b);}\n);\n\nexports[\"enlist-input\"] = makeStringBinaryOperator(\n\tfunction(a,o,s) {return $tw.utils.parseStringArray(\"\" + a,(s === \"raw\"));}\n);\n\nexports.join = makeStringReducingOperator(\n\tfunction(accumulator,value,operand) {\n\t\tif(accumulator === null) {\n\t\t\treturn value;\n\t\t} else {\n\t\t\treturn accumulator + operand + value;\n\t\t}\n\t},null\n);\n\nfunction makeStringBinaryOperator(fnCalc) {\n\treturn function(source,operator,options) {\n\t\tvar result = [];\n\t\tsource(function(tiddler,title) {\n\t\t\tArray.prototype.push.apply(result,fnCalc(title,operator.operand || \"\",operator.suffix || \"\"));\n\t\t});\n\t\treturn result;\n\t};\n}\n\nfunction makeStringReducingOperator(fnCalc,initialValue) {\n\treturn function(source,operator,options) {\n\t\tvar result = [];\n\t\tsource(function(tiddler,title) {\n\t\t\tresult.push(title);\n\t\t});\n\t\tif(result.length === 0) {\n\t\t\treturn [];\n\t\t}\n\t\treturn [result.reduce(function(accumulator,currentValue) {\n\t\t\treturn fnCalc(accumulator,currentValue,operator.operand || \"\");\n\t\t},initialValue) || \"\"];\n\t};\n}\n\nexports.splitregexp = function(source,operator,options) {\n\tvar result = [],\n\t\tsuffix = operator.suffix || \"\",\n\t\tflags = (suffix.indexOf(\"m\") !== -1 ? \"m\" : \"\") + (suffix.indexOf(\"i\") !== -1 ? \"i\" : \"\"),\n\t\tregExp;\n\ttry {\n\t\tregExp = new RegExp(operator.operand || \"\",flags);\t\t\n\t} catch(ex) {\n\t\treturn [\"RegExp error: \" + ex];\n\t}\n\tsource(function(tiddler,title) {\n\t\tArray.prototype.push.apply(result,title.split(regExp));\n\t});\t\t\n\treturn result;\n};\n\nexports[\"search-replace\"] = function(source,operator,options) {\n\tvar results = [],\n\t\tsuffixes = operator.suffixes || [],\n\t\tflagSuffix = (suffixes[0] ? (suffixes[0][0] || \"\") : \"\"),\n\t\tflags = (flagSuffix.indexOf(\"g\") !== -1 ? \"g\" : \"\") + (flagSuffix.indexOf(\"i\") !== -1 ? \"i\" : \"\"),\n\t\tisRegExp = (suffixes[1] && suffixes[1][0] === \"regexp\") ? true : false,\n\t\tsearchTerm,\n\t\tregExp;\n\t\n\tsource(function(tiddler,title) {\n\t\tif(title && (operator.operands.length > 1)) {\n\t\t\t//Escape regexp characters if the operand is not a regular expression\n\t\t\tsearchTerm = isRegExp ? operator.operand : $tw.utils.escapeRegExp(operator.operand);\n\t\t\ttry {\n\t\t\t\tregExp = new RegExp(searchTerm,flags);\n\t\t\t} catch(ex) {\n\t\t\t\treturn [\"RegExp error: \" + ex];\n\t\t\t}\n\t\t\tresults.push(\n\t\t\t\ttitle.replace(regExp,operator.operands[1])\n\t\t\t);\n\t\t} else {\n\t\t\tresults.push(title);\n\t\t}\n\t});\n\treturn results;\n};\n\nexports.pad = function(source,operator,options) {\n\tvar results = [],\n\t\ttargetLength = operator.operand ? parseInt(operator.operand) : 0,\n\t\tfill = operator.operands[1] || \"0\";\n\n\tsource(function(tiddler,title) {\n\t\tif(title && title.length) {\n\t\t\tif(title.length >= targetLength) {\n\t\t\t\tresults.push(title);\n\t\t\t} else {\n\t\t\t\tvar padString = \"\",\n\t\t\t\t\tpadStringLength = targetLength - title.length;\n\t\t\t\twhile (padStringLength > padString.length) {\n\t\t\t\t\tpadString += fill;\t\t\t\t\t\n\t\t\t\t}\n\t\t\t\t//make sure we do not exceed the specified length\n\t\t\t\tpadString = padString.slice(0,padStringLength);\n\t\t\t\tif(operator.suffix && (operator.suffix === \"suffix\")) {\n\t\t\t\t\ttitle = title + padString;\n\t\t\t\t} else {\n\t\t\t\t\ttitle = padString + title;\n\t\t\t\t}\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t}\n\t});\n\treturn results;\n}\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/subfilter.js": {
"title": "$:/core/modules/filters/subfilter.js",
"text": "/*\\\ntitle: $:/core/modules/filters/subfilter.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator returning its operand evaluated as a filter\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.subfilter = function(source,operator,options) {\n\tvar list = options.wiki.filterTiddlers(operator.operand,options.widget,source);\n\tif(operator.prefix === \"!\") {\n\t\tvar results = [];\n\t\tsource(function(tiddler,title) {\n\t\t\tif(list.indexOf(title) === -1) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t\treturn results;\n\t} else {\n\t\treturn list;\n\t}\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/subtiddlerfields.js": {
"title": "$:/core/modules/filters/subtiddlerfields.js",
"text": "/*\\\ntitle: $:/core/modules/filters/subtiddlerfields.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for returning the names of the fields on the selected subtiddlers of the plugin named in the operand\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.subtiddlerfields = function(source,operator,options) {\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\tvar subtiddler = options.wiki.getSubTiddler(operator.operand,title);\n\t\tif(subtiddler) {\n\t\t\tfor(var fieldName in subtiddler.fields) {\n\t\t\t\t$tw.utils.pushTop(results,fieldName);\n\t\t\t}\n\t\t}\n\t});\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/suffix.js": {
"title": "$:/core/modules/filters/suffix.js",
"text": "/*\\\ntitle: $:/core/modules/filters/suffix.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for checking if a title ends with a suffix\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.suffix = function(source,operator,options) {\n\tvar results = [];\n\tif(operator.prefix === \"!\") {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(title.substr(-operator.operand.length) !== operator.operand) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t} else {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(title.substr(-operator.operand.length) === operator.operand) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t}\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/tag.js": {
"title": "$:/core/modules/filters/tag.js",
"text": "/*\\\ntitle: $:/core/modules/filters/tag.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for checking for the presence of a tag\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.tag = function(source,operator,options) {\n\tvar results = [],indexedResults;\n\tif((operator.suffix || \"\").toLowerCase() === \"strict\" && !operator.operand) {\n\t\t// New semantics:\n\t\t// Always return copy of input if operator.operand is missing\n\t\tsource(function(tiddler,title) {\n\t\t\tresults.push(title);\n\t\t});\n\t} else {\n\t\t// Old semantics:\n\t\tvar tiddlers;\n\t\tif(operator.prefix === \"!\") {\n\t\t\t// Returns a copy of the input if operator.operand is missing\n\t\t\ttiddlers = options.wiki.getTiddlersWithTag(operator.operand);\n\t\t\tsource(function(tiddler,title) {\n\t\t\t\tif(tiddlers.indexOf(title) === -1) {\n\t\t\t\t\tresults.push(title);\n\t\t\t\t}\n\t\t\t});\n\t\t} else {\n\t\t\t// Returns empty results if operator.operand is missing\n\t\t\tif(source.byTag) {\n\t\t\t\tindexedResults = source.byTag(operator.operand);\n\t\t\t\tif(indexedResults) {\n\t\t\t\t\treturn indexedResults;\n\t\t\t\t}\n\t\t\t} else {\n\t\t\t\ttiddlers = options.wiki.getTiddlersWithTag(operator.operand);\n\t\t\t\tsource(function(tiddler,title) {\n\t\t\t\t\tif(tiddlers.indexOf(title) !== -1) {\n\t\t\t\t\t\tresults.push(title);\n\t\t\t\t\t}\n\t\t\t\t});\n\t\t\t\tresults = options.wiki.sortByList(results,operator.operand);\n\t\t\t}\n\t\t}\t\t\n\t}\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/tagging.js": {
"title": "$:/core/modules/filters/tagging.js",
"text": "/*\\\ntitle: $:/core/modules/filters/tagging.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator returning all tiddlers that are tagged with the selected tiddlers\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.tagging = function(source,operator,options) {\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\t$tw.utils.pushTop(results,options.wiki.getTiddlersWithTag(title));\n\t});\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/tags.js": {
"title": "$:/core/modules/filters/tags.js",
"text": "/*\\\ntitle: $:/core/modules/filters/tags.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator returning all the tags of the selected tiddlers\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.tags = function(source,operator,options) {\n\tvar tags = {};\n\tsource(function(tiddler,title) {\n\t\tvar t, length;\n\t\tif(tiddler && tiddler.fields.tags) {\n\t\t\tfor(t=0, length=tiddler.fields.tags.length; t<length; t++) {\n\t\t\t\ttags[tiddler.fields.tags[t]] = true;\n\t\t\t}\n\t\t}\n\t});\n\treturn Object.keys(tags);\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/then.js": {
"title": "$:/core/modules/filters/then.js",
"text": "/*\\\ntitle: $:/core/modules/filters/then.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for replacing any titles with a constant\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.then = function(source,operator,options) {\n\tvar results = [];\n\tsource(function(tiddler,title) {\n\t\tresults.push(operator.operand);\n\t});\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/title.js": {
"title": "$:/core/modules/filters/title.js",
"text": "/*\\\ntitle: $:/core/modules/filters/title.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for comparing title fields for equality\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.title = function(source,operator,options) {\n\tvar results = [];\n\tif(operator.prefix === \"!\") {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(tiddler && tiddler.fields.title !== operator.operand) {\n\t\t\t\tresults.push(title);\n\t\t\t}\n\t\t});\n\t} else {\n\t\tresults.push(operator.operand);\n\t}\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/untagged.js": {
"title": "$:/core/modules/filters/untagged.js",
"text": "/*\\\ntitle: $:/core/modules/filters/untagged.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator returning all the selected tiddlers that are untagged\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.untagged = function(source,operator,options) {\n\tvar results = [];\n\tif(operator.prefix === \"!\") {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(tiddler && $tw.utils.isArray(tiddler.fields.tags) && tiddler.fields.tags.length > 0) {\n\t\t\t\t$tw.utils.pushTop(results,title);\n\t\t\t}\n\t\t});\n\t} else {\n\t\tsource(function(tiddler,title) {\n\t\t\tif(!tiddler || !tiddler.hasField(\"tags\") || ($tw.utils.isArray(tiddler.fields.tags) && tiddler.fields.tags.length === 0)) {\n\t\t\t\t$tw.utils.pushTop(results,title);\n\t\t\t}\n\t\t});\n\t}\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/variables.js": {
"title": "$:/core/modules/filters/variables.js",
"text": "/*\\\ntitle: $:/core/modules/filters/variables.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for returning the names of the active variables\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.variables = function(source,operator,options) {\n\tvar names = [];\n\tfor(var variable in options.widget.variables) {\n\t\tnames.push(variable);\n\t}\n\treturn names.sort();\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/wikiparserrules.js": {
"title": "$:/core/modules/filters/wikiparserrules.js",
"text": "/*\\\ntitle: $:/core/modules/filters/wikiparserrules.js\ntype: application/javascript\nmodule-type: filteroperator\n\nFilter operator for returning the names of the wiki parser rules in this wiki\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nExport our filter function\n*/\nexports.wikiparserrules = function(source,operator,options) {\n\tvar results = [],\n\t\toperand = operator.operand;\n\t$tw.utils.each($tw.modules.types.wikirule,function(mod) {\n\t\tvar exp = mod.exports;\n\t\tif(!operand || exp.types[operand]) {\n\t\t\tresults.push(exp.name);\n\t\t}\n\t});\n\tresults.sort();\n\treturn results;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters/x-listops.js": {
"title": "$:/core/modules/filters/x-listops.js",
"text": "/*\\\ntitle: $:/core/modules/filters/x-listops.js\ntype: application/javascript\nmodule-type: filteroperator\n\nExtended filter operators to manipulate the current list.\n\n\\*/\n(function () {\n\n\t/*jslint node: true, browser: true */\n\t/*global $tw: false */\n\t\"use strict\";\n\n\t/*\n\tFetch titles from the current list\n\t*/\n\tvar prepare_results = function (source) {\n\tvar results = [];\n\t\tsource(function (tiddler, title) {\n\t\t\tresults.push(title);\n\t\t});\n\t\treturn results;\n\t};\n\n\t/*\n\tMoves a number of items from the tail of the current list before the item named in the operand\n\t*/\n\texports.putbefore = function (source, operator) {\n\t\tvar results = prepare_results(source),\n\t\t\tindex = results.indexOf(operator.operand),\n\t\t\tcount = $tw.utils.getInt(operator.suffix,1);\n\t\treturn (index === -1) ?\n\t\t\tresults.slice(0, -1) :\n\t\t\tresults.slice(0, index).concat(results.slice(-count)).concat(results.slice(index, -count));\n\t};\n\n\t/*\n\tMoves a number of items from the tail of the current list after the item named in the operand\n\t*/\n\texports.putafter = function (source, operator) {\n\t\tvar results = prepare_results(source),\n\t\t\tindex = results.indexOf(operator.operand),\n\t\t\tcount = $tw.utils.getInt(operator.suffix,1);\n\t\treturn (index === -1) ?\n\t\t\tresults.slice(0, -1) :\n\t\t\tresults.slice(0, index + 1).concat(results.slice(-count)).concat(results.slice(index + 1, -count));\n\t};\n\n\t/*\n\tReplaces the item named in the operand with a number of items from the tail of the current list\n\t*/\n\texports.replace = function (source, operator) {\n\t\tvar results = prepare_results(source),\n\t\t\tindex = results.indexOf(operator.operand),\n\t\t\tcount = $tw.utils.getInt(operator.suffix,1);\n\t\treturn (index === -1) ?\n\t\t\tresults.slice(0, -count) :\n\t\t\tresults.slice(0, index).concat(results.slice(-count)).concat(results.slice(index + 1, -count));\n\t};\n\n\t/*\n\tMoves a number of items from the tail of the current list to the head of the list\n\t*/\n\texports.putfirst = function (source, operator) {\n\t\tvar results = prepare_results(source),\n\t\t\tcount = $tw.utils.getInt(operator.suffix,1);\n\t\treturn results.slice(-count).concat(results.slice(0, -count));\n\t};\n\n\t/*\n\tMoves a number of items from the head of the current list to the tail of the list\n\t*/\n\texports.putlast = function (source, operator) {\n\t\tvar results = prepare_results(source),\n\t\t\tcount = $tw.utils.getInt(operator.suffix,1);\n\t\treturn results.slice(count).concat(results.slice(0, count));\n\t};\n\n\t/*\n\tMoves the item named in the operand a number of places forward or backward in the list\n\t*/\n\texports.move = function (source, operator) {\n\t\tvar results = prepare_results(source),\n\t\t\tindex = results.indexOf(operator.operand),\n\t\t\tcount = $tw.utils.getInt(operator.suffix,1),\n\t\t\tmarker = results.splice(index, 1),\n\t\t\toffset = (index + count) > 0 ? index + count : 0;\n\t\treturn results.slice(0, offset).concat(marker).concat(results.slice(offset));\n\t};\n\n\t/*\n\tReturns the items from the current list that are after the item named in the operand\n\t*/\n\texports.allafter = function (source, operator) {\n\t\tvar results = prepare_results(source),\n\t\t\tindex = results.indexOf(operator.operand);\n\t\treturn (index === -1) ? [] :\n\t\t\t(operator.suffix) ? results.slice(index) :\n\t\t\tresults.slice(index + 1);\n\t};\n\n\t/*\n\tReturns the items from the current list that are before the item named in the operand\n\t*/\n\texports.allbefore = function (source, operator) {\n\t\tvar results = prepare_results(source),\n\t\t\tindex = results.indexOf(operator.operand);\n\t\treturn (index === -1) ? [] :\n\t\t\t(operator.suffix) ? results.slice(0, index + 1) :\n\t\t\tresults.slice(0, index);\n\t};\n\n\t/*\n\tAppends the items listed in the operand array to the tail of the current list\n\t*/\n\texports.append = function (source, operator) {\n\t\tvar append = $tw.utils.parseStringArray(operator.operand, \"true\"),\n\t\t\tresults = prepare_results(source),\n\t\t\tcount = parseInt(operator.suffix) || append.length;\n\t\treturn (append.length === 0) ? results :\n\t\t\t(operator.prefix) ? results.concat(append.slice(-count)) :\n\t\t\tresults.concat(append.slice(0, count));\n\t};\n\n\t/*\n\tPrepends the items listed in the operand array to the head of the current list\n\t*/\n\texports.prepend = function (source, operator) {\n\t\tvar prepend = $tw.utils.parseStringArray(operator.operand, \"true\"),\n\t\t\tresults = prepare_results(source),\n\t\t\tcount = $tw.utils.getInt(operator.suffix,prepend.length);\n\t\treturn (prepend.length === 0) ? results :\n\t\t\t(operator.prefix) ? prepend.slice(-count).concat(results) :\n\t\t\tprepend.slice(0, count).concat(results);\n\t};\n\n\t/*\n\tReturns all items from the current list except the items listed in the operand array\n\t*/\n\texports.remove = function (source, operator) {\n\t\tvar array = $tw.utils.parseStringArray(operator.operand, \"true\"),\n\t\t\tresults = prepare_results(source),\n\t\t\tcount = parseInt(operator.suffix) || array.length,\n\t\t\tp,\n\t\t\tlen,\n\t\t\tindex;\n\t\tlen = array.length - 1;\n\t\tfor (p = 0; p < count; ++p) {\n\t\t\tif (operator.prefix) {\n\t\t\t\tindex = results.indexOf(array[len - p]);\n\t\t\t} else {\n\t\t\t\tindex = results.indexOf(array[p]);\n\t\t\t}\n\t\t\tif (index !== -1) {\n\t\t\t\tresults.splice(index, 1);\n\t\t\t}\n\t\t}\n\t\treturn results;\n\t};\n\n\t/*\n\tReturns all items from the current list sorted in the order of the items in the operand array\n\t*/\n\texports.sortby = function (source, operator) {\n\t\tvar results = prepare_results(source);\n\t\tif (!results || results.length < 2) {\n\t\t\treturn results;\n\t\t}\n\t\tvar lookup = $tw.utils.parseStringArray(operator.operand, \"true\");\n\t\tresults.sort(function (a, b) {\n\t\t\treturn lookup.indexOf(a) - lookup.indexOf(b);\n\t\t});\n\t\treturn results;\n\t};\n\n\t/*\n\tRemoves all duplicate items from the current list\n\t*/\n\texports.unique = function (source, operator) {\n\t\tvar results = prepare_results(source);\n\t\tvar set = results.reduce(function (a, b) {\n\t\t\tif (a.indexOf(b) < 0) {\n\t\t\t\ta.push(b);\n\t\t\t}\n\t\t\treturn a;\n\t\t}, []);\n\t\treturn set;\n\t};\n\n\tvar cycleValueInArray = function(results,operands,stepSize) {\n\t\tvar resultsIndex,\n\t\t\tstep = stepSize || 1,\n\t\t\ti = 0,\n\t\t\topLength = operands.length,\n\t\t\tnextOperandIndex;\t\t\n\t\tfor(i; i < opLength; i++) {\n\t\t\tresultsIndex = results.indexOf(operands[i]);\n\t\t\tif(resultsIndex !== -1) {\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t\tif(resultsIndex !== -1) {\n\t\t\ti = i + step;\n\t\t\tnextOperandIndex = (i < opLength ? i : i - opLength);\n\t\t\tif(operands.length > 1) {\n\t\t\t\tresults.splice(resultsIndex,1,operands[nextOperandIndex]);\n\t\t\t} else {\n\t\t\t\tresults.splice(resultsIndex,1);\n\t\t\t}\n\t\t} else {\n\t\t\tresults.push(operands[0]);\n\t\t}\n\t\treturn results;\t\t\n\t}\n\n\t/*\n\tToggles an item in the current list.\n\t*/\t\n\texports.toggle = function(source,operator) {\n\t\treturn cycleValueInArray(prepare_results(source),operator.operands);\n\t}\n\n\texports.cycle = function(source,operator) {\n\t\tvar results = prepare_results(source),\n\t\t\toperands = (operator.operand.length ? $tw.utils.parseStringArray(operator.operand, \"true\") : [\"\"]),\n\t\t\tstep = $tw.utils.getInt(operator.operands[1]||\"\",1);\n\t\tif(step < 0) {\n\t\t\toperands.reverse();\n\t\t\tstep = Math.abs(step);\n\t\t}\t\n\t\treturn cycleValueInArray(results,operands,step);\n\t}\n\t\n})();\n",
"type": "application/javascript",
"module-type": "filteroperator"
},
"$:/core/modules/filters.js": {
"title": "$:/core/modules/filters.js",
"text": "/*\\\ntitle: $:/core/modules/filters.js\ntype: application/javascript\nmodule-type: wikimethod\n\nAdds tiddler filtering methods to the $tw.Wiki object.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nParses an operation (i.e. a run) within a filter string\n\toperators: Array of array of operator nodes into which results should be inserted\n\tfilterString: filter string\n\tp: start position within the string\nReturns the new start position, after the parsed operation\n*/\nfunction parseFilterOperation(operators,filterString,p) {\n\tvar nextBracketPos, operator;\n\t// Skip the starting square bracket\n\tif(filterString.charAt(p++) !== \"[\") {\n\t\tthrow \"Missing [ in filter expression\";\n\t}\n\t// Process each operator in turn\n\tdo {\n\t\toperator = {};\n\t\t// Check for an operator prefix\n\t\tif(filterString.charAt(p) === \"!\") {\n\t\t\toperator.prefix = filterString.charAt(p++);\n\t\t}\n\t\t// Get the operator name\n\t\tnextBracketPos = filterString.substring(p).search(/[\\[\\{<\\/]/);\n\t\tif(nextBracketPos === -1) {\n\t\t\tthrow \"Missing [ in filter expression\";\n\t\t}\n\t\tnextBracketPos += p;\n\t\tvar bracket = filterString.charAt(nextBracketPos);\n\t\toperator.operator = filterString.substring(p,nextBracketPos);\n\t\t// Any suffix?\n\t\tvar colon = operator.operator.indexOf(':');\n\t\tif(colon > -1) {\n\t\t\t// The raw suffix for older filters\n\t\t\toperator.suffix = operator.operator.substring(colon + 1);\n\t\t\toperator.operator = operator.operator.substring(0,colon) || \"field\";\n\t\t\t// The processed suffix for newer filters\n\t\t\toperator.suffixes = [];\n\t\t\t$tw.utils.each(operator.suffix.split(\":\"),function(subsuffix) {\n\t\t\t\toperator.suffixes.push([]);\n\t\t\t\t$tw.utils.each(subsuffix.split(\",\"),function(entry) {\n\t\t\t\t\tentry = $tw.utils.trim(entry);\n\t\t\t\t\tif(entry) {\n\t\t\t\t\t\toperator.suffixes[operator.suffixes.length - 1].push(entry); \n\t\t\t\t\t}\n\t\t\t\t});\n\t\t\t});\n\t\t}\n\t\t// Empty operator means: title\n\t\telse if(operator.operator === \"\") {\n\t\t\toperator.operator = \"title\";\n\t\t}\n\t\toperator.operands = [];\n\t\tfunction parseOperand(bracketType) {\n\t\t\tvar operand = {};\n\t\t\tswitch (bracketType) {\n\t\t\t\tcase \"{\": // Curly brackets\n\t\t\t\t\toperand.indirect = true;\n\t\t\t\t\tnextBracketPos = filterString.indexOf(\"}\",p);\n\t\t\t\t\tbreak;\n\t\t\t\tcase \"[\": // Square brackets\n\t\t\t\t\tnextBracketPos = filterString.indexOf(\"]\",p);\n\t\t\t\t\tbreak;\n\t\t\t\tcase \"<\": // Angle brackets\n\t\t\t\t\toperand.variable = true;\n\t\t\t\t\tnextBracketPos = filterString.indexOf(\">\",p);\n\t\t\t\t\tbreak;\n\t\t\t\tcase \"/\": // regexp brackets\n\t\t\t\t\tvar rex = /^((?:[^\\\\\\/]*|\\\\.)*)\\/(?:\\(([mygi]+)\\))?/g,\n\t\t\t\t\t\trexMatch = rex.exec(filterString.substring(p));\n\t\t\t\t\tif(rexMatch) {\n\t\t\t\t\t\toperator.regexp = new RegExp(rexMatch[1], rexMatch[2]);\n\t// DEPRECATION WARNING\n\tconsole.log(\"WARNING: Filter\",operator.operator,\"has a deprecated regexp operand\",operator.regexp);\n\t\t\t\t\t\tnextBracketPos = p + rex.lastIndex - 1;\n\t\t\t\t\t}\n\t\t\t\t\telse {\n\t\t\t\t\t\tthrow \"Unterminated regular expression in filter expression\";\n\t\t\t\t\t}\n\t\t\t\t\tbreak;\n\t\t\t}\n\n\t\t\tif(nextBracketPos === -1) {\n\t\t\t\tthrow \"Missing closing bracket in filter expression\";\n\t\t\t}\n\t\t\tif(!operator.regexp) {\n\t\t\t\toperand.text = filterString.substring(p,nextBracketPos);\n\t\t\t\toperator.operands.push(operand);\n\t\t\t}\n\t\t\tp = nextBracketPos + 1;\n\t\t}\n\t\t\n\t\tp = nextBracketPos + 1;\n\t\tparseOperand(bracket);\n\t\t\n\t\t// Check for multiple operands\n\t\twhile(filterString.charAt(p) === \",\") {\n\t\t\tp++;\n\t\t\tif(/^[\\[\\{<\\/]/.test(filterString.substring(p))) {\n\t\t\t\tnextBracketPos = p;\n\t\t\t\tp++;\n\t\t\t\tparseOperand(filterString.charAt(nextBracketPos));\n\t\t\t} else {\n\t\t\t\tthrow \"Missing [ in filter expression\";\n\t\t\t}\n\t\t}\n\t\t\n\t\t// Push this operator\n\t\toperators.push(operator);\n\t} while(filterString.charAt(p) !== \"]\");\n\t// Skip the ending square bracket\n\tif(filterString.charAt(p++) !== \"]\") {\n\t\tthrow \"Missing ] in filter expression\";\n\t}\n\t// Return the parsing position\n\treturn p;\n}\n\n/*\nParse a filter string\n*/\nexports.parseFilter = function(filterString) {\n\tfilterString = filterString || \"\";\n\tvar results = [], // Array of arrays of operator nodes {operator:,operand:}\n\t\tp = 0, // Current position in the filter string\n\t\tmatch;\n\tvar whitespaceRegExp = /(\\s+)/mg,\n\t\toperandRegExp = /((?:\\+|\\-|~|=|\\:(\\w+))?)(?:(\\[)|(?:\"([^\"]*)\")|(?:'([^']*)')|([^\\s\\[\\]]+))/mg;\n\twhile(p < filterString.length) {\n\t\t// Skip any whitespace\n\t\twhitespaceRegExp.lastIndex = p;\n\t\tmatch = whitespaceRegExp.exec(filterString);\n\t\tif(match && match.index === p) {\n\t\t\tp = p + match[0].length;\n\t\t}\n\t\t// Match the start of the operation\n\t\tif(p < filterString.length) {\n\t\t\toperandRegExp.lastIndex = p;\n\t\t\tmatch = operandRegExp.exec(filterString);\n\t\t\tif(!match || match.index !== p) {\n\t\t\t\tthrow $tw.language.getString(\"Error/FilterSyntax\");\n\t\t\t}\n\t\t\tvar operation = {\n\t\t\t\tprefix: \"\",\n\t\t\t\toperators: []\n\t\t\t};\n\t\t\tif(match[1]) {\n\t\t\t\toperation.prefix = match[1];\n\t\t\t\tp = p + operation.prefix.length;\n\t\t\t\tif(match[2]) {\n\t\t\t\t\toperation.namedPrefix = match[2];\n\t\t\t\t}\n\t\t\t}\n\t\t\tif(match[3]) { // Opening square bracket\n\t\t\t\tp = parseFilterOperation(operation.operators,filterString,p);\n\t\t\t} else {\n\t\t\t\tp = match.index + match[0].length;\n\t\t\t}\n\t\t\tif(match[4] || match[5] || match[6]) { // Double quoted string, single quoted string or unquoted title\n\t\t\t\toperation.operators.push(\n\t\t\t\t\t{operator: \"title\", operands: [{text: match[4] || match[5] || match[6]}]}\n\t\t\t\t);\n\t\t\t}\n\t\t\tresults.push(operation);\n\t\t}\n\t}\n\treturn results;\n};\n\nexports.getFilterOperators = function() {\n\tif(!this.filterOperators) {\n\t\t$tw.Wiki.prototype.filterOperators = {};\n\t\t$tw.modules.applyMethods(\"filteroperator\",this.filterOperators);\n\t}\n\treturn this.filterOperators;\n};\n\nexports.getFilterRunPrefixes = function() {\n\tif(!this.filterRunPrefixes) {\n\t\t$tw.Wiki.prototype.filterRunPrefixes = {};\n\t\t$tw.modules.applyMethods(\"filterrunprefix\",this.filterRunPrefixes);\n\t}\n\treturn this.filterRunPrefixes;\n}\n\nexports.filterTiddlers = function(filterString,widget,source) {\n\tvar fn = this.compileFilter(filterString);\n\treturn fn.call(this,source,widget);\n};\n\n/*\nCompile a filter into a function with the signature fn(source,widget) where:\nsource: an iterator function for the source tiddlers, called source(iterator), where iterator is called as iterator(tiddler,title)\nwidget: an optional widget node for retrieving the current tiddler etc.\n*/\nexports.compileFilter = function(filterString) {\n\tvar filterParseTree;\n\ttry {\n\t\tfilterParseTree = this.parseFilter(filterString);\n\t} catch(e) {\n\t\treturn function(source,widget) {\n\t\t\treturn [$tw.language.getString(\"Error/Filter\") + \": \" + e];\n\t\t};\n\t}\n\t// Get the hashmap of filter operator functions\n\tvar filterOperators = this.getFilterOperators();\n\t// Assemble array of functions, one for each operation\n\tvar operationFunctions = [];\n\t// Step through the operations\n\tvar self = this;\n\t$tw.utils.each(filterParseTree,function(operation) {\n\t\t// Create a function for the chain of operators in the operation\n\t\tvar operationSubFunction = function(source,widget) {\n\t\t\tvar accumulator = source,\n\t\t\t\tresults = [],\n\t\t\t\tcurrTiddlerTitle = widget && widget.getVariable(\"currentTiddler\");\n\t\t\t$tw.utils.each(operation.operators,function(operator) {\n\t\t\t\tvar operands = [],\n\t\t\t\t\toperatorFunction;\n\t\t\t\tif(!operator.operator) {\n\t\t\t\t\toperatorFunction = filterOperators.title;\n\t\t\t\t} else if(!filterOperators[operator.operator]) {\n\t\t\t\t\toperatorFunction = filterOperators.field;\n\t\t\t\t} else {\n\t\t\t\t\toperatorFunction = filterOperators[operator.operator];\n\t\t\t\t}\n\t\t\t\t\n\t\t\t\t$tw.utils.each(operator.operands,function(operand) {\n\t\t\t\t\tif(operand.indirect) {\n\t\t\t\t\t\toperand.value = self.getTextReference(operand.text,\"\",currTiddlerTitle);\n\t\t\t\t\t} else if(operand.variable) {\n\t\t\t\t\t\toperand.value = widget.getVariable(operand.text,{defaultValue: \"\"});\n\t\t\t\t\t} else {\n\t\t\t\t\t\toperand.value = operand.text;\n\t\t\t\t\t}\n\t\t\t\t\toperands.push(operand.value);\n\t\t\t\t});\n\n\t\t\t\t// Invoke the appropriate filteroperator module\n\t\t\t\tresults = operatorFunction(accumulator,{\n\t\t\t\t\t\t\toperator: operator.operator,\n\t\t\t\t\t\t\toperand: operands.length > 0 ? operands[0] : undefined,\n\t\t\t\t\t\t\toperands: operands,\n\t\t\t\t\t\t\tprefix: operator.prefix,\n\t\t\t\t\t\t\tsuffix: operator.suffix,\n\t\t\t\t\t\t\tsuffixes: operator.suffixes,\n\t\t\t\t\t\t\tregexp: operator.regexp\n\t\t\t\t\t\t},{\n\t\t\t\t\t\t\twiki: self,\n\t\t\t\t\t\t\twidget: widget\n\t\t\t\t\t\t});\n\t\t\t\tif($tw.utils.isArray(results)) {\n\t\t\t\t\taccumulator = self.makeTiddlerIterator(results);\n\t\t\t\t} else {\n\t\t\t\t\taccumulator = results;\n\t\t\t\t}\n\t\t\t});\n\t\t\tif($tw.utils.isArray(results)) {\n\t\t\t\treturn results;\n\t\t\t} else {\n\t\t\t\tvar resultArray = [];\n\t\t\t\tresults(function(tiddler,title) {\n\t\t\t\t\tresultArray.push(title);\n\t\t\t\t});\n\t\t\t\treturn resultArray;\n\t\t\t}\n\t\t};\n\t\tvar filterRunPrefixes = self.getFilterRunPrefixes();\n\t\t// Wrap the operator functions in a wrapper function that depends on the prefix\n\t\toperationFunctions.push((function() {\n\t\t\tvar options = {wiki: self};\n\t\t\tswitch(operation.prefix || \"\") {\n\t\t\t\tcase \"\": // No prefix means that the operation is unioned into the result\n\t\t\t\t\treturn filterRunPrefixes[\"or\"](operationSubFunction, options);\n\t\t\t\tcase \"=\": // The results of the operation are pushed into the result without deduplication\n\t\t\t\t\treturn filterRunPrefixes[\"all\"](operationSubFunction, options);\n\t\t\t\tcase \"-\": // The results of this operation are removed from the main result\n\t\t\t\t\treturn filterRunPrefixes[\"except\"](operationSubFunction, options);\n\t\t\t\tcase \"+\": // This operation is applied to the main results so far\n\t\t\t\t\treturn filterRunPrefixes[\"and\"](operationSubFunction, options);\n\t\t\t\tcase \"~\": // This operation is unioned into the result only if the main result so far is empty\n\t\t\t\t\treturn filterRunPrefixes[\"else\"](operationSubFunction, options);\n\t\t\t\tdefault: \n\t\t\t\t\tif(operation.namedPrefix && filterRunPrefixes[operation.namedPrefix]) {\n\t\t\t\t\t\treturn filterRunPrefixes[operation.namedPrefix](operationSubFunction, options);\n\t\t\t\t\t} else {\n\t\t\t\t\t\treturn function(results,source,widget) {\n\t\t\t\t\t\t\tresults.clear();\n\t\t\t\t\t\t\tresults.push($tw.language.getString(\"Error/FilterRunPrefix\"));\n\t\t\t\t\t\t};\n\t\t\t\t\t}\n\t\t\t}\n\t\t})());\n\t});\n\t// Return a function that applies the operations to a source iterator of tiddler titles\n\treturn $tw.perf.measure(\"filter: \" + filterString,function filterFunction(source,widget) {\n\t\tif(!source) {\n\t\t\tsource = self.each;\n\t\t} else if(typeof source === \"object\") { // Array or hashmap\n\t\t\tsource = self.makeTiddlerIterator(source);\n\t\t}\n\t\tvar results = new $tw.utils.LinkedList();\n\t\t$tw.utils.each(operationFunctions,function(operationFunction) {\n\t\t\toperationFunction(results,source,widget);\n\t\t});\n\t\treturn results.toArray();\n\t});\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "wikimethod"
},
"$:/core/modules/indexers/backlinks-indexer.js": {
"title": "$:/core/modules/indexers/backlinks-indexer.js",
"text": "/*\\\ntitle: $:/core/modules/indexers/backlinks-indexer.js\ntype: application/javascript\nmodule-type: indexer\n\nIndexes the tiddlers' backlinks\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global modules: false */\n\"use strict\";\n\n\nfunction BacklinksIndexer(wiki) {\n\tthis.wiki = wiki;\n}\n\nBacklinksIndexer.prototype.init = function() {\n\tthis.index = null;\n}\n\nBacklinksIndexer.prototype.rebuild = function() {\n\tthis.index = null;\n}\n\nBacklinksIndexer.prototype._getLinks = function(tiddler) {\n\tvar parser = this.wiki.parseText(tiddler.fields.type, tiddler.fields.text, {});\n\tif(parser) {\n\t\treturn this.wiki.extractLinks(parser.tree);\n\t}\n\treturn [];\n}\n\nBacklinksIndexer.prototype.update = function(updateDescriptor) {\n\tif(!this.index) {\n\t\treturn;\n\t}\n\tvar newLinks = [],\n\t oldLinks = [],\n\t self = this;\n\tif(updateDescriptor.old.exists) {\n\t\toldLinks = this._getLinks(updateDescriptor.old.tiddler);\n\t}\n\tif(updateDescriptor.new.exists) {\n\t\tnewLinks = this._getLinks(updateDescriptor.new.tiddler);\n\t}\n\n\t$tw.utils.each(oldLinks,function(link) {\n\t\tif(self.index[link]) {\n\t\t\tdelete self.index[link][updateDescriptor.old.tiddler.fields.title];\n\t\t}\n\t});\n\t$tw.utils.each(newLinks,function(link) {\n\t\tif(!self.index[link]) {\n\t\t\tself.index[link] = Object.create(null);\n\t\t}\n\t\tself.index[link][updateDescriptor.new.tiddler.fields.title] = true;\n\t});\n}\n\nBacklinksIndexer.prototype.lookup = function(title) {\n\tif(!this.index) {\n\t\tthis.index = Object.create(null);\n\t\tvar self = this;\n\t\tthis.wiki.forEachTiddler(function(title,tiddler) {\n\t\t\tvar links = self._getLinks(tiddler);\n\t\t\t$tw.utils.each(links, function(link) {\n\t\t\t\tif(!self.index[link]) {\n\t\t\t\t\tself.index[link] = Object.create(null);\n\t\t\t\t}\n\t\t\t\tself.index[link][title] = true;\n\t\t\t});\n\t\t});\n\t}\n\tif(this.index[title]) {\n\t\treturn Object.keys(this.index[title]);\n\t} else {\n\t\treturn [];\n\t}\n}\n\nexports.BacklinksIndexer = BacklinksIndexer;\n\n})();\n",
"type": "application/javascript",
"module-type": "indexer"
},
"$:/core/modules/indexers/field-indexer.js": {
"title": "$:/core/modules/indexers/field-indexer.js",
"text": "/*\\\ntitle: $:/core/modules/indexers/field-indexer.js\ntype: application/javascript\nmodule-type: indexer\n\nIndexes the tiddlers with each field value\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global modules: false */\n\"use strict\";\n\nvar DEFAULT_MAXIMUM_INDEXED_VALUE_LENGTH = 128;\n\nfunction FieldIndexer(wiki) {\n\tthis.wiki = wiki;\n}\n\nFieldIndexer.prototype.init = function() {\n\tthis.index = null;\n\tthis.maxIndexedValueLength = DEFAULT_MAXIMUM_INDEXED_VALUE_LENGTH;\n\tthis.addIndexMethods();\n}\n\n// Provided for testing\nFieldIndexer.prototype.setMaxIndexedValueLength = function(length) {\n\tthis.index = null;\n\tthis.maxIndexedValueLength = length;\n};\n\nFieldIndexer.prototype.addIndexMethods = function() {\n\tvar self = this;\n\tthis.wiki.each.byField = function(name,value) {\n\t\tvar titles = self.wiki.allTitles(),\n\t\t\tlookup = self.lookup(name,value);\n\t\treturn lookup && lookup.filter(function(title) {\n\t\t\treturn titles.indexOf(title) !== -1;\n\t\t});\n\t};\n\tthis.wiki.eachShadow.byField = function(name,value) {\n\t\tvar titles = self.wiki.allShadowTitles(),\n\t\t\tlookup = self.lookup(name,value);\n\t\treturn lookup && lookup.filter(function(title) {\n\t\t\treturn titles.indexOf(title) !== -1;\n\t\t});\n\t};\n\tthis.wiki.eachTiddlerPlusShadows.byField = function(name,value) {\n\t\tvar lookup = self.lookup(name,value);\n\t\treturn lookup ? lookup.slice(0) : null;\n\t};\n\tthis.wiki.eachShadowPlusTiddlers.byField = function(name,value) {\n\t\tvar lookup = self.lookup(name,value);\n\t\treturn lookup ? lookup.slice(0) : null;\n\t};\n};\n\n/*\nTear down and then rebuild the index as if all tiddlers have changed\n*/\nFieldIndexer.prototype.rebuild = function() {\n\t// Invalidate the index so that it will be rebuilt when it is next used\n\tthis.index = null;\n};\n\n/*\nBuild the index for a particular field\n*/\nFieldIndexer.prototype.buildIndexForField = function(name) {\n\tvar self = this;\n\t// Hashmap by field name of hashmap by field value of array of tiddler titles\n\tthis.index = this.index || Object.create(null);\n\tthis.index[name] = Object.create(null);\n\tvar baseIndex = this.index[name];\n\t// Update the index for each tiddler\n\tthis.wiki.eachTiddlerPlusShadows(function(tiddler,title) {\n\t\tif(name in tiddler.fields) {\n\t\t\tvar value = tiddler.getFieldString(name);\n\t\t\t// Skip any values above the maximum length\n\t\t\tif(value.length < self.maxIndexedValueLength) {\n\t\t\t\tbaseIndex[value] = baseIndex[value] || [];\n\t\t\t\tbaseIndex[value].push(title);\n\t\t\t}\n\t\t}\n\t});\n};\n\n/*\nUpdate the index in the light of a tiddler value changing; note that the title must be identical. (Renames are handled as a separate delete and create)\nupdateDescriptor: {old: {tiddler: <tiddler>, shadow: <boolean>, exists: <boolean>},new: {tiddler: <tiddler>, shadow: <boolean>, exists: <boolean>}}\n*/\nFieldIndexer.prototype.update = function(updateDescriptor) {\n\tvar self = this;\n\t// Don't do anything if the index hasn't been built yet\n\tif(this.index === null) {\n\t\treturn;\n\t}\n\t// Remove the old tiddler from the index\n\tif(updateDescriptor.old.tiddler) {\n\t\t$tw.utils.each(this.index,function(indexEntry,name) {\n\t\t\tif(name in updateDescriptor.old.tiddler.fields) {\n\t\t\t\tvar value = updateDescriptor.old.tiddler.getFieldString(name),\n\t\t\t\t\ttiddlerList = indexEntry[value];\n\t\t\t\tif(tiddlerList) {\n\t\t\t\t\tvar index = tiddlerList.indexOf(updateDescriptor.old.tiddler.fields.title);\n\t\t\t\t\tif(index !== -1) {\n\t\t\t\t\t\ttiddlerList.splice(index,1);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t});\n\t}\n\t// Add the new tiddler to the index\n\tif(updateDescriptor[\"new\"].tiddler) {\n\t\t$tw.utils.each(this.index,function(indexEntry,name) {\n\t\t\tif(name in updateDescriptor[\"new\"].tiddler.fields) {\n\t\t\t\tvar value = updateDescriptor[\"new\"].tiddler.getFieldString(name);\n\t\t\t\tif(value.length < self.maxIndexedValueLength) {\n\t\t\t\t\tindexEntry[value] = indexEntry[value] || [];\n\t\t\t\t\tindexEntry[value].push(updateDescriptor[\"new\"].tiddler.fields.title);\n\t\t\t\t}\n\t\t\t}\n\t\t});\t\t\n\t}\n};\n\n// Lookup the given field returning a list of tiddler titles\nFieldIndexer.prototype.lookup = function(name,value) {\n\t// Fail the lookup if the value is too long\n\tif(value.length >= this.maxIndexedValueLength) {\n\t\treturn null;\n\t}\n\t// Update the index if it has yet to be built\n\tif(this.index === null || !this.index[name]) {\n\t\tthis.buildIndexForField(name);\n\t}\n\treturn this.index[name][value] || [];\n};\n\nexports.FieldIndexer = FieldIndexer;\n\n})();\n",
"type": "application/javascript",
"module-type": "indexer"
},
"$:/core/modules/indexers/tag-indexer.js": {
"title": "$:/core/modules/indexers/tag-indexer.js",
"text": "/*\\\ntitle: $:/core/modules/indexers/tag-indexer.js\ntype: application/javascript\nmodule-type: indexer\n\nIndexes the tiddlers with each tag\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global modules: false */\n\"use strict\";\n\nfunction TagIndexer(wiki) {\n\tthis.wiki = wiki;\n}\n\nTagIndexer.prototype.init = function() {\n\tthis.subIndexers = [\n\t\tnew TagSubIndexer(this,\"each\"),\n\t\tnew TagSubIndexer(this,\"eachShadow\"),\n\t\tnew TagSubIndexer(this,\"eachTiddlerPlusShadows\"),\n\t\tnew TagSubIndexer(this,\"eachShadowPlusTiddlers\")\n\t];\n\t$tw.utils.each(this.subIndexers,function(subIndexer) {\n\t\tsubIndexer.addIndexMethod();\n\t});\n};\n\nTagIndexer.prototype.rebuild = function() {\n\t$tw.utils.each(this.subIndexers,function(subIndexer) {\n\t\tsubIndexer.rebuild();\n\t});\n};\n\nTagIndexer.prototype.update = function(updateDescriptor) {\n\t$tw.utils.each(this.subIndexers,function(subIndexer) {\n\t\tsubIndexer.update(updateDescriptor);\n\t});\n};\n\nfunction TagSubIndexer(indexer,iteratorMethod) {\n\tthis.indexer = indexer;\n\tthis.iteratorMethod = iteratorMethod;\n\tthis.index = null; // Hashmap of tag title to {isSorted: bool, titles: [array]} or null if not yet initialised\n}\n\nTagSubIndexer.prototype.addIndexMethod = function() {\n\tvar self = this;\n\tthis.indexer.wiki[this.iteratorMethod].byTag = function(tag) {\n\t\treturn self.lookup(tag).slice(0);\n\t};\n};\n\nTagSubIndexer.prototype.rebuild = function() {\n\tvar self = this;\n\t// Hashmap by tag of array of {isSorted:, titles:[]}\n\tthis.index = Object.create(null);\n\t// Add all the tags\n\tthis.indexer.wiki[this.iteratorMethod](function(tiddler,title) {\n\t\t$tw.utils.each(tiddler.fields.tags,function(tag) {\n\t\t\tif(!self.index[tag]) {\n\t\t\t\tself.index[tag] = {isSorted: false, titles: [title]};\n\t\t\t} else {\n\t\t\t\tself.index[tag].titles.push(title);\n\t\t\t}\n\t\t});\t\t\n\t});\n};\n\nTagSubIndexer.prototype.update = function(updateDescriptor) {\n\tthis.index = null;\n};\n\nTagSubIndexer.prototype.lookup = function(tag) {\n\t// Update the index if it has yet to be built\n\tif(this.index === null) {\n\t\tthis.rebuild();\n\t}\n\tvar indexRecord = this.index[tag];\n\tif(indexRecord) {\n\t\tif(!indexRecord.isSorted) {\n\t\t\tif(this.indexer.wiki.sortByList) {\n\t\t\t\tindexRecord.titles = this.indexer.wiki.sortByList(indexRecord.titles,tag);\n\t\t\t}\t\t\t\n\t\t\tindexRecord.isSorted = true;\n\t\t}\n\t\treturn indexRecord.titles;\n\t} else {\n\t\treturn [];\n\t}\n};\n\n\nexports.TagIndexer = TagIndexer;\n\n})();\n",
"type": "application/javascript",
"module-type": "indexer"
},
"$:/core/modules/info/platform.js": {
"title": "$:/core/modules/info/platform.js",
"text": "/*\\\ntitle: $:/core/modules/info/platform.js\ntype: application/javascript\nmodule-type: info\n\nInitialise basic platform $:/info/ tiddlers\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.getInfoTiddlerFields = function(updateInfoTiddlersCallback) {\n\tvar mapBoolean = function(value) {return value ? \"yes\" : \"no\";},\n\t\tinfoTiddlerFields = [];\n\t// Basics\n\tinfoTiddlerFields.push({title: \"$:/info/browser\", text: mapBoolean(!!$tw.browser)});\n\tinfoTiddlerFields.push({title: \"$:/info/node\", text: mapBoolean(!!$tw.node)});\n\tinfoTiddlerFields.push({title: \"$:/info/startup-timestamp\", text: $tw.utils.stringifyDate(new Date())});\n\tif($tw.browser) {\n\t\t// Document location\n\t\tvar setLocationProperty = function(name,value) {\n\t\t\t\tinfoTiddlerFields.push({title: \"$:/info/url/\" + name, text: value});\t\t\t\n\t\t\t},\n\t\t\tlocation = document.location;\n\t\tsetLocationProperty(\"full\", (location.toString()).split(\"#\")[0]);\n\t\tsetLocationProperty(\"host\", location.host);\n\t\tsetLocationProperty(\"hostname\", location.hostname);\n\t\tsetLocationProperty(\"protocol\", location.protocol);\n\t\tsetLocationProperty(\"port\", location.port);\n\t\tsetLocationProperty(\"pathname\", location.pathname);\n\t\tsetLocationProperty(\"search\", location.search);\n\t\tsetLocationProperty(\"origin\", location.origin);\n\t\t// Screen size\n\t\tinfoTiddlerFields.push({title: \"$:/info/browser/screen/width\", text: window.screen.width.toString()});\n\t\tinfoTiddlerFields.push({title: \"$:/info/browser/screen/height\", text: window.screen.height.toString()});\n \t\t// Dark mode through event listener on MediaQueryList\n \t\tvar mqList = window.matchMedia(\"(prefers-color-scheme: dark)\"),\n \t\t\tgetDarkModeTiddler = function() {return {title: \"$:/info/darkmode\", text: mqList.matches ? \"yes\" : \"no\"};};\n \t\tinfoTiddlerFields.push(getDarkModeTiddler());\n \t\tmqList.addListener(function(event) {\n \t\t\tupdateInfoTiddlersCallback([getDarkModeTiddler()]);\n \t\t});\n\t\t// Language\n\t\tinfoTiddlerFields.push({title: \"$:/info/browser/language\", text: navigator.language || \"\"});\n\t}\n\treturn infoTiddlerFields;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "info"
},
"$:/core/modules/keyboard.js": {
"title": "$:/core/modules/keyboard.js",
"text": "/*\\\ntitle: $:/core/modules/keyboard.js\ntype: application/javascript\nmodule-type: global\n\nKeyboard handling utilities\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar namedKeys = {\n\t\"cancel\": 3,\n\t\"help\": 6,\n\t\"backspace\": 8,\n\t\"tab\": 9,\n\t\"clear\": 12,\n\t\"return\": 13,\n\t\"enter\": 13,\n\t\"pause\": 19,\n\t\"escape\": 27,\n\t\"space\": 32,\n\t\"page_up\": 33,\n\t\"page_down\": 34,\n\t\"end\": 35,\n\t\"home\": 36,\n\t\"left\": 37,\n\t\"up\": 38,\n\t\"right\": 39,\n\t\"down\": 40,\n\t\"printscreen\": 44,\n\t\"insert\": 45,\n\t\"delete\": 46,\n\t\"0\": 48,\n\t\"1\": 49,\n\t\"2\": 50,\n\t\"3\": 51,\n\t\"4\": 52,\n\t\"5\": 53,\n\t\"6\": 54,\n\t\"7\": 55,\n\t\"8\": 56,\n\t\"9\": 57,\n\t\"firefoxsemicolon\": 59,\n\t\"firefoxequals\": 61,\n\t\"a\": 65,\n\t\"b\": 66,\n\t\"c\": 67,\n\t\"d\": 68,\n\t\"e\": 69,\n\t\"f\": 70,\n\t\"g\": 71,\n\t\"h\": 72,\n\t\"i\": 73,\n\t\"j\": 74,\n\t\"k\": 75,\n\t\"l\": 76,\n\t\"m\": 77,\n\t\"n\": 78,\n\t\"o\": 79,\n\t\"p\": 80,\n\t\"q\": 81,\n\t\"r\": 82,\n\t\"s\": 83,\n\t\"t\": 84,\n\t\"u\": 85,\n\t\"v\": 86,\n\t\"w\": 87,\n\t\"x\": 88,\n\t\"y\": 89,\n\t\"z\": 90,\n\t\"numpad0\": 96,\n\t\"numpad1\": 97,\n\t\"numpad2\": 98,\n\t\"numpad3\": 99,\n\t\"numpad4\": 100,\n\t\"numpad5\": 101,\n\t\"numpad6\": 102,\n\t\"numpad7\": 103,\n\t\"numpad8\": 104,\n\t\"numpad9\": 105,\n\t\"multiply\": 106,\n\t\"add\": 107,\n\t\"separator\": 108,\n\t\"subtract\": 109,\n\t\"decimal\": 110,\n\t\"divide\": 111,\n\t\"f1\": 112,\n\t\"f2\": 113,\n\t\"f3\": 114,\n\t\"f4\": 115,\n\t\"f5\": 116,\n\t\"f6\": 117,\n\t\"f7\": 118,\n\t\"f8\": 119,\n\t\"f9\": 120,\n\t\"f10\": 121,\n\t\"f11\": 122,\n\t\"f12\": 123,\n\t\"f13\": 124,\n\t\"f14\": 125,\n\t\"f15\": 126,\n\t\"f16\": 127,\n\t\"f17\": 128,\n\t\"f18\": 129,\n\t\"f19\": 130,\n\t\"f20\": 131,\n\t\"f21\": 132,\n\t\"f22\": 133,\n\t\"f23\": 134,\n\t\"f24\": 135,\n\t\"firefoxminus\": 173,\n\t\"semicolon\": 186,\n\t\"equals\": 187,\n\t\"comma\": 188,\n\t\"dash\": 189,\n\t\"period\": 190,\n\t\"slash\": 191,\n\t\"backquote\": 192,\n\t\"openbracket\": 219,\n\t\"backslash\": 220,\n\t\"closebracket\": 221,\n\t\"quote\": 222\n};\n\nfunction KeyboardManager(options) {\n\tvar self = this;\n\toptions = options || \"\";\n\t// Save the named key hashmap\n\tthis.namedKeys = namedKeys;\n\t// Create a reverse mapping of code to keyname\n\tthis.keyNames = [];\n\t$tw.utils.each(namedKeys,function(keyCode,name) {\n\t\tself.keyNames[keyCode] = name.substr(0,1).toUpperCase() + name.substr(1);\n\t});\n\t// Save the platform-specific name of the \"meta\" key\n\tthis.metaKeyName = $tw.platform.isMac ? \"cmd-\" : \"win-\";\n\tthis.shortcutKeysList = [], // Stores the shortcut-key descriptors\n\tthis.shortcutActionList = [], // Stores the corresponding action strings\n\tthis.shortcutParsedList = []; // Stores the parsed key descriptors\n\tthis.lookupNames = [\"shortcuts\"];\n\tthis.lookupNames.push($tw.platform.isMac ? \"shortcuts-mac\" : \"shortcuts-not-mac\")\n\tthis.lookupNames.push($tw.platform.isWindows ? \"shortcuts-windows\" : \"shortcuts-not-windows\");\n\tthis.lookupNames.push($tw.platform.isLinux ? \"shortcuts-linux\" : \"shortcuts-not-linux\");\n\tthis.updateShortcutLists(this.getShortcutTiddlerList());\n\t$tw.wiki.addEventListener(\"change\",function(changes) {\n\t\tself.handleShortcutChanges(changes);\n\t});\n}\n\n/*\nReturn an array of keycodes for the modifier keys ctrl, shift, alt, meta\n*/\nKeyboardManager.prototype.getModifierKeys = function() {\n\treturn [\n\t\t16, // Shift\n\t\t17, // Ctrl\n\t\t18, // Alt\n\t\t20, // CAPS LOCK\n\t\t91, // Meta (left)\n\t\t93, // Meta (right)\n\t\t224 // Meta (Firefox)\n\t]\n};\n\n/*\nParses a key descriptor into the structure:\n{\n\tkeyCode: numeric keycode\n\tshiftKey: boolean\n\taltKey: boolean\n\tctrlKey: boolean\n\tmetaKey: boolean\n}\nKey descriptors have the following format:\n\tctrl+enter\n\tctrl+shift+alt+A\n*/\nKeyboardManager.prototype.parseKeyDescriptor = function(keyDescriptor) {\n\tvar components = keyDescriptor.split(/\\+|\\-/),\n\t\tinfo = {\n\t\t\tkeyCode: 0,\n\t\t\tshiftKey: false,\n\t\t\taltKey: false,\n\t\t\tctrlKey: false,\n\t\t\tmetaKey: false\n\t\t};\n\tfor(var t=0; t<components.length; t++) {\n\t\tvar s = components[t].toLowerCase(),\n\t\t\tc = s.charCodeAt(0);\n\t\t// Look for modifier keys\n\t\tif(s === \"ctrl\") {\n\t\t\tinfo.ctrlKey = true;\n\t\t} else if(s === \"shift\") {\n\t\t\tinfo.shiftKey = true;\n\t\t} else if(s === \"alt\") {\n\t\t\tinfo.altKey = true;\n\t\t} else if(s === \"meta\" || s === \"cmd\" || s === \"win\") {\n\t\t\tinfo.metaKey = true;\n\t\t}\n\t\t// Replace named keys with their code\n\t\tif(this.namedKeys[s]) {\n\t\t\tinfo.keyCode = this.namedKeys[s];\n\t\t}\n\t}\n\tif(info.keyCode) {\n\t\treturn info;\n\t} else {\n\t\treturn null;\n\t}\n};\n\n/*\nParse a list of key descriptors into an array of keyInfo objects. The key descriptors can be passed as an array of strings or a space separated string\n*/\nKeyboardManager.prototype.parseKeyDescriptors = function(keyDescriptors,options) {\n\tvar self = this;\n\toptions = options || {};\n\toptions.stack = options.stack || [];\n\tvar wiki = options.wiki || $tw.wiki;\n\tif(typeof keyDescriptors === \"string\" && keyDescriptors === \"\") {\n\t\treturn [];\n\t}\n\tif(!$tw.utils.isArray(keyDescriptors)) {\n\t\tkeyDescriptors = keyDescriptors.split(\" \");\n\t}\n\tvar result = [];\n\t$tw.utils.each(keyDescriptors,function(keyDescriptor) {\n\t\t// Look for a named shortcut\n\t\tif(keyDescriptor.substr(0,2) === \"((\" && keyDescriptor.substr(-2,2) === \"))\") {\n\t\t\tif(options.stack.indexOf(keyDescriptor) === -1) {\n\t\t\t\toptions.stack.push(keyDescriptor);\n\t\t\t\tvar name = keyDescriptor.substring(2,keyDescriptor.length - 2),\n\t\t\t\t\tlookupName = function(configName) {\n\t\t\t\t\t\tvar keyDescriptors = wiki.getTiddlerText(\"$:/config/\" + configName + \"/\" + name);\n\t\t\t\t\t\tif(keyDescriptors) {\n\t\t\t\t\t\t\tresult.push.apply(result,self.parseKeyDescriptors(keyDescriptors,options));\n\t\t\t\t\t\t}\n\t\t\t\t\t};\n\t\t\t\t$tw.utils.each(self.lookupNames,function(platformDescriptor) {\n\t\t\t\t\tlookupName(platformDescriptor);\n\t\t\t\t});\n\t\t\t}\n\t\t} else {\n\t\t\tresult.push(self.parseKeyDescriptor(keyDescriptor));\n\t\t}\n\t});\n\treturn result;\n};\n\nKeyboardManager.prototype.getPrintableShortcuts = function(keyInfoArray) {\n\tvar self = this,\n\t\tresult = [];\n\t$tw.utils.each(keyInfoArray,function(keyInfo) {\n\t\tif(keyInfo) {\n\t\t\tresult.push((keyInfo.ctrlKey ? \"ctrl-\" : \"\") + \n\t\t\t\t (keyInfo.shiftKey ? \"shift-\" : \"\") + \n\t\t\t\t (keyInfo.altKey ? \"alt-\" : \"\") + \n\t\t\t\t (keyInfo.metaKey ? self.metaKeyName : \"\") + \n\t\t\t\t (self.keyNames[keyInfo.keyCode]));\n\t\t}\n\t});\n\treturn result;\n}\n\nKeyboardManager.prototype.checkKeyDescriptor = function(event,keyInfo) {\n\treturn keyInfo &&\n\t\t\tevent.keyCode === keyInfo.keyCode && \n\t\t\tevent.shiftKey === keyInfo.shiftKey && \n\t\t\tevent.altKey === keyInfo.altKey && \n\t\t\tevent.ctrlKey === keyInfo.ctrlKey && \n\t\t\tevent.metaKey === keyInfo.metaKey;\n};\n\nKeyboardManager.prototype.checkKeyDescriptors = function(event,keyInfoArray) {\n\tfor(var t=0; t<keyInfoArray.length; t++) {\n\t\tif(this.checkKeyDescriptor(event,keyInfoArray[t])) {\n\t\t\treturn true;\n\t\t}\n\t}\n\treturn false;\n};\n\nKeyboardManager.prototype.getEventModifierKeyDescriptor = function(event) {\n\treturn event.ctrlKey && !event.shiftKey && !event.altKey && !event.metaKey ? \"ctrl\" : \n\t\tevent.shiftKey && !event.ctrlKey && !event.altKey && !event.metaKey ? \"shift\" : \n\t\tevent.ctrlKey && event.shiftKey && !event.altKey && !event.metaKey ? \"ctrl-shift\" : \n\t\tevent.altKey && !event.shiftKey && !event.ctrlKey && !event.metaKey ? \"alt\" : \n\t\tevent.altKey && event.shiftKey && !event.ctrlKey && !event.metaKey ? \"alt-shift\" : \n\t\tevent.altKey && event.ctrlKey && !event.shiftKey && !event.metaKey ? \"ctrl-alt\" : \n\t\tevent.altKey && event.shiftKey && event.ctrlKey && !event.metaKey ? \"ctrl-alt-shift\" : \n\t\tevent.metaKey && !event.ctrlKey && !event.shiftKey && !event.altKey ? \"meta\" : \n\t\tevent.metaKey && event.ctrlKey && !event.shiftKey && !event.altKey ? \"meta-ctrl\" :\n\t\tevent.metaKey && event.ctrlKey && event.shiftKey && !event.altKey ? \"meta-ctrl-shift\" :\n\t\tevent.metaKey && event.ctrlKey & event.shiftKey && event.altKey ? \"meta-ctrl-alt-shift\" : \"normal\";\n};\n\nKeyboardManager.prototype.getShortcutTiddlerList = function() {\n\treturn $tw.wiki.getTiddlersWithTag(\"$:/tags/KeyboardShortcut\");\n};\n\nKeyboardManager.prototype.updateShortcutLists = function(tiddlerList) {\n\tthis.shortcutTiddlers = tiddlerList;\n\tfor(var i=0; i<tiddlerList.length; i++) {\n\t\tvar title = tiddlerList[i],\n\t\t\ttiddlerFields = $tw.wiki.getTiddler(title).fields;\n\t\tthis.shortcutKeysList[i] = tiddlerFields.key !== undefined ? tiddlerFields.key : undefined;\n\t\tthis.shortcutActionList[i] = tiddlerFields.text;\n\t\tthis.shortcutParsedList[i] = this.shortcutKeysList[i] !== undefined ? this.parseKeyDescriptors(this.shortcutKeysList[i]) : undefined;\n\t}\n};\n\nKeyboardManager.prototype.handleKeydownEvent = function(event) {\n\tvar key, action;\n\tfor(var i=0; i<this.shortcutTiddlers.length; i++) {\n\t\tif(this.shortcutParsedList[i] !== undefined && this.checkKeyDescriptors(event,this.shortcutParsedList[i])) {\n\t\t\tkey = this.shortcutParsedList[i];\n\t\t\taction = this.shortcutActionList[i];\n\t\t}\n\t}\n\tif(key !== undefined) {\n\t\tevent.preventDefault();\n\t\tevent.stopPropagation();\n\t\t$tw.rootWidget.invokeActionString(action,$tw.rootWidget);\n\t\treturn true;\n\t}\n\treturn false;\n};\n\nKeyboardManager.prototype.detectNewShortcuts = function(changedTiddlers) {\n\tvar shortcutConfigTiddlers = [],\n\t\thandled = false;\n\t$tw.utils.each(this.lookupNames,function(platformDescriptor) {\n\t\tvar descriptorString = \"$:/config/\" + platformDescriptor + \"/\";\n\t\tObject.keys(changedTiddlers).forEach(function(configTiddler) {\n\t\t\tvar configString = configTiddler.substr(0, configTiddler.lastIndexOf(\"/\") + 1);\n\t\t\tif(configString === descriptorString) {\n\t\t\t\tshortcutConfigTiddlers.push(configTiddler);\n\t\t\t\thandled = true;\n\t\t\t}\n\t\t});\n\t});\n\tif(handled) {\n\t\treturn $tw.utils.hopArray(changedTiddlers,shortcutConfigTiddlers);\n\t} else {\n\t\treturn false;\n\t}\n};\n\nKeyboardManager.prototype.handleShortcutChanges = function(changedTiddlers) {\n\tvar newList = this.getShortcutTiddlerList();\n\tvar hasChanged = $tw.utils.hopArray(changedTiddlers,this.shortcutTiddlers) ? true :\n\t\t($tw.utils.hopArray(changedTiddlers,newList) ? true :\n\t\t(this.detectNewShortcuts(changedTiddlers))\n\t);\n\t// Re-cache shortcuts if something changed\n\tif(hasChanged) {\n\t\tthis.updateShortcutLists(newList);\n\t}\n};\n\nexports.KeyboardManager = KeyboardManager;\n\n})();\n",
"type": "application/javascript",
"module-type": "global"
},
"$:/core/modules/language.js": {
"title": "$:/core/modules/language.js",
"text": "/*\\\ntitle: $:/core/modules/language.js\ntype: application/javascript\nmodule-type: global\n\nThe $tw.Language() manages translateable strings\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nCreate an instance of the language manager. Options include:\nwiki: wiki from which to retrieve translation tiddlers\n*/\nfunction Language(options) {\n\toptions = options || \"\";\n\tthis.wiki = options.wiki || $tw.wiki;\n}\n\n/*\nReturn a wikified translateable string. The title is automatically prefixed with \"$:/language/\"\nOptions include:\nvariables: optional hashmap of variables to supply to the language wikification\n*/\nLanguage.prototype.getString = function(title,options) {\n\toptions = options || {};\n\ttitle = \"$:/language/\" + title;\n\treturn this.wiki.renderTiddler(\"text/plain\",title,{variables: options.variables});\n};\n\n/*\nReturn a raw, unwikified translateable string. The title is automatically prefixed with \"$:/language/\"\n*/\nLanguage.prototype.getRawString = function(title) {\n\ttitle = \"$:/language/\" + title;\n\treturn this.wiki.getTiddlerText(title);\n};\n\nexports.Language = Language;\n\n})();\n",
"type": "application/javascript",
"module-type": "global"
},
"$:/core/modules/macros/changecount.js": {
"title": "$:/core/modules/macros/changecount.js",
"text": "/*\\\ntitle: $:/core/modules/macros/changecount.js\ntype: application/javascript\nmodule-type: macro\n\nMacro to return the changecount for the current tiddler\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nInformation about this macro\n*/\n\nexports.name = \"changecount\";\n\nexports.params = [];\n\n/*\nRun the macro\n*/\nexports.run = function() {\n\treturn this.wiki.getChangeCount(this.getVariable(\"currentTiddler\")) + \"\";\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "macro"
},
"$:/core/modules/macros/contrastcolour.js": {
"title": "$:/core/modules/macros/contrastcolour.js",
"text": "/*\\\ntitle: $:/core/modules/macros/contrastcolour.js\ntype: application/javascript\nmodule-type: macro\n\nMacro to choose which of two colours has the highest contrast with a base colour\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nInformation about this macro\n*/\n\nexports.name = \"contrastcolour\";\n\nexports.params = [\n\t{name: \"target\"},\n\t{name: \"fallbackTarget\"},\n\t{name: \"colourA\"},\n\t{name: \"colourB\"}\n];\n\n/*\nRun the macro\n*/\nexports.run = function(target,fallbackTarget,colourA,colourB) {\n\tvar rgbTarget = $tw.utils.parseCSSColor(target) || $tw.utils.parseCSSColor(fallbackTarget);\n\tif(!rgbTarget) {\n\t\treturn colourA;\n\t}\n\tvar rgbColourA = $tw.utils.parseCSSColor(colourA),\n\t\trgbColourB = $tw.utils.parseCSSColor(colourB);\n\tif(rgbColourA && !rgbColourB) {\n\t\treturn rgbColourA;\n\t}\n\tif(rgbColourB && !rgbColourA) {\n\t\treturn rgbColourB;\n\t}\n\tif(!rgbColourA && !rgbColourB) {\n\t\t// If neither colour is readable, return a crude inverse of the target\n\t\treturn [255 - rgbTarget[0],255 - rgbTarget[1],255 - rgbTarget[2],rgbTarget[3]];\n\t}\n\t// Colour brightness formula derived from http://www.w3.org/WAI/ER/WD-AERT/#color-contrast\n\tvar brightnessTarget = rgbTarget[0] * 0.299 + rgbTarget[1] * 0.587 + rgbTarget[2] * 0.114,\n\t\tbrightnessA = rgbColourA[0] * 0.299 + rgbColourA[1] * 0.587 + rgbColourA[2] * 0.114,\n\t\tbrightnessB = rgbColourB[0] * 0.299 + rgbColourB[1] * 0.587 + rgbColourB[2] * 0.114;\n\treturn Math.abs(brightnessTarget - brightnessA) > Math.abs(brightnessTarget - brightnessB) ? colourA : colourB;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "macro"
},
"$:/core/modules/macros/csvtiddlers.js": {
"title": "$:/core/modules/macros/csvtiddlers.js",
"text": "/*\\\ntitle: $:/core/modules/macros/csvtiddlers.js\ntype: application/javascript\nmodule-type: macro\n\nMacro to output tiddlers matching a filter to CSV\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nInformation about this macro\n*/\n\nexports.name = \"csvtiddlers\";\n\nexports.params = [\n\t{name: \"filter\"},\n\t{name: \"format\"},\n];\n\n/*\nRun the macro\n*/\nexports.run = function(filter,format) {\n\tvar self = this,\n\t\ttiddlers = this.wiki.filterTiddlers(filter),\n\t\ttiddler,\n\t\tfields = [],\n\t\tt,f;\n\t// Collect all the fields\n\tfor(t=0;t<tiddlers.length; t++) {\n\t\ttiddler = this.wiki.getTiddler(tiddlers[t]);\n\t\tfor(f in tiddler.fields) {\n\t\t\tif(fields.indexOf(f) === -1) {\n\t\t\t\tfields.push(f);\n\t\t\t}\n\t\t}\n\t}\n\t// Sort the fields and bring the standard ones to the front\n\tfields.sort();\n\t\"title text modified modifier created creator\".split(\" \").reverse().forEach(function(value,index) {\n\t\tvar p = fields.indexOf(value);\n\t\tif(p !== -1) {\n\t\t\tfields.splice(p,1);\n\t\t\tfields.unshift(value)\n\t\t}\n\t});\n\t// Output the column headings\n\tvar output = [], row = [];\n\tfields.forEach(function(value) {\n\t\trow.push(quoteAndEscape(value))\n\t});\n\toutput.push(row.join(\",\"));\n\t// Output each tiddler\n\tfor(var t=0;t<tiddlers.length; t++) {\n\t\trow = [];\n\t\ttiddler = this.wiki.getTiddler(tiddlers[t]);\n\t\t\tfor(f=0; f<fields.length; f++) {\n\t\t\t\trow.push(quoteAndEscape(tiddler ? tiddler.getFieldString(fields[f]) || \"\" : \"\"));\n\t\t\t}\n\t\toutput.push(row.join(\",\"));\n\t}\n\treturn output.join(\"\\n\");\n};\n\nfunction quoteAndEscape(value) {\n\treturn \"\\\"\" + value.replace(/\"/mg,\"\\\"\\\"\") + \"\\\"\";\n}\n\n})();\n",
"type": "application/javascript",
"module-type": "macro"
},
"$:/core/modules/macros/displayshortcuts.js": {
"title": "$:/core/modules/macros/displayshortcuts.js",
"text": "/*\\\ntitle: $:/core/modules/macros/displayshortcuts.js\ntype: application/javascript\nmodule-type: macro\n\nMacro to display a list of keyboard shortcuts in human readable form. Notably, it resolves named shortcuts like `((bold))` to the underlying keystrokes.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nInformation about this macro\n*/\n\nexports.name = \"displayshortcuts\";\n\nexports.params = [\n\t{name: \"shortcuts\"},\n\t{name: \"prefix\"},\n\t{name: \"separator\"},\n\t{name: \"suffix\"}\n];\n\n/*\nRun the macro\n*/\nexports.run = function(shortcuts,prefix,separator,suffix) {\n\tvar shortcutArray = $tw.keyboardManager.getPrintableShortcuts($tw.keyboardManager.parseKeyDescriptors(shortcuts,{\n\t\twiki: this.wiki\n\t}));\n\tif(shortcutArray.length > 0) {\n\t\tshortcutArray.sort(function(a,b) {\n\t\t return a.toLowerCase().localeCompare(b.toLowerCase());\n\t\t})\n\t\treturn prefix + shortcutArray.join(separator) + suffix;\n\t} else {\n\t\treturn \"\";\n\t}\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "macro"
},
"$:/core/modules/macros/jsontiddler.js": {
"title": "$:/core/modules/macros/jsontiddler.js",
"text": "/*\\\ntitle: $:/core/modules/macros/jsontiddler.js\ntype: application/javascript\nmodule-type: macro\n\nMacro to output a single tiddler to JSON\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nInformation about this macro\n*/\n\nexports.name = \"jsontiddler\";\n\nexports.params = [\n\t{name: \"title\"}\n];\n\n/*\nRun the macro\n*/\nexports.run = function(title) {\n\ttitle = title || this.getVariable(\"currentTiddler\");\n\tvar tiddler = !!title && this.wiki.getTiddler(title),\n\t\tfields = new Object();\n\tif(tiddler) {\n\t\tfor(var field in tiddler.fields) {\n\t\t\tfields[field] = tiddler.getFieldString(field);\n\t\t}\n\t}\n\treturn JSON.stringify(fields,null,$tw.config.preferences.jsonSpaces);\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "macro"
},
"$:/core/modules/macros/jsontiddlers.js": {
"title": "$:/core/modules/macros/jsontiddlers.js",
"text": "/*\\\ntitle: $:/core/modules/macros/jsontiddlers.js\ntype: application/javascript\nmodule-type: macro\n\nMacro to output tiddlers matching a filter to JSON\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nInformation about this macro\n*/\n\nexports.name = \"jsontiddlers\";\n\nexports.params = [\n\t{name: \"filter\"},\n\t{name: \"spaces\"}\n];\n\n/*\nRun the macro\n*/\nexports.run = function(filter,spaces) {\n\treturn this.wiki.getTiddlersAsJson(filter,$tw.utils.parseInt(spaces));\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "macro"
},
"$:/core/modules/macros/makedatauri.js": {
"title": "$:/core/modules/macros/makedatauri.js",
"text": "/*\\\ntitle: $:/core/modules/macros/makedatauri.js\ntype: application/javascript\nmodule-type: macro\n\nMacro to convert a string of text to a data URI\n\n<<makedatauri text:\"Text to be converted\" type:\"text/vnd.tiddlywiki\">>\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nInformation about this macro\n*/\n\nexports.name = \"makedatauri\";\n\nexports.params = [\n\t{name: \"text\"},\n\t{name: \"type\"},\n\t{name: \"_canonical_uri\"}\n];\n\n/*\nRun the macro\n*/\nexports.run = function(text,type,_canonical_uri) {\n\treturn $tw.utils.makeDataUri(text,type,_canonical_uri);\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "macro"
},
"$:/core/modules/macros/now.js": {
"title": "$:/core/modules/macros/now.js",
"text": "/*\\\ntitle: $:/core/modules/macros/now.js\ntype: application/javascript\nmodule-type: macro\n\nMacro to return a formatted version of the current time\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nInformation about this macro\n*/\n\nexports.name = \"now\";\n\nexports.params = [\n\t{name: \"format\"}\n];\n\n/*\nRun the macro\n*/\nexports.run = function(format) {\n\treturn $tw.utils.formatDateString(new Date(),format || \"0hh:0mm, DDth MMM YYYY\");\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "macro"
},
"$:/core/modules/macros/qualify.js": {
"title": "$:/core/modules/macros/qualify.js",
"text": "/*\\\ntitle: $:/core/modules/macros/qualify.js\ntype: application/javascript\nmodule-type: macro\n\nMacro to qualify a state tiddler title according\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nInformation about this macro\n*/\n\nexports.name = \"qualify\";\n\nexports.params = [\n\t{name: \"title\"}\n];\n\n/*\nRun the macro\n*/\nexports.run = function(title) {\n\treturn title + \"-\" + this.getStateQualifier();\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "macro"
},
"$:/core/modules/macros/resolvepath.js": {
"title": "$:/core/modules/macros/resolvepath.js",
"text": "/*\\\ntitle: $:/core/modules/macros/resolvepath.js\ntype: application/javascript\nmodule-type: macro\n\nResolves a relative path for an absolute rootpath.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"resolvepath\";\n\nexports.params = [\n\t{name: \"source\"},\n\t{name: \"root\"}\n];\n\n/*\nRun the macro\n*/\nexports.run = function(source, root) {\n\treturn $tw.utils.resolvePath(source, root);\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "macro"
},
"$:/core/modules/macros/unusedtitle.js": {
"title": "$:/core/modules/macros/unusedtitle.js",
"text": "/*\\\ntitle: $:/core/modules/macros/unusedtitle.js\ntype: application/javascript\nmodule-type: macro\nMacro to return a new title that is unused in the wiki. It can be given a name as a base.\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nInformation about this macro\n*/\n\nexports.name = \"unusedtitle\";\n\nexports.params = [\n\t{name: \"baseName\"},\n\t{name: \"options\"}\n];\n\n/*\nRun the macro\n*/\nexports.run = function(baseName, options) {\n\tif(!baseName) {\n\t\tbaseName = $tw.language.getString(\"DefaultNewTiddlerTitle\");\n\t}\n\treturn this.wiki.generateNewTitle(baseName, options);\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "macro"
},
"$:/core/modules/macros/version.js": {
"title": "$:/core/modules/macros/version.js",
"text": "/*\\\ntitle: $:/core/modules/macros/version.js\ntype: application/javascript\nmodule-type: macro\n\nMacro to return the TiddlyWiki core version number\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nInformation about this macro\n*/\n\nexports.name = \"version\";\n\nexports.params = [];\n\n/*\nRun the macro\n*/\nexports.run = function() {\n\treturn $tw.version;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "macro"
},
"$:/core/modules/parsers/audioparser.js": {
"title": "$:/core/modules/parsers/audioparser.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/audioparser.js\ntype: application/javascript\nmodule-type: parser\n\nThe audio parser parses an audio tiddler into an embeddable HTML element\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar AudioParser = function(type,text,options) {\n\tvar element = {\n\t\t\ttype: \"element\",\n\t\t\ttag: \"audio\",\n\t\t\tattributes: {\n\t\t\t\tcontrols: {type: \"string\", value: \"controls\"},\n\t\t\t\tstyle: {type: \"string\", value: \"width: 100%; object-fit: contain\"}\n\t\t\t}\n\t\t},\n\t\tsrc;\n\tif(options._canonical_uri) {\n\t\telement.attributes.src = {type: \"string\", value: options._canonical_uri};\n\t} else if(text) {\n\t\telement.attributes.src = {type: \"string\", value: \"data:\" + type + \";base64,\" + text};\n\t}\n\tthis.tree = [element];\n};\n\nexports[\"audio/ogg\"] = AudioParser;\nexports[\"audio/mpeg\"] = AudioParser;\nexports[\"audio/mp3\"] = AudioParser;\nexports[\"audio/mp4\"] = AudioParser;\n\n})();\n\n",
"type": "application/javascript",
"module-type": "parser"
},
"$:/core/modules/parsers/binaryparser.js": {
"title": "$:/core/modules/parsers/binaryparser.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/binaryparser.js\ntype: application/javascript\nmodule-type: parser\n\nThe binary parser parses a binary tiddler into a warning message and download link\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar BINARY_WARNING_MESSAGE = \"$:/core/ui/BinaryWarning\";\nvar EXPORT_BUTTON_IMAGE = \"$:/core/images/export-button\";\n\nvar BinaryParser = function(type,text,options) {\n\t// Transclude the binary data tiddler warning message\n\tvar warn = {\n\t\ttype: \"element\",\n\t\ttag: \"p\",\n\t\tchildren: [{\n\t\t\ttype: \"transclude\",\n\t\t\tattributes: {\n\t\t\t\ttiddler: {type: \"string\", value: BINARY_WARNING_MESSAGE}\n\t\t\t}\n\t\t}]\n\t};\n\t// Create download link based on binary tiddler title\n\tvar link = {\n\t\ttype: \"element\",\n\t\ttag: \"a\",\n\t\tattributes: {\n\t\t\ttitle: {type: \"indirect\", textReference: \"!!title\"},\n\t\t\tdownload: {type: \"indirect\", textReference: \"!!title\"}\n\t\t},\n\t\tchildren: [{\n\t\t\ttype: \"transclude\",\n\t\t\tattributes: {\n\t\t\t\ttiddler: {type: \"string\", value: EXPORT_BUTTON_IMAGE}\n\t\t\t}\n\t\t}]\n\t};\n\t// Set the link href to external or internal data URI\n\tif(options._canonical_uri) {\n\t\tlink.attributes.href = {\n\t\t\ttype: \"string\", \n\t\t\tvalue: options._canonical_uri\n\t\t};\n\t} else if(text) {\n\t\tlink.attributes.href = {\n\t\t\ttype: \"string\", \n\t\t\tvalue: \"data:\" + type + \";base64,\" + text\n\t\t};\n\t}\n\t// Combine warning message and download link in a div\n\tvar element = {\n\t\ttype: \"element\",\n\t\ttag: \"div\",\n\t\tattributes: {\n\t\t\tclass: {type: \"string\", value: \"tc-binary-warning\"}\n\t\t},\n\t\tchildren: [warn, link]\n\t}\n\tthis.tree = [element];\n};\n\nexports[\"application/octet-stream\"] = BinaryParser;\n\n})();\n\n",
"type": "application/javascript",
"module-type": "parser"
},
"$:/core/modules/parsers/csvparser.js": {
"title": "$:/core/modules/parsers/csvparser.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/csvparser.js\ntype: application/javascript\nmodule-type: parser\n\nThe CSV text parser processes CSV files into a table wrapped in a scrollable widget\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar CsvParser = function(type,text,options) {\n\t// Table framework\n\tthis.tree = [{\n\t\t\"type\": \"scrollable\", \"children\": [{\n\t\t\t\"type\": \"element\", \"tag\": \"table\", \"children\": [{\n\t\t\t\t\"type\": \"element\", \"tag\": \"tbody\", \"children\": []\n\t\t\t}], \"attributes\": {\n\t\t\t\t\"class\": {\"type\": \"string\", \"value\": \"tc-csv-table\"}\n\t\t\t}\n\t\t}]\n\t}];\n\t// Split the text into lines\n\tvar lines = text.split(/\\r?\\n/mg),\n\t\ttag = \"th\";\n\tfor(var line=0; line<lines.length; line++) {\n\t\tvar lineText = lines[line];\n\t\tif(lineText) {\n\t\t\tvar row = {\n\t\t\t\t\t\"type\": \"element\", \"tag\": \"tr\", \"children\": []\n\t\t\t\t};\n\t\t\tvar columns = lineText.split(\",\");\n\t\t\tfor(var column=0; column<columns.length; column++) {\n\t\t\t\trow.children.push({\n\t\t\t\t\t\t\"type\": \"element\", \"tag\": tag, \"children\": [{\n\t\t\t\t\t\t\t\"type\": \"text\",\n\t\t\t\t\t\t\t\"text\": columns[column]\n\t\t\t\t\t\t}]\n\t\t\t\t\t});\n\t\t\t}\n\t\t\ttag = \"td\";\n\t\t\tthis.tree[0].children[0].children[0].children.push(row);\n\t\t}\n\t}\n};\n\nexports[\"text/csv\"] = CsvParser;\n\n})();\n\n",
"type": "application/javascript",
"module-type": "parser"
},
"$:/core/modules/parsers/htmlparser.js": {
"title": "$:/core/modules/parsers/htmlparser.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/htmlparser.js\ntype: application/javascript\nmodule-type: parser\n\nThe HTML parser displays text as raw HTML\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar HtmlParser = function(type,text,options) {\n\tvar src;\n\tif(options._canonical_uri) {\n\t\tsrc = options._canonical_uri;\n\t} else if(text) {\n\t\tsrc = \"data:text/html;charset=utf-8,\" + encodeURIComponent(text);\n\t}\n\tthis.tree = [{\n\t\ttype: \"element\",\n\t\ttag: \"iframe\",\n\t\tattributes: {\n\t\t\tsrc: {type: \"string\", value: src},\n\t\t\tsandbox: {type: \"string\", value: \"\"}\n\t\t}\n\t}];\n};\n\nexports[\"text/html\"] = HtmlParser;\n\n})();\n\n",
"type": "application/javascript",
"module-type": "parser"
},
"$:/core/modules/parsers/imageparser.js": {
"title": "$:/core/modules/parsers/imageparser.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/imageparser.js\ntype: application/javascript\nmodule-type: parser\n\nThe image parser parses an image into an embeddable HTML element\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar ImageParser = function(type,text,options) {\n\tvar element = {\n\t\t\ttype: \"element\",\n\t\t\ttag: \"img\",\n\t\t\tattributes: {}\n\t\t};\n\tif(options._canonical_uri) {\n\t\telement.attributes.src = {type: \"string\", value: options._canonical_uri};\n\t} else if(text) {\n\t\tif(type === \"image/svg+xml\" || type === \".svg\") {\n\t\t\telement.attributes.src = {type: \"string\", value: \"data:image/svg+xml,\" + encodeURIComponent(text)};\n\t\t} else {\n\t\t\telement.attributes.src = {type: \"string\", value: \"data:\" + type + \";base64,\" + text};\n\t\t}\n\t}\n\tthis.tree = [element];\n};\n\nexports[\"image/svg+xml\"] = ImageParser;\nexports[\"image/jpg\"] = ImageParser;\nexports[\"image/jpeg\"] = ImageParser;\nexports[\"image/png\"] = ImageParser;\nexports[\"image/gif\"] = ImageParser;\nexports[\"image/webp\"] = ImageParser;\nexports[\"image/heic\"] = ImageParser;\nexports[\"image/heif\"] = ImageParser;\nexports[\"image/x-icon\"] = ImageParser;\n\n})();\n\n",
"type": "application/javascript",
"module-type": "parser"
},
"$:/core/modules/utils/parseutils.js": {
"title": "$:/core/modules/utils/parseutils.js",
"text": "/*\\\ntitle: $:/core/modules/utils/parseutils.js\ntype: application/javascript\nmodule-type: utils\n\nUtility functions concerned with parsing text into tokens.\n\nMost functions have the following pattern:\n\n* The parameters are:\n** `source`: the source string being parsed\n** `pos`: the current parse position within the string\n** Any further parameters are used to identify the token that is being parsed\n* The return value is:\n** null if the token was not found at the specified position\n** an object representing the token with the following standard fields:\n*** `type`: string indicating the type of the token\n*** `start`: start position of the token in the source string\n*** `end`: end position of the token in the source string\n*** Any further fields required to describe the token\n\nThe exception is `skipWhiteSpace`, which just returns the position after the whitespace.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nLook for a whitespace token. Returns null if not found, otherwise returns {type: \"whitespace\", start:, end:,}\n*/\nexports.parseWhiteSpace = function(source,pos) {\n\tvar p = pos,c;\n\twhile(true) {\n\t\tc = source.charAt(p);\n\t\tif((c === \" \") || (c === \"\\f\") || (c === \"\\n\") || (c === \"\\r\") || (c === \"\\t\") || (c === \"\\v\") || (c === \"\\u00a0\")) { // Ignores some obscure unicode spaces\n\t\t\tp++;\n\t\t} else {\n\t\t\tbreak;\n\t\t}\n\t}\n\tif(p === pos) {\n\t\treturn null;\n\t} else {\n\t\treturn {\n\t\t\ttype: \"whitespace\",\n\t\t\tstart: pos,\n\t\t\tend: p\n\t\t}\n\t}\n};\n\n/*\nConvenience wrapper for parseWhiteSpace. Returns the position after the whitespace\n*/\nexports.skipWhiteSpace = function(source,pos) {\n\tvar c;\n\twhile(true) {\n\t\tc = source.charAt(pos);\n\t\tif((c === \" \") || (c === \"\\f\") || (c === \"\\n\") || (c === \"\\r\") || (c === \"\\t\") || (c === \"\\v\") || (c === \"\\u00a0\")) { // Ignores some obscure unicode spaces\n\t\t\tpos++;\n\t\t} else {\n\t\t\treturn pos;\n\t\t}\n\t}\n};\n\n/*\nLook for a given string token. Returns null if not found, otherwise returns {type: \"token\", value:, start:, end:,}\n*/\nexports.parseTokenString = function(source,pos,token) {\n\tvar match = source.indexOf(token,pos) === pos;\n\tif(match) {\n\t\treturn {\n\t\t\ttype: \"token\",\n\t\t\tvalue: token,\n\t\t\tstart: pos,\n\t\t\tend: pos + token.length\n\t\t};\n\t}\n\treturn null;\n};\n\n/*\nLook for a token matching a regex. Returns null if not found, otherwise returns {type: \"regexp\", match:, start:, end:,}\n*/\nexports.parseTokenRegExp = function(source,pos,reToken) {\n\tvar node = {\n\t\ttype: \"regexp\",\n\t\tstart: pos\n\t};\n\treToken.lastIndex = pos;\n\tnode.match = reToken.exec(source);\n\tif(node.match && node.match.index === pos) {\n\t\tnode.end = pos + node.match[0].length;\n\t\treturn node;\n\t} else {\n\t\treturn null;\n\t}\n};\n\n/*\nLook for a string literal. Returns null if not found, otherwise returns {type: \"string\", value:, start:, end:,}\n*/\nexports.parseStringLiteral = function(source,pos) {\n\tvar node = {\n\t\ttype: \"string\",\n\t\tstart: pos\n\t};\n\tvar reString = /(?:\"\"\"([\\s\\S]*?)\"\"\"|\"([^\"]*)\")|(?:'([^']*)')/g;\n\treString.lastIndex = pos;\n\tvar match = reString.exec(source);\n\tif(match && match.index === pos) {\n\t\tnode.value = match[1] !== undefined ? match[1] :(\n\t\t\tmatch[2] !== undefined ? match[2] : match[3] \n\t\t\t\t\t);\n\t\tnode.end = pos + match[0].length;\n\t\treturn node;\n\t} else {\n\t\treturn null;\n\t}\n};\n\n/*\nLook for a macro invocation parameter. Returns null if not found, or {type: \"macro-parameter\", name:, value:, start:, end:}\n*/\nexports.parseMacroParameter = function(source,pos) {\n\tvar node = {\n\t\ttype: \"macro-parameter\",\n\t\tstart: pos\n\t};\n\t// Define our regexp\n\tvar reMacroParameter = /(?:([A-Za-z0-9\\-_]+)\\s*:)?(?:\\s*(?:\"\"\"([\\s\\S]*?)\"\"\"|\"([^\"]*)\"|'([^']*)'|\\[\\[([^\\]]*)\\]\\]|([^\\s>\"'=]+)))/g;\n\t// Skip whitespace\n\tpos = $tw.utils.skipWhiteSpace(source,pos);\n\t// Look for the parameter\n\tvar token = $tw.utils.parseTokenRegExp(source,pos,reMacroParameter);\n\tif(!token) {\n\t\treturn null;\n\t}\n\tpos = token.end;\n\t// Get the parameter details\n\tnode.value = token.match[2] !== undefined ? token.match[2] : (\n\t\t\t\t\ttoken.match[3] !== undefined ? token.match[3] : (\n\t\t\t\t\t\ttoken.match[4] !== undefined ? token.match[4] : (\n\t\t\t\t\t\t\ttoken.match[5] !== undefined ? token.match[5] : (\n\t\t\t\t\t\t\t\ttoken.match[6] !== undefined ? token.match[6] : (\n\t\t\t\t\t\t\t\t\t\"\"\n\t\t\t\t\t\t\t\t)\n\t\t\t\t\t\t\t)\n\t\t\t\t\t\t)\n\t\t\t\t\t)\n\t\t\t\t);\n\tif(token.match[1]) {\n\t\tnode.name = token.match[1];\n\t}\n\t// Update the end position\n\tnode.end = pos;\n\treturn node;\n};\n\n/*\nLook for a macro invocation. Returns null if not found, or {type: \"macrocall\", name:, parameters:, start:, end:}\n*/\nexports.parseMacroInvocation = function(source,pos) {\n\tvar node = {\n\t\ttype: \"macrocall\",\n\t\tstart: pos,\n\t\tparams: []\n\t};\n\t// Define our regexps\n\tvar reMacroName = /([^\\s>\"'=]+)/g;\n\t// Skip whitespace\n\tpos = $tw.utils.skipWhiteSpace(source,pos);\n\t// Look for a double less than sign\n\tvar token = $tw.utils.parseTokenString(source,pos,\"<<\");\n\tif(!token) {\n\t\treturn null;\n\t}\n\tpos = token.end;\n\t// Get the macro name\n\tvar name = $tw.utils.parseTokenRegExp(source,pos,reMacroName);\n\tif(!name) {\n\t\treturn null;\n\t}\n\tnode.name = name.match[1];\n\tpos = name.end;\n\t// Process parameters\n\tvar parameter = $tw.utils.parseMacroParameter(source,pos);\n\twhile(parameter) {\n\t\tnode.params.push(parameter);\n\t\tpos = parameter.end;\n\t\t// Get the next parameter\n\t\tparameter = $tw.utils.parseMacroParameter(source,pos);\n\t}\n\t// Skip whitespace\n\tpos = $tw.utils.skipWhiteSpace(source,pos);\n\t// Look for a double greater than sign\n\ttoken = $tw.utils.parseTokenString(source,pos,\">>\");\n\tif(!token) {\n\t\treturn null;\n\t}\n\tpos = token.end;\n\t// Update the end position\n\tnode.end = pos;\n\treturn node;\n};\n\n/*\nLook for an HTML attribute definition. Returns null if not found, otherwise returns {type: \"attribute\", name:, valueType: \"string|indirect|macro\", value:, start:, end:,}\n*/\nexports.parseAttribute = function(source,pos) {\n\tvar node = {\n\t\tstart: pos\n\t};\n\t// Define our regexps\n\tvar reAttributeName = /([^\\/\\s>\"'=]+)/g,\n\t\treUnquotedAttribute = /([^\\/\\s<>\"'=]+)/g,\n\t\treFilteredValue = /\\{\\{\\{(.+?)\\}\\}\\}/g,\n\t\treIndirectValue = /\\{\\{([^\\}]+)\\}\\}/g;\n\t// Skip whitespace\n\tpos = $tw.utils.skipWhiteSpace(source,pos);\n\t// Get the attribute name\n\tvar name = $tw.utils.parseTokenRegExp(source,pos,reAttributeName);\n\tif(!name) {\n\t\treturn null;\n\t}\n\tnode.name = name.match[1];\n\tpos = name.end;\n\t// Skip whitespace\n\tpos = $tw.utils.skipWhiteSpace(source,pos);\n\t// Look for an equals sign\n\tvar token = $tw.utils.parseTokenString(source,pos,\"=\");\n\tif(token) {\n\t\tpos = token.end;\n\t\t// Skip whitespace\n\t\tpos = $tw.utils.skipWhiteSpace(source,pos);\n\t\t// Look for a string literal\n\t\tvar stringLiteral = $tw.utils.parseStringLiteral(source,pos);\n\t\tif(stringLiteral) {\n\t\t\tpos = stringLiteral.end;\n\t\t\tnode.type = \"string\";\n\t\t\tnode.value = stringLiteral.value;\n\t\t} else {\n\t\t\t// Look for a filtered value\n\t\t\tvar filteredValue = $tw.utils.parseTokenRegExp(source,pos,reFilteredValue);\n\t\t\tif(filteredValue) {\n\t\t\t\tpos = filteredValue.end;\n\t\t\t\tnode.type = \"filtered\";\n\t\t\t\tnode.filter = filteredValue.match[1];\n\t\t\t} else {\n\t\t\t\t// Look for an indirect value\n\t\t\t\tvar indirectValue = $tw.utils.parseTokenRegExp(source,pos,reIndirectValue);\n\t\t\t\tif(indirectValue) {\n\t\t\t\t\tpos = indirectValue.end;\n\t\t\t\t\tnode.type = \"indirect\";\n\t\t\t\t\tnode.textReference = indirectValue.match[1];\n\t\t\t\t} else {\n\t\t\t\t\t// Look for a unquoted value\n\t\t\t\t\tvar unquotedValue = $tw.utils.parseTokenRegExp(source,pos,reUnquotedAttribute);\n\t\t\t\t\tif(unquotedValue) {\n\t\t\t\t\t\tpos = unquotedValue.end;\n\t\t\t\t\t\tnode.type = \"string\";\n\t\t\t\t\t\tnode.value = unquotedValue.match[1];\n\t\t\t\t\t} else {\n\t\t\t\t\t\t// Look for a macro invocation value\n\t\t\t\t\t\tvar macroInvocation = $tw.utils.parseMacroInvocation(source,pos);\n\t\t\t\t\t\tif(macroInvocation) {\n\t\t\t\t\t\t\tpos = macroInvocation.end;\n\t\t\t\t\t\t\tnode.type = \"macro\";\n\t\t\t\t\t\t\tnode.value = macroInvocation;\n\t\t\t\t\t\t} else {\n\t\t\t\t\t\t\tnode.type = \"string\";\n\t\t\t\t\t\t\tnode.value = \"true\";\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t} else {\n\t\tnode.type = \"string\";\n\t\tnode.value = \"true\";\n\t}\n\t// Update the end position\n\tnode.end = pos;\n\treturn node;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "utils"
},
"$:/core/modules/parsers/pdfparser.js": {
"title": "$:/core/modules/parsers/pdfparser.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/pdfparser.js\ntype: application/javascript\nmodule-type: parser\n\nThe PDF parser embeds a PDF viewer\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar ImageParser = function(type,text,options) {\n\tvar element = {\n\t\t\ttype: \"element\",\n\t\t\ttag: \"embed\",\n\t\t\tattributes: {}\n\t\t},\n\t\tsrc;\n\tif(options._canonical_uri) {\n\t\telement.attributes.src = {type: \"string\", value: options._canonical_uri};\n\t} else if(text) {\n\t\telement.attributes.src = {type: \"string\", value: \"data:application/pdf;base64,\" + text};\n\t}\n\tthis.tree = [element];\n};\n\nexports[\"application/pdf\"] = ImageParser;\n\n})();\n\n",
"type": "application/javascript",
"module-type": "parser"
},
"$:/core/modules/parsers/textparser.js": {
"title": "$:/core/modules/parsers/textparser.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/textparser.js\ntype: application/javascript\nmodule-type: parser\n\nThe plain text parser processes blocks of source text into a degenerate parse tree consisting of a single text node\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar TextParser = function(type,text,options) {\n\tthis.tree = [{\n\t\ttype: \"codeblock\",\n\t\tattributes: {\n\t\t\tcode: {type: \"string\", value: text},\n\t\t\tlanguage: {type: \"string\", value: type}\n\t\t}\n\t}];\n};\n\nexports[\"text/plain\"] = TextParser;\nexports[\"text/x-tiddlywiki\"] = TextParser;\nexports[\"application/javascript\"] = TextParser;\nexports[\"application/json\"] = TextParser;\nexports[\"text/css\"] = TextParser;\nexports[\"application/x-tiddler-dictionary\"] = TextParser;\n\n})();\n\n",
"type": "application/javascript",
"module-type": "parser"
},
"$:/core/modules/parsers/videoparser.js": {
"title": "$:/core/modules/parsers/videoparser.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/videoparser.js\ntype: application/javascript\nmodule-type: parser\n\nThe video parser parses a video tiddler into an embeddable HTML element\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar VideoParser = function(type,text,options) {\n\tvar element = {\n\t\t\ttype: \"element\",\n\t\t\ttag: \"video\",\n\t\t\tattributes: {\n\t\t\t\tcontrols: {type: \"string\", value: \"controls\"},\n\t\t\t\tstyle: {type: \"string\", value: \"width: 100%; object-fit: contain\"}\n\t\t\t}\n\t\t},\n\t\tsrc;\n\tif(options._canonical_uri) {\n\t\telement.attributes.src = {type: \"string\", value: options._canonical_uri};\n\t} else if(text) {\n\t\telement.attributes.src = {type: \"string\", value: \"data:\" + type + \";base64,\" + text};\n\t}\n\tthis.tree = [element];\n};\n\nexports[\"video/ogg\"] = VideoParser;\nexports[\"video/webm\"] = VideoParser;\nexports[\"video/mp4\"] = VideoParser;\nexports[\"video/quicktime\"] = VideoParser;\n\n})();\n",
"type": "application/javascript",
"module-type": "parser"
},
"$:/core/modules/parsers/wikiparser/rules/codeblock.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/codeblock.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/codeblock.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki text rule for code blocks. For example:\n\n```\n\t```\n\tThis text will not be //wikified//\n\t```\n```\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"codeblock\";\nexports.types = {block: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n\t// Regexp to match and get language if defined\n\tthis.matchRegExp = /```([\\w-]*)\\r?\\n/mg;\n};\n\nexports.parse = function() {\n\tvar reEnd = /(\\r?\\n```$)/mg;\n\t// Move past the match\n\tthis.parser.pos = this.matchRegExp.lastIndex;\n\n\t// Look for the end of the block\n\treEnd.lastIndex = this.parser.pos;\n\tvar match = reEnd.exec(this.parser.source),\n\t\ttext;\n\t// Process the block\n\tif(match) {\n\t\ttext = this.parser.source.substring(this.parser.pos,match.index);\n\t\tthis.parser.pos = match.index + match[0].length;\n\t} else {\n\t\ttext = this.parser.source.substr(this.parser.pos);\n\t\tthis.parser.pos = this.parser.sourceLength;\n\t}\n\t// Return the $codeblock widget\n\treturn [{\n\t\t\ttype: \"codeblock\",\n\t\t\tattributes: {\n\t\t\t\t\tcode: {type: \"string\", value: text},\n\t\t\t\t\tlanguage: {type: \"string\", value: this.match[1]}\n\t\t\t}\n\t}];\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/codeinline.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/codeinline.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/codeinline.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki text inline rule for code runs. For example:\n\n```\n\tThis is a `code run`.\n\tThis is another ``code run``\n```\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"codeinline\";\nexports.types = {inline: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n\t// Regexp to match\n\tthis.matchRegExp = /(``?)/mg;\n};\n\nexports.parse = function() {\n\t// Move past the match\n\tthis.parser.pos = this.matchRegExp.lastIndex;\n\tvar reEnd = new RegExp(this.match[1], \"mg\");\n\t// Look for the end marker\n\treEnd.lastIndex = this.parser.pos;\n\tvar match = reEnd.exec(this.parser.source),\n\t\ttext;\n\t// Process the text\n\tif(match) {\n\t\ttext = this.parser.source.substring(this.parser.pos,match.index);\n\t\tthis.parser.pos = match.index + match[0].length;\n\t} else {\n\t\ttext = this.parser.source.substr(this.parser.pos);\n\t\tthis.parser.pos = this.parser.sourceLength;\n\t}\n\treturn [{\n\t\ttype: \"element\",\n\t\ttag: \"code\",\n\t\tchildren: [{\n\t\t\ttype: \"text\",\n\t\t\ttext: text\n\t\t}]\n\t}];\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/commentblock.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/commentblock.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/commentblock.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki text block rule for HTML comments. For example:\n\n```\n<!-- This is a comment -->\n```\n\nNote that the syntax for comments is simplified to an opening \"<!--\" sequence and a closing \"-->\" sequence -- HTML itself implements a more complex format (see http://ostermiller.org/findhtmlcomment.html)\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"commentblock\";\nexports.types = {block: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n\tthis.matchRegExp = /<!--/mg;\n\tthis.endMatchRegExp = /-->/mg;\n};\n\nexports.findNextMatch = function(startPos) {\n\tthis.matchRegExp.lastIndex = startPos;\n\tthis.match = this.matchRegExp.exec(this.parser.source);\n\tif(this.match) {\n\t\tthis.endMatchRegExp.lastIndex = startPos + this.match[0].length;\n\t\tthis.endMatch = this.endMatchRegExp.exec(this.parser.source);\n\t\tif(this.endMatch) {\n\t\t\treturn this.match.index;\n\t\t}\n\t}\n\treturn undefined;\n};\n\nexports.parse = function() {\n\t// Move past the match\n\tthis.parser.pos = this.endMatchRegExp.lastIndex;\n\t// Don't return any elements\n\treturn [];\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/commentinline.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/commentinline.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/commentinline.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki text inline rule for HTML comments. For example:\n\n```\n<!-- This is a comment -->\n```\n\nNote that the syntax for comments is simplified to an opening \"<!--\" sequence and a closing \"-->\" sequence -- HTML itself implements a more complex format (see http://ostermiller.org/findhtmlcomment.html)\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"commentinline\";\nexports.types = {inline: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n\tthis.matchRegExp = /<!--/mg;\n\tthis.endMatchRegExp = /-->/mg;\n};\n\nexports.findNextMatch = function(startPos) {\n\tthis.matchRegExp.lastIndex = startPos;\n\tthis.match = this.matchRegExp.exec(this.parser.source);\n\tif(this.match) {\n\t\tthis.endMatchRegExp.lastIndex = startPos + this.match[0].length;\n\t\tthis.endMatch = this.endMatchRegExp.exec(this.parser.source);\n\t\tif(this.endMatch) {\n\t\t\treturn this.match.index;\n\t\t}\n\t}\n\treturn undefined;\n};\n\nexports.parse = function() {\n\t// Move past the match\n\tthis.parser.pos = this.endMatchRegExp.lastIndex;\n\t// Don't return any elements\n\treturn [];\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/dash.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/dash.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/dash.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki text inline rule for dashes. For example:\n\n```\nThis is an en-dash: --\n\nThis is an em-dash: ---\n```\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"dash\";\nexports.types = {inline: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n\t// Regexp to match\n\tthis.matchRegExp = /-{2,3}(?!-)/mg;\n};\n\nexports.parse = function() {\n\t// Move past the match\n\tthis.parser.pos = this.matchRegExp.lastIndex;\n\tvar dash = this.match[0].length === 2 ? \"–\" : \"—\";\n\treturn [{\n\t\ttype: \"entity\",\n\t\tentity: dash\n\t}];\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/emphasis/bold.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/emphasis/bold.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/emphasis/bold.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki text inline rule for emphasis - bold. For example:\n\n```\n\tThis is ''bold'' text\n```\n\nThis wikiparser can be modified using the rules eg:\n\n```\n\\rules except bold \n\\rules only bold \n```\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"bold\";\nexports.types = {inline: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n\t// Regexp to match\n\tthis.matchRegExp = /''/mg;\n};\n\nexports.parse = function() {\n\t// Move past the match\n\tthis.parser.pos = this.matchRegExp.lastIndex;\n\n\t// Parse the run including the terminator\n\tvar tree = this.parser.parseInlineRun(/''/mg,{eatTerminator: true});\n\n\t// Return the classed span\n\treturn [{\n\t\ttype: \"element\",\n\t\ttag: \"strong\",\n\t\tchildren: tree\n\t}];\n};\n\n})();",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/emphasis/italic.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/emphasis/italic.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/emphasis/italic.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki text inline rule for emphasis - italic. For example:\n\n```\n\tThis is //italic// text\n```\n\nThis wikiparser can be modified using the rules eg:\n\n```\n\\rules except italic\n\\rules only italic\n```\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"italic\";\nexports.types = {inline: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n\t// Regexp to match\n\tthis.matchRegExp = /\\/\\//mg;\n};\n\nexports.parse = function() {\n\t// Move past the match\n\tthis.parser.pos = this.matchRegExp.lastIndex;\n\n\t// Parse the run including the terminator\n\tvar tree = this.parser.parseInlineRun(/\\/\\//mg,{eatTerminator: true});\n\n\t// Return the classed span\n\treturn [{\n\t\ttype: \"element\",\n\t\ttag: \"em\",\n\t\tchildren: tree\n\t}];\n};\n\n})();",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/emphasis/strikethrough.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/emphasis/strikethrough.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/emphasis/strikethrough.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki text inline rule for emphasis - strikethrough. For example:\n\n```\n\tThis is ~~strikethrough~~ text\n```\n\nThis wikiparser can be modified using the rules eg:\n\n```\n\\rules except strikethrough \n\\rules only strikethrough \n```\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"strikethrough\";\nexports.types = {inline: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n\t// Regexp to match\n\tthis.matchRegExp = /~~/mg;\n};\n\nexports.parse = function() {\n\t// Move past the match\n\tthis.parser.pos = this.matchRegExp.lastIndex;\n\n\t// Parse the run including the terminator\n\tvar tree = this.parser.parseInlineRun(/~~/mg,{eatTerminator: true});\n\n\t// Return the classed span\n\treturn [{\n\t\ttype: \"element\",\n\t\ttag: \"strike\",\n\t\tchildren: tree\n\t}];\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/emphasis/subscript.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/emphasis/subscript.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/emphasis/subscript.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki text inline rule for emphasis - subscript. For example:\n\n```\n\tThis is ,,subscript,, text\n```\n\nThis wikiparser can be modified using the rules eg:\n\n```\n\\rules except subscript \n\\rules only subscript \n```\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"subscript\";\nexports.types = {inline: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n\t// Regexp to match\n\tthis.matchRegExp = /,,/mg;\n};\n\nexports.parse = function() {\n\t// Move past the match\n\tthis.parser.pos = this.matchRegExp.lastIndex;\n\n\t// Parse the run including the terminator\n\tvar tree = this.parser.parseInlineRun(/,,/mg,{eatTerminator: true});\n\n\t// Return the classed span\n\treturn [{\n\t\ttype: \"element\",\n\t\ttag: \"sub\",\n\t\tchildren: tree\n\t}];\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/emphasis/superscript.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/emphasis/superscript.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/emphasis/superscript.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki text inline rule for emphasis - superscript. For example:\n\n```\n\tThis is ^^superscript^^ text\n```\n\nThis wikiparser can be modified using the rules eg:\n\n```\n\\rules except superscript \n\\rules only superscript \n```\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"superscript\";\nexports.types = {inline: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n\t// Regexp to match\n\tthis.matchRegExp = /\\^\\^/mg;\n};\n\nexports.parse = function() {\n\t// Move past the match\n\tthis.parser.pos = this.matchRegExp.lastIndex;\n\n\t// Parse the run including the terminator\n\tvar tree = this.parser.parseInlineRun(/\\^\\^/mg,{eatTerminator: true});\n\n\t// Return the classed span\n\treturn [{\n\t\ttype: \"element\",\n\t\ttag: \"sup\",\n\t\tchildren: tree\n\t}];\n};\n\n})();",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/emphasis/underscore.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/emphasis/underscore.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/emphasis/underscore.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki text inline rule for emphasis - underscore. For example:\n\n```\n\tThis is __underscore__ text\n```\n\nThis wikiparser can be modified using the rules eg:\n\n```\n\\rules except underscore \n\\rules only underscore\n```\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"underscore\";\nexports.types = {inline: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n\t// Regexp to match\n\tthis.matchRegExp = /__/mg;\n};\n\nexports.parse = function() {\n\t// Move past the match\n\tthis.parser.pos = this.matchRegExp.lastIndex;\n\n\t// Parse the run including the terminator\n\tvar tree = this.parser.parseInlineRun(/__/mg,{eatTerminator: true});\n\n\t// Return the classed span\n\treturn [{\n\t\ttype: \"element\",\n\t\ttag: \"u\",\n\t\tchildren: tree\n\t}];\n};\n\n})();",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/entity.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/entity.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/entity.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki text inline rule for HTML entities. For example:\n\n```\n\tThis is a copyright symbol: ©\n```\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"entity\";\nexports.types = {inline: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n\t// Regexp to match\n\tthis.matchRegExp = /(&#?[a-zA-Z0-9]{2,8};)/mg;\n};\n\n/*\nParse the most recent match\n*/\nexports.parse = function() {\n\t// Get all the details of the match\n\tvar entityString = this.match[1];\n\t// Move past the macro call\n\tthis.parser.pos = this.matchRegExp.lastIndex;\n\t// Return the entity\n\treturn [{type: \"entity\", entity: this.match[0]}];\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/extlink.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/extlink.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/extlink.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki text inline rule for external links. For example:\n\n```\nAn external link: https://www.tiddlywiki.com/\n\nA suppressed external link: ~http://www.tiddlyspace.com/\n```\n\nExternal links can be suppressed by preceding them with `~`.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"extlink\";\nexports.types = {inline: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n\t// Regexp to match\n\tthis.matchRegExp = /~?(?:file|http|https|mailto|ftp|irc|news|data|skype):[^\\s<>{}\\[\\]`|\"\\\\^]+(?:\\/|\\b)/mg;\n};\n\nexports.parse = function() {\n\t// Move past the match\n\tthis.parser.pos = this.matchRegExp.lastIndex;\n\t// Create the link unless it is suppressed\n\tif(this.match[0].substr(0,1) === \"~\") {\n\t\treturn [{type: \"text\", text: this.match[0].substr(1)}];\n\t} else {\n\t\treturn [{\n\t\t\ttype: \"element\",\n\t\t\ttag: \"a\",\n\t\t\tattributes: {\n\t\t\t\thref: {type: \"string\", value: this.match[0]},\n\t\t\t\t\"class\": {type: \"string\", value: \"tc-tiddlylink-external\"},\n\t\t\t\ttarget: {type: \"string\", value: \"_blank\"},\n\t\t\t\trel: {type: \"string\", value: \"noopener noreferrer\"}\n\t\t\t},\n\t\t\tchildren: [{\n\t\t\t\ttype: \"text\", text: this.match[0]\n\t\t\t}]\n\t\t}];\n\t}\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/filteredtranscludeblock.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/filteredtranscludeblock.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/filteredtranscludeblock.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki text rule for block-level filtered transclusion. For example:\n\n```\n{{{ [tag[docs]] }}}\n{{{ [tag[docs]] |tooltip}}}\n{{{ [tag[docs]] ||TemplateTitle}}}\n{{{ [tag[docs]] |tooltip||TemplateTitle}}}\n{{{ [tag[docs]] }}width:40;height:50;}.class.class\n```\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"filteredtranscludeblock\";\nexports.types = {block: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n\t// Regexp to match\n\tthis.matchRegExp = /\\{\\{\\{([^\\|]+?)(?:\\|([^\\|\\{\\}]+))?(?:\\|\\|([^\\|\\{\\}]+))?\\}\\}([^\\}]*)\\}(?:\\.(\\S+))?(?:\\r?\\n|$)/mg;\n};\n\nexports.parse = function() {\n\t// Move past the match\n\tthis.parser.pos = this.matchRegExp.lastIndex;\n\t// Get the match details\n\tvar filter = this.match[1],\n\t\ttooltip = this.match[2],\n\t\ttemplate = $tw.utils.trim(this.match[3]),\n\t\tstyle = this.match[4],\n\t\tclasses = this.match[5];\n\t// Return the list widget\n\tvar node = {\n\t\ttype: \"list\",\n\t\tattributes: {\n\t\t\tfilter: {type: \"string\", value: filter}\n\t\t},\n\t\tisBlock: true\n\t};\n\tif(tooltip) {\n\t\tnode.attributes.tooltip = {type: \"string\", value: tooltip};\n\t}\n\tif(template) {\n\t\tnode.attributes.template = {type: \"string\", value: template};\n\t}\n\tif(style) {\n\t\tnode.attributes.style = {type: \"string\", value: style};\n\t}\n\tif(classes) {\n\t\tnode.attributes.itemClass = {type: \"string\", value: classes.split(\".\").join(\" \")};\n\t}\n\treturn [node];\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/filteredtranscludeinline.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/filteredtranscludeinline.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/filteredtranscludeinline.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki text rule for inline filtered transclusion. For example:\n\n```\n{{{ [tag[docs]] }}}\n{{{ [tag[docs]] |tooltip}}}\n{{{ [tag[docs]] ||TemplateTitle}}}\n{{{ [tag[docs]] |tooltip||TemplateTitle}}}\n{{{ [tag[docs]] }}width:40;height:50;}.class.class\n```\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"filteredtranscludeinline\";\nexports.types = {inline: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n\t// Regexp to match\n\tthis.matchRegExp = /\\{\\{\\{([^\\|]+?)(?:\\|([^\\|\\{\\}]+))?(?:\\|\\|([^\\|\\{\\}]+))?\\}\\}([^\\}]*)\\}(?:\\.(\\S+))?/mg;\n};\n\nexports.parse = function() {\n\t// Move past the match\n\tthis.parser.pos = this.matchRegExp.lastIndex;\n\t// Get the match details\n\tvar filter = this.match[1],\n\t\ttooltip = this.match[2],\n\t\ttemplate = $tw.utils.trim(this.match[3]),\n\t\tstyle = this.match[4],\n\t\tclasses = this.match[5];\n\t// Return the list widget\n\tvar node = {\n\t\ttype: \"list\",\n\t\tattributes: {\n\t\t\tfilter: {type: \"string\", value: filter}\n\t\t}\n\t};\n\tif(tooltip) {\n\t\tnode.attributes.tooltip = {type: \"string\", value: tooltip};\n\t}\n\tif(template) {\n\t\tnode.attributes.template = {type: \"string\", value: template};\n\t}\n\tif(style) {\n\t\tnode.attributes.style = {type: \"string\", value: style};\n\t}\n\tif(classes) {\n\t\tnode.attributes.itemClass = {type: \"string\", value: classes.split(\".\").join(\" \")};\n\t}\n\treturn [node];\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/hardlinebreaks.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/hardlinebreaks.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/hardlinebreaks.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki text inline rule for marking areas with hard line breaks. For example:\n\n```\n\"\"\"\nThis is some text\nThat is set like\nIt is a Poem\nWhen it is\nClearly\nNot\n\"\"\"\n```\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"hardlinebreaks\";\nexports.types = {inline: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n\t// Regexp to match\n\tthis.matchRegExp = /\"\"\"(?:\\r?\\n)?/mg;\n};\n\nexports.parse = function() {\n\tvar reEnd = /(\"\"\")|(\\r?\\n)/mg,\n\t\ttree = [],\n\t\tmatch;\n\t// Move past the match\n\tthis.parser.pos = this.matchRegExp.lastIndex;\n\tdo {\n\t\t// Parse the run up to the terminator\n\t\ttree.push.apply(tree,this.parser.parseInlineRun(reEnd,{eatTerminator: false}));\n\t\t// Redo the terminator match\n\t\treEnd.lastIndex = this.parser.pos;\n\t\tmatch = reEnd.exec(this.parser.source);\n\t\tif(match) {\n\t\t\tthis.parser.pos = reEnd.lastIndex;\n\t\t\t// Add a line break if the terminator was a line break\n\t\t\tif(match[2]) {\n\t\t\t\ttree.push({type: \"element\", tag: \"br\"});\n\t\t\t}\n\t\t}\n\t} while(match && !match[1]);\n\t// Return the nodes\n\treturn tree;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/heading.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/heading.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/heading.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki text block rule for headings\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"heading\";\nexports.types = {block: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n\t// Regexp to match\n\tthis.matchRegExp = /(!{1,6})/mg;\n};\n\n/*\nParse the most recent match\n*/\nexports.parse = function() {\n\t// Get all the details of the match\n\tvar headingLevel = this.match[1].length;\n\t// Move past the !s\n\tthis.parser.pos = this.matchRegExp.lastIndex;\n\t// Parse any classes, whitespace and then the heading itself\n\tvar classes = this.parser.parseClasses();\n\tthis.parser.skipWhitespace({treatNewlinesAsNonWhitespace: true});\n\tvar tree = this.parser.parseInlineRun(/(\\r?\\n)/mg);\n\t// Return the heading\n\treturn [{\n\t\ttype: \"element\",\n\t\ttag: \"h\" + headingLevel, \n\t\tattributes: {\n\t\t\t\"class\": {type: \"string\", value: classes.join(\" \")}\n\t\t},\n\t\tchildren: tree\n\t}];\n};\n})();\n",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/horizrule.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/horizrule.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/horizrule.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki text block rule for rules. For example:\n\n```\n---\n```\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"horizrule\";\nexports.types = {block: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n\t// Regexp to match\n\tthis.matchRegExp = /-{3,}\\r?(?:\\n|$)/mg;\n};\n\nexports.parse = function() {\n\t// Move past the match\n\tthis.parser.pos = this.matchRegExp.lastIndex;\n\treturn [{type: \"element\", tag: \"hr\"}];\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/html.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/html.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/html.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki rule for HTML elements and widgets. For example:\n\n{{{\n<aside>\nThis is an HTML5 aside element\n</aside>\n\n<$slider target=\"MyTiddler\">\nThis is a widget invocation\n</$slider>\n\n}}}\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"html\";\nexports.types = {inline: true, block: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n};\n\nexports.findNextMatch = function(startPos) {\n\t// Find the next tag\n\tthis.nextTag = this.findNextTag(this.parser.source,startPos,{\n\t\trequireLineBreak: this.is.block\n\t});\n\treturn this.nextTag ? this.nextTag.start : undefined;\n};\n\n/*\nParse the most recent match\n*/\nexports.parse = function() {\n\t// Retrieve the most recent match so that recursive calls don't overwrite it\n\tvar tag = this.nextTag;\n\tthis.nextTag = null;\n\t// Advance the parser position to past the tag\n\tthis.parser.pos = tag.end;\n\t// Check for an immediately following double linebreak\n\tvar hasLineBreak = !tag.isSelfClosing && !!$tw.utils.parseTokenRegExp(this.parser.source,this.parser.pos,/([^\\S\\n\\r]*\\r?\\n(?:[^\\S\\n\\r]*\\r?\\n|$))/g);\n\t// Set whether we're in block mode\n\ttag.isBlock = this.is.block || hasLineBreak;\n\t// Parse the body if we need to\n\tif(!tag.isSelfClosing && $tw.config.htmlVoidElements.indexOf(tag.tag) === -1) {\n\t\t\tvar reEndString = \"</\" + $tw.utils.escapeRegExp(tag.tag) + \">\",\n\t\t\t\treEnd = new RegExp(\"(\" + reEndString + \")\",\"mg\");\n\t\tif(hasLineBreak) {\n\t\t\ttag.children = this.parser.parseBlocks(reEndString);\n\t\t} else {\n\t\t\ttag.children = this.parser.parseInlineRun(reEnd);\n\t\t}\n\t\treEnd.lastIndex = this.parser.pos;\n\t\tvar endMatch = reEnd.exec(this.parser.source);\n\t\tif(endMatch && endMatch.index === this.parser.pos) {\n\t\t\tthis.parser.pos = endMatch.index + endMatch[0].length;\n\t\t}\n\t}\n\t// Return the tag\n\treturn [tag];\n};\n\n/*\nLook for an HTML tag. Returns null if not found, otherwise returns {type: \"element\", name:, attributes: [], isSelfClosing:, start:, end:,}\n*/\nexports.parseTag = function(source,pos,options) {\n\toptions = options || {};\n\tvar token,\n\t\tnode = {\n\t\t\ttype: \"element\",\n\t\t\tstart: pos,\n\t\t\tattributes: {}\n\t\t};\n\t// Define our regexps\n\tvar reTagName = /([a-zA-Z0-9\\-\\$]+)/g;\n\t// Skip whitespace\n\tpos = $tw.utils.skipWhiteSpace(source,pos);\n\t// Look for a less than sign\n\ttoken = $tw.utils.parseTokenString(source,pos,\"<\");\n\tif(!token) {\n\t\treturn null;\n\t}\n\tpos = token.end;\n\t// Get the tag name\n\ttoken = $tw.utils.parseTokenRegExp(source,pos,reTagName);\n\tif(!token) {\n\t\treturn null;\n\t}\n\tnode.tag = token.match[1];\n\tif(node.tag.slice(1).indexOf(\"$\") !== -1) {\n\t\treturn null;\n\t}\n\tif(node.tag.charAt(0) === \"$\") {\n\t\tnode.type = node.tag.substr(1);\n\t}\n\tpos = token.end;\n\t// Check that the tag is terminated by a space, / or >\n\tif(!$tw.utils.parseWhiteSpace(source,pos) && !(source.charAt(pos) === \"/\") && !(source.charAt(pos) === \">\") ) {\n\t\treturn null;\n\t}\n\t// Process attributes\n\tvar attribute = $tw.utils.parseAttribute(source,pos);\n\twhile(attribute) {\n\t\tnode.attributes[attribute.name] = attribute;\n\t\tpos = attribute.end;\n\t\t// Get the next attribute\n\t\tattribute = $tw.utils.parseAttribute(source,pos);\n\t}\n\t// Skip whitespace\n\tpos = $tw.utils.skipWhiteSpace(source,pos);\n\t// Look for a closing slash\n\ttoken = $tw.utils.parseTokenString(source,pos,\"/\");\n\tif(token) {\n\t\tpos = token.end;\n\t\tnode.isSelfClosing = true;\n\t}\n\t// Look for a greater than sign\n\ttoken = $tw.utils.parseTokenString(source,pos,\">\");\n\tif(!token) {\n\t\treturn null;\n\t}\n\tpos = token.end;\n\t// Check for a required line break\n\tif(options.requireLineBreak) {\n\t\ttoken = $tw.utils.parseTokenRegExp(source,pos,/([^\\S\\n\\r]*\\r?\\n(?:[^\\S\\n\\r]*\\r?\\n|$))/g);\n\t\tif(!token) {\n\t\t\treturn null;\n\t\t}\n\t}\n\t// Update the end position\n\tnode.end = pos;\n\treturn node;\n};\n\nexports.findNextTag = function(source,pos,options) {\n\t// A regexp for finding candidate HTML tags\n\tvar reLookahead = /<([a-zA-Z\\-\\$]+)/g;\n\t// Find the next candidate\n\treLookahead.lastIndex = pos;\n\tvar match = reLookahead.exec(source);\n\twhile(match) {\n\t\t// Try to parse the candidate as a tag\n\t\tvar tag = this.parseTag(source,match.index,options);\n\t\t// Return success\n\t\tif(tag && this.isLegalTag(tag)) {\n\t\t\treturn tag;\n\t\t}\n\t\t// Look for the next match\n\t\treLookahead.lastIndex = match.index + 1;\n\t\tmatch = reLookahead.exec(source);\n\t}\n\t// Failed\n\treturn null;\n};\n\nexports.isLegalTag = function(tag) {\n\t// Widgets are always OK\n\tif(tag.type !== \"element\") {\n\t\treturn true;\n\t// If it's an HTML tag that starts with a dash then it's not legal\n\t} else if(tag.tag.charAt(0) === \"-\") {\n\t\treturn false;\n\t} else {\n\t\t// Otherwise it's OK\n\t\treturn true;\n\t}\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/image.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/image.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/image.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki text inline rule for embedding images. For example:\n\n```\n[img[https://tiddlywiki.com/fractalveg.jpg]]\n[img width=23 height=24 [https://tiddlywiki.com/fractalveg.jpg]]\n[img width={{!!width}} height={{!!height}} [https://tiddlywiki.com/fractalveg.jpg]]\n[img[Description of image|https://tiddlywiki.com/fractalveg.jpg]]\n[img[TiddlerTitle]]\n[img[Description of image|TiddlerTitle]]\n```\n\nGenerates the `<$image>` widget.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"image\";\nexports.types = {inline: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n};\n\nexports.findNextMatch = function(startPos) {\n\t// Find the next tag\n\tthis.nextImage = this.findNextImage(this.parser.source,startPos);\n\treturn this.nextImage ? this.nextImage.start : undefined;\n};\n\nexports.parse = function() {\n\t// Move past the match\n\tthis.parser.pos = this.nextImage.end;\n\tvar node = {\n\t\ttype: \"image\",\n\t\tattributes: this.nextImage.attributes\n\t};\n\treturn [node];\n};\n\n/*\nFind the next image from the current position\n*/\nexports.findNextImage = function(source,pos) {\n\t// A regexp for finding candidate HTML tags\n\tvar reLookahead = /(\\[img)/g;\n\t// Find the next candidate\n\treLookahead.lastIndex = pos;\n\tvar match = reLookahead.exec(source);\n\twhile(match) {\n\t\t// Try to parse the candidate as a tag\n\t\tvar tag = this.parseImage(source,match.index);\n\t\t// Return success\n\t\tif(tag) {\n\t\t\treturn tag;\n\t\t}\n\t\t// Look for the next match\n\t\treLookahead.lastIndex = match.index + 1;\n\t\tmatch = reLookahead.exec(source);\n\t}\n\t// Failed\n\treturn null;\n};\n\n/*\nLook for an image at the specified position. Returns null if not found, otherwise returns {type: \"image\", attributes: [], isSelfClosing:, start:, end:,}\n*/\nexports.parseImage = function(source,pos) {\n\tvar token,\n\t\tnode = {\n\t\t\ttype: \"image\",\n\t\t\tstart: pos,\n\t\t\tattributes: {}\n\t\t};\n\t// Skip whitespace\n\tpos = $tw.utils.skipWhiteSpace(source,pos);\n\t// Look for the `[img`\n\ttoken = $tw.utils.parseTokenString(source,pos,\"[img\");\n\tif(!token) {\n\t\treturn null;\n\t}\n\tpos = token.end;\n\t// Skip whitespace\n\tpos = $tw.utils.skipWhiteSpace(source,pos);\n\t// Process attributes\n\tif(source.charAt(pos) !== \"[\") {\n\t\tvar attribute = $tw.utils.parseAttribute(source,pos);\n\t\twhile(attribute) {\n\t\t\tnode.attributes[attribute.name] = attribute;\n\t\t\tpos = attribute.end;\n\t\t\tpos = $tw.utils.skipWhiteSpace(source,pos);\n\t\t\tif(source.charAt(pos) !== \"[\") {\n\t\t\t\t// Get the next attribute\n\t\t\t\tattribute = $tw.utils.parseAttribute(source,pos);\n\t\t\t} else {\n\t\t\t\tattribute = null;\n\t\t\t}\n\t\t}\n\t}\n\t// Skip whitespace\n\tpos = $tw.utils.skipWhiteSpace(source,pos);\n\t// Look for the `[` after the attributes\n\ttoken = $tw.utils.parseTokenString(source,pos,\"[\");\n\tif(!token) {\n\t\treturn null;\n\t}\n\tpos = token.end;\n\t// Skip whitespace\n\tpos = $tw.utils.skipWhiteSpace(source,pos);\n\t// Get the source up to the terminating `]]`\n\ttoken = $tw.utils.parseTokenRegExp(source,pos,/(?:([^|\\]]*?)\\|)?([^\\]]+?)\\]\\]/g);\n\tif(!token) {\n\t\treturn null;\n\t}\n\tpos = token.end;\n\tif(token.match[1]) {\n\t\tnode.attributes.tooltip = {type: \"string\", value: token.match[1].trim()};\n\t}\n\tnode.attributes.source = {type: \"string\", value: (token.match[2] || \"\").trim()};\n\t// Update the end position\n\tnode.end = pos;\n\treturn node;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/import.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/import.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/import.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki pragma rule for importing variable definitions\n\n```\n\\import [[$:/core/ui/PageMacros]] [all[shadows+tiddlers]tag[$:/tags/Macro]!has[draft.of]]\n```\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"import\";\nexports.types = {pragma: true};\n\n/*\nInstantiate parse rule\n*/\nexports.init = function(parser) {\n\tthis.parser = parser;\n\t// Regexp to match\n\tthis.matchRegExp = /^\\\\import[^\\S\\n]/mg;\n};\n\n/*\nParse the most recent match\n*/\nexports.parse = function() {\n\tvar self = this;\n\t// Move past the pragma invocation\n\tthis.parser.pos = this.matchRegExp.lastIndex;\n\t// Parse the filter terminated by a line break\n\tvar reMatch = /(.*)(\\r?\\n)|$/mg;\n\treMatch.lastIndex = this.parser.pos;\n\tvar match = reMatch.exec(this.parser.source);\n\tthis.parser.pos = reMatch.lastIndex;\n\t// Parse tree nodes to return\n\treturn [{\n\t\ttype: \"importvariables\",\n\t\tattributes: {\n\t\t\tfilter: {type: \"string\", value: match[1]}\n\t\t},\n\t\tchildren: []\n\t}];\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/list.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/list.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/list.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki text block rule for lists. For example:\n\n```\n* This is an unordered list\n* It has two items\n\n# This is a numbered list\n## With a subitem\n# And a third item\n\n; This is a term that is being defined\n: This is the definition of that term\n```\n\nNote that lists can be nested arbitrarily:\n\n```\n#** One\n#* Two\n#** Three\n#**** Four\n#**# Five\n#**## Six\n## Seven\n### Eight\n## Nine\n```\n\nA CSS class can be applied to a list item as follows:\n\n```\n* List item one\n*.active List item two has the class `active`\n* List item three\n```\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"list\";\nexports.types = {block: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n\t// Regexp to match\n\tthis.matchRegExp = /([\\*#;:>]+)/mg;\n};\n\nvar listTypes = {\n\t\"*\": {listTag: \"ul\", itemTag: \"li\"},\n\t\"#\": {listTag: \"ol\", itemTag: \"li\"},\n\t\";\": {listTag: \"dl\", itemTag: \"dt\"},\n\t\":\": {listTag: \"dl\", itemTag: \"dd\"},\n\t\">\": {listTag: \"blockquote\", itemTag: \"div\"}\n};\n\n/*\nParse the most recent match\n*/\nexports.parse = function() {\n\t// Array of parse tree nodes for the previous row of the list\n\tvar listStack = [];\n\t// Cycle through the items in the list\n\twhile(true) {\n\t\t// Match the list marker\n\t\tvar reMatch = /([\\*#;:>]+)/mg;\n\t\treMatch.lastIndex = this.parser.pos;\n\t\tvar match = reMatch.exec(this.parser.source);\n\t\tif(!match || match.index !== this.parser.pos) {\n\t\t\tbreak;\n\t\t}\n\t\t// Check whether the list type of the top level matches\n\t\tvar listInfo = listTypes[match[0].charAt(0)];\n\t\tif(listStack.length > 0 && listStack[0].tag !== listInfo.listTag) {\n\t\t\tbreak;\n\t\t}\n\t\t// Move past the list marker\n\t\tthis.parser.pos = match.index + match[0].length;\n\t\t// Walk through the list markers for the current row\n\t\tfor(var t=0; t<match[0].length; t++) {\n\t\t\tlistInfo = listTypes[match[0].charAt(t)];\n\t\t\t// Remove any stacked up element if we can't re-use it because the list type doesn't match\n\t\t\tif(listStack.length > t && listStack[t].tag !== listInfo.listTag) {\n\t\t\t\tlistStack.splice(t,listStack.length - t);\n\t\t\t}\n\t\t\t// Construct the list element or reuse the previous one at this level\n\t\t\tif(listStack.length <= t) {\n\t\t\t\tvar listElement = {type: \"element\", tag: listInfo.listTag, children: [\n\t\t\t\t\t{type: \"element\", tag: listInfo.itemTag, children: []}\n\t\t\t\t]};\n\t\t\t\t// Link this list element into the last child item of the parent list item\n\t\t\t\tif(t) {\n\t\t\t\t\tvar prevListItem = listStack[t-1].children[listStack[t-1].children.length-1];\n\t\t\t\t\tprevListItem.children.push(listElement);\n\t\t\t\t}\n\t\t\t\t// Save this element in the stack\n\t\t\t\tlistStack[t] = listElement;\n\t\t\t} else if(t === (match[0].length - 1)) {\n\t\t\t\tlistStack[t].children.push({type: \"element\", tag: listInfo.itemTag, children: []});\n\t\t\t}\n\t\t}\n\t\tif(listStack.length > match[0].length) {\n\t\t\tlistStack.splice(match[0].length,listStack.length - match[0].length);\n\t\t}\n\t\t// Process the body of the list item into the last list item\n\t\tvar lastListChildren = listStack[listStack.length-1].children,\n\t\t\tlastListItem = lastListChildren[lastListChildren.length-1],\n\t\t\tclasses = this.parser.parseClasses();\n\t\tthis.parser.skipWhitespace({treatNewlinesAsNonWhitespace: true});\n\t\tvar tree = this.parser.parseInlineRun(/(\\r?\\n)/mg);\n\t\tlastListItem.children.push.apply(lastListItem.children,tree);\n\t\tif(classes.length > 0) {\n\t\t\t$tw.utils.addClassToParseTreeNode(lastListItem,classes.join(\" \"));\n\t\t}\n\t\t// Consume any whitespace following the list item\n\t\tthis.parser.skipWhitespace();\n\t}\n\t// Return the root element of the list\n\treturn [listStack[0]];\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/macrocallblock.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/macrocallblock.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/macrocallblock.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki rule for block macro calls\n\n```\n<<name value value2>>\n```\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"macrocallblock\";\nexports.types = {block: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n\t// Regexp to match\n\tthis.matchRegExp = /<<([^>\\s]+)(?:\\s*)((?:[^>]|(?:>(?!>)))*?)>>(?:\\r?\\n|$)/mg;\n};\n\n/*\nParse the most recent match\n*/\nexports.parse = function() {\n\t// Get all the details of the match\n\tvar macroName = this.match[1],\n\t\tparamString = this.match[2];\n\t// Move past the macro call\n\tthis.parser.pos = this.matchRegExp.lastIndex;\n\tvar params = [],\n\t\treParam = /\\s*(?:([A-Za-z0-9\\-_]+)\\s*:)?(?:\\s*(?:\"\"\"([\\s\\S]*?)\"\"\"|\"([^\"]*)\"|'([^']*)'|\\[\\[([^\\]]*)\\]\\]|([^\"'\\s]+)))/mg,\n\t\tparamMatch = reParam.exec(paramString);\n\twhile(paramMatch) {\n\t\t// Process this parameter\n\t\tvar paramInfo = {\n\t\t\tvalue: paramMatch[2] || paramMatch[3] || paramMatch[4] || paramMatch[5] || paramMatch[6]\n\t\t};\n\t\tif(paramMatch[1]) {\n\t\t\tparamInfo.name = paramMatch[1];\n\t\t}\n\t\tparams.push(paramInfo);\n\t\t// Find the next match\n\t\tparamMatch = reParam.exec(paramString);\n\t}\n\treturn [{\n\t\ttype: \"macrocall\",\n\t\tname: macroName,\n\t\tparams: params,\n\t\tisBlock: true\n\t}];\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/macrocallinline.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/macrocallinline.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/macrocallinline.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki rule for macro calls\n\n```\n<<name value value2>>\n```\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"macrocallinline\";\nexports.types = {inline: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n\t// Regexp to match\n\tthis.matchRegExp = /<<([^\\s>]+)\\s*([\\s\\S]*?)>>/mg;\n};\n\n/*\nParse the most recent match\n*/\nexports.parse = function() {\n\t// Get all the details of the match\n\tvar macroName = this.match[1],\n\t\tparamString = this.match[2];\n\t// Move past the macro call\n\tthis.parser.pos = this.matchRegExp.lastIndex;\n\tvar params = [],\n\t\treParam = /\\s*(?:([A-Za-z0-9\\-_]+)\\s*:)?(?:\\s*(?:\"\"\"([\\s\\S]*?)\"\"\"|\"([^\"]*)\"|'([^']*)'|\\[\\[([^\\]]*)\\]\\]|([^\"'\\s]+)))/mg,\n\t\tparamMatch = reParam.exec(paramString);\n\twhile(paramMatch) {\n\t\t// Process this parameter\n\t\tvar paramInfo = {\n\t\t\tvalue: paramMatch[2] || paramMatch[3] || paramMatch[4] || paramMatch[5]|| paramMatch[6]\n\t\t};\n\t\tif(paramMatch[1]) {\n\t\t\tparamInfo.name = paramMatch[1];\n\t\t}\n\t\tparams.push(paramInfo);\n\t\t// Find the next match\n\t\tparamMatch = reParam.exec(paramString);\n\t}\n\treturn [{\n\t\ttype: \"macrocall\",\n\t\tname: macroName,\n\t\tparams: params\n\t}];\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/macrodef.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/macrodef.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/macrodef.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki pragma rule for macro definitions\n\n```\n\\define name(param:defaultvalue,param2:defaultvalue)\ndefinition text, including $param$ markers\n\\end\n```\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"macrodef\";\nexports.types = {pragma: true};\n\n/*\nInstantiate parse rule\n*/\nexports.init = function(parser) {\n\tthis.parser = parser;\n\t// Regexp to match\n\tthis.matchRegExp = /^\\\\define\\s+([^(\\s]+)\\(\\s*([^)]*)\\)(\\s*\\r?\\n)?/mg;\n};\n\n/*\nParse the most recent match\n*/\nexports.parse = function() {\n\t// Move past the macro name and parameters\n\tthis.parser.pos = this.matchRegExp.lastIndex;\n\t// Parse the parameters\n\tvar paramString = this.match[2],\n\t\tparams = [];\n\tif(paramString !== \"\") {\n\t\tvar reParam = /\\s*([A-Za-z0-9\\-_]+)(?:\\s*:\\s*(?:\"\"\"([\\s\\S]*?)\"\"\"|\"([^\"]*)\"|'([^']*)'|\\[\\[([^\\]]*)\\]\\]|([^\"'\\s]+)))?/mg,\n\t\t\tparamMatch = reParam.exec(paramString);\n\t\twhile(paramMatch) {\n\t\t\t// Save the parameter details\n\t\t\tvar paramInfo = {name: paramMatch[1]},\n\t\t\t\tdefaultValue = paramMatch[2] || paramMatch[3] || paramMatch[4] || paramMatch[5] || paramMatch[6];\n\t\t\tif(defaultValue) {\n\t\t\t\tparamInfo[\"default\"] = defaultValue;\n\t\t\t}\n\t\t\tparams.push(paramInfo);\n\t\t\t// Look for the next parameter\n\t\t\tparamMatch = reParam.exec(paramString);\n\t\t}\n\t}\n\t// Is this a multiline definition?\n\tvar reEnd;\n\tif(this.match[3]) {\n\t\t// If so, the end of the body is marked with \\end\n\t\treEnd = /(\\r?\\n\\\\end[^\\S\\n\\r]*(?:$|\\r?\\n))/mg;\n\t} else {\n\t\t// Otherwise, the end of the definition is marked by the end of the line\n\t\treEnd = /($|\\r?\\n)/mg;\n\t\t// Move past any whitespace\n\t\tthis.parser.pos = $tw.utils.skipWhiteSpace(this.parser.source,this.parser.pos);\n\t}\n\t// Find the end of the definition\n\treEnd.lastIndex = this.parser.pos;\n\tvar text,\n\t\tendMatch = reEnd.exec(this.parser.source);\n\tif(endMatch) {\n\t\ttext = this.parser.source.substring(this.parser.pos,endMatch.index);\n\t\tthis.parser.pos = endMatch.index + endMatch[0].length;\n\t} else {\n\t\t// We didn't find the end of the definition, so we'll make it blank\n\t\ttext = \"\";\n\t}\n\t// Save the macro definition\n\treturn [{\n\t\ttype: \"set\",\n\t\tattributes: {\n\t\t\tname: {type: \"string\", value: this.match[1]},\n\t\t\tvalue: {type: \"string\", value: text}\n\t\t},\n\t\tchildren: [],\n\t\tparams: params,\n\t\tisMacroDefinition: true\n\t}];\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/prettyextlink.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/prettyextlink.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/prettyextlink.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki text inline rule for external links. For example:\n\n```\n[ext[https://tiddlywiki.com/fractalveg.jpg]]\n[ext[Tooltip|https://tiddlywiki.com/fractalveg.jpg]]\n```\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"prettyextlink\";\nexports.types = {inline: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n};\n\nexports.findNextMatch = function(startPos) {\n\t// Find the next tag\n\tthis.nextLink = this.findNextLink(this.parser.source,startPos);\n\treturn this.nextLink ? this.nextLink.start : undefined;\n};\n\nexports.parse = function() {\n\t// Move past the match\n\tthis.parser.pos = this.nextLink.end;\n\treturn [this.nextLink];\n};\n\n/*\nFind the next link from the current position\n*/\nexports.findNextLink = function(source,pos) {\n\t// A regexp for finding candidate links\n\tvar reLookahead = /(\\[ext\\[)/g;\n\t// Find the next candidate\n\treLookahead.lastIndex = pos;\n\tvar match = reLookahead.exec(source);\n\twhile(match) {\n\t\t// Try to parse the candidate as a link\n\t\tvar link = this.parseLink(source,match.index);\n\t\t// Return success\n\t\tif(link) {\n\t\t\treturn link;\n\t\t}\n\t\t// Look for the next match\n\t\treLookahead.lastIndex = match.index + 1;\n\t\tmatch = reLookahead.exec(source);\n\t}\n\t// Failed\n\treturn null;\n};\n\n/*\nLook for an link at the specified position. Returns null if not found, otherwise returns {type: \"element\", tag: \"a\", attributes: [], isSelfClosing:, start:, end:,}\n*/\nexports.parseLink = function(source,pos) {\n\tvar token,\n\t\ttextNode = {\n\t\t\ttype: \"text\"\n\t\t},\n\t\tnode = {\n\t\t\ttype: \"element\",\n\t\t\ttag: \"a\",\n\t\t\tstart: pos,\n\t\t\tattributes: {\n\t\t\t\t\"class\": {type: \"string\", value: \"tc-tiddlylink-external\"},\n\t\t\t},\n\t\t\tchildren: [textNode]\n\t\t};\n\t// Skip whitespace\n\tpos = $tw.utils.skipWhiteSpace(source,pos);\n\t// Look for the `[ext[`\n\ttoken = $tw.utils.parseTokenString(source,pos,\"[ext[\");\n\tif(!token) {\n\t\treturn null;\n\t}\n\tpos = token.end;\n\t// Look ahead for the terminating `]]`\n\tvar closePos = source.indexOf(\"]]\",pos);\n\tif(closePos === -1) {\n\t\treturn null;\n\t}\n\t// Look for a `|` separating the tooltip\n\tvar splitPos = source.indexOf(\"|\",pos);\n\tif(splitPos === -1 || splitPos > closePos) {\n\t\tsplitPos = null;\n\t}\n\t// Pull out the tooltip and URL\n\tvar tooltip, URL;\n\tif(splitPos) {\n\t\tURL = source.substring(splitPos + 1,closePos).trim();\n\t\ttextNode.text = source.substring(pos,splitPos).trim();\n\t} else {\n\t\tURL = source.substring(pos,closePos).trim();\n\t\ttextNode.text = URL;\n\t}\n\tnode.attributes.href = {type: \"string\", value: URL};\n\tnode.attributes.target = {type: \"string\", value: \"_blank\"};\n\tnode.attributes.rel = {type: \"string\", value: \"noopener noreferrer\"};\n\t// Update the end position\n\tnode.end = closePos + 2;\n\treturn node;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/prettylink.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/prettylink.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/prettylink.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki text inline rule for pretty links. For example:\n\n```\n[[Introduction]]\n\n[[Link description|TiddlerTitle]]\n```\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"prettylink\";\nexports.types = {inline: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n\t// Regexp to match\n\tthis.matchRegExp = /\\[\\[(.*?)(?:\\|(.*?))?\\]\\]/mg;\n};\n\nexports.parse = function() {\n\t// Move past the match\n\tthis.parser.pos = this.matchRegExp.lastIndex;\n\t// Process the link\n\tvar text = this.match[1],\n\t\tlink = this.match[2] || text;\n\tif($tw.utils.isLinkExternal(link)) {\n\t\treturn [{\n\t\t\ttype: \"element\",\n\t\t\ttag: \"a\",\n\t\t\tattributes: {\n\t\t\t\thref: {type: \"string\", value: link},\n\t\t\t\t\"class\": {type: \"string\", value: \"tc-tiddlylink-external\"},\n\t\t\t\ttarget: {type: \"string\", value: \"_blank\"},\n\t\t\t\trel: {type: \"string\", value: \"noopener noreferrer\"}\n\t\t\t},\n\t\t\tchildren: [{\n\t\t\t\ttype: \"text\", text: text\n\t\t\t}]\n\t\t}];\n\t} else {\n\t\treturn [{\n\t\t\ttype: \"link\",\n\t\t\tattributes: {\n\t\t\t\tto: {type: \"string\", value: link}\n\t\t\t},\n\t\t\tchildren: [{\n\t\t\t\ttype: \"text\", text: text\n\t\t\t}]\n\t\t}];\n\t}\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/quoteblock.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/quoteblock.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/quoteblock.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki text rule for quote blocks. For example:\n\n```\n\t<<<.optionalClass(es) optional cited from\n\ta quote\n\t<<<\n\t\n\t<<<.optionalClass(es)\n\ta quote\n\t<<< optional cited from\n```\n\nQuotes can be quoted by putting more <s\n\n```\n\t<<<\n\tQuote Level 1\n\t\n\t<<<<\n\tQuoteLevel 2\n\t<<<<\n\t\n\t<<<\n```\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"quoteblock\";\nexports.types = {block: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n\t// Regexp to match\n\tthis.matchRegExp = /(<<<+)/mg;\n};\n\nexports.parse = function() {\n\tvar classes = [\"tc-quote\"];\n\t// Get all the details of the match\n\tvar reEndString = \"^\" + this.match[1] + \"(?!<)\";\n\t// Move past the <s\n\tthis.parser.pos = this.matchRegExp.lastIndex;\n\t\n\t// Parse any classes, whitespace and then the optional cite itself\n\tclasses.push.apply(classes, this.parser.parseClasses());\n\tthis.parser.skipWhitespace({treatNewlinesAsNonWhitespace: true});\n\tvar cite = this.parser.parseInlineRun(/(\\r?\\n)/mg);\n\t// before handling the cite, parse the body of the quote\n\tvar tree= this.parser.parseBlocks(reEndString);\n\t// If we got a cite, put it before the text\n\tif(cite.length > 0) {\n\t\ttree.unshift({\n\t\t\ttype: \"element\",\n\t\t\ttag: \"cite\",\n\t\t\tchildren: cite\n\t\t});\n\t}\n\t// Parse any optional cite\n\tthis.parser.skipWhitespace({treatNewlinesAsNonWhitespace: true});\n\tcite = this.parser.parseInlineRun(/(\\r?\\n)/mg);\n\t// If we got a cite, push it\n\tif(cite.length > 0) {\n\t\ttree.push({\n\t\t\ttype: \"element\",\n\t\t\ttag: \"cite\",\n\t\t\tchildren: cite\n\t\t});\n\t}\n\t// Return the blockquote element\n\treturn [{\n\t\ttype: \"element\",\n\t\ttag: \"blockquote\",\n\t\tattributes: {\n\t\t\tclass: { type: \"string\", value: classes.join(\" \") },\n\t\t},\n\t\tchildren: tree\n\t}];\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/rules.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/rules.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/rules.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki pragma rule for rules specifications\n\n```\n\\rules except ruleone ruletwo rulethree\n\\rules only ruleone ruletwo rulethree\n```\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"rules\";\nexports.types = {pragma: true};\n\n/*\nInstantiate parse rule\n*/\nexports.init = function(parser) {\n\tthis.parser = parser;\n\t// Regexp to match\n\tthis.matchRegExp = /^\\\\rules[^\\S\\n]/mg;\n};\n\n/*\nParse the most recent match\n*/\nexports.parse = function() {\n\t// Move past the pragma invocation\n\tthis.parser.pos = this.matchRegExp.lastIndex;\n\t// Parse whitespace delimited tokens terminated by a line break\n\tvar reMatch = /[^\\S\\n]*(\\S+)|(\\r?\\n)/mg,\n\t\ttokens = [];\n\treMatch.lastIndex = this.parser.pos;\n\tvar match = reMatch.exec(this.parser.source);\n\twhile(match && match.index === this.parser.pos) {\n\t\tthis.parser.pos = reMatch.lastIndex;\n\t\t// Exit if we've got the line break\n\t\tif(match[2]) {\n\t\t\tbreak;\n\t\t}\n\t\t// Process the token\n\t\tif(match[1]) {\n\t\t\ttokens.push(match[1]);\n\t\t}\n\t\t// Match the next token\n\t\tmatch = reMatch.exec(this.parser.source);\n\t}\n\t// Process the tokens\n\tif(tokens.length > 0) {\n\t\tthis.parser.amendRules(tokens[0],tokens.slice(1));\n\t}\n\t// No parse tree nodes to return\n\treturn [];\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/styleblock.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/styleblock.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/styleblock.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki text block rule for assigning styles and classes to paragraphs and other blocks. For example:\n\n```\n@@.myClass\n@@background-color:red;\nThis paragraph will have the CSS class `myClass`.\n\n* The `<ul>` around this list will also have the class `myClass`\n* List item 2\n\n@@\n```\n\nNote that classes and styles can be mixed subject to the rule that styles must precede classes. For example\n\n```\n@@.myFirstClass.mySecondClass\n@@width:100px;.myThirdClass\nThis is a paragraph\n@@\n```\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"styleblock\";\nexports.types = {block: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n\t// Regexp to match\n\tthis.matchRegExp = /@@((?:[^\\.\\r\\n\\s:]+:[^\\r\\n;]+;)+)?(?:\\.([^\\r\\n\\s]+))?\\r?\\n/mg;\n};\n\nexports.parse = function() {\n\tvar reEndString = \"^@@(?:\\\\r?\\\\n)?\";\n\tvar classes = [], styles = [];\n\tdo {\n\t\t// Get the class and style\n\t\tif(this.match[1]) {\n\t\t\tstyles.push(this.match[1]);\n\t\t}\n\t\tif(this.match[2]) {\n\t\t\tclasses.push(this.match[2].split(\".\").join(\" \"));\n\t\t}\n\t\t// Move past the match\n\t\tthis.parser.pos = this.matchRegExp.lastIndex;\n\t\t// Look for another line of classes and styles\n\t\tthis.match = this.matchRegExp.exec(this.parser.source);\n\t} while(this.match && this.match.index === this.parser.pos);\n\t// Parse the body\n\tvar tree = this.parser.parseBlocks(reEndString);\n\tfor(var t=0; t<tree.length; t++) {\n\t\tif(classes.length > 0) {\n\t\t\t$tw.utils.addClassToParseTreeNode(tree[t],classes.join(\" \"));\n\t\t}\n\t\tif(styles.length > 0) {\n\t\t\t$tw.utils.addAttributeToParseTreeNode(tree[t],\"style\",styles.join(\"\"));\n\t\t}\n\t}\n\treturn tree;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/styleinline.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/styleinline.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/styleinline.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki text inline rule for assigning styles and classes to inline runs. For example:\n\n```\n@@.myClass This is some text with a class@@\n@@background-color:red;This is some text with a background colour@@\n@@width:100px;.myClass This is some text with a class and a width@@\n```\n\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"styleinline\";\nexports.types = {inline: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n\t// Regexp to match\n\tthis.matchRegExp = /@@((?:[^\\.\\r\\n\\s:]+:[^\\r\\n;]+;)+)?(\\.(?:[^\\r\\n\\s]+)\\s+)?/mg;\n};\n\nexports.parse = function() {\n\tvar reEnd = /@@/g;\n\t// Get the styles and class\n\tvar stylesString = this.match[1],\n\t\tclassString = this.match[2] ? this.match[2].split(\".\").join(\" \") : undefined;\n\t// Move past the match\n\tthis.parser.pos = this.matchRegExp.lastIndex;\n\t// Parse the run up to the terminator\n\tvar tree = this.parser.parseInlineRun(reEnd,{eatTerminator: true});\n\t// Return the classed span\n\tvar node = {\n\t\ttype: \"element\",\n\t\ttag: \"span\",\n\t\tattributes: {\n\t\t\t\"class\": {type: \"string\", value: \"tc-inline-style\"}\n\t\t},\n\t\tchildren: tree\n\t};\n\tif(classString) {\n\t\t$tw.utils.addClassToParseTreeNode(node,classString);\n\t}\n\tif(stylesString) {\n\t\t$tw.utils.addAttributeToParseTreeNode(node,\"style\",stylesString);\n\t}\n\treturn [node];\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/syslink.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/syslink.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/syslink.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki text inline rule for system tiddler links.\nCan be suppressed preceding them with `~`.\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"syslink\";\nexports.types = {inline: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n\t// Regexp to match\n\tthis.matchRegExp = new RegExp(\n\t\t\"~?\\\\$:\\\\/[\" +\n\t\t$tw.config.textPrimitives.anyLetter.substr(1,$tw.config.textPrimitives.anyLetter.length - 2) +\n\t\t\"\\/._-]+\",\n\t\t\"mg\"\n\t);\n};\n\nexports.parse = function() {\n\tvar match = this.match[0];\n\t// Move past the match\n\tthis.parser.pos = this.matchRegExp.lastIndex;\n\t// Create the link unless it is suppressed\n\tif(match.substr(0,1) === \"~\") {\n\t\treturn [{type: \"text\", text: match.substr(1)}];\n\t} else {\n\t\treturn [{\n\t\t\ttype: \"link\",\n\t\t\tattributes: {\n\t\t\t\tto: {type: \"string\", value: match}\n\t\t\t},\n\t\t\tchildren: [{\n\t\t\t\ttype: \"text\",\n\t\t\t\ttext: match\n\t\t\t}]\n\t\t}];\n\t}\n};\n\n})();",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/table.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/table.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/table.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki text block rule for tables.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"table\";\nexports.types = {block: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n\t// Regexp to match\n\tthis.matchRegExp = /^\\|(?:[^\\n]*)\\|(?:[fhck]?)\\r?(?:\\n|$)/mg;\n};\n\nvar processRow = function(prevColumns) {\n\tvar cellRegExp = /(?:\\|([^\\n\\|]*)\\|)|(\\|[fhck]?\\r?(?:\\n|$))/mg,\n\t\tcellTermRegExp = /((?:\\x20*)\\|)/mg,\n\t\ttree = [],\n\t\tcol = 0,\n\t\tcolSpanCount = 1,\n\t\tprevCell,\n\t\tvAlign;\n\t// Match a single cell\n\tcellRegExp.lastIndex = this.parser.pos;\n\tvar cellMatch = cellRegExp.exec(this.parser.source);\n\twhile(cellMatch && cellMatch.index === this.parser.pos) {\n\t\tif(cellMatch[1] === \"~\") {\n\t\t\t// Rowspan\n\t\t\tvar last = prevColumns[col];\n\t\t\tif(last) {\n\t\t\t\tlast.rowSpanCount++;\n\t\t\t\t$tw.utils.addAttributeToParseTreeNode(last.element,\"rowspan\",last.rowSpanCount);\n\t\t\t\tvAlign = $tw.utils.getAttributeValueFromParseTreeNode(last.element,\"valign\",\"center\");\n\t\t\t\t$tw.utils.addAttributeToParseTreeNode(last.element,\"valign\",vAlign);\n\t\t\t\tif(colSpanCount > 1) {\n\t\t\t\t\t$tw.utils.addAttributeToParseTreeNode(last.element,\"colspan\",colSpanCount);\n\t\t\t\t\tcolSpanCount = 1;\n\t\t\t\t}\n\t\t\t}\n\t\t\t// Move to just before the `|` terminating the cell\n\t\t\tthis.parser.pos = cellRegExp.lastIndex - 1;\n\t\t} else if(cellMatch[1] === \">\") {\n\t\t\t// Colspan\n\t\t\tcolSpanCount++;\n\t\t\t// Move to just before the `|` terminating the cell\n\t\t\tthis.parser.pos = cellRegExp.lastIndex - 1;\n\t\t} else if(cellMatch[1] === \"<\" && prevCell) {\n\t\t\tcolSpanCount = 1 + $tw.utils.getAttributeValueFromParseTreeNode(prevCell,\"colspan\",1);\n\t\t\t$tw.utils.addAttributeToParseTreeNode(prevCell,\"colspan\",colSpanCount);\n\t\t\tcolSpanCount = 1;\n\t\t\t// Move to just before the `|` terminating the cell\n\t\t\tthis.parser.pos = cellRegExp.lastIndex - 1;\n\t\t} else if(cellMatch[2]) {\n\t\t\t// End of row\n\t\t\tif(prevCell && colSpanCount > 1) {\n\t\t\t\tif(prevCell.attributes && prevCell.attributes && prevCell.attributes.colspan) {\n\t\t\t\t\t\tcolSpanCount += prevCell.attributes.colspan.value;\n\t\t\t\t} else {\n\t\t\t\t\tcolSpanCount -= 1;\n\t\t\t\t}\n\t\t\t\t$tw.utils.addAttributeToParseTreeNode(prevCell,\"colspan\",colSpanCount);\n\t\t\t}\n\t\t\tthis.parser.pos = cellRegExp.lastIndex - 1;\n\t\t\tbreak;\n\t\t} else {\n\t\t\t// For ordinary cells, step beyond the opening `|`\n\t\t\tthis.parser.pos++;\n\t\t\t// Look for a space at the start of the cell\n\t\t\tvar spaceLeft = false;\n\t\t\tvAlign = null;\n\t\t\tif(this.parser.source.substr(this.parser.pos).search(/^\\^([^\\^]|\\^\\^)/) === 0) {\n\t\t\t\tvAlign = \"top\";\n\t\t\t} else if(this.parser.source.substr(this.parser.pos).search(/^,([^,]|,,)/) === 0) {\n\t\t\t\tvAlign = \"bottom\";\n\t\t\t}\n\t\t\tif(vAlign) {\n\t\t\t\tthis.parser.pos++;\n\t\t\t}\n\t\t\tvar chr = this.parser.source.substr(this.parser.pos,1);\n\t\t\twhile(chr === \" \") {\n\t\t\t\tspaceLeft = true;\n\t\t\t\tthis.parser.pos++;\n\t\t\t\tchr = this.parser.source.substr(this.parser.pos,1);\n\t\t\t}\n\t\t\t// Check whether this is a heading cell\n\t\t\tvar cell;\n\t\t\tif(chr === \"!\") {\n\t\t\t\tthis.parser.pos++;\n\t\t\t\tcell = {type: \"element\", tag: \"th\", children: []};\n\t\t\t} else {\n\t\t\t\tcell = {type: \"element\", tag: \"td\", children: []};\n\t\t\t}\n\t\t\ttree.push(cell);\n\t\t\t// Record information about this cell\n\t\t\tprevCell = cell;\n\t\t\tprevColumns[col] = {rowSpanCount:1,element:cell};\n\t\t\t// Check for a colspan\n\t\t\tif(colSpanCount > 1) {\n\t\t\t\t$tw.utils.addAttributeToParseTreeNode(cell,\"colspan\",colSpanCount);\n\t\t\t\tcolSpanCount = 1;\n\t\t\t}\n\t\t\t// Parse the cell\n\t\t\tcell.children = this.parser.parseInlineRun(cellTermRegExp,{eatTerminator: true});\n\t\t\t// Set the alignment for the cell\n\t\t\tif(vAlign) {\n\t\t\t\t$tw.utils.addAttributeToParseTreeNode(cell,\"valign\",vAlign);\n\t\t\t}\n\t\t\tif(this.parser.source.substr(this.parser.pos - 2,1) === \" \") { // spaceRight\n\t\t\t\t$tw.utils.addAttributeToParseTreeNode(cell,\"align\",spaceLeft ? \"center\" : \"left\");\n\t\t\t} else if(spaceLeft) {\n\t\t\t\t$tw.utils.addAttributeToParseTreeNode(cell,\"align\",\"right\");\n\t\t\t}\n\t\t\t// Move back to the closing `|`\n\t\t\tthis.parser.pos--;\n\t\t}\n\t\tcol++;\n\t\tcellRegExp.lastIndex = this.parser.pos;\n\t\tcellMatch = cellRegExp.exec(this.parser.source);\n\t}\n\treturn tree;\n};\n\nexports.parse = function() {\n\tvar rowContainerTypes = {\"c\":\"caption\", \"h\":\"thead\", \"\":\"tbody\", \"f\":\"tfoot\"},\n\t\ttable = {type: \"element\", tag: \"table\", children: []},\n\t\trowRegExp = /^\\|([^\\n]*)\\|([fhck]?)\\r?(?:\\n|$)/mg,\n\t\trowTermRegExp = /(\\|(?:[fhck]?)\\r?(?:\\n|$))/mg,\n\t\tprevColumns = [],\n\t\tcurrRowType,\n\t\trowContainer,\n\t\trowCount = 0;\n\t// Match the row\n\trowRegExp.lastIndex = this.parser.pos;\n\tvar rowMatch = rowRegExp.exec(this.parser.source);\n\twhile(rowMatch && rowMatch.index === this.parser.pos) {\n\t\tvar rowType = rowMatch[2];\n\t\t// Check if it is a class assignment\n\t\tif(rowType === \"k\") {\n\t\t\t$tw.utils.addClassToParseTreeNode(table,rowMatch[1]);\n\t\t\tthis.parser.pos = rowMatch.index + rowMatch[0].length;\n\t\t} else {\n\t\t\t// Otherwise, create a new row if this one is of a different type\n\t\t\tif(rowType !== currRowType) {\n\t\t\t\trowContainer = {type: \"element\", tag: rowContainerTypes[rowType], children: []};\n\t\t\t\ttable.children.push(rowContainer);\n\t\t\t\tcurrRowType = rowType;\n\t\t\t}\n\t\t\t// Is this a caption row?\n\t\t\tif(currRowType === \"c\") {\n\t\t\t\t// If so, move past the opening `|` of the row\n\t\t\t\tthis.parser.pos++;\n\t\t\t\t// Move the caption to the first row if it isn't already\n\t\t\t\tif(table.children.length !== 1) {\n\t\t\t\t\ttable.children.pop(); // Take rowContainer out of the children array\n\t\t\t\t\ttable.children.splice(0,0,rowContainer); // Insert it at the bottom\t\t\t\t\t\t\n\t\t\t\t}\n\t\t\t\t// Set the alignment - TODO: figure out why TW did this\n//\t\t\t\trowContainer.attributes.align = rowCount === 0 ? \"top\" : \"bottom\";\n\t\t\t\t// Parse the caption\n\t\t\t\trowContainer.children = this.parser.parseInlineRun(rowTermRegExp,{eatTerminator: true});\n\t\t\t} else {\n\t\t\t\t// Create the row\n\t\t\t\tvar theRow = {type: \"element\", tag: \"tr\", children: []};\n\t\t\t\t$tw.utils.addClassToParseTreeNode(theRow,rowCount%2 ? \"oddRow\" : \"evenRow\");\n\t\t\t\trowContainer.children.push(theRow);\n\t\t\t\t// Process the row\n\t\t\t\ttheRow.children = processRow.call(this,prevColumns);\n\t\t\t\tthis.parser.pos = rowMatch.index + rowMatch[0].length;\n\t\t\t\t// Increment the row count\n\t\t\t\trowCount++;\n\t\t\t}\n\t\t}\n\t\trowMatch = rowRegExp.exec(this.parser.source);\n\t}\n\treturn [table];\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/transcludeblock.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/transcludeblock.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/transcludeblock.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki text rule for block-level transclusion. For example:\n\n```\n{{MyTiddler}}\n{{MyTiddler||TemplateTitle}}\n```\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"transcludeblock\";\nexports.types = {block: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n\t// Regexp to match\n\tthis.matchRegExp = /\\{\\{([^\\{\\}\\|]*)(?:\\|\\|([^\\|\\{\\}]+))?\\}\\}(?:\\r?\\n|$)/mg;\n};\n\nexports.parse = function() {\n\t// Move past the match\n\tthis.parser.pos = this.matchRegExp.lastIndex;\n\t// Get the match details\n\tvar template = $tw.utils.trim(this.match[2]),\n\t\ttextRef = $tw.utils.trim(this.match[1]);\n\t// Prepare the transclude widget\n\tvar transcludeNode = {\n\t\t\ttype: \"transclude\",\n\t\t\tattributes: {},\n\t\t\tisBlock: true\n\t\t};\n\t// Prepare the tiddler widget\n\tvar tr, targetTitle, targetField, targetIndex, tiddlerNode;\n\tif(textRef) {\n\t\ttr = $tw.utils.parseTextReference(textRef);\n\t\ttargetTitle = tr.title;\n\t\ttargetField = tr.field;\n\t\ttargetIndex = tr.index;\n\t\ttiddlerNode = {\n\t\t\ttype: \"tiddler\",\n\t\t\tattributes: {\n\t\t\t\ttiddler: {type: \"string\", value: targetTitle}\n\t\t\t},\n\t\t\tisBlock: true,\n\t\t\tchildren: [transcludeNode]\n\t\t};\n\t}\n\tif(template) {\n\t\ttranscludeNode.attributes.tiddler = {type: \"string\", value: template};\n\t\tif(textRef) {\n\t\t\treturn [tiddlerNode];\n\t\t} else {\n\t\t\treturn [transcludeNode];\n\t\t}\n\t} else {\n\t\tif(textRef) {\n\t\t\ttranscludeNode.attributes.tiddler = {type: \"string\", value: targetTitle};\n\t\t\tif(targetField) {\n\t\t\t\ttranscludeNode.attributes.field = {type: \"string\", value: targetField};\n\t\t\t}\n\t\t\tif(targetIndex) {\n\t\t\t\ttranscludeNode.attributes.index = {type: \"string\", value: targetIndex};\n\t\t\t}\n\t\t\treturn [tiddlerNode];\n\t\t} else {\n\t\t\treturn [transcludeNode];\n\t\t}\n\t}\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/transcludeinline.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/transcludeinline.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/transcludeinline.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki text rule for inline-level transclusion. For example:\n\n```\n{{MyTiddler}}\n{{MyTiddler||TemplateTitle}}\n```\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"transcludeinline\";\nexports.types = {inline: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n\t// Regexp to match\n\tthis.matchRegExp = /\\{\\{([^\\{\\}\\|]*)(?:\\|\\|([^\\|\\{\\}]+))?\\}\\}/mg;\n};\n\nexports.parse = function() {\n\t// Move past the match\n\tthis.parser.pos = this.matchRegExp.lastIndex;\n\t// Get the match details\n\tvar template = $tw.utils.trim(this.match[2]),\n\t\ttextRef = $tw.utils.trim(this.match[1]);\n\t// Prepare the transclude widget\n\tvar transcludeNode = {\n\t\t\ttype: \"transclude\",\n\t\t\tattributes: {}\n\t\t};\n\t// Prepare the tiddler widget\n\tvar tr, targetTitle, targetField, targetIndex, tiddlerNode;\n\tif(textRef) {\n\t\ttr = $tw.utils.parseTextReference(textRef);\n\t\ttargetTitle = tr.title;\n\t\ttargetField = tr.field;\n\t\ttargetIndex = tr.index;\n\t\ttiddlerNode = {\n\t\t\ttype: \"tiddler\",\n\t\t\tattributes: {\n\t\t\t\ttiddler: {type: \"string\", value: targetTitle}\n\t\t\t},\n\t\t\tchildren: [transcludeNode]\n\t\t};\n\t}\n\tif(template) {\n\t\ttranscludeNode.attributes.tiddler = {type: \"string\", value: template};\n\t\tif(textRef) {\n\t\t\treturn [tiddlerNode];\n\t\t} else {\n\t\t\treturn [transcludeNode];\n\t\t}\n\t} else {\n\t\tif(textRef) {\n\t\t\ttranscludeNode.attributes.tiddler = {type: \"string\", value: targetTitle};\n\t\t\tif(targetField) {\n\t\t\t\ttranscludeNode.attributes.field = {type: \"string\", value: targetField};\n\t\t\t}\n\t\t\tif(targetIndex) {\n\t\t\t\ttranscludeNode.attributes.index = {type: \"string\", value: targetIndex};\n\t\t\t}\n\t\t\treturn [tiddlerNode];\n\t\t} else {\n\t\t\treturn [transcludeNode];\n\t\t}\n\t}\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/typedblock.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/typedblock.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/typedblock.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki text rule for typed blocks. For example:\n\n```\n$$$.js\nThis will be rendered as JavaScript\n$$$\n\n$$$.svg\n<svg xmlns=\"http://www.w3.org/2000/svg\" width=\"150\" height=\"100\">\n <circle cx=\"100\" cy=\"50\" r=\"40\" stroke=\"black\" stroke-width=\"2\" fill=\"red\" />\n</svg>\n$$$\n\n$$$text/vnd.tiddlywiki>text/html\nThis will be rendered as an //HTML representation// of WikiText\n$$$\n```\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar widget = require(\"$:/core/modules/widgets/widget.js\");\n\nexports.name = \"typedblock\";\nexports.types = {block: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n\t// Regexp to match\n\tthis.matchRegExp = /\\$\\$\\$([^ >\\r\\n]*)(?: *> *([^ \\r\\n]+))?\\r?\\n/mg;\n};\n\nexports.parse = function() {\n\tvar reEnd = /\\r?\\n\\$\\$\\$\\r?(?:\\n|$)/mg;\n\t// Save the type\n\tvar parseType = this.match[1],\n\t\trenderType = this.match[2];\n\t// Move past the match\n\tthis.parser.pos = this.matchRegExp.lastIndex;\n\t// Look for the end of the block\n\treEnd.lastIndex = this.parser.pos;\n\tvar match = reEnd.exec(this.parser.source),\n\t\ttext;\n\t// Process the block\n\tif(match) {\n\t\ttext = this.parser.source.substring(this.parser.pos,match.index);\n\t\tthis.parser.pos = match.index + match[0].length;\n\t} else {\n\t\ttext = this.parser.source.substr(this.parser.pos);\n\t\tthis.parser.pos = this.parser.sourceLength;\n\t}\n\t// Parse the block according to the specified type\n\tvar parser = this.parser.wiki.parseText(parseType,text,{defaultType: \"text/plain\"});\n\t// If there's no render type, just return the parse tree\n\tif(!renderType) {\n\t\treturn parser.tree;\n\t} else {\n\t\t// Otherwise, render to the rendertype and return in a <PRE> tag\n\t\tvar widgetNode = this.parser.wiki.makeWidget(parser),\n\t\t\tcontainer = $tw.fakeDocument.createElement(\"div\");\n\t\twidgetNode.render(container,null);\n\t\ttext = renderType === \"text/html\" ? container.innerHTML : container.textContent;\n\t\treturn [{\n\t\t\ttype: \"element\",\n\t\t\ttag: \"pre\",\n\t\t\tchildren: [{\n\t\t\t\ttype: \"text\",\n\t\t\t\ttext: text\n\t\t\t}]\n\t\t}];\n\t}\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/whitespace.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/whitespace.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/whitespace.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki pragma rule for whitespace specifications\n\n```\n\\whitespace trim\n\\whitespace notrim\n```\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"whitespace\";\nexports.types = {pragma: true};\n\n/*\nInstantiate parse rule\n*/\nexports.init = function(parser) {\n\tthis.parser = parser;\n\t// Regexp to match\n\tthis.matchRegExp = /^\\\\whitespace[^\\S\\n]/mg;\n};\n\n/*\nParse the most recent match\n*/\nexports.parse = function() {\n\tvar self = this;\n\t// Move past the pragma invocation\n\tthis.parser.pos = this.matchRegExp.lastIndex;\n\t// Parse whitespace delimited tokens terminated by a line break\n\tvar reMatch = /[^\\S\\n]*(\\S+)|(\\r?\\n)/mg,\n\t\ttokens = [];\n\treMatch.lastIndex = this.parser.pos;\n\tvar match = reMatch.exec(this.parser.source);\n\twhile(match && match.index === this.parser.pos) {\n\t\tthis.parser.pos = reMatch.lastIndex;\n\t\t// Exit if we've got the line break\n\t\tif(match[2]) {\n\t\t\tbreak;\n\t\t}\n\t\t// Process the token\n\t\tif(match[1]) {\n\t\t\ttokens.push(match[1]);\n\t\t}\n\t\t// Match the next token\n\t\tmatch = reMatch.exec(this.parser.source);\n\t}\n\t// Process the tokens\n\t$tw.utils.each(tokens,function(token) {\n\t\tswitch(token) {\n\t\t\tcase \"trim\":\n\t\t\t\tself.parser.configTrimWhiteSpace = true;\n\t\t\t\tbreak;\n\t\t\tcase \"notrim\":\n\t\t\t\tself.parser.configTrimWhiteSpace = false;\n\t\t\t\tbreak;\n\t\t}\n\t});\n\t// No parse tree nodes to return\n\treturn [];\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/rules/wikilink.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/wikilink.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/wikilink.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki text inline rule for wiki links. For example:\n\n```\nAWikiLink\nAnotherLink\n~SuppressedLink\n```\n\nPrecede a camel case word with `~` to prevent it from being recognised as a link.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"wikilink\";\nexports.types = {inline: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n\t// Regexp to match\n\tthis.matchRegExp = new RegExp($tw.config.textPrimitives.unWikiLink + \"?\" + $tw.config.textPrimitives.wikiLink,\"mg\");\n};\n\n/*\nParse the most recent match\n*/\nexports.parse = function() {\n\t// Get the details of the match\n\tvar linkText = this.match[0];\n\t// Move past the macro call\n\tthis.parser.pos = this.matchRegExp.lastIndex;\n\t// If the link starts with the unwikilink character then just output it as plain text\n\tif(linkText.substr(0,1) === $tw.config.textPrimitives.unWikiLink) {\n\t\treturn [{type: \"text\", text: linkText.substr(1)}];\n\t}\n\t// If the link has been preceded with a blocked letter then don't treat it as a link\n\tif(this.match.index > 0) {\n\t\tvar preRegExp = new RegExp($tw.config.textPrimitives.blockPrefixLetters,\"mg\");\n\t\tpreRegExp.lastIndex = this.match.index-1;\n\t\tvar preMatch = preRegExp.exec(this.parser.source);\n\t\tif(preMatch && preMatch.index === this.match.index-1) {\n\t\t\treturn [{type: \"text\", text: linkText}];\n\t\t}\n\t}\n\treturn [{\n\t\ttype: \"link\",\n\t\tattributes: {\n\t\t\tto: {type: \"string\", value: linkText}\n\t\t},\n\t\tchildren: [{\n\t\t\ttype: \"text\",\n\t\t\ttext: linkText\n\t\t}]\n\t}];\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/core/modules/parsers/wikiparser/wikiparser.js": {
"title": "$:/core/modules/parsers/wikiparser/wikiparser.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/wikiparser.js\ntype: application/javascript\nmodule-type: parser\n\nThe wiki text parser processes blocks of source text into a parse tree.\n\nThe parse tree is made up of nested arrays of these JavaScript objects:\n\n\t{type: \"element\", tag: <string>, attributes: {}, children: []} - an HTML element\n\t{type: \"text\", text: <string>} - a text node\n\t{type: \"entity\", value: <string>} - an entity\n\t{type: \"raw\", html: <string>} - raw HTML\n\nAttributes are stored as hashmaps of the following objects:\n\n\t{type: \"string\", value: <string>} - literal string\n\t{type: \"indirect\", textReference: <textReference>} - indirect through a text reference\n\t{type: \"macro\", macro: <TBD>} - indirect through a macro invocation\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar WikiParser = function(type,text,options) {\n\tthis.wiki = options.wiki;\n\tvar self = this;\n\t// Check for an externally linked tiddler\n\tif($tw.browser && (text || \"\") === \"\" && options._canonical_uri) {\n\t\tthis.loadRemoteTiddler(options._canonical_uri);\n\t\ttext = $tw.language.getRawString(\"LazyLoadingWarning\");\n\t}\n\t// Initialise the classes if we don't have them already\n\tif(!this.pragmaRuleClasses) {\n\t\tWikiParser.prototype.pragmaRuleClasses = $tw.modules.createClassesFromModules(\"wikirule\",\"pragma\",$tw.WikiRuleBase);\n\t\tthis.setupRules(WikiParser.prototype.pragmaRuleClasses,\"$:/config/WikiParserRules/Pragmas/\");\n\t}\n\tif(!this.blockRuleClasses) {\n\t\tWikiParser.prototype.blockRuleClasses = $tw.modules.createClassesFromModules(\"wikirule\",\"block\",$tw.WikiRuleBase);\n\t\tthis.setupRules(WikiParser.prototype.blockRuleClasses,\"$:/config/WikiParserRules/Block/\");\n\t}\n\tif(!this.inlineRuleClasses) {\n\t\tWikiParser.prototype.inlineRuleClasses = $tw.modules.createClassesFromModules(\"wikirule\",\"inline\",$tw.WikiRuleBase);\n\t\tthis.setupRules(WikiParser.prototype.inlineRuleClasses,\"$:/config/WikiParserRules/Inline/\");\n\t}\n\t// Save the parse text\n\tthis.type = type || \"text/vnd.tiddlywiki\";\n\tthis.source = text || \"\";\n\tthis.sourceLength = this.source.length;\n\t// Flag for ignoring whitespace\n\tthis.configTrimWhiteSpace = false;\n\t// Set current parse position\n\tthis.pos = 0;\n\t// Instantiate the pragma parse rules\n\tthis.pragmaRules = this.instantiateRules(this.pragmaRuleClasses,\"pragma\",0);\n\t// Instantiate the parser block and inline rules\n\tthis.blockRules = this.instantiateRules(this.blockRuleClasses,\"block\",0);\n\tthis.inlineRules = this.instantiateRules(this.inlineRuleClasses,\"inline\",0);\n\t// Parse any pragmas\n\tthis.tree = [];\n\tvar topBranch = this.parsePragmas();\n\t// Parse the text into inline runs or blocks\n\tif(options.parseAsInline) {\n\t\ttopBranch.push.apply(topBranch,this.parseInlineRun());\n\t} else {\n\t\ttopBranch.push.apply(topBranch,this.parseBlocks());\n\t}\n\t// Return the parse tree\n};\n\n/*\n*/\nWikiParser.prototype.loadRemoteTiddler = function(url) {\n\tvar self = this;\n\t$tw.utils.httpRequest({\n\t\turl: url,\n\t\ttype: \"GET\",\n\t\tcallback: function(err,data) {\n\t\t\tif(!err) {\n\t\t\t\tvar tiddlers = self.wiki.deserializeTiddlers(\".tid\",data,self.wiki.getCreationFields());\n\t\t\t\t$tw.utils.each(tiddlers,function(tiddler) {\n\t\t\t\t\ttiddler[\"_canonical_uri\"] = url;\n\t\t\t\t});\n\t\t\t\tif(tiddlers) {\n\t\t\t\t\tself.wiki.addTiddlers(tiddlers);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t});\n};\n\n/*\n*/\nWikiParser.prototype.setupRules = function(proto,configPrefix) {\n\tvar self = this;\n\tif(!$tw.safemode) {\n\t\t$tw.utils.each(proto,function(object,name) {\n\t\t\tif(self.wiki.getTiddlerText(configPrefix + name,\"enable\") !== \"enable\") {\n\t\t\t\tdelete proto[name];\n\t\t\t}\n\t\t});\n\t}\n};\n\n/*\nInstantiate an array of parse rules\n*/\nWikiParser.prototype.instantiateRules = function(classes,type,startPos) {\n\tvar rulesInfo = [],\n\t\tself = this;\n\t$tw.utils.each(classes,function(RuleClass) {\n\t\t// Instantiate the rule\n\t\tvar rule = new RuleClass(self);\n\t\trule.is = {};\n\t\trule.is[type] = true;\n\t\trule.init(self);\n\t\tvar matchIndex = rule.findNextMatch(startPos);\n\t\tif(matchIndex !== undefined) {\n\t\t\trulesInfo.push({\n\t\t\t\trule: rule,\n\t\t\t\tmatchIndex: matchIndex\n\t\t\t});\n\t\t}\n\t});\n\treturn rulesInfo;\n};\n\n/*\nSkip any whitespace at the current position. Options are:\n\ttreatNewlinesAsNonWhitespace: true if newlines are NOT to be treated as whitespace\n*/\nWikiParser.prototype.skipWhitespace = function(options) {\n\toptions = options || {};\n\tvar whitespaceRegExp = options.treatNewlinesAsNonWhitespace ? /([^\\S\\n]+)/mg : /(\\s+)/mg;\n\twhitespaceRegExp.lastIndex = this.pos;\n\tvar whitespaceMatch = whitespaceRegExp.exec(this.source);\n\tif(whitespaceMatch && whitespaceMatch.index === this.pos) {\n\t\tthis.pos = whitespaceRegExp.lastIndex;\n\t}\n};\n\n/*\nGet the next match out of an array of parse rule instances\n*/\nWikiParser.prototype.findNextMatch = function(rules,startPos) {\n\t// Find the best matching rule by finding the closest match position\n\tvar matchingRule,\n\t\tmatchingRulePos = this.sourceLength;\n\t// Step through each rule\n\tfor(var t=0; t<rules.length; t++) {\n\t\tvar ruleInfo = rules[t];\n\t\t// Ask the rule to get the next match if we've moved past the current one\n\t\tif(ruleInfo.matchIndex !== undefined && ruleInfo.matchIndex < startPos) {\n\t\t\truleInfo.matchIndex = ruleInfo.rule.findNextMatch(startPos);\n\t\t}\n\t\t// Adopt this match if it's closer than the current best match\n\t\tif(ruleInfo.matchIndex !== undefined && ruleInfo.matchIndex <= matchingRulePos) {\n\t\t\tmatchingRule = ruleInfo;\n\t\t\tmatchingRulePos = ruleInfo.matchIndex;\n\t\t}\n\t}\n\treturn matchingRule;\n};\n\n/*\nParse any pragmas at the beginning of a block of parse text\n*/\nWikiParser.prototype.parsePragmas = function() {\n\tvar currentTreeBranch = this.tree;\n\twhile(true) {\n\t\t// Skip whitespace\n\t\tthis.skipWhitespace();\n\t\t// Check for the end of the text\n\t\tif(this.pos >= this.sourceLength) {\n\t\t\tbreak;\n\t\t}\n\t\t// Check if we've arrived at a pragma rule match\n\t\tvar nextMatch = this.findNextMatch(this.pragmaRules,this.pos);\n\t\t// If not, just exit\n\t\tif(!nextMatch || nextMatch.matchIndex !== this.pos) {\n\t\t\tbreak;\n\t\t}\n\t\t// Process the pragma rule\n\t\tvar subTree = nextMatch.rule.parse();\n\t\tif(subTree.length > 0) {\n\t\t\t// Quick hack; we only cope with a single parse tree node being returned, which is true at the moment\n\t\t\tcurrentTreeBranch.push.apply(currentTreeBranch,subTree);\n\t\t\tsubTree[0].children = [];\n\t\t\tcurrentTreeBranch = subTree[0].children;\n\t\t}\n\t}\n\treturn currentTreeBranch;\n};\n\n/*\nParse a block from the current position\n\tterminatorRegExpString: optional regular expression string that identifies the end of plain paragraphs. Must not include capturing parenthesis\n*/\nWikiParser.prototype.parseBlock = function(terminatorRegExpString) {\n\tvar terminatorRegExp = terminatorRegExpString ? new RegExp(\"(\" + terminatorRegExpString + \"|\\\\r?\\\\n\\\\r?\\\\n)\",\"mg\") : /(\\r?\\n\\r?\\n)/mg;\n\tthis.skipWhitespace();\n\tif(this.pos >= this.sourceLength) {\n\t\treturn [];\n\t}\n\t// Look for a block rule that applies at the current position\n\tvar nextMatch = this.findNextMatch(this.blockRules,this.pos);\n\tif(nextMatch && nextMatch.matchIndex === this.pos) {\n\t\treturn nextMatch.rule.parse();\n\t}\n\t// Treat it as a paragraph if we didn't find a block rule\n\treturn [{type: \"element\", tag: \"p\", children: this.parseInlineRun(terminatorRegExp)}];\n};\n\n/*\nParse a series of blocks of text until a terminating regexp is encountered or the end of the text\n\tterminatorRegExpString: terminating regular expression\n*/\nWikiParser.prototype.parseBlocks = function(terminatorRegExpString) {\n\tif(terminatorRegExpString) {\n\t\treturn this.parseBlocksTerminated(terminatorRegExpString);\n\t} else {\n\t\treturn this.parseBlocksUnterminated();\n\t}\n};\n\n/*\nParse a block from the current position to the end of the text\n*/\nWikiParser.prototype.parseBlocksUnterminated = function() {\n\tvar tree = [];\n\twhile(this.pos < this.sourceLength) {\n\t\ttree.push.apply(tree,this.parseBlock());\n\t}\n\treturn tree;\n};\n\n/*\nParse blocks of text until a terminating regexp is encountered\n*/\nWikiParser.prototype.parseBlocksTerminated = function(terminatorRegExpString) {\n\tvar terminatorRegExp = new RegExp(\"(\" + terminatorRegExpString + \")\",\"mg\"),\n\t\ttree = [];\n\t// Skip any whitespace\n\tthis.skipWhitespace();\n\t// Check if we've got the end marker\n\tterminatorRegExp.lastIndex = this.pos;\n\tvar match = terminatorRegExp.exec(this.source);\n\t// Parse the text into blocks\n\twhile(this.pos < this.sourceLength && !(match && match.index === this.pos)) {\n\t\tvar blocks = this.parseBlock(terminatorRegExpString);\n\t\ttree.push.apply(tree,blocks);\n\t\t// Skip any whitespace\n\t\tthis.skipWhitespace();\n\t\t// Check if we've got the end marker\n\t\tterminatorRegExp.lastIndex = this.pos;\n\t\tmatch = terminatorRegExp.exec(this.source);\n\t}\n\tif(match && match.index === this.pos) {\n\t\tthis.pos = match.index + match[0].length;\n\t}\n\treturn tree;\n};\n\n/*\nParse a run of text at the current position\n\tterminatorRegExp: a regexp at which to stop the run\n\toptions: see below\nOptions available:\n\teatTerminator: move the parse position past any encountered terminator (default false)\n*/\nWikiParser.prototype.parseInlineRun = function(terminatorRegExp,options) {\n\tif(terminatorRegExp) {\n\t\treturn this.parseInlineRunTerminated(terminatorRegExp,options);\n\t} else {\n\t\treturn this.parseInlineRunUnterminated(options);\n\t}\n};\n\nWikiParser.prototype.parseInlineRunUnterminated = function(options) {\n\tvar tree = [];\n\t// Find the next occurrence of an inline rule\n\tvar nextMatch = this.findNextMatch(this.inlineRules,this.pos);\n\t// Loop around the matches until we've reached the end of the text\n\twhile(this.pos < this.sourceLength && nextMatch) {\n\t\t// Process the text preceding the run rule\n\t\tif(nextMatch.matchIndex > this.pos) {\n\t\t\tthis.pushTextWidget(tree,this.source.substring(this.pos,nextMatch.matchIndex));\n\t\t\tthis.pos = nextMatch.matchIndex;\n\t\t}\n\t\t// Process the run rule\n\t\ttree.push.apply(tree,nextMatch.rule.parse());\n\t\t// Look for the next run rule\n\t\tnextMatch = this.findNextMatch(this.inlineRules,this.pos);\n\t}\n\t// Process the remaining text\n\tif(this.pos < this.sourceLength) {\n\t\tthis.pushTextWidget(tree,this.source.substr(this.pos));\n\t}\n\tthis.pos = this.sourceLength;\n\treturn tree;\n};\n\nWikiParser.prototype.parseInlineRunTerminated = function(terminatorRegExp,options) {\n\toptions = options || {};\n\tvar tree = [];\n\t// Find the next occurrence of the terminator\n\tterminatorRegExp.lastIndex = this.pos;\n\tvar terminatorMatch = terminatorRegExp.exec(this.source);\n\t// Find the next occurrence of a inlinerule\n\tvar inlineRuleMatch = this.findNextMatch(this.inlineRules,this.pos);\n\t// Loop around until we've reached the end of the text\n\twhile(this.pos < this.sourceLength && (terminatorMatch || inlineRuleMatch)) {\n\t\t// Return if we've found the terminator, and it precedes any inline rule match\n\t\tif(terminatorMatch) {\n\t\t\tif(!inlineRuleMatch || inlineRuleMatch.matchIndex >= terminatorMatch.index) {\n\t\t\t\tif(terminatorMatch.index > this.pos) {\n\t\t\t\t\tthis.pushTextWidget(tree,this.source.substring(this.pos,terminatorMatch.index));\n\t\t\t\t}\n\t\t\t\tthis.pos = terminatorMatch.index;\n\t\t\t\tif(options.eatTerminator) {\n\t\t\t\t\tthis.pos += terminatorMatch[0].length;\n\t\t\t\t}\n\t\t\t\treturn tree;\n\t\t\t}\n\t\t}\n\t\t// Process any inline rule, along with the text preceding it\n\t\tif(inlineRuleMatch) {\n\t\t\t// Preceding text\n\t\t\tif(inlineRuleMatch.matchIndex > this.pos) {\n\t\t\t\tthis.pushTextWidget(tree,this.source.substring(this.pos,inlineRuleMatch.matchIndex));\n\t\t\t\tthis.pos = inlineRuleMatch.matchIndex;\n\t\t\t}\n\t\t\t// Process the inline rule\n\t\t\ttree.push.apply(tree,inlineRuleMatch.rule.parse());\n\t\t\t// Look for the next inline rule\n\t\t\tinlineRuleMatch = this.findNextMatch(this.inlineRules,this.pos);\n\t\t\t// Look for the next terminator match\n\t\t\tterminatorRegExp.lastIndex = this.pos;\n\t\t\tterminatorMatch = terminatorRegExp.exec(this.source);\n\t\t}\n\t}\n\t// Process the remaining text\n\tif(this.pos < this.sourceLength) {\n\t\tthis.pushTextWidget(tree,this.source.substr(this.pos));\n\t}\n\tthis.pos = this.sourceLength;\n\treturn tree;\n};\n\n/*\nPush a text widget onto an array, respecting the configTrimWhiteSpace setting\n*/\nWikiParser.prototype.pushTextWidget = function(array,text) {\n\tif(this.configTrimWhiteSpace) {\n\t\ttext = $tw.utils.trim(text);\n\t}\n\tif(text) {\n\t\tarray.push({type: \"text\", text: text});\t\t\n\t}\n};\n\n/*\nParse zero or more class specifiers `.classname`\n*/\nWikiParser.prototype.parseClasses = function() {\n\tvar classRegExp = /\\.([^\\s\\.]+)/mg,\n\t\tclassNames = [];\n\tclassRegExp.lastIndex = this.pos;\n\tvar match = classRegExp.exec(this.source);\n\twhile(match && match.index === this.pos) {\n\t\tthis.pos = match.index + match[0].length;\n\t\tclassNames.push(match[1]);\n\t\tmatch = classRegExp.exec(this.source);\n\t}\n\treturn classNames;\n};\n\n/*\nAmend the rules used by this instance of the parser\n\ttype: `only` keeps just the named rules, `except` keeps all but the named rules\n\tnames: array of rule names\n*/\nWikiParser.prototype.amendRules = function(type,names) {\n\tnames = names || [];\n\t// Define the filter function\n\tvar target;\n\tif(type === \"only\") {\n\t\ttarget = true;\n\t} else if(type === \"except\") {\n\t\ttarget = false;\n\t} else {\n\t\treturn;\n\t}\n\t// Define a function to process each of our rule arrays\n\tvar processRuleArray = function(ruleArray) {\n\t\tfor(var t=ruleArray.length-1; t>=0; t--) {\n\t\t\tif((names.indexOf(ruleArray[t].rule.name) === -1) === target) {\n\t\t\t\truleArray.splice(t,1);\n\t\t\t}\n\t\t}\n\t};\n\t// Process each rule array\n\tprocessRuleArray(this.pragmaRules);\n\tprocessRuleArray(this.blockRules);\n\tprocessRuleArray(this.inlineRules);\n};\n\nexports[\"text/vnd.tiddlywiki\"] = WikiParser;\n\n})();\n\n",
"type": "application/javascript",
"module-type": "parser"
},
"$:/core/modules/parsers/wikiparser/rules/wikirulebase.js": {
"title": "$:/core/modules/parsers/wikiparser/rules/wikirulebase.js",
"text": "/*\\\ntitle: $:/core/modules/parsers/wikiparser/rules/wikirulebase.js\ntype: application/javascript\nmodule-type: global\n\nBase class for wiki parser rules\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nThis constructor is always overridden with a blank constructor, and so shouldn't be used\n*/\nvar WikiRuleBase = function() {\n};\n\n/*\nTo be overridden by individual rules\n*/\nWikiRuleBase.prototype.init = function(parser) {\n\tthis.parser = parser;\n};\n\n/*\nDefault implementation of findNextMatch uses RegExp matching\n*/\nWikiRuleBase.prototype.findNextMatch = function(startPos) {\n\tthis.matchRegExp.lastIndex = startPos;\n\tthis.match = this.matchRegExp.exec(this.parser.source);\n\treturn this.match ? this.match.index : undefined;\n};\n\nexports.WikiRuleBase = WikiRuleBase;\n\n})();\n",
"type": "application/javascript",
"module-type": "global"
},
"$:/core/modules/pluginswitcher.js": {
"title": "$:/core/modules/pluginswitcher.js",
"text": "/*\\\ntitle: $:/core/modules/pluginswitcher.js\ntype: application/javascript\nmodule-type: global\n\nManages switching plugins for themes and languages.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\noptions:\nwiki: wiki store to be used\npluginType: type of plugin to be switched\ncontrollerTitle: title of tiddler used to control switching of this resource\ndefaultPlugins: array of default plugins to be used if nominated plugin isn't found\nonSwitch: callback when plugin is switched (single parameter is array of plugin titles)\n*/\nfunction PluginSwitcher(options) {\n\tthis.wiki = options.wiki;\n\tthis.pluginType = options.pluginType;\n\tthis.controllerTitle = options.controllerTitle;\n\tthis.defaultPlugins = options.defaultPlugins || [];\n\tthis.onSwitch = options.onSwitch;\n\t// Switch to the current plugin\n\tthis.switchPlugins();\n\t// Listen for changes to the selected plugin\n\tvar self = this;\n\tthis.wiki.addEventListener(\"change\",function(changes) {\n\t\tif($tw.utils.hop(changes,self.controllerTitle)) {\n\t\t\tself.switchPlugins();\n\t\t}\n\t});\n}\n\nPluginSwitcher.prototype.switchPlugins = function() {\n\t// Get the name of the current theme\n\tvar selectedPluginTitle = this.wiki.getTiddlerText(this.controllerTitle);\n\t// If it doesn't exist, then fallback to one of the default themes\n\tvar index = 0;\n\twhile(!this.wiki.getTiddler(selectedPluginTitle) && index < this.defaultPlugins.length) {\n\t\tselectedPluginTitle = this.defaultPlugins[index++];\n\t}\n\t// Accumulate the titles of the plugins that we need to load\n\tvar plugins = [],\n\t\tself = this,\n\t\taccumulatePlugin = function(title) {\n\t\t\tvar tiddler = self.wiki.getTiddler(title);\n\t\t\tif(tiddler && tiddler.isPlugin() && plugins.indexOf(title) === -1) {\n\t\t\t\tplugins.push(title);\n\t\t\t\tvar pluginInfo = JSON.parse(self.wiki.getTiddlerText(title)),\n\t\t\t\t\tdependents = $tw.utils.parseStringArray(tiddler.fields.dependents || \"\");\n\t\t\t\t$tw.utils.each(dependents,function(title) {\n\t\t\t\t\taccumulatePlugin(title);\n\t\t\t\t});\n\t\t\t}\n\t\t};\n\taccumulatePlugin(selectedPluginTitle);\n\t// Read the plugin info for the incoming plugins\n\tvar changes = $tw.wiki.readPluginInfo(plugins);\n\t// Unregister any existing theme tiddlers\n\tvar unregisteredTiddlers = $tw.wiki.unregisterPluginTiddlers(this.pluginType);\n\t// Register any new theme tiddlers\n\tvar registeredTiddlers = $tw.wiki.registerPluginTiddlers(this.pluginType,plugins);\n\t// Unpack the current theme tiddlers\n\t$tw.wiki.unpackPluginTiddlers();\n\t// Call the switch handler\n\tif(this.onSwitch) {\n\t\tthis.onSwitch(plugins);\n\t}\n};\n\nexports.PluginSwitcher = PluginSwitcher;\n\n})();\n",
"type": "application/javascript",
"module-type": "global"
},
"$:/core/modules/saver-handler.js": {
"title": "$:/core/modules/saver-handler.js",
"text": "/*\\\ntitle: $:/core/modules/saver-handler.js\ntype: application/javascript\nmodule-type: global\n\nThe saver handler tracks changes to the store and handles saving the entire wiki via saver modules.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nInstantiate the saver handler with the following options:\nwiki: wiki to be synced\ndirtyTracking: true if dirty tracking should be performed\n*/\nfunction SaverHandler(options) {\n\tvar self = this;\n\tthis.wiki = options.wiki;\n\tthis.dirtyTracking = options.dirtyTracking;\n\tthis.preloadDirty = options.preloadDirty || [];\n\tthis.pendingAutoSave = false;\n\t// Make a logger\n\tthis.logger = new $tw.utils.Logger(\"saver-handler\");\n\t// Initialise our savers\n\tif($tw.browser) {\n\t\tthis.initSavers();\n\t}\n\t// Only do dirty tracking if required\n\tif($tw.browser && this.dirtyTracking) {\n\t\t// Compile the dirty tiddler filter\n\t\tthis.filterFn = this.wiki.compileFilter(this.wiki.getTiddlerText(this.titleSyncFilter));\n\t\t// Count of changes that have not yet been saved\n\t\tvar filteredChanges = self.filterFn.call(self.wiki,function(iterator) {\n\t\t\t\t$tw.utils.each(self.preloadDirty,function(title) {\n\t\t\t\t\tvar tiddler = self.wiki.getTiddler(title);\n\t\t\t\t\titerator(tiddler,title);\n\t\t\t\t});\n\t\t});\n\t\tthis.numChanges = filteredChanges.length;\n\t\t// Listen out for changes to tiddlers\n\t\tthis.wiki.addEventListener(\"change\",function(changes) {\n\t\t\t// Filter the changes so that we only count changes to tiddlers that we care about\n\t\t\tvar filteredChanges = self.filterFn.call(self.wiki,function(iterator) {\n\t\t\t\t$tw.utils.each(changes,function(change,title) {\n\t\t\t\t\tvar tiddler = self.wiki.getTiddler(title);\n\t\t\t\t\titerator(tiddler,title);\n\t\t\t\t});\n\t\t\t});\n\t\t\t// Adjust the number of changes\n\t\t\tself.numChanges += filteredChanges.length;\n\t\t\tself.updateDirtyStatus();\n\t\t\t// Do any autosave if one is pending and there's no more change events\n\t\t\tif(self.pendingAutoSave && self.wiki.getSizeOfTiddlerEventQueue() === 0) {\n\t\t\t\t// Check if we're dirty\n\t\t\t\tif(self.numChanges > 0) {\n\t\t\t\t\tself.saveWiki({\n\t\t\t\t\t\tmethod: \"autosave\",\n\t\t\t\t\t\tdownloadType: \"text/plain\"\n\t\t\t\t\t});\n\t\t\t\t}\n\t\t\t\tself.pendingAutoSave = false;\n\t\t\t}\n\t\t});\n\t\t// Listen for the autosave event\n\t\t$tw.rootWidget.addEventListener(\"tm-auto-save-wiki\",function(event) {\n\t\t\t// Do the autosave unless there are outstanding tiddler change events\n\t\t\tif(self.wiki.getSizeOfTiddlerEventQueue() === 0) {\n\t\t\t\t// Check if we're dirty\n\t\t\t\tif(self.numChanges > 0) {\n\t\t\t\t\tself.saveWiki({\n\t\t\t\t\t\tmethod: \"autosave\",\n\t\t\t\t\t\tdownloadType: \"text/plain\"\n\t\t\t\t\t});\n\t\t\t\t}\n\t\t\t} else {\n\t\t\t\t// Otherwise put ourselves in the \"pending autosave\" state and wait for the change event before we do the autosave\n\t\t\t\tself.pendingAutoSave = true;\n\t\t\t}\n\t\t});\n\t\t// Set up our beforeunload handler\n\t\t$tw.addUnloadTask(function(event) {\n\t\t\tvar confirmationMessage;\n\t\t\tif(self.isDirty()) {\n\t\t\t\tconfirmationMessage = $tw.language.getString(\"UnsavedChangesWarning\");\n\t\t\t\tevent.returnValue = confirmationMessage; // Gecko\n\t\t\t}\n\t\t\treturn confirmationMessage;\n\t\t});\n\t}\n\t// Install the save action handlers\n\tif($tw.browser) {\n\t\t$tw.rootWidget.addEventListener(\"tm-save-wiki\",function(event) {\n\t\t\tself.saveWiki({\n\t\t\t\ttemplate: event.param,\n\t\t\t\tdownloadType: \"text/plain\",\n\t\t\t\tvariables: event.paramObject\n\t\t\t});\n\t\t});\n\t\t$tw.rootWidget.addEventListener(\"tm-download-file\",function(event) {\n\t\t\tself.saveWiki({\n\t\t\t\tmethod: \"download\",\n\t\t\t\ttemplate: event.param,\n\t\t\t\tdownloadType: \"text/plain\",\n\t\t\t\tvariables: event.paramObject\n\t\t\t});\n\t\t});\n\t}\n}\n\nSaverHandler.prototype.titleSyncFilter = \"$:/config/SaverFilter\";\nSaverHandler.prototype.titleAutoSave = \"$:/config/AutoSave\";\nSaverHandler.prototype.titleSavedNotification = \"$:/language/Notifications/Save/Done\";\n\n/*\nSelect the appropriate saver modules and set them up\n*/\nSaverHandler.prototype.initSavers = function(moduleType) {\n\tmoduleType = moduleType || \"saver\";\n\t// Instantiate the available savers\n\tthis.savers = [];\n\tvar self = this;\n\t$tw.modules.forEachModuleOfType(moduleType,function(title,module) {\n\t\tif(module.canSave(self)) {\n\t\t\tself.savers.push(module.create(self.wiki));\n\t\t}\n\t});\n\t// Sort the savers into priority order\n\tthis.savers.sort(function(a,b) {\n\t\tif(a.info.priority < b.info.priority) {\n\t\t\treturn -1;\n\t\t} else {\n\t\t\tif(a.info.priority > b.info.priority) {\n\t\t\t\treturn +1;\n\t\t\t} else {\n\t\t\t\treturn 0;\n\t\t\t}\n\t\t}\n\t});\n};\n\n/*\nSave the wiki contents. Options are:\n\tmethod: \"save\", \"autosave\" or \"download\"\n\ttemplate: the tiddler containing the template to save\n\tdownloadType: the content type for the saved file\n*/\nSaverHandler.prototype.saveWiki = function(options) {\n\toptions = options || {};\n\tvar self = this,\n\t\tmethod = options.method || \"save\";\n\t// Ignore autosave if disabled\n\tif(method === \"autosave\" && ($tw.config.disableAutoSave || this.wiki.getTiddlerText(this.titleAutoSave,\"yes\") !== \"yes\")) {\n\t\treturn false;\n\t}\n\tvar\tvariables = options.variables || {},\n\t\ttemplate = options.template || \"$:/core/save/all\",\n\t\tdownloadType = options.downloadType || \"text/plain\",\n\t\ttext = this.wiki.renderTiddler(downloadType,template,options),\n\t\tcallback = function(err) {\n\t\t\tif(err) {\n\t\t\t\talert($tw.language.getString(\"Error/WhileSaving\") + \":\\n\\n\" + err);\n\t\t\t} else {\n\t\t\t\t// Clear the task queue if we're saving (rather than downloading)\n\t\t\t\tif(method !== \"download\") {\n\t\t\t\t\tself.numChanges = 0;\n\t\t\t\t\tself.updateDirtyStatus();\n\t\t\t\t}\n\t\t\t\t$tw.notifier.display(self.titleSavedNotification);\n\t\t\t\tif(options.callback) {\n\t\t\t\t\toptions.callback();\n\t\t\t\t}\n\t\t\t}\n\t\t};\n\t// Call the highest priority saver that supports this method\n\tfor(var t=this.savers.length-1; t>=0; t--) {\n\t\tvar saver = this.savers[t];\n\t\tif(saver.info.capabilities.indexOf(method) !== -1 && saver.save(text,method,callback,{variables: {filename: variables.filename}})) {\n\t\t\tthis.logger.log(\"Saving wiki with method\",method,\"through saver\",saver.info.name);\n\t\t\treturn true;\n\t\t}\n\t}\n\treturn false;\n};\n\n/*\nChecks whether the wiki is dirty (ie the window shouldn't be closed)\n*/\nSaverHandler.prototype.isDirty = function() {\n\treturn this.numChanges > 0;\n};\n\n/*\nUpdate the document body with the class \"tc-dirty\" if the wiki has unsaved/unsynced changes\n*/\nSaverHandler.prototype.updateDirtyStatus = function() {\n\tvar self = this;\n\tif($tw.browser) {\n\t\t$tw.utils.toggleClass(document.body,\"tc-dirty\",this.isDirty());\n\t\t$tw.utils.each($tw.windows,function(win) {\n\t\t\t$tw.utils.toggleClass(win.document.body,\"tc-dirty\",self.isDirty());\n\t\t});\n\t}\n};\n\nexports.SaverHandler = SaverHandler;\n\n})();\n",
"type": "application/javascript",
"module-type": "global"
},
"$:/core/modules/savers/andtidwiki.js": {
"title": "$:/core/modules/savers/andtidwiki.js",
"text": "/*\\\ntitle: $:/core/modules/savers/andtidwiki.js\ntype: application/javascript\nmodule-type: saver\n\nHandles saving changes via the AndTidWiki Android app\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false, netscape: false, Components: false */\n\"use strict\";\n\nvar AndTidWiki = function(wiki) {\n};\n\nAndTidWiki.prototype.save = function(text,method,callback,options) {\n\tvar filename = options && options.variables ? options.variables.filename : null;\n\tif (method === \"download\") {\n\t\t// Support download\n\t\tif (window.twi.saveDownload) {\n\t\t\ttry {\n\t\t\t\twindow.twi.saveDownload(text,filename);\n\t\t\t} catch(err) {\n\t\t\t\tif (err.message === \"Method not found\") {\n\t\t\t\t\twindow.twi.saveDownload(text);\n\t\t\t\t}\n\t\t\t}\n\t\t} else {\n\t\t\tvar link = document.createElement(\"a\");\n\t\t\tlink.setAttribute(\"href\",\"data:text/plain,\" + encodeURIComponent(text));\n\t\t\tif (filename) {\n\t\t\t link.setAttribute(\"download\",filename);\n\t\t\t}\n\t\t\tdocument.body.appendChild(link);\n\t\t\tlink.click();\n\t\t\tdocument.body.removeChild(link);\n\t\t}\n\t} else if (window.twi.saveWiki) {\n\t\t// Direct save in Tiddloid\n\t\twindow.twi.saveWiki(text);\n\t} else {\n\t\t// Get the pathname of this document\n\t\tvar pathname = decodeURIComponent(document.location.toString().split(\"#\")[0]);\n\t\t// Strip the file://\n\t\tif(pathname.indexOf(\"file://\") === 0) {\n\t\t\tpathname = pathname.substr(7);\n\t\t}\n\t\t// Strip any query or location part\n\t\tvar p = pathname.indexOf(\"?\");\n\t\tif(p !== -1) {\n\t\t\tpathname = pathname.substr(0,p);\n\t\t}\n\t\tp = pathname.indexOf(\"#\");\n\t\tif(p !== -1) {\n\t\t\tpathname = pathname.substr(0,p);\n\t\t}\n\t\t// Save the file\n\t\twindow.twi.saveFile(pathname,text);\n\t}\n\t// Call the callback\n\tcallback(null);\n\treturn true;\n};\n\n/*\nInformation about this saver\n*/\nAndTidWiki.prototype.info = {\n\tname: \"andtidwiki\",\n\tpriority: 1600,\n\tcapabilities: [\"save\", \"autosave\", \"download\"]\n};\n\n/*\nStatic method that returns true if this saver is capable of working\n*/\nexports.canSave = function(wiki) {\n\treturn !!window.twi && !!window.twi.saveFile;\n};\n\n/*\nCreate an instance of this saver\n*/\nexports.create = function(wiki) {\n\treturn new AndTidWiki(wiki);\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "saver"
},
"$:/core/modules/savers/beaker.js": {
"title": "$:/core/modules/savers/beaker.js",
"text": "/*\\\ntitle: $:/core/modules/savers/beaker.js\ntype: application/javascript\nmodule-type: saver\n\nSaves files using the Beaker browser's (https://beakerbrowser.com) Dat protocol (https://datproject.org/)\nCompatible with beaker >= V0.7.2\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nSet up the saver\n*/\nvar BeakerSaver = function(wiki) {\n\tthis.wiki = wiki;\n};\n\nBeakerSaver.prototype.save = function(text,method,callback) {\n\tvar dat = new DatArchive(\"\" + window.location),\n\t\tpathname = (\"\" + window.location.pathname).split(\"#\")[0];\n\tdat.stat(pathname).then(function(value) {\n\t\tif(value.isDirectory()) {\n\t\t\tpathname = pathname + \"/index.html\";\n\t\t}\n\t\tdat.writeFile(pathname,text,\"utf8\").then(function(value) {\n\t\t\tcallback(null);\n\t\t},function(reason) {\n\t\t\tcallback(\"Beaker Saver Write Error: \" + reason);\n\t\t});\n\t},function(reason) {\n\t\tcallback(\"Beaker Saver Stat Error: \" + reason);\n\t});\n\treturn true;\n};\n\n/*\nInformation about this saver\n*/\nBeakerSaver.prototype.info = {\n\tname: \"beaker\",\n\tpriority: 3000,\n\tcapabilities: [\"save\", \"autosave\"]\n};\n\n/*\nStatic method that returns true if this saver is capable of working\n*/\nexports.canSave = function(wiki) {\n\treturn !!window.DatArchive && location.protocol===\"dat:\";\n};\n\n/*\nCreate an instance of this saver\n*/\nexports.create = function(wiki) {\n\treturn new BeakerSaver(wiki);\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "saver"
},
"$:/core/modules/savers/custom.js": {
"title": "$:/core/modules/savers/custom.js",
"text": "/*\\\ntitle: $:/core/modules/savers/custom.js\ntype: application/javascript\nmodule-type: saver\n\nLooks for `window.$tw.customSaver` first on the current window, then\non the parent window (of an iframe). If present, the saver must define\n\tsave: function(text,method,callback) { ... }\nand the saver may define\n\tpriority: number\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar findSaver = function(window) {\n\ttry {\n\t\treturn window && window.$tw && window.$tw.customSaver;\n\t} catch (err) {\n\t\t// Catching the exception is the most reliable way to detect cross-origin iframe errors.\n\t\t// For example, instead of saying that `window.parent.$tw` is undefined, Firefox will throw\n\t\t// Uncaught DOMException: Permission denied to access property \"$tw\" on cross-origin object\n\t\tconsole.log({ msg: \"custom saver is disabled\", reason: err });\n\t\treturn null;\n\t}\n}\nvar saver = findSaver(window) || findSaver(window.parent) || {};\n\nvar CustomSaver = function(wiki) {\n};\n\nCustomSaver.prototype.save = function(text,method,callback) {\n\treturn saver.save(text, method, callback);\n};\n\n/*\nInformation about this saver\n*/\nCustomSaver.prototype.info = {\n\tname: \"custom\",\n\tpriority: saver.priority || 4000,\n\tcapabilities: [\"save\",\"autosave\"]\n};\n\n/*\nStatic method that returns true if this saver is capable of working\n*/\nexports.canSave = function(wiki) {\n\treturn !!(saver.save);\n};\n\n/*\nCreate an instance of this saver\n*/\nexports.create = function(wiki) {\n\treturn new CustomSaver(wiki);\n};\n})();\n",
"type": "application/javascript",
"module-type": "saver"
},
"$:/core/modules/savers/download.js": {
"title": "$:/core/modules/savers/download.js",
"text": "/*\\\ntitle: $:/core/modules/savers/download.js\ntype: application/javascript\nmodule-type: saver\n\nHandles saving changes via HTML5's download APIs\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nSelect the appropriate saver module and set it up\n*/\nvar DownloadSaver = function(wiki) {\n};\n\nDownloadSaver.prototype.save = function(text,method,callback,options) {\n\toptions = options || {};\n\t// Get the current filename\n\tvar filename = options.variables.filename;\n\tif(!filename) {\n\t\tvar p = document.location.pathname.lastIndexOf(\"/\");\n\t\tif(p !== -1) {\n\t\t\t// We decode the pathname because document.location is URL encoded by the browser\n\t\t\tfilename = decodeURIComponent(document.location.pathname.substr(p+1));\n\t\t}\n\t}\n\tif(!filename) {\n\t\tfilename = \"tiddlywiki.html\";\n\t}\n\t// Set up the link\n\tvar link = document.createElement(\"a\");\n\tif(Blob !== undefined) {\n\t\tvar blob = new Blob([text], {type: \"text/html\"});\n\t\tlink.setAttribute(\"href\", URL.createObjectURL(blob));\n\t} else {\n\t\tlink.setAttribute(\"href\",\"data:text/html,\" + encodeURIComponent(text));\n\t}\n\tlink.setAttribute(\"download\",filename);\n\tdocument.body.appendChild(link);\n\tlink.click();\n\tdocument.body.removeChild(link);\n\t// Callback that we succeeded\n\tcallback(null);\n\treturn true;\n};\n\n/*\nInformation about this saver\n*/\nDownloadSaver.prototype.info = {\n\tname: \"download\",\n\tpriority: 100\n};\n\nObject.defineProperty(DownloadSaver.prototype.info, \"capabilities\", {\n\tget: function() {\n\t\tvar capabilities = [\"save\", \"download\"];\n\t\tif(($tw.wiki.getTextReference(\"$:/config/DownloadSaver/AutoSave\") || \"\").toLowerCase() === \"yes\") {\n\t\t\tcapabilities.push(\"autosave\");\n\t\t}\n\t\treturn capabilities;\n\t}\n});\n\n/*\nStatic method that returns true if this saver is capable of working\n*/\nexports.canSave = function(wiki) {\n\treturn document.createElement(\"a\").download !== undefined;\n};\n\n/*\nCreate an instance of this saver\n*/\nexports.create = function(wiki) {\n\treturn new DownloadSaver(wiki);\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "saver"
},
"$:/core/modules/savers/fsosaver.js": {
"title": "$:/core/modules/savers/fsosaver.js",
"text": "/*\\\ntitle: $:/core/modules/savers/fsosaver.js\ntype: application/javascript\nmodule-type: saver\n\nHandles saving changes via MS FileSystemObject ActiveXObject\n\nNote: Since TiddlyWiki's markup contains the MOTW, the FileSystemObject normally won't be available. \nHowever, if the wiki is loaded as an .HTA file (Windows HTML Applications) then the FSO can be used.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nSelect the appropriate saver module and set it up\n*/\nvar FSOSaver = function(wiki) {\n};\n\nFSOSaver.prototype.save = function(text,method,callback) {\n\t// Get the pathname of this document\n\tvar pathname = unescape(document.location.pathname);\n\t// Test for a Windows path of the form /x:\\blah...\n\tif(/^\\/[A-Z]\\:\\\\[^\\\\]+/i.test(pathname)) {\t// ie: ^/[a-z]:/[^/]+\n\t\t// Remove the leading slash\n\t\tpathname = pathname.substr(1);\n\t} else if(document.location.hostname !== \"\" && /^\\/\\\\[^\\\\]+\\\\[^\\\\]+/i.test(pathname)) {\t// test for \\\\server\\share\\blah... - ^/[^/]+/[^/]+\n\t\t// Remove the leading slash\n\t\tpathname = pathname.substr(1);\n\t\t// reconstruct UNC path\n\t\tpathname = \"\\\\\\\\\" + document.location.hostname + pathname;\n\t} else {\n\t\treturn false;\n\t}\n\t// Save the file (as UTF-16)\n\tvar fso = new ActiveXObject(\"Scripting.FileSystemObject\");\n\tvar file = fso.OpenTextFile(pathname,2,-1,-1);\n\tfile.Write(text);\n\tfile.Close();\n\t// Callback that we succeeded\n\tcallback(null);\n\treturn true;\n};\n\n/*\nInformation about this saver\n*/\nFSOSaver.prototype.info = {\n\tname: \"FSOSaver\",\n\tpriority: 120,\n\tcapabilities: [\"save\", \"autosave\"]\n};\n\n/*\nStatic method that returns true if this saver is capable of working\n*/\nexports.canSave = function(wiki) {\n\ttry {\n\t\treturn (window.location.protocol === \"file:\") && !!(new ActiveXObject(\"Scripting.FileSystemObject\"));\n\t} catch(e) { return false; }\n};\n\n/*\nCreate an instance of this saver\n*/\nexports.create = function(wiki) {\n\treturn new FSOSaver(wiki);\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "saver"
},
"$:/core/modules/savers/gitea.js": {
"title": "$:/core/modules/savers/gitea.js",
"text": "/*\\\ntitle: $:/core/modules/savers/gitea.js\ntype: application/javascript\nmodule-type: saver\n\nSaves wiki by pushing a commit to the gitea\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nSelect the appropriate saver module and set it up\n*/\nvar GiteaSaver = function(wiki) {\n\tthis.wiki = wiki;\n};\n\nGiteaSaver.prototype.save = function(text,method,callback) {\n\tvar self = this,\n\t\tusername = this.wiki.getTiddlerText(\"$:/Gitea/Username\"),\n\t\tpassword = $tw.utils.getPassword(\"Gitea\"),\n\t\trepo = this.wiki.getTiddlerText(\"$:/Gitea/Repo\"),\n\t\tpath = this.wiki.getTiddlerText(\"$:/Gitea/Path\",\"\"),\n\t\tfilename = this.wiki.getTiddlerText(\"$:/Gitea/Filename\"),\n\t\tbranch = this.wiki.getTiddlerText(\"$:/Gitea/Branch\") || \"master\",\n\t\tendpoint = this.wiki.getTiddlerText(\"$:/Gitea/ServerURL\") || \"https://gitea\",\n\t\theaders = {\n\t\t\t\"Accept\": \"application/json\",\n\t\t\t\"Content-Type\": \"application/json;charset=UTF-8\",\n\t\t\t\"Authorization\": \"token \" + password\n\t\t};\n\t// Bail if we don't have everything we need\n\tif(!username || !password || !repo || !filename) {\n\t\treturn false;\n\t}\n\t// Make sure the path start and ends with a slash\n\tif(path.substring(0,1) !== \"/\") {\n\t\tpath = \"/\" + path;\n\t}\n\tif(path.substring(path.length - 1) !== \"/\") {\n\t\tpath = path + \"/\";\n\t}\n\t// Compose the base URI\n\tvar uri = endpoint + \"/repos/\" + repo + \"/contents\" + path;\n\t// Perform a get request to get the details (inc shas) of files in the same path as our file\n\t$tw.utils.httpRequest({\n\t\turl: uri,\n\t\ttype: \"GET\",\n\t\theaders: headers,\n\t\tdata: {\n\t\t\tref: branch\n\t\t},\n\t\tcallback: function(err,getResponseDataJson,xhr) {\n\t\t\tvar getResponseData,sha = \"\";\n\t\t\tif(err && xhr.status !== 404) {\n\t\t\t\treturn callback(err);\n\t\t\t}\n\t\t\tvar use_put = true;\n\t\t\tif(xhr.status !== 404) {\n\t\t\t\tgetResponseData = JSON.parse(getResponseDataJson);\n\t\t\t\t$tw.utils.each(getResponseData,function(details) {\n\t\t\t\t\tif(details.name === filename) {\n\t\t\t\t\t\tsha = details.sha;\n\t\t\t\t\t}\n\t\t\t\t});\n\t\t\t\tif(sha === \"\"){\n\t\t\t\t\tuse_put = false;\n\t\t\t\t}\n\t\t\t}\n\t\t\tvar data = {\n\t\t\t\tmessage: $tw.language.getRawString(\"ControlPanel/Saving/GitService/CommitMessage\"),\n\t\t\t\tcontent: $tw.utils.base64Encode(text),\n\t\t\t\tsha: sha\n\t\t\t};\n\t\t\t$tw.utils.httpRequest({\n\t\t\t\turl: endpoint + \"/repos/\" + repo + \"/branches/\" + branch,\n\t\t\t\ttype: \"GET\",\n\t\t\t\theaders: headers,\n\t\t\t\tcallback: function(err,getResponseDataJson,xhr) {\n\t\t\t\t\tif(xhr.status === 404) {\n\t\t\t\t\t\tcallback(\"Please ensure the branch in the Gitea repo exists\");\n\t\t\t\t\t}else{\n\t\t\t\t\t\tdata[\"branch\"] = branch;\n\t\t\t\t\t\tself.upload(uri + filename, use_put?\"PUT\":\"POST\", headers, data, callback);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t});\n\t\t}\n\t});\n\treturn true;\n};\n\nGiteaSaver.prototype.upload = function(uri,method,headers,data,callback) {\n\t$tw.utils.httpRequest({\n\t\turl: uri,\n\t\ttype: method,\n\t\theaders: headers,\n\t\tdata: JSON.stringify(data),\n\t\tcallback: function(err,putResponseDataJson,xhr) {\n\t\t\tif(err) {\n\t\t\t\treturn callback(err);\n\t\t\t}\n\t\t\tvar putResponseData = JSON.parse(putResponseDataJson);\n\t\t\tcallback(null);\n\t\t}\n\t});\n};\n\n/*\nInformation about this saver\n*/\nGiteaSaver.prototype.info = {\n\tname: \"Gitea\",\n\tpriority: 2000,\n\tcapabilities: [\"save\", \"autosave\"]\n};\n\n/*\nStatic method that returns true if this saver is capable of working\n*/\nexports.canSave = function(wiki) {\n\treturn true;\n};\n\n/*\nCreate an instance of this saver\n*/\nexports.create = function(wiki) {\n\treturn new GiteaSaver(wiki);\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "saver"
},
"$:/core/modules/savers/github.js": {
"title": "$:/core/modules/savers/github.js",
"text": "/*\\\ntitle: $:/core/modules/savers/github.js\ntype: application/javascript\nmodule-type: saver\n\nSaves wiki by pushing a commit to the GitHub v3 REST API\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nSelect the appropriate saver module and set it up\n*/\nvar GitHubSaver = function(wiki) {\n\tthis.wiki = wiki;\n};\n\nGitHubSaver.prototype.save = function(text,method,callback) {\n\tvar self = this,\n\t\tusername = this.wiki.getTiddlerText(\"$:/GitHub/Username\"),\n\t\tpassword = $tw.utils.getPassword(\"github\"),\n\t\trepo = this.wiki.getTiddlerText(\"$:/GitHub/Repo\"),\n\t\tpath = this.wiki.getTiddlerText(\"$:/GitHub/Path\",\"\"),\n\t\tfilename = this.wiki.getTiddlerText(\"$:/GitHub/Filename\"),\n\t\tbranch = this.wiki.getTiddlerText(\"$:/GitHub/Branch\") || \"main\",\n\t\tendpoint = this.wiki.getTiddlerText(\"$:/GitHub/ServerURL\") || \"https://api.github.com\",\n\t\theaders = {\n\t\t\t\"Accept\": \"application/vnd.github.v3+json\",\n\t\t\t\"Content-Type\": \"application/json;charset=UTF-8\",\n\t\t\t\"Authorization\": \"Basic \" + window.btoa(username + \":\" + password),\n\t\t\t\"If-None-Match\": \"\"\n\t\t};\n\t// Bail if we don't have everything we need\n\tif(!username || !password || !repo || !filename) {\n\t\treturn false;\n\t}\n\t// Make sure the path start and ends with a slash\n\tif(path.substring(0,1) !== \"/\") {\n\t\tpath = \"/\" + path;\n\t}\n\tif(path.substring(path.length - 1) !== \"/\") {\n\t\tpath = path + \"/\";\n\t}\n\t// Compose the base URI\n\tvar uri = endpoint + \"/repos/\" + repo + \"/contents\" + path;\n\t// Perform a get request to get the details (inc shas) of files in the same path as our file\n\t$tw.utils.httpRequest({\n\t\turl: uri,\n\t\ttype: \"GET\",\n\t\theaders: headers,\n\t\tdata: {\n\t\t\tref: branch\n\t\t},\n\t\tcallback: function(err,getResponseDataJson,xhr) {\n\t\t\tvar getResponseData,sha = \"\";\n\t\t\tif(err && xhr.status !== 404) {\n\t\t\t\treturn callback(err);\n\t\t\t}\n\t\t\tif(xhr.status !== 404) {\n\t\t\t\tgetResponseData = JSON.parse(getResponseDataJson);\n\t\t\t\t$tw.utils.each(getResponseData,function(details) {\n\t\t\t\t\tif(details.name === filename) {\n\t\t\t\t\t\tsha = details.sha;\n\t\t\t\t\t}\n\t\t\t\t});\n\t\t\t}\n\t\t\tvar data = {\n\t\t\t\tmessage: $tw.language.getRawString(\"ControlPanel/Saving/GitService/CommitMessage\"),\n\t\t\t\tcontent: $tw.utils.base64Encode(text),\n\t\t\t\tbranch: branch,\n\t\t\t\tsha: sha\n\t\t\t};\n\t\t\t// Perform a PUT request to save the file\n\t\t\t$tw.utils.httpRequest({\n\t\t\t\turl: uri + filename,\n\t\t\t\ttype: \"PUT\",\n\t\t\t\theaders: headers,\n\t\t\t\tdata: JSON.stringify(data),\n\t\t\t\tcallback: function(err,putResponseDataJson,xhr) {\n\t\t\t\t\tif(err) {\n\t\t\t\t\t\treturn callback(err);\n\t\t\t\t\t}\n\t\t\t\t\tvar putResponseData = JSON.parse(putResponseDataJson);\n\t\t\t\t\tcallback(null);\n\t\t\t\t}\n\t\t\t});\n\t\t}\n\t});\n\treturn true;\n};\n\n/*\nInformation about this saver\n*/\nGitHubSaver.prototype.info = {\n\tname: \"github\",\n\tpriority: 2000,\n\tcapabilities: [\"save\", \"autosave\"]\n};\n\n/*\nStatic method that returns true if this saver is capable of working\n*/\nexports.canSave = function(wiki) {\n\treturn true;\n};\n\n/*\nCreate an instance of this saver\n*/\nexports.create = function(wiki) {\n\treturn new GitHubSaver(wiki);\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "saver"
},
"$:/core/modules/savers/gitlab.js": {
"title": "$:/core/modules/savers/gitlab.js",
"text": "/*\\\ntitle: $:/core/modules/savers/gitlab.js\ntype: application/javascript\nmodule-type: saver\n\nSaves wiki by pushing a commit to the GitLab REST API\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: true */\n\"use strict\";\n\n/*\nSelect the appropriate saver module and set it up\n*/\nvar GitLabSaver = function(wiki) {\n\tthis.wiki = wiki;\n};\n\nGitLabSaver.prototype.save = function(text,method,callback) {\n\t/* See https://docs.gitlab.com/ee/api/repository_files.html */\n\tvar self = this,\n\t\tusername = this.wiki.getTiddlerText(\"$:/GitLab/Username\"),\n\t\tpassword = $tw.utils.getPassword(\"gitlab\"),\n\t\trepo = this.wiki.getTiddlerText(\"$:/GitLab/Repo\"),\n\t\tpath = this.wiki.getTiddlerText(\"$:/GitLab/Path\",\"\"),\n\t\tfilename = this.wiki.getTiddlerText(\"$:/GitLab/Filename\"),\n\t\tbranch = this.wiki.getTiddlerText(\"$:/GitLab/Branch\") || \"master\",\n\t\tendpoint = this.wiki.getTiddlerText(\"$:/GitLab/ServerURL\") || \"https://gitlab.com/api/v4\",\n\t\theaders = {\n\t\t\t\"Content-Type\": \"application/json;charset=UTF-8\",\n\t\t\t\"Private-Token\": password\n\t\t};\n\t// Bail if we don't have everything we need\n\tif(!username || !password || !repo || !filename) {\n\t\treturn false;\n\t}\n\t// Make sure the path start and ends with a slash\n\tif(path.substring(0,1) !== \"/\") {\n\t\tpath = \"/\" + path;\n\t}\n\tif(path.substring(path.length - 1) !== \"/\") {\n\t\tpath = path + \"/\";\n\t}\n\t// Compose the base URI\n\tvar uri = endpoint + \"/projects/\" + encodeURIComponent(repo) + \"/repository/\";\n\t// Perform a get request to get the details (inc shas) of files in the same path as our file\n\t$tw.utils.httpRequest({\n\t\turl: uri + \"tree/?path=\" + encodeURIComponent(path.replace(/^\\/+|\\/$/g, '')) + \"&branch=\" + encodeURIComponent(branch.replace(/^\\/+|\\/$/g, '')),\n\t\ttype: \"GET\",\n\t\theaders: headers,\n\t\tcallback: function(err,getResponseDataJson,xhr) {\n\t\t\tvar getResponseData,sha = \"\";\n\t\t\tif(err && xhr.status !== 404) {\n\t\t\t\treturn callback(err);\n\t\t\t}\n\t\t\tvar requestType = \"POST\";\n\t\t\tif(xhr.status !== 404) {\n\t\t\t\tgetResponseData = JSON.parse(getResponseDataJson);\n\t\t\t\t$tw.utils.each(getResponseData,function(details) {\n\t\t\t\t\tif(details.name === filename) {\n\t\t\t\t\t\trequestType = \"PUT\";\n\t\t\t\t\t\tsha = details.sha;\n\t\t\t\t\t}\n\t\t\t\t});\n\t\t\t}\n\t\t\tvar data = {\n\t\t\t\tcommit_message: $tw.language.getRawString(\"ControlPanel/Saving/GitService/CommitMessage\"),\n\t\t\t\tcontent: text,\n\t\t\t\tbranch: branch,\n\t\t\t\tsha: sha\n\t\t\t};\n\t\t\t// Perform a request to save the file\n\t\t\t$tw.utils.httpRequest({\n\t\t\t\turl: uri + \"files/\" + encodeURIComponent(path.replace(/^\\/+/, '') + filename),\n\t\t\t\ttype: requestType,\n\t\t\t\theaders: headers,\n\t\t\t\tdata: JSON.stringify(data),\n\t\t\t\tcallback: function(err,putResponseDataJson,xhr) {\n\t\t\t\t\tif(err) {\n\t\t\t\t\t\treturn callback(err);\n\t\t\t\t\t}\n\t\t\t\t\tvar putResponseData = JSON.parse(putResponseDataJson);\n\t\t\t\t\tcallback(null);\n\t\t\t\t}\n\t\t\t});\n\t\t}\n\t});\n\treturn true;\n};\n\n/*\nInformation about this saver\n*/\nGitLabSaver.prototype.info = {\n\tname: \"gitlab\",\n\tpriority: 2000,\n\tcapabilities: [\"save\", \"autosave\"]\n};\n\n/*\nStatic method that returns true if this saver is capable of working\n*/\nexports.canSave = function(wiki) {\n\treturn true;\n};\n\n/*\nCreate an instance of this saver\n*/\nexports.create = function(wiki) {\n\treturn new GitLabSaver(wiki);\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "saver"
},
"$:/core/modules/savers/hyperdrive.js": {
"title": "$:/core/modules/savers/hyperdrive.js",
"text": "/*\\\ntitle: $:/core/modules/savers/hyperdrive.js\ntype: application/javascript\nmodule-type: saver\n\nSaves files using the Hyperdrive Protocol (https://hypercore-protocol.org/#hyperdrive) Beaker browser beta-1.0 and later (https://beakerbrowser.com)\nCompatible with beaker >= V1.0.0\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nSet up the saver\n*/\nvar HyperdriveSaver = function(wiki) {\n\tthis.wiki = wiki;\n};\n\nHyperdriveSaver.prototype.save = function(text,method,callback) {\n\tvar dat = beaker.hyperdrive.drive(\"\" + window.location),\n\t\tpathname = (\"\" + window.location.pathname).split(\"#\")[0];\n\tdat.stat(pathname).then(function(value) {\n\t\tif(value.isDirectory()) {\n\t\t\tpathname = pathname + \"/index.html\";\n\t\t}\n\t\tdat.writeFile(pathname,text,\"utf8\").then(function(value) {\n\t\t\tcallback(null);\n\t\t},function(reason) {\n\t\t\tcallback(\"Hyperdrive Saver Write Error: \" + reason);\n\t\t});\n\t},function(reason) {\n\t\tcallback(\"Hyperdrive Saver Stat Error: \" + reason);\n\t});\n\treturn true;\n};\n\n/*\nInformation about this saver\n*/\nHyperdriveSaver.prototype.info = {\n\tname: \"beaker-1.x\",\n\tpriority: 3000,\n\tcapabilities: [\"save\", \"autosave\"]\n};\n\n/*\nStatic method that returns true if this saver is capable of working\n*/\nexports.canSave = function(wiki) {\n\treturn !!window.beaker && !!beaker.hyperdrive && location.protocol===\"hyper:\";\n};\n\n/*\nCreate an instance of this saver\n*/\nexports.create = function(wiki) {\n\treturn new HyperdriveSaver(wiki);\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "saver"
},
"$:/core/modules/savers/manualdownload.js": {
"title": "$:/core/modules/savers/manualdownload.js",
"text": "/*\\\ntitle: $:/core/modules/savers/manualdownload.js\ntype: application/javascript\nmodule-type: saver\n\nHandles saving changes via HTML5's download APIs\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n// Title of the tiddler containing the download message\nvar downloadInstructionsTitle = \"$:/language/Modals/Download\";\n\n/*\nSelect the appropriate saver module and set it up\n*/\nvar ManualDownloadSaver = function(wiki) {\n};\n\nManualDownloadSaver.prototype.save = function(text,method,callback) {\n\t$tw.modal.display(downloadInstructionsTitle,{\n\t\tdownloadLink: \"data:text/html,\" + encodeURIComponent(text)\n\t});\n\t// Callback that we succeeded\n\tcallback(null);\n\treturn true;\n};\n\n/*\nInformation about this saver\n*/\nManualDownloadSaver.prototype.info = {\n\tname: \"manualdownload\",\n\tpriority: 0,\n\tcapabilities: [\"save\", \"download\"]\n};\n\n/*\nStatic method that returns true if this saver is capable of working\n*/\nexports.canSave = function(wiki) {\n\treturn true;\n};\n\n/*\nCreate an instance of this saver\n*/\nexports.create = function(wiki) {\n\treturn new ManualDownloadSaver(wiki);\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "saver"
},
"$:/core/modules/savers/msdownload.js": {
"title": "$:/core/modules/savers/msdownload.js",
"text": "/*\\\ntitle: $:/core/modules/savers/msdownload.js\ntype: application/javascript\nmodule-type: saver\n\nHandles saving changes via window.navigator.msSaveBlob()\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nSelect the appropriate saver module and set it up\n*/\nvar MsDownloadSaver = function(wiki) {\n};\n\nMsDownloadSaver.prototype.save = function(text,method,callback) {\n\t// Get the current filename\n\tvar filename = \"tiddlywiki.html\",\n\t\tp = document.location.pathname.lastIndexOf(\"/\");\n\tif(p !== -1) {\n\t\tfilename = document.location.pathname.substr(p+1);\n\t}\n\t// Set up the link\n\tvar blob = new Blob([text], {type: \"text/html\"});\n\twindow.navigator.msSaveBlob(blob,filename);\n\t// Callback that we succeeded\n\tcallback(null);\n\treturn true;\n};\n\n/*\nInformation about this saver\n*/\nMsDownloadSaver.prototype.info = {\n\tname: \"msdownload\",\n\tpriority: 110,\n\tcapabilities: [\"save\", \"download\"]\n};\n\n/*\nStatic method that returns true if this saver is capable of working\n*/\nexports.canSave = function(wiki) {\n\treturn !!window.navigator.msSaveBlob;\n};\n\n/*\nCreate an instance of this saver\n*/\nexports.create = function(wiki) {\n\treturn new MsDownloadSaver(wiki);\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "saver"
},
"$:/core/modules/savers/put.js": {
"title": "$:/core/modules/savers/put.js",
"text": "/*\\\ntitle: $:/core/modules/savers/put.js\ntype: application/javascript\nmodule-type: saver\n\nSaves wiki by performing a PUT request to the server\n\nWorks with any server which accepts a PUT request\nto the current URL, such as a WebDAV server.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nRetrieve ETag if available\n*/\nvar retrieveETag = function(self) {\n\tvar headers = {\n\t\tAccept: \"*/*;charset=UTF-8\"\n\t};\n\t$tw.utils.httpRequest({\n\t\turl: self.uri(),\n\t\ttype: \"HEAD\",\n\t\theaders: headers,\n\t\tcallback: function(err,data,xhr) {\n\t\t\tif(err) {\n\t\t\t\treturn;\n\t\t\t}\n\t\t\tvar etag = xhr.getResponseHeader(\"ETag\");\n\t\t\tif(!etag) {\n\t\t\t\treturn;\n\t\t\t}\n\t\t\tself.etag = etag.replace(/^W\\//,\"\");\n\t\t}\n\t});\n};\n\n\n/*\nSelect the appropriate saver module and set it up\n*/\nvar PutSaver = function(wiki) {\n\tthis.wiki = wiki;\n\tvar self = this;\n\tvar uri = this.uri();\n\t// Async server probe. Until probe finishes, save will fail fast\n\t// See also https://github.com/Jermolene/TiddlyWiki5/issues/2276\n\t$tw.utils.httpRequest({\n\t\turl: uri,\n\t\ttype: \"OPTIONS\",\n\t\tcallback: function(err,data,xhr) {\n\t\t\t// Check DAV header http://www.webdav.org/specs/rfc2518.html#rfc.section.9.1\n\t\t\tif(!err) {\n\t\t\t\tself.serverAcceptsPuts = xhr.status === 200 && !!xhr.getResponseHeader(\"dav\");\n\t\t\t}\n\t\t}\n\t});\n\tretrieveETag(this);\n};\n\nPutSaver.prototype.uri = function() {\n\treturn document.location.toString().split(\"#\")[0];\n};\n\n// TODO: in case of edit conflict\n// Prompt: Do you want to save over this? Y/N\n// Merging would be ideal, and may be possible using future generic merge flow\nPutSaver.prototype.save = function(text,method,callback) {\n\tif(!this.serverAcceptsPuts) {\n\t\treturn false;\n\t}\n\tvar self = this;\n\tvar headers = {\n\t\t\"Content-Type\": \"text/html;charset=UTF-8\"\n\t};\n\tif(this.etag) {\n\t\theaders[\"If-Match\"] = this.etag;\n\t}\n\t$tw.utils.httpRequest({\n\t\turl: this.uri(),\n\t\ttype: \"PUT\",\n\t\theaders: headers,\n\t\tdata: text,\n\t\tcallback: function(err,data,xhr) {\n\t\t\tif(err) {\n\t\t\t\t// response is textual: \"XMLHttpRequest error code: 412\"\n\t\t\t\tvar status = Number(err.substring(err.indexOf(':') + 2, err.length))\n\t\t\t\tif(status === 412) { // edit conflict\n\t\t\t\t\tvar message = $tw.language.getString(\"Error/EditConflict\");\n\t\t\t\t\tcallback(message);\n\t\t\t\t} else {\n\t\t\t\t\tcallback(err); // fail\n\t\t\t\t}\n\t\t\t} else {\n\t\t\t\tself.etag = xhr.getResponseHeader(\"ETag\");\n\t\t\t\tif(self.etag == null) {\n\t\t\t\t\tretrieveETag(self);\n\t\t\t\t}\n\t\t\t\tcallback(null); // success\n\t\t\t}\n\t\t}\n\t});\n\treturn true;\n};\n\n/*\nInformation about this saver\n*/\nPutSaver.prototype.info = {\n\tname: \"put\",\n\tpriority: 2000,\n\tcapabilities: [\"save\",\"autosave\"]\n};\n\n/*\nStatic method that returns true if this saver is capable of working\n*/\nexports.canSave = function(wiki) {\n\treturn /^https?:/.test(location.protocol);\n};\n\n/*\nCreate an instance of this saver\n*/\nexports.create = function(wiki) {\n\treturn new PutSaver(wiki);\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "saver"
},
"$:/core/modules/savers/tiddlyfox.js": {
"title": "$:/core/modules/savers/tiddlyfox.js",
"text": "/*\\\ntitle: $:/core/modules/savers/tiddlyfox.js\ntype: application/javascript\nmodule-type: saver\n\nHandles saving changes via the TiddlyFox file extension\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false, netscape: false, Components: false */\n\"use strict\";\n\nvar TiddlyFoxSaver = function(wiki) {\n};\n\nTiddlyFoxSaver.prototype.save = function(text,method,callback) {\n\tvar messageBox = document.getElementById(\"tiddlyfox-message-box\");\n\tif(messageBox) {\n\t\t// Get the pathname of this document\n\t\tvar pathname = document.location.toString().split(\"#\")[0];\n\t\t// Replace file://localhost/ with file:///\n\t\tif(pathname.indexOf(\"file://localhost/\") === 0) {\n\t\t\tpathname = \"file://\" + pathname.substr(16);\n\t\t}\n\t\t// Windows path file:///x:/blah/blah --> x:\\blah\\blah\n\t\tif(/^file\\:\\/\\/\\/[A-Z]\\:\\//i.test(pathname)) {\n\t\t\t// Remove the leading slash and convert slashes to backslashes\n\t\t\tpathname = pathname.substr(8).replace(/\\//g,\"\\\\\");\n\t\t// Firefox Windows network path file://///server/share/blah/blah --> //server/share/blah/blah\n\t\t} else if(pathname.indexOf(\"file://///\") === 0) {\n\t\t\tpathname = \"\\\\\\\\\" + unescape(pathname.substr(10)).replace(/\\//g,\"\\\\\");\n\t\t// Mac/Unix local path file:///path/path --> /path/path\n\t\t} else if(pathname.indexOf(\"file:///\") === 0) {\n\t\t\tpathname = unescape(pathname.substr(7));\n\t\t// Mac/Unix local path file:/path/path --> /path/path\n\t\t} else if(pathname.indexOf(\"file:/\") === 0) {\n\t\t\tpathname = unescape(pathname.substr(5));\n\t\t// Otherwise Windows networth path file://server/share/path/path --> \\\\server\\share\\path\\path\n\t\t} else {\n\t\t\tpathname = \"\\\\\\\\\" + unescape(pathname.substr(7)).replace(new RegExp(\"/\",\"g\"),\"\\\\\");\n\t\t}\n\t\t// Create the message element and put it in the message box\n\t\tvar message = document.createElement(\"div\");\n\t\tmessage.setAttribute(\"data-tiddlyfox-path\",decodeURIComponent(pathname));\n\t\tmessage.setAttribute(\"data-tiddlyfox-content\",text);\n\t\tmessageBox.appendChild(message);\n\t\t// Add an event handler for when the file has been saved\n\t\tmessage.addEventListener(\"tiddlyfox-have-saved-file\",function(event) {\n\t\t\tcallback(null);\n\t\t}, false);\n\t\t// Create and dispatch the custom event to the extension\n\t\tvar event = document.createEvent(\"Events\");\n\t\tevent.initEvent(\"tiddlyfox-save-file\",true,false);\n\t\tmessage.dispatchEvent(event);\n\t\treturn true;\n\t} else {\n\t\treturn false;\n\t}\n};\n\n/*\nInformation about this saver\n*/\nTiddlyFoxSaver.prototype.info = {\n\tname: \"tiddlyfox\",\n\tpriority: 1500,\n\tcapabilities: [\"save\", \"autosave\"]\n};\n\n/*\nStatic method that returns true if this saver is capable of working\n*/\nexports.canSave = function(wiki) {\n\treturn true;\n};\n\n/*\nCreate an instance of this saver\n*/\nexports.create = function(wiki) {\n\treturn new TiddlyFoxSaver(wiki);\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "saver"
},
"$:/core/modules/savers/tiddlyie.js": {
"title": "$:/core/modules/savers/tiddlyie.js",
"text": "/*\\\ntitle: $:/core/modules/savers/tiddlyie.js\ntype: application/javascript\nmodule-type: saver\n\nHandles saving changes via Internet Explorer BHO extenion (TiddlyIE)\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nSelect the appropriate saver module and set it up\n*/\nvar TiddlyIESaver = function(wiki) {\n};\n\nTiddlyIESaver.prototype.save = function(text,method,callback) {\n\t// Check existence of TiddlyIE BHO extension (note: only works after document is complete)\n\tif(typeof(window.TiddlyIE) != \"undefined\") {\n\t\t// Get the pathname of this document\n\t\tvar pathname = unescape(document.location.pathname);\n\t\t// Test for a Windows path of the form /x:/blah...\n\t\tif(/^\\/[A-Z]\\:\\/[^\\/]+/i.test(pathname)) {\t// ie: ^/[a-z]:/[^/]+ (is this better?: ^/[a-z]:/[^/]+(/[^/]+)*\\.[^/]+ )\n\t\t\t// Remove the leading slash\n\t\t\tpathname = pathname.substr(1);\n\t\t\t// Convert slashes to backslashes\n\t\t\tpathname = pathname.replace(/\\//g,\"\\\\\");\n\t\t} else if(document.hostname !== \"\" && /^\\/[^\\/]+\\/[^\\/]+/i.test(pathname)) {\t// test for \\\\server\\share\\blah... - ^/[^/]+/[^/]+\n\t\t\t// Convert slashes to backslashes\n\t\t\tpathname = pathname.replace(/\\//g,\"\\\\\");\n\t\t\t// reconstruct UNC path\n\t\t\tpathname = \"\\\\\\\\\" + document.location.hostname + pathname;\n\t\t} else return false;\n\t\t// Prompt the user to save the file\n\t\twindow.TiddlyIE.save(pathname, text);\n\t\t// Callback that we succeeded\n\t\tcallback(null);\n\t\treturn true;\n\t} else {\n\t\treturn false;\n\t}\n};\n\n/*\nInformation about this saver\n*/\nTiddlyIESaver.prototype.info = {\n\tname: \"tiddlyiesaver\",\n\tpriority: 1500,\n\tcapabilities: [\"save\"]\n};\n\n/*\nStatic method that returns true if this saver is capable of working\n*/\nexports.canSave = function(wiki) {\n\treturn (window.location.protocol === \"file:\");\n};\n\n/*\nCreate an instance of this saver\n*/\nexports.create = function(wiki) {\n\treturn new TiddlyIESaver(wiki);\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "saver"
},
"$:/core/modules/savers/twedit.js": {
"title": "$:/core/modules/savers/twedit.js",
"text": "/*\\\ntitle: $:/core/modules/savers/twedit.js\ntype: application/javascript\nmodule-type: saver\n\nHandles saving changes via the TWEdit iOS app\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false, netscape: false, Components: false */\n\"use strict\";\n\nvar TWEditSaver = function(wiki) {\n};\n\nTWEditSaver.prototype.save = function(text,method,callback) {\n\t// Bail if we're not running under TWEdit\n\tif(typeof DeviceInfo !== \"object\") {\n\t\treturn false;\n\t}\n\t// Get the pathname of this document\n\tvar pathname = decodeURIComponent(document.location.pathname);\n\t// Strip any query or location part\n\tvar p = pathname.indexOf(\"?\");\n\tif(p !== -1) {\n\t\tpathname = pathname.substr(0,p);\n\t}\n\tp = pathname.indexOf(\"#\");\n\tif(p !== -1) {\n\t\tpathname = pathname.substr(0,p);\n\t}\n\t// Remove the leading \"/Documents\" from path\n\tvar prefix = \"/Documents\";\n\tif(pathname.indexOf(prefix) === 0) {\n\t\tpathname = pathname.substr(prefix.length);\n\t}\n\t// Error handler\n\tvar errorHandler = function(event) {\n\t\t// Error\n\t\tcallback($tw.language.getString(\"Error/SavingToTWEdit\") + \": \" + event.target.error.code);\n\t};\n\t// Get the file system\n\twindow.requestFileSystem(LocalFileSystem.PERSISTENT,0,function(fileSystem) {\n\t\t// Now we've got the filesystem, get the fileEntry\n\t\tfileSystem.root.getFile(pathname, {create: true}, function(fileEntry) {\n\t\t\t// Now we've got the fileEntry, create the writer\n\t\t\tfileEntry.createWriter(function(writer) {\n\t\t\t\twriter.onerror = errorHandler;\n\t\t\t\twriter.onwrite = function() {\n\t\t\t\t\tcallback(null);\n\t\t\t\t};\n\t\t\t\twriter.position = 0;\n\t\t\t\twriter.write(text);\n\t\t\t},errorHandler);\n\t\t}, errorHandler);\n\t}, errorHandler);\n\treturn true;\n};\n\n/*\nInformation about this saver\n*/\nTWEditSaver.prototype.info = {\n\tname: \"twedit\",\n\tpriority: 1600,\n\tcapabilities: [\"save\", \"autosave\"]\n};\n\n/*\nStatic method that returns true if this saver is capable of working\n*/\nexports.canSave = function(wiki) {\n\treturn true;\n};\n\n/*\nCreate an instance of this saver\n*/\nexports.create = function(wiki) {\n\treturn new TWEditSaver(wiki);\n};\n\n/////////////////////////// Hack\n// HACK: This ensures that TWEdit recognises us as a TiddlyWiki document\nif($tw.browser) {\n\twindow.version = {title: \"TiddlyWiki\"};\n}\n\n})();\n",
"type": "application/javascript",
"module-type": "saver"
},
"$:/core/modules/savers/upload.js": {
"title": "$:/core/modules/savers/upload.js",
"text": "/*\\\ntitle: $:/core/modules/savers/upload.js\ntype: application/javascript\nmodule-type: saver\n\nHandles saving changes via upload to a server.\n\nDesigned to be compatible with BidiX's UploadPlugin at http://tiddlywiki.bidix.info/#UploadPlugin\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nSelect the appropriate saver module and set it up\n*/\nvar UploadSaver = function(wiki) {\n\tthis.wiki = wiki;\n};\n\nUploadSaver.prototype.save = function(text,method,callback) {\n\t// Get the various parameters we need\n\tvar backupDir = this.wiki.getTextReference(\"$:/UploadBackupDir\") || \".\",\n\t\tusername = this.wiki.getTextReference(\"$:/UploadName\"),\n\t\tpassword = $tw.utils.getPassword(\"upload\"),\n\t\tuploadDir = this.wiki.getTextReference(\"$:/UploadDir\") || \".\",\n\t\tuploadFilename = this.wiki.getTextReference(\"$:/UploadFilename\") || \"index.html\",\n\t\turl = this.wiki.getTextReference(\"$:/UploadURL\");\n\t// Bail out if we don't have the bits we need\n\tif(!username || username.toString().trim() === \"\" || !password || password.toString().trim() === \"\") {\n\t\treturn false;\n\t}\n\t// Construct the url if not provided\n\tif(!url) {\n\t\turl = \"http://\" + username + \".tiddlyspot.com/store.cgi\";\n\t}\n\t// Assemble the header\n\tvar boundary = \"---------------------------\" + \"AaB03x\";\t\n\tvar uploadFormName = \"UploadPlugin\";\n\tvar head = [];\n\thead.push(\"--\" + boundary + \"\\r\\nContent-disposition: form-data; name=\\\"UploadPlugin\\\"\\r\\n\");\n\thead.push(\"backupDir=\" + backupDir + \";user=\" + username + \";password=\" + password + \";uploaddir=\" + uploadDir + \";;\"); \n\thead.push(\"\\r\\n\" + \"--\" + boundary);\n\thead.push(\"Content-disposition: form-data; name=\\\"userfile\\\"; filename=\\\"\" + uploadFilename + \"\\\"\");\n\thead.push(\"Content-Type: text/html;charset=UTF-8\");\n\thead.push(\"Content-Length: \" + text.length + \"\\r\\n\");\n\thead.push(\"\");\n\t// Assemble the tail and the data itself\n\tvar tail = \"\\r\\n--\" + boundary + \"--\\r\\n\",\n\t\tdata = head.join(\"\\r\\n\") + text + tail;\n\t// Do the HTTP post\n\tvar http = new XMLHttpRequest();\n\thttp.open(\"POST\",url,true,username,password);\n\thttp.setRequestHeader(\"Content-Type\",\"multipart/form-data; charset=UTF-8; boundary=\" + boundary);\n\thttp.onreadystatechange = function() {\n\t\tif(http.readyState == 4 && http.status == 200) {\n\t\t\tif(http.responseText.substr(0,4) === \"0 - \") {\n\t\t\t\tcallback(null);\n\t\t\t} else {\n\t\t\t\tcallback(http.responseText);\n\t\t\t}\n\t\t}\n\t};\n\ttry {\n\t\thttp.send(data);\n\t} catch(ex) {\n\t\treturn callback($tw.language.getString(\"Error/Caption\") + \":\" + ex);\n\t}\n\t$tw.notifier.display(\"$:/language/Notifications/Save/Starting\");\n\treturn true;\n};\n\n/*\nInformation about this saver\n*/\nUploadSaver.prototype.info = {\n\tname: \"upload\",\n\tpriority: 2000,\n\tcapabilities: [\"save\", \"autosave\"]\n};\n\n/*\nStatic method that returns true if this saver is capable of working\n*/\nexports.canSave = function(wiki) {\n\treturn true;\n};\n\n/*\nCreate an instance of this saver\n*/\nexports.create = function(wiki) {\n\treturn new UploadSaver(wiki);\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "saver"
},
"$:/core/modules/server/authenticators/basic.js": {
"title": "$:/core/modules/server/authenticators/basic.js",
"text": "/*\\\ntitle: $:/core/modules/server/authenticators/basic.js\ntype: application/javascript\nmodule-type: authenticator\n\nAuthenticator for WWW basic authentication\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nif($tw.node) {\n\tvar util = require(\"util\"),\n\t\tfs = require(\"fs\"),\n\t\turl = require(\"url\"),\n\t\tpath = require(\"path\");\n}\n\nfunction BasicAuthenticator(server) {\n\tthis.server = server;\n\tthis.credentialsData = [];\n}\n\n/*\nReturns true if the authenticator is active, false if it is inactive, or a string if there is an error\n*/\nBasicAuthenticator.prototype.init = function() {\n\t// Read the credentials data\n\tthis.credentialsFilepath = this.server.get(\"credentials\");\n\tif(this.credentialsFilepath) {\n\t\tvar resolveCredentialsFilepath = path.resolve(this.server.boot.wikiPath,this.credentialsFilepath);\n\t\tif(fs.existsSync(resolveCredentialsFilepath) && !fs.statSync(resolveCredentialsFilepath).isDirectory()) {\n\t\t\tvar credentialsText = fs.readFileSync(resolveCredentialsFilepath,\"utf8\"),\n\t\t\t\tcredentialsData = $tw.utils.parseCsvStringWithHeader(credentialsText);\n\t\t\tif(typeof credentialsData === \"string\") {\n\t\t\t\treturn \"Error: \" + credentialsData + \" reading credentials from '\" + resolveCredentialsFilepath + \"'\";\n\t\t\t} else {\n\t\t\t\tthis.credentialsData = credentialsData;\n\t\t\t}\n\t\t} else {\n\t\t\treturn \"Error: Unable to load user credentials from '\" + resolveCredentialsFilepath + \"'\";\n\t\t}\n\t}\n\t// Add the hardcoded username and password if specified\n\tif(this.server.get(\"username\") && this.server.get(\"password\")) {\n\t\tthis.credentialsData = this.credentialsData || [];\n\t\tthis.credentialsData.push({\n\t\t\tusername: this.server.get(\"username\"),\n\t\t\tpassword: this.server.get(\"password\")\n\t\t});\n\t}\n\treturn this.credentialsData.length > 0;\n};\n\n/*\nReturns true if the request is authenticated and assigns the \"authenticatedUsername\" state variable.\nReturns false if the request couldn't be authenticated having sent an appropriate response to the browser\n*/\nBasicAuthenticator.prototype.authenticateRequest = function(request,response,state) {\n\t// Extract the incoming username and password from the request\n\tvar header = request.headers.authorization || \"\";\n\tif(!header && state.allowAnon) {\n\t\t// If there's no header and anonymous access is allowed then we don't set authenticatedUsername\n\t\treturn true;\n\t}\n\tvar token = header.split(/\\s+/).pop() || \"\",\n\t\tauth = $tw.utils.base64Decode(token),\n\t\tparts = auth.split(/:/),\n\t\tincomingUsername = parts[0],\n\t\tincomingPassword = parts[1];\n\t// Check that at least one of the credentials matches\n\tvar matchingCredentials = this.credentialsData.find(function(credential) {\n\t\treturn credential.username === incomingUsername && credential.password === incomingPassword;\n\t});\n\tif(matchingCredentials) {\n\t\t// If so, add the authenticated username to the request state\n\t\tstate.authenticatedUsername = incomingUsername;\n\t\treturn true;\n\t} else {\n\t\t// If not, return an authentication challenge\n\t\tresponse.writeHead(401,\"Authentication required\",{\n\t\t\t\"WWW-Authenticate\": 'Basic realm=\"Please provide your username and password to login to ' + state.server.servername + '\"'\n\t\t});\n\t\tresponse.end();\n\t\treturn false;\n\t}\n};\n\nexports.AuthenticatorClass = BasicAuthenticator;\n\n})();\n",
"type": "application/javascript",
"module-type": "authenticator"
},
"$:/core/modules/server/authenticators/header.js": {
"title": "$:/core/modules/server/authenticators/header.js",
"text": "/*\\\ntitle: $:/core/modules/server/authenticators/header.js\ntype: application/javascript\nmodule-type: authenticator\n\nAuthenticator for trusted header authentication\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nfunction HeaderAuthenticator(server) {\n\tthis.server = server;\n\tthis.header = server.get(\"authenticated-user-header\") ? server.get(\"authenticated-user-header\").toLowerCase() : undefined;\n}\n\n/*\nReturns true if the authenticator is active, false if it is inactive, or a string if there is an error\n*/\nHeaderAuthenticator.prototype.init = function() {\n\treturn !!this.header;\n};\n\n/*\nReturns true if the request is authenticated and assigns the \"authenticatedUsername\" state variable.\nReturns false if the request couldn't be authenticated having sent an appropriate response to the browser\n*/\nHeaderAuthenticator.prototype.authenticateRequest = function(request,response,state) {\n\t// Otherwise, authenticate as the username in the specified header\n\tvar username = request.headers[this.header];\n\tif(!username && !state.allowAnon) {\n\t\tresponse.writeHead(401,\"Authorization header required to login to '\" + state.server.servername + \"'\");\n\t\tresponse.end();\n\t\treturn false;\n\t} else {\n\t\t// authenticatedUsername will be undefined for anonymous users\n\t\tstate.authenticatedUsername = username;\n\t\treturn true;\n\t}\n};\n\nexports.AuthenticatorClass = HeaderAuthenticator;\n\n})();\n",
"type": "application/javascript",
"module-type": "authenticator"
},
"$:/core/modules/server/routes/delete-tiddler.js": {
"title": "$:/core/modules/server/routes/delete-tiddler.js",
"text": "/*\\\ntitle: $:/core/modules/server/routes/delete-tiddler.js\ntype: application/javascript\nmodule-type: route\n\nDELETE /recipes/default/tiddlers/:title\n\n\\*/\n(function() {\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.method = \"DELETE\";\n\nexports.path = /^\\/bags\\/default\\/tiddlers\\/(.+)$/;\n\nexports.handler = function(request,response,state) {\n\tvar title = decodeURIComponent(state.params[0]);\n\tstate.wiki.deleteTiddler(title);\n\tresponse.writeHead(204, \"OK\", {\n\t\t\"Content-Type\": \"text/plain\"\n\t});\n\tresponse.end();\n};\n\n}());\n",
"type": "application/javascript",
"module-type": "route"
},
"$:/core/modules/server/routes/get-favicon.js": {
"title": "$:/core/modules/server/routes/get-favicon.js",
"text": "/*\\\ntitle: $:/core/modules/server/routes/get-favicon.js\ntype: application/javascript\nmodule-type: route\n\nGET /favicon.ico\n\n\\*/\n(function() {\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.method = \"GET\";\n\nexports.path = /^\\/favicon.ico$/;\n\nexports.handler = function(request,response,state) {\n\tresponse.writeHead(200, {\"Content-Type\": \"image/x-icon\"});\n\tvar buffer = state.wiki.getTiddlerText(\"$:/favicon.ico\",\"\");\n\tresponse.end(buffer,\"base64\");\n};\n\n}());\n",
"type": "application/javascript",
"module-type": "route"
},
"$:/core/modules/server/routes/get-file.js": {
"title": "$:/core/modules/server/routes/get-file.js",
"text": "/*\\\ntitle: $:/core/modules/server/routes/get-file.js\ntype: application/javascript\nmodule-type: route\n\nGET /files/:filepath\n\n\\*/\n(function() {\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.method = \"GET\";\n\nexports.path = /^\\/files\\/(.+)$/;\n\nexports.handler = function(request,response,state) {\n\tvar path = require(\"path\"),\n\t\tfs = require(\"fs\"),\n\t\tutil = require(\"util\"),\n\t\tsuppliedFilename = decodeURIComponent(state.params[0]),\n\t\tfilename = path.resolve(state.boot.wikiPath,\"files\",suppliedFilename),\n\t\textension = path.extname(filename);\n\tfs.readFile(filename,function(err,content) {\n\t\tvar status,content,type = \"text/plain\";\n\t\tif(err) {\n\t\t\tconsole.log(\"Error accessing file \" + filename + \": \" + err.toString());\n\t\t\tstatus = 404;\n\t\t\tcontent = \"File '\" + suppliedFilename + \"' not found\";\n\t\t} else {\n\t\t\tstatus = 200;\n\t\t\tcontent = content;\n\t\t\ttype = ($tw.config.fileExtensionInfo[extension] ? $tw.config.fileExtensionInfo[extension].type : \"application/octet-stream\");\n\t\t}\n\t\tresponse.writeHead(status,{\n\t\t\t\"Content-Type\": type\n\t\t});\n\t\tresponse.end(content);\n\t});\n};\n\n}());\n",
"type": "application/javascript",
"module-type": "route"
},
"$:/core/modules/server/routes/get-index.js": {
"title": "$:/core/modules/server/routes/get-index.js",
"text": "/*\\\ntitle: $:/core/modules/server/routes/get-index.js\ntype: application/javascript\nmodule-type: route\n\nGET /\n\n\\*/\n(function() {\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar zlib = require(\"zlib\");\n\nexports.method = \"GET\";\n\nexports.path = /^\\/$/;\n\nexports.handler = function(request,response,state) {\n\tvar acceptEncoding = request.headers[\"accept-encoding\"];\n\tif(!acceptEncoding) {\n\t\tacceptEncoding = \"\";\n\t}\n\tvar text = state.wiki.renderTiddler(state.server.get(\"root-render-type\"),state.server.get(\"root-tiddler\")),\n\t\tresponseHeaders = {\n\t\t\"Content-Type\": state.server.get(\"root-serve-type\")\n\t};\n\t/*\n\tIf the gzip=yes flag for `listen` is set, check if the user agent permits\n\tcompression. If so, compress our response. Note that we use the synchronous\n\tfunctions from zlib to stay in the imperative style. The current `Server`\n\tdoesn't depend on this, and we may just as well use the async versions.\n\t*/\n\tif(state.server.enableGzip) {\n\t\tif (/\\bdeflate\\b/.test(acceptEncoding)) {\n\t\t\tresponseHeaders[\"Content-Encoding\"] = \"deflate\";\n\t\t\ttext = zlib.deflateSync(text);\n\t\t} else if (/\\bgzip\\b/.test(acceptEncoding)) {\n\t\t\tresponseHeaders[\"Content-Encoding\"] = \"gzip\";\n\t\t\ttext = zlib.gzipSync(text);\n\t\t}\n\t}\n\tresponse.writeHead(200,responseHeaders);\n\tresponse.end(text);\n};\n\n}());\n",
"type": "application/javascript",
"module-type": "route"
},
"$:/core/modules/server/routes/get-login-basic.js": {
"title": "$:/core/modules/server/routes/get-login-basic.js",
"text": "/*\\\ntitle: $:/core/modules/server/routes/get-login-basic.js\ntype: application/javascript\nmodule-type: route\n\nGET /login-basic -- force a Basic Authentication challenge\n\n\\*/\n(function() {\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.method = \"GET\";\n\nexports.path = /^\\/login-basic$/;\n\nexports.handler = function(request,response,state) {\n\tif(!state.authenticatedUsername) {\n\t\t// Challenge if there's no username\n\t\tresponse.writeHead(401,{\n\t\t\t\"WWW-Authenticate\": 'Basic realm=\"Please provide your username and password to login to ' + state.server.servername + '\"'\n\t\t});\n\t\tresponse.end();\t\t\n\t} else {\n\t\t// Redirect to the root wiki if login worked\n\t\tresponse.writeHead(302,{\n\t\t\tLocation: \"/\"\n\t\t});\n\t\tresponse.end();\n\t}\n};\n\n}());\n",
"type": "application/javascript",
"module-type": "route"
},
"$:/core/modules/server/routes/get-status.js": {
"title": "$:/core/modules/server/routes/get-status.js",
"text": "/*\\\ntitle: $:/core/modules/server/routes/get-status.js\ntype: application/javascript\nmodule-type: route\n\nGET /status\n\n\\*/\n(function() {\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.method = \"GET\";\n\nexports.path = /^\\/status$/;\n\nexports.handler = function(request,response,state) {\n\tresponse.writeHead(200, {\"Content-Type\": \"application/json\"});\n\tvar text = JSON.stringify({\n\t\tusername: state.authenticatedUsername || state.server.get(\"anon-username\") || \"\",\n\t\tanonymous: !state.authenticatedUsername,\n\t\tread_only: !state.server.isAuthorized(\"writers\",state.authenticatedUsername),\n\t\tspace: {\n\t\t\trecipe: \"default\"\n\t\t},\n\t\ttiddlywiki_version: $tw.version\n\t});\n\tresponse.end(text,\"utf8\");\n};\n\n}());\n",
"type": "application/javascript",
"module-type": "route"
},
"$:/core/modules/server/routes/get-tiddler-html.js": {
"title": "$:/core/modules/server/routes/get-tiddler-html.js",
"text": "/*\\\ntitle: $:/core/modules/server/routes/get-tiddler-html.js\ntype: application/javascript\nmodule-type: route\n\nGET /:title\n\n\\*/\n(function() {\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.method = \"GET\";\n\nexports.path = /^\\/([^\\/]+)$/;\n\nexports.handler = function(request,response,state) {\n\tvar title = decodeURIComponent(state.params[0]),\n\t\ttiddler = state.wiki.getTiddler(title);\n\tif(tiddler) {\n\t\tvar renderType = tiddler.getFieldString(\"_render_type\"),\n\t\t\trenderTemplate = tiddler.getFieldString(\"_render_template\");\n\t\t// Tiddler fields '_render_type' and '_render_template' overwrite\n\t\t// system wide settings for render type and template\n\t\tif(state.wiki.isSystemTiddler(title)) {\n\t\t\trenderType = renderType || state.server.get(\"system-tiddler-render-type\");\n\t\t\trenderTemplate = renderTemplate || state.server.get(\"system-tiddler-render-template\");\n\t\t} else {\n\t\t\trenderType = renderType || state.server.get(\"tiddler-render-type\");\n\t\t\trenderTemplate = renderTemplate || state.server.get(\"tiddler-render-template\");\n\t\t}\n\t\tvar text = state.wiki.renderTiddler(renderType,renderTemplate,{parseAsInline: true, variables: {currentTiddler: title}});\n\t\t// Naughty not to set a content-type, but it's the easiest way to ensure the browser will see HTML pages as HTML, and accept plain text tiddlers as CSS or JS\n\t\tresponse.writeHead(200);\n\t\tresponse.end(text,\"utf8\");\n\t} else {\n\t\tresponse.writeHead(404);\n\t\tresponse.end();\n\t}\n};\n\n}());\n",
"type": "application/javascript",
"module-type": "route"
},
"$:/core/modules/server/routes/get-tiddler.js": {
"title": "$:/core/modules/server/routes/get-tiddler.js",
"text": "/*\\\ntitle: $:/core/modules/server/routes/get-tiddler.js\ntype: application/javascript\nmodule-type: route\n\nGET /recipes/default/tiddlers/:title\n\n\\*/\n(function() {\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.method = \"GET\";\n\nexports.path = /^\\/recipes\\/default\\/tiddlers\\/(.+)$/;\n\nexports.handler = function(request,response,state) {\n\tvar title = decodeURIComponent(state.params[0]),\n\t\ttiddler = state.wiki.getTiddler(title),\n\t\ttiddlerFields = {},\n\t\tknownFields = [\n\t\t\t\"bag\", \"created\", \"creator\", \"modified\", \"modifier\", \"permissions\", \"recipe\", \"revision\", \"tags\", \"text\", \"title\", \"type\", \"uri\"\n\t\t];\n\tif(tiddler) {\n\t\t$tw.utils.each(tiddler.fields,function(field,name) {\n\t\t\tvar value = tiddler.getFieldString(name);\n\t\t\tif(knownFields.indexOf(name) !== -1) {\n\t\t\t\ttiddlerFields[name] = value;\n\t\t\t} else {\n\t\t\t\ttiddlerFields.fields = tiddlerFields.fields || {};\n\t\t\t\ttiddlerFields.fields[name] = value;\n\t\t\t}\n\t\t});\n\t\ttiddlerFields.revision = state.wiki.getChangeCount(title);\n\t\ttiddlerFields.bag = \"default\";\n\t\ttiddlerFields.type = tiddlerFields.type || \"text/vnd.tiddlywiki\";\n\t\tresponse.writeHead(200, {\"Content-Type\": \"application/json\"});\n\t\tresponse.end(JSON.stringify(tiddlerFields),\"utf8\");\n\t} else {\n\t\tresponse.writeHead(404);\n\t\tresponse.end();\n\t}\n};\n\n}());\n",
"type": "application/javascript",
"module-type": "route"
},
"$:/core/modules/server/routes/get-tiddlers-json.js": {
"title": "$:/core/modules/server/routes/get-tiddlers-json.js",
"text": "/*\\\ntitle: $:/core/modules/server/routes/get-tiddlers-json.js\ntype: application/javascript\nmodule-type: route\n\nGET /recipes/default/tiddlers.json?filter=<filter>\n\n\\*/\n(function() {\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar DEFAULT_FILTER = \"[all[tiddlers]!is[system]sort[title]]\";\n\nexports.method = \"GET\";\n\nexports.path = /^\\/recipes\\/default\\/tiddlers.json$/;\n\nexports.handler = function(request,response,state) {\n\tvar filter = state.queryParameters.filter || DEFAULT_FILTER;\n\tif(state.wiki.getTiddlerText(\"$:/config/Server/AllowAllExternalFilters\") !== \"yes\") {\n\t\tif(state.wiki.getTiddlerText(\"$:/config/Server/ExternalFilters/\" + filter) !== \"yes\") {\n\t\t\tconsole.log(\"Blocked attempt to GET /recipes/default/tiddlers.json with filter: \" + filter);\n\t\t\tresponse.writeHead(403);\n\t\t\tresponse.end();\n\t\t\treturn;\n\t\t}\n\t}\n\tif(state.wiki.getTiddlerText(\"$:/config/SyncSystemTiddlersFromServer\") === \"no\") {\n\t\tfilter += \"+[!is[system]]\";\n\t}\n\tvar excludeFields = (state.queryParameters.exclude || \"text\").split(\",\"),\n\t\ttitles = state.wiki.filterTiddlers(filter);\n\tresponse.writeHead(200, {\"Content-Type\": \"application/json\"});\n\tvar tiddlers = [];\n\t$tw.utils.each(titles,function(title) {\n\t\tvar tiddler = state.wiki.getTiddler(title);\n\t\tif(tiddler) {\n\t\t\tvar tiddlerFields = tiddler.getFieldStrings({exclude: excludeFields});\n\t\t\ttiddlerFields.revision = state.wiki.getChangeCount(title);\n\t\t\ttiddlerFields.type = tiddlerFields.type || \"text/vnd.tiddlywiki\";\n\t\t\ttiddlers.push(tiddlerFields);\n\t\t}\n\t});\n\tvar text = JSON.stringify(tiddlers);\n\tresponse.end(text,\"utf8\");\n};\n\n}());\n",
"type": "application/javascript",
"module-type": "route"
},
"$:/core/modules/server/routes/put-tiddler.js": {
"title": "$:/core/modules/server/routes/put-tiddler.js",
"text": "/*\\\ntitle: $:/core/modules/server/routes/put-tiddler.js\ntype: application/javascript\nmodule-type: route\n\nPUT /recipes/default/tiddlers/:title\n\n\\*/\n(function() {\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.method = \"PUT\";\n\nexports.path = /^\\/recipes\\/default\\/tiddlers\\/(.+)$/;\n\nexports.handler = function(request,response,state) {\n\tvar title = decodeURIComponent(state.params[0]),\n\tfields = JSON.parse(state.data);\n\t// Pull up any subfields in the `fields` object\n\tif(fields.fields) {\n\t\t$tw.utils.each(fields.fields,function(field,name) {\n\t\t\tfields[name] = field;\n\t\t});\n\t\tdelete fields.fields;\n\t}\n\t// Remove any revision field\n\tif(fields.revision) {\n\t\tdelete fields.revision;\n\t}\n\tstate.wiki.addTiddler(new $tw.Tiddler(state.wiki.getCreationFields(),fields,{title: title},state.wiki.getModificationFields()));\n\tvar changeCount = state.wiki.getChangeCount(title).toString();\n\tresponse.writeHead(204, \"OK\",{\n\t\tEtag: \"\\\"default/\" + encodeURIComponent(title) + \"/\" + changeCount + \":\\\"\",\n\t\t\"Content-Type\": \"text/plain\"\n\t});\n\tresponse.end();\n};\n\n}());\n",
"type": "application/javascript",
"module-type": "route"
},
"$:/core/modules/server/server.js": {
"title": "$:/core/modules/server/server.js",
"text": "/*\\\ntitle: $:/core/modules/server/server.js\ntype: application/javascript\nmodule-type: library\n\nServe tiddlers over http\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nif($tw.node) {\n\tvar util = require(\"util\"),\n\t\tfs = require(\"fs\"),\n\t\turl = require(\"url\"),\n\t\tpath = require(\"path\"),\n\t\tquerystring = require(\"querystring\");\n}\n\n/*\nA simple HTTP server with regexp-based routes\noptions: variables - optional hashmap of variables to set (a misnomer - they are really constant parameters)\n\t\t routes - optional array of routes to use\n\t\t wiki - reference to wiki object\n*/\nfunction Server(options) {\n\tvar self = this;\n\tthis.routes = options.routes || [];\n\tthis.authenticators = options.authenticators || [];\n\tthis.wiki = options.wiki;\n\tthis.boot = options.boot || $tw.boot;\n\tthis.servername = $tw.utils.transliterateToSafeASCII(this.wiki.getTiddlerText(\"$:/SiteTitle\") || \"TiddlyWiki5\");\n\t// Initialise the variables\n\tthis.variables = $tw.utils.extend({},this.defaultVariables);\n\tif(options.variables) {\n\t\tfor(var variable in options.variables) {\n\t\t\tif(options.variables[variable]) {\n\t\t\t\tthis.variables[variable] = options.variables[variable];\n\t\t\t}\n\t\t}\t\t\n\t}\n\t$tw.utils.extend({},this.defaultVariables,options.variables);\n\t// Initialise CSRF\n\tthis.csrfDisable = this.get(\"csrf-disable\") === \"yes\";\n\t// Initialize Gzip compression\n\tthis.enableGzip = this.get(\"gzip\") === \"yes\";\n\t// Initialise authorization\n\tvar authorizedUserName = (this.get(\"username\") && this.get(\"password\")) ? this.get(\"username\") : \"(anon)\";\n\tthis.authorizationPrincipals = {\n\t\treaders: (this.get(\"readers\") || authorizedUserName).split(\",\").map($tw.utils.trim),\n\t\twriters: (this.get(\"writers\") || authorizedUserName).split(\",\").map($tw.utils.trim)\n\t}\n\t// Load and initialise authenticators\n\t$tw.modules.forEachModuleOfType(\"authenticator\", function(title,authenticatorDefinition) {\n\t\t// console.log(\"Loading server route \" + title);\n\t\tself.addAuthenticator(authenticatorDefinition.AuthenticatorClass);\n\t});\n\t// Load route handlers\n\t$tw.modules.forEachModuleOfType(\"route\", function(title,routeDefinition) {\n\t\t// console.log(\"Loading server route \" + title);\n\t\tself.addRoute(routeDefinition);\n\t});\n\t// Initialise the http vs https\n\tthis.listenOptions = null;\n\tthis.protocol = \"http\";\n\tvar tlsKeyFilepath = this.get(\"tls-key\"),\n\t\ttlsCertFilepath = this.get(\"tls-cert\");\n\tif(tlsCertFilepath && tlsKeyFilepath) {\n\t\tthis.listenOptions = {\n\t\t\tkey: fs.readFileSync(path.resolve(this.boot.wikiPath,tlsKeyFilepath),\"utf8\"),\n\t\t\tcert: fs.readFileSync(path.resolve(this.boot.wikiPath,tlsCertFilepath),\"utf8\")\n\t\t};\n\t\tthis.protocol = \"https\";\n\t}\n\tthis.transport = require(this.protocol);\n}\n\nServer.prototype.defaultVariables = {\n\tport: \"8080\",\n\thost: \"127.0.0.1\",\n\t\"root-tiddler\": \"$:/core/save/all\",\n\t\"root-render-type\": \"text/plain\",\n\t\"root-serve-type\": \"text/html\",\n\t\"tiddler-render-type\": \"text/html\",\n\t\"tiddler-render-template\": \"$:/core/templates/server/static.tiddler.html\",\n\t\"system-tiddler-render-type\": \"text/plain\",\n\t\"system-tiddler-render-template\": \"$:/core/templates/wikified-tiddler\",\n\t\"debug-level\": \"none\",\n\t\"gzip\": \"no\"\n};\n\nServer.prototype.get = function(name) {\n\treturn this.variables[name];\n};\n\nServer.prototype.addRoute = function(route) {\n\tthis.routes.push(route);\n};\n\nServer.prototype.addAuthenticator = function(AuthenticatorClass) {\n\t// Instantiate and initialise the authenticator\n\tvar authenticator = new AuthenticatorClass(this),\n\t\tresult = authenticator.init();\n\tif(typeof result === \"string\") {\n\t\t$tw.utils.error(\"Error: \" + result);\n\t} else if(result) {\n\t\t// Only use the authenticator if it initialised successfully\n\t\tthis.authenticators.push(authenticator);\n\t}\n};\n\nServer.prototype.findMatchingRoute = function(request,state) {\n\tfor(var t=0; t<this.routes.length; t++) {\n\t\tvar potentialRoute = this.routes[t],\n\t\t\tpathRegExp = potentialRoute.path,\n\t\t\tpathname = state.urlInfo.pathname,\n\t\t\tmatch;\n\t\tif(state.pathPrefix) {\n\t\t\tif(pathname.substr(0,state.pathPrefix.length) === state.pathPrefix) {\n\t\t\t\tpathname = pathname.substr(state.pathPrefix.length) || \"/\";\n\t\t\t\tmatch = potentialRoute.path.exec(pathname);\n\t\t\t} else {\n\t\t\t\tmatch = false;\n\t\t\t}\n\t\t} else {\n\t\t\tmatch = potentialRoute.path.exec(pathname);\n\t\t}\n\t\tif(match && request.method === potentialRoute.method) {\n\t\t\tstate.params = [];\n\t\t\tfor(var p=1; p<match.length; p++) {\n\t\t\t\tstate.params.push(match[p]);\n\t\t\t}\n\t\t\treturn potentialRoute;\n\t\t}\n\t}\n\treturn null;\n};\n\nServer.prototype.methodMappings = {\n\t\"GET\": \"readers\",\n\t\"OPTIONS\": \"readers\",\n\t\"HEAD\": \"readers\",\n\t\"PUT\": \"writers\",\n\t\"POST\": \"writers\",\n\t\"DELETE\": \"writers\"\n};\n\n/*\nCheck whether a given user is authorized for the specified authorizationType (\"readers\" or \"writers\"). Pass null or undefined as the username to check for anonymous access\n*/\nServer.prototype.isAuthorized = function(authorizationType,username) {\n\tvar principals = this.authorizationPrincipals[authorizationType] || [];\n\treturn principals.indexOf(\"(anon)\") !== -1 || (username && (principals.indexOf(\"(authenticated)\") !== -1 || principals.indexOf(username) !== -1));\n}\n\nServer.prototype.requestHandler = function(request,response,options) {\n\toptions = options || {};\n\t// Compose the state object\n\tvar self = this;\n\tvar state = {};\n\tstate.wiki = options.wiki || self.wiki;\n\tstate.boot = options.boot || self.boot;\n\tstate.server = self;\n\tstate.urlInfo = url.parse(request.url);\n\tstate.queryParameters = querystring.parse(state.urlInfo.query);\n\tstate.pathPrefix = options.pathPrefix || this.get(\"path-prefix\") || \"\";\n\t// Get the principals authorized to access this resource\n\tvar authorizationType = this.methodMappings[request.method] || \"readers\";\n\t// Check for the CSRF header if this is a write\n\tif(!this.csrfDisable && authorizationType === \"writers\" && request.headers[\"x-requested-with\"] !== \"TiddlyWiki\") {\n\t\tresponse.writeHead(403,\"'X-Requested-With' header required to login to '\" + this.servername + \"'\");\n\t\tresponse.end();\n\t\treturn;\t\t\n\t}\n\t// Check whether anonymous access is granted\n\tstate.allowAnon = this.isAuthorized(authorizationType,null);\n\t// Authenticate with the first active authenticator\n\tif(this.authenticators.length > 0) {\n\t\tif(!this.authenticators[0].authenticateRequest(request,response,state)) {\n\t\t\t// Bail if we failed (the authenticator will have sent the response)\n\t\t\treturn;\n\t\t}\t\t\n\t}\n\t// Authorize with the authenticated username\n\tif(!this.isAuthorized(authorizationType,state.authenticatedUsername)) {\n\t\tresponse.writeHead(401,\"'\" + state.authenticatedUsername + \"' is not authorized to access '\" + this.servername + \"'\");\n\t\tresponse.end();\n\t\treturn;\n\t}\n\t// Find the route that matches this path\n\tvar route = self.findMatchingRoute(request,state);\n\t// Optionally output debug info\n\tif(self.get(\"debug-level\") !== \"none\") {\n\t\tconsole.log(\"Request path:\",JSON.stringify(state.urlInfo));\n\t\tconsole.log(\"Request headers:\",JSON.stringify(request.headers));\n\t\tconsole.log(\"authenticatedUsername:\",state.authenticatedUsername);\n\t}\n\t// Return a 404 if we didn't find a route\n\tif(!route) {\n\t\tresponse.writeHead(404);\n\t\tresponse.end();\n\t\treturn;\n\t}\n\t// Receive the request body if necessary and hand off to the route handler\n\tif(route.bodyFormat === \"stream\" || request.method === \"GET\" || request.method === \"HEAD\") {\n\t\t// Let the route handle the request stream itself\n\t\troute.handler(request,response,state);\n\t} else if(route.bodyFormat === \"string\" || !route.bodyFormat) {\n\t\t// Set the encoding for the incoming request\n\t\trequest.setEncoding(\"utf8\");\n\t\tvar data = \"\";\n\t\trequest.on(\"data\",function(chunk) {\n\t\t\tdata += chunk.toString();\n\t\t});\n\t\trequest.on(\"end\",function() {\n\t\t\tstate.data = data;\n\t\t\troute.handler(request,response,state);\n\t\t});\n\t} else if(route.bodyFormat === \"buffer\") {\n\t\tvar data = [];\n\t\trequest.on(\"data\",function(chunk) {\n\t\t\tdata.push(chunk);\n\t\t});\n\t\trequest.on(\"end\",function() {\n\t\t\tstate.data = Buffer.concat(data);\n\t\t\troute.handler(request,response,state);\n\t\t})\n\t} else {\n\t\tresponse.writeHead(400,\"Invalid bodyFormat \" + route.bodyFormat + \" in route \" + route.method + \" \" + route.path.source);\n\t\tresponse.end();\n\t}\n};\n\n/*\nListen for requests\nport: optional port number (falls back to value of \"port\" variable)\nhost: optional host address (falls back to value of \"host\" variable)\nprefix: optional prefix (falls back to value of \"path-prefix\" variable)\n*/\nServer.prototype.listen = function(port,host,prefix) {\n\tvar self = this;\n\t// Handle defaults for port and host\n\tport = port || this.get(\"port\");\n\thost = host || this.get(\"host\");\n\tprefix = prefix || this.get(\"path-prefix\") || \"\";\n\t// Check for the port being a string and look it up as an environment variable\n\tif(parseInt(port,10).toString() !== port) {\n\t\tport = process.env[port] || 8080;\n\t}\n\t// Warn if required plugins are missing\n\tif(!this.wiki.getTiddler(\"$:/plugins/tiddlywiki/tiddlyweb\") || !this.wiki.getTiddler(\"$:/plugins/tiddlywiki/filesystem\")) {\n\t\t$tw.utils.warning(\"Warning: Plugins required for client-server operation (\\\"tiddlywiki/filesystem\\\" and \\\"tiddlywiki/tiddlyweb\\\") are missing from tiddlywiki.info file\");\n\t}\n\t// Create the server\n\tvar server;\n\tif(this.listenOptions) {\n\t\tserver = this.transport.createServer(this.listenOptions,this.requestHandler.bind(this));\n\t} else {\n\t\tserver = this.transport.createServer(this.requestHandler.bind(this));\n\t}\n\t// Display the port number after we've started listening (the port number might have been specified as zero, in which case we will get an assigned port)\n\tserver.on(\"listening\",function() {\n\t\tvar address = server.address();\n\t\t$tw.utils.log(\"Serving on \" + self.protocol + \"://\" + address.address + \":\" + address.port + prefix,\"brown/orange\");\n\t\t$tw.utils.log(\"(press ctrl-C to exit)\",\"red\");\n\t});\n\t// Listen\n\treturn server.listen(port,host);\n};\n\nexports.Server = Server;\n\n})();\n",
"type": "application/javascript",
"module-type": "library"
},
"$:/core/modules/browser-messaging.js": {
"title": "$:/core/modules/browser-messaging.js",
"text": "/*\\\ntitle: $:/core/modules/browser-messaging.js\ntype: application/javascript\nmodule-type: startup\n\nBrowser message handling\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n// Export name and synchronous status\nexports.name = \"browser-messaging\";\nexports.platforms = [\"browser\"];\nexports.after = [\"startup\"];\nexports.synchronous = true;\n\n/*\nLoad a specified url as an iframe and call the callback when it is loaded. If the url is already loaded then the existing iframe instance is used\n*/\nfunction loadIFrame(url,callback) {\n\t// Check if iframe already exists\n\tvar iframeInfo = $tw.browserMessaging.iframeInfoMap[url];\n\tif(iframeInfo) {\n\t\t// We've already got the iframe\n\t\tcallback(null,iframeInfo);\n\t} else {\n\t\t// Create the iframe and save it in the list\n\t\tvar iframe = document.createElement(\"iframe\");\n\t\tiframeInfo = {\n\t\t\turl: url,\n\t\t\tstatus: \"loading\",\n\t\t\tdomNode: iframe\n\t\t};\n\t\t$tw.browserMessaging.iframeInfoMap[url] = iframeInfo;\n\t\tsaveIFrameInfoTiddler(iframeInfo);\n\t\t// Add the iframe to the DOM and hide it\n\t\tiframe.style.display = \"none\";\n\t\tiframe.setAttribute(\"library\",\"true\");\n\t\tdocument.body.appendChild(iframe);\n\t\t// Set up onload\n\t\tiframe.onload = function() {\n\t\t\tiframeInfo.status = \"loaded\";\n\t\t\tsaveIFrameInfoTiddler(iframeInfo);\n\t\t\tcallback(null,iframeInfo);\n\t\t};\n\t\tiframe.onerror = function() {\n\t\t\tcallback(\"Cannot load iframe\");\n\t\t};\n\t\ttry {\n\t\t\tiframe.src = url;\n\t\t} catch(ex) {\n\t\t\tcallback(ex);\n\t\t}\n\t}\n}\n\n/*\nUnload library iframe for given url\n*/\nfunction unloadIFrame(url){\n\t$tw.utils.each(document.getElementsByTagName('iframe'), function(iframe) {\n\t\tif(iframe.getAttribute(\"library\") === \"true\" &&\n\t\t iframe.getAttribute(\"src\") === url) {\n\t\t\tiframe.parentNode.removeChild(iframe);\n\t\t}\n\t});\n}\n\nfunction saveIFrameInfoTiddler(iframeInfo) {\n\t$tw.wiki.addTiddler(new $tw.Tiddler($tw.wiki.getCreationFields(),{\n\t\ttitle: \"$:/temp/ServerConnection/\" + iframeInfo.url,\n\t\ttext: iframeInfo.status,\n\t\ttags: [\"$:/tags/ServerConnection\"],\n\t\turl: iframeInfo.url\n\t},$tw.wiki.getModificationFields()));\n}\n\nexports.startup = function() {\n\t// Initialise the store of iframes we've created\n\t$tw.browserMessaging = {\n\t\tiframeInfoMap: {} // Hashmap by URL of {url:,status:\"loading/loaded\",domNode:}\n\t};\n\t// Listen for widget messages to control loading the plugin library\n\t$tw.rootWidget.addEventListener(\"tm-load-plugin-library\",function(event) {\n\t\tvar paramObject = event.paramObject || {},\n\t\t\turl = paramObject.url;\n\t\tif(url) {\n\t\t\tloadIFrame(url,function(err,iframeInfo) {\n\t\t\t\tif(err) {\n\t\t\t\t\talert($tw.language.getString(\"Error/LoadingPluginLibrary\") + \": \" + url);\n\t\t\t\t} else {\n\t\t\t\t\tiframeInfo.domNode.contentWindow.postMessage({\n\t\t\t\t\t\tverb: \"GET\",\n\t\t\t\t\t\turl: \"recipes/library/tiddlers.json\",\n\t\t\t\t\t\tcookies: {\n\t\t\t\t\t\t\ttype: \"save-info\",\n\t\t\t\t\t\t\tinfoTitlePrefix: paramObject.infoTitlePrefix || \"$:/temp/RemoteAssetInfo/\",\n\t\t\t\t\t\t\turl: url\n\t\t\t\t\t\t}\n\t\t\t\t\t},\"*\");\n\t\t\t\t}\n\t\t\t});\n\t\t}\n\t});\n\t// Listen for widget messages to control unloading the plugin library\n\t$tw.rootWidget.addEventListener(\"tm-unload-plugin-library\",function(event) {\n\t\tvar paramObject = event.paramObject || {},\n\t\t\turl = paramObject.url;\n\t\t$tw.browserMessaging.iframeInfoMap[url] = undefined;\n\t\tif(url) {\n\t\t\tunloadIFrame(url);\n\t\t\t$tw.utils.each(\n\t\t\t\t$tw.wiki.filterTiddlers(\"[[$:/temp/ServerConnection/\" + url + \"]] [prefix[$:/temp/RemoteAssetInfo/\" + url + \"/]]\"),\n\t\t\t\tfunction(title) {\n\t\t\t\t\t$tw.wiki.deleteTiddler(title);\n\t\t\t\t}\n\t\t\t);\n\t\t}\n\t});\n\t$tw.rootWidget.addEventListener(\"tm-load-plugin-from-library\",function(event) {\n\t\tvar paramObject = event.paramObject || {},\n\t\t\turl = paramObject.url,\n\t\t\ttitle = paramObject.title;\n\t\tif(url && title) {\n\t\t\tloadIFrame(url,function(err,iframeInfo) {\n\t\t\t\tif(err) {\n\t\t\t\t\talert($tw.language.getString(\"Error/LoadingPluginLibrary\") + \": \" + url);\n\t\t\t\t} else {\n\t\t\t\t\tiframeInfo.domNode.contentWindow.postMessage({\n\t\t\t\t\t\tverb: \"GET\",\n\t\t\t\t\t\turl: \"recipes/library/tiddlers/\" + encodeURIComponent(title) + \".json\",\n\t\t\t\t\t\tcookies: {\n\t\t\t\t\t\t\ttype: \"save-tiddler\",\n\t\t\t\t\t\t\turl: url\n\t\t\t\t\t\t}\n\t\t\t\t\t},\"*\");\n\t\t\t\t}\n\t\t\t});\n\t\t}\n\t});\n\t// Listen for window messages from other windows\n\twindow.addEventListener(\"message\",function listener(event){\n\t\t// console.log(\"browser-messaging: \",document.location.toString())\n\t\t// console.log(\"browser-messaging: Received message from\",event.origin);\n\t\t// console.log(\"browser-messaging: Message content\",event.data);\n\t\tswitch(event.data.verb) {\n\t\t\tcase \"GET-RESPONSE\":\n\t\t\t\tif(event.data.status.charAt(0) === \"2\") {\n\t\t\t\t\tif(event.data.cookies) {\n\t\t\t\t\t\tif(event.data.cookies.type === \"save-info\") {\n\t\t\t\t\t\t\tvar tiddlers = JSON.parse(event.data.body);\n\t\t\t\t\t\t\t$tw.utils.each(tiddlers,function(tiddler) {\n\t\t\t\t\t\t\t\t$tw.wiki.addTiddler(new $tw.Tiddler($tw.wiki.getCreationFields(),tiddler,{\n\t\t\t\t\t\t\t\t\ttitle: event.data.cookies.infoTitlePrefix + event.data.cookies.url + \"/\" + tiddler.title,\n\t\t\t\t\t\t\t\t\t\"original-title\": tiddler.title,\n\t\t\t\t\t\t\t\t\ttext: \"\",\n\t\t\t\t\t\t\t\t\ttype: \"text/vnd.tiddlywiki\",\n\t\t\t\t\t\t\t\t\t\"original-type\": tiddler.type,\n\t\t\t\t\t\t\t\t\t\"plugin-type\": undefined,\n\t\t\t\t\t\t\t\t\t\"original-plugin-type\": tiddler[\"plugin-type\"],\n\t\t\t\t\t\t\t\t\t\"module-type\": undefined,\n\t\t\t\t\t\t\t\t\t\"original-module-type\": tiddler[\"module-type\"],\n\t\t\t\t\t\t\t\t\ttags: [\"$:/tags/RemoteAssetInfo\"],\n\t\t\t\t\t\t\t\t\t\"original-tags\": $tw.utils.stringifyList(tiddler.tags || []),\n\t\t\t\t\t\t\t\t\t\"server-url\": event.data.cookies.url\n\t\t\t\t\t\t\t\t},$tw.wiki.getModificationFields()));\n\t\t\t\t\t\t\t});\n\t\t\t\t\t\t} else if(event.data.cookies.type === \"save-tiddler\") {\n\t\t\t\t\t\t\tvar tiddler = JSON.parse(event.data.body);\n\t\t\t\t\t\t\t$tw.wiki.addTiddler(new $tw.Tiddler(tiddler));\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tbreak;\n\t\t}\n\t},false);\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "startup"
},
"$:/core/modules/startup/commands.js": {
"title": "$:/core/modules/startup/commands.js",
"text": "/*\\\ntitle: $:/core/modules/startup/commands.js\ntype: application/javascript\nmodule-type: startup\n\nCommand processing\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n// Export name and synchronous status\nexports.name = \"commands\";\nexports.platforms = [\"node\"];\nexports.after = [\"story\"];\nexports.synchronous = false;\n\nexports.startup = function(callback) {\n\t// On the server, start a commander with the command line arguments\n\tvar commander = new $tw.Commander(\n\t\t$tw.boot.argv,\n\t\tfunction(err) {\n\t\t\tif(err) {\n\t\t\t\treturn $tw.utils.error(\"Error: \" + err);\n\t\t\t}\n\t\t\tcallback();\n\t\t},\n\t\t$tw.wiki,\n\t\t{output: process.stdout, error: process.stderr}\n\t);\n\tcommander.execute();\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "startup"
},
"$:/core/modules/startup/CSSescape.js": {
"title": "$:/core/modules/startup/CSSescape.js",
"text": "/*\\\ntitle: $:/core/modules/startup/CSSescape.js\ntype: application/javascript\nmodule-type: startup\n\nPolyfill for CSS.escape()\n\n\\*/\n(function(root,factory){\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n// Export name and synchronous status\nexports.name = \"css-escape\";\nexports.platforms = [\"browser\"];\nexports.after = [\"startup\"];\nexports.synchronous = true;\n\n/*! https://mths.be/cssescape v1.5.1 by @mathias | MIT license */\n// https://github.com/umdjs/umd/blob/master/returnExports.js\nexports.startup = factory(root);\n}(typeof global != 'undefined' ? global : this, function(root) {\n\n\tif (root.CSS && root.CSS.escape) {\n\t\treturn;\n\t}\n\n\t// https://drafts.csswg.org/cssom/#serialize-an-identifier\n\tvar cssEscape = function(value) {\n\t\tif (arguments.length == 0) {\n\t\t\tthrow new TypeError('`CSS.escape` requires an argument.');\n\t\t}\n\t\tvar string = String(value);\n\t\tvar length = string.length;\n\t\tvar index = -1;\n\t\tvar codeUnit;\n\t\tvar result = '';\n\t\tvar firstCodeUnit = string.charCodeAt(0);\n\t\twhile (++index < length) {\n\t\t\tcodeUnit = string.charCodeAt(index);\n\t\t\t// Note: there’s no need to special-case astral symbols, surrogate\n\t\t\t// pairs, or lone surrogates.\n\n\t\t\t// If the character is NULL (U+0000), then the REPLACEMENT CHARACTER\n\t\t\t// (U+FFFD).\n\t\t\tif (codeUnit == 0x0000) {\n\t\t\t\tresult += '\\uFFFD';\n\t\t\t\tcontinue;\n\t\t\t}\n\n\t\t\tif (\n\t\t\t\t// If the character is in the range [\\1-\\1F] (U+0001 to U+001F) or is\n\t\t\t\t// U+007F, […]\n\t\t\t\t(codeUnit >= 0x0001 && codeUnit <= 0x001F) || codeUnit == 0x007F ||\n\t\t\t\t// If the character is the first character and is in the range [0-9]\n\t\t\t\t// (U+0030 to U+0039), […]\n\t\t\t\t(index == 0 && codeUnit >= 0x0030 && codeUnit <= 0x0039) ||\n\t\t\t\t// If the character is the second character and is in the range [0-9]\n\t\t\t\t// (U+0030 to U+0039) and the first character is a `-` (U+002D), […]\n\t\t\t\t(\n\t\t\t\t\tindex == 1 &&\n\t\t\t\t\tcodeUnit >= 0x0030 && codeUnit <= 0x0039 &&\n\t\t\t\t\tfirstCodeUnit == 0x002D\n\t\t\t\t)\n\t\t\t) {\n\t\t\t\t// https://drafts.csswg.org/cssom/#escape-a-character-as-code-point\n\t\t\t\tresult += '\\\\' + codeUnit.toString(16) + ' ';\n\t\t\t\tcontinue;\n\t\t\t}\n\n\t\t\tif (\n\t\t\t\t// If the character is the first character and is a `-` (U+002D), and\n\t\t\t\t// there is no second character, […]\n\t\t\t\tindex == 0 &&\n\t\t\t\tlength == 1 &&\n\t\t\t\tcodeUnit == 0x002D\n\t\t\t) {\n\t\t\t\tresult += '\\\\' + string.charAt(index);\n\t\t\t\tcontinue;\n\t\t\t}\n\n\t\t\t// If the character is not handled by one of the above rules and is\n\t\t\t// greater than or equal to U+0080, is `-` (U+002D) or `_` (U+005F), or\n\t\t\t// is in one of the ranges [0-9] (U+0030 to U+0039), [A-Z] (U+0041 to\n\t\t\t// U+005A), or [a-z] (U+0061 to U+007A), […]\n\t\t\tif (\n\t\t\t\tcodeUnit >= 0x0080 ||\n\t\t\t\tcodeUnit == 0x002D ||\n\t\t\t\tcodeUnit == 0x005F ||\n\t\t\t\tcodeUnit >= 0x0030 && codeUnit <= 0x0039 ||\n\t\t\t\tcodeUnit >= 0x0041 && codeUnit <= 0x005A ||\n\t\t\t\tcodeUnit >= 0x0061 && codeUnit <= 0x007A\n\t\t\t) {\n\t\t\t\t// the character itself\n\t\t\t\tresult += string.charAt(index);\n\t\t\t\tcontinue;\n\t\t\t}\n\n\t\t\t// Otherwise, the escaped character.\n\t\t\t// https://drafts.csswg.org/cssom/#escape-a-character\n\t\t\tresult += '\\\\' + string.charAt(index);\n\n\t\t}\n\t\treturn result;\n\t};\n\n\tif (!root.CSS) {\n\t\troot.CSS = {};\n\t}\n\n\troot.CSS.escape = cssEscape;\n\n}));\n",
"type": "application/javascript",
"module-type": "startup"
},
"$:/core/modules/startup/favicon.js": {
"title": "$:/core/modules/startup/favicon.js",
"text": "/*\\\ntitle: $:/core/modules/startup/favicon.js\ntype: application/javascript\nmodule-type: startup\n\nFavicon handling\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n// Export name and synchronous status\nexports.name = \"favicon\";\nexports.platforms = [\"browser\"];\nexports.after = [\"startup\"];\nexports.synchronous = true;\n\t\t\n// Favicon tiddler\nvar FAVICON_TITLE = \"$:/favicon.ico\";\n\nexports.startup = function() {\n\t// Set up the favicon\n\tsetFavicon();\n\t// Reset the favicon when the tiddler changes\n\t$tw.wiki.addEventListener(\"change\",function(changes) {\n\t\tif($tw.utils.hop(changes,FAVICON_TITLE)) {\n\t\t\tsetFavicon();\n\t\t}\n\t});\n};\n\nfunction setFavicon() {\n\tvar tiddler = $tw.wiki.getTiddler(FAVICON_TITLE);\n\tif(tiddler) {\n\t\tvar faviconLink = document.getElementById(\"faviconLink\");\n\t\tfaviconLink.setAttribute(\"href\",$tw.utils.makeDataUri(tiddler.fields.text,tiddler.fields.type,tiddler.fields._canonical_uri));\n\t}\n}\n\n})();\n",
"type": "application/javascript",
"module-type": "startup"
},
"$:/core/modules/startup/info.js": {
"title": "$:/core/modules/startup/info.js",
"text": "/*\\\ntitle: $:/core/modules/startup/info.js\ntype: application/javascript\nmodule-type: startup\n\nInitialise $:/info tiddlers via $:/temp/info-plugin pseudo-plugin\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n// Export name and synchronous status\nexports.name = \"info\";\nexports.before = [\"startup\"];\nexports.after = [\"load-modules\"];\nexports.synchronous = true;\n\nvar TITLE_INFO_PLUGIN = \"$:/temp/info-plugin\";\n\nexports.startup = function() {\n\t// Function to bake the info plugin with new tiddlers\n\tvar updateInfoPlugin = function(tiddlerFieldsArray) {\n\t\t// Get the existing tiddlers\n\t\tvar json = $tw.wiki.getTiddlerData(TITLE_INFO_PLUGIN,{tiddlers: {}});\n\t\t// Add the new ones\n\t\t$tw.utils.each(tiddlerFieldsArray,function(fields) {\n\t\t\tif(fields && fields.title) {\n\t\t\t\tjson.tiddlers[fields.title] = fields;\n\t\t\t}\n\t\t});\n\t\t// Bake the info tiddlers into a plugin. We use the non-standard plugin-type \"info\" because ordinary plugins are only registered asynchronously after being loaded dynamically\n\t\tvar fields = {\n\t\t\ttitle: TITLE_INFO_PLUGIN,\n\t\t\ttype: \"application/json\",\n\t\t\t\"plugin-type\": \"info\",\n\t\t\ttext: JSON.stringify(json,null,$tw.config.preferences.jsonSpaces)\n\t\t};\n\t\t$tw.wiki.addTiddler(new $tw.Tiddler(fields));\n\n\t};\n\t// Collect up the info tiddlers\n\tvar tiddlerFieldsArray = [];\n\t// Give each info module a chance to provide as many info tiddlers as they want as an array, and give them a callback for dynamically updating them\n\t$tw.modules.forEachModuleOfType(\"info\",function(title,moduleExports) {\n\t\tif(moduleExports && moduleExports.getInfoTiddlerFields) {\n\t\t\tArray.prototype.push.apply(tiddlerFieldsArray,moduleExports.getInfoTiddlerFields(updateInfoPlugin));\n\t\t}\n\t});\n\tupdateInfoPlugin(tiddlerFieldsArray);\n\tvar changes = $tw.wiki.readPluginInfo([TITLE_INFO_PLUGIN]);\n\t$tw.wiki.registerPluginTiddlers(\"info\",[TITLE_INFO_PLUGIN]);\n\t$tw.wiki.unpackPluginTiddlers();\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "startup"
},
"$:/core/modules/startup/load-modules.js": {
"title": "$:/core/modules/startup/load-modules.js",
"text": "/*\\\ntitle: $:/core/modules/startup/load-modules.js\ntype: application/javascript\nmodule-type: startup\n\nLoad core modules\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n// Export name and synchronous status\nexports.name = \"load-modules\";\nexports.synchronous = true;\n\nexports.startup = function() {\n\t// Load modules\n\t$tw.modules.applyMethods(\"utils\",$tw.utils);\n\tif($tw.node) {\n\t\t$tw.modules.applyMethods(\"utils-node\",$tw.utils);\n\t}\n\t$tw.modules.applyMethods(\"global\",$tw);\n\t$tw.modules.applyMethods(\"config\",$tw.config);\n\t$tw.Tiddler.fieldModules = $tw.modules.getModulesByTypeAsHashmap(\"tiddlerfield\");\n\t$tw.modules.applyMethods(\"tiddlermethod\",$tw.Tiddler.prototype);\n\t$tw.modules.applyMethods(\"wikimethod\",$tw.Wiki.prototype);\n\t$tw.wiki.addIndexersToWiki();\n\t$tw.modules.applyMethods(\"tiddlerdeserializer\",$tw.Wiki.tiddlerDeserializerModules);\n\t$tw.macros = $tw.modules.getModulesByTypeAsHashmap(\"macro\");\n\t$tw.wiki.initParsers();\n\t$tw.Commander.initCommands();\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "startup"
},
"$:/core/modules/startup/password.js": {
"title": "$:/core/modules/startup/password.js",
"text": "/*\\\ntitle: $:/core/modules/startup/password.js\ntype: application/javascript\nmodule-type: startup\n\nPassword handling\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n// Export name and synchronous status\nexports.name = \"password\";\nexports.platforms = [\"browser\"];\nexports.after = [\"startup\"];\nexports.synchronous = true;\n\nexports.startup = function() {\n\t$tw.rootWidget.addEventListener(\"tm-set-password\",function(event) {\n\t\t$tw.passwordPrompt.createPrompt({\n\t\t\tserviceName: $tw.language.getString(\"Encryption/PromptSetPassword\"),\n\t\t\tnoUserName: true,\n\t\t\tsubmitText: $tw.language.getString(\"Encryption/SetPassword\"),\n\t\t\tcanCancel: true,\n\t\t\trepeatPassword: true,\n\t\t\tcallback: function(data) {\n\t\t\t\tif(data) {\n\t\t\t\t\t$tw.crypto.setPassword(data.password);\n\t\t\t\t}\n\t\t\t\treturn true; // Get rid of the password prompt\n\t\t\t}\n\t\t});\n\t});\n\t$tw.rootWidget.addEventListener(\"tm-clear-password\",function(event) {\n\t\tif($tw.browser) {\n\t\t\tif(!confirm($tw.language.getString(\"Encryption/ConfirmClearPassword\"))) {\n\t\t\t\treturn;\n\t\t\t}\n\t\t}\n\t\t$tw.crypto.setPassword(null);\n\t});\n\t// Ensure that $:/isEncrypted is maintained properly\n\t$tw.wiki.addEventListener(\"change\",function(changes) {\n\t\tif($tw.utils.hop(changes,\"$:/isEncrypted\")) {\n\t\t\t$tw.crypto.updateCryptoStateTiddler();\n\t\t}\n\t});\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "startup"
},
"$:/core/modules/startup/plugins.js": {
"title": "$:/core/modules/startup/plugins.js",
"text": "/*\\\ntitle: $:/core/modules/startup/plugins.js\ntype: application/javascript\nmodule-type: startup\n\nStartup logic concerned with managing plugins\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n// Export name and synchronous status\nexports.name = \"plugins\";\nexports.after = [\"load-modules\"];\nexports.synchronous = true;\n\nvar TITLE_REQUIRE_RELOAD_DUE_TO_PLUGIN_CHANGE = \"$:/status/RequireReloadDueToPluginChange\";\n\nvar PREFIX_CONFIG_REGISTER_PLUGIN_TYPE = \"$:/config/RegisterPluginType/\";\n\nexports.startup = function() {\n\t$tw.wiki.addTiddler({title: TITLE_REQUIRE_RELOAD_DUE_TO_PLUGIN_CHANGE,text: \"no\"});\n\t$tw.wiki.addEventListener(\"change\",function(changes) {\n\t\t// Work out which of the changed tiddlers are plugins that we need to reregister\n\t\tvar changesToProcess = [],\n\t\t\trequireReloadDueToPluginChange = false;\n\t\t$tw.utils.each(Object.keys(changes),function(title) {\n\t\t\tvar tiddler = $tw.wiki.getTiddler(title),\n\t\t\t\trequiresReload = $tw.wiki.doesPluginRequireReload(title);\n\t\t\tif(requiresReload) {\n\t\t\t\trequireReloadDueToPluginChange = true;\n\t\t\t} else if(tiddler) {\n\t\t\t\tvar pluginType = tiddler.fields[\"plugin-type\"];\n\t\t\t\tif($tw.wiki.getTiddlerText(PREFIX_CONFIG_REGISTER_PLUGIN_TYPE + (tiddler.fields[\"plugin-type\"] || \"\"),\"no\") === \"yes\") {\n\t\t\t\t\tchangesToProcess.push(title);\n\t\t\t\t}\n\t\t\t}\n\t\t});\n\t\t// Issue warning if any of the tiddlers require a reload\n\t\tif(requireReloadDueToPluginChange) {\n\t\t\t$tw.wiki.addTiddler({title: TITLE_REQUIRE_RELOAD_DUE_TO_PLUGIN_CHANGE,text: \"yes\"});\n\t\t}\n\t\t// Read or delete the plugin info of the changed tiddlers\n\t\tif(changesToProcess.length > 0) {\n\t\t\tvar changes = $tw.wiki.readPluginInfo(changesToProcess);\n\t\t\tif(changes.modifiedPlugins.length > 0 || changes.deletedPlugins.length > 0) {\n\t\t\t\tvar changedShadowTiddlers = {};\n\t\t\t\t// Collect the shadow tiddlers of any deleted plugins\n\t\t\t\t$tw.utils.each(changes.deletedPlugins,function(pluginTitle) {\n\t\t\t\t\tvar pluginInfo = $tw.wiki.getPluginInfo(pluginTitle);\n\t\t\t\t\tif(pluginInfo) {\n\t\t\t\t\t\t$tw.utils.each(Object.keys(pluginInfo.tiddlers),function(title) {\n\t\t\t\t\t\t\tchangedShadowTiddlers[title] = true;\n\t\t\t\t\t\t});\n\t\t\t\t\t}\n\t\t\t\t});\n\t\t\t\t// Collect the shadow tiddlers of any modified plugins\n\t\t\t\t$tw.utils.each(changes.modifiedPlugins,function(pluginTitle) {\n\t\t\t\t\tvar pluginInfo = $tw.wiki.getPluginInfo(pluginTitle);\n\t\t\t\t\tif(pluginInfo) {\n\t\t\t\t\t\t$tw.utils.each(Object.keys(pluginInfo.tiddlers),function(title) {\n\t\t\t\t\t\t\tchangedShadowTiddlers[title] = false;\n\t\t\t\t\t\t});\n\t\t\t\t\t}\n\t\t\t\t});\n\t\t\t\t// (Re-)register any modified plugins\n\t\t\t\t$tw.wiki.registerPluginTiddlers(null,changes.modifiedPlugins);\n\t\t\t\t// Unregister any deleted plugins\n\t\t\t\t$tw.wiki.unregisterPluginTiddlers(null,changes.deletedPlugins);\n\t\t\t\t// Unpack the shadow tiddlers\n\t\t\t\t$tw.wiki.unpackPluginTiddlers();\n\t\t\t\t// Queue change events for the changed shadow tiddlers\n\t\t\t\t$tw.utils.each(Object.keys(changedShadowTiddlers),function(title) {\n\t\t\t\t\t$tw.wiki.enqueueTiddlerEvent(title,changedShadowTiddlers[title]);\n\t\t\t\t});\n\t\t\t}\n\t\t}\n\t});\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "startup"
},
"$:/core/modules/startup/render.js": {
"title": "$:/core/modules/startup/render.js",
"text": "/*\\\ntitle: $:/core/modules/startup/render.js\ntype: application/javascript\nmodule-type: startup\n\nTitle, stylesheet and page rendering\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n// Export name and synchronous status\nexports.name = \"render\";\nexports.platforms = [\"browser\"];\nexports.after = [\"story\"];\nexports.synchronous = true;\n\n// Default story and history lists\nvar PAGE_TITLE_TITLE = \"$:/core/wiki/title\";\nvar PAGE_STYLESHEET_TITLE = \"$:/core/ui/PageStylesheet\";\nvar PAGE_TEMPLATE_TITLE = \"$:/core/ui/RootTemplate\";\n\n// Time (in ms) that we defer refreshing changes to draft tiddlers\nvar DRAFT_TIDDLER_TIMEOUT_TITLE = \"$:/config/Drafts/TypingTimeout\";\nvar THROTTLE_REFRESH_TIMEOUT = 400;\n\nexports.startup = function() {\n\t// Set up the title\n\t$tw.titleWidgetNode = $tw.wiki.makeTranscludeWidget(PAGE_TITLE_TITLE,{document: $tw.fakeDocument, parseAsInline: true});\n\t$tw.titleContainer = $tw.fakeDocument.createElement(\"div\");\n\t$tw.titleWidgetNode.render($tw.titleContainer,null);\n\tdocument.title = $tw.titleContainer.textContent;\n\t$tw.wiki.addEventListener(\"change\",function(changes) {\n\t\tif($tw.titleWidgetNode.refresh(changes,$tw.titleContainer,null)) {\n\t\t\tdocument.title = $tw.titleContainer.textContent;\n\t\t}\n\t});\n\t// Set up the styles\n\t$tw.styleWidgetNode = $tw.wiki.makeTranscludeWidget(PAGE_STYLESHEET_TITLE,{document: $tw.fakeDocument});\n\t$tw.styleContainer = $tw.fakeDocument.createElement(\"style\");\n\t$tw.styleWidgetNode.render($tw.styleContainer,null);\n\t$tw.styleElement = document.createElement(\"style\");\n\t$tw.styleElement.innerHTML = $tw.styleContainer.textContent;\n\tdocument.head.insertBefore($tw.styleElement,document.head.firstChild);\n\t$tw.wiki.addEventListener(\"change\",$tw.perf.report(\"styleRefresh\",function(changes) {\n\t\tif($tw.styleWidgetNode.refresh(changes,$tw.styleContainer,null)) {\n\t\t\t$tw.styleElement.innerHTML = $tw.styleContainer.textContent;\n\t\t}\n\t}));\n\t// Display the $:/core/ui/PageTemplate tiddler to kick off the display\n\t$tw.perf.report(\"mainRender\",function() {\n\t\t$tw.pageWidgetNode = $tw.wiki.makeTranscludeWidget(PAGE_TEMPLATE_TITLE,{document: document, parentWidget: $tw.rootWidget, recursionMarker: \"no\"});\n\t\t$tw.pageContainer = document.createElement(\"div\");\n\t\t$tw.utils.addClass($tw.pageContainer,\"tc-page-container-wrapper\");\n\t\tdocument.body.insertBefore($tw.pageContainer,document.body.firstChild);\n\t\t$tw.pageWidgetNode.render($tw.pageContainer,null);\n \t\t$tw.hooks.invokeHook(\"th-page-refreshed\");\n\t})();\n\t// Remove any splash screen elements\n\tvar removeList = document.querySelectorAll(\".tc-remove-when-wiki-loaded\");\n\t$tw.utils.each(removeList,function(removeItem) {\n\t\tif(removeItem.parentNode) {\n\t\t\tremoveItem.parentNode.removeChild(removeItem);\n\t\t}\n\t});\n\t// Prepare refresh mechanism\n\tvar deferredChanges = Object.create(null),\n\t\ttimerId;\n\tfunction refresh() {\n\t\t// Process the refresh\n\t\t$tw.hooks.invokeHook(\"th-page-refreshing\");\n\t\t$tw.pageWidgetNode.refresh(deferredChanges);\n\t\tdeferredChanges = Object.create(null);\n\t\t$tw.hooks.invokeHook(\"th-page-refreshed\");\n\t}\n\t// Add the change event handler\n\t$tw.wiki.addEventListener(\"change\",$tw.perf.report(\"mainRefresh\",function(changes) {\n\t\t// Check if only tiddlers that are throttled have changed\n\t\tvar onlyThrottledTiddlersHaveChanged = true;\n\t\tfor(var title in changes) {\n\t\t\tvar tiddler = $tw.wiki.getTiddler(title);\n\t\t\tif(!tiddler || !(tiddler.hasField(\"draft.of\") || tiddler.hasField(\"throttle.refresh\"))) {\n\t\t\t\tonlyThrottledTiddlersHaveChanged = false;\n\t\t\t}\n\t\t}\n\t\t// Defer the change if only drafts have changed\n\t\tif(timerId) {\n\t\t\tclearTimeout(timerId);\n\t\t}\n\t\ttimerId = null;\n\t\tif(onlyThrottledTiddlersHaveChanged) {\n\t\t\tvar timeout = parseInt($tw.wiki.getTiddlerText(DRAFT_TIDDLER_TIMEOUT_TITLE,\"\"),10);\n\t\t\tif(isNaN(timeout)) {\n\t\t\t\ttimeout = THROTTLE_REFRESH_TIMEOUT;\n\t\t\t}\n\t\t\ttimerId = setTimeout(refresh,timeout);\n\t\t\t$tw.utils.extend(deferredChanges,changes);\n\t\t} else {\n\t\t\t$tw.utils.extend(deferredChanges,changes);\n\t\t\trefresh();\n\t\t}\n\t}));\n\t// Fix up the link between the root widget and the page container\n\t$tw.rootWidget.domNodes = [$tw.pageContainer];\n\t$tw.rootWidget.children = [$tw.pageWidgetNode];\n\t// Run any post-render startup actions\n\t$tw.rootWidget.invokeActionsByTag(\"$:/tags/StartupAction/PostRender\");\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "startup"
},
"$:/core/modules/startup/rootwidget.js": {
"title": "$:/core/modules/startup/rootwidget.js",
"text": "/*\\\ntitle: $:/core/modules/startup/rootwidget.js\ntype: application/javascript\nmodule-type: startup\n\nSetup the root widget and the core root widget handlers\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n// Export name and synchronous status\nexports.name = \"rootwidget\";\nexports.platforms = [\"browser\"];\nexports.after = [\"startup\"];\nexports.before = [\"story\"];\nexports.synchronous = true;\n\nexports.startup = function() {\n\t// Install the modal message mechanism\n\t$tw.modal = new $tw.utils.Modal($tw.wiki);\n\t$tw.rootWidget.addEventListener(\"tm-modal\",function(event) {\n\t\t$tw.modal.display(event.param,{variables: event.paramObject, event: event});\n\t});\n\t$tw.rootWidget.addEventListener(\"tm-show-switcher\",function(event) {\n\t\t$tw.modal.display(\"$:/core/ui/SwitcherModal\",{variables: event.paramObject, event: event});\n\t});\t\n\t// Install the notification mechanism\n\t$tw.notifier = new $tw.utils.Notifier($tw.wiki);\n\t$tw.rootWidget.addEventListener(\"tm-notify\",function(event) {\n\t\t$tw.notifier.display(event.param,{variables: event.paramObject});\n\t});\n\t// Install the copy-to-clipboard mechanism\n\t$tw.rootWidget.addEventListener(\"tm-copy-to-clipboard\",function(event) {\n\t\t$tw.utils.copyToClipboard(event.param);\n\t});\n\t// Install the tm-focus-selector message\n\t$tw.rootWidget.addEventListener(\"tm-focus-selector\",function(event) {\n\t\tvar selector = event.param || \"\",\n\t\t\telement;\n\t\ttry {\n\t\t\telement = document.querySelector(selector);\n\t\t} catch(e) {\n\t\t\tconsole.log(\"Error in selector: \",selector)\n\t\t}\n\t\tif(element && element.focus) {\n\t\t\telement.focus(event.paramObject);\n\t\t}\n\t});\n\t// Install the scroller\n\t$tw.pageScroller = new $tw.utils.PageScroller();\n\t$tw.rootWidget.addEventListener(\"tm-scroll\",function(event) {\n\t\t$tw.pageScroller.handleEvent(event);\n\t});\n\tvar fullscreen = $tw.utils.getFullScreenApis();\n\tif(fullscreen) {\n\t\t$tw.rootWidget.addEventListener(\"tm-full-screen\",function(event) {\n\t\t\tvar fullScreenDocument = event.event ? event.event.target.ownerDocument : document;\n\t\t\tif(event.param === \"enter\") {\n\t\t\t\tfullScreenDocument.documentElement[fullscreen._requestFullscreen](Element.ALLOW_KEYBOARD_INPUT);\n\t\t\t} else if(event.param === \"exit\") {\n\t\t\t\tfullScreenDocument[fullscreen._exitFullscreen]();\n\t\t\t} else {\n\t\t\t\tif(fullScreenDocument[fullscreen._fullscreenElement]) {\n\t\t\t\t\tfullScreenDocument[fullscreen._exitFullscreen]();\n\t\t\t\t} else {\n\t\t\t\t\tfullScreenDocument.documentElement[fullscreen._requestFullscreen](Element.ALLOW_KEYBOARD_INPUT);\n\t\t\t\t}\t\t\t\t\n\t\t\t}\n\t\t});\n\t}\n\t// If we're being viewed on a data: URI then give instructions for how to save\n\tif(document.location.protocol === \"data:\") {\n\t\t$tw.rootWidget.dispatchEvent({\n\t\t\ttype: \"tm-modal\",\n\t\t\tparam: \"$:/language/Modals/SaveInstructions\"\n\t\t});\n\t}\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "startup"
},
"$:/core/modules/startup.js": {
"title": "$:/core/modules/startup.js",
"text": "/*\\\ntitle: $:/core/modules/startup.js\ntype: application/javascript\nmodule-type: startup\n\nMiscellaneous startup logic for both the client and server.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n// Export name and synchronous status\nexports.name = \"startup\";\nexports.after = [\"load-modules\"];\nexports.synchronous = true;\n\n// Set to `true` to enable performance instrumentation\nvar PERFORMANCE_INSTRUMENTATION_CONFIG_TITLE = \"$:/config/Performance/Instrumentation\";\n\nvar widget = require(\"$:/core/modules/widgets/widget.js\");\n\nexports.startup = function() {\n\tvar modules,n,m,f;\n\t// Minimal browser detection\n\tif($tw.browser) {\n\t\t$tw.browser.isIE = (/msie|trident/i.test(navigator.userAgent));\n\t\t$tw.browser.isFirefox = !!document.mozFullScreenEnabled;\n\t}\n\t// Platform detection\n\t$tw.platform = {};\n\tif($tw.browser) {\n\t\t$tw.platform.isMac = /Mac/.test(navigator.platform);\n\t\t$tw.platform.isWindows = /win/i.test(navigator.platform);\n\t\t$tw.platform.isLinux = /Linux/i.test(navigator.platform);\n\t} else {\n\t\tswitch(require(\"os\").platform()) {\n\t\t\tcase \"darwin\":\n\t\t\t\t$tw.platform.isMac = true;\n\t\t\t\tbreak;\n\t\t\tcase \"win32\":\n\t\t\t\t$tw.platform.isWindows = true;\n\t\t\t\tbreak;\n\t\t\tcase \"freebsd\":\n\t\t\t\t$tw.platform.isLinux = true;\n\t\t\t\tbreak;\n\t\t\tcase \"linux\":\n\t\t\t\t$tw.platform.isLinux = true;\n\t\t\t\tbreak;\n\t\t}\n\t}\n\t// Initialise version\n\t$tw.version = $tw.utils.extractVersionInfo();\n\t// Set up the performance framework\n\t$tw.perf = new $tw.Performance($tw.wiki.getTiddlerText(PERFORMANCE_INSTRUMENTATION_CONFIG_TITLE,\"no\") === \"yes\");\n\t// Create a root widget for attaching event handlers. By using it as the parentWidget for another widget tree, one can reuse the event handlers\n\t$tw.rootWidget = new widget.widget({\n\t\ttype: \"widget\",\n\t\tchildren: []\n\t},{\n\t\twiki: $tw.wiki,\n\t\tdocument: $tw.browser ? document : $tw.fakeDocument\n\t});\n\t// Execute any startup actions\n\t$tw.rootWidget.invokeActionsByTag(\"$:/tags/StartupAction\");\n\tif($tw.browser) {\n\t\t$tw.rootWidget.invokeActionsByTag(\"$:/tags/StartupAction/Browser\");\t\t\n\t}\n\tif($tw.node) {\n\t\t$tw.rootWidget.invokeActionsByTag(\"$:/tags/StartupAction/Node\");\t\t\n\t}\n\t// Kick off the language manager and switcher\n\t$tw.language = new $tw.Language();\n\t$tw.languageSwitcher = new $tw.PluginSwitcher({\n\t\twiki: $tw.wiki,\n\t\tpluginType: \"language\",\n\t\tcontrollerTitle: \"$:/language\",\n\t\tdefaultPlugins: [\n\t\t\t\"$:/languages/en-GB\"\n\t\t],\n\t\tonSwitch: function(plugins) {\n\t\t\tif($tw.browser) {\n\t\t\t\tvar pluginTiddler = $tw.wiki.getTiddler(plugins[0]);\n\t\t\t\tif(pluginTiddler) {\n\t\t\t\t\tdocument.documentElement.setAttribute(\"dir\",pluginTiddler.getFieldString(\"text-direction\") || \"auto\");\n\t\t\t\t} else {\n\t\t\t\t\tdocument.documentElement.removeAttribute(\"dir\");\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t});\n\t// Kick off the theme manager\n\t$tw.themeManager = new $tw.PluginSwitcher({\n\t\twiki: $tw.wiki,\n\t\tpluginType: \"theme\",\n\t\tcontrollerTitle: \"$:/theme\",\n\t\tdefaultPlugins: [\n\t\t\t\"$:/themes/tiddlywiki/snowwhite\",\n\t\t\t\"$:/themes/tiddlywiki/vanilla\"\n\t\t]\n\t});\n\t// Kick off the keyboard manager\n\t$tw.keyboardManager = new $tw.KeyboardManager();\n\t// Listen for shortcuts\n\tif($tw.browser) {\n\t\t$tw.utils.addEventListeners(document,[{\n\t\t\tname: \"keydown\",\n\t\t\thandlerObject: $tw.keyboardManager,\n\t\t\thandlerMethod: \"handleKeydownEvent\"\n\t\t}]);\n\t}\n\t// Clear outstanding tiddler store change events to avoid an unnecessary refresh cycle at startup\n\t$tw.wiki.clearTiddlerEventQueue();\n\t// Find a working syncadaptor\n\t$tw.syncadaptor = undefined;\n\t$tw.modules.forEachModuleOfType(\"syncadaptor\",function(title,module) {\n\t\tif(!$tw.syncadaptor && module.adaptorClass) {\n\t\t\t$tw.syncadaptor = new module.adaptorClass({wiki: $tw.wiki});\n\t\t}\n\t});\n\t// Set up the syncer object if we've got a syncadaptor\n\tif($tw.syncadaptor) {\n\t\t$tw.syncer = new $tw.Syncer({wiki: $tw.wiki, syncadaptor: $tw.syncadaptor});\n\t}\n\t// Setup the saver handler\n\t$tw.saverHandler = new $tw.SaverHandler({\n\t\twiki: $tw.wiki,\n\t\tdirtyTracking: !$tw.syncadaptor,\n\t\tpreloadDirty: $tw.boot.preloadDirty || []\n\t});\n\t// Host-specific startup\n\tif($tw.browser) {\n\t\t// Install the popup manager\n\t\t$tw.popup = new $tw.utils.Popup();\n\t\t// Install the animator\n\t\t$tw.anim = new $tw.utils.Animator();\n\t}\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "startup"
},
"$:/core/modules/startup/story.js": {
"title": "$:/core/modules/startup/story.js",
"text": "/*\\\ntitle: $:/core/modules/startup/story.js\ntype: application/javascript\nmodule-type: startup\n\nLoad core modules\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n// Export name and synchronous status\nexports.name = \"story\";\nexports.after = [\"startup\"];\nexports.synchronous = true;\n\n// Default story and history lists\nvar DEFAULT_STORY_TITLE = \"$:/StoryList\";\nvar DEFAULT_HISTORY_TITLE = \"$:/HistoryList\";\n\n// Default tiddlers\nvar DEFAULT_TIDDLERS_TITLE = \"$:/DefaultTiddlers\";\n\n// Config\nvar CONFIG_UPDATE_ADDRESS_BAR = \"$:/config/Navigation/UpdateAddressBar\"; // Can be \"no\", \"permalink\", \"permaview\"\nvar CONFIG_UPDATE_HISTORY = \"$:/config/Navigation/UpdateHistory\"; // Can be \"yes\" or \"no\"\nvar CONFIG_PERMALINKVIEW_COPY_TO_CLIPBOARD = \"$:/config/Navigation/Permalinkview/CopyToClipboard\"; // Can be \"yes\" (default) or \"no\"\nvar CONFIG_PERMALINKVIEW_UPDATE_ADDRESS_BAR = \"$:/config/Navigation/Permalinkview/UpdateAddressBar\"; // Can be \"yes\" (default) or \"no\"\n\n\n// Links to help, if there is no param\nvar HELP_OPEN_EXTERNAL_WINDOW = \"http://tiddlywiki.com/#WidgetMessage%3A%20tm-open-external-window\";\n\nexports.startup = function() {\n\t// Open startup tiddlers\n\topenStartupTiddlers({\n\t\tdisableHistory: $tw.boot.disableStartupNavigation\n\t});\n\tif($tw.browser) {\n\t\t// Set up location hash update\n\t\t$tw.wiki.addEventListener(\"change\",function(changes) {\n\t\t\tif($tw.utils.hop(changes,DEFAULT_STORY_TITLE) || $tw.utils.hop(changes,DEFAULT_HISTORY_TITLE)) {\n\t\t\t\tupdateLocationHash({\n\t\t\t\t\tupdateAddressBar: $tw.wiki.getTiddlerText(CONFIG_UPDATE_ADDRESS_BAR,\"permaview\").trim(),\n\t\t\t\t\tupdateHistory: $tw.wiki.getTiddlerText(CONFIG_UPDATE_HISTORY,\"no\").trim()\n\t\t\t\t});\n\t\t\t}\n\t\t});\n\t\t// Listen for changes to the browser location hash\n\t\twindow.addEventListener(\"hashchange\",function() {\n\t\t\tvar hash = $tw.utils.getLocationHash();\n\t\t\tif(hash !== $tw.locationHash) {\n\t\t\t\t$tw.locationHash = hash;\n\t\t\t\topenStartupTiddlers({defaultToCurrentStory: true});\n\t\t\t}\n\t\t},false);\n\t\t// Listen for the tm-browser-refresh message\n\t\t$tw.rootWidget.addEventListener(\"tm-browser-refresh\",function(event) {\n\t\t\twindow.location.reload(true);\n\t\t});\n\t\t// Listen for tm-open-external-window message\n\t\t$tw.rootWidget.addEventListener(\"tm-open-external-window\",function(event) {\n\t\t\tvar paramObject = event.paramObject || {},\n\t\t\t\tstrUrl = event.param || HELP_OPEN_EXTERNAL_WINDOW,\n\t\t\t\tstrWindowName = paramObject.windowName,\n\t\t\t\tstrWindowFeatures = paramObject.windowFeatures;\n\t\t\twindow.open(strUrl, strWindowName, strWindowFeatures);\n\t\t});\n\t\t// Listen for the tm-print message\n\t\t$tw.rootWidget.addEventListener(\"tm-print\",function(event) {\n\t\t\t(event.event.view || window).print();\n\t\t});\n\t\t// Listen for the tm-home message\n\t\t$tw.rootWidget.addEventListener(\"tm-home\",function(event) {\n\t\t\twindow.location.hash = \"\";\n\t\t\tvar storyFilter = $tw.wiki.getTiddlerText(DEFAULT_TIDDLERS_TITLE),\n\t\t\t\tstoryList = $tw.wiki.filterTiddlers(storyFilter);\n\t\t\t//invoke any hooks that might change the default story list\n\t\t\tstoryList = $tw.hooks.invokeHook(\"th-opening-default-tiddlers-list\",storyList);\n\t\t\t$tw.wiki.addTiddler({title: DEFAULT_STORY_TITLE, text: \"\", list: storyList},$tw.wiki.getModificationFields());\n\t\t\tif(storyList[0]) {\n\t\t\t\t$tw.wiki.addToHistory(storyList[0]);\n\t\t\t}\n\t\t});\n\t\t// Listen for the tm-permalink message\n\t\t$tw.rootWidget.addEventListener(\"tm-permalink\",function(event) {\n\t\t\tupdateLocationHash({\n\t\t\t\tupdateAddressBar: $tw.wiki.getTiddlerText(CONFIG_PERMALINKVIEW_UPDATE_ADDRESS_BAR,\"yes\").trim() === \"yes\" ? \"permalink\" : \"none\",\n\t\t\t\tupdateHistory: $tw.wiki.getTiddlerText(CONFIG_UPDATE_HISTORY,\"no\").trim(),\n\t\t\t\ttargetTiddler: event.param || event.tiddlerTitle,\n\t\t\t\tcopyToClipboard: $tw.wiki.getTiddlerText(CONFIG_PERMALINKVIEW_COPY_TO_CLIPBOARD,\"yes\").trim() === \"yes\" ? \"permalink\" : \"none\"\n\t\t\t});\n\t\t});\n\t\t// Listen for the tm-permaview message\n\t\t$tw.rootWidget.addEventListener(\"tm-permaview\",function(event) {\n\t\t\tupdateLocationHash({\n\t\t\t\tupdateAddressBar: $tw.wiki.getTiddlerText(CONFIG_PERMALINKVIEW_UPDATE_ADDRESS_BAR,\"yes\").trim() === \"yes\" ? \"permaview\" : \"none\",\n\t\t\t\tupdateHistory: $tw.wiki.getTiddlerText(CONFIG_UPDATE_HISTORY,\"no\").trim(),\n\t\t\t\ttargetTiddler: event.param || event.tiddlerTitle,\n\t\t\t\tcopyToClipboard: $tw.wiki.getTiddlerText(CONFIG_PERMALINKVIEW_COPY_TO_CLIPBOARD,\"yes\").trim() === \"yes\" ? \"permaview\" : \"none\"\n\t\t\t});\t\t\t\t\n\t\t});\n\t}\n};\n\n/*\nProcess the location hash to open the specified tiddlers. Options:\ndisableHistory: if true $:/History is NOT updated\ndefaultToCurrentStory: If true, the current story is retained as the default, instead of opening the default tiddlers\n*/\nfunction openStartupTiddlers(options) {\n\toptions = options || {};\n\t// Work out the target tiddler and the story filter. \"null\" means \"unspecified\"\n\tvar target = null,\n\t\tstoryFilter = null;\n\tif($tw.locationHash.length > 1) {\n\t\tvar hash = $tw.locationHash.substr(1),\n\t\t\tsplit = hash.indexOf(\":\");\n\t\tif(split === -1) {\n\t\t\ttarget = decodeURIComponent(hash.trim());\n\t\t} else {\n\t\t\ttarget = decodeURIComponent(hash.substr(0,split).trim());\n\t\t\tstoryFilter = decodeURIComponent(hash.substr(split + 1).trim());\n\t\t}\n\t}\n\t// If the story wasn't specified use the current tiddlers or a blank story\n\tif(storyFilter === null) {\n\t\tif(options.defaultToCurrentStory) {\n\t\t\tvar currStoryList = $tw.wiki.getTiddlerList(DEFAULT_STORY_TITLE);\n\t\t\tstoryFilter = $tw.utils.stringifyList(currStoryList);\n\t\t} else {\n\t\t\tif(target && target !== \"\") {\n\t\t\t\tstoryFilter = \"\";\n\t\t\t} else {\n\t\t\t\tstoryFilter = $tw.wiki.getTiddlerText(DEFAULT_TIDDLERS_TITLE);\n\t\t\t}\n\t\t}\n\t}\n\t// Process the story filter to get the story list\n\tvar storyList = $tw.wiki.filterTiddlers(storyFilter);\n\t// Invoke any hooks that want to change the default story list\n\tstoryList = $tw.hooks.invokeHook(\"th-opening-default-tiddlers-list\",storyList);\n\t// If the target tiddler isn't included then splice it in at the top\n\tif(target && storyList.indexOf(target) === -1) {\n\t\tstoryList.unshift(target);\n\t}\n\t// Save the story list\n\t$tw.wiki.addTiddler({title: DEFAULT_STORY_TITLE, text: \"\", list: storyList},$tw.wiki.getModificationFields());\n\t// Update history\n\tvar story = new $tw.Story({\n\t\twiki: $tw.wiki,\n\t\tstoryTitle: DEFAULT_STORY_TITLE,\n\t\thistoryTitle: DEFAULT_HISTORY_TITLE\n\t});\n\tif(!options.disableHistory) {\n\t\t// If a target tiddler was specified add it to the history stack\n\t\tif(target && target !== \"\") {\n\t\t\t// The target tiddler doesn't need double square brackets, but we'll silently remove them if they're present\n\t\t\tif(target.indexOf(\"[[\") === 0 && target.substr(-2) === \"]]\") {\n\t\t\t\ttarget = target.substr(2,target.length - 4);\n\t\t\t}\n\t\t\tstory.addToHistory(target);\n\t\t} else if(storyList.length > 0) {\n\t\t\tstory.addToHistory(storyList[0]);\n\t\t}\t\t\n\t}\n}\n\n/*\noptions: See below\noptions.updateAddressBar: \"permalink\", \"permaview\" or \"no\" (defaults to \"permaview\")\noptions.updateHistory: \"yes\" or \"no\" (defaults to \"no\")\noptions.copyToClipboard: \"permalink\", \"permaview\" or \"no\" (defaults to \"no\")\noptions.targetTiddler: optional title of target tiddler for permalink\n*/\nfunction updateLocationHash(options) {\n\t// Get the story and the history stack\n\tvar storyList = $tw.wiki.getTiddlerList(DEFAULT_STORY_TITLE),\n\t\thistoryList = $tw.wiki.getTiddlerData(DEFAULT_HISTORY_TITLE,[]),\n\t\ttargetTiddler = \"\";\n\tif(options.targetTiddler) {\n\t\ttargetTiddler = options.targetTiddler;\n\t} else {\n\t\t// The target tiddler is the one at the top of the stack\n\t\tif(historyList.length > 0) {\n\t\t\ttargetTiddler = historyList[historyList.length-1].title;\n\t\t}\n\t\t// Blank the target tiddler if it isn't present in the story\n\t\tif(storyList.indexOf(targetTiddler) === -1) {\n\t\t\ttargetTiddler = \"\";\n\t\t}\n\t}\n\t// Assemble the location hash\n\tswitch(options.updateAddressBar) {\n\t\tcase \"permalink\":\n\t\t\t$tw.locationHash = \"#\" + encodeURIComponent(targetTiddler);\n\t\t\tbreak;\n\t\tcase \"permaview\":\n\t\t\t$tw.locationHash = \"#\" + encodeURIComponent(targetTiddler) + \":\" + encodeURIComponent($tw.utils.stringifyList(storyList));\n\t\t\tbreak;\n\t}\n\t// Copy URL to the clipboard\n\tswitch(options.copyToClipboard) {\n\t\tcase \"permalink\":\n\t\t\t$tw.utils.copyToClipboard($tw.utils.getLocationPath() + \"#\" + encodeURIComponent(targetTiddler));\n\t\t\tbreak;\n\t\tcase \"permaview\":\n\t\t\t$tw.utils.copyToClipboard($tw.utils.getLocationPath() + \"#\" + encodeURIComponent(targetTiddler) + \":\" + encodeURIComponent($tw.utils.stringifyList(storyList)));\n\t\t\tbreak;\n\t}\n\t// Only change the location hash if we must, thus avoiding unnecessary onhashchange events\n\tif($tw.utils.getLocationHash() !== $tw.locationHash) {\n\t\tif(options.updateHistory === \"yes\") {\n\t\t\t// Assign the location hash so that history is updated\n\t\t\twindow.location.hash = $tw.locationHash;\n\t\t} else {\n\t\t\t// We use replace so that browser history isn't affected\n\t\t\twindow.location.replace(window.location.toString().split(\"#\")[0] + $tw.locationHash);\n\t\t}\n\t}\n}\n\n})();\n",
"type": "application/javascript",
"module-type": "startup"
},
"$:/core/modules/startup/windows.js": {
"title": "$:/core/modules/startup/windows.js",
"text": "/*\\\ntitle: $:/core/modules/startup/windows.js\ntype: application/javascript\nmodule-type: startup\n\nSetup root widget handlers for the messages concerned with opening external browser windows\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n// Export name and synchronous status\nexports.name = \"windows\";\nexports.platforms = [\"browser\"];\nexports.after = [\"startup\"];\nexports.synchronous = true;\n\n// Global to keep track of open windows (hashmap by title)\n$tw.windows = {};\n\nexports.startup = function() {\n\t// Handle open window message\n\t$tw.rootWidget.addEventListener(\"tm-open-window\",function(event) {\n\t\t// Get the parameters\n\t\tvar refreshHandler,\n\t\t\ttitle = event.param || event.tiddlerTitle,\n\t\t\tparamObject = event.paramObject || {},\n\t\t\twindowTitle = paramObject.windowTitle || title,\n\t\t\ttemplate = paramObject.template || \"$:/core/templates/single.tiddler.window\",\n\t\t\twidth = paramObject.width || \"700\",\n\t\t\theight = paramObject.height || \"600\",\n\t\t\tvariables = $tw.utils.extend({},paramObject,{currentTiddler: title});\n\t\t// Open the window\n\t\tvar srcWindow,\n\t\t srcDocument;\n\t\t// In case that popup blockers deny opening a new window\n\t\ttry {\n\t\t\tsrcWindow = window.open(\"\",\"external-\" + title,\"scrollbars,width=\" + width + \",height=\" + height),\n\t\t\tsrcDocument = srcWindow.document;\n\t\t}\n\t\tcatch(e) {\n\t\t\treturn;\n\t\t}\n\t\t$tw.windows[title] = srcWindow;\n\t\t// Check for reopening the same window\n\t\tif(srcWindow.haveInitialisedWindow) {\n\t\t\treturn;\n\t\t}\n\t\t// Initialise the document\n\t\tsrcDocument.write(\"<html><head></head><body class='tc-body tc-single-tiddler-window'></body></html>\");\n\t\tsrcDocument.close();\n\t\tsrcDocument.title = windowTitle;\n\t\tsrcWindow.addEventListener(\"beforeunload\",function(event) {\n\t\t\tdelete $tw.windows[title];\n\t\t\t$tw.wiki.removeEventListener(\"change\",refreshHandler);\n\t\t},false);\n\t\t// Set up the styles\n\t\tvar styleWidgetNode = $tw.wiki.makeTranscludeWidget(\"$:/core/ui/PageStylesheet\",{\n\t\t\t\tdocument: $tw.fakeDocument,\n\t\t\t\tvariables: variables,\n\t\t\t\timportPageMacros: true}),\n\t\t\tstyleContainer = $tw.fakeDocument.createElement(\"style\");\n\t\tstyleWidgetNode.render(styleContainer,null);\n\t\tvar styleElement = srcDocument.createElement(\"style\");\n\t\tstyleElement.innerHTML = styleContainer.textContent;\n\t\tsrcDocument.head.insertBefore(styleElement,srcDocument.head.firstChild);\n\t\t// Render the text of the tiddler\n\t\tvar parser = $tw.wiki.parseTiddler(template),\n\t\t\twidgetNode = $tw.wiki.makeWidget(parser,{document: srcDocument, parentWidget: $tw.rootWidget, variables: variables});\n\t\twidgetNode.render(srcDocument.body,srcDocument.body.firstChild);\n\t\t// Function to handle refreshes\n\t\trefreshHandler = function(changes) {\n\t\t\tif(styleWidgetNode.refresh(changes,styleContainer,null)) {\n\t\t\t\tstyleElement.innerHTML = styleContainer.textContent;\n\t\t\t}\n\t\t\twidgetNode.refresh(changes);\n\t\t};\n\t\t$tw.wiki.addEventListener(\"change\",refreshHandler);\n\t\t// Listen for keyboard shortcuts\n\t\t$tw.utils.addEventListeners(srcDocument,[{\n\t\t\tname: \"keydown\",\n\t\t\thandlerObject: $tw.keyboardManager,\n\t\t\thandlerMethod: \"handleKeydownEvent\"\n\t\t}]);\n\t\tsrcWindow.document.documentElement.addEventListener(\"click\",$tw.popup,true);\n\t\tsrcWindow.haveInitialisedWindow = true;\n\t});\n\t// Close open windows when unloading main window\n\t$tw.addUnloadTask(function() {\n\t\t$tw.utils.each($tw.windows,function(win) {\n\t\t\twin.close();\n\t\t});\n\t});\n\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "startup"
},
"$:/core/modules/story.js": {
"title": "$:/core/modules/story.js",
"text": "/*\\\ntitle: $:/core/modules/story.js\ntype: application/javascript\nmodule-type: global\n\nLightweight object for managing interactions with the story and history lists.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nConstruct Story object with options:\nwiki: reference to wiki object to use to resolve tiddler titles\nstoryTitle: title of story list tiddler\nhistoryTitle: title of history list tiddler\n*/\nfunction Story(options) {\n\toptions = options || {};\n\tthis.wiki = options.wiki || $tw.wiki;\n\tthis.storyTitle = options.storyTitle || \"$:/StoryList\";\n\tthis.historyTitle = options.historyTitle || \"$:/HistoryList\";\n};\n\nStory.prototype.navigateTiddler = function(navigateTo,navigateFromTitle,navigateFromClientRect) {\n\tthis.addToStory(navigateTo,navigateFromTitle);\n\tthis.addToHistory(navigateTo,navigateFromClientRect);\n};\n\nStory.prototype.getStoryList = function() {\n\treturn this.wiki.getTiddlerList(this.storyTitle) || [];\n};\n\nStory.prototype.addToStory = function(navigateTo,navigateFromTitle,options) {\n\toptions = options || {};\n\tvar storyList = this.getStoryList();\n\t// See if the tiddler is already there\n\tvar slot = storyList.indexOf(navigateTo);\n\t// Quit if it already exists in the story river\n\tif(slot >= 0) {\n\t\treturn;\n\t}\n\t// First we try to find the position of the story element we navigated from\n\tvar fromIndex = storyList.indexOf(navigateFromTitle);\n\tif(fromIndex >= 0) {\n\t\t// The tiddler is added from inside the river\n\t\t// Determine where to insert the tiddler; Fallback is \"below\"\n\t\tswitch(options.openLinkFromInsideRiver) {\n\t\t\tcase \"top\":\n\t\t\t\tslot = 0;\n\t\t\t\tbreak;\n\t\t\tcase \"bottom\":\n\t\t\t\tslot = storyList.length;\n\t\t\t\tbreak;\n\t\t\tcase \"above\":\n\t\t\t\tslot = fromIndex;\n\t\t\t\tbreak;\n\t\t\tcase \"below\": // Intentional fall-through\n\t\t\tdefault:\n\t\t\t\tslot = fromIndex + 1;\n\t\t\t\tbreak;\n\t\t}\n\t} else {\n\t\t// The tiddler is opened from outside the river. Determine where to insert the tiddler; default is \"top\"\n\t\tif(options.openLinkFromOutsideRiver === \"bottom\") {\n\t\t\t// Insert at bottom\n\t\t\tslot = storyList.length;\n\t\t} else {\n\t\t\t// Insert at top\n\t\t\tslot = 0;\n\t\t}\n\t}\n\t// Add the tiddler\n\tstoryList.splice(slot,0,navigateTo);\n\t// Save the story\n\tthis.saveStoryList(storyList);\n};\n\nStory.prototype.saveStoryList = function(storyList) {\n\tvar storyTiddler = this.wiki.getTiddler(this.storyTitle);\n\tthis.wiki.addTiddler(new $tw.Tiddler(\n\t\tthis.wiki.getCreationFields(),\n\t\t{title: this.storyTitle},\n\t\tstoryTiddler,\n\t\t{list: storyList},\n\t\tthis.wiki.getModificationFields()\n\t));\n};\n\nStory.prototype.addToHistory = function(navigateTo,navigateFromClientRect) {\n\tvar titles = $tw.utils.isArray(navigateTo) ? navigateTo : [navigateTo];\n\t// Add a new record to the top of the history stack\n\tvar historyList = this.wiki.getTiddlerData(this.historyTitle,[]);\n\t$tw.utils.each(titles,function(title) {\n\t\thistoryList.push({title: title, fromPageRect: navigateFromClientRect});\n\t});\n\tthis.wiki.setTiddlerData(this.historyTitle,historyList,{\"current-tiddler\": titles[titles.length-1]});\n};\n\nStory.prototype.storyCloseTiddler = function(targetTitle) {\n// TBD\n};\n\nStory.prototype.storyCloseAllTiddlers = function() {\n// TBD\n};\n\nStory.prototype.storyCloseOtherTiddlers = function(targetTitle) {\n// TBD\n};\n\nStory.prototype.storyEditTiddler = function(targetTitle) {\n// TBD\n};\n\nStory.prototype.storyDeleteTiddler = function(targetTitle) {\n// TBD\n};\n\nStory.prototype.storySaveTiddler = function(targetTitle) {\n// TBD\n};\n\nStory.prototype.storyCancelTiddler = function(targetTitle) {\n// TBD\n};\n\nStory.prototype.storyNewTiddler = function(targetTitle) {\n// TBD\n};\n\nexports.Story = Story;\n\n\n})();\n",
"type": "application/javascript",
"module-type": "global"
},
"$:/core/modules/storyviews/classic.js": {
"title": "$:/core/modules/storyviews/classic.js",
"text": "/*\\\ntitle: $:/core/modules/storyviews/classic.js\ntype: application/javascript\nmodule-type: storyview\n\nViews the story as a linear sequence\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar easing = \"cubic-bezier(0.645, 0.045, 0.355, 1)\"; // From http://easings.net/#easeInOutCubic\n\nvar ClassicStoryView = function(listWidget) {\n\tthis.listWidget = listWidget;\n};\n\nClassicStoryView.prototype.navigateTo = function(historyInfo) {\n\tvar duration = $tw.utils.getAnimationDuration()\n\tvar listElementIndex = this.listWidget.findListItem(0,historyInfo.title);\n\tif(listElementIndex === undefined) {\n\t\treturn;\n\t}\n\tvar listItemWidget = this.listWidget.children[listElementIndex],\n\t\ttargetElement = listItemWidget.findFirstDomNode();\n\t// Abandon if the list entry isn't a DOM element (it might be a text node)\n\tif(!(targetElement instanceof Element)) {\n\t\treturn;\n\t}\n\tif(duration) {\n\t\t// Scroll the node into view\n\t\tthis.listWidget.dispatchEvent({type: \"tm-scroll\", target: targetElement});\t\n\t} else {\n\t\ttargetElement.scrollIntoView();\n\t}\n};\n\nClassicStoryView.prototype.insert = function(widget) {\n\tvar duration = $tw.utils.getAnimationDuration();\n\tif(duration) {\n\t\tvar targetElement = widget.findFirstDomNode();\n\t\t// Abandon if the list entry isn't a DOM element (it might be a text node)\n\t\tif(!(targetElement instanceof Element)) {\n\t\t\treturn;\n\t\t}\n\t\t// Get the current height of the tiddler\n\t\tvar computedStyle = window.getComputedStyle(targetElement),\n\t\t\tcurrMarginBottom = parseInt(computedStyle.marginBottom,10),\n\t\t\tcurrMarginTop = parseInt(computedStyle.marginTop,10),\n\t\t\tcurrHeight = targetElement.offsetHeight + currMarginTop;\n\t\t// Reset the margin once the transition is over\n\t\tsetTimeout(function() {\n\t\t\t$tw.utils.setStyle(targetElement,[\n\t\t\t\t{transition: \"none\"},\n\t\t\t\t{marginBottom: \"\"}\n\t\t\t]);\n\t\t},duration);\n\t\t// Set up the initial position of the element\n\t\t$tw.utils.setStyle(targetElement,[\n\t\t\t{transition: \"none\"},\n\t\t\t{marginBottom: (-currHeight) + \"px\"},\n\t\t\t{opacity: \"0.0\"}\n\t\t]);\n\t\t$tw.utils.forceLayout(targetElement);\n\t\t// Transition to the final position\n\t\t$tw.utils.setStyle(targetElement,[\n\t\t\t{transition: \"opacity \" + duration + \"ms \" + easing + \", \" +\n\t\t\t\t\t\t\"margin-bottom \" + duration + \"ms \" + easing},\n\t\t\t{marginBottom: currMarginBottom + \"px\"},\n\t\t\t{opacity: \"1.0\"}\n\t]);\n\t}\n};\n\nClassicStoryView.prototype.remove = function(widget) {\n\tvar duration = $tw.utils.getAnimationDuration();\n\tif(duration) {\n\t\tvar targetElement = widget.findFirstDomNode(),\n\t\t\tremoveElement = function() {\n\t\t\t\twidget.removeChildDomNodes();\n\t\t\t};\n\t\t// Abandon if the list entry isn't a DOM element (it might be a text node)\n\t\tif(!(targetElement instanceof Element)) {\n\t\t\tremoveElement();\n\t\t\treturn;\n\t\t}\n\t\t// Get the current height of the tiddler\n\t\tvar currWidth = targetElement.offsetWidth,\n\t\t\tcomputedStyle = window.getComputedStyle(targetElement),\n\t\t\tcurrMarginBottom = parseInt(computedStyle.marginBottom,10),\n\t\t\tcurrMarginTop = parseInt(computedStyle.marginTop,10),\n\t\t\tcurrHeight = targetElement.offsetHeight + currMarginTop;\n\t\t// Remove the dom nodes of the widget at the end of the transition\n\t\tsetTimeout(removeElement,duration);\n\t\t// Animate the closure\n\t\t$tw.utils.setStyle(targetElement,[\n\t\t\t{transition: \"none\"},\n\t\t\t{transform: \"translateX(0px)\"},\n\t\t\t{marginBottom: currMarginBottom + \"px\"},\n\t\t\t{opacity: \"1.0\"}\n\t\t]);\n\t\t$tw.utils.forceLayout(targetElement);\n\t\t$tw.utils.setStyle(targetElement,[\n\t\t\t{transition: $tw.utils.roundTripPropertyName(\"transform\") + \" \" + duration + \"ms \" + easing + \", \" +\n\t\t\t\t\t\t\"opacity \" + duration + \"ms \" + easing + \", \" +\n\t\t\t\t\t\t\"margin-bottom \" + duration + \"ms \" + easing},\n\t\t\t{transform: \"translateX(-\" + currWidth + \"px)\"},\n\t\t\t{marginBottom: (-currHeight) + \"px\"},\n\t\t\t{opacity: \"0.0\"}\n\t\t]);\n\t} else {\n\t\twidget.removeChildDomNodes();\n\t}\n};\n\nexports.classic = ClassicStoryView;\n\n})();",
"type": "application/javascript",
"module-type": "storyview"
},
"$:/core/modules/storyviews/pop.js": {
"title": "$:/core/modules/storyviews/pop.js",
"text": "/*\\\ntitle: $:/core/modules/storyviews/pop.js\ntype: application/javascript\nmodule-type: storyview\n\nAnimates list insertions and removals\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar PopStoryView = function(listWidget) {\n\tthis.listWidget = listWidget;\n};\n\nPopStoryView.prototype.navigateTo = function(historyInfo) {\n\tvar listElementIndex = this.listWidget.findListItem(0,historyInfo.title);\n\tif(listElementIndex === undefined) {\n\t\treturn;\n\t}\n\tvar listItemWidget = this.listWidget.children[listElementIndex],\n\t\ttargetElement = listItemWidget.findFirstDomNode();\n\t// Abandon if the list entry isn't a DOM element (it might be a text node)\n\tif(!(targetElement instanceof Element)) {\n\t\treturn;\n\t}\n\t// Scroll the node into view\n\tthis.listWidget.dispatchEvent({type: \"tm-scroll\", target: targetElement});\n};\n\nPopStoryView.prototype.insert = function(widget) {\n\tvar targetElement = widget.findFirstDomNode(),\n\t\tduration = $tw.utils.getAnimationDuration();\n\t// Abandon if the list entry isn't a DOM element (it might be a text node)\n\tif(!(targetElement instanceof Element)) {\n\t\treturn;\n\t}\n\t// Reset once the transition is over\n\tsetTimeout(function() {\n\t\t$tw.utils.setStyle(targetElement,[\n\t\t\t{transition: \"none\"},\n\t\t\t{transform: \"none\"}\n\t\t]);\n\t\t$tw.utils.setStyle(widget.document.body,[\n\t\t\t{\"overflow-x\": \"\"}\n\t\t]);\n\t},duration);\n\t// Prevent the page from overscrolling due to the zoom factor\n\t$tw.utils.setStyle(widget.document.body,[\n\t\t{\"overflow-x\": \"hidden\"}\n\t]);\n\t// Set up the initial position of the element\n\t$tw.utils.setStyle(targetElement,[\n\t\t{transition: \"none\"},\n\t\t{transform: \"scale(2)\"},\n\t\t{opacity: \"0.0\"}\n\t]);\n\t$tw.utils.forceLayout(targetElement);\n\t// Transition to the final position\n\t$tw.utils.setStyle(targetElement,[\n\t\t{transition: $tw.utils.roundTripPropertyName(\"transform\") + \" \" + duration + \"ms ease-in-out, \" +\n\t\t\t\t\t\"opacity \" + duration + \"ms ease-in-out\"},\n\t\t{transform: \"scale(1)\"},\n\t\t{opacity: \"1.0\"}\n\t]);\n};\n\nPopStoryView.prototype.remove = function(widget) {\n\tvar targetElement = widget.findFirstDomNode(),\n\t\tduration = $tw.utils.getAnimationDuration(),\n\t\tremoveElement = function() {\n\t\t\tif(targetElement && targetElement.parentNode) {\n\t\t\t\twidget.removeChildDomNodes();\n\t\t\t}\n\t\t};\n\t// Abandon if the list entry isn't a DOM element (it might be a text node)\n\tif(!(targetElement instanceof Element)) {\n\t\tremoveElement();\n\t\treturn;\n\t}\n\t// Remove the element at the end of the transition\n\tsetTimeout(removeElement,duration);\n\t// Animate the closure\n\t$tw.utils.setStyle(targetElement,[\n\t\t{transition: \"none\"},\n\t\t{transform: \"scale(1)\"},\n\t\t{opacity: \"1.0\"}\n\t]);\n\t$tw.utils.forceLayout(targetElement);\n\t$tw.utils.setStyle(targetElement,[\n\t\t{transition: $tw.utils.roundTripPropertyName(\"transform\") + \" \" + duration + \"ms ease-in-out, \" +\n\t\t\t\t\t\"opacity \" + duration + \"ms ease-in-out\"},\n\t\t{transform: \"scale(0.1)\"},\n\t\t{opacity: \"0.0\"}\n\t]);\n};\n\nexports.pop = PopStoryView;\n\n})();\n",
"type": "application/javascript",
"module-type": "storyview"
},
"$:/core/modules/storyviews/zoomin.js": {
"title": "$:/core/modules/storyviews/zoomin.js",
"text": "/*\\\ntitle: $:/core/modules/storyviews/zoomin.js\ntype: application/javascript\nmodule-type: storyview\n\nZooms between individual tiddlers\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar easing = \"cubic-bezier(0.645, 0.045, 0.355, 1)\"; // From http://easings.net/#easeInOutCubic\n\nvar ZoominListView = function(listWidget) {\n\tvar self = this;\n\tthis.listWidget = listWidget;\n\t// Get the index of the tiddler that is at the top of the history\n\tvar history = this.listWidget.wiki.getTiddlerDataCached(this.listWidget.historyTitle,[]),\n\t\ttargetTiddler;\n\tif(history.length > 0) {\n\t\ttargetTiddler = history[history.length-1].title;\n\t}\n\t// Make all the tiddlers position absolute, and hide all but the top (or first) one\n\t$tw.utils.each(this.listWidget.children,function(itemWidget,index) {\n\t\tvar domNode = itemWidget.findFirstDomNode();\n\t\t// Abandon if the list entry isn't a DOM element (it might be a text node)\n\t\tif(!(domNode instanceof Element)) {\n\t\t\treturn;\n\t\t}\n\t\tif((targetTiddler && targetTiddler !== itemWidget.parseTreeNode.itemTitle) || (!targetTiddler && index)) {\n\t\t\tdomNode.style.display = \"none\";\n\t\t} else {\n\t\t\tself.currentTiddlerDomNode = domNode;\n\t\t}\n\t\t$tw.utils.addClass(domNode,\"tc-storyview-zoomin-tiddler\");\n\t});\n};\n\nZoominListView.prototype.navigateTo = function(historyInfo) {\n\tvar duration = $tw.utils.getAnimationDuration(),\n\t\tlistElementIndex = this.listWidget.findListItem(0,historyInfo.title);\n\tif(listElementIndex === undefined) {\n\t\treturn;\n\t}\n\tvar listItemWidget = this.listWidget.children[listElementIndex],\n\t\ttargetElement = listItemWidget.findFirstDomNode();\n\t// Abandon if the list entry isn't a DOM element (it might be a text node)\n\tif(!(targetElement instanceof Element)) {\n\t\treturn;\n\t}\n\t// Make the new tiddler be position absolute and visible so that we can measure it\n\t$tw.utils.addClass(targetElement,\"tc-storyview-zoomin-tiddler\");\n\t$tw.utils.setStyle(targetElement,[\n\t\t{display: \"block\"},\n\t\t{transformOrigin: \"0 0\"},\n\t\t{transform: \"translateX(0px) translateY(0px) scale(1)\"},\n\t\t{transition: \"none\"},\n\t\t{opacity: \"0.0\"}\n\t]);\n\t// Get the position of the source node, or use the centre of the window as the source position\n\tvar sourceBounds = historyInfo.fromPageRect || {\n\t\t\tleft: window.innerWidth/2 - 2,\n\t\t\ttop: window.innerHeight/2 - 2,\n\t\t\twidth: window.innerWidth/8,\n\t\t\theight: window.innerHeight/8\n\t\t};\n\t// Try to find the title node in the target tiddler\n\tvar titleDomNode = findTitleDomNode(listItemWidget) || listItemWidget.findFirstDomNode(),\n\t\tzoomBounds = titleDomNode.getBoundingClientRect();\n\t// Compute the transform for the target tiddler to make the title lie over the source rectange\n\tvar targetBounds = targetElement.getBoundingClientRect(),\n\t\tscale = sourceBounds.width / zoomBounds.width,\n\t\tx = sourceBounds.left - targetBounds.left - (zoomBounds.left - targetBounds.left) * scale,\n\t\ty = sourceBounds.top - targetBounds.top - (zoomBounds.top - targetBounds.top) * scale;\n\t// Transform the target tiddler to its starting position\n\t$tw.utils.setStyle(targetElement,[\n\t\t{transform: \"translateX(\" + x + \"px) translateY(\" + y + \"px) scale(\" + scale + \")\"}\n\t]);\n\t// Force layout\n\t$tw.utils.forceLayout(targetElement);\n\t// Apply the ending transitions with a timeout to ensure that the previously applied transformations are applied first\n\tvar self = this,\n\t\tprevCurrentTiddler = this.currentTiddlerDomNode;\n\tthis.currentTiddlerDomNode = targetElement;\n\t// Transform the target tiddler to its natural size\n\t$tw.utils.setStyle(targetElement,[\n\t\t{transition: $tw.utils.roundTripPropertyName(\"transform\") + \" \" + duration + \"ms \" + easing + \", opacity \" + duration + \"ms \" + easing},\n\t\t{opacity: \"1.0\"},\n\t\t{transform: \"translateX(0px) translateY(0px) scale(1)\"},\n\t\t{zIndex: \"500\"},\n\t]);\n\t// Transform the previous tiddler out of the way and then hide it\n\tif(prevCurrentTiddler && prevCurrentTiddler !== targetElement) {\n\t\tscale = zoomBounds.width / sourceBounds.width;\n\t\tx = zoomBounds.left - targetBounds.left - (sourceBounds.left - targetBounds.left) * scale;\n\t\ty = zoomBounds.top - targetBounds.top - (sourceBounds.top - targetBounds.top) * scale;\n\t\t$tw.utils.setStyle(prevCurrentTiddler,[\n\t\t\t{transition: $tw.utils.roundTripPropertyName(\"transform\") + \" \" + duration + \"ms \" + easing + \", opacity \" + duration + \"ms \" + easing},\n\t\t\t{opacity: \"0.0\"},\n\t\t\t{transformOrigin: \"0 0\"},\n\t\t\t{transform: \"translateX(\" + x + \"px) translateY(\" + y + \"px) scale(\" + scale + \")\"},\n\t\t\t{zIndex: \"0\"}\n\t\t]);\n\t\t// Hide the tiddler when the transition has finished\n\t\tsetTimeout(function() {\n\t\t\tif(self.currentTiddlerDomNode !== prevCurrentTiddler) {\n\t\t\t\tprevCurrentTiddler.style.display = \"none\";\n\t\t\t}\n\t\t},duration);\n\t}\n\t// Scroll the target into view\n//\t$tw.pageScroller.scrollIntoView(targetElement);\n};\n\n/*\nFind the first child DOM node of a widget that has the class \"tc-title\"\n*/\nfunction findTitleDomNode(widget,targetClass) {\n\ttargetClass = targetClass || \"tc-title\";\n\tvar domNode = widget.findFirstDomNode();\n\tif(domNode && domNode.querySelector) {\n\t\treturn domNode.querySelector(\".\" + targetClass);\n\t}\n\treturn null;\n}\n\nZoominListView.prototype.insert = function(widget) {\n\tvar targetElement = widget.findFirstDomNode();\n\t// Abandon if the list entry isn't a DOM element (it might be a text node)\n\tif(!(targetElement instanceof Element)) {\n\t\treturn;\n\t}\n\t// Make the newly inserted node position absolute and hidden\n\t$tw.utils.addClass(targetElement,\"tc-storyview-zoomin-tiddler\");\n\t$tw.utils.setStyle(targetElement,[\n\t\t{display: \"none\"}\n\t]);\n};\n\nZoominListView.prototype.remove = function(widget) {\n\tvar targetElement = widget.findFirstDomNode(),\n\t\tduration = $tw.utils.getAnimationDuration(),\n\t\tremoveElement = function() {\n\t\t\twidget.removeChildDomNodes();\n\t\t};\n\t// Abandon if the list entry isn't a DOM element (it might be a text node)\n\tif(!(targetElement instanceof Element)) {\n\t\tremoveElement();\n\t\treturn;\n\t}\n\t// Abandon if hidden\n\tif(targetElement.style.display != \"block\" ) {\n\t\tremoveElement();\n\t\treturn;\n\t}\n\t// Set up the tiddler that is being closed\n\t$tw.utils.addClass(targetElement,\"tc-storyview-zoomin-tiddler\");\n\t$tw.utils.setStyle(targetElement,[\n\t\t{display: \"block\"},\n\t\t{transformOrigin: \"50% 50%\"},\n\t\t{transform: \"translateX(0px) translateY(0px) scale(1)\"},\n\t\t{transition: \"none\"},\n\t\t{zIndex: \"0\"}\n\t]);\n\t// We'll move back to the previous or next element in the story\n\tvar toWidget = widget.previousSibling();\n\tif(!toWidget) {\n\t\ttoWidget = widget.nextSibling();\n\t}\n\tvar toWidgetDomNode = toWidget && toWidget.findFirstDomNode();\n\t// Set up the tiddler we're moving back in\n\tif(toWidgetDomNode) {\n\t\t$tw.utils.addClass(toWidgetDomNode,\"tc-storyview-zoomin-tiddler\");\n\t\t$tw.utils.setStyle(toWidgetDomNode,[\n\t\t\t{display: \"block\"},\n\t\t\t{transformOrigin: \"50% 50%\"},\n\t\t\t{transform: \"translateX(0px) translateY(0px) scale(10)\"},\n\t\t\t{transition: $tw.utils.roundTripPropertyName(\"transform\") + \" \" + duration + \"ms \" + easing + \", opacity \" + duration + \"ms \" + easing},\n\t\t\t{opacity: \"0\"},\n\t\t\t{zIndex: \"500\"}\n\t\t]);\n\t\tthis.currentTiddlerDomNode = toWidgetDomNode;\n\t}\n\t// Animate them both\n\t// Force layout\n\t$tw.utils.forceLayout(this.listWidget.parentDomNode);\n\t// First, the tiddler we're closing\n\t$tw.utils.setStyle(targetElement,[\n\t\t{transformOrigin: \"50% 50%\"},\n\t\t{transform: \"translateX(0px) translateY(0px) scale(0.1)\"},\n\t\t{transition: $tw.utils.roundTripPropertyName(\"transform\") + \" \" + duration + \"ms \" + easing + \", opacity \" + duration + \"ms \" + easing},\n\t\t{opacity: \"0\"},\n\t\t{zIndex: \"0\"}\n\t]);\n\tsetTimeout(removeElement,duration);\n\t// Now the tiddler we're going back to\n\tif(toWidgetDomNode) {\n\t\t$tw.utils.setStyle(toWidgetDomNode,[\n\t\t\t{transform: \"translateX(0px) translateY(0px) scale(1)\"},\n\t\t\t{opacity: \"1\"}\n\t\t]);\n\t}\n\treturn true; // Indicate that we'll delete the DOM node\n};\n\nexports.zoomin = ZoominListView;\n\n})();\n",
"type": "application/javascript",
"module-type": "storyview"
},
"$:/core/modules/syncer.js": {
"title": "$:/core/modules/syncer.js",
"text": "/*\\\ntitle: $:/core/modules/syncer.js\ntype: application/javascript\nmodule-type: global\n\nThe syncer tracks changes to the store and synchronises them to a remote data store represented as a \"sync adaptor\"\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nDefaults\n*/\nSyncer.prototype.titleIsLoggedIn = \"$:/status/IsLoggedIn\";\nSyncer.prototype.titleIsAnonymous = \"$:/status/IsAnonymous\";\nSyncer.prototype.titleIsReadOnly = \"$:/status/IsReadOnly\";\nSyncer.prototype.titleUserName = \"$:/status/UserName\";\nSyncer.prototype.titleSyncFilter = \"$:/config/SyncFilter\";\nSyncer.prototype.titleSyncPollingInterval = \"$:/config/SyncPollingInterval\";\nSyncer.prototype.titleSyncDisableLazyLoading = \"$:/config/SyncDisableLazyLoading\";\nSyncer.prototype.titleSavedNotification = \"$:/language/Notifications/Save/Done\";\nSyncer.prototype.titleSyncThrottleInterval = \"$:/config/SyncThrottleInterval\";\nSyncer.prototype.taskTimerInterval = 1 * 1000; // Interval for sync timer\nSyncer.prototype.throttleInterval = 1 * 1000; // Defer saving tiddlers if they've changed in the last 1s...\nSyncer.prototype.errorRetryInterval = 5 * 1000; // Interval to retry after an error\nSyncer.prototype.fallbackInterval = 10 * 1000; // Unless the task is older than 10s\nSyncer.prototype.pollTimerInterval = 60 * 1000; // Interval for polling for changes from the adaptor\n\n/*\nInstantiate the syncer with the following options:\nsyncadaptor: reference to syncadaptor to be used\nwiki: wiki to be synced\n*/\nfunction Syncer(options) {\n\tvar self = this;\n\tthis.wiki = options.wiki;\n\t// Save parameters\n\tthis.syncadaptor = options.syncadaptor;\n\tthis.disableUI = !!options.disableUI;\n\tthis.titleIsLoggedIn = options.titleIsLoggedIn || this.titleIsLoggedIn;\n\tthis.titleUserName = options.titleUserName || this.titleUserName;\n\tthis.titleSyncFilter = options.titleSyncFilter || this.titleSyncFilter;\n\tthis.titleSavedNotification = options.titleSavedNotification || this.titleSavedNotification;\n\tthis.taskTimerInterval = options.taskTimerInterval || this.taskTimerInterval;\n\tthis.throttleInterval = options.throttleInterval || parseInt(this.wiki.getTiddlerText(this.titleSyncThrottleInterval,\"\"),10) || this.throttleInterval;\n\tthis.errorRetryInterval = options.errorRetryInterval || this.errorRetryInterval;\n\tthis.fallbackInterval = options.fallbackInterval || this.fallbackInterval;\n\tthis.pollTimerInterval = options.pollTimerInterval || parseInt(this.wiki.getTiddlerText(this.titleSyncPollingInterval,\"\"),10) || this.pollTimerInterval;\n\tthis.logging = \"logging\" in options ? options.logging : true;\n\t// Make a logger\n\tthis.logger = new $tw.utils.Logger(\"syncer\" + ($tw.browser ? \"-browser\" : \"\") + ($tw.node ? \"-server\" : \"\") + (this.syncadaptor.name ? (\"-\" + this.syncadaptor.name) : \"\"),{\n\t\tcolour: \"cyan\",\n\t\tenable: this.logging,\n\t\tsaveHistory: true\n\t});\n\t// Make another logger for connection errors\n\tthis.loggerConnection = new $tw.utils.Logger(\"syncer\" + ($tw.browser ? \"-browser\" : \"\") + ($tw.node ? \"-server\" : \"\") + (this.syncadaptor.name ? (\"-\" + this.syncadaptor.name) : \"\") + \"-connection\",{\n\t\tcolour: \"cyan\",\n\t\tenable: this.logging\n\t});\n\t// Ask the syncadaptor to use the main logger\n\tif(this.syncadaptor.setLoggerSaveBuffer) {\n\t\tthis.syncadaptor.setLoggerSaveBuffer(this.logger);\n\t}\n\t// Compile the dirty tiddler filter\n\tthis.filterFn = this.wiki.compileFilter(this.wiki.getTiddlerText(this.titleSyncFilter));\n\t// Record information for known tiddlers\n\tthis.readTiddlerInfo();\n\tthis.titlesToBeLoaded = {}; // Hashmap of titles of tiddlers that need loading from the server\n\tthis.titlesHaveBeenLazyLoaded = {}; // Hashmap of titles of tiddlers that have already been lazily loaded from the server\n\t// Timers\n\tthis.taskTimerId = null; // Timer for task dispatch\n\tthis.pollTimerId = null; // Timer for polling server\n\t// Number of outstanding requests\n\tthis.numTasksInProgress = 0;\n\t// Listen out for changes to tiddlers\n\tthis.wiki.addEventListener(\"change\",function(changes) {\n\t\t// Filter the changes to just include ones that are being synced\n\t\tvar filteredChanges = self.getSyncedTiddlers(function(callback) {\n\t\t\t$tw.utils.each(changes,function(change,title) {\n\t\t\t\tvar tiddler = self.wiki.tiddlerExists(title) && self.wiki.getTiddler(title);\n\t\t\t\tcallback(tiddler,title);\n\t\t\t});\n\t\t});\n\t\tif(filteredChanges.length > 0) {\n\t\t\tself.processTaskQueue();\n\t\t} else {\n\t\t\t// Look for deletions of tiddlers we're already syncing\t\n\t\t\tvar outstandingDeletion = false\n\t\t\t$tw.utils.each(changes,function(change,title,object) {\n\t\t\t\tif(change.deleted && $tw.utils.hop(self.tiddlerInfo,title)) {\n\t\t\t\t\toutstandingDeletion = true;\n\t\t\t\t}\n\t\t\t});\n\t\t\tif(outstandingDeletion) {\n\t\t\t\tself.processTaskQueue();\n\t\t\t}\n\t\t}\n\t});\n\t// Browser event handlers\n\tif($tw.browser && !this.disableUI) {\n\t\t// Set up our beforeunload handler\n\t\t$tw.addUnloadTask(function(event) {\n\t\t\tvar confirmationMessage;\n\t\t\tif(self.isDirty()) {\n\t\t\t\tconfirmationMessage = $tw.language.getString(\"UnsavedChangesWarning\");\n\t\t\t\tevent.returnValue = confirmationMessage; // Gecko\n\t\t\t}\n\t\t\treturn confirmationMessage;\n\t\t});\n\t\t// Listen out for login/logout/refresh events in the browser\n\t\t$tw.rootWidget.addEventListener(\"tm-login\",function(event) {\n\t\t\tvar username = event && event.paramObject && event.paramObject.username,\n\t\t\t\tpassword = event && event.paramObject && event.paramObject.password;\n\t\t\tif(username && password) {\n\t\t\t\t// Login with username and password\n\t\t\t\tself.login(username,password,function() {});\n\t\t\t} else {\n\t\t\t\t// No username and password, so we display a prompt\n\t\t\t\tself.handleLoginEvent();\t\t\t\t\n\t\t\t}\n\t\t});\n\t\t$tw.rootWidget.addEventListener(\"tm-logout\",function() {\n\t\t\tself.handleLogoutEvent();\n\t\t});\n\t\t$tw.rootWidget.addEventListener(\"tm-server-refresh\",function() {\n\t\t\tself.handleRefreshEvent();\n\t\t});\n\t\t$tw.rootWidget.addEventListener(\"tm-copy-syncer-logs-to-clipboard\",function() {\n\t\t\t$tw.utils.copyToClipboard($tw.utils.getSystemInfo() + \"\\n\\nLog:\\n\" + self.logger.getBuffer());\n\t\t});\n\t}\n\t// Listen out for lazyLoad events\n\tif(!this.disableUI && this.wiki.getTiddlerText(this.titleSyncDisableLazyLoading) !== \"yes\") {\n\t\tthis.wiki.addEventListener(\"lazyLoad\",function(title) {\n\t\t\tself.handleLazyLoadEvent(title);\n\t\t});\t\t\n\t}\n\t// Get the login status\n\tthis.getStatus(function(err,isLoggedIn) {\n\t\t// Do a sync from the server\n\t\tself.syncFromServer();\n\t});\n}\n\n/*\nShow a generic network error alert\n*/\nSyncer.prototype.displayError = function(msg,err) {\n\tif(err === ($tw.language.getString(\"Error/XMLHttpRequest\") + \": 0\")) {\n\t\tthis.loggerConnection.alert($tw.language.getString(\"Error/NetworkErrorAlert\"));\n\t\tthis.logger.log(msg + \":\",err);\n\t} else {\n\t\tthis.logger.alert(msg + \":\",err);\n\t}\n};\n\n/*\nReturn an array of the tiddler titles that are subjected to syncing\n*/\nSyncer.prototype.getSyncedTiddlers = function(source) {\n\treturn this.filterFn.call(this.wiki,source);\n};\n\n/*\nReturn an array of the tiddler titles that are subjected to syncing\n*/\nSyncer.prototype.getTiddlerRevision = function(title) {\n\tif(this.syncadaptor && this.syncadaptor.getTiddlerRevision) {\n\t\treturn this.syncadaptor.getTiddlerRevision(title);\n\t} else {\n\t\treturn this.wiki.getTiddler(title).fields.revision;\t\n\t} \n};\n\n/*\nRead (or re-read) the latest tiddler info from the store\n*/\nSyncer.prototype.readTiddlerInfo = function() {\n\t// Hashmap by title of {revision:,changeCount:,adaptorInfo:}\n\t// \"revision\" is the revision of the tiddler last seen on the server, and \"changecount\" is the corresponding local changecount\n\tthis.tiddlerInfo = {};\n\t// Record information for known tiddlers\n\tvar self = this,\n\t\ttiddlers = this.getSyncedTiddlers();\n\t$tw.utils.each(tiddlers,function(title) {\n\t\tvar tiddler = self.wiki.getTiddler(title);\n\t\tif(tiddler) {\n\t\t\tself.tiddlerInfo[title] = {\n\t\t\t\trevision: self.getTiddlerRevision(title),\n\t\t\t\tadaptorInfo: self.syncadaptor && self.syncadaptor.getTiddlerInfo(tiddler),\n\t\t\t\tchangeCount: self.wiki.getChangeCount(title)\n\t\t\t};\n\t\t}\n\t});\n};\n\n/*\nChecks whether the wiki is dirty (ie the window shouldn't be closed)\n*/\nSyncer.prototype.isDirty = function() {\n\tthis.logger.log(\"Checking dirty status\");\n\t// Check tiddlers that are in the store and included in the filter function\n\tvar titles = this.getSyncedTiddlers();\n\tfor(var index=0; index<titles.length; index++) {\n\t\tvar title = titles[index],\n\t\t\ttiddlerInfo = this.tiddlerInfo[title];\n\t\tif(this.wiki.tiddlerExists(title)) {\n\t\t\tif(tiddlerInfo) {\n\t\t\t\t// If the tiddler is known on the server and has been modified locally then it needs to be saved to the server\n\t\t\t\tif(this.wiki.getChangeCount(title) > tiddlerInfo.changeCount) {\n\t\t\t\t\treturn true;\n\t\t\t\t}\n\t\t\t} else {\n\t\t\t\t// If the tiddler isn't known on the server then it needs to be saved to the server\n\t\t\t\treturn true;\n\t\t\t}\n\t\t}\n\t}\n\t// Check tiddlers that are known from the server but not currently in the store\n\ttitles = Object.keys(this.tiddlerInfo);\n\tfor(index=0; index<titles.length; index++) {\n\t\tif(!this.wiki.tiddlerExists(titles[index])) {\n\t\t\t// There must be a pending delete\n\t\t\treturn true;\n\t\t}\n\t}\n\treturn false;\n};\n\n/*\nUpdate the document body with the class \"tc-dirty\" if the wiki has unsaved/unsynced changes\n*/\nSyncer.prototype.updateDirtyStatus = function() {\n\tif($tw.browser && !this.disableUI) {\n\t\tvar dirty = this.isDirty();\n\t\t$tw.utils.toggleClass(document.body,\"tc-dirty\",dirty);\n\t\tif(!dirty) {\n\t\t\tthis.loggerConnection.clearAlerts();\n\t\t}\n\t}\n};\n\n/*\nSave an incoming tiddler in the store, and updates the associated tiddlerInfo\n*/\nSyncer.prototype.storeTiddler = function(tiddlerFields) {\n\t// Save the tiddler\n\tvar tiddler = new $tw.Tiddler(tiddlerFields);\n\tthis.wiki.addTiddler(tiddler);\n\t// Save the tiddler revision and changeCount details\n\tthis.tiddlerInfo[tiddlerFields.title] = {\n\t\trevision: this.getTiddlerRevision(tiddlerFields.title),\n\t\tadaptorInfo: this.syncadaptor.getTiddlerInfo(tiddler),\n\t\tchangeCount: this.wiki.getChangeCount(tiddlerFields.title)\n\t};\n};\n\nSyncer.prototype.getStatus = function(callback) {\n\tvar self = this;\n\t// Check if the adaptor supports getStatus()\n\tif(this.syncadaptor && this.syncadaptor.getStatus) {\n\t\t// Mark us as not logged in\n\t\tthis.wiki.addTiddler({title: this.titleIsLoggedIn,text: \"no\"});\n\t\t// Get login status\n\t\tthis.syncadaptor.getStatus(function(err,isLoggedIn,username,isReadOnly,isAnonymous) {\n\t\t\tif(err) {\n\t\t\t\tself.logger.alert(err);\n\t\t\t} else {\n\t\t\t\t// Set the various status tiddlers\n\t\t\t\tself.wiki.addTiddler({title: self.titleIsReadOnly,text: isReadOnly ? \"yes\" : \"no\"});\n\t\t\t\tself.wiki.addTiddler({title: self.titleIsAnonymous,text: isAnonymous ? \"yes\" : \"no\"});\n\t\t\t\tself.wiki.addTiddler({title: self.titleIsLoggedIn,text: isLoggedIn ? \"yes\" : \"no\"});\n\t\t\t\tif(isLoggedIn) {\n\t\t\t\t\tself.wiki.addTiddler({title: self.titleUserName,text: username || \"\"});\n\t\t\t\t}\n\t\t\t}\n\t\t\t// Invoke the callback\n\t\t\tif(callback) {\n\t\t\t\tcallback(err,isLoggedIn,username);\n\t\t\t}\n\t\t});\n\t} else {\n\t\tcallback(null,true,\"UNAUTHENTICATED\");\n\t}\n};\n\n/*\nSynchronise from the server by reading the skinny tiddler list and queuing up loads for any tiddlers that we don't already have up to date\n*/\nSyncer.prototype.syncFromServer = function() {\n\tvar self = this,\n\t\tcancelNextSync = function() {\n\t\t\tif(self.pollTimerId) {\n\t\t\t\tclearTimeout(self.pollTimerId);\n\t\t\t\tself.pollTimerId = null;\n\t\t\t}\n\t\t},\n\t\ttriggerNextSync = function() {\n\t\t\tself.pollTimerId = setTimeout(function() {\n\t\t\t\tself.pollTimerId = null;\n\t\t\t\tself.syncFromServer.call(self);\n\t\t\t},self.pollTimerInterval);\n\t\t},\n\t\tsyncSystemFromServer = (self.wiki.getTiddlerText(\"$:/config/SyncSystemTiddlersFromServer\") === \"yes\" ? true : false);\n\tif(this.syncadaptor && this.syncadaptor.getUpdatedTiddlers) {\n\t\tthis.logger.log(\"Retrieving updated tiddler list\");\n\t\tcancelNextSync();\n\t\tthis.syncadaptor.getUpdatedTiddlers(self,function(err,updates) {\n\t\t\ttriggerNextSync();\n\t\t\tif(err) {\n\t\t\t\tself.displayError($tw.language.getString(\"Error/RetrievingSkinny\"),err);\n\t\t\t\treturn;\n\t\t\t}\n\t\t\tif(updates) {\n\t\t\t\t$tw.utils.each(updates.modifications,function(title) {\n\t\t\t\t\tself.titlesToBeLoaded[title] = true;\n\t\t\t\t});\n\t\t\t\t$tw.utils.each(updates.deletions,function(title) {\n\t\t\t\t\tif(syncSystemFromServer || !self.wiki.isSystemTiddler(title)) {\n\t\t\t\t\t\tdelete self.tiddlerInfo[title];\n\t\t\t\t\t\tself.logger.log(\"Deleting tiddler missing from server:\",title);\n\t\t\t\t\t\tself.wiki.deleteTiddler(title);\n\t\t\t\t\t}\n\t\t\t\t});\n\t\t\t\tif(updates.modifications.length > 0 || updates.deletions.length > 0) {\n\t\t\t\t\tself.processTaskQueue();\n\t\t\t\t}\t\t\t\t\n\t\t\t}\n\t\t});\n\t} else if(this.syncadaptor && this.syncadaptor.getSkinnyTiddlers) {\n\t\tthis.logger.log(\"Retrieving skinny tiddler list\");\n\t\tcancelNextSync();\n\t\tthis.syncadaptor.getSkinnyTiddlers(function(err,tiddlers) {\n\t\t\ttriggerNextSync();\n\t\t\t// Check for errors\n\t\t\tif(err) {\n\t\t\t\tself.displayError($tw.language.getString(\"Error/RetrievingSkinny\"),err);\n\t\t\t\treturn;\n\t\t\t}\n\t\t\t// Keep track of which tiddlers we already know about have been reported this time\n\t\t\tvar previousTitles = Object.keys(self.tiddlerInfo);\n\t\t\t// Process each incoming tiddler\n\t\t\tfor(var t=0; t<tiddlers.length; t++) {\n\t\t\t\t// Get the incoming tiddler fields, and the existing tiddler\n\t\t\t\tvar tiddlerFields = tiddlers[t],\n\t\t\t\t\tincomingRevision = tiddlerFields.revision + \"\",\n\t\t\t\t\ttiddler = self.wiki.tiddlerExists(tiddlerFields.title) && self.wiki.getTiddler(tiddlerFields.title),\n\t\t\t\t\ttiddlerInfo = self.tiddlerInfo[tiddlerFields.title],\n\t\t\t\t\tcurrRevision = tiddlerInfo ? tiddlerInfo.revision : null,\n\t\t\t\t\tindexInPreviousTitles = previousTitles.indexOf(tiddlerFields.title);\n\t\t\t\tif(indexInPreviousTitles !== -1) {\n\t\t\t\t\tpreviousTitles.splice(indexInPreviousTitles,1);\n\t\t\t\t}\n\t\t\t\t// Ignore the incoming tiddler if it's the same as the revision we've already got\n\t\t\t\tif(currRevision !== incomingRevision) {\n\t\t\t\t\t// Only load the skinny version if we don't already have a fat version of the tiddler\n\t\t\t\t\tif(!tiddler || tiddler.fields.text === undefined) {\n\t\t\t\t\t\tself.storeTiddler(tiddlerFields);\n\t\t\t\t\t}\n\t\t\t\t\t// Do a full load of this tiddler\n\t\t\t\t\tself.titlesToBeLoaded[tiddlerFields.title] = true;\n\t\t\t\t}\n\t\t\t}\n\t\t\t// Delete any tiddlers that were previously reported but missing this time\n\t\t\t$tw.utils.each(previousTitles,function(title) {\n\t\t\t\tif(syncSystemFromServer || !self.wiki.isSystemTiddler(title)) {\n\t\t\t\t\tdelete self.tiddlerInfo[title];\n\t\t\t\t\tself.logger.log(\"Deleting tiddler missing from server:\",title);\n\t\t\t\t\tself.wiki.deleteTiddler(title);\n\t\t\t\t}\n\t\t\t});\n\t\t\tself.processTaskQueue();\n\t\t});\n\t}\n};\n\n/*\nForce load a tiddler from the server\n*/\nSyncer.prototype.enqueueLoadTiddler = function(title) {\n\tthis.titlesToBeLoaded[title] = true;\n\tthis.processTaskQueue();\n};\n\n/*\nLazily load a skinny tiddler if we can\n*/\nSyncer.prototype.handleLazyLoadEvent = function(title) {\n\t// Ignore if the syncadaptor doesn't handle it\n\tif(!this.syncadaptor.supportsLazyLoading) {\n\t\treturn;\n\t}\n\t// Don't lazy load the same tiddler twice\n\tif(!this.titlesHaveBeenLazyLoaded[title]) {\n\t\t// Don't lazy load if the tiddler isn't included in the sync filter\n\t\tif(this.getSyncedTiddlers().indexOf(title) !== -1) {\n\t\t\t// Mark the tiddler as needing loading, and having already been lazily loaded\n\t\t\tthis.titlesToBeLoaded[title] = true;\n\t\t\tthis.titlesHaveBeenLazyLoaded[title] = true;\n\t\t}\n\t}\n};\n\n/*\nDispay a password prompt and allow the user to login\n*/\nSyncer.prototype.handleLoginEvent = function() {\n\tvar self = this;\n\tthis.getStatus(function(err,isLoggedIn,username) {\n\t\tif(!err && !isLoggedIn) {\n\t\t\tif(self.syncadaptor && self.syncadaptor.displayLoginPrompt) {\n\t\t\t\tself.syncadaptor.displayLoginPrompt(self);\n\t\t\t} else {\n\t\t\t\tself.displayLoginPrompt();\n\t\t\t}\n\t\t}\n\t});\n};\n\n/*\nDispay a password prompt\n*/\nSyncer.prototype.displayLoginPrompt = function() {\n\tvar self = this;\n\tvar promptInfo = $tw.passwordPrompt.createPrompt({\n\t\tserviceName: $tw.language.getString(\"LoginToTiddlySpace\"),\n\t\tcallback: function(data) {\n\t\t\tself.login(data.username,data.password,function(err,isLoggedIn) {\n\t\t\t\tself.syncFromServer();\n\t\t\t});\n\t\t\treturn true; // Get rid of the password prompt\n\t\t}\n\t});\n};\n\n/*\nAttempt to login to TiddlyWeb.\n\tusername: username\n\tpassword: password\n\tcallback: invoked with arguments (err,isLoggedIn)\n*/\nSyncer.prototype.login = function(username,password,callback) {\n\tthis.logger.log(\"Attempting to login as\",username);\n\tvar self = this;\n\tif(this.syncadaptor.login) {\n\t\tthis.syncadaptor.login(username,password,function(err) {\n\t\t\tif(err) {\n\t\t\t\treturn callback(err);\n\t\t\t}\n\t\t\tself.getStatus(function(err,isLoggedIn,username) {\n\t\t\t\tif(callback) {\n\t\t\t\t\tcallback(err,isLoggedIn);\n\t\t\t\t}\n\t\t\t});\n\t\t});\n\t} else {\n\t\tcallback(null,true);\n\t}\n};\n\n/*\nAttempt to log out of TiddlyWeb\n*/\nSyncer.prototype.handleLogoutEvent = function() {\n\tthis.logger.log(\"Attempting to logout\");\n\tvar self = this;\n\tif(this.syncadaptor.logout) {\n\t\tthis.syncadaptor.logout(function(err) {\n\t\t\tif(err) {\n\t\t\t\tself.logger.alert(err);\n\t\t\t} else {\n\t\t\t\tself.getStatus();\n\t\t\t}\n\t\t});\n\t}\n};\n\n/*\nImmediately refresh from the server\n*/\nSyncer.prototype.handleRefreshEvent = function() {\n\tthis.syncFromServer();\n};\n\n/*\nProcess the next task\n*/\nSyncer.prototype.processTaskQueue = function() {\n\tvar self = this;\n\t// Only process a task if the sync adaptor is fully initialised and we're not already performing\n\t// a task. If we are already performing a task then we'll dispatch the next one when it completes\n\tif((!this.syncadaptor.isReady || this.syncadaptor.isReady()) && this.numTasksInProgress === 0) {\n\t\t// Choose the next task to perform\n\t\tvar task = this.chooseNextTask();\n\t\t// Perform the task if we had one\n\t\tif(typeof task === \"object\" && task !== null) {\n\t\t\tthis.numTasksInProgress += 1;\n\t\t\ttask.run(function(err) {\n\t\t\t\tself.numTasksInProgress -= 1;\n\t\t\t\tif(err) {\n\t\t\t\t\tself.displayError(\"Sync error while processing \" + task.type + \" of '\" + task.title + \"'\",err);\n\t\t\t\t\tself.updateDirtyStatus();\n\t\t\t\t\tself.triggerTimeout(self.errorRetryInterval);\n\t\t\t\t} else {\n\t\t\t\t\tself.updateDirtyStatus();\n\t\t\t\t\t// Process the next task\n\t\t\t\t\tself.processTaskQueue.call(self);\t\t\t\t\t\n\t\t\t\t}\n\t\t\t});\n\t\t} else {\n\t\t\t// No task is ready so update the status\n\t\t\tthis.updateDirtyStatus();\n\t\t\t// And trigger a timeout if there is a pending task\n\t\t\tif(task === true) {\n\t\t\t\tthis.triggerTimeout();\t\t\t\t\n\t\t\t}\n\t\t}\n\t} else {\n\t\tthis.updateDirtyStatus();\t\t\n\t}\n};\n\nSyncer.prototype.triggerTimeout = function(interval) {\n\tvar self = this;\n\tif(!this.taskTimerId) {\n\t\tthis.taskTimerId = setTimeout(function() {\n\t\t\tself.taskTimerId = null;\n\t\t\tself.processTaskQueue.call(self);\n\t\t},interval || self.taskTimerInterval);\n\t}\n};\n\n/*\nChoose the next sync task. We prioritise saves, then deletes, then loads from the server\n\nReturns either a task object, null if there's no upcoming tasks, or the boolean true if there are pending tasks that aren't yet due\n*/\nSyncer.prototype.chooseNextTask = function() {\n\tvar thresholdLastSaved = (new Date()) - this.throttleInterval,\n\t\thavePending = null;\n\t// First we look for tiddlers that have been modified locally and need saving back to the server\n\tvar titles = this.getSyncedTiddlers();\n\tfor(var index=0; index<titles.length; index++) {\n\t\tvar title = titles[index],\n\t\t\ttiddler = this.wiki.tiddlerExists(title) && this.wiki.getTiddler(title),\n\t\t\ttiddlerInfo = this.tiddlerInfo[title];\n\t\tif(tiddler) {\n\t\t\t// If the tiddler is not known on the server, or has been modified locally no more recently than the threshold then it needs to be saved to the server\n\t\t\tvar hasChanged = !tiddlerInfo || this.wiki.getChangeCount(title) > tiddlerInfo.changeCount,\n\t\t\t\tisReadyToSave = !tiddlerInfo || !tiddlerInfo.timestampLastSaved || tiddlerInfo.timestampLastSaved < thresholdLastSaved;\n\t\t\tif(hasChanged) {\n\t\t\t\tif(isReadyToSave) {\n\t\t\t\t\treturn new SaveTiddlerTask(this,title); \t\t\t\t\t\n\t\t\t\t} else {\n\t\t\t\t\thavePending = true;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\t// Second, we check tiddlers that are known from the server but not currently in the store, and so need deleting on the server\n\ttitles = Object.keys(this.tiddlerInfo);\n\tfor(index=0; index<titles.length; index++) {\n\t\ttitle = titles[index];\n\t\ttiddlerInfo = this.tiddlerInfo[title];\n\t\ttiddler = this.wiki.tiddlerExists(title) && this.wiki.getTiddler(title);\n\t\tif(!tiddler) {\n\t\t\treturn new DeleteTiddlerTask(this,title);\n\t\t}\n\t}\n\t// Check for tiddlers that need loading\n\ttitle = Object.keys(this.titlesToBeLoaded)[0];\n\tif(title) {\n\t\tdelete this.titlesToBeLoaded[title];\n\t\treturn new LoadTiddlerTask(this,title);\n\t}\n\t// No tasks are ready\n\treturn havePending;\n};\n\nfunction SaveTiddlerTask(syncer,title) {\n\tthis.syncer = syncer;\n\tthis.title = title;\n\tthis.type = \"save\";\n}\n\nSaveTiddlerTask.prototype.run = function(callback) {\n\tvar self = this,\n\t\tchangeCount = this.syncer.wiki.getChangeCount(this.title),\n\t\ttiddler = this.syncer.wiki.tiddlerExists(this.title) && this.syncer.wiki.getTiddler(this.title);\n\tthis.syncer.logger.log(\"Dispatching 'save' task:\",this.title);\n\tif(tiddler) {\n\t\tthis.syncer.syncadaptor.saveTiddler(tiddler,function(err,adaptorInfo,revision) {\n\t\t\t// If there's an error, exit without changing any internal state\n\t\t\tif(err) {\n\t\t\t\treturn callback(err);\n\t\t\t}\n\t\t\t// Adjust the info stored about this tiddler\n\t\t\tself.syncer.tiddlerInfo[self.title] = {\n\t\t\t\tchangeCount: changeCount,\n\t\t\t\tadaptorInfo: adaptorInfo,\n\t\t\t\trevision: revision,\n\t\t\t\ttimestampLastSaved: new Date()\n\t\t\t};\n\t\t\t// Invoke the callback\n\t\t\tcallback(null);\n\t\t},{\n\t\t\ttiddlerInfo: self.syncer.tiddlerInfo[self.title]\n\t\t});\n\t} else {\n\t\tthis.syncer.logger.log(\" Not Dispatching 'save' task:\",this.title,\"tiddler does not exist\");\n\t\t$tw.utils.nextTick(callback(null));\n\t}\n};\n\nfunction DeleteTiddlerTask(syncer,title) {\n\tthis.syncer = syncer;\n\tthis.title = title;\n\tthis.type = \"delete\";\n}\n\nDeleteTiddlerTask.prototype.run = function(callback) {\n\tvar self = this;\n\tthis.syncer.logger.log(\"Dispatching 'delete' task:\",this.title);\n\tthis.syncer.syncadaptor.deleteTiddler(this.title,function(err) {\n\t\t// If there's an error, exit without changing any internal state\n\t\tif(err) {\n\t\t\treturn callback(err);\n\t\t}\n\t\t// Remove the info stored about this tiddler\n\t\tdelete self.syncer.tiddlerInfo[self.title];\n\t\tif($tw.boot.files){\n\t\t\t// Remove the tiddler from $tw.boot.files\n\t\t\tdelete $tw.boot.files[self.title];\n\t\t}\n\t\t// Invoke the callback\n\t\tcallback(null);\n\t},{\n\t\ttiddlerInfo: self.syncer.tiddlerInfo[this.title]\n\t});\n};\n\nfunction LoadTiddlerTask(syncer,title) {\n\tthis.syncer = syncer;\n\tthis.title = title;\n\tthis.type = \"load\";\n}\n\nLoadTiddlerTask.prototype.run = function(callback) {\n\tvar self = this;\n\tthis.syncer.logger.log(\"Dispatching 'load' task:\",this.title);\n\tthis.syncer.syncadaptor.loadTiddler(this.title,function(err,tiddlerFields) {\n\t\t// If there's an error, exit without changing any internal state\n\t\tif(err) {\n\t\t\treturn callback(err);\n\t\t}\n\t\t// Update the info stored about this tiddler\n\t\tif(tiddlerFields) {\n\t\t\tself.syncer.storeTiddler(tiddlerFields);\n\t\t}\n\t\t// Invoke the callback\n\t\tcallback(null);\n\t});\n};\n\nexports.Syncer = Syncer;\n\n})();\n",
"type": "application/javascript",
"module-type": "global"
},
"$:/core/modules/tiddler.js": {
"title": "$:/core/modules/tiddler.js",
"text": "/*\\\ntitle: $:/core/modules/tiddler.js\ntype: application/javascript\nmodule-type: tiddlermethod\n\nExtension methods for the $tw.Tiddler object (constructor and methods required at boot time are in boot/boot.js)\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.hasTag = function(tag) {\n\treturn this.fields.tags && this.fields.tags.indexOf(tag) !== -1;\n};\n\nexports.isPlugin = function() {\n\treturn this.fields.type === \"application/json\" && this.hasField(\"plugin-type\");\n};\n\nexports.isDraft = function() {\n\treturn this.hasField(\"draft.of\");\n};\n\nexports.getFieldString = function(field) {\n\tvar value = this.fields[field];\n\t// Check for a missing field\n\tif(value === undefined || value === null) {\n\t\treturn \"\";\n\t}\n\t// Parse the field with the associated module (if any)\n\tvar fieldModule = $tw.Tiddler.fieldModules[field];\n\tif(fieldModule && fieldModule.stringify) {\n\t\treturn fieldModule.stringify.call(this,value);\n\t} else {\n\t\treturn value.toString();\n\t}\n};\n\n/*\nGet the value of a field as a list\n*/\nexports.getFieldList = function(field) {\n\tvar value = this.fields[field];\n\t// Check for a missing field\n\tif(value === undefined || value === null) {\n\t\treturn [];\n\t}\n\treturn $tw.utils.parseStringArray(value);\n};\n\n/*\nGet all the fields as a hashmap of strings. Options:\n\texclude: an array of field names to exclude\n*/\nexports.getFieldStrings = function(options) {\n\toptions = options || {};\n\tvar exclude = options.exclude || [];\n\tvar fields = {};\n\tfor(var field in this.fields) {\n\t\tif($tw.utils.hop(this.fields,field)) {\n\t\t\tif(exclude.indexOf(field) === -1) {\n\t\t\t\tfields[field] = this.getFieldString(field);\n\t\t\t}\n\t\t}\n\t}\n\treturn fields;\n};\n\n/*\nGet all the fields as a name:value block. Options:\n\texclude: an array of field names to exclude\n*/\nexports.getFieldStringBlock = function(options) {\n\toptions = options || {};\n\tvar exclude = options.exclude || [],\n\t\tfields = Object.keys(this.fields).sort(),\n\t\tresult = [];\n\tfor(var t=0; t<fields.length; t++) {\n\t\tvar field = fields[t];\n\t\tif(exclude.indexOf(field) === -1) {\n\t\t\tresult.push(field + \": \" + this.getFieldString(field));\n\t\t}\n\t}\n\treturn result.join(\"\\n\");\n};\n\nexports.getFieldDay = function(field) {\n\tif(this.cache && this.cache.day && $tw.utils.hop(this.cache.day,field) ) {\n\t\treturn this.cache.day[field];\n\t}\n\tvar day = \"\";\n\tif(this.fields[field]) {\n\t\tday = (new Date($tw.utils.parseDate(this.fields[field]))).setHours(0,0,0,0);\n\t}\n\tthis.cache.day = this.cache.day || {};\n\tthis.cache.day[field] = day;\n\treturn day;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "tiddlermethod"
},
"$:/core/modules/upgraders/plugins.js": {
"title": "$:/core/modules/upgraders/plugins.js",
"text": "/*\\\ntitle: $:/core/modules/upgraders/plugins.js\ntype: application/javascript\nmodule-type: upgrader\n\nUpgrader module that checks that plugins are newer than any already installed version\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar UPGRADE_LIBRARY_TITLE = \"$:/UpgradeLibrary\";\n\nvar BLOCKED_PLUGINS = {\n\t\"$:/themes/tiddlywiki/stickytitles\": {\n\t\tversions: [\"*\"]\n\t},\n\t\"$:/plugins/tiddlywiki/fullscreen\": {\n\t\tversions: [\"*\"]\n\t}\n};\n\nexports.upgrade = function(wiki,titles,tiddlers) {\n\tvar self = this,\n\t\tmessages = {},\n\t\tupgradeLibrary,\n\t\tgetLibraryTiddler = function(title) {\n\t\t\tif(!upgradeLibrary) {\n\t\t\t\tupgradeLibrary = wiki.getTiddlerData(UPGRADE_LIBRARY_TITLE,{});\n\t\t\t\tupgradeLibrary.tiddlers = upgradeLibrary.tiddlers || {};\n\t\t\t}\n\t\t\treturn upgradeLibrary.tiddlers[title];\n\t\t};\n\n\t// Go through all the incoming tiddlers\n\t$tw.utils.each(titles,function(title) {\n\t\tvar incomingTiddler = tiddlers[title];\n\t\t// Check if we're dealing with a plugin\n\t\tif(incomingTiddler && incomingTiddler[\"plugin-type\"]) {\n\t\t\t// Check whether the plugin contains JS modules\n\t\t\tvar requiresReload = wiki.doesPluginInfoRequireReload(JSON.parse(incomingTiddler.text)) ? (wiki.getTiddlerText(\"$:/language/ControlPanel/Plugins/PluginWillRequireReload\") + \" \") : \"\";\n\t\t\tmessages[title] = requiresReload;\n\t\t\tif(incomingTiddler.version) {\n\t\t\t\t// Upgrade the incoming plugin if it is in the upgrade library\n\t\t\t\tvar libraryTiddler = getLibraryTiddler(title);\n\t\t\t\tif(libraryTiddler && libraryTiddler[\"plugin-type\"] && libraryTiddler.version) {\n\t\t\t\t\ttiddlers[title] = libraryTiddler;\n\t\t\t\t\tmessages[title] = requiresReload + $tw.language.getString(\"Import/Upgrader/Plugins/Upgraded\",{variables: {incoming: incomingTiddler.version, upgraded: libraryTiddler.version}});\n\t\t\t\t\treturn;\n\t\t\t\t}\n\t\t\t\t// Suppress the incoming plugin if it is older than the currently installed one\n\t\t\t\tvar existingTiddler = wiki.getTiddler(title);\n\t\t\t\tif(existingTiddler && existingTiddler.hasField(\"plugin-type\") && existingTiddler.hasField(\"version\")) {\n\t\t\t\t\t// Reject the incoming plugin by blanking all its fields\n\t\t\t\t\tif($tw.utils.checkVersions(existingTiddler.fields.version,incomingTiddler.version)) {\n\t\t\t\t\t\ttiddlers[title] = Object.create(null);\n\t\t\t\t\t\tmessages[title] = $tw.language.getString(\"Import/Upgrader/Plugins/Suppressed/Version\",{variables: {incoming: incomingTiddler.version, existing: existingTiddler.fields.version}});\n\t\t\t\t\t\treturn;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t\t// Check whether the plugin is on the blocked list\n\t\t\tvar blockInfo = BLOCKED_PLUGINS[title];\n\t\t\tif(blockInfo) {\n\t\t\t\tif(blockInfo.versions.indexOf(\"*\") !== -1 || (incomingTiddler.version && blockInfo.versions.indexOf(incomingTiddler.version) !== -1)) {\n\t\t\t\t\ttiddlers[title] = Object.create(null);\n\t\t\t\t\tmessages[title] = $tw.language.getString(\"Import/Upgrader/Plugins/Suppressed/Incompatible\");\n\t\t\t\t\treturn;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t});\n\treturn messages;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "upgrader"
},
"$:/core/modules/upgraders/system.js": {
"title": "$:/core/modules/upgraders/system.js",
"text": "/*\\\ntitle: $:/core/modules/upgraders/system.js\ntype: application/javascript\nmodule-type: upgrader\n\nUpgrader module that suppresses certain system tiddlers that shouldn't be imported\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar DONT_IMPORT_LIST = [\"$:/StoryList\",\"$:/HistoryList\"],\n\tDONT_IMPORT_PREFIX_LIST = [\"$:/temp/\",\"$:/state/\",\"$:/Import\"],\n\tWARN_IMPORT_PREFIX_LIST = [\"$:/core/modules/\"];\n\nexports.upgrade = function(wiki,titles,tiddlers) {\n\tvar self = this,\n\t\tmessages = {},\n\t\tshowAlert = false;\n\t// Check for tiddlers on our list\n\t$tw.utils.each(titles,function(title) {\n\t\tif(DONT_IMPORT_LIST.indexOf(title) !== -1) {\n\t\t\ttiddlers[title] = Object.create(null);\n\t\t\tmessages[title] = $tw.language.getString(\"Import/Upgrader/System/Suppressed\");\n\t\t} else {\n\t\t\tfor(var t=0; t<DONT_IMPORT_PREFIX_LIST.length; t++) {\n\t\t\t\tvar prefix = DONT_IMPORT_PREFIX_LIST[t];\n\t\t\t\tif(title.substr(0,prefix.length) === prefix) {\n\t\t\t\t\ttiddlers[title] = Object.create(null);\n\t\t\t\t\tmessages[title] = $tw.language.getString(\"Import/Upgrader/State/Suppressed\");\n\t\t\t\t}\n\t\t\t}\n\t\t\tfor(var t=0; t<WARN_IMPORT_PREFIX_LIST.length; t++) {\n\t\t\t\tvar prefix = WARN_IMPORT_PREFIX_LIST[t];\n\t\t\t\tif(title.substr(0,prefix.length) === prefix && wiki.isShadowTiddler(title)) {\n\t\t\t\t\tshowAlert = true;\n\t\t\t\t\tmessages[title] = $tw.language.getString(\"Import/Upgrader/System/Warning\");\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t});\n\tif(showAlert) {\n\t\tvar logger = new $tw.utils.Logger(\"import\");\n\t\tlogger.alert($tw.language.getString(\"Import/Upgrader/System/Alert\"));\n\t}\n\treturn messages;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "upgrader"
},
"$:/core/modules/upgraders/themetweaks.js": {
"title": "$:/core/modules/upgraders/themetweaks.js",
"text": "/*\\\ntitle: $:/core/modules/upgraders/themetweaks.js\ntype: application/javascript\nmodule-type: upgrader\n\nUpgrader module that handles the change in theme tweak storage introduced in 5.0.14-beta.\n\nPreviously, theme tweaks were stored in two data tiddlers:\n\n* $:/themes/tiddlywiki/vanilla/metrics\n* $:/themes/tiddlywiki/vanilla/settings\n\nNow, each tweak is stored in its own separate tiddler.\n\nThis upgrader copies any values from the old format to the new. The old data tiddlers are not deleted in case they have been used to store additional indexes.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar MAPPINGS = {\n\t\"$:/themes/tiddlywiki/vanilla/metrics\": {\n\t\t\"fontsize\": \"$:/themes/tiddlywiki/vanilla/metrics/fontsize\",\n\t\t\"lineheight\": \"$:/themes/tiddlywiki/vanilla/metrics/lineheight\",\n\t\t\"storyleft\": \"$:/themes/tiddlywiki/vanilla/metrics/storyleft\",\n\t\t\"storytop\": \"$:/themes/tiddlywiki/vanilla/metrics/storytop\",\n\t\t\"storyright\": \"$:/themes/tiddlywiki/vanilla/metrics/storyright\",\n\t\t\"storywidth\": \"$:/themes/tiddlywiki/vanilla/metrics/storywidth\",\n\t\t\"tiddlerwidth\": \"$:/themes/tiddlywiki/vanilla/metrics/tiddlerwidth\"\n\t},\n\t\"$:/themes/tiddlywiki/vanilla/settings\": {\n\t\t\"fontfamily\": \"$:/themes/tiddlywiki/vanilla/settings/fontfamily\"\n\t}\n};\n\nexports.upgrade = function(wiki,titles,tiddlers) {\n\tvar self = this,\n\t\tmessages = {};\n\t// Check for tiddlers on our list\n\t$tw.utils.each(titles,function(title) {\n\t\tvar mapping = MAPPINGS[title];\n\t\tif(mapping) {\n\t\t\tvar tiddler = new $tw.Tiddler(tiddlers[title]),\n\t\t\t\ttiddlerData = wiki.getTiddlerDataCached(tiddler,{});\n\t\t\tfor(var index in mapping) {\n\t\t\t\tvar mappedTitle = mapping[index];\n\t\t\t\tif(!tiddlers[mappedTitle] || tiddlers[mappedTitle].title !== mappedTitle) {\n\t\t\t\t\ttiddlers[mappedTitle] = {\n\t\t\t\t\t\ttitle: mappedTitle,\n\t\t\t\t\t\ttext: tiddlerData[index]\n\t\t\t\t\t};\n\t\t\t\t\tmessages[mappedTitle] = $tw.language.getString(\"Import/Upgrader/ThemeTweaks/Created\",{variables: {\n\t\t\t\t\t\tfrom: title + \"##\" + index\n\t\t\t\t\t}});\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t});\n\treturn messages;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "upgrader"
},
"$:/core/modules/utils/base64-utf8/base64-utf8.module.js": {
"text": "(function(){// From https://gist.github.com/Nijikokun/5192472\n//\n// UTF8 Module\n//\n// Cleaner and modularized utf-8 encoding and decoding library for javascript.\n//\n// copyright: MIT\n// author: Nijiko Yonskai, @nijikokun, nijikokun@gmail.com\n!function(r,e,o,t){void 0!==o.module&&o.module.exports?o.module.exports=e.apply(o):void 0!==o.define&&\"function\"===o.define&&o.define.amd?define(\"utf8\",[],e):o.utf8=e.apply(o)}(0,function(){return{encode:function(r){if(\"string\"!=typeof r)return r;r=r.replace(/\\r\\n/g,\"\\n\");for(var e,o=\"\",t=0;t<r.length;t++)if((e=r.charCodeAt(t))<128)o+=String.fromCharCode(e);else if(e>127&&e<2048)o+=String.fromCharCode(e>>6|192),o+=String.fromCharCode(63&e|128);else if(e>55295&&e<57344&&r.length>t+1){var i=e,n=r.charCodeAt(t+1);t++;var d=65536+(i-55296<<10|n-56320);o+=String.fromCharCode(d>>18|240),o+=String.fromCharCode(d>>12&63|128),o+=String.fromCharCode(d>>6&63|128),o+=String.fromCharCode(63&d|128)}else o+=String.fromCharCode(e>>12|224),o+=String.fromCharCode(e>>6&63|128),o+=String.fromCharCode(63&e|128);return o},decode:function(r){if(\"string\"!=typeof r)return r;for(var e=\"\",o=0,t=0;o<r.length;)if((t=r.charCodeAt(o))<128)e+=String.fromCharCode(t),o++;else if(t>191&&t<224)e+=String.fromCharCode((31&t)<<6|63&r.charCodeAt(o+1)),o+=2;else if(t>223&&t<240)e+=String.fromCharCode((15&t)<<12|(63&r.charCodeAt(o+1))<<6|63&r.charCodeAt(o+2)),o+=3;else{var i=(7&t)<<18|(63&r.charCodeAt(o+1))<<12|(63&r.charCodeAt(o+2))<<6|63&r.charCodeAt(o+3);e+=String.fromCharCode(55296+(i-65536>>10))+String.fromCharCode(56320+(i-65536&1023)),o+=4}return e}}},this),function(r,e,o,t){if(void 0!==o.module&&o.module.exports){if(t&&o.require)for(var i=0;i<t.length;i++)o[t[i]]=o.require(t[i]);o.module.exports=e.apply(o)}else void 0!==o.define&&\"function\"===o.define&&o.define.amd?define(\"base64\",t||[],e):o.base64=e.apply(o)}(0,function(r){var e=r||this.utf8,o=\"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=\";return{encode:function(r){if(void 0===e)throw{error:\"MissingMethod\",message:\"UTF8 Module is missing.\"};if(\"string\"!=typeof r)return r;r=e.encode(r);for(var t,i,n,d,f,a,h,C=\"\",c=0;c<r.length;)d=(t=r.charCodeAt(c++))>>2,f=(3&t)<<4|(i=r.charCodeAt(c++))>>4,a=(15&i)<<2|(n=r.charCodeAt(c++))>>6,h=63&n,isNaN(i)?a=h=64:isNaN(n)&&(h=64),C+=o.charAt(d)+o.charAt(f)+o.charAt(a)+o.charAt(h);return C},decode:function(r){if(void 0===e)throw{error:\"MissingMethod\",message:\"UTF8 Module is missing.\"};if(\"string\"!=typeof r)return r;r=r.replace(/[^A-Za-z0-9\\+\\/\\=]/g,\"\");for(var t,i,n,d,f,a,h=\"\",C=0;C<r.length;)t=o.indexOf(r.charAt(C++))<<2|(d=o.indexOf(r.charAt(C++)))>>4,i=(15&d)<<4|(f=o.indexOf(r.charAt(C++)))>>2,n=(3&f)<<6|(a=o.indexOf(r.charAt(C++))),h+=String.fromCharCode(t),64!=f&&(h+=String.fromCharCode(i)),64!=a&&(h+=String.fromCharCode(n));return e.decode(h)}}},this,[\"utf8\"]);}).call(exports);",
"type": "application/javascript",
"title": "$:/core/modules/utils/base64-utf8/base64-utf8.module.js",
"module-type": "library"
},
"$:/core/modules/utils/crypto.js": {
"title": "$:/core/modules/utils/crypto.js",
"text": "/*\\\ntitle: $:/core/modules/utils/crypto.js\ntype: application/javascript\nmodule-type: utils\n\nUtility functions related to crypto.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nLook for an encrypted store area in the text of a TiddlyWiki file\n*/\nexports.extractEncryptedStoreArea = function(text) {\n\tvar encryptedStoreAreaStartMarker = \"<pre id=\\\"encryptedStoreArea\\\" type=\\\"text/plain\\\" style=\\\"display:none;\\\">\",\n\t\tencryptedStoreAreaStart = text.indexOf(encryptedStoreAreaStartMarker);\n\tif(encryptedStoreAreaStart !== -1) {\n\t\tvar encryptedStoreAreaEnd = text.indexOf(\"</pre>\",encryptedStoreAreaStart);\n\t\tif(encryptedStoreAreaEnd !== -1) {\n\t\t\treturn $tw.utils.htmlDecode(text.substring(encryptedStoreAreaStart + encryptedStoreAreaStartMarker.length,encryptedStoreAreaEnd-1));\n\t\t}\n\t}\n\treturn null;\n};\n\n/*\nAttempt to extract the tiddlers from an encrypted store area using the current password. If the password is not provided then the password in the password store will be used\n*/\nexports.decryptStoreArea = function(encryptedStoreArea,password) {\n\tvar decryptedText = $tw.crypto.decrypt(encryptedStoreArea,password);\n\tif(decryptedText) {\n\t\tvar json = JSON.parse(decryptedText),\n\t\t\ttiddlers = [];\n\t\tfor(var title in json) {\n\t\t\tif(title !== \"$:/isEncrypted\") {\n\t\t\t\ttiddlers.push(json[title]);\n\t\t\t}\n\t\t}\n\t\treturn tiddlers;\n\t} else {\n\t\treturn null;\n\t}\n};\n\n\n/*\nAttempt to extract the tiddlers from an encrypted store area using the current password. If that fails, the user is prompted for a password.\nencryptedStoreArea: text of the TiddlyWiki encrypted store area\ncallback: function(tiddlers) called with the array of decrypted tiddlers\n\nThe following configuration settings are supported:\n\n$tw.config.usePasswordVault: causes any password entered by the user to also be put into the system password vault\n*/\nexports.decryptStoreAreaInteractive = function(encryptedStoreArea,callback,options) {\n\t// Try to decrypt with the current password\n\tvar tiddlers = $tw.utils.decryptStoreArea(encryptedStoreArea);\n\tif(tiddlers) {\n\t\tcallback(tiddlers);\n\t} else {\n\t\t// Prompt for a new password and keep trying\n\t\t$tw.passwordPrompt.createPrompt({\n\t\t\tserviceName: \"Enter a password to decrypt the imported TiddlyWiki\",\n\t\t\tnoUserName: true,\n\t\t\tcanCancel: true,\n\t\t\tsubmitText: \"Decrypt\",\n\t\t\tcallback: function(data) {\n\t\t\t\t// Exit if the user cancelled\n\t\t\t\tif(!data) {\n\t\t\t\t\treturn false;\n\t\t\t\t}\n\t\t\t\t// Attempt to decrypt the tiddlers\n\t\t\t\tvar tiddlers = $tw.utils.decryptStoreArea(encryptedStoreArea,data.password);\n\t\t\t\tif(tiddlers) {\n\t\t\t\t\tif($tw.config.usePasswordVault) {\n\t\t\t\t\t\t$tw.crypto.setPassword(data.password);\n\t\t\t\t\t}\n\t\t\t\t\tcallback(tiddlers);\n\t\t\t\t\t// Exit and remove the password prompt\n\t\t\t\t\treturn true;\n\t\t\t\t} else {\n\t\t\t\t\t// We didn't decrypt everything, so continue to prompt for password\n\t\t\t\t\treturn false;\n\t\t\t\t}\n\t\t\t}\n\t\t});\n\t}\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "utils"
},
"$:/core/modules/utils/csv.js": {
"title": "$:/core/modules/utils/csv.js",
"text": "/*\\\ntitle: $:/core/modules/utils/csv.js\ntype: application/javascript\nmodule-type: utils\n\nA barebones CSV parser\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nParse a CSV string with a header row and return an array of hashmaps.\n*/\nexports.parseCsvStringWithHeader = function(text,options) {\n\toptions = options || {};\n\tvar separator = options.separator || \",\",\n\t\trows = text.split(/\\r?\\n/mg).map(function(row) {\n\t\t\treturn $tw.utils.trim(row);\n\t\t}).filter(function(row) {\n\t\t\treturn row !== \"\";\n\t\t});\n\tif(rows.length < 1) {\n\t\treturn \"Missing header row\";\n\t}\n\tvar headings = rows[0].split(separator),\n\t\tresults = [];\n\tfor(var row=1; row<rows.length; row++) {\n\t\tvar columns = rows[row].split(separator),\n\t\t\tcolumnResult = Object.create(null);\n\t\tif(columns.length !== headings.length) {\n\t\t\treturn \"Malformed CSV row '\" + rows[row] + \"'\";\n\t\t}\n\t\tfor(var column=0; column<columns.length; column++) {\n\t\t\tvar columnName = headings[column];\n\t\t\tcolumnResult[columnName] = $tw.utils.trim(columns[column] || \"\");\n\t\t}\n\t\tresults.push(columnResult);\t\t\t\n\t}\n\treturn results;\n}\n\n})();\n",
"type": "application/javascript",
"module-type": "utils"
},
"$:/core/modules/utils/diff-match-patch/diff_match_patch.js": {
"text": "(function(){function diff_match_patch(){this.Diff_Timeout=1;this.Diff_EditCost=4;this.Match_Threshold=.5;this.Match_Distance=1E3;this.Patch_DeleteThreshold=.5;this.Patch_Margin=4;this.Match_MaxBits=32}var DIFF_DELETE=-1,DIFF_INSERT=1,DIFF_EQUAL=0;\ndiff_match_patch.prototype.diff_main=function(a,b,c,d){\"undefined\"==typeof d&&(d=0>=this.Diff_Timeout?Number.MAX_VALUE:(new Date).getTime()+1E3*this.Diff_Timeout);if(null==a||null==b)throw Error(\"Null input. (diff_main)\");if(a==b)return a?[[DIFF_EQUAL,a]]:[];\"undefined\"==typeof c&&(c=!0);var e=c,f=this.diff_commonPrefix(a,b);c=a.substring(0,f);a=a.substring(f);b=b.substring(f);f=this.diff_commonSuffix(a,b);var g=a.substring(a.length-f);a=a.substring(0,a.length-f);b=b.substring(0,b.length-f);a=this.diff_compute_(a,\nb,e,d);c&&a.unshift([DIFF_EQUAL,c]);g&&a.push([DIFF_EQUAL,g]);this.diff_cleanupMerge(a);return a};\ndiff_match_patch.prototype.diff_compute_=function(a,b,c,d){if(!a)return[[DIFF_INSERT,b]];if(!b)return[[DIFF_DELETE,a]];var e=a.length>b.length?a:b,f=a.length>b.length?b:a,g=e.indexOf(f);return-1!=g?(c=[[DIFF_INSERT,e.substring(0,g)],[DIFF_EQUAL,f],[DIFF_INSERT,e.substring(g+f.length)]],a.length>b.length&&(c[0][0]=c[2][0]=DIFF_DELETE),c):1==f.length?[[DIFF_DELETE,a],[DIFF_INSERT,b]]:(e=this.diff_halfMatch_(a,b))?(b=e[1],f=e[3],a=e[4],e=this.diff_main(e[0],e[2],c,d),c=this.diff_main(b,f,c,d),e.concat([[DIFF_EQUAL,\na]],c)):c&&100<a.length&&100<b.length?this.diff_lineMode_(a,b,d):this.diff_bisect_(a,b,d)};\ndiff_match_patch.prototype.diff_lineMode_=function(a,b,c){var d=this.diff_linesToChars_(a,b);a=d.chars1;b=d.chars2;d=d.lineArray;a=this.diff_main(a,b,!1,c);this.diff_charsToLines_(a,d);this.diff_cleanupSemantic(a);a.push([DIFF_EQUAL,\"\"]);for(var e=d=b=0,f=\"\",g=\"\";b<a.length;){switch(a[b][0]){case DIFF_INSERT:e++;g+=a[b][1];break;case DIFF_DELETE:d++;f+=a[b][1];break;case DIFF_EQUAL:if(1<=d&&1<=e){a.splice(b-d-e,d+e);b=b-d-e;d=this.diff_main(f,g,!1,c);for(e=d.length-1;0<=e;e--)a.splice(b,0,d[e]);b+=\nd.length}d=e=0;g=f=\"\"}b++}a.pop();return a};\ndiff_match_patch.prototype.diff_bisect_=function(a,b,c){for(var d=a.length,e=b.length,f=Math.ceil((d+e)/2),g=2*f,h=Array(g),l=Array(g),k=0;k<g;k++)h[k]=-1,l[k]=-1;h[f+1]=0;l[f+1]=0;k=d-e;for(var m=0!=k%2,p=0,x=0,w=0,q=0,t=0;t<f&&!((new Date).getTime()>c);t++){for(var v=-t+p;v<=t-x;v+=2){var n=f+v;var r=v==-t||v!=t&&h[n-1]<h[n+1]?h[n+1]:h[n-1]+1;for(var y=r-v;r<d&&y<e&&a.charAt(r)==b.charAt(y);)r++,y++;h[n]=r;if(r>d)x+=2;else if(y>e)p+=2;else if(m&&(n=f+k-v,0<=n&&n<g&&-1!=l[n])){var u=d-l[n];if(r>=\nu)return this.diff_bisectSplit_(a,b,r,y,c)}}for(v=-t+w;v<=t-q;v+=2){n=f+v;u=v==-t||v!=t&&l[n-1]<l[n+1]?l[n+1]:l[n-1]+1;for(r=u-v;u<d&&r<e&&a.charAt(d-u-1)==b.charAt(e-r-1);)u++,r++;l[n]=u;if(u>d)q+=2;else if(r>e)w+=2;else if(!m&&(n=f+k-v,0<=n&&n<g&&-1!=h[n]&&(r=h[n],y=f+r-n,u=d-u,r>=u)))return this.diff_bisectSplit_(a,b,r,y,c)}}return[[DIFF_DELETE,a],[DIFF_INSERT,b]]};\ndiff_match_patch.prototype.diff_bisectSplit_=function(a,b,c,d,e){var f=a.substring(0,c),g=b.substring(0,d);a=a.substring(c);b=b.substring(d);f=this.diff_main(f,g,!1,e);e=this.diff_main(a,b,!1,e);return f.concat(e)};\ndiff_match_patch.prototype.diff_linesToChars_=function(a,b){function c(a){for(var b=\"\",c=0,f=-1,g=d.length;f<a.length-1;){f=a.indexOf(\"\\n\",c);-1==f&&(f=a.length-1);var h=a.substring(c,f+1);c=f+1;(e.hasOwnProperty?e.hasOwnProperty(h):void 0!==e[h])?b+=String.fromCharCode(e[h]):(b+=String.fromCharCode(g),e[h]=g,d[g++]=h)}return b}var d=[],e={};d[0]=\"\";var f=c(a),g=c(b);return{chars1:f,chars2:g,lineArray:d}};\ndiff_match_patch.prototype.diff_charsToLines_=function(a,b){for(var c=0;c<a.length;c++){for(var d=a[c][1],e=[],f=0;f<d.length;f++)e[f]=b[d.charCodeAt(f)];a[c][1]=e.join(\"\")}};diff_match_patch.prototype.diff_commonPrefix=function(a,b){if(!a||!b||a.charAt(0)!=b.charAt(0))return 0;for(var c=0,d=Math.min(a.length,b.length),e=d,f=0;c<e;)a.substring(f,e)==b.substring(f,e)?f=c=e:d=e,e=Math.floor((d-c)/2+c);return e};\ndiff_match_patch.prototype.diff_commonSuffix=function(a,b){if(!a||!b||a.charAt(a.length-1)!=b.charAt(b.length-1))return 0;for(var c=0,d=Math.min(a.length,b.length),e=d,f=0;c<e;)a.substring(a.length-e,a.length-f)==b.substring(b.length-e,b.length-f)?f=c=e:d=e,e=Math.floor((d-c)/2+c);return e};\ndiff_match_patch.prototype.diff_commonOverlap_=function(a,b){var c=a.length,d=b.length;if(0==c||0==d)return 0;c>d?a=a.substring(c-d):c<d&&(b=b.substring(0,c));c=Math.min(c,d);if(a==b)return c;d=0;for(var e=1;;){var f=a.substring(c-e);f=b.indexOf(f);if(-1==f)return d;e+=f;if(0==f||a.substring(c-e)==b.substring(0,e))d=e,e++}};\ndiff_match_patch.prototype.diff_halfMatch_=function(a,b){function c(a,b,c){for(var d=a.substring(c,c+Math.floor(a.length/4)),e=-1,g=\"\",h,k,l,m;-1!=(e=b.indexOf(d,e+1));){var p=f.diff_commonPrefix(a.substring(c),b.substring(e)),u=f.diff_commonSuffix(a.substring(0,c),b.substring(0,e));g.length<u+p&&(g=b.substring(e-u,e)+b.substring(e,e+p),h=a.substring(0,c-u),k=a.substring(c+p),l=b.substring(0,e-u),m=b.substring(e+p))}return 2*g.length>=a.length?[h,k,l,m,g]:null}if(0>=this.Diff_Timeout)return null;\nvar d=a.length>b.length?a:b,e=a.length>b.length?b:a;if(4>d.length||2*e.length<d.length)return null;var f=this,g=c(d,e,Math.ceil(d.length/4));d=c(d,e,Math.ceil(d.length/2));if(g||d)g=d?g?g[4].length>d[4].length?g:d:d:g;else return null;if(a.length>b.length){d=g[0];e=g[1];var h=g[2];var l=g[3]}else h=g[0],l=g[1],d=g[2],e=g[3];return[d,e,h,l,g[4]]};\ndiff_match_patch.prototype.diff_cleanupSemantic=function(a){for(var b=!1,c=[],d=0,e=null,f=0,g=0,h=0,l=0,k=0;f<a.length;)a[f][0]==DIFF_EQUAL?(c[d++]=f,g=l,h=k,k=l=0,e=a[f][1]):(a[f][0]==DIFF_INSERT?l+=a[f][1].length:k+=a[f][1].length,e&&e.length<=Math.max(g,h)&&e.length<=Math.max(l,k)&&(a.splice(c[d-1],0,[DIFF_DELETE,e]),a[c[d-1]+1][0]=DIFF_INSERT,d--,d--,f=0<d?c[d-1]:-1,k=l=h=g=0,e=null,b=!0)),f++;b&&this.diff_cleanupMerge(a);this.diff_cleanupSemanticLossless(a);for(f=1;f<a.length;){if(a[f-1][0]==\nDIFF_DELETE&&a[f][0]==DIFF_INSERT){b=a[f-1][1];c=a[f][1];d=this.diff_commonOverlap_(b,c);e=this.diff_commonOverlap_(c,b);if(d>=e){if(d>=b.length/2||d>=c.length/2)a.splice(f,0,[DIFF_EQUAL,c.substring(0,d)]),a[f-1][1]=b.substring(0,b.length-d),a[f+1][1]=c.substring(d),f++}else if(e>=b.length/2||e>=c.length/2)a.splice(f,0,[DIFF_EQUAL,b.substring(0,e)]),a[f-1][0]=DIFF_INSERT,a[f-1][1]=c.substring(0,c.length-e),a[f+1][0]=DIFF_DELETE,a[f+1][1]=b.substring(e),f++;f++}f++}};\ndiff_match_patch.prototype.diff_cleanupSemanticLossless=function(a){function b(a,b){if(!a||!b)return 6;var c=a.charAt(a.length-1),d=b.charAt(0),e=c.match(diff_match_patch.nonAlphaNumericRegex_),f=d.match(diff_match_patch.nonAlphaNumericRegex_),g=e&&c.match(diff_match_patch.whitespaceRegex_),h=f&&d.match(diff_match_patch.whitespaceRegex_);c=g&&c.match(diff_match_patch.linebreakRegex_);d=h&&d.match(diff_match_patch.linebreakRegex_);var k=c&&a.match(diff_match_patch.blanklineEndRegex_),l=d&&b.match(diff_match_patch.blanklineStartRegex_);\nreturn k||l?5:c||d?4:e&&!g&&h?3:g||h?2:e||f?1:0}for(var c=1;c<a.length-1;){if(a[c-1][0]==DIFF_EQUAL&&a[c+1][0]==DIFF_EQUAL){var d=a[c-1][1],e=a[c][1],f=a[c+1][1],g=this.diff_commonSuffix(d,e);if(g){var h=e.substring(e.length-g);d=d.substring(0,d.length-g);e=h+e.substring(0,e.length-g);f=h+f}g=d;h=e;for(var l=f,k=b(d,e)+b(e,f);e.charAt(0)===f.charAt(0);){d+=e.charAt(0);e=e.substring(1)+f.charAt(0);f=f.substring(1);var m=b(d,e)+b(e,f);m>=k&&(k=m,g=d,h=e,l=f)}a[c-1][1]!=g&&(g?a[c-1][1]=g:(a.splice(c-\n1,1),c--),a[c][1]=h,l?a[c+1][1]=l:(a.splice(c+1,1),c--))}c++}};diff_match_patch.nonAlphaNumericRegex_=/[^a-zA-Z0-9]/;diff_match_patch.whitespaceRegex_=/\\s/;diff_match_patch.linebreakRegex_=/[\\r\\n]/;diff_match_patch.blanklineEndRegex_=/\\n\\r?\\n$/;diff_match_patch.blanklineStartRegex_=/^\\r?\\n\\r?\\n/;\ndiff_match_patch.prototype.diff_cleanupEfficiency=function(a){for(var b=!1,c=[],d=0,e=null,f=0,g=!1,h=!1,l=!1,k=!1;f<a.length;)a[f][0]==DIFF_EQUAL?(a[f][1].length<this.Diff_EditCost&&(l||k)?(c[d++]=f,g=l,h=k,e=a[f][1]):(d=0,e=null),l=k=!1):(a[f][0]==DIFF_DELETE?k=!0:l=!0,e&&(g&&h&&l&&k||e.length<this.Diff_EditCost/2&&3==g+h+l+k)&&(a.splice(c[d-1],0,[DIFF_DELETE,e]),a[c[d-1]+1][0]=DIFF_INSERT,d--,e=null,g&&h?(l=k=!0,d=0):(d--,f=0<d?c[d-1]:-1,l=k=!1),b=!0)),f++;b&&this.diff_cleanupMerge(a)};\ndiff_match_patch.prototype.diff_cleanupMerge=function(a){a.push([DIFF_EQUAL,\"\"]);for(var b=0,c=0,d=0,e=\"\",f=\"\",g;b<a.length;)switch(a[b][0]){case DIFF_INSERT:d++;f+=a[b][1];b++;break;case DIFF_DELETE:c++;e+=a[b][1];b++;break;case DIFF_EQUAL:1<c+d?(0!==c&&0!==d&&(g=this.diff_commonPrefix(f,e),0!==g&&(0<b-c-d&&a[b-c-d-1][0]==DIFF_EQUAL?a[b-c-d-1][1]+=f.substring(0,g):(a.splice(0,0,[DIFF_EQUAL,f.substring(0,g)]),b++),f=f.substring(g),e=e.substring(g)),g=this.diff_commonSuffix(f,e),0!==g&&(a[b][1]=f.substring(f.length-\ng)+a[b][1],f=f.substring(0,f.length-g),e=e.substring(0,e.length-g))),0===c?a.splice(b-d,c+d,[DIFF_INSERT,f]):0===d?a.splice(b-c,c+d,[DIFF_DELETE,e]):a.splice(b-c-d,c+d,[DIFF_DELETE,e],[DIFF_INSERT,f]),b=b-c-d+(c?1:0)+(d?1:0)+1):0!==b&&a[b-1][0]==DIFF_EQUAL?(a[b-1][1]+=a[b][1],a.splice(b,1)):b++,c=d=0,f=e=\"\"}\"\"===a[a.length-1][1]&&a.pop();c=!1;for(b=1;b<a.length-1;)a[b-1][0]==DIFF_EQUAL&&a[b+1][0]==DIFF_EQUAL&&(a[b][1].substring(a[b][1].length-a[b-1][1].length)==a[b-1][1]?(a[b][1]=a[b-1][1]+a[b][1].substring(0,\na[b][1].length-a[b-1][1].length),a[b+1][1]=a[b-1][1]+a[b+1][1],a.splice(b-1,1),c=!0):a[b][1].substring(0,a[b+1][1].length)==a[b+1][1]&&(a[b-1][1]+=a[b+1][1],a[b][1]=a[b][1].substring(a[b+1][1].length)+a[b+1][1],a.splice(b+1,1),c=!0)),b++;c&&this.diff_cleanupMerge(a)};\ndiff_match_patch.prototype.diff_xIndex=function(a,b){var c=0,d=0,e=0,f=0,g;for(g=0;g<a.length;g++){a[g][0]!==DIFF_INSERT&&(c+=a[g][1].length);a[g][0]!==DIFF_DELETE&&(d+=a[g][1].length);if(c>b)break;e=c;f=d}return a.length!=g&&a[g][0]===DIFF_DELETE?f:f+(b-e)};\ndiff_match_patch.prototype.diff_prettyHtml=function(a){for(var b=[],c=/&/g,d=/</g,e=/>/g,f=/\\n/g,g=0;g<a.length;g++){var h=a[g][0],l=a[g][1].replace(c,\"&\").replace(d,\"<\").replace(e,\">\").replace(f,\"¶<br>\");switch(h){case DIFF_INSERT:b[g]='<ins style=\"background:#e6ffe6;\">'+l+\"</ins>\";break;case DIFF_DELETE:b[g]='<del style=\"background:#ffe6e6;\">'+l+\"</del>\";break;case DIFF_EQUAL:b[g]=\"<span>\"+l+\"</span>\"}}return b.join(\"\")};\ndiff_match_patch.prototype.diff_text1=function(a){for(var b=[],c=0;c<a.length;c++)a[c][0]!==DIFF_INSERT&&(b[c]=a[c][1]);return b.join(\"\")};diff_match_patch.prototype.diff_text2=function(a){for(var b=[],c=0;c<a.length;c++)a[c][0]!==DIFF_DELETE&&(b[c]=a[c][1]);return b.join(\"\")};\ndiff_match_patch.prototype.diff_levenshtein=function(a){for(var b=0,c=0,d=0,e=0;e<a.length;e++){var f=a[e][1];switch(a[e][0]){case DIFF_INSERT:c+=f.length;break;case DIFF_DELETE:d+=f.length;break;case DIFF_EQUAL:b+=Math.max(c,d),d=c=0}}return b+=Math.max(c,d)};\ndiff_match_patch.prototype.diff_toDelta=function(a){for(var b=[],c=0;c<a.length;c++)switch(a[c][0]){case DIFF_INSERT:b[c]=\"+\"+encodeURI(a[c][1]);break;case DIFF_DELETE:b[c]=\"-\"+a[c][1].length;break;case DIFF_EQUAL:b[c]=\"=\"+a[c][1].length}return b.join(\"\\t\").replace(/%20/g,\" \")};\ndiff_match_patch.prototype.diff_fromDelta=function(a,b){for(var c=[],d=0,e=0,f=b.split(/\\t/g),g=0;g<f.length;g++){var h=f[g].substring(1);switch(f[g].charAt(0)){case \"+\":try{c[d++]=[DIFF_INSERT,decodeURI(h)]}catch(k){throw Error(\"Illegal escape in diff_fromDelta: \"+h);}break;case \"-\":case \"=\":var l=parseInt(h,10);if(isNaN(l)||0>l)throw Error(\"Invalid number in diff_fromDelta: \"+h);h=a.substring(e,e+=l);\"=\"==f[g].charAt(0)?c[d++]=[DIFF_EQUAL,h]:c[d++]=[DIFF_DELETE,h];break;default:if(f[g])throw Error(\"Invalid diff operation in diff_fromDelta: \"+\nf[g]);}}if(e!=a.length)throw Error(\"Delta length (\"+e+\") does not equal source text length (\"+a.length+\").\");return c};diff_match_patch.prototype.match_main=function(a,b,c){if(null==a||null==b||null==c)throw Error(\"Null input. (match_main)\");c=Math.max(0,Math.min(c,a.length));return a==b?0:a.length?a.substring(c,c+b.length)==b?c:this.match_bitap_(a,b,c):-1};\ndiff_match_patch.prototype.match_bitap_=function(a,b,c){function d(a,d){var e=a/b.length,g=Math.abs(c-d);return f.Match_Distance?e+g/f.Match_Distance:g?1:e}if(b.length>this.Match_MaxBits)throw Error(\"Pattern too long for this browser.\");var e=this.match_alphabet_(b),f=this,g=this.Match_Threshold,h=a.indexOf(b,c);-1!=h&&(g=Math.min(d(0,h),g),h=a.lastIndexOf(b,c+b.length),-1!=h&&(g=Math.min(d(0,h),g)));var l=1<<b.length-1;h=-1;for(var k,m,p=b.length+a.length,x,w=0;w<b.length;w++){k=0;for(m=p;k<m;)d(w,\nc+m)<=g?k=m:p=m,m=Math.floor((p-k)/2+k);p=m;k=Math.max(1,c-m+1);var q=Math.min(c+m,a.length)+b.length;m=Array(q+2);for(m[q+1]=(1<<w)-1;q>=k;q--){var t=e[a.charAt(q-1)];m[q]=0===w?(m[q+1]<<1|1)&t:(m[q+1]<<1|1)&t|(x[q+1]|x[q])<<1|1|x[q+1];if(m[q]&l&&(t=d(w,q-1),t<=g))if(g=t,h=q-1,h>c)k=Math.max(1,2*c-h);else break}if(d(w+1,c)>g)break;x=m}return h};\ndiff_match_patch.prototype.match_alphabet_=function(a){for(var b={},c=0;c<a.length;c++)b[a.charAt(c)]=0;for(c=0;c<a.length;c++)b[a.charAt(c)]|=1<<a.length-c-1;return b};\ndiff_match_patch.prototype.patch_addContext_=function(a,b){if(0!=b.length){for(var c=b.substring(a.start2,a.start2+a.length1),d=0;b.indexOf(c)!=b.lastIndexOf(c)&&c.length<this.Match_MaxBits-this.Patch_Margin-this.Patch_Margin;)d+=this.Patch_Margin,c=b.substring(a.start2-d,a.start2+a.length1+d);d+=this.Patch_Margin;(c=b.substring(a.start2-d,a.start2))&&a.diffs.unshift([DIFF_EQUAL,c]);(d=b.substring(a.start2+a.length1,a.start2+a.length1+d))&&a.diffs.push([DIFF_EQUAL,d]);a.start1-=c.length;a.start2-=\nc.length;a.length1+=c.length+d.length;a.length2+=c.length+d.length}};\ndiff_match_patch.prototype.patch_make=function(a,b,c){if(\"string\"==typeof a&&\"string\"==typeof b&&\"undefined\"==typeof c){var d=a;b=this.diff_main(d,b,!0);2<b.length&&(this.diff_cleanupSemantic(b),this.diff_cleanupEfficiency(b))}else if(a&&\"object\"==typeof a&&\"undefined\"==typeof b&&\"undefined\"==typeof c)b=a,d=this.diff_text1(b);else if(\"string\"==typeof a&&b&&\"object\"==typeof b&&\"undefined\"==typeof c)d=a;else if(\"string\"==typeof a&&\"string\"==typeof b&&c&&\"object\"==typeof c)d=a,b=c;else throw Error(\"Unknown call format to patch_make.\");\nif(0===b.length)return[];c=[];a=new diff_match_patch.patch_obj;for(var e=0,f=0,g=0,h=d,l=0;l<b.length;l++){var k=b[l][0],m=b[l][1];e||k===DIFF_EQUAL||(a.start1=f,a.start2=g);switch(k){case DIFF_INSERT:a.diffs[e++]=b[l];a.length2+=m.length;d=d.substring(0,g)+m+d.substring(g);break;case DIFF_DELETE:a.length1+=m.length;a.diffs[e++]=b[l];d=d.substring(0,g)+d.substring(g+m.length);break;case DIFF_EQUAL:m.length<=2*this.Patch_Margin&&e&&b.length!=l+1?(a.diffs[e++]=b[l],a.length1+=m.length,a.length2+=m.length):\nm.length>=2*this.Patch_Margin&&e&&(this.patch_addContext_(a,h),c.push(a),a=new diff_match_patch.patch_obj,e=0,h=d,f=g)}k!==DIFF_INSERT&&(f+=m.length);k!==DIFF_DELETE&&(g+=m.length)}e&&(this.patch_addContext_(a,h),c.push(a));return c};\ndiff_match_patch.prototype.patch_deepCopy=function(a){for(var b=[],c=0;c<a.length;c++){var d=a[c],e=new diff_match_patch.patch_obj;e.diffs=[];for(var f=0;f<d.diffs.length;f++)e.diffs[f]=d.diffs[f].slice();e.start1=d.start1;e.start2=d.start2;e.length1=d.length1;e.length2=d.length2;b[c]=e}return b};\ndiff_match_patch.prototype.patch_apply=function(a,b){if(0==a.length)return[b,[]];a=this.patch_deepCopy(a);var c=this.patch_addPadding(a);b=c+b+c;this.patch_splitMax(a);for(var d=0,e=[],f=0;f<a.length;f++){var g=a[f].start2+d,h=this.diff_text1(a[f].diffs),l=-1;if(h.length>this.Match_MaxBits){var k=this.match_main(b,h.substring(0,this.Match_MaxBits),g);-1!=k&&(l=this.match_main(b,h.substring(h.length-this.Match_MaxBits),g+h.length-this.Match_MaxBits),-1==l||k>=l)&&(k=-1)}else k=this.match_main(b,h,\ng);if(-1==k)e[f]=!1,d-=a[f].length2-a[f].length1;else if(e[f]=!0,d=k-g,g=-1==l?b.substring(k,k+h.length):b.substring(k,l+this.Match_MaxBits),h==g)b=b.substring(0,k)+this.diff_text2(a[f].diffs)+b.substring(k+h.length);else if(g=this.diff_main(h,g,!1),h.length>this.Match_MaxBits&&this.diff_levenshtein(g)/h.length>this.Patch_DeleteThreshold)e[f]=!1;else{this.diff_cleanupSemanticLossless(g);h=0;var m;for(l=0;l<a[f].diffs.length;l++){var p=a[f].diffs[l];p[0]!==DIFF_EQUAL&&(m=this.diff_xIndex(g,h));p[0]===\nDIFF_INSERT?b=b.substring(0,k+m)+p[1]+b.substring(k+m):p[0]===DIFF_DELETE&&(b=b.substring(0,k+m)+b.substring(k+this.diff_xIndex(g,h+p[1].length)));p[0]!==DIFF_DELETE&&(h+=p[1].length)}}}b=b.substring(c.length,b.length-c.length);return[b,e]};\ndiff_match_patch.prototype.patch_addPadding=function(a){for(var b=this.Patch_Margin,c=\"\",d=1;d<=b;d++)c+=String.fromCharCode(d);for(d=0;d<a.length;d++)a[d].start1+=b,a[d].start2+=b;d=a[0];var e=d.diffs;if(0==e.length||e[0][0]!=DIFF_EQUAL)e.unshift([DIFF_EQUAL,c]),d.start1-=b,d.start2-=b,d.length1+=b,d.length2+=b;else if(b>e[0][1].length){var f=b-e[0][1].length;e[0][1]=c.substring(e[0][1].length)+e[0][1];d.start1-=f;d.start2-=f;d.length1+=f;d.length2+=f}d=a[a.length-1];e=d.diffs;0==e.length||e[e.length-\n1][0]!=DIFF_EQUAL?(e.push([DIFF_EQUAL,c]),d.length1+=b,d.length2+=b):b>e[e.length-1][1].length&&(f=b-e[e.length-1][1].length,e[e.length-1][1]+=c.substring(0,f),d.length1+=f,d.length2+=f);return c};\ndiff_match_patch.prototype.patch_splitMax=function(a){for(var b=this.Match_MaxBits,c=0;c<a.length;c++)if(!(a[c].length1<=b)){var d=a[c];a.splice(c--,1);for(var e=d.start1,f=d.start2,g=\"\";0!==d.diffs.length;){var h=new diff_match_patch.patch_obj,l=!0;h.start1=e-g.length;h.start2=f-g.length;\"\"!==g&&(h.length1=h.length2=g.length,h.diffs.push([DIFF_EQUAL,g]));for(;0!==d.diffs.length&&h.length1<b-this.Patch_Margin;){g=d.diffs[0][0];var k=d.diffs[0][1];g===DIFF_INSERT?(h.length2+=k.length,f+=k.length,h.diffs.push(d.diffs.shift()),\nl=!1):g===DIFF_DELETE&&1==h.diffs.length&&h.diffs[0][0]==DIFF_EQUAL&&k.length>2*b?(h.length1+=k.length,e+=k.length,l=!1,h.diffs.push([g,k]),d.diffs.shift()):(k=k.substring(0,b-h.length1-this.Patch_Margin),h.length1+=k.length,e+=k.length,g===DIFF_EQUAL?(h.length2+=k.length,f+=k.length):l=!1,h.diffs.push([g,k]),k==d.diffs[0][1]?d.diffs.shift():d.diffs[0][1]=d.diffs[0][1].substring(k.length))}g=this.diff_text2(h.diffs);g=g.substring(g.length-this.Patch_Margin);k=this.diff_text1(d.diffs).substring(0,\nthis.Patch_Margin);\"\"!==k&&(h.length1+=k.length,h.length2+=k.length,0!==h.diffs.length&&h.diffs[h.diffs.length-1][0]===DIFF_EQUAL?h.diffs[h.diffs.length-1][1]+=k:h.diffs.push([DIFF_EQUAL,k]));l||a.splice(++c,0,h)}}};diff_match_patch.prototype.patch_toText=function(a){for(var b=[],c=0;c<a.length;c++)b[c]=a[c];return b.join(\"\")};\ndiff_match_patch.prototype.patch_fromText=function(a){var b=[];if(!a)return b;a=a.split(\"\\n\");for(var c=0,d=/^@@ -(\\d+),?(\\d*) \\+(\\d+),?(\\d*) @@$/;c<a.length;){var e=a[c].match(d);if(!e)throw Error(\"Invalid patch string: \"+a[c]);var f=new diff_match_patch.patch_obj;b.push(f);f.start1=parseInt(e[1],10);\"\"===e[2]?(f.start1--,f.length1=1):\"0\"==e[2]?f.length1=0:(f.start1--,f.length1=parseInt(e[2],10));f.start2=parseInt(e[3],10);\"\"===e[4]?(f.start2--,f.length2=1):\"0\"==e[4]?f.length2=0:(f.start2--,f.length2=\nparseInt(e[4],10));for(c++;c<a.length;){e=a[c].charAt(0);try{var g=decodeURI(a[c].substring(1))}catch(h){throw Error(\"Illegal escape in patch_fromText: \"+g);}if(\"-\"==e)f.diffs.push([DIFF_DELETE,g]);else if(\"+\"==e)f.diffs.push([DIFF_INSERT,g]);else if(\" \"==e)f.diffs.push([DIFF_EQUAL,g]);else if(\"@\"==e)break;else if(\"\"!==e)throw Error('Invalid patch mode \"'+e+'\" in: '+g);c++}}return b};diff_match_patch.patch_obj=function(){this.diffs=[];this.start2=this.start1=null;this.length2=this.length1=0};\ndiff_match_patch.patch_obj.prototype.toString=function(){for(var a=[\"@@ -\"+(0===this.length1?this.start1+\",0\":1==this.length1?this.start1+1:this.start1+1+\",\"+this.length1)+\" +\"+(0===this.length2?this.start2+\",0\":1==this.length2?this.start2+1:this.start2+1+\",\"+this.length2)+\" @@\\n\"],b,c=0;c<this.diffs.length;c++){switch(this.diffs[c][0]){case DIFF_INSERT:b=\"+\";break;case DIFF_DELETE:b=\"-\";break;case DIFF_EQUAL:b=\" \"}a[c+1]=b+encodeURI(this.diffs[c][1])+\"\\n\"}return a.join(\"\").replace(/%20/g,\" \")};\nthis.diff_match_patch=diff_match_patch;this.DIFF_DELETE=DIFF_DELETE;this.DIFF_INSERT=DIFF_INSERT;this.DIFF_EQUAL=DIFF_EQUAL;\n}).call(exports);",
"type": "application/javascript",
"title": "$:/core/modules/utils/diff-match-patch/diff_match_patch.js",
"module-type": "library"
},
"$:/core/modules/utils/dom/animations/slide.js": {
"title": "$:/core/modules/utils/dom/animations/slide.js",
"text": "/*\\\ntitle: $:/core/modules/utils/dom/animations/slide.js\ntype: application/javascript\nmodule-type: animation\n\nA simple slide animation that varies the height of the element\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nfunction slideOpen(domNode,options) {\n\toptions = options || {};\n\tvar duration = options.duration || $tw.utils.getAnimationDuration();\n\t// Get the current height of the domNode\n\tvar computedStyle = window.getComputedStyle(domNode),\n\t\tcurrMarginBottom = parseInt(computedStyle.marginBottom,10),\n\t\tcurrMarginTop = parseInt(computedStyle.marginTop,10),\n\t\tcurrPaddingBottom = parseInt(computedStyle.paddingBottom,10),\n\t\tcurrPaddingTop = parseInt(computedStyle.paddingTop,10),\n\t\tcurrHeight = domNode.offsetHeight;\n\t// Reset the margin once the transition is over\n\tsetTimeout(function() {\n\t\t$tw.utils.setStyle(domNode,[\n\t\t\t{transition: \"none\"},\n\t\t\t{marginBottom: \"\"},\n\t\t\t{marginTop: \"\"},\n\t\t\t{paddingBottom: \"\"},\n\t\t\t{paddingTop: \"\"},\n\t\t\t{height: \"auto\"},\n\t\t\t{opacity: \"\"}\n\t\t]);\n\t\tif(options.callback) {\n\t\t\toptions.callback();\n\t\t}\n\t},duration);\n\t// Set up the initial position of the element\n\t$tw.utils.setStyle(domNode,[\n\t\t{transition: \"none\"},\n\t\t{marginTop: \"0px\"},\n\t\t{marginBottom: \"0px\"},\n\t\t{paddingTop: \"0px\"},\n\t\t{paddingBottom: \"0px\"},\n\t\t{height: \"0px\"},\n\t\t{opacity: \"0\"}\n\t]);\n\t$tw.utils.forceLayout(domNode);\n\t// Transition to the final position\n\t$tw.utils.setStyle(domNode,[\n\t\t{transition: \"margin-top \" + duration + \"ms ease-in-out, \" +\n\t\t\t\t\t\"margin-bottom \" + duration + \"ms ease-in-out, \" +\n\t\t\t\t\t\"padding-top \" + duration + \"ms ease-in-out, \" +\n\t\t\t\t\t\"padding-bottom \" + duration + \"ms ease-in-out, \" +\n\t\t\t\t\t\"height \" + duration + \"ms ease-in-out, \" +\n\t\t\t\t\t\"opacity \" + duration + \"ms ease-in-out\"},\n\t\t{marginBottom: currMarginBottom + \"px\"},\n\t\t{marginTop: currMarginTop + \"px\"},\n\t\t{paddingBottom: currPaddingBottom + \"px\"},\n\t\t{paddingTop: currPaddingTop + \"px\"},\n\t\t{height: currHeight + \"px\"},\n\t\t{opacity: \"1\"}\n\t]);\n}\n\nfunction slideClosed(domNode,options) {\n\toptions = options || {};\n\tvar duration = options.duration || $tw.utils.getAnimationDuration(),\n\t\tcurrHeight = domNode.offsetHeight;\n\t// Clear the properties we've set when the animation is over\n\tsetTimeout(function() {\n\t\t$tw.utils.setStyle(domNode,[\n\t\t\t{transition: \"none\"},\n\t\t\t{marginBottom: \"\"},\n\t\t\t{marginTop: \"\"},\n\t\t\t{paddingBottom: \"\"},\n\t\t\t{paddingTop: \"\"},\n\t\t\t{height: \"auto\"},\n\t\t\t{opacity: \"\"}\n\t\t]);\n\t\tif(options.callback) {\n\t\t\toptions.callback();\n\t\t}\n\t},duration);\n\t// Set up the initial position of the element\n\t$tw.utils.setStyle(domNode,[\n\t\t{height: currHeight + \"px\"},\n\t\t{opacity: \"1\"}\n\t]);\n\t$tw.utils.forceLayout(domNode);\n\t// Transition to the final position\n\t$tw.utils.setStyle(domNode,[\n\t\t{transition: \"margin-top \" + duration + \"ms ease-in-out, \" +\n\t\t\t\t\t\"margin-bottom \" + duration + \"ms ease-in-out, \" +\n\t\t\t\t\t\"padding-top \" + duration + \"ms ease-in-out, \" +\n\t\t\t\t\t\"padding-bottom \" + duration + \"ms ease-in-out, \" +\n\t\t\t\t\t\"height \" + duration + \"ms ease-in-out, \" +\n\t\t\t\t\t\"opacity \" + duration + \"ms ease-in-out\"},\n\t\t{marginTop: \"0px\"},\n\t\t{marginBottom: \"0px\"},\n\t\t{paddingTop: \"0px\"},\n\t\t{paddingBottom: \"0px\"},\n\t\t{height: \"0px\"},\n\t\t{opacity: \"0\"}\n\t]);\n}\n\nexports.slide = {\n\topen: slideOpen,\n\tclose: slideClosed\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "animation"
},
"$:/core/modules/utils/dom/animator.js": {
"title": "$:/core/modules/utils/dom/animator.js",
"text": "/*\\\ntitle: $:/core/modules/utils/dom/animator.js\ntype: application/javascript\nmodule-type: utils\n\nOrchestrates animations and transitions\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nfunction Animator() {\n\t// Get the registered animation modules\n\tthis.animations = {};\n\t$tw.modules.applyMethods(\"animation\",this.animations);\n}\n\nAnimator.prototype.perform = function(type,domNode,options) {\n\toptions = options || {};\n\t// Find an animation that can handle this type\n\tvar chosenAnimation;\n\t$tw.utils.each(this.animations,function(animation,name) {\n\t\tif($tw.utils.hop(animation,type)) {\n\t\t\tchosenAnimation = animation[type];\n\t\t}\n\t});\n\tif(!chosenAnimation) {\n\t\tchosenAnimation = function(domNode,options) {\n\t\t\tif(options.callback) {\n\t\t\t\toptions.callback();\n\t\t\t}\n\t\t};\n\t}\n\t// Call the animation\n\tchosenAnimation(domNode,options);\n};\n\nexports.Animator = Animator;\n\n})();\n",
"type": "application/javascript",
"module-type": "utils"
},
"$:/core/modules/utils/dom/browser.js": {
"title": "$:/core/modules/utils/dom/browser.js",
"text": "/*\\\ntitle: $:/core/modules/utils/dom/browser.js\ntype: application/javascript\nmodule-type: utils\n\nBrowser feature detection\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nSet style properties of an element\n\telement: dom node\n\tstyles: ordered array of {name: value} pairs\n*/\nexports.setStyle = function(element,styles) {\n\tif(element.nodeType === 1) { // Element.ELEMENT_NODE\n\t\tfor(var t=0; t<styles.length; t++) {\n\t\t\tfor(var styleName in styles[t]) {\n\t\t\t\telement.style[$tw.utils.convertStyleNameToPropertyName(styleName)] = styles[t][styleName];\n\t\t\t}\n\t\t}\n\t}\n};\n\n/*\nConverts a standard CSS property name into the local browser-specific equivalent. For example:\n\t\"background-color\" --> \"backgroundColor\"\n\t\"transition\" --> \"webkitTransition\"\n*/\n\nvar styleNameCache = {}; // We'll cache the style name conversions\n\nexports.convertStyleNameToPropertyName = function(styleName) {\n\t// Return from the cache if we can\n\tif(styleNameCache[styleName]) {\n\t\treturn styleNameCache[styleName];\n\t}\n\t// Convert it by first removing any hyphens\n\tvar propertyName = $tw.utils.unHyphenateCss(styleName);\n\t// Then check if it needs a prefix\n\tif($tw.browser && document.body.style[propertyName] === undefined) {\n\t\tvar prefixes = [\"O\",\"MS\",\"Moz\",\"webkit\"];\n\t\tfor(var t=0; t<prefixes.length; t++) {\n\t\t\tvar prefixedName = prefixes[t] + propertyName.substr(0,1).toUpperCase() + propertyName.substr(1);\n\t\t\tif(document.body.style[prefixedName] !== undefined) {\n\t\t\t\tpropertyName = prefixedName;\n\t\t\t\tbreak;\n\t\t\t}\n\t\t}\n\t}\n\t// Put it in the cache too\n\tstyleNameCache[styleName] = propertyName;\n\treturn propertyName;\n};\n\n/*\nConverts a JS format CSS property name back into the dashed form used in CSS declarations. For example:\n\t\"backgroundColor\" --> \"background-color\"\n\t\"webkitTransform\" --> \"-webkit-transform\"\n*/\nexports.convertPropertyNameToStyleName = function(propertyName) {\n\t// Rehyphenate the name\n\tvar styleName = $tw.utils.hyphenateCss(propertyName);\n\t// If there's a webkit prefix, add a dash (other browsers have uppercase prefixes, and so get the dash automatically)\n\tif(styleName.indexOf(\"webkit\") === 0) {\n\t\tstyleName = \"-\" + styleName;\n\t} else if(styleName.indexOf(\"-m-s\") === 0) {\n\t\tstyleName = \"-ms\" + styleName.substr(4);\n\t}\n\treturn styleName;\n};\n\n/*\nRound trip a stylename to a property name and back again. For example:\n\t\"transform\" --> \"webkitTransform\" --> \"-webkit-transform\"\n*/\nexports.roundTripPropertyName = function(propertyName) {\n\treturn $tw.utils.convertPropertyNameToStyleName($tw.utils.convertStyleNameToPropertyName(propertyName));\n};\n\n/*\nConverts a standard event name into the local browser specific equivalent. For example:\n\t\"animationEnd\" --> \"webkitAnimationEnd\"\n*/\n\nvar eventNameCache = {}; // We'll cache the conversions\n\nvar eventNameMappings = {\n\t\"transitionEnd\": {\n\t\tcorrespondingCssProperty: \"transition\",\n\t\tmappings: {\n\t\t\ttransition: \"transitionend\",\n\t\t\tOTransition: \"oTransitionEnd\",\n\t\t\tMSTransition: \"msTransitionEnd\",\n\t\t\tMozTransition: \"transitionend\",\n\t\t\twebkitTransition: \"webkitTransitionEnd\"\n\t\t}\n\t},\n\t\"animationEnd\": {\n\t\tcorrespondingCssProperty: \"animation\",\n\t\tmappings: {\n\t\t\tanimation: \"animationend\",\n\t\t\tOAnimation: \"oAnimationEnd\",\n\t\t\tMSAnimation: \"msAnimationEnd\",\n\t\t\tMozAnimation: \"animationend\",\n\t\t\twebkitAnimation: \"webkitAnimationEnd\"\n\t\t}\n\t}\n};\n\nexports.convertEventName = function(eventName) {\n\tif(eventNameCache[eventName]) {\n\t\treturn eventNameCache[eventName];\n\t}\n\tvar newEventName = eventName,\n\t\tmappings = eventNameMappings[eventName];\n\tif(mappings) {\n\t\tvar convertedProperty = $tw.utils.convertStyleNameToPropertyName(mappings.correspondingCssProperty);\n\t\tif(mappings.mappings[convertedProperty]) {\n\t\t\tnewEventName = mappings.mappings[convertedProperty];\n\t\t}\n\t}\n\t// Put it in the cache too\n\teventNameCache[eventName] = newEventName;\n\treturn newEventName;\n};\n\n/*\nReturn the names of the fullscreen APIs\n*/\nexports.getFullScreenApis = function() {\n\tvar d = document,\n\t\tdb = d.body,\n\t\tresult = {\n\t\t\"_requestFullscreen\": db.webkitRequestFullscreen !== undefined ? \"webkitRequestFullscreen\" :\n\t\t\t\t\t\t\tdb.mozRequestFullScreen !== undefined ? \"mozRequestFullScreen\" :\n\t\t\t\t\t\t\tdb.msRequestFullscreen !== undefined ? \"msRequestFullscreen\" :\n\t\t\t\t\t\t\tdb.requestFullscreen !== undefined ? \"requestFullscreen\" : \"\",\n\t\t\"_exitFullscreen\": d.webkitExitFullscreen !== undefined ? \"webkitExitFullscreen\" :\n\t\t\t\t\t\t\td.mozCancelFullScreen !== undefined ? \"mozCancelFullScreen\" :\n\t\t\t\t\t\t\td.msExitFullscreen !== undefined ? \"msExitFullscreen\" :\n\t\t\t\t\t\t\td.exitFullscreen !== undefined ? \"exitFullscreen\" : \"\",\n\t\t\"_fullscreenElement\": d.webkitFullscreenElement !== undefined ? \"webkitFullscreenElement\" :\n\t\t\t\t\t\t\td.mozFullScreenElement !== undefined ? \"mozFullScreenElement\" :\n\t\t\t\t\t\t\td.msFullscreenElement !== undefined ? \"msFullscreenElement\" :\n\t\t\t\t\t\t\td.fullscreenElement !== undefined ? \"fullscreenElement\" : \"\",\n\t\t\"_fullscreenChange\": d.webkitFullscreenElement !== undefined ? \"webkitfullscreenchange\" :\n\t\t\t\t\t\t\td.mozFullScreenElement !== undefined ? \"mozfullscreenchange\" :\n\t\t\t\t\t\t\td.msFullscreenElement !== undefined ? \"MSFullscreenChange\" :\n\t\t\t\t\t\t\td.fullscreenElement !== undefined ? \"fullscreenchange\" : \"\"\n\t};\n\tif(!result._requestFullscreen || !result._exitFullscreen || !result._fullscreenElement || !result._fullscreenChange) {\n\t\treturn null;\n\t} else {\n\t\treturn result;\n\t}\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "utils"
},
"$:/core/modules/utils/dom/csscolorparser.js": {
"title": "$:/core/modules/utils/dom/csscolorparser.js",
"text": "// (c) Dean McNamee <dean@gmail.com>, 2012.\n//\n// https://github.com/deanm/css-color-parser-js\n//\n// Permission is hereby granted, free of charge, to any person obtaining a copy\n// of this software and associated documentation files (the \"Software\"), to\n// deal in the Software without restriction, including without limitation the\n// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or\n// sell copies of the Software, and to permit persons to whom the Software is\n// furnished to do so, subject to the following conditions:\n//\n// The above copyright notice and this permission notice shall be included in\n// all copies or substantial portions of the Software.\n//\n// THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\n// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING\n// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS\n// IN THE SOFTWARE.\n\n// http://www.w3.org/TR/css3-color/\nvar kCSSColorTable = {\n \"transparent\": [0,0,0,0], \"aliceblue\": [240,248,255,1],\n \"antiquewhite\": [250,235,215,1], \"aqua\": [0,255,255,1],\n \"aquamarine\": [127,255,212,1], \"azure\": [240,255,255,1],\n \"beige\": [245,245,220,1], \"bisque\": [255,228,196,1],\n \"black\": [0,0,0,1], \"blanchedalmond\": [255,235,205,1],\n \"blue\": [0,0,255,1], \"blueviolet\": [138,43,226,1],\n \"brown\": [165,42,42,1], \"burlywood\": [222,184,135,1],\n \"cadetblue\": [95,158,160,1], \"chartreuse\": [127,255,0,1],\n \"chocolate\": [210,105,30,1], \"coral\": [255,127,80,1],\n \"cornflowerblue\": [100,149,237,1], \"cornsilk\": [255,248,220,1],\n \"crimson\": [220,20,60,1], \"cyan\": [0,255,255,1],\n \"darkblue\": [0,0,139,1], \"darkcyan\": [0,139,139,1],\n \"darkgoldenrod\": [184,134,11,1], \"darkgray\": [169,169,169,1],\n \"darkgreen\": [0,100,0,1], \"darkgrey\": [169,169,169,1],\n \"darkkhaki\": [189,183,107,1], \"darkmagenta\": [139,0,139,1],\n \"darkolivegreen\": [85,107,47,1], \"darkorange\": [255,140,0,1],\n \"darkorchid\": [153,50,204,1], \"darkred\": [139,0,0,1],\n \"darksalmon\": [233,150,122,1], \"darkseagreen\": [143,188,143,1],\n \"darkslateblue\": [72,61,139,1], \"darkslategray\": [47,79,79,1],\n \"darkslategrey\": [47,79,79,1], \"darkturquoise\": [0,206,209,1],\n \"darkviolet\": [148,0,211,1], \"deeppink\": [255,20,147,1],\n \"deepskyblue\": [0,191,255,1], \"dimgray\": [105,105,105,1],\n \"dimgrey\": [105,105,105,1], \"dodgerblue\": [30,144,255,1],\n \"firebrick\": [178,34,34,1], \"floralwhite\": [255,250,240,1],\n \"forestgreen\": [34,139,34,1], \"fuchsia\": [255,0,255,1],\n \"gainsboro\": [220,220,220,1], \"ghostwhite\": [248,248,255,1],\n \"gold\": [255,215,0,1], \"goldenrod\": [218,165,32,1],\n \"gray\": [128,128,128,1], \"green\": [0,128,0,1],\n \"greenyellow\": [173,255,47,1], \"grey\": [128,128,128,1],\n \"honeydew\": [240,255,240,1], \"hotpink\": [255,105,180,1],\n \"indianred\": [205,92,92,1], \"indigo\": [75,0,130,1],\n \"ivory\": [255,255,240,1], \"khaki\": [240,230,140,1],\n \"lavender\": [230,230,250,1], \"lavenderblush\": [255,240,245,1],\n \"lawngreen\": [124,252,0,1], \"lemonchiffon\": [255,250,205,1],\n \"lightblue\": [173,216,230,1], \"lightcoral\": [240,128,128,1],\n \"lightcyan\": [224,255,255,1], \"lightgoldenrodyellow\": [250,250,210,1],\n \"lightgray\": [211,211,211,1], \"lightgreen\": [144,238,144,1],\n \"lightgrey\": [211,211,211,1], \"lightpink\": [255,182,193,1],\n \"lightsalmon\": [255,160,122,1], \"lightseagreen\": [32,178,170,1],\n \"lightskyblue\": [135,206,250,1], \"lightslategray\": [119,136,153,1],\n \"lightslategrey\": [119,136,153,1], \"lightsteelblue\": [176,196,222,1],\n \"lightyellow\": [255,255,224,1], \"lime\": [0,255,0,1],\n \"limegreen\": [50,205,50,1], \"linen\": [250,240,230,1],\n \"magenta\": [255,0,255,1], \"maroon\": [128,0,0,1],\n \"mediumaquamarine\": [102,205,170,1], \"mediumblue\": [0,0,205,1],\n \"mediumorchid\": [186,85,211,1], \"mediumpurple\": [147,112,219,1],\n \"mediumseagreen\": [60,179,113,1], \"mediumslateblue\": [123,104,238,1],\n \"mediumspringgreen\": [0,250,154,1], \"mediumturquoise\": [72,209,204,1],\n \"mediumvioletred\": [199,21,133,1], \"midnightblue\": [25,25,112,1],\n \"mintcream\": [245,255,250,1], \"mistyrose\": [255,228,225,1],\n \"moccasin\": [255,228,181,1], \"navajowhite\": [255,222,173,1],\n \"navy\": [0,0,128,1], \"oldlace\": [253,245,230,1],\n \"olive\": [128,128,0,1], \"olivedrab\": [107,142,35,1],\n \"orange\": [255,165,0,1], \"orangered\": [255,69,0,1],\n \"orchid\": [218,112,214,1], \"palegoldenrod\": [238,232,170,1],\n \"palegreen\": [152,251,152,1], \"paleturquoise\": [175,238,238,1],\n \"palevioletred\": [219,112,147,1], \"papayawhip\": [255,239,213,1],\n \"peachpuff\": [255,218,185,1], \"peru\": [205,133,63,1],\n \"pink\": [255,192,203,1], \"plum\": [221,160,221,1],\n \"powderblue\": [176,224,230,1], \"purple\": [128,0,128,1],\n \"red\": [255,0,0,1], \"rosybrown\": [188,143,143,1],\n \"royalblue\": [65,105,225,1], \"saddlebrown\": [139,69,19,1],\n \"salmon\": [250,128,114,1], \"sandybrown\": [244,164,96,1],\n \"seagreen\": [46,139,87,1], \"seashell\": [255,245,238,1],\n \"sienna\": [160,82,45,1], \"silver\": [192,192,192,1],\n \"skyblue\": [135,206,235,1], \"slateblue\": [106,90,205,1],\n \"slategray\": [112,128,144,1], \"slategrey\": [112,128,144,1],\n \"snow\": [255,250,250,1], \"springgreen\": [0,255,127,1],\n \"steelblue\": [70,130,180,1], \"tan\": [210,180,140,1],\n \"teal\": [0,128,128,1], \"thistle\": [216,191,216,1],\n \"tomato\": [255,99,71,1], \"turquoise\": [64,224,208,1],\n \"violet\": [238,130,238,1], \"wheat\": [245,222,179,1],\n \"white\": [255,255,255,1], \"whitesmoke\": [245,245,245,1],\n \"yellow\": [255,255,0,1], \"yellowgreen\": [154,205,50,1]}\n\nfunction clamp_css_byte(i) { // Clamp to integer 0 .. 255.\n i = Math.round(i); // Seems to be what Chrome does (vs truncation).\n return i < 0 ? 0 : i > 255 ? 255 : i;\n}\n\nfunction clamp_css_float(f) { // Clamp to float 0.0 .. 1.0.\n return f < 0 ? 0 : f > 1 ? 1 : f;\n}\n\nfunction parse_css_int(str) { // int or percentage.\n if (str[str.length - 1] === '%')\n return clamp_css_byte(parseFloat(str) / 100 * 255);\n return clamp_css_byte(parseInt(str));\n}\n\nfunction parse_css_float(str) { // float or percentage.\n if (str[str.length - 1] === '%')\n return clamp_css_float(parseFloat(str) / 100);\n return clamp_css_float(parseFloat(str));\n}\n\nfunction css_hue_to_rgb(m1, m2, h) {\n if (h < 0) h += 1;\n else if (h > 1) h -= 1;\n\n if (h * 6 < 1) return m1 + (m2 - m1) * h * 6;\n if (h * 2 < 1) return m2;\n if (h * 3 < 2) return m1 + (m2 - m1) * (2/3 - h) * 6;\n return m1;\n}\n\nfunction parseCSSColor(css_str) {\n // Remove all whitespace, not compliant, but should just be more accepting.\n var str = css_str.replace(/ /g, '').toLowerCase();\n\n // Color keywords (and transparent) lookup.\n if (str in kCSSColorTable) return kCSSColorTable[str].slice(); // dup.\n\n // #abc and #abc123 syntax.\n if (str[0] === '#') {\n if (str.length === 4) {\n var iv = parseInt(str.substr(1), 16); // TODO(deanm): Stricter parsing.\n if (!(iv >= 0 && iv <= 0xfff)) return null; // Covers NaN.\n return [((iv & 0xf00) >> 4) | ((iv & 0xf00) >> 8),\n (iv & 0xf0) | ((iv & 0xf0) >> 4),\n (iv & 0xf) | ((iv & 0xf) << 4),\n 1];\n } else if (str.length === 7) {\n var iv = parseInt(str.substr(1), 16); // TODO(deanm): Stricter parsing.\n if (!(iv >= 0 && iv <= 0xffffff)) return null; // Covers NaN.\n return [(iv & 0xff0000) >> 16,\n (iv & 0xff00) >> 8,\n iv & 0xff,\n 1];\n }\n\n return null;\n }\n\n var op = str.indexOf('('), ep = str.indexOf(')');\n if (op !== -1 && ep + 1 === str.length) {\n var fname = str.substr(0, op);\n var params = str.substr(op+1, ep-(op+1)).split(',');\n var alpha = 1; // To allow case fallthrough.\n switch (fname) {\n case 'rgba':\n if (params.length !== 4) return null;\n alpha = parse_css_float(params.pop());\n // Fall through.\n case 'rgb':\n if (params.length !== 3) return null;\n return [parse_css_int(params[0]),\n parse_css_int(params[1]),\n parse_css_int(params[2]),\n alpha];\n case 'hsla':\n if (params.length !== 4) return null;\n alpha = parse_css_float(params.pop());\n // Fall through.\n case 'hsl':\n if (params.length !== 3) return null;\n var h = (((parseFloat(params[0]) % 360) + 360) % 360) / 360; // 0 .. 1\n // NOTE(deanm): According to the CSS spec s/l should only be\n // percentages, but we don't bother and let float or percentage.\n var s = parse_css_float(params[1]);\n var l = parse_css_float(params[2]);\n var m2 = l <= 0.5 ? l * (s + 1) : l + s - l * s;\n var m1 = l * 2 - m2;\n return [clamp_css_byte(css_hue_to_rgb(m1, m2, h+1/3) * 255),\n clamp_css_byte(css_hue_to_rgb(m1, m2, h) * 255),\n clamp_css_byte(css_hue_to_rgb(m1, m2, h-1/3) * 255),\n alpha];\n default:\n return null;\n }\n }\n\n return null;\n}\n\ntry { exports.parseCSSColor = parseCSSColor } catch(e) { }\n",
"type": "application/javascript",
"module-type": "utils"
},
"$:/core/modules/utils/dom.js": {
"title": "$:/core/modules/utils/dom.js",
"text": "/*\\\ntitle: $:/core/modules/utils/dom.js\ntype: application/javascript\nmodule-type: utils\n\nVarious static DOM-related utility functions.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nDetermines whether element 'a' contains element 'b'\nCode thanks to John Resig, http://ejohn.org/blog/comparing-document-position/\n*/\nexports.domContains = function(a,b) {\n\treturn a.contains ?\n\t\ta !== b && a.contains(b) :\n\t\t!!(a.compareDocumentPosition(b) & 16);\n};\n\nexports.removeChildren = function(node) {\n\twhile(node.hasChildNodes()) {\n\t\tnode.removeChild(node.firstChild);\n\t}\n};\n\nexports.hasClass = function(el,className) {\n\treturn el && el.hasAttribute && el.hasAttribute(\"class\") && el.getAttribute(\"class\").split(\" \").indexOf(className) !== -1;\n};\n\nexports.addClass = function(el,className) {\n\tvar c = (el.getAttribute(\"class\") || \"\").split(\" \");\n\tif(c.indexOf(className) === -1) {\n\t\tc.push(className);\n\t\tel.setAttribute(\"class\",c.join(\" \"));\n\t}\n};\n\nexports.removeClass = function(el,className) {\n\tvar c = (el.getAttribute(\"class\") || \"\").split(\" \"),\n\t\tp = c.indexOf(className);\n\tif(p !== -1) {\n\t\tc.splice(p,1);\n\t\tel.setAttribute(\"class\",c.join(\" \"));\n\t}\n};\n\nexports.toggleClass = function(el,className,status) {\n\tif(status === undefined) {\n\t\tstatus = !exports.hasClass(el,className);\n\t}\n\tif(status) {\n\t\texports.addClass(el,className);\n\t} else {\n\t\texports.removeClass(el,className);\n\t}\n};\n\n/*\nGet the first parent element that has scrollbars or use the body as fallback.\n*/\nexports.getScrollContainer = function(el) {\n\tvar doc = el.ownerDocument;\n\twhile(el.parentNode) {\t\n\t\tel = el.parentNode;\n\t\tif(el.scrollTop) {\n\t\t\treturn el;\n\t\t}\n\t}\n\treturn doc.body;\n};\n\n/*\nGet the scroll position of the viewport\nReturns:\n\t{\n\t\tx: horizontal scroll position in pixels,\n\t\ty: vertical scroll position in pixels\n\t}\n*/\nexports.getScrollPosition = function(srcWindow) {\n\tvar scrollWindow = srcWindow || window;\n\tif(\"scrollX\" in scrollWindow) {\n\t\treturn {x: scrollWindow.scrollX, y: scrollWindow.scrollY};\n\t} else {\n\t\treturn {x: scrollWindow.document.documentElement.scrollLeft, y: scrollWindow.document.documentElement.scrollTop};\n\t}\n};\n\n/*\nAdjust the height of a textarea to fit its content, preserving scroll position, and return the height\n*/\nexports.resizeTextAreaToFit = function(domNode,minHeight) {\n\t// Get the scroll container and register the current scroll position\n\tvar container = $tw.utils.getScrollContainer(domNode),\n\t\tscrollTop = container.scrollTop;\n // Measure the specified minimum height\n\tdomNode.style.height = minHeight;\n\tvar measuredHeight = domNode.offsetHeight || parseInt(minHeight,10);\n\t// Set its height to auto so that it snaps to the correct height\n\tdomNode.style.height = \"auto\";\n\t// Calculate the revised height\n\tvar newHeight = Math.max(domNode.scrollHeight + domNode.offsetHeight - domNode.clientHeight,measuredHeight);\n\t// Only try to change the height if it has changed\n\tif(newHeight !== domNode.offsetHeight) {\n\t\tdomNode.style.height = newHeight + \"px\";\n\t\t// Make sure that the dimensions of the textarea are recalculated\n\t\t$tw.utils.forceLayout(domNode);\n\t\t// Set the container to the position we registered at the beginning\n\t\tcontainer.scrollTop = scrollTop;\n\t}\n\treturn newHeight;\n};\n\n/*\nGets the bounding rectangle of an element in absolute page coordinates\n*/\nexports.getBoundingPageRect = function(element) {\n\tvar scrollPos = $tw.utils.getScrollPosition(element.ownerDocument.defaultView),\n\t\tclientRect = element.getBoundingClientRect();\n\treturn {\n\t\tleft: clientRect.left + scrollPos.x,\n\t\twidth: clientRect.width,\n\t\tright: clientRect.right + scrollPos.x,\n\t\ttop: clientRect.top + scrollPos.y,\n\t\theight: clientRect.height,\n\t\tbottom: clientRect.bottom + scrollPos.y\n\t};\n};\n\n/*\nSaves a named password in the browser\n*/\nexports.savePassword = function(name,password) {\n\tvar done = false;\n\ttry {\n\t\twindow.localStorage.setItem(\"tw5-password-\" + name,password);\n\t\tdone = true;\n\t} catch(e) {\n\t}\n\tif(!done) {\n\t\t$tw.savedPasswords = $tw.savedPasswords || Object.create(null);\n\t\t$tw.savedPasswords[name] = password;\n\t}\n};\n\n/*\nRetrieve a named password from the browser\n*/\nexports.getPassword = function(name) {\n\tvar value;\n\ttry {\n\t\tvalue = window.localStorage.getItem(\"tw5-password-\" + name);\n\t} catch(e) {\n\t}\n\tif(value !== undefined) {\n\t\treturn value;\n\t} else {\n\t\treturn ($tw.savedPasswords || Object.create(null))[name] || \"\";\n\t}\n};\n\n/*\nForce layout of a dom node and its descendents\n*/\nexports.forceLayout = function(element) {\n\tvar dummy = element.offsetWidth;\n};\n\n/*\nPulse an element for debugging purposes\n*/\nexports.pulseElement = function(element) {\n\t// Event handler to remove the class at the end\n\telement.addEventListener($tw.browser.animationEnd,function handler(event) {\n\t\telement.removeEventListener($tw.browser.animationEnd,handler,false);\n\t\t$tw.utils.removeClass(element,\"pulse\");\n\t},false);\n\t// Apply the pulse class\n\t$tw.utils.removeClass(element,\"pulse\");\n\t$tw.utils.forceLayout(element);\n\t$tw.utils.addClass(element,\"pulse\");\n};\n\n/*\nAttach specified event handlers to a DOM node\ndomNode: where to attach the event handlers\nevents: array of event handlers to be added (see below)\nEach entry in the events array is an object with these properties:\nhandlerFunction: optional event handler function\nhandlerObject: optional event handler object\nhandlerMethod: optionally specifies object handler method name (defaults to `handleEvent`)\n*/\nexports.addEventListeners = function(domNode,events) {\n\t$tw.utils.each(events,function(eventInfo) {\n\t\tvar handler;\n\t\tif(eventInfo.handlerFunction) {\n\t\t\thandler = eventInfo.handlerFunction;\n\t\t} else if(eventInfo.handlerObject) {\n\t\t\tif(eventInfo.handlerMethod) {\n\t\t\t\thandler = function(event) {\n\t\t\t\t\teventInfo.handlerObject[eventInfo.handlerMethod].call(eventInfo.handlerObject,event);\n\t\t\t\t};\t\n\t\t\t} else {\n\t\t\t\thandler = eventInfo.handlerObject;\n\t\t\t}\n\t\t}\n\t\tdomNode.addEventListener(eventInfo.name,handler,false);\n\t});\n};\n\n/*\nGet the computed styles applied to an element as an array of strings of individual CSS properties\n*/\nexports.getComputedStyles = function(domNode) {\n\tvar textAreaStyles = window.getComputedStyle(domNode,null),\n\t\tstyleDefs = [],\n\t\tname;\n\tfor(var t=0; t<textAreaStyles.length; t++) {\n\t\tname = textAreaStyles[t];\n\t\tstyleDefs.push(name + \": \" + textAreaStyles.getPropertyValue(name) + \";\");\n\t}\n\treturn styleDefs;\n};\n\n/*\nApply a set of styles passed as an array of strings of individual CSS properties\n*/\nexports.setStyles = function(domNode,styleDefs) {\n\tdomNode.style.cssText = styleDefs.join(\"\");\n};\n\n/*\nCopy the computed styles from a source element to a destination element\n*/\nexports.copyStyles = function(srcDomNode,dstDomNode) {\n\t$tw.utils.setStyles(dstDomNode,$tw.utils.getComputedStyles(srcDomNode));\n};\n\n/*\nCopy plain text to the clipboard on browsers that support it\n*/\nexports.copyToClipboard = function(text,options) {\n\toptions = options || {};\n\tvar textArea = document.createElement(\"textarea\");\n\ttextArea.style.position = \"fixed\";\n\ttextArea.style.top = 0;\n\ttextArea.style.left = 0;\n\ttextArea.style.fontSize = \"12pt\";\n\ttextArea.style.width = \"2em\";\n\ttextArea.style.height = \"2em\";\n\ttextArea.style.padding = 0;\n\ttextArea.style.border = \"none\";\n\ttextArea.style.outline = \"none\";\n\ttextArea.style.boxShadow = \"none\";\n\ttextArea.style.background = \"transparent\";\n\ttextArea.value = text;\n\tdocument.body.appendChild(textArea);\n\ttextArea.select();\n\ttextArea.setSelectionRange(0,text.length);\n\tvar succeeded = false;\n\ttry {\n\t\tsucceeded = document.execCommand(\"copy\");\n\t} catch (err) {\n\t}\n\tif(!options.doNotNotify) {\n\t\t$tw.notifier.display(succeeded ? \"$:/language/Notifications/CopiedToClipboard/Succeeded\" : \"$:/language/Notifications/CopiedToClipboard/Failed\");\n\t}\n\tdocument.body.removeChild(textArea);\n};\n\nexports.getLocationPath = function() {\n\treturn window.location.toString().split(\"#\")[0];\n};\n\n\n})();\n",
"type": "application/javascript",
"module-type": "utils"
},
"$:/core/modules/utils/dom/dragndrop.js": {
"title": "$:/core/modules/utils/dom/dragndrop.js",
"text": "/*\\\ntitle: $:/core/modules/utils/dom/dragndrop.js\ntype: application/javascript\nmodule-type: utils\n\nBrowser data transfer utilities, used with the clipboard and drag and drop\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nOptions:\n\ndomNode: dom node to make draggable\ndragImageType: \"pill\" or \"dom\"\ndragTiddlerFn: optional function to retrieve the title of tiddler to drag\ndragFilterFn: optional function to retreive the filter defining a list of tiddlers to drag\nwidget: widget to use as the contect for the filter\n*/\nexports.makeDraggable = function(options) {\n\tvar dragImageType = options.dragImageType || \"dom\",\n\t\tdragImage,\n\t\tdomNode = options.domNode;\n\t// Make the dom node draggable (not necessary for anchor tags)\n\tif((domNode.tagName || \"\").toLowerCase() !== \"a\") {\n\t\tdomNode.setAttribute(\"draggable\",\"true\");\t\t\n\t}\n\t// Add event handlers\n\t$tw.utils.addEventListeners(domNode,[\n\t\t{name: \"dragstart\", handlerFunction: function(event) {\n\t\t\tif(event.dataTransfer === undefined) {\n\t\t\t\treturn false;\n\t\t\t}\n\t\t\t// Collect the tiddlers being dragged\n\t\t\tvar dragTiddler = options.dragTiddlerFn && options.dragTiddlerFn(),\n\t\t\t\tdragFilter = options.dragFilterFn && options.dragFilterFn(),\n\t\t\t\ttitles = dragTiddler ? [dragTiddler] : [],\n\t\t\t \tstartActions = options.startActions;\n\t\t\tif(dragFilter) {\n\t\t\t\ttitles.push.apply(titles,options.widget.wiki.filterTiddlers(dragFilter,options.widget));\n\t\t\t}\n\t\t\tvar titleString = $tw.utils.stringifyList(titles);\n\t\t\t// Check that we've something to drag\n\t\t\tif(titles.length > 0 && event.target === domNode) {\n\t\t\t\t// Mark the drag in progress\n\t\t\t\t$tw.dragInProgress = domNode;\n\t\t\t\t// Set the dragging class on the element being dragged\n\t\t\t\t$tw.utils.addClass(event.target,\"tc-dragging\");\n\t\t\t\t// Invoke drag-start actions if given\n\t\t\t\tif(startActions !== undefined) {\n\t\t\t\t\toptions.widget.invokeActionString(startActions,options.widget,event,{actionTiddler: titleString});\n\t\t\t\t}\n\t\t\t\t// Create the drag image elements\n\t\t\t\tdragImage = options.widget.document.createElement(\"div\");\n\t\t\t\tdragImage.className = \"tc-tiddler-dragger\";\n\t\t\t\tvar inner = options.widget.document.createElement(\"div\");\n\t\t\t\tinner.className = \"tc-tiddler-dragger-inner\";\n\t\t\t\tinner.appendChild(options.widget.document.createTextNode(\n\t\t\t\t\ttitles.length === 1 ? \n\t\t\t\t\t\ttitles[0] :\n\t\t\t\t\t\ttitles.length + \" tiddlers\"\n\t\t\t\t));\n\t\t\t\tdragImage.appendChild(inner);\n\t\t\t\toptions.widget.document.body.appendChild(dragImage);\n\t\t\t\t// Set the data transfer properties\n\t\t\t\tvar dataTransfer = event.dataTransfer;\n\t\t\t\t// Set up the image\n\t\t\t\tdataTransfer.effectAllowed = \"all\";\n\t\t\t\tif(dataTransfer.setDragImage) {\n\t\t\t\t\tif(dragImageType === \"pill\") {\n\t\t\t\t\t\tdataTransfer.setDragImage(dragImage.firstChild,-16,-16);\n\t\t\t\t\t} else {\n\t\t\t\t\t\tvar r = domNode.getBoundingClientRect();\n\t\t\t\t\t\tdataTransfer.setDragImage(domNode,event.clientX-r.left,event.clientY-r.top);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\t// Set up the data transfer\n\t\t\t\tif(dataTransfer.clearData) {\n\t\t\t\t\tdataTransfer.clearData();\t\t\t\t\t\n\t\t\t\t}\n\t\t\t\tvar jsonData = [];\n\t\t\t\tif(titles.length > 1) {\n\t\t\t\t\ttitles.forEach(function(title) {\n\t\t\t\t\t\tjsonData.push(options.widget.wiki.getTiddlerAsJson(title));\n\t\t\t\t\t});\n\t\t\t\t\tjsonData = \"[\" + jsonData.join(\",\") + \"]\";\n\t\t\t\t} else {\n\t\t\t\t\tjsonData = options.widget.wiki.getTiddlerAsJson(titles[0]);\n\t\t\t\t}\n\t\t\t\t// IE doesn't like these content types\n\t\t\t\tif(!$tw.browser.isIE) {\n\t\t\t\t\tdataTransfer.setData(\"text/vnd.tiddler\",jsonData);\n\t\t\t\t\tdataTransfer.setData(\"text/plain\",titleString);\n\t\t\t\t\tdataTransfer.setData(\"text/x-moz-url\",\"data:text/vnd.tiddler,\" + encodeURIComponent(jsonData));\n\t\t\t\t}\n\t\t\t\tdataTransfer.setData(\"URL\",\"data:text/vnd.tiddler,\" + encodeURIComponent(jsonData));\n\t\t\t\tdataTransfer.setData(\"Text\",titleString);\n\t\t\t\tevent.stopPropagation();\n\t\t\t}\n\t\t\treturn false;\n\t\t}},\n\t\t{name: \"dragend\", handlerFunction: function(event) {\n\t\t\tif(event.target === domNode) {\n\t\t\t\t// Collect the tiddlers being dragged\n\t\t\t\tvar dragTiddler = options.dragTiddlerFn && options.dragTiddlerFn(),\n\t\t\t\t\tdragFilter = options.dragFilterFn && options.dragFilterFn(),\n\t\t\t\t\ttitles = dragTiddler ? [dragTiddler] : [],\n\t\t\t \t\tendActions = options.endActions;\n\t\t\t\tif(dragFilter) {\n\t\t\t\t\ttitles.push.apply(titles,options.widget.wiki.filterTiddlers(dragFilter,options.widget));\n\t\t\t\t}\n\t\t\t\tvar titleString = $tw.utils.stringifyList(titles);\n\t\t\t\t$tw.dragInProgress = null;\n\t\t\t\t// Invoke drag-end actions if given\n\t\t\t\tif(endActions !== undefined) {\n\t\t\t\t\toptions.widget.invokeActionString(endActions,options.widget,event,{actionTiddler: titleString});\n\t\t\t\t}\n\t\t\t\t// Remove the dragging class on the element being dragged\n\t\t\t\t$tw.utils.removeClass(event.target,\"tc-dragging\");\n\t\t\t\t// Delete the drag image element\n\t\t\t\tif(dragImage) {\n\t\t\t\t\tdragImage.parentNode.removeChild(dragImage);\n\t\t\t\t\tdragImage = null;\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn false;\n\t\t}}\n\t]);\n};\n\nexports.importDataTransfer = function(dataTransfer,fallbackTitle,callback) {\n\t// Try each provided data type in turn\n\tif($tw.log.IMPORT) {\n\t\tconsole.log(\"Available data types:\");\n\t\tfor(var type=0; type<dataTransfer.types.length; type++) {\n\t\t\tconsole.log(\"type\",dataTransfer.types[type],dataTransfer.getData(dataTransfer.types[type]))\n\t\t}\n\t}\n\tfor(var t=0; t<importDataTypes.length; t++) {\n\t\tif(!$tw.browser.isIE || importDataTypes[t].IECompatible) {\n\t\t\t// Get the data\n\t\t\tvar dataType = importDataTypes[t];\n\t\t\t\tvar data = dataTransfer.getData(dataType.type);\n\t\t\t// Import the tiddlers in the data\n\t\t\tif(data !== \"\" && data !== null) {\n\t\t\t\tif($tw.log.IMPORT) {\n\t\t\t\t\tconsole.log(\"Importing data type '\" + dataType.type + \"', data: '\" + data + \"'\")\n\t\t\t\t}\n\t\t\t\tvar tiddlerFields = dataType.toTiddlerFieldsArray(data,fallbackTitle);\n\t\t\t\tcallback(tiddlerFields);\n\t\t\t\treturn;\n\t\t\t}\n\t\t}\n\t}\n};\n\nvar importDataTypes = [\n\t{type: \"text/vnd.tiddler\", IECompatible: false, toTiddlerFieldsArray: function(data,fallbackTitle) {\n\t\treturn parseJSONTiddlers(data,fallbackTitle);\n\t}},\n\t{type: \"URL\", IECompatible: true, toTiddlerFieldsArray: function(data,fallbackTitle) {\n\t\t// Check for tiddler data URI\n\t\tvar match = decodeURIComponent(data).match(/^data\\:text\\/vnd\\.tiddler,(.*)/i);\n\t\tif(match) {\n\t\t\treturn parseJSONTiddlers(match[1],fallbackTitle);\n\t\t} else {\n\t\t\treturn [{title: fallbackTitle, text: data}]; // As URL string\n\t\t}\n\t}},\n\t{type: \"text/x-moz-url\", IECompatible: false, toTiddlerFieldsArray: function(data,fallbackTitle) {\n\t\t// Check for tiddler data URI\n\t\tvar match = decodeURIComponent(data).match(/^data\\:text\\/vnd\\.tiddler,(.*)/i);\n\t\tif(match) {\n\t\t\treturn parseJSONTiddlers(match[1],fallbackTitle);\n\t\t} else {\n\t\t\treturn [{title: fallbackTitle, text: data}]; // As URL string\n\t\t}\n\t}},\n\t{type: \"text/html\", IECompatible: false, toTiddlerFieldsArray: function(data,fallbackTitle) {\n\t\treturn [{title: fallbackTitle, text: data}];\n\t}},\n\t{type: \"text/plain\", IECompatible: false, toTiddlerFieldsArray: function(data,fallbackTitle) {\n\t\treturn [{title: fallbackTitle, text: data}];\n\t}},\n\t{type: \"Text\", IECompatible: true, toTiddlerFieldsArray: function(data,fallbackTitle) {\n\t\treturn [{title: fallbackTitle, text: data}];\n\t}},\n\t{type: \"text/uri-list\", IECompatible: false, toTiddlerFieldsArray: function(data,fallbackTitle) {\n\t\treturn [{title: fallbackTitle, text: data}];\n\t}}\n];\n\nfunction parseJSONTiddlers(json,fallbackTitle) {\n\tvar data = JSON.parse(json);\n\tif(!$tw.utils.isArray(data)) {\n\t\tdata = [data];\n\t}\n\tdata.forEach(function(fields) {\n\t\tfields.title = fields.title || fallbackTitle;\n\t});\n\treturn data;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "utils"
},
"$:/core/modules/utils/dom/http.js": {
"title": "$:/core/modules/utils/dom/http.js",
"text": "/*\\\ntitle: $:/core/modules/utils/dom/http.js\ntype: application/javascript\nmodule-type: utils\n\nBrowser HTTP support\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nA quick and dirty HTTP function; to be refactored later. Options are:\n\turl: URL to retrieve\n\theaders: hashmap of headers to send\n\ttype: GET, PUT, POST etc\n\tcallback: function invoked with (err,data,xhr)\n\treturnProp: string name of the property to return as first argument of callback\n*/\nexports.httpRequest = function(options) {\n\tvar type = options.type || \"GET\",\n\t\turl = options.url,\n\t\theaders = options.headers || {accept: \"application/json\"},\n\t\thasHeader = function(targetHeader) {\n\t\t\ttargetHeader = targetHeader.toLowerCase();\n\t\t\tvar result = false;\n\t\t\t$tw.utils.each(headers,function(header,headerTitle,object) {\n\t\t\t\tif(headerTitle.toLowerCase() === targetHeader) {\n\t\t\t\t\tresult = true;\n\t\t\t\t}\n\t\t\t});\n\t\t\treturn result;\n\t\t},\n\t\treturnProp = options.returnProp || \"responseText\",\n\t\trequest = new XMLHttpRequest(),\n\t\tdata = \"\",\n\t\tf,results;\n\t// Massage the data hashmap into a string\n\tif(options.data) {\n\t\tif(typeof options.data === \"string\") { // Already a string\n\t\t\tdata = options.data;\n\t\t} else { // A hashmap of strings\n\t\t\tresults = [];\n\t\t\t$tw.utils.each(options.data,function(dataItem,dataItemTitle) {\n\t\t\t\tresults.push(dataItemTitle + \"=\" + encodeURIComponent(dataItem));\n\t\t\t});\n\t\t\tif(type === \"GET\" || type === \"HEAD\") {\n\t\t\t\turl += \"?\" + results.join(\"&\");\n\t\t\t} else {\n\t\t\t\tdata = results.join(\"&\");\n\t\t\t}\n\t\t}\n\t}\n\t// Set up the state change handler\n\trequest.onreadystatechange = function() {\n\t\tif(this.readyState === 4) {\n\t\t\tif(this.status === 200 || this.status === 201 || this.status === 204) {\n\t\t\t\t// Success!\n\t\t\t\toptions.callback(null,this[returnProp],this);\n\t\t\t\treturn;\n\t\t\t}\n\t\t// Something went wrong\n\t\toptions.callback($tw.language.getString(\"Error/XMLHttpRequest\") + \": \" + this.status,null,this);\n\t\t}\n\t};\n\t// Make the request\n\trequest.open(type,url,true);\n\tif(headers) {\n\t\t$tw.utils.each(headers,function(header,headerTitle,object) {\n\t\t\trequest.setRequestHeader(headerTitle,header);\n\t\t});\n\t}\n\tif(data && !hasHeader(\"Content-Type\")) {\n\t\trequest.setRequestHeader(\"Content-Type\",\"application/x-www-form-urlencoded; charset=UTF-8\");\n\t}\n\tif(!hasHeader(\"X-Requested-With\")) {\n\t\trequest.setRequestHeader(\"X-Requested-With\",\"TiddlyWiki\");\n\t}\n\ttry {\n\t\trequest.send(data);\n\t} catch(e) {\n\t\toptions.callback(e,null,this);\n\t}\n\treturn request;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "utils"
},
"$:/core/modules/utils/dom/keyboard.js": {
"title": "$:/core/modules/utils/dom/keyboard.js",
"text": "/*\\\ntitle: $:/core/modules/utils/dom/keyboard.js\ntype: application/javascript\nmodule-type: utils\n\nKeyboard utilities; now deprecated. Instead, use $tw.keyboardManager\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n[\"parseKeyDescriptor\",\"checkKeyDescriptor\"].forEach(function(method) {\n\texports[method] = function() {\n\t\tif($tw.keyboardManager) {\n\t\t\treturn $tw.keyboardManager[method].apply($tw.keyboardManager,Array.prototype.slice.call(arguments,0));\n\t\t} else {\n\t\t\treturn null\n\t\t}\n\t};\n});\n\n})();\n",
"type": "application/javascript",
"module-type": "utils"
},
"$:/core/modules/utils/dom/modal.js": {
"title": "$:/core/modules/utils/dom/modal.js",
"text": "/*\\\ntitle: $:/core/modules/utils/dom/modal.js\ntype: application/javascript\nmodule-type: utils\n\nModal message mechanism\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar widget = require(\"$:/core/modules/widgets/widget.js\");\nvar navigator = require(\"$:/core/modules/widgets/navigator.js\");\n\nvar Modal = function(wiki) {\n\tthis.wiki = wiki;\n\tthis.modalCount = 0;\n};\n\n/*\nDisplay a modal dialogue\n\ttitle: Title of tiddler to display\n\toptions: see below\nOptions include:\n\tdownloadLink: Text of a big download link to include\n*/\nModal.prototype.display = function(title,options) {\n\toptions = options || {};\n\tthis.srcDocument = options.variables && (options.variables.rootwindow === \"true\" ||\n\t\t\t\toptions.variables.rootwindow === \"yes\") ? document :\n\t\t\t\t(options.event.event && options.event.event.target ? options.event.event.target.ownerDocument : document);\n\tthis.srcWindow = this.srcDocument.defaultView;\n\tvar self = this,\n\t\trefreshHandler,\n\t\tduration = $tw.utils.getAnimationDuration(),\n\t\ttiddler = this.wiki.getTiddler(title);\n\t// Don't do anything if the tiddler doesn't exist\n\tif(!tiddler) {\n\t\treturn;\n\t}\n\t// Create the variables\n\tvar variables = $tw.utils.extend({\n\t\t\tcurrentTiddler: title,\n\t\t\t\"tv-story-list\": (options.event && options.event.widget ? options.event.widget.getVariable(\"tv-story-list\") : \"\"),\n\t\t\t\"tv-history-list\": (options.event && options.event.widget ? options.event.widget.getVariable(\"tv-history-list\") : \"\")\n\t\t},options.variables);\n\n\t// Create the wrapper divs\n\tvar wrapper = this.srcDocument.createElement(\"div\"),\n\t\tmodalBackdrop = this.srcDocument.createElement(\"div\"),\n\t\tmodalWrapper = this.srcDocument.createElement(\"div\"),\n\t\tmodalHeader = this.srcDocument.createElement(\"div\"),\n\t\theaderTitle = this.srcDocument.createElement(\"h3\"),\n\t\tmodalBody = this.srcDocument.createElement(\"div\"),\n\t\tmodalLink = this.srcDocument.createElement(\"a\"),\n\t\tmodalFooter = this.srcDocument.createElement(\"div\"),\n\t\tmodalFooterHelp = this.srcDocument.createElement(\"span\"),\n\t\tmodalFooterButtons = this.srcDocument.createElement(\"span\");\n\t// Up the modal count and adjust the body class\n\tthis.modalCount++;\n\tthis.adjustPageClass();\n\t// Add classes\n\t$tw.utils.addClass(wrapper,\"tc-modal-wrapper\");\n\tif(tiddler.fields && tiddler.fields.class) {\n\t\t$tw.utils.addClass(wrapper,tiddler.fields.class);\n\t}\n\t$tw.utils.addClass(modalBackdrop,\"tc-modal-backdrop\");\n\t$tw.utils.addClass(modalWrapper,\"tc-modal\");\n\t$tw.utils.addClass(modalHeader,\"tc-modal-header\");\n\t$tw.utils.addClass(modalBody,\"tc-modal-body\");\n\t$tw.utils.addClass(modalFooter,\"tc-modal-footer\");\n\t// Join them together\n\twrapper.appendChild(modalBackdrop);\n\twrapper.appendChild(modalWrapper);\n\tmodalHeader.appendChild(headerTitle);\n\tmodalWrapper.appendChild(modalHeader);\n\tmodalWrapper.appendChild(modalBody);\n\tmodalFooter.appendChild(modalFooterHelp);\n\tmodalFooter.appendChild(modalFooterButtons);\n\tmodalWrapper.appendChild(modalFooter);\n\tvar navigatorTree = {\n\t\t\"type\": \"navigator\",\n\t\t\"attributes\": {\n\t\t\t\"story\": {\n\t\t\t\t\"name\": \"story\",\n\t\t\t\t\"type\": \"string\",\n\t\t\t\t\"value\": variables[\"tv-story-list\"]\n\t\t\t},\n\t\t\t\"history\": {\n\t\t\t\t\"name\": \"history\",\n\t\t\t\t\"type\": \"string\",\n\t\t\t\t\"value\": variables[\"tv-history-list\"]\n\t\t\t}\n\t\t},\n\t\t\"tag\": \"$navigator\",\n\t\t\"isBlock\": true,\n\t\t\"children\": []\n\t};\n\tvar navigatorWidgetNode = new navigator.navigator(navigatorTree, {\n\t\twiki: this.wiki,\n\t\tdocument : this.srcDocument,\n\t\tparentWidget: $tw.rootWidget\n\t});\n\tnavigatorWidgetNode.render(modalBody,null);\n\t\n\t// Render the title of the message\n\tvar headerWidgetNode = this.wiki.makeTranscludeWidget(title,{\n\t\tfield: \"subtitle\",\n\t\tmode: \"inline\",\n\t\tchildren: [{\n\t\t\ttype: \"text\",\n\t\t\tattributes: {\n\t\t\t\ttext: {\n\t\t\t\t\ttype: \"string\",\n\t\t\t\t\tvalue: title\n\t\t}}}],\n\t\tparentWidget: navigatorWidgetNode,\n\t\tdocument: this.srcDocument,\n\t\tvariables: variables,\n\t\timportPageMacros: true\n\t});\n\theaderWidgetNode.render(headerTitle,null);\n\t// Render the body of the message\n\tvar bodyWidgetNode = this.wiki.makeTranscludeWidget(title,{\n\t\tparentWidget: navigatorWidgetNode,\n\t\tdocument: this.srcDocument,\n\t\tvariables: variables,\n\t\timportPageMacros: true\n\t});\n\n\tbodyWidgetNode.render(modalBody,null);\n\t// Setup the link if present\n\tif(options.downloadLink) {\n\t\tmodalLink.href = options.downloadLink;\n\t\tmodalLink.appendChild(this.srcDocument.createTextNode(\"Right-click to save changes\"));\n\t\tmodalBody.appendChild(modalLink);\n\t}\n\t// Render the footer of the message\n\tif(tiddler.fields && tiddler.fields.help) {\n\t\tvar link = this.srcDocument.createElement(\"a\");\n\t\tlink.setAttribute(\"href\",tiddler.fields.help);\n\t\tlink.setAttribute(\"target\",\"_blank\");\n\t\tlink.setAttribute(\"rel\",\"noopener noreferrer\");\n\t\tlink.appendChild(this.srcDocument.createTextNode(\"Help\"));\n\t\tmodalFooterHelp.appendChild(link);\n\t\tmodalFooterHelp.style.float = \"left\";\n\t}\n\tvar footerWidgetNode = this.wiki.makeTranscludeWidget(title,{\n\t\tfield: \"footer\",\n\t\tmode: \"inline\",\n\t\tchildren: [{\n\t\t\ttype: \"button\",\n\t\t\tattributes: {\n\t\t\t\tmessage: {\n\t\t\t\t\ttype: \"string\",\n\t\t\t\t\tvalue: \"tm-close-tiddler\"\n\t\t\t\t}\n\t\t\t},\n\t\t\tchildren: [{\n\t\t\t\ttype: \"text\",\n\t\t\t\tattributes: {\n\t\t\t\t\ttext: {\n\t\t\t\t\t\ttype: \"string\",\n\t\t\t\t\t\tvalue: $tw.language.getString(\"Buttons/Close/Caption\")\n\t\t\t}}}\n\t\t]}],\n\t\tparentWidget: navigatorWidgetNode,\n\t\tdocument: this.srcDocument,\n\t\tvariables: variables,\n\t\timportPageMacros: true\n\t});\n\tfooterWidgetNode.render(modalFooterButtons,null);\n\t// Set up the refresh handler\n\trefreshHandler = function(changes) {\n\t\theaderWidgetNode.refresh(changes,modalHeader,null);\n\t\tbodyWidgetNode.refresh(changes,modalBody,null);\n\t\tfooterWidgetNode.refresh(changes,modalFooterButtons,null);\n\t};\n\tthis.wiki.addEventListener(\"change\",refreshHandler);\n\t// Add the close event handler\n\tvar closeHandler = function(event) {\n\t\t// Remove our refresh handler\n\t\tself.wiki.removeEventListener(\"change\",refreshHandler);\n\t\t// Decrease the modal count and adjust the body class\n\t\tself.modalCount--;\n\t\tself.adjustPageClass();\n\t\t// Force layout and animate the modal message away\n\t\t$tw.utils.forceLayout(modalBackdrop);\n\t\t$tw.utils.forceLayout(modalWrapper);\n\t\t$tw.utils.setStyle(modalBackdrop,[\n\t\t\t{opacity: \"0\"}\n\t\t]);\n\t\t$tw.utils.setStyle(modalWrapper,[\n\t\t\t{transform: \"translateY(\" + self.srcWindow.innerHeight + \"px)\"}\n\t\t]);\n\t\t// Set up an event for the transition end\n\t\tself.srcWindow.setTimeout(function() {\n\t\t\tif(wrapper.parentNode) {\n\t\t\t\t// Remove the modal message from the DOM\n\t\t\t\tself.srcDocument.body.removeChild(wrapper);\n\t\t\t}\n\t\t},duration);\n\t\t// Don't let anyone else handle the tm-close-tiddler message\n\t\treturn false;\n\t};\n\theaderWidgetNode.addEventListener(\"tm-close-tiddler\",closeHandler,false);\n\tbodyWidgetNode.addEventListener(\"tm-close-tiddler\",closeHandler,false);\n\tfooterWidgetNode.addEventListener(\"tm-close-tiddler\",closeHandler,false);\n\t// Set the initial styles for the message\n\t$tw.utils.setStyle(modalBackdrop,[\n\t\t{opacity: \"0\"}\n\t]);\n\t$tw.utils.setStyle(modalWrapper,[\n\t\t{transformOrigin: \"0% 0%\"},\n\t\t{transform: \"translateY(\" + (-this.srcWindow.innerHeight) + \"px)\"}\n\t]);\n\t// Put the message into the document\n\tthis.srcDocument.body.appendChild(wrapper);\n\t// Set up animation for the styles\n\t$tw.utils.setStyle(modalBackdrop,[\n\t\t{transition: \"opacity \" + duration + \"ms ease-out\"}\n\t]);\n\t$tw.utils.setStyle(modalWrapper,[\n\t\t{transition: $tw.utils.roundTripPropertyName(\"transform\") + \" \" + duration + \"ms ease-in-out\"}\n\t]);\n\t// Force layout\n\t$tw.utils.forceLayout(modalBackdrop);\n\t$tw.utils.forceLayout(modalWrapper);\n\t// Set final animated styles\n\t$tw.utils.setStyle(modalBackdrop,[\n\t\t{opacity: \"0.7\"}\n\t]);\n\t$tw.utils.setStyle(modalWrapper,[\n\t\t{transform: \"translateY(0px)\"}\n\t]);\n};\n\nModal.prototype.adjustPageClass = function() {\n\tvar windowContainer = $tw.pageContainer ? ($tw.pageContainer === this.srcDocument.body.firstChild ? $tw.pageContainer : this.srcDocument.body.firstChild) : null;\n\tif(windowContainer) {\n\t\t$tw.utils.toggleClass(windowContainer,\"tc-modal-displayed\",this.modalCount > 0);\n\t}\n};\n\nexports.Modal = Modal;\n\n})();\n",
"type": "application/javascript",
"module-type": "utils"
},
"$:/core/modules/utils/dom/notifier.js": {
"title": "$:/core/modules/utils/dom/notifier.js",
"text": "/*\\\ntitle: $:/core/modules/utils/dom/notifier.js\ntype: application/javascript\nmodule-type: utils\n\nNotifier mechanism\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar widget = require(\"$:/core/modules/widgets/widget.js\");\n\nvar Notifier = function(wiki) {\n\tthis.wiki = wiki;\n};\n\n/*\nDisplay a notification\n\ttitle: Title of tiddler containing the notification text\n\toptions: see below\nOptions include:\n*/\nNotifier.prototype.display = function(title,options) {\n\toptions = options || {};\n\t// Create the wrapper divs\n\tvar self = this,\n\t\tnotification = document.createElement(\"div\"),\n\t\ttiddler = this.wiki.getTiddler(title),\n\t\tduration = $tw.utils.getAnimationDuration(),\n\t\trefreshHandler;\n\t// Don't do anything if the tiddler doesn't exist\n\tif(!tiddler) {\n\t\treturn;\n\t}\n\t// Add classes\n\t$tw.utils.addClass(notification,\"tc-notification\");\n\t// Create the variables\n\tvar variables = $tw.utils.extend({currentTiddler: title},options.variables);\n\t// Render the body of the notification\n\tvar widgetNode = this.wiki.makeTranscludeWidget(title,{\n\t\tparentWidget: $tw.rootWidget,\n\t\tdocument: document,\n\t\tvariables: variables,\n\t\timportPageMacros: true});\n\twidgetNode.render(notification,null);\n\trefreshHandler = function(changes) {\n\t\twidgetNode.refresh(changes,notification,null);\n\t};\n\tthis.wiki.addEventListener(\"change\",refreshHandler);\n\t// Set the initial styles for the notification\n\t$tw.utils.setStyle(notification,[\n\t\t{opacity: \"0\"},\n\t\t{transformOrigin: \"0% 0%\"},\n\t\t{transform: \"translateY(\" + (-window.innerHeight) + \"px)\"},\n\t\t{transition: \"opacity \" + duration + \"ms ease-out, \" + $tw.utils.roundTripPropertyName(\"transform\") + \" \" + duration + \"ms ease-in-out\"}\n\t]);\n\t// Add the notification to the DOM\n\tdocument.body.appendChild(notification);\n\t// Force layout\n\t$tw.utils.forceLayout(notification);\n\t// Set final animated styles\n\t$tw.utils.setStyle(notification,[\n\t\t{opacity: \"1.0\"},\n\t\t{transform: \"translateY(0px)\"}\n\t]);\n\t// Set a timer to remove the notification\n\twindow.setTimeout(function() {\n\t\t// Remove our change event handler\n\t\tself.wiki.removeEventListener(\"change\",refreshHandler);\n\t\t// Force layout and animate the notification away\n\t\t$tw.utils.forceLayout(notification);\n\t\t$tw.utils.setStyle(notification,[\n\t\t\t{opacity: \"0.0\"},\n\t\t\t{transform: \"translateX(\" + (notification.offsetWidth) + \"px)\"}\n\t\t]);\n\t\t// Remove the modal message from the DOM once the transition ends\n\t\tsetTimeout(function() {\n\t\t\tif(notification.parentNode) {\n\t\t\t\tdocument.body.removeChild(notification);\n\t\t\t}\n\t\t},duration);\n\t},$tw.config.preferences.notificationDuration);\n};\n\nexports.Notifier = Notifier;\n\n})();\n",
"type": "application/javascript",
"module-type": "utils"
},
"$:/core/modules/utils/dom/popup.js": {
"title": "$:/core/modules/utils/dom/popup.js",
"text": "/*\\\ntitle: $:/core/modules/utils/dom/popup.js\ntype: application/javascript\nmodule-type: utils\n\nModule that creates a $tw.utils.Popup object prototype that manages popups in the browser\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nCreates a Popup object with these options:\n\trootElement: the DOM element to which the popup zapper should be attached\n*/\nvar Popup = function(options) {\n\toptions = options || {};\n\tthis.rootElement = options.rootElement || document.documentElement;\n\tthis.popups = []; // Array of {title:,wiki:,domNode:} objects\n};\n\n/*\nTrigger a popup open or closed. Parameters are in a hashmap:\n\ttitle: title of the tiddler where the popup details are stored\n\tdomNode: dom node to which the popup will be positioned (one of domNode or domNodeRect is required)\n\tdomNodeRect: rectangle to which the popup will be positioned\n\twiki: wiki\n\tforce: if specified, forces the popup state to true or false (instead of toggling it)\n\tfloating: if true, skips registering the popup, meaning that it will need manually clearing\n*/\nPopup.prototype.triggerPopup = function(options) {\n\t// Check if this popup is already active\n\tvar index = this.findPopup(options.title);\n\t// Compute the new state\n\tvar state = index === -1;\n\tif(options.force !== undefined) {\n\t\tstate = options.force;\n\t}\n\t// Show or cancel the popup according to the new state\n\tif(state) {\n\t\tthis.show(options);\n\t} else {\n\t\tthis.cancel(index);\n\t}\n};\n\nPopup.prototype.findPopup = function(title) {\n\tvar index = -1;\n\tfor(var t=0; t<this.popups.length; t++) {\n\t\tif(this.popups[t].title === title) {\n\t\t\tindex = t;\n\t\t}\n\t}\n\treturn index;\n};\n\nPopup.prototype.handleEvent = function(event) {\n\tif(event.type === \"click\") {\n\t\t// Find out what was clicked on\n\t\tvar info = this.popupInfo(event.target),\n\t\t\tcancelLevel = info.popupLevel - 1;\n\t\t// Don't remove the level that was clicked on if we clicked on a handle\n\t\tif(info.isHandle) {\n\t\t\tcancelLevel++;\n\t\t}\n\t\t// Cancel\n\t\tthis.cancel(cancelLevel);\n\t}\n};\n\n/*\nFind the popup level containing a DOM node. Returns:\npopupLevel: count of the number of nested popups containing the specified element\nisHandle: true if the specified element is within a popup handle\n*/\nPopup.prototype.popupInfo = function(domNode) {\n\tvar isHandle = false,\n\t\tpopupCount = 0,\n\t\tnode = domNode;\n\t// First check ancestors to see if we're within a popup handle\n\twhile(node) {\n\t\tif($tw.utils.hasClass(node,\"tc-popup-handle\")) {\n\t\t\tisHandle = true;\n\t\t\tpopupCount++;\n\t\t}\n\t\tif($tw.utils.hasClass(node,\"tc-popup-keep\")) {\n\t\t\tisHandle = true;\n\t\t}\n\t\tnode = node.parentNode;\n\t}\n\t// Then count the number of ancestor popups\n\tnode = domNode;\n\twhile(node) {\n\t\tif($tw.utils.hasClass(node,\"tc-popup\")) {\n\t\t\tpopupCount++;\n\t\t}\n\t\tnode = node.parentNode;\n\t}\n\tvar info = {\n\t\tpopupLevel: popupCount,\n\t\tisHandle: isHandle\n\t};\n\treturn info;\n};\n\n/*\nDisplay a popup by adding it to the stack\n*/\nPopup.prototype.show = function(options) {\n\t// Find out what was clicked on\n\tvar info = this.popupInfo(options.domNode);\n\t// Cancel any higher level popups\n\tthis.cancel(info.popupLevel);\n\n\t// Store the popup details if not already there\n\tif(!options.floating && this.findPopup(options.title) === -1) {\n\t\tthis.popups.push({\n\t\t\ttitle: options.title,\n\t\t\twiki: options.wiki,\n\t\t\tdomNode: options.domNode,\n\t\t\tnoStateReference: options.noStateReference\n\t\t});\n\t}\n\t// Set the state tiddler\n\tvar rect;\n\tif(options.domNodeRect) {\n\t\trect = options.domNodeRect;\n\t} else {\n\t\trect = {\n\t\t\tleft: options.domNode.offsetLeft,\n\t\t\ttop: options.domNode.offsetTop,\n\t\t\twidth: options.domNode.offsetWidth,\n\t\t\theight: options.domNode.offsetHeight\n\t\t};\n\t}\n\tvar popupRect = \"(\" + rect.left + \",\" + rect.top + \",\" + \n\t\t\t\trect.width + \",\" + rect.height + \")\";\n\tif(options.noStateReference) {\n\t\toptions.wiki.setText(options.title,\"text\",undefined,popupRect);\n\t} else {\n\t\toptions.wiki.setTextReference(options.title,popupRect);\n\t}\n\t// Add the click handler if we have any popups\n\tif(this.popups.length > 0) {\n\t\tthis.rootElement.addEventListener(\"click\",this,true);\t\t\n\t}\n};\n\n/*\nCancel all popups at or above a specified level or DOM node\nlevel: popup level to cancel (0 cancels all popups)\n*/\nPopup.prototype.cancel = function(level) {\n\tvar numPopups = this.popups.length;\n\tlevel = Math.max(0,Math.min(level,numPopups));\n\tfor(var t=level; t<numPopups; t++) {\n\t\tvar popup = this.popups.pop();\n\t\tif(popup.title) {\n\t\t\tif(popup.noStateReference) {\n\t\t\t\tpopup.wiki.deleteTiddler(popup.title);\n\t\t\t} else {\n\t\t\t\tpopup.wiki.deleteTiddler($tw.utils.parseTextReference(popup.title).title);\n \t\t}\n\t\t}\n\t}\n\tif(this.popups.length === 0) {\n\t\tthis.rootElement.removeEventListener(\"click\",this,false);\n\t}\n};\n\n/*\nReturns true if the specified title and text identifies an active popup\n*/\nPopup.prototype.readPopupState = function(text) {\n\tvar popupLocationRegExp = /^\\((-?[0-9\\.E]+),(-?[0-9\\.E]+),(-?[0-9\\.E]+),(-?[0-9\\.E]+)\\)$/;\n\treturn popupLocationRegExp.test(text);\n};\n\nexports.Popup = Popup;\n\n})();\n",
"type": "application/javascript",
"module-type": "utils"
},
"$:/core/modules/utils/dom/scroller.js": {
"title": "$:/core/modules/utils/dom/scroller.js",
"text": "/*\\\ntitle: $:/core/modules/utils/dom/scroller.js\ntype: application/javascript\nmodule-type: utils\n\nModule that creates a $tw.utils.Scroller object prototype that manages scrolling in the browser\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nEvent handler for when the `tm-scroll` event hits the document body\n*/\nvar PageScroller = function() {\n\tthis.idRequestFrame = null;\n\tthis.requestAnimationFrame = window.requestAnimationFrame ||\n\t\twindow.webkitRequestAnimationFrame ||\n\t\twindow.mozRequestAnimationFrame ||\n\t\tfunction(callback) {\n\t\t\treturn window.setTimeout(callback, 1000/60);\n\t\t};\n\tthis.cancelAnimationFrame = window.cancelAnimationFrame ||\n\t\twindow.webkitCancelAnimationFrame ||\n\t\twindow.webkitCancelRequestAnimationFrame ||\n\t\twindow.mozCancelAnimationFrame ||\n\t\twindow.mozCancelRequestAnimationFrame ||\n\t\tfunction(id) {\n\t\t\twindow.clearTimeout(id);\n\t\t};\n};\n\nPageScroller.prototype.isScrolling = function() {\n\treturn this.idRequestFrame !== null;\n}\n\nPageScroller.prototype.cancelScroll = function(srcWindow) {\n\tif(this.idRequestFrame) {\n\t\tthis.cancelAnimationFrame.call(srcWindow,this.idRequestFrame);\n\t\tthis.idRequestFrame = null;\n\t}\n};\n\n/*\nHandle an event\n*/\nPageScroller.prototype.handleEvent = function(event) {\n\tif(event.type === \"tm-scroll\") {\n\t\tif(event.paramObject && event.paramObject.selector) {\n\t\t\tthis.scrollSelectorIntoView(null,event.paramObject.selector);\n\t\t} else {\n\t\t\tthis.scrollIntoView(event.target);\t\t\t\n\t\t}\n\t\treturn false; // Event was handled\n\t}\n\treturn true;\n};\n\n/*\nHandle a scroll event hitting the page document\n*/\nPageScroller.prototype.scrollIntoView = function(element,callback) {\n\tvar self = this,\n\t\tduration = $tw.utils.getAnimationDuration(),\n\t srcWindow = element ? element.ownerDocument.defaultView : window;\n\t// Now get ready to scroll the body\n\tthis.cancelScroll(srcWindow);\n\tthis.startTime = Date.now();\n\t// Get the height of any position:fixed toolbars\n\tvar toolbar = srcWindow.document.querySelector(\".tc-adjust-top-of-scroll\"),\n\t\toffset = 0;\n\tif(toolbar) {\n\t\toffset = toolbar.offsetHeight;\n\t}\n\t// Get the client bounds of the element and adjust by the scroll position\n\tvar getBounds = function() {\n\t\t\tvar clientBounds = typeof callback === 'function' ? callback() : element.getBoundingClientRect(),\n\t\t\t\tscrollPosition = $tw.utils.getScrollPosition(srcWindow);\n\t\t\treturn {\n\t\t\t\tleft: clientBounds.left + scrollPosition.x,\n\t\t\t\ttop: clientBounds.top + scrollPosition.y - offset,\n\t\t\t\twidth: clientBounds.width,\n\t\t\t\theight: clientBounds.height\n\t\t\t};\n\t\t},\n\t\t// We'll consider the horizontal and vertical scroll directions separately via this function\n\t\t// targetPos/targetSize - position and size of the target element\n\t\t// currentPos/currentSize - position and size of the current scroll viewport\n\t\t// returns: new position of the scroll viewport\n\t\tgetEndPos = function(targetPos,targetSize,currentPos,currentSize) {\n\t\t\tvar newPos = targetPos;\n\t\t\t// If we are scrolling within 50 pixels of the top/left then snap to zero\n\t\t\tif(newPos < 50) {\n\t\t\t\tnewPos = 0;\n\t\t\t}\n\t\t\treturn newPos;\n\t\t},\n\t\tdrawFrame = function drawFrame() {\n\t\t\tvar t;\n\t\t\tif(duration <= 0) {\n\t\t\t\tt = 1;\n\t\t\t} else {\n\t\t\t\tt = ((Date.now()) - self.startTime) / duration;\t\n\t\t\t}\n\t\t\tif(t >= 1) {\n\t\t\t\tself.cancelScroll(srcWindow);\n\t\t\t\tt = 1;\n\t\t\t}\n\t\t\tt = $tw.utils.slowInSlowOut(t);\n\t\t\tvar scrollPosition = $tw.utils.getScrollPosition(srcWindow),\n\t\t\t\tbounds = getBounds(),\n\t\t\t\tendX = getEndPos(bounds.left,bounds.width,scrollPosition.x,srcWindow.innerWidth),\n\t\t\t\tendY = getEndPos(bounds.top,bounds.height,scrollPosition.y,srcWindow.innerHeight);\n\t\t\tsrcWindow.scrollTo(scrollPosition.x + (endX - scrollPosition.x) * t,scrollPosition.y + (endY - scrollPosition.y) * t);\n\t\t\tif(t < 1) {\n\t\t\t\tself.idRequestFrame = self.requestAnimationFrame.call(srcWindow,drawFrame);\n\t\t\t}\n\t\t};\n\tdrawFrame();\n};\n\nPageScroller.prototype.scrollSelectorIntoView = function(baseElement,selector,callback) {\n\tbaseElement = baseElement || document.body;\n\tvar element = baseElement.querySelector(selector);\n\tif(element) {\n\t\tthis.scrollIntoView(element,callback);\t\t\n\t}\n};\n\nexports.PageScroller = PageScroller;\n\n})();\n",
"type": "application/javascript",
"module-type": "utils"
},
"$:/core/modules/utils/edition-info.js": {
"title": "$:/core/modules/utils/edition-info.js",
"text": "/*\\\ntitle: $:/core/modules/utils/edition-info.js\ntype: application/javascript\nmodule-type: utils-node\n\nInformation about the available editions\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar fs = require(\"fs\"),\n\tpath = require(\"path\");\n\nvar editionInfo;\n\nexports.getEditionInfo = function() {\n\tif(!editionInfo) {\n\t\t// Enumerate the edition paths\n\t\tvar editionPaths = $tw.getLibraryItemSearchPaths($tw.config.editionsPath,$tw.config.editionsEnvVar);\n\t\teditionInfo = {};\n\t\tfor(var editionIndex=0; editionIndex<editionPaths.length; editionIndex++) {\n\t\t\tvar editionPath = editionPaths[editionIndex];\n\t\t\t// Enumerate the folders\n\t\t\tvar entries = fs.readdirSync(editionPath);\n\t\t\tfor(var entryIndex=0; entryIndex<entries.length; entryIndex++) {\n\t\t\t\tvar entry = entries[entryIndex];\n\t\t\t\t// Check if directories have a valid tiddlywiki.info\n\t\t\t\tif(!editionInfo[entry] && $tw.utils.isDirectory(path.resolve(editionPath,entry))) {\n\t\t\t\t\tvar info;\n\t\t\t\t\ttry {\n\t\t\t\t\t\tinfo = JSON.parse(fs.readFileSync(path.resolve(editionPath,entry,\"tiddlywiki.info\"),\"utf8\"));\n\t\t\t\t\t} catch(ex) {\n\t\t\t\t\t}\n\t\t\t\t\tif(info) {\n\t\t\t\t\t\teditionInfo[entry] = info;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\treturn editionInfo;\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "utils-node"
},
"$:/core/modules/utils/fakedom.js": {
"title": "$:/core/modules/utils/fakedom.js",
"text": "/*\\\ntitle: $:/core/modules/utils/fakedom.js\ntype: application/javascript\nmodule-type: global\n\nA barebones implementation of DOM interfaces needed by the rendering mechanism.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n// Sequence number used to enable us to track objects for testing\nvar sequenceNumber = null;\n\nvar bumpSequenceNumber = function(object) {\n\tif(sequenceNumber !== null) {\n\t\tobject.sequenceNumber = sequenceNumber++;\n\t}\n};\n\nvar TW_Node = function (){\n\tthrow TypeError(\"Illegal constructor\");\n};\n\nObject.defineProperty(TW_Node.prototype, 'ELEMENT_NODE', {\n\tget: function() {\n\t\treturn 1;\n\t}\n});\n\nObject.defineProperty(TW_Node.prototype, 'TEXT_NODE', {\n\tget: function() {\n\t\treturn 3;\n\t}\n});\n\nvar TW_TextNode = function(text) {\n\tbumpSequenceNumber(this);\n\tthis.textContent = text + \"\";\n};\n\nTW_TextNode.prototype = Object.create(TW_Node.prototype);\n\nObject.defineProperty(TW_TextNode.prototype, \"nodeType\", {\n\tget: function() {\n\t\treturn this.TEXT_NODE;\n\t}\n});\n\nObject.defineProperty(TW_TextNode.prototype, \"formattedTextContent\", {\n\tget: function() {\n\t\treturn this.textContent.replace(/(\\r?\\n)/g,\"\");\n\t}\n});\n\nvar TW_Element = function(tag,namespace) {\n\tbumpSequenceNumber(this);\n\tthis.isTiddlyWikiFakeDom = true;\n\tthis.tag = tag;\n\tthis.attributes = {};\n\tthis.isRaw = false;\n\tthis.children = [];\n\tthis._style = {};\n\tthis.namespaceURI = namespace || \"http://www.w3.org/1999/xhtml\";\n};\n\nTW_Element.prototype = Object.create(TW_Node.prototype);\n\nObject.defineProperty(TW_Element.prototype, \"style\", {\n\tget: function() {\n\t\treturn this._style;\n\t},\n\tset: function(str) {\n\t\tvar self = this;\n\t\tstr = str || \"\";\n\t\t$tw.utils.each(str.split(\";\"),function(declaration) {\n\t\t\tvar parts = declaration.split(\":\"),\n\t\t\t\tname = $tw.utils.trim(parts[0]),\n\t\t\t\tvalue = $tw.utils.trim(parts[1]);\n\t\t\tif(name && value) {\n\t\t\t\tself._style[$tw.utils.convertStyleNameToPropertyName(name)] = value;\n\t\t\t}\n\t\t});\n\t}\n});\n\nObject.defineProperty(TW_Element.prototype, \"nodeType\", {\n\tget: function() {\n\t\treturn this.ELEMENT_NODE;\n\t}\n});\n\nTW_Element.prototype.getAttribute = function(name) {\n\tif(this.isRaw) {\n\t\tthrow \"Cannot getAttribute on a raw TW_Element\";\n\t}\n\treturn this.attributes[name];\n};\n\nTW_Element.prototype.setAttribute = function(name,value) {\n\tif(this.isRaw) {\n\t\tthrow \"Cannot setAttribute on a raw TW_Element\";\n\t}\n\tthis.attributes[name] = value + \"\";\n};\n\nTW_Element.prototype.setAttributeNS = function(namespace,name,value) {\n\tthis.setAttribute(name,value);\n};\n\nTW_Element.prototype.removeAttribute = function(name) {\n\tif(this.isRaw) {\n\t\tthrow \"Cannot removeAttribute on a raw TW_Element\";\n\t}\n\tif($tw.utils.hop(this.attributes,name)) {\n\t\tdelete this.attributes[name];\n\t}\n};\n\nTW_Element.prototype.appendChild = function(node) {\n\tthis.children.push(node);\n\tnode.parentNode = this;\n};\n\nTW_Element.prototype.insertBefore = function(node,nextSibling) {\n\tif(nextSibling) {\n\t\tvar p = this.children.indexOf(nextSibling);\n\t\tif(p !== -1) {\n\t\t\tthis.children.splice(p,0,node);\n\t\t\tnode.parentNode = this;\n\t\t} else {\n\t\t\tthis.appendChild(node);\n\t\t}\n\t} else {\n\t\tthis.appendChild(node);\n\t}\n};\n\nTW_Element.prototype.removeChild = function(node) {\n\tvar p = this.children.indexOf(node);\n\tif(p !== -1) {\n\t\tthis.children.splice(p,1);\n\t}\n};\n\nTW_Element.prototype.hasChildNodes = function() {\n\treturn !!this.children.length;\n};\n\nObject.defineProperty(TW_Element.prototype, \"childNodes\", {\n\tget: function() {\n\t\treturn this.children;\n\t}\n});\n\nObject.defineProperty(TW_Element.prototype, \"firstChild\", {\n\tget: function() {\n\t\treturn this.children[0];\n\t}\n});\n\nTW_Element.prototype.addEventListener = function(type,listener,useCapture) {\n\t// Do nothing\n};\n\nObject.defineProperty(TW_Element.prototype, \"tagName\", {\n\tget: function() {\n\t\treturn this.tag || \"\";\n\t}\n});\n\nObject.defineProperty(TW_Element.prototype, \"className\", {\n\tget: function() {\n\t\treturn this.attributes[\"class\"] || \"\";\n\t},\n\tset: function(value) {\n\t\tthis.attributes[\"class\"] = value + \"\";\n\t}\n});\n\nObject.defineProperty(TW_Element.prototype, \"value\", {\n\tget: function() {\n\t\treturn this.attributes.value || \"\";\n\t},\n\tset: function(value) {\n\t\tthis.attributes.value = value + \"\";\n\t}\n});\n\nObject.defineProperty(TW_Element.prototype, \"outerHTML\", {\n\tget: function() {\n\t\tvar output = [],attr,a,v;\n\t\toutput.push(\"<\",this.tag);\n\t\tif(this.attributes) {\n\t\t\tattr = [];\n\t\t\tfor(a in this.attributes) {\n\t\t\t\tattr.push(a);\n\t\t\t}\n\t\t\tattr.sort();\n\t\t\tfor(a=0; a<attr.length; a++) {\n\t\t\t\tv = this.attributes[attr[a]];\n\t\t\t\tif(v !== undefined) {\n\t\t\t\t\toutput.push(\" \",attr[a],\"=\\\"\",$tw.utils.htmlEncode(v),\"\\\"\");\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tif(this._style) {\n\t\t\tvar style = [];\n\t\t\tfor(var s in this._style) {\n\t\t\t\tstyle.push($tw.utils.convertPropertyNameToStyleName(s) + \":\" + this._style[s] + \";\");\n\t\t\t}\n\t\t\tif(style.length > 0) {\n\t\t\t\toutput.push(\" style=\\\"\",style.join(\"\"),\"\\\"\");\n\t\t\t}\n\t\t}\n\t\toutput.push(\">\");\n\t\tif($tw.config.htmlVoidElements.indexOf(this.tag) === -1) {\n\t\t\toutput.push(this.innerHTML);\n\t\t\toutput.push(\"</\",this.tag,\">\");\n\t\t}\n\t\treturn output.join(\"\");\n\t}\n});\n\nObject.defineProperty(TW_Element.prototype, \"innerHTML\", {\n\tget: function() {\n\t\tif(this.isRaw) {\n\t\t\treturn this.rawHTML;\n\t\t} else {\n\t\t\tvar b = [];\n\t\t\t$tw.utils.each(this.children,function(node) {\n\t\t\t\tif(node instanceof TW_Element) {\n\t\t\t\t\tb.push(node.outerHTML);\n\t\t\t\t} else if(node instanceof TW_TextNode) {\n\t\t\t\t\tb.push($tw.utils.htmlEncode(node.textContent));\n\t\t\t\t}\n\t\t\t});\n\t\t\treturn b.join(\"\");\n\t\t}\n\t},\n\tset: function(value) {\n\t\tthis.isRaw = true;\n\t\tthis.rawHTML = value;\n\t\tthis.rawTextContent = null;\n\t}\n});\n\nObject.defineProperty(TW_Element.prototype, \"textInnerHTML\", {\n\tset: function(value) {\n\t\tif(this.isRaw) {\n\t\t\tthis.rawTextContent = value;\n\t\t} else {\n\t\t\tthrow \"Cannot set textInnerHTML of a non-raw TW_Element\";\n\t\t}\n\t}\n});\n\nObject.defineProperty(TW_Element.prototype, \"textContent\", {\n\tget: function() {\n\t\tif(this.isRaw) {\n\t\t\tif(this.rawTextContent === null) {\n\t\t\t\treturn \"\";\n\t\t\t} else {\n\t\t\t\treturn this.rawTextContent;\n\t\t\t}\n\t\t} else {\n\t\t\tvar b = [];\n\t\t\t$tw.utils.each(this.children,function(node) {\n\t\t\t\tb.push(node.textContent);\n\t\t\t});\n\t\t\treturn b.join(\"\");\n\t\t}\n\t},\n\tset: function(value) {\n\t\tthis.children = [new TW_TextNode(value)];\n\t}\n});\n\nObject.defineProperty(TW_Element.prototype, \"formattedTextContent\", {\n\tget: function() {\n\t\tif(this.isRaw) {\n\t\t\treturn \"\";\n\t\t} else {\n\t\t\tvar b = [],\n\t\t\t\tisBlock = $tw.config.htmlBlockElements.indexOf(this.tag) !== -1;\n\t\t\tif(isBlock) {\n\t\t\t\tb.push(\"\\n\");\n\t\t\t}\n\t\t\tif(this.tag === \"li\") {\n\t\t\t\tb.push(\"* \");\n\t\t\t}\n\t\t\t$tw.utils.each(this.children,function(node) {\n\t\t\t\tb.push(node.formattedTextContent);\n\t\t\t});\n\t\t\tif(isBlock) {\n\t\t\t\tb.push(\"\\n\");\n\t\t\t}\n\t\t\treturn b.join(\"\");\n\t\t}\n\t}\n});\n\nvar document = {\n\tsetSequenceNumber: function(value) {\n\t\tsequenceNumber = value;\n\t},\n\tcreateElementNS: function(namespace,tag) {\n\t\treturn new TW_Element(tag,namespace);\n\t},\n\tcreateElement: function(tag) {\n\t\treturn new TW_Element(tag);\n\t},\n\tcreateTextNode: function(text) {\n\t\treturn new TW_TextNode(text);\n\t},\n\tcompatMode: \"CSS1Compat\", // For KaTeX to know that we're not a browser in quirks mode\n\tisTiddlyWikiFakeDom: true\n};\n\nexports.fakeDocument = document;\n\n})();\n",
"type": "application/javascript",
"module-type": "global"
},
"$:/core/modules/utils/filesystem.js": {
"title": "$:/core/modules/utils/filesystem.js",
"text": "/*\\\ntitle: $:/core/modules/utils/filesystem.js\ntype: application/javascript\nmodule-type: utils-node\n\nFile system utilities\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar fs = require(\"fs\"),\n\tpath = require(\"path\");\n\n/*\nReturn the subdirectories of a path\n*/\nexports.getSubdirectories = function(dirPath) {\n\tif(!$tw.utils.isDirectory(dirPath)) {\n\t\treturn null;\n\t}\n\tvar subdirs = [];\n\t$tw.utils.each(fs.readdirSync(dirPath),function(item) {\n\t\tif($tw.utils.isDirectory(path.resolve(dirPath,item))) {\n\t\t\tsubdirs.push(item);\n\t\t}\n\t});\n\treturn subdirs;\n}\n\n/*\nRecursively (and synchronously) copy a directory and all its content\n*/\nexports.copyDirectory = function(srcPath,dstPath) {\n\t// Remove any trailing path separators\n\tsrcPath = path.resolve($tw.utils.removeTrailingSeparator(srcPath));\n\tdstPath = path.resolve($tw.utils.removeTrailingSeparator(dstPath));\n\t// Check that neither director is within the other\n\tif(srcPath.substring(0,dstPath.length) === dstPath || dstPath.substring(0,srcPath.length) === srcPath) {\n\t\treturn \"Cannot copy nested directories\";\n\t}\n\t// Create the destination directory\n\tvar err = $tw.utils.createDirectory(dstPath);\n\tif(err) {\n\t\treturn err;\n\t}\n\t// Function to copy a folder full of files\n\tvar copy = function(srcPath,dstPath) {\n\t\tvar srcStats = fs.lstatSync(srcPath),\n\t\t\tdstExists = fs.existsSync(dstPath);\n\t\tif(srcStats.isFile()) {\n\t\t\t$tw.utils.copyFile(srcPath,dstPath);\n\t\t} else if(srcStats.isDirectory()) {\n\t\t\tvar items = fs.readdirSync(srcPath);\n\t\t\tfor(var t=0; t<items.length; t++) {\n\t\t\t\tvar item = items[t],\n\t\t\t\t\terr = copy(srcPath + path.sep + item,dstPath + path.sep + item);\n\t\t\t\tif(err) {\n\t\t\t\t\treturn err;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t};\n\tcopy(srcPath,dstPath);\n\treturn null;\n};\n\n/*\nCopy a file\n*/\nvar FILE_BUFFER_LENGTH = 64 * 1024,\n\tfileBuffer;\n\nexports.copyFile = function(srcPath,dstPath) {\n\t// Create buffer if required\n\tif(!fileBuffer) {\n\t\tfileBuffer = Buffer.alloc(FILE_BUFFER_LENGTH);\n\t}\n\t// Create any directories in the destination\n\t$tw.utils.createDirectory(path.dirname(dstPath));\n\t// Copy the file\n\tvar srcFile = fs.openSync(srcPath,\"r\"),\n\t\tdstFile = fs.openSync(dstPath,\"w\"),\n\t\tbytesRead = 1,\n\t\tpos = 0;\n\twhile (bytesRead > 0) {\n\t\tbytesRead = fs.readSync(srcFile,fileBuffer,0,FILE_BUFFER_LENGTH,pos);\n\t\tfs.writeSync(dstFile,fileBuffer,0,bytesRead);\n\t\tpos += bytesRead;\n\t}\n\tfs.closeSync(srcFile);\n\tfs.closeSync(dstFile);\n\treturn null;\n};\n\n/*\nRemove trailing path separator\n*/\nexports.removeTrailingSeparator = function(dirPath) {\n\tvar len = dirPath.length;\n\tif(dirPath.charAt(len-1) === path.sep) {\n\t\tdirPath = dirPath.substr(0,len-1);\n\t}\n\treturn dirPath;\n};\n\n/*\nRecursively create a directory\n*/\nexports.createDirectory = function(dirPath) {\n\tif(dirPath.substr(dirPath.length-1,1) !== path.sep) {\n\t\tdirPath = dirPath + path.sep;\n\t}\n\tvar pos = 1;\n\tpos = dirPath.indexOf(path.sep,pos);\n\twhile(pos !== -1) {\n\t\tvar subDirPath = dirPath.substr(0,pos);\n\t\tif(!$tw.utils.isDirectory(subDirPath)) {\n\t\t\ttry {\n\t\t\t\tfs.mkdirSync(subDirPath);\n\t\t\t} catch(e) {\n\t\t\t\treturn \"Error creating directory '\" + subDirPath + \"'\";\n\t\t\t}\n\t\t}\n\t\tpos = dirPath.indexOf(path.sep,pos + 1);\n\t}\n\treturn null;\n};\n\n/*\nRecursively create directories needed to contain a specified file\n*/\nexports.createFileDirectories = function(filePath) {\n\treturn $tw.utils.createDirectory(path.dirname(filePath));\n};\n\n/*\nRecursively delete a directory\n*/\nexports.deleteDirectory = function(dirPath) {\n\tif(fs.existsSync(dirPath)) {\n\t\tvar entries = fs.readdirSync(dirPath);\n\t\tfor(var entryIndex=0; entryIndex<entries.length; entryIndex++) {\n\t\t\tvar currPath = dirPath + path.sep + entries[entryIndex];\n\t\t\tif(fs.lstatSync(currPath).isDirectory()) {\n\t\t\t\t$tw.utils.deleteDirectory(currPath);\n\t\t\t} else {\n\t\t\t\tfs.unlinkSync(currPath);\n\t\t\t}\n\t\t}\n\tfs.rmdirSync(dirPath);\n\t}\n\treturn null;\n};\n\n/*\nCheck if a path identifies a directory\n*/\nexports.isDirectory = function(dirPath) {\n\treturn fs.existsSync(dirPath) && fs.statSync(dirPath).isDirectory();\n};\n\n/*\nCheck if a path identifies a directory that is empty\n*/\nexports.isDirectoryEmpty = function(dirPath) {\n\tif(!$tw.utils.isDirectory(dirPath)) {\n\t\treturn false;\n\t}\n\tvar files = fs.readdirSync(dirPath),\n\t\tempty = true;\n\t$tw.utils.each(files,function(file,index) {\n\t\tif(file.charAt(0) !== \".\") {\n\t\t\tempty = false;\n\t\t}\n\t});\n\treturn empty;\n};\n\n/*\nRecursively delete a tree of empty directories\n*/\nexports.deleteEmptyDirs = function(dirpath,callback) {\n\tvar self = this;\n\tfs.readdir(dirpath,function(err,files) {\n\t\tif(err) {\n\t\t\treturn callback(err);\n\t\t}\n\t\tif(files.length > 0) {\n\t\t\treturn callback(null);\n\t\t}\n\t\tfs.rmdir(dirpath,function(err) {\n\t\t\tif(err) {\n\t\t\t\treturn callback(err);\n\t\t\t}\n\t\t\tself.deleteEmptyDirs(path.dirname(dirpath),callback);\n\t\t});\n\t});\n};\n\n/*\nCreate a fileInfo object for saving a tiddler:\n\tfilepath: the absolute path to the file containing the tiddler\n\ttype: the type of the tiddler file on disk (NOT the type of the tiddler)\n\thasMetaFile: true if the file also has a companion .meta file\n\tisEditableFile: true if the tiddler was loaded via non-standard options & marked editable\nOptions include:\n\tdirectory: absolute path of root directory to which we are saving\n\tpathFilters: optional array of filters to be used to generate the base path\n\textFilters: optional array of filters to be used to generate the base path\n\twiki: optional wiki for evaluating the pathFilters,\n\tfileInfo: an existing fileInfo to check against\n\toriginalpath: a preferred filepath if no pathFilters match\n*/\nexports.generateTiddlerFileInfo = function(tiddler,options) {\n\tvar fileInfo = {}, metaExt;\n\t// Propagate the isEditableFile flag\n\tif(options.fileInfo) {\n\t\tfileInfo.isEditableFile = options.fileInfo.isEditableFile || false;\n\t}\n\t// Check if the tiddler has any unsafe fields that can't be expressed in a .tid or .meta file: containing control characters, or leading/trailing whitespace\n\tvar hasUnsafeFields = false;\n\t$tw.utils.each(tiddler.getFieldStrings(),function(value,fieldName) {\n\t\tif(fieldName !== \"text\") {\n\t\t\thasUnsafeFields = hasUnsafeFields || /[\\x00-\\x1F]/mg.test(value);\n\t\t\thasUnsafeFields = hasUnsafeFields || ($tw.utils.trim(value) !== value);\n\t\t}\n\t});\n\t// Check for field values \n\tif(hasUnsafeFields) {\n\t\t// Save as a JSON file\n\t\tfileInfo.type = \"application/json\";\n\t\tfileInfo.hasMetaFile = false;\n\t} else {\n\t\t// Save as a .tid or a text/binary file plus a .meta file\n\t\tvar tiddlerType = tiddler.fields.type || \"text/vnd.tiddlywiki\";\n\t\tif(tiddlerType === \"text/vnd.tiddlywiki\") {\n\t\t\t// Save as a .tid file\n\t\t\tfileInfo.type = \"application/x-tiddler\";\n\t\t\tfileInfo.hasMetaFile = false;\n\t\t} else {\n\t\t\t// Save as a text/binary file and a .meta file\n\t\t\tfileInfo.type = tiddlerType;\n\t\t\tfileInfo.hasMetaFile = true;\n\t\t}\n\t\tif(options.extFilters) {\n\t\t\t// Check for extension override\n\t\t\tmetaExt = $tw.utils.generateTiddlerExtension(tiddler.fields.title,{\n\t\t\t\textFilters: options.extFilters,\n\t\t\t\twiki: options.wiki\n\t\t\t});\n\t\t\tif(metaExt){\n\t\t\t\tif(metaExt === \".tid\") {\n\t\t\t\t\t// Overriding to the .tid extension needs special handling\n\t\t\t\t\tfileInfo.type = \"application/x-tiddler\";\n\t\t\t\t\tfileInfo.hasMetaFile = false;\n\t\t\t\t} else if (metaExt === \".json\") {\n\t\t\t\t\t// Overriding to the .json extension needs special handling\n\t\t\t\t\tfileInfo.type = \"application/json\";\n\t\t\t\t\tfileInfo.hasMetaFile = false;\n\t\t\t\t} else {\n\t\t\t\t\t//If the new type matches a known extention, use that MIME type's encoding\n\t\t\t\t\tvar extInfo = $tw.utils.getFileExtensionInfo(metaExt);\n\t\t\t\t\tfileInfo.type = extInfo ? extInfo.type : null;\n\t\t\t\t\tfileInfo.encoding = $tw.utils.getTypeEncoding(metaExt);\n\t\t\t\t\tfileInfo.hasMetaFile = true;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\t// Take the file extension from the tiddler content type or metaExt\n\tvar contentTypeInfo = $tw.config.contentTypeInfo[fileInfo.type] || {extension: \"\"};\n\t// Generate the filepath\n\tfileInfo.filepath = $tw.utils.generateTiddlerFilepath(tiddler.fields.title,{\n\t\textension: metaExt || contentTypeInfo.extension,\n\t\tdirectory: options.directory,\n\t\tpathFilters: options.pathFilters,\n\t\twiki: options.wiki,\n\t\tfileInfo: options.fileInfo,\n\t\toriginalpath: options.originalpath\n\t});\n\treturn fileInfo;\n};\n\n/*\nGenerate the file extension for saving a tiddler\nOptions include:\n\textFilters: optional array of filters to be used to generate the extention\n\twiki: optional wiki for evaluating the extFilters\n*/\nexports.generateTiddlerExtension = function(title,options) {\n\tvar self = this,\n\t\textension;\n\t// Check if any of the extFilters applies\n\tif(options.extFilters && options.wiki) { \n\t\t$tw.utils.each(options.extFilters,function(filter) {\n\t\t\tif(!extension) {\n\t\t\t\tvar source = options.wiki.makeTiddlerIterator([title]),\n\t\t\t\t\tresult = options.wiki.filterTiddlers(filter,null,source);\n\t\t\t\tif(result.length > 0) {\n\t\t\t\t\textension = result[0];\n\t\t\t\t}\n\t\t\t}\n\t\t});\n\t}\n\treturn extension;\n};\n\n/*\nGenerate the filepath for saving a tiddler\nOptions include:\n\textension: file extension to be added the finished filepath\n\tdirectory: absolute path of root directory to which we are saving\n\tpathFilters: optional array of filters to be used to generate the base path\n\twiki: optional wiki for evaluating the pathFilters\n\tfileInfo: an existing fileInfo object to check against\n*/\nexports.generateTiddlerFilepath = function(title,options) {\n\tvar self = this,\n\t\tdirectory = options.directory || \"\",\n\t\textension = options.extension || \"\",\n\t\toriginalpath = options.originalpath || \"\",\n\t\tfilepath;\t\n\t// Check if any of the pathFilters applies\n\tif(options.pathFilters && options.wiki) {\n\t\t$tw.utils.each(options.pathFilters,function(filter) {\n\t\t\tif(!filepath) {\n\t\t\t\tvar source = options.wiki.makeTiddlerIterator([title]),\n\t\t\t\t\tresult = options.wiki.filterTiddlers(filter,null,source);\n\t\t\t\tif(result.length > 0) {\n\t\t\t\t\tfilepath = result[0];\n\t\t\t\t}\n\t\t\t}\n\t\t});\n\t}\n\tif(!filepath && originalpath !== \"\") {\n\t\t//Use the originalpath without the extension\n\t\tvar ext = path.extname(originalpath);\n\t\tfilepath = originalpath.substring(0,originalpath.length - ext.length);\n\t} else if(!filepath) {\n\t\tfilepath = title;\n\t\t// If the filepath already ends in the extension then remove it\n\t\tif(filepath.substring(filepath.length - extension.length) === extension) {\n\t\t\tfilepath = filepath.substring(0,filepath.length - extension.length);\n\t\t}\n\t\t// Remove any forward or backward slashes so we don't create directories\n\t\tfilepath = filepath.replace(/\\/|\\\\/g,\"_\");\n\t}\n\t//If the path does not start with \".\" or \"..\" and a path seperator, then\n\tif(!/^\\.{1,2}[/\\\\]/g.test(filepath)) {\n\t\t// Don't let the filename start with any dots because such files are invisible on *nix\n\t\tfilepath = filepath.replace(/^\\.+/g,\"_\");\n\t}\n\t// Remove any characters that can't be used in cross-platform filenames\n\tfilepath = $tw.utils.transliterate(filepath.replace(/<|>|~|\\:|\\\"|\\||\\?|\\*|\\^/g,\"_\"));\n\t// Truncate the filename if it is too long\n\tif(filepath.length > 200) {\n\t\tfilepath = filepath.substr(0,200);\n\t}\n\t// If the resulting filename is blank (eg because the title is just punctuation characters)\n\tif(!filepath) {\n\t\t// ...then just use the character codes of the title\n\t\tfilepath = \"\";\t\n\t\t$tw.utils.each(title.split(\"\"),function(char) {\n\t\t\tif(filepath) {\n\t\t\t\tfilepath += \"-\";\n\t\t\t}\n\t\t\tfilepath += char.charCodeAt(0).toString();\n\t\t});\n\t}\n\t// Add a uniquifier if the file already exists\n\tvar fullPath, oldPath = (options.fileInfo) ? options.fileInfo.filepath : undefined,\n\t\tcount = 0;\n\tdo {\n\t\tfullPath = path.resolve(directory,filepath + (count ? \"_\" + count : \"\") + extension);\n\t\tif(oldPath && oldPath == fullPath) {\n\t\t\tbreak;\n\t\t}\n\t\tcount++;\n\t} while(fs.existsSync(fullPath));\n\t// If the last write failed with an error, or if path does not start with:\n\t//\tthe resolved options.directory, the resolved wikiPath directory, or the wikiTiddlersPath directory, \n\t//\tthen encodeURIComponent() and resolve to tiddler directory\n\tvar newPath = fullPath,\n\t\tencode = (options.fileInfo || {writeError: false}).writeError == true;\n\tif(!encode){\n\t\tencode = !(fullPath.indexOf(path.resolve(directory)) == 0 ||\n\t\t\tfullPath.indexOf(path.resolve($tw.boot.wikiPath)) == 0 ||\n\t\t\tfullPath.indexOf($tw.boot.wikiTiddlersPath) == 0);\n\t\t}\n\tif(encode){\n\t\tfullPath = path.resolve(directory, encodeURIComponent(fullPath));\n\t}\n\t// Call hook to allow plugins to modify the final path\n\tfullPath = $tw.hooks.invokeHook(\"th-make-tiddler-path\", newPath, fullPath);\n\t// Return the full path to the file\n\treturn fullPath;\n};\n\n/*\nSave a tiddler to a file described by the fileInfo:\n\tfilepath: the absolute path to the file containing the tiddler\n\ttype: the type of the tiddler file (NOT the type of the tiddler)\n\thasMetaFile: true if the file also has a companion .meta file\n*/\nexports.saveTiddlerToFile = function(tiddler,fileInfo,callback) {\n\t$tw.utils.createDirectory(path.dirname(fileInfo.filepath));\n\tif(fileInfo.hasMetaFile) {\n\t\t// Save the tiddler as a separate body and meta file\n\t\tvar typeInfo = $tw.config.contentTypeInfo[tiddler.fields.type || \"text/plain\"] || {encoding: \"utf8\"};\n\t\tfs.writeFile(fileInfo.filepath,tiddler.fields.text,typeInfo.encoding,function(err) {\n\t\t\tif(err) {\n\t\t\t\treturn callback(err);\n\t\t\t}\n\t\t\tfs.writeFile(fileInfo.filepath + \".meta\",tiddler.getFieldStringBlock({exclude: [\"text\",\"bag\"]}),\"utf8\",callback);\n\t\t});\n\t} else {\n\t\t// Save the tiddler as a self contained templated file\n\t\tif(fileInfo.type === \"application/x-tiddler\") {\n\t\t\tfs.writeFile(fileInfo.filepath,tiddler.getFieldStringBlock({exclude: [\"text\",\"bag\"]}) + (!!tiddler.fields.text ? \"\\n\\n\" + tiddler.fields.text : \"\"),\"utf8\",callback);\n\t\t} else {\n\t\t\tfs.writeFile(fileInfo.filepath,JSON.stringify([tiddler.getFieldStrings({exclude: [\"bag\"]})],null,$tw.config.preferences.jsonSpaces),\"utf8\",callback);\n\t\t}\n\t}\n};\n\n/*\nSave a tiddler to a file described by the fileInfo:\n\tfilepath: the absolute path to the file containing the tiddler\n\ttype: the type of the tiddler file (NOT the type of the tiddler)\n\thasMetaFile: true if the file also has a companion .meta file\n*/\nexports.saveTiddlerToFileSync = function(tiddler,fileInfo) {\n\t$tw.utils.createDirectory(path.dirname(fileInfo.filepath));\n\tif(fileInfo.hasMetaFile) {\n\t\t// Save the tiddler as a separate body and meta file\n\t\tvar typeInfo = $tw.config.contentTypeInfo[tiddler.fields.type || \"text/plain\"] || {encoding: \"utf8\"};\n\t\tfs.writeFileSync(fileInfo.filepath,tiddler.fields.text,typeInfo.encoding);\n\t\tfs.writeFileSync(fileInfo.filepath + \".meta\",tiddler.getFieldStringBlock({exclude: [\"text\",\"bag\"]}),\"utf8\");\n\t} else {\n\t\t// Save the tiddler as a self contained templated file\n\t\tif(fileInfo.type === \"application/x-tiddler\") {\n\t\t\tfs.writeFileSync(fileInfo.filepath,tiddler.getFieldStringBlock({exclude: [\"text\",\"bag\"]}) + (!!tiddler.fields.text ? \"\\n\\n\" + tiddler.fields.text : \"\"),\"utf8\");\n\t\t} else {\n\t\t\tfs.writeFileSync(fileInfo.filepath,JSON.stringify([tiddler.getFieldStrings({exclude: [\"bag\"]})],null,$tw.config.preferences.jsonSpaces),\"utf8\");\n\t\t}\n\t}\n};\n\n/*\nDelete a file described by the fileInfo if it exits\n*/\nexports.deleteTiddlerFile = function(fileInfo, callback) {\n\t//Only attempt to delete files that exist on disk\n\tif(!fileInfo.filepath || !fs.existsSync(fileInfo.filepath)) {\n\t\treturn callback(null);\n\t}\n\t// Delete the file\n\tfs.unlink(fileInfo.filepath,function(err) {\n\t\tif(err) {\n\t\t\treturn callback(err);\n\t\t}\t\n\t\t// Delete the metafile if present\n\t\tif(fileInfo.hasMetaFile && fs.existsSync(fileInfo.filepath + \".meta\")) {\n\t\t\tfs.unlink(fileInfo.filepath + \".meta\",function(err) {\n\t\t\t\tif(err) {\n\t\t\t\t\treturn callback(err);\n\t\t\t\t}\n\t\t\t\treturn $tw.utils.deleteEmptyDirs(path.dirname(fileInfo.filepath),callback);\n\t\t\t});\n\t\t} else {\n\t\t\treturn $tw.utils.deleteEmptyDirs(path.dirname(fileInfo.filepath),callback);\n\t\t}\n\t});\n};\n\n/*\nCleanup old files on disk, by comparing the options values:\n\tadaptorInfo from $tw.syncer.tiddlerInfo\n\tbootInfo from $tw.boot.files\n*/\nexports.cleanupTiddlerFiles = function(options, callback) {\n\tvar adaptorInfo = options.adaptorInfo || {},\n\tbootInfo = options.bootInfo || {},\n\ttitle = options.title || \"undefined\";\n\tif(adaptorInfo.filepath && bootInfo.filepath && adaptorInfo.filepath !== bootInfo.filepath) {\n\t\treturn $tw.utils.deleteTiddlerFile(adaptorInfo, function(err){\n\t\t\tif(err) {\n\t\t\t\tif ((err.code == \"EPERM\" || err.code == \"EACCES\") && err.syscall == \"unlink\") {\n\t\t\t\t\t// Error deleting the previous file on disk, should fail gracefully\n\t\t\t\t\t$tw.syncer.displayError(\"Server desynchronized. Error cleaning up previous file for tiddler: \"+title, err);\n\t\t\t\t\treturn callback(null);\n\t\t\t\t} else {\n\t\t\t\t\treturn callback(err);\n\t\t\t\t}\n\t\t\t}\n\t\t\treturn callback(null);\n\t\t});\n\t} else {\n\t\treturn callback(null);\n\t}\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "utils-node"
},
"$:/core/modules/utils/linkedlist.js": {
"title": "$:/core/modules/utils/linkedlist.js",
"text": "/*\\\nmodule-type: utils\ntitle: $:/core/modules/utils/linkedlist.js\ntype: application/javascript\n\nThis is a doubly-linked indexed list intended for manipulation, particularly\npushTop, which it does with significantly better performance than an array.\n\n\\*/\n(function(){\n\nfunction LinkedList() {\n\tthis.clear();\n};\n\nLinkedList.prototype.clear = function() {\n\tthis.index = Object.create(null);\n\t// LinkedList performs the duty of both the head and tail node\n\tthis.next = this;\n\tthis.prev = this;\n\tthis.length = 0;\n};\n\nLinkedList.prototype.remove = function(value) {\n\tif($tw.utils.isArray(value)) {\n\t\tfor(var t=0; t<value.length; t++) {\n\t\t\t_removeOne(this,value[t]);\n\t\t}\n\t} else {\n\t\t_removeOne(this,value);\n\t}\n};\n\nLinkedList.prototype.push = function(/* values */) {\n\tfor(var i = 0; i < arguments.length; i++) {\n\t\tvar value = arguments[i];\n\t\tvar node = {value: value};\n\t\tvar preexistingNode = this.index[value];\n\t\t_linkToEnd(this,node);\n\t\tif(preexistingNode) {\n\t\t\t// We want to keep pointing to the first instance, but we want\n\t\t\t// to have that instance (or chain of instances) point to the\n\t\t\t// new one.\n\t\t\twhile (preexistingNode.copy) {\n\t\t\t\tpreexistingNode = preexistingNode.copy;\n\t\t\t}\n\t\t\tpreexistingNode.copy = node;\n\t\t} else {\n\t\t\tthis.index[value] = node;\n\t\t}\n\t}\n};\n\nLinkedList.prototype.pushTop = function(value) {\n\tif($tw.utils.isArray(value)) {\n\t\tfor(var t=0; t<value.length; t++) {\n\t\t\t_removeOne(this,value[t]);\n\t\t}\n\t\tthis.push.apply(this,value);\n\t} else {\n\t\tvar node = _removeOne(this,value);\n\t\tif(!node) {\n\t\t\tnode = {value: value};\n\t\t\tthis.index[value] = node;\n\t\t} else {\n\t\t\t// Put this node at the end of the copy chain.\n\t\t\tvar preexistingNode = node;\n\t\t\twhile(preexistingNode.copy) {\n\t\t\t\tpreexistingNode = preexistingNode.copy;\n\t\t\t}\n\t\t\t// The order of these three statements is important,\n\t\t\t// because sometimes preexistingNode == node.\n\t\t\tpreexistingNode.copy = node;\n\t\t\tthis.index[value] = node.copy;\n\t\t\tnode.copy = undefined;\n\t\t}\n\t\t_linkToEnd(this,node);\n\t}\n};\n\nLinkedList.prototype.each = function(callback) {\n\tfor(var ptr = this.next; ptr !== this; ptr = ptr.next) {\n\t\tcallback(ptr.value);\n\t}\n};\n\nLinkedList.prototype.toArray = function() {\n\tvar output = [];\n\tfor(var ptr = this.next; ptr !== this; ptr = ptr.next) {\n\t\toutput.push(ptr.value);\n\t}\n\treturn output;\n};\n\nfunction _removeOne(list,value) {\n\tvar node = list.index[value];\n\tif(node) {\n\t\tnode.prev.next = node.next;\n\t\tnode.next.prev = node.prev;\n\t\tlist.length -= 1;\n\t\t// Point index to the next instance of the same value, maybe nothing.\n\t\tlist.index[value] = node.copy;\n\t}\n\treturn node;\n};\n\nfunction _linkToEnd(list,node) {\n\t// Sticks the given node onto the end of the list.\n\tlist.prev.next = node;\n\tnode.prev = list.prev;\n\tlist.prev = node;\n\tnode.next = list;\n\tlist.length += 1;\n};\n\nexports.LinkedList = LinkedList;\n\n})();\n",
"module-type": "utils",
"type": "application/javascript"
},
"$:/core/modules/utils/logger.js": {
"title": "$:/core/modules/utils/logger.js",
"text": "/*\\\ntitle: $:/core/modules/utils/logger.js\ntype: application/javascript\nmodule-type: utils\n\nA basic logging implementation\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar ALERT_TAG = \"$:/tags/Alert\";\n\n/*\nMake a new logger\n*/\nfunction Logger(componentName,options) {\n\toptions = options || {};\n\tthis.componentName = componentName || \"\";\n\tthis.colour = options.colour || \"white\";\n\tthis.enable = \"enable\" in options ? options.enable : true;\n\tthis.save = \"save\" in options ? options.save : true;\n\tthis.saveLimit = options.saveLimit || 100 * 1024;\n\tthis.saveBufferLogger = this;\n\tthis.buffer = \"\";\n\tthis.alertCount = 0;\n}\n\nLogger.prototype.setSaveBuffer = function(logger) {\n\tthis.saveBufferLogger = logger;\n};\n\n/*\nLog a message\n*/\nLogger.prototype.log = function(/* args */) {\n\tvar self = this;\n\tif(this.enable) {\n\t\tif(this.saveBufferLogger.save) {\n\t\t\tthis.saveBufferLogger.buffer += $tw.utils.formatDateString(new Date(),\"YYYY MM DD 0hh:0mm:0ss.0XXX\") + \":\";\n\t\t\t$tw.utils.each(Array.prototype.slice.call(arguments,0),function(arg,index) {\n\t\t\t\tself.saveBufferLogger.buffer += \" \" + arg;\n\t\t\t});\n\t\t\tthis.saveBufferLogger.buffer += \"\\n\";\n\t\t\tthis.saveBufferLogger.buffer = this.saveBufferLogger.buffer.slice(-this.saveBufferLogger.saveLimit);\t\t\t\n\t\t}\n\t\tif(console !== undefined && console.log !== undefined) {\n\t\t\treturn Function.apply.call(console.log, console, [$tw.utils.terminalColour(this.colour),this.componentName + \":\"].concat(Array.prototype.slice.call(arguments,0)).concat($tw.utils.terminalColour()));\n\t\t}\n\t} \n};\n\n/*\nRead the message buffer\n*/\nLogger.prototype.getBuffer = function() {\n\treturn this.saveBufferLogger.buffer;\n};\n\n/*\nLog a structure as a table\n*/\nLogger.prototype.table = function(value) {\n\t(console.table || console.log)(value);\n};\n\n/*\nAlert a message\n*/\nLogger.prototype.alert = function(/* args */) {\n\tif(this.enable) {\n\t\t// Prepare the text of the alert\n\t\tvar text = Array.prototype.join.call(arguments,\" \");\n\t\t// Create alert tiddlers in the browser\n\t\tif($tw.browser) {\n\t\t\t// Check if there is an existing alert with the same text and the same component\n\t\t\tvar existingAlerts = $tw.wiki.getTiddlersWithTag(ALERT_TAG),\n\t\t\t\talertFields,\n\t\t\t\texistingCount,\n\t\t\t\tself = this;\n\t\t\t$tw.utils.each(existingAlerts,function(title) {\n\t\t\t\tvar tiddler = $tw.wiki.getTiddler(title);\n\t\t\t\tif(tiddler.fields.text === text && tiddler.fields.component === self.componentName && tiddler.fields.modified && (!alertFields || tiddler.fields.modified < alertFields.modified)) {\n\t\t\t\t\t\talertFields = $tw.utils.extend({},tiddler.fields);\n\t\t\t\t}\n\t\t\t});\n\t\t\tif(alertFields) {\n\t\t\t\texistingCount = alertFields.count || 1;\n\t\t\t} else {\n\t\t\t\talertFields = {\n\t\t\t\t\ttitle: $tw.wiki.generateNewTitle(\"$:/temp/alerts/alert\",{prefix: \"\"}),\n\t\t\t\t\ttext: text,\n\t\t\t\t\ttags: [ALERT_TAG],\n\t\t\t\t\tcomponent: this.componentName\n\t\t\t\t};\n\t\t\t\texistingCount = 0;\n\t\t\t\tthis.alertCount += 1;\n\t\t\t}\n\t\t\talertFields.modified = new Date();\n\t\t\tif(++existingCount > 1) {\n\t\t\t\talertFields.count = existingCount;\n\t\t\t} else {\n\t\t\t\talertFields.count = undefined;\n\t\t\t}\n\t\t\t$tw.wiki.addTiddler(new $tw.Tiddler(alertFields));\n\t\t\t// Log the alert as well\n\t\t\tthis.log.apply(this,Array.prototype.slice.call(arguments,0));\n\t\t} else {\n\t\t\t// Print an orange message to the console if not in the browser\n\t\t\tconsole.error(\"\\x1b[1;33m\" + text + \"\\x1b[0m\");\n\t\t}\t\t\n\t}\n};\n\n/*\nClear outstanding alerts\n*/\nLogger.prototype.clearAlerts = function() {\n\tvar self = this;\n\tif($tw.browser && this.alertCount > 0) {\n\t\t$tw.utils.each($tw.wiki.getTiddlersWithTag(ALERT_TAG),function(title) {\n\t\t\tvar tiddler = $tw.wiki.getTiddler(title);\n\t\t\tif(tiddler.fields.component === self.componentName) {\n\t\t\t\t$tw.wiki.deleteTiddler(title);\n\t\t\t}\n\t\t});\n\t\tthis.alertCount = 0;\n\t}\n};\n\nexports.Logger = Logger;\n\n})();\n",
"type": "application/javascript",
"module-type": "utils"
},
"$:/core/modules/utils/parsetree.js": {
"title": "$:/core/modules/utils/parsetree.js",
"text": "/*\\\ntitle: $:/core/modules/utils/parsetree.js\ntype: application/javascript\nmodule-type: utils\n\nParse tree utility functions.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.addAttributeToParseTreeNode = function(node,name,value) {\n\tnode.attributes = node.attributes || {};\n\tnode.attributes[name] = {type: \"string\", value: value};\n};\n\nexports.getAttributeValueFromParseTreeNode = function(node,name,defaultValue) {\n\tif(node.attributes && node.attributes[name] && node.attributes[name].value !== undefined) {\n\t\treturn node.attributes[name].value;\n\t}\n\treturn defaultValue;\n};\n\nexports.addClassToParseTreeNode = function(node,classString) {\n\tvar classes = [];\n\tnode.attributes = node.attributes || {};\n\tnode.attributes[\"class\"] = node.attributes[\"class\"] || {type: \"string\", value: \"\"};\n\tif(node.attributes[\"class\"].type === \"string\") {\n\t\tif(node.attributes[\"class\"].value !== \"\") {\n\t\t\tclasses = node.attributes[\"class\"].value.split(\" \");\n\t\t}\n\t\tif(classString !== \"\") {\n\t\t\t$tw.utils.pushTop(classes,classString.split(\" \"));\n\t\t}\n\t\tnode.attributes[\"class\"].value = classes.join(\" \");\n\t}\n};\n\nexports.addStyleToParseTreeNode = function(node,name,value) {\n\t\tnode.attributes = node.attributes || {};\n\t\tnode.attributes.style = node.attributes.style || {type: \"string\", value: \"\"};\n\t\tif(node.attributes.style.type === \"string\") {\n\t\t\tnode.attributes.style.value += name + \":\" + value + \";\";\n\t\t}\n};\n\nexports.findParseTreeNode = function(nodeArray,search) {\n\tfor(var t=0; t<nodeArray.length; t++) {\n\t\tif(nodeArray[t].type === search.type && nodeArray[t].tag === search.tag) {\n\t\t\treturn nodeArray[t];\n\t\t}\n\t}\n\treturn undefined;\n};\n\n/*\nHelper to get the text of a parse tree node or array of nodes\n*/\nexports.getParseTreeText = function getParseTreeText(tree) {\n\tvar output = [];\n\tif($tw.utils.isArray(tree)) {\n\t\t$tw.utils.each(tree,function(node) {\n\t\t\toutput.push(getParseTreeText(node));\n\t\t});\n\t} else {\n\t\tif(tree.type === \"text\") {\n\t\t\toutput.push(tree.text);\n\t\t}\n\t\tif(tree.children) {\n\t\t\treturn getParseTreeText(tree.children);\n\t\t}\n\t}\n\treturn output.join(\"\");\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "utils"
},
"$:/core/modules/utils/performance.js": {
"title": "$:/core/modules/utils/performance.js",
"text": "/*\\\ntitle: $:/core/modules/utils/performance.js\ntype: application/javascript\nmodule-type: global\n\nPerformance measurement.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nfunction Performance(enabled) {\n\tthis.enabled = !!enabled;\n\tthis.measures = {}; // Hashmap by measurement name of {time:, invocations:}\n\tthis.logger = new $tw.utils.Logger(\"performance\");\n\tthis.showGreeting();\n}\n\nPerformance.prototype.showGreeting = function() {\n\tif($tw.browser) {\n\t\tthis.logger.log(\"Execute $tw.perf.log(); to see filter execution timings\");\t\t\n\t}\n};\n\n/*\nWrap performance reporting around a top level function\n*/\nPerformance.prototype.report = function(name,fn) {\n\tvar self = this;\n\tif(this.enabled) {\n\t\treturn function() {\n\t\t\tvar startTime = $tw.utils.timer(),\n\t\t\t\tresult = fn.apply(this,arguments);\n\t\t\tself.logger.log(name + \": \" + $tw.utils.timer(startTime).toFixed(2) + \"ms\");\n\t\t\treturn result;\n\t\t};\n\t} else {\n\t\treturn fn;\n\t}\n};\n\nPerformance.prototype.log = function() {\n\tvar self = this,\n\t\ttotalTime = 0,\n\t\torderedMeasures = Object.keys(this.measures).sort(function(a,b) {\n\t\t\tif(self.measures[a].time > self.measures[b].time) {\n\t\t\t\treturn -1;\n\t\t\t} else if (self.measures[a].time < self.measures[b].time) {\n\t\t\t\treturn + 1;\n\t\t\t} else {\n\t\t\t\treturn 0;\n\t\t\t}\n\t\t});\n\t$tw.utils.each(orderedMeasures,function(name) {\n\t\ttotalTime += self.measures[name].time;\n\t});\n\tvar results = []\n\t$tw.utils.each(orderedMeasures,function(name) {\n\t\tvar measure = self.measures[name];\n\t\tresults.push({name: name,invocations: measure.invocations, avgTime: measure.time / measure.invocations, totalTime: measure.time, percentTime: (measure.time / totalTime) * 100})\n\t});\n\tself.logger.table(results);\n};\n\n/*\nWrap performance measurements around a subfunction\n*/\nPerformance.prototype.measure = function(name,fn) {\n\tvar self = this;\n\tif(this.enabled) {\n\t\treturn function() {\n\t\t\tvar startTime = $tw.utils.timer(),\n\t\t\t\tresult = fn.apply(this,arguments);\n\t\t\tif(!(name in self.measures)) {\n\t\t\t\tself.measures[name] = {time: 0, invocations: 0};\n\t\t\t}\n\t\t\tself.measures[name].time += $tw.utils.timer(startTime);\n\t\t\tself.measures[name].invocations++;\n\t\t\treturn result;\n\t\t};\n\t} else {\n\t\treturn fn;\n\t}\n};\n\nexports.Performance = Performance;\n\n})();\n",
"type": "application/javascript",
"module-type": "global"
},
"$:/core/modules/utils/pluginmaker.js": {
"title": "$:/core/modules/utils/pluginmaker.js",
"text": "/*\\\ntitle: $:/core/modules/utils/pluginmaker.js\ntype: application/javascript\nmodule-type: utils\n\nA quick and dirty way to pack up plugins within the browser.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nRepack a plugin, and then delete any non-shadow payload tiddlers\n*/\nexports.repackPlugin = function(title,additionalTiddlers,excludeTiddlers) {\n\tadditionalTiddlers = additionalTiddlers || [];\n\texcludeTiddlers = excludeTiddlers || [];\n\t// Get the plugin tiddler\n\tvar pluginTiddler = $tw.wiki.getTiddler(title);\n\tif(!pluginTiddler) {\n\t\tthrow \"No such tiddler as \" + title;\n\t}\n\t// Extract the JSON\n\tvar jsonPluginTiddler;\n\ttry {\n\t\tjsonPluginTiddler = JSON.parse(pluginTiddler.fields.text);\n\t} catch(e) {\n\t\tthrow \"Cannot parse plugin tiddler \" + title + \"\\n\" + $tw.language.getString(\"Error/Caption\") + \": \" + e;\n\t}\n\t// Get the list of tiddlers\n\tvar tiddlers = Object.keys(jsonPluginTiddler.tiddlers);\n\t// Add the additional tiddlers\n\t$tw.utils.pushTop(tiddlers,additionalTiddlers);\n\t// Remove any excluded tiddlers\n\tfor(var t=tiddlers.length-1; t>=0; t--) {\n\t\tif(excludeTiddlers.indexOf(tiddlers[t]) !== -1) {\n\t\t\ttiddlers.splice(t,1);\n\t\t}\n\t}\n\t// Pack up the tiddlers into a block of JSON\n\tvar plugins = {};\n\t$tw.utils.each(tiddlers,function(title) {\n\t\tvar tiddler = $tw.wiki.getTiddler(title),\n\t\t\tfields = {};\n\t\t$tw.utils.each(tiddler.fields,function (value,name) {\n\t\t\tfields[name] = tiddler.getFieldString(name);\n\t\t});\n\t\tplugins[title] = fields;\n\t});\n\t// Retrieve and bump the version number\n\tvar pluginVersion = $tw.utils.parseVersion(pluginTiddler.getFieldString(\"version\") || \"0.0.0\") || {\n\t\t\tmajor: \"0\",\n\t\t\tminor: \"0\",\n\t\t\tpatch: \"0\"\n\t\t};\n\tpluginVersion.patch++;\n\tvar version = pluginVersion.major + \".\" + pluginVersion.minor + \".\" + pluginVersion.patch;\n\tif(pluginVersion.prerelease) {\n\t\tversion += \"-\" + pluginVersion.prerelease;\n\t}\n\tif(pluginVersion.build) {\n\t\tversion += \"+\" + pluginVersion.build;\n\t}\n\t// Save the tiddler\n\t$tw.wiki.addTiddler(new $tw.Tiddler(pluginTiddler,{text: JSON.stringify({tiddlers: plugins},null,4), version: version}));\n\t// Delete any non-shadow constituent tiddlers\n\t$tw.utils.each(tiddlers,function(title) {\n\t\tif($tw.wiki.tiddlerExists(title)) {\n\t\t\t$tw.wiki.deleteTiddler(title);\n\t\t}\n\t});\n\t// Trigger an autosave\n\t$tw.rootWidget.dispatchEvent({type: \"tm-auto-save-wiki\"});\n\t// Return a heartwarming confirmation\n\treturn \"Plugin \" + title + \" successfully saved\";\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "utils"
},
"$:/core/modules/utils/transliterate.js": {
"title": "$:/core/modules/utils/transliterate.js",
"text": "/*\\\ntitle: $:/core/modules/utils/transliterate.js\ntype: application/javascript\nmodule-type: utils\n\nTransliteration static utility functions.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nTransliterate string to ASCII\n\n(Some pairs taken from http://semplicewebsites.com/removing-accents-javascript)\n*/\nexports.transliterationPairs = {\n\t\"Á\":\"A\",\n\t\"Ă\":\"A\",\n\t\"Ắ\":\"A\",\n\t\"Ặ\":\"A\",\n\t\"Ằ\":\"A\",\n\t\"Ẳ\":\"A\",\n\t\"Ẵ\":\"A\",\n\t\"Ǎ\":\"A\",\n\t\"Â\":\"A\",\n\t\"Ấ\":\"A\",\n\t\"Ậ\":\"A\",\n\t\"Ầ\":\"A\",\n\t\"Ẩ\":\"A\",\n\t\"Ẫ\":\"A\",\n\t\"Ä\":\"A\",\n\t\"Ǟ\":\"A\",\n\t\"Ȧ\":\"A\",\n\t\"Ǡ\":\"A\",\n\t\"Ạ\":\"A\",\n\t\"Ȁ\":\"A\",\n\t\"À\":\"A\",\n\t\"Ả\":\"A\",\n\t\"Ȃ\":\"A\",\n\t\"Ā\":\"A\",\n\t\"Ą\":\"A\",\n\t\"Å\":\"A\",\n\t\"Ǻ\":\"A\",\n\t\"Ḁ\":\"A\",\n\t\"Ⱥ\":\"A\",\n\t\"Ã\":\"A\",\n\t\"Ꜳ\":\"AA\",\n\t\"Æ\":\"AE\",\n\t\"Ǽ\":\"AE\",\n\t\"Ǣ\":\"AE\",\n\t\"Ꜵ\":\"AO\",\n\t\"Ꜷ\":\"AU\",\n\t\"Ꜹ\":\"AV\",\n\t\"Ꜻ\":\"AV\",\n\t\"Ꜽ\":\"AY\",\n\t\"Ḃ\":\"B\",\n\t\"Ḅ\":\"B\",\n\t\"Ɓ\":\"B\",\n\t\"Ḇ\":\"B\",\n\t\"Ƀ\":\"B\",\n\t\"Ƃ\":\"B\",\n\t\"Ć\":\"C\",\n\t\"Č\":\"C\",\n\t\"Ç\":\"C\",\n\t\"Ḉ\":\"C\",\n\t\"Ĉ\":\"C\",\n\t\"Ċ\":\"C\",\n\t\"Ƈ\":\"C\",\n\t\"Ȼ\":\"C\",\n\t\"Ď\":\"D\",\n\t\"Ḑ\":\"D\",\n\t\"Ḓ\":\"D\",\n\t\"Ḋ\":\"D\",\n\t\"Ḍ\":\"D\",\n\t\"Ɗ\":\"D\",\n\t\"Ḏ\":\"D\",\n\t\"Dz\":\"D\",\n\t\"Dž\":\"D\",\n\t\"Đ\":\"D\",\n\t\"Ƌ\":\"D\",\n\t\"DZ\":\"DZ\",\n\t\"DŽ\":\"DZ\",\n\t\"É\":\"E\",\n\t\"Ĕ\":\"E\",\n\t\"Ě\":\"E\",\n\t\"Ȩ\":\"E\",\n\t\"Ḝ\":\"E\",\n\t\"Ê\":\"E\",\n\t\"Ế\":\"E\",\n\t\"Ệ\":\"E\",\n\t\"Ề\":\"E\",\n\t\"Ể\":\"E\",\n\t\"Ễ\":\"E\",\n\t\"Ḙ\":\"E\",\n\t\"Ë\":\"E\",\n\t\"Ė\":\"E\",\n\t\"Ẹ\":\"E\",\n\t\"Ȅ\":\"E\",\n\t\"È\":\"E\",\n\t\"Ẻ\":\"E\",\n\t\"Ȇ\":\"E\",\n\t\"Ē\":\"E\",\n\t\"Ḗ\":\"E\",\n\t\"Ḕ\":\"E\",\n\t\"Ę\":\"E\",\n\t\"Ɇ\":\"E\",\n\t\"Ẽ\":\"E\",\n\t\"Ḛ\":\"E\",\n\t\"Ꝫ\":\"ET\",\n\t\"Ḟ\":\"F\",\n\t\"Ƒ\":\"F\",\n\t\"Ǵ\":\"G\",\n\t\"Ğ\":\"G\",\n\t\"Ǧ\":\"G\",\n\t\"Ģ\":\"G\",\n\t\"Ĝ\":\"G\",\n\t\"Ġ\":\"G\",\n\t\"Ɠ\":\"G\",\n\t\"Ḡ\":\"G\",\n\t\"Ǥ\":\"G\",\n\t\"Ḫ\":\"H\",\n\t\"Ȟ\":\"H\",\n\t\"Ḩ\":\"H\",\n\t\"Ĥ\":\"H\",\n\t\"Ⱨ\":\"H\",\n\t\"Ḧ\":\"H\",\n\t\"Ḣ\":\"H\",\n\t\"Ḥ\":\"H\",\n\t\"Ħ\":\"H\",\n\t\"Í\":\"I\",\n\t\"Ĭ\":\"I\",\n\t\"Ǐ\":\"I\",\n\t\"Î\":\"I\",\n\t\"Ï\":\"I\",\n\t\"Ḯ\":\"I\",\n\t\"İ\":\"I\",\n\t\"Ị\":\"I\",\n\t\"Ȉ\":\"I\",\n\t\"Ì\":\"I\",\n\t\"Ỉ\":\"I\",\n\t\"Ȋ\":\"I\",\n\t\"Ī\":\"I\",\n\t\"Į\":\"I\",\n\t\"Ɨ\":\"I\",\n\t\"Ĩ\":\"I\",\n\t\"Ḭ\":\"I\",\n\t\"Ꝺ\":\"D\",\n\t\"Ꝼ\":\"F\",\n\t\"Ᵹ\":\"G\",\n\t\"Ꞃ\":\"R\",\n\t\"Ꞅ\":\"S\",\n\t\"Ꞇ\":\"T\",\n\t\"Ꝭ\":\"IS\",\n\t\"Ĵ\":\"J\",\n\t\"Ɉ\":\"J\",\n\t\"Ḱ\":\"K\",\n\t\"Ǩ\":\"K\",\n\t\"Ķ\":\"K\",\n\t\"Ⱪ\":\"K\",\n\t\"Ꝃ\":\"K\",\n\t\"Ḳ\":\"K\",\n\t\"Ƙ\":\"K\",\n\t\"Ḵ\":\"K\",\n\t\"Ꝁ\":\"K\",\n\t\"Ꝅ\":\"K\",\n\t\"Ĺ\":\"L\",\n\t\"Ƚ\":\"L\",\n\t\"Ľ\":\"L\",\n\t\"Ļ\":\"L\",\n\t\"Ḽ\":\"L\",\n\t\"Ḷ\":\"L\",\n\t\"Ḹ\":\"L\",\n\t\"Ⱡ\":\"L\",\n\t\"Ꝉ\":\"L\",\n\t\"Ḻ\":\"L\",\n\t\"Ŀ\":\"L\",\n\t\"Ɫ\":\"L\",\n\t\"Lj\":\"L\",\n\t\"Ł\":\"L\",\n\t\"LJ\":\"LJ\",\n\t\"Ḿ\":\"M\",\n\t\"Ṁ\":\"M\",\n\t\"Ṃ\":\"M\",\n\t\"Ɱ\":\"M\",\n\t\"Ń\":\"N\",\n\t\"Ň\":\"N\",\n\t\"Ņ\":\"N\",\n\t\"Ṋ\":\"N\",\n\t\"Ṅ\":\"N\",\n\t\"Ṇ\":\"N\",\n\t\"Ǹ\":\"N\",\n\t\"Ɲ\":\"N\",\n\t\"Ṉ\":\"N\",\n\t\"Ƞ\":\"N\",\n\t\"Nj\":\"N\",\n\t\"Ñ\":\"N\",\n\t\"NJ\":\"NJ\",\n\t\"Ó\":\"O\",\n\t\"Ŏ\":\"O\",\n\t\"Ǒ\":\"O\",\n\t\"Ô\":\"O\",\n\t\"Ố\":\"O\",\n\t\"Ộ\":\"O\",\n\t\"Ồ\":\"O\",\n\t\"Ổ\":\"O\",\n\t\"Ỗ\":\"O\",\n\t\"Ö\":\"O\",\n\t\"Ȫ\":\"O\",\n\t\"Ȯ\":\"O\",\n\t\"Ȱ\":\"O\",\n\t\"Ọ\":\"O\",\n\t\"Ő\":\"O\",\n\t\"Ȍ\":\"O\",\n\t\"Ò\":\"O\",\n\t\"Ỏ\":\"O\",\n\t\"Ơ\":\"O\",\n\t\"Ớ\":\"O\",\n\t\"Ợ\":\"O\",\n\t\"Ờ\":\"O\",\n\t\"Ở\":\"O\",\n\t\"Ỡ\":\"O\",\n\t\"Ȏ\":\"O\",\n\t\"Ꝋ\":\"O\",\n\t\"Ꝍ\":\"O\",\n\t\"Ō\":\"O\",\n\t\"Ṓ\":\"O\",\n\t\"Ṑ\":\"O\",\n\t\"Ɵ\":\"O\",\n\t\"Ǫ\":\"O\",\n\t\"Ǭ\":\"O\",\n\t\"Ø\":\"O\",\n\t\"Ǿ\":\"O\",\n\t\"Õ\":\"O\",\n\t\"Ṍ\":\"O\",\n\t\"Ṏ\":\"O\",\n\t\"Ȭ\":\"O\",\n\t\"Ƣ\":\"OI\",\n\t\"Ꝏ\":\"OO\",\n\t\"Ɛ\":\"E\",\n\t\"Ɔ\":\"O\",\n\t\"Ȣ\":\"OU\",\n\t\"Ṕ\":\"P\",\n\t\"Ṗ\":\"P\",\n\t\"Ꝓ\":\"P\",\n\t\"Ƥ\":\"P\",\n\t\"Ꝕ\":\"P\",\n\t\"Ᵽ\":\"P\",\n\t\"Ꝑ\":\"P\",\n\t\"Ꝙ\":\"Q\",\n\t\"Ꝗ\":\"Q\",\n\t\"Ŕ\":\"R\",\n\t\"Ř\":\"R\",\n\t\"Ŗ\":\"R\",\n\t\"Ṙ\":\"R\",\n\t\"Ṛ\":\"R\",\n\t\"Ṝ\":\"R\",\n\t\"Ȑ\":\"R\",\n\t\"Ȓ\":\"R\",\n\t\"Ṟ\":\"R\",\n\t\"Ɍ\":\"R\",\n\t\"Ɽ\":\"R\",\n\t\"Ꜿ\":\"C\",\n\t\"Ǝ\":\"E\",\n\t\"Ś\":\"S\",\n\t\"Ṥ\":\"S\",\n\t\"Š\":\"S\",\n\t\"Ṧ\":\"S\",\n\t\"Ş\":\"S\",\n\t\"Ŝ\":\"S\",\n\t\"Ș\":\"S\",\n\t\"Ṡ\":\"S\",\n\t\"Ṣ\":\"S\",\n\t\"Ṩ\":\"S\",\n\t\"Ť\":\"T\",\n\t\"Ţ\":\"T\",\n\t\"Ṱ\":\"T\",\n\t\"Ț\":\"T\",\n\t\"Ⱦ\":\"T\",\n\t\"Ṫ\":\"T\",\n\t\"Ṭ\":\"T\",\n\t\"Ƭ\":\"T\",\n\t\"Ṯ\":\"T\",\n\t\"Ʈ\":\"T\",\n\t\"Ŧ\":\"T\",\n\t\"Ɐ\":\"A\",\n\t\"Ꞁ\":\"L\",\n\t\"Ɯ\":\"M\",\n\t\"Ʌ\":\"V\",\n\t\"Ꜩ\":\"TZ\",\n\t\"Ú\":\"U\",\n\t\"Ŭ\":\"U\",\n\t\"Ǔ\":\"U\",\n\t\"Û\":\"U\",\n\t\"Ṷ\":\"U\",\n\t\"Ü\":\"U\",\n\t\"Ǘ\":\"U\",\n\t\"Ǚ\":\"U\",\n\t\"Ǜ\":\"U\",\n\t\"Ǖ\":\"U\",\n\t\"Ṳ\":\"U\",\n\t\"Ụ\":\"U\",\n\t\"Ű\":\"U\",\n\t\"Ȕ\":\"U\",\n\t\"Ù\":\"U\",\n\t\"Ủ\":\"U\",\n\t\"Ư\":\"U\",\n\t\"Ứ\":\"U\",\n\t\"Ự\":\"U\",\n\t\"Ừ\":\"U\",\n\t\"Ử\":\"U\",\n\t\"Ữ\":\"U\",\n\t\"Ȗ\":\"U\",\n\t\"Ū\":\"U\",\n\t\"Ṻ\":\"U\",\n\t\"Ų\":\"U\",\n\t\"Ů\":\"U\",\n\t\"Ũ\":\"U\",\n\t\"Ṹ\":\"U\",\n\t\"Ṵ\":\"U\",\n\t\"Ꝟ\":\"V\",\n\t\"Ṿ\":\"V\",\n\t\"Ʋ\":\"V\",\n\t\"Ṽ\":\"V\",\n\t\"Ꝡ\":\"VY\",\n\t\"Ẃ\":\"W\",\n\t\"Ŵ\":\"W\",\n\t\"Ẅ\":\"W\",\n\t\"Ẇ\":\"W\",\n\t\"Ẉ\":\"W\",\n\t\"Ẁ\":\"W\",\n\t\"Ⱳ\":\"W\",\n\t\"Ẍ\":\"X\",\n\t\"Ẋ\":\"X\",\n\t\"Ý\":\"Y\",\n\t\"Ŷ\":\"Y\",\n\t\"Ÿ\":\"Y\",\n\t\"Ẏ\":\"Y\",\n\t\"Ỵ\":\"Y\",\n\t\"Ỳ\":\"Y\",\n\t\"Ƴ\":\"Y\",\n\t\"Ỷ\":\"Y\",\n\t\"Ỿ\":\"Y\",\n\t\"Ȳ\":\"Y\",\n\t\"Ɏ\":\"Y\",\n\t\"Ỹ\":\"Y\",\n\t\"Ź\":\"Z\",\n\t\"Ž\":\"Z\",\n\t\"Ẑ\":\"Z\",\n\t\"Ⱬ\":\"Z\",\n\t\"Ż\":\"Z\",\n\t\"Ẓ\":\"Z\",\n\t\"Ȥ\":\"Z\",\n\t\"Ẕ\":\"Z\",\n\t\"Ƶ\":\"Z\",\n\t\"IJ\":\"IJ\",\n\t\"Œ\":\"OE\",\n\t\"ᴀ\":\"A\",\n\t\"ᴁ\":\"AE\",\n\t\"ʙ\":\"B\",\n\t\"ᴃ\":\"B\",\n\t\"ᴄ\":\"C\",\n\t\"ᴅ\":\"D\",\n\t\"ᴇ\":\"E\",\n\t\"ꜰ\":\"F\",\n\t\"ɢ\":\"G\",\n\t\"ʛ\":\"G\",\n\t\"ʜ\":\"H\",\n\t\"ɪ\":\"I\",\n\t\"ʁ\":\"R\",\n\t\"ᴊ\":\"J\",\n\t\"ᴋ\":\"K\",\n\t\"ʟ\":\"L\",\n\t\"ᴌ\":\"L\",\n\t\"ᴍ\":\"M\",\n\t\"ɴ\":\"N\",\n\t\"ᴏ\":\"O\",\n\t\"ɶ\":\"OE\",\n\t\"ᴐ\":\"O\",\n\t\"ᴕ\":\"OU\",\n\t\"ᴘ\":\"P\",\n\t\"ʀ\":\"R\",\n\t\"ᴎ\":\"N\",\n\t\"ᴙ\":\"R\",\n\t\"ꜱ\":\"S\",\n\t\"ᴛ\":\"T\",\n\t\"ⱻ\":\"E\",\n\t\"ᴚ\":\"R\",\n\t\"ᴜ\":\"U\",\n\t\"ᴠ\":\"V\",\n\t\"ᴡ\":\"W\",\n\t\"ʏ\":\"Y\",\n\t\"ᴢ\":\"Z\",\n\t\"á\":\"a\",\n\t\"ă\":\"a\",\n\t\"ắ\":\"a\",\n\t\"ặ\":\"a\",\n\t\"ằ\":\"a\",\n\t\"ẳ\":\"a\",\n\t\"ẵ\":\"a\",\n\t\"ǎ\":\"a\",\n\t\"â\":\"a\",\n\t\"ấ\":\"a\",\n\t\"ậ\":\"a\",\n\t\"ầ\":\"a\",\n\t\"ẩ\":\"a\",\n\t\"ẫ\":\"a\",\n\t\"ä\":\"a\",\n\t\"ǟ\":\"a\",\n\t\"ȧ\":\"a\",\n\t\"ǡ\":\"a\",\n\t\"ạ\":\"a\",\n\t\"ȁ\":\"a\",\n\t\"à\":\"a\",\n\t\"ả\":\"a\",\n\t\"ȃ\":\"a\",\n\t\"ā\":\"a\",\n\t\"ą\":\"a\",\n\t\"ᶏ\":\"a\",\n\t\"ẚ\":\"a\",\n\t\"å\":\"a\",\n\t\"ǻ\":\"a\",\n\t\"ḁ\":\"a\",\n\t\"ⱥ\":\"a\",\n\t\"ã\":\"a\",\n\t\"ꜳ\":\"aa\",\n\t\"æ\":\"ae\",\n\t\"ǽ\":\"ae\",\n\t\"ǣ\":\"ae\",\n\t\"ꜵ\":\"ao\",\n\t\"ꜷ\":\"au\",\n\t\"ꜹ\":\"av\",\n\t\"ꜻ\":\"av\",\n\t\"ꜽ\":\"ay\",\n\t\"ḃ\":\"b\",\n\t\"ḅ\":\"b\",\n\t\"ɓ\":\"b\",\n\t\"ḇ\":\"b\",\n\t\"ᵬ\":\"b\",\n\t\"ᶀ\":\"b\",\n\t\"ƀ\":\"b\",\n\t\"ƃ\":\"b\",\n\t\"ɵ\":\"o\",\n\t\"ć\":\"c\",\n\t\"č\":\"c\",\n\t\"ç\":\"c\",\n\t\"ḉ\":\"c\",\n\t\"ĉ\":\"c\",\n\t\"ɕ\":\"c\",\n\t\"ċ\":\"c\",\n\t\"ƈ\":\"c\",\n\t\"ȼ\":\"c\",\n\t\"ď\":\"d\",\n\t\"ḑ\":\"d\",\n\t\"ḓ\":\"d\",\n\t\"ȡ\":\"d\",\n\t\"ḋ\":\"d\",\n\t\"ḍ\":\"d\",\n\t\"ɗ\":\"d\",\n\t\"ᶑ\":\"d\",\n\t\"ḏ\":\"d\",\n\t\"ᵭ\":\"d\",\n\t\"ᶁ\":\"d\",\n\t\"đ\":\"d\",\n\t\"ɖ\":\"d\",\n\t\"ƌ\":\"d\",\n\t\"ı\":\"i\",\n\t\"ȷ\":\"j\",\n\t\"ɟ\":\"j\",\n\t\"ʄ\":\"j\",\n\t\"dz\":\"dz\",\n\t\"dž\":\"dz\",\n\t\"é\":\"e\",\n\t\"ĕ\":\"e\",\n\t\"ě\":\"e\",\n\t\"ȩ\":\"e\",\n\t\"ḝ\":\"e\",\n\t\"ê\":\"e\",\n\t\"ế\":\"e\",\n\t\"ệ\":\"e\",\n\t\"ề\":\"e\",\n\t\"ể\":\"e\",\n\t\"ễ\":\"e\",\n\t\"ḙ\":\"e\",\n\t\"ë\":\"e\",\n\t\"ė\":\"e\",\n\t\"ẹ\":\"e\",\n\t\"ȅ\":\"e\",\n\t\"è\":\"e\",\n\t\"ẻ\":\"e\",\n\t\"ȇ\":\"e\",\n\t\"ē\":\"e\",\n\t\"ḗ\":\"e\",\n\t\"ḕ\":\"e\",\n\t\"ⱸ\":\"e\",\n\t\"ę\":\"e\",\n\t\"ᶒ\":\"e\",\n\t\"ɇ\":\"e\",\n\t\"ẽ\":\"e\",\n\t\"ḛ\":\"e\",\n\t\"ꝫ\":\"et\",\n\t\"ḟ\":\"f\",\n\t\"ƒ\":\"f\",\n\t\"ᵮ\":\"f\",\n\t\"ᶂ\":\"f\",\n\t\"ǵ\":\"g\",\n\t\"ğ\":\"g\",\n\t\"ǧ\":\"g\",\n\t\"ģ\":\"g\",\n\t\"ĝ\":\"g\",\n\t\"ġ\":\"g\",\n\t\"ɠ\":\"g\",\n\t\"ḡ\":\"g\",\n\t\"ᶃ\":\"g\",\n\t\"ǥ\":\"g\",\n\t\"ḫ\":\"h\",\n\t\"ȟ\":\"h\",\n\t\"ḩ\":\"h\",\n\t\"ĥ\":\"h\",\n\t\"ⱨ\":\"h\",\n\t\"ḧ\":\"h\",\n\t\"ḣ\":\"h\",\n\t\"ḥ\":\"h\",\n\t\"ɦ\":\"h\",\n\t\"ẖ\":\"h\",\n\t\"ħ\":\"h\",\n\t\"ƕ\":\"hv\",\n\t\"í\":\"i\",\n\t\"ĭ\":\"i\",\n\t\"ǐ\":\"i\",\n\t\"î\":\"i\",\n\t\"ï\":\"i\",\n\t\"ḯ\":\"i\",\n\t\"ị\":\"i\",\n\t\"ȉ\":\"i\",\n\t\"ì\":\"i\",\n\t\"ỉ\":\"i\",\n\t\"ȋ\":\"i\",\n\t\"ī\":\"i\",\n\t\"į\":\"i\",\n\t\"ᶖ\":\"i\",\n\t\"ɨ\":\"i\",\n\t\"ĩ\":\"i\",\n\t\"ḭ\":\"i\",\n\t\"ꝺ\":\"d\",\n\t\"ꝼ\":\"f\",\n\t\"ᵹ\":\"g\",\n\t\"ꞃ\":\"r\",\n\t\"ꞅ\":\"s\",\n\t\"ꞇ\":\"t\",\n\t\"ꝭ\":\"is\",\n\t\"ǰ\":\"j\",\n\t\"ĵ\":\"j\",\n\t\"ʝ\":\"j\",\n\t\"ɉ\":\"j\",\n\t\"ḱ\":\"k\",\n\t\"ǩ\":\"k\",\n\t\"ķ\":\"k\",\n\t\"ⱪ\":\"k\",\n\t\"ꝃ\":\"k\",\n\t\"ḳ\":\"k\",\n\t\"ƙ\":\"k\",\n\t\"ḵ\":\"k\",\n\t\"ᶄ\":\"k\",\n\t\"ꝁ\":\"k\",\n\t\"ꝅ\":\"k\",\n\t\"ĺ\":\"l\",\n\t\"ƚ\":\"l\",\n\t\"ɬ\":\"l\",\n\t\"ľ\":\"l\",\n\t\"ļ\":\"l\",\n\t\"ḽ\":\"l\",\n\t\"ȴ\":\"l\",\n\t\"ḷ\":\"l\",\n\t\"ḹ\":\"l\",\n\t\"ⱡ\":\"l\",\n\t\"ꝉ\":\"l\",\n\t\"ḻ\":\"l\",\n\t\"ŀ\":\"l\",\n\t\"ɫ\":\"l\",\n\t\"ᶅ\":\"l\",\n\t\"ɭ\":\"l\",\n\t\"ł\":\"l\",\n\t\"lj\":\"lj\",\n\t\"ſ\":\"s\",\n\t\"ẜ\":\"s\",\n\t\"ẛ\":\"s\",\n\t\"ẝ\":\"s\",\n\t\"ḿ\":\"m\",\n\t\"ṁ\":\"m\",\n\t\"ṃ\":\"m\",\n\t\"ɱ\":\"m\",\n\t\"ᵯ\":\"m\",\n\t\"ᶆ\":\"m\",\n\t\"ń\":\"n\",\n\t\"ň\":\"n\",\n\t\"ņ\":\"n\",\n\t\"ṋ\":\"n\",\n\t\"ȵ\":\"n\",\n\t\"ṅ\":\"n\",\n\t\"ṇ\":\"n\",\n\t\"ǹ\":\"n\",\n\t\"ɲ\":\"n\",\n\t\"ṉ\":\"n\",\n\t\"ƞ\":\"n\",\n\t\"ᵰ\":\"n\",\n\t\"ᶇ\":\"n\",\n\t\"ɳ\":\"n\",\n\t\"ñ\":\"n\",\n\t\"nj\":\"nj\",\n\t\"ó\":\"o\",\n\t\"ŏ\":\"o\",\n\t\"ǒ\":\"o\",\n\t\"ô\":\"o\",\n\t\"ố\":\"o\",\n\t\"ộ\":\"o\",\n\t\"ồ\":\"o\",\n\t\"ổ\":\"o\",\n\t\"ỗ\":\"o\",\n\t\"ö\":\"o\",\n\t\"ȫ\":\"o\",\n\t\"ȯ\":\"o\",\n\t\"ȱ\":\"o\",\n\t\"ọ\":\"o\",\n\t\"ő\":\"o\",\n\t\"ȍ\":\"o\",\n\t\"ò\":\"o\",\n\t\"ỏ\":\"o\",\n\t\"ơ\":\"o\",\n\t\"ớ\":\"o\",\n\t\"ợ\":\"o\",\n\t\"ờ\":\"o\",\n\t\"ở\":\"o\",\n\t\"ỡ\":\"o\",\n\t\"ȏ\":\"o\",\n\t\"ꝋ\":\"o\",\n\t\"ꝍ\":\"o\",\n\t\"ⱺ\":\"o\",\n\t\"ō\":\"o\",\n\t\"ṓ\":\"o\",\n\t\"ṑ\":\"o\",\n\t\"ǫ\":\"o\",\n\t\"ǭ\":\"o\",\n\t\"ø\":\"o\",\n\t\"ǿ\":\"o\",\n\t\"õ\":\"o\",\n\t\"ṍ\":\"o\",\n\t\"ṏ\":\"o\",\n\t\"ȭ\":\"o\",\n\t\"ƣ\":\"oi\",\n\t\"ꝏ\":\"oo\",\n\t\"ɛ\":\"e\",\n\t\"ᶓ\":\"e\",\n\t\"ɔ\":\"o\",\n\t\"ᶗ\":\"o\",\n\t\"ȣ\":\"ou\",\n\t\"ṕ\":\"p\",\n\t\"ṗ\":\"p\",\n\t\"ꝓ\":\"p\",\n\t\"ƥ\":\"p\",\n\t\"ᵱ\":\"p\",\n\t\"ᶈ\":\"p\",\n\t\"ꝕ\":\"p\",\n\t\"ᵽ\":\"p\",\n\t\"ꝑ\":\"p\",\n\t\"ꝙ\":\"q\",\n\t\"ʠ\":\"q\",\n\t\"ɋ\":\"q\",\n\t\"ꝗ\":\"q\",\n\t\"ŕ\":\"r\",\n\t\"ř\":\"r\",\n\t\"ŗ\":\"r\",\n\t\"ṙ\":\"r\",\n\t\"ṛ\":\"r\",\n\t\"ṝ\":\"r\",\n\t\"ȑ\":\"r\",\n\t\"ɾ\":\"r\",\n\t\"ᵳ\":\"r\",\n\t\"ȓ\":\"r\",\n\t\"ṟ\":\"r\",\n\t\"ɼ\":\"r\",\n\t\"ᵲ\":\"r\",\n\t\"ᶉ\":\"r\",\n\t\"ɍ\":\"r\",\n\t\"ɽ\":\"r\",\n\t\"ↄ\":\"c\",\n\t\"ꜿ\":\"c\",\n\t\"ɘ\":\"e\",\n\t\"ɿ\":\"r\",\n\t\"ś\":\"s\",\n\t\"ṥ\":\"s\",\n\t\"š\":\"s\",\n\t\"ṧ\":\"s\",\n\t\"ş\":\"s\",\n\t\"ŝ\":\"s\",\n\t\"ș\":\"s\",\n\t\"ṡ\":\"s\",\n\t\"ṣ\":\"s\",\n\t\"ṩ\":\"s\",\n\t\"ʂ\":\"s\",\n\t\"ᵴ\":\"s\",\n\t\"ᶊ\":\"s\",\n\t\"ȿ\":\"s\",\n\t\"ɡ\":\"g\",\n\t\"ᴑ\":\"o\",\n\t\"ᴓ\":\"o\",\n\t\"ᴝ\":\"u\",\n\t\"ť\":\"t\",\n\t\"ţ\":\"t\",\n\t\"ṱ\":\"t\",\n\t\"ț\":\"t\",\n\t\"ȶ\":\"t\",\n\t\"ẗ\":\"t\",\n\t\"ⱦ\":\"t\",\n\t\"ṫ\":\"t\",\n\t\"ṭ\":\"t\",\n\t\"ƭ\":\"t\",\n\t\"ṯ\":\"t\",\n\t\"ᵵ\":\"t\",\n\t\"ƫ\":\"t\",\n\t\"ʈ\":\"t\",\n\t\"ŧ\":\"t\",\n\t\"ᵺ\":\"th\",\n\t\"ɐ\":\"a\",\n\t\"ᴂ\":\"ae\",\n\t\"ǝ\":\"e\",\n\t\"ᵷ\":\"g\",\n\t\"ɥ\":\"h\",\n\t\"ʮ\":\"h\",\n\t\"ʯ\":\"h\",\n\t\"ᴉ\":\"i\",\n\t\"ʞ\":\"k\",\n\t\"ꞁ\":\"l\",\n\t\"ɯ\":\"m\",\n\t\"ɰ\":\"m\",\n\t\"ᴔ\":\"oe\",\n\t\"ɹ\":\"r\",\n\t\"ɻ\":\"r\",\n\t\"ɺ\":\"r\",\n\t\"ⱹ\":\"r\",\n\t\"ʇ\":\"t\",\n\t\"ʌ\":\"v\",\n\t\"ʍ\":\"w\",\n\t\"ʎ\":\"y\",\n\t\"ꜩ\":\"tz\",\n\t\"ú\":\"u\",\n\t\"ŭ\":\"u\",\n\t\"ǔ\":\"u\",\n\t\"û\":\"u\",\n\t\"ṷ\":\"u\",\n\t\"ü\":\"u\",\n\t\"ǘ\":\"u\",\n\t\"ǚ\":\"u\",\n\t\"ǜ\":\"u\",\n\t\"ǖ\":\"u\",\n\t\"ṳ\":\"u\",\n\t\"ụ\":\"u\",\n\t\"ű\":\"u\",\n\t\"ȕ\":\"u\",\n\t\"ù\":\"u\",\n\t\"ủ\":\"u\",\n\t\"ư\":\"u\",\n\t\"ứ\":\"u\",\n\t\"ự\":\"u\",\n\t\"ừ\":\"u\",\n\t\"ử\":\"u\",\n\t\"ữ\":\"u\",\n\t\"ȗ\":\"u\",\n\t\"ū\":\"u\",\n\t\"ṻ\":\"u\",\n\t\"ų\":\"u\",\n\t\"ᶙ\":\"u\",\n\t\"ů\":\"u\",\n\t\"ũ\":\"u\",\n\t\"ṹ\":\"u\",\n\t\"ṵ\":\"u\",\n\t\"ᵫ\":\"ue\",\n\t\"ꝸ\":\"um\",\n\t\"ⱴ\":\"v\",\n\t\"ꝟ\":\"v\",\n\t\"ṿ\":\"v\",\n\t\"ʋ\":\"v\",\n\t\"ᶌ\":\"v\",\n\t\"ⱱ\":\"v\",\n\t\"ṽ\":\"v\",\n\t\"ꝡ\":\"vy\",\n\t\"ẃ\":\"w\",\n\t\"ŵ\":\"w\",\n\t\"ẅ\":\"w\",\n\t\"ẇ\":\"w\",\n\t\"ẉ\":\"w\",\n\t\"ẁ\":\"w\",\n\t\"ⱳ\":\"w\",\n\t\"ẘ\":\"w\",\n\t\"ẍ\":\"x\",\n\t\"ẋ\":\"x\",\n\t\"ᶍ\":\"x\",\n\t\"ý\":\"y\",\n\t\"ŷ\":\"y\",\n\t\"ÿ\":\"y\",\n\t\"ẏ\":\"y\",\n\t\"ỵ\":\"y\",\n\t\"ỳ\":\"y\",\n\t\"ƴ\":\"y\",\n\t\"ỷ\":\"y\",\n\t\"ỿ\":\"y\",\n\t\"ȳ\":\"y\",\n\t\"ẙ\":\"y\",\n\t\"ɏ\":\"y\",\n\t\"ỹ\":\"y\",\n\t\"ź\":\"z\",\n\t\"ž\":\"z\",\n\t\"ẑ\":\"z\",\n\t\"ʑ\":\"z\",\n\t\"ⱬ\":\"z\",\n\t\"ż\":\"z\",\n\t\"ẓ\":\"z\",\n\t\"ȥ\":\"z\",\n\t\"ẕ\":\"z\",\n\t\"ᵶ\":\"z\",\n\t\"ᶎ\":\"z\",\n\t\"ʐ\":\"z\",\n\t\"ƶ\":\"z\",\n\t\"ɀ\":\"z\",\n\t\"ff\":\"ff\",\n\t\"ffi\":\"ffi\",\n\t\"ffl\":\"ffl\",\n\t\"fi\":\"fi\",\n\t\"fl\":\"fl\",\n\t\"ij\":\"ij\",\n\t\"œ\":\"oe\",\n\t\"st\":\"st\",\n\t\"ₐ\":\"a\",\n\t\"ₑ\":\"e\",\n\t\"ᵢ\":\"i\",\n\t\"ⱼ\":\"j\",\n\t\"ₒ\":\"o\",\n\t\"ᵣ\":\"r\",\n\t\"ᵤ\":\"u\",\n\t\"ᵥ\":\"v\",\n\t\"ₓ\":\"x\",\n\t\"Ё\":\"YO\",\n\t\"Й\":\"I\",\n\t\"Ц\":\"TS\",\n\t\"У\":\"U\",\n\t\"К\":\"K\",\n\t\"Е\":\"E\",\n\t\"Н\":\"N\",\n\t\"Г\":\"G\",\n\t\"Ш\":\"SH\",\n\t\"Щ\":\"SCH\",\n\t\"З\":\"Z\",\n\t\"Х\":\"H\",\n\t\"Ъ\":\"'\",\n\t\"ё\":\"yo\",\n\t\"й\":\"i\",\n\t\"ц\":\"ts\",\n\t\"у\":\"u\",\n\t\"к\":\"k\",\n\t\"е\":\"e\",\n\t\"н\":\"n\",\n\t\"г\":\"g\",\n\t\"ш\":\"sh\",\n\t\"щ\":\"sch\",\n\t\"з\":\"z\",\n\t\"х\":\"h\",\n\t\"ъ\":\"'\",\n\t\"Ф\":\"F\",\n\t\"Ы\":\"I\",\n\t\"В\":\"V\",\n\t\"А\":\"a\",\n\t\"П\":\"P\",\n\t\"Р\":\"R\",\n\t\"О\":\"O\",\n\t\"Л\":\"L\",\n\t\"Д\":\"D\",\n\t\"Ж\":\"ZH\",\n\t\"Э\":\"E\",\n\t\"ф\":\"f\",\n\t\"ы\":\"i\",\n\t\"в\":\"v\",\n\t\"а\":\"a\",\n\t\"п\":\"p\",\n\t\"р\":\"r\",\n\t\"о\":\"o\",\n\t\"л\":\"l\",\n\t\"д\":\"d\",\n\t\"ж\":\"zh\",\n\t\"э\":\"e\",\n\t\"Я\":\"Ya\",\n\t\"Ч\":\"CH\",\n\t\"С\":\"S\",\n\t\"М\":\"M\",\n\t\"И\":\"I\",\n\t\"Т\":\"T\",\n\t\"Ь\":\"'\",\n\t\"Б\":\"B\",\n\t\"Ю\":\"YU\",\n\t\"я\":\"ya\",\n\t\"ч\":\"ch\",\n\t\"с\":\"s\",\n\t\"м\":\"m\",\n\t\"и\":\"i\",\n\t\"т\":\"t\",\n\t\"ь\":\"'\",\n\t\"б\":\"b\",\n\t\"ю\":\"yu\"\n};\n\nexports.transliterate = function(str) {\n\treturn str.replace(/[^A-Za-z0-9\\[\\] ]/g,function(ch) {\n\t\treturn exports.transliterationPairs[ch] || ch\n\t});\n};\n\nexports.transliterateToSafeASCII = function(str) {\n\treturn str.replace(/[^\\x00-\\x7F]/g,function(ch) {\n\t\treturn exports.transliterationPairs[ch] || \"\"\n\t});\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "utils"
},
"$:/core/modules/utils/utils.js": {
"title": "$:/core/modules/utils/utils.js",
"text": "/*\\\ntitle: $:/core/modules/utils/utils.js\ntype: application/javascript\nmodule-type: utils\n\nVarious static utility functions.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar base64utf8 = require(\"$:/core/modules/utils/base64-utf8/base64-utf8.module.js\");\n\n/*\nDisplay a message, in colour if we're on a terminal\n*/\nexports.log = function(text,colour) {\n\tconsole.log($tw.node ? exports.terminalColour(colour) + text + exports.terminalColour() : text);\n};\n\nexports.terminalColour = function(colour) {\n\tif(!$tw.browser && $tw.node && process.stdout.isTTY) {\n\t\tif(colour) {\n\t\t\tvar code = exports.terminalColourLookup[colour];\n\t\t\tif(code) {\n\t\t\t\treturn \"\\x1b[\" + code + \"m\";\n\t\t\t}\n\t\t} else {\n\t\t\treturn \"\\x1b[0m\"; // Cancel colour\n\t\t}\n\t}\n\treturn \"\";\n};\n\nexports.terminalColourLookup = {\n\t\"black\": \"0;30\",\n\t\"red\": \"0;31\",\n\t\"green\": \"0;32\",\n\t\"brown/orange\": \"0;33\",\n\t\"blue\": \"0;34\",\n\t\"purple\": \"0;35\",\n\t\"cyan\": \"0;36\",\n\t\"light gray\": \"0;37\"\n};\n\n/*\nDisplay a warning, in colour if we're on a terminal\n*/\nexports.warning = function(text) {\n\texports.log(text,\"brown/orange\");\n};\n\n/*\nLog a table of name: value pairs\n*/\nexports.logTable = function(data) {\n\tif(console.table) {\n\t\tconsole.table(data);\n\t} else {\n\t\t$tw.utils.each(data,function(value,name) {\n\t\t\tconsole.log(name + \": \" + value);\n\t\t});\n\t}\n}\n\n/*\nReturn the integer represented by the str (string).\nReturn the dflt (default) parameter if str is not a base-10 number.\n*/\nexports.getInt = function(str,deflt) {\n\tvar i = parseInt(str,10);\n\treturn isNaN(i) ? deflt : i;\n}\n\n/*\nRepeatedly replaces a substring within a string. Like String.prototype.replace, but without any of the default special handling of $ sequences in the replace string\n*/\nexports.replaceString = function(text,search,replace) {\n\treturn text.replace(search,function() {\n\t\treturn replace;\n\t});\n};\n\n/*\nRepeats a string\n*/\nexports.repeat = function(str,count) {\n\tvar result = \"\";\n\tfor(var t=0;t<count;t++) {\n\t\tresult += str;\n\t}\n\treturn result;\n};\n\n/*\nTrim whitespace from the start and end of a string\nThanks to Steven Levithan, http://blog.stevenlevithan.com/archives/faster-trim-javascript\n*/\nexports.trim = function(str) {\n\tif(typeof str === \"string\") {\n\t\treturn str.replace(/^\\s\\s*/, '').replace(/\\s\\s*$/, '');\n\t} else {\n\t\treturn str;\n\t}\n};\n\nexports.trimPrefix = function(str,unwanted) {\n\tif(typeof str === \"string\" && typeof unwanted === \"string\") {\n\t\tif(unwanted === \"\") {\n\t\t\treturn str.replace(/^\\s\\s*/, '');\n\t\t} else {\n\t\t\t// Safely regexp-escape the unwanted text\n\t\t\tunwanted = unwanted.replace(/[\\\\^$*+?.()|[\\]{}]/g, '\\\\$&');\n\t\t\tvar regex = new RegExp('^(' + unwanted + ')+');\n\t\t\treturn str.replace(regex, '');\n\t\t}\n\t} else {\n\t\treturn str;\n\t}\n};\n\nexports.trimSuffix = function(str,unwanted) {\n\tif(typeof str === \"string\" && typeof unwanted === \"string\") {\n\t\tif(unwanted === \"\") {\n\t\t\treturn str.replace(/\\s\\s*$/, '');\n\t\t} else {\n\t\t\t// Safely regexp-escape the unwanted text\n\t\t\tunwanted = unwanted.replace(/[\\\\^$*+?.()|[\\]{}]/g, '\\\\$&');\n\t\t\tvar regex = new RegExp('(' + unwanted + ')+$');\n\t\t\treturn str.replace(regex, '');\n\t\t}\n\t} else {\n\t\treturn str;\n\t}\n};\n\n/*\nConvert a string to sentence case (ie capitalise first letter)\n*/\nexports.toSentenceCase = function(str) {\n\treturn (str || \"\").replace(/^\\S/, function(c) {return c.toUpperCase();});\n}\n\n/*\nConvert a string to title case (ie capitalise each initial letter)\n*/\nexports.toTitleCase = function(str) {\n\treturn (str || \"\").replace(/(^|\\s)\\S/g, function(c) {return c.toUpperCase();});\n}\n\t\n/*\nFind the line break preceding a given position in a string\nReturns position immediately after that line break, or the start of the string\n*/\nexports.findPrecedingLineBreak = function(text,pos) {\n\tvar result = text.lastIndexOf(\"\\n\",pos - 1);\n\tif(result === -1) {\n\t\tresult = 0;\n\t} else {\n\t\tresult++;\n\t\tif(text.charAt(result) === \"\\r\") {\n\t\t\tresult++;\n\t\t}\n\t}\n\treturn result;\n};\n\n/*\nFind the line break following a given position in a string\n*/\nexports.findFollowingLineBreak = function(text,pos) {\n\t// Cut to just past the following line break, or to the end of the text\n\tvar result = text.indexOf(\"\\n\",pos);\n\tif(result === -1) {\n\t\tresult = text.length;\n\t} else {\n\t\tif(text.charAt(result) === \"\\r\") {\n\t\t\tresult++;\n\t\t}\n\t}\n\treturn result;\n};\n\n/*\nReturn the number of keys in an object\n*/\nexports.count = function(object) {\n\treturn Object.keys(object || {}).length;\n};\n\n/*\nDetermine whether an array-item is an object-property\n*/\nexports.hopArray = function(object,array) {\n\tfor(var i=0; i<array.length; i++) {\n\t\tif($tw.utils.hop(object,array[i])) {\n\t\t\treturn true;\n\t\t}\n\t}\n\treturn false;\n};\n\n/*\nRemove entries from an array\n\tarray: array to modify\n\tvalue: a single value to remove, or an array of values to remove\n*/\nexports.removeArrayEntries = function(array,value) {\n\tvar t,p;\n\tif($tw.utils.isArray(value)) {\n\t\tfor(t=0; t<value.length; t++) {\n\t\t\tp = array.indexOf(value[t]);\n\t\t\tif(p !== -1) {\n\t\t\t\tarray.splice(p,1);\n\t\t\t}\n\t\t}\n\t} else {\n\t\tp = array.indexOf(value);\n\t\tif(p !== -1) {\n\t\t\tarray.splice(p,1);\n\t\t}\n\t}\n};\n\n/*\nCheck whether any members of a hashmap are present in another hashmap\n*/\nexports.checkDependencies = function(dependencies,changes) {\n\tvar hit = false;\n\t$tw.utils.each(changes,function(change,title) {\n\t\tif($tw.utils.hop(dependencies,title)) {\n\t\t\thit = true;\n\t\t}\n\t});\n\treturn hit;\n};\n\nexports.extend = function(object /* [, src] */) {\n\t$tw.utils.each(Array.prototype.slice.call(arguments, 1), function(source) {\n\t\tif(source) {\n\t\t\tfor(var property in source) {\n\t\t\t\tobject[property] = source[property];\n\t\t\t}\n\t\t}\n\t});\n\treturn object;\n};\n\nexports.deepCopy = function(object) {\n\tvar result,t;\n\tif($tw.utils.isArray(object)) {\n\t\t// Copy arrays\n\t\tresult = object.slice(0);\n\t} else if(typeof object === \"object\") {\n\t\tresult = {};\n\t\tfor(t in object) {\n\t\t\tif(object[t] !== undefined) {\n\t\t\t\tresult[t] = $tw.utils.deepCopy(object[t]);\n\t\t\t}\n\t\t}\n\t} else {\n\t\tresult = object;\n\t}\n\treturn result;\n};\n\nexports.extendDeepCopy = function(object,extendedProperties) {\n\tvar result = $tw.utils.deepCopy(object),t;\n\tfor(t in extendedProperties) {\n\t\tif(extendedProperties[t] !== undefined) {\n\t\t\tresult[t] = $tw.utils.deepCopy(extendedProperties[t]);\n\t\t}\n\t}\n\treturn result;\n};\n\nexports.deepFreeze = function deepFreeze(object) {\n\tvar property, key;\n\tif(object) {\n\t\tObject.freeze(object);\n\t\tfor(key in object) {\n\t\t\tproperty = object[key];\n\t\t\tif($tw.utils.hop(object,key) && (typeof property === \"object\") && !Object.isFrozen(property)) {\n\t\t\t\tdeepFreeze(property);\n\t\t\t}\n\t\t}\n\t}\n};\n\nexports.slowInSlowOut = function(t) {\n\treturn (1 - ((Math.cos(t * Math.PI) + 1) / 2));\n};\n\nexports.formatDateString = function(date,template) {\n\tvar result = \"\",\n\t\tt = template,\n\t\tmatches = [\n\t\t\t[/^0hh12/, function() {\n\t\t\t\treturn $tw.utils.pad($tw.utils.getHours12(date));\n\t\t\t}],\n\t\t\t[/^wYYYY/, function() {\n\t\t\t\treturn $tw.utils.pad($tw.utils.getYearForWeekNo(date),4);\n\t\t\t}],\n\t\t\t[/^hh12/, function() {\n\t\t\t\treturn $tw.utils.getHours12(date);\n\t\t\t}],\n\t\t\t[/^DDth/, function() {\n\t\t\t\treturn date.getDate() + $tw.utils.getDaySuffix(date);\n\t\t\t}],\n\t\t\t[/^YYYY/, function() {\n\t\t\t\treturn $tw.utils.pad(date.getFullYear(),4);\n\t\t\t}],\n\t\t\t[/^aYYYY/, function() {\n\t\t\t\treturn $tw.utils.pad(Math.abs(date.getFullYear()),4);\n\t\t\t}],\n\t\t\t[/^\\{era:([^,\\|}]*)\\|([^}\\|]*)\\|([^}]*)\\}/, function(match) {\n\t\t\t\tvar year = date.getFullYear();\n\t\t\t\treturn year === 0 ? match[2] : (year < 0 ? match[1] : match[3]);\n\t\t\t}],\n\t\t\t[/^0hh/, function() {\n\t\t\t\treturn $tw.utils.pad(date.getHours());\n\t\t\t}],\n\t\t\t[/^0mm/, function() {\n\t\t\t\treturn $tw.utils.pad(date.getMinutes());\n\t\t\t}],\n\t\t\t[/^0ss/, function() {\n\t\t\t\treturn $tw.utils.pad(date.getSeconds());\n\t\t\t}],\n\t\t\t[/^0XXX/, function() {\n\t\t\t\treturn $tw.utils.pad(date.getMilliseconds(),3);\n\t\t\t}],\n\t\t\t[/^0DD/, function() {\n\t\t\t\treturn $tw.utils.pad(date.getDate());\n\t\t\t}],\n\t\t\t[/^0MM/, function() {\n\t\t\t\treturn $tw.utils.pad(date.getMonth()+1);\n\t\t\t}],\n\t\t\t[/^0WW/, function() {\n\t\t\t\treturn $tw.utils.pad($tw.utils.getWeek(date));\n\t\t\t}],\n\t\t\t[/^ddd/, function() {\n\t\t\t\treturn $tw.language.getString(\"Date/Short/Day/\" + date.getDay());\n\t\t\t}],\n\t\t\t[/^mmm/, function() {\n\t\t\t\treturn $tw.language.getString(\"Date/Short/Month/\" + (date.getMonth() + 1));\n\t\t\t}],\n\t\t\t[/^DDD/, function() {\n\t\t\t\treturn $tw.language.getString(\"Date/Long/Day/\" + date.getDay());\n\t\t\t}],\n\t\t\t[/^MMM/, function() {\n\t\t\t\treturn $tw.language.getString(\"Date/Long/Month/\" + (date.getMonth() + 1));\n\t\t\t}],\n\t\t\t[/^TZD/, function() {\n\t\t\t\tvar tz = date.getTimezoneOffset(),\n\t\t\t\tatz = Math.abs(tz);\n\t\t\t\treturn (tz < 0 ? '+' : '-') + $tw.utils.pad(Math.floor(atz / 60)) + ':' + $tw.utils.pad(atz % 60);\n\t\t\t}],\n\t\t\t[/^wYY/, function() {\n\t\t\t\treturn $tw.utils.pad($tw.utils.getYearForWeekNo(date) - 2000);\n\t\t\t}],\n\t\t\t[/^[ap]m/, function() {\n\t\t\t\treturn $tw.utils.getAmPm(date).toLowerCase();\n\t\t\t}],\n\t\t\t[/^hh/, function() {\n\t\t\t\treturn date.getHours();\n\t\t\t}],\n\t\t\t[/^mm/, function() {\n\t\t\t\treturn date.getMinutes();\n\t\t\t}],\n\t\t\t[/^ss/, function() {\n\t\t\t\treturn date.getSeconds();\n\t\t\t}],\n\t\t\t[/^XXX/, function() {\n\t\t\t\treturn date.getMilliseconds();\n\t\t\t}],\n\t\t\t[/^[AP]M/, function() {\n\t\t\t\treturn $tw.utils.getAmPm(date).toUpperCase();\n\t\t\t}],\n\t\t\t[/^DD/, function() {\n\t\t\t\treturn date.getDate();\n\t\t\t}],\n\t\t\t[/^MM/, function() {\n\t\t\t\treturn date.getMonth() + 1;\n\t\t\t}],\n\t\t\t[/^WW/, function() {\n\t\t\t\treturn $tw.utils.getWeek(date);\n\t\t\t}],\n\t\t\t[/^YY/, function() {\n\t\t\t\treturn $tw.utils.pad(date.getFullYear() - 2000);\n\t\t\t}]\n\t\t];\n\t// If the user wants everything in UTC, shift the datestamp\n\t// Optimize for format string that essentially means\n\t// 'return raw UTC (tiddlywiki style) date string.'\n\tif(t.indexOf(\"[UTC]\") == 0 ) {\n\t\tif(t == \"[UTC]YYYY0MM0DD0hh0mm0ssXXX\")\n\t\t\treturn $tw.utils.stringifyDate(new Date());\n\t\tvar offset = date.getTimezoneOffset() ; // in minutes\n\t\tdate = new Date(date.getTime()+offset*60*1000) ;\n\t\tt = t.substr(5) ;\n\t}\n\twhile(t.length){\n\t\tvar matchString = \"\";\n\t\t$tw.utils.each(matches, function(m) {\n\t\t\tvar match = m[0].exec(t);\n\t\t\tif(match) {\n\t\t\t\tmatchString = m[1].call(null,match);\n\t\t\t\tt = t.substr(match[0].length);\n\t\t\t\treturn false;\n\t\t\t}\n\t\t});\n\t\tif(matchString) {\n\t\t\tresult += matchString;\n\t\t} else {\n\t\t\tresult += t.charAt(0);\n\t\t\tt = t.substr(1);\n\t\t}\n\t}\n\tresult = result.replace(/\\\\(.)/g,\"$1\");\n\treturn result;\n};\n\nexports.getAmPm = function(date) {\n\treturn $tw.language.getString(\"Date/Period/\" + (date.getHours() >= 12 ? \"pm\" : \"am\"));\n};\n\nexports.getDaySuffix = function(date) {\n\treturn $tw.language.getString(\"Date/DaySuffix/\" + date.getDate());\n};\n\nexports.getWeek = function(date) {\n\tvar dt = new Date(date.getTime());\n\tvar d = dt.getDay();\n\tif(d === 0) {\n\t\td = 7; // JavaScript Sun=0, ISO Sun=7\n\t}\n\tdt.setTime(dt.getTime() + (4 - d) * 86400000);// shift day to Thurs of same week to calculate weekNo\n\tvar x = new Date(dt.getFullYear(),0,1);\n\tvar n = Math.floor((dt.getTime() - x.getTime()) / 86400000);\n\treturn Math.floor(n / 7) + 1;\n};\n\nexports.getYearForWeekNo = function(date) {\n\tvar dt = new Date(date.getTime());\n\tvar d = dt.getDay();\n\tif(d === 0) {\n\t\td = 7; // JavaScript Sun=0, ISO Sun=7\n\t}\n\tdt.setTime(dt.getTime() + (4 - d) * 86400000);// shift day to Thurs of same week\n\treturn dt.getFullYear();\n};\n\nexports.getHours12 = function(date) {\n\tvar h = date.getHours();\n\treturn h > 12 ? h-12 : ( h > 0 ? h : 12 );\n};\n\n/*\nConvert a date delta in milliseconds into a string representation of \"23 seconds ago\", \"27 minutes ago\" etc.\n\tdelta: delta in milliseconds\nReturns an object with these members:\n\tdescription: string describing the delta period\n\tupdatePeriod: time in millisecond until the string will be inaccurate\n*/\nexports.getRelativeDate = function(delta) {\n\tvar futurep = false;\n\tif(delta < 0) {\n\t\tdelta = -1 * delta;\n\t\tfuturep = true;\n\t}\n\tvar units = [\n\t\t{name: \"Years\", duration: 365 * 24 * 60 * 60 * 1000},\n\t\t{name: \"Months\", duration: (365/12) * 24 * 60 * 60 * 1000},\n\t\t{name: \"Days\", duration: 24 * 60 * 60 * 1000},\n\t\t{name: \"Hours\", duration: 60 * 60 * 1000},\n\t\t{name: \"Minutes\", duration: 60 * 1000},\n\t\t{name: \"Seconds\", duration: 1000}\n\t];\n\tfor(var t=0; t<units.length; t++) {\n\t\tvar result = Math.floor(delta / units[t].duration);\n\t\tif(result >= 2) {\n\t\t\treturn {\n\t\t\t\tdelta: delta,\n\t\t\t\tdescription: $tw.language.getString(\n\t\t\t\t\t\"RelativeDate/\" + (futurep ? \"Future\" : \"Past\") + \"/\" + units[t].name,\n\t\t\t\t\t{variables:\n\t\t\t\t\t\t{period: result.toString()}\n\t\t\t\t\t}\n\t\t\t\t),\n\t\t\t\tupdatePeriod: units[t].duration\n\t\t\t};\n\t\t}\n\t}\n\treturn {\n\t\tdelta: delta,\n\t\tdescription: $tw.language.getString(\n\t\t\t\"RelativeDate/\" + (futurep ? \"Future\" : \"Past\") + \"/Second\",\n\t\t\t{variables:\n\t\t\t\t{period: \"1\"}\n\t\t\t}\n\t\t),\n\t\tupdatePeriod: 1000\n\t};\n};\n\n// Convert & to \"&\", < to \"<\", > to \">\", \" to \""\"\nexports.htmlEncode = function(s) {\n\tif(s) {\n\t\treturn s.toString().replace(/&/mg,\"&\").replace(/</mg,\"<\").replace(/>/mg,\">\").replace(/\\\"/mg,\""\");\n\t} else {\n\t\treturn \"\";\n\t}\n};\n\n// Converts all HTML entities to their character equivalents\nexports.entityDecode = function(s) {\n\tvar converter = String.fromCodePoint || String.fromCharCode,\n\t\te = s.substr(1,s.length-2), // Strip the & and the ;\n\t\tc;\n\tif(e.charAt(0) === \"#\") {\n\t\tif(e.charAt(1) === \"x\" || e.charAt(1) === \"X\") {\n\t\t\tc = parseInt(e.substr(2),16);\n\t\t} else {\n\t\t\tc = parseInt(e.substr(1),10);\n\t\t}\n\t\tif(isNaN(c)) {\n\t\t\treturn s;\n\t\t} else {\n\t\t\treturn converter(c);\n\t\t}\n\t} else {\n\t\tc = $tw.config.htmlEntities[e];\n\t\tif(c) {\n\t\t\treturn converter(c);\n\t\t} else {\n\t\t\treturn s; // Couldn't convert it as an entity, just return it raw\n\t\t}\n\t}\n};\n\nexports.unescapeLineBreaks = function(s) {\n\treturn s.replace(/\\\\n/mg,\"\\n\").replace(/\\\\b/mg,\" \").replace(/\\\\s/mg,\"\\\\\").replace(/\\r/mg,\"\");\n};\n\n/*\n * Returns an escape sequence for given character. Uses \\x for characters <=\n * 0xFF to save space, \\u for the rest.\n *\n * The code needs to be in sync with th code template in the compilation\n * function for \"action\" nodes.\n */\n// Copied from peg.js, thanks to David Majda\nexports.escape = function(ch) {\n\tvar charCode = ch.charCodeAt(0);\n\tif(charCode <= 0xFF) {\n\t\treturn '\\\\x' + $tw.utils.pad(charCode.toString(16).toUpperCase());\n\t} else {\n\t\treturn '\\\\u' + $tw.utils.pad(charCode.toString(16).toUpperCase(),4);\n\t}\n};\n\n// Turns a string into a legal JavaScript string\n// Copied from peg.js, thanks to David Majda\nexports.stringify = function(s, rawUnicode) {\n\t/*\n\t* ECMA-262, 5th ed., 7.8.4: All characters may appear literally in a string\n\t* literal except for the closing quote character, backslash, carriage return,\n\t* line separator, paragraph separator, and line feed. Any character may\n\t* appear in the form of an escape sequence.\n\t*\n\t* For portability, we also escape all non-ASCII characters.\n\t*/\n\tvar regex = rawUnicode ? /[\\x00-\\x1f]/g : /[\\x00-\\x1f\\x80-\\uFFFF]/g;\n\treturn (s || \"\")\n\t\t.replace(/\\\\/g, '\\\\\\\\') // backslash\n\t\t.replace(/\"/g, '\\\\\"') // double quote character\n\t\t.replace(/'/g, \"\\\\'\") // single quote character\n\t\t.replace(/\\r/g, '\\\\r') // carriage return\n\t\t.replace(/\\n/g, '\\\\n') // line feed\n\t\t.replace(regex, exports.escape); // non-ASCII characters\n};\n\n// Turns a string into a legal JSON string\n// Derived from peg.js, thanks to David Majda\nexports.jsonStringify = function(s, rawUnicode) {\n\t// See http://www.json.org/\n\tvar regex = rawUnicode ? /[\\x00-\\x1f]/g : /[\\x00-\\x1f\\x80-\\uFFFF]/g;\n\treturn (s || \"\")\n\t\t.replace(/\\\\/g, '\\\\\\\\') // backslash\n\t\t.replace(/\"/g, '\\\\\"') // double quote character\n\t\t.replace(/\\r/g, '\\\\r') // carriage return\n\t\t.replace(/\\n/g, '\\\\n') // line feed\n\t\t.replace(/\\x08/g, '\\\\b') // backspace\n\t\t.replace(/\\x0c/g, '\\\\f') // formfeed\n\t\t.replace(/\\t/g, '\\\\t') // tab\n\t\t.replace(regex,function(s) {\n\t\t\treturn '\\\\u' + $tw.utils.pad(s.charCodeAt(0).toString(16).toUpperCase(),4);\n\t\t}); // non-ASCII characters\n};\n\n/*\nEscape the RegExp special characters with a preceding backslash\n*/\nexports.escapeRegExp = function(s) {\n return s.replace(/[\\-\\/\\\\\\^\\$\\*\\+\\?\\.\\(\\)\\|\\[\\]\\{\\}]/g, '\\\\$&');\n};\n\n// Checks whether a link target is external, i.e. not a tiddler title\nexports.isLinkExternal = function(to) {\n\tvar externalRegExp = /^(?:file|http|https|mailto|ftp|irc|news|data|skype):[^\\s<>{}\\[\\]`|\"\\\\^]+(?:\\/|\\b)/i;\n\treturn externalRegExp.test(to);\n};\n\nexports.nextTick = function(fn) {\n/*global window: false */\n\tif(typeof process === \"undefined\") {\n\t\t// Apparently it would be faster to use postMessage - http://dbaron.org/log/20100309-faster-timeouts\n\t\twindow.setTimeout(fn,4);\n\t} else {\n\t\tprocess.nextTick(fn);\n\t}\n};\n\n/*\nConvert a hyphenated CSS property name into a camel case one\n*/\nexports.unHyphenateCss = function(propName) {\n\treturn propName.replace(/-([a-z])/gi, function(match0,match1) {\n\t\treturn match1.toUpperCase();\n\t});\n};\n\n/*\nConvert a camelcase CSS property name into a dashed one (\"backgroundColor\" --> \"background-color\")\n*/\nexports.hyphenateCss = function(propName) {\n\treturn propName.replace(/([A-Z])/g, function(match0,match1) {\n\t\treturn \"-\" + match1.toLowerCase();\n\t});\n};\n\n/*\nParse a text reference of one of these forms:\n* title\n* !!field\n* title!!field\n* title##index\n* etc\nReturns an object with the following fields, all optional:\n* title: tiddler title\n* field: tiddler field name\n* index: JSON property index\n*/\nexports.parseTextReference = function(textRef) {\n\t// Separate out the title, field name and/or JSON indices\n\tvar reTextRef = /(?:(.*?)!!(.+))|(?:(.*?)##(.+))|(.*)/mg,\n\t\tmatch = reTextRef.exec(textRef),\n\t\tresult = {};\n\tif(match && reTextRef.lastIndex === textRef.length) {\n\t\t// Return the parts\n\t\tif(match[1]) {\n\t\t\tresult.title = match[1];\n\t\t}\n\t\tif(match[2]) {\n\t\t\tresult.field = match[2];\n\t\t}\n\t\tif(match[3]) {\n\t\t\tresult.title = match[3];\n\t\t}\n\t\tif(match[4]) {\n\t\t\tresult.index = match[4];\n\t\t}\n\t\tif(match[5]) {\n\t\t\tresult.title = match[5];\n\t\t}\n\t} else {\n\t\t// If we couldn't parse it\n\t\tresult.title = textRef\n\t}\n\treturn result;\n};\n\n/*\nChecks whether a string is a valid fieldname\n*/\nexports.isValidFieldName = function(name) {\n\tif(!name || typeof name !== \"string\") {\n\t\treturn false;\n\t}\n\tname = name.toLowerCase().trim();\n\tvar fieldValidatorRegEx = /^[a-z0-9\\-\\._]+$/mg;\n\treturn fieldValidatorRegEx.test(name);\n};\n\n/*\nExtract the version number from the meta tag or from the boot file\n*/\n\n// Browser version\nexports.extractVersionInfo = function() {\n\tif($tw.packageInfo) {\n\t\treturn $tw.packageInfo.version;\n\t} else {\n\t\tvar metatags = document.getElementsByTagName(\"meta\");\n\t\tfor(var t=0; t<metatags.length; t++) {\n\t\t\tvar m = metatags[t];\n\t\t\tif(m.name === \"tiddlywiki-version\") {\n\t\t\t\treturn m.content;\n\t\t\t}\n\t\t}\n\t}\n\treturn null;\n};\n\n/*\nGet the animation duration in ms\n*/\nexports.getAnimationDuration = function() {\n\treturn parseInt($tw.wiki.getTiddlerText(\"$:/config/AnimationDuration\",\"400\"),10) || 0;\n};\n\n/*\nHash a string to a number\nDerived from http://stackoverflow.com/a/15710692\n*/\nexports.hashString = function(str) {\n\treturn str.split(\"\").reduce(function(a,b) {\n\t\ta = ((a << 5) - a) + b.charCodeAt(0);\n\t\treturn a & a;\n\t},0);\n};\n\n/*\nDecode a base64 string\n*/\nexports.base64Decode = function(string64) {\n\treturn base64utf8.base64.decode.call(base64utf8,string64);\n};\n\n/*\nEncode a string to base64\n*/\nexports.base64Encode = function(string64) {\n\treturn base64utf8.base64.encode.call(base64utf8,string64);\n};\n\n/*\nConvert a hashmap into a tiddler dictionary format sequence of name:value pairs\n*/\nexports.makeTiddlerDictionary = function(data) {\n\tvar output = [];\n\tfor(var name in data) {\n\t\toutput.push(name + \": \" + data[name]);\n\t}\n\treturn output.join(\"\\n\");\n};\n\n/*\nHigh resolution microsecond timer for profiling\n*/\nexports.timer = function(base) {\n\tvar m;\n\tif($tw.node) {\n\t\tvar r = process.hrtime();\n\t\tm = r[0] * 1e3 + (r[1] / 1e6);\n\t} else if(window.performance) {\n\t\tm = performance.now();\n\t} else {\n\t\tm = Date.now();\n\t}\n\tif(typeof base !== \"undefined\") {\n\t\tm = m - base;\n\t}\n\treturn m;\n};\n\n/*\nConvert text and content type to a data URI\n*/\nexports.makeDataUri = function(text,type,_canonical_uri) {\n\ttype = type || \"text/vnd.tiddlywiki\";\n\tvar typeInfo = $tw.config.contentTypeInfo[type] || $tw.config.contentTypeInfo[\"text/plain\"],\n\t\tisBase64 = typeInfo.encoding === \"base64\",\n\t\tparts = [];\n\tif(_canonical_uri) {\n\t\tparts.push(_canonical_uri);\n\t} else {\n\t\tparts.push(\"data:\");\n\t\tparts.push(type);\n\t\tparts.push(isBase64 ? \";base64\" : \"\");\n\t\tparts.push(\",\");\n\t\tparts.push(isBase64 ? text : encodeURIComponent(text));\t\t\n\t}\n\treturn parts.join(\"\");\n};\n\n/*\nUseful for finding out the fully escaped CSS selector equivalent to a given tag. For example:\n\n$tw.utils.tagToCssSelector(\"$:/tags/Stylesheet\") --> tc-tagged-\\%24\\%3A\\%2Ftags\\%2FStylesheet\n*/\nexports.tagToCssSelector = function(tagName) {\n\treturn \"tc-tagged-\" + encodeURIComponent(tagName).replace(/[!\"#$%&'()*+,\\-./:;<=>?@[\\\\\\]^`{\\|}~,]/mg,function(c) {\n\t\treturn \"\\\\\" + c;\n\t});\n};\n\n/*\nIE does not have sign function\n*/\nexports.sign = Math.sign || function(x) {\n\tx = +x; // convert to a number\n\tif (x === 0 || isNaN(x)) {\n\t\treturn x;\n\t}\n\treturn x > 0 ? 1 : -1;\n};\n\n/*\nIE does not have an endsWith function\n*/\nexports.strEndsWith = function(str,ending,position) {\n\tif(str.endsWith) {\n\t\treturn str.endsWith(ending,position);\n\t} else {\n\t\tif (typeof position !== 'number' || !isFinite(position) || Math.floor(position) !== position || position > str.length) {\n\t\t\tposition = str.length;\n\t\t}\n\t\tposition -= ending.length;\n\t\tvar lastIndex = str.indexOf(ending, position);\n\t\treturn lastIndex !== -1 && lastIndex === position;\n\t}\n};\n\n/*\nReturn system information useful for debugging\n*/\nexports.getSystemInfo = function(str,ending,position) {\n\tvar results = [],\n\t\tsave = function(desc,value) {\n\t\t\tresults.push(desc + \": \" + value);\n\t\t};\n\tif($tw.browser) {\n\t\tsave(\"User Agent\",navigator.userAgent);\n\t\tsave(\"Online Status\",window.navigator.onLine);\n\t}\n\tif($tw.node) {\n\t\tsave(\"Node Version\",process.version);\n\t}\n\treturn results.join(\"\\n\");\n};\n\nexports.parseNumber = function(str) {\n\treturn parseFloat(str) || 0;\n};\n\nexports.parseInt = function(str) {\n\treturn parseInt(str,10) || 0;\n};\n\nexports.stringifyNumber = function(num) {\n\treturn num + \"\";\n};\n\nexports.makeCompareFunction = function(type,options) {\n\toptions = options || {};\n\tvar gt = options.invert ? -1 : +1,\n\t\tlt = options.invert ? +1 : -1,\n\t\tcompare = function(a,b) {\n\t\t\tif(a > b) {\n\t\t\t\treturn gt ;\n\t\t\t} else if(a < b) {\n\t\t\t\treturn lt;\n\t\t\t} else {\n\t\t\t\treturn 0;\n\t\t\t}\n\t\t},\n\t\ttypes = {\n\t\t\t\"number\": function(a,b) {\n\t\t\t\treturn compare($tw.utils.parseNumber(a),$tw.utils.parseNumber(b));\n\t\t\t},\n\t\t\t\"integer\": function(a,b) {\n\t\t\t\treturn compare($tw.utils.parseInt(a),$tw.utils.parseInt(b));\n\t\t\t},\n\t\t\t\"string\": function(a,b) {\n\t\t\t\treturn compare(\"\" + a,\"\" +b);\n\t\t\t},\n\t\t\t\"date\": function(a,b) {\n\t\t\t\tvar dateA = $tw.utils.parseDate(a),\n\t\t\t\t\tdateB = $tw.utils.parseDate(b);\n\t\t\t\tif(!isFinite(dateA)) {\n\t\t\t\t\tdateA = new Date(0);\n\t\t\t\t}\n\t\t\t\tif(!isFinite(dateB)) {\n\t\t\t\t\tdateB = new Date(0);\n\t\t\t\t}\n\t\t\t\treturn compare(dateA,dateB);\n\t\t\t},\n\t\t\t\"version\": function(a,b) {\n\t\t\t\treturn $tw.utils.compareVersions(a,b);\n\t\t\t}\n\t\t};\n\treturn (types[type] || types[options.defaultType] || types.number);\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "utils"
},
"$:/core/modules/widgets/action-confirm.js": {
"title": "$:/core/modules/widgets/action-confirm.js",
"text": "/*\\\n\ntitle: $:/core/modules/widgets/action-confirm.js\ntype: application/javascript\nmodule-type: widget\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar ConfirmWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nConfirmWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nConfirmWidget.prototype.render = function(parent,nextSibling) {\n\tthis.computeAttributes();\n\tthis.execute();\n\tthis.parentDomNode = parent;\n\tthis.renderChildren(parent,nextSibling);\n};\n\n/*\nCompute the internal state of the widget\n*/\nConfirmWidget.prototype.execute = function() {\n\tthis.message = this.getAttribute(\"$message\",$tw.language.getString(\"ConfirmAction\"));\n\tthis.prompt = (this.getAttribute(\"$prompt\",\"yes\") == \"no\" ? false : true);\n\tthis.makeChildWidgets();\n};\n\n/*\nRefresh the widget by ensuring our attributes are up to date\n*/\nConfirmWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif(changedAttributes[\"$message\"] || changedAttributes[\"$prompt\"]) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t}\n\treturn this.refreshChildren(changedTiddlers);\n};\n\n/*\nInvoke the action associated with this widget\n*/\nConfirmWidget.prototype.invokeAction = function(triggeringWidget,event) {\n\tvar invokeActions = true,\n\t\thandled = true;\n\tif(this.prompt) {\n\t\tinvokeActions = confirm(this.message);\n\t}\n\tif(invokeActions) {\n\t\thandled = this.invokeActions(triggeringWidget,event);\n\t}\n\treturn handled;\n};\n\nConfirmWidget.prototype.allowActionPropagation = function() {\n\treturn false;\n};\n\nexports[\"action-confirm\"] = ConfirmWidget;\n\n})();",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/action-createtiddler.js": {
"title": "$:/core/modules/widgets/action-createtiddler.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/action-createtiddler.js\ntype: application/javascript\nmodule-type: widget\n\nAction widget to create a new tiddler with a unique name and specified fields.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw:false, require:false, exports:false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar CreateTiddlerWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nCreateTiddlerWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nCreateTiddlerWidget.prototype.render = function(parent,nextSibling) {\n\tthis.computeAttributes();\n\tthis.execute();\n};\n\n/*\nCompute the internal state of the widget\n*/\nCreateTiddlerWidget.prototype.execute = function() {\n\tthis.actionBaseTitle = this.getAttribute(\"$basetitle\");\n\tthis.hasBase = !!this.actionBaseTitle;\n\tthis.actionSaveTitle = this.getAttribute(\"$savetitle\");\n\tthis.actionSaveDraftTitle = this.getAttribute(\"$savedrafttitle\");\n\tthis.actionTimestamp = this.getAttribute(\"$timestamp\",\"yes\") === \"yes\";\n\t//Following params are new since 5.1.22\n\tthis.actionTemplate = this.getAttribute(\"$template\");\n\tthis.useTemplate = !!this.actionTemplate;\n\tthis.actionOverwrite = this.getAttribute(\"$overwrite\",\"no\");\n\n};\n\n/*\nRefresh the widget by ensuring our attributes are up to date\n*/\nCreateTiddlerWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif($tw.utils.count(changedAttributes) > 0) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t}\n\treturn this.refreshChildren(changedTiddlers);\n};\n\n/*\nInvoke the action associated with this widget\n*/\nCreateTiddlerWidget.prototype.invokeAction = function(triggeringWidget,event) {\n\tvar title = this.wiki.getTiddlerText(\"$:/language/DefaultNewTiddlerTitle\"), // Get the initial new-tiddler title\n\t\tfields = {},\n\t\tcreationFields,\n\t\tmodificationFields;\n\t$tw.utils.each(this.attributes,function(attribute,name) {\n\t\tif(name.charAt(0) !== \"$\") {\n\t\t\tfields[name] = attribute;\n\t\t}\n\t});\n\tif(this.actionTimestamp) {\n\t\tcreationFields = this.wiki.getCreationFields();\n\t\tmodificationFields = this.wiki.getModificationFields();\n\t}\n\tif(this.hasBase && this.actionOverwrite === \"no\") {\n\t\ttitle = this.wiki.generateNewTitle(this.actionBaseTitle);\n\t} else if (this.hasBase && this.actionOverwrite === \"yes\") {\n\t\ttitle = this.actionBaseTitle\n\t}\n\t// NO $basetitle BUT $template parameter is available\n\t// the title MUST be unique, otherwise the template would be overwritten\n\tif (!this.hasBase && this.useTemplate) {\n\t\ttitle = this.wiki.generateNewTitle(this.actionTemplate);\n\t} else if (!this.hasBase && !this.useTemplate) {\n\t\t// If NO $basetitle AND NO $template use initial title\n\t\t// DON'T overwrite any stuff\n\t\ttitle = this.wiki.generateNewTitle(title);\n\t}\n\tvar templateTiddler = this.wiki.getTiddler(this.actionTemplate) || {};\n\tvar tiddler = this.wiki.addTiddler(new $tw.Tiddler(templateTiddler.fields,creationFields,fields,modificationFields,{title: title}));\n\tif(this.actionSaveTitle) {\n\t\tthis.wiki.setTextReference(this.actionSaveTitle,title,this.getVariable(\"currentTiddler\"));\n\t}\n\tif(this.actionSaveDraftTitle) {\n\t\tthis.wiki.setTextReference(this.actionSaveDraftTitle,this.wiki.generateDraftTitle(title),this.getVariable(\"currentTiddler\"));\n\t}\n\treturn true; // Action was invoked\n};\n\nexports[\"action-createtiddler\"] = CreateTiddlerWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/action-deletefield.js": {
"title": "$:/core/modules/widgets/action-deletefield.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/action-deletefield.js\ntype: application/javascript\nmodule-type: widget\n\nAction widget to delete fields of a tiddler.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar DeleteFieldWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nDeleteFieldWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nDeleteFieldWidget.prototype.render = function(parent,nextSibling) {\n\tthis.computeAttributes();\n\tthis.execute();\n};\n\n/*\nCompute the internal state of the widget\n*/\nDeleteFieldWidget.prototype.execute = function() {\n\tthis.actionTiddler = this.getAttribute(\"$tiddler\",this.getVariable(\"currentTiddler\"));\n\tthis.actionField = this.getAttribute(\"$field\");\n};\n\n/*\nRefresh the widget by ensuring our attributes are up to date\n*/\nDeleteFieldWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif(changedAttributes[\"$tiddler\"]) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t}\n\treturn this.refreshChildren(changedTiddlers);\n};\n\n/*\nInvoke the action associated with this widget\n*/\nDeleteFieldWidget.prototype.invokeAction = function(triggeringWidget,event) {\n\tvar self = this,\n\t\ttiddler = this.wiki.getTiddler(self.actionTiddler),\n\t\tremoveFields = {},\n\t\thasChanged = false;\n\tif(this.actionField && tiddler) {\n\t\tremoveFields[this.actionField] = undefined;\n\t\tif(this.actionField in tiddler.fields) {\n\t\t\thasChanged = true;\n\t\t}\n\t}\n\tif(tiddler) {\n\t\t$tw.utils.each(this.attributes,function(attribute,name) {\n\t\t\tif(name.charAt(0) !== \"$\" && name !== \"title\") {\n\t\t\t\tremoveFields[name] = undefined;\n\t\t\t\thasChanged = true;\n\t\t\t}\n\t\t});\n\t\tif(hasChanged) {\n\t\t\tthis.wiki.addTiddler(new $tw.Tiddler(this.wiki.getCreationFields(),tiddler,removeFields,this.wiki.getModificationFields()));\t\t\t\n\t\t}\n\t}\n\treturn true; // Action was invoked\n};\n\nexports[\"action-deletefield\"] = DeleteFieldWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/action-deletetiddler.js": {
"title": "$:/core/modules/widgets/action-deletetiddler.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/action-deletetiddler.js\ntype: application/javascript\nmodule-type: widget\n\nAction widget to delete a tiddler.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar DeleteTiddlerWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nDeleteTiddlerWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nDeleteTiddlerWidget.prototype.render = function(parent,nextSibling) {\n\tthis.computeAttributes();\n\tthis.execute();\n};\n\n/*\nCompute the internal state of the widget\n*/\nDeleteTiddlerWidget.prototype.execute = function() {\n\tthis.actionFilter = this.getAttribute(\"$filter\");\n\tthis.actionTiddler = this.getAttribute(\"$tiddler\");\n};\n\n/*\nRefresh the widget by ensuring our attributes are up to date\n*/\nDeleteTiddlerWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif(changedAttributes[\"$filter\"] || changedAttributes[\"$tiddler\"]) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t}\n\treturn this.refreshChildren(changedTiddlers);\n};\n\n/*\nInvoke the action associated with this widget\n*/\nDeleteTiddlerWidget.prototype.invokeAction = function(triggeringWidget,event) {\n\tvar tiddlers = [];\n\tif(this.actionFilter) {\n\t\ttiddlers = this.wiki.filterTiddlers(this.actionFilter,this);\n\t}\n\tif(this.actionTiddler) {\n\t\ttiddlers.push(this.actionTiddler);\n\t}\n\tfor(var t=0; t<tiddlers.length; t++) {\n\t\tthis.wiki.deleteTiddler(tiddlers[t]);\n\t}\n\treturn true; // Action was invoked\n};\n\nexports[\"action-deletetiddler\"] = DeleteTiddlerWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/action-listops.js": {
"title": "$:/core/modules/widgets/action-listops.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/action-listops.js\ntype: application/javascript\nmodule-type: widget\n\nAction widget to apply list operations to any tiddler field (defaults to the 'list' field of the current tiddler)\n\n\\*/\n(function() {\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\nvar ActionListopsWidget = function(parseTreeNode, options) {\n\tthis.initialise(parseTreeNode, options);\n};\n/**\n * Inherit from the base widget class\n */\nActionListopsWidget.prototype = new Widget();\n/**\n * Render this widget into the DOM\n */\nActionListopsWidget.prototype.render = function(parent, nextSibling) {\n\tthis.computeAttributes();\n\tthis.execute();\n};\n/**\n * Compute the internal state of the widget\n */\nActionListopsWidget.prototype.execute = function() {\n\t// Get our parameters\n\tthis.target = this.getAttribute(\"$tiddler\", this.getVariable(\n\t\t\"currentTiddler\"));\n\tthis.filter = this.getAttribute(\"$filter\");\n\tthis.subfilter = this.getAttribute(\"$subfilter\");\n\tthis.listField = this.getAttribute(\"$field\", \"list\");\n\tthis.listIndex = this.getAttribute(\"$index\");\n\tthis.filtertags = this.getAttribute(\"$tags\");\n};\n/**\n * \tRefresh the widget by ensuring our attributes are up to date\n */\nActionListopsWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif(changedAttributes.$tiddler || changedAttributes.$filter ||\n\t\tchangedAttributes.$subfilter || changedAttributes.$field ||\n\t\tchangedAttributes.$index || changedAttributes.$tags) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t}\n\treturn this.refreshChildren(changedTiddlers);\n};\n/**\n * \tInvoke the action associated with this widget\n */\nActionListopsWidget.prototype.invokeAction = function(triggeringWidget,\n\tevent) {\n\t//Apply the specified filters to the lists\n\tvar field = this.listField,\n\t\tindex,\n\t\ttype = \"!!\",\n\t\tlist = this.listField;\n\tif(this.listIndex) {\n\t\tfield = undefined;\n\t\tindex = this.listIndex;\n\t\ttype = \"##\";\n\t\tlist = this.listIndex;\n\t}\n\tif(this.filter) {\n\t\tthis.wiki.setText(this.target, field, index, $tw.utils.stringifyList(\n\t\t\tthis.wiki\n\t\t\t.filterTiddlers(this.filter, this)));\n\t}\n\tif(this.subfilter) {\n\t\tvar subfilter = \"[list[\" + this.target + type + list + \"]] \" + this.subfilter;\n\t\tthis.wiki.setText(this.target, field, index, $tw.utils.stringifyList(\n\t\t\tthis.wiki\n\t\t\t.filterTiddlers(subfilter, this)));\n\t}\n\tif(this.filtertags) {\n\t\tvar tiddler = this.wiki.getTiddler(this.target),\n\t\t\toldtags = tiddler ? (tiddler.fields.tags || []).slice(0) : [],\n\t\t\ttagfilter = \"[list[\" + this.target + \"!!tags]] \" + this.filtertags,\n\t\t\tnewtags = this.wiki.filterTiddlers(tagfilter,this);\n\t\tif($tw.utils.stringifyList(oldtags.sort()) !== $tw.utils.stringifyList(newtags.sort())) {\n\t\t\tthis.wiki.setText(this.target,\"tags\",undefined,$tw.utils.stringifyList(newtags));\t\t\t\n\t\t}\n\t}\n\treturn true; // Action was invoked\n};\n\nexports[\"action-listops\"] = ActionListopsWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/action-log.js": {
"title": "$:/core/modules/widgets/action-log.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/action-log.js\ntype: application/javascript\nmodule-type: widget\n\nAction widget to log debug messages\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar LogWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nLogWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nLogWidget.prototype.render = function(parent,nextSibling) {\n\tthis.computeAttributes();\n\tthis.execute();\n};\n\nLogWidget.prototype.execute = function(){\n\tthis.message = this.getAttribute(\"$$message\",\"debug\");\n\tthis.logAll = this.getAttribute(\"$$all\",\"no\") === \"yes\" ? true : false;\n\tthis.filter = this.getAttribute(\"$$filter\");\n}\n\n/*\nRefresh the widget by ensuring our attributes are up to date\n*/\nLogWidget.prototype.refresh = function(changedTiddlers) {\n\tthis.refreshSelf();\n\treturn true;\n};\n\n/*\nInvoke the action associated with this widget\n*/\nLogWidget.prototype.invokeAction = function(triggeringWidget,event) {\n\tthis.log();\n\treturn true; // Action was invoked\n};\n\nLogWidget.prototype.log = function() {\n\tvar data = {},\n\t\tdataCount,\n\t\tallVars = {},\n\t\tfilteredVars;\n\n\t$tw.utils.each(this.attributes,function(attribute,name) {\n\t\tif(name.substring(0,2) !== \"$$\") {\n\t\t\tdata[name] = attribute;\n\t\t}\t\t\n\t});\n\n\tfor(var v in this.variables) {\n\t\tallVars[v] = this.getVariable(v,{defaultValue:\"\"});\n\t}\t\n\tif(this.filter) {\n\t\tfilteredVars = this.wiki.compileFilter(this.filter).call(this.wiki,this.wiki.makeTiddlerIterator(allVars));\n\t\t$tw.utils.each(filteredVars,function(name) {\n\t\t\tdata[name] = allVars[name];\n\t\t});\t\t\n\t}\n\tdataCount = $tw.utils.count(data);\n\n\tconsole.group(this.message);\n\tif(dataCount > 0) {\n\t\t$tw.utils.logTable(data);\n\t}\n\tif(this.logAll || !dataCount) {\n\t\tconsole.groupCollapsed(\"All variables\");\n\t\t$tw.utils.logTable(allVars);\n\t\tconsole.groupEnd();\n\t}\n\tconsole.groupEnd();\n}\n\nexports[\"action-log\"] = LogWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/action-navigate.js": {
"title": "$:/core/modules/widgets/action-navigate.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/action-navigate.js\ntype: application/javascript\nmodule-type: widget\n\nAction widget to navigate to a tiddler\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar NavigateWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nNavigateWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nNavigateWidget.prototype.render = function(parent,nextSibling) {\n\tthis.computeAttributes();\n\tthis.execute();\n};\n\n/*\nCompute the internal state of the widget\n*/\nNavigateWidget.prototype.execute = function() {\n\tthis.actionTo = this.getAttribute(\"$to\");\n\tthis.actionScroll = this.getAttribute(\"$scroll\");\n};\n\n/*\nRefresh the widget by ensuring our attributes are up to date\n*/\nNavigateWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif(changedAttributes[\"$to\"] || changedAttributes[\"$scroll\"]) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t}\n\treturn this.refreshChildren(changedTiddlers);\n};\n\n/*\nInvoke the action associated with this widget\n*/\nNavigateWidget.prototype.invokeAction = function(triggeringWidget,event) {\n\tevent = event || {};\n\tvar bounds = triggeringWidget && triggeringWidget.getBoundingClientRect && triggeringWidget.getBoundingClientRect(),\n\t\tsuppressNavigation = event.metaKey || event.ctrlKey || (event.button === 1);\n\tif(this.actionScroll === \"yes\") {\n\t\tsuppressNavigation = false;\n\t} else if(this.actionScroll === \"no\") {\n\t\tsuppressNavigation = true;\n\t}\n\tthis.dispatchEvent({\n\t\ttype: \"tm-navigate\",\n\t\tnavigateTo: this.actionTo === undefined ? this.getVariable(\"currentTiddler\") : this.actionTo,\n\t\tnavigateFromTitle: this.getVariable(\"storyTiddler\"),\n\t\tnavigateFromNode: triggeringWidget,\n\t\tnavigateFromClientRect: bounds && { top: bounds.top, left: bounds.left, width: bounds.width, right: bounds.right, bottom: bounds.bottom, height: bounds.height\n\t\t},\n\t\tnavigateSuppressNavigation: suppressNavigation\n\t});\n\treturn true; // Action was invoked\n};\n\nexports[\"action-navigate\"] = NavigateWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/action-popup.js": {
"title": "$:/core/modules/widgets/action-popup.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/action-popup.js\ntype: application/javascript\nmodule-type: widget\n\nAction widget to trigger a popup.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar ActionPopupWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nActionPopupWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nActionPopupWidget.prototype.render = function(parent,nextSibling) {\n\tthis.computeAttributes();\n\tthis.execute();\n};\n\n/*\nCompute the internal state of the widget\n*/\nActionPopupWidget.prototype.execute = function() {\n\tthis.actionState = this.getAttribute(\"$state\");\n\tthis.actionCoords = this.getAttribute(\"$coords\");\n};\n\n/*\nRefresh the widget by ensuring our attributes are up to date\n*/\nActionPopupWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif(changedAttributes[\"$state\"] || changedAttributes[\"$coords\"]) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t}\n\treturn this.refreshChildren(changedTiddlers);\n};\n\n/*\nInvoke the action associated with this widget\n*/\nActionPopupWidget.prototype.invokeAction = function(triggeringWidget,event) {\n\t// Trigger the popup\n\tvar popupLocationRegExp = /^\\((-?[0-9\\.E]+),(-?[0-9\\.E]+),(-?[0-9\\.E]+),(-?[0-9\\.E]+)\\)$/,\n\t\tmatch = popupLocationRegExp.exec(this.actionCoords || \"\");\n\tif(match) {\n\t\t$tw.popup.triggerPopup({\n\t\t\tdomNode: null,\n\t\t\tdomNodeRect: {\n\t\t\t\tleft: parseFloat(match[1]),\n\t\t\t\ttop: parseFloat(match[2]),\n\t\t\t\twidth: parseFloat(match[3]),\n\t\t\t\theight: parseFloat(match[4])\n\t\t\t},\n\t\t\ttitle: this.actionState,\n\t\t\twiki: this.wiki\n\t\t});\n\t} else {\n\t\t$tw.popup.cancel(0);\n\t}\n\treturn true; // Action was invoked\n};\n\nexports[\"action-popup\"] = ActionPopupWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/action-sendmessage.js": {
"title": "$:/core/modules/widgets/action-sendmessage.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/action-sendmessage.js\ntype: application/javascript\nmodule-type: widget\n\nAction widget to send a message\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar SendMessageWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nSendMessageWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nSendMessageWidget.prototype.render = function(parent,nextSibling) {\n\tthis.computeAttributes();\n\tthis.execute();\n};\n\n/*\nCompute the internal state of the widget\n*/\nSendMessageWidget.prototype.execute = function() {\n\tthis.actionMessage = this.getAttribute(\"$message\");\n\tthis.actionParam = this.getAttribute(\"$param\");\n\tthis.actionName = this.getAttribute(\"$name\");\n\tthis.actionValue = this.getAttribute(\"$value\",\"\");\n};\n\n/*\nRefresh the widget by ensuring our attributes are up to date\n*/\nSendMessageWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif(Object.keys(changedAttributes).length) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t}\n\treturn this.refreshChildren(changedTiddlers);\n};\n\n/*\nInvoke the action associated with this widget\n*/\nSendMessageWidget.prototype.invokeAction = function(triggeringWidget,event) {\n\t// Get the string parameter\n\tvar param = this.actionParam;\n\t// Assemble the attributes as a hashmap\n\tvar paramObject = Object.create(null);\n\tvar count = 0;\n\t$tw.utils.each(this.attributes,function(attribute,name) {\n\t\tif(name.charAt(0) !== \"$\") {\n\t\t\tparamObject[name] = attribute;\n\t\t\tcount++;\n\t\t}\n\t});\n\t// Add name/value pair if present\n\tif(this.actionName) {\n\t\tparamObject[this.actionName] = this.actionValue;\n\t}\n\t// Dispatch the message\n\tthis.dispatchEvent({\n\t\ttype: this.actionMessage,\n\t\tparam: param,\n\t\tparamObject: paramObject,\n\t\ttiddlerTitle: this.getVariable(\"currentTiddler\"),\n\t\tnavigateFromTitle: this.getVariable(\"storyTiddler\"),\n\t\tevent: event\n\t});\n\treturn true; // Action was invoked\n};\n\nexports[\"action-sendmessage\"] = SendMessageWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/action-setfield.js": {
"title": "$:/core/modules/widgets/action-setfield.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/action-setfield.js\ntype: application/javascript\nmodule-type: widget\n\nAction widget to set a single field or index on a tiddler.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar SetFieldWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nSetFieldWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nSetFieldWidget.prototype.render = function(parent,nextSibling) {\n\tthis.computeAttributes();\n\tthis.execute();\n};\n\n/*\nCompute the internal state of the widget\n*/\nSetFieldWidget.prototype.execute = function() {\n\tthis.actionTiddler = this.getAttribute(\"$tiddler\",this.getVariable(\"currentTiddler\"));\n\tthis.actionField = this.getAttribute(\"$field\");\n\tthis.actionIndex = this.getAttribute(\"$index\");\n\tthis.actionValue = this.getAttribute(\"$value\");\n\tthis.actionTimestamp = this.getAttribute(\"$timestamp\",\"yes\") === \"yes\";\n};\n\n/*\nRefresh the widget by ensuring our attributes are up to date\n*/\nSetFieldWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif(changedAttributes[\"$tiddler\"] || changedAttributes[\"$field\"] || changedAttributes[\"$index\"] || changedAttributes[\"$value\"]) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t}\n\treturn this.refreshChildren(changedTiddlers);\n};\n\n/*\nInvoke the action associated with this widget\n*/\nSetFieldWidget.prototype.invokeAction = function(triggeringWidget,event) {\n\tvar self = this,\n\t\toptions = {};\n\toptions.suppressTimestamp = !this.actionTimestamp;\n\tif((typeof this.actionField == \"string\") || (typeof this.actionIndex == \"string\") || (typeof this.actionValue == \"string\")) {\n\t\tthis.wiki.setText(this.actionTiddler,this.actionField,this.actionIndex,this.actionValue,options);\n\t}\n\t$tw.utils.each(this.attributes,function(attribute,name) {\n\t\tif(name.charAt(0) !== \"$\") {\n\t\t\tself.wiki.setText(self.actionTiddler,name,undefined,attribute,options);\n\t\t}\n\t});\n\treturn true; // Action was invoked\n};\n\nexports[\"action-setfield\"] = SetFieldWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/browse.js": {
"title": "$:/core/modules/widgets/browse.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/browse.js\ntype: application/javascript\nmodule-type: widget\n\nBrowse widget for browsing for files to import\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar BrowseWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nBrowseWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nBrowseWidget.prototype.render = function(parent,nextSibling) {\n\tvar self = this;\n\t// Remember parent\n\tthis.parentDomNode = parent;\n\t// Compute attributes and execute state\n\tthis.computeAttributes();\n\tthis.execute();\n\t// Create element\n\tvar domNode = this.document.createElement(\"input\");\n\tdomNode.setAttribute(\"type\",\"file\");\n\tif(this.browseMultiple) {\n\t\tdomNode.setAttribute(\"multiple\",\"multiple\");\n\t}\n\tif(this.tooltip) {\n\t\tdomNode.setAttribute(\"title\",this.tooltip);\n\t}\n\t// Nw.js supports \"nwsaveas\" to force a \"save as\" dialogue that allows a new or existing file to be selected\n\tif(this.nwsaveas) {\n\t\tdomNode.setAttribute(\"nwsaveas\",this.nwsaveas);\n\t}\n\tif(this.accept) {\n\t\tdomNode.setAttribute(\"accept\",this.accept);\n\t}\n\t// Nw.js supports \"webkitdirectory\" and \"nwdirectory\" to allow a directory to be selected\n\tif(this.webkitdirectory) {\n\t\tdomNode.setAttribute(\"webkitdirectory\",this.webkitdirectory);\n\t}\n\tif(this.nwdirectory) {\n\t\tdomNode.setAttribute(\"nwdirectory\",this.nwdirectory);\n\t}\n\t// Add a click event handler\n\tdomNode.addEventListener(\"change\",function (event) {\n\t\tif(self.message) {\n\t\t\tself.dispatchEvent({type: self.message, param: self.param, files: event.target.files});\n\t\t} else {\n\t\t\tself.wiki.readFiles(event.target.files,{\n\t\t\t\tcallback: function(tiddlerFieldsArray) {\n\t\t\t\t\tself.dispatchEvent({type: \"tm-import-tiddlers\", param: JSON.stringify(tiddlerFieldsArray)});\n\t\t\t\t},\n\t\t\t\tdeserializer: self.deserializer\n\t\t\t});\n\t\t}\n\t\treturn false;\n\t},false);\n\t// Insert element\n\tparent.insertBefore(domNode,nextSibling);\n\tthis.renderChildren(domNode,null);\n\tthis.domNodes.push(domNode);\n};\n\n/*\nCompute the internal state of the widget\n*/\nBrowseWidget.prototype.execute = function() {\n\tthis.browseMultiple = this.getAttribute(\"multiple\");\n\tthis.deserializer = this.getAttribute(\"deserializer\");\n\tthis.message = this.getAttribute(\"message\");\n\tthis.param = this.getAttribute(\"param\");\n\tthis.tooltip = this.getAttribute(\"tooltip\");\n\tthis.nwsaveas = this.getAttribute(\"nwsaveas\");\n\tthis.accept = this.getAttribute(\"accept\");\n\tthis.webkitdirectory = this.getAttribute(\"webkitdirectory\");\n\tthis.nwdirectory = this.getAttribute(\"nwdirectory\");\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nBrowseWidget.prototype.refresh = function(changedTiddlers) {\n\treturn false;\n};\n\nexports.browse = BrowseWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/button.js": {
"title": "$:/core/modules/widgets/button.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/button.js\ntype: application/javascript\nmodule-type: widget\n\nButton widget\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar ButtonWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nButtonWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nButtonWidget.prototype.render = function(parent,nextSibling) {\n\tvar self = this,\n\t\ttag = \"button\",\n\t\tdomNode;\n\t// Remember parent\n\tthis.parentDomNode = parent;\n\t// Compute attributes and execute state\n\tthis.computeAttributes();\n\tthis.execute();\n\t// Create element\n\tif(this.buttonTag && $tw.config.htmlUnsafeElements.indexOf(this.buttonTag) === -1) {\n\t\ttag = this.buttonTag;\n\t}\n\tdomNode = this.document.createElement(tag);\n\tthis.domNode = domNode;\n\t// Assign classes\n\tvar classes = this[\"class\"].split(\" \") || [],\n\t\tisPoppedUp = (this.popup || this.popupTitle) && this.isPoppedUp();\n\tif(this.selectedClass) {\n\t\tif((this.set || this.setTitle) && this.setTo && this.isSelected()) {\n\t\t\t$tw.utils.pushTop(classes,this.selectedClass.split(\" \"));\n\t\t}\n\t\tif(isPoppedUp) {\n\t\t\t$tw.utils.pushTop(classes,this.selectedClass.split(\" \"));\n\t\t}\n\t}\n\tif(isPoppedUp) {\n\t\t$tw.utils.pushTop(classes,\"tc-popup-handle\");\n\t}\n\tdomNode.className = classes.join(\" \");\n\t// Assign other attributes\n\tif(this.style) {\n\t\tdomNode.setAttribute(\"style\",this.style);\n\t}\n\tif(this.tooltip) {\n\t\tdomNode.setAttribute(\"title\",this.tooltip);\n\t}\n\tif(this[\"aria-label\"]) {\n\t\tdomNode.setAttribute(\"aria-label\",this[\"aria-label\"]);\n\t}\n\t// Set the tabindex\n\tif(this.tabIndex) {\n\t\tdomNode.setAttribute(\"tabindex\",this.tabIndex);\n\t}\n\tif(this.isDisabled === \"yes\") {\n\t\tdomNode.setAttribute(\"disabled\",true);\n\t}\n\t// Add a click event handler\n\tdomNode.addEventListener(\"click\",function (event) {\n\t\tvar handled = false;\n\t\tif(self.invokeActions(self,event)) {\n\t\t\thandled = true;\n\t\t}\n\t\tif(self.to) {\n\t\t\tself.navigateTo(event);\n\t\t\thandled = true;\n\t\t}\n\t\tif(self.message) {\n\t\t\tself.dispatchMessage(event);\n\t\t\thandled = true;\n\t\t}\n\t\tif(self.popup || self.popupTitle) {\n\t\t\tself.triggerPopup(event);\n\t\t\thandled = true;\n\t\t}\n\t\tif(self.set || self.setTitle) {\n\t\t\tself.setTiddler();\n\t\t\thandled = true;\n\t\t}\n\t\tif(self.actions) {\n\t\t\tvar modifierKey = $tw.keyboardManager.getEventModifierKeyDescriptor(event);\n\t\t\tself.invokeActionString(self.actions,self,event,{modifier: modifierKey});\n\t\t}\n\t\tif(handled) {\n\t\t\tevent.preventDefault();\n\t\t\tevent.stopPropagation();\n\t\t}\n\t\treturn handled;\n\t},false);\n\t// Make it draggable if required\n\tif(this.dragTiddler || this.dragFilter) {\n\t\t$tw.utils.makeDraggable({\n\t\t\tdomNode: domNode,\n\t\t\tdragTiddlerFn: function() {return self.dragTiddler;},\n\t\t\tdragFilterFn: function() {return self.dragFilter;},\n\t\t\twidget: this\n\t\t});\n\t}\n\t// Insert element\n\tparent.insertBefore(domNode,nextSibling);\n\tthis.renderChildren(domNode,null);\n\tthis.domNodes.push(domNode);\n};\n\n/*\nWe don't allow actions to propagate because we trigger actions ourselves\n*/\nButtonWidget.prototype.allowActionPropagation = function() {\n\treturn false;\n};\n\nButtonWidget.prototype.getBoundingClientRect = function() {\n\treturn this.domNodes[0].getBoundingClientRect();\n};\n\nButtonWidget.prototype.isSelected = function() {\n return this.setTitle ? (this.setField ? this.wiki.getTiddler(this.setTitle).getFieldString(this.setField) === this.setTo :\n\t\t(this.setIndex ? this.wiki.extractTiddlerDataItem(this.setTitle,this.setIndex) === this.setTo :\n\t\t\tthis.wiki.getTiddlerText(this.setTitle))) || this.defaultSetValue || this.getVariable(\"currentTiddler\") :\n\t\tthis.wiki.getTextReference(this.set,this.defaultSetValue,this.getVariable(\"currentTiddler\")) === this.setTo;\n};\n\nButtonWidget.prototype.isPoppedUp = function() {\n\tvar tiddler = this.popupTitle ? this.wiki.getTiddler(this.popupTitle) : this.wiki.getTiddler(this.popup);\n\tvar result = tiddler && tiddler.fields.text ? $tw.popup.readPopupState(tiddler.fields.text) : false;\n\treturn result;\n};\n\nButtonWidget.prototype.navigateTo = function(event) {\n\tvar bounds = this.getBoundingClientRect();\n\tthis.dispatchEvent({\n\t\ttype: \"tm-navigate\",\n\t\tnavigateTo: this.to,\n\t\tnavigateFromTitle: this.getVariable(\"storyTiddler\"),\n\t\tnavigateFromNode: this,\n\t\tnavigateFromClientRect: { top: bounds.top, left: bounds.left, width: bounds.width, right: bounds.right, bottom: bounds.bottom, height: bounds.height\n\t\t},\n\t\tnavigateSuppressNavigation: event.metaKey || event.ctrlKey || (event.button === 1),\n\t\tevent: event\n\t});\n};\n\nButtonWidget.prototype.dispatchMessage = function(event) {\n\tthis.dispatchEvent({type: this.message, param: this.param, tiddlerTitle: this.getVariable(\"currentTiddler\"), event: event});\n};\n\nButtonWidget.prototype.triggerPopup = function(event) {\n\tif(this.popupTitle) {\n\t\t$tw.popup.triggerPopup({\n\t\t\tdomNode: this.domNodes[0],\n\t\t\ttitle: this.popupTitle,\n\t\t\twiki: this.wiki,\n\t\t\tnoStateReference: true\n\t\t});\n\t} else {\n\t\t$tw.popup.triggerPopup({\n\t\t\tdomNode: this.domNodes[0],\n\t\t\ttitle: this.popup,\n\t\t\twiki: this.wiki\n\t\t});\n\t}\n};\n\nButtonWidget.prototype.setTiddler = function() {\n\tif(this.setTitle) {\n\t\tthis.setField ? this.wiki.setText(this.setTitle,this.setField,undefined,this.setTo) :\n\t\t\t\t(this.setIndex ? this.wiki.setText(this.setTitle,undefined,this.setIndex,this.setTo) :\n\t\t\t\tthis.wiki.setText(this.setTitle,\"text\",undefined,this.setTo));\n\t} else {\n\t\tthis.wiki.setTextReference(this.set,this.setTo,this.getVariable(\"currentTiddler\"));\n\t}\n};\n\n/*\nCompute the internal state of the widget\n*/\nButtonWidget.prototype.execute = function() {\n\t// Get attributes\n\tthis.actions = this.getAttribute(\"actions\");\n\tthis.to = this.getAttribute(\"to\");\n\tthis.message = this.getAttribute(\"message\");\n\tthis.param = this.getAttribute(\"param\");\n\tthis.set = this.getAttribute(\"set\");\n\tthis.setTo = this.getAttribute(\"setTo\");\n\tthis.popup = this.getAttribute(\"popup\");\n\tthis.hover = this.getAttribute(\"hover\");\n\tthis[\"aria-label\"] = this.getAttribute(\"aria-label\");\n\tthis.tooltip = this.getAttribute(\"tooltip\");\n\tthis.style = this.getAttribute(\"style\");\n\tthis[\"class\"] = this.getAttribute(\"class\",\"\");\n\tthis.selectedClass = this.getAttribute(\"selectedClass\");\n\tthis.defaultSetValue = this.getAttribute(\"default\",\"\");\n\tthis.buttonTag = this.getAttribute(\"tag\");\n\tthis.dragTiddler = this.getAttribute(\"dragTiddler\");\n\tthis.dragFilter = this.getAttribute(\"dragFilter\");\n\tthis.setTitle = this.getAttribute(\"setTitle\");\n\tthis.setField = this.getAttribute(\"setField\");\n\tthis.setIndex = this.getAttribute(\"setIndex\");\n\tthis.popupTitle = this.getAttribute(\"popupTitle\");\n\tthis.tabIndex = this.getAttribute(\"tabindex\");\n\tthis.isDisabled = this.getAttribute(\"disabled\",\"no\");\n\t// Make child widgets\n\tthis.makeChildWidgets();\n};\n\nButtonWidget.prototype.updateDomNodeClasses = function() {\n\tvar domNodeClasses = this.domNode.className.split(\" \"),\n\t\toldClasses = this.class.split(\" \"),\n\t\tnewClasses;\t\n\tthis[\"class\"] = this.getAttribute(\"class\",\"\");\n\tnewClasses = this.class.split(\" \");\n\t//Remove classes assigned from the old value of class attribute\n\t$tw.utils.each(oldClasses,function(oldClass){\n\t\tvar i = domNodeClasses.indexOf(oldClass);\n\t\tif(i !== -1) {\n\t\t\tdomNodeClasses.splice(i,1);\n\t\t}\n\t});\n\t//Add new classes from updated class attribute.\n\t$tw.utils.pushTop(domNodeClasses,newClasses);\n\tthis.domNode.className = domNodeClasses.join(\" \");\n}\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nButtonWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif(changedAttributes.actions || changedAttributes.to || changedAttributes.message || changedAttributes.param || changedAttributes.set || changedAttributes.setTo || changedAttributes.popup || changedAttributes.hover || changedAttributes.selectedClass || changedAttributes.style || changedAttributes.dragFilter || changedAttributes.dragTiddler || (this.set && changedTiddlers[this.set]) || (this.popup && changedTiddlers[this.popup]) || (this.popupTitle && changedTiddlers[this.popupTitle]) || changedAttributes.setTitle || changedAttributes.setField || changedAttributes.setIndex || changedAttributes.popupTitle || changedAttributes.disabled) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t} else if(changedAttributes[\"class\"]) {\n\t\tthis.updateDomNodeClasses();\n\t}\n\treturn this.refreshChildren(changedTiddlers);\n};\n\nexports.button = ButtonWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/checkbox.js": {
"title": "$:/core/modules/widgets/checkbox.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/checkbox.js\ntype: application/javascript\nmodule-type: widget\n\nCheckbox widget\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar CheckboxWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nCheckboxWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nCheckboxWidget.prototype.render = function(parent,nextSibling) {\n\t// Save the parent dom node\n\tthis.parentDomNode = parent;\n\t// Compute our attributes\n\tthis.computeAttributes();\n\t// Execute our logic\n\tthis.execute();\n\t// Create our elements\n\tthis.labelDomNode = this.document.createElement(\"label\");\n\tthis.labelDomNode.setAttribute(\"class\",this.checkboxClass);\n\tthis.inputDomNode = this.document.createElement(\"input\");\n\tthis.inputDomNode.setAttribute(\"type\",\"checkbox\");\n\tif(this.getValue()) {\n\t\tthis.inputDomNode.setAttribute(\"checked\",\"true\");\n\t}\n\tif(this.isDisabled === \"yes\") {\n\t\tthis.inputDomNode.setAttribute(\"disabled\",true);\n\t}\n\tthis.labelDomNode.appendChild(this.inputDomNode);\n\tthis.spanDomNode = this.document.createElement(\"span\");\n\tthis.labelDomNode.appendChild(this.spanDomNode);\n\t// Add a click event handler\n\t$tw.utils.addEventListeners(this.inputDomNode,[\n\t\t{name: \"change\", handlerObject: this, handlerMethod: \"handleChangeEvent\"}\n\t]);\n\t// Insert the label into the DOM and render any children\n\tparent.insertBefore(this.labelDomNode,nextSibling);\n\tthis.renderChildren(this.spanDomNode,null);\n\tthis.domNodes.push(this.labelDomNode);\n};\n\nCheckboxWidget.prototype.getValue = function() {\n\tvar tiddler = this.wiki.getTiddler(this.checkboxTitle);\n\tif(tiddler) {\n\t\tif(this.checkboxTag) {\n\t\t\tif(this.checkboxInvertTag) {\n\t\t\t\treturn !tiddler.hasTag(this.checkboxTag);\n\t\t\t} else {\n\t\t\t\treturn tiddler.hasTag(this.checkboxTag);\n\t\t\t}\n\t\t}\n\t\tif(this.checkboxField) {\n\t\t\tvar value;\n\t\t\tif($tw.utils.hop(tiddler.fields,this.checkboxField)) {\n\t\t\t\tvalue = tiddler.fields[this.checkboxField] || \"\";\n\t\t\t} else {\n\t\t\t\tvalue = this.checkboxDefault || \"\";\n\t\t\t}\n\t\t\tif(value === this.checkboxChecked) {\n\t\t\t\treturn true;\n\t\t\t}\n\t\t\tif(value === this.checkboxUnchecked) {\n\t\t\t\treturn false;\n\t\t\t}\n\t\t}\n\t\tif(this.checkboxIndex) {\n\t\t\tvar value = this.wiki.extractTiddlerDataItem(tiddler,this.checkboxIndex,this.checkboxDefault || \"\");\n\t\t\tif(value === this.checkboxChecked) {\n\t\t\t\treturn true;\n\t\t\t}\n\t\t\tif(value === this.checkboxUnchecked) {\n\t\t\t\treturn false;\n\t\t\t}\n\t\t}\n\t} else {\n\t\tif(this.checkboxTag) {\n\t\t\treturn false;\n\t\t}\n\t\tif(this.checkboxField) {\n\t\t\tif(this.checkboxDefault === this.checkboxChecked) {\n\t\t\t\treturn true;\n\t\t\t}\n\t\t\tif(this.checkboxDefault === this.checkboxUnchecked) {\n\t\t\t\treturn false;\n\t\t\t}\n\t\t}\n\t}\n\treturn false;\n};\n\nCheckboxWidget.prototype.handleChangeEvent = function(event) {\n\tvar checked = this.inputDomNode.checked,\n\t\ttiddler = this.wiki.getTiddler(this.checkboxTitle),\n\t\tfallbackFields = {text: \"\"},\n\t\tnewFields = {title: this.checkboxTitle},\n\t\thasChanged = false,\n\t\ttagCheck = false,\n\t\thasTag = tiddler && tiddler.hasTag(this.checkboxTag),\n\t\tvalue = checked ? this.checkboxChecked : this.checkboxUnchecked;\n\tif(this.checkboxTag && this.checkboxInvertTag === \"yes\") {\n\t\ttagCheck = hasTag === checked;\n\t} else {\n\t\ttagCheck = hasTag !== checked;\n\t}\n\t// Set the tag if specified\n\tif(this.checkboxTag && (!tiddler || tagCheck)) {\n\t\tnewFields.tags = tiddler ? (tiddler.fields.tags || []).slice(0) : [];\n\t\tvar pos = newFields.tags.indexOf(this.checkboxTag);\n\t\tif(pos !== -1) {\n\t\t\tnewFields.tags.splice(pos,1);\n\t\t}\n\t\tif(this.checkboxInvertTag === \"yes\" && !checked) {\n\t\t\tnewFields.tags.push(this.checkboxTag);\n\t\t} else if(this.checkboxInvertTag !== \"yes\" && checked) {\n\t\t\tnewFields.tags.push(this.checkboxTag);\n\t\t}\n\t\thasChanged = true;\n\t}\n\t// Set the field if specified\n\tif(this.checkboxField) {\n\t\tif(!tiddler || tiddler.fields[this.checkboxField] !== value) {\n\t\t\tnewFields[this.checkboxField] = value;\n\t\t\thasChanged = true;\n\t\t}\n\t}\n\t// Set the index if specified\n\tif(this.checkboxIndex) {\n\t\tvar indexValue = this.wiki.extractTiddlerDataItem(this.checkboxTitle,this.checkboxIndex);\n\t\tif(!tiddler || indexValue !== value) {\n\t\t\thasChanged = true;\n\t\t}\n\t}\n\tif(hasChanged) {\n\t\tif(this.checkboxIndex) {\n\t\t\tthis.wiki.setText(this.checkboxTitle,\"\",this.checkboxIndex,value);\n\t\t} else {\n\t\t\tthis.wiki.addTiddler(new $tw.Tiddler(this.wiki.getCreationFields(),fallbackFields,tiddler,newFields,this.wiki.getModificationFields()));\n\t\t}\n\t}\n\t// Trigger actions\n\tif(this.checkboxActions) {\n\t\tthis.invokeActionString(this.checkboxActions,this,event);\n\t}\n\tif(this.checkboxCheckActions && checked) {\n\t\tthis.invokeActionString(this.checkboxCheckActions,this,event);\n\t}\n\tif(this.checkboxUncheckActions && !checked) {\n\t\tthis.invokeActionString(this.checkboxUncheckActions,this,event);\n\t}\n};\n\n/*\nCompute the internal state of the widget\n*/\nCheckboxWidget.prototype.execute = function() {\n\t// Get the parameters from the attributes\n\tthis.checkboxActions = this.getAttribute(\"actions\");\n\tthis.checkboxCheckActions = this.getAttribute(\"checkactions\");\n\tthis.checkboxUncheckActions = this.getAttribute(\"uncheckactions\");\n\tthis.checkboxTitle = this.getAttribute(\"tiddler\",this.getVariable(\"currentTiddler\"));\n\tthis.checkboxTag = this.getAttribute(\"tag\");\n\tthis.checkboxField = this.getAttribute(\"field\");\n\tthis.checkboxIndex = this.getAttribute(\"index\");\n\tthis.checkboxChecked = this.getAttribute(\"checked\");\n\tthis.checkboxUnchecked = this.getAttribute(\"unchecked\");\n\tthis.checkboxDefault = this.getAttribute(\"default\");\n\tthis.checkboxClass = this.getAttribute(\"class\",\"\");\n\tthis.checkboxInvertTag = this.getAttribute(\"invertTag\",\"\");\n\tthis.isDisabled = this.getAttribute(\"disabled\",\"no\");\n\t// Make the child widgets\n\tthis.makeChildWidgets();\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nCheckboxWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif(changedAttributes.tiddler || changedAttributes.tag || changedAttributes.invertTag || changedAttributes.field || changedAttributes.index || changedAttributes.checked || changedAttributes.unchecked || changedAttributes[\"default\"] || changedAttributes[\"class\"] || changedAttributes.disabled) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t} else {\n\t\tvar refreshed = false;\n\t\tif(changedTiddlers[this.checkboxTitle]) {\n\t\t\tthis.inputDomNode.checked = this.getValue();\n\t\t\trefreshed = true;\n\t\t}\n\t\treturn this.refreshChildren(changedTiddlers) || refreshed;\n\t}\n};\n\nexports.checkbox = CheckboxWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/codeblock.js": {
"title": "$:/core/modules/widgets/codeblock.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/codeblock.js\ntype: application/javascript\nmodule-type: widget\n\nCode block node widget\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar CodeBlockWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nCodeBlockWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nCodeBlockWidget.prototype.render = function(parent,nextSibling) {\n\tthis.parentDomNode = parent;\n\tthis.computeAttributes();\n\tthis.execute();\n\tvar codeNode = this.document.createElement(\"code\"),\n\t\tdomNode = this.document.createElement(\"pre\");\n\tcodeNode.appendChild(this.document.createTextNode(this.getAttribute(\"code\")));\n\tdomNode.appendChild(codeNode);\n\tparent.insertBefore(domNode,nextSibling);\n\tthis.domNodes.push(domNode);\n\tif(this.postRender) {\n\t\tthis.postRender();\n\t}\n};\n\n/*\nCompute the internal state of the widget\n*/\nCodeBlockWidget.prototype.execute = function() {\n\tthis.language = this.getAttribute(\"language\");\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nCodeBlockWidget.prototype.refresh = function(changedTiddlers) {\n\treturn false;\n};\n\nexports.codeblock = CodeBlockWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/count.js": {
"title": "$:/core/modules/widgets/count.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/count.js\ntype: application/javascript\nmodule-type: widget\n\nCount widget\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar CountWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nCountWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nCountWidget.prototype.render = function(parent,nextSibling) {\n\tthis.parentDomNode = parent;\n\tthis.computeAttributes();\n\tthis.execute();\n\tvar textNode = this.document.createTextNode(this.currentCount);\n\tparent.insertBefore(textNode,nextSibling);\n\tthis.domNodes.push(textNode);\n};\n\n/*\nCompute the internal state of the widget\n*/\nCountWidget.prototype.execute = function() {\n\t// Get parameters from our attributes\n\tthis.filter = this.getAttribute(\"filter\");\n\t// Execute the filter\n\tif(this.filter) {\n\t\tthis.currentCount = this.wiki.filterTiddlers(this.filter,this).length;\n\t} else {\n\t\tthis.currentCount = \"0\";\n\t}\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nCountWidget.prototype.refresh = function(changedTiddlers) {\n\t// Re-execute the filter to get the count\n\tthis.computeAttributes();\n\tvar oldCount = this.currentCount;\n\tthis.execute();\n\tif(this.currentCount !== oldCount) {\n\t\t// Regenerate and rerender the widget and replace the existing DOM node\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t} else {\n\t\treturn false;\n\t}\n\n};\n\nexports.count = CountWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/diff-text.js": {
"title": "$:/core/modules/widgets/diff-text.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/diff-text.js\ntype: application/javascript\nmodule-type: widget\n\nWidget to display a diff between two texts\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget,\n\tdmp = require(\"$:/core/modules/utils/diff-match-patch/diff_match_patch.js\");\n\nvar DiffTextWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nDiffTextWidget.prototype = new Widget();\n\nDiffTextWidget.prototype.invisibleCharacters = {\n\t\"\\n\": \"↩︎\\n\",\n\t\"\\r\": \"⇠\",\n\t\"\\t\": \"⇥\\t\"\n};\n\n/*\nRender this widget into the DOM\n*/\nDiffTextWidget.prototype.render = function(parent,nextSibling) {\n\tthis.parentDomNode = parent;\n\tthis.computeAttributes();\n\tthis.execute();\n\t// Create the diff\n\tvar dmpObject = new dmp.diff_match_patch(),\n\t\tdiffs = dmpObject.diff_main(this.getAttribute(\"source\"),this.getAttribute(\"dest\"));\n\t// Apply required cleanup\n\tswitch(this.getAttribute(\"cleanup\",\"semantic\")) {\n\t\tcase \"none\":\n\t\t\t// No cleanup\n\t\t\tbreak;\n\t\tcase \"efficiency\":\n\t\t\tdmpObject.diff_cleanupEfficiency(diffs);\n\t\t\tbreak;\n\t\tdefault: // case \"semantic\"\n\t\t\tdmpObject.diff_cleanupSemantic(diffs);\n\t\t\tbreak;\n\t}\n\t// Create the elements\n\tvar domContainer = this.document.createElement(\"div\"), \n\t\tdomDiff = this.createDiffDom(diffs);\n\tparent.insertBefore(domContainer,nextSibling);\n\t// Set variables\n\tthis.setVariable(\"diff-count\",diffs.reduce(function(acc,diff) {\n\t\tif(diff[0] !== dmp.DIFF_EQUAL) {\n\t\t\tacc++;\n\t\t}\n\t\treturn acc;\n\t},0).toString());\n\t// Render child widgets\n\tthis.renderChildren(domContainer,null);\n\t// Render the diff\n\tdomContainer.appendChild(domDiff);\n\t// Save our container\n\tthis.domNodes.push(domContainer);\n};\n\n/*\nCreate DOM elements representing a list of diffs\n*/\nDiffTextWidget.prototype.createDiffDom = function(diffs) {\n\tvar self = this;\n\t// Create the element and assign the attributes\n\tvar domPre = this.document.createElement(\"pre\"),\n\t\tdomCode = this.document.createElement(\"code\");\n\t$tw.utils.each(diffs,function(diff) {\n\t\tvar tag = diff[0] === dmp.DIFF_INSERT ? \"ins\" : (diff[0] === dmp.DIFF_DELETE ? \"del\" : \"span\"),\n\t\t\tclassName = diff[0] === dmp.DIFF_INSERT ? \"tc-diff-insert\" : (diff[0] === dmp.DIFF_DELETE ? \"tc-diff-delete\" : \"tc-diff-equal\"),\n\t\t\tdom = self.document.createElement(tag),\n\t\t\ttext = diff[1],\n\t\t\tcurrPos = 0,\n\t\t\tre = /([\\x00-\\x1F])/mg,\n\t\t\tmatch = re.exec(text),\n\t\t\tspan,\n\t\t\tprintable;\n\t\tdom.className = className;\n\t\twhile(match) {\n\t\t\tif(currPos < match.index) {\n\t\t\t\tdom.appendChild(self.document.createTextNode(text.slice(currPos,match.index)));\n\t\t\t}\n\t\t\tspan = self.document.createElement(\"span\");\n\t\t\tspan.className = \"tc-diff-invisible\";\n\t\t\tprintable = self.invisibleCharacters[match[0]] || (\"[0x\" + match[0].charCodeAt(0).toString(16) + \"]\");\n\t\t\tspan.appendChild(self.document.createTextNode(printable));\n\t\t\tdom.appendChild(span);\n\t\t\tcurrPos = match.index + match[0].length;\n\t\t\tmatch = re.exec(text);\n\t\t}\n\t\tif(currPos < text.length) {\n\t\t\tdom.appendChild(self.document.createTextNode(text.slice(currPos)));\n\t\t}\n\t\tdomCode.appendChild(dom);\n\t});\n\tdomPre.appendChild(domCode);\n\treturn domPre;\n};\n\n/*\nCompute the internal state of the widget\n*/\nDiffTextWidget.prototype.execute = function() {\n\t// Make child widgets\n\tvar parseTreeNodes;\n\tif(this.parseTreeNode && this.parseTreeNode.children && this.parseTreeNode.children.length > 0) {\n\t\tparseTreeNodes = this.parseTreeNode.children;\n\t} else {\n\t\tparseTreeNodes = [{\n\t\t\ttype: \"transclude\",\n\t\t\tattributes: {\n\t\t\t\ttiddler: {type: \"string\", value: \"$:/language/Diffs/CountMessage\"}\n\t\t\t}\n\t\t}];\n\t}\n\tthis.makeChildWidgets(parseTreeNodes);\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nDiffTextWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif(changedAttributes.source || changedAttributes.dest || changedAttributes.cleanup) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t} else {\n\t\treturn this.refreshChildren(changedTiddlers);\n\t}\n};\n\nexports[\"diff-text\"] = DiffTextWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/draggable.js": {
"title": "$:/core/modules/widgets/draggable.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/draggable.js\ntype: application/javascript\nmodule-type: widget\n\nDraggable widget\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar DraggableWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nDraggableWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nDraggableWidget.prototype.render = function(parent,nextSibling) {\n\tvar self = this;\n\t// Save the parent dom node\n\tthis.parentDomNode = parent;\n\t// Compute our attributes\n\tthis.computeAttributes();\n\t// Execute our logic\n\tthis.execute();\n\t// Sanitise the specified tag\n\tvar tag = this.draggableTag;\n\tif($tw.config.htmlUnsafeElements.indexOf(tag) !== -1) {\n\t\ttag = \"div\";\n\t}\n\t// Create our element\n\tvar domNode = this.document.createElement(tag);\n\t// Assign classes\n\tvar classes = [\"tc-draggable\"];\n\tif(this.draggableClasses) {\n\t\tclasses.push(this.draggableClasses);\n\t}\n\tdomNode.setAttribute(\"class\",classes.join(\" \"));\n\t// Add event handlers\n\t$tw.utils.makeDraggable({\n\t\tdomNode: domNode,\n\t\tdragTiddlerFn: function() {return self.getAttribute(\"tiddler\");},\n\t\tdragFilterFn: function() {return self.getAttribute(\"filter\");},\n\t\tstartActions: self.startActions,\n\t\tendActions: self.endActions,\n\t\twidget: this\n\t});\n\t// Insert the link into the DOM and render any children\n\tparent.insertBefore(domNode,nextSibling);\n\tthis.renderChildren(domNode,null);\n\tthis.domNodes.push(domNode);\n};\n\n/*\nCompute the internal state of the widget\n*/\nDraggableWidget.prototype.execute = function() {\n\t// Pick up our attributes\n\tthis.draggableTag = this.getAttribute(\"tag\",\"div\");\n\tthis.draggableClasses = this.getAttribute(\"class\");\n\tthis.startActions = this.getAttribute(\"startactions\");\n\tthis.endActions = this.getAttribute(\"endactions\");\n\t// Make the child widgets\n\tthis.makeChildWidgets();\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nDraggableWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif(changedAttributes.tag || changedAttributes[\"class\"]) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t}\n\treturn this.refreshChildren(changedTiddlers);\n};\n\nexports.draggable = DraggableWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/droppable.js": {
"title": "$:/core/modules/widgets/droppable.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/droppable.js\ntype: application/javascript\nmodule-type: widget\n\nDroppable widget\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar DroppableWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nDroppableWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nDroppableWidget.prototype.render = function(parent,nextSibling) {\n\tvar self = this,\n\t\ttag = this.parseTreeNode.isBlock ? \"div\" : \"span\",\n\t\tdomNode;\n\t// Remember parent\n\tthis.parentDomNode = parent;\n\t// Compute attributes and execute state\n\tthis.computeAttributes();\n\tthis.execute();\n\tif(this.droppableTag && $tw.config.htmlUnsafeElements.indexOf(this.droppableTag) === -1) {\n\t\ttag = this.droppableTag;\n\t}\n\t// Create element and assign classes\n\tdomNode = this.document.createElement(tag);\n\tthis.domNode = domNode;\n\tthis.assignDomNodeClasses();\n\t// Add event handlers\n\tif(this.droppableEnable) {\n\t\t$tw.utils.addEventListeners(domNode,[\n\t\t\t{name: \"dragenter\", handlerObject: this, handlerMethod: \"handleDragEnterEvent\"},\n\t\t\t{name: \"dragover\", handlerObject: this, handlerMethod: \"handleDragOverEvent\"},\n\t\t\t{name: \"dragleave\", handlerObject: this, handlerMethod: \"handleDragLeaveEvent\"},\n\t\t\t{name: \"drop\", handlerObject: this, handlerMethod: \"handleDropEvent\"}\n\t\t]);\t\t\n\t} else {\n\t\t$tw.utils.addClass(this.domNode,this.disabledClass);\n\t}\n\t// Insert element\n\tparent.insertBefore(domNode,nextSibling);\n\tthis.renderChildren(domNode,null);\n\tthis.domNodes.push(domNode);\n\t// Stack of outstanding enter/leave events\n\tthis.currentlyEntered = [];\n};\n\nDroppableWidget.prototype.enterDrag = function(event) {\n\tif(this.currentlyEntered.indexOf(event.target) === -1) {\n\t\tthis.currentlyEntered.push(event.target);\n\t}\n\t// If we're entering for the first time we need to apply highlighting\n\t$tw.utils.addClass(this.domNodes[0],\"tc-dragover\");\n};\n\nDroppableWidget.prototype.leaveDrag = function(event) {\n\tvar pos = this.currentlyEntered.indexOf(event.target);\n\tif(pos !== -1) {\n\t\tthis.currentlyEntered.splice(pos,1);\n\t}\n\t// Remove highlighting if we're leaving externally. The hacky second condition is to resolve a problem with Firefox whereby there is an erroneous dragenter event if the node being dragged is within the dropzone\n\tif(this.currentlyEntered.length === 0 || (this.currentlyEntered.length === 1 && this.currentlyEntered[0] === $tw.dragInProgress)) {\n\t\tthis.currentlyEntered = [];\n\t\tif(this.domNodes[0]) {\n\t\t\t$tw.utils.removeClass(this.domNodes[0],\"tc-dragover\");\n\t\t}\n\t}\n};\n\nDroppableWidget.prototype.handleDragEnterEvent = function(event) {\n\tthis.enterDrag(event);\n\t// Tell the browser that we're ready to handle the drop\n\tevent.preventDefault();\n\t// Tell the browser not to ripple the drag up to any parent drop handlers\n\tevent.stopPropagation();\n\treturn false;\n};\n\nDroppableWidget.prototype.handleDragOverEvent = function(event) {\n\t// Check for being over a TEXTAREA or INPUT\n\tif([\"TEXTAREA\",\"INPUT\"].indexOf(event.target.tagName) !== -1) {\n\t\treturn false;\n\t}\n\t// Tell the browser that we're still interested in the drop\n\tevent.preventDefault();\n\t// Set the drop effect\n\tevent.dataTransfer.dropEffect = this.droppableEffect;\n\treturn false;\n};\n\nDroppableWidget.prototype.handleDragLeaveEvent = function(event) {\n\tthis.leaveDrag(event);\n\treturn false;\n};\n\nDroppableWidget.prototype.handleDropEvent = function(event) {\n\tvar self = this;\n\tthis.leaveDrag(event);\n\t// Check for being over a TEXTAREA or INPUT\n\tif([\"TEXTAREA\",\"INPUT\"].indexOf(event.target.tagName) !== -1) {\n\t\treturn false;\n\t}\n\tvar dataTransfer = event.dataTransfer;\n\t// Remove highlighting\n\t$tw.utils.removeClass(this.domNodes[0],\"tc-dragover\");\n\t// Try to import the various data types we understand\n\t$tw.utils.importDataTransfer(dataTransfer,null,function(fieldsArray) {\n\t\tfieldsArray.forEach(function(fields) {\n\t\t\tself.performActions(fields.title || fields.text,event);\n\t\t});\n\t});\n\t// Tell the browser that we handled the drop\n\tevent.preventDefault();\n\t// Stop the drop ripple up to any parent handlers\n\tevent.stopPropagation();\n\treturn false;\n};\n\nDroppableWidget.prototype.performActions = function(title,event) {\n\tif(this.droppableActions) {\n\t\tvar modifierKey = $tw.keyboardManager.getEventModifierKeyDescriptor(event);\n\t\tthis.invokeActionString(this.droppableActions,this,event,{actionTiddler: title, modifier: modifierKey});\n\t}\n};\n\n/*\nCompute the internal state of the widget\n*/\nDroppableWidget.prototype.execute = function() {\n\tthis.droppableActions = this.getAttribute(\"actions\");\n\tthis.droppableEffect = this.getAttribute(\"effect\",\"copy\");\n\tthis.droppableTag = this.getAttribute(\"tag\");\n\tthis.droppableEnable = (this.getAttribute(\"enable\") || \"yes\") === \"yes\";\n\tthis.disabledClass = this.getAttribute(\"disabledClass\",\"\");\n\t// Make child widgets\n\tthis.makeChildWidgets();\n};\n\nDroppableWidget.prototype.assignDomNodeClasses = function() {\n\tvar classes = this.getAttribute(\"class\",\"\").split(\" \");\n\tclasses.push(\"tc-droppable\");\n\tthis.domNode.className = classes.join(\" \");\t\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nDroppableWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif(changedAttributes.tag || changedAttributes.enable || changedAttributes.disabledClass || changedAttributes.actions || changedAttributes.effect) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t} else if(changedAttributes[\"class\"]) {\n\t\tthis.assignDomNodeClasses();\n\t}\n\treturn this.refreshChildren(changedTiddlers);\n};\n\nexports.droppable = DroppableWidget;\n\n})();",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/dropzone.js": {
"title": "$:/core/modules/widgets/dropzone.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/dropzone.js\ntype: application/javascript\nmodule-type: widget\n\nDropzone widget\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar DropZoneWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nDropZoneWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nDropZoneWidget.prototype.render = function(parent,nextSibling) {\n\tvar self = this;\n\t// Remember parent\n\tthis.parentDomNode = parent;\n\t// Compute attributes and execute state\n\tthis.computeAttributes();\n\tthis.execute();\n\t// Create element\n\tvar domNode = this.document.createElement(\"div\");\n\tdomNode.className = this.dropzoneClass || \"tc-dropzone\";\n\t// Add event handlers\n\tif(this.dropzoneEnable) {\n\t\t$tw.utils.addEventListeners(domNode,[\n\t\t\t{name: \"dragenter\", handlerObject: this, handlerMethod: \"handleDragEnterEvent\"},\n\t\t\t{name: \"dragover\", handlerObject: this, handlerMethod: \"handleDragOverEvent\"},\n\t\t\t{name: \"dragleave\", handlerObject: this, handlerMethod: \"handleDragLeaveEvent\"},\n\t\t\t{name: \"drop\", handlerObject: this, handlerMethod: \"handleDropEvent\"},\n\t\t\t{name: \"paste\", handlerObject: this, handlerMethod: \"handlePasteEvent\"},\n\t\t\t{name: \"dragend\", handlerObject: this, handlerMethod: \"handleDragEndEvent\"}\n\t\t]);\t\t\n\t}\n\tdomNode.addEventListener(\"click\",function (event) {\n\t},false);\n\t// Insert element\n\tparent.insertBefore(domNode,nextSibling);\n\tthis.renderChildren(domNode,null);\n\tthis.domNodes.push(domNode);\n\t// Stack of outstanding enter/leave events\n\tthis.currentlyEntered = [];\n};\n\nDropZoneWidget.prototype.enterDrag = function(event) {\n\tif(this.currentlyEntered.indexOf(event.target) === -1) {\n\t\tthis.currentlyEntered.push(event.target);\n\t}\n\t// If we're entering for the first time we need to apply highlighting\n\t$tw.utils.addClass(this.domNodes[0],\"tc-dragover\");\n};\n\nDropZoneWidget.prototype.leaveDrag = function(event) {\n\tvar pos = this.currentlyEntered.indexOf(event.target);\n\tif(pos !== -1) {\n\t\tthis.currentlyEntered.splice(pos,1);\n\t}\n\t// Remove highlighting if we're leaving externally\n\tif(this.currentlyEntered.length === 0) {\n\t\t$tw.utils.removeClass(this.domNodes[0],\"tc-dragover\");\n\t}\n};\n\nDropZoneWidget.prototype.handleDragEnterEvent = function(event) {\n\t// Check for this window being the source of the drag\n\tif($tw.dragInProgress) {\n\t\treturn false;\n\t}\n\tthis.enterDrag(event);\n\t// Tell the browser that we're ready to handle the drop\n\tevent.preventDefault();\n\t// Tell the browser not to ripple the drag up to any parent drop handlers\n\tevent.stopPropagation();\n};\n\nDropZoneWidget.prototype.handleDragOverEvent = function(event) {\n\t// Check for being over a TEXTAREA or INPUT\n\tif([\"TEXTAREA\",\"INPUT\"].indexOf(event.target.tagName) !== -1) {\n\t\treturn false;\n\t}\n\t// Check for this window being the source of the drag\n\tif($tw.dragInProgress) {\n\t\treturn false;\n\t}\n\t// Tell the browser that we're still interested in the drop\n\tevent.preventDefault();\n\tevent.dataTransfer.dropEffect = \"copy\"; // Explicitly show this is a copy\n};\n\nDropZoneWidget.prototype.handleDragLeaveEvent = function(event) {\n\tthis.leaveDrag(event);\n};\n\nDropZoneWidget.prototype.handleDragEndEvent = function(event) {\n\t$tw.utils.removeClass(this.domNodes[0],\"tc-dragover\");\n};\n\nDropZoneWidget.prototype.handleDropEvent = function(event) {\n\tvar self = this,\n\t\treadFileCallback = function(tiddlerFieldsArray) {\n\t\t\tself.dispatchEvent({type: \"tm-import-tiddlers\", param: JSON.stringify(tiddlerFieldsArray), autoOpenOnImport: self.autoOpenOnImport, importTitle: self.importTitle});\n\t\t};\n\tthis.leaveDrag(event);\n\t// Check for being over a TEXTAREA or INPUT\n\tif([\"TEXTAREA\",\"INPUT\"].indexOf(event.target.tagName) !== -1) {\n\t\treturn false;\n\t}\n\t// Check for this window being the source of the drag\n\tif($tw.dragInProgress) {\n\t\treturn false;\n\t}\n\tvar self = this,\n\t\tdataTransfer = event.dataTransfer;\n\t// Remove highlighting\n\t$tw.utils.removeClass(this.domNodes[0],\"tc-dragover\");\n\t// Import any files in the drop\n\tvar numFiles = 0;\n\tif(dataTransfer.files) {\n\t\tnumFiles = this.wiki.readFiles(dataTransfer.files,{\n\t\t\tcallback: readFileCallback,\n\t\t\tdeserializer: this.dropzoneDeserializer\n\t\t});\n\t}\n\t// Try to import the various data types we understand\n\tif(numFiles === 0) {\n\t\t$tw.utils.importDataTransfer(dataTransfer,this.wiki.generateNewTitle(\"Untitled\"),readFileCallback);\n\t}\n\t// Tell the browser that we handled the drop\n\tevent.preventDefault();\n\t// Stop the drop ripple up to any parent handlers\n\tevent.stopPropagation();\n};\n\nDropZoneWidget.prototype.handlePasteEvent = function(event) {\n\tvar self = this,\n\t\treadFileCallback = function(tiddlerFieldsArray) {\n\t\t\tself.dispatchEvent({type: \"tm-import-tiddlers\", param: JSON.stringify(tiddlerFieldsArray), autoOpenOnImport: self.autoOpenOnImport, importTitle: self.importTitle});\n\t\t};\n\t// Let the browser handle it if we're in a textarea or input box\n\tif([\"TEXTAREA\",\"INPUT\"].indexOf(event.target.tagName) == -1 && !event.target.isContentEditable) {\n\t\tvar self = this,\n\t\t\titems = event.clipboardData.items;\n\t\t// Enumerate the clipboard items\n\t\tfor(var t = 0; t<items.length; t++) {\n\t\t\tvar item = items[t];\n\t\t\tif(item.kind === \"file\") {\n\t\t\t\t// Import any files\n\t\t\t\tthis.wiki.readFile(item.getAsFile(),{\n\t\t\t\t\tcallback: readFileCallback,\n\t\t\t\t\tdeserializer: this.dropzoneDeserializer\n\t\t\t\t});\n\t\t\t} else if(item.kind === \"string\") {\n\t\t\t\t// Create tiddlers from string items\n\t\t\t\tvar type = item.type;\n\t\t\t\titem.getAsString(function(str) {\n\t\t\t\t\tvar tiddlerFields = {\n\t\t\t\t\t\ttitle: self.wiki.generateNewTitle(\"Untitled\"),\n\t\t\t\t\t\ttext: str,\n\t\t\t\t\t\ttype: type\n\t\t\t\t\t};\n\t\t\t\t\tif($tw.log.IMPORT) {\n\t\t\t\t\t\tconsole.log(\"Importing string '\" + str + \"', type: '\" + type + \"'\");\n\t\t\t\t\t}\n\t\t\t\t\tself.dispatchEvent({type: \"tm-import-tiddlers\", param: JSON.stringify([tiddlerFields]), autoOpenOnImport: self.autoOpenOnImport, importTitle: self.importTitle});\n\t\t\t\t});\n\t\t\t}\n\t\t}\n\t\t// Tell the browser that we've handled the paste\n\t\tevent.stopPropagation();\n\t\tevent.preventDefault();\n\t}\n};\n\n/*\nCompute the internal state of the widget\n*/\nDropZoneWidget.prototype.execute = function() {\n\tthis.dropzoneClass = this.getAttribute(\"class\");\n\tthis.dropzoneDeserializer = this.getAttribute(\"deserializer\");\n\tthis.dropzoneEnable = (this.getAttribute(\"enable\") || \"yes\") === \"yes\";\n\tthis.autoOpenOnImport = this.getAttribute(\"autoOpenOnImport\");\n\tthis.importTitle = this.getAttribute(\"importTitle\");\n\t// Make child widgets\n\tthis.makeChildWidgets();\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nDropZoneWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif(changedAttributes.enable || changedAttributes.autoOpenOnImport || changedAttributes.importTitle || changedAttributes.deserializer || changedAttributes.class) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t}\n\treturn this.refreshChildren(changedTiddlers);\n};\n\nexports.dropzone = DropZoneWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/edit-binary.js": {
"title": "$:/core/modules/widgets/edit-binary.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/edit-binary.js\ntype: application/javascript\nmodule-type: widget\n\nEdit-binary widget; placeholder for editing binary tiddlers\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar BINARY_WARNING_MESSAGE = \"$:/core/ui/BinaryWarning\";\nvar EXPORT_BUTTON_IMAGE = \"$:/core/images/export-button\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar EditBinaryWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nEditBinaryWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nEditBinaryWidget.prototype.render = function(parent,nextSibling) {\n\tvar self = this;\n\t// Save the parent dom node\n\tthis.parentDomNode = parent;\n\t// Compute our attributes\n\tthis.computeAttributes();\n\t// Execute our logic\n\tthis.execute();\n\tthis.renderChildren(parent,nextSibling);\n};\n\n/*\nCompute the internal state of the widget\n*/\nEditBinaryWidget.prototype.execute = function() {\n\t// Get our parameters\n\tvar editTitle = this.getAttribute(\"tiddler\",this.getVariable(\"currentTiddler\"));\n\tvar tiddler = this.wiki.getTiddler(editTitle);\n\tvar type = tiddler.fields.type;\n\tvar text = tiddler.fields.text;\n\t// Transclude the binary data tiddler warning message\n\tvar warn = {\n\t\ttype: \"element\",\n\t\ttag: \"p\",\n\t\tchildren: [{\n\t\t\ttype: \"transclude\",\n\t\t\tattributes: {\n\t\t\t\ttiddler: {type: \"string\", value: BINARY_WARNING_MESSAGE}\n\t\t\t}\n\t\t}]\n\t};\n\t// Create download link based on draft tiddler title\n\tvar link = {\n\t\ttype: \"element\",\n\t\ttag: \"a\",\n\t\tattributes: {\n\t\t\ttitle: {type: \"indirect\", textReference: \"!!draft.title\"},\n\t\t\tdownload: {type: \"indirect\", textReference: \"!!draft.title\"}\n\t\t},\n\t\tchildren: [{\n\t\ttype: \"transclude\",\n\t\t\tattributes: {\n\t\t\t\ttiddler: {type: \"string\", value: EXPORT_BUTTON_IMAGE}\n\t\t\t}\n\t\t}]\n\t};\n\t// Set the link href to internal data URI (no external)\n\tif(text) {\n\t\tlink.attributes.href = {\n\t\t\ttype: \"string\", \n\t\t\tvalue: \"data:\" + type + \";base64,\" + text\n\t\t};\n\t}\n\t// Combine warning message and download link in a div\n\tvar element = {\n\t\ttype: \"element\",\n\t\ttag: \"div\",\n\t\tattributes: {\n\t\t\tclass: {type: \"string\", value: \"tc-binary-warning\"}\n\t\t},\n\t\tchildren: [warn, link]\n\t}\n\t// Construct the child widgets\n\tthis.makeChildWidgets([element]);\n};\n\n/*\nRefresh by refreshing our child widget\n*/\nEditBinaryWidget.prototype.refresh = function(changedTiddlers) {\n\treturn this.refreshChildren(changedTiddlers);\n};\n\nexports[\"edit-binary\"] = EditBinaryWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/edit-bitmap.js": {
"title": "$:/core/modules/widgets/edit-bitmap.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/edit-bitmap.js\ntype: application/javascript\nmodule-type: widget\n\nEdit-bitmap widget\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n// Default image sizes\nvar DEFAULT_IMAGE_WIDTH = 600,\n\tDEFAULT_IMAGE_HEIGHT = 370,\n\tDEFAULT_IMAGE_TYPE = \"image/png\";\n\n// Configuration tiddlers\nvar LINE_WIDTH_TITLE = \"$:/config/BitmapEditor/LineWidth\",\n\tLINE_COLOUR_TITLE = \"$:/config/BitmapEditor/Colour\",\n\tLINE_OPACITY_TITLE = \"$:/config/BitmapEditor/Opacity\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar EditBitmapWidget = function(parseTreeNode,options) {\n\t// Initialise the editor operations if they've not been done already\n\tif(!this.editorOperations) {\n\t\tEditBitmapWidget.prototype.editorOperations = {};\n\t\t$tw.modules.applyMethods(\"bitmapeditoroperation\",this.editorOperations);\n\t}\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nEditBitmapWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nEditBitmapWidget.prototype.render = function(parent,nextSibling) {\n\tvar self = this;\n\t// Save the parent dom node\n\tthis.parentDomNode = parent;\n\t// Compute our attributes\n\tthis.computeAttributes();\n\t// Execute our logic\n\tthis.execute();\n\t// Create the wrapper for the toolbar and render its content\n\tthis.toolbarNode = this.document.createElement(\"div\");\n\tthis.toolbarNode.className = \"tc-editor-toolbar\";\n\tparent.insertBefore(this.toolbarNode,nextSibling);\n\tthis.domNodes.push(this.toolbarNode);\n\t// Create the on-screen canvas\n\tthis.canvasDomNode = $tw.utils.domMaker(\"canvas\",{\n\t\tdocument: this.document,\n\t\t\"class\":\"tc-edit-bitmapeditor\",\n\t\teventListeners: [{\n\t\t\tname: \"touchstart\", handlerObject: this, handlerMethod: \"handleTouchStartEvent\"\n\t\t},{\n\t\t\tname: \"touchmove\", handlerObject: this, handlerMethod: \"handleTouchMoveEvent\"\n\t\t},{\n\t\t\tname: \"touchend\", handlerObject: this, handlerMethod: \"handleTouchEndEvent\"\n\t\t},{\n\t\t\tname: \"mousedown\", handlerObject: this, handlerMethod: \"handleMouseDownEvent\"\n\t\t},{\n\t\t\tname: \"mousemove\", handlerObject: this, handlerMethod: \"handleMouseMoveEvent\"\n\t\t},{\n\t\t\tname: \"mouseup\", handlerObject: this, handlerMethod: \"handleMouseUpEvent\"\n\t\t}]\n\t});\n\t// Set the width and height variables\n\tthis.setVariable(\"tv-bitmap-editor-width\",this.canvasDomNode.width + \"px\");\n\tthis.setVariable(\"tv-bitmap-editor-height\",this.canvasDomNode.height + \"px\");\n\t// Render toolbar child widgets\n\tthis.renderChildren(this.toolbarNode,null);\n\t// // Insert the elements into the DOM\n\tparent.insertBefore(this.canvasDomNode,nextSibling);\n\tthis.domNodes.push(this.canvasDomNode);\n\t// Load the image into the canvas\n\tif($tw.browser) {\n\t\tthis.loadCanvas();\n\t}\n\t// Add widget message listeners\n\tthis.addEventListeners([\n\t\t{type: \"tm-edit-bitmap-operation\", handler: \"handleEditBitmapOperationMessage\"}\n\t]);\n};\n\n/*\nHandle an edit bitmap operation message from the toolbar\n*/\nEditBitmapWidget.prototype.handleEditBitmapOperationMessage = function(event) {\n\t// Invoke the handler\n\tvar handler = this.editorOperations[event.param];\n\tif(handler) {\n\t\thandler.call(this,event);\n\t}\n};\n\n/*\nCompute the internal state of the widget\n*/\nEditBitmapWidget.prototype.execute = function() {\n\t// Get our parameters\n\tthis.editTitle = this.getAttribute(\"tiddler\",this.getVariable(\"currentTiddler\"));\n\t// Make the child widgets\n\tthis.makeChildWidgets();\n};\n\n/*\nJust refresh the toolbar\n*/\nEditBitmapWidget.prototype.refresh = function(changedTiddlers) {\n\treturn this.refreshChildren(changedTiddlers);\n};\n\n/*\nSet the bitmap size variables and refresh the toolbar\n*/\nEditBitmapWidget.prototype.refreshToolbar = function() {\n\t// Set the width and height variables\n\tthis.setVariable(\"tv-bitmap-editor-width\",this.canvasDomNode.width + \"px\");\n\tthis.setVariable(\"tv-bitmap-editor-height\",this.canvasDomNode.height + \"px\");\n\t// Refresh each of our child widgets\n\t$tw.utils.each(this.children,function(childWidget) {\n\t\tchildWidget.refreshSelf();\n\t});\n};\n\nEditBitmapWidget.prototype.loadCanvas = function() {\n\tvar tiddler = this.wiki.getTiddler(this.editTitle),\n\t\tcurrImage = new Image();\n\t// Set up event handlers for loading the image\n\tvar self = this;\n\tcurrImage.onload = function() {\n\t\t// Copy the image to the on-screen canvas\n\t\tself.initCanvas(self.canvasDomNode,currImage.width,currImage.height,currImage);\n\t\t// And also copy the current bitmap to the off-screen canvas\n\t\tself.currCanvas = self.document.createElement(\"canvas\");\n\t\tself.initCanvas(self.currCanvas,currImage.width,currImage.height,currImage);\n\t\t// Set the width and height input boxes\n\t\tself.refreshToolbar();\n\t};\n\tcurrImage.onerror = function() {\n\t\t// Set the on-screen canvas size and clear it\n\t\tself.initCanvas(self.canvasDomNode,DEFAULT_IMAGE_WIDTH,DEFAULT_IMAGE_HEIGHT);\n\t\t// Set the off-screen canvas size and clear it\n\t\tself.currCanvas = self.document.createElement(\"canvas\");\n\t\tself.initCanvas(self.currCanvas,DEFAULT_IMAGE_WIDTH,DEFAULT_IMAGE_HEIGHT);\n\t\t// Set the width and height input boxes\n\t\tself.refreshToolbar();\n\t};\n\t// Get the current bitmap into an image object\n\tif(tiddler && tiddler.fields.type && tiddler.fields.text) {\n\t\tcurrImage.src = \"data:\" + tiddler.fields.type + \";base64,\" + tiddler.fields.text;\t\t\n\t} else {\n\t\tcurrImage.width = DEFAULT_IMAGE_WIDTH;\n\t\tcurrImage.height = DEFAULT_IMAGE_HEIGHT;\n\t\tcurrImage.onerror();\n\t}\n};\n\nEditBitmapWidget.prototype.initCanvas = function(canvas,width,height,image) {\n\tcanvas.width = width;\n\tcanvas.height = height;\n\tvar ctx = canvas.getContext(\"2d\");\n\tif(image) {\n\t\tctx.drawImage(image,0,0);\n\t} else {\n\t\tctx.fillStyle = \"#fff\";\n\t\tctx.fillRect(0,0,canvas.width,canvas.height);\n\t}\n};\n\n/*\n** Change the size of the canvas, preserving the current image\n*/\nEditBitmapWidget.prototype.changeCanvasSize = function(newWidth,newHeight) {\n\t// Create and size a new canvas\n\tvar newCanvas = this.document.createElement(\"canvas\");\n\tthis.initCanvas(newCanvas,newWidth,newHeight);\n\t// Copy the old image\n\tvar ctx = newCanvas.getContext(\"2d\");\n\tctx.drawImage(this.currCanvas,0,0);\n\t// Set the new canvas as the current one\n\tthis.currCanvas = newCanvas;\n\t// Set the size of the onscreen canvas\n\tthis.canvasDomNode.width = newWidth;\n\tthis.canvasDomNode.height = newHeight;\n\t// Paint the onscreen canvas with the offscreen canvas\n\tctx = this.canvasDomNode.getContext(\"2d\");\n\tctx.drawImage(this.currCanvas,0,0);\n};\n\n/*\n** Rotate the canvas left by 90 degrees\n*/\nEditBitmapWidget.prototype.rotateCanvasLeft = function() {\n\t// Get the current size of the image\n\tvar origWidth = this.currCanvas.width,\n\t\torigHeight = this.currCanvas.height;\n\t// Create and size a new canvas\n\tvar newCanvas = this.document.createElement(\"canvas\"),\n\t\tnewWidth = origHeight,\n\t\tnewHeight = origWidth;\n\tthis.initCanvas(newCanvas,newWidth,newHeight);\n\t// Copy the old image\n\tvar ctx = newCanvas.getContext(\"2d\");\n\tctx.save();\n\tctx.translate(newWidth / 2,newHeight / 2);\n\tctx.rotate(-Math.PI / 2);\n\tctx.drawImage(this.currCanvas,-origWidth / 2,-origHeight / 2);\n\tctx.restore();\n\t// Set the new canvas as the current one\n\tthis.currCanvas = newCanvas;\n\t// Set the size of the onscreen canvas\n\tthis.canvasDomNode.width = newWidth;\n\tthis.canvasDomNode.height = newHeight;\n\t// Paint the onscreen canvas with the offscreen canvas\n\tctx = this.canvasDomNode.getContext(\"2d\");\n\tctx.drawImage(this.currCanvas,0,0);\n};\n\nEditBitmapWidget.prototype.handleTouchStartEvent = function(event) {\n\tthis.brushDown = true;\n\tthis.strokeStart(event.touches[0].clientX,event.touches[0].clientY);\n\tevent.preventDefault();\n\tevent.stopPropagation();\n\treturn false;\n};\n\nEditBitmapWidget.prototype.handleTouchMoveEvent = function(event) {\n\tif(this.brushDown) {\n\t\tthis.strokeMove(event.touches[0].clientX,event.touches[0].clientY);\n\t}\n\tevent.preventDefault();\n\tevent.stopPropagation();\n\treturn false;\n};\n\nEditBitmapWidget.prototype.handleTouchEndEvent = function(event) {\n\tif(this.brushDown) {\n\t\tthis.brushDown = false;\n\t\tthis.strokeEnd();\n\t}\n\tevent.preventDefault();\n\tevent.stopPropagation();\n\treturn false;\n};\n\nEditBitmapWidget.prototype.handleMouseDownEvent = function(event) {\n\tthis.strokeStart(event.clientX,event.clientY);\n\tthis.brushDown = true;\n\tevent.preventDefault();\n\tevent.stopPropagation();\n\treturn false;\n};\n\nEditBitmapWidget.prototype.handleMouseMoveEvent = function(event) {\n\tif(this.brushDown) {\n\t\tthis.strokeMove(event.clientX,event.clientY);\n\t\tevent.preventDefault();\n\t\tevent.stopPropagation();\n\t\treturn false;\n\t}\n\treturn true;\n};\n\nEditBitmapWidget.prototype.handleMouseUpEvent = function(event) {\n\tif(this.brushDown) {\n\t\tthis.brushDown = false;\n\t\tthis.strokeEnd();\n\t\tevent.preventDefault();\n\t\tevent.stopPropagation();\n\t\treturn false;\n\t}\n\treturn true;\n};\n\nEditBitmapWidget.prototype.adjustCoordinates = function(x,y) {\n\tvar canvasRect = this.canvasDomNode.getBoundingClientRect(),\n\t\tscale = this.canvasDomNode.width/canvasRect.width;\n\treturn {x: (x - canvasRect.left) * scale, y: (y - canvasRect.top) * scale};\n};\n\nEditBitmapWidget.prototype.strokeStart = function(x,y) {\n\t// Start off a new stroke\n\tthis.stroke = [this.adjustCoordinates(x,y)];\n};\n\nEditBitmapWidget.prototype.strokeMove = function(x,y) {\n\tvar ctx = this.canvasDomNode.getContext(\"2d\"),\n\t\tt;\n\t// Add the new position to the end of the stroke\n\tthis.stroke.push(this.adjustCoordinates(x,y));\n\t// Redraw the previous image\n\tctx.drawImage(this.currCanvas,0,0);\n\t// Render the stroke\n\tctx.globalAlpha = parseFloat(this.wiki.getTiddlerText(LINE_OPACITY_TITLE,\"1.0\"));\n\tctx.strokeStyle = this.wiki.getTiddlerText(LINE_COLOUR_TITLE,\"#ff0\");\n\tctx.lineWidth = parseFloat(this.wiki.getTiddlerText(LINE_WIDTH_TITLE,\"3\"));\n\tctx.lineCap = \"round\";\n\tctx.lineJoin = \"round\";\n\tctx.beginPath();\n\tctx.moveTo(this.stroke[0].x,this.stroke[0].y);\n\tfor(t=1; t<this.stroke.length-1; t++) {\n\t\tvar s1 = this.stroke[t],\n\t\t\ts2 = this.stroke[t-1],\n\t\t\ttx = (s1.x + s2.x)/2,\n\t\t\tty = (s1.y + s2.y)/2;\n\t\tctx.quadraticCurveTo(s2.x,s2.y,tx,ty);\n\t}\n\tctx.stroke();\n};\n\nEditBitmapWidget.prototype.strokeEnd = function() {\n\t// Copy the bitmap to the off-screen canvas\n\tvar ctx = this.currCanvas.getContext(\"2d\");\n\tctx.drawImage(this.canvasDomNode,0,0);\n\t// Save the image into the tiddler\n\tthis.saveChanges();\n};\n\nEditBitmapWidget.prototype.saveChanges = function() {\n\tvar tiddler = this.wiki.getTiddler(this.editTitle) || new $tw.Tiddler({title: this.editTitle,type: DEFAULT_IMAGE_TYPE});\n\t// data URIs look like \"data:<type>;base64,<text>\"\n\tvar dataURL = this.canvasDomNode.toDataURL(tiddler.fields.type),\n\t\tposColon = dataURL.indexOf(\":\"),\n\t\tposSemiColon = dataURL.indexOf(\";\"),\n\t\tposComma = dataURL.indexOf(\",\"),\n\t\ttype = dataURL.substring(posColon+1,posSemiColon),\n\t\ttext = dataURL.substring(posComma+1);\n\tvar update = {type: type, text: text};\n\tthis.wiki.addTiddler(new $tw.Tiddler(this.wiki.getModificationFields(),tiddler,update,this.wiki.getCreationFields()));\n};\n\nexports[\"edit-bitmap\"] = EditBitmapWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/edit-shortcut.js": {
"title": "$:/core/modules/widgets/edit-shortcut.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/edit-shortcut.js\ntype: application/javascript\nmodule-type: widget\n\nWidget to display an editable keyboard shortcut\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar EditShortcutWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nEditShortcutWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nEditShortcutWidget.prototype.render = function(parent,nextSibling) {\n\tthis.parentDomNode = parent;\n\tthis.computeAttributes();\n\tthis.execute();\n\tthis.inputNode = this.document.createElement(\"input\");\n\t// Assign classes\n\tif(this.shortcutClass) {\n\t\tthis.inputNode.className = this.shortcutClass;\t\t\n\t}\n\t// Assign other attributes\n\tif(this.shortcutStyle) {\n\t\tthis.inputNode.setAttribute(\"style\",this.shortcutStyle);\n\t}\n\tif(this.shortcutTooltip) {\n\t\tthis.inputNode.setAttribute(\"title\",this.shortcutTooltip);\n\t}\n\tif(this.shortcutPlaceholder) {\n\t\tthis.inputNode.setAttribute(\"placeholder\",this.shortcutPlaceholder);\n\t}\n\tif(this.shortcutAriaLabel) {\n\t\tthis.inputNode.setAttribute(\"aria-label\",this.shortcutAriaLabel);\n\t}\n\t// Assign the current shortcut\n\tthis.updateInputNode();\n\t// Add event handlers\n\t$tw.utils.addEventListeners(this.inputNode,[\n\t\t{name: \"keydown\", handlerObject: this, handlerMethod: \"handleKeydownEvent\"}\n\t]);\n\t// Link into the DOM\n\tparent.insertBefore(this.inputNode,nextSibling);\n\tthis.domNodes.push(this.inputNode);\n\t// Focus the input Node if focus === \"yes\" or focus === \"true\"\n\tif(this.shortcutFocus === \"yes\" || this.shortcutFocus === \"true\") {\n\t\tthis.focus();\n\t}\n};\n\n/*\nCompute the internal state of the widget\n*/\nEditShortcutWidget.prototype.execute = function() {\n\tthis.shortcutTiddler = this.getAttribute(\"tiddler\");\n\tthis.shortcutField = this.getAttribute(\"field\");\n\tthis.shortcutIndex = this.getAttribute(\"index\");\n\tthis.shortcutPlaceholder = this.getAttribute(\"placeholder\");\n\tthis.shortcutDefault = this.getAttribute(\"default\",\"\");\n\tthis.shortcutClass = this.getAttribute(\"class\");\n\tthis.shortcutStyle = this.getAttribute(\"style\");\n\tthis.shortcutTooltip = this.getAttribute(\"tooltip\");\n\tthis.shortcutAriaLabel = this.getAttribute(\"aria-label\");\n\tthis.shortcutFocus = this.getAttribute(\"focus\");\n};\n\n/*\nUpdate the value of the input node\n*/\nEditShortcutWidget.prototype.updateInputNode = function() {\n\tif(this.shortcutField) {\n\t\tvar tiddler = this.wiki.getTiddler(this.shortcutTiddler);\n\t\tif(tiddler && $tw.utils.hop(tiddler.fields,this.shortcutField)) {\n\t\t\tthis.inputNode.value = tiddler.getFieldString(this.shortcutField);\n\t\t} else {\n\t\t\tthis.inputNode.value = this.shortcutDefault;\n\t\t}\n\t} else if(this.shortcutIndex) {\n\t\tthis.inputNode.value = this.wiki.extractTiddlerDataItem(this.shortcutTiddler,this.shortcutIndex,this.shortcutDefault);\n\t} else {\n\t\tthis.inputNode.value = this.wiki.getTiddlerText(this.shortcutTiddler,this.shortcutDefault);\n\t}\n};\n\n/*\nHandle a dom \"keydown\" event\n*/\nEditShortcutWidget.prototype.handleKeydownEvent = function(event) {\n\t// Ignore shift, ctrl, meta, alt\n\tif(event.keyCode && $tw.keyboardManager.getModifierKeys().indexOf(event.keyCode) === -1) {\n\t\t// Get the shortcut text representation\n\t\tvar value = $tw.keyboardManager.getPrintableShortcuts([{\n\t\t\tctrlKey: event.ctrlKey,\n\t\t\tshiftKey: event.shiftKey,\n\t\t\taltKey: event.altKey,\n\t\t\tmetaKey: event.metaKey,\n\t\t\tkeyCode: event.keyCode\n\t\t}]);\n\t\tif(value.length > 0) {\n\t\t\tthis.wiki.setText(this.shortcutTiddler,this.shortcutField,this.shortcutIndex,value[0]);\n\t\t}\n\t\t// Ignore the keydown if it was already handled\n\t\tevent.preventDefault();\n\t\tevent.stopPropagation();\n\t\treturn true;\t\t\n\t} else {\n\t\treturn false;\n\t}\n};\n\n/*\nfocus the input node\n*/\nEditShortcutWidget.prototype.focus = function() {\n\tif(this.inputNode.focus && this.inputNode.select) {\n\t\tthis.inputNode.focus();\n\t\tthis.inputNode.select();\n\t}\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget needed re-rendering\n*/\nEditShortcutWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif(changedAttributes.tiddler || changedAttributes.field || changedAttributes.index || changedAttributes.placeholder || changedAttributes[\"default\"] || changedAttributes[\"class\"] || changedAttributes.style || changedAttributes.tooltip || changedAttributes[\"aria-label\"] || changedAttributes.focus) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t} else if(changedTiddlers[this.shortcutTiddler]) {\n\t\tthis.updateInputNode();\n\t\treturn true;\n\t} else {\n\t\treturn false;\t\n\t}\n};\n\nexports[\"edit-shortcut\"] = EditShortcutWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/edit-text.js": {
"title": "$:/core/modules/widgets/edit-text.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/edit-text.js\ntype: application/javascript\nmodule-type: widget\n\nEdit-text widget\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar editTextWidgetFactory = require(\"$:/core/modules/editor/factory.js\").editTextWidgetFactory,\n\tFramedEngine = require(\"$:/core/modules/editor/engines/framed.js\").FramedEngine,\n\tSimpleEngine = require(\"$:/core/modules/editor/engines/simple.js\").SimpleEngine;\n\nexports[\"edit-text\"] = editTextWidgetFactory(FramedEngine,SimpleEngine);\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/edit.js": {
"title": "$:/core/modules/widgets/edit.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/edit.js\ntype: application/javascript\nmodule-type: widget\n\nEdit widget is a meta-widget chooses the appropriate actual editting widget\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar EditWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nEditWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nEditWidget.prototype.render = function(parent,nextSibling) {\n\tthis.parentDomNode = parent;\n\tthis.computeAttributes();\n\tthis.execute();\n\tthis.renderChildren(parent,nextSibling);\n};\n\n// Mappings from content type to editor type are stored in tiddlers with this prefix\nvar EDITOR_MAPPING_PREFIX = \"$:/config/EditorTypeMappings/\";\n\n/*\nCompute the internal state of the widget\n*/\nEditWidget.prototype.execute = function() {\n\t// Get our parameters\n\tthis.editTitle = this.getAttribute(\"tiddler\",this.getVariable(\"currentTiddler\"));\n\tthis.editField = this.getAttribute(\"field\",\"text\");\n\tthis.editIndex = this.getAttribute(\"index\");\n\tthis.editClass = this.getAttribute(\"class\");\n\tthis.editPlaceholder = this.getAttribute(\"placeholder\");\n\tthis.editTabIndex = this.getAttribute(\"tabindex\");\n\tthis.editFocus = this.getAttribute(\"focus\",\"\");\n\tthis.editCancelPopups = this.getAttribute(\"cancelPopups\",\"\");\n\tthis.editInputActions = this.getAttribute(\"inputActions\");\n\tthis.editRefreshTitle = this.getAttribute(\"refreshTitle\");\n\tthis.editAutoComplete = this.getAttribute(\"autocomplete\");\n\t// Choose the appropriate edit widget\n\tthis.editorType = this.getEditorType();\n\t// Make the child widgets\n\tthis.makeChildWidgets([{\n\t\ttype: \"edit-\" + this.editorType,\n\t\tattributes: this.parseTreeNode.attributes,\n\t\tchildren: this.parseTreeNode.children\n\t}]);\n};\n\nEditWidget.prototype.getEditorType = function() {\n\t// Get the content type of the thing we're editing\n\tvar type;\n\tif(this.editField === \"text\") {\n\t\tvar tiddler = this.wiki.getTiddler(this.editTitle);\n\t\tif(tiddler) {\n\t\t\ttype = tiddler.fields.type;\n\t\t}\n\t}\n\ttype = type || \"text/vnd.tiddlywiki\";\n\tvar editorType = this.wiki.getTiddlerText(EDITOR_MAPPING_PREFIX + type);\n\tif(!editorType) {\n\t\tvar typeInfo = $tw.config.contentTypeInfo[type];\n\t\tif(typeInfo && typeInfo.encoding === \"base64\") {\n\t\t\teditorType = \"binary\";\n\t\t} else {\n\t\t\teditorType = \"text\";\n\t\t}\n\t}\n\treturn editorType;\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nEditWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\t// Refresh if an attribute has changed, or the type associated with the target tiddler has changed\n\tif(changedAttributes.tiddler || changedAttributes.field || changedAttributes.index || changedAttributes.tabindex || changedAttributes.cancelPopups || changedAttributes.inputActions || changedAttributes.refreshTitle || changedAttributes.autocomplete || (changedTiddlers[this.editTitle] && this.getEditorType() !== this.editorType)) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t} else {\n\t\treturn this.refreshChildren(changedTiddlers);\n\t}\n};\n\nexports.edit = EditWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/element.js": {
"title": "$:/core/modules/widgets/element.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/element.js\ntype: application/javascript\nmodule-type: widget\n\nElement widget\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar ElementWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nElementWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nElementWidget.prototype.render = function(parent,nextSibling) {\n\tthis.parentDomNode = parent;\n\tthis.computeAttributes();\n\t// Neuter blacklisted elements\n\tthis.tag = this.parseTreeNode.tag;\n\tif($tw.config.htmlUnsafeElements.indexOf(this.tag) !== -1) {\n\t\tthis.tag = \"safe-\" + this.tag;\n\t}\n\t// Adjust headings by the current base level\n\tvar headingLevel = [\"h1\",\"h2\",\"h3\",\"h4\",\"h5\",\"h6\"].indexOf(this.tag);\n\tif(headingLevel !== -1) {\n\t\tvar baseLevel = parseInt(this.getVariable(\"tv-adjust-heading-level\",\"0\"),10) || 0;\n\t\theadingLevel = Math.min(Math.max(headingLevel + 1 + baseLevel,1),6);\n\t\tthis.tag = \"h\" + headingLevel;\n\t}\n\t// Select the namespace for the tag\n\tvar tagNamespaces = {\n\t\t\tsvg: \"http://www.w3.org/2000/svg\",\n\t\t\tmath: \"http://www.w3.org/1998/Math/MathML\",\n\t\t\tbody: \"http://www.w3.org/1999/xhtml\"\n\t\t};\n\tthis.namespace = tagNamespaces[this.tag];\n\tif(this.namespace) {\n\t\tthis.setVariable(\"namespace\",this.namespace);\n\t} else {\n\t\tthis.namespace = this.getVariable(\"namespace\",{defaultValue: \"http://www.w3.org/1999/xhtml\"});\n\t}\n\t// Invoke the th-rendering-element hook\n\tvar parseTreeNodes = $tw.hooks.invokeHook(\"th-rendering-element\",null,this);\n\tthis.isReplaced = !!parseTreeNodes;\n\tif(parseTreeNodes) {\n\t\t// Use the parse tree nodes provided by the hook\n\t\tthis.makeChildWidgets(parseTreeNodes);\n\t\tthis.renderChildren(this.parentDomNode,null);\n\t\treturn;\n\t}\n\t// Make the child widgets\n\tthis.makeChildWidgets();\n\t// Create the DOM node and render children\n\tvar domNode = this.document.createElementNS(this.namespace,this.tag);\n\tthis.assignAttributes(domNode,{excludeEventAttributes: true});\n\tparent.insertBefore(domNode,nextSibling);\n\tthis.renderChildren(domNode,null);\n\tthis.domNodes.push(domNode);\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nElementWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes(),\n\t\thasChangedAttributes = $tw.utils.count(changedAttributes) > 0;\n\tif(hasChangedAttributes) {\n\t\tif(!this.isReplaced) {\n\t\t\t// Update our attributes\n\t\t\tthis.assignAttributes(this.domNodes[0],{excludeEventAttributes: true});\t\t\t\n\t\t} else {\n\t\t\t// If we were replaced then completely refresh ourselves\n\t\t\treturn this.refreshSelf();\n\t\t}\n\t}\n\treturn this.refreshChildren(changedTiddlers) || hasChangedAttributes;\n};\n\nexports.element = ElementWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/encrypt.js": {
"title": "$:/core/modules/widgets/encrypt.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/encrypt.js\ntype: application/javascript\nmodule-type: widget\n\nEncrypt widget\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar EncryptWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nEncryptWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nEncryptWidget.prototype.render = function(parent,nextSibling) {\n\tthis.parentDomNode = parent;\n\tthis.computeAttributes();\n\tthis.execute();\n\tvar textNode = this.document.createTextNode(this.encryptedText);\n\tparent.insertBefore(textNode,nextSibling);\n\tthis.domNodes.push(textNode);\n};\n\n/*\nCompute the internal state of the widget\n*/\nEncryptWidget.prototype.execute = function() {\n\t// Get parameters from our attributes\n\tthis.filter = this.getAttribute(\"filter\",\"[!is[system]]\");\n\t// Encrypt the filtered tiddlers\n\tvar tiddlers = this.wiki.filterTiddlers(this.filter),\n\t\tjson = {},\n\t\tself = this;\n\t$tw.utils.each(tiddlers,function(title) {\n\t\tvar tiddler = self.wiki.getTiddler(title),\n\t\t\tjsonTiddler = {};\n\t\tfor(var f in tiddler.fields) {\n\t\t\tjsonTiddler[f] = tiddler.getFieldString(f);\n\t\t}\n\t\tjson[title] = jsonTiddler;\n\t});\n\tthis.encryptedText = $tw.utils.htmlEncode($tw.crypto.encrypt(JSON.stringify(json)));\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nEncryptWidget.prototype.refresh = function(changedTiddlers) {\n\t// We don't need to worry about refreshing because the encrypt widget isn't for interactive use\n\treturn false;\n};\n\nexports.encrypt = EncryptWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/entity.js": {
"title": "$:/core/modules/widgets/entity.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/entity.js\ntype: application/javascript\nmodule-type: widget\n\nHTML entity widget\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar EntityWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nEntityWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nEntityWidget.prototype.render = function(parent,nextSibling) {\n\tthis.parentDomNode = parent;\n\tthis.computeAttributes();\n\tthis.execute();\n\tvar entityString = this.getAttribute(\"entity\",this.parseTreeNode.entity || \"\"),\n\t\ttextNode = this.document.createTextNode($tw.utils.entityDecode(entityString));\n\tparent.insertBefore(textNode,nextSibling);\n\tthis.domNodes.push(textNode);\n};\n\n/*\nCompute the internal state of the widget\n*/\nEntityWidget.prototype.execute = function() {\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nEntityWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif(changedAttributes.entity) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t} else {\n\t\treturn false;\t\n\t}\n};\n\nexports.entity = EntityWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/eventcatcher.js": {
"title": "$:/core/modules/widgets/eventcatcher.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/eventcatcher.js\ntype: application/javascript\nmodule-type: widget\n\nEvent handler widget\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar EventWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nEventWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nEventWidget.prototype.render = function(parent,nextSibling) {\n\tvar self = this;\n\t// Remember parent\n\tthis.parentDomNode = parent;\n\t// Compute attributes and execute state\n\tthis.computeAttributes();\n\tthis.execute();\n\t// Create element\n\tvar tag = this.parseTreeNode.isBlock ? \"div\" : \"span\";\n\tif(this.elementTag && $tw.config.htmlUnsafeElements.indexOf(this.elementTag) === -1) {\n\t\ttag = this.elementTag;\n\t}\t\n\tvar domNode = this.document.createElement(tag);\n\tthis.domNode = domNode;\n\t// Assign classes\n\tthis.assignDomNodeClasses();\t\n\t// Add our event handler\n\t$tw.utils.each(this.types,function(type) {\n\t\tdomNode.addEventListener(type,function(event) {\n\t\t\tvar selector = self.getAttribute(\"selector\"),\n\t\t\t\tactions = self.getAttribute(\"actions-\"+type),\n\t\t\t\tselectedNode = event.target,\n\t\t\t\tselectedNodeRect,\n\t\t\t\tcatcherNodeRect,\n\t\t\t\tvariables = {};\n\t\t\tif(selector) {\n\t\t\t\t// Search ancestors for a node that matches the selector\n\t\t\t\twhile(!selectedNode.matches(selector) && selectedNode !== domNode) {\n\t\t\t\t\tselectedNode = selectedNode.parentNode;\n\t\t\t\t}\n\t\t\t\t// If we found one, copy the attributes as variables, otherwise exit\n\t\t\t\tif(selectedNode.matches(selector)) {\n\t\t\t\t\t$tw.utils.each(selectedNode.attributes,function(attribute) {\n\t\t\t\t\t\tvariables[\"dom-\" + attribute.name] = attribute.value.toString();\n\t\t\t\t\t});\n\t\t\t\t\t//Add a variable with a popup coordinate string for the selected node\n\t\t\t\t\tvariables[\"tv-popup-coords\"] = \"(\" + selectedNode.offsetLeft + \",\" + selectedNode.offsetTop +\",\" + selectedNode.offsetWidth + \",\" + selectedNode.offsetHeight + \")\";\n\t\t\t\t\t\n\t\t\t\t\t//Add variables for offset of selected node\n\t\t\t\t\tvariables[\"tv-selectednode-posx\"] = selectedNode.offsetLeft.toString();\n\t\t\t\t\tvariables[\"tv-selectednode-posy\"] = selectedNode.offsetTop.toString();\n\t\t\t\t\tvariables[\"tv-selectednode-width\"] = selectedNode.offsetWidth.toString();\n\t\t\t\t\tvariables[\"tv-selectednode-height\"] = selectedNode.offsetHeight.toString();\n\n\t\t\t\t\t//Add variables for event X and Y position relative to selected node\n\t\t\t\t\tselectedNodeRect = selectedNode.getBoundingClientRect();\t\t\t\t\n\t\t\t\t\tvariables[\"event-fromselected-posx\"] = (event.clientX - selectedNodeRect.left).toString();\n\t\t\t\t\tvariables[\"event-fromselected-posy\"] = (event.clientY - selectedNodeRect.top).toString();\n\n\t\t\t\t\t//Add variables for event X and Y position relative to event catcher node\n\t\t\t\t\tcatcherNodeRect = self.domNode.getBoundingClientRect();\n\t\t\t\t\tvariables[\"event-fromcatcher-posx\"] = (event.clientX - catcherNodeRect.left).toString();\n\t\t\t\t\tvariables[\"event-fromcatcher-posy\"] = (event.clientY - catcherNodeRect.top).toString();\n\t\t\t\t} else {\n\t\t\t\t\treturn false;\n\t\t\t\t}\n\t\t\t}\n\t\t\t// Execute our actions with the variables\n\t\t\tif(actions) {\n\t\t\t\t// Add a variable for the modifier key\n\t\t\t\tvariables.modifier = $tw.keyboardManager.getEventModifierKeyDescriptor(event);\n\t\t\t\t// Add a variable for the mouse button\n\t\t\t\tif(\"button\" in event) {\n\t\t\t\t\tif(event.button === 0) {\n\t\t\t\t\t\tvariables[\"event-mousebutton\"] = \"left\";\n\t\t\t\t\t} else if(event.button === 1) {\n\t\t\t\t\t\tvariables[\"event-mousebutton\"] = \"middle\";\n\t\t\t\t\t} else if(event.button === 2) {\n\t\t\t\t\t\tvariables[\"event-mousebutton\"] = \"right\";\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tvariables[\"event-type\"] = event.type.toString();\n\t\t\t\tif(typeof event.detail === \"object\" && !!event.detail) {\n\t\t\t\t\t$tw.utils.each(event.detail,function(detailValue,detail) {\n\t\t\t\t\t\tvariables[\"event-detail-\" + detail] = detailValue.toString();\n\t\t\t\t\t});\n\t\t\t\t} else if(!!event.detail) {\n\t\t\t\t\tvariables[\"event-detail\"] = event.detail.toString();\n\t\t\t\t}\n\t\t\t\tself.invokeActionString(actions,self,event,variables);\n\t\t\t\tevent.preventDefault();\n\t\t\t\tevent.stopPropagation();\n\t\t\t\treturn true;\n\t\t\t}\n\t\t\treturn false;\n\t\t},false);\n\t});\n\t// Insert element\n\tparent.insertBefore(domNode,nextSibling);\n\tthis.renderChildren(domNode,null);\n\tthis.domNodes.push(domNode);\n};\n\n/*\nCompute the internal state of the widget\n*/\nEventWidget.prototype.execute = function() {\n\tvar self = this;\n\t// Get attributes that require a refresh on change\n\tthis.types = this.getAttribute(\"events\",\"\").split(\" \");\n\tthis.elementTag = this.getAttribute(\"tag\");\n\t// Make child widgets\n\tthis.makeChildWidgets();\n};\n\nEventWidget.prototype.assignDomNodeClasses = function() {\n\tvar classes = this.getAttribute(\"class\",\"\").split(\" \");\n\tclasses.push(\"tc-eventcatcher\");\n\tthis.domNode.className = classes.join(\" \");\t\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nEventWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif(changedAttributes[\"events\"] || changedAttributes[\"tag\"]) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t} else if(changedAttributes[\"class\"]) {\n\t\tthis.assignDomNodeClasses();\n\t}\n\treturn this.refreshChildren(changedTiddlers);\n};\n\nexports.eventcatcher = EventWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/fieldmangler.js": {
"title": "$:/core/modules/widgets/fieldmangler.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/fieldmangler.js\ntype: application/javascript\nmodule-type: widget\n\nField mangler widget\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar FieldManglerWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n\tthis.addEventListeners([\n\t\t{type: \"tm-remove-field\", handler: \"handleRemoveFieldEvent\"},\n\t\t{type: \"tm-add-field\", handler: \"handleAddFieldEvent\"},\n\t\t{type: \"tm-remove-tag\", handler: \"handleRemoveTagEvent\"},\n\t\t{type: \"tm-add-tag\", handler: \"handleAddTagEvent\"}\n\t]);\n};\n\n/*\nInherit from the base widget class\n*/\nFieldManglerWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nFieldManglerWidget.prototype.render = function(parent,nextSibling) {\n\tthis.parentDomNode = parent;\n\tthis.computeAttributes();\n\tthis.execute();\n\tthis.renderChildren(parent,nextSibling);\n};\n\n/*\nCompute the internal state of the widget\n*/\nFieldManglerWidget.prototype.execute = function() {\n\t// Get our parameters\n\tthis.mangleTitle = this.getAttribute(\"tiddler\",this.getVariable(\"currentTiddler\"));\n\t// Construct the child widgets\n\tthis.makeChildWidgets();\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nFieldManglerWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif(changedAttributes.tiddler) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t} else {\n\t\treturn this.refreshChildren(changedTiddlers);\t\t\n\t}\n};\n\nFieldManglerWidget.prototype.handleRemoveFieldEvent = function(event) {\n\tvar tiddler = this.wiki.getTiddler(this.mangleTitle),\n\t\tdeletion = {};\n\tdeletion[event.param] = undefined;\n\tthis.wiki.addTiddler(new $tw.Tiddler(tiddler,deletion));\n\treturn true;\n};\n\nFieldManglerWidget.prototype.handleAddFieldEvent = function(event) {\n\tvar tiddler = this.wiki.getTiddler(this.mangleTitle),\n\t\taddition = this.wiki.getModificationFields(),\n\t\thadInvalidFieldName = false,\n\t\taddField = function(name,value) {\n\t\t\tvar trimmedName = name.toLowerCase().trim();\n\t\t\tif(!$tw.utils.isValidFieldName(trimmedName)) {\n\t\t\t\tif(!hadInvalidFieldName) {\n\t\t\t\t\talert($tw.language.getString(\n\t\t\t\t\t\t\"InvalidFieldName\",\n\t\t\t\t\t\t{variables:\n\t\t\t\t\t\t\t{fieldName: trimmedName}\n\t\t\t\t\t\t}\n\t\t\t\t\t));\n\t\t\t\t\thadInvalidFieldName = true;\n\t\t\t\t\treturn;\n\t\t\t\t}\n\t\t\t} else {\n\t\t\t\tif(!value && tiddler) {\n\t\t\t\t\tvalue = tiddler.fields[trimmedName];\n\t\t\t\t}\n\t\t\t\taddition[trimmedName] = value || \"\";\n\t\t\t}\n\t\t\treturn;\n\t\t};\n\taddition.title = this.mangleTitle;\n\tif(typeof event.param === \"string\") {\n\t\taddField(event.param,\"\");\n\t}\n\tif(typeof event.paramObject === \"object\") {\n\t\tfor(var name in event.paramObject) {\n\t\t\taddField(name,event.paramObject[name]);\n\t\t}\n\t}\n\tthis.wiki.addTiddler(new $tw.Tiddler(tiddler,addition));\n\treturn true;\n};\n\nFieldManglerWidget.prototype.handleRemoveTagEvent = function(event) {\n\tvar tiddler = this.wiki.getTiddler(this.mangleTitle),\n\t\tmodification = this.wiki.getModificationFields();\n\tif(tiddler && tiddler.fields.tags) {\n\t\tvar p = tiddler.fields.tags.indexOf(event.param);\n\t\tif(p !== -1) {\n\t\t\tmodification.tags = (tiddler.fields.tags || []).slice(0);\n\t\t\tmodification.tags.splice(p,1);\n\t\t\tif(modification.tags.length === 0) {\n\t\t\t\tmodification.tags = undefined;\n\t\t\t}\n\t\t\tthis.wiki.addTiddler(new $tw.Tiddler(tiddler,modification));\n\t\t}\n\t}\n\treturn true;\n};\n\nFieldManglerWidget.prototype.handleAddTagEvent = function(event) {\n\tvar tiddler = this.wiki.getTiddler(this.mangleTitle),\n\t\tmodification = this.wiki.getModificationFields();\n\tif(tiddler && typeof event.param === \"string\") {\n\t\tvar tag = event.param.trim();\n\t\tif(tag !== \"\") {\n\t\t\tmodification.tags = (tiddler.fields.tags || []).slice(0);\n\t\t\t$tw.utils.pushTop(modification.tags,tag);\n\t\t\tthis.wiki.addTiddler(new $tw.Tiddler(tiddler,modification));\t\t\t\n\t\t}\n\t} else if(typeof event.param === \"string\" && event.param.trim() !== \"\" && this.mangleTitle.trim() !== \"\") {\n\t\tvar tag = [];\n\t\ttag.push(event.param.trim());\n\t\tthis.wiki.addTiddler(new $tw.Tiddler({title: this.mangleTitle, tags: tag},modification));\n\t}\n\treturn true;\n};\n\nexports.fieldmangler = FieldManglerWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/fields.js": {
"title": "$:/core/modules/widgets/fields.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/fields.js\ntype: application/javascript\nmodule-type: widget\n\nFields widget\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar FieldsWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nFieldsWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nFieldsWidget.prototype.render = function(parent,nextSibling) {\n\tthis.parentDomNode = parent;\n\tthis.computeAttributes();\n\tthis.execute();\n\tvar textNode = this.document.createTextNode(this.text);\n\tparent.insertBefore(textNode,nextSibling);\n\tthis.domNodes.push(textNode);\n};\n\n/*\nCompute the internal state of the widget\n*/\nFieldsWidget.prototype.execute = function() {\n\t// Get parameters from our attributes\n\tthis.tiddlerTitle = this.getAttribute(\"tiddler\",this.getVariable(\"currentTiddler\"));\n\tthis.template = this.getAttribute(\"template\");\n\tthis.sort = this.getAttribute(\"sort\",\"yes\") === \"yes\";\n\tthis.sortReverse = this.getAttribute(\"sortReverse\",\"no\") === \"yes\";\n\tthis.exclude = this.getAttribute(\"exclude\");\n\tthis.include = this.getAttribute(\"include\",null);\n\tthis.stripTitlePrefix = this.getAttribute(\"stripTitlePrefix\",\"no\") === \"yes\";\n\t// Get the value to display\n\tvar tiddler = this.wiki.getTiddler(this.tiddlerTitle);\n\n\t// Get the inclusion and exclusion list\n\tvar excludeArr = (this.exclude) ? this.exclude.split(\" \") : [\"text\"];\n\t// Include takes precedence\n\tvar includeArr = (this.include) ? this.include.split(\" \") : null;\n\n\t// Compose the template\n\tvar text = [];\n\tif(this.template && tiddler) {\n\t\tvar fields = [];\n\t\tif (includeArr) { // Include takes precedence\n\t\t\tfor(var i=0; i<includeArr.length; i++) {\n\t\t\t\tif(tiddler.fields[includeArr[i]]) {\n\t\t\t\t\tfields.push(includeArr[i]);\n\t\t\t\t}\n\t\t\t}\n\t\t} else {\n\t\t\tfor(var fieldName in tiddler.fields) {\n\t\t\t\tif(excludeArr.indexOf(fieldName) === -1) {\n\t\t\t\t\tfields.push(fieldName);\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\tif (this.sort) fields.sort();\n\t\tif (this.sortReverse) fields.reverse();\n\t\tfor(var f=0, fmax=fields.length; f<fmax; f++) {\n\t\t\tfieldName = fields[f];\n\t\t\tvar row = this.template,\n\t\t\t\tvalue = tiddler.getFieldString(fieldName);\n\t\t\tif(this.stripTitlePrefix && fieldName === \"title\") {\n\t\t\t\tvar reStrip = /^\\{[^\\}]+\\}(.+)/mg,\n\t\t\t\t\treMatch = reStrip.exec(value);\n\t\t\t\tif(reMatch) {\n\t\t\t\t\tvalue = reMatch[1];\n\t\t\t\t}\n\t\t\t}\n\t\t\trow = $tw.utils.replaceString(row,\"$name$\",fieldName);\n\t\t\trow = $tw.utils.replaceString(row,\"$value$\",value);\n\t\t\trow = $tw.utils.replaceString(row,\"$encoded_value$\",$tw.utils.htmlEncode(value));\n\t\t\ttext.push(row);\n\t\t}\n\t}\n\tthis.text = text.join(\"\");\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nFieldsWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif( changedAttributes.tiddler || changedAttributes.template || changedAttributes.exclude ||\n\t\tchangedAttributes.include || changedAttributes.sort || changedAttributes.sortReverse ||\n\t\tchangedTiddlers[this.tiddlerTitle] || changedAttributes.stripTitlePrefix) {\n\t\t\tthis.refreshSelf();\n\t\t\treturn true;\n\t} else {\n\t\treturn false;\n\t}\n};\n\nexports.fields = FieldsWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/image.js": {
"title": "$:/core/modules/widgets/image.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/image.js\ntype: application/javascript\nmodule-type: widget\n\nThe image widget displays an image referenced with an external URI or with a local tiddler title.\n\n```\n<$image src=\"TiddlerTitle\" width=\"320\" height=\"400\" class=\"classnames\">\n```\n\nThe image source can be the title of an existing tiddler or the URL of an external image.\n\nExternal images always generate an HTML `<img>` tag.\n\nTiddlers that have a _canonical_uri field generate an HTML `<img>` tag with the src attribute containing the URI.\n\nTiddlers that contain image data generate an HTML `<img>` tag with the src attribute containing a base64 representation of the image.\n\nTiddlers that contain wikitext could be rendered to a DIV of the usual size of a tiddler, and then transformed to the size requested.\n\nThe width and height attributes are interpreted as a number of pixels, and do not need to include the \"px\" suffix.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar ImageWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nImageWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nImageWidget.prototype.render = function(parent,nextSibling) {\n\tthis.parentDomNode = parent;\n\tthis.computeAttributes();\n\tthis.execute();\n\t// Create element\n\t// Determine what type of image it is\n\tvar tag = \"img\", src = \"\",\n\t\ttiddler = this.wiki.getTiddler(this.imageSource);\n\tif(!tiddler) {\n\t\t// The source isn't the title of a tiddler, so we'll assume it's a URL\n\t\tsrc = this.getVariable(\"tv-get-export-image-link\",{params: [{name: \"src\",value: this.imageSource}],defaultValue: this.imageSource});\n\t} else {\n\t\t// Check if it is an image tiddler\n\t\tif(this.wiki.isImageTiddler(this.imageSource)) {\n\t\t\tvar type = tiddler.fields.type,\n\t\t\t\ttext = tiddler.fields.text,\n\t\t\t\t_canonical_uri = tiddler.fields._canonical_uri;\n\t\t\t// If the tiddler has body text then it doesn't need to be lazily loaded\n\t\t\tif(text) {\n\t\t\t\t// Render the appropriate element for the image type\n\t\t\t\tswitch(type) {\n\t\t\t\t\tcase \"application/pdf\":\n\t\t\t\t\t\ttag = \"embed\";\n\t\t\t\t\t\tsrc = \"data:application/pdf;base64,\" + text;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\tcase \"image/svg+xml\":\n\t\t\t\t\t\tsrc = \"data:image/svg+xml,\" + encodeURIComponent(text);\n\t\t\t\t\t\tbreak;\n\t\t\t\t\tdefault:\n\t\t\t\t\t\tsrc = \"data:\" + type + \";base64,\" + text;\n\t\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t} else if(_canonical_uri) {\n\t\t\t\tswitch(type) {\n\t\t\t\t\tcase \"application/pdf\":\n\t\t\t\t\t\ttag = \"embed\";\n\t\t\t\t\t\tsrc = _canonical_uri;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\tcase \"image/svg+xml\":\n\t\t\t\t\t\tsrc = _canonical_uri;\n\t\t\t\t\t\tbreak;\n\t\t\t\t\tdefault:\n\t\t\t\t\t\tsrc = _canonical_uri;\n\t\t\t\t\t\tbreak;\n\t\t\t\t}\t\n\t\t\t} else {\n\t\t\t\t// Just trigger loading of the tiddler\n\t\t\t\tthis.wiki.getTiddlerText(this.imageSource);\n\t\t\t}\n\t\t}\n\t}\n\t// Create the element and assign the attributes\n\tvar domNode = this.document.createElement(tag);\n\tdomNode.setAttribute(\"src\",src);\n\tif(this.imageClass) {\n\t\tdomNode.setAttribute(\"class\",this.imageClass);\t\t\n\t}\n\tif(this.imageWidth) {\n\t\tdomNode.setAttribute(\"width\",this.imageWidth);\n\t}\n\tif(this.imageHeight) {\n\t\tdomNode.setAttribute(\"height\",this.imageHeight);\n\t}\n\tif(this.imageTooltip) {\n\t\tdomNode.setAttribute(\"title\",this.imageTooltip);\t\t\n\t}\n\tif(this.imageAlt) {\n\t\tdomNode.setAttribute(\"alt\",this.imageAlt);\t\t\n\t}\n\t// Insert element\n\tparent.insertBefore(domNode,nextSibling);\n\tthis.domNodes.push(domNode);\n};\n\n/*\nCompute the internal state of the widget\n*/\nImageWidget.prototype.execute = function() {\n\t// Get our parameters\n\tthis.imageSource = this.getAttribute(\"source\");\n\tthis.imageWidth = this.getAttribute(\"width\");\n\tthis.imageHeight = this.getAttribute(\"height\");\n\tthis.imageClass = this.getAttribute(\"class\");\n\tthis.imageTooltip = this.getAttribute(\"tooltip\");\n\tthis.imageAlt = this.getAttribute(\"alt\");\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nImageWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif(changedAttributes.source || changedAttributes.width || changedAttributes.height || changedAttributes[\"class\"] || changedAttributes.tooltip || changedTiddlers[this.imageSource]) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t} else {\n\t\treturn false;\t\t\n\t}\n};\n\nexports.image = ImageWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/importvariables.js": {
"title": "$:/core/modules/widgets/importvariables.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/importvariables.js\ntype: application/javascript\nmodule-type: widget\n\nImport variable definitions from other tiddlers\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar ImportVariablesWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nImportVariablesWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nImportVariablesWidget.prototype.render = function(parent,nextSibling) {\n\tthis.parentDomNode = parent;\n\tthis.computeAttributes();\n\tthis.execute();\n\tthis.renderChildren(parent,nextSibling);\n};\n\n/*\nCompute the internal state of the widget\n*/\nImportVariablesWidget.prototype.execute = function(tiddlerList) {\n\tvar widgetPointer = this;\n\t// Got to flush all the accumulated variables\n\tthis.variables = new this.variablesConstructor();\n\t// Get our parameters\n\tthis.filter = this.getAttribute(\"filter\");\n\t// Compute the filter\n\tthis.tiddlerList = tiddlerList || this.wiki.filterTiddlers(this.filter,this);\n\t// Accumulate the <$set> widgets from each tiddler\n\t$tw.utils.each(this.tiddlerList,function(title) {\n\t\tvar parser = widgetPointer.wiki.parseTiddler(title);\n\t\tif(parser) {\n\t\t\tvar parseTreeNode = parser.tree[0];\n\t\t\twhile(parseTreeNode && parseTreeNode.type === \"set\") {\n\t\t\t\tvar node = {\n\t\t\t\t\ttype: \"set\",\n\t\t\t\t\tattributes: parseTreeNode.attributes,\n\t\t\t\t\tparams: parseTreeNode.params,\n\t\t\t\t\tisMacroDefinition: parseTreeNode.isMacroDefinition\n\t\t\t\t};\n\t\t\t\tif (parseTreeNode.isMacroDefinition) {\n\t\t\t\t\t// Macro definitions can be folded into\n\t\t\t\t\t// current widget instead of adding\n\t\t\t\t\t// another link to the chain.\n\t\t\t\t\tvar widget = widgetPointer.makeChildWidget(node);\n\t\t\t\t\twidget.computeAttributes();\n\t\t\t\t\twidget.execute();\n\t\t\t\t\t// We SHALLOW copy over all variables\n\t\t\t\t\t// in widget. We can't use\n\t\t\t\t\t// $tw.utils.assign, because that copies\n\t\t\t\t\t// up the prototype chain, which we\n\t\t\t\t\t// don't want.\n\t\t\t\t\t$tw.utils.each(Object.keys(widget.variables), function(key) {\n\t\t\t\t\t\twidgetPointer.variables[key] = widget.variables[key];\n\t\t\t\t\t});\n\t\t\t\t} else {\n\t\t\t\t\twidgetPointer.children = [widgetPointer.makeChildWidget(node)];\n\t\t\t\t\t// No more regenerating children for\n\t\t\t\t\t// this widget. If it needs to refresh,\n\t\t\t\t\t// it'll do so along with the the whole\n\t\t\t\t\t// importvariable tree.\n\t\t\t\t\tif (widgetPointer != this) {\n\t\t\t\t\t\twidgetPointer.makeChildWidgets = function(){};\n\t\t\t\t\t}\n\t\t\t\t\twidgetPointer = widgetPointer.children[0];\n\t\t\t\t}\n\t\t\t\tparseTreeNode = parseTreeNode.children && parseTreeNode.children[0];\n\t\t\t}\n\t\t} \n\t});\n\n\tif (widgetPointer != this) {\n\t\twidgetPointer.parseTreeNode.children = this.parseTreeNode.children;\n\t} else {\n\t\twidgetPointer.makeChildWidgets();\n\t}\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nImportVariablesWidget.prototype.refresh = function(changedTiddlers) {\n\t// Recompute our attributes and the filter list\n\tvar changedAttributes = this.computeAttributes(),\n\t\ttiddlerList = this.wiki.filterTiddlers(this.getAttribute(\"filter\"),this);\n\t// Refresh if the filter has changed, or the list of tiddlers has changed, or any of the tiddlers in the list has changed\n\tfunction haveListedTiddlersChanged() {\n\t\tvar changed = false;\n\t\ttiddlerList.forEach(function(title) {\n\t\t\tif(changedTiddlers[title]) {\n\t\t\t\tchanged = true;\n\t\t\t}\n\t\t});\n\t\treturn changed;\n\t}\n\tif(changedAttributes.filter || !$tw.utils.isArrayEqual(this.tiddlerList,tiddlerList) || haveListedTiddlersChanged()) {\n\t\t// Compute the filter\n\t\tthis.removeChildDomNodes();\n\t\tthis.execute(tiddlerList);\n\t\tthis.renderChildren(this.parentDomNode,this.findNextSiblingDomNode());\n\t\treturn true;\n\t} else {\n\t\treturn this.refreshChildren(changedTiddlers);\t\t\n\t}\n};\n\nexports.importvariables = ImportVariablesWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/keyboard.js": {
"title": "$:/core/modules/widgets/keyboard.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/keyboard.js\ntype: application/javascript\nmodule-type: widget\n\nKeyboard shortcut widget\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar KeyboardWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nKeyboardWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nKeyboardWidget.prototype.render = function(parent,nextSibling) {\n\tvar self = this;\n\t// Remember parent\n\tthis.parentDomNode = parent;\n\t// Compute attributes and execute state\n\tthis.computeAttributes();\n\tthis.execute();\n\tvar tag = this.parseTreeNode.isBlock ? \"div\" : \"span\";\n\tif(this.tag && $tw.config.htmlUnsafeElements.indexOf(this.tag) === -1) {\n\t\ttag = this.tag;\n\t}\n\t// Create element\n\tvar domNode = this.document.createElement(tag);\n\t// Assign classes\n\tvar classes = (this[\"class\"] || \"\").split(\" \");\n\tclasses.push(\"tc-keyboard\");\n\tdomNode.className = classes.join(\" \");\n\t// Add a keyboard event handler\n\tdomNode.addEventListener(\"keydown\",function (event) {\n\t\tif($tw.keyboardManager.checkKeyDescriptors(event,self.keyInfoArray)) {\n\t\t\tvar handled = self.invokeActions(self,event);\n\t\t\tif(self.actions) {\n\t\t\t\tself.invokeActionString(self.actions,self,event);\n\t\t\t}\n\t\t\tself.dispatchMessage(event);\n\t\t\tif(handled || self.actions || self.message) {\n\t\t\t\tevent.preventDefault();\n\t\t\t\tevent.stopPropagation();\n\t\t\t}\n\t\t\treturn true;\n\t\t}\n\t\treturn false;\n\t},false);\n\t// Insert element\n\tparent.insertBefore(domNode,nextSibling);\n\tthis.renderChildren(domNode,null);\n\tthis.domNodes.push(domNode);\n};\n\nKeyboardWidget.prototype.dispatchMessage = function(event) {\n\tthis.dispatchEvent({type: this.message, param: this.param, tiddlerTitle: this.getVariable(\"currentTiddler\")});\n};\n\n/*\nCompute the internal state of the widget\n*/\nKeyboardWidget.prototype.execute = function() {\n\tvar self = this;\n\t// Get attributes\n\tthis.actions = this.getAttribute(\"actions\",\"\");\n\tthis.message = this.getAttribute(\"message\",\"\");\n\tthis.param = this.getAttribute(\"param\",\"\");\n\tthis.key = this.getAttribute(\"key\",\"\");\n\tthis.tag = this.getAttribute(\"tag\",\"\");\n\tthis.keyInfoArray = $tw.keyboardManager.parseKeyDescriptors(this.key);\n\tthis[\"class\"] = this.getAttribute(\"class\",\"\");\n\tif(this.key.substr(0,2) === \"((\" && this.key.substr(-2,2) === \"))\") {\n\t\tthis.shortcutTiddlers = [];\n\t\tvar name = this.key.substring(2,this.key.length -2);\n\t\t$tw.utils.each($tw.keyboardManager.lookupNames,function(platformDescriptor) {\n\t\t\tself.shortcutTiddlers.push(\"$:/config/\" + platformDescriptor + \"/\" + name);\n\t\t});\n\t}\n\t// Make child widgets\n\tthis.makeChildWidgets();\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nKeyboardWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif(changedAttributes.message || changedAttributes.param || changedAttributes.key || changedAttributes[\"class\"] || changedAttributes.tag) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t}\n\t// Update the keyInfoArray if one of its shortcut-config-tiddlers has changed\n\tif(this.shortcutTiddlers && $tw.utils.hopArray(changedTiddlers,this.shortcutTiddlers)) {\n\t\tthis.keyInfoArray = $tw.keyboardManager.parseKeyDescriptors(this.key);\n\t}\n\treturn this.refreshChildren(changedTiddlers);\n};\n\nexports.keyboard = KeyboardWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/link.js": {
"title": "$:/core/modules/widgets/link.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/link.js\ntype: application/javascript\nmodule-type: widget\n\nLink widget\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar LinkWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nLinkWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nLinkWidget.prototype.render = function(parent,nextSibling) {\n\t// Save the parent dom node\n\tthis.parentDomNode = parent;\n\t// Compute our attributes\n\tthis.computeAttributes();\n\t// Execute our logic\n\tthis.execute();\n\t// Get the value of the tv-wikilinks configuration macro\n\tvar wikiLinksMacro = this.getVariable(\"tv-wikilinks\"),\n\t\tuseWikiLinks = wikiLinksMacro ? (wikiLinksMacro.trim() !== \"no\") : true,\n\t\tmissingLinksEnabled = !(this.hideMissingLinks && this.isMissing && !this.isShadow);\n\t// Render the link if required\n\tif(useWikiLinks && missingLinksEnabled) {\n\t\tthis.renderLink(parent,nextSibling);\n\t} else {\n\t\t// Just insert the link text\n\t\tvar domNode = this.document.createElement(\"span\");\n\t\tparent.insertBefore(domNode,nextSibling);\n\t\tthis.renderChildren(domNode,null);\n\t\tthis.domNodes.push(domNode);\n\t}\n};\n\n/*\nRender this widget into the DOM\n*/\nLinkWidget.prototype.renderLink = function(parent,nextSibling) {\n\tvar self = this;\n\t// Sanitise the specified tag\n\tvar tag = this.linkTag;\n\tif($tw.config.htmlUnsafeElements.indexOf(tag) !== -1) {\n\t\ttag = \"a\";\n\t}\n\t// Create our element\n\tvar namespace = this.getVariable(\"namespace\",{defaultValue: \"http://www.w3.org/1999/xhtml\"}),\n\t\tdomNode = this.document.createElementNS(namespace,tag);\n\t// Assign classes\n\tvar classes = [];\n\tif(this.overrideClasses === undefined) {\n\t\tclasses.push(\"tc-tiddlylink\");\n\t\tif(this.isShadow) {\n\t\t\tclasses.push(\"tc-tiddlylink-shadow\");\n\t\t}\n\t\tif(this.isMissing && !this.isShadow) {\n\t\t\tclasses.push(\"tc-tiddlylink-missing\");\n\t\t} else {\n\t\t\tif(!this.isMissing) {\n\t\t\t\tclasses.push(\"tc-tiddlylink-resolves\");\n\t\t\t}\n\t\t}\n\t\tif(this.linkClasses) {\n\t\t\tclasses.push(this.linkClasses);\t\t\t\n\t\t}\n\t} else if(this.overrideClasses !== \"\") {\n\t\tclasses.push(this.overrideClasses)\n\t}\n\tif(classes.length > 0) {\n\t\tdomNode.setAttribute(\"class\",classes.join(\" \"));\n\t}\n\t// Set an href\n\tvar wikilinkTransformFilter = this.getVariable(\"tv-filter-export-link\"),\n\t\twikiLinkText;\n\tif(wikilinkTransformFilter) {\n\t\t// Use the filter to construct the href\n\t\twikiLinkText = this.wiki.filterTiddlers(wikilinkTransformFilter,this,function(iterator) {\n\t\t\titerator(self.wiki.getTiddler(self.to),self.to)\n\t\t})[0];\n\t} else {\n\t\t// Expand the tv-wikilink-template variable to construct the href\n\t\tvar wikiLinkTemplateMacro = this.getVariable(\"tv-wikilink-template\"),\n\t\t\twikiLinkTemplate = wikiLinkTemplateMacro ? wikiLinkTemplateMacro.trim() : \"#$uri_encoded$\";\n\t\twikiLinkText = $tw.utils.replaceString(wikiLinkTemplate,\"$uri_encoded$\",encodeURIComponent(this.to));\n\t\twikiLinkText = $tw.utils.replaceString(wikiLinkText,\"$uri_doubleencoded$\",encodeURIComponent(encodeURIComponent(this.to)));\n\t}\n\t// Override with the value of tv-get-export-link if defined\n\twikiLinkText = this.getVariable(\"tv-get-export-link\",{params: [{name: \"to\",value: this.to}],defaultValue: wikiLinkText});\n\tif(tag === \"a\") {\n\t\tvar namespaceHref = (namespace === \"http://www.w3.org/2000/svg\") ? \"http://www.w3.org/1999/xlink\" : undefined;\n\t\tdomNode.setAttributeNS(namespaceHref,\"href\",wikiLinkText);\n\t}\n\t// Set the tabindex\n\tif(this.tabIndex) {\n\t\tdomNode.setAttribute(\"tabindex\",this.tabIndex);\n\t}\n\t// Set the tooltip\n\t// HACK: Performance issues with re-parsing the tooltip prevent us defaulting the tooltip to \"<$transclude field='tooltip'><$transclude field='title'/></$transclude>\"\n\tvar tooltipWikiText = this.tooltip || this.getVariable(\"tv-wikilink-tooltip\");\n\tif(tooltipWikiText) {\n\t\tvar tooltipText = this.wiki.renderText(\"text/plain\",\"text/vnd.tiddlywiki\",tooltipWikiText,{\n\t\t\t\tparseAsInline: true,\n\t\t\t\tvariables: {\n\t\t\t\t\tcurrentTiddler: this.to\n\t\t\t\t},\n\t\t\t\tparentWidget: this\n\t\t\t});\n\t\tdomNode.setAttribute(\"title\",tooltipText);\n\t}\n\tif(this[\"aria-label\"]) {\n\t\tdomNode.setAttribute(\"aria-label\",this[\"aria-label\"]);\n\t}\n\t// Add a click event handler\n\t$tw.utils.addEventListeners(domNode,[\n\t\t{name: \"click\", handlerObject: this, handlerMethod: \"handleClickEvent\"},\n\t]);\n\t// Make the link draggable if required\n\tif(this.draggable === \"yes\") {\n\t\t$tw.utils.makeDraggable({\n\t\t\tdomNode: domNode,\n\t\t\tdragTiddlerFn: function() {return self.to;},\n\t\t\twidget: this\n\t\t});\n\t}\n\t// Insert the link into the DOM and render any children\n\tparent.insertBefore(domNode,nextSibling);\n\tthis.renderChildren(domNode,null);\n\tthis.domNodes.push(domNode);\n};\n\nLinkWidget.prototype.handleClickEvent = function(event) {\n\t// Send the click on its way as a navigate event\n\tvar bounds = this.domNodes[0].getBoundingClientRect();\n\tthis.dispatchEvent({\n\t\ttype: \"tm-navigate\",\n\t\tnavigateTo: this.to,\n\t\tnavigateFromTitle: this.getVariable(\"storyTiddler\"),\n\t\tnavigateFromNode: this,\n\t\tnavigateFromClientRect: { top: bounds.top, left: bounds.left, width: bounds.width, right: bounds.right, bottom: bounds.bottom, height: bounds.height\n\t\t},\n\t\tnavigateSuppressNavigation: event.metaKey || event.ctrlKey || (event.button === 1),\n\t\tmetaKey: event.metaKey,\n\t\tctrlKey: event.ctrlKey,\n\t\taltKey: event.altKey,\n\t\tshiftKey: event.shiftKey,\n\t\tevent: event\n\t});\n\tif(this.domNodes[0].hasAttribute(\"href\")) {\n\t\tevent.preventDefault();\n\t}\n\tevent.stopPropagation();\n\treturn false;\n};\n\n/*\nCompute the internal state of the widget\n*/\nLinkWidget.prototype.execute = function() {\n\t// Pick up our attributes\n\tthis.to = this.getAttribute(\"to\",this.getVariable(\"currentTiddler\"));\n\tthis.tooltip = this.getAttribute(\"tooltip\");\n\tthis[\"aria-label\"] = this.getAttribute(\"aria-label\");\n\tthis.linkClasses = this.getAttribute(\"class\");\n\tthis.overrideClasses = this.getAttribute(\"overrideClass\");\n\tthis.tabIndex = this.getAttribute(\"tabindex\");\n\tthis.draggable = this.getAttribute(\"draggable\",\"yes\");\n\tthis.linkTag = this.getAttribute(\"tag\",\"a\");\n\t// Determine the link characteristics\n\tthis.isMissing = !this.wiki.tiddlerExists(this.to);\n\tthis.isShadow = this.wiki.isShadowTiddler(this.to);\n\tthis.hideMissingLinks = (this.getVariable(\"tv-show-missing-links\") || \"yes\") === \"no\";\n\t// Make the child widgets\n\tvar templateTree;\n\tif(this.parseTreeNode.children && this.parseTreeNode.children.length > 0) {\n\t\ttemplateTree = this.parseTreeNode.children;\n\t} else {\n\t\t// Default template is a link to the title\n\t\ttemplateTree = [{type: \"text\", text: this.to}];\n\t}\n\tthis.makeChildWidgets(templateTree);\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nLinkWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif(changedAttributes.to || changedTiddlers[this.to] || changedAttributes[\"aria-label\"] || changedAttributes.tooltip) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t}\n\treturn this.refreshChildren(changedTiddlers);\n};\n\nexports.link = LinkWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/linkcatcher.js": {
"title": "$:/core/modules/widgets/linkcatcher.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/linkcatcher.js\ntype: application/javascript\nmodule-type: widget\n\nLinkcatcher widget\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar LinkCatcherWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n\tthis.addEventListeners([\n\t\t{type: \"tm-navigate\", handler: \"handleNavigateEvent\"}\n\t]);\n};\n\n/*\nInherit from the base widget class\n*/\nLinkCatcherWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nLinkCatcherWidget.prototype.render = function(parent,nextSibling) {\n\tthis.parentDomNode = parent;\n\tthis.computeAttributes();\n\tthis.execute();\n\tthis.renderChildren(parent,nextSibling);\n};\n\n/*\nCompute the internal state of the widget\n*/\nLinkCatcherWidget.prototype.execute = function() {\n\t// Get our parameters\n\tthis.catchTo = this.getAttribute(\"to\");\n\tthis.catchMessage = this.getAttribute(\"message\");\n\tthis.catchSet = this.getAttribute(\"set\");\n\tthis.catchSetTo = this.getAttribute(\"setTo\");\n\tthis.catchActions = this.getAttribute(\"actions\");\n\t// Construct the child widgets\n\tthis.makeChildWidgets();\n\t// When executing actions we avoid trapping navigate events, so that we don't trigger ourselves recursively\n\tthis.executingActions = false;\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nLinkCatcherWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif(changedAttributes.to || changedAttributes.message || changedAttributes.set || changedAttributes.setTo) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t} else {\n\t\treturn this.refreshChildren(changedTiddlers);\t\t\n\t}\n};\n\n/*\nHandle a tm-navigate event\n*/\nLinkCatcherWidget.prototype.handleNavigateEvent = function(event) {\n\tif(!this.executingActions) {\n\t\t// Execute the actions\n\t\tif(this.catchTo) {\n\t\t\tthis.wiki.setTextReference(this.catchTo,event.navigateTo,this.getVariable(\"currentTiddler\"));\n\t\t}\n\t\tif(this.catchMessage && this.parentWidget) {\n\t\t\tthis.parentWidget.dispatchEvent({\n\t\t\t\ttype: this.catchMessage,\n\t\t\t\tparam: event.navigateTo,\n\t\t\t\tnavigateTo: event.navigateTo\n\t\t\t});\n\t\t}\n\t\tif(this.catchSet) {\n\t\t\tvar tiddler = this.wiki.getTiddler(this.catchSet);\n\t\t\tthis.wiki.addTiddler(new $tw.Tiddler(tiddler,{title: this.catchSet, text: this.catchSetTo}));\n\t\t}\n\t\tif(this.catchActions) {\n\t\t\tthis.executingActions = true;\n\t\t\tvar modifierKey = $tw.keyboardManager.getEventModifierKeyDescriptor(event);\n\t\t\tthis.invokeActionString(this.catchActions,this,event,{navigateTo: event.navigateTo, modifier: modifierKey});\n\t\t\tthis.executingActions = false;\n\t\t}\n\t} else {\n\t\t// This is a navigate event generated by the actions of this linkcatcher, so we don't trap it again, but just pass it to the parent\n\t\tthis.parentWidget.dispatchEvent({\n\t\t\ttype: \"tm-navigate\",\n\t\t\tparam: event.navigateTo,\n\t\t\tnavigateTo: event.navigateTo\n\t\t});\n\t}\n\treturn false;\n};\n\nexports.linkcatcher = LinkCatcherWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/list.js": {
"title": "$:/core/modules/widgets/list.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/list.js\ntype: application/javascript\nmodule-type: widget\n\nList and list item widgets\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\n/*\nThe list widget creates list element sub-widgets that reach back into the list widget for their configuration\n*/\n\nvar ListWidget = function(parseTreeNode,options) {\n\t// Initialise the storyviews if they've not been done already\n\tif(!this.storyViews) {\n\t\tListWidget.prototype.storyViews = {};\n\t\t$tw.modules.applyMethods(\"storyview\",this.storyViews);\n\t}\n\t// Main initialisation inherited from widget.js\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nListWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nListWidget.prototype.render = function(parent,nextSibling) {\n\tthis.parentDomNode = parent;\n\tthis.computeAttributes();\n\tthis.execute();\n\tthis.renderChildren(parent,nextSibling);\n\t// Construct the storyview\n\tvar StoryView = this.storyViews[this.storyViewName];\n\tif(this.storyViewName && !StoryView) {\n\t\tStoryView = this.storyViews[\"classic\"];\n\t}\n\tif(StoryView && !this.document.isTiddlyWikiFakeDom) {\n\t\tthis.storyview = new StoryView(this);\n\t} else {\n\t\tthis.storyview = null;\n\t}\n};\n\n/*\nCompute the internal state of the widget\n*/\nListWidget.prototype.execute = function() {\n\t// Get our attributes\n\tthis.template = this.getAttribute(\"template\");\n\tthis.editTemplate = this.getAttribute(\"editTemplate\");\n\tthis.variableName = this.getAttribute(\"variable\",\"currentTiddler\");\n\tthis.storyViewName = this.getAttribute(\"storyview\");\n\tthis.historyTitle = this.getAttribute(\"history\");\n\t// Compose the list elements\n\tthis.list = this.getTiddlerList();\n\tvar members = [],\n\t\tself = this;\n\t// Check for an empty list\n\tif(this.list.length === 0) {\n\t\tmembers = this.getEmptyMessage();\n\t} else {\n\t\t$tw.utils.each(this.list,function(title,index) {\n\t\t\tmembers.push(self.makeItemTemplate(title));\n\t\t});\n\t}\n\t// Construct the child widgets\n\tthis.makeChildWidgets(members);\n\t// Clear the last history\n\tthis.history = [];\n};\n\nListWidget.prototype.getTiddlerList = function() {\n\tvar defaultFilter = \"[!is[system]sort[title]]\";\n\treturn this.wiki.filterTiddlers(this.getAttribute(\"filter\",defaultFilter),this);\n};\n\nListWidget.prototype.getEmptyMessage = function() {\n\tvar parser,\n\t\temptyMessage = this.getAttribute(\"emptyMessage\",\"\");\n\t// this.wiki.parseText() calls \n\t// new Parser(..), which should only be done, if needed, because it's heavy!\n\tif (emptyMessage === \"\") {\n\t\treturn [];\n\t}\n\tparser = this.wiki.parseText(\"text/vnd.tiddlywiki\",emptyMessage,{parseAsInline: true});\n\tif(parser) {\n\t\treturn parser.tree;\n\t} else {\n\t\treturn [];\n\t}\n};\n\n/*\nCompose the template for a list item\n*/\nListWidget.prototype.makeItemTemplate = function(title) {\n\t// Check if the tiddler is a draft\n\tvar tiddler = this.wiki.getTiddler(title),\n\t\tisDraft = tiddler && tiddler.hasField(\"draft.of\"),\n\t\ttemplate = this.template,\n\t\ttemplateTree;\n\tif(isDraft && this.editTemplate) {\n\t\ttemplate = this.editTemplate;\n\t}\n\t// Compose the transclusion of the template\n\tif(template) {\n\t\ttemplateTree = [{type: \"transclude\", attributes: {tiddler: {type: \"string\", value: template}}}];\n\t} else {\n\t\tif(this.parseTreeNode.children && this.parseTreeNode.children.length > 0) {\n\t\t\ttemplateTree = this.parseTreeNode.children;\n\t\t} else {\n\t\t\t// Default template is a link to the title\n\t\t\ttemplateTree = [{type: \"element\", tag: this.parseTreeNode.isBlock ? \"div\" : \"span\", children: [{type: \"link\", attributes: {to: {type: \"string\", value: title}}, children: [\n\t\t\t\t\t{type: \"text\", text: title}\n\t\t\t]}]}];\n\t\t}\n\t}\n\t// Return the list item\n\treturn {type: \"listitem\", itemTitle: title, variableName: this.variableName, children: templateTree};\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nListWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes(),\n\t\tresult;\n\t// Call the storyview\n\tif(this.storyview && this.storyview.refreshStart) {\n\t\tthis.storyview.refreshStart(changedTiddlers,changedAttributes);\n\t}\n\t// Completely refresh if any of our attributes have changed\n\tif(changedAttributes.filter || changedAttributes.template || changedAttributes.editTemplate || changedAttributes.emptyMessage || changedAttributes.storyview || changedAttributes.history) {\n\t\tthis.refreshSelf();\n\t\tresult = true;\n\t} else {\n\t\t// Handle any changes to the list\n\t\tresult = this.handleListChanges(changedTiddlers);\n\t\t// Handle any changes to the history stack\n\t\tif(this.historyTitle && changedTiddlers[this.historyTitle]) {\n\t\t\tthis.handleHistoryChanges();\n\t\t}\n\t}\n\t// Call the storyview\n\tif(this.storyview && this.storyview.refreshEnd) {\n\t\tthis.storyview.refreshEnd(changedTiddlers,changedAttributes);\n\t}\n\treturn result;\n};\n\n/*\nHandle any changes to the history list\n*/\nListWidget.prototype.handleHistoryChanges = function() {\n\t// Get the history data\n\tvar newHistory = this.wiki.getTiddlerDataCached(this.historyTitle,[]);\n\t// Ignore any entries of the history that match the previous history\n\tvar entry = 0;\n\twhile(entry < newHistory.length && entry < this.history.length && newHistory[entry].title === this.history[entry].title) {\n\t\tentry++;\n\t}\n\t// Navigate forwards to each of the new tiddlers\n\twhile(entry < newHistory.length) {\n\t\tif(this.storyview && this.storyview.navigateTo) {\n\t\t\tthis.storyview.navigateTo(newHistory[entry]);\n\t\t}\n\t\tentry++;\n\t}\n\t// Update the history\n\tthis.history = newHistory;\n};\n\n/*\nProcess any changes to the list\n*/\nListWidget.prototype.handleListChanges = function(changedTiddlers) {\n\t// Get the new list\n\tvar prevList = this.list;\n\tthis.list = this.getTiddlerList();\n\t// Check for an empty list\n\tif(this.list.length === 0) {\n\t\t// Check if it was empty before\n\t\tif(prevList.length === 0) {\n\t\t\t// If so, just refresh the empty message\n\t\t\treturn this.refreshChildren(changedTiddlers);\n\t\t} else {\n\t\t\t// Replace the previous content with the empty message\n\t\t\tfor(t=this.children.length-1; t>=0; t--) {\n\t\t\t\tthis.removeListItem(t);\n\t\t\t}\n\t\t\tvar nextSibling = this.findNextSiblingDomNode();\n\t\t\tthis.makeChildWidgets(this.getEmptyMessage());\n\t\t\tthis.renderChildren(this.parentDomNode,nextSibling);\n\t\t\treturn true;\n\t\t}\n\t} else {\n\t\t// If the list was empty then we need to remove the empty message\n\t\tif(prevList.length === 0) {\n\t\t\tthis.removeChildDomNodes();\n\t\t\tthis.children = [];\n\t\t}\n\t\t// Cycle through the list, inserting and removing list items as needed\n\t\tvar hasRefreshed = false;\n\t\tfor(var t=0; t<this.list.length; t++) {\n\t\t\tvar index = this.findListItem(t,this.list[t]);\n\t\t\tif(index === undefined) {\n\t\t\t\t// The list item must be inserted\n\t\t\t\tthis.insertListItem(t,this.list[t]);\n\t\t\t\thasRefreshed = true;\n\t\t\t} else {\n\t\t\t\t// There are intervening list items that must be removed\n\t\t\t\tfor(var n=index-1; n>=t; n--) {\n\t\t\t\t\tthis.removeListItem(n);\n\t\t\t\t\thasRefreshed = true;\n\t\t\t\t}\n\t\t\t\t// Refresh the item we're reusing\n\t\t\t\tvar refreshed = this.children[t].refresh(changedTiddlers);\n\t\t\t\thasRefreshed = hasRefreshed || refreshed;\n\t\t\t}\n\t\t}\n\t\t// Remove any left over items\n\t\tfor(t=this.children.length-1; t>=this.list.length; t--) {\n\t\t\tthis.removeListItem(t);\n\t\t\thasRefreshed = true;\n\t\t}\n\t\treturn hasRefreshed;\n\t}\n};\n\n/*\nFind the list item with a given title, starting from a specified position\n*/\nListWidget.prototype.findListItem = function(startIndex,title) {\n\twhile(startIndex < this.children.length) {\n\t\tif(this.children[startIndex].parseTreeNode.itemTitle === title) {\n\t\t\treturn startIndex;\n\t\t}\n\t\tstartIndex++;\n\t}\n\treturn undefined;\n};\n\n/*\nInsert a new list item at the specified index\n*/\nListWidget.prototype.insertListItem = function(index,title) {\n\t// Create, insert and render the new child widgets\n\tvar widget = this.makeChildWidget(this.makeItemTemplate(title));\n\twidget.parentDomNode = this.parentDomNode; // Hack to enable findNextSiblingDomNode() to work\n\tthis.children.splice(index,0,widget);\n\tvar nextSibling = widget.findNextSiblingDomNode();\n\twidget.render(this.parentDomNode,nextSibling);\n\t// Animate the insertion if required\n\tif(this.storyview && this.storyview.insert) {\n\t\tthis.storyview.insert(widget);\n\t}\n\treturn true;\n};\n\n/*\nRemove the specified list item\n*/\nListWidget.prototype.removeListItem = function(index) {\n\tvar widget = this.children[index];\n\t// Animate the removal if required\n\tif(this.storyview && this.storyview.remove) {\n\t\tthis.storyview.remove(widget);\n\t} else {\n\t\twidget.removeChildDomNodes();\n\t}\n\t// Remove the child widget\n\tthis.children.splice(index,1);\n};\n\nexports.list = ListWidget;\n\nvar ListItemWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nListItemWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nListItemWidget.prototype.render = function(parent,nextSibling) {\n\tthis.parentDomNode = parent;\n\tthis.computeAttributes();\n\tthis.execute();\n\tthis.renderChildren(parent,nextSibling);\n};\n\n/*\nCompute the internal state of the widget\n*/\nListItemWidget.prototype.execute = function() {\n\t// Set the current list item title\n\tthis.setVariable(this.parseTreeNode.variableName,this.parseTreeNode.itemTitle);\n\t// Construct the child widgets\n\tthis.makeChildWidgets();\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nListItemWidget.prototype.refresh = function(changedTiddlers) {\n\treturn this.refreshChildren(changedTiddlers);\n};\n\nexports.listitem = ListItemWidget;\n\n})();",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/log.js": {
"title": "$:/core/modules/widgets/log.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/log.js\ntype: application/javascript\nmodule-type: widget-subclass\n\nWidget to log debug messages\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.baseClass = \"action-log\";\n\nexports.name = \"log\";\n\nexports.constructor = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n}\n\nexports.prototype = {};\n\nexports.prototype.render = function(event) {\n\tObject.getPrototypeOf(Object.getPrototypeOf(this)).render.call(this,event);\t\n\tObject.getPrototypeOf(Object.getPrototypeOf(this)).log.call(this);\n}\n\n})();",
"type": "application/javascript",
"module-type": "widget-subclass"
},
"$:/core/modules/widgets/macrocall.js": {
"title": "$:/core/modules/widgets/macrocall.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/macrocall.js\ntype: application/javascript\nmodule-type: widget\n\nMacrocall widget\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar MacroCallWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nMacroCallWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nMacroCallWidget.prototype.render = function(parent,nextSibling) {\n\tthis.parentDomNode = parent;\n\tthis.computeAttributes();\n\tthis.execute();\n\tthis.renderChildren(parent,nextSibling);\n};\n\n/*\nCompute the internal state of the widget\n*/\nMacroCallWidget.prototype.execute = function() {\n\t// Get the parse type if specified\n\tthis.parseType = this.getAttribute(\"$type\",\"text/vnd.tiddlywiki\");\n\tthis.renderOutput = this.getAttribute(\"$output\",\"text/html\");\n\t// Merge together the parameters specified in the parse tree with the specified attributes\n\tvar params = this.parseTreeNode.params ? this.parseTreeNode.params.slice(0) : [];\n\t$tw.utils.each(this.attributes,function(attribute,name) {\n\t\tif(name.charAt(0) !== \"$\") {\n\t\t\tparams.push({name: name, value: attribute});\t\t\t\n\t\t}\n\t});\n\t// Get the macro value\n\tvar macroName = this.parseTreeNode.name || this.getAttribute(\"$name\"),\n\t\tvariableInfo = this.getVariableInfo(macroName,{params: params}),\n\t\ttext = variableInfo.text,\n\t\tparseTreeNodes;\n\t// Are we rendering to HTML?\n\tif(this.renderOutput === \"text/html\") {\n\t\t// If so we'll return the parsed macro\n\t\t// Check if we've already cached parsing this macro\n\t\tvar mode = this.parseTreeNode.isBlock ? \"blockParser\" : \"inlineParser\",\n\t\t\tparser;\n\t\tif(variableInfo.srcVariable && variableInfo.srcVariable[mode]) {\n\t\t\tparser = variableInfo.srcVariable[mode];\n\t\t} else {\n\t\t\tparser = this.wiki.parseText(this.parseType,text,\n\t\t\t\t\t\t\t\t{parseAsInline: !this.parseTreeNode.isBlock});\n\t\t\tif(variableInfo.isCacheable && variableInfo.srcVariable) {\n\t\t\t\tvariableInfo.srcVariable[mode] = parser;\n\t\t\t}\n\t\t}\n\t\tvar parseTreeNodes = parser ? parser.tree : [];\n\t\t// Wrap the parse tree in a vars widget assigning the parameters to variables named \"__paramname__\"\n\t\tvar attributes = {};\n\t\t$tw.utils.each(variableInfo.params,function(param) {\n\t\t\tvar name = \"__\" + param.name + \"__\";\n\t\t\tattributes[name] = {\n\t\t\t\tname: name,\n\t\t\t\ttype: \"string\",\n\t\t\t\tvalue: param.value\n\t\t\t};\n\t\t});\n\t\tparseTreeNodes = [{\n\t\t\ttype: \"vars\",\n\t\t\tattributes: attributes,\n\t\t\tchildren: parseTreeNodes\n\t\t}];\n\t} else if(this.renderOutput === \"text/raw\") {\n\t\tparseTreeNodes = [{type: \"text\", text: text}];\n\t} else {\n\t\t// Otherwise, we'll render the text\n\t\tvar plainText = this.wiki.renderText(\"text/plain\",this.parseType,text,{parentWidget: this});\n\t\tparseTreeNodes = [{type: \"text\", text: plainText}];\n\t}\n\t// Construct the child widgets\n\tthis.makeChildWidgets(parseTreeNodes);\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nMacroCallWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif($tw.utils.count(changedAttributes) > 0) {\n\t\t// Rerender ourselves\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t} else {\n\t\treturn this.refreshChildren(changedTiddlers);\n\t}\n};\n\nexports.macrocall = MacroCallWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/navigator.js": {
"title": "$:/core/modules/widgets/navigator.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/navigator.js\ntype: application/javascript\nmodule-type: widget\n\nNavigator widget\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar IMPORT_TITLE = \"$:/Import\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar NavigatorWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n\tthis.addEventListeners([\n\t\t{type: \"tm-navigate\", handler: \"handleNavigateEvent\"},\n\t\t{type: \"tm-edit-tiddler\", handler: \"handleEditTiddlerEvent\"},\n\t\t{type: \"tm-delete-tiddler\", handler: \"handleDeleteTiddlerEvent\"},\n\t\t{type: \"tm-save-tiddler\", handler: \"handleSaveTiddlerEvent\"},\n\t\t{type: \"tm-cancel-tiddler\", handler: \"handleCancelTiddlerEvent\"},\n\t\t{type: \"tm-close-tiddler\", handler: \"handleCloseTiddlerEvent\"},\n\t\t{type: \"tm-close-all-tiddlers\", handler: \"handleCloseAllTiddlersEvent\"},\n\t\t{type: \"tm-close-other-tiddlers\", handler: \"handleCloseOtherTiddlersEvent\"},\n\t\t{type: \"tm-new-tiddler\", handler: \"handleNewTiddlerEvent\"},\n\t\t{type: \"tm-import-tiddlers\", handler: \"handleImportTiddlersEvent\"},\n\t\t{type: \"tm-perform-import\", handler: \"handlePerformImportEvent\"},\n\t\t{type: \"tm-fold-tiddler\", handler: \"handleFoldTiddlerEvent\"},\n\t\t{type: \"tm-fold-other-tiddlers\", handler: \"handleFoldOtherTiddlersEvent\"},\n\t\t{type: \"tm-fold-all-tiddlers\", handler: \"handleFoldAllTiddlersEvent\"},\n\t\t{type: \"tm-unfold-all-tiddlers\", handler: \"handleUnfoldAllTiddlersEvent\"},\n\t\t{type: \"tm-rename-tiddler\", handler: \"handleRenameTiddlerEvent\"}\n\t]);\n};\n\n/*\nInherit from the base widget class\n*/\nNavigatorWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nNavigatorWidget.prototype.render = function(parent,nextSibling) {\n\tthis.parentDomNode = parent;\n\tthis.computeAttributes();\n\tthis.execute();\n\tthis.renderChildren(parent,nextSibling);\n};\n\n/*\nCompute the internal state of the widget\n*/\nNavigatorWidget.prototype.execute = function() {\n\t// Get our parameters\n\tthis.storyTitle = this.getAttribute(\"story\");\n\tthis.historyTitle = this.getAttribute(\"history\");\n\tthis.setVariable(\"tv-story-list\",this.storyTitle);\n\tthis.setVariable(\"tv-history-list\",this.historyTitle);\n\tthis.story = new $tw.Story({\n\t\twiki: this.wiki,\n\t\tstoryTitle: this.storyTitle,\n\t\thistoryTitle: this.historyTitle\n\t});\n\t// Construct the child widgets\n\tthis.makeChildWidgets();\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nNavigatorWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif(changedAttributes.story || changedAttributes.history) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t} else {\n\t\treturn this.refreshChildren(changedTiddlers);\n\t}\n};\n\nNavigatorWidget.prototype.getStoryList = function() {\n\treturn this.storyTitle ? this.wiki.getTiddlerList(this.storyTitle) : null;\n};\n\nNavigatorWidget.prototype.saveStoryList = function(storyList) {\n\tif(this.storyTitle) {\n\t\tvar storyTiddler = this.wiki.getTiddler(this.storyTitle);\n\t\tthis.wiki.addTiddler(new $tw.Tiddler(\n\t\t\t{title: this.storyTitle},\n\t\t\tstoryTiddler,\n\t\t\t{list: storyList}\n\t\t));\t\t\n\t}\n};\n\nNavigatorWidget.prototype.removeTitleFromStory = function(storyList,title) {\n\tif(storyList) {\n\t\tvar p = storyList.indexOf(title);\n\t\twhile(p !== -1) {\n\t\t\tstoryList.splice(p,1);\n\t\t\tp = storyList.indexOf(title);\n\t\t}\t\t\n\t}\n};\n\nNavigatorWidget.prototype.replaceFirstTitleInStory = function(storyList,oldTitle,newTitle) {\n\tif(storyList) {\n\t\tvar pos = storyList.indexOf(oldTitle);\n\t\tif(pos !== -1) {\n\t\t\tstoryList[pos] = newTitle;\n\t\t\tdo {\n\t\t\t\tpos = storyList.indexOf(oldTitle,pos + 1);\n\t\t\t\tif(pos !== -1) {\n\t\t\t\t\tstoryList.splice(pos,1);\n\t\t\t\t}\n\t\t\t} while(pos !== -1);\n\t\t} else {\n\t\t\tstoryList.splice(0,0,newTitle);\n\t\t}\t\t\n\t}\n};\n\nNavigatorWidget.prototype.addToStory = function(title,fromTitle) {\n\tif(this.storyTitle) {\n\t\tthis.story.addToStory(title,fromTitle,{\n\t\t\topenLinkFromInsideRiver: this.getAttribute(\"openLinkFromInsideRiver\",\"top\"),\n\t\t\topenLinkFromOutsideRiver: this.getAttribute(\"openLinkFromOutsideRiver\",\"top\")\n\t\t});\n\t}\n};\n\n/*\nAdd a new record to the top of the history stack\ntitle: a title string or an array of title strings\nfromPageRect: page coordinates of the origin of the navigation\n*/\nNavigatorWidget.prototype.addToHistory = function(title,fromPageRect) {\n\tthis.story.addToHistory(title,fromPageRect,this.historyTitle);\n};\n\n/*\nHandle a tm-navigate event\n*/\nNavigatorWidget.prototype.handleNavigateEvent = function(event) {\n\tevent = $tw.hooks.invokeHook(\"th-navigating\",event);\n\tif(event.navigateTo) {\n\t\tthis.addToStory(event.navigateTo,event.navigateFromTitle);\n\t\tif(!event.navigateSuppressNavigation) {\n\t\t\tthis.addToHistory(event.navigateTo,event.navigateFromClientRect);\n\t\t}\n\t}\n\treturn false;\n};\n\n// Close a specified tiddler\nNavigatorWidget.prototype.handleCloseTiddlerEvent = function(event) {\n\tvar title = event.param || event.tiddlerTitle,\n\t\tstoryList = this.getStoryList();\n\t// Look for tiddlers with this title to close\n\tthis.removeTitleFromStory(storyList,title);\n\tthis.saveStoryList(storyList);\n\treturn false;\n};\n\n// Close all tiddlers\nNavigatorWidget.prototype.handleCloseAllTiddlersEvent = function(event) {\n\tthis.saveStoryList([]);\n\treturn false;\n};\n\n// Close other tiddlers\nNavigatorWidget.prototype.handleCloseOtherTiddlersEvent = function(event) {\n\tvar title = event.param || event.tiddlerTitle;\n\tthis.saveStoryList([title]);\n\treturn false;\n};\n\n// Place a tiddler in edit mode\nNavigatorWidget.prototype.handleEditTiddlerEvent = function(event) {\n\tvar editTiddler = $tw.hooks.invokeHook(\"th-editing-tiddler\",event);\n\tif(!editTiddler) {\n\t\treturn false;\n\t}\n\tvar self = this;\n\tfunction isUnmodifiedShadow(title) {\n\t\treturn self.wiki.isShadowTiddler(title) && !self.wiki.tiddlerExists(title);\n\t}\n\tfunction confirmEditShadow(title) {\n\t\treturn confirm($tw.language.getString(\n\t\t\t\"ConfirmEditShadowTiddler\",\n\t\t\t{variables:\n\t\t\t\t{title: title}\n\t\t\t}\n\t\t));\n\t}\n\tvar title = event.param || event.tiddlerTitle;\n\tif(isUnmodifiedShadow(title) && !confirmEditShadow(title)) {\n\t\treturn false;\n\t}\n\t// Replace the specified tiddler with a draft in edit mode\n\tvar draftTiddler = this.makeDraftTiddler(title);\n\t// Update the story and history if required\n\tif(!event.paramObject || event.paramObject.suppressNavigation !== \"yes\") {\n\t\tvar draftTitle = draftTiddler.fields.title,\n\t\t\tstoryList = this.getStoryList();\n\t\tthis.removeTitleFromStory(storyList,draftTitle);\n\t\tthis.replaceFirstTitleInStory(storyList,title,draftTitle);\n\t\tthis.addToHistory(draftTitle,event.navigateFromClientRect);\n\t\tthis.saveStoryList(storyList);\n\t\treturn false;\n\t}\n};\n\n// Delete a tiddler\nNavigatorWidget.prototype.handleDeleteTiddlerEvent = function(event) {\n\t// Get the tiddler we're deleting\n\tvar title = event.param || event.tiddlerTitle,\n\t\ttiddler = this.wiki.getTiddler(title),\n\t\tstoryList = this.getStoryList(),\n\t\toriginalTitle = tiddler ? tiddler.fields[\"draft.of\"] : \"\",\n\t\toriginalTiddler = originalTitle ? this.wiki.getTiddler(originalTitle) : undefined,\n\t\tconfirmationTitle;\n\tif(!tiddler) {\n\t\treturn false;\n\t}\n\t// Check if the tiddler we're deleting is in draft mode\n\tif(originalTitle) {\n\t\t// If so, we'll prompt for confirmation referencing the original tiddler\n\t\tconfirmationTitle = originalTitle;\n\t} else {\n\t\t// If not a draft, then prompt for confirmation referencing the specified tiddler\n\t\tconfirmationTitle = title;\n\t}\n\t// Seek confirmation\n\tif((this.wiki.getTiddler(originalTitle) || (tiddler.fields.text || \"\") !== \"\") && !confirm($tw.language.getString(\n\t\t\t\t\"ConfirmDeleteTiddler\",\n\t\t\t\t{variables:\n\t\t\t\t\t{title: confirmationTitle}\n\t\t\t\t}\n\t\t\t))) {\n\t\treturn false;\n\t}\n\t// Delete the original tiddler\n\tif(originalTitle) {\n\t\tif(originalTiddler) {\n\t\t\t$tw.hooks.invokeHook(\"th-deleting-tiddler\",originalTiddler);\n\t\t}\n\t\tthis.wiki.deleteTiddler(originalTitle);\n\t\tthis.removeTitleFromStory(storyList,originalTitle);\n\t}\n\t// Invoke the hook function and delete this tiddler\n\t$tw.hooks.invokeHook(\"th-deleting-tiddler\",tiddler);\n\tthis.wiki.deleteTiddler(title);\n\t// Remove the closed tiddler from the story\n\tthis.removeTitleFromStory(storyList,title);\n\tthis.saveStoryList(storyList);\n\t// Trigger an autosave\n\t$tw.rootWidget.dispatchEvent({type: \"tm-auto-save-wiki\"});\n\treturn false;\n};\n\n/*\nCreate/reuse the draft tiddler for a given title\n*/\nNavigatorWidget.prototype.makeDraftTiddler = function(targetTitle) {\n\t// See if there is already a draft tiddler for this tiddler\n\tvar draftTitle = this.wiki.findDraft(targetTitle);\n\tif(draftTitle) {\n\t\treturn this.wiki.getTiddler(draftTitle);\n\t}\n\t// Get the current value of the tiddler we're editing\n\tvar tiddler = this.wiki.getTiddler(targetTitle);\n\t// Save the initial value of the draft tiddler\n\tdraftTitle = this.generateDraftTitle(targetTitle);\n\tvar draftTiddler = new $tw.Tiddler({\n\t\t\t\ttext: \"\",\n\t\t\t},\n\t\t\ttiddler,\n\t\t\t{\n\t\t\t\ttitle: draftTitle,\n\t\t\t\t\"draft.title\": targetTitle,\n\t\t\t\t\"draft.of\": targetTitle\n\t\t\t},\n\t\t\tthis.wiki.getModificationFields()\n\t\t);\n\tthis.wiki.addTiddler(draftTiddler);\n\treturn draftTiddler;\n};\n\n/*\nGenerate a title for the draft of a given tiddler\n*/\nNavigatorWidget.prototype.generateDraftTitle = function(title) {\n\treturn this.wiki.generateDraftTitle(title);\n};\n\n// Take a tiddler out of edit mode, saving the changes\nNavigatorWidget.prototype.handleSaveTiddlerEvent = function(event) {\n\tvar title = event.param || event.tiddlerTitle,\n\t\ttiddler = this.wiki.getTiddler(title),\n\t\tstoryList = this.getStoryList();\n\t// Replace the original tiddler with the draft\n\tif(tiddler) {\n\t\tvar draftTitle = (tiddler.fields[\"draft.title\"] || \"\").trim(),\n\t\t\tdraftOf = (tiddler.fields[\"draft.of\"] || \"\").trim();\n\t\tif(draftTitle) {\n\t\t\tvar isRename = draftOf !== draftTitle,\n\t\t\t\tisConfirmed = true;\n\t\t\tif(isRename && this.wiki.tiddlerExists(draftTitle)) {\n\t\t\t\tisConfirmed = confirm($tw.language.getString(\n\t\t\t\t\t\"ConfirmOverwriteTiddler\",\n\t\t\t\t\t{variables:\n\t\t\t\t\t\t{title: draftTitle}\n\t\t\t\t\t}\n\t\t\t\t));\n\t\t\t}\n\t\t\tif(isConfirmed) {\n\t\t\t\t// Create the new tiddler and pass it through the th-saving-tiddler hook\n\t\t\t\tvar newTiddler = new $tw.Tiddler(this.wiki.getCreationFields(),tiddler,{\n\t\t\t\t\ttitle: draftTitle,\n\t\t\t\t\t\"draft.title\": undefined,\n\t\t\t\t\t\"draft.of\": undefined\n\t\t\t\t},this.wiki.getModificationFields());\n\t\t\t\tnewTiddler = $tw.hooks.invokeHook(\"th-saving-tiddler\",newTiddler,tiddler);\n\t\t\t\tthis.wiki.addTiddler(newTiddler);\n\t\t\t\t// If enabled, relink references to renamed tiddler\n\t\t\t\tvar shouldRelink = this.getAttribute(\"relinkOnRename\",\"no\").toLowerCase().trim() === \"yes\";\n\t\t\t\tif(isRename && shouldRelink && this.wiki.tiddlerExists(draftOf)) {\n\t\t\t\t\tthis.wiki.relinkTiddler(draftOf,draftTitle);\n\t\t\t\t}\n\t\t\t\t// Remove the draft tiddler\n\t\t\t\tthis.wiki.deleteTiddler(title);\n\t\t\t\t// Remove the original tiddler if we're renaming it\n\t\t\t\tif(isRename) {\n\t\t\t\t\tthis.wiki.deleteTiddler(draftOf);\n\t\t\t\t}\n\t\t\t\t// #2381 always remove new title & old\n\t\t\t\tthis.removeTitleFromStory(storyList,draftTitle);\n\t\t\t\tthis.removeTitleFromStory(storyList,draftOf);\n\t\t\t\tif(!event.paramObject || event.paramObject.suppressNavigation !== \"yes\") {\n\t\t\t\t\t// Replace the draft in the story with the original\n\t\t\t\t\tthis.replaceFirstTitleInStory(storyList,title,draftTitle);\n\t\t\t\t\tthis.addToHistory(draftTitle,event.navigateFromClientRect);\n\t\t\t\t\tif(draftTitle !== this.storyTitle) {\n\t\t\t\t\t\tthis.saveStoryList(storyList);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\t// Trigger an autosave\n\t\t\t\t$tw.rootWidget.dispatchEvent({type: \"tm-auto-save-wiki\"});\n\t\t\t}\n\t\t}\n\t}\n\treturn false;\n};\n\n// Take a tiddler out of edit mode without saving the changes\nNavigatorWidget.prototype.handleCancelTiddlerEvent = function(event) {\n\tevent = $tw.hooks.invokeHook(\"th-cancelling-tiddler\", event);\n\t// Flip the specified tiddler from draft back to the original\n\tvar draftTitle = event.param || event.tiddlerTitle,\n\t\tdraftTiddler = this.wiki.getTiddler(draftTitle),\n\t\toriginalTitle = draftTiddler && draftTiddler.fields[\"draft.of\"];\n\tif(draftTiddler && originalTitle) {\n\t\t// Ask for confirmation if the tiddler text has changed\n\t\tvar isConfirmed = true,\n\t\t\toriginalTiddler = this.wiki.getTiddler(originalTitle),\n\t\t\tstoryList = this.getStoryList();\n\t\tif(this.wiki.isDraftModified(draftTitle)) {\n\t\t\tisConfirmed = confirm($tw.language.getString(\n\t\t\t\t\"ConfirmCancelTiddler\",\n\t\t\t\t{variables:\n\t\t\t\t\t{title: draftTitle}\n\t\t\t\t}\n\t\t\t));\n\t\t}\n\t\t// Remove the draft tiddler\n\t\tif(isConfirmed) {\n\t\t\tthis.wiki.deleteTiddler(draftTitle);\n\t\t\tif(!event.paramObject || event.paramObject.suppressNavigation !== \"yes\") {\n\t\t\t\tif(originalTiddler) {\n\t\t\t\t\tthis.replaceFirstTitleInStory(storyList,draftTitle,originalTitle);\n\t\t\t\t\tthis.addToHistory(originalTitle,event.navigateFromClientRect);\n\t\t\t\t} else {\n\t\t\t\t\tthis.removeTitleFromStory(storyList,draftTitle);\n\t\t\t\t}\n\t\t\t\tthis.saveStoryList(storyList);\n\t\t\t}\n\t\t}\n\t}\n\treturn false;\n};\n\n// Create a new draft tiddler\n// event.param can either be the title of a template tiddler, or a hashmap of fields.\n//\n// The title of the newly created tiddler follows these rules:\n// * If a hashmap was used and a title field was specified, use that title\n// * If a hashmap was used without a title field, use a default title, if necessary making it unique with a numeric suffix\n// * If a template tiddler was used, use the title of the template, if necessary making it unique with a numeric suffix\n//\n// If a draft of the target tiddler already exists then it is reused\nNavigatorWidget.prototype.handleNewTiddlerEvent = function(event) {\n\tevent = $tw.hooks.invokeHook(\"th-new-tiddler\", event);\n\t// Get the story details\n\tvar storyList = this.getStoryList(),\n\t\ttemplateTiddler, additionalFields, title, draftTitle, existingTiddler;\n\t// Get the template tiddler (if any)\n\tif(typeof event.param === \"string\") {\n\t\t// Get the template tiddler\n\t\ttemplateTiddler = this.wiki.getTiddler(event.param);\n\t\t// Generate a new title\n\t\ttitle = this.wiki.generateNewTitle(event.param || $tw.language.getString(\"DefaultNewTiddlerTitle\"));\n\t}\n\t// Get the specified additional fields\n\tif(typeof event.paramObject === \"object\") {\n\t\tadditionalFields = event.paramObject;\n\t}\n\tif(typeof event.param === \"object\") { // Backwards compatibility with 5.1.3\n\t\tadditionalFields = event.param;\n\t}\n\tif(additionalFields && additionalFields.title) {\n\t\ttitle = additionalFields.title;\n\t}\n\t// Make a copy of the additional fields excluding any blank ones\n\tvar filteredAdditionalFields = $tw.utils.extend({},additionalFields);\n\tObject.keys(filteredAdditionalFields).forEach(function(fieldName) {\n\t\tif(filteredAdditionalFields[fieldName] === \"\") {\n\t\t\tdelete filteredAdditionalFields[fieldName];\n\t\t}\n\t});\n\t// Generate a title if we don't have one\n\ttitle = title || this.wiki.generateNewTitle($tw.language.getString(\"DefaultNewTiddlerTitle\"));\n\t// Find any existing draft for this tiddler\n\tdraftTitle = this.wiki.findDraft(title);\n\t// Pull in any existing tiddler\n\tif(draftTitle) {\n\t\texistingTiddler = this.wiki.getTiddler(draftTitle);\n\t} else {\n\t\tdraftTitle = this.generateDraftTitle(title);\n\t\texistingTiddler = this.wiki.getTiddler(title);\n\t}\n\t// Merge the tags\n\tvar mergedTags = [];\n\tif(existingTiddler && existingTiddler.fields.tags) {\n\t\t$tw.utils.pushTop(mergedTags,existingTiddler.fields.tags);\n\t}\n\tif(additionalFields && additionalFields.tags) {\n\t\t// Merge tags\n\t\tmergedTags = $tw.utils.pushTop(mergedTags,$tw.utils.parseStringArray(additionalFields.tags));\n\t}\n\tif(templateTiddler && templateTiddler.fields.tags) {\n\t\t// Merge tags\n\t\tmergedTags = $tw.utils.pushTop(mergedTags,templateTiddler.fields.tags);\n\t}\n\t// Save the draft tiddler\n\tvar draftTiddler = new $tw.Tiddler({\n\t\t\ttext: \"\",\n\t\t\t\"draft.title\": title\n\t\t},\n\t\ttemplateTiddler,\n\t\tadditionalFields,\n\t\tthis.wiki.getCreationFields(),\n\t\texistingTiddler,\n\t\tfilteredAdditionalFields,\n\t\t{\n\t\t\ttitle: draftTitle,\n\t\t\t\"draft.of\": title,\n\t\t\ttags: mergedTags\n\t\t},this.wiki.getModificationFields());\n\tthis.wiki.addTiddler(draftTiddler);\n\t// Update the story to insert the new draft at the top and remove any existing tiddler\n\tif(storyList && storyList.indexOf(draftTitle) === -1) {\n\t\tvar slot = storyList.indexOf(event.navigateFromTitle);\n\t\tif(slot === -1) {\n\t\t\tslot = this.getAttribute(\"openLinkFromOutsideRiver\",\"top\") === \"bottom\" ? storyList.length - 1 : slot;\n\t\t}\n\t\tstoryList.splice(slot + 1,0,draftTitle);\n\t}\n\tif(storyList && storyList.indexOf(title) !== -1) {\n\t\tstoryList.splice(storyList.indexOf(title),1);\n\t}\n\tthis.saveStoryList(storyList);\n\t// Add a new record to the top of the history stack\n\tthis.addToHistory(draftTitle);\n\treturn false;\n};\n\n// Import JSON tiddlers into a pending import tiddler\nNavigatorWidget.prototype.handleImportTiddlersEvent = function(event) {\n\t// Get the tiddlers\n\tvar tiddlers = [];\n\ttry {\n\t\ttiddlers = JSON.parse(event.param);\n\t} catch(e) {\n\t}\n\t// Get the current $:/Import tiddler\n\tvar importTitle = event.importTitle ? event.importTitle : IMPORT_TITLE,\n\t\timportTiddler = this.wiki.getTiddler(importTitle),\n\t\timportData = this.wiki.getTiddlerData(importTitle,{}),\n\t\tnewFields = new Object({\n\t\t\ttitle: importTitle,\n\t\t\ttype: \"application/json\",\n\t\t\t\"plugin-type\": \"import\",\n\t\t\t\"status\": \"pending\"\n\t\t}),\n\t\tincomingTiddlers = [];\n\t// Process each tiddler\n\timportData.tiddlers = importData.tiddlers || {};\n\t$tw.utils.each(tiddlers,function(tiddlerFields) {\n\t\ttiddlerFields.title = $tw.utils.trim(tiddlerFields.title);\n\t\tvar title = tiddlerFields.title;\n\t\tif(title) {\n\t\t\tincomingTiddlers.push(title);\n\t\t\timportData.tiddlers[title] = tiddlerFields;\n\t\t}\n\t});\n\t// Give the active upgrader modules a chance to process the incoming tiddlers\n\tvar messages = this.wiki.invokeUpgraders(incomingTiddlers,importData.tiddlers);\n\t$tw.utils.each(messages,function(message,title) {\n\t\tnewFields[\"message-\" + title] = message;\n\t});\n\t// Deselect any suppressed tiddlers\n\t$tw.utils.each(importData.tiddlers,function(tiddler,title) {\n\t\tif($tw.utils.count(tiddler) === 0) {\n\t\t\tnewFields[\"selection-\" + title] = \"unchecked\";\n\t\t\tnewFields[\"suppressed-\" + title] = \"yes\";\n\t\t}\n\t});\n\t// Save the $:/Import tiddler\n\tnewFields.text = JSON.stringify(importData,null,$tw.config.preferences.jsonSpaces);\n\tthis.wiki.addTiddler(new $tw.Tiddler(importTiddler,newFields));\n\t// Update the story and history details\n\tvar autoOpenOnImport = event.autoOpenOnImport ? event.autoOpenOnImport : this.getVariable(\"tv-auto-open-on-import\"); \n\tif(autoOpenOnImport !== \"no\") {\n\t\tvar storyList = this.getStoryList(),\n\t\t\thistory = [];\n\t\t// Add it to the story\n\t\tif(storyList && storyList.indexOf(importTitle) === -1) {\n\t\t\tstoryList.unshift(importTitle);\n\t\t}\n\t\t// And to history\n\t\thistory.push(importTitle);\n\t\t// Save the updated story and history\n\t\tthis.saveStoryList(storyList);\n\t\tthis.addToHistory(history);\n\t}\n\treturn false;\n};\n\n//\nNavigatorWidget.prototype.handlePerformImportEvent = function(event) {\n\tvar self = this,\n\t\timportTiddler = this.wiki.getTiddler(event.param),\n\t\timportData = this.wiki.getTiddlerDataCached(event.param,{tiddlers: {}}),\n\t\timportReport = [];\n\t// Add the tiddlers to the store\n\timportReport.push($tw.language.getString(\"Import/Imported/Hint\") + \"\\n\");\n\t$tw.utils.each(importData.tiddlers,function(tiddlerFields) {\n\t\tvar title = tiddlerFields.title;\n\t\tif(title && importTiddler && importTiddler.fields[\"selection-\" + title] !== \"unchecked\") {\n\t\t\tif($tw.utils.hop(importTiddler.fields,[\"rename-\" + title])) {\n\t\t\t\tvar tiddler = new $tw.Tiddler(tiddlerFields,{title : importTiddler.fields[\"rename-\" + title]});\n\t\t\t} else {\n\t\t\t\tvar tiddler = new $tw.Tiddler(tiddlerFields);\n\t\t\t}\n\t\t\ttiddler = $tw.hooks.invokeHook(\"th-importing-tiddler\",tiddler);\n\t\t\tself.wiki.addTiddler(tiddler);\n\t\t\timportReport.push(\"# [[\" + tiddler.fields.title + \"]]\");\n\t\t}\n\t});\n\t// Replace the $:/Import tiddler with an import report\n\tthis.wiki.addTiddler(new $tw.Tiddler({\n\t\ttitle: event.param,\n\t\ttext: importReport.join(\"\\n\"),\n\t\t\"status\": \"complete\"\n\t}));\n\t// Navigate to the $:/Import tiddler\n\tthis.addToHistory([event.param]);\n\t// Trigger an autosave\n\t$tw.rootWidget.dispatchEvent({type: \"tm-auto-save-wiki\"});\n};\n\nNavigatorWidget.prototype.handleFoldTiddlerEvent = function(event) {\n\tvar paramObject = event.paramObject || {};\n\tif(paramObject.foldedState) {\n\t\tvar foldedState = this.wiki.getTiddlerText(paramObject.foldedState,\"show\") === \"show\" ? \"hide\" : \"show\";\n\t\tthis.wiki.setText(paramObject.foldedState,\"text\",null,foldedState);\n\t}\n};\n\nNavigatorWidget.prototype.handleFoldOtherTiddlersEvent = function(event) {\n\tvar self = this,\n\t\tparamObject = event.paramObject || {},\n\t\tprefix = paramObject.foldedStatePrefix;\n\t$tw.utils.each(this.getStoryList(),function(title) {\n\t\tself.wiki.setText(prefix + title,\"text\",null,event.param === title ? \"show\" : \"hide\");\n\t});\n};\n\nNavigatorWidget.prototype.handleFoldAllTiddlersEvent = function(event) {\n\tvar self = this,\n\t\tparamObject = event.paramObject || {},\n\t\tprefix = paramObject.foldedStatePrefix || \"$:/state/folded/\";\n\t$tw.utils.each(this.getStoryList(),function(title) {\n\t\tself.wiki.setText(prefix + title,\"text\",null,\"hide\");\n\t});\n};\n\nNavigatorWidget.prototype.handleUnfoldAllTiddlersEvent = function(event) {\n\tvar self = this,\n\t\tparamObject = event.paramObject || {},\n\t\tprefix = paramObject.foldedStatePrefix;\n\t$tw.utils.each(this.getStoryList(),function(title) {\n\t\tself.wiki.setText(prefix + title,\"text\",null,\"show\");\n\t});\n};\n\nNavigatorWidget.prototype.handleRenameTiddlerEvent = function(event) {\n\tvar options = {},\n\t\tparamObject = event.paramObject || {},\n\t\tfrom = paramObject.from || event.tiddlerTitle,\n\t\tto = paramObject.to;\n\toptions.dontRenameInTags = (paramObject.renameInTags === \"false\" || paramObject.renameInTags === \"no\") ? true : false;\n\toptions.dontRenameInLists = (paramObject.renameInLists === \"false\" || paramObject.renameInLists === \"no\") ? true : false;\n\tthis.wiki.renameTiddler(from,to,options);\n};\n\nexports.navigator = NavigatorWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/password.js": {
"title": "$:/core/modules/widgets/password.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/password.js\ntype: application/javascript\nmodule-type: widget\n\nPassword widget\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar PasswordWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nPasswordWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nPasswordWidget.prototype.render = function(parent,nextSibling) {\n\t// Save the parent dom node\n\tthis.parentDomNode = parent;\n\t// Compute our attributes\n\tthis.computeAttributes();\n\t// Execute our logic\n\tthis.execute();\n\t// Get the current password\n\tvar password = $tw.browser ? $tw.utils.getPassword(this.passwordName) || \"\" : \"\";\n\t// Create our element\n\tvar domNode = this.document.createElement(\"input\");\n\tdomNode.setAttribute(\"type\",\"password\");\n\tdomNode.setAttribute(\"value\",password);\n\t// Add a click event handler\n\t$tw.utils.addEventListeners(domNode,[\n\t\t{name: \"change\", handlerObject: this, handlerMethod: \"handleChangeEvent\"}\n\t]);\n\t// Insert the label into the DOM and render any children\n\tparent.insertBefore(domNode,nextSibling);\n\tthis.renderChildren(domNode,null);\n\tthis.domNodes.push(domNode);\n};\n\nPasswordWidget.prototype.handleChangeEvent = function(event) {\n\tvar password = this.domNodes[0].value;\n\treturn $tw.utils.savePassword(this.passwordName,password);\n};\n\n/*\nCompute the internal state of the widget\n*/\nPasswordWidget.prototype.execute = function() {\n\t// Get the parameters from the attributes\n\tthis.passwordName = this.getAttribute(\"name\",\"\");\n\t// Make the child widgets\n\tthis.makeChildWidgets();\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nPasswordWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif(changedAttributes.name) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t} else {\n\t\treturn this.refreshChildren(changedTiddlers);\n\t}\n};\n\nexports.password = PasswordWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/qualify.js": {
"title": "$:/core/modules/widgets/qualify.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/qualify.js\ntype: application/javascript\nmodule-type: widget\n\nQualify text to a variable \n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar QualifyWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nQualifyWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nQualifyWidget.prototype.render = function(parent,nextSibling) {\n\tthis.parentDomNode = parent;\n\tthis.computeAttributes();\n\tthis.execute();\n\tthis.renderChildren(parent,nextSibling);\n};\n\n/*\nCompute the internal state of the widget\n*/\nQualifyWidget.prototype.execute = function() {\n\t// Get our parameters\n\tthis.qualifyName = this.getAttribute(\"name\");\n\tthis.qualifyTitle = this.getAttribute(\"title\");\n\t// Set context variable\n\tif(this.qualifyName) {\n\t\tthis.setVariable(this.qualifyName,this.qualifyTitle + \"-\" + this.getStateQualifier());\n\t}\n\t// Construct the child widgets\n\tthis.makeChildWidgets();\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nQualifyWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif(changedAttributes.name || changedAttributes.title) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t} else {\n\t\treturn this.refreshChildren(changedTiddlers);\n\t}\n};\n\nexports.qualify = QualifyWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/radio.js": {
"title": "$:/core/modules/widgets/radio.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/radio.js\ntype: application/javascript\nmodule-type: widget\n\nSet a field or index at a given tiddler via radio buttons\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\nvar RadioWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nRadioWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nRadioWidget.prototype.render = function(parent,nextSibling) {\n\t// Save the parent dom node\n\tthis.parentDomNode = parent;\n\t// Compute our attributes\n\tthis.computeAttributes();\n\t// Execute our logic\n\tthis.execute();\n\tvar isChecked = this.getValue() === this.radioValue;\n\t// Create our elements\n\tthis.labelDomNode = this.document.createElement(\"label\");\n\tthis.labelDomNode.setAttribute(\"class\",\n\t\t\"tc-radio \" + this.radioClass + (isChecked ? \" tc-radio-selected\" : \"\")\n\t);\n\tthis.inputDomNode = this.document.createElement(\"input\");\n\tthis.inputDomNode.setAttribute(\"type\",\"radio\");\n\tif(isChecked) {\n\t\tthis.inputDomNode.setAttribute(\"checked\",\"true\");\n\t}\n\tif(this.isDisabled === \"yes\") {\n\t\tthis.inputDomNode.setAttribute(\"disabled\",true);\n\t}\n\tthis.labelDomNode.appendChild(this.inputDomNode);\n\tthis.spanDomNode = this.document.createElement(\"span\");\n\tthis.labelDomNode.appendChild(this.spanDomNode);\n\t// Add a click event handler\n\t$tw.utils.addEventListeners(this.inputDomNode,[\n\t\t{name: \"change\", handlerObject: this, handlerMethod: \"handleChangeEvent\"}\n\t]);\n\t// Insert the label into the DOM and render any children\n\tparent.insertBefore(this.labelDomNode,nextSibling);\n\tthis.renderChildren(this.spanDomNode,null);\n\tthis.domNodes.push(this.labelDomNode);\n};\n\nRadioWidget.prototype.getValue = function() {\n\tvar value,\n\t\ttiddler = this.wiki.getTiddler(this.radioTitle);\n\tif (this.radioIndex) {\n\t\tvalue = this.wiki.extractTiddlerDataItem(this.radioTitle,this.radioIndex);\n\t} else {\n\t\tvalue = tiddler && tiddler.getFieldString(this.radioField);\n\t}\n\treturn value;\n};\n\nRadioWidget.prototype.setValue = function() {\n\tif(this.radioIndex) {\n\t\tthis.wiki.setText(this.radioTitle,\"\",this.radioIndex,this.radioValue);\n\t} else {\n\t\tvar tiddler = this.wiki.getTiddler(this.radioTitle),\n\t\t\taddition = {};\n\t\taddition[this.radioField] = this.radioValue;\n\t\tthis.wiki.addTiddler(new $tw.Tiddler(this.wiki.getCreationFields(),{title: this.radioTitle},tiddler,addition,this.wiki.getModificationFields()));\n\t}\n};\n\nRadioWidget.prototype.handleChangeEvent = function(event) {\n\tif(this.inputDomNode.checked) {\n\t\tthis.setValue();\n\t}\n\t// Trigger actions\n\tif(this.radioActions) {\n\t\tthis.invokeActionString(this.radioActions,this,event,{\"actionValue\": this.radioValue});\n\t}\n};\n\n/*\nCompute the internal state of the widget\n*/\nRadioWidget.prototype.execute = function() {\n\t// Get the parameters from the attributes\n\tthis.radioTitle = this.getAttribute(\"tiddler\",this.getVariable(\"currentTiddler\"));\n\tthis.radioField = this.getAttribute(\"field\",\"text\");\n\tthis.radioIndex = this.getAttribute(\"index\");\n\tthis.radioValue = this.getAttribute(\"value\");\n\tthis.radioClass = this.getAttribute(\"class\",\"\");\n\tthis.isDisabled = this.getAttribute(\"disabled\",\"no\");\n\tthis.radioActions = this.getAttribute(\"actions\",\"\");\n\t// Make the child widgets\n\tthis.makeChildWidgets();\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nRadioWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif(($tw.utils.count(changedAttributes) > 0) || changedTiddlers[this.radioTitle]) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t} else {\n\t\treturn this.refreshChildren(changedTiddlers);\n\t}\n};\n\nexports.radio = RadioWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/range.js": {
"title": "$:/core/modules/widgets/range.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/range.js\ntype: application/javascript\nmodule-type: widget\n\nRange widget\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar RangeWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nRangeWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nRangeWidget.prototype.render = function(parent,nextSibling) {\n\t// Save the parent dom node\n\tthis.parentDomNode = parent;\n\t// Compute our attributes\n\tthis.computeAttributes();\n\t// Execute our logic\n\tthis.execute();\n\t// Create our elements\n\tthis.inputDomNode = this.document.createElement(\"input\");\n\tthis.inputDomNode.setAttribute(\"type\",\"range\");\n\tthis.inputDomNode.setAttribute(\"class\",this.elementClass);\n\tif(this.minValue){\n\t\tthis.inputDomNode.setAttribute(\"min\", this.minValue);\n\t}\n\tif(this.maxValue){\n\t\tthis.inputDomNode.setAttribute(\"max\", this.maxValue);\n\t}\n\tif(this.increment){\n\t\tthis.inputDomNode.setAttribute(\"step\", this.increment);\n\t}\n\tif(this.isDisabled === \"yes\") {\n\t\tthis.inputDomNode.setAttribute(\"disabled\",true);\n\t}\n\tthis.inputDomNode.value = this.getValue();\n\t// Add a click event handler\n\t$tw.utils.addEventListeners(this.inputDomNode,[\n\t\t{name:\"mousedown\", handlerObject:this, handlerMethod:\"handleMouseDownEvent\"},\n\t\t{name:\"mouseup\", handlerObject:this, handlerMethod:\"handleMouseUpEvent\"},\n\t\t{name:\"change\", handlerObject:this, handlerMethod:\"handleChangeEvent\"},\n\t\t{name:\"input\", handlerObject:this, handlerMethod:\"handleInputEvent\"},\n\t]);\n\t// Insert the label into the DOM and render any children\n\tparent.insertBefore(this.inputDomNode,nextSibling);\n\tthis.domNodes.push(this.inputDomNode);\n};\n\nRangeWidget.prototype.getValue = function() {\n\tvar tiddler = this.wiki.getTiddler(this.tiddlerTitle),\n\t\tfieldName = this.tiddlerField,\n\t\tvalue = this.defaultValue;\n\tif(tiddler) {\n\t\tif(this.tiddlerIndex) {\n\t\t\tvalue = this.wiki.extractTiddlerDataItem(tiddler,this.tiddlerIndex,this.defaultValue);\n\t\t} else {\n\t\t\tif($tw.utils.hop(tiddler.fields,fieldName)) {\n\t\t\t\tvalue = tiddler.fields[fieldName] || \"\";\n\t\t\t} else {\n\t\t\t\tvalue = this.defaultValue;\n\t\t\t}\n\t\t}\n\t}\n\treturn value;\n};\n\nRangeWidget.prototype.getActionVariables = function(options) {\n\toptions = options || {};\n\tvar hasChanged = (this.startValue !== this.inputDomNode.value) ? \"yes\" : \"no\";\n\t// Trigger actions. Use variables = {key:value, key:value ...}\n\t// the \"value\" is needed.\n\treturn $tw.utils.extend({\"actionValue\": this.inputDomNode.value, \"actionValueHasChanged\": hasChanged}, options);\n}\n\n// actionsStart\nRangeWidget.prototype.handleMouseDownEvent = function(event) {\n\tthis.mouseDown = true; // TODO remove once IE is gone.\n\tthis.startValue = this.inputDomNode.value; // TODO remove this line once IE is gone!\n\tthis.handleEvent(event);\n\t// Trigger actions\n\tif(this.actionsMouseDown) {\n\t\tvar variables = this.getActionVariables() // TODO this line will go into the function call below.\n\t\tthis.invokeActionString(this.actionsMouseDown,this,event,variables);\n\t}\n}\n\n// actionsStop\nRangeWidget.prototype.handleMouseUpEvent = function(event) {\n\tthis.mouseDown = false; // TODO remove once IE is gone.\n\tthis.handleEvent(event);\n\t// Trigger actions\n\tif(this.actionsMouseUp) {\n\t\tvar variables = this.getActionVariables()\n\t\tthis.invokeActionString(this.actionsMouseUp,this,event,variables);\n\t}\n\t// TODO remove the following if() once IE is gone!\n\tif ($tw.browser.isIE) {\n\t\tif (this.startValue !== this.inputDomNode.value) {\n\t\t\tthis.handleChangeEvent(event);\n\t\t\tthis.startValue = this.inputDomNode.value;\n\t\t}\n\t}\n}\n\nRangeWidget.prototype.handleChangeEvent = function(event) {\n\tif (this.mouseDown) { // TODO refactor this function once IE is gone.\n\t\tthis.handleInputEvent(event);\n\t}\n};\n\nRangeWidget.prototype.handleInputEvent = function(event) {\n\tthis.handleEvent(event);\n\t// Trigger actions\n\tif(this.actionsInput) {\n\t\t// \"tiddler\" parameter may be missing. See .execute() below\n\t\tvar variables = this.getActionVariables({\"actionValueHasChanged\": \"yes\"}) // TODO this line will go into the function call below.\n\t\tthis.invokeActionString(this.actionsInput,this,event,variables);\n\t}\n};\n\nRangeWidget.prototype.handleEvent = function(event) {\n\tif(this.getValue() !== this.inputDomNode.value) {\n\t\tif(this.tiddlerIndex) {\n\t\t\tthis.wiki.setText(this.tiddlerTitle,\"\",this.tiddlerIndex,this.inputDomNode.value);\n\t\t} else {\n\t\t\tthis.wiki.setText(this.tiddlerTitle,this.tiddlerField,null,this.inputDomNode.value);\n\t\t}\n\t}\n};\n\n/*\nCompute the internal state of the widget\n*/\nRangeWidget.prototype.execute = function() {\n\t// TODO remove the next 1 lines once IE is gone!\n\tthis.mouseUp = true; // Needed for IE10\n\t// Get the parameters from the attributes\n\tthis.tiddlerTitle = this.getAttribute(\"tiddler\",this.getVariable(\"currentTiddler\"));\n\tthis.tiddlerField = this.getAttribute(\"field\",\"text\");\n\tthis.tiddlerIndex = this.getAttribute(\"index\");\n\tthis.minValue = this.getAttribute(\"min\");\n\tthis.maxValue = this.getAttribute(\"max\");\n\tthis.increment = this.getAttribute(\"increment\");\n\tthis.defaultValue = this.getAttribute(\"default\",\"\");\n\tthis.elementClass = this.getAttribute(\"class\",\"\");\n\tthis.isDisabled = this.getAttribute(\"disabled\",\"no\");\n\t// Actions since 5.1.23\n\t// Next 2 only fire once!\n\tthis.actionsMouseDown = this.getAttribute(\"actionsStart\",\"\");\n\tthis.actionsMouseUp = this.getAttribute(\"actionsStop\",\"\");\n\t// Input fires very often!\n\tthis.actionsInput = this.getAttribute(\"actions\",\"\");\n\t// Make the child widgets\n\tthis.makeChildWidgets();\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nRangeWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif($tw.utils.count(changedAttributes) > 0) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t} else {\n\t\tvar refreshed = false;\n\t\tif(changedTiddlers[this.tiddlerTitle]) {\n\t\t\tvar value = this.getValue();\n\t\t\tif(this.inputDomNode.value !== value) {\n\t\t\t\tthis.inputDomNode.value = value;\n\t\t\t}\n\t\t\trefreshed = true;\n\t\t}\n\t\treturn this.refreshChildren(changedTiddlers) || refreshed;\n\t}\n};\n\nexports.range = RangeWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/raw.js": {
"title": "$:/core/modules/widgets/raw.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/raw.js\ntype: application/javascript\nmodule-type: widget\n\nRaw widget\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar RawWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nRawWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nRawWidget.prototype.render = function(parent,nextSibling) {\n\tthis.parentDomNode = parent;\n\tthis.execute();\n\tvar div = this.document.createElement(\"div\");\n\tdiv.innerHTML=this.parseTreeNode.html;\n\tparent.insertBefore(div,nextSibling);\n\tthis.domNodes.push(div);\t\n};\n\n/*\nCompute the internal state of the widget\n*/\nRawWidget.prototype.execute = function() {\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nRawWidget.prototype.refresh = function(changedTiddlers) {\n\treturn false;\n};\n\nexports.raw = RawWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/reveal.js": {
"title": "$:/core/modules/widgets/reveal.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/reveal.js\ntype: application/javascript\nmodule-type: widget\n\nReveal widget\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar RevealWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nRevealWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nRevealWidget.prototype.render = function(parent,nextSibling) {\n\tthis.parentDomNode = parent;\n\tthis.computeAttributes();\n\tthis.execute();\n\tvar tag = this.parseTreeNode.isBlock ? \"div\" : \"span\";\n\tif(this.revealTag && $tw.config.htmlUnsafeElements.indexOf(this.revealTag) === -1) {\n\t\ttag = this.revealTag;\n\t}\n\tvar domNode = this.document.createElement(tag);\n\tthis.domNode = domNode;\n\tthis.assignDomNodeClasses();\n\tif(this.style) {\n\t\tdomNode.setAttribute(\"style\",this.style);\n\t}\n\tparent.insertBefore(domNode,nextSibling);\n\tthis.renderChildren(domNode,null);\n\tif(!domNode.isTiddlyWikiFakeDom && this.type === \"popup\" && this.isOpen) {\n\t\tthis.positionPopup(domNode);\n\t\t$tw.utils.addClass(domNode,\"tc-popup\"); // Make sure that clicks don't dismiss popups within the revealed content\n\t}\n\tif(!this.isOpen) {\n\t\tdomNode.setAttribute(\"hidden\",\"true\");\n\t}\n\tthis.domNodes.push(domNode);\n};\n\nRevealWidget.prototype.positionPopup = function(domNode) {\n\tdomNode.style.position = \"absolute\";\n\tdomNode.style.zIndex = \"1000\";\n\tvar left,top;\n\tswitch(this.position) {\n\t\tcase \"left\":\n\t\t\tleft = this.popup.left - domNode.offsetWidth;\n\t\t\ttop = this.popup.top;\n\t\t\tbreak;\n\t\tcase \"above\":\n\t\t\tleft = this.popup.left;\n\t\t\ttop = this.popup.top - domNode.offsetHeight;\n\t\t\tbreak;\n\t\tcase \"aboveright\":\n\t\t\tleft = this.popup.left + this.popup.width;\n\t\t\ttop = this.popup.top + this.popup.height - domNode.offsetHeight;\n\t\t\tbreak;\n\t\tcase \"belowright\":\n\t\t\tleft = this.popup.left + this.popup.width;\n\t\t\ttop = this.popup.top + this.popup.height;\n\t\t\tbreak;\t\t\t\n\t\tcase \"right\":\n\t\t\tleft = this.popup.left + this.popup.width;\n\t\t\ttop = this.popup.top;\n\t\t\tbreak;\n\t\tcase \"belowleft\":\n\t\t\tleft = this.popup.left + this.popup.width - domNode.offsetWidth;\n\t\t\ttop = this.popup.top + this.popup.height;\n\t\t\tbreak;\n\t\tcase \"aboveleft\":\n\t\t\tleft = this.popup.left - domNode.offsetWidth;\n\t\t\ttop = this.popup.top - domNode.offsetHeight;\n\t\t\tbreak;\t\t\t\n\t\tdefault: // Below\n\t\t\tleft = this.popup.left;\n\t\t\ttop = this.popup.top + this.popup.height;\n\t\t\tbreak;\n\t}\n\tif(!this.positionAllowNegative) {\n\t\tleft = Math.max(0,left);\n\t\ttop = Math.max(0,top);\n\t}\n\tdomNode.style.left = left + \"px\";\n\tdomNode.style.top = top + \"px\";\n};\n\n/*\nCompute the internal state of the widget\n*/\nRevealWidget.prototype.execute = function() {\n\t// Get our parameters\n\tthis.state = this.getAttribute(\"state\");\n\tthis.revealTag = this.getAttribute(\"tag\");\n\tthis.type = this.getAttribute(\"type\");\n\tthis.text = this.getAttribute(\"text\");\n\tthis.position = this.getAttribute(\"position\");\n\tthis.positionAllowNegative = this.getAttribute(\"positionAllowNegative\") === \"yes\";\n\t// class attribute handled in assignDomNodeClasses()\n\tthis.style = this.getAttribute(\"style\",\"\");\n\tthis[\"default\"] = this.getAttribute(\"default\",\"\");\n\tthis.animate = this.getAttribute(\"animate\",\"no\");\n\tthis.retain = this.getAttribute(\"retain\",\"no\");\n\tthis.openAnimation = this.animate === \"no\" ? undefined : \"open\";\n\tthis.closeAnimation = this.animate === \"no\" ? undefined : \"close\";\n\tthis.updatePopupPosition = this.getAttribute(\"updatePopupPosition\",\"no\") === \"yes\";\n\t// Compute the title of the state tiddler and read it\n\tthis.stateTiddlerTitle = this.state;\n\tthis.stateTitle = this.getAttribute(\"stateTitle\");\n\tthis.stateField = this.getAttribute(\"stateField\");\n\tthis.stateIndex = this.getAttribute(\"stateIndex\");\n\tthis.readState();\n\t// Construct the child widgets\n\tvar childNodes = this.isOpen ? this.parseTreeNode.children : [];\n\tthis.hasChildNodes = this.isOpen;\n\tthis.makeChildWidgets(childNodes);\n};\n\n/*\nRead the state tiddler\n*/\nRevealWidget.prototype.readState = function() {\n\t// Read the information from the state tiddler\n\tvar state,\n\t defaultState = this[\"default\"];\n\tif(this.stateTitle) {\n\t\tvar stateTitleTiddler = this.wiki.getTiddler(this.stateTitle);\n\t\tif(this.stateField) {\n\t\t\tstate = stateTitleTiddler ? stateTitleTiddler.getFieldString(this.stateField) || defaultState : defaultState;\n\t\t} else if(this.stateIndex) {\n\t\t\tstate = stateTitleTiddler ? this.wiki.extractTiddlerDataItem(this.stateTitle,this.stateIndex) || defaultState : defaultState;\n\t\t} else if(stateTitleTiddler) {\n\t\t\tstate = this.wiki.getTiddlerText(this.stateTitle) || defaultState;\n\t\t} else {\n\t\t\tstate = defaultState;\n\t\t}\n\t} else {\n\t\tstate = this.stateTiddlerTitle ? this.wiki.getTextReference(this.state,this[\"default\"],this.getVariable(\"currentTiddler\")) : this[\"default\"];\n\t}\n\tif(state === null) {\n\t\tstate = this[\"default\"];\n\t}\n\tswitch(this.type) {\n\t\tcase \"popup\":\n\t\t\tthis.readPopupState(state);\n\t\t\tbreak;\n\t\tcase \"match\":\n\t\t\tthis.isOpen = this.text === state;\n\t\t\tbreak;\n\t\tcase \"nomatch\":\n\t\t\tthis.isOpen = this.text !== state;\n\t\t\tbreak;\n\t\tcase \"lt\":\n\t\t\tthis.isOpen = !!(this.compareStateText(state) < 0);\n\t\t\tbreak;\n\t\tcase \"gt\":\n\t\t\tthis.isOpen = !!(this.compareStateText(state) > 0);\n\t\t\tbreak;\n\t\tcase \"lteq\":\n\t\t\tthis.isOpen = !(this.compareStateText(state) > 0);\n\t\t\tbreak;\n\t\tcase \"gteq\":\n\t\t\tthis.isOpen = !(this.compareStateText(state) < 0);\n\t\t\tbreak;\n\t}\n};\n\nRevealWidget.prototype.compareStateText = function(state) {\n\treturn state.localeCompare(this.text,undefined,{numeric: true,sensitivity: \"case\"});\n};\n\nRevealWidget.prototype.readPopupState = function(state) {\n\tvar popupLocationRegExp = /^\\((-?[0-9\\.E]+),(-?[0-9\\.E]+),(-?[0-9\\.E]+),(-?[0-9\\.E]+)\\)$/,\n\t\tmatch = popupLocationRegExp.exec(state);\n\t// Check if the state matches the location regexp\n\tif(match) {\n\t\t// If so, we're open\n\t\tthis.isOpen = true;\n\t\t// Get the location\n\t\tthis.popup = {\n\t\t\tleft: parseFloat(match[1]),\n\t\t\ttop: parseFloat(match[2]),\n\t\t\twidth: parseFloat(match[3]),\n\t\t\theight: parseFloat(match[4])\n\t\t};\n\t} else {\n\t\t// If not, we're closed\n\t\tthis.isOpen = false;\n\t}\n};\n\nRevealWidget.prototype.assignDomNodeClasses = function() {\n\tvar classes = this.getAttribute(\"class\",\"\").split(\" \");\n\tclasses.push(\"tc-reveal\");\n\tthis.domNode.className = classes.join(\" \");\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nRevealWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif(changedAttributes.state || changedAttributes.type || changedAttributes.text || changedAttributes.position || changedAttributes.positionAllowNegative || changedAttributes[\"default\"] || changedAttributes.animate || changedAttributes.stateTitle || changedAttributes.stateField || changedAttributes.stateIndex) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t} else {\n\t\tvar currentlyOpen = this.isOpen;\n\t\tthis.readState();\n\t\tif(this.isOpen !== currentlyOpen) {\n\t\t\tif(this.retain === \"yes\") {\n\t\t\t\tthis.updateState();\n\t\t\t} else {\n\t\t\t\tthis.refreshSelf();\n\t\t\t\treturn true;\n\t\t\t}\n\t\t} else if(this.type === \"popup\" && this.updatePopupPosition && (changedTiddlers[this.state] || changedTiddlers[this.stateTitle])) {\n\t\t\tthis.positionPopup(this.domNode);\n\t\t}\n\t\tif(changedAttributes.style) {\n\t\t\tthis.domNode.style = this.getAttribute(\"style\",\"\");\n\t\t}\n\t\tif(changedAttributes[\"class\"]) {\n\t\t\tthis.assignDomNodeClasses();\n\t\t}\t\t\n\t\treturn this.refreshChildren(changedTiddlers);\n\t}\n};\n\n/*\nCalled by refresh() to dynamically show or hide the content\n*/\nRevealWidget.prototype.updateState = function() {\n\tvar self = this;\n\t// Read the current state\n\tthis.readState();\n\t// Construct the child nodes if needed\n\tvar domNode = this.domNodes[0];\n\tif(this.isOpen && !this.hasChildNodes) {\n\t\tthis.hasChildNodes = true;\n\t\tthis.makeChildWidgets(this.parseTreeNode.children);\n\t\tthis.renderChildren(domNode,null);\n\t}\n\t// Animate our DOM node\n\tif(!domNode.isTiddlyWikiFakeDom && this.type === \"popup\" && this.isOpen) {\n\t\tthis.positionPopup(domNode);\n\t\t$tw.utils.addClass(domNode,\"tc-popup\"); // Make sure that clicks don't dismiss popups within the revealed content\n\n\t}\n\tif(this.isOpen) {\n\t\tdomNode.removeAttribute(\"hidden\");\n $tw.anim.perform(this.openAnimation,domNode);\n\t} else {\n\t\t$tw.anim.perform(this.closeAnimation,domNode,{callback: function() {\n\t\t\t//make sure that the state hasn't changed during the close animation\n\t\t\tself.readState()\n\t\t\tif(!self.isOpen) {\n\t\t\t\tdomNode.setAttribute(\"hidden\",\"true\");\n\t\t\t}\n\t\t}});\n\t}\n};\n\nexports.reveal = RevealWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/scrollable.js": {
"title": "$:/core/modules/widgets/scrollable.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/scrollable.js\ntype: application/javascript\nmodule-type: widget\n\nScrollable widget\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar ScrollableWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n\tthis.scaleFactor = 1;\n\tthis.addEventListeners([\n\t\t{type: \"tm-scroll\", handler: \"handleScrollEvent\"}\n\t]);\n\tif($tw.browser) {\n\t\tthis.requestAnimationFrame = window.requestAnimationFrame ||\n\t\t\twindow.webkitRequestAnimationFrame ||\n\t\t\twindow.mozRequestAnimationFrame ||\n\t\t\tfunction(callback) {\n\t\t\t\treturn window.setTimeout(callback, 1000/60);\n\t\t\t};\n\t\tthis.cancelAnimationFrame = window.cancelAnimationFrame ||\n\t\t\twindow.webkitCancelAnimationFrame ||\n\t\t\twindow.webkitCancelRequestAnimationFrame ||\n\t\t\twindow.mozCancelAnimationFrame ||\n\t\t\twindow.mozCancelRequestAnimationFrame ||\n\t\t\tfunction(id) {\n\t\t\t\twindow.clearTimeout(id);\n\t\t\t};\n\t}\n};\n\n/*\nInherit from the base widget class\n*/\nScrollableWidget.prototype = new Widget();\n\nScrollableWidget.prototype.cancelScroll = function() {\n\tif(this.idRequestFrame) {\n\t\tthis.cancelAnimationFrame.call(window,this.idRequestFrame);\n\t\tthis.idRequestFrame = null;\n\t}\n};\n\n/*\nHandle a scroll event\n*/\nScrollableWidget.prototype.handleScrollEvent = function(event) {\n\t// Pass the scroll event through if our offsetsize is larger than our scrollsize\n\tif(this.outerDomNode.scrollWidth <= this.outerDomNode.offsetWidth && this.outerDomNode.scrollHeight <= this.outerDomNode.offsetHeight && this.fallthrough === \"yes\") {\n\t\treturn true;\n\t}\n\tif(event.paramObject && event.paramObject.selector) {\n\t\tthis.scrollSelectorIntoView(null,event.paramObject.selector);\n\t} else {\n\t\tthis.scrollIntoView(event.target);\t\t\t\n\t}\n\treturn false; // Handled event\n};\n\n/*\nScroll an element into view\n*/\nScrollableWidget.prototype.scrollIntoView = function(element) {\n\tvar duration = $tw.utils.getAnimationDuration(),\n\tsrcWindow = element ? element.ownerDocument.defaultView : window;\n\tthis.cancelScroll();\n\tthis.startTime = Date.now();\n\tvar scrollPosition = {\n\t\tx: this.outerDomNode.scrollLeft,\n\t\ty: this.outerDomNode.scrollTop\n\t};\n\t// Get the client bounds of the element and adjust by the scroll position\n\tvar scrollableBounds = this.outerDomNode.getBoundingClientRect(),\n\t\tclientTargetBounds = element.getBoundingClientRect(),\n\t\tbounds = {\n\t\t\tleft: clientTargetBounds.left + scrollPosition.x - scrollableBounds.left,\n\t\t\ttop: clientTargetBounds.top + scrollPosition.y - scrollableBounds.top,\n\t\t\twidth: clientTargetBounds.width,\n\t\t\theight: clientTargetBounds.height\n\t\t};\n\t// We'll consider the horizontal and vertical scroll directions separately via this function\n\tvar getEndPos = function(targetPos,targetSize,currentPos,currentSize) {\n\t\t\t// If the target is already visible then stay where we are\n\t\t\tif(targetPos >= currentPos && (targetPos + targetSize) <= (currentPos + currentSize)) {\n\t\t\t\treturn currentPos;\n\t\t\t// If the target is above/left of the current view, then scroll to its top/left\n\t\t\t} else if(targetPos <= currentPos) {\n\t\t\t\treturn targetPos;\n\t\t\t// If the target is smaller than the window and the scroll position is too far up, then scroll till the target is at the bottom of the window\n\t\t\t} else if(targetSize < currentSize && currentPos < (targetPos + targetSize - currentSize)) {\n\t\t\t\treturn targetPos + targetSize - currentSize;\n\t\t\t// If the target is big, then just scroll to the top\n\t\t\t} else if(currentPos < targetPos) {\n\t\t\t\treturn targetPos;\n\t\t\t// Otherwise, stay where we are\n\t\t\t} else {\n\t\t\t\treturn currentPos;\n\t\t\t}\n\t\t},\n\t\tendX = getEndPos(bounds.left,bounds.width,scrollPosition.x,this.outerDomNode.offsetWidth),\n\t\tendY = getEndPos(bounds.top,bounds.height,scrollPosition.y,this.outerDomNode.offsetHeight);\n\t// Only scroll if necessary\n\tif(endX !== scrollPosition.x || endY !== scrollPosition.y) {\n\t\tvar self = this,\n\t\t\tdrawFrame;\n\t\tdrawFrame = function () {\n\t\t\tvar t;\n\t\t\tif(duration <= 0) {\n\t\t\t\tt = 1;\n\t\t\t} else {\n\t\t\t\tt = ((Date.now()) - self.startTime) / duration;\t\n\t\t\t}\n\t\t\tif(t >= 1) {\n\t\t\t\tself.cancelScroll();\n\t\t\t\tt = 1;\n\t\t\t}\n\t\t\tt = $tw.utils.slowInSlowOut(t);\n\t\t\tself.outerDomNode.scrollLeft = scrollPosition.x + (endX - scrollPosition.x) * t;\n\t\t\tself.outerDomNode.scrollTop = scrollPosition.y + (endY - scrollPosition.y) * t;\n\t\t\tif(t < 1) {\n\t\t\t\tself.idRequestFrame = self.requestAnimationFrame.call(srcWindow,drawFrame);\n\t\t\t}\n\t\t};\n\t\tdrawFrame();\n\t}\n};\n\nScrollableWidget.prototype.scrollSelectorIntoView = function(baseElement,selector,callback) {\n\tbaseElement = baseElement || document.body;\n\tvar element = baseElement.querySelector(selector);\n\tif(element) {\n\t\tthis.scrollIntoView(element,callback);\t\t\n\t}\n};\n\n/*\nRender this widget into the DOM\n*/\nScrollableWidget.prototype.render = function(parent,nextSibling) {\n\tvar self = this;\n\t// Remember parent\n\tthis.parentDomNode = parent;\n\t// Compute attributes and execute state\n\tthis.computeAttributes();\n\tthis.execute();\n\t// Create elements\n\tthis.outerDomNode = this.document.createElement(\"div\");\n\t$tw.utils.setStyle(this.outerDomNode,[\n\t\t{overflowY: \"auto\"},\n\t\t{overflowX: \"auto\"},\n\t\t{webkitOverflowScrolling: \"touch\"}\n\t]);\n\tthis.innerDomNode = this.document.createElement(\"div\");\n\tthis.outerDomNode.appendChild(this.innerDomNode);\n\t// Assign classes\n\tthis.outerDomNode.className = this[\"class\"] || \"\";\n\t// Insert element\n\tparent.insertBefore(this.outerDomNode,nextSibling);\n\tthis.renderChildren(this.innerDomNode,null);\n\tthis.domNodes.push(this.outerDomNode);\n};\n\n/*\nCompute the internal state of the widget\n*/\nScrollableWidget.prototype.execute = function() {\n\t// Get attributes\n\tthis.fallthrough = this.getAttribute(\"fallthrough\",\"yes\");\n\tthis[\"class\"] = this.getAttribute(\"class\");\n\t// Make child widgets\n\tthis.makeChildWidgets();\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nScrollableWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif(changedAttributes[\"class\"]) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t}\n\treturn this.refreshChildren(changedTiddlers);\n};\n\nexports.scrollable = ScrollableWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/select.js": {
"title": "$:/core/modules/widgets/select.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/select.js\ntype: application/javascript\nmodule-type: widget\n\nSelect widget:\n\n```\n<$select tiddler=\"MyTiddler\" field=\"text\">\n<$list filter=\"[tag[chapter]]\">\n<option value=<<currentTiddler>>>\n<$view field=\"description\"/>\n</option>\n</$list>\n</$select>\n```\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar SelectWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nSelectWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nSelectWidget.prototype.render = function(parent,nextSibling) {\n\tthis.parentDomNode = parent;\n\tthis.computeAttributes();\n\tthis.execute();\n\tthis.renderChildren(parent,nextSibling);\n\tthis.setSelectValue();\n\t$tw.utils.addEventListeners(this.getSelectDomNode(),[\n\t\t{name: \"change\", handlerObject: this, handlerMethod: \"handleChangeEvent\"}\n\t]);\n};\n\n/*\nHandle a change event\n*/\nSelectWidget.prototype.handleChangeEvent = function(event) {\n\t// Get the new value and assign it to the tiddler\n\tif(this.selectMultiple == false) {\n\t\tvar value = this.getSelectDomNode().value;\n\t} else {\n\t\tvar value = this.getSelectValues()\n\t\t\t\tvalue = $tw.utils.stringifyList(value);\n\t}\n\tthis.wiki.setText(this.selectTitle,this.selectField,this.selectIndex,value);\n\t// Trigger actions\n\tif(this.selectActions) {\n\t\tthis.invokeActionString(this.selectActions,this,event);\n\t}\n};\n\n/*\nIf necessary, set the value of the select element to the current value\n*/\nSelectWidget.prototype.setSelectValue = function() {\n\tvar value = this.selectDefault;\n\t// Get the value\n\tif(this.selectIndex) {\n\t\tvalue = this.wiki.extractTiddlerDataItem(this.selectTitle,this.selectIndex,value);\n\t} else {\n\t\tvar tiddler = this.wiki.getTiddler(this.selectTitle);\n\t\tif(tiddler) {\n\t\t\tif(this.selectField === \"text\") {\n\t\t\t\t// Calling getTiddlerText() triggers lazy loading of skinny tiddlers\n\t\t\t\tvalue = this.wiki.getTiddlerText(this.selectTitle);\n\t\t\t} else {\n\t\t\t\tif($tw.utils.hop(tiddler.fields,this.selectField)) {\n\t\t\t\t\tvalue = tiddler.getFieldString(this.selectField);\n\t\t\t\t}\n\t\t\t}\n\t\t} else {\n\t\t\tif(this.selectField === \"title\") {\n\t\t\t\tvalue = this.selectTitle;\n\t\t\t}\n\t\t}\n\t}\n\t// Assign it to the select element if it's different than the current value\n\tif (this.selectMultiple) {\n\t\tvalue = value === undefined ? \"\" : value;\n\t\tvar select = this.getSelectDomNode();\n\t\tvar values = Array.isArray(value) ? value : $tw.utils.parseStringArray(value);\n\t\tfor(var i=0; i < select.children.length; i++){\n\t\t\tselect.children[i].selected = values.indexOf(select.children[i].value) !== -1\n\t\t}\n\t} else {\n\t\tvar domNode = this.getSelectDomNode();\n\t\tif(domNode.value !== value) {\n\t\t\tdomNode.value = value;\n\t\t}\n\t}\n};\n\n/*\nGet the DOM node of the select element\n*/\nSelectWidget.prototype.getSelectDomNode = function() {\n\treturn this.children[0].domNodes[0];\n};\n\n// Return an array of the selected opion values\n// select is an HTML select element\nSelectWidget.prototype.getSelectValues = function() {\n\tvar select, result, options, opt;\n\tselect = this.getSelectDomNode();\n\tresult = [];\n\toptions = select && select.options;\n\tfor (var i=0; i<options.length; i++) {\n\t\topt = options[i];\n\t\tif (opt.selected) {\n\t\t\tresult.push(opt.value || opt.text);\n\t\t}\n\t}\n\treturn result;\n}\n\n/*\nCompute the internal state of the widget\n*/\nSelectWidget.prototype.execute = function() {\n\t// Get our parameters\n\tthis.selectActions = this.getAttribute(\"actions\");\n\tthis.selectTitle = this.getAttribute(\"tiddler\",this.getVariable(\"currentTiddler\"));\n\tthis.selectField = this.getAttribute(\"field\",\"text\");\n\tthis.selectIndex = this.getAttribute(\"index\");\n\tthis.selectClass = this.getAttribute(\"class\");\n\tthis.selectDefault = this.getAttribute(\"default\");\n\tthis.selectMultiple = this.getAttribute(\"multiple\", false);\n\tthis.selectSize = this.getAttribute(\"size\");\n\tthis.selectTooltip = this.getAttribute(\"tooltip\");\n\t// Make the child widgets\n\tvar selectNode = {\n\t\ttype: \"element\",\n\t\ttag: \"select\",\n\t\tchildren: this.parseTreeNode.children\n\t};\n\tif(this.selectClass) {\n\t\t$tw.utils.addAttributeToParseTreeNode(selectNode,\"class\",this.selectClass);\n\t}\n\tif(this.selectMultiple) {\n\t\t$tw.utils.addAttributeToParseTreeNode(selectNode,\"multiple\",\"multiple\");\n\t}\n\tif(this.selectSize) {\n\t\t$tw.utils.addAttributeToParseTreeNode(selectNode,\"size\",this.selectSize);\n\t}\n\tif(this.selectTooltip) {\n\t\t$tw.utils.addAttributeToParseTreeNode(selectNode,\"title\",this.selectTooltip);\n\t}\n\tthis.makeChildWidgets([selectNode]);\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nSelectWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\t// If we're using a different tiddler/field/index then completely refresh ourselves\n\tif(changedAttributes.selectTitle || changedAttributes.selectField || changedAttributes.selectIndex || changedAttributes.selectTooltip) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t// If the target tiddler value has changed, just update setting and refresh the children\n\t} else {\n\t\tvar childrenRefreshed = this.refreshChildren(changedTiddlers);\n\t\tif(changedTiddlers[this.selectTitle] || childrenRefreshed) {\n\t\t\tthis.setSelectValue();\n\t\t} \n\t\treturn childrenRefreshed;\n\t}\n};\n\nexports.select = SelectWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/set.js": {
"title": "$:/core/modules/widgets/set.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/set.js\ntype: application/javascript\nmodule-type: widget\n\nSet variable widget\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar SetWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nSetWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nSetWidget.prototype.render = function(parent,nextSibling) {\n\tthis.parentDomNode = parent;\n\tthis.computeAttributes();\n\tthis.execute();\n\tthis.renderChildren(parent,nextSibling);\n};\n\n/*\nCompute the internal state of the widget\n*/\nSetWidget.prototype.execute = function() {\n\t// Get our parameters\n\tthis.setName = this.getAttribute(\"name\",\"currentTiddler\");\n\tthis.setFilter = this.getAttribute(\"filter\");\n\tthis.setSelect = this.getAttribute(\"select\");\n\tthis.setTiddler = this.getAttribute(\"tiddler\");\n\tthis.setSubTiddler = this.getAttribute(\"subtiddler\");\n\tthis.setField = this.getAttribute(\"field\");\n\tthis.setIndex = this.getAttribute(\"index\");\n\tthis.setValue = this.getAttribute(\"value\");\n\tthis.setEmptyValue = this.getAttribute(\"emptyValue\");\n\t// Set context variable\n\tthis.setVariable(this.setName,this.getValue(),this.parseTreeNode.params,!!this.parseTreeNode.isMacroDefinition);\n\t// Construct the child widgets\n\tthis.makeChildWidgets();\n};\n\n/*\nGet the value to be assigned\n*/\nSetWidget.prototype.getValue = function() {\n\tvar value = this.setValue;\n\tif(this.setTiddler) {\n\t\tvar tiddler;\n\t\tif(this.setSubTiddler) {\n\t\t\ttiddler = this.wiki.getSubTiddler(this.setTiddler,this.setSubTiddler);\n\t\t} else {\n\t\t\ttiddler = this.wiki.getTiddler(this.setTiddler);\t\t\t\n\t\t}\n\t\tif(!tiddler) {\n\t\t\tvalue = this.setEmptyValue;\n\t\t} else if(this.setField) {\n\t\t\tvalue = tiddler.getFieldString(this.setField) || this.setEmptyValue;\n\t\t} else if(this.setIndex) {\n\t\t\tvalue = this.wiki.extractTiddlerDataItem(this.setTiddler,this.setIndex,this.setEmptyValue);\n\t\t} else {\n\t\t\tvalue = tiddler.fields.text || this.setEmptyValue ;\n\t\t}\n\t} else if(this.setFilter) {\n\t\tvar results = this.wiki.filterTiddlers(this.setFilter,this);\n\t\tif(this.setValue == null) {\n\t\t\tvar select;\n\t\t\tif(this.setSelect) {\n\t\t\t\tselect = parseInt(this.setSelect,10);\n\t\t\t}\n\t\t\tif(select !== undefined) {\n\t\t\t\tvalue = results[select] || \"\";\n\t\t\t} else {\n\t\t\t\tvalue = $tw.utils.stringifyList(results);\t\t\t\n\t\t\t}\n\t\t}\n\t\tif(results.length === 0 && this.setEmptyValue !== undefined) {\n\t\t\tvalue = this.setEmptyValue;\n\t\t}\n\t} else if(!value && this.setEmptyValue) {\n\t\tvalue = this.setEmptyValue;\n\t}\n\treturn value || \"\";\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nSetWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif(changedAttributes.name || changedAttributes.filter || changedAttributes.select || changedAttributes.tiddler || (this.setTiddler && changedTiddlers[this.setTiddler]) || changedAttributes.field || changedAttributes.index || changedAttributes.value || changedAttributes.emptyValue ||\n\t (this.setFilter && this.getValue() != this.variables[this.setName].value)) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t} else {\n\t\treturn this.refreshChildren(changedTiddlers);\n\t}\n};\n\nexports.setvariable = SetWidget;\nexports.set = SetWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/text.js": {
"title": "$:/core/modules/widgets/text.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/text.js\ntype: application/javascript\nmodule-type: widget\n\nText node widget\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar TextNodeWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nTextNodeWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nTextNodeWidget.prototype.render = function(parent,nextSibling) {\n\tthis.parentDomNode = parent;\n\tthis.computeAttributes();\n\tthis.execute();\n\tvar text = this.getAttribute(\"text\",this.parseTreeNode.text || \"\");\n\ttext = text.replace(/\\r/mg,\"\");\n\tvar textNode = this.document.createTextNode(text);\n\tparent.insertBefore(textNode,nextSibling);\n\tthis.domNodes.push(textNode);\n};\n\n/*\nCompute the internal state of the widget\n*/\nTextNodeWidget.prototype.execute = function() {\n\t// Nothing to do for a text node\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nTextNodeWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif(changedAttributes.text) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t} else {\n\t\treturn false;\t\n\t}\n};\n\nexports.text = TextNodeWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/tiddler.js": {
"title": "$:/core/modules/widgets/tiddler.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/tiddler.js\ntype: application/javascript\nmodule-type: widget\n\nTiddler widget\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar TiddlerWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nTiddlerWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nTiddlerWidget.prototype.render = function(parent,nextSibling) {\n\tthis.parentDomNode = parent;\n\tthis.computeAttributes();\n\tthis.execute();\n\tthis.renderChildren(parent,nextSibling);\n};\n\n/*\nCompute the internal state of the widget\n*/\nTiddlerWidget.prototype.execute = function() {\n\tthis.tiddlerState = this.computeTiddlerState();\n\tthis.setVariable(\"currentTiddler\",this.tiddlerState.currentTiddler);\n\tthis.setVariable(\"missingTiddlerClass\",this.tiddlerState.missingTiddlerClass);\n\tthis.setVariable(\"shadowTiddlerClass\",this.tiddlerState.shadowTiddlerClass);\n\tthis.setVariable(\"systemTiddlerClass\",this.tiddlerState.systemTiddlerClass);\n\tthis.setVariable(\"tiddlerTagClasses\",this.tiddlerState.tiddlerTagClasses);\n\t// Construct the child widgets\n\tthis.makeChildWidgets();\n};\n\n/*\nCompute the tiddler state flags\n*/\nTiddlerWidget.prototype.computeTiddlerState = function() {\n\t// Get our parameters\n\tthis.tiddlerTitle = this.getAttribute(\"tiddler\",this.getVariable(\"currentTiddler\"));\n\t// Compute the state\n\tvar state = {\n\t\tcurrentTiddler: this.tiddlerTitle || \"\",\n\t\tmissingTiddlerClass: (this.wiki.tiddlerExists(this.tiddlerTitle) || this.wiki.isShadowTiddler(this.tiddlerTitle)) ? \"tc-tiddler-exists\" : \"tc-tiddler-missing\",\n\t\tshadowTiddlerClass: this.wiki.isShadowTiddler(this.tiddlerTitle) ? \"tc-tiddler-shadow\" : \"\",\n\t\tsystemTiddlerClass: this.wiki.isSystemTiddler(this.tiddlerTitle) ? \"tc-tiddler-system\" : \"\",\n\t\ttiddlerTagClasses: this.getTagClasses()\n\t};\n\t// Compute a simple hash to make it easier to detect changes\n\tstate.hash = state.currentTiddler + state.missingTiddlerClass + state.shadowTiddlerClass + state.systemTiddlerClass + state.tiddlerTagClasses;\n\treturn state;\n};\n\n/*\nCreate a string of CSS classes derived from the tags of the current tiddler\n*/\nTiddlerWidget.prototype.getTagClasses = function() {\n\tvar tiddler = this.wiki.getTiddler(this.tiddlerTitle);\n\tif(tiddler) {\n\t\tvar tags = [];\n\t\t$tw.utils.each(tiddler.fields.tags,function(tag) {\n\t\t\ttags.push(\"tc-tagged-\" + encodeURIComponent(tag));\n\t\t});\n\t\treturn tags.join(\" \");\n\t} else {\n\t\treturn \"\";\n\t}\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nTiddlerWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes(),\n\t\tnewTiddlerState = this.computeTiddlerState();\n\tif(changedAttributes.tiddler || newTiddlerState.hash !== this.tiddlerState.hash) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t} else {\n\t\treturn this.refreshChildren(changedTiddlers);\t\t\n\t}\n};\n\nexports.tiddler = TiddlerWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/transclude.js": {
"title": "$:/core/modules/widgets/transclude.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/transclude.js\ntype: application/javascript\nmodule-type: widget\n\nTransclude widget\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar TranscludeWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nTranscludeWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nTranscludeWidget.prototype.render = function(parent,nextSibling) {\n\tthis.parentDomNode = parent;\n\tthis.computeAttributes();\n\tthis.execute();\n\tthis.renderChildren(parent,nextSibling);\n};\n\n/*\nCompute the internal state of the widget\n*/\nTranscludeWidget.prototype.execute = function() {\n\t// Get our parameters\n\tthis.transcludeTitle = this.getAttribute(\"tiddler\",this.getVariable(\"currentTiddler\"));\n\tthis.transcludeSubTiddler = this.getAttribute(\"subtiddler\");\n\tthis.transcludeField = this.getAttribute(\"field\");\n\tthis.transcludeIndex = this.getAttribute(\"index\");\n\tthis.transcludeMode = this.getAttribute(\"mode\");\n\tthis.recursionMarker = this.getAttribute(\"recursionMarker\",\"yes\");\n\t// Parse the text reference\n\tvar parseAsInline = !this.parseTreeNode.isBlock;\n\tif(this.transcludeMode === \"inline\") {\n\t\tparseAsInline = true;\n\t} else if(this.transcludeMode === \"block\") {\n\t\tparseAsInline = false;\n\t}\n\tvar parser = this.wiki.parseTextReference(\n\t\t\t\t\t\tthis.transcludeTitle,\n\t\t\t\t\t\tthis.transcludeField,\n\t\t\t\t\t\tthis.transcludeIndex,\n\t\t\t\t\t\t{\n\t\t\t\t\t\t\tparseAsInline: parseAsInline,\n\t\t\t\t\t\t\tsubTiddler: this.transcludeSubTiddler\n\t\t\t\t\t\t}),\n\t\tparseTreeNodes = parser ? parser.tree : this.parseTreeNode.children;\n\t// Set context variables for recursion detection\n\tvar recursionMarker = this.makeRecursionMarker();\n\tif(this.recursionMarker === \"yes\") {\n\t\tthis.setVariable(\"transclusion\",recursionMarker);\n\t}\n\t// Check for recursion\n\tif(parser) {\n\t\tif(this.parentWidget && this.parentWidget.hasVariable(\"transclusion\",recursionMarker)) {\n\t\t\tparseTreeNodes = [{type: \"element\", tag: \"span\", attributes: {\n\t\t\t\t\"class\": {type: \"string\", value: \"tc-error\"}\n\t\t\t}, children: [\n\t\t\t\t{type: \"text\", text: $tw.language.getString(\"Error/RecursiveTransclusion\")}\n\t\t\t]}];\n\t\t}\n\t}\n\t// Construct the child widgets\n\tthis.makeChildWidgets(parseTreeNodes);\n};\n\n/*\nCompose a string comprising the title, field and/or index to identify this transclusion for recursion detection\n*/\nTranscludeWidget.prototype.makeRecursionMarker = function() {\n\tvar output = [];\n\toutput.push(\"{\");\n\toutput.push(this.getVariable(\"currentTiddler\",{defaultValue: \"\"}));\n\toutput.push(\"|\");\n\toutput.push(this.transcludeTitle || \"\");\n\toutput.push(\"|\");\n\toutput.push(this.transcludeField || \"\");\n\toutput.push(\"|\");\n\toutput.push(this.transcludeIndex || \"\");\n\toutput.push(\"|\");\n\toutput.push(this.transcludeSubTiddler || \"\");\n\toutput.push(\"}\");\n\treturn output.join(\"\");\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nTranscludeWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif(changedAttributes.tiddler || changedAttributes.field || changedAttributes.index || changedTiddlers[this.transcludeTitle]) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t} else {\n\t\treturn this.refreshChildren(changedTiddlers);\t\t\n\t}\n};\n\nexports.transclude = TranscludeWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/vars.js": {
"title": "$:/core/modules/widgets/vars.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/vars.js\ntype: application/javascript\nmodule-type: widget\n\nThis widget allows multiple variables to be set in one go:\n\n```\n\\define helloworld() Hello world!\n<$vars greeting=\"Hi\" me={{!!title}} sentence=<<helloworld>>>\n <<greeting>>! I am <<me>> and I say: <<sentence>>\n</$vars>\n```\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar VarsWidget = function(parseTreeNode,options) {\n\t// Call the constructor\n\tWidget.call(this);\n\t// Initialise\t\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nVarsWidget.prototype = Object.create(Widget.prototype);\n\n/*\nRender this widget into the DOM\n*/\nVarsWidget.prototype.render = function(parent,nextSibling) {\n\tthis.parentDomNode = parent;\n\tthis.computeAttributes();\n\tthis.execute();\n\tthis.renderChildren(parent,nextSibling);\n};\n\n/*\nCompute the internal state of the widget\n*/\nVarsWidget.prototype.execute = function() {\n\t// Parse variables\n\tvar self = this;\n\t$tw.utils.each(this.attributes,function(val,key) {\n\t\tif(key.charAt(0) !== \"$\") {\n\t\t\tself.setVariable(key,val);\n\t\t}\n\t});\n\t// Construct the child widgets\n\tthis.makeChildWidgets();\n};\n\n/*\nRefresh the widget by ensuring our attributes are up to date\n*/\nVarsWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif(Object.keys(changedAttributes).length) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t}\n\treturn this.refreshChildren(changedTiddlers);\n};\n\nexports[\"vars\"] = VarsWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/view.js": {
"title": "$:/core/modules/widgets/view.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/view.js\ntype: application/javascript\nmodule-type: widget\n\nView widget\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar ViewWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nViewWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nViewWidget.prototype.render = function(parent,nextSibling) {\n\tthis.parentDomNode = parent;\n\tthis.computeAttributes();\n\tthis.execute();\n\tif(this.text) {\n\t\tvar textNode = this.document.createTextNode(this.text);\n\t\tparent.insertBefore(textNode,nextSibling);\n\t\tthis.domNodes.push(textNode);\n\t} else {\n\t\tthis.makeChildWidgets();\n\t\tthis.renderChildren(parent,nextSibling);\n\t}\n};\n\n/*\nCompute the internal state of the widget\n*/\nViewWidget.prototype.execute = function() {\n\t// Get parameters from our attributes\n\tthis.viewTitle = this.getAttribute(\"tiddler\",this.getVariable(\"currentTiddler\"));\n\tthis.viewSubtiddler = this.getAttribute(\"subtiddler\");\n\tthis.viewField = this.getAttribute(\"field\",\"text\");\n\tthis.viewIndex = this.getAttribute(\"index\");\n\tthis.viewFormat = this.getAttribute(\"format\",\"text\");\n\tthis.viewTemplate = this.getAttribute(\"template\",\"\");\n\tthis.viewMode = this.getAttribute(\"mode\",\"block\");\n\tswitch(this.viewFormat) {\n\t\tcase \"htmlwikified\":\n\t\t\tthis.text = this.getValueAsHtmlWikified(this.viewMode);\n\t\t\tbreak;\n\t\tcase \"plainwikified\":\n\t\t\tthis.text = this.getValueAsPlainWikified(this.viewMode);\n\t\t\tbreak;\n\t\tcase \"htmlencodedplainwikified\":\n\t\t\tthis.text = this.getValueAsHtmlEncodedPlainWikified(this.viewMode);\n\t\t\tbreak;\n\t\tcase \"htmlencoded\":\n\t\t\tthis.text = this.getValueAsHtmlEncoded();\n\t\t\tbreak;\n\t\tcase \"urlencoded\":\n\t\t\tthis.text = this.getValueAsUrlEncoded();\n\t\t\tbreak;\n\t\tcase \"doubleurlencoded\":\n\t\t\tthis.text = this.getValueAsDoubleUrlEncoded();\n\t\t\tbreak;\n\t\tcase \"date\":\n\t\t\tthis.text = this.getValueAsDate(this.viewTemplate);\n\t\t\tbreak;\n\t\tcase \"relativedate\":\n\t\t\tthis.text = this.getValueAsRelativeDate();\n\t\t\tbreak;\n\t\tcase \"stripcomments\":\n\t\t\tthis.text = this.getValueAsStrippedComments();\n\t\t\tbreak;\n\t\tcase \"jsencoded\":\n\t\t\tthis.text = this.getValueAsJsEncoded();\n\t\t\tbreak;\n\t\tdefault: // \"text\"\n\t\t\tthis.text = this.getValueAsText();\n\t\t\tbreak;\n\t}\n};\n\n/*\nThe various formatter functions are baked into this widget for the moment. Eventually they will be replaced by macro functions\n*/\n\n/*\nRetrieve the value of the widget. Options are:\nasString: Optionally return the value as a string\n*/\nViewWidget.prototype.getValue = function(options) {\n\toptions = options || {};\n\tvar value = options.asString ? \"\" : undefined;\n\tif(this.viewIndex) {\n\t\tvalue = this.wiki.extractTiddlerDataItem(this.viewTitle,this.viewIndex);\n\t} else {\n\t\tvar tiddler;\n\t\tif(this.viewSubtiddler) {\n\t\t\ttiddler = this.wiki.getSubTiddler(this.viewTitle,this.viewSubtiddler);\t\n\t\t} else {\n\t\t\ttiddler = this.wiki.getTiddler(this.viewTitle);\n\t\t}\n\t\tif(tiddler) {\n\t\t\tif(this.viewField === \"text\" && !this.viewSubtiddler) {\n\t\t\t\t// Calling getTiddlerText() triggers lazy loading of skinny tiddlers\n\t\t\t\tvalue = this.wiki.getTiddlerText(this.viewTitle);\n\t\t\t} else {\n\t\t\t\tif($tw.utils.hop(tiddler.fields,this.viewField)) {\n\t\t\t\t\tif(options.asString) {\n\t\t\t\t\t\tvalue = tiddler.getFieldString(this.viewField);\n\t\t\t\t\t} else {\n\t\t\t\t\t\tvalue = tiddler.fields[this.viewField];\t\t\t\t\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t} else {\n\t\t\tif(this.viewField === \"title\") {\n\t\t\t\tvalue = this.viewTitle;\n\t\t\t}\n\t\t}\n\t}\n\treturn value;\n};\n\nViewWidget.prototype.getValueAsText = function() {\n\treturn this.getValue({asString: true});\n};\n\nViewWidget.prototype.getValueAsHtmlWikified = function(mode) {\n\treturn this.wiki.renderText(\"text/html\",\"text/vnd.tiddlywiki\",this.getValueAsText(),{\n\t\tparseAsInline: mode !== \"block\",\n\t\tparentWidget: this\n\t});\n};\n\nViewWidget.prototype.getValueAsPlainWikified = function(mode) {\n\treturn this.wiki.renderText(\"text/plain\",\"text/vnd.tiddlywiki\",this.getValueAsText(),{\n\t\tparseAsInline: mode !== \"block\",\n\t\tparentWidget: this\n\t});\n};\n\nViewWidget.prototype.getValueAsHtmlEncodedPlainWikified = function(mode) {\n\treturn $tw.utils.htmlEncode(this.wiki.renderText(\"text/plain\",\"text/vnd.tiddlywiki\",this.getValueAsText(),{\n\t\tparseAsInline: mode !== \"block\",\n\t\tparentWidget: this\n\t}));\n};\n\nViewWidget.prototype.getValueAsHtmlEncoded = function() {\n\treturn $tw.utils.htmlEncode(this.getValueAsText());\n};\n\nViewWidget.prototype.getValueAsUrlEncoded = function() {\n\treturn encodeURIComponent(this.getValueAsText());\n};\n\nViewWidget.prototype.getValueAsDoubleUrlEncoded = function() {\n\treturn encodeURIComponent(encodeURIComponent(this.getValueAsText()));\n};\n\nViewWidget.prototype.getValueAsDate = function(format) {\n\tformat = format || \"YYYY MM DD 0hh:0mm\";\n\tvar value = $tw.utils.parseDate(this.getValue());\n\tif(value && $tw.utils.isDate(value) && value.toString() !== \"Invalid Date\") {\n\t\treturn $tw.utils.formatDateString(value,format);\n\t} else {\n\t\treturn \"\";\n\t}\n};\n\nViewWidget.prototype.getValueAsRelativeDate = function(format) {\n\tvar value = $tw.utils.parseDate(this.getValue());\n\tif(value && $tw.utils.isDate(value) && value.toString() !== \"Invalid Date\") {\n\t\treturn $tw.utils.getRelativeDate((new Date()) - (new Date(value))).description;\n\t} else {\n\t\treturn \"\";\n\t}\n};\n\nViewWidget.prototype.getValueAsStrippedComments = function() {\n\tvar lines = this.getValueAsText().split(\"\\n\"),\n\t\tout = [];\n\tfor(var line=0; line<lines.length; line++) {\n\t\tvar text = lines[line];\n\t\tif(!/^\\s*\\/\\/#/.test(text)) {\n\t\t\tout.push(text);\n\t\t}\n\t}\n\treturn out.join(\"\\n\");\n};\n\nViewWidget.prototype.getValueAsJsEncoded = function() {\n\treturn $tw.utils.stringify(this.getValueAsText());\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nViewWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif(changedAttributes.tiddler || changedAttributes.field || changedAttributes.index || changedAttributes.template || changedAttributes.format || changedTiddlers[this.viewTitle]) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t} else {\n\t\treturn false;\t\n\t}\n};\n\nexports.view = ViewWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/widget.js": {
"title": "$:/core/modules/widgets/widget.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/widget.js\ntype: application/javascript\nmodule-type: widget\n\nWidget base class\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nCreate a widget object for a parse tree node\n\tparseTreeNode: reference to the parse tree node to be rendered\n\toptions: see below\nOptions include:\n\twiki: mandatory reference to wiki associated with this render tree\n\tparentWidget: optional reference to a parent renderer node for the context chain\n\tdocument: optional document object to use instead of global document\n*/\nvar Widget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInitialise widget properties. These steps are pulled out of the constructor so that we can reuse them in subclasses\n*/\nWidget.prototype.initialise = function(parseTreeNode,options) {\n\t// Bail if parseTreeNode is undefined, meaning that the widget constructor was called without any arguments so that it can be subclassed\n\tif(parseTreeNode === undefined) {\n\t\treturn;\n\t}\n\toptions = options || {};\n\t// Save widget info\n\tthis.parseTreeNode = parseTreeNode;\n\tthis.wiki = options.wiki;\n\tthis.parentWidget = options.parentWidget;\n\tthis.variablesConstructor = function() {};\n\tthis.variablesConstructor.prototype = this.parentWidget ? this.parentWidget.variables : {};\n\tthis.variables = new this.variablesConstructor();\n\tthis.document = options.document;\n\tthis.attributes = {};\n\tthis.children = [];\n\tthis.domNodes = [];\n\tthis.eventListeners = {};\n\t// Hashmap of the widget classes\n\tif(!this.widgetClasses) {\n\t\t// Get widget classes\n\t\tWidget.prototype.widgetClasses = $tw.modules.applyMethods(\"widget\");\n\t\t// Process any subclasses\n\t\t$tw.modules.forEachModuleOfType(\"widget-subclass\",function(title,module) {\n\t\t\tif(module.baseClass) {\n\t\t\t\tvar baseClass = Widget.prototype.widgetClasses[module.baseClass];\n\t\t\t\tif(!baseClass) {\n\t\t\t\t\tthrow \"Module '\" + title + \"' is attemping to extend a non-existent base class '\" + module.baseClass + \"'\";\n\t\t\t\t}\n\t\t\t\tvar subClass = module.constructor;\n\t\t\t\tsubClass.prototype = new baseClass();\n\t\t\t\t$tw.utils.extend(subClass.prototype,module.prototype);\n\t\t\t\tWidget.prototype.widgetClasses[module.name || module.baseClass] = subClass;\n\t\t\t}\n\t\t});\n\t}\n};\n\n/*\nRender this widget into the DOM\n*/\nWidget.prototype.render = function(parent,nextSibling) {\n\tthis.parentDomNode = parent;\n\tthis.execute();\n\tthis.renderChildren(parent,nextSibling);\n};\n\n/*\nCompute the internal state of the widget\n*/\nWidget.prototype.execute = function() {\n\tthis.makeChildWidgets();\n};\n\n/*\nSet the value of a context variable\nname: name of the variable\nvalue: value of the variable\nparams: array of {name:, default:} for each parameter\nisMacroDefinition: true if the variable is set via a \\define macro pragma (and hence should have variable substitution performed)\n*/\nWidget.prototype.setVariable = function(name,value,params,isMacroDefinition) {\n\tthis.variables[name] = {value: value, params: params, isMacroDefinition: !!isMacroDefinition};\n};\n\n/*\nGet the prevailing value of a context variable\nname: name of variable\noptions: see below\nOptions include\nparams: array of {name:, value:} for each parameter\ndefaultValue: default value if the variable is not defined\n\nReturns an object with the following fields:\n\nparams: array of {name:,value:} of parameters passed to wikitext variables\ntext: text of variable, with parameters properly substituted\n*/\nWidget.prototype.getVariableInfo = function(name,options) {\n\toptions = options || {};\n\tvar actualParams = options.params || [],\n\t\tparentWidget = this.parentWidget;\n\t// Check for the variable defined in the parent widget (or an ancestor in the prototype chain)\n\tif(parentWidget && name in parentWidget.variables) {\n\t\tvar variable = parentWidget.variables[name],\n\t\t\toriginalValue = variable.value,\n\t\t\tvalue = originalValue,\n\t\t\tparams = this.resolveVariableParameters(variable.params,actualParams);\n\t\t// Substitute any parameters specified in the definition\n\t\t$tw.utils.each(params,function(param) {\n\t\t\tvalue = $tw.utils.replaceString(value,new RegExp(\"\\\\$\" + $tw.utils.escapeRegExp(param.name) + \"\\\\$\",\"mg\"),param.value);\n\t\t});\n\t\t// Only substitute variable references if this variable was defined with the \\define pragma\n\t\tif(variable.isMacroDefinition) {\n\t\t\tvalue = this.substituteVariableReferences(value);\t\t\t\n\t\t}\n\t\treturn {\n\t\t\ttext: value,\n\t\t\tparams: params,\n\t\t\tsrcVariable: variable,\n\t\t\tisCacheable: originalValue === value\n\t\t};\n\t}\n\t// If the variable doesn't exist in the parent widget then look for a macro module\n\treturn {\n\t\ttext: this.evaluateMacroModule(name,actualParams,options.defaultValue)\n\t};\n};\n\n/*\nSimplified version of getVariableInfo() that just returns the text\n*/\nWidget.prototype.getVariable = function(name,options) {\n\treturn this.getVariableInfo(name,options).text;\n};\n\nWidget.prototype.resolveVariableParameters = function(formalParams,actualParams) {\n\tformalParams = formalParams || [];\n\tactualParams = actualParams || [];\n\tvar nextAnonParameter = 0, // Next candidate anonymous parameter in macro call\n\t\tparamInfo, paramValue,\n\t\tresults = [];\n\t// Step through each of the parameters in the macro definition\n\tfor(var p=0; p<formalParams.length; p++) {\n\t\t// Check if we've got a macro call parameter with the same name\n\t\tparamInfo = formalParams[p];\n\t\tparamValue = undefined;\n\t\tfor(var m=0; m<actualParams.length; m++) {\n\t\t\tif(actualParams[m].name === paramInfo.name) {\n\t\t\t\tparamValue = actualParams[m].value;\n\t\t\t}\n\t\t}\n\t\t// If not, use the next available anonymous macro call parameter\n\t\twhile(nextAnonParameter < actualParams.length && actualParams[nextAnonParameter].name) {\n\t\t\tnextAnonParameter++;\n\t\t}\n\t\tif(paramValue === undefined && nextAnonParameter < actualParams.length) {\n\t\t\tparamValue = actualParams[nextAnonParameter++].value;\n\t\t}\n\t\t// If we've still not got a value, use the default, if any\n\t\tparamValue = paramValue || paramInfo[\"default\"] || \"\";\n\t\t// Store the parameter name and value\n\t\tresults.push({name: paramInfo.name, value: paramValue});\n\t}\n\treturn results;\n};\n\nWidget.prototype.substituteVariableReferences = function(text) {\n\tvar self = this;\n\treturn (text || \"\").replace(/\\$\\(([^\\)\\$]+)\\)\\$/g,function(match,p1,offset,string) {\n\t\treturn self.getVariable(p1,{defaultValue: \"\"});\n\t});\n};\n\nWidget.prototype.evaluateMacroModule = function(name,actualParams,defaultValue) {\n\tif($tw.utils.hop($tw.macros,name)) {\n\t\tvar macro = $tw.macros[name],\n\t\t\targs = [];\n\t\tif(macro.params.length > 0) {\n\t\t\tvar nextAnonParameter = 0, // Next candidate anonymous parameter in macro call\n\t\t\t\tparamInfo, paramValue;\n\t\t\t// Step through each of the parameters in the macro definition\n\t\t\tfor(var p=0; p<macro.params.length; p++) {\n\t\t\t\t// Check if we've got a macro call parameter with the same name\n\t\t\t\tparamInfo = macro.params[p];\n\t\t\t\tparamValue = undefined;\n\t\t\t\tfor(var m=0; m<actualParams.length; m++) {\n\t\t\t\t\tif(actualParams[m].name === paramInfo.name) {\n\t\t\t\t\t\tparamValue = actualParams[m].value;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\t// If not, use the next available anonymous macro call parameter\n\t\t\t\twhile(nextAnonParameter < actualParams.length && actualParams[nextAnonParameter].name) {\n\t\t\t\t\tnextAnonParameter++;\n\t\t\t\t}\n\t\t\t\tif(paramValue === undefined && nextAnonParameter < actualParams.length) {\n\t\t\t\t\tparamValue = actualParams[nextAnonParameter++].value;\n\t\t\t\t}\n\t\t\t\t// If we've still not got a value, use the default, if any\n\t\t\t\tparamValue = paramValue || paramInfo[\"default\"] || \"\";\n\t\t\t\t// Save the parameter\n\t\t\t\targs.push(paramValue);\n\t\t\t}\n\t\t}\n\t\telse for(var i=0; i<actualParams.length; ++i) {\n\t\t\targs.push(actualParams[i].value);\n\t\t}\n\t\treturn (macro.run.apply(this,args) || \"\").toString();\n\t} else {\n\t\treturn defaultValue;\n\t}\n};\n\n/*\nCheck whether a given context variable value exists in the parent chain\n*/\nWidget.prototype.hasVariable = function(name,value) {\n\tvar node = this;\n\twhile(node) {\n\t\tif($tw.utils.hop(node.variables,name) && node.variables[name].value === value) {\n\t\t\treturn true;\n\t\t}\n\t\tnode = node.parentWidget;\n\t}\n\treturn false;\n};\n\n/*\nConstruct a qualifying string based on a hash of concatenating the values of a given variable in the parent chain\n*/\nWidget.prototype.getStateQualifier = function(name) {\n\tthis.qualifiers = this.qualifiers || Object.create(null);\n\tname = name || \"transclusion\";\n\tif(this.qualifiers[name]) {\n\t\treturn this.qualifiers[name];\n\t} else {\n\t\tvar output = [],\n\t\t\tnode = this;\n\t\twhile(node && node.parentWidget) {\n\t\t\tif($tw.utils.hop(node.parentWidget.variables,name)) {\n\t\t\t\toutput.push(node.getVariable(name));\n\t\t\t}\n\t\t\tnode = node.parentWidget;\n\t\t}\n\t\tvar value = $tw.utils.hashString(output.join(\"\"));\n\t\tthis.qualifiers[name] = value;\n\t\treturn value;\n\t}\n};\n\n/*\nCompute the current values of the attributes of the widget. Returns a hashmap of the names of the attributes that have changed\n*/\nWidget.prototype.computeAttributes = function() {\n\tvar changedAttributes = {},\n\t\tself = this,\n\t\tvalue;\n\t$tw.utils.each(this.parseTreeNode.attributes,function(attribute,name) {\n\t\tif(attribute.type === \"filtered\") {\n\t\t\tvalue = self.wiki.filterTiddlers(attribute.filter,self)[0] || \"\";\n\t\t} else if(attribute.type === \"indirect\") {\n\t\t\tvalue = self.wiki.getTextReference(attribute.textReference,\"\",self.getVariable(\"currentTiddler\"));\n\t\t} else if(attribute.type === \"macro\") {\n\t\t\tvalue = self.getVariable(attribute.value.name,{params: attribute.value.params});\n\t\t} else { // String attribute\n\t\t\tvalue = attribute.value;\n\t\t}\n\t\t// Check whether the attribute has changed\n\t\tif(self.attributes[name] !== value) {\n\t\t\tself.attributes[name] = value;\n\t\t\tchangedAttributes[name] = true;\n\t\t}\n\t});\n\treturn changedAttributes;\n};\n\n/*\nCheck for the presence of an attribute\n*/\nWidget.prototype.hasAttribute = function(name) {\n\treturn $tw.utils.hop(this.attributes,name);\n};\n\n/*\nGet the value of an attribute\n*/\nWidget.prototype.getAttribute = function(name,defaultText) {\n\tif($tw.utils.hop(this.attributes,name)) {\n\t\treturn this.attributes[name];\n\t} else {\n\t\treturn defaultText;\n\t}\n};\n\n/*\nAssign the computed attributes of the widget to a domNode\noptions include:\nexcludeEventAttributes: ignores attributes whose name begins with \"on\"\n*/\nWidget.prototype.assignAttributes = function(domNode,options) {\n\toptions = options || {};\n\tvar self = this;\n\t$tw.utils.each(this.attributes,function(v,a) {\n\t\t// Check exclusions\n\t\tif(options.excludeEventAttributes && a.substr(0,2) === \"on\") {\n\t\t\tv = undefined;\n\t\t}\n\t\tif(v !== undefined) {\n\t\t\tvar b = a.split(\":\");\n\t\t\t// Setting certain attributes can cause a DOM error (eg xmlns on the svg element)\n\t\t\ttry {\n\t\t\t\tif (b.length == 2 && b[0] == \"xlink\"){\n\t\t\t\t\tdomNode.setAttributeNS(\"http://www.w3.org/1999/xlink\",b[1],v);\n\t\t\t\t} else {\n\t\t\t\t\tdomNode.setAttributeNS(null,a,v);\n\t\t\t\t}\n\t\t\t} catch(e) {\n\t\t\t}\n\t\t}\n\t});\n};\n\n/*\nMake child widgets correspondng to specified parseTreeNodes\n*/\nWidget.prototype.makeChildWidgets = function(parseTreeNodes) {\n\tthis.children = [];\n\tvar self = this;\n\t$tw.utils.each(parseTreeNodes || (this.parseTreeNode && this.parseTreeNode.children),function(childNode) {\n\t\tself.children.push(self.makeChildWidget(childNode));\n\t});\n};\n\n/*\nConstruct the widget object for a parse tree node\n*/\nWidget.prototype.makeChildWidget = function(parseTreeNode) {\n\tvar WidgetClass = this.widgetClasses[parseTreeNode.type];\n\tif(!WidgetClass) {\n\t\tWidgetClass = this.widgetClasses.text;\n\t\tparseTreeNode = {type: \"text\", text: \"Undefined widget '\" + parseTreeNode.type + \"'\"};\n\t}\n\treturn new WidgetClass(parseTreeNode,{\n\t\twiki: this.wiki,\n\t\tvariables: {},\n\t\tparentWidget: this,\n\t\tdocument: this.document\n\t});\n};\n\n/*\nGet the next sibling of this widget\n*/\nWidget.prototype.nextSibling = function() {\n\tif(this.parentWidget) {\n\t\tvar index = this.parentWidget.children.indexOf(this);\n\t\tif(index !== -1 && index < this.parentWidget.children.length-1) {\n\t\t\treturn this.parentWidget.children[index+1];\n\t\t}\n\t}\n\treturn null;\n};\n\n/*\nGet the previous sibling of this widget\n*/\nWidget.prototype.previousSibling = function() {\n\tif(this.parentWidget) {\n\t\tvar index = this.parentWidget.children.indexOf(this);\n\t\tif(index !== -1 && index > 0) {\n\t\t\treturn this.parentWidget.children[index-1];\n\t\t}\n\t}\n\treturn null;\n};\n\n/*\nRender the children of this widget into the DOM\n*/\nWidget.prototype.renderChildren = function(parent,nextSibling) {\n\tvar children = this.children;\n\tfor(var i = 0; i < children.length; i++) {\n\t\tchildren[i].render(parent,nextSibling);\n\t};\n};\n\n/*\nAdd a list of event listeners from an array [{type:,handler:},...]\n*/\nWidget.prototype.addEventListeners = function(listeners) {\n\tvar self = this;\n\t$tw.utils.each(listeners,function(listenerInfo) {\n\t\tself.addEventListener(listenerInfo.type,listenerInfo.handler);\n\t});\n};\n\n/*\nAdd an event listener\n*/\nWidget.prototype.addEventListener = function(type,handler) {\n\tvar self = this;\n\tif(typeof handler === \"string\") { // The handler is a method name on this widget\n\t\tthis.eventListeners[type] = function(event) {\n\t\t\treturn self[handler].call(self,event);\n\t\t};\n\t} else { // The handler is a function\n\t\tthis.eventListeners[type] = function(event) {\n\t\t\treturn handler.call(self,event);\n\t\t};\n\t}\n};\n\n/*\nDispatch an event to a widget. If the widget doesn't handle the event then it is also dispatched to the parent widget\n*/\nWidget.prototype.dispatchEvent = function(event) {\n\tevent.widget = event.widget || this;\n\t// Dispatch the event if this widget handles it\n\tvar listener = this.eventListeners[event.type];\n\tif(listener) {\n\t\t// Don't propagate the event if the listener returned false\n\t\tif(!listener(event)) {\n\t\t\treturn false;\n\t\t}\n\t}\n\t// Dispatch the event to the parent widget\n\tif(this.parentWidget) {\n\t\treturn this.parentWidget.dispatchEvent(event);\n\t}\n\treturn true;\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nWidget.prototype.refresh = function(changedTiddlers) {\n\treturn this.refreshChildren(changedTiddlers);\n};\n\n/*\nRebuild a previously rendered widget\n*/\nWidget.prototype.refreshSelf = function() {\n\tvar nextSibling = this.findNextSiblingDomNode();\n\tthis.removeChildDomNodes();\n\tthis.render(this.parentDomNode,nextSibling);\n};\n\n/*\nRefresh all the children of a widget\n*/\nWidget.prototype.refreshChildren = function(changedTiddlers) {\n\tvar children = this.children,\n\t\trefreshed = false;\n\tfor (var i = 0; i < children.length; i++) {\n\t\trefreshed = children[i].refresh(changedTiddlers) || refreshed;\n\t}\n\treturn refreshed;\n};\n\n/*\nFind the next sibling in the DOM to this widget. This is done by scanning the widget tree through all next siblings and their descendents that share the same parent DOM node\n*/\nWidget.prototype.findNextSiblingDomNode = function(startIndex) {\n\t// Refer to this widget by its index within its parents children\n\tvar parent = this.parentWidget,\n\t\tindex = startIndex !== undefined ? startIndex : parent.children.indexOf(this);\nif(index === -1) {\n\tthrow \"node not found in parents children\";\n}\n\t// Look for a DOM node in the later siblings\n\twhile(++index < parent.children.length) {\n\t\tvar domNode = parent.children[index].findFirstDomNode();\n\t\tif(domNode) {\n\t\t\treturn domNode;\n\t\t}\n\t}\n\t// Go back and look for later siblings of our parent if it has the same parent dom node\n\tvar grandParent = parent.parentWidget;\n\tif(grandParent && parent.parentDomNode === this.parentDomNode) {\n\t\tindex = grandParent.children.indexOf(parent);\n\t\tif(index !== -1) {\n\t\t\treturn parent.findNextSiblingDomNode(index);\n\t\t}\n\t}\n\treturn null;\n};\n\n/*\nFind the first DOM node generated by a widget or its children\n*/\nWidget.prototype.findFirstDomNode = function() {\n\t// Return the first dom node of this widget, if we've got one\n\tif(this.domNodes.length > 0) {\n\t\treturn this.domNodes[0];\n\t}\n\t// Otherwise, recursively call our children\n\tfor(var t=0; t<this.children.length; t++) {\n\t\tvar domNode = this.children[t].findFirstDomNode();\n\t\tif(domNode) {\n\t\t\treturn domNode;\n\t\t}\n\t}\n\treturn null;\n};\n\n/*\nRemove any DOM nodes created by this widget or its children\n*/\nWidget.prototype.removeChildDomNodes = function() {\n\t// If this widget has directly created DOM nodes, delete them and exit. This assumes that any child widgets are contained within the created DOM nodes, which would normally be the case\n\tif(this.domNodes.length > 0) {\n\t\t$tw.utils.each(this.domNodes,function(domNode) {\n\t\t\tdomNode.parentNode.removeChild(domNode);\n\t\t});\n\t\tthis.domNodes = [];\n\t} else {\n\t\t// Otherwise, ask the child widgets to delete their DOM nodes\n\t\t$tw.utils.each(this.children,function(childWidget) {\n\t\t\tchildWidget.removeChildDomNodes();\n\t\t});\n\t}\n};\n\n/*\nInvoke the action widgets that are descendents of the current widget.\n*/\nWidget.prototype.invokeActions = function(triggeringWidget,event) {\n\tvar handled = false;\n\t// For each child widget\n\tfor(var t=0; t<this.children.length; t++) {\n\t\tvar child = this.children[t];\n\t\t// Invoke the child if it is an action widget\n\t\tif(child.invokeAction) {\n\t\t\tchild.refreshSelf();\n\t\t\tif(child.invokeAction(triggeringWidget,event)) {\n\t\t\t\thandled = true;\n\t\t\t}\n\t\t}\n\t\t// Propagate through through the child if it permits it\n\t\tif(child.allowActionPropagation() && child.invokeActions(triggeringWidget,event)) {\n\t\t\thandled = true;\n\t\t}\n\t}\n\treturn handled;\n};\n\n/*\nInvoke the action widgets defined in a string\n*/\nWidget.prototype.invokeActionString = function(actions,triggeringWidget,event,variables) {\n\tactions = actions || \"\";\n\tvar parser = this.wiki.parseText(\"text/vnd.tiddlywiki\",actions,{\n\t\t\tparentWidget: this,\n\t\t\tdocument: this.document\n\t\t}),\n\t\twidgetNode = this.wiki.makeWidget(parser,{\n\t\t\tparentWidget: this,\n\t\t\tdocument: this.document,\n\t\t\tvariables: variables\n\t\t});\n\tvar container = this.document.createElement(\"div\");\n\twidgetNode.render(container,null);\n\treturn widgetNode.invokeActions(this,event);\n};\n\n/*\nExecute action tiddlers by tag\n*/\nWidget.prototype.invokeActionsByTag = function(tag,event,variables) {\n\tvar self = this;\n\t$tw.utils.each(self.wiki.filterTiddlers(\"[all[shadows+tiddlers]tag[\" + tag + \"]!has[draft.of]]\"),function(title) {\n\t\tself.invokeActionString(self.wiki.getTiddlerText(title),self,event,variables);\n\t});\n};\n\nWidget.prototype.allowActionPropagation = function() {\n\treturn true;\n};\n\nexports.widget = Widget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/widgets/wikify.js": {
"title": "$:/core/modules/widgets/wikify.js",
"text": "/*\\\ntitle: $:/core/modules/widgets/wikify.js\ntype: application/javascript\nmodule-type: widget\n\nWidget to wikify text into a variable\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar Widget = require(\"$:/core/modules/widgets/widget.js\").widget;\n\nvar WikifyWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nWikifyWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nWikifyWidget.prototype.render = function(parent,nextSibling) {\n\tthis.parentDomNode = parent;\n\tthis.computeAttributes();\n\tthis.execute();\n\tthis.renderChildren(parent,nextSibling);\n};\n\n/*\nCompute the internal state of the widget\n*/\nWikifyWidget.prototype.execute = function() {\n\t// Get our parameters\n\tthis.wikifyName = this.getAttribute(\"name\");\n\tthis.wikifyText = this.getAttribute(\"text\");\n\tthis.wikifyType = this.getAttribute(\"type\");\n\tthis.wikifyMode = this.getAttribute(\"mode\",\"block\");\n\tthis.wikifyOutput = this.getAttribute(\"output\",\"text\");\n\t// Create the parse tree\n\tthis.wikifyParser = this.wiki.parseText(this.wikifyType,this.wikifyText,{\n\t\t\tparseAsInline: this.wikifyMode === \"inline\"\n\t\t});\n\t// Create the widget tree \n\tthis.wikifyWidgetNode = this.wiki.makeWidget(this.wikifyParser,{\n\t\t\tdocument: $tw.fakeDocument,\n\t\t\tparentWidget: this\n\t\t});\n\t// Render the widget tree to the container\n\tthis.wikifyContainer = $tw.fakeDocument.createElement(\"div\");\n\tthis.wikifyWidgetNode.render(this.wikifyContainer,null);\n\tthis.wikifyResult = this.getResult();\n\t// Set context variable\n\tthis.setVariable(this.wikifyName,this.wikifyResult);\n\t// Construct the child widgets\n\tthis.makeChildWidgets();\n};\n\n/*\nReturn the result string\n*/\nWikifyWidget.prototype.getResult = function() {\n\tvar result;\n\tswitch(this.wikifyOutput) {\n\t\tcase \"text\":\n\t\t\tresult = this.wikifyContainer.textContent;\n\t\t\tbreak;\n\t\tcase \"formattedtext\":\n\t\t\tresult = this.wikifyContainer.formattedTextContent;\n\t\t\tbreak;\n\t\tcase \"html\":\n\t\t\tresult = this.wikifyContainer.innerHTML;\n\t\t\tbreak;\n\t\tcase \"parsetree\":\n\t\t\tresult = JSON.stringify(this.wikifyParser.tree,0,$tw.config.preferences.jsonSpaces);\n\t\t\tbreak;\n\t\tcase \"widgettree\":\n\t\t\tresult = JSON.stringify(this.getWidgetTree(),0,$tw.config.preferences.jsonSpaces);\n\t\t\tbreak;\n\t}\n\treturn result;\n};\n\n/*\nReturn a string of the widget tree\n*/\nWikifyWidget.prototype.getWidgetTree = function() {\n\tvar copyNode = function(widgetNode,resultNode) {\n\t\t\tvar type = widgetNode.parseTreeNode.type;\n\t\t\tresultNode.type = type;\n\t\t\tswitch(type) {\n\t\t\t\tcase \"element\":\n\t\t\t\t\tresultNode.tag = widgetNode.parseTreeNode.tag;\n\t\t\t\t\tbreak;\n\t\t\t\tcase \"text\":\n\t\t\t\t\tresultNode.text = widgetNode.parseTreeNode.text;\n\t\t\t\t\tbreak;\t\n\t\t\t}\n\t\t\tif(Object.keys(widgetNode.attributes || {}).length > 0) {\n\t\t\t\tresultNode.attributes = {};\n\t\t\t\t$tw.utils.each(widgetNode.attributes,function(attr,attrName) {\n\t\t\t\t\tresultNode.attributes[attrName] = widgetNode.getAttribute(attrName);\n\t\t\t\t});\n\t\t\t}\n\t\t\tif(Object.keys(widgetNode.children || {}).length > 0) {\n\t\t\t\tresultNode.children = [];\n\t\t\t\t$tw.utils.each(widgetNode.children,function(widgetChildNode) {\n\t\t\t\t\tvar node = {};\n\t\t\t\t\tresultNode.children.push(node);\n\t\t\t\t\tcopyNode(widgetChildNode,node);\n\t\t\t\t});\n\t\t\t}\n\t\t},\n\t\tresults = {};\n\tcopyNode(this.wikifyWidgetNode,results);\n\treturn results;\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nWikifyWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\t// Refresh ourselves entirely if any of our attributes have changed\n\tif(changedAttributes.name || changedAttributes.text || changedAttributes.type || changedAttributes.mode || changedAttributes.output) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t} else {\n\t\t// Refresh the widget tree\n\t\tif(this.wikifyWidgetNode.refresh(changedTiddlers)) {\n\t\t\t// Check if there was any change\n\t\t\tvar result = this.getResult();\n\t\t\tif(result !== this.wikifyResult) {\n\t\t\t\t// If so, save the change\n\t\t\t\tthis.wikifyResult = result;\n\t\t\t\tthis.setVariable(this.wikifyName,this.wikifyResult);\n\t\t\t\t// Refresh each of our child widgets\n\t\t\t\t$tw.utils.each(this.children,function(childWidget) {\n\t\t\t\t\tchildWidget.refreshSelf();\n\t\t\t\t});\n\t\t\t\treturn true;\n\t\t\t}\n\t\t}\n\t\t// Just refresh the children\n\t\treturn this.refreshChildren(changedTiddlers);\n\t}\n};\n\nexports.wikify = WikifyWidget;\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/core/modules/wiki-bulkops.js": {
"title": "$:/core/modules/wiki-bulkops.js",
"text": "/*\\\ntitle: $:/core/modules/wiki-bulkops.js\ntype: application/javascript\nmodule-type: wikimethod\n\nBulk tiddler operations such as rename.\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\n/*\nRename a tiddler, and relink any tags or lists that reference it.\n*/\nfunction renameTiddler(fromTitle,toTitle,options) {\n\tfromTitle = (fromTitle || \"\").trim();\n\ttoTitle = (toTitle || \"\").trim();\n\toptions = options || {};\n\tif(fromTitle && toTitle && fromTitle !== toTitle) {\n\t\t// Rename the tiddler itself\n\t\tvar oldTiddler = this.getTiddler(fromTitle),\n\t\t\tnewTiddler = new $tw.Tiddler(oldTiddler,{title: toTitle},this.getModificationFields());\n\t\tnewTiddler = $tw.hooks.invokeHook(\"th-renaming-tiddler\",newTiddler,oldTiddler);\n\t\tthis.addTiddler(newTiddler);\n\t\tthis.deleteTiddler(fromTitle);\n\t\t// Rename any tags or lists that reference it\n\t\tthis.relinkTiddler(fromTitle,toTitle,options)\n\t}\n}\n\n/*\nRelink any tags or lists that reference a given tiddler\n*/\nfunction relinkTiddler(fromTitle,toTitle,options) {\n\tvar self = this;\n\tfromTitle = (fromTitle || \"\").trim();\n\ttoTitle = (toTitle || \"\").trim();\n\toptions = options || {};\n\tif(fromTitle && toTitle && fromTitle !== toTitle) {\n\t\tthis.each(function(tiddler,title) {\n\t\t\tvar type = tiddler.fields.type || \"\";\n\t\t\t// Don't touch plugins or JavaScript modules\n\t\t\tif(!tiddler.fields[\"plugin-type\"] && type !== \"application/javascript\") {\n\t\t\t\tvar tags = tiddler.fields.tags ? tiddler.fields.tags.slice(0) : undefined,\n\t\t\t\t\tlist = tiddler.fields.list ? tiddler.fields.list.slice(0) : undefined,\n\t\t\t\t\tisModified = false;\n\t\t\t\tif(!options.dontRenameInTags) {\n\t\t\t\t\t// Rename tags\n\t\t\t\t\t$tw.utils.each(tags,function (title,index) {\n\t\t\t\t\t\tif(title === fromTitle) {\nconsole.log(\"Renaming tag '\" + tags[index] + \"' to '\" + toTitle + \"' of tiddler '\" + tiddler.fields.title + \"'\");\n\t\t\t\t\t\t\ttags[index] = toTitle;\n\t\t\t\t\t\t\tisModified = true;\n\t\t\t\t\t\t}\n\t\t\t\t\t});\n\t\t\t\t}\n\t\t\t\tif(!options.dontRenameInLists) {\n\t\t\t\t\t// Rename lists\n\t\t\t\t\t$tw.utils.each(list,function (title,index) {\n\t\t\t\t\t\tif(title === fromTitle) {\nconsole.log(\"Renaming list item '\" + list[index] + \"' to '\" + toTitle + \"' of tiddler '\" + tiddler.fields.title + \"'\");\n\t\t\t\t\t\t\tlist[index] = toTitle;\n\t\t\t\t\t\t\tisModified = true;\n\t\t\t\t\t\t}\n\t\t\t\t\t});\n\t\t\t\t}\n\t\t\t\tif(isModified) {\n\t\t\t\t\tvar newTiddler = new $tw.Tiddler(tiddler,{tags: tags, list: list},self.getModificationFields())\n\t\t\t\t\tnewTiddler = $tw.hooks.invokeHook(\"th-relinking-tiddler\",newTiddler,tiddler);\n\t\t\t\t\tself.addTiddler(newTiddler);\n\t\t\t\t}\n\t\t\t}\n\t\t});\n\t}\n};\n\nexports.renameTiddler = renameTiddler;\nexports.relinkTiddler = relinkTiddler;\n\n})();\n",
"type": "application/javascript",
"module-type": "wikimethod"
},
"$:/core/modules/wiki.js": {
"title": "$:/core/modules/wiki.js",
"text": "/*\\\ntitle: $:/core/modules/wiki.js\ntype: application/javascript\nmodule-type: wikimethod\n\nExtension methods for the $tw.Wiki object\n\nAdds the following properties to the wiki object:\n\n* `eventListeners` is a hashmap by type of arrays of listener functions\n* `changedTiddlers` is a hashmap describing changes to named tiddlers since wiki change events were last dispatched. Each entry is a hashmap containing two fields:\n\tmodified: true/false\n\tdeleted: true/false\n* `changeCount` is a hashmap by tiddler title containing a numerical index that starts at zero and is incremented each time a tiddler is created changed or deleted\n* `caches` is a hashmap by tiddler title containing a further hashmap of named cache objects. Caches are automatically cleared when a tiddler is modified or deleted\n* `globalCache` is a hashmap by cache name of cache objects that are cleared whenever any tiddler change occurs\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar widget = require(\"$:/core/modules/widgets/widget.js\");\n\nvar USER_NAME_TITLE = \"$:/status/UserName\",\n\tTIMESTAMP_DISABLE_TITLE = \"$:/config/TimestampDisable\";\n\n/*\nAdd available indexers to this wiki\n*/\nexports.addIndexersToWiki = function() {\n\tvar self = this;\n\t$tw.utils.each($tw.modules.applyMethods(\"indexer\"),function(Indexer,name) {\n\t\tself.addIndexer(new Indexer(self),name);\n\t});\n};\n\n/*\nGet the value of a text reference. Text references can have any of these forms:\n\t<tiddlertitle>\n\t<tiddlertitle>!!<fieldname>\n\t!!<fieldname> - specifies a field of the current tiddlers\n\t<tiddlertitle>##<index>\n*/\nexports.getTextReference = function(textRef,defaultText,currTiddlerTitle) {\n\tvar tr = $tw.utils.parseTextReference(textRef),\n\t\ttitle = tr.title || currTiddlerTitle;\n\tif(tr.field) {\n\t\tvar tiddler = this.getTiddler(title);\n\t\tif(tr.field === \"title\") { // Special case so we can return the title of a non-existent tiddler\n\t\t\treturn title;\n\t\t} else if(tiddler && $tw.utils.hop(tiddler.fields,tr.field)) {\n\t\t\treturn tiddler.getFieldString(tr.field);\n\t\t} else {\n\t\t\treturn defaultText;\n\t\t}\n\t} else if(tr.index) {\n\t\treturn this.extractTiddlerDataItem(title,tr.index,defaultText);\n\t} else {\n\t\treturn this.getTiddlerText(title,defaultText);\n\t}\n};\n\nexports.setTextReference = function(textRef,value,currTiddlerTitle) {\n\tvar tr = $tw.utils.parseTextReference(textRef),\n\t\ttitle = tr.title || currTiddlerTitle;\n\tthis.setText(title,tr.field,tr.index,value);\n};\n\nexports.setText = function(title,field,index,value,options) {\n\toptions = options || {};\n\tvar creationFields = options.suppressTimestamp ? {} : this.getCreationFields(),\n\t\tmodificationFields = options.suppressTimestamp ? {} : this.getModificationFields();\n\t// Check if it is a reference to a tiddler field\n\tif(index) {\n\t\tvar data = this.getTiddlerData(title,Object.create(null));\n\t\tif(value !== undefined) {\n\t\t\tdata[index] = value;\n\t\t} else {\n\t\t\tdelete data[index];\n\t\t}\n\t\tthis.setTiddlerData(title,data,modificationFields);\n\t} else {\n\t\tvar tiddler = this.getTiddler(title),\n\t\t\tfields = {title: title};\n\t\tfields[field || \"text\"] = value;\n\t\tthis.addTiddler(new $tw.Tiddler(creationFields,tiddler,fields,modificationFields));\n\t}\n};\n\nexports.deleteTextReference = function(textRef,currTiddlerTitle) {\n\tvar tr = $tw.utils.parseTextReference(textRef),\n\t\ttitle,tiddler,fields;\n\t// Check if it is a reference to a tiddler\n\tif(tr.title && !tr.field) {\n\t\tthis.deleteTiddler(tr.title);\n\t// Else check for a field reference\n\t} else if(tr.field) {\n\t\ttitle = tr.title || currTiddlerTitle;\n\t\ttiddler = this.getTiddler(title);\n\t\tif(tiddler && $tw.utils.hop(tiddler.fields,tr.field)) {\n\t\t\tfields = Object.create(null);\n\t\t\tfields[tr.field] = undefined;\n\t\t\tthis.addTiddler(new $tw.Tiddler(tiddler,fields,this.getModificationFields()));\n\t\t}\n\t}\n};\n\nexports.addEventListener = function(type,listener) {\n\tthis.eventListeners = this.eventListeners || {};\n\tthis.eventListeners[type] = this.eventListeners[type] || [];\n\tthis.eventListeners[type].push(listener);\t\n};\n\nexports.removeEventListener = function(type,listener) {\n\tvar listeners = this.eventListeners[type];\n\tif(listeners) {\n\t\tvar p = listeners.indexOf(listener);\n\t\tif(p !== -1) {\n\t\t\tlisteners.splice(p,1);\n\t\t}\n\t}\n};\n\nexports.dispatchEvent = function(type /*, args */) {\n\tvar args = Array.prototype.slice.call(arguments,1),\n\t\tlisteners = this.eventListeners[type];\n\tif(listeners) {\n\t\tfor(var p=0; p<listeners.length; p++) {\n\t\t\tvar listener = listeners[p];\n\t\t\tlistener.apply(listener,args);\n\t\t}\n\t}\n};\n\n/*\nCauses a tiddler to be marked as changed, incrementing the change count, and triggers event handlers.\nThis method should be called after the changes it describes have been made to the wiki.tiddlers[] array.\n\ttitle: Title of tiddler\n\tisDeleted: defaults to false (meaning the tiddler has been created or modified),\n\t\ttrue if the tiddler has been deleted\n*/\nexports.enqueueTiddlerEvent = function(title,isDeleted) {\n\t// Record the touch in the list of changed tiddlers\n\tthis.changedTiddlers = this.changedTiddlers || Object.create(null);\n\tthis.changedTiddlers[title] = this.changedTiddlers[title] || Object.create(null);\n\tthis.changedTiddlers[title][isDeleted ? \"deleted\" : \"modified\"] = true;\n\t// Increment the change count\n\tthis.changeCount = this.changeCount || Object.create(null);\n\tif($tw.utils.hop(this.changeCount,title)) {\n\t\tthis.changeCount[title]++;\n\t} else {\n\t\tthis.changeCount[title] = 1;\n\t}\n\t// Trigger events\n\tthis.eventListeners = this.eventListeners || {};\n\tif(!this.eventsTriggered) {\n\t\tvar self = this;\n\t\t$tw.utils.nextTick(function() {\n\t\t\tvar changes = self.changedTiddlers;\n\t\t\tself.changedTiddlers = Object.create(null);\n\t\t\tself.eventsTriggered = false;\n\t\t\tif($tw.utils.count(changes) > 0) {\n\t\t\t\tself.dispatchEvent(\"change\",changes);\n\t\t\t}\n\t\t});\n\t\tthis.eventsTriggered = true;\n\t}\n};\n\nexports.getSizeOfTiddlerEventQueue = function() {\n\treturn $tw.utils.count(this.changedTiddlers);\n};\n\nexports.clearTiddlerEventQueue = function() {\n\tthis.changedTiddlers = Object.create(null);\n\tthis.changeCount = Object.create(null);\n};\n\nexports.getChangeCount = function(title) {\n\tthis.changeCount = this.changeCount || Object.create(null);\n\tif($tw.utils.hop(this.changeCount,title)) {\n\t\treturn this.changeCount[title];\n\t} else {\n\t\treturn 0;\n\t}\n};\n\n/*\nGenerate an unused title from the specified base\n*/\nexports.generateNewTitle = function(baseTitle,options) {\n\toptions = options || {};\n\tvar c = 0,\n\t\ttitle = baseTitle;\n\twhile(this.tiddlerExists(title) || this.isShadowTiddler(title) || this.findDraft(title)) {\n\t\ttitle = baseTitle + \n\t\t\t(options.prefix || \" \") + \n\t\t\t(++c);\n\t}\n\treturn title;\n};\n\nexports.isSystemTiddler = function(title) {\n\treturn title && title.indexOf(\"$:/\") === 0;\n};\n\nexports.isTemporaryTiddler = function(title) {\n\treturn title && title.indexOf(\"$:/temp/\") === 0;\n};\n\nexports.isImageTiddler = function(title) {\n\tvar tiddler = this.getTiddler(title);\n\tif(tiddler) {\t\t\n\t\tvar contentTypeInfo = $tw.config.contentTypeInfo[tiddler.fields.type || \"text/vnd.tiddlywiki\"];\n\t\treturn !!contentTypeInfo && contentTypeInfo.flags.indexOf(\"image\") !== -1;\n\t} else {\n\t\treturn null;\n\t}\n};\n\nexports.isBinaryTiddler = function(title) {\n\tvar tiddler = this.getTiddler(title);\n\tif(tiddler) {\t\t\n\t\tvar contentTypeInfo = $tw.config.contentTypeInfo[tiddler.fields.type || \"text/vnd.tiddlywiki\"];\n\t\treturn !!contentTypeInfo && contentTypeInfo.encoding === \"base64\";\n\t} else {\n\t\treturn null;\n\t}\n};\n\n/*\nLike addTiddler() except it will silently reject any plugin tiddlers that are older than the currently loaded version. Returns true if the tiddler was imported\n*/\nexports.importTiddler = function(tiddler) {\n\tvar existingTiddler = this.getTiddler(tiddler.fields.title);\n\t// Check if we're dealing with a plugin\n\tif(tiddler && tiddler.hasField(\"plugin-type\") && tiddler.hasField(\"version\") && existingTiddler && existingTiddler.hasField(\"plugin-type\") && existingTiddler.hasField(\"version\")) {\n\t\t// Reject the incoming plugin if it is older\n\t\tif(!$tw.utils.checkVersions(tiddler.fields.version,existingTiddler.fields.version)) {\n\t\t\treturn false;\n\t\t}\n\t}\n\t// Fall through to adding the tiddler\n\tthis.addTiddler(tiddler);\n\treturn true;\n};\n\n/*\nReturn a hashmap of the fields that should be set when a tiddler is created\n*/\nexports.getCreationFields = function() {\n\tif(this.getTiddlerText(TIMESTAMP_DISABLE_TITLE,\"\").toLowerCase() !== \"yes\") {\n\t\tvar fields = {\n\t\t\t\tcreated: new Date()\n\t\t\t},\n\t\t\tcreator = this.getTiddlerText(USER_NAME_TITLE);\n\t\tif(creator) {\n\t\t\tfields.creator = creator;\n\t\t}\n\t\treturn fields;\n\t} else {\n\t\treturn {};\n\t}\n};\n\n/*\nReturn a hashmap of the fields that should be set when a tiddler is modified\n*/\nexports.getModificationFields = function() {\n\tif(this.getTiddlerText(TIMESTAMP_DISABLE_TITLE,\"\").toLowerCase() !== \"yes\") {\n\t\tvar fields = Object.create(null),\n\t\t\tmodifier = this.getTiddlerText(USER_NAME_TITLE);\n\t\tfields.modified = new Date();\n\t\tif(modifier) {\n\t\t\tfields.modifier = modifier;\n\t\t}\n\t\treturn fields;\n\t} else {\n\t\treturn {};\n\t}\n};\n\n/*\nReturn a sorted array of tiddler titles. Options include:\nsortField: field to sort by\nexcludeTag: tag to exclude\nincludeSystem: whether to include system tiddlers (defaults to false)\n*/\nexports.getTiddlers = function(options) {\n\toptions = options || Object.create(null);\n\tvar self = this,\n\t\tsortField = options.sortField || \"title\",\n\t\ttiddlers = [], t, titles = [];\n\tthis.each(function(tiddler,title) {\n\t\tif(options.includeSystem || !self.isSystemTiddler(title)) {\n\t\t\tif(!options.excludeTag || !tiddler.hasTag(options.excludeTag)) {\n\t\t\t\ttiddlers.push(tiddler);\n\t\t\t}\n\t\t}\n\t});\n\ttiddlers.sort(function(a,b) {\n\t\tvar aa = a.fields[sortField].toLowerCase() || \"\",\n\t\t\tbb = b.fields[sortField].toLowerCase() || \"\";\n\t\tif(aa < bb) {\n\t\t\treturn -1;\n\t\t} else {\n\t\t\tif(aa > bb) {\n\t\t\t\treturn 1;\n\t\t\t} else {\n\t\t\t\treturn 0;\n\t\t\t}\n\t\t}\n\t});\n\tfor(t=0; t<tiddlers.length; t++) {\n\t\ttitles.push(tiddlers[t].fields.title);\n\t}\n\treturn titles;\n};\n\nexports.countTiddlers = function(excludeTag) {\n\tvar tiddlers = this.getTiddlers({excludeTag: excludeTag});\n\treturn $tw.utils.count(tiddlers);\n};\n\n/*\nReturns a function iterator(callback) that iterates through the specified titles, and invokes the callback with callback(tiddler,title)\n*/\nexports.makeTiddlerIterator = function(titles) {\n\tvar self = this;\n\tif(!$tw.utils.isArray(titles)) {\n\t\ttitles = Object.keys(titles);\n\t} else {\n\t\ttitles = titles.slice(0);\n\t}\n\treturn function(callback) {\n\t\ttitles.forEach(function(title) {\n\t\t\tcallback(self.getTiddler(title),title);\n\t\t});\n\t};\n};\n\n/*\nSort an array of tiddler titles by a specified field\n\ttitles: array of titles (sorted in place)\n\tsortField: name of field to sort by\n\tisDescending: true if the sort should be descending\n\tisCaseSensitive: true if the sort should consider upper and lower case letters to be different\n*/\nexports.sortTiddlers = function(titles,sortField,isDescending,isCaseSensitive,isNumeric,isAlphaNumeric) {\n\tvar self = this;\n\ttitles.sort(function(a,b) {\n\t\tvar x,y,\n\t\t\tcompareNumbers = function(x,y) {\n\t\t\t\tvar result = \n\t\t\t\t\tisNaN(x) && !isNaN(y) ? (isDescending ? -1 : 1) :\n\t\t\t\t\t!isNaN(x) && isNaN(y) ? (isDescending ? 1 : -1) :\n\t\t\t\t\t\t\t\t\t\t\t(isDescending ? y - x : x - y);\n\t\t\t\treturn result;\n\t\t\t};\n\t\tif(sortField !== \"title\") {\n\t\t\tvar tiddlerA = self.getTiddler(a),\n\t\t\t\ttiddlerB = self.getTiddler(b);\n\t\t\tif(tiddlerA) {\n\t\t\t\ta = tiddlerA.fields[sortField] || \"\";\n\t\t\t} else {\n\t\t\t\ta = \"\";\n\t\t\t}\n\t\t\tif(tiddlerB) {\n\t\t\t\tb = tiddlerB.fields[sortField] || \"\";\n\t\t\t} else {\n\t\t\t\tb = \"\";\n\t\t\t}\n\t\t}\n\t\tx = Number(a);\n\t\ty = Number(b);\n\t\tif(isNumeric && (!isNaN(x) || !isNaN(y))) {\n\t\t\treturn compareNumbers(x,y);\n\t\t} else if($tw.utils.isDate(a) && $tw.utils.isDate(b)) {\n\t\t\treturn isDescending ? b - a : a - b;\n\t\t} else if(isAlphaNumeric) {\n\t\t\treturn isDescending ? b.localeCompare(a,undefined,{numeric: true,sensitivity: \"base\"}) : a.localeCompare(b,undefined,{numeric: true,sensitivity: \"base\"});\n\t\t} else {\n\t\t\ta = String(a);\n\t\t\tb = String(b);\n\t\t\tif(!isCaseSensitive) {\n\t\t\t\ta = a.toLowerCase();\n\t\t\t\tb = b.toLowerCase();\n\t\t\t}\n\t\t\treturn isDescending ? b.localeCompare(a) : a.localeCompare(b);\n\t\t}\n\t});\n};\n\n/*\nFor every tiddler invoke a callback(title,tiddler) with `this` set to the wiki object. Options include:\nsortField: field to sort by\nexcludeTag: tag to exclude\nincludeSystem: whether to include system tiddlers (defaults to false)\n*/\nexports.forEachTiddler = function(/* [options,]callback */) {\n\tvar arg = 0,\n\t\toptions = arguments.length >= 2 ? arguments[arg++] : {},\n\t\tcallback = arguments[arg++],\n\t\ttitles = this.getTiddlers(options),\n\t\tt, tiddler;\n\tfor(t=0; t<titles.length; t++) {\n\t\ttiddler = this.getTiddler(titles[t]);\n\t\tif(tiddler) {\n\t\t\tcallback.call(this,tiddler.fields.title,tiddler);\n\t\t}\n\t}\n};\n\n/*\nReturn an array of tiddler titles that are directly linked within the given parse tree\n */\nexports.extractLinks = function(parseTreeRoot) {\n\t// Count up the links\n\tvar links = [],\n\t\tcheckParseTree = function(parseTree) {\n\t\t\tfor(var t=0; t<parseTree.length; t++) {\n\t\t\t\tvar parseTreeNode = parseTree[t];\n\t\t\t\tif(parseTreeNode.type === \"link\" && parseTreeNode.attributes.to && parseTreeNode.attributes.to.type === \"string\") {\n\t\t\t\t\tvar value = parseTreeNode.attributes.to.value;\n\t\t\t\t\tif(links.indexOf(value) === -1) {\n\t\t\t\t\t\tlinks.push(value);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\tif(parseTreeNode.children) {\n\t\t\t\t\tcheckParseTree(parseTreeNode.children);\n\t\t\t\t}\n\t\t\t}\n\t\t};\n\tcheckParseTree(parseTreeRoot);\n\treturn links;\n};\n\n/*\nReturn an array of tiddler titles that are directly linked from the specified tiddler\n*/\nexports.getTiddlerLinks = function(title) {\n\tvar self = this;\n\t// We'll cache the links so they only get computed if the tiddler changes\n\treturn this.getCacheForTiddler(title,\"links\",function() {\n\t\t// Parse the tiddler\n\t\tvar parser = self.parseTiddler(title);\n\t\tif(parser) {\n\t\t\treturn self.extractLinks(parser.tree);\n\t\t}\n\t\treturn [];\n\t});\n};\n\n/*\nReturn an array of tiddler titles that link to the specified tiddler\n*/\nexports.getTiddlerBacklinks = function(targetTitle) {\n\tvar self = this,\n\t\tbacklinksIndexer = this.getIndexer(\"BacklinksIndexer\"),\n\t\tbacklinks = backlinksIndexer && backlinksIndexer.lookup(targetTitle);\n\n\tif(!backlinks) {\n\t\tbacklinks = [];\n\t\tthis.forEachTiddler(function(title,tiddler) {\n\t\t\tvar links = self.getTiddlerLinks(title);\n\t\t\tif(links.indexOf(targetTitle) !== -1) {\n\t\t\t\tbacklinks.push(title);\n\t\t\t}\n\t\t});\n\t}\n\treturn backlinks;\n};\n\n/*\nReturn a hashmap of tiddler titles that are referenced but not defined. Each value is the number of times the missing tiddler is referenced\n*/\nexports.getMissingTitles = function() {\n\tvar self = this,\n\t\tmissing = [];\n// We should cache the missing tiddler list, even if we recreate it every time any tiddler is modified\n\tthis.forEachTiddler(function(title,tiddler) {\n\t\tvar links = self.getTiddlerLinks(title);\n\t\t$tw.utils.each(links,function(link) {\n\t\t\tif((!self.tiddlerExists(link) && !self.isShadowTiddler(link)) && missing.indexOf(link) === -1) {\n\t\t\t\tmissing.push(link);\n\t\t\t}\n\t\t});\n\t});\n\treturn missing;\n};\n\nexports.getOrphanTitles = function() {\n\tvar self = this,\n\t\torphans = this.getTiddlers();\n\tthis.forEachTiddler(function(title,tiddler) {\n\t\tvar links = self.getTiddlerLinks(title);\n\t\t$tw.utils.each(links,function(link) {\n\t\t\tvar p = orphans.indexOf(link);\n\t\t\tif(p !== -1) {\n\t\t\t\torphans.splice(p,1);\n\t\t\t}\n\t\t});\n\t});\n\treturn orphans; // Todo\n};\n\n/*\nRetrieves a list of the tiddler titles that are tagged with a given tag\n*/\nexports.getTiddlersWithTag = function(tag) {\n\t// Try to use the indexer\n\tvar self = this,\n\t\ttagIndexer = this.getIndexer(\"TagIndexer\"),\n\t\tresults = tagIndexer && tagIndexer.subIndexers[3].lookup(tag);\n\tif(!results) {\n\t\t// If not available, perform a manual scan\n\t\tresults = this.getGlobalCache(\"taglist-\" + tag,function() {\n\t\t\tvar tagmap = self.getTagMap();\n\t\t\treturn self.sortByList(tagmap[tag],tag);\n\t\t});\n\t}\n\treturn results;\n};\n\n/*\nGet a hashmap by tag of arrays of tiddler titles\n*/\nexports.getTagMap = function() {\n\tvar self = this;\n\treturn this.getGlobalCache(\"tagmap\",function() {\n\t\tvar tags = Object.create(null),\n\t\t\tstoreTags = function(tagArray,title) {\n\t\t\t\tif(tagArray) {\n\t\t\t\t\tfor(var index=0; index<tagArray.length; index++) {\n\t\t\t\t\t\tvar tag = tagArray[index];\n\t\t\t\t\t\tif($tw.utils.hop(tags,tag)) {\n\t\t\t\t\t\t\ttags[tag].push(title);\n\t\t\t\t\t\t} else {\n\t\t\t\t\t\t\ttags[tag] = [title];\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t},\n\t\t\ttitle, tiddler;\n\t\t// Collect up all the tags\n\t\tself.eachShadow(function(tiddler,title) {\n\t\t\tif(!self.tiddlerExists(title)) {\n\t\t\t\ttiddler = self.getTiddler(title);\n\t\t\t\tstoreTags(tiddler.fields.tags,title);\n\t\t\t}\n\t\t});\n\t\tself.each(function(tiddler,title) {\n\t\t\tstoreTags(tiddler.fields.tags,title);\n\t\t});\n\t\treturn tags;\n\t});\n};\n\n/*\nLookup a given tiddler and return a list of all the tiddlers that include it in the specified list field\n*/\nexports.findListingsOfTiddler = function(targetTitle,fieldName) {\n\tfieldName = fieldName || \"list\";\n\tvar titles = [];\n\tthis.each(function(tiddler,title) {\n\t\tvar list = $tw.utils.parseStringArray(tiddler.fields[fieldName]);\n\t\tif(list && list.indexOf(targetTitle) !== -1) {\n\t\t\ttitles.push(title);\n\t\t}\n\t});\n\treturn titles;\n};\n\n/*\nSorts an array of tiddler titles according to an ordered list\n*/\nexports.sortByList = function(array,listTitle) {\n\tvar self = this,\n\t\treplacedTitles = Object.create(null);\n\t// Given a title, this function will place it in the correct location\n\t// within titles.\n\tfunction moveItemInList(title) {\n\t\tif(!$tw.utils.hop(replacedTitles, title)) {\n\t\t\treplacedTitles[title] = true;\n\t\t\tvar newPos = -1,\n\t\t\t\ttiddler = self.getTiddler(title);\n\t\t\tif(tiddler) {\n\t\t\t\tvar beforeTitle = tiddler.fields[\"list-before\"],\n\t\t\t\t\tafterTitle = tiddler.fields[\"list-after\"];\n\t\t\t\tif(beforeTitle === \"\") {\n\t\t\t\t\tnewPos = 0;\n\t\t\t\t} else if(afterTitle === \"\") {\n\t\t\t\t\tnewPos = titles.length;\n\t\t\t\t} else if(beforeTitle) {\n\t\t\t\t\t// if this title is placed relative\n\t\t\t\t\t// to another title, make sure that\n\t\t\t\t\t// title is placed before we place\n\t\t\t\t\t// this one.\n\t\t\t\t\tmoveItemInList(beforeTitle);\n\t\t\t\t\tnewPos = titles.indexOf(beforeTitle);\n\t\t\t\t} else if(afterTitle) {\n\t\t\t\t\t// Same deal\n\t\t\t\t\tmoveItemInList(afterTitle);\n\t\t\t\t\tnewPos = titles.indexOf(afterTitle);\n\t\t\t\t\tif(newPos >= 0) {\n\t\t\t\t\t\t++newPos;\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t\t// If a new position is specified, let's move it\n\t\t\t\tif (newPos !== -1) {\n\t\t\t\t\t// get its current Pos, and make sure\n\t\t\t\t\t// sure that it's _actually_ in the list\n\t\t\t\t\t// and that it would _actually_ move\n\t\t\t\t\t// (#4275) We don't bother calling\n\t\t\t\t\t// indexOf unless we have a new\n\t\t\t\t\t// position to work with\n\t\t\t\t\tvar currPos = titles.indexOf(title);\n\t\t\t\t\tif(currPos >= 0 && newPos !== currPos) {\n\t\t\t\t\t\t// move it!\n\t\t\t\t\t\ttitles.splice(currPos,1);\n\t\t\t\t\t\tif(newPos >= currPos) {\n\t\t\t\t\t\t\tnewPos--;\n\t\t\t\t\t\t}\n\t\t\t\t\t\ttitles.splice(newPos,0,title);\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\tvar list = this.getTiddlerList(listTitle);\n\tif(!array || array.length === 0) {\n\t\treturn [];\n\t} else {\n\t\tvar titles = [], t, title;\n\t\t// First place any entries that are present in the list\n\t\tfor(t=0; t<list.length; t++) {\n\t\t\ttitle = list[t];\n\t\t\tif(array.indexOf(title) !== -1) {\n\t\t\t\ttitles.push(title);\n\t\t\t}\n\t\t}\n\t\t// Then place any remaining entries\n\t\tfor(t=0; t<array.length; t++) {\n\t\t\ttitle = array[t];\n\t\t\tif(list.indexOf(title) === -1) {\n\t\t\t\ttitles.push(title);\n\t\t\t}\n\t\t}\n\t\t// Finally obey the list-before and list-after fields of each tiddler in turn\n\t\tvar sortedTitles = titles.slice(0);\n\t\tfor(t=0; t<sortedTitles.length; t++) {\n\t\t\ttitle = sortedTitles[t];\n\t\t\tmoveItemInList(title);\n\t\t}\n\t\treturn titles;\n\t}\n};\n\nexports.getSubTiddler = function(title,subTiddlerTitle) {\n\tvar bundleInfo = this.getPluginInfo(title) || this.getTiddlerDataCached(title);\n\tif(bundleInfo && bundleInfo.tiddlers) {\n\t\tvar subTiddler = bundleInfo.tiddlers[subTiddlerTitle];\n\t\tif(subTiddler) {\n\t\t\treturn new $tw.Tiddler(subTiddler);\n\t\t}\n\t}\n\treturn null;\n};\n\n/*\nRetrieve a tiddler as a JSON string of the fields\n*/\nexports.getTiddlerAsJson = function(title) {\n\tvar tiddler = this.getTiddler(title);\n\tif(tiddler) {\n\t\tvar fields = Object.create(null);\n\t\t$tw.utils.each(tiddler.fields,function(value,name) {\n\t\t\tfields[name] = tiddler.getFieldString(name);\n\t\t});\n\t\treturn JSON.stringify(fields);\n\t} else {\n\t\treturn JSON.stringify({title: title});\n\t}\n};\n\nexports.getTiddlersAsJson = function(filter,spaces) {\n\tvar tiddlers = this.filterTiddlers(filter),\n\t\tspaces = (spaces === undefined) ? $tw.config.preferences.jsonSpaces : spaces,\n\t\tdata = [];\n\tfor(var t=0;t<tiddlers.length; t++) {\n\t\tvar tiddler = this.getTiddler(tiddlers[t]);\n\t\tif(tiddler) {\n\t\t\tvar fields = new Object();\n\t\t\tfor(var field in tiddler.fields) {\n\t\t\t\tfields[field] = tiddler.getFieldString(field);\n\t\t\t}\n\t\t\tdata.push(fields);\n\t\t}\n\t}\n\treturn JSON.stringify(data,null,spaces);\n};\n\n/*\nGet the content of a tiddler as a JavaScript object. How this is done depends on the type of the tiddler:\n\napplication/json: the tiddler JSON is parsed into an object\napplication/x-tiddler-dictionary: the tiddler is parsed as sequence of name:value pairs\n\nOther types currently just return null.\n\ntitleOrTiddler: string tiddler title or a tiddler object\ndefaultData: default data to be returned if the tiddler is missing or doesn't contain data\n\nNote that the same value is returned for repeated calls for the same tiddler data. The value is frozen to prevent modification; otherwise modifications would be visible to all callers\n*/\nexports.getTiddlerDataCached = function(titleOrTiddler,defaultData) {\n\tvar self = this,\n\t\ttiddler = titleOrTiddler;\n\tif(!(tiddler instanceof $tw.Tiddler)) {\n\t\ttiddler = this.getTiddler(tiddler);\t\n\t}\n\tif(tiddler) {\n\t\treturn this.getCacheForTiddler(tiddler.fields.title,\"data\",function() {\n\t\t\t// Return the frozen value\n\t\t\tvar value = self.getTiddlerData(tiddler.fields.title,undefined);\n\t\t\t$tw.utils.deepFreeze(value);\n\t\t\treturn value;\n\t\t}) || defaultData;\n\t} else {\n\t\treturn defaultData;\n\t}\n};\n\n/*\nAlternative, uncached version of getTiddlerDataCached(). The return value can be mutated freely and reused\n*/\nexports.getTiddlerData = function(titleOrTiddler,defaultData) {\n\tvar tiddler = titleOrTiddler,\n\t\tdata;\n\tif(!(tiddler instanceof $tw.Tiddler)) {\n\t\ttiddler = this.getTiddler(tiddler);\t\n\t}\n\tif(tiddler && tiddler.fields.text) {\n\t\tswitch(tiddler.fields.type) {\n\t\t\tcase \"application/json\":\n\t\t\t\t// JSON tiddler\n\t\t\t\ttry {\n\t\t\t\t\tdata = JSON.parse(tiddler.fields.text);\n\t\t\t\t} catch(ex) {\n\t\t\t\t\treturn defaultData;\n\t\t\t\t}\n\t\t\t\treturn data;\n\t\t\tcase \"application/x-tiddler-dictionary\":\n\t\t\t\treturn $tw.utils.parseFields(tiddler.fields.text);\n\t\t}\n\t}\n\treturn defaultData;\n};\n\n/*\nExtract an indexed field from within a data tiddler\n*/\nexports.extractTiddlerDataItem = function(titleOrTiddler,index,defaultText) {\n\tvar data = this.getTiddlerDataCached(titleOrTiddler,Object.create(null)),\n\t\ttext;\n\tif(data && $tw.utils.hop(data,index)) {\n\t\ttext = data[index];\n\t}\n\tif(typeof text === \"string\" || typeof text === \"number\") {\n\t\treturn text.toString();\n\t} else {\n\t\treturn defaultText;\n\t}\n};\n\n/*\nSet a tiddlers content to a JavaScript object. Currently this is done by setting the tiddler's type to \"application/json\" and setting the text to the JSON text of the data.\ntitle: title of tiddler\ndata: object that can be serialised to JSON\nfields: optional hashmap of additional tiddler fields to be set\n*/\nexports.setTiddlerData = function(title,data,fields) {\n\tvar existingTiddler = this.getTiddler(title),\n\t\tnewFields = {\n\t\t\ttitle: title\n\t};\n\tif(existingTiddler && existingTiddler.fields.type === \"application/x-tiddler-dictionary\") {\n\t\tnewFields.text = $tw.utils.makeTiddlerDictionary(data);\n\t} else {\n\t\tnewFields.type = \"application/json\";\n\t\tnewFields.text = JSON.stringify(data,null,$tw.config.preferences.jsonSpaces);\n\t}\n\tthis.addTiddler(new $tw.Tiddler(this.getCreationFields(),existingTiddler,fields,newFields,this.getModificationFields()));\n};\n\n/*\nReturn the content of a tiddler as an array containing each line\n*/\nexports.getTiddlerList = function(title,field,index) {\n\tif(index) {\n\t\treturn $tw.utils.parseStringArray(this.extractTiddlerDataItem(title,index,\"\"));\n\t}\n\tfield = field || \"list\";\n\tvar tiddler = this.getTiddler(title);\n\tif(tiddler) {\n\t\treturn ($tw.utils.parseStringArray(tiddler.fields[field]) || []).slice(0);\n\t}\n\treturn [];\n};\n\n// Return a named global cache object. Global cache objects are cleared whenever a tiddler change occurs\nexports.getGlobalCache = function(cacheName,initializer) {\n\tthis.globalCache = this.globalCache || Object.create(null);\n\tif($tw.utils.hop(this.globalCache,cacheName)) {\n\t\treturn this.globalCache[cacheName];\n\t} else {\n\t\tthis.globalCache[cacheName] = initializer();\n\t\treturn this.globalCache[cacheName];\n\t}\n};\n\nexports.clearGlobalCache = function() {\n\tthis.globalCache = Object.create(null);\n};\n\n// Return the named cache object for a tiddler. If the cache doesn't exist then the initializer function is invoked to create it\nexports.getCacheForTiddler = function(title,cacheName,initializer) {\n\tthis.caches = this.caches || Object.create(null);\n\tvar caches = this.caches[title];\n\tif(caches && caches[cacheName]) {\n\t\treturn caches[cacheName];\n\t} else {\n\t\tif(!caches) {\n\t\t\tcaches = Object.create(null);\n\t\t\tthis.caches[title] = caches;\n\t\t}\n\t\tcaches[cacheName] = initializer();\n\t\treturn caches[cacheName];\n\t}\n};\n\n// Clear all caches associated with a particular tiddler, or, if the title is null, clear all the caches for all the tiddlers\nexports.clearCache = function(title) {\n\tif(title) {\n\t\tthis.caches = this.caches || Object.create(null);\n\t\tif($tw.utils.hop(this.caches,title)) {\n\t\t\tdelete this.caches[title];\n\t\t}\n\t} else {\n\t\tthis.caches = Object.create(null);\n\t}\n};\n\nexports.initParsers = function(moduleType) {\n\t// Install the parser modules\n\t$tw.Wiki.parsers = {};\n\tvar self = this;\n\t$tw.modules.forEachModuleOfType(\"parser\",function(title,module) {\n\t\tfor(var f in module) {\n\t\t\tif($tw.utils.hop(module,f)) {\n\t\t\t\t$tw.Wiki.parsers[f] = module[f]; // Store the parser class\n\t\t\t}\n\t\t}\n\t});\n\t// Use the generic binary parser for any binary types not registered so far\n\tif($tw.Wiki.parsers[\"application/octet-stream\"]) {\n\t\tObject.keys($tw.config.contentTypeInfo).forEach(function(type) {\n\t\t\tif(!$tw.utils.hop($tw.Wiki.parsers,type) && $tw.config.contentTypeInfo[type].encoding === \"base64\") {\n\t\t\t\t$tw.Wiki.parsers[type] = $tw.Wiki.parsers[\"application/octet-stream\"];\n\t\t\t}\n\t\t});\t\t\n\t}\n};\n\n/*\nParse a block of text of a specified MIME type\n\ttype: content type of text to be parsed\n\ttext: text\n\toptions: see below\nOptions include:\n\tparseAsInline: if true, the text of the tiddler will be parsed as an inline run\n\t_canonical_uri: optional string of the canonical URI of this content\n*/\nexports.parseText = function(type,text,options) {\n\ttext = text || \"\";\n\toptions = options || {};\n\t// Select a parser\n\tvar Parser = $tw.Wiki.parsers[type];\n\tif(!Parser && $tw.utils.getFileExtensionInfo(type)) {\n\t\tParser = $tw.Wiki.parsers[$tw.utils.getFileExtensionInfo(type).type];\n\t}\n\tif(!Parser) {\n\t\tParser = $tw.Wiki.parsers[options.defaultType || \"text/vnd.tiddlywiki\"];\n\t}\n\tif(!Parser) {\n\t\treturn null;\n\t}\n\t// Return the parser instance\n\treturn new Parser(type,text,{\n\t\tparseAsInline: options.parseAsInline,\n\t\twiki: this,\n\t\t_canonical_uri: options._canonical_uri\n\t});\n};\n\n/*\nParse a tiddler according to its MIME type\n*/\nexports.parseTiddler = function(title,options) {\n\toptions = $tw.utils.extend({},options);\n\tvar cacheType = options.parseAsInline ? \"inlineParseTree\" : \"blockParseTree\",\n\t\ttiddler = this.getTiddler(title),\n\t\tself = this;\n\treturn tiddler ? this.getCacheForTiddler(title,cacheType,function() {\n\t\t\tif(tiddler.hasField(\"_canonical_uri\")) {\n\t\t\t\toptions._canonical_uri = tiddler.fields._canonical_uri;\n\t\t\t}\n\t\t\treturn self.parseText(tiddler.fields.type,tiddler.fields.text,options);\n\t\t}) : null;\n};\n\nexports.parseTextReference = function(title,field,index,options) {\n\tvar tiddler,text;\n\tif(options.subTiddler) {\n\t\ttiddler = this.getSubTiddler(title,options.subTiddler);\n\t} else {\n\t\ttiddler = this.getTiddler(title);\n\t\tif(field === \"text\" || (!field && !index)) {\n\t\t\tthis.getTiddlerText(title); // Force the tiddler to be lazily loaded\n\t\t\treturn this.parseTiddler(title,options);\n\t\t}\n\t}\n\tif(field === \"text\" || (!field && !index)) {\n\t\tif(tiddler && tiddler.fields) {\n\t\t\treturn this.parseText(tiddler.fields.type,tiddler.fields.text,options);\t\t\t\n\t\t} else {\n\t\t\treturn null;\n\t\t}\n\t} else if(field) {\n\t\tif(field === \"title\") {\n\t\t\ttext = title;\n\t\t} else {\n\t\t\tif(!tiddler || !tiddler.hasField(field)) {\n\t\t\t\treturn null;\n\t\t\t}\n\t\t\ttext = tiddler.fields[field];\n\t\t}\n\t\treturn this.parseText(\"text/vnd.tiddlywiki\",text.toString(),options);\n\t} else if(index) {\n\t\tthis.getTiddlerText(title); // Force the tiddler to be lazily loaded\n\t\ttext = this.extractTiddlerDataItem(tiddler,index,undefined);\n\t\tif(text === undefined) {\n\t\t\treturn null;\n\t\t}\n\t\treturn this.parseText(\"text/vnd.tiddlywiki\",text,options);\n\t}\n};\n\n/*\nMake a widget tree for a parse tree\nparser: parser object\noptions: see below\nOptions include:\ndocument: optional document to use\nvariables: hashmap of variables to set\nparentWidget: optional parent widget for the root node\n*/\nexports.makeWidget = function(parser,options) {\n\toptions = options || {};\n\tvar widgetNode = {\n\t\t\ttype: \"widget\",\n\t\t\tchildren: []\n\t\t},\n\t\tcurrWidgetNode = widgetNode;\n\t// Create set variable widgets for each variable\n\t$tw.utils.each(options.variables,function(value,name) {\n\t\tvar setVariableWidget = {\n\t\t\ttype: \"set\",\n\t\t\tattributes: {\n\t\t\t\tname: {type: \"string\", value: name},\n\t\t\t\tvalue: {type: \"string\", value: value}\n\t\t\t},\n\t\t\tchildren: []\n\t\t};\n\t\tcurrWidgetNode.children = [setVariableWidget];\n\t\tcurrWidgetNode = setVariableWidget;\n\t});\n\t// Add in the supplied parse tree nodes\n\tcurrWidgetNode.children = parser ? parser.tree : [];\n\t// Create the widget\n\treturn new widget.widget(widgetNode,{\n\t\twiki: this,\n\t\tdocument: options.document || $tw.fakeDocument,\n\t\tparentWidget: options.parentWidget\n\t});\n};\n\n/*\nMake a widget tree for transclusion\ntitle: target tiddler title\noptions: as for wiki.makeWidget() plus:\noptions.field: optional field to transclude (defaults to \"text\")\noptions.mode: transclusion mode \"inline\" or \"block\"\noptions.recursionMarker : optional flag to set a recursion marker, defaults to \"yes\"\noptions.children: optional array of children for the transclude widget\noptions.importVariables: optional importvariables filter string for macros to be included\noptions.importPageMacros: optional boolean; if true, equivalent to passing \"[[$:/core/ui/PageMacros]] [all[shadows+tiddlers]tag[$:/tags/Macro]!has[draft.of]]\" to options.importVariables\n*/\nexports.makeTranscludeWidget = function(title,options) {\n\toptions = options || {};\n\tvar parseTreeDiv = {tree: [{\n\t\t\ttype: \"element\",\n\t\t\ttag: \"div\",\n\t\t\tchildren: []}]},\n\t\tparseTreeImportVariables = {\n\t\t\ttype: \"importvariables\",\n\t\t\tattributes: {\n\t\t\t\tfilter: {\n\t\t\t\t\tname: \"filter\",\n\t\t\t\t\ttype: \"string\"\n\t\t\t\t}\n\t\t\t},\n\t\t\tisBlock: false,\n\t\t\tchildren: []},\n\t\tparseTreeTransclude = {\n\t\t\ttype: \"transclude\",\n\t\t\tattributes: {\n\t\t\t\trecursionMarker: {\n\t\t\t\t\tname: \"recursionMarker\",\n\t\t\t\t\ttype: \"string\",\n\t\t\t\t\tvalue: options.recursionMarker || \"yes\"\n\t\t\t\t\t},\n\t\t\t\ttiddler: {\n\t\t\t\t\tname: \"tiddler\",\n\t\t\t\t\ttype: \"string\",\n\t\t\t\t\tvalue: title\n\t\t\t\t}\n\t\t\t},\n\t\t\tisBlock: !options.parseAsInline};\n\tif(options.importVariables || options.importPageMacros) {\n\t\tif(options.importVariables) {\n\t\t\tparseTreeImportVariables.attributes.filter.value = options.importVariables;\n\t\t} else if(options.importPageMacros) {\n\t\t\tparseTreeImportVariables.attributes.filter.value = \"[[$:/core/ui/PageMacros]] [all[shadows+tiddlers]tag[$:/tags/Macro]!has[draft.of]]\";\n\t\t}\n\t\tparseTreeDiv.tree[0].children.push(parseTreeImportVariables);\n\t\tparseTreeImportVariables.children.push(parseTreeTransclude);\n\t} else {\n\t\tparseTreeDiv.tree[0].children.push(parseTreeTransclude);\n\t}\n\tif(options.field) {\n\t\tparseTreeTransclude.attributes.field = {type: \"string\", value: options.field};\n\t}\n\tif(options.mode) {\n\t\tparseTreeTransclude.attributes.mode = {type: \"string\", value: options.mode};\n\t}\n\tif(options.children) {\n\t\tparseTreeTransclude.children = options.children;\n\t}\n\treturn this.makeWidget(parseTreeDiv,options);\n};\n\n/*\nParse text in a specified format and render it into another format\n\toutputType: content type for the output\n\ttextType: content type of the input text\n\ttext: input text\n\toptions: see below\nOptions include:\nvariables: hashmap of variables to set\nparentWidget: optional parent widget for the root node\n*/\nexports.renderText = function(outputType,textType,text,options) {\n\toptions = options || {};\n\tvar parser = this.parseText(textType,text,options),\n\t\twidgetNode = this.makeWidget(parser,options);\n\tvar container = $tw.fakeDocument.createElement(\"div\");\n\twidgetNode.render(container,null);\n\treturn outputType === \"text/html\" ? container.innerHTML : container.textContent;\n};\n\n/*\nParse text from a tiddler and render it into another format\n\toutputType: content type for the output\n\ttitle: title of the tiddler to be rendered\n\toptions: see below\nOptions include:\nvariables: hashmap of variables to set\nparentWidget: optional parent widget for the root node\n*/\nexports.renderTiddler = function(outputType,title,options) {\n\toptions = options || {};\n\tvar parser = this.parseTiddler(title,options),\n\t\twidgetNode = this.makeWidget(parser,options);\n\tvar container = $tw.fakeDocument.createElement(\"div\");\n\twidgetNode.render(container,null);\n\treturn outputType === \"text/html\" ? container.innerHTML : (outputType === \"text/plain-formatted\" ? container.formattedTextContent : container.textContent);\n};\n\n/*\nReturn an array of tiddler titles that match a search string\n\ttext: The text string to search for\n\toptions: see below\nOptions available:\n\tsource: an iterator function for the source tiddlers, called source(iterator), where iterator is called as iterator(tiddler,title)\n\texclude: An array of tiddler titles to exclude from the search\n\tinvert: If true returns tiddlers that do not contain the specified string\n\tcaseSensitive: If true forces a case sensitive search\n\tfield: If specified, restricts the search to the specified field, or an array of field names\n\tanchored: If true, forces all but regexp searches to be anchored to the start of text\n\texcludeField: If true, the field options are inverted to specify the fields that are not to be searched\n\tThe search mode is determined by the first of these boolean flags to be true\n\t\tliteral: searches for literal string\n\t\twhitespace: same as literal except runs of whitespace are treated as a single space\n\t\tregexp: treats the search term as a regular expression\n\t\twords: (default) treats search string as a list of tokens, and matches if all tokens are found, regardless of adjacency or ordering\n*/\nexports.search = function(text,options) {\n\toptions = options || {};\n\tvar self = this,\n\t\tt,\n\t\tinvert = !!options.invert;\n\t// Convert the search string into a regexp for each term\n\tvar terms, searchTermsRegExps,\n\t\tflags = options.caseSensitive ? \"\" : \"i\",\n\t\tanchor = options.anchored ? \"^\" : \"\";\n\tif(options.literal) {\n\t\tif(text.length === 0) {\n\t\t\tsearchTermsRegExps = null;\n\t\t} else {\n\t\t\tsearchTermsRegExps = [new RegExp(\"(\" + anchor + $tw.utils.escapeRegExp(text) + \")\",flags)];\n\t\t}\n\t} else if(options.whitespace) {\n\t\tterms = [];\n\t\t$tw.utils.each(text.split(/\\s+/g),function(term) {\n\t\t\tif(term) {\n\t\t\t\tterms.push($tw.utils.escapeRegExp(term));\n\t\t\t}\n\t\t});\n\t\tsearchTermsRegExps = [new RegExp(\"(\" + anchor + terms.join(\"\\\\s+\") + \")\",flags)];\n\t} else if(options.regexp) {\n\t\ttry {\n\t\t\tsearchTermsRegExps = [new RegExp(\"(\" + text + \")\",flags)];\t\t\t\n\t\t} catch(e) {\n\t\t\tsearchTermsRegExps = null;\n\t\t\tconsole.log(\"Regexp error parsing /(\" + text + \")/\" + flags + \": \",e);\n\t\t}\n\t} else {\n\t\tterms = text.split(/ +/);\n\t\tif(terms.length === 1 && terms[0] === \"\") {\n\t\t\tsearchTermsRegExps = null;\n\t\t} else {\n\t\t\tsearchTermsRegExps = [];\n\t\t\tfor(t=0; t<terms.length; t++) {\n\t\t\t\tsearchTermsRegExps.push(new RegExp(\"(\" + anchor + $tw.utils.escapeRegExp(terms[t]) + \")\",flags));\n\t\t\t}\n\t\t}\n\t}\n\t// Accumulate the array of fields to be searched or excluded from the search\n\tvar fields = [];\n\tif(options.field) {\n\t\tif($tw.utils.isArray(options.field)) {\n\t\t\t$tw.utils.each(options.field,function(fieldName) {\n\t\t\t\tif(fieldName) {\n\t\t\t\t\tfields.push(fieldName);\t\t\t\t\t\n\t\t\t\t}\n\t\t\t});\n\t\t} else {\n\t\t\tfields.push(options.field);\n\t\t}\n\t}\n\t// Use default fields if none specified and we're not excluding fields (excluding fields with an empty field array is the same as searching all fields)\n\tif(fields.length === 0 && !options.excludeField) {\n\t\tfields.push(\"title\");\n\t\tfields.push(\"tags\");\n\t\tfields.push(\"text\");\n\t}\n\t// Function to check a given tiddler for the search term\n\tvar searchTiddler = function(title) {\n\t\tif(!searchTermsRegExps) {\n\t\t\treturn true;\n\t\t}\n\t\tvar notYetFound = searchTermsRegExps.slice();\n\n\t\tvar tiddler = self.getTiddler(title);\n\t\tif(!tiddler) {\n\t\t\ttiddler = new $tw.Tiddler({title: title, text: \"\", type: \"text/vnd.tiddlywiki\"});\n\t\t}\n\t\tvar contentTypeInfo = $tw.config.contentTypeInfo[tiddler.fields.type] || $tw.config.contentTypeInfo[\"text/vnd.tiddlywiki\"],\n\t\t\tsearchFields;\n\t\t// Get the list of fields we're searching\n\t\tif(options.excludeField) {\n\t\t\tsearchFields = Object.keys(tiddler.fields);\n\t\t\t$tw.utils.each(fields,function(fieldName) {\n\t\t\t\tvar p = searchFields.indexOf(fieldName);\n\t\t\t\tif(p !== -1) {\n\t\t\t\t\tsearchFields.splice(p,1);\n\t\t\t\t}\n\t\t\t});\n\t\t} else {\n\t\t\tsearchFields = fields;\n\t\t}\n\t\tfor(var fieldIndex=0; notYetFound.length>0 && fieldIndex<searchFields.length; fieldIndex++) {\n\t\t\t// Don't search the text field if the content type is binary\n\t\t\tvar fieldName = searchFields[fieldIndex];\n\t\t\tif(fieldName === \"text\" && contentTypeInfo.encoding !== \"utf8\") {\n\t\t\t\tbreak;\n\t\t\t}\n\t\t\tvar str = tiddler.fields[fieldName],\n\t\t\t\tt;\n\t\t\tif(str) {\n\t\t\t\tif($tw.utils.isArray(str)) {\n\t\t\t\t\t// If the field value is an array, test each regexp against each field array entry and fail if each regexp doesn't match at least one field array entry\n\t\t\t\t\tfor(var s=0; s<str.length; s++) {\n\t\t\t\t\t\tfor(t=0; t<notYetFound.length;) {\n\t\t\t\t\t\t\tif(notYetFound[t].test(str[s])) {\n\t\t\t\t\t\t\t\tnotYetFound.splice(t, 1);\n\t\t\t\t\t\t\t} else {\n\t\t\t\t\t\t\t\tt++;\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t} else {\n\t\t\t\t\t// If the field isn't an array, force it to a string and test each regexp against it and fail if any do not match\n\t\t\t\t\tstr = tiddler.getFieldString(fieldName);\n\t\t\t\t\tfor(t=0; t<notYetFound.length;) {\n\t\t\t\t\t\tif(notYetFound[t].test(str)) {\n\t\t\t\t\t\t\tnotYetFound.splice(t, 1);\n\t\t\t\t\t\t} else {\n\t\t\t\t\t\t\tt++;\n\t\t\t\t\t\t}\n\t\t\t\t\t}\n\t\t\t\t}\n\t\t\t}\n\t\t};\n\t\treturn notYetFound.length == 0;\n\t};\n\t// Loop through all the tiddlers doing the search\n\tvar results = [],\n\t\tsource = options.source || this.each;\n\tsource(function(tiddler,title) {\n\t\tif(searchTiddler(title) !== options.invert) {\n\t\t\tresults.push(title);\n\t\t}\n\t});\n\t// Remove any of the results we have to exclude\n\tif(options.exclude) {\n\t\tfor(t=0; t<options.exclude.length; t++) {\n\t\t\tvar p = results.indexOf(options.exclude[t]);\n\t\t\tif(p !== -1) {\n\t\t\t\tresults.splice(p,1);\n\t\t\t}\n\t\t}\n\t}\n\treturn results;\n};\n\n/*\nTrigger a load for a tiddler if it is skinny. Returns the text, or undefined if the tiddler is missing, null if the tiddler is being lazily loaded.\n*/\nexports.getTiddlerText = function(title,defaultText) {\n\tvar tiddler = this.getTiddler(title);\n\t// Return undefined if the tiddler isn't found\n\tif(!tiddler) {\n\t\treturn defaultText;\n\t}\n\tif(!tiddler.hasField(\"_is_skinny\")) {\n\t\t// Just return the text if we've got it\n\t\treturn tiddler.fields.text || \"\";\n\t} else {\n\t\t// Tell any listeners about the need to lazily load this tiddler\n\t\tthis.dispatchEvent(\"lazyLoad\",title);\n\t\t// Indicate that the text is being loaded\n\t\treturn null;\n\t}\n};\n\n/*\nCheck whether the text of a tiddler matches a given value. By default, the comparison is case insensitive, and any spaces at either end of the tiddler text is trimmed\n*/\nexports.checkTiddlerText = function(title,targetText,options) {\n\toptions = options || {};\n\tvar text = this.getTiddlerText(title,\"\");\n\tif(!options.noTrim) {\n\t\ttext = text.trim();\n\t}\n\tif(!options.caseSensitive) {\n\t\ttext = text.toLowerCase();\n\t\ttargetText = targetText.toLowerCase();\n\t}\n\treturn text === targetText;\n}\n\n/*\nRead an array of browser File objects, invoking callback(tiddlerFieldsArray) once they're all read\n*/\nexports.readFiles = function(files,options) {\n\tvar callback;\n\tif(typeof options === \"function\") {\n\t\tcallback = options;\n\t\toptions = {};\n\t} else {\n\t\tcallback = options.callback;\n\t}\n\tvar result = [],\n\t\toutstanding = files.length,\n\t\treadFileCallback = function(tiddlerFieldsArray) {\n\t\t\tresult.push.apply(result,tiddlerFieldsArray);\n\t\t\tif(--outstanding === 0) {\n\t\t\t\tcallback(result);\n\t\t\t}\n\t\t};\n\tfor(var f=0; f<files.length; f++) {\n\t\tthis.readFile(files[f],$tw.utils.extend({},options,{callback: readFileCallback}));\n\t}\n\treturn files.length;\n};\n\n/*\nRead a browser File object, invoking callback(tiddlerFieldsArray) with an array of tiddler fields objects\n*/\nexports.readFile = function(file,options) {\n\tvar callback;\n\tif(typeof options === \"function\") {\n\t\tcallback = options;\n\t\toptions = {};\n\t} else {\n\t\tcallback = options.callback;\n\t}\n\t// Get the type, falling back to the filename extension\n\tvar self = this,\n\t\ttype = file.type;\n\tif(type === \"\" || !type) {\n\t\tvar dotPos = file.name.lastIndexOf(\".\");\n\t\tif(dotPos !== -1) {\n\t\t\tvar fileExtensionInfo = $tw.utils.getFileExtensionInfo(file.name.substr(dotPos));\n\t\t\tif(fileExtensionInfo) {\n\t\t\t\ttype = fileExtensionInfo.type;\n\t\t\t}\n\t\t}\n\t}\n\t// Figure out if we're reading a binary file\n\tvar contentTypeInfo = $tw.config.contentTypeInfo[type],\n\t\tisBinary = contentTypeInfo ? contentTypeInfo.encoding === \"base64\" : false;\n\t// Log some debugging information\n\tif($tw.log.IMPORT) {\n\t\tconsole.log(\"Importing file '\" + file.name + \"', type: '\" + type + \"', isBinary: \" + isBinary);\n\t}\n\t// Give the hook a chance to process the drag\n\tif($tw.hooks.invokeHook(\"th-importing-file\",{\n\t\tfile: file,\n\t\ttype: type,\n\t\tisBinary: isBinary,\n\t\tcallback: callback\n\t}) !== true) {\n\t\tthis.readFileContent(file,type,isBinary,options.deserializer,callback);\n\t}\n};\n\n/*\nLower level utility to read the content of a browser File object, invoking callback(tiddlerFieldsArray) with an array of tiddler fields objects\n*/\nexports.readFileContent = function(file,type,isBinary,deserializer,callback) {\n\tvar self = this;\n\t// Create the FileReader\n\tvar reader = new FileReader();\n\t// Onload\n\treader.onload = function(event) {\n\t\tvar text = event.target.result,\n\t\t\ttiddlerFields = {title: file.name || \"Untitled\"};\n\t\tif(isBinary) {\n\t\t\tvar commaPos = text.indexOf(\",\");\n\t\t\tif(commaPos !== -1) {\n\t\t\t\ttext = text.substr(commaPos + 1);\n\t\t\t}\n\t\t}\n\t\t// Check whether this is an encrypted TiddlyWiki file\n\t\tvar encryptedJson = $tw.utils.extractEncryptedStoreArea(text);\n\t\tif(encryptedJson) {\n\t\t\t// If so, attempt to decrypt it with the current password\n\t\t\t$tw.utils.decryptStoreAreaInteractive(encryptedJson,function(tiddlers) {\n\t\t\t\tcallback(tiddlers);\n\t\t\t});\n\t\t} else {\n\t\t\t// Otherwise, just try to deserialise any tiddlers in the file\n\t\t\tcallback(self.deserializeTiddlers(type,text,tiddlerFields,{deserializer: deserializer}));\n\t\t}\n\t};\n\t// Kick off the read\n\tif(isBinary) {\n\t\treader.readAsDataURL(file);\n\t} else {\n\t\treader.readAsText(file);\n\t}\n};\n\n/*\nFind any existing draft of a specified tiddler\n*/\nexports.findDraft = function(targetTitle) {\n\tvar draftTitle = undefined;\n\tthis.forEachTiddler({includeSystem: true},function(title,tiddler) {\n\t\tif(tiddler.fields[\"draft.title\"] && tiddler.fields[\"draft.of\"] === targetTitle) {\n\t\t\tdraftTitle = title;\n\t\t}\n\t});\n\treturn draftTitle;\n}\n\n/*\nCheck whether the specified draft tiddler has been modified.\nIf the original tiddler doesn't exist, create a vanilla tiddler variable,\nto check if additional fields have been added.\n*/\nexports.isDraftModified = function(title) {\n\tvar tiddler = this.getTiddler(title);\n\tif(!tiddler.isDraft()) {\n\t\treturn false;\n\t}\n\tvar ignoredFields = [\"created\", \"modified\", \"title\", \"draft.title\", \"draft.of\"],\n\t\torigTiddler = this.getTiddler(tiddler.fields[\"draft.of\"]) || new $tw.Tiddler({text:\"\", tags:[]}),\n\t\ttitleModified = tiddler.fields[\"draft.title\"] !== tiddler.fields[\"draft.of\"];\n\treturn titleModified || !tiddler.isEqual(origTiddler,ignoredFields);\n};\n\n/*\nAdd a new record to the top of the history stack\ntitle: a title string or an array of title strings\nfromPageRect: page coordinates of the origin of the navigation\nhistoryTitle: title of history tiddler (defaults to $:/HistoryList)\n*/\nexports.addToHistory = function(title,fromPageRect,historyTitle) {\n\tvar story = new $tw.Story({wiki: this, historyTitle: historyTitle});\n\tstory.addToHistory(title,fromPageRect);\t\n\tconsole.log(\"$tw.wiki.addToHistory() is deprecated since V5.1.23! Use the this.story.addToHistory() from the story-object!\")\n};\n\n/*\nAdd a new tiddler to the story river\ntitle: a title string or an array of title strings\nfromTitle: the title of the tiddler from which the navigation originated\nstoryTitle: title of story tiddler (defaults to $:/StoryList)\noptions: see story.js\n*/\nexports.addToStory = function(title,fromTitle,storyTitle,options) {\n\tvar story = new $tw.Story({wiki: this, storyTitle: storyTitle});\n\tstory.addToStory(title,fromTitle,options);\n\tconsole.log(\"$tw.wiki.addToStory() is deprecated since V5.1.23! Use the this.story.addToStory() from the story-object!\")\n};\n\n/*\nGenerate a title for the draft of a given tiddler\n*/\nexports.generateDraftTitle = function(title) {\n\tvar c = 0,\n\t\tdraftTitle,\n\t\tusername = this.getTiddlerText(\"$:/status/UserName\"),\n\t\tattribution = username ? \" by \" + username : \"\";\n\tdo {\n\t\tdraftTitle = \"Draft \" + (c ? (c + 1) + \" \" : \"\") + \"of '\" + title + \"'\" + attribution;\n\t\tc++;\n\t} while(this.tiddlerExists(draftTitle));\n\treturn draftTitle;\n};\n\n/*\nInvoke the available upgrader modules\ntitles: array of tiddler titles to be processed\ntiddlers: hashmap by title of tiddler fields of pending import tiddlers. These can be modified by the upgraders. An entry with no fields indicates a tiddler that was pending import has been suppressed. When entries are added to the pending import the tiddlers hashmap may have entries that are not present in the titles array\nReturns a hashmap of messages keyed by tiddler title.\n*/\nexports.invokeUpgraders = function(titles,tiddlers) {\n\t// Collect up the available upgrader modules\n\tvar self = this;\n\tif(!this.upgraderModules) {\n\t\tthis.upgraderModules = [];\n\t\t$tw.modules.forEachModuleOfType(\"upgrader\",function(title,module) {\n\t\t\tif(module.upgrade) {\n\t\t\t\tself.upgraderModules.push(module);\n\t\t\t}\n\t\t});\n\t}\n\t// Invoke each upgrader in turn\n\tvar messages = {};\n\tfor(var t=0; t<this.upgraderModules.length; t++) {\n\t\tvar upgrader = this.upgraderModules[t],\n\t\t\tupgraderMessages = upgrader.upgrade(this,titles,tiddlers);\n\t\t$tw.utils.extend(messages,upgraderMessages);\n\t}\n\treturn messages;\n};\n\n// Determine whether a plugin by title is dynamically loadable\nexports.doesPluginRequireReload = function(title) {\n\treturn this.doesPluginInfoRequireReload(this.getPluginInfo(title) || this.getTiddlerDataCached(title));\n};\n\n// Determine whether a plugin info structure is dynamically loadable\nexports.doesPluginInfoRequireReload = function(pluginInfo) {\n\tif(pluginInfo) {\n\t\tvar foundModule = false;\n\t\t$tw.utils.each(pluginInfo.tiddlers,function(tiddler) {\n\t\t\tif(tiddler.type === \"application/javascript\" && $tw.utils.hop(tiddler,\"module-type\")) {\n\t\t\t\tfoundModule = true;\n\t\t\t}\n\t\t});\n\t\treturn foundModule;\n\t} else {\n\t\treturn null;\n\t}\n};\n\nexports.slugify = function(title,options) {\n\tvar tiddler = this.getTiddler(title),\n\t\tslug;\n\tif(tiddler && tiddler.fields.slug) {\n\t\tslug = tiddler.fields.slug;\n\t} else {\n\t\tslug = $tw.utils.transliterate(title.toString().toLowerCase()) // Replace diacritics with basic lowercase ASCII\n\t\t\t.replace(/\\s+/g,\"-\") // Replace spaces with -\n\t\t\t.replace(/[^\\w\\-\\.]+/g,\"\") // Remove all non-word chars except dash and dot\n\t\t\t.replace(/\\-\\-+/g,\"-\") // Replace multiple - with single -\n\t\t\t.replace(/^-+/,\"\") // Trim - from start of text\n\t\t\t.replace(/-+$/,\"\"); // Trim - from end of text\n\t}\n\t// If the resulting slug is blank (eg because the title is just punctuation characters)\n\tif(!slug) {\n\t\t// ...then just use the character codes of the title\n\t\tvar result = [];\n\t\t$tw.utils.each(title.split(\"\"),function(char) {\n\t\t\tresult.push(char.charCodeAt(0).toString());\n\t\t});\n\t\tslug = result.join(\"-\");\n\t}\n\treturn slug;\n};\n\n})();\n\n",
"type": "application/javascript",
"module-type": "wikimethod"
},
"$:/palettes/Blanca": {
"title": "$:/palettes/Blanca",
"name": "Blanca",
"description": "A clean white palette to let you focus",
"tags": "$:/tags/Palette",
"type": "application/x-tiddler-dictionary",
"text": "alert-background: #ffe476\nalert-border: #b99e2f\nalert-highlight: #881122\nalert-muted-foreground: #b99e2f\nbackground: #ffffff\nblockquote-bar: <<colour muted-foreground>>\nbutton-background:\nbutton-foreground:\nbutton-border:\ncode-background: #f7f7f9\ncode-border: #e1e1e8\ncode-foreground: #dd1144\ndirty-indicator: #ff0000\ndownload-background: #66cccc\ndownload-foreground: <<colour background>>\ndragger-background: <<colour foreground>>\ndragger-foreground: <<colour background>>\ndropdown-background: <<colour background>>\ndropdown-border: <<colour muted-foreground>>\ndropdown-tab-background-selected: #fff\ndropdown-tab-background: #ececec\ndropzone-background: rgba(0,200,0,0.7)\nexternal-link-background-hover: inherit\nexternal-link-background-visited: inherit\nexternal-link-background: inherit\nexternal-link-foreground-hover: inherit\nexternal-link-foreground-visited: #0000aa\nexternal-link-foreground: #0000ee\nforeground: #333333\nmessage-background: #ecf2ff\nmessage-border: #cfd6e6\nmessage-foreground: #547599\nmodal-backdrop: <<colour foreground>>\nmodal-background: <<colour background>>\nmodal-border: #999999\nmodal-footer-background: #f5f5f5\nmodal-footer-border: #dddddd\nmodal-header-border: #eeeeee\nmuted-foreground: #999999\nnotification-background: #ffffdd\nnotification-border: #999999\npage-background: #ffffff\npre-background: #f5f5f5\npre-border: #cccccc\nprimary: #7897f3\nselect-tag-background:\nselect-tag-foreground:\nsidebar-button-foreground: <<colour foreground>>\nsidebar-controls-foreground-hover: #000000\nsidebar-controls-foreground: #ccc\nsidebar-foreground-shadow: rgba(255,255,255, 0.8)\nsidebar-foreground: #acacac\nsidebar-muted-foreground-hover: #444444\nsidebar-muted-foreground: #c0c0c0\nsidebar-tab-background-selected: #ffffff\nsidebar-tab-background: <<colour tab-background>>\nsidebar-tab-border-selected: <<colour tab-border-selected>>\nsidebar-tab-border: <<colour tab-border>>\nsidebar-tab-divider: <<colour tab-divider>>\nsidebar-tab-foreground-selected: \nsidebar-tab-foreground: <<colour tab-foreground>>\nsidebar-tiddler-link-foreground-hover: #444444\nsidebar-tiddler-link-foreground: #7897f3\nsite-title-foreground: <<colour tiddler-title-foreground>>\nstatic-alert-foreground: #aaaaaa\ntab-background-selected: #ffffff\ntab-background: #eeeeee\ntab-border-selected: #cccccc\ntab-border: #cccccc\ntab-divider: #d8d8d8\ntab-foreground-selected: <<colour tab-foreground>>\ntab-foreground: #666666\ntable-border: #dddddd\ntable-footer-background: #a8a8a8\ntable-header-background: #f0f0f0\ntag-background: #ffeedd\ntag-foreground: #000\ntiddler-background: <<colour background>>\ntiddler-border: #eee\ntiddler-controls-foreground-hover: #888888\ntiddler-controls-foreground-selected: #444444\ntiddler-controls-foreground: #cccccc\ntiddler-editor-background: #f8f8f8\ntiddler-editor-border-image: #ffffff\ntiddler-editor-border: #cccccc\ntiddler-editor-fields-even: #e0e8e0\ntiddler-editor-fields-odd: #f0f4f0\ntiddler-info-background: #f8f8f8\ntiddler-info-border: #dddddd\ntiddler-info-tab-background: #f8f8f8\ntiddler-link-background: <<colour background>>\ntiddler-link-foreground: <<colour primary>>\ntiddler-subtitle-foreground: #c0c0c0\ntiddler-title-foreground: #ff9900\ntoolbar-new-button:\ntoolbar-options-button:\ntoolbar-save-button:\ntoolbar-info-button:\ntoolbar-edit-button:\ntoolbar-close-button:\ntoolbar-delete-button:\ntoolbar-cancel-button:\ntoolbar-done-button:\nuntagged-background: #999999\nvery-muted-foreground: #888888\n"
},
"$:/palettes/Blue": {
"title": "$:/palettes/Blue",
"name": "Blue",
"description": "A blue theme",
"tags": "$:/tags/Palette",
"type": "application/x-tiddler-dictionary",
"text": "alert-background: #ffe476\nalert-border: #b99e2f\nalert-highlight: #881122\nalert-muted-foreground: #b99e2f\nbackground: #fff\nblockquote-bar: <<colour muted-foreground>>\nbutton-background:\nbutton-foreground:\nbutton-border:\ncode-background: #f7f7f9\ncode-border: #e1e1e8\ncode-foreground: #dd1144\ndirty-indicator: #ff0000\ndownload-background: #34c734\ndownload-foreground: <<colour foreground>>\ndragger-background: <<colour foreground>>\ndragger-foreground: <<colour background>>\ndropdown-background: <<colour background>>\ndropdown-border: <<colour muted-foreground>>\ndropdown-tab-background-selected: #fff\ndropdown-tab-background: #ececec\ndropzone-background: rgba(0,200,0,0.7)\nexternal-link-background-hover: inherit\nexternal-link-background-visited: inherit\nexternal-link-background: inherit\nexternal-link-foreground-hover: inherit\nexternal-link-foreground-visited: #0000aa\nexternal-link-foreground: #0000ee\nforeground: #333353\nmessage-background: #ecf2ff\nmessage-border: #cfd6e6\nmessage-foreground: #547599\nmodal-backdrop: <<colour foreground>>\nmodal-background: <<colour background>>\nmodal-border: #999999\nmodal-footer-background: #f5f5f5\nmodal-footer-border: #dddddd\nmodal-header-border: #eeeeee\nmuted-foreground: #999999\nnotification-background: #ffffdd\nnotification-border: #999999\npage-background: #ddddff\npre-background: #f5f5f5\npre-border: #cccccc\nprimary: #5778d8\nselect-tag-background:\nselect-tag-foreground:\nsidebar-button-foreground: <<colour foreground>>\nsidebar-controls-foreground-hover: #000000\nsidebar-controls-foreground: #ffffff\nsidebar-foreground-shadow: rgba(255,255,255, 0.8)\nsidebar-foreground: #acacac\nsidebar-muted-foreground-hover: #444444\nsidebar-muted-foreground: #c0c0c0\nsidebar-tab-background-selected: <<colour page-background>>\nsidebar-tab-background: <<colour tab-background>>\nsidebar-tab-border-selected: <<colour tab-border-selected>>\nsidebar-tab-border: <<colour tab-border>>\nsidebar-tab-divider: <<colour tab-divider>>\nsidebar-tab-foreground-selected: \nsidebar-tab-foreground: <<colour tab-foreground>>\nsidebar-tiddler-link-foreground-hover: #444444\nsidebar-tiddler-link-foreground: #5959c0\nsite-title-foreground: <<colour tiddler-title-foreground>>\nstatic-alert-foreground: #aaaaaa\ntab-background-selected: <<colour background>>\ntab-background: #ccccdd\ntab-border-selected: #ccccdd\ntab-border: #cccccc\ntab-divider: #d8d8d8\ntab-foreground-selected: <<colour tab-foreground>>\ntab-foreground: #666666\ntable-border: #dddddd\ntable-footer-background: #a8a8a8\ntable-header-background: #f0f0f0\ntag-background: #eeeeff\ntag-foreground: #000\ntiddler-background: <<colour background>>\ntiddler-border: <<colour background>>\ntiddler-controls-foreground-hover: #666666\ntiddler-controls-foreground-selected: #444444\ntiddler-controls-foreground: #cccccc\ntiddler-editor-background: #f8f8f8\ntiddler-editor-border-image: #ffffff\ntiddler-editor-border: #cccccc\ntiddler-editor-fields-even: #e0e8e0\ntiddler-editor-fields-odd: #f0f4f0\ntiddler-info-background: #ffffff\ntiddler-info-border: #dddddd\ntiddler-info-tab-background: #ffffff\ntiddler-link-background: <<colour background>>\ntiddler-link-foreground: <<colour primary>>\ntiddler-subtitle-foreground: #c0c0c0\ntiddler-title-foreground: #5959c0\ntoolbar-new-button: #5eb95e\ntoolbar-options-button: rgb(128, 88, 165)\ntoolbar-save-button: #0e90d2\ntoolbar-info-button: #0e90d2\ntoolbar-edit-button: rgb(243, 123, 29)\ntoolbar-close-button: #dd514c\ntoolbar-delete-button: #dd514c\ntoolbar-cancel-button: rgb(243, 123, 29)\ntoolbar-done-button: #5eb95e\nuntagged-background: #999999\nvery-muted-foreground: #888888\n"
},
"$:/palettes/Muted": {
"title": "$:/palettes/Muted",
"name": "Muted",
"description": "Bright tiddlers on a muted background",
"tags": "$:/tags/Palette",
"type": "application/x-tiddler-dictionary",
"text": "alert-background: #ffe476\nalert-border: #b99e2f\nalert-highlight: #881122\nalert-muted-foreground: #b99e2f\nbackground: #ffffff\nblockquote-bar: <<colour muted-foreground>>\nbutton-background:\nbutton-foreground:\nbutton-border:\ncode-background: #f7f7f9\ncode-border: #e1e1e8\ncode-foreground: #dd1144\ndirty-indicator: #ff0000\ndownload-background: #34c734\ndownload-foreground: <<colour background>>\ndragger-background: <<colour foreground>>\ndragger-foreground: <<colour background>>\ndropdown-background: <<colour background>>\ndropdown-border: <<colour muted-foreground>>\ndropdown-tab-background-selected: #fff\ndropdown-tab-background: #ececec\ndropzone-background: rgba(0,200,0,0.7)\nexternal-link-background-hover: inherit\nexternal-link-background-visited: inherit\nexternal-link-background: inherit\nexternal-link-foreground-hover: inherit\nexternal-link-foreground-visited: #0000aa\nexternal-link-foreground: #0000ee\nforeground: #333333\nmessage-background: #ecf2ff\nmessage-border: #cfd6e6\nmessage-foreground: #547599\nmodal-backdrop: <<colour foreground>>\nmodal-background: <<colour background>>\nmodal-border: #999999\nmodal-footer-background: #f5f5f5\nmodal-footer-border: #dddddd\nmodal-header-border: #eeeeee\nmuted-foreground: #bbb\nnotification-background: #ffffdd\nnotification-border: #999999\npage-background: #6f6f70\npre-background: #f5f5f5\npre-border: #cccccc\nprimary: #29a6ee\nselect-tag-background:\nselect-tag-foreground:\nsidebar-button-foreground: <<colour foreground>>\nsidebar-controls-foreground-hover: #000000\nsidebar-controls-foreground: #c2c1c2\nsidebar-foreground-shadow: rgba(255,255,255,0)\nsidebar-foreground: #d3d2d4\nsidebar-muted-foreground-hover: #444444\nsidebar-muted-foreground: #c0c0c0\nsidebar-tab-background-selected: #6f6f70\nsidebar-tab-background: #666667\nsidebar-tab-border-selected: #999\nsidebar-tab-border: #515151\nsidebar-tab-divider: #999\nsidebar-tab-foreground-selected: \nsidebar-tab-foreground: #999\nsidebar-tiddler-link-foreground-hover: #444444\nsidebar-tiddler-link-foreground: #d1d0d2\nsite-title-foreground: <<colour tiddler-title-foreground>>\nstatic-alert-foreground: #aaaaaa\ntab-background-selected: #ffffff\ntab-background: #d8d8d8\ntab-border-selected: #d8d8d8\ntab-border: #cccccc\ntab-divider: #d8d8d8\ntab-foreground-selected: <<colour tab-foreground>>\ntab-foreground: #666666\ntable-border: #dddddd\ntable-footer-background: #a8a8a8\ntable-header-background: #f0f0f0\ntag-background: #d5ad34\ntag-foreground: #ffffff\ntiddler-background: <<colour background>>\ntiddler-border: <<colour background>>\ntiddler-controls-foreground-hover: #888888\ntiddler-controls-foreground-selected: #444444\ntiddler-controls-foreground: #cccccc\ntiddler-editor-background: #f8f8f8\ntiddler-editor-border-image: #ffffff\ntiddler-editor-border: #cccccc\ntiddler-editor-fields-even: #e0e8e0\ntiddler-editor-fields-odd: #f0f4f0\ntiddler-info-background: #f8f8f8\ntiddler-info-border: #dddddd\ntiddler-info-tab-background: #f8f8f8\ntiddler-link-background: <<colour background>>\ntiddler-link-foreground: <<colour primary>>\ntiddler-subtitle-foreground: #c0c0c0\ntiddler-title-foreground: #182955\ntoolbar-new-button: \ntoolbar-options-button: \ntoolbar-save-button: \ntoolbar-info-button: \ntoolbar-edit-button: \ntoolbar-close-button: \ntoolbar-delete-button: \ntoolbar-cancel-button: \ntoolbar-done-button: \nuntagged-background: #999999\nvery-muted-foreground: #888888\n"
},
"$:/palettes/ContrastLight": {
"title": "$:/palettes/ContrastLight",
"name": "Contrast (Light)",
"description": "High contrast and unambiguous (light version)",
"tags": "$:/tags/Palette",
"type": "application/x-tiddler-dictionary",
"text": "alert-background: #f00\nalert-border: <<colour background>>\nalert-highlight: <<colour foreground>>\nalert-muted-foreground: #800\nbackground: #fff\nblockquote-bar: <<colour muted-foreground>>\nbutton-background: <<colour background>>\nbutton-foreground: <<colour foreground>>\nbutton-border: <<colour foreground>>\ncode-background: <<colour background>>\ncode-border: <<colour foreground>>\ncode-foreground: <<colour foreground>>\ndirty-indicator: #f00\ndownload-background: #080\ndownload-foreground: <<colour background>>\ndragger-background: <<colour foreground>>\ndragger-foreground: <<colour background>>\ndropdown-background: <<colour background>>\ndropdown-border: <<colour muted-foreground>>\ndropdown-tab-background-selected: <<colour foreground>>\ndropdown-tab-background: <<colour foreground>>\ndropzone-background: rgba(0,200,0,0.7)\nexternal-link-background-hover: inherit\nexternal-link-background-visited: inherit\nexternal-link-background: inherit\nexternal-link-foreground-hover: inherit\nexternal-link-foreground-visited: #00a\nexternal-link-foreground: #00e\nforeground: #000\nmessage-background: <<colour foreground>>\nmessage-border: <<colour background>>\nmessage-foreground: <<colour background>>\nmodal-backdrop: <<colour foreground>>\nmodal-background: <<colour background>>\nmodal-border: <<colour foreground>>\nmodal-footer-background: <<colour background>>\nmodal-footer-border: <<colour foreground>>\nmodal-header-border: <<colour foreground>>\nmuted-foreground: <<colour foreground>>\nnotification-background: <<colour background>>\nnotification-border: <<colour foreground>>\npage-background: <<colour background>>\npre-background: <<colour background>>\npre-border: <<colour foreground>>\nprimary: #00f\nselect-tag-background:\nselect-tag-foreground:\nsidebar-button-foreground: <<colour foreground>>\nsidebar-controls-foreground-hover: <<colour background>>\nsidebar-controls-foreground: <<colour foreground>>\nsidebar-foreground-shadow: rgba(0,0,0, 0)\nsidebar-foreground: <<colour foreground>>\nsidebar-muted-foreground-hover: #444444\nsidebar-muted-foreground: <<colour foreground>>\nsidebar-tab-background-selected: <<colour background>>\nsidebar-tab-background: <<colour tab-background>>\nsidebar-tab-border-selected: <<colour tab-border-selected>>\nsidebar-tab-border: <<colour tab-border>>\nsidebar-tab-divider: <<colour tab-divider>>\nsidebar-tab-foreground-selected: <<colour foreground>>\nsidebar-tab-foreground: <<colour tab-foreground>>\nsidebar-tiddler-link-foreground-hover: <<colour foreground>>\nsidebar-tiddler-link-foreground: <<colour primary>>\nsite-title-foreground: <<colour tiddler-title-foreground>>\nstatic-alert-foreground: #aaaaaa\ntab-background-selected: <<colour background>>\ntab-background: <<colour foreground>>\ntab-border-selected: <<colour foreground>>\ntab-border: <<colour foreground>>\ntab-divider: <<colour foreground>>\ntab-foreground-selected: <<colour foreground>>\ntab-foreground: <<colour background>>\ntable-border: #dddddd\ntable-footer-background: #a8a8a8\ntable-header-background: #f0f0f0\ntag-background: #000\ntag-foreground: #fff\ntiddler-background: <<colour background>>\ntiddler-border: <<colour foreground>>\ntiddler-controls-foreground-hover: #ddd\ntiddler-controls-foreground-selected: #fdd\ntiddler-controls-foreground: <<colour foreground>>\ntiddler-editor-background: <<colour background>>\ntiddler-editor-border-image: <<colour foreground>>\ntiddler-editor-border: #cccccc\ntiddler-editor-fields-even: <<colour background>>\ntiddler-editor-fields-odd: <<colour background>>\ntiddler-info-background: <<colour background>>\ntiddler-info-border: <<colour foreground>>\ntiddler-info-tab-background: <<colour background>>\ntiddler-link-background: <<colour background>>\ntiddler-link-foreground: <<colour primary>>\ntiddler-subtitle-foreground: <<colour foreground>>\ntiddler-title-foreground: <<colour foreground>>\ntoolbar-new-button: \ntoolbar-options-button: \ntoolbar-save-button: \ntoolbar-info-button: \ntoolbar-edit-button: \ntoolbar-close-button: \ntoolbar-delete-button: \ntoolbar-cancel-button: \ntoolbar-done-button: \nuntagged-background: <<colour foreground>>\nvery-muted-foreground: #888888\n"
},
"$:/palettes/ContrastDark": {
"title": "$:/palettes/ContrastDark",
"name": "Contrast (Dark)",
"description": "High contrast and unambiguous (dark version)",
"tags": "$:/tags/Palette",
"type": "application/x-tiddler-dictionary",
"text": "alert-background: #f00\nalert-border: <<colour background>>\nalert-highlight: <<colour foreground>>\nalert-muted-foreground: #800\nbackground: #000\nblockquote-bar: <<colour muted-foreground>>\nbutton-background: <<colour background>>\nbutton-foreground: <<colour foreground>>\nbutton-border: <<colour foreground>>\ncode-background: <<colour background>>\ncode-border: <<colour foreground>>\ncode-foreground: <<colour foreground>>\ndirty-indicator: #f00\ndownload-background: #080\ndownload-foreground: <<colour background>>\ndragger-background: <<colour foreground>>\ndragger-foreground: <<colour background>>\ndropdown-background: <<colour background>>\ndropdown-border: <<colour muted-foreground>>\ndropdown-tab-background-selected: <<colour foreground>>\ndropdown-tab-background: <<colour foreground>>\ndropzone-background: rgba(0,200,0,0.7)\nexternal-link-background-hover: inherit\nexternal-link-background-visited: inherit\nexternal-link-background: inherit\nexternal-link-foreground-hover: inherit\nexternal-link-foreground-visited: #00a\nexternal-link-foreground: #00e\nforeground: #fff\nmessage-background: <<colour foreground>>\nmessage-border: <<colour background>>\nmessage-foreground: <<colour background>>\nmodal-backdrop: <<colour foreground>>\nmodal-background: <<colour background>>\nmodal-border: <<colour foreground>>\nmodal-footer-background: <<colour background>>\nmodal-footer-border: <<colour foreground>>\nmodal-header-border: <<colour foreground>>\nmuted-foreground: <<colour foreground>>\nnotification-background: <<colour background>>\nnotification-border: <<colour foreground>>\npage-background: <<colour background>>\npre-background: <<colour background>>\npre-border: <<colour foreground>>\nprimary: #00f\nselect-tag-background:\nselect-tag-foreground:\nsidebar-button-foreground: <<colour foreground>>\nsidebar-controls-foreground-hover: <<colour background>>\nsidebar-controls-foreground: <<colour foreground>>\nsidebar-foreground-shadow: rgba(0,0,0, 0)\nsidebar-foreground: <<colour foreground>>\nsidebar-muted-foreground-hover: #444444\nsidebar-muted-foreground: <<colour foreground>>\nsidebar-tab-background-selected: <<colour background>>\nsidebar-tab-background: <<colour tab-background>>\nsidebar-tab-border-selected: <<colour tab-border-selected>>\nsidebar-tab-border: <<colour tab-border>>\nsidebar-tab-divider: <<colour tab-divider>>\nsidebar-tab-foreground-selected: <<colour foreground>>\nsidebar-tab-foreground: <<colour tab-foreground>>\nsidebar-tiddler-link-foreground-hover: <<colour foreground>>\nsidebar-tiddler-link-foreground: <<colour primary>>\nsite-title-foreground: <<colour tiddler-title-foreground>>\nstatic-alert-foreground: #aaaaaa\ntab-background-selected: <<colour background>>\ntab-background: <<colour foreground>>\ntab-border-selected: <<colour foreground>>\ntab-border: <<colour foreground>>\ntab-divider: <<colour foreground>>\ntab-foreground-selected: <<colour foreground>>\ntab-foreground: <<colour background>>\ntable-border: #dddddd\ntable-footer-background: #a8a8a8\ntable-header-background: #f0f0f0\ntag-background: #fff\ntag-foreground: #000\ntiddler-background: <<colour background>>\ntiddler-border: <<colour foreground>>\ntiddler-controls-foreground-hover: #ddd\ntiddler-controls-foreground-selected: #fdd\ntiddler-controls-foreground: <<colour foreground>>\ntiddler-editor-background: <<colour background>>\ntiddler-editor-border-image: <<colour foreground>>\ntiddler-editor-border: #cccccc\ntiddler-editor-fields-even: <<colour background>>\ntiddler-editor-fields-odd: <<colour background>>\ntiddler-info-background: <<colour background>>\ntiddler-info-border: <<colour foreground>>\ntiddler-info-tab-background: <<colour background>>\ntiddler-link-background: <<colour background>>\ntiddler-link-foreground: <<colour primary>>\ntiddler-subtitle-foreground: <<colour foreground>>\ntiddler-title-foreground: <<colour foreground>>\ntoolbar-new-button: \ntoolbar-options-button: \ntoolbar-save-button: \ntoolbar-info-button: \ntoolbar-edit-button: \ntoolbar-close-button: \ntoolbar-delete-button: \ntoolbar-cancel-button: \ntoolbar-done-button: \nuntagged-background: <<colour foreground>>\nvery-muted-foreground: #888888\n"
},
"$:/palettes/CupertinoDark": {
"title": "$:/palettes/CupertinoDark",
"tags": "$:/tags/Palette",
"name": "Cupertino Dark",
"description": "A macOS inspired dark palette",
"type": "application/x-tiddler-dictionary",
"text": "alert-background: #FF453A\nalert-border: #FF453A\nalert-highlight: #FFD60A\nalert-muted-foreground: <<colour muted-foreground>>\nbackground: #282828\nblockquote-bar: <<colour page-background>>\nbutton-foreground: <<colour background>>\ncode-background: <<colour pre-background>>\ncode-border: <<colour pre-border>>\ncode-foreground: rgba(255, 255, 255, 0.54)\ndirty-indicator: #FF453A\ndownload-background: <<colour primary>>\ndownload-foreground: <<colour foreground>>\ndragger-background: <<colour foreground>>\ndragger-foreground: <<colour background>>\ndropdown-background: <<colour tiddler-info-background>>\ndropdown-border: <<colour dropdown-background>>\ndropdown-tab-background-selected: #3F638B\ndropdown-tab-background: #323232\ndropzone-background: #30D158\nexternal-link-background-hover: transparent\nexternal-link-background-visited: transparent\nexternal-link-background: transparent\nexternal-link-foreground-hover: \nexternal-link-foreground-visited: #BF5AF2\nexternal-link-foreground: #32D74B\nforeground: #FFFFFF\nmenubar-background: #464646\nmenubar-foreground: #ffffff\nmessage-background: <<colour background>>\nmessage-border: <<colour very-muted-foreground>>\nmessage-foreground: rgba(255, 255, 255, 0.54)\nmodal-backdrop: <<colour page-background>>\nmodal-background: <<colour background>>\nmodal-border: <<colour very-muted-foreground>>\nmodal-footer-background: <<colour background>>\nmodal-footer-border: <<colour background>>\nmodal-header-border: <<colour very-muted-foreground>>\nmuted-foreground: #98989D\nnotification-background: <<colour dropdown-background>>\nnotification-border: <<colour dropdown-background>>\npage-background: #323232\npre-background: #464646\npre-border: transparent\nprimary: #0A84FF\nselect-tag-background: <<colour background>>\nselect-tag-foreground: <<colour foreground>>\nsidebar-button-foreground: <<colour background>>\nsidebar-controls-foreground-hover: #FF9F0A\nsidebar-controls-foreground: #8E8E93\nsidebar-foreground-shadow: transparent\nsidebar-foreground: rgba(255, 255, 255, 0.54)\nsidebar-muted-foreground-hover: rgba(255, 255, 255, 0.54)\nsidebar-muted-foreground: rgba(255, 255, 255, 0.38)\nsidebar-tab-background-selected: #3F638B\nsidebar-tab-background: <<colour background>>\nsidebar-tab-border-selected: <<colour background>>\nsidebar-tab-border: <<colour background>>\nsidebar-tab-divider: <<colour background>>\nsidebar-tab-foreground-selected: rgba(255, 255, 255, 0.87)\nsidebar-tab-foreground: rgba(255, 255, 255, 0.54)\nsidebar-tiddler-link-foreground-hover: rgba(255, 255, 255, 0.7)\nsidebar-tiddler-link-foreground: rgba(255, 255, 255, 0.54)\nsite-title-foreground: #ffffff\nstatic-alert-foreground: #B4B4B4\ntab-background-selected: #3F638B\ntab-background: <<colour page-background>>\ntab-border-selected: <<colour page-background>>\ntab-border: <<colour page-background>>\ntab-divider: <<colour page-background>>\ntab-foreground-selected: rgba(255, 255, 255, 0.87)\ntab-foreground: rgba(255, 255, 255, 0.54)\ntable-border: #464646\ntable-footer-background: <<colour tiddler-editor-fields-odd>>\ntable-header-background: <<colour tiddler-editor-fields-even>>\ntag-background: #48484A\ntag-foreground: #323232\ntiddler-background: <<colour background>>\ntiddler-border: transparent\ntiddler-controls-foreground-hover: <<colour sidebar-controls-foreground-hover>>\ntiddler-controls-foreground-selected: <<colour sidebar-controls-foreground-hover>>\ntiddler-controls-foreground: #48484A\ntiddler-editor-background: transparent\ntiddler-editor-border-image: \ntiddler-editor-border: rgba(255, 255, 255, 0.08)\ntiddler-editor-fields-even: rgba(255, 255, 255, 0.1)\ntiddler-editor-fields-odd: rgba(255, 255, 255, 0.04)\ntiddler-info-background: #1E1E1E\ntiddler-info-border: #1E1E1E\ntiddler-info-tab-background: #3F638B\ntiddler-link-background: <<colour background>>\ntiddler-link-foreground: <<colour primary>>\ntiddler-subtitle-foreground: <<colour muted-foreground>>\ntiddler-title-foreground: #FFFFFF\ntoolbar-new-button: \ntoolbar-options-button: \ntoolbar-save-button: \ntoolbar-info-button: \ntoolbar-edit-button: \ntoolbar-close-button: \ntoolbar-delete-button: \ntoolbar-cancel-button: \ntoolbar-done-button: \nuntagged-background: <<colour very-muted-foreground>>\nvery-muted-foreground: #464646\nselection-background: #3F638B\nselection-foreground: #ffffff\nwikilist-background: <<colour page-background>>\nwikilist-button-background: #3F638B\nwikilist-button-foreground: <<colour foreground>>\nwikilist-button-open: #32D74B\nwikilist-button-open-hover: #32D74B\nwikilist-button-reveal: #0A84FF\nwikilist-button-reveal-hover: #0A84FF\nwikilist-button-remove: #FF453A\nwikilist-button-remove-hover: #FF453A\nwikilist-droplink-dragover: #32D74B\nwikilist-item: <<colour background>>\nwikilist-toolbar-background: <<colour background>>\nwikilist-title: <<colour foreground>>\nwikilist-title-svg: <<colour foreground>>\nwikilist-toolbar-foreground: <<colour foreground>>\nwikilist-url: <<colour muted-foreground>>\n"
},
"$:/palettes/DarkPhotos": {
"title": "$:/palettes/DarkPhotos",
"created": "20150402111612188",
"description": "Good with dark photo backgrounds",
"modified": "20150402112344080",
"name": "DarkPhotos",
"tags": "$:/tags/Palette",
"type": "application/x-tiddler-dictionary",
"text": "alert-background: #ffe476\nalert-border: #b99e2f\nalert-highlight: #881122\nalert-muted-foreground: #b99e2f\nbackground: #ffffff\nblockquote-bar: <<colour muted-foreground>>\nbutton-background: \nbutton-foreground: \nbutton-border: \ncode-background: #f7f7f9\ncode-border: #e1e1e8\ncode-foreground: #dd1144\ndirty-indicator: #ff0000\ndownload-background: #34c734\ndownload-foreground: <<colour background>>\ndragger-background: <<colour foreground>>\ndragger-foreground: <<colour background>>\ndropdown-background: <<colour background>>\ndropdown-border: <<colour muted-foreground>>\ndropdown-tab-background-selected: #fff\ndropdown-tab-background: #ececec\ndropzone-background: rgba(0,200,0,0.7)\nexternal-link-background-hover: inherit\nexternal-link-background-visited: inherit\nexternal-link-background: inherit\nexternal-link-foreground-hover: inherit\nexternal-link-foreground-visited: #0000aa\nexternal-link-foreground: #0000ee\nforeground: #333333\nmessage-background: #ecf2ff\nmessage-border: #cfd6e6\nmessage-foreground: #547599\nmodal-backdrop: <<colour foreground>>\nmodal-background: <<colour background>>\nmodal-border: #999999\nmodal-footer-background: #f5f5f5\nmodal-footer-border: #dddddd\nmodal-header-border: #eeeeee\nmuted-foreground: #ddd\nnotification-background: #ffffdd\nnotification-border: #999999\npage-background: #336438\npre-background: #f5f5f5\npre-border: #cccccc\nprimary: #5778d8\nselect-tag-background:\nselect-tag-foreground:\nsidebar-button-foreground: <<colour foreground>>\nsidebar-controls-foreground-hover: #ccf\nsidebar-controls-foreground: #fff\nsidebar-foreground-shadow: rgba(0,0,0, 0.5)\nsidebar-foreground: #fff\nsidebar-muted-foreground-hover: #444444\nsidebar-muted-foreground: #eee\nsidebar-tab-background-selected: rgba(255,255,255, 0.8)\nsidebar-tab-background: rgba(255,255,255, 0.4)\nsidebar-tab-border-selected: <<colour tab-border-selected>>\nsidebar-tab-border: <<colour tab-border>>\nsidebar-tab-divider: rgba(255,255,255, 0.2)\nsidebar-tab-foreground-selected: \nsidebar-tab-foreground: <<colour tab-foreground>>\nsidebar-tiddler-link-foreground-hover: #aaf\nsidebar-tiddler-link-foreground: #ddf\nsite-title-foreground: #fff\nstatic-alert-foreground: #aaaaaa\ntab-background-selected: #ffffff\ntab-background: #d8d8d8\ntab-border-selected: #d8d8d8\ntab-border: #cccccc\ntab-divider: #d8d8d8\ntab-foreground-selected: <<colour tab-foreground>>\ntab-foreground: #666666\ntable-border: #dddddd\ntable-footer-background: #a8a8a8\ntable-header-background: #f0f0f0\ntag-background: #ec6\ntag-foreground: #ffffff\ntiddler-background: <<colour background>>\ntiddler-border: <<colour background>>\ntiddler-controls-foreground-hover: #888888\ntiddler-controls-foreground-selected: #444444\ntiddler-controls-foreground: #cccccc\ntiddler-editor-background: #f8f8f8\ntiddler-editor-border-image: #ffffff\ntiddler-editor-border: #cccccc\ntiddler-editor-fields-even: #e0e8e0\ntiddler-editor-fields-odd: #f0f4f0\ntiddler-info-background: #f8f8f8\ntiddler-info-border: #dddddd\ntiddler-info-tab-background: #f8f8f8\ntiddler-link-background: <<colour background>>\ntiddler-link-foreground: <<colour primary>>\ntiddler-subtitle-foreground: #c0c0c0\ntiddler-title-foreground: #182955\ntoolbar-new-button: \ntoolbar-options-button: \ntoolbar-save-button: \ntoolbar-info-button: \ntoolbar-edit-button: \ntoolbar-close-button: \ntoolbar-delete-button: \ntoolbar-cancel-button: \ntoolbar-done-button: \nuntagged-background: #999999\nvery-muted-foreground: #888888\n"
},
"$:/palettes/DesertSand": {
"title": "$:/palettes/DesertSand",
"tags": "$:/tags/Palette",
"name": "Desert Sand",
"description": "A desert sand palette",
"type": "application/x-tiddler-dictionary",
"text": "alert-background: #ffe476\nalert-border: #b99e2f\nalert-highlight: #881122\nalert-muted-foreground: #b99e2f\nbackground: #E9E0C7\nblockquote-bar: <<colour muted-foreground>>\nbutton-foreground: <<colour foreground>>\ncode-background: #F3EDDF\ncode-border: #C3BAA1\ncode-foreground: #ab3250\ndiff-delete-background: #bd8b8b\ndiff-delete-foreground: <<colour foreground>>\ndiff-equal-background: \ndiff-equal-foreground: <<colour foreground>>\ndiff-insert-background: #91c093\ndiff-insert-foreground: <<colour foreground>>\ndiff-invisible-background: \ndiff-invisible-foreground: <<colour muted-foreground>>\ndirty-indicator: #ad3434\ndownload-background: #6ca16c\ndownload-foreground: <<colour background>>\ndragger-background: <<colour foreground>>\ndragger-foreground: <<colour background>>\ndropdown-background: <<colour background>>\ndropdown-border: <<colour muted-foreground>>\ndropdown-tab-background-selected: #E9E0C7\ndropdown-tab-background: #BAB29C\ndropzone-background: rgba(0,200,0,0.7)\nexternal-link-background-hover: inherit\nexternal-link-background-visited: inherit\nexternal-link-background: inherit\nexternal-link-foreground-hover: inherit\nexternal-link-foreground-visited: #313163\nexternal-link-foreground: #555592\nforeground: #2D2A23\nmenubar-background: #CDC2A6\nmenubar-foreground: #5A5446\nmessage-background: #ECE5CF\nmessage-border: #D6CBAA\nmessage-foreground: #5f6e7d\nmodal-backdrop: <<colour foreground>>\nmodal-background: <<colour background>>\nmodal-border: #8A8885\nmodal-footer-background: #CDC2A6\nmodal-footer-border: #9D998E\nmodal-header-border: #9D998E\nmuted-foreground: #9D998E\nnotification-background: #F0E9D7\nnotification-border: #939189\npage-background: #e0d3af\npre-background: #D6CBAA\npre-border: #CDC2A6\nprimary: #5B6F55\nselection-background: #9D947B\nselection-foreground: <<colour foreground>>\nselect-tag-background: #F0E9D7\nselect-tag-foreground: #2D2A23\nsidebar-button-foreground: <<colour foreground>>\nsidebar-controls-foreground-hover: #2D2A23\nsidebar-controls-foreground: #867F69\nsidebar-foreground-shadow: transparent\nsidebar-foreground: #867F69\nsidebar-muted-foreground-hover: #706A58\nsidebar-muted-foreground: #B3A98C\nsidebar-tab-background-selected: #e0d3af\nsidebar-tab-background: #A6A193\nsidebar-tab-border-selected: #C3BAA1\nsidebar-tab-border: #C3BAA1\nsidebar-tab-divider: #CDC2A6\nsidebar-tab-foreground-selected: \nsidebar-tab-foreground: #2D2A23\nsidebar-tiddler-link-foreground-hover: #433F35\nsidebar-tiddler-link-foreground: #706A58\nsite-title-foreground: <<colour tiddler-title-foreground>>\nstatic-alert-foreground: #A6A193\ntab-background-selected: #E9E0C7\ntab-background: #A6A193\ntab-border-selected: #C3BAA1\ntab-border: #C3BAA1\ntab-divider: #CDC2A6\ntab-foreground-selected: <<colour tab-foreground>>\ntab-foreground: #2D2A23\ntable-border: #9D998E\ntable-footer-background: #8A8885\ntable-header-background: #B0AA98\ntag-background: #706A58\ntag-foreground: #E3D7B7\ntiddler-background: <<colour background>>\ntiddler-border: <<colour background>>\ntiddler-controls-foreground-hover: #9D947B\ntiddler-controls-foreground-selected: #706A58\ntiddler-controls-foreground: #C3BAA1\ntiddler-editor-background: #E9E0C7\ntiddler-editor-border-image: #A6A193\ntiddler-editor-border: #A6A193\ntiddler-editor-fields-even: #D6CBAA\ntiddler-editor-fields-odd: #C3BAA1\ntiddler-info-background: #E3D7B7\ntiddler-info-border: #BAB29C\ntiddler-info-tab-background: #E9E0C7\ntiddler-link-background: <<colour background>>\ntiddler-link-foreground: <<colour primary>>\ntiddler-subtitle-foreground: #867F69\ntiddler-title-foreground: #374464\ntoolbar-new-button: \ntoolbar-options-button: \ntoolbar-save-button: \ntoolbar-info-button: \ntoolbar-edit-button: \ntoolbar-close-button: \ntoolbar-delete-button: \ntoolbar-cancel-button: \ntoolbar-done-button: \nuntagged-background: #8A8885\nvery-muted-foreground: #CDC2A6\nwikilist-background: <<colour page-background>>\nwikilist-item: #CDC2A6\nwikilist-info: #161512\nwikilist-title: #433F35\nwikilist-title-svg: <<colour wikilist-title>>\nwikilist-url: #706A58\nwikilist-button-open: #7db66a\nwikilist-button-open-hover: #56a556\nwikilist-button-reveal: #5a6c9e\nwikilist-button-reveal-hover: #454591\nwikilist-button-remove: #bc5972\nwikilist-button-remove-hover: #814040\nwikilist-toolbar-background: #CDC2A6\nwikilist-toolbar-foreground: #2D2A23\nwikilist-droplink-dragover: rgba(255,192,192,0.5)\nwikilist-button-background: #A6A193\nwikilist-button-foreground: #161512\n"
},
"$:/palettes/GruvboxDark": {
"title": "$:/palettes/GruvboxDark",
"name": "Gruvbox Dark",
"description": "Retro groove color scheme",
"tags": "$:/tags/Palette",
"type": "application/x-tiddler-dictionary",
"license": "https://github.com/morhetz/gruvbox",
"text": "alert-background: #cc241d\nalert-border: #cc241d\nalert-highlight: #d79921\nalert-muted-foreground: #504945\nbackground: #3c3836\nblockquote-bar: <<colour muted-foreground>>\nbutton-foreground: <<colour page-background>>\ncode-background: #504945\ncode-border: #504945\ncode-foreground: #fb4934\ndiff-delete-background: #fb4934\ndiff-delete-foreground: <<colour foreground>>\ndiff-equal-background: \ndiff-equal-foreground: <<colour foreground>>\ndiff-insert-background: #b8bb26\ndiff-insert-foreground: <<colour foreground>>\ndiff-invisible-background: \ndiff-invisible-foreground: <<colour muted-foreground>>\ndirty-indicator: #fb4934\ndownload-background: #b8bb26\ndownload-foreground: <<colour background>>\ndragger-background: <<colour foreground>>\ndragger-foreground: <<colour background>>\ndropdown-background: #665c54\ndropdown-border: <<colour background>>\ndropdown-tab-background-selected: #ebdbb2\ndropdown-tab-background: #665c54\ndropzone-background: #98971a\nexternal-link-background-hover: inherit\nexternal-link-background-visited: inherit\nexternal-link-background: inherit\nexternal-link-foreground-hover: inherit\nexternal-link-foreground-visited: #d3869b\nexternal-link-foreground: #8ec07c\nforeground: #fbf1c7\nmenubar-background: #504945\nmenubar-foreground: <<colour foreground>>\nmessage-background: #83a598\nmessage-border: #83a598\nmessage-foreground: #3c3836\nmodal-backdrop: <<colour foreground>>\nmodal-background: <<colour background>>\nmodal-border: #504945\nmodal-footer-background: #3c3836\nmodal-footer-border: #3c3836\nmodal-header-border: #3c3836\nmuted-foreground: #d5c4a1\nnotification-background: <<colour primary>>\nnotification-border: <<colour primary>>\npage-background: #282828\npre-background: #504945\npre-border: #504945\nprimary: #d79921\nselect-tag-background: #665c54\nselect-tag-foreground: <<colour foreground>>\nselection-background: #458588\nselection-foreground: <<colour foreground>>\nsidebar-button-foreground: <<colour page-background>>\nsidebar-controls-foreground-hover: #7c6f64\nsidebar-controls-foreground: #504945\nsidebar-foreground-shadow: transparent\nsidebar-foreground: #fbf1c7\nsidebar-muted-foreground-hover: #7c6f64\nsidebar-muted-foreground: #504945\nsidebar-tab-background-selected: #bdae93\nsidebar-tab-background: #3c3836\nsidebar-tab-border-selected: <<colour tab-border-selected>>\nsidebar-tab-border: #bdae93\nsidebar-tab-divider: <<colour page-background>>\nsidebar-tab-foreground-selected: #282828\nsidebar-tab-foreground: <<colour tab-foreground>>\nsidebar-tiddler-link-foreground-hover: #458588\nsidebar-tiddler-link-foreground: #98971a\nsite-title-foreground: <<colour tiddler-title-foreground>>\nstatic-alert-foreground: #B48EAD\ntab-background-selected: #ebdbb2\ntab-background: #665c54\ntab-border-selected: #665c54\ntab-border: #665c54\ntab-divider: #bdae93\ntab-foreground-selected: #282828\ntab-foreground: #ebdbb2\ntable-border: #7c6f64\ntable-footer-background: #665c54\ntable-header-background: #504945\ntag-background: #d3869b\ntag-foreground: #282828\ntiddler-background: <<colour background>>\ntiddler-border: <<colour background>>\ntiddler-controls-foreground-hover: #7c6f64\ntiddler-controls-foreground-selected: <<colour primary>>\ntiddler-controls-foreground: #665c54\ntiddler-editor-background: #32302f\ntiddler-editor-border-image: #282828\ntiddler-editor-border: #282828\ntiddler-editor-fields-even: #504945\ntiddler-editor-fields-odd: #7c6f64\ntiddler-info-background: #32302f\ntiddler-info-border: #ebdbb2\ntiddler-info-tab-background: #ebdbb2\ntiddler-link-background: <<colour background>>\ntiddler-link-foreground: <<colour primary>>\ntiddler-subtitle-foreground: #7c6f64\ntiddler-title-foreground: #a89984\ntoolbar-new-button: \ntoolbar-options-button: \ntoolbar-save-button: \ntoolbar-info-button: \ntoolbar-edit-button: \ntoolbar-close-button: \ntoolbar-delete-button: \ntoolbar-cancel-button: \ntoolbar-done-button: \nuntagged-background: #504945\nvery-muted-foreground: #bdae93\nwikilist-background: <<colour page-background>>\nwikilist-button-background: #acacac\nwikilist-button-foreground: <<colour button-foreground>>\nwikilist-item: <<colour background>>\nwikilist-toolbar-background: <<colour background>>\nwikilist-toolbar-foreground: <<colour foreground>>\nwikilist-title: <<colour foreground>>\nwikilist-title-svg: <<colour wikilist-title>>\nwikilist-url: <<colour muted-foreground>>\nwikilist-button-open-hover: <<colour primary>>\nwikilist-button-open: <<colour dropzone-background>>\nwikilist-button-remove: <<colour dirty-indicator>>\nwikilist-button-remove-hover: <<colour alert-background>>\nwikilist-droplink-dragover: <<colour dropzone-background>>\nwikilist-button-reveal: <<colour sidebar-tiddler-link-foreground-hover>>\nwikilist-button-reveal-hover: <<colour message-background>>\n"
},
"$:/palettes/Nord": {
"title": "$:/palettes/Nord",
"name": "Nord",
"description": "An arctic, north-bluish color palette.",
"tags": "$:/tags/Palette",
"type": "application/x-tiddler-dictionary",
"license": "MIT, arcticicestudio, https://github.com/arcticicestudio/nord/blob/develop/LICENSE.md",
"text": "alert-background: #D08770\nalert-border: #D08770\nalert-highlight: #B48EAD\nalert-muted-foreground: #4C566A\nbackground: #3b4252\nblockquote-bar: <<colour muted-foreground>>\nbutton-foreground: <<colour page-background>>\ncode-background: #2E3440\ncode-border: #2E3440\ncode-foreground: #BF616A\ndiff-delete-background: #BF616A\ndiff-delete-foreground: <<colour foreground>>\ndiff-equal-background: \ndiff-equal-foreground: <<colour foreground>>\ndiff-insert-background: #A3BE8C\ndiff-insert-foreground: <<colour foreground>>\ndiff-invisible-background: \ndiff-invisible-foreground: <<colour muted-foreground>>\ndirty-indicator: #BF616A\ndownload-background: #A3BE8C\ndownload-foreground: <<colour background>>\ndragger-background: <<colour foreground>>\ndragger-foreground: <<colour background>>\ndropdown-background: <<colour background>>\ndropdown-border: <<colour background>>\ndropdown-tab-background-selected: #ECEFF4\ndropdown-tab-background: #4C566A\ndropzone-background: #A3BE8C\nexternal-link-background-hover: inherit\nexternal-link-background-visited: inherit\nexternal-link-background: inherit\nexternal-link-foreground-hover: inherit\nexternal-link-foreground-visited: #5E81AC\nexternal-link-foreground: #8FBCBB\nforeground: #d8dee9\nmenubar-background: #2E3440\nmenubar-foreground: #d8dee9\nmessage-background: #2E3440\nmessage-border: #2E3440\nmessage-foreground: #547599\nmodal-backdrop: <<colour foreground>>\nmodal-background: <<colour background>>\nmodal-border: #3b4252\nmodal-footer-background: #3b4252\nmodal-footer-border: #3b4252\nmodal-header-border: #3b4252\nmuted-foreground: #4C566A\nnotification-background: <<colour primary>>\nnotification-border: #EBCB8B\npage-background: #2e3440\npre-background: #2E3440\npre-border: #2E3440\nprimary: #5E81AC\nselect-tag-background: #3b4252\nselect-tag-foreground: <<colour foreground>>\nselection-background: #5E81AC\nselection-foreground: <<colour foreground>>\nsidebar-button-foreground: <<colour page-background>>\nsidebar-controls-foreground-hover: #D8DEE9\nsidebar-controls-foreground: #4C566A\nsidebar-foreground-shadow: transparent\nsidebar-foreground: #D8DEE9\nsidebar-muted-foreground-hover: #4C566A\nsidebar-muted-foreground: #4C566A\nsidebar-tab-background-selected: #ECEFF4\nsidebar-tab-background: #4C566A\nsidebar-tab-border-selected: <<colour tab-border-selected>>\nsidebar-tab-border: #4C566A\nsidebar-tab-divider: <<colour page-background>>\nsidebar-tab-foreground-selected: #4C566A\nsidebar-tab-foreground: <<colour tab-foreground>>\nsidebar-tiddler-link-foreground-hover: #A3BE8C\nsidebar-tiddler-link-foreground: #81A1C1\nsite-title-foreground: <<colour tiddler-title-foreground>>\nstatic-alert-foreground: #B48EAD\ntab-background-selected: #ECEFF4\ntab-background: #4C566A\ntab-border-selected: #4C566A\ntab-border: #4C566A\ntab-divider: #4C566A\ntab-foreground-selected: #4C566A\ntab-foreground: #D8DEE9\ntable-border: #4C566A\ntable-footer-background: #2e3440\ntable-header-background: #2e3440\ntag-background: #A3BE8C\ntag-foreground: #4C566A\ntiddler-background: <<colour background>>\ntiddler-border: <<colour background>>\ntiddler-controls-foreground-hover: \ntiddler-controls-foreground-selected: #EBCB8B\ntiddler-controls-foreground: #4C566A\ntiddler-editor-background: #2e3440\ntiddler-editor-border-image: #2e3440\ntiddler-editor-border: #3b4252\ntiddler-editor-fields-even: #2e3440\ntiddler-editor-fields-odd: #2e3440\ntiddler-info-background: #2e3440\ntiddler-info-border: #2e3440\ntiddler-info-tab-background: #2e3440\ntiddler-link-background: <<colour background>>\ntiddler-link-foreground: <<colour primary>>\ntiddler-subtitle-foreground: #4C566A\ntiddler-title-foreground: #81A1C1\ntoolbar-new-button: \ntoolbar-options-button: \ntoolbar-save-button: \ntoolbar-info-button: \ntoolbar-edit-button: \ntoolbar-close-button: \ntoolbar-delete-button: \ntoolbar-cancel-button: \ntoolbar-done-button: \nuntagged-background: #2d3038\nvery-muted-foreground: #2d3038\nwikilist-background: <<colour page-background>>\nwikilist-toolbar-background: <<colour background>>\nwikilist-item: <<colour background>>\nwikilist-title: <<colour foreground>>\nwikilist-info: <<colour muted-foreground>>\nwikilist-button-open: #A3BE8C\nwikilist-button-open-hover: #A3BE8C\nwikilist-button-reveal: #81A1C1\nwikilist-button-reveal-hover: #81A1C1\nwikilist-button-remove: #B48EAD\nwikilist-button-remove-hover: #B48EAD\n"
},
"$:/palettes/Rocker": {
"title": "$:/palettes/Rocker",
"name": "Rocker",
"description": "A dark theme",
"tags": "$:/tags/Palette",
"type": "application/x-tiddler-dictionary",
"text": "alert-background: #ffe476\nalert-border: #b99e2f\nalert-highlight: #881122\nalert-muted-foreground: #b99e2f\nbackground: #ffffff\nblockquote-bar: <<colour muted-foreground>>\nbutton-background:\nbutton-foreground:\nbutton-border:\ncode-background: #f7f7f9\ncode-border: #e1e1e8\ncode-foreground: #dd1144\ndirty-indicator: #ff0000\ndownload-background: #34c734\ndownload-foreground: <<colour background>>\ndragger-background: <<colour foreground>>\ndragger-foreground: <<colour background>>\ndropdown-background: <<colour background>>\ndropdown-border: <<colour muted-foreground>>\ndropdown-tab-background-selected: #fff\ndropdown-tab-background: #ececec\ndropzone-background: rgba(0,200,0,0.7)\nexternal-link-background-hover: inherit\nexternal-link-background-visited: inherit\nexternal-link-background: inherit\nexternal-link-foreground-hover: inherit\nexternal-link-foreground-visited: #0000aa\nexternal-link-foreground: #0000ee\nforeground: #333333\nmessage-background: #ecf2ff\nmessage-border: #cfd6e6\nmessage-foreground: #547599\nmodal-backdrop: <<colour foreground>>\nmodal-background: <<colour background>>\nmodal-border: #999999\nmodal-footer-background: #f5f5f5\nmodal-footer-border: #dddddd\nmodal-header-border: #eeeeee\nmuted-foreground: #999999\nnotification-background: #ffffdd\nnotification-border: #999999\npage-background: #000\npre-background: #f5f5f5\npre-border: #cccccc\nprimary: #cc0000\nselect-tag-background:\nselect-tag-foreground:\nsidebar-button-foreground: <<colour foreground>>\nsidebar-controls-foreground-hover: #000000\nsidebar-controls-foreground: #ffffff\nsidebar-foreground-shadow: rgba(255,255,255, 0.0)\nsidebar-foreground: #acacac\nsidebar-muted-foreground-hover: #444444\nsidebar-muted-foreground: #c0c0c0\nsidebar-tab-background-selected: #000\nsidebar-tab-background: <<colour tab-background>>\nsidebar-tab-border-selected: <<colour tab-border-selected>>\nsidebar-tab-border: <<colour tab-border>>\nsidebar-tab-divider: <<colour tab-divider>>\nsidebar-tab-foreground-selected: \nsidebar-tab-foreground: <<colour tab-foreground>>\nsidebar-tiddler-link-foreground-hover: #ffbb99\nsidebar-tiddler-link-foreground: #cc0000\nsite-title-foreground: <<colour tiddler-title-foreground>>\nstatic-alert-foreground: #aaaaaa\ntab-background-selected: #ffffff\ntab-background: #d8d8d8\ntab-border-selected: #d8d8d8\ntab-border: #cccccc\ntab-divider: #d8d8d8\ntab-foreground-selected: <<colour tab-foreground>>\ntab-foreground: #666666\ntable-border: #dddddd\ntable-footer-background: #a8a8a8\ntable-header-background: #f0f0f0\ntag-background: #ffbb99\ntag-foreground: #000\ntiddler-background: <<colour background>>\ntiddler-border: <<colour background>>\ntiddler-controls-foreground-hover: #888888\ntiddler-controls-foreground-selected: #444444\ntiddler-controls-foreground: #cccccc\ntiddler-editor-background: #f8f8f8\ntiddler-editor-border-image: #ffffff\ntiddler-editor-border: #cccccc\ntiddler-editor-fields-even: #e0e8e0\ntiddler-editor-fields-odd: #f0f4f0\ntiddler-info-background: #f8f8f8\ntiddler-info-border: #dddddd\ntiddler-info-tab-background: #f8f8f8\ntiddler-link-background: <<colour background>>\ntiddler-link-foreground: <<colour primary>>\ntiddler-subtitle-foreground: #c0c0c0\ntiddler-title-foreground: #cc0000\ntoolbar-new-button:\ntoolbar-options-button:\ntoolbar-save-button:\ntoolbar-info-button:\ntoolbar-edit-button:\ntoolbar-close-button:\ntoolbar-delete-button:\ntoolbar-cancel-button:\ntoolbar-done-button:\nuntagged-background: #999999\nvery-muted-foreground: #888888\n"
},
"$:/palettes/SolarFlare": {
"title": "$:/palettes/SolarFlare",
"name": "Solar Flare",
"description": "Warm, relaxing earth colours",
"tags": "$:/tags/Palette",
"type": "application/x-tiddler-dictionary",
"text": ": Background Tones\n\nbase03: #002b36\nbase02: #073642\n\n: Content Tones\n\nbase01: #586e75\nbase00: #657b83\nbase0: #839496\nbase1: #93a1a1\n\n: Background Tones\n\nbase2: #eee8d5\nbase3: #fdf6e3\n\n: Accent Colors\n\nyellow: #b58900\norange: #cb4b16\nred: #dc322f\nmagenta: #d33682\nviolet: #6c71c4\nblue: #268bd2\ncyan: #2aa198\ngreen: #859900\n\n: Additional Tones (RA)\n\nbase10: #c0c4bb\nviolet-muted: #7c81b0\nblue-muted: #4e7baa\n\nyellow-hot: #ffcc44\norange-hot: #eb6d20\nred-hot: #ff2222\nblue-hot: #2298ee\ngreen-hot: #98ee22\n\n: Palette\n\n: Do not use colour macro for background and foreground\nbackground: #fdf6e3\n download-foreground: <<colour background>>\n dragger-foreground: <<colour background>>\n dropdown-background: <<colour background>>\n modal-background: <<colour background>>\n sidebar-foreground-shadow: <<colour background>>\n tiddler-background: <<colour background>>\n tiddler-border: <<colour background>>\n tiddler-link-background: <<colour background>>\n tab-background-selected: <<colour background>>\n dropdown-tab-background-selected: <<colour tab-background-selected>>\nforeground: #657b83\n dragger-background: <<colour foreground>>\n tab-foreground: <<colour foreground>>\n tab-foreground-selected: <<colour tab-foreground>>\n sidebar-tab-foreground-selected: <<colour tab-foreground-selected>>\n sidebar-tab-foreground: <<colour tab-foreground>>\n sidebar-button-foreground: <<colour foreground>>\n sidebar-controls-foreground: <<colour foreground>>\n sidebar-foreground: <<colour foreground>>\n: base03\n: base02\n: base01\n alert-muted-foreground: <<colour base01>>\n: base00\n code-foreground: <<colour base00>>\n message-foreground: <<colour base00>>\n tag-foreground: <<colour base00>>\n: base0\n sidebar-tiddler-link-foreground: <<colour base0>>\n: base1\n muted-foreground: <<colour base1>>\n blockquote-bar: <<colour muted-foreground>>\n dropdown-border: <<colour muted-foreground>>\n sidebar-muted-foreground: <<colour muted-foreground>>\n tiddler-title-foreground: <<colour muted-foreground>>\n site-title-foreground: <<colour tiddler-title-foreground>>\n: base2\n modal-footer-background: <<colour base2>>\n page-background: <<colour base2>>\n modal-backdrop: <<colour page-background>>\n notification-background: <<colour page-background>>\n code-background: <<colour page-background>>\n code-border: <<colour code-background>>\n pre-background: <<colour page-background>>\n pre-border: <<colour pre-background>>\n sidebar-tab-background-selected: <<colour page-background>>\n table-header-background: <<colour base2>>\n tag-background: <<colour base2>>\n tiddler-editor-background: <<colour base2>>\n tiddler-info-background: <<colour base2>>\n tiddler-info-tab-background: <<colour base2>>\n tab-background: <<colour base2>>\n dropdown-tab-background: <<colour tab-background>>\n: base3\n alert-background: <<colour base3>>\n message-background: <<colour base3>>\n: yellow\n: orange\n: red\n: magenta\n alert-highlight: <<colour magenta>>\n: violet\n external-link-foreground: <<colour violet>>\n: blue\n: cyan\n: green\n: base10\n tiddler-controls-foreground: <<colour base10>>\n: violet-muted\n external-link-foreground-visited: <<colour violet-muted>>\n: blue-muted\n primary: <<colour blue-muted>>\n download-background: <<colour primary>>\n tiddler-link-foreground: <<colour primary>>\n\nalert-border: #b99e2f\ndirty-indicator: #ff0000\ndropzone-background: rgba(0,200,0,0.7)\nexternal-link-background-hover: inherit\nexternal-link-background-visited: inherit\nexternal-link-background: inherit\nexternal-link-foreground-hover: inherit\nmessage-border: #cfd6e6\nmodal-border: #999999\nselect-tag-background:\nselect-tag-foreground:\nsidebar-controls-foreground-hover:\nsidebar-muted-foreground-hover:\nsidebar-tab-background: #ded8c5\nsidebar-tiddler-link-foreground-hover:\nstatic-alert-foreground: #aaaaaa\ntab-border: #cccccc\n modal-footer-border: <<colour tab-border>>\n modal-header-border: <<colour tab-border>>\n notification-border: <<colour tab-border>>\n sidebar-tab-border: <<colour tab-border>>\n tab-border-selected: <<colour tab-border>>\n sidebar-tab-border-selected: <<colour tab-border-selected>>\ntab-divider: #d8d8d8\n sidebar-tab-divider: <<colour tab-divider>>\ntable-border: #dddddd\ntable-footer-background: #a8a8a8\ntiddler-controls-foreground-hover: #888888\ntiddler-controls-foreground-selected: #444444\ntiddler-editor-border-image: #ffffff\ntiddler-editor-border: #cccccc\ntiddler-editor-fields-even: #e0e8e0\ntiddler-editor-fields-odd: #f0f4f0\ntiddler-info-border: #dddddd\ntiddler-subtitle-foreground: #c0c0c0\ntoolbar-new-button:\ntoolbar-options-button:\ntoolbar-save-button:\ntoolbar-info-button:\ntoolbar-edit-button:\ntoolbar-close-button:\ntoolbar-delete-button:\ntoolbar-cancel-button:\ntoolbar-done-button:\nuntagged-background: #999999\nvery-muted-foreground: #888888\n"
},
"$:/palettes/SolarizedDark": {
"title": "$:/palettes/SolarizedDark",
"tags": "$:/tags/Palette",
"type": "application/x-tiddler-dictionary",
"description": "Precision dark colors for machines and people",
"license": "MIT, Ethan Schoonover, https://github.com/altercation/solarized/blob/master/LICENSE",
"name": "SolarizedDark",
"text": "alert-background: #073642\nalert-border: #93a1a1\nalert-highlight: #d33682\nalert-muted-foreground: #d33682\nbackground: #073642\nblockquote-bar: #d33682\nbutton-background: #073642\nbutton-border: #586e75\nbutton-foreground: #93a1a1\ncode-background: #073642\ncode-border: #586e75\ncode-foreground: #93a1a1\ndirty-indicator: inherit\ndownload-background: #859900\ndownload-foreground: #073642\ndragger-background: #073642\ndragger-foreground: #839496\ndropdown-background: #073642\ndropdown-border: #93a1a1\ndropdown-tab-background: #002b36\ndropdown-tab-background-selected: #073642\ndropzone-background: #859900\nexternal-link-background: inherit\nexternal-link-background-hover: inherit\nexternal-link-background-visited: inherit\nexternal-link-foreground: #268bd2\nexternal-link-foreground-hover:\nexternal-link-foreground-visited: #268bd2\nforeground: #839496\nmessage-background: #002b36\nmessage-border: #586e75\nmessage-foreground: #839496\nmodal-backdrop: #657b83\nmodal-background: #002b36\nmodal-border: #586e75\nmodal-footer-background: #073642\nmodal-footer-border: #586e75\nmodal-header-border: #586e75\nmuted-foreground: #93a1a1\nnotification-background: #002b36\nnotification-border: #586e75\npage-background: #073642\npre-background: inherit\npre-border: #657b83\nprimary: #859900\nselect-tag-background: #002b36\nselect-tag-foreground: #839496\nsidebar-button-foreground: #93a1a1\nsidebar-controls-foreground: #93a1a1\nsidebar-controls-foreground-hover: #eee8d5\nsidebar-foreground: #93a1a1\nsidebar-foreground-shadow: transparent\nsidebar-muted-foreground: #839496\nsidebar-muted-foreground-hover: #93a1a1\nsidebar-tab-background: #002b36\nsidebar-tab-background-selected: #073642\nsidebar-tab-border: #073642\nsidebar-tab-border-selected: #839496\nsidebar-tab-divider: #002b36\nsidebar-tab-foreground: #657b83\nsidebar-tab-foreground-selected: #93a1a1\nsidebar-tiddler-link-foreground: #2aa198\nsidebar-tiddler-link-foreground-hover: #eee8d5\nsite-title-foreground: #d33682\nstatic-alert-foreground: #93a1a1\ntab-background: #073642\ntab-background-selected: #002b36\ntab-border: #586e75\ntab-border-selected: #93a1a1\ntab-divider: #93a1a1\ntab-foreground: #839496\ntab-foreground-selected: #93a1a1\ntable-border: #586e75\ntable-footer-background: #073642\ntable-header-background: #073642\ntag-background: #b58900\ntag-foreground: #002b36\ntiddler-background: #002b36\ntiddler-border: #586e75\ntiddler-controls-foreground: inherit\ntiddler-controls-foreground-hover: #d33682\ntiddler-controls-foreground-selected: #2aa198\ntiddler-editor-background: #002b36\ntiddler-editor-border: #073642\ntiddler-editor-border-image: #002b36\ntiddler-editor-fields-even: #002b36\ntiddler-editor-fields-odd: #073642\ntiddler-info-background: #073642\ntiddler-info-border: #657b83\ntiddler-info-tab-background: #002b36\ntiddler-link-background: #002b36\ntiddler-link-foreground: #2aa198\ntiddler-subtitle-foreground: #839496\ntiddler-title-foreground: #d33682\ntoolbar-cancel-button: #839496\ntoolbar-close-button: #839496\ntoolbar-delete-button: #dc322f\ntoolbar-done-button: #839496\ntoolbar-edit-button: #839496\ntoolbar-info-button: #839496\ntoolbar-new-button: #839496\ntoolbar-options-button: #839496\ntoolbar-save-button: inherit\nuntagged-background: #586e75\nvery-muted-foreground: #586e75\n"
},
"$:/palettes/SolarizedLight": {
"title": "$:/palettes/SolarizedLight",
"tags": "$:/tags/Palette",
"type": "application/x-tiddler-dictionary",
"description": "Precision colors for machines and people",
"license": "MIT, Ethan Schoonover, https://github.com/altercation/solarized/blob/master/LICENSE",
"name": "SolarizedLight",
"text": "alert-background: #eee8d5\nalert-border: #586e75\nalert-highlight: #d33682\nalert-muted-foreground: #d33682\nbackground: #eee8d5\nblockquote-bar: #d33682\nbutton-background: #eee8d5\nbutton-border: #93a1a1\nbutton-foreground: #586e75\ncode-background: #eee8d5\ncode-border: #93a1a1\ncode-foreground: #586e75\ndirty-indicator: inherit\ndownload-background: #859900\ndownload-foreground: #eee8d5\ndragger-background: #eee8d5\ndragger-foreground: #657b83\ndropdown-background: #eee8d5\ndropdown-border: #586e75\ndropdown-tab-background: #fdf6e3\ndropdown-tab-background-selected: #eee8d5\ndropzone-background: #859900\nexternal-link-background: inherit\nexternal-link-background-hover: inherit\nexternal-link-background-visited: inherit\nexternal-link-foreground: #268bd2\nexternal-link-foreground-hover: inherit\nexternal-link-foreground-visited: #268bd2\nforeground: #657b83\nmessage-background: #fdf6e3\nmessage-border: #93a1a1\nmessage-foreground: #657b83\nmodal-backdrop: #839496\nmodal-background: #fdf6e3\nmodal-border: #93a1a1\nmodal-footer-background: #eee8d5\nmodal-footer-border: #93a1a1\nmodal-header-border: #93a1a1\nmuted-foreground: #586e75\nnotification-background: #fdf6e3\nnotification-border: #93a1a1\npage-background: #eee8d5\npre-background: #eee8d5\npre-border: #839496\nprimary: #859900\nselect-tag-background: #fdf6e3\nselect-tag-foreground: #657b83\nsidebar-button-foreground: #586e75\nsidebar-controls-foreground: #586e75\nsidebar-controls-foreground-hover: #d33682\nsidebar-foreground: #586e75\nsidebar-foreground-shadow: transparent\nsidebar-muted-foreground: #657b83\nsidebar-muted-foreground-hover: #586e75\nsidebar-tab-background: #fdf6e3\nsidebar-tab-background-selected: #eee8d5\nsidebar-tab-border: #eee8d5\nsidebar-tab-border-selected: #657b83\nsidebar-tab-divider: #fdf6e3\nsidebar-tab-foreground: #839496\nsidebar-tab-foreground-selected: #586e75\nsidebar-tiddler-link-foreground: #2aa198\nsidebar-tiddler-link-foreground-hover: #002b36\nsite-title-foreground: #d33682\nstatic-alert-foreground: #586e75\ntab-background: #eee8d5\ntab-background-selected: #fdf6e3\ntab-border: #93a1a1\ntab-border-selected: #586e75\ntab-divider: #586e75\ntab-foreground: #657b83\ntab-foreground-selected: #586e75\ntable-border: #93a1a1\ntable-footer-background: #eee8d5\ntable-header-background: #eee8d5\ntag-background: #b58900\ntag-foreground: #fdf6e3\ntiddler-background: #fdf6e3\ntiddler-border: #93a1a1\ntiddler-controls-foreground: inherit\ntiddler-controls-foreground-hover: #d33682\ntiddler-controls-foreground-selected: #2aa198\ntiddler-editor-background: #fdf6e3\ntiddler-editor-border: #eee8d5\ntiddler-editor-border-image: #fdf6e3\ntiddler-editor-fields-even: #fdf6e3\ntiddler-editor-fields-odd: #eee8d5\ntiddler-info-background: #eee8d5\ntiddler-info-border: #839496\ntiddler-info-tab-background: #fdf6e3\ntiddler-link-background: #fdf6e3\ntiddler-link-foreground: #2aa198\ntiddler-subtitle-foreground: #657b83\ntiddler-title-foreground: #d33682\ntoolbar-cancel-button: #657b83\ntoolbar-close-button: #657b83\ntoolbar-delete-button: #dc322f\ntoolbar-done-button: #657b83\ntoolbar-edit-button: #657b83\ntoolbar-info-button: #657b83\ntoolbar-new-button: #657b83\ntoolbar-options-button: #657b83\ntoolbar-save-button: inherit\nuntagged-background: #586e75\nvery-muted-foreground: #93a1a1\n"
},
"$:/palettes/SpartanDay": {
"title": "$:/palettes/SpartanDay",
"tags": "$:/tags/Palette",
"type": "application/x-tiddler-dictionary",
"description": "Cold, spartan day colors",
"name": "Spartan Day",
"text": "alert-background: <<colour background>>\nalert-border: <<colour very-muted-foreground>>\nalert-highlight: <<colour very-muted-foreground>>\nalert-muted-foreground: <<colour muted-foreground>>\nbackground: #FAFAFA\nblockquote-bar: <<colour page-background>>\nbutton-background: transparent\nbutton-foreground: inherit\nbutton-border: <<colour tag-background>>\ncode-background: #ececec\ncode-border: #ececec\ncode-foreground: \ndirty-indicator: #c80000\ndownload-background: <<colour primary>>\ndownload-foreground: <<colour background>>\ndragger-background: <<colour foreground>>\ndragger-foreground: <<colour background>>\ndropdown-background: #FFFFFF\ndropdown-border: <<colour dropdown-background>>\ndropdown-tab-background-selected: <<colour dropdown-background>>\ndropdown-tab-background: #F5F5F5\ndropzone-background: <<colour tag-background>>\nexternal-link-background-hover: transparent\nexternal-link-background-visited: transparent\nexternal-link-background: transparent\nexternal-link-foreground-hover: \nexternal-link-foreground-visited: \nexternal-link-foreground: \nforeground: rgba(0, 0, 0, 0.87)\nmessage-background: <<colour background>>\nmessage-border: <<colour very-muted-foreground>>\nmessage-foreground: rgba(0, 0, 0, 0.54)\nmodal-backdrop: <<colour foreground>>\nmodal-background: <<colour background>>\nmodal-border: <<colour very-muted-foreground>>\nmodal-footer-background: <<colour background>>\nmodal-footer-border: <<colour very-muted-foreground>>\nmodal-header-border: <<colour very-muted-foreground>>\nmuted-foreground: rgba(0, 0, 0, 0.54)\nnotification-background: <<colour dropdown-background>>\nnotification-border: <<colour dropdown-background>>\npage-background: #f4f4f4\npre-background: #ececec\npre-border: #ececec\nprimary: #3949ab\nselect-tag-background: <<colour background>>\nselect-tag-foreground: <<colour foreground>>\nsidebar-button-foreground: <<colour foreground>>\nsidebar-controls-foreground-hover: #aeaeae\nsidebar-controls-foreground: #c6c6c6\nsidebar-foreground-shadow: transparent\nsidebar-foreground: rgba(0, 0, 0, 0.54)\nsidebar-muted-foreground-hover: rgba(0, 0, 0, 0.54)\nsidebar-muted-foreground: rgba(0, 0, 0, 0.38)\nsidebar-tab-background-selected: <<colour page-background>>\nsidebar-tab-background: transparent\nsidebar-tab-border-selected: <<colour table-border>>\nsidebar-tab-border: transparent\nsidebar-tab-divider: <<colour table-border>>\nsidebar-tab-foreground-selected: rgba(0, 0, 0, 0.87)\nsidebar-tab-foreground: rgba(0, 0, 0, 0.54)\nsidebar-tiddler-link-foreground-hover: rgba(0, 0, 0, 0.87)\nsidebar-tiddler-link-foreground: rgba(0, 0, 0, 0.54)\nsite-title-foreground: rgba(0, 0, 0, 0.87)\nstatic-alert-foreground: #aaaaaa\ntab-background-selected: <<colour background>>\ntab-background: transparent\ntab-border-selected: <<colour table-border>>\ntab-border: transparent\ntab-divider: <<colour table-border>>\ntab-foreground-selected: rgba(0, 0, 0, 0.87)\ntab-foreground: rgba(0, 0, 0, 0.54)\ntable-border: #d8d8d8\ntable-footer-background: <<colour tiddler-editor-fields-odd>>\ntable-header-background: <<colour tiddler-editor-fields-even>>\ntag-background: #ec6\ntag-foreground: <<colour button-foreground>>\ntiddler-background: <<colour background>>\ntiddler-border: #f9f9f9\ntiddler-controls-foreground-hover: <<colour sidebar-controls-foreground-hover>>\ntiddler-controls-foreground-selected: <<colour sidebar-controls-foreground-hover>>\ntiddler-controls-foreground: <<colour sidebar-controls-foreground>>\ntiddler-editor-background: transparent\ntiddler-editor-border-image: \ntiddler-editor-border: #e8e7e7\ntiddler-editor-fields-even: rgba(0, 0, 0, 0.1)\ntiddler-editor-fields-odd: rgba(0, 0, 0, 0.04)\ntiddler-info-background: #F5F5F5\ntiddler-info-border: #F5F5F5\ntiddler-info-tab-background: <<colour tiddler-editor-fields-odd>>\ntiddler-link-background: <<colour background>>\ntiddler-link-foreground: <<colour primary>>\ntiddler-subtitle-foreground: <<colour muted-foreground>>\ntiddler-title-foreground: #000000\ntoolbar-new-button: \ntoolbar-options-button: \ntoolbar-save-button: \ntoolbar-info-button: \ntoolbar-edit-button: \ntoolbar-close-button: \ntoolbar-delete-button: \ntoolbar-cancel-button: \ntoolbar-done-button: \nuntagged-background: <<colour very-muted-foreground>>\nvery-muted-foreground: rgba(0, 0, 0, 0.12)\n"
},
"$:/palettes/SpartanNight": {
"title": "$:/palettes/SpartanNight",
"tags": "$:/tags/Palette",
"type": "application/x-tiddler-dictionary",
"description": "Dark spartan colors",
"name": "Spartan Night",
"text": "alert-background: <<colour background>>\nalert-border: <<colour very-muted-foreground>>\nalert-highlight: <<colour very-muted-foreground>>\nalert-muted-foreground: <<colour muted-foreground>>\nbackground: #303030\nblockquote-bar: <<colour page-background>>\nbutton-background: transparent\nbutton-foreground: inherit\nbutton-border: <<colour tag-background>>\ncode-background: <<colour pre-background>>\ncode-border: <<colour pre-border>>\ncode-foreground: rgba(255, 255, 255, 0.54)\ndirty-indicator: #c80000\ndownload-background: <<colour primary>>\ndownload-foreground: <<colour foreground>>\ndragger-background: <<colour foreground>>\ndragger-foreground: <<colour background>>\ndropdown-background: #424242\ndropdown-border: <<colour dropdown-background>>\ndropdown-tab-background-selected: <<colour dropdown-background>>\ndropdown-tab-background: #050505\ndropzone-background: <<colour tag-background>>\nexternal-link-background-hover: transparent\nexternal-link-background-visited: transparent\nexternal-link-background: transparent\nexternal-link-foreground-hover: \nexternal-link-foreground-visited: #7c318c\nexternal-link-foreground: #9e3eb3\nforeground: rgba(255, 255, 255, 0.7)\nmessage-background: <<colour background>>\nmessage-border: <<colour very-muted-foreground>>\nmessage-foreground: rgba(255, 255, 255, 0.54)\nmodal-backdrop: <<colour page-background>>\nmodal-background: <<colour background>>\nmodal-border: <<colour very-muted-foreground>>\nmodal-footer-background: <<colour background>>\nmodal-footer-border: <<colour background>>\nmodal-header-border: <<colour very-muted-foreground>>\nmuted-foreground: rgba(255, 255, 255, 0.54)\nnotification-background: <<colour dropdown-background>>\nnotification-border: <<colour dropdown-background>>\npage-background: #212121\npre-background: #2a2a2a\npre-border: transparent\nprimary: #5656f3\nselect-tag-background: <<colour background>>\nselect-tag-foreground: <<colour foreground>>\nsidebar-button-foreground: <<colour foreground>>\nsidebar-controls-foreground-hover: #494949\nsidebar-controls-foreground: #5d5d5d\nsidebar-foreground-shadow: transparent\nsidebar-foreground: rgba(255, 255, 255, 0.54)\nsidebar-muted-foreground-hover: rgba(255, 255, 255, 0.54)\nsidebar-muted-foreground: rgba(255, 255, 255, 0.38)\nsidebar-tab-background-selected: <<colour page-background>>\nsidebar-tab-background: transparent\nsidebar-tab-border-selected: <<colour table-border>>\nsidebar-tab-border: transparent\nsidebar-tab-divider: <<colour table-border>>\nsidebar-tab-foreground-selected: rgba(255, 255, 255, 0.87)\nsidebar-tab-foreground: rgba(255, 255, 255, 0.54)\nsidebar-tiddler-link-foreground-hover: rgba(255, 255, 255, 0.7)\nsidebar-tiddler-link-foreground: rgba(255, 255, 255, 0.54)\nsite-title-foreground: rgba(255, 255, 255, 0.7)\nstatic-alert-foreground: #aaaaaa\ntab-background-selected: <<colour background>>\ntab-background: transparent\ntab-border-selected: <<colour table-border>>\ntab-border: transparent\ntab-divider: <<colour table-border>>\ntab-foreground-selected: rgba(255, 255, 255, 0.87)\ntab-foreground: rgba(255, 255, 255, 0.54)\ntable-border: #3a3a3a\ntable-footer-background: <<colour tiddler-editor-fields-odd>>\ntable-header-background: <<colour tiddler-editor-fields-even>>\ntag-background: #ec6\ntag-foreground: <<colour button-foreground>>\ntiddler-background: <<colour background>>\ntiddler-border: rgb(55,55,55)\ntiddler-controls-foreground-hover: <<colour sidebar-controls-foreground-hover>>\ntiddler-controls-foreground-selected: <<colour sidebar-controls-foreground-hover>>\ntiddler-controls-foreground: <<colour sidebar-controls-foreground>>\ntiddler-editor-background: transparent\ntiddler-editor-border-image: \ntiddler-editor-border: rgba(255, 255, 255, 0.08)\ntiddler-editor-fields-even: rgba(255, 255, 255, 0.1)\ntiddler-editor-fields-odd: rgba(255, 255, 255, 0.04)\ntiddler-info-background: #454545\ntiddler-info-border: #454545\ntiddler-info-tab-background: <<colour tiddler-editor-fields-odd>>\ntiddler-link-background: <<colour background>>\ntiddler-link-foreground: <<colour primary>>\ntiddler-subtitle-foreground: <<colour muted-foreground>>\ntiddler-title-foreground: #FFFFFF\ntoolbar-new-button: \ntoolbar-options-button: \ntoolbar-save-button: \ntoolbar-info-button: \ntoolbar-edit-button: \ntoolbar-close-button: \ntoolbar-delete-button: \ntoolbar-cancel-button: \ntoolbar-done-button: \nuntagged-background: <<colour very-muted-foreground>>\nvery-muted-foreground: rgba(255, 255, 255, 0.12)\n"
},
"$:/palettes/Twilight": {
"title": "$:/palettes/Twilight",
"tags": "$:/tags/Palette",
"author": "Thomas Elmiger",
"type": "application/x-tiddler-dictionary",
"name": "Twilight",
"description": "Delightful, soft darkness.",
"text": "alert-background: rgb(255, 255, 102)\nalert-border: rgb(232, 232, 125)\nalert-highlight: rgb(255, 51, 51)\nalert-muted-foreground: rgb(224, 82, 82)\nbackground: rgb(38, 38, 38)\nblockquote-bar: rgba(240, 196, 117, 0.7)\nbutton-background: rgb(63, 63, 63)\nbutton-border: rgb(127, 127, 127)\nbutton-foreground: rgb(179, 179, 179)\ncode-background: rgba(0,0,0,0.03)\ncode-border: rgba(0,0,0,0.08)\ncode-foreground: rgb(255, 94, 94)\ndiff-delete-background: #ffc9c9\ndiff-delete-foreground: <<colour foreground>>\ndiff-equal-background: \ndiff-equal-foreground: <<colour foreground>>\ndiff-insert-background: #aaefad\ndiff-insert-foreground: <<colour foreground>>\ndiff-invisible-background: \ndiff-invisible-foreground: <<colour muted-foreground>>\ndirty-indicator: rgb(255, 94, 94)\ndownload-background: #19a974\ndownload-foreground: rgb(38, 38, 38)\ndragger-background: rgb(179, 179, 179)\ndragger-foreground: rgb(38, 38, 38)\ndropdown-background: rgb(38, 38, 38)\ndropdown-border: rgb(255, 255, 255)\ndropdown-tab-background: rgba(0,0,0,.1)\ndropdown-tab-background-selected: rgba(255,255,255,1)\ndropzone-background: #9eebcf\nexternal-link-background: inherit\nexternal-link-background-hover: inherit\nexternal-link-background-visited: inherit\nexternal-link-foreground: rgb(179, 179, 255)\nexternal-link-foreground-hover: inherit\nexternal-link-foreground-visited: rgb(153, 153, 255)\nforeground: rgb(179, 179, 179)\nmessage-background: <<colour tag-foreground>>\nmessage-border: #96ccff\nmessage-foreground: <<colour tag-background>>\nmodal-backdrop: rgb(179, 179, 179)\nmodal-background: rgb(38, 38, 38)\nmodal-border: rgba(0,0,0,.5)\nmodal-footer-background: #f4f4f4\nmodal-footer-border: rgba(0,0,0,.1)\nmodal-header-border: rgba(0,0,0,.2)\nmuted-foreground: rgb(255, 255, 255)\nnotification-background: <<colour tag-foreground>>\nnotification-border: <<colour tag-background>>\npage-background: rgb(26, 26, 26)\npre-background: rgb(25, 25, 25)\npre-border: rgba(0,0,0,.2)\nprimary: rgb(255, 201, 102)\nselect-tag-background: \nselect-tag-foreground: \nsidebar-button-foreground: rgb(179, 179, 179)\nsidebar-controls-foreground: rgb(153, 153, 153)\nsidebar-controls-foreground-hover: <<colour tiddler-controls-foreground-hover>>\nsidebar-foreground: rgb(141, 141, 141)\nsidebar-foreground-shadow: transparent\nsidebar-muted-foreground: rgba(0, 0, 0, 0.5)\nsidebar-muted-foreground-hover: rgb(141, 141, 141)\nsidebar-tab-background: rgba(141, 141, 141, 0.2)\nsidebar-tab-background-selected: rgb(26, 26, 26)\nsidebar-tab-border: rgb(127, 127, 127)\nsidebar-tab-border-selected: rgb(127, 127, 127)\nsidebar-tab-divider: rgb(127, 127, 127)\nsidebar-tab-foreground: rgb(179, 179, 179)\nsidebar-tab-foreground-selected: rgb(179, 179, 179)\nsidebar-tiddler-link-foreground: rgb(179, 179, 179)\nsidebar-tiddler-link-foreground-hover: rgb(115, 115, 115)\nsite-title-foreground: rgb(255, 201, 102)\nstatic-alert-foreground: rgba(0,0,0,.3)\ntab-background: rgba(0,0,0,0.125)\ntab-background-selected: rgb(38, 38, 38)\ntab-border: rgb(255, 201, 102)\ntab-border-selected: rgb(255, 201, 102)\ntab-divider: rgb(255, 201, 102)\ntab-foreground: rgb(179, 179, 179)\ntab-foreground-selected: rgb(179, 179, 179)\ntable-border: rgba(255,255,255,.3)\ntable-footer-background: rgba(0,0,0,.4)\ntable-header-background: rgba(0,0,0,.1)\ntag-background: rgb(255, 201, 102)\ntag-foreground: rgb(25, 25, 25)\ntiddler-background: rgb(38, 38, 38)\ntiddler-border: rgba(240, 196, 117, 0.7)\ntiddler-controls-foreground: rgb(128, 128, 128)\ntiddler-controls-foreground-hover: rgba(255, 255, 255, 0.8)\ntiddler-controls-foreground-selected: rgba(255, 255, 255, 0.9)\ntiddler-editor-background: rgb(33, 33, 33)\ntiddler-editor-border: rgb(63, 63, 63)\ntiddler-editor-border-image: rgb(25, 25, 25)\ntiddler-editor-fields-even: rgb(33, 33, 33)\ntiddler-editor-fields-odd: rgb(28, 28, 28)\ntiddler-info-background: rgb(43, 43, 43)\ntiddler-info-border: rgb(25, 25, 25)\ntiddler-info-tab-background: rgb(43, 43, 43)\ntiddler-link-background: rgb(38, 38, 38)\ntiddler-link-foreground: rgb(204, 204, 255)\ntiddler-subtitle-foreground: rgb(255, 255, 255)\ntiddler-title-foreground: rgb(255, 192, 76)\ntoolbar-cancel-button: \ntoolbar-close-button: \ntoolbar-delete-button: \ntoolbar-done-button: \ntoolbar-edit-button: \ntoolbar-info-button: \ntoolbar-new-button: \ntoolbar-options-button: \ntoolbar-save-button: \nuntagged-background: rgb(255, 255, 255)\nvery-muted-foreground: rgba(240, 196, 117, 0.7)\n"
},
"$:/palettes/Vanilla": {
"title": "$:/palettes/Vanilla",
"name": "Vanilla",
"description": "Pale and unobtrusive",
"tags": "$:/tags/Palette",
"type": "application/x-tiddler-dictionary",
"text": "alert-background: #ffe476\nalert-border: #b99e2f\nalert-highlight: #881122\nalert-muted-foreground: #b99e2f\nbackground: #ffffff\nblockquote-bar: <<colour muted-foreground>>\nbutton-background:\nbutton-foreground:\nbutton-border:\ncode-background: #f7f7f9\ncode-border: #e1e1e8\ncode-foreground: #dd1144\ndiff-delete-background: #ffc9c9\ndiff-delete-foreground: <<colour foreground>>\ndiff-equal-background: \ndiff-equal-foreground: <<colour foreground>>\ndiff-insert-background: #aaefad\ndiff-insert-foreground: <<colour foreground>>\ndiff-invisible-background: \ndiff-invisible-foreground: <<colour muted-foreground>>\ndirty-indicator: #ff0000\ndownload-background: #34c734\ndownload-foreground: <<colour background>>\ndragger-background: <<colour foreground>>\ndragger-foreground: <<colour background>>\ndropdown-background: <<colour background>>\ndropdown-border: <<colour muted-foreground>>\ndropdown-tab-background-selected: #fff\ndropdown-tab-background: #ececec\ndropzone-background: rgba(0,200,0,0.7)\nexternal-link-background-hover: inherit\nexternal-link-background-visited: inherit\nexternal-link-background: inherit\nexternal-link-foreground-hover: inherit\nexternal-link-foreground-visited: #0000aa\nexternal-link-foreground: #0000ee\nforeground: #333333\nmessage-background: #ecf2ff\nmessage-border: #cfd6e6\nmessage-foreground: #547599\nmodal-backdrop: <<colour foreground>>\nmodal-background: <<colour background>>\nmodal-border: #999999\nmodal-footer-background: #f5f5f5\nmodal-footer-border: #dddddd\nmodal-header-border: #eeeeee\nmuted-foreground: #bbb\nnotification-background: #ffffdd\nnotification-border: #999999\npage-background: #f4f4f4\npre-background: #f5f5f5\npre-border: #cccccc\nprimary: #5778d8\nselection-background:\nselection-foreground:\nselect-tag-background:\nselect-tag-foreground:\nsidebar-button-foreground: <<colour foreground>>\nsidebar-controls-foreground-hover: #000000\nsidebar-controls-foreground: #aaaaaa\nsidebar-foreground-shadow: rgba(255,255,255, 0.8)\nsidebar-foreground: #acacac\nsidebar-muted-foreground-hover: #444444\nsidebar-muted-foreground: #c0c0c0\nsidebar-tab-background-selected: #f4f4f4\nsidebar-tab-background: #e0e0e0\nsidebar-tab-border-selected: <<colour tab-border-selected>>\nsidebar-tab-border: <<colour tab-border>>\nsidebar-tab-divider: #e4e4e4\nsidebar-tab-foreground-selected:\nsidebar-tab-foreground: <<colour tab-foreground>>\nsidebar-tiddler-link-foreground-hover: #444444\nsidebar-tiddler-link-foreground: #999999\nsite-title-foreground: <<colour tiddler-title-foreground>>\nstatic-alert-foreground: #aaaaaa\ntab-background-selected: #ffffff\ntab-background: #d8d8d8\ntab-border-selected: #d8d8d8\ntab-border: #cccccc\ntab-divider: #d8d8d8\ntab-foreground-selected: <<colour tab-foreground>>\ntab-foreground: #666666\ntable-border: #dddddd\ntable-footer-background: #a8a8a8\ntable-header-background: #f0f0f0\ntag-background: #ec6\ntag-foreground: #ffffff\ntiddler-background: <<colour background>>\ntiddler-border: <<colour background>>\ntiddler-controls-foreground-hover: #888888\ntiddler-controls-foreground-selected: #444444\ntiddler-controls-foreground: #cccccc\ntiddler-editor-background: #f8f8f8\ntiddler-editor-border-image: #ffffff\ntiddler-editor-border: #cccccc\ntiddler-editor-fields-even: #e0e8e0\ntiddler-editor-fields-odd: #f0f4f0\ntiddler-info-background: #f8f8f8\ntiddler-info-border: #dddddd\ntiddler-info-tab-background: #f8f8f8\ntiddler-link-background: <<colour background>>\ntiddler-link-foreground: <<colour primary>>\ntiddler-subtitle-foreground: #c0c0c0\ntiddler-title-foreground: #182955\ntoolbar-new-button:\ntoolbar-options-button:\ntoolbar-save-button:\ntoolbar-info-button:\ntoolbar-edit-button:\ntoolbar-close-button:\ntoolbar-delete-button:\ntoolbar-cancel-button:\ntoolbar-done-button:\nuntagged-background: #999999\nvery-muted-foreground: #888888\nwikilist-background: #e5e5e5\nwikilist-item: #fff\nwikilist-info: #000\nwikilist-title: #666\nwikilist-title-svg: <<colour wikilist-title>>\nwikilist-url: #aaa\nwikilist-button-open: #4fb82b\nwikilist-button-open-hover: green\nwikilist-button-reveal: #5778d8\nwikilist-button-reveal-hover: blue\nwikilist-button-remove: #d85778\nwikilist-button-remove-hover: red\nwikilist-toolbar-background: #d3d3d3\nwikilist-toolbar-foreground: #888\nwikilist-droplink-dragover: rgba(255,192,192,0.5)\nwikilist-button-background: #acacac\nwikilist-button-foreground: #000\n"
},
"$:/core/readme": {
"title": "$:/core/readme",
"text": "This plugin contains TiddlyWiki's core components, comprising:\n\n* JavaScript code modules\n* Icons\n* Templates needed to create TiddlyWiki's user interface\n* British English (''en-GB'') translations of the localisable strings used by the core\n"
},
"$:/library/sjcl.js/license": {
"title": "$:/library/sjcl.js/license",
"type": "text/plain",
"text": "SJCL is open. You can use, modify and redistribute it under a BSD\nlicense or under the GNU GPL, version 2.0.\n\n---------------------------------------------------------------------\n\nhttp://opensource.org/licenses/BSD-2-Clause\n\nCopyright (c) 2009-2015, Emily Stark, Mike Hamburg and Dan Boneh at\nStanford University. All rights reserved.\n\nRedistribution and use in source and binary forms, with or without\nmodification, are permitted provided that the following conditions are\nmet:\n\n1. Redistributions of source code must retain the above copyright\nnotice, this list of conditions and the following disclaimer.\n\n2. Redistributions in binary form must reproduce the above copyright\nnotice, this list of conditions and the following disclaimer in the\ndocumentation and/or other materials provided with the distribution.\n\nTHIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS\nIS\" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED\nTO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A\nPARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT\nHOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,\nSPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED\nTO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR\nPROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF\nLIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING\nNEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS\nSOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.\n\n---------------------------------------------------------------------\n\nhttp://opensource.org/licenses/GPL-2.0\n\nThe Stanford Javascript Crypto Library (hosted here on GitHub) is a\nproject by the Stanford Computer Security Lab to build a secure,\npowerful, fast, small, easy-to-use, cross-browser library for\ncryptography in Javascript.\n\nCopyright (c) 2009-2015, Emily Stark, Mike Hamburg and Dan Boneh at\nStanford University.\n\nThis program is free software; you can redistribute it and/or modify it\nunder the terms of the GNU General Public License as published by the\nFree Software Foundation; either version 2 of the License, or (at your\noption) any later version.\n\nThis program is distributed in the hope that it will be useful, but\nWITHOUT ANY WARRANTY; without even the implied warranty of\nMERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General\nPublic License for more details.\n\nYou should have received a copy of the GNU General Public License along\nwith this program; if not, write to the Free Software Foundation, Inc.,\n59 Temple Place, Suite 330, Boston, MA 02111-1307 USA"
},
"$:/core/templates/MOTW.html": {
"title": "$:/core/templates/MOTW.html",
"text": "\\rules only filteredtranscludeinline transcludeinline entity\n<!-- The following comment is called a MOTW comment and is necessary for the TiddlyIE Internet Explorer extension -->\n<!-- saved from url=(0021)https://tiddlywiki.com --> "
},
"$:/core/templates/alltiddlers.template.html": {
"title": "$:/core/templates/alltiddlers.template.html",
"type": "text/vnd.tiddlywiki-html",
"text": "<!-- This template is provided for backwards compatibility with older versions of TiddlyWiki -->\n\n<$set name=\"exportFilter\" value=\"[!is[system]sort[title]]\">\n\n{{$:/core/templates/exporters/StaticRiver}}\n\n</$set>\n"
},
"$:/core/templates/canonical-uri-external-image": {
"title": "$:/core/templates/canonical-uri-external-image",
"text": "<!--\n\nThis template is used to assign the ''_canonical_uri'' field to external images.\n\nChange the `./images/` part to a different base URI. The URI can be relative or absolute.\n\n-->\n./images/<$view field=\"title\" format=\"doubleurlencoded\"/>"
},
"$:/core/templates/canonical-uri-external-raw": {
"title": "$:/core/templates/canonical-uri-external-raw",
"text": "<!--\n\nThis template is used to assign the ''_canonical_uri'' field to external raw files that are stored in the same directory\n\n-->\n<$view field=\"title\" format=\"doubleurlencoded\"/>"
},
"$:/core/templates/canonical-uri-external-text": {
"title": "$:/core/templates/canonical-uri-external-text",
"text": "<!--\n\nThis template is used to assign the ''_canonical_uri'' field to external text files.\n\nChange the `./text/` part to a different base URI. The URI can be relative or absolute.\n\n-->\n./text/<$view field=\"title\" format=\"doubleurlencoded\"/>.tid"
},
"$:/core/templates/css-tiddler": {
"title": "$:/core/templates/css-tiddler",
"text": "<!--\n\nThis template is used for saving CSS tiddlers as a style tag with data attributes representing the tiddler fields.\n\n-->`<style`<$fields template=' data-tiddler-$name$=\"$encoded_value$\"'></$fields>` type=\"text/css\">`<$view field=\"text\" format=\"text\" />`</style>`"
},
"$:/core/templates/exporters/CsvFile": {
"title": "$:/core/templates/exporters/CsvFile",
"tags": "$:/tags/Exporter",
"description": "{{$:/language/Exporters/CsvFile}}",
"extension": ".csv",
"text": "<$macrocall $name=\"csvtiddlers\" filter=<<exportFilter>> format=\"quoted-comma-sep\" $output=\"text/raw\"/>\n"
},
"$:/core/templates/exporters/JsonFile": {
"title": "$:/core/templates/exporters/JsonFile",
"tags": "$:/tags/Exporter",
"description": "{{$:/language/Exporters/JsonFile}}",
"extension": ".json",
"text": "<$macrocall $name=\"jsontiddlers\" filter=<<exportFilter>> $output=\"text/raw\"/>\n"
},
"$:/core/templates/exporters/StaticRiver": {
"title": "$:/core/templates/exporters/StaticRiver",
"tags": "$:/tags/Exporter",
"description": "{{$:/language/Exporters/StaticRiver}}",
"extension": ".html",
"text": "\\define tv-wikilink-template() #$uri_encoded$\n\\define tv-config-toolbar-icons() no\n\\define tv-config-toolbar-text() no\n\\define tv-config-toolbar-class() tc-btn-invisible\n\\rules only filteredtranscludeinline transcludeinline\n<!doctype html>\n<html>\n<head>\n<meta http-equiv=\"Content-Type\" content=\"text/html;charset=utf-8\" />\n<meta name=\"generator\" content=\"TiddlyWiki\" />\n<meta name=\"tiddlywiki-version\" content=\"{{$:/core/templates/version}}\" />\n<meta name=\"format-detection\" content=\"telephone=no\">\n<link id=\"faviconLink\" rel=\"shortcut icon\" href=\"favicon.ico\">\n<title>{{$:/core/wiki/title}}</title>\n<div id=\"styleArea\">\n{{$:/boot/boot.css||$:/core/templates/css-tiddler}}\n</div>\n<style type=\"text/css\">\n{{$:/core/ui/PageStylesheet||$:/core/templates/wikified-tiddler}}\n</style>\n</head>\n<body class=\"tc-body\">\n{{$:/StaticBanner||$:/core/templates/html-tiddler}}\n<section class=\"tc-story-river tc-static-story-river\">\n{{$:/core/templates/exporters/StaticRiver/Content||$:/core/templates/html-tiddler}}\n</section>\n</body>\n</html>\n"
},
"$:/core/templates/exporters/StaticRiver/Content": {
"title": "$:/core/templates/exporters/StaticRiver/Content",
"text": "\\define renderContent()\n{{{ $(exportFilter)$ ||$:/core/templates/static-tiddler}}}\n\\end\n\\import [[$:/core/ui/PageMacros]] [all[shadows+tiddlers]tag[$:/tags/Macro]!has[draft.of]]\n<<renderContent>>\n"
},
"$:/core/templates/exporters/TidFile": {
"title": "$:/core/templates/exporters/TidFile",
"tags": "$:/tags/Exporter",
"description": "{{$:/language/Exporters/TidFile}}",
"extension": ".tid",
"condition": "[<count>compare:lte[1]]",
"text": "\\define renderContent()\n{{{ $(exportFilter)$ +[limit[1]] ||$:/core/templates/tid-tiddler}}}\n\\end\n\\import [[$:/core/ui/PageMacros]] [all[shadows+tiddlers]tag[$:/tags/Macro]!has[draft.of]]\n<<renderContent>>"
},
"$:/core/save/all-external-js": {
"title": "$:/core/save/all-external-js",
"text": "\\import [[$:/core/ui/PageMacros]] [all[shadows+tiddlers]tag[$:/tags/Macro]!has[draft.of]]\n\\define saveTiddlerFilter()\n[is[tiddler]] -[prefix[$:/state/popup/]] -[prefix[$:/temp/]] -[prefix[$:/HistoryList]] -[status[pending]plugin-type[import]] -[[$:/core]] -[[$:/boot/boot.css]] -[type[application/javascript]library[yes]] -[[$:/boot/boot.js]] -[[$:/boot/bootprefix.js]] +[sort[title]] $(publishFilter)$\n\\end\n{{$:/core/templates/tiddlywiki5-external-js.html}}\n"
},
"$:/core/templates/tiddlywiki5.js": {
"title": "$:/core/templates/tiddlywiki5.js",
"text": "\\rules only filteredtranscludeinline transcludeinline codeinline\n\n/*\n{{ $:/core/copyright.txt ||$:/core/templates/plain-text-tiddler}}\n`*/\n`<!--~~ Library modules ~~-->\n{{{ [is[system]type[application/javascript]library[yes]] ||$:/core/templates/plain-text-tiddler}}}\n<!--~~ Boot prefix ~~-->\n{{ $:/boot/bootprefix.js ||$:/core/templates/plain-text-tiddler}}\n<!--~~ Core plugin ~~-->\n{{$:/core/templates/tiddlywiki5.js/tiddlers}}\n<!--~~ Boot kernel ~~-->\n{{ $:/boot/boot.js ||$:/core/templates/plain-text-tiddler}}\n"
},
"$:/core/templates/tiddlywiki5.js/tiddlers": {
"title": "$:/core/templates/tiddlywiki5.js/tiddlers",
"text": "`\n$tw.preloadTiddlerArray(`<$text text=<<jsontiddlers \"[[$:/core]]\">>/>`);\n`\n"
},
"$:/core/templates/tiddlywiki5-external-js.html": {
"title": "$:/core/templates/tiddlywiki5-external-js.html",
"text": "\\rules only filteredtranscludeinline transcludeinline\n<!doctype html>\n{{$:/core/templates/MOTW.html}}<html lang=\"`<$text text={{{ [{$:/language}get[name]] }}}/>`\">\n<head>\n<meta http-equiv=\"Content-Type\" content=\"text/html;charset=utf-8\" />\n<!--~~ Raw markup for the top of the head section ~~-->\n{{{ [all[shadows+tiddlers]tag[$:/tags/RawMarkupWikified/TopHead]] ||$:/core/templates/raw-static-tiddler}}}\n<meta http-equiv=\"X-UA-Compatible\" content=\"IE=Edge\"/>\n<meta name=\"application-name\" content=\"TiddlyWiki\" />\n<meta name=\"generator\" content=\"TiddlyWiki\" />\n<meta name=\"tiddlywiki-version\" content=\"{{$:/core/templates/version}}\" />\n<meta name=\"viewport\" content=\"width=device-width, initial-scale=1.0\" />\n<meta name=\"apple-mobile-web-app-capable\" content=\"yes\" />\n<meta name=\"apple-mobile-web-app-status-bar-style\" content=\"black-translucent\" />\n<meta name=\"mobile-web-app-capable\" content=\"yes\"/>\n<meta name=\"format-detection\" content=\"telephone=no\" />\n<meta name=\"copyright\" content=\"{{$:/core/copyright.txt}}\" />\n<link id=\"faviconLink\" rel=\"shortcut icon\" href=\"favicon.ico\">\n<title>{{$:/core/wiki/title}}</title>\n<!--~~ This is a Tiddlywiki file. The points of interest in the file are marked with this pattern ~~-->\n\n<!--~~ Raw markup ~~-->\n{{{ [all[shadows+tiddlers]tag[$:/core/wiki/rawmarkup]] [all[shadows+tiddlers]tag[$:/tags/RawMarkup]] ||$:/core/templates/plain-text-tiddler}}}\n{{{ [all[shadows+tiddlers]tag[$:/tags/RawMarkupWikified]] ||$:/core/templates/raw-static-tiddler}}}\n</head>\n<body class=\"tc-body\">\n<!--~~ Raw markup for the top of the body section ~~-->\n{{{ [all[shadows+tiddlers]tag[$:/tags/RawMarkupWikified/TopBody]] ||$:/core/templates/raw-static-tiddler}}}\n<!--~~ Static styles ~~-->\n<div id=\"styleArea\">\n{{$:/boot/boot.css||$:/core/templates/css-tiddler}}\n</div>\n<!--~~ Static content for Google and browsers without JavaScript ~~-->\n<noscript>\n<div id=\"splashArea\">\n{{$:/core/templates/static.area}}\n</div>\n</noscript>\n<!--~~ Ordinary tiddlers ~~-->\n{{$:/core/templates/store.area.template.html}}\n<!--~~ Raw markup for the bottom of the body section ~~-->\n{{{ [all[shadows+tiddlers]tag[$:/tags/RawMarkupWikified/BottomBody]] ||$:/core/templates/raw-static-tiddler}}}\n</body>\n<script src=\"%24%3A%2Fcore%2Ftemplates%2Ftiddlywiki5.js\" onerror=\"alert('Error: Cannot load tiddlywiki.js');\"></script>\n</html>\n"
},
"$:/core/templates/html-div-skinny-tiddler": {
"title": "$:/core/templates/html-div-skinny-tiddler",
"text": "<!--\n\nThis template is a variant of $:/core/templates/html-div-tiddler used for saving skinny tiddlers (with no text field)\n\n-->`<div`<$fields template=' $name$=\"$encoded_value$\"'></$fields>`>\n<pre></pre>\n</div>`\n"
},
"$:/core/templates/html-div-tiddler": {
"title": "$:/core/templates/html-div-tiddler",
"text": "<!--\n\nThis template is used for saving tiddlers as an HTML DIV tag with attributes representing the tiddler fields.\n\n-->`<div`<$fields template=' $name$=\"$encoded_value$\"'></$fields>`>\n<pre>`<$view field=\"text\" format=\"htmlencoded\" />`</pre>\n</div>`\n"
},
"$:/core/templates/html-tiddler": {
"title": "$:/core/templates/html-tiddler",
"text": "<!--\n\nThis template is used for saving tiddlers as raw HTML\n\n--><$view field=\"text\" format=\"htmlwikified\" />"
},
"$:/core/templates/javascript-tiddler": {
"title": "$:/core/templates/javascript-tiddler",
"text": "<!--\n\nThis template is used for saving JavaScript tiddlers as a script tag with data attributes representing the tiddler fields.\n\n-->`<script`<$fields template=' data-tiddler-$name$=\"$encoded_value$\"'></$fields>` type=\"text/javascript\">`<$view field=\"text\" format=\"text\" />`</script>`"
},
"$:/core/templates/json-tiddler": {
"title": "$:/core/templates/json-tiddler",
"text": "<!--\n\nThis template is used for saving tiddlers as raw JSON\n\n--><$text text=<<jsontiddler>>/>"
},
"$:/core/templates/module-tiddler": {
"title": "$:/core/templates/module-tiddler",
"text": "<!--\n\nThis template is used for saving JavaScript tiddlers as a script tag with data attributes representing the tiddler fields. The body of the tiddler is wrapped in a call to the `$tw.modules.define` function in order to define the body of the tiddler as a module\n\n-->`<script`<$fields template=' data-tiddler-$name$=\"$encoded_value$\"'></$fields>` type=\"text/javascript\" data-module=\"yes\">$tw.modules.define(\"`<$view field=\"title\" format=\"jsencoded\" />`\",\"`<$view field=\"module-type\" format=\"jsencoded\" />`\",function(module,exports,require) {`<$view field=\"text\" format=\"text\" />`});\n</script>`"
},
"$:/core/templates/plain-text-tiddler": {
"title": "$:/core/templates/plain-text-tiddler",
"text": "<$view field=\"text\" format=\"text\" />"
},
"$:/core/templates/raw-static-tiddler": {
"title": "$:/core/templates/raw-static-tiddler",
"text": "<!--\n\nThis template is used for saving tiddlers as static HTML\n\n--><$view field=\"text\" format=\"plainwikified\" />"
},
"$:/core/save/all": {
"title": "$:/core/save/all",
"text": "\\import [[$:/core/ui/PageMacros]] [all[shadows+tiddlers]tag[$:/tags/Macro]!has[draft.of]]\n\\define saveTiddlerFilter()\n[is[tiddler]] -[prefix[$:/state/popup/]] -[prefix[$:/temp/]] -[prefix[$:/HistoryList]] -[status[pending]plugin-type[import]] -[[$:/boot/boot.css]] -[type[application/javascript]library[yes]] -[[$:/boot/boot.js]] -[[$:/boot/bootprefix.js]] +[sort[title]] $(publishFilter)$\n\\end\n{{$:/core/templates/tiddlywiki5.html}}\n"
},
"$:/core/save/empty": {
"title": "$:/core/save/empty",
"text": "\\define saveTiddlerFilter()\n[is[system]] -[prefix[$:/state/popup/]] -[[$:/boot/boot.css]] -[type[application/javascript]library[yes]] -[[$:/boot/boot.js]] -[[$:/boot/bootprefix.js]] +[sort[title]]\n\\end\n{{$:/core/templates/tiddlywiki5.html}}\n"
},
"$:/core/save/lazy-all": {
"title": "$:/core/save/lazy-all",
"text": "\\define saveTiddlerFilter()\n[is[system]] -[prefix[$:/state/popup/]] -[[$:/HistoryList]] -[[$:/boot/boot.css]] -[type[application/javascript]library[yes]] -[[$:/boot/boot.js]] -[[$:/boot/bootprefix.js]] +[sort[title]] \n\\end\n\\define skinnySaveTiddlerFilter()\n[!is[system]]\n\\end\n{{$:/core/templates/tiddlywiki5.html}}\n"
},
"$:/core/save/lazy-images": {
"title": "$:/core/save/lazy-images",
"text": "\\define saveTiddlerFilter()\n[is[tiddler]] -[prefix[$:/state/popup/]] -[[$:/HistoryList]] -[[$:/boot/boot.css]] -[type[application/javascript]library[yes]] -[[$:/boot/boot.js]] -[[$:/boot/bootprefix.js]] -[!is[system]is[image]] +[sort[title]] \n\\end\n\\define skinnySaveTiddlerFilter()\n[is[image]]\n\\end\n{{$:/core/templates/tiddlywiki5.html}}\n"
},
"$:/core/templates/server/static.sidebar.wikitext": {
"title": "$:/core/templates/server/static.sidebar.wikitext",
"text": "\\whitespace trim\n<div class=\"tc-sidebar-scrollable\" style=\"overflow: auto;\">\n<div class=\"tc-sidebar-header\">\n<h1 class=\"tc-site-title\">\n<$transclude tiddler=\"$:/SiteTitle\"/>\n</h1>\n<div class=\"tc-site-subtitle\">\n<$transclude tiddler=\"$:/SiteSubtitle\"/>\n</div>\n<h2>\n</h2>\n<div class=\"tc-sidebar-lists\">\n<$list filter={{$:/DefaultTiddlers}}>\n<div class=\"tc-menu-list-subitem\">\n<$link><$text text=<<currentTiddler>>/></$link>\n</div>\n</$list>\n</div>\n<!-- Currently disabled the recent list as it is unweildy when the responsive narrow view kicks in\n<h2>\n{{$:/language/SideBar/Recent/Caption}}\n</h2>\n<div class=\"tc-sidebar-lists\">\n<$macrocall $name=\"timeline\" format={{$:/language/RecentChanges/DateFormat}}/>\n</div>\n</div>\n</div>\n-->\n"
},
"$:/core/templates/server/static.tiddler.html": {
"title": "$:/core/templates/server/static.tiddler.html",
"text": "\\whitespace trim\n\\define tv-wikilink-template() $uri_encoded$\n\\import [[$:/core/ui/PageMacros]] [all[shadows+tiddlers]tag[$:/tags/Macro]!has[draft.of]]\n<html>\n<head>\n<meta http-equiv=\"Content-Type\" content=\"text/html;charset=utf-8\" />\n<meta name=\"generator\" content=\"TiddlyWiki\" />\n<meta name=\"tiddlywiki-version\" content={{$:/core/templates/version}} />\n<meta name=\"viewport\" content=\"width=device-width, initial-scale=1.0\" />\n<meta name=\"apple-mobile-web-app-capable\" content=\"yes\" />\n<meta name=\"apple-mobile-web-app-status-bar-style\" content=\"black-translucent\" />\n<meta name=\"mobile-web-app-capable\" content=\"yes\"/>\n<meta name=\"format-detection\" content=\"telephone=no\">\n<link id=\"faviconLink\" rel=\"shortcut icon\" href=\"favicon.ico\">\n<link rel=\"stylesheet\" href=\"%24%3A%2Fcore%2Ftemplates%2Fstatic.template.css\">\n<title><$view field=\"caption\" format=\"plainwikified\"><$view field=\"title\"/></$view>: <$view tiddler=\"$:/core/wiki/title\" format=\"plainwikified\"/></title>\n</head>\n<body class=\"tc-body\">\n<$transclude tiddler=\"$:/core/templates/server/static.sidebar.wikitext\" mode=\"inline\"/>\n<section class=\"tc-story-river\">\n<div class=\"tc-tiddler-frame\">\n<$transclude tiddler=\"$:/core/templates/server/static.tiddler.wikitext\" mode=\"inline\"/>\n</div>\n</section>\n</body>\n</html>"
},
"$:/core/templates/server/static.tiddler.wikitext": {
"title": "$:/core/templates/server/static.tiddler.wikitext",
"text": "\\whitespace trim\n<div class=\"tc-tiddler-title\">\n<div class=\"tc-titlebar\">\n<h2><$text text=<<currentTiddler>>/></h2>\n</div>\n</div>\n<div class=\"tc-subtitle\">\n<$link to={{!!modifier}}>\n<$view field=\"modifier\"/>\n</$link> <$view field=\"modified\" format=\"date\" template={{$:/language/Tiddler/DateFormat}}/>\n</div>\n<div class=\"tc-tags-wrapper\">\n<$list filter=\"[all[current]tags[]sort[title]]\">\n<a href={{{ [<currentTiddler>encodeuricomponent[]] }}}>\n<$macrocall $name=\"tag-pill\" tag=<<currentTiddler>>/>\n</a>\n</$list>\n</div>\n<div class=\"tc-tiddler-body\">\n<$transclude mode=\"block\"/>\n</div>\n"
},
"$:/core/templates/single.tiddler.window": {
"title": "$:/core/templates/single.tiddler.window",
"text": "\\whitespace trim\n\\define containerClasses()\ntc-page-container tc-page-view-$(storyviewTitle)$ tc-language-$(languageTitle)$\n\\end\n\\import [[$:/core/ui/PageMacros]] [all[shadows+tiddlers]tag[$:/tags/Macro]!has[draft.of]]\n\n<$vars\n\ttv-config-toolbar-icons={{$:/config/Toolbar/Icons}}\n\ttv-config-toolbar-text={{$:/config/Toolbar/Text}}\n\ttv-config-toolbar-class={{$:/config/Toolbar/ButtonClass}}\n\ttv-show-missing-links={{$:/config/MissingLinks}}\n\tstoryviewTitle={{$:/view}}\n\tlanguageTitle={{{ [{$:/language}get[name]] }}}>\n\n<div class=<<containerClasses>>>\n\n<$navigator story=\"$:/StoryList\" history=\"$:/HistoryList\">\n\n<$transclude mode=\"block\"/>\n\n</$navigator>\n\n</div>\n\n</$vars>\n"
},
"$:/core/templates/split-recipe": {
"title": "$:/core/templates/split-recipe",
"text": "<$list filter=\"[!is[system]]\">\ntiddler: <$view field=\"title\" format=\"urlencoded\"/>.tid\n</$list>\n"
},
"$:/core/templates/static-tiddler": {
"title": "$:/core/templates/static-tiddler",
"text": "<a name=<<currentTiddler>>>\n<$transclude tiddler=\"$:/core/ui/ViewTemplate\"/>\n</a>"
},
"$:/core/templates/static.area": {
"title": "$:/core/templates/static.area",
"text": "<$reveal type=\"nomatch\" state=\"$:/isEncrypted\" text=\"yes\">\n{{{ [all[shadows+tiddlers]tag[$:/tags/RawStaticContent]!has[draft.of]] ||$:/core/templates/raw-static-tiddler}}}\n{{$:/core/templates/static.content||$:/core/templates/html-tiddler}}\n</$reveal>\n<$reveal type=\"match\" state=\"$:/isEncrypted\" text=\"yes\">\nThis file contains an encrypted ~TiddlyWiki. Enable ~JavaScript and enter the decryption password when prompted.\n</$reveal>\n<!-- ensure splash screen isn't shown when JS is disabled -->\n`<style>\n.tc-remove-when-wiki-loaded {display: none;}\n</style>`\n"
},
"$:/core/templates/static.content": {
"title": "$:/core/templates/static.content",
"text": "<!-- For Google, and people without JavaScript-->\nThis [[TiddlyWiki|https://tiddlywiki.com]] contains the following tiddlers:\n\n<ul>\n<$list filter=<<saveTiddlerFilter>>>\n<li><$view field=\"title\" format=\"text\"></$view></li>\n</$list>\n</ul>\n"
},
"$:/core/templates/static.template.css": {
"title": "$:/core/templates/static.template.css",
"text": "{{$:/boot/boot.css||$:/core/templates/plain-text-tiddler}}\n\n{{$:/core/ui/PageStylesheet||$:/core/templates/wikified-tiddler}}\n"
},
"$:/core/templates/static.template.html": {
"title": "$:/core/templates/static.template.html",
"type": "text/vnd.tiddlywiki-html",
"text": "\\define tv-wikilink-template() static/$uri_doubleencoded$.html\n\\define tv-config-toolbar-icons() no\n\\define tv-config-toolbar-text() no\n\\define tv-config-toolbar-class() tc-btn-invisible\n\\rules only filteredtranscludeinline transcludeinline\n<!doctype html>\n<html>\n<head>\n<meta http-equiv=\"Content-Type\" content=\"text/html;charset=utf-8\" />\n<meta name=\"generator\" content=\"TiddlyWiki\" />\n<meta name=\"tiddlywiki-version\" content=\"{{$:/core/templates/version}}\" />\n<meta name=\"viewport\" content=\"width=device-width, initial-scale=1.0\" />\n<meta name=\"apple-mobile-web-app-capable\" content=\"yes\" />\n<meta name=\"apple-mobile-web-app-status-bar-style\" content=\"black-translucent\" />\n<meta name=\"mobile-web-app-capable\" content=\"yes\"/>\n<meta name=\"format-detection\" content=\"telephone=no\">\n<link id=\"faviconLink\" rel=\"shortcut icon\" href=\"favicon.ico\">\n<title>{{$:/core/wiki/title}}</title>\n<div id=\"styleArea\">\n{{$:/boot/boot.css||$:/core/templates/css-tiddler}}\n</div>\n<style type=\"text/css\">\n{{$:/core/ui/PageStylesheet||$:/core/templates/wikified-tiddler}}\n</style>\n</head>\n<body class=\"tc-body\">\n{{$:/StaticBanner||$:/core/templates/html-tiddler}}\n{{$:/core/ui/PageTemplate||$:/core/templates/html-tiddler}}\n</body>\n</html>\n"
},
"$:/core/templates/static.tiddler.html": {
"title": "$:/core/templates/static.tiddler.html",
"text": "\\define tv-wikilink-template() $uri_doubleencoded$.html\n\\define tv-config-toolbar-icons() no\n\\define tv-config-toolbar-text() no\n\\define tv-config-toolbar-class() tc-btn-invisible\n\\import [[$:/core/ui/PageMacros]] [all[shadows+tiddlers]tag[$:/tags/Macro]!has[draft.of]]\n`<!doctype html>\n<html>\n<head>\n<meta http-equiv=\"Content-Type\" content=\"text/html;charset=utf-8\" />\n<meta name=\"generator\" content=\"TiddlyWiki\" />\n<meta name=\"tiddlywiki-version\" content=\"`{{$:/core/templates/version}}`\" />\n<meta name=\"viewport\" content=\"width=device-width, initial-scale=1.0\" />\n<meta name=\"apple-mobile-web-app-capable\" content=\"yes\" />\n<meta name=\"apple-mobile-web-app-status-bar-style\" content=\"black-translucent\" />\n<meta name=\"mobile-web-app-capable\" content=\"yes\"/>\n<meta name=\"format-detection\" content=\"telephone=no\">\n<link id=\"faviconLink\" rel=\"shortcut icon\" href=\"favicon.ico\">\n<link rel=\"stylesheet\" href=\"static.css\">\n<title>`<$view field=\"caption\"><$view field=\"title\"/></$view>: {{$:/core/wiki/title}}`</title>\n</head>\n<body class=\"tc-body\">\n`{{$:/StaticBanner||$:/core/templates/html-tiddler}}`\n<section class=\"tc-story-river tc-static-story-river\">\n`<$view tiddler=\"$:/core/ui/ViewTemplate\" format=\"htmlwikified\"/>`\n</section>\n</body>\n</html>\n`\n"
},
"$:/core/templates/store.area.template.html": {
"title": "$:/core/templates/store.area.template.html",
"text": "<$reveal type=\"nomatch\" state=\"$:/isEncrypted\" text=\"yes\">\n`<div id=\"storeArea\" style=\"display:none;\">`\n<$list filter=<<saveTiddlerFilter>> template=\"$:/core/templates/html-div-tiddler\"/>\n<$list filter={{{ [<skinnySaveTiddlerFilter>] }}} template=\"$:/core/templates/html-div-skinny-tiddler\"/>\n`</div>`\n</$reveal>\n<$reveal type=\"match\" state=\"$:/isEncrypted\" text=\"yes\">\n`<!--~~ Encrypted tiddlers ~~-->`\n`<pre id=\"encryptedStoreArea\" type=\"text/plain\" style=\"display:none;\">`\n<$encrypt filter=<<saveTiddlerFilter>>/>\n`</pre>`\n</$reveal>"
},
"$:/core/templates/tid-tiddler": {
"title": "$:/core/templates/tid-tiddler",
"text": "<!--\n\nThis template is used for saving tiddlers in TiddlyWeb *.tid format\n\n--><$fields exclude='text bag' template='$name$: $value$\n'></$fields>`\n`<$view field=\"text\" format=\"text\" />"
},
"$:/core/templates/tiddler-metadata": {
"title": "$:/core/templates/tiddler-metadata",
"text": "<!--\n\nThis template is used for saving tiddler metadata *.meta files\n\n--><$fields exclude='text bag' template='$name$: $value$\n'></$fields>"
},
"$:/core/templates/tiddlywiki5.html": {
"title": "$:/core/templates/tiddlywiki5.html",
"text": "<$set name=\"saveTiddlerAndShadowsFilter\" filter=\"[subfilter<saveTiddlerFilter>] [subfilter<saveTiddlerFilter>plugintiddlers[]]\">\n`<!doctype html>\n`{{$:/core/templates/MOTW.html}}`<html lang=\"`<$text text={{{ [{$:/language}get[name]] }}}/>`\">\n<head>\n<meta http-equiv=\"Content-Type\" content=\"text/html;charset=utf-8\" />\n<!--~~ Raw markup for the top of the head section ~~-->\n`{{{ [<saveTiddlerAndShadowsFilter>tag[$:/tags/RawMarkupWikified/TopHead]] ||$:/core/templates/raw-static-tiddler}}}`\n<meta http-equiv=\"X-UA-Compatible\" content=\"IE=Edge\"/>\n<meta name=\"application-name\" content=\"TiddlyWiki\" />\n<meta name=\"generator\" content=\"TiddlyWiki\" />\n<meta name=\"tiddlywiki-version\" content=\"`{{$:/core/templates/version}}`\" />\n<meta name=\"viewport\" content=\"width=device-width, initial-scale=1.0\" />\n<meta name=\"apple-mobile-web-app-capable\" content=\"yes\" />\n<meta name=\"apple-mobile-web-app-status-bar-style\" content=\"black-translucent\" />\n<meta name=\"mobile-web-app-capable\" content=\"yes\"/>\n<meta name=\"format-detection\" content=\"telephone=no\" />\n<meta name=\"copyright\" content=\"`{{$:/core/copyright.txt}}`\" />\n<link id=\"faviconLink\" rel=\"shortcut icon\" href=\"favicon.ico\">\n<title>`{{$:/core/wiki/title}}`</title>\n<!--~~ This is a Tiddlywiki file. The points of interest in the file are marked with this pattern ~~-->\n\n<!--~~ Raw markup ~~-->\n`{{{ [enlist<saveTiddlerAndShadowsFilter>tag[$:/core/wiki/rawmarkup]] ||$:/core/templates/plain-text-tiddler}}}\n{{{ [enlist<saveTiddlerAndShadowsFilter>tag[$:/tags/RawMarkup]] ||$:/core/templates/plain-text-tiddler}}}\n{{{ [enlist<saveTiddlerAndShadowsFilter>tag[$:/tags/RawMarkupWikified]] ||$:/core/templates/raw-static-tiddler}}}`\n</head>\n<body class=\"tc-body\">\n<!--~~ Raw markup for the top of the body section ~~-->\n`{{{ [enlist<saveTiddlerAndShadowsFilter>tag[$:/tags/RawMarkupWikified/TopBody]] ||$:/core/templates/raw-static-tiddler}}}`\n<!--~~ Static styles ~~-->\n<div id=\"styleArea\">\n`{{$:/boot/boot.css||$:/core/templates/css-tiddler}}`\n</div>\n<!--~~ Static content for Google and browsers without JavaScript ~~-->\n<noscript>\n<div id=\"splashArea\">\n`{{$:/core/templates/static.area}}`\n</div>\n</noscript>\n<!--~~ Ordinary tiddlers ~~-->\n`{{$:/core/templates/store.area.template.html}}`\n<!--~~ Library modules ~~-->\n<div id=\"libraryModules\" style=\"display:none;\">\n`{{{ [is[system]type[application/javascript]library[yes]] ||$:/core/templates/javascript-tiddler}}}`\n</div>\n<!--~~ Boot kernel prologue ~~-->\n<div id=\"bootKernelPrefix\" style=\"display:none;\">\n`{{ $:/boot/bootprefix.js ||$:/core/templates/javascript-tiddler}}`\n</div>\n<!--~~ Boot kernel ~~-->\n<div id=\"bootKernel\" style=\"display:none;\">\n`{{ $:/boot/boot.js ||$:/core/templates/javascript-tiddler}}`\n</div>\n<!--~~ Raw markup for the bottom of the body section ~~-->\n`{{{ [enlist<saveTiddlerAndShadowsFilter>tag[$:/tags/RawMarkupWikified/BottomBody]] ||$:/core/templates/raw-static-tiddler}}}`\n</body>\n</html>`\n"
},
"$:/core/templates/version": {
"title": "$:/core/templates/version",
"text": "<<version>>"
},
"$:/core/templates/wikified-tiddler": {
"title": "$:/core/templates/wikified-tiddler",
"text": "<$transclude />"
},
"$:/core/ui/AboveStory/tw2-plugin-check": {
"title": "$:/core/ui/AboveStory/tw2-plugin-check",
"tags": "$:/tags/AboveStory",
"text": "\\define lingo-base() $:/language/AboveStory/ClassicPlugin/\n<$list filter=\"[all[system+tiddlers]tag[systemConfig]limit[1]]\">\n\n<div class=\"tc-message-box\">\n\n<<lingo Warning>>\n\n<ul>\n\n<$list filter=\"[all[system+tiddlers]tag[systemConfig]]\">\n\n<li>\n\n<$link><$view field=\"title\"/></$link>\n\n</li>\n\n</$list>\n\n</ul>\n\n</div>\n\n</$list>\n"
},
"$:/core/ui/Actions/new-image": {
"title": "$:/core/ui/Actions/new-image",
"tags": "$:/tags/Actions",
"description": "create a new image tiddler",
"text": "\\define get-type()\nimage/$(imageType)$\n\\end\n\\define get-tags() $(textFieldTags)$ $(tagsFieldTags)$\n<$vars imageType={{$:/config/NewImageType}} textFieldTags={{$:/config/NewJournal/Tags}} tagsFieldTags={{$:/config/NewJournal/Tags!!tags}}>\n<$action-sendmessage $message=\"tm-new-tiddler\" type=<<get-type>> tags=<<get-tags>>/>\n</$vars>\n"
},
"$:/core/ui/Actions/new-journal": {
"title": "$:/core/ui/Actions/new-journal",
"tags": "$:/tags/Actions",
"description": "create a new journal tiddler",
"text": "\\define get-tags() $(textFieldTags)$ $(tagsFieldTags)$\n<$vars journalTitleTemplate={{$:/config/NewJournal/Title}} textFieldTags={{$:/config/NewJournal/Tags}} tagsFieldTags={{$:/config/NewJournal/Tags!!tags}} journalText={{$:/config/NewJournal/Text}}>\n<$wikify name=\"journalTitle\" text=\"\"\"<$macrocall $name=\"now\" format=<<journalTitleTemplate>>/>\"\"\">\n<$reveal type=\"nomatch\" state=<<journalTitle>> text=\"\">\n<$action-sendmessage $message=\"tm-new-tiddler\" title=<<journalTitle>> tags=<<get-tags>> text={{{ [<journalTitle>get[]] }}}/>\n</$reveal>\n<$reveal type=\"match\" state=<<journalTitle>> text=\"\">\n<$action-sendmessage $message=\"tm-new-tiddler\" title=<<journalTitle>> tags=<<get-tags>> text=<<journalText>>/>\n</$reveal>\n</$wikify>\n</$vars>\n"
},
"$:/core/ui/Actions/new-tiddler": {
"title": "$:/core/ui/Actions/new-tiddler",
"tags": "$:/tags/Actions",
"description": "create a new empty tiddler",
"text": "\\define get-tags() $(textFieldTags)$ $(tagsFieldTags)$\n<$vars textFieldTags={{$:/config/NewTiddler/Tags}} tagsFieldTags={{$:/config/NewTiddler/Tags!!tags}}>\n<$action-sendmessage $message=\"tm-new-tiddler\" tags=<<get-tags>>/>\n</$vars>\n"
},
"$:/core/ui/AdvancedSearch/Filter": {
"title": "$:/core/ui/AdvancedSearch/Filter",
"tags": "$:/tags/AdvancedSearch",
"caption": "{{$:/language/Search/Filter/Caption}}",
"text": "\\define lingo-base() $:/language/Search/\n\\define set-next-input-tab(beforeafter:\"after\") <$macrocall $name=\"change-input-tab\" stateTitle=\"$:/state/tab--1498284803\" tag=\"$:/tags/AdvancedSearch\" beforeafter=\"$beforeafter$\" defaultState=\"$:/core/ui/AdvancedSearch/System\" actions=\"\"\"<$action-setfield $tiddler=\"$:/state/advancedsearch/currentTab\" text=<<nextTab>>/>\"\"\"/>\n\n\\define cancel-search-actions() <$list filter=\"[{$:/temp/advancedsearch/input}!match{$:/temp/advancedsearch}]\" emptyMessage=\"\"\"<$action-deletetiddler $filter=\"[[$:/temp/advancedsearch]] [[$:/temp/advancedsearch/input]] [[$:/temp/advancedsearch/selected-item]]\" />\"\"\"><$action-setfield $tiddler=\"$:/temp/advancedsearch/input\" text={{$:/temp/advancedsearch}}/><$action-setfield $tiddler=\"$:/temp/advancedsearch/refresh\" text=\"yes\"/></$list>\n\n\\define input-accept-actions() <$list filter=\"[{$:/config/Search/NavigateOnEnter/enable}match[yes]]\" emptyMessage=\"\"\"<$list filter=\"[<__tiddler__>get[text]!is[missing]] ~[<__tiddler__>get[text]is[shadow]]\"><$action-navigate $to={{{ [<__tiddler__>get[text]] }}}/></$list>\"\"\"><$action-navigate $to={{{ [<__tiddler__>get[text]] }}}/></$list>\n\n\\define input-accept-variant-actions() <$list filter=\"[{$:/config/Search/NavigateOnEnter/enable}match[yes]]\" emptyMessage=\"\"\"<$list filter=\"[<__tiddler__>get[text]!is[missing]] ~[<__tiddler__>get[text]is[shadow]]\"><$list filter=\"[<__tiddler__>get[text]minlength[1]]\"><$action-sendmessage $message=\"tm-edit-tiddler\" $param={{{ [<__tiddler__>get[text]] }}}/></$list></$list>\"\"\"><$list filter=\"[<__tiddler__>get[text]minlength[1]]\"><$action-sendmessage $message=\"tm-edit-tiddler\" $param={{{ [<__tiddler__>get[text]] }}}/></$list></$list>\n\n<<lingo Filter/Hint>>\n\n<div class=\"tc-search tc-advanced-search\">\n<$keyboard key=\"((input-tab-right))\" actions=<<set-next-input-tab>>>\n<$keyboard key=\"((input-tab-left))\" actions=<<set-next-input-tab \"before\">>>\n<$macrocall $name=\"keyboard-driven-input\" tiddler=\"$:/temp/advancedsearch/input\" storeTitle=\"$:/temp/advancedsearch\" \n\t\trefreshTitle=\"$:/temp/advancedsearch/refresh\" selectionStateTitle=\"$:/temp/advancedsearch/selected-item\" type=\"search\" \n\t\ttag=\"input\" focus={{$:/config/Search/AutoFocus}} configTiddlerFilter=\"[[$:/temp/advancedsearch]]\" firstSearchFilterField=\"text\" \n\t\tinputAcceptActions=<<input-accept-actions>> inputAcceptVariantActions=<<input-accept-variant-actions>> \n\t\tinputCancelActions=<<cancel-search-actions>>/>\n</$keyboard>\n</$keyboard>\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/AdvancedSearch/FilterButton]!has[draft.of]]\"><$transclude/></$list>\n</div>\n\n<$reveal state=\"$:/temp/advancedsearch\" type=\"nomatch\" text=\"\">\n<$set name=\"resultCount\" value=\"\"\"<$count filter={{$:/temp/advancedsearch}}/>\"\"\">\n<div class=\"tc-search-results\">\n<<lingo Filter/Matches>>\n<$list filter={{$:/temp/advancedsearch}}>\n<span class={{{[<currentTiddler>addsuffix[-primaryList]] -[[$:/temp/advancedsearch/selected-item]get[text]] +[then[]else[tc-list-item-selected]] }}}>\n<$transclude tiddler=\"$:/core/ui/ListItemTemplate\"/>\n</span>\n</$list>\n</div>\n</$set>\n</$reveal>\n"
},
"$:/core/ui/AdvancedSearch/Filter/FilterButtons/clear": {
"title": "$:/core/ui/AdvancedSearch/Filter/FilterButtons/clear",
"tags": "$:/tags/AdvancedSearch/FilterButton",
"text": "<$reveal state=\"$:/temp/advancedsearch\" type=\"nomatch\" text=\"\">\n<$button class=\"tc-btn-invisible\">\n<<cancel-search-actions>>\n<$action-sendmessage $message=\"tm-focus-selector\" $param=\"\"\".tc-advanced-search input\"\"\" />\n{{$:/core/images/close-button}}\n</$button>\n</$reveal>\n"
},
"$:/core/ui/AdvancedSearch/Filter/FilterButtons/delete": {
"title": "$:/core/ui/AdvancedSearch/Filter/FilterButtons/delete",
"tags": "$:/tags/AdvancedSearch/FilterButton",
"text": "<$reveal state=\"$:/temp/advancedsearch\" type=\"nomatch\" text=\"\">\n<$button popup=<<qualify \"$:/state/filterDeleteDropdown\">> class=\"tc-btn-invisible\">\n{{$:/core/images/delete-button}}\n</$button>\n</$reveal>\n\n<$reveal state=<<qualify \"$:/state/filterDeleteDropdown\">> type=\"popup\" position=\"belowleft\" animate=\"yes\">\n<div class=\"tc-block-dropdown-wrapper\">\n<div class=\"tc-block-dropdown tc-edit-type-dropdown\">\n<div class=\"tc-dropdown-item-plain\">\n<$set name=\"resultCount\" value=\"\"\"<$count filter={{$:/temp/advancedsearch}}/>\"\"\">\nAre you sure you wish to delete <<resultCount>> tiddler(s)?\n</$set>\n</div>\n<div class=\"tc-dropdown-item-plain\">\n<$button class=\"tc-btn\">\n<$action-deletetiddler $filter={{$:/temp/advancedsearch}}/>\nDelete these tiddlers\n</$button>\n</div>\n</div>\n</div>\n</$reveal>\n"
},
"$:/core/ui/AdvancedSearch/Filter/FilterButtons/dropdown": {
"title": "$:/core/ui/AdvancedSearch/Filter/FilterButtons/dropdown",
"tags": "$:/tags/AdvancedSearch/FilterButton",
"text": "<span class=\"tc-popup-keep\">\n<$button popup=<<qualify \"$:/state/filterDropdown\">> class=\"tc-btn-invisible\">\n{{$:/core/images/down-arrow}}\n</$button>\n</span>\n\n<$reveal state=<<qualify \"$:/state/filterDropdown\">> type=\"popup\" position=\"belowleft\" animate=\"yes\">\n<$set name=\"tv-show-missing-links\" value=\"yes\">\n<$linkcatcher actions=\"\"\"<$action-setfield $tiddler=\"$:/temp/advancedsearch\" text=<<navigateTo>>/><$action-setfield $tiddler=\"$:/temp/advancedsearch/input\" text=<<navigateTo>>/><$action-setfield $tiddler=\"$:/temp/advancedsearch/refresh\" text=\"yes\"/><$action-sendmessage $message=\"tm-focus-selector\" $param='.tc-advanced-search input' />\"\"\">\n<div class=\"tc-block-dropdown-wrapper\">\n<div class=\"tc-block-dropdown tc-edit-type-dropdown\">\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/Filter]]\"><$link to={{!!filter}}><$transclude field=\"description\"/></$link>\n</$list>\n</div>\n</div>\n</$linkcatcher>\n</$set>\n</$reveal>\n"
},
"$:/core/ui/AdvancedSearch/Filter/FilterButtons/export": {
"title": "$:/core/ui/AdvancedSearch/Filter/FilterButtons/export",
"tags": "$:/tags/AdvancedSearch/FilterButton",
"text": "<$reveal state=\"$:/temp/advancedsearch\" type=\"nomatch\" text=\"\">\n<$macrocall $name=\"exportButton\" exportFilter={{$:/temp/advancedsearch}} lingoBase=\"$:/language/Buttons/ExportTiddlers/\"/>\n</$reveal>\n"
},
"$:/core/ui/AdvancedSearch/Shadows": {
"title": "$:/core/ui/AdvancedSearch/Shadows",
"tags": "$:/tags/AdvancedSearch",
"caption": "{{$:/language/Search/Shadows/Caption}}",
"first-search-filter": "[all[shadows]search<userInput>sort[title]limit[250]] -[[$:/temp/advancedsearch]] -[[$:/temp/advancedsearch/input]]",
"text": "\\define lingo-base() $:/language/Search/\n\n\\define set-next-input-tab(beforeafter:\"after\") <$macrocall $name=\"change-input-tab\" stateTitle=\"$:/state/tab--1498284803\" tag=\"$:/tags/AdvancedSearch\" beforeafter=\"$beforeafter$\" defaultState=\"$:/core/ui/AdvancedSearch/System\" actions=\"\"\"<$action-setfield $tiddler=\"$:/state/advancedsearch/currentTab\" text=<<nextTab>>/>\"\"\"/>\n\n\\define cancel-search-actions() <$list filter=\"[{$:/temp/advancedsearch}!match{$:/temp/advancedsearch/input}]\" emptyMessage=\"\"\"<$action-deletetiddler $filter=\"[[$:/temp/advancedsearch]] [[$:/temp/advancedsearch/input]] [[$:/temp/advancedsearch/selected-item]]\" />\"\"\"><$action-setfield $tiddler=\"$:/temp/advancedsearch/input\" text={{$:/temp/advancedsearch}}/><$action-setfield $tiddler=\"$:/temp/advancedsearch/refresh\" text=\"yes\"/></$list><$action-sendmessage $message=\"tm-focus-selector\" $param=\"\"\".tc-advanced-search input\"\"\"/>\n\n\\define input-accept-actions() <$list filter=\"[{$:/config/Search/NavigateOnEnter/enable}match[yes]]\" emptyMessage=\"\"\"<$list filter=\"[<__tiddler__>get[text]!is[missing]] ~[<__tiddler__>get[text]is[shadow]]\"><$action-navigate $to={{{ [<__tiddler__>get[text]] }}}/></$list>\"\"\"><$action-navigate $to={{{ [<__tiddler__>get[text]] }}}/></$list>\n\n\\define input-accept-variant-actions() <$list filter=\"[{$:/config/Search/NavigateOnEnter/enable}match[yes]]\" emptyMessage=\"\"\"<$list filter=\"[<__tiddler__>get[text]!is[missing]] ~[<__tiddler__>get[text]is[shadow]]\"><$list filter=\"[<__tiddler__>get[text]minlength[1]]\"><$action-sendmessage $message=\"tm-edit-tiddler\" $param={{{ [<__tiddler__>get[text]] }}}/></$list></$list>\"\"\"><$list filter=\"[<__tiddler__>get[text]minlength[1]]\"><$action-sendmessage $message=\"tm-edit-tiddler\" $param={{{ [<__tiddler__>get[text]] }}}/></$list></$list>\n\n<<lingo Shadows/Hint>>\n\n<div class=\"tc-search\">\n<$keyboard key=\"((input-tab-right))\" actions=<<set-next-input-tab>>>\n<$keyboard key=\"((input-tab-left))\" actions=<<set-next-input-tab \"before\">>>\n<$macrocall $name=\"keyboard-driven-input\" tiddler=\"$:/temp/advancedsearch/input\" storeTitle=\"$:/temp/advancedsearch\"\n\t\trefreshTitle=\"$:/temp/advancedsearch/refresh\" selectionStateTitle=\"$:/temp/advancedsearch/selected-item\" type=\"search\"\n\t\ttag=\"input\" focus={{$:/config/Search/AutoFocus}} configTiddlerFilter=\"[[$:/core/ui/AdvancedSearch/Shadows]]\"\n\t\tinputCancelActions=<<cancel-search-actions>> inputAcceptActions=<<input-accept-actions>> \n\t\tinputAcceptVariantActions=<<input-accept-variant-actions>> filterMinLength={{$:/config/Search/MinLength}}/>\n</$keyboard>\n</$keyboard>\n<$reveal state=\"$:/temp/advancedsearch\" type=\"nomatch\" text=\"\">\n<$button class=\"tc-btn-invisible\">\n<<cancel-search-actions>>\n{{$:/core/images/close-button}}\n</$button>\n</$reveal>\n</div>\n\n<$reveal state=\"$:/temp/advancedsearch\" type=\"nomatch\" text=\"\">\n\n<$list filter=\"[{$:/temp/advancedsearch}minlength{$:/config/Search/MinLength}limit[1]]\" emptyMessage=\"\"\"<div class=\"tc-search-results\">{{$:/language/Search/Search/TooShort}}</div>\"\"\" variable=\"listItem\">\n\n<$set name=\"resultCount\" value=\"\"\"<$count filter=\"[all[shadows]search{$:/temp/advancedsearch}] -[[$:/temp/advancedsearch]] -[[$:/temp/advancedsearch/input]]\"/>\"\"\">\n\n<div class=\"tc-search-results\">\n\n<<lingo Shadows/Matches>>\n\n<$list filter=\"[all[shadows]search{$:/temp/advancedsearch}sort[title]limit[250]] -[[$:/temp/advancedsearch]] -[[$:/temp/advancedsearch/input]]\">\n<span class={{{[<currentTiddler>addsuffix[-primaryList]] -[[$:/temp/advancedsearch/selected-item]get[text]] +[then[]else[tc-list-item-selected]] }}}>\n<$transclude tiddler=\"$:/core/ui/ListItemTemplate\"/>\n</span>\n</$list>\n\n</div>\n\n</$set>\n\n</$list>\n\n</$reveal>\n\n<$reveal state=\"$:/temp/advancedsearch\" type=\"match\" text=\"\">\n\n</$reveal>\n"
},
"$:/core/ui/AdvancedSearch/Standard": {
"title": "$:/core/ui/AdvancedSearch/Standard",
"tags": "$:/tags/AdvancedSearch",
"caption": "{{$:/language/Search/Standard/Caption}}",
"text": "\\define lingo-base() $:/language/Search/\n\\define set-next-input-tab(beforeafter:\"after\") <$macrocall $name=\"change-input-tab\" stateTitle=\"$:/state/tab--1498284803\" tag=\"$:/tags/AdvancedSearch\" beforeafter=\"$beforeafter$\" defaultState=\"$:/core/ui/AdvancedSearch/System\" actions=\"\"\"<$action-setfield $tiddler=\"$:/state/advancedsearch/currentTab\" text=<<nextTab>>/>\"\"\"/>\n\n\\define next-search-tab(beforeafter:\"after\") <$macrocall $name=\"change-input-tab\" stateTitle=\"$:/state/tab/search-results/advancedsearch\" tag=\"$:/tags/SearchResults\" beforeafter=\"$beforeafter$\" defaultState={{$:/config/SearchResults/Default}} actions=\"\"\"<$action-setfield $tiddler=\"$:/state/advancedsearch/standard/currentTab\" text=<<nextTab>>/>\"\"\"/>\n\n\\define cancel-search-actions() <$list filter=\"[{$:/temp/advancedsearch}!match{$:/temp/advancedsearch/input}]\" emptyMessage=\"\"\"<$action-deletetiddler $filter=\"[[$:/temp/advancedsearch]] [[$:/temp/advancedsearch/input]] [[$:/temp/advancedsearch/selected-item]]\" />\"\"\"><$action-setfield $tiddler=\"$:/temp/advancedsearch/input\" text={{$:/temp/advancedsearch}}/><$action-setfield $tiddler=\"$:/temp/advancedsearch/refresh\" text=\"yes\"/></$list><$action-sendmessage $message=\"tm-focus-selector\" $param=\"\"\".tc-advanced-search input\"\"\"/>\n\n\\define input-accept-actions() <$list filter=\"[{$:/config/Search/NavigateOnEnter/enable}match[yes]]\" emptyMessage=\"\"\"<$list filter=\"[<__tiddler__>get[text]!is[missing]] ~[<__tiddler__>get[text]is[shadow]]\"><$action-navigate $to={{{ [<__tiddler__>get[text]] }}}/></$list>\"\"\"><$action-navigate $to={{{ [<__tiddler__>get[text]] }}}/></$list>\n\n\\define input-accept-variant-actions() <$list filter=\"[{$:/config/Search/NavigateOnEnter/enable}match[yes]]\" emptyMessage=\"\"\"<$list filter=\"[<__tiddler__>get[text]!is[missing]] ~[<__tiddler__>get[text]is[shadow]]\"><$list filter=\"[<__tiddler__>get[text]minlength[1]]\"><$action-sendmessage $message=\"tm-edit-tiddler\" $param={{{ [<__tiddler__>get[text]] }}}/></$list></$list>\"\"\"><$list filter=\"[<__tiddler__>get[text]minlength[1]]\"><$action-sendmessage $message=\"tm-edit-tiddler\" $param={{{ [<__tiddler__>get[text]] }}}/></$list></$list>\n\n<<lingo Standard/Hint>>\n\n<div class=\"tc-search\">\n<$keyboard key=\"((input-tab-right))\" actions=<<set-next-input-tab>>>\n<$keyboard key=\"((input-tab-left))\" actions=<<set-next-input-tab \"before\">>>\n<$keyboard key=\"shift-alt-Right\" actions=<<next-search-tab>>>\n<$keyboard key=\"shift-alt-Left\" actions=<<next-search-tab \"before\">>>\n<$macrocall $name=\"keyboard-driven-input\" tiddler=\"$:/temp/advancedsearch/input\" storeTitle=\"$:/temp/advancedsearch\"\n\t\trefreshTitle=\"$:/temp/advancedsearch/refresh\" selectionStateTitle=\"$:/temp/advancedsearch/selected-item\" type=\"search\"\n\t\ttag=\"input\" focus={{$:/config/Search/AutoFocus}} inputCancelActions=<<cancel-search-actions>> \n\t\tinputAcceptActions=<<input-accept-actions>> inputAcceptVariantActions=<<input-accept-variant-actions>> \n\t\tconfigTiddlerFilter=\"[[$:/state/search/currentTab]!is[missing]get[text]] ~[{$:/config/SearchResults/Default}]\"\n\t\tfilterMinLength={{$:/config/Search/MinLength}}/>\n</$keyboard>\n</$keyboard>\n</$keyboard>\n</$keyboard>\n<$reveal state=\"$:/temp/advancedsearch\" type=\"nomatch\" text=\"\">\n<$button class=\"tc-btn-invisible\">\n<<cancel-search-actions>>\n{{$:/core/images/close-button}}\n</$button>\n</$reveal>\n</div>\n\n<$reveal state=\"$:/temp/advancedsearch\" type=\"nomatch\" text=\"\">\n<$list filter=\"[{$:/temp/advancedsearch}minlength{$:/config/Search/MinLength}limit[1]]\" emptyMessage=\"\"\"<div class=\"tc-search-results\">{{$:/language/Search/Search/TooShort}}</div>\"\"\" variable=\"listItem\">\n<$vars userInput={{{ [[$:/temp/advancedsearch]get[text]] }}} configTiddler={{{ [[$:/state/search/currentTab]!is[missing]get[text]] ~[{$:/config/SearchResults/Default}] }}} searchListState=\"$:/temp/advancedsearch/selected-item\">\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/SearchResults]!has[draft.of]butfirst[]limit[1]]\" emptyMessage=\"\"\"\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/SearchResults]!has[draft.of]]\">\n<$transclude/>\n</$list>\n\"\"\">\n<$macrocall $name=\"tabs\" tabsList=\"[all[shadows+tiddlers]tag[$:/tags/SearchResults]!has[draft.of]]\" default={{$:/config/SearchResults/Default}} actions=\"\"\"<$action-setfield $tiddler=\"$:/state/advancedsearch/standard/currentTab\" text=<<currentTab>>/>\"\"\" explicitState=\"$:/state/tab/search-results/advancedsearch\" />\n</$list>\n</$vars>\n</$list>\n</$reveal>\n"
},
"$:/core/ui/AdvancedSearch/System": {
"title": "$:/core/ui/AdvancedSearch/System",
"tags": "$:/tags/AdvancedSearch",
"caption": "{{$:/language/Search/System/Caption}}",
"first-search-filter": "[is[system]search<userInput>sort[title]limit[250]] -[[$:/temp/advancedsearch]] -[[$:/temp/advancedsearch/input]] -[[$:/temp/advancedsearch/selected-item]]",
"text": "\\define lingo-base() $:/language/Search/\n\\define set-next-input-tab(beforeafter:\"after\",stateTitle,tag,defaultState,currentTabTiddler) <$macrocall $name=\"change-input-tab\" stateTitle=\"$:/state/tab--1498284803\" tag=\"$:/tags/AdvancedSearch\" beforeafter=\"$beforeafter$\" defaultState=\"$:/core/ui/AdvancedSearch/System\" actions=\"\"\"<$action-setfield $tiddler=\"$:/state/advancedsearch/currentTab\" text=<<nextTab>>/>\"\"\"/>\n\n\\define cancel-search-actions() <$list filter=\"[{$:/temp/advancedsearch}!match{$:/temp/advancedsearch/input}]\" emptyMessage=\"\"\"<$action-deletetiddler $filter=\"[[$:/temp/advancedsearch]] [[$:/temp/advancedsearch/input]] [[$:/temp/advancedsearch/selected-item]]\" />\"\"\"><$action-setfield $tiddler=\"$:/temp/advancedsearch/input\" text={{$:/temp/advancedsearch}}/><$action-setfield $tiddler=\"$:/temp/advancedsearch/refresh\" text=\"yes\"/></$list><$action-sendmessage $message=\"tm-focus-selector\" $param=\"\"\".tc-advanced-search input\"\"\"/>\n\n\\define input-accept-actions() <$list filter=\"[{$:/config/Search/NavigateOnEnter/enable}match[yes]]\" emptyMessage=\"\"\"<$list filter=\"[<__tiddler__>get[text]!is[missing]] ~[<__tiddler__>get[text]is[shadow]]\"><$action-navigate $to={{{ [<__tiddler__>get[text]] }}}/></$list>\"\"\"><$action-navigate $to={{{ [<__tiddler__>get[text]] }}}/></$list>\n\n\\define input-accept-variant-actions() <$list filter=\"[{$:/config/Search/NavigateOnEnter/enable}match[yes]]\" emptyMessage=\"\"\"<$list filter=\"[<__tiddler__>get[text]!is[missing]] ~[<__tiddler__>get[text]is[shadow]]\"><$list filter=\"[<__tiddler__>get[text]minlength[1]]\"><$action-sendmessage $message=\"tm-edit-tiddler\" $param={{{ [<__tiddler__>get[text]] }}}/></$list></$list>\"\"\"><$list filter=\"[<__tiddler__>get[text]minlength[1]]\"><$action-sendmessage $message=\"tm-edit-tiddler\" $param={{{ [<__tiddler__>get[text]] }}}/></$list></$list>\n\n<<lingo System/Hint>>\n\n<div class=\"tc-search\">\n<$keyboard key=\"((input-tab-right))\" actions=<<set-next-input-tab>>>\n<$keyboard key=\"((input-tab-left))\" actions=<<set-next-input-tab \"before\">>>\n<$macrocall $name=\"keyboard-driven-input\" tiddler=\"$:/temp/advancedsearch/input\" storeTitle=\"$:/temp/advancedsearch\"\n\t\trefreshTitle=\"$:/temp/advancedsearch/refresh\" selectionStateTitle=\"$:/temp/advancedsearch/selected-item\"\n\t\ttype=\"search\" tag=\"input\" focus={{$:/config/Search/AutoFocus}} configTiddlerFilter=\"[[$:/core/ui/AdvancedSearch/System]]\"\n\t\tinputCancelActions=<<cancel-search-actions>> inputAcceptActions=<<input-accept-actions>> \n\t\tinputAcceptVariantActions=<<input-accept-variant-actions>> filterMinLength={{$:/config/Search/MinLength}}/>\n</$keyboard>\n</$keyboard>\n<$reveal state=\"$:/temp/advancedsearch\" type=\"nomatch\" text=\"\">\n<$button class=\"tc-btn-invisible\">\n<<cancel-search-actions>>\n{{$:/core/images/close-button}}\n</$button>\n</$reveal>\n</div>\n\n<$reveal state=\"$:/temp/advancedsearch\" type=\"nomatch\" text=\"\">\n\n<$list filter=\"[{$:/temp/advancedsearch}minlength{$:/config/Search/MinLength}limit[1]]\" emptyMessage=\"\"\"<div class=\"tc-search-results\">{{$:/language/Search/Search/TooShort}}</div>\"\"\" variable=\"listItem\">\n\n<$set name=\"resultCount\" value=\"\"\"<$count filter=\"[is[system]search{$:/temp/advancedsearch}] -[[$:/temp/advancedsearch]] -[[$:/temp/advancedsearch/input]] -[[$:/temp/advancedsearch/selected-item]]\"/>\"\"\">\n\n<div class=\"tc-search-results\">\n\n<<lingo System/Matches>>\n\n<$list filter=\"[is[system]search{$:/temp/advancedsearch}sort[title]limit[250]] -[[$:/temp/advancedsearch]] -[[$:/temp/advancedsearch/input]] -[[$:/temp/advancedsearch/selected-item]]\">\n<span class={{{[<currentTiddler>addsuffix[-primaryList]] -[[$:/temp/advancedsearch/selected-item]get[text]] +[then[]else[tc-list-item-selected]] }}}>\n<$transclude tiddler=\"$:/core/ui/ListItemTemplate\"/>\n</span>\n</$list>\n\n</div>\n\n</$set>\n\n</$list>\n\n</$reveal>\n\n<$reveal state=\"$:/temp/advancedsearch\" type=\"match\" text=\"\">\n\n</$reveal>\n"
},
"$:/AdvancedSearch": {
"title": "$:/AdvancedSearch",
"icon": "$:/core/images/advanced-search-button",
"color": "#bbb",
"text": "<div class=\"tc-advanced-search\">\n<$macrocall $name=\"tabs\" tabsList=\"[all[shadows+tiddlers]tag[$:/tags/AdvancedSearch]!has[draft.of]]\" default=\"$:/core/ui/AdvancedSearch/System\" actions=\"\"\"<$action-setfield $tiddler=\"$:/state/advancedsearch/currentTab\" text=<<currentTab>>/>\"\"\" explicitState=\"$:/state/tab--1498284803\"/>\n</div>\n"
},
"$:/core/ui/AlertTemplate": {
"title": "$:/core/ui/AlertTemplate",
"text": "<div class=\"tc-alert\">\n<div class=\"tc-alert-toolbar\">\n<$button class=\"tc-btn-invisible\"><$action-deletetiddler $tiddler=<<currentTiddler>>/>{{$:/core/images/cancel-button}}</$button>\n</div>\n<div class=\"tc-alert-subtitle\">\n<$wikify name=\"format\" text=<<lingo Tiddler/DateFormat>>>\n<$view field=\"component\"/> - <$view field=\"modified\" format=\"date\" template=<<format>>/> <$reveal type=\"nomatch\" state=\"!!count\" text=\"\"><span class=\"tc-alert-highlight\">({{$:/language/Count}}: <$view field=\"count\"/>)</span></$reveal>\n</$wikify>\n</div>\n<div class=\"tc-alert-body\">\n\n<$transclude/>\n\n</div>\n</div>\n"
},
"$:/core/ui/BinaryWarning": {
"title": "$:/core/ui/BinaryWarning",
"text": "\\define lingo-base() $:/language/BinaryWarning/\n<<lingo Prompt>>\n"
},
"$:/core/ui/Components/plugin-info": {
"title": "$:/core/ui/Components/plugin-info",
"text": "\\define lingo-base() $:/language/ControlPanel/Plugins/\n\n\\define popup-state-macro()\n$(qualified-state)$-$(currentTiddler)$\n\\end\n\n\\define tabs-state-macro()\n$(popup-state)$-$(pluginInfoType)$\n\\end\n\n\\define plugin-icon-title()\n$(currentTiddler)$/icon\n\\end\n\n\\define plugin-disable-title()\n$:/config/Plugins/Disabled/$(currentTiddler)$\n\\end\n\n\\define plugin-table-body(type,disabledMessage,default-popup-state)\n<div class=\"tc-plugin-info-chunk tc-plugin-info-toggle\">\n<$reveal type=\"nomatch\" state=<<popup-state>> text=\"yes\" default=\"\"\"$default-popup-state$\"\"\">\n<$button class=\"tc-btn-invisible tc-btn-dropdown\" set=<<popup-state>> setTo=\"yes\">\n{{$:/core/images/chevron-right}}\n</$button>\n</$reveal>\n<$reveal type=\"match\" state=<<popup-state>> text=\"yes\" default=\"\"\"$default-popup-state$\"\"\">\n<$button class=\"tc-btn-invisible tc-btn-dropdown\" set=<<popup-state>> setTo=\"no\">\n{{$:/core/images/chevron-down}}\n</$button>\n</$reveal>\n</div>\n<div class=\"tc-plugin-info-chunk tc-plugin-info-icon\">\n<$transclude tiddler=<<currentTiddler>> subtiddler=<<plugin-icon-title>>>\n<$transclude tiddler=\"$:/core/images/plugin-generic-$type$\"/>\n</$transclude>\n</div>\n<div class=\"tc-plugin-info-chunk tc-plugin-info-description\">\n<h1>\n''<$text text={{{ [<currentTiddler>get[name]] ~[<currentTiddler>split[/]last[1]] }}}/>'': <$view field=\"description\"><$view field=\"title\"/></$view> $disabledMessage$\n</h1>\n<h2>\n<$view field=\"title\"/>\n</h2>\n<h2>\n<div><em><$view field=\"version\"/></em></div>\n</h2>\n</div>\n\\end\n\n\\define plugin-info(type,default-popup-state)\n<$set name=\"popup-state\" value=<<popup-state-macro>>>\n<$reveal type=\"nomatch\" state=<<plugin-disable-title>> text=\"yes\">\n<$link to={{!!title}} class=\"tc-plugin-info\">\n<<plugin-table-body type:\"$type$\" default-popup-state:\"\"\"$default-popup-state$\"\"\">>\n</$link>\n</$reveal>\n<$reveal type=\"match\" state=<<plugin-disable-title>> text=\"yes\">\n<$link to={{!!title}} class=\"tc-plugin-info tc-plugin-info-disabled\">\n<<plugin-table-body type:\"$type$\" default-popup-state:\"\"\"$default-popup-state$\"\"\" disabledMessage:\"<$macrocall $name='lingo' title='Disabled/Status'/>\">>\n</$link>\n</$reveal>\n<$reveal type=\"match\" text=\"yes\" state=<<popup-state>> default=\"\"\"$default-popup-state$\"\"\">\n<div class=\"tc-plugin-info-dropdown\">\n<div class=\"tc-plugin-info-dropdown-body\">\n<$list filter=\"[all[current]] -[[$:/core]]\">\n<div style=\"float:right;\">\n<$reveal type=\"nomatch\" state=<<plugin-disable-title>> text=\"yes\">\n<$button set=<<plugin-disable-title>> setTo=\"yes\" tooltip={{$:/language/ControlPanel/Plugins/Disable/Hint}} aria-label={{$:/language/ControlPanel/Plugins/Disable/Caption}}>\n<<lingo Disable/Caption>>\n</$button>\n</$reveal>\n<$reveal type=\"match\" state=<<plugin-disable-title>> text=\"yes\">\n<$button set=<<plugin-disable-title>> setTo=\"no\" tooltip={{$:/language/ControlPanel/Plugins/Enable/Hint}} aria-label={{$:/language/ControlPanel/Plugins/Enable/Caption}}>\n<<lingo Enable/Caption>>\n</$button>\n</$reveal>\n</div>\n</$list>\n<$set name=\"tabsList\" filter=\"[<currentTiddler>list[]] contents\">\n<$macrocall $name=\"tabs\" state=<<tabs-state-macro>> tabsList=<<tabsList>> default={{{ [enlist<tabsList>] }}} template=\"$:/core/ui/PluginInfo\"/>\n</$set>\n</div>\n</div>\n</$reveal>\n</$set>\n\\end\n\n<$macrocall $name=\"plugin-info\" type=<<plugin-type>> default-popup-state=<<default-popup-state>>/>\n"
},
"$:/core/ui/Components/tag-link": {
"title": "$:/core/ui/Components/tag-link",
"text": "<$link>\n<$set name=\"backgroundColor\" value={{!!color}}>\n<span style=<<tag-styles>> class=\"tc-tag-label\">\n<$view field=\"title\" format=\"text\"/>\n</span>\n</$set>\n</$link>"
},
"$:/core/ui/ControlPanel/Advanced": {
"title": "$:/core/ui/ControlPanel/Advanced",
"tags": "$:/tags/ControlPanel/Info",
"caption": "{{$:/language/ControlPanel/Advanced/Caption}}",
"text": "{{$:/language/ControlPanel/Advanced/Hint}}\n\n<div class=\"tc-control-panel\">\n<$macrocall $name=\"tabs\" tabsList=\"[all[shadows+tiddlers]tag[$:/tags/ControlPanel/Advanced]!has[draft.of]]\" default=\"$:/core/ui/ControlPanel/TiddlerFields\" explicitState=\"$:/state/tab--959111941\"/>\n</div>\n"
},
"$:/core/ui/ControlPanel/Appearance": {
"title": "$:/core/ui/ControlPanel/Appearance",
"tags": "$:/tags/ControlPanel",
"caption": "{{$:/language/ControlPanel/Appearance/Caption}}",
"text": "{{$:/language/ControlPanel/Appearance/Hint}}\n\n<div class=\"tc-control-panel\">\n<$macrocall $name=\"tabs\" tabsList=\"[all[shadows+tiddlers]tag[$:/tags/ControlPanel/Appearance]!has[draft.of]]\" default=\"$:/core/ui/ControlPanel/Theme\" explicitState=\"$:/state/tab--1963855381\"/>\n</div>\n"
},
"$:/core/ui/ControlPanel/Basics": {
"title": "$:/core/ui/ControlPanel/Basics",
"tags": "$:/tags/ControlPanel/Info",
"caption": "{{$:/language/ControlPanel/Basics/Caption}}",
"text": "\\define lingo-base() $:/language/ControlPanel/Basics/\n\n\\define show-filter-count(filter)\n<$button class=\"tc-btn-invisible\">\n<$action-setfield $tiddler=\"$:/temp/advancedsearch\" $value=\"\"\"$filter$\"\"\"/>\n<$action-setfield $tiddler=\"$:/temp/advancedsearch/input\" $value=\"\"\"$filter$\"\"\"/>\n<$action-setfield $tiddler=\"$:/temp/advancedsearch/refresh\" text=\"yes\"/>\n<$action-setfield $tiddler=\"$:/state/tab--1498284803\" $value=\"$:/core/ui/AdvancedSearch/Filter\"/>\n<$action-navigate $to=\"$:/AdvancedSearch\"/>\n<$action-sendmessage $message=\"tm-focus-selector\" $param=\".tc-advanced-search input\"/>\n''<$count filter=\"\"\"$filter$\"\"\"/>''\n{{$:/core/images/advanced-search-button}}\n</$button>\n\\end\n\n|<<lingo Version/Prompt>> |''<<version>>'' |\n|<$link to=\"$:/SiteTitle\"><<lingo Title/Prompt>></$link> |<$edit-text tiddler=\"$:/SiteTitle\" default=\"\" tag=\"input\"/> |\n|<$link to=\"$:/SiteSubtitle\"><<lingo Subtitle/Prompt>></$link> |<$edit-text tiddler=\"$:/SiteSubtitle\" default=\"\" tag=\"input\"/> |\n|<$link to=\"$:/status/UserName\"><<lingo Username/Prompt>></$link> |<$edit-text tiddler=\"$:/status/UserName\" default=\"\" tag=\"input\"/> |\n|<$link to=\"$:/config/AnimationDuration\"><<lingo AnimDuration/Prompt>></$link> |<$edit-text tiddler=\"$:/config/AnimationDuration\" default=\"\" tag=\"input\"/> |\n|<$link to=\"$:/DefaultTiddlers\"><<lingo DefaultTiddlers/Prompt>></$link> |<<lingo DefaultTiddlers/TopHint>><br> <$edit tag=\"textarea\" tiddler=\"$:/DefaultTiddlers\" class=\"tc-edit-texteditor\"/><br>//<<lingo DefaultTiddlers/BottomHint>>// |\n|<$link to=\"$:/language/DefaultNewTiddlerTitle\"><<lingo NewTiddler/Title/Prompt>></$link> |<$edit-text tiddler=\"$:/language/DefaultNewTiddlerTitle\" default=\"\" tag=\"input\"/> |\n|<$link to=\"$:/config/NewJournal/Title\"><<lingo NewJournal/Title/Prompt>></$link> |<$edit-text tiddler=\"$:/config/NewJournal/Title\" default=\"\" tag=\"input\"/> |\n|<$link to=\"$:/config/NewJournal/Text\"><<lingo NewJournal/Text/Prompt>></$link> |<$edit tiddler=\"$:/config/NewJournal/Text\" tag=\"textarea\" class=\"tc-edit-texteditor\" default=\"\"/> |\n|<$link to=\"$:/config/NewTiddler/Tags\"><<lingo NewTiddler/Tags/Prompt>></$link> |<$vars currentTiddler=\"$:/config/NewTiddler/Tags\" tagField=\"text\">{{||$:/core/ui/EditTemplate/tags}}<$list filter=\"[<currentTiddler>tags[]] +[limit[1]]\" variable=\"ignore\"><$button tooltip={{$:/language/ControlPanel/Basics/RemoveTags/Hint}}><<lingo RemoveTags>><$action-listops $tiddler=<<currentTiddler>> $field=\"text\" $subfilter={{{ [<currentTiddler>get[tags]] }}}/><$action-setfield $tiddler=<<currentTiddler>> tags=\"\"/></$button></$list></$vars> |\n|<$link to=\"$:/config/NewJournal/Tags\"><<lingo NewJournal/Tags/Prompt>></$link> |<$vars currentTiddler=\"$:/config/NewJournal/Tags\" tagField=\"text\">{{||$:/core/ui/EditTemplate/tags}}<$list filter=\"[<currentTiddler>tags[]] +[limit[1]]\" variable=\"ignore\"><$button tooltip={{$:/language/ControlPanel/Basics/RemoveTags/Hint}}><<lingo RemoveTags>><$action-listops $tiddler=<<currentTiddler>> $field=\"text\" $subfilter={{{ [<currentTiddler>get[tags]] }}}/><$action-setfield $tiddler=<<currentTiddler>> tags=\"\"/></$button></$list></$vars> |\n|<$link to=\"$:/config/AutoFocus\"><<lingo AutoFocus/Prompt>></$link> |{{$:/snippets/minifocusswitcher}} |\n|<<lingo Language/Prompt>> |{{$:/snippets/minilanguageswitcher}} |\n|<<lingo Tiddlers/Prompt>> |<<show-filter-count \"[!is[system]sort[title]]\">> |\n|<<lingo Tags/Prompt>> |<<show-filter-count \"[tags[]sort[title]]\">> |\n|<<lingo SystemTiddlers/Prompt>> |<<show-filter-count \"[is[system]sort[title]]\">> |\n|<<lingo ShadowTiddlers/Prompt>> |<<show-filter-count \"[all[shadows]sort[title]]\">> |\n|<<lingo OverriddenShadowTiddlers/Prompt>> |<<show-filter-count \"[is[tiddler]is[shadow]sort[title]]\">> |\n"
},
"$:/core/ui/ControlPanel/EditorTypes": {
"title": "$:/core/ui/ControlPanel/EditorTypes",
"tags": "$:/tags/ControlPanel/Advanced",
"caption": "{{$:/language/ControlPanel/EditorTypes/Caption}}",
"text": "\\define lingo-base() $:/language/ControlPanel/EditorTypes/\n\n<<lingo Hint>>\n\n<table>\n<tbody>\n<tr>\n<th><<lingo Type/Caption>></th>\n<th><<lingo Editor/Caption>></th>\n</tr>\n<$list filter=\"[all[shadows+tiddlers]prefix[$:/config/EditorTypeMappings/]sort[title]]\">\n<tr>\n<td>\n<$link>\n<$list filter=\"[all[current]removeprefix[$:/config/EditorTypeMappings/]]\">\n<$text text={{!!title}}/>\n</$list>\n</$link>\n</td>\n<td>\n<$view field=\"text\"/>\n</td>\n</tr>\n</$list>\n</tbody>\n</table>\n"
},
"$:/core/ui/ControlPanel/Info": {
"title": "$:/core/ui/ControlPanel/Info",
"tags": "$:/tags/ControlPanel",
"caption": "{{$:/language/ControlPanel/Info/Caption}}",
"text": "{{$:/language/ControlPanel/Info/Hint}}\n\n<div class=\"tc-control-panel\">\n<$macrocall $name=\"tabs\" tabsList=\"[all[shadows+tiddlers]tag[$:/tags/ControlPanel/Info]!has[draft.of]]\" default=\"$:/core/ui/ControlPanel/Basics\" explicitState=\"$:/state/tab--2112689675\"/>\n</div>\n"
},
"$:/core/ui/ControlPanel/KeyboardShortcuts": {
"title": "$:/core/ui/ControlPanel/KeyboardShortcuts",
"tags": "$:/tags/ControlPanel",
"caption": "{{$:/language/ControlPanel/KeyboardShortcuts/Caption}}",
"text": "\\define lingo-base() $:/language/ControlPanel/KeyboardShortcuts/\n\n\\define new-shortcut(title)\n<div class=\"tc-dropdown-item-plain\">\n<$edit-shortcut tiddler=\"$title$\" placeholder={{$:/language/ControlPanel/KeyboardShortcuts/Add/Prompt}} focus=\"true\" style=\"width:auto;\"/> <$button>\n<<lingo Add/Caption>>\n<$action-listops\n\t$tiddler=\"$(shortcutTitle)$\"\n\t$field=\"text\"\n\t$subfilter=\"[{$title$}]\"\n/>\n<$action-deletetiddler\n\t$tiddler=\"$title$\"\n/>\n</$button>\n</div>\n\\end\n\n\\define shortcut-list-item(caption)\n<td>\n</td>\n<td style=\"text-align:right;font-size:0.7em;\">\n<<lingo Platform/$caption$>>\n</td>\n<td>\n<div style=\"position:relative;\">\n<$button popup=<<qualify \"$:/state/dropdown/$(shortcutTitle)$\">> class=\"tc-btn-invisible\">\n{{$:/core/images/edit-button}}\n</$button>\n<$macrocall $name=\"displayshortcuts\" $output=\"text/html\" shortcuts={{$(shortcutTitle)$}} prefix=\"<kbd>\" separator=\"</kbd> <kbd>\" suffix=\"</kbd>\"/>\n\n<$reveal state=<<qualify \"$:/state/dropdown/$(shortcutTitle)$\">> type=\"popup\" position=\"below\" animate=\"yes\">\n<div class=\"tc-block-dropdown-wrapper\">\n<div class=\"tc-block-dropdown tc-edit-type-dropdown tc-popup-keep\">\n<$list filter=\"[list[$(shortcutTitle)$!!text]sort[title]]\" variable=\"shortcut\" emptyMessage=\"\"\"\n<div class=\"tc-dropdown-item-plain\">\n//<<lingo NoShortcuts/Caption>>//\n</div>\n\"\"\">\n<div class=\"tc-dropdown-item-plain\">\n<$button class=\"tc-btn-invisible\" tooltip={{$:/language/ControlPanel/KeyboardShortcuts/Remove/Hint}}>\n<$action-listops\n\t$tiddler=\"$(shortcutTitle)$\"\n\t$field=\"text\"\n\t$subfilter=\"+[remove<shortcut>]\"\n/>\n<small>{{$:/core/images/close-button}}</small>\n</$button>\n<kbd>\n<$macrocall $name=\"displayshortcuts\" $output=\"text/html\" shortcuts=<<shortcut>>/>\n</kbd>\n</div>\n</$list>\n<hr/>\n<$macrocall $name=\"new-shortcut\" title=<<qualify \"$:/state/new-shortcut/$(shortcutTitle)$\">>/>\n</div>\n</div>\n</$reveal>\n</div>\n</td>\n\\end\n\n\\define shortcut-list(caption,prefix)\n<tr>\n<$list filter=\"[[$prefix$$(shortcutName)$]]\" variable=\"shortcutTitle\">\n<<shortcut-list-item \"$caption$\">>\n</$list>\n</tr>\n\\end\n\n\\define shortcut-editor()\n<<shortcut-list \"All\" \"$:/config/shortcuts/\">>\n<<shortcut-list \"Mac\" \"$:/config/shortcuts-mac/\">>\n<<shortcut-list \"NonMac\" \"$:/config/shortcuts-not-mac/\">>\n<<shortcut-list \"Linux\" \"$:/config/shortcuts-linux/\">>\n<<shortcut-list \"NonLinux\" \"$:/config/shortcuts-not-linux/\">>\n<<shortcut-list \"Windows\" \"$:/config/shortcuts-windows/\">>\n<<shortcut-list \"NonWindows\" \"$:/config/shortcuts-not-windows/\">>\n\\end\n\n\\define shortcut-preview()\n<$macrocall $name=\"displayshortcuts\" $output=\"text/html\" shortcuts={{$(shortcutPrefix)$$(shortcutName)$}} prefix=\"<kbd>\" separator=\"</kbd> <kbd>\" suffix=\"</kbd>\"/>\n\\end\n\n\\define shortcut-item-inner()\n<tr>\n<td>\n<$reveal type=\"nomatch\" state=<<dropdownStateTitle>> text=\"open\">\n<$button class=\"tc-btn-invisible\">\n<$action-setfield\n\t$tiddler=<<dropdownStateTitle>>\n\t$value=\"open\"\n/>\n{{$:/core/images/right-arrow}}\n</$button>\n</$reveal>\n<$reveal type=\"match\" state=<<dropdownStateTitle>> text=\"open\">\n<$button class=\"tc-btn-invisible\">\n<$action-setfield\n\t$tiddler=<<dropdownStateTitle>>\n\t$value=\"close\"\n/>\n{{$:/core/images/down-arrow}}\n</$button>\n</$reveal>\n''<$text text=<<shortcutName>>/>''\n</td>\n<td>\n<$transclude tiddler=\"$:/config/ShortcutInfo/$(shortcutName)$\"/>\n</td>\n<td>\n<$list filter=\"$:/config/shortcuts/ $:/config/shortcuts-mac/ $:/config/shortcuts-not-mac/ $:/config/shortcuts-linux/ $:/config/shortcuts-not-linux/ $:/config/shortcuts-windows/ $:/config/shortcuts-not-windows/\" variable=\"shortcutPrefix\">\n<<shortcut-preview>>\n</$list>\n</td>\n</tr>\n<$set name=\"dropdownState\" value={{$(dropdownStateTitle)$}}>\n<$list filter=\"[<dropdownState>match[open]]\" variable=\"listItem\">\n<<shortcut-editor>>\n</$list>\n</$set>\n\\end\n\n\\define shortcut-item()\n<$set name=\"dropdownStateTitle\" value=<<qualify \"$:/state/dropdown/keyboardshortcut/$(shortcutName)$\">>>\n<<shortcut-item-inner>>\n</$set>\n\\end\n\n<table>\n<tbody>\n<$list filter=\"[all[shadows+tiddlers]removeprefix[$:/config/ShortcutInfo/]]\" variable=\"shortcutName\">\n<<shortcut-item>>\n</$list>\n</tbody>\n</table>\n"
},
"$:/core/ui/ControlPanel/LoadedModules": {
"title": "$:/core/ui/ControlPanel/LoadedModules",
"tags": "$:/tags/ControlPanel/Advanced",
"caption": "{{$:/language/ControlPanel/LoadedModules/Caption}}",
"text": "\\define lingo-base() $:/language/ControlPanel/\n<<lingo LoadedModules/Hint>>\n\n{{$:/snippets/modules}}\n"
},
"$:/core/ui/ControlPanel/Modals/AddPlugins": {
"title": "$:/core/ui/ControlPanel/Modals/AddPlugins",
"subtitle": "{{$:/core/images/download-button}} {{$:/language/ControlPanel/Plugins/Add/Caption}}",
"text": "\\define install-plugin-actions()\n<$action-sendmessage $message=\"tm-load-plugin-from-library\" url={{!!url}} title={{$(assetInfo)$!!original-title}}/>\n<$set name=\"url\" value={{!!url}}>\n<$set name=\"currentTiddler\" value=<<assetInfo>>>\n<$list filter=\"[enlist{!!dependents}] [{!!parent-plugin}] +[sort[name]]\" variable=\"dependency\">\n<$action-sendmessage $message=\"tm-load-plugin-from-library\" url=<<url>> title=<<dependency>>/>\n</$list>\n</$set>\n</$set>\n\\end\n\n\\define install-plugin-button()\n<div>\n<$set name=\"libraryVersion\" value={{{ [<assetInfo>get[version]] }}}>\n<$set name=\"installedVersion\" value={{{ [<assetInfo>get[original-title]get[version]] }}}>\n<$set name=\"reinstall-type\" value={{{ [<libraryVersion>compare:version:eq<installedVersion>then[tc-reinstall]] [<libraryVersion>compare:version:gt<installedVersion>then[tc-reinstall-upgrade]] [<libraryVersion>compare:version:lt<installedVersion>then[tc-reinstall-downgrade]] }}}>\n<$button actions=<<install-plugin-actions>> class={{{ [<assetInfo>get[original-title]has[version]then<reinstall-type>] tc-btn-invisible tc-install-plugin +[join[ ]] }}}>\n{{$:/core/images/download-button}}\n<$list filter=\"[<assetInfo>get[original-title]get[version]]\" variable=\"ignore\" emptyMessage=\"{{$:/language/ControlPanel/Plugins/Install/Caption}}\">\n<$list filter=\"[<libraryVersion>compare:version:gt<installedVersion>]\" variable=\"ignore\" emptyMessage=\"\"\"\n<$list filter=\"[<libraryVersion>compare:version:lt<installedVersion>]\" variable=\"ignore\" emptyMessage=\"{{$:/language/ControlPanel/Plugins/Reinstall/Caption}}\">\n{{$:/language/ControlPanel/Plugins/Downgrade/Caption}}\n</$list>\n\"\"\">\n{{$:/language/ControlPanel/Plugins/Update/Caption}}\n</$list>\n</$list>\n</$button>\n<div>\n</div>\n<$reveal stateTitle=<<assetInfo>> stateField=\"requires-reload\" type=\"match\" text=\"yes\">{{$:/language/ControlPanel/Plugins/PluginWillRequireReload}}</$reveal>\n</$set>\n</$set>\n</$set>\n</div>\n\\end\n\n\\define popup-state-macro()\n$:/state/add-plugin-info/$(connectionTiddler)$/$(assetInfo)$\n\\end\n\n\\define display-plugin-info(type)\n<$set name=\"popup-state\" value=<<popup-state-macro>>>\n<div class=\"tc-plugin-info\">\n<div class=\"tc-plugin-info-chunk tc-plugin-info-toggle\">\n<$reveal type=\"nomatch\" state=<<popup-state>> text=\"yes\">\n<$button class=\"tc-btn-invisible tc-btn-dropdown\" set=<<popup-state>> setTo=\"yes\">\n{{$:/core/images/chevron-right}}\n</$button>\n</$reveal>\n<$reveal type=\"match\" state=<<popup-state>> text=\"yes\">\n<$button class=\"tc-btn-invisible tc-btn-dropdown\" set=<<popup-state>> setTo=\"no\">\n{{$:/core/images/chevron-down}}\n</$button>\n</$reveal>\n</div>\n<div class=\"tc-plugin-info-chunk tc-plugin-info-icon\">\n<$list filter=\"[<assetInfo>has[icon]]\" emptyMessage=\"\"\"<$transclude tiddler=\"$:/core/images/plugin-generic-$type$\"/>\"\"\">\n<img src={{$(assetInfo)$!!icon}}/>\n</$list>\n</div>\n<div class=\"tc-plugin-info-chunk tc-plugin-info-description\">\n<h1><strong><$text text={{{ [<assetInfo>get[name]] ~[<assetInfo>get[original-title]split[/]last[1]] }}}/></strong>: <$view tiddler=<<assetInfo>> field=\"description\"/></h1>\n<h2><$view tiddler=<<assetInfo>> field=\"original-title\"/></h2>\n<div><em><$view tiddler=<<assetInfo>> field=\"version\"/></em></div>\n<$list filter=\"[<assetInfo>get[original-title]get[version]]\" variable=\"installedVersion\"><div><em>{{$:/language/ControlPanel/Plugins/AlreadyInstalled/Hint}}</em></div></$list>\n</div>\n<div class=\"tc-plugin-info-chunk tc-plugin-info-buttons\">\n<<install-plugin-button>>\n</div>\n</div>\n<$set name=\"original-title\" value={{{ [<assetInfo>get[original-title]] }}}>\n<$reveal type=\"match\" text=\"yes\" state=<<popup-state>>>\n<div class=\"tc-plugin-info-dropdown\">\n<$list filter=\"[enlist{!!dependents}] [<currentTiddler>get[parent-plugin]] +[limit[1]] ~[<assetInfo>get[original-title]!is[tiddler]]\" variable=\"ignore\">\n<div class=\"tc-plugin-info-dropdown-message\">\n<$list filter=\"[<assetInfo>get[original-title]!is[tiddler]]\">\n{{$:/language/ControlPanel/Plugins/NotInstalled/Hint}}\n</$list>\n<$set name=\"currentTiddler\" value=<<assetInfo>>>\n<$list filter=\"[enlist{!!dependents}] [<currentTiddler>get[parent-plugin]] +[limit[1]]\" variable=\"ignore\">\n<div>\n{{$:/language/ControlPanel/Plugins/AlsoRequires}}\n<$list filter=\"[enlist{!!dependents}] [{!!parent-plugin}] +[sort[name]]\" variable=\"dependency\">\n<$text text=<<dependency>>/>\n</$list>\n</div>\n</$list>\n</$set>\n</div>\n</$list>\n<div class=\"tc-plugin-info-dropdown-body\">\n<$transclude tiddler=<<assetInfo>> field=\"readme\" mode=\"block\"/>\n</div>\n<$list filter=\"[all[tiddlers+shadows]tag[$:/tags/RemoteAssetInfo]server-url{!!url}original-plugin-type[$type$]has[parent-plugin]parent-plugin<original-title>limit[1]]\" variable=\"ignore\">\n<div class=\"tc-plugin-info-sub-plugins\">\n<$list filter=\"[all[tiddlers+shadows]tag[$:/tags/RemoteAssetInfo]server-url{!!url}original-plugin-type[$type$]has[parent-plugin]parent-plugin<original-title>sort[name]]\" variable=\"assetInfo\">\n<<display-plugin-info \"$type$\">>\n</$list>\n</div>\n</$list>\n</div>\n</$reveal>\n<$list filter=\"[all[tiddlers+shadows]tag[$:/tags/RemoteAssetInfo]server-url{!!url}original-plugin-type[$type$]has[parent-plugin]parent-plugin<original-title>limit[1]]\" variable=\"ignore\">\n<$reveal type=\"nomatch\" text=\"yes\" state=<<popup-state>> tag=\"div\" class=\"tc-plugin-info-sub-plugin-indicator\">\n<$wikify name=\"count\" text=\"\"\"<$count filter=\"[all[tiddlers+shadows]tag[$:/tags/RemoteAssetInfo]server-url{!!url}original-plugin-type[$type$]has[parent-plugin]parent-plugin<original-title>]\"/>\"\"\">\n<$button class=\"tc-btn-invisible\" set=<<popup-state>> setTo=\"yes\">\n{{$:/language/ControlPanel/Plugins/SubPluginPrompt}}\n</$button>\n</$wikify>\n</$reveal>\n</$list>\n</$set>\n</$set>\n\\end\n\n\\define load-plugin-library-button()\n<$list filter=\"[<currentTiddler>get[enabled]else[yes]match[yes]]\" variable=\"ignore\">\n<$button class=\"tc-btn-big-green\">\n<$action-sendmessage $message=\"tm-load-plugin-library\" url={{!!url}} infoTitlePrefix=\"$:/temp/RemoteAssetInfo/\"/>\n{{$:/core/images/chevron-right}} {{$:/language/ControlPanel/Plugins/OpenPluginLibrary}}\n</$button>\n</$list>\n\\end\n\n\\define display-server-assets(type)\n{{$:/language/Search/Search}}: <$edit-text tiddler=\"\"\"$:/temp/RemoteAssetSearch/$(currentTiddler)$\"\"\" default=\"\" type=\"search\" tag=\"input\"/>\n<$reveal state=\"\"\"$:/temp/RemoteAssetSearch/$(currentTiddler)$\"\"\" type=\"nomatch\" text=\"\">\n<$button class=\"tc-btn-invisible\">\n<$action-setfield $tiddler=\"\"\"$:/temp/RemoteAssetSearch/$(currentTiddler)$\"\"\" $field=\"text\" $value=\"\"/>\n{{$:/core/images/close-button}}\n</$button>\n</$reveal>\n<div class=\"tc-plugin-library-listing\">\n<$list filter=\"[all[tiddlers+shadows]tag[$:/tags/RemoteAssetInfo]server-url{!!url}original-plugin-type[$type$]search:author,description,original-title,readme,title{$:/temp/RemoteAssetSearch/$(currentTiddler)$}sort[name]]\" variable=\"assetInfo\">\n<$list filter=\"[[$:/temp/RemoteAssetSearch/$(currentTiddler)$]has[text]] ~[<assetInfo>!has[parent-plugin]]\" variable=\"ignore\"><!-- Hide sub-plugins if we're not searching -->\n<<display-plugin-info \"$type$\">>\n</$list>\n</$list>\n</div>\n\\end\n\n\\define display-server-connection()\n<$list filter=\"[all[tiddlers+shadows]tag[$:/tags/ServerConnection]suffix{!!url}]\" variable=\"connectionTiddler\" emptyMessage=<<load-plugin-library-button>>>\n\n<$set name=\"transclusion\" value=<<connectionTiddler>>>\n\n<<tabs \"[[$:/core/ui/ControlPanel/Plugins/Add/Updates]] [[$:/core/ui/ControlPanel/Plugins/Add/Plugins]] [[$:/core/ui/ControlPanel/Plugins/Add/Themes]] [[$:/core/ui/ControlPanel/Plugins/Add/Languages]]\" \"$:/core/ui/ControlPanel/Plugins/Add/Plugins\">>\n\n</$set>\n\n</$list>\n\\end\n\n\\define close-library-button()\n<$reveal type='nomatch' state='$:/temp/ServerConnection/$(PluginLibraryURL)$' text=''>\n<$button class='tc-btn-big-green'>\n<$action-sendmessage $message=\"tm-unload-plugin-library\" url={{!!url}}/>\n{{$:/core/images/chevron-left}} {{$:/language/ControlPanel/Plugins/ClosePluginLibrary}}\n<$action-deletetiddler $filter=\"[prefix[$:/temp/ServerConnection/$(PluginLibraryURL)$]][prefix[$:/temp/RemoteAssetInfo/$(PluginLibraryURL)$]]\"/>\n</$button>\n</$reveal>\n\\end\n\n\\define plugin-library-listing()\n<div class=\"tc-tab-set\">\n<$set name=\"defaultTab\" value={{{ [all[tiddlers+shadows]tag[$:/tags/PluginLibrary]] }}}>\n<div class=\"tc-tab-buttons\">\n<$list filter=\"[all[tiddlers+shadows]tag[$:/tags/PluginLibrary]]\">\n<$button set=<<qualify \"$:/state/addplugins/tab\">> setTo=<<currentTiddler>> default=<<defaultTab>> selectedClass=\"tc-tab-selected\">\n<$set name=\"tv-wikilinks\" value=\"no\">\n<$transclude field=\"caption\"/>\n</$set>\n</$button>\n</$list>\n</div>\n<div class=\"tc-tab-divider\"/>\n<div class=\"tc-tab-content\">\n<$list filter=\"[all[tiddlers+shadows]tag[$:/tags/PluginLibrary]]\">\n<$reveal type=\"match\" state=<<qualify \"$:/state/addplugins/tab\">> text=<<currentTiddler>> default=<<defaultTab>>>\n<h2><$link><$transclude field=\"caption\"><$view field=\"title\"/></$transclude></$link></h2>\n//<$view field=\"url\"/>//\n<$transclude mode=\"block\"/>\n<$set name=PluginLibraryURL value={{!!url}}>\n<<close-library-button>>\n</$set>\n<<display-server-connection>>\n</$reveal>\n</$list>\n</div>\n</$set>\n</div>\n\\end\n\n\\import [[$:/core/ui/PageMacros]] [all[shadows+tiddlers]tag[$:/tags/Macro]!has[draft.of]]\n\n<div>\n<<plugin-library-listing>>\n</div>\n"
},
"$:/core/ui/ControlPanel/Palette": {
"title": "$:/core/ui/ControlPanel/Palette",
"tags": "$:/tags/ControlPanel/Appearance",
"caption": "{{$:/language/ControlPanel/Palette/Caption}}",
"text": "\\define lingo-base() $:/language/ControlPanel/Palette/\n\n{{$:/snippets/paletteswitcher}}\n\n<$reveal type=\"nomatch\" state=\"$:/state/ShowPaletteEditor\" text=\"yes\">\n\n<$button set=\"$:/state/ShowPaletteEditor\" setTo=\"yes\"><<lingo ShowEditor/Caption>></$button>\n\n</$reveal>\n\n<$reveal type=\"match\" state=\"$:/state/ShowPaletteEditor\" text=\"yes\">\n\n<$button set=\"$:/state/ShowPaletteEditor\" setTo=\"no\"><<lingo HideEditor/Caption>></$button>\n{{$:/PaletteManager}}\n\n</$reveal>\n\n"
},
"$:/core/ui/ControlPanel/Parsing": {
"title": "$:/core/ui/ControlPanel/Parsing",
"tags": "$:/tags/ControlPanel/Advanced",
"caption": "{{$:/language/ControlPanel/Parsing/Caption}}",
"text": "\\define lingo-base() $:/language/ControlPanel/Parsing/\n\n\\define toggle(Type)\n<$checkbox\ntiddler=\"\"\"$:/config/WikiParserRules/$Type$/$(rule)$\"\"\"\nfield=\"text\"\nchecked=\"enable\"\nunchecked=\"disable\"\ndefault=\"enable\">\n<<rule>>\n</$checkbox>\n\\end\n\n\\define rules(type,Type)\n<$list filter=\"[wikiparserrules[$type$]]\" variable=\"rule\">\n<dd><<toggle $Type$>></dd>\n</$list>\n\\end\n\n<<lingo Hint>>\n\n<dl>\n<dt><<lingo Pragma/Caption>></dt>\n<<rules pragma Pragma>>\n<dt><<lingo Inline/Caption>></dt>\n<<rules inline Inline>>\n<dt><<lingo Block/Caption>></dt>\n<<rules block Block>>\n</dl>"
},
"$:/core/ui/ControlPanel/Plugins/Add/Languages": {
"title": "$:/core/ui/ControlPanel/Plugins/Add/Languages",
"caption": "{{$:/language/ControlPanel/Plugins/Languages/Caption}} (<$count filter=\"[all[tiddlers+shadows]tag[$:/tags/RemoteAssetInfo]server-url{!!url}original-plugin-type[language]]\"/>)",
"text": "<<display-server-assets language>>\n"
},
"$:/core/ui/ControlPanel/Plugins/Add/Plugins": {
"title": "$:/core/ui/ControlPanel/Plugins/Add/Plugins",
"caption": "{{$:/language/ControlPanel/Plugins/Plugins/Caption}} (<$count filter=\"[all[tiddlers+shadows]tag[$:/tags/RemoteAssetInfo]server-url{!!url}original-plugin-type[plugin]]\"/>)",
"text": "<<display-server-assets plugin>>\n"
},
"$:/core/ui/ControlPanel/Plugins/Add/Themes": {
"title": "$:/core/ui/ControlPanel/Plugins/Add/Themes",
"caption": "{{$:/language/ControlPanel/Plugins/Themes/Caption}} (<$count filter=\"[all[tiddlers+shadows]tag[$:/tags/RemoteAssetInfo]server-url{!!url}original-plugin-type[theme]]\"/>)",
"text": "<<display-server-assets theme>>\n"
},
"$:/core/ui/ControlPanel/Plugins/Add/Updates": {
"title": "$:/core/ui/ControlPanel/Plugins/Add/Updates",
"caption": "<$importvariables filter=\"$:/core/ui/ControlPanel/Plugins/Add/Updates\">{{$:/language/ControlPanel/Plugins/Updates/Caption}} (<<update-count>>)</$importvariables>",
"text": "\\define each-updateable-plugin(body)\n<$list filter=\"[all[tiddlers+shadows]tag[$:/tags/RemoteAssetInfo]server-url{!!url}sort[title]]\" variable=\"assetInfo\">\n<$set name=\"libraryVersion\" value={{{ [<assetInfo>get[version]] }}}>\n<$list filter=\"[<assetInfo>get[original-title]has[version]!version<libraryVersion>]\" variable=\"ignore\">\n<$set name=\"installedVersion\" value={{{ [<assetInfo>get[original-title]get[version]] }}}>\n<$list filter=\"[<installedversion>!match<libraryVersion>]\" variable=\"ignore\">\n$body$\n</$list>\n</$set>\n</$list>\n</$set>\n</$list>\n\\end\n\n\\define update-all-actions()\n<$macrocall $name=\"each-updateable-plugin\" body=\"\"\"\n<<install-plugin-actions>>\n\"\"\"/>\n\\end\n\n\\define update-count()\n<$wikify name=\"count-filter\" text=<<each-updateable-plugin \"[[<$text text=<<assetInfo>>/>]]\">>><$count filter=<<count-filter>>/></$wikify>\n\\end\n\n<$button actions=<<update-all-actions>> class=\"tc-btn-invisible tc-install-plugin tc-reinstall-upgrade\">\n{{$:/core/images/download-button}} {{||$:/language/ControlPanel/Plugins/Updates/UpdateAll/Caption}}\n</$button>\n\n<div class=\"tc-plugin-library-listing\">\n<$macrocall $name=\"each-updateable-plugin\" body=\"\"\"\n<$macrocall $name=\"display-plugin-info\" type={{{ [<assetInfo>get[original-plugin-type]] }}}/>\n\"\"\"/>\n</div>\n"
},
"$:/core/ui/ControlPanel/Plugins/AddPlugins": {
"title": "$:/core/ui/ControlPanel/Plugins/AddPlugins",
"text": "\\define lingo-base() $:/language/ControlPanel/Plugins/\n\n<$button message=\"tm-modal\" param=\"$:/core/ui/ControlPanel/Modals/AddPlugins\" tooltip={{$:/language/ControlPanel/Plugins/Add/Hint}} class=\"tc-btn-big-green tc-primary-btn\">\n{{$:/core/images/download-button}} <<lingo Add/Caption>>\n</$button>\n"
},
"$:/core/ui/ControlPanel/Plugins/Installed/Languages": {
"title": "$:/core/ui/ControlPanel/Plugins/Installed/Languages",
"caption": "{{$:/language/ControlPanel/Plugins/Languages/Caption}} (<$count filter=\"[!has[draft.of]plugin-type[language]]\"/>)",
"text": "<<plugin-table language>>\n"
},
"$:/core/ui/ControlPanel/Plugins/Installed/Plugins": {
"title": "$:/core/ui/ControlPanel/Plugins/Installed/Plugins",
"caption": "{{$:/language/ControlPanel/Plugins/Plugins/Caption}} (<$count filter=\"[!has[draft.of]plugin-type[plugin]]\"/>)",
"text": "<<plugin-table plugin>>\n"
},
"$:/core/ui/ControlPanel/Plugins/Installed/Themes": {
"title": "$:/core/ui/ControlPanel/Plugins/Installed/Themes",
"caption": "{{$:/language/ControlPanel/Plugins/Themes/Caption}} (<$count filter=\"[!has[draft.of]plugin-type[theme]]\"/>)",
"text": "<<plugin-table theme>>\n"
},
"$:/core/ui/ControlPanel/Plugins": {
"title": "$:/core/ui/ControlPanel/Plugins",
"tags": "$:/tags/ControlPanel",
"caption": "{{$:/language/ControlPanel/Plugins/Caption}}",
"text": "\\define lingo-base() $:/language/ControlPanel/Plugins/\n\n\\define plugin-table(type)\n<$set name=\"plugin-type\" value=\"\"\"$type$\"\"\">\n<$set name=\"qualified-state\" value=<<qualify \"$:/state/plugin-info\">>>\n<$list filter=\"[!has[draft.of]plugin-type[$type$]sort[name]]\" emptyMessage=<<lingo \"Empty/Hint\">> template=\"$:/core/ui/Components/plugin-info\"/>\n</$set>\n</$set>\n\\end\n\n{{$:/core/ui/ControlPanel/Plugins/AddPlugins}}\n\n<<lingo Installed/Hint>>\n\n<$macrocall $name=\"tabs\" tabsList=\"[[$:/core/ui/ControlPanel/Plugins/Installed/Plugins]] [[$:/core/ui/ControlPanel/Plugins/Installed/Themes]] [[$:/core/ui/ControlPanel/Plugins/Installed/Languages]]\" default=\"$:/core/ui/ControlPanel/Plugins/Installed/Plugins\" explicitState=\"$:/state/tab--86143343\"/>\n"
},
"$:/core/ui/ControlPanel/Saving/DownloadSaver": {
"title": "$:/core/ui/ControlPanel/Saving/DownloadSaver",
"tags": "$:/tags/ControlPanel/Saving",
"caption": "{{$:/language/ControlPanel/Saving/DownloadSaver/Caption}}",
"text": "\\define lingo-base() $:/language/ControlPanel/Saving/DownloadSaver/\n\n<<lingo Hint>>\n\n!! <$link to=\"$:/config/DownloadSaver/AutoSave\"><<lingo AutoSave/Hint>></$link>\n\n<$checkbox tiddler=\"$:/config/DownloadSaver/AutoSave\" field=\"text\" checked=\"yes\" unchecked=\"no\" default=\"no\"> <<lingo AutoSave/Description>> </$checkbox>\n"
},
"$:/core/ui/ControlPanel/Saving/General": {
"title": "$:/core/ui/ControlPanel/Saving/General",
"tags": "$:/tags/ControlPanel/Saving",
"caption": "{{$:/language/ControlPanel/Saving/General/Caption}}",
"list-before": "",
"text": "\\define lingo-base() $:/language/ControlPanel/Settings/\n\n{{$:/language/ControlPanel/Saving/General/Hint}}\n\n!! <$link to=\"$:/config/AutoSave\"><<lingo AutoSave/Caption>></$link>\n\n<<lingo AutoSave/Hint>>\n\n<$radio tiddler=\"$:/config/AutoSave\" value=\"yes\"> <<lingo AutoSave/Enabled/Description>> </$radio>\n\n<$radio tiddler=\"$:/config/AutoSave\" value=\"no\"> <<lingo AutoSave/Disabled/Description>> </$radio>\n"
},
"$:/core/ui/ControlPanel/Saving/GitHub": {
"title": "$:/core/ui/ControlPanel/Saving/GitHub",
"tags": "$:/tags/ControlPanel/Saving",
"caption": "{{$:/language/ControlPanel/Saving/GitService/GitHub/Caption}}",
"text": "\\define lingo-base() $:/language/ControlPanel/Saving/GitService/\n\\define service-name() ~GitHub\n\n<<lingo Description>>\n\n|<<lingo UserName>> |<$edit-text tiddler=\"$:/GitHub/Username\" default=\"\" tag=\"input\"/> |\n|<<lingo GitHub/Password>> |<$password name=\"github\"/> |\n|<<lingo Repo>> |<$edit-text tiddler=\"$:/GitHub/Repo\" default=\"\" tag=\"input\"/> |\n|<<lingo Branch>> |<$edit-text tiddler=\"$:/GitHub/Branch\" default=\"master\" tag=\"input\"/> |\n|<<lingo Path>> |<$edit-text tiddler=\"$:/GitHub/Path\" default=\"\" tag=\"input\"/> |\n|<<lingo Filename>> |<$edit-text tiddler=\"$:/GitHub/Filename\" default=\"\" tag=\"input\"/> |\n|<<lingo ServerURL>> |<$edit-text tiddler=\"$:/GitHub/ServerURL\" default=\"https://api.github.com\" tag=\"input\"/> |"
},
"$:/core/ui/ControlPanel/Saving/GitLab": {
"title": "$:/core/ui/ControlPanel/Saving/GitLab",
"tags": "$:/tags/ControlPanel/Saving",
"caption": "{{$:/language/ControlPanel/Saving/GitService/GitLab/Caption}}",
"text": "\\define lingo-base() $:/language/ControlPanel/Saving/GitService/\n\\define service-name() ~GitLab\n\n<<lingo Description>>\n\n|<<lingo UserName>> |<$edit-text tiddler=\"$:/GitLab/Username\" default=\"\" tag=\"input\"/> |\n|<<lingo GitLab/Password>> |<$password name=\"gitlab\"/> |\n|<<lingo Repo>> |<$edit-text tiddler=\"$:/GitLab/Repo\" default=\"\" tag=\"input\"/> |\n|<<lingo Branch>> |<$edit-text tiddler=\"$:/GitLab/Branch\" default=\"master\" tag=\"input\"/> |\n|<<lingo Path>> |<$edit-text tiddler=\"$:/GitLab/Path\" default=\"\" tag=\"input\"/> |\n|<<lingo Filename>> |<$edit-text tiddler=\"$:/GitLab/Filename\" default=\"\" tag=\"input\"/> |\n|<<lingo ServerURL>> |<$edit-text tiddler=\"$:/GitLab/ServerURL\" default=\"https://gitlab.com/api/v4\" tag=\"input\"/> |"
},
"$:/core/ui/ControlPanel/Saving/TiddlySpot": {
"title": "$:/core/ui/ControlPanel/Saving/TiddlySpot",
"tags": "$:/tags/ControlPanel/Saving",
"caption": "{{$:/language/ControlPanel/Saving/TiddlySpot/Caption}}",
"text": "\\define lingo-base() $:/language/ControlPanel/Saving/TiddlySpot/\n\n\\define siteURL(path)\nhttp://$(userName)$.tiddlyspot.com/$path$/\n\\end\n\\define siteLink(path)\n<$reveal type=\"nomatch\" state=\"$:/UploadName\" text=\"\">\n<$set name=\"userName\" value={{$:/UploadName}}>\n<$reveal type=\"match\" state=\"$:/UploadURL\" text=\"\">\n<<siteURL $path$>>\n</$reveal>\n<$reveal type=\"nomatch\" state=\"$:/UploadURL\" text=\"\">\n<$macrocall $name=resolvePath source={{$:/UploadBackupDir}} root={{$:/UploadURL}}>>\n</$reveal>\n</$set>\n</$reveal>\n\\end\n\n<div class=\"tc-message-box\">\n\n<<lingo ReadOnly>>\n\n</div>\n\n<<lingo Description>>\n\n|<<lingo UserName>> |<$edit-text tiddler=\"$:/UploadName\" default=\"\" tag=\"input\"/> |\n|<<lingo Password>> |<$password name=\"upload\"/> |\n|<<lingo Backups>> |<<siteLink backup>> |\n|<<lingo ControlPanel>> |<<siteLink controlpanel>> |\n\n''<<lingo Advanced/Heading>>''\n\n|<<lingo ServerURL>> |<$edit-text tiddler=\"$:/UploadURL\" default=\"\" tag=\"input\"/> |\n|<<lingo Filename>> |<$edit-text tiddler=\"$:/UploadFilename\" default=\"index.html\" tag=\"input\"/> |\n|<<lingo UploadDir>> |<$edit-text tiddler=\"$:/UploadDir\" default=\".\" tag=\"input\"/> |\n|<<lingo BackupDir>> |<$edit-text tiddler=\"$:/UploadBackupDir\" default=\".\" tag=\"input\"/> |\n\n<<lingo TiddlySpot/Hint>>\n"
},
"$:/core/ui/ControlPanel/Saving/Gitea": {
"title": "$:/core/ui/ControlPanel/Saving/Gitea",
"tags": "$:/tags/ControlPanel/Saving",
"caption": "{{$:/language/ControlPanel/Saving/GitService/Gitea/Caption}}",
"text": "\\define lingo-base() $:/language/ControlPanel/Saving/GitService/\n\\define service-name() ~Gitea\n\n<<lingo Description>>\n\n|<<lingo UserName>> |<$edit-text tiddler=\"$:/Gitea/Username\" default=\"\" tag=\"input\"/> |\n|<<lingo Gitea/Password>> |<$password name=\"Gitea\"/> |\n|<<lingo Repo>> |<$edit-text tiddler=\"$:/Gitea/Repo\" default=\"\" tag=\"input\"/> |\n|<<lingo Branch>> |<$edit-text tiddler=\"$:/Gitea/Branch\" default=\"master\" tag=\"input\"/> |\n|<<lingo Path>> |<$edit-text tiddler=\"$:/Gitea/Path\" default=\"\" tag=\"input\"/> |\n|<<lingo Filename>> |<$edit-text tiddler=\"$:/Gitea/Filename\" default=\"\" tag=\"input\"/> |\n|<<lingo ServerURL>> |<$edit-text tiddler=\"$:/Gitea/ServerURL\" default=\"https://gitea/api/v1\" tag=\"input\"/> |\n"
},
"$:/core/ui/ControlPanel/Saving": {
"title": "$:/core/ui/ControlPanel/Saving",
"tags": "$:/tags/ControlPanel",
"caption": "{{$:/language/ControlPanel/Saving/Caption}}",
"text": "{{$:/language/ControlPanel/Saving/Hint}}\n\n<div class=\"tc-control-panel\">\n<$macrocall $name=\"tabs\" tabsList=\"[all[shadows+tiddlers]tag[$:/tags/ControlPanel/Saving]!has[draft.of]]\" default=\"$:/core/ui/ControlPanel/Saving/General\" explicitState=\"$:/state/tab-2065006209\"/>\n</div>\n"
},
"$:/core/buttonstyles/Borderless": {
"title": "$:/core/buttonstyles/Borderless",
"tags": "$:/tags/ToolbarButtonStyle",
"caption": "{{$:/language/ControlPanel/Settings/ToolbarButtonStyle/Styles/Borderless}}",
"text": "tc-btn-invisible"
},
"$:/core/buttonstyles/Boxed": {
"title": "$:/core/buttonstyles/Boxed",
"tags": "$:/tags/ToolbarButtonStyle",
"caption": "{{$:/language/ControlPanel/Settings/ToolbarButtonStyle/Styles/Boxed}}",
"text": "tc-btn-boxed"
},
"$:/core/buttonstyles/Rounded": {
"title": "$:/core/buttonstyles/Rounded",
"tags": "$:/tags/ToolbarButtonStyle",
"caption": "{{$:/language/ControlPanel/Settings/ToolbarButtonStyle/Styles/Rounded}}",
"text": "tc-btn-rounded"
},
"$:/core/ui/ControlPanel/Settings/CamelCase": {
"title": "$:/core/ui/ControlPanel/Settings/CamelCase",
"tags": "$:/tags/ControlPanel/Settings",
"caption": "{{$:/language/ControlPanel/Settings/CamelCase/Caption}}",
"text": "\\define lingo-base() $:/language/ControlPanel/Settings/CamelCase/\n<<lingo Hint>>\n\n<$checkbox tiddler=\"$:/config/WikiParserRules/Inline/wikilink\" field=\"text\" checked=\"enable\" unchecked=\"disable\" default=\"enable\"> <$link to=\"$:/config/WikiParserRules/Inline/wikilink\"><<lingo Description>></$link> </$checkbox>\n"
},
"$:/core/ui/ControlPanel/Settings/DefaultMoreSidebarTab": {
"title": "$:/core/ui/ControlPanel/Settings/DefaultMoreSidebarTab",
"caption": "{{$:/language/ControlPanel/Settings/DefaultMoreSidebarTab/Caption}}",
"tags": "$:/tags/ControlPanel/Settings",
"text": "\\define lingo-base() $:/language/ControlPanel/Settings/DefaultMoreSidebarTab/\n\n<$link to=\"$:/config/DefaultMoreSidebarTab\"><<lingo Hint>></$link>\n\n<$select tiddler=\"$:/config/DefaultMoreSidebarTab\">\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/MoreSideBar]!has[draft.of]]\">\n<option value=<<currentTiddler>>><$transclude field=\"caption\"><$text text=<<currentTiddler>>/></$transclude></option>\n</$list>\n</$select>\n"
},
"$:/core/ui/ControlPanel/Settings/DefaultSidebarTab": {
"title": "$:/core/ui/ControlPanel/Settings/DefaultSidebarTab",
"caption": "{{$:/language/ControlPanel/Settings/DefaultSidebarTab/Caption}}",
"tags": "$:/tags/ControlPanel/Settings",
"text": "\\define lingo-base() $:/language/ControlPanel/Settings/DefaultSidebarTab/\n\n<$link to=\"$:/config/DefaultSidebarTab\"><<lingo Hint>></$link>\n\n<$select tiddler=\"$:/config/DefaultSidebarTab\">\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/SideBar]!has[draft.of]]\">\n<option value=<<currentTiddler>>><$transclude field=\"caption\"><$text text=<<currentTiddler>>/></$transclude></option>\n</$list>\n</$select>\n"
},
"$:/core/ui/ControlPanel/Settings/EditorToolbar": {
"title": "$:/core/ui/ControlPanel/Settings/EditorToolbar",
"tags": "$:/tags/ControlPanel/Settings",
"caption": "{{$:/language/ControlPanel/Settings/EditorToolbar/Caption}}",
"text": "\\define lingo-base() $:/language/ControlPanel/Settings/EditorToolbar/\n<<lingo Hint>>\n\n<$checkbox tiddler=\"$:/config/TextEditor/EnableToolbar\" field=\"text\" checked=\"yes\" unchecked=\"no\" default=\"yes\"> <$link to=\"$:/config/TextEditor/EnableToolbar\"><<lingo Description>></$link> </$checkbox>\n\n"
},
"$:/core/ui/ControlPanel/Settings/InfoPanelMode": {
"title": "$:/core/ui/ControlPanel/Settings/InfoPanelMode",
"tags": "$:/tags/ControlPanel/Settings",
"caption": "{{$:/language/ControlPanel/Settings/InfoPanelMode/Caption}}",
"text": "\\define lingo-base() $:/language/ControlPanel/Settings/InfoPanelMode/\n<$link to=\"$:/config/TiddlerInfo/Mode\"><<lingo Hint>></$link>\n\n<$radio tiddler=\"$:/config/TiddlerInfo/Mode\" value=\"popup\"> <<lingo Popup/Description>> </$radio>\n\n<$radio tiddler=\"$:/config/TiddlerInfo/Mode\" value=\"sticky\"> <<lingo Sticky/Description>> </$radio>\n"
},
"$:/core/ui/ControlPanel/Settings/LinkToBehaviour": {
"title": "$:/core/ui/ControlPanel/Settings/LinkToBehaviour",
"tags": "$:/tags/ControlPanel/Settings",
"caption": "{{$:/language/ControlPanel/Settings/LinkToBehaviour/Caption}}",
"text": "\\define lingo-base() $:/language/ControlPanel/Settings/LinkToBehaviour/\n\n<$link to=\"$:/config/Navigation/openLinkFromInsideRiver\"><<lingo \"InsideRiver/Hint\">></$link>\n\n<$select tiddler=\"$:/config/Navigation/openLinkFromInsideRiver\">\n <option value=\"above\"><<lingo \"OpenAbove\">></option>\n <option value=\"below\"><<lingo \"OpenBelow\">></option>\n <option value=\"top\"><<lingo \"OpenAtTop\">></option>\n <option value=\"bottom\"><<lingo \"OpenAtBottom\">></option>\n</$select>\n\n<$link to=\"$:/config/Navigation/openLinkFromOutsideRiver\"><<lingo \"OutsideRiver/Hint\">></$link>\n\n<$select tiddler=\"$:/config/Navigation/openLinkFromOutsideRiver\">\n <option value=\"top\"><<lingo \"OpenAtTop\">></option>\n <option value=\"bottom\"><<lingo \"OpenAtBottom\">></option>\n</$select>\n"
},
"$:/core/ui/ControlPanel/Settings/MissingLinks": {
"title": "$:/core/ui/ControlPanel/Settings/MissingLinks",
"tags": "$:/tags/ControlPanel/Settings",
"caption": "{{$:/language/ControlPanel/Settings/MissingLinks/Caption}}",
"text": "\\define lingo-base() $:/language/ControlPanel/Settings/MissingLinks/\n<<lingo Hint>>\n\n<$checkbox tiddler=\"$:/config/MissingLinks\" field=\"text\" checked=\"yes\" unchecked=\"no\" default=\"yes\"> <$link to=\"$:/config/MissingLinks\"><<lingo Description>></$link> </$checkbox>\n\n"
},
"$:/core/ui/ControlPanel/Settings/NavigationAddressBar": {
"title": "$:/core/ui/ControlPanel/Settings/NavigationAddressBar",
"tags": "$:/tags/ControlPanel/Settings",
"caption": "{{$:/language/ControlPanel/Settings/NavigationAddressBar/Caption}}",
"text": "\\define lingo-base() $:/language/ControlPanel/Settings/NavigationAddressBar/\n\n<$link to=\"$:/config/Navigation/UpdateAddressBar\"><<lingo Hint>></$link>\n\n<$radio tiddler=\"$:/config/Navigation/UpdateAddressBar\" value=\"permaview\"> <<lingo Permaview/Description>> </$radio>\n\n<$radio tiddler=\"$:/config/Navigation/UpdateAddressBar\" value=\"permalink\"> <<lingo Permalink/Description>> </$radio>\n\n<$radio tiddler=\"$:/config/Navigation/UpdateAddressBar\" value=\"no\"> <<lingo No/Description>> </$radio>\n"
},
"$:/core/ui/ControlPanel/Settings/NavigationHistory": {
"title": "$:/core/ui/ControlPanel/Settings/NavigationHistory",
"tags": "$:/tags/ControlPanel/Settings",
"caption": "{{$:/language/ControlPanel/Settings/NavigationHistory/Caption}}",
"text": "\\define lingo-base() $:/language/ControlPanel/Settings/NavigationHistory/\n<$link to=\"$:/config/Navigation/UpdateHistory\"><<lingo Hint>></$link>\n\n<$radio tiddler=\"$:/config/Navigation/UpdateHistory\" value=\"yes\"> <<lingo Yes/Description>> </$radio>\n\n<$radio tiddler=\"$:/config/Navigation/UpdateHistory\" value=\"no\"> <<lingo No/Description>> </$radio>\n"
},
"$:/core/ui/ControlPanel/Settings/NavigationPermalinkviewMode": {
"title": "$:/core/ui/ControlPanel/Settings/NavigationPermalinkviewMode",
"tags": "$:/tags/ControlPanel/Settings",
"caption": "{{$:/language/ControlPanel/Settings/NavigationPermalinkviewMode/Caption}}",
"text": "\\define lingo-base() $:/language/ControlPanel/Settings/NavigationPermalinkviewMode/\n<<lingo Hint>>\n\n<$checkbox tiddler=\"$:/config/Navigation/Permalinkview/CopyToClipboard\" field=\"text\" checked=\"yes\" unchecked=\"no\" default=\"yes\"> <$link to=\"$:/config/Navigation/Permalinkview/CopyToClipboard\"><<lingo CopyToClipboard/Description>></$link> </$checkbox>\n\n<$checkbox tiddler=\"$:/config/Navigation/Permalinkview/UpdateAddressBar\" field=\"text\" checked=\"yes\" unchecked=\"no\" default=\"yes\"> <$link to=\"$:/config/Navigation/Permalinkview/UpdateAddressBar\"><<lingo UpdateAddressBar/Description>></$link> </$checkbox>\n"
},
"$:/core/ui/ControlPanel/Settings/PerformanceInstrumentation": {
"title": "$:/core/ui/ControlPanel/Settings/PerformanceInstrumentation",
"tags": "$:/tags/ControlPanel/Settings",
"caption": "{{$:/language/ControlPanel/Settings/PerformanceInstrumentation/Caption}}",
"text": "\\define lingo-base() $:/language/ControlPanel/Settings/PerformanceInstrumentation/\n<<lingo Hint>>\n\n<$checkbox tiddler=\"$:/config/Performance/Instrumentation\" field=\"text\" checked=\"yes\" unchecked=\"no\" default=\"no\"> <$link to=\"$:/config/Performance/Instrumentation\"><<lingo Description>></$link> </$checkbox>\n"
},
"$:/core/ui/ControlPanel/Settings/TitleLinks": {
"title": "$:/core/ui/ControlPanel/Settings/TitleLinks",
"tags": "$:/tags/ControlPanel/Settings",
"caption": "{{$:/language/ControlPanel/Settings/TitleLinks/Caption}}",
"text": "\\define lingo-base() $:/language/ControlPanel/Settings/TitleLinks/\n<$link to=\"$:/config/Tiddlers/TitleLinks\"><<lingo Hint>></$link>\n\n<$radio tiddler=\"$:/config/Tiddlers/TitleLinks\" value=\"yes\"> <<lingo Yes/Description>> </$radio>\n\n<$radio tiddler=\"$:/config/Tiddlers/TitleLinks\" value=\"no\"> <<lingo No/Description>> </$radio>\n"
},
"$:/core/ui/ControlPanel/Settings/ToolbarButtonStyle": {
"title": "$:/core/ui/ControlPanel/Settings/ToolbarButtonStyle",
"tags": "$:/tags/ControlPanel/Settings",
"caption": "{{$:/language/ControlPanel/Settings/ToolbarButtonStyle/Caption}}",
"text": "\\define lingo-base() $:/language/ControlPanel/Settings/ToolbarButtonStyle/\n<$link to=\"$:/config/Toolbar/ButtonClass\"><<lingo \"Hint\">></$link>\n\n<$select tiddler=\"$:/config/Toolbar/ButtonClass\">\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/ToolbarButtonStyle]]\">\n<option value={{!!text}}>{{!!caption}}</option>\n</$list>\n</$select>\n"
},
"$:/core/ui/ControlPanel/Settings/ToolbarButtons": {
"title": "$:/core/ui/ControlPanel/Settings/ToolbarButtons",
"tags": "$:/tags/ControlPanel/Settings",
"caption": "{{$:/language/ControlPanel/Settings/ToolbarButtons/Caption}}",
"text": "\\define lingo-base() $:/language/ControlPanel/Settings/ToolbarButtons/\n<<lingo Hint>>\n\n<$checkbox tiddler=\"$:/config/Toolbar/Icons\" field=\"text\" checked=\"yes\" unchecked=\"no\" default=\"yes\"> <$link to=\"$:/config/Toolbar/Icons\"><<lingo Icons/Description>></$link> </$checkbox>\n\n<$checkbox tiddler=\"$:/config/Toolbar/Text\" field=\"text\" checked=\"yes\" unchecked=\"no\" default=\"no\"> <$link to=\"$:/config/Toolbar/Text\"><<lingo Text/Description>></$link> </$checkbox>\n"
},
"$:/core/ui/ControlPanel/Settings": {
"title": "$:/core/ui/ControlPanel/Settings",
"tags": "$:/tags/ControlPanel",
"caption": "{{$:/language/ControlPanel/Settings/Caption}}",
"text": "\\define lingo-base() $:/language/ControlPanel/Settings/\n\n<<lingo Hint>>\n\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/ControlPanel/Settings]]\">\n\n<div style=\"border-top:1px solid #eee;\">\n\n!! <$link><$transclude field=\"caption\"/></$link>\n\n<$transclude/>\n\n</div>\n\n</$list>\n"
},
"$:/core/ui/ControlPanel/StoryView": {
"title": "$:/core/ui/ControlPanel/StoryView",
"tags": "$:/tags/ControlPanel/Appearance",
"caption": "{{$:/language/ControlPanel/StoryView/Caption}}",
"text": "{{$:/snippets/viewswitcher}}\n"
},
"$:/core/ui/ControlPanel/Stylesheets": {
"title": "$:/core/ui/ControlPanel/Stylesheets",
"tags": "$:/tags/ControlPanel/Advanced",
"caption": "{{$:/language/ControlPanel/Stylesheets/Caption}}",
"text": "\\define lingo-base() $:/language/ControlPanel/\n\n<<lingo Stylesheets/Hint>>\n\n{{$:/snippets/peek-stylesheets}}\n"
},
"$:/core/ui/ControlPanel/Theme": {
"title": "$:/core/ui/ControlPanel/Theme",
"tags": "$:/tags/ControlPanel/Appearance",
"caption": "{{$:/language/ControlPanel/Theme/Caption}}",
"text": "{{$:/snippets/themeswitcher}}\n"
},
"$:/core/ui/ControlPanel/TiddlerFields": {
"title": "$:/core/ui/ControlPanel/TiddlerFields",
"tags": "$:/tags/ControlPanel/Advanced",
"caption": "{{$:/language/ControlPanel/TiddlerFields/Caption}}",
"text": "\\define lingo-base() $:/language/ControlPanel/\n\n<<lingo TiddlerFields/Hint>>\n\n{{$:/snippets/allfields}}"
},
"$:/core/ui/ControlPanel/Toolbars/EditToolbar": {
"title": "$:/core/ui/ControlPanel/Toolbars/EditToolbar",
"tags": "$:/tags/ControlPanel/Toolbars",
"caption": "{{$:/language/ControlPanel/Toolbars/EditToolbar/Caption}}",
"text": "\\define lingo-base() $:/language/TiddlerInfo/\n\n\\define config-base() $:/config/EditToolbarButtons/Visibility/\n\n{{$:/language/ControlPanel/Toolbars/EditToolbar/Hint}}\n\n<$set name=\"tv-config-toolbar-icons\" value=\"yes\">\n\n<$set name=\"tv-config-toolbar-text\" value=\"yes\">\n\n<$macrocall $name=\"list-tagged-draggable\" tag=\"$:/tags/EditToolbar\" itemTemplate=\"$:/core/ui/ControlPanel/Toolbars/ItemTemplate\"/>\n\n</$set>\n\n</$set>"
},
"$:/core/ui/ControlPanel/Toolbars/EditorItemTemplate": {
"title": "$:/core/ui/ControlPanel/Toolbars/EditorItemTemplate",
"text": "\\define config-title()\n$(config-base)$$(currentTiddler)$\n\\end\n\n<$draggable tiddler=<<currentTiddler>>>\n<$checkbox tiddler=<<config-title>> field=\"text\" checked=\"show\" unchecked=\"hide\" default=\"show\"/> <span class=\"tc-icon-wrapper\"><$transclude tiddler={{!!icon}}/></span> <$transclude field=\"caption\"/> -- <i class=\"tc-muted\"><$transclude field=\"description\"/></i>\n</$draggable>\n"
},
"$:/core/ui/ControlPanel/Toolbars/EditorToolbar": {
"title": "$:/core/ui/ControlPanel/Toolbars/EditorToolbar",
"tags": "$:/tags/ControlPanel/Toolbars",
"caption": "{{$:/language/ControlPanel/Toolbars/EditorToolbar/Caption}}",
"text": "\\define lingo-base() $:/language/TiddlerInfo/\n\n\\define config-base() $:/config/EditorToolbarButtons/Visibility/\n\n{{$:/language/ControlPanel/Toolbars/EditorToolbar/Hint}}\n\n<$macrocall $name=\"list-tagged-draggable\" tag=\"$:/tags/EditorToolbar\" itemTemplate=\"$:/core/ui/ControlPanel/Toolbars/EditorItemTemplate\"/>\n"
},
"$:/core/ui/ControlPanel/Toolbars/ItemTemplate": {
"title": "$:/core/ui/ControlPanel/Toolbars/ItemTemplate",
"text": "\\define config-title()\n$(config-base)$$(currentTiddler)$\n\\end\n\n<$draggable tiddler=<<currentTiddler>>>\n<$checkbox tiddler=<<config-title>> field=\"text\" checked=\"show\" unchecked=\"hide\" default=\"show\"/> <span class=\"tc-icon-wrapper\"> <$transclude field=\"caption\"/> <i class=\"tc-muted\">-- <$transclude field=\"description\"/></i></span>\n</$draggable>\n"
},
"$:/core/ui/ControlPanel/Toolbars/PageControls": {
"title": "$:/core/ui/ControlPanel/Toolbars/PageControls",
"tags": "$:/tags/ControlPanel/Toolbars",
"caption": "{{$:/language/ControlPanel/Toolbars/PageControls/Caption}}",
"text": "\\define lingo-base() $:/language/TiddlerInfo/\n\n\\define config-base() $:/config/PageControlButtons/Visibility/\n\n{{$:/language/ControlPanel/Toolbars/PageControls/Hint}}\n\n<$set name=\"tv-config-toolbar-icons\" value=\"yes\">\n\n<$set name=\"tv-config-toolbar-text\" value=\"yes\">\n\n<$macrocall $name=\"list-tagged-draggable\" tag=\"$:/tags/PageControls\" itemTemplate=\"$:/core/ui/ControlPanel/Toolbars/ItemTemplate\"/>\n\n</$set>\n\n</$set>\n"
},
"$:/core/ui/ControlPanel/Toolbars/ViewToolbar": {
"title": "$:/core/ui/ControlPanel/Toolbars/ViewToolbar",
"tags": "$:/tags/ControlPanel/Toolbars",
"caption": "{{$:/language/ControlPanel/Toolbars/ViewToolbar/Caption}}",
"text": "\\define lingo-base() $:/language/TiddlerInfo/\n\n\\define config-base() $:/config/ViewToolbarButtons/Visibility/\n\n{{$:/language/ControlPanel/Toolbars/ViewToolbar/Hint}}\n\n<$set name=\"tv-config-toolbar-icons\" value=\"yes\">\n\n<$set name=\"tv-config-toolbar-text\" value=\"yes\">\n\n<$macrocall $name=\"list-tagged-draggable\" tag=\"$:/tags/ViewToolbar\" itemTemplate=\"$:/core/ui/ControlPanel/Toolbars/ItemTemplate\"/>\n\n</$set>\n\n</$set>\n"
},
"$:/core/ui/ControlPanel/Toolbars": {
"title": "$:/core/ui/ControlPanel/Toolbars",
"tags": "$:/tags/ControlPanel/Appearance",
"caption": "{{$:/language/ControlPanel/Toolbars/Caption}}",
"text": "{{$:/language/ControlPanel/Toolbars/Hint}}\n\n<div class=\"tc-control-panel\">\n<$macrocall $name=\"tabs\" tabsList=\"[all[shadows+tiddlers]tag[$:/tags/ControlPanel/Toolbars]!has[draft.of]]\" default=\"$:/core/ui/ControlPanel/Toolbars/ViewToolbar\" class=\"tc-vertical\" explicitState=\"$:/state/tabs/controlpanel/toolbars-1345989671\"/>\n</div>\n"
},
"$:/ControlPanel": {
"title": "$:/ControlPanel",
"icon": "$:/core/images/options-button",
"color": "#bbb",
"text": "<div class=\"tc-control-panel\">\n<$macrocall $name=\"tabs\" tabsList=\"[all[shadows+tiddlers]tag[$:/tags/ControlPanel]!has[draft.of]]\" default=\"$:/core/ui/ControlPanel/Info\" explicitState=\"$:/state/tab-1749438307\"/>\n</div>\n"
},
"$:/core/ui/DefaultSearchResultList": {
"title": "$:/core/ui/DefaultSearchResultList",
"tags": "$:/tags/SearchResults",
"caption": "{{$:/language/Search/DefaultResults/Caption}}",
"first-search-filter": "[!is[system]search:title<userInput>sort[title]limit[250]]",
"second-search-filter": "[!is[system]search<userInput>sort[title]limit[250]]",
"text": "\\define searchResultList()\n//<small>{{$:/language/Search/Matches/Title}}</small>//\n\n<$list filter=\"[<userInput>minlength[1]]\" variable=\"ignore\">\n<$list filter={{{ [<configTiddler>get[first-search-filter]] }}}>\n<span class={{{[<currentTiddler>addsuffix[-primaryList]] -[<searchListState>get[text]] +[then[]else[tc-list-item-selected]] }}}>\n<$transclude tiddler=\"$:/core/ui/ListItemTemplate\"/>\n</span>\n</$list>\n</$list>\n\n//<small>{{$:/language/Search/Matches/All}}</small>//\n\n<$list filter=\"[<userInput>minlength[1]]\" variable=\"ignore\">\n<$list filter={{{ [<configTiddler>get[second-search-filter]] }}}>\n<span class={{{[<currentTiddler>addsuffix[-secondaryList]] -[<searchListState>get[text]] +[then[]else[tc-list-item-selected]] }}}>\n<$transclude tiddler=\"$:/core/ui/ListItemTemplate\"/>\n</span>\n</$list>\n</$list>\n\n\\end\n<<searchResultList>>\n"
},
"$:/core/ui/EditTemplate/body/preview/diffs-current": {
"title": "$:/core/ui/EditTemplate/body/preview/diffs-current",
"tags": "$:/tags/EditPreview",
"caption": "differences from current",
"list-after": "$:/core/ui/EditTemplate/body/preview/output",
"text": "<$list filter=\"[<currentTiddler>!is[image]]\" emptyMessage={{$:/core/ui/EditTemplate/body/preview/output}}>\n\n<$macrocall $name=\"compareTiddlerText\" sourceTiddlerTitle={{!!draft.of}} destTiddlerTitle=<<currentTiddler>>/>\n\n</$list>\n\n"
},
"$:/core/ui/EditTemplate/body/preview/diffs-shadow": {
"title": "$:/core/ui/EditTemplate/body/preview/diffs-shadow",
"tags": "$:/tags/EditPreview",
"caption": "differences from shadow (if any)",
"list-after": "$:/core/ui/EditTemplate/body/preview/output",
"text": "<$list filter=\"[<currentTiddler>!is[image]]\" emptyMessage={{$:/core/ui/EditTemplate/body/preview/output}}>\n\n<$macrocall $name=\"compareTiddlerText\" sourceTiddlerTitle={{{ [{!!draft.of}shadowsource[]] }}} sourceSubTiddlerTitle={{!!draft.of}} destTiddlerTitle=<<currentTiddler>>/>\n\n</$list>\n\n"
},
"$:/core/ui/EditTemplate/body/preview/output": {
"title": "$:/core/ui/EditTemplate/body/preview/output",
"tags": "$:/tags/EditPreview",
"caption": "{{$:/language/EditTemplate/Body/Preview/Type/Output}}",
"text": "\\import [all[shadows+tiddlers]tag[$:/tags/Macro/View]!has[draft.of]]\n<$set name=\"tv-tiddler-preview\" value=\"yes\">\n\n<$transclude />\n\n</$set>\n"
},
"$:/state/showeditpreview": {
"title": "$:/state/showeditpreview",
"text": "no"
},
"$:/core/ui/EditTemplate/body/editor": {
"title": "$:/core/ui/EditTemplate/body/editor",
"text": "<$edit\n\n field=\"text\"\n class=\"tc-edit-texteditor tc-edit-texteditor-body\"\n placeholder={{$:/language/EditTemplate/Body/Placeholder}}\n tabindex={{$:/config/EditTabIndex}}\n focus={{{ [{$:/config/AutoFocus}match[text]then[true]] ~[[false]] }}}\n cancelPopups=\"yes\"\n\n><$set\n\n name=\"targetTiddler\"\n value=<<currentTiddler>>\n\n><$list\n\n filter=\"[all[shadows+tiddlers]tag[$:/tags/EditorToolbar]!has[draft.of]]\"\n\n><$reveal\n\n type=\"nomatch\"\n state=<<config-visibility-title>>\n text=\"hide\"\n class=\"tc-text-editor-toolbar-item-wrapper\"\n\n><$transclude\n\n tiddler=\"$:/core/ui/EditTemplate/body/toolbar/button\"\n mode=\"inline\"\n\n/></$reveal></$list></$set></$edit>\n"
},
"$:/core/ui/EditTemplate/body/toolbar/button": {
"title": "$:/core/ui/EditTemplate/body/toolbar/button",
"text": "\\define toolbar-button-icon()\n<$list\n\n filter=\"[all[current]!has[custom-icon]]\"\n variable=\"no-custom-icon\"\n\n><$transclude\n\n tiddler={{!!icon}}\n\n/></$list>\n\\end\n\n\\define toolbar-button-tooltip()\n{{!!description}}<$macrocall $name=\"displayshortcuts\" $output=\"text/plain\" shortcuts={{!!shortcuts}} prefix=\"` - [\" separator=\"] [\" suffix=\"]`\"/>\n\\end\n\n\\define toolbar-button()\n<$list\n\n filter={{!!condition}}\n variable=\"list-condition\"\n\n><$wikify\n\n name=\"tooltip-text\"\n text=<<toolbar-button-tooltip>>\n mode=\"inline\"\n output=\"text\"\n\n><$list\n\n filter=\"[all[current]!has[dropdown]]\"\n variable=\"no-dropdown\"\n\n><$button\n\n class=\"tc-btn-invisible $(buttonClasses)$\"\n tooltip=<<tooltip-text>>\n actions={{!!actions}}\n\n><span\n\n data-tw-keyboard-shortcut={{!!shortcuts}}\n\n/><<toolbar-button-icon>><$transclude\n\n tiddler=<<currentTiddler>>\n field=\"text\"\n\n/></$button></$list><$list\n\n filter=\"[all[current]has[dropdown]]\"\n variable=\"dropdown\"\n\n><$set\n\n name=\"dropdown-state\"\n value=<<qualify \"$:/state/EditorToolbarDropdown\">>\n\n><$button\n\n popup=<<dropdown-state>>\n class=\"tc-popup-keep tc-btn-invisible $(buttonClasses)$\"\n selectedClass=\"tc-selected\"\n tooltip=<<tooltip-text>>\n actions={{!!actions}}\n\n><span\n\n data-tw-keyboard-shortcut={{!!shortcuts}}\n\n/><<toolbar-button-icon>><$transclude\n\n tiddler=<<currentTiddler>>\n field=\"text\"\n\n/></$button><$reveal\n\n state=<<dropdown-state>>\n type=\"popup\"\n position=\"below\"\n animate=\"yes\"\n tag=\"span\"\n\n><div\n\n class=\"tc-drop-down tc-popup-keep\"\n\n><$transclude\n\n tiddler={{!!dropdown}}\n mode=\"block\"\n\n/></div></$reveal></$set></$list></$wikify></$list>\n\\end\n\n\\define toolbar-button-outer()\n<$set\n\n name=\"buttonClasses\"\n value={{!!button-classes}}\n\n><<toolbar-button>></$set>\n\\end\n\n<<toolbar-button-outer>>"
},
"$:/core/ui/EditTemplate/body": {
"title": "$:/core/ui/EditTemplate/body",
"tags": "$:/tags/EditTemplate",
"text": "\\define lingo-base() $:/language/EditTemplate/Body/\n\\define config-visibility-title()\n$:/config/EditorToolbarButtons/Visibility/$(currentTiddler)$\n\\end\n<$list filter=\"[all[current]has[_canonical_uri]]\">\n\n<div class=\"tc-message-box\">\n\n<<lingo External/Hint>>\n\n<a href={{!!_canonical_uri}}><$text text={{!!_canonical_uri}}/></a>\n\n<$edit-text field=\"_canonical_uri\" class=\"tc-edit-fields\" tabindex={{$:/config/EditTabIndex}} cancelPopups=\"yes\"></$edit-text>\n\n</div>\n\n</$list>\n\n<$list filter=\"[all[current]!has[_canonical_uri]]\">\n\n<$reveal state=\"$:/state/showeditpreview\" type=\"match\" text=\"yes\">\n\n<div class=\"tc-tiddler-preview\">\n\n<$transclude tiddler=\"$:/core/ui/EditTemplate/body/editor\" mode=\"inline\"/>\n\n<div class=\"tc-tiddler-preview-preview\">\n\n<$transclude tiddler={{$:/state/editpreviewtype}} mode=\"inline\">\n\n<$transclude tiddler=\"$:/core/ui/EditTemplate/body/preview/output\" mode=\"inline\"/>\n\n</$transclude>\n\n</div>\n\n</div>\n\n</$reveal>\n\n<$reveal state=\"$:/state/showeditpreview\" type=\"nomatch\" text=\"yes\">\n\n<$transclude tiddler=\"$:/core/ui/EditTemplate/body/editor\" mode=\"inline\"/>\n\n</$reveal>\n\n</$list>\n"
},
"$:/core/ui/EditTemplate/controls": {
"title": "$:/core/ui/EditTemplate/controls",
"tags": "$:/tags/EditTemplate",
"text": "\\define config-title()\n$:/config/EditToolbarButtons/Visibility/$(listItem)$\n\\end\n<div class=\"tc-tiddler-title tc-tiddler-edit-title\">\n<$view field=\"title\"/>\n<span class=\"tc-tiddler-controls tc-titlebar\"><$list filter=\"[all[shadows+tiddlers]tag[$:/tags/EditToolbar]!has[draft.of]]\" variable=\"listItem\"><$reveal type=\"nomatch\" state=<<config-title>> text=\"hide\"><$transclude tiddler=<<listItem>>/></$reveal></$list></span>\n<div style=\"clear: both;\"></div>\n</div>\n"
},
"$:/core/ui/EditTemplate/fields": {
"title": "$:/core/ui/EditTemplate/fields",
"tags": "$:/tags/EditTemplate",
"text": "\\define lingo-base() $:/language/EditTemplate/\n\\define config-title()\n$:/config/EditTemplateFields/Visibility/$(currentField)$\n\\end\n\n\\define config-filter()\n[[hide]] -[title{$(config-title)$}]\n\\end\n\n\\define current-tiddler-new-field-selector()\n[data-tiddler-title=\"$(currentTiddlerCSSescaped)$\"] .tc-edit-field-add-name-wrapper input\n\\end\n\n\\define new-field-actions()\n<$action-sendmessage $message=\"tm-add-field\" $name={{{ [<newFieldNameTiddler>get[text]] }}} $value={{{ [<newFieldValueTiddler>get[text]] }}}/>\n<$action-deletetiddler $filter=\"[<newFieldNameTiddler>] [<newFieldValueTiddler>] [<storeTitle>] [<searchListState>]\"/>\n<$action-sendmessage $message=\"tm-focus-selector\" $param=<<current-tiddler-new-field-selector>>/>\n\\end\n\n\\define delete-state-tiddlers() <$action-deletetiddler $filter=\"[<newFieldNameTiddler>] [<storeTitle>] [<searchListState>]\"/>\n\n\\define cancel-search-actions-inner()\n<$list filter=\"[<storeTitle>has[text]] [<newFieldNameTiddler>has[text]]\" variable=\"ignore\" emptyMessage=\"\"\"<<cancel-delete-tiddler-actions \"cancel\">>\"\"\">\n<<delete-state-tiddlers>>\n</$list>\n\\end\n\n\\define cancel-search-actions()\n<$set name=\"userInput\" value={{{ [<storeTitle>get[text]] }}}>\n<$list filter=\"[<newFieldNameTiddler>get[text]!match<userInput>]\" emptyMessage=\"\"\"<<cancel-search-actions-inner>>\"\"\">\n<$action-setfield $tiddler=<<newFieldNameTiddler>> text=<<userInput>>/><$action-setfield $tiddler=<<refreshTitle>> text=\"yes\"/>\n</$list>\n</$set>\n\\end\n\n\\define new-field()\n<$vars name={{{ [<newFieldNameTiddler>get[text]] }}}>\n<$reveal type=\"nomatch\" text=\"\" default=<<name>>>\n<$button tooltip=<<lingo Fields/Add/Button/Hint>>>\n<$action-sendmessage $message=\"tm-add-field\"\n$name=<<name>>\n$value={{{ [<newFieldValueTiddler>get[text]] }}}/>\n<$action-deletetiddler $filter=\"[<newFieldNameTiddler>] [<newFieldValueTiddler>] [<storeTitle>] [<searchListState>]\"/>\n<<lingo Fields/Add/Button>>\n</$button>\n</$reveal>\n<$reveal type=\"match\" text=\"\" default=<<name>>>\n<$button>\n<<lingo Fields/Add/Button>>\n</$button>\n</$reveal>\n</$vars>\n\\end\n\\whitespace trim\n\n<div class=\"tc-edit-fields\">\n<table class={{{ [all[current]fields[]] :filter[lookup[$:/config/EditTemplateFields/Visibility/]!match[hide]] +[count[]!match[0]] +[then[tc-edit-fields]] ~[[tc-edit-fields tc-edit-fields-small]] }}}>\n<tbody>\n<$list filter=\"[all[current]fields[]] +[sort[title]]\" variable=\"currentField\" storyview=\"pop\">\n<$list filter=<<config-filter>> variable=\"temp\">\n<tr class=\"tc-edit-field\">\n<td class=\"tc-edit-field-name\">\n<$text text=<<currentField>>/>:</td>\n<td class=\"tc-edit-field-value\">\n<$keyboard key=\"((delete-field))\" actions=\"\"\"<$action-deletefield $field=<<currentField>>/><$set name=\"currentTiddlerCSSescaped\" value={{{ [<currentTiddler>escapecss[]] }}}><$action-sendmessage $message=\"tm-focus-selector\" $param=<<current-tiddler-new-field-selector>>/></$set>\"\"\">\n<$edit-text tiddler=<<currentTiddler>> field=<<currentField>> placeholder={{$:/language/EditTemplate/Fields/Add/Value/Placeholder}} tabindex={{$:/config/EditTabIndex}} cancelPopups=\"yes\"/>\n</$keyboard>\n</td>\n<td class=\"tc-edit-field-remove\">\n<$button class=\"tc-btn-invisible\" tooltip={{$:/language/EditTemplate/Field/Remove/Hint}} aria-label={{$:/language/EditTemplate/Field/Remove/Caption}}>\n<$action-deletefield $field=<<currentField>>/><$set name=\"currentTiddlerCSSescaped\" value={{{ [<currentTiddler>escapecss[]] }}}><$action-sendmessage $message=\"tm-focus-selector\" $param=<<current-tiddler-new-field-selector>>/></$set>\n{{$:/core/images/delete-button}}\n</$button>\n</td>\n</tr>\n</$list>\n</$list>\n</tbody>\n</table>\n</div>\n\n<$fieldmangler>\n<div class=\"tc-edit-field-add\">\n<em class=\"tc-edit tc-big-gap-right\">\n<<lingo Fields/Add/Prompt>>\n</em>\n<$vars refreshTitle=<<qualify \"$:/temp/fieldname/refresh\">> storeTitle=<<newFieldNameInputTiddler>> searchListState=<<newFieldNameSelectionTiddler>>>\n<div class=\"tc-edit-field-add-name-wrapper\">\n<$macrocall $name=\"keyboard-driven-input\" tiddler=<<newFieldNameTiddler>> storeTitle=<<storeTitle>> refreshTitle=<<refreshTitle>>\n\t\tselectionStateTitle=<<searchListState>> tag=\"input\" default=\"\" placeholder={{$:/language/EditTemplate/Fields/Add/Name/Placeholder}}\n\t\tfocusPopup=<<qualify \"$:/state/popup/field-dropdown\">> class=\"tc-edit-texteditor tc-popup-handle\" tabindex={{$:/config/EditTabIndex}}\n\t\tfocus={{{ [{$:/config/AutoFocus}match[fields]then[true]] ~[[false]] }}} cancelPopups=\"yes\"\n\t\tconfigTiddlerFilter=\"[[$:/config/EditMode/fieldname-filter]]\" inputCancelActions=<<cancel-search-actions>> />\n<$button popup=<<qualify \"$:/state/popup/field-dropdown\">> class=\"tc-btn-invisible tc-btn-dropdown tc-small-gap\" tooltip={{$:/language/EditTemplate/Field/Dropdown/Hint}} aria-label={{$:/language/EditTemplate/Field/Dropdown/Caption}}>{{$:/core/images/down-arrow}}</$button>\n<$reveal state=<<qualify \"$:/state/popup/field-dropdown\">> type=\"nomatch\" text=\"\" default=\"\">\n<div class=\"tc-block-dropdown tc-edit-type-dropdown\">\n<$set name=\"tv-show-missing-links\" value=\"yes\">\n<$linkcatcher to=<<newFieldNameTiddler>>>\n<div class=\"tc-dropdown-item\">\n<<lingo Fields/Add/Dropdown/User>>\n</div>\n<$set name=\"newFieldName\" value={{{ [<storeTitle>get[text]] }}}>\n<$list filter=\"[!is[shadow]!is[system]fields[]search:title<newFieldName>sort[]] -created -creator -draft.of -draft.title -modified -modifier -tags -text -title -type\" variable=\"currentField\">\n<$list filter=\"[<currentField>addsuffix[-primaryList]] -[<searchListState>get[text]]\" emptyMessage=\"\"\"<$link to=<<currentField>> class=\"tc-list-item-selected\"><$text text=<<currentField>>/></$link>\"\"\">\n<$link to=<<currentField>>>\n<$text text=<<currentField>>/>\n</$link>\n</$list>\n</$list>\n<div class=\"tc-dropdown-item\">\n<<lingo Fields/Add/Dropdown/System>>\n</div>\n<$list filter=\"[fields[]search:title<newFieldName>sort[]] -[!is[shadow]!is[system]fields[]]\" variable=\"currentField\">\n<$list filter=\"[<currentField>addsuffix[-secondaryList]] -[<searchListState>get[text]]\" emptyMessage=\"\"\"<$link to=<<currentField>> class=\"tc-list-item-selected\"><$text text=<<currentField>>/></$link>\"\"\">\n<$link to=<<currentField>>>\n<$text text=<<currentField>>/>\n</$link>\n</$list>\n</$list>\n</$set>\n</$linkcatcher>\n</$set>\n</div>\n</$reveal>\n</div>\n<span class=\"tc-edit-field-add-value tc-small-gap-right\">\n<$set name=\"currentTiddlerCSSescaped\" value={{{ [<currentTiddler>escapecss[]] }}}>\n<$keyboard key=\"((add-field))\" actions=<<new-field-actions>>>\n<$edit-text tiddler=<<newFieldValueTiddler>> tag=\"input\" default=\"\" placeholder={{$:/language/EditTemplate/Fields/Add/Value/Placeholder}} class=\"tc-edit-texteditor\" tabindex={{$:/config/EditTabIndex}} cancelPopups=\"yes\"/>\n</$keyboard>\n</$set>\n</span>\n<span class=\"tc-edit-field-add-button\">\n<$macrocall $name=\"new-field\"/>\n</span>\n</$vars>\n</div>\n</$fieldmangler>\n"
},
"$:/core/ui/EditTemplate/shadow": {
"title": "$:/core/ui/EditTemplate/shadow",
"tags": "$:/tags/EditTemplate",
"text": "\\define lingo-base() $:/language/EditTemplate/Shadow/\n\\define pluginLinkBody()\n<$link to=\"\"\"$(pluginTitle)$\"\"\">\n<$text text=\"\"\"$(pluginTitle)$\"\"\"/>\n</$link>\n\\end\n<$list filter=\"[all[current]get[draft.of]is[shadow]!is[tiddler]]\">\n\n<$list filter=\"[all[current]shadowsource[]]\" variable=\"pluginTitle\">\n\n<$set name=\"pluginLink\" value=<<pluginLinkBody>>>\n<div class=\"tc-message-box\">\n\n<<lingo Warning>>\n\n</div>\n</$set>\n</$list>\n\n</$list>\n\n<$list filter=\"[all[current]get[draft.of]is[shadow]is[tiddler]]\">\n\n<$list filter=\"[all[current]shadowsource[]]\" variable=\"pluginTitle\">\n\n<$set name=\"pluginLink\" value=<<pluginLinkBody>>>\n<div class=\"tc-message-box\">\n\n<<lingo OverriddenWarning>>\n\n</div>\n</$set>\n</$list>\n\n</$list>"
},
"$:/core/ui/EditTemplate/tags": {
"title": "$:/core/ui/EditTemplate/tags",
"tags": "$:/tags/EditTemplate",
"text": "\\whitespace trim\n\n\\define lingo-base() $:/language/EditTemplate/\n\n\\define tag-styles()\nbackground-color:$(backgroundColor)$;\nfill:$(foregroundColor)$;\ncolor:$(foregroundColor)$;\n\\end\n\n\\define tag-body-inner(colour,fallbackTarget,colourA,colourB,icon,tagField:\"tags\")\n\\whitespace trim\n<$vars foregroundColor=<<contrastcolour target:\"\"\"$colour$\"\"\" fallbackTarget:\"\"\"$fallbackTarget$\"\"\" colourA:\"\"\"$colourA$\"\"\" colourB:\"\"\"$colourB$\"\"\">> backgroundColor=\"\"\"$colour$\"\"\">\n<span style=<<tag-styles>> class=\"tc-tag-label tc-tag-list-item\">\n<$transclude tiddler=\"\"\"$icon$\"\"\"/><$view field=\"title\" format=\"text\" />\n<$button class=\"tc-btn-invisible tc-remove-tag-button\"><$action-listops $tiddler=<<saveTiddler>> $field=<<__tagField__>> $subfilter=\"-[{!!title}]\"/>{{$:/core/images/close-button}}</$button>\n</span>\n</$vars>\n\\end\n\n\\define tag-body(colour,palette,icon,tagField:\"tags\")\n<$macrocall $name=\"tag-body-inner\" colour=\"\"\"$colour$\"\"\" fallbackTarget={{$palette$##tag-background}} colourA={{$palette$##foreground}} colourB={{$palette$##background}} icon=\"\"\"$icon$\"\"\" tagField=<<__tagField__>>/>\n\\end\n\n\\define edit-tags-template(tagField:\"tags\")\n\\whitespace trim\n<div class=\"tc-edit-tags\">\n<$list filter=\"[list[!!$tagField$]sort[title]]\" storyview=\"pop\">\n<$macrocall $name=\"tag-body\" colour={{!!color}} palette={{$:/palette}} icon={{!!icon}} tagField=<<__tagField__>>/>\n</$list>\n<$vars tabIndex={{$:/config/EditTabIndex}} cancelPopups=\"yes\">\n<$macrocall $name=\"tag-picker\" tagField=<<__tagField__>>/>\n</$vars>\n</div>\n\\end\n<$set name=\"saveTiddler\" value=<<currentTiddler>>>\n<$macrocall $name=\"edit-tags-template\" tagField=<<tagField>>/>\n</$set>\n"
},
"$:/core/ui/EditTemplate/title": {
"title": "$:/core/ui/EditTemplate/title",
"tags": "$:/tags/EditTemplate",
"text": "<$edit-text field=\"draft.title\" class=\"tc-titlebar tc-edit-texteditor\" focus={{{ [{$:/config/AutoFocus}match[title]then[true]] ~[[false]] }}} tabindex={{$:/config/EditTabIndex}} cancelPopups=\"yes\"/>\n\n<$vars pattern=\"\"\"[\\|\\[\\]{}]\"\"\" bad-chars=\"\"\"`| [ ] { }`\"\"\">\n\n<$list filter=\"[all[current]regexp:draft.title<pattern>]\" variable=\"listItem\">\n\n<div class=\"tc-message-box\">\n\n{{$:/core/images/warning}} {{$:/language/EditTemplate/Title/BadCharacterWarning}}\n\n</div>\n\n</$list>\n\n</$vars>\n\n<$reveal state=\"!!draft.title\" type=\"nomatch\" text={{!!draft.of}} tag=\"div\">\n\n<$list filter=\"[{!!draft.title}!is[missing]]\" variable=\"listItem\">\n\n<div class=\"tc-message-box\">\n\n{{$:/core/images/warning}} {{$:/language/EditTemplate/Title/Exists/Prompt}}\n\n</div>\n\n</$list>\n\n<$list filter=\"[{!!draft.of}!is[missing]]\" variable=\"listItem\">\n\n<$vars fromTitle={{!!draft.of}} toTitle={{!!draft.title}}>\n\n<$checkbox tiddler=\"$:/config/RelinkOnRename\" field=\"text\" checked=\"yes\" unchecked=\"no\" default=\"no\"> {{$:/language/EditTemplate/Title/Relink/Prompt}}</$checkbox>\n\n<$list filter=\"[title<fromTitle>backlinks[]limit[1]]\" variable=\"listItem\">\n\n<$vars stateTiddler=<<qualify \"$:/state/edit/references\">> >\n\n<$reveal type=\"nomatch\" state=<<stateTiddler>> text=\"show\">\n<$button set=<<stateTiddler>> setTo=\"show\" class=\"tc-btn-invisible\">{{$:/core/images/right-arrow}} \n<<lingo EditTemplate/Title/References/Prompt>></$button>\n</$reveal>\n<$reveal type=\"match\" state=<<stateTiddler>> text=\"show\">\n<$button set=<<stateTiddler>> setTo=\"hide\" class=\"tc-btn-invisible\">{{$:/core/images/down-arrow}} \n<<lingo EditTemplate/Title/References/Prompt>></$button>\n</$reveal>\n\n<$reveal type=\"match\" state=<<stateTiddler>> text=\"show\">\n<$tiddler tiddler=<<fromTitle>> >\n<$transclude tiddler=\"$:/core/ui/TiddlerInfo/References\"/>\n</$tiddler>\n</$reveal>\n\n</$vars>\n\n</$list>\n\n</$vars>\n\n</$list>\n\n</$reveal>\n"
},
"$:/core/ui/EditTemplate/type": {
"title": "$:/core/ui/EditTemplate/type",
"tags": "$:/tags/EditTemplate",
"first-search-filter": "[all[shadows+tiddlers]prefix[$:/language/Docs/Types/]sort[description]sort[group-sort]removeprefix[$:/language/Docs/Types/]search<userInput>]",
"text": "\\define lingo-base() $:/language/EditTemplate/\n\\define input-cancel-actions() <$list filter=\"[<storeTitle>get[text]] [<currentTiddler>get[type]] +[limit[1]]\" emptyMessage=\"\"\"<<cancel-delete-tiddler-actions \"cancel\">>\"\"\"><$action-sendmessage $message=\"tm-remove-field\" $param=\"type\"/><$action-deletetiddler $filter=\"[<typeInputTiddler>] [<refreshTitle>] [<typeSelectionTiddler>]\"/></$list>\n\\whitespace trim\n<$set name=\"refreshTitle\" value=<<qualify \"$:/temp/type-search/refresh\">>>\n<div class=\"tc-edit-type-selector-wrapper\">\n<em class=\"tc-edit tc-big-gap-right\"><<lingo Type/Prompt>></em>\n<div class=\"tc-type-selector-dropdown-wrapper\">\n<div class=\"tc-type-selector\"><$fieldmangler>\n<$macrocall $name=\"keyboard-driven-input\" tiddler=<<currentTiddler>> storeTitle=<<typeInputTiddler>> refreshTitle=<<refreshTitle>> selectionStateTitle=<<typeSelectionTiddler>> field=\"type\" tag=\"input\" default=\"\" placeholder={{$:/language/EditTemplate/Type/Placeholder}} focusPopup=<<qualify \"$:/state/popup/type-dropdown\">> class=\"tc-edit-typeeditor tc-edit-texteditor tc-popup-handle\" tabindex={{$:/config/EditTabIndex}} focus={{{ [{$:/config/AutoFocus}match[type]then[true]] ~[[false]] }}} cancelPopups=\"yes\" configTiddlerFilter=\"[[$:/core/ui/EditTemplate/type]]\" inputCancelActions=<<input-cancel-actions>>/><$button popup=<<qualify \"$:/state/popup/type-dropdown\">> class=\"tc-btn-invisible tc-btn-dropdown tc-small-gap\" tooltip={{$:/language/EditTemplate/Type/Dropdown/Hint}} aria-label={{$:/language/EditTemplate/Type/Dropdown/Caption}}>{{$:/core/images/down-arrow}}</$button><$button message=\"tm-remove-field\" param=\"type\" class=\"tc-btn-invisible tc-btn-icon\" tooltip={{$:/language/EditTemplate/Type/Delete/Hint}} aria-label={{$:/language/EditTemplate/Type/Delete/Caption}}>{{$:/core/images/delete-button}}<$action-deletetiddler $filter=\"[<storeTitle>] [<refreshTitle>] [<selectionStateTitle>]\"/></$button>\n</$fieldmangler></div>\n\n<div class=\"tc-block-dropdown-wrapper\">\n<$set name=\"tv-show-missing-links\" value=\"yes\">\n<$reveal state=<<qualify \"$:/state/popup/type-dropdown\">> type=\"nomatch\" text=\"\" default=\"\">\n<div class=\"tc-block-dropdown tc-edit-type-dropdown\">\n<$linkcatcher to=\"!!type\">\n<$list filter='[all[shadows+tiddlers]prefix[$:/language/Docs/Types/]each[group]sort[group-sort]]'>\n<div class=\"tc-dropdown-item\">\n<$text text={{!!group}}/>\n</div>\n<$set name=\"userInput\" value={{{ [<typeInputTiddler>get[text]] }}}>\n<$list filter=\"[all[shadows+tiddlers]prefix[$:/language/Docs/Types/]group{!!group}] +[sort[description]] +[removeprefix[$:/language/Docs/Types/]] +[search<userInput>]\"><span class={{{ [<currentTiddler>addsuffix[-primaryList]] -[<typeSelectionTiddler>get[text]] +[then[]else[tc-list-item-selected]] }}}><$link to={{{ [<currentTiddler>addprefix[$:/language/Docs/Types/]get[name]] }}}><$view tiddler={{{ [<currentTiddler>addprefix[$:/language/Docs/Types/]] }}} field=\"description\"/> (<$view tiddler={{{ [<currentTiddler>addprefix[$:/language/Docs/Types/]] }}} field=\"name\"/>)</$link></span>\n</$list>\n</$set>\n</$list>\n</$linkcatcher>\n</div>\n</$reveal>\n</$set>\n</div>\n</div>\n</div>\n</$set>\n"
},
"$:/core/ui/EditTemplate": {
"title": "$:/core/ui/EditTemplate",
"text": "\\define delete-edittemplate-state-tiddlers() <$action-deletetiddler $filter=\"[<newFieldNameTiddler>] [<newFieldValueTiddler>] [<newFieldNameInputTiddler>] [<newFieldNameSelectionTiddler>] [<newTagNameTiddler>] [<newTagNameInputTiddler>] [<newTagNameSelectionTiddler>] [<typeInputTiddler>] [<typeSelectionTiddler>]\"/>\n\\define save-tiddler-actions()\n<$action-sendmessage $message=\"tm-add-tag\" $param={{{ [<newTagNameTiddler>get[text]] }}}/>\n<$action-sendmessage $message=\"tm-add-field\" $name={{{ [<newFieldNameTiddler>get[text]] }}} $value={{{ [<newFieldValueTiddler>get[text]] }}}/>\n<<delete-edittemplate-state-tiddlers>>\n<$action-sendmessage $message=\"tm-save-tiddler\"/>\n\\end\n\\define cancel-delete-tiddler-actions(message)\n<<delete-edittemplate-state-tiddlers>>\n<$action-sendmessage $message=\"tm-$message$-tiddler\"/>\n\\end\n<div data-tiddler-title=<<currentTiddler>> data-tags={{!!tags}} class={{{ tc-tiddler-frame tc-tiddler-edit-frame [<currentTiddler>is[tiddler]then[tc-tiddler-exists]] [<currentTiddler>is[missing]!is[shadow]then[tc-tiddler-missing]] [<currentTiddler>is[shadow]then[tc-tiddler-exists tc-tiddler-shadow]] [<currentTiddler>is[system]then[tc-tiddler-system]] [{!!class}] [<currentTiddler>tags[]encodeuricomponent[]addprefix[tc-tagged-]] +[join[ ]] }}}>\n<$fieldmangler>\n<$vars storyTiddler=<<currentTiddler>> newTagNameTiddler=<<qualify \"$:/temp/NewTagName\">> newFieldNameTiddler=<<qualify \"$:/temp/NewFieldName\">> newFieldValueTiddler=<<qualify \"$:/temp/NewFieldValue\">> newFieldNameInputTiddler=<<qualify \"$:/temp/NewFieldName/input\">> newFieldNameSelectionTiddler=<<qualify \"$:/temp/NewFieldName/selected-item\">> newTagNameInputTiddler=<<qualify \"$:/temp/NewTagName/input\">> newTagNameSelectionTiddler=<<qualify \"$:/temp/NewTagName/selected-item\">> typeInputTiddler=<<qualify \"$:/temp/Type/input\">> typeSelectionTiddler=<<qualify \"$:/temp/Type/selected-item\">>>\n<$keyboard key=\"((cancel-edit-tiddler))\" actions=<<cancel-delete-tiddler-actions \"cancel\">>>\n<$keyboard key=\"((save-tiddler))\" actions=<<save-tiddler-actions>>>\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/EditTemplate]!has[draft.of]]\" variable=\"listItem\">\n<$set name=\"tv-config-toolbar-class\" filter=\"[<tv-config-toolbar-class>] [<listItem>encodeuricomponent[]addprefix[tc-btn-]]\">\n<$transclude tiddler=<<listItem>>/>\n</$set>\n</$list>\n</$keyboard>\n</$keyboard>\n</$vars>\n</$fieldmangler>\n</div>\n"
},
"$:/core/ui/Buttons/cancel": {
"title": "$:/core/ui/Buttons/cancel",
"tags": "$:/tags/EditToolbar",
"caption": "{{$:/core/images/cancel-button}} {{$:/language/Buttons/Cancel/Caption}}",
"description": "{{$:/language/Buttons/Cancel/Hint}}",
"text": "\\whitespace trim\n<$button actions=<<cancel-delete-tiddler-actions \"cancel\">> tooltip={{$:/language/Buttons/Cancel/Hint}} aria-label={{$:/language/Buttons/Cancel/Caption}} class=<<tv-config-toolbar-class>>>\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/cancel-button}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\"><$text text={{$:/language/Buttons/Cancel/Caption}}/></span>\n</$list>\n</$button>\n"
},
"$:/core/ui/Buttons/delete": {
"title": "$:/core/ui/Buttons/delete",
"tags": "$:/tags/EditToolbar $:/tags/ViewToolbar",
"caption": "{{$:/core/images/delete-button}} {{$:/language/Buttons/Delete/Caption}}",
"description": "{{$:/language/Buttons/Delete/Hint}}",
"text": "\\whitespace trim\n<$button actions=<<cancel-delete-tiddler-actions \"delete\">> tooltip={{$:/language/Buttons/Delete/Hint}} aria-label={{$:/language/Buttons/Delete/Caption}} class=<<tv-config-toolbar-class>>>\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/delete-button}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\"><$text text={{$:/language/Buttons/Delete/Caption}}/></span>\n</$list>\n</$button>\n"
},
"$:/core/ui/Buttons/save": {
"title": "$:/core/ui/Buttons/save",
"tags": "$:/tags/EditToolbar",
"caption": "{{$:/core/images/done-button}} {{$:/language/Buttons/Save/Caption}}",
"description": "{{$:/language/Buttons/Save/Hint}}",
"text": "\\define save-tiddler-button()\n\\whitespace trim\n<$fieldmangler><$button tooltip={{$:/language/Buttons/Save/Hint}} aria-label={{$:/language/Buttons/Save/Caption}} class=<<tv-config-toolbar-class>>>\n<<save-tiddler-actions>>\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/done-button}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\"><$text text={{$:/language/Buttons/Save/Caption}}/></span>\n</$list>\n</$button></$fieldmangler>\n\\end\n<<save-tiddler-button>>\n"
},
"$:/core/ui/EditorToolbar/bold": {
"title": "$:/core/ui/EditorToolbar/bold",
"tags": "$:/tags/EditorToolbar",
"icon": "$:/core/images/bold",
"caption": "{{$:/language/Buttons/Bold/Caption}}",
"description": "{{$:/language/Buttons/Bold/Hint}}",
"condition": "[<targetTiddler>!has[type]] [<targetTiddler>type[text/vnd.tiddlywiki]]",
"shortcuts": "((bold))",
"text": "<$action-sendmessage\n\t$message=\"tm-edit-text-operation\"\n\t$param=\"wrap-selection\"\n\tprefix=\"''\"\n\tsuffix=\"''\"\n/>\n"
},
"$:/core/ui/EditorToolbar/clear-dropdown": {
"title": "$:/core/ui/EditorToolbar/clear-dropdown",
"text": "''{{$:/language/Buttons/Clear/Hint}}''\n\n<div class=\"tc-colour-chooser\">\n\n<$macrocall $name=\"colour-picker\" actions=\"\"\"\n\n<$action-sendmessage\n\t$message=\"tm-edit-bitmap-operation\"\n\t$param=\"clear\"\n\tcolour=<<colour-picker-value>>\n/>\n\n<$action-deletetiddler\n\t$tiddler=<<dropdown-state>>\n/>\n\n\"\"\"/>\n\n</div>\n"
},
"$:/core/ui/EditorToolbar/clear": {
"title": "$:/core/ui/EditorToolbar/clear",
"tags": "$:/tags/EditorToolbar",
"icon": "$:/core/images/erase",
"caption": "{{$:/language/Buttons/Clear/Caption}}",
"description": "{{$:/language/Buttons/Clear/Hint}}",
"condition": "[<targetTiddler>is[image]] -[<targetTiddler>type[image/svg+xml]]",
"dropdown": "$:/core/ui/EditorToolbar/clear-dropdown",
"text": ""
},
"$:/core/ui/EditorToolbar/editor-height-dropdown": {
"title": "$:/core/ui/EditorToolbar/editor-height-dropdown",
"text": "\\define lingo-base() $:/language/Buttons/EditorHeight/\n''<<lingo Hint>>''\n\n<$radio tiddler=\"$:/config/TextEditor/EditorHeight/Mode\" value=\"auto\"> {{$:/core/images/auto-height}} <<lingo Caption/Auto>></$radio>\n\n<$radio tiddler=\"$:/config/TextEditor/EditorHeight/Mode\" value=\"fixed\"> {{$:/core/images/fixed-height}} <<lingo Caption/Fixed>> <$edit-text tag=\"input\" tiddler=\"$:/config/TextEditor/EditorHeight/Height\" default=\"100px\"/></$radio>\n"
},
"$:/core/ui/EditorToolbar/editor-height": {
"title": "$:/core/ui/EditorToolbar/editor-height",
"tags": "$:/tags/EditorToolbar",
"icon": "$:/core/images/fixed-height",
"custom-icon": "yes",
"caption": "{{$:/language/Buttons/EditorHeight/Caption}}",
"description": "{{$:/language/Buttons/EditorHeight/Hint}}",
"condition": "[<targetTiddler>type[]] [<targetTiddler>get[type]prefix[text/]] [<targetTiddler>get[type]match[application/javascript]] [<targetTiddler>get[type]match[application/json]] [<targetTiddler>get[type]match[application/x-tiddler-dictionary]] [<targetTiddler>get[type]match[image/svg+xml]] +[first[]]",
"dropdown": "$:/core/ui/EditorToolbar/editor-height-dropdown",
"text": "<$reveal tag=\"span\" state=\"$:/config/TextEditor/EditorHeight/Mode\" type=\"match\" text=\"fixed\">\n{{$:/core/images/fixed-height}}\n</$reveal>\n<$reveal tag=\"span\" state=\"$:/config/TextEditor/EditorHeight/Mode\" type=\"match\" text=\"auto\">\n{{$:/core/images/auto-height}}\n</$reveal>\n"
},
"$:/core/ui/EditorToolbar/excise-dropdown": {
"title": "$:/core/ui/EditorToolbar/excise-dropdown",
"text": "\\define lingo-base() $:/language/Buttons/Excise/\n\n\\define body(config-title)\n''<<lingo Hint>>''\n\n<<lingo Caption/NewTitle>> <$edit-text tag=\"input\" tiddler=\"$config-title$/new-title\" default=\"\" focus=\"true\"/>\n\n<$set name=\"new-title\" value={{$config-title$/new-title}}>\n<$list filter=\"\"\"[<new-title>is[tiddler]]\"\"\">\n<div class=\"tc-error\">\n<<lingo Caption/TiddlerExists>>\n</div>\n</$list>\n</$set>\n\n<$checkbox tiddler=\"\"\"$config-title$/tagnew\"\"\" field=\"text\" checked=\"yes\" unchecked=\"no\" default=\"false\"> <<lingo Caption/Tag>></$checkbox>\n\n<<lingo Caption/Replace>> <$select tiddler=\"\"\"$config-title$/type\"\"\" default=\"transclude\">\n<option value=\"link\"><<lingo Caption/Replace/Link>></option>\n<option value=\"transclude\"><<lingo Caption/Replace/Transclusion>></option>\n<option value=\"macro\"><<lingo Caption/Replace/Macro>></option>\n</$select>\n\n<$reveal state=\"\"\"$config-title$/type\"\"\" type=\"match\" text=\"macro\">\n<<lingo Caption/MacroName>> <$edit-text tag=\"input\" tiddler=\"\"\"$config-title$/macro-title\"\"\" default=\"translink\"/>\n</$reveal>\n\n<$button>\n<$action-sendmessage\n\t$message=\"tm-edit-text-operation\"\n\t$param=\"excise\"\n\ttitle={{$config-title$/new-title}}\n\ttype={{$config-title$/type}}\n\tmacro={{$config-title$/macro-title}}\n\ttagnew={{$config-title$/tagnew}}\n/>\n<$action-deletetiddler\n\t$tiddler=\"$config-title$/new-title\"\n/>\n<$action-deletetiddler\n\t$tiddler=<<dropdown-state>>\n/>\n<<lingo Caption/Excise>>\n</$button>\n\\end\n\n<$macrocall $name=\"body\" config-title=<<qualify \"$:/state/Excise/\">>/>\n"
},
"$:/core/ui/EditorToolbar/excise": {
"title": "$:/core/ui/EditorToolbar/excise",
"tags": "$:/tags/EditorToolbar",
"icon": "$:/core/images/excise",
"caption": "{{$:/language/Buttons/Excise/Caption}}",
"description": "{{$:/language/Buttons/Excise/Hint}}",
"condition": "[<targetTiddler>type[]] [<targetTiddler>type[text/vnd.tiddlywiki]] +[first[]]",
"shortcuts": "((excise))",
"dropdown": "$:/core/ui/EditorToolbar/excise-dropdown",
"text": ""
},
"$:/core/ui/EditorToolbar/heading-1": {
"title": "$:/core/ui/EditorToolbar/heading-1",
"tags": "$:/tags/EditorToolbar",
"icon": "$:/core/images/heading-1",
"caption": "{{$:/language/Buttons/Heading1/Caption}}",
"description": "{{$:/language/Buttons/Heading1/Hint}}",
"condition": "[<targetTiddler>!has[type]] [<targetTiddler>type[text/vnd.tiddlywiki]]",
"button-classes": "tc-text-editor-toolbar-item-start-group",
"shortcuts": "((heading-1))",
"text": "<$action-sendmessage\n\t$message=\"tm-edit-text-operation\"\n\t$param=\"prefix-lines\"\n\tcharacter=\"!\"\n\tcount=\"1\"\n/>\n"
},
"$:/core/ui/EditorToolbar/heading-2": {
"title": "$:/core/ui/EditorToolbar/heading-2",
"tags": "$:/tags/EditorToolbar",
"icon": "$:/core/images/heading-2",
"caption": "{{$:/language/Buttons/Heading2/Caption}}",
"description": "{{$:/language/Buttons/Heading2/Hint}}",
"condition": "[<targetTiddler>!has[type]] [<targetTiddler>type[text/vnd.tiddlywiki]]",
"shortcuts": "((heading-2))",
"text": "<$action-sendmessage\n\t$message=\"tm-edit-text-operation\"\n\t$param=\"prefix-lines\"\n\tcharacter=\"!\"\n\tcount=\"2\"\n/>\n"
},
"$:/core/ui/EditorToolbar/heading-3": {
"title": "$:/core/ui/EditorToolbar/heading-3",
"tags": "$:/tags/EditorToolbar",
"icon": "$:/core/images/heading-3",
"caption": "{{$:/language/Buttons/Heading3/Caption}}",
"description": "{{$:/language/Buttons/Heading3/Hint}}",
"condition": "[<targetTiddler>!has[type]] [<targetTiddler>type[text/vnd.tiddlywiki]]",
"shortcuts": "((heading-3))",
"text": "<$action-sendmessage\n\t$message=\"tm-edit-text-operation\"\n\t$param=\"prefix-lines\"\n\tcharacter=\"!\"\n\tcount=\"3\"\n/>\n"
},
"$:/core/ui/EditorToolbar/heading-4": {
"title": "$:/core/ui/EditorToolbar/heading-4",
"tags": "$:/tags/EditorToolbar",
"icon": "$:/core/images/heading-4",
"caption": "{{$:/language/Buttons/Heading4/Caption}}",
"description": "{{$:/language/Buttons/Heading4/Hint}}",
"condition": "[<targetTiddler>!has[type]] [<targetTiddler>type[text/vnd.tiddlywiki]]",
"shortcuts": "((heading-4))",
"text": "<$action-sendmessage\n\t$message=\"tm-edit-text-operation\"\n\t$param=\"prefix-lines\"\n\tcharacter=\"!\"\n\tcount=\"4\"\n/>\n"
},
"$:/core/ui/EditorToolbar/heading-5": {
"title": "$:/core/ui/EditorToolbar/heading-5",
"tags": "$:/tags/EditorToolbar",
"icon": "$:/core/images/heading-5",
"caption": "{{$:/language/Buttons/Heading5/Caption}}",
"description": "{{$:/language/Buttons/Heading5/Hint}}",
"condition": "[<targetTiddler>!has[type]] [<targetTiddler>type[text/vnd.tiddlywiki]]",
"shortcuts": "((heading-5))",
"text": "<$action-sendmessage\n\t$message=\"tm-edit-text-operation\"\n\t$param=\"prefix-lines\"\n\tcharacter=\"!\"\n\tcount=\"5\"\n/>\n"
},
"$:/core/ui/EditorToolbar/heading-6": {
"title": "$:/core/ui/EditorToolbar/heading-6",
"tags": "$:/tags/EditorToolbar",
"icon": "$:/core/images/heading-6",
"caption": "{{$:/language/Buttons/Heading6/Caption}}",
"description": "{{$:/language/Buttons/Heading6/Hint}}",
"condition": "[<targetTiddler>!has[type]] [<targetTiddler>type[text/vnd.tiddlywiki]]",
"shortcuts": "((heading-6))",
"text": "<$action-sendmessage\n\t$message=\"tm-edit-text-operation\"\n\t$param=\"prefix-lines\"\n\tcharacter=\"!\"\n\tcount=\"6\"\n/>\n"
},
"$:/core/ui/EditorToolbar/italic": {
"title": "$:/core/ui/EditorToolbar/italic",
"tags": "$:/tags/EditorToolbar",
"icon": "$:/core/images/italic",
"caption": "{{$:/language/Buttons/Italic/Caption}}",
"description": "{{$:/language/Buttons/Italic/Hint}}",
"condition": "[<targetTiddler>!has[type]] [<targetTiddler>type[text/vnd.tiddlywiki]]",
"shortcuts": "((italic))",
"text": "<$action-sendmessage\n\t$message=\"tm-edit-text-operation\"\n\t$param=\"wrap-selection\"\n\tprefix=\"//\"\n\tsuffix=\"//\"\n/>\n"
},
"$:/core/ui/EditorToolbar/line-width-dropdown": {
"title": "$:/core/ui/EditorToolbar/line-width-dropdown",
"text": "\\define lingo-base() $:/language/Buttons/LineWidth/\n\n\\define toolbar-line-width-inner()\n<$button tag=\"a\" tooltip=\"\"\"$(line-width)$\"\"\">\n\n<$action-setfield\n\t$tiddler=\"$:/config/BitmapEditor/LineWidth\"\n\t$value=\"$(line-width)$\"\n/>\n\n<$action-deletetiddler\n\t$tiddler=<<dropdown-state>>\n/>\n\n<div style=\"display: inline-block; margin: 4px calc(80px - $(line-width)$); background-color: #000; width: calc(100px + $(line-width)$ * 2); height: $(line-width)$; border-radius: 120px; vertical-align: middle;\"/>\n\n<span style=\"margin-left: 8px;\">\n\n<$text text=\"\"\"$(line-width)$\"\"\"/>\n\n<$reveal state=\"$:/config/BitmapEditor/LineWidth\" type=\"match\" text=\"\"\"$(line-width)$\"\"\" tag=\"span\">\n\n<$entity entity=\" \"/>\n\n<$entity entity=\"✓\"/>\n\n</$reveal>\n\n</span>\n\n</$button>\n\\end\n\n''<<lingo Hint>>''\n\n<$list filter={{$:/config/BitmapEditor/LineWidths}} variable=\"line-width\">\n\n<<toolbar-line-width-inner>>\n\n</$list>\n"
},
"$:/core/ui/EditorToolbar/line-width": {
"title": "$:/core/ui/EditorToolbar/line-width",
"tags": "$:/tags/EditorToolbar",
"icon": "$:/core/images/line-width",
"caption": "{{$:/language/Buttons/LineWidth/Caption}}",
"description": "{{$:/language/Buttons/LineWidth/Hint}}",
"condition": "[<targetTiddler>is[image]] -[<targetTiddler>type[image/svg+xml]]",
"dropdown": "$:/core/ui/EditorToolbar/line-width-dropdown",
"text": "<$text text={{$:/config/BitmapEditor/LineWidth}}/>\n"
},
"$:/core/ui/EditorToolbar/link-dropdown": {
"title": "$:/core/ui/EditorToolbar/link-dropdown",
"text": "\\define lingo-base() $:/language/Buttons/Link/\n\n\\define add-link-actions()\n<$action-sendmessage $message=\"tm-edit-text-operation\" $param=\"make-link\" text={{$(linkTiddler)$}} />\n<$action-deletetiddler $filter=\"[<dropdown-state>] [<searchTiddler>] [<linkTiddler>] [<storeTitle>] [<searchListState>]\"/>\n\\end\n\n\\define get-focus-selector() [data-tiddler-title=\"$(cssEscapedTitle)$\"] .tc-create-wikitext-link input\n\n\\define cancel-search-actions-inner()\n<$set name=\"userInput\" value={{{ [<storeTitle>get[text]] }}}><$list filter=\"[<searchTiddler>get[text]!match<userInput>]\" emptyMessage=\"\"\"<$action-deletetiddler $filter=\"[<searchTiddler>] [<linkTiddler>] [<storeTitle>] [<searchListState>]\"/>\"\"\"><$action-setfield $tiddler=<<searchTiddler>> text=<<userInput>>/><$action-setfield $tiddler=<<refreshTitle>> text=\"yes\"/></$list></$set>\n\\end\n\n\\define cancel-search-actions() <$list filter=\"[<storeTitle>!has[text]] +[<searchTiddler>!has[text]]\" emptyMessage=\"\"\"<<cancel-search-actions-inner>>\"\"\"><$action-sendmessage $message=\"tm-edit-text-operation\" $param=\"wrap-selection\" prefix=\"\" suffix=\"\"/></$list>\n\n\\define external-link()\n<$button class=\"tc-btn-invisible\" style=\"width: auto; display: inline-block; background-colour: inherit;\" actions=<<add-link-actions>>>\n{{$:/core/images/chevron-right}}\n</$button>\n\\end\n\n\\define set-next-input-tab(beforeafter:\"after\") <$macrocall $name=\"change-input-tab\" stateTitle=\"$:/state/tab/search-results/sidebar\" tag=\"$:/tags/SearchResults\" beforeafter=\"$beforeafter$\" defaultState={{$:/config/SearchResults/Default}} actions=\"\"\"<$action-setfield $tiddler=\"$:/state/search/currentTab\" text=<<nextTab>>/>\"\"\"/>\n\n\\define body(config-title)\n''<<lingo Hint>>''\n\n<$vars searchTiddler=\"\"\"$config-title$/search\"\"\" linkTiddler=\"\"\"$config-title$/link\"\"\" linktext=\"\" searchListState=<<qualify \"$:/temp/link-search/selected-item\">> refreshTitle=<<qualify \"$:/temp/link-search/refresh\">> storeTitle=<<qualify \"$:/temp/link-search/input\">>>\n\n<$vars linkTiddler=<<searchTiddler>>>\n<$keyboard key=\"((input-tab-right))\" actions=<<set-next-input-tab>>>\n<$keyboard key=\"((input-tab-left))\" actions=<<set-next-input-tab \"before\">> class=\"tc-create-wikitext-link\">\n<$macrocall $name=\"keyboard-driven-input\" tiddler=<<searchTiddler>> storeTitle=<<storeTitle>>\n\t\tselectionStateTitle=<<searchListState>> refreshTitle=<<refreshTitle>> type=\"search\" filterMinLength=\"1\"\n\t\ttag=\"input\" focus=\"true\" class=\"tc-popup-handle\" inputCancelActions=<<cancel-search-actions>> \n\t\tinputAcceptActions=<<add-link-actions>> placeholder={{$:/language/Search/Search}} default=\"\" \n\t\tconfigTiddlerFilter=\"[[$:/state/search/currentTab]!is[missing]get[text]] ~[{$:/config/SearchResults/Default}]\" />\n</$keyboard>\n</$keyboard>\n<$reveal tag=\"span\" state=<<storeTitle>> type=\"nomatch\" text=\"\">\n<<external-link>>\n<$button class=\"tc-btn-invisible\" style=\"width: auto; display: inline-block; background-colour: inherit;\">\n<<cancel-search-actions>><$set name=\"cssEscapedTitle\" value={{{ [<storyTiddler>escapecss[]] }}}><$action-sendmessage $message=\"tm-focus-selector\" $param=<<get-focus-selector>>/></$set>\n{{$:/core/images/close-button}}\n</$button>\n</$reveal>\n</$vars>\n\n<$reveal tag=\"div\" state=<<storeTitle>> type=\"nomatch\" text=\"\">\n\n<$linkcatcher actions=<<add-link-actions>> to=<<linkTiddler>>>\n\n<$vars userInput={{{ [<storeTitle>get[text]] }}} configTiddler={{{ [[$:/state/search/currentTab]!is[missing]get[text]] ~[{$:/config/SearchResults/Default}] }}}>\n\n{{$:/core/ui/SearchResults}}\n\n</$vars>\n\n</$linkcatcher>\n\n</$reveal>\n\n</$vars>\n\n\\end\n\n<$macrocall $name=\"body\" config-title=<<qualify \"$:/state/Link/\">>/>\n"
},
"$:/core/ui/EditorToolbar/link": {
"title": "$:/core/ui/EditorToolbar/link",
"tags": "$:/tags/EditorToolbar",
"icon": "$:/core/images/link",
"caption": "{{$:/language/Buttons/Link/Caption}}",
"description": "{{$:/language/Buttons/Link/Hint}}",
"condition": "[<targetTiddler>!has[type]] [<targetTiddler>type[text/vnd.tiddlywiki]]",
"button-classes": "tc-text-editor-toolbar-item-start-group",
"shortcuts": "((link))",
"dropdown": "$:/core/ui/EditorToolbar/link-dropdown",
"text": ""
},
"$:/core/ui/EditorToolbar/linkify": {
"title": "$:/core/ui/EditorToolbar/linkify",
"caption": "{{$:/language/Buttons/Linkify/Caption}}",
"condition": "[<targetTiddler>!has[type]] [<targetTiddler>type[text/vnd.tiddlywiki]]",
"description": "{{$:/language/Buttons/Linkify/Hint}}",
"icon": "$:/core/images/linkify",
"list-before": "$:/core/ui/EditorToolbar/mono-block",
"shortcuts": "((linkify))",
"tags": "$:/tags/EditorToolbar",
"text": "<$action-sendmessage\n\t$message=\"tm-edit-text-operation\"\n\t$param=\"wrap-selection\"\n\tprefix=\"[[\"\n\tsuffix=\"]]\"\n/>\n"
},
"$:/core/ui/EditorToolbar/list-bullet": {
"title": "$:/core/ui/EditorToolbar/list-bullet",
"tags": "$:/tags/EditorToolbar",
"icon": "$:/core/images/list-bullet",
"caption": "{{$:/language/Buttons/ListBullet/Caption}}",
"description": "{{$:/language/Buttons/ListBullet/Hint}}",
"condition": "[<targetTiddler>!has[type]] [<targetTiddler>type[text/vnd.tiddlywiki]]",
"shortcuts": "((list-bullet))",
"text": "<$action-sendmessage\n\t$message=\"tm-edit-text-operation\"\n\t$param=\"prefix-lines\"\n\tcharacter=\"*\"\n\tcount=\"1\"\n/>\n"
},
"$:/core/ui/EditorToolbar/list-number": {
"title": "$:/core/ui/EditorToolbar/list-number",
"tags": "$:/tags/EditorToolbar",
"icon": "$:/core/images/list-number",
"caption": "{{$:/language/Buttons/ListNumber/Caption}}",
"description": "{{$:/language/Buttons/ListNumber/Hint}}",
"condition": "[<targetTiddler>!has[type]] [<targetTiddler>type[text/vnd.tiddlywiki]]",
"shortcuts": "((list-number))",
"text": "<$action-sendmessage\n\t$message=\"tm-edit-text-operation\"\n\t$param=\"prefix-lines\"\n\tcharacter=\"#\"\n\tcount=\"1\"\n/>\n"
},
"$:/core/ui/EditorToolbar/mono-block": {
"title": "$:/core/ui/EditorToolbar/mono-block",
"tags": "$:/tags/EditorToolbar",
"icon": "$:/core/images/mono-block",
"caption": "{{$:/language/Buttons/MonoBlock/Caption}}",
"description": "{{$:/language/Buttons/MonoBlock/Hint}}",
"condition": "[<targetTiddler>!has[type]] [<targetTiddler>type[text/vnd.tiddlywiki]]",
"button-classes": "tc-text-editor-toolbar-item-start-group",
"shortcuts": "((mono-block))",
"text": "<$action-sendmessage\n\t$message=\"tm-edit-text-operation\"\n\t$param=\"wrap-lines\"\n\tprefix=\"\n```\"\n\tsuffix=\"```\"\n/>\n"
},
"$:/core/ui/EditorToolbar/mono-line": {
"title": "$:/core/ui/EditorToolbar/mono-line",
"tags": "$:/tags/EditorToolbar",
"icon": "$:/core/images/mono-line",
"caption": "{{$:/language/Buttons/MonoLine/Caption}}",
"description": "{{$:/language/Buttons/MonoLine/Hint}}",
"condition": "[<targetTiddler>!has[type]] [<targetTiddler>type[text/vnd.tiddlywiki]]",
"shortcuts": "((mono-line))",
"text": "<$action-sendmessage\n\t$message=\"tm-edit-text-operation\"\n\t$param=\"wrap-selection\"\n\tprefix=\"`\"\n\tsuffix=\"`\"\n/>\n"
},
"$:/core/ui/EditorToolbar/more-dropdown": {
"title": "$:/core/ui/EditorToolbar/more-dropdown",
"text": "\\define config-title()\n$:/config/EditorToolbarButtons/Visibility/$(toolbarItem)$\n\\end\n\n\\define conditional-button()\n<$list filter={{$(toolbarItem)$!!condition}} variable=\"condition\">\n<$transclude tiddler=\"$:/core/ui/EditTemplate/body/toolbar/button\" mode=\"inline\"/> <$transclude tiddler=<<toolbarItem>> field=\"description\"/>\n</$list>\n\\end\n\n<div class=\"tc-text-editor-toolbar-more\">\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/EditorToolbar]!has[draft.of]] -[[$:/core/ui/EditorToolbar/more]]\">\n<$reveal type=\"match\" state=<<config-visibility-title>> text=\"hide\" tag=\"div\">\n<<conditional-button>>\n</$reveal>\n</$list>\n</div>\n"
},
"$:/core/ui/EditorToolbar/more": {
"title": "$:/core/ui/EditorToolbar/more",
"tags": "$:/tags/EditorToolbar",
"icon": "$:/core/images/down-arrow",
"caption": "{{$:/language/Buttons/More/Caption}}",
"description": "{{$:/language/Buttons/More/Hint}}",
"condition": "[<targetTiddler>]",
"dropdown": "$:/core/ui/EditorToolbar/more-dropdown",
"text": ""
},
"$:/core/ui/EditorToolbar/opacity-dropdown": {
"title": "$:/core/ui/EditorToolbar/opacity-dropdown",
"text": "\\define lingo-base() $:/language/Buttons/Opacity/\n\n\\define toolbar-opacity-inner()\n<$button tag=\"a\" tooltip=\"\"\"$(opacity)$\"\"\">\n\n<$action-setfield\n\t$tiddler=\"$:/config/BitmapEditor/Opacity\"\n\t$value=\"$(opacity)$\"\n/>\n\n<$action-deletetiddler\n\t$tiddler=<<dropdown-state>>\n/>\n\n<div style=\"display: inline-block; vertical-align: middle; background-color: $(current-paint-colour)$; opacity: $(opacity)$; width: 1em; height: 1em; border-radius: 50%;\"/>\n\n<span style=\"margin-left: 8px;\">\n\n<$text text=\"\"\"$(opacity)$\"\"\"/>\n\n<$reveal state=\"$:/config/BitmapEditor/Opacity\" type=\"match\" text=\"\"\"$(opacity)$\"\"\" tag=\"span\">\n\n<$entity entity=\" \"/>\n\n<$entity entity=\"✓\"/>\n\n</$reveal>\n\n</span>\n\n</$button>\n\\end\n\n\\define toolbar-opacity()\n''<<lingo Hint>>''\n\n<$list filter={{$:/config/BitmapEditor/Opacities}} variable=\"opacity\">\n\n<<toolbar-opacity-inner>>\n\n</$list>\n\\end\n\n<$set name=\"current-paint-colour\" value={{$:/config/BitmapEditor/Colour}}>\n\n<$set name=\"current-opacity\" value={{$:/config/BitmapEditor/Opacity}}>\n\n<<toolbar-opacity>>\n\n</$set>\n\n</$set>\n"
},
"$:/core/ui/EditorToolbar/opacity": {
"title": "$:/core/ui/EditorToolbar/opacity",
"tags": "$:/tags/EditorToolbar",
"icon": "$:/core/images/opacity",
"caption": "{{$:/language/Buttons/Opacity/Caption}}",
"description": "{{$:/language/Buttons/Opacity/Hint}}",
"condition": "[<targetTiddler>is[image]] -[<targetTiddler>type[image/svg+xml]]",
"dropdown": "$:/core/ui/EditorToolbar/opacity-dropdown",
"text": "<$text text={{$:/config/BitmapEditor/Opacity}}/>\n"
},
"$:/core/ui/EditorToolbar/paint-dropdown": {
"title": "$:/core/ui/EditorToolbar/paint-dropdown",
"text": "''{{$:/language/Buttons/Paint/Hint}}''\n\n<$macrocall $name=\"colour-picker\" actions=\"\"\"\n\n<$action-setfield\n\t$tiddler=\"$:/config/BitmapEditor/Colour\"\n\t$value=<<colour-picker-value>>\n/>\n\n<$action-deletetiddler\n\t$tiddler=<<dropdown-state>>\n/>\n\n\"\"\"/>\n"
},
"$:/core/ui/EditorToolbar/paint": {
"title": "$:/core/ui/EditorToolbar/paint",
"tags": "$:/tags/EditorToolbar",
"icon": "$:/core/images/paint",
"caption": "{{$:/language/Buttons/Paint/Caption}}",
"description": "{{$:/language/Buttons/Paint/Hint}}",
"condition": "[<targetTiddler>is[image]] -[<targetTiddler>type[image/svg+xml]]",
"dropdown": "$:/core/ui/EditorToolbar/paint-dropdown",
"text": "\\define toolbar-paint()\n<div style=\"display: inline-block; vertical-align: middle; background-color: $(colour-picker-value)$; width: 1em; height: 1em; border-radius: 50%;\"/>\n\\end\n<$set name=\"colour-picker-value\" value={{$:/config/BitmapEditor/Colour}}>\n<<toolbar-paint>>\n</$set>\n"
},
"$:/core/ui/EditorToolbar/picture-dropdown": {
"title": "$:/core/ui/EditorToolbar/picture-dropdown",
"text": "\\define replacement-text()\n[img[$(imageTitle)$]]\n\\end\n\n''{{$:/language/Buttons/Picture/Hint}}''\n\n<$macrocall $name=\"image-picker\" actions=\"\"\"\n\n<$action-sendmessage\n\t$message=\"tm-edit-text-operation\"\n\t$param=\"replace-selection\"\n\ttext=<<replacement-text>>\n/>\n\n<$action-deletetiddler\n\t$tiddler=<<dropdown-state>>\n/>\n\n\"\"\"/>\n"
},
"$:/core/ui/EditorToolbar/picture": {
"title": "$:/core/ui/EditorToolbar/picture",
"tags": "$:/tags/EditorToolbar",
"icon": "$:/core/images/picture",
"caption": "{{$:/language/Buttons/Picture/Caption}}",
"description": "{{$:/language/Buttons/Picture/Hint}}",
"condition": "[<targetTiddler>!has[type]] [<targetTiddler>type[text/vnd.tiddlywiki]]",
"shortcuts": "((picture))",
"dropdown": "$:/core/ui/EditorToolbar/picture-dropdown",
"text": ""
},
"$:/core/ui/EditorToolbar/preview-type-dropdown": {
"title": "$:/core/ui/EditorToolbar/preview-type-dropdown",
"text": "\\define preview-type-button()\n<$button tag=\"a\">\n\n<$action-setfield $tiddler=\"$:/state/editpreviewtype\" $value=\"$(previewType)$\"/>\n\n<$action-deletetiddler\n\t$tiddler=<<dropdown-state>>\n/>\n\n<$transclude tiddler=<<previewType>> field=\"caption\" mode=\"inline\">\n\n<$view tiddler=<<previewType>> field=\"title\" mode=\"inline\"/>\n\n</$transclude> \n\n<$reveal tag=\"span\" state=\"$:/state/editpreviewtype\" type=\"match\" text=<<previewType>> default=\"$:/core/ui/EditTemplate/body/preview/output\">\n\n<$entity entity=\" \"/>\n\n<$entity entity=\"✓\"/>\n\n</$reveal>\n\n</$button>\n\\end\n\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/EditPreview]!has[draft.of]]\" variable=\"previewType\">\n\n<<preview-type-button>>\n\n</$list>\n"
},
"$:/core/ui/EditorToolbar/preview-type": {
"title": "$:/core/ui/EditorToolbar/preview-type",
"tags": "$:/tags/EditorToolbar",
"icon": "$:/core/images/chevron-down",
"caption": "{{$:/language/Buttons/PreviewType/Caption}}",
"description": "{{$:/language/Buttons/PreviewType/Hint}}",
"condition": "[all[shadows+tiddlers]tag[$:/tags/EditPreview]!has[draft.of]butfirst[]limit[1]]",
"button-classes": "tc-text-editor-toolbar-item-adjunct",
"dropdown": "$:/core/ui/EditorToolbar/preview-type-dropdown"
},
"$:/core/ui/EditorToolbar/preview": {
"title": "$:/core/ui/EditorToolbar/preview",
"tags": "$:/tags/EditorToolbar",
"icon": "$:/core/images/preview-open",
"custom-icon": "yes",
"caption": "{{$:/language/Buttons/Preview/Caption}}",
"description": "{{$:/language/Buttons/Preview/Hint}}",
"condition": "[<targetTiddler>]",
"button-classes": "tc-text-editor-toolbar-item-start-group",
"shortcuts": "((preview))",
"text": "<$reveal state=\"$:/state/showeditpreview\" type=\"match\" text=\"yes\" tag=\"span\">\n{{$:/core/images/preview-open}}\n<$action-setfield $tiddler=\"$:/state/showeditpreview\" $value=\"no\"/>\n</$reveal>\n<$reveal state=\"$:/state/showeditpreview\" type=\"nomatch\" text=\"yes\" tag=\"span\">\n{{$:/core/images/preview-closed}}\n<$action-setfield $tiddler=\"$:/state/showeditpreview\" $value=\"yes\"/>\n</$reveal>\n"
},
"$:/core/ui/EditorToolbar/quote": {
"title": "$:/core/ui/EditorToolbar/quote",
"tags": "$:/tags/EditorToolbar",
"icon": "$:/core/images/quote",
"caption": "{{$:/language/Buttons/Quote/Caption}}",
"description": "{{$:/language/Buttons/Quote/Hint}}",
"condition": "[<targetTiddler>!has[type]] [<targetTiddler>type[text/vnd.tiddlywiki]]",
"shortcuts": "((quote))",
"text": "<$action-sendmessage\n\t$message=\"tm-edit-text-operation\"\n\t$param=\"wrap-lines\"\n\tprefix=\"\n<<<\"\n\tsuffix=\"<<<\"\n/>\n"
},
"$:/core/ui/EditorToolbar/rotate-left": {
"title": "$:/core/ui/EditorToolbar/rotate-left",
"tags": "$:/tags/EditorToolbar",
"icon": "$:/core/images/rotate-left",
"caption": "{{$:/language/Buttons/RotateLeft/Caption}}",
"description": "{{$:/language/Buttons/RotateLeft/Hint}}",
"condition": "[<targetTiddler>is[image]] -[<targetTiddler>type[image/svg+xml]]",
"text": "<$action-sendmessage\n\t$message=\"tm-edit-bitmap-operation\"\n\t$param=\"rotate-left\"\n/>\n"
},
"$:/core/ui/EditorToolbar/size-dropdown": {
"title": "$:/core/ui/EditorToolbar/size-dropdown",
"text": "\\define lingo-base() $:/language/Buttons/Size/\n\n\\define toolbar-button-size-preset(config-title)\n<$set name=\"width\" filter=\"$(sizePair)$ +[first[]]\">\n\n<$set name=\"height\" filter=\"$(sizePair)$ +[last[]]\">\n\n<$button tag=\"a\">\n\n<$action-setfield\n\t$tiddler=\"\"\"$config-title$/new-width\"\"\"\n\t$value=<<width>>\n/>\n\n<$action-setfield\n\t$tiddler=\"\"\"$config-title$/new-height\"\"\"\n\t$value=<<height>>\n/>\n\n<$action-deletetiddler\n\t$tiddler=\"\"\"$config-title$/presets-popup\"\"\"\n/>\n\n<$text text=<<width>>/> × <$text text=<<height>>/>\n\n</$button>\n\n</$set>\n\n</$set>\n\\end\n\n\\define toolbar-button-size(config-title)\n''{{$:/language/Buttons/Size/Hint}}''\n\n<<lingo Caption/Width>> <$edit-text tag=\"input\" tiddler=\"\"\"$config-title$/new-width\"\"\" default=<<tv-bitmap-editor-width>> focus=\"true\" size=\"8\"/> <<lingo Caption/Height>> <$edit-text tag=\"input\" tiddler=\"\"\"$config-title$/new-height\"\"\" default=<<tv-bitmap-editor-height>> size=\"8\"/> <$button popup=\"\"\"$config-title$/presets-popup\"\"\" class=\"tc-btn-invisible tc-popup-keep\" style=\"width: auto; display: inline-block; background-colour: inherit;\" selectedClass=\"tc-selected\">\n{{$:/core/images/down-arrow}}\n</$button>\n\n<$reveal tag=\"span\" state=\"\"\"$config-title$/presets-popup\"\"\" type=\"popup\" position=\"belowleft\" animate=\"yes\">\n\n<div class=\"tc-drop-down tc-popup-keep\">\n\n<$list filter={{$:/config/BitmapEditor/ImageSizes}} variable=\"sizePair\">\n\n<$macrocall $name=\"toolbar-button-size-preset\" config-title=\"$config-title$\"/>\n\n</$list>\n\n</div>\n\n</$reveal>\n\n<$button>\n<$action-sendmessage\n\t$message=\"tm-edit-bitmap-operation\"\n\t$param=\"resize\"\n\twidth={{$config-title$/new-width}}\n\theight={{$config-title$/new-height}}\n/>\n<$action-deletetiddler\n\t$tiddler=\"\"\"$config-title$/new-width\"\"\"\n/>\n<$action-deletetiddler\n\t$tiddler=\"\"\"$config-title$/new-height\"\"\"\n/>\n<$action-deletetiddler\n\t$tiddler=<<dropdown-state>>\n/>\n<<lingo Caption/Resize>>\n</$button>\n\\end\n\n<$macrocall $name=\"toolbar-button-size\" config-title=<<qualify \"$:/state/Size/\">>/>\n"
},
"$:/core/ui/EditorToolbar/size": {
"title": "$:/core/ui/EditorToolbar/size",
"tags": "$:/tags/EditorToolbar",
"icon": "$:/core/images/size",
"caption": "{{$:/language/Buttons/Size/Caption}}",
"description": "{{$:/language/Buttons/Size/Hint}}",
"condition": "[<targetTiddler>is[image]] -[<targetTiddler>type[image/svg+xml]]",
"dropdown": "$:/core/ui/EditorToolbar/size-dropdown",
"text": ""
},
"$:/core/ui/EditorToolbar/stamp-dropdown": {
"title": "$:/core/ui/EditorToolbar/stamp-dropdown",
"text": "\\define toolbar-button-stamp-inner()\n<$button tag=\"a\">\n\n<$list filter=\"[[$(snippetTitle)$]addsuffix[/prefix]is[missing]removesuffix[/prefix]addsuffix[/suffix]is[missing]]\">\n\n<$action-sendmessage\n\t$message=\"tm-edit-text-operation\"\n\t$param=\"replace-selection\"\n\ttext={{$(snippetTitle)$}}\n/>\n\n</$list>\n\n\n<$list filter=\"[[$(snippetTitle)$]addsuffix[/prefix]is[missing]removesuffix[/prefix]addsuffix[/suffix]!is[missing]] [[$(snippetTitle)$]addsuffix[/prefix]!is[missing]removesuffix[/prefix]addsuffix[/suffix]is[missing]] [[$(snippetTitle)$]addsuffix[/prefix]!is[missing]removesuffix[/prefix]addsuffix[/suffix]!is[missing]]\">\n\n<$action-sendmessage\n\t$message=\"tm-edit-text-operation\"\n\t$param=\"wrap-selection\"\n\tprefix={{{ [[$(snippetTitle)$]addsuffix[/prefix]get[text]] }}}\nsuffix={{{ [[$(snippetTitle)$]addsuffix[/suffix]get[text]] }}}\n/>\n\n</$list>\n\n<$action-deletetiddler\n\t$tiddler=<<dropdown-state>>\n/>\n\n<$transclude tiddler=<<snippetTitle>> field=\"caption\" mode=\"inline\">\n\n<$view tiddler=<<snippetTitle>> field=\"title\" />\n\n</$transclude>\n\n</$button>\n\\end\n\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/TextEditor/Snippet]!has[draft.of]sort[caption]]\" variable=\"snippetTitle\">\n\n<<toolbar-button-stamp-inner>>\n\n</$list>\n\n----\n\n<$button tag=\"a\">\n\n<$action-sendmessage\n\t$message=\"tm-new-tiddler\"\n\ttags=\"$:/tags/TextEditor/Snippet\"\n\tcaption={{$:/language/Buttons/Stamp/New/Title}}\n\ttext={{$:/language/Buttons/Stamp/New/Text}}\n/>\n\n<$action-deletetiddler\n\t$tiddler=<<dropdown-state>>\n/>\n\n<em>\n\n<$text text={{$:/language/Buttons/Stamp/Caption/New}}/>\n\n</em>\n\n</$button>\n"
},
"$:/core/ui/EditorToolbar/stamp": {
"title": "$:/core/ui/EditorToolbar/stamp",
"tags": "$:/tags/EditorToolbar",
"icon": "$:/core/images/stamp",
"caption": "{{$:/language/Buttons/Stamp/Caption}}",
"description": "{{$:/language/Buttons/Stamp/Hint}}",
"condition": "[<targetTiddler>type[]] [<targetTiddler>get[type]prefix[text/]] [<targetTiddler>get[type]match[application/javascript]] [<targetTiddler>get[type]match[application/json]] [<targetTiddler>get[type]match[application/x-tiddler-dictionary]] [<targetTiddler>get[type]match[image/svg+xml]] +[first[]]",
"shortcuts": "((stamp))",
"dropdown": "$:/core/ui/EditorToolbar/stamp-dropdown",
"text": ""
},
"$:/core/ui/EditorToolbar/strikethrough": {
"title": "$:/core/ui/EditorToolbar/strikethrough",
"tags": "$:/tags/EditorToolbar",
"icon": "$:/core/images/strikethrough",
"caption": "{{$:/language/Buttons/Strikethrough/Caption}}",
"description": "{{$:/language/Buttons/Strikethrough/Hint}}",
"condition": "[<targetTiddler>!has[type]] [<targetTiddler>type[text/vnd.tiddlywiki]]",
"shortcuts": "((strikethrough))",
"text": "<$action-sendmessage\n\t$message=\"tm-edit-text-operation\"\n\t$param=\"wrap-selection\"\n\tprefix=\"~~\"\n\tsuffix=\"~~\"\n/>\n"
},
"$:/core/ui/EditorToolbar/subscript": {
"title": "$:/core/ui/EditorToolbar/subscript",
"tags": "$:/tags/EditorToolbar",
"icon": "$:/core/images/subscript",
"caption": "{{$:/language/Buttons/Subscript/Caption}}",
"description": "{{$:/language/Buttons/Subscript/Hint}}",
"condition": "[<targetTiddler>!has[type]] [<targetTiddler>type[text/vnd.tiddlywiki]]",
"shortcuts": "((subscript))",
"text": "<$action-sendmessage\n\t$message=\"tm-edit-text-operation\"\n\t$param=\"wrap-selection\"\n\tprefix=\",,\"\n\tsuffix=\",,\"\n/>\n"
},
"$:/core/ui/EditorToolbar/superscript": {
"title": "$:/core/ui/EditorToolbar/superscript",
"tags": "$:/tags/EditorToolbar",
"icon": "$:/core/images/superscript",
"caption": "{{$:/language/Buttons/Superscript/Caption}}",
"description": "{{$:/language/Buttons/Superscript/Hint}}",
"condition": "[<targetTiddler>!has[type]] [<targetTiddler>type[text/vnd.tiddlywiki]]",
"shortcuts": "((superscript))",
"text": "<$action-sendmessage\n\t$message=\"tm-edit-text-operation\"\n\t$param=\"wrap-selection\"\n\tprefix=\"^^\"\n\tsuffix=\"^^\"\n/>\n"
},
"$:/core/ui/EditorToolbar/transcludify": {
"title": "$:/core/ui/EditorToolbar/transcludify",
"caption": "{{$:/language/Buttons/Transcludify/Caption}}",
"condition": "[<targetTiddler>!has[type]] [<targetTiddler>type[text/vnd.tiddlywiki]]",
"description": "{{$:/language/Buttons/Transcludify/Hint}}",
"icon": "$:/core/images/transcludify",
"list-before": "$:/core/ui/EditorToolbar/mono-block",
"shortcuts": "((transcludify))",
"tags": "$:/tags/EditorToolbar",
"text": "<$action-sendmessage\n\t$message=\"tm-edit-text-operation\"\n\t$param=\"wrap-selection\"\n\tprefix=\"{{\"\n\tsuffix=\"}}\"\n/>\n"
},
"$:/core/ui/EditorToolbar/underline": {
"title": "$:/core/ui/EditorToolbar/underline",
"tags": "$:/tags/EditorToolbar",
"icon": "$:/core/images/underline",
"caption": "{{$:/language/Buttons/Underline/Caption}}",
"description": "{{$:/language/Buttons/Underline/Hint}}",
"condition": "[<targetTiddler>!has[type]] [<targetTiddler>type[text/vnd.tiddlywiki]]",
"shortcuts": "((underline))",
"text": "<$action-sendmessage\n\t$message=\"tm-edit-text-operation\"\n\t$param=\"wrap-selection\"\n\tprefix=\"__\"\n\tsuffix=\"__\"\n/>\n"
},
"$:/core/Filters/AllTags": {
"title": "$:/core/Filters/AllTags",
"tags": "$:/tags/Filter",
"filter": "[tags[]!is[system]sort[title]]",
"description": "{{$:/language/Filters/AllTags}}",
"text": ""
},
"$:/core/Filters/AllTiddlers": {
"title": "$:/core/Filters/AllTiddlers",
"tags": "$:/tags/Filter",
"filter": "[!is[system]sort[title]]",
"description": "{{$:/language/Filters/AllTiddlers}}",
"text": ""
},
"$:/core/Filters/Drafts": {
"title": "$:/core/Filters/Drafts",
"tags": "$:/tags/Filter",
"filter": "[has[draft.of]sort[title]]",
"description": "{{$:/language/Filters/Drafts}}",
"text": ""
},
"$:/core/Filters/Missing": {
"title": "$:/core/Filters/Missing",
"tags": "$:/tags/Filter",
"filter": "[all[missing]sort[title]]",
"description": "{{$:/language/Filters/Missing}}",
"text": ""
},
"$:/core/Filters/Orphans": {
"title": "$:/core/Filters/Orphans",
"tags": "$:/tags/Filter",
"filter": "[all[orphans]sort[title]]",
"description": "{{$:/language/Filters/Orphans}}",
"text": ""
},
"$:/core/Filters/OverriddenShadowTiddlers": {
"title": "$:/core/Filters/OverriddenShadowTiddlers",
"tags": "$:/tags/Filter",
"filter": "[is[shadow]]",
"description": "{{$:/language/Filters/OverriddenShadowTiddlers}}",
"text": ""
},
"$:/core/Filters/RecentSystemTiddlers": {
"title": "$:/core/Filters/RecentSystemTiddlers",
"tags": "$:/tags/Filter",
"filter": "[has[modified]!sort[modified]limit[50]]",
"description": "{{$:/language/Filters/RecentSystemTiddlers}}",
"text": ""
},
"$:/core/Filters/RecentTiddlers": {
"title": "$:/core/Filters/RecentTiddlers",
"tags": "$:/tags/Filter",
"filter": "[!is[system]has[modified]!sort[modified]limit[50]]",
"description": "{{$:/language/Filters/RecentTiddlers}}",
"text": ""
},
"$:/core/Filters/SessionTiddlers": {
"title": "$:/core/Filters/SessionTiddlers",
"tags": "$:/tags/Filter",
"filter": "[haschanged[]]",
"description": "{{$:/language/Filters/SessionTiddlers}}",
"text": ""
},
"$:/core/Filters/ShadowTiddlers": {
"title": "$:/core/Filters/ShadowTiddlers",
"tags": "$:/tags/Filter",
"filter": "[all[shadows]sort[title]]",
"description": "{{$:/language/Filters/ShadowTiddlers}}",
"text": ""
},
"$:/core/Filters/StoryList": {
"title": "$:/core/Filters/StoryList",
"tags": "$:/tags/Filter",
"filter": "[list[$:/StoryList]] -$:/AdvancedSearch",
"description": "{{$:/language/Filters/StoryList}}",
"text": ""
},
"$:/core/Filters/SystemTags": {
"title": "$:/core/Filters/SystemTags",
"tags": "$:/tags/Filter",
"filter": "[all[shadows+tiddlers]tags[]is[system]sort[title]]",
"description": "{{$:/language/Filters/SystemTags}}",
"text": ""
},
"$:/core/Filters/SystemTiddlers": {
"title": "$:/core/Filters/SystemTiddlers",
"tags": "$:/tags/Filter",
"filter": "[is[system]sort[title]]",
"description": "{{$:/language/Filters/SystemTiddlers}}",
"text": ""
},
"$:/core/Filters/TypedTiddlers": {
"title": "$:/core/Filters/TypedTiddlers",
"tags": "$:/tags/Filter",
"filter": "[!is[system]has[type]each[type]sort[type]] -[type[text/vnd.tiddlywiki]]",
"description": "{{$:/language/Filters/TypedTiddlers}}",
"text": ""
},
"$:/core/ui/ImportListing": {
"title": "$:/core/ui/ImportListing",
"text": "\\define lingo-base() $:/language/Import/\n\n\\define messageField() message-$(payloadTiddler)$\n\n\\define payloadTitleFilter() [<currentTiddler>get<renameField>minlength[1]else<payloadTiddler>]\n\n\\define overWriteWarning()\n<$list filter=\"[<currentTiddler>!has<suppressedField>]\">\n<$text text={{{[subfilter<payloadTitleFilter>!is[tiddler]then[]] ~[<lingo-base>addsuffix[Listing/Rename/OverwriteWarning]get[text]]}}}/>\n</$list>\n\\end\n\n\\define selectionField() selection-$(payloadTiddler)$\n\n\\define renameField() rename-$(payloadTiddler)$\n\n\\define suppressedField() suppressed-$(payloadTiddler)$\n\n\\define newImportTitleTiddler() $:/temp/NewImportTitle-$(payloadTiddler)$\n\n\\define previewPopupState() $(currentTiddler)$!!popup-$(payloadTiddler)$\n\n\\define renameFieldState() $(currentTiddler)$!!state-rename-$(payloadTiddler)$\n\n\\define select-all-actions()\n<$list filter=\"[all[current]plugintiddlers[]sort[title]]\" variable=\"payloadTiddler\">\n<$action-setfield $field={{{ [<payloadTiddler>addprefix[selection-]] }}} $value={{$:/state/import/select-all}}/>\n</$list>\n\\end\n\n<table class=\"tc-import-table\">\n<tbody>\n<tr>\n<th align=\"left\">\n<$checkbox tiddler=\"$:/state/import/select-all\" field=\"text\" checked=\"checked\" unchecked=\"unchecked\" default=\"checked\" actions=<<select-all-actions>>>\n<<lingo Listing/Select/Caption>>\n</$checkbox>\n</th>\n<th>\n<<lingo Listing/Title/Caption>>\n</th>\n<th>\n<<lingo Listing/Status/Caption>>\n</th>\n</tr>\n<$list filter=\"[all[current]plugintiddlers[]sort[title]]\" variable=\"payloadTiddler\">\n<tr class={{{[<currentTiddler>has<suppressedField>then[tc-row-disabled]] ~[subfilter<payloadTitleFilter>is[tiddler]then[tc-row-warning]] }}}>\n<td>\n<$checkbox field=<<selectionField>> checked=\"checked\" unchecked=\"unchecked\" default=\"checked\" disabled={{{[<currentTiddler>has<suppressedField>then[yes]else[no]]}}}/>\n</td>\n<td>\n<$reveal type=\"nomatch\" state=<<renameFieldState>> text=\"yes\" tag=\"div\">\n<$reveal type=\"nomatch\" state=<<previewPopupState>> text=\"yes\" tag=\"div\" class=\"tc-flex\">\n<$button class=\"tc-btn-invisible tc-btn-dropdown tc-flex-grow-1 tc-word-break\" set=<<previewPopupState>> setTo=\"yes\" disabled={{{[<currentTiddler>has<suppressedField>then[yes]else[no]]}}}>\n<span class=\"tc-small-gap-right\">{{$:/core/images/right-arrow}}</span><$text text={{{[subfilter<payloadTitleFilter>]}}}/>\n</$button>\n<$list filter=\"[<currentTiddler>!has<suppressedField>]\"><$button class=\"tc-btn-invisible\" set=<<renameFieldState>> setTo=\"yes\" tooltip={{{[<lingo-base>addsuffix[Listing/Rename/Tooltip]get[text]]}}}>{{$:/core/images/edit-button}}</$button></$list>\n</$reveal>\n<$reveal type=\"match\" state=<<previewPopupState>> text=\"yes\" tag=\"div\">\n<$button class=\"tc-btn-invisible tc-btn-dropdown\" set=<<previewPopupState>> setTo=\"no\">\n<span class=\"tc-small-gap-right\">{{$:/core/images/down-arrow}}</span><$text text={{{[subfilter<payloadTitleFilter>]}}}/>\n</$button>\n</$reveal>\n</$reveal>\n<$reveal type=\"match\" state=<<renameFieldState>> text=\"yes\" tag=\"div\">\n<$text text={{{[<lingo-base>addsuffix[Listing/Rename/Prompt]get[text]]}}}/>\n</$reveal>\n</td>\n<td>\n<$view field=<<messageField>>/>\n<<overWriteWarning>>\n</td>\n</tr>\n<$reveal type=\"match\" state=<<renameFieldState>> text=\"yes\" tag=\"tr\">\n<td colspan=\"3\">\n<div class=\"tc-flex\">\n<$edit-text tiddler=<<newImportTitleTiddler>> default={{{[subfilter<payloadTitleFilter>]}}} tag=\"input\" class=\"tc-import-rename tc-flex-grow-1\"/><span class=\"tc-small-gap-left\"><$button class=\"tc-btn-invisible\" set=<<renameFieldState>> setTo=\"no\" tooltip={{{[<lingo-base>addsuffix[Listing/Rename/CancelRename]get[text]]}}}>{{$:/core/images/close-button}}<$action-deletetiddler $tiddler=<<newImportTitleTiddler>>/></$button><span class=\"tc-small-gap-right\"/></span><$button class=\"tc-btn-invisible\" set=<<renameFieldState>> setTo=\"no\" tooltip={{{[<lingo-base>addsuffix[Listing/Rename/ConfirmRename]get[text]]}}}>{{$:/core/images/done-button}}<$action-setfield $field=<<renameField>> $value={{{[<newImportTitleTiddler>get[text]minlength[1]else<payloadTiddler>]}}} /><$action-deletetiddler $tiddler=<<newImportTitleTiddler>>/></$button>\n</div>\n</td>\n</$reveal>\n<tr>\n<td colspan=\"3\">\n<$reveal type=\"match\" text=\"yes\" state=<<previewPopupState>> tag=\"div\">\n<$list filter=\"[{$:/state/importpreviewtype}has[text]]\" variable=\"listItem\" emptyMessage={{$:/core/ui/ImportPreviews/Text}}>\n<$transclude tiddler={{$:/state/importpreviewtype}}/>\n</$list>\n</$reveal>\n</td>\n</tr>\n</$list>\n</tbody>\n</table>\n"
},
"$:/core/ui/ImportPreviews/Diff": {
"title": "$:/core/ui/ImportPreviews/Diff",
"tags": "$:/tags/ImportPreview",
"caption": "{{$:/language/Import/Listing/Preview/Diff}}",
"text": "<$macrocall $name=\"compareTiddlerText\" sourceTiddlerTitle=<<payloadTiddler>> destTiddlerTitle=<<currentTiddler>> destSubTiddlerTitle=<<payloadTiddler>>/>\n"
},
"$:/core/ui/ImportPreviews/DiffFields": {
"title": "$:/core/ui/ImportPreviews/DiffFields",
"tags": "$:/tags/ImportPreview",
"caption": "{{$:/language/Import/Listing/Preview/DiffFields}}",
"text": "<$macrocall $name=\"compareTiddlers\" sourceTiddlerTitle=<<payloadTiddler>> destTiddlerTitle=<<currentTiddler>> destSubTiddlerTitle=<<payloadTiddler>> exclude=\"text\"/>\n"
},
"$:/core/ui/ImportPreviews/Fields": {
"title": "$:/core/ui/ImportPreviews/Fields",
"tags": "$:/tags/ImportPreview",
"caption": "{{$:/language/Import/Listing/Preview/Fields}}",
"text": "<table class=\"tc-view-field-table\">\n<tbody>\n<$list filter=\"[<payloadTiddler>subtiddlerfields<currentTiddler>sort[]] -text\" variable=\"fieldName\">\n<tr class=\"tc-view-field\">\n<td class=\"tc-view-field-name\">\n<$text text=<<fieldName>>/>\n</td>\n<td class=\"tc-view-field-value\">\n<$view field=<<fieldName>> tiddler=<<currentTiddler>> subtiddler=<<payloadTiddler>>/>\n</td>\n</tr>\n</$list>\n</tbody>\n</table>\n"
},
"$:/core/ui/ImportPreviews/Text": {
"title": "$:/core/ui/ImportPreviews/Text",
"tags": "$:/tags/ImportPreview",
"caption": "{{$:/language/Import/Listing/Preview/Text}}",
"text": "<$transclude tiddler=<<currentTiddler>> subtiddler=<<payloadTiddler>> mode=\"block\"/>\n"
},
"$:/core/ui/ImportPreviews/TextRaw": {
"title": "$:/core/ui/ImportPreviews/TextRaw",
"tags": "$:/tags/ImportPreview",
"caption": "{{$:/language/Import/Listing/Preview/TextRaw}}",
"text": "<pre><code><$view tiddler=<<currentTiddler>> subtiddler=<<payloadTiddler>> /></code></pre>"
},
"$:/core/ui/KeyboardShortcuts/advanced-search": {
"title": "$:/core/ui/KeyboardShortcuts/advanced-search",
"tags": "$:/tags/KeyboardShortcut",
"key": "((advanced-search))",
"text": "<$navigator story=\"$:/StoryList\" history=\"$:/HistoryList\">\n<$action-navigate $to=\"$:/AdvancedSearch\"/>\n<$action-sendmessage $message=\"tm-focus-selector\" $param=\"\"\"[data-tiddler-title=\"$:/AdvancedSearch\"] .tc-search input\"\"\" preventScroll=\"true\"/>\n</$navigator>\n"
},
"$:/core/ui/KeyboardShortcuts/change-sidebar-layout": {
"title": "$:/core/ui/KeyboardShortcuts/change-sidebar-layout",
"tags": "$:/tags/KeyboardShortcut",
"key": "((change-sidebar-layout))",
"text": "<$list filter=\"[{$:/themes/tiddlywiki/vanilla/options/sidebarlayout}match[fixed-fluid]]\" \nemptyMessage=\"\"\"<$action-setfield $tiddler=\"$:/themes/tiddlywiki/vanilla/options/sidebarlayout\" text=\"fixed-fluid\"/>\"\"\">\n<$action-setfield $tiddler=\"$:/themes/tiddlywiki/vanilla/options/sidebarlayout\" text=\"fluid-fixed\"/>\n</$list>\n"
},
"$:/core/ui/KeyboardShortcuts/new-image": {
"title": "$:/core/ui/KeyboardShortcuts/new-image",
"tags": "$:/tags/KeyboardShortcut",
"key": "((new-image))",
"text": "<$navigator story=\"$:/StoryList\" history=\"$:/HistoryList\" openLinkFromInsideRiver={{$:/config/Navigation/openLinkFromInsideRiver}} openLinkFromOutsideRiver={{$:/config/Navigation/openLinkFromOutsideRiver}} relinkOnRename={{$:/config/RelinkOnRename}}>\n{{$:/core/ui/Actions/new-image}}\n</$navigator>\n"
},
"$:/core/ui/KeyboardShortcuts/new-journal": {
"title": "$:/core/ui/KeyboardShortcuts/new-journal",
"tags": "$:/tags/KeyboardShortcut",
"key": "((new-journal))",
"text": "<$navigator story=\"$:/StoryList\" history=\"$:/HistoryList\" openLinkFromInsideRiver={{$:/config/Navigation/openLinkFromInsideRiver}} openLinkFromOutsideRiver={{$:/config/Navigation/openLinkFromOutsideRiver}} relinkOnRename={{$:/config/RelinkOnRename}}>\n{{$:/core/ui/Actions/new-journal}}\n</$navigator>\n"
},
"$:/core/ui/KeyboardShortcuts/new-tiddler": {
"title": "$:/core/ui/KeyboardShortcuts/new-tiddler",
"tags": "$:/tags/KeyboardShortcut",
"key": "((new-tiddler))",
"text": "<$navigator story=\"$:/StoryList\" history=\"$:/HistoryList\" openLinkFromInsideRiver={{$:/config/Navigation/openLinkFromInsideRiver}} openLinkFromOutsideRiver={{$:/config/Navigation/openLinkFromOutsideRiver}} relinkOnRename={{$:/config/RelinkOnRename}}>\n{{$:/core/ui/Actions/new-tiddler}}\n</$navigator>\n"
},
"$:/core/ui/KeyboardShortcuts/save-wiki": {
"title": "$:/core/ui/KeyboardShortcuts/save-wiki",
"tags": "$:/tags/KeyboardShortcut",
"key": "((save-wiki))",
"text": "<$wikify name=\"site-title\" text={{$:/config/SaveWikiButton/Filename}}>\n<$action-sendmessage $message=\"tm-save-wiki\" $param={{$:/config/SaveWikiButton/Template}} filename=<<site-title>>/>\n</$wikify>\n"
},
"$:/core/ui/KeyboardShortcuts/sidebar-search": {
"title": "$:/core/ui/KeyboardShortcuts/sidebar-search",
"tags": "$:/tags/KeyboardShortcut",
"key": "((sidebar-search))",
"text": "<$action-sendmessage $message=\"tm-focus-selector\" $param=\".tc-search input\"/>\n"
},
"$:/core/ui/KeyboardShortcuts/switcher": {
"title": "$:/core/ui/KeyboardShortcuts/switcher",
"tags": "$:/tags/KeyboardShortcut",
"key": "((layout-switcher))",
"text": "<$action-sendmessage $message=\"tm-show-switcher\" switch=\"layout\"/>"
},
"$:/core/ui/KeyboardShortcuts/toggle-sidebar": {
"title": "$:/core/ui/KeyboardShortcuts/toggle-sidebar",
"tags": "$:/tags/KeyboardShortcut",
"key": "((toggle-sidebar))",
"text": "<$list filter=\"[[$:/state/sidebar]is[missing]] [{$:/state/sidebar}removeprefix[yes]]\" emptyMessage=\"\"\"\n<$action-setfield $tiddler=\"$:/state/sidebar\" text=\"yes\"/>\n\"\"\">\n<$action-setfield $tiddler=\"$:/state/sidebar\" text=\"no\"/>\n</$list>\n"
},
"$:/snippets/LayoutSwitcher": {
"title": "$:/snippets/LayoutSwitcher",
"tags": "$:/tags/ControlPanel/Appearance",
"caption": "{{$:/language/ControlPanel/LayoutSwitcher/Caption}}",
"text": "<$linkcatcher to=\"$:/layout\">\n<div class=\"tc-chooser\">\n<$list filter=\"[all[tiddlers+shadows]tag[$:/tags/Layout]] [[$:/core/ui/PageTemplate]] +[!is[draft]sort[name]]\">\n<$list filter=\"[{$:/layout}!has[text]]\" variable=\"ignore\" emptyMessage=\"\"\"\n<$set name=\"cls\" filter=\"[all[current]field:title{$:/layout}]\" value=\"tc-chooser-item tc-chosen\" emptyValue=\"tc-chooser-item\"><div class=<<cls>>><$link to={{!!title}}>''<$transclude field=\"name\"/>'' - <$transclude field=\"description\"/></$link></div>\n</$set>\n\"\"\">\n<$set name=\"cls\" filter=\"[all[current]field:title[$:/core/ui/PageTemplate]]\" value=\"tc-chooser-item tc-chosen\" emptyValue=\"tc-chooser-item\"><div class=<<cls>>><$link to={{!!title}}>''<$transclude field=\"name\"/>'' - <$transclude field=\"description\"/></$link></div>\n</$set>\n</$list>\n</$list>\n</div>\n</$linkcatcher>\n"
},
"$:/core/ui/ListItemTemplate": {
"title": "$:/core/ui/ListItemTemplate",
"text": "<div class=\"tc-menu-list-item\">\n<$link />\n</div>"
},
"$:/Manager/ItemMain/Fields": {
"title": "$:/Manager/ItemMain/Fields",
"tags": "$:/tags/Manager/ItemMain",
"caption": "{{$:/language/Manager/Item/Fields}}",
"text": "<table>\n<tbody>\n<$list filter=\"[all[current]fields[]sort[title]] -text\" template=\"$:/core/ui/TiddlerFieldTemplate\" variable=\"listItem\"/>\n</tbody>\n</table>\n"
},
"$:/Manager/ItemMain/RawText": {
"title": "$:/Manager/ItemMain/RawText",
"tags": "$:/tags/Manager/ItemMain",
"caption": "{{$:/language/Manager/Item/RawText}}",
"text": "<pre><code><$view/></code></pre>\n"
},
"$:/Manager/ItemMain/WikifiedText": {
"title": "$:/Manager/ItemMain/WikifiedText",
"tags": "$:/tags/Manager/ItemMain",
"caption": "{{$:/language/Manager/Item/WikifiedText}}",
"text": "<$transclude mode=\"block\"/>\n"
},
"$:/Manager/ItemSidebar/Colour": {
"title": "$:/Manager/ItemSidebar/Colour",
"tags": "$:/tags/Manager/ItemSidebar",
"caption": "{{$:/language/Manager/Item/Colour}}",
"text": "\\define swatch-styles()\nheight: 1em;\nbackground-color: $(colour)$\n\\end\n\n<$vars colour={{!!color}}>\n<p style=<<swatch-styles>>/>\n</$vars>\n<p>\n<$edit-text field=\"color\" tag=\"input\" type=\"color\"/> / <$edit-text field=\"color\" tag=\"input\" type=\"text\" size=\"9\"/>\n</p>\n"
},
"$:/Manager/ItemSidebar/Icon": {
"title": "$:/Manager/ItemSidebar/Icon",
"tags": "$:/tags/Manager/ItemSidebar",
"caption": "{{$:/language/Manager/Item/Icon}}",
"text": "<p>\n<div class=\"tc-manager-icon-editor\">\n<$button popup=<<qualify \"$:/state/popup/image-picker\">> class=\"tc-btn-invisible\">\n<$transclude tiddler={{!!icon}}>\n{{$:/language/Manager/Item/Icon/None}}\n</$transclude>\n</$button>\n<div class=\"tc-block-dropdown-wrapper\" style=\"position: static;\">\n<$reveal state=<<qualify \"$:/state/popup/image-picker\">> type=\"nomatch\" text=\"\" default=\"\" tag=\"div\" class=\"tc-popup\">\n<div class=\"tc-block-dropdown tc-popup-keep\" style=\"width: 80%; left: 10%; right: 10%; padding: 0.5em;\">\n<$macrocall $name=\"image-picker-include-tagged-images\" actions=\"\"\"\n<$action-setfield $field=\"icon\" $value=<<imageTitle>>/>\n<$action-deletetiddler $tiddler=<<qualify \"$:/state/popup/image-picker\">>/>\n\"\"\"/>\n</div>\n</$reveal>\n</div>\n</div>\n</p>\n"
},
"$:/Manager/ItemSidebar/Tags": {
"title": "$:/Manager/ItemSidebar/Tags",
"tags": "$:/tags/Manager/ItemSidebar",
"caption": "{{$:/language/Manager/Item/Tags}}",
"text": "\\whitespace trim\n\\define tag-checkbox-actions()\n<$action-listops\n\t$tiddler=\"$:/config/Manager/RecentTags\"\n\t$subfilter=\"[<tag>] [list[$:/config/Manager/RecentTags]] +[limit[12]]\"\n/>\n\\end\n\n\\define tag-picker-actions()\n<<tag-checkbox-actions>>\n\\end\n\n<p>\n<$list filter=\"[all[current]tags[]] [list[$:/config/Manager/RecentTags]] +[sort[title]] \" variable=\"tag\" storyview=\"pop\">\n<div>\n<$checkbox tiddler=<<currentTiddler>> tag=<<tag>> actions=<<tag-checkbox-actions>>>\n<$macrocall $name=\"tag-pill\" tag=<<tag>>/>\n</$checkbox>\n</div>\n</$list>\n</p>\n<p>\n<$fieldmangler>\n<$macrocall $name=\"tag-picker\" actions=<<tag-picker-actions>>/>\n</$fieldmangler>\n</p>\n"
},
"$:/Manager/ItemSidebar/Tools": {
"title": "$:/Manager/ItemSidebar/Tools",
"tags": "$:/tags/Manager/ItemSidebar",
"caption": "{{$:/language/Manager/Item/Tools}}",
"text": "<p>\n<$button to=<<currentTiddler>>>{{$:/core/images/link}} open</$button>\n</p>\n<p>\n<$button message=\"tm-edit-tiddler\" param=<<currentTiddler>>>{{$:/core/images/edit-button}} edit</$button>\n</p>\n"
},
"$:/Manager": {
"title": "$:/Manager",
"icon": "$:/core/images/list",
"color": "#bbb",
"text": "\\define lingo-base() $:/language/Manager/\n\n\\define list-item-content-item()\n<div class=\"tc-manager-list-item-content-item\">\n\t<$vars state-title=\"\"\"$:/state/popup/manager/item/$(listItem)$\"\"\">\n\t\t<$reveal state=<<state-title>> type=\"match\" text=\"show\" default=\"show\" tag=\"div\">\n\t\t\t<$button set=<<state-title>> setTo=\"hide\" class=\"tc-btn-invisible tc-manager-list-item-content-item-heading\">\n\t\t\t\t{{$:/core/images/down-arrow}} <$transclude tiddler=<<listItem>> field=\"caption\"/>\n\t\t\t</$button>\n\t\t</$reveal>\n\t\t<$reveal state=<<state-title>> type=\"nomatch\" text=\"show\" default=\"show\" tag=\"div\">\n\t\t\t<$button set=<<state-title>> setTo=\"show\" class=\"tc-btn-invisible tc-manager-list-item-content-item-heading\">\n\t\t\t\t{{$:/core/images/right-arrow}} <$transclude tiddler=<<listItem>> field=\"caption\"/>\n\t\t\t</$button>\n\t\t</$reveal>\n\t\t<$reveal state=<<state-title>> type=\"match\" text=\"show\" default=\"show\" tag=\"div\" class=\"tc-manager-list-item-content-item-body\">\n\t\t\t<$transclude tiddler=<<listItem>>/>\n\t\t</$reveal>\n\t</$vars>\n</div>\n\\end\n\n<div class=\"tc-manager-wrapper\">\n\t<div class=\"tc-manager-controls\">\n\t\t<div class=\"tc-manager-control\">\n\t\t\t<<lingo Controls/Show/Prompt>> <$select tiddler=\"$:/config/Manager/Show\" default=\"tiddlers\">\n\t\t\t\t<option value=\"tiddlers\"><<lingo Controls/Show/Option/Tiddlers>></option>\n\t\t\t\t<option value=\"tags\"><<lingo Controls/Show/Option/Tags>></option>\n\t\t\t</$select>\n\t\t</div>\n\t\t<div class=\"tc-manager-control\">\n\t\t\t<<lingo Controls/Search/Prompt>> <$edit-text tiddler=\"$:/config/Manager/Filter\" tag=\"input\" default=\"\" placeholder={{$:/language/Manager/Controls/Search/Placeholder}}/>\n\t\t</div>\n\t\t<div class=\"tc-manager-control\">\n\t\t\t<<lingo Controls/FilterByTag/Prompt>> <$select tiddler=\"$:/config/Manager/Tag\" default=\"\">\n\t\t\t\t<option value=\"\"><<lingo Controls/FilterByTag/None>></option>\n\t\t\t\t<$list filter=\"[!is{$:/config/Manager/System}tags[]!is[system]sort[title]]\" variable=\"tag\">\n\t\t\t\t\t<option value=<<tag>>><$text text=<<tag>>/></option>\n\t\t\t\t</$list>\n\t\t\t</$select>\n\t\t</div>\n\t\t<div class=\"tc-manager-control\">\n\t\t\t<<lingo Controls/Sort/Prompt>> <$select tiddler=\"$:/config/Manager/Sort\" default=\"title\">\n\t\t\t\t<optgroup label=\"Common\">\n\t\t\t\t\t<$list filter=\"title modified modifier created creator created\" variable=\"field\">\n\t\t\t\t\t\t<option value=<<field>>><$text text=<<field>>/></option>\n\t\t\t\t\t</$list>\n\t\t\t\t</optgroup>\n\t\t\t\t<optgroup label=\"All\">\n\t\t\t\t\t<$list filter=\"[all{$:/config/Manager/Show}!is{$:/config/Manager/System}fields[]sort[title]] -title -modified -modifier -created -creator -created\" variable=\"field\">\n\t\t\t\t\t\t<option value=<<field>>><$text text=<<field>>/></option>\n\t\t\t\t\t</$list>\n\t\t\t\t</optgroup>\n\t\t\t</$select>\n\t\t\t<$checkbox tiddler=\"$:/config/Manager/Order\" field=\"text\" checked=\"reverse\" unchecked=\"forward\" default=\"forward\">\n\t\t\t\t<<lingo Controls/Order/Prompt>>\n\t\t\t</$checkbox>\n\t\t</div>\n\t\t<div class=\"tc-manager-control\">\n\t\t\t<$checkbox tiddler=\"$:/config/Manager/System\" field=\"text\" checked=\"\" unchecked=\"system\" default=\"system\">\n\t\t\t\t{{$:/language/SystemTiddlers/Include/Prompt}}\n\t\t\t</$checkbox>\n\t\t</div>\n\t</div>\n\t<div class=\"tc-manager-list\">\n\t\t<$list filter=\"[all{$:/config/Manager/Show}!is{$:/config/Manager/System}search{$:/config/Manager/Filter}tag:strict{$:/config/Manager/Tag}sort{$:/config/Manager/Sort}order{$:/config/Manager/Order}]\">\n\t\t\t<$vars transclusion=<<currentTiddler>>>\n\t\t\t\t<div style=\"tc-manager-list-item\">\n\t\t\t\t\t<$button popup=<<qualify \"$:/state/manager/popup\">> class=\"tc-btn-invisible tc-manager-list-item-heading\" selectedClass=\"tc-manager-list-item-heading-selected\">\n\t\t\t\t\t\t<$text text=<<currentTiddler>>/>\n\t\t\t\t\t</$button>\n\t\t\t\t\t<$reveal state=<<qualify \"$:/state/manager/popup\">> type=\"nomatch\" text=\"\" default=\"\" tag=\"div\" class=\"tc-manager-list-item-content tc-popup-handle\">\n\t\t\t\t\t\t<div class=\"tc-manager-list-item-content-tiddler\">\n\t\t\t\t\t\t\t<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/Manager/ItemMain]!has[draft.of]]\" variable=\"listItem\">\n\t\t\t\t\t\t\t\t<<list-item-content-item>>\n\t\t\t\t\t\t\t</$list>\n\t\t\t\t\t\t</div>\n\t\t\t\t\t\t<div class=\"tc-manager-list-item-content-sidebar\">\n\t\t\t\t\t\t\t<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/Manager/ItemSidebar]!has[draft.of]]\" variable=\"listItem\">\n\t\t\t\t\t\t\t\t<<list-item-content-item>>\n\t\t\t\t\t\t\t</$list>\n\t\t\t\t\t\t</div>\n\t\t\t\t\t</$reveal>\n\t\t\t\t</div>\n\t\t\t</$vars>\n\t\t</$list>\n\t</div>\n</div>\n"
},
"$:/core/ui/MissingTemplate": {
"title": "$:/core/ui/MissingTemplate",
"text": "<div class=\"tc-tiddler-missing\">\n<$button popup=<<qualify \"$:/state/popup/missing\">> class=\"tc-btn-invisible tc-missing-tiddler-label\">\n<$view field=\"title\" format=\"text\" />\n</$button>\n<$reveal state=<<qualify \"$:/state/popup/missing\">> type=\"popup\" position=\"below\" animate=\"yes\">\n<div class=\"tc-drop-down\">\n<$transclude tiddler=\"$:/core/ui/ListItemTemplate\"/>\n<hr>\n<$list filter=\"[all[current]backlinks[]sort[title]]\" template=\"$:/core/ui/ListItemTemplate\"/>\n</div>\n</$reveal>\n</div>\n"
},
"$:/core/ui/MoreSideBar/All": {
"title": "$:/core/ui/MoreSideBar/All",
"tags": "$:/tags/MoreSideBar",
"caption": "{{$:/language/SideBar/All/Caption}}",
"text": "<$list filter={{$:/core/Filters/AllTiddlers!!filter}} template=\"$:/core/ui/ListItemTemplate\"/>\n"
},
"$:/core/ui/MoreSideBar/Drafts": {
"title": "$:/core/ui/MoreSideBar/Drafts",
"tags": "$:/tags/MoreSideBar",
"caption": "{{$:/language/SideBar/Drafts/Caption}}",
"text": "<$list filter={{$:/core/Filters/Drafts!!filter}} template=\"$:/core/ui/ListItemTemplate\"/>\n"
},
"$:/core/ui/MoreSideBar/Explorer": {
"title": "$:/core/ui/MoreSideBar/Explorer",
"tags": "$:/tags/MoreSideBar",
"caption": "{{$:/language/SideBar/Explorer/Caption}}",
"text": "<<tree \"$:/\">>\n"
},
"$:/core/ui/MoreSideBar/Missing": {
"title": "$:/core/ui/MoreSideBar/Missing",
"tags": "$:/tags/MoreSideBar",
"caption": "{{$:/language/SideBar/Missing/Caption}}",
"text": "<$list filter={{$:/core/Filters/Missing!!filter}} template=\"$:/core/ui/MissingTemplate\"/>\n"
},
"$:/core/ui/MoreSideBar/Orphans": {
"title": "$:/core/ui/MoreSideBar/Orphans",
"tags": "$:/tags/MoreSideBar",
"caption": "{{$:/language/SideBar/Orphans/Caption}}",
"text": "<$list filter={{$:/core/Filters/Orphans!!filter}} template=\"$:/core/ui/ListItemTemplate\"/>\n"
},
"$:/core/ui/MoreSideBar/Plugins": {
"title": "$:/core/ui/MoreSideBar/Plugins",
"tags": "$:/tags/MoreSideBar",
"caption": "{{$:/language/ControlPanel/Plugins/Caption}}",
"text": "\n{{$:/language/ControlPanel/Plugins/Installed/Hint}}\n\n<$macrocall $name=\"tabs\" tabsList=\"[all[shadows+tiddlers]tag[$:/tags/MoreSideBar/Plugins]!has[draft.of]]\" default=\"$:/core/ui/MoreSideBar/Plugins/Plugins\" explicitState=\"$:/state/tab-1163638994\"/>\n"
},
"$:/core/ui/MoreSideBar/Recent": {
"title": "$:/core/ui/MoreSideBar/Recent",
"tags": "$:/tags/MoreSideBar",
"caption": "{{$:/language/SideBar/Recent/Caption}}",
"text": "<$macrocall $name=\"timeline\" format={{$:/language/RecentChanges/DateFormat}}/>\n"
},
"$:/core/ui/MoreSideBar/Shadows": {
"title": "$:/core/ui/MoreSideBar/Shadows",
"tags": "$:/tags/MoreSideBar",
"caption": "{{$:/language/SideBar/Shadows/Caption}}",
"text": "<$list filter={{$:/core/Filters/ShadowTiddlers!!filter}} template=\"$:/core/ui/ListItemTemplate\"/>\n"
},
"$:/core/ui/MoreSideBar/System": {
"title": "$:/core/ui/MoreSideBar/System",
"tags": "$:/tags/MoreSideBar",
"caption": "{{$:/language/SideBar/System/Caption}}",
"text": "<$list filter={{$:/core/Filters/SystemTiddlers!!filter}} template=\"$:/core/ui/ListItemTemplate\"/>\n"
},
"$:/core/ui/MoreSideBar/Tags": {
"title": "$:/core/ui/MoreSideBar/Tags",
"tags": "$:/tags/MoreSideBar",
"caption": "{{$:/language/SideBar/Tags/Caption}}",
"text": "<$set name=\"tv-config-toolbar-icons\" value=\"yes\">\n\n<$set name=\"tv-config-toolbar-text\" value=\"yes\">\n\n<$set name=\"tv-config-toolbar-class\" value=\"\">\n\n{{$:/core/ui/Buttons/tag-manager}}\n\n</$set>\n\n</$set>\n\n</$set>\n\n<$list filter={{$:/core/Filters/AllTags!!filter}}>\n\n<$transclude tiddler=\"$:/core/ui/TagTemplate\"/>\n\n</$list>\n\n<hr class=\"tc-untagged-separator\">\n\n{{$:/core/ui/UntaggedTemplate}}\n"
},
"$:/core/ui/MoreSideBar/Types": {
"title": "$:/core/ui/MoreSideBar/Types",
"tags": "$:/tags/MoreSideBar",
"caption": "{{$:/language/SideBar/Types/Caption}}",
"text": "<$list filter={{$:/core/Filters/TypedTiddlers!!filter}}>\n<div class=\"tc-menu-list-item\">\n<$view field=\"type\"/>\n<$list filter=\"[type{!!type}!is[system]sort[title]]\">\n<div class=\"tc-menu-list-subitem\">\n<$link to={{!!title}}><$view field=\"title\"/></$link>\n</div>\n</$list>\n</div>\n</$list>\n"
},
"$:/core/ui/MoreSideBar/Plugins/Languages": {
"title": "$:/core/ui/MoreSideBar/Plugins/Languages",
"tags": "$:/tags/MoreSideBar/Plugins",
"caption": "{{$:/language/ControlPanel/Plugins/Languages/Caption}}",
"text": "<$list filter=\"[!has[draft.of]plugin-type[language]sort[description]]\" template=\"$:/core/ui/PluginListItemTemplate\" emptyMessage={{$:/language/ControlPanel/Plugins/Empty/Hint}}/>\n"
},
"$:/core/ui/MoreSideBar/Plugins/Plugins": {
"title": "$:/core/ui/MoreSideBar/Plugins/Plugins",
"tags": "$:/tags/MoreSideBar/Plugins",
"caption": "{{$:/language/ControlPanel/Plugins/Plugins/Caption}}",
"text": "<$list filter=\"[!has[draft.of]plugin-type[plugin]sort[description]]\" template=\"$:/core/ui/PluginListItemTemplate\" emptyMessage={{$:/language/ControlPanel/Plugins/Empty/Hint}}>>/>\n"
},
"$:/core/ui/MoreSideBar/Plugins/Theme": {
"title": "$:/core/ui/MoreSideBar/Plugins/Theme",
"tags": "$:/tags/MoreSideBar/Plugins",
"caption": "{{$:/language/ControlPanel/Plugins/Themes/Caption}}",
"text": "<$list filter=\"[!has[draft.of]plugin-type[theme]sort[description]]\" template=\"$:/core/ui/PluginListItemTemplate\" emptyMessage={{$:/language/ControlPanel/Plugins/Empty/Hint}}/>\n"
},
"$:/core/ui/Buttons/advanced-search": {
"title": "$:/core/ui/Buttons/advanced-search",
"tags": "$:/tags/PageControls",
"caption": "{{$:/core/images/advanced-search-button}} {{$:/language/Buttons/AdvancedSearch/Caption}}",
"description": "{{$:/language/Buttons/AdvancedSearch/Hint}}",
"text": "\\whitespace trim\n\\define advanced-search-button(class)\n<$button to=\"$:/AdvancedSearch\" tooltip={{$:/language/Buttons/AdvancedSearch/Hint}} aria-label={{$:/language/Buttons/AdvancedSearch/Caption}} class=\"\"\"$(tv-config-toolbar-class)$ $class$\"\"\">\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/advanced-search-button}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\"><$text text={{$:/language/Buttons/AdvancedSearch/Caption}}/></span>\n</$list>\n</$button>\n\\end\n\n<$list filter=\"[list[$:/StoryList]] +[field:title[$:/AdvancedSearch]]\" emptyMessage=<<advanced-search-button>>>\n<<advanced-search-button \"tc-selected\">>\n</$list>\n"
},
"$:/core/ui/Buttons/close-all": {
"title": "$:/core/ui/Buttons/close-all",
"tags": "$:/tags/PageControls",
"caption": "{{$:/core/images/close-all-button}} {{$:/language/Buttons/CloseAll/Caption}}",
"description": "{{$:/language/Buttons/CloseAll/Hint}}",
"text": "<$button message=\"tm-close-all-tiddlers\" tooltip={{$:/language/Buttons/CloseAll/Hint}} aria-label={{$:/language/Buttons/CloseAll/Caption}} class=<<tv-config-toolbar-class>>>\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/close-all-button}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\"><$text text={{$:/language/Buttons/CloseAll/Caption}}/></span>\n</$list>\n</$button>"
},
"$:/core/ui/Buttons/control-panel": {
"title": "$:/core/ui/Buttons/control-panel",
"tags": "$:/tags/PageControls",
"caption": "{{$:/core/images/options-button}} {{$:/language/Buttons/ControlPanel/Caption}}",
"description": "{{$:/language/Buttons/ControlPanel/Hint}}",
"text": "\\whitespace trim\n\\define control-panel-button(class)\n<$button to=\"$:/ControlPanel\" tooltip={{$:/language/Buttons/ControlPanel/Hint}} aria-label={{$:/language/Buttons/ControlPanel/Caption}} class=\"\"\"$(tv-config-toolbar-class)$ $class$\"\"\">\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/options-button}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\"><$text text={{$:/language/Buttons/ControlPanel/Caption}}/></span>\n</$list>\n</$button>\n\\end\n\n<$list filter=\"[list[$:/StoryList]] +[field:title[$:/ControlPanel]]\" emptyMessage=<<control-panel-button>>>\n<<control-panel-button \"tc-selected\">>\n</$list>\n"
},
"$:/core/ui/Buttons/encryption": {
"title": "$:/core/ui/Buttons/encryption",
"tags": "$:/tags/PageControls",
"caption": "{{$:/core/images/locked-padlock}} {{$:/language/Buttons/Encryption/Caption}}",
"description": "{{$:/language/Buttons/Encryption/Hint}}",
"text": "\\whitespace trim\n<$reveal type=\"match\" state=\"$:/isEncrypted\" text=\"yes\">\n<$button message=\"tm-clear-password\" tooltip={{$:/language/Buttons/Encryption/ClearPassword/Hint}} aria-label={{$:/language/Buttons/Encryption/ClearPassword/Caption}} class=<<tv-config-toolbar-class>>>\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/locked-padlock}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\"><$text text={{$:/language/Buttons/Encryption/ClearPassword/Caption}}/></span>\n</$list>\n</$button>\n</$reveal>\n<$reveal type=\"nomatch\" state=\"$:/isEncrypted\" text=\"yes\">\n<$button message=\"tm-set-password\" tooltip={{$:/language/Buttons/Encryption/SetPassword/Hint}} aria-label={{$:/language/Buttons/Encryption/SetPassword/Caption}} class=<<tv-config-toolbar-class>>>\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/unlocked-padlock}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\"><$text text={{$:/language/Buttons/Encryption/SetPassword/Caption}}/></span>\n</$list>\n</$button>\n</$reveal>\n"
},
"$:/core/ui/Buttons/export-page": {
"title": "$:/core/ui/Buttons/export-page",
"tags": "$:/tags/PageControls",
"caption": "{{$:/core/images/export-button}} {{$:/language/Buttons/ExportPage/Caption}}",
"description": "{{$:/language/Buttons/ExportPage/Hint}}",
"text": "<$macrocall $name=\"exportButton\" exportFilter=\"[!is[system]sort[title]]\" lingoBase=\"$:/language/Buttons/ExportPage/\"/>"
},
"$:/core/ui/Buttons/fold-all": {
"title": "$:/core/ui/Buttons/fold-all",
"tags": "$:/tags/PageControls",
"caption": "{{$:/core/images/fold-all-button}} {{$:/language/Buttons/FoldAll/Caption}}",
"description": "{{$:/language/Buttons/FoldAll/Hint}}",
"text": "<$button tooltip={{$:/language/Buttons/FoldAll/Hint}} aria-label={{$:/language/Buttons/FoldAll/Caption}} class=<<tv-config-toolbar-class>>>\n<$action-sendmessage $message=\"tm-fold-all-tiddlers\" $param=<<currentTiddler>> foldedStatePrefix=\"$:/state/folded/\"/>\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\" variable=\"listItem\">\n{{$:/core/images/fold-all-button}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\"><$text text={{$:/language/Buttons/FoldAll/Caption}}/></span>\n</$list>\n</$button>"
},
"$:/core/ui/Buttons/full-screen": {
"title": "$:/core/ui/Buttons/full-screen",
"tags": "$:/tags/PageControls",
"caption": "{{$:/core/images/full-screen-button}} {{$:/language/Buttons/FullScreen/Caption}}",
"description": "{{$:/language/Buttons/FullScreen/Hint}}",
"text": "<$button message=\"tm-full-screen\" tooltip={{$:/language/Buttons/FullScreen/Hint}} aria-label={{$:/language/Buttons/FullScreen/Caption}} class=<<tv-config-toolbar-class>>>\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/full-screen-button}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\"><$text text={{$:/language/Buttons/FullScreen/Caption}}/></span>\n</$list>\n</$button>"
},
"$:/core/ui/Buttons/home": {
"title": "$:/core/ui/Buttons/home",
"tags": "$:/tags/PageControls",
"caption": "{{$:/core/images/home-button}} {{$:/language/Buttons/Home/Caption}}",
"description": "{{$:/language/Buttons/Home/Hint}}",
"text": "<$button message=\"tm-home\" tooltip={{$:/language/Buttons/Home/Hint}} aria-label={{$:/language/Buttons/Home/Caption}} class=<<tv-config-toolbar-class>>>\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/home-button}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\"><$text text={{$:/language/Buttons/Home/Caption}}/></span>\n</$list>\n</$button>"
},
"$:/core/ui/Buttons/import": {
"title": "$:/core/ui/Buttons/import",
"tags": "$:/tags/PageControls",
"caption": "{{$:/core/images/import-button}} {{$:/language/Buttons/Import/Caption}}",
"description": "{{$:/language/Buttons/Import/Hint}}",
"text": "<div class=\"tc-file-input-wrapper\">\n<$button tooltip={{$:/language/Buttons/Import/Hint}} aria-label={{$:/language/Buttons/Import/Caption}} class=<<tv-config-toolbar-class>>>\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/import-button}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\"><$text text={{$:/language/Buttons/Import/Caption}}/></span>\n</$list>\n</$button>\n<$browse tooltip={{$:/language/Buttons/Import/Hint}}/>\n</div>"
},
"$:/core/ui/Buttons/language": {
"title": "$:/core/ui/Buttons/language",
"tags": "$:/tags/PageControls",
"caption": "{{$:/core/images/globe}} {{$:/language/Buttons/Language/Caption}}",
"description": "{{$:/language/Buttons/Language/Hint}}",
"text": "\\whitespace trim\n\\define flag-title()\n$(languagePluginTitle)$/icon\n\\end\n<span class=\"tc-popup-keep\">\n<$button popup=<<qualify \"$:/state/popup/language\">> tooltip={{$:/language/Buttons/Language/Hint}} aria-label={{$:/language/Buttons/Language/Caption}} class=<<tv-config-toolbar-class>> selectedClass=\"tc-selected\">\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n<span class=\"tc-image-button\">\n<$set name=\"languagePluginTitle\" value={{$:/language}}>\n<$image source=<<flag-title>>/>\n</$set>\n</span>\n</$list>\n<$text text=\" \"/>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\"><$text text={{$:/language/Buttons/Language/Caption}}/></span>\n</$list>\n</$button>\n</span>\n<$reveal state=<<qualify \"$:/state/popup/language\">> type=\"popup\" position=\"below\" animate=\"yes\">\n<div class=\"tc-drop-down\">\n{{$:/snippets/languageswitcher}}\n</div>\n</$reveal>\n"
},
"$:/core/ui/Buttons/manager": {
"title": "$:/core/ui/Buttons/manager",
"tags": "$:/tags/PageControls",
"caption": "{{$:/core/images/list}} {{$:/language/Buttons/Manager/Caption}}",
"description": "{{$:/language/Buttons/Manager/Hint}}",
"text": "\\whitespace trim\n\\define manager-button(class)\n<$button to=\"$:/Manager\" tooltip={{$:/language/Buttons/Manager/Hint}} aria-label={{$:/language/Buttons/Manager/Caption}} class=\"\"\"$(tv-config-toolbar-class)$ $class$\"\"\">\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/list}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\"><$text text={{$:/language/Buttons/Manager/Caption}}/></span>\n</$list>\n</$button>\n\\end\n\n<$list filter=\"[list[$:/StoryList]] +[field:title[$:/Manager]]\" emptyMessage=<<manager-button>>>\n<<manager-button \"tc-selected\">>\n</$list>\n"
},
"$:/core/ui/Buttons/more-page-actions": {
"title": "$:/core/ui/Buttons/more-page-actions",
"tags": "$:/tags/PageControls",
"caption": "{{$:/core/images/down-arrow}} {{$:/language/Buttons/More/Caption}}",
"description": "{{$:/language/Buttons/More/Hint}}",
"text": "\\define config-title()\n$:/config/PageControlButtons/Visibility/$(listItem)$\n\\end\n<$button popup=<<qualify \"$:/state/popup/more\">> tooltip={{$:/language/Buttons/More/Hint}} aria-label={{$:/language/Buttons/More/Caption}} class=<<tv-config-toolbar-class>> selectedClass=\"tc-selected\">\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/down-arrow}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\"><$text text={{$:/language/Buttons/More/Caption}}/></span>\n</$list>\n</$button><$reveal state=<<qualify \"$:/state/popup/more\">> type=\"popup\" position=\"below\" animate=\"yes\">\n\n<div class=\"tc-drop-down\">\n\n<$set name=\"tv-config-toolbar-icons\" value=\"yes\">\n\n<$set name=\"tv-config-toolbar-text\" value=\"yes\">\n\n<$set name=\"tv-config-toolbar-class\" value=\"tc-btn-invisible\">\n\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/PageControls]!has[draft.of]] -[[$:/core/ui/Buttons/more-page-actions]]\" variable=\"listItem\">\n\n<$reveal type=\"match\" state=<<config-title>> text=\"hide\">\n\n<$set name=\"tv-config-toolbar-class\" filter=\"[<tv-config-toolbar-class>] [<listItem>encodeuricomponent[]addprefix[tc-btn-]]\">\n\n<$transclude tiddler=<<listItem>> mode=\"inline\"/>\n\n</$set>\n\n</$reveal>\n\n</$list>\n\n</$set>\n\n</$set>\n\n</$set>\n\n</div>\n\n</$reveal>"
},
"$:/core/ui/Buttons/new-image": {
"title": "$:/core/ui/Buttons/new-image",
"tags": "$:/tags/PageControls",
"caption": "{{$:/core/images/new-image-button}} {{$:/language/Buttons/NewImage/Caption}}",
"description": "{{$:/language/Buttons/NewImage/Hint}}",
"text": "\\whitespace trim\n<$button tooltip={{$:/language/Buttons/NewImage/Hint}} aria-label={{$:/language/Buttons/NewImage/Caption}} class=<<tv-config-toolbar-class>> actions={{$:/core/ui/Actions/new-image}}>\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/new-image-button}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\"><$text text={{$:/language/Buttons/NewImage/Caption}}/></span>\n</$list>\n</$button>\n"
},
"$:/core/ui/Buttons/new-journal": {
"title": "$:/core/ui/Buttons/new-journal",
"tags": "$:/tags/PageControls",
"caption": "{{$:/core/images/new-journal-button}} {{$:/language/Buttons/NewJournal/Caption}}",
"description": "{{$:/language/Buttons/NewJournal/Hint}}",
"text": "\\whitespace trim\n\\define journalButton()\n<$button tooltip={{$:/language/Buttons/NewJournal/Hint}} aria-label={{$:/language/Buttons/NewJournal/Caption}} class=<<tv-config-toolbar-class>> actions={{$:/core/ui/Actions/new-journal}}>\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/new-journal-button}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\"><$text text={{$:/language/Buttons/NewJournal/Caption}}/></span>\n</$list>\n</$button>\n\\end\n<<journalButton>>\n"
},
"$:/core/ui/Buttons/new-tiddler": {
"title": "$:/core/ui/Buttons/new-tiddler",
"tags": "$:/tags/PageControls",
"caption": "{{$:/core/images/new-button}} {{$:/language/Buttons/NewTiddler/Caption}}",
"description": "{{$:/language/Buttons/NewTiddler/Hint}}",
"text": "\\whitespace trim\n<$button actions={{$:/core/ui/Actions/new-tiddler}} tooltip={{$:/language/Buttons/NewTiddler/Hint}} aria-label={{$:/language/Buttons/NewTiddler/Caption}} class=<<tv-config-toolbar-class>>>\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/new-button}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\"><$text text={{$:/language/Buttons/NewTiddler/Caption}}/></span>\n</$list>\n</$button>\n"
},
"$:/core/ui/Buttons/palette": {
"title": "$:/core/ui/Buttons/palette",
"tags": "$:/tags/PageControls",
"caption": "{{$:/core/images/palette}} {{$:/language/Buttons/Palette/Caption}}",
"description": "{{$:/language/Buttons/Palette/Hint}}",
"text": "\\whitespace trim\n<span class=\"tc-popup-keep\">\n<$button popup=<<qualify \"$:/state/popup/palette\">> tooltip={{$:/language/Buttons/Palette/Hint}} aria-label={{$:/language/Buttons/Palette/Caption}} class=<<tv-config-toolbar-class>> selectedClass=\"tc-selected\">\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/palette}}\n</$list>\n<$text text=\" \"/>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\"><$text text={{$:/language/Buttons/Palette/Caption}}/></span>\n</$list>\n</$button>\n</span>\n<$reveal state=<<qualify \"$:/state/popup/palette\">> type=\"popup\" position=\"below\" animate=\"yes\">\n<div class=\"tc-drop-down\" style=\"font-size:0.7em;\">\n{{$:/snippets/paletteswitcher}}\n</div>\n</$reveal>\n"
},
"$:/core/ui/Buttons/print": {
"title": "$:/core/ui/Buttons/print",
"tags": "$:/tags/PageControls",
"caption": "{{$:/core/images/print-button}} {{$:/language/Buttons/Print/Caption}}",
"description": "{{$:/language/Buttons/Print/Hint}}",
"text": "<$button message=\"tm-print\" tooltip={{$:/language/Buttons/Print/Hint}} aria-label={{$:/language/Buttons/Print/Caption}} class=<<tv-config-toolbar-class>>>\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/print-button}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\"><$text text={{$:/language/Buttons/Print/Caption}}/></span>\n</$list>\n</$button>"
},
"$:/core/ui/Buttons/refresh": {
"title": "$:/core/ui/Buttons/refresh",
"tags": "$:/tags/PageControls",
"caption": "{{$:/core/images/refresh-button}} {{$:/language/Buttons/Refresh/Caption}}",
"description": "{{$:/language/Buttons/Refresh/Hint}}",
"text": "<$button message=\"tm-browser-refresh\" tooltip={{$:/language/Buttons/Refresh/Hint}} aria-label={{$:/language/Buttons/Refresh/Caption}} class=<<tv-config-toolbar-class>>>\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/refresh-button}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\"><$text text={{$:/language/Buttons/Refresh/Caption}}/></span>\n</$list>\n</$button>"
},
"$:/core/ui/Buttons/save-wiki": {
"title": "$:/core/ui/Buttons/save-wiki",
"tags": "$:/tags/PageControls",
"caption": "{{$:/core/images/save-button}} {{$:/language/Buttons/SaveWiki/Caption}}",
"description": "{{$:/language/Buttons/SaveWiki/Hint}}",
"text": "<$button tooltip={{$:/language/Buttons/SaveWiki/Hint}} aria-label={{$:/language/Buttons/SaveWiki/Caption}} class=<<tv-config-toolbar-class>>>\n<$wikify name=\"site-title\" text={{$:/config/SaveWikiButton/Filename}}>\n<$action-sendmessage $message=\"tm-save-wiki\" $param={{$:/config/SaveWikiButton/Template}} filename=<<site-title>>/>\n</$wikify>\n<span class=\"tc-dirty-indicator\">\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/save-button}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\"><$text text={{$:/language/Buttons/SaveWiki/Caption}}/></span>\n</$list>\n</span>\n</$button>"
},
"$:/core/ui/Buttons/storyview": {
"title": "$:/core/ui/Buttons/storyview",
"tags": "$:/tags/PageControls",
"caption": "{{$:/core/images/storyview-classic}} {{$:/language/Buttons/StoryView/Caption}}",
"description": "{{$:/language/Buttons/StoryView/Hint}}",
"text": "\\whitespace trim\n\\define icon()\n$:/core/images/storyview-$(storyview)$\n\\end\n<span class=\"tc-popup-keep\">\n<$button popup=<<qualify \"$:/state/popup/storyview\">> tooltip={{$:/language/Buttons/StoryView/Hint}} aria-label={{$:/language/Buttons/StoryView/Caption}} class=<<tv-config-toolbar-class>> selectedClass=\"tc-selected\">\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n<$set name=\"storyview\" value={{$:/view}}>\n<$transclude tiddler=<<icon>>/>\n</$set>\n</$list>\n<$text text=\" \"/>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\"><$text text={{$:/language/Buttons/StoryView/Caption}}/></span>\n</$list>\n</$button>\n</span>\n<$reveal state=<<qualify \"$:/state/popup/storyview\">> type=\"popup\" position=\"below\" animate=\"yes\">\n<div class=\"tc-drop-down\">\n{{$:/snippets/viewswitcher}}\n</div>\n</$reveal>\n"
},
"$:/core/ui/Buttons/tag-manager": {
"title": "$:/core/ui/Buttons/tag-manager",
"tags": "$:/tags/PageControls",
"caption": "{{$:/core/images/tag-button}} {{$:/language/Buttons/TagManager/Caption}}",
"description": "{{$:/language/Buttons/TagManager/Hint}}",
"text": "\\whitespace trim\n\\define control-panel-button(class)\n<$button to=\"$:/TagManager\" tooltip={{$:/language/Buttons/TagManager/Hint}} aria-label={{$:/language/Buttons/TagManager/Caption}} class=\"\"\"$(tv-config-toolbar-class)$ $class$\"\"\">\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/tag-button}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\"><$text text={{$:/language/Buttons/TagManager/Caption}}/></span>\n</$list>\n</$button>\n\\end\n\n<$list filter=\"[list[$:/StoryList]] +[field:title[$:/TagManager]]\" emptyMessage=<<control-panel-button>>>\n<<control-panel-button \"tc-selected\">>\n</$list>\n"
},
"$:/core/ui/Buttons/theme": {
"title": "$:/core/ui/Buttons/theme",
"tags": "$:/tags/PageControls",
"caption": "{{$:/core/images/theme-button}} {{$:/language/Buttons/Theme/Caption}}",
"description": "{{$:/language/Buttons/Theme/Hint}}",
"text": "\\whitespace trim\n<span class=\"tc-popup-keep\">\n<$button popup=<<qualify \"$:/state/popup/theme\">> tooltip={{$:/language/Buttons/Theme/Hint}} aria-label={{$:/language/Buttons/Theme/Caption}} class=<<tv-config-toolbar-class>> selectedClass=\"tc-selected\">\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/theme-button}}\n</$list>\n<$text text=\" \"/>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\"><$text text={{$:/language/Buttons/Theme/Caption}}/></span>\n</$list>\n</$button>\n</span>\n<$reveal state=<<qualify \"$:/state/popup/theme\">> type=\"popup\" position=\"below\" animate=\"yes\">\n<div class=\"tc-drop-down\">\n<$linkcatcher to=\"$:/theme\">\n{{$:/snippets/themeswitcher}}\n</$linkcatcher>\n</div>\n</$reveal>\n"
},
"$:/core/ui/Buttons/timestamp": {
"title": "$:/core/ui/Buttons/timestamp",
"tags": "$:/tags/PageControls",
"caption": "{{$:/core/images/timestamp-on}} {{$:/language/Buttons/Timestamp/Caption}}",
"description": "{{$:/language/Buttons/Timestamp/Hint}}",
"text": "\\whitespace trim\n<$reveal type=\"nomatch\" state=\"$:/config/TimestampDisable\" text=\"yes\">\n<$button tooltip={{$:/language/Buttons/Timestamp/On/Hint}} aria-label={{$:/language/Buttons/Timestamp/On/Caption}} class=<<tv-config-toolbar-class>>>\n<$action-setfield $tiddler=\"$:/config/TimestampDisable\" $value=\"yes\"/>\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/timestamp-on}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\"><$text text={{$:/language/Buttons/Timestamp/On/Caption}}/></span>\n</$list>\n</$button>\n</$reveal>\n<$reveal type=\"match\" state=\"$:/config/TimestampDisable\" text=\"yes\">\n<$button tooltip={{$:/language/Buttons/Timestamp/Off/Hint}} aria-label={{$:/language/Buttons/Timestamp/Off/Caption}} class=<<tv-config-toolbar-class>>>\n<$action-setfield $tiddler=\"$:/config/TimestampDisable\" $value=\"no\"/>\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/timestamp-off}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\"><$text text={{$:/language/Buttons/Timestamp/Off/Caption}}/></span>\n</$list>\n</$button>\n</$reveal>\n"
},
"$:/core/ui/Buttons/unfold-all": {
"title": "$:/core/ui/Buttons/unfold-all",
"tags": "$:/tags/PageControls",
"caption": "{{$:/core/images/unfold-all-button}} {{$:/language/Buttons/UnfoldAll/Caption}}",
"description": "{{$:/language/Buttons/UnfoldAll/Hint}}",
"text": "<$button tooltip={{$:/language/Buttons/UnfoldAll/Hint}} aria-label={{$:/language/Buttons/UnfoldAll/Caption}} class=<<tv-config-toolbar-class>>>\n<$action-sendmessage $message=\"tm-unfold-all-tiddlers\" $param=<<currentTiddler>> foldedStatePrefix=\"$:/state/folded/\"/>\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\" variable=\"listItem\">\n{{$:/core/images/unfold-all-button}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\"><$text text={{$:/language/Buttons/UnfoldAll/Caption}}/></span>\n</$list>\n</$button>"
},
"$:/core/ui/PageTemplate/pagecontrols": {
"title": "$:/core/ui/PageTemplate/pagecontrols",
"text": "\\whitespace trim\n\\define config-title()\n$:/config/PageControlButtons/Visibility/$(listItem)$\n\\end\n<div class=\"tc-page-controls\">\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/PageControls]!has[draft.of]]\" variable=\"listItem\">\n<$set name=\"hidden\" value=<<config-title>>>\n<$list filter=\"[<hidden>!text[hide]]\" storyview=\"pop\" variable=\"ignore\">\n<$set name=\"tv-config-toolbar-class\" filter=\"[<tv-config-toolbar-class>] [<listItem>encodeuricomponent[]addprefix[tc-btn-]]\">\n<$transclude tiddler=<<listItem>> mode=\"inline\"/>\n</$set>\n</$list>\n</$set>\n</$list>\n</div>\n"
},
"$:/core/ui/PageStylesheet": {
"title": "$:/core/ui/PageStylesheet",
"text": "\\import [[$:/core/ui/PageMacros]] [all[shadows+tiddlers]tag[$:/tags/Macro]!has[draft.of]]\n\n<$set name=\"currentTiddler\" value={{$:/language}}>\n\n<$set name=\"languageTitle\" value={{!!name}}>\n\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/Stylesheet]!has[draft.of]]\">\n<$transclude mode=\"block\"/>\n</$list>\n\n</$set>\n\n</$set>\n"
},
"$:/core/ui/PageTemplate/alerts": {
"title": "$:/core/ui/PageTemplate/alerts",
"tags": "$:/tags/PageTemplate",
"text": "<div class=\"tc-alerts\">\n\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/Alert]!has[draft.of]]\" template=\"$:/core/ui/AlertTemplate\" storyview=\"pop\"/>\n\n</div>\n"
},
"$:/core/ui/PageTemplate/drafts": {
"title": "$:/core/ui/PageTemplate/drafts",
"tags": "$:/tags/PageTemplate",
"text": "\\whitespace trim\n<$reveal state=\"$:/status/IsReadOnly\" type=\"nomatch\" text=\"yes\" tag=\"div\" class=\"tc-drafts-list\">\n<$list filter=\"[has[draft.of]!sort[modified]] -[list[$:/StoryList]]\">\n<$link>\n{{$:/core/images/edit-button}} <$text text=<<currentTiddler>>/>\n</$link>\n</$list>\n</$reveal>\n"
},
"$:/core/ui/PageTemplate/pluginreloadwarning": {
"title": "$:/core/ui/PageTemplate/pluginreloadwarning",
"tags": "$:/tags/PageTemplate",
"text": "\\define lingo-base() $:/language/\n\n<$list filter=\"[{$:/status/RequireReloadDueToPluginChange}match[yes]]\">\n\n<$reveal type=\"nomatch\" state=\"$:/temp/HidePluginWarning\" text=\"yes\">\n\n<div class=\"tc-plugin-reload-warning\">\n\n<$set name=\"tv-config-toolbar-class\" value=\"\">\n\n<<lingo PluginReloadWarning>> <$button set=\"$:/temp/HidePluginWarning\" setTo=\"yes\" class=\"tc-btn-invisible\">{{$:/core/images/close-button}}</$button>\n\n</$set>\n\n</div>\n\n</$reveal>\n\n</$list>\n"
},
"$:/core/ui/PageTemplate/sidebar": {
"title": "$:/core/ui/PageTemplate/sidebar",
"tags": "$:/tags/PageTemplate",
"text": "\\whitespace trim\n\\define config-title()\n$:/config/SideBarSegments/Visibility/$(listItem)$\n\\end\n\n<$scrollable fallthrough=\"no\" class=\"tc-sidebar-scrollable\">\n\n<div class=\"tc-sidebar-header\">\n\n<$reveal state=\"$:/state/sidebar\" type=\"match\" text=\"yes\" default=\"yes\" retain=\"yes\" animate=\"yes\">\n\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/SideBarSegment]!has[draft.of]]\" variable=\"listItem\">\n\n<$reveal type=\"nomatch\" state=<<config-title>> text=\"hide\" tag=\"div\">\n\n<$transclude tiddler=<<listItem>> mode=\"block\"/>\n\n</$reveal>\n\n</$list>\n\n</$reveal>\n\n</div>\n\n</$scrollable>\n"
},
"$:/core/ui/PageTemplate/story": {
"title": "$:/core/ui/PageTemplate/story",
"tags": "$:/tags/PageTemplate",
"text": "\\whitespace trim\n<section class=\"tc-story-river\">\n\n<section class=\"story-backdrop\">\n\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/AboveStory]!has[draft.of]]\">\n\n<$transclude/>\n\n</$list>\n\n</section>\n\n<$list filter=\"[list[$:/StoryList]]\" history=\"$:/HistoryList\" template={{$:/config/ui/ViewTemplate}} editTemplate={{$:/config/ui/EditTemplate}} storyview={{$:/view}} emptyMessage={{$:/config/EmptyStoryMessage}}/>\n\n<section class=\"story-frontdrop\">\n\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/BelowStory]!has[draft.of]]\">\n\n<$transclude/>\n\n</$list>\n\n</section>\n\n</section>\n"
},
"$:/core/ui/PageTemplate/topleftbar": {
"title": "$:/core/ui/PageTemplate/topleftbar",
"tags": "$:/tags/PageTemplate",
"text": "<span class=\"tc-topbar tc-topbar-left\">\n\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/TopLeftBar]!has[draft.of]]\" variable=\"listItem\" storyview=\"pop\">\n\n<$transclude tiddler=<<listItem>> mode=\"inline\"/>\n\n</$list>\n\n</span>\n"
},
"$:/core/ui/PageTemplate/toprightbar": {
"title": "$:/core/ui/PageTemplate/toprightbar",
"tags": "$:/tags/PageTemplate",
"text": "<span class=\"tc-topbar tc-topbar-right\">\n\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/TopRightBar]!has[draft.of]]\" variable=\"listItem\" storyview=\"pop\">\n\n<$transclude tiddler=<<listItem>> mode=\"inline\"/>\n\n</$list>\n\n</span>\n"
},
"$:/core/ui/PageTemplate": {
"title": "$:/core/ui/PageTemplate",
"name": "{{$:/language/PageTemplate/Name}}",
"description": "{{$:/language/PageTemplate/Description}}",
"text": "\\whitespace trim\n\\define containerClasses()\ntc-page-container tc-page-view-$(storyviewTitle)$ tc-language-$(languageTitle)$\n\\end\n\\import [[$:/core/ui/PageMacros]] [all[shadows+tiddlers]tag[$:/tags/Macro]!has[draft.of]]\n\n<$vars\n\ttv-config-toolbar-icons={{$:/config/Toolbar/Icons}}\n\ttv-config-toolbar-text={{$:/config/Toolbar/Text}}\n\ttv-config-toolbar-class={{$:/config/Toolbar/ButtonClass}}\n\ttv-enable-drag-and-drop={{$:/config/DragAndDrop/Enable}}\n\ttv-show-missing-links={{$:/config/MissingLinks}}\n\tstoryviewTitle={{$:/view}}\n\tlanguageTitle={{{ [{$:/language}get[name]] }}}>\n\n<div class=<<containerClasses>>>\n\n<$navigator story=\"$:/StoryList\" history=\"$:/HistoryList\" openLinkFromInsideRiver={{$:/config/Navigation/openLinkFromInsideRiver}} openLinkFromOutsideRiver={{$:/config/Navigation/openLinkFromOutsideRiver}} relinkOnRename={{$:/config/RelinkOnRename}}>\n\n<$dropzone enable=<<tv-enable-drag-and-drop>>>\n\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/PageTemplate]!has[draft.of]]\" variable=\"listItem\">\n\n<$transclude tiddler=<<listItem>>/>\n\n</$list>\n\n</$dropzone>\n\n</$navigator>\n\n</div>\n\n</$vars>\n"
},
"$:/PaletteManager": {
"title": "$:/PaletteManager",
"text": "\\define lingo-base() $:/language/ControlPanel/Palette/Editor/\n\\define describePaletteColour(colour)\n<$transclude tiddler=\"$:/language/Docs/PaletteColours/$colour$\"><$text text=\"$colour$\"/></$transclude>\n\\end\n\\define edit-colour-placeholder()\n edit $(colourName)$\n\\end\n\\define colour-tooltip(showhide) $showhide$ editor for $(newColourName)$ \n\\define resolve-colour(macrocall)\n\\import $:/core/macros/utils\n\\whitespace trim\n<$wikify name=\"name\" text=\"\"\"$macrocall$\"\"\">\n<<name>>\n</$wikify>\n\\end\n\\define delete-colour-index-actions() <$action-setfield $index=<<colourName>>/>\n\\define palette-manager-colour-row-segment()\n\\whitespace trim\n<$edit-text index=<<colourName>> tag=\"input\" placeholder=<<edit-colour-placeholder>> default=\"\"/>\n<br>\n<$edit-text index=<<colourName>> type=\"color\" tag=\"input\" class=\"tc-palette-manager-colour-input\"/>\n<$list filter=\"[<currentTiddler>getindex<colourName>removeprefix[<<]removesuffix[>>]] [<currentTiddler>getindex<colourName>removeprefix[<$]removesuffix[/>]]\" variable=\"ignore\">\n<$set name=\"state\" value={{{ [[$:/state/palettemanager/]addsuffix<currentTiddler>addsuffix[/]addsuffix<colourName>] }}}>\n<$wikify name=\"newColourName\" text=\"\"\"<$macrocall $name=\"resolve-colour\" macrocall={{{ [<currentTiddler>getindex<colourName>] }}}/>\"\"\">\n<$reveal state=<<state>> type=\"nomatch\" text=\"show\">\n<$button tooltip=<<colour-tooltip show>> aria-label=<<colour-tooltip show>> class=\"tc-btn-invisible\" set=<<state>> setTo=\"show\">{{$:/core/images/down-arrow}}<$text text=<<newColourName>> class=\"tc-small-gap-left\"/></$button><br>\n</$reveal>\n<$reveal state=<<state>> type=\"match\" text=\"show\">\n<$button tooltip=<<colour-tooltip hide>> aria-label=<<colour-tooltip show>> class=\"tc-btn-invisible\" actions=\"\"\"<$action-deletetiddler $tiddler=<<state>>/>\"\"\">{{$:/core/images/up-arrow}}<$text text=<<newColourName>> class=\"tc-small-gap-left\"/></$button><br>\n</$reveal>\n<$reveal state=<<state>> type=\"match\" text=\"show\">\n<$set name=\"colourName\" value=<<newColourName>>>\n<br>\n<<palette-manager-colour-row-segment>>\n<br><br>\n</$set>\n</$reveal>\n</$wikify>\n</$set>\n</$list>\n\\end\n\\define palette-manager-colour-row()\n\\whitespace trim\n<tr>\n<td>\n<span style=\"float:right;\">\n<$button tooltip={{$:/language/ControlPanel/Palette/Editor/Delete/Hint}} aria-label=<<lingo Delete/Hint>> class=\"tc-btn-invisible\" actions=<<delete-colour-index-actions>>>\n{{$:/core/images/delete-button}}</$button>\n</span>\n''<$macrocall $name=\"describePaletteColour\" colour=<<colourName>>/>''<br/>\n<$macrocall $name=\"colourName\" $output=\"text/plain\"/>\n</td>\n<td>\n<<palette-manager-colour-row-segment>>\n</td>\n</tr>\n\\end\n\\define palette-manager-table()\n\\whitespace trim\n<table>\n<tbody>\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/Palette]indexes[]]\" variable=\"colourName\">\n<$list filter=\"[<currentTiddler>indexes[]removeprefix<colourName>suffix[]]\" variable=\"ignore\" emptyMessage=\"\"\"\n<$list filter=\"[{$:/state/palettemanager/showexternal}removeprefix[yes]suffix[]]\" variable=\"ignore\">\n<<palette-manager-colour-row>>\n</$list>\n\"\"\">\n<<palette-manager-colour-row>>\n</$list>\n</$list>\n</tbody>\n</table>\n\\end\n<$set name=\"currentTiddler\" value={{$:/palette}}>\n\n<<lingo Prompt>> <$link to={{$:/palette}}><$macrocall $name=\"currentTiddler\" $output=\"text/plain\"/></$link>\n\n<$list filter=\"[all[current]is[shadow]is[tiddler]]\" variable=\"listItem\">\n<<lingo Prompt/Modified>>\n<$button message=\"tm-delete-tiddler\" param={{$:/palette}}><<lingo Reset/Caption>></$button>\n</$list>\n\n<$list filter=\"[all[current]is[shadow]!is[tiddler]]\" variable=\"listItem\">\n<<lingo Clone/Prompt>>\n</$list>\n\n<$button message=\"tm-new-tiddler\" param={{$:/palette}}><<lingo Clone/Caption>></$button>\n\n<$checkbox tiddler=\"$:/state/palettemanager/showexternal\" field=\"text\" checked=\"yes\" unchecked=\"no\"><span class=\"tc-small-gap-left\"><<lingo Names/External/Show>></span></$checkbox>\n\n<<palette-manager-table>>\n"
},
"$:/core/ui/PluginInfo": {
"title": "$:/core/ui/PluginInfo",
"text": "\\define localised-info-tiddler-title()\n$(currentTiddler)$/$(languageTitle)$/$(currentTab)$\n\\end\n\\define info-tiddler-title()\n$(currentTiddler)$/$(currentTab)$\n\\end\n\\define default-tiddler-title()\n$:/core/ui/PluginInfo/Default/$(currentTab)$\n\\end\n<$transclude tiddler=<<localised-info-tiddler-title>> mode=\"block\">\n<$transclude tiddler=<<currentTiddler>> subtiddler=<<localised-info-tiddler-title>> mode=\"block\">\n<$transclude tiddler=<<currentTiddler>> subtiddler=<<info-tiddler-title>> mode=\"block\">\n<$transclude tiddler=<<default-tiddler-title>> mode=\"block\">\n{{$:/language/ControlPanel/Plugin/NoInfoFound/Hint}}\n</$transclude>\n</$transclude>\n</$transclude>\n</$transclude>\n"
},
"$:/core/ui/PluginInfo/Default/contents": {
"title": "$:/core/ui/PluginInfo/Default/contents",
"text": "\\define lingo-base() $:/language/TiddlerInfo/Advanced/PluginInfo/\n<<lingo Hint>>\n<ul>\n<$list filter=\"[all[current]plugintiddlers[]sort[title]]\" emptyMessage=<<lingo Empty/Hint>>>\n<li>\n<$link />\n</li>\n</$list>\n</ul>\n"
},
"$:/core/ui/PluginListItemTemplate": {
"title": "$:/core/ui/PluginListItemTemplate",
"text": "<div class=\"tc-menu-list-item\">\n<$link to={{!!title}}><$view field=\"description\"><$view field=\"title\"/></$view></$link>\n</div>"
},
"$:/core/ui/RootTemplate": {
"title": "$:/core/ui/RootTemplate",
"text": "<$transclude tiddler={{{ [{$:/layout}has[text]] ~[[$:/core/ui/PageTemplate]] }}} mode=\"inline\"/>\n\n"
},
"$:/core/ui/SearchResults": {
"title": "$:/core/ui/SearchResults",
"text": "<div class=\"tc-search-results\">\n\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/SearchResults]!has[draft.of]butfirst[]limit[1]]\" emptyMessage=\"\"\"\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/SearchResults]!has[draft.of]]\">\n<$transclude mode=\"block\"/>\n</$list>\n\"\"\">\n\n<$macrocall $name=\"tabs\" tabsList=\"[all[shadows+tiddlers]tag[$:/tags/SearchResults]!has[draft.of]]\" default={{$:/config/SearchResults/Default}} actions=\"\"\"<$action-setfield $tiddler=\"$:/state/search/currentTab\" text=<<currentTab>>/>\"\"\" explicitState=\"$:/state/tab/search-results/sidebar\"/>\n\n</$list>\n\n</div>\n"
},
"$:/core/ui/SideBar/More": {
"title": "$:/core/ui/SideBar/More",
"tags": "$:/tags/SideBar",
"caption": "{{$:/language/SideBar/More/Caption}}",
"text": "<div class=\"tc-more-sidebar\">\n<$macrocall $name=\"tabs\" tabsList=\"[all[shadows+tiddlers]tag[$:/tags/MoreSideBar]!has[draft.of]]\" default={{$:/config/DefaultMoreSidebarTab}} state=\"$:/state/tab/moresidebar\" class=\"tc-vertical tc-sidebar-tabs-more\" explicitState=\"$:/state/tab/moresidebar-1850697562\"/>\n</div>\n"
},
"$:/core/ui/SideBar/Open": {
"title": "$:/core/ui/SideBar/Open",
"tags": "$:/tags/SideBar",
"caption": "{{$:/language/SideBar/Open/Caption}}",
"text": "\\whitespace trim\n\\define lingo-base() $:/language/CloseAll/\n\n\\define drop-actions()\n<$action-listops $tiddler=<<tv-story-list>> $subfilter=\"+[insertbefore:currentTiddler<actionTiddler>]\"/>\n\\end\n\n\\define placeholder()\n<div class=\"tc-droppable-placeholder\"/>\n\\end\n\n\\define droppable-item(button)\n\\whitespace trim\n<$droppable actions=<<drop-actions>> enable=<<tv-allow-drag-and-drop>>>\n<<placeholder>>\n<div>\n$button$\n</div>\n</$droppable>\n\\end\n\n<div class=\"tc-sidebar-tab-open\">\n<$list filter=\"[list<tv-story-list>]\" history=<<tv-history-list>> storyview=\"pop\">\n<div class=\"tc-sidebar-tab-open-item\">\n<$macrocall $name=\"droppable-item\" button=\"\"\"<$button message=\"tm-close-tiddler\" tooltip={{$:/language/Buttons/Close/Hint}} aria-label={{$:/language/Buttons/Close/Caption}} class=\"tc-btn-invisible tc-btn-mini tc-small-gap-right\">{{$:/core/images/close-button}}</$button><$link to={{!!title}}><$view field=\"title\"/></$link>\"\"\"/>\n</div>\n</$list>\n<$tiddler tiddler=\"\">\n<div>\n<$macrocall $name=\"droppable-item\" button=\"\"\"<$button message=\"tm-close-all-tiddlers\" class=\"tc-btn-invisible tc-btn-mini\"><<lingo Button>></$button>\"\"\"/>\n</div>\n</$tiddler>\n</div>\n"
},
"$:/core/ui/SideBar/Recent": {
"title": "$:/core/ui/SideBar/Recent",
"tags": "$:/tags/SideBar",
"caption": "{{$:/language/SideBar/Recent/Caption}}",
"text": "<$macrocall $name=\"timeline\" format={{$:/language/RecentChanges/DateFormat}}/>\n"
},
"$:/core/ui/SideBar/Tools": {
"title": "$:/core/ui/SideBar/Tools",
"tags": "$:/tags/SideBar",
"caption": "{{$:/language/SideBar/Tools/Caption}}",
"text": "\\define lingo-base() $:/language/ControlPanel/\n\\define config-title()\n$:/config/PageControlButtons/Visibility/$(listItem)$\n\\end\n\n<<lingo Basics/Version/Prompt>> <<version>>\n\n<$set name=\"tv-config-toolbar-icons\" value=\"yes\">\n\n<$set name=\"tv-config-toolbar-text\" value=\"yes\">\n\n<$set name=\"tv-config-toolbar-class\" value=\"\">\n\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/PageControls]!has[draft.of]]\" variable=\"listItem\">\n\n<div style=\"position:relative;\" class={{{ [<listItem>encodeuricomponent[]addprefix[tc-btn-]] }}}>\n\n<$checkbox tiddler=<<config-title>> field=\"text\" checked=\"show\" unchecked=\"hide\" default=\"show\"/> <$transclude tiddler=<<listItem>>/> <i class=\"tc-muted\"><$transclude tiddler=<<listItem>> field=\"description\"/></i>\n\n</div>\n\n</$list>\n\n</$set>\n\n</$set>\n\n</$set>\n"
},
"$:/core/ui/SideBarLists": {
"title": "$:/core/ui/SideBarLists",
"text": "<$transclude tiddler=\"$:/core/ui/SideBarSegments/search\"/>\n\n<$transclude tiddler=\"$:/core/ui/SideBarSegments/tabs\"/>\n\n"
},
"$:/core/ui/SideBarSegments/page-controls": {
"title": "$:/core/ui/SideBarSegments/page-controls",
"tags": "$:/tags/SideBarSegment",
"text": "{{||$:/core/ui/PageTemplate/pagecontrols}}\n"
},
"$:/core/ui/SideBarSegments/search": {
"title": "$:/core/ui/SideBarSegments/search",
"tags": "$:/tags/SideBarSegment",
"text": "\\whitespace trim\n\n\\define count-popup-button()\n\\whitespace trim\n<$button popup=<<qualify \"$:/state/popup/search-dropdown\">> class=\"tc-btn-invisible\">\n{{$:/core/images/down-arrow}}\n<$list filter=\"[{$(searchTiddler)$}minlength{$:/config/Search/MinLength}limit[1]]\" variable=\"listItem\">\n<$vars userInput={{{ [<searchTiddler>get[text]] }}} configTiddler={{{ [[$:/state/search/currentTab]!is[missing]get[text]] ~[{$:/config/SearchResults/Default}] }}} replaceRegexp=\"limit\\[\\d+\\]\">\n<$vars primaryListFilter={{{ [<configTiddler>get[first-search-filter]search-replace:g:regexp<replaceRegexp>,[]] }}} secondaryListFilter={{{ [<configTiddler>get[second-search-filter]search-replace:g:regexp<replaceRegexp>,[]] }}}>\n<$set name=\"resultCount\" value=\"\"\"<$count filter=\"[subfilter<primaryListFilter>] [subfilter<secondaryListFilter>]\"/>\"\"\">\n{{$:/language/Search/Matches}}\n</$set>\n</$vars>\n</$vars>\n</$list>\n</$button>\n\\end\n\n\\define search-results-list()\n\\whitespace trim\n<$vars userInput={{$(searchTiddler)$}} configTiddler={{{ [[$:/state/search/currentTab]!is[missing]get[text]] ~[{$:/config/SearchResults/Default}] }}}>\n<$list filter=\"[<userInput>minlength{$:/config/Search/MinLength}limit[1]]\" emptyMessage=\"\"\"<div class=\"tc-search-results\">{{$:/language/Search/Search/TooShort}}</div>\"\"\" variable=\"listItem\">\n\n<$tiddler tiddler=<<configTiddler>>>\n\n{{$:/core/ui/SearchResults}}\n\n</$tiddler>\n\n</$list>\n</$vars>\n\\end\n\n\\define cancel-search-actions() <$list filter=\"[<searchTiddler>get[text]!match{$:/temp/search}]\" emptyMessage=\"\"\"<$action-deletetiddler $filter=\"[[$:/temp/search]] [<searchTiddler>] [<searchListState>]\"/>\"\"\"><$action-setfield $tiddler=\"$:/temp/search\" text={{{ [<searchTiddler>get[text]] }}}/><$action-setfield $tiddler=\"$:/temp/search/refresh\" text=\"yes\"/></$list>\n\n\\define input-accept-actions() <$list filter=\"[{$:/config/Search/NavigateOnEnter/enable}match[yes]]\" emptyMessage=\"\"\"<$list filter=\"[<__tiddler__>get[text]!is[missing]] ~[<__tiddler__>get[text]is[shadow]]\"><$action-navigate $to={{{ [<__tiddler__>get[text]] }}}/></$list>\"\"\"><$action-navigate $to={{{ [<__tiddler__>get[text]] }}}/></$list>\n\n\\define input-accept-variant-actions() <$list filter=\"[{$:/config/Search/NavigateOnEnter/enable}match[yes]]\" emptyMessage=\"\"\"<$list filter=\"[<__tiddler__>get[text]!is[missing]] ~[<__tiddler__>get[text]is[shadow]]\"><$list filter=\"[<__tiddler__>get[text]minlength[1]]\"><$action-sendmessage $message=\"tm-edit-tiddler\" $param={{{ [<__tiddler__>get[text]] }}}/></$list></$list>\"\"\"><$list filter=\"[<__tiddler__>get[text]minlength[1]]\"><$action-sendmessage $message=\"tm-edit-tiddler\" $param={{{ [<__tiddler__>get[text]] }}}/></$list></$list>\n\n\\define set-next-input-tab(beforeafter:\"after\") <$macrocall $name=\"change-input-tab\" stateTitle=\"$:/state/tab/search-results/sidebar\" tag=\"$:/tags/SearchResults\" beforeafter=\"$beforeafter$\" defaultState={{$:/config/SearchResults/Default}} actions=\"\"\"<$action-setfield $tiddler=\"$:/state/search/currentTab\" text=<<nextTab>>/>\"\"\"/>\n\n\\define advanced-search-actions() <$action-setfield $tiddler=\"$:/temp/advancedsearch\" text={{$:/temp/search/input}}/><$action-setfield $tiddler=\"$:/temp/advancedsearch/input\" text={{$:/temp/search/input}}/><<delete-state-tiddlers>><$action-navigate $to=\"$:/AdvancedSearch\"/><$action-setfield $tiddler=\"$:/temp/advancedsearch/refresh\" text=\"yes\"/><$action-sendmessage $message=\"tm-focus-selector\" $param=\"\"\"[data-tiddler-title=\"$:/AdvancedSearch\"] .tc-search input\"\"\" preventScroll=\"true\"/><$action-deletetiddler $filter=\"$:/temp/search $:/temp/search/input $:/temp/search/refresh [<searchListState>]\"/>\n\n<div class=\"tc-sidebar-lists tc-sidebar-search\">\n\n<$vars editTiddler=\"$:/temp/search\" searchTiddler=\"$:/temp/search/input\" searchListState=<<qualify \"$:/state/search-list/selected-item\">>>\n<div class=\"tc-search\">\n<$keyboard key=\"((input-tab-right))\" actions=<<set-next-input-tab>>>\n<$keyboard key=\"((input-tab-left))\" actions=<<set-next-input-tab \"before\">>>\n<$keyboard key=\"((advanced-search-sidebar))\" actions=<<advanced-search-actions>>>\n<$macrocall $name=\"keyboard-driven-input\" tiddler=<<editTiddler>> storeTitle=<<searchTiddler>> \n\t\tselectionStateTitle=<<searchListState>> refreshTitle=\"$:/temp/search/refresh\" type=\"search\" \n\t\ttag=\"input\" focus={{$:/config/Search/AutoFocus}} focusPopup=<<qualify \"$:/state/popup/search-dropdown\">> \n\t\tclass=\"tc-popup-handle\" filterMinLength={{$:/config/Search/MinLength}} inputCancelActions=<<cancel-search-actions>> \n\t\tinputAcceptActions=<<input-accept-actions>> inputAcceptVariantActions=<<input-accept-variant-actions>> cancelPopups=\"yes\" \n\t\tconfigTiddlerFilter=\"[[$:/state/search/currentTab]!is[missing]get[text]] ~[{$:/config/SearchResults/Default}]\"/>\n</$keyboard>\n</$keyboard>\n</$keyboard>\n<$reveal state=<<searchTiddler>> type=\"nomatch\" text=\"\">\n<$button tooltip={{$:/language/Buttons/AdvancedSearch/Hint}} aria-label={{$:/language/Buttons/AdvancedSearch/Caption}} class=\"tc-btn-invisible\">\n<<advanced-search-actions>>\n{{$:/core/images/advanced-search-button}}\n</$button>\n<$button class=\"tc-btn-invisible\">\n<<cancel-search-actions>><$action-sendmessage $message=\"tm-focus-selector\" $param=\".tc-search input\"/>\n{{$:/core/images/close-button}}\n</$button>\n<<count-popup-button>>\n</$reveal>\n<$reveal state=<<searchTiddler>> type=\"match\" text=\"\">\n<$button to=\"$:/AdvancedSearch\" tooltip={{$:/language/Buttons/AdvancedSearch/Hint}} aria-label={{$:/language/Buttons/AdvancedSearch/Caption}} class=\"tc-btn-invisible\">\n{{$:/core/images/advanced-search-button}}\n</$button>\n</$reveal>\n</div>\n\n<$reveal tag=\"div\" class=\"tc-block-dropdown-wrapper\" state=<<searchTiddler>> type=\"nomatch\" text=\"\">\n\n<$reveal tag=\"div\" class=\"tc-block-dropdown tc-search-drop-down tc-popup-handle\" state=<<qualify \"$:/state/popup/search-dropdown\">> type=\"nomatch\" text=\"\" default=\"\">\n\n<<search-results-list>>\n\n</$reveal>\n\n</$reveal>\n\n</$vars>\n\n</div>\n"
},
"$:/core/ui/SideBarSegments/site-subtitle": {
"title": "$:/core/ui/SideBarSegments/site-subtitle",
"tags": "$:/tags/SideBarSegment",
"text": "<div class=\"tc-site-subtitle\">\n\n<$transclude tiddler=\"$:/SiteSubtitle\" mode=\"inline\"/>\n\n</div>\n"
},
"$:/core/ui/SideBarSegments/site-title": {
"title": "$:/core/ui/SideBarSegments/site-title",
"tags": "$:/tags/SideBarSegment",
"text": "<h1 class=\"tc-site-title\">\n\n<$transclude tiddler=\"$:/SiteTitle\" mode=\"inline\"/>\n\n</h1>\n"
},
"$:/core/ui/SideBarSegments/tabs": {
"title": "$:/core/ui/SideBarSegments/tabs",
"tags": "$:/tags/SideBarSegment",
"text": "<div class=\"tc-sidebar-lists tc-sidebar-tabs\">\n\n<$macrocall $name=\"tabs\" tabsList=\"[all[shadows+tiddlers]tag[$:/tags/SideBar]!has[draft.of]]\" default={{$:/config/DefaultSidebarTab}} state=\"$:/state/tab/sidebar\" class=\"tc-sidebar-tabs-main\" explicitState=\"$:/state/tab/sidebar--595412856\"/>\n\n</div>\n"
},
"$:/core/ui/SwitcherModal": {
"title": "$:/core/ui/SwitcherModal",
"subtitle": "<$text text={{{[<switch>lookup[$:/language/Switcher/Subtitle/]]}}}/>",
"class": "tc-modal-centered",
"text": "<$tiddler tiddler={{{[<switch>lookup[$:/config/SwitcherTargets/]]}}}>\n\n\n<$transclude/>\n\n\n</$tiddler>"
},
"$:/TagManager": {
"title": "$:/TagManager",
"icon": "$:/core/images/tag-button",
"color": "#bbb",
"text": "\\define lingo-base() $:/language/TagManager/\n\\define iconEditorTab(type)\n\\whitespace trim\n<$link to=\"\"><<lingo Icons/None>></$link>\n<$list filter=\"[all[shadows+tiddlers]is[image]] [all[shadows+tiddlers]tag[$:/tags/Image]] -[type[application/pdf]] +[sort[title]] +[$type$is[system]]\">\n<$link to={{!!title}}>\n<$transclude/> <$view field=\"title\"/>\n</$link>\n</$list>\n\\end\n\\define iconEditor(title)\n\\whitespace trim\n<div class=\"tc-drop-down-wrapper\">\n<$button popupTitle={{{ [[$:/state/popup/icon/]addsuffix<__title__>] }}} class=\"tc-btn-invisible tc-btn-dropdown\">{{$:/core/images/down-arrow}}</$button>\n<$reveal stateTitle={{{ [[$:/state/popup/icon/]addsuffix<__title__>] }}} type=\"popup\" position=\"belowleft\" text=\"\" default=\"\">\n<div class=\"tc-drop-down\">\n<$linkcatcher actions=\"\"\"<$action-setfield $tiddler=<<__title__>> icon=<<navigateTo>>/>\"\"\">\n<<iconEditorTab type:\"!\">>\n<hr/>\n<<iconEditorTab type:\"\">>\n</$linkcatcher>\n</div>\n</$reveal>\n</div>\n\\end\n\\define toggleButton(state)\n\\whitespace trim\n<$reveal stateTitle=<<__state__>> type=\"match\" text=\"closed\" default=\"closed\">\n<$button setTitle=<<__state__>> setTo=\"open\" class=\"tc-btn-invisible tc-btn-dropdown\" selectedClass=\"tc-selected\">\n{{$:/core/images/info-button}}\n</$button>\n</$reveal>\n<$reveal stateTitle=<<__state__>> type=\"match\" text=\"open\" default=\"closed\">\n<$button setTitle=<<__state__>> setTo=\"closed\" class=\"tc-btn-invisible tc-btn-dropdown\" selectedClass=\"tc-selected\">\n{{$:/core/images/info-button}}\n</$button>\n</$reveal>\n\\end\n\\whitespace trim\n<table class=\"tc-tag-manager-table\">\n<tbody>\n<tr>\n<th><<lingo Colour/Heading>></th>\n<th class=\"tc-tag-manager-tag\"><<lingo Tag/Heading>></th>\n<th><<lingo Count/Heading>></th>\n<th><<lingo Icon/Heading>></th>\n<th><<lingo Info/Heading>></th>\n</tr>\n<$list filter=\"[tags[]!is[system]sort[title]]\">\n<tr>\n<td><$edit-text field=\"color\" tag=\"input\" type=\"color\"/></td>\n<td>{{||$:/core/ui/TagTemplate}}</td>\n<td><$count filter=\"[all[current]tagging[]]\"/></td>\n<td>\n<$macrocall $name=\"iconEditor\" title={{!!title}}/>\n</td>\n<td>\n<$macrocall $name=\"toggleButton\" state={{{ [[$:/state/tag-manager/]addsuffix<currentTiddler>] }}} /> \n</td>\n</tr>\n<tr>\n<td></td>\n<td colspan=\"4\">\n<$reveal stateTitle={{{ [[$:/state/tag-manager/]addsuffix<currentTiddler>] }}} type=\"match\" text=\"open\" default=\"\">\n<table>\n<tbody>\n<tr><td><<lingo Colour/Heading>></td><td><$edit-text field=\"color\" tag=\"input\" type=\"text\" size=\"9\"/></td></tr>\n<tr><td><<lingo Icon/Heading>></td><td><$edit-text field=\"icon\" tag=\"input\" size=\"45\"/></td></tr>\n</tbody>\n</table>\n</$reveal>\n</td>\n</tr>\n</$list>\n<tr>\n<td></td>\n<td style=\"position:relative;\">\n{{$:/core/ui/UntaggedTemplate}}\n</td>\n<td>\n<small class=\"tc-menu-list-count\"><$count filter=\"[untagged[]!is[system]] -[tags[]]\"/></small>\n</td>\n<td></td>\n<td></td>\n</tr>\n</tbody>\n</table>\n"
},
"$:/core/ui/TagPickerTagTemplate": {
"title": "$:/core/ui/TagPickerTagTemplate",
"text": "\\whitespace trim\n<$button class=<<button-classes>> tag=\"a\" tooltip={{$:/language/EditTemplate/Tags/Add/Button/Hint}}>\n<$list filter=\"[<saveTiddler>minlength[1]]\">\n<$action-listops $tiddler=<<saveTiddler>> $field=<<tagField>> $subfilter=\"[<tag>]\"/>\n</$list>\n<$set name=\"currentTiddlerCSSEscaped\" value={{{ [<saveTiddler>escapecss[]] }}}>\n<$action-sendmessage $message=\"tm-focus-selector\" $param=<<get-tagpicker-focus-selector>> preventScroll=\"true\"/>\n</$set>\n<<delete-tag-state-tiddlers>>\n<$list filter=\"[<refreshTitle>minlength[1]]\">\n<$action-setfield $tiddler=<<refreshTitle>> text=\"yes\"/>\n</$list>\n<<actions>>\n<$set name=\"backgroundColor\" value={{!!color}}>\n<$wikify name=\"foregroundColor\" text=\"\"\"<$macrocall $name=\"contrastcolour\" target={{!!color}} fallbackTarget=<<fallbackTarget>> colourA=<<colourA>> colourB=<<colourB>>/>\"\"\">\n<span class=\"tc-tag-label tc-btn-invisible\" style=<<tag-pill-styles>>>\n<$transclude tiddler={{!!icon}}/><$view field=\"title\" format=\"text\"/>\n</span>\n</$wikify>\n</$set>\n</$button>\n"
},
"$:/core/ui/TagTemplate": {
"title": "$:/core/ui/TagTemplate",
"text": "\\whitespace trim\n<span class=\"tc-tag-list-item\">\n<$set name=\"transclusion\" value=<<currentTiddler>>>\n<$macrocall $name=\"tag-pill-body\" tag=<<currentTiddler>> icon={{!!icon}} colour={{!!color}} palette={{$:/palette}} element-tag=\"\"\"$button\"\"\" element-attributes=\"\"\"popup=<<qualify \"$:/state/popup/tag\">> dragFilter='[all[current]tagging[]]' tag='span'\"\"\"/>\n<$reveal state=<<qualify \"$:/state/popup/tag\">> type=\"popup\" position=\"below\" animate=\"yes\" class=\"tc-drop-down\">\n<$set name=\"tv-show-missing-links\" value=\"yes\">\n<$transclude tiddler=\"$:/core/ui/ListItemTemplate\"/>\n</$set>\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/TagDropdown]!has[draft.of]]\" variable=\"listItem\"> \n<$transclude tiddler=<<listItem>>/> \n</$list>\n<hr>\n<$macrocall $name=\"list-tagged-draggable\" tag=<<currentTiddler>>/>\n</$reveal>\n</$set>\n</span>\n"
},
"$:/core/ui/TiddlerFieldTemplate": {
"title": "$:/core/ui/TiddlerFieldTemplate",
"text": "<tr class=\"tc-view-field\">\n<td class=\"tc-view-field-name\">\n<$text text=<<listItem>>/>\n</td>\n<td class=\"tc-view-field-value\">\n<$view field=<<listItem>>/>\n</td>\n</tr>"
},
"$:/core/ui/TiddlerFields": {
"title": "$:/core/ui/TiddlerFields",
"text": "<table class=\"tc-view-field-table\">\n<tbody>\n<$list filter=\"[all[current]fields[]sort[title]] -text\" template=\"$:/core/ui/TiddlerFieldTemplate\" variable=\"listItem\"/>\n</tbody>\n</table>\n"
},
"$:/core/ui/TiddlerInfo/Advanced/PluginInfo": {
"title": "$:/core/ui/TiddlerInfo/Advanced/PluginInfo",
"tags": "$:/tags/TiddlerInfo/Advanced",
"text": "\\define lingo-base() $:/language/TiddlerInfo/Advanced/PluginInfo/\n<$list filter=\"[all[current]has[plugin-type]]\">\n\n! <<lingo Heading>>\n\n<<lingo Hint>>\n<ul>\n<$list filter=\"[all[current]plugintiddlers[]sort[title]]\" emptyMessage=<<lingo Empty/Hint>>>\n<li>\n<$link to={{!!title}}>\n<$view field=\"title\"/>\n</$link>\n</li>\n</$list>\n</ul>\n\n</$list>\n"
},
"$:/core/ui/TiddlerInfo/Advanced/ShadowInfo": {
"title": "$:/core/ui/TiddlerInfo/Advanced/ShadowInfo",
"tags": "$:/tags/TiddlerInfo/Advanced",
"text": "\\define lingo-base() $:/language/TiddlerInfo/Advanced/ShadowInfo/\n<$set name=\"infoTiddler\" value=<<currentTiddler>>>\n\n''<<lingo Heading>>''\n\n<$list filter=\"[all[current]!is[shadow]]\">\n\n<<lingo NotShadow/Hint>>\n\n</$list>\n\n<$list filter=\"[all[current]is[shadow]]\">\n\n<<lingo Shadow/Hint>>\n\n<$list filter=\"[all[current]shadowsource[]]\">\n\n<$set name=\"pluginTiddler\" value=<<currentTiddler>>>\n<<lingo Shadow/Source>>\n</$set>\n\n</$list>\n\n<$list filter=\"[all[current]is[shadow]is[tiddler]]\">\n\n<<lingo OverriddenShadow/Hint>>\n\n</$list>\n\n\n</$list>\n</$set>\n"
},
"$:/core/ui/TiddlerInfo/Advanced": {
"title": "$:/core/ui/TiddlerInfo/Advanced",
"tags": "$:/tags/TiddlerInfo",
"caption": "{{$:/language/TiddlerInfo/Advanced/Caption}}",
"text": "<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/TiddlerInfo/Advanced]!has[draft.of]]\" variable=\"listItem\">\n\n<$transclude tiddler=<<listItem>> mode=\"block\"/>\n</$list>\n"
},
"$:/core/ui/TiddlerInfo/Fields": {
"title": "$:/core/ui/TiddlerInfo/Fields",
"tags": "$:/tags/TiddlerInfo",
"caption": "{{$:/language/TiddlerInfo/Fields/Caption}}",
"text": "<$transclude tiddler=\"$:/core/ui/TiddlerFields\"/>\n"
},
"$:/core/ui/TiddlerInfo/List": {
"title": "$:/core/ui/TiddlerInfo/List",
"tags": "$:/tags/TiddlerInfo",
"caption": "{{$:/language/TiddlerInfo/List/Caption}}",
"text": "\\define lingo-base() $:/language/TiddlerInfo/\n<$list filter=\"[list{!!title}]\" emptyMessage=<<lingo List/Empty>> template=\"$:/core/ui/ListItemTemplate\"/>\n"
},
"$:/core/ui/TiddlerInfo/Listed": {
"title": "$:/core/ui/TiddlerInfo/Listed",
"tags": "$:/tags/TiddlerInfo",
"caption": "{{$:/language/TiddlerInfo/Listed/Caption}}",
"text": "\\define lingo-base() $:/language/TiddlerInfo/\n<$list filter=\"[all[current]listed[]!is[system]]\" emptyMessage=<<lingo Listed/Empty>> template=\"$:/core/ui/ListItemTemplate\"/>\n"
},
"$:/core/ui/TiddlerInfo/References": {
"title": "$:/core/ui/TiddlerInfo/References",
"tags": "$:/tags/TiddlerInfo",
"caption": "{{$:/language/TiddlerInfo/References/Caption}}",
"text": "\\define lingo-base() $:/language/TiddlerInfo/\n<$list filter=\"[all[current]backlinks[]sort[title]]\" emptyMessage=<<lingo References/Empty>> template=\"$:/core/ui/ListItemTemplate\">\n</$list>"
},
"$:/core/ui/TiddlerInfo/Tagging": {
"title": "$:/core/ui/TiddlerInfo/Tagging",
"tags": "$:/tags/TiddlerInfo",
"caption": "{{$:/language/TiddlerInfo/Tagging/Caption}}",
"text": "\\define lingo-base() $:/language/TiddlerInfo/\n<$list filter=\"[all[current]tagging[]]\" emptyMessage=<<lingo Tagging/Empty>> template=\"$:/core/ui/ListItemTemplate\"/>\n"
},
"$:/core/ui/TiddlerInfo/Tools": {
"title": "$:/core/ui/TiddlerInfo/Tools",
"tags": "$:/tags/TiddlerInfo",
"caption": "{{$:/language/TiddlerInfo/Tools/Caption}}",
"text": "\\define lingo-base() $:/language/TiddlerInfo/\n\\define config-title()\n$:/config/ViewToolbarButtons/Visibility/$(listItem)$\n\\end\n<$set name=\"tv-config-toolbar-icons\" value=\"yes\">\n\n<$set name=\"tv-config-toolbar-text\" value=\"yes\">\n\n<$set name=\"tv-config-toolbar-class\" value=\"\">\n\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/ViewToolbar]!has[draft.of]]\" variable=\"listItem\">\n\n<$checkbox tiddler=<<config-title>> field=\"text\" checked=\"show\" unchecked=\"hide\" default=\"show\"/> <$transclude tiddler=<<listItem>>/> <i class=\"tc-muted\"><$transclude tiddler=<<listItem>> field=\"description\"/></i>\n\n</$list>\n\n</$set>\n\n</$set>\n\n</$set>\n"
},
"$:/core/ui/TiddlerInfo": {
"title": "$:/core/ui/TiddlerInfo",
"text": "<div style=\"position:relative;\">\n<div class=\"tc-tiddler-controls\" style=\"position:absolute;right:0;\">\n<$reveal state=\"$:/config/TiddlerInfo/Mode\" type=\"match\" text=\"sticky\">\n<$button set=<<tiddlerInfoState>> setTo=\"\" tooltip={{$:/language/Buttons/Info/Hint}} aria-label={{$:/language/Buttons/Info/Caption}} class=\"tc-btn-invisible\">\n{{$:/core/images/close-button}}\n</$button>\n</$reveal>\n</div>\n</div>\n\n<$macrocall $name=\"tabs\" tabsList=\"[all[shadows+tiddlers]tag[$:/tags/TiddlerInfo]!has[draft.of]]\" default={{$:/config/TiddlerInfo/Default}}/>\n"
},
"$:/core/ui/TopBar/menu": {
"title": "$:/core/ui/TopBar/menu",
"tags": "$:/tags/TopRightBar",
"text": "<$list filter=\"[[$:/state/sidebar]get[text]] +[else[yes]!match[no]]\" variable=\"ignore\">\n<$button set=\"$:/state/sidebar\" setTo=\"no\" tooltip={{$:/language/Buttons/HideSideBar/Hint}} aria-label={{$:/language/Buttons/HideSideBar/Caption}} class=\"tc-btn-invisible tc-hide-sidebar-btn\">{{$:/core/images/chevron-right}}</$button>\n</$list>\n<$list filter=\"[[$:/state/sidebar]get[text]] +[else[yes]match[no]]\" variable=\"ignore\">\n<$button set=\"$:/state/sidebar\" setTo=\"yes\" tooltip={{$:/language/Buttons/ShowSideBar/Hint}} aria-label={{$:/language/Buttons/ShowSideBar/Caption}} class=\"tc-btn-invisible tc-show-sidebar-btn\">{{$:/core/images/chevron-left}}</$button>\n</$list>\n"
},
"$:/core/ui/UntaggedTemplate": {
"title": "$:/core/ui/UntaggedTemplate",
"text": "\\define lingo-base() $:/language/SideBar/\n<$button popup=<<qualify \"$:/state/popup/tag\">> class=\"tc-btn-invisible tc-untagged-label tc-tag-label\">\n<<lingo Tags/Untagged/Caption>>\n</$button>\n<$reveal state=<<qualify \"$:/state/popup/tag\">> type=\"popup\" position=\"below\">\n<div class=\"tc-drop-down\">\n<$list filter=\"[untagged[]!is[system]] -[tags[]] +[sort[title]]\" template=\"$:/core/ui/ListItemTemplate\"/>\n</div>\n</$reveal>\n"
},
"$:/core/ui/ViewTemplate/body": {
"title": "$:/core/ui/ViewTemplate/body",
"tags": "$:/tags/ViewTemplate",
"text": "<$reveal tag=\"div\" class=\"tc-tiddler-body\" type=\"nomatch\" stateTitle=<<folded-state>> text=\"hide\" retain=\"yes\" animate=\"yes\">\n\n<$list filter=\"[all[current]!has[plugin-type]!field:hide-body[yes]]\">\n\n<$transclude>\n\n<$transclude tiddler=\"$:/language/MissingTiddler/Hint\"/>\n\n</$transclude>\n\n</$list>\n\n</$reveal>\n"
},
"$:/core/ui/ViewTemplate/classic": {
"title": "$:/core/ui/ViewTemplate/classic",
"tags": "$:/tags/ViewTemplate $:/tags/EditTemplate",
"text": "\\define lingo-base() $:/language/ClassicWarning/\n<$list filter=\"[all[current]type[text/x-tiddlywiki]]\">\n<div class=\"tc-message-box\">\n\n<<lingo Hint>>\n\n<$button set=\"!!type\" setTo=\"text/vnd.tiddlywiki\"><<lingo Upgrade/Caption>></$button>\n\n</div>\n</$list>\n"
},
"$:/core/ui/ViewTemplate/import": {
"title": "$:/core/ui/ViewTemplate/import",
"tags": "$:/tags/ViewTemplate",
"text": "\\define lingo-base() $:/language/Import/\n\n\\define buttons()\n<$button message=\"tm-delete-tiddler\" param=<<currentTiddler>>><<lingo Listing/Cancel/Caption>></$button>\n<$button message=\"tm-perform-import\" param=<<currentTiddler>>><<lingo Listing/Import/Caption>></$button>\n<<lingo Listing/Preview>> <$select tiddler=\"$:/state/importpreviewtype\" default=\"$:/core/ui/ImportPreviews/Text\">\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/ImportPreview]!has[draft.of]]\">\n<option value=<<currentTiddler>>>{{!!caption}}</option>\n</$list>\n</$select>\n\\end\n\n<$list filter=\"[all[current]field:plugin-type[import]]\">\n\n<div class=\"tc-import\">\n\n<<lingo Listing/Hint>>\n\n<<buttons>>\n\n{{||$:/core/ui/ImportListing}}\n\n<<buttons>>\n\n</div>\n\n</$list>\n"
},
"$:/core/ui/ViewTemplate/plugin": {
"title": "$:/core/ui/ViewTemplate/plugin",
"tags": "$:/tags/ViewTemplate",
"text": "<$reveal tag=\"div\" class=\"tc-tiddler-plugin-info\" type=\"nomatch\" stateTitle=<<folded-state>> text=\"hide\" retain=\"yes\" animate=\"yes\">\n\n<$list filter=\"[all[current]has[plugin-type]] -[all[current]field:plugin-type[import]]\">\n<$set name=\"plugin-type\" value={{!!plugin-type}}>\n<$set name=\"default-popup-state\" value=\"yes\">\n<$set name=\"qualified-state\" value=<<qualify \"$:/state/plugin-info\">>>\n{{||$:/core/ui/Components/plugin-info}}\n</$set>\n</$set>\n</$set>\n</$list>\n</$reveal>"
},
"$:/core/ui/ViewTemplate/subtitle": {
"title": "$:/core/ui/ViewTemplate/subtitle",
"tags": "$:/tags/ViewTemplate",
"text": "\\whitespace trim\n<$reveal type=\"nomatch\" stateTitle=<<folded-state>> text=\"hide\" tag=\"div\" retain=\"yes\" animate=\"yes\">\n<div class=\"tc-subtitle\">\n<$link to={{!!modifier}} />\n<$view field=\"modified\" format=\"date\" template={{$:/language/Tiddler/DateFormat}}/>\n</div>\n</$reveal>\n"
},
"$:/core/ui/ViewTemplate/tags": {
"title": "$:/core/ui/ViewTemplate/tags",
"tags": "$:/tags/ViewTemplate",
"text": "<$reveal type=\"nomatch\" stateTitle=<<folded-state>> text=\"hide\" tag=\"div\" retain=\"yes\" animate=\"yes\">\n<div class=\"tc-tags-wrapper\"><$list filter=\"[all[current]tags[]sort[title]]\" template=\"$:/core/ui/TagTemplate\" storyview=\"pop\"/></div>\n</$reveal>\n"
},
"$:/core/ui/ViewTemplate/title": {
"title": "$:/core/ui/ViewTemplate/title",
"tags": "$:/tags/ViewTemplate",
"text": "\\whitespace trim\n\\define title-styles()\nfill:$(foregroundColor)$;\n\\end\n\\define config-title()\n$:/config/ViewToolbarButtons/Visibility/$(listItem)$\n\\end\n<div class=\"tc-tiddler-title\">\n<div class=\"tc-titlebar\">\n<span class=\"tc-tiddler-controls\">\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/ViewToolbar]!has[draft.of]]\" variable=\"listItem\"><$reveal type=\"nomatch\" state=<<config-title>> text=\"hide\"><$set name=\"tv-config-toolbar-class\" filter=\"[<tv-config-toolbar-class>] [<listItem>encodeuricomponent[]addprefix[tc-btn-]]\"><$transclude tiddler=<<listItem>>/></$set></$reveal></$list>\n</span>\n<$set name=\"tv-wikilinks\" value={{$:/config/Tiddlers/TitleLinks}}>\n<$link>\n<$set name=\"foregroundColor\" value={{!!color}}>\n<$list filter=\"[all[current]has[icon]]~[[$:/config/DefaultTiddlerIcon]has[text]]\">\n<span class=\"tc-tiddler-title-icon\" style=<<title-styles>>>\n<$transclude tiddler={{!!icon}}>\n<$transclude tiddler={{$:/config/DefaultTiddlerIcon}}/>\n</$transclude>\n</span>\n</$list>\n</$set>\n<$list filter=\"[all[current]removeprefix[$:/]]\">\n<h2 class=\"tc-title\" title={{$:/language/SystemTiddler/Tooltip}}>\n<span class=\"tc-system-title-prefix\">$:/</span><$text text=<<currentTiddler>>/>\n</h2>\n</$list>\n<$list filter=\"[all[current]!prefix[$:/]]\">\n<h2 class=\"tc-title\">\n<$view field=\"title\"/>\n</h2>\n</$list>\n</$link>\n</$set>\n</div>\n\n<$reveal type=\"nomatch\" text=\"\" default=\"\" state=<<tiddlerInfoState>> class=\"tc-tiddler-info tc-popup-handle\" animate=\"yes\" retain=\"yes\">\n\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/TiddlerInfoSegment]!has[draft.of]] [[$:/core/ui/TiddlerInfo]]\" variable=\"listItem\"><$transclude tiddler=<<listItem>> mode=\"block\"/></$list>\n\n</$reveal>\n</div>"
},
"$:/core/ui/ViewTemplate/unfold": {
"title": "$:/core/ui/ViewTemplate/unfold",
"tags": "$:/tags/ViewTemplate",
"text": "<$reveal tag=\"div\" type=\"nomatch\" state=\"$:/config/ViewToolbarButtons/Visibility/$:/core/ui/Buttons/fold-bar\" text=\"hide\">\n<$reveal tag=\"div\" type=\"nomatch\" stateTitle=<<folded-state>> text=\"hide\" default=\"show\" retain=\"yes\" animate=\"yes\">\n<$button tooltip={{$:/language/Buttons/Fold/Hint}} aria-label={{$:/language/Buttons/Fold/Caption}} class=\"tc-fold-banner\">\n<$action-sendmessage $message=\"tm-fold-tiddler\" $param=<<currentTiddler>> foldedState=<<folded-state>>/>\n{{$:/core/images/chevron-up}}\n</$button>\n</$reveal>\n<$reveal tag=\"div\" type=\"nomatch\" stateTitle=<<folded-state>> text=\"show\" default=\"show\" retain=\"yes\" animate=\"yes\">\n<$button tooltip={{$:/language/Buttons/Unfold/Hint}} aria-label={{$:/language/Buttons/Unfold/Caption}} class=\"tc-unfold-banner\">\n<$action-sendmessage $message=\"tm-fold-tiddler\" $param=<<currentTiddler>> foldedState=<<folded-state>>/>\n{{$:/core/images/chevron-down}}\n</$button>\n</$reveal>\n</$reveal>\n"
},
"$:/core/ui/ViewTemplate": {
"title": "$:/core/ui/ViewTemplate",
"text": "\\define folded-state()\n$:/state/folded/$(currentTiddler)$\n\\end\n\\define cancel-delete-tiddler-actions(message) <$action-sendmessage $message=\"tm-$message$-tiddler\"/>\n\\import [all[shadows+tiddlers]tag[$:/tags/Macro/View]!has[draft.of]]\n<$vars storyTiddler=<<currentTiddler>> tiddlerInfoState=<<qualify \"$:/state/popup/tiddler-info\">>><div data-tiddler-title=<<currentTiddler>> data-tags={{!!tags}} class={{{ tc-tiddler-frame tc-tiddler-view-frame [<currentTiddler>is[tiddler]then[tc-tiddler-exists]] [<currentTiddler>is[missing]!is[shadow]then[tc-tiddler-missing]] [<currentTiddler>is[shadow]then[tc-tiddler-exists tc-tiddler-shadow]] [<currentTiddler>is[shadow]is[tiddler]then[tc-tiddler-overridden-shadow]] [<currentTiddler>is[system]then[tc-tiddler-system]] [{!!class}] [<currentTiddler>tags[]encodeuricomponent[]addprefix[tc-tagged-]] +[join[ ]] }}}><$list filter=\"[all[shadows+tiddlers]tag[$:/tags/ViewTemplate]!has[draft.of]]\" variable=\"listItem\"><$transclude tiddler=<<listItem>>/></$list>\n</div>\n</$vars>\n"
},
"$:/core/ui/Buttons/clone": {
"title": "$:/core/ui/Buttons/clone",
"tags": "$:/tags/ViewToolbar",
"caption": "{{$:/core/images/clone-button}} {{$:/language/Buttons/Clone/Caption}}",
"description": "{{$:/language/Buttons/Clone/Hint}}",
"text": "\\whitespace trim\n<$button message=\"tm-new-tiddler\" param=<<currentTiddler>> tooltip={{$:/language/Buttons/Clone/Hint}} aria-label={{$:/language/Buttons/Clone/Caption}} class=<<tv-config-toolbar-class>>>\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/clone-button}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\">\n<$text text=\" \"/>\n<$text text={{$:/language/Buttons/Clone/Caption}}/>\n</span>\n</$list>\n</$button>"
},
"$:/core/ui/Buttons/close-others": {
"title": "$:/core/ui/Buttons/close-others",
"tags": "$:/tags/ViewToolbar",
"caption": "{{$:/core/images/close-others-button}} {{$:/language/Buttons/CloseOthers/Caption}}",
"description": "{{$:/language/Buttons/CloseOthers/Hint}}",
"text": "\\whitespace trim\n<$button message=\"tm-close-other-tiddlers\" param=<<currentTiddler>> tooltip={{$:/language/Buttons/CloseOthers/Hint}} aria-label={{$:/language/Buttons/CloseOthers/Caption}} class=<<tv-config-toolbar-class>>>\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/close-others-button}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\">\n<$text text=\" \"/>\n<$text text={{$:/language/Buttons/CloseOthers/Caption}}/>\n</span>\n</$list>\n</$button>"
},
"$:/core/ui/Buttons/close": {
"title": "$:/core/ui/Buttons/close",
"tags": "$:/tags/ViewToolbar",
"caption": "{{$:/core/images/close-button}} {{$:/language/Buttons/Close/Caption}}",
"description": "{{$:/language/Buttons/Close/Hint}}",
"text": "\\whitespace trim\n<$button message=\"tm-close-tiddler\" tooltip={{$:/language/Buttons/Close/Hint}} aria-label={{$:/language/Buttons/Close/Caption}} class=<<tv-config-toolbar-class>>>\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/close-button}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\">\n<$text text={{$:/language/Buttons/Close/Caption}}/>\n</span>\n</$list>\n</$button>"
},
"$:/core/ui/Buttons/edit": {
"title": "$:/core/ui/Buttons/edit",
"tags": "$:/tags/ViewToolbar",
"caption": "{{$:/core/images/edit-button}} {{$:/language/Buttons/Edit/Caption}}",
"description": "{{$:/language/Buttons/Edit/Hint}}",
"text": "\\whitespace trim\n<$button message=\"tm-edit-tiddler\" tooltip={{$:/language/Buttons/Edit/Hint}} aria-label={{$:/language/Buttons/Edit/Caption}} class=<<tv-config-toolbar-class>>>\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/edit-button}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\">\n<$text text=\" \"/>\n<$text text={{$:/language/Buttons/Edit/Caption}}/>\n</span>\n</$list>\n</$button>"
},
"$:/core/ui/Buttons/export-tiddler": {
"title": "$:/core/ui/Buttons/export-tiddler",
"tags": "$:/tags/ViewToolbar",
"caption": "{{$:/core/images/export-button}} {{$:/language/Buttons/ExportTiddler/Caption}}",
"description": "{{$:/language/Buttons/ExportTiddler/Hint}}",
"text": "\\define makeExportFilter()\n[[$(currentTiddler)$]]\n\\end\n<$macrocall $name=\"exportButton\" exportFilter=<<makeExportFilter>> lingoBase=\"$:/language/Buttons/ExportTiddler/\" baseFilename=<<currentTiddler>>/>"
},
"$:/core/ui/Buttons/fold-bar": {
"title": "$:/core/ui/Buttons/fold-bar",
"tags": "$:/tags/ViewToolbar",
"caption": "{{$:/core/images/chevron-up}} {{$:/language/Buttons/Fold/FoldBar/Caption}}",
"description": "{{$:/language/Buttons/Fold/FoldBar/Hint}}",
"text": "<!-- This dummy toolbar button is here to allow visibility of the fold-bar to be controlled as if it were a toolbar button -->"
},
"$:/core/ui/Buttons/fold-others": {
"title": "$:/core/ui/Buttons/fold-others",
"tags": "$:/tags/ViewToolbar",
"caption": "{{$:/core/images/fold-others-button}} {{$:/language/Buttons/FoldOthers/Caption}}",
"description": "{{$:/language/Buttons/FoldOthers/Hint}}",
"text": "\\whitespace trim\n<$button tooltip={{$:/language/Buttons/FoldOthers/Hint}} aria-label={{$:/language/Buttons/FoldOthers/Caption}} class=<<tv-config-toolbar-class>>>\n<$action-sendmessage $message=\"tm-fold-other-tiddlers\" $param=<<currentTiddler>> foldedStatePrefix=\"$:/state/folded/\"/>\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\" variable=\"listItem\">\n{{$:/core/images/fold-others-button}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\">\n<$text text=\" \"/>\n<$text text={{$:/language/Buttons/FoldOthers/Caption}}/>\n</span>\n</$list>\n</$button>"
},
"$:/core/ui/Buttons/fold": {
"title": "$:/core/ui/Buttons/fold",
"tags": "$:/tags/ViewToolbar",
"caption": "{{$:/core/images/fold-button}} {{$:/language/Buttons/Fold/Caption}}",
"description": "{{$:/language/Buttons/Fold/Hint}}",
"text": "\\whitespace trim\n<$reveal type=\"nomatch\" stateTitle=<<folded-state>> text=\"hide\" default=\"show\">\n<$button tooltip={{$:/language/Buttons/Fold/Hint}} aria-label={{$:/language/Buttons/Fold/Caption}} class=<<tv-config-toolbar-class>>>\n<$action-sendmessage $message=\"tm-fold-tiddler\" $param=<<currentTiddler>> foldedState=<<folded-state>>/>\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\" variable=\"listItem\">\n{{$:/core/images/fold-button}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\">\n<$text text=\" \"/>\n<$text text={{$:/language/Buttons/Fold/Caption}}/>\n</span>\n</$list>\n</$button>\n</$reveal>\n<$reveal type=\"match\" stateTitle=<<folded-state>> text=\"hide\" default=\"show\">\n<$button tooltip={{$:/language/Buttons/Unfold/Hint}} aria-label={{$:/language/Buttons/Unfold/Caption}} class=<<tv-config-toolbar-class>>>\n<$action-sendmessage $message=\"tm-fold-tiddler\" $param=<<currentTiddler>> foldedState=<<folded-state>>/>\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\" variable=\"listItem\">\n{{$:/core/images/unfold-button}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\">\n<$text text=\" \"/>\n<$text text={{$:/language/Buttons/Unfold/Caption}}/>\n</span>\n</$list>\n</$button>\n</$reveal>\n"
},
"$:/core/ui/Buttons/info": {
"title": "$:/core/ui/Buttons/info",
"tags": "$:/tags/ViewToolbar",
"caption": "{{$:/core/images/info-button}} {{$:/language/Buttons/Info/Caption}}",
"description": "{{$:/language/Buttons/Info/Hint}}",
"text": "\\whitespace trim\n\\define button-content()\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/info-button}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\">\n<$text text={{$:/language/Buttons/Info/Caption}}/>\n</span>\n</$list>\n\\end\n<$reveal state=\"$:/config/TiddlerInfo/Mode\" type=\"match\" text=\"popup\">\n<$button popup=<<tiddlerInfoState>> tooltip={{$:/language/Buttons/Info/Hint}} aria-label={{$:/language/Buttons/Info/Caption}} class=<<tv-config-toolbar-class>> selectedClass=\"tc-selected\">\n<$macrocall $name=\"button-content\" mode=\"inline\"/>\n</$button>\n</$reveal>\n<$reveal state=\"$:/config/TiddlerInfo/Mode\" type=\"match\" text=\"sticky\">\n<$reveal state=<<tiddlerInfoState>> type=\"match\" text=\"\" default=\"\">\n<$button set=<<tiddlerInfoState>> setTo=\"yes\" tooltip={{$:/language/Buttons/Info/Hint}} aria-label={{$:/language/Buttons/Info/Caption}} class=<<tv-config-toolbar-class>> selectedClass=\"tc-selected\">\n<$macrocall $name=\"button-content\" mode=\"inline\"/>\n</$button>\n</$reveal>\n<$reveal state=<<tiddlerInfoState>> type=\"nomatch\" text=\"\" default=\"\">\n<$button set=<<tiddlerInfoState>> setTo=\"\" tooltip={{$:/language/Buttons/Info/Hint}} aria-label={{$:/language/Buttons/Info/Caption}} class=<<tv-config-toolbar-class>> selectedClass=\"tc-selected\">\n<$macrocall $name=\"button-content\" mode=\"inline\"/>\n</$button>\n</$reveal>\n</$reveal>"
},
"$:/core/ui/Buttons/more-tiddler-actions": {
"title": "$:/core/ui/Buttons/more-tiddler-actions",
"tags": "$:/tags/ViewToolbar",
"caption": "{{$:/core/images/down-arrow}} {{$:/language/Buttons/More/Caption}}",
"description": "{{$:/language/Buttons/More/Hint}}",
"text": "\\whitespace trim\n\\define config-title()\n$:/config/ViewToolbarButtons/Visibility/$(listItem)$\n\\end\n<$button popup=<<qualify \"$:/state/popup/more\">> tooltip={{$:/language/Buttons/More/Hint}} aria-label={{$:/language/Buttons/More/Caption}} class=<<tv-config-toolbar-class>> selectedClass=\"tc-selected\">\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/down-arrow}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\">\n<$text text=\" \"/>\n<$text text={{$:/language/Buttons/More/Caption}}/>\n</span>\n</$list>\n</$button>\n<$reveal state=<<qualify \"$:/state/popup/more\">> type=\"popup\" position=\"belowleft\" animate=\"yes\">\n\n<div class=\"tc-drop-down\">\n\n<$set name=\"tv-config-toolbar-icons\" value=\"yes\">\n\n<$set name=\"tv-config-toolbar-text\" value=\"yes\">\n\n<$set name=\"tv-config-toolbar-class\" value=\"tc-btn-invisible\">\n\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/ViewToolbar]!has[draft.of]] -[[$:/core/ui/Buttons/more-tiddler-actions]]\" variable=\"listItem\">\n\n<$reveal type=\"match\" state=<<config-title>> text=\"hide\">\n\n<$set name=\"tv-config-toolbar-class\" filter=\"[<tv-config-toolbar-class>] [<listItem>encodeuricomponent[]addprefix[tc-btn-]]\">\n\n<$transclude tiddler=<<listItem>> mode=\"inline\"/>\n\n</$set>\n\n</$reveal>\n\n</$list>\n\n</$set>\n\n</$set>\n\n</$set>\n\n</div>\n\n</$reveal>"
},
"$:/core/ui/Buttons/new-here": {
"title": "$:/core/ui/Buttons/new-here",
"tags": "$:/tags/ViewToolbar",
"caption": "{{$:/core/images/new-here-button}} {{$:/language/Buttons/NewHere/Caption}}",
"description": "{{$:/language/Buttons/NewHere/Hint}}",
"text": "\\whitespace trim\n\\define newHereActions()\n<$set name=\"tags\" filter=\"[<currentTiddler>] [{$:/config/NewTiddler/Tags}]\">\n<$action-sendmessage $message=\"tm-new-tiddler\" tags=<<tags>>/>\n</$set>\n\\end\n\\define newHereButton()\n<$button actions=<<newHereActions>> tooltip={{$:/language/Buttons/NewHere/Hint}} aria-label={{$:/language/Buttons/NewHere/Caption}} class=<<tv-config-toolbar-class>>>\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/new-here-button}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\">\n<$text text={{$:/language/Buttons/NewHere/Caption}}/>\n</span>\n</$list>\n</$button>\n\\end\n<<newHereButton>>\n"
},
"$:/core/ui/Buttons/new-journal-here": {
"title": "$:/core/ui/Buttons/new-journal-here",
"tags": "$:/tags/ViewToolbar",
"caption": "{{$:/core/images/new-journal-button}} {{$:/language/Buttons/NewJournalHere/Caption}}",
"description": "{{$:/language/Buttons/NewJournalHere/Hint}}",
"text": "\\whitespace trim\n\\define journalButtonTags()\n[[$(currentTiddlerTag)$]] $(journalTags)$\n\\end\n\\define journalButton()\n<$button tooltip={{$:/language/Buttons/NewJournalHere/Hint}} aria-label={{$:/language/Buttons/NewJournalHere/Caption}} class=<<tv-config-toolbar-class>>>\n<$wikify name=\"journalTitle\" text=\"\"\"<$macrocall $name=\"now\" format=<<journalTitleTemplate>>/>\"\"\">\n<$action-sendmessage $message=\"tm-new-tiddler\" title=<<journalTitle>> tags=<<journalButtonTags>>/>\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/new-journal-button}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\">\n<$text text={{$:/language/Buttons/NewJournalHere/Caption}}/>\n</span>\n</$list>\n</$wikify>\n</$button>\n\\end\n<$set name=\"journalTitleTemplate\" value={{$:/config/NewJournal/Title}}>\n<$set name=\"journalTags\" value={{$:/config/NewJournal/Tags}}>\n<$set name=\"currentTiddlerTag\" value=<<currentTiddler>>>\n<<journalButton>>\n</$set>\n</$set>\n</$set>\n"
},
"$:/core/ui/Buttons/open-window": {
"title": "$:/core/ui/Buttons/open-window",
"tags": "$:/tags/ViewToolbar",
"caption": "{{$:/core/images/open-window}} {{$:/language/Buttons/OpenWindow/Caption}}",
"description": "{{$:/language/Buttons/OpenWindow/Hint}}",
"text": "\\whitespace trim\n<$button message=\"tm-open-window\" tooltip={{$:/language/Buttons/OpenWindow/Hint}} aria-label={{$:/language/Buttons/OpenWindow/Caption}} class=<<tv-config-toolbar-class>>>\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/open-window}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\">\n<$text text=\" \"/>\n<$text text={{$:/language/Buttons/OpenWindow/Caption}}/>\n</span>\n</$list>\n</$button>"
},
"$:/core/ui/Buttons/permalink": {
"title": "$:/core/ui/Buttons/permalink",
"tags": "$:/tags/ViewToolbar",
"caption": "{{$:/core/images/permalink-button}} {{$:/language/Buttons/Permalink/Caption}}",
"description": "{{$:/language/Buttons/Permalink/Hint}}",
"text": "\\whitespace trim\n<$button message=\"tm-permalink\" tooltip={{$:/language/Buttons/Permalink/Hint}} aria-label={{$:/language/Buttons/Permalink/Caption}} class=<<tv-config-toolbar-class>>>\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/permalink-button}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\">\n<$text text=\" \"/>\n<$text text={{$:/language/Buttons/Permalink/Caption}}/>\n</span>\n</$list>\n</$button>"
},
"$:/core/ui/Buttons/permaview": {
"title": "$:/core/ui/Buttons/permaview",
"tags": "$:/tags/ViewToolbar $:/tags/PageControls",
"caption": "{{$:/core/images/permaview-button}} {{$:/language/Buttons/Permaview/Caption}}",
"description": "{{$:/language/Buttons/Permaview/Hint}}",
"text": "\\whitespace trim\n<$button message=\"tm-permaview\" tooltip={{$:/language/Buttons/Permaview/Hint}} aria-label={{$:/language/Buttons/Permaview/Caption}} class=<<tv-config-toolbar-class>>>\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/permaview-button}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\">\n<$text text=\" \"/>\n<$text text={{$:/language/Buttons/Permaview/Caption}}/>\n</span>\n</$list>\n</$button>"
},
"$:/DefaultTiddlers": {
"title": "$:/DefaultTiddlers",
"text": "GettingStarted\n"
},
"$:/temp/advancedsearch": {
"title": "$:/temp/advancedsearch",
"text": ""
},
"$:/snippets/allfields": {
"title": "$:/snippets/allfields",
"text": "\\define renderfield(title)\n<tr class=\"tc-view-field\"><td class=\"tc-view-field-name\">''$title$'':</td><td class=\"tc-view-field-value\">//{{$:/language/Docs/Fields/$title$}}//</td></tr>\n\\end\n<table class=\"tc-view-field-table\"><tbody><$list filter=\"[fields[]sort[title]]\" variable=\"listItem\"><$macrocall $name=\"renderfield\" title=<<listItem>>/></$list>\n</tbody></table>\n"
},
"$:/config/AnimationDuration": {
"title": "$:/config/AnimationDuration",
"text": "400"
},
"$:/config/AutoFocus": {
"title": "$:/config/AutoFocus",
"text": "title"
},
"$:/config/AutoSave": {
"title": "$:/config/AutoSave",
"text": "yes"
},
"$:/config/BitmapEditor/Colour": {
"title": "$:/config/BitmapEditor/Colour",
"text": "#444"
},
"$:/config/BitmapEditor/ImageSizes": {
"title": "$:/config/BitmapEditor/ImageSizes",
"text": "[[62px 100px]] [[100px 62px]] [[124px 200px]] [[200px 124px]] [[248px 400px]] [[371px 600px]] [[400px 248px]] [[556px 900px]] [[600px 371px]] [[742px 1200px]] [[900px 556px]] [[1200px 742px]]"
},
"$:/config/BitmapEditor/LineWidth": {
"title": "$:/config/BitmapEditor/LineWidth",
"text": "3px"
},
"$:/config/BitmapEditor/LineWidths": {
"title": "$:/config/BitmapEditor/LineWidths",
"text": "0.25px 0.5px 1px 2px 3px 4px 6px 8px 10px 16px 20px 28px 40px 56px 80px"
},
"$:/config/BitmapEditor/Opacities": {
"title": "$:/config/BitmapEditor/Opacities",
"text": "0.01 0.025 0.05 0.075 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0"
},
"$:/config/BitmapEditor/Opacity": {
"title": "$:/config/BitmapEditor/Opacity",
"text": "1.0"
},
"$:/config/DefaultMoreSidebarTab": {
"title": "$:/config/DefaultMoreSidebarTab",
"text": "$:/core/ui/MoreSideBar/Tags"
},
"$:/config/DefaultSidebarTab": {
"title": "$:/config/DefaultSidebarTab",
"text": "$:/core/ui/SideBar/Open"
},
"$:/config/DownloadSaver/AutoSave": {
"title": "$:/config/DownloadSaver/AutoSave",
"text": "no"
},
"$:/config/Drafts/TypingTimeout": {
"title": "$:/config/Drafts/TypingTimeout",
"text": "400"
},
"$:/config/EditMode/fieldname-filter": {
"title": "$:/config/EditMode/fieldname-filter",
"first-search-filter": "[!is[shadow]!is[system]fields[]search:title<userInput>sort[]] -created -creator -draft.of -draft.title -modified -modifier -tags -text -title -type",
"second-search-filter": "[fields[]search:title<userInput>sort[]] -[!is[shadow]!is[system]fields[]]"
},
"$:/config/EditTabIndex": {
"title": "$:/config/EditTabIndex",
"text": "1\n"
},
"$:/config/EditTemplateFields/Visibility/title": {
"title": "$:/config/EditTemplateFields/Visibility/title",
"text": "hide"
},
"$:/config/EditTemplateFields/Visibility/tags": {
"title": "$:/config/EditTemplateFields/Visibility/tags",
"text": "hide"
},
"$:/config/EditTemplateFields/Visibility/text": {
"title": "$:/config/EditTemplateFields/Visibility/text",
"text": "hide"
},
"$:/config/EditTemplateFields/Visibility/creator": {
"title": "$:/config/EditTemplateFields/Visibility/creator",
"text": "hide"
},
"$:/config/EditTemplateFields/Visibility/created": {
"title": "$:/config/EditTemplateFields/Visibility/created",
"text": "hide"
},
"$:/config/EditTemplateFields/Visibility/modified": {
"title": "$:/config/EditTemplateFields/Visibility/modified",
"text": "hide"
},
"$:/config/EditTemplateFields/Visibility/modifier": {
"title": "$:/config/EditTemplateFields/Visibility/modifier",
"text": "hide"
},
"$:/config/EditTemplateFields/Visibility/type": {
"title": "$:/config/EditTemplateFields/Visibility/type",
"text": "hide"
},
"$:/config/EditTemplateFields/Visibility/draft.title": {
"title": "$:/config/EditTemplateFields/Visibility/draft.title",
"text": "hide"
},
"$:/config/EditTemplateFields/Visibility/draft.of": {
"title": "$:/config/EditTemplateFields/Visibility/draft.of",
"text": "hide"
},
"$:/config/EditTemplateFields/Visibility/revision": {
"title": "$:/config/EditTemplateFields/Visibility/revision",
"text": "hide"
},
"$:/config/EditTemplateFields/Visibility/bag": {
"title": "$:/config/EditTemplateFields/Visibility/bag",
"text": "hide"
},
"$:/config/EditorToolbarButtons/Visibility/$:/core/ui/EditorToolbar/heading-4": {
"title": "$:/config/EditorToolbarButtons/Visibility/$:/core/ui/EditorToolbar/heading-4",
"text": "hide"
},
"$:/config/EditorToolbarButtons/Visibility/$:/core/ui/EditorToolbar/heading-5": {
"title": "$:/config/EditorToolbarButtons/Visibility/$:/core/ui/EditorToolbar/heading-5",
"text": "hide"
},
"$:/config/EditorToolbarButtons/Visibility/$:/core/ui/EditorToolbar/heading-6": {
"title": "$:/config/EditorToolbarButtons/Visibility/$:/core/ui/EditorToolbar/heading-6",
"text": "hide"
},
"$:/config/EditorTypeMappings/image/gif": {
"title": "$:/config/EditorTypeMappings/image/gif",
"text": "bitmap"
},
"$:/config/EditorTypeMappings/image/webp": {
"title": "$:/config/EditorTypeMappings/image/webp",
"text": "bitmap"
},
"$:/config/EditorTypeMappings/image/heic": {
"title": "$:/config/EditorTypeMappings/image/heic",
"text": "bitmap"
},
"$:/config/EditorTypeMappings/image/heif": {
"title": "$:/config/EditorTypeMappings/image/heif",
"text": "bitmap"
},
"$:/config/EditorTypeMappings/image/jpeg": {
"title": "$:/config/EditorTypeMappings/image/jpeg",
"text": "bitmap"
},
"$:/config/EditorTypeMappings/image/jpg": {
"title": "$:/config/EditorTypeMappings/image/jpg",
"text": "bitmap"
},
"$:/config/EditorTypeMappings/image/png": {
"title": "$:/config/EditorTypeMappings/image/png",
"text": "bitmap"
},
"$:/config/EditorTypeMappings/image/x-icon": {
"title": "$:/config/EditorTypeMappings/image/x-icon",
"text": "bitmap"
},
"$:/config/EditorTypeMappings/text/vnd.tiddlywiki": {
"title": "$:/config/EditorTypeMappings/text/vnd.tiddlywiki",
"text": "text"
},
"$:/config/Manager/Show": {
"title": "$:/config/Manager/Show",
"text": "tiddlers"
},
"$:/config/Manager/Filter": {
"title": "$:/config/Manager/Filter",
"text": ""
},
"$:/config/Manager/Order": {
"title": "$:/config/Manager/Order",
"text": "forward"
},
"$:/config/Manager/Sort": {
"title": "$:/config/Manager/Sort",
"text": "title"
},
"$:/config/Manager/System": {
"title": "$:/config/Manager/System",
"text": "system"
},
"$:/config/Manager/Tag": {
"title": "$:/config/Manager/Tag",
"text": ""
},
"$:/state/popup/manager/item/$:/Manager/ItemMain/RawText": {
"title": "$:/state/popup/manager/item/$:/Manager/ItemMain/RawText",
"text": "hide"
},
"$:/config/MissingLinks": {
"title": "$:/config/MissingLinks",
"text": "yes"
},
"$:/config/Navigation/UpdateAddressBar": {
"title": "$:/config/Navigation/UpdateAddressBar",
"text": "no"
},
"$:/config/Navigation/UpdateHistory": {
"title": "$:/config/Navigation/UpdateHistory",
"text": "no"
},
"$:/config/NewImageType": {
"title": "$:/config/NewImageType",
"text": "jpeg"
},
"$:/config/OfficialPluginLibrary": {
"title": "$:/config/OfficialPluginLibrary",
"tags": "$:/tags/PluginLibrary",
"url": "https://tiddlywiki.com/library/v5.1.23/index.html",
"caption": "{{$:/language/OfficialPluginLibrary}}",
"text": "{{$:/language/OfficialPluginLibrary/Hint}}\n"
},
"$:/config/Navigation/openLinkFromInsideRiver": {
"title": "$:/config/Navigation/openLinkFromInsideRiver",
"text": "below"
},
"$:/config/Navigation/openLinkFromOutsideRiver": {
"title": "$:/config/Navigation/openLinkFromOutsideRiver",
"text": "top"
},
"$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/advanced-search": {
"title": "$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/advanced-search",
"text": "hide"
},
"$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/close-all": {
"title": "$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/close-all",
"text": "hide"
},
"$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/encryption": {
"title": "$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/encryption",
"text": "hide"
},
"$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/export-page": {
"title": "$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/export-page",
"text": "hide"
},
"$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/fold-all": {
"title": "$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/fold-all",
"text": "hide"
},
"$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/full-screen": {
"title": "$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/full-screen",
"text": "hide"
},
"$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/home": {
"title": "$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/home",
"text": "hide"
},
"$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/refresh": {
"title": "$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/refresh",
"text": "hide"
},
"$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/import": {
"title": "$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/import",
"text": "hide"
},
"$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/language": {
"title": "$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/language",
"text": "hide"
},
"$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/tag-manager": {
"title": "$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/tag-manager",
"text": "hide"
},
"$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/manager": {
"title": "$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/manager",
"text": "hide"
},
"$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/more-page-actions": {
"title": "$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/more-page-actions",
"text": "hide"
},
"$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/new-journal": {
"title": "$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/new-journal",
"text": "hide"
},
"$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/new-image": {
"title": "$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/new-image",
"text": "hide"
},
"$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/palette": {
"title": "$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/palette",
"text": "hide"
},
"$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/permaview": {
"title": "$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/permaview",
"text": "hide"
},
"$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/print": {
"title": "$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/print",
"text": "hide"
},
"$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/storyview": {
"title": "$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/storyview",
"text": "hide"
},
"$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/timestamp": {
"title": "$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/timestamp",
"text": "hide"
},
"$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/theme": {
"title": "$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/theme",
"text": "hide"
},
"$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/unfold-all": {
"title": "$:/config/PageControlButtons/Visibility/$:/core/ui/Buttons/unfold-all",
"text": "hide"
},
"$:/config/Performance/Instrumentation": {
"title": "$:/config/Performance/Instrumentation",
"text": "no"
},
"$:/config/RegisterPluginType/plugin": {
"title": "$:/config/RegisterPluginType/plugin",
"text": "yes"
},
"$:/config/RegisterPluginType/theme": {
"title": "$:/config/RegisterPluginType/theme",
"text": "no"
},
"$:/config/RegisterPluginType/language": {
"title": "$:/config/RegisterPluginType/language",
"text": "no"
},
"$:/config/RegisterPluginType/info": {
"title": "$:/config/RegisterPluginType/info",
"text": "yes"
},
"$:/config/RegisterPluginType/import": {
"title": "$:/config/RegisterPluginType/import",
"text": "no"
},
"$:/config/SaveWikiButton/Template": {
"title": "$:/config/SaveWikiButton/Template",
"text": "$:/core/save/all"
},
"$:/config/SaverFilter": {
"title": "$:/config/SaverFilter",
"text": "[all[]] -[prefix[$:/HistoryList]] -[prefix[$:/StoryList]] -[status[pending]plugin-type[import]] -[[$:/isEncrypted]] -[[$:/UploadName]] -[prefix[$:/state/]] -[prefix[$:/temp/]]\n"
},
"$:/config/Search/AutoFocus": {
"title": "$:/config/Search/AutoFocus",
"text": "true"
},
"$:/config/Search/MinLength": {
"title": "$:/config/Search/MinLength",
"text": "3"
},
"$:/config/SearchResults/Default": {
"title": "$:/config/SearchResults/Default",
"text": "$:/core/ui/DefaultSearchResultList"
},
"$:/config/Server/ExternalFilters/[all[tiddlers]!is[system]sort[title]]": {
"title": "$:/config/Server/ExternalFilters/[all[tiddlers]!is[system]sort[title]]",
"text": "yes"
},
"$:/config/ShortcutInfo/add-field": {
"title": "$:/config/ShortcutInfo/add-field",
"text": "{{$:/language/EditTemplate/Fields/Add/Button/Hint}}"
},
"$:/config/ShortcutInfo/advanced-search": {
"title": "$:/config/ShortcutInfo/advanced-search",
"text": "{{$:/language/Buttons/AdvancedSearch/Hint}}"
},
"$:/config/ShortcutInfo/advanced-search-sidebar": {
"title": "$:/config/ShortcutInfo/advanced-search-sidebar",
"text": "{{$:/language/Shortcuts/Input/AdvancedSearch/Hint}}"
},
"$:/config/ShortcutInfo/bold": {
"title": "$:/config/ShortcutInfo/bold",
"text": "{{$:/language/Buttons/Bold/Hint}}"
},
"$:/config/ShortcutInfo/cancel-edit-tiddler": {
"title": "$:/config/ShortcutInfo/cancel-edit-tiddler",
"text": "{{$:/language/Buttons/Cancel/Hint}}"
},
"$:/config/ShortcutInfo/change-sidebar-layout": {
"title": "$:/config/ShortcutInfo/change-sidebar-layout",
"text": "{{$:/language/Shortcuts/SidebarLayout/Hint}}"
},
"$:/config/ShortcutInfo/delete-field": {
"title": "$:/config/ShortcutInfo/delete-field",
"text": "{{$:/language/EditTemplate/Field/Remove/Hint}}"
},
"$:/config/ShortcutInfo/excise": {
"title": "$:/config/ShortcutInfo/excise",
"text": "{{$:/language/Buttons/Excise/Hint}}"
},
"$:/config/ShortcutInfo/heading-1": {
"title": "$:/config/ShortcutInfo/heading-1",
"text": "{{$:/language/Buttons/Heading1/Hint}}"
},
"$:/config/ShortcutInfo/heading-2": {
"title": "$:/config/ShortcutInfo/heading-2",
"text": "{{$:/language/Buttons/Heading2/Hint}}"
},
"$:/config/ShortcutInfo/heading-3": {
"title": "$:/config/ShortcutInfo/heading-3",
"text": "{{$:/language/Buttons/Heading3/Hint}}"
},
"$:/config/ShortcutInfo/heading-4": {
"title": "$:/config/ShortcutInfo/heading-4",
"text": "{{$:/language/Buttons/Heading4/Hint}}"
},
"$:/config/ShortcutInfo/heading-5": {
"title": "$:/config/ShortcutInfo/heading-5",
"text": "{{$:/language/Buttons/Heading5/Hint}}"
},
"$:/config/ShortcutInfo/heading-6": {
"title": "$:/config/ShortcutInfo/heading-6",
"text": "{{$:/language/Buttons/Heading6/Hint}}"
},
"$:/config/ShortcutInfo/input-accept": {
"title": "$:/config/ShortcutInfo/input-accept",
"text": "{{$:/language/Shortcuts/Input/Accept/Hint}}"
},
"$:/config/ShortcutInfo/input-accept-variant": {
"title": "$:/config/ShortcutInfo/input-accept-variant",
"text": "{{$:/language/Shortcuts/Input/AcceptVariant/Hint}}"
},
"$:/config/ShortcutInfo/input-cancel": {
"title": "$:/config/ShortcutInfo/input-cancel",
"text": "{{$:/language/Shortcuts/Input/Cancel/Hint}}"
},
"$:/config/ShortcutInfo/input-down": {
"title": "$:/config/ShortcutInfo/input-down",
"text": "{{$:/language/Shortcuts/Input/Down/Hint}}"
},
"$:/config/ShortcutInfo/input-tab-left": {
"title": "$:/config/ShortcutInfo/input-tab-left",
"text": "{{$:/language/Shortcuts/Input/Tab-Left/Hint}}"
},
"$:/config/ShortcutInfo/input-tab-right": {
"title": "$:/config/ShortcutInfo/input-tab-right",
"text": "{{$:/language/Shortcuts/Input/Tab-Right/Hint}}"
},
"$:/config/ShortcutInfo/input-up": {
"title": "$:/config/ShortcutInfo/input-up",
"text": "{{$:/language/Shortcuts/Input/Up/Hint}}"
},
"$:/config/ShortcutInfo/italic": {
"title": "$:/config/ShortcutInfo/italic",
"text": "{{$:/language/Buttons/Italic/Hint}}"
},
"$:/config/ShortcutInfo/layout-switcher": {
"title": "$:/config/ShortcutInfo/layout-switcher",
"text": "{{$:/language/LayoutSwitcher/Description}}"
},
"$:/config/ShortcutInfo/link": {
"title": "$:/config/ShortcutInfo/link",
"text": "{{$:/language/Buttons/Link/Hint}}"
},
"$:/config/ShortcutInfo/linkify": {
"title": "$:/config/ShortcutInfo/linkify",
"text": "{{$:/language/Buttons/Linkify/Hint}}"
},
"$:/config/ShortcutInfo/list-bullet": {
"title": "$:/config/ShortcutInfo/list-bullet",
"text": "{{$:/language/Buttons/ListBullet/Hint}}"
},
"$:/config/ShortcutInfo/list-number": {
"title": "$:/config/ShortcutInfo/list-number",
"text": "{{$:/language/Buttons/ListNumber/Hint}}"
},
"$:/config/ShortcutInfo/mono-block": {
"title": "$:/config/ShortcutInfo/mono-block",
"text": "{{$:/language/Buttons/MonoBlock/Hint}}"
},
"$:/config/ShortcutInfo/mono-line": {
"title": "$:/config/ShortcutInfo/mono-line",
"text": "{{$:/language/Buttons/MonoLine/Hint}}"
},
"$:/config/ShortcutInfo/new-image": {
"title": "$:/config/ShortcutInfo/new-image",
"text": "{{$:/language/Buttons/NewImage/Hint}}"
},
"$:/config/ShortcutInfo/new-journal": {
"title": "$:/config/ShortcutInfo/new-journal",
"text": "{{$:/language/Buttons/NewJournal/Hint}}"
},
"$:/config/ShortcutInfo/new-tiddler": {
"title": "$:/config/ShortcutInfo/new-tiddler",
"text": "{{$:/language/Buttons/NewTiddler/Hint}}"
},
"$:/config/ShortcutInfo/picture": {
"title": "$:/config/ShortcutInfo/picture",
"text": "{{$:/language/Buttons/Picture/Hint}}"
},
"$:/config/ShortcutInfo/preview": {
"title": "$:/config/ShortcutInfo/preview",
"text": "{{$:/language/Buttons/Preview/Hint}}"
},
"$:/config/ShortcutInfo/quote": {
"title": "$:/config/ShortcutInfo/quote",
"text": "{{$:/language/Buttons/Quote/Hint}}"
},
"$:/config/ShortcutInfo/save-tiddler": {
"title": "$:/config/ShortcutInfo/save-tiddler",
"text": "{{$:/language/Buttons/Save/Hint}}"
},
"$:/config/ShortcutInfo/save-wiki": {
"title": "$:/config/ShortcutInfo/save-wiki",
"text": "{{$:/language/Buttons/SaveWiki/Hint}}"
},
"$:/config/ShortcutInfo/sidebar-search": {
"title": "$:/config/ShortcutInfo/sidebar-search",
"text": "{{$:/language/Buttons/SidebarSearch/Hint}}"
},
"$:/config/ShortcutInfo/stamp": {
"title": "$:/config/ShortcutInfo/stamp",
"text": "{{$:/language/Buttons/Stamp/Hint}}"
},
"$:/config/ShortcutInfo/strikethrough": {
"title": "$:/config/ShortcutInfo/strikethrough",
"text": "{{$:/language/Buttons/Strikethrough/Hint}}"
},
"$:/config/ShortcutInfo/subscript": {
"title": "$:/config/ShortcutInfo/subscript",
"text": "{{$:/language/Buttons/Subscript/Hint}}"
},
"$:/config/ShortcutInfo/superscript": {
"title": "$:/config/ShortcutInfo/superscript",
"text": "{{$:/language/Buttons/Superscript/Hint}}"
},
"$:/config/ShortcutInfo/toggle-sidebar": {
"title": "$:/config/ShortcutInfo/toggle-sidebar",
"text": "{{$:/language/Buttons/ToggleSidebar/Hint}}"
},
"$:/config/ShortcutInfo/transcludify": {
"title": "$:/config/ShortcutInfo/transcludify",
"text": "{{$:/language/Buttons/Transcludify/Hint}}"
},
"$:/config/ShortcutInfo/underline": {
"title": "$:/config/ShortcutInfo/underline",
"text": "{{$:/language/Buttons/Underline/Hint}}"
},
"$:/config/SwitcherTargets/layout": {
"title": "$:/config/SwitcherTargets/layout",
"text": "$:/snippets/LayoutSwitcher"
},
"$:/config/SwitcherTargets/language": {
"title": "$:/config/SwitcherTargets/language",
"text": "$:/snippets/languageswitcher"
},
"$:/config/SwitcherTargets/palette": {
"title": "$:/config/SwitcherTargets/palette",
"text": "$:/core/ui/ControlPanel/Palette"
},
"$:/config/SwitcherTargets/theme": {
"title": "$:/config/SwitcherTargets/theme",
"text": "$:/core/ui/ControlPanel/Theme"
},
"$:/config/SyncFilter": {
"title": "$:/config/SyncFilter",
"text": "[is[tiddler]] -[[$:/core]] -[[$:/library/sjcl.js]] -[prefix[$:/boot/]] -[prefix[$:/HistoryList]] -[status[pending]plugin-type[import]] -[[$:/isEncrypted]] -[prefix[$:/status/]] -[prefix[$:/state/]] -[prefix[$:/temp/]]\n"
},
"$:/config/SyncSystemTiddlersFromServer": {
"title": "$:/config/SyncSystemTiddlersFromServer",
"text": "no"
},
"$:/config/Tags/MinLength": {
"title": "$:/config/Tags/MinLength",
"text": "0"
},
"$:/config/TextEditor/EditorHeight/Height": {
"title": "$:/config/TextEditor/EditorHeight/Height",
"text": "400px"
},
"$:/config/TextEditor/EditorHeight/Mode": {
"title": "$:/config/TextEditor/EditorHeight/Mode",
"text": "auto"
},
"$:/config/TiddlerInfo/Default": {
"title": "$:/config/TiddlerInfo/Default",
"text": "$:/core/ui/TiddlerInfo/Fields"
},
"$:/config/TiddlerInfo/Mode": {
"title": "$:/config/TiddlerInfo/Mode",
"text": "popup"
},
"$:/config/Tiddlers/TitleLinks": {
"title": "$:/config/Tiddlers/TitleLinks",
"text": "no"
},
"$:/config/Toolbar/ButtonClass": {
"title": "$:/config/Toolbar/ButtonClass",
"text": "tc-btn-invisible"
},
"$:/config/Toolbar/Icons": {
"title": "$:/config/Toolbar/Icons",
"text": "yes"
},
"$:/config/Toolbar/Text": {
"title": "$:/config/Toolbar/Text",
"text": "no"
},
"$:/config/ViewToolbarButtons/Visibility/$:/core/ui/Buttons/clone": {
"title": "$:/config/ViewToolbarButtons/Visibility/$:/core/ui/Buttons/clone",
"text": "hide"
},
"$:/config/ViewToolbarButtons/Visibility/$:/core/ui/Buttons/close-others": {
"title": "$:/config/ViewToolbarButtons/Visibility/$:/core/ui/Buttons/close-others",
"text": "hide"
},
"$:/config/ViewToolbarButtons/Visibility/$:/core/ui/Buttons/export-tiddler": {
"title": "$:/config/ViewToolbarButtons/Visibility/$:/core/ui/Buttons/export-tiddler",
"text": "hide"
},
"$:/config/ViewToolbarButtons/Visibility/$:/core/ui/Buttons/info": {
"title": "$:/config/ViewToolbarButtons/Visibility/$:/core/ui/Buttons/info",
"text": "hide"
},
"$:/config/ViewToolbarButtons/Visibility/$:/core/ui/Buttons/more-tiddler-actions": {
"title": "$:/config/ViewToolbarButtons/Visibility/$:/core/ui/Buttons/more-tiddler-actions",
"text": "show"
},
"$:/config/ViewToolbarButtons/Visibility/$:/core/ui/Buttons/new-here": {
"title": "$:/config/ViewToolbarButtons/Visibility/$:/core/ui/Buttons/new-here",
"text": "hide"
},
"$:/config/ViewToolbarButtons/Visibility/$:/core/ui/Buttons/new-journal-here": {
"title": "$:/config/ViewToolbarButtons/Visibility/$:/core/ui/Buttons/new-journal-here",
"text": "hide"
},
"$:/config/ViewToolbarButtons/Visibility/$:/core/ui/Buttons/open-window": {
"title": "$:/config/ViewToolbarButtons/Visibility/$:/core/ui/Buttons/open-window",
"text": "hide"
},
"$:/config/ViewToolbarButtons/Visibility/$:/core/ui/Buttons/permalink": {
"title": "$:/config/ViewToolbarButtons/Visibility/$:/core/ui/Buttons/permalink",
"text": "hide"
},
"$:/config/ViewToolbarButtons/Visibility/$:/core/ui/Buttons/permaview": {
"title": "$:/config/ViewToolbarButtons/Visibility/$:/core/ui/Buttons/permaview",
"text": "hide"
},
"$:/config/ViewToolbarButtons/Visibility/$:/core/ui/Buttons/delete": {
"title": "$:/config/ViewToolbarButtons/Visibility/$:/core/ui/Buttons/delete",
"text": "hide"
},
"$:/config/ViewToolbarButtons/Visibility/$:/core/ui/Buttons/fold": {
"title": "$:/config/ViewToolbarButtons/Visibility/$:/core/ui/Buttons/fold",
"text": "hide"
},
"$:/config/ViewToolbarButtons/Visibility/$:/core/ui/Buttons/fold-bar": {
"title": "$:/config/ViewToolbarButtons/Visibility/$:/core/ui/Buttons/fold-bar",
"text": "hide"
},
"$:/config/ViewToolbarButtons/Visibility/$:/core/ui/Buttons/fold-others": {
"title": "$:/config/ViewToolbarButtons/Visibility/$:/core/ui/Buttons/fold-others",
"text": "hide"
},
"$:/config/shortcuts-mac/bold": {
"title": "$:/config/shortcuts-mac/bold",
"text": "meta-B"
},
"$:/config/shortcuts-mac/input-tab-left": {
"title": "$:/config/shortcuts-mac/input-tab-left",
"text": "ctrl-Left"
},
"$:/config/shortcuts-mac/input-tab-right": {
"title": "$:/config/shortcuts-mac/input-tab-right",
"text": "ctrl-Right"
},
"$:/config/shortcuts-mac/italic": {
"title": "$:/config/shortcuts-mac/italic",
"text": "meta-I"
},
"$:/config/shortcuts-mac/underline": {
"title": "$:/config/shortcuts-mac/underline",
"text": "meta-U"
},
"$:/config/shortcuts-mac/new-image": {
"title": "$:/config/shortcuts-mac/new-image",
"text": "ctrl-I"
},
"$:/config/shortcuts-mac/new-journal": {
"title": "$:/config/shortcuts-mac/new-journal",
"text": "ctrl-J"
},
"$:/config/shortcuts-mac/new-tiddler": {
"title": "$:/config/shortcuts-mac/new-tiddler",
"text": "ctrl-N"
},
"$:/config/shortcuts-mac/save-wiki": {
"title": "$:/config/shortcuts-mac/save-wiki",
"text": "meta-S"
},
"$:/config/shortcuts-not-mac/bold": {
"title": "$:/config/shortcuts-not-mac/bold",
"text": "ctrl-B"
},
"$:/config/shortcuts-not-mac/italic": {
"title": "$:/config/shortcuts-not-mac/italic",
"text": "ctrl-I"
},
"$:/config/shortcuts-not-mac/underline": {
"title": "$:/config/shortcuts-not-mac/underline",
"text": "ctrl-U"
},
"$:/config/shortcuts-not-mac/new-image": {
"title": "$:/config/shortcuts-not-mac/new-image",
"text": "alt-I"
},
"$:/config/shortcuts-not-mac/new-journal": {
"title": "$:/config/shortcuts-not-mac/new-journal",
"text": "alt-J"
},
"$:/config/shortcuts-not-mac/new-tiddler": {
"title": "$:/config/shortcuts-not-mac/new-tiddler",
"text": "alt-N"
},
"$:/config/shortcuts/add-field": {
"title": "$:/config/shortcuts/add-field",
"text": "enter"
},
"$:/config/shortcuts/advanced-search": {
"title": "$:/config/shortcuts/advanced-search",
"text": "ctrl-shift-A"
},
"$:/config/shortcuts/advanced-search-sidebar": {
"title": "$:/config/shortcuts/advanced-search-sidebar",
"text": "alt-Enter"
},
"$:/config/shortcuts/cancel-edit-tiddler": {
"title": "$:/config/shortcuts/cancel-edit-tiddler",
"text": "escape"
},
"$:/config/shortcuts/change-sidebar-layout": {
"title": "$:/config/shortcuts/change-sidebar-layout",
"text": "shift-alt-Down"
},
"$:/config/shortcuts/delete-field": {
"title": "$:/config/shortcuts/delete-field",
"text": "shift-alt-D"
},
"$:/config/shortcuts/excise": {
"title": "$:/config/shortcuts/excise",
"text": "ctrl-E"
},
"$:/config/shortcuts/sidebar-search": {
"title": "$:/config/shortcuts/sidebar-search",
"text": "ctrl-shift-F"
},
"$:/config/shortcuts/heading-1": {
"title": "$:/config/shortcuts/heading-1",
"text": "ctrl-1"
},
"$:/config/shortcuts/heading-2": {
"title": "$:/config/shortcuts/heading-2",
"text": "ctrl-2"
},
"$:/config/shortcuts/heading-3": {
"title": "$:/config/shortcuts/heading-3",
"text": "ctrl-3"
},
"$:/config/shortcuts/heading-4": {
"title": "$:/config/shortcuts/heading-4",
"text": "ctrl-4"
},
"$:/config/shortcuts/heading-5": {
"title": "$:/config/shortcuts/heading-5",
"text": "ctrl-5"
},
"$:/config/shortcuts/heading-6": {
"title": "$:/config/shortcuts/heading-6",
"text": "ctrl-6"
},
"$:/config/shortcuts/input-accept": {
"title": "$:/config/shortcuts/input-accept",
"text": "Enter"
},
"$:/config/shortcuts/input-accept-variant": {
"title": "$:/config/shortcuts/input-accept-variant",
"text": "ctrl-Enter"
},
"$:/config/shortcuts/input-cancel": {
"title": "$:/config/shortcuts/input-cancel",
"text": "Escape"
},
"$:/config/shortcuts/input-down": {
"title": "$:/config/shortcuts/input-down",
"text": "Down"
},
"$:/config/shortcuts/input-tab-left": {
"title": "$:/config/shortcuts/input-tab-left",
"text": "alt-Left"
},
"$:/config/shortcuts/input-tab-right": {
"title": "$:/config/shortcuts/input-tab-right",
"text": "alt-Right"
},
"$:/config/shortcuts/input-up": {
"title": "$:/config/shortcuts/input-up",
"text": "Up"
},
"$:/config/shortcuts/layout-switcher": {
"title": "$:/config/shortcuts/layout-switcher",
"text": "ctrl-shift-L"
},
"$:/config/shortcuts/link": {
"title": "$:/config/shortcuts/link",
"text": "ctrl-L"
},
"$:/config/shortcuts/linkify": {
"title": "$:/config/shortcuts/linkify",
"text": "alt-shift-L"
},
"$:/config/shortcuts/list-bullet": {
"title": "$:/config/shortcuts/list-bullet",
"text": "ctrl-shift-L"
},
"$:/config/shortcuts/list-number": {
"title": "$:/config/shortcuts/list-number",
"text": "ctrl-shift-N"
},
"$:/config/shortcuts/mono-block": {
"title": "$:/config/shortcuts/mono-block",
"text": "ctrl-shift-M"
},
"$:/config/shortcuts/mono-line": {
"title": "$:/config/shortcuts/mono-line",
"text": "ctrl-M"
},
"$:/config/shortcuts/picture": {
"title": "$:/config/shortcuts/picture",
"text": "ctrl-shift-I"
},
"$:/config/shortcuts/preview": {
"title": "$:/config/shortcuts/preview",
"text": "alt-P"
},
"$:/config/shortcuts/quote": {
"title": "$:/config/shortcuts/quote",
"text": "ctrl-Q"
},
"$:/config/shortcuts/save-tiddler": {
"title": "$:/config/shortcuts/save-tiddler",
"text": "ctrl+enter"
},
"$:/config/shortcuts/save-wiki": {
"title": "$:/config/shortcuts/save-wiki",
"text": "ctrl-S"
},
"$:/config/shortcuts/stamp": {
"title": "$:/config/shortcuts/stamp",
"text": "ctrl-S"
},
"$:/config/shortcuts/strikethrough": {
"title": "$:/config/shortcuts/strikethrough",
"text": "ctrl-T"
},
"$:/config/shortcuts/subscript": {
"title": "$:/config/shortcuts/subscript",
"text": "ctrl-shift-B"
},
"$:/config/shortcuts/superscript": {
"title": "$:/config/shortcuts/superscript",
"text": "ctrl-shift-P"
},
"$:/config/shortcuts/toggle-sidebar": {
"title": "$:/config/shortcuts/toggle-sidebar",
"text": "alt-shift-S"
},
"$:/config/shortcuts/transcludify": {
"title": "$:/config/shortcuts/transcludify",
"text": "alt-shift-T"
},
"$:/config/ui/EditTemplate": {
"title": "$:/config/ui/EditTemplate",
"text": "$:/core/ui/EditTemplate"
},
"$:/config/ui/ViewTemplate": {
"title": "$:/config/ui/ViewTemplate",
"text": "$:/core/ui/ViewTemplate"
},
"$:/config/WikiParserRules/Inline/wikilink": {
"title": "$:/config/WikiParserRules/Inline/wikilink",
"text": "enable"
},
"$:/snippets/currpalettepreview": {
"title": "$:/snippets/currpalettepreview",
"text": "\\define resolve-colour(macrocall)\n\\import $:/core/macros/utils\n\\whitespace trim\n<$wikify name=\"name\" text=\"\"\"$macrocall$\"\"\">\n<<name>>\n</$wikify>\n\\end\n\\define swatchStyle()\nbackground-color: $(swatchColour)$;\n\\end\n\\define swatch-inner()\n<$set name=\"swatchColour\" value={{##$(colourResolved)$}}>\n<$list filter=\"[<swatchColour>!prefix[<<colour ]!suffix[>>]]\" variable=\"ignore\">\n<div class=\"tc-swatch\" style=<<swatchStyle>> title=<<swatchTitle>>/>\n</$list>\n<$list filter=\"[<swatchColour>prefix[<<colour ]suffix[>>]]\" variable=\"ignore\">\n<$wikify name=\"colourResolved\" text=\"\"\"<$macrocall $name=\"resolve-colour\" macrocall=<<swatchColour>>/>\"\"\">\n<<swatch-inner>>\n</$wikify>\n</$list>\n</$set>\n\\end\n\\define swatch()\n<$set name=\"swatchColour\" value={{##$(colour)$}}>\n<$set name=\"swatchTitle\" value=<<colour>>>\n<$list filter=\"[<swatchColour>!prefix[<<colour ]!suffix[>>]]\" variable=\"ignore\">\n<div class=\"tc-swatch\" style=<<swatchStyle>> title=<<swatchTitle>>/>\n</$list>\n<$list filter=\"[<swatchColour>prefix[<<colour ]suffix[>>]]\" variable=\"ignore\">\n<$wikify name=\"colourResolved\" text=\"\"\"<$macrocall $name=\"resolve-colour\" macrocall=<<swatchColour>>/>\"\"\">\n<<swatch-inner>>\n</$wikify>\n</$list>\n</$set>\n</$set>\n\\end\n<div class=\"tc-swatches-horiz\"><$list filter=\"\nforeground\nbackground\nmuted-foreground\nprimary\npage-background\ntab-background\ntiddler-info-background\n\" variable=\"colour\"><<swatch>></$list></div>\n"
},
"$:/snippets/download-wiki-button": {
"title": "$:/snippets/download-wiki-button",
"text": "\\define lingo-base() $:/language/ControlPanel/Tools/Download/\n<$button class=\"tc-btn-big-green\">\n<$action-sendmessage $message=\"tm-download-file\" $param=\"$:/core/save/all\" filename=\"index.html\"/>\n<<lingo Full/Caption>> {{$:/core/images/save-button}}\n</$button>"
},
"$:/language": {
"title": "$:/language",
"text": "$:/languages/en-GB"
},
"$:/snippets/languageswitcher": {
"title": "$:/snippets/languageswitcher",
"text": "\\define flag-title()\n$(languagePluginTitle)$/icon\n\\end\n\n<$linkcatcher to=\"$:/language\">\n<div class=\"tc-chooser tc-language-chooser\">\n<$list filter=\"[[$:/languages/en-GB]] [plugin-type[language]sort[description]]\">\n<$set name=\"cls\" filter=\"[all[current]field:title{$:/language}]\" value=\"tc-chooser-item tc-chosen\" emptyValue=\"tc-chooser-item\"><div class=<<cls>>>\n<$link>\n<span class=\"tc-image-button\">\n<$set name=\"languagePluginTitle\" value=<<currentTiddler>>>\n<$transclude subtiddler=<<flag-title>>>\n<$list filter=\"[all[current]field:title[$:/languages/en-GB]]\">\n<$transclude tiddler=\"$:/languages/en-GB/icon\"/>\n</$list>\n</$transclude>\n</$set>\n</span>\n<$view field=\"description\">\n<$view field=\"name\">\n<$view field=\"title\"/>\n</$view>\n</$view>\n</$link>\n</div>\n</$set>\n</$list>\n</div>\n</$linkcatcher>"
},
"$:/core/macros/CSS": {
"title": "$:/core/macros/CSS",
"tags": "$:/tags/Macro",
"text": "\\define colour(name)\n<$transclude tiddler={{$:/palette}} index=\"$name$\"><$transclude tiddler=\"$:/palettes/Vanilla\" index=\"$name$\"><$transclude tiddler=\"$:/config/DefaultColourMappings/$name$\"/></$transclude></$transclude>\n\\end\n\n\\define color(name)\n<<colour $name$>>\n\\end\n\n\\define box-shadow(shadow)\n``\n -webkit-box-shadow: $shadow$;\n -moz-box-shadow: $shadow$;\n box-shadow: $shadow$;\n``\n\\end\n\n\\define filter(filter)\n``\n -webkit-filter: $filter$;\n -moz-filter: $filter$;\n filter: $filter$;\n``\n\\end\n\n\\define transition(transition)\n``\n -webkit-transition: $transition$;\n -moz-transition: $transition$;\n transition: $transition$;\n``\n\\end\n\n\\define transform-origin(origin)\n``\n -webkit-transform-origin: $origin$;\n -moz-transform-origin: $origin$;\n transform-origin: $origin$;\n``\n\\end\n\n\\define background-linear-gradient(gradient)\n``\nbackground-image: linear-gradient($gradient$);\nbackground-image: -o-linear-gradient($gradient$);\nbackground-image: -moz-linear-gradient($gradient$);\nbackground-image: -webkit-linear-gradient($gradient$);\nbackground-image: -ms-linear-gradient($gradient$);\n``\n\\end\n\n\\define column-count(columns)\n``\n-moz-column-count: $columns$;\n-webkit-column-count: $columns$;\ncolumn-count: $columns$;\n``\n\\end\n\n\\define datauri(title)\n<$macrocall $name=\"makedatauri\" type={{$title$!!type}} text={{$title$}} _canonical_uri={{$title$!!_canonical_uri}}/>\n\\end\n\n\\define if-sidebar(text)\n<$reveal state=\"$:/state/sidebar\" type=\"match\" text=\"yes\" default=\"yes\">$text$</$reveal>\n\\end\n\n\\define if-no-sidebar(text)\n<$reveal state=\"$:/state/sidebar\" type=\"nomatch\" text=\"yes\" default=\"yes\">$text$</$reveal>\n\\end\n\n\\define if-background-attachment(text)\n<$reveal state=\"$:/themes/tiddlywiki/vanilla/settings/backgroundimage\" type=\"nomatch\" text=\"\">$text$</$reveal>\n\\end\n"
},
"$:/core/macros/colour-picker": {
"title": "$:/core/macros/colour-picker",
"tags": "$:/tags/Macro",
"text": "\\define colour-picker-update-recent()\n<$action-listops\n\t$tiddler=\"$:/config/ColourPicker/Recent\"\n\t$subfilter=\"$(colour-picker-value)$ [list[$:/config/ColourPicker/Recent]remove[$(colour-picker-value)$]] +[limit[8]]\"\n/>\n\\end\n\n\\define colour-picker-inner(actions)\n<$button tag=\"a\" tooltip=\"\"\"$(colour-picker-value)$\"\"\">\n\n$(colour-picker-update-recent)$\n\n$actions$\n\n<span style=\"display:inline-block; background-color: $(colour-picker-value)$; width: 100%; height: 100%; border-radius: 50%;\"/>\n\n</$button>\n\\end\n\n\\define colour-picker-recent-inner(actions)\n<$set name=\"colour-picker-value\" value=\"$(recentColour)$\">\n<$macrocall $name=\"colour-picker-inner\" actions=\"\"\"$actions$\"\"\"/>\n</$set>\n\\end\n\n\\define colour-picker-recent(actions)\n{{$:/language/ColourPicker/Recent}} <$list filter=\"[list[$:/config/ColourPicker/Recent]]\" variable=\"recentColour\">\n<$macrocall $name=\"colour-picker-recent-inner\" actions=\"\"\"$actions$\"\"\"/></$list>\n\\end\n\n\\define colour-picker(actions)\n<div class=\"tc-colour-chooser\">\n\n<$macrocall $name=\"colour-picker-recent\" actions=\"\"\"$actions$\"\"\"/>\n\n---\n\n<$list filter=\"LightPink Pink Crimson LavenderBlush PaleVioletRed HotPink DeepPink MediumVioletRed Orchid Thistle Plum Violet Magenta Fuchsia DarkMagenta Purple MediumOrchid DarkViolet DarkOrchid Indigo BlueViolet MediumPurple MediumSlateBlue SlateBlue DarkSlateBlue Lavender GhostWhite Blue MediumBlue MidnightBlue DarkBlue Navy RoyalBlue CornflowerBlue LightSteelBlue LightSlateGrey SlateGrey DodgerBlue AliceBlue SteelBlue LightSkyBlue SkyBlue DeepSkyBlue LightBlue PowderBlue CadetBlue Azure LightCyan PaleTurquoise Cyan Aqua DarkTurquoise DarkSlateGrey DarkCyan Teal MediumTurquoise LightSeaGreen Turquoise Aquamarine MediumAquamarine MediumSpringGreen MintCream SpringGreen MediumSeaGreen SeaGreen Honeydew LightGreen PaleGreen DarkSeaGreen LimeGreen Lime ForestGreen Green DarkGreen Chartreuse LawnGreen GreenYellow DarkOliveGreen YellowGreen OliveDrab Beige LightGoldenrodYellow Ivory LightYellow Yellow Olive DarkKhaki LemonChiffon PaleGoldenrod Khaki Gold Cornsilk Goldenrod DarkGoldenrod FloralWhite OldLace Wheat Moccasin Orange PapayaWhip BlanchedAlmond NavajoWhite AntiqueWhite Tan BurlyWood Bisque DarkOrange Linen Peru PeachPuff SandyBrown Chocolate SaddleBrown Seashell Sienna LightSalmon Coral OrangeRed DarkSalmon Tomato MistyRose Salmon Snow LightCoral RosyBrown IndianRed Red Brown FireBrick DarkRed Maroon White WhiteSmoke Gainsboro LightGrey Silver DarkGrey Grey DimGrey Black\" variable=\"colour-picker-value\">\n<$macrocall $name=\"colour-picker-inner\" actions=\"\"\"$actions$\"\"\"/>\n</$list>\n\n---\n\n<$edit-text tiddler=\"$:/config/ColourPicker/New\" tag=\"input\" default=\"\" placeholder=\"\"/>\n<$edit-text tiddler=\"$:/config/ColourPicker/New\" type=\"color\" tag=\"input\"/>\n<$set name=\"colour-picker-value\" value={{$:/config/ColourPicker/New}}>\n<$macrocall $name=\"colour-picker-inner\" actions=\"\"\"$actions$\"\"\"/>\n</$set>\n\n</div>\n\n\\end\n"
},
"$:/core/macros/copy-to-clipboard": {
"title": "$:/core/macros/copy-to-clipboard",
"tags": "$:/tags/Macro",
"text": "\\define copy-to-clipboard(src,class:\"tc-btn-invisible\",style)\n<$button class=<<__class__>> style=<<__style__>> message=\"tm-copy-to-clipboard\" param=<<__src__>> tooltip={{$:/language/Buttons/CopyToClipboard/Hint}}>\n{{$:/core/images/copy-clipboard}} <$text text={{$:/language/Buttons/CopyToClipboard/Caption}}/>\n</$button>\n\\end\n\n\\define copy-to-clipboard-above-right(src,class:\"tc-btn-invisible\",style)\n<div style=\"position: relative;\">\n<div style=\"position: absolute; bottom: 0; right: 0;\">\n<$macrocall $name=\"copy-to-clipboard\" src=<<__src__>> class=<<__class__>> style=<<__style__>>/>\n</div>\n</div>\n\\end\n\n"
},
"$:/core/macros/diff": {
"title": "$:/core/macros/diff",
"tags": "$:/tags/Macro",
"text": "\\define compareTiddlerText(sourceTiddlerTitle,sourceSubTiddlerTitle,destTiddlerTitle,destSubTiddlerTitle)\n<$set name=\"source\" tiddler=<<__sourceTiddlerTitle__>> subtiddler=<<__sourceSubTiddlerTitle__>>>\n<$set name=\"dest\" tiddler=<<__destTiddlerTitle__>> subtiddler=<<__destSubTiddlerTitle__>>>\n<$diff-text source=<<source>> dest=<<dest>>/>\n</$set>\n</$set>\n\\end\n\n\\define compareTiddlers(sourceTiddlerTitle,sourceSubTiddlerTitle,destTiddlerTitle,destSubTiddlerTitle,exclude)\n<table class=\"tc-diff-tiddlers\">\n<tbody>\n<$set name=\"sourceFields\" filter=\"[<__sourceTiddlerTitle__>fields[]sort[]]\">\n<$set name=\"destFields\" filter=\"[<__destSubTiddlerTitle__>subtiddlerfields<__destTiddlerTitle__>sort[]]\">\n<$list filter=\"[enlist<sourceFields>] [enlist<destFields>] -[enlist<__exclude__>] +[sort[]]\" variable=\"fieldName\">\n<tr>\n<th>\n<$text text=<<fieldName>>/> \n</th>\n<td>\n<$set name=\"source\" tiddler=<<__sourceTiddlerTitle__>> subtiddler=<<__sourceSubTiddlerTitle__>> field=<<fieldName>>>\n<$set name=\"dest\" tiddler=<<__destTiddlerTitle__>> subtiddler=<<__destSubTiddlerTitle__>> field=<<fieldName>>>\n<$diff-text source=<<source>> dest=<<dest>>>\n</$diff-text>\n</$set>\n</$set>\n</td>\n</tr>\n</$list>\n</$set>\n</$set>\n</tbody>\n</table>\n\\end\n"
},
"$:/core/macros/dumpvariables": {
"title": "$:/core/macros/dumpvariables",
"tags": "$:/tags/Macro",
"text": "\\define dumpvariables()\n<ul>\n<$list filter=\"[variables[]]\" variable=\"varname\">\n<li>\n<strong><code><$text text=<<varname>>/></code></strong>:<br/>\n<$codeblock code={{{ [<varname>getvariable[]] }}}/>\n</li>\n</$list>\n</ul>\n\\end\n"
},
"$:/core/macros/export": {
"title": "$:/core/macros/export",
"tags": "$:/tags/Macro",
"text": "\\define exportButtonFilename(baseFilename)\n$baseFilename$$(extension)$\n\\end\n\n\\define exportButton(exportFilter:\"[!is[system]sort[title]]\",lingoBase,baseFilename:\"tiddlers\")\n<span class=\"tc-popup-keep\"><$button popup=<<qualify \"$:/state/popup/export\">> tooltip={{$lingoBase$Hint}} aria-label={{$lingoBase$Caption}} class=<<tv-config-toolbar-class>> selectedClass=\"tc-selected\">\n<$list filter=\"[<tv-config-toolbar-icons>match[yes]]\">\n{{$:/core/images/export-button}}\n</$list>\n<$list filter=\"[<tv-config-toolbar-text>match[yes]]\">\n<span class=\"tc-btn-text\"><$text text={{$lingoBase$Caption}}/></span>\n</$list>\n</$button></span><$reveal state=<<qualify \"$:/state/popup/export\">> type=\"popup\" position=\"below\" animate=\"yes\">\n<div class=\"tc-drop-down\">\n<$set name=\"count\" value={{{ [subfilter<__exportFilter__>count[]] }}}>\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/Exporter]]\">\n<$list filter=\"[<currentTiddler>has[condition]subfilter{!!condition}limit[1]] ~[<currentTiddler>!has[condition]then[true]]\" variable=\"ignore\">\n<$set name=\"extension\" value={{!!extension}}>\n<$button class=\"tc-btn-invisible\">\n<$action-sendmessage $message=\"tm-download-file\" $param=<<currentTiddler>> exportFilter=<<__exportFilter__>> filename=<<exportButtonFilename \"\"\"$baseFilename$\"\"\">>/>\n<$action-deletetiddler $tiddler=<<qualify \"$:/state/popup/export\">>/>\n<$transclude field=\"description\"/>\n</$button>\n</$set>\n</$list>\n</$list>\n</$set>\n</div>\n</$reveal>\n\\end\n"
},
"$:/core/macros/image-picker": {
"title": "$:/core/macros/image-picker",
"created": "20170715180840889",
"modified": "20170715180914005",
"tags": "$:/tags/Macro",
"type": "text/vnd.tiddlywiki",
"text": "\\define image-picker-thumbnail(actions)\n<$button tag=\"a\" tooltip=\"\"\"$(imageTitle)$\"\"\">\n$actions$\n<$transclude tiddler=<<imageTitle>>/>\n</$button>\n\\end\n\n\\define image-picker-list(filter,actions)\n<$list filter=\"\"\"$filter$\"\"\" variable=\"imageTitle\">\n<$macrocall $name=\"image-picker-thumbnail\" actions=\"\"\"$actions$\"\"\"/>\n</$list>\n\\end\n\n\\define image-picker(actions,filter:\"[all[shadows+tiddlers]is[image]] -[type[application/pdf]] +[!has[draft.of]$subfilter$sort[title]]\",subfilter:\"\")\n<div class=\"tc-image-chooser\">\n<$vars state-system=<<qualify \"$:/state/image-picker/system\">>>\n<$checkbox tiddler=<<state-system>> field=\"text\" checked=\"show\" unchecked=\"hide\" default=\"hide\">\n{{$:/language/SystemTiddlers/Include/Prompt}}\n</$checkbox>\n<$reveal state=<<state-system>> type=\"match\" text=\"hide\" default=\"hide\" tag=\"div\">\n<$macrocall $name=\"image-picker-list\" filter=\"\"\"$filter$ +[!is[system]]\"\"\" actions=\"\"\"$actions$\"\"\"/>\n</$reveal>\n<$reveal state=<<state-system>> type=\"nomatch\" text=\"hide\" default=\"hide\" tag=\"div\">\n<$macrocall $name=\"image-picker-list\" filter=\"\"\"$filter$\"\"\" actions=\"\"\"$actions$\"\"\"/>\n</$reveal>\n</$vars>\n</div>\n\\end\n\n\\define image-picker-include-tagged-images(actions)\n<$macrocall $name=\"image-picker\" filter=\"[all[shadows+tiddlers]is[image]] [all[shadows+tiddlers]tag[$:/tags/Image]] -[type[application/pdf]] +[!has[draft.of]sort[title]]\" actions=\"\"\"$actions$\"\"\"/>\n\\end\n"
},
"$:/core/macros/keyboard-driven-input": {
"title": "$:/core/macros/keyboard-driven-input",
"tags": "$:/tags/Macro",
"text": "\\define change-input-tab(stateTitle,tag,beforeafter,defaultState,actions)\n<$set name=\"tabsList\" filter=\"[all[shadows+tiddlers]tag<__tag__>!has[draft.of]]\">\n<$vars currentState={{{ [<__stateTitle__>!is[missing]get[text]] ~[<__defaultState__>] }}} firstTab={{{ [enlist<tabsList>nth[1]] }}} lastTab={{{ [enlist<tabsList>last[]] }}}>\n<$set name=\"nextTab\" value={{{ [all[shadows+tiddlers]tag<__tag__>!has[draft.of]$beforeafter$<currentState>] ~[[$beforeafter$]removeprefix[after]suffix[]addprefix<firstTab>] ~[[$beforeafter$]removeprefix[before]suffix[]addprefix<lastTab>] }}}>\n<$action-setfield $tiddler=<<__stateTitle__>> text=<<nextTab>>/>\n$actions$\n</$set>\n</$vars>\n</$set>\n\\end\n\n\\define keyboard-input-actions()\n<$list filter=\"[<__index__>match[]]\">\n<$action-setfield $tiddler=<<__storeTitle__>> text={{{ [<__tiddler__>get<__field__>] }}}/>\n</$list>\n<$list filter=\"[<__index__>!match[]]\">\n<$action-setfield $tiddler=<<__storeTitle__>> text={{{ [<__tiddler__>getindex<__index__>] }}}/>\n</$list>\n\\end\n\n\\define input-next-actions-inner()\n<$list filter=\"[<nextItem>minlength[1]]\" variable=\"ignore\">\n<$action-setfield $tiddler=<<__selectionStateTitle__>> text=<<nextItem>>/>\n<$list filter=\"[<__index__>match[]]\">\n<$action-setfield $tiddler=<<__tiddler__>> $field=<<__field__>> $value={{{ [<nextItem>] +[splitregexp[(?:.(?!-))+$]] }}}/>\n</$list>\n<$list filter=\"[<__index__>!match[]]\">\n<$action-setfield $tiddler=<<__tiddler__>> $index=<<__index__>> $value={{{ [<nextItem>] +[splitregexp[(?:.(?!-))+$]] }}}/>\n</$list>\n<$action-setfield $tiddler=<<__refreshTitle__>> text=\"yes\"/>\n</$list>\n\\end\n\n\\define input-next-actions(afterOrBefore:\"after\",reverse:\"\")\n<$list filter=\"[<__storeTitle__>get[text]minlength<__filterMinLength__>] [<__filterMinLength__>match[0]] +[limit[1]]\" variable=\"ignore\">\n<$vars userInput={{{ [<__storeTitle__>get[text]] }}} selectedItem={{{ [<__selectionStateTitle__>get[text]] }}}>\n<$set name=\"configTiddler\" value={{{ [subfilter<__configTiddlerFilter__>] }}}>\n<$vars primaryListFilter={{{ [<configTiddler>get<__firstSearchFilterField__>] }}} secondaryListFilter={{{ [<configTiddler>get<__secondSearchFilterField__>] }}}>\n<$set name=\"filteredList\" filter=\"[subfilter<primaryListFilter>addsuffix[-primaryList]] =[subfilter<secondaryListFilter>addsuffix[-secondaryList]]\">\n<$vars nextItem={{{ [enlist<filteredList>$afterOrBefore$<selectedItem>] ~[enlist<filteredList>$reverse$nth[1]] }}} firstItem={{{ [enlist<filteredList>nth[1]] }}} lastItem={{{ [enlist<filteredList>last[]] }}}>\n<$list filter=\"[<selectedItem>match<firstItem>!match<lastItem>]\" variable=\"ignore\">\n<$set name=\"nextItem\" value={{{ [[$afterOrBefore$]match[before]then<userInput>addsuffix[-userInput]] ~[<nextItem>] }}}>\n<<input-next-actions-inner>>\n</$set>\n</$list>\n<$list filter=\"[<selectedItem>match<lastItem>!match<firstItem>]\" variable=\"ignore\">\n<$set name=\"nextItem\" value={{{ [[$afterOrBefore$]match[after]then<userInput>addsuffix[-userInput]] ~[<nextItem>] }}}>\n<<input-next-actions-inner>>\n</$set>\n</$list>\n<$list filter=\"[<selectedItem>match<firstItem>match<lastItem>]\" variable=\"ignore\">\n<$set name=\"nextItem\" value={{{ [<userInput>addsuffix[-userInput]] }}}>\n<<input-next-actions-inner>>\n</$set>\n</$list>\n<$list filter=\"[<selectedItem>!match<firstItem>!match<lastItem>]\" variable=\"ignore\">\n<<input-next-actions-inner>>\n</$list>\n</$vars>\n</$set>\n</$vars>\n</$set>\n</$vars>\n</$list>\n\\end\n\n\\define keyboard-driven-input(tiddler,storeTitle,field:\"text\",index:\"\",tag:\"input\",type,focus:\"\",inputAcceptActions,inputAcceptVariantActions,inputCancelActions,placeholder:\"\",default:\"\",class,focusPopup,rows,minHeight,tabindex,size,autoHeight,filterMinLength:\"0\",refreshTitle,selectionStateTitle,cancelPopups:\"\",configTiddlerFilter,firstSearchFilterField:\"first-search-filter\",secondSearchFilterField:\"second-search-filter\")\n\\whitespace trim\n<$keyboard key=\"((input-accept))\" actions=<<__inputAcceptActions__>>>\n<$keyboard key=\"((input-accept-variant))\" actions=<<__inputAcceptVariantActions__>>>\n<$keyboard key=\"((input-up))\" actions=<<input-next-actions \"before\" \"reverse[]\">>>\n<$keyboard key=\"((input-down))\" actions=<<input-next-actions>>>\n<$keyboard key=\"((input-cancel))\" actions=<<__inputCancelActions__>>>\n<$edit-text tiddler=<<__tiddler__>> field=<<__field__>> index=<<__index__>> \n\t\tinputActions=<<keyboard-input-actions>> tag=<<__tag__>> class=<<__class__>> \n\t\tplaceholder=<<__placeholder__>> default=<<__default__>> focusPopup=<<__focusPopup__>> \n\t\tfocus=<<__focus__>> type=<<__type__>> rows=<<__rows__>> minHeight=<<__minHeight__>> \n\t\ttabindex=<<__tabindex__>> size=<<__size__>> autoHeight=<<__autoHeight__>> \n\t\trefreshTitle=<<__refreshTitle__>> cancelPopups=<<__cancelPopups__>>/>\n</$keyboard>\n</$keyboard>\n</$keyboard>\n</$keyboard>\n</$keyboard>\n\\end\n"
},
"$:/core/macros/lingo": {
"title": "$:/core/macros/lingo",
"tags": "$:/tags/Macro",
"text": "\\define lingo-base()\n$:/language/\n\\end\n\n\\define lingo(title)\n{{$(lingo-base)$$title$}}\n\\end\n"
},
"$:/core/macros/list": {
"title": "$:/core/macros/list",
"tags": "$:/tags/Macro",
"text": "\\define list-links(filter,type:\"ul\",subtype:\"li\",class:\"\",emptyMessage)\n\\whitespace trim\n<$type$ class=\"$class$\">\n<$list filter=\"$filter$\" emptyMessage=<<__emptyMessage__>>>\n<$subtype$>\n<$link to={{!!title}}>\n<$transclude field=\"caption\">\n<$view field=\"title\"/>\n</$transclude>\n</$link>\n</$subtype$>\n</$list>\n</$type$>\n\\end\n\n\\define list-links-draggable-drop-actions()\n<$action-listops $tiddler=<<targetTiddler>> $field=<<targetField>> $subfilter=\"+[insertbefore:currentTiddler<actionTiddler>]\"/>\n\\end\n\n\\define list-links-draggable(tiddler,field:\"list\",type:\"ul\",subtype:\"li\",class:\"\",itemTemplate)\n\\whitespace trim\n<span class=\"tc-links-draggable-list\">\n<$vars targetTiddler=\"\"\"$tiddler$\"\"\" targetField=\"\"\"$field$\"\"\">\n<$type$ class=\"$class$\">\n<$list filter=\"[list[$tiddler$!!$field$]]\">\n<$droppable actions=<<list-links-draggable-drop-actions>> tag=\"\"\"$subtype$\"\"\" enable=<<tv-enable-drag-and-drop>>>\n<div class=\"tc-droppable-placeholder\"/>\n<div>\n<$transclude tiddler=\"\"\"$itemTemplate$\"\"\">\n<$link to={{!!title}}>\n<$transclude field=\"caption\">\n<$view field=\"title\"/>\n</$transclude>\n</$link>\n</$transclude>\n</div>\n</$droppable>\n</$list>\n<$tiddler tiddler=\"\">\n<$droppable actions=<<list-links-draggable-drop-actions>> tag=\"div\" enable=<<tv-enable-drag-and-drop>>>\n<div class=\"tc-droppable-placeholder\">\n{{$:/core/images/blank}}\n</div>\n<div style=\"height:0.5em;\"/>\n</$droppable>\n</$tiddler>\n</$type$>\n</$vars>\n</span>\n\\end\n\n\\define list-tagged-draggable-drop-actions(tag)\n<!-- Save the current ordering of the tiddlers with this tag -->\n<$set name=\"order\" filter=\"[<__tag__>tagging[]]\">\n<!-- Remove any list-after or list-before fields from the tiddlers with this tag -->\n<$list filter=\"[<__tag__>tagging[]]\">\n<$action-deletefield $field=\"list-before\"/>\n<$action-deletefield $field=\"list-after\"/>\n</$list>\n<!-- Save the new order to the Tag Tiddler -->\n<$action-listops $tiddler=<<__tag__>> $field=\"list\" $filter=\"+[enlist<order>] +[insertbefore:currentTiddler<actionTiddler>]\"/>\n<!-- Make sure the newly added item has the right tag -->\n<!-- Removing this line makes dragging tags within the dropdown work as intended -->\n<!--<$action-listops $tiddler=<<actionTiddler>> $tags=<<__tag__>>/>-->\n<!-- Using the following 5 lines as replacement makes dragging titles from outside into the dropdown apply the tag -->\n<$list filter=\"[<actionTiddler>!contains:tags<__tag__>]\">\n<$fieldmangler tiddler=<<actionTiddler>>>\n<$action-sendmessage $message=\"tm-add-tag\" $param=<<__tag__>>/>\n</$fieldmangler>\n</$list>\n</$set>\n\\end\n\n\\define list-tagged-draggable(tag,subFilter,emptyMessage,itemTemplate,elementTag:\"div\",storyview:\"\")\n\\whitespace trim\n<span class=\"tc-tagged-draggable-list\">\n<$set name=\"tag\" value=<<__tag__>>>\n<$list filter=\"[<__tag__>tagging[]$subFilter$]\" emptyMessage=<<__emptyMessage__>> storyview=<<__storyview__>>>\n<$elementTag$ class=\"tc-menu-list-item\">\n<$droppable actions=\"\"\"<$macrocall $name=\"list-tagged-draggable-drop-actions\" tag=<<__tag__>>/>\"\"\" enable=<<tv-enable-drag-and-drop>>>\n<$elementTag$ class=\"tc-droppable-placeholder\"/>\n<$elementTag$>\n<$transclude tiddler=\"\"\"$itemTemplate$\"\"\">\n<$link to={{!!title}}>\n<$view field=\"title\"/>\n</$link>\n</$transclude>\n</$elementTag$>\n</$droppable>\n</$elementTag$>\n</$list>\n<$tiddler tiddler=\"\">\n<$droppable actions=\"\"\"<$macrocall $name=\"list-tagged-draggable-drop-actions\" tag=<<__tag__>>/>\"\"\" enable=<<tv-enable-drag-and-drop>>>\n<$elementTag$ class=\"tc-droppable-placeholder\"/>\n<$elementTag$ style=\"height:0.5em;\">\n</$elementTag$>\n</$droppable>\n</$tiddler>\n</$set>\n</span>\n\\end\n"
},
"$:/core/macros/tabs": {
"title": "$:/core/macros/tabs",
"tags": "$:/tags/Macro",
"text": "\\define tabs(tabsList,default,state:\"$:/state/tab\",class,template,buttonTemplate,retain,actions,explicitState)\n<$set name=\"qualifiedState\" value=<<qualify \"$state$\">>>\n<$vars tabsState={{{ [<__explicitState__>minlength[1]] ~[<qualifiedState>] }}}>\n<div class=\"tc-tab-set $class$\">\n<div class=\"tc-tab-buttons $class$\">\n<$list filter=\"$tabsList$\" variable=\"currentTab\" storyview=\"pop\"><$set name=\"save-currentTiddler\" value=<<currentTiddler>>><$tiddler tiddler=<<currentTab>>><$button set=<<tabsState>> setTo=<<currentTab>> default=\"$default$\" selectedClass=\"tc-tab-selected\" tooltip={{!!tooltip}}>\n<$tiddler tiddler=<<save-currentTiddler>>>\n<$set name=\"tv-wikilinks\" value=\"no\">\n<$transclude tiddler=\"$buttonTemplate$\" mode=\"inline\">\n<$transclude tiddler=<<currentTab>> field=\"caption\">\n<$macrocall $name=\"currentTab\" $type=\"text/plain\" $output=\"text/plain\"/>\n</$transclude>\n</$transclude>\n</$set></$tiddler>$actions$</$button></$tiddler></$set></$list>\n</div>\n<div class=\"tc-tab-divider $class$\"/>\n<div class=\"tc-tab-content $class$\">\n<$list filter=\"$tabsList$\" variable=\"currentTab\">\n\n<$reveal type=\"match\" state=<<tabsState>> text=<<currentTab>> default=\"$default$\" retain=\"\"\"$retain$\"\"\">\n\n<$transclude tiddler=\"$template$\" mode=\"block\">\n\n<$transclude tiddler=<<currentTab>> mode=\"block\"/>\n\n</$transclude>\n\n</$reveal>\n\n</$list>\n</div>\n</div>\n</$vars>\n</$set>\n\\end\n"
},
"$:/core/macros/tag-picker": {
"title": "$:/core/macros/tag-picker",
"tags": "$:/tags/Macro",
"first-search-filter": "[tags[]!is[system]search:title<userInput>sort[]]",
"second-search-filter": "[tags[]is[system]search:title<userInput>sort[]]",
"text": "\\define get-tagpicker-focus-selector() [data-tiddler-title=\"$(currentTiddlerCSSEscaped)$\"] .tc-add-tag-name input\n\n\\define delete-tag-state-tiddlers() <$action-deletetiddler $filter=\"[<newTagNameTiddler>] [<storeTitle>] [<tagSelectionState>]\"/>\n\n\\define add-tag-actions(actions,tagField:\"tags\")\n<$set name=\"tag\" value={{{ [<__tiddler__>get[text]] }}}>\n<$list filter=\"[<saveTiddler>!contains:$tagField$<tag>!match[]]\" variable=\"ignore\" emptyMessage=\"\"\"\n<$action-listops $tiddler=<<saveTiddler>> $field=<<__tagField__>> $subfilter=\"-[<tag>]\"/>\n\"\"\">\n<$action-listops $tiddler=<<saveTiddler>> $field=<<__tagField__>> $subfilter=\"[<tag>]\"/>\n$actions$\n</$list>\n</$set>\n<<delete-tag-state-tiddlers>>\n<$action-setfield $tiddler=<<refreshTitle>> text=\"yes\"/>\n\\end\n\n\\define clear-tags-actions-inner()\n<$list filter=\"[<storeTitle>has[text]] [<newTagNameTiddler>has[text]]\" variable=\"ignore\" emptyMessage=\"\"\"<<cancel-delete-tiddler-actions \"cancel\">>\"\"\">\n<<delete-tag-state-tiddlers>>\n</$list>\n\\end\n\n\\define clear-tags-actions()\n<$set name=\"userInput\" value={{{ [<storeTitle>get[text]] }}}>\n<$list filter=\"[<newTagNameTiddler>get[text]!match<userInput>]\" emptyMessage=\"\"\"<<clear-tags-actions-inner>>\"\"\">\n<$action-setfield $tiddler=<<newTagNameTiddler>> text=<<userInput>>/><$action-setfield $tiddler=<<refreshTitle>> text=\"yes\"/>\n</$list>\n</$set>\n\\end\n\n\\define tag-picker-inner(actions,tagField:\"tags\")\n\\whitespace trim\n<$vars newTagNameInputTiddlerQualified=<<qualify \"$:/temp/NewTagName/input\">> newTagNameSelectionTiddlerQualified=<<qualify \"$:/temp/NewTagName/selected-item\">> fallbackTarget={{$(palette)$##tag-background}} colourA={{$(palette)$##foreground}} colourB={{$(palette)$##background}}>\n<$vars storeTitle={{{ [<newTagNameInputTiddler>!match[]] ~[<newTagNameInputTiddlerQualified>] }}} tagSelectionState={{{ [<newTagNameSelectionTiddler>!match[]] ~[<newTagNameSelectionTiddlerQualified>] }}}>\n<$vars refreshTitle=<<qualify \"$:/temp/NewTagName/refresh\">> nonSystemTagsFilter=\"[tags[]!is[system]search:title<userInput>sort[]]\" systemTagsFilter=\"[tags[]is[system]search:title<userInput>sort[]]\">\n<div class=\"tc-edit-add-tag\">\n<div>\n<span class=\"tc-add-tag-name tc-small-gap-right\">\n<$macrocall $name=\"keyboard-driven-input\" tiddler=<<newTagNameTiddler>> storeTitle=<<storeTitle>> refreshTitle=<<refreshTitle>>\n\t\tselectionStateTitle=<<tagSelectionState>> inputAcceptActions=\"\"\"<$macrocall $name=\"add-tag-actions\" actions=<<__actions__>> tagField=<<__tagField__>>/>\"\"\"\n\t\tinputCancelActions=<<clear-tags-actions>> tag=\"input\" placeholder={{$:/language/EditTemplate/Tags/Add/Placeholder}}\n\t\tfocusPopup=<<qualify \"$:/state/popup/tags-auto-complete\">> class=\"tc-edit-texteditor tc-popup-handle\" tabindex=<<tabIndex>> \n\t\tfocus={{{ [{$:/config/AutoFocus}match[tags]then[true]] ~[[false]] }}} filterMinLength={{$:/config/Tags/MinLength}} \n\t\tcancelPopups=<<cancelPopups>> configTiddlerFilter=\"[[$:/core/macros/tag-picker]]\"/>\n</span><$button popup=<<qualify \"$:/state/popup/tags-auto-complete\">> class=\"tc-btn-invisible tc-btn-dropdown\" tooltip={{$:/language/EditTemplate/Tags/Dropdown/Hint}} aria-label={{$:/language/EditTemplate/Tags/Dropdown/Caption}}>{{$:/core/images/down-arrow}}</$button><$reveal state=<<storeTitle>> type=\"nomatch\" text=\"\"><$button class=\"tc-btn-invisible tc-small-gap tc-btn-dropdown\" tooltip={{$:/language/EditTemplate/Tags/ClearInput/Hint}} aria-label={{$:/language/EditTemplate/Tags/ClearInput/Caption}}>{{$:/core/images/close-button}}<<delete-tag-state-tiddlers>></$button></$reveal><span class=\"tc-add-tag-button tc-small-gap-left\">\n<$set name=\"tag\" value={{{ [<newTagNameTiddler>get[text]] }}}>\n<$button set=<<newTagNameTiddler>> setTo=\"\" class=\"\">\n<$action-listops $tiddler=<<saveTiddler>> $field=<<__tagField__>> $subfilter=\"[<tag>]\"/>\n$actions$\n<$set name=\"currentTiddlerCSSEscaped\" value={{{ [<saveTiddler>escapecss[]] }}}>\n<<delete-tag-state-tiddlers>><$action-sendmessage $message=\"tm-focus-selector\" $param=<<get-tagpicker-focus-selector>>/>\n</$set>\n{{$:/language/EditTemplate/Tags/Add/Button}}\n</$button>\n</$set>\n</span>\n</div>\n<div class=\"tc-block-dropdown-wrapper\">\n<$reveal state=<<qualify \"$:/state/popup/tags-auto-complete\">> type=\"nomatch\" text=\"\" default=\"\">\n<div class=\"tc-block-dropdown tc-block-tags-dropdown\">\n<$set name=\"userInput\" value={{{ [<storeTitle>get[text]] }}}>\n<$list filter=\"[<userInput>minlength{$:/config/Tags/MinLength}limit[1]]\" emptyMessage=\"\"\"<div class=\"tc-search-results\">{{$:/language/Search/Search/TooShort}}</div>\"\"\" variable=\"listItem\">\n<$list filter=<<nonSystemTagsFilter>> variable=\"tag\">\n<$list filter=\"[<tag>addsuffix[-primaryList]] -[<tagSelectionState>get[text]]\" emptyMessage=\"\"\"<$vars button-classes=\"tc-btn-invisible tc-tag-button-selected\" actions=<<__actions__>> tagField=<<__tagField__>> currentTiddler=<<tag>>>{{||$:/core/ui/TagPickerTagTemplate}}</$vars>\"\"\">\n<$vars button-classes=\"tc-btn-invisible\" actions=<<__actions__>> tagField=<<__tagField__>> currentTiddler=<<tag>>>{{||$:/core/ui/TagPickerTagTemplate}}</$vars>\n</$list>\n</$list></$list>\n<hr>\n<$list filter=\"[<userInput>minlength{$:/config/Tags/MinLength}limit[1]]\" emptyMessage=\"\"\"<div class=\"tc-search-results\">{{$:/language/Search/Search/TooShort}}</div>\"\"\" variable=\"listItem\">\n<$list filter=<<systemTagsFilter>> variable=\"tag\">\n<$list filter=\"[<tag>addsuffix[-secondaryList]] -[<tagSelectionState>get[text]]\" emptyMessage=\"\"\"<$vars button-classes=\"tc-btn-invisible tc-tag-button-selected\" actions=<<__actions__>> tagField=<<__tagField__>> currentTiddler=<<tag>>>{{||$:/core/ui/TagPickerTagTemplate}}</$vars>\"\"\">\n<$vars button-classes=\"tc-btn-invisible\" actions=<<__actions__>> tagField=<<__tagField__>> currentTiddler=<<tag>>>{{||$:/core/ui/TagPickerTagTemplate}}</$vars>\n</$list>\n</$list></$list>\n</$set>\n</div>\n</$reveal>\n</div>\n</div>\n</$vars>\n</$vars>\n</$vars>\n\\end\n\\define tag-picker(actions,tagField:\"tags\")\n\\whitespace trim\n<$vars saveTiddler=<<currentTiddler>> palette={{$:/palette}}>\n<$list filter=\"[<newTagNameTiddler>match[]]\" emptyMessage=\"\"\"<$macrocall $name=\"tag-picker-inner\" actions=<<__actions__>> tagField=<<__tagField__>>/>\"\"\">\n<$set name=\"newTagNameTiddler\" value=<<qualify \"$:/temp/NewTagName\">>>\n<$macrocall $name=\"tag-picker-inner\" actions=<<__actions__>> tagField=<<__tagField__>>/>\n</$set>\n</$list>\n</$vars>\n\\end\n"
},
"$:/core/macros/tag": {
"title": "$:/core/macros/tag",
"tags": "$:/tags/Macro",
"text": "\\define tag-pill-styles()\nbackground-color:$(backgroundColor)$;\nfill:$(foregroundColor)$;\ncolor:$(foregroundColor)$;\n\\end\n\n\\define tag-pill-inner(tag,icon,colour,fallbackTarget,colourA,colourB,element-tag,element-attributes,actions)\n<$vars foregroundColor=<<contrastcolour target:\"\"\"$colour$\"\"\" fallbackTarget:\"\"\"$fallbackTarget$\"\"\" colourA:\"\"\"$colourA$\"\"\" colourB:\"\"\"$colourB$\"\"\">> backgroundColor=\"\"\"$colour$\"\"\">\n<$element-tag$ $element-attributes$ class=\"tc-tag-label tc-btn-invisible\" style=<<tag-pill-styles>>>\n$actions$<$transclude tiddler=\"\"\"$icon$\"\"\"/><$view tiddler=<<__tag__>> field=\"title\" format=\"text\" />\n</$element-tag$>\n</$vars>\n\\end\n\n\\define tag-pill-body(tag,icon,colour,palette,element-tag,element-attributes,actions)\n<$macrocall $name=\"tag-pill-inner\" tag=<<__tag__>> icon=\"\"\"$icon$\"\"\" colour=\"\"\"$colour$\"\"\" fallbackTarget={{$palette$##tag-background}} colourA={{$palette$##foreground}} colourB={{$palette$##background}} element-tag=\"\"\"$element-tag$\"\"\" element-attributes=\"\"\"$element-attributes$\"\"\" actions=\"\"\"$actions$\"\"\"/>\n\\end\n\n\\define tag-pill(tag,element-tag:\"span\",element-attributes:\"\",actions:\"\")\n<span class=\"tc-tag-list-item\">\n<$macrocall $name=\"tag-pill-body\" tag=<<__tag__>> icon={{{ [<__tag__>get[icon]] }}} colour={{{ [<__tag__>get[color]] }}} palette={{$:/palette}} element-tag=\"\"\"$element-tag$\"\"\" element-attributes=\"\"\"$element-attributes$\"\"\" actions=\"\"\"$actions$\"\"\"/>\n</span>\n\\end\n\n\\define tag(tag)\n{{$tag$||$:/core/ui/TagTemplate}}\n\\end\n"
},
"$:/core/macros/thumbnails": {
"title": "$:/core/macros/thumbnails",
"tags": "$:/tags/Macro",
"text": "\\define thumbnail(link,icon,color,background-color,image,caption,width:\"280\",height:\"157\")\n<$link to=\"\"\"$link$\"\"\"><div class=\"tc-thumbnail-wrapper\">\n<div class=\"tc-thumbnail-image\" style=\"width:$width$px;height:$height$px;\"><$reveal type=\"nomatch\" text=\"\" default=\"\"\"$image$\"\"\" tag=\"div\" style=\"width:$width$px;height:$height$px;\">\n[img[$image$]]\n</$reveal><$reveal type=\"match\" text=\"\" default=\"\"\"$image$\"\"\" tag=\"div\" class=\"tc-thumbnail-background\" style=\"width:$width$px;height:$height$px;background-color:$background-color$;\"></$reveal></div><div class=\"tc-thumbnail-icon\" style=\"fill:$color$;color:$color$;\">\n$icon$\n</div><div class=\"tc-thumbnail-caption\">\n$caption$\n</div>\n</div></$link>\n\\end\n\n\\define thumbnail-right(link,icon,color,background-color,image,caption,width:\"280\",height:\"157\")\n<div class=\"tc-thumbnail-right-wrapper\"><<thumbnail \"\"\"$link$\"\"\" \"\"\"$icon$\"\"\" \"\"\"$color$\"\"\" \"\"\"$background-color$\"\"\" \"\"\"$image$\"\"\" \"\"\"$caption$\"\"\" \"\"\"$width$\"\"\" \"\"\"$height$\"\"\">></div>\n\\end\n\n\\define list-thumbnails(filter,width:\"280\",height:\"157\")\n<$list filter=\"\"\"$filter$\"\"\"><$macrocall $name=\"thumbnail\" link={{!!link}} icon={{!!icon}} color={{!!color}} background-color={{!!background-color}} image={{!!image}} caption={{!!caption}} width=\"\"\"$width$\"\"\" height=\"\"\"$height$\"\"\"/></$list>\n\\end\n"
},
"$:/core/macros/timeline": {
"title": "$:/core/macros/timeline",
"created": "20141212105914482",
"modified": "20141212110330815",
"tags": "$:/tags/Macro",
"text": "\\define timeline-title()\n\\whitespace trim\n<!-- Override this macro with a global macro \n of the same name if you need to change \n how titles are displayed on the timeline \n -->\n<$view field=\"title\"/>\n\\end\n\\define timeline(limit:\"100\",format:\"DDth MMM YYYY\",subfilter:\"\",dateField:\"modified\")\n<div class=\"tc-timeline\">\n<$list filter=\"[!is[system]$subfilter$has[$dateField$]!sort[$dateField$]limit[$limit$]eachday[$dateField$]]\">\n<div class=\"tc-menu-list-item\">\n<$view field=\"$dateField$\" format=\"date\" template=\"$format$\"/>\n<$list filter=\"[sameday:$dateField${!!$dateField$}!is[system]$subfilter$!sort[$dateField$]]\">\n<div class=\"tc-menu-list-subitem\">\n<$link to={{!!title}}><<timeline-title>></$link>\n</div>\n</$list>\n</div>\n</$list>\n</div>\n\\end\n"
},
"$:/core/macros/toc": {
"title": "$:/core/macros/toc",
"tags": "$:/tags/Macro",
"text": "\\define toc-caption()\n<$set name=\"tv-wikilinks\" value=\"no\">\n <$transclude field=\"caption\">\n <$view field=\"title\"/>\n </$transclude>\n</$set>\n\\end\n\n\\define toc-body(tag,sort:\"\",itemClassFilter,exclude,path)\n<ol class=\"tc-toc\">\n <$list filter=\"\"\"[all[shadows+tiddlers]tag<__tag__>!has[draft.of]$sort$] -[<__tag__>] -[enlist<__exclude__>]\"\"\">\n <$vars item=<<currentTiddler>> path={{{ [<__path__>addsuffix[/]addsuffix<__tag__>] }}}>\n <$set name=\"excluded\" filter=\"\"\"[enlist<__exclude__>] [<__tag__>]\"\"\">\n <$set name=\"toc-item-class\" filter=<<__itemClassFilter__>> emptyValue=\"toc-item-selected\" value=\"toc-item\">\n <li class=<<toc-item-class>>>\n <$list filter=\"[all[current]toc-link[no]]\" emptyMessage=\"<$link to={{{ [<currentTiddler>get[target]else<currentTiddler>] }}}><$view field='caption'><$view field='title'/></$view></$link>\">\n <<toc-caption>>\n </$list>\n <$macrocall $name=\"toc-body\" tag=<<item>> sort=<<__sort__>> itemClassFilter=<<__itemClassFilter__>> exclude=<<excluded>> path=<<path>>/>\n </li>\n </$set>\n </$set>\n </$vars>\n </$list>\n</ol>\n\\end\n\n\\define toc(tag,sort:\"\",itemClassFilter:\"\")\n<$macrocall $name=\"toc-body\" tag=<<__tag__>> sort=<<__sort__>> itemClassFilter=<<__itemClassFilter__>> />\n\\end\n\n\\define toc-linked-expandable-body(tag,sort:\"\",itemClassFilter,exclude,path)\n<!-- helper function -->\n<$qualify name=\"toc-state\" title={{{ [[$:/state/toc]addsuffix<__path__>addsuffix[-]addsuffix<currentTiddler>] }}}>\n <$set name=\"toc-item-class\" filter=<<__itemClassFilter__>> emptyValue=\"toc-item-selected\" value=\"toc-item\">\n <li class=<<toc-item-class>>>\n <$link to={{{ [<currentTiddler>get[target]else<currentTiddler>] }}}>\n <$reveal type=\"nomatch\" stateTitle=<<toc-state>> text=\"open\">\n <$button setTitle=<<toc-state>> setTo=\"open\" class=\"tc-btn-invisible tc-popup-keep\">\n {{$:/core/images/right-arrow}}\n </$button>\n </$reveal>\n <$reveal type=\"match\" stateTitle=<<toc-state>> text=\"open\">\n <$button setTitle=<<toc-state>> setTo=\"close\" class=\"tc-btn-invisible tc-popup-keep\">\n {{$:/core/images/down-arrow}}\n </$button>\n </$reveal>\n <<toc-caption>>\n </$link>\n <$reveal type=\"match\" stateTitle=<<toc-state>> text=\"open\">\n <$macrocall $name=\"toc-expandable\" tag=<<currentTiddler>> sort=<<__sort__>> itemClassFilter=<<__itemClassFilter__>> exclude=<<__exclude__>> path=<<__path__>>/>\n </$reveal>\n </li>\n </$set>\n</$qualify>\n\\end\n\n\\define toc-unlinked-expandable-body(tag,sort:\"\",itemClassFilter,exclude,path)\n<!-- helper function -->\n<$qualify name=\"toc-state\" title={{{ [[$:/state/toc]addsuffix<__path__>addsuffix[-]addsuffix<currentTiddler>] }}}>\n <$set name=\"toc-item-class\" filter=<<__itemClassFilter__>> emptyValue=\"toc-item-selected\" value=\"toc-item\">\n <li class=<<toc-item-class>>>\n <$reveal type=\"nomatch\" stateTitle=<<toc-state>> text=\"open\">\n <$button setTitle=<<toc-state>> setTo=\"open\" class=\"tc-btn-invisible tc-popup-keep\">\n {{$:/core/images/right-arrow}}\n <<toc-caption>>\n </$button>\n </$reveal>\n <$reveal type=\"match\" stateTitle=<<toc-state>> text=\"open\">\n <$button setTitle=<<toc-state>> setTo=\"close\" class=\"tc-btn-invisible tc-popup-keep\">\n {{$:/core/images/down-arrow}}\n <<toc-caption>>\n </$button>\n </$reveal>\n <$reveal type=\"match\" stateTitle=<<toc-state>> text=\"open\">\n <$macrocall $name=\"toc-expandable\" tag=<<currentTiddler>> sort=<<__sort__>> itemClassFilter=<<__itemClassFilter__>> exclude=<<__exclude__>> path=<<__path__>>/>\n </$reveal>\n </li>\n </$set>\n</$qualify>\n\\end\n\n\\define toc-expandable-empty-message()\n<$macrocall $name=\"toc-linked-expandable-body\" tag=<<tag>> sort=<<sort>> itemClassFilter=<<itemClassFilter>> exclude=<<excluded>> path=<<path>>/>\n\\end\n\n\\define toc-expandable(tag,sort:\"\",itemClassFilter:\"\",exclude,path)\n<$vars tag=<<__tag__>> sort=<<__sort__>> itemClassFilter=<<__itemClassFilter__>> path={{{ [<__path__>addsuffix[/]addsuffix<__tag__>] }}}>\n <$set name=\"excluded\" filter=\"\"\"[enlist<__exclude__>] [<__tag__>]\"\"\">\n <ol class=\"tc-toc toc-expandable\">\n <$list filter=\"\"\"[all[shadows+tiddlers]tag<__tag__>!has[draft.of]$sort$] -[<__tag__>] -[enlist<__exclude__>]\"\"\">\n <$list filter=\"[all[current]toc-link[no]]\" emptyMessage=<<toc-expandable-empty-message>> >\n <$macrocall $name=\"toc-unlinked-expandable-body\" tag=<<__tag__>> sort=<<__sort__>> itemClassFilter=\"\"\"itemClassFilter\"\"\" exclude=<<excluded>> path=<<path>> />\n </$list>\n </$list>\n </ol>\n </$set>\n</$vars>\n\\end\n\n\\define toc-linked-selective-expandable-body(tag,sort:\"\",itemClassFilter,exclude,path)\n<$qualify name=\"toc-state\" title={{{ [[$:/state/toc]addsuffix<__path__>addsuffix[-]addsuffix<currentTiddler>] }}}>\n <$set name=\"toc-item-class\" filter=<<__itemClassFilter__>> emptyValue=\"toc-item-selected\" value=\"toc-item\" >\n <li class=<<toc-item-class>>>\n <$link to={{{ [<currentTiddler>get[target]else<currentTiddler>] }}}>\n <$list filter=\"[all[current]tagging[]$sort$limit[1]]\" variable=\"ignore\" emptyMessage=\"<$button class='tc-btn-invisible'>{{$:/core/images/blank}}</$button>\">\n <$reveal type=\"nomatch\" stateTitle=<<toc-state>> text=\"open\">\n <$button setTitle=<<toc-state>> setTo=\"open\" class=\"tc-btn-invisible tc-popup-keep\">\n {{$:/core/images/right-arrow}}\n </$button>\n </$reveal>\n <$reveal type=\"match\" stateTitle=<<toc-state>> text=\"open\">\n <$button setTitle=<<toc-state>> setTo=\"close\" class=\"tc-btn-invisible tc-popup-keep\">\n {{$:/core/images/down-arrow}}\n </$button>\n </$reveal>\n </$list>\n <<toc-caption>>\n </$link>\n <$reveal type=\"match\" stateTitle=<<toc-state>> text=\"open\">\n <$macrocall $name=\"toc-selective-expandable\" tag=<<currentTiddler>> sort=<<__sort__>> itemClassFilter=<<__itemClassFilter__>> exclude=<<__exclude__>> path=<<__path__>>/>\n </$reveal>\n </li>\n </$set>\n</$qualify>\n\\end\n\n\\define toc-unlinked-selective-expandable-body(tag,sort:\"\",itemClassFilter,exclude,path)\n<$qualify name=\"toc-state\" title={{{ [[$:/state/toc]addsuffix<__path__>addsuffix[-]addsuffix<currentTiddler>] }}}>\n <$set name=\"toc-item-class\" filter=<<__itemClassFilter__>> emptyValue=\"toc-item-selected\" value=\"toc-item\">\n <li class=<<toc-item-class>>>\n <$list filter=\"[all[current]tagging[]$sort$limit[1]]\" variable=\"ignore\" emptyMessage=\"<$button class='tc-btn-invisible'>{{$:/core/images/blank}}</$button> <$view field='caption'><$view field='title'/></$view>\">\n <$reveal type=\"nomatch\" stateTitle=<<toc-state>> text=\"open\">\n <$button setTitle=<<toc-state>> setTo=\"open\" class=\"tc-btn-invisible tc-popup-keep\">\n {{$:/core/images/right-arrow}}\n <<toc-caption>>\n </$button>\n </$reveal>\n <$reveal type=\"match\" stateTitle=<<toc-state>> text=\"open\">\n <$button setTitle=<<toc-state>> setTo=\"close\" class=\"tc-btn-invisible tc-popup-keep\">\n {{$:/core/images/down-arrow}}\n <<toc-caption>>\n </$button>\n </$reveal>\n </$list>\n <$reveal type=\"match\" stateTitle=<<toc-state>> text=\"open\">\n <$macrocall $name=\"toc-selective-expandable\" tag=<<currentTiddler>> sort=<<__sort__>> itemClassFilter=<<__itemClassFilter__>> exclude=<<__exclude__>> path=<<__path__>>/>\n </$reveal>\n </li>\n </$set>\n</$qualify>\n\\end\n\n\\define toc-selective-expandable-empty-message()\n<$macrocall $name=\"toc-linked-selective-expandable-body\" tag=<<tag>> sort=<<sort>> itemClassFilter=<<itemClassFilter>> exclude=<<excluded>> path=<<path>>/>\n\\end\n\n\\define toc-selective-expandable(tag,sort:\"\",itemClassFilter,exclude,path)\n<$vars tag=<<__tag__>> sort=<<__sort__>> itemClassFilter=<<__itemClassFilter__>> path={{{ [<__path__>addsuffix[/]addsuffix<__tag__>] }}}>\n <$set name=\"excluded\" filter=\"\"\"[enlist<__exclude__>] [<__tag__>]\"\"\">\n <ol class=\"tc-toc toc-selective-expandable\">\n <$list filter=\"\"\"[all[shadows+tiddlers]tag<__tag__>!has[draft.of]$sort$] -[<__tag__>] -[enlist<__exclude__>]\"\"\">\n <$list filter=\"[all[current]toc-link[no]]\" variable=\"ignore\" emptyMessage=<<toc-selective-expandable-empty-message>> >\n <$macrocall $name=\"toc-unlinked-selective-expandable-body\" tag=<<__tag__>> sort=<<__sort__>> itemClassFilter=<<__itemClassFilter__>> exclude=<<excluded>> path=<<path>>/>\n </$list>\n </$list>\n </ol>\n </$set>\n</$vars>\n\\end\n\n\\define toc-tabbed-external-nav(tag,sort:\"\",selectedTiddler:\"$:/temp/toc/selectedTiddler\",unselectedText,missingText,template:\"\")\n<$tiddler tiddler={{{ [<__selectedTiddler__>get[text]] }}}>\n <div class=\"tc-tabbed-table-of-contents\">\n <$linkcatcher to=<<__selectedTiddler__>>>\n <div class=\"tc-table-of-contents\">\n <$macrocall $name=\"toc-selective-expandable\" tag=<<__tag__>> sort=<<__sort__>> itemClassFilter=\"[all[current]] -[<__selectedTiddler__>get[text]]\"/>\n </div>\n </$linkcatcher>\n <div class=\"tc-tabbed-table-of-contents-content\">\n <$reveal stateTitle=<<__selectedTiddler__>> type=\"nomatch\" text=\"\">\n <$transclude mode=\"block\" tiddler=<<__template__>>>\n <h1><<toc-caption>></h1>\n <$transclude mode=\"block\">$missingText$</$transclude>\n </$transclude>\n </$reveal>\n <$reveal stateTitle=<<__selectedTiddler__>> type=\"match\" text=\"\">\n $unselectedText$\n </$reveal>\n </div>\n </div>\n</$tiddler>\n\\end\n\n\\define toc-tabbed-internal-nav(tag,sort:\"\",selectedTiddler:\"$:/temp/toc/selectedTiddler\",unselectedText,missingText,template:\"\")\n<$linkcatcher to=<<__selectedTiddler__>>>\n <$macrocall $name=\"toc-tabbed-external-nav\" tag=<<__tag__>> sort=<<__sort__>> selectedTiddler=<<__selectedTiddler__>> unselectedText=<<__unselectedText__>> missingText=<<__missingText__>> template=<<__template__>>/>\n</$linkcatcher>\n\\end\n\n"
},
"$:/core/macros/translink": {
"title": "$:/core/macros/translink",
"tags": "$:/tags/Macro",
"text": "\\define translink(title,mode:\"block\")\n<div style=\"border:1px solid #ccc; padding: 0.5em; background: black; foreground; white;\">\n<$link to=\"\"\"$title$\"\"\">\n<$text text=\"\"\"$title$\"\"\"/>\n</$link>\n<div style=\"border:1px solid #ccc; padding: 0.5em; background: white; foreground; black;\">\n<$transclude tiddler=\"\"\"$title$\"\"\" mode=\"$mode$\">\n\"<$text text=\"\"\"$title$\"\"\"/>\" is missing\n</$transclude>\n</div>\n</div>\n\\end\n"
},
"$:/core/macros/tree": {
"title": "$:/core/macros/tree",
"tags": "$:/tags/Macro",
"text": "\\define leaf-link(full-title,chunk,separator: \"/\")\n<$link to=<<__full-title__>>><$text text=<<__chunk__>>/></$link>\n\\end\n\n\\define leaf-node(prefix,chunk)\n<li>\n<$list filter=\"[<__prefix__>addsuffix<__chunk__>is[shadow]] [<__prefix__>addsuffix<__chunk__>is[tiddler]]\" variable=\"full-title\">\n<$list filter=\"[<full-title>removeprefix<__prefix__>]\" variable=\"chunk\">\n<span>{{$:/core/images/file}}</span> <$macrocall $name=\"leaf-link\" full-title=<<full-title>> chunk=<<chunk>>/>\n</$list>\n</$list>\n</li>\n\\end\n\n\\define branch-node(prefix,chunk,separator: \"/\")\n<li>\n<$set name=\"reveal-state\" value={{{ [[$:/state/tree/]addsuffix<__prefix__>addsuffix<__chunk__>] }}}>\n<$reveal type=\"nomatch\" stateTitle=<<reveal-state>> text=\"show\">\n<$button setTitle=<<reveal-state>> setTo=\"show\" class=\"tc-btn-invisible\">\n{{$:/core/images/folder}} <$text text=<<__chunk__>>/>\n</$button>\n</$reveal>\n<$reveal type=\"match\" stateTitle=<<reveal-state>> text=\"show\">\n<$button setTitle=<<reveal-state>> setTo=\"hide\" class=\"tc-btn-invisible\">\n{{$:/core/images/folder}} <$text text=<<__chunk__>>/>\n</$button>\n</$reveal>\n<span>(<$count filter=\"[all[shadows+tiddlers]removeprefix<__prefix__>removeprefix<__chunk__>] -[<__prefix__>addsuffix<__chunk__>]\"/>)</span>\n<$reveal type=\"match\" stateTitle=<<reveal-state>> text=\"show\">\n<$macrocall $name=\"tree-node\" prefix={{{ [<__prefix__>addsuffix<__chunk__>] }}} separator=<<__separator__>>/>\n</$reveal>\n</$set>\n</li>\n\\end\n\n\\define tree-node(prefix,separator: \"/\")\n<ol>\n<$list filter=\"[all[shadows+tiddlers]removeprefix<__prefix__>splitbefore<__separator__>sort[]!suffix<__separator__>]\" variable=\"chunk\">\n<$macrocall $name=\"leaf-node\" prefix=<<__prefix__>> chunk=<<chunk>> separator=<<__separator__>>/>\n</$list>\n<$list filter=\"[all[shadows+tiddlers]removeprefix<__prefix__>splitbefore<__separator__>sort[]suffix<__separator__>]\" variable=\"chunk\">\n<$macrocall $name=\"branch-node\" prefix=<<__prefix__>> chunk=<<chunk>> separator=<<__separator__>>/>\n</$list>\n</ol>\n\\end\n\n\\define tree(prefix: \"$:/\",separator: \"/\")\n<div class=\"tc-tree\">\n<span><$text text=<<__prefix__>>/></span>\n<div>\n<$macrocall $name=\"tree-node\" prefix=<<__prefix__>> separator=<<__separator__>>/>\n</div>\n</div>\n\\end\n"
},
"$:/core/macros/utils": {
"title": "$:/core/macros/utils",
"text": "\\define colour(colour)\n$colour$\n\\end\n"
},
"$:/snippets/minifocusswitcher": {
"title": "$:/snippets/minifocusswitcher",
"text": "<$select tiddler=\"$:/config/AutoFocus\">\n<$list filter=\"title tags text type fields\">\n<option value=<<currentTiddler>>><<currentTiddler>></option>\n</$list>\n</$select>\n"
},
"$:/snippets/minilanguageswitcher": {
"title": "$:/snippets/minilanguageswitcher",
"text": "<$select tiddler=\"$:/language\">\n<$list filter=\"[[$:/languages/en-GB]] [plugin-type[language]sort[title]]\">\n<option value=<<currentTiddler>>><$view field=\"description\"><$view field=\"name\"><$view field=\"title\"/></$view></$view></option>\n</$list>\n</$select>"
},
"$:/snippets/minithemeswitcher": {
"title": "$:/snippets/minithemeswitcher",
"text": "\\define lingo-base() $:/language/ControlPanel/Theme/\n<<lingo Prompt>> <$select tiddler=\"$:/theme\">\n<$list filter=\"[plugin-type[theme]sort[title]]\">\n<option value=<<currentTiddler>>><$view field=\"name\"><$view field=\"title\"/></$view></option>\n</$list>\n</$select>"
},
"$:/snippets/modules": {
"title": "$:/snippets/modules",
"text": "\\define describeModuleType(type)\n{{$:/language/Docs/ModuleTypes/$type$}}\n\\end\n<$list filter=\"[moduletypes[]]\">\n\n!! <$macrocall $name=\"currentTiddler\" $type=\"text/plain\" $output=\"text/plain\"/>\n\n<$macrocall $name=\"describeModuleType\" type=<<currentTiddler>>/>\n\n<ul><$list filter=\"[all[current]modules[]]\"><li><$link><<currentTiddler>></$link>\n</li>\n</$list>\n</ul>\n</$list>\n"
},
"$:/palette": {
"title": "$:/palette",
"text": "$:/palettes/Vanilla"
},
"$:/snippets/paletteeditor": {
"title": "$:/snippets/paletteeditor",
"text": "<$transclude tiddler=\"$:/PaletteManager\"/>\n"
},
"$:/snippets/palettepreview": {
"title": "$:/snippets/palettepreview",
"text": "<$set name=\"currentTiddler\" value={{$:/palette}}>\n{{||$:/snippets/currpalettepreview}}\n</$set>\n"
},
"$:/snippets/paletteswitcher": {
"title": "$:/snippets/paletteswitcher",
"text": "<$linkcatcher to=\"$:/palette\">\n<div class=\"tc-chooser\"><$list filter=\"[all[shadows+tiddlers]tag[$:/tags/Palette]sort[name]]\"><$set name=\"cls\" filter=\"[all[current]prefix{$:/palette}]\" value=\"tc-chooser-item tc-chosen\" emptyValue=\"tc-chooser-item\"><div class=<<cls>>><$link to={{!!title}}>''<$view field=\"name\" format=\"text\"/>'' - <$view field=\"description\" format=\"text\"/>{{||$:/snippets/currpalettepreview}}</$link>\n</div></$set>\n</$list>\n</div>\n</$linkcatcher>\n"
},
"$:/snippets/peek-stylesheets": {
"title": "$:/snippets/peek-stylesheets",
"text": "\\define expandable-stylesheets-list()\n<ol>\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/Stylesheet]!has[draft.of]]\">\n<$vars state=<<qualify \"$:/state/peek-stylesheets/open/\">>>\n<$set name=\"state\" value={{{ [<state>addsuffix<currentTiddler>] }}}>\n<li>\n<$reveal type=\"match\" state=<<state>> text=\"yes\" tag=\"span\">\n<$button set=<<state>> setTo=\"no\" class=\"tc-btn-invisible\">\n{{$:/core/images/down-arrow}}\n</$button>\n</$reveal>\n<$reveal type=\"nomatch\" state=<<state>> text=\"yes\" tag=\"span\">\n<$button set=<<state>> setTo=\"yes\" class=\"tc-btn-invisible\">\n{{$:/core/images/right-arrow}}\n</$button>\n</$reveal>\n<$link>\n<$view field=\"title\"/>\n</$link>\n<$reveal type=\"match\" state=<<state>> text=\"yes\" tag=\"div\">\n<$set name=\"source\" tiddler=<<currentTiddler>>>\n<$wikify name=\"styles\" text=<<source>>>\n<pre>\n<code>\n<$text text=<<styles>>/>\n</code>\n</pre>\n</$wikify>\n</$set>\n</$reveal>\n</li>\n</$set>\n</$vars>\n</$list>\n</ol>\n\\end\n\n\\define stylesheets-list()\n<ol>\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/Stylesheet]!has[draft.of]]\">\n<li>\n<$link>\n<$view field=\"title\"/>\n</$link>\n<$set name=\"source\" tiddler=<<currentTiddler>>>\n<$wikify name=\"styles\" text=<<source>>>\n<pre>\n<code>\n<$text text=<<styles>>/>\n</code>\n</pre>\n</$wikify>\n</$set>\n</li>\n</$list>\n</ol>\n\\end\n\n<$vars modeState=<<qualify \"$:/state/peek-stylesheets/mode/\">>>\n\n<$reveal type=\"nomatch\" state=<<modeState>> text=\"expanded\" tag=\"div\">\n<$button set=<<modeState>> setTo=\"expanded\" class=\"tc-btn-invisible\">{{$:/core/images/chevron-right}} {{$:/language/ControlPanel/Stylesheets/Expand/Caption}}</$button>\n</$reveal>\n<$reveal type=\"match\" state=<<modeState>> text=\"expanded\" tag=\"div\">\n<$button set=<<modeState>> setTo=\"restored\" class=\"tc-btn-invisible\">{{$:/core/images/chevron-down}} {{$:/language/ControlPanel/Stylesheets/Restore/Caption}}</$button>\n</$reveal>\n\n<$reveal type=\"nomatch\" state=<<modeState>> text=\"expanded\" tag=\"div\">\n<<expandable-stylesheets-list>>\n</$reveal>\n<$reveal type=\"match\" state=<<modeState>> text=\"expanded\" tag=\"div\">\n<<stylesheets-list>>\n</$reveal>\n\n</$vars>\n"
},
"$:/temp/search": {
"title": "$:/temp/search",
"text": ""
},
"$:/tags/AdvancedSearch": {
"title": "$:/tags/AdvancedSearch",
"list": "[[$:/core/ui/AdvancedSearch/Standard]] [[$:/core/ui/AdvancedSearch/System]] [[$:/core/ui/AdvancedSearch/Shadows]] [[$:/core/ui/AdvancedSearch/Filter]]"
},
"$:/tags/AdvancedSearch/FilterButton": {
"title": "$:/tags/AdvancedSearch/FilterButton",
"list": "$:/core/ui/AdvancedSearch/Filter/FilterButtons/dropdown $:/core/ui/AdvancedSearch/Filter/FilterButtons/clear $:/core/ui/AdvancedSearch/Filter/FilterButtons/export $:/core/ui/AdvancedSearch/Filter/FilterButtons/delete"
},
"$:/tags/ControlPanel": {
"title": "$:/tags/ControlPanel",
"list": "$:/core/ui/ControlPanel/Info $:/core/ui/ControlPanel/Appearance $:/core/ui/ControlPanel/Settings $:/core/ui/ControlPanel/Saving $:/core/ui/ControlPanel/Plugins $:/core/ui/ControlPanel/Tools $:/core/ui/ControlPanel/Internals"
},
"$:/tags/ControlPanel/Info": {
"title": "$:/tags/ControlPanel/Info",
"list": "$:/core/ui/ControlPanel/Basics $:/core/ui/ControlPanel/Advanced"
},
"$:/tags/ControlPanel/Plugins": {
"title": "$:/tags/ControlPanel/Plugins",
"list": "[[$:/core/ui/ControlPanel/Plugins/Installed]] [[$:/core/ui/ControlPanel/Plugins/Add]]"
},
"$:/tags/EditTemplate": {
"title": "$:/tags/EditTemplate",
"list": "[[$:/core/ui/EditTemplate/controls]] [[$:/core/ui/EditTemplate/title]] [[$:/core/ui/EditTemplate/tags]] [[$:/core/ui/EditTemplate/shadow]] [[$:/core/ui/ViewTemplate/classic]] [[$:/core/ui/EditTemplate/body]] [[$:/core/ui/EditTemplate/type]] [[$:/core/ui/EditTemplate/fields]]"
},
"$:/tags/EditToolbar": {
"title": "$:/tags/EditToolbar",
"list": "[[$:/core/ui/Buttons/delete]] [[$:/core/ui/Buttons/cancel]] [[$:/core/ui/Buttons/save]]"
},
"$:/tags/EditorToolbar": {
"title": "$:/tags/EditorToolbar",
"list": "$:/core/ui/EditorToolbar/paint $:/core/ui/EditorToolbar/opacity $:/core/ui/EditorToolbar/line-width $:/core/ui/EditorToolbar/rotate-left $:/core/ui/EditorToolbar/clear $:/core/ui/EditorToolbar/bold $:/core/ui/EditorToolbar/italic $:/core/ui/EditorToolbar/strikethrough $:/core/ui/EditorToolbar/underline $:/core/ui/EditorToolbar/superscript $:/core/ui/EditorToolbar/subscript $:/core/ui/EditorToolbar/mono-line $:/core/ui/EditorToolbar/mono-block $:/core/ui/EditorToolbar/quote $:/core/ui/EditorToolbar/list-bullet $:/core/ui/EditorToolbar/list-number $:/core/ui/EditorToolbar/heading-1 $:/core/ui/EditorToolbar/heading-2 $:/core/ui/EditorToolbar/heading-3 $:/core/ui/EditorToolbar/heading-4 $:/core/ui/EditorToolbar/heading-5 $:/core/ui/EditorToolbar/heading-6 $:/core/ui/EditorToolbar/link $:/core/ui/EditorToolbar/excise $:/core/ui/EditorToolbar/picture $:/core/ui/EditorToolbar/stamp $:/core/ui/EditorToolbar/size $:/core/ui/EditorToolbar/editor-height $:/core/ui/EditorToolbar/more $:/core/ui/EditorToolbar/preview $:/core/ui/EditorToolbar/preview-type"
},
"$:/tags/Manager/ItemMain": {
"title": "$:/tags/Manager/ItemMain",
"list": "$:/Manager/ItemMain/WikifiedText $:/Manager/ItemMain/RawText $:/Manager/ItemMain/Fields"
},
"$:/tags/Manager/ItemSidebar": {
"title": "$:/tags/Manager/ItemSidebar",
"list": "$:/Manager/ItemSidebar/Tags $:/Manager/ItemSidebar/Colour $:/Manager/ItemSidebar/Icon $:/Manager/ItemSidebar/Tools"
},
"$:/tags/MoreSideBar": {
"title": "$:/tags/MoreSideBar",
"list": "[[$:/core/ui/MoreSideBar/All]] [[$:/core/ui/MoreSideBar/Recent]] [[$:/core/ui/MoreSideBar/Tags]] [[$:/core/ui/MoreSideBar/Missing]] [[$:/core/ui/MoreSideBar/Drafts]] [[$:/core/ui/MoreSideBar/Orphans]] [[$:/core/ui/MoreSideBar/Types]] [[$:/core/ui/MoreSideBar/System]] [[$:/core/ui/MoreSideBar/Shadows]] [[$:/core/ui/MoreSideBar/Explorer]] [[$:/core/ui/MoreSideBar/Plugins]]",
"text": ""
},
"$:/tags/PageControls": {
"title": "$:/tags/PageControls",
"list": "[[$:/core/ui/Buttons/home]] [[$:/core/ui/Buttons/close-all]] [[$:/core/ui/Buttons/fold-all]] [[$:/core/ui/Buttons/unfold-all]] [[$:/core/ui/Buttons/permaview]] [[$:/core/ui/Buttons/new-tiddler]] [[$:/core/ui/Buttons/new-journal]] [[$:/core/ui/Buttons/new-image]] [[$:/core/ui/Buttons/import]] [[$:/core/ui/Buttons/export-page]] [[$:/core/ui/Buttons/control-panel]] [[$:/core/ui/Buttons/advanced-search]] [[$:/core/ui/Buttons/manager]] [[$:/core/ui/Buttons/tag-manager]] [[$:/core/ui/Buttons/language]] [[$:/core/ui/Buttons/palette]] [[$:/core/ui/Buttons/theme]] [[$:/core/ui/Buttons/storyview]] [[$:/core/ui/Buttons/encryption]] [[$:/core/ui/Buttons/timestamp]] [[$:/core/ui/Buttons/full-screen]] [[$:/core/ui/Buttons/print]] [[$:/core/ui/Buttons/save-wiki]] [[$:/core/ui/Buttons/refresh]] [[$:/core/ui/Buttons/more-page-actions]]"
},
"$:/tags/PageTemplate": {
"title": "$:/tags/PageTemplate",
"list": "[[$:/core/ui/PageTemplate/topleftbar]] [[$:/core/ui/PageTemplate/toprightbar]] [[$:/core/ui/PageTemplate/sidebar]] [[$:/core/ui/PageTemplate/story]] [[$:/core/ui/PageTemplate/alerts]]",
"text": ""
},
"$:/tags/PluginLibrary": {
"title": "$:/tags/PluginLibrary",
"list": "$:/config/OfficialPluginLibrary"
},
"$:/tags/SideBar": {
"title": "$:/tags/SideBar",
"list": "[[$:/core/ui/SideBar/Open]] [[$:/core/ui/SideBar/Recent]] [[$:/core/ui/SideBar/Tools]] [[$:/core/ui/SideBar/More]]",
"text": ""
},
"$:/tags/SideBarSegment": {
"title": "$:/tags/SideBarSegment",
"list": "[[$:/core/ui/SideBarSegments/site-title]] [[$:/core/ui/SideBarSegments/site-subtitle]] [[$:/core/ui/SideBarSegments/page-controls]] [[$:/core/ui/SideBarSegments/search]] [[$:/core/ui/SideBarSegments/tabs]]"
},
"$:/tags/TiddlerInfo": {
"title": "$:/tags/TiddlerInfo",
"list": "[[$:/core/ui/TiddlerInfo/Tools]] [[$:/core/ui/TiddlerInfo/References]] [[$:/core/ui/TiddlerInfo/Tagging]] [[$:/core/ui/TiddlerInfo/List]] [[$:/core/ui/TiddlerInfo/Listed]] [[$:/core/ui/TiddlerInfo/Fields]]",
"text": ""
},
"$:/tags/TiddlerInfo/Advanced": {
"title": "$:/tags/TiddlerInfo/Advanced",
"list": "[[$:/core/ui/TiddlerInfo/Advanced/ShadowInfo]] [[$:/core/ui/TiddlerInfo/Advanced/PluginInfo]]"
},
"$:/tags/ViewTemplate": {
"title": "$:/tags/ViewTemplate",
"list": "[[$:/core/ui/ViewTemplate/title]] [[$:/core/ui/ViewTemplate/unfold]] [[$:/core/ui/ViewTemplate/subtitle]] [[$:/core/ui/ViewTemplate/tags]] [[$:/core/ui/ViewTemplate/classic]] [[$:/core/ui/ViewTemplate/body]]"
},
"$:/tags/ViewToolbar": {
"title": "$:/tags/ViewToolbar",
"list": "[[$:/core/ui/Buttons/more-tiddler-actions]] [[$:/core/ui/Buttons/info]] [[$:/core/ui/Buttons/new-here]] [[$:/core/ui/Buttons/new-journal-here]] [[$:/core/ui/Buttons/clone]] [[$:/core/ui/Buttons/export-tiddler]] [[$:/core/ui/Buttons/edit]] [[$:/core/ui/Buttons/delete]] [[$:/core/ui/Buttons/permalink]] [[$:/core/ui/Buttons/permaview]] [[$:/core/ui/Buttons/open-window]] [[$:/core/ui/Buttons/close-others]] [[$:/core/ui/Buttons/close]] [[$:/core/ui/Buttons/fold-others]] [[$:/core/ui/Buttons/fold]]"
},
"$:/snippets/themeswitcher": {
"title": "$:/snippets/themeswitcher",
"text": "<$linkcatcher to=\"$:/theme\">\n<div class=\"tc-chooser\"><$list filter=\"[plugin-type[theme]sort[title]]\"><$set name=\"cls\" filter=\"[all[current]field:title{$:/theme}] [[$:/theme]!has[text]addsuffix[s/tiddlywiki/vanilla]field:title<currentTiddler>] +[limit[1]]\" value=\"tc-chooser-item tc-chosen\" emptyValue=\"tc-chooser-item\"><div class=<<cls>>><$link to={{!!title}}>''<$view field=\"name\" format=\"text\"/>'' <$view field=\"description\" format=\"text\"/></$link></div>\n</$set>\n</$list>\n</div>\n</$linkcatcher>"
},
"$:/core/wiki/title": {
"title": "$:/core/wiki/title",
"text": "{{$:/SiteTitle}} --- {{$:/SiteSubtitle}}"
},
"$:/view": {
"title": "$:/view",
"text": "classic"
},
"$:/snippets/viewswitcher": {
"title": "$:/snippets/viewswitcher",
"text": "\\define icon()\n$:/core/images/storyview-$(storyview)$\n\\end\n<$linkcatcher to=\"$:/view\">\n<div class=\"tc-chooser tc-viewswitcher\">\n<$list filter=\"[storyviews[]]\" variable=\"storyview\">\n<$set name=\"cls\" filter=\"[<storyview>prefix{$:/view}]\" value=\"tc-chooser-item tc-chosen\" emptyValue=\"tc-chooser-item\"><div class=<<cls>>>\n<$link to=<<storyview>>><$transclude tiddler=<<icon>>/><$text text=<<storyview>>/></$link>\n</div>\n</$set>\n</$list>\n</div>\n</$linkcatcher>"
}
}
}
{
"Linaus Gallery": "[tag[Linaus Bilder]]",
"LinApprox Gallery": "[tag[LinApprox Bilder]]",
"Gauß Gallery": "[tag[Gauß Bilder]]",
"Tikhonov Gallery": "[tag[Tikhonov Bilder]]",
"Bildkompression_2 Gallery": "[tag[Bildkompression_2 Bilder]]",
"Bildkompression_3 Gallery": "[tag[Bildkompression_3 Bilder]]"
}
{
"tiddlers": {
"$:/language/Buttons/AdvancedSearch/Caption": {
"title": "$:/language/Buttons/AdvancedSearch/Caption",
"text": "Erweiterte Suche"
},
"$:/language/Buttons/AdvancedSearch/Hint": {
"title": "$:/language/Buttons/AdvancedSearch/Hint",
"text": "Erweiterte Suche"
},
"$:/language/Buttons/Cancel/Caption": {
"title": "$:/language/Buttons/Cancel/Caption",
"text": "Abbrechen"
},
"$:/language/Buttons/Cancel/Hint": {
"title": "$:/language/Buttons/Cancel/Hint",
"text": "Änderungen verwerfen"
},
"$:/language/Buttons/Clone/Caption": {
"title": "$:/language/Buttons/Clone/Caption",
"text": "Klone"
},
"$:/language/Buttons/Clone/Hint": {
"title": "$:/language/Buttons/Clone/Hint",
"text": "Klone diesen Tiddler"
},
"$:/language/Buttons/Close/Caption": {
"title": "$:/language/Buttons/Close/Caption",
"text": "Schließen"
},
"$:/language/Buttons/Close/Hint": {
"title": "$:/language/Buttons/Close/Hint",
"text": "Schließe diesen Tiddler"
},
"$:/language/Buttons/CloseAll/Caption": {
"title": "$:/language/Buttons/CloseAll/Caption",
"text": "Alle schließen"
},
"$:/language/Buttons/CloseAll/Hint": {
"title": "$:/language/Buttons/CloseAll/Hint",
"text": "Alle Tiddler schließen"
},
"$:/language/Buttons/CloseOthers/Caption": {
"title": "$:/language/Buttons/CloseOthers/Caption",
"text": "Andere schließen"
},
"$:/language/Buttons/CloseOthers/Hint": {
"title": "$:/language/Buttons/CloseOthers/Hint",
"text": "Alle anderen Tiddler schließen"
},
"$:/language/Buttons/ControlPanel/Caption": {
"title": "$:/language/Buttons/ControlPanel/Caption",
"text": "Control-Panel"
},
"$:/language/Buttons/ControlPanel/Hint": {
"title": "$:/language/Buttons/ControlPanel/Hint",
"text": "Öffne das Control-Panel"
},
"$:/language/Buttons/CopyToClipboard/Caption": {
"title": "$:/language/Buttons/CopyToClipboard/Caption",
"text": "Kopiere in die Zwischenablage"
},
"$:/language/Buttons/CopyToClipboard/Hint": {
"title": "$:/language/Buttons/CopyToClipboard/Hint",
"text": "Kopiere diesen Text in die Zwischenablage"
},
"$:/language/Buttons/Delete/Caption": {
"title": "$:/language/Buttons/Delete/Caption",
"text": "Löschen"
},
"$:/language/Buttons/Delete/Hint": {
"title": "$:/language/Buttons/Delete/Hint",
"text": "Lösche diesen Tiddler"
},
"$:/language/Buttons/Edit/Caption": {
"title": "$:/language/Buttons/Edit/Caption",
"text": "Bearbeiten"
},
"$:/language/Buttons/Edit/Hint": {
"title": "$:/language/Buttons/Edit/Hint",
"text": "Bearbeite diesen Tiddler"
},
"$:/language/Buttons/Encryption/Caption": {
"title": "$:/language/Buttons/Encryption/Caption",
"text": "Verschlüsselung"
},
"$:/language/Buttons/Encryption/Hint": {
"title": "$:/language/Buttons/Encryption/Hint",
"text": "Aktivieren oder löschen des Passworts für dieses Wiki"
},
"$:/language/Buttons/Encryption/ClearPassword/Caption": {
"title": "$:/language/Buttons/Encryption/ClearPassword/Caption",
"text": "Verschlüsselung deaktivieren"
},
"$:/language/Buttons/Encryption/ClearPassword/Hint": {
"title": "$:/language/Buttons/Encryption/ClearPassword/Hint",
"text": "Lösche das Passwort und speichere ohne Verschlüsselung"
},
"$:/language/Buttons/Encryption/SetPassword/Caption": {
"title": "$:/language/Buttons/Encryption/SetPassword/Caption",
"text": "Verschlüsselung"
},
"$:/language/Buttons/Encryption/SetPassword/Hint": {
"title": "$:/language/Buttons/Encryption/SetPassword/Hint",
"text": "Definiert ein Passwort, um dieses Wiki zu verschlüsseln"
},
"$:/language/Buttons/ExportPage/Caption": {
"title": "$:/language/Buttons/ExportPage/Caption",
"text": "Alle exportieren"
},
"$:/language/Buttons/ExportPage/Hint": {
"title": "$:/language/Buttons/ExportPage/Hint",
"text": "Alle Tiddler exportieren"
},
"$:/language/Buttons/ExportTiddler/Caption": {
"title": "$:/language/Buttons/ExportTiddler/Caption",
"text": "Exportieren"
},
"$:/language/Buttons/ExportTiddler/Hint": {
"title": "$:/language/Buttons/ExportTiddler/Hint",
"text": "Diesen Tiddler exportieren"
},
"$:/language/Buttons/ExportTiddlers/Caption": {
"title": "$:/language/Buttons/ExportTiddlers/Caption",
"text": "Mehrere exportieren"
},
"$:/language/Buttons/ExportTiddlers/Hint": {
"title": "$:/language/Buttons/ExportTiddlers/Hint",
"text": "Mehrere Tiddler exportieren"
},
"$:/language/Buttons/SidebarSearch/Hint": {
"title": "$:/language/Buttons/SidebarSearch/Hint",
"text": "Aktiviere das \"sidebar\" Suchfeld"
},
"$:/language/Buttons/Fold/Caption": {
"title": "$:/language/Buttons/Fold/Caption",
"text": "Ausblenden Textbereich"
},
"$:/language/Buttons/Fold/Hint": {
"title": "$:/language/Buttons/Fold/Hint",
"text": "Der Tiddler Textbereich wird ausgeblendet"
},
"$:/language/Buttons/Fold/FoldBar/Caption": {
"title": "$:/language/Buttons/Fold/FoldBar/Caption",
"text": "Textbereich ein/aus"
},
"$:/language/Buttons/Fold/FoldBar/Hint": {
"title": "$:/language/Buttons/Fold/FoldBar/Hint",
"text": "Optionelle Buttons im Tiddler, um den Textbereich ein- bzw. auszublenden"
},
"$:/language/Buttons/Unfold/Caption": {
"title": "$:/language/Buttons/Unfold/Caption",
"text": "Einblenden Textbereich"
},
"$:/language/Buttons/Unfold/Hint": {
"title": "$:/language/Buttons/Unfold/Hint",
"text": "Der Tiddler Textbereich wird eingeblendet"
},
"$:/language/Buttons/FoldOthers/Caption": {
"title": "$:/language/Buttons/FoldOthers/Caption",
"text": "Ausblenden andere Textbereiche"
},
"$:/language/Buttons/FoldOthers/Hint": {
"title": "$:/language/Buttons/FoldOthers/Hint",
"text": "Die Textbereiche aller anderen Tiddler werden ausgeblendet"
},
"$:/language/Buttons/FoldAll/Caption": {
"title": "$:/language/Buttons/FoldAll/Caption",
"text": "Ausblenden aller Textbereiche"
},
"$:/language/Buttons/FoldAll/Hint": {
"title": "$:/language/Buttons/FoldAll/Hint",
"text": "Ausblenden der Textbereiche aller Tiddler"
},
"$:/language/Buttons/UnfoldAll/Caption": {
"title": "$:/language/Buttons/UnfoldAll/Caption",
"text": "Einblenden aller Textbereiche"
},
"$:/language/Buttons/UnfoldAll/Hint": {
"title": "$:/language/Buttons/UnfoldAll/Hint",
"text": "Einblenden der Textbereiche aller Tiddler"
},
"$:/language/Buttons/FullScreen/Caption": {
"title": "$:/language/Buttons/FullScreen/Caption",
"text": "Vollbild"
},
"$:/language/Buttons/FullScreen/Hint": {
"title": "$:/language/Buttons/FullScreen/Hint",
"text": "Aktivieren oder Deaktivieren des Vollbild-Modus"
},
"$:/language/Buttons/Help/Caption": {
"title": "$:/language/Buttons/Help/Caption",
"text": "Hilfe"
},
"$:/language/Buttons/Help/Hint": {
"title": "$:/language/Buttons/Help/Hint",
"text": "Hilfe anzeigen"
},
"$:/language/Buttons/Import/Caption": {
"title": "$:/language/Buttons/Import/Caption",
"text": "Import"
},
"$:/language/Buttons/Import/Hint": {
"title": "$:/language/Buttons/Import/Hint",
"text": "Importiere unterschiedliche Dateitypen. zB: Text, Bilder, TiddlyWiki oder JSON"
},
"$:/language/Buttons/Info/Caption": {
"title": "$:/language/Buttons/Info/Caption",
"text": "Info"
},
"$:/language/Buttons/Info/Hint": {
"title": "$:/language/Buttons/Info/Hint",
"text": "Informationen zu diesem Tiddler anzeigen"
},
"$:/language/Buttons/Home/Caption": {
"title": "$:/language/Buttons/Home/Caption",
"text": "Home"
},
"$:/language/Buttons/Home/Hint": {
"title": "$:/language/Buttons/Home/Hint",
"text": "Öffnen der Standard-Tiddler"
},
"$:/language/Buttons/Language/Caption": {
"title": "$:/language/Buttons/Language/Caption",
"text": "Sprache"
},
"$:/language/Buttons/Language/Hint": {
"title": "$:/language/Buttons/Language/Hint",
"text": "Auswahldialog für die Systemsprache"
},
"$:/language/Buttons/Manager/Caption": {
"title": "$:/language/Buttons/Manager/Caption",
"text": "Tiddler Manager"
},
"$:/language/Buttons/Manager/Hint": {
"title": "$:/language/Buttons/Manager/Hint",
"text": "Öffne den Tiddler Manager"
},
"$:/language/Buttons/More/Caption": {
"title": "$:/language/Buttons/More/Caption",
"text": "mehr"
},
"$:/language/Buttons/More/Hint": {
"title": "$:/language/Buttons/More/Hint",
"text": "Weitere Aktionen"
},
"$:/language/Buttons/NewHere/Caption": {
"title": "$:/language/Buttons/NewHere/Caption",
"text": "Neu hier"
},
"$:/language/Buttons/NewHere/Hint": {
"title": "$:/language/Buttons/NewHere/Hint",
"text": "Erstelle einen neuen Tiddler, der mit dem Namen dieses Tiddlers getaggt ist"
},
"$:/language/Buttons/NewJournal/Caption": {
"title": "$:/language/Buttons/NewJournal/Caption",
"text": "Neues Journal"
},
"$:/language/Buttons/NewJournal/Hint": {
"title": "$:/language/Buttons/NewJournal/Hint",
"text": "Erstelle einen neuen Journal-Tiddler"
},
"$:/language/Buttons/NewJournalHere/Caption": {
"title": "$:/language/Buttons/NewJournalHere/Caption",
"text": "Neues Journal hier"
},
"$:/language/Buttons/NewJournalHere/Hint": {
"title": "$:/language/Buttons/NewJournalHere/Hint",
"text": "Erstelle ein neues Journal der mit diesem getaggt ist"
},
"$:/language/Buttons/NewImage/Caption": {
"title": "$:/language/Buttons/NewImage/Caption",
"text": "Neues Bild"
},
"$:/language/Buttons/NewImage/Hint": {
"title": "$:/language/Buttons/NewImage/Hint",
"text": "Erstelle ein neues Bild"
},
"$:/language/Buttons/NewMarkdown/Caption": {
"title": "$:/language/Buttons/NewMarkdown/Caption",
"text": "Neuer Markdown Tiddler"
},
"$:/language/Buttons/NewMarkdown/Hint": {
"title": "$:/language/Buttons/NewMarkdown/Hint",
"text": "Erstelle einen neuen \"Markdown\" Tiddler"
},
"$:/language/Buttons/NewTiddler/Caption": {
"title": "$:/language/Buttons/NewTiddler/Caption",
"text": "Neuer Tiddler"
},
"$:/language/Buttons/NewTiddler/Hint": {
"title": "$:/language/Buttons/NewTiddler/Hint",
"text": "Erstelle einen neuen Tiddler"
},
"$:/language/Buttons/OpenWindow/Caption": {
"title": "$:/language/Buttons/OpenWindow/Caption",
"text": "Öffne in neuem Fenster"
},
"$:/language/Buttons/OpenWindow/Hint": {
"title": "$:/language/Buttons/OpenWindow/Hint",
"text": "Öffne diesen Tiddler in einem neuen Fenster"
},
"$:/language/Buttons/Palette/Caption": {
"title": "$:/language/Buttons/Palette/Caption",
"text": "Palette"
},
"$:/language/Buttons/Palette/Hint": {
"title": "$:/language/Buttons/Palette/Hint",
"text": "Wähle eine Farbpalette"
},
"$:/language/Buttons/Permalink/Caption": {
"title": "$:/language/Buttons/Permalink/Caption",
"text": "Permalink"
},
"$:/language/Buttons/Permalink/Hint": {
"title": "$:/language/Buttons/Permalink/Hint",
"text": "Die Adressleiste des Browsers enthält einen Link zu diesem Tiddler"
},
"$:/language/Buttons/Permaview/Caption": {
"title": "$:/language/Buttons/Permaview/Caption",
"text": "Permaview"
},
"$:/language/Buttons/Permaview/Hint": {
"title": "$:/language/Buttons/Permaview/Hint",
"text": "Die Adressleiste des Browsers enthält einen Link zu allen offenen Tiddlern in dieser Story"
},
"$:/language/Buttons/Print/Caption": {
"title": "$:/language/Buttons/Print/Caption",
"text": "Seite drucken"
},
"$:/language/Buttons/Print/Hint": {
"title": "$:/language/Buttons/Print/Hint",
"text": "Aktuelle Seite drucken"
},
"$:/language/Buttons/Refresh/Caption": {
"title": "$:/language/Buttons/Refresh/Caption",
"text": "Aktualisieren"
},
"$:/language/Buttons/Refresh/Hint": {
"title": "$:/language/Buttons/Refresh/Hint",
"text": "Die Seite wird neu in den Browser geladen"
},
"$:/language/Buttons/Save/Caption": {
"title": "$:/language/Buttons/Save/Caption",
"text": "Fertig"
},
"$:/language/Buttons/Save/Hint": {
"title": "$:/language/Buttons/Save/Hint",
"text": "Änderungen für diesen Tiddler bestätigen"
},
"$:/language/Buttons/SaveWiki/Caption": {
"title": "$:/language/Buttons/SaveWiki/Caption",
"text": "Speichern"
},
"$:/language/Buttons/SaveWiki/Hint": {
"title": "$:/language/Buttons/SaveWiki/Hint",
"text": "Das Wiki speichern"
},
"$:/language/Buttons/StoryView/Caption": {
"title": "$:/language/Buttons/StoryView/Caption",
"text": "Story-Modus"
},
"$:/language/Buttons/StoryView/Hint": {
"title": "$:/language/Buttons/StoryView/Hint",
"text": "Auswahl des Anzeigemodus für die Story"
},
"$:/language/Buttons/HideSideBar/Caption": {
"title": "$:/language/Buttons/HideSideBar/Caption",
"text": "Sidebar ausblenden"
},
"$:/language/Buttons/HideSideBar/Hint": {
"title": "$:/language/Buttons/HideSideBar/Hint",
"text": "Sidebar ausblenden"
},
"$:/language/Buttons/ShowSideBar/Caption": {
"title": "$:/language/Buttons/ShowSideBar/Caption",
"text": "Sidebar einblenden"
},
"$:/language/Buttons/ShowSideBar/Hint": {
"title": "$:/language/Buttons/ShowSideBar/Hint",
"text": "Sidebar einblenden"
},
"$:/language/Buttons/TagManager/Caption": {
"title": "$:/language/Buttons/TagManager/Caption",
"text": "Tag-Manager"
},
"$:/language/Buttons/TagManager/Hint": {
"title": "$:/language/Buttons/TagManager/Hint",
"text": "Öffne den Tag-Manager"
},
"$:/language/Buttons/Timestamp/Caption": {
"title": "$:/language/Buttons/Timestamp/Caption",
"text": "Zeitstempel"
},
"$:/language/Buttons/Timestamp/Hint": {
"title": "$:/language/Buttons/Timestamp/Hint",
"text": "Einstellung, ob Änderungen den Zeitstempel beeinflussen"
},
"$:/language/Buttons/Timestamp/On/Caption": {
"title": "$:/language/Buttons/Timestamp/On/Caption",
"text": "Zeitstempel EIN"
},
"$:/language/Buttons/Timestamp/On/Hint": {
"title": "$:/language/Buttons/Timestamp/On/Hint",
"text": "Zeitstempel aktualisieren, wenn ein Tiddler verändert wird"
},
"$:/language/Buttons/Timestamp/Off/Caption": {
"title": "$:/language/Buttons/Timestamp/Off/Caption",
"text": "Zeitstempel AUS"
},
"$:/language/Buttons/Timestamp/Off/Hint": {
"title": "$:/language/Buttons/Timestamp/Off/Hint",
"text": "Zeitstempel bleibt unverändert, wenn ein Tiddler geändert wird"
},
"$:/language/Buttons/Theme/Caption": {
"title": "$:/language/Buttons/Theme/Caption",
"text": "Theme"
},
"$:/language/Buttons/Theme/Hint": {
"title": "$:/language/Buttons/Theme/Hint",
"text": "Theme auswählen"
},
"$:/language/Buttons/Bold/Caption": {
"title": "$:/language/Buttons/Bold/Caption",
"text": "Fett"
},
"$:/language/Buttons/Bold/Hint": {
"title": "$:/language/Buttons/Bold/Hint",
"text": "Ausgewählten Text fett darstellen"
},
"$:/language/Buttons/Clear/Caption": {
"title": "$:/language/Buttons/Clear/Caption",
"text": "Löschen"
},
"$:/language/Buttons/Clear/Hint": {
"title": "$:/language/Buttons/Clear/Hint",
"text": "Bild mit Hintergrund Farbe löschen"
},
"$:/language/Buttons/EditorHeight/Caption": {
"title": "$:/language/Buttons/EditorHeight/Caption",
"text": "Editor Höhe"
},
"$:/language/Buttons/EditorHeight/Caption/Auto": {
"title": "$:/language/Buttons/EditorHeight/Caption/Auto",
"text": "Editor Höhe an Inhalt anpassen"
},
"$:/language/Buttons/EditorHeight/Caption/Fixed": {
"title": "$:/language/Buttons/EditorHeight/Caption/Fixed",
"text": "Fixe Höhe:"
},
"$:/language/Buttons/EditorHeight/Hint": {
"title": "$:/language/Buttons/EditorHeight/Hint",
"text": "Wählen Sie die Höhe des Editors"
},
"$:/language/Buttons/Excise/Caption": {
"title": "$:/language/Buttons/Excise/Caption",
"text": "Verschieben"
},
"$:/language/Buttons/Excise/Caption/Excise": {
"title": "$:/language/Buttons/Excise/Caption/Excise",
"text": "Text verschieben"
},
"$:/language/Buttons/Excise/Caption/MacroName": {
"title": "$:/language/Buttons/Excise/Caption/MacroName",
"text": "Makro Name:"
},
"$:/language/Buttons/Excise/Caption/NewTitle": {
"title": "$:/language/Buttons/Excise/Caption/NewTitle",
"text": "Titel des neuen Tiddlers:"
},
"$:/language/Buttons/Excise/Caption/Replace": {
"title": "$:/language/Buttons/Excise/Caption/Replace",
"text": "Ersetze den verschobenen Text mit:"
},
"$:/language/Buttons/Excise/Caption/Replace/Macro": {
"title": "$:/language/Buttons/Excise/Caption/Replace/Macro",
"text": "Makro"
},
"$:/language/Buttons/Excise/Caption/Replace/Link": {
"title": "$:/language/Buttons/Excise/Caption/Replace/Link",
"text": "Link"
},
"$:/language/Buttons/Excise/Caption/Replace/Transclusion": {
"title": "$:/language/Buttons/Excise/Caption/Replace/Transclusion",
"text": "Transklusion"
},
"$:/language/Buttons/Excise/Caption/Tag": {
"title": "$:/language/Buttons/Excise/Caption/Tag",
"text": "Tagge den neuen Tiddler mit dem Titel des aktuellen Tiddlers"
},
"$:/language/Buttons/Excise/Caption/TiddlerExists": {
"title": "$:/language/Buttons/Excise/Caption/TiddlerExists",
"text": "Warnung: Tiddler existiert bereits!"
},
"$:/language/Buttons/Excise/Hint": {
"title": "$:/language/Buttons/Excise/Hint",
"text": "Verschiebe den ausgewählten Text in einen neuen Tiddler"
},
"$:/language/Buttons/Heading1/Caption": {
"title": "$:/language/Buttons/Heading1/Caption",
"text": "Überschrift 1"
},
"$:/language/Buttons/Heading1/Hint": {
"title": "$:/language/Buttons/Heading1/Hint",
"text": "Überschrift 1 auf die Zeilen anwenden, die eine Auswahl enthalten"
},
"$:/language/Buttons/Heading2/Caption": {
"title": "$:/language/Buttons/Heading2/Caption",
"text": "Überschrift 2"
},
"$:/language/Buttons/Heading2/Hint": {
"title": "$:/language/Buttons/Heading2/Hint",
"text": "Überschrift 2 auf die Zeilen anwenden, die eine Auswahl enthalten"
},
"$:/language/Buttons/Heading3/Caption": {
"title": "$:/language/Buttons/Heading3/Caption",
"text": "Überschrift 3"
},
"$:/language/Buttons/Heading3/Hint": {
"title": "$:/language/Buttons/Heading3/Hint",
"text": "Überschrift 3 auf die Zeilen anwenden, die eine Auswahl enthalten"
},
"$:/language/Buttons/Heading4/Caption": {
"title": "$:/language/Buttons/Heading4/Caption",
"text": "Überschrift 4"
},
"$:/language/Buttons/Heading4/Hint": {
"title": "$:/language/Buttons/Heading4/Hint",
"text": "Überschrift 4 auf die Zeilen anwenden, die eine Auswahl enthalten"
},
"$:/language/Buttons/Heading5/Caption": {
"title": "$:/language/Buttons/Heading5/Caption",
"text": "Überschrift 5"
},
"$:/language/Buttons/Heading5/Hint": {
"title": "$:/language/Buttons/Heading5/Hint",
"text": "Überschrift 5 auf die Zeilen anwenden, die eine Auswahl enthalten"
},
"$:/language/Buttons/Heading6/Caption": {
"title": "$:/language/Buttons/Heading6/Caption",
"text": "Überschrift 6"
},
"$:/language/Buttons/Heading6/Hint": {
"title": "$:/language/Buttons/Heading6/Hint",
"text": "Überschrift 6 auf die Zeilen anwenden, die eine Auswahl enthalten"
},
"$:/language/Buttons/Italic/Caption": {
"title": "$:/language/Buttons/Italic/Caption",
"text": "Kursiv"
},
"$:/language/Buttons/Italic/Hint": {
"title": "$:/language/Buttons/Italic/Hint",
"text": "Kursiv auf den selektierten Text anwenden"
},
"$:/language/Buttons/LineWidth/Caption": {
"title": "$:/language/Buttons/LineWidth/Caption",
"text": "Zeilen Länge"
},
"$:/language/Buttons/LineWidth/Hint": {
"title": "$:/language/Buttons/LineWidth/Hint",
"text": "Wählen Sie die Zeilenlänge"
},
"$:/language/Buttons/Link/Caption": {
"title": "$:/language/Buttons/Link/Caption",
"text": "Link"
},
"$:/language/Buttons/Link/Hint": {
"title": "$:/language/Buttons/Link/Hint",
"text": "Erstellt einen Wiki-Link"
},
"$:/language/Buttons/Linkify/Caption": {
"title": "$:/language/Buttons/Linkify/Caption",
"text": "Wikilink"
},
"$:/language/Buttons/Linkify/Hint": {
"title": "$:/language/Buttons/Linkify/Hint",
"text": "Wikilink - Den selektierten Text in eckige Klammern setzen"
},
"$:/language/Buttons/ListBullet/Caption": {
"title": "$:/language/Buttons/ListBullet/Caption",
"text": "Punkteliste"
},
"$:/language/Buttons/ListBullet/Hint": {
"title": "$:/language/Buttons/ListBullet/Hint",
"text": "Zeilen, die eine Markierung enthalten, werden als Punkteliste formatiert"
},
"$:/language/Buttons/ListNumber/Caption": {
"title": "$:/language/Buttons/ListNumber/Caption",
"text": "Aufzählungsliste"
},
"$:/language/Buttons/ListNumber/Hint": {
"title": "$:/language/Buttons/ListNumber/Hint",
"text": "Zeilen, die eine Markierung enthalten, werden als Auzählungsliste formatiert"
},
"$:/language/Buttons/MonoBlock/Caption": {
"title": "$:/language/Buttons/MonoBlock/Caption",
"text": "Dicktengleicher Textblock"
},
"$:/language/Buttons/MonoBlock/Hint": {
"title": "$:/language/Buttons/MonoBlock/Hint",
"text": "Alle Zeilen die eine Markierung enthalten, werden als Textblock mit einer dicktengleichen Schrift formatiert"
},
"$:/language/Buttons/MonoLine/Caption": {
"title": "$:/language/Buttons/MonoLine/Caption",
"text": "Dicktengleich"
},
"$:/language/Buttons/MonoLine/Hint": {
"title": "$:/language/Buttons/MonoLine/Hint",
"text": "Alle markierten Zeichen werden mit einer dicktengleichen Schrift formatiert"
},
"$:/language/Buttons/Opacity/Caption": {
"title": "$:/language/Buttons/Opacity/Caption",
"text": "Transparenz"
},
"$:/language/Buttons/Opacity/Hint": {
"title": "$:/language/Buttons/Opacity/Hint",
"text": "Wählen sie die Transparenz"
},
"$:/language/Buttons/Paint/Caption": {
"title": "$:/language/Buttons/Paint/Caption",
"text": "Malfarbe"
},
"$:/language/Buttons/Paint/Hint": {
"title": "$:/language/Buttons/Paint/Hint",
"text": "Wählen Sie die Malfarbe"
},
"$:/language/Buttons/Picture/Caption": {
"title": "$:/language/Buttons/Picture/Caption",
"text": "Bild"
},
"$:/language/Buttons/Picture/Hint": {
"title": "$:/language/Buttons/Picture/Hint",
"text": "Bild einfügen"
},
"$:/language/Buttons/Preview/Caption": {
"title": "$:/language/Buttons/Preview/Caption",
"text": "Vorschau"
},
"$:/language/Buttons/Preview/Hint": {
"title": "$:/language/Buttons/Preview/Hint",
"text": "Vorschau einblenden"
},
"$:/language/Buttons/PreviewType/Caption": {
"title": "$:/language/Buttons/PreviewType/Caption",
"text": "Vorschau Typ"
},
"$:/language/Buttons/PreviewType/Hint": {
"title": "$:/language/Buttons/PreviewType/Hint",
"text": "Wählen Sie den Vorschau Typ"
},
"$:/language/Buttons/Quote/Caption": {
"title": "$:/language/Buttons/Quote/Caption",
"text": "Zitat"
},
"$:/language/Buttons/Quote/Hint": {
"title": "$:/language/Buttons/Quote/Hint",
"text": "Alle Zeilen, die eine Markierung enthalten werden als Referenz/Zitat formatiert"
},
"$:/language/Buttons/RotateLeft/Caption": {
"title": "$:/language/Buttons/RotateLeft/Caption",
"text": "Links rotieren"
},
"$:/language/Buttons/RotateLeft/Hint": {
"title": "$:/language/Buttons/RotateLeft/Hint",
"text": "Rotiere das Bild um 90° nach links"
},
"$:/language/Buttons/Size/Caption": {
"title": "$:/language/Buttons/Size/Caption",
"text": "Bildgröße"
},
"$:/language/Buttons/Size/Caption/Height": {
"title": "$:/language/Buttons/Size/Caption/Height",
"text": "Höhe:"
},
"$:/language/Buttons/Size/Caption/Resize": {
"title": "$:/language/Buttons/Size/Caption/Resize",
"text": "Bildgröße ändern"
},
"$:/language/Buttons/Size/Caption/Width": {
"title": "$:/language/Buttons/Size/Caption/Width",
"text": "Weite:"
},
"$:/language/Buttons/Size/Hint": {
"title": "$:/language/Buttons/Size/Hint",
"text": "Bildweite ändern"
},
"$:/language/Buttons/Stamp/Caption": {
"title": "$:/language/Buttons/Stamp/Caption",
"text": "Stempel"
},
"$:/language/Buttons/Stamp/Caption/New": {
"title": "$:/language/Buttons/Stamp/Caption/New",
"text": "Eigenen Stempel erstellen"
},
"$:/language/Buttons/Stamp/Hint": {
"title": "$:/language/Buttons/Stamp/Hint",
"text": "Textschnipsel hier einfügen"
},
"$:/language/Buttons/Stamp/New/Title": {
"title": "$:/language/Buttons/Stamp/New/Title",
"text": "Name, der im Menü angezeigt werden soll"
},
"$:/language/Buttons/Stamp/New/Text": {
"title": "$:/language/Buttons/Stamp/New/Text",
"text": "Text des Schnipsels. (Nicher vergessen eine aussagekräftigen Titel zu verwenden)"
},
"$:/language/Buttons/Strikethrough/Caption": {
"title": "$:/language/Buttons/Strikethrough/Caption",
"text": "Durchgestrichen"
},
"$:/language/Buttons/Strikethrough/Hint": {
"title": "$:/language/Buttons/Strikethrough/Hint",
"text": "Ausgewählten Text durchgestrichen darstgellen"
},
"$:/language/Buttons/Subscript/Caption": {
"title": "$:/language/Buttons/Subscript/Caption",
"text": "Tiefsgestellt"
},
"$:/language/Buttons/Subscript/Hint": {
"title": "$:/language/Buttons/Subscript/Hint",
"text": "Ausgewählten Text tiefgestellt darstellen"
},
"$:/language/Buttons/Superscript/Caption": {
"title": "$:/language/Buttons/Superscript/Caption",
"text": "Hochgestellt"
},
"$:/language/Buttons/Superscript/Hint": {
"title": "$:/language/Buttons/Superscript/Hint",
"text": "Ausgewählten Text hochgestellt darstellen"
},
"$:/language/Buttons/ToggleSidebar/Hint": {
"title": "$:/language/Buttons/ToggleSidebar/Hint",
"text": "Invertiere die \"sidebar\" Sichtbarkeit"
},
"$:/language/Buttons/Transcludify/Caption": {
"title": "$:/language/Buttons/Transcludify/Caption",
"text": "Transklusion"
},
"$:/language/Buttons/Transcludify/Hint": {
"title": "$:/language/Buttons/Transcludify/Hint",
"text": "Transklusion - Den selektierten Text in geschwungene Klammern setzen"
},
"$:/language/Buttons/Underline/Caption": {
"title": "$:/language/Buttons/Underline/Caption",
"text": "Unterstreichen"
},
"$:/language/Buttons/Underline/Hint": {
"title": "$:/language/Buttons/Underline/Hint",
"text": "Ausgewählten Text unterstrichen darstellen"
},
"$:/language/ControlPanel/Advanced/Caption": {
"title": "$:/language/ControlPanel/Advanced/Caption",
"text": "Erweitert"
},
"$:/language/ControlPanel/Advanced/Hint": {
"title": "$:/language/ControlPanel/Advanced/Hint",
"text": "Interne Informationen über dieses ~TiddlyWiki."
},
"$:/language/ControlPanel/Appearance/Caption": {
"title": "$:/language/ControlPanel/Appearance/Caption",
"text": "Design"
},
"$:/language/ControlPanel/Appearance/Hint": {
"title": "$:/language/ControlPanel/Appearance/Hint",
"text": "Möglichkeiten um das Aussehen Ihres ~TiddlyWikis anzupassen."
},
"$:/language/ControlPanel/Basics/AnimDuration/Prompt": {
"title": "$:/language/ControlPanel/Basics/AnimDuration/Prompt",
"text": "Dauer der Animation"
},
"$:/language/ControlPanel/Basics/AutoFocus/Prompt": {
"title": "$:/language/ControlPanel/Basics/AutoFocus/Prompt",
"text": "Standard Fokus Feld für neue Tiddler"
},
"$:/language/ControlPanel/Basics/Caption": {
"title": "$:/language/ControlPanel/Basics/Caption",
"text": "Basis"
},
"$:/language/ControlPanel/Basics/DefaultTiddlers/BottomHint": {
"title": "$:/language/ControlPanel/Basics/DefaultTiddlers/BottomHint",
"text": "Verwenden Sie [[doppelte eckige Klammern]] für Titel mit Leerzeichen oder wählen Sie <$button set=\"$:/DefaultTiddlers\" setTo=\"[list[$:/StoryList]]\">Offene Tiddler beim Laden wiederherstellen.</$button>"
},
"$:/language/ControlPanel/Basics/DefaultTiddlers/Prompt": {
"title": "$:/language/ControlPanel/Basics/DefaultTiddlers/Prompt",
"text": "Standard-Tiddler"
},
"$:/language/ControlPanel/Basics/DefaultTiddlers/TopHint": {
"title": "$:/language/ControlPanel/Basics/DefaultTiddlers/TopHint",
"text": "Tiddler, die beim Start geladen werden"
},
"$:/language/ControlPanel/Basics/Language/Prompt": {
"title": "$:/language/ControlPanel/Basics/Language/Prompt",
"text": "Hallo! Aktuelle Sprache"
},
"$:/language/ControlPanel/Basics/NewJournal/Title/Prompt": {
"title": "$:/language/ControlPanel/Basics/NewJournal/Title/Prompt",
"text": "Titel des neuen Journal-Tiddlers"
},
"$:/language/ControlPanel/Basics/NewJournal/Text/Prompt": {
"title": "$:/language/ControlPanel/Basics/NewJournal/Text/Prompt",
"text": "Text des neuen Journal-Tiddlers"
},
"$:/language/ControlPanel/Basics/NewJournal/Tags/Prompt": {
"title": "$:/language/ControlPanel/Basics/NewJournal/Tags/Prompt",
"text": "Tags des neuen Journal-Tiddlers"
},
"$:/language/ControlPanel/Basics/NewTiddler/Title/Prompt": {
"title": "$:/language/ControlPanel/Basics/NewTiddler/Title/Prompt",
"text": "Titel des neuen Tiddlers"
},
"$:/language/ControlPanel/Basics/NewTiddler/Tags/Prompt": {
"title": "$:/language/ControlPanel/Basics/NewTiddler/Tags/Prompt",
"text": "Tags des neuen Tiddlers"
},
"$:/language/ControlPanel/Basics/OverriddenShadowTiddlers/Prompt": {
"title": "$:/language/ControlPanel/Basics/OverriddenShadowTiddlers/Prompt",
"text": "Anzahl überschriebener Schatten-Tiddler"
},
"$:/language/ControlPanel/Basics/ShadowTiddlers/Prompt": {
"title": "$:/language/ControlPanel/Basics/ShadowTiddlers/Prompt",
"text": "Anzahl Schatten-Tiddler"
},
"$:/language/ControlPanel/Basics/Subtitle/Prompt": {
"title": "$:/language/ControlPanel/Basics/Subtitle/Prompt",
"text": "Untertitel"
},
"$:/language/ControlPanel/Basics/SystemTiddlers/Prompt": {
"title": "$:/language/ControlPanel/Basics/SystemTiddlers/Prompt",
"text": "Anzahl System-Tiddler"
},
"$:/language/ControlPanel/Basics/Tags/Prompt": {
"title": "$:/language/ControlPanel/Basics/Tags/Prompt",
"text": "Anzahl Tags"
},
"$:/language/ControlPanel/Basics/Tiddlers/Prompt": {
"title": "$:/language/ControlPanel/Basics/Tiddlers/Prompt",
"text": "Anzahl Tiddler"
},
"$:/language/ControlPanel/Basics/Title/Prompt": {
"title": "$:/language/ControlPanel/Basics/Title/Prompt",
"text": "Titel dieses ~TiddlyWikis"
},
"$:/language/ControlPanel/Basics/Username/Prompt": {
"title": "$:/language/ControlPanel/Basics/Username/Prompt",
"text": "Benutzersignatur zum Editieren"
},
"$:/language/ControlPanel/Basics/Version/Prompt": {
"title": "$:/language/ControlPanel/Basics/Version/Prompt",
"text": "~TiddlyWiki Version"
},
"$:/language/ControlPanel/EditorTypes/Caption": {
"title": "$:/language/ControlPanel/EditorTypes/Caption",
"text": "Editor Typen"
},
"$:/language/ControlPanel/EditorTypes/Editor/Caption": {
"title": "$:/language/ControlPanel/EditorTypes/Editor/Caption",
"text": "Editor"
},
"$:/language/ControlPanel/EditorTypes/Hint": {
"title": "$:/language/ControlPanel/EditorTypes/Hint",
"text": "Diese Tiddler definieren, welcher Editor für bestimmte Tiddler Typen (MIME-Type) verwendet werden soll."
},
"$:/language/ControlPanel/EditorTypes/Type/Caption": {
"title": "$:/language/ControlPanel/EditorTypes/Type/Caption",
"text": "MIME-Type"
},
"$:/language/ControlPanel/Info/Caption": {
"title": "$:/language/ControlPanel/Info/Caption",
"text": "Info"
},
"$:/language/ControlPanel/Info/Hint": {
"title": "$:/language/ControlPanel/Info/Hint",
"text": "Informationen über dieses TiddlyWiki"
},
"$:/language/ControlPanel/KeyboardShortcuts/Add/Prompt": {
"title": "$:/language/ControlPanel/KeyboardShortcuts/Add/Prompt",
"text": "Tastenkürzel hier eingeben"
},
"$:/language/ControlPanel/KeyboardShortcuts/Add/Caption": {
"title": "$:/language/ControlPanel/KeyboardShortcuts/Add/Caption",
"text": "Tastenkürzel erstellen"
},
"$:/language/ControlPanel/KeyboardShortcuts/Caption": {
"title": "$:/language/ControlPanel/KeyboardShortcuts/Caption",
"text": "Tastenkürzel"
},
"$:/language/ControlPanel/KeyboardShortcuts/Hint": {
"title": "$:/language/ControlPanel/KeyboardShortcuts/Hint",
"text": "Tastenkürzel Zuweisungen bearbeiten"
},
"$:/language/ControlPanel/KeyboardShortcuts/NoShortcuts/Caption": {
"title": "$:/language/ControlPanel/KeyboardShortcuts/NoShortcuts/Caption",
"text": "Keine Tastenkürzel Zusweisungen vorhanden"
},
"$:/language/ControlPanel/KeyboardShortcuts/Remove/Hint": {
"title": "$:/language/ControlPanel/KeyboardShortcuts/Remove/Hint",
"text": "Löschen eines Tastenkürzels"
},
"$:/language/ControlPanel/KeyboardShortcuts/Platform/All": {
"title": "$:/language/ControlPanel/KeyboardShortcuts/Platform/All",
"text": "Alle Plattformen"
},
"$:/language/ControlPanel/KeyboardShortcuts/Platform/Mac": {
"title": "$:/language/ControlPanel/KeyboardShortcuts/Platform/Mac",
"text": "Nur Macintosh"
},
"$:/language/ControlPanel/KeyboardShortcuts/Platform/NonMac": {
"title": "$:/language/ControlPanel/KeyboardShortcuts/Platform/NonMac",
"text": "Alle Plattformen, außer Macintosh"
},
"$:/language/ControlPanel/KeyboardShortcuts/Platform/Linux": {
"title": "$:/language/ControlPanel/KeyboardShortcuts/Platform/Linux",
"text": "Nur Linux"
},
"$:/language/ControlPanel/KeyboardShortcuts/Platform/NonLinux": {
"title": "$:/language/ControlPanel/KeyboardShortcuts/Platform/NonLinux",
"text": "Alle Plattformen, außer Linux"
},
"$:/language/ControlPanel/KeyboardShortcuts/Platform/Windows": {
"title": "$:/language/ControlPanel/KeyboardShortcuts/Platform/Windows",
"text": "Nur Windows"
},
"$:/language/ControlPanel/KeyboardShortcuts/Platform/NonWindows": {
"title": "$:/language/ControlPanel/KeyboardShortcuts/Platform/NonWindows",
"text": "Alle Plattformen, außer Windows"
},
"$:/language/ControlPanel/LoadedModules/Caption": {
"title": "$:/language/ControlPanel/LoadedModules/Caption",
"text": "Geladene Module"
},
"$:/language/ControlPanel/LoadedModules/Hint": {
"title": "$:/language/ControlPanel/LoadedModules/Hint",
"text": "Hier werden die geladenen Module und ihre Quelltext-Komponenten angezeigt. Kursiv hervorgehobene Tiddler haben keinen Quelltext. Sie werden während des Boot-Prozesses (Aufrufen des Tiddlywikis) erstellt."
},
"$:/language/ControlPanel/Palette/Caption": {
"title": "$:/language/ControlPanel/Palette/Caption",
"text": "Palette"
},
"$:/language/ControlPanel/Palette/Editor/Clone/Caption": {
"title": "$:/language/ControlPanel/Palette/Editor/Clone/Caption",
"text": "Palette klonen"
},
"$:/language/ControlPanel/Palette/Editor/Clone/Prompt": {
"title": "$:/language/ControlPanel/Palette/Editor/Clone/Prompt",
"text": "Es wird empfohlen, dass Sie diese Schatten-Palette klonen, bevor Sie sie bearbeiten. Der Name der Palette wird im Tiddler-Feld \"description\" eingestellt."
},
"$:/language/ControlPanel/Palette/Editor/Delete/Hint": {
"title": "$:/language/ControlPanel/Palette/Editor/Delete/Hint",
"text": "Lösche diesen Eintrag von der Palette"
},
"$:/language/ControlPanel/Palette/Editor/Names/External/Show": {
"title": "$:/language/ControlPanel/Palette/Editor/Names/External/Show",
"text": "Zeige Farb-namen, die nicht Tiel der bestehenden Palette sind"
},
"$:/language/ControlPanel/Palette/Editor/Prompt/Modified": {
"title": "$:/language/ControlPanel/Palette/Editor/Prompt/Modified",
"text": "Diese Schatten-Palette wurde bearbeitet."
},
"$:/language/ControlPanel/Palette/Editor/Prompt": {
"title": "$:/language/ControlPanel/Palette/Editor/Prompt",
"text": "Bearbeiten"
},
"$:/language/ControlPanel/Palette/Editor/Reset/Caption": {
"title": "$:/language/ControlPanel/Palette/Editor/Reset/Caption",
"text": "Palette zurücksetzen"
},
"$:/language/ControlPanel/Palette/HideEditor/Caption": {
"title": "$:/language/ControlPanel/Palette/HideEditor/Caption",
"text": "Editor ausblenden"
},
"$:/language/ControlPanel/Palette/Prompt": {
"title": "$:/language/ControlPanel/Palette/Prompt",
"text": "Ausgewählte Farbpalette:"
},
"$:/language/ControlPanel/Palette/ShowEditor/Caption": {
"title": "$:/language/ControlPanel/Palette/ShowEditor/Caption",
"text": "Editor zeigen"
},
"$:/language/ControlPanel/Parsing/Caption": {
"title": "$:/language/ControlPanel/Parsing/Caption",
"text": "Parser"
},
"$:/language/ControlPanel/Parsing/Hint": {
"title": "$:/language/ControlPanel/Parsing/Hint",
"text": "Hier können Sie die globalen Parser-Einstellungen ändern. ACHTUNG: Manche Einstellungen können dazu führen, dass ~TiddlyWiki nicht mehr richtig funktioniert. Sollte das der Fall sein, dann können Sie die Änderungen im [[\"safe mode\"|https://tiddlywiki.com/#SafeMode]] rückgängig machen."
},
"$:/language/ControlPanel/Parsing/Block/Caption": {
"title": "$:/language/ControlPanel/Parsing/Block/Caption",
"text": "Block Regeln"
},
"$:/language/ControlPanel/Parsing/Inline/Caption": {
"title": "$:/language/ControlPanel/Parsing/Inline/Caption",
"text": "Inline Regeln"
},
"$:/language/ControlPanel/Parsing/Pragma/Caption": {
"title": "$:/language/ControlPanel/Parsing/Pragma/Caption",
"text": "Pragma Regeln"
},
"$:/language/ControlPanel/Plugins/Add/Caption": {
"title": "$:/language/ControlPanel/Plugins/Add/Caption",
"text": "Suche"
},
"$:/language/ControlPanel/Plugins/Add/Hint": {
"title": "$:/language/ControlPanel/Plugins/Add/Hint",
"text": "Suche und installiere neue Plugins"
},
"$:/language/ControlPanel/Plugins/AlreadyInstalled/Hint": {
"title": "$:/language/ControlPanel/Plugins/AlreadyInstalled/Hint",
"text": "Dieses Plugin ist bereits installiert. Version: <$text text=<<installedVersion>>/>"
},
"$:/language/ControlPanel/Plugins/AlsoRequires": {
"title": "$:/language/ControlPanel/Plugins/AlsoRequires",
"text": "Benötigt auch:"
},
"$:/language/ControlPanel/Plugins/Caption": {
"title": "$:/language/ControlPanel/Plugins/Caption",
"text": "Plugins"
},
"$:/language/ControlPanel/Plugins/Disable/Caption": {
"title": "$:/language/ControlPanel/Plugins/Disable/Caption",
"text": "deaktivieren"
},
"$:/language/ControlPanel/Plugins/Disable/Hint": {
"title": "$:/language/ControlPanel/Plugins/Disable/Hint",
"text": "Deaktivieren Sie dieses Plugin beim nächsten Laden der Seite."
},
"$:/language/ControlPanel/Plugins/Disabled/Status": {
"title": "$:/language/ControlPanel/Plugins/Disabled/Status",
"text": "(deaktiviert)"
},
"$:/language/ControlPanel/Plugins/Downgrade/Caption": {
"title": "$:/language/ControlPanel/Plugins/Downgrade/Caption",
"text": "herabstufen"
},
"$:/language/ControlPanel/Plugins/Empty/Hint": {
"title": "$:/language/ControlPanel/Plugins/Empty/Hint",
"text": "keine"
},
"$:/language/ControlPanel/Plugins/Enable/Caption": {
"title": "$:/language/ControlPanel/Plugins/Enable/Caption",
"text": "aktivieren"
},
"$:/language/ControlPanel/Plugins/Enable/Hint": {
"title": "$:/language/ControlPanel/Plugins/Enable/Hint",
"text": "Aktivieren Sie dieses Plugin beim nächsten Laden der Seite."
},
"$:/language/ControlPanel/Plugins/Install/Caption": {
"title": "$:/language/ControlPanel/Plugins/Install/Caption",
"text": "installieren"
},
"$:/language/ControlPanel/Plugins/Installed/Hint": {
"title": "$:/language/ControlPanel/Plugins/Installed/Hint",
"text": "Momentan installierte Plugins"
},
"$:/language/ControlPanel/Plugins/Languages/Caption": {
"title": "$:/language/ControlPanel/Plugins/Languages/Caption",
"text": "Sprachen"
},
"$:/language/ControlPanel/Plugins/Languages/Hint": {
"title": "$:/language/ControlPanel/Plugins/Languages/Hint",
"text": "Spracherweiterungen"
},
"$:/language/ControlPanel/Plugins/NoInfoFound/Hint": {
"title": "$:/language/ControlPanel/Plugins/NoInfoFound/Hint",
"text": "Kein ''\"<$text text=<<currentTab>>/>\"'' gefunden"
},
"$:/language/ControlPanel/Plugins/NotInstalled/Hint": {
"title": "$:/language/ControlPanel/Plugins/NotInstalled/Hint",
"text": "Dieses Plugin ist momentan nicht installiert"
},
"$:/language/ControlPanel/Plugins/OpenPluginLibrary": {
"title": "$:/language/ControlPanel/Plugins/OpenPluginLibrary",
"text": "Öffne das Plugin-Verzeichnis"
},
"$:/language/ControlPanel/Plugins/ClosePluginLibrary": {
"title": "$:/language/ControlPanel/Plugins/ClosePluginLibrary",
"text": "Schließe das Plugin-Verzeichnis"
},
"$:/language/ControlPanel/Plugins/PluginWillRequireReload": {
"title": "$:/language/ControlPanel/Plugins/PluginWillRequireReload",
"text": "(\"reload\" ist nötig)"
},
"$:/language/ControlPanel/Plugins/Plugins/Caption": {
"title": "$:/language/ControlPanel/Plugins/Plugins/Caption",
"text": "Plugins"
},
"$:/language/ControlPanel/Plugins/Plugins/Hint": {
"title": "$:/language/ControlPanel/Plugins/Plugins/Hint",
"text": "Erweiterungen"
},
"$:/language/ControlPanel/Plugins/Reinstall/Caption": {
"title": "$:/language/ControlPanel/Plugins/Reinstall/Caption",
"text": "erneut installieren"
},
"$:/language/ControlPanel/Plugins/Themes/Caption": {
"title": "$:/language/ControlPanel/Plugins/Themes/Caption",
"text": "Themes"
},
"$:/language/ControlPanel/Plugins/Themes/Hint": {
"title": "$:/language/ControlPanel/Plugins/Themes/Hint",
"text": "Theme Erweiterungen"
},
"$:/language/ControlPanel/Plugins/Update/Caption": {
"title": "$:/language/ControlPanel/Plugins/Update/Caption",
"text": "aktualisieren"
},
"$:/language/ControlPanel/Plugins/Updates/Caption": {
"title": "$:/language/ControlPanel/Plugins/Updates/Caption",
"text": "Aktualisieren"
},
"$:/language/ControlPanel/Plugins/Updates/Hint": {
"title": "$:/language/ControlPanel/Plugins/Updates/Hint",
"text": "Verfügbare Erweiterungen zu bereits installierten \"Plugins\""
},
"$:/language/ControlPanel/Plugins/Updates/UpdateAll/Caption": {
"title": "$:/language/ControlPanel/Plugins/Updates/UpdateAll/Caption",
"text": "Aktualisiere <<update-count>> \"Plugins\""
},
"$:/language/ControlPanel/Plugins/SubPluginPrompt": {
"title": "$:/language/ControlPanel/Plugins/SubPluginPrompt",
"text": "Mit <<count>> \"sub-plugins\" verfügbar"
},
"$:/language/ControlPanel/Saving/Caption": {
"title": "$:/language/ControlPanel/Saving/Caption",
"text": "Speichern"
},
"$:/language/ControlPanel/Saving/DownloadSaver/AutoSave/Description": {
"title": "$:/language/ControlPanel/Saving/DownloadSaver/AutoSave/Description",
"text": "Erlaube automatisches Speichern für den \"Download Saver\""
},
"$:/language/ControlPanel/Saving/DownloadSaver/AutoSave/Hint": {
"title": "$:/language/ControlPanel/Saving/DownloadSaver/AutoSave/Hint",
"text": "Erlaube automatisches Speichern für den \"Download Saver\""
},
"$:/language/ControlPanel/Saving/DownloadSaver/Caption": {
"title": "$:/language/ControlPanel/Saving/DownloadSaver/Caption",
"text": "Download Saver"
},
"$:/language/ControlPanel/Saving/DownloadSaver/Hint": {
"title": "$:/language/ControlPanel/Saving/DownloadSaver/Hint",
"text": "Diese Einstellungen gelten für den HTML5-compatiblen \"Download Saver\""
},
"$:/language/ControlPanel/Saving/General/Caption": {
"title": "$:/language/ControlPanel/Saving/General/Caption",
"text": "Allgemein"
},
"$:/language/ControlPanel/Saving/General/Hint": {
"title": "$:/language/ControlPanel/Saving/General/Hint",
"text": "Diese Einstellungen gelten für alle Speichermechanismen"
},
"$:/language/ControlPanel/Saving/Hint": {
"title": "$:/language/ControlPanel/Saving/Hint",
"text": "Einstellungen zu den TiddlyWiki Speichermechanismen"
},
"$:/language/ControlPanel/Saving/GitService/Branch": {
"title": "$:/language/ControlPanel/Saving/GitService/Branch",
"text": "Ziel \"branch\" zum Speichern (Standard: `master`)"
},
"$:/language/ControlPanel/Saving/GitService/CommitMessage": {
"title": "$:/language/ControlPanel/Saving/GitService/CommitMessage",
"text": "Gespeichert von TiddlyWiki"
},
"$:/language/ControlPanel/Saving/GitService/Description": {
"title": "$:/language/ControlPanel/Saving/GitService/Description",
"text": "Diese Einstellungen werden nur zum Speichern auf <<service-name>> verwendet"
},
"$:/language/ControlPanel/Saving/GitService/Filename": {
"title": "$:/language/ControlPanel/Saving/GitService/Filename",
"text": "Dateiname für Zielpfad (zB: `index.html`)"
},
"$:/language/ControlPanel/Saving/GitService/Path": {
"title": "$:/language/ControlPanel/Saving/GitService/Path",
"text": "Pfad für Datei (zB: `/wiki/`)"
},
"$:/language/ControlPanel/Saving/GitService/Repo": {
"title": "$:/language/ControlPanel/Saving/GitService/Repo",
"text": "Ziel \"Repository\" (zB: `Jermolene/TiddlyWiki5`)"
},
"$:/language/ControlPanel/Saving/GitService/ServerURL": {
"title": "$:/language/ControlPanel/Saving/GitService/ServerURL",
"text": "Server URL (Standard: `https://api.github.com`)"
},
"$:/language/ControlPanel/Saving/GitService/UserName": {
"title": "$:/language/ControlPanel/Saving/GitService/UserName",
"text": "Benuzername"
},
"$:/language/ControlPanel/Saving/GitService/GitHub/Caption": {
"title": "$:/language/ControlPanel/Saving/GitService/GitHub/Caption",
"text": "~GitHub Saver"
},
"$:/language/ControlPanel/Saving/GitService/GitHub/Password": {
"title": "$:/language/ControlPanel/Saving/GitService/GitHub/Password",
"text": "Password, \"OAUTH token\", oder persönlicher \"Zugriffs-Token\". Siehe: [[GitHub help page|https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line]]"
},
"$:/language/ControlPanel/Saving/GitService/GitLab/Caption": {
"title": "$:/language/ControlPanel/Saving/GitService/GitLab/Caption",
"text": "~GitLab Saver"
},
"$:/language/ControlPanel/Saving/GitService/GitLab/Password": {
"title": "$:/language/ControlPanel/Saving/GitService/GitLab/Password",
"text": "Persönlicher \"Zugriffs-Token\". Siehe: [[GitLab help page|https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html]]"
},
"$:/language/ControlPanel/Saving/GitService/Gitea/Caption": {
"title": "$:/language/ControlPanel/Saving/GitService/Gitea/Caption",
"text": "Gitea Saver"
},
"$:/language/ControlPanel/Saving/GitService/Gitea/Password": {
"title": "$:/language/ControlPanel/Saving/GitService/Gitea/Password",
"text": "Persönlicher \"Zugriffs-Token\" (siehe: Gitea’s web Seite: `Settings | Applications | Generate New Token`)"
},
"$:/language/ControlPanel/Saving/TiddlySpot/Advanced/Heading": {
"title": "$:/language/ControlPanel/Saving/TiddlySpot/Advanced/Heading",
"text": "Erweiterte Einstellungen"
},
"$:/language/ControlPanel/Saving/TiddlySpot/BackupDir": {
"title": "$:/language/ControlPanel/Saving/TiddlySpot/BackupDir",
"text": "Verzeichnis für das \"Backup\""
},
"$:/language/ControlPanel/Saving/TiddlySpot/ControlPanel": {
"title": "$:/language/ControlPanel/Saving/TiddlySpot/ControlPanel",
"text": "~TiddlySpot Control Panel"
},
"$:/language/ControlPanel/Saving/TiddlySpot/Backups": {
"title": "$:/language/ControlPanel/Saving/TiddlySpot/Backups",
"text": "\"Backups\""
},
"$:/language/ControlPanel/Saving/TiddlySpot/Caption": {
"title": "$:/language/ControlPanel/Saving/TiddlySpot/Caption",
"text": "Speichern auf ~TiddlySpot"
},
"$:/language/ControlPanel/Saving/TiddlySpot/Description": {
"title": "$:/language/ControlPanel/Saving/TiddlySpot/Description",
"text": "Diese Einstellungen sind nur für http://tiddlyspot.com und kompatible Server aktiv!"
},
"$:/language/ControlPanel/Saving/TiddlySpot/Filename": {
"title": "$:/language/ControlPanel/Saving/TiddlySpot/Filename",
"text": "Dateiname für den \"Upload\""
},
"$:/language/ControlPanel/Saving/TiddlySpot/Heading": {
"title": "$:/language/ControlPanel/Saving/TiddlySpot/Heading",
"text": "~TiddlySpot"
},
"$:/language/ControlPanel/Saving/TiddlySpot/Hint": {
"title": "$:/language/ControlPanel/Saving/TiddlySpot/Hint",
"text": "//Die Standard-Server-URL ist `http://<wikiname>.tiddlyspot.com/store.cgi` und kann im Feld 'Server-URL' verändert werden. zB: http://example.com/store.php//"
},
"$:/language/ControlPanel/Saving/TiddlySpot/Password": {
"title": "$:/language/ControlPanel/Saving/TiddlySpot/Password",
"text": "Passwort"
},
"$:/language/ControlPanel/Saving/TiddlySpot/ServerURL": {
"title": "$:/language/ControlPanel/Saving/TiddlySpot/ServerURL",
"text": "Server-URL"
},
"$:/language/ControlPanel/Saving/TiddlySpot/UploadDir": {
"title": "$:/language/ControlPanel/Saving/TiddlySpot/UploadDir",
"text": "Verzeichnis für den \"Upload\""
},
"$:/language/ControlPanel/Saving/TiddlySpot/UserName": {
"title": "$:/language/ControlPanel/Saving/TiddlySpot/UserName",
"text": "Name des Wikis"
},
"$:/language/ControlPanel/Settings/AutoSave/Caption": {
"title": "$:/language/ControlPanel/Settings/AutoSave/Caption",
"text": "Automatisch speichern"
},
"$:/language/ControlPanel/Settings/AutoSave/Disabled/Description": {
"title": "$:/language/ControlPanel/Settings/AutoSave/Disabled/Description",
"text": "Änderungen NICHT automatisch speichern"
},
"$:/language/ControlPanel/Settings/AutoSave/Enabled/Description": {
"title": "$:/language/ControlPanel/Settings/AutoSave/Enabled/Description",
"text": "Änderungen automatisch speichern"
},
"$:/language/ControlPanel/Settings/AutoSave/Hint": {
"title": "$:/language/ControlPanel/Settings/AutoSave/Hint",
"text": "Änderungen des Wikis automatisch speichern"
},
"$:/language/ControlPanel/Settings/CamelCase/Caption": {
"title": "$:/language/ControlPanel/Settings/CamelCase/Caption",
"text": "Camel Case Wiki Links"
},
"$:/language/ControlPanel/Settings/CamelCase/Hint": {
"title": "$:/language/ControlPanel/Settings/CamelCase/Hint",
"text": "Hier können Sie die automatische Umwandlung von \"~CamelCase Links\" einstellen. ''Wichtig:'' Die Seite muss neu geladen werden, damit die Einstellungen wirksam werden."
},
"$:/language/ControlPanel/Settings/CamelCase/Description": {
"title": "$:/language/ControlPanel/Settings/CamelCase/Description",
"text": "Automatische ~CamelCase Umwandlung aktivieren"
},
"$:/language/ControlPanel/Settings/Caption": {
"title": "$:/language/ControlPanel/Settings/Caption",
"text": "Einstellungen"
},
"$:/language/ControlPanel/Settings/EditorToolbar/Caption": {
"title": "$:/language/ControlPanel/Settings/EditorToolbar/Caption",
"text": "Editor Toolbar"
},
"$:/language/ControlPanel/Settings/EditorToolbar/Hint": {
"title": "$:/language/ControlPanel/Settings/EditorToolbar/Hint",
"text": "Aktivieren oder deaktivieren der Editor Toolbar"
},
"$:/language/ControlPanel/Settings/EditorToolbar/Description": {
"title": "$:/language/ControlPanel/Settings/EditorToolbar/Description",
"text": "Editor Toolbar anzeigen"
},
"$:/language/ControlPanel/Settings/InfoPanelMode/Caption": {
"title": "$:/language/ControlPanel/Settings/InfoPanelMode/Caption",
"text": "Tiddler Info Panel Modus"
},
"$:/language/ControlPanel/Settings/InfoPanelMode/Hint": {
"title": "$:/language/ControlPanel/Settings/InfoPanelMode/Hint",
"text": "Einstellung, wann das Info Panel geschlossen wird:"
},
"$:/language/ControlPanel/Settings/InfoPanelMode/Popup/Description": {
"title": "$:/language/ControlPanel/Settings/InfoPanelMode/Popup/Description",
"text": "Tiddler Info-Panel schließt automatisch"
},
"$:/language/ControlPanel/Settings/InfoPanelMode/Sticky/Description": {
"title": "$:/language/ControlPanel/Settings/InfoPanelMode/Sticky/Description",
"text": "TiddlerTiddler Info-Panel bleibt offen, bis es geschlossen wird"
},
"$:/language/ControlPanel/Settings/Hint": {
"title": "$:/language/ControlPanel/Settings/Hint",
"text": "Diese erweiterten Einstellungen ermöglichen Ihnen, das Verhalten von TiddlyWiki zu ändern."
},
"$:/language/ControlPanel/Settings/NavigationAddressBar/Caption": {
"title": "$:/language/ControlPanel/Settings/NavigationAddressBar/Caption",
"text": "Navigation Adresszeile"
},
"$:/language/ControlPanel/Settings/NavigationAddressBar/Hint": {
"title": "$:/language/ControlPanel/Settings/NavigationAddressBar/Hint",
"text": "Verhalten der Adresszeile des Browsers, wenn ein Tiddler geöffnet wird:"
},
"$:/language/ControlPanel/Settings/NavigationAddressBar/No/Description": {
"title": "$:/language/ControlPanel/Settings/NavigationAddressBar/No/Description",
"text": "Die Adresszeile des Browsers wird nicht verändert."
},
"$:/language/ControlPanel/Settings/NavigationAddressBar/Permalink/Description": {
"title": "$:/language/ControlPanel/Settings/NavigationAddressBar/Permalink/Description",
"text": "Den aktuellen Tiddler einbinden."
},
"$:/language/ControlPanel/Settings/NavigationAddressBar/Permaview/Description": {
"title": "$:/language/ControlPanel/Settings/NavigationAddressBar/Permaview/Description",
"text": "Alle geöffneten Tiddler einbinden."
},
"$:/language/ControlPanel/Settings/NavigationHistory/Caption": {
"title": "$:/language/ControlPanel/Settings/NavigationHistory/Caption",
"text": "Browser Chronik"
},
"$:/language/ControlPanel/Settings/NavigationHistory/Hint": {
"title": "$:/language/ControlPanel/Settings/NavigationHistory/Hint",
"text": "Die Browser Chronik ändern, wenn ein Tiddler angezeigt wird:"
},
"$:/language/ControlPanel/Settings/NavigationHistory/No/Description": {
"title": "$:/language/ControlPanel/Settings/NavigationHistory/No/Description",
"text": "Browser Chronik nicht ändern."
},
"$:/language/ControlPanel/Settings/NavigationHistory/Yes/Description": {
"title": "$:/language/ControlPanel/Settings/NavigationHistory/Yes/Description",
"text": "Browser Chronik ändern."
},
"$:/language/ControlPanel/Settings/NavigationPermalinkviewMode/Caption": {
"title": "$:/language/ControlPanel/Settings/NavigationPermalinkviewMode/Caption",
"text": "\"Permalink/permaview\" Modus"
},
"$:/language/ControlPanel/Settings/NavigationPermalinkviewMode/Hint": {
"title": "$:/language/ControlPanel/Settings/NavigationPermalinkviewMode/Hint",
"text": "Wähle, wie \"permalink/permaview\" verwendet werden soll:"
},
"$:/language/ControlPanel/Settings/NavigationPermalinkviewMode/CopyToClipboard/Description": {
"title": "$:/language/ControlPanel/Settings/NavigationPermalinkviewMode/CopyToClipboard/Description",
"text": "URL in die Zwischenablage kopieren"
},
"$:/language/ControlPanel/Settings/NavigationPermalinkviewMode/UpdateAddressBar/Description": {
"title": "$:/language/ControlPanel/Settings/NavigationPermalinkviewMode/UpdateAddressBar/Description",
"text": "Adressleiste mit URL aktualisieren"
},
"$:/language/ControlPanel/Settings/PerformanceInstrumentation/Caption": {
"title": "$:/language/ControlPanel/Settings/PerformanceInstrumentation/Caption",
"text": "Performance Messung"
},
"$:/language/ControlPanel/Settings/PerformanceInstrumentation/Hint": {
"title": "$:/language/ControlPanel/Settings/PerformanceInstrumentation/Hint",
"text": "Anzeige der Performance Statistik in der Browser Entwickler Konsole. ''Wichtig:'' Seite neu laden um die Einstellung zu aktivieren!"
},
"$:/language/ControlPanel/Settings/PerformanceInstrumentation/Description": {
"title": "$:/language/ControlPanel/Settings/PerformanceInstrumentation/Description",
"text": "Aktiviere Performance Messung"
},
"$:/language/ControlPanel/Settings/ToolbarButtonStyle/Caption": {
"title": "$:/language/ControlPanel/Settings/ToolbarButtonStyle/Caption",
"text": "Toolbar Button Stil"
},
"$:/language/ControlPanel/Settings/ToolbarButtonStyle/Hint": {
"title": "$:/language/ControlPanel/Settings/ToolbarButtonStyle/Hint",
"text": "Wählen Sie einen Stil:"
},
"$:/language/ControlPanel/Settings/ToolbarButtonStyle/Styles/Borderless": {
"title": "$:/language/ControlPanel/Settings/ToolbarButtonStyle/Styles/Borderless",
"text": "Ohne Rand"
},
"$:/language/ControlPanel/Settings/ToolbarButtonStyle/Styles/Boxed": {
"title": "$:/language/ControlPanel/Settings/ToolbarButtonStyle/Styles/Boxed",
"text": "Box"
},
"$:/language/ControlPanel/Settings/ToolbarButtonStyle/Styles/Rounded": {
"title": "$:/language/ControlPanel/Settings/ToolbarButtonStyle/Styles/Rounded",
"text": "Abgerundet"
},
"$:/language/ControlPanel/Settings/ToolbarButtons/Caption": {
"title": "$:/language/ControlPanel/Settings/ToolbarButtons/Caption",
"text": "Toolbar Buttons"
},
"$:/language/ControlPanel/Settings/ToolbarButtons/Hint": {
"title": "$:/language/ControlPanel/Settings/ToolbarButtons/Hint",
"text": "Standard Toolbar Button Erscheinungsbild:"
},
"$:/language/ControlPanel/Settings/ToolbarButtons/Icons/Description": {
"title": "$:/language/ControlPanel/Settings/ToolbarButtons/Icons/Description",
"text": "Icon anzeigen"
},
"$:/language/ControlPanel/Settings/ToolbarButtons/Text/Description": {
"title": "$:/language/ControlPanel/Settings/ToolbarButtons/Text/Description",
"text": "Text anzeigen"
},
"$:/language/ControlPanel/Settings/DefaultSidebarTab/Caption": {
"title": "$:/language/ControlPanel/Settings/DefaultSidebarTab/Caption",
"text": "Standard Sidebar Tab"
},
"$:/language/ControlPanel/Settings/DefaultSidebarTab/Hint": {
"title": "$:/language/ControlPanel/Settings/DefaultSidebarTab/Hint",
"text": "Definition, welcher \"Sidebar Tab\" standardmäßig aktiv ist."
},
"$:/language/ControlPanel/Settings/DefaultMoreSidebarTab/Caption": {
"title": "$:/language/ControlPanel/Settings/DefaultMoreSidebarTab/Caption",
"text": "Standard \"Mehr Sidebar Tab\""
},
"$:/language/ControlPanel/Settings/DefaultMoreSidebarTab/Hint": {
"title": "$:/language/ControlPanel/Settings/DefaultMoreSidebarTab/Hint",
"text": "Definition, welcher \"Mehr Sidebar Tab\" standardmäßig aktiv ist."
},
"$:/language/ControlPanel/Settings/LinkToBehaviour/Caption": {
"title": "$:/language/ControlPanel/Settings/LinkToBehaviour/Caption",
"text": "Tiddler Öffnen"
},
"$:/language/ControlPanel/Settings/LinkToBehaviour/InsideRiver/Hint": {
"title": "$:/language/ControlPanel/Settings/LinkToBehaviour/InsideRiver/Hint",
"text": "Navigation bei Klicks //innerhalb// der Story"
},
"$:/language/ControlPanel/Settings/LinkToBehaviour/OutsideRiver/Hint": {
"title": "$:/language/ControlPanel/Settings/LinkToBehaviour/OutsideRiver/Hint",
"text": "Navigation bei Klicks //außerhalb// der Story"
},
"$:/language/ControlPanel/Settings/LinkToBehaviour/OpenAbove": {
"title": "$:/language/ControlPanel/Settings/LinkToBehaviour/OpenAbove",
"text": "Öffne vor dem aktuellen Tiddler"
},
"$:/language/ControlPanel/Settings/LinkToBehaviour/OpenBelow": {
"title": "$:/language/ControlPanel/Settings/LinkToBehaviour/OpenBelow",
"text": "Öffne unter dem aktuellen Tiddler"
},
"$:/language/ControlPanel/Settings/LinkToBehaviour/OpenAtTop": {
"title": "$:/language/ControlPanel/Settings/LinkToBehaviour/OpenAtTop",
"text": "Öffne als ersten Tiddler in der Story"
},
"$:/language/ControlPanel/Settings/LinkToBehaviour/OpenAtBottom": {
"title": "$:/language/ControlPanel/Settings/LinkToBehaviour/OpenAtBottom",
"text": "Öffne alse letzten Tiddler in der Story"
},
"$:/language/ControlPanel/Settings/TitleLinks/Caption": {
"title": "$:/language/ControlPanel/Settings/TitleLinks/Caption",
"text": "Tiddler Titel"
},
"$:/language/ControlPanel/Settings/TitleLinks/Hint": {
"title": "$:/language/ControlPanel/Settings/TitleLinks/Hint",
"text": "Tiddler Titel als Links anzeigen:"
},
"$:/language/ControlPanel/Settings/TitleLinks/No/Description": {
"title": "$:/language/ControlPanel/Settings/TitleLinks/No/Description",
"text": "Tiddler Titel normal anzeigen."
},
"$:/language/ControlPanel/Settings/TitleLinks/Yes/Description": {
"title": "$:/language/ControlPanel/Settings/TitleLinks/Yes/Description",
"text": "Tiddler Titel als Link anzeigen."
},
"$:/language/ControlPanel/Settings/MissingLinks/Caption": {
"title": "$:/language/ControlPanel/Settings/MissingLinks/Caption",
"text": "Wiki-Links"
},
"$:/language/ControlPanel/Settings/MissingLinks/Hint": {
"title": "$:/language/ControlPanel/Settings/MissingLinks/Hint",
"text": "Aktiviere Links zu fehlenden Tiddlern. zB: FehlenderTiddler [[Einführung]]"
},
"$:/language/ControlPanel/Settings/MissingLinks/Description": {
"title": "$:/language/ControlPanel/Settings/MissingLinks/Description",
"text": "Aktiviere Links zu fehlenden Tiddlern."
},
"$:/language/ControlPanel/StoryView/Caption": {
"title": "$:/language/ControlPanel/StoryView/Caption",
"text": "Anzeige"
},
"$:/language/ControlPanel/StoryView/Prompt": {
"title": "$:/language/ControlPanel/StoryView/Prompt",
"text": "Ausgewählte Anzeige:"
},
"$:/language/ControlPanel/Stylesheets/Caption": {
"title": "$:/language/ControlPanel/Stylesheets/Caption",
"text": "Stylesheets"
},
"$:/language/ControlPanel/Stylesheets/Expand/Caption": {
"title": "$:/language/ControlPanel/Stylesheets/Expand/Caption",
"text": "Alle erweitern"
},
"$:/language/ControlPanel/Stylesheets/Hint": {
"title": "$:/language/ControlPanel/Stylesheets/Hint",
"text": "Hier wird der \"erweiterte\" CSS Code dargestellt. Die Reihenfolge, kann in der \"Tag-Liste\" <<tag \"$:/tags/Stylesheet\">> mit \"Drag & Drop\" angepasst werden!"
},
"$:/language/ControlPanel/Stylesheets/Restore/Caption": {
"title": "$:/language/ControlPanel/Stylesheets/Restore/Caption",
"text": "Alle zurücksetzen"
},
"$:/language/ControlPanel/Theme/Caption": {
"title": "$:/language/ControlPanel/Theme/Caption",
"text": "Theme"
},
"$:/language/ControlPanel/Theme/Prompt": {
"title": "$:/language/ControlPanel/Theme/Prompt",
"text": "Ausgewähltes Theme:"
},
"$:/language/ControlPanel/TiddlerFields/Caption": {
"title": "$:/language/ControlPanel/TiddlerFields/Caption",
"text": "Tiddler Felder"
},
"$:/language/ControlPanel/TiddlerFields/Hint": {
"title": "$:/language/ControlPanel/TiddlerFields/Hint",
"text": "Hier finden Sie alle [[Felder|TiddlerFields]], die in diesem Wiki verwendet werden. Inklusive der Felder aus System-, exklusive Schatten-Tiddler."
},
"$:/language/ControlPanel/Toolbars/Caption": {
"title": "$:/language/ControlPanel/Toolbars/Caption",
"text": "Toolbar"
},
"$:/language/ControlPanel/Toolbars/EditToolbar/Caption": {
"title": "$:/language/ControlPanel/Toolbars/EditToolbar/Caption",
"text": "Edit Toolbar"
},
"$:/language/ControlPanel/Toolbars/EditToolbar/Hint": {
"title": "$:/language/ControlPanel/Toolbars/EditToolbar/Hint",
"text": "Auswählen, welche Buttons im \"Edit Modus\" angezeigt werden. Verwenden Sie \"Drag and Drop\", um die Reihenfolge zu ändern"
},
"$:/language/ControlPanel/Toolbars/Hint": {
"title": "$:/language/ControlPanel/Toolbars/Hint",
"text": "Auswählen, welche \"Toolbar Button\" angezeigt werden"
},
"$:/language/ControlPanel/Toolbars/PageControls/Caption": {
"title": "$:/language/ControlPanel/Toolbars/PageControls/Caption",
"text": "Page Toolbar"
},
"$:/language/ControlPanel/Toolbars/PageControls/Hint": {
"title": "$:/language/ControlPanel/Toolbars/PageControls/Hint",
"text": "Auswählen, welche Buttons im Hauptmenü angezeigt werden. Verwenden Sie \"Drag and Drop\", um die Reihenfolge zu ändern"
},
"$:/language/ControlPanel/Toolbars/EditorToolbar/Caption": {
"title": "$:/language/ControlPanel/Toolbars/EditorToolbar/Caption",
"text": "Editor Toolbar"
},
"$:/language/ControlPanel/Toolbars/EditorToolbar/Hint": {
"title": "$:/language/ControlPanel/Toolbars/EditorToolbar/Hint",
"text": "Auswählen, welche Editorbuttons angezeigt werden sollen. Manche Buttons sind vom Tiddler-Typ abhängig und werden eventuell ausgeblendet."
},
"$:/language/ControlPanel/Toolbars/ViewToolbar/Caption": {
"title": "$:/language/ControlPanel/Toolbars/ViewToolbar/Caption",
"text": "View Toolbar"
},
"$:/language/ControlPanel/Toolbars/ViewToolbar/Hint": {
"title": "$:/language/ControlPanel/Toolbars/ViewToolbar/Hint",
"text": "Auswählen, welche Buttons im \"View Modus\" angezeigt werden. Verwenden Sie \"Drag and Drop\", um die Reihenfolge zu ändern"
},
"$:/language/ControlPanel/Tools/Download/Full/Caption": {
"title": "$:/language/ControlPanel/Tools/Download/Full/Caption",
"text": "Herunterladen des ''gesamten Wikis''"
},
"$:/core/de-DE/readme": {
"title": "$:/core/de-DE/readme",
"text": "Dieses Plugin enthält die TiddlyWiki Basis Komponenten, bestehend aus:\n\n* JavaScript Code Module.\n* Piktogramme (icons).\n* Vorlagen, die benötigt werden um die ~TiddlyWiki Oberfläche zu erstellen.\n* British English (''en-GB'') übersetzbare Texte, die von der TW Basis Software verwendet werden.\n"
},
"$:/language/Date/DaySuffix/1": {
"title": "$:/language/Date/DaySuffix/1",
"text": "."
},
"$:/language/Date/DaySuffix/2": {
"title": "$:/language/Date/DaySuffix/2",
"text": "."
},
"$:/language/Date/DaySuffix/3": {
"title": "$:/language/Date/DaySuffix/3",
"text": "."
},
"$:/language/Date/DaySuffix/4": {
"title": "$:/language/Date/DaySuffix/4",
"text": "."
},
"$:/language/Date/DaySuffix/5": {
"title": "$:/language/Date/DaySuffix/5",
"text": "."
},
"$:/language/Date/DaySuffix/6": {
"title": "$:/language/Date/DaySuffix/6",
"text": "."
},
"$:/language/Date/DaySuffix/7": {
"title": "$:/language/Date/DaySuffix/7",
"text": "."
},
"$:/language/Date/DaySuffix/8": {
"title": "$:/language/Date/DaySuffix/8",
"text": "."
},
"$:/language/Date/DaySuffix/9": {
"title": "$:/language/Date/DaySuffix/9",
"text": "."
},
"$:/language/Date/DaySuffix/10": {
"title": "$:/language/Date/DaySuffix/10",
"text": "."
},
"$:/language/Date/DaySuffix/11": {
"title": "$:/language/Date/DaySuffix/11",
"text": "."
},
"$:/language/Date/DaySuffix/12": {
"title": "$:/language/Date/DaySuffix/12",
"text": "."
},
"$:/language/Date/DaySuffix/13": {
"title": "$:/language/Date/DaySuffix/13",
"text": "."
},
"$:/language/Date/DaySuffix/14": {
"title": "$:/language/Date/DaySuffix/14",
"text": "."
},
"$:/language/Date/DaySuffix/15": {
"title": "$:/language/Date/DaySuffix/15",
"text": "."
},
"$:/language/Date/DaySuffix/16": {
"title": "$:/language/Date/DaySuffix/16",
"text": "."
},
"$:/language/Date/DaySuffix/17": {
"title": "$:/language/Date/DaySuffix/17",
"text": "."
},
"$:/language/Date/DaySuffix/18": {
"title": "$:/language/Date/DaySuffix/18",
"text": "."
},
"$:/language/Date/DaySuffix/19": {
"title": "$:/language/Date/DaySuffix/19",
"text": "."
},
"$:/language/Date/DaySuffix/20": {
"title": "$:/language/Date/DaySuffix/20",
"text": "."
},
"$:/language/Date/DaySuffix/21": {
"title": "$:/language/Date/DaySuffix/21",
"text": "."
},
"$:/language/Date/DaySuffix/22": {
"title": "$:/language/Date/DaySuffix/22",
"text": "."
},
"$:/language/Date/DaySuffix/23": {
"title": "$:/language/Date/DaySuffix/23",
"text": "."
},
"$:/language/Date/DaySuffix/24": {
"title": "$:/language/Date/DaySuffix/24",
"text": "."
},
"$:/language/Date/DaySuffix/25": {
"title": "$:/language/Date/DaySuffix/25",
"text": "."
},
"$:/language/Date/DaySuffix/26": {
"title": "$:/language/Date/DaySuffix/26",
"text": "."
},
"$:/language/Date/DaySuffix/27": {
"title": "$:/language/Date/DaySuffix/27",
"text": "."
},
"$:/language/Date/DaySuffix/28": {
"title": "$:/language/Date/DaySuffix/28",
"text": "."
},
"$:/language/Date/DaySuffix/29": {
"title": "$:/language/Date/DaySuffix/29",
"text": "."
},
"$:/language/Date/DaySuffix/30": {
"title": "$:/language/Date/DaySuffix/30",
"text": "."
},
"$:/language/Date/DaySuffix/31": {
"title": "$:/language/Date/DaySuffix/31",
"text": "."
},
"$:/language/Date/Long/Day/0": {
"title": "$:/language/Date/Long/Day/0",
"text": "Sonntag"
},
"$:/language/Date/Long/Day/1": {
"title": "$:/language/Date/Long/Day/1",
"text": "Montag"
},
"$:/language/Date/Long/Day/2": {
"title": "$:/language/Date/Long/Day/2",
"text": "Dienstag"
},
"$:/language/Date/Long/Day/3": {
"title": "$:/language/Date/Long/Day/3",
"text": "Mittwoch"
},
"$:/language/Date/Long/Day/4": {
"title": "$:/language/Date/Long/Day/4",
"text": "Donnerstag"
},
"$:/language/Date/Long/Day/5": {
"title": "$:/language/Date/Long/Day/5",
"text": "Freitag"
},
"$:/language/Date/Long/Day/6": {
"title": "$:/language/Date/Long/Day/6",
"text": "Samstag"
},
"$:/language/Date/Long/Month/1": {
"title": "$:/language/Date/Long/Month/1",
"text": "Januar"
},
"$:/language/Date/Long/Month/2": {
"title": "$:/language/Date/Long/Month/2",
"text": "Februar"
},
"$:/language/Date/Long/Month/3": {
"title": "$:/language/Date/Long/Month/3",
"text": "März"
},
"$:/language/Date/Long/Month/4": {
"title": "$:/language/Date/Long/Month/4",
"text": "April"
},
"$:/language/Date/Long/Month/5": {
"title": "$:/language/Date/Long/Month/5",
"text": "Mai"
},
"$:/language/Date/Long/Month/6": {
"title": "$:/language/Date/Long/Month/6",
"text": "Juni"
},
"$:/language/Date/Long/Month/7": {
"title": "$:/language/Date/Long/Month/7",
"text": "Juli"
},
"$:/language/Date/Long/Month/8": {
"title": "$:/language/Date/Long/Month/8",
"text": "August"
},
"$:/language/Date/Long/Month/9": {
"title": "$:/language/Date/Long/Month/9",
"text": "September"
},
"$:/language/Date/Long/Month/10": {
"title": "$:/language/Date/Long/Month/10",
"text": "Oktober"
},
"$:/language/Date/Long/Month/11": {
"title": "$:/language/Date/Long/Month/11",
"text": "November"
},
"$:/language/Date/Long/Month/12": {
"title": "$:/language/Date/Long/Month/12",
"text": "Dezember"
},
"$:/language/Date/Period/am": {
"title": "$:/language/Date/Period/am",
"text": "am"
},
"$:/language/Date/Period/pm": {
"title": "$:/language/Date/Period/pm",
"text": "pm"
},
"$:/language/Date/Short/Day/0": {
"title": "$:/language/Date/Short/Day/0",
"text": "So"
},
"$:/language/Date/Short/Day/1": {
"title": "$:/language/Date/Short/Day/1",
"text": "Mo"
},
"$:/language/Date/Short/Day/2": {
"title": "$:/language/Date/Short/Day/2",
"text": "Di"
},
"$:/language/Date/Short/Day/3": {
"title": "$:/language/Date/Short/Day/3",
"text": "Mi"
},
"$:/language/Date/Short/Day/4": {
"title": "$:/language/Date/Short/Day/4",
"text": "Do"
},
"$:/language/Date/Short/Day/5": {
"title": "$:/language/Date/Short/Day/5",
"text": "Fr"
},
"$:/language/Date/Short/Day/6": {
"title": "$:/language/Date/Short/Day/6",
"text": "Sa"
},
"$:/language/Date/Short/Month/1": {
"title": "$:/language/Date/Short/Month/1",
"text": "Jan"
},
"$:/language/Date/Short/Month/2": {
"title": "$:/language/Date/Short/Month/2",
"text": "Feb"
},
"$:/language/Date/Short/Month/3": {
"title": "$:/language/Date/Short/Month/3",
"text": "Mär"
},
"$:/language/Date/Short/Month/4": {
"title": "$:/language/Date/Short/Month/4",
"text": "Apr"
},
"$:/language/Date/Short/Month/5": {
"title": "$:/language/Date/Short/Month/5",
"text": "Mai"
},
"$:/language/Date/Short/Month/6": {
"title": "$:/language/Date/Short/Month/6",
"text": "Jun"
},
"$:/language/Date/Short/Month/7": {
"title": "$:/language/Date/Short/Month/7",
"text": "Jul"
},
"$:/language/Date/Short/Month/8": {
"title": "$:/language/Date/Short/Month/8",
"text": "Aug"
},
"$:/language/Date/Short/Month/9": {
"title": "$:/language/Date/Short/Month/9",
"text": "Sep"
},
"$:/language/Date/Short/Month/10": {
"title": "$:/language/Date/Short/Month/10",
"text": "Okt"
},
"$:/language/Date/Short/Month/11": {
"title": "$:/language/Date/Short/Month/11",
"text": "Nov"
},
"$:/language/Date/Short/Month/12": {
"title": "$:/language/Date/Short/Month/12",
"text": "Dez"
},
"$:/language/RelativeDate/Future/Days": {
"title": "$:/language/RelativeDate/Future/Days",
"text": "in <<period>> Tagen"
},
"$:/language/RelativeDate/Future/Hours": {
"title": "$:/language/RelativeDate/Future/Hours",
"text": "in <<period>> Stunden"
},
"$:/language/RelativeDate/Future/Minutes": {
"title": "$:/language/RelativeDate/Future/Minutes",
"text": "in <<period>> Minuten"
},
"$:/language/RelativeDate/Future/Months": {
"title": "$:/language/RelativeDate/Future/Months",
"text": "in <<period>> Monaten"
},
"$:/language/RelativeDate/Future/Second": {
"title": "$:/language/RelativeDate/Future/Second",
"text": "in einer Sekunde"
},
"$:/language/RelativeDate/Future/Seconds": {
"title": "$:/language/RelativeDate/Future/Seconds",
"text": "in <<period>> Sekunden"
},
"$:/language/RelativeDate/Future/Years": {
"title": "$:/language/RelativeDate/Future/Years",
"text": "in <<period>> Jahren"
},
"$:/language/RelativeDate/Past/Days": {
"title": "$:/language/RelativeDate/Past/Days",
"text": "vor <<period>> Tagen"
},
"$:/language/RelativeDate/Past/Hours": {
"title": "$:/language/RelativeDate/Past/Hours",
"text": "vor <<period>> Stunden"
},
"$:/language/RelativeDate/Past/Minutes": {
"title": "$:/language/RelativeDate/Past/Minutes",
"text": "vor <<period>> Minuten"
},
"$:/language/RelativeDate/Past/Months": {
"title": "$:/language/RelativeDate/Past/Months",
"text": "vor <<period>> Monaten"
},
"$:/language/RelativeDate/Past/Second": {
"title": "$:/language/RelativeDate/Past/Second",
"text": "vor einer Sekunde"
},
"$:/language/RelativeDate/Past/Seconds": {
"title": "$:/language/RelativeDate/Past/Seconds",
"text": "vor <<period>> Sekunden"
},
"$:/language/RelativeDate/Past/Years": {
"title": "$:/language/RelativeDate/Past/Years",
"text": "vor <<period>> Jahren"
},
"$:/language/Docs/ModuleTypes/allfilteroperator": {
"title": "$:/language/Docs/ModuleTypes/allfilteroperator",
"text": "Ein Sub-Operator für den ''all'' Filter Operator."
},
"$:/language/Docs/ModuleTypes/animation": {
"title": "$:/language/Docs/ModuleTypes/animation",
"text": "Animationen, die vom RevealWidget verwendet werden."
},
"$:/language/Docs/ModuleTypes/authenticator": {
"title": "$:/language/Docs/ModuleTypes/authenticator",
"text": "Definiert, wie die Anfragen für den \"HTTP Server\" authentifiziert werden."
},
"$:/language/Docs/ModuleTypes/bitmapeditoroperation": {
"title": "$:/language/Docs/ModuleTypes/bitmapeditoroperation",
"text": "Eine \"Bitmap-Editor\" Toolbar Operation."
},
"$:/language/Docs/ModuleTypes/command": {
"title": "$:/language/Docs/ModuleTypes/command",
"text": "Kommandozeilen-Parameter, die mit node.js ausgeführt werden können."
},
"$:/language/Docs/ModuleTypes/config": {
"title": "$:/language/Docs/ModuleTypes/config",
"text": "Daten, die in `$tw.config` eingefügt werden."
},
"$:/language/Docs/ModuleTypes/filteroperator": {
"title": "$:/language/Docs/ModuleTypes/filteroperator",
"text": "Individuelle Funktionen für den Filter-Operator."
},
"$:/language/Docs/ModuleTypes/global": {
"title": "$:/language/Docs/ModuleTypes/global",
"text": "Globale Daten, die in `$tw` eingefügt werden."
},
"$:/language/Docs/ModuleTypes/info": {
"title": "$:/language/Docs/ModuleTypes/info",
"text": "Veröffentlicht System-Informationen mit dem Pseudo-plugin: [[$:/temp/info-plugin]]"
},
"$:/language/Docs/ModuleTypes/isfilteroperator": {
"title": "$:/language/Docs/ModuleTypes/isfilteroperator",
"text": "Operanden für den Filter-Operator: ''is''"
},
"$:/language/Docs/ModuleTypes/library": {
"title": "$:/language/Docs/ModuleTypes/library",
"text": "Allgemeiner Modultyp, für JavaScript Module."
},
"$:/language/Docs/ModuleTypes/macro": {
"title": "$:/language/Docs/ModuleTypes/macro",
"text": "Globale Makro-Definitionen in JavaScript."
},
"$:/language/Docs/ModuleTypes/parser": {
"title": "$:/language/Docs/ModuleTypes/parser",
"text": "Parser für verschiedene Tiddler Typen."
},
"$:/language/Docs/ModuleTypes/route": {
"title": "$:/language/Docs/ModuleTypes/route",
"text": "Definiert, wie die individuellen URL-Pfade vom HTTP Server verarbeitet werden."
},
"$:/language/Docs/ModuleTypes/saver": {
"title": "$:/language/Docs/ModuleTypes/saver",
"text": "\"Savers\" stellen verschiedene Methoden zum Speichern mit dem Browser zur Verfügung."
},
"$:/language/Docs/ModuleTypes/startup": {
"title": "$:/language/Docs/ModuleTypes/startup",
"text": "Funktionen zur Initialisierung."
},
"$:/language/Docs/ModuleTypes/storyview": {
"title": "$:/language/Docs/ModuleTypes/storyview",
"text": "[[Story-View|Story]] ist für das Verhalten des \"ListWidgets\" zuständig, das die Tiddler \"Hauptanzeige\" verwaltet. Mit dem Toolbutton Story-Modus wird einer dieser Modi ausgewählt."
},
"$:/language/Docs/ModuleTypes/texteditoroperation": {
"title": "$:/language/Docs/ModuleTypes/texteditoroperation",
"text": "Eine Text-Editor Toolbar Operation."
},
"$:/language/Docs/ModuleTypes/tiddlerdeserializer": {
"title": "$:/language/Docs/ModuleTypes/tiddlerdeserializer",
"text": "Konvertiert verschiedene textbasierte Inhaltstypen in das Tiddler-Format."
},
"$:/language/Docs/ModuleTypes/tiddlerfield": {
"title": "$:/language/Docs/ModuleTypes/tiddlerfield",
"text": "Definiert das Verhalten, der unterschiedlichen Tiddler-Felder."
},
"$:/language/Docs/ModuleTypes/tiddlermethod": {
"title": "$:/language/Docs/ModuleTypes/tiddlermethod",
"text": "Methoden werden dem `$tw.Tiddler` Prototypen hinzugefügt."
},
"$:/language/Docs/ModuleTypes/upgrader": {
"title": "$:/language/Docs/ModuleTypes/upgrader",
"text": "Führt spezifische Änderungen während des Upgrade- oder Import-prozesses durch."
},
"$:/language/Docs/ModuleTypes/utils": {
"title": "$:/language/Docs/ModuleTypes/utils",
"text": "Methoden werden `$tw.utils` hinzugefügt."
},
"$:/language/Docs/ModuleTypes/utils-node": {
"title": "$:/language/Docs/ModuleTypes/utils-node",
"text": "Erweitert `$tw.utils` mit Methoden aus node.js."
},
"$:/language/Docs/ModuleTypes/widget": {
"title": "$:/language/Docs/ModuleTypes/widget",
"text": "Widgets verarbeiten das Rendern und Aktualisieren der Anzeige in der DOM."
},
"$:/language/Docs/ModuleTypes/wikimethod": {
"title": "$:/language/Docs/ModuleTypes/wikimethod",
"text": "Methoden werden zu `$tw.Wiki` hinzugefügt."
},
"$:/language/Docs/ModuleTypes/wikirule": {
"title": "$:/language/Docs/ModuleTypes/wikirule",
"text": "Enthält die individuellen Parser Regeln für den WikiText-Parser."
},
"$:/language/Docs/PaletteColours/alert-background": {
"title": "$:/language/Docs/PaletteColours/alert-background",
"text": "Warnung Hintergrund"
},
"$:/language/Docs/PaletteColours/alert-border": {
"title": "$:/language/Docs/PaletteColours/alert-border",
"text": "Warnung Rahmen"
},
"$:/language/Docs/PaletteColours/alert-highlight": {
"title": "$:/language/Docs/PaletteColours/alert-highlight",
"text": "Warnung Hervorhebung"
},
"$:/language/Docs/PaletteColours/alert-muted-foreground": {
"title": "$:/language/Docs/PaletteColours/alert-muted-foreground",
"text": "Warnung gedeckt Vordergrund"
},
"$:/language/Docs/PaletteColours/background": {
"title": "$:/language/Docs/PaletteColours/background",
"text": "Hintergrund Global"
},
"$:/language/Docs/PaletteColours/blockquote-bar": {
"title": "$:/language/Docs/PaletteColours/blockquote-bar",
"text": "Zitat Markierung"
},
"$:/language/Docs/PaletteColours/button-background": {
"title": "$:/language/Docs/PaletteColours/button-background",
"text": "Standard-Button Hintergrund"
},
"$:/language/Docs/PaletteColours/button-border": {
"title": "$:/language/Docs/PaletteColours/button-border",
"text": "Standard-Button Rahmen"
},
"$:/language/Docs/PaletteColours/button-foreground": {
"title": "$:/language/Docs/PaletteColours/button-foreground",
"text": "Standard-Button Vordergrund"
},
"$:/language/Docs/PaletteColours/dirty-indicator": {
"title": "$:/language/Docs/PaletteColours/dirty-indicator",
"text": "Speichern nötig - Indikator"
},
"$:/language/Docs/PaletteColours/code-background": {
"title": "$:/language/Docs/PaletteColours/code-background",
"text": "Code Hintergrund"
},
"$:/language/Docs/PaletteColours/code-border": {
"title": "$:/language/Docs/PaletteColours/code-border",
"text": "Code Rahmen"
},
"$:/language/Docs/PaletteColours/code-foreground": {
"title": "$:/language/Docs/PaletteColours/code-foreground",
"text": "Code Vordergrund"
},
"$:/language/Docs/PaletteColours/download-background": {
"title": "$:/language/Docs/PaletteColours/download-background",
"text": "Herunterladen-Button Hintergrund"
},
"$:/language/Docs/PaletteColours/download-foreground": {
"title": "$:/language/Docs/PaletteColours/download-foreground",
"text": "Herunterladen-Button Vordergrund"
},
"$:/language/Docs/PaletteColours/dragger-background": {
"title": "$:/language/Docs/PaletteColours/dragger-background",
"text": "Ziehen Hintergrund"
},
"$:/language/Docs/PaletteColours/dragger-foreground": {
"title": "$:/language/Docs/PaletteColours/dragger-foreground",
"text": "Ziehen Vordergrund"
},
"$:/language/Docs/PaletteColours/dropdown-background": {
"title": "$:/language/Docs/PaletteColours/dropdown-background",
"text": "Auswahldialog Hintergrund"
},
"$:/language/Docs/PaletteColours/dropdown-border": {
"title": "$:/language/Docs/PaletteColours/dropdown-border",
"text": "Auswahldialog Rahmen"
},
"$:/language/Docs/PaletteColours/dropdown-tab-background-selected": {
"title": "$:/language/Docs/PaletteColours/dropdown-tab-background-selected",
"text": "Auswahldialog ausgewählter Reiter Hintergrund"
},
"$:/language/Docs/PaletteColours/dropdown-tab-background": {
"title": "$:/language/Docs/PaletteColours/dropdown-tab-background",
"text": "Auswahldialog Reiter Hintergrund"
},
"$:/language/Docs/PaletteColours/dropzone-background": {
"title": "$:/language/Docs/PaletteColours/dropzone-background",
"text": "Import Zone Hintergrund"
},
"$:/language/Docs/PaletteColours/external-link-background-hover": {
"title": "$:/language/Docs/PaletteColours/external-link-background-hover",
"text": "Externer Link Hintergrund (hover)"
},
"$:/language/Docs/PaletteColours/external-link-background-visited": {
"title": "$:/language/Docs/PaletteColours/external-link-background-visited",
"text": "Externer Link besucht Hintergrund"
},
"$:/language/Docs/PaletteColours/external-link-background": {
"title": "$:/language/Docs/PaletteColours/external-link-background",
"text": "Externer Link Hintergrund"
},
"$:/language/Docs/PaletteColours/external-link-foreground-hover": {
"title": "$:/language/Docs/PaletteColours/external-link-foreground-hover",
"text": "Externer Link Vordergrund (hover)"
},
"$:/language/Docs/PaletteColours/external-link-foreground-visited": {
"title": "$:/language/Docs/PaletteColours/external-link-foreground-visited",
"text": "Externer Link besucht Vordergrund"
},
"$:/language/Docs/PaletteColours/external-link-foreground": {
"title": "$:/language/Docs/PaletteColours/external-link-foreground",
"text": "Externer Link Vordergrund"
},
"$:/language/Docs/PaletteColours/foreground": {
"title": "$:/language/Docs/PaletteColours/foreground",
"text": "Vordergrund Global"
},
"$:/language/Docs/PaletteColours/menubar-background": {
"title": "$:/language/Docs/PaletteColours/menubar-background",
"text": "Menü Hintergrund"
},
"$:/language/Docs/PaletteColours/menubar-foreground": {
"title": "$:/language/Docs/PaletteColours/menubar-foreground",
"text": "Menü Vordergrund"
},
"$:/language/Docs/PaletteColours/message-background": {
"title": "$:/language/Docs/PaletteColours/message-background",
"text": "Meldungs-Box Hintergrund"
},
"$:/language/Docs/PaletteColours/message-border": {
"title": "$:/language/Docs/PaletteColours/message-border",
"text": "Meldungs-Box Rahmen"
},
"$:/language/Docs/PaletteColours/message-foreground": {
"title": "$:/language/Docs/PaletteColours/message-foreground",
"text": "Meldungs-Box Vordergrund"
},
"$:/language/Docs/PaletteColours/modal-backdrop": {
"title": "$:/language/Docs/PaletteColours/modal-backdrop",
"text": "Modaler Dialog abgedunkelt"
},
"$:/language/Docs/PaletteColours/modal-background": {
"title": "$:/language/Docs/PaletteColours/modal-background",
"text": "Modaler Dialog Hintergrund"
},
"$:/language/Docs/PaletteColours/modal-border": {
"title": "$:/language/Docs/PaletteColours/modal-border",
"text": "Modaler Dialog Rahmen"
},
"$:/language/Docs/PaletteColours/modal-footer-background": {
"title": "$:/language/Docs/PaletteColours/modal-footer-background",
"text": "Modaler Dialog Fußzeile Hintergrund"
},
"$:/language/Docs/PaletteColours/modal-footer-border": {
"title": "$:/language/Docs/PaletteColours/modal-footer-border",
"text": "Modaler Dialog Fußzeile Rahmen"
},
"$:/language/Docs/PaletteColours/modal-header-border": {
"title": "$:/language/Docs/PaletteColours/modal-header-border",
"text": "Modaler Dialog Kopfzeile Rahmen"
},
"$:/language/Docs/PaletteColours/muted-foreground": {
"title": "$:/language/Docs/PaletteColours/muted-foreground",
"text": "Global gedeckt Vordergrund"
},
"$:/language/Docs/PaletteColours/notification-background": {
"title": "$:/language/Docs/PaletteColours/notification-background",
"text": "Mitteilung Hintergrund"
},
"$:/language/Docs/PaletteColours/notification-border": {
"title": "$:/language/Docs/PaletteColours/notification-border",
"text": "Mitteilung Rahmen"
},
"$:/language/Docs/PaletteColours/page-background": {
"title": "$:/language/Docs/PaletteColours/page-background",
"text": "Seite Hintergrund"
},
"$:/language/Docs/PaletteColours/pre-background": {
"title": "$:/language/Docs/PaletteColours/pre-background",
"text": "Formatierter Code Hintergrund"
},
"$:/language/Docs/PaletteColours/pre-border": {
"title": "$:/language/Docs/PaletteColours/pre-border",
"text": "Formatierter Code Rahmen"
},
"$:/language/Docs/PaletteColours/primary": {
"title": "$:/language/Docs/PaletteColours/primary",
"text": "Global Primary"
},
"$:/language/Docs/PaletteColours/select-tag-background": {
"title": "$:/language/Docs/PaletteColours/select-tag-background",
"text": "`<select>` Element Hintergrund"
},
"$:/language/Docs/PaletteColours/select-tag-foreground": {
"title": "$:/language/Docs/PaletteColours/select-tag-foreground",
"text": "`<select>` Element Text"
},
"$:/language/Docs/PaletteColours/sidebar-button-foreground": {
"title": "$:/language/Docs/PaletteColours/sidebar-button-foreground",
"text": "Seitenleiste Button Vordergrund"
},
"$:/language/Docs/PaletteColours/sidebar-controls-foreground-hover": {
"title": "$:/language/Docs/PaletteColours/sidebar-controls-foreground-hover",
"text": "Seitenleiste Bedienelement Vordergrund (hover)"
},
"$:/language/Docs/PaletteColours/sidebar-controls-foreground": {
"title": "$:/language/Docs/PaletteColours/sidebar-controls-foreground",
"text": "Seitenleiste Bedienelement Vordergrund"
},
"$:/language/Docs/PaletteColours/sidebar-foreground-shadow": {
"title": "$:/language/Docs/PaletteColours/sidebar-foreground-shadow",
"text": "Seitenleiste Vordergrund Schatten"
},
"$:/language/Docs/PaletteColours/sidebar-foreground": {
"title": "$:/language/Docs/PaletteColours/sidebar-foreground",
"text": "Seitenleiste Vordergrund"
},
"$:/language/Docs/PaletteColours/sidebar-muted-foreground-hover": {
"title": "$:/language/Docs/PaletteColours/sidebar-muted-foreground-hover",
"text": "Seitenleiste gedeckt Vordergrund (hover)"
},
"$:/language/Docs/PaletteColours/sidebar-muted-foreground": {
"title": "$:/language/Docs/PaletteColours/sidebar-muted-foreground",
"text": "Seitenleiste gedeckt Vordergrund"
},
"$:/language/Docs/PaletteColours/sidebar-tab-background-selected": {
"title": "$:/language/Docs/PaletteColours/sidebar-tab-background-selected",
"text": "Seitenleiste Reiter"
},
"$:/language/Docs/PaletteColours/sidebar-tab-background": {
"title": "$:/language/Docs/PaletteColours/sidebar-tab-background",
"text": "Seitenleiste Reiter Hintergrund"
},
"$:/language/Docs/PaletteColours/sidebar-tab-border-selected": {
"title": "$:/language/Docs/PaletteColours/sidebar-tab-border-selected",
"text": "Seitenleiste Reiter Rahmen für selektierte Reiter"
},
"$:/language/Docs/PaletteColours/sidebar-tab-border": {
"title": "$:/language/Docs/PaletteColours/sidebar-tab-border",
"text": "Seitenleiste Reiter Rahmen"
},
"$:/language/Docs/PaletteColours/sidebar-tab-divider": {
"title": "$:/language/Docs/PaletteColours/sidebar-tab-divider",
"text": "Seitenleiste Reiter Trennzeichen"
},
"$:/language/Docs/PaletteColours/sidebar-tab-foreground-selected": {
"title": "$:/language/Docs/PaletteColours/sidebar-tab-foreground-selected",
"text": "Seitenleiste Reiter Vordergrund für selectierte Reiter"
},
"$:/language/Docs/PaletteColours/sidebar-tab-foreground": {
"title": "$:/language/Docs/PaletteColours/sidebar-tab-foreground",
"text": "Seitenleiste Reiter Vordergrund"
},
"$:/language/Docs/PaletteColours/sidebar-tiddler-link-foreground-hover": {
"title": "$:/language/Docs/PaletteColours/sidebar-tiddler-link-foreground-hover",
"text": "Seitenleiste Tiddler Link Vordergrund (hover)"
},
"$:/language/Docs/PaletteColours/sidebar-tiddler-link-foreground": {
"title": "$:/language/Docs/PaletteColours/sidebar-tiddler-link-foreground",
"text": "Seitenleiste Tiddler Link Vordergrund"
},
"$:/language/Docs/PaletteColours/site-title-foreground": {
"title": "$:/language/Docs/PaletteColours/site-title-foreground",
"text": "Wiki Titel Vordergrund"
},
"$:/language/Docs/PaletteColours/static-alert-foreground": {
"title": "$:/language/Docs/PaletteColours/static-alert-foreground",
"text": "Statische Warnung Vordergrund"
},
"$:/language/Docs/PaletteColours/tab-background-selected": {
"title": "$:/language/Docs/PaletteColours/tab-background-selected",
"text": "Reiter Hintergrund für selektierte Reiter"
},
"$:/language/Docs/PaletteColours/tab-background": {
"title": "$:/language/Docs/PaletteColours/tab-background",
"text": "Reiter Hintergrund"
},
"$:/language/Docs/PaletteColours/tab-border-selected": {
"title": "$:/language/Docs/PaletteColours/tab-border-selected",
"text": "Reiter Rahmen für selektierte Reiter"
},
"$:/language/Docs/PaletteColours/tab-border": {
"title": "$:/language/Docs/PaletteColours/tab-border",
"text": "Reiter Rahmen"
},
"$:/language/Docs/PaletteColours/tab-divider": {
"title": "$:/language/Docs/PaletteColours/tab-divider",
"text": "Reiter Trennzeichen"
},
"$:/language/Docs/PaletteColours/tab-foreground-selected": {
"title": "$:/language/Docs/PaletteColours/tab-foreground-selected",
"text": "Reiter Vordergrund für selektierte Reiter"
},
"$:/language/Docs/PaletteColours/tab-foreground": {
"title": "$:/language/Docs/PaletteColours/tab-foreground",
"text": "Reiter Vordergrund"
},
"$:/language/Docs/PaletteColours/table-border": {
"title": "$:/language/Docs/PaletteColours/table-border",
"text": "Tabelle Rahmen"
},
"$:/language/Docs/PaletteColours/table-footer-background": {
"title": "$:/language/Docs/PaletteColours/table-footer-background",
"text": "Tabelle Fußzeile Hintergrund"
},
"$:/language/Docs/PaletteColours/table-header-background": {
"title": "$:/language/Docs/PaletteColours/table-header-background",
"text": "Tabelle Kopfzeile Hintergrund"
},
"$:/language/Docs/PaletteColours/tag-background": {
"title": "$:/language/Docs/PaletteColours/tag-background",
"text": "Tag Hintergrund"
},
"$:/language/Docs/PaletteColours/tag-foreground": {
"title": "$:/language/Docs/PaletteColours/tag-foreground",
"text": "Tag Vordergrund"
},
"$:/language/Docs/PaletteColours/tiddler-background": {
"title": "$:/language/Docs/PaletteColours/tiddler-background",
"text": "Tiddler Hintergrund"
},
"$:/language/Docs/PaletteColours/tiddler-border": {
"title": "$:/language/Docs/PaletteColours/tiddler-border",
"text": "Tiddler Rahmen"
},
"$:/language/Docs/PaletteColours/tiddler-controls-foreground-hover": {
"title": "$:/language/Docs/PaletteColours/tiddler-controls-foreground-hover",
"text": "Tiddler Bedienelement Vordergrund (hover)"
},
"$:/language/Docs/PaletteColours/tiddler-controls-foreground-selected": {
"title": "$:/language/Docs/PaletteColours/tiddler-controls-foreground-selected",
"text": "Tiddler Bedienelement Vordergrund für selektierte Elemente"
},
"$:/language/Docs/PaletteColours/tiddler-controls-foreground": {
"title": "$:/language/Docs/PaletteColours/tiddler-controls-foreground",
"text": "Tiddler Bedienelement Vordergrund"
},
"$:/language/Docs/PaletteColours/tiddler-editor-background": {
"title": "$:/language/Docs/PaletteColours/tiddler-editor-background",
"text": "Tiddler Editor Hintergrund"
},
"$:/language/Docs/PaletteColours/tiddler-editor-border-image": {
"title": "$:/language/Docs/PaletteColours/tiddler-editor-border-image",
"text": "Tiddler Editor Rahmen Bild"
},
"$:/language/Docs/PaletteColours/tiddler-editor-border": {
"title": "$:/language/Docs/PaletteColours/tiddler-editor-border",
"text": "Tiddler Editor Rahmen"
},
"$:/language/Docs/PaletteColours/tiddler-editor-fields-even": {
"title": "$:/language/Docs/PaletteColours/tiddler-editor-fields-even",
"text": "Tiddler Editor Hintergrund geradzahlige Felder in Tabelle"
},
"$:/language/Docs/PaletteColours/tiddler-editor-fields-odd": {
"title": "$:/language/Docs/PaletteColours/tiddler-editor-fields-odd",
"text": "Tiddler Editor Hintergrund un-geradzahlige Felder in Tabelle"
},
"$:/language/Docs/PaletteColours/tiddler-info-background": {
"title": "$:/language/Docs/PaletteColours/tiddler-info-background",
"text": "Tiddler Info Bereich Hintergrund"
},
"$:/language/Docs/PaletteColours/tiddler-info-border": {
"title": "$:/language/Docs/PaletteColours/tiddler-info-border",
"text": "Tiddler Info Bereich Rahmen"
},
"$:/language/Docs/PaletteColours/tiddler-info-tab-background": {
"title": "$:/language/Docs/PaletteColours/tiddler-info-tab-background",
"text": "Tiddler Info Bereich Reiter Hintergrund"
},
"$:/language/Docs/PaletteColours/tiddler-link-background": {
"title": "$:/language/Docs/PaletteColours/tiddler-link-background",
"text": "Tiddler Link Hintergrund"
},
"$:/language/Docs/PaletteColours/tiddler-link-foreground": {
"title": "$:/language/Docs/PaletteColours/tiddler-link-foreground",
"text": "Tiddler Link Vordergrund"
},
"$:/language/Docs/PaletteColours/tiddler-subtitle-foreground": {
"title": "$:/language/Docs/PaletteColours/tiddler-subtitle-foreground",
"text": "Tiddler Untertitel Vordergrund"
},
"$:/language/Docs/PaletteColours/tiddler-title-foreground": {
"title": "$:/language/Docs/PaletteColours/tiddler-title-foreground",
"text": "Tiddler Titel Vordergrund"
},
"$:/language/Docs/PaletteColours/toolbar-new-button": {
"title": "$:/language/Docs/PaletteColours/toolbar-new-button",
"text": "Werkzeugleiste 'Neuer Tiddler' Button Vordergrund"
},
"$:/language/Docs/PaletteColours/toolbar-options-button": {
"title": "$:/language/Docs/PaletteColours/toolbar-options-button",
"text": "Werkzeugleiste 'Optionen' Button Vordergrund"
},
"$:/language/Docs/PaletteColours/toolbar-save-button": {
"title": "$:/language/Docs/PaletteColours/toolbar-save-button",
"text": "Werkzeugleiste 'Speichern' Button Vordergrund"
},
"$:/language/Docs/PaletteColours/toolbar-info-button": {
"title": "$:/language/Docs/PaletteColours/toolbar-info-button",
"text": "Werkzeugleiste 'Info' Button Vordergrund"
},
"$:/language/Docs/PaletteColours/toolbar-edit-button": {
"title": "$:/language/Docs/PaletteColours/toolbar-edit-button",
"text": "Werkzeugleiste 'Bearbeiten' Button Vordergrund"
},
"$:/language/Docs/PaletteColours/toolbar-close-button": {
"title": "$:/language/Docs/PaletteColours/toolbar-close-button",
"text": "Werkzeugleiste 'Schließen' Button Vordergrund"
},
"$:/language/Docs/PaletteColours/toolbar-delete-button": {
"title": "$:/language/Docs/PaletteColours/toolbar-delete-button",
"text": "Werkzeugleiste 'Löschen' Button Vordergrund"
},
"$:/language/Docs/PaletteColours/toolbar-cancel-button": {
"title": "$:/language/Docs/PaletteColours/toolbar-cancel-button",
"text": "Werkzeugleiste 'Abbruch' Button Vordergrund"
},
"$:/language/Docs/PaletteColours/toolbar-done-button": {
"title": "$:/language/Docs/PaletteColours/toolbar-done-button",
"text": "Werkzeugleiste 'Fertig' Button Vordergrund"
},
"$:/language/Docs/PaletteColours/untagged-background": {
"title": "$:/language/Docs/PaletteColours/untagged-background",
"text": "(untagged) Pille Hintergrund"
},
"$:/language/Docs/PaletteColours/very-muted-foreground": {
"title": "$:/language/Docs/PaletteColours/very-muted-foreground",
"text": "Stark abgedunkelter Vordergrund"
},
"$:/language/EditTemplate/Body/External/Hint": {
"title": "$:/language/EditTemplate/Body/External/Hint",
"text": "Dieser Tiddler zeigt den Inhalt einer Datei, die nicht im TW file gespeichert ist. Sie können die \"Tags\" und \"Feld\" Texte ändern, jedoch nicht den Inhalt des Tiddlers!"
},
"$:/language/EditTemplate/Body/Placeholder": {
"title": "$:/language/EditTemplate/Body/Placeholder",
"text": "Geben Sie den Text für diesen Tiddler ein."
},
"$:/language/EditTemplate/Body/Preview/Type/Output": {
"title": "$:/language/EditTemplate/Body/Preview/Type/Output",
"text": "Anzeige"
},
"$:/language/EditTemplate/Field/Remove/Caption": {
"title": "$:/language/EditTemplate/Field/Remove/Caption",
"text": "Lösche Feld"
},
"$:/language/EditTemplate/Field/Remove/Hint": {
"title": "$:/language/EditTemplate/Field/Remove/Hint",
"text": "Lösche Feld"
},
"$:/language/EditTemplate/Field/Dropdown/Caption": {
"title": "$:/language/EditTemplate/Field/Dropdown/Caption",
"text": "Feld Liste"
},
"$:/language/EditTemplate/Field/Dropdown/Hint": {
"title": "$:/language/EditTemplate/Field/Dropdown/Hint",
"text": "Zeige Feld Liste"
},
"$:/language/EditTemplate/Fields/Add/Button": {
"title": "$:/language/EditTemplate/Fields/Add/Button",
"text": "ok"
},
"$:/language/EditTemplate/Fields/Add/Button/Hint": {
"title": "$:/language/EditTemplate/Fields/Add/Button/Hint",
"text": "Erzeuge ein neues Feld für diesen Tiddler"
},
"$:/language/EditTemplate/Fields/Add/Name/Placeholder": {
"title": "$:/language/EditTemplate/Fields/Add/Name/Placeholder",
"text": "Feld Name"
},
"$:/language/EditTemplate/Fields/Add/Prompt": {
"title": "$:/language/EditTemplate/Fields/Add/Prompt",
"text": "Feld einfügen:"
},
"$:/language/EditTemplate/Fields/Add/Value/Placeholder": {
"title": "$:/language/EditTemplate/Fields/Add/Value/Placeholder",
"text": "Feld Text / Wert"
},
"$:/language/EditTemplate/Fields/Add/Dropdown/System": {
"title": "$:/language/EditTemplate/Fields/Add/Dropdown/System",
"text": "System Felder"
},
"$:/language/EditTemplate/Fields/Add/Dropdown/User": {
"title": "$:/language/EditTemplate/Fields/Add/Dropdown/User",
"text": "Anwender Felder"
},
"$:/language/EditTemplate/Shadow/Warning": {
"title": "$:/language/EditTemplate/Shadow/Warning",
"text": "Dies ist ein Schatten-Tiddler. Jede Änderung, die Sie machen, überschreibt die Standardversion des Plugins: <<pluginLink>>"
},
"$:/language/EditTemplate/Shadow/OverriddenWarning": {
"title": "$:/language/EditTemplate/Shadow/OverriddenWarning",
"text": "Dies ist ein veränderter Tiddler. Um zur Standardversion zurückzukehren, löschen Sie diesen Tiddler. Plugin: <<pluginLink>>"
},
"$:/language/EditTemplate/Tags/Add/Button": {
"title": "$:/language/EditTemplate/Tags/Add/Button",
"text": "ok"
},
"$:/language/EditTemplate/Tags/Add/Button/Hint": {
"title": "$:/language/EditTemplate/Tags/Add/Button/Hint",
"text": "Erzeuge einen neuen Tag"
},
"$:/language/EditTemplate/Tags/Add/Placeholder": {
"title": "$:/language/EditTemplate/Tags/Add/Placeholder",
"text": "Neuer Tag"
},
"$:/language/EditTemplate/Tags/ClearInput/Caption": {
"title": "$:/language/EditTemplate/Tags/ClearInput/Caption",
"text": "lösche Eingabefeld"
},
"$:/language/EditTemplate/Tags/ClearInput/Hint": {
"title": "$:/language/EditTemplate/Tags/ClearInput/Hint",
"text": "Lösche Tag Eingabefeld"
},
"$:/language/EditTemplate/Tags/Dropdown/Caption": {
"title": "$:/language/EditTemplate/Tags/Dropdown/Caption",
"text": "Tag Liste"
},
"$:/language/EditTemplate/Tags/Dropdown/Hint": {
"title": "$:/language/EditTemplate/Tags/Dropdown/Hint",
"text": "Tag Liste anzeigen"
},
"$:/language/EditTemplate/Title/BadCharacterWarning": {
"title": "$:/language/EditTemplate/Title/BadCharacterWarning",
"text": "Warnung: Folgende Zeichen im Titel können zu Problemen führen: <<bad-chars>>"
},
"$:/language/EditTemplate/Title/Exists/Prompt": {
"title": "$:/language/EditTemplate/Title/Exists/Prompt",
"text": "Tiddler Name existiert bereits"
},
"$:/language/EditTemplate/Title/Relink/Prompt": {
"title": "$:/language/EditTemplate/Title/Relink/Prompt",
"text": "Ändere ''<$text text=<<fromTitle>>/>'' -> ''<$text text=<<toTitle>>/>'' in //tags// und //list// Feld aller anderen Tiddler"
},
"$:/language/EditTemplate/Type/Dropdown/Caption": {
"title": "$:/language/EditTemplate/Type/Dropdown/Caption",
"text": "Tiddler Typ Liste"
},
"$:/language/EditTemplate/Type/Dropdown/Hint": {
"title": "$:/language/EditTemplate/Type/Dropdown/Hint",
"text": "Anzeigen der Tiddler Typ Liste"
},
"$:/language/EditTemplate/Title/References/Prompt": {
"title": "$:/language/EditTemplate/Title/References/Prompt",
"text": "Die folgenden Referenz-Links zu diesem Tiddler werden NICHT automatisch geändert"
},
"$:/language/EditTemplate/Type/Delete/Caption": {
"title": "$:/language/EditTemplate/Type/Delete/Caption",
"text": "Lösche Inhalts Typ"
},
"$:/language/EditTemplate/Type/Delete/Hint": {
"title": "$:/language/EditTemplate/Type/Delete/Hint",
"text": "Lösche Inhalts Typ"
},
"$:/language/EditTemplate/Type/Placeholder": {
"title": "$:/language/EditTemplate/Type/Placeholder",
"text": "Tiddler Format"
},
"$:/language/EditTemplate/Type/Prompt": {
"title": "$:/language/EditTemplate/Type/Prompt",
"text": "Typ:"
},
"$:/language/Exporters/StaticRiver": {
"title": "$:/language/Exporters/StaticRiver",
"text": "HTML - Statisch"
},
"$:/language/Exporters/JsonFile": {
"title": "$:/language/Exporters/JsonFile",
"text": "JSON - Format"
},
"$:/language/Exporters/CsvFile": {
"title": "$:/language/Exporters/CsvFile",
"text": "CSV - Format"
},
"$:/language/Exporters/TidFile": {
"title": "$:/language/Exporters/TidFile",
"text": ".tid - Format"
},
"$:/language/Docs/Fields/_canonical_uri": {
"title": "$:/language/Docs/Fields/_canonical_uri",
"text": "Die komplette URI eines externen Foto Tiddlers. URI = Uniform Resource Identifier, Identifikator für Ressourcen im Internet."
},
"$:/language/Docs/Fields/bag": {
"title": "$:/language/Docs/Fields/bag",
"text": "Der Name eines ~TiddlyWeb \"bags\" von dem der Tiddler kam."
},
"$:/language/Docs/Fields/caption": {
"title": "$:/language/Docs/Fields/caption",
"text": "Der Text, der auf \"Tab-Buttons\" angezeigt wird."
},
"$:/language/Docs/Fields/color": {
"title": "$:/language/Docs/Fields/color",
"text": "Der CSS Farbwert, der mit einem Tiddler assoziiert wird."
},
"$:/language/Docs/Fields/component": {
"title": "$:/language/Docs/Fields/component",
"text": "Der Name einer Komponente, die für eine [[Alarm Anzeige|AlertMechanism]] verantwortlich ist."
},
"$:/language/Docs/Fields/current-tiddler": {
"title": "$:/language/Docs/Fields/current-tiddler",
"text": "Wird verwendet um den \"obersten\" Tiddler in der [[Tiddler Historie|HistoryMechanism]] zwischen zu speichern."
},
"$:/language/Docs/Fields/created": {
"title": "$:/language/Docs/Fields/created",
"text": "Datum an dem der Tiddler erstellt wurde."
},
"$:/language/Docs/Fields/creator": {
"title": "$:/language/Docs/Fields/creator",
"text": "Name des Erstellers dieses Tiddlers."
},
"$:/language/Docs/Fields/dependents": {
"title": "$:/language/Docs/Fields/dependents",
"text": "Listet die Abhängigkeiten bei \"plugins\" auf."
},
"$:/language/Docs/Fields/description": {
"title": "$:/language/Docs/Fields/description",
"text": "Die Beschreibung für ein \"plugin\" oder einen \"modalen\" Dialog."
},
"$:/language/Docs/Fields/draft.of": {
"title": "$:/language/Docs/Fields/draft.of",
"text": "Entwurf von - enthält den Titel des Tiddlers, zu dem dieser Entwurf-Tiddler gehört."
},
"$:/language/Docs/Fields/draft.title": {
"title": "$:/language/Docs/Fields/draft.title",
"text": "Entwurf Titel - enthält den neuen Titel, wenn der Entwurf-Tiddler gespeichert wird."
},
"$:/language/Docs/Fields/footer": {
"title": "$:/language/Docs/Fields/footer",
"text": "Der Fußnoten Text bei einem \"~Wizard-Dialog\""
},
"$:/language/Docs/Fields/hide-body": {
"title": "$:/language/Docs/Fields/hide-body",
"text": "Der Textbereich eines Tiddlers wird verborgen, wenn dieses Feld auf ''\"yes\"'' gesetzt wird"
},
"$:/language/Docs/Fields/icon": {
"title": "$:/language/Docs/Fields/icon",
"text": "Der Titel eines ~Icon-Tiddlers, der mit diesem Tiddler verbunden ist."
},
"$:/language/Docs/Fields/library": {
"title": "$:/language/Docs/Fields/library",
"text": "Wenn dieses Feld=\"yes\" ist, dann soll der Tiddler als JavaScript Bibliothek gespeichert werden."
},
"$:/language/Docs/Fields/list": {
"title": "$:/language/Docs/Fields/list",
"text": "Eine geordnete Tiddler Liste, die mit diesem Tiddler verbunden ist."
},
"$:/language/Docs/Fields/list-before": {
"title": "$:/language/Docs/Fields/list-before",
"text": "Dient zum Einfügen von Tiddler Titeln in das \"list\" Feld. Wenn gesetzt, wird der neue Tiddler ''vor'' dem hier definierten Tiddler in die Liste eingefügt. Wenn vorhanden, aber leer, dann wird der neue Tiddler an den Anfang der Liste gesetzt."
},
"$:/language/Docs/Fields/list-after": {
"title": "$:/language/Docs/Fields/list-after",
"text": "Dient zum Einfügen von Tiddler Titeln in das \"list\" Feld. Wenn gesetzt, wird der neue Tiddler ''nach'' dem hier definierten Tiddler in die Liste eingefügt."
},
"$:/language/Docs/Fields/modified": {
"title": "$:/language/Docs/Fields/modified",
"text": "Datum, an dem der Tiddler zuletzt verändert wurde."
},
"$:/language/Docs/Fields/modifier": {
"title": "$:/language/Docs/Fields/modifier",
"text": "Name der Person, die den Tiddler zuletzt verändert hat."
},
"$:/language/Docs/Fields/name": {
"title": "$:/language/Docs/Fields/name",
"text": "Ein Menschen lesbarer Name für einen \"plugin\" Tiddler."
},
"$:/language/Docs/Fields/plugin-priority": {
"title": "$:/language/Docs/Fields/plugin-priority",
"text": "Ein numerischer Wert, der die Priorität eines \"plugins\" festlegt."
},
"$:/language/Docs/Fields/plugin-type": {
"title": "$:/language/Docs/Fields/plugin-type",
"text": "Der Typ eines \"plugins\"."
},
"$:/language/Docs/Fields/revision": {
"title": "$:/language/Docs/Fields/revision",
"text": "Die Revisionsnummer eines Tiddlers. Wird von einem Server vergeben."
},
"$:/language/Docs/Fields/released": {
"title": "$:/language/Docs/Fields/released",
"text": "Datum der ~TiddlyWiki Ausgabe."
},
"$:/language/Docs/Fields/source": {
"title": "$:/language/Docs/Fields/source",
"text": "Eine Quelltext URL, verbunden mit diesem Tiddler."
},
"$:/language/Docs/Fields/subtitle": {
"title": "$:/language/Docs/Fields/subtitle",
"text": "Der Untertitel für einen \"~Wizard-Dialog\"."
},
"$:/language/Docs/Fields/tags": {
"title": "$:/language/Docs/Fields/tags",
"text": "Eine Liste von \"Tags\" für diesen Tiddler."
},
"$:/language/Docs/Fields/text": {
"title": "$:/language/Docs/Fields/text",
"text": "Der Haupttext eines Tiddlers."
},
"$:/language/Docs/Fields/throttle.refresh": {
"title": "$:/language/Docs/Fields/throttle.refresh",
"text": "Wenn es existiert, dann wird der \"refresh\" Zyklus des Tiddlers verzögert."
},
"$:/language/Docs/Fields/title": {
"title": "$:/language/Docs/Fields/title",
"text": "Ein individueller einmaliger Name eines Tiddlers."
},
"$:/language/Docs/Fields/toc-link": {
"title": "$:/language/Docs/Fields/toc-link",
"text": "Unterdrückt die Anzeige als Link, wenn der Wert auf ''\"no\"'' gesetzt wird"
},
"$:/language/Docs/Fields/type": {
"title": "$:/language/Docs/Fields/type",
"text": "Legt den Typ eines Tiddlers fest (aka MIME-type)."
},
"$:/language/Docs/Fields/version": {
"title": "$:/language/Docs/Fields/version",
"text": "Versions-Information eines \"plugins\"."
},
"$:/language/Docs/Fields/_is_skinny": {
"title": "$:/language/Docs/Fields/_is_skinny",
"text": "Wenn es existiert, zeigt diese Feld an, dass das \"Text-Feld\" dynamisch vom Server geladen wird."
},
"$:/language/Filters/AllTiddlers": {
"title": "$:/language/Filters/AllTiddlers",
"text": "Alle Tiddler außer System-Tiddler"
},
"$:/language/Filters/RecentSystemTiddlers": {
"title": "$:/language/Filters/RecentSystemTiddlers",
"text": "Kürzlich veränderte Tiddler, inklusive System-Tiddler"
},
"$:/language/Filters/RecentTiddlers": {
"title": "$:/language/Filters/RecentTiddlers",
"text": "Kürzlich veränderte Tiddler"
},
"$:/language/Filters/AllTags": {
"title": "$:/language/Filters/AllTags",
"text": "Alle Tags außer System-Tags"
},
"$:/language/Filters/Missing": {
"title": "$:/language/Filters/Missing",
"text": "Fehlende Tiddler"
},
"$:/language/Filters/Drafts": {
"title": "$:/language/Filters/Drafts",
"text": "Entwurf Tiddler"
},
"$:/language/Filters/Orphans": {
"title": "$:/language/Filters/Orphans",
"text": "Waisen Tiddler"
},
"$:/language/Filters/SystemTiddlers": {
"title": "$:/language/Filters/SystemTiddlers",
"text": "System-Tiddler"
},
"$:/language/Filters/ShadowTiddlers": {
"title": "$:/language/Filters/ShadowTiddlers",
"text": "Schatten-Tiddler"
},
"$:/language/Filters/OverriddenShadowTiddlers": {
"title": "$:/language/Filters/OverriddenShadowTiddlers",
"text": "Überschriebene Schatten-Tiddler"
},
"$:/language/Filters/SessionTiddlers": {
"title": "$:/language/Filters/SessionTiddlers",
"text": "Tiddler, die seit dem letzten Laden verändert wurden"
},
"$:/language/Filters/SystemTags": {
"title": "$:/language/Filters/SystemTags",
"text": "System-Tags"
},
"$:/language/Filters/StoryList": {
"title": "$:/language/Filters/StoryList",
"text": "Tiddler im \"story river\", außer <$text text=\"$:/AdvancedSearch\"/>"
},
"$:/language/Filters/TypedTiddlers": {
"title": "$:/language/Filters/TypedTiddlers",
"text": "Nicht \"wiki-text\" Tiddler"
},
"GettingStarted": {
"title": "GettingStarted",
"text": "\\define lingo-base() $:/language/ControlPanel/Basics/\nWillkommen bei ~TiddlyWiki, einem persönlichen nicht-linearen Web-Notizbuch.\n\nVor dem Start, vergewissern Sie sich, dass Sie dieses Wiki auch wirklich speichern können. Weitere Informationen finden Sie für:\n\n* Österreich: https://tiddlywiki.com/languages/de-AT\n* Deutschland: https://tiddlywiki.com/languages/de-DE\n* Allgemein (englisch): https://tiddlywiki.com \n\nErste Schritte:\n\n* Erstellen Sie einen neuen Tiddler mit dem \"Plus-Button\" in der rechten Navigationsleiste.\n* Einstellungen können im [[Kontrollpanel|$:/ControlPanel]] vorgenommen werden. Siehe: \"Zahnrad-Button\" \n** Das Anzeigen dieses Tiddlers können Sie verhindern, indem Sie die \"~DefaultTiddlers\" im ''Basis-Tab'' verändern.\n* Speichern wird mit dem \"Speichern-Button\" in der Navigationsleiste ausgelöst. \n* Österreich: [[Weitere Informationen zu WikiText|https://tiddlywiki.com/languages/de-AT/index.html#WikiText]]\n* Deutschland: [[Weitere Informationen zu WikiText|https://tiddlywiki.com/languages/de-DE/index.html#WikiText]]\n\nHinweis: Die österreichische und deutsche Version unterscheiden sich momentan nur in der Flagge, die bei der Standard Sprachauswahl angezeigt wird. In Zukunft können Beschriftungen der Benutzeroberfläche geringfügig von einander abweichen. zB: Jänner - Januar.\n\n!! Einrichten dieser ~TiddlyWiki\n\n<div class=\"tc-control-panel\">\n\n|<$link to=\"$:/SiteTitle\"><<lingo Title/Prompt>></$link> |<$edit-text tiddler=\"$:/SiteTitle\" default=\"\" tag=\"input\"/> |\n|<$link to=\"$:/SiteSubtitle\"><<lingo Subtitle/Prompt>></$link> |<$edit-text tiddler=\"$:/SiteSubtitle\" default=\"\" tag=\"input\"/> |\n|<$link to=\"$:/DefaultTiddlers\"><<lingo DefaultTiddlers/Prompt>></$link> |<<lingo DefaultTiddlers/TopHint>><br> <$edit-text tag=\"textarea\" tiddler=\"$:/DefaultTiddlers\"/><br>//<<lingo DefaultTiddlers/BottomHint>>// |\n</div>\n\nSee the [[control panel|$:/ControlPanel]] for more options.\n"
},
"$:/language/Help/build": {
"title": "$:/language/Help/build",
"description": "Ausführen, von vorkonfigurierten Befehlen.",
"text": "Dieser Befehl erstellt die vorkonfigurierten Ziele, der aktuellen Wiki Edition. Sind keine Ziele spezifiziert, dann werden all konfigurierten Ziele erstellt.\n\n```\n--build <target> [<target> ...]\n```\n\nZiele werden in der `tiddlywiki.info` Datei, im Wiki Verzeichnis konfiguriert.\n"
},
"$:/language/Help/clearpassword": {
"title": "$:/language/Help/clearpassword",
"description": "Lösche das Passwort, das für die vorhergehenen Verschlüsselungen verwendet wurde.",
"text": "Lösche das Passwort, das für die vorhergehenen Verschlüsselungen verwendet wurde.\n\n```\n--clearpassword\n```\n"
},
"$:/language/Help/default": {
"title": "$:/language/Help/default",
"text": "\\define commandTitle()\n$:/language/Help/$(command)$\n\\end\n```\nVerwendung: tiddlywiki [<wikifolder>] [--<command> [<args>...]...]\n```\n\nVerfügbare Befehle:\n\n<ul>\n<$list filter=\"[commands[]sort[title]]\" variable=\"command\">\n<li><$link to=<<commandTitle>>><$macrocall $name=\"command\" $type=\"text/plain\" $output=\"text/plain\"/></$link>: <$transclude tiddler=<<commandTitle>> field=\"description\"/></li>\n</$list>\n</ul>\n\nDetailierte Informationen zu den Befehlen:\n\n```\ntiddlywiki --help <command>\n```\n"
},
"$:/language/Help/deletetiddlers": {
"title": "$:/language/Help/deletetiddlers",
"description": "Löscht eine Gruppe von Tiddlern",
"text": "<<.from-version \"5.1.20\">> Löscht eine Gruppe von Tiddlern, die über einen Filter definiert werden.\n\n```\n--deletetiddlers <filter>\n```"
},
"$:/language/Help/editions": {
"title": "$:/language/Help/editions",
"description": "Listet alle verfügbaren TiddlyWiki Editionen auf",
"text": "Listet alle verfügbaren TiddlyWiki Editionen auf.\n\n```\n--editions\n```\n\nSie können ein neues Wiki mit dem `--init` Kommando erstellen. Dabei wird eine der angezeigten Editionen \"geklont\".\n"
},
"$:/language/Help/fetch": {
"title": "$:/language/Help/fetch",
"description": "Fetch tiddlers from wiki by URL",
"text": "Abrufen eines oder mehrerer Dateien über HTTP/HTTPS. Importieren der tiddler, die dem Filter entsprechen. Umwandeln der ankommenden Titel, wenn nötig.\n\n```\n--fetch file <url> <import-filter> <transform-filter>\n--fetch files <url-filter> <import-filter> <transform-filter>\n--fetch raw-file <url> <transform-filter>\n--fetch raw-files <url-filter> <transform-filter>\n```\n\nWird der `file` Parameter verwendet, wird nur eine einzelne Datei geholt. Der erste Parameter ist die URL von der die Datei ''importiert'' werden soll.\n\nWird der `files` Parameter verwendet, werden mehrere Dateien geholt. In diesem Fall ist der erste Parameter ein Filter, der eine Liste von URLs ergibt, von denen die Dateien gelesen werden sollen. Zum Beispiel: Mehrere Tiddler sind getagged mit: `remote-server` und enthalten ein Feld: `url`. ... Der Filter `[tag[remote-server]get[url]]` wird alle verfügbaren URLs ansprechen.\n\nWerden die `raw-file` oder `raw-files` Varianten verwendet, wird der Klartext der Datei importiert. Es wird nicht versucht die Import-logik anzuwenden.\n\nDer `<import-filter>` Parameter spezifiziert jene Tiddler, die importiert werden sollen. Ohne diesen Parameter wird standardmäßig `[all[tiddlers]]` als Filter verwendet.\n\nDer `<transform-filter>` Parameter, spezifiziert einen Filter, mit dem der Tiddler Name verändert werden kann. zB: `[addprefix[$:/meinImport/]]` würde `$:/meinImport/` allen Tiddler Namen voran stellen.\n\nWird `--verbose` vor dem `--fetch` Befehl benutzt, dann werden erweiterte Diagnose Infos ausgegeben.\n\nHinweis: ~TiddlyWiki wird ''keine'' veralteten plugins importieren.\n\nDas folgende Beispiel wird alle \"nicht-system\" Tiddler von https://tiddlywiki.com holen und in ein `JSON` file speichern.\n\n```\ntiddlywiki --verbose --fetch file \"https://tiddlywiki.com/\" \"[!is[system]]\" \"\" --rendertiddler \"$:/core/templates/exporters/JsonFile\" output.json text/plain \"\" exportFilter \"[!is[system]]\"\n```\n\nDas folgende Beispiel holt die \"favicon\" Datei von tiddlywiki.com und speichert sie als \"output.ico\".\n\n```\ntiddlywiki --verbose --fetch raw-file \"https://tiddlywiki.com/favicon.ico\" \"[[Icon Tiddler]]\" --savetiddler \"Icon Tiddler\" output.ico\n```\n\n''Wichtig!''\n\nEs wird darauf hingewiesen, dass der Parameter `\"[[Icon Tiddler]]\"` für den `--fetch` Befehl zusätzliche Klammern enthält. Er wird hier als Tranformations-Filter verwendet!\n\nDer zweite `\"Icon Tiddler\"` Parameter für `--savetiddler` enthält keine eckigen Klammern. Er wird als Dateiname verwendet\n\n"
},
"$:/language/Help/help": {
"title": "$:/language/Help/help",
"description": "Anzeige der Hilfe für die TiddlyWiki Befehle.",
"text": "Anzeige der Hilfe für die ~TiddlyWiki Befehle.\n\nBeispiel:\n\n```\n--help [<command>]\n```\n\nWird der Parameter <command> nicht angegeben, werden alle Befehle aufgelistet.\n"
},
"$:/language/Help/import": {
"title": "$:/language/Help/import",
"description": "Importiert mehrere Tiddler aus einer Datei",
"text": "Dieser Befehl importiert / extrahiert Tiddler aus folgenden Dateien: \n\n* ~TiddlyWiki `*.html`\n* `*.tiddler`\n* `*.tid`\n* `*.json`\n* oder andere lokale `text` Dateien\n\nDer `<deserializer>` Parameter muss angegeben werden. Anders als beim `--load` Befehl, der diese Information aus der Dateiendung ableiten kann.\n\n```\n--import <filepath> <deserializer> [<title>] [<encoding>]\n```\n\nTiddlyWiki enthält folgende `deserializer` Standard-Typen:\n\n* application/javascript\n* application/json\n* application/x-tiddler\n* application/x-tiddler-html-div\n* application/x-tiddlers\n* text/html\n* text/plain\n\nDer Tiddler-Titel entspricht nach dem Import, dem Dateinamen.\n\nDie Zeichenkodierung ist auf `utf8` eingestellt. Sie kann aber auf `base64` für binäre Daten geändert werden.\n\nHinweis: ~TiddlyWiki importiert nur neuere Plugins, als jene, die bereits geladen sind.\n"
},
"$:/language/Help/init": {
"title": "$:/language/Help/init",
"description": "Initialisiere eine neues Wiki Verzeichnis.",
"text": "Initialisiere eine neues [[Wiki Verzeichnis|WikiFolders]] mit der Kopie einer Edition.\n\n```\n--init <edition> [<edition> ...]\n```\n\nBeispiel:\n\n```\ntiddlywiki ./MyWikiFolder --init empty\n```\n\nAnmerkung:\n\n* Das Wiki Verzeichnis wird angelegt, wenn es nicht existiert.\n* Der <edition> Parameter ist standardmäßig: ''empty''.\n* Der --init Befehl bricht ab, wenn das angegebene Verzeichnis nicht leer ist.\n* Der --init Befehl löscht alle `includeWikis` Definitionen aus der neuen `tiddlywiki.info` Datei\n* Wenn mehrere Editionen importiert werden, wird die zuletzt importierte `tidlywiki.info` Datei aktiv sein. Alle anderen weden überschrieben.\n\n* `--editions` listet alle verfügbaren Editionen auf.\n"
},
"$:/language/Help/listen": {
"title": "$:/language/Help/listen",
"description": "Definiert das HTTP-Server Interface für Tiddlywiki",
"text": "Stellt das Wiki über einen HTTP-Server zur Verfügung.\n\nDie \"listen\" Parameter werden wie folgt verwendet: \n\n```\n--listen [<name>=<wert>]...\n```\n\nAlle Parameter sind optional, die Reihenfolge ist beliebig und es werden \"sichere\" standard parametern verwendet.\n\nMögliche Parameter:\n\n* ''host'' - Host-Name, von dem übertragen wird. (Standard: \"127.0.0.1\" aka \"localhost\")\n* ''path-prefix'' - Prefix, der auf alle Pfade angewendet wird\n* ''port'' - Port Nummer, die überwacht werden soll; Nicht-numerische Werte werden als System Umgebungs-Variable interpretiert. (Standard: 8080)\n* ''credentials'' - Pfad zur Authentifizierungsdatei im CSV-format. Angabe ist relativ zum Wiki-Verzeichnis\n* ''anon-username'' - Name, der für anonymer Benutzer verwendet wird, um bearbeitete Tiddler zu markieren\n* ''username'' - Benutzername für die Basis-Authentifizierung\n* ''password'' - Passwort für die Basis-Authentifizierung\n* ''authenticated-user-header'' - HTTP Header-Name für vertrauenswürdige, authentifizierte Benutzer\n* ''readers'' - Komma separierte Liste für Benutzer, mit Schreiberlaubnis\n* ''writers'' - Komma separierte Liste für Benutzer, mit Leseerlaubnis\n* ''csrf-disable'' - \"yes\" bedeutet, dass CSRF checks deaktiviert sind. (Standard: \"no\")\n* ''root-tiddler'' - Tiddler, der für den \"Root-Pfad\" verwendet wird. (Standard: \"$:/core/save/all\")\n* ''root-render-type'' - Darstellungs-Type, die für den Root-Tiddler verwendet wird. (Standard: \"text/plain\")\n* ''root-serve-type'' - Inhalts-Type, die für den Root-Tiddler verwendet wird. (Standard: \"text/html\")\n* ''tls-cert'' - Pfad zur \"TLS certificate\" Datei (relativ zum Wiki Verzeichnis)\n* ''tls-key'' - Pfad zur \"TLS key\" Datei (relativ zum Wiki Verzeichnis)\n* ''debug-level'' - \"debug\" bewikt eine detailierte Anzeige der HTTP Anfrage-Parameter. (Standard: \"none\")\n* ''gzip'' - Wenn auf \"yes\" gesetzt, dann wird gzip Kompression aktiviert. (Standard: \"no\")\n\nFür weitere Sicherheitshinweise und Informationen für die Verwendung in lokalen Netzwerken siehe: WebServer auf TiddlyWiki.com\n"
},
"$:/language/Help/load": {
"title": "$:/language/Help/load",
"description": "Lade Tiddler von einer Datei.",
"text": "Lade Tiddler aus einer TiddlyWiki `.html`, `.tiddler`, `.tid`, `.json` oder anderen lokalen Datei.\n\nDie Umsetzung der geladenen Datei wird anhand der Datei-Erweiterung bestimmt. Verwenden sie den alternativen `import` Befehl, wenn sie den Umsetzungstyp ändern möchten.\n\n\n```\n--load <filepath> [noerror]\n--load <dirpath> [noerror]\n```\n\nDer \"load\" Befehl erzeugt eine Fehlermeldung, wenn keine Tiddler gefunden werden. Diese Verhalten kann mit dem Parameter \"noerror\" unterdrückt werden.\n\nUm Daten aus einer verschlüsselten TiddlyWiki Datei zu laden, muss zuerst mit dem \"password\" Parameter ein Passwort definiert werden. \n\nBeispiel:\n\n```\ntiddlywiki ./MyWiki --password pa55w0rd --load my_encrypted_wiki.html\n```\n\nHinweis: TiddlyWiki wird nur neuere Versionen eines bestehenden Plugins laden!\n"
},
"$:/language/Help/makelibrary": {
"title": "$:/language/Help/makelibrary",
"description": "Erstellt die \"Upgrade Bibliothek\", die vom upgrade Prozess benötigt wird",
"text": "Erstellt den tiddler: `$:/UpgradeLibrary`, der vom upgrade Prozess benötigt wird.\n\nDie \"Upgrade Bibliothek\" ist ein \"normales\" Plugin, vom Typ: `library`. Es enthält eine Kopie jedes Plugins, Themas und Sprachpacketes, das im TiddlyWiki Archiv enthalten ist.\n\nDieser Befehl ist ein \"interner\" Befehl! Er ist nur relevant für Benutzer, die einen spezifischen \"Upgrade Prezess\" erstellen müssen. zB: Umwandeln von einem Tiddler in mehrere Tiddler, um Inkompatibilitäten zu vermeiden.\n\n```\n--makelibrary <title>\n```\n\nDas \"title\" Argument ist standardmäßig: `$:/UpgradeLibrary`.\n"
},
"$:/language/Help/notfound": {
"title": "$:/language/Help/notfound",
"text": "Keine Hilfe zu diesem Thema gefunden!"
},
"$:/language/Help/output": {
"title": "$:/language/Help/output",
"description": "Setzt das Basis Ausgabeverzeichnis für die folgenden Befehle.",
"text": "Setzt das Basis Ausgabeverzeichnis für die folgenden Befehle. Das Standard Verzeichnis heißt: `output` und ist ein Unterverzeichnis des `edition` Verzeichnisses.\n\n```\n--output <pathname>\n```\n\nIst das spezifizierte Verzeichnis \"relativ\", dann wird es relativ zum bestehenden Arbeitsverzeichnis angelegt.\nZum Beispiel: `--output .` setzt das Ausgabeverzeichnis auf das aktuelle Verzeichnis.\n"
},
"$:/language/Help/password": {
"title": "$:/language/Help/password",
"description": "Setzen eines Passwortes für Verschlüsselungsoperationen.",
"text": "Setzen eines Passwortes für Verschlüsselungsoperationen\n\n```\n--password <password>\n```\n\nHinweis: Diese Option kann nicht verwendet werden, um ein \"Server Passwort\" festzulegen! Informationen zum Server Passwort siehe \"--server\" Kommando.\n"
},
"$:/language/Help/render": {
"title": "$:/language/Help/render",
"description": "Ausgabe individueller Tiddler in Dateien",
"text": "Individuelle Tiddler werden anhand von Filtern spezifiziert, gelesen und in Dateien umgesetzt.\n\nOptionell kann eine Template-Datei angegeben werden. In diesem Fall wird nicht der Inhalt des Tiddlers, sondern des Templates umgesetzt. Die `currentTiddler` Variable wird auf den Titel, des auszugebenden, Tiddlers gesetzt.\n\nEs können noch zusätzliche Variablen per Name und Wert gesetzt werden.\n\n```\n--render <tiddler-filter> [<filename-filter>] [<render-type>] [<template>] [<name>] [<value>]\n```\n\n* ''tiddler-filter'': Ein Filter, der die Auszugebenden Tiddler eindeutig spezifiziert. \n* ''filename-filter'': [Option] Filter, der aus Tiddler Titeln, Pfadnamen extrahiert. Wenn weggelassen, dann wird der Standard verwendet: `[is[tiddler]addsuffix[.html]]`, welcher den Titel als Dateiname verwendet.\n* ''render-type'': [Option] Ausgabe Type: `text/html` (Standard) generiert HTML Text und `text/plain` gibt den \"reinen\" Text Inhalt zurück. `text/plain` ignoriert HTML Marker und andere \"nicht-druckbare\" Zeichen.\n* ''template'': [Option] Template, das verwendet werden soll\n* ''name'': [Option] Name einer zusätzlichen Variablen.\n* ''value'': [Option] Wert dieser zusätzlichen Variablen.\n\nStandardmäßig sind die Dateinamen \"relativ\" zum `output` Verzeichnis, des `edition` Verzeichnisses.\n\nMit dem `--output` Befehl kann die Ausgabe in jedes beliebige Verzeichnis umgeleitet werden.\n\nWichtig:\n\n* Das `output` Verzeichnis wird nicht gelöscht, bevor neue Dateien geschrieben werden.\n* Verzeichnisse und Dateien werden automatisch angelegt, sollten sie nicht vorhanden sein.\n* Wenn eine Datei Leerzeichen enthält, dann muss dies ''doppelt'' angezeigt werden. Für TiddlyWiki mit eckigen Klammern `[[]]` und für die Kommandozeile mit Hochkomma \"\". Zum Beispiel: `--render \"[[Motovun Jack.jpg]]\"`\n* Dateinamens-Filter zeigen immer auf den Titel, des gerade umzusetzenden Tiddlers. Das erlaubt uns, diesen als Basis für den Dateinamen zu verwenden. zB: `[encodeuricomponent[]addprefix[static/]]` ... Verwendet eine URI-Enkodierung für jeden Dateinamen und stellt das Wort `static/` als Pfadname voran. \n* Der `--render` Befehl ist flexibler und ersetzt daher `--rendertiddler` und `--rendertiddlers`, welche mit V5.1.15 auslaufen!\n\nBeispiel:\n\n* `--render \"[!is[system]]\" \"[encodeuricomponent[]addprefix[tiddlers/]addsuffix[.html]]\"` ... Übersetzt alle Nicht-System Tiddler und schreibt sie in ein Unterverzeichnis `tiddlers/` mit URL-kodiertem Titel und der Erweiterung `.html`\n\n"
},
"$:/language/Help/rendertiddler": {
"title": "$:/language/Help/rendertiddler",
"description": "Ausgabe eines individuellen Tiddlers, in einem spezifizierten Format.",
"text": "''WICHTIG:''\n\n* Der `--rendertiddler` Befehl wird ab V5.1.15 durch `--render` ersetzt. \n* `--rendertiddler` wird auslaufen und sollte daher nicht mehr verwendet werden!\n\nAusgabe eines individuellen Tiddlers, in einem spezifizierten Format (standard: `text/html`) und Dateinamen.\n\nOptional kann ein Template tiddler angegeben werden. Die \"currentTiddler\" Variable wird auf den Tiddler gesetzt, der zu rendern ist.\n\n```\n--rendertiddler <title> <filename> [<type>] [<template>] [<name>] [<value>]\n```\n\nStandardmäßig ist das `output` Verzeichnis ein Unterverzeichnis im `edition` Verzeichnis. Der `--output` Befehl kann verwendet werden, um ein anderes Verzeichnis auszuwählen.\n\nNicht vorhandene Verzeichnisse werden automatisch erstellt.\n\n''Beispiel:''\n\nDer folgende Befehl speichert alle tiddler mit dem `tag: done` in eine `JSON` Datei mit dem Namen: `output.json`. Das Template `$:/core/templates/exporters/JsonFile` wird auf die zu speichernden Daten angewandt.\n\n```\n--rendertiddler \"$:/core/templates/exporters/JsonFile\" output.json text/plain \"\" exportFilter \"[tag[done]]\"\n```\n"
},
"$:/language/Help/rendertiddlers": {
"title": "$:/language/Help/rendertiddlers",
"description": "Gefilterte Ausgabe von Tiddlern, in einem spezifizierten Format.",
"text": "''WICHTIG:''\n\n* Der `--rendertiddlers` Befehl wird ab V5.1.15 durch `--render` ersetzt. \n* `--rendertiddlers` wird auslaufen und sollte daher nicht mehr verwendet werden!\n\nGefilterte Ausgabe mehrerer Tiddler, in ein angegebenes Dateiformat (standard: `text/html`) mit spezifischer Erweiterung (Standard: `.html`).\n\n```\n--rendertiddlers '<filter>' <template> <pathname> [<type>] [<extension>] [\"noclean\"]\n```\n\nBeispiel:\n\n```\n--rendertiddlers '[!is[system]]' $:/core/templates/static.tiddler.html ./static text/plain\n```\n\nStandardmäßig ist das `output` Verzeichnis ein Unterverzeichnis im `edition` Verzeichnis. Der `--output` Befehl kann verwendet werden, um ein anderes Verzeichnis auszuwählen.\n\nNicht vorhandene Verzeichnisse werden automatisch erstellt und enthaltene Dateien werden gelöscht. Mit dem \"noclean\" Parameter, kann das löschen vorhandener Dateien unterdrückt werden.\n"
},
"$:/language/Help/save": {
"title": "$:/language/Help/save",
"description": "Speichert Klartext Tiddler als Dateien",
"text": "Speichert einzelne oder mehrere Klartext Tiddler als Text oder im Binärformat in Dateien. Die zu speichernden Tiddler werden über Filter spezifiziert. \n\n\n```\n--save <tiddler-filter> <filename-filter>\n```\n\n* ''tiddler-filter'': Ein Filter, der die zu speichernden Tiddler anzeigt. \n* ''filename-filter'': [Option] Ein Filter, der die Tiddler Titel in Verzeichnis Namen aufspaltet. Wenn nicht spezifiziert, dann wird: `[is[tiddler]]` verwendet. `[is[tiddler]]` übernimmt den Tiddler Titel unverändert.\n\nStandardmäßig sind die Dateinamen \"relativ\" zum `output` Verzeichnis, des `edition` Verzeichnisses.\n\nMit dem `--output` Befehl kann die Ausgabe in jedes beliebige Verzeichnis umgeleitet werden.\n\nHinweise:\n\n* Das `output` Verzeichnis wird nicht gelöscht, bevor neue Dateien geschrieben werden.\n* Verzeichnisse und Dateien werden automatisch angelegt, sollten sie nicht vorhanden sein.\n* Wenn eine Datei Leerzeichen enthält, dann muss dies ''doppelt'' angezeigt werden. Für TiddlyWiki mit eckigen Klammern `[[]]` und für die Kommandozeile mit Hochkomma \"\". Zum Beispiel: `--render \"[[Motovun Jack.jpg]]\"`\n* Dateinamens-Filter zeigen immer auf den Titel, des gerade umzusetzenden Tiddlers. Das erlaubt uns, diesen als Basis für den Dateinamen zu verwenden. zB: `[encodeuricomponent[]addprefix[static/]]` ... Verwendet eine URI-Enkodierung für jeden Dateinamen und stellt das Wort `static/` als Pfadname voran. \n* Der `--save` Befehl ist flexibler und ersetzt daher `--savetiddler` und `--savetiddlers`, welche mit V5.1.15 auslaufen!\n\nBeispiel:\n\n* `--save \"[!is[system]is[image]]\" \"[encodeuricomponent[]addprefix[tiddlers/]]\"` -- Übersetzt alle Nicht-System Bild Tiddler in Datein und schreibt diese URL-kodiert in das Unterverzeichnis `tiddlers/`\n"
},
"$:/language/Help/savetiddler": {
"title": "$:/language/Help/savetiddler",
"description": "Speichert einen Tiddler als File.",
"text": "''WICHTIG:''\n\n* Der `--savetiddler` Befehl wird ab V5.1.15 durch `--save` ersetzt. \n* `--savetiddler` wird auslaufen und sollte daher nicht mehr verwendet werden!\n\nSpeichert einen individuellen Tiddler im Text- oder Binärformat mit dem angegebenen Dateinamen.\n\n```\n--savetiddler <title> <filename>\n```\n\nStandardmäßig ist das `output` Verzeichnis ein Unterverzeichnis im `edition` Verzeichnis. Der `--output` Befehl kann verwendet werden, um ein anderes Verzeichnis auszuwählen.\n\nNicht vorhandene Verzeichnisse werden automatisch erstellt.\n"
},
"$:/language/Help/savetiddlers": {
"title": "$:/language/Help/savetiddlers",
"description": "Speichert eine Gruppe von Tiddler in ein Verzeichnis",
"text": "''WICHTIG:''\n\n* Der `--savetiddlers` Befehl wird ab V5.1.15 durch `--save` ersetzt. \n* `--savetiddlers` wird auslaufen und sollte daher nicht mehr verwendet werden!\n\nSpeichert eine Gruppe von Tiddler im Text- oder Binärformat in ein angegebenes Verzeichnis.\n\n```\n--savetiddlers <filter> <pathname> [\"noclean\"]\n```\n\nStandardmäßig ist das `output` Verzeichnis ein Unterverzeichnis im `edition` Verzeichnis. Der `--output` Befehl kann verwendet werden, um ein anderes Verzeichnis auszuwählen.\n\nWichtig: Alle Dateien im Ausgabeverzeichnis werden automatisch gelöscht, wenn dieser Befehl verwendet wird. Um dies zu verhindern kann der ''noclean'' Parameter verwendet werden.\n\nNicht vorhandene Verzeichnisse im Pfadnamen werden automatisch erstellt.\n"
},
"$:/language/Help/savewikifolder": {
"title": "$:/language/Help/savewikifolder",
"description": "Speichert ein Wiki in einen neues Verzeichnis",
"text": "<<.from-version \"5.1.20\">> Speichert das aktuelle Wiki als ein Wiki-Verzeichnis. Inklusive Tiddlern, Plugins und Konfiguration:\n\n```\n--savewikifolder <wikifolderpath> [<filter>]\n```\n\n* Das Zielverzeichnis muss leer sein, oder nicht existent\n* Der \"filter\" Parameter definiert, welche Tiddler inkludiert werden. Diser Parameter is optional. Standard: `[all[tiddlers]]`\n* Plugins des offiziellen Plugin-Verzeichnisses werden durch Referenzen zu den Plugins in der `tiddlywiki.info` Datei ersetzt.\n* Drittanbieter Plugins werden in ihre eigenen Verzeichnisse entpackt\n\nDiese Funktion wird vor allem dazu verwendet, eine Wiki-Datei in einzelne Tiddler in einem Wiki-Verzeichnis umzuwandeln. \n\n```\ntiddlywiki --load ./mywiki.html --savewikifolder ./mywikifolder\n```\n"
},
"$:/language/Help/server": {
"title": "$:/language/Help/server",
"description": "Stellt einen HTTP server für TiddlyWiki zur Verfügung. (Dieser Befehl ist abgekündigt! - Neu ist: \"listen\")",
"text": "TiddlyWiki bringt einen einfachen Web-Server mit.\n\nDer Server kann spezifische Tiddler im angegebenen Format anzeigen (rendern). Zudem können einzelne, oder mehrere Tiddler im JSON Format übertragen werden. Die unterstützten HTTP Funktionen sind: `GET`, `PUT` und `DELETE`\n\n```\n--server <port> <root-tiddler> <root-render-type> <root-serve-type> <username> <password> <host> <path-prefix> <debug-level>\n```\n\nDie Parameter sind: \n\n* ''port'' - Port Nummer mit der kommuniziert werden soll (Standard: \"8080\"). Ein \"nicht-numerisher\" Wert wird als System-Umgebungsvariable interpretiert, von der der Wert gelesen werden soll.\n* ''root-tiddler'' - Der Tiddler, der als ~Basis-Tiddler verwendet werden soll ( Standard: \"$:/core/save/all\").\n* ''root-render-type'' - MIME-Type, zu dem der ~Basis-Tiddler \"gerendert\" werden soll ( Standard: \"text/plain\").\n* ''root-serve-type'' - MIME-Type, mit dem der Basis-Tiddler ausgeliefert werden soll ( Standard: \"text/html\").\n* ''username'' - Benutzer Name, mit dem veränderte Tiddler signiert werden.\n* ''password'' - Passwort mit dem eine sehr \"simple\" Zugangsbeschränkung aufgebaut werden kann.\n* ''host'' - ~Host-Name von dem ausgeliefert werden soll. Host ist optional ( Standard: \"127.0.0.1\" oder auch \"localhost\").\n* ''path-prefix'' - Optionales prefix für Pfade.\n* ''debug-level'' - \"debug\" bewikt eine detailierte Anzeige der HTTP Anfrage-Parameter. (Standard: \"none\")\n\nWenn beim Serverstart ein Passwort angegeben wird, dann wird der Benutzer aufgefordert den Benutzernamen und das Passwort einzugeben, bevor ein Wiki angezeigt wird. ACHTUNG: Das Passwort wird im Klartext übertragen. Diese Vorgehensweise ist nicht für den Einsatz im Netz geeignet.\n\nBeispiel:\n\n```\n--server 8080 $:/core/save/all text/plain text/html MeinBenutzerName passw0rt\n```\n\nDer Name und das Passwort können als \"leere\" Zeichenketten definiert werden, wenn ein \"hostname\" oder \"pathprefix\" nötig ist, jedoch kein Passwort verwendet werden soll.\n\n```\n--server 8080 $:/core/save/all text/plain text/html \"\" \"\" 192.168.0.245\n```\n\nWenn Sie eine Addresse wie oben verwenden, dann ist der Server für das lokale Netzwerk sichtbar. Weitere Sicherheitshinweise finden sie unter: WebServer auf tiddlywiki.com\n\nEs ist möglich mehrere TiddlyWiki Server gleichzeitig zu starten. Jeder Server muss jedoch mit einem eigenen Port gestartet werden. Es kann sinnvoll sein, den Prozess mit lokalen \"Umgebungsvariable\" zu starten. Hier wird \"MEINE_PORT_NUMMER\" als Beispiel verwendet.\n\n\n```\n--server MEINE_PORT_NUMMER $:/core/save/all text/plain text/html MyUserName passw0rd\n```"
},
"$:/language/Help/setfield": {
"title": "$:/language/Help/setfield",
"description": "Experimentell - Setzt ein Tiddler \"field\" auf einen bestimmten Wert",
"text": "//Wichtig! Dieser Befehl is experimentell und kann während der Betaphase geändert oder ersetzt werden!//\n\nSetzt ein spezifiziertes Feld, für eine Gruppe von Tiddlern. Ein Template wird \"wikifiziert\" und das Ergebnis in das Feld geschrieben. Die `currentTiddler` Variable wird auf den jeweiligen Tiddler gesetzt. \n\n```\n--setfield <filter> <fieldname> <templatetitle> <rendertype>\n```\n\nThe parameters are:\n\n* ''filter'' - Filter, der die zu modifizierenden Tiddler auswählt.\n* ''fieldname'' - Das zu verändernde Feld (Standardwert: \"text\").\n* ''templatetitle'' - Der zu wikifizierende Vorlagen Tiddler, dessen Ergebnis in das Feld geschrieben wird. Wenn Leer, dann wird das Feld gelöscht.\n* ''rendertype'' - Der Text Typ für den \"rendering\" Vorgang (Standardwert: \"text/plain\"; \"text/html\" kann verwendet werden, um \"HTML tags\" zu erzeugen).\n"
},
"$:/language/Help/unpackplugin": {
"title": "$:/language/Help/unpackplugin",
"description": "Extrahiere Tiddler aus einem Plugin",
"text": "Extrahiert alle Tiddler aus einem plugin und schreibt diese als einzelne Tiddler Dateien:\n\n```\n--unpackplugin <title>\n```\n"
},
"$:/language/Help/verbose": {
"title": "$:/language/Help/verbose",
"description": "Aktiviert die erweiterte Fehlerausgabe.",
"text": "Aktiviert die erweiterte Fehlerausgabe. Nützlich um Fehler zu finden.\n\n```\n--verbose\n```\n"
},
"$:/language/Help/version": {
"title": "$:/language/Help/version",
"description": "Gibt die Versionsnummer von TiddlyWiki aus.",
"text": "Gibt die Versionsnummer von TiddlyWiki aus.\n\n```\n--version\n```\n"
},
"$:/language/Import/Imported/Hint": {
"title": "$:/language/Import/Imported/Hint",
"text": "Folgende Tiddler wurden importiert:"
},
"$:/language/Import/Listing/Cancel/Caption": {
"title": "$:/language/Import/Listing/Cancel/Caption",
"text": "Abbrechen"
},
"$:/language/Import/Listing/Hint": {
"title": "$:/language/Import/Listing/Hint",
"text": "Diese Tiddler können importiert werden:"
},
"$:/language/Import/Listing/Import/Caption": {
"title": "$:/language/Import/Listing/Import/Caption",
"text": "Importieren"
},
"$:/language/Import/Listing/Select/Caption": {
"title": "$:/language/Import/Listing/Select/Caption",
"text": "Auswahl"
},
"$:/language/Import/Listing/Status/Caption": {
"title": "$:/language/Import/Listing/Status/Caption",
"text": "Status"
},
"$:/language/Import/Listing/Title/Caption": {
"title": "$:/language/Import/Listing/Title/Caption",
"text": "Titel"
},
"$:/language/Import/Listing/Preview": {
"title": "$:/language/Import/Listing/Preview",
"text": "Vorschau:"
},
"$:/language/Import/Listing/Preview/Text": {
"title": "$:/language/Import/Listing/Preview/Text",
"text": "Text"
},
"$:/language/Import/Listing/Preview/TextRaw": {
"title": "$:/language/Import/Listing/Preview/TextRaw",
"text": "Text - roh"
},
"$:/language/Import/Listing/Preview/Fields": {
"title": "$:/language/Import/Listing/Preview/Fields",
"text": "Felder"
},
"$:/language/Import/Listing/Preview/Diff": {
"title": "$:/language/Import/Listing/Preview/Diff",
"text": "Diff - Text"
},
"$:/language/Import/Listing/Preview/DiffFields": {
"title": "$:/language/Import/Listing/Preview/DiffFields",
"text": "Diff - Felder"
},
"$:/language/Import/Listing/Rename/Tooltip": {
"title": "$:/language/Import/Listing/Rename/Tooltip",
"text": "Tiddler vorm Importieren umbenennen"
},
"$:/language/Import/Listing/Rename/Prompt": {
"title": "$:/language/Import/Listing/Rename/Prompt",
"text": "Umbenennen in:"
},
"$:/language/Import/Listing/Rename/ConfirmRename": {
"title": "$:/language/Import/Listing/Rename/ConfirmRename",
"text": "Tiddler umbenennen"
},
"$:/language/Import/Listing/Rename/CancelRename": {
"title": "$:/language/Import/Listing/Rename/CancelRename",
"text": "Abbrechen"
},
"$:/language/Import/Listing/Rename/OverwriteWarning": {
"title": "$:/language/Import/Listing/Rename/OverwriteWarning",
"text": "Ein Tiddler mit diesem Titel existiert bereits."
},
"$:/language/Import/Upgrader/Plugins/Suppressed/Incompatible": {
"title": "$:/language/Import/Upgrader/Plugins/Suppressed/Incompatible",
"text": "Unterdrückte, inkompatible oder veraltete \"plugins\"."
},
"$:/language/Import/Upgrader/Plugins/Suppressed/Version": {
"title": "$:/language/Import/Upgrader/Plugins/Suppressed/Version",
"text": "Einige \"plugins\" weden unterdrückt! Importierte plugins: <<incoming>> sind älter als existierende: <<existing>>."
},
"$:/language/Import/Upgrader/Plugins/Upgraded": {
"title": "$:/language/Import/Upgrader/Plugins/Upgraded",
"text": "Aktualisieren der plugins von: <<incoming>> nach: <<upgraded>>."
},
"$:/language/Import/Upgrader/State/Suppressed": {
"title": "$:/language/Import/Upgrader/State/Suppressed",
"text": "Unterdrückte temporäre Status Tiddler."
},
"$:/language/Import/Upgrader/System/Suppressed": {
"title": "$:/language/Import/Upgrader/System/Suppressed",
"text": "Unterdrückte \"System Tiddler\"."
},
"$:/language/Import/Upgrader/System/Warning": {
"title": "$:/language/Import/Upgrader/System/Warning",
"text": "\"Core Modul Tiddler\"."
},
"$:/language/Import/Upgrader/System/Alert": {
"title": "$:/language/Import/Upgrader/System/Alert",
"text": "Sie sind dabei einen Tiddler zu importieren, der einen \"Core Tiddler\" überschreibt. Diese Aktion wird nicht empfohlen! Das System kann instabil werden."
},
"$:/language/Import/Upgrader/ThemeTweaks/Created": {
"title": "$:/language/Import/Upgrader/ThemeTweaks/Created",
"text": "Migrieren der \"theme tweaks\" von: <$text text=<<from>>/>."
},
"$:/language/AboveStory/ClassicPlugin/Warning": {
"title": "$:/language/AboveStory/ClassicPlugin/Warning",
"text": "Es scheint, Sie möchten ein Plugin verwenden, dass für [[TiddlyWiki Classic|https://tiddlywiki.com/#TiddlyWikiClassic]] entwickelt wurde. Diese Plugins können jedoch mit ~TiddlyWiki Version 5 nicht verwendet werden. ~TiddlyWiki Classic plugin erkannt:"
},
"$:/language/BinaryWarning/Prompt": {
"title": "$:/language/BinaryWarning/Prompt",
"text": "Dieser Tiddler enthält binäre Daten."
},
"$:/language/ClassicWarning/Hint": {
"title": "$:/language/ClassicWarning/Hint",
"text": "Dieser Tiddler wurde im TiddlyWiki Classic Format erstellt. Dieses Format ist nur teilweise kompatibel mit TiddlyWiki Version 5. Mehr Info finden Sie unter: https://tiddlywiki.com/static/Upgrading.html"
},
"$:/language/ClassicWarning/Upgrade/Caption": {
"title": "$:/language/ClassicWarning/Upgrade/Caption",
"text": "upgrade"
},
"$:/language/CloseAll/Button": {
"title": "$:/language/CloseAll/Button",
"text": "alle schließen"
},
"$:/language/ColourPicker/Recent": {
"title": "$:/language/ColourPicker/Recent",
"text": "Kürzlich:"
},
"$:/language/ConfirmCancelTiddler": {
"title": "$:/language/ConfirmCancelTiddler",
"text": "Wollen Sie die Änderungen im Tiddler: \"<$text text=<<title>>/>\" verwerfen?"
},
"$:/language/ConfirmDeleteTiddler": {
"title": "$:/language/ConfirmDeleteTiddler",
"text": "Wollen Sie den Tiddler: \"<$text text=<<title>>/>\" löschen?"
},
"$:/language/ConfirmOverwriteTiddler": {
"title": "$:/language/ConfirmOverwriteTiddler",
"text": "Tiddler: \"<$text text=<<title>>/>\" existiert! OK überschreibt den tiddler!"
},
"$:/language/ConfirmEditShadowTiddler": {
"title": "$:/language/ConfirmEditShadowTiddler",
"text": "Sie sind dabei, einen Schatten-Tiddler zu verändern. Zukünftige, automatische Anpassungen werden dadurch unterdrückt. Sie können Ihre Änderungen rückgängig machen, indem Sie diesen Tiddler wieder löschen. Wollen Sie den Tiddler: \"<$text text=<<title>>/>\" ändern?"
},
"$:/language/ConfirmAction": {
"title": "$:/language/ConfirmAction",
"text": "Möchten Sie weitermachen?"
},
"$:/language/Count": {
"title": "$:/language/Count",
"text": "Anzahl"
},
"$:/language/DefaultNewTiddlerTitle": {
"title": "$:/language/DefaultNewTiddlerTitle",
"text": "Neuer Tiddler"
},
"$:/language/Diffs/CountMessage": {
"title": "$:/language/Diffs/CountMessage",
"text": "<<diff-count>> Unterschied(e)"
},
"$:/language/DropMessage": {
"title": "$:/language/DropMessage",
"text": "Hierher ziehen (oder Escape um abzubrechen)"
},
"$:/language/Encryption/Cancel": {
"title": "$:/language/Encryption/Cancel",
"text": "Abbrechen"
},
"$:/language/Encryption/ConfirmClearPassword": {
"title": "$:/language/Encryption/ConfirmClearPassword",
"text": "Wollen Sie das Passwort löschen? Damit wird die Verschlüsselung beim nächsten Speichervorgang abgeschalten!"
},
"$:/language/Encryption/PromptSetPassword": {
"title": "$:/language/Encryption/PromptSetPassword",
"text": "Der TiddlyWiki Inhalt wird mit dem nächsten Speichern verschlüsselt!"
},
"$:/language/Encryption/Username": {
"title": "$:/language/Encryption/Username",
"text": "Benutzername"
},
"$:/language/Encryption/Password": {
"title": "$:/language/Encryption/Password",
"text": "Passwort"
},
"$:/language/Encryption/RepeatPassword": {
"title": "$:/language/Encryption/RepeatPassword",
"text": "Passwort wiederholen"
},
"$:/language/Encryption/PasswordNoMatch": {
"title": "$:/language/Encryption/PasswordNoMatch",
"text": "Passwörter stimmen nicht überein"
},
"$:/language/Encryption/SetPassword": {
"title": "$:/language/Encryption/SetPassword",
"text": "Passwort setzen"
},
"$:/language/Error/Caption": {
"title": "$:/language/Error/Caption",
"text": "Fehler"
},
"$:/language/Error/EditConflict": {
"title": "$:/language/Error/EditConflict",
"text": "Datei auf Server verändert"
},
"$:/language/Error/Filter": {
"title": "$:/language/Error/Filter",
"text": "Filter Fehler"
},
"$:/language/Error/FilterSyntax": {
"title": "$:/language/Error/FilterSyntax",
"text": "Syntax Fehler im Filter-Ausdruck"
},
"$:/language/Error/FilterRunPrefix": {
"title": "$:/language/Error/FilterRunPrefix",
"text": "Filter Fehler: Unbekanntes Prefix für Filter lauf"
},
"$:/language/Error/IsFilterOperator": {
"title": "$:/language/Error/IsFilterOperator",
"text": "Filter Fehler: Unbekannter Operand für den 'is' Filter Operator"
},
"$:/language/Error/FormatFilterOperator": {
"title": "$:/language/Error/FormatFilterOperator",
"text": "Filter Fehler: Unbekannter Operand für den 'format' Filter Operator"
},
"$:/language/Error/LoadingPluginLibrary": {
"title": "$:/language/Error/LoadingPluginLibrary",
"text": "Fehler beim Laden der \"plugin library\""
},
"$:/language/Error/NetworkErrorAlert": {
"title": "$:/language/Error/NetworkErrorAlert",
"text": "`<h2>''Netzwerk Fehler''</h2>Es scheint, die Verbindung zum Server ist ausgefallen. Das weist auf Probleme mit der Netzwerkverbindung hin. Bitte versuchen Sie die Verbingung wider herzustellen, bevor Sie weitermachen.<br><br>''Nicht gespeicherte Änderungen werden automatich synchronisiert, sobald die Verbindung wider hergestellt ist."
},
"$:/language/Error/RecursiveTransclusion": {
"title": "$:/language/Error/RecursiveTransclusion",
"text": "Recursive Transclusion: Fehler im \"transclude widget\""
},
"$:/language/Error/RetrievingSkinny": {
"title": "$:/language/Error/RetrievingSkinny",
"text": "Fehler beim Empfangen einer \"skinny\" Tiddler Liste"
},
"$:/language/Error/SavingToTWEdit": {
"title": "$:/language/Error/SavingToTWEdit",
"text": "Fehler beim Speichern mit \"TWEdit\""
},
"$:/language/Error/WhileSaving": {
"title": "$:/language/Error/WhileSaving",
"text": "Fehler beim Speichern"
},
"$:/language/Error/XMLHttpRequest": {
"title": "$:/language/Error/XMLHttpRequest",
"text": "XMLHttpRequest Fehler-Code"
},
"$:/language/InternalJavaScriptError/Title": {
"title": "$:/language/InternalJavaScriptError/Title",
"text": "Interner JavaScript Fehler"
},
"$:/language/InternalJavaScriptError/Hint": {
"title": "$:/language/InternalJavaScriptError/Hint",
"text": "Es tut uns leid, aber bitte starten Sie Ihr TiddlyWiki neu, indem sie die Seite im Browser neu laden."
},
"$:/language/InvalidFieldName": {
"title": "$:/language/InvalidFieldName",
"text": "Das Feld: \"<$text text=<<fieldName>>/>\" enthält illegale Zeichen. Felder müssen klein geschrieben werden. Erlaubte Sonderzeichen sind: Zahlen, Unterstrich (`_`), Minus (`-`) und Punkt (`.`)."
},
"$:/language/LazyLoadingWarning": {
"title": "$:/language/LazyLoadingWarning",
"text": "<p>Lade externe Datei von ''<$text text={{!!_canonical_uri}}/>''</p><p>Wenn diese Meldung nicht automatisch gelöscht wird, dann verwenden Sie wahrscheinlich einen Browser der diese Funktion nicht unterstützt. Oder die Tiddler \"conent-type\" Eistellung passt nicht, zu der, der externen Datei. Siehe https://tiddlywiki.com/#ExternalText</p>"
},
"$:/language/LoginToTiddlySpace": {
"title": "$:/language/LoginToTiddlySpace",
"text": "Login bei TiddlySpace"
},
"$:/language/Manager/Controls/FilterByTag/None": {
"title": "$:/language/Manager/Controls/FilterByTag/None",
"text": "(kein)"
},
"$:/language/Manager/Controls/FilterByTag/Prompt": {
"title": "$:/language/Manager/Controls/FilterByTag/Prompt",
"text": "Filtern nach tag:"
},
"$:/language/Manager/Controls/Order/Prompt": {
"title": "$:/language/Manager/Controls/Order/Prompt",
"text": "Invertiert"
},
"$:/language/Manager/Controls/Search/Placeholder": {
"title": "$:/language/Manager/Controls/Search/Placeholder",
"text": "Suche"
},
"$:/language/Manager/Controls/Search/Prompt": {
"title": "$:/language/Manager/Controls/Search/Prompt",
"text": "Suche:"
},
"$:/language/Manager/Controls/Show/Option/Tags": {
"title": "$:/language/Manager/Controls/Show/Option/Tags",
"text": "Tags"
},
"$:/language/Manager/Controls/Show/Option/Tiddlers": {
"title": "$:/language/Manager/Controls/Show/Option/Tiddlers",
"text": "Tiddler"
},
"$:/language/Manager/Controls/Show/Prompt": {
"title": "$:/language/Manager/Controls/Show/Prompt",
"text": "Anzeigen:"
},
"$:/language/Manager/Controls/Sort/Prompt": {
"title": "$:/language/Manager/Controls/Sort/Prompt",
"text": "Sortieren nach:"
},
"$:/language/Manager/Item/Colour": {
"title": "$:/language/Manager/Item/Colour",
"text": "Farbe"
},
"$:/language/Manager/Item/Fields": {
"title": "$:/language/Manager/Item/Fields",
"text": "Feld"
},
"$:/language/Manager/Item/Icon/None": {
"title": "$:/language/Manager/Item/Icon/None",
"text": "(kein)"
},
"$:/language/Manager/Item/Icon": {
"title": "$:/language/Manager/Item/Icon",
"text": "Icon"
},
"$:/language/Manager/Item/RawText": {
"title": "$:/language/Manager/Item/RawText",
"text": "Text"
},
"$:/language/Manager/Item/Tags": {
"title": "$:/language/Manager/Item/Tags",
"text": "Tags"
},
"$:/language/Manager/Item/Tools": {
"title": "$:/language/Manager/Item/Tools",
"text": "Tools"
},
"$:/language/Manager/Item/WikifiedText": {
"title": "$:/language/Manager/Item/WikifiedText",
"text": "Wikified Text"
},
"$:/language/MissingTiddler/Hint": {
"title": "$:/language/MissingTiddler/Hint",
"text": "Fehlender Tiddler \"<$text text=<<currentTiddler>>/>\" - klicken Sie {{||$:/core/ui/Buttons/edit}} um ihn zu erzeugen."
},
"$:/language/No": {
"title": "$:/language/No",
"text": "Nein"
},
"$:/language/OfficialPluginLibrary": {
"title": "$:/language/OfficialPluginLibrary",
"text": "Offizielles ~TiddlyWiki Plugin-Verzeichnis"
},
"$:/language/OfficialPluginLibrary/Hint": {
"title": "$:/language/OfficialPluginLibrary/Hint",
"text": "Offizielles ~TiddlyWiki Plugin-Verzeichnis auf tiddlywiki.com. Plugin, Themes und Sprach Dateien werden vom \"core team\" gewartet."
},
"$:/language/PluginReloadWarning": {
"title": "$:/language/PluginReloadWarning",
"text": "Das Wiki muss gespeichert {{$:/core/ui/Buttons/save-wiki}} und neu gladen {{$:/core/ui/Buttons/refresh}} werden, damit die ~JavaScript Plugins ausgeführt werden."
},
"$:/language/RecentChanges/DateFormat": {
"title": "$:/language/RecentChanges/DateFormat",
"text": "YYYY MMM DD"
},
"$:/language/Shortcuts/Input/AdvancedSearch/Hint": {
"title": "$:/language/Shortcuts/Input/AdvancedSearch/Hint",
"text": "Öffne den ~AdvancedSearch Tiddler vom \"Suchmenü\" aus"
},
"$:/language/Shortcuts/Input/Accept/Hint": {
"title": "$:/language/Shortcuts/Input/Accept/Hint",
"text": "Wähle das selektierte Element"
},
"$:/language/Shortcuts/Input/AcceptVariant/Hint": {
"title": "$:/language/Shortcuts/Input/AcceptVariant/Hint",
"text": "Wähle das selektierte Element (Variante)"
},
"$:/language/Shortcuts/Input/Cancel/Hint": {
"title": "$:/language/Shortcuts/Input/Cancel/Hint",
"text": "Lösche das Eingabefeld"
},
"$:/language/Shortcuts/Input/Down/Hint": {
"title": "$:/language/Shortcuts/Input/Down/Hint",
"text": "Gehe zum nächsten Element"
},
"$:/language/Shortcuts/Input/Up/Hint": {
"title": "$:/language/Shortcuts/Input/Up/Hint",
"text": "Gehe zum vorherigen Element"
},
"$:/language/Shortcuts/Input/Tab-Left/Hint": {
"title": "$:/language/Shortcuts/Input/Tab-Left/Hint",
"text": "Gehe zum vorherigen Tab"
},
"$:/language/Shortcuts/Input/Tab-Right/Hint": {
"title": "$:/language/Shortcuts/Input/Tab-Right/Hint",
"text": "Gehe zum nächsten Tab"
},
"$:/language/Shortcuts/SidebarLayout/Hint": {
"title": "$:/language/Shortcuts/SidebarLayout/Hint",
"text": "Das Layout des rechten Menüs ändern"
},
"$:/language/SystemTiddler/Tooltip": {
"title": "$:/language/SystemTiddler/Tooltip",
"text": "Das ist ein System-Tiddler"
},
"$:/language/SystemTiddlers/Include/Prompt": {
"title": "$:/language/SystemTiddlers/Include/Prompt",
"text": "System-Tiddler einschließen"
},
"$:/language/TagManager/Colour/Heading": {
"title": "$:/language/TagManager/Colour/Heading",
"text": "Farbe"
},
"$:/language/TagManager/Count/Heading": {
"title": "$:/language/TagManager/Count/Heading",
"text": "Anzahl"
},
"$:/language/TagManager/Icon/Heading": {
"title": "$:/language/TagManager/Icon/Heading",
"text": "Symbol"
},
"$:/language/TagManager/Icons/None": {
"title": "$:/language/TagManager/Icons/None",
"text": "Keine"
},
"$:/language/TagManager/Info/Heading": {
"title": "$:/language/TagManager/Info/Heading",
"text": "Info"
},
"$:/language/TagManager/Tag/Heading": {
"title": "$:/language/TagManager/Tag/Heading",
"text": "Tag"
},
"$:/language/Tiddler/DateFormat": {
"title": "$:/language/Tiddler/DateFormat",
"text": "DDth MMM YYYY um 0hh:0mm"
},
"$:/language/UnsavedChangesWarning": {
"title": "$:/language/UnsavedChangesWarning",
"text": "~TiddlyWiki wurde geändert, aber noch nicht gespeichert!"
},
"$:/language/Yes": {
"title": "$:/language/Yes",
"text": "Ja"
},
"$:/language/Modals/Download": {
"title": "$:/language/Modals/Download",
"type": "text/vnd.tiddlywiki",
"subtitle": "Änderungen Speichern",
"footer": "<$button message=\"tm-close-tiddler\">Schließen</$button>",
"help": "https://tiddlywiki.com/static/DownloadingChanges.html",
"text": "Ihr Browser unterstützt nur manuelles Speichern. \n\nUm das geänderte Wiki zu speichern, machen Sie einen \"rechts klick\" auf den folgenden Link. Wählen Sie \"Datei herunterladen\" oder \"Datei speichern\" und wählen Sie Name und Verzeichnis.\n\n//Sie können den Vorgang etwas beschleunigen, indem Sie die \"Control-Taste\" (Windows) oder die \"Options/Alt-Taste\" (Max OS X) drücken. Es wird kein \"Speichern Dialog\" erscheinen. Jedoch wird bei einigen Browsern die Datei einen zufälligen Namen bekommen. Sie müssen die Datei eventuell umbenennen, um sie öffnen zu können.//\n\nBei \"Smartphones\", die das Speichern von Dateien nicht erlauben, können Sie ein Lesezeichen erstellen, dass mit Ihrem PC synchronisiert wird. Dort können Sie die Dateien dann wie gewohnt speichern.\n"
},
"$:/language/Modals/SaveInstructions": {
"title": "$:/language/Modals/SaveInstructions",
"type": "text/vnd.tiddlywiki",
"subtitle": "Aktuellen Stand speichern",
"footer": "<$button message=\"tm-close-tiddler\">Schließen</$button>",
"help": "https://tiddlywiki.com/static/SavingChanges.html",
"text": "Ihre Änderungen sollen als ~TiddlyWiki HTML Datei gespeichert werden. \n\n!!! Desktop Browser\n\n# Verwenden Sie ''Speichern unter'' aus dem ''Datei'' Menü.\n# Wählen Sie den Dateinamen und das Verzeichnis. \n\n#* Bei einigen Browsern müssen Sie das Format explizit angeben. Zb: ''Webseite, nur HTML'' oder ähnliches.\n# Den Browser-Tab schließen.\n\n!!! Smartphone Browser\n\n# Erstellen Sie ein \"Lesezeichen\"\n#* Wenn Sie \"iCloud\" oder \"Google Sync\" verwenden, dann werden Ihre Daten automatisch mit dem Desktop PC synchronisiert. Dort können Sie wie oben beschrieben fortfahren. \n# Den Browser-Tab schließen.\n\n//Wenn Sie das Lesezeichen mit \"Mobile Safari\" öffnen, dann wird diese Meldung erneut angezeigt. Klicken Sie ''Schließen'' um fort zu fahren.//\n"
},
"$:/config/NewJournal/Title": {
"title": "$:/config/NewJournal/Title",
"text": "YYYY MMM 0DD"
},
"$:/config/NewJournal/Text": {
"title": "$:/config/NewJournal/Text",
"text": ""
},
"$:/config/NewJournal/Tags": {
"title": "$:/config/NewJournal/Tags",
"text": "Journal"
},
"$:/language/Notifications/Save/Done": {
"title": "$:/language/Notifications/Save/Done",
"text": "Wiki gespeichert!"
},
"$:/language/Notifications/Save/Starting": {
"title": "$:/language/Notifications/Save/Starting",
"text": "Wiki zum Speichern vorbereiten!"
},
"$:/language/Notifications/CopiedToClipboard/Succeeded": {
"title": "$:/language/Notifications/CopiedToClipboard/Succeeded",
"text": "Kopiert!"
},
"$:/language/Notifications/CopiedToClipboard/Failed": {
"title": "$:/language/Notifications/CopiedToClipboard/Failed",
"text": "Fehler, beim kopieren in die Zwischenablage!"
},
"$:/language/Search/DefaultResults/Caption": {
"title": "$:/language/Search/DefaultResults/Caption",
"text": "Liste"
},
"$:/language/Search/Filter/Caption": {
"title": "$:/language/Search/Filter/Caption",
"text": "Filter"
},
"$:/language/Search/Filter/Hint": {
"title": "$:/language/Search/Filter/Hint",
"text": "Suche mit [[\"filter expression\"|https://tiddlywiki.com/static/Filters.html]]."
},
"$:/language/Search/Filter/Matches": {
"title": "$:/language/Search/Filter/Matches",
"text": "//<small><<resultCount>> Treffer</small>//"
},
"$:/language/Search/Matches": {
"title": "$:/language/Search/Matches",
"text": "//<small><<resultCount>> Treffer</small>//"
},
"$:/language/Search/Matches/All": {
"title": "$:/language/Search/Matches/All",
"text": "Alle Treffer:"
},
"$:/language/Search/Matches/Title": {
"title": "$:/language/Search/Matches/Title",
"text": "Titel Treffer:"
},
"$:/language/Search/Search": {
"title": "$:/language/Search/Search",
"text": "Suchen"
},
"$:/language/Search/Search/TooShort": {
"title": "$:/language/Search/Search/TooShort",
"text": "Suchtext ist zu kurz"
},
"$:/language/Search/Shadows/Caption": {
"title": "$:/language/Search/Shadows/Caption",
"text": "Schatten"
},
"$:/language/Search/Shadows/Hint": {
"title": "$:/language/Search/Shadows/Hint",
"text": "Suche in Schatten-Tiddlern."
},
"$:/language/Search/Shadows/Matches": {
"title": "$:/language/Search/Shadows/Matches",
"text": "//<small><<resultCount>> Treffer</small>//"
},
"$:/language/Search/Standard/Caption": {
"title": "$:/language/Search/Standard/Caption",
"text": "Standard"
},
"$:/language/Search/Standard/Hint": {
"title": "$:/language/Search/Standard/Hint",
"text": "Suche in Standard-Tiddlern."
},
"$:/language/Search/Standard/Matches": {
"title": "$:/language/Search/Standard/Matches",
"text": "//<small><<resultCount>> matches</small>//"
},
"$:/language/Search/System/Caption": {
"title": "$:/language/Search/System/Caption",
"text": "System"
},
"$:/language/Search/System/Hint": {
"title": "$:/language/Search/System/Hint",
"text": "Suche in System-Tiddlern."
},
"$:/language/Search/System/Matches": {
"title": "$:/language/Search/System/Matches",
"text": "//<small><<resultCount>> Treffer</small>//"
},
"$:/language/SideBar/All/Caption": {
"title": "$:/language/SideBar/All/Caption",
"text": "Alle"
},
"$:/language/SideBar/Contents/Caption": {
"title": "$:/language/SideBar/Contents/Caption",
"text": "Inhalt"
},
"$:/language/SideBar/Drafts/Caption": {
"title": "$:/language/SideBar/Drafts/Caption",
"text": "Entwurf"
},
"$:/language/SideBar/Missing/Caption": {
"title": "$:/language/SideBar/Missing/Caption",
"text": "Fehlend"
},
"$:/language/SideBar/More/Caption": {
"title": "$:/language/SideBar/More/Caption",
"text": "Mehr"
},
"$:/language/SideBar/Open/Caption": {
"title": "$:/language/SideBar/Open/Caption",
"text": "Offen"
},
"$:/language/SideBar/Orphans/Caption": {
"title": "$:/language/SideBar/Orphans/Caption",
"text": "Waisen"
},
"$:/language/SideBar/Recent/Caption": {
"title": "$:/language/SideBar/Recent/Caption",
"text": "Zuletzt"
},
"$:/language/SideBar/Shadows/Caption": {
"title": "$:/language/SideBar/Shadows/Caption",
"text": "Schatten"
},
"$:/language/SideBar/System/Caption": {
"title": "$:/language/SideBar/System/Caption",
"text": "System"
},
"$:/language/SideBar/Tags/Caption": {
"title": "$:/language/SideBar/Tags/Caption",
"text": "Tags"
},
"$:/language/SideBar/Tags/Untagged/Caption": {
"title": "$:/language/SideBar/Tags/Untagged/Caption",
"text": "untagged"
},
"$:/language/SideBar/Tools/Caption": {
"title": "$:/language/SideBar/Tools/Caption",
"text": "Tools"
},
"$:/language/SideBar/Types/Caption": {
"title": "$:/language/SideBar/Types/Caption",
"text": "Typen"
},
"$:/SiteSubtitle": {
"title": "$:/SiteSubtitle",
"text": "ein persönliches nicht-lineares Web-Notizbuch\n"
},
"$:/SiteTitle": {
"title": "$:/SiteTitle",
"text": "Mein ~TiddlyWiki"
},
"$:/language/Snippets/ListByTag": {
"title": "$:/language/Snippets/ListByTag",
"tags": "$:/tags/TextEditor/Snippet",
"caption": "Tiddler-Liste mit tag: \"task\", sortiert nach \"titel\"",
"text": "<<list-links \"[tag[task]sort[title]]\">>\n"
},
"$:/language/Snippets/MacroDefinition": {
"title": "$:/language/Snippets/MacroDefinition",
"tags": "$:/tags/TextEditor/Snippet",
"caption": "Makro Definition",
"text": "\\define makroName(param1:\"standard parameter\", param2)\nText des Makros. Zugriff auf den $param1$.\n$param2$\n\\end\n"
},
"$:/language/Snippets/Table4x3": {
"title": "$:/language/Snippets/Table4x3",
"tags": "$:/tags/TextEditor/Snippet",
"caption": "Tabelle mit 5 Spalten, 4 Zeilen, Kopf- und Fußzeile",
"text": "| |Alpha |Beta |Gamma |Delta |h\n|!Beta | | | | |\n|!Gamma | | | | |\n|!Delta | | | | |\n| |a|b|c|d|f\n| Beschriftung |c\n"
},
"$:/language/Snippets/TableOfContents": {
"title": "$:/language/Snippets/TableOfContents",
"tags": "$:/tags/TextEditor/Snippet",
"caption": "Inhaltsverzeichnis",
"text": "<div class=\"tc-table-of-contents\">\n\n<<toc-selective-expandable 'InhaltsVerzeichnis'>>\n\n</div>"
},
"$:/language/ThemeTweaks/ThemeTweaks": {
"title": "$:/language/ThemeTweaks/ThemeTweaks",
"text": "Theme Tweaks"
},
"$:/language/ThemeTweaks/ThemeTweaks/Hint": {
"title": "$:/language/ThemeTweaks/ThemeTweaks/Hint",
"text": "Hier können sie verschiedene Elemente des ''Vanilla'' (Standard) Themas einstellen."
},
"$:/language/ThemeTweaks/Options": {
"title": "$:/language/ThemeTweaks/Options",
"text": "Optionen"
},
"$:/language/ThemeTweaks/Options/SidebarLayout": {
"title": "$:/language/ThemeTweaks/Options/SidebarLayout",
"text": "Seitenleiste Darstellung"
},
"$:/language/ThemeTweaks/Options/SidebarLayout/Fixed-Fluid": {
"title": "$:/language/ThemeTweaks/Options/SidebarLayout/Fixed-Fluid",
"text": "Fixe Story, variable Seitenleiste"
},
"$:/language/ThemeTweaks/Options/SidebarLayout/Fluid-Fixed": {
"title": "$:/language/ThemeTweaks/Options/SidebarLayout/Fluid-Fixed",
"text": "Variable Story, fixe Seitenleiste"
},
"$:/language/ThemeTweaks/Options/StickyTitles": {
"title": "$:/language/ThemeTweaks/Options/StickyTitles",
"text": "\"Klebender Titel\""
},
"$:/language/ThemeTweaks/Options/StickyTitles/Hint": {
"title": "$:/language/ThemeTweaks/Options/StickyTitles/Hint",
"text": "Tiddler-Titel bleiben beim \"Scrollen\" am oberen Bildschirmrand \"kleben\". Funktioniert möglicherweise nicht mit jedem Browser."
},
"$:/language/ThemeTweaks/Options/CodeWrapping": {
"title": "$:/language/ThemeTweaks/Options/CodeWrapping",
"text": "Lange Zeilen in \"Code-Blöcken\" umbrechen"
},
"$:/language/ThemeTweaks/Settings": {
"title": "$:/language/ThemeTweaks/Settings",
"text": "Einstellungen"
},
"$:/language/ThemeTweaks/Settings/FontFamily": {
"title": "$:/language/ThemeTweaks/Settings/FontFamily",
"text": "Schriftfamilie"
},
"$:/language/ThemeTweaks/Settings/CodeFontFamily": {
"title": "$:/language/ThemeTweaks/Settings/CodeFontFamily",
"text": "\"Code\" Schriftfamilie"
},
"$:/language/ThemeTweaks/Settings/EditorFontFamily": {
"title": "$:/language/ThemeTweaks/Settings/EditorFontFamily",
"text": "Editor Schriftfamilie"
},
"$:/language/ThemeTweaks/Settings/BackgroundImage": {
"title": "$:/language/ThemeTweaks/Settings/BackgroundImage",
"text": "Hintergrundbild für die Seite"
},
"$:/language/ThemeTweaks/Settings/BackgroundImageAttachment": {
"title": "$:/language/ThemeTweaks/Settings/BackgroundImageAttachment",
"text": "Hintergrundbild Anhang"
},
"$:/language/ThemeTweaks/Settings/BackgroundImageAttachment/Scroll": {
"title": "$:/language/ThemeTweaks/Settings/BackgroundImageAttachment/Scroll",
"text": "Mit Inhalt \"scrollen\""
},
"$:/language/ThemeTweaks/Settings/BackgroundImageAttachment/Fixed": {
"title": "$:/language/ThemeTweaks/Settings/BackgroundImageAttachment/Fixed",
"text": "Fixe position im Fenster"
},
"$:/language/ThemeTweaks/Settings/BackgroundImageSize": {
"title": "$:/language/ThemeTweaks/Settings/BackgroundImageSize",
"text": "Hintergrundbild Größe"
},
"$:/language/ThemeTweaks/Settings/BackgroundImageSize/Auto": {
"title": "$:/language/ThemeTweaks/Settings/BackgroundImageSize/Auto",
"text": "Auto"
},
"$:/language/ThemeTweaks/Settings/BackgroundImageSize/Cover": {
"title": "$:/language/ThemeTweaks/Settings/BackgroundImageSize/Cover",
"text": "Abdecken"
},
"$:/language/ThemeTweaks/Settings/BackgroundImageSize/Contain": {
"title": "$:/language/ThemeTweaks/Settings/BackgroundImageSize/Contain",
"text": "Anpassen"
},
"$:/language/ThemeTweaks/Metrics": {
"title": "$:/language/ThemeTweaks/Metrics",
"text": "Größen"
},
"$:/language/ThemeTweaks/Metrics/FontSize": {
"title": "$:/language/ThemeTweaks/Metrics/FontSize",
"text": "Schriftgröße"
},
"$:/language/ThemeTweaks/Metrics/LineHeight": {
"title": "$:/language/ThemeTweaks/Metrics/LineHeight",
"text": "Zeilenhöhe"
},
"$:/language/ThemeTweaks/Metrics/BodyFontSize": {
"title": "$:/language/ThemeTweaks/Metrics/BodyFontSize",
"text": "Schriftgröße für Tiddler Inhalt"
},
"$:/language/ThemeTweaks/Metrics/BodyLineHeight": {
"title": "$:/language/ThemeTweaks/Metrics/BodyLineHeight",
"text": "Zeilenhöhe für Tiddler Inhalt"
},
"$:/language/ThemeTweaks/Metrics/StoryLeft": {
"title": "$:/language/ThemeTweaks/Metrics/StoryLeft",
"text": "\"Story\" - linke Position"
},
"$:/language/ThemeTweaks/Metrics/StoryLeft/Hint": {
"title": "$:/language/ThemeTweaks/Metrics/StoryLeft/Hint",
"text": "Abstand des \"story rivers\" vom linken Fensterrand"
},
"$:/language/ThemeTweaks/Metrics/StoryTop": {
"title": "$:/language/ThemeTweaks/Metrics/StoryTop",
"text": "\"Story\" - obere Position"
},
"$:/language/ThemeTweaks/Metrics/StoryTop/Hint": {
"title": "$:/language/ThemeTweaks/Metrics/StoryTop/Hint",
"text": "Abstand des \"story rivers\" vom oberen Fensterrand"
},
"$:/language/ThemeTweaks/Metrics/StoryRight": {
"title": "$:/language/ThemeTweaks/Metrics/StoryRight",
"text": "\"Story\" - rechte Position"
},
"$:/language/ThemeTweaks/Metrics/StoryRight/Hint": {
"title": "$:/language/ThemeTweaks/Metrics/StoryRight/Hint",
"text": "Abstand der Seitenleiste from linken Fensterrand"
},
"$:/language/ThemeTweaks/Metrics/StoryWidth": {
"title": "$:/language/ThemeTweaks/Metrics/StoryWidth",
"text": "\"Story\" - Breite"
},
"$:/language/ThemeTweaks/Metrics/StoryWidth/Hint": {
"title": "$:/language/ThemeTweaks/Metrics/StoryWidth/Hint",
"text": "Breite des \"story rivers\""
},
"$:/language/ThemeTweaks/Metrics/TiddlerWidth": {
"title": "$:/language/ThemeTweaks/Metrics/TiddlerWidth",
"text": "Tiddlerbreite"
},
"$:/language/ThemeTweaks/Metrics/TiddlerWidth/Hint": {
"title": "$:/language/ThemeTweaks/Metrics/TiddlerWidth/Hint",
"text": "im \"story river\""
},
"$:/language/ThemeTweaks/Metrics/SidebarBreakpoint": {
"title": "$:/language/ThemeTweaks/Metrics/SidebarBreakpoint",
"text": "Seitenleiste \"breakpoint\""
},
"$:/language/ThemeTweaks/Metrics/SidebarBreakpoint/Hint": {
"title": "$:/language/ThemeTweaks/Metrics/SidebarBreakpoint/Hint",
"text": "Minimum Fensterbreite, bei der die Seitenleiste an den Anfang der Seite verschoben wird."
},
"$:/language/ThemeTweaks/Metrics/SidebarWidth": {
"title": "$:/language/ThemeTweaks/Metrics/SidebarWidth",
"text": "Seitenleiste Breite"
},
"$:/language/ThemeTweaks/Metrics/SidebarWidth/Hint": {
"title": "$:/language/ThemeTweaks/Metrics/SidebarWidth/Hint",
"text": "Die Breite der Leiste bei variabler/fixer Darstellung"
},
"$:/language/TiddlerInfo/Advanced/Caption": {
"title": "$:/language/TiddlerInfo/Advanced/Caption",
"text": "Erweitert"
},
"$:/language/TiddlerInfo/Advanced/PluginInfo/Empty/Hint": {
"title": "$:/language/TiddlerInfo/Advanced/PluginInfo/Empty/Hint",
"text": "Keine"
},
"$:/language/TiddlerInfo/Advanced/PluginInfo/Heading": {
"title": "$:/language/TiddlerInfo/Advanced/PluginInfo/Heading",
"text": "Plugin Details"
},
"$:/language/TiddlerInfo/Advanced/PluginInfo/Hint": {
"title": "$:/language/TiddlerInfo/Advanced/PluginInfo/Hint",
"text": "Dieses Plugin enthält folgende Schatten-Tiddler:"
},
"$:/language/TiddlerInfo/Advanced/ShadowInfo/Heading": {
"title": "$:/language/TiddlerInfo/Advanced/ShadowInfo/Heading",
"text": "Schatten Status"
},
"$:/language/TiddlerInfo/Advanced/ShadowInfo/NotShadow/Hint": {
"title": "$:/language/TiddlerInfo/Advanced/ShadowInfo/NotShadow/Hint",
"text": "Der Tiddler: <$link to=<<infoTiddler>>><$text text=<<infoTiddler>>/></$link> ist kein Schatten-Tiddler."
},
"$:/language/TiddlerInfo/Advanced/ShadowInfo/Shadow/Hint": {
"title": "$:/language/TiddlerInfo/Advanced/ShadowInfo/Shadow/Hint",
"text": "Der Tiddler: <$link to=<<infoTiddler>>><$text text=<<infoTiddler>>/></$link> ist ein Schatten-Tiddler."
},
"$:/language/TiddlerInfo/Advanced/ShadowInfo/Shadow/Source": {
"title": "$:/language/TiddlerInfo/Advanced/ShadowInfo/Shadow/Source",
"text": "Er ist definiert im Plugin: <$link to=<<pluginTiddler>>><$text text=<<pluginTiddler>>/></$link>."
},
"$:/language/TiddlerInfo/Advanced/ShadowInfo/OverriddenShadow/Hint": {
"title": "$:/language/TiddlerInfo/Advanced/ShadowInfo/OverriddenShadow/Hint",
"text": "Der originale Schatten-Tiddler wurde durch diesen Tiddler überschrieben. Wenn Sie diesen Tiddler löschen, wird der originale Schatten-Tiddler wieder aktiv. Erstellen Sie vorher eventuell eine Sicherungskopie!"
},
"$:/language/TiddlerInfo/Fields/Caption": {
"title": "$:/language/TiddlerInfo/Fields/Caption",
"text": "Felder"
},
"$:/language/TiddlerInfo/List/Caption": {
"title": "$:/language/TiddlerInfo/List/Caption",
"text": "Liste"
},
"$:/language/TiddlerInfo/List/Empty": {
"title": "$:/language/TiddlerInfo/List/Empty",
"text": "Dieser Tiddler hat kein \"list\" Feld."
},
"$:/language/TiddlerInfo/Listed/Caption": {
"title": "$:/language/TiddlerInfo/Listed/Caption",
"text": "Gelistet"
},
"$:/language/TiddlerInfo/Listed/Empty": {
"title": "$:/language/TiddlerInfo/Listed/Empty",
"text": "Dieser Tiddler wird nicht von anderen Tiddlern gelistet."
},
"$:/language/TiddlerInfo/References/Caption": {
"title": "$:/language/TiddlerInfo/References/Caption",
"text": "Referenzen"
},
"$:/language/TiddlerInfo/References/Empty": {
"title": "$:/language/TiddlerInfo/References/Empty",
"text": "Kein Tiddler linkt zu diesem Tiddler."
},
"$:/language/TiddlerInfo/Tagging/Caption": {
"title": "$:/language/TiddlerInfo/Tagging/Caption",
"text": "Tagging"
},
"$:/language/TiddlerInfo/Tagging/Empty": {
"title": "$:/language/TiddlerInfo/Tagging/Empty",
"text": "Kein Tiddler ist mit diesem Tiddler \"getaggt\"."
},
"$:/language/TiddlerInfo/Tools/Caption": {
"title": "$:/language/TiddlerInfo/Tools/Caption",
"text": "Tools"
},
"$:/language/Docs/Types/application/javascript": {
"title": "$:/language/Docs/Types/application/javascript",
"description": "JS - JavaScript Code",
"name": "application/javascript",
"group": "Entwickler"
},
"$:/language/Docs/Types/application/json": {
"title": "$:/language/Docs/Types/application/json",
"description": "JSON - Daten",
"name": "application/json",
"group": "Entwickler"
},
"$:/language/Docs/Types/application/x-tiddler-dictionary": {
"title": "$:/language/Docs/Types/application/x-tiddler-dictionary",
"description": "TiddlyWiki Datenkatalog",
"name": "application/x-tiddler-dictionary",
"group": "Entwickler"
},
"$:/language/Docs/Types/image/gif": {
"title": "$:/language/Docs/Types/image/gif",
"description": "GIF - Bild",
"name": "image/gif",
"group": "Bilder"
},
"$:/language/Docs/Types/image/jpeg": {
"title": "$:/language/Docs/Types/image/jpeg",
"description": "JPEG - Bild",
"name": "image/jpeg",
"group": "Bilder"
},
"$:/language/Docs/Types/image/png": {
"title": "$:/language/Docs/Types/image/png",
"description": "PNG - Portable Netzwerkgrafik",
"name": "image/png",
"group": "Bilder"
},
"$:/language/Docs/Types/image/svg+xml": {
"title": "$:/language/Docs/Types/image/svg+xml",
"description": "SVG - Strukturierte Vektor Graphik",
"name": "image/svg+xml",
"group": "Bilder"
},
"$:/language/Docs/Types/image/x-icon": {
"title": "$:/language/Docs/Types/image/x-icon",
"description": "ICO - Piktogramm Format",
"name": "image/x-icon",
"group": "Bilder"
},
"$:/language/Docs/Types/text/css": {
"title": "$:/language/Docs/Types/text/css",
"description": "CSS - Cascading Style Sheets",
"name": "text/css",
"group": "Entwickler"
},
"$:/language/Docs/Types/text/html": {
"title": "$:/language/Docs/Types/text/html",
"description": "HTML - Auszeichnungssprache",
"name": "text/html",
"group": "Text"
},
"$:/language/Docs/Types/text/plain": {
"title": "$:/language/Docs/Types/text/plain",
"description": "TXT - Unformatierter Text",
"name": "text/plain",
"group": "Text"
},
"$:/language/Docs/Types/text/vnd.tiddlywiki": {
"title": "$:/language/Docs/Types/text/vnd.tiddlywiki",
"description": "TW5 - TiddlyWiki Version 5 Wikitext",
"name": "text/vnd.tiddlywiki",
"group": "Text"
},
"$:/language/Docs/Types/text/x-tiddlywiki": {
"title": "$:/language/Docs/Types/text/x-tiddlywiki",
"description": "TWc - TiddlyWiki Classic Wikitext",
"name": "text/x-tiddlywiki",
"group": "Text"
},
"$:/languages/de-DE/icon": {
"title": "$:/languages/de-DE/icon",
"type": "image/svg+xml",
"text": "<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n\t\"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<svg xmlns=\"http://www.w3.org/2000/svg\" width=\"1000\" height=\"600\" viewBox=\"0 0 5 3\">\n\t<desc>Flag of Germany</desc>\n\t<rect id=\"black_stripe\" width=\"5\" height=\"3\" y=\"0\" x=\"0\" fill=\"#000\"/>\n\t<rect id=\"red_stripe\" width=\"5\" height=\"2\" y=\"1\" x=\"0\" fill=\"#D00\"/>\n\t<rect id=\"gold_stripe\" width=\"5\" height=\"1\" y=\"2\" x=\"0\" fill=\"#FFCE00\"/>\n</svg>\n"
}
}
}
{
"tiddlers": {
"$:/plugins/OokTech/Photo Gallery/Edit Photo Gallery": {
"tags": "",
"title": "$:/plugins/OokTech/Photo Gallery/Edit Photo Gallery",
"text": "\\define SortSuffix()\n+[nsort[order]]\n\\end\n\nSelect gallery:\n<$select\n\ttiddler='$:/settings/Photo Gallery'\n\tfield='selected_gallery'\n>\n\t<option\n\t\tvalue=''\n\t>\n\t\t--\n\t</option>\n\t<$list\n\t\tfilter='[[$:/data/Gallery List]indexes[]]'\n\t>\n\t\t<option\n\t\t\tvalue=<<currentTiddler>>\n\t\t>\n\t\t\t<$view\n\t\t\t\tfield='title'\n\t\t\t/>\n\t\t</option>\n\t</$list>\n</$select>\n<$reveal\n\ttype='nomatch'\n\tstate='$:/state/Edit Photo Gallery!!new_gallery'\n\ttext='show'\n>\n\t<$button>\n\t\tNew Gallery\n\t\t<$action-setfield\n\t\t\t$tiddler='$:/state/Edit Photo Gallery'\n\t\t\tnew_gallery=show\n\t\t/>\n\t</$button>\n</$reveal>\n<$reveal\n\ttype='nomatch'\n\tstate='$:/state/Edit Photo Gallery!!new_photo'\n\ttext='show'\n>\n\t<$button>\n\t\tAdd External Photo\n\t\t<$action-setfield\n\t\t\t$tiddler='$:/state/Edit Photo Gallery'\n\t\t\tnew_photo=show\n\t\t/>\n\t</$button>\n</$reveal>\n<$reveal\n\ttype='match'\n\tstate='$:/state/Edit Photo Gallery!!new_photo'\n\ttext='show'\n>\n\t<br>\n\tPhoto Name:\n\t<$edit-text\n\t\ttiddler='$:/temp/Edit Photo Gallery'\n\t\tfield='new_photo_name'\n\t\tclass='tc-edit-texteditor'\n\t/>\n\tPhoto Path:\n\t<$edit-text\n\t\ttiddler='$:/temp/Edit Photo Gallery'\n\t\tfield='new_photo_path'\n\t\tclass='tc-edit-texteditor'\n\t/>\n\t<$list\n\t\tfilter='[{$:/temp/Edit Photo Gallery!!new_photo_path}suffix[jpg]][{$:/temp/Edit Photo Gallery!!new_photo_path}suffix[JPG]][{$:/temp/Edit Photo Gallery!!new_photo_path}suffix[jpeg]][{$:/temp/Edit Photo Gallery!!new_photo_path}suffix[JPEG]][{$:/temp/Edit Photo Gallery!!new_photo_path}suffix[png]][{$:/temp/Edit Photo Gallery!!new_photo_path}suffix[PNG]][{$:/temp/Edit Photo Gallery!!new_photo_path}suffix[gif]][{$:/temp/Edit Photo Gallery!!new_photo_path}suffix[GIF]][{$:/temp/Edit Photo Gallery!!new_photo_path}suffix[svg]][{$:/temp/Edit Photo Gallery!!new_photo_path}suffix[SVG]]'\n\t\tvariable=dummy\n\t\temptyMessage=\"\"\"<$list filter='[[$:/temp/Edit Photo Gallery]has[new_photo_path]]'>Are you sure that is the correct path? I can't detect the type.<br></$list>\"\"\"\n\t>\n\t <br>\n\t</$list>\n\t<$list filter='[[$:/temp/Edit Photo Gallery]has[new_photo_path]]'>\n\t\tSmall Preview:\n\t\t<br>\n\t\t<$image\n\t\t\theight=100px\n\t\t\tsource={{$:/temp/Edit Photo Gallery!!new_photo_path}}\n\t\t/>\n\t</$list>\n\t<br>\n\t<$button>\n\t\tAdd Photo\n\t\t<$list\n\t\t\tfilter='[[$:/temp/Edit Photo Gallery]has[new_photo_name]has[new_photo_path]]'\n\t\t>\n\t\t\t<$action-setfield\n\t\t\t\t$tiddler={{$:/temp/Edit Photo Gallery!!new_photo_name}}\n\t\t\t\t_canonical_uri={{$:/temp/Edit Photo Gallery!!new_photo_path}}\n\t\t\t/>\n\t\t\t<$action-setfield\n\t\t\t\t$tiddler='$:/temp/Edit Photo Gallery'\n\t\t\t\tnew_photo_name=''\n\t\t\t\tnew_photo_path=''\n\t\t\t/>\n\t\t</$list>\n\t\t<$list\n\t\t\tfilter='[{$:/temp/Edit Photo Gallery!!new_photo_path}suffix[jpg]][{$:/temp/Edit Photo Gallery!!new_photo_path}suffix[JPG]][{$:/temp/Edit Photo Gallery!!new_photo_path}suffix[jpeg]][{$:/temp/Edit Photo Gallery!!new_photo_path}suffix[JPEG]]'\n\t\t\tvariable=dummy\n\t\t>\n\t\t\t<$action-setfield\n\t\t\t\t$tiddler={{$:/temp/Edit Photo Gallery!!new_photo_name}}\n\t\t\t\ttype='image/jpeg'\n\t\t\t/>\n\t\t</$list>\n\t\t<$list\n\t\t\tfilter='[{$:/temp/Edit Photo Gallery!!new_photo_path}suffix[png]][{$:/temp/Edit Photo Gallery!!new_photo_path}suffix[PNG]]'\n\t\t\tvariable=dummy\n\t\t>\n\t\t\t<$action-setfield\n\t\t\t\t$tiddler={{$:/temp/Edit Photo Gallery!!new_photo_name}}\n\t\t\t\ttype='image/png'\n\t\t\t/>\n\t\t</$list>\n\t\t<$list\n\t\t\tfilter='[{$:/temp/Edit Photo Gallery!!new_photo_path}suffix[gif]][{$:/temp/Edit Photo Gallery!!new_photo_path}suffix[GIF]]'\n\t\t\tvariable=dummy\n\t\t>\n\t\t\t<$action-setfield\n\t\t\t\t$tiddler={{$:/temp/Edit Photo Gallery!!new_photo_name}}\n\t\t\t\ttype='image/gif'\n\t\t\t/>\n\t\t</$list>\n\t\t<$list\n\t\t\tfilter='[{$:/temp/Edit Photo Gallery!!new_photo_path}suffix[svg]][{$:/temp/Edit Photo Gallery!!new_photo_path}suffix[SVG]]'\n\t\t\tvariable=dummy\n\t\t>\n\t\t\t<$action-setfield\n\t\t\t\t$tiddler={{$:/temp/Edit Photo Gallery!!new_photo_name}}\n\t\t\t\ttype='image/svg+xml'\n\t\t\t/>\n\t\t</$list>\n\t</$button>\n\t<$button>\n\t\tDone\n\t\t<$action-setfield\n\t\t\t$tiddler='$:/state/Edit Photo Gallery'\n\t\t\tnew_photo=hide\n\t\t/>\n\t</$button>\n</$reveal>\n<$reveal\n\ttype='match'\n\tstate='$:/state/Edit Photo Gallery!!new_gallery'\n\ttext='show'\n>\n\t<br>\n\tNew Gallery Name:\n\t<$edit-text\n\t\ttiddler='$:/temp/Edit Photo Gallery'\n\t\tfield='new_gallery_name'\n\t\tclass='tc-edit-texteditor'\n\t/>\n\tGallery Filter:\n\t<$edit-text\n\t\ttiddler='$:/temp/Edit Photo Gallery'\n\t\tfield='new_gallery_filter'\n\t\tclass='tc-edit-texteditor'\n\t/>\n\t<$button>\n\t\tCreate Gallery\n\t\t<$action-setfield\n\t\t\t$tiddler='$:/data/Gallery List'\n\t\t\t$index={{$:/temp/Edit Photo Gallery!!new_gallery_name}}\n\t\t\t$value={{$:/temp/Edit Photo Gallery!!new_gallery_filter}}\n\t\t/>\n\t\t<$action-setfield\n\t\t\t$tiddler='$:/state/Edit Photo Gallery'\n\t\t\tnew_gallery=hide\n\t\t/>\n\t\t<$action-setfield\n\t\t\t$tiddler='$:/temp/Edit Photo Gallery'\n\t\t\tnew_gallery_name=''\n\t\t\tnew_gallery_filter=''\n\t\t/>\n\t</$button>\n\t<$button>\n\t\tCancel\n\t\t<$action-setfield\n\t\t\t$tiddler='$:/state/Edit Photo Gallery'\n\t\t\tnew_gallery=hide\n\t\t/>\n\t\t<$action-setfield\n\t\t\t$tiddler='$:/temp/Edit Photo Gallery'\n\t\t\tnew_gallery_name=''\n\t\t\tnew_gallery_filter=''\n\t\t/>\n\t</$button>\n</$reveal>\n\n<$reveal\n\ttype='nomatch'\n\tstate='$:/settings/Photo Gallery!!selected_gallery'\n\ttext=''\n>\n\tTo display this gallery in a tiddler copy this into the text field of the tiddler:\n\t<pre>\n\t<$text text='<<PhotoGallery'/> {{$:/settings/Photo Gallery!!selected_gallery}}<$text text='>>'/>\n\t</pre>\n\t<br>\n\tGallery Filter:\n\t<$reveal\n\t\ttype='match'\n\t\tstate='$:/state/Edit Photo Gallery!!edit_filter'\n\t\ttext=true\n\t>\n\t\t<$edit-text\n\t\t\ttiddler='$:/data/Gallery List'\n\t\t\tindex={{$:/settings/Photo Gallery!!selected_gallery}}\n\t\t\tclass='tc-edit-texteditor'\n\t\t/>\n\t\t<$button>\n\t\t\tDone\n\t\t\t<$action-setfield\n\t\t\t\t$tiddler='$:/state/Edit Photo Gallery'\n\t\t\t\tedit_filter='false'\n\t\t\t/>\n\t\t</$button>\n\t</$reveal>\n</$reveal>\n<$list\n\tfilter='[[$:/data/Gallery List]getindex{$:/settings/Photo Gallery!!selected_gallery}addsuffix<SortSuffix>]'\n\tvariable=GalleryFilter\n\temptyMessage='Select a gallery to edit'\n>\n\t<$reveal\n\t\ttype='nomatch'\n\t\tstate='$:/state/Edit Photo Gallery!!edit_filter'\n\t\ttext=true\n\t>\n\t\t<$view\n\t\t\ttiddler=<<GalleryFilter>>\n\t\t\tfield='title'\n\t\t/>\n\t\t<$button>\n\t\t\tEdit\n\t\t\t<$action-setfield\n\t\t\t\t$tiddler='$:/state/Edit Photo Gallery'\n\t\t\t\tedit_filter='true'\n\t\t\t/>\n\t\t</$button>\n\t</$reveal>\n\t<br>\n\t<$list\n\t\tfilter='[{$:/settings/Photo Gallery!!selected_gallery}addprefix[$:/settings/Photo Gallery/]]'\n\t\tvariable=SettingsTiddler\n\t>\n\t\tImage height in gallery:\n\t\t<$edit-text\n\t\t\ttiddler=<<SettingsTiddler>>\n\t\t\tfield='photo_height'\n\t\t/>\n\t</$list>\n\n\t<table\n\t\tstyle='width:100%'\n\t>\n\t\t<tr>\n\t\t\t<th\n\t\t\t\tstyle='width:25%'\n\t\t\t>\n\t\t\t\tImage\n\t\t\t</th>\n\t\t\t<th>\n\t\t\t\tCaption\n\t\t\t</th>\n\t\t\t<th>\n\t\t\t\tOrder\n\t\t\t</th>\n\t\t</tr>\n\t\t<$list\n\t\t\tfilter=<<GalleryFilter>>\n\t\t>\n\t\t\t<tr>\n\t\t\t\t<th>\n\t\t\t\t\t<$image\n\t\t\t\t\t\tsource=<<currentTiddler>>\n\t\t\t\t\t\theight=100\n\t\t\t\t\t/>\n\t\t\t\t\t<br>\n\t\t\t\t\t<$link>\n\t\t\t\t\t\t<$view\n\t\t\t\t\t\t\tfield='title'\n\t\t\t\t\t\t/>\n\t\t\t\t\t</$link>\n\t\t\t\t</th>\n\t\t\t\t<td>\n\t\t\t\t\t<$edit-text\n\t\t\t\t\t\tfield='caption'\n\t\t\t\t\t\tclass='tc-edit-texteditor'\n\t\t\t\t\t/>\n\t\t\t\t</td>\n\t\t\t\t<td>\n\t\t\t\t\t<$edit-text\n\t\t\t\t\t\tfield='order'\n\t\t\t\t\t\tsize=3\n\t\t\t\t\t/>\n\t\t\t\t</td>\n\t\t\t</tr>\n\t\t</$list>\n\t</table>\n</$list>\n"
},
"$:/plugins/OokTech/Photo Gallery/galleryTemplateHeader": {
"list-after": "$:/core/ui/ViewTemplate/tags",
"tags": "$:/tags/ViewTemplate",
"title": "$:/plugins/OokTech/Photo Gallery/galleryTemplateHeader",
"text": "<$list\n filter='[is[current]type[image/jpeg]][is[current]type[image/gif]][is[current]type[image/x-icon]][is[current]type[image/png]][is[current]type[image/svg+xml]]+[nsort[order]]'\n variable=CurrentImage\n>\n\n <div\n style='width:100%'\n >\n <$list\n filter='[type[image/jpeg]][type[image/gif]][type[image/x-icon]][type[image/png]][type[image/svg+xml]]+[nsort[order]]+[before<CurrentImage>]'\n >\n <div\n style='width:70%;z-index:99;position:absolute'\n >\n <$button\n class='tc-btn-invisible'\n >\n {{$:/core/images/chevron-left}}\n <$action-navigate\n $to=<<currentTiddler>>\n />\n <$action-sendmessage\n $message='tm-close-tiddler'\n $param=<<CurrentImage>>\n />\n </$button>\n </div>\n </$list>\n <$list\n filter='[type[image/jpeg]][type[image/gif]][type[image/x-icon]][type[image/png]][type[image/svg+xml]]+[nsort[order]]+[after<CurrentImage>]'\n >\n <div\n style='text-align:right;position:absolute;width:80%;z-index:98'\n >\n <$button\n class='tc-btn-invisible'\n >\n {{$:/core/images/chevron-right}}\n <$action-navigate\n $to=<<currentTiddler>>\n />\n <$action-sendmessage\n $message='tm-close-tiddler'\n $param=<<CurrentImage>>\n />\n </$button>\n </div>\n </$list>\n <div\n style='text-align:center;position:absolute;z-index:1;width:80%'\n >\n Navigate Images\n <hr>\n </div>\n </div>\n <br>\n\n <div>\n <p>\n <$transclude\n field='caption'\n mode=block\n />\n </p>\n <br>\n </div>\n</$list>\n"
},
"$:/plugins/OokTech/PhotoGallery/Acknowledgements": {
"title": "$:/plugins/OokTech/PhotoGallery/Acknowledgements",
"text": " This plugin was created and is maintained by [[OokTech|$:/plugins/OokTech/OokTechInfo]].\n\n\n[[Tiddlywiki|http://TiddlyWiki.com]] was originally created by [[Jeremy Ruston|https://github.com/Jermolene/TiddlyWiki5]]. For general ~TiddlyWiki help see [[tiddlywiki.com|http://tiddlywiki.com]] or the [[google group|https://groups.google.com/forum/#!forum/tiddlywiki]].\n\nThank you to the general TiddlyWiki community for developing and maintaining the tiddlywiki core.\n"
},
"$:/plugins/OokTech/PhotoGallery/License": {
"title": "$:/plugins/OokTech/PhotoGallery/License",
"text": "BSD 3-Clause License\n\nCopyright (c) 2017, OokTech LLC\nAll rights reserved.\n\nRedistribution and use in source and binary forms, with or without\nmodification, are permitted provided that the following conditions are met:\n\n* Redistributions of source code must retain the above copyright notice, this\n list of conditions and the following disclaimer.\n\n* Redistributions in binary form must reproduce the above copyright notice,\n this list of conditions and the following disclaimer in the documentation\n and/or other materials provided with the distribution.\n\n* Neither the name of the copyright holder nor the names of its\n contributors may be used to endorse or promote products derived from\n this software without specific prior written permission.\n\nTHIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\"\nAND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE\nIMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE\nDISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE\nFOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL\nDAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR\nSERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER\nCAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,\nOR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE\nOF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.\n"
},
"$:/plugins/OokTech/OokTechInfo": {
"title": "$:/plugins/OokTech/OokTechInfo",
"text": "~OokTech is a small engineering company based in the USA with an international presence. We work on open software and hardware projects.\n\nWebsite: http://Ooktech.com<br>\n~GitHub: [[OokTech GitHub|https://github.com/OokTech]]\n"
},
"$:/pluginlibrary/OokTech/OokTechPlugins": {
"title": "$:/pluginlibrary/OokTech/OokTechPlugins",
"tags": "$:/tags/PluginLibrary",
"url": "https://ooktech.com/TiddlyWiki/PluginLibrary",
"text": "The plugin library for plugins developed and maintained by OokTech. See http://OokTech.com/TiddlyWiki for more information.\n"
},
"$:/plugins/OokTech/Photo Gallery/Macros": {
"tags": "$:/tags/Macro",
"title": "$:/plugins/OokTech/Photo Gallery/Macros",
"text": "\\define PhotoGallery(GalleryName, sort:\"\"\"+[nsort[order]]\"\"\")\n<$list\n\tfilter=\"\"\"[[$:/settings/Photo Gallery/]addsuffix[$GalleryName$]]\"\"\"\n\tvariable=SettingsTiddler\n>\n\t<$set\n\t\tname=PhotoHeight\n\t\tfilter=\"\"\"[[$:/settings/Photo Gallery/]addsuffix[$GalleryName$]get[photo_height]]\"\"\"\n\t\temptyValue=100\n\t>\n\t\t<$set\n\t\t\tname=SortOption\n\t\t\tvalue=\"\"\"$sort$\"\"\"\n\t\t>\n\t\t\t<$list\n\t\t\t\tfilter=\"\"\"[[$:/data/Gallery List]getindex[$GalleryName$]addsuffix<SortOption>]\"\"\"\n\t\t\t\tvariable=GalleryFilter\n\t\t\t\temptyMessage=\"\"\"There is no gallery with the name __$GalleryName$__. If you have already created the gallery check your spelling, otherwise create a gallery with this name using the [[photo gallery editor|$:/plugins/OokTech/Photo Gallery/Edit Photo Gallery]].\"\"\"\n\t\t\t>\n\t\t\t\t<$tiddler tiddler=<<SettingsTiddler>>>\n\t\t\t\t\t<<PhotoGallerySwitchViewButtons>>\n\t\t\t\t\t<br>\n\t\t\t\t\t<$reveal\n\t\t\t\t\t\ttype='nomatch'\n\t\t\t\t\t\tstate='!!view_type'\n\t\t\t\t\t\ttext='single'\n\t\t\t\t\t>\n\t\t\t\t\t\t<$reveal\n\t\t\t\t\t\t\ttype='match'\n\t\t\t\t\t\t\tstate=\"\"\"$:/settings/Photo Gallery/$GalleryName$!!photo_height\"\"\"\n\t\t\t\t\t\t\ttext=''\n\t\t\t\t\t\t>\n\t\t\t\t\t\t\tFor better viewing, set the default photo height in the [[photo gallery editor|$:/plugins/OokTech/Photo Gallery/Edit Photo Gallery]].\n\t\t\t\t\t\t</$reveal>\n\n\t\t\t\t\t\t<$list\n\t\t\t\t\t\t\tfilter=<<GalleryFilter>>\n\t\t\t\t\t\t>\n\t\t\t\t\t\t\t<$button\n\t\t\t\t\t\t\t\tclass='tc-btn-invisible'\n\t\t\t\t\t\t\t>\n\t\t\t\t\t\t\t\t<$image\n\t\t\t\t\t\t\t\t\tsource=<<currentTiddler>>\n\t\t\t\t\t\t\t\t\theight=<<PhotoHeight>>\n\t\t\t\t\t\t\t\t/>\n\t\t\t\t\t\t\t\t<$action-setfield\n\t\t\t\t\t\t\t\t\t$tiddler=<<SettingsTiddler>>\n\t\t\t\t\t\t\t\t\tcurrent_image=<<currentTiddler>>\n\t\t\t\t\t\t\t\t\tview_type=single\n\t\t\t\t\t\t\t\t/>\n\t\t\t\t\t\t\t</$button>\n\t\t\t\t\t\t</$list>\n\t\t\t\t\t</$reveal>\n\n\t\t\t\t\t<$reveal\n\t\t\t\t\t\ttype='match'\n\t\t\t\t\t\tstate='!!view_type'\n\t\t\t\t\t\ttext='single'\n\t\t\t\t\t>\n\t\t\t\t\t\t<$tiddler\n\t\t\t\t\t\t\ttiddler={{!!current_image}}\n\t\t\t\t\t\t>\n\n\t\t\t\t\t\t\t<<PhotoGalleryDisplayImage>>\n\n\t\t\t\t\t\t</$tiddler>\n\t\t\t\t\t</$reveal>\n\n\t\t\t\t</$tiddler>\n\t\t\t</$list>\n\t\t</$set>\n\t</$set>\n</$list>\n\\end\n\n\\define PhotoGallerySwitchViewButtons()\n<$reveal\n\ttype='nomatch'\n\tstate='!!view_type'\n\ttext='single'\n>\n\t<$button\n\t\tclass='tc-btn-invisible'\n\t\tstyle='color:blue'\n\t>\n\t\t__Single Image View__\n\t\t<$action-setfield\n\t\t\tview_type='single'\n\t\t/>\n\t\t<$list\n\t\t\tfilter=\"\"\"$(GalleryFilter)$+[first[]]\"\"\"\n\t\t\tvariable=FirstImage\n\t\t>\n\t\t\t<$action-setfield\n\t\t\t\tcurrent_image=<<FirstImage>>\n\t\t\t/>\n\t\t</$list>\n\t</$button>\n\t__Image List View__\n</$reveal>\n<$reveal\n\ttype='match'\n\tstate='!!view_type'\n\ttext='single'\n>\n\t__Single Image View__\n\t<$button\n\t\tclass='tc-btn-invisible'\n\t\tstyle='color:blue'\n\t>\n\t\t__Image List View__\n\t\t<$action-setfield\n\t\t\tview_type='list'\n\t\t/>\n\t</$button>\n</$reveal>\n\\end\n\n\\define PhotoGalleryDisplayImage()\n<div\n\tstyle='width:100%'\n>\n\t<$list\n\t\tfilter=\"\"\"$(GalleryFilter)$+[before<currentTiddler>]\"\"\"\n\t>\n\t\t<div\n\t\t\tstyle='width:70%;z-index:99;position:absolute'\n\t\t>\n\t\t\t<$button\n\t\t\t\tclass='tc-btn-invisible'\n\t\t\t>\n\t\t\t\t{{$:/core/images/chevron-left}}\n\t\t\t\t<$action-setfield\n\t\t\t\t\t$tiddler=<<SettingsTiddler>>\n\t\t\t\t\tcurrent_image=<<currentTiddler>>\n\t\t\t\t/>\n\t\t\t</$button>\n\t\t</div>\n\t</$list>\n\t<$list\n\t\tfilter=\"\"\"$(GalleryFilter)$+[after<currentTiddler>]\"\"\"\n\t>\n\t\t<div\n\t\t\tstyle='text-align:right;position:absolute;width:80%;z-index:98'\n\t\t>\n\t\t\t<$button\n\t\t\t\tclass='tc-btn-invisible'\n\t\t\t>\n\t\t\t\t{{$:/core/images/chevron-right}}\n\t\t\t\t<$action-setfield\n\t\t\t\t\t$tiddler=<<SettingsTiddler>>\n\t\t\t\t\tcurrent_image=<<currentTiddler>>\n\t\t\t\t/>\n\t\t\t</$button>\n\t\t</div>\n\t</$list>\n\t<div\n\t\tstyle='text-align:center;position:absolute;z-index:1;width:80%'\n\t>\n\t\tNavigate Images\n\t\t<hr>\n\t</div>\n</div>\n<br>\n\n<div>\n\t<p>\n\t\t<$transclude\n\t\t\tfield='caption'\n\t\t\tmode=block\n\t\t/>\n\t</p>\n\t<br>\n</div>\n\n<$transclude/>\n\\end\n\nThis tiddler contains the `PhotoGallery` macro. To use it first going to [[$:/plugins/OokTech/Photo Gallery/Edit Photo Gallery]] and click on `New Gallery`. Give the gallery a name and enter the filter you want to use the click `Create Gallery`. The gallery will contain any images returned by this filter.\n\nTo display the gallery in a tiddler use\n\n```\n<<PhotoGallery \"Gallery Name\">>\n```\n\nWhere `Gallery Name` is whatever you named your gallery when you created it. In the tiddler [[$:/plugins/OokTech/Photo Gallery/Edit Photo Gallery]] you can set the photo height when viewing the gallery as a list, this can be different for each gallery you create.\n\nCurrently when you set the order it is matched to the photo and affects all galleries that have that photo. I am working on allowing per-gallery ordering.\n\nYou can switch between viewing the gallery as a list of images or as one image at a time. You can switch the view mode using the buttons at the top of the gallery. If you click on an image in the gallery when viewing it as a list it will switch to single view mode on that image. In single view mode there are buttons at the top that let you page through the images in that gallery one by one. If an image has a caption field than the contents of the caption field are displayed above the image as well.\n"
},
"$:/plugins/OokTech/PhotoGallery/readme": {
"title": "$:/plugins/OokTech/PhotoGallery/readme",
"text": "To use this plugin you first create a photo gallery by using the tools in the [[edit photo gallery|$:/plugins/OokTech/Photo Gallery/Edit Photo Gallery]] tiddler. Click the `New Gallery` button and give the gallery a name and a filter. Tiddlers returned by the filter will be part of the gallery. You can then see the images that will be part of your gallery as well as give the images captions to be displayed in the gallery and to set the order of the images in the gallery.\n\nThen to display the photo gallery you have created put `<<PhotoGallery GalleryName>>` in your tiddler where you replace `GalleryName` with whatever name you gave your photo gallery.\n\nLicense: [[BSD 3 Clause|$:/plugins/OokTech/PhotoGallery/License]]\n\nCreator: [[OokTech|$:/plugins/OokTech/OokTechInfo]]\n\nSource: [[GitHub|https://https://github.com/OokTech/TW5-PhotoGallery]]\n"
}
}
}
/* details and summary colours */
details {
background-color: <<colour tiddler-info-tab-background>>;
color: <<colour foreground>>;
}
details summary {
background-color: <<colour dropdown-tab-background>>;
}
details.notification summary {
background-color: <<colour notification-background>>;
/* TW leaves color undefined/uses foreground */
}
details.warning summary {
background-color: #ffbbaf;
color: #000;
}
details.success summary {
background-color: #88edc5;
color: #000;
}
/* details and summary */
details {
transition: height 1s ease;
padding: 0 0.5em 0 0.66em;
margin-top: 0.66em;
margin-bottom: 0.66em;
}
details + details {
margin-top: -0.46em;
}
details[open] {
padding-bottom: 1em;
}
details:not([open]) {
cursor: pointer;
}
details > summary {
display: list-item;
margin: 0 -0.5em 0 -0.66em;
padding: 0.2em 0.5em 0.2em 0.66em;
padding-left: 1.76em; /* adjust for indentation */
text-indent: -1.1em;
cursor: pointer;
}
details[open] > summary {
margin-bottom: 1em;
}
details[open] > *:first-child:not(summary) {
margin-top: 1em;
}
/*\
title: $:/plugins/telmiger/details/details.js
type: application/javascript
module-type: widget
Details widget v 0.8
Will output an HTML 5 <details> section including a <summary>
```
<details>
<summary>This sums it up</summary>
All the details follow here.
</details>
```
|Parameter |Description |h
|summary |Optional text to display as summary. Wins over field (see below). |
|open |Optional initial state, set to "open" to show details on load. Defaults to "". |
|state |An optional TextReference containing the state. Wins over open. |
|field |Optionally, the summary is taken from the field with this name in a given tiddler. Defaults to "title". |
|tiddler |Optional title of a tiddler to watch, connected to field. Defaults to current tiddler. |
|class |Optional CSS classes to be assigned to the details tag. |
\*/
(function(){
/*jslint node: true, browser: true */
/*global $tw: false */
"use strict";
var Widget = require("$:/core/modules/widgets/widget.js").widget;
var DetailsWidget = function(parseTreeNode,options) {
this.initialise(parseTreeNode,options);
};
/*
Inherit from the base widget class
*/
DetailsWidget.prototype = new Widget();
/*
Render this widget into the DOM
*/
DetailsWidget.prototype.render = function(parent,nextSibling) {
// Save the parent dom node
this.parentDomNode = parent;
// Compute attributes
this.computeAttributes();
// Execute logic
this.execute();
// Create elements
this.detailsDomNode = this.document.createElement("details");
if(this.detailsClass !== "") {
// this.detailsClass += " ";
// this.detailsClass += "tc-details";
this.detailsDomNode.setAttribute("class",this.detailsClass);
}
if(this.detailsOpen == "open") {
this.detailsDomNode.setAttribute("open","open");
}
if(this.detailsSummary !== "") {
this.summaryDomNode = this.document.createElement("summary");
// this.summaryDomNode.setAttribute("class","tc-summary");
this.detailsDomNode.appendChild(this.summaryDomNode);
this.summaryDomNode.appendChild(this.document.createTextNode(this.detailsSummary));
}
// register an event listener
/* Maybe this can be reactivated later, see below.
if(this.detailsStateTitle) {
$tw.utils.addEventListeners(this.detailsDomNode,[
{name: "toggle", handlerObject: this, handlerMethod: "handleToggleEvent"},
]);
}
*/
// As iOS mobile browsers lack support of toggle events on details
// we emulate the toggle event using click
if(this.detailsStateTitle && this.summaryDomNode) {
$tw.utils.addEventListeners(this.summaryDomNode,[
{name: "click", handlerObject: this, handlerMethod: "handleToggleEvent"},
]);
} else {
if(this.detailsStateTitle) {
$tw.utils.addEventListeners(this.detailsDomNode,[
{name: "click", handlerObject: this, handlerMethod: "handleToggleEvent"},
]);
}
}
// Insert the details into the DOM and render any children
this.parentDomNode.insertBefore(this.detailsDomNode,nextSibling);
this.renderChildren(this.detailsDomNode,null);
this.domNodes.push(this.detailsDomNode);
};
/*
Retrieve the value of the summary
*/
DetailsWidget.prototype.getSummary = function() {
var summary = "";
if(this.summaryTitle === "Tiddler not found" && this.summaryField === "") {
// nothing defined: leave empty
summary = "";
} else {
// tiddler defined? use defined field or title
if(this.myTiddler) {
if(this.summaryField === "title" || this.summaryField === "") {
summary = this.summaryTitle;
} else {
if(this.summaryField === "text") {
// getTiddlerText() triggers lazy loading of skinny tiddlers
summary = this.wiki.getTiddlerText(this.summaryTitle);
} else {
summary = this.myTiddler.fields[this.summaryField];
}
}
} else {
if(this.summaryField !== "" && this.summaryField !== "text") {
// try defined field in current tiddler
var tiddler = this.wiki.getTiddler(this.getVariable("currentTiddler"));
summary = tiddler.fields[this.summaryField];
} else {
summary = "";
}
}
}
return summary;
};
/*
Retrieve the value of the state text reference
*/
DetailsWidget.prototype.getStateFromReference = function() {
var state = this.detailsStateTitle ? this.wiki.getTextReference(this.detailsStateTitle,"",this.getVariable("currentTiddler")) : "";
return state;
};
/*
Check all open signals, state fields/tiddlers get priority
*/
DetailsWidget.prototype.getOpenState = function() {
var result = "";
if((this.detailsOpenDefault !== "" && this.detailsOpenDefault !== "no")
|| this.detailsState === "open") {
result = "open";
}
if(this.detailsStateTitle !=="" && this.detailsState !== "open") {
result = "";
}
return result;
};
/*
Update the state text reference after click event
*/
DetailsWidget.prototype.updateState = function(openState) {
var fieldValue = "false";
var currentTiddler = this.getVariable("currentTiddler");
// get the title for the (existing/new) tiddler
var tr = $tw.utils.parseTextReference(this.detailsStateTitle);
var tidTitle = tr.title || currentTiddler;
// is it an existing state tiddler?
var isStateTiddler = (tr.title === this.detailsStateTitle);
var hasStateTiddler = this.wiki.tiddlerExists(tr.title);
var currentStateTiddler = (tr.title === currentTiddler);
if(isStateTiddler || hasStateTiddler || (currentStateTiddler && tr.field !== "text")) {
// Set the state field (but never overwrite the current tiddler’s text field
this.wiki.setText(tidTitle,tr.field,tr.index,openState);
} else {
if(!hasStateTiddler && tidTitle !== currentTiddler) {
this.createTiddler(tidTitle);
this.wiki.setText(tidTitle,tr.field,tr.index,openState);
} else {
console.log ("Something went wrong in updateState");
}
}
};
/*
Create a tiddler with a title only
*/
DetailsWidget.prototype.createTiddler = function(tidTitle) {
this.wiki.addTiddler(new $tw.Tiddler(
this.wiki.getCreationFields(),
this.wiki.getModificationFields(),
{
title: tidTitle,
tags: []
}
));
};
/*
Set openState according to click
*/
DetailsWidget.prototype.handleToggleEvent = function(event) {
// check if an open attribute is present
var newState = this.detailsDomNode.open ? "" : "open";
// update only, if the node has a new state
if(newState !== this.detailsState) {
this.updateState(newState);
}
};
/*
Compute the internal state of the widget
*/
DetailsWidget.prototype.execute = function() {
// Get the parameters from the attributes
var tryTiddler = this.getAttribute("tiddler");
this.myTiddler = this.wiki.getTiddler(tryTiddler);
this.summaryTitle = this.myTiddler ? tryTiddler : "Tiddler not found";
this.summaryField = this.getAttribute("field","");
this.detailsSummary = this.getAttribute("summary") || this.getSummary();
this.detailsStateTitle = this.getAttribute("state","");
this.detailsState = this.getStateFromReference();
this.detailsOpenDefault = this.getAttribute("open","");
this.detailsOpen = this.getOpenState();
this.detailsClass = this.getAttribute("class","");
// Construct the child widgets
this.makeChildWidgets();
};
/*
Selectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering
*/
DetailsWidget.prototype.refresh = function(changedTiddlers) {
var changedAttributes = this.computeAttributes();
if(changedAttributes.tiddler || changedAttributes.field || changedAttributes.summary || changedAttributes.state || changedAttributes.open || changedAttributes["class"]) {
this.refreshSelf();
return true;
} else {
var refreshed = false;
var testState = this.getStateFromReference();
if(testState !== this.detailsState) {
// state change
this.refreshSelf();
refreshed = true;
}
return this.refreshChildren(changedTiddlers) || refreshed;
}
};
exports.details = DetailsWidget;
})();
{
"tiddlers": {
"$:/config/EditorTypeMappings/application/javascript": {
"title": "$:/config/EditorTypeMappings/application/javascript",
"text": "codemirror"
},
"$:/config/EditorTypeMappings/application/json": {
"title": "$:/config/EditorTypeMappings/application/json",
"text": "codemirror"
},
"$:/config/EditorTypeMappings/application/x-tiddler-dictionary": {
"title": "$:/config/EditorTypeMappings/application/x-tiddler-dictionary",
"text": "codemirror"
},
"$:/config/EditorTypeMappings/text/css": {
"title": "$:/config/EditorTypeMappings/text/css",
"text": "codemirror"
},
"$:/config/EditorTypeMappings/text/html": {
"title": "$:/config/EditorTypeMappings/text/html",
"text": "codemirror"
},
"$:/config/EditorTypeMappings/text/plain": {
"title": "$:/config/EditorTypeMappings/text/plain",
"text": "codemirror"
},
"$:/config/EditorTypeMappings/text/vnd.tiddlywiki": {
"title": "$:/config/EditorTypeMappings/text/vnd.tiddlywiki",
"text": "codemirror"
},
"$:/config/EditorTypeMappings/text/x-markdown": {
"title": "$:/config/EditorTypeMappings/text/x-markdown",
"text": "codemirror"
},
"$:/config/EditorTypeMappings/text/x-tiddlywiki": {
"title": "$:/config/EditorTypeMappings/text/x-tiddlywiki",
"text": "codemirror"
},
"$:/config/codemirror/cursorBlinkRate": {
"title": "$:/config/codemirror/cursorBlinkRate",
"type": "integer",
"text": "530"
},
"$:/config/codemirror/extraKeysTW": {
"title": "$:/config/codemirror/extraKeysTW",
"extend": "extraKeys",
"type": "json",
"text": "{\n\t\"Ctrl-Esc\": \"singleSelection\",\n\t\"Esc\": \"\",\n\t\"Ctrl-S\": \"\",\n\t\"Ctrl-U\": \"\",\n\t\"Ctrl-T\": \"\",\n\t\"Alt-T\": \"transposeChars\",\n\t\"Alt-U\": \"undoSelection\",\n\t\"Shift-Alt-U\": \"redoSelection\",\n\t\"Cmd-U\": \"\",\n\t\"Tab\": \"indentAuto()\",\n\t\"Enter\": \"newLineAndIndent()\"\n}\n"
},
"$:/config/codemirror/indentUnit": {
"title": "$:/config/codemirror/indentUnit",
"type": "integer",
"text": "2"
},
"$:/config/codemirror/indentWithTabs": {
"title": "$:/config/codemirror/indentWithTabs",
"type": "bool",
"text": "true"
},
"$:/config/codemirror/inputStyle": {
"title": "$:/config/codemirror/inputStyle",
"type": "string",
"text": "textarea"
},
"$:/config/codemirror/keyMap": {
"title": "$:/config/codemirror/keyMap",
"type": "string",
"text": "default"
},
"$:/config/codemirror/lineNumbers": {
"title": "$:/config/codemirror/lineNumbers",
"type": "bool",
"text": "false"
},
"$:/config/codemirror/lineWrapping": {
"title": "$:/config/codemirror/lineWrapping",
"type": "bool",
"text": "true"
},
"$:/config/codemirror/showCursorWhenSelecting": {
"title": "$:/config/codemirror/showCursorWhenSelecting",
"type": "bool",
"text": "true"
},
"$:/config/codemirror/smartIndent": {
"title": "$:/config/codemirror/smartIndent",
"type": "bool",
"text": "true"
},
"$:/config/codemirror/styleActiveLine": {
"title": "$:/config/codemirror/styleActiveLine",
"type": "bool",
"text": "false"
},
"$:/config/codemirror/tabSize": {
"title": "$:/config/codemirror/tabSize",
"type": "integer",
"text": "2"
},
"$:/config/codemirror/theme": {
"title": "$:/config/codemirror/theme",
"type": "string",
"text": "tiddlywiki"
},
"$:/language/codemirror/homeUrl": {
"title": "$:/language/codemirror/homeUrl",
"text": "http://codemirror.net"
},
"$:/language/codemirror/addOnUrl": {
"title": "$:/language/codemirror/addOnUrl",
"text": "http://codemirror.net/doc/manual.html#addons"
},
"$:/language/codemirror/configUrl": {
"title": "$:/language/codemirror/configUrl",
"text": "http://codemirror.net/doc/manual.html#config"
},
"$:/language/codemirror/controlPanel/hint": {
"title": "$:/language/codemirror/controlPanel/hint",
"text": "These settings let you customise the behaviour of [[CodeMirror|$:/plugins/tiddlywiki/codemirror]]."
},
"$:/language/codemirror/controlPanel/keyboard": {
"title": "$:/language/codemirror/controlPanel/keyboard",
"text": "Keyboard shortcuts"
},
"$:/language/codemirror/controlPanel/usage": {
"title": "$:/language/codemirror/controlPanel/usage",
"text": "Usage information"
},
"$:/language/codemirror/cursorBlinkRate/hint": {
"title": "$:/language/codemirror/cursorBlinkRate/hint",
"text": "Cursor blink rate"
},
"$:/language/codemirror/editorFont/hint": {
"title": "$:/language/codemirror/editorFont/hint",
"text": "Editor font family"
},
"$:/language/codemirror/editorFont/info": {
"title": "$:/language/codemirror/editorFont/info",
"text": "Set the font family for the ~CodeMirror text-editor"
},
"$:/language/codemirror/indentUnit/hint": {
"title": "$:/language/codemirror/indentUnit/hint",
"text": "How many spaces a block should be indented"
},
"$:/language/codemirror/indentWithTabs/hint": {
"title": "$:/language/codemirror/indentWithTabs/hint",
"text": "Enable indenting with tabs"
},
"$:/language/codemirror/indentWithTabs/info": {
"title": "$:/language/codemirror/indentWithTabs/info",
"text": "Whether, when indenting, the first N*`tabSize` spaces should be replaced by N tabs."
},
"$:/language/codemirror/keyMap/hint": {
"title": "$:/language/codemirror/keyMap/hint",
"text": "~CodeMirror keymap"
},
"$:/language/codemirror/keyMap/info": {
"title": "$:/language/codemirror/keyMap/info",
"text": "~The Keyboard KeyMap used within the ~CodeMirror text-editor"
},
"$:/language/codemirror/lineNumbers/hint": {
"title": "$:/language/codemirror/lineNumbers/hint",
"text": "Enable line numbers"
},
"$:/language/codemirror/lineNumbers/info": {
"title": "$:/language/codemirror/lineNumbers/info",
"text": "Whether to show line numbers to the left of the editor."
},
"$:/language/codemirror/lineWrapping/hint": {
"title": "$:/language/codemirror/lineWrapping/hint",
"text": "Enable line wrapping"
},
"$:/language/codemirror/lineWrapping/info": {
"title": "$:/language/codemirror/lineWrapping/info",
"text": "Whether CodeMirror should scroll or wrap for long lines. Defaults to `false` (scroll)."
},
"$:/language/codemirror/showCursorWhenSelecting/hint": {
"title": "$:/language/codemirror/showCursorWhenSelecting/hint",
"text": "Show cursor, when selecting"
},
"$:/language/codemirror/showCursorWhenSelecting/info": {
"title": "$:/language/codemirror/showCursorWhenSelecting/info",
"text": "Whether the cursor should be drawn when a selection is active."
},
"$:/language/codemirror/smartIndent/hint": {
"title": "$:/language/codemirror/smartIndent/hint",
"text": "Enable smart indent"
},
"$:/language/codemirror/smartIndent/info": {
"title": "$:/language/codemirror/smartIndent/info",
"text": "Whether to use the context-sensitive indentation that the mode provides (or just indent the same as the line before). Defaults to `true`."
},
"$:/language/codemirror/styleActiveLine/hint": {
"title": "$:/language/codemirror/styleActiveLine/hint",
"text": "Highlight active line"
},
"$:/language/codemirror/styleActiveLine/info": {
"title": "$:/language/codemirror/styleActiveLine/info",
"text": "Whether or not to highlight the active text-editor line"
},
"$:/language/codemirror/tabSize/hint": {
"title": "$:/language/codemirror/tabSize/hint",
"text": "Width of a tab character"
},
"$:/language/codemirror/theme/hint": {
"title": "$:/language/codemirror/theme/hint",
"text": "Select a theme"
},
"$:/language/codemirror/theme/info": {
"title": "$:/language/codemirror/theme/info",
"text": "Choose between ~CodeMirror themes"
},
"$:/plugins/tiddlywiki/codemirror/edit-codemirror.js": {
"title": "$:/plugins/tiddlywiki/codemirror/edit-codemirror.js",
"text": "/*\\\ntitle: $:/plugins/tiddlywiki/codemirror/edit-codemirror.js\ntype: application/javascript\nmodule-type: widget\n\nEdit-codemirror widget\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar editTextWidgetFactory = require(\"$:/core/modules/editor/factory.js\").editTextWidgetFactory,\n\tCodeMirrorEngine = require(\"$:/plugins/tiddlywiki/codemirror/engine.js\").CodeMirrorEngine;\n\nexports[\"edit-codemirror\"] = editTextWidgetFactory(CodeMirrorEngine,CodeMirrorEngine);\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/plugins/tiddlywiki/codemirror/engine.js": {
"title": "$:/plugins/tiddlywiki/codemirror/engine.js",
"text": "/*\\\ntitle: $:/plugins/tiddlywiki/codemirror/engine.js\ntype: application/javascript\nmodule-type: library\n\nText editor engine based on a CodeMirror instance\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar CODEMIRROR_OPTIONS = \"$:/config/CodeMirror\",\nHEIGHT_VALUE_TITLE = \"$:/config/TextEditor/EditorHeight/Height\",\nCONFIG_FILTER = \"[all[shadows+tiddlers]prefix[$:/config/codemirror/]]\"\n\t\n// Install CodeMirror\nif($tw.browser && !window.CodeMirror) {\n\n\tvar modules = $tw.modules.types[\"codemirror\"];\n\tvar req = Object.getOwnPropertyNames(modules);\n\n\twindow.CodeMirror = require(\"$:/plugins/tiddlywiki/codemirror/lib/codemirror.js\");\n\t// Install required CodeMirror plugins\n\tif(req) {\n\t\tif($tw.utils.isArray(req)) {\n\t\t\tfor(var index=0; index<req.length; index++) {\n\t\t\t\trequire(req[index]);\n\t\t\t}\n\t\t} else {\n\t\t\trequire(req);\n\t\t}\n\t}\n}\n\nfunction getCmConfig() {\n\tvar type,\n\t\ttest,\n\t\tvalue,\n\t\telement,\n\t\textend,\n\t\ttiddler,\n\t\tconfig = {},\n\t\tconfigTiddlers = $tw.wiki.filterTiddlers(CONFIG_FILTER);\n\n\tif ($tw.utils.isArray(configTiddlers)) {\n\t\tfor (var i=0; i<configTiddlers.length; i++) {\n\t\t\ttiddler = $tw.wiki.getTiddler(configTiddlers[i]);\n\t\t\t\tif (tiddler) {\n\t\t\t\telement = configTiddlers[i].replace(/\\$:\\/config\\/codemirror\\//ig,\"\");\n\t\t\t\t\ttype = (tiddler.fields.type) ? tiddler.fields.type.trim().toLocaleLowerCase() : \"string\";\n\t\t\t\tswitch (type) {\n\t\t\t\t\tcase \"bool\":\n\t\t\t\t\ttest = tiddler.fields.text.trim().toLowerCase();\n\t\t\t\t\tvalue = (test === \"true\") ? true : false;\n\t\t\t\t\tconfig[element] = value;\n\t\t\t\t\tbreak;\n\t\t\t\t\tcase \"string\":\n\t\t\t\t\tvalue = tiddler.fields.text.trim();\n\t\t\t\t\tconfig[element] = value;\n\t\t\t\t\tbreak;\n\t\t\t\t\tcase \"integer\":\n\t\t\t\t\tvalue = parseInt(tiddler.fields.text.trim(), 10);\n\t\t\t\t\tconfig[element] = value;\n\t\t\t\t\tbreak;\n\t\t\t\t\tcase \"json\":\n\t\t\t\t\tvalue = JSON.parse(tiddler.fields.text.trim());\n\t\t\t\t\t\textend = (tiddler.fields.extend) ? tiddler.fields.extend : element;\n\n\t\t\t\t\tif (config[extend]) {\n\t\t\t\t\t\t$tw.utils.extend(config[extend], value);\n\t\t\t\t\t} else {\n\t\t\t\t\t\tconfig[extend] = value;\n\t\t\t\t\t}\n\t\t\t\t\tbreak;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\treturn config;\n}\n\nfunction CodeMirrorEngine(options) {\n\n\t// Save our options\n\tvar self = this;\n\toptions = options || {};\n\tthis.widget = options.widget;\n\tthis.value = options.value;\n\tthis.parentNode = options.parentNode;\n\tthis.nextSibling = options.nextSibling;\n\t// Create the wrapper DIV\n\tthis.domNode = this.widget.document.createElement(\"div\");\n\tif(this.widget.editClass) {\n\t\tthis.domNode.className = this.widget.editClass;\n\t}\n\tthis.domNode.style.display = \"inline-block\";\n\tthis.parentNode.insertBefore(this.domNode,this.nextSibling);\n\tthis.widget.domNodes.push(this.domNode);\n\t\n\t// Set all cm-plugin defaults\n\t// Get the configuration options for the CodeMirror object\n\tvar config = getCmConfig();\n\n\tconfig.mode = options.type;\n\tconfig.value = options.value;\n\tif(this.widget.editTabIndex) {\n\t\tconfig[\"tabindex\"] = this.widget.editTabIndex;\n\t}\n\t// Create the CodeMirror instance\n\tthis.cm = window.CodeMirror(function(cmDomNode) {\n\t\t// Note that this is a synchronous callback that is called before the constructor returns\n\t\tif(!self.widget.document.isTiddlyWikiFakeDom) {\n\t\t\tself.domNode.appendChild(cmDomNode);\n\t\t}\n\t},config);\n\n\t// Set up a change event handler\n\tthis.cm.on(\"change\",function() {\n\t\tself.widget.saveChanges(self.getText());\n\t\tif(self.widget.editInputActions) {\n\t\t\tself.widget.invokeActionString(self.widget.editInputActions);\n\t\t}\n\t});\n\tthis.cm.on(\"drop\",function(cm,event) {\n\t\tevent.stopPropagation(); // Otherwise TW's dropzone widget sees the drop event\n\t\treturn false;\n\t});\n\tthis.cm.on(\"keydown\",function(cm,event) {\n\t\treturn self.widget.handleKeydownEvent.call(self.widget,event);\n\t});\n\tthis.cm.on(\"focus\",function(cm,event) {\n\t\tif(self.widget.editCancelPopups) {\n\t\t\t$tw.popup.cancel(0);\t\n\t\t}\n\t});\n}\n\n/*\nSet the text of the engine if it doesn't currently have focus\n*/\nCodeMirrorEngine.prototype.setText = function(text,type) {\n\tvar self = this;\n\tself.cm.setOption(\"mode\",type);\n\tif(!this.cm.hasFocus()) {\n\t\tthis.updateDomNodeText(text);\n\t}\n};\n\n/*\nUpdate the DomNode with the new text\n*/\nCodeMirrorEngine.prototype.updateDomNodeText = function(text) {\n\tthis.cm.setValue(text);\n};\n\n/*\nGet the text of the engine\n*/\nCodeMirrorEngine.prototype.getText = function() {\n\treturn this.cm.getValue();\n};\n\n/*\nFix the height of textarea to fit content\n*/\nCodeMirrorEngine.prototype.fixHeight = function() {\n\tif(this.widget.editAutoHeight) {\n\t\t// Resize to fit\n\t\tthis.cm.setSize(null,null);\n\t} else {\n\t\tvar fixedHeight = parseInt(this.widget.wiki.getTiddlerText(HEIGHT_VALUE_TITLE,\"400px\"),10);\n\t\tfixedHeight = Math.max(fixedHeight,20);\n\t\tthis.cm.setSize(null,fixedHeight);\n\t}\n};\n\n/*\nFocus the engine node\n*/\nCodeMirrorEngine.prototype.focus = function() {\n\tthis.cm.focus();\n}\n\n/*\nCreate a blank structure representing a text operation\n*/\nCodeMirrorEngine.prototype.createTextOperation = function() {\n\tvar selections = this.cm.listSelections();\n\tif(selections.length > 0) {\n\t\tvar anchorPos = this.cm.indexFromPos(selections[0].anchor),\n\t\theadPos = this.cm.indexFromPos(selections[0].head);\n\t}\n\tvar operation = {\n\t\ttext: this.cm.getValue(),\n\t\tselStart: Math.min(anchorPos,headPos),\n\t\tselEnd: Math.max(anchorPos,headPos),\n\t\tcutStart: null,\n\t\tcutEnd: null,\n\t\treplacement: null,\n\t\tnewSelStart: null,\n\t\tnewSelEnd: null\n\t};\n\toperation.selection = operation.text.substring(operation.selStart,operation.selEnd);\n\treturn operation;\n};\n\n/*\nExecute a text operation\n*/\nCodeMirrorEngine.prototype.executeTextOperation = function(operation) {\n\t// Perform the required changes to the text area and the underlying tiddler\n\tvar newText = operation.text;\n\tif(operation.replacement !== null) {\n\t\tthis.cm.replaceRange(operation.replacement,this.cm.posFromIndex(operation.cutStart),this.cm.posFromIndex(operation.cutEnd));\n\t\tthis.cm.setSelection(this.cm.posFromIndex(operation.newSelStart),this.cm.posFromIndex(operation.newSelEnd));\n\t\tnewText = operation.text.substring(0,operation.cutStart) + operation.replacement + operation.text.substring(operation.cutEnd);\n\t}\n\tthis.cm.focus();\n\treturn newText;\n};\n\nexports.CodeMirrorEngine = CodeMirrorEngine;\n\n})();\n",
"type": "application/javascript",
"module-type": "library"
},
"$:/plugins/tiddlywiki/codemirror/lib/codemirror.js": {
"text": "!function(e,t){\"object\"==typeof exports&&\"undefined\"!=typeof module?module.exports=t():\"function\"==typeof define&&define.amd?define(t):(e=e||self).CodeMirror=t()}(this,function(){\"use strict\";var e=navigator.userAgent,t=navigator.platform,d=/gecko\\/\\d/i.test(e),n=/MSIE \\d/.test(e),r=/Trident\\/(?:[7-9]|\\d{2,})\\..*rv:(\\d+)/.exec(e),i=/Edge\\/(\\d+)/.exec(e),w=n||r||i,v=w&&(n?document.documentMode||6:+(i||r)[1]),f=!i&&/WebKit\\//.test(e),r=f&&/Qt\\/\\d+\\.\\d+/.test(e),o=!i&&/Chrome\\//.test(e),p=/Opera\\//.test(e),c=/Apple Computer/.test(navigator.vendor),l=/Mac OS X 1\\d\\D([8-9]|\\d\\d)\\D/.test(e),u=/PhantomJS/.test(e),s=!i&&/AppleWebKit/.test(e)&&/Mobile\\/\\w+/.test(e),a=/Android/.test(e),h=s||a||/webOS|BlackBerry|Opera Mini|Opera Mobi|IEMobile/i.test(e),g=s||/Mac/.test(t),m=/\\bCrOS\\b/.test(e),y=/win/i.test(t),e=p&&e.match(/Version\\/(\\d*\\.\\d*)/);(e=e&&Number(e[1]))&&15<=e&&(f=!(p=!1));var b=g&&(r||p&&(null==e||e<12.11)),x=d||w&&9<=v;function C(e){return new RegExp(\"(^|\\\\s)\"+e+\"(?:$|\\\\s)\\\\s*\")}var S,L=function(e,t){var n=e.className,r=C(t).exec(n);r&&(t=n.slice(r.index+r[0].length),e.className=n.slice(0,r.index)+(t?r[1]+t:\"\"))};function k(e){for(var t=e.childNodes.length;0<t;--t)e.removeChild(e.firstChild);return e}function T(e,t){return k(e).appendChild(t)}function M(e,t,n,r){var i=document.createElement(e);if(n&&(i.className=n),r&&(i.style.cssText=r),\"string\"==typeof t)i.appendChild(document.createTextNode(t));else if(t)for(var o=0;o<t.length;++o)i.appendChild(t[o]);return i}function N(e,t,n,r){r=M(e,t,n,r);return r.setAttribute(\"role\",\"presentation\"),r}function A(e,t){if(3==t.nodeType&&(t=t.parentNode),e.contains)return e.contains(t);do{if(11==t.nodeType&&(t=t.host),t==e)return!0}while(t=t.parentNode)}function O(){var t;try{t=document.activeElement}catch(e){t=document.body||null}for(;t&&t.shadowRoot&&t.shadowRoot.activeElement;)t=t.shadowRoot.activeElement;return t}function D(e,t){var n=e.className;C(t).test(n)||(e.className+=(n?\" \":\"\")+t)}function W(e,t){for(var n=e.split(\" \"),r=0;r<n.length;r++)n[r]&&!C(n[r]).test(t)&&(t+=\" \"+n[r]);return t}S=document.createRange?function(e,t,n,r){var i=document.createRange();return i.setEnd(r||e,n),i.setStart(e,t),i}:function(e,t,n){var r=document.body.createTextRange();try{r.moveToElementText(e.parentNode)}catch(e){return r}return r.collapse(!0),r.moveEnd(\"character\",n),r.moveStart(\"character\",t),r};var H=function(e){e.select()};function F(e){var t=Array.prototype.slice.call(arguments,1);return function(){return e.apply(null,t)}}function E(e,t,n){for(var r in t=t||{},e)!e.hasOwnProperty(r)||!1===n&&t.hasOwnProperty(r)||(t[r]=e[r]);return t}function P(e,t,n,r,i){null==t&&-1==(t=e.search(/[^\\s\\u00a0]/))&&(t=e.length);for(var o=r||0,l=i||0;;){var s=e.indexOf(\"\\t\",o);if(s<0||t<=s)return l+(t-o);l+=s-o,l+=n-l%n,o=s+1}}s?H=function(e){e.selectionStart=0,e.selectionEnd=e.value.length}:w&&(H=function(e){try{e.select()}catch(e){}});var I=function(){this.id=null,this.f=null,this.time=0,this.handler=F(this.onTimeout,this)};function R(e,t){for(var n=0;n<e.length;++n)if(e[n]==t)return n;return-1}I.prototype.onTimeout=function(e){e.id=0,e.time<=+new Date?e.f():setTimeout(e.handler,e.time-+new Date)},I.prototype.set=function(e,t){this.f=t;t=+new Date+e;(!this.id||t<this.time)&&(clearTimeout(this.id),this.id=setTimeout(this.handler,e),this.time=t)};var z=50,B={toString:function(){return\"CodeMirror.Pass\"}},G={scroll:!1},U={origin:\"*mouse\"},V={origin:\"+move\"};function K(e,t,n){for(var r=0,i=0;;){var o=e.indexOf(\"\\t\",r);-1==o&&(o=e.length);var l=o-r;if(o==e.length||t<=i+l)return r+Math.min(l,t-i);if(i+=o-r,r=o+1,t<=(i+=n-i%n))return r}}var j=[\"\"];function X(e){for(;j.length<=e;)j.push(Y(j)+\" \");return j[e]}function Y(e){return e[e.length-1]}function _(e,t){for(var n=[],r=0;r<e.length;r++)n[r]=t(e[r],r);return n}function $(){}function q(e,t){e=Object.create?Object.create(e):($.prototype=e,new $);return t&&E(t,e),e}var Z=/[\\u00df\\u0587\\u0590-\\u05f4\\u0600-\\u06ff\\u3040-\\u309f\\u30a0-\\u30ff\\u3400-\\u4db5\\u4e00-\\u9fcc\\uac00-\\ud7af]/;function Q(e){return/\\w/.test(e)||\"\"<e&&(e.toUpperCase()!=e.toLowerCase()||Z.test(e))}function J(e,t){return t?!!(-1<t.source.indexOf(\"\\\\w\")&&Q(e))||t.test(e):Q(e)}function ee(e){for(var t in e)if(e.hasOwnProperty(t)&&e[t])return;return 1}var te=/[\\u0300-\\u036f\\u0483-\\u0489\\u0591-\\u05bd\\u05bf\\u05c1\\u05c2\\u05c4\\u05c5\\u05c7\\u0610-\\u061a\\u064b-\\u065e\\u0670\\u06d6-\\u06dc\\u06de-\\u06e4\\u06e7\\u06e8\\u06ea-\\u06ed\\u0711\\u0730-\\u074a\\u07a6-\\u07b0\\u07eb-\\u07f3\\u0816-\\u0819\\u081b-\\u0823\\u0825-\\u0827\\u0829-\\u082d\\u0900-\\u0902\\u093c\\u0941-\\u0948\\u094d\\u0951-\\u0955\\u0962\\u0963\\u0981\\u09bc\\u09be\\u09c1-\\u09c4\\u09cd\\u09d7\\u09e2\\u09e3\\u0a01\\u0a02\\u0a3c\\u0a41\\u0a42\\u0a47\\u0a48\\u0a4b-\\u0a4d\\u0a51\\u0a70\\u0a71\\u0a75\\u0a81\\u0a82\\u0abc\\u0ac1-\\u0ac5\\u0ac7\\u0ac8\\u0acd\\u0ae2\\u0ae3\\u0b01\\u0b3c\\u0b3e\\u0b3f\\u0b41-\\u0b44\\u0b4d\\u0b56\\u0b57\\u0b62\\u0b63\\u0b82\\u0bbe\\u0bc0\\u0bcd\\u0bd7\\u0c3e-\\u0c40\\u0c46-\\u0c48\\u0c4a-\\u0c4d\\u0c55\\u0c56\\u0c62\\u0c63\\u0cbc\\u0cbf\\u0cc2\\u0cc6\\u0ccc\\u0ccd\\u0cd5\\u0cd6\\u0ce2\\u0ce3\\u0d3e\\u0d41-\\u0d44\\u0d4d\\u0d57\\u0d62\\u0d63\\u0dca\\u0dcf\\u0dd2-\\u0dd4\\u0dd6\\u0ddf\\u0e31\\u0e34-\\u0e3a\\u0e47-\\u0e4e\\u0eb1\\u0eb4-\\u0eb9\\u0ebb\\u0ebc\\u0ec8-\\u0ecd\\u0f18\\u0f19\\u0f35\\u0f37\\u0f39\\u0f71-\\u0f7e\\u0f80-\\u0f84\\u0f86\\u0f87\\u0f90-\\u0f97\\u0f99-\\u0fbc\\u0fc6\\u102d-\\u1030\\u1032-\\u1037\\u1039\\u103a\\u103d\\u103e\\u1058\\u1059\\u105e-\\u1060\\u1071-\\u1074\\u1082\\u1085\\u1086\\u108d\\u109d\\u135f\\u1712-\\u1714\\u1732-\\u1734\\u1752\\u1753\\u1772\\u1773\\u17b7-\\u17bd\\u17c6\\u17c9-\\u17d3\\u17dd\\u180b-\\u180d\\u18a9\\u1920-\\u1922\\u1927\\u1928\\u1932\\u1939-\\u193b\\u1a17\\u1a18\\u1a56\\u1a58-\\u1a5e\\u1a60\\u1a62\\u1a65-\\u1a6c\\u1a73-\\u1a7c\\u1a7f\\u1b00-\\u1b03\\u1b34\\u1b36-\\u1b3a\\u1b3c\\u1b42\\u1b6b-\\u1b73\\u1b80\\u1b81\\u1ba2-\\u1ba5\\u1ba8\\u1ba9\\u1c2c-\\u1c33\\u1c36\\u1c37\\u1cd0-\\u1cd2\\u1cd4-\\u1ce0\\u1ce2-\\u1ce8\\u1ced\\u1dc0-\\u1de6\\u1dfd-\\u1dff\\u200c\\u200d\\u20d0-\\u20f0\\u2cef-\\u2cf1\\u2de0-\\u2dff\\u302a-\\u302f\\u3099\\u309a\\ua66f-\\ua672\\ua67c\\ua67d\\ua6f0\\ua6f1\\ua802\\ua806\\ua80b\\ua825\\ua826\\ua8c4\\ua8e0-\\ua8f1\\ua926-\\ua92d\\ua947-\\ua951\\ua980-\\ua982\\ua9b3\\ua9b6-\\ua9b9\\ua9bc\\uaa29-\\uaa2e\\uaa31\\uaa32\\uaa35\\uaa36\\uaa43\\uaa4c\\uaab0\\uaab2-\\uaab4\\uaab7\\uaab8\\uaabe\\uaabf\\uaac1\\uabe5\\uabe8\\uabed\\udc00-\\udfff\\ufb1e\\ufe00-\\ufe0f\\ufe20-\\ufe26\\uff9e\\uff9f]/;function ne(e){return 768<=e.charCodeAt(0)&&te.test(e)}function re(e,t,n){for(;(n<0?0<t:t<e.length)&&ne(e.charAt(t));)t+=n;return t}function ie(e,t,n){for(var r=n<t?-1:1;;){if(t==n)return t;var i=(t+n)/2,i=r<0?Math.ceil(i):Math.floor(i);if(i==t)return e(i)?t:n;e(i)?n=i:t=i+r}}var oe=null;function le(e,t,n){var r;oe=null;for(var i=0;i<e.length;++i){var o=e[i];if(o.from<t&&o.to>t)return i;o.to==t&&(o.from!=o.to&&\"before\"==n?r=i:oe=i),o.from==t&&(o.from!=o.to&&\"before\"!=n?r=i:oe=i)}return null!=r?r:oe}var se,ae,ue,ce,he,de,fe,pe=(se=\"bbbbbbbbbtstwsbbbbbbbbbbbbbbssstwNN%%%NNNNNN,N,N1111111111NNNNNNNLLLLLLLLLLLLLLLLLLLLLLLLLLNNNNNNLLLLLLLLLLLLLLLLLLLLLLLLLLNNNNbbbbbbsbbbbbbbbbbbbbbbbbbbbbbbbbb,N%%%%NNNNLNNNNN%%11NLNNN1LNNNNNLLLLLLLLLLLLLLLLLLLLLLLNLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLN\",ae=\"nnnnnnNNr%%r,rNNmmmmmmmmmmmrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrmmmmmmmmmmmmmmmmmmmmmnnnnnnnnnn%nnrrrmrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrmmmmmmmnNmmmmmmrrmmNmmmmrr1111111111\",ue=/[\\u0590-\\u05f4\\u0600-\\u06ff\\u0700-\\u08ac]/,ce=/[stwN]/,he=/[LRr]/,de=/[Lb1n]/,fe=/[1n]/,function(e,t){var n=\"ltr\"==t?\"L\":\"R\";if(0==e.length||\"ltr\"==t&&!ue.test(e))return!1;for(var r,i=e.length,o=[],l=0;l<i;++l)o.push((r=e.charCodeAt(l))<=247?se.charAt(r):1424<=r&&r<=1524?\"R\":1536<=r&&r<=1785?ae.charAt(r-1536):1774<=r&&r<=2220?\"r\":8192<=r&&r<=8203?\"w\":8204==r?\"b\":\"L\");for(var s=0,a=n;s<i;++s){var u=o[s];\"m\"==u?o[s]=a:a=u}for(var c=0,h=n;c<i;++c){var d=o[c];\"1\"==d&&\"r\"==h?o[c]=\"n\":he.test(d)&&\"r\"==(h=d)&&(o[c]=\"R\")}for(var f=1,p=o[0];f<i-1;++f){var g=o[f];\"+\"==g&&\"1\"==p&&\"1\"==o[f+1]?o[f]=\"1\":\",\"!=g||p!=o[f+1]||\"1\"!=p&&\"n\"!=p||(o[f]=p),p=g}for(var m=0;m<i;++m){var v=o[m];if(\",\"==v)o[m]=\"N\";else if(\"%\"==v){for(var y=void 0,y=m+1;y<i&&\"%\"==o[y];++y);for(var b=m&&\"!\"==o[m-1]||y<i&&\"1\"==o[y]?\"1\":\"N\",w=m;w<y;++w)o[w]=b;m=y-1}}for(var x=0,C=n;x<i;++x){var S=o[x];\"L\"==C&&\"1\"==S?o[x]=\"L\":he.test(S)&&(C=S)}for(var L=0;L<i;++L)if(ce.test(o[L])){for(var k=void 0,k=L+1;k<i&&ce.test(o[k]);++k);for(var T=\"L\"==(L?o[L-1]:n),M=T==(\"L\"==(k<i?o[k]:n))?T?\"L\":\"R\":n,N=L;N<k;++N)o[N]=M;L=k-1}for(var A,O=[],D=0;D<i;)if(de.test(o[D])){var W=D;for(++D;D<i&&de.test(o[D]);++D);O.push(new ge(0,W,D))}else{var H=D,F=O.length,E=\"rtl\"==t?1:0;for(++D;D<i&&\"L\"!=o[D];++D);for(var P=H;P<D;)if(fe.test(o[P])){H<P&&(O.splice(F,0,new ge(1,H,P)),F+=E);var I=P;for(++P;P<D&&fe.test(o[P]);++P);O.splice(F,0,new ge(2,I,P)),F+=E,H=P}else++P;H<D&&O.splice(F,0,new ge(1,H,D))}return\"ltr\"==t&&(1==O[0].level&&(A=e.match(/^\\s+/))&&(O[0].from=A[0].length,O.unshift(new ge(0,0,A[0].length))),1==Y(O).level&&(A=e.match(/\\s+$/))&&(Y(O).to-=A[0].length,O.push(new ge(0,i-A[0].length,i)))),\"rtl\"==t?O.reverse():O});function ge(e,t,n){this.level=e,this.from=t,this.to=n}function me(e,t){var n=e.order;return null==n&&(n=e.order=pe(e.text,t)),n}var ve=[],ye=function(e,t,n){e.addEventListener?e.addEventListener(t,n,!1):e.attachEvent?e.attachEvent(\"on\"+t,n):(e=e._handlers||(e._handlers={}))[t]=(e[t]||ve).concat(n)};function be(e,t){return e._handlers&&e._handlers[t]||ve}function we(e,t,n){var r;e.removeEventListener?e.removeEventListener(t,n,!1):e.detachEvent?e.detachEvent(\"on\"+t,n):!(e=(r=e._handlers)&&r[t])||-1<(n=R(e,n))&&(r[t]=e.slice(0,n).concat(e.slice(n+1)))}function xe(e,t){var n=be(e,t);if(n.length)for(var r=Array.prototype.slice.call(arguments,2),i=0;i<n.length;++i)n[i].apply(null,r)}function Ce(e,t,n){return\"string\"==typeof t&&(t={type:t,preventDefault:function(){this.defaultPrevented=!0}}),xe(e,n||t.type,e,t),Ne(t)||t.codemirrorIgnore}function Se(e){var t=e._handlers&&e._handlers.cursorActivity;if(t)for(var n=e.curOp.cursorActivityHandlers||(e.curOp.cursorActivityHandlers=[]),r=0;r<t.length;++r)-1==R(n,t[r])&&n.push(t[r])}function Le(e,t){return 0<be(e,t).length}function ke(e){e.prototype.on=function(e,t){ye(this,e,t)},e.prototype.off=function(e,t){we(this,e,t)}}function Te(e){e.preventDefault?e.preventDefault():e.returnValue=!1}function Me(e){e.stopPropagation?e.stopPropagation():e.cancelBubble=!0}function Ne(e){return null!=e.defaultPrevented?e.defaultPrevented:0==e.returnValue}function Ae(e){Te(e),Me(e)}function Oe(e){return e.target||e.srcElement}function De(e){var t=e.which;return null==t&&(1&e.button?t=1:2&e.button?t=3:4&e.button&&(t=2)),g&&e.ctrlKey&&1==t&&(t=3),t}var We,He,Fe=function(){if(w&&v<9)return!1;var e=M(\"div\");return\"draggable\"in e||\"dragDrop\"in e}();var Ee=3!=\"\\n\\nb\".split(/\\n/).length?function(e){for(var t=0,n=[],r=e.length;t<=r;){var i=e.indexOf(\"\\n\",t);-1==i&&(i=e.length);var o=e.slice(t,\"\\r\"==e.charAt(i-1)?i-1:i),l=o.indexOf(\"\\r\");-1!=l?(n.push(o.slice(0,l)),t+=l+1):(n.push(o),t=i+1)}return n}:function(e){return e.split(/\\r\\n?|\\n/)},Pe=window.getSelection?function(e){try{return e.selectionStart!=e.selectionEnd}catch(e){return!1}}:function(e){var t;try{t=e.ownerDocument.selection.createRange()}catch(e){}return!(!t||t.parentElement()!=e)&&0!=t.compareEndPoints(\"StartToEnd\",t)},Ie=\"oncopy\"in(r=M(\"div\"))||(r.setAttribute(\"oncopy\",\"return;\"),\"function\"==typeof r.oncopy),Re=null;var ze={},Be={};function Ge(e){if(\"string\"==typeof e&&Be.hasOwnProperty(e))e=Be[e];else if(e&&\"string\"==typeof e.name&&Be.hasOwnProperty(e.name)){var t=Be[e.name];\"string\"==typeof t&&(t={name:t}),(e=q(t,e)).name=t.name}else{if(\"string\"==typeof e&&/^[\\w\\-]+\\/[\\w\\-]+\\+xml$/.test(e))return Ge(\"application/xml\");if(\"string\"==typeof e&&/^[\\w\\-]+\\/[\\w\\-]+\\+json$/.test(e))return Ge(\"application/json\")}return\"string\"==typeof e?{name:e}:e||{name:\"null\"}}function Ue(e,t){t=Ge(t);var n=ze[t.name];if(!n)return Ue(e,\"text/plain\");var r=n(e,t);if(Ve.hasOwnProperty(t.name)){var i,o=Ve[t.name];for(i in o)o.hasOwnProperty(i)&&(r.hasOwnProperty(i)&&(r[\"_\"+i]=r[i]),r[i]=o[i])}if(r.name=t.name,t.helperType&&(r.helperType=t.helperType),t.modeProps)for(var l in t.modeProps)r[l]=t.modeProps[l];return r}var Ve={};function Ke(e,t){E(t,Ve.hasOwnProperty(e)?Ve[e]:Ve[e]={})}function je(e,t){if(!0===t)return t;if(e.copyState)return e.copyState(t);var n,r={};for(n in t){var i=t[n];i instanceof Array&&(i=i.concat([])),r[n]=i}return r}function Xe(e,t){for(var n;e.innerMode&&(n=e.innerMode(t))&&n.mode!=e;)t=n.state,e=n.mode;return n||{mode:e,state:t}}function Ye(e,t,n){return!e.startState||e.startState(t,n)}var _e=function(e,t,n){this.pos=this.start=0,this.string=e,this.tabSize=t||8,this.lastColumnPos=this.lastColumnValue=0,this.lineStart=0,this.lineOracle=n};function $e(e,t){if((t-=e.first)<0||t>=e.size)throw new Error(\"There is no line \"+(t+e.first)+\" in the document.\");for(var n=e;!n.lines;)for(var r=0;;++r){var i=n.children[r],o=i.chunkSize();if(t<o){n=i;break}t-=o}return n.lines[t]}function qe(e,t,n){var r=[],i=t.line;return e.iter(t.line,n.line+1,function(e){e=e.text;i==n.line&&(e=e.slice(0,n.ch)),i==t.line&&(e=e.slice(t.ch)),r.push(e),++i}),r}function Ze(e,t,n){var r=[];return e.iter(t,n,function(e){r.push(e.text)}),r}function Qe(e,t){var n=t-e.height;if(n)for(var r=e;r;r=r.parent)r.height+=n}function Je(e){if(null==e.parent)return null;for(var t=e.parent,n=R(t.lines,e),r=t.parent;r;r=(t=r).parent)for(var i=0;r.children[i]!=t;++i)n+=r.children[i].chunkSize();return n+t.first}function et(e,t){var n=e.first;e:do{for(var r=0;r<e.children.length;++r){var i=e.children[r],o=i.height;if(t<o){e=i;continue e}t-=o,n+=i.chunkSize()}return n}while(!e.lines);for(var l=0;l<e.lines.length;++l){var s=e.lines[l].height;if(t<s)break;t-=s}return n+l}function tt(e,t){return t>=e.first&&t<e.first+e.size}function nt(e,t){return String(e.lineNumberFormatter(t+e.firstLineNumber))}function rt(e,t,n){if(void 0===n&&(n=null),!(this instanceof rt))return new rt(e,t,n);this.line=e,this.ch=t,this.sticky=n}function it(e,t){return e.line-t.line||e.ch-t.ch}function ot(e,t){return e.sticky==t.sticky&&0==it(e,t)}function lt(e){return rt(e.line,e.ch)}function st(e,t){return it(e,t)<0?t:e}function at(e,t){return it(e,t)<0?e:t}function ut(e,t){return Math.max(e.first,Math.min(t,e.first+e.size-1))}function ct(e,t){if(t.line<e.first)return rt(e.first,0);var n=e.first+e.size-1;return t.line>n?rt(n,$e(e,n).text.length):(e=$e(e,(n=t).line).text.length,null==(t=n.ch)||e<t?rt(n.line,e):t<0?rt(n.line,0):n)}function ht(e,t){for(var n=[],r=0;r<t.length;r++)n[r]=ct(e,t[r]);return n}_e.prototype.eol=function(){return this.pos>=this.string.length},_e.prototype.sol=function(){return this.pos==this.lineStart},_e.prototype.peek=function(){return this.string.charAt(this.pos)||void 0},_e.prototype.next=function(){if(this.pos<this.string.length)return this.string.charAt(this.pos++)},_e.prototype.eat=function(e){var t=this.string.charAt(this.pos),e=\"string\"==typeof e?t==e:t&&(e.test?e.test(t):e(t));if(e)return++this.pos,t},_e.prototype.eatWhile=function(e){for(var t=this.pos;this.eat(e););return this.pos>t},_e.prototype.eatSpace=function(){for(var e=this.pos;/[\\s\\u00a0]/.test(this.string.charAt(this.pos));)++this.pos;return this.pos>e},_e.prototype.skipToEnd=function(){this.pos=this.string.length},_e.prototype.skipTo=function(e){e=this.string.indexOf(e,this.pos);if(-1<e)return this.pos=e,!0},_e.prototype.backUp=function(e){this.pos-=e},_e.prototype.column=function(){return this.lastColumnPos<this.start&&(this.lastColumnValue=P(this.string,this.start,this.tabSize,this.lastColumnPos,this.lastColumnValue),this.lastColumnPos=this.start),this.lastColumnValue-(this.lineStart?P(this.string,this.lineStart,this.tabSize):0)},_e.prototype.indentation=function(){return P(this.string,null,this.tabSize)-(this.lineStart?P(this.string,this.lineStart,this.tabSize):0)},_e.prototype.match=function(e,t,n){if(\"string\"!=typeof e){var r=this.string.slice(this.pos).match(e);return r&&0<r.index?null:(r&&!1!==t&&(this.pos+=r[0].length),r)}r=function(e){return n?e.toLowerCase():e};if(r(this.string.substr(this.pos,e.length))==r(e))return!1!==t&&(this.pos+=e.length),!0},_e.prototype.current=function(){return this.string.slice(this.start,this.pos)},_e.prototype.hideFirstChars=function(e,t){this.lineStart+=e;try{return t()}finally{this.lineStart-=e}},_e.prototype.lookAhead=function(e){var t=this.lineOracle;return t&&t.lookAhead(e)},_e.prototype.baseToken=function(){var e=this.lineOracle;return e&&e.baseToken(this.pos)};var dt=function(e,t){this.state=e,this.lookAhead=t},ft=function(e,t,n,r){this.state=t,this.doc=e,this.line=n,this.maxLookAhead=r||0,this.baseTokens=null,this.baseTokenPos=1};function pt(t,n,r,e){var a=[t.state.modeGen],i={};St(t,n.text,t.doc.mode,r,function(e,t){return a.push(e,t)},i,e);for(var u=r.state,o=0;o<t.state.overlays.length;++o)!function(e){r.baseTokens=a;var o=t.state.overlays[e],l=1,s=0;r.state=!0,St(t,n.text,o.mode,r,function(e,t){for(var n=l;s<e;){var r=a[l];e<r&&a.splice(l,1,e,a[l+1],r),l+=2,s=Math.min(e,r)}if(t)if(o.opaque)a.splice(n,l-n,e,\"overlay \"+t),l=n+2;else for(;n<l;n+=2){var i=a[n+1];a[n+1]=(i?i+\" \":\"\")+\"overlay \"+t}},i),r.state=u,r.baseTokens=null,r.baseTokenPos=1}(o);return{styles:a,classes:i.bgClass||i.textClass?i:null}}function gt(e,t,n){var r,i,o;return t.styles&&t.styles[0]==e.state.modeGen||(r=mt(e,Je(t)),i=t.text.length>e.options.maxHighlightLength&&je(e.doc.mode,r.state),o=pt(e,t,r),i&&(r.state=i),t.stateAfter=r.save(!i),t.styles=o.styles,o.classes?t.styleClasses=o.classes:t.styleClasses&&(t.styleClasses=null),n===e.doc.highlightFrontier&&(e.doc.modeFrontier=Math.max(e.doc.modeFrontier,++e.doc.highlightFrontier))),t.styles}function mt(n,r,e){var t=n.doc,i=n.display;if(!t.mode.startState)return new ft(t,!0,r);var o=function(e,t,n){for(var r,i,o=e.doc,l=n?-1:t-(e.doc.mode.innerMode?1e3:100),s=t;l<s;--s){if(s<=o.first)return o.first;var a=$e(o,s-1),u=a.stateAfter;if(u&&(!n||s+(u instanceof dt?u.lookAhead:0)<=o.modeFrontier))return s;a=P(a.text,null,e.options.tabSize);(null==i||a<r)&&(i=s-1,r=a)}return i}(n,r,e),l=o>t.first&&$e(t,o-1).stateAfter,s=l?ft.fromSaved(t,l,o):new ft(t,Ye(t.mode),o);return t.iter(o,r,function(e){vt(n,e.text,s);var t=s.line;e.stateAfter=t==r-1||t%5==0||t>=i.viewFrom&&t<i.viewTo?s.save():null,s.nextLine()}),e&&(t.modeFrontier=s.line),s}function vt(e,t,n,r){var i=e.doc.mode,o=new _e(t,e.options.tabSize,n);for(o.start=o.pos=r||0,\"\"==t&&yt(i,n.state);!o.eol();)bt(i,o,n.state),o.start=o.pos}function yt(e,t){if(e.blankLine)return e.blankLine(t);if(e.innerMode){t=Xe(e,t);return t.mode.blankLine?t.mode.blankLine(t.state):void 0}}function bt(e,t,n,r){for(var i=0;i<10;i++){r&&(r[0]=Xe(e,n).mode);var o=e.token(t,n);if(t.pos>t.start)return o}throw new Error(\"Mode \"+e.name+\" failed to advance stream.\")}ft.prototype.lookAhead=function(e){var t=this.doc.getLine(this.line+e);return null!=t&&e>this.maxLookAhead&&(this.maxLookAhead=e),t},ft.prototype.baseToken=function(e){if(!this.baseTokens)return null;for(;this.baseTokens[this.baseTokenPos]<=e;)this.baseTokenPos+=2;var t=this.baseTokens[this.baseTokenPos+1];return{type:t&&t.replace(/( |^)overlay .*/,\"\"),size:this.baseTokens[this.baseTokenPos]-e}},ft.prototype.nextLine=function(){this.line++,0<this.maxLookAhead&&this.maxLookAhead--},ft.fromSaved=function(e,t,n){return t instanceof dt?new ft(e,je(e.mode,t.state),n,t.lookAhead):new ft(e,je(e.mode,t),n)},ft.prototype.save=function(e){e=!1!==e?je(this.doc.mode,this.state):this.state;return 0<this.maxLookAhead?new dt(e,this.maxLookAhead):e};var wt=function(e,t,n){this.start=e.start,this.end=e.pos,this.string=e.current(),this.type=t||null,this.state=n};function xt(e,t,n,r){var i,o,l=e.doc,s=l.mode,a=$e(l,(t=ct(l,t)).line),u=mt(e,t.line,n),c=new _e(a.text,e.options.tabSize,u);for(r&&(o=[]);(r||c.pos<t.ch)&&!c.eol();)c.start=c.pos,i=bt(s,c,u.state),r&&o.push(new wt(c,i,je(l.mode,u.state)));return r?o:new wt(c,i,u.state)}function Ct(e,t){if(e)for(;;){var n=e.match(/(?:^|\\s+)line-(background-)?(\\S+)/);if(!n)break;e=e.slice(0,n.index)+e.slice(n.index+n[0].length);var r=n[1]?\"bgClass\":\"textClass\";null==t[r]?t[r]=n[2]:new RegExp(\"(?:^|\\\\s)\"+n[2]+\"(?:$|\\\\s)\").test(t[r])||(t[r]+=\" \"+n[2])}return e}function St(e,t,n,r,i,o,l){var s=n.flattenSpans;null==s&&(s=e.options.flattenSpans);var a=0,u=null,c=new _e(t,e.options.tabSize,r),h=e.options.addModeClass&&[null];for(\"\"==t&&Ct(yt(n,r.state),o);!c.eol();){var d,f=c.pos>e.options.maxHighlightLength?(s=!1,l&&vt(e,t,r,c.pos),c.pos=t.length,null):Ct(bt(n,c,r.state,h),o);if(!h||(d=h[0].name)&&(f=\"m-\"+(f?d+\" \"+f:d)),!s||u!=f){for(;a<c.start;)i(a=Math.min(c.start,a+5e3),u);u=f}c.start=c.pos}for(;a<c.pos;){var p=Math.min(c.pos,a+5e3);i(p,u),a=p}}var Lt=!1,kt=!1;function Tt(e,t,n){this.marker=e,this.from=t,this.to=n}function Mt(e,t){if(e)for(var n=0;n<e.length;++n){var r=e[n];if(r.marker==t)return r}}function Nt(e,t){if(t.full)return null;var n=tt(e,t.from.line)&&$e(e,t.from.line).markedSpans,r=tt(e,t.to.line)&&$e(e,t.to.line).markedSpans;if(!n&&!r)return null;var i=t.from.ch,o=t.to.ch,e=0==it(t.from,t.to),l=function(e,t,n){var r;if(e)for(var i=0;i<e.length;++i){var o,l=e[i],s=l.marker;!(null==l.from||(s.inclusiveLeft?l.from<=t:l.from<t))&&(l.from!=t||\"bookmark\"!=s.type||n&&l.marker.insertLeft)||(o=null==l.to||(s.inclusiveRight?l.to>=t:l.to>t),(r=r||[]).push(new Tt(s,l.from,o?null:l.to)))}return r}(n,i,e),s=function(e,t,n){var r;if(e)for(var i=0;i<e.length;++i){var o,l=e[i],s=l.marker;!(null==l.to||(s.inclusiveRight?l.to>=t:l.to>t))&&(l.from!=t||\"bookmark\"!=s.type||n&&!l.marker.insertLeft)||(o=null==l.from||(s.inclusiveLeft?l.from<=t:l.from<t),(r=r||[]).push(new Tt(s,o?null:l.from-t,null==l.to?null:l.to-t)))}return r}(r,o,e),a=1==t.text.length,u=Y(t.text).length+(a?i:0);if(l)for(var c=0;c<l.length;++c){var h,d=l[c];null==d.to&&((h=Mt(s,d.marker))?a&&(d.to=null==h.to?null:h.to+u):d.to=i)}if(s)for(var f=0;f<s.length;++f){var p=s[f];null!=p.to&&(p.to+=u),null==p.from?Mt(l,p.marker)||(p.from=u,a&&(l=l||[]).push(p)):(p.from+=u,a&&(l=l||[]).push(p))}l=l&&At(l),s&&s!=l&&(s=At(s));var g=[l];if(!a){var m,v=t.text.length-2;if(0<v&&l)for(var y=0;y<l.length;++y)null==l[y].to&&(m=m||[]).push(new Tt(l[y].marker,null,null));for(var b=0;b<v;++b)g.push(m);g.push(s)}return g}function At(e){for(var t=0;t<e.length;++t){var n=e[t];null!=n.from&&n.from==n.to&&!1!==n.marker.clearWhenEmpty&&e.splice(t--,1)}return e.length?e:null}function Ot(e){var t=e.markedSpans;if(t){for(var n=0;n<t.length;++n)t[n].marker.detachLine(e);e.markedSpans=null}}function Dt(e,t){if(t){for(var n=0;n<t.length;++n)t[n].marker.attachLine(e);e.markedSpans=t}}function Wt(e){return e.inclusiveLeft?-1:0}function Ht(e){return e.inclusiveRight?1:0}function Ft(e,t){var n=e.lines.length-t.lines.length;if(0!=n)return n;var r=e.find(),i=t.find(),n=it(r.from,i.from)||Wt(e)-Wt(t);if(n)return-n;i=it(r.to,i.to)||Ht(e)-Ht(t);return i||t.id-e.id}function Et(e,t){var n,r=kt&&e.markedSpans;if(r)for(var i,o=0;o<r.length;++o)(i=r[o]).marker.collapsed&&null==(t?i.from:i.to)&&(!n||Ft(n,i.marker)<0)&&(n=i.marker);return n}function Pt(e){return Et(e,!0)}function It(e){return Et(e,!1)}function Rt(e,t,n,r,i){var t=$e(e,t),o=kt&&t.markedSpans;if(o)for(var l=0;l<o.length;++l){var s=o[l];if(s.marker.collapsed){var a=s.marker.find(0),u=it(a.from,n)||Wt(s.marker)-Wt(i),c=it(a.to,r)||Ht(s.marker)-Ht(i);if(!(0<=u&&c<=0||u<=0&&0<=c)&&(u<=0&&(s.marker.inclusiveRight&&i.inclusiveLeft?0<=it(a.to,n):0<it(a.to,n))||0<=u&&(s.marker.inclusiveRight&&i.inclusiveLeft?it(a.from,r)<=0:it(a.from,r)<0)))return 1}}}function zt(e){for(var t;t=Pt(e);)e=t.find(-1,!0).line;return e}function Bt(e,t){var n=$e(e,t),e=zt(n);return n==e?t:Je(e)}function Gt(e,t){if(t>e.lastLine())return t;var n,r=$e(e,t);if(!Ut(e,r))return t;for(;n=It(r);)r=n.find(1,!0).line;return Je(r)+1}function Ut(e,t){var n=kt&&t.markedSpans;if(n)for(var r,i=0;i<n.length;++i)if((r=n[i]).marker.collapsed){if(null==r.from)return!0;if(!r.marker.widgetNode&&0==r.from&&r.marker.inclusiveLeft&&function e(t,n,r){if(null==r.to){var i=r.marker.find(1,!0);return e(t,i.line,Mt(i.line.markedSpans,r.marker))}if(r.marker.inclusiveRight&&r.to==n.text.length)return!0;for(var o=void 0,l=0;l<n.markedSpans.length;++l)if((o=n.markedSpans[l]).marker.collapsed&&!o.marker.widgetNode&&o.from==r.to&&(null==o.to||o.to!=r.from)&&(o.marker.inclusiveLeft||r.marker.inclusiveRight)&&e(t,n,o))return!0}(e,t,r))return!0}}function Vt(e){for(var t=0,n=(e=zt(e)).parent,r=0;r<n.lines.length;++r){var i=n.lines[r];if(i==e)break;t+=i.height}for(var o=n.parent;o;o=(n=o).parent)for(var l=0;l<o.children.length;++l){var s=o.children[l];if(s==n)break;t+=s.height}return t}function Kt(e){if(0==e.height)return 0;for(var t,n=e.text.length,r=e;t=Pt(r);){var i=t.find(0,!0),r=i.from.line;n+=i.from.ch-i.to.ch}for(r=e;t=It(r);){var o=t.find(0,!0);n-=r.text.length-o.from.ch,n+=(r=o.to.line).text.length-o.to.ch}return n}function jt(e){var n=e.display,e=e.doc;n.maxLine=$e(e,e.first),n.maxLineLength=Kt(n.maxLine),n.maxLineChanged=!0,e.iter(function(e){var t=Kt(e);t>n.maxLineLength&&(n.maxLineLength=t,n.maxLine=e)})}var Xt=function(e,t,n){this.text=e,Dt(this,t),this.height=n?n(this):1};Xt.prototype.lineNo=function(){return Je(this)},ke(Xt);var Yt={},_t={};function $t(e,t){if(!e||/^\\s*$/.test(e))return null;t=t.addModeClass?_t:Yt;return t[e]||(t[e]=e.replace(/\\S+/g,\"cm-$&\"))}function qt(e,t){var n=N(\"span\",null,null,f?\"padding-right: .1px\":null),r={pre:N(\"pre\",[n],\"CodeMirror-line\"),content:n,col:0,pos:0,cm:e,trailingSpace:!1,splitSpaces:e.getOption(\"lineWrapping\")};t.measure={};for(var i=0;i<=(t.rest?t.rest.length:0);i++){var o=i?t.rest[i-1]:t.line,l=void 0;r.pos=0,r.addToken=Qt,function(e){if(null!=He)return He;var t=T(e,document.createTextNode(\"AخA\")),n=S(t,0,1).getBoundingClientRect(),t=S(t,1,2).getBoundingClientRect();return k(e),n&&n.left!=n.right&&(He=t.right-n.right<3)}(e.display.measure)&&(l=me(o,e.doc.direction))&&(r.addToken=function(h,d){return function(e,t,n,r,i,o,l){n=n?n+\" cm-force-border\":\"cm-force-border\";for(var s=e.pos,a=s+t.length;;){for(var u=void 0,c=0;c<d.length&&!((u=d[c]).to>s&&u.from<=s);c++);if(u.to>=a)return h(e,t,n,r,i,o,l);h(e,t.slice(0,u.to-s),n,r,null,o,l),r=null,t=t.slice(u.to-s),s=u.to}}}(r.addToken,l)),r.map=[],function(e,t,n){var r=e.markedSpans,i=e.text,o=0;if(!r){for(var l=1;l<n.length;l+=2)t.addToken(t,i.slice(o,o=n[l]),$t(n[l+1],t.cm.options));return}for(var s,a,u,c,h,d,f,p=i.length,g=0,m=1,v=\"\",y=0;;){if(y==g){u=c=h=a=\"\",d=f=null,y=1/0;for(var b=[],w=void 0,x=0;x<r.length;++x){var C=r[x],S=C.marker;if(\"bookmark\"==S.type&&C.from==g&&S.widgetNode)b.push(S);else if(C.from<=g&&(null==C.to||C.to>g||S.collapsed&&C.to==g&&C.from==g)){if(null!=C.to&&C.to!=g&&y>C.to&&(y=C.to,c=\"\"),S.className&&(u+=\" \"+S.className),S.css&&(a=(a?a+\";\":\"\")+S.css),S.startStyle&&C.from==g&&(h+=\" \"+S.startStyle),S.endStyle&&C.to==y&&(w=w||[]).push(S.endStyle,C.to),S.title&&((f=f||{}).title=S.title),S.attributes)for(var L in S.attributes)(f=f||{})[L]=S.attributes[L];S.collapsed&&(!d||Ft(d.marker,S)<0)&&(d=C)}else C.from>g&&y>C.from&&(y=C.from)}if(w)for(var k=0;k<w.length;k+=2)w[k+1]==y&&(c+=\" \"+w[k]);if(!d||d.from==g)for(var T=0;T<b.length;++T)Jt(t,0,b[T]);if(d&&(d.from||0)==g){if(Jt(t,(null==d.to?p+1:d.to)-g,d.marker,null==d.from),null==d.to)return;d.to==g&&(d=!1)}}if(p<=g)break;for(var M=Math.min(p,y);;){if(v){var N,A=g+v.length;if(d||(N=M<A?v.slice(0,M-g):v,t.addToken(t,N,s?s+u:u,h,g+N.length==y?c:\"\",a,f)),M<=A){v=v.slice(M-g),g=M;break}g=A,h=\"\"}v=i.slice(o,o=n[m++]),s=$t(n[m++],t.cm.options)}}}(o,r,gt(e,o,t!=e.display.externalMeasured&&Je(o))),o.styleClasses&&(o.styleClasses.bgClass&&(r.bgClass=W(o.styleClasses.bgClass,r.bgClass||\"\")),o.styleClasses.textClass&&(r.textClass=W(o.styleClasses.textClass,r.textClass||\"\"))),0==r.map.length&&r.map.push(0,0,r.content.appendChild(function(e){null==We&&(t=M(\"span\",\"\"),T(e,M(\"span\",[t,document.createTextNode(\"x\")])),0!=e.firstChild.offsetHeight&&(We=t.offsetWidth<=1&&2<t.offsetHeight&&!(w&&v<8)));var t=We?M(\"span\",\"\"):M(\"span\",\" \",null,\"display: inline-block; width: 1px; margin-right: -1px\");return t.setAttribute(\"cm-text\",\"\"),t}(e.display.measure))),0==i?(t.measure.map=r.map,t.measure.cache={}):((t.measure.maps||(t.measure.maps=[])).push(r.map),(t.measure.caches||(t.measure.caches=[])).push({}))}return f&&(n=r.content.lastChild,(/\\bcm-tab\\b/.test(n.className)||n.querySelector&&n.querySelector(\".cm-tab\"))&&(r.content.className=\"cm-tab-wrap-hack\")),xe(e,\"renderLine\",e,t.line,r.pre),r.pre.className&&(r.textClass=W(r.pre.className,r.textClass||\"\")),r}function Zt(e){var t=M(\"span\",\"•\",\"cm-invalidchar\");return t.title=\"\\\\u\"+e.charCodeAt(0).toString(16),t.setAttribute(\"aria-label\",t.title),t}function Qt(e,t,n,r,i,o,l){if(t){var s,a=e.splitSpaces?function(e,t){if(1<e.length&&!/ /.test(e))return e;for(var n=t,r=\"\",i=0;i<e.length;i++){var o=e.charAt(i);\" \"!=o||!n||i!=e.length-1&&32!=e.charCodeAt(i+1)||(o=\" \"),r+=o,n=\" \"==o}return r}(t,e.trailingSpace):t,u=e.cm.state.specialChars,c=!1;if(u.test(t)){s=document.createDocumentFragment();for(var h=0;;){u.lastIndex=h;var d=u.exec(t),f=d?d.index-h:t.length-h;if(f&&(p=document.createTextNode(a.slice(h,h+f)),w&&v<9?s.appendChild(M(\"span\",[p])):s.appendChild(p),e.map.push(e.pos,e.pos+f,p),e.col+=f,e.pos+=f),!d)break;h+=1+f;var p=void 0;\"\\t\"==d[0]?(f=(f=e.cm.options.tabSize)-e.col%f,(p=s.appendChild(M(\"span\",X(f),\"cm-tab\"))).setAttribute(\"role\",\"presentation\"),p.setAttribute(\"cm-text\",\"\\t\"),e.col+=f):(\"\\r\"==d[0]||\"\\n\"==d[0]?(p=s.appendChild(M(\"span\",\"\\r\"==d[0]?\"␍\":\"\",\"cm-invalidchar\"))).setAttribute(\"cm-text\",d[0]):((p=e.cm.options.specialCharPlaceholder(d[0])).setAttribute(\"cm-text\",d[0]),w&&v<9?s.appendChild(M(\"span\",[p])):s.appendChild(p)),e.col+=1),e.map.push(e.pos,e.pos+1,p),e.pos++}}else e.col+=t.length,s=document.createTextNode(a),e.map.push(e.pos,e.pos+t.length,s),w&&v<9&&(c=!0),e.pos+=t.length;if(e.trailingSpace=32==a.charCodeAt(t.length-1),n||r||i||c||o||l){n=n||\"\";r&&(n+=r),i&&(n+=i);var g=M(\"span\",[s],n,o);if(l)for(var m in l)l.hasOwnProperty(m)&&\"style\"!=m&&\"class\"!=m&&g.setAttribute(m,l[m]);return e.content.appendChild(g)}e.content.appendChild(s)}}function Jt(e,t,n,r){var i=!r&&n.widgetNode;i&&e.map.push(e.pos,e.pos+t,i),!r&&e.cm.display.input.needsContentAttribute&&(i=i||e.content.appendChild(document.createElement(\"span\"))).setAttribute(\"cm-marker\",n.id),i&&(e.cm.display.input.setUneditable(i),e.content.appendChild(i)),e.pos+=t,e.trailingSpace=!1}function en(e,t,n){this.line=t,this.rest=function(e){for(var t,n;t=It(e);)e=t.find(1,!0).line,(n=n||[]).push(e);return n}(t),this.size=this.rest?Je(Y(this.rest))-n+1:1,this.node=this.text=null,this.hidden=Ut(e,t)}function tn(e,t,n){for(var r=[],i=t;i<n;i=l){var o=new en(e.doc,$e(e.doc,i),i),l=i+o.size;r.push(o)}return r}var nn=null;function rn(e,t){var n=e.ownsGroup;if(n)try{!function(e){var t=e.delayedCallbacks,n=0;do{for(;n<t.length;n++)t[n].call(null);for(var r=0;r<e.ops.length;r++){var i=e.ops[r];if(i.cursorActivityHandlers)for(;i.cursorActivityCalled<i.cursorActivityHandlers.length;)i.cursorActivityHandlers[i.cursorActivityCalled++].call(null,i.cm)}}while(n<t.length)}(n)}finally{nn=null,t(n)}}var on=null;function ln(e,t){var n=be(e,t);if(n.length){var r,i=Array.prototype.slice.call(arguments,2);nn?r=nn.delayedCallbacks:on?r=on:(r=on=[],setTimeout(sn,0));for(var o=0;o<n.length;++o)!function(e){r.push(function(){return n[e].apply(null,i)})}(o)}}function sn(){var e=on;on=null;for(var t=0;t<e.length;++t)e[t]()}function an(e,t,n,r){for(var i=0;i<t.changes.length;i++){var o=t.changes[i];\"text\"==o?function(e,t){var n=t.text.className,r=cn(e,t);t.text==t.node&&(t.node=r.pre);t.text.parentNode.replaceChild(r.pre,t.text),t.text=r.pre,r.bgClass!=t.bgClass||r.textClass!=t.textClass?(t.bgClass=r.bgClass,t.textClass=r.textClass,hn(e,t)):n&&(t.text.className=n)}(e,t):\"gutter\"==o?dn(e,t,n,r):\"class\"==o?hn(e,t):\"widget\"==o&&function(e,t,n){t.alignable&&(t.alignable=null);for(var r=C(\"CodeMirror-linewidget\"),i=t.node.firstChild,o=void 0;i;i=o)o=i.nextSibling,r.test(i.className)&&t.node.removeChild(i);fn(e,t,n)}(e,t,r)}t.changes=null}function un(e){return e.node==e.text&&(e.node=M(\"div\",null,null,\"position: relative\"),e.text.parentNode&&e.text.parentNode.replaceChild(e.node,e.text),e.node.appendChild(e.text),w&&v<8&&(e.node.style.zIndex=2)),e.node}function cn(e,t){var n=e.display.externalMeasured;return n&&n.line==t.line?(e.display.externalMeasured=null,t.measure=n.measure,n.built):qt(e,t)}function hn(e,t){var n,r;n=e,(r=(i=t).bgClass?i.bgClass+\" \"+(i.line.bgClass||\"\"):i.line.bgClass)&&(r+=\" CodeMirror-linebackground\"),i.background?r?i.background.className=r:(i.background.parentNode.removeChild(i.background),i.background=null):r&&(e=un(i),i.background=e.insertBefore(M(\"div\",null,r),e.firstChild),n.display.input.setUneditable(i.background)),t.line.wrapClass?un(t).className=t.line.wrapClass:t.node!=t.text&&(t.node.className=\"\");var i=t.textClass?t.textClass+\" \"+(t.line.textClass||\"\"):t.line.textClass;t.text.className=i||\"\"}function dn(e,t,n,r){t.gutter&&(t.node.removeChild(t.gutter),t.gutter=null),t.gutterBackground&&(t.node.removeChild(t.gutterBackground),t.gutterBackground=null),t.line.gutterClass&&(o=un(t),t.gutterBackground=M(\"div\",null,\"CodeMirror-gutter-background \"+t.line.gutterClass,\"left: \"+(e.options.fixedGutter?r.fixedPos:-r.gutterTotalWidth)+\"px; width: \"+r.gutterTotalWidth+\"px\"),e.display.input.setUneditable(t.gutterBackground),o.insertBefore(t.gutterBackground,t.text));var i=t.line.gutterMarkers;if(e.options.lineNumbers||i){var o=un(t),l=t.gutter=M(\"div\",null,\"CodeMirror-gutter-wrapper\",\"left: \"+(e.options.fixedGutter?r.fixedPos:-r.gutterTotalWidth)+\"px\");if(e.display.input.setUneditable(l),o.insertBefore(l,t.text),t.line.gutterClass&&(l.className+=\" \"+t.line.gutterClass),!e.options.lineNumbers||i&&i[\"CodeMirror-linenumbers\"]||(t.lineNumber=l.appendChild(M(\"div\",nt(e.options,n),\"CodeMirror-linenumber CodeMirror-gutter-elt\",\"left: \"+r.gutterLeft[\"CodeMirror-linenumbers\"]+\"px; width: \"+e.display.lineNumInnerWidth+\"px\"))),i)for(var s=0;s<e.display.gutterSpecs.length;++s){var a=e.display.gutterSpecs[s].className,u=i.hasOwnProperty(a)&&i[a];u&&l.appendChild(M(\"div\",[u],\"CodeMirror-gutter-elt\",\"left: \"+r.gutterLeft[a]+\"px; width: \"+r.gutterWidth[a]+\"px\"))}}}function fn(e,t,n){if(pn(e,t.line,t,n,!0),t.rest)for(var r=0;r<t.rest.length;r++)pn(e,t.rest[r],t,n,!1)}function pn(e,t,n,r,i){if(t.widgets)for(var o=un(n),l=0,s=t.widgets;l<s.length;++l){var a=s[l],u=M(\"div\",[a.node],\"CodeMirror-linewidget\"+(a.className?\" \"+a.className:\"\"));a.handleMouseEvents||u.setAttribute(\"cm-ignore-events\",\"true\"),function(e,t,n,r){e.noHScroll&&((n.alignable||(n.alignable=[])).push(t),n=r.wrapperWidth,t.style.left=r.fixedPos+\"px\",e.coverGutter||(n-=r.gutterTotalWidth,t.style.paddingLeft=r.gutterTotalWidth+\"px\"),t.style.width=n+\"px\");e.coverGutter&&(t.style.zIndex=5,t.style.position=\"relative\",e.noHScroll||(t.style.marginLeft=-r.gutterTotalWidth+\"px\"))}(a,u,n,r),e.display.input.setUneditable(u),i&&a.above?o.insertBefore(u,n.gutter||n.text):o.appendChild(u),ln(a,\"redraw\")}}function gn(e){if(null!=e.height)return e.height;var t,n=e.doc.cm;return n?(A(document.body,e.node)||(t=\"position: relative;\",e.coverGutter&&(t+=\"margin-left: -\"+n.display.gutters.offsetWidth+\"px;\"),e.noHScroll&&(t+=\"width: \"+n.display.wrapper.clientWidth+\"px;\"),T(n.display.measure,M(\"div\",[e.node],null,t))),e.height=e.node.parentNode.offsetHeight):0}function mn(e,t){for(var n=Oe(t);n!=e.wrapper;n=n.parentNode)if(!n||1==n.nodeType&&\"true\"==n.getAttribute(\"cm-ignore-events\")||n.parentNode==e.sizer&&n!=e.mover)return 1}function vn(e){return e.lineSpace.offsetTop}function yn(e){return e.mover.offsetHeight-e.lineSpace.offsetHeight}function bn(e){if(e.cachedPaddingH)return e.cachedPaddingH;var t=T(e.measure,M(\"pre\",\"x\",\"CodeMirror-line-like\")),t=window.getComputedStyle?window.getComputedStyle(t):t.currentStyle,t={left:parseInt(t.paddingLeft),right:parseInt(t.paddingRight)};return isNaN(t.left)||isNaN(t.right)||(e.cachedPaddingH=t),t}function wn(e){return z-e.display.nativeBarWidth}function xn(e){return e.display.scroller.clientWidth-wn(e)-e.display.barWidth}function Cn(e){return e.display.scroller.clientHeight-wn(e)-e.display.barHeight}function Sn(e,t,n){if(e.line==t)return{map:e.measure.map,cache:e.measure.cache};for(var r=0;r<e.rest.length;r++)if(e.rest[r]==t)return{map:e.measure.maps[r],cache:e.measure.caches[r]};for(var i=0;i<e.rest.length;i++)if(Je(e.rest[i])>n)return{map:e.measure.maps[i],cache:e.measure.caches[i],before:!0}}function Ln(e,t,n,r){return Mn(e,Tn(e,t),n,r)}function kn(e,t){if(t>=e.display.viewFrom&&t<e.display.viewTo)return e.display.view[er(e,t)];e=e.display.externalMeasured;return e&&t>=e.lineN&&t<e.lineN+e.size?e:void 0}function Tn(e,t){var n,r,i=Je(t),o=kn(e,i);o&&!o.text?o=null:o&&o.changes&&(an(e,o,i,$n(e)),e.curOp.forceUpdate=!0),o||(n=e,e=Je(r=zt(r=t)),(r=n.display.externalMeasured=new en(n.doc,r,e)).lineN=e,e=r.built=qt(n,r),r.text=e.pre,T(n.display.lineMeasure,e.pre),o=r);i=Sn(o,t,i);return{line:t,view:o,rect:null,map:i.map,cache:i.cache,before:i.before,hasHeights:!1}}function Mn(e,t,n,r,i){t.before&&(n=-1);var o,l=n+(r||\"\");return t.cache.hasOwnProperty(l)?o=t.cache[l]:(t.rect||(t.rect=t.view.text.getBoundingClientRect()),t.hasHeights||(function(e,t,n){var r=e.options.lineWrapping,e=r&&xn(e);if(!t.measure.heights||r&&t.measure.width!=e){var i=t.measure.heights=[];if(r){t.measure.width=e;for(var o=t.text.firstChild.getClientRects(),l=0;l<o.length-1;l++){var s=o[l],a=o[l+1];2<Math.abs(s.bottom-a.bottom)&&i.push((s.bottom+a.top)/2-n.top)}}i.push(n.bottom-n.top)}}(e,t.view,t.rect),t.hasHeights=!0),(o=function(e,t,n,r){var i,o=On(t.map,n,r),l=o.node,s=o.start,a=o.end,u=o.collapse;if(3==l.nodeType){for(var c=0;c<4;c++){for(;s&&ne(t.line.text.charAt(o.coverStart+s));)--s;for(;o.coverStart+a<o.coverEnd&&ne(t.line.text.charAt(o.coverStart+a));)++a;if((i=w&&v<9&&0==s&&a==o.coverEnd-o.coverStart?l.parentNode.getBoundingClientRect():function(e,t){var n=An;if(\"left\"==t)for(var r=0;r<e.length&&(n=e[r]).left==n.right;r++);else for(var i=e.length-1;0<=i&&(n=e[i]).left==n.right;i--);return n}(S(l,s,a).getClientRects(),r)).left||i.right||0==s)break;a=s,--s,u=\"right\"}w&&v<11&&(i=function(e,t){if(!window.screen||null==screen.logicalXDPI||screen.logicalXDPI==screen.deviceXDPI||!function(e){if(null!=Re)return Re;var e=(t=T(e,M(\"span\",\"x\"))).getBoundingClientRect(),t=S(t,0,1).getBoundingClientRect();return Re=1<Math.abs(e.left-t.left)}(e))return t;var n=screen.logicalXDPI/screen.deviceXDPI,e=screen.logicalYDPI/screen.deviceYDPI;return{left:t.left*n,right:t.right*n,top:t.top*e,bottom:t.bottom*e}}(e.display.measure,i))}else 0<s&&(u=r=\"right\"),i=e.options.lineWrapping&&1<(g=l.getClientRects()).length?g[\"right\"==r?g.length-1:0]:l.getBoundingClientRect();!(w&&v<9)||s||i&&(i.left||i.right)||(m=l.parentNode.getClientRects()[0],i=m?{left:m.left,right:m.left+_n(e.display),top:m.top,bottom:m.bottom}:An);for(var h=i.top-t.rect.top,n=i.bottom-t.rect.top,d=(h+n)/2,f=t.view.measure.heights,p=0;p<f.length-1&&!(d<f[p]);p++);var g=p?f[p-1]:0,m=f[p],m={left:(\"right\"==u?i.right:i.left)-t.rect.left,right:(\"left\"==u?i.left:i.right)-t.rect.left,top:g,bottom:m};i.left||i.right||(m.bogus=!0);e.options.singleCursorHeightPerLine||(m.rtop=h,m.rbottom=n);return m}(e,t,n,r)).bogus||(t.cache[l]=o)),{left:o.left,right:o.right,top:i?o.rtop:o.top,bottom:i?o.rbottom:o.bottom}}var Nn,An={left:0,right:0,top:0,bottom:0};function On(e,t,n){for(var r,i,o,l,s,a,u=0;u<e.length;u+=3)if(s=e[u],a=e[u+1],t<s?(i=0,o=1,l=\"left\"):t<a?o=(i=t-s)+1:(u==e.length-3||t==a&&e[u+3]>t)&&(i=(o=a-s)-1,a<=t&&(l=\"right\")),null!=i){if(r=e[u+2],s==a&&n==(r.insertLeft?\"left\":\"right\")&&(l=n),\"left\"==n&&0==i)for(;u&&e[u-2]==e[u-3]&&e[u-1].insertLeft;)r=e[2+(u-=3)],l=\"left\";if(\"right\"==n&&i==a-s)for(;u<e.length-3&&e[u+3]==e[u+4]&&!e[u+5].insertLeft;)r=e[(u+=3)+2],l=\"right\";break}return{node:r,start:i,end:o,collapse:l,coverStart:s,coverEnd:a}}function Dn(e){if(e.measure&&(e.measure.cache={},e.measure.heights=null,e.rest))for(var t=0;t<e.rest.length;t++)e.measure.caches[t]={}}function Wn(e){e.display.externalMeasure=null,k(e.display.lineMeasure);for(var t=0;t<e.display.view.length;t++)Dn(e.display.view[t])}function Hn(e){Wn(e),e.display.cachedCharWidth=e.display.cachedTextHeight=e.display.cachedPaddingH=null,e.options.lineWrapping||(e.display.maxLineChanged=!0),e.display.lineNumChars=null}function Fn(){return o&&a?-(document.body.getBoundingClientRect().left-parseInt(getComputedStyle(document.body).marginLeft)):window.pageXOffset||(document.documentElement||document.body).scrollLeft}function En(){return o&&a?-(document.body.getBoundingClientRect().top-parseInt(getComputedStyle(document.body).marginTop)):window.pageYOffset||(document.documentElement||document.body).scrollTop}function Pn(e){var t=0;if(e.widgets)for(var n=0;n<e.widgets.length;++n)e.widgets[n].above&&(t+=gn(e.widgets[n]));return t}function In(e,t,n,r,i){if(i||(i=Pn(t),n.top+=i,n.bottom+=i),\"line\"==r)return n;r=r||\"local\";t=Vt(t);return\"local\"==r?t+=vn(e.display):t-=e.display.viewOffset,\"page\"!=r&&\"window\"!=r||(t+=(e=e.display.lineSpace.getBoundingClientRect()).top+(\"window\"==r?0:En()),r=e.left+(\"window\"==r?0:Fn()),n.left+=r,n.right+=r),n.top+=t,n.bottom+=t,n}function Rn(e,t,n){if(\"div\"==n)return t;var r=t.left,t=t.top;\"page\"==n?(r-=Fn(),t-=En()):\"local\"!=n&&n||(r+=(n=e.display.sizer.getBoundingClientRect()).left,t+=n.top);e=e.display.lineSpace.getBoundingClientRect();return{left:r-e.left,top:t-e.top}}function zn(e,t,n,r,i){return In(e,r=r||$e(e.doc,t.line),Ln(e,r,t.ch,i),n)}function Bn(n,e,r,i,o,l){function s(e,t){e=Mn(n,o,e,t?\"right\":\"left\",l);return t?e.left=e.right:e.right=e.left,In(n,i,e,r)}i=i||$e(n.doc,e.line),o=o||Tn(n,i);var a=me(i,n.doc.direction),t=e.ch,u=e.sticky;if(t>=i.text.length?(t=i.text.length,u=\"before\"):t<=0&&(t=0,u=\"after\"),!a)return s(\"before\"==u?t-1:t,\"before\"==u);function c(e,t,n){return s(n?e-1:e,1==a[t].level!=n)}var h=le(a,t,u),e=oe,h=c(t,h,\"before\"==u);return null!=e&&(h.other=c(t,e,\"before\"!=u)),h}function Gn(e,t){var n=0;t=ct(e.doc,t),e.options.lineWrapping||(n=_n(e.display)*t.ch);t=$e(e.doc,t.line),e=Vt(t)+vn(e.display);return{left:n,right:n,top:e,bottom:e+t.height}}function Un(e,t,n,r,i){n=rt(e,t,n);return n.xRel=i,r&&(n.outside=r),n}function Vn(e,t,n){var r=e.doc;if((n+=e.display.viewOffset)<0)return Un(r.first,0,null,-1,-1);var i=et(r,n),o=r.first+r.size-1;if(o<i)return Un(r.first+r.size-1,$e(r,o).text.length,null,1,1);t<0&&(t=0);for(var l=$e(r,i);;){var s=function(n,e,t,r,i){i-=Vt(e);var o=Tn(n,e),l=Pn(e),s=0,a=e.text.length,u=!0,c=me(e,n.doc.direction);c&&(f=(n.options.lineWrapping?function(e,t,n,r,i,o,l){var l=Kn(e,t,r,l),s=l.begin,a=l.end;/\\s/.test(t.text.charAt(a-1))&&a--;for(var u=null,c=null,h=0;h<i.length;h++){var d,f=i[h];f.from>=a||f.to<=s||(d=1!=f.level,d=Mn(e,r,d?Math.min(a,f.to)-1:Math.max(s,f.from)).right,d=d<o?o-d+1e9:d-o,(!u||d<c)&&(u=f,c=d))}u=u||i[i.length-1];u.from<s&&(u={from:s,to:u.to,level:u.level});u.to>a&&(u={from:u.from,to:a,level:u.level});return u}:function(n,r,i,o,l,s,a){var e=ie(function(e){var t=l[e],e=1!=t.level;return Xn(Bn(n,rt(i,e?t.to:t.from,e?\"before\":\"after\"),\"line\",r,o),s,a,!0)},0,l.length-1),t=l[e];{var u;0<e&&(u=1!=t.level,Xn(u=Bn(n,rt(i,u?t.from:t.to,u?\"after\":\"before\"),\"line\",r,o),s,a,!0)&&u.top>a&&(t=l[e-1]))}return t})(n,e,t,o,c,r,i),u=1!=f.level,s=u?f.from:f.to-1,a=u?f.to:f.from-1);var h=null,d=null,c=ie(function(e){var t=Mn(n,o,e);return t.top+=l,t.bottom+=l,Xn(t,r,i,!1)&&(t.top<=i&&t.left<=r&&(h=e,d=t),1)},s,a),f=!1;{var p,g;d?(p=r-d.left<d.right-r,c=h+((g=p==u)?0:1),g=g?\"after\":\"before\",p=p?d.left:d.right):(u||c!=a&&c!=s||c++,g=0==c||c!=e.text.length&&Mn(n,o,c-(u?1:0)).bottom+l<=i==u?\"after\":\"before\",u=Bn(n,rt(t,c,g),\"line\",e,o),p=u.left,f=i<u.top?-1:i>=u.bottom?1:0)}return c=re(e.text,c,1),Un(t,c,g,f,r-p)}(e,l,i,t,n),a=function(e,t){var n,r=kt&&e.markedSpans;if(r)for(var i=0;i<r.length;++i){var o=r[i];o.marker.collapsed&&(null==o.from||o.from<t)&&(null==o.to||o.to>t)&&(!n||Ft(n,o.marker)<0)&&(n=o.marker)}return n}(l,s.ch+(0<s.xRel||0<s.outside?1:0));if(!a)return s;a=a.find(1);if(a.line==i)return a;l=$e(r,i=a.line)}}function Kn(t,e,n,r){r-=Pn(e);var i=e.text.length,e=ie(function(e){return Mn(t,n,e-1).bottom<=r},i,0);return{begin:e,end:i=ie(function(e){return Mn(t,n,e).top>r},e,i)}}function jn(e,t,n,r){return Kn(e,t,n=n||Tn(e,t),In(e,t,Mn(e,n,r),\"line\").top)}function Xn(e,t,n,r){return!(e.bottom<=n)&&(e.top>n||(r?e.left:e.right)>t)}function Yn(e){if(null!=e.cachedTextHeight)return e.cachedTextHeight;if(null==Nn){Nn=M(\"pre\",null,\"CodeMirror-line-like\");for(var t=0;t<49;++t)Nn.appendChild(document.createTextNode(\"x\")),Nn.appendChild(M(\"br\"));Nn.appendChild(document.createTextNode(\"x\"))}T(e.measure,Nn);var n=Nn.offsetHeight/50;return 3<n&&(e.cachedTextHeight=n),k(e.measure),n||1}function _n(e){if(null!=e.cachedCharWidth)return e.cachedCharWidth;var t=M(\"span\",\"xxxxxxxxxx\"),n=M(\"pre\",[t],\"CodeMirror-line-like\");T(e.measure,n);t=t.getBoundingClientRect(),t=(t.right-t.left)/10;return 2<t&&(e.cachedCharWidth=t),t||10}function $n(e){for(var t=e.display,n={},r={},i=t.gutters.clientLeft,o=t.gutters.firstChild,l=0;o;o=o.nextSibling,++l){var s=e.display.gutterSpecs[l].className;n[s]=o.offsetLeft+o.clientLeft+i,r[s]=o.clientWidth}return{fixedPos:qn(t),gutterTotalWidth:t.gutters.offsetWidth,gutterLeft:n,gutterWidth:r,wrapperWidth:t.wrapper.clientWidth}}function qn(e){return e.scroller.getBoundingClientRect().left-e.sizer.getBoundingClientRect().left}function Zn(r){var i=Yn(r.display),o=r.options.lineWrapping,l=o&&Math.max(5,r.display.scroller.clientWidth/_n(r.display)-3);return function(e){if(Ut(r.doc,e))return 0;var t=0;if(e.widgets)for(var n=0;n<e.widgets.length;n++)e.widgets[n].height&&(t+=e.widgets[n].height);return o?t+(Math.ceil(e.text.length/l)||1)*i:t+i}}function Qn(e){var t=e.doc,n=Zn(e);t.iter(function(e){var t=n(e);t!=e.height&&Qe(e,t)})}function Jn(e,t,n,r){var i=e.display;if(!n&&\"true\"==Oe(t).getAttribute(\"cm-not-content\"))return null;var o,l,s=i.lineSpace.getBoundingClientRect();try{o=t.clientX-s.left,l=t.clientY-s.top}catch(e){return null}var a,i=Vn(e,o,l);return r&&0<i.xRel&&(a=$e(e.doc,i.line).text).length==i.ch&&(a=P(a,a.length,e.options.tabSize)-a.length,i=rt(i.line,Math.max(0,Math.round((o-bn(e.display).left)/_n(e.display))-a))),i}function er(e,t){if(t>=e.display.viewTo)return null;if((t-=e.display.viewFrom)<0)return null;for(var n=e.display.view,r=0;r<n.length;r++)if((t-=n[r].size)<0)return r}function tr(e,t,n,r){null==t&&(t=e.doc.first),null==n&&(n=e.doc.first+e.doc.size),r=r||0;var i,o,l=e.display;r&&n<l.viewTo&&(null==l.updateLineNumbers||l.updateLineNumbers>t)&&(l.updateLineNumbers=t),e.curOp.viewChanged=!0,t>=l.viewTo?kt&&Bt(e.doc,t)<l.viewTo&&rr(e):n<=l.viewFrom?kt&&Gt(e.doc,n+r)>l.viewFrom?rr(e):(l.viewFrom+=r,l.viewTo+=r):t<=l.viewFrom&&n>=l.viewTo?rr(e):t<=l.viewFrom?(i=ir(e,n,n+r,1))?(l.view=l.view.slice(i.index),l.viewFrom=i.lineN,l.viewTo+=r):rr(e):n>=l.viewTo?(o=ir(e,t,t,-1))?(l.view=l.view.slice(0,o.index),l.viewTo=o.lineN):rr(e):(i=ir(e,t,t,-1),o=ir(e,n,n+r,1),i&&o?(l.view=l.view.slice(0,i.index).concat(tn(e,i.lineN,o.lineN)).concat(l.view.slice(o.index)),l.viewTo+=r):rr(e));e=l.externalMeasured;e&&(n<e.lineN?e.lineN+=r:t<e.lineN+e.size&&(l.externalMeasured=null))}function nr(e,t,n){e.curOp.viewChanged=!0;var r=e.display,i=e.display.externalMeasured;i&&t>=i.lineN&&t<i.lineN+i.size&&(r.externalMeasured=null),t<r.viewFrom||t>=r.viewTo||(null==(t=r.view[er(e,t)]).node||-1==R(t=t.changes||(t.changes=[]),n)&&t.push(n))}function rr(e){e.display.viewFrom=e.display.viewTo=e.doc.first,e.display.view=[],e.display.viewOffset=0}function ir(e,t,n,r){var i,o=er(e,t),l=e.display.view;if(!kt||n==e.doc.first+e.doc.size)return{index:o,lineN:n};for(var s=e.display.viewFrom,a=0;a<o;a++)s+=l[a].size;if(s!=t){if(0<r){if(o==l.length-1)return null;i=s+l[o].size-t,o++}else i=s-t;t+=i,n+=i}for(;Bt(e.doc,n)!=n;){if(o==(r<0?0:l.length-1))return null;n+=r*l[o-(r<0?1:0)].size,o+=r}return{index:o,lineN:n}}function or(e){for(var t=e.display.view,n=0,r=0;r<t.length;r++){var i=t[r];i.hidden||i.node&&!i.changes||++n}return n}function lr(e){e.display.input.showSelection(e.display.input.prepareSelection())}function sr(e,t){void 0===t&&(t=!0);for(var n,r,i=e.doc,o={},l=o.cursors=document.createDocumentFragment(),s=o.selection=document.createDocumentFragment(),a=0;a<i.sel.ranges.length;a++)!t&&a==i.sel.primIndex||((n=i.sel.ranges[a]).from().line>=e.display.viewTo||n.to().line<e.display.viewFrom||(((r=n.empty())||e.options.showCursorWhenSelecting)&&ar(e,n.head,l),r||function(i,e,t){var n=i.display,o=i.doc,l=document.createDocumentFragment(),r=bn(i.display),S=r.left,L=Math.max(n.sizerWidth,xn(i)-n.sizer.offsetLeft)-r.right,k=\"ltr\"==o.direction;function T(e,t,n,r){t<0&&(t=0),t=Math.round(t),r=Math.round(r),l.appendChild(M(\"div\",null,\"CodeMirror-selected\",\"position: absolute; left: \"+e+\"px;\\n top: \"+t+\"px; width: \"+(null==n?L-e:n)+\"px;\\n height: \"+(r-t)+\"px\"))}function s(n,g,m){var v,y,r=$e(o,n),b=r.text.length;function w(e,t){return zn(i,rt(n,e),\"div\",r,t)}function x(e,t,n){e=jn(i,r,null,e),t=\"ltr\"==t==(\"after\"==n)?\"left\":\"right\";return w(\"after\"==n?e.begin:e.end-(/\\s/.test(r.text.charAt(e.end-1))?2:1),t)[t]}var C=me(r,o.direction);return function(e,t,n,r){if(!e)return r(t,n,\"ltr\",0);for(var i=!1,o=0;o<e.length;++o){var l=e[o];(l.from<n&&l.to>t||t==n&&l.to==t)&&(r(Math.max(l.from,t),Math.min(l.to,n),1==l.level?\"rtl\":\"ltr\",o),i=!0)}i||r(t,n,\"ltr\")}(C,g||0,null==m?b:m,function(e,t,n,r){var i,o,l,s,a=\"ltr\"==n,u=w(e,a?\"left\":\"right\"),c=w(t-1,a?\"right\":\"left\"),h=null==g&&0==e,d=null==m&&t==b,f=0==r,p=!C||r==C.length-1;c.top-u.top<=3?(i=(k?d:h)&&p,r=(k?h:d)&&f?S:(a?u:c).left,i=i?L:(a?c:u).right,T(r,u.top,i-r,u.bottom)):(n=a?(o=k&&h&&f?S:u.left,l=k?L:x(e,n,\"before\"),s=k?S:x(t,n,\"after\"),k&&d&&p?L:c.right):(o=k?x(e,n,\"before\"):S,l=!k&&h&&f?L:u.right,s=!k&&d&&p?S:c.left,k?x(t,n,\"after\"):L),T(o,u.top,l-o,u.bottom),u.bottom<c.top&&T(S,u.bottom,null,c.top),T(s,c.top,n-s,c.bottom)),(!v||ur(u,v)<0)&&(v=u),ur(c,v)<0&&(v=c),(!y||ur(u,y)<0)&&(y=u),ur(c,y)<0&&(y=c)}),{start:v,end:y}}var a=e.from(),n=e.to();a.line==n.line?s(a.line,a.ch,n.ch):(r=$e(o,a.line),e=$e(o,n.line),e=zt(r)==zt(e),r=s(a.line,a.ch,e?r.text.length+1:null).end,n=s(n.line,e?0:null,n.ch).start,e&&(r.top<n.top-2?(T(r.right,r.top,null,r.bottom),T(S,n.top,n.left,n.bottom)):T(r.right,r.top,n.left-r.right,r.bottom)),r.bottom<n.top&&T(S,r.bottom,null,n.top));t.appendChild(l)}(e,n,s)));return o}function ar(e,t,n){var r=Bn(e,t,\"div\",null,null,!e.options.singleCursorHeightPerLine),t=n.appendChild(M(\"div\",\" \",\"CodeMirror-cursor\"));t.style.left=r.left+\"px\",t.style.top=r.top+\"px\",t.style.height=Math.max(0,r.bottom-r.top)*e.options.cursorHeight+\"px\",r.other&&((n=n.appendChild(M(\"div\",\" \",\"CodeMirror-cursor CodeMirror-secondarycursor\"))).style.display=\"\",n.style.left=r.other.left+\"px\",n.style.top=r.other.top+\"px\",n.style.height=.85*(r.other.bottom-r.other.top)+\"px\")}function ur(e,t){return e.top-t.top||e.left-t.left}function cr(e){var t,n;e.state.focused&&(t=e.display,clearInterval(t.blinker),n=!0,t.cursorDiv.style.visibility=\"\",0<e.options.cursorBlinkRate?t.blinker=setInterval(function(){e.hasFocus()||pr(e),t.cursorDiv.style.visibility=(n=!n)?\"\":\"hidden\"},e.options.cursorBlinkRate):e.options.cursorBlinkRate<0&&(t.cursorDiv.style.visibility=\"hidden\"))}function hr(e){e.hasFocus()||(e.display.input.focus(),e.state.focused||fr(e))}function dr(e){e.state.delayingBlurEvent=!0,setTimeout(function(){e.state.delayingBlurEvent&&(e.state.delayingBlurEvent=!1,e.state.focused&&pr(e))},100)}function fr(e,t){e.state.delayingBlurEvent&&!e.state.draggingText&&(e.state.delayingBlurEvent=!1),\"nocursor\"!=e.options.readOnly&&(e.state.focused||(xe(e,\"focus\",e,t),e.state.focused=!0,D(e.display.wrapper,\"CodeMirror-focused\"),e.curOp||e.display.selForContextMenu==e.doc.sel||(e.display.input.reset(),f&&setTimeout(function(){return e.display.input.reset(!0)},20)),e.display.input.receivedFocus()),cr(e))}function pr(e,t){e.state.delayingBlurEvent||(e.state.focused&&(xe(e,\"blur\",e,t),e.state.focused=!1,L(e.display.wrapper,\"CodeMirror-focused\")),clearInterval(e.display.blinker),setTimeout(function(){e.state.focused||(e.display.shift=!1)},150))}function gr(e){for(var t=e.display,n=t.lineDiv.offsetTop,r=0;r<t.view.length;r++){var i,o=t.view[r],l=e.options.lineWrapping,s=void 0,a=0;if(!o.hidden){w&&v<8?(s=(i=o.node.offsetTop+o.node.offsetHeight)-n,n=i):(s=(u=o.node.getBoundingClientRect()).bottom-u.top,!l&&o.text.firstChild&&(a=o.text.firstChild.getBoundingClientRect().right-u.left-1));var u=o.line.height-s;if((.005<u||u<-.005)&&(Qe(o.line,s),mr(o.line),o.rest))for(var c=0;c<o.rest.length;c++)mr(o.rest[c]);a>e.display.sizerWidth&&((a=Math.ceil(a/_n(e.display)))>e.display.maxLineLength&&(e.display.maxLineLength=a,e.display.maxLine=o.line,e.display.maxLineChanged=!0))}}}function mr(e){if(e.widgets)for(var t=0;t<e.widgets.length;++t){var n=e.widgets[t],r=n.node.parentNode;r&&(n.height=r.offsetHeight)}}function vr(e,t,n){var r=n&&null!=n.top?Math.max(0,n.top):e.scroller.scrollTop,r=Math.floor(r-vn(e)),i=n&&null!=n.bottom?n.bottom:r+e.wrapper.clientHeight,o=et(t,r),r=et(t,i);return n&&n.ensure&&(i=n.ensure.from.line,n=n.ensure.to.line,i<o?r=et(t,Vt($e(t,o=i))+e.wrapper.clientHeight):Math.min(n,t.lastLine())>=r&&(o=et(t,Vt($e(t,n))-e.wrapper.clientHeight),r=n)),{from:o,to:Math.max(r,o+1)}}function yr(e,t){var n=e.display,r=Yn(e.display);t.top<0&&(t.top=0);var i=(e.curOp&&null!=e.curOp.scrollTop?e.curOp:n.scroller).scrollTop,o=Cn(e),l={};t.bottom-t.top>o&&(t.bottom=t.top+o);var s=e.doc.height+yn(n),a=t.top<r,r=t.bottom>s-r;t.top<i?l.scrollTop=a?0:t.top:t.bottom>i+o&&((u=Math.min(t.top,(r?s:t.bottom)-o))!=i&&(l.scrollTop=u));var i=e.options.fixedGutter?0:n.gutters.offsetWidth,u=e.curOp&&null!=e.curOp.scrollLeft?e.curOp.scrollLeft:n.scroller.scrollLeft-i,e=xn(e)-n.gutters.offsetWidth,n=t.right-t.left>e;return n&&(t.right=t.left+e),t.left<10?l.scrollLeft=0:t.left<u?l.scrollLeft=Math.max(0,t.left+i-(n?0:10)):t.right>e+u-3&&(l.scrollLeft=t.right+(n?0:10)-e),l}function br(e,t){null!=t&&(Cr(e),e.curOp.scrollTop=(null==e.curOp.scrollTop?e.doc:e.curOp).scrollTop+t)}function wr(e){Cr(e);var t=e.getCursor();e.curOp.scrollToPos={from:t,to:t,margin:e.options.cursorScrollMargin}}function xr(e,t,n){null==t&&null==n||Cr(e),null!=t&&(e.curOp.scrollLeft=t),null!=n&&(e.curOp.scrollTop=n)}function Cr(e){var t=e.curOp.scrollToPos;t&&(e.curOp.scrollToPos=null,Sr(e,Gn(e,t.from),Gn(e,t.to),t.margin))}function Sr(e,t,n,r){r=yr(e,{left:Math.min(t.left,n.left),top:Math.min(t.top,n.top)-r,right:Math.max(t.right,n.right),bottom:Math.max(t.bottom,n.bottom)+r});xr(e,r.scrollLeft,r.scrollTop)}function Lr(e,t){Math.abs(e.doc.scrollTop-t)<2||(d||Kr(e,{top:t}),kr(e,t,!0),d&&Kr(e),zr(e,100))}function kr(e,t,n){t=Math.max(0,Math.min(e.display.scroller.scrollHeight-e.display.scroller.clientHeight,t)),e.display.scroller.scrollTop==t&&!n||(e.doc.scrollTop=t,e.display.scrollbars.setScrollTop(t),e.display.scroller.scrollTop!=t&&(e.display.scroller.scrollTop=t))}function Tr(e,t,n,r){t=Math.max(0,Math.min(t,e.display.scroller.scrollWidth-e.display.scroller.clientWidth)),(n?t==e.doc.scrollLeft:Math.abs(e.doc.scrollLeft-t)<2)&&!r||(e.doc.scrollLeft=t,Yr(e),e.display.scroller.scrollLeft!=t&&(e.display.scroller.scrollLeft=t),e.display.scrollbars.setScrollLeft(t))}function Mr(e){var t=e.display,n=t.gutters.offsetWidth,r=Math.round(e.doc.height+yn(e.display));return{clientHeight:t.scroller.clientHeight,viewHeight:t.wrapper.clientHeight,scrollWidth:t.scroller.scrollWidth,clientWidth:t.scroller.clientWidth,viewWidth:t.wrapper.clientWidth,barLeft:e.options.fixedGutter?n:0,docHeight:r,scrollHeight:r+wn(e)+t.barHeight,nativeBarWidth:t.nativeBarWidth,gutterWidth:n}}e=function(e,t,n){this.cm=n;var r=this.vert=M(\"div\",[M(\"div\",null,null,\"min-width: 1px\")],\"CodeMirror-vscrollbar\"),i=this.horiz=M(\"div\",[M(\"div\",null,null,\"height: 100%; min-height: 1px\")],\"CodeMirror-hscrollbar\");r.tabIndex=i.tabIndex=-1,e(r),e(i),ye(r,\"scroll\",function(){r.clientHeight&&t(r.scrollTop,\"vertical\")}),ye(i,\"scroll\",function(){i.clientWidth&&t(i.scrollLeft,\"horizontal\")}),this.checkedZeroWidth=!1,w&&v<8&&(this.horiz.style.minHeight=this.vert.style.minWidth=\"18px\")};e.prototype.update=function(e){var t,n=e.scrollWidth>e.clientWidth+1,r=e.scrollHeight>e.clientHeight+1,i=e.nativeBarWidth;return r?(this.vert.style.display=\"block\",this.vert.style.bottom=n?i+\"px\":\"0\",t=e.viewHeight-(n?i:0),this.vert.firstChild.style.height=Math.max(0,e.scrollHeight-e.clientHeight+t)+\"px\"):(this.vert.style.display=\"\",this.vert.firstChild.style.height=\"0\"),n?(this.horiz.style.display=\"block\",this.horiz.style.right=r?i+\"px\":\"0\",this.horiz.style.left=e.barLeft+\"px\",t=e.viewWidth-e.barLeft-(r?i:0),this.horiz.firstChild.style.width=Math.max(0,e.scrollWidth-e.clientWidth+t)+\"px\"):(this.horiz.style.display=\"\",this.horiz.firstChild.style.width=\"0\"),!this.checkedZeroWidth&&0<e.clientHeight&&(0==i&&this.zeroWidthHack(),this.checkedZeroWidth=!0),{right:r?i:0,bottom:n?i:0}},e.prototype.setScrollLeft=function(e){this.horiz.scrollLeft!=e&&(this.horiz.scrollLeft=e),this.disableHoriz&&this.enableZeroWidthBar(this.horiz,this.disableHoriz,\"horiz\")},e.prototype.setScrollTop=function(e){this.vert.scrollTop!=e&&(this.vert.scrollTop=e),this.disableVert&&this.enableZeroWidthBar(this.vert,this.disableVert,\"vert\")},e.prototype.zeroWidthHack=function(){var e=g&&!l?\"12px\":\"18px\";this.horiz.style.height=this.vert.style.width=e,this.horiz.style.pointerEvents=this.vert.style.pointerEvents=\"none\",this.disableHoriz=new I,this.disableVert=new I},e.prototype.enableZeroWidthBar=function(n,r,i){n.style.pointerEvents=\"auto\",r.set(1e3,function e(){var t=n.getBoundingClientRect();(\"vert\"==i?document.elementFromPoint(t.right-1,(t.top+t.bottom)/2):document.elementFromPoint((t.right+t.left)/2,t.bottom-1))!=n?n.style.pointerEvents=\"none\":r.set(1e3,e)})},e.prototype.clear=function(){var e=this.horiz.parentNode;e.removeChild(this.horiz),e.removeChild(this.vert)};r=function(){};function Nr(e,t){t=t||Mr(e);var n=e.display.barWidth,r=e.display.barHeight;Ar(e,t);for(var i=0;i<4&&n!=e.display.barWidth||r!=e.display.barHeight;i++)n!=e.display.barWidth&&e.options.lineWrapping&&gr(e),Ar(e,Mr(e)),n=e.display.barWidth,r=e.display.barHeight}function Ar(e,t){var n=e.display,r=n.scrollbars.update(t);n.sizer.style.paddingRight=(n.barWidth=r.right)+\"px\",n.sizer.style.paddingBottom=(n.barHeight=r.bottom)+\"px\",n.heightForcer.style.borderBottom=r.bottom+\"px solid transparent\",r.right&&r.bottom?(n.scrollbarFiller.style.display=\"block\",n.scrollbarFiller.style.height=r.bottom+\"px\",n.scrollbarFiller.style.width=r.right+\"px\"):n.scrollbarFiller.style.display=\"\",r.bottom&&e.options.coverGutterNextToScrollbar&&e.options.fixedGutter?(n.gutterFiller.style.display=\"block\",n.gutterFiller.style.height=r.bottom+\"px\",n.gutterFiller.style.width=t.gutterWidth+\"px\"):n.gutterFiller.style.display=\"\"}r.prototype.update=function(){return{bottom:0,right:0}},r.prototype.setScrollLeft=function(){},r.prototype.setScrollTop=function(){},r.prototype.clear=function(){};var Or={native:e,null:r};function Dr(n){n.display.scrollbars&&(n.display.scrollbars.clear(),n.display.scrollbars.addClass&&L(n.display.wrapper,n.display.scrollbars.addClass)),n.display.scrollbars=new Or[n.options.scrollbarStyle](function(e){n.display.wrapper.insertBefore(e,n.display.scrollbarFiller),ye(e,\"mousedown\",function(){n.state.focused&&setTimeout(function(){return n.display.input.focus()},0)}),e.setAttribute(\"cm-not-content\",\"true\")},function(e,t){(\"horizontal\"==t?Tr:Lr)(n,e)},n),n.display.scrollbars.addClass&&D(n.display.wrapper,n.display.scrollbars.addClass)}var Wr=0;function Hr(e){e.curOp={cm:e,viewChanged:!1,startHeight:e.doc.height,forceUpdate:!1,updateInput:0,typing:!1,changeObjs:null,cursorActivityHandlers:null,cursorActivityCalled:0,selectionChanged:!1,updateMaxLine:!1,scrollLeft:null,scrollTop:null,scrollToPos:null,focus:!1,id:++Wr},e=e.curOp,nn?nn.ops.push(e):e.ownsGroup=nn={ops:[e],delayedCallbacks:[]}}function Fr(e){e=e.curOp;e&&rn(e,function(e){for(var t=0;t<e.ops.length;t++)e.ops[t].cm.curOp=null;!function(e){for(var t=e.ops,n=0;n<t.length;n++)!function(e){var t=e.cm,n=t.display;(function(e){var t=e.display;!t.scrollbarsClipped&&t.scroller.offsetWidth&&(t.nativeBarWidth=t.scroller.offsetWidth-t.scroller.clientWidth,t.heightForcer.style.height=wn(e)+\"px\",t.sizer.style.marginBottom=-t.nativeBarWidth+\"px\",t.sizer.style.borderRightWidth=wn(e)+\"px\",t.scrollbarsClipped=!0)})(t),e.updateMaxLine&&jt(t);e.mustUpdate=e.viewChanged||e.forceUpdate||null!=e.scrollTop||e.scrollToPos&&(e.scrollToPos.from.line<n.viewFrom||e.scrollToPos.to.line>=n.viewTo)||n.maxLineChanged&&t.options.lineWrapping,e.update=e.mustUpdate&&new Gr(t,e.mustUpdate&&{top:e.scrollTop,ensure:e.scrollToPos},e.forceUpdate)}(t[n]);for(var r=0;r<t.length;r++)!function(e){e.updatedDisplay=e.mustUpdate&&Ur(e.cm,e.update)}(t[r]);for(var i=0;i<t.length;i++)!function(e){var t=e.cm,n=t.display;e.updatedDisplay&&gr(t);e.barMeasure=Mr(t),n.maxLineChanged&&!t.options.lineWrapping&&(e.adjustWidthTo=Ln(t,n.maxLine,n.maxLine.text.length).left+3,t.display.sizerWidth=e.adjustWidthTo,e.barMeasure.scrollWidth=Math.max(n.scroller.clientWidth,n.sizer.offsetLeft+e.adjustWidthTo+wn(t)+t.display.barWidth),e.maxScrollLeft=Math.max(0,n.sizer.offsetLeft+e.adjustWidthTo-xn(t)));(e.updatedDisplay||e.selectionChanged)&&(e.preparedSelection=n.input.prepareSelection())}(t[i]);for(var o=0;o<t.length;o++)!function(e){var t=e.cm;null!=e.adjustWidthTo&&(t.display.sizer.style.minWidth=e.adjustWidthTo+\"px\",e.maxScrollLeft<t.doc.scrollLeft&&Tr(t,Math.min(t.display.scroller.scrollLeft,e.maxScrollLeft),!0),t.display.maxLineChanged=!1);var n=e.focus&&e.focus==O();e.preparedSelection&&t.display.input.showSelection(e.preparedSelection,n);!e.updatedDisplay&&e.startHeight==t.doc.height||Nr(t,e.barMeasure);e.updatedDisplay&&Xr(t,e.barMeasure);e.selectionChanged&&cr(t);t.state.focused&&e.updateInput&&t.display.input.reset(e.typing);n&&hr(e.cm)}(t[o]);for(var l=0;l<t.length;l++)!function(e){var t=e.cm,n=t.display,r=t.doc;e.updatedDisplay&&Vr(t,e.update);null==n.wheelStartX||null==e.scrollTop&&null==e.scrollLeft&&!e.scrollToPos||(n.wheelStartX=n.wheelStartY=null);null!=e.scrollTop&&kr(t,e.scrollTop,e.forceScroll);null!=e.scrollLeft&&Tr(t,e.scrollLeft,!0,!0);{var i;e.scrollToPos&&(i=function(e,t,n,r){null==r&&(r=0),e.options.lineWrapping||t!=n||(n=\"before\"==(t=t.ch?rt(t.line,\"before\"==t.sticky?t.ch-1:t.ch,\"after\"):t).sticky?rt(t.line,t.ch+1,\"before\"):t);for(var i=0;i<5;i++){var o,l=!1,s=Bn(e,t),a=n&&n!=t?Bn(e,n):s,u=yr(e,o={left:Math.min(s.left,a.left),top:Math.min(s.top,a.top)-r,right:Math.max(s.left,a.left),bottom:Math.max(s.bottom,a.bottom)+r}),s=e.doc.scrollTop,a=e.doc.scrollLeft;if(null!=u.scrollTop&&(Lr(e,u.scrollTop),1<Math.abs(e.doc.scrollTop-s)&&(l=!0)),null!=u.scrollLeft&&(Tr(e,u.scrollLeft),1<Math.abs(e.doc.scrollLeft-a)&&(l=!0)),!l)break}return o}(t,ct(r,e.scrollToPos.from),ct(r,e.scrollToPos.to),e.scrollToPos.margin),function(e,t){var n,r,i;Ce(e,\"scrollCursorIntoView\")||(r=(n=e.display).sizer.getBoundingClientRect(),i=null,t.top+r.top<0?i=!0:t.bottom+r.top>(window.innerHeight||document.documentElement.clientHeight)&&(i=!1),null==i||u||(t=M(\"div\",\"\",null,\"position: absolute;\\n top: \"+(t.top-n.viewOffset-vn(e.display))+\"px;\\n height: \"+(t.bottom-t.top+wn(e)+n.barHeight)+\"px;\\n left: \"+t.left+\"px; width: \"+Math.max(2,t.right-t.left)+\"px;\"),e.display.lineSpace.appendChild(t),t.scrollIntoView(i),e.display.lineSpace.removeChild(t)))}(t,i))}var o=e.maybeHiddenMarkers,l=e.maybeUnhiddenMarkers;if(o)for(var s=0;s<o.length;++s)o[s].lines.length||xe(o[s],\"hide\");if(l)for(var a=0;a<l.length;++a)l[a].lines.length&&xe(l[a],\"unhide\");n.wrapper.offsetHeight&&(r.scrollTop=t.display.scroller.scrollTop);e.changeObjs&&xe(t,\"changes\",t,e.changeObjs);e.update&&e.update.finish()}(t[l])}(e)})}function Er(e,t){if(e.curOp)return t();Hr(e);try{return t()}finally{Fr(e)}}function Pr(e,t){return function(){if(e.curOp)return t.apply(e,arguments);Hr(e);try{return t.apply(e,arguments)}finally{Fr(e)}}}function Ir(e){return function(){if(this.curOp)return e.apply(this,arguments);Hr(this);try{return e.apply(this,arguments)}finally{Fr(this)}}}function Rr(t){return function(){var e=this.cm;if(!e||e.curOp)return t.apply(this,arguments);Hr(e);try{return t.apply(this,arguments)}finally{Fr(e)}}}function zr(e,t){e.doc.highlightFrontier<e.display.viewTo&&e.state.highlight.set(t,F(Br,e))}function Br(l){var s,a,u,c=l.doc;c.highlightFrontier>=l.display.viewTo||(s=+new Date+l.options.workTime,a=mt(l,c.highlightFrontier),u=[],c.iter(a.line,Math.min(c.first+c.size,l.display.viewTo+500),function(e){if(a.line>=l.display.viewFrom){var t=e.styles,n=e.text.length>l.options.maxHighlightLength?je(c.mode,a.state):null,r=pt(l,e,a,!0);n&&(a.state=n),e.styles=r.styles;n=e.styleClasses,r=r.classes;r?e.styleClasses=r:n&&(e.styleClasses=null);for(var i=!t||t.length!=e.styles.length||n!=r&&(!n||!r||n.bgClass!=r.bgClass||n.textClass!=r.textClass),o=0;!i&&o<t.length;++o)i=t[o]!=e.styles[o];i&&u.push(a.line),e.stateAfter=a.save(),a.nextLine()}else e.text.length<=l.options.maxHighlightLength&&vt(l,e.text,a),e.stateAfter=a.line%5==0?a.save():null,a.nextLine();if(+new Date>s)return zr(l,l.options.workDelay),!0}),c.highlightFrontier=a.line,c.modeFrontier=Math.max(c.modeFrontier,a.line),u.length&&Er(l,function(){for(var e=0;e<u.length;e++)nr(l,u[e],\"text\")}))}var Gr=function(e,t,n){var r=e.display;this.viewport=t,this.visible=vr(r,e.doc,t),this.editorIsHidden=!r.wrapper.offsetWidth,this.wrapperHeight=r.wrapper.clientHeight,this.wrapperWidth=r.wrapper.clientWidth,this.oldDisplayWidth=xn(e),this.force=n,this.dims=$n(e),this.events=[]};function Ur(e,t){var n=e.display,r=e.doc;if(t.editorIsHidden)return rr(e),!1;if(!t.force&&t.visible.from>=n.viewFrom&&t.visible.to<=n.viewTo&&(null==n.updateLineNumbers||n.updateLineNumbers>=n.viewTo)&&n.renderedView==n.view&&0==or(e))return!1;_r(e)&&(rr(e),t.dims=$n(e));var i=r.first+r.size,o=Math.max(t.visible.from-e.options.viewportMargin,r.first),l=Math.min(i,t.visible.to+e.options.viewportMargin);n.viewFrom<o&&o-n.viewFrom<20&&(o=Math.max(r.first,n.viewFrom)),n.viewTo>l&&n.viewTo-l<20&&(l=Math.min(i,n.viewTo)),kt&&(o=Bt(e.doc,o),l=Gt(e.doc,l));var s=o!=n.viewFrom||l!=n.viewTo||n.lastWrapHeight!=t.wrapperHeight||n.lastWrapWidth!=t.wrapperWidth;r=o,i=l,0==(l=(o=e).display).view.length||r>=l.viewTo||i<=l.viewFrom?(l.view=tn(o,r,i),l.viewFrom=r):(l.viewFrom>r?l.view=tn(o,r,l.viewFrom).concat(l.view):l.viewFrom<r&&(l.view=l.view.slice(er(o,r))),l.viewFrom=r,l.viewTo<i?l.view=l.view.concat(tn(o,l.viewTo,i)):l.viewTo>i&&(l.view=l.view.slice(0,er(o,i)))),l.viewTo=i,n.viewOffset=Vt($e(e.doc,n.viewFrom)),e.display.mover.style.top=n.viewOffset+\"px\";o=or(e);if(!s&&0==o&&!t.force&&n.renderedView==n.view&&(null==n.updateLineNumbers||n.updateLineNumbers>=n.viewTo))return!1;l=function(e){if(e.hasFocus())return null;var t=O();if(!t||!A(e.display.lineDiv,t))return null;var n={activeElt:t};return!window.getSelection||(t=window.getSelection()).anchorNode&&t.extend&&A(e.display.lineDiv,t.anchorNode)&&(n.anchorNode=t.anchorNode,n.anchorOffset=t.anchorOffset,n.focusNode=t.focusNode,n.focusOffset=t.focusOffset),n}(e);return 4<o&&(n.lineDiv.style.display=\"none\"),function(n,e,t){var r=n.display,i=n.options.lineNumbers,o=r.lineDiv,l=o.firstChild;function s(e){var t=e.nextSibling;return f&&g&&n.display.currentWheelTarget==e?e.style.display=\"none\":e.parentNode.removeChild(e),t}for(var a=r.view,u=r.viewFrom,c=0;c<a.length;c++){var h=a[c];if(!h.hidden)if(h.node&&h.node.parentNode==o){for(;l!=h.node;)l=s(l);var d=i&&null!=e&&e<=u&&h.lineNumber;h.changes&&(-1<R(h.changes,\"gutter\")&&(d=!1),an(n,h,u,t)),d&&(k(h.lineNumber),h.lineNumber.appendChild(document.createTextNode(nt(n.options,u)))),l=h.node.nextSibling}else{d=function(e,t,n,r){var i=cn(e,t);return t.text=t.node=i.pre,i.bgClass&&(t.bgClass=i.bgClass),i.textClass&&(t.textClass=i.textClass),hn(e,t),dn(e,t,n,r),fn(e,t,r),t.node}(n,h,u,t);o.insertBefore(d,l)}u+=h.size}for(;l;)l=s(l)}(e,n.updateLineNumbers,t.dims),4<o&&(n.lineDiv.style.display=\"\"),n.renderedView=n.view,(i=l)&&i.activeElt&&i.activeElt!=O()&&(i.activeElt.focus(),!/^(INPUT|TEXTAREA)$/.test(i.activeElt.nodeName)&&i.anchorNode&&A(document.body,i.anchorNode)&&A(document.body,i.focusNode)&&(o=window.getSelection(),(l=document.createRange()).setEnd(i.anchorNode,i.anchorOffset),l.collapse(!1),o.removeAllRanges(),o.addRange(l),o.extend(i.focusNode,i.focusOffset))),k(n.cursorDiv),k(n.selectionDiv),n.gutters.style.height=n.sizer.style.minHeight=0,s&&(n.lastWrapHeight=t.wrapperHeight,n.lastWrapWidth=t.wrapperWidth,zr(e,400)),!(n.updateLineNumbers=null)}function Vr(e,t){for(var n=t.viewport,r=!0;;r=!1){if(r&&e.options.lineWrapping&&t.oldDisplayWidth!=xn(e))r&&(t.visible=vr(e.display,e.doc,n));else if(n&&null!=n.top&&(n={top:Math.min(e.doc.height+yn(e.display)-Cn(e),n.top)}),t.visible=vr(e.display,e.doc,n),t.visible.from>=e.display.viewFrom&&t.visible.to<=e.display.viewTo)break;if(!Ur(e,t))break;gr(e);var i=Mr(e);lr(e),Nr(e,i),Xr(e,i),t.force=!1}t.signal(e,\"update\",e),e.display.viewFrom==e.display.reportedViewFrom&&e.display.viewTo==e.display.reportedViewTo||(t.signal(e,\"viewportChange\",e,e.display.viewFrom,e.display.viewTo),e.display.reportedViewFrom=e.display.viewFrom,e.display.reportedViewTo=e.display.viewTo)}function Kr(e,t){var n=new Gr(e,t);Ur(e,n)&&(gr(e),Vr(e,n),t=Mr(e),lr(e),Nr(e,t),Xr(e,t),n.finish())}function jr(e){var t=e.gutters.offsetWidth;e.sizer.style.marginLeft=t+\"px\"}function Xr(e,t){e.display.sizer.style.minHeight=t.docHeight+\"px\",e.display.heightForcer.style.top=t.docHeight+\"px\",e.display.gutters.style.height=t.docHeight+e.display.barHeight+wn(e)+\"px\"}function Yr(e){var t=e.display,n=t.view;if(t.alignWidgets||t.gutters.firstChild&&e.options.fixedGutter){for(var r=qn(t)-t.scroller.scrollLeft+e.doc.scrollLeft,i=t.gutters.offsetWidth,o=r+\"px\",l=0;l<n.length;l++)if(!n[l].hidden){e.options.fixedGutter&&(n[l].gutter&&(n[l].gutter.style.left=o),n[l].gutterBackground&&(n[l].gutterBackground.style.left=o));var s=n[l].alignable;if(s)for(var a=0;a<s.length;a++)s[a].style.left=o}e.options.fixedGutter&&(t.gutters.style.left=r+i+\"px\")}}function _r(e){if(e.options.lineNumbers){var t=e.doc,n=nt(e.options,t.first+t.size-1),r=e.display;if(n.length!=r.lineNumChars){var i=r.measure.appendChild(M(\"div\",[M(\"div\",n)],\"CodeMirror-linenumber CodeMirror-gutter-elt\")),t=i.firstChild.offsetWidth,i=i.offsetWidth-t;return r.lineGutter.style.width=\"\",r.lineNumInnerWidth=Math.max(t,r.lineGutter.offsetWidth-i)+1,r.lineNumWidth=r.lineNumInnerWidth+i,r.lineNumChars=r.lineNumInnerWidth?n.length:-1,r.lineGutter.style.width=r.lineNumWidth+\"px\",jr(e.display),1}}}function $r(e,t){for(var n=[],r=!1,i=0;i<e.length;i++){var o=e[i],l=null;if(\"string\"!=typeof o&&(l=o.style,o=o.className),\"CodeMirror-linenumbers\"==o){if(!t)continue;r=!0}n.push({className:o,style:l})}return t&&!r&&n.push({className:\"CodeMirror-linenumbers\",style:null}),n}function qr(e){var t=e.gutters,n=e.gutterSpecs;k(t),e.lineGutter=null;for(var r=0;r<n.length;++r){var i=n[r],o=i.className,l=i.style,i=t.appendChild(M(\"div\",null,\"CodeMirror-gutter \"+o));l&&(i.style.cssText=l),\"CodeMirror-linenumbers\"==o&&((e.lineGutter=i).style.width=(e.lineNumWidth||1)+\"px\")}t.style.display=n.length?\"\":\"none\",jr(e)}function Zr(e){qr(e.display),tr(e),Yr(e)}function Qr(e,t,n,r){var i=this;this.input=n,i.scrollbarFiller=M(\"div\",null,\"CodeMirror-scrollbar-filler\"),i.scrollbarFiller.setAttribute(\"cm-not-content\",\"true\"),i.gutterFiller=M(\"div\",null,\"CodeMirror-gutter-filler\"),i.gutterFiller.setAttribute(\"cm-not-content\",\"true\"),i.lineDiv=N(\"div\",null,\"CodeMirror-code\"),i.selectionDiv=M(\"div\",null,null,\"position: relative; z-index: 1\"),i.cursorDiv=M(\"div\",null,\"CodeMirror-cursors\"),i.measure=M(\"div\",null,\"CodeMirror-measure\"),i.lineMeasure=M(\"div\",null,\"CodeMirror-measure\"),i.lineSpace=N(\"div\",[i.measure,i.lineMeasure,i.selectionDiv,i.cursorDiv,i.lineDiv],null,\"position: relative; outline: none\");var o=N(\"div\",[i.lineSpace],\"CodeMirror-lines\");i.mover=M(\"div\",[o],null,\"position: relative\"),i.sizer=M(\"div\",[i.mover],\"CodeMirror-sizer\"),i.sizerWidth=null,i.heightForcer=M(\"div\",null,null,\"position: absolute; height: \"+z+\"px; width: 1px;\"),i.gutters=M(\"div\",null,\"CodeMirror-gutters\"),i.lineGutter=null,i.scroller=M(\"div\",[i.sizer,i.heightForcer,i.gutters],\"CodeMirror-scroll\"),i.scroller.setAttribute(\"tabIndex\",\"-1\"),i.wrapper=M(\"div\",[i.scrollbarFiller,i.gutterFiller,i.scroller],\"CodeMirror\"),w&&v<8&&(i.gutters.style.zIndex=-1,i.scroller.style.paddingRight=0),f||d&&h||(i.scroller.draggable=!0),e&&(e.appendChild?e.appendChild(i.wrapper):e(i.wrapper)),i.viewFrom=i.viewTo=t.first,i.reportedViewFrom=i.reportedViewTo=t.first,i.view=[],i.renderedView=null,i.externalMeasured=null,i.viewOffset=0,i.lastWrapHeight=i.lastWrapWidth=0,i.updateLineNumbers=null,i.nativeBarWidth=i.barHeight=i.barWidth=0,i.scrollbarsClipped=!1,i.lineNumWidth=i.lineNumInnerWidth=i.lineNumChars=null,i.alignWidgets=!1,i.cachedCharWidth=i.cachedTextHeight=i.cachedPaddingH=null,i.maxLine=null,i.maxLineLength=0,i.maxLineChanged=!1,i.wheelDX=i.wheelDY=i.wheelStartX=i.wheelStartY=null,i.shift=!1,i.selForContextMenu=null,i.activeTouch=null,i.gutterSpecs=$r(r.gutters,r.lineNumbers),qr(i),n.init(i)}Gr.prototype.signal=function(e,t){Le(e,t)&&this.events.push(arguments)},Gr.prototype.finish=function(){for(var e=0;e<this.events.length;e++)xe.apply(null,this.events[e])};var Jr=0,ei=null;function ti(e){var t=e.wheelDeltaX,n=e.wheelDeltaY;return null==t&&e.detail&&e.axis==e.HORIZONTAL_AXIS&&(t=e.detail),null==n&&e.detail&&e.axis==e.VERTICAL_AXIS?n=e.detail:null==n&&(n=e.wheelDelta),{x:t,y:n}}function ni(e){e=ti(e);return e.x*=ei,e.y*=ei,e}function ri(e,t){var n=ti(t),r=n.x,i=n.y,o=e.display,l=o.scroller,s=l.scrollWidth>l.clientWidth,a=l.scrollHeight>l.clientHeight;if(r&&s||i&&a){if(i&&g&&f)e:for(var u=t.target,c=o.view;u!=l;u=u.parentNode)for(var h=0;h<c.length;h++)if(c[h].node==u){e.display.currentWheelTarget=u;break e}if(r&&!d&&!p&&null!=ei)return i&&a&&Lr(e,Math.max(0,l.scrollTop+i*ei)),Tr(e,Math.max(0,l.scrollLeft+r*ei)),(!i||i&&a)&&Te(t),void(o.wheelStartX=null);i&&null!=ei&&(n=i*ei,a=(s=e.doc.scrollTop)+o.wrapper.clientHeight,n<0?s=Math.max(0,s+n-50):a=Math.min(e.doc.height,a+n+50),Kr(e,{top:s,bottom:a})),Jr<20&&(null==o.wheelStartX?(o.wheelStartX=l.scrollLeft,o.wheelStartY=l.scrollTop,o.wheelDX=r,o.wheelDY=i,setTimeout(function(){var e,t;null!=o.wheelStartX&&(t=l.scrollLeft-o.wheelStartX,t=(e=l.scrollTop-o.wheelStartY)&&o.wheelDY&&e/o.wheelDY||t&&o.wheelDX&&t/o.wheelDX,o.wheelStartX=o.wheelStartY=null,t&&(ei=(ei*Jr+t)/(Jr+1),++Jr))},200)):(o.wheelDX+=r,o.wheelDY+=i))}}w?ei=-.53:d?ei=15:o?ei=-.7:c&&(ei=-1/3);var ii=function(e,t){this.ranges=e,this.primIndex=t};ii.prototype.primary=function(){return this.ranges[this.primIndex]},ii.prototype.equals=function(e){if(e==this)return!0;if(e.primIndex!=this.primIndex||e.ranges.length!=this.ranges.length)return!1;for(var t=0;t<this.ranges.length;t++){var n=this.ranges[t],r=e.ranges[t];if(!ot(n.anchor,r.anchor)||!ot(n.head,r.head))return!1}return!0},ii.prototype.deepCopy=function(){for(var e=[],t=0;t<this.ranges.length;t++)e[t]=new oi(lt(this.ranges[t].anchor),lt(this.ranges[t].head));return new ii(e,this.primIndex)},ii.prototype.somethingSelected=function(){for(var e=0;e<this.ranges.length;e++)if(!this.ranges[e].empty())return!0;return!1},ii.prototype.contains=function(e,t){t=t||e;for(var n=0;n<this.ranges.length;n++){var r=this.ranges[n];if(0<=it(t,r.from())&&it(e,r.to())<=0)return n}return-1};var oi=function(e,t){this.anchor=e,this.head=t};function li(e,t,n){var r=e&&e.options.selectionsMayTouch,e=t[n];t.sort(function(e,t){return it(e.from(),t.from())}),n=R(t,e);for(var i=1;i<t.length;i++){var o,l=t[i],s=t[i-1],a=it(s.to(),l.from());(r&&!l.empty()?0<a:0<=a)&&(o=at(s.from(),l.from()),a=st(s.to(),l.to()),s=s.empty()?l.from()==l.head:s.from()==s.head,i<=n&&--n,t.splice(--i,2,new oi(s?a:o,s?o:a)))}return new ii(t,n)}function si(e,t){return new ii([new oi(e,t||e)],0)}function ai(e){return e.text?rt(e.from.line+e.text.length-1,Y(e.text).length+(1==e.text.length?e.from.ch:0)):e.to}function ui(e,t){if(it(e,t.from)<0)return e;if(it(e,t.to)<=0)return ai(t);var n=e.line+t.text.length-(t.to.line-t.from.line)-1,r=e.ch;return e.line==t.to.line&&(r+=ai(t).ch-t.to.ch),rt(n,r)}function ci(e,t){for(var n=[],r=0;r<e.sel.ranges.length;r++){var i=e.sel.ranges[r];n.push(new oi(ui(i.anchor,t),ui(i.head,t)))}return li(e.cm,n,e.sel.primIndex)}function hi(e,t,n){return e.line==t.line?rt(n.line,e.ch-t.ch+n.ch):rt(n.line+(e.line-t.line),e.ch)}function di(e){e.doc.mode=Ue(e.options,e.doc.modeOption),fi(e)}function fi(e){e.doc.iter(function(e){e.stateAfter&&(e.stateAfter=null),e.styles&&(e.styles=null)}),e.doc.modeFrontier=e.doc.highlightFrontier=e.doc.first,zr(e,100),e.state.modeGen++,e.curOp&&tr(e)}function pi(e,t){return 0==t.from.ch&&0==t.to.ch&&\"\"==Y(t.text)&&(!e.cm||e.cm.options.wholeLineUpdateBefore)}function gi(e,o,t,l){function i(e){return t?t[e]:null}function n(e,t,n){var r,i;r=t,i=n,t=l,(n=e).text=r,n.stateAfter&&(n.stateAfter=null),n.styles&&(n.styles=null),null!=n.order&&(n.order=null),Ot(n),Dt(n,i),(t=t?t(n):1)!=n.height&&Qe(n,t),ln(e,\"change\",e,o)}function r(e,t){for(var n=[],r=e;r<t;++r)n.push(new Xt(c[r],i(r),l));return n}var s,a=o.from,u=o.to,c=o.text,h=$e(e,a.line),d=$e(e,u.line),f=Y(c),p=i(c.length-1),g=u.line-a.line;o.full?(e.insert(0,r(0,c.length)),e.remove(c.length,e.size-c.length)):pi(e,o)?(s=r(0,c.length-1),n(d,d.text,p),g&&e.remove(a.line,g),s.length&&e.insert(a.line,s)):h==d?1==c.length?n(h,h.text.slice(0,a.ch)+f+h.text.slice(u.ch),p):((s=r(1,c.length-1)).push(new Xt(f+h.text.slice(u.ch),p,l)),n(h,h.text.slice(0,a.ch)+c[0],i(0)),e.insert(a.line+1,s)):1==c.length?(n(h,h.text.slice(0,a.ch)+c[0]+d.text.slice(u.ch),i(0)),e.remove(a.line+1,g)):(n(h,h.text.slice(0,a.ch)+c[0],i(0)),n(d,f+d.text.slice(u.ch),p),p=r(1,c.length-1),1<g&&e.remove(a.line+1,g-1),e.insert(a.line+1,p)),ln(e,\"change\",e,o)}function mi(e,s,a){!function e(t,n,r){if(t.linked)for(var i=0;i<t.linked.length;++i){var o,l=t.linked[i];l.doc!=n&&(o=r&&l.sharedHist,a&&!o||(s(l.doc,o),e(l.doc,t,o)))}}(e,null,!0)}function vi(e,t){if(t.cm)throw new Error(\"This document is already in use.\");Qn((e.doc=t).cm=e),di(e),yi(e),e.options.lineWrapping||jt(e),e.options.mode=t.modeOption,tr(e)}function yi(e){(\"rtl\"==e.doc.direction?D:L)(e.display.lineDiv,\"CodeMirror-rtl\")}function bi(e){this.done=[],this.undone=[],this.undoDepth=1/0,this.lastModTime=this.lastSelTime=0,this.lastOp=this.lastSelOp=null,this.lastOrigin=this.lastSelOrigin=null,this.generation=this.maxGeneration=e||1}function wi(e,t){var n={from:lt(t.from),to:ai(t),text:qe(e,t.from,t.to)};return ki(e,n,t.from.line,t.to.line+1),mi(e,function(e){return ki(e,n,t.from.line,t.to.line+1),0},!0),n}function xi(e){for(;e.length;){if(!Y(e).ranges)break;e.pop()}}function Ci(e,t,n,r){var i=e.history;i.undone.length=0;var o,l,s=+new Date;if((i.lastOp==r||i.lastOrigin==t.origin&&t.origin&&(\"+\"==t.origin.charAt(0)&&i.lastModTime>s-(e.cm?e.cm.options.historyEventDelay:500)||\"*\"==t.origin.charAt(0)))&&(o=(a=i).lastOp==r?(xi(a.done),Y(a.done)):a.done.length&&!Y(a.done).ranges?Y(a.done):1<a.done.length&&!a.done[a.done.length-2].ranges?(a.done.pop(),Y(a.done)):void 0))l=Y(o.changes),0==it(t.from,t.to)&&0==it(t.from,l.to)?l.to=ai(t):o.changes.push(wi(e,t));else{var a=Y(i.done);for(a&&a.ranges||Li(e.sel,i.done),o={changes:[wi(e,t)],generation:i.generation},i.done.push(o);i.done.length>i.undoDepth;)i.done.shift(),i.done[0].ranges||i.done.shift()}i.done.push(n),i.generation=++i.maxGeneration,i.lastModTime=i.lastSelTime=s,i.lastOp=i.lastSelOp=r,i.lastOrigin=i.lastSelOrigin=t.origin,l||xe(e,\"historyAdded\")}function Si(e,t,n,r){var i,o,l,s=e.history,a=r&&r.origin;n==s.lastSelOp||a&&s.lastSelOrigin==a&&(s.lastModTime==s.lastSelTime&&s.lastOrigin==a||(i=e,o=a,l=Y(s.done),e=t,\"*\"==(o=o.charAt(0))||\"+\"==o&&l.ranges.length==e.ranges.length&&l.somethingSelected()==e.somethingSelected()&&new Date-i.history.lastSelTime<=(i.cm?i.cm.options.historyEventDelay:500)))?s.done[s.done.length-1]=t:Li(t,s.done),s.lastSelTime=+new Date,s.lastSelOrigin=a,s.lastSelOp=n,r&&!1!==r.clearRedo&&xi(s.undone)}function Li(e,t){var n=Y(t);n&&n.ranges&&n.equals(e)||t.push(e)}function ki(t,n,e,r){var i=n[\"spans_\"+t.id],o=0;t.iter(Math.max(t.first,e),Math.min(t.first+t.size,r),function(e){e.markedSpans&&((i=i||(n[\"spans_\"+t.id]={}))[o]=e.markedSpans),++o})}function Ti(e,t){var n=t[\"spans_\"+e.id];if(!n)return null;for(var r=[],i=0;i<t.text.length;++i)r.push(function(e){if(!e)return null;for(var t,n=0;n<e.length;++n)e[n].marker.explicitlyCleared?t=t||e.slice(0,n):t&&t.push(e[n]);return t?t.length?t:null:e}(n[i]));return r}function Mi(e,t){var n=Ti(e,t),r=Nt(e,t);if(!n)return r;if(!r)return n;for(var i=0;i<n.length;++i){var o=n[i],l=r[i];if(o&&l)e:for(var s=0;s<l.length;++s){for(var a=l[s],u=0;u<o.length;++u)if(o[u].marker==a.marker)continue e;o.push(a)}else l&&(n[i]=l)}return n}function Ni(e,t,n){for(var r=[],i=0;i<e.length;++i){var o=e[i];if(o.ranges)r.push(n?ii.prototype.deepCopy.call(o):o);else{var l=o.changes,s=[];r.push({changes:s});for(var a=0;a<l.length;++a){var u,c=l[a];if(s.push({from:c.from,to:c.to,text:c.text}),t)for(var h in c)(u=h.match(/^spans_(\\d+)$/))&&-1<R(t,Number(u[1]))&&(Y(s)[h]=c[h],delete c[h])}}}return r}function Ai(e,t,n,r){if(r){r=e.anchor;return n&&((e=it(t,r)<0)!=it(n,r)<0?(r=t,t=n):e!=it(t,n)<0&&(t=n)),new oi(r,t)}return new oi(n||t,t)}function Oi(e,t,n,r,i){null==i&&(i=e.cm&&(e.cm.display.shift||e.extend)),Ei(e,new ii([Ai(e.sel.primary(),t,n,i)],0),r)}function Di(e,t,n){for(var r=[],i=e.cm&&(e.cm.display.shift||e.extend),o=0;o<e.sel.ranges.length;o++)r[o]=Ai(e.sel.ranges[o],t[o],null,i);Ei(e,li(e.cm,r,e.sel.primIndex),n)}function Wi(e,t,n,r){var i=e.sel.ranges.slice(0);i[t]=n,Ei(e,li(e.cm,i,e.sel.primIndex),r)}function Hi(e,t,n,r){Ei(e,si(t,n),r)}function Fi(e,t,n){var r=e.history.done,i=Y(r);i&&i.ranges?Pi(e,r[r.length-1]=t,n):Ei(e,t,n)}function Ei(e,t,n){Pi(e,t,n),Si(e,e.sel,e.cm?e.cm.curOp.id:NaN,n)}function Pi(e,t,n){var r,i;(Le(e,\"beforeSelectionChange\")||e.cm&&Le(e.cm,\"beforeSelectionChange\"))&&(r=e,i=n,i={ranges:(o=t).ranges,update:function(e){this.ranges=[];for(var t=0;t<e.length;t++)this.ranges[t]=new oi(ct(r,e[t].anchor),ct(r,e[t].head))},origin:i&&i.origin},xe(r,\"beforeSelectionChange\",r,i),r.cm&&xe(r.cm,\"beforeSelectionChange\",r.cm,i),t=i.ranges!=o.ranges?li(r.cm,i.ranges,i.ranges.length-1):o);var o=n&&n.bias||(it(t.primary().head,e.sel.primary().head)<0?-1:1);Ii(e,zi(e,t,o,!0)),n&&!1===n.scroll||!e.cm||wr(e.cm)}function Ii(e,t){t.equals(e.sel)||(e.sel=t,e.cm&&(e.cm.curOp.updateInput=1,e.cm.curOp.selectionChanged=!0,Se(e.cm)),ln(e,\"cursorActivity\",e))}function Ri(e){Ii(e,zi(e,e.sel,null,!1))}function zi(e,t,n,r){for(var i,o=0;o<t.ranges.length;o++){var l=t.ranges[o],s=t.ranges.length==e.sel.ranges.length&&e.sel.ranges[o],a=Gi(e,l.anchor,s&&s.anchor,n,r),s=Gi(e,l.head,s&&s.head,n,r);!i&&a==l.anchor&&s==l.head||((i=i||t.ranges.slice(0,o))[o]=new oi(a,s))}return i?li(e.cm,i,t.primIndex):t}function Bi(e,t,n,r,i){var o=$e(e,t.line);if(o.markedSpans)for(var l=0;l<o.markedSpans.length;++l){var s=o.markedSpans[l],a=s.marker,u=\"selectLeft\"in a?!a.selectLeft:a.inclusiveLeft,c=\"selectRight\"in a?!a.selectRight:a.inclusiveRight;if((null==s.from||(u?s.from<=t.ch:s.from<t.ch))&&(null==s.to||(c?s.to>=t.ch:s.to>t.ch))){if(i&&(xe(a,\"beforeCursorEnter\"),a.explicitlyCleared)){if(o.markedSpans){--l;continue}break}if(a.atomic){if(n){var h=a.find(r<0?1:-1),s=void 0;if((r<0?c:u)&&(h=Ui(e,h,-r,h&&h.line==t.line?o:null)),h&&h.line==t.line&&(s=it(h,n))&&(r<0?s<0:0<s))return Bi(e,h,t,r,i)}a=a.find(r<0?-1:1);return(r<0?u:c)&&(a=Ui(e,a,r,a.line==t.line?o:null)),a?Bi(e,a,t,r,i):null}}}return t}function Gi(e,t,n,r,i){r=r||1,r=Bi(e,t,n,r,i)||!i&&Bi(e,t,n,r,!0)||Bi(e,t,n,-r,i)||!i&&Bi(e,t,n,-r,!0);return r||(e.cantEdit=!0,rt(e.first,0))}function Ui(e,t,n,r){return n<0&&0==t.ch?t.line>e.first?ct(e,rt(t.line-1)):null:0<n&&t.ch==(r||$e(e,t.line)).text.length?t.line<e.first+e.size-1?rt(t.line+1,0):null:new rt(t.line,t.ch+n)}function Vi(e){e.setSelection(rt(e.firstLine(),0),rt(e.lastLine()),G)}function Ki(i,e,t){var o={canceled:!1,from:e.from,to:e.to,text:e.text,origin:e.origin,cancel:function(){return o.canceled=!0}};return t&&(o.update=function(e,t,n,r){e&&(o.from=ct(i,e)),t&&(o.to=ct(i,t)),n&&(o.text=n),void 0!==r&&(o.origin=r)}),xe(i,\"beforeChange\",i,o),i.cm&&xe(i.cm,\"beforeChange\",i.cm,o),o.canceled?(i.cm&&(i.cm.curOp.updateInput=2),null):{from:o.from,to:o.to,text:o.text,origin:o.origin}}function ji(e,t,n){if(e.cm){if(!e.cm.curOp)return Pr(e.cm,ji)(e,t,n);if(e.cm.state.suppressEdits)return}if(!(Le(e,\"beforeChange\")||e.cm&&Le(e.cm,\"beforeChange\"))||(t=Ki(e,t,!0))){var r=Lt&&!n&&function(e,t,n){var r=null;if(e.iter(t.line,n.line+1,function(e){if(e.markedSpans)for(var t=0;t<e.markedSpans.length;++t){var n=e.markedSpans[t].marker;!n.readOnly||r&&-1!=R(r,n)||(r=r||[]).push(n)}}),!r)return null;for(var i=[{from:t,to:n}],o=0;o<r.length;++o)for(var l=r[o],s=l.find(0),a=0;a<i.length;++a){var u,c,h,d=i[a];it(d.to,s.from)<0||0<it(d.from,s.to)||(u=[a,1],c=it(d.from,s.from),h=it(d.to,s.to),(c<0||!l.inclusiveLeft&&!c)&&u.push({from:d.from,to:s.from}),(0<h||!l.inclusiveRight&&!h)&&u.push({from:s.to,to:d.to}),i.splice.apply(i,u),a+=u.length-3)}return i}(e,t.from,t.to);if(r)for(var i=r.length-1;0<=i;--i)Xi(e,{from:r[i].from,to:r[i].to,text:i?[\"\"]:t.text,origin:t.origin});else Xi(e,t)}}function Xi(e,n){var t,r;1==n.text.length&&\"\"==n.text[0]&&0==it(n.from,n.to)||(t=ci(e,n),Ci(e,n,t,e.cm?e.cm.curOp.id:NaN),$i(e,n,t,Nt(e,n)),r=[],mi(e,function(e,t){t||-1!=R(r,e.history)||(Ji(e.history,n),r.push(e.history)),$i(e,n,null,Nt(e,n))}))}function Yi(i,o,e){var t=i.cm&&i.cm.state.suppressEdits;if(!t||e){for(var l,n=i.history,r=i.sel,s=\"undo\"==o?n.done:n.undone,a=\"undo\"==o?n.undone:n.done,u=0;u<s.length&&(l=s[u],e?!l.ranges||l.equals(i.sel):l.ranges);u++);if(u!=s.length){for(n.lastOrigin=n.lastSelOrigin=null;;){if(!(l=s.pop()).ranges){if(t)return void s.push(l);break}if(Li(l,a),e&&!l.equals(i.sel))return void Ei(i,l,{clearRedo:!1});r=l}var c=[];Li(r,a),a.push({changes:c,generation:n.generation}),n.generation=l.generation||++n.maxGeneration;for(var h=Le(i,\"beforeChange\")||i.cm&&Le(i.cm,\"beforeChange\"),d=l.changes.length-1;0<=d;--d){var f=function(e){var n=l.changes[e];if(n.origin=o,h&&!Ki(i,n,!1))return s.length=0,{};c.push(wi(i,n));var t=e?ci(i,n):Y(s);$i(i,n,t,Mi(i,n)),!e&&i.cm&&i.cm.scrollIntoView({from:n.from,to:ai(n)});var r=[];mi(i,function(e,t){t||-1!=R(r,e.history)||(Ji(e.history,n),r.push(e.history)),$i(e,n,null,Mi(e,n))})}(d);if(f)return f.v}}}}function _i(e,t){if(0!=t&&(e.first+=t,e.sel=new ii(_(e.sel.ranges,function(e){return new oi(rt(e.anchor.line+t,e.anchor.ch),rt(e.head.line+t,e.head.ch))}),e.sel.primIndex),e.cm)){tr(e.cm,e.first,e.first-t,t);for(var n=e.cm.display,r=n.viewFrom;r<n.viewTo;r++)nr(e.cm,r,\"gutter\")}}function $i(e,t,n,r){if(e.cm&&!e.cm.curOp)return Pr(e.cm,$i)(e,t,n,r);var i;t.to.line<e.first?_i(e,t.text.length-1-(t.to.line-t.from.line)):t.from.line>e.lastLine()||(t.from.line<e.first&&(_i(e,i=t.text.length-1-(e.first-t.from.line)),t={from:rt(e.first,0),to:rt(t.to.line+i,t.to.ch),text:[Y(t.text)],origin:t.origin}),i=e.lastLine(),t.to.line>i&&(t={from:t.from,to:rt(i,$e(e,i).text.length),text:[t.text[0]],origin:t.origin}),t.removed=qe(e,t.from,t.to),n=n||ci(e,t),e.cm?function(e,t,n){var r=e.doc,i=e.display,o=t.from,l=t.to,s=!1,a=o.line;e.options.lineWrapping||(a=Je(zt($e(r,o.line))),r.iter(a,l.line+1,function(e){if(e==i.maxLine)return s=!0}));-1<r.sel.contains(t.from,t.to)&&Se(e);gi(r,t,n,Zn(e)),e.options.lineWrapping||(r.iter(a,o.line+t.text.length,function(e){var t=Kt(e);t>i.maxLineLength&&(i.maxLine=e,i.maxLineLength=t,i.maxLineChanged=!0,s=!1)}),s&&(e.curOp.updateMaxLine=!0));(function(e,t){if(e.modeFrontier=Math.min(e.modeFrontier,t),!(e.highlightFrontier<t-10)){for(var n=e.first,r=t-1;n<r;r--){var i=$e(e,r).stateAfter;if(i&&(!(i instanceof dt)||r+i.lookAhead<t)){n=r+1;break}}e.highlightFrontier=Math.min(e.highlightFrontier,n)}})(r,o.line),zr(e,400);a=t.text.length-(l.line-o.line)-1;t.full?tr(e):o.line!=l.line||1!=t.text.length||pi(e.doc,t)?tr(e,o.line,l.line+1,a):nr(e,o.line,\"text\");r=Le(e,\"changes\"),a=Le(e,\"change\");(a||r)&&(t={from:o,to:l,text:t.text,removed:t.removed,origin:t.origin},a&&ln(e,\"change\",e,t),r&&(e.curOp.changeObjs||(e.curOp.changeObjs=[])).push(t));e.display.selForContextMenu=null}(e.cm,t,r):gi(e,t,r),Pi(e,n,G),e.cantEdit&&Gi(e,rt(e.firstLine(),0))&&(e.cantEdit=!1))}function qi(e,t,n,r,i){var o;it(r=r||n,n)<0&&(n=(o=[r,n])[0],r=o[1]),\"string\"==typeof t&&(t=e.splitLines(t)),ji(e,{from:n,to:r,text:t,origin:i})}function Zi(e,t,n,r){n<e.line?e.line+=r:t<e.line&&(e.line=t,e.ch=0)}function Qi(e,t,n,r){for(var i=0;i<e.length;++i){var o=e[i],l=!0;if(o.ranges){o.copied||((o=e[i]=o.deepCopy()).copied=!0);for(var s=0;s<o.ranges.length;s++)Zi(o.ranges[s].anchor,t,n,r),Zi(o.ranges[s].head,t,n,r)}else{for(var a=0;a<o.changes.length;++a){var u=o.changes[a];if(n<u.from.line)u.from=rt(u.from.line+r,u.from.ch),u.to=rt(u.to.line+r,u.to.ch);else if(t<=u.to.line){l=!1;break}}l||(e.splice(0,i+1),i=0)}}}function Ji(e,t){var n=t.from.line,r=t.to.line,t=t.text.length-(r-n)-1;Qi(e.done,n,r,t),Qi(e.undone,n,r,t)}function eo(e,t,n,r){var i=t,o=t;return\"number\"==typeof t?o=$e(e,ut(e,t)):i=Je(t),null==i?null:(r(o,i)&&e.cm&&nr(e.cm,i,n),o)}function to(e){this.lines=e,this.parent=null;for(var t=0,n=0;n<e.length;++n)e[n].parent=this,t+=e[n].height;this.height=t}function no(e){this.children=e;for(var t=0,n=0,r=0;r<e.length;++r){var i=e[r];t+=i.chunkSize(),n+=i.height,i.parent=this}this.size=t,this.height=n,this.parent=null}oi.prototype.from=function(){return at(this.anchor,this.head)},oi.prototype.to=function(){return st(this.anchor,this.head)},oi.prototype.empty=function(){return this.head.line==this.anchor.line&&this.head.ch==this.anchor.ch},to.prototype={chunkSize:function(){return this.lines.length},removeInner:function(e,t){for(var n,r=e,i=e+t;r<i;++r){var o=this.lines[r];this.height-=o.height,(n=o).parent=null,Ot(n),ln(o,\"delete\")}this.lines.splice(e,t)},collapse:function(e){e.push.apply(e,this.lines)},insertInner:function(e,t,n){this.height+=n,this.lines=this.lines.slice(0,e).concat(t).concat(this.lines.slice(e));for(var r=0;r<t.length;++r)t[r].parent=this},iterN:function(e,t,n){for(var r=e+t;e<r;++e)if(n(this.lines[e]))return!0}},no.prototype={chunkSize:function(){return this.size},removeInner:function(e,t){this.size-=t;for(var n,r=0;r<this.children.length;++r){var i=this.children[r],o=i.chunkSize();if(e<o){var l=Math.min(t,o-e),s=i.height;if(i.removeInner(e,l),this.height-=s-i.height,o==l&&(this.children.splice(r--,1),i.parent=null),0==(t-=l))break;e=0}else e-=o}this.size-t<25&&(1<this.children.length||!(this.children[0]instanceof to))&&(n=[],this.collapse(n),this.children=[new to(n)],this.children[0].parent=this)},collapse:function(e){for(var t=0;t<this.children.length;++t)this.children[t].collapse(e)},insertInner:function(e,t,n){this.size+=t.length,this.height+=n;for(var r=0;r<this.children.length;++r){var i=this.children[r],o=i.chunkSize();if(e<=o){if(i.insertInner(e,t,n),i.lines&&50<i.lines.length){for(var l=i.lines.length%25+25,s=l;s<i.lines.length;){var a=new to(i.lines.slice(s,s+=25));i.height-=a.height,this.children.splice(++r,0,a),a.parent=this}i.lines=i.lines.slice(0,l),this.maybeSpill()}break}e-=o}},maybeSpill:function(){if(!(this.children.length<=10)){var e=this;do{var t,n=new no(e.children.splice(e.children.length-5,5))}while(e.parent?(e.size-=n.size,e.height-=n.height,t=R(e.parent.children,e),e.parent.children.splice(t+1,0,n)):(((t=new no(e.children)).parent=e).children=[t,n],e=t),n.parent=e.parent,10<e.children.length);e.parent.maybeSpill()}},iterN:function(e,t,n){for(var r=0;r<this.children.length;++r){var i=this.children[r],o=i.chunkSize();if(e<o){var l=Math.min(t,o-e);if(i.iterN(e,l,n))return!0;if(0==(t-=l))break;e=0}else e-=o}}};function ro(e,t,n){if(n)for(var r in n)n.hasOwnProperty(r)&&(this[r]=n[r]);this.doc=e,this.node=t}function io(e,t,n){Vt(t)<(e.curOp&&e.curOp.scrollTop||e.doc.scrollTop)&&br(e,n)}ro.prototype.clear=function(){var e=this.doc.cm,t=this.line.widgets,n=this.line,r=Je(n);if(null!=r&&t){for(var i=0;i<t.length;++i)t[i]==this&&t.splice(i--,1);t.length||(n.widgets=null);var o=gn(this);Qe(n,Math.max(0,n.height-o)),e&&(Er(e,function(){io(e,n,-o),nr(e,r,\"widget\")}),ln(e,\"lineWidgetCleared\",e,this,r))}},ro.prototype.changed=function(){var e=this,t=this.height,n=this.doc.cm,r=this.line;this.height=null;var i=gn(this)-t;i&&(Ut(this.doc,r)||Qe(r,r.height+i),n&&Er(n,function(){n.curOp.forceUpdate=!0,io(n,r,i),ln(n,\"lineWidgetChanged\",n,e,Je(r))}))},ke(ro);var oo=0,lo=function(e,t){this.lines=[],this.type=t,this.doc=e,this.id=++oo};function so(t,n,r,e,i){if(e&&e.shared)return function(e,n,r,i,o){(i=E(i)).shared=!1;var l=[so(e,n,r,i,o)],s=l[0],a=i.widgetNode;return mi(e,function(e){a&&(i.widgetNode=a.cloneNode(!0)),l.push(so(e,ct(e,n),ct(e,r),i,o));for(var t=0;t<e.linked.length;++t)if(e.linked[t].isParent)return;s=Y(l)}),new ao(l,s)}(t,n,r,e,i);if(t.cm&&!t.cm.curOp)return Pr(t.cm,so)(t,n,r,e,i);var o=new lo(t,i),i=it(n,r);if(e&&E(e,o,!1),0<i||0==i&&!1!==o.clearWhenEmpty)return o;if(o.replacedWith&&(o.collapsed=!0,o.widgetNode=N(\"span\",[o.replacedWith],\"CodeMirror-widget\"),e.handleMouseEvents||o.widgetNode.setAttribute(\"cm-ignore-events\",\"true\"),e.insertLeft&&(o.widgetNode.insertLeft=!0)),o.collapsed){if(Rt(t,n.line,n,r,o)||n.line!=r.line&&Rt(t,r.line,n,r,o))throw new Error(\"Inserting collapsed marker partially overlapping an existing one\");kt=!0}o.addToHistory&&Ci(t,{from:n,to:r,origin:\"markText\"},t.sel,NaN);var l,s=n.line,a=t.cm;if(t.iter(s,r.line+1,function(e){var t;a&&o.collapsed&&!a.options.lineWrapping&&zt(e)==a.display.maxLine&&(l=!0),o.collapsed&&s!=n.line&&Qe(e,0),t=e,e=new Tt(o,s==n.line?n.ch:null,s==r.line?r.ch:null),t.markedSpans=t.markedSpans?t.markedSpans.concat([e]):[e],e.marker.attachLine(t),++s}),o.collapsed&&t.iter(n.line,r.line+1,function(e){Ut(t,e)&&Qe(e,0)}),o.clearOnEnter&&ye(o,\"beforeCursorEnter\",function(){return o.clear()}),o.readOnly&&(Lt=!0,(t.history.done.length||t.history.undone.length)&&t.clearHistory()),o.collapsed&&(o.id=++oo,o.atomic=!0),a){if(l&&(a.curOp.updateMaxLine=!0),o.collapsed)tr(a,n.line,r.line+1);else if(o.className||o.startStyle||o.endStyle||o.css||o.attributes||o.title)for(var u=n.line;u<=r.line;u++)nr(a,u,\"text\");o.atomic&&Ri(a.doc),ln(a,\"markerAdded\",a,o)}return o}lo.prototype.clear=function(){if(!this.explicitlyCleared){var e,t=this.doc.cm,n=t&&!t.curOp;n&&Hr(t),!Le(this,\"clear\")||(e=this.find())&&ln(this,\"clear\",e.from,e.to);for(var r=null,i=null,o=0;o<this.lines.length;++o){var l=this.lines[o],s=Mt(l.markedSpans,this);t&&!this.collapsed?nr(t,Je(l),\"text\"):t&&(null!=s.to&&(i=Je(l)),null!=s.from&&(r=Je(l))),l.markedSpans=function(e,t){for(var n,r=0;r<e.length;++r)e[r]!=t&&(n=n||[]).push(e[r]);return n}(l.markedSpans,s),null==s.from&&this.collapsed&&!Ut(this.doc,l)&&t&&Qe(l,Yn(t.display))}if(t&&this.collapsed&&!t.options.lineWrapping)for(var a=0;a<this.lines.length;++a){var u=zt(this.lines[a]),c=Kt(u);c>t.display.maxLineLength&&(t.display.maxLine=u,t.display.maxLineLength=c,t.display.maxLineChanged=!0)}null!=r&&t&&this.collapsed&&tr(t,r,i+1),this.lines.length=0,this.explicitlyCleared=!0,this.atomic&&this.doc.cantEdit&&(this.doc.cantEdit=!1,t&&Ri(t.doc)),t&&ln(t,\"markerCleared\",t,this,r,i),n&&Fr(t),this.parent&&this.parent.clear()}},lo.prototype.find=function(e,t){var n,r;null==e&&\"bookmark\"==this.type&&(e=1);for(var i=0;i<this.lines.length;++i){var o=this.lines[i],l=Mt(o.markedSpans,this);if(null!=l.from&&(n=rt(t?o:Je(o),l.from),-1==e))return n;if(null!=l.to&&(r=rt(t?o:Je(o),l.to),1==e))return r}return n&&{from:n,to:r}},lo.prototype.changed=function(){var n=this,r=this.find(-1,!0),i=this,o=this.doc.cm;r&&o&&Er(o,function(){var e=r.line,t=Je(r.line),t=kn(o,t);t&&(Dn(t),o.curOp.selectionChanged=o.curOp.forceUpdate=!0),o.curOp.updateMaxLine=!0,Ut(i.doc,e)||null==i.height||(t=i.height,i.height=null,(t=gn(i)-t)&&Qe(e,e.height+t)),ln(o,\"markerChanged\",o,n)})},lo.prototype.attachLine=function(e){var t;!this.lines.length&&this.doc.cm&&((t=this.doc.cm.curOp).maybeHiddenMarkers&&-1!=R(t.maybeHiddenMarkers,this)||(t.maybeUnhiddenMarkers||(t.maybeUnhiddenMarkers=[])).push(this)),this.lines.push(e)},lo.prototype.detachLine=function(e){this.lines.splice(R(this.lines,e),1),!this.lines.length&&this.doc.cm&&((e=this.doc.cm.curOp).maybeHiddenMarkers||(e.maybeHiddenMarkers=[])).push(this)},ke(lo);var ao=function(e,t){this.markers=e,this.primary=t;for(var n=0;n<e.length;++n)e[n].parent=this};function uo(e){return e.findMarks(rt(e.first,0),e.clipPos(rt(e.lastLine())),function(e){return e.parent})}ao.prototype.clear=function(){if(!this.explicitlyCleared){this.explicitlyCleared=!0;for(var e=0;e<this.markers.length;++e)this.markers[e].clear();ln(this,\"clear\")}},ao.prototype.find=function(e,t){return this.primary.find(e,t)},ke(ao);var co=0,ho=function(e,t,n,r,i){if(!(this instanceof ho))return new ho(e,t,n,r,i);null==n&&(n=0),no.call(this,[new to([new Xt(\"\",null)])]),this.first=n,this.scrollTop=this.scrollLeft=0,this.cantEdit=!1,this.cleanGeneration=1;n=rt(this.modeFrontier=this.highlightFrontier=n,0);this.sel=si(n),this.history=new bi(null),this.id=++co,this.modeOption=t,this.lineSep=r,this.direction=\"rtl\"==i?\"rtl\":\"ltr\",this.extend=!1,\"string\"==typeof e&&(e=this.splitLines(e)),gi(this,{from:n,to:n,text:e}),Ei(this,si(n),G)};ho.prototype=q(no.prototype,{constructor:ho,iter:function(e,t,n){n?this.iterN(e-this.first,t-e,n):this.iterN(this.first,this.first+this.size,e)},insert:function(e,t){for(var n=0,r=0;r<t.length;++r)n+=t[r].height;this.insertInner(e-this.first,t,n)},remove:function(e,t){this.removeInner(e-this.first,t)},getValue:function(e){var t=Ze(this,this.first,this.first+this.size);return!1===e?t:t.join(e||this.lineSeparator())},setValue:Rr(function(e){var t=rt(this.first,0),n=this.first+this.size-1;ji(this,{from:t,to:rt(n,$e(this,n).text.length),text:this.splitLines(e),origin:\"setValue\",full:!0},!0),this.cm&&xr(this.cm,0,0),Ei(this,si(t),G)}),replaceRange:function(e,t,n,r){qi(this,e,t=ct(this,t),n=n?ct(this,n):t,r)},getRange:function(e,t,n){t=qe(this,ct(this,e),ct(this,t));return!1===n?t:t.join(n||this.lineSeparator())},getLine:function(e){e=this.getLineHandle(e);return e&&e.text},getLineHandle:function(e){if(tt(this,e))return $e(this,e)},getLineNumber:Je,getLineHandleVisualStart:function(e){return\"number\"==typeof e&&(e=$e(this,e)),zt(e)},lineCount:function(){return this.size},firstLine:function(){return this.first},lastLine:function(){return this.first+this.size-1},clipPos:function(e){return ct(this,e)},getCursor:function(e){var t=this.sel.primary(),t=null==e||\"head\"==e?t.head:\"anchor\"==e?t.anchor:\"end\"==e||\"to\"==e||!1===e?t.to():t.from();return t},listSelections:function(){return this.sel.ranges},somethingSelected:function(){return this.sel.somethingSelected()},setCursor:Rr(function(e,t,n){Hi(this,ct(this,\"number\"==typeof e?rt(e,t||0):e),null,n)}),setSelection:Rr(function(e,t,n){Hi(this,ct(this,e),ct(this,t||e),n)}),extendSelection:Rr(function(e,t,n){Oi(this,ct(this,e),t&&ct(this,t),n)}),extendSelections:Rr(function(e,t){Di(this,ht(this,e),t)}),extendSelectionsBy:Rr(function(e,t){Di(this,ht(this,_(this.sel.ranges,e)),t)}),setSelections:Rr(function(e,t,n){if(e.length){for(var r=[],i=0;i<e.length;i++)r[i]=new oi(ct(this,e[i].anchor),ct(this,e[i].head));null==t&&(t=Math.min(e.length-1,this.sel.primIndex)),Ei(this,li(this.cm,r,t),n)}}),addSelection:Rr(function(e,t,n){var r=this.sel.ranges.slice(0);r.push(new oi(ct(this,e),ct(this,t||e))),Ei(this,li(this.cm,r,r.length-1),n)}),getSelection:function(e){for(var t=this.sel.ranges,n=0;n<t.length;n++)var r=qe(this,t[n].from(),t[n].to()),i=i?i.concat(r):r;return!1===e?i:i.join(e||this.lineSeparator())},getSelections:function(e){for(var t=[],n=this.sel.ranges,r=0;r<n.length;r++){var i=qe(this,n[r].from(),n[r].to());!1!==e&&(i=i.join(e||this.lineSeparator())),t[r]=i}return t},replaceSelection:function(e,t,n){for(var r=[],i=0;i<this.sel.ranges.length;i++)r[i]=e;this.replaceSelections(r,t,n||\"+input\")},replaceSelections:Rr(function(e,t,n){for(var r=[],i=this.sel,o=0;o<i.ranges.length;o++){var l=i.ranges[o];r[o]={from:l.from(),to:l.to(),text:this.splitLines(e[o]),origin:n}}for(var t=t&&\"end\"!=t&&function(e,t,n){for(var r=[],i=u=rt(e.first,0),o=0;o<t.length;o++){var l=t[o],s=hi(l.from,u,i),a=hi(ai(l),u,i),u=l.to,i=a;\"around\"==n?(l=it((l=e.sel.ranges[o]).head,l.anchor)<0,r[o]=new oi(l?a:s,l?s:a)):r[o]=new oi(s,s)}return new ii(r,e.sel.primIndex)}(this,r,t),s=r.length-1;0<=s;s--)ji(this,r[s]);t?Fi(this,t):this.cm&&wr(this.cm)}),undo:Rr(function(){Yi(this,\"undo\")}),redo:Rr(function(){Yi(this,\"redo\")}),undoSelection:Rr(function(){Yi(this,\"undo\",!0)}),redoSelection:Rr(function(){Yi(this,\"redo\",!0)}),setExtending:function(e){this.extend=e},getExtending:function(){return this.extend},historySize:function(){for(var e=this.history,t=0,n=0,r=0;r<e.done.length;r++)e.done[r].ranges||++t;for(var i=0;i<e.undone.length;i++)e.undone[i].ranges||++n;return{undo:t,redo:n}},clearHistory:function(){var t=this;this.history=new bi(this.history.maxGeneration),mi(this,function(e){return e.history=t.history},!0)},markClean:function(){this.cleanGeneration=this.changeGeneration(!0)},changeGeneration:function(e){return e&&(this.history.lastOp=this.history.lastSelOp=this.history.lastOrigin=null),this.history.generation},isClean:function(e){return this.history.generation==(e||this.cleanGeneration)},getHistory:function(){return{done:Ni(this.history.done),undone:Ni(this.history.undone)}},setHistory:function(e){var t=this.history=new bi(this.history.maxGeneration);t.done=Ni(e.done.slice(0),null,!0),t.undone=Ni(e.undone.slice(0),null,!0)},setGutterMarker:Rr(function(e,n,r){return eo(this,e,\"gutter\",function(e){var t=e.gutterMarkers||(e.gutterMarkers={});return!(t[n]=r)&&ee(t)&&(e.gutterMarkers=null),1})}),clearGutter:Rr(function(t){var n=this;this.iter(function(e){e.gutterMarkers&&e.gutterMarkers[t]&&eo(n,e,\"gutter\",function(){return e.gutterMarkers[t]=null,ee(e.gutterMarkers)&&(e.gutterMarkers=null),1})})}),lineInfo:function(e){var t;if(\"number\"==typeof e){if(!tt(this,e))return null;if(!(e=$e(this,t=e)))return null}else if(null==(t=Je(e)))return null;return{line:t,handle:e,text:e.text,gutterMarkers:e.gutterMarkers,textClass:e.textClass,bgClass:e.bgClass,wrapClass:e.wrapClass,widgets:e.widgets}},addLineClass:Rr(function(e,n,r){return eo(this,e,\"gutter\"==n?\"gutter\":\"class\",function(e){var t=\"text\"==n?\"textClass\":\"background\"==n?\"bgClass\":\"gutter\"==n?\"gutterClass\":\"wrapClass\";if(e[t]){if(C(r).test(e[t]))return;e[t]+=\" \"+r}else e[t]=r;return 1})}),removeLineClass:Rr(function(e,o,l){return eo(this,e,\"gutter\"==o?\"gutter\":\"class\",function(e){var t=\"text\"==o?\"textClass\":\"background\"==o?\"bgClass\":\"gutter\"==o?\"gutterClass\":\"wrapClass\",n=e[t];if(n){if(null==l)e[t]=null;else{var r=n.match(C(l));if(!r)return;var i=r.index+r[0].length;e[t]=n.slice(0,r.index)+(r.index&&i!=n.length?\" \":\"\")+n.slice(i)||null}return 1}})}),addLineWidget:Rr(function(e,t,n){return e=e,i=new ro(r=this,t,n),(o=r.cm)&&i.noHScroll&&(o.display.alignWidgets=!0),eo(r,e,\"widget\",function(e){var t=e.widgets||(e.widgets=[]);return null==i.insertAt?t.push(i):t.splice(Math.min(t.length,Math.max(0,i.insertAt)),0,i),i.line=e,o&&!Ut(r,e)&&(t=Vt(e)<r.scrollTop,Qe(e,e.height+gn(i)),t&&br(o,i.height),o.curOp.forceUpdate=!0),1}),o&&ln(o,\"lineWidgetAdded\",o,i,\"number\"==typeof e?e:Je(e)),i;var r,i,o}),removeLineWidget:function(e){e.clear()},markText:function(e,t,n){return so(this,ct(this,e),ct(this,t),n,n&&n.type||\"range\")},setBookmark:function(e,t){t={replacedWith:t&&(null==t.nodeType?t.widget:t),insertLeft:t&&t.insertLeft,clearWhenEmpty:!1,shared:t&&t.shared,handleMouseEvents:t&&t.handleMouseEvents};return so(this,e=ct(this,e),e,t,\"bookmark\")},findMarksAt:function(e){var t=[],n=$e(this,(e=ct(this,e)).line).markedSpans;if(n)for(var r=0;r<n.length;++r){var i=n[r];(null==i.from||i.from<=e.ch)&&(null==i.to||i.to>=e.ch)&&t.push(i.marker.parent||i.marker)}return t},findMarks:function(i,o,l){i=ct(this,i),o=ct(this,o);var s=[],a=i.line;return this.iter(i.line,o.line+1,function(e){var t=e.markedSpans;if(t)for(var n=0;n<t.length;n++){var r=t[n];null!=r.to&&a==i.line&&i.ch>=r.to||null==r.from&&a!=i.line||null!=r.from&&a==o.line&&r.from>=o.ch||l&&!l(r.marker)||s.push(r.marker.parent||r.marker)}++a}),s},getAllMarks:function(){var r=[];return this.iter(function(e){var t=e.markedSpans;if(t)for(var n=0;n<t.length;++n)null!=t[n].from&&r.push(t[n].marker)}),r},posFromIndex:function(t){var n,r=this.first,i=this.lineSeparator().length;return this.iter(function(e){e=e.text.length+i;if(t<e)return n=t,!0;t-=e,++r}),ct(this,rt(r,n))},indexFromPos:function(e){var t=(e=ct(this,e)).ch;if(e.line<this.first||e.ch<0)return 0;var n=this.lineSeparator().length;return this.iter(this.first,e.line,function(e){t+=e.text.length+n}),t},copy:function(e){var t=new ho(Ze(this,this.first,this.first+this.size),this.modeOption,this.first,this.lineSep,this.direction);return t.scrollTop=this.scrollTop,t.scrollLeft=this.scrollLeft,t.sel=this.sel,t.extend=!1,e&&(t.history.undoDepth=this.history.undoDepth,t.setHistory(this.getHistory())),t},linkedDoc:function(e){e=e||{};var t=this.first,n=this.first+this.size;null!=e.from&&e.from>t&&(t=e.from),null!=e.to&&e.to<n&&(n=e.to);t=new ho(Ze(this,t,n),e.mode||this.modeOption,t,this.lineSep,this.direction);return e.sharedHist&&(t.history=this.history),(this.linked||(this.linked=[])).push({doc:t,sharedHist:e.sharedHist}),t.linked=[{doc:this,isParent:!0,sharedHist:e.sharedHist}],function(e,t){for(var n=0;n<t.length;n++){var r=t[n],i=r.find(),o=e.clipPos(i.from),i=e.clipPos(i.to);it(o,i)&&(i=so(e,o,i,r.primary,r.primary.type),r.markers.push(i),i.parent=r)}}(t,uo(this)),t},unlinkDoc:function(e){if(e instanceof ul&&(e=e.doc),this.linked)for(var t=0;t<this.linked.length;++t)if(this.linked[t].doc==e){this.linked.splice(t,1),e.unlinkDoc(this),function(o){for(var e=0;e<o.length;e++)!function(e){var t=o[e],n=[t.primary.doc];mi(t.primary.doc,function(e){return n.push(e)});for(var r=0;r<t.markers.length;r++){var i=t.markers[r];-1==R(n,i.doc)&&(i.parent=null,t.markers.splice(r--,1))}}(e)}(uo(this));break}var n;e.history==this.history&&(n=[e.id],mi(e,function(e){return n.push(e.id)},!0),e.history=new bi(null),e.history.done=Ni(this.history.done,n),e.history.undone=Ni(this.history.undone,n))},iterLinkedDocs:function(e){mi(this,e)},getMode:function(){return this.mode},getEditor:function(){return this.cm},splitLines:function(e){return this.lineSep?e.split(this.lineSep):Ee(e)},lineSeparator:function(){return this.lineSep||\"\\n\"},setDirection:Rr(function(e){var t;\"rtl\"!=e&&(e=\"ltr\"),e!=this.direction&&(this.direction=e,this.iter(function(e){return e.order=null}),this.cm&&Er(t=this.cm,function(){yi(t),tr(t)}))})}),ho.prototype.eachLine=ho.prototype.iter;var fo=0;function po(e){var r=this;if(go(r),!Ce(r,e)&&!mn(r.display,e)){Te(e),w&&(fo=+new Date);var t=Jn(r,e,!0),n=e.dataTransfer.files;if(t&&!r.isReadOnly())if(n&&n.length&&window.FileReader&&window.File)for(var i=n.length,o=Array(i),l=0,s=function(){++l==i&&Pr(r,function(){var e={from:t=ct(r.doc,t),to:t,text:r.doc.splitLines(o.filter(function(e){return null!=e}).join(r.doc.lineSeparator())),origin:\"paste\"};ji(r.doc,e),Fi(r.doc,si(ct(r.doc,t),ct(r.doc,ai(e))))})()},a=0;a<n.length;a++)!function(e,t){var n;r.options.allowDropFileTypes&&-1==R(r.options.allowDropFileTypes,e.type)?s():((n=new FileReader).onerror=s,n.onload=function(){var e=n.result;/[\\x00-\\x08\\x0e-\\x1f]{2}/.test(e)||(o[t]=e),s()},n.readAsText(e))}(n[a],a);else{if(r.state.draggingText&&-1<r.doc.sel.contains(t))return r.state.draggingText(e),void setTimeout(function(){return r.display.input.focus()},20);try{var u,c=e.dataTransfer.getData(\"Text\");if(c){if(r.state.draggingText&&!r.state.draggingText.copy&&(u=r.listSelections()),Pi(r.doc,si(t,t)),u)for(var h=0;h<u.length;++h)qi(r.doc,\"\",u[h].anchor,u[h].head,\"drag\");r.replaceSelection(c,\"around\",\"paste\"),r.display.input.focus()}}catch(e){}}}}function go(e){e.display.dragCursor&&(e.display.lineSpace.removeChild(e.display.dragCursor),e.display.dragCursor=null)}function mo(t){if(document.getElementsByClassName){for(var e=document.getElementsByClassName(\"CodeMirror\"),n=[],r=0;r<e.length;r++){var i=e[r].CodeMirror;i&&n.push(i)}n.length&&n[0].operation(function(){for(var e=0;e<n.length;e++)t(n[e])})}}var vo=!1;function yo(){var e;vo||(ye(window,\"resize\",function(){null==e&&(e=setTimeout(function(){e=null,mo(bo)},100))}),ye(window,\"blur\",function(){return mo(pr)}),vo=!0)}function bo(e){var t=e.display;t.cachedCharWidth=t.cachedTextHeight=t.cachedPaddingH=null,t.scrollbarsClipped=!1,e.setSize()}for(var wo={3:\"Pause\",8:\"Backspace\",9:\"Tab\",13:\"Enter\",16:\"Shift\",17:\"Ctrl\",18:\"Alt\",19:\"Pause\",20:\"CapsLock\",27:\"Esc\",32:\"Space\",33:\"PageUp\",34:\"PageDown\",35:\"End\",36:\"Home\",37:\"Left\",38:\"Up\",39:\"Right\",40:\"Down\",44:\"PrintScrn\",45:\"Insert\",46:\"Delete\",59:\";\",61:\"=\",91:\"Mod\",92:\"Mod\",93:\"Mod\",106:\"*\",107:\"=\",109:\"-\",110:\".\",111:\"/\",145:\"ScrollLock\",173:\"-\",186:\";\",187:\"=\",188:\",\",189:\"-\",190:\".\",191:\"/\",192:\"`\",219:\"[\",220:\"\\\\\",221:\"]\",222:\"'\",224:\"Mod\",63232:\"Up\",63233:\"Down\",63234:\"Left\",63235:\"Right\",63272:\"Delete\",63273:\"Home\",63275:\"End\",63276:\"PageUp\",63277:\"PageDown\",63302:\"Insert\"},xo=0;xo<10;xo++)wo[xo+48]=wo[xo+96]=String(xo);for(var Co=65;Co<=90;Co++)wo[Co]=String.fromCharCode(Co);for(var So=1;So<=12;So++)wo[So+111]=wo[So+63235]=\"F\"+So;var Lo={};function ko(e){var t,n,r,i,o=e.split(/-(?!$)/);e=o[o.length-1];for(var l=0;l<o.length-1;l++){var s=o[l];if(/^(cmd|meta|m)$/i.test(s))i=!0;else if(/^a(lt)?$/i.test(s))t=!0;else if(/^(c|ctrl|control)$/i.test(s))n=!0;else{if(!/^s(hift)?$/i.test(s))throw new Error(\"Unrecognized modifier name: \"+s);r=!0}}return t&&(e=\"Alt-\"+e),n&&(e=\"Ctrl-\"+e),i&&(e=\"Cmd-\"+e),r&&(e=\"Shift-\"+e),e}function To(e){var t,n,r={};for(t in e)if(e.hasOwnProperty(t)){var i=e[t];if(!/^(name|fallthrough|(de|at)tach)$/.test(t))if(\"...\"!=i){for(var o=_(t.split(\" \"),ko),l=0;l<o.length;l++){var s=void 0,a=void 0,s=l==o.length-1?(a=o.join(\" \"),i):(a=o.slice(0,l+1).join(\" \"),\"...\"),u=r[a];if(u){if(u!=s)throw new Error(\"Inconsistent bindings for \"+a)}else r[a]=s}delete e[t]}else delete e[t]}for(n in r)e[n]=r[n];return e}function Mo(e,t,n,r){var i=(t=Do(t)).call?t.call(e,r):t[e];if(!1===i)return\"nothing\";if(\"...\"===i)return\"multi\";if(null!=i&&n(i))return\"handled\";if(t.fallthrough){if(\"[object Array]\"!=Object.prototype.toString.call(t.fallthrough))return Mo(e,t.fallthrough,n,r);for(var o=0;o<t.fallthrough.length;o++){var l=Mo(e,t.fallthrough[o],n,r);if(l)return l}}}function No(e){e=\"string\"==typeof e?e:wo[e.keyCode];return\"Ctrl\"==e||\"Alt\"==e||\"Shift\"==e||\"Mod\"==e}function Ao(e,t,n){var r=e;return t.altKey&&\"Alt\"!=r&&(e=\"Alt-\"+e),(b?t.metaKey:t.ctrlKey)&&\"Ctrl\"!=r&&(e=\"Ctrl-\"+e),(b?t.ctrlKey:t.metaKey)&&\"Mod\"!=r&&(e=\"Cmd-\"+e),!n&&t.shiftKey&&\"Shift\"!=r&&(e=\"Shift-\"+e),e}function Oo(e,t){if(p&&34==e.keyCode&&e.char)return!1;var n=wo[e.keyCode];return null!=n&&!e.altGraphKey&&(3==e.keyCode&&e.code&&(n=e.code),Ao(n,e,t))}function Do(e){return\"string\"==typeof e?Lo[e]:e}function Wo(t,e){for(var n=t.doc.sel.ranges,r=[],i=0;i<n.length;i++){for(var o=e(n[i]);r.length&&it(o.from,Y(r).to)<=0;){var l=r.pop();if(it(l.from,o.from)<0){o.from=l.from;break}}r.push(o)}Er(t,function(){for(var e=r.length-1;0<=e;e--)qi(t.doc,\"\",r[e].from,r[e].to,\"+delete\");wr(t)})}function Ho(e,t,n){n=re(e.text,t+n,n);return n<0||n>e.text.length?null:n}function Fo(e,t,n){e=Ho(e,t.ch,n);return null==e?null:new rt(t.line,e,n<0?\"after\":\"before\")}function Eo(e,t,n,r,i){if(e){\"rtl\"==t.doc.direction&&(i=-i);var o=me(n,t.doc.direction);if(o){var l,s,a,e=i<0?Y(o):o[0],o=i<0==(1==e.level)?\"after\":\"before\";return 0<e.level||\"rtl\"==t.doc.direction?(l=Tn(t,n),s=i<0?n.text.length-1:0,a=Mn(t,l,s).top,s=ie(function(e){return Mn(t,l,e).top==a},i<0==(1==e.level)?e.from:e.to-1,s),\"before\"==o&&(s=Ho(n,s,1))):s=i<0?e.to:e.from,new rt(r,s,o)}}return new rt(r,i<0?n.text.length:0,i<0?\"before\":\"after\")}function Po(t,n,s,e){var a=me(n,t.doc.direction);if(!a)return Fo(n,s,e);s.ch>=n.text.length?(s.ch=n.text.length,s.sticky=\"before\"):s.ch<=0&&(s.ch=0,s.sticky=\"after\");var r=le(a,s.ch,s.sticky),i=a[r];if(\"ltr\"==t.doc.direction&&i.level%2==0&&(0<e?i.to>s.ch:i.from<s.ch))return Fo(n,s,e);function u(e,t){return Ho(n,e instanceof rt?e.ch:e,t)}function o(e){return t.options.lineWrapping?(l=l||Tn(t,n),jn(t,n,l,e)):{begin:0,end:n.text.length}}var l,c=o(\"before\"==s.sticky?u(s,-1):s.ch);if(\"rtl\"==t.doc.direction||1==i.level){var h=1==i.level==e<0,d=u(s,h?1:-1);if(null!=d&&(h?d<=i.to&&d<=c.end:d>=i.from&&d>=c.begin)){var f=h?\"before\":\"after\";return new rt(s.line,d,f)}}f=function(e,t,n){for(var r=function(e,t){return t?new rt(s.line,u(e,1),\"before\"):new rt(s.line,e,\"after\")};0<=e&&e<a.length;e+=t){var i=a[e],o=0<t==(1!=i.level),l=o?n.begin:u(n.end,-1);if(i.from<=l&&l<i.to)return r(l,o);if(l=o?i.from:u(i.to,-1),n.begin<=l&&l<n.end)return r(l,o)}},r=f(r+e,e,c);if(r)return r;c=0<e?c.end:u(c.begin,-1);return null==c||0<e&&c==n.text.length||!(r=f(0<e?0:a.length-1,e,o(c)))?null:r}Lo.basic={Left:\"goCharLeft\",Right:\"goCharRight\",Up:\"goLineUp\",Down:\"goLineDown\",End:\"goLineEnd\",Home:\"goLineStartSmart\",PageUp:\"goPageUp\",PageDown:\"goPageDown\",Delete:\"delCharAfter\",Backspace:\"delCharBefore\",\"Shift-Backspace\":\"delCharBefore\",Tab:\"defaultTab\",\"Shift-Tab\":\"indentAuto\",Enter:\"newlineAndIndent\",Insert:\"toggleOverwrite\",Esc:\"singleSelection\"},Lo.pcDefault={\"Ctrl-A\":\"selectAll\",\"Ctrl-D\":\"deleteLine\",\"Ctrl-Z\":\"undo\",\"Shift-Ctrl-Z\":\"redo\",\"Ctrl-Y\":\"redo\",\"Ctrl-Home\":\"goDocStart\",\"Ctrl-End\":\"goDocEnd\",\"Ctrl-Up\":\"goLineUp\",\"Ctrl-Down\":\"goLineDown\",\"Ctrl-Left\":\"goGroupLeft\",\"Ctrl-Right\":\"goGroupRight\",\"Alt-Left\":\"goLineStart\",\"Alt-Right\":\"goLineEnd\",\"Ctrl-Backspace\":\"delGroupBefore\",\"Ctrl-Delete\":\"delGroupAfter\",\"Ctrl-S\":\"save\",\"Ctrl-F\":\"find\",\"Ctrl-G\":\"findNext\",\"Shift-Ctrl-G\":\"findPrev\",\"Shift-Ctrl-F\":\"replace\",\"Shift-Ctrl-R\":\"replaceAll\",\"Ctrl-[\":\"indentLess\",\"Ctrl-]\":\"indentMore\",\"Ctrl-U\":\"undoSelection\",\"Shift-Ctrl-U\":\"redoSelection\",\"Alt-U\":\"redoSelection\",fallthrough:\"basic\"},Lo.emacsy={\"Ctrl-F\":\"goCharRight\",\"Ctrl-B\":\"goCharLeft\",\"Ctrl-P\":\"goLineUp\",\"Ctrl-N\":\"goLineDown\",\"Alt-F\":\"goWordRight\",\"Alt-B\":\"goWordLeft\",\"Ctrl-A\":\"goLineStart\",\"Ctrl-E\":\"goLineEnd\",\"Ctrl-V\":\"goPageDown\",\"Shift-Ctrl-V\":\"goPageUp\",\"Ctrl-D\":\"delCharAfter\",\"Ctrl-H\":\"delCharBefore\",\"Alt-D\":\"delWordAfter\",\"Alt-Backspace\":\"delWordBefore\",\"Ctrl-K\":\"killLine\",\"Ctrl-T\":\"transposeChars\",\"Ctrl-O\":\"openLine\"},Lo.macDefault={\"Cmd-A\":\"selectAll\",\"Cmd-D\":\"deleteLine\",\"Cmd-Z\":\"undo\",\"Shift-Cmd-Z\":\"redo\",\"Cmd-Y\":\"redo\",\"Cmd-Home\":\"goDocStart\",\"Cmd-Up\":\"goDocStart\",\"Cmd-End\":\"goDocEnd\",\"Cmd-Down\":\"goDocEnd\",\"Alt-Left\":\"goGroupLeft\",\"Alt-Right\":\"goGroupRight\",\"Cmd-Left\":\"goLineLeft\",\"Cmd-Right\":\"goLineRight\",\"Alt-Backspace\":\"delGroupBefore\",\"Ctrl-Alt-Backspace\":\"delGroupAfter\",\"Alt-Delete\":\"delGroupAfter\",\"Cmd-S\":\"save\",\"Cmd-F\":\"find\",\"Cmd-G\":\"findNext\",\"Shift-Cmd-G\":\"findPrev\",\"Cmd-Alt-F\":\"replace\",\"Shift-Cmd-Alt-F\":\"replaceAll\",\"Cmd-[\":\"indentLess\",\"Cmd-]\":\"indentMore\",\"Cmd-Backspace\":\"delWrappedLineLeft\",\"Cmd-Delete\":\"delWrappedLineRight\",\"Cmd-U\":\"undoSelection\",\"Shift-Cmd-U\":\"redoSelection\",\"Ctrl-Up\":\"goDocStart\",\"Ctrl-Down\":\"goDocEnd\",fallthrough:[\"basic\",\"emacsy\"]},Lo.default=g?Lo.macDefault:Lo.pcDefault;var Io={selectAll:Vi,singleSelection:function(e){return e.setSelection(e.getCursor(\"anchor\"),e.getCursor(\"head\"),G)},killLine:function(n){return Wo(n,function(e){if(e.empty()){var t=$e(n.doc,e.head.line).text.length;return e.head.ch==t&&e.head.line<n.lastLine()?{from:e.head,to:rt(e.head.line+1,0)}:{from:e.head,to:rt(e.head.line,t)}}return{from:e.from(),to:e.to()}})},deleteLine:function(t){return Wo(t,function(e){return{from:rt(e.from().line,0),to:ct(t.doc,rt(e.to().line+1,0))}})},delLineLeft:function(e){return Wo(e,function(e){return{from:rt(e.from().line,0),to:e.from()}})},delWrappedLineLeft:function(n){return Wo(n,function(e){var t=n.charCoords(e.head,\"div\").top+5;return{from:n.coordsChar({left:0,top:t},\"div\"),to:e.from()}})},delWrappedLineRight:function(n){return Wo(n,function(e){var t=n.charCoords(e.head,\"div\").top+5,t=n.coordsChar({left:n.display.lineDiv.offsetWidth+100,top:t},\"div\");return{from:e.from(),to:t}})},undo:function(e){return e.undo()},redo:function(e){return e.redo()},undoSelection:function(e){return e.undoSelection()},redoSelection:function(e){return e.redoSelection()},goDocStart:function(e){return e.extendSelection(rt(e.firstLine(),0))},goDocEnd:function(e){return e.extendSelection(rt(e.lastLine()))},goLineStart:function(t){return t.extendSelectionsBy(function(e){return Ro(t,e.head.line)},{origin:\"+move\",bias:1})},goLineStartSmart:function(t){return t.extendSelectionsBy(function(e){return zo(t,e.head)},{origin:\"+move\",bias:1})},goLineEnd:function(t){return t.extendSelectionsBy(function(e){return function(e,t){var n=$e(e.doc,t),r=function(e){for(var t;t=It(e);)e=t.find(1,!0).line;return e}(n);r!=n&&(t=Je(r));return Eo(!0,e,n,t,-1)}(t,e.head.line)},{origin:\"+move\",bias:-1})},goLineRight:function(t){return t.extendSelectionsBy(function(e){e=t.cursorCoords(e.head,\"div\").top+5;return t.coordsChar({left:t.display.lineDiv.offsetWidth+100,top:e},\"div\")},V)},goLineLeft:function(t){return t.extendSelectionsBy(function(e){e=t.cursorCoords(e.head,\"div\").top+5;return t.coordsChar({left:0,top:e},\"div\")},V)},goLineLeftSmart:function(n){return n.extendSelectionsBy(function(e){var t=n.cursorCoords(e.head,\"div\").top+5,t=n.coordsChar({left:0,top:t},\"div\");return t.ch<n.getLine(t.line).search(/\\S/)?zo(n,e.head):t},V)},goLineUp:function(e){return e.moveV(-1,\"line\")},goLineDown:function(e){return e.moveV(1,\"line\")},goPageUp:function(e){return e.moveV(-1,\"page\")},goPageDown:function(e){return e.moveV(1,\"page\")},goCharLeft:function(e){return e.moveH(-1,\"char\")},goCharRight:function(e){return e.moveH(1,\"char\")},goColumnLeft:function(e){return e.moveH(-1,\"column\")},goColumnRight:function(e){return e.moveH(1,\"column\")},goWordLeft:function(e){return e.moveH(-1,\"word\")},goGroupRight:function(e){return e.moveH(1,\"group\")},goGroupLeft:function(e){return e.moveH(-1,\"group\")},goWordRight:function(e){return e.moveH(1,\"word\")},delCharBefore:function(e){return e.deleteH(-1,\"codepoint\")},delCharAfter:function(e){return e.deleteH(1,\"char\")},delWordBefore:function(e){return e.deleteH(-1,\"word\")},delWordAfter:function(e){return e.deleteH(1,\"word\")},delGroupBefore:function(e){return e.deleteH(-1,\"group\")},delGroupAfter:function(e){return e.deleteH(1,\"group\")},indentAuto:function(e){return e.indentSelection(\"smart\")},indentMore:function(e){return e.indentSelection(\"add\")},indentLess:function(e){return e.indentSelection(\"subtract\")},insertTab:function(e){return e.replaceSelection(\"\\t\")},insertSoftTab:function(e){for(var t=[],n=e.listSelections(),r=e.options.tabSize,i=0;i<n.length;i++){var o=n[i].from(),o=P(e.getLine(o.line),o.ch,r);t.push(X(r-o%r))}e.replaceSelections(t)},defaultTab:function(e){e.somethingSelected()?e.indentSelection(\"add\"):e.execCommand(\"insertTab\")},transposeChars:function(l){return Er(l,function(){for(var e,t,n,r=l.listSelections(),i=[],o=0;o<r.length;o++)r[o].empty()&&(e=r[o].head,(t=$e(l.doc,e.line).text)&&(e.ch==t.length&&(e=new rt(e.line,e.ch-1)),0<e.ch?(e=new rt(e.line,e.ch+1),l.replaceRange(t.charAt(e.ch-1)+t.charAt(e.ch-2),rt(e.line,e.ch-2),e,\"+transpose\")):e.line>l.doc.first&&((n=$e(l.doc,e.line-1).text)&&(e=new rt(e.line,1),l.replaceRange(t.charAt(0)+l.doc.lineSeparator()+n.charAt(n.length-1),rt(e.line-1,n.length-1),e,\"+transpose\")))),i.push(new oi(e,e)));l.setSelections(i)})},newlineAndIndent:function(r){return Er(r,function(){for(var e=r.listSelections(),t=e.length-1;0<=t;t--)r.replaceRange(r.doc.lineSeparator(),e[t].anchor,e[t].head,\"+input\");e=r.listSelections();for(var n=0;n<e.length;n++)r.indentLine(e[n].from().line,null,!0);wr(r)})},openLine:function(e){return e.replaceSelection(\"\\n\",\"start\")},toggleOverwrite:function(e){return e.toggleOverwrite()}};function Ro(e,t){var n=$e(e.doc,t),r=zt(n);return r!=n&&(t=Je(r)),Eo(!0,e,r,t,1)}function zo(e,t){var n=Ro(e,t.line),r=$e(e.doc,n.line),e=me(r,e.doc.direction);if(e&&0!=e[0].level)return n;r=Math.max(n.ch,r.text.search(/\\S/)),t=t.line==n.line&&t.ch<=r&&t.ch;return rt(n.line,t?0:r,n.sticky)}function Bo(e,t,n){if(\"string\"==typeof t&&!(t=Io[t]))return!1;e.display.input.ensurePolled();var r=e.display.shift,i=!1;try{e.isReadOnly()&&(e.state.suppressEdits=!0),n&&(e.display.shift=!1),i=t(e)!=B}finally{e.display.shift=r,e.state.suppressEdits=!1}return i}var Go=new I;function Uo(e,t,n,r){var i=e.state.keySeq;if(i){if(No(t))return\"handled\";if(/\\'$/.test(t)?e.state.keySeq=null:Go.set(50,function(){e.state.keySeq==i&&(e.state.keySeq=null,e.display.input.reset())}),Vo(e,i+\" \"+t,n,r))return!0}return Vo(e,t,n,r)}function Vo(e,t,n,r){r=function(e,t,n){for(var r=0;r<e.state.keyMaps.length;r++){var i=Mo(t,e.state.keyMaps[r],n,e);if(i)return i}return e.options.extraKeys&&Mo(t,e.options.extraKeys,n,e)||Mo(t,e.options.keyMap,n,e)}(e,t,r);return\"multi\"==r&&(e.state.keySeq=t),\"handled\"==r&&ln(e,\"keyHandled\",e,t,n),\"handled\"!=r&&\"multi\"!=r||(Te(n),cr(e)),!!r}function Ko(t,e){var n=Oo(e,!0);return!!n&&(e.shiftKey&&!t.state.keySeq?Uo(t,\"Shift-\"+n,e,function(e){return Bo(t,e,!0)})||Uo(t,n,e,function(e){if(\"string\"==typeof e?/^go[A-Z]/.test(e):e.motion)return Bo(t,e)}):Uo(t,n,e,function(e){return Bo(t,e)}))}var jo=null;function Xo(e){var t,n,r,i=this;function o(e){18!=e.keyCode&&e.altKey||(L(r,\"CodeMirror-crosshair\"),we(document,\"keyup\",o),we(document,\"mouseover\",o))}e.target&&e.target!=i.display.input.getField()||(i.curOp.focus=O(),Ce(i,e)||(w&&v<11&&27==e.keyCode&&(e.returnValue=!1),t=e.keyCode,i.display.shift=16==t||e.shiftKey,n=Ko(i,e),p&&(jo=n?t:null,!n&&88==t&&!Ie&&(g?e.metaKey:e.ctrlKey)&&i.replaceSelection(\"\",null,\"cut\")),d&&!g&&!n&&46==t&&e.shiftKey&&!e.ctrlKey&&document.execCommand&&document.execCommand(\"cut\"),18!=t||/\\bCodeMirror-crosshair\\b/.test(i.display.lineDiv.className)||(D(r=i.display.lineDiv,\"CodeMirror-crosshair\"),ye(document,\"keyup\",o),ye(document,\"mouseover\",o))))}function Yo(e){16==e.keyCode&&(this.doc.sel.shift=!1),Ce(this,e)}function _o(e){var t=this;if(!(e.target&&e.target!=t.display.input.getField()||mn(t.display,e)||Ce(t,e)||e.ctrlKey&&!e.altKey||g&&e.metaKey)){var n,r=e.keyCode,i=e.charCode;if(p&&r==jo)return jo=null,void Te(e);p&&(!e.which||e.which<10)&&Ko(t,e)||\"\\b\"!=(i=String.fromCharCode(null==i?r:i))&&(Uo(n=t,\"'\"+i+\"'\",e,function(e){return Bo(n,e,!0)})||t.display.input.onKeyPress(e))}}var $o,qo,Zo=function(e,t,n){this.time=e,this.pos=t,this.button=n};function Qo(e){var t,n,r,i,o,l=this,s=l.display;Ce(l,e)||s.activeTouch&&s.input.supportsTouch()||(s.input.ensurePolled(),s.shift=e.shiftKey,mn(s,e)?f||(s.scroller.draggable=!1,setTimeout(function(){return s.scroller.draggable=!0},100)):tl(l,e)||(t=Jn(l,e),n=De(e),i=t?(r=t,i=n,o=+new Date,qo&&qo.compare(o,r,i)?($o=qo=null,\"triple\"):$o&&$o.compare(o,r,i)?(qo=new Zo(o,r,i),$o=null,\"double\"):($o=new Zo(o,r,i),qo=null,\"single\")):\"single\",window.focus(),1==n&&l.state.selectingText&&l.state.selectingText(e),t&&function(n,e,r,t,i){var o=\"Click\";\"double\"==t?o=\"Double\"+o:\"triple\"==t&&(o=\"Triple\"+o);return Uo(n,Ao(o=(1==e?\"Left\":2==e?\"Middle\":\"Right\")+o,i),i,function(e){if(\"string\"==typeof e&&(e=Io[e]),!e)return!1;var t=!1;try{n.isReadOnly()&&(n.state.suppressEdits=!0),t=e(n,r)!=B}finally{n.state.suppressEdits=!1}return t})}(l,n,t,i,e)||(1==n?t?function(e,t,n,r){w?setTimeout(F(hr,e),0):e.curOp.focus=O();var i,o=function(e,t,n){var r=e.getOption(\"configureMouse\"),i=r?r(e,t,n):{};null==i.unit&&(r=m?n.shiftKey&&n.metaKey:n.altKey,i.unit=r?\"rectangle\":\"single\"==t?\"char\":\"double\"==t?\"word\":\"line\");null!=i.extend&&!e.doc.extend||(i.extend=e.doc.extend||n.shiftKey);null==i.addNew&&(i.addNew=g?n.metaKey:n.ctrlKey);null==i.moveOnDrag&&(i.moveOnDrag=!(g?n.altKey:n.ctrlKey));return i}(e,n,r),l=e.doc.sel;(e.options.dragDrop&&Fe&&!e.isReadOnly()&&\"single\"==n&&-1<(i=l.contains(t))&&(it((i=l.ranges[i]).from(),t)<0||0<t.xRel)&&(0<it(i.to(),t)||t.xRel<0)?function(t,n,r,i){var o=t.display,l=!1,s=Pr(t,function(e){f&&(o.scroller.draggable=!1),t.state.draggingText=!1,t.state.delayingBlurEvent&&(t.hasFocus()?t.state.delayingBlurEvent=!1:dr(t)),we(o.wrapper.ownerDocument,\"mouseup\",s),we(o.wrapper.ownerDocument,\"mousemove\",a),we(o.scroller,\"dragstart\",u),we(o.scroller,\"drop\",s),l||(Te(e),i.addNew||Oi(t.doc,r,null,null,i.extend),f&&!c||w&&9==v?setTimeout(function(){o.wrapper.ownerDocument.body.focus({preventScroll:!0}),o.input.focus()},20):o.input.focus())}),a=function(e){l=l||10<=Math.abs(n.clientX-e.clientX)+Math.abs(n.clientY-e.clientY)},u=function(){return l=!0};f&&(o.scroller.draggable=!0);(t.state.draggingText=s).copy=!i.moveOnDrag,ye(o.wrapper.ownerDocument,\"mouseup\",s),ye(o.wrapper.ownerDocument,\"mousemove\",a),ye(o.scroller,\"dragstart\",u),ye(o.scroller,\"drop\",s),t.state.delayingBlurEvent=!0,setTimeout(function(){return o.input.focus()},20),o.scroller.dragDrop&&o.scroller.dragDrop()}:function(d,e,f,p){w&&dr(d);var l=d.display,g=d.doc;Te(e);var m,v,y=g.sel,t=y.ranges;p.addNew&&!p.extend?(v=g.sel.contains(f),m=-1<v?t[v]:new oi(f,f)):(m=g.sel.primary(),v=g.sel.primIndex);\"rectangle\"==p.unit?(p.addNew||(m=new oi(f,f)),f=Jn(d,e,!0,!0),v=-1):(e=Jo(d,f,p.unit),m=p.extend?Ai(m,e.anchor,e.head,p.extend):e);p.addNew?-1==v?(v=t.length,Ei(g,li(d,t.concat([m]),v),{scroll:!1,origin:\"*mouse\"})):1<t.length&&t[v].empty()&&\"char\"==p.unit&&!p.extend?(Ei(g,li(d,t.slice(0,v).concat(t.slice(v+1)),0),{scroll:!1,origin:\"*mouse\"}),y=g.sel):Wi(g,v,m,U):(Ei(g,new ii([m],v=0),U),y=g.sel);var b=f;function s(e){if(0!=it(b,e))if(b=e,\"rectangle\"==p.unit){for(var t=[],n=d.options.tabSize,r=P($e(g,f.line).text,f.ch,n),i=P($e(g,e.line).text,e.ch,n),o=Math.min(r,i),l=Math.max(r,i),s=Math.min(f.line,e.line),a=Math.min(d.lastLine(),Math.max(f.line,e.line));s<=a;s++){var u=$e(g,s).text,c=K(u,o,n);o==l?t.push(new oi(rt(s,c),rt(s,c))):u.length>c&&t.push(new oi(rt(s,c),rt(s,K(u,l,n))))}t.length||t.push(new oi(f,f)),Ei(g,li(d,y.ranges.slice(0,v).concat(t),v),{origin:\"*mouse\",scroll:!1}),d.scrollIntoView(e)}else{var h,r=m,i=Jo(d,e,p.unit),e=r.anchor,e=0<it(i.anchor,e)?(h=i.head,at(r.from(),i.anchor)):(h=i.anchor,st(r.to(),i.head)),i=y.ranges.slice(0);i[v]=function(e,t){var n=t.anchor,r=t.head,i=$e(e.doc,n.line);if(0==it(n,r)&&n.sticky==r.sticky)return t;var o=me(i);if(!o)return t;var l=le(o,n.ch,n.sticky),s=o[l];if(s.from!=n.ch&&s.to!=n.ch)return t;i=l+(s.from==n.ch==(1!=s.level)?0:1);if(0==i||i==o.length)return t;a=r.line!=n.line?0<(r.line-n.line)*(\"ltr\"==e.doc.direction?1:-1):(e=le(o,r.ch,r.sticky),a=e-l||(r.ch-n.ch)*(1==s.level?-1:1),e==i-1||e==i?a<0:0<a);var i=o[i+(a?-1:0)],a=a==(1==i.level),i=a?i.from:i.to,a=a?\"after\":\"before\";return n.ch==i&&n.sticky==a?t:new oi(new rt(n.line,i,a),r)}(d,new oi(ct(g,e),h)),Ei(g,li(d,i,v),U)}}var a=l.wrapper.getBoundingClientRect(),u=0;function n(e){d.state.selectingText=!1,u=1/0,e&&(Te(e),l.input.focus()),we(l.wrapper.ownerDocument,\"mousemove\",r),we(l.wrapper.ownerDocument,\"mouseup\",i),g.history.lastSelOrigin=null}var r=Pr(d,function(e){(0!==e.buttons&&De(e)?function e(t){var n,r,i=++u,o=Jn(d,t,!0,\"rectangle\"==p.unit);o&&(0!=it(o,b)?(d.curOp.focus=O(),s(o),n=vr(l,g),(o.line>=n.to||o.line<n.from)&&setTimeout(Pr(d,function(){u==i&&e(t)}),150)):(r=t.clientY<a.top?-20:t.clientY>a.bottom?20:0)&&setTimeout(Pr(d,function(){u==i&&(l.scroller.scrollTop+=r,e(t))}),50))}:n)(e)}),i=Pr(d,n);d.state.selectingText=i,ye(l.wrapper.ownerDocument,\"mousemove\",r),ye(l.wrapper.ownerDocument,\"mouseup\",i)})(e,r,t,o)}(l,t,i,e):Oe(e)==s.scroller&&Te(e):2==n?(t&&Oi(l.doc,t),setTimeout(function(){return s.input.focus()},20)):3==n&&(x?l.display.input.onContextMenu(e):dr(l)))))}function Jo(e,t,n){if(\"char\"==n)return new oi(t,t);if(\"word\"==n)return e.findWordAt(t);if(\"line\"==n)return new oi(rt(t.line,0),ct(e.doc,rt(t.line+1,0)));t=n(e,t);return new oi(t.from,t.to)}function el(e,t,n,r){var i,o;if(t.touches)i=t.touches[0].clientX,o=t.touches[0].clientY;else try{i=t.clientX,o=t.clientY}catch(e){return!1}if(i>=Math.floor(e.display.gutters.getBoundingClientRect().right))return!1;r&&Te(t);var l=e.display,r=l.lineDiv.getBoundingClientRect();if(o>r.bottom||!Le(e,n))return Ne(t);o-=r.top-l.viewOffset;for(var s=0;s<e.display.gutterSpecs.length;++s){var a=l.gutters.childNodes[s];if(a&&a.getBoundingClientRect().right>=i)return xe(e,n,e,et(e.doc,o),e.display.gutterSpecs[s].className,t),Ne(t)}}function tl(e,t){return el(e,t,\"gutterClick\",!0)}function nl(e,t){var n,r;mn(e.display,t)||(r=t,Le(n=e,\"gutterContextMenu\")&&el(n,r,\"gutterContextMenu\",!1))||Ce(e,t,\"contextmenu\")||x||e.display.input.onContextMenu(t)}function rl(e){e.display.wrapper.className=e.display.wrapper.className.replace(/\\s*cm-s-\\S+/g,\"\")+e.options.theme.replace(/(^|\\s)\\s*/g,\" cm-s-\"),Hn(e)}Zo.prototype.compare=function(e,t,n){return this.time+400>e&&0==it(t,this.pos)&&n==this.button};var il={toString:function(){return\"CodeMirror.Init\"}},ol={},ll={};function sl(e,t,n){!t!=!(n&&n!=il)&&(n=e.display.dragFunctions,(t=t?ye:we)(e.display.scroller,\"dragstart\",n.start),t(e.display.scroller,\"dragenter\",n.enter),t(e.display.scroller,\"dragover\",n.over),t(e.display.scroller,\"dragleave\",n.leave),t(e.display.scroller,\"drop\",n.drop))}function al(e){e.options.lineWrapping?(D(e.display.wrapper,\"CodeMirror-wrap\"),e.display.sizer.style.minWidth=\"\",e.display.sizerWidth=null):(L(e.display.wrapper,\"CodeMirror-wrap\"),jt(e)),Qn(e),tr(e),Hn(e),setTimeout(function(){return Nr(e)},100)}function ul(e,t){var n=this;if(!(this instanceof ul))return new ul(e,t);this.options=t=t?E(t):{},E(ol,t,!1);var r=t.value;\"string\"==typeof r?r=new ho(r,t.mode,null,t.lineSeparator,t.direction):t.mode&&(r.modeOption=t.mode),this.doc=r;var i,o=new ul.inputStyles[t.inputStyle](this),o=this.display=new Qr(e,r,o,t);for(i in rl(o.wrapper.CodeMirror=this),t.lineWrapping&&(this.display.wrapper.className+=\" CodeMirror-wrap\"),Dr(this),this.state={keyMaps:[],overlays:[],modeGen:0,overwrite:!1,delayingBlurEvent:!1,focused:!1,suppressEdits:!1,pasteIncoming:-1,cutIncoming:-1,selectingText:!1,draggingText:!1,highlight:new I,keySeq:null,specialChars:null},t.autofocus&&!h&&o.input.focus(),w&&v<11&&setTimeout(function(){return n.display.input.reset(!0)},20),function(r){var i=r.display;ye(i.scroller,\"mousedown\",Pr(r,Qo)),ye(i.scroller,\"dblclick\",w&&v<11?Pr(r,function(e){var t;Ce(r,e)||(!(t=Jn(r,e))||tl(r,e)||mn(r.display,e)||(Te(e),t=r.findWordAt(t),Oi(r.doc,t.anchor,t.head)))}):function(e){return Ce(r,e)||Te(e)});ye(i.scroller,\"contextmenu\",function(e){return nl(r,e)}),ye(i.input.getField(),\"contextmenu\",function(e){i.scroller.contains(e.target)||nl(r,e)});var n,o={end:0};function l(){i.activeTouch&&(n=setTimeout(function(){return i.activeTouch=null},1e3),(o=i.activeTouch).end=+new Date)}function s(e,t){if(null==t.left)return 1;var n=t.left-e.left,e=t.top-e.top;return 400<n*n+e*e}ye(i.scroller,\"touchstart\",function(e){var t;Ce(r,e)||function(e){if(1==e.touches.length){e=e.touches[0];return e.radiusX<=1&&e.radiusY<=1}}(e)||tl(r,e)||(i.input.ensurePolled(),clearTimeout(n),t=+new Date,i.activeTouch={start:t,moved:!1,prev:t-o.end<=300?o:null},1==e.touches.length&&(i.activeTouch.left=e.touches[0].pageX,i.activeTouch.top=e.touches[0].pageY))}),ye(i.scroller,\"touchmove\",function(){i.activeTouch&&(i.activeTouch.moved=!0)}),ye(i.scroller,\"touchend\",function(e){var t,n=i.activeTouch;n&&!mn(i,e)&&null!=n.left&&!n.moved&&new Date-n.start<300&&(t=r.coordsChar(i.activeTouch,\"page\"),t=!n.prev||s(n,n.prev)?new oi(t,t):!n.prev.prev||s(n,n.prev.prev)?r.findWordAt(t):new oi(rt(t.line,0),ct(r.doc,rt(t.line+1,0))),r.setSelection(t.anchor,t.head),r.focus(),Te(e)),l()}),ye(i.scroller,\"touchcancel\",l),ye(i.scroller,\"scroll\",function(){i.scroller.clientHeight&&(Lr(r,i.scroller.scrollTop),Tr(r,i.scroller.scrollLeft,!0),xe(r,\"scroll\",r))}),ye(i.scroller,\"mousewheel\",function(e){return ri(r,e)}),ye(i.scroller,\"DOMMouseScroll\",function(e){return ri(r,e)}),ye(i.wrapper,\"scroll\",function(){return i.wrapper.scrollTop=i.wrapper.scrollLeft=0}),i.dragFunctions={enter:function(e){Ce(r,e)||Ae(e)},over:function(e){var t,n;Ce(r,e)||((n=Jn(t=r,n=e))&&(ar(t,n,n=document.createDocumentFragment()),t.display.dragCursor||(t.display.dragCursor=M(\"div\",null,\"CodeMirror-cursors CodeMirror-dragcursors\"),t.display.lineSpace.insertBefore(t.display.dragCursor,t.display.cursorDiv)),T(t.display.dragCursor,n)),Ae(e))},start:function(e){return t=r,n=e,void(w&&(!t.state.draggingText||+new Date-fo<100)?Ae(n):Ce(t,n)||mn(t.display,n)||(n.dataTransfer.setData(\"Text\",t.getSelection()),n.dataTransfer.effectAllowed=\"copyMove\",n.dataTransfer.setDragImage&&!c&&((e=M(\"img\",null,null,\"position: fixed; left: 0; top: 0;\")).src=\"\",p&&(e.width=e.height=1,t.display.wrapper.appendChild(e),e._top=e.offsetTop),n.dataTransfer.setDragImage(e,0,0),p&&e.parentNode.removeChild(e))));var t,n},drop:Pr(r,po),leave:function(e){Ce(r,e)||go(r)}};var e=i.input.getField();ye(e,\"keyup\",function(e){return Yo.call(r,e)}),ye(e,\"keydown\",Pr(r,Xo)),ye(e,\"keypress\",Pr(r,_o)),ye(e,\"focus\",function(e){return fr(r,e)}),ye(e,\"blur\",function(e){return pr(r,e)})}(this),yo(),Hr(this),this.curOp.forceUpdate=!0,vi(this,r),t.autofocus&&!h||this.hasFocus()?setTimeout(function(){n.hasFocus()&&!n.state.focused&&fr(n)},20):pr(this),ll)ll.hasOwnProperty(i)&&ll[i](this,t[i],il);_r(this),t.finishInit&&t.finishInit(this);for(var l=0;l<cl.length;++l)cl[l](this);Fr(this),f&&t.lineWrapping&&\"optimizelegibility\"==getComputedStyle(o.lineDiv).textRendering&&(o.lineDiv.style.textRendering=\"auto\")}ul.defaults=ol,ul.optionHandlers=ll;var cl=[];function hl(e,t,n,r){var i,o=e.doc;null==n&&(n=\"add\"),\"smart\"==n&&(o.mode.indent?i=mt(e,t).state:n=\"prev\");var l=e.options.tabSize,s=$e(o,t),a=P(s.text,null,l);s.stateAfter&&(s.stateAfter=null);var u,c=s.text.match(/^\\s*/)[0];if(r||/\\S/.test(s.text)){if(\"smart\"==n&&((u=o.mode.indent(i,s.text.slice(c.length),s.text))==B||150<u)){if(!r)return;n=\"prev\"}}else u=0,n=\"not\";\"prev\"==n?u=t>o.first?P($e(o,t-1).text,null,l):0:\"add\"==n?u=a+e.options.indentUnit:\"subtract\"==n?u=a-e.options.indentUnit:\"number\"==typeof n&&(u=a+n),u=Math.max(0,u);var h=\"\",d=0;if(e.options.indentWithTabs)for(var f=Math.floor(u/l);f;--f)d+=l,h+=\"\\t\";if(d<u&&(h+=X(u-d)),h!=c)return qi(o,h,rt(t,0),rt(t,c.length),\"+input\"),!(s.stateAfter=null);for(var p=0;p<o.sel.ranges.length;p++){var g=o.sel.ranges[p];if(g.head.line==t&&g.head.ch<c.length){g=rt(t,c.length);Wi(o,p,new oi(g,g));break}}}ul.defineInitHook=function(e){return cl.push(e)};var dl=null;function fl(e){dl=e}function pl(e,t,n,r,i){var o=e.doc;e.display.shift=!1,r=r||o.sel;var l=+new Date-200,s=\"paste\"==i||e.state.pasteIncoming>l,a=Ee(t),u=null;if(s&&1<r.ranges.length)if(dl&&dl.text.join(\"\\n\")==t){if(r.ranges.length%dl.text.length==0){u=[];for(var c=0;c<dl.text.length;c++)u.push(o.splitLines(dl.text[c]))}}else a.length==r.ranges.length&&e.options.pasteLinesPerSelection&&(u=_(a,function(e){return[e]}));for(var h=e.curOp.updateInput,d=r.ranges.length-1;0<=d;d--){var f=r.ranges[d],p=f.from(),g=f.to();f.empty()&&(n&&0<n?p=rt(p.line,p.ch-n):e.state.overwrite&&!s?g=rt(g.line,Math.min($e(o,g.line).text.length,g.ch+Y(a).length)):s&&dl&&dl.lineWise&&dl.text.join(\"\\n\")==a.join(\"\\n\")&&(p=g=rt(p.line,0)));g={from:p,to:g,text:u?u[d%u.length]:a,origin:i||(s?\"paste\":e.state.cutIncoming>l?\"cut\":\"+input\")};ji(e.doc,g),ln(e,\"inputRead\",e,g)}t&&!s&&ml(e,t),wr(e),e.curOp.updateInput<2&&(e.curOp.updateInput=h),e.curOp.typing=!0,e.state.pasteIncoming=e.state.cutIncoming=-1}function gl(e,t){var n=e.clipboardData&&e.clipboardData.getData(\"Text\");return n&&(e.preventDefault(),t.isReadOnly()||t.options.disableInput||Er(t,function(){return pl(t,n,0,null,\"paste\")}),1)}function ml(e,t){if(e.options.electricChars&&e.options.smartIndent)for(var n=e.doc.sel,r=n.ranges.length-1;0<=r;r--){var i=n.ranges[r];if(!(100<i.head.ch||r&&n.ranges[r-1].head.line==i.head.line)){var o=e.getModeAt(i.head),l=!1;if(o.electricChars){for(var s=0;s<o.electricChars.length;s++)if(-1<t.indexOf(o.electricChars.charAt(s))){l=hl(e,i.head.line,\"smart\");break}}else o.electricInput&&o.electricInput.test($e(e.doc,i.head.line).text.slice(0,i.head.ch))&&(l=hl(e,i.head.line,\"smart\"));l&&ln(e,\"electricInput\",e,i.head.line)}}}function vl(e){for(var t=[],n=[],r=0;r<e.doc.sel.ranges.length;r++){var i=e.doc.sel.ranges[r].head.line,i={anchor:rt(i,0),head:rt(i+1,0)};n.push(i),t.push(e.getRange(i.anchor,i.head))}return{text:t,ranges:n}}function yl(e,t,n,r){e.setAttribute(\"autocorrect\",n?\"\":\"off\"),e.setAttribute(\"autocapitalize\",r?\"\":\"off\"),e.setAttribute(\"spellcheck\",!!t)}function bl(){var e=M(\"textarea\",null,null,\"position: absolute; bottom: -1em; padding: 0; width: 1px; height: 1em; outline: none\"),t=M(\"div\",[e],null,\"overflow: hidden; position: relative; width: 3px; height: 0px;\");return f?e.style.width=\"1000px\":e.setAttribute(\"wrap\",\"off\"),s&&(e.style.border=\"1px solid black\"),yl(e),t}function wl(r,i,o,l,s){var e=i,t=o,a=$e(r,i.line),u=s&&\"rtl\"==r.direction?-o:o;function n(e){var t,n;if(null==(t=\"codepoint\"==l?(t=a.text.charCodeAt(i.ch+(0<l?0:-1)),isNaN(t)?null:new rt(i.line,Math.max(0,Math.min(a.text.length,i.ch+o*(55296<=t&&t<56320?2:1))),-o)):s?Po(r.cm,a,i,o):Fo(a,i,o))){if(e||(n=i.line+u)<r.first||n>=r.first+r.size||(i=new rt(n,i.ch,i.sticky),!(a=$e(r,n))))return;i=Eo(s,r.cm,a,i.line,u)}else i=t;return 1}if(\"char\"==l||\"codepoint\"==l)n();else if(\"column\"==l)n(!0);else if(\"word\"==l||\"group\"==l)for(var c=null,h=\"group\"==l,d=r.cm&&r.cm.getHelper(i,\"wordChars\"),f=!0;!(o<0)||n(!f);f=!1){var p=a.text.charAt(i.ch)||\"\\n\",p=J(p,d)?\"w\":h&&\"\\n\"==p?\"n\":!h||/\\s/.test(p)?null:\"p\";if(!h||f||p||(p=\"s\"),c&&c!=p){o<0&&(o=1,n(),i.sticky=\"after\");break}if(p&&(c=p),0<o&&!n(!f))break}t=Gi(r,i,e,t,!0);return ot(e,t)&&(t.hitSide=!0),t}function xl(e,t,n,r){var i,o,l,s=e.doc,a=t.left;for(\"page\"==r?(i=Math.min(e.display.wrapper.clientHeight,window.innerHeight||document.documentElement.clientHeight),i=Math.max(i-.5*Yn(e.display),3),o=(0<n?t.bottom:t.top)+n*i):\"line\"==r&&(o=0<n?t.bottom+3:t.top-3);(l=Vn(e,a,o)).outside;){if(n<0?o<=0:o>=s.height){l.hitSide=!0;break}o+=5*n}return l}e=function(e){this.cm=e,this.lastAnchorNode=this.lastAnchorOffset=this.lastFocusNode=this.lastFocusOffset=null,this.polling=new I,this.composing=null,this.gracePeriod=!1,this.readDOMTimeout=null};function Cl(e,t){var n=kn(e,t.line);if(!n||n.hidden)return null;var r=$e(e.doc,t.line),n=Sn(n,r,t.line),r=me(r,e.doc.direction),e=\"left\";r&&(e=le(r,t.ch)%2?\"right\":\"left\");e=On(n.map,t.ch,e);return e.offset=\"right\"==e.collapse?e.end:e.start,e}function Sl(e,t){return t&&(e.bad=!0),e}function Ll(e,t,n){var r;if(t==e.display.lineDiv){if(!(r=e.display.lineDiv.childNodes[n]))return Sl(e.clipPos(rt(e.display.viewTo-1)),!0);t=null,n=0}else for(r=t;;r=r.parentNode){if(!r||r==e.display.lineDiv)return null;if(r.parentNode&&r.parentNode==e.display.lineDiv)break}for(var i=0;i<e.display.view.length;i++){var o=e.display.view[i];if(o.node==r)return function(u,e,t){var n=u.text.firstChild,r=!1;if(!e||!A(n,e))return Sl(rt(Je(u.line),0),!0);if(e==n&&(r=!0,e=n.childNodes[t],t=0,!e)){var i=u.rest?Y(u.rest):u.line;return Sl(rt(Je(i),i.text.length),r)}var i=3==e.nodeType?e:null,o=e;i||1!=e.childNodes.length||3!=e.firstChild.nodeType||(i=e.firstChild,t=t&&i.nodeValue.length);for(;o.parentNode!=n;)o=o.parentNode;var c=u.measure,h=c.maps;function l(e,t,n){for(var r=-1;r<(h?h.length:0);r++)for(var i=r<0?c.map:h[r],o=0;o<i.length;o+=3){var l=i[o+2];if(l==e||l==t){var s=Je(r<0?u.line:u.rest[r]),a=i[o]+n;return(n<0||l!=e)&&(a=i[o+(n?1:0)]),rt(s,a)}}}var s=l(i,o,t);if(s)return Sl(s,r);for(var a=o.nextSibling,d=i?i.nodeValue.length-t:0;a;a=a.nextSibling){if(s=l(a,a.firstChild,0))return Sl(rt(s.line,s.ch-d),r);d+=a.textContent.length}for(var f=o.previousSibling,p=t;f;f=f.previousSibling){if(s=l(f,f.firstChild,-1))return Sl(rt(s.line,s.ch+p),r);p+=f.textContent.length}}(o,t,n)}}e.prototype.init=function(e){var t=this,o=this,l=o.cm,s=o.div=e.lineDiv;function a(e){for(var t=e.target;t;t=t.parentNode){if(t==s)return 1;if(/\\bCodeMirror-(?:line)?widget\\b/.test(t.className))break}}function n(e){if(a(e)&&!Ce(l,e)){if(l.somethingSelected())fl({lineWise:!1,text:l.getSelections()}),\"cut\"==e.type&&l.replaceSelection(\"\",null,\"cut\");else{if(!l.options.lineWiseCopyCut)return;var t=vl(l);fl({lineWise:!0,text:t.text}),\"cut\"==e.type&&l.operation(function(){l.setSelections(t.ranges,0,G),l.replaceSelection(\"\",null,\"cut\")})}if(e.clipboardData){e.clipboardData.clearData();var n=dl.text.join(\"\\n\");if(e.clipboardData.setData(\"Text\",n),e.clipboardData.getData(\"Text\")==n)return void e.preventDefault()}var r=bl(),e=r.firstChild;l.display.lineSpace.insertBefore(r,l.display.lineSpace.firstChild),e.value=dl.text.join(\"\\n\");var i=document.activeElement;H(e),setTimeout(function(){l.display.lineSpace.removeChild(r),i.focus(),i==s&&o.showPrimarySelection()},50)}}yl(s,l.options.spellcheck,l.options.autocorrect,l.options.autocapitalize),ye(s,\"paste\",function(e){!a(e)||Ce(l,e)||gl(e,l)||v<=11&&setTimeout(Pr(l,function(){return t.updateFromDOM()}),20)}),ye(s,\"compositionstart\",function(e){t.composing={data:e.data,done:!1}}),ye(s,\"compositionupdate\",function(e){t.composing||(t.composing={data:e.data,done:!1})}),ye(s,\"compositionend\",function(e){t.composing&&(e.data!=t.composing.data&&t.readFromDOMSoon(),t.composing.done=!0)}),ye(s,\"touchstart\",function(){return o.forceCompositionEnd()}),ye(s,\"input\",function(){t.composing||t.readFromDOMSoon()}),ye(s,\"copy\",n),ye(s,\"cut\",n)},e.prototype.screenReaderLabelChanged=function(e){e?this.div.setAttribute(\"aria-label\",e):this.div.removeAttribute(\"aria-label\")},e.prototype.prepareSelection=function(){var e=sr(this.cm,!1);return e.focus=document.activeElement==this.div,e},e.prototype.showSelection=function(e,t){e&&this.cm.display.view.length&&((e.focus||t)&&this.showPrimarySelection(),this.showMultipleSelections(e))},e.prototype.getSelection=function(){return this.cm.display.wrapper.ownerDocument.getSelection()},e.prototype.showPrimarySelection=function(){var e=this.getSelection(),t=this.cm,n=t.doc.sel.primary(),r=n.from(),i=n.to();if(t.display.viewTo==t.display.viewFrom||r.line>=t.display.viewTo||i.line<t.display.viewFrom)e.removeAllRanges();else{var o=Ll(t,e.anchorNode,e.anchorOffset),n=Ll(t,e.focusNode,e.focusOffset);if(!o||o.bad||!n||n.bad||0!=it(at(o,n),r)||0!=it(st(o,n),i)){var n=t.display.view,l=r.line>=t.display.viewFrom&&Cl(t,r)||{node:n[0].measure.map[2],offset:0},s=i.line<t.display.viewTo&&Cl(t,i);if(s||(s={node:(u=(u=n[n.length-1].measure).maps?u.maps[u.maps.length-1]:u.map)[u.length-1],offset:u[u.length-2]-u[u.length-3]}),l&&s){var a,u=e.rangeCount&&e.getRangeAt(0);try{a=S(l.node,l.offset,s.offset,s.node)}catch(e){}a&&(!d&&t.state.focused?(e.collapse(l.node,l.offset),a.collapsed||(e.removeAllRanges(),e.addRange(a))):(e.removeAllRanges(),e.addRange(a)),u&&null==e.anchorNode?e.addRange(u):d&&this.startGracePeriod()),this.rememberSelection()}else e.removeAllRanges()}}},e.prototype.startGracePeriod=function(){var e=this;clearTimeout(this.gracePeriod),this.gracePeriod=setTimeout(function(){e.gracePeriod=!1,e.selectionChanged()&&e.cm.operation(function(){return e.cm.curOp.selectionChanged=!0})},20)},e.prototype.showMultipleSelections=function(e){T(this.cm.display.cursorDiv,e.cursors),T(this.cm.display.selectionDiv,e.selection)},e.prototype.rememberSelection=function(){var e=this.getSelection();this.lastAnchorNode=e.anchorNode,this.lastAnchorOffset=e.anchorOffset,this.lastFocusNode=e.focusNode,this.lastFocusOffset=e.focusOffset},e.prototype.selectionInEditor=function(){var e=this.getSelection();if(!e.rangeCount)return!1;e=e.getRangeAt(0).commonAncestorContainer;return A(this.div,e)},e.prototype.focus=function(){\"nocursor\"!=this.cm.options.readOnly&&(this.selectionInEditor()&&document.activeElement==this.div||this.showSelection(this.prepareSelection(),!0),this.div.focus())},e.prototype.blur=function(){this.div.blur()},e.prototype.getField=function(){return this.div},e.prototype.supportsTouch=function(){return!0},e.prototype.receivedFocus=function(){var t=this;this.selectionInEditor()?this.pollSelection():Er(this.cm,function(){return t.cm.curOp.selectionChanged=!0}),this.polling.set(this.cm.options.pollInterval,function e(){t.cm.state.focused&&(t.pollSelection(),t.polling.set(t.cm.options.pollInterval,e))})},e.prototype.selectionChanged=function(){var e=this.getSelection();return e.anchorNode!=this.lastAnchorNode||e.anchorOffset!=this.lastAnchorOffset||e.focusNode!=this.lastFocusNode||e.focusOffset!=this.lastFocusOffset},e.prototype.pollSelection=function(){if(null==this.readDOMTimeout&&!this.gracePeriod&&this.selectionChanged()){var e,t,n=this.getSelection(),r=this.cm;if(a&&o&&this.cm.display.gutterSpecs.length&&function(e){for(var t=e;t;t=t.parentNode)if(/CodeMirror-gutter-wrapper/.test(t.className))return!0;return!1}(n.anchorNode))return this.cm.triggerOnKeyDown({type:\"keydown\",keyCode:8,preventDefault:Math.abs}),this.blur(),void this.focus();this.composing||(this.rememberSelection(),e=Ll(r,n.anchorNode,n.anchorOffset),t=Ll(r,n.focusNode,n.focusOffset),e&&t&&Er(r,function(){Ei(r.doc,si(e,t),G),(e.bad||t.bad)&&(r.curOp.selectionChanged=!0)}))}},e.prototype.pollContent=function(){null!=this.readDOMTimeout&&(clearTimeout(this.readDOMTimeout),this.readDOMTimeout=null);var e,t=this.cm,n=t.display,r=t.doc.sel.primary(),i=r.from(),r=r.to();if(0==i.ch&&i.line>t.firstLine()&&(i=rt(i.line-1,$e(t.doc,i.line-1).length)),r.ch==$e(t.doc,r.line).text.length&&r.line<t.lastLine()&&(r=rt(r.line+1,0)),i.line<n.viewFrom||r.line>n.viewTo-1)return!1;m=i.line==n.viewFrom||0==(m=er(t,i.line))?(e=Je(n.view[0].line),n.view[0].node):(e=Je(n.view[m].line),n.view[m-1].node.nextSibling);var o,r=er(t,r.line),r=r==n.view.length-1?(o=n.viewTo-1,n.lineDiv.lastChild):(o=Je(n.view[r+1].line)-1,n.view[r+1].node.previousSibling);if(!m)return!1;for(var l=t.doc.splitLines(function(l,e,t,s,a){var n=\"\",u=!1,c=l.doc.lineSeparator(),h=!1;function d(){u&&(n+=c,h&&(n+=c),u=h=!1)}function f(e){e&&(d(),n+=e)}for(;!function e(t){if(1==t.nodeType){var n=t.getAttribute(\"cm-text\");if(n)f(n);else if(n=t.getAttribute(\"cm-marker\"))(n=l.findMarks(rt(s,0),rt(a+1,0),(o=+n,function(e){return e.id==o}))).length&&(r=n[0].find(0))&&f(qe(l.doc,r.from,r.to).join(c));else if(\"false\"!=t.getAttribute(\"contenteditable\")){var r=/^(pre|div|p|li|table|br)$/i.test(t.nodeName);if(/^br$/i.test(t.nodeName)||0!=t.textContent.length){r&&d();for(var i=0;i<t.childNodes.length;i++)e(t.childNodes[i]);/^(pre|p)$/i.test(t.nodeName)&&(h=!0),r&&(u=!0)}}}else 3==t.nodeType&&f(t.nodeValue.replace(/\\u200b/g,\"\").replace(/\\u00a0/g,\" \"));var o}(e),e!=t;)e=e.nextSibling,h=!1;return n}(t,m,r,e,o)),s=qe(t.doc,rt(e,0),rt(o,$e(t.doc,o).text.length));1<l.length&&1<s.length;)if(Y(l)==Y(s))l.pop(),s.pop(),o--;else{if(l[0]!=s[0])break;l.shift(),s.shift(),e++}for(var a=0,u=0,c=l[0],h=s[0],d=Math.min(c.length,h.length);a<d&&c.charCodeAt(a)==h.charCodeAt(a);)++a;for(var f=Y(l),p=Y(s),g=Math.min(f.length-(1==l.length?a:0),p.length-(1==s.length?a:0));u<g&&f.charCodeAt(f.length-u-1)==p.charCodeAt(p.length-u-1);)++u;if(1==l.length&&1==s.length&&e==i.line)for(;a&&a>i.ch&&f.charCodeAt(f.length-u-1)==p.charCodeAt(p.length-u-1);)a--,u++;l[l.length-1]=f.slice(0,f.length-u).replace(/^\\u200b+/,\"\"),l[0]=l[0].slice(a).replace(/\\u200b+$/,\"\");var m=rt(e,a),r=rt(o,s.length?Y(s).length-u:0);return 1<l.length||l[0]||it(m,r)?(qi(t.doc,l,m,r,\"+input\"),!0):void 0},e.prototype.ensurePolled=function(){this.forceCompositionEnd()},e.prototype.reset=function(){this.forceCompositionEnd()},e.prototype.forceCompositionEnd=function(){this.composing&&(clearTimeout(this.readDOMTimeout),this.composing=null,this.updateFromDOM(),this.div.blur(),this.div.focus())},e.prototype.readFromDOMSoon=function(){var e=this;null==this.readDOMTimeout&&(this.readDOMTimeout=setTimeout(function(){if(e.readDOMTimeout=null,e.composing){if(!e.composing.done)return;e.composing=null}e.updateFromDOM()},80))},e.prototype.updateFromDOM=function(){var e=this;!this.cm.isReadOnly()&&this.pollContent()||Er(this.cm,function(){return tr(e.cm)})},e.prototype.setUneditable=function(e){e.contentEditable=\"false\"},e.prototype.onKeyPress=function(e){0==e.charCode||this.composing||(e.preventDefault(),this.cm.isReadOnly()||Pr(this.cm,pl)(this.cm,String.fromCharCode(null==e.charCode?e.keyCode:e.charCode),0))},e.prototype.readOnlyChanged=function(e){this.div.contentEditable=String(\"nocursor\"!=e)},e.prototype.onContextMenu=function(){},e.prototype.resetPosition=function(){},e.prototype.needsContentAttribute=!0;var kl,Tl,Ml,Nl,Al,r=function(e){this.cm=e,this.prevInput=\"\",this.pollingFast=!1,this.polling=new I,this.hasSelection=!1,this.composing=null};function Ol(e,t,r,n){kl.defaults[e]=t,r&&(Tl[e]=n?function(e,t,n){n!=il&&r(e,t,n)}:r)}r.prototype.init=function(n){var e=this,r=this,i=this.cm;this.createField(n);var o=this.textarea;function t(e){if(!Ce(i,e)){if(i.somethingSelected())fl({lineWise:!1,text:i.getSelections()});else{if(!i.options.lineWiseCopyCut)return;var t=vl(i);fl({lineWise:!0,text:t.text}),\"cut\"==e.type?i.setSelections(t.ranges,null,G):(r.prevInput=\"\",o.value=t.text.join(\"\\n\"),H(o))}\"cut\"==e.type&&(i.state.cutIncoming=+new Date)}}n.wrapper.insertBefore(this.wrapper,n.wrapper.firstChild),s&&(o.style.width=\"0px\"),ye(o,\"input\",function(){w&&9<=v&&e.hasSelection&&(e.hasSelection=null),r.poll()}),ye(o,\"paste\",function(e){Ce(i,e)||gl(e,i)||(i.state.pasteIncoming=+new Date,r.fastPoll())}),ye(o,\"cut\",t),ye(o,\"copy\",t),ye(n.scroller,\"paste\",function(e){if(!mn(n,e)&&!Ce(i,e)){if(!o.dispatchEvent)return i.state.pasteIncoming=+new Date,void r.focus();var t=new Event(\"paste\");t.clipboardData=e.clipboardData,o.dispatchEvent(t)}}),ye(n.lineSpace,\"selectstart\",function(e){mn(n,e)||Te(e)}),ye(o,\"compositionstart\",function(){var e=i.getCursor(\"from\");r.composing&&r.composing.range.clear(),r.composing={start:e,range:i.markText(e,i.getCursor(\"to\"),{className:\"CodeMirror-composing\"})}}),ye(o,\"compositionend\",function(){r.composing&&(r.poll(),r.composing.range.clear(),r.composing=null)})},r.prototype.createField=function(e){this.wrapper=bl(),this.textarea=this.wrapper.firstChild},r.prototype.screenReaderLabelChanged=function(e){e?this.textarea.setAttribute(\"aria-label\",e):this.textarea.removeAttribute(\"aria-label\")},r.prototype.prepareSelection=function(){var e,t=this.cm,n=t.display,r=t.doc,i=sr(t);return t.options.moveInputWithCursor&&(e=Bn(t,r.sel.primary().head,\"div\"),t=n.wrapper.getBoundingClientRect(),r=n.lineDiv.getBoundingClientRect(),i.teTop=Math.max(0,Math.min(n.wrapper.clientHeight-10,e.top+r.top-t.top)),i.teLeft=Math.max(0,Math.min(n.wrapper.clientWidth-10,e.left+r.left-t.left))),i},r.prototype.showSelection=function(e){var t=this.cm.display;T(t.cursorDiv,e.cursors),T(t.selectionDiv,e.selection),null!=e.teTop&&(this.wrapper.style.top=e.teTop+\"px\",this.wrapper.style.left=e.teLeft+\"px\")},r.prototype.reset=function(e){var t,n;this.contextMenuPending||this.composing||((t=this.cm).somethingSelected()?(this.prevInput=\"\",n=t.getSelection(),this.textarea.value=n,t.state.focused&&H(this.textarea),w&&9<=v&&(this.hasSelection=n)):e||(this.prevInput=this.textarea.value=\"\",w&&9<=v&&(this.hasSelection=null)))},r.prototype.getField=function(){return this.textarea},r.prototype.supportsTouch=function(){return!1},r.prototype.focus=function(){if(\"nocursor\"!=this.cm.options.readOnly&&(!h||O()!=this.textarea))try{this.textarea.focus()}catch(e){}},r.prototype.blur=function(){this.textarea.blur()},r.prototype.resetPosition=function(){this.wrapper.style.top=this.wrapper.style.left=0},r.prototype.receivedFocus=function(){this.slowPoll()},r.prototype.slowPoll=function(){var e=this;this.pollingFast||this.polling.set(this.cm.options.pollInterval,function(){e.poll(),e.cm.state.focused&&e.slowPoll()})},r.prototype.fastPoll=function(){var t=!1,n=this;n.pollingFast=!0,n.polling.set(20,function e(){n.poll()||t?(n.pollingFast=!1,n.slowPoll()):(t=!0,n.polling.set(60,e))})},r.prototype.poll=function(){var e=this,t=this.cm,n=this.textarea,r=this.prevInput;if(this.contextMenuPending||!t.state.focused||Pe(n)&&!r&&!this.composing||t.isReadOnly()||t.options.disableInput||t.state.keySeq)return!1;var i=n.value;if(i==r&&!t.somethingSelected())return!1;if(w&&9<=v&&this.hasSelection===i||g&&/[\\uf700-\\uf7ff]/.test(i))return t.display.input.reset(),!1;if(t.doc.sel==t.display.selForContextMenu){var o=i.charCodeAt(0);if(8203!=o||r||(r=\"\"),8666==o)return this.reset(),this.cm.execCommand(\"undo\")}for(var l=0,s=Math.min(r.length,i.length);l<s&&r.charCodeAt(l)==i.charCodeAt(l);)++l;return Er(t,function(){pl(t,i.slice(l),r.length-l,null,e.composing?\"*compose\":null),1e3<i.length||-1<i.indexOf(\"\\n\")?n.value=e.prevInput=\"\":e.prevInput=i,e.composing&&(e.composing.range.clear(),e.composing.range=t.markText(e.composing.start,t.getCursor(\"to\"),{className:\"CodeMirror-composing\"}))}),!0},r.prototype.ensurePolled=function(){this.pollingFast&&this.poll()&&(this.pollingFast=!1)},r.prototype.onKeyPress=function(){w&&9<=v&&(this.hasSelection=null),this.fastPoll()},r.prototype.onContextMenu=function(e){var n=this,r=n.cm,i=r.display,o=n.textarea;n.contextMenuPending&&n.contextMenuPending();var l,s,t,a,u=Jn(r,e),c=i.scroller.scrollTop;function h(){var e,t;null!=o.selectionStart&&(t=\"\"+((e=r.somethingSelected())?o.value:\"\"),o.value=\"⇚\",o.value=t,n.prevInput=e?\"\":\"\",o.selectionStart=1,o.selectionEnd=t.length,i.selForContextMenu=r.doc.sel)}function d(){var e,t;n.contextMenuPending==d&&(n.contextMenuPending=!1,n.wrapper.style.cssText=s,o.style.cssText=l,w&&v<9&&i.scrollbars.setScrollTop(i.scroller.scrollTop=c),null!=o.selectionStart&&((!w||w&&v<9)&&h(),e=0,t=function(){i.selForContextMenu==r.doc.sel&&0==o.selectionStart&&0<o.selectionEnd&&\"\"==n.prevInput?Pr(r,Vi)(r):e++<10?i.detectingSelectAll=setTimeout(t,500):(i.selForContextMenu=null,i.input.reset())},i.detectingSelectAll=setTimeout(t,200)))}u&&!p&&(r.options.resetSelectionOnContextMenu&&-1==r.doc.sel.contains(u)&&Pr(r,Ei)(r.doc,si(u),G),l=o.style.cssText,s=n.wrapper.style.cssText,u=n.wrapper.offsetParent.getBoundingClientRect(),n.wrapper.style.cssText=\"position: static\",o.style.cssText=\"position: absolute; width: 30px; height: 30px;\\n top: \"+(e.clientY-u.top-5)+\"px; left: \"+(e.clientX-u.left-5)+\"px;\\n z-index: 1000; background: \"+(w?\"rgba(255, 255, 255, .05)\":\"transparent\")+\";\\n outline: none; border-width: 0; outline: none; overflow: hidden; opacity: .05; filter: alpha(opacity=5);\",f&&(t=window.scrollY),i.input.focus(),f&&window.scrollTo(null,t),i.input.reset(),r.somethingSelected()||(o.value=n.prevInput=\" \"),n.contextMenuPending=d,i.selForContextMenu=r.doc.sel,clearTimeout(i.detectingSelectAll),w&&9<=v&&h(),x?(Ae(e),a=function(){we(window,\"mouseup\",a),setTimeout(d,20)},ye(window,\"mouseup\",a)):setTimeout(d,50))},r.prototype.readOnlyChanged=function(e){e||this.reset(),this.textarea.disabled=\"nocursor\"==e,this.textarea.readOnly=!!e},r.prototype.setUneditable=function(){},r.prototype.needsContentAttribute=!1,Tl=(kl=ul).optionHandlers,kl.defineOption=Ol,kl.Init=il,Ol(\"value\",\"\",function(e,t){return e.setValue(t)},!0),Ol(\"mode\",null,function(e,t){e.doc.modeOption=t,di(e)},!0),Ol(\"indentUnit\",2,di,!0),Ol(\"indentWithTabs\",!1),Ol(\"smartIndent\",!0),Ol(\"tabSize\",4,function(e){fi(e),Hn(e),tr(e)},!0),Ol(\"lineSeparator\",null,function(e,r){if(e.doc.lineSep=r){var i=[],o=e.doc.first;e.doc.iter(function(e){for(var t=0;;){var n=e.text.indexOf(r,t);if(-1==n)break;t=n+r.length,i.push(rt(o,n))}o++});for(var t=i.length-1;0<=t;t--)qi(e.doc,r,i[t],rt(i[t].line,i[t].ch+r.length))}}),Ol(\"specialChars\",/[\\u0000-\\u001f\\u007f-\\u009f\\u00ad\\u061c\\u200b-\\u200c\\u200e\\u200f\\u2028\\u2029\\ufeff\\ufff9-\\ufffc]/g,function(e,t,n){e.state.specialChars=new RegExp(t.source+(t.test(\"\\t\")?\"\":\"|\\t\"),\"g\"),n!=il&&e.refresh()}),Ol(\"specialCharPlaceholder\",Zt,function(e){return e.refresh()},!0),Ol(\"electricChars\",!0),Ol(\"inputStyle\",h?\"contenteditable\":\"textarea\",function(){throw new Error(\"inputStyle can not (yet) be changed in a running editor\")},!0),Ol(\"spellcheck\",!1,function(e,t){return e.getInputField().spellcheck=t},!0),Ol(\"autocorrect\",!1,function(e,t){return e.getInputField().autocorrect=t},!0),Ol(\"autocapitalize\",!1,function(e,t){return e.getInputField().autocapitalize=t},!0),Ol(\"rtlMoveVisually\",!y),Ol(\"wholeLineUpdateBefore\",!0),Ol(\"theme\",\"default\",function(e){rl(e),Zr(e)},!0),Ol(\"keyMap\",\"default\",function(e,t,n){t=Do(t),n=n!=il&&Do(n);n&&n.detach&&n.detach(e,t),t.attach&&t.attach(e,n||null)}),Ol(\"extraKeys\",null),Ol(\"configureMouse\",null),Ol(\"lineWrapping\",!1,al,!0),Ol(\"gutters\",[],function(e,t){e.display.gutterSpecs=$r(t,e.options.lineNumbers),Zr(e)},!0),Ol(\"fixedGutter\",!0,function(e,t){e.display.gutters.style.left=t?qn(e.display)+\"px\":\"0\",e.refresh()},!0),Ol(\"coverGutterNextToScrollbar\",!1,function(e){return Nr(e)},!0),Ol(\"scrollbarStyle\",\"native\",function(e){Dr(e),Nr(e),e.display.scrollbars.setScrollTop(e.doc.scrollTop),e.display.scrollbars.setScrollLeft(e.doc.scrollLeft)},!0),Ol(\"lineNumbers\",!1,function(e,t){e.display.gutterSpecs=$r(e.options.gutters,t),Zr(e)},!0),Ol(\"firstLineNumber\",1,Zr,!0),Ol(\"lineNumberFormatter\",function(e){return e},Zr,!0),Ol(\"showCursorWhenSelecting\",!1,lr,!0),Ol(\"resetSelectionOnContextMenu\",!0),Ol(\"lineWiseCopyCut\",!0),Ol(\"pasteLinesPerSelection\",!0),Ol(\"selectionsMayTouch\",!1),Ol(\"readOnly\",!1,function(e,t){\"nocursor\"==t&&(pr(e),e.display.input.blur()),e.display.input.readOnlyChanged(t)}),Ol(\"screenReaderLabel\",null,function(e,t){t=\"\"===t?null:t,e.display.input.screenReaderLabelChanged(t)}),Ol(\"disableInput\",!1,function(e,t){t||e.display.input.reset()},!0),Ol(\"dragDrop\",!0,sl),Ol(\"allowDropFileTypes\",null),Ol(\"cursorBlinkRate\",530),Ol(\"cursorScrollMargin\",0),Ol(\"cursorHeight\",1,lr,!0),Ol(\"singleCursorHeightPerLine\",!0,lr,!0),Ol(\"workTime\",100),Ol(\"workDelay\",100),Ol(\"flattenSpans\",!0,fi,!0),Ol(\"addModeClass\",!1,fi,!0),Ol(\"pollInterval\",100),Ol(\"undoDepth\",200,function(e,t){return e.doc.history.undoDepth=t}),Ol(\"historyEventDelay\",1250),Ol(\"viewportMargin\",10,function(e){return e.refresh()},!0),Ol(\"maxHighlightLength\",1e4,fi,!0),Ol(\"moveInputWithCursor\",!0,function(e,t){t||e.display.input.resetPosition()}),Ol(\"tabindex\",null,function(e,t){return e.display.input.getField().tabIndex=t||\"\"}),Ol(\"autofocus\",null),Ol(\"direction\",\"ltr\",function(e,t){return e.doc.setDirection(t)},!0),Ol(\"phrases\",null),Nl=(Ml=ul).optionHandlers,Al=Ml.helpers={},Ml.prototype={constructor:Ml,focus:function(){window.focus(),this.display.input.focus()},setOption:function(e,t){var n=this.options,r=n[e];n[e]==t&&\"mode\"!=e||(n[e]=t,Nl.hasOwnProperty(e)&&Pr(this,Nl[e])(this,t,r),xe(this,\"optionChange\",this,e))},getOption:function(e){return this.options[e]},getDoc:function(){return this.doc},addKeyMap:function(e,t){this.state.keyMaps[t?\"push\":\"unshift\"](Do(e))},removeKeyMap:function(e){for(var t=this.state.keyMaps,n=0;n<t.length;++n)if(t[n]==e||t[n].name==e)return t.splice(n,1),!0},addOverlay:Ir(function(e,t){var n=e.token?e:Ml.getMode(this.options,e);if(n.startState)throw new Error(\"Overlays may not be stateful.\");!function(e,t,n){for(var r=0,i=n(t);r<e.length&&n(e[r])<=i;)r++;e.splice(r,0,t)}(this.state.overlays,{mode:n,modeSpec:e,opaque:t&&t.opaque,priority:t&&t.priority||0},function(e){return e.priority}),this.state.modeGen++,tr(this)}),removeOverlay:Ir(function(e){for(var t=this.state.overlays,n=0;n<t.length;++n){var r=t[n].modeSpec;if(r==e||\"string\"==typeof e&&r.name==e)return t.splice(n,1),this.state.modeGen++,void tr(this)}}),indentLine:Ir(function(e,t,n){\"string\"!=typeof t&&\"number\"!=typeof t&&(t=null==t?this.options.smartIndent?\"smart\":\"prev\":t?\"add\":\"subtract\"),tt(this.doc,e)&&hl(this,e,t,n)}),indentSelection:Ir(function(e){for(var t=this.doc.sel.ranges,n=-1,r=0;r<t.length;r++){var i=t[r];if(i.empty())i.head.line>n&&(hl(this,i.head.line,e,!0),n=i.head.line,r==this.doc.sel.primIndex&&wr(this));else{for(var o=i.from(),l=i.to(),i=Math.max(n,o.line),n=Math.min(this.lastLine(),l.line-(l.ch?0:1))+1,s=i;s<n;++s)hl(this,s,e);i=this.doc.sel.ranges;0==o.ch&&t.length==i.length&&0<i[r].from().ch&&Wi(this.doc,r,new oi(o,i[r].to()),G)}}}),getTokenAt:function(e,t){return xt(this,e,t)},getLineTokens:function(e,t){return xt(this,rt(e),t,!0)},getTokenTypeAt:function(e){e=ct(this.doc,e);var t,n=gt(this,$e(this.doc,e.line)),r=0,i=(n.length-1)/2,o=e.ch;if(0==o)t=n[2];else for(;;){var l=r+i>>1;if((l?n[2*l-1]:0)>=o)i=l;else{if(!(n[2*l+1]<o)){t=n[2*l+2];break}r=1+l}}e=t?t.indexOf(\"overlay \"):-1;return e<0?t:0==e?null:t.slice(0,e-1)},getModeAt:function(e){var t=this.doc.mode;return t.innerMode?Ml.innerMode(t,this.getTokenAt(e).state).mode:t},getHelper:function(e,t){return this.getHelpers(e,t)[0]},getHelpers:function(e,t){var n=[];if(!Al.hasOwnProperty(t))return n;var r=Al[t],i=this.getModeAt(e);if(\"string\"==typeof i[t])r[i[t]]&&n.push(r[i[t]]);else if(i[t])for(var o=0;o<i[t].length;o++){var l=r[i[t][o]];l&&n.push(l)}else i.helperType&&r[i.helperType]?n.push(r[i.helperType]):r[i.name]&&n.push(r[i.name]);for(var s=0;s<r._global.length;s++){var a=r._global[s];a.pred(i,this)&&-1==R(n,a.val)&&n.push(a.val)}return n},getStateAfter:function(e,t){var n=this.doc;return mt(this,(e=ut(n,null==e?n.first+n.size-1:e))+1,t).state},cursorCoords:function(e,t){var n=this.doc.sel.primary(),n=null==e?n.head:\"object\"==typeof e?ct(this.doc,e):e?n.from():n.to();return Bn(this,n,t||\"page\")},charCoords:function(e,t){return zn(this,ct(this.doc,e),t||\"page\")},coordsChar:function(e,t){return Vn(this,(e=Rn(this,e,t||\"page\")).left,e.top)},lineAtHeight:function(e,t){return e=Rn(this,{top:e,left:0},t||\"page\").top,et(this.doc,e+this.display.viewOffset)},heightAtLine:function(e,t,n){var r,i=!1,e=\"number\"==typeof e?(r=this.doc.first+this.doc.size-1,e<this.doc.first?e=this.doc.first:r<e&&(e=r,i=!0),$e(this.doc,e)):e;return In(this,e,{top:0,left:0},t||\"page\",n||i).top+(i?this.doc.height-Vt(e):0)},defaultTextHeight:function(){return Yn(this.display)},defaultCharWidth:function(){return _n(this.display)},getViewport:function(){return{from:this.display.viewFrom,to:this.display.viewTo}},addWidget:function(e,t,n,r,i){var o,l,s=this.display,a=(e=Bn(this,ct(this.doc,e))).bottom,u=e.left;t.style.position=\"absolute\",t.setAttribute(\"cm-ignore-events\",\"true\"),this.display.input.setUneditable(t),s.sizer.appendChild(t),\"over\"==r?a=e.top:\"above\"!=r&&\"near\"!=r||(o=Math.max(s.wrapper.clientHeight,this.doc.height),l=Math.max(s.sizer.clientWidth,s.lineSpace.clientWidth),(\"above\"==r||e.bottom+t.offsetHeight>o)&&e.top>t.offsetHeight?a=e.top-t.offsetHeight:e.bottom+t.offsetHeight<=o&&(a=e.bottom),u+t.offsetWidth>l&&(u=l-t.offsetWidth)),t.style.top=a+\"px\",t.style.left=t.style.right=\"\",\"right\"==i?(u=s.sizer.clientWidth-t.offsetWidth,t.style.right=\"0px\"):(\"left\"==i?u=0:\"middle\"==i&&(u=(s.sizer.clientWidth-t.offsetWidth)/2),t.style.left=u+\"px\"),n&&(n=this,t={left:u,top:a,right:u+t.offsetWidth,bottom:a+t.offsetHeight},null!=(t=yr(n,t)).scrollTop&&Lr(n,t.scrollTop),null!=t.scrollLeft&&Tr(n,t.scrollLeft))},triggerOnKeyDown:Ir(Xo),triggerOnKeyPress:Ir(_o),triggerOnKeyUp:Yo,triggerOnMouseDown:Ir(Qo),execCommand:function(e){if(Io.hasOwnProperty(e))return Io[e].call(null,this)},triggerElectric:Ir(function(e){ml(this,e)}),findPosH:function(e,t,n,r){var i=1;t<0&&(i=-1,t=-t);for(var o=ct(this.doc,e),l=0;l<t&&!(o=wl(this.doc,o,i,n,r)).hitSide;++l);return o},moveH:Ir(function(t,n){var r=this;this.extendSelectionsBy(function(e){return r.display.shift||r.doc.extend||e.empty()?wl(r.doc,e.head,t,n,r.options.rtlMoveVisually):t<0?e.from():e.to()},V)}),deleteH:Ir(function(n,r){var e=this.doc.sel,i=this.doc;e.somethingSelected()?i.replaceSelection(\"\",null,\"+delete\"):Wo(this,function(e){var t=wl(i,e.head,n,r,!1);return n<0?{from:t,to:e.head}:{from:e.head,to:t}})}),findPosV:function(e,t,n,r){var i=1,o=r;t<0&&(i=-1,t=-t);for(var l=ct(this.doc,e),s=0;s<t;++s){var a=Bn(this,l,\"div\");if(null==o?o=a.left:a.left=o,(l=xl(this,a,i,n)).hitSide)break}return l},moveV:Ir(function(r,i){var o=this,l=this.doc,s=[],a=!this.display.shift&&!l.extend&&l.sel.somethingSelected();if(l.extendSelectionsBy(function(e){if(a)return r<0?e.from():e.to();var t=Bn(o,e.head,\"div\");null!=e.goalColumn&&(t.left=e.goalColumn),s.push(t.left);var n=xl(o,t,r,i);return\"page\"==i&&e==l.sel.primary()&&br(o,zn(o,n,\"div\").top-t.top),n},V),s.length)for(var e=0;e<l.sel.ranges.length;e++)l.sel.ranges[e].goalColumn=s[e]}),findWordAt:function(e){var t=$e(this.doc,e.line).text,n=e.ch,r=e.ch;if(t){var i=this.getHelper(e,\"wordChars\");\"before\"!=e.sticky&&r!=t.length||!n?++r:--n;for(var o=t.charAt(n),l=J(o,i)?function(e){return J(e,i)}:/\\s/.test(o)?function(e){return/\\s/.test(e)}:function(e){return!/\\s/.test(e)&&!J(e)};0<n&&l(t.charAt(n-1));)--n;for(;r<t.length&&l(t.charAt(r));)++r}return new oi(rt(e.line,n),rt(e.line,r))},toggleOverwrite:function(e){null!=e&&e==this.state.overwrite||(((this.state.overwrite=!this.state.overwrite)?D:L)(this.display.cursorDiv,\"CodeMirror-overwrite\"),xe(this,\"overwriteToggle\",this,this.state.overwrite))},hasFocus:function(){return this.display.input.getField()==O()},isReadOnly:function(){return!(!this.options.readOnly&&!this.doc.cantEdit)},scrollTo:Ir(function(e,t){xr(this,e,t)}),getScrollInfo:function(){var e=this.display.scroller;return{left:e.scrollLeft,top:e.scrollTop,height:e.scrollHeight-wn(this)-this.display.barHeight,width:e.scrollWidth-wn(this)-this.display.barWidth,clientHeight:Cn(this),clientWidth:xn(this)}},scrollIntoView:Ir(function(e,t){var n;null==e?(e={from:this.doc.sel.primary().head,to:null},null==t&&(t=this.options.cursorScrollMargin)):\"number\"==typeof e?e={from:rt(e,0),to:null}:null==e.from&&(e={from:e,to:null}),e.to||(e.to=e.from),e.margin=t||0,null!=e.from.line?(n=e,Cr(t=this),t.curOp.scrollToPos=n):Sr(this,e.from,e.to,e.margin)}),setSize:Ir(function(e,t){function n(e){return\"number\"==typeof e||/^\\d+$/.test(String(e))?e+\"px\":e}var r=this;null!=e&&(this.display.wrapper.style.width=n(e)),null!=t&&(this.display.wrapper.style.height=n(t)),this.options.lineWrapping&&Wn(this);var i=this.display.viewFrom;this.doc.iter(i,this.display.viewTo,function(e){if(e.widgets)for(var t=0;t<e.widgets.length;t++)if(e.widgets[t].noHScroll){nr(r,i,\"widget\");break}++i}),this.curOp.forceUpdate=!0,xe(this,\"refresh\",this)}),operation:function(e){return Er(this,e)},startOperation:function(){return Hr(this)},endOperation:function(){return Fr(this)},refresh:Ir(function(){var e=this.display.cachedTextHeight;tr(this),this.curOp.forceUpdate=!0,Hn(this),xr(this,this.doc.scrollLeft,this.doc.scrollTop),jr(this.display),(null==e||.5<Math.abs(e-Yn(this.display))||this.options.lineWrapping)&&Qn(this),xe(this,\"refresh\",this)}),swapDoc:Ir(function(e){var t=this.doc;return t.cm=null,this.state.selectingText&&this.state.selectingText(),vi(this,e),Hn(this),this.display.input.reset(),xr(this,e.scrollLeft,e.scrollTop),this.curOp.forceScroll=!0,ln(this,\"swapDoc\",this,t),t}),phrase:function(e){var t=this.options.phrases;return t&&Object.prototype.hasOwnProperty.call(t,e)?t[e]:e},getInputField:function(){return this.display.input.getField()},getWrapperElement:function(){return this.display.wrapper},getScrollerElement:function(){return this.display.scroller},getGutterElement:function(){return this.display.gutters}},ke(Ml),Ml.registerHelper=function(e,t,n){Al.hasOwnProperty(e)||(Al[e]=Ml[e]={_global:[]}),Al[e][t]=n},Ml.registerGlobalHelper=function(e,t,n,r){Ml.registerHelper(e,t,r),Al[e]._global.push({pred:n,val:r})};var Dl,Wl,Hl=\"iter insert remove copy getEditor constructor\".split(\" \");for(Dl in ho.prototype)ho.prototype.hasOwnProperty(Dl)&&R(Hl,Dl)<0&&(ul.prototype[Dl]=function(e){return function(){return e.apply(this.doc,arguments)}}(ho.prototype[Dl]));return ke(ho),ul.inputStyles={textarea:r,contenteditable:e},ul.defineMode=function(e){ul.defaults.mode||\"null\"==e||(ul.defaults.mode=e),function(e,t){2<arguments.length&&(t.dependencies=Array.prototype.slice.call(arguments,2)),ze[e]=t}.apply(this,arguments)},ul.defineMIME=function(e,t){Be[e]=t},ul.defineMode(\"null\",function(){return{token:function(e){return e.skipToEnd()}}}),ul.defineMIME(\"text/plain\",\"null\"),ul.defineExtension=function(e,t){ul.prototype[e]=t},ul.defineDocExtension=function(e,t){ho.prototype[e]=t},ul.fromTextArea=function(t,n){var e;function r(){t.value=s.getValue()}if(n=n?E(n):{},n.value=t.value,!n.tabindex&&t.tabIndex&&(n.tabindex=t.tabIndex),!n.placeholder&&t.placeholder&&(n.placeholder=t.placeholder),null==n.autofocus&&(e=O(),n.autofocus=e==t||null!=t.getAttribute(\"autofocus\")&&e==document.body),t.form&&(ye(t.form,\"submit\",r),!n.leaveSubmitMethodAlone)){var i=t.form,o=i.submit;try{var l=i.submit=function(){r(),i.submit=o,i.submit(),i.submit=l}}catch(e){}}n.finishInit=function(e){e.save=r,e.getTextArea=function(){return t},e.toTextArea=function(){e.toTextArea=isNaN,r(),t.parentNode.removeChild(e.getWrapperElement()),t.style.display=\"\",t.form&&(we(t.form,\"submit\",r),n.leaveSubmitMethodAlone||\"function\"!=typeof t.form.submit||(t.form.submit=o))}},t.style.display=\"none\";var s=ul(function(e){return t.parentNode.insertBefore(e,t.nextSibling)},n);return s},(Wl=ul).off=we,Wl.on=ye,Wl.wheelEventPixels=ni,Wl.Doc=ho,Wl.splitLines=Ee,Wl.countColumn=P,Wl.findColumn=K,Wl.isWordChar=Q,Wl.Pass=B,Wl.signal=xe,Wl.Line=Xt,Wl.changeEnd=ai,Wl.scrollbarModel=Or,Wl.Pos=rt,Wl.cmpPos=it,Wl.modes=ze,Wl.mimeModes=Be,Wl.resolveMode=Ge,Wl.getMode=Ue,Wl.modeExtensions=Ve,Wl.extendMode=Ke,Wl.copyState=je,Wl.startState=Ye,Wl.innerMode=Xe,Wl.commands=Io,Wl.keyMap=Lo,Wl.keyName=Oo,Wl.isModifierKey=No,Wl.lookupKey=Mo,Wl.normalizeKeyMap=To,Wl.StringStream=_e,Wl.SharedTextMarker=ao,Wl.TextMarker=lo,Wl.LineWidget=ro,Wl.e_preventDefault=Te,Wl.e_stopPropagation=Me,Wl.e_stop=Ae,Wl.addClass=D,Wl.contains=A,Wl.rmClass=L,Wl.keyNames=wo,ul.version=\"5.58.3\",ul});\n",
"type": "application/javascript",
"title": "$:/plugins/tiddlywiki/codemirror/lib/codemirror.js",
"module-type": "library"
},
"$:/plugins/tiddlywiki/codemirror/lib/codemirror.css": {
"text": ".CodeMirror{font-family:monospace;height:300px;color:#000;direction:ltr}.CodeMirror-lines{padding:4px 0}.CodeMirror pre.CodeMirror-line,.CodeMirror pre.CodeMirror-line-like{padding:0 4px}.CodeMirror-scrollbar-filler,.CodeMirror-gutter-filler{background-color:#fff}.CodeMirror-gutters{border-right:1px solid #ddd;background-color:#f7f7f7;white-space:nowrap}.CodeMirror-linenumber{padding:0 3px 0 5px;min-width:20px;text-align:right;color:#999;white-space:nowrap}.CodeMirror-guttermarker{color:#000}.CodeMirror-guttermarker-subtle{color:#999}.CodeMirror-cursor{border-left:1px solid #000;border-right:none;width:0}.CodeMirror div.CodeMirror-secondarycursor{border-left:1px solid silver}.cm-fat-cursor .CodeMirror-cursor{width:auto;border:0!important;background:#7e7}.cm-fat-cursor div.CodeMirror-cursors{z-index:1}.cm-fat-cursor-mark{background-color:rgba(20,255,20,0.5);-webkit-animation:blink 1.06s steps(1) infinite;-moz-animation:blink 1.06s steps(1) infinite;animation:blink 1.06s steps(1) infinite}.cm-animate-fat-cursor{width:auto;border:0;-webkit-animation:blink 1.06s steps(1) infinite;-moz-animation:blink 1.06s steps(1) infinite;animation:blink 1.06s steps(1) infinite;background-color:#7e7}@-moz-keyframes blink{50%{background-color:transparent}}@-webkit-keyframes blink{50%{background-color:transparent}}@keyframes blink{50%{background-color:transparent}}.cm-tab{display:inline-block;text-decoration:inherit}.CodeMirror-rulers{position:absolute;left:0;right:0;top:-50px;bottom:0;overflow:hidden}.CodeMirror-ruler{border-left:1px solid #ccc;top:0;bottom:0;position:absolute}.cm-s-default .cm-header{color:blue}.cm-s-default .cm-quote{color:#090}.cm-negative{color:#d44}.cm-positive{color:#292}.cm-header,.cm-strong{font-weight:700}.cm-em{font-style:italic}.cm-link{text-decoration:underline}.cm-strikethrough{text-decoration:line-through}.cm-s-default .cm-keyword{color:#708}.cm-s-default .cm-atom{color:#219}.cm-s-default .cm-number{color:#164}.cm-s-default .cm-def{color:#00f}.cm-s-default .cm-variable-2{color:#05a}.cm-s-default .cm-variable-3,.cm-s-default .cm-type{color:#085}.cm-s-default .cm-comment{color:#a50}.cm-s-default .cm-string{color:#a11}.cm-s-default .cm-string-2{color:#f50}.cm-s-default .cm-meta{color:#555}.cm-s-default .cm-qualifier{color:#555}.cm-s-default .cm-builtin{color:#30a}.cm-s-default .cm-bracket{color:#997}.cm-s-default .cm-tag{color:#170}.cm-s-default .cm-attribute{color:#00c}.cm-s-default .cm-hr{color:#999}.cm-s-default .cm-link{color:#00c}.cm-s-default .cm-error{color:red}.cm-invalidchar{color:red}.CodeMirror-composing{border-bottom:2px solid}div.CodeMirror span.CodeMirror-matchingbracket{color:#0b0}div.CodeMirror span.CodeMirror-nonmatchingbracket{color:#a22}.CodeMirror-matchingtag{background:rgba(255,150,0,.3)}.CodeMirror-activeline-background{background:#e8f2ff}.CodeMirror{position:relative;overflow:hidden;background:#fff}.CodeMirror-scroll{overflow:scroll!important;margin-bottom:-50px;margin-right:-50px;padding-bottom:50px;height:100%;outline:none;position:relative}.CodeMirror-sizer{position:relative;border-right:50px solid transparent}.CodeMirror-vscrollbar,.CodeMirror-hscrollbar,.CodeMirror-scrollbar-filler,.CodeMirror-gutter-filler{position:absolute;z-index:6;display:none;outline:none}.CodeMirror-vscrollbar{right:0;top:0;overflow-x:hidden;overflow-y:scroll}.CodeMirror-hscrollbar{bottom:0;left:0;overflow-y:hidden;overflow-x:scroll}.CodeMirror-scrollbar-filler{right:0;bottom:0}.CodeMirror-gutter-filler{left:0;bottom:0}.CodeMirror-gutters{position:absolute;left:0;top:0;min-height:100%;z-index:3}.CodeMirror-gutter{white-space:normal;height:100%;display:inline-block;vertical-align:top;margin-bottom:-50px}.CodeMirror-gutter-wrapper{position:absolute;z-index:4;background:none!important;border:none!important}.CodeMirror-gutter-background{position:absolute;top:0;bottom:0;z-index:4}.CodeMirror-gutter-elt{position:absolute;cursor:default;z-index:4}.CodeMirror-gutter-wrapper ::selection{background-color:transparent}.CodeMirror-gutter-wrapper ::-moz-selection{background-color:transparent}.CodeMirror-lines{cursor:text;min-height:1px}.CodeMirror pre.CodeMirror-line,.CodeMirror pre.CodeMirror-line-like{-moz-border-radius:0;-webkit-border-radius:0;border-radius:0;border-width:0;background:transparent;font-family:inherit;font-size:inherit;margin:0;white-space:pre;word-wrap:normal;line-height:inherit;color:inherit;z-index:2;position:relative;overflow:visible;-webkit-tap-highlight-color:transparent;-webkit-font-variant-ligatures:contextual;font-variant-ligatures:contextual}.CodeMirror-wrap pre.CodeMirror-line,.CodeMirror-wrap pre.CodeMirror-line-like{word-wrap:break-word;white-space:pre-wrap;word-break:normal}.CodeMirror-linebackground{position:absolute;left:0;right:0;top:0;bottom:0;z-index:0}.CodeMirror-linewidget{position:relative;z-index:2;padding:.1px}.CodeMirror-rtl pre{direction:rtl}.CodeMirror-code{outline:none}.CodeMirror-scroll,.CodeMirror-sizer,.CodeMirror-gutter,.CodeMirror-gutters,.CodeMirror-linenumber{-moz-box-sizing:content-box;box-sizing:content-box}.CodeMirror-measure{position:absolute;width:100%;height:0;overflow:hidden;visibility:hidden}.CodeMirror-cursor{position:absolute;pointer-events:none}.CodeMirror-measure pre{position:static}div.CodeMirror-cursors{visibility:hidden;position:relative;z-index:3}div.CodeMirror-dragcursors{visibility:visible}.CodeMirror-focused div.CodeMirror-cursors{visibility:visible}.CodeMirror-selected{background:#d9d9d9}.CodeMirror-focused .CodeMirror-selected{background:#d7d4f0}.CodeMirror-crosshair{cursor:crosshair}.CodeMirror-line::selection,.CodeMirror-line > span::selection,.CodeMirror-line > span > span::selection{background:#d7d4f0}.CodeMirror-line::-moz-selection,.CodeMirror-line > span::-moz-selection,.CodeMirror-line > span > span::-moz-selection{background:#d7d4f0}.cm-searching{background-color:#ffa;background-color:rgba(255,255,0,.4)}.cm-force-border{padding-right:.1px}@media print{.CodeMirror div.CodeMirror-cursors{visibility:hidden}}.cm-tab-wrap-hack:after{content:''}span.CodeMirror-selectedtext{background:none}\n",
"type": "text/vnd.tiddlywiki",
"title": "$:/plugins/tiddlywiki/codemirror/lib/codemirror.css",
"tags": "[[$:/tags/Stylesheet]]"
},
"$:/plugins/tiddlywiki/codemirror/addon/dialog/dialog.css": {
"text": ".CodeMirror-dialog {\n position: absolute;\n left: 0; right: 0;\n background: inherit;\n z-index: 15;\n padding: .1em .8em;\n overflow: hidden;\n color: inherit;\n}\n\n.CodeMirror-dialog-top {\n border-bottom: 1px solid #eee;\n top: 0;\n}\n\n.CodeMirror-dialog-bottom {\n border-top: 1px solid #eee;\n bottom: 0;\n}\n\n.CodeMirror-dialog input {\n border: none;\n outline: none;\n background: transparent;\n width: 20em;\n color: inherit;\n font-family: monospace;\n}\n\n.CodeMirror-dialog button {\n font-size: 70%;\n}\n",
"type": "text/css",
"title": "$:/plugins/tiddlywiki/codemirror/addon/dialog/dialog.css",
"tags": "[[$:/tags/Stylesheet]]"
},
"$:/plugins/tiddlywiki/codemirror/addon/dialog/dialog.js": {
"text": "!function(e){\"object\"==typeof exports&&\"object\"==typeof module?e(require(\"../../lib/codemirror\")):\"function\"==typeof define&&define.amd?define([\"../../lib/codemirror\"],e):e(CodeMirror)}(function(s){function f(e,o,n){var t=e.getWrapperElement(),i=t.appendChild(document.createElement(\"div\"));return i.className=n?\"CodeMirror-dialog CodeMirror-dialog-bottom\":\"CodeMirror-dialog CodeMirror-dialog-top\",\"string\"==typeof o?i.innerHTML=o:i.appendChild(o),s.addClass(t,\"dialog-opened\"),i}function p(e,o){e.state.currentNotificationClose&&e.state.currentNotificationClose(),e.state.currentNotificationClose=o}s.defineExtension(\"openDialog\",function(e,o,n){n=n||{},p(this,null);var t=f(this,e,n.bottom),i=!1,r=this;function u(e){if(\"string\"==typeof e)a.value=e;else{if(i)return;i=!0,s.rmClass(t.parentNode,\"dialog-opened\"),t.parentNode.removeChild(t),r.focus(),n.onClose&&n.onClose(t)}}var l,a=t.getElementsByTagName(\"input\")[0];return a?(a.focus(),n.value&&(a.value=n.value,!1!==n.selectValueOnOpen&&a.select()),n.onInput&&s.on(a,\"input\",function(e){n.onInput(e,a.value,u)}),n.onKeyUp&&s.on(a,\"keyup\",function(e){n.onKeyUp(e,a.value,u)}),s.on(a,\"keydown\",function(e){n&&n.onKeyDown&&n.onKeyDown(e,a.value,u)||((27==e.keyCode||!1!==n.closeOnEnter&&13==e.keyCode)&&(a.blur(),s.e_stop(e),u()),13==e.keyCode&&o(a.value,e))}),!1!==n.closeOnBlur&&s.on(t,\"focusout\",function(e){null!==e.relatedTarget&&u()})):(l=t.getElementsByTagName(\"button\")[0])&&(s.on(l,\"click\",function(){u(),r.focus()}),!1!==n.closeOnBlur&&s.on(l,\"blur\",u),l.focus()),u}),s.defineExtension(\"openConfirm\",function(e,o,n){p(this,null);var t=f(this,e,n&&n.bottom),i=t.getElementsByTagName(\"button\"),r=!1,u=this,l=1;function a(){r||(r=!0,s.rmClass(t.parentNode,\"dialog-opened\"),t.parentNode.removeChild(t),u.focus())}i[0].focus();for(var c=0;c<i.length;++c){var d=i[c];!function(o){s.on(d,\"click\",function(e){s.e_preventDefault(e),a(),o&&o(u)})}(o[c]),s.on(d,\"blur\",function(){--l,setTimeout(function(){l<=0&&a()},200)}),s.on(d,\"focus\",function(){++l})}}),s.defineExtension(\"openNotification\",function(e,o){p(this,u);var n,t=f(this,e,o&&o.bottom),i=!1,r=o&&void 0!==o.duration?o.duration:5e3;function u(){i||(i=!0,clearTimeout(n),s.rmClass(t.parentNode,\"dialog-opened\"),t.parentNode.removeChild(t))}return s.on(t,\"click\",function(e){s.e_preventDefault(e),u()}),r&&(n=setTimeout(u,r)),u})});\n",
"type": "application/javascript",
"title": "$:/plugins/tiddlywiki/codemirror/addon/dialog/dialog.js",
"module-type": "codemirror"
},
"$:/plugins/tiddlywiki/codemirror/addon/selection/activeline.js": {
"text": "!function(e){\"object\"==typeof exports&&\"object\"==typeof module?e(require(\"../../lib/codemirror\")):\"function\"==typeof define&&define.amd?define([\"../../lib/codemirror\"],e):e(CodeMirror)}(function(r){\"use strict\";var s=\"CodeMirror-activeline\",c=\"CodeMirror-activeline-background\",l=\"CodeMirror-activeline-gutter\";function f(e){for(var t=0;t<e.state.activeLines.length;t++)e.removeLineClass(e.state.activeLines[t],\"wrap\",s),e.removeLineClass(e.state.activeLines[t],\"background\",c),e.removeLineClass(e.state.activeLines[t],\"gutter\",l)}function o(t,e){for(var n=[],i=0;i<e.length;i++){var r,o=e[i],a=t.getOption(\"styleActiveLine\");(\"object\"==typeof a&&a.nonEmpty?o.anchor.line==o.head.line:o.empty())&&(r=t.getLineHandleVisualStart(o.head.line),n[n.length-1]!=r&&n.push(r))}!function(e,t){if(e.length==t.length){for(var n=0;n<e.length;n++)if(e[n]!=t[n])return;return 1}}(t.state.activeLines,n)&&t.operation(function(){f(t);for(var e=0;e<n.length;e++)t.addLineClass(n[e],\"wrap\",s),t.addLineClass(n[e],\"background\",c),t.addLineClass(n[e],\"gutter\",l);t.state.activeLines=n})}function a(e,t){o(e,t.ranges)}r.defineOption(\"styleActiveLine\",!1,function(e,t,n){var i=n!=r.Init&&n;t!=i&&(i&&(e.off(\"beforeSelectionChange\",a),f(e),delete e.state.activeLines),t&&(e.state.activeLines=[],o(e,e.listSelections()),e.on(\"beforeSelectionChange\",a)))})});\n",
"type": "application/javascript",
"title": "$:/plugins/tiddlywiki/codemirror/addon/selection/activeline.js",
"module-type": "codemirror"
},
"$:/plugins/tiddlywiki/codemirror/mode/tw-meta.js": {
"text": "!function(e){\"object\"==typeof exports&&\"object\"==typeof module?e(require(\"../lib/codemirror\")):\"function\"==typeof define&&define.amd?define([\"../lib/codemirror\"],e):e(CodeMirror)}(function(e){\"use strict\";e.modeInfo=[{name:\"CMake\",mime:\"text/x-cmake\",mode:\"cmake\",ext:[\"cmake\",\"cmake.in\"],file:/^CMakeLists.txt$/},{name:\"Cython\",mime:\"text/x-cython\",mode:\"python\",ext:[\"pyx\",\"pxd\",\"pxi\"]},{name:\"CSS\",mime:\"text/css\",mode:\"css\",ext:[\"css\"]},{name:\"diff\",mime:\"text/x-diff\",mode:\"diff\",ext:[\"diff\",\"patch\"]},{name:\"Embedded Javascript\",mime:\"application/x-ejs\",mode:\"htmlembedded\",ext:[\"ejs\"]},{name:\"Embedded Ruby\",mime:\"application/x-erb\",mode:\"htmlembedded\",ext:[\"erb\"]},{name:\"Erlang\",mime:\"text/x-erlang\",mode:\"erlang\",ext:[\"erl\"]},{name:\"GitHub Flavored Markdown\",mime:\"text/x-gfm\",mode:\"gfm\",file:/^(readme|contributing|history).md$/i},{name:\"Go\",mime:\"text/x-go\",mode:\"go\",ext:[\"go\"]},{name:\"ASP.NET\",mime:\"application/x-aspx\",mode:\"htmlembedded\",ext:[\"aspx\"],alias:[\"asp\",\"aspx\"]},{name:\"HTML\",mime:\"text/html\",mode:\"htmlmixed\",ext:[\"html\",\"htm\",\"handlebars\",\"hbs\"],alias:[\"xhtml\"]},{name:\"HTTP\",mime:\"message/http\",mode:\"http\"},{name:\"JavaScript\",mimes:[\"text/javascript\",\"text/ecmascript\",\"application/javascript\",\"application/x-javascript\",\"application/ecmascript\"],mode:\"javascript\",ext:[\"js\"],alias:[\"ecmascript\",\"js\",\"node\"]},{name:\"JSON\",mimes:[\"application/json\",\"application/x-json\"],mode:\"javascript\",ext:[\"json\",\"map\"],alias:[\"json5\"]},{name:\"JSON-LD\",mime:\"application/ld+json\",mode:\"javascript\",ext:[\"jsonld\"],alias:[\"jsonld\"]},{name:\"Lua\",mime:\"text/x-lua\",mode:\"lua\",ext:[\"lua\"]},{name:\"Markdown\",mime:\"text/x-markdown\",mode:\"markdown\",ext:[\"markdown\",\"md\",\"mkd\"]},{name:\"MySQL\",mime:\"text/x-mysql\",mode:\"sql\"},{name:\"Plain Text\",mime:\"text/plain\",mode:\"null\",ext:[\"txt\",\"text\",\"conf\",\"def\",\"list\",\"log\"]},{name:\"Python\",mime:\"text/x-python\",mode:\"python\",ext:[\"BUILD\",\"bzl\",\"py\",\"pyw\"],file:/^(BUCK|BUILD)$/},{name:\"SCSS\",mime:\"text/x-scss\",mode:\"css\",ext:[\"scss\"]},{name:\"LaTeX\",mime:\"text/x-latex\",mode:\"stex\",ext:[\"text\",\"ltx\",\"tex\"],alias:[\"tex\"]},{name:\"TiddlyWiki \",mime:\"text/x-tiddlywiki\",mode:\"tiddlywiki\"}];for(var t=0;t<e.modeInfo.length;t++){var m=e.modeInfo[t];m.mimes&&(m.mime=m.mimes[0])}e.findModeByMIME=function(t){t=t.toLowerCase();for(var m=0;m<e.modeInfo.length;m++){var i=e.modeInfo[m];if(i.mime==t)return i;if(i.mimes)for(var a=0;a<i.mimes.length;a++)if(i.mimes[a]==t)return i}return/\\+xml$/.test(t)?e.findModeByMIME(\"application/xml\"):/\\+json$/.test(t)?e.findModeByMIME(\"application/json\"):void 0},e.findModeByExtension=function(t){for(var m=0;m<e.modeInfo.length;m++){var i=e.modeInfo[m];if(i.ext)for(var a=0;a<i.ext.length;a++)if(i.ext[a]==t)return i}},e.findModeByFileName=function(t){for(var m=0;m<e.modeInfo.length;m++){var i=e.modeInfo[m];if(i.file&&i.file.test(t))return i}var a=t.lastIndexOf(\".\"),o=a>-1&&t.substring(a+1,t.length);if(o)return e.findModeByExtension(o)},e.findModeByName=function(t){t=t.toLowerCase();for(var m=0;m<e.modeInfo.length;m++){var i=e.modeInfo[m];if(i.name.toLowerCase()==t)return i;if(i.alias)for(var a=0;a<i.alias.length;a++)if(i.alias[a].toLowerCase()==t)return i}}});\n",
"type": "application/javascript",
"title": "$:/plugins/tiddlywiki/codemirror/mode/tw-meta.js",
"module-type": "codemirror"
},
"$:/plugins/tiddlywiki/codemirror/keyboard": {
"title": "$:/plugins/tiddlywiki/codemirror/keyboard",
"text": "\n!!Default keyboard shortcuts\n\n!!!Basic shortcuts\n\n|Shortcut |Function |h\n|Left |goCharLeft |\n|Right |goCharRight |\n|Up |goLineUp |\n|Down |goLineDown |\n|End |goLineEnd |\n|Home |goLineStartSmart |\n|~PageUp |goPageUp |\n|~PageDown |goPageDown |\n|Delete |delCharAfter |\n|Backspace |delCharBefore |\n|Shift-Backspace |delCharBefore |\n|Tab |defaultTab |\n|Shift-Tab |indentAuto |\n|Enter |newlineAndIndent |\n|Insert |toggleOverwrite |\n|Ctrl-Esc |singleSelection |\n\n\n!!!Shortcuts on Windows and Linux\n\n|Shortcut |Function |h\n|Ctrl-A |selectAll |\n|Ctrl-D |deleteLine |\n|Ctrl-Z |undo |\n|Shift-Ctrl-Z |redo |\n|Ctrl-Y |redo |\n|Ctrl-Home |goDocStart |\n|Ctrl-End |goDocEnd |\n|Ctrl-Up |goLineUp |\n|Ctrl-Down |goLineDown |\n|Ctrl-Left |goGroupLeft |\n|Ctrl-Right |goGroupRight |\n|Alt-Left |goLineStart |\n|Alt-Right |goLineEnd |\n|Ctrl-Backspace |delGroupBefore |\n|Ctrl-Delete |delGroupAfter |\n|Ctrl-F |find |\n|Ctrl-G |findNext |\n|Shift-Ctrl-G |findPrev |\n|Shift-Ctrl-F |replace |\n|Shift-Ctrl-R |replaceAll |\n|Ctrl-[ |indentLess |\n|Ctrl-] |indentMore |\n|Alt-U |undoSelection |\n|Shift-Ctrl-U |redoSelection |\n|Shift-Alt-U |redoSelection |\n\n\n!!!Shortcuts on ~MacOs\n\n|Shortcut |Function |h\n|Cmd-A |selectAll |\n|Cmd-D |deleteLine |\n|Cmd-Z |undo |\n|Shift-Cmd-Z |redo |\n|Cmd-Y |redo |\n|Cmd-Home |goDocStart |\n|Cmd-Up |goDocStart |\n|Cmd-End |goDocEnd |\n|Cmd-Down |goDocEnd |\n|Alt-Left |goGroupLeft |\n|Alt-Right |goGroupRight |\n|Cmd-Left |goLineLeft |\n|Cmd-Right |goLineRight |\n|Alt-Backspace |delGroupBefore |\n|Ctrl-Alt-Backspace |delGroupAfter |\n|Alt-Delete |delGroupAfter |\n|Cmd-F |find |\n|Cmd-G |findNext |\n|Shift-Cmd-G |findPrev |\n|Cmd-Alt-F |replace |\n|Shift-Cmd-Alt-F |replaceAll |\n|Cmd-[ |indentLess |\n|Cmd-] |indentMore |\n|Cmd-Backspace |delWrappedLineLeft |\n|Cmd-Delete |delWrappedLineRight |\n|Alt-U |undoSelection |\n|Shift-Alt-U |redoSelection |\n|Ctrl-Up |goDocStart |\n|Ctrl-Down |goDocEnd |\n|Ctrl-F |goCharRight |\n|Ctrl-B |goCharLeft |\n|Ctrl-P |goLineUp |\n|Ctrl-N |goLineDown |\n|Alt-F |goWordRight |\n|Alt-B |goWordLeft |\n|Ctrl-A |goLineStart |\n|Ctrl-E |goLineEnd |\n|Ctrl-V |goPageDown |\n|Shift-Ctrl-V |goPageUp |\n|Ctrl-D |delCharAfter |\n|Ctrl-H |delCharBefore |\n|Alt-D |delWordAfter |\n|Alt-Backspace |delWordBefore |\n|Ctrl-K |killLine |\n|Alt-T |transposeChars |\n|Ctrl-O |openLine |\n\n\n"
},
"$:/plugins/tiddlywiki/codemirror/license": {
"title": "$:/plugins/tiddlywiki/codemirror/license",
"text": "\"\"\"\n~CodeMirror, copyright (c) by Marijn Haverbeke and others\nDistributed under an MIT license: http://codemirror.net/LICENSE\n\nCopyright (c) 2004-2007, Jeremy Ruston\nCopyright (c) 2007-2018, UnaMesa Association\nDistributed under an BSD license: https://tiddlywiki.com/#License\n\"\"\"\n"
},
"$:/plugins/tiddlywiki/codemirror/readme": {
"title": "$:/plugins/tiddlywiki/codemirror/readme",
"text": "This plugin provides an enhanced text editor component based on [[CodeMirror|http://codemirror.net]]. The basic configuration is designed to be as lightweight as possible and is just around 235kb of size. Additional features can be installed with ~CodeMirror ~AddOns from the plugin library.\n\n[[Source code|https://github.com/Jermolene/TiddlyWiki5/blob/master/plugins/tiddlywiki/codemirror]]\n\nBased on ~CodeMirror version 5.58.3\n"
},
"$:/core/ui/ControlPanel/Settings/codemirror/cursorBlinkRate": {
"title": "$:/core/ui/ControlPanel/Settings/codemirror/cursorBlinkRate",
"tags": "$:/tags/ControlPanel/Settings/CodeMirror",
"caption": "{{$:/language/codemirror/cursorBlinkRate/hint}}",
"text": "\\define lingo-base() $:/language/codemirror/cursorBlinkRate/\n\n|<$link to=\"$:/config/codemirror/cursorBlinkRate\"><<lingo hint>></$link> |<$edit-text tiddler=\"$:/config/codemirror/cursorBlinkRate\" default=\"\" placeholder=\"cursorBlinkRate\" tag=\"input\"/> |\n"
},
"$:/core/ui/ControlPanel/Settings/codemirror/editorFont": {
"title": "$:/core/ui/ControlPanel/Settings/codemirror/editorFont",
"tags": "$:/tags/ControlPanel/Settings/CodeMirror",
"caption": "{{$:/language/codemirror/editorFont/hint}}",
"text": "\\define lingo-base() $:/language/ThemeTweaks/\n\n|<$link to=\"$:/themes/tiddlywiki/vanilla/settings/editorfontfamily\"><<lingo Settings/EditorFontFamily>></$link> |<$edit-text tiddler=\"$:/themes/tiddlywiki/vanilla/settings/editorfontfamily\" default=\"\" tag=\"input\"/> | |\n"
},
"$:/core/ui/ControlPanel/Settings/codemirror/indentUnit": {
"title": "$:/core/ui/ControlPanel/Settings/codemirror/indentUnit",
"tags": "$:/tags/ControlPanel/Settings/CodeMirror",
"caption": "{{$:/language/codemirror/indentUnit/hint}}",
"text": "\\define lingo-base() $:/language/codemirror/indentUnit/\n\n|<$link to=\"$:/config/codemirror/indentUnit\"><<lingo hint>></$link> |<$edit-text tiddler=\"$:/config/codemirror/indentUnit\" default=\"\" placeholder=\"indentUnit\" tag=\"input\"/> |\n"
},
"$:/core/ui/ControlPanel/Settings/codemirror/indentWithTabs": {
"title": "$:/core/ui/ControlPanel/Settings/codemirror/indentWithTabs",
"tags": "$:/tags/ControlPanel/Settings/CodeMirror",
"caption": "{{$:/language/codemirror/indentWithTabs/hint}}",
"text": "\\define lingo-base() $:/language/codemirror/indentWithTabs/\n<<lingo hint>>\n\n<$checkbox tiddler=\"$:/config/codemirror/indentWithTabs\" field=\"text\" checked=\"true\" unchecked=\"false\" default=\"true\"> <$link to=\"$:/config/codemirror/indentWithTabs\"><<lingo info>></$link> </$checkbox>\n"
},
"$:/core/ui/ControlPanel/Settings/codemirror/keyMap": {
"title": "$:/core/ui/ControlPanel/Settings/codemirror/keyMap",
"tags": "$:/tags/ControlPanel/Settings/CodeMirror",
"caption": "{{$:/language/codemirror/keyMap/hint}}",
"text": "\\define lingo-base() $:/language/codemirror/keyMap\n\n<$link to=\"$:/config/codemirror/keyMap\"><<lingo hint>></$link>\n\n<$select tiddler=\"$:/config/codemirror/keyMap\" default=\"default\">\n<option value=\"default\">default</option>\n<$list filter=\"[all[shadows+tiddlers]module-type[codemirror-keymap]!has[draft.of]get[text]]\">\n<option value=<<currentTiddler>>><$transclude><$text text=<<currentTiddler>>/></$transclude></option>\n</$list>\n</$select>\n\n"
},
"$:/core/ui/ControlPanel/Settings/codemirror/lineNumbers": {
"title": "$:/core/ui/ControlPanel/Settings/codemirror/lineNumbers",
"tags": "$:/tags/ControlPanel/Settings/CodeMirror",
"caption": "{{$:/language/codemirror/lineNumbers/hint}}",
"text": "\\define lingo-base() $:/language/codemirror/lineNumbers/\n<<lingo hint>>\n\n<$checkbox tiddler=\"$:/config/codemirror/lineNumbers\" field=\"text\" checked=\"true\" unchecked=\"false\" default=\"false\"> <$link to=\"$:/config/codemirror/lineNumbers\"><<lingo info>></$link> </$checkbox>\n\n"
},
"$:/core/ui/ControlPanel/Settings/codemirror/lineWrapping": {
"title": "$:/core/ui/ControlPanel/Settings/codemirror/lineWrapping",
"tags": "$:/tags/ControlPanel/Settings/CodeMirror",
"caption": "{{$:/language/codemirror/lineWrapping/hint}}",
"text": "\\define lingo-base() $:/language/codemirror/lineWrapping/\n<<lingo hint>>\n\n<$checkbox tiddler=\"$:/config/codemirror/lineWrapping\" field=\"text\" checked=\"true\" unchecked=\"false\" default=\"true\"> <$link to=\"$:/config/codemirror/lineWrapping\"><<lingo info>></$link> </$checkbox>\n\n"
},
"$:/core/ui/ControlPanel/Settings/codemirror/showCursorWhenSelecting": {
"title": "$:/core/ui/ControlPanel/Settings/codemirror/showCursorWhenSelecting",
"tags": "$:/tags/ControlPanel/Settings/CodeMirror",
"caption": "{{$:/language/codemirror/showCursorWhenSelecting/hint}}",
"text": "\\define lingo-base() $:/language/codemirror/showCursorWhenSelecting/\n<<lingo hint>>\n\n<$checkbox tiddler=\"$:/config/codemirror/showCursorWhenSelecting\" field=\"text\" checked=\"true\" unchecked=\"false\" default=\"true\"> <$link to=\"$:/config/codemirror/showCursorWhenSelecting\"><<lingo info>></$link> </$checkbox>\n\n"
},
"$:/core/ui/ControlPanel/Settings/codemirror/smartIndent": {
"title": "$:/core/ui/ControlPanel/Settings/codemirror/smartIndent",
"tags": "$:/tags/ControlPanel/Settings/CodeMirror",
"caption": "{{$:/language/codemirror/smartIndent/hint}}",
"text": "\\define lingo-base() $:/language/codemirror/smartIndent/\n<<lingo hint>>\n\n<$checkbox tiddler=\"$:/config/codemirror/smartIndent\" field=\"text\" checked=\"true\" unchecked=\"false\" default=\"true\"> <$link to=\"$:/config/codemirror/smartIndent\"><<lingo info>></$link> </$checkbox>\n"
},
"$:/core/ui/ControlPanel/Settings/codemirror/styleActiveLine": {
"title": "$:/core/ui/ControlPanel/Settings/codemirror/styleActiveLine",
"tags": "$:/tags/ControlPanel/Settings/CodeMirror",
"caption": "{{$:/language/codemirror/styleActiveLine/hint}}",
"text": "\\define lingo-base() $:/language/codemirror/styleActiveLine/\n<<lingo hint>>\n\n<$checkbox tiddler=\"$:/config/codemirror/styleActiveLine\" field=\"text\" checked=\"true\" unchecked=\"false\" default=\"false\"> <$link to=\"$:/config/codemirror/styleActiveLine\"><<lingo info>></$link> </$checkbox>\n\n"
},
"$:/core/ui/ControlPanel/Settings/codemirror/tabSize": {
"title": "$:/core/ui/ControlPanel/Settings/codemirror/tabSize",
"tags": "$:/tags/ControlPanel/Settings/CodeMirror",
"caption": "{{$:/language/codemirror/tabSize/hint}}",
"text": "\\define lingo-base() $:/language/codemirror/tabSize/\n\n|<$link to=\"$:/config/codemirror/tabSize\"><<lingo hint>></$link> |<$edit-text tiddler=\"$:/config/codemirror/tabSize\" default=\"\" placeholder=\"tabSize\" tag=\"input\"/> |\n"
},
"$:/core/ui/ControlPanel/Settings/codemirror/theme": {
"title": "$:/core/ui/ControlPanel/Settings/codemirror/theme",
"tags": "$:/tags/ControlPanel/Settings/CodeMirror",
"caption": "{{$:/language/codemirror/theme/hint}}",
"text": "\\define lingo-base() $:/language/codemirror/\n\n<$link to=\"$:/config/codemirror/theme\"><<lingo hint>></$link>\n\n<$select tiddler=\"$:/config/codemirror/theme\" default=\"default\">\n<option value=\"default\">default</option>\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/Stylesheet]module-type[codemirror-theme]!has[draft.of]get[name]]\">\n<option value=<<currentTiddler>>><$transclude field=\"name\"><$text text=<<currentTiddler>>/></$transclude></option>\n</$list>\n</$select>\n\n//see the [[CodeMirror Usage|$:/plugins/tiddlywiki/codemirror/usage]] how to add themes//\n"
},
"$:/plugins/tiddlywiki/codemirror/styles": {
"title": "$:/plugins/tiddlywiki/codemirror/styles",
"tags": "[[$:/tags/Stylesheet]]",
"module-type": "codemirror-theme",
"name": "tiddlywiki",
"text": "\\define set-fat-cursor-background-css(colour,colourA,colourB)\n<$set name=\"backgroundColour\" value=<<contrastcolour target:\"\"\"$colour$\"\"\" fallbackTarget:\"\"\"\"\"\" colourA:\"\"\"$colourA$\"\"\" colourB:\"\"\"$colourB$\"\"\">>>\n.cm-s-tiddlywiki.cm-fat-cursor .CodeMirror-cursor { background: <<backgroundColour>>; }\n.cm-s-tiddlywiki .cm-animate-fat-cursor { background-color: <<backgroundColour>>; }\n</$set>\n\\end\n\\define set-fat-cursor-background-colours(palette)\n<$macrocall $name=\"set-fat-cursor-background-css\" colour={{$palette$##foreground}} colourA=\"#77ee77\" colourB=\"#586e75\"/>\n\\end\n\\define set-fat-cursor-background()\n<$macrocall $name=\"set-fat-cursor-background-colours\" palette={{$:/palette}}/>\n\\end\n\\define set-selection-background-css(colour,colourA,colourB,tiddlerEditorBackground)\n<$wikify name=\"tiddlerEditorBackground\" text={{{ [[$tiddlerEditorBackground$]lowercase[]] }}}>\n<$set name=\"backgroundColour\" value=<<contrastcolour target:\"\"\"$colour$\"\"\" fallbackTarget:\"\"\"\"\"\" colourA:\"\"\"$colourA$\"\"\" colourB:\"\"\"$colourB$\"\"\">>>\n<$set name=\"backgroundColour\" value={{{ [<backgroundColour>lowercase[]match<tiddlerEditorBackground>then[]] ~[<backgroundColour>] }}}>\n.cm-s-tiddlywiki div.CodeMirror-selected { background: <<backgroundColour>>; color: <<colour foreground>>; }\n.cm-s-tiddlywiki.CodeMirror ::selection { background: <<backgroundColour>>; color: <<colour foreground>>; }\n.cm-s-tiddlywiki .CodeMirror-line::-moz-selection, .CodeMirror-line > span::-moz-selection, .CodeMirror-line > span > span::-moz-selection { background: <<backgroundColour>>; color: <<colour foreground>>; }\n.cm-s-tiddlywiki .CodeMirror-line::selection, .CodeMirror-line > span::selection, .CodeMirror-line > span > span::selection { background: <<backgroundColour>>; color: <<colour foreground>>; }\n</$set>\n</$set>\n</$wikify>\n\\end\n\\define set-selection-background-colours(palette)\n<$macrocall $name=\"set-selection-background-css\" colour={{$palette$##foreground}} colourA={{{ [{$palette$##selection-background}!match[]!prefix[<<]!suffix[>>]] ~#073642 }}} colourB={{{ [{$palette$##selection-background}!match[]!prefix[<<]!suffix[>>]] ~#eee8d5 }}} tiddlerEditorBackground={{$palette$##tiddler-editor-background}}/>\n\\end\n\\define set-selection-background()\n<$macrocall $name=\"set-selection-background-colours\" palette={{$:/palette}}/>\n\\end\n\n\\rules only filteredtranscludeinline transcludeinline macrodef macrocallinline macrocallblock\n\n/* Make the editor resize to fit its content */\n\n.CodeMirror {\n\theight: auto;\n\tborder: 1px solid <<colour tiddler-editor-border>>;\n\tline-height: 1.5;\n\tfont-family: {{$:/themes/tiddlywiki/vanilla/settings/editorfontfamily}};\n\tfont-size: {{$:/themes/tiddlywiki/vanilla/metrics/bodyfontsize}};\n}\n\n.CodeMirror-scroll {\n\toverflow-x: auto;\n\toverflow-y: hidden;\n}\n\n.cm-s-tiddlywiki {\n color-profile: sRGB;\n rendering-intent: auto;\n}\n\n.cm-s-tiddlywiki.CodeMirror, .cm-s-tiddlywiki .CodeMirror-gutters { background-color: <<colour tiddler-editor-background>>; color: <<colour foreground>>; }\n.cm-s-tiddlywiki .CodeMirror-gutters {background: <<colour tiddler-editor-background>>; border-right: 1px solid <<colour tiddler-editor-border>>;}\n.cm-s-tiddlywiki .CodeMirror-linenumber {color: <<colour foreground>>;}\n.cm-s-tiddlywiki .CodeMirror-cursor { border-left: 2px solid <<colour foreground>>; }\n.cm-s-tiddlywiki span.cm-comment { color: #586e75; font-style:italic; font-weight:normal; }\n.cm-s-tiddlywiki .CodeMirror-activeline-background, .cm-s-tiddlywiki .CodeMirror-activeline-gutter .CodeMirror-linenumber { background: rgba(127,127,127,0.2); }\n.cm-s-tiddlywiki span.cm-matchhighlight { color: <<colour background>>; background-color: <<colour primary>>; font-weight: normal;}\n.cm-s-tiddlywiki .CodeMirror-widget { text-shadow: none; }\n.cm-s-tiddlywiki .CodeMirror-dialog { background: <<colour tiddler-background>>; }\n.cm-s-tiddlywiki .cm-header { color: #586e75; }\n.cm-s-tiddlywiki .cm-quote { color: #93a1a1; }\n.cm-s-tiddlywiki .cm-keyword { color: #cb4b16; }\n.cm-s-tiddlywiki .cm-atom { color: #d33682; }\n.cm-s-tiddlywiki .cm-number { color: #d33682; }\n.cm-s-tiddlywiki .cm-def { color: #2aa198; }\n.cm-s-tiddlywiki .cm-variable { color: #839496; }\n.cm-s-tiddlywiki .cm-variable-2 { color: #b58900; }\n.cm-s-tiddlywiki .cm-variable-3, .cm-s-tiddlywiki .cm-type { color: #6c71c4; }\n.cm-s-tiddlywiki .cm-property { color: #2aa198; }\n.cm-s-tiddlywiki .cm-operator { color: #6c71c4; }\n.cm-s-tiddlywiki .cm-comment { color: #586e75; font-style:italic; }\n.cm-s-tiddlywiki .cm-string { color: #859900; }\n.cm-s-tiddlywiki .cm-string-2 { color: #b58900; }\n.cm-s-tiddlywiki .cm-meta { color: #859900; }\n.cm-s-tiddlywiki .cm-qualifier { color: #b58900; }\n.cm-s-tiddlywiki .cm-builtin { color: #d33682; }\n.cm-s-tiddlywiki .cm-bracket { color: #cb4b16; }\n.cm-s-tiddlywiki .CodeMirror-matchingbracket { color: #859900; }\n.cm-s-tiddlywiki .CodeMirror-nonmatchingbracket { color: #dc322f; }\n.cm-s-tiddlywiki .cm-tag { color: #93a1a1; }\n.cm-s-tiddlywiki .cm-attribute { color: #2aa198; }\n.cm-s-tiddlywiki .cm-hr { color: transparent; border-top: 1px solid #586e75; display: block; }\n.cm-s-tiddlywiki .cm-link { color: #93a1a1; cursor: pointer; }\n.cm-s-tiddlywiki .cm-special { color: #6c71c4; }\n.cm-s-tiddlywiki .cm-em { color: #999; text-decoration: underline; text-decoration-style: dotted; }\n.cm-s-tiddlywiki .cm-error,\n.cm-s-tiddlywiki .cm-invalidchar { color: #586e75; border-bottom: 1px dotted #dc322f; }\n.cm-s-tiddlywiki .CodeMirror-matchingbracket { color: #859900; }\n.cm-s-tiddlywiki .CodeMirror-nonmatchingbracket { color: #dc322f; }\n.cm-s-tiddlywiki .cm-searching { background: rgba(243, 155, 53, .3); outline: 1px solid #F39B35; }\n<<set-fat-cursor-background>>\n<<set-selection-background>>\n"
},
"$:/core/ui/ControlPanel/Settings/CodeMirror": {
"title": "$:/core/ui/ControlPanel/Settings/CodeMirror",
"tags": "$:/tags/ControlPanel/SettingsTab",
"caption": "CodeMirror",
"list-after": "$:/core/ui/ControlPanel/Settings/TiddlyWiki",
"text": "\\define lingo-base() $:/language/codemirror/controlPanel/\n\n<<lingo hint>>\n\n<$link to=\"$:/plugins/tiddlywiki/codemirror/usage\"><<lingo usage>></$link>\n\n<$link to=\"$:/plugins/tiddlywiki/codemirror/keyboard\"><<lingo keyboard>></$link>\n\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/ControlPanel/Settings/CodeMirror]]\">\n\n<div style=\"border-top:1px solid #eee;\">\n\n!! <$link><$transclude field=\"caption\"/></$link>\n\n<$transclude/>\n\n</div>\n\n</$list>\n"
},
"$:/core/ui/ControlPanel/Settings": {
"title": "$:/core/ui/ControlPanel/Settings",
"tags": "$:/tags/ControlPanel",
"caption": "{{$:/language/ControlPanel/Settings/Caption}}",
"text": "<div class=\"tc-control-panel\">\n<$macrocall $name=\"tabs\" tabsList=\"[all[shadows+tiddlers]tag[$:/tags/ControlPanel/SettingsTab]!has[draft.of]]\" default=\"$:/core/ui/ControlPanel/Settings/TiddlyWiki\" explicitState=\"$:/state/tab--697582678\"/>\n</div>\n"
},
"$:/core/ui/ControlPanel/Settings/TiddlyWiki": {
"title": "$:/core/ui/ControlPanel/Settings/TiddlyWiki",
"tags": "$:/tags/ControlPanel/SettingsTab",
"caption": "TiddlyWiki",
"text": "\\define lingo-base() $:/language/ControlPanel/Settings/\n\n<<lingo Hint>>\n\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/ControlPanel/Settings]]\">\n\n<div style=\"border-top:1px solid #eee;\">\n\n!! <$link><$transclude field=\"caption\"/></$link>\n\n<$transclude/>\n\n</div>\n\n</$list>\n"
},
"$:/plugins/tiddlywiki/codemirror/usage": {
"title": "$:/plugins/tiddlywiki/codemirror/usage",
"text": "! Configuration\n\nConfiguration for the ~CodeMirror text-editor can be done from within the CodeMirror Settings Tab in the [[ControlPanel|$:/ControlPanel]] (Settings - ~CodeMirror)\n\n\n!!Setting a different Theme\n\n~CodeMirror themes are available in the [ext[official GitHub repository|https://github.com/codemirror/CodeMirror/tree/master/theme]]\n\nMore themes can be found at https://github.com/FarhadG/code-mirror-themes/tree/master/themes and previewed [ext[here|http://farhadg.github.io/code-mirror-themes/]]\n\n\nTo add a theme to your wiki, follow these four steps:\n\n* choose one of the CSS files and copy its content to a new tiddler\n* remove all comments from the top and tag the tiddler with <<tag-pill \"$:/tags/Stylesheet\">>\n* add a field \"module-type\" with the value \"codemirror-theme\". add a field \"name\" with the exact ''name'' of the theme as value\n* save the tiddler and go to the Settings tab in $:/ControlPanel - look for the \"theme\" dropdown to select your newly added theme\n\n\n!!Line Numbers\n\nTo show or hide the Line Numbers at the left, go to ~ControlPanel - Settings - ~CodeMirror and look for the \"Line Numbers\" checkbox\n\n\n!!Line Wrapping\n\nControls if long lines get visually wrapped to a new line if they're too long to fit the editor width or if the editor should scroll horizontally\n\nTo change the line-wrapping behaviour, go to ~ControlPanel - Settings - ~CodeMirror and look for the \"Line Wrapping\" checkbox\n\n\n!!Show Cursor when selecting\n\nDefines whether the Mouse cursor should be visually shown or hidden when making a text-selection\n\nTo change the show-cursor-when-selecting behaviour, go to ~ControlPanel - Settings - ~CodeMirror and look for the \"Show cursor when selecting\" checkbox\n\n\n!!~CodeMirror Font Family\n\nThe Font-Family used within the ~CodeMirror text-editor defaults to \"monospace\" which will choose your configured monospace system-font\n\nThat setting can be overridden entering one or more Font-Families in the \"Font Family\" input field at ~ControlPanel - Settings - ~CodeMirror\n\n* The entries must be separated by semicolons ','\n* Font-Family Names that contain spaces must be quoted like \"My Font\"\n* If a list of Font-Families is specified, the last Font-Family found on the user-system gets used, non-existing fonts get ignored\n* If none of the specified Font-Families is available, ~CodeMirror uses the default \"monospace\"\n\n\n!!\"Hidden\" Settings:\n\n!!!Cursor Blink Rate\n\nThe cursor blink-rate defines how fast (in milliseconds) the cursor blinks inside the textarea\n\nYou can change it by editing $:/config/codemirror/cursorBlinkRate\n\"0\" disables blinking\n\n!!!Tabsize\n\nThe Tabsize defines the width of a tab character. Default is 4.\n\nYou can change it by editing $:/config/codemirror/tabSize\n\n!!!Indent Unit\n\nNot enabled for vnd.tiddlywiki and x-tiddlywiki\n\nDefines how many spaces a text-block should be indented. Defaults to 2.\n\nYou can change it by editing $:/config/codemirror/indentUnit\n\n"
}
}
}
{
"tiddlers": {
"$:/plugins/tiddlywiki/codemirror/mode/javascript/javascript.js": {
"text": "// CodeMirror, copyright (c) by Marijn Haverbeke and others\n// Distributed under an MIT license: https://codemirror.net/LICENSE\n!function(e){\"object\"==typeof exports&&\"object\"==typeof module?e(require(\"../../lib/codemirror\")):\"function\"==typeof define&&define.amd?define([\"../../lib/codemirror\"],e):e(CodeMirror)}(function(tt){\"use strict\";tt.defineMode(\"javascript\",function(e,l){var t,r,n,a,i,o,d=e.indentUnit,p=l.statementIndent,c=l.jsonld,s=l.json||c,u=l.typescript,f=l.wordCharacters||/[\\w$\\xa1-\\uffff]/,m=(t=v(\"keyword a\"),r=v(\"keyword b\"),n=v(\"keyword c\"),a=v(\"keyword d\"),i=v(\"operator\"),{if:v(\"if\"),while:t,with:t,else:r,do:r,try:r,finally:r,return:a,break:a,continue:a,new:v(\"new\"),delete:n,void:n,throw:n,debugger:v(\"debugger\"),var:v(\"var\"),const:v(\"var\"),let:v(\"var\"),function:v(\"function\"),catch:v(\"catch\"),for:v(\"for\"),switch:v(\"switch\"),case:v(\"case\"),default:v(\"default\"),in:i,typeof:i,instanceof:i,true:o={type:\"atom\",style:\"atom\"},false:o,null:o,undefined:o,NaN:o,Infinity:o,this:v(\"this\"),class:v(\"class\"),super:v(\"atom\"),yield:n,export:v(\"export\"),import:v(\"import\"),extends:n,await:n});function v(e){return{type:e,style:\"keyword\"}}var k,y,w=/[+\\-*&%=<>!?|~^@]/,b=/^@(context|id|value|language|type|container|list|set|reverse|index|base|vocab|graph)\"/;function x(e,t,r){return k=e,y=r,t}function h(e,t){var a,r=e.next();if('\"'==r||\"'\"==r)return t.tokenize=(a=r,function(e,t){var r,n=!1;if(c&&\"@\"==e.peek()&&e.match(b))return t.tokenize=h,x(\"jsonld-keyword\",\"meta\");for(;null!=(r=e.next())&&(r!=a||n);)n=!n&&\"\\\\\"==r;return n||(t.tokenize=h),x(\"string\",\"string\")}),t.tokenize(e,t);if(\".\"==r&&e.match(/^\\d[\\d_]*(?:[eE][+\\-]?[\\d_]+)?/))return x(\"number\",\"number\");if(\".\"==r&&e.match(\"..\"))return x(\"spread\",\"meta\");if(/[\\[\\]{}\\(\\),;\\:\\.]/.test(r))return x(r);if(\"=\"==r&&e.eat(\">\"))return x(\"=>\",\"operator\");if(\"0\"==r&&e.match(/^(?:x[\\dA-Fa-f_]+|o[0-7_]+|b[01_]+)n?/))return x(\"number\",\"number\");if(/\\d/.test(r))return e.match(/^[\\d_]*(?:n|(?:\\.[\\d_]*)?(?:[eE][+\\-]?[\\d_]+)?)?/),x(\"number\",\"number\");if(\"/\"==r)return e.eat(\"*\")?(t.tokenize=g)(e,t):e.eat(\"/\")?(e.skipToEnd(),x(\"comment\",\"comment\")):et(e,t,1)?(function(e){for(var t,r=!1,n=!1;null!=(t=e.next());){if(!r){if(\"/\"==t&&!n)return;\"[\"==t?n=!0:n&&\"]\"==t&&(n=!1)}r=!r&&\"\\\\\"==t}}(e),e.match(/^\\b(([gimyus])(?![gimyus]*\\2))+\\b/),x(\"regexp\",\"string-2\")):(e.eat(\"=\"),x(\"operator\",\"operator\",e.current()));if(\"`\"==r)return(t.tokenize=j)(e,t);if(\"#\"==r&&\"!\"==e.peek())return e.skipToEnd(),x(\"meta\",\"meta\");if(\"#\"==r&&e.eatWhile(f))return x(\"variable\",\"property\");if(\"<\"==r&&e.match(\"!--\")||\"-\"==r&&e.match(\"->\")&&!/\\S/.test(e.string.slice(0,e.start)))return e.skipToEnd(),x(\"comment\",\"comment\");if(w.test(r))return\">\"==r&&t.lexical&&\">\"==t.lexical.type||(e.eat(\"=\")?\"!\"!=r&&\"=\"!=r||e.eat(\"=\"):/[<>*+\\-|&?]/.test(r)&&(e.eat(r),\">\"==r&&e.eat(r))),\"?\"==r&&e.eat(\".\")?x(\".\"):x(\"operator\",\"operator\",e.current());if(f.test(r)){e.eatWhile(f);var n=e.current();if(\".\"!=t.lastType){if(m.propertyIsEnumerable(n)){var i=m[n];return x(i.type,i.style,n)}if(\"async\"==n&&e.match(/^(\\s|\\/\\*([^*]|\\*(?!\\/))*?\\*\\/)*[\\[\\(\\w]/,!1))return x(\"async\",\"keyword\",n)}return x(\"variable\",\"variable\",n)}}function g(e,t){for(var r,n=!1;r=e.next();){if(\"/\"==r&&n){t.tokenize=h;break}n=\"*\"==r}return x(\"comment\",\"comment\")}function j(e,t){for(var r,n=!1;null!=(r=e.next());){if(!n&&(\"`\"==r||\"$\"==r&&e.eat(\"{\"))){t.tokenize=h;break}n=!n&&\"\\\\\"==r}return x(\"quasi\",\"string-2\",e.current())}var M=\"([{}])\";function A(e,t){t.fatArrowAt&&(t.fatArrowAt=null);var r,n=e.string.indexOf(\"=>\",e.start);if(!(n<0)){!u||(r=/:\\s*(?:\\w+(?:<[^>]*>|\\[\\])?|\\{[^}]*\\})\\s*$/.exec(e.string.slice(e.start,n)))&&(n=r.index);for(var a=0,i=!1,o=n-1;0<=o;--o){var c=e.string.charAt(o),s=M.indexOf(c);if(0<=s&&s<3){if(!a){++o;break}if(0==--a){\"(\"==c&&(i=!0);break}}else if(3<=s&&s<6)++a;else if(f.test(c))i=!0;else if(/[\"'\\/`]/.test(c))for(;;--o){if(0==o)return;if(e.string.charAt(o-1)==c&&\"\\\\\"!=e.string.charAt(o-2)){o--;break}}else if(i&&!a){++o;break}}i&&!a&&(t.fatArrowAt=o)}}var V={atom:!0,number:!0,variable:!0,string:!0,regexp:!0,this:!0,\"jsonld-keyword\":!0};function E(e,t,r,n,a,i){this.indented=e,this.column=t,this.type=r,this.prev=a,this.info=i,null!=n&&(this.align=n)}function z(e,t,r,n,a){var i=e.cc;for(I.state=e,I.stream=a,I.marked=null,I.cc=i,I.style=t,e.lexical.hasOwnProperty(\"align\")||(e.lexical.align=!0);;){if((i.length?i.pop():s?J:D)(r,n)){for(;i.length&&i[i.length-1].lex;)i.pop()();return I.marked?I.marked:\"variable\"==r&&function(e,t){for(var r=e.localVars;r;r=r.next)if(r.name==t)return 1;for(var n=e.context;n;n=n.prev)for(r=n.vars;r;r=r.next)if(r.name==t)return 1}(e,n)?\"variable-2\":t}}}var I={state:null,column:null,marked:null,cc:null};function T(){for(var e=arguments.length-1;0<=e;e--)I.cc.push(arguments[e])}function $(){return T.apply(null,arguments),!0}function C(e,t){for(var r=t;r;r=r.next)if(r.name==e)return 1}function _(e){var t=I.state;if(I.marked=\"def\",t.context)if(\"var\"==t.lexical.info&&t.context&&t.context.block){var r=function e(t,r){{if(r){if(r.block){var n=e(t,r.prev);return n?n==r.prev?r:new q(n,r.vars,!0):null}return C(t,r.vars)?r:new q(r.prev,new S(t,r.vars),!1)}return null}}(e,t.context);if(null!=r)return void(t.context=r)}else if(!C(e,t.localVars))return void(t.localVars=new S(e,t.localVars));l.globalVars&&!C(e,t.globalVars)&&(t.globalVars=new S(e,t.globalVars))}function O(e){return\"public\"==e||\"private\"==e||\"protected\"==e||\"abstract\"==e||\"readonly\"==e}function q(e,t,r){this.prev=e,this.vars=t,this.block=r}function S(e,t){this.name=e,this.next=t}var P=new S(\"this\",new S(\"arguments\",null));function N(){I.state.context=new q(I.state.context,I.state.localVars,!1),I.state.localVars=P}function U(){I.state.context=new q(I.state.context,I.state.localVars,!0),I.state.localVars=null}function W(){I.state.localVars=I.state.context.vars,I.state.context=I.state.context.prev}function B(n,a){function e(){var e=I.state,t=e.indented;if(\"stat\"==e.lexical.type)t=e.lexical.indented;else for(var r=e.lexical;r&&\")\"==r.type&&r.align;r=r.prev)t=r.indented;e.lexical=new E(t,I.stream.column(),n,null,e.lexical,a)}return e.lex=!0,e}function F(){var e=I.state;e.lexical.prev&&(\")\"==e.lexical.type&&(e.indented=e.lexical.indented),e.lexical=e.lexical.prev)}function H(r){return function e(t){return t==r?$():\";\"==r||\"}\"==t||\")\"==t||\"]\"==t?T():$(e)}}function D(e,t){return\"var\"==e?$(B(\"vardef\",t),Ae,H(\";\"),F):\"keyword a\"==e?$(B(\"form\"),L,D,F):\"keyword b\"==e?$(B(\"form\"),D,F):\"keyword d\"==e?I.stream.match(/^\\s*$/,!1)?$():$(B(\"stat\"),R,H(\";\"),F):\"debugger\"==e?$(H(\";\")):\"{\"==e?$(B(\"}\"),U,de,F,W):\";\"==e?$():\"if\"==e?(\"else\"==I.state.lexical.info&&I.state.cc[I.state.cc.length-1]==F&&I.state.cc.pop()(),$(B(\"form\"),L,D,F,$e)):\"function\"==e?$(qe):\"for\"==e?$(B(\"form\"),Ce,D,F):\"class\"==e||u&&\"interface\"==t?(I.marked=\"keyword\",$(B(\"form\",\"class\"==e?e:t),We,F)):\"variable\"==e?u&&\"declare\"==t?(I.marked=\"keyword\",$(D)):u&&(\"module\"==t||\"enum\"==t||\"type\"==t)&&I.stream.match(/^\\s*\\w/,!1)?(I.marked=\"keyword\",\"enum\"==t?$(Ye):\"type\"==t?$(Pe,H(\"operator\"),ye,H(\";\")):$(B(\"form\"),Ve,H(\"{\"),B(\"}\"),de,F,F)):u&&\"namespace\"==t?(I.marked=\"keyword\",$(B(\"form\"),J,D,F)):u&&\"abstract\"==t?(I.marked=\"keyword\",$(D)):$(B(\"stat\"),ie):\"switch\"==e?$(B(\"form\"),L,H(\"{\"),B(\"}\",\"switch\"),U,de,F,F,W):\"case\"==e?$(J,H(\":\")):\"default\"==e?$(H(\":\")):\"catch\"==e?$(B(\"form\"),N,G,D,F,W):\"export\"==e?$(B(\"stat\"),De,F):\"import\"==e?$(B(\"stat\"),Je,F):\"async\"==e?$(D):\"@\"==t?$(J,D):T(B(\"stat\"),J,H(\";\"),F)}function G(e){if(\"(\"==e)return $(Ne,H(\")\"))}function J(e,t){return Q(e,t,!1)}function K(e,t){return Q(e,t,!0)}function L(e){return\"(\"!=e?T():$(B(\")\"),R,H(\")\"),F)}function Q(e,t,r){if(I.state.fatArrowAt==I.stream.start){var n=r?re:te;if(\"(\"==e)return $(N,B(\")\"),fe(Ne,\")\"),F,H(\"=>\"),n,W);if(\"variable\"==e)return T(N,Ve,H(\"=>\"),n,W)}var a,i=r?Y:X;return V.hasOwnProperty(e)?$(i):\"function\"==e?$(qe,i):\"class\"==e||u&&\"interface\"==t?(I.marked=\"keyword\",$(B(\"form\"),Ue,F)):\"keyword c\"==e||\"async\"==e?$(r?K:J):\"(\"==e?$(B(\")\"),R,H(\")\"),F,i):\"operator\"==e||\"spread\"==e?$(r?K:J):\"[\"==e?$(B(\"]\"),Xe,F,i):\"{\"==e?le(ce,\"}\",null,i):\"quasi\"==e?T(Z,i):\"new\"==e?$((a=r,function(e){return\".\"==e?$(a?ae:ne):\"variable\"==e&&u?$(ge,a?Y:X):T(a?K:J)})):\"import\"==e?$(J):$()}function R(e){return e.match(/[;\\}\\)\\],]/)?T():T(J)}function X(e,t){return\",\"==e?$(R):Y(e,t,!1)}function Y(e,t,r){var n=0==r?X:Y,a=0==r?J:K;return\"=>\"==e?$(N,r?re:te,W):\"operator\"==e?/\\+\\+|--/.test(t)||u&&\"!\"==t?$(n):u&&\"<\"==t&&I.stream.match(/^([^<>]|<[^<>]*>)*>\\s*\\(/,!1)?$(B(\">\"),fe(ye,\">\"),F,n):\"?\"==t?$(J,H(\":\"),a):$(a):\"quasi\"==e?T(Z,n):\";\"!=e?\"(\"==e?le(K,\")\",\"call\",n):\".\"==e?$(oe,n):\"[\"==e?$(B(\"]\"),R,H(\"]\"),F,n):u&&\"as\"==t?(I.marked=\"keyword\",$(ye,n)):\"regexp\"==e?(I.state.lastType=I.marked=\"operator\",I.stream.backUp(I.stream.pos-I.stream.start-1),$(a)):void 0:void 0}function Z(e,t){return\"quasi\"!=e?T():\"${\"!=t.slice(t.length-2)?$(Z):$(J,ee)}function ee(e){if(\"}\"==e)return I.marked=\"string-2\",I.state.tokenize=j,$(Z)}function te(e){return A(I.stream,I.state),T(\"{\"==e?D:J)}function re(e){return A(I.stream,I.state),T(\"{\"==e?D:K)}function ne(e,t){if(\"target\"==t)return I.marked=\"keyword\",$(X)}function ae(e,t){if(\"target\"==t)return I.marked=\"keyword\",$(Y)}function ie(e){return\":\"==e?$(F,D):T(X,H(\";\"),F)}function oe(e){if(\"variable\"==e)return I.marked=\"property\",$()}function ce(e,t){if(\"async\"==e)return I.marked=\"property\",$(ce);if(\"variable\"==e||\"keyword\"==I.style){return(I.marked=\"property\",\"get\"==t||\"set\"==t)?$(se):(u&&I.state.fatArrowAt==I.stream.start&&(r=I.stream.match(/^\\s*:\\s*/,!1))&&(I.state.fatArrowAt=I.stream.pos+r[0].length),$(ue));var r}else{if(\"number\"==e||\"string\"==e)return I.marked=c?\"property\":I.style+\" property\",$(ue);if(\"jsonld-keyword\"==e)return $(ue);if(u&&O(t))return I.marked=\"keyword\",$(ce);if(\"[\"==e)return $(J,pe,H(\"]\"),ue);if(\"spread\"==e)return $(K,ue);if(\"*\"==t)return I.marked=\"keyword\",$(ce);if(\":\"==e)return T(ue)}}function se(e){return\"variable\"!=e?T(ue):(I.marked=\"property\",$(qe))}function ue(e){return\":\"==e?$(K):\"(\"==e?T(qe):void 0}function fe(n,a,i){function o(e,t){if(i?-1<i.indexOf(e):\",\"==e){var r=I.state.lexical;return\"call\"==r.info&&(r.pos=(r.pos||0)+1),$(function(e,t){return e==a||t==a?T():T(n)},o)}return e==a||t==a?$():i&&-1<i.indexOf(\";\")?T(n):$(H(a))}return function(e,t){return e==a||t==a?$():T(n,o)}}function le(e,t,r){for(var n=3;n<arguments.length;n++)I.cc.push(arguments[n]);return $(B(t,r),fe(e,t),F)}function de(e){return\"}\"==e?$():T(D,de)}function pe(e,t){if(u){if(\":\"==e)return $(ye);if(\"?\"==t)return $(pe)}}function me(e,t){if(u&&(\":\"==e||\"in\"==t))return $(ye)}function ve(e){if(u&&\":\"==e)return I.stream.match(/^\\s*\\w+\\s+is\\b/,!1)?$(J,ke,ye):$(ye)}function ke(e,t){if(\"is\"==t)return I.marked=\"keyword\",$()}function ye(e,t){return\"keyof\"==t||\"typeof\"==t||\"infer\"==t?(I.marked=\"keyword\",$(\"typeof\"==t?K:ye)):\"variable\"==e||\"void\"==t?(I.marked=\"type\",$(he)):\"|\"==t||\"&\"==t?$(ye):\"string\"==e||\"number\"==e||\"atom\"==e?$(he):\"[\"==e?$(B(\"]\"),fe(ye,\"]\",\",\"),F,he):\"{\"==e?$(B(\"}\"),fe(be,\"}\",\",;\"),F,he):\"(\"==e?$(fe(xe,\")\"),we,he):\"<\"==e?$(fe(ye,\">\"),ye):void 0}function we(e){if(\"=>\"==e)return $(ye)}function be(e,t){return\"variable\"==e||\"keyword\"==I.style?(I.marked=\"property\",$(be)):\"?\"==t||\"number\"==e||\"string\"==e?$(be):\":\"==e?$(ye):\"[\"==e?$(H(\"variable\"),me,H(\"]\"),be):\"(\"==e?T(Se,be):void 0}function xe(e,t){return\"variable\"==e&&I.stream.match(/^\\s*[?:]/,!1)||\"?\"==t?$(xe):\":\"==e?$(ye):\"spread\"==e?$(xe):T(ye)}function he(e,t){return\"<\"==t?$(B(\">\"),fe(ye,\">\"),F,he):\"|\"==t||\".\"==e||\"&\"==t?$(ye):\"[\"==e?$(ye,H(\"]\"),he):\"extends\"==t||\"implements\"==t?(I.marked=\"keyword\",$(ye)):\"?\"==t?$(ye,H(\":\"),ye):void 0}function ge(e,t){if(\"<\"==t)return $(B(\">\"),fe(ye,\">\"),F,he)}function je(){return T(ye,Me)}function Me(e,t){if(\"=\"==t)return $(ye)}function Ae(e,t){return\"enum\"==t?(I.marked=\"keyword\",$(Ye)):T(Ve,pe,Ie,Te)}function Ve(e,t){return u&&O(t)?(I.marked=\"keyword\",$(Ve)):\"variable\"==e?(_(t),$()):\"spread\"==e?$(Ve):\"[\"==e?le(ze,\"]\"):\"{\"==e?le(Ee,\"}\"):void 0}function Ee(e,t){return\"variable\"!=e||I.stream.match(/^\\s*:/,!1)?(\"variable\"==e&&(I.marked=\"property\"),\"spread\"==e?$(Ve):\"}\"==e?T():\"[\"==e?$(J,H(\"]\"),H(\":\"),Ee):$(H(\":\"),Ve,Ie)):(_(t),$(Ie))}function ze(){return T(Ve,Ie)}function Ie(e,t){if(\"=\"==t)return $(K)}function Te(e){if(\",\"==e)return $(Ae)}function $e(e,t){if(\"keyword b\"==e&&\"else\"==t)return $(B(\"form\",\"else\"),D,F)}function Ce(e,t){return\"await\"==t?$(Ce):\"(\"==e?$(B(\")\"),_e,F):void 0}function _e(e){return\"var\"==e?$(Ae,Oe):(\"variable\"==e?$:T)(Oe)}function Oe(e,t){return\")\"==e?$():\";\"==e?$(Oe):\"in\"==t||\"of\"==t?(I.marked=\"keyword\",$(J,Oe)):T(J,Oe)}function qe(e,t){return\"*\"==t?(I.marked=\"keyword\",$(qe)):\"variable\"==e?(_(t),$(qe)):\"(\"==e?$(N,B(\")\"),fe(Ne,\")\"),F,ve,D,W):u&&\"<\"==t?$(B(\">\"),fe(je,\">\"),F,qe):void 0}function Se(e,t){return\"*\"==t?(I.marked=\"keyword\",$(Se)):\"variable\"==e?(_(t),$(Se)):\"(\"==e?$(N,B(\")\"),fe(Ne,\")\"),F,ve,W):u&&\"<\"==t?$(B(\">\"),fe(je,\">\"),F,Se):void 0}function Pe(e,t){return\"keyword\"==e||\"variable\"==e?(I.marked=\"type\",$(Pe)):\"<\"==t?$(B(\">\"),fe(je,\">\"),F):void 0}function Ne(e,t){return\"@\"==t&&$(J,Ne),\"spread\"==e?$(Ne):u&&O(t)?(I.marked=\"keyword\",$(Ne)):u&&\"this\"==e?$(pe,Ie):T(Ve,pe,Ie)}function Ue(e,t){return(\"variable\"==e?We:Be)(e,t)}function We(e,t){if(\"variable\"==e)return _(t),$(Be)}function Be(e,t){return\"<\"==t?$(B(\">\"),fe(je,\">\"),F,Be):\"extends\"==t||\"implements\"==t||u&&\",\"==e?(\"implements\"==t&&(I.marked=\"keyword\"),$(u?ye:J,Be)):\"{\"==e?$(B(\"}\"),Fe,F):void 0}function Fe(e,t){return\"async\"==e||\"variable\"==e&&(\"static\"==t||\"get\"==t||\"set\"==t||u&&O(t))&&I.stream.match(/^\\s+[\\w$\\xa1-\\uffff]/,!1)?(I.marked=\"keyword\",$(Fe)):\"variable\"==e||\"keyword\"==I.style?(I.marked=\"property\",$(He,Fe)):\"number\"==e||\"string\"==e?$(He,Fe):\"[\"==e?$(J,pe,H(\"]\"),He,Fe):\"*\"==t?(I.marked=\"keyword\",$(Fe)):u&&\"(\"==e?T(Se,Fe):\";\"==e||\",\"==e?$(Fe):\"}\"==e?$():\"@\"==t?$(J,Fe):void 0}function He(e,t){if(\"?\"==t)return $(He);if(\":\"==e)return $(ye,Ie);if(\"=\"==t)return $(K);var r=I.state.lexical.prev;return T(r&&\"interface\"==r.info?Se:qe)}function De(e,t){return\"*\"==t?(I.marked=\"keyword\",$(Re,H(\";\"))):\"default\"==t?(I.marked=\"keyword\",$(J,H(\";\"))):\"{\"==e?$(fe(Ge,\"}\"),Re,H(\";\")):T(D)}function Ge(e,t){return\"as\"==t?(I.marked=\"keyword\",$(H(\"variable\"))):\"variable\"==e?T(K,Ge):void 0}function Je(e){return\"string\"==e?$():\"(\"==e?T(J):T(Ke,Le,Re)}function Ke(e,t){return\"{\"==e?le(Ke,\"}\"):(\"variable\"==e&&_(t),\"*\"==t&&(I.marked=\"keyword\"),$(Qe))}function Le(e){if(\",\"==e)return $(Ke,Le)}function Qe(e,t){if(\"as\"==t)return I.marked=\"keyword\",$(Ke)}function Re(e,t){if(\"from\"==t)return I.marked=\"keyword\",$(J)}function Xe(e){return\"]\"==e?$():T(fe(K,\"]\"))}function Ye(){return T(B(\"form\"),Ve,H(\"{\"),B(\"}\"),fe(Ze,\"}\"),F,F)}function Ze(){return T(Ve,Ie)}function et(e,t,r){return t.tokenize==h&&/^(?:operator|sof|keyword [bcd]|case|new|export|default|spread|[\\[{}\\(,;:]|=>)$/.test(t.lastType)||\"quasi\"==t.lastType&&/\\{\\s*$/.test(e.string.slice(0,e.pos-(r||0)))}return F.lex=W.lex=!0,{startState:function(e){var t={tokenize:h,lastType:\"sof\",cc:[],lexical:new E((e||0)-d,0,\"block\",!1),localVars:l.localVars,context:l.localVars&&new q(null,null,!1),indented:e||0};return l.globalVars&&\"object\"==typeof l.globalVars&&(t.globalVars=l.globalVars),t},token:function(e,t){if(e.sol()&&(t.lexical.hasOwnProperty(\"align\")||(t.lexical.align=!1),t.indented=e.indentation(),A(e,t)),t.tokenize!=g&&e.eatSpace())return null;var r=t.tokenize(e,t);return\"comment\"==k?r:(t.lastType=\"operator\"!=k||\"++\"!=y&&\"--\"!=y?k:\"incdec\",z(t,r,k,y,e))},indent:function(e,t){if(e.tokenize==g||e.tokenize==j)return tt.Pass;if(e.tokenize!=h)return 0;var r,n=t&&t.charAt(0),a=e.lexical;if(!/^\\s*else\\b/.test(t))for(var i=e.cc.length-1;0<=i;--i){var o=e.cc[i];if(o==F)a=a.prev;else if(o!=$e)break}for(;(\"stat\"==a.type||\"form\"==a.type)&&(\"}\"==n||(r=e.cc[e.cc.length-1])&&(r==X||r==Y)&&!/^[,\\.=+\\-*:?[\\(]/.test(t));)a=a.prev;p&&\")\"==a.type&&\"stat\"==a.prev.type&&(a=a.prev);var c,s,u=a.type,f=n==u;return\"vardef\"==u?a.indented+(\"operator\"==e.lastType||\",\"==e.lastType?a.info.length+1:0):\"form\"==u&&\"{\"==n?a.indented:\"form\"==u?a.indented+d:\"stat\"==u?a.indented+(s=t,\"operator\"==(c=e).lastType||\",\"==c.lastType||w.test(s.charAt(0))||/[,.]/.test(s.charAt(0))?p||d:0):\"switch\"!=a.info||f||0==l.doubleIndentSwitch?a.align?a.column+(f?0:1):a.indented+(f?0:d):a.indented+(/^(?:case|default)\\b/.test(t)?d:2*d)},electricInput:/^\\s*(?:case .*?:|default:|\\{|\\})$/,blockCommentStart:s?null:\"/*\",blockCommentEnd:s?null:\"*/\",blockCommentContinue:s?null:\" * \",lineComment:s?null:\"//\",fold:\"brace\",closeBrackets:\"()[]{}''\\\"\\\"``\",helperType:s?\"json\":\"javascript\",jsonldMode:c,jsonMode:s,expressionAllowed:et,skipExpression:function(e){var t=e.cc[e.cc.length-1];t!=J&&t!=K||e.cc.pop()}}}),tt.registerHelper(\"wordChars\",\"javascript\",/[\\w$]/),tt.defineMIME(\"text/javascript\",\"javascript\"),tt.defineMIME(\"text/ecmascript\",\"javascript\"),tt.defineMIME(\"application/javascript\",\"javascript\"),tt.defineMIME(\"application/x-javascript\",\"javascript\"),tt.defineMIME(\"application/ecmascript\",\"javascript\"),tt.defineMIME(\"application/json\",{name:\"javascript\",json:!0}),tt.defineMIME(\"application/x-json\",{name:\"javascript\",json:!0}),tt.defineMIME(\"application/ld+json\",{name:\"javascript\",jsonld:!0}),tt.defineMIME(\"text/typescript\",{name:\"javascript\",typescript:!0}),tt.defineMIME(\"application/typescript\",{name:\"javascript\",typescript:!0})});\n",
"type": "application/javascript",
"title": "$:/plugins/tiddlywiki/codemirror/mode/javascript/javascript.js",
"module-type": "codemirror"
},
"$:/plugins/tiddlywiki/codemirror-mode-javascript/readme": {
"title": "$:/plugins/tiddlywiki/codemirror-mode-javascript/readme",
"text": "This plugin adds Syntax Highlighting for Javascript tiddlers (application/javascript) to the [[CodeMirror|http://codemirror.net]] text editor. It needs the latest [[CodeMirror plugin|$:/plugins/tiddlywiki/codemirror]] to be installed\n\n"
}
}
}
{
"tiddlers": {
"$:/config/HighlightPlugin/TypeMappings/application/javascript": {
"title": "$:/config/HighlightPlugin/TypeMappings/application/javascript",
"text": "javascript"
},
"$:/config/HighlightPlugin/TypeMappings/application/json": {
"title": "$:/config/HighlightPlugin/TypeMappings/application/json",
"text": "json"
},
"$:/config/HighlightPlugin/TypeMappings/text/css": {
"title": "$:/config/HighlightPlugin/TypeMappings/text/css",
"text": "css"
},
"$:/config/HighlightPlugin/TypeMappings/text/html": {
"title": "$:/config/HighlightPlugin/TypeMappings/text/html",
"text": "html"
},
"$:/config/HighlightPlugin/TypeMappings/image/svg+xml": {
"title": "$:/config/HighlightPlugin/TypeMappings/image/svg+xml",
"text": "xml"
},
"$:/config/HighlightPlugin/TypeMappings/text/x-markdown": {
"title": "$:/config/HighlightPlugin/TypeMappings/text/x-markdown",
"text": "markdown"
},
"$:/plugins/tiddlywiki/highlight/highlight.js": {
"text": "var hljs = require(\"$:/plugins/tiddlywiki/highlight/highlight.js\");\n/*! highlight.js v9.18.1 | BSD3 License | git.io/hljslicense */\n!function(e){var n=\"object\"==typeof window&&window||\"object\"==typeof self&&self;\"undefined\"==typeof exports||exports.nodeType?n&&(n.hljs=e({}),\"function\"==typeof define&&define.amd&&define([],function(){return n.hljs})):e(exports)}(function(a){var f=[],i=Object.keys,_={},c={},C=!0,n=/^(no-?highlight|plain|text)$/i,l=/\\blang(?:uage)?-([\\w-]+)\\b/i,t=/((^(<[^>]+>|\\t|)+|(?:\\n)))/gm,r={case_insensitive:\"cI\",lexemes:\"l\",contains:\"c\",keywords:\"k\",subLanguage:\"sL\",className:\"cN\",begin:\"b\",beginKeywords:\"bK\",end:\"e\",endsWithParent:\"eW\",illegal:\"i\",excludeBegin:\"eB\",excludeEnd:\"eE\",returnBegin:\"rB\",returnEnd:\"rE\",variants:\"v\",IDENT_RE:\"IR\",UNDERSCORE_IDENT_RE:\"UIR\",NUMBER_RE:\"NR\",C_NUMBER_RE:\"CNR\",BINARY_NUMBER_RE:\"BNR\",RE_STARTERS_RE:\"RSR\",BACKSLASH_ESCAPE:\"BE\",APOS_STRING_MODE:\"ASM\",QUOTE_STRING_MODE:\"QSM\",PHRASAL_WORDS_MODE:\"PWM\",C_LINE_COMMENT_MODE:\"CLCM\",C_BLOCK_COMMENT_MODE:\"CBCM\",HASH_COMMENT_MODE:\"HCM\",NUMBER_MODE:\"NM\",C_NUMBER_MODE:\"CNM\",BINARY_NUMBER_MODE:\"BNM\",CSS_NUMBER_MODE:\"CSSNM\",REGEXP_MODE:\"RM\",TITLE_MODE:\"TM\",UNDERSCORE_TITLE_MODE:\"UTM\",COMMENT:\"C\",beginRe:\"bR\",endRe:\"eR\",illegalRe:\"iR\",lexemesRe:\"lR\",terminators:\"t\",terminator_end:\"tE\"},m=\"</span>\",O=\"Could not find the language '{}', did you forget to load/include a language module?\",B={classPrefix:\"hljs-\",tabReplace:null,useBR:!1,languages:void 0},o=\"of and for in not or if then\".split(\" \");function x(e){return e.replace(/&/g,\"&\").replace(/</g,\"<\").replace(/>/g,\">\")}function g(e){return e.nodeName.toLowerCase()}function u(e){return n.test(e)}function s(e){var n,t={},r=Array.prototype.slice.call(arguments,1);for(n in e)t[n]=e[n];return r.forEach(function(e){for(n in e)t[n]=e[n]}),t}function E(e){var a=[];return function e(n,t){for(var r=n.firstChild;r;r=r.nextSibling)3===r.nodeType?t+=r.nodeValue.length:1===r.nodeType&&(a.push({event:\"start\",offset:t,node:r}),t=e(r,t),g(r).match(/br|hr|img|input/)||a.push({event:\"stop\",offset:t,node:r}));return t}(e,0),a}function d(e,n,t){var r=0,a=\"\",i=[];function o(){return e.length&&n.length?e[0].offset!==n[0].offset?e[0].offset<n[0].offset?e:n:\"start\"===n[0].event?e:n:e.length?e:n}function c(e){a+=\"<\"+g(e)+f.map.call(e.attributes,function(e){return\" \"+e.nodeName+'=\"'+x(e.value).replace(/\"/g,\""\")+'\"'}).join(\"\")+\">\"}function l(e){a+=\"</\"+g(e)+\">\"}function u(e){(\"start\"===e.event?c:l)(e.node)}for(;e.length||n.length;){var s=o();if(a+=x(t.substring(r,s[0].offset)),r=s[0].offset,s===e){for(i.reverse().forEach(l);u(s.splice(0,1)[0]),(s=o())===e&&s.length&&s[0].offset===r;);i.reverse().forEach(c)}else\"start\"===s[0].event?i.push(s[0].node):i.pop(),u(s.splice(0,1)[0])}return a+x(t.substr(r))}function R(n){return n.v&&!n.cached_variants&&(n.cached_variants=n.v.map(function(e){return s(n,{v:null},e)})),n.cached_variants?n.cached_variants:function e(n){return!!n&&(n.eW||e(n.starts))}(n)?[s(n,{starts:n.starts?s(n.starts):null})]:Object.isFrozen(n)?[s(n)]:[n]}function p(e){if(r&&!e.langApiRestored){for(var n in e.langApiRestored=!0,r)e[n]&&(e[r[n]]=e[n]);(e.c||[]).concat(e.v||[]).forEach(p)}}function v(n,r){var a={};return\"string\"==typeof n?t(\"keyword\",n):i(n).forEach(function(e){t(e,n[e])}),a;function t(t,e){r&&(e=e.toLowerCase()),e.split(\" \").forEach(function(e){var n=e.split(\"|\");a[n[0]]=[t,function(e,n){return n?Number(n):function(e){return-1!=o.indexOf(e.toLowerCase())}(e)?0:1}(n[0],n[1])]})}}function S(r){function s(e){return e&&e.source||e}function f(e,n){return new RegExp(s(e),\"m\"+(r.cI?\"i\":\"\")+(n?\"g\":\"\"))}function a(a){var i,e,o={},c=[],l={},t=1;function n(e,n){o[t]=e,c.push([e,n]),t+=function(e){return new RegExp(e.toString()+\"|\").exec(\"\").length-1}(n)+1}for(var r=0;r<a.c.length;r++){n(e=a.c[r],e.bK?\"\\\\.?(?:\"+e.b+\")\\\\.?\":e.b)}a.tE&&n(\"end\",a.tE),a.i&&n(\"illegal\",a.i);var u=c.map(function(e){return e[1]});return i=f(function(e,n){for(var t=/\\[(?:[^\\\\\\]]|\\\\.)*\\]|\\(\\??|\\\\([1-9][0-9]*)|\\\\./,r=0,a=\"\",i=0;i<e.length;i++){var o=r+=1,c=s(e[i]);for(0<i&&(a+=n),a+=\"(\";0<c.length;){var l=t.exec(c);if(null==l){a+=c;break}a+=c.substring(0,l.index),c=c.substring(l.index+l[0].length),\"\\\\\"==l[0][0]&&l[1]?a+=\"\\\\\"+String(Number(l[1])+o):(a+=l[0],\"(\"==l[0]&&r++)}a+=\")\"}return a}(u,\"|\"),!0),l.lastIndex=0,l.exec=function(e){var n;if(0===c.length)return null;i.lastIndex=l.lastIndex;var t=i.exec(e);if(!t)return null;for(var r=0;r<t.length;r++)if(null!=t[r]&&null!=o[\"\"+r]){n=o[\"\"+r];break}return\"string\"==typeof n?(t.type=n,t.extra=[a.i,a.tE]):(t.type=\"begin\",t.rule=n),t},l}if(r.c&&-1!=r.c.indexOf(\"self\")){if(!C)throw new Error(\"ERR: contains `self` is not supported at the top-level of a language. See documentation.\");r.c=r.c.filter(function(e){return\"self\"!=e})}!function n(t,e){t.compiled||(t.compiled=!0,t.k=t.k||t.bK,t.k&&(t.k=v(t.k,r.cI)),t.lR=f(t.l||/\\w+/,!0),e&&(t.bK&&(t.b=\"\\\\b(\"+t.bK.split(\" \").join(\"|\")+\")\\\\b\"),t.b||(t.b=/\\B|\\b/),t.bR=f(t.b),t.endSameAsBegin&&(t.e=t.b),t.e||t.eW||(t.e=/\\B|\\b/),t.e&&(t.eR=f(t.e)),t.tE=s(t.e)||\"\",t.eW&&e.tE&&(t.tE+=(t.e?\"|\":\"\")+e.tE)),t.i&&(t.iR=f(t.i)),null==t.relevance&&(t.relevance=1),t.c||(t.c=[]),t.c=Array.prototype.concat.apply([],t.c.map(function(e){return R(\"self\"===e?t:e)})),t.c.forEach(function(e){n(e,t)}),t.starts&&n(t.starts,e),t.t=a(t))}(r)}function T(n,e,a,t){var i=e;function o(e,n){if(function(e,n){var t=e&&e.exec(n);return t&&0===t.index}(e.eR,n)){for(;e.endsParent&&e.parent;)e=e.parent;return e}if(e.eW)return o(e.parent,n)}function c(e,n,t,r){if(!t&&\"\"===n)return\"\";if(!e)return n;var a='<span class=\"'+(r?\"\":B.classPrefix);return(a+=e+'\">')+n+(t?\"\":m)}function l(){p+=null!=d.sL?function(){var e=\"string\"==typeof d.sL;if(e&&!_[d.sL])return x(v);var n=e?T(d.sL,v,!0,R[d.sL]):w(v,d.sL.length?d.sL:void 0);return 0<d.relevance&&(M+=n.relevance),e&&(R[d.sL]=n.top),c(n.language,n.value,!1,!0)}():function(){var e,n,t,r,a,i,o;if(!d.k)return x(v);for(r=\"\",n=0,d.lR.lastIndex=0,t=d.lR.exec(v);t;)r+=x(v.substring(n,t.index)),a=d,i=t,void 0,o=g.cI?i[0].toLowerCase():i[0],(e=a.k.hasOwnProperty(o)&&a.k[o])?(M+=e[1],r+=c(e[0],x(t[0]))):r+=x(t[0]),n=d.lR.lastIndex,t=d.lR.exec(v);return r+x(v.substr(n))}(),v=\"\"}function u(e){p+=e.cN?c(e.cN,\"\",!0):\"\",d=Object.create(e,{parent:{value:d}})}function s(e){var n=e[0],t=e.rule;return t&&t.endSameAsBegin&&(t.eR=function(e){return new RegExp(e.replace(/[-\\/\\\\^$*+?.()|[\\]{}]/g,\"\\\\$&\"),\"m\")}(n)),t.skip?v+=n:(t.eB&&(v+=n),l(),t.rB||t.eB||(v=n)),u(t),t.rB?0:n.length}var f={};function r(e,n){var t=n&&n[0];if(v+=e,null==t)return l(),0;if(\"begin\"==f.type&&\"end\"==n.type&&f.index==n.index&&\"\"===t)return v+=i.slice(n.index,n.index+1),1;if(\"begin\"===(f=n).type)return s(n);if(\"illegal\"===n.type&&!a)throw new Error('Illegal lexeme \"'+t+'\" for mode \"'+(d.cN||\"<unnamed>\")+'\"');if(\"end\"===n.type){var r=function(e){var n=e[0],t=i.substr(e.index),r=o(d,t);if(r){var a=d;for(a.skip?v+=n:(a.rE||a.eE||(v+=n),l(),a.eE&&(v=n));d.cN&&(p+=m),d.skip||d.sL||(M+=d.relevance),(d=d.parent)!==r.parent;);return r.starts&&(r.endSameAsBegin&&(r.starts.eR=r.eR),u(r.starts)),a.rE?0:n.length}}(n);if(null!=r)return r}return v+=t,t.length}var g=D(n);if(!g)throw console.error(O.replace(\"{}\",n)),new Error('Unknown language: \"'+n+'\"');S(g);var E,d=t||g,R={},p=\"\";for(E=d;E!==g;E=E.parent)E.cN&&(p=c(E.cN,\"\",!0)+p);var v=\"\",M=0;try{for(var b,h,N=0;d.t.lastIndex=N,b=d.t.exec(i);)h=r(i.substring(N,b.index),b),N=b.index+h;for(r(i.substr(N)),E=d;E.parent;E=E.parent)E.cN&&(p+=m);return{relevance:M,value:p,i:!1,language:n,top:d}}catch(e){if(e.message&&-1!==e.message.indexOf(\"Illegal\"))return{i:!0,relevance:0,value:x(i)};if(C)return{relevance:0,value:x(i),language:n,top:d,errorRaised:e};throw e}}function w(t,e){e=e||B.languages||i(_);var r={relevance:0,value:x(t)},a=r;return e.filter(D).filter(L).forEach(function(e){var n=T(e,t,!1);n.language=e,n.relevance>a.relevance&&(a=n),n.relevance>r.relevance&&(a=r,r=n)}),a.language&&(r.second_best=a),r}function M(e){return B.tabReplace||B.useBR?e.replace(t,function(e,n){return B.useBR&&\"\\n\"===e?\"<br>\":B.tabReplace?n.replace(/\\t/g,B.tabReplace):\"\"}):e}function b(e){var n,t,r,a,i,o=function(e){var n,t,r,a,i=e.className+\" \";if(i+=e.parentNode?e.parentNode.className:\"\",t=l.exec(i)){var o=D(t[1]);return o||(console.warn(O.replace(\"{}\",t[1])),console.warn(\"Falling back to no-highlight mode for this block.\",e)),o?t[1]:\"no-highlight\"}for(n=0,r=(i=i.split(/\\s+/)).length;n<r;n++)if(u(a=i[n])||D(a))return a}(e);u(o)||(B.useBR?(n=document.createElement(\"div\")).innerHTML=e.innerHTML.replace(/\\n/g,\"\").replace(/<br[ \\/]*>/g,\"\\n\"):n=e,i=n.textContent,r=o?T(o,i,!0):w(i),(t=E(n)).length&&((a=document.createElement(\"div\")).innerHTML=r.value,r.value=d(t,E(a),i)),r.value=M(r.value),e.innerHTML=r.value,e.className=function(e,n,t){var r=n?c[n]:t,a=[e.trim()];return e.match(/\\bhljs\\b/)||a.push(\"hljs\"),-1===e.indexOf(r)&&a.push(r),a.join(\" \").trim()}(e.className,o,r.language),e.result={language:r.language,re:r.relevance},r.second_best&&(e.second_best={language:r.second_best.language,re:r.second_best.relevance}))}function h(){if(!h.called){h.called=!0;var e=document.querySelectorAll(\"pre code\");f.forEach.call(e,b)}}var N={disableAutodetect:!0};function D(e){return e=(e||\"\").toLowerCase(),_[e]||_[c[e]]}function L(e){var n=D(e);return n&&!n.disableAutodetect}return a.highlight=T,a.highlightAuto=w,a.fixMarkup=M,a.highlightBlock=b,a.configure=function(e){B=s(B,e)},a.initHighlighting=h,a.initHighlightingOnLoad=function(){window.addEventListener(\"DOMContentLoaded\",h,!1),window.addEventListener(\"load\",h,!1)},a.registerLanguage=function(n,e){var t;try{t=e(a)}catch(e){if(console.error(\"Language definition for '{}' could not be registered.\".replace(\"{}\",n)),!C)throw e;console.error(e),t=N}p(_[n]=t),t.rawDefinition=e.bind(null,a),t.aliases&&t.aliases.forEach(function(e){c[e]=n})},a.listLanguages=function(){return i(_)},a.getLanguage=D,a.requireLanguage=function(e){var n=D(e);if(n)return n;throw new Error(\"The '{}' language is required, but not loaded.\".replace(\"{}\",e))},a.autoDetection=L,a.inherit=s,a.debugMode=function(){C=!1},a.IR=a.IDENT_RE=\"[a-zA-Z]\\\\w*\",a.UIR=a.UNDERSCORE_IDENT_RE=\"[a-zA-Z_]\\\\w*\",a.NR=a.NUMBER_RE=\"\\\\b\\\\d+(\\\\.\\\\d+)?\",a.CNR=a.C_NUMBER_RE=\"(-?)(\\\\b0[xX][a-fA-F0-9]+|(\\\\b\\\\d+(\\\\.\\\\d*)?|\\\\.\\\\d+)([eE][-+]?\\\\d+)?)\",a.BNR=a.BINARY_NUMBER_RE=\"\\\\b(0b[01]+)\",a.RSR=a.RE_STARTERS_RE=\"!|!=|!==|%|%=|&|&&|&=|\\\\*|\\\\*=|\\\\+|\\\\+=|,|-|-=|/=|/|:|;|<<|<<=|<=|<|===|==|=|>>>=|>>=|>=|>>>|>>|>|\\\\?|\\\\[|\\\\{|\\\\(|\\\\^|\\\\^=|\\\\||\\\\|=|\\\\|\\\\||~\",a.BE=a.BACKSLASH_ESCAPE={b:\"\\\\\\\\[\\\\s\\\\S]\",relevance:0},a.ASM=a.APOS_STRING_MODE={cN:\"string\",b:\"'\",e:\"'\",i:\"\\\\n\",c:[a.BE]},a.QSM=a.QUOTE_STRING_MODE={cN:\"string\",b:'\"',e:'\"',i:\"\\\\n\",c:[a.BE]},a.PWM=a.PHRASAL_WORDS_MODE={b:/\\b(a|an|the|are|I'm|isn't|don't|doesn't|won't|but|just|should|pretty|simply|enough|gonna|going|wtf|so|such|will|you|your|they|like|more)\\b/},a.C=a.COMMENT=function(e,n,t){var r=a.inherit({cN:\"comment\",b:e,e:n,c:[]},t||{});return r.c.push(a.PWM),r.c.push({cN:\"doctag\",b:\"(?:TODO|FIXME|NOTE|BUG|XXX):\",relevance:0}),r},a.CLCM=a.C_LINE_COMMENT_MODE=a.C(\"//\",\"$\"),a.CBCM=a.C_BLOCK_COMMENT_MODE=a.C(\"/\\\\*\",\"\\\\*/\"),a.HCM=a.HASH_COMMENT_MODE=a.C(\"#\",\"$\"),a.NM=a.NUMBER_MODE={cN:\"number\",b:a.NR,relevance:0},a.CNM=a.C_NUMBER_MODE={cN:\"number\",b:a.CNR,relevance:0},a.BNM=a.BINARY_NUMBER_MODE={cN:\"number\",b:a.BNR,relevance:0},a.CSSNM=a.CSS_NUMBER_MODE={cN:\"number\",b:a.NR+\"(%|em|ex|ch|rem|vw|vh|vmin|vmax|cm|mm|in|pt|pc|px|deg|grad|rad|turn|s|ms|Hz|kHz|dpi|dpcm|dppx)?\",relevance:0},a.RM=a.REGEXP_MODE={cN:\"regexp\",b:/\\//,e:/\\/[gimuy]*/,i:/\\n/,c:[a.BE,{b:/\\[/,e:/\\]/,relevance:0,c:[a.BE]}]},a.TM=a.TITLE_MODE={cN:\"title\",b:a.IR,relevance:0},a.UTM=a.UNDERSCORE_TITLE_MODE={cN:\"title\",b:a.UIR,relevance:0},a.METHOD_GUARD={b:\"\\\\.\\\\s*\"+a.UIR,relevance:0},[a.BE,a.ASM,a.QSM,a.PWM,a.C,a.CLCM,a.CBCM,a.HCM,a.NM,a.CNM,a.BNM,a.CSSNM,a.RM,a.TM,a.UTM,a.METHOD_GUARD].forEach(function(e){!function n(t){Object.freeze(t);var r=\"function\"==typeof t;Object.getOwnPropertyNames(t).forEach(function(e){!t.hasOwnProperty(e)||null===t[e]||\"object\"!=typeof t[e]&&\"function\"!=typeof t[e]||r&&(\"caller\"===e||\"callee\"===e||\"arguments\"===e)||Object.isFrozen(t[e])||n(t[e])});return t}(e)}),a});hljs.registerLanguage(\"swift\",function(e){var i={keyword:\"#available #colorLiteral #column #else #elseif #endif #file #fileLiteral #function #if #imageLiteral #line #selector #sourceLocation _ __COLUMN__ __FILE__ __FUNCTION__ __LINE__ Any as as! as? associatedtype associativity break case catch class continue convenience default defer deinit didSet do dynamic dynamicType else enum extension fallthrough false fileprivate final for func get guard if import in indirect infix init inout internal is lazy left let mutating nil none nonmutating open operator optional override postfix precedence prefix private protocol Protocol public repeat required rethrows return right self Self set static struct subscript super switch throw throws true try try! try? Type typealias unowned var weak where while willSet\",literal:\"true false nil\",built_in:\"abs advance alignof alignofValue anyGenerator assert assertionFailure bridgeFromObjectiveC bridgeFromObjectiveCUnconditional bridgeToObjectiveC bridgeToObjectiveCUnconditional c contains count countElements countLeadingZeros debugPrint debugPrintln distance dropFirst dropLast dump encodeBitsAsWords enumerate equal fatalError filter find getBridgedObjectiveCType getVaList indices insertionSort isBridgedToObjectiveC isBridgedVerbatimToObjectiveC isUniquelyReferenced isUniquelyReferencedNonObjC join lazy lexicographicalCompare map max maxElement min minElement numericCast overlaps partition posix precondition preconditionFailure print println quickSort readLine reduce reflect reinterpretCast reverse roundUpToAlignment sizeof sizeofValue sort split startsWith stride strideof strideofValue swap toString transcode underestimateCount unsafeAddressOf unsafeBitCast unsafeDowncast unsafeUnwrap unsafeReflect withExtendedLifetime withObjectAtPlusZero withUnsafePointer withUnsafePointerToObject withUnsafeMutablePointer withUnsafeMutablePointers withUnsafePointer withUnsafePointers withVaList zip\"},t=e.C(\"/\\\\*\",\"\\\\*/\",{c:[\"self\"]}),n={cN:\"subst\",b:/\\\\\\(/,e:\"\\\\)\",k:i,c:[]},r={cN:\"string\",c:[e.BE,n],v:[{b:/\"\"\"/,e:/\"\"\"/},{b:/\"/,e:/\"/}]},a={cN:\"number\",b:\"\\\\b([\\\\d_]+(\\\\.[\\\\deE_]+)?|0x[a-fA-F0-9_]+(\\\\.[a-fA-F0-9p_]+)?|0b[01_]+|0o[0-7_]+)\\\\b\",relevance:0};return n.c=[a],{k:i,c:[r,e.CLCM,t,{cN:\"type\",b:\"\\\\b[A-Z][\\\\wÀ-ʸ']*[!?]\"},{cN:\"type\",b:\"\\\\b[A-Z][\\\\wÀ-ʸ']*\",relevance:0},a,{cN:\"function\",bK:\"func\",e:\"{\",eE:!0,c:[e.inherit(e.TM,{b:/[A-Za-z$_][0-9A-Za-z$_]*/}),{b:/</,e:/>/},{cN:\"params\",b:/\\(/,e:/\\)/,endsParent:!0,k:i,c:[\"self\",a,r,e.CBCM,{b:\":\"}],i:/[\"']/}],i:/\\[|%/},{cN:\"class\",bK:\"struct protocol class extension enum\",k:i,e:\"\\\\{\",eE:!0,c:[e.inherit(e.TM,{b:/[A-Za-z$_][\\u00C0-\\u02B80-9A-Za-z$_]*/})]},{cN:\"meta\",b:\"(@discardableResult|@warn_unused_result|@exported|@lazy|@noescape|@NSCopying|@NSManaged|@objc|@objcMembers|@convention|@required|@noreturn|@IBAction|@IBDesignable|@IBInspectable|@IBOutlet|@infix|@prefix|@postfix|@autoclosure|@testable|@available|@nonobjc|@NSApplicationMain|@UIApplicationMain|@dynamicMemberLookup|@propertyWrapper)\"},{bK:\"import\",e:/$/,c:[e.CLCM,t]}]}});hljs.registerLanguage(\"less\",function(e){function r(e){return{cN:\"string\",b:\"~?\"+e+\".*?\"+e}}function t(e,r,t){return{cN:e,b:r,relevance:t}}var a=\"[\\\\w-]+\",c=\"(\"+a+\"|@{\"+a+\"})\",s=[],n=[],b={b:\"\\\\(\",e:\"\\\\)\",c:n,relevance:0};n.push(e.CLCM,e.CBCM,r(\"'\"),r('\"'),e.CSSNM,{b:\"(url|data-uri)\\\\(\",starts:{cN:\"string\",e:\"[\\\\)\\\\n]\",eE:!0}},t(\"number\",\"#[0-9A-Fa-f]+\\\\b\"),b,t(\"variable\",\"@@?\"+a,10),t(\"variable\",\"@{\"+a+\"}\"),t(\"built_in\",\"~?`[^`]*?`\"),{cN:\"attribute\",b:a+\"\\\\s*:\",e:\":\",rB:!0,eE:!0},{cN:\"meta\",b:\"!important\"});var i=n.concat({b:\"{\",e:\"}\",c:s}),l={bK:\"when\",eW:!0,c:[{bK:\"and not\"}].concat(n)},o={b:c+\"\\\\s*:\",rB:!0,e:\"[;}]\",relevance:0,c:[{cN:\"attribute\",b:c,e:\":\",eE:!0,starts:{eW:!0,i:\"[<=$]\",relevance:0,c:n}}]},u={cN:\"keyword\",b:\"@(import|media|charset|font-face|(-[a-z]+-)?keyframes|supports|document|namespace|page|viewport|host)\\\\b\",starts:{e:\"[;{}]\",rE:!0,c:n,relevance:0}},v={cN:\"variable\",v:[{b:\"@\"+a+\"\\\\s*:\",relevance:15},{b:\"@\"+a}],starts:{e:\"[;}]\",rE:!0,c:i}},C={v:[{b:\"[\\\\.#:&\\\\[>]\",e:\"[;{}]\"},{b:c,e:\"{\"}],rB:!0,rE:!0,i:\"[<='$\\\"]\",relevance:0,c:[e.CLCM,e.CBCM,l,t(\"keyword\",\"all\\\\b\"),t(\"variable\",\"@{\"+a+\"}\"),t(\"selector-tag\",c+\"%?\",0),t(\"selector-id\",\"#\"+c),t(\"selector-class\",\"\\\\.\"+c,0),t(\"selector-tag\",\"&\",0),{cN:\"selector-attr\",b:\"\\\\[\",e:\"\\\\]\"},{cN:\"selector-pseudo\",b:/:(:)?[a-zA-Z0-9\\_\\-\\+\\(\\)\"'.]+/},{b:\"\\\\(\",e:\"\\\\)\",c:i},{b:\"!important\"}]};return s.push(e.CLCM,e.CBCM,u,v,o,C),{cI:!0,i:\"[=>'/<($\\\"]\",c:s}});hljs.registerLanguage(\"armasm\",function(s){return{cI:!0,aliases:[\"arm\"],l:\"\\\\.?\"+s.IR,k:{meta:\".2byte .4byte .align .ascii .asciz .balign .byte .code .data .else .end .endif .endm .endr .equ .err .exitm .extern .global .hword .if .ifdef .ifndef .include .irp .long .macro .rept .req .section .set .skip .space .text .word .arm .thumb .code16 .code32 .force_thumb .thumb_func .ltorg ALIAS ALIGN ARM AREA ASSERT ATTR CN CODE CODE16 CODE32 COMMON CP DATA DCB DCD DCDU DCDO DCFD DCFDU DCI DCQ DCQU DCW DCWU DN ELIF ELSE END ENDFUNC ENDIF ENDP ENTRY EQU EXPORT EXPORTAS EXTERN FIELD FILL FUNCTION GBLA GBLL GBLS GET GLOBAL IF IMPORT INCBIN INCLUDE INFO KEEP LCLA LCLL LCLS LTORG MACRO MAP MEND MEXIT NOFP OPT PRESERVE8 PROC QN READONLY RELOC REQUIRE REQUIRE8 RLIST FN ROUT SETA SETL SETS SN SPACE SUBT THUMB THUMBX TTL WHILE WEND \",built_in:\"r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 pc lr sp ip sl sb fp a1 a2 a3 a4 v1 v2 v3 v4 v5 v6 v7 v8 f0 f1 f2 f3 f4 f5 f6 f7 p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 cpsr_c cpsr_x cpsr_s cpsr_f cpsr_cx cpsr_cxs cpsr_xs cpsr_xsf cpsr_sf cpsr_cxsf spsr_c spsr_x spsr_s spsr_f spsr_cx spsr_cxs spsr_xs spsr_xsf spsr_sf spsr_cxsf s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 s21 s22 s23 s24 s25 s26 s27 s28 s29 s30 s31 d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16 d17 d18 d19 d20 d21 d22 d23 d24 d25 d26 d27 d28 d29 d30 d31 {PC} {VAR} {TRUE} {FALSE} {OPT} {CONFIG} {ENDIAN} {CODESIZE} {CPU} {FPU} {ARCHITECTURE} {PCSTOREOFFSET} {ARMASM_VERSION} {INTER} {ROPI} {RWPI} {SWST} {NOSWST} . @\"},c:[{cN:\"keyword\",b:\"\\\\b(adc|(qd?|sh?|u[qh]?)?add(8|16)?|usada?8|(q|sh?|u[qh]?)?(as|sa)x|and|adrl?|sbc|rs[bc]|asr|b[lx]?|blx|bxj|cbn?z|tb[bh]|bic|bfc|bfi|[su]bfx|bkpt|cdp2?|clz|clrex|cmp|cmn|cpsi[ed]|cps|setend|dbg|dmb|dsb|eor|isb|it[te]{0,3}|lsl|lsr|ror|rrx|ldm(([id][ab])|f[ds])?|ldr((s|ex)?[bhd])?|movt?|mvn|mra|mar|mul|[us]mull|smul[bwt][bt]|smu[as]d|smmul|smmla|mla|umlaal|smlal?([wbt][bt]|d)|mls|smlsl?[ds]|smc|svc|sev|mia([bt]{2}|ph)?|mrr?c2?|mcrr2?|mrs|msr|orr|orn|pkh(tb|bt)|rbit|rev(16|sh)?|sel|[su]sat(16)?|nop|pop|push|rfe([id][ab])?|stm([id][ab])?|str(ex)?[bhd]?|(qd?)?sub|(sh?|q|u[qh]?)?sub(8|16)|[su]xt(a?h|a?b(16)?)|srs([id][ab])?|swpb?|swi|smi|tst|teq|wfe|wfi|yield)(eq|ne|cs|cc|mi|pl|vs|vc|hi|ls|ge|lt|gt|le|al|hs|lo)?[sptrx]?\",e:\"\\\\s\"},s.C(\"[;@]\",\"$\",{relevance:0}),s.CBCM,s.QSM,{cN:\"string\",b:\"'\",e:\"[^\\\\\\\\]'\",relevance:0},{cN:\"title\",b:\"\\\\|\",e:\"\\\\|\",i:\"\\\\n\",relevance:0},{cN:\"number\",v:[{b:\"[#$=]?0x[0-9a-f]+\"},{b:\"[#$=]?0b[01]+\"},{b:\"[#$=]\\\\d+\"},{b:\"\\\\b\\\\d+\"}],relevance:0},{cN:\"symbol\",v:[{b:\"^[a-z_\\\\.\\\\$][a-z0-9_\\\\.\\\\$]+\"},{b:\"^\\\\s*[a-z_\\\\.\\\\$][a-z0-9_\\\\.\\\\$]+:\"},{b:\"[=#]\\\\w+\"}],relevance:0}]}});hljs.registerLanguage(\"ruby\",function(e){var c=\"[a-zA-Z_]\\\\w*[!?=]?|[-+~]\\\\@|<<|>>|=~|===?|<=>|[<>]=?|\\\\*\\\\*|[-/+%^&*~`|]|\\\\[\\\\]=?\",b={keyword:\"and then defined module in return redo if BEGIN retry end for self when next until do begin unless END rescue else break undef not super class case require yield alias while ensure elsif or include attr_reader attr_writer attr_accessor\",literal:\"true false nil\"},r={cN:\"doctag\",b:\"@[A-Za-z]+\"},a={b:\"#<\",e:\">\"},n=[e.C(\"#\",\"$\",{c:[r]}),e.C(\"^\\\\=begin\",\"^\\\\=end\",{c:[r],relevance:10}),e.C(\"^__END__\",\"\\\\n$\")],s={cN:\"subst\",b:\"#\\\\{\",e:\"}\",k:b},t={cN:\"string\",c:[e.BE,s],v:[{b:/'/,e:/'/},{b:/\"/,e:/\"/},{b:/`/,e:/`/},{b:\"%[qQwWx]?\\\\(\",e:\"\\\\)\"},{b:\"%[qQwWx]?\\\\[\",e:\"\\\\]\"},{b:\"%[qQwWx]?{\",e:\"}\"},{b:\"%[qQwWx]?<\",e:\">\"},{b:\"%[qQwWx]?/\",e:\"/\"},{b:\"%[qQwWx]?%\",e:\"%\"},{b:\"%[qQwWx]?-\",e:\"-\"},{b:\"%[qQwWx]?\\\\|\",e:\"\\\\|\"},{b:/\\B\\?(\\\\\\d{1,3}|\\\\x[A-Fa-f0-9]{1,2}|\\\\u[A-Fa-f0-9]{4}|\\\\?\\S)\\b/},{b:/<<[-~]?'?(\\w+)(?:.|\\n)*?\\n\\s*\\1\\b/,rB:!0,c:[{b:/<<[-~]?'?/},{b:/\\w+/,endSameAsBegin:!0,c:[e.BE,s]}]}]},i={cN:\"params\",b:\"\\\\(\",e:\"\\\\)\",endsParent:!0,k:b},l=[t,a,{cN:\"class\",bK:\"class module\",e:\"$|;\",i:/=/,c:[e.inherit(e.TM,{b:\"[A-Za-z_]\\\\w*(::\\\\w+)*(\\\\?|\\\\!)?\"}),{b:\"<\\\\s*\",c:[{b:\"(\"+e.IR+\"::)?\"+e.IR}]}].concat(n)},{cN:\"function\",bK:\"def\",e:\"$|;\",c:[e.inherit(e.TM,{b:c}),i].concat(n)},{b:e.IR+\"::\"},{cN:\"symbol\",b:e.UIR+\"(\\\\!|\\\\?)?:\",relevance:0},{cN:\"symbol\",b:\":(?!\\\\s)\",c:[t,{b:c}],relevance:0},{cN:\"number\",b:\"(\\\\b0[0-7_]+)|(\\\\b0x[0-9a-fA-F_]+)|(\\\\b[1-9][0-9_]*(\\\\.[0-9_]+)?)|[0_]\\\\b\",relevance:0},{b:\"(\\\\$\\\\W)|((\\\\$|\\\\@\\\\@?)(\\\\w+))\"},{cN:\"params\",b:/\\|/,e:/\\|/,k:b},{b:\"(\"+e.RSR+\"|unless)\\\\s*\",k:\"unless\",c:[a,{cN:\"regexp\",c:[e.BE,s],i:/\\n/,v:[{b:\"/\",e:\"/[a-z]*\"},{b:\"%r{\",e:\"}[a-z]*\"},{b:\"%r\\\\(\",e:\"\\\\)[a-z]*\"},{b:\"%r!\",e:\"![a-z]*\"},{b:\"%r\\\\[\",e:\"\\\\][a-z]*\"}]}].concat(n),relevance:0}].concat(n);s.c=l;var d=[{b:/^\\s*=>/,starts:{e:\"$\",c:i.c=l}},{cN:\"meta\",b:\"^([>?]>|[\\\\w#]+\\\\(\\\\w+\\\\):\\\\d+:\\\\d+>|(\\\\w+-)?\\\\d+\\\\.\\\\d+\\\\.\\\\d(p\\\\d+)?[^>]+>)\",starts:{e:\"$\",c:l}}];return{aliases:[\"rb\",\"gemspec\",\"podspec\",\"thor\",\"irb\"],k:b,i:/\\/\\*/,c:n.concat(d).concat(l)}});hljs.registerLanguage(\"lua\",function(e){var t=\"\\\\[=*\\\\[\",a=\"\\\\]=*\\\\]\",n={b:t,e:a,c:[\"self\"]},l=[e.C(\"--(?!\"+t+\")\",\"$\"),e.C(\"--\"+t,a,{c:[n],relevance:10})];return{l:e.UIR,k:{literal:\"true false nil\",keyword:\"and break do else elseif end for goto if in local not or repeat return then until while\",built_in:\"_G _ENV _VERSION __index __newindex __mode __call __metatable __tostring __len __gc __add __sub __mul __div __mod __pow __concat __unm __eq __lt __le assert collectgarbage dofile error getfenv getmetatable ipairs load loadfile loadstringmodule next pairs pcall print rawequal rawget rawset require select setfenvsetmetatable tonumber tostring type unpack xpcall arg selfcoroutine resume yield status wrap create running debug getupvalue debug sethook getmetatable gethook setmetatable setlocal traceback setfenv getinfo setupvalue getlocal getregistry getfenv io lines write close flush open output type read stderr stdin input stdout popen tmpfile math log max acos huge ldexp pi cos tanh pow deg tan cosh sinh random randomseed frexp ceil floor rad abs sqrt modf asin min mod fmod log10 atan2 exp sin atan os exit setlocale date getenv difftime remove time clock tmpname rename execute package preload loadlib loaded loaders cpath config path seeall string sub upper len gfind rep find match char dump gmatch reverse byte format gsub lower table setn insert getn foreachi maxn foreach concat sort remove\"},c:l.concat([{cN:\"function\",bK:\"function\",e:\"\\\\)\",c:[e.inherit(e.TM,{b:\"([_a-zA-Z]\\\\w*\\\\.)*([_a-zA-Z]\\\\w*:)?[_a-zA-Z]\\\\w*\"}),{cN:\"params\",b:\"\\\\(\",eW:!0,c:l}].concat(l)},e.CNM,e.ASM,e.QSM,{cN:\"string\",b:t,e:a,c:[n],relevance:5}])}});hljs.registerLanguage(\"matlab\",function(e){var a=\"('|\\\\.')+\",s={relevance:0,c:[{b:a}]};return{k:{keyword:\"break case catch classdef continue else elseif end enumerated events for function global if methods otherwise parfor persistent properties return spmd switch try while\",built_in:\"sin sind sinh asin asind asinh cos cosd cosh acos acosd acosh tan tand tanh atan atand atan2 atanh sec secd sech asec asecd asech csc cscd csch acsc acscd acsch cot cotd coth acot acotd acoth hypot exp expm1 log log1p log10 log2 pow2 realpow reallog realsqrt sqrt nthroot nextpow2 abs angle complex conj imag real unwrap isreal cplxpair fix floor ceil round mod rem sign airy besselj bessely besselh besseli besselk beta betainc betaln ellipj ellipke erf erfc erfcx erfinv expint gamma gammainc gammaln psi legendre cross dot factor isprime primes gcd lcm rat rats perms nchoosek factorial cart2sph cart2pol pol2cart sph2cart hsv2rgb rgb2hsv zeros ones eye repmat rand randn linspace logspace freqspace meshgrid accumarray size length ndims numel disp isempty isequal isequalwithequalnans cat reshape diag blkdiag tril triu fliplr flipud flipdim rot90 find sub2ind ind2sub bsxfun ndgrid permute ipermute shiftdim circshift squeeze isscalar isvector ans eps realmax realmin pi i inf nan isnan isinf isfinite j why compan gallery hadamard hankel hilb invhilb magic pascal rosser toeplitz vander wilkinson max min nanmax nanmin mean nanmean type table readtable writetable sortrows sort figure plot plot3 scatter scatter3 cellfun legend intersect ismember procrustes hold num2cell \"},i:'(//|\"|#|/\\\\*|\\\\s+/\\\\w+)',c:[{cN:\"function\",bK:\"function\",e:\"$\",c:[e.UTM,{cN:\"params\",v:[{b:\"\\\\(\",e:\"\\\\)\"},{b:\"\\\\[\",e:\"\\\\]\"}]}]},{cN:\"built_in\",b:/true|false/,relevance:0,starts:s},{b:\"[a-zA-Z][a-zA-Z_0-9]*\"+a,relevance:0},{cN:\"number\",b:e.CNR,relevance:0,starts:s},{cN:\"string\",b:\"'\",e:\"'\",c:[e.BE,{b:\"''\"}]},{b:/\\]|}|\\)/,relevance:0,starts:s},{cN:\"string\",b:'\"',e:'\"',c:[e.BE,{b:'\"\"'}],starts:s},e.C(\"^\\\\s*\\\\%\\\\{\\\\s*$\",\"^\\\\s*\\\\%\\\\}\\\\s*$\"),e.C(\"\\\\%\",\"$\")]}});hljs.registerLanguage(\"apache\",function(e){var r={cN:\"number\",b:\"[\\\\$%]\\\\d+\"};return{aliases:[\"apacheconf\"],cI:!0,c:[e.HCM,{cN:\"section\",b:\"</?\",e:\">\"},{cN:\"attribute\",b:/\\w+/,relevance:0,k:{nomarkup:\"order deny allow setenv rewriterule rewriteengine rewritecond documentroot sethandler errordocument loadmodule options header listen serverroot servername\"},starts:{e:/$/,relevance:0,k:{literal:\"on off all\"},c:[{cN:\"meta\",b:\"\\\\s\\\\[\",e:\"\\\\]$\"},{cN:\"variable\",b:\"[\\\\$%]\\\\{\",e:\"\\\\}\",c:[\"self\",r]},r,e.QSM]}}],i:/\\S/}});hljs.registerLanguage(\"yaml\",function(e){var b=\"true false yes no null\",a={cN:\"string\",relevance:0,v:[{b:/'/,e:/'/},{b:/\"/,e:/\"/},{b:/\\S+/}],c:[e.BE,{cN:\"template-variable\",v:[{b:\"{{\",e:\"}}\"},{b:\"%{\",e:\"}\"}]}]};return{cI:!0,aliases:[\"yml\",\"YAML\",\"yaml\"],c:[{cN:\"attr\",v:[{b:\"\\\\w[\\\\w :\\\\/.-]*:(?=[ \\t]|$)\"},{b:'\"\\\\w[\\\\w :\\\\/.-]*\":(?=[ \\t]|$)'},{b:\"'\\\\w[\\\\w :\\\\/.-]*':(?=[ \\t]|$)\"}]},{cN:\"meta\",b:\"^---s*$\",relevance:10},{cN:\"string\",b:\"[\\\\|>]([0-9]?[+-])?[ ]*\\\\n( *)[\\\\S ]+\\\\n(\\\\2[\\\\S ]+\\\\n?)*\"},{b:\"<%[%=-]?\",e:\"[%-]?%>\",sL:\"ruby\",eB:!0,eE:!0,relevance:0},{cN:\"type\",b:\"!\"+e.UIR},{cN:\"type\",b:\"!!\"+e.UIR},{cN:\"meta\",b:\"&\"+e.UIR+\"$\"},{cN:\"meta\",b:\"\\\\*\"+e.UIR+\"$\"},{cN:\"bullet\",b:\"\\\\-(?=[ ]|$)\",relevance:0},e.HCM,{bK:b,k:{literal:b}},{cN:\"number\",b:e.CNR+\"\\\\b\"},a]}});hljs.registerLanguage(\"plaintext\",function(e){return{disableAutodetect:!0}});hljs.registerLanguage(\"erlang-repl\",function(e){return{k:{built_in:\"spawn spawn_link self\",keyword:\"after and andalso|10 band begin bnot bor bsl bsr bxor case catch cond div end fun if let not of or orelse|10 query receive rem try when xor\"},c:[{cN:\"meta\",b:\"^[0-9]+> \",relevance:10},e.C(\"%\",\"$\"),{cN:\"number\",b:\"\\\\b(\\\\d+#[a-fA-F0-9]+|\\\\d+(\\\\.\\\\d+)?([eE][-+]?\\\\d+)?)\",relevance:0},e.ASM,e.QSM,{b:\"\\\\?(::)?([A-Z]\\\\w*(::)?)+\"},{b:\"->\"},{b:\"ok\"},{b:\"!\"},{b:\"(\\\\b[a-z'][a-zA-Z0-9_']*:[a-z'][a-zA-Z0-9_']*)|(\\\\b[a-z'][a-zA-Z0-9_']*)\",relevance:0},{b:\"[A-Z][a-zA-Z0-9_']*\",relevance:0}]}});hljs.registerLanguage(\"cmake\",function(e){return{aliases:[\"cmake.in\"],cI:!0,k:{keyword:\"break cmake_host_system_information cmake_minimum_required cmake_parse_arguments cmake_policy configure_file continue elseif else endforeach endfunction endif endmacro endwhile execute_process file find_file find_library find_package find_path find_program foreach function get_cmake_property get_directory_property get_filename_component get_property if include include_guard list macro mark_as_advanced math message option return separate_arguments set_directory_properties set_property set site_name string unset variable_watch while add_compile_definitions add_compile_options add_custom_command add_custom_target add_definitions add_dependencies add_executable add_library add_link_options add_subdirectory add_test aux_source_directory build_command create_test_sourcelist define_property enable_language enable_testing export fltk_wrap_ui get_source_file_property get_target_property get_test_property include_directories include_external_msproject include_regular_expression install link_directories link_libraries load_cache project qt_wrap_cpp qt_wrap_ui remove_definitions set_source_files_properties set_target_properties set_tests_properties source_group target_compile_definitions target_compile_features target_compile_options target_include_directories target_link_directories target_link_libraries target_link_options target_sources try_compile try_run ctest_build ctest_configure ctest_coverage ctest_empty_binary_directory ctest_memcheck ctest_read_custom_files ctest_run_script ctest_sleep ctest_start ctest_submit ctest_test ctest_update ctest_upload build_name exec_program export_library_dependencies install_files install_programs install_targets load_command make_directory output_required_files remove subdir_depends subdirs use_mangled_mesa utility_source variable_requires write_file qt5_use_modules qt5_use_package qt5_wrap_cpp on off true false and or not command policy target test exists is_newer_than is_directory is_symlink is_absolute matches less greater equal less_equal greater_equal strless strgreater strequal strless_equal strgreater_equal version_less version_greater version_equal version_less_equal version_greater_equal in_list defined\"},c:[{cN:\"variable\",b:\"\\\\${\",e:\"}\"},e.HCM,e.QSM,e.NM]}});hljs.registerLanguage(\"kotlin\",function(e){var t={keyword:\"abstract as val var vararg get set class object open private protected public noinline crossinline dynamic final enum if else do while for when throw try catch finally import package is in fun override companion reified inline lateinit init interface annotation data sealed internal infix operator out by constructor super tailrec where const inner suspend typealias external expect actual trait volatile transient native default\",built_in:\"Byte Short Char Int Long Boolean Float Double Void Unit Nothing\",literal:\"true false null\"},a={cN:\"symbol\",b:e.UIR+\"@\"},n={cN:\"subst\",b:\"\\\\${\",e:\"}\",c:[e.CNM]},c={cN:\"variable\",b:\"\\\\$\"+e.UIR},r={cN:\"string\",v:[{b:'\"\"\"',e:'\"\"\"(?=[^\"])',c:[c,n]},{b:\"'\",e:\"'\",i:/\\n/,c:[e.BE]},{b:'\"',e:'\"',i:/\\n/,c:[e.BE,c,n]}]};n.c.push(r);var i={cN:\"meta\",b:\"@(?:file|property|field|get|set|receiver|param|setparam|delegate)\\\\s*:(?:\\\\s*\"+e.UIR+\")?\"},l={cN:\"meta\",b:\"@\"+e.UIR,c:[{b:/\\(/,e:/\\)/,c:[e.inherit(r,{cN:\"meta-string\"})]}]},s={cN:\"number\",b:\"\\\\b(0[bB]([01]+[01_]+[01]+|[01]+)|0[xX]([a-fA-F0-9]+[a-fA-F0-9_]+[a-fA-F0-9]+|[a-fA-F0-9]+)|(([\\\\d]+[\\\\d_]+[\\\\d]+|[\\\\d]+)(\\\\.([\\\\d]+[\\\\d_]+[\\\\d]+|[\\\\d]+))?|\\\\.([\\\\d]+[\\\\d_]+[\\\\d]+|[\\\\d]+))([eE][-+]?\\\\d+)?)[lLfF]?\",relevance:0},b=e.C(\"/\\\\*\",\"\\\\*/\",{c:[e.CBCM]}),o={v:[{cN:\"type\",b:e.UIR},{b:/\\(/,e:/\\)/,c:[]}]},d=o;return d.v[1].c=[o],o.v[1].c=[d],{aliases:[\"kt\"],k:t,c:[e.C(\"/\\\\*\\\\*\",\"\\\\*/\",{relevance:0,c:[{cN:\"doctag\",b:\"@[A-Za-z]+\"}]}),e.CLCM,b,{cN:\"keyword\",b:/\\b(break|continue|return|this)\\b/,starts:{c:[{cN:\"symbol\",b:/@\\w+/}]}},a,i,l,{cN:\"function\",bK:\"fun\",e:\"[(]|$\",rB:!0,eE:!0,k:t,i:/fun\\s+(<.*>)?[^\\s\\(]+(\\s+[^\\s\\(]+)\\s*=/,relevance:5,c:[{b:e.UIR+\"\\\\s*\\\\(\",rB:!0,relevance:0,c:[e.UTM]},{cN:\"type\",b:/</,e:/>/,k:\"reified\",relevance:0},{cN:\"params\",b:/\\(/,e:/\\)/,endsParent:!0,k:t,relevance:0,c:[{b:/:/,e:/[=,\\/]/,eW:!0,c:[o,e.CLCM,b],relevance:0},e.CLCM,b,i,l,r,e.CNM]},b]},{cN:\"class\",bK:\"class interface trait\",e:/[:\\{(]|$/,eE:!0,i:\"extends implements\",c:[{bK:\"public protected internal private constructor\"},e.UTM,{cN:\"type\",b:/</,e:/>/,eB:!0,eE:!0,relevance:0},{cN:\"type\",b:/[,:]\\s*/,e:/[<\\(,]|$/,eB:!0,rE:!0},i,l]},r,{cN:\"meta\",b:\"^#!/usr/bin/env\",e:\"$\",i:\"\\n\"},s]}});hljs.registerLanguage(\"javascript\",function(e){var r=\"<>\",a=\"</>\",t={b:/<[A-Za-z0-9\\\\._:-]+/,e:/\\/[A-Za-z0-9\\\\._:-]+>|\\/>/},c=\"[A-Za-z$_][0-9A-Za-z$_]*\",n={keyword:\"in of if for while finally var new function do return void else break catch instanceof with throw case default try this switch continue typeof delete let yield const export super debugger as async await static import from as\",literal:\"true false null undefined NaN Infinity\",built_in:\"eval isFinite isNaN parseFloat parseInt decodeURI decodeURIComponent encodeURI encodeURIComponent escape unescape Object Function Boolean Error EvalError InternalError RangeError ReferenceError StopIteration SyntaxError TypeError URIError Number Math Date String RegExp Array Float32Array Float64Array Int16Array Int32Array Int8Array Uint16Array Uint32Array Uint8Array Uint8ClampedArray ArrayBuffer DataView JSON Intl arguments require module console window document Symbol Set Map WeakSet WeakMap Proxy Reflect Promise\"},s={cN:\"number\",v:[{b:\"\\\\b(0[bB][01]+)n?\"},{b:\"\\\\b(0[oO][0-7]+)n?\"},{b:e.CNR+\"n?\"}],relevance:0},o={cN:\"subst\",b:\"\\\\$\\\\{\",e:\"\\\\}\",k:n,c:[]},i={b:\"html`\",e:\"\",starts:{e:\"`\",rE:!1,c:[e.BE,o],sL:\"xml\"}},b={b:\"css`\",e:\"\",starts:{e:\"`\",rE:!1,c:[e.BE,o],sL:\"css\"}},l={cN:\"string\",b:\"`\",e:\"`\",c:[e.BE,o]};o.c=[e.ASM,e.QSM,i,b,l,s,e.RM];var u=o.c.concat([e.CBCM,e.CLCM]);return{aliases:[\"js\",\"jsx\",\"mjs\",\"cjs\"],k:n,c:[{cN:\"meta\",relevance:10,b:/^\\s*['\"]use (strict|asm)['\"]/},{cN:\"meta\",b:/^#!/,e:/$/},e.ASM,e.QSM,i,b,l,e.CLCM,e.C(\"/\\\\*\\\\*\",\"\\\\*/\",{relevance:0,c:[{cN:\"doctag\",b:\"@[A-Za-z]+\",c:[{cN:\"type\",b:\"\\\\{\",e:\"\\\\}\",relevance:0},{cN:\"variable\",b:c+\"(?=\\\\s*(-)|$)\",endsParent:!0,relevance:0},{b:/(?=[^\\n])\\s/,relevance:0}]}]}),e.CBCM,s,{b:/[{,\\n]\\s*/,relevance:0,c:[{b:c+\"\\\\s*:\",rB:!0,relevance:0,c:[{cN:\"attr\",b:c,relevance:0}]}]},{b:\"(\"+e.RSR+\"|\\\\b(case|return|throw)\\\\b)\\\\s*\",k:\"return throw case\",c:[e.CLCM,e.CBCM,e.RM,{cN:\"function\",b:\"(\\\\(.*?\\\\)|\"+c+\")\\\\s*=>\",rB:!0,e:\"\\\\s*=>\",c:[{cN:\"params\",v:[{b:c},{b:/\\(\\s*\\)/},{b:/\\(/,e:/\\)/,eB:!0,eE:!0,k:n,c:u}]}]},{cN:\"\",b:/\\s/,e:/\\s*/,skip:!0},{v:[{b:r,e:a},{b:t.b,e:t.e}],sL:\"xml\",c:[{b:t.b,e:t.e,skip:!0,c:[\"self\"]}]}],relevance:0},{cN:\"function\",bK:\"function\",e:/\\{/,eE:!0,c:[e.inherit(e.TM,{b:c}),{cN:\"params\",b:/\\(/,e:/\\)/,eB:!0,eE:!0,c:u}],i:/\\[|%/},{b:/\\$[(.]/},e.METHOD_GUARD,{cN:\"class\",bK:\"class\",e:/[{;=]/,eE:!0,i:/[:\"\\[\\]]/,c:[{bK:\"extends\"},e.UTM]},{bK:\"constructor get set\",e:/\\{/,eE:!0}],i:/#(?!!)/}});hljs.registerLanguage(\"scss\",function(e){var t=\"@[a-z-]+\",r={cN:\"variable\",b:\"(\\\\$[a-zA-Z-][a-zA-Z0-9_-]*)\\\\b\"},i={cN:\"number\",b:\"#[0-9A-Fa-f]+\"};e.CSSNM,e.QSM,e.ASM,e.CBCM;return{cI:!0,i:\"[=/|']\",c:[e.CLCM,e.CBCM,{cN:\"selector-id\",b:\"\\\\#[A-Za-z0-9_-]+\",relevance:0},{cN:\"selector-class\",b:\"\\\\.[A-Za-z0-9_-]+\",relevance:0},{cN:\"selector-attr\",b:\"\\\\[\",e:\"\\\\]\",i:\"$\"},{cN:\"selector-tag\",b:\"\\\\b(a|abbr|acronym|address|area|article|aside|audio|b|base|big|blockquote|body|br|button|canvas|caption|cite|code|col|colgroup|command|datalist|dd|del|details|dfn|div|dl|dt|em|embed|fieldset|figcaption|figure|footer|form|frame|frameset|(h[1-6])|head|header|hgroup|hr|html|i|iframe|img|input|ins|kbd|keygen|label|legend|li|link|map|mark|meta|meter|nav|noframes|noscript|object|ol|optgroup|option|output|p|param|pre|progress|q|rp|rt|ruby|samp|script|section|select|small|span|strike|strong|style|sub|sup|table|tbody|td|textarea|tfoot|th|thead|time|title|tr|tt|ul|var|video)\\\\b\",relevance:0},{cN:\"selector-pseudo\",b:\":(visited|valid|root|right|required|read-write|read-only|out-range|optional|only-of-type|only-child|nth-of-type|nth-last-of-type|nth-last-child|nth-child|not|link|left|last-of-type|last-child|lang|invalid|indeterminate|in-range|hover|focus|first-of-type|first-line|first-letter|first-child|first|enabled|empty|disabled|default|checked|before|after|active)\"},{cN:\"selector-pseudo\",b:\"::(after|before|choices|first-letter|first-line|repeat-index|repeat-item|selection|value)\"},r,{cN:\"attribute\",b:\"\\\\b(src|z-index|word-wrap|word-spacing|word-break|width|widows|white-space|visibility|vertical-align|unicode-bidi|transition-timing-function|transition-property|transition-duration|transition-delay|transition|transform-style|transform-origin|transform|top|text-underline-position|text-transform|text-shadow|text-rendering|text-overflow|text-indent|text-decoration-style|text-decoration-line|text-decoration-color|text-decoration|text-align-last|text-align|tab-size|table-layout|right|resize|quotes|position|pointer-events|perspective-origin|perspective|page-break-inside|page-break-before|page-break-after|padding-top|padding-right|padding-left|padding-bottom|padding|overflow-y|overflow-x|overflow-wrap|overflow|outline-width|outline-style|outline-offset|outline-color|outline|orphans|order|opacity|object-position|object-fit|normal|none|nav-up|nav-right|nav-left|nav-index|nav-down|min-width|min-height|max-width|max-height|mask|marks|margin-top|margin-right|margin-left|margin-bottom|margin|list-style-type|list-style-position|list-style-image|list-style|line-height|letter-spacing|left|justify-content|initial|inherit|ime-mode|image-orientation|image-resolution|image-rendering|icon|hyphens|height|font-weight|font-variant-ligatures|font-variant|font-style|font-stretch|font-size-adjust|font-size|font-language-override|font-kerning|font-feature-settings|font-family|font|float|flex-wrap|flex-shrink|flex-grow|flex-flow|flex-direction|flex-basis|flex|filter|empty-cells|display|direction|cursor|counter-reset|counter-increment|content|column-width|column-span|column-rule-width|column-rule-style|column-rule-color|column-rule|column-gap|column-fill|column-count|columns|color|clip-path|clip|clear|caption-side|break-inside|break-before|break-after|box-sizing|box-shadow|box-decoration-break|bottom|border-width|border-top-width|border-top-style|border-top-right-radius|border-top-left-radius|border-top-color|border-top|border-style|border-spacing|border-right-width|border-right-style|border-right-color|border-right|border-radius|border-left-width|border-left-style|border-left-color|border-left|border-image-width|border-image-source|border-image-slice|border-image-repeat|border-image-outset|border-image|border-color|border-collapse|border-bottom-width|border-bottom-style|border-bottom-right-radius|border-bottom-left-radius|border-bottom-color|border-bottom|border|background-size|background-repeat|background-position|background-origin|background-image|background-color|background-clip|background-attachment|background-blend-mode|background|backface-visibility|auto|animation-timing-function|animation-play-state|animation-name|animation-iteration-count|animation-fill-mode|animation-duration|animation-direction|animation-delay|animation|align-self|align-items|align-content)\\\\b\",i:\"[^\\\\s]\"},{b:\"\\\\b(whitespace|wait|w-resize|visible|vertical-text|vertical-ideographic|uppercase|upper-roman|upper-alpha|underline|transparent|top|thin|thick|text|text-top|text-bottom|tb-rl|table-header-group|table-footer-group|sw-resize|super|strict|static|square|solid|small-caps|separate|se-resize|scroll|s-resize|rtl|row-resize|ridge|right|repeat|repeat-y|repeat-x|relative|progress|pointer|overline|outside|outset|oblique|nowrap|not-allowed|normal|none|nw-resize|no-repeat|no-drop|newspaper|ne-resize|n-resize|move|middle|medium|ltr|lr-tb|lowercase|lower-roman|lower-alpha|loose|list-item|line|line-through|line-edge|lighter|left|keep-all|justify|italic|inter-word|inter-ideograph|inside|inset|inline|inline-block|inherit|inactive|ideograph-space|ideograph-parenthesis|ideograph-numeric|ideograph-alpha|horizontal|hidden|help|hand|groove|fixed|ellipsis|e-resize|double|dotted|distribute|distribute-space|distribute-letter|distribute-all-lines|disc|disabled|default|decimal|dashed|crosshair|collapse|col-resize|circle|char|center|capitalize|break-word|break-all|bottom|both|bolder|bold|block|bidi-override|below|baseline|auto|always|all-scroll|absolute|table|table-cell)\\\\b\"},{b:\":\",e:\";\",c:[r,i,e.CSSNM,e.QSM,e.ASM,{cN:\"meta\",b:\"!important\"}]},{b:\"@(page|font-face)\",l:t,k:\"@page @font-face\"},{b:\"@\",e:\"[{;]\",rB:!0,k:\"and or not only\",c:[{b:t,cN:\"keyword\"},r,e.QSM,e.ASM,i,e.CSSNM]}]}});hljs.registerLanguage(\"perl\",function(e){var t=\"getpwent getservent quotemeta msgrcv scalar kill dbmclose undef lc ma syswrite tr send umask sysopen shmwrite vec qx utime local oct semctl localtime readpipe do return format read sprintf dbmopen pop getpgrp not getpwnam rewinddir qqfileno qw endprotoent wait sethostent bless s|0 opendir continue each sleep endgrent shutdown dump chomp connect getsockname die socketpair close flock exists index shmgetsub for endpwent redo lstat msgctl setpgrp abs exit select print ref gethostbyaddr unshift fcntl syscall goto getnetbyaddr join gmtime symlink semget splice x|0 getpeername recv log setsockopt cos last reverse gethostbyname getgrnam study formline endhostent times chop length gethostent getnetent pack getprotoent getservbyname rand mkdir pos chmod y|0 substr endnetent printf next open msgsnd readdir use unlink getsockopt getpriority rindex wantarray hex system getservbyport endservent int chr untie rmdir prototype tell listen fork shmread ucfirst setprotoent else sysseek link getgrgid shmctl waitpid unpack getnetbyname reset chdir grep split require caller lcfirst until warn while values shift telldir getpwuid my getprotobynumber delete and sort uc defined srand accept package seekdir getprotobyname semop our rename seek if q|0 chroot sysread setpwent no crypt getc chown sqrt write setnetent setpriority foreach tie sin msgget map stat getlogin unless elsif truncate exec keys glob tied closedirioctl socket readlink eval xor readline binmode setservent eof ord bind alarm pipe atan2 getgrent exp time push setgrent gt lt or ne m|0 break given say state when\",r={cN:\"subst\",b:\"[$@]\\\\{\",e:\"\\\\}\",k:t},s={b:\"->{\",e:\"}\"},n={v:[{b:/\\$\\d/},{b:/[\\$%@](\\^\\w\\b|#\\w+(::\\w+)*|{\\w+}|\\w+(::\\w*)*)/},{b:/[\\$%@][^\\s\\w{]/,relevance:0}]},c=[e.BE,r,n],a=[n,e.HCM,e.C(\"^\\\\=\\\\w\",\"\\\\=cut\",{eW:!0}),s,{cN:\"string\",c:c,v:[{b:\"q[qwxr]?\\\\s*\\\\(\",e:\"\\\\)\",relevance:5},{b:\"q[qwxr]?\\\\s*\\\\[\",e:\"\\\\]\",relevance:5},{b:\"q[qwxr]?\\\\s*\\\\{\",e:\"\\\\}\",relevance:5},{b:\"q[qwxr]?\\\\s*\\\\|\",e:\"\\\\|\",relevance:5},{b:\"q[qwxr]?\\\\s*\\\\<\",e:\"\\\\>\",relevance:5},{b:\"qw\\\\s+q\",e:\"q\",relevance:5},{b:\"'\",e:\"'\",c:[e.BE]},{b:'\"',e:'\"'},{b:\"`\",e:\"`\",c:[e.BE]},{b:\"{\\\\w+}\",c:[],relevance:0},{b:\"-?\\\\w+\\\\s*\\\\=\\\\>\",c:[],relevance:0}]},{cN:\"number\",b:\"(\\\\b0[0-7_]+)|(\\\\b0x[0-9a-fA-F_]+)|(\\\\b[1-9][0-9_]*(\\\\.[0-9_]+)?)|[0_]\\\\b\",relevance:0},{b:\"(\\\\/\\\\/|\"+e.RSR+\"|\\\\b(split|return|print|reverse|grep)\\\\b)\\\\s*\",k:\"split return print reverse grep\",relevance:0,c:[e.HCM,{cN:\"regexp\",b:\"(s|tr|y)/(\\\\\\\\.|[^/])*/(\\\\\\\\.|[^/])*/[a-z]*\",relevance:10},{cN:\"regexp\",b:\"(m|qr)?/\",e:\"/[a-z]*\",c:[e.BE],relevance:0}]},{cN:\"function\",bK:\"sub\",e:\"(\\\\s*\\\\(.*?\\\\))?[;{]\",eE:!0,relevance:5,c:[e.TM]},{b:\"-\\\\w\\\\b\",relevance:0},{b:\"^__DATA__$\",e:\"^__END__$\",sL:\"mojolicious\",c:[{b:\"^@@.*\",e:\"$\",cN:\"comment\"}]}];return r.c=a,{aliases:[\"pl\",\"pm\"],l:/[\\w\\.]+/,k:t,c:s.c=a}});hljs.registerLanguage(\"go\",function(e){var n={keyword:\"break default func interface select case map struct chan else goto package switch const fallthrough if range type continue for import return var go defer bool byte complex64 complex128 float32 float64 int8 int16 int32 int64 string uint8 uint16 uint32 uint64 int uint uintptr rune\",literal:\"true false iota nil\",built_in:\"append cap close complex copy imag len make new panic print println real recover delete\"};return{aliases:[\"golang\"],k:n,i:\"</\",c:[e.CLCM,e.CBCM,{cN:\"string\",v:[e.QSM,e.ASM,{b:\"`\",e:\"`\"}]},{cN:\"number\",v:[{b:e.CNR+\"[i]\",relevance:1},e.CNM]},{b:/:=/},{cN:\"function\",bK:\"func\",e:\"\\\\s*(\\\\{|$)\",eE:!0,c:[e.TM,{cN:\"params\",b:/\\(/,e:/\\)/,k:n,i:/[\"']/}]}]}});hljs.registerLanguage(\"x86asm\",function(s){return{cI:!0,l:\"[.%]?\"+s.IR,k:{keyword:\"lock rep repe repz repne repnz xaquire xrelease bnd nobnd aaa aad aam aas adc add and arpl bb0_reset bb1_reset bound bsf bsr bswap bt btc btr bts call cbw cdq cdqe clc cld cli clts cmc cmp cmpsb cmpsd cmpsq cmpsw cmpxchg cmpxchg486 cmpxchg8b cmpxchg16b cpuid cpu_read cpu_write cqo cwd cwde daa das dec div dmint emms enter equ f2xm1 fabs fadd faddp fbld fbstp fchs fclex fcmovb fcmovbe fcmove fcmovnb fcmovnbe fcmovne fcmovnu fcmovu fcom fcomi fcomip fcomp fcompp fcos fdecstp fdisi fdiv fdivp fdivr fdivrp femms feni ffree ffreep fiadd ficom ficomp fidiv fidivr fild fimul fincstp finit fist fistp fisttp fisub fisubr fld fld1 fldcw fldenv fldl2e fldl2t fldlg2 fldln2 fldpi fldz fmul fmulp fnclex fndisi fneni fninit fnop fnsave fnstcw fnstenv fnstsw fpatan fprem fprem1 fptan frndint frstor fsave fscale fsetpm fsin fsincos fsqrt fst fstcw fstenv fstp fstsw fsub fsubp fsubr fsubrp ftst fucom fucomi fucomip fucomp fucompp fxam fxch fxtract fyl2x fyl2xp1 hlt ibts icebp idiv imul in inc incbin insb insd insw int int01 int1 int03 int3 into invd invpcid invlpg invlpga iret iretd iretq iretw jcxz jecxz jrcxz jmp jmpe lahf lar lds lea leave les lfence lfs lgdt lgs lidt lldt lmsw loadall loadall286 lodsb lodsd lodsq lodsw loop loope loopne loopnz loopz lsl lss ltr mfence monitor mov movd movq movsb movsd movsq movsw movsx movsxd movzx mul mwait neg nop not or out outsb outsd outsw packssdw packsswb packuswb paddb paddd paddsb paddsiw paddsw paddusb paddusw paddw pand pandn pause paveb pavgusb pcmpeqb pcmpeqd pcmpeqw pcmpgtb pcmpgtd pcmpgtw pdistib pf2id pfacc pfadd pfcmpeq pfcmpge pfcmpgt pfmax pfmin pfmul pfrcp pfrcpit1 pfrcpit2 pfrsqit1 pfrsqrt pfsub pfsubr pi2fd pmachriw pmaddwd pmagw pmulhriw pmulhrwa pmulhrwc pmulhw pmullw pmvgezb pmvlzb pmvnzb pmvzb pop popa popad popaw popf popfd popfq popfw por prefetch prefetchw pslld psllq psllw psrad psraw psrld psrlq psrlw psubb psubd psubsb psubsiw psubsw psubusb psubusw psubw punpckhbw punpckhdq punpckhwd punpcklbw punpckldq punpcklwd push pusha pushad pushaw pushf pushfd pushfq pushfw pxor rcl rcr rdshr rdmsr rdpmc rdtsc rdtscp ret retf retn rol ror rdm rsdc rsldt rsm rsts sahf sal salc sar sbb scasb scasd scasq scasw sfence sgdt shl shld shr shrd sidt sldt skinit smi smint smintold smsw stc std sti stosb stosd stosq stosw str sub svdc svldt svts swapgs syscall sysenter sysexit sysret test ud0 ud1 ud2b ud2 ud2a umov verr verw fwait wbinvd wrshr wrmsr xadd xbts xchg xlatb xlat xor cmove cmovz cmovne cmovnz cmova cmovnbe cmovae cmovnb cmovb cmovnae cmovbe cmovna cmovg cmovnle cmovge cmovnl cmovl cmovnge cmovle cmovng cmovc cmovnc cmovo cmovno cmovs cmovns cmovp cmovpe cmovnp cmovpo je jz jne jnz ja jnbe jae jnb jb jnae jbe jna jg jnle jge jnl jl jnge jle jng jc jnc jo jno js jns jpo jnp jpe jp sete setz setne setnz seta setnbe setae setnb setnc setb setnae setcset setbe setna setg setnle setge setnl setl setnge setle setng sets setns seto setno setpe setp setpo setnp addps addss andnps andps cmpeqps cmpeqss cmpleps cmpless cmpltps cmpltss cmpneqps cmpneqss cmpnleps cmpnless cmpnltps cmpnltss cmpordps cmpordss cmpunordps cmpunordss cmpps cmpss comiss cvtpi2ps cvtps2pi cvtsi2ss cvtss2si cvttps2pi cvttss2si divps divss ldmxcsr maxps maxss minps minss movaps movhps movlhps movlps movhlps movmskps movntps movss movups mulps mulss orps rcpps rcpss rsqrtps rsqrtss shufps sqrtps sqrtss stmxcsr subps subss ucomiss unpckhps unpcklps xorps fxrstor fxrstor64 fxsave fxsave64 xgetbv xsetbv xsave xsave64 xsaveopt xsaveopt64 xrstor xrstor64 prefetchnta prefetcht0 prefetcht1 prefetcht2 maskmovq movntq pavgb pavgw pextrw pinsrw pmaxsw pmaxub pminsw pminub pmovmskb pmulhuw psadbw pshufw pf2iw pfnacc pfpnacc pi2fw pswapd maskmovdqu clflush movntdq movnti movntpd movdqa movdqu movdq2q movq2dq paddq pmuludq pshufd pshufhw pshuflw pslldq psrldq psubq punpckhqdq punpcklqdq addpd addsd andnpd andpd cmpeqpd cmpeqsd cmplepd cmplesd cmpltpd cmpltsd cmpneqpd cmpneqsd cmpnlepd cmpnlesd cmpnltpd cmpnltsd cmpordpd cmpordsd cmpunordpd cmpunordsd cmppd comisd cvtdq2pd cvtdq2ps cvtpd2dq cvtpd2pi cvtpd2ps cvtpi2pd cvtps2dq cvtps2pd cvtsd2si cvtsd2ss cvtsi2sd cvtss2sd cvttpd2pi cvttpd2dq cvttps2dq cvttsd2si divpd divsd maxpd maxsd minpd minsd movapd movhpd movlpd movmskpd movupd mulpd mulsd orpd shufpd sqrtpd sqrtsd subpd subsd ucomisd unpckhpd unpcklpd xorpd addsubpd addsubps haddpd haddps hsubpd hsubps lddqu movddup movshdup movsldup clgi stgi vmcall vmclear vmfunc vmlaunch vmload vmmcall vmptrld vmptrst vmread vmresume vmrun vmsave vmwrite vmxoff vmxon invept invvpid pabsb pabsw pabsd palignr phaddw phaddd phaddsw phsubw phsubd phsubsw pmaddubsw pmulhrsw pshufb psignb psignw psignd extrq insertq movntsd movntss lzcnt blendpd blendps blendvpd blendvps dppd dpps extractps insertps movntdqa mpsadbw packusdw pblendvb pblendw pcmpeqq pextrb pextrd pextrq phminposuw pinsrb pinsrd pinsrq pmaxsb pmaxsd pmaxud pmaxuw pminsb pminsd pminud pminuw pmovsxbw pmovsxbd pmovsxbq pmovsxwd pmovsxwq pmovsxdq pmovzxbw pmovzxbd pmovzxbq pmovzxwd pmovzxwq pmovzxdq pmuldq pmulld ptest roundpd roundps roundsd roundss crc32 pcmpestri pcmpestrm pcmpistri pcmpistrm pcmpgtq popcnt getsec pfrcpv pfrsqrtv movbe aesenc aesenclast aesdec aesdeclast aesimc aeskeygenassist vaesenc vaesenclast vaesdec vaesdeclast vaesimc vaeskeygenassist vaddpd vaddps vaddsd vaddss vaddsubpd vaddsubps vandpd vandps vandnpd vandnps vblendpd vblendps vblendvpd vblendvps vbroadcastss vbroadcastsd vbroadcastf128 vcmpeq_ospd vcmpeqpd vcmplt_ospd vcmpltpd vcmple_ospd vcmplepd vcmpunord_qpd vcmpunordpd vcmpneq_uqpd vcmpneqpd vcmpnlt_uspd vcmpnltpd vcmpnle_uspd vcmpnlepd vcmpord_qpd vcmpordpd vcmpeq_uqpd vcmpnge_uspd vcmpngepd vcmpngt_uspd vcmpngtpd vcmpfalse_oqpd vcmpfalsepd vcmpneq_oqpd vcmpge_ospd vcmpgepd vcmpgt_ospd vcmpgtpd vcmptrue_uqpd vcmptruepd vcmplt_oqpd vcmple_oqpd vcmpunord_spd vcmpneq_uspd vcmpnlt_uqpd vcmpnle_uqpd vcmpord_spd vcmpeq_uspd vcmpnge_uqpd vcmpngt_uqpd vcmpfalse_ospd vcmpneq_ospd vcmpge_oqpd vcmpgt_oqpd vcmptrue_uspd vcmppd vcmpeq_osps vcmpeqps vcmplt_osps vcmpltps vcmple_osps vcmpleps vcmpunord_qps vcmpunordps vcmpneq_uqps vcmpneqps vcmpnlt_usps vcmpnltps vcmpnle_usps vcmpnleps vcmpord_qps vcmpordps vcmpeq_uqps vcmpnge_usps vcmpngeps vcmpngt_usps vcmpngtps vcmpfalse_oqps vcmpfalseps vcmpneq_oqps vcmpge_osps vcmpgeps vcmpgt_osps vcmpgtps vcmptrue_uqps vcmptrueps vcmplt_oqps vcmple_oqps vcmpunord_sps vcmpneq_usps vcmpnlt_uqps vcmpnle_uqps vcmpord_sps vcmpeq_usps vcmpnge_uqps vcmpngt_uqps vcmpfalse_osps vcmpneq_osps vcmpge_oqps vcmpgt_oqps vcmptrue_usps vcmpps vcmpeq_ossd vcmpeqsd vcmplt_ossd vcmpltsd vcmple_ossd vcmplesd vcmpunord_qsd vcmpunordsd vcmpneq_uqsd vcmpneqsd vcmpnlt_ussd vcmpnltsd vcmpnle_ussd vcmpnlesd vcmpord_qsd vcmpordsd vcmpeq_uqsd vcmpnge_ussd vcmpngesd vcmpngt_ussd vcmpngtsd vcmpfalse_oqsd vcmpfalsesd vcmpneq_oqsd vcmpge_ossd vcmpgesd vcmpgt_ossd vcmpgtsd vcmptrue_uqsd vcmptruesd vcmplt_oqsd vcmple_oqsd vcmpunord_ssd vcmpneq_ussd vcmpnlt_uqsd vcmpnle_uqsd vcmpord_ssd vcmpeq_ussd vcmpnge_uqsd vcmpngt_uqsd vcmpfalse_ossd vcmpneq_ossd vcmpge_oqsd vcmpgt_oqsd vcmptrue_ussd vcmpsd vcmpeq_osss vcmpeqss vcmplt_osss vcmpltss vcmple_osss vcmpless vcmpunord_qss vcmpunordss vcmpneq_uqss vcmpneqss vcmpnlt_usss vcmpnltss vcmpnle_usss vcmpnless vcmpord_qss vcmpordss vcmpeq_uqss vcmpnge_usss vcmpngess vcmpngt_usss vcmpngtss vcmpfalse_oqss vcmpfalsess vcmpneq_oqss vcmpge_osss vcmpgess vcmpgt_osss vcmpgtss vcmptrue_uqss vcmptruess vcmplt_oqss vcmple_oqss vcmpunord_sss vcmpneq_usss vcmpnlt_uqss vcmpnle_uqss vcmpord_sss vcmpeq_usss vcmpnge_uqss vcmpngt_uqss vcmpfalse_osss vcmpneq_osss vcmpge_oqss vcmpgt_oqss vcmptrue_usss vcmpss vcomisd vcomiss vcvtdq2pd vcvtdq2ps vcvtpd2dq vcvtpd2ps vcvtps2dq vcvtps2pd vcvtsd2si vcvtsd2ss vcvtsi2sd vcvtsi2ss vcvtss2sd vcvtss2si vcvttpd2dq vcvttps2dq vcvttsd2si vcvttss2si vdivpd vdivps vdivsd vdivss vdppd vdpps vextractf128 vextractps vhaddpd vhaddps vhsubpd vhsubps vinsertf128 vinsertps vlddqu vldqqu vldmxcsr vmaskmovdqu vmaskmovps vmaskmovpd vmaxpd vmaxps vmaxsd vmaxss vminpd vminps vminsd vminss vmovapd vmovaps vmovd vmovq vmovddup vmovdqa vmovqqa vmovdqu vmovqqu vmovhlps vmovhpd vmovhps vmovlhps vmovlpd vmovlps vmovmskpd vmovmskps vmovntdq vmovntqq vmovntdqa vmovntpd vmovntps vmovsd vmovshdup vmovsldup vmovss vmovupd vmovups vmpsadbw vmulpd vmulps vmulsd vmulss vorpd vorps vpabsb vpabsw vpabsd vpacksswb vpackssdw vpackuswb vpackusdw vpaddb vpaddw vpaddd vpaddq vpaddsb vpaddsw vpaddusb vpaddusw vpalignr vpand vpandn vpavgb vpavgw vpblendvb vpblendw vpcmpestri vpcmpestrm vpcmpistri vpcmpistrm vpcmpeqb vpcmpeqw vpcmpeqd vpcmpeqq vpcmpgtb vpcmpgtw vpcmpgtd vpcmpgtq vpermilpd vpermilps vperm2f128 vpextrb vpextrw vpextrd vpextrq vphaddw vphaddd vphaddsw vphminposuw vphsubw vphsubd vphsubsw vpinsrb vpinsrw vpinsrd vpinsrq vpmaddwd vpmaddubsw vpmaxsb vpmaxsw vpmaxsd vpmaxub vpmaxuw vpmaxud vpminsb vpminsw vpminsd vpminub vpminuw vpminud vpmovmskb vpmovsxbw vpmovsxbd vpmovsxbq vpmovsxwd vpmovsxwq vpmovsxdq vpmovzxbw vpmovzxbd vpmovzxbq vpmovzxwd vpmovzxwq vpmovzxdq vpmulhuw vpmulhrsw vpmulhw vpmullw vpmulld vpmuludq vpmuldq vpor vpsadbw vpshufb vpshufd vpshufhw vpshuflw vpsignb vpsignw vpsignd vpslldq vpsrldq vpsllw vpslld vpsllq vpsraw vpsrad vpsrlw vpsrld vpsrlq vptest vpsubb vpsubw vpsubd vpsubq vpsubsb vpsubsw vpsubusb vpsubusw vpunpckhbw vpunpckhwd vpunpckhdq vpunpckhqdq vpunpcklbw vpunpcklwd vpunpckldq vpunpcklqdq vpxor vrcpps vrcpss vrsqrtps vrsqrtss vroundpd vroundps vroundsd vroundss vshufpd vshufps vsqrtpd vsqrtps vsqrtsd vsqrtss vstmxcsr vsubpd vsubps vsubsd vsubss vtestps vtestpd vucomisd vucomiss vunpckhpd vunpckhps vunpcklpd vunpcklps vxorpd vxorps vzeroall vzeroupper pclmullqlqdq pclmulhqlqdq pclmullqhqdq pclmulhqhqdq pclmulqdq vpclmullqlqdq vpclmulhqlqdq vpclmullqhqdq vpclmulhqhqdq vpclmulqdq vfmadd132ps vfmadd132pd vfmadd312ps vfmadd312pd vfmadd213ps vfmadd213pd vfmadd123ps vfmadd123pd vfmadd231ps vfmadd231pd vfmadd321ps vfmadd321pd vfmaddsub132ps vfmaddsub132pd vfmaddsub312ps vfmaddsub312pd vfmaddsub213ps vfmaddsub213pd vfmaddsub123ps vfmaddsub123pd vfmaddsub231ps vfmaddsub231pd vfmaddsub321ps vfmaddsub321pd vfmsub132ps vfmsub132pd vfmsub312ps vfmsub312pd vfmsub213ps vfmsub213pd vfmsub123ps vfmsub123pd vfmsub231ps vfmsub231pd vfmsub321ps vfmsub321pd vfmsubadd132ps vfmsubadd132pd vfmsubadd312ps vfmsubadd312pd vfmsubadd213ps vfmsubadd213pd vfmsubadd123ps vfmsubadd123pd vfmsubadd231ps vfmsubadd231pd vfmsubadd321ps vfmsubadd321pd vfnmadd132ps vfnmadd132pd vfnmadd312ps vfnmadd312pd vfnmadd213ps vfnmadd213pd vfnmadd123ps vfnmadd123pd vfnmadd231ps vfnmadd231pd vfnmadd321ps vfnmadd321pd vfnmsub132ps vfnmsub132pd vfnmsub312ps vfnmsub312pd vfnmsub213ps vfnmsub213pd vfnmsub123ps vfnmsub123pd vfnmsub231ps vfnmsub231pd vfnmsub321ps vfnmsub321pd vfmadd132ss vfmadd132sd vfmadd312ss vfmadd312sd vfmadd213ss vfmadd213sd vfmadd123ss vfmadd123sd vfmadd231ss vfmadd231sd vfmadd321ss vfmadd321sd vfmsub132ss vfmsub132sd vfmsub312ss vfmsub312sd vfmsub213ss vfmsub213sd vfmsub123ss vfmsub123sd vfmsub231ss vfmsub231sd vfmsub321ss vfmsub321sd vfnmadd132ss vfnmadd132sd vfnmadd312ss vfnmadd312sd vfnmadd213ss vfnmadd213sd vfnmadd123ss vfnmadd123sd vfnmadd231ss vfnmadd231sd vfnmadd321ss vfnmadd321sd vfnmsub132ss vfnmsub132sd vfnmsub312ss vfnmsub312sd vfnmsub213ss vfnmsub213sd vfnmsub123ss vfnmsub123sd vfnmsub231ss vfnmsub231sd vfnmsub321ss vfnmsub321sd rdfsbase rdgsbase rdrand wrfsbase wrgsbase vcvtph2ps vcvtps2ph adcx adox rdseed clac stac xstore xcryptecb xcryptcbc xcryptctr xcryptcfb xcryptofb montmul xsha1 xsha256 llwpcb slwpcb lwpval lwpins vfmaddpd vfmaddps vfmaddsd vfmaddss vfmaddsubpd vfmaddsubps vfmsubaddpd vfmsubaddps vfmsubpd vfmsubps vfmsubsd vfmsubss vfnmaddpd vfnmaddps vfnmaddsd vfnmaddss vfnmsubpd vfnmsubps vfnmsubsd vfnmsubss vfrczpd vfrczps vfrczsd vfrczss vpcmov vpcomb vpcomd vpcomq vpcomub vpcomud vpcomuq vpcomuw vpcomw vphaddbd vphaddbq vphaddbw vphadddq vphaddubd vphaddubq vphaddubw vphaddudq vphadduwd vphadduwq vphaddwd vphaddwq vphsubbw vphsubdq vphsubwd vpmacsdd vpmacsdqh vpmacsdql vpmacssdd vpmacssdqh vpmacssdql vpmacsswd vpmacssww vpmacswd vpmacsww vpmadcsswd vpmadcswd vpperm vprotb vprotd vprotq vprotw vpshab vpshad vpshaq vpshaw vpshlb vpshld vpshlq vpshlw vbroadcasti128 vpblendd vpbroadcastb vpbroadcastw vpbroadcastd vpbroadcastq vpermd vpermpd vpermps vpermq vperm2i128 vextracti128 vinserti128 vpmaskmovd vpmaskmovq vpsllvd vpsllvq vpsravd vpsrlvd vpsrlvq vgatherdpd vgatherqpd vgatherdps vgatherqps vpgatherdd vpgatherqd vpgatherdq vpgatherqq xabort xbegin xend xtest andn bextr blci blcic blsi blsic blcfill blsfill blcmsk blsmsk blsr blcs bzhi mulx pdep pext rorx sarx shlx shrx tzcnt tzmsk t1mskc valignd valignq vblendmpd vblendmps vbroadcastf32x4 vbroadcastf64x4 vbroadcasti32x4 vbroadcasti64x4 vcompresspd vcompressps vcvtpd2udq vcvtps2udq vcvtsd2usi vcvtss2usi vcvttpd2udq vcvttps2udq vcvttsd2usi vcvttss2usi vcvtudq2pd vcvtudq2ps vcvtusi2sd vcvtusi2ss vexpandpd vexpandps vextractf32x4 vextractf64x4 vextracti32x4 vextracti64x4 vfixupimmpd vfixupimmps vfixupimmsd vfixupimmss vgetexppd vgetexpps vgetexpsd vgetexpss vgetmantpd vgetmantps vgetmantsd vgetmantss vinsertf32x4 vinsertf64x4 vinserti32x4 vinserti64x4 vmovdqa32 vmovdqa64 vmovdqu32 vmovdqu64 vpabsq vpandd vpandnd vpandnq vpandq vpblendmd vpblendmq vpcmpltd vpcmpled vpcmpneqd vpcmpnltd vpcmpnled vpcmpd vpcmpltq vpcmpleq vpcmpneqq vpcmpnltq vpcmpnleq vpcmpq vpcmpequd vpcmpltud vpcmpleud vpcmpnequd vpcmpnltud vpcmpnleud vpcmpud vpcmpequq vpcmpltuq vpcmpleuq vpcmpnequq vpcmpnltuq vpcmpnleuq vpcmpuq vpcompressd vpcompressq vpermi2d vpermi2pd vpermi2ps vpermi2q vpermt2d vpermt2pd vpermt2ps vpermt2q vpexpandd vpexpandq vpmaxsq vpmaxuq vpminsq vpminuq vpmovdb vpmovdw vpmovqb vpmovqd vpmovqw vpmovsdb vpmovsdw vpmovsqb vpmovsqd vpmovsqw vpmovusdb vpmovusdw vpmovusqb vpmovusqd vpmovusqw vpord vporq vprold vprolq vprolvd vprolvq vprord vprorq vprorvd vprorvq vpscatterdd vpscatterdq vpscatterqd vpscatterqq vpsraq vpsravq vpternlogd vpternlogq vptestmd vptestmq vptestnmd vptestnmq vpxord vpxorq vrcp14pd vrcp14ps vrcp14sd vrcp14ss vrndscalepd vrndscaleps vrndscalesd vrndscaless vrsqrt14pd vrsqrt14ps vrsqrt14sd vrsqrt14ss vscalefpd vscalefps vscalefsd vscalefss vscatterdpd vscatterdps vscatterqpd vscatterqps vshuff32x4 vshuff64x2 vshufi32x4 vshufi64x2 kandnw kandw kmovw knotw kortestw korw kshiftlw kshiftrw kunpckbw kxnorw kxorw vpbroadcastmb2q vpbroadcastmw2d vpconflictd vpconflictq vplzcntd vplzcntq vexp2pd vexp2ps vrcp28pd vrcp28ps vrcp28sd vrcp28ss vrsqrt28pd vrsqrt28ps vrsqrt28sd vrsqrt28ss vgatherpf0dpd vgatherpf0dps vgatherpf0qpd vgatherpf0qps vgatherpf1dpd vgatherpf1dps vgatherpf1qpd vgatherpf1qps vscatterpf0dpd vscatterpf0dps vscatterpf0qpd vscatterpf0qps vscatterpf1dpd vscatterpf1dps vscatterpf1qpd vscatterpf1qps prefetchwt1 bndmk bndcl bndcu bndcn bndmov bndldx bndstx sha1rnds4 sha1nexte sha1msg1 sha1msg2 sha256rnds2 sha256msg1 sha256msg2 hint_nop0 hint_nop1 hint_nop2 hint_nop3 hint_nop4 hint_nop5 hint_nop6 hint_nop7 hint_nop8 hint_nop9 hint_nop10 hint_nop11 hint_nop12 hint_nop13 hint_nop14 hint_nop15 hint_nop16 hint_nop17 hint_nop18 hint_nop19 hint_nop20 hint_nop21 hint_nop22 hint_nop23 hint_nop24 hint_nop25 hint_nop26 hint_nop27 hint_nop28 hint_nop29 hint_nop30 hint_nop31 hint_nop32 hint_nop33 hint_nop34 hint_nop35 hint_nop36 hint_nop37 hint_nop38 hint_nop39 hint_nop40 hint_nop41 hint_nop42 hint_nop43 hint_nop44 hint_nop45 hint_nop46 hint_nop47 hint_nop48 hint_nop49 hint_nop50 hint_nop51 hint_nop52 hint_nop53 hint_nop54 hint_nop55 hint_nop56 hint_nop57 hint_nop58 hint_nop59 hint_nop60 hint_nop61 hint_nop62 hint_nop63\",built_in:\"ip eip rip al ah bl bh cl ch dl dh sil dil bpl spl r8b r9b r10b r11b r12b r13b r14b r15b ax bx cx dx si di bp sp r8w r9w r10w r11w r12w r13w r14w r15w eax ebx ecx edx esi edi ebp esp eip r8d r9d r10d r11d r12d r13d r14d r15d rax rbx rcx rdx rsi rdi rbp rsp r8 r9 r10 r11 r12 r13 r14 r15 cs ds es fs gs ss st st0 st1 st2 st3 st4 st5 st6 st7 mm0 mm1 mm2 mm3 mm4 mm5 mm6 mm7 xmm0 xmm1 xmm2 xmm3 xmm4 xmm5 xmm6 xmm7 xmm8 xmm9 xmm10 xmm11 xmm12 xmm13 xmm14 xmm15 xmm16 xmm17 xmm18 xmm19 xmm20 xmm21 xmm22 xmm23 xmm24 xmm25 xmm26 xmm27 xmm28 xmm29 xmm30 xmm31 ymm0 ymm1 ymm2 ymm3 ymm4 ymm5 ymm6 ymm7 ymm8 ymm9 ymm10 ymm11 ymm12 ymm13 ymm14 ymm15 ymm16 ymm17 ymm18 ymm19 ymm20 ymm21 ymm22 ymm23 ymm24 ymm25 ymm26 ymm27 ymm28 ymm29 ymm30 ymm31 zmm0 zmm1 zmm2 zmm3 zmm4 zmm5 zmm6 zmm7 zmm8 zmm9 zmm10 zmm11 zmm12 zmm13 zmm14 zmm15 zmm16 zmm17 zmm18 zmm19 zmm20 zmm21 zmm22 zmm23 zmm24 zmm25 zmm26 zmm27 zmm28 zmm29 zmm30 zmm31 k0 k1 k2 k3 k4 k5 k6 k7 bnd0 bnd1 bnd2 bnd3 cr0 cr1 cr2 cr3 cr4 cr8 dr0 dr1 dr2 dr3 dr8 tr3 tr4 tr5 tr6 tr7 r0 r1 r2 r3 r4 r5 r6 r7 r0b r1b r2b r3b r4b r5b r6b r7b r0w r1w r2w r3w r4w r5w r6w r7w r0d r1d r2d r3d r4d r5d r6d r7d r0h r1h r2h r3h r0l r1l r2l r3l r4l r5l r6l r7l r8l r9l r10l r11l r12l r13l r14l r15l db dw dd dq dt ddq do dy dz resb resw resd resq rest resdq reso resy resz incbin equ times byte word dword qword nosplit rel abs seg wrt strict near far a32 ptr\",meta:\"%define %xdefine %+ %undef %defstr %deftok %assign %strcat %strlen %substr %rotate %elif %else %endif %if %ifmacro %ifctx %ifidn %ifidni %ifid %ifnum %ifstr %iftoken %ifempty %ifenv %error %warning %fatal %rep %endrep %include %push %pop %repl %pathsearch %depend %use %arg %stacksize %local %line %comment %endcomment .nolist __FILE__ __LINE__ __SECT__ __BITS__ __OUTPUT_FORMAT__ __DATE__ __TIME__ __DATE_NUM__ __TIME_NUM__ __UTC_DATE__ __UTC_TIME__ __UTC_DATE_NUM__ __UTC_TIME_NUM__ __PASS__ struc endstruc istruc at iend align alignb sectalign daz nodaz up down zero default option assume public bits use16 use32 use64 default section segment absolute extern global common cpu float __utf16__ __utf16le__ __utf16be__ __utf32__ __utf32le__ __utf32be__ __float8__ __float16__ __float32__ __float64__ __float80m__ __float80e__ __float128l__ __float128h__ __Infinity__ __QNaN__ __SNaN__ Inf NaN QNaN SNaN float8 float16 float32 float64 float80m float80e float128l float128h __FLOAT_DAZ__ __FLOAT_ROUND__ __FLOAT__\"},c:[s.C(\";\",\"$\",{relevance:0}),{cN:\"number\",v:[{b:\"\\\\b(?:([0-9][0-9_]*)?\\\\.[0-9_]*(?:[eE][+-]?[0-9_]+)?|(0[Xx])?[0-9][0-9_]*\\\\.?[0-9_]*(?:[pP](?:[+-]?[0-9_]+)?)?)\\\\b\",relevance:0},{b:\"\\\\$[0-9][0-9A-Fa-f]*\",relevance:0},{b:\"\\\\b(?:[0-9A-Fa-f][0-9A-Fa-f_]*[Hh]|[0-9][0-9_]*[DdTt]?|[0-7][0-7_]*[QqOo]|[0-1][0-1_]*[BbYy])\\\\b\"},{b:\"\\\\b(?:0[Xx][0-9A-Fa-f_]+|0[DdTt][0-9_]+|0[QqOo][0-7_]+|0[BbYy][0-1_]+)\\\\b\"}]},s.QSM,{cN:\"string\",v:[{b:\"'\",e:\"[^\\\\\\\\]'\"},{b:\"`\",e:\"[^\\\\\\\\]`\"}],relevance:0},{cN:\"symbol\",v:[{b:\"^\\\\s*[A-Za-z._?][A-Za-z0-9_$#@~.?]*(:|\\\\s+label)\"},{b:\"^\\\\s*%%[A-Za-z0-9_$#@~.?]*:\"}],relevance:0},{cN:\"subst\",b:\"%[0-9]+\",relevance:0},{cN:\"subst\",b:\"%!S+\",relevance:0},{cN:\"meta\",b:/^\\s*\\.[\\w_-]+/}]}});hljs.registerLanguage(\"cpp\",function(e){function t(e){return\"(?:\"+e+\")?\"}var r=\"decltype\\\\(auto\\\\)\",a=\"[a-zA-Z_]\\\\w*::\",i=\"(\"+r+\"|\"+t(a)+\"[a-zA-Z_]\\\\w*\"+t(\"<.*?>\")+\")\",c={cN:\"keyword\",b:\"\\\\b[a-z\\\\d_]*_t\\\\b\"},s={cN:\"string\",v:[{b:'(u8?|U|L)?\"',e:'\"',i:\"\\\\n\",c:[e.BE]},{b:\"(u8?|U|L)?'(\\\\\\\\(x[0-9A-Fa-f]{2}|u[0-9A-Fa-f]{4,8}|[0-7]{3}|\\\\S)|.)\",e:\"'\",i:\".\"},{b:/(?:u8?|U|L)?R\"([^()\\\\ ]{0,16})\\((?:.|\\n)*?\\)\\1\"/}]},n={cN:\"number\",v:[{b:\"\\\\b(0b[01']+)\"},{b:\"(-?)\\\\b([\\\\d']+(\\\\.[\\\\d']*)?|\\\\.[\\\\d']+)(u|U|l|L|ul|UL|f|F|b|B)\"},{b:\"(-?)(\\\\b0[xX][a-fA-F0-9']+|(\\\\b[\\\\d']+(\\\\.[\\\\d']*)?|\\\\.[\\\\d']+)([eE][-+]?[\\\\d']+)?)\"}],relevance:0},o={cN:\"meta\",b:/#\\s*[a-z]+\\b/,e:/$/,k:{\"meta-keyword\":\"if else elif endif define undef warning error line pragma _Pragma ifdef ifndef include\"},c:[{b:/\\\\\\n/,relevance:0},e.inherit(s,{cN:\"meta-string\"}),{cN:\"meta-string\",b:/<.*?>/,e:/$/,i:\"\\\\n\"},e.CLCM,e.CBCM]},l={cN:\"title\",b:t(a)+e.IR,relevance:0},u=t(a)+e.IR+\"\\\\s*\\\\(\",p={keyword:\"int float while private char char8_t char16_t char32_t catch import module export virtual operator sizeof dynamic_cast|10 typedef const_cast|10 const for static_cast|10 union namespace unsigned long volatile static protected bool template mutable if public friend do goto auto void enum else break extern using asm case typeid wchar_tshort reinterpret_cast|10 default double register explicit signed typename try this switch continue inline delete alignas alignof constexpr consteval constinit decltype concept co_await co_return co_yield requires noexcept static_assert thread_local restrict final override atomic_bool atomic_char atomic_schar atomic_uchar atomic_short atomic_ushort atomic_int atomic_uint atomic_long atomic_ulong atomic_llong atomic_ullong new throw return and and_eq bitand bitor compl not not_eq or or_eq xor xor_eq\",built_in:\"std string wstring cin cout cerr clog stdin stdout stderr stringstream istringstream ostringstream auto_ptr deque list queue stack vector map set bitset multiset multimap unordered_set unordered_map unordered_multiset unordered_multimap array shared_ptr abort terminate abs acos asin atan2 atan calloc ceil cosh cos exit exp fabs floor fmod fprintf fputs free frexp fscanf future isalnum isalpha iscntrl isdigit isgraph islower isprint ispunct isspace isupper isxdigit tolower toupper labs ldexp log10 log malloc realloc memchr memcmp memcpy memset modf pow printf putchar puts scanf sinh sin snprintf sprintf sqrt sscanf strcat strchr strcmp strcpy strcspn strlen strncat strncmp strncpy strpbrk strrchr strspn strstr tanh tan vfprintf vprintf vsprintf endl initializer_list unique_ptr _Bool complex _Complex imaginary _Imaginary\",literal:\"true false nullptr NULL\"},m=[c,e.CLCM,e.CBCM,n,s],d={v:[{b:/=/,e:/;/},{b:/\\(/,e:/\\)/},{bK:\"new throw return else\",e:/;/}],k:p,c:m.concat([{b:/\\(/,e:/\\)/,k:p,c:m.concat([\"self\"]),relevance:0}]),relevance:0},b={cN:\"function\",b:\"(\"+i+\"[\\\\*&\\\\s]+)+\"+u,rB:!0,e:/[{;=]/,eE:!0,k:p,i:/[^\\w\\s\\*&:<>]/,c:[{b:r,k:p,relevance:0},{b:u,rB:!0,c:[l],relevance:0},{cN:\"params\",b:/\\(/,e:/\\)/,k:p,relevance:0,c:[e.CLCM,e.CBCM,s,n,c,{b:/\\(/,e:/\\)/,k:p,relevance:0,c:[\"self\",e.CLCM,e.CBCM,s,n,c]}]},c,e.CLCM,e.CBCM,o]};return{aliases:[\"c\",\"cc\",\"h\",\"c++\",\"h++\",\"hpp\",\"hh\",\"hxx\",\"cxx\"],k:p,i:\"</\",c:[].concat(d,b,m,[o,{b:\"\\\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\\\s*<\",e:\">\",k:p,c:[\"self\",c]},{b:e.IR+\"::\",k:p},{cN:\"class\",bK:\"class struct\",e:/[{;:]/,c:[{b:/</,e:/>/,c:[\"self\"]},e.TM]}]),exports:{preprocessor:o,strings:s,k:p}}});hljs.registerLanguage(\"arduino\",function(e){var t=\"boolean byte word String\",r=\"setup loopKeyboardController MouseController SoftwareSerial EthernetServer EthernetClient LiquidCrystal RobotControl GSMVoiceCall EthernetUDP EsploraTFT HttpClient RobotMotor WiFiClient GSMScanner FileSystem Scheduler GSMServer YunClient YunServer IPAddress GSMClient GSMModem Keyboard Ethernet Console GSMBand Esplora Stepper Process WiFiUDP GSM_SMS Mailbox USBHost Firmata PImage Client Server GSMPIN FileIO Bridge Serial EEPROM Stream Mouse Audio Servo File Task GPRS WiFi Wire TFT GSM SPI SD runShellCommandAsynchronously analogWriteResolution retrieveCallingNumber printFirmwareVersion analogReadResolution sendDigitalPortPair noListenOnLocalhost readJoystickButton setFirmwareVersion readJoystickSwitch scrollDisplayRight getVoiceCallStatus scrollDisplayLeft writeMicroseconds delayMicroseconds beginTransmission getSignalStrength runAsynchronously getAsynchronously listenOnLocalhost getCurrentCarrier readAccelerometer messageAvailable sendDigitalPorts lineFollowConfig countryNameWrite runShellCommand readStringUntil rewindDirectory readTemperature setClockDivider readLightSensor endTransmission analogReference detachInterrupt countryNameRead attachInterrupt encryptionType readBytesUntil robotNameWrite readMicrophone robotNameRead cityNameWrite userNameWrite readJoystickY readJoystickX mouseReleased openNextFile scanNetworks noInterrupts digitalWrite beginSpeaker mousePressed isActionDone mouseDragged displayLogos noAutoscroll addParameter remoteNumber getModifiers keyboardRead userNameRead waitContinue processInput parseCommand printVersion readNetworks writeMessage blinkVersion cityNameRead readMessage setDataMode parsePacket isListening setBitOrder beginPacket isDirectory motorsWrite drawCompass digitalRead clearScreen serialEvent rightToLeft setTextSize leftToRight requestFrom keyReleased compassRead analogWrite interrupts WiFiServer disconnect playMelody parseFloat autoscroll getPINUsed setPINUsed setTimeout sendAnalog readSlider analogRead beginWrite createChar motorsStop keyPressed tempoWrite readButton subnetMask debugPrint macAddress writeGreen randomSeed attachGPRS readString sendString remotePort releaseAll mouseMoved background getXChange getYChange answerCall getResult voiceCall endPacket constrain getSocket writeJSON getButton available connected findUntil readBytes exitValue readGreen writeBlue startLoop IPAddress isPressed sendSysex pauseMode gatewayIP setCursor getOemKey tuneWrite noDisplay loadImage switchPIN onRequest onReceive changePIN playFile noBuffer parseInt overflow checkPIN knobRead beginTFT bitClear updateIR bitWrite position writeRGB highByte writeRed setSpeed readBlue noStroke remoteIP transfer shutdown hangCall beginSMS endWrite attached maintain noCursor checkReg checkPUK shiftOut isValid shiftIn pulseIn connect println localIP pinMode getIMEI display noBlink process getBand running beginSD drawBMP lowByte setBand release bitRead prepare pointTo readRed setMode noFill remove listen stroke detach attach noTone exists buffer height bitSet circle config cursor random IRread setDNS endSMS getKey micros millis begin print write ready flush width isPIN blink clear press mkdir rmdir close point yield image BSSID click delay read text move peek beep rect line open seek fill size turn stop home find step tone sqrt RSSI SSID end bit tan cos sin pow map abs max min get run put\",i=\"DIGITAL_MESSAGE FIRMATA_STRING ANALOG_MESSAGE REPORT_DIGITAL REPORT_ANALOG INPUT_PULLUP SET_PIN_MODE INTERNAL2V56 SYSTEM_RESET LED_BUILTIN INTERNAL1V1 SYSEX_START INTERNAL EXTERNAL DEFAULT OUTPUT INPUT HIGH LOW\",o=e.requireLanguage(\"cpp\").rawDefinition(),a=o.k;return a.keyword+=\" \"+t,a.literal+=\" \"+i,a.built_in+=\" \"+r,o});hljs.registerLanguage(\"nginx\",function(e){var r={cN:\"variable\",v:[{b:/\\$\\d+/},{b:/\\$\\{/,e:/}/},{b:\"[\\\\$\\\\@]\"+e.UIR}]},b={eW:!0,l:\"[a-z/_]+\",k:{literal:\"on off yes no true false none blocked debug info notice warn error crit select break last permanent redirect kqueue rtsig epoll poll /dev/poll\"},relevance:0,i:\"=>\",c:[e.HCM,{cN:\"string\",c:[e.BE,r],v:[{b:/\"/,e:/\"/},{b:/'/,e:/'/}]},{b:\"([a-z]+):/\",e:\"\\\\s\",eW:!0,eE:!0,c:[r]},{cN:\"regexp\",c:[e.BE,r],v:[{b:\"\\\\s\\\\^\",e:\"\\\\s|{|;\",rE:!0},{b:\"~\\\\*?\\\\s+\",e:\"\\\\s|{|;\",rE:!0},{b:\"\\\\*(\\\\.[a-z\\\\-]+)+\"},{b:\"([a-z\\\\-]+\\\\.)+\\\\*\"}]},{cN:\"number\",b:\"\\\\b\\\\d{1,3}\\\\.\\\\d{1,3}\\\\.\\\\d{1,3}\\\\.\\\\d{1,3}(:\\\\d{1,5})?\\\\b\"},{cN:\"number\",b:\"\\\\b\\\\d+[kKmMgGdshdwy]*\\\\b\",relevance:0},r]};return{aliases:[\"nginxconf\"],c:[e.HCM,{b:e.UIR+\"\\\\s+{\",rB:!0,e:\"{\",c:[{cN:\"section\",b:e.UIR}],relevance:0},{b:e.UIR+\"\\\\s\",e:\";|{\",rB:!0,c:[{cN:\"attribute\",b:e.UIR,starts:b}],relevance:0}],i:\"[^\\\\s\\\\}]\"}});hljs.registerLanguage(\"xml\",function(e){var c={cN:\"symbol\",b:\"&[a-z]+;|&#[0-9]+;|&#x[a-f0-9]+;\"},s={b:\"\\\\s\",c:[{cN:\"meta-keyword\",b:\"#?[a-z_][a-z1-9_-]+\",i:\"\\\\n\"}]},a=e.inherit(s,{b:\"\\\\(\",e:\"\\\\)\"}),t=e.inherit(e.ASM,{cN:\"meta-string\"}),l=e.inherit(e.QSM,{cN:\"meta-string\"}),r={eW:!0,i:/</,relevance:0,c:[{cN:\"attr\",b:\"[A-Za-z0-9\\\\._:-]+\",relevance:0},{b:/=\\s*/,relevance:0,c:[{cN:\"string\",endsParent:!0,v:[{b:/\"/,e:/\"/,c:[c]},{b:/'/,e:/'/,c:[c]},{b:/[^\\s\"'=<>`]+/}]}]}]};return{aliases:[\"html\",\"xhtml\",\"rss\",\"atom\",\"xjb\",\"xsd\",\"xsl\",\"plist\",\"wsf\",\"svg\"],cI:!0,c:[{cN:\"meta\",b:\"<![a-z]\",e:\">\",relevance:10,c:[s,l,t,a,{b:\"\\\\[\",e:\"\\\\]\",c:[{cN:\"meta\",b:\"<![a-z]\",e:\">\",c:[s,a,l,t]}]}]},e.C(\"\\x3c!--\",\"--\\x3e\",{relevance:10}),{b:\"<\\\\!\\\\[CDATA\\\\[\",e:\"\\\\]\\\\]>\",relevance:10},c,{cN:\"meta\",b:/<\\?xml/,e:/\\?>/,relevance:10},{b:/<\\?(php)?/,e:/\\?>/,sL:\"php\",c:[{b:\"/\\\\*\",e:\"\\\\*/\",skip:!0},{b:'b\"',e:'\"',skip:!0},{b:\"b'\",e:\"'\",skip:!0},e.inherit(e.ASM,{i:null,cN:null,c:null,skip:!0}),e.inherit(e.QSM,{i:null,cN:null,c:null,skip:!0})]},{cN:\"tag\",b:\"<style(?=\\\\s|>)\",e:\">\",k:{name:\"style\"},c:[r],starts:{e:\"</style>\",rE:!0,sL:[\"css\",\"xml\"]}},{cN:\"tag\",b:\"<script(?=\\\\s|>)\",e:\">\",k:{name:\"script\"},c:[r],starts:{e:\"<\\/script>\",rE:!0,sL:[\"actionscript\",\"javascript\",\"handlebars\",\"xml\"]}},{cN:\"tag\",b:\"</?\",e:\"/?>\",c:[{cN:\"name\",b:/[^\\/><\\s]+/,relevance:0},r]}]}});hljs.registerLanguage(\"markdown\",function(e){return{aliases:[\"md\",\"mkdown\",\"mkd\"],c:[{cN:\"section\",v:[{b:\"^#{1,6}\",e:\"$\"},{b:\"^.+?\\\\n[=-]{2,}$\"}]},{b:\"<\",e:\">\",sL:\"xml\",relevance:0},{cN:\"bullet\",b:\"^\\\\s*([*+-]|(\\\\d+\\\\.))\\\\s+\"},{cN:\"strong\",b:\"[*_]{2}.+?[*_]{2}\"},{cN:\"emphasis\",v:[{b:\"\\\\*.+?\\\\*\"},{b:\"_.+?_\",relevance:0}]},{cN:\"quote\",b:\"^>\\\\s+\",e:\"$\"},{cN:\"code\",v:[{b:\"^```\\\\w*\\\\s*$\",e:\"^```[ ]*$\"},{b:\"`.+?`\"},{b:\"^( {4}|\\\\t)\",e:\"$\",relevance:0}]},{b:\"^[-\\\\*]{3,}\",e:\"$\"},{b:\"\\\\[.+?\\\\][\\\\(\\\\[].*?[\\\\)\\\\]]\",rB:!0,c:[{cN:\"string\",b:\"\\\\[\",e:\"\\\\]\",eB:!0,rE:!0,relevance:0},{cN:\"link\",b:\"\\\\]\\\\(\",e:\"\\\\)\",eB:!0,eE:!0},{cN:\"symbol\",b:\"\\\\]\\\\[\",e:\"\\\\]\",eB:!0,eE:!0}],relevance:10},{b:/^\\[[^\\n]+\\]:/,rB:!0,c:[{cN:\"symbol\",b:/\\[/,e:/\\]/,eB:!0,eE:!0},{cN:\"link\",b:/:\\s*/,e:/$/,eB:!0}]}]}});hljs.registerLanguage(\"properties\",function(e){var r=\"[ \\\\t\\\\f]*\",t=\"(\"+r+\"[:=]\"+r+\"|[ \\\\t\\\\f]+)\",n=\"([^\\\\\\\\\\\\W:= \\\\t\\\\f\\\\n]|\\\\\\\\.)+\",a=\"([^\\\\\\\\:= \\\\t\\\\f\\\\n]|\\\\\\\\.)+\",c={e:t,relevance:0,starts:{cN:\"string\",e:/$/,relevance:0,c:[{b:\"\\\\\\\\\\\\n\"}]}};return{cI:!0,i:/\\S/,c:[e.C(\"^\\\\s*[!#]\",\"$\"),{b:n+t,rB:!0,c:[{cN:\"attr\",b:n,endsParent:!0,relevance:0}],starts:c},{b:a+t,rB:!0,relevance:0,c:[{cN:\"meta\",b:a,endsParent:!0,relevance:0}],starts:c},{cN:\"attr\",relevance:0,b:a+r+\"$\"}]}});hljs.registerLanguage(\"bash\",function(e){var t={cN:\"variable\",v:[{b:/\\$[\\w\\d#@][\\w\\d_]*/},{b:/\\$\\{(.*?)}/}]},a={cN:\"string\",b:/\"/,e:/\"/,c:[e.BE,t,{cN:\"variable\",b:/\\$\\(/,e:/\\)/,c:[e.BE]}]};return{aliases:[\"sh\",\"zsh\"],l:/\\b-?[a-z\\._]+\\b/,k:{keyword:\"if then else elif fi for while in do done case esac function\",literal:\"true false\",built_in:\"break cd continue eval exec exit export getopts hash pwd readonly return shift test times trap umask unset alias bind builtin caller command declare echo enable help let local logout mapfile printf read readarray source type typeset ulimit unalias set shopt autoload bg bindkey bye cap chdir clone comparguments compcall compctl compdescribe compfiles compgroups compquote comptags comptry compvalues dirs disable disown echotc echoti emulate fc fg float functions getcap getln history integer jobs kill limit log noglob popd print pushd pushln rehash sched setcap setopt stat suspend ttyctl unfunction unhash unlimit unsetopt vared wait whence where which zcompile zformat zftp zle zmodload zparseopts zprof zpty zregexparse zsocket zstyle ztcp\",_:\"-ne -eq -lt -gt -f -d -e -s -l -a\"},c:[{cN:\"meta\",b:/^#![^\\n]+sh\\s*$/,relevance:10},{cN:\"function\",b:/\\w[\\w\\d_]*\\s*\\(\\s*\\)\\s*\\{/,rB:!0,c:[e.inherit(e.TM,{b:/\\w[\\w\\d_]*/})],relevance:0},e.HCM,a,{cN:\"\",b:/\\\\\"/},{cN:\"string\",b:/'/,e:/'/},t]}});hljs.registerLanguage(\"dockerfile\",function(e){return{aliases:[\"docker\"],cI:!0,k:\"from maintainer expose env arg user onbuild stopsignal\",c:[e.HCM,e.ASM,e.QSM,e.NM,{bK:\"run cmd entrypoint volume add copy workdir label healthcheck shell\",starts:{e:/[^\\\\]$/,sL:\"bash\"}}],i:\"</\"}});hljs.registerLanguage(\"python\",function(e){var r={keyword:\"and elif is global as in if from raise for except finally print import pass return exec else break not with class assert yield try while continue del or def lambda async await nonlocal|10\",built_in:\"Ellipsis NotImplemented\",literal:\"False None True\"},b={cN:\"meta\",b:/^(>>>|\\.\\.\\.) /},c={cN:\"subst\",b:/\\{/,e:/\\}/,k:r,i:/#/},a={b:/\\{\\{/,relevance:0},l={cN:\"string\",c:[e.BE],v:[{b:/(u|b)?r?'''/,e:/'''/,c:[e.BE,b],relevance:10},{b:/(u|b)?r?\"\"\"/,e:/\"\"\"/,c:[e.BE,b],relevance:10},{b:/(fr|rf|f)'''/,e:/'''/,c:[e.BE,b,a,c]},{b:/(fr|rf|f)\"\"\"/,e:/\"\"\"/,c:[e.BE,b,a,c]},{b:/(u|r|ur)'/,e:/'/,relevance:10},{b:/(u|r|ur)\"/,e:/\"/,relevance:10},{b:/(b|br)'/,e:/'/},{b:/(b|br)\"/,e:/\"/},{b:/(fr|rf|f)'/,e:/'/,c:[e.BE,a,c]},{b:/(fr|rf|f)\"/,e:/\"/,c:[e.BE,a,c]},e.ASM,e.QSM]},n={cN:\"number\",relevance:0,v:[{b:e.BNR+\"[lLjJ]?\"},{b:\"\\\\b(0o[0-7]+)[lLjJ]?\"},{b:e.CNR+\"[lLjJ]?\"}]},i={cN:\"params\",b:/\\(/,e:/\\)/,c:[\"self\",b,n,l,e.HCM]};return c.c=[l,n,b],{aliases:[\"py\",\"gyp\",\"ipython\"],k:r,i:/(<\\/|->|\\?)|=>/,c:[b,n,{bK:\"if\",relevance:0},l,e.HCM,{v:[{cN:\"function\",bK:\"def\"},{cN:\"class\",bK:\"class\"}],e:/:/,i:/[${=;\\n,]/,c:[e.UTM,i,{b:/->/,eW:!0,k:\"None\"}]},{cN:\"meta\",b:/^[\\t ]*@/,e:/$/},{b:/\\b(print|exec)\\(/}]}});hljs.registerLanguage(\"ini\",function(e){var b={cN:\"number\",relevance:0,v:[{b:/([\\+\\-]+)?[\\d]+_[\\d_]+/},{b:e.NR}]},a=e.C();a.v=[{b:/;/,e:/$/},{b:/#/,e:/$/}];var c={cN:\"variable\",v:[{b:/\\$[\\w\\d\"][\\w\\d_]*/},{b:/\\$\\{(.*?)}/}]},r={cN:\"literal\",b:/\\bon|off|true|false|yes|no\\b/},n={cN:\"string\",c:[e.BE],v:[{b:\"'''\",e:\"'''\",relevance:10},{b:'\"\"\"',e:'\"\"\"',relevance:10},{b:'\"',e:'\"'},{b:\"'\",e:\"'\"}]};return{aliases:[\"toml\"],cI:!0,i:/\\S/,c:[a,{cN:\"section\",b:/\\[+/,e:/\\]+/},{b:/^[a-z0-9\\[\\]_\\.-]+(?=\\s*=\\s*)/,cN:\"attr\",starts:{e:/$/,c:[a,{b:/\\[/,e:/\\]/,c:[a,r,c,n,b,\"self\"],relevance:0},r,c,n,b]}}]}});hljs.registerLanguage(\"diff\",function(e){return{aliases:[\"patch\"],c:[{cN:\"meta\",relevance:10,v:[{b:/^@@ +\\-\\d+,\\d+ +\\+\\d+,\\d+ +@@$/},{b:/^\\*\\*\\* +\\d+,\\d+ +\\*\\*\\*\\*$/},{b:/^\\-\\-\\- +\\d+,\\d+ +\\-\\-\\-\\-$/}]},{cN:\"comment\",v:[{b:/Index: /,e:/$/},{b:/={3,}/,e:/$/},{b:/^\\-{3}/,e:/$/},{b:/^\\*{3} /,e:/$/},{b:/^\\+{3}/,e:/$/},{b:/^\\*{15}$/}]},{cN:\"addition\",b:\"^\\\\+\",e:\"$\"},{cN:\"deletion\",b:\"^\\\\-\",e:\"$\"},{cN:\"addition\",b:\"^\\\\!\",e:\"$\"}]}});hljs.registerLanguage(\"http\",function(e){var t=\"HTTP/[0-9\\\\.]+\";return{aliases:[\"https\"],i:\"\\\\S\",c:[{b:\"^\"+t,e:\"$\",c:[{cN:\"number\",b:\"\\\\b\\\\d{3}\\\\b\"}]},{b:\"^[A-Z]+ (.*?) \"+t+\"$\",rB:!0,e:\"$\",c:[{cN:\"string\",b:\" \",e:\" \",eB:!0,eE:!0},{b:t},{cN:\"keyword\",b:\"[A-Z]+\"}]},{cN:\"attribute\",b:\"^\\\\w\",e:\": \",eE:!0,i:\"\\\\n|\\\\s|=\",starts:{e:\"$\",relevance:0}},{b:\"\\\\n\\\\n\",starts:{sL:[],eW:!0}}]}});hljs.registerLanguage(\"sql\",function(e){var t=e.C(\"--\",\"$\");return{cI:!0,i:/[<>{}*]/,c:[{bK:\"begin end start commit rollback savepoint lock alter create drop rename call delete do handler insert load replace select truncate update set show pragma grant merge describe use explain help declare prepare execute deallocate release unlock purge reset change stop analyze cache flush optimize repair kill install uninstall checksum restore check backup revoke comment values with\",e:/;/,eW:!0,l:/[\\w\\.]+/,k:{keyword:\"as abort abs absolute acc acce accep accept access accessed accessible account acos action activate add addtime admin administer advanced advise aes_decrypt aes_encrypt after agent aggregate ali alia alias all allocate allow alter always analyze ancillary and anti any anydata anydataset anyschema anytype apply archive archived archivelog are as asc ascii asin assembly assertion associate asynchronous at atan atn2 attr attri attrib attribu attribut attribute attributes audit authenticated authentication authid authors auto autoallocate autodblink autoextend automatic availability avg backup badfile basicfile before begin beginning benchmark between bfile bfile_base big bigfile bin binary_double binary_float binlog bit_and bit_count bit_length bit_or bit_xor bitmap blob_base block blocksize body both bound bucket buffer_cache buffer_pool build bulk by byte byteordermark bytes cache caching call calling cancel capacity cascade cascaded case cast catalog category ceil ceiling chain change changed char_base char_length character_length characters characterset charindex charset charsetform charsetid check checksum checksum_agg child choose chr chunk class cleanup clear client clob clob_base clone close cluster_id cluster_probability cluster_set clustering coalesce coercibility col collate collation collect colu colum column column_value columns columns_updated comment commit compact compatibility compiled complete composite_limit compound compress compute concat concat_ws concurrent confirm conn connec connect connect_by_iscycle connect_by_isleaf connect_by_root connect_time connection consider consistent constant constraint constraints constructor container content contents context contributors controlfile conv convert convert_tz corr corr_k corr_s corresponding corruption cos cost count count_big counted covar_pop covar_samp cpu_per_call cpu_per_session crc32 create creation critical cross cube cume_dist curdate current current_date current_time current_timestamp current_user cursor curtime customdatum cycle data database databases datafile datafiles datalength date_add date_cache date_format date_sub dateadd datediff datefromparts datename datepart datetime2fromparts day day_to_second dayname dayofmonth dayofweek dayofyear days db_role_change dbtimezone ddl deallocate declare decode decompose decrement decrypt deduplicate def defa defau defaul default defaults deferred defi defin define degrees delayed delegate delete delete_all delimited demand dense_rank depth dequeue des_decrypt des_encrypt des_key_file desc descr descri describ describe descriptor deterministic diagnostics difference dimension direct_load directory disable disable_all disallow disassociate discardfile disconnect diskgroup distinct distinctrow distribute distributed div do document domain dotnet double downgrade drop dumpfile duplicate duration each edition editionable editions element ellipsis else elsif elt empty enable enable_all enclosed encode encoding encrypt end end-exec endian enforced engine engines enqueue enterprise entityescaping eomonth error errors escaped evalname evaluate event eventdata events except exception exceptions exchange exclude excluding execu execut execute exempt exists exit exp expire explain explode export export_set extended extent external external_1 external_2 externally extract failed failed_login_attempts failover failure far fast feature_set feature_value fetch field fields file file_name_convert filesystem_like_logging final finish first first_value fixed flash_cache flashback floor flush following follows for forall force foreign form forma format found found_rows freelist freelists freepools fresh from from_base64 from_days ftp full function general generated get get_format get_lock getdate getutcdate global global_name globally go goto grant grants greatest group group_concat group_id grouping grouping_id groups gtid_subtract guarantee guard handler hash hashkeys having hea head headi headin heading heap help hex hierarchy high high_priority hosts hour hours http id ident_current ident_incr ident_seed identified identity idle_time if ifnull ignore iif ilike ilm immediate import in include including increment index indexes indexing indextype indicator indices inet6_aton inet6_ntoa inet_aton inet_ntoa infile initial initialized initially initrans inmemory inner innodb input insert install instance instantiable instr interface interleaved intersect into invalidate invisible is is_free_lock is_ipv4 is_ipv4_compat is_not is_not_null is_used_lock isdate isnull isolation iterate java join json json_exists keep keep_duplicates key keys kill language large last last_day last_insert_id last_value lateral lax lcase lead leading least leaves left len lenght length less level levels library like like2 like4 likec limit lines link list listagg little ln load load_file lob lobs local localtime localtimestamp locate locator lock locked log log10 log2 logfile logfiles logging logical logical_reads_per_call logoff logon logs long loop low low_priority lower lpad lrtrim ltrim main make_set makedate maketime managed management manual map mapping mask master master_pos_wait match matched materialized max maxextents maximize maxinstances maxlen maxlogfiles maxloghistory maxlogmembers maxsize maxtrans md5 measures median medium member memcompress memory merge microsecond mid migration min minextents minimum mining minus minute minutes minvalue missing mod mode model modification modify module monitoring month months mount move movement multiset mutex name name_const names nan national native natural nav nchar nclob nested never new newline next nextval no no_write_to_binlog noarchivelog noaudit nobadfile nocheck nocompress nocopy nocycle nodelay nodiscardfile noentityescaping noguarantee nokeep nologfile nomapping nomaxvalue nominimize nominvalue nomonitoring none noneditionable nonschema noorder nopr nopro noprom nopromp noprompt norely noresetlogs noreverse normal norowdependencies noschemacheck noswitch not nothing notice notnull notrim novalidate now nowait nth_value nullif nulls num numb numbe nvarchar nvarchar2 object ocicoll ocidate ocidatetime ociduration ociinterval ociloblocator ocinumber ociref ocirefcursor ocirowid ocistring ocitype oct octet_length of off offline offset oid oidindex old on online only opaque open operations operator optimal optimize option optionally or oracle oracle_date oradata ord ordaudio orddicom orddoc order ordimage ordinality ordvideo organization orlany orlvary out outer outfile outline output over overflow overriding package pad parallel parallel_enable parameters parent parse partial partition partitions pascal passing password password_grace_time password_lock_time password_reuse_max password_reuse_time password_verify_function patch path patindex pctincrease pctthreshold pctused pctversion percent percent_rank percentile_cont percentile_disc performance period period_add period_diff permanent physical pi pipe pipelined pivot pluggable plugin policy position post_transaction pow power pragma prebuilt precedes preceding precision prediction prediction_cost prediction_details prediction_probability prediction_set prepare present preserve prior priority private private_sga privileges procedural procedure procedure_analyze processlist profiles project prompt protection public publishingservername purge quarter query quick quiesce quota quotename radians raise rand range rank raw read reads readsize rebuild record records recover recovery recursive recycle redo reduced ref reference referenced references referencing refresh regexp_like register regr_avgx regr_avgy regr_count regr_intercept regr_r2 regr_slope regr_sxx regr_sxy reject rekey relational relative relaylog release release_lock relies_on relocate rely rem remainder rename repair repeat replace replicate replication required reset resetlogs resize resource respect restore restricted result result_cache resumable resume retention return returning returns reuse reverse revoke right rlike role roles rollback rolling rollup round row row_count rowdependencies rowid rownum rows rtrim rules safe salt sample save savepoint sb1 sb2 sb4 scan schema schemacheck scn scope scroll sdo_georaster sdo_topo_geometry search sec_to_time second seconds section securefile security seed segment select self semi sequence sequential serializable server servererror session session_user sessions_per_user set sets settings sha sha1 sha2 share shared shared_pool short show shrink shutdown si_averagecolor si_colorhistogram si_featurelist si_positionalcolor si_stillimage si_texture siblings sid sign sin size size_t sizes skip slave sleep smalldatetimefromparts smallfile snapshot some soname sort soundex source space sparse spfile split sql sql_big_result sql_buffer_result sql_cache sql_calc_found_rows sql_small_result sql_variant_property sqlcode sqldata sqlerror sqlname sqlstate sqrt square standalone standby start starting startup statement static statistics stats_binomial_test stats_crosstab stats_ks_test stats_mode stats_mw_test stats_one_way_anova stats_t_test_ stats_t_test_indep stats_t_test_one stats_t_test_paired stats_wsr_test status std stddev stddev_pop stddev_samp stdev stop storage store stored str str_to_date straight_join strcmp strict string struct stuff style subdate subpartition subpartitions substitutable substr substring subtime subtring_index subtype success sum suspend switch switchoffset switchover sync synchronous synonym sys sys_xmlagg sysasm sysaux sysdate sysdatetimeoffset sysdba sysoper system system_user sysutcdatetime table tables tablespace tablesample tan tdo template temporary terminated tertiary_weights test than then thread through tier ties time time_format time_zone timediff timefromparts timeout timestamp timestampadd timestampdiff timezone_abbr timezone_minute timezone_region to to_base64 to_date to_days to_seconds todatetimeoffset trace tracking transaction transactional translate translation treat trigger trigger_nestlevel triggers trim truncate try_cast try_convert try_parse type ub1 ub2 ub4 ucase unarchived unbounded uncompress under undo unhex unicode uniform uninstall union unique unix_timestamp unknown unlimited unlock unnest unpivot unrecoverable unsafe unsigned until untrusted unusable unused update updated upgrade upped upper upsert url urowid usable usage use use_stored_outlines user user_data user_resources users using utc_date utc_timestamp uuid uuid_short validate validate_password_strength validation valist value values var var_samp varcharc vari varia variab variabl variable variables variance varp varraw varrawc varray verify version versions view virtual visible void wait wallet warning warnings week weekday weekofyear wellformed when whene whenev wheneve whenever where while whitespace window with within without work wrapped xdb xml xmlagg xmlattributes xmlcast xmlcolattval xmlelement xmlexists xmlforest xmlindex xmlnamespaces xmlpi xmlquery xmlroot xmlschema xmlserialize xmltable xmltype xor year year_to_month years yearweek\",literal:\"true false null unknown\",built_in:\"array bigint binary bit blob bool boolean char character date dec decimal float int int8 integer interval number numeric real record serial serial8 smallint text time timestamp tinyint varchar varchar2 varying void\"},c:[{cN:\"string\",b:\"'\",e:\"'\",c:[{b:\"''\"}]},{cN:\"string\",b:'\"',e:'\"',c:[{b:'\"\"'}]},{cN:\"string\",b:\"`\",e:\"`\"},e.CNM,e.CBCM,t,e.HCM]},e.CBCM,t,e.HCM]}});hljs.registerLanguage(\"vala\",function(e){return{k:{keyword:\"char uchar unichar int uint long ulong short ushort int8 int16 int32 int64 uint8 uint16 uint32 uint64 float double bool struct enum string void weak unowned owned async signal static abstract interface override virtual delegate if while do for foreach else switch case break default return try catch public private protected internal using new this get set const stdout stdin stderr var\",built_in:\"DBus GLib CCode Gee Object Gtk Posix\",literal:\"false true null\"},c:[{cN:\"class\",bK:\"class interface namespace\",e:\"{\",eE:!0,i:\"[^,:\\\\n\\\\s\\\\.]\",c:[e.UTM]},e.CLCM,e.CBCM,{cN:\"string\",b:'\"\"\"',e:'\"\"\"',relevance:5},e.ASM,e.QSM,e.CNM,{cN:\"meta\",b:\"^#\",e:\"$\",relevance:2}]}});hljs.registerLanguage(\"asciidoc\",function(e){return{aliases:[\"adoc\"],c:[e.C(\"^/{4,}\\\\n\",\"\\\\n/{4,}$\",{relevance:10}),e.C(\"^//\",\"$\",{relevance:0}),{cN:\"title\",b:\"^\\\\.\\\\w.*$\"},{b:\"^[=\\\\*]{4,}\\\\n\",e:\"\\\\n^[=\\\\*]{4,}$\",relevance:10},{cN:\"section\",relevance:10,v:[{b:\"^(={1,5}) .+?( \\\\1)?$\"},{b:\"^[^\\\\[\\\\]\\\\n]+?\\\\n[=\\\\-~\\\\^\\\\+]{2,}$\"}]},{cN:\"meta\",b:\"^:.+?:\",e:\"\\\\s\",eE:!0,relevance:10},{cN:\"meta\",b:\"^\\\\[.+?\\\\]$\",relevance:0},{cN:\"quote\",b:\"^_{4,}\\\\n\",e:\"\\\\n_{4,}$\",relevance:10},{cN:\"code\",b:\"^[\\\\-\\\\.]{4,}\\\\n\",e:\"\\\\n[\\\\-\\\\.]{4,}$\",relevance:10},{b:\"^\\\\+{4,}\\\\n\",e:\"\\\\n\\\\+{4,}$\",c:[{b:\"<\",e:\">\",sL:\"xml\",relevance:0}],relevance:10},{cN:\"bullet\",b:\"^(\\\\*+|\\\\-+|\\\\.+|[^\\\\n]+?::)\\\\s+\"},{cN:\"symbol\",b:\"^(NOTE|TIP|IMPORTANT|WARNING|CAUTION):\\\\s+\",relevance:10},{cN:\"strong\",b:\"\\\\B\\\\*(?![\\\\*\\\\s])\",e:\"(\\\\n{2}|\\\\*)\",c:[{b:\"\\\\\\\\*\\\\w\",relevance:0}]},{cN:\"emphasis\",b:\"\\\\B'(?!['\\\\s])\",e:\"(\\\\n{2}|')\",c:[{b:\"\\\\\\\\'\\\\w\",relevance:0}],relevance:0},{cN:\"emphasis\",b:\"_(?![_\\\\s])\",e:\"(\\\\n{2}|_)\",relevance:0},{cN:\"string\",v:[{b:\"``.+?''\"},{b:\"`.+?'\"}]},{cN:\"code\",b:\"(`.+?`|\\\\+.+?\\\\+)\",relevance:0},{cN:\"code\",b:\"^[ \\\\t]\",e:\"$\",relevance:0},{b:\"^'{3,}[ \\\\t]*$\",relevance:10},{b:\"(link:)?(http|https|ftp|file|irc|image:?):\\\\S+\\\\[.*?\\\\]\",rB:!0,c:[{b:\"(link|image:?):\",relevance:0},{cN:\"link\",b:\"\\\\w\",e:\"[^\\\\[]+\",relevance:0},{cN:\"string\",b:\"\\\\[\",e:\"\\\\]\",eB:!0,eE:!0,relevance:0}],relevance:10}]}});hljs.registerLanguage(\"json\",function(e){var i={literal:\"true false null\"},n=[e.CLCM,e.CBCM],c=[e.QSM,e.CNM],r={e:\",\",eW:!0,eE:!0,c:c,k:i},t={b:\"{\",e:\"}\",c:[{cN:\"attr\",b:/\"/,e:/\"/,c:[e.BE],i:\"\\\\n\"},e.inherit(r,{b:/:/})].concat(n),i:\"\\\\S\"},a={b:\"\\\\[\",e:\"\\\\]\",c:[e.inherit(r)],i:\"\\\\S\"};return c.push(t,a),n.forEach(function(e){c.push(e)}),{c:c,k:i,i:\"\\\\S\"}});hljs.registerLanguage(\"rust\",function(e){var t=\"([ui](8|16|32|64|128|size)|f(32|64))?\",r=\"drop i8 i16 i32 i64 i128 isize u8 u16 u32 u64 u128 usize f32 f64 str char bool Box Option Result String Vec Copy Send Sized Sync Drop Fn FnMut FnOnce ToOwned Clone Debug PartialEq PartialOrd Eq Ord AsRef AsMut Into From Default Iterator Extend IntoIterator DoubleEndedIterator ExactSizeIterator SliceConcatExt ToString assert! assert_eq! bitflags! bytes! cfg! col! concat! concat_idents! debug_assert! debug_assert_eq! env! panic! file! format! format_args! include_bin! include_str! line! local_data_key! module_path! option_env! print! println! select! stringify! try! unimplemented! unreachable! vec! write! writeln! macro_rules! assert_ne! debug_assert_ne!\";return{aliases:[\"rs\"],k:{keyword:\"abstract as async await become box break const continue crate do dyn else enum extern false final fn for if impl in let loop macro match mod move mut override priv pub ref return self Self static struct super trait true try type typeof unsafe unsized use virtual where while yield\",literal:\"true false Some None Ok Err\",built_in:r},l:e.IR+\"!?\",i:\"</\",c:[e.CLCM,e.C(\"/\\\\*\",\"\\\\*/\",{c:[\"self\"]}),e.inherit(e.QSM,{b:/b?\"/,i:null}),{cN:\"string\",v:[{b:/r(#*)\"(.|\\n)*?\"\\1(?!#)/},{b:/b?'\\\\?(x\\w{2}|u\\w{4}|U\\w{8}|.)'/}]},{cN:\"symbol\",b:/'[a-zA-Z_][a-zA-Z0-9_]*/},{cN:\"number\",v:[{b:\"\\\\b0b([01_]+)\"+t},{b:\"\\\\b0o([0-7_]+)\"+t},{b:\"\\\\b0x([A-Fa-f0-9_]+)\"+t},{b:\"\\\\b(\\\\d[\\\\d_]*(\\\\.[0-9_]+)?([eE][+-]?[0-9_]+)?)\"+t}],relevance:0},{cN:\"function\",bK:\"fn\",e:\"(\\\\(|<)\",eE:!0,c:[e.UTM]},{cN:\"meta\",b:\"#\\\\!?\\\\[\",e:\"\\\\]\",c:[{cN:\"meta-string\",b:/\"/,e:/\"/}]},{cN:\"class\",bK:\"type\",e:\";\",c:[e.inherit(e.UTM,{endsParent:!0})],i:\"\\\\S\"},{cN:\"class\",bK:\"trait enum struct union\",e:\"{\",c:[e.inherit(e.UTM,{endsParent:!0})],i:\"[\\\\w\\\\d]\"},{b:e.IR+\"::\",k:{built_in:r}},{b:\"->\"}]}});hljs.registerLanguage(\"awk\",function(e){return{k:{keyword:\"BEGIN END if else while do for in break continue delete next nextfile function func exit|10\"},c:[{cN:\"variable\",v:[{b:/\\$[\\w\\d#@][\\w\\d_]*/},{b:/\\$\\{(.*?)}/}]},{cN:\"string\",c:[e.BE],v:[{b:/(u|b)?r?'''/,e:/'''/,relevance:10},{b:/(u|b)?r?\"\"\"/,e:/\"\"\"/,relevance:10},{b:/(u|r|ur)'/,e:/'/,relevance:10},{b:/(u|r|ur)\"/,e:/\"/,relevance:10},{b:/(b|br)'/,e:/'/},{b:/(b|br)\"/,e:/\"/},e.ASM,e.QSM]},e.RM,e.HCM,e.NM]}});hljs.registerLanguage(\"java\",function(e){var a=\"false synchronized int abstract float private char boolean var static null if const for true while long strictfp finally protected import native final void enum else break transient catch instanceof byte super volatile case assert short package default double public try this switch continue throws protected public private module requires exports do\",t={cN:\"number\",b:\"\\\\b(0[bB]([01]+[01_]+[01]+|[01]+)|0[xX]([a-fA-F0-9]+[a-fA-F0-9_]+[a-fA-F0-9]+|[a-fA-F0-9]+)|(([\\\\d]+[\\\\d_]+[\\\\d]+|[\\\\d]+)(\\\\.([\\\\d]+[\\\\d_]+[\\\\d]+|[\\\\d]+))?|\\\\.([\\\\d]+[\\\\d_]+[\\\\d]+|[\\\\d]+))([eE][-+]?\\\\d+)?)[lLfF]?\",relevance:0};return{aliases:[\"jsp\"],k:a,i:/<\\/|#/,c:[e.C(\"/\\\\*\\\\*\",\"\\\\*/\",{relevance:0,c:[{b:/\\w+@/,relevance:0},{cN:\"doctag\",b:\"@[A-Za-z]+\"}]}),e.CLCM,e.CBCM,e.ASM,e.QSM,{cN:\"class\",bK:\"class interface\",e:/[{;=]/,eE:!0,k:\"class interface\",i:/[:\"\\[\\]]/,c:[{bK:\"extends implements\"},e.UTM]},{bK:\"new throw return else\",relevance:0},{cN:\"function\",b:\"([À-ʸa-zA-Z_$][À-ʸa-zA-Z_$0-9]*(<[À-ʸa-zA-Z_$][À-ʸa-zA-Z_$0-9]*(\\\\s*,\\\\s*[À-ʸa-zA-Z_$][À-ʸa-zA-Z_$0-9]*)*>)?\\\\s+)+\"+e.UIR+\"\\\\s*\\\\(\",rB:!0,e:/[{;=]/,eE:!0,k:a,c:[{b:e.UIR+\"\\\\s*\\\\(\",rB:!0,relevance:0,c:[e.UTM]},{cN:\"params\",b:/\\(/,e:/\\)/,k:a,relevance:0,c:[e.ASM,e.QSM,e.CNM,e.CBCM]},e.CLCM,e.CBCM]},t,{cN:\"meta\",b:\"@[A-Za-z]+\"}]}});hljs.registerLanguage(\"cs\",function(e){var a={keyword:\"abstract as base bool break byte case catch char checked const continue decimal default delegate do double enum event explicit extern finally fixed float for foreach goto if implicit in int interface internal is lock long object operator out override params private protected public readonly ref sbyte sealed short sizeof stackalloc static string struct switch this try typeof uint ulong unchecked unsafe ushort using virtual void volatile while add alias ascending async await by descending dynamic equals from get global group into join let nameof on orderby partial remove select set value var when where yield\",literal:\"null false true\"},i={cN:\"number\",v:[{b:\"\\\\b(0b[01']+)\"},{b:\"(-?)\\\\b([\\\\d']+(\\\\.[\\\\d']*)?|\\\\.[\\\\d']+)(u|U|l|L|ul|UL|f|F|b|B)\"},{b:\"(-?)(\\\\b0[xX][a-fA-F0-9']+|(\\\\b[\\\\d']+(\\\\.[\\\\d']*)?|\\\\.[\\\\d']+)([eE][-+]?[\\\\d']+)?)\"}],relevance:0},c={cN:\"string\",b:'@\"',e:'\"',c:[{b:'\"\"'}]},r=e.inherit(c,{i:/\\n/}),n={cN:\"subst\",b:\"{\",e:\"}\",k:a},t=e.inherit(n,{i:/\\n/}),s={cN:\"string\",b:/\\$\"/,e:'\"',i:/\\n/,c:[{b:\"{{\"},{b:\"}}\"},e.BE,t]},l={cN:\"string\",b:/\\$@\"/,e:'\"',c:[{b:\"{{\"},{b:\"}}\"},{b:'\"\"'},n]},b=e.inherit(l,{i:/\\n/,c:[{b:\"{{\"},{b:\"}}\"},{b:'\"\"'},t]});n.c=[l,s,c,e.ASM,e.QSM,i,e.CBCM],t.c=[b,s,r,e.ASM,e.QSM,i,e.inherit(e.CBCM,{i:/\\n/})];var o={v:[l,s,c,e.ASM,e.QSM]},d=e.IR+\"(<\"+e.IR+\"(\\\\s*,\\\\s*\"+e.IR+\")*>)?(\\\\[\\\\])?\";return{aliases:[\"csharp\",\"c#\"],k:a,i:/::/,c:[e.C(\"///\",\"$\",{rB:!0,c:[{cN:\"doctag\",v:[{b:\"///\",relevance:0},{b:\"\\x3c!--|--\\x3e\"},{b:\"</?\",e:\">\"}]}]}),e.CLCM,e.CBCM,{cN:\"meta\",b:\"#\",e:\"$\",k:{\"meta-keyword\":\"if else elif endif define undef warning error line region endregion pragma checksum\"}},o,i,{bK:\"class interface\",e:/[{;=]/,i:/[^\\s:,]/,c:[e.TM,e.CLCM,e.CBCM]},{bK:\"namespace\",e:/[{;=]/,i:/[^\\s:]/,c:[e.inherit(e.TM,{b:\"[a-zA-Z](\\\\.?\\\\w)*\"}),e.CLCM,e.CBCM]},{cN:\"meta\",b:\"^\\\\s*\\\\[\",eB:!0,e:\"\\\\]\",eE:!0,c:[{cN:\"meta-string\",b:/\"/,e:/\"/}]},{bK:\"new return throw await else\",relevance:0},{cN:\"function\",b:\"(\"+d+\"\\\\s+)+\"+e.IR+\"\\\\s*\\\\(\",rB:!0,e:/\\s*[{;=]/,eE:!0,k:a,c:[{b:e.IR+\"\\\\s*\\\\(\",rB:!0,c:[e.TM],relevance:0},{cN:\"params\",b:/\\(/,e:/\\)/,eB:!0,eE:!0,k:a,relevance:0,c:[o,i,e.CBCM]},e.CLCM,e.CBCM]}]}});hljs.registerLanguage(\"mathematica\",function(e){return{aliases:[\"mma\",\"wl\"],l:\"(\\\\$|\\\\b)\"+e.IR+\"\\\\b\",k:\"AASTriangle AbelianGroup Abort AbortKernels AbortProtect AbortScheduledTask Above Abs AbsArg AbsArgPlot Absolute AbsoluteCorrelation AbsoluteCorrelationFunction AbsoluteCurrentValue AbsoluteDashing AbsoluteFileName AbsoluteOptions AbsolutePointSize AbsoluteThickness AbsoluteTime AbsoluteTiming AcceptanceThreshold AccountingForm Accumulate Accuracy AccuracyGoal ActionDelay ActionMenu ActionMenuBox ActionMenuBoxOptions Activate Active ActiveClassification ActiveClassificationObject ActiveItem ActivePrediction ActivePredictionObject ActiveStyle AcyclicGraphQ AddOnHelpPath AddSides AddTo AddToSearchIndex AddUsers AdjacencyGraph AdjacencyList AdjacencyMatrix AdjustmentBox AdjustmentBoxOptions AdjustTimeSeriesForecast AdministrativeDivisionData AffineHalfSpace AffineSpace AffineStateSpaceModel AffineTransform After AggregatedEntityClass AggregationLayer AircraftData AirportData AirPressureData AirTemperatureData AiryAi AiryAiPrime AiryAiZero AiryBi AiryBiPrime AiryBiZero AlgebraicIntegerQ AlgebraicNumber AlgebraicNumberDenominator AlgebraicNumberNorm AlgebraicNumberPolynomial AlgebraicNumberTrace AlgebraicRules AlgebraicRulesData Algebraics AlgebraicUnitQ Alignment AlignmentMarker AlignmentPoint All AllowAdultContent AllowedCloudExtraParameters AllowedCloudParameterExtensions AllowedDimensions AllowedFrequencyRange AllowedHeads AllowGroupClose AllowIncomplete AllowInlineCells AllowKernelInitialization AllowLooseGrammar AllowReverseGroupClose AllowScriptLevelChange AllTrue Alphabet AlphabeticOrder AlphabeticSort AlphaChannel AlternateImage AlternatingFactorial AlternatingGroup AlternativeHypothesis Alternatives AltitudeMethod AmbientLight AmbiguityFunction AmbiguityList Analytic AnatomyData AnatomyForm AnatomyPlot3D AnatomySkinStyle AnatomyStyling AnchoredSearch And AndersonDarlingTest AngerJ AngleBisector AngleBracket AnglePath AnglePath3D AngleVector AngularGauge Animate AnimationCycleOffset AnimationCycleRepetitions AnimationDirection AnimationDisplayTime AnimationRate AnimationRepetitions AnimationRunning AnimationRunTime AnimationTimeIndex Animator AnimatorBox AnimatorBoxOptions AnimatorElements Annotate Annotation AnnotationDelete AnnotationNames AnnotationRules AnnotationValue Annuity AnnuityDue Annulus AnomalyDetection AnomalyDetectorFunction Anonymous Antialiasing AntihermitianMatrixQ Antisymmetric AntisymmetricMatrixQ Antonyms AnyOrder AnySubset AnyTrue Apart ApartSquareFree APIFunction Appearance AppearanceElements AppearanceRules AppellF1 Append AppendCheck AppendLayer AppendTo ApplicationIdentificationKey Apply ApplySides ArcCos ArcCosh ArcCot ArcCoth ArcCsc ArcCsch ArcCurvature ARCHProcess ArcLength ArcSec ArcSech ArcSin ArcSinDistribution ArcSinh ArcTan ArcTanh Area Arg ArgMax ArgMin ArgumentCountQ ARIMAProcess ArithmeticGeometricMean ARMAProcess Around AroundReplace ARProcess Array ArrayComponents ArrayDepth ArrayFilter ArrayFlatten ArrayMesh ArrayPad ArrayPlot ArrayQ ArrayResample ArrayReshape ArrayRules Arrays Arrow Arrow3DBox ArrowBox Arrowheads ASATriangle Ask AskAppend AskConfirm AskDisplay AskedQ AskedValue AskFunction AskState AskTemplateDisplay AspectRatio AspectRatioFixed Assert AssociateTo Association AssociationFormat AssociationMap AssociationQ AssociationThread AssumeDeterministic Assuming Assumptions AstronomicalData AsymptoticDSolveValue AsymptoticEqual AsymptoticEquivalent AsymptoticGreater AsymptoticGreaterEqual AsymptoticIntegrate AsymptoticLess AsymptoticLessEqual AsymptoticOutputTracker AsymptoticRSolveValue AsymptoticSolve AsymptoticSum Asynchronous AsynchronousTaskObject AsynchronousTasks Atom AtomCoordinates AtomCount AtomDiagramCoordinates AtomList AtomQ AttentionLayer Attributes Audio AudioAmplify AudioAnnotate AudioAnnotationLookup AudioBlockMap AudioCapture AudioChannelAssignment AudioChannelCombine AudioChannelMix AudioChannels AudioChannelSeparate AudioData AudioDelay AudioDelete AudioDevice AudioDistance AudioFade AudioFrequencyShift AudioGenerator AudioIdentify AudioInputDevice AudioInsert AudioIntervals AudioJoin AudioLabel AudioLength AudioLocalMeasurements AudioLooping AudioLoudness AudioMeasurements AudioNormalize AudioOutputDevice AudioOverlay AudioPad AudioPan AudioPartition AudioPause AudioPitchShift AudioPlay AudioPlot AudioQ AudioRecord AudioReplace AudioResample AudioReverb AudioSampleRate AudioSpectralMap AudioSpectralTransformation AudioSplit AudioStop AudioStream AudioStreams AudioTimeStretch AudioTrim AudioType AugmentedPolyhedron AugmentedSymmetricPolynomial Authenticate Authentication AuthenticationDialog AutoAction Autocomplete AutocompletionFunction AutoCopy AutocorrelationTest AutoDelete AutoEvaluateEvents AutoGeneratedPackage AutoIndent AutoIndentSpacings AutoItalicWords AutoloadPath AutoMatch Automatic AutomaticImageSize AutoMultiplicationSymbol AutoNumberFormatting AutoOpenNotebooks AutoOpenPalettes AutoQuoteCharacters AutoRefreshed AutoRemove AutorunSequencing AutoScaling AutoScroll AutoSpacing AutoStyleOptions AutoStyleWords AutoSubmitting Axes AxesEdge AxesLabel AxesOrigin AxesStyle AxiomaticTheory AxisBabyMonsterGroupB Back Background BackgroundAppearance BackgroundTasksSettings Backslash Backsubstitution Backward Ball Band BandpassFilter BandstopFilter BarabasiAlbertGraphDistribution BarChart BarChart3D BarcodeImage BarcodeRecognize BaringhausHenzeTest BarLegend BarlowProschanImportance BarnesG BarOrigin BarSpacing BartlettHannWindow BartlettWindow BaseDecode BaseEncode BaseForm Baseline BaselinePosition BaseStyle BasicRecurrentLayer BatchNormalizationLayer BatchSize BatesDistribution BattleLemarieWavelet BayesianMaximization BayesianMaximizationObject BayesianMinimization BayesianMinimizationObject Because BeckmannDistribution Beep Before Begin BeginDialogPacket BeginFrontEndInteractionPacket BeginPackage BellB BellY Below BenfordDistribution BeniniDistribution BenktanderGibratDistribution BenktanderWeibullDistribution BernoulliB BernoulliDistribution BernoulliGraphDistribution BernoulliProcess BernsteinBasis BesselFilterModel BesselI BesselJ BesselJZero BesselK BesselY BesselYZero Beta BetaBinomialDistribution BetaDistribution BetaNegativeBinomialDistribution BetaPrimeDistribution BetaRegularized Between BetweennessCentrality BeveledPolyhedron BezierCurve BezierCurve3DBox BezierCurve3DBoxOptions BezierCurveBox BezierCurveBoxOptions BezierFunction BilateralFilter Binarize BinaryDeserialize BinaryDistance BinaryFormat BinaryImageQ BinaryRead BinaryReadList BinarySerialize BinaryWrite BinCounts BinLists Binomial BinomialDistribution BinomialProcess BinormalDistribution BiorthogonalSplineWavelet BipartiteGraphQ BiquadraticFilterModel BirnbaumImportance BirnbaumSaundersDistribution BitAnd BitClear BitGet BitLength BitNot BitOr BitSet BitShiftLeft BitShiftRight BitXor BiweightLocation BiweightMidvariance Black BlackmanHarrisWindow BlackmanNuttallWindow BlackmanWindow Blank BlankForm BlankNullSequence BlankSequence Blend Block BlockchainAddressData BlockchainBase BlockchainBlockData BlockchainContractValue BlockchainData BlockchainGet BlockchainKeyEncode BlockchainPut BlockchainTokenData BlockchainTransaction BlockchainTransactionData BlockchainTransactionSign BlockchainTransactionSubmit BlockMap BlockRandom BlomqvistBeta BlomqvistBetaTest Blue Blur BodePlot BohmanWindow Bold Bond BondCount BondList BondQ Bookmarks Boole BooleanConsecutiveFunction BooleanConvert BooleanCountingFunction BooleanFunction BooleanGraph BooleanMaxterms BooleanMinimize BooleanMinterms BooleanQ BooleanRegion Booleans BooleanStrings BooleanTable BooleanVariables BorderDimensions BorelTannerDistribution Bottom BottomHatTransform BoundaryDiscretizeGraphics BoundaryDiscretizeRegion BoundaryMesh BoundaryMeshRegion BoundaryMeshRegionQ BoundaryStyle BoundedRegionQ BoundingRegion Bounds Box BoxBaselineShift BoxData BoxDimensions Boxed Boxes BoxForm BoxFormFormatTypes BoxFrame BoxID BoxMargins BoxMatrix BoxObject BoxRatios BoxRotation BoxRotationPoint BoxStyle BoxWhiskerChart Bra BracketingBar BraKet BrayCurtisDistance BreadthFirstScan Break BridgeData BrightnessEqualize BroadcastStationData Brown BrownForsytheTest BrownianBridgeProcess BrowserCategory BSplineBasis BSplineCurve BSplineCurve3DBox BSplineCurve3DBoxOptions BSplineCurveBox BSplineCurveBoxOptions BSplineFunction BSplineSurface BSplineSurface3DBox BSplineSurface3DBoxOptions BubbleChart BubbleChart3D BubbleScale BubbleSizes BuildingData BulletGauge BusinessDayQ ButterflyGraph ButterworthFilterModel Button ButtonBar ButtonBox ButtonBoxOptions ButtonCell ButtonContents ButtonData ButtonEvaluator ButtonExpandable ButtonFrame ButtonFunction ButtonMargins ButtonMinHeight ButtonNote ButtonNotebook ButtonSource ButtonStyle ButtonStyleMenuListing Byte ByteArray ByteArrayFormat ByteArrayQ ByteArrayToString ByteCount ByteOrderingC CachedValue CacheGraphics CachePersistence CalendarConvert CalendarData CalendarType Callout CalloutMarker CalloutStyle CallPacket CanberraDistance Cancel CancelButton CandlestickChart CanonicalGraph CanonicalizePolygon CanonicalizePolyhedron CanonicalName CanonicalWarpingCorrespondence CanonicalWarpingDistance CantorMesh CantorStaircase Cap CapForm CapitalDifferentialD Capitalize CapsuleShape CaptureRunning CardinalBSplineBasis CarlemanLinearize CarmichaelLambda CaseOrdering Cases CaseSensitive Cashflow Casoratian Catalan CatalanNumber Catch Catenate CatenateLayer CauchyDistribution CauchyWindow CayleyGraph CDF CDFDeploy CDFInformation CDFWavelet Ceiling CelestialSystem Cell CellAutoOverwrite CellBaseline CellBoundingBox CellBracketOptions CellChangeTimes CellContents CellContext CellDingbat CellDynamicExpression CellEditDuplicate CellElementsBoundingBox CellElementSpacings CellEpilog CellEvaluationDuplicate CellEvaluationFunction CellEvaluationLanguage CellEventActions CellFrame CellFrameColor CellFrameLabelMargins CellFrameLabels CellFrameMargins CellGroup CellGroupData CellGrouping CellGroupingRules CellHorizontalScrolling CellID CellLabel CellLabelAutoDelete CellLabelMargins CellLabelPositioning CellLabelStyle CellLabelTemplate CellMargins CellObject CellOpen CellPrint CellProlog Cells CellSize CellStyle CellTags CellularAutomaton CensoredDistribution Censoring Center CenterArray CenterDot CentralFeature CentralMoment CentralMomentGeneratingFunction Cepstrogram CepstrogramArray CepstrumArray CForm ChampernowneNumber ChangeOptions ChannelBase ChannelBrokerAction ChannelDatabin ChannelHistoryLength ChannelListen ChannelListener ChannelListeners ChannelListenerWait ChannelObject ChannelPreSendFunction ChannelReceiverFunction ChannelSend ChannelSubscribers ChanVeseBinarize Character CharacterCounts CharacterEncoding CharacterEncodingsPath CharacteristicFunction CharacteristicPolynomial CharacterName CharacterRange Characters ChartBaseStyle ChartElementData ChartElementDataFunction ChartElementFunction ChartElements ChartLabels ChartLayout ChartLegends ChartStyle Chebyshev1FilterModel Chebyshev2FilterModel ChebyshevDistance ChebyshevT ChebyshevU Check CheckAbort CheckAll Checkbox CheckboxBar CheckboxBox CheckboxBoxOptions ChemicalData ChessboardDistance ChiDistribution ChineseRemainder ChiSquareDistribution ChoiceButtons ChoiceDialog CholeskyDecomposition Chop ChromaticityPlot ChromaticityPlot3D ChromaticPolynomial Circle CircleBox CircleDot CircleMinus CirclePlus CirclePoints CircleThrough CircleTimes CirculantGraph CircularOrthogonalMatrixDistribution CircularQuaternionMatrixDistribution CircularRealMatrixDistribution CircularSymplecticMatrixDistribution CircularUnitaryMatrixDistribution Circumsphere CityData ClassifierFunction ClassifierInformation ClassifierMeasurements ClassifierMeasurementsObject Classify ClassPriors Clear ClearAll ClearAttributes ClearCookies ClearPermissions ClearSystemCache ClebschGordan ClickPane Clip ClipboardNotebook ClipFill ClippingStyle ClipPlanes ClipPlanesStyle ClipRange Clock ClockGauge ClockwiseContourIntegral Close Closed CloseKernels ClosenessCentrality Closing ClosingAutoSave ClosingEvent CloudAccountData CloudBase CloudConnect CloudDeploy CloudDirectory CloudDisconnect CloudEvaluate CloudExport CloudExpression CloudExpressions CloudFunction CloudGet CloudImport CloudLoggingData CloudObject CloudObjectInformation CloudObjectInformationData CloudObjectNameFormat CloudObjects CloudObjectURLType CloudPublish CloudPut CloudRenderingMethod CloudSave CloudShare CloudSubmit CloudSymbol CloudUnshare ClusterClassify ClusterDissimilarityFunction ClusteringComponents ClusteringTree CMYKColor Coarse CodeAssistOptions Coefficient CoefficientArrays CoefficientDomain CoefficientList CoefficientRules CoifletWavelet Collect Colon ColonForm ColorBalance ColorCombine ColorConvert ColorCoverage ColorData ColorDataFunction ColorDetect ColorDistance ColorFunction ColorFunctionScaling Colorize ColorNegate ColorOutput ColorProfileData ColorQ ColorQuantize ColorReplace ColorRules ColorSelectorSettings ColorSeparate ColorSetter ColorSetterBox ColorSetterBoxOptions ColorSlider ColorsNear ColorSpace ColorToneMapping Column ColumnAlignments ColumnBackgrounds ColumnForm ColumnLines ColumnsEqual ColumnSpacings ColumnWidths CombinedEntityClass CombinerFunction CometData CommonDefaultFormatTypes Commonest CommonestFilter CommonName CommonUnits CommunityBoundaryStyle CommunityGraphPlot CommunityLabels CommunityRegionStyle CompanyData CompatibleUnitQ CompilationOptions CompilationTarget Compile Compiled CompiledCodeFunction CompiledFunction CompilerOptions Complement CompleteGraph CompleteGraphQ CompleteKaryTree CompletionsListPacket Complex Complexes ComplexExpand ComplexInfinity ComplexityFunction ComplexListPlot ComplexPlot ComplexPlot3D ComponentMeasurements ComponentwiseContextMenu Compose ComposeList ComposeSeries CompositeQ Composition CompoundElement CompoundExpression CompoundPoissonDistribution CompoundPoissonProcess CompoundRenewalProcess Compress CompressedData ComputeUncertainty Condition ConditionalExpression Conditioned Cone ConeBox ConfidenceLevel ConfidenceRange ConfidenceTransform ConfigurationPath ConformAudio ConformImages Congruent ConicHullRegion ConicHullRegion3DBox ConicHullRegionBox ConicOptimization Conjugate ConjugateTranspose Conjunction Connect ConnectedComponents ConnectedGraphComponents ConnectedGraphQ ConnectedMeshComponents ConnectedMoleculeComponents ConnectedMoleculeQ ConnectionSettings ConnectLibraryCallbackFunction ConnectSystemModelComponents ConnesWindow ConoverTest ConsoleMessage ConsoleMessagePacket ConsolePrint Constant ConstantArray ConstantArrayLayer ConstantImage ConstantPlusLayer ConstantRegionQ Constants ConstantTimesLayer ConstellationData ConstrainedMax ConstrainedMin Construct Containing ContainsAll ContainsAny ContainsExactly ContainsNone ContainsOnly ContentFieldOptions ContentLocationFunction ContentObject ContentPadding ContentsBoundingBox ContentSelectable ContentSize Context ContextMenu Contexts ContextToFileName Continuation Continue ContinuedFraction ContinuedFractionK ContinuousAction ContinuousMarkovProcess ContinuousTask ContinuousTimeModelQ ContinuousWaveletData ContinuousWaveletTransform ContourDetect ContourGraphics ContourIntegral ContourLabels ContourLines ContourPlot ContourPlot3D Contours ContourShading ContourSmoothing ContourStyle ContraharmonicMean ContrastiveLossLayer Control ControlActive ControlAlignment ControlGroupContentsBox ControllabilityGramian ControllabilityMatrix ControllableDecomposition ControllableModelQ ControllerDuration ControllerInformation ControllerInformationData ControllerLinking ControllerManipulate ControllerMethod ControllerPath ControllerState ControlPlacement ControlsRendering ControlType Convergents ConversionOptions ConversionRules ConvertToBitmapPacket ConvertToPostScript ConvertToPostScriptPacket ConvexHullMesh ConvexPolygonQ ConvexPolyhedronQ ConvolutionLayer Convolve ConwayGroupCo1 ConwayGroupCo2 ConwayGroupCo3 CookieFunction Cookies CoordinateBoundingBox CoordinateBoundingBoxArray CoordinateBounds CoordinateBoundsArray CoordinateChartData CoordinatesToolOptions CoordinateTransform CoordinateTransformData CoprimeQ Coproduct CopulaDistribution Copyable CopyDatabin CopyDirectory CopyFile CopyTag CopyToClipboard CornerFilter CornerNeighbors Correlation CorrelationDistance CorrelationFunction CorrelationTest Cos Cosh CoshIntegral CosineDistance CosineWindow CosIntegral Cot Coth Count CountDistinct CountDistinctBy CounterAssignments CounterBox CounterBoxOptions CounterClockwiseContourIntegral CounterEvaluator CounterFunction CounterIncrements CounterStyle CounterStyleMenuListing CountRoots CountryData Counts CountsBy Covariance CovarianceEstimatorFunction CovarianceFunction CoxianDistribution CoxIngersollRossProcess CoxModel CoxModelFit CramerVonMisesTest CreateArchive CreateCellID CreateChannel CreateCloudExpression CreateDatabin CreateDataSystemModel CreateDialog CreateDirectory CreateDocument CreateFile CreateIntermediateDirectories CreateManagedLibraryExpression CreateNotebook CreatePalette CreatePalettePacket CreatePermissionsGroup CreateScheduledTask CreateSearchIndex CreateSystemModel CreateTemporary CreateUUID CreateWindow CriterionFunction CriticalityFailureImportance CriticalitySuccessImportance CriticalSection Cross CrossEntropyLossLayer CrossingCount CrossingDetect CrossingPolygon CrossMatrix Csc Csch CTCLossLayer Cube CubeRoot Cubics Cuboid CuboidBox Cumulant CumulantGeneratingFunction Cup CupCap Curl CurlyDoubleQuote CurlyQuote CurrencyConvert CurrentDate CurrentImage CurrentlySpeakingPacket CurrentNotebookImage CurrentScreenImage CurrentValue Curry CurvatureFlowFilter CurveClosed Cyan CycleGraph CycleIndexPolynomial Cycles CyclicGroup Cyclotomic Cylinder CylinderBox CylindricalDecompositionD DagumDistribution DamData DamerauLevenshteinDistance DampingFactor Darker Dashed Dashing DatabaseConnect DatabaseDisconnect DatabaseReference Databin DatabinAdd DatabinRemove Databins DatabinUpload DataCompression DataDistribution DataRange DataReversed Dataset Date DateBounds Dated DateDelimiters DateDifference DatedUnit DateFormat DateFunction DateHistogram DateList DateListLogPlot DateListPlot DateListStepPlot DateObject DateObjectQ DateOverlapsQ DatePattern DatePlus DateRange DateReduction DateString DateTicksFormat DateValue DateWithinQ DaubechiesWavelet DavisDistribution DawsonF DayCount DayCountConvention DayHemisphere DaylightQ DayMatchQ DayName DayNightTerminator DayPlus DayRange DayRound DeBruijnGraph DeBruijnSequence Debug DebugTag Decapitalize Decimal DecimalForm DeclareKnownSymbols DeclarePackage Decompose DeconvolutionLayer Decrement Decrypt DecryptFile DedekindEta DeepSpaceProbeData Default DefaultAxesStyle DefaultBaseStyle DefaultBoxStyle DefaultButton DefaultColor DefaultControlPlacement DefaultDuplicateCellStyle DefaultDuration DefaultElement DefaultFaceGridsStyle DefaultFieldHintStyle DefaultFont DefaultFontProperties DefaultFormatType DefaultFormatTypeForStyle DefaultFrameStyle DefaultFrameTicksStyle DefaultGridLinesStyle DefaultInlineFormatType DefaultInputFormatType DefaultLabelStyle DefaultMenuStyle DefaultNaturalLanguage DefaultNewCellStyle DefaultNewInlineCellStyle DefaultNotebook DefaultOptions DefaultOutputFormatType DefaultPrintPrecision DefaultStyle DefaultStyleDefinitions DefaultTextFormatType DefaultTextInlineFormatType DefaultTicksStyle DefaultTooltipStyle DefaultValue DefaultValues Defer DefineExternal DefineInputStreamMethod DefineOutputStreamMethod DefineResourceFunction Definition Degree DegreeCentrality DegreeGraphDistribution DegreeLexicographic DegreeReverseLexicographic DEigensystem DEigenvalues Deinitialization Del DelaunayMesh Delayed Deletable Delete DeleteAnomalies DeleteBorderComponents DeleteCases DeleteChannel DeleteCloudExpression DeleteContents DeleteDirectory DeleteDuplicates DeleteDuplicatesBy DeleteFile DeleteMissing DeleteObject DeletePermissionsKey DeleteSearchIndex DeleteSmallComponents DeleteStopwords DeleteWithContents DeletionWarning DelimitedArray DelimitedSequence Delimiter DelimiterFlashTime DelimiterMatching Delimiters DeliveryFunction Dendrogram Denominator DensityGraphics DensityHistogram DensityPlot DensityPlot3D DependentVariables Deploy Deployed Depth DepthFirstScan Derivative DerivativeFilter DerivedKey DescriptorStateSpace DesignMatrix DestroyAfterEvaluation Det DeviceClose DeviceConfigure DeviceExecute DeviceExecuteAsynchronous DeviceObject DeviceOpen DeviceOpenQ DeviceRead DeviceReadBuffer DeviceReadLatest DeviceReadList DeviceReadTimeSeries Devices DeviceStreams DeviceWrite DeviceWriteBuffer DGaussianWavelet DiacriticalPositioning Diagonal DiagonalizableMatrixQ DiagonalMatrix DiagonalMatrixQ Dialog DialogIndent DialogInput DialogLevel DialogNotebook DialogProlog DialogReturn DialogSymbols Diamond DiamondMatrix DiceDissimilarity DictionaryLookup DictionaryWordQ DifferenceDelta DifferenceOrder DifferenceQuotient DifferenceRoot DifferenceRootReduce Differences DifferentialD DifferentialRoot DifferentialRootReduce DifferentiatorFilter DigitalSignature DigitBlock DigitBlockMinimum DigitCharacter DigitCount DigitQ DihedralAngle DihedralGroup Dilation DimensionalCombinations DimensionalMeshComponents DimensionReduce DimensionReducerFunction DimensionReduction Dimensions DiracComb DiracDelta DirectedEdge DirectedEdges DirectedGraph DirectedGraphQ DirectedInfinity Direction Directive Directory DirectoryName DirectoryQ DirectoryStack DirichletBeta DirichletCharacter DirichletCondition DirichletConvolve DirichletDistribution DirichletEta DirichletL DirichletLambda DirichletTransform DirichletWindow DisableConsolePrintPacket DisableFormatting DiscreteChirpZTransform DiscreteConvolve DiscreteDelta DiscreteHadamardTransform DiscreteIndicator DiscreteLimit DiscreteLQEstimatorGains DiscreteLQRegulatorGains DiscreteLyapunovSolve DiscreteMarkovProcess DiscreteMaxLimit DiscreteMinLimit DiscretePlot DiscretePlot3D DiscreteRatio DiscreteRiccatiSolve DiscreteShift DiscreteTimeModelQ DiscreteUniformDistribution DiscreteVariables DiscreteWaveletData DiscreteWaveletPacketTransform DiscreteWaveletTransform DiscretizeGraphics DiscretizeRegion Discriminant DisjointQ Disjunction Disk DiskBox DiskMatrix DiskSegment Dispatch DispatchQ DispersionEstimatorFunction Display DisplayAllSteps DisplayEndPacket DisplayFlushImagePacket DisplayForm DisplayFunction DisplayPacket DisplayRules DisplaySetSizePacket DisplayString DisplayTemporary DisplayWith DisplayWithRef DisplayWithVariable DistanceFunction DistanceMatrix DistanceTransform Distribute Distributed DistributedContexts DistributeDefinitions DistributionChart DistributionDomain DistributionFitTest DistributionParameterAssumptions DistributionParameterQ Dithering Div Divergence Divide DivideBy Dividers DivideSides Divisible Divisors DivisorSigma DivisorSum DMSList DMSString Do DockedCells DocumentGenerator DocumentGeneratorInformation DocumentGeneratorInformationData DocumentGenerators DocumentNotebook DocumentWeightingRules Dodecahedron DomainRegistrationInformation DominantColors DOSTextFormat Dot DotDashed DotEqual DotLayer DotPlusLayer Dotted DoubleBracketingBar DoubleContourIntegral DoubleDownArrow DoubleLeftArrow DoubleLeftRightArrow DoubleLeftTee DoubleLongLeftArrow DoubleLongLeftRightArrow DoubleLongRightArrow DoubleRightArrow DoubleRightTee DoubleUpArrow DoubleUpDownArrow DoubleVerticalBar DoublyInfinite Down DownArrow DownArrowBar DownArrowUpArrow DownLeftRightVector DownLeftTeeVector DownLeftVector DownLeftVectorBar DownRightTeeVector DownRightVector DownRightVectorBar Downsample DownTee DownTeeArrow DownValues DragAndDrop DrawEdges DrawFrontFaces DrawHighlighted Drop DropoutLayer DSolve DSolveValue Dt DualLinearProgramming DualPolyhedron DualSystemsModel DumpGet DumpSave DuplicateFreeQ Duration Dynamic DynamicBox DynamicBoxOptions DynamicEvaluationTimeout DynamicGeoGraphics DynamicImage DynamicLocation DynamicModule DynamicModuleBox DynamicModuleBoxOptions DynamicModuleParent DynamicModuleValues DynamicName DynamicNamespace DynamicReference DynamicSetting DynamicUpdating DynamicWrapper DynamicWrapperBox DynamicWrapperBoxOptionsE EarthImpactData EarthquakeData EccentricityCentrality Echo EchoFunction EclipseType EdgeAdd EdgeBetweennessCentrality EdgeCapacity EdgeCapForm EdgeColor EdgeConnectivity EdgeContract EdgeCost EdgeCount EdgeCoverQ EdgeCycleMatrix EdgeDashing EdgeDelete EdgeDetect EdgeForm EdgeIndex EdgeJoinForm EdgeLabeling EdgeLabels EdgeLabelStyle EdgeList EdgeOpacity EdgeQ EdgeRenderingFunction EdgeRules EdgeShapeFunction EdgeStyle EdgeThickness EdgeWeight EdgeWeightedGraphQ Editable EditButtonSettings EditCellTagsSettings EditDistance EffectiveInterest Eigensystem Eigenvalues EigenvectorCentrality Eigenvectors Element ElementData ElementwiseLayer ElidedForms Eliminate EliminationOrder Ellipsoid EllipticE EllipticExp EllipticExpPrime EllipticF EllipticFilterModel EllipticK EllipticLog EllipticNomeQ EllipticPi EllipticReducedHalfPeriods EllipticTheta EllipticThetaPrime EmbedCode EmbeddedHTML EmbeddedService EmbeddingLayer EmbeddingObject EmitSound EmphasizeSyntaxErrors EmpiricalDistribution Empty EmptyGraphQ EmptyRegion EnableConsolePrintPacket Enabled Encode Encrypt EncryptedObject EncryptFile End EndAdd EndDialogPacket EndFrontEndInteractionPacket EndOfBuffer EndOfFile EndOfLine EndOfString EndPackage EngineEnvironment EngineeringForm Enter EnterExpressionPacket EnterTextPacket Entity EntityClass EntityClassList EntityCopies EntityFunction EntityGroup EntityInstance EntityList EntityPrefetch EntityProperties EntityProperty EntityPropertyClass EntityRegister EntityStore EntityStores EntityTypeName EntityUnregister EntityValue Entropy EntropyFilter Environment Epilog EpilogFunction Equal EqualColumns EqualRows EqualTilde EqualTo EquatedTo Equilibrium EquirippleFilterKernel Equivalent Erf Erfc Erfi ErlangB ErlangC ErlangDistribution Erosion ErrorBox ErrorBoxOptions ErrorNorm ErrorPacket ErrorsDialogSettings EscapeRadius EstimatedBackground EstimatedDistribution EstimatedProcess EstimatorGains EstimatorRegulator EuclideanDistance EulerAngles EulerCharacteristic EulerE EulerGamma EulerianGraphQ EulerMatrix EulerPhi Evaluatable Evaluate Evaluated EvaluatePacket EvaluateScheduledTask EvaluationBox EvaluationCell EvaluationCompletionAction EvaluationData EvaluationElements EvaluationEnvironment EvaluationMode EvaluationMonitor EvaluationNotebook EvaluationObject EvaluationOrder Evaluator EvaluatorNames EvenQ EventData EventEvaluator EventHandler EventHandlerTag EventLabels EventSeries ExactBlackmanWindow ExactNumberQ ExactRootIsolation ExampleData Except ExcludedForms ExcludedLines ExcludedPhysicalQuantities ExcludePods Exclusions ExclusionsStyle Exists Exit ExitDialog ExoplanetData Exp Expand ExpandAll ExpandDenominator ExpandFileName ExpandNumerator Expectation ExpectationE ExpectedValue ExpGammaDistribution ExpIntegralE ExpIntegralEi ExpirationDate Exponent ExponentFunction ExponentialDistribution ExponentialFamily ExponentialGeneratingFunction ExponentialMovingAverage ExponentialPowerDistribution ExponentPosition ExponentStep Export ExportAutoReplacements ExportByteArray ExportForm ExportPacket ExportString Expression ExpressionCell ExpressionPacket ExpressionUUID ExpToTrig ExtendedEntityClass ExtendedGCD Extension ExtentElementFunction ExtentMarkers ExtentSize ExternalBundle ExternalCall ExternalDataCharacterEncoding ExternalEvaluate ExternalFunction ExternalFunctionName ExternalObject ExternalOptions ExternalSessionObject ExternalSessions ExternalTypeSignature ExternalValue Extract ExtractArchive ExtractLayer ExtremeValueDistributionFaceForm FaceGrids FaceGridsStyle FacialFeatures Factor FactorComplete Factorial Factorial2 FactorialMoment FactorialMomentGeneratingFunction FactorialPower FactorInteger FactorList FactorSquareFree FactorSquareFreeList FactorTerms FactorTermsList Fail Failure FailureAction FailureDistribution FailureQ False FareySequence FARIMAProcess FeatureDistance FeatureExtract FeatureExtraction FeatureExtractor FeatureExtractorFunction FeatureNames FeatureNearest FeatureSpacePlot FeatureSpacePlot3D FeatureTypes FEDisableConsolePrintPacket FeedbackLinearize FeedbackSector FeedbackSectorStyle FeedbackType FEEnableConsolePrintPacket FetalGrowthData Fibonacci Fibonorial FieldCompletionFunction FieldHint FieldHintStyle FieldMasked FieldSize File FileBaseName FileByteCount FileConvert FileDate FileExistsQ FileExtension FileFormat FileHandler FileHash FileInformation FileName FileNameDepth FileNameDialogSettings FileNameDrop FileNameForms FileNameJoin FileNames FileNameSetter FileNameSplit FileNameTake FilePrint FileSize FileSystemMap FileSystemScan FileTemplate FileTemplateApply FileType FilledCurve FilledCurveBox FilledCurveBoxOptions Filling FillingStyle FillingTransform FilteredEntityClass FilterRules FinancialBond FinancialData FinancialDerivative FinancialIndicator Find FindAnomalies FindArgMax FindArgMin FindChannels FindClique FindClusters FindCookies FindCurvePath FindCycle FindDevices FindDistribution FindDistributionParameters FindDivisions FindEdgeCover FindEdgeCut FindEdgeIndependentPaths FindEquationalProof FindEulerianCycle FindExternalEvaluators FindFaces FindFile FindFit FindFormula FindFundamentalCycles FindGeneratingFunction FindGeoLocation FindGeometricConjectures FindGeometricTransform FindGraphCommunities FindGraphIsomorphism FindGraphPartition FindHamiltonianCycle FindHamiltonianPath FindHiddenMarkovStates FindIndependentEdgeSet FindIndependentVertexSet FindInstance FindIntegerNullVector FindKClan FindKClique FindKClub FindKPlex FindLibrary FindLinearRecurrence FindList FindMatchingColor FindMaximum FindMaximumFlow FindMaxValue FindMeshDefects FindMinimum FindMinimumCostFlow FindMinimumCut FindMinValue FindMoleculeSubstructure FindPath FindPeaks FindPermutation FindPostmanTour FindProcessParameters FindRepeat FindRoot FindSequenceFunction FindSettings FindShortestPath FindShortestTour FindSpanningTree FindSystemModelEquilibrium FindTextualAnswer FindThreshold FindTransientRepeat FindVertexCover FindVertexCut FindVertexIndependentPaths Fine FinishDynamic FiniteAbelianGroupCount FiniteGroupCount FiniteGroupData First FirstCase FirstPassageTimeDistribution FirstPosition FischerGroupFi22 FischerGroupFi23 FischerGroupFi24Prime FisherHypergeometricDistribution FisherRatioTest FisherZDistribution Fit FitAll FitRegularization FittedModel FixedOrder FixedPoint FixedPointList FlashSelection Flat Flatten FlattenAt FlattenLayer FlatTopWindow FlipView Floor FlowPolynomial FlushPrintOutputPacket Fold FoldList FoldPair FoldPairList FollowRedirects Font FontColor FontFamily FontForm FontName FontOpacity FontPostScriptName FontProperties FontReencoding FontSize FontSlant FontSubstitutions FontTracking FontVariations FontWeight For ForAll Format FormatRules FormatType FormatTypeAutoConvert FormatValues FormBox FormBoxOptions FormControl FormFunction FormLayoutFunction FormObject FormPage FormTheme FormulaData FormulaLookup FortranForm Forward ForwardBackward Fourier FourierCoefficient FourierCosCoefficient FourierCosSeries FourierCosTransform FourierDCT FourierDCTFilter FourierDCTMatrix FourierDST FourierDSTMatrix FourierMatrix FourierParameters FourierSequenceTransform FourierSeries FourierSinCoefficient FourierSinSeries FourierSinTransform FourierTransform FourierTrigSeries FractionalBrownianMotionProcess FractionalGaussianNoiseProcess FractionalPart FractionBox FractionBoxOptions FractionLine Frame FrameBox FrameBoxOptions Framed FrameInset FrameLabel Frameless FrameMargins FrameRate FrameStyle FrameTicks FrameTicksStyle FRatioDistribution FrechetDistribution FreeQ FrenetSerretSystem FrequencySamplingFilterKernel FresnelC FresnelF FresnelG FresnelS Friday FrobeniusNumber FrobeniusSolve FromAbsoluteTime FromCharacterCode FromCoefficientRules FromContinuedFraction FromDate FromDigits FromDMS FromEntity FromJulianDate FromLetterNumber FromPolarCoordinates FromRomanNumeral FromSphericalCoordinates FromUnixTime Front FrontEndDynamicExpression FrontEndEventActions FrontEndExecute FrontEndObject FrontEndResource FrontEndResourceString FrontEndStackSize FrontEndToken FrontEndTokenExecute FrontEndValueCache FrontEndVersion FrontFaceColor FrontFaceOpacity Full FullAxes FullDefinition FullForm FullGraphics FullInformationOutputRegulator FullOptions FullRegion FullSimplify Function FunctionCompile FunctionCompileExport FunctionCompileExportByteArray FunctionCompileExportLibrary FunctionCompileExportString FunctionDomain FunctionExpand FunctionInterpolation FunctionPeriod FunctionRange FunctionSpace FussellVeselyImportanceGaborFilter GaborMatrix GaborWavelet GainMargins GainPhaseMargins GalaxyData GalleryView Gamma GammaDistribution GammaRegularized GapPenalty GARCHProcess GatedRecurrentLayer Gather GatherBy GaugeFaceElementFunction GaugeFaceStyle GaugeFrameElementFunction GaugeFrameSize GaugeFrameStyle GaugeLabels GaugeMarkers GaugeStyle GaussianFilter GaussianIntegers GaussianMatrix GaussianOrthogonalMatrixDistribution GaussianSymplecticMatrixDistribution GaussianUnitaryMatrixDistribution GaussianWindow GCD GegenbauerC General GeneralizedLinearModelFit GenerateAsymmetricKeyPair GenerateConditions GeneratedCell GeneratedDocumentBinding GenerateDerivedKey GenerateDigitalSignature GenerateDocument GeneratedParameters GeneratedQuantityMagnitudes GenerateHTTPResponse GenerateSecuredAuthenticationKey GenerateSymmetricKey GeneratingFunction GeneratorDescription GeneratorHistoryLength GeneratorOutputType Generic GenericCylindricalDecomposition GenomeData GenomeLookup GeoAntipode GeoArea GeoArraySize GeoBackground GeoBoundingBox GeoBounds GeoBoundsRegion GeoBubbleChart GeoCenter GeoCircle GeodesicClosing GeodesicDilation GeodesicErosion GeodesicOpening GeoDestination GeodesyData GeoDirection GeoDisk GeoDisplacement GeoDistance GeoDistanceList GeoElevationData GeoEntities GeoGraphics GeogravityModelData GeoGridDirectionDifference GeoGridLines GeoGridLinesStyle GeoGridPosition GeoGridRange GeoGridRangePadding GeoGridUnitArea GeoGridUnitDistance GeoGridVector GeoGroup GeoHemisphere GeoHemisphereBoundary GeoHistogram GeoIdentify GeoImage GeoLabels GeoLength GeoListPlot GeoLocation GeologicalPeriodData GeomagneticModelData GeoMarker GeometricAssertion GeometricBrownianMotionProcess GeometricDistribution GeometricMean GeometricMeanFilter GeometricScene GeometricTransformation GeometricTransformation3DBox GeometricTransformation3DBoxOptions GeometricTransformationBox GeometricTransformationBoxOptions GeoModel GeoNearest GeoPath GeoPosition GeoPositionENU GeoPositionXYZ GeoProjection GeoProjectionData GeoRange GeoRangePadding GeoRegionValuePlot GeoResolution GeoScaleBar GeoServer GeoSmoothHistogram GeoStreamPlot GeoStyling GeoStylingImageFunction GeoVariant GeoVector GeoVectorENU GeoVectorPlot GeoVectorXYZ GeoVisibleRegion GeoVisibleRegionBoundary GeoWithinQ GeoZoomLevel GestureHandler GestureHandlerTag Get GetBoundingBoxSizePacket GetContext GetEnvironment GetFileName GetFrontEndOptionsDataPacket GetLinebreakInformationPacket GetMenusPacket GetPageBreakInformationPacket Glaisher GlobalClusteringCoefficient GlobalPreferences GlobalSession Glow GoldenAngle GoldenRatio GompertzMakehamDistribution GoodmanKruskalGamma GoodmanKruskalGammaTest Goto Grad Gradient GradientFilter GradientOrientationFilter GrammarApply GrammarRules GrammarToken Graph Graph3D GraphAssortativity GraphAutomorphismGroup GraphCenter GraphComplement GraphData GraphDensity GraphDiameter GraphDifference GraphDisjointUnion GraphDistance GraphDistanceMatrix GraphElementData GraphEmbedding GraphHighlight GraphHighlightStyle GraphHub Graphics Graphics3D Graphics3DBox Graphics3DBoxOptions GraphicsArray GraphicsBaseline GraphicsBox GraphicsBoxOptions GraphicsColor GraphicsColumn GraphicsComplex GraphicsComplex3DBox GraphicsComplex3DBoxOptions GraphicsComplexBox GraphicsComplexBoxOptions GraphicsContents GraphicsData GraphicsGrid GraphicsGridBox GraphicsGroup GraphicsGroup3DBox GraphicsGroup3DBoxOptions GraphicsGroupBox GraphicsGroupBoxOptions GraphicsGrouping GraphicsHighlightColor GraphicsRow GraphicsSpacing GraphicsStyle GraphIntersection GraphLayout GraphLinkEfficiency GraphPeriphery GraphPlot GraphPlot3D GraphPower GraphPropertyDistribution GraphQ GraphRadius GraphReciprocity GraphRoot GraphStyle GraphUnion Gray GrayLevel Greater GreaterEqual GreaterEqualLess GreaterEqualThan GreaterFullEqual GreaterGreater GreaterLess GreaterSlantEqual GreaterThan GreaterTilde Green GreenFunction Grid GridBaseline GridBox GridBoxAlignment GridBoxBackground GridBoxDividers GridBoxFrame GridBoxItemSize GridBoxItemStyle GridBoxOptions GridBoxSpacings GridCreationSettings GridDefaultElement GridElementStyleOptions GridFrame GridFrameMargins GridGraph GridLines GridLinesStyle GroebnerBasis GroupActionBase GroupBy GroupCentralizer GroupElementFromWord GroupElementPosition GroupElementQ GroupElements GroupElementToWord GroupGenerators Groupings GroupMultiplicationTable GroupOrbits GroupOrder GroupPageBreakWithin GroupSetwiseStabilizer GroupStabilizer GroupStabilizerChain GroupTogetherGrouping GroupTogetherNestedGrouping GrowCutComponents Gudermannian GuidedFilter GumbelDistributionHaarWavelet HadamardMatrix HalfLine HalfNormalDistribution HalfPlane HalfSpace HamiltonianGraphQ HammingDistance HammingWindow HandlerFunctions HandlerFunctionsKeys HankelH1 HankelH2 HankelMatrix HankelTransform HannPoissonWindow HannWindow HaradaNortonGroupHN HararyGraph HarmonicMean HarmonicMeanFilter HarmonicNumber Hash Haversine HazardFunction Head HeadCompose HeaderLines Heads HeavisideLambda HeavisidePi HeavisideTheta HeldGroupHe HeldPart HelpBrowserLookup HelpBrowserNotebook HelpBrowserSettings Here HermiteDecomposition HermiteH HermitianMatrixQ HessenbergDecomposition Hessian HexadecimalCharacter Hexahedron HexahedronBox HexahedronBoxOptions HiddenMarkovProcess HiddenSurface Highlighted HighlightGraph HighlightImage HighlightMesh HighpassFilter HigmanSimsGroupHS HilbertCurve HilbertFilter HilbertMatrix Histogram Histogram3D HistogramDistribution HistogramList HistogramTransform HistogramTransformInterpolation HistoricalPeriodData HitMissTransform HITSCentrality HjorthDistribution HodgeDual HoeffdingD HoeffdingDTest Hold HoldAll HoldAllComplete HoldComplete HoldFirst HoldForm HoldPattern HoldRest HolidayCalendar HomeDirectory HomePage Horizontal HorizontalForm HorizontalGauge HorizontalScrollPosition HornerForm HostLookup HotellingTSquareDistribution HoytDistribution HTMLSave HTTPErrorResponse HTTPRedirect HTTPRequest HTTPRequestData HTTPResponse Hue HumanGrowthData HumpDownHump HumpEqual HurwitzLerchPhi HurwitzZeta HyperbolicDistribution HypercubeGraph HyperexponentialDistribution Hyperfactorial Hypergeometric0F1 Hypergeometric0F1Regularized Hypergeometric1F1 Hypergeometric1F1Regularized Hypergeometric2F1 Hypergeometric2F1Regularized HypergeometricDistribution HypergeometricPFQ HypergeometricPFQRegularized HypergeometricU Hyperlink HyperlinkCreationSettings Hyperplane Hyphenation HyphenationOptions HypoexponentialDistribution HypothesisTestDataI IconData Iconize IconizedObject IconRules Icosahedron Identity IdentityMatrix If IgnoreCase IgnoreDiacritics IgnorePunctuation IgnoreSpellCheck IgnoringInactive Im Image Image3D Image3DProjection Image3DSlices ImageAccumulate ImageAdd ImageAdjust ImageAlign ImageApply ImageApplyIndexed ImageAspectRatio ImageAssemble ImageAugmentationLayer ImageBoundingBoxes ImageCache ImageCacheValid ImageCapture ImageCaptureFunction ImageCases ImageChannels ImageClip ImageCollage ImageColorSpace ImageCompose ImageContainsQ ImageContents ImageConvolve ImageCooccurrence ImageCorners ImageCorrelate ImageCorrespondingPoints ImageCrop ImageData ImageDeconvolve ImageDemosaic ImageDifference ImageDimensions ImageDisplacements ImageDistance ImageEffect ImageExposureCombine ImageFeatureTrack ImageFileApply ImageFileFilter ImageFileScan ImageFilter ImageFocusCombine ImageForestingComponents ImageFormattingWidth ImageForwardTransformation ImageGraphics ImageHistogram ImageIdentify ImageInstanceQ ImageKeypoints ImageLevels ImageLines ImageMargins ImageMarker ImageMarkers ImageMeasurements ImageMesh ImageMultiply ImageOffset ImagePad ImagePadding ImagePartition ImagePeriodogram ImagePerspectiveTransformation ImagePosition ImagePreviewFunction ImagePyramid ImagePyramidApply ImageQ ImageRangeCache ImageRecolor ImageReflect ImageRegion ImageResize ImageResolution ImageRestyle ImageRotate ImageRotated ImageSaliencyFilter ImageScaled ImageScan ImageSize ImageSizeAction ImageSizeCache ImageSizeMultipliers ImageSizeRaw ImageSubtract ImageTake ImageTransformation ImageTrim ImageType ImageValue ImageValuePositions ImagingDevice ImplicitRegion Implies Import ImportAutoReplacements ImportByteArray ImportOptions ImportString ImprovementImportance In Inactivate Inactive IncidenceGraph IncidenceList IncidenceMatrix IncludeAromaticBonds IncludeConstantBasis IncludeDefinitions IncludeDirectories IncludeFileExtension IncludeGeneratorTasks IncludeHydrogens IncludeInflections IncludeMetaInformation IncludePods IncludeQuantities IncludeRelatedTables IncludeSingularTerm IncludeWindowTimes Increment IndefiniteMatrixQ Indent IndentingNewlineSpacings IndentMaxFraction IndependenceTest IndependentEdgeSetQ IndependentPhysicalQuantity IndependentUnit IndependentUnitDimension IndependentVertexSetQ Indeterminate IndeterminateThreshold IndexCreationOptions Indexed IndexGraph IndexTag Inequality InexactNumberQ InexactNumbers InfiniteLine InfinitePlane Infinity Infix InflationAdjust InflationMethod Information InformationData InformationDataGrid Inherited InheritScope InhomogeneousPoissonProcess InitialEvaluationHistory Initialization InitializationCell InitializationCellEvaluation InitializationCellWarning InitializationObjects InitializationValue Initialize InitialSeeding InlineCounterAssignments InlineCounterIncrements InlineRules Inner InnerPolygon InnerPolyhedron Inpaint Input InputAliases InputAssumptions InputAutoReplacements InputField InputFieldBox InputFieldBoxOptions InputForm InputGrouping InputNamePacket InputNotebook InputPacket InputSettings InputStream InputString InputStringPacket InputToBoxFormPacket Insert InsertionFunction InsertionPointObject InsertLinebreaks InsertResults Inset Inset3DBox Inset3DBoxOptions InsetBox InsetBoxOptions Insphere Install InstallService InstanceNormalizationLayer InString Integer IntegerDigits IntegerExponent IntegerLength IntegerName IntegerPart IntegerPartitions IntegerQ IntegerReverse Integers IntegerString Integral Integrate Interactive InteractiveTradingChart Interlaced Interleaving InternallyBalancedDecomposition InterpolatingFunction InterpolatingPolynomial Interpolation InterpolationOrder InterpolationPoints InterpolationPrecision Interpretation InterpretationBox InterpretationBoxOptions InterpretationFunction Interpreter InterpretTemplate InterquartileRange Interrupt InterruptSettings IntersectingQ Intersection Interval IntervalIntersection IntervalMarkers IntervalMarkersStyle IntervalMemberQ IntervalSlider IntervalUnion Into Inverse InverseBetaRegularized InverseCDF InverseChiSquareDistribution InverseContinuousWaveletTransform InverseDistanceTransform InverseEllipticNomeQ InverseErf InverseErfc InverseFourier InverseFourierCosTransform InverseFourierSequenceTransform InverseFourierSinTransform InverseFourierTransform InverseFunction InverseFunctions InverseGammaDistribution InverseGammaRegularized InverseGaussianDistribution InverseGudermannian InverseHankelTransform InverseHaversine InverseImagePyramid InverseJacobiCD InverseJacobiCN InverseJacobiCS InverseJacobiDC InverseJacobiDN InverseJacobiDS InverseJacobiNC InverseJacobiND InverseJacobiNS InverseJacobiSC InverseJacobiSD InverseJacobiSN InverseLaplaceTransform InverseMellinTransform InversePermutation InverseRadon InverseRadonTransform InverseSeries InverseShortTimeFourier InverseSpectrogram InverseSurvivalFunction InverseTransformedRegion InverseWaveletTransform InverseWeierstrassP InverseWishartMatrixDistribution InverseZTransform Invisible InvisibleApplication InvisibleTimes IPAddress IrreduciblePolynomialQ IslandData IsolatingInterval IsomorphicGraphQ IsotopeData Italic Item ItemAspectRatio ItemBox ItemBoxOptions ItemSize ItemStyle ItoProcessJaccardDissimilarity JacobiAmplitude Jacobian JacobiCD JacobiCN JacobiCS JacobiDC JacobiDN JacobiDS JacobiNC JacobiND JacobiNS JacobiP JacobiSC JacobiSD JacobiSN JacobiSymbol JacobiZeta JankoGroupJ1 JankoGroupJ2 JankoGroupJ3 JankoGroupJ4 JarqueBeraALMTest JohnsonDistribution Join JoinAcross Joined JoinedCurve JoinedCurveBox JoinedCurveBoxOptions JoinForm JordanDecomposition JordanModelDecomposition JulianDate JuliaSetBoettcher JuliaSetIterationCount JuliaSetPlot JuliaSetPointsK KagiChart KaiserBesselWindow KaiserWindow KalmanEstimator KalmanFilter KarhunenLoeveDecomposition KaryTree KatzCentrality KCoreComponents KDistribution KEdgeConnectedComponents KEdgeConnectedGraphQ KelvinBei KelvinBer KelvinKei KelvinKer KendallTau KendallTauTest KernelExecute KernelFunction KernelMixtureDistribution Kernels Ket Key KeyCollisionFunction KeyComplement KeyDrop KeyDropFrom KeyExistsQ KeyFreeQ KeyIntersection KeyMap KeyMemberQ KeypointStrength Keys KeySelect KeySort KeySortBy KeyTake KeyUnion KeyValueMap KeyValuePattern Khinchin KillProcess KirchhoffGraph KirchhoffMatrix KleinInvariantJ KnapsackSolve KnightTourGraph KnotData KnownUnitQ KochCurve KolmogorovSmirnovTest KroneckerDelta KroneckerModelDecomposition KroneckerProduct KroneckerSymbol KuiperTest KumaraswamyDistribution Kurtosis KuwaharaFilter KVertexConnectedComponents KVertexConnectedGraphQLABColor Label Labeled LabeledSlider LabelingFunction LabelingSize LabelStyle LabelVisibility LaguerreL LakeData LambdaComponents LambertW LaminaData LanczosWindow LandauDistribution Language LanguageCategory LanguageData LanguageIdentify LanguageOptions LaplaceDistribution LaplaceTransform Laplacian LaplacianFilter LaplacianGaussianFilter Large Larger Last Latitude LatitudeLongitude LatticeData LatticeReduce Launch LaunchKernels LayeredGraphPlot LayerSizeFunction LayoutInformation LCHColor LCM LeaderSize LeafCount LeapYearQ LearnDistribution LearnedDistribution LearningRate LearningRateMultipliers LeastSquares LeastSquaresFilterKernel Left LeftArrow LeftArrowBar LeftArrowRightArrow LeftDownTeeVector LeftDownVector LeftDownVectorBar LeftRightArrow LeftRightVector LeftTee LeftTeeArrow LeftTeeVector LeftTriangle LeftTriangleBar LeftTriangleEqual LeftUpDownVector LeftUpTeeVector LeftUpVector LeftUpVectorBar LeftVector LeftVectorBar LegendAppearance Legended LegendFunction LegendLabel LegendLayout LegendMargins LegendMarkers LegendMarkerSize LegendreP LegendreQ LegendreType Length LengthWhile LerchPhi Less LessEqual LessEqualGreater LessEqualThan LessFullEqual LessGreater LessLess LessSlantEqual LessThan LessTilde LetterCharacter LetterCounts LetterNumber LetterQ Level LeveneTest LeviCivitaTensor LevyDistribution Lexicographic LibraryDataType LibraryFunction LibraryFunctionError LibraryFunctionInformation LibraryFunctionLoad LibraryFunctionUnload LibraryLoad LibraryUnload LicenseID LiftingFilterData LiftingWaveletTransform LightBlue LightBrown LightCyan Lighter LightGray LightGreen Lighting LightingAngle LightMagenta LightOrange LightPink LightPurple LightRed LightSources LightYellow Likelihood Limit LimitsPositioning LimitsPositioningTokens LindleyDistribution Line Line3DBox Line3DBoxOptions LinearFilter LinearFractionalOptimization LinearFractionalTransform LinearGradientImage LinearizingTransformationData LinearLayer LinearModelFit LinearOffsetFunction LinearOptimization LinearProgramming LinearRecurrence LinearSolve LinearSolveFunction LineBox LineBoxOptions LineBreak LinebreakAdjustments LineBreakChart LinebreakSemicolonWeighting LineBreakWithin LineColor LineGraph LineIndent LineIndentMaxFraction LineIntegralConvolutionPlot LineIntegralConvolutionScale LineLegend LineOpacity LineSpacing LineWrapParts LinkActivate LinkClose LinkConnect LinkConnectedQ LinkCreate LinkError LinkFlush LinkFunction LinkHost LinkInterrupt LinkLaunch LinkMode LinkObject LinkOpen LinkOptions LinkPatterns LinkProtocol LinkRankCentrality LinkRead LinkReadHeld LinkReadyQ Links LinkService LinkWrite LinkWriteHeld LiouvilleLambda List Listable ListAnimate ListContourPlot ListContourPlot3D ListConvolve ListCorrelate ListCurvePathPlot ListDeconvolve ListDensityPlot ListDensityPlot3D Listen ListFormat ListFourierSequenceTransform ListInterpolation ListLineIntegralConvolutionPlot ListLinePlot ListLogLinearPlot ListLogLogPlot ListLogPlot ListPicker ListPickerBox ListPickerBoxBackground ListPickerBoxOptions ListPlay ListPlot ListPlot3D ListPointPlot3D ListPolarPlot ListQ ListSliceContourPlot3D ListSliceDensityPlot3D ListSliceVectorPlot3D ListStepPlot ListStreamDensityPlot ListStreamPlot ListSurfacePlot3D ListVectorDensityPlot ListVectorPlot ListVectorPlot3D ListZTransform Literal LiteralSearch LocalAdaptiveBinarize LocalCache LocalClusteringCoefficient LocalizeDefinitions LocalizeVariables LocalObject LocalObjects LocalResponseNormalizationLayer LocalSubmit LocalSymbol LocalTime LocalTimeZone LocationEquivalenceTest LocationTest Locator LocatorAutoCreate LocatorBox LocatorBoxOptions LocatorCentering LocatorPane LocatorPaneBox LocatorPaneBoxOptions LocatorRegion Locked Log Log10 Log2 LogBarnesG LogGamma LogGammaDistribution LogicalExpand LogIntegral LogisticDistribution LogisticSigmoid LogitModelFit LogLikelihood LogLinearPlot LogLogisticDistribution LogLogPlot LogMultinormalDistribution LogNormalDistribution LogPlot LogRankTest LogSeriesDistribution LongEqual Longest LongestCommonSequence LongestCommonSequencePositions LongestCommonSubsequence LongestCommonSubsequencePositions LongestMatch LongestOrderedSequence LongForm Longitude LongLeftArrow LongLeftRightArrow LongRightArrow LongShortTermMemoryLayer Lookup Loopback LoopFreeGraphQ LossFunction LowerCaseQ LowerLeftArrow LowerRightArrow LowerTriangularize LowerTriangularMatrixQ LowpassFilter LQEstimatorGains LQGRegulator LQOutputRegulatorGains LQRegulatorGains LUBackSubstitution LucasL LuccioSamiComponents LUDecomposition LunarEclipse LUVColor LyapunovSolve LyonsGroupLyMachineID MachineName MachineNumberQ MachinePrecision MacintoshSystemPageSetup Magenta Magnification Magnify MailAddressValidation MailExecute MailFolder MailItem MailReceiverFunction MailResponseFunction MailSearch MailServerConnect MailServerConnection MailSettings MainSolve MaintainDynamicCaches Majority MakeBoxes MakeExpression MakeRules ManagedLibraryExpressionID ManagedLibraryExpressionQ MandelbrotSetBoettcher MandelbrotSetDistance MandelbrotSetIterationCount MandelbrotSetMemberQ MandelbrotSetPlot MangoldtLambda ManhattanDistance Manipulate Manipulator MannedSpaceMissionData MannWhitneyTest MantissaExponent Manual Map MapAll MapAt MapIndexed MAProcess MapThread MarchenkoPasturDistribution MarcumQ MardiaCombinedTest MardiaKurtosisTest MardiaSkewnessTest MarginalDistribution MarkovProcessProperties Masking MatchingDissimilarity MatchLocalNameQ MatchLocalNames MatchQ Material MathematicalFunctionData MathematicaNotation MathieuC MathieuCharacteristicA MathieuCharacteristicB MathieuCharacteristicExponent MathieuCPrime MathieuGroupM11 MathieuGroupM12 MathieuGroupM22 MathieuGroupM23 MathieuGroupM24 MathieuS MathieuSPrime MathMLForm MathMLText Matrices MatrixExp MatrixForm MatrixFunction MatrixLog MatrixNormalDistribution MatrixPlot MatrixPower MatrixPropertyDistribution MatrixQ MatrixRank MatrixTDistribution Max MaxBend MaxCellMeasure MaxColorDistance MaxDetect MaxDuration MaxExtraBandwidths MaxExtraConditions MaxFeatureDisplacement MaxFeatures MaxFilter MaximalBy Maximize MaxItems MaxIterations MaxLimit MaxMemoryUsed MaxMixtureKernels MaxOverlapFraction MaxPlotPoints MaxPoints MaxRecursion MaxStableDistribution MaxStepFraction MaxSteps MaxStepSize MaxTrainingRounds MaxValue MaxwellDistribution MaxWordGap McLaughlinGroupMcL Mean MeanAbsoluteLossLayer MeanAround MeanClusteringCoefficient MeanDegreeConnectivity MeanDeviation MeanFilter MeanGraphDistance MeanNeighborDegree MeanShift MeanShiftFilter MeanSquaredLossLayer Median MedianDeviation MedianFilter MedicalTestData Medium MeijerG MeijerGReduce MeixnerDistribution MellinConvolve MellinTransform MemberQ MemoryAvailable MemoryConstrained MemoryConstraint MemoryInUse MengerMesh Menu MenuAppearance MenuCommandKey MenuEvaluator MenuItem MenuList MenuPacket MenuSortingValue MenuStyle MenuView Merge MergeDifferences MergingFunction MersennePrimeExponent MersennePrimeExponentQ Mesh MeshCellCentroid MeshCellCount MeshCellHighlight MeshCellIndex MeshCellLabel MeshCellMarker MeshCellMeasure MeshCellQuality MeshCells MeshCellShapeFunction MeshCellStyle MeshCoordinates MeshFunctions MeshPrimitives MeshQualityGoal MeshRange MeshRefinementFunction MeshRegion MeshRegionQ MeshShading MeshStyle Message MessageDialog MessageList MessageName MessageObject MessageOptions MessagePacket Messages MessagesNotebook MetaCharacters MetaInformation MeteorShowerData Method MethodOptions MexicanHatWavelet MeyerWavelet Midpoint Min MinColorDistance MinDetect MineralData MinFilter MinimalBy MinimalPolynomial MinimalStateSpaceModel Minimize MinimumTimeIncrement MinIntervalSize MinkowskiQuestionMark MinLimit MinMax MinorPlanetData Minors MinRecursion MinSize MinStableDistribution Minus MinusPlus MinValue Missing MissingBehavior MissingDataMethod MissingDataRules MissingQ MissingString MissingStyle MissingValuePattern MittagLefflerE MixedFractionParts MixedGraphQ MixedMagnitude MixedRadix MixedRadixQuantity MixedUnit MixtureDistribution Mod Modal Mode Modular ModularInverse ModularLambda Module Modulus MoebiusMu Molecule MoleculeContainsQ MoleculeEquivalentQ MoleculeGraph MoleculeModify MoleculePattern MoleculePlot MoleculePlot3D MoleculeProperty MoleculeQ MoleculeValue Moment Momentary MomentConvert MomentEvaluate MomentGeneratingFunction MomentOfInertia Monday Monitor MonomialList MonomialOrder MonsterGroupM MoonPhase MoonPosition MorletWavelet MorphologicalBinarize MorphologicalBranchPoints MorphologicalComponents MorphologicalEulerNumber MorphologicalGraph MorphologicalPerimeter MorphologicalTransform MortalityData Most MountainData MouseAnnotation MouseAppearance MouseAppearanceTag MouseButtons Mouseover MousePointerNote MousePosition MovieData MovingAverage MovingMap MovingMedian MoyalDistribution Multicolumn MultiedgeStyle MultigraphQ MultilaunchWarning MultiLetterItalics MultiLetterStyle MultilineFunction Multinomial MultinomialDistribution MultinormalDistribution MultiplicativeOrder Multiplicity MultiplySides Multiselection MultivariateHypergeometricDistribution MultivariatePoissonDistribution MultivariateTDistributionN NakagamiDistribution NameQ Names NamespaceBox NamespaceBoxOptions Nand NArgMax NArgMin NBernoulliB NBodySimulation NBodySimulationData NCache NDEigensystem NDEigenvalues NDSolve NDSolveValue Nearest NearestFunction NearestNeighborGraph NearestTo NebulaData NeedCurrentFrontEndPackagePacket NeedCurrentFrontEndSymbolsPacket NeedlemanWunschSimilarity Needs Negative NegativeBinomialDistribution NegativeDefiniteMatrixQ NegativeIntegers NegativeMultinomialDistribution NegativeRationals NegativeReals NegativeSemidefiniteMatrixQ NeighborhoodData NeighborhoodGraph Nest NestedGreaterGreater NestedLessLess NestedScriptRules NestGraph NestList NestWhile NestWhileList NetAppend NetBidirectionalOperator NetChain NetDecoder NetDelete NetDrop NetEncoder NetEvaluationMode NetExtract NetFlatten NetFoldOperator NetGraph NetInformation NetInitialize NetInsert NetInsertSharedArrays NetJoin NetMapOperator NetMapThreadOperator NetMeasurements NetModel NetNestOperator NetPairEmbeddingOperator NetPort NetPortGradient NetPrepend NetRename NetReplace NetReplacePart NetSharedArray NetStateObject NetTake NetTrain NetTrainResultsObject NetworkPacketCapture NetworkPacketRecording NetworkPacketRecordingDuring NetworkPacketTrace NeumannValue NevilleThetaC NevilleThetaD NevilleThetaN NevilleThetaS NewPrimitiveStyle NExpectation Next NextCell NextDate NextPrime NextScheduledTaskTime NHoldAll NHoldFirst NHoldRest NicholsGridLines NicholsPlot NightHemisphere NIntegrate NMaximize NMaxValue NMinimize NMinValue NominalVariables NonAssociative NoncentralBetaDistribution NoncentralChiSquareDistribution NoncentralFRatioDistribution NoncentralStudentTDistribution NonCommutativeMultiply NonConstants NondimensionalizationTransform None NoneTrue NonlinearModelFit NonlinearStateSpaceModel NonlocalMeansFilter NonNegative NonNegativeIntegers NonNegativeRationals NonNegativeReals NonPositive NonPositiveIntegers NonPositiveRationals NonPositiveReals Nor NorlundB Norm Normal NormalDistribution NormalGrouping NormalizationLayer Normalize Normalized NormalizedSquaredEuclideanDistance NormalMatrixQ NormalsFunction NormFunction Not NotCongruent NotCupCap NotDoubleVerticalBar Notebook NotebookApply NotebookAutoSave NotebookClose NotebookConvertSettings NotebookCreate NotebookCreateReturnObject NotebookDefault NotebookDelete NotebookDirectory NotebookDynamicExpression NotebookEvaluate NotebookEventActions NotebookFileName NotebookFind NotebookFindReturnObject NotebookGet NotebookGetLayoutInformationPacket NotebookGetMisspellingsPacket NotebookImport NotebookInformation NotebookInterfaceObject NotebookLocate NotebookObject NotebookOpen NotebookOpenReturnObject NotebookPath NotebookPrint NotebookPut NotebookPutReturnObject NotebookRead NotebookResetGeneratedCells Notebooks NotebookSave NotebookSaveAs NotebookSelection NotebookSetupLayoutInformationPacket NotebooksMenu NotebookTemplate NotebookWrite NotElement NotEqualTilde NotExists NotGreater NotGreaterEqual NotGreaterFullEqual NotGreaterGreater NotGreaterLess NotGreaterSlantEqual NotGreaterTilde Nothing NotHumpDownHump NotHumpEqual NotificationFunction NotLeftTriangle NotLeftTriangleBar NotLeftTriangleEqual NotLess NotLessEqual NotLessFullEqual NotLessGreater NotLessLess NotLessSlantEqual NotLessTilde NotNestedGreaterGreater NotNestedLessLess NotPrecedes NotPrecedesEqual NotPrecedesSlantEqual NotPrecedesTilde NotReverseElement NotRightTriangle NotRightTriangleBar NotRightTriangleEqual NotSquareSubset NotSquareSubsetEqual NotSquareSuperset NotSquareSupersetEqual NotSubset NotSubsetEqual NotSucceeds NotSucceedsEqual NotSucceedsSlantEqual NotSucceedsTilde NotSuperset NotSupersetEqual NotTilde NotTildeEqual NotTildeFullEqual NotTildeTilde NotVerticalBar Now NoWhitespace NProbability NProduct NProductFactors NRoots NSolve NSum NSumTerms NuclearExplosionData NuclearReactorData Null NullRecords NullSpace NullWords Number NumberCompose NumberDecompose NumberExpand NumberFieldClassNumber NumberFieldDiscriminant NumberFieldFundamentalUnits NumberFieldIntegralBasis NumberFieldNormRepresentatives NumberFieldRegulator NumberFieldRootsOfUnity NumberFieldSignature NumberForm NumberFormat NumberLinePlot NumberMarks NumberMultiplier NumberPadding NumberPoint NumberQ NumberSeparator NumberSigns NumberString Numerator NumeratorDenominator NumericalOrder NumericalSort NumericArray NumericArrayQ NumericArrayType NumericFunction NumericQ NuttallWindow NValues NyquistGridLines NyquistPlotO ObservabilityGramian ObservabilityMatrix ObservableDecomposition ObservableModelQ OceanData Octahedron OddQ Off Offset OLEData On ONanGroupON Once OneIdentity Opacity OpacityFunction OpacityFunctionScaling Open OpenAppend Opener OpenerBox OpenerBoxOptions OpenerView OpenFunctionInspectorPacket Opening OpenRead OpenSpecialOptions OpenTemporary OpenWrite Operate OperatingSystem OptimumFlowData Optional OptionalElement OptionInspectorSettings OptionQ Options OptionsPacket OptionsPattern OptionValue OptionValueBox OptionValueBoxOptions Or Orange Order OrderDistribution OrderedQ Ordering OrderingBy OrderingLayer Orderless OrderlessPatternSequence OrnsteinUhlenbeckProcess Orthogonalize OrthogonalMatrixQ Out Outer OuterPolygon OuterPolyhedron OutputAutoOverwrite OutputControllabilityMatrix OutputControllableModelQ OutputForm OutputFormData OutputGrouping OutputMathEditExpression OutputNamePacket OutputResponse OutputSizeLimit OutputStream Over OverBar OverDot Overflow OverHat Overlaps Overlay OverlayBox OverlayBoxOptions Overscript OverscriptBox OverscriptBoxOptions OverTilde OverVector OverwriteTarget OwenT OwnValuesPackage PackingMethod PaddedForm Padding PaddingLayer PaddingSize PadeApproximant PadLeft PadRight PageBreakAbove PageBreakBelow PageBreakWithin PageFooterLines PageFooters PageHeaderLines PageHeaders PageHeight PageRankCentrality PageTheme PageWidth Pagination PairedBarChart PairedHistogram PairedSmoothHistogram PairedTTest PairedZTest PaletteNotebook PalettePath PalindromeQ Pane PaneBox PaneBoxOptions Panel PanelBox PanelBoxOptions Paneled PaneSelector PaneSelectorBox PaneSelectorBoxOptions PaperWidth ParabolicCylinderD ParagraphIndent ParagraphSpacing ParallelArray ParallelCombine ParallelDo Parallelepiped ParallelEvaluate Parallelization Parallelize ParallelMap ParallelNeeds Parallelogram ParallelProduct ParallelSubmit ParallelSum ParallelTable ParallelTry Parameter ParameterEstimator ParameterMixtureDistribution ParameterVariables ParametricFunction ParametricNDSolve ParametricNDSolveValue ParametricPlot ParametricPlot3D ParametricRegion ParentBox ParentCell ParentConnect ParentDirectory ParentForm Parenthesize ParentList ParentNotebook ParetoDistribution ParetoPickandsDistribution ParkData Part PartBehavior PartialCorrelationFunction PartialD ParticleAcceleratorData ParticleData Partition PartitionGranularity PartitionsP PartitionsQ PartLayer PartOfSpeech PartProtection ParzenWindow PascalDistribution PassEventsDown PassEventsUp Paste PasteAutoQuoteCharacters PasteBoxFormInlineCells PasteButton Path PathGraph PathGraphQ Pattern PatternSequence PatternTest PauliMatrix PaulWavelet Pause PausedTime PDF PeakDetect PeanoCurve PearsonChiSquareTest PearsonCorrelationTest PearsonDistribution PercentForm PerfectNumber PerfectNumberQ PerformanceGoal Perimeter PeriodicBoundaryCondition PeriodicInterpolation Periodogram PeriodogramArray Permanent Permissions PermissionsGroup PermissionsGroupMemberQ PermissionsGroups PermissionsKey PermissionsKeys PermutationCycles PermutationCyclesQ PermutationGroup PermutationLength PermutationList PermutationListQ PermutationMax PermutationMin PermutationOrder PermutationPower PermutationProduct PermutationReplace Permutations PermutationSupport Permute PeronaMalikFilter Perpendicular PerpendicularBisector PersistenceLocation PersistenceTime PersistentObject PersistentObjects PersistentValue PersonData PERTDistribution PetersenGraph PhaseMargins PhaseRange PhysicalSystemData Pi Pick PIDData PIDDerivativeFilter PIDFeedforward PIDTune Piecewise PiecewiseExpand PieChart PieChart3D PillaiTrace PillaiTraceTest PingTime Pink PitchRecognize Pivoting PixelConstrained PixelValue PixelValuePositions Placed Placeholder PlaceholderReplace Plain PlanarAngle PlanarGraph PlanarGraphQ PlanckRadiationLaw PlaneCurveData PlanetaryMoonData PlanetData PlantData Play PlayRange Plot Plot3D Plot3Matrix PlotDivision PlotJoined PlotLabel PlotLabels PlotLayout PlotLegends PlotMarkers PlotPoints PlotRange PlotRangeClipping PlotRangeClipPlanesStyle PlotRangePadding PlotRegion PlotStyle PlotTheme Pluralize Plus PlusMinus Pochhammer PodStates PodWidth Point Point3DBox Point3DBoxOptions PointBox PointBoxOptions PointFigureChart PointLegend PointSize PoissonConsulDistribution PoissonDistribution PoissonProcess PoissonWindow PolarAxes PolarAxesOrigin PolarGridLines PolarPlot PolarTicks PoleZeroMarkers PolyaAeppliDistribution PolyGamma Polygon Polygon3DBox Polygon3DBoxOptions PolygonalNumber PolygonAngle PolygonBox PolygonBoxOptions PolygonCoordinates PolygonDecomposition PolygonHoleScale PolygonIntersections PolygonScale Polyhedron PolyhedronAngle PolyhedronCoordinates PolyhedronData PolyhedronDecomposition PolyhedronGenus PolyLog PolynomialExtendedGCD PolynomialForm PolynomialGCD PolynomialLCM PolynomialMod PolynomialQ PolynomialQuotient PolynomialQuotientRemainder PolynomialReduce PolynomialRemainder Polynomials PoolingLayer PopupMenu PopupMenuBox PopupMenuBoxOptions PopupView PopupWindow Position PositionIndex Positive PositiveDefiniteMatrixQ PositiveIntegers PositiveRationals PositiveReals PositiveSemidefiniteMatrixQ PossibleZeroQ Postfix PostScript Power PowerDistribution PowerExpand PowerMod PowerModList PowerRange PowerSpectralDensity PowersRepresentations PowerSymmetricPolynomial Precedence PrecedenceForm Precedes PrecedesEqual PrecedesSlantEqual PrecedesTilde Precision PrecisionGoal PreDecrement Predict PredictionRoot PredictorFunction PredictorInformation PredictorMeasurements PredictorMeasurementsObject PreemptProtect PreferencesPath Prefix PreIncrement Prepend PrependLayer PrependTo PreprocessingRules PreserveColor PreserveImageOptions Previous PreviousCell PreviousDate PriceGraphDistribution PrimaryPlaceholder Prime PrimeNu PrimeOmega PrimePi PrimePowerQ PrimeQ Primes PrimeZetaP PrimitivePolynomialQ PrimitiveRoot PrimitiveRootList PrincipalComponents PrincipalValue Print PrintableASCIIQ PrintAction PrintForm PrintingCopies PrintingOptions PrintingPageRange PrintingStartingPageNumber PrintingStyleEnvironment Printout3D Printout3DPreviewer PrintPrecision PrintTemporary Prism PrismBox PrismBoxOptions PrivateCellOptions PrivateEvaluationOptions PrivateFontOptions PrivateFrontEndOptions PrivateKey PrivateNotebookOptions PrivatePaths Probability ProbabilityDistribution ProbabilityPlot ProbabilityPr ProbabilityScalePlot ProbitModelFit ProcessConnection ProcessDirectory ProcessEnvironment Processes ProcessEstimator ProcessInformation ProcessObject ProcessParameterAssumptions ProcessParameterQ ProcessStateDomain ProcessStatus ProcessTimeDomain Product ProductDistribution ProductLog ProgressIndicator ProgressIndicatorBox ProgressIndicatorBoxOptions Projection Prolog PromptForm ProofObject Properties Property PropertyList PropertyValue Proportion Proportional Protect Protected ProteinData Pruning PseudoInverse PsychrometricPropertyData PublicKey PublisherID PulsarData PunctuationCharacter Purple Put PutAppend Pyramid PyramidBox PyramidBoxOptionsQBinomial QFactorial QGamma QHypergeometricPFQ QnDispersion QPochhammer QPolyGamma QRDecomposition QuadraticIrrationalQ QuadraticOptimization Quantile QuantilePlot Quantity QuantityArray QuantityDistribution QuantityForm QuantityMagnitude QuantityQ QuantityUnit QuantityVariable QuantityVariableCanonicalUnit QuantityVariableDimensions QuantityVariableIdentifier QuantityVariablePhysicalQuantity Quartics QuartileDeviation Quartiles QuartileSkewness Query QueueingNetworkProcess QueueingProcess QueueProperties Quiet Quit Quotient QuotientRemainderRadialGradientImage RadialityCentrality RadicalBox RadicalBoxOptions RadioButton RadioButtonBar RadioButtonBox RadioButtonBoxOptions Radon RadonTransform RamanujanTau RamanujanTauL RamanujanTauTheta RamanujanTauZ Ramp Random RandomChoice RandomColor RandomComplex RandomEntity RandomFunction RandomGeoPosition RandomGraph RandomImage RandomInstance RandomInteger RandomPermutation RandomPoint RandomPolygon RandomPolyhedron RandomPrime RandomReal RandomSample RandomSeed RandomSeeding RandomVariate RandomWalkProcess RandomWord Range RangeFilter RangeSpecification RankedMax RankedMin RarerProbability Raster Raster3D Raster3DBox Raster3DBoxOptions RasterArray RasterBox RasterBoxOptions Rasterize RasterSize Rational RationalFunctions Rationalize Rationals Ratios RawArray RawBoxes RawData RawMedium RayleighDistribution Re Read ReadByteArray ReadLine ReadList ReadProtected ReadString Real RealAbs RealBlockDiagonalForm RealDigits RealExponent Reals RealSign Reap RecognitionPrior RecognitionThreshold Record RecordLists RecordSeparators Rectangle RectangleBox RectangleBoxOptions RectangleChart RectangleChart3D RectangularRepeatingElement RecurrenceFilter RecurrenceTable RecurringDigitsForm Red Reduce RefBox ReferenceLineStyle ReferenceMarkers ReferenceMarkerStyle Refine ReflectionMatrix ReflectionTransform Refresh RefreshRate Region RegionBinarize RegionBoundary RegionBounds RegionCentroid RegionDifference RegionDimension RegionDisjoint RegionDistance RegionDistanceFunction RegionEmbeddingDimension RegionEqual RegionFunction RegionImage RegionIntersection RegionMeasure RegionMember RegionMemberFunction RegionMoment RegionNearest RegionNearestFunction RegionPlot RegionPlot3D RegionProduct RegionQ RegionResize RegionSize RegionSymmetricDifference RegionUnion RegionWithin RegisterExternalEvaluator RegularExpression Regularization RegularlySampledQ RegularPolygon ReIm ReImLabels ReImPlot ReImStyle Reinstall RelationalDatabase RelationGraph Release ReleaseHold ReliabilityDistribution ReliefImage ReliefPlot RemoteAuthorizationCaching RemoteConnect RemoteConnectionObject RemoteFile RemoteRun RemoteRunProcess Remove RemoveAlphaChannel RemoveAsynchronousTask RemoveAudioStream RemoveBackground RemoveChannelListener RemoveChannelSubscribers Removed RemoveDiacritics RemoveInputStreamMethod RemoveOutputStreamMethod RemoveProperty RemoveScheduledTask RemoveUsers RenameDirectory RenameFile RenderAll RenderingOptions RenewalProcess RenkoChart RepairMesh Repeated RepeatedNull RepeatedString RepeatedTiming RepeatingElement Replace ReplaceAll ReplaceHeldPart ReplaceImageValue ReplaceList ReplacePart ReplacePixelValue ReplaceRepeated ReplicateLayer RequiredPhysicalQuantities Resampling ResamplingAlgorithmData ResamplingMethod Rescale RescalingTransform ResetDirectory ResetMenusPacket ResetScheduledTask ReshapeLayer Residue ResizeLayer Resolve ResourceAcquire ResourceData ResourceFunction ResourceObject ResourceRegister ResourceRemove ResourceSearch ResourceSubmissionObject ResourceSubmit ResourceSystemBase ResourceUpdate ResponseForm Rest RestartInterval Restricted Resultant ResumePacket Return ReturnEntersInput ReturnExpressionPacket ReturnInputFormPacket ReturnPacket ReturnReceiptFunction ReturnTextPacket Reverse ReverseBiorthogonalSplineWavelet ReverseElement ReverseEquilibrium ReverseGraph ReverseSort ReverseSortBy ReverseUpEquilibrium RevolutionAxis RevolutionPlot3D RGBColor RiccatiSolve RiceDistribution RidgeFilter RiemannR RiemannSiegelTheta RiemannSiegelZ RiemannXi Riffle Right RightArrow RightArrowBar RightArrowLeftArrow RightComposition RightCosetRepresentative RightDownTeeVector RightDownVector RightDownVectorBar RightTee RightTeeArrow RightTeeVector RightTriangle RightTriangleBar RightTriangleEqual RightUpDownVector RightUpTeeVector RightUpVector RightUpVectorBar RightVector RightVectorBar RiskAchievementImportance RiskReductionImportance RogersTanimotoDissimilarity RollPitchYawAngles RollPitchYawMatrix RomanNumeral Root RootApproximant RootIntervals RootLocusPlot RootMeanSquare RootOfUnityQ RootReduce Roots RootSum Rotate RotateLabel RotateLeft RotateRight RotationAction RotationBox RotationBoxOptions RotationMatrix RotationTransform Round RoundImplies RoundingRadius Row RowAlignments RowBackgrounds RowBox RowHeights RowLines RowMinHeight RowReduce RowsEqual RowSpacings RSolve RSolveValue RudinShapiro RudvalisGroupRu Rule RuleCondition RuleDelayed RuleForm RulePlot RulerUnits Run RunProcess RunScheduledTask RunThrough RuntimeAttributes RuntimeOptions RussellRaoDissimilaritySameQ SameTest SampledEntityClass SampleDepth SampledSoundFunction SampledSoundList SampleRate SamplingPeriod SARIMAProcess SARMAProcess SASTriangle SatelliteData SatisfiabilityCount SatisfiabilityInstances SatisfiableQ Saturday Save Saveable SaveAutoDelete SaveConnection SaveDefinitions SavitzkyGolayMatrix SawtoothWave Scale Scaled ScaleDivisions ScaledMousePosition ScaleOrigin ScalePadding ScaleRanges ScaleRangeStyle ScalingFunctions ScalingMatrix ScalingTransform Scan ScheduledTask ScheduledTaskActiveQ ScheduledTaskInformation ScheduledTaskInformationData ScheduledTaskObject ScheduledTasks SchurDecomposition ScientificForm ScientificNotationThreshold ScorerGi ScorerGiPrime ScorerHi ScorerHiPrime ScreenRectangle ScreenStyleEnvironment ScriptBaselineShifts ScriptForm ScriptLevel ScriptMinSize ScriptRules ScriptSizeMultipliers Scrollbars ScrollingOptions ScrollPosition SearchAdjustment SearchIndexObject SearchIndices SearchQueryString SearchResultObject Sec Sech SechDistribution SecondOrderConeOptimization SectionGrouping SectorChart SectorChart3D SectorOrigin SectorSpacing SecuredAuthenticationKey SecuredAuthenticationKeys SeedRandom Select Selectable SelectComponents SelectedCells SelectedNotebook SelectFirst Selection SelectionAnimate SelectionCell SelectionCellCreateCell SelectionCellDefaultStyle SelectionCellParentStyle SelectionCreateCell SelectionDebuggerTag SelectionDuplicateCell SelectionEvaluate SelectionEvaluateCreateCell SelectionMove SelectionPlaceholder SelectionSetStyle SelectWithContents SelfLoops SelfLoopStyle SemanticImport SemanticImportString SemanticInterpretation SemialgebraicComponentInstances SemidefiniteOptimization SendMail SendMessage Sequence SequenceAlignment SequenceAttentionLayer SequenceCases SequenceCount SequenceFold SequenceFoldList SequenceForm SequenceHold SequenceLastLayer SequenceMostLayer SequencePosition SequencePredict SequencePredictorFunction SequenceReplace SequenceRestLayer SequenceReverseLayer SequenceSplit Series SeriesCoefficient SeriesData ServiceConnect ServiceDisconnect ServiceExecute ServiceObject ServiceRequest ServiceResponse ServiceSubmit SessionSubmit SessionTime Set SetAccuracy SetAlphaChannel SetAttributes Setbacks SetBoxFormNamesPacket SetCloudDirectory SetCookies SetDelayed SetDirectory SetEnvironment SetEvaluationNotebook SetFileDate SetFileLoadingContext SetNotebookStatusLine SetOptions SetOptionsPacket SetPermissions SetPrecision SetProperty SetSecuredAuthenticationKey SetSelectedNotebook SetSharedFunction SetSharedVariable SetSpeechParametersPacket SetStreamPosition SetSystemModel SetSystemOptions Setter SetterBar SetterBox SetterBoxOptions Setting SetUsers SetValue Shading Shallow ShannonWavelet ShapiroWilkTest Share SharingList Sharpen ShearingMatrix ShearingTransform ShellRegion ShenCastanMatrix ShiftedGompertzDistribution ShiftRegisterSequence Short ShortDownArrow Shortest ShortestMatch ShortestPathFunction ShortLeftArrow ShortRightArrow ShortTimeFourier ShortTimeFourierData ShortUpArrow Show ShowAutoConvert ShowAutoSpellCheck ShowAutoStyles ShowCellBracket ShowCellLabel ShowCellTags ShowClosedCellArea ShowCodeAssist ShowContents ShowControls ShowCursorTracker ShowGroupOpenCloseIcon ShowGroupOpener ShowInvisibleCharacters ShowPageBreaks ShowPredictiveInterface ShowSelection ShowShortBoxForm ShowSpecialCharacters ShowStringCharacters ShowSyntaxStyles ShrinkingDelay ShrinkWrapBoundingBox SiderealTime SiegelTheta SiegelTukeyTest SierpinskiCurve SierpinskiMesh Sign Signature SignedRankTest SignedRegionDistance SignificanceLevel SignPadding SignTest SimilarityRules SimpleGraph SimpleGraphQ SimplePolygonQ SimplePolyhedronQ Simplex Simplify Sin Sinc SinghMaddalaDistribution SingleEvaluation SingleLetterItalics SingleLetterStyle SingularValueDecomposition SingularValueList SingularValuePlot SingularValues Sinh SinhIntegral SinIntegral SixJSymbol Skeleton SkeletonTransform SkellamDistribution Skewness SkewNormalDistribution SkinStyle Skip SliceContourPlot3D SliceDensityPlot3D SliceDistribution SliceVectorPlot3D Slider Slider2D Slider2DBox Slider2DBoxOptions SliderBox SliderBoxOptions SlideView Slot SlotSequence Small SmallCircle Smaller SmithDecomposition SmithDelayCompensator SmithWatermanSimilarity SmoothDensityHistogram SmoothHistogram SmoothHistogram3D SmoothKernelDistribution SnDispersion Snippet SnubPolyhedron SocialMediaData Socket SocketConnect SocketListen SocketListener SocketObject SocketOpen SocketReadMessage SocketReadyQ Sockets SocketWaitAll SocketWaitNext SoftmaxLayer SokalSneathDissimilarity SolarEclipse SolarSystemFeatureData SolidAngle SolidData SolidRegionQ Solve SolveAlways SolveDelayed Sort SortBy SortedBy SortedEntityClass Sound SoundAndGraphics SoundNote SoundVolume SourceLink Sow Space SpaceCurveData SpaceForm Spacer Spacings Span SpanAdjustments SpanCharacterRounding SpanFromAbove SpanFromBoth SpanFromLeft SpanLineThickness SpanMaxSize SpanMinSize SpanningCharacters SpanSymmetric SparseArray SpatialGraphDistribution SpatialMedian SpatialTransformationLayer Speak SpeakTextPacket SpearmanRankTest SpearmanRho SpeciesData SpecificityGoal SpectralLineData Spectrogram SpectrogramArray Specularity SpeechRecognize SpeechSynthesize SpellingCorrection SpellingCorrectionList SpellingDictionaries SpellingDictionariesPath SpellingOptions SpellingSuggestionsPacket Sphere SphereBox SpherePoints SphericalBesselJ SphericalBesselY SphericalHankelH1 SphericalHankelH2 SphericalHarmonicY SphericalPlot3D SphericalRegion SphericalShell SpheroidalEigenvalue SpheroidalJoiningFactor SpheroidalPS SpheroidalPSPrime SpheroidalQS SpheroidalQSPrime SpheroidalRadialFactor SpheroidalS1 SpheroidalS1Prime SpheroidalS2 SpheroidalS2Prime Splice SplicedDistribution SplineClosed SplineDegree SplineKnots SplineWeights Split SplitBy SpokenString Sqrt SqrtBox SqrtBoxOptions Square SquaredEuclideanDistance SquareFreeQ SquareIntersection SquareMatrixQ SquareRepeatingElement SquaresR SquareSubset SquareSubsetEqual SquareSuperset SquareSupersetEqual SquareUnion SquareWave SSSTriangle StabilityMargins StabilityMarginsStyle StableDistribution Stack StackBegin StackComplete StackedDateListPlot StackedListPlot StackInhibit StadiumShape StandardAtmosphereData StandardDeviation StandardDeviationFilter StandardForm Standardize Standardized StandardOceanData StandbyDistribution Star StarClusterData StarData StarGraph StartAsynchronousTask StartExternalSession StartingStepSize StartOfLine StartOfString StartProcess StartScheduledTask StartupSound StartWebSession StateDimensions StateFeedbackGains StateOutputEstimator StateResponse StateSpaceModel StateSpaceRealization StateSpaceTransform StateTransformationLinearize StationaryDistribution StationaryWaveletPacketTransform StationaryWaveletTransform StatusArea StatusCentrality StepMonitor StereochemistryElements StieltjesGamma StirlingS1 StirlingS2 StopAsynchronousTask StoppingPowerData StopScheduledTask StrataVariables StratonovichProcess StreamColorFunction StreamColorFunctionScaling StreamDensityPlot StreamMarkers StreamPlot StreamPoints StreamPosition Streams StreamScale StreamStyle String StringBreak StringByteCount StringCases StringContainsQ StringCount StringDelete StringDrop StringEndsQ StringExpression StringExtract StringForm StringFormat StringFreeQ StringInsert StringJoin StringLength StringMatchQ StringPadLeft StringPadRight StringPart StringPartition StringPosition StringQ StringRepeat StringReplace StringReplaceList StringReplacePart StringReverse StringRiffle StringRotateLeft StringRotateRight StringSkeleton StringSplit StringStartsQ StringTake StringTemplate StringToByteArray StringToStream StringTrim StripBoxes StripOnInput StripWrapperBoxes StrokeForm StructuralImportance StructuredArray StructuredSelection StruveH StruveL Stub StudentTDistribution Style StyleBox StyleBoxAutoDelete StyleData StyleDefinitions StyleForm StyleHints StyleKeyMapping StyleMenuListing StyleNameDialogSettings StyleNames StylePrint StyleSheetPath Subdivide Subfactorial Subgraph SubMinus SubPlus SubresultantPolynomialRemainders SubresultantPolynomials Subresultants Subscript SubscriptBox SubscriptBoxOptions Subscripted Subsequences Subset SubsetEqual SubsetMap SubsetQ Subsets SubStar SubstitutionSystem Subsuperscript SubsuperscriptBox SubsuperscriptBoxOptions Subtract SubtractFrom SubtractSides SubValues Succeeds SucceedsEqual SucceedsSlantEqual SucceedsTilde Success SuchThat Sum SumConvergence SummationLayer Sunday SunPosition Sunrise Sunset SuperDagger SuperMinus SupernovaData SuperPlus Superscript SuperscriptBox SuperscriptBoxOptions Superset SupersetEqual SuperStar Surd SurdForm SurfaceArea SurfaceColor SurfaceData SurfaceGraphics SurvivalDistribution SurvivalFunction SurvivalModel SurvivalModelFit SuspendPacket SuzukiDistribution SuzukiGroupSuz SwatchLegend Switch Symbol SymbolName SymletWavelet Symmetric SymmetricGroup SymmetricKey SymmetricMatrixQ SymmetricPolynomial SymmetricReduction Symmetrize SymmetrizedArray SymmetrizedArrayRules SymmetrizedDependentComponents SymmetrizedIndependentComponents SymmetrizedReplacePart SynchronousInitialization SynchronousUpdating Synonyms Syntax SyntaxForm SyntaxInformation SyntaxLength SyntaxPacket SyntaxQ SynthesizeMissingValues SystemDialogInput SystemException SystemGet SystemHelpPath SystemInformation SystemInformationData SystemInstall SystemModel SystemModeler SystemModelExamples SystemModelLinearize SystemModelParametricSimulate SystemModelPlot SystemModelProgressReporting SystemModelReliability SystemModels SystemModelSimulate SystemModelSimulateSensitivity SystemModelSimulationData SystemOpen SystemOptions SystemProcessData SystemProcesses SystemsConnectionsModel SystemsModelDelay SystemsModelDelayApproximate SystemsModelDelete SystemsModelDimensions SystemsModelExtract SystemsModelFeedbackConnect SystemsModelLabels SystemsModelLinearity SystemsModelMerge SystemsModelOrder SystemsModelParallelConnect SystemsModelSeriesConnect SystemsModelStateFeedbackConnect SystemsModelVectorRelativeOrders SystemStub SystemTestTab TabFilling Table TableAlignments TableDepth TableDirections TableForm TableHeadings TableSpacing TableView TableViewBox TableViewBoxBackground TableViewBoxOptions TabSpacings TabView TabViewBox TabViewBoxOptions TagBox TagBoxNote TagBoxOptions TaggingRules TagSet TagSetDelayed TagStyle TagUnset Take TakeDrop TakeLargest TakeLargestBy TakeList TakeSmallest TakeSmallestBy TakeWhile Tally Tan Tanh TargetDevice TargetFunctions TargetSystem TargetUnits TaskAbort TaskExecute TaskObject TaskRemove TaskResume Tasks TaskSuspend TaskWait TautologyQ TelegraphProcess TemplateApply TemplateArgBox TemplateBox TemplateBoxOptions TemplateEvaluate TemplateExpression TemplateIf TemplateObject TemplateSequence TemplateSlot TemplateSlotSequence TemplateUnevaluated TemplateVerbatim TemplateWith TemporalData TemporalRegularity Temporary TemporaryVariable TensorContract TensorDimensions TensorExpand TensorProduct TensorQ TensorRank TensorReduce TensorSymmetry TensorTranspose TensorWedge TestID TestReport TestReportObject TestResultObject Tetrahedron TetrahedronBox TetrahedronBoxOptions TeXForm TeXSave Text Text3DBox Text3DBoxOptions TextAlignment TextBand TextBoundingBox TextBox TextCases TextCell TextClipboardType TextContents TextData TextElement TextForm TextGrid TextJustification TextLine TextPacket TextParagraph TextPosition TextRecognize TextSearch TextSearchReport TextSentences TextString TextStructure TextStyle TextTranslation Texture TextureCoordinateFunction TextureCoordinateScaling TextWords Therefore ThermodynamicData ThermometerGauge Thick Thickness Thin Thinning ThisLink ThompsonGroupTh Thread ThreadingLayer ThreeJSymbol Threshold Through Throw ThueMorse Thumbnail Thursday Ticks TicksStyle TideData Tilde TildeEqual TildeFullEqual TildeTilde TimeConstrained TimeConstraint TimeDirection TimeFormat TimeGoal TimelinePlot TimeObject TimeObjectQ Times TimesBy TimeSeries TimeSeriesAggregate TimeSeriesForecast TimeSeriesInsert TimeSeriesInvertibility TimeSeriesMap TimeSeriesMapThread TimeSeriesModel TimeSeriesModelFit TimeSeriesResample TimeSeriesRescale TimeSeriesShift TimeSeriesThread TimeSeriesWindow TimeUsed TimeValue TimeWarpingCorrespondence TimeWarpingDistance TimeZone TimeZoneConvert TimeZoneOffset Timing Tiny TitleGrouping TitsGroupT ToBoxes ToCharacterCode ToColor ToContinuousTimeModel ToDate Today ToDiscreteTimeModel ToEntity ToeplitzMatrix ToExpression ToFileName Together Toggle ToggleFalse Toggler TogglerBar TogglerBox TogglerBoxOptions ToHeldExpression ToInvertibleTimeSeries TokenWords Tolerance ToLowerCase Tomorrow ToNumberField TooBig Tooltip TooltipBox TooltipBoxOptions TooltipDelay TooltipStyle Top TopHatTransform ToPolarCoordinates TopologicalSort ToRadicals ToRules ToSphericalCoordinates ToString Total TotalHeight TotalLayer TotalVariationFilter TotalWidth TouchPosition TouchscreenAutoZoom TouchscreenControlPlacement ToUpperCase Tr Trace TraceAbove TraceAction TraceBackward TraceDepth TraceDialog TraceForward TraceInternal TraceLevel TraceOff TraceOn TraceOriginal TracePrint TraceScan TrackedSymbols TrackingFunction TracyWidomDistribution TradingChart TraditionalForm TraditionalFunctionNotation TraditionalNotation TraditionalOrder TrainingProgressCheckpointing TrainingProgressFunction TrainingProgressMeasurements TrainingProgressReporting TrainingStoppingCriterion TransferFunctionCancel TransferFunctionExpand TransferFunctionFactor TransferFunctionModel TransferFunctionPoles TransferFunctionTransform TransferFunctionZeros TransformationClass TransformationFunction TransformationFunctions TransformationMatrix TransformedDistribution TransformedField TransformedProcess TransformedRegion TransitionDirection TransitionDuration TransitionEffect TransitiveClosureGraph TransitiveReductionGraph Translate TranslationOptions TranslationTransform Transliterate Transparent TransparentColor Transpose TransposeLayer TrapSelection TravelDirections TravelDirectionsData TravelDistance TravelDistanceList TravelMethod TravelTime TreeForm TreeGraph TreeGraphQ TreePlot TrendStyle Triangle TriangleCenter TriangleConstruct TriangleMeasurement TriangleWave TriangularDistribution TriangulateMesh Trig TrigExpand TrigFactor TrigFactorList Trigger TrigReduce TrigToExp TrimmedMean TrimmedVariance TropicalStormData True TrueQ TruncatedDistribution TruncatedPolyhedron TsallisQExponentialDistribution TsallisQGaussianDistribution TTest Tube TubeBezierCurveBox TubeBezierCurveBoxOptions TubeBox TubeBoxOptions TubeBSplineCurveBox TubeBSplineCurveBoxOptions Tuesday TukeyLambdaDistribution TukeyWindow TunnelData Tuples TuranGraph TuringMachine TuttePolynomial TwoWayRule Typed TypeSpecifierUnateQ Uncompress UnconstrainedParameters Undefined UnderBar Underflow Underlined Underoverscript UnderoverscriptBox UnderoverscriptBoxOptions Underscript UnderscriptBox UnderscriptBoxOptions UnderseaFeatureData UndirectedEdge UndirectedGraph UndirectedGraphQ UndoOptions UndoTrackedVariables Unequal UnequalTo Unevaluated UniformDistribution UniformGraphDistribution UniformPolyhedron UniformSumDistribution Uninstall Union UnionPlus Unique UnitaryMatrixQ UnitBox UnitConvert UnitDimensions Unitize UnitRootTest UnitSimplify UnitStep UnitSystem UnitTriangle UnitVector UnitVectorLayer UnityDimensions UniverseModelData UniversityData UnixTime Unprotect UnregisterExternalEvaluator UnsameQ UnsavedVariables Unset UnsetShared UntrackedVariables Up UpArrow UpArrowBar UpArrowDownArrow Update UpdateDynamicObjects UpdateDynamicObjectsSynchronous UpdateInterval UpdateSearchIndex UpDownArrow UpEquilibrium UpperCaseQ UpperLeftArrow UpperRightArrow UpperTriangularize UpperTriangularMatrixQ Upsample UpSet UpSetDelayed UpTee UpTeeArrow UpTo UpValues URL URLBuild URLDecode URLDispatcher URLDownload URLDownloadSubmit URLEncode URLExecute URLExpand URLFetch URLFetchAsynchronous URLParse URLQueryDecode URLQueryEncode URLRead URLResponseTime URLSave URLSaveAsynchronous URLShorten URLSubmit UseGraphicsRange UserDefinedWavelet Using UsingFrontEnd UtilityFunctionV2Get ValenceErrorHandling ValidationLength ValidationSet Value ValueBox ValueBoxOptions ValueDimensions ValueForm ValuePreprocessingFunction ValueQ Values ValuesData Variables Variance VarianceEquivalenceTest VarianceEstimatorFunction VarianceGammaDistribution VarianceTest VectorAngle VectorAround VectorColorFunction VectorColorFunctionScaling VectorDensityPlot VectorGlyphData VectorGreater VectorGreaterEqual VectorLess VectorLessEqual VectorMarkers VectorPlot VectorPlot3D VectorPoints VectorQ Vectors VectorScale VectorStyle Vee Verbatim Verbose VerboseConvertToPostScriptPacket VerificationTest VerifyConvergence VerifyDerivedKey VerifyDigitalSignature VerifyInterpretation VerifySecurityCertificates VerifySolutions VerifyTestAssumptions Version VersionNumber VertexAdd VertexCapacity VertexColors VertexComponent VertexConnectivity VertexContract VertexCoordinateRules VertexCoordinates VertexCorrelationSimilarity VertexCosineSimilarity VertexCount VertexCoverQ VertexDataCoordinates VertexDegree VertexDelete VertexDiceSimilarity VertexEccentricity VertexInComponent VertexInDegree VertexIndex VertexJaccardSimilarity VertexLabeling VertexLabels VertexLabelStyle VertexList VertexNormals VertexOutComponent VertexOutDegree VertexQ VertexRenderingFunction VertexReplace VertexShape VertexShapeFunction VertexSize VertexStyle VertexTextureCoordinates VertexWeight VertexWeightedGraphQ Vertical VerticalBar VerticalForm VerticalGauge VerticalSeparator VerticalSlider VerticalTilde ViewAngle ViewCenter ViewMatrix ViewPoint ViewPointSelectorSettings ViewPort ViewProjection ViewRange ViewVector ViewVertical VirtualGroupData Visible VisibleCell VoiceStyleData VoigtDistribution VolcanoData Volume VonMisesDistribution VoronoiMeshWaitAll WaitAsynchronousTask WaitNext WaitUntil WakebyDistribution WalleniusHypergeometricDistribution WaringYuleDistribution WarpingCorrespondence WarpingDistance WatershedComponents WatsonUSquareTest WattsStrogatzGraphDistribution WaveletBestBasis WaveletFilterCoefficients WaveletImagePlot WaveletListPlot WaveletMapIndexed WaveletMatrixPlot WaveletPhi WaveletPsi WaveletScale WaveletScalogram WaveletThreshold WeaklyConnectedComponents WeaklyConnectedGraphComponents WeaklyConnectedGraphQ WeakStationarity WeatherData WeatherForecastData WebAudioSearch WebElementObject WeberE WebExecute WebImage WebImageSearch WebSearch WebSessionObject WebSessions WebWindowObject Wedge Wednesday WeibullDistribution WeierstrassE1 WeierstrassE2 WeierstrassE3 WeierstrassEta1 WeierstrassEta2 WeierstrassEta3 WeierstrassHalfPeriods WeierstrassHalfPeriodW1 WeierstrassHalfPeriodW2 WeierstrassHalfPeriodW3 WeierstrassInvariantG2 WeierstrassInvariantG3 WeierstrassInvariants WeierstrassP WeierstrassPPrime WeierstrassSigma WeierstrassZeta WeightedAdjacencyGraph WeightedAdjacencyMatrix WeightedData WeightedGraphQ Weights WelchWindow WheelGraph WhenEvent Which While White WhiteNoiseProcess WhitePoint Whitespace WhitespaceCharacter WhittakerM WhittakerW WienerFilter WienerProcess WignerD WignerSemicircleDistribution WikipediaData WikipediaSearch WilksW WilksWTest WindDirectionData WindingCount WindingPolygon WindowClickSelect WindowElements WindowFloating WindowFrame WindowFrameElements WindowMargins WindowMovable WindowOpacity WindowPersistentStyles WindowSelected WindowSize WindowStatusArea WindowTitle WindowToolbars WindowWidth WindSpeedData WindVectorData WinsorizedMean WinsorizedVariance WishartMatrixDistribution With WolframAlpha WolframAlphaDate WolframAlphaQuantity WolframAlphaResult WolframLanguageData Word WordBoundary WordCharacter WordCloud WordCount WordCounts WordData WordDefinition WordFrequency WordFrequencyData WordList WordOrientation WordSearch WordSelectionFunction WordSeparators WordSpacings WordStem WordTranslation WorkingPrecision WrapAround Write WriteLine WriteString WronskianXMLElement XMLObject XMLTemplate Xnor Xor XYZColorYellow Yesterday YuleDissimilarityZernikeR ZeroSymmetric ZeroTest ZeroWidthTimes Zeta ZetaZero ZIPCodeData ZipfDistribution ZoomCenter ZoomFactor ZTest ZTransform$Aborted $ActivationGroupID $ActivationKey $ActivationUserRegistered $AddOnsDirectory $AllowExternalChannelFunctions $AssertFunction $Assumptions $AsynchronousTask $AudioInputDevices $AudioOutputDevices $BaseDirectory $BatchInput $BatchOutput $BlockchainBase $BoxForms $ByteOrdering $CacheBaseDirectory $Canceled $ChannelBase $CharacterEncoding $CharacterEncodings $CloudBase $CloudConnected $CloudCreditsAvailable $CloudEvaluation $CloudExpressionBase $CloudObjectNameFormat $CloudObjectURLType $CloudRootDirectory $CloudSymbolBase $CloudUserID $CloudUserUUID $CloudVersion $CloudVersionNumber $CloudWolframEngineVersionNumber $CommandLine $CompilationTarget $ConditionHold $ConfiguredKernels $Context $ContextPath $ControlActiveSetting $Cookies $CookieStore $CreationDate $CurrentLink $CurrentTask $CurrentWebSession $DateStringFormat $DefaultAudioInputDevice $DefaultAudioOutputDevice $DefaultFont $DefaultFrontEnd $DefaultImagingDevice $DefaultLocalBase $DefaultMailbox $DefaultNetworkInterface $DefaultPath $Display $DisplayFunction $DistributedContexts $DynamicEvaluation $Echo $EmbedCodeEnvironments $EmbeddableServices $EntityStores $Epilog $EvaluationCloudBase $EvaluationCloudObject $EvaluationEnvironment $ExportFormats $Failed $FinancialDataSource $FontFamilies $FormatType $FrontEnd $FrontEndSession $GeoEntityTypes $GeoLocation $GeoLocationCity $GeoLocationCountry $GeoLocationPrecision $GeoLocationSource $HistoryLength $HomeDirectory $HTMLExportRules $HTTPCookies $HTTPRequest $IgnoreEOF $ImageFormattingWidth $ImagingDevice $ImagingDevices $ImportFormats $IncomingMailSettings $InitialDirectory $Initialization $InitializationContexts $Input $InputFileName $InputStreamMethods $Inspector $InstallationDate $InstallationDirectory $InterfaceEnvironment $InterpreterTypes $IterationLimit $KernelCount $KernelID $Language $LaunchDirectory $LibraryPath $LicenseExpirationDate $LicenseID $LicenseProcesses $LicenseServer $LicenseSubprocesses $LicenseType $Line $Linked $LinkSupported $LoadedFiles $LocalBase $LocalSymbolBase $MachineAddresses $MachineDomain $MachineDomains $MachineEpsilon $MachineID $MachineName $MachinePrecision $MachineType $MaxExtraPrecision $MaxLicenseProcesses $MaxLicenseSubprocesses $MaxMachineNumber $MaxNumber $MaxPiecewiseCases $MaxPrecision $MaxRootDegree $MessageGroups $MessageList $MessagePrePrint $Messages $MinMachineNumber $MinNumber $MinorReleaseNumber $MinPrecision $MobilePhone $ModuleNumber $NetworkConnected $NetworkInterfaces $NetworkLicense $NewMessage $NewSymbol $Notebooks $NoValue $NumberMarks $Off $OperatingSystem $Output $OutputForms $OutputSizeLimit $OutputStreamMethods $Packages $ParentLink $ParentProcessID $PasswordFile $PatchLevelID $Path $PathnameSeparator $PerformanceGoal $Permissions $PermissionsGroupBase $PersistenceBase $PersistencePath $PipeSupported $PlotTheme $Post $Pre $PreferencesDirectory $PreInitialization $PrePrint $PreRead $PrintForms $PrintLiteral $Printout3DPreviewer $ProcessID $ProcessorCount $ProcessorType $ProductInformation $ProgramName $PublisherID $RandomState $RecursionLimit $RegisteredDeviceClasses $RegisteredUserName $ReleaseNumber $RequesterAddress $RequesterWolframID $RequesterWolframUUID $ResourceSystemBase $RootDirectory $ScheduledTask $ScriptCommandLine $ScriptInputString $SecuredAuthenticationKeyTokens $ServiceCreditsAvailable $Services $SessionID $SetParentLink $SharedFunctions $SharedVariables $SoundDisplay $SoundDisplayFunction $SourceLink $SSHAuthentication $SummaryBoxDataSizeLimit $SuppressInputFormHeads $SynchronousEvaluation $SyntaxHandler $System $SystemCharacterEncoding $SystemID $SystemMemory $SystemShell $SystemTimeZone $SystemWordLength $TemplatePath $TemporaryDirectory $TemporaryPrefix $TestFileName $TextStyle $TimedOut $TimeUnit $TimeZone $TimeZoneEntity $TopDirectory $TraceOff $TraceOn $TracePattern $TracePostAction $TracePreAction $UnitSystem $Urgent $UserAddOnsDirectory $UserAgentLanguages $UserAgentMachine $UserAgentName $UserAgentOperatingSystem $UserAgentString $UserAgentVersion $UserBaseDirectory $UserDocumentsDirectory $Username $UserName $UserURLBase $Version $VersionNumber $VoiceStyles $WolframID $WolframUUID\",c:[e.C(\"\\\\(\\\\*\",\"\\\\*\\\\)\",{c:[\"self\"]}),e.QSM,e.CNM]}});hljs.registerLanguage(\"vim\",function(e){return{l:/[!#@\\w]+/,k:{keyword:\"N|0 P|0 X|0 a|0 ab abc abo al am an|0 ar arga argd arge argdo argg argl argu as au aug aun b|0 bN ba bad bd be bel bf bl bm bn bo bp br brea breaka breakd breakl bro bufdo buffers bun bw c|0 cN cNf ca cabc caddb cad caddf cal cat cb cc ccl cd ce cex cf cfir cgetb cgete cg changes chd che checkt cl cla clo cm cmapc cme cn cnew cnf cno cnorea cnoreme co col colo com comc comp con conf cope cp cpf cq cr cs cst cu cuna cunme cw delm deb debugg delc delf dif diffg diffo diffp diffpu diffs diffthis dig di dl dell dj dli do doautoa dp dr ds dsp e|0 ea ec echoe echoh echom echon el elsei em en endfo endf endt endw ene ex exe exi exu f|0 files filet fin fina fini fir fix fo foldc foldd folddoc foldo for fu go gr grepa gu gv ha helpf helpg helpt hi hid his ia iabc if ij il im imapc ime ino inorea inoreme int is isp iu iuna iunme j|0 ju k|0 keepa kee keepj lN lNf l|0 lad laddb laddf la lan lat lb lc lch lcl lcs le lefta let lex lf lfir lgetb lgete lg lgr lgrepa lh ll lla lli lmak lm lmapc lne lnew lnf ln loadk lo loc lockv lol lope lp lpf lr ls lt lu lua luad luaf lv lvimgrepa lw m|0 ma mak map mapc marks mat me menut mes mk mks mksp mkv mkvie mod mz mzf nbc nb nbs new nm nmapc nme nn nnoreme noa no noh norea noreme norm nu nun nunme ol o|0 om omapc ome on ono onoreme opt ou ounme ow p|0 profd prof pro promptr pc ped pe perld po popu pp pre prev ps pt ptN ptf ptj ptl ptn ptp ptr pts pu pw py3 python3 py3d py3f py pyd pyf quita qa rec red redi redr redraws reg res ret retu rew ri rightb rub rubyd rubyf rund ru rv sN san sa sal sav sb sbN sba sbf sbl sbm sbn sbp sbr scrip scripte scs se setf setg setl sf sfir sh sim sig sil sl sla sm smap smapc sme sn sni sno snor snoreme sor so spelld spe spelli spellr spellu spellw sp spr sre st sta startg startr star stopi stj sts sun sunm sunme sus sv sw sy synti sync tN tabN tabc tabdo tabe tabf tabfir tabl tabm tabnew tabn tabo tabp tabr tabs tab ta tags tc tcld tclf te tf th tj tl tm tn to tp tr try ts tu u|0 undoj undol una unh unl unlo unm unme uns up ve verb vert vim vimgrepa vi viu vie vm vmapc vme vne vn vnoreme vs vu vunme windo w|0 wN wa wh wi winc winp wn wp wq wqa ws wu wv x|0 xa xmapc xm xme xn xnoreme xu xunme y|0 z|0 ~ Next Print append abbreviate abclear aboveleft all amenu anoremenu args argadd argdelete argedit argglobal arglocal argument ascii autocmd augroup aunmenu buffer bNext ball badd bdelete behave belowright bfirst blast bmodified bnext botright bprevious brewind break breakadd breakdel breaklist browse bunload bwipeout change cNext cNfile cabbrev cabclear caddbuffer caddexpr caddfile call catch cbuffer cclose center cexpr cfile cfirst cgetbuffer cgetexpr cgetfile chdir checkpath checktime clist clast close cmap cmapclear cmenu cnext cnewer cnfile cnoremap cnoreabbrev cnoremenu copy colder colorscheme command comclear compiler continue confirm copen cprevious cpfile cquit crewind cscope cstag cunmap cunabbrev cunmenu cwindow delete delmarks debug debuggreedy delcommand delfunction diffupdate diffget diffoff diffpatch diffput diffsplit digraphs display deletel djump dlist doautocmd doautoall deletep drop dsearch dsplit edit earlier echo echoerr echohl echomsg else elseif emenu endif endfor endfunction endtry endwhile enew execute exit exusage file filetype find finally finish first fixdel fold foldclose folddoopen folddoclosed foldopen function global goto grep grepadd gui gvim hardcopy help helpfind helpgrep helptags highlight hide history insert iabbrev iabclear ijump ilist imap imapclear imenu inoremap inoreabbrev inoremenu intro isearch isplit iunmap iunabbrev iunmenu join jumps keepalt keepmarks keepjumps lNext lNfile list laddexpr laddbuffer laddfile last language later lbuffer lcd lchdir lclose lcscope left leftabove lexpr lfile lfirst lgetbuffer lgetexpr lgetfile lgrep lgrepadd lhelpgrep llast llist lmake lmap lmapclear lnext lnewer lnfile lnoremap loadkeymap loadview lockmarks lockvar lolder lopen lprevious lpfile lrewind ltag lunmap luado luafile lvimgrep lvimgrepadd lwindow move mark make mapclear match menu menutranslate messages mkexrc mksession mkspell mkvimrc mkview mode mzscheme mzfile nbclose nbkey nbsart next nmap nmapclear nmenu nnoremap nnoremenu noautocmd noremap nohlsearch noreabbrev noremenu normal number nunmap nunmenu oldfiles open omap omapclear omenu only onoremap onoremenu options ounmap ounmenu ownsyntax print profdel profile promptfind promptrepl pclose pedit perl perldo pop popup ppop preserve previous psearch ptag ptNext ptfirst ptjump ptlast ptnext ptprevious ptrewind ptselect put pwd py3do py3file python pydo pyfile quit quitall qall read recover redo redir redraw redrawstatus registers resize retab return rewind right rightbelow ruby rubydo rubyfile rundo runtime rviminfo substitute sNext sandbox sargument sall saveas sbuffer sbNext sball sbfirst sblast sbmodified sbnext sbprevious sbrewind scriptnames scriptencoding scscope set setfiletype setglobal setlocal sfind sfirst shell simalt sign silent sleep slast smagic smapclear smenu snext sniff snomagic snoremap snoremenu sort source spelldump spellgood spellinfo spellrepall spellundo spellwrong split sprevious srewind stop stag startgreplace startreplace startinsert stopinsert stjump stselect sunhide sunmap sunmenu suspend sview swapname syntax syntime syncbind tNext tabNext tabclose tabedit tabfind tabfirst tablast tabmove tabnext tabonly tabprevious tabrewind tag tcl tcldo tclfile tearoff tfirst throw tjump tlast tmenu tnext topleft tprevious trewind tselect tunmenu undo undojoin undolist unabbreviate unhide unlet unlockvar unmap unmenu unsilent update vglobal version verbose vertical vimgrep vimgrepadd visual viusage view vmap vmapclear vmenu vnew vnoremap vnoremenu vsplit vunmap vunmenu write wNext wall while winsize wincmd winpos wnext wprevious wqall wsverb wundo wviminfo xit xall xmapclear xmap xmenu xnoremap xnoremenu xunmap xunmenu yank\",built_in:\"synIDtrans atan2 range matcharg did_filetype asin feedkeys xor argv complete_check add getwinposx getqflist getwinposy screencol clearmatches empty extend getcmdpos mzeval garbagecollect setreg ceil sqrt diff_hlID inputsecret get getfperm getpid filewritable shiftwidth max sinh isdirectory synID system inputrestore winline atan visualmode inputlist tabpagewinnr round getregtype mapcheck hasmapto histdel argidx findfile sha256 exists toupper getcmdline taglist string getmatches bufnr strftime winwidth bufexists strtrans tabpagebuflist setcmdpos remote_read printf setloclist getpos getline bufwinnr float2nr len getcmdtype diff_filler luaeval resolve libcallnr foldclosedend reverse filter has_key bufname str2float strlen setline getcharmod setbufvar index searchpos shellescape undofile foldclosed setqflist buflisted strchars str2nr virtcol floor remove undotree remote_expr winheight gettabwinvar reltime cursor tabpagenr finddir localtime acos getloclist search tanh matchend rename gettabvar strdisplaywidth type abs py3eval setwinvar tolower wildmenumode log10 spellsuggest bufloaded synconcealed nextnonblank server2client complete settabwinvar executable input wincol setmatches getftype hlID inputsave searchpair or screenrow line settabvar histadd deepcopy strpart remote_peek and eval getftime submatch screenchar winsaveview matchadd mkdir screenattr getfontname libcall reltimestr getfsize winnr invert pow getbufline byte2line soundfold repeat fnameescape tagfiles sin strwidth spellbadword trunc maparg log lispindent hostname setpos globpath remote_foreground getchar synIDattr fnamemodify cscope_connection stridx winbufnr indent min complete_add nr2char searchpairpos inputdialog values matchlist items hlexists strridx browsedir expand fmod pathshorten line2byte argc count getwinvar glob foldtextresult getreg foreground cosh matchdelete has char2nr simplify histget searchdecl iconv winrestcmd pumvisible writefile foldlevel haslocaldir keys cos matchstr foldtext histnr tan tempname getcwd byteidx getbufvar islocked escape eventhandler remote_send serverlist winrestview synstack pyeval prevnonblank readfile cindent filereadable changenr exp\"},i:/;/,c:[e.NM,{cN:\"string\",b:\"'\",e:\"'\",i:\"\\\\n\"},{cN:\"string\",b:/\"(\\\\\"|\\n\\\\|[^\"\\n])*\"/},e.C('\"',\"$\"),{cN:\"variable\",b:/[bwtglsav]:[\\w\\d_]*/},{cN:\"function\",bK:\"function function!\",e:\"$\",relevance:0,c:[e.TM,{cN:\"params\",b:\"\\\\(\",e:\"\\\\)\"}]},{cN:\"symbol\",b:/<[\\w-]+>/}]}});hljs.registerLanguage(\"makefile\",function(e){var i={cN:\"variable\",v:[{b:\"\\\\$\\\\(\"+e.UIR+\"\\\\)\",c:[e.BE]},{b:/\\$[@%<?\\^\\+\\*]/}]},r={cN:\"string\",b:/\"/,e:/\"/,c:[e.BE,i]},a={cN:\"variable\",b:/\\$\\([\\w-]+\\s/,e:/\\)/,k:{built_in:\"subst patsubst strip findstring filter filter-out sort word wordlist firstword lastword dir notdir suffix basename addsuffix addprefix join wildcard realpath abspath error warning shell origin flavor foreach if or and call eval file value\"},c:[i]},n={b:\"^\"+e.UIR+\"\\\\s*(?=[:+?]?=)\"},t={cN:\"section\",b:/^[^\\s]+:/,e:/$/,c:[i]};return{aliases:[\"mk\",\"mak\"],k:\"define endef undefine ifdef ifndef ifeq ifneq else endif include -include sinclude override export unexport private vpath\",l:/[\\w-]+/,c:[e.HCM,i,r,a,n,{cN:\"meta\",b:/^\\.PHONY:/,e:/$/,k:{\"meta-keyword\":\".PHONY\"},l:/[\\.\\w]+/},t]}});hljs.registerLanguage(\"objectivec\",function(e){var t=/[a-zA-Z@][a-zA-Z0-9_]*/,i=\"@interface @class @protocol @implementation\";return{aliases:[\"mm\",\"objc\",\"obj-c\"],k:{keyword:\"int float while char export sizeof typedef const struct for union unsigned long volatile static bool mutable if do return goto void enum else break extern asm case short default double register explicit signed typename this switch continue wchar_t inline readonly assign readwrite self @synchronized id typeof nonatomic super unichar IBOutlet IBAction strong weak copy in out inout bycopy byref oneway __strong __weak __block __autoreleasing @private @protected @public @try @property @end @throw @catch @finally @autoreleasepool @synthesize @dynamic @selector @optional @required @encode @package @import @defs @compatibility_alias __bridge __bridge_transfer __bridge_retained __bridge_retain __covariant __contravariant __kindof _Nonnull _Nullable _Null_unspecified __FUNCTION__ __PRETTY_FUNCTION__ __attribute__ getter setter retain unsafe_unretained nonnull nullable null_unspecified null_resettable class instancetype NS_DESIGNATED_INITIALIZER NS_UNAVAILABLE NS_REQUIRES_SUPER NS_RETURNS_INNER_POINTER NS_INLINE NS_AVAILABLE NS_DEPRECATED NS_ENUM NS_OPTIONS NS_SWIFT_UNAVAILABLE NS_ASSUME_NONNULL_BEGIN NS_ASSUME_NONNULL_END NS_REFINED_FOR_SWIFT NS_SWIFT_NAME NS_SWIFT_NOTHROW NS_DURING NS_HANDLER NS_ENDHANDLER NS_VALUERETURN NS_VOIDRETURN\",literal:\"false true FALSE TRUE nil YES NO NULL\",built_in:\"BOOL dispatch_once_t dispatch_queue_t dispatch_sync dispatch_async dispatch_once\"},l:t,i:\"</\",c:[{cN:\"built_in\",b:\"\\\\b(AV|CA|CF|CG|CI|CL|CM|CN|CT|MK|MP|MTK|MTL|NS|SCN|SK|UI|WK|XC)\\\\w+\"},e.CLCM,e.CBCM,e.CNM,e.QSM,e.ASM,{cN:\"string\",v:[{b:'@\"',e:'\"',i:\"\\\\n\",c:[e.BE]}]},{cN:\"meta\",b:/#\\s*[a-z]+\\b/,e:/$/,k:{\"meta-keyword\":\"if else elif endif define undef warning error line pragma ifdef ifndef include\"},c:[{b:/\\\\\\n/,relevance:0},e.inherit(e.QSM,{cN:\"meta-string\"}),{cN:\"meta-string\",b:/<.*?>/,e:/$/,i:\"\\\\n\"},e.CLCM,e.CBCM]},{cN:\"class\",b:\"(\"+i.split(\" \").join(\"|\")+\")\\\\b\",e:\"({|$)\",eE:!0,k:i,l:t,c:[e.UTM]},{b:\"\\\\.\"+e.UIR,relevance:0}]}});hljs.registerLanguage(\"shell\",function(s){return{aliases:[\"console\"],c:[{cN:\"meta\",b:\"^\\\\s{0,3}[/\\\\w\\\\d\\\\[\\\\]()@-]*[>%$#]\",starts:{e:\"$\",sL:\"bash\"}}]}});hljs.registerLanguage(\"erlang\",function(e){var r=\"[a-z'][a-zA-Z0-9_']*\",c=\"(\"+r+\":\"+r+\"|\"+r+\")\",n={keyword:\"after and andalso|10 band begin bnot bor bsl bzr bxor case catch cond div end fun if let not of orelse|10 query receive rem try when xor\",literal:\"false true\"},a=e.C(\"%\",\"$\"),b={cN:\"number\",b:\"\\\\b(\\\\d+#[a-fA-F0-9]+|\\\\d+(\\\\.\\\\d+)?([eE][-+]?\\\\d+)?)\",relevance:0},i={b:\"fun\\\\s+\"+r+\"/\\\\d+\"},l={b:c+\"\\\\(\",e:\"\\\\)\",rB:!0,relevance:0,c:[{b:c,relevance:0},{b:\"\\\\(\",e:\"\\\\)\",eW:!0,rE:!0,relevance:0}]},d={b:\"{\",e:\"}\",relevance:0},o={b:\"\\\\b_([A-Z][A-Za-z0-9_]*)?\",relevance:0},t={b:\"[A-Z][a-zA-Z0-9_]*\",relevance:0},v={b:\"#\"+e.UIR,relevance:0,rB:!0,c:[{b:\"#\"+e.UIR,relevance:0},{b:\"{\",e:\"}\",relevance:0}]},f={bK:\"fun receive if try case\",e:\"end\",k:n};f.c=[a,i,e.inherit(e.ASM,{cN:\"\"}),f,l,e.QSM,b,d,o,t,v];var s=[a,i,f,l,e.QSM,b,d,o,t,v];l.c[1].c=s,d.c=s;var u={cN:\"params\",b:\"\\\\(\",e:\"\\\\)\",c:v.c[1].c=s};return{aliases:[\"erl\"],k:n,i:\"(</|\\\\*=|\\\\+=|-=|/\\\\*|\\\\*/|\\\\(\\\\*|\\\\*\\\\))\",c:[{cN:\"function\",b:\"^\"+r+\"\\\\s*\\\\(\",e:\"->\",rB:!0,i:\"\\\\(|#|//|/\\\\*|\\\\\\\\|:|;\",c:[u,e.inherit(e.TM,{b:r})],starts:{e:\";|\\\\.\",k:n,c:s}},a,{b:\"^-\",e:\"\\\\.\",relevance:0,eE:!0,rB:!0,l:\"-\"+e.IR,k:\"-module -record -undef -export -ifdef -ifndef -author -copyright -doc -vsn -import -include -include_lib -compile -define -else -endif -file -behaviour -behavior -spec\",c:[u]},b,e.QSM,v,o,t,d,{b:/\\.$/}]}});hljs.registerLanguage(\"powershell\",function(e){var t={keyword:\"if else foreach return do while until elseif begin for trap data dynamicparam end break throw param continue finally in switch exit filter try process catch hidden static parameter\"},n={b:\"`[\\\\s\\\\S]\",relevance:0},c={cN:\"variable\",v:[{b:/\\$\\B/},{cN:\"keyword\",b:/\\$this/},{b:/\\$[\\w\\d][\\w\\d_:]*/}]},i={cN:\"string\",v:[{b:/\"/,e:/\"/},{b:/@\"/,e:/^\"@/}],c:[n,c,{cN:\"variable\",b:/\\$[A-z]/,e:/[^A-z]/}]},a={cN:\"string\",v:[{b:/'/,e:/'/},{b:/@'/,e:/^'@/}]},r=e.inherit(e.C(null,null),{v:[{b:/#/,e:/$/},{b:/<#/,e:/#>/}],c:[{cN:\"doctag\",v:[{b:/\\.(synopsis|description|example|inputs|outputs|notes|link|component|role|functionality)/},{b:/\\.(parameter|forwardhelptargetname|forwardhelpcategory|remotehelprunspace|externalhelp)\\s+\\S+/}]}]}),o={cN:\"built_in\",v:[{b:\"(\".concat(\"Add|Clear|Close|Copy|Enter|Exit|Find|Format|Get|Hide|Join|Lock|Move|New|Open|Optimize|Pop|Push|Redo|Remove|Rename|Reset|Resize|Search|Select|Set|Show|Skip|Split|Step|Switch|Undo|Unlock|Watch|Backup|Checkpoint|Compare|Compress|Convert|ConvertFrom|ConvertTo|Dismount|Edit|Expand|Export|Group|Import|Initialize|Limit|Merge|New|Out|Publish|Restore|Save|Sync|Unpublish|Update|Approve|Assert|Complete|Confirm|Deny|Disable|Enable|Install|Invoke|Register|Request|Restart|Resume|Start|Stop|Submit|Suspend|Uninstall|Unregister|Wait|Debug|Measure|Ping|Repair|Resolve|Test|Trace|Connect|Disconnect|Read|Receive|Send|Write|Block|Grant|Protect|Revoke|Unblock|Unprotect|Use|ForEach|Sort|Tee|Where\",\")+(-)[\\\\w\\\\d]+\")}]},l={cN:\"class\",bK:\"class enum\",e:/\\s*[{]/,eE:!0,relevance:0,c:[e.TM]},s={cN:\"function\",b:/function\\s+/,e:/\\s*\\{|$/,eE:!0,rB:!0,relevance:0,c:[{b:\"function\",relevance:0,cN:\"keyword\"},{cN:\"title\",b:/\\w[\\w\\d]*((-)[\\w\\d]+)*/,relevance:0},{b:/\\(/,e:/\\)/,cN:\"params\",relevance:0,c:[c]}]},p={b:/using\\s/,e:/$/,rB:!0,c:[i,a,{cN:\"keyword\",b:/(using|assembly|command|module|namespace|type)/}]},b={v:[{cN:\"operator\",b:\"(\".concat(\"-and|-as|-band|-bnot|-bor|-bxor|-casesensitive|-ccontains|-ceq|-cge|-cgt|-cle|-clike|-clt|-cmatch|-cne|-cnotcontains|-cnotlike|-cnotmatch|-contains|-creplace|-csplit|-eq|-exact|-f|-file|-ge|-gt|-icontains|-ieq|-ige|-igt|-ile|-ilike|-ilt|-imatch|-in|-ine|-inotcontains|-inotlike|-inotmatch|-ireplace|-is|-isnot|-isplit|-join|-le|-like|-lt|-match|-ne|-not|-notcontains|-notin|-notlike|-notmatch|-or|-regex|-replace|-shl|-shr|-split|-wildcard|-xor\",\")\\\\b\")},{cN:\"literal\",b:/(-)[\\w\\d]+/,relevance:0}]},d={cN:\"function\",b:/\\[.*\\]\\s*[\\w]+[ ]??\\(/,e:/$/,rB:!0,relevance:0,c:[{cN:\"keyword\",b:\"(\".concat(t.keyword.toString().replace(/\\s/g,\"|\"),\")\\\\b\"),endsParent:!0,relevance:0},e.inherit(e.TM,{endsParent:!0})]},u=[d,r,n,e.NM,i,a,o,c,{cN:\"literal\",b:/\\$(null|true|false)\\b/},{cN:\"selector-tag\",b:/\\@\\B/,relevance:0}],m={b:/\\[/,e:/\\]/,eB:!0,eE:!0,relevance:0,c:[].concat(\"self\",u,{b:\"(\"+[\"string\",\"char\",\"byte\",\"int\",\"long\",\"bool\",\"decimal\",\"single\",\"double\",\"DateTime\",\"xml\",\"array\",\"hashtable\",\"void\"].join(\"|\")+\")\",cN:\"built_in\",relevance:0},{cN:\"type\",b:/[\\.\\w\\d]+/,relevance:0})};return d.c.unshift(m),{aliases:[\"ps\",\"ps1\"],l:/-?[A-z\\.\\-]+/,cI:!0,k:t,c:u.concat(l,s,p,b,m)}});hljs.registerLanguage(\"typescript\",function(e){var r=\"[A-Za-z$_][0-9A-Za-z$_]*\",t={keyword:\"in if for while finally var new function do return void else break catch instanceof with throw case default try this switch continue typeof delete let yield const class public private protected get set super static implements enum export import declare type namespace abstract as from extends async await\",literal:\"true false null undefined NaN Infinity\",built_in:\"eval isFinite isNaN parseFloat parseInt decodeURI decodeURIComponent encodeURI encodeURIComponent escape unescape Object Function Boolean Error EvalError InternalError RangeError ReferenceError StopIteration SyntaxError TypeError URIError Number Math Date String RegExp Array Float32Array Float64Array Int16Array Int32Array Int8Array Uint16Array Uint32Array Uint8Array Uint8ClampedArray ArrayBuffer DataView JSON Intl arguments require module console window document any number boolean string void Promise\"},n={cN:\"meta\",b:\"@\"+r},a={b:\"\\\\(\",e:/\\)/,k:t,c:[\"self\",e.QSM,e.ASM,e.NM]},c={cN:\"params\",b:/\\(/,e:/\\)/,eB:!0,eE:!0,k:t,c:[e.CLCM,e.CBCM,n,a]},s={cN:\"number\",v:[{b:\"\\\\b(0[bB][01]+)n?\"},{b:\"\\\\b(0[oO][0-7]+)n?\"},{b:e.CNR+\"n?\"}],relevance:0},o={cN:\"subst\",b:\"\\\\$\\\\{\",e:\"\\\\}\",k:t,c:[]},i={b:\"html`\",e:\"\",starts:{e:\"`\",rE:!1,c:[e.BE,o],sL:\"xml\"}},l={b:\"css`\",e:\"\",starts:{e:\"`\",rE:!1,c:[e.BE,o],sL:\"css\"}},b={cN:\"string\",b:\"`\",e:\"`\",c:[e.BE,o]};return o.c=[e.ASM,e.QSM,i,l,b,s,e.RM],{aliases:[\"ts\"],k:t,c:[{cN:\"meta\",b:/^\\s*['\"]use strict['\"]/},e.ASM,e.QSM,i,l,b,e.CLCM,e.CBCM,s,{b:\"(\"+e.RSR+\"|\\\\b(case|return|throw)\\\\b)\\\\s*\",k:\"return throw case\",c:[e.CLCM,e.CBCM,e.RM,{cN:\"function\",b:\"(\\\\(.*?\\\\)|\"+e.IR+\")\\\\s*=>\",rB:!0,e:\"\\\\s*=>\",c:[{cN:\"params\",v:[{b:e.IR},{b:/\\(\\s*\\)/},{b:/\\(/,e:/\\)/,eB:!0,eE:!0,k:t,c:[\"self\",e.CLCM,e.CBCM]}]}]}],relevance:0},{cN:\"function\",bK:\"function\",e:/[\\{;]/,eE:!0,k:t,c:[\"self\",e.inherit(e.TM,{b:r}),c],i:/%/,relevance:0},{bK:\"constructor\",e:/[\\{;]/,eE:!0,c:[\"self\",c]},{b:/module\\./,k:{built_in:\"module\"},relevance:0},{bK:\"module\",e:/\\{/,eE:!0},{bK:\"interface\",e:/\\{/,eE:!0,k:\"interface extends\"},{b:/\\$[(.]/},{b:\"\\\\.\"+e.IR,relevance:0},n,a]}});hljs.registerLanguage(\"fortran\",function(e){return{cI:!0,aliases:[\"f90\",\"f95\"],k:{literal:\".False. .True.\",keyword:\"kind do while private call intrinsic where elsewhere type endtype endmodule endselect endinterface end enddo endif if forall endforall only contains default return stop then block endblock public subroutine|10 function program .and. .or. .not. .le. .eq. .ge. .gt. .lt. goto save else use module select case access blank direct exist file fmt form formatted iostat name named nextrec number opened rec recl sequential status unformatted unit continue format pause cycle exit c_null_char c_alert c_backspace c_form_feed flush wait decimal round iomsg synchronous nopass non_overridable pass protected volatile abstract extends import non_intrinsic value deferred generic final enumerator class associate bind enum c_int c_short c_long c_long_long c_signed_char c_size_t c_int8_t c_int16_t c_int32_t c_int64_t c_int_least8_t c_int_least16_t c_int_least32_t c_int_least64_t c_int_fast8_t c_int_fast16_t c_int_fast32_t c_int_fast64_t c_intmax_t C_intptr_t c_float c_double c_long_double c_float_complex c_double_complex c_long_double_complex c_bool c_char c_null_ptr c_null_funptr c_new_line c_carriage_return c_horizontal_tab c_vertical_tab iso_c_binding c_loc c_funloc c_associated c_f_pointer c_ptr c_funptr iso_fortran_env character_storage_size error_unit file_storage_size input_unit iostat_end iostat_eor numeric_storage_size output_unit c_f_procpointer ieee_arithmetic ieee_support_underflow_control ieee_get_underflow_mode ieee_set_underflow_mode newunit contiguous recursive pad position action delim readwrite eor advance nml interface procedure namelist include sequence elemental pure integer real character complex logical dimension allocatable|10 parameter external implicit|10 none double precision assign intent optional pointer target in out common equivalence data\",built_in:\"alog alog10 amax0 amax1 amin0 amin1 amod cabs ccos cexp clog csin csqrt dabs dacos dasin datan datan2 dcos dcosh ddim dexp dint dlog dlog10 dmax1 dmin1 dmod dnint dsign dsin dsinh dsqrt dtan dtanh float iabs idim idint idnint ifix isign max0 max1 min0 min1 sngl algama cdabs cdcos cdexp cdlog cdsin cdsqrt cqabs cqcos cqexp cqlog cqsin cqsqrt dcmplx dconjg derf derfc dfloat dgamma dimag dlgama iqint qabs qacos qasin qatan qatan2 qcmplx qconjg qcos qcosh qdim qerf qerfc qexp qgamma qimag qlgama qlog qlog10 qmax1 qmin1 qmod qnint qsign qsin qsinh qsqrt qtan qtanh abs acos aimag aint anint asin atan atan2 char cmplx conjg cos cosh exp ichar index int log log10 max min nint sign sin sinh sqrt tan tanh print write dim lge lgt lle llt mod nullify allocate deallocate adjustl adjustr all allocated any associated bit_size btest ceiling count cshift date_and_time digits dot_product eoshift epsilon exponent floor fraction huge iand ibclr ibits ibset ieor ior ishft ishftc lbound len_trim matmul maxexponent maxloc maxval merge minexponent minloc minval modulo mvbits nearest pack present product radix random_number random_seed range repeat reshape rrspacing scale scan selected_int_kind selected_real_kind set_exponent shape size spacing spread sum system_clock tiny transpose trim ubound unpack verify achar iachar transfer dble entry dprod cpu_time command_argument_count get_command get_command_argument get_environment_variable is_iostat_end ieee_arithmetic ieee_support_underflow_control ieee_get_underflow_mode ieee_set_underflow_mode is_iostat_eor move_alloc new_line selected_char_kind same_type_as extends_type_ofacosh asinh atanh bessel_j0 bessel_j1 bessel_jn bessel_y0 bessel_y1 bessel_yn erf erfc erfc_scaled gamma log_gamma hypot norm2 atomic_define atomic_ref execute_command_line leadz trailz storage_size merge_bits bge bgt ble blt dshiftl dshiftr findloc iall iany iparity image_index lcobound ucobound maskl maskr num_images parity popcnt poppar shifta shiftl shiftr this_image\"},i:/\\/\\*/,c:[e.inherit(e.ASM,{cN:\"string\",relevance:0}),e.inherit(e.QSM,{cN:\"string\",relevance:0}),{cN:\"function\",bK:\"subroutine function program\",i:\"[${=\\\\n]\",c:[e.UTM,{cN:\"params\",b:\"\\\\(\",e:\"\\\\)\"}]},e.C(\"!\",\"$\",{relevance:0}),{cN:\"number\",b:\"(?=\\\\b|\\\\+|\\\\-|\\\\.)(?=\\\\.\\\\d|\\\\d)(?:\\\\d+)?(?:\\\\.?\\\\d*)(?:[de][+-]?\\\\d+)?\\\\b\\\\.?\",relevance:0}]}});hljs.registerLanguage(\"php\",function(e){var c={b:\"\\\\$+[a-zA-Z_-ÿ][a-zA-Z0-9_-ÿ]*\"},i={cN:\"meta\",b:/<\\?(php)?|\\?>/},t={cN:\"string\",c:[e.BE,i],v:[{b:'b\"',e:'\"'},{b:\"b'\",e:\"'\"},e.inherit(e.ASM,{i:null}),e.inherit(e.QSM,{i:null})]},a={v:[e.BNM,e.CNM]};return{aliases:[\"php\",\"php3\",\"php4\",\"php5\",\"php6\",\"php7\"],cI:!0,k:\"and include_once list abstract global private echo interface as static endswitch array null if endwhile or const for endforeach self var while isset public protected exit foreach throw elseif include __FILE__ empty require_once do xor return parent clone use __CLASS__ __LINE__ else break print eval new catch __METHOD__ case exception default die require __FUNCTION__ enddeclare final try switch continue endfor endif declare unset true false trait goto instanceof insteadof __DIR__ __NAMESPACE__ yield finally\",c:[e.HCM,e.C(\"//\",\"$\",{c:[i]}),e.C(\"/\\\\*\",\"\\\\*/\",{c:[{cN:\"doctag\",b:\"@[A-Za-z]+\"}]}),e.C(\"__halt_compiler.+?;\",!1,{eW:!0,k:\"__halt_compiler\",l:e.UIR}),{cN:\"string\",b:/<<<['\"]?\\w+['\"]?$/,e:/^\\w+;?$/,c:[e.BE,{cN:\"subst\",v:[{b:/\\$\\w+/},{b:/\\{\\$/,e:/\\}/}]}]},i,{cN:\"keyword\",b:/\\$this\\b/},c,{b:/(::|->)+[a-zA-Z_\\x7f-\\xff][a-zA-Z0-9_\\x7f-\\xff]*/},{cN:\"function\",bK:\"function\",e:/[;{]/,eE:!0,i:\"\\\\$|\\\\[|%\",c:[e.UTM,{cN:\"params\",b:\"\\\\(\",e:\"\\\\)\",c:[\"self\",c,e.CBCM,t,a]}]},{cN:\"class\",bK:\"class interface\",e:\"{\",eE:!0,i:/[:\\(\\$\"]/,c:[{bK:\"extends implements\"},e.UTM]},{bK:\"namespace\",e:\";\",i:/[\\.']/,c:[e.UTM]},{bK:\"use\",e:\";\",c:[e.UTM]},{b:\"=>\"},t,a]}});hljs.registerLanguage(\"haskell\",function(e){var i={v:[e.C(\"--\",\"$\"),e.C(\"{-\",\"-}\",{c:[\"self\"]})]},a={cN:\"meta\",b:\"{-#\",e:\"#-}\"},l={cN:\"meta\",b:\"^#\",e:\"$\"},c={cN:\"type\",b:\"\\\\b[A-Z][\\\\w']*\",relevance:0},n={b:\"\\\\(\",e:\"\\\\)\",i:'\"',c:[a,l,{cN:\"type\",b:\"\\\\b[A-Z][\\\\w]*(\\\\((\\\\.\\\\.|,|\\\\w+)\\\\))?\"},e.inherit(e.TM,{b:\"[_a-z][\\\\w']*\"}),i]};return{aliases:[\"hs\"],k:\"let in if then else case of where do module import hiding qualified type data newtype deriving class instance as default infix infixl infixr foreign export ccall stdcall cplusplus jvm dotnet safe unsafe family forall mdo proc rec\",c:[{bK:\"module\",e:\"where\",k:\"module where\",c:[n,i],i:\"\\\\W\\\\.|;\"},{b:\"\\\\bimport\\\\b\",e:\"$\",k:\"import qualified as hiding\",c:[n,i],i:\"\\\\W\\\\.|;\"},{cN:\"class\",b:\"^(\\\\s*)?(class|instance)\\\\b\",e:\"where\",k:\"class family instance where\",c:[c,n,i]},{cN:\"class\",b:\"\\\\b(data|(new)?type)\\\\b\",e:\"$\",k:\"data family type newtype deriving\",c:[a,c,n,{b:\"{\",e:\"}\",c:n.c},i]},{bK:\"default\",e:\"$\",c:[c,n,i]},{bK:\"infix infixl infixr\",e:\"$\",c:[e.CNM,i]},{b:\"\\\\bforeign\\\\b\",e:\"$\",k:\"foreign import export ccall stdcall cplusplus jvm dotnet safe unsafe\",c:[c,e.QSM,i]},{cN:\"meta\",b:\"#!\\\\/usr\\\\/bin\\\\/env runhaskell\",e:\"$\"},a,l,e.QSM,e.CNM,c,e.inherit(e.TM,{b:\"^[_a-z][\\\\w']*\"}),i,{b:\"->|<-\"}]}});hljs.registerLanguage(\"coffeescript\",function(e){var c={keyword:\"in if for while finally new do return else break catch instanceof throw try this switch continue typeof delete debugger super yield import export from as default await then unless until loop of by when and or is isnt not\",literal:\"true false null undefined yes no on off\",built_in:\"npm require console print module global window document\"},n=\"[A-Za-z$_][0-9A-Za-z$_]*\",r={cN:\"subst\",b:/#\\{/,e:/}/,k:c},i=[e.BNM,e.inherit(e.CNM,{starts:{e:\"(\\\\s*/)?\",relevance:0}}),{cN:\"string\",v:[{b:/'''/,e:/'''/,c:[e.BE]},{b:/'/,e:/'/,c:[e.BE]},{b:/\"\"\"/,e:/\"\"\"/,c:[e.BE,r]},{b:/\"/,e:/\"/,c:[e.BE,r]}]},{cN:\"regexp\",v:[{b:\"///\",e:\"///\",c:[r,e.HCM]},{b:\"//[gim]{0,3}(?=\\\\W)\",relevance:0},{b:/\\/(?![ *]).*?(?![\\\\]).\\/[gim]{0,3}(?=\\W)/}]},{b:\"@\"+n},{sL:\"javascript\",eB:!0,eE:!0,v:[{b:\"```\",e:\"```\"},{b:\"`\",e:\"`\"}]}];r.c=i;var s=e.inherit(e.TM,{b:n}),t=\"(\\\\(.*\\\\))?\\\\s*\\\\B[-=]>\",a={cN:\"params\",b:\"\\\\([^\\\\(]\",rB:!0,c:[{b:/\\(/,e:/\\)/,k:c,c:[\"self\"].concat(i)}]};return{aliases:[\"coffee\",\"cson\",\"iced\"],k:c,i:/\\/\\*/,c:i.concat([e.C(\"###\",\"###\"),e.HCM,{cN:\"function\",b:\"^\\\\s*\"+n+\"\\\\s*=\\\\s*\"+t,e:\"[-=]>\",rB:!0,c:[s,a]},{b:/[:\\(,=]\\s*/,relevance:0,c:[{cN:\"function\",b:t,e:\"[-=]>\",rB:!0,c:[a]}]},{cN:\"class\",bK:\"class\",e:\"$\",i:/[:=\"\\[\\]]/,c:[{bK:\"extends\",eW:!0,i:/[:=\"\\[\\]]/,c:[s]},s]},{b:n+\":\",e:\":\",rB:!0,rE:!0,relevance:0}])}});hljs.registerLanguage(\"r\",function(e){var r=\"([a-zA-Z]|\\\\.[a-zA-Z.])[a-zA-Z0-9._]*\";return{c:[e.HCM,{b:r,l:r,k:{keyword:\"function if in break next repeat else for return switch while try tryCatch stop warning require library attach detach source setMethod setGeneric setGroupGeneric setClass ...\",literal:\"NULL NA TRUE FALSE T F Inf NaN NA_integer_|10 NA_real_|10 NA_character_|10 NA_complex_|10\"},relevance:0},{cN:\"number\",b:\"0[xX][0-9a-fA-F]+[Li]?\\\\b\",relevance:0},{cN:\"number\",b:\"\\\\d+(?:[eE][+\\\\-]?\\\\d*)?L\\\\b\",relevance:0},{cN:\"number\",b:\"\\\\d+\\\\.(?!\\\\d)(?:i\\\\b)?\",relevance:0},{cN:\"number\",b:\"\\\\d+(?:\\\\.\\\\d*)?(?:[eE][+\\\\-]?\\\\d*)?i?\\\\b\",relevance:0},{cN:\"number\",b:\"\\\\.\\\\d+(?:[eE][+\\\\-]?\\\\d*)?i?\\\\b\",relevance:0},{b:\"`\",e:\"`\",relevance:0},{cN:\"string\",c:[e.BE],v:[{b:'\"',e:'\"'},{b:\"'\",e:\"'\"}]}]}});hljs.registerLanguage(\"autohotkey\",function(e){var a={b:\"`[\\\\s\\\\S]\"};return{cI:!0,aliases:[\"ahk\"],k:{keyword:\"Break Continue Critical Exit ExitApp Gosub Goto New OnExit Pause return SetBatchLines SetTimer Suspend Thread Throw Until ahk_id ahk_class ahk_pid ahk_exe ahk_group\",literal:\"true false NOT AND OR\",built_in:\"ComSpec Clipboard ClipboardAll ErrorLevel\"},c:[a,e.inherit(e.QSM,{c:[a]}),e.C(\";\",\"$\",{relevance:0}),e.CBCM,{cN:\"number\",b:e.NR,relevance:0},{cN:\"variable\",b:\"%[a-zA-Z0-9#_$@]+%\"},{cN:\"built_in\",b:\"^\\\\s*\\\\w+\\\\s*(,|%)\"},{cN:\"title\",v:[{b:'^[^\\\\n\";]+::(?!=)'},{b:'^[^\\\\n\";]+:(?!=)',relevance:0}]},{cN:\"meta\",b:\"^\\\\s*#\\\\w+\",e:\"$\",relevance:0},{cN:\"built_in\",b:\"A_[a-zA-Z0-9]+\"},{b:\",\\\\s*,\"}]}});hljs.registerLanguage(\"elixir\",function(e){var b=\"[a-zA-Z_][a-zA-Z0-9_.]*(\\\\!|\\\\?)?\",c=\"and false then defined module in return redo retry end for true self when next until do begin unless nil break not case cond alias while ensure or include use alias fn quote require import with|0\",n={cN:\"subst\",b:\"#\\\\{\",e:\"}\",l:b,k:c},r=\"[/|([{<\\\"']\",a={cN:\"string\",b:\"~[a-z](?=\"+r+\")\",c:[{endsParent:!0,c:[{c:[e.BE,n],v:[{b:/\"/,e:/\"/},{b:/'/,e:/'/},{b:/\\//,e:/\\//},{b:/\\|/,e:/\\|/},{b:/\\(/,e:/\\)/},{b:/\\[/,e:/\\]/},{b:/\\{/,e:/\\}/},{b:/</,e:/>/}]}]}]},i={cN:\"string\",b:\"~[A-Z](?=\"+r+\")\",c:[{b:/\"/,e:/\"/},{b:/'/,e:/'/},{b:/\\//,e:/\\//},{b:/\\|/,e:/\\|/},{b:/\\(/,e:/\\)/},{b:/\\[/,e:/\\]/},{b:/\\{/,e:/\\}/},{b:/\\</,e:/\\>/}]},l={cN:\"string\",c:[e.BE,n],v:[{b:/\"\"\"/,e:/\"\"\"/},{b:/'''/,e:/'''/},{b:/~S\"\"\"/,e:/\"\"\"/,c:[]},{b:/~S\"/,e:/\"/,c:[]},{b:/~S'''/,e:/'''/,c:[]},{b:/~S'/,e:/'/,c:[]},{b:/'/,e:/'/},{b:/\"/,e:/\"/}]},s={cN:\"function\",bK:\"def defp defmacro\",e:/\\B\\b/,c:[e.inherit(e.TM,{b:b,endsParent:!0})]},t=e.inherit(s,{cN:\"class\",bK:\"defimpl defmodule defprotocol defrecord\",e:/\\bdo\\b|$|;/}),d=[l,i,a,e.HCM,t,s,{b:\"::\"},{cN:\"symbol\",b:\":(?![\\\\s:])\",c:[l,{b:\"[a-zA-Z_]\\\\w*[!?=]?|[-+~]\\\\@|<<|>>|=~|===?|<=>|[<>]=?|\\\\*\\\\*|[-/+%^&*~`|]|\\\\[\\\\]=?\"}],relevance:0},{cN:\"symbol\",b:b+\":(?!:)\",relevance:0},{cN:\"number\",b:\"(\\\\b0o[0-7_]+)|(\\\\b0b[01_]+)|(\\\\b0x[0-9a-fA-F_]+)|(-?\\\\b[1-9][0-9_]*(.[0-9_]+([eE][-+]?[0-9]+)?)?)\",relevance:0},{cN:\"variable\",b:\"(\\\\$\\\\W)|((\\\\$|\\\\@\\\\@?)(\\\\w+))\"},{b:\"->\"},{b:\"(\"+e.RSR+\")\\\\s*\",c:[e.HCM,{cN:\"regexp\",i:\"\\\\n\",c:[e.BE,n],v:[{b:\"/\",e:\"/[a-z]*\"},{b:\"%r\\\\[\",e:\"\\\\][a-z]*\"}]}],relevance:0}];return{l:b,k:c,c:n.c=d}});hljs.registerLanguage(\"gradle\",function(e){return{cI:!0,k:{keyword:\"task project allprojects subprojects artifacts buildscript configurations dependencies repositories sourceSets description delete from into include exclude source classpath destinationDir includes options sourceCompatibility targetCompatibility group flatDir doLast doFirst flatten todir fromdir ant def abstract break case catch continue default do else extends final finally for if implements instanceof native new private protected public return static switch synchronized throw throws transient try volatile while strictfp package import false null super this true antlrtask checkstyle codenarc copy boolean byte char class double float int interface long short void compile runTime file fileTree abs any append asList asWritable call collect compareTo count div dump each eachByte eachFile eachLine every find findAll flatten getAt getErr getIn getOut getText grep immutable inject inspect intersect invokeMethods isCase join leftShift minus multiply newInputStream newOutputStream newPrintWriter newReader newWriter next plus pop power previous print println push putAt read readBytes readLines reverse reverseEach round size sort splitEachLine step subMap times toInteger toList tokenize upto waitForOrKill withPrintWriter withReader withStream withWriter withWriterAppend write writeLine\"},c:[e.CLCM,e.CBCM,e.ASM,e.QSM,e.NM,e.RM]}});hljs.registerLanguage(\"css\",function(e){var c={b:/(?:[A-Z\\_\\.\\-]+|--[a-zA-Z0-9_-]+)\\s*:/,rB:!0,e:\";\",eW:!0,c:[{cN:\"attribute\",b:/\\S/,e:\":\",eE:!0,starts:{eW:!0,eE:!0,c:[{b:/[\\w-]+\\(/,rB:!0,c:[{cN:\"built_in\",b:/[\\w-]+/},{b:/\\(/,e:/\\)/,c:[e.ASM,e.QSM,e.CSSNM]}]},e.CSSNM,e.QSM,e.ASM,e.CBCM,{cN:\"number\",b:\"#[0-9A-Fa-f]+\"},{cN:\"meta\",b:\"!important\"}]}}]};return{cI:!0,i:/[=\\/|'\\$]/,c:[e.CBCM,{cN:\"selector-id\",b:/#[A-Za-z0-9_-]+/},{cN:\"selector-class\",b:/\\.[A-Za-z0-9_-]+/},{cN:\"selector-attr\",b:/\\[/,e:/\\]/,i:\"$\",c:[e.ASM,e.QSM]},{cN:\"selector-pseudo\",b:/:(:)?[a-zA-Z0-9\\_\\-\\+\\(\\)\"'.]+/},{b:\"@(page|font-face)\",l:\"@[a-z-]+\",k:\"@page @font-face\"},{b:\"@\",e:\"[{;]\",i:/:/,rB:!0,c:[{cN:\"keyword\",b:/@\\-?\\w[\\w]*(\\-\\w+)*/},{b:/\\s/,eW:!0,eE:!0,relevance:0,k:\"and or not only\",c:[{b:/[a-z-]+:/,cN:\"attribute\"},e.ASM,e.QSM,e.CSSNM]}]},{cN:\"selector-tag\",b:\"[a-zA-Z-][a-zA-Z0-9_-]*\",relevance:0},{b:\"{\",e:\"}\",i:/\\S/,c:[e.CBCM,c]}]}});\n\nexports.hljs = hljs;\n",
"type": "application/javascript",
"title": "$:/plugins/tiddlywiki/highlight/highlight.js",
"module-type": "library"
},
"$:/plugins/tiddlywiki/highlight/highlight.css": {
"text": "/*\n\nOriginal highlight.js style (c) Ivan Sagalaev <maniac@softwaremaniacs.org>\n\n*/\n\n.hljs {\n display: block;\n overflow-x: auto;\n padding: 0.5em;\n background: #F0F0F0;\n}\n\n\n/* Base color: saturation 0; */\n\n.hljs,\n.hljs-subst {\n color: #444;\n}\n\n.hljs-comment {\n color: #888888;\n}\n\n.hljs-keyword,\n.hljs-attribute,\n.hljs-selector-tag,\n.hljs-meta-keyword,\n.hljs-doctag,\n.hljs-name {\n font-weight: bold;\n}\n\n\n/* User color: hue: 0 */\n\n.hljs-type,\n.hljs-string,\n.hljs-number,\n.hljs-selector-id,\n.hljs-selector-class,\n.hljs-quote,\n.hljs-template-tag,\n.hljs-deletion {\n color: #880000;\n}\n\n.hljs-title,\n.hljs-section {\n color: #880000;\n font-weight: bold;\n}\n\n.hljs-regexp,\n.hljs-symbol,\n.hljs-variable,\n.hljs-template-variable,\n.hljs-link,\n.hljs-selector-attr,\n.hljs-selector-pseudo {\n color: #BC6060;\n}\n\n\n/* Language color: hue: 90; */\n\n.hljs-literal {\n color: #78A960;\n}\n\n.hljs-built_in,\n.hljs-bullet,\n.hljs-code,\n.hljs-addition {\n color: #397300;\n}\n\n\n/* Meta color: hue: 200 */\n\n.hljs-meta {\n color: #1f7199;\n}\n\n.hljs-meta-string {\n color: #4d99bf;\n}\n\n\n/* Misc effects */\n\n.hljs-emphasis {\n font-style: italic;\n}\n\n.hljs-strong {\n font-weight: bold;\n}\n",
"type": "text/css",
"title": "$:/plugins/tiddlywiki/highlight/highlight.css",
"tags": "[[$:/tags/Stylesheet]]"
},
"$:/plugins/tiddlywiki/highlight/highlightblock.js": {
"title": "$:/plugins/tiddlywiki/highlight/highlightblock.js",
"text": "/*\\\ntitle: $:/plugins/tiddlywiki/highlight/highlightblock.js\ntype: application/javascript\nmodule-type: widget\n\nWraps up the fenced code blocks parser for highlight and use in TiddlyWiki5\n\n\\*/\n(function() {\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar TYPE_MAPPINGS_BASE = \"$:/config/HighlightPlugin/TypeMappings/\";\n\nvar CodeBlockWidget = require(\"$:/core/modules/widgets/codeblock.js\").codeblock;\n\nvar hljs = require(\"$:/plugins/tiddlywiki/highlight/highlight.js\");\n\nhljs.configure({tabReplace: \" \"});\t\n\nCodeBlockWidget.prototype.postRender = function() {\n\tvar domNode = this.domNodes[0],\n\t\tlanguage = this.language,\n\t\ttiddler = this.wiki.getTiddler(TYPE_MAPPINGS_BASE + language);\n\tif(tiddler) {\n\t\tlanguage = tiddler.fields.text || \"\";\n\t}\n\tif(language && hljs.getLanguage(language)) {\n\t\tdomNode.className = language.toLowerCase() + \" hljs\";\n\t\tif($tw.browser && !domNode.isTiddlyWikiFakeDom) {\n\t\t\thljs.highlightBlock(domNode);\t\t\t\n\t\t} else {\n\t\t\tvar text = domNode.textContent;\n\t\t\tdomNode.children[0].innerHTML = hljs.fixMarkup(hljs.highlight(language,text).value);\n\t\t\t// If we're using the fakedom then specially save the original raw text\n\t\t\tif(domNode.isTiddlyWikiFakeDom) {\n\t\t\t\tdomNode.children[0].textInnerHTML = text;\n\t\t\t}\n\t\t}\n\t}\t\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "widget"
},
"$:/plugins/tiddlywiki/highlight/howto": {
"title": "$:/plugins/tiddlywiki/highlight/howto",
"text": "! Supporting Additional Languages\n \nThe [[highlight.js|https://github.com/highlightjs/highlight.js]] project supports many languages. Only a subset of these languages are supported by the plugin. It is possible for users to change the set of languages supported by the plugin by following these steps:\n \n# Go to the highlight.js project [[download page|https://highlightjs.org/download/]], select the language definitions to include, and press the Download button to download a zip archive containing customised support files for a highlight.js syntax highlighting server.\n# Locate the `highlight.pack.js` file in the highlight plugin -- on a stock Debian 8 system running Tiddlywiki5 under node-js it is located at `/usr/local/lib/node_modules/tiddlywiki/plugins/tiddlywiki/highlight/files/highlight.pack.js`.\n# Replace the plugin `highlight.pack.js` file located in step 2 with the one from the downloaded archive obtained in step 1.\n# Restart the Tiddlywiki server.\n"
},
"$:/plugins/tiddlywiki/highlight/license": {
"title": "$:/plugins/tiddlywiki/highlight/license",
"type": "text/plain",
"text": "Copyright (c) 2006, Ivan Sagalaev\nAll rights reserved.\nRedistribution and use in source and binary forms, with or without\nmodification, are permitted provided that the following conditions are met:\n\n * Redistributions of source code must retain the above copyright\n notice, this list of conditions and the following disclaimer.\n * Redistributions in binary form must reproduce the above copyright\n notice, this list of conditions and the following disclaimer in the\n documentation and/or other materials provided with the distribution.\n * Neither the name of highlight.js nor the names of its contributors\n may be used to endorse or promote products derived from this software\n without specific prior written permission.\n\nTHIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND ANY\nEXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED\nWARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE\nDISCLAIMED. IN NO EVENT SHALL THE REGENTS AND CONTRIBUTORS BE LIABLE FOR ANY\nDIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES\n(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;\nLOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND\nON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT\n(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS\nSOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.\n"
},
"$:/plugins/tiddlywiki/highlight/readme": {
"title": "$:/plugins/tiddlywiki/highlight/readme",
"text": "This plugin provides syntax highlighting of code blocks using v9.18.1 of [[highlight.js|https://github.com/isagalaev/highlight.js]] from Ivan Sagalaev.\n\n! Usage\n\nWhen the plugin is installed it automatically applies highlighting to all codeblocks defined with triple backticks or with the CodeBlockWidget.\n\nThe language can optionally be specified after the opening triple braces:\n\n<$codeblock code=\"\"\"```css\n * { margin: 0; padding: 0; } /* micro reset */\n\nhtml { font-size: 62.5%; }\nbody { font-size: 14px; font-size: 1.4rem; } /* =14px */\nh1 { font-size: 24px; font-size: 2.4rem; } /* =24px */\n```\"\"\"/>\n\nIf no language is specified highlight.js will attempt to automatically detect the language.\n\n! Built-in Language Brushes\n\nThe plugin includes support for the following languages (referred to as \"brushes\" by highlight.js):\n\n* apache\n* arduino\n* arm assembly\n* asciidoc\n* autohotkey\n* awk\n* bash\n* cmake\n* coffeescript\n* cpp\n* cs\n* css\n* diff\n* dockerfile\n* erlang\n* elixir\n* fortran\n* go\n* gradle\n* haskell\n* html\n* http\n* ini\n* intel x86 assembly\n* java\n* javascript\n* json\n* kotlin\n* less\n* lua\n* makefile\n* markdown\n* mathematica\n* matlab\n* nginx\n* objectivec\n* perl\n* php\n* plaintext\n* powershell\n* properties\n* python\n* R\n* ruby\n* rust\n* scss\n* shell session\n* sql\n* swift\n* toml\n* typescript\n* vala\n* vim script\n* xml\n* yaml\n\nYou can also specify the language as a MIME content type (eg `text/html` or `text/css`). The mapping is accomplished via mapping tiddlers whose titles start with `$:/config/HighlightPlugin/TypeMappings/`.\n"
},
"$:/plugins/tiddlywiki/highlight/styles": {
"title": "$:/plugins/tiddlywiki/highlight/styles",
"tags": "[[$:/tags/Stylesheet]]",
"text": ".hljs {\n display: block;\n overflow-x: auto;\n padding: 0.5em;\n background: <<colour tiddler-editor-background>>;\n color: <<colour foreground>>;\n -webkit-text-size-adjust:none\n}\n\n.hljs-comment,\n.hljs-quote {\n color: #93a1a1;\n}\n\n/* Solarized Green */\n.hljs-keyword,\n.hljs-selector-tag,\n.hljs-addition {\n color: #859900;\n}\n\n/* Solarized Cyan */\n.hljs-number,\n.hljs-string,\n.hljs-meta .hljs-meta-string,\n.hljs-literal,\n.hljs-doctag,\n.hljs-regexp {\n color: #2aa198;\n}\n\n/* Solarized Blue */\n.hljs-title,\n.hljs-section,\n.hljs-name,\n.hljs-selector-id,\n.hljs-selector-class {\n color: #268bd2;\n}\n\n/* Solarized Yellow */\n.hljs-attribute,\n.hljs-attr,\n.hljs-variable,\n.hljs-template-variable,\n.hljs-class .hljs-title,\n.hljs-type {\n color: #b58900;\n}\n\n/* Solarized Orange */\n.hljs-symbol,\n.hljs-bullet,\n.hljs-subst,\n.hljs-meta,\n.hljs-meta .hljs-keyword,\n.hljs-selector-attr,\n.hljs-selector-pseudo,\n.hljs-link {\n color: #cb4b16;\n}\n\n/* Solarized Red */\n.hljs-built_in,\n.hljs-deletion {\n color: #dc322f;\n}\n\n.hljs-formula {\n background: #eee8d5;\n}\n\n.hljs-emphasis {\n font-style: italic;\n}\n\n.hljs-strong {\n font-weight: bold;\n}\n"
},
"$:/plugins/tiddlywiki/highlight/usage": {
"title": "$:/plugins/tiddlywiki/highlight/usage",
"text": "! Usage\n\nFenced code blocks can have a language specifier added to trigger highlighting in a specific language. Otherwise heuristics are used to detect the language.\n\n```\n ```js\n var a = b + c; // Highlighted as JavaScript\n ```\n```\n! Adding Themes\n\nYou can add themes from highlight.js by copying the CSS to a new tiddler and tagging it with [[$:/tags/Stylesheet]]. The available themes can be found on GitHub:\n\nhttps://github.com/isagalaev/highlight.js/tree/master/src/styles\n"
}
}
}
{
"tiddlers": {
"$:/plugins/tiddlywiki/katex/katex.min.css": {
"text": ".katex{font:normal 1.21em KaTeX_Main,Times New Roman,serif;line-height:1.2;text-indent:0;text-rendering:auto}.katex *{-ms-high-contrast-adjust:none!important}.katex .katex-version:after{content:\"0.10.2\"}.katex .katex-mathml{position:absolute;clip:rect(1px,1px,1px,1px);padding:0;border:0;height:1px;width:1px;overflow:hidden}.katex .katex-html>.newline{display:block}.katex .base{position:relative;white-space:nowrap;width:min-content}.katex .base,.katex .strut{display:inline-block}.katex .textbf{font-weight:700}.katex .textit{font-style:italic}.katex .textrm{font-family:KaTeX_Main}.katex .textsf{font-family:KaTeX_SansSerif}.katex .texttt{font-family:KaTeX_Typewriter}.katex .mathdefault{font-family:KaTeX_Math;font-style:italic}.katex .mathit{font-family:KaTeX_Main;font-style:italic}.katex .mathrm{font-style:normal}.katex .mathbf{font-family:KaTeX_Main;font-weight:700}.katex .boldsymbol{font-family:KaTeX_Math;font-weight:700;font-style:italic}.katex .amsrm,.katex .mathbb,.katex .textbb{font-family:KaTeX_AMS}.katex .mathcal{font-family:KaTeX_Caligraphic}.katex .mathfrak,.katex .textfrak{font-family:KaTeX_Fraktur}.katex .mathtt{font-family:KaTeX_Typewriter}.katex .mathscr,.katex .textscr{font-family:KaTeX_Script}.katex .mathsf,.katex .textsf{font-family:KaTeX_SansSerif}.katex .mathboldsf,.katex .textboldsf{font-family:KaTeX_SansSerif;font-weight:700}.katex .mathitsf,.katex .textitsf{font-family:KaTeX_SansSerif;font-style:italic}.katex .mainrm{font-family:KaTeX_Main;font-style:normal}.katex .vlist-t{display:inline-table;table-layout:fixed}.katex .vlist-r{display:table-row}.katex .vlist{display:table-cell;vertical-align:bottom;position:relative}.katex .vlist>span{display:block;height:0;position:relative}.katex .vlist>span>span{display:inline-block}.katex .vlist>span>.pstrut{overflow:hidden;width:0}.katex .vlist-t2{margin-right:-2px}.katex .vlist-s{display:table-cell;vertical-align:bottom;font-size:1px;width:2px;min-width:2px}.katex .msupsub{text-align:left}.katex .mfrac>span>span{text-align:center}.katex .mfrac .frac-line{display:inline-block;width:100%;border-bottom-style:solid}.katex .hdashline,.katex .hline,.katex .mfrac .frac-line,.katex .overline .overline-line,.katex .rule,.katex .underline .underline-line{min-height:1px}.katex .mspace{display:inline-block}.katex .clap,.katex .llap,.katex .rlap{width:0;position:relative}.katex .clap>.inner,.katex .llap>.inner,.katex .rlap>.inner{position:absolute}.katex .clap>.fix,.katex .llap>.fix,.katex .rlap>.fix{display:inline-block}.katex .llap>.inner{right:0}.katex .clap>.inner,.katex .rlap>.inner{left:0}.katex .clap>.inner>span{margin-left:-50%;margin-right:50%}.katex .rule{display:inline-block;border:0 solid;position:relative}.katex .hline,.katex .overline .overline-line,.katex .underline .underline-line{display:inline-block;width:100%;border-bottom-style:solid}.katex .hdashline{display:inline-block;width:100%;border-bottom-style:dashed}.katex .sqrt>.root{margin-left:.27777778em;margin-right:-.55555556em}.katex .fontsize-ensurer,.katex .sizing{display:inline-block}.katex .fontsize-ensurer.reset-size1.size1,.katex .sizing.reset-size1.size1{font-size:1em}.katex .fontsize-ensurer.reset-size1.size2,.katex .sizing.reset-size1.size2{font-size:1.2em}.katex .fontsize-ensurer.reset-size1.size3,.katex .sizing.reset-size1.size3{font-size:1.4em}.katex .fontsize-ensurer.reset-size1.size4,.katex .sizing.reset-size1.size4{font-size:1.6em}.katex .fontsize-ensurer.reset-size1.size5,.katex .sizing.reset-size1.size5{font-size:1.8em}.katex .fontsize-ensurer.reset-size1.size6,.katex .sizing.reset-size1.size6{font-size:2em}.katex .fontsize-ensurer.reset-size1.size7,.katex .sizing.reset-size1.size7{font-size:2.4em}.katex .fontsize-ensurer.reset-size1.size8,.katex .sizing.reset-size1.size8{font-size:2.88em}.katex .fontsize-ensurer.reset-size1.size9,.katex .sizing.reset-size1.size9{font-size:3.456em}.katex .fontsize-ensurer.reset-size1.size10,.katex .sizing.reset-size1.size10{font-size:4.148em}.katex .fontsize-ensurer.reset-size1.size11,.katex .sizing.reset-size1.size11{font-size:4.976em}.katex .fontsize-ensurer.reset-size2.size1,.katex .sizing.reset-size2.size1{font-size:.83333333em}.katex .fontsize-ensurer.reset-size2.size2,.katex .sizing.reset-size2.size2{font-size:1em}.katex .fontsize-ensurer.reset-size2.size3,.katex .sizing.reset-size2.size3{font-size:1.16666667em}.katex .fontsize-ensurer.reset-size2.size4,.katex .sizing.reset-size2.size4{font-size:1.33333333em}.katex .fontsize-ensurer.reset-size2.size5,.katex .sizing.reset-size2.size5{font-size:1.5em}.katex .fontsize-ensurer.reset-size2.size6,.katex .sizing.reset-size2.size6{font-size:1.66666667em}.katex .fontsize-ensurer.reset-size2.size7,.katex .sizing.reset-size2.size7{font-size:2em}.katex .fontsize-ensurer.reset-size2.size8,.katex .sizing.reset-size2.size8{font-size:2.4em}.katex .fontsize-ensurer.reset-size2.size9,.katex .sizing.reset-size2.size9{font-size:2.88em}.katex .fontsize-ensurer.reset-size2.size10,.katex .sizing.reset-size2.size10{font-size:3.45666667em}.katex .fontsize-ensurer.reset-size2.size11,.katex .sizing.reset-size2.size11{font-size:4.14666667em}.katex .fontsize-ensurer.reset-size3.size1,.katex .sizing.reset-size3.size1{font-size:.71428571em}.katex .fontsize-ensurer.reset-size3.size2,.katex .sizing.reset-size3.size2{font-size:.85714286em}.katex .fontsize-ensurer.reset-size3.size3,.katex .sizing.reset-size3.size3{font-size:1em}.katex .fontsize-ensurer.reset-size3.size4,.katex .sizing.reset-size3.size4{font-size:1.14285714em}.katex .fontsize-ensurer.reset-size3.size5,.katex .sizing.reset-size3.size5{font-size:1.28571429em}.katex .fontsize-ensurer.reset-size3.size6,.katex .sizing.reset-size3.size6{font-size:1.42857143em}.katex .fontsize-ensurer.reset-size3.size7,.katex .sizing.reset-size3.size7{font-size:1.71428571em}.katex .fontsize-ensurer.reset-size3.size8,.katex .sizing.reset-size3.size8{font-size:2.05714286em}.katex .fontsize-ensurer.reset-size3.size9,.katex .sizing.reset-size3.size9{font-size:2.46857143em}.katex .fontsize-ensurer.reset-size3.size10,.katex .sizing.reset-size3.size10{font-size:2.96285714em}.katex .fontsize-ensurer.reset-size3.size11,.katex .sizing.reset-size3.size11{font-size:3.55428571em}.katex .fontsize-ensurer.reset-size4.size1,.katex .sizing.reset-size4.size1{font-size:.625em}.katex .fontsize-ensurer.reset-size4.size2,.katex .sizing.reset-size4.size2{font-size:.75em}.katex .fontsize-ensurer.reset-size4.size3,.katex .sizing.reset-size4.size3{font-size:.875em}.katex .fontsize-ensurer.reset-size4.size4,.katex .sizing.reset-size4.size4{font-size:1em}.katex .fontsize-ensurer.reset-size4.size5,.katex .sizing.reset-size4.size5{font-size:1.125em}.katex .fontsize-ensurer.reset-size4.size6,.katex .sizing.reset-size4.size6{font-size:1.25em}.katex .fontsize-ensurer.reset-size4.size7,.katex .sizing.reset-size4.size7{font-size:1.5em}.katex .fontsize-ensurer.reset-size4.size8,.katex .sizing.reset-size4.size8{font-size:1.8em}.katex .fontsize-ensurer.reset-size4.size9,.katex .sizing.reset-size4.size9{font-size:2.16em}.katex .fontsize-ensurer.reset-size4.size10,.katex .sizing.reset-size4.size10{font-size:2.5925em}.katex .fontsize-ensurer.reset-size4.size11,.katex .sizing.reset-size4.size11{font-size:3.11em}.katex .fontsize-ensurer.reset-size5.size1,.katex .sizing.reset-size5.size1{font-size:.55555556em}.katex .fontsize-ensurer.reset-size5.size2,.katex .sizing.reset-size5.size2{font-size:.66666667em}.katex .fontsize-ensurer.reset-size5.size3,.katex .sizing.reset-size5.size3{font-size:.77777778em}.katex .fontsize-ensurer.reset-size5.size4,.katex .sizing.reset-size5.size4{font-size:.88888889em}.katex .fontsize-ensurer.reset-size5.size5,.katex .sizing.reset-size5.size5{font-size:1em}.katex .fontsize-ensurer.reset-size5.size6,.katex .sizing.reset-size5.size6{font-size:1.11111111em}.katex .fontsize-ensurer.reset-size5.size7,.katex .sizing.reset-size5.size7{font-size:1.33333333em}.katex .fontsize-ensurer.reset-size5.size8,.katex .sizing.reset-size5.size8{font-size:1.6em}.katex .fontsize-ensurer.reset-size5.size9,.katex .sizing.reset-size5.size9{font-size:1.92em}.katex .fontsize-ensurer.reset-size5.size10,.katex .sizing.reset-size5.size10{font-size:2.30444444em}.katex .fontsize-ensurer.reset-size5.size11,.katex .sizing.reset-size5.size11{font-size:2.76444444em}.katex .fontsize-ensurer.reset-size6.size1,.katex .sizing.reset-size6.size1{font-size:.5em}.katex .fontsize-ensurer.reset-size6.size2,.katex .sizing.reset-size6.size2{font-size:.6em}.katex .fontsize-ensurer.reset-size6.size3,.katex .sizing.reset-size6.size3{font-size:.7em}.katex .fontsize-ensurer.reset-size6.size4,.katex .sizing.reset-size6.size4{font-size:.8em}.katex .fontsize-ensurer.reset-size6.size5,.katex .sizing.reset-size6.size5{font-size:.9em}.katex .fontsize-ensurer.reset-size6.size6,.katex .sizing.reset-size6.size6{font-size:1em}.katex .fontsize-ensurer.reset-size6.size7,.katex .sizing.reset-size6.size7{font-size:1.2em}.katex .fontsize-ensurer.reset-size6.size8,.katex .sizing.reset-size6.size8{font-size:1.44em}.katex .fontsize-ensurer.reset-size6.size9,.katex .sizing.reset-size6.size9{font-size:1.728em}.katex .fontsize-ensurer.reset-size6.size10,.katex .sizing.reset-size6.size10{font-size:2.074em}.katex .fontsize-ensurer.reset-size6.size11,.katex .sizing.reset-size6.size11{font-size:2.488em}.katex .fontsize-ensurer.reset-size7.size1,.katex .sizing.reset-size7.size1{font-size:.41666667em}.katex .fontsize-ensurer.reset-size7.size2,.katex .sizing.reset-size7.size2{font-size:.5em}.katex .fontsize-ensurer.reset-size7.size3,.katex .sizing.reset-size7.size3{font-size:.58333333em}.katex .fontsize-ensurer.reset-size7.size4,.katex .sizing.reset-size7.size4{font-size:.66666667em}.katex .fontsize-ensurer.reset-size7.size5,.katex .sizing.reset-size7.size5{font-size:.75em}.katex .fontsize-ensurer.reset-size7.size6,.katex .sizing.reset-size7.size6{font-size:.83333333em}.katex .fontsize-ensurer.reset-size7.size7,.katex .sizing.reset-size7.size7{font-size:1em}.katex .fontsize-ensurer.reset-size7.size8,.katex .sizing.reset-size7.size8{font-size:1.2em}.katex .fontsize-ensurer.reset-size7.size9,.katex .sizing.reset-size7.size9{font-size:1.44em}.katex .fontsize-ensurer.reset-size7.size10,.katex .sizing.reset-size7.size10{font-size:1.72833333em}.katex .fontsize-ensurer.reset-size7.size11,.katex .sizing.reset-size7.size11{font-size:2.07333333em}.katex .fontsize-ensurer.reset-size8.size1,.katex .sizing.reset-size8.size1{font-size:.34722222em}.katex .fontsize-ensurer.reset-size8.size2,.katex .sizing.reset-size8.size2{font-size:.41666667em}.katex .fontsize-ensurer.reset-size8.size3,.katex .sizing.reset-size8.size3{font-size:.48611111em}.katex .fontsize-ensurer.reset-size8.size4,.katex .sizing.reset-size8.size4{font-size:.55555556em}.katex .fontsize-ensurer.reset-size8.size5,.katex .sizing.reset-size8.size5{font-size:.625em}.katex .fontsize-ensurer.reset-size8.size6,.katex .sizing.reset-size8.size6{font-size:.69444444em}.katex .fontsize-ensurer.reset-size8.size7,.katex .sizing.reset-size8.size7{font-size:.83333333em}.katex .fontsize-ensurer.reset-size8.size8,.katex .sizing.reset-size8.size8{font-size:1em}.katex .fontsize-ensurer.reset-size8.size9,.katex .sizing.reset-size8.size9{font-size:1.2em}.katex .fontsize-ensurer.reset-size8.size10,.katex .sizing.reset-size8.size10{font-size:1.44027778em}.katex .fontsize-ensurer.reset-size8.size11,.katex .sizing.reset-size8.size11{font-size:1.72777778em}.katex .fontsize-ensurer.reset-size9.size1,.katex .sizing.reset-size9.size1{font-size:.28935185em}.katex .fontsize-ensurer.reset-size9.size2,.katex .sizing.reset-size9.size2{font-size:.34722222em}.katex .fontsize-ensurer.reset-size9.size3,.katex .sizing.reset-size9.size3{font-size:.40509259em}.katex .fontsize-ensurer.reset-size9.size4,.katex .sizing.reset-size9.size4{font-size:.46296296em}.katex .fontsize-ensurer.reset-size9.size5,.katex .sizing.reset-size9.size5{font-size:.52083333em}.katex .fontsize-ensurer.reset-size9.size6,.katex .sizing.reset-size9.size6{font-size:.5787037em}.katex .fontsize-ensurer.reset-size9.size7,.katex .sizing.reset-size9.size7{font-size:.69444444em}.katex .fontsize-ensurer.reset-size9.size8,.katex .sizing.reset-size9.size8{font-size:.83333333em}.katex .fontsize-ensurer.reset-size9.size9,.katex .sizing.reset-size9.size9{font-size:1em}.katex .fontsize-ensurer.reset-size9.size10,.katex .sizing.reset-size9.size10{font-size:1.20023148em}.katex .fontsize-ensurer.reset-size9.size11,.katex .sizing.reset-size9.size11{font-size:1.43981481em}.katex .fontsize-ensurer.reset-size10.size1,.katex .sizing.reset-size10.size1{font-size:.24108004em}.katex .fontsize-ensurer.reset-size10.size2,.katex .sizing.reset-size10.size2{font-size:.28929605em}.katex .fontsize-ensurer.reset-size10.size3,.katex .sizing.reset-size10.size3{font-size:.33751205em}.katex .fontsize-ensurer.reset-size10.size4,.katex .sizing.reset-size10.size4{font-size:.38572806em}.katex .fontsize-ensurer.reset-size10.size5,.katex .sizing.reset-size10.size5{font-size:.43394407em}.katex .fontsize-ensurer.reset-size10.size6,.katex .sizing.reset-size10.size6{font-size:.48216008em}.katex .fontsize-ensurer.reset-size10.size7,.katex .sizing.reset-size10.size7{font-size:.57859209em}.katex .fontsize-ensurer.reset-size10.size8,.katex .sizing.reset-size10.size8{font-size:.69431051em}.katex .fontsize-ensurer.reset-size10.size9,.katex .sizing.reset-size10.size9{font-size:.83317261em}.katex .fontsize-ensurer.reset-size10.size10,.katex .sizing.reset-size10.size10{font-size:1em}.katex .fontsize-ensurer.reset-size10.size11,.katex .sizing.reset-size10.size11{font-size:1.19961427em}.katex .fontsize-ensurer.reset-size11.size1,.katex .sizing.reset-size11.size1{font-size:.20096463em}.katex .fontsize-ensurer.reset-size11.size2,.katex .sizing.reset-size11.size2{font-size:.24115756em}.katex .fontsize-ensurer.reset-size11.size3,.katex .sizing.reset-size11.size3{font-size:.28135048em}.katex .fontsize-ensurer.reset-size11.size4,.katex .sizing.reset-size11.size4{font-size:.32154341em}.katex .fontsize-ensurer.reset-size11.size5,.katex .sizing.reset-size11.size5{font-size:.36173633em}.katex .fontsize-ensurer.reset-size11.size6,.katex .sizing.reset-size11.size6{font-size:.40192926em}.katex .fontsize-ensurer.reset-size11.size7,.katex .sizing.reset-size11.size7{font-size:.48231511em}.katex .fontsize-ensurer.reset-size11.size8,.katex .sizing.reset-size11.size8{font-size:.57877814em}.katex .fontsize-ensurer.reset-size11.size9,.katex .sizing.reset-size11.size9{font-size:.69453376em}.katex .fontsize-ensurer.reset-size11.size10,.katex .sizing.reset-size11.size10{font-size:.83360129em}.katex .fontsize-ensurer.reset-size11.size11,.katex .sizing.reset-size11.size11{font-size:1em}.katex .delimsizing.size1{font-family:KaTeX_Size1}.katex .delimsizing.size2{font-family:KaTeX_Size2}.katex .delimsizing.size3{font-family:KaTeX_Size3}.katex .delimsizing.size4{font-family:KaTeX_Size4}.katex .delimsizing.mult .delim-size1>span{font-family:KaTeX_Size1}.katex .delimsizing.mult .delim-size4>span{font-family:KaTeX_Size4}.katex .nulldelimiter{display:inline-block;width:.12em}.katex .delimcenter,.katex .op-symbol{position:relative}.katex .op-symbol.small-op{font-family:KaTeX_Size1}.katex .op-symbol.large-op{font-family:KaTeX_Size2}.katex .op-limits>.vlist-t{text-align:center}.katex .accent>.vlist-t{text-align:center}.katex .accent .accent-body{position:relative}.katex .accent .accent-body:not(.accent-full){width:0}.katex .overlay{display:block}.katex .mtable .vertical-separator{display:inline-block;margin:0 -.025em;border-right:.05em solid;min-width:1px}.katex .mtable .vs-dashed{border-right:.05em dashed}.katex .mtable .arraycolsep{display:inline-block}.katex .mtable .col-align-c>.vlist-t{text-align:center}.katex .mtable .col-align-l>.vlist-t{text-align:left}.katex .mtable .col-align-r>.vlist-t{text-align:right}.katex .svg-align{text-align:left}.katex svg{display:block;position:absolute;width:100%;height:inherit;fill:currentColor;stroke:currentColor;fill-rule:nonzero;fill-opacity:1;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1}.katex svg path{stroke:none}.katex img{border-style:none;min-width:0;min-height:0;max-width:none;max-height:none}.katex .stretchy{width:100%;display:block;position:relative;overflow:hidden}.katex .stretchy:after,.katex .stretchy:before{content:\"\"}.katex .hide-tail{width:100%;position:relative;overflow:hidden}.katex .halfarrow-left{position:absolute;left:0;width:50.2%;overflow:hidden}.katex .halfarrow-right{position:absolute;right:0;width:50.2%;overflow:hidden}.katex .brace-left{position:absolute;left:0;width:25.1%;overflow:hidden}.katex .brace-center{position:absolute;left:25%;width:50%;overflow:hidden}.katex .brace-right{position:absolute;right:0;width:25.1%;overflow:hidden}.katex .x-arrow-pad{padding:0 .5em}.katex .mover,.katex .munder,.katex .x-arrow{text-align:center}.katex .boxpad{padding:0 .3em}.katex .fbox,.katex .fcolorbox{box-sizing:border-box;border:.04em solid}.katex .cancel-pad{padding:0 .2em}.katex .cancel-lap{margin-left:-.2em;margin-right:-.2em}.katex .sout{border-bottom-style:solid;border-bottom-width:.08em}.katex-display{display:block;margin:1em 0;text-align:center}.katex-display>.katex{display:block;text-align:center;white-space:nowrap}.katex-display>.katex>.katex-html{display:block;position:relative}.katex-display>.katex>.katex-html>.tag{position:absolute;right:0}.katex-display.leqno>.katex>.katex-html>.tag{left:0;right:auto}.katex-display.fleqn>.katex{text-align:left}\n",
"type": "text/plain",
"title": "$:/plugins/tiddlywiki/katex/katex.min.css"
},
"$:/plugins/tiddlywiki/katex/katex.min.js": {
"text": "(function(document) {\n!function(t,e){\"object\"==typeof exports&&\"object\"==typeof module?module.exports=e():\"function\"==typeof define&&define.amd?define([],e):\"object\"==typeof exports?exports.katex=e():t.katex=e()}(\"undefined\"!=typeof self?self:this,function(){return function(t){var e={};function r(a){if(e[a])return e[a].exports;var n=e[a]={i:a,l:!1,exports:{}};return t[a].call(n.exports,n,n.exports,r),n.l=!0,n.exports}return r.m=t,r.c=e,r.d=function(t,e,a){r.o(t,e)||Object.defineProperty(t,e,{enumerable:!0,get:a})},r.r=function(t){\"undefined\"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(t,Symbol.toStringTag,{value:\"Module\"}),Object.defineProperty(t,\"__esModule\",{value:!0})},r.t=function(t,e){if(1&e&&(t=r(t)),8&e)return t;if(4&e&&\"object\"==typeof t&&t&&t.__esModule)return t;var a=Object.create(null);if(r.r(a),Object.defineProperty(a,\"default\",{enumerable:!0,value:t}),2&e&&\"string\"!=typeof t)for(var n in t)r.d(a,n,function(e){return t[e]}.bind(null,n));return a},r.n=function(t){var e=t&&t.__esModule?function(){return t.default}:function(){return t};return r.d(e,\"a\",e),e},r.o=function(t,e){return Object.prototype.hasOwnProperty.call(t,e)},r.p=\"\",r(r.s=1)}([function(t,e,r){},function(t,e,r){\"use strict\";r.r(e);r(0);var a=function(){function t(t,e,r){this.lexer=void 0,this.start=void 0,this.end=void 0,this.lexer=t,this.start=e,this.end=r}return t.range=function(e,r){return r?e&&e.loc&&r.loc&&e.loc.lexer===r.loc.lexer?new t(e.loc.lexer,e.loc.start,r.loc.end):null:e&&e.loc},t}(),n=function(){function t(t,e){this.text=void 0,this.loc=void 0,this.text=t,this.loc=e}return t.prototype.range=function(e,r){return new t(r,a.range(this,e))},t}(),o=function t(e,r){this.position=void 0;var a,n=\"KaTeX parse error: \"+e,o=r&&r.loc;if(o&&o.start<=o.end){var i=o.lexer.input;a=o.start;var s=o.end;a===i.length?n+=\" at end of input: \":n+=\" at position \"+(a+1)+\": \";var h=i.slice(a,s).replace(/[^]/g,\"$&\\u0332\");n+=(a>15?\"\\u2026\"+i.slice(a-15,a):i.slice(0,a))+h+(s+15<i.length?i.slice(s,s+15)+\"\\u2026\":i.slice(s))}var l=new Error(n);return l.name=\"ParseError\",l.__proto__=t.prototype,l.position=a,l};o.prototype.__proto__=Error.prototype;var i=o,s=/([A-Z])/g,h={\"&\":\"&\",\">\":\">\",\"<\":\"<\",'\"':\""\",\"'\":\"'\"},l=/[&><\"']/g;var m=function t(e){return\"ordgroup\"===e.type?1===e.body.length?t(e.body[0]):e:\"color\"===e.type?1===e.body.length?t(e.body[0]):e:\"font\"===e.type?t(e.body):e},c={contains:function(t,e){return-1!==t.indexOf(e)},deflt:function(t,e){return void 0===t?e:t},escape:function(t){return String(t).replace(l,function(t){return h[t]})},hyphenate:function(t){return t.replace(s,\"-$1\").toLowerCase()},getBaseElem:m,isCharacterBox:function(t){var e=m(t);return\"mathord\"===e.type||\"textord\"===e.type||\"atom\"===e.type}},u=function(){function t(t){this.displayMode=void 0,this.leqno=void 0,this.fleqn=void 0,this.throwOnError=void 0,this.errorColor=void 0,this.macros=void 0,this.colorIsTextColor=void 0,this.strict=void 0,this.maxSize=void 0,this.maxExpand=void 0,this.allowedProtocols=void 0,t=t||{},this.displayMode=c.deflt(t.displayMode,!1),this.leqno=c.deflt(t.leqno,!1),this.fleqn=c.deflt(t.fleqn,!1),this.throwOnError=c.deflt(t.throwOnError,!0),this.errorColor=c.deflt(t.errorColor,\"#cc0000\"),this.macros=t.macros||{},this.colorIsTextColor=c.deflt(t.colorIsTextColor,!1),this.strict=c.deflt(t.strict,\"warn\"),this.maxSize=Math.max(0,c.deflt(t.maxSize,1/0)),this.maxExpand=Math.max(0,c.deflt(t.maxExpand,1e3)),this.allowedProtocols=c.deflt(t.allowedProtocols,[\"http\",\"https\",\"mailto\",\"_relative\"])}var e=t.prototype;return e.reportNonstrict=function(t,e,r){var a=this.strict;if(\"function\"==typeof a&&(a=a(t,e,r)),a&&\"ignore\"!==a){if(!0===a||\"error\"===a)throw new i(\"LaTeX-incompatible input and strict mode is set to 'error': \"+e+\" [\"+t+\"]\",r);\"warn\"===a?\"undefined\"!=typeof console&&console.warn(\"LaTeX-incompatible input and strict mode is set to 'warn': \"+e+\" [\"+t+\"]\"):\"undefined\"!=typeof console&&console.warn(\"LaTeX-incompatible input and strict mode is set to unrecognized '\"+a+\"': \"+e+\" [\"+t+\"]\")}},e.useStrictBehavior=function(t,e,r){var a=this.strict;if(\"function\"==typeof a)try{a=a(t,e,r)}catch(t){a=\"error\"}return!(!a||\"ignore\"===a)&&(!0===a||\"error\"===a||(\"warn\"===a?(\"undefined\"!=typeof console&&console.warn(\"LaTeX-incompatible input and strict mode is set to 'warn': \"+e+\" [\"+t+\"]\"),!1):(\"undefined\"!=typeof console&&console.warn(\"LaTeX-incompatible input and strict mode is set to unrecognized '\"+a+\"': \"+e+\" [\"+t+\"]\"),!1)))},t}(),d=function(){function t(t,e,r){this.id=void 0,this.size=void 0,this.cramped=void 0,this.id=t,this.size=e,this.cramped=r}var e=t.prototype;return e.sup=function(){return p[f[this.id]]},e.sub=function(){return p[g[this.id]]},e.fracNum=function(){return p[x[this.id]]},e.fracDen=function(){return p[v[this.id]]},e.cramp=function(){return p[b[this.id]]},e.text=function(){return p[y[this.id]]},e.isTight=function(){return this.size>=2},t}(),p=[new d(0,0,!1),new d(1,0,!0),new d(2,1,!1),new d(3,1,!0),new d(4,2,!1),new d(5,2,!0),new d(6,3,!1),new d(7,3,!0)],f=[4,5,4,5,6,7,6,7],g=[5,5,5,5,7,7,7,7],x=[2,3,4,5,6,7,6,7],v=[3,3,5,5,7,7,7,7],b=[1,1,3,3,5,5,7,7],y=[0,1,2,3,2,3,2,3],w={DISPLAY:p[0],TEXT:p[2],SCRIPT:p[4],SCRIPTSCRIPT:p[6]},k=[{name:\"latin\",blocks:[[256,591],[768,879]]},{name:\"cyrillic\",blocks:[[1024,1279]]},{name:\"brahmic\",blocks:[[2304,4255]]},{name:\"georgian\",blocks:[[4256,4351]]},{name:\"cjk\",blocks:[[12288,12543],[19968,40879],[65280,65376]]},{name:\"hangul\",blocks:[[44032,55215]]}];var S=[];function z(t){for(var e=0;e<S.length;e+=2)if(t>=S[e]&&t<=S[e+1])return!0;return!1}k.forEach(function(t){return t.blocks.forEach(function(t){return S.push.apply(S,t)})});var M={path:{sqrtMain:\"M95,702c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,\\n-10,-9.5,-14c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54c44.2,-33.3,65.8,\\n-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,\\n35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429c69,-144,104.5,-217.7,106.5,\\n-221c5.3,-9.3,12,-14,20,-14H400000v40H845.2724s-225.272,467,-225.272,467\\ns-235,486,-235,486c-2.7,4.7,-9,7,-19,7c-6,0,-10,-1,-12,-3s-194,-422,-194,-422\\ns-65,47,-65,47z M834 80H400000v40H845z\",sqrtSize1:\"M263,681c0.7,0,18,39.7,52,119c34,79.3,68.167,\\n158.7,102.5,238c34.3,79.3,51.8,119.3,52.5,120c340,-704.7,510.7,-1060.3,512,-1067\\nc4.7,-7.3,11,-11,19,-11H40000v40H1012.3s-271.3,567,-271.3,567c-38.7,80.7,-84,\\n175,-136,283c-52,108,-89.167,185.3,-111.5,232c-22.3,46.7,-33.8,70.3,-34.5,71\\nc-4.7,4.7,-12.3,7,-23,7s-12,-1,-12,-1s-109,-253,-109,-253c-72.7,-168,-109.3,\\n-252,-110,-252c-10.7,8,-22,16.7,-34,26c-22,17.3,-33.3,26,-34,26s-26,-26,-26,-26\\ns76,-59,76,-59s76,-60,76,-60z M1001 80H40000v40H1012z\",sqrtSize2:\"M1001,80H400000v40H1013.1s-83.4,268,-264.1,840c-180.7,\\n572,-277,876.3,-289,913c-4.7,4.7,-12.7,7,-24,7s-12,0,-12,0c-1.3,-3.3,-3.7,-11.7,\\n-7,-25c-35.3,-125.3,-106.7,-373.3,-214,-744c-10,12,-21,25,-33,39s-32,39,-32,39\\nc-6,-5.3,-15,-14,-27,-26s25,-30,25,-30c26.7,-32.7,52,-63,76,-91s52,-60,52,-60\\ns208,722,208,722c56,-175.3,126.3,-397.3,211,-666c84.7,-268.7,153.8,-488.2,207.5,\\n-658.5c53.7,-170.3,84.5,-266.8,92.5,-289.5c4,-6.7,10,-10,18,-10z\\nM1001 80H400000v40H1013z\",sqrtSize3:\"M424,2478c-1.3,-0.7,-38.5,-172,-111.5,-514c-73,\\n-342,-109.8,-513.3,-110.5,-514c0,-2,-10.7,14.3,-32,49c-4.7,7.3,-9.8,15.7,-15.5,\\n25c-5.7,9.3,-9.8,16,-12.5,20s-5,7,-5,7c-4,-3.3,-8.3,-7.7,-13,-13s-13,-13,-13,\\n-13s76,-122,76,-122s77,-121,77,-121s209,968,209,968c0,-2,84.7,-361.7,254,-1079\\nc169.3,-717.3,254.7,-1077.7,256,-1081c4,-6.7,10,-10,18,-10H400000v40H1014.6\\ns-87.3,378.7,-272.6,1166c-185.3,787.3,-279.3,1182.3,-282,1185c-2,6,-10,9,-24,9\\nc-8,0,-12,-0.7,-12,-2z M1001 80H400000v40H1014z\",sqrtSize4:\"M473,2793c339.3,-1799.3,509.3,-2700,510,-2702\\nc3.3,-7.3,9.3,-11,18,-11H400000v40H1017.7s-90.5,478,-276.2,1466c-185.7,988,\\n-279.5,1483,-281.5,1485c-2,6,-10,9,-24,9c-8,0,-12,-0.7,-12,-2c0,-1.3,-5.3,-32,\\n-16,-92c-50.7,-293.3,-119.7,-693.3,-207,-1200c0,-1.3,-5.3,8.7,-16,30c-10.7,\\n21.3,-21.3,42.7,-32,64s-16,33,-16,33s-26,-26,-26,-26s76,-153,76,-153s77,-151,\\n77,-151c0.7,0.7,35.7,202,105,604c67.3,400.7,102,602.7,104,606z\\nM1001 80H400000v40H1017z\",doubleleftarrow:\"M262 157\\nl10-10c34-36 62.7-77 86-123 3.3-8 5-13.3 5-16 0-5.3-6.7-8-20-8-7.3\\n 0-12.2.5-14.5 1.5-2.3 1-4.8 4.5-7.5 10.5-49.3 97.3-121.7 169.3-217 216-28\\n 14-57.3 25-88 33-6.7 2-11 3.8-13 5.5-2 1.7-3 4.2-3 7.5s1 5.8 3 7.5\\nc2 1.7 6.3 3.5 13 5.5 68 17.3 128.2 47.8 180.5 91.5 52.3 43.7 93.8 96.2 124.5\\n 157.5 9.3 8 15.3 12.3 18 13h6c12-.7 18-4 18-10 0-2-1.7-7-5-15-23.3-46-52-87\\n-86-123l-10-10h399738v-40H218c328 0 0 0 0 0l-10-8c-26.7-20-65.7-43-117-69 2.7\\n-2 6-3.7 10-5 36.7-16 72.3-37.3 107-64l10-8h399782v-40z\\nm8 0v40h399730v-40zm0 194v40h399730v-40z\",doublerightarrow:\"M399738 392l\\n-10 10c-34 36-62.7 77-86 123-3.3 8-5 13.3-5 16 0 5.3 6.7 8 20 8 7.3 0 12.2-.5\\n 14.5-1.5 2.3-1 4.8-4.5 7.5-10.5 49.3-97.3 121.7-169.3 217-216 28-14 57.3-25 88\\n-33 6.7-2 11-3.8 13-5.5 2-1.7 3-4.2 3-7.5s-1-5.8-3-7.5c-2-1.7-6.3-3.5-13-5.5-68\\n-17.3-128.2-47.8-180.5-91.5-52.3-43.7-93.8-96.2-124.5-157.5-9.3-8-15.3-12.3-18\\n-13h-6c-12 .7-18 4-18 10 0 2 1.7 7 5 15 23.3 46 52 87 86 123l10 10H0v40h399782\\nc-328 0 0 0 0 0l10 8c26.7 20 65.7 43 117 69-2.7 2-6 3.7-10 5-36.7 16-72.3 37.3\\n-107 64l-10 8H0v40zM0 157v40h399730v-40zm0 194v40h399730v-40z\",leftarrow:\"M400000 241H110l3-3c68.7-52.7 113.7-120\\n 135-202 4-14.7 6-23 6-25 0-7.3-7-11-21-11-8 0-13.2.8-15.5 2.5-2.3 1.7-4.2 5.8\\n-5.5 12.5-1.3 4.7-2.7 10.3-4 17-12 48.7-34.8 92-68.5 130S65.3 228.3 18 247\\nc-10 4-16 7.7-18 11 0 8.7 6 14.3 18 17 47.3 18.7 87.8 47 121.5 85S196 441.3 208\\n 490c.7 2 1.3 5 2 9s1.2 6.7 1.5 8c.3 1.3 1 3.3 2 6s2.2 4.5 3.5 5.5c1.3 1 3.3\\n 1.8 6 2.5s6 1 10 1c14 0 21-3.7 21-11 0-2-2-10.3-6-25-20-79.3-65-146.7-135-202\\n l-3-3h399890zM100 241v40h399900v-40z\",leftbrace:\"M6 548l-6-6v-35l6-11c56-104 135.3-181.3 238-232 57.3-28.7 117\\n-45 179-50h399577v120H403c-43.3 7-81 15-113 26-100.7 33-179.7 91-237 174-2.7\\n 5-6 9-10 13-.7 1-7.3 1-20 1H6z\",leftbraceunder:\"M0 6l6-6h17c12.688 0 19.313.3 20 1 4 4 7.313 8.3 10 13\\n 35.313 51.3 80.813 93.8 136.5 127.5 55.688 33.7 117.188 55.8 184.5 66.5.688\\n 0 2 .3 4 1 18.688 2.7 76 4.3 172 5h399450v120H429l-6-1c-124.688-8-235-61.7\\n-331-161C60.687 138.7 32.312 99.3 7 54L0 41V6z\",leftgroup:\"M400000 80\\nH435C64 80 168.3 229.4 21 260c-5.9 1.2-18 0-18 0-2 0-3-1-3-3v-38C76 61 257 0\\n 435 0h399565z\",leftgroupunder:\"M400000 262\\nH435C64 262 168.3 112.6 21 82c-5.9-1.2-18 0-18 0-2 0-3 1-3 3v38c76 158 257 219\\n 435 219h399565z\",leftharpoon:\"M0 267c.7 5.3 3 10 7 14h399993v-40H93c3.3\\n-3.3 10.2-9.5 20.5-18.5s17.8-15.8 22.5-20.5c50.7-52 88-110.3 112-175 4-11.3 5\\n-18.3 3-21-1.3-4-7.3-6-18-6-8 0-13 .7-15 2s-4.7 6.7-8 16c-42 98.7-107.3 174.7\\n-196 228-6.7 4.7-10.7 8-12 10-1.3 2-2 5.7-2 11zm100-26v40h399900v-40z\",leftharpoonplus:\"M0 267c.7 5.3 3 10 7 14h399993v-40H93c3.3-3.3 10.2-9.5\\n 20.5-18.5s17.8-15.8 22.5-20.5c50.7-52 88-110.3 112-175 4-11.3 5-18.3 3-21-1.3\\n-4-7.3-6-18-6-8 0-13 .7-15 2s-4.7 6.7-8 16c-42 98.7-107.3 174.7-196 228-6.7 4.7\\n-10.7 8-12 10-1.3 2-2 5.7-2 11zm100-26v40h399900v-40zM0 435v40h400000v-40z\\nm0 0v40h400000v-40z\",leftharpoondown:\"M7 241c-4 4-6.333 8.667-7 14 0 5.333.667 9 2 11s5.333\\n 5.333 12 10c90.667 54 156 130 196 228 3.333 10.667 6.333 16.333 9 17 2 .667 5\\n 1 9 1h5c10.667 0 16.667-2 18-6 2-2.667 1-9.667-3-21-32-87.333-82.667-157.667\\n-152-211l-3-3h399907v-40zM93 281 H400000 v-40L7 241z\",leftharpoondownplus:\"M7 435c-4 4-6.3 8.7-7 14 0 5.3.7 9 2 11s5.3 5.3 12\\n 10c90.7 54 156 130 196 228 3.3 10.7 6.3 16.3 9 17 2 .7 5 1 9 1h5c10.7 0 16.7\\n-2 18-6 2-2.7 1-9.7-3-21-32-87.3-82.7-157.7-152-211l-3-3h399907v-40H7zm93 0\\nv40h399900v-40zM0 241v40h399900v-40zm0 0v40h399900v-40z\",lefthook:\"M400000 281 H103s-33-11.2-61-33.5S0 197.3 0 164s14.2-61.2 42.5\\n-83.5C70.8 58.2 104 47 142 47 c16.7 0 25 6.7 25 20 0 12-8.7 18.7-26 20-40 3.3\\n-68.7 15.7-86 37-10 12-15 25.3-15 40 0 22.7 9.8 40.7 29.5 54 19.7 13.3 43.5 21\\n 71.5 23h399859zM103 281v-40h399897v40z\",leftlinesegment:\"M40 281 V428 H0 V94 H40 V241 H400000 v40z\\nM40 281 V428 H0 V94 H40 V241 H400000 v40z\",leftmapsto:\"M40 281 V448H0V74H40V241H400000v40z\\nM40 281 V448H0V74H40V241H400000v40z\",leftToFrom:\"M0 147h400000v40H0zm0 214c68 40 115.7 95.7 143 167h22c15.3 0 23\\n-.3 23-1 0-1.3-5.3-13.7-16-37-18-35.3-41.3-69-70-101l-7-8h399905v-40H95l7-8\\nc28.7-32 52-65.7 70-101 10.7-23.3 16-35.7 16-37 0-.7-7.7-1-23-1h-22C115.7 265.3\\n 68 321 0 361zm0-174v-40h399900v40zm100 154v40h399900v-40z\",longequal:\"M0 50 h400000 v40H0z m0 194h40000v40H0z\\nM0 50 h400000 v40H0z m0 194h40000v40H0z\",midbrace:\"M200428 334\\nc-100.7-8.3-195.3-44-280-108-55.3-42-101.7-93-139-153l-9-14c-2.7 4-5.7 8.7-9 14\\n-53.3 86.7-123.7 153-211 199-66.7 36-137.3 56.3-212 62H0V214h199568c178.3-11.7\\n 311.7-78.3 403-201 6-8 9.7-12 11-12 .7-.7 6.7-1 18-1s17.3.3 18 1c1.3 0 5 4 11\\n 12 44.7 59.3 101.3 106.3 170 141s145.3 54.3 229 60h199572v120z\",midbraceunder:\"M199572 214\\nc100.7 8.3 195.3 44 280 108 55.3 42 101.7 93 139 153l9 14c2.7-4 5.7-8.7 9-14\\n 53.3-86.7 123.7-153 211-199 66.7-36 137.3-56.3 212-62h199568v120H200432c-178.3\\n 11.7-311.7 78.3-403 201-6 8-9.7 12-11 12-.7.7-6.7 1-18 1s-17.3-.3-18-1c-1.3 0\\n-5-4-11-12-44.7-59.3-101.3-106.3-170-141s-145.3-54.3-229-60H0V214z\",oiintSize1:\"M512.6 71.6c272.6 0 320.3 106.8 320.3 178.2 0 70.8-47.7 177.6\\n-320.3 177.6S193.1 320.6 193.1 249.8c0-71.4 46.9-178.2 319.5-178.2z\\nm368.1 178.2c0-86.4-60.9-215.4-368.1-215.4-306.4 0-367.3 129-367.3 215.4 0 85.8\\n60.9 214.8 367.3 214.8 307.2 0 368.1-129 368.1-214.8z\",oiintSize2:\"M757.8 100.1c384.7 0 451.1 137.6 451.1 230 0 91.3-66.4 228.8\\n-451.1 228.8-386.3 0-452.7-137.5-452.7-228.8 0-92.4 66.4-230 452.7-230z\\nm502.4 230c0-111.2-82.4-277.2-502.4-277.2s-504 166-504 277.2\\nc0 110 84 276 504 276s502.4-166 502.4-276z\",oiiintSize1:\"M681.4 71.6c408.9 0 480.5 106.8 480.5 178.2 0 70.8-71.6 177.6\\n-480.5 177.6S202.1 320.6 202.1 249.8c0-71.4 70.5-178.2 479.3-178.2z\\nm525.8 178.2c0-86.4-86.8-215.4-525.7-215.4-437.9 0-524.7 129-524.7 215.4 0\\n85.8 86.8 214.8 524.7 214.8 438.9 0 525.7-129 525.7-214.8z\",oiiintSize2:\"M1021.2 53c603.6 0 707.8 165.8 707.8 277.2 0 110-104.2 275.8\\n-707.8 275.8-606 0-710.2-165.8-710.2-275.8C311 218.8 415.2 53 1021.2 53z\\nm770.4 277.1c0-131.2-126.4-327.6-770.5-327.6S248.4 198.9 248.4 330.1\\nc0 130 128.8 326.4 772.7 326.4s770.5-196.4 770.5-326.4z\",rightarrow:\"M0 241v40h399891c-47.3 35.3-84 78-110 128\\n-16.7 32-27.7 63.7-33 95 0 1.3-.2 2.7-.5 4-.3 1.3-.5 2.3-.5 3 0 7.3 6.7 11 20\\n 11 8 0 13.2-.8 15.5-2.5 2.3-1.7 4.2-5.5 5.5-11.5 2-13.3 5.7-27 11-41 14.7-44.7\\n 39-84.5 73-119.5s73.7-60.2 119-75.5c6-2 9-5.7 9-11s-3-9-9-11c-45.3-15.3-85\\n-40.5-119-75.5s-58.3-74.8-73-119.5c-4.7-14-8.3-27.3-11-40-1.3-6.7-3.2-10.8-5.5\\n-12.5-2.3-1.7-7.5-2.5-15.5-2.5-14 0-21 3.7-21 11 0 2 2 10.3 6 25 20.7 83.3 67\\n 151.7 139 205zm0 0v40h399900v-40z\",rightbrace:\"M400000 542l\\n-6 6h-17c-12.7 0-19.3-.3-20-1-4-4-7.3-8.3-10-13-35.3-51.3-80.8-93.8-136.5-127.5\\ns-117.2-55.8-184.5-66.5c-.7 0-2-.3-4-1-18.7-2.7-76-4.3-172-5H0V214h399571l6 1\\nc124.7 8 235 61.7 331 161 31.3 33.3 59.7 72.7 85 118l7 13v35z\",rightbraceunder:\"M399994 0l6 6v35l-6 11c-56 104-135.3 181.3-238 232-57.3\\n 28.7-117 45-179 50H-300V214h399897c43.3-7 81-15 113-26 100.7-33 179.7-91 237\\n-174 2.7-5 6-9 10-13 .7-1 7.3-1 20-1h17z\",rightgroup:\"M0 80h399565c371 0 266.7 149.4 414 180 5.9 1.2 18 0 18 0 2 0\\n 3-1 3-3v-38c-76-158-257-219-435-219H0z\",rightgroupunder:\"M0 262h399565c371 0 266.7-149.4 414-180 5.9-1.2 18 0 18\\n 0 2 0 3 1 3 3v38c-76 158-257 219-435 219H0z\",rightharpoon:\"M0 241v40h399993c4.7-4.7 7-9.3 7-14 0-9.3\\n-3.7-15.3-11-18-92.7-56.7-159-133.7-199-231-3.3-9.3-6-14.7-8-16-2-1.3-7-2-15-2\\n-10.7 0-16.7 2-18 6-2 2.7-1 9.7 3 21 15.3 42 36.7 81.8 64 119.5 27.3 37.7 58\\n 69.2 92 94.5zm0 0v40h399900v-40z\",rightharpoonplus:\"M0 241v40h399993c4.7-4.7 7-9.3 7-14 0-9.3-3.7-15.3-11\\n-18-92.7-56.7-159-133.7-199-231-3.3-9.3-6-14.7-8-16-2-1.3-7-2-15-2-10.7 0-16.7\\n 2-18 6-2 2.7-1 9.7 3 21 15.3 42 36.7 81.8 64 119.5 27.3 37.7 58 69.2 92 94.5z\\nm0 0v40h399900v-40z m100 194v40h399900v-40zm0 0v40h399900v-40z\",rightharpoondown:\"M399747 511c0 7.3 6.7 11 20 11 8 0 13-.8 15-2.5s4.7-6.8\\n 8-15.5c40-94 99.3-166.3 178-217 13.3-8 20.3-12.3 21-13 5.3-3.3 8.5-5.8 9.5\\n-7.5 1-1.7 1.5-5.2 1.5-10.5s-2.3-10.3-7-15H0v40h399908c-34 25.3-64.7 57-92 95\\n-27.3 38-48.7 77.7-64 119-3.3 8.7-5 14-5 16zM0 241v40h399900v-40z\",rightharpoondownplus:\"M399747 705c0 7.3 6.7 11 20 11 8 0 13-.8\\n 15-2.5s4.7-6.8 8-15.5c40-94 99.3-166.3 178-217 13.3-8 20.3-12.3 21-13 5.3-3.3\\n 8.5-5.8 9.5-7.5 1-1.7 1.5-5.2 1.5-10.5s-2.3-10.3-7-15H0v40h399908c-34 25.3\\n-64.7 57-92 95-27.3 38-48.7 77.7-64 119-3.3 8.7-5 14-5 16zM0 435v40h399900v-40z\\nm0-194v40h400000v-40zm0 0v40h400000v-40z\",righthook:\"M399859 241c-764 0 0 0 0 0 40-3.3 68.7-15.7 86-37 10-12 15-25.3\\n 15-40 0-22.7-9.8-40.7-29.5-54-19.7-13.3-43.5-21-71.5-23-17.3-1.3-26-8-26-20 0\\n-13.3 8.7-20 26-20 38 0 71 11.2 99 33.5 0 0 7 5.6 21 16.7 14 11.2 21 33.5 21\\n 66.8s-14 61.2-42 83.5c-28 22.3-61 33.5-99 33.5L0 241z M0 281v-40h399859v40z\",rightlinesegment:\"M399960 241 V94 h40 V428 h-40 V281 H0 v-40z\\nM399960 241 V94 h40 V428 h-40 V281 H0 v-40z\",rightToFrom:\"M400000 167c-70.7-42-118-97.7-142-167h-23c-15.3 0-23 .3-23\\n 1 0 1.3 5.3 13.7 16 37 18 35.3 41.3 69 70 101l7 8H0v40h399905l-7 8c-28.7 32\\n-52 65.7-70 101-10.7 23.3-16 35.7-16 37 0 .7 7.7 1 23 1h23c24-69.3 71.3-125 142\\n-167z M100 147v40h399900v-40zM0 341v40h399900v-40z\",twoheadleftarrow:\"M0 167c68 40\\n 115.7 95.7 143 167h22c15.3 0 23-.3 23-1 0-1.3-5.3-13.7-16-37-18-35.3-41.3-69\\n-70-101l-7-8h125l9 7c50.7 39.3 85 86 103 140h46c0-4.7-6.3-18.7-19-42-18-35.3\\n-40-67.3-66-96l-9-9h399716v-40H284l9-9c26-28.7 48-60.7 66-96 12.7-23.333 19\\n-37.333 19-42h-46c-18 54-52.3 100.7-103 140l-9 7H95l7-8c28.7-32 52-65.7 70-101\\n 10.7-23.333 16-35.7 16-37 0-.7-7.7-1-23-1h-22C115.7 71.3 68 127 0 167z\",twoheadrightarrow:\"M400000 167\\nc-68-40-115.7-95.7-143-167h-22c-15.3 0-23 .3-23 1 0 1.3 5.3 13.7 16 37 18 35.3\\n 41.3 69 70 101l7 8h-125l-9-7c-50.7-39.3-85-86-103-140h-46c0 4.7 6.3 18.7 19 42\\n 18 35.3 40 67.3 66 96l9 9H0v40h399716l-9 9c-26 28.7-48 60.7-66 96-12.7 23.333\\n-19 37.333-19 42h46c18-54 52.3-100.7 103-140l9-7h125l-7 8c-28.7 32-52 65.7-70\\n 101-10.7 23.333-16 35.7-16 37 0 .7 7.7 1 23 1h22c27.3-71.3 75-127 143-167z\",tilde1:\"M200 55.538c-77 0-168 73.953-177 73.953-3 0-7\\n-2.175-9-5.437L2 97c-1-2-2-4-2-6 0-4 2-7 5-9l20-12C116 12 171 0 207 0c86 0\\n 114 68 191 68 78 0 168-68 177-68 4 0 7 2 9 5l12 19c1 2.175 2 4.35 2 6.525 0\\n 4.35-2 7.613-5 9.788l-19 13.05c-92 63.077-116.937 75.308-183 76.128\\n-68.267.847-113-73.952-191-73.952z\",tilde2:\"M344 55.266c-142 0-300.638 81.316-311.5 86.418\\n-8.01 3.762-22.5 10.91-23.5 5.562L1 120c-1-2-1-3-1-4 0-5 3-9 8-10l18.4-9C160.9\\n 31.9 283 0 358 0c148 0 188 122 331 122s314-97 326-97c4 0 8 2 10 7l7 21.114\\nc1 2.14 1 3.21 1 4.28 0 5.347-3 9.626-7 10.696l-22.3 12.622C852.6 158.372 751\\n 181.476 676 181.476c-149 0-189-126.21-332-126.21z\",tilde3:\"M786 59C457 59 32 175.242 13 175.242c-6 0-10-3.457\\n-11-10.37L.15 138c-1-7 3-12 10-13l19.2-6.4C378.4 40.7 634.3 0 804.3 0c337 0\\n 411.8 157 746.8 157 328 0 754-112 773-112 5 0 10 3 11 9l1 14.075c1 8.066-.697\\n 16.595-6.697 17.492l-21.052 7.31c-367.9 98.146-609.15 122.696-778.15 122.696\\n -338 0-409-156.573-744-156.573z\",tilde4:\"M786 58C457 58 32 177.487 13 177.487c-6 0-10-3.345\\n-11-10.035L.15 143c-1-7 3-12 10-13l22-6.7C381.2 35 637.15 0 807.15 0c337 0 409\\n 177 744 177 328 0 754-127 773-127 5 0 10 3 11 9l1 14.794c1 7.805-3 13.38-9\\n 14.495l-20.7 5.574c-366.85 99.79-607.3 139.372-776.3 139.372-338 0-409\\n -175.236-744-175.236z\",vec:\"M377 20c0-5.333 1.833-10 5.5-14S391 0 397 0c4.667 0 8.667 1.667 12 5\\n3.333 2.667 6.667 9 10 19 6.667 24.667 20.333 43.667 41 57 7.333 4.667 11\\n10.667 11 18 0 6-1 10-3 12s-6.667 5-14 9c-28.667 14.667-53.667 35.667-75 63\\n-1.333 1.333-3.167 3.5-5.5 6.5s-4 4.833-5 5.5c-1 .667-2.5 1.333-4.5 2s-4.333 1\\n-7 1c-4.667 0-9.167-1.833-13.5-5.5S337 184 337 178c0-12.667 15.667-32.333 47-59\\nH213l-171-1c-8.667-6-13-12.333-13-19 0-4.667 4.333-11.333 13-20h359\\nc-16-25.333-24-45-24-59z\",widehat1:\"M529 0h5l519 115c5 1 9 5 9 10 0 1-1 2-1 3l-4 22\\nc-1 5-5 9-11 9h-2L532 67 19 159h-2c-5 0-9-4-11-9l-5-22c-1-6 2-12 8-13z\",widehat2:\"M1181 0h2l1171 176c6 0 10 5 10 11l-2 23c-1 6-5 10\\n-11 10h-1L1182 67 15 220h-1c-6 0-10-4-11-10l-2-23c-1-6 4-11 10-11z\",widehat3:\"M1181 0h2l1171 236c6 0 10 5 10 11l-2 23c-1 6-5 10\\n-11 10h-1L1182 67 15 280h-1c-6 0-10-4-11-10l-2-23c-1-6 4-11 10-11z\",widehat4:\"M1181 0h2l1171 296c6 0 10 5 10 11l-2 23c-1 6-5 10\\n-11 10h-1L1182 67 15 340h-1c-6 0-10-4-11-10l-2-23c-1-6 4-11 10-11z\",widecheck1:\"M529,159h5l519,-115c5,-1,9,-5,9,-10c0,-1,-1,-2,-1,-3l-4,-22c-1,\\n-5,-5,-9,-11,-9h-2l-512,92l-513,-92h-2c-5,0,-9,4,-11,9l-5,22c-1,6,2,12,8,13z\",widecheck2:\"M1181,220h2l1171,-176c6,0,10,-5,10,-11l-2,-23c-1,-6,-5,-10,\\n-11,-10h-1l-1168,153l-1167,-153h-1c-6,0,-10,4,-11,10l-2,23c-1,6,4,11,10,11z\",widecheck3:\"M1181,280h2l1171,-236c6,0,10,-5,10,-11l-2,-23c-1,-6,-5,-10,\\n-11,-10h-1l-1168,213l-1167,-213h-1c-6,0,-10,4,-11,10l-2,23c-1,6,4,11,10,11z\",widecheck4:\"M1181,340h2l1171,-296c6,0,10,-5,10,-11l-2,-23c-1,-6,-5,-10,\\n-11,-10h-1l-1168,273l-1167,-273h-1c-6,0,-10,4,-11,10l-2,23c-1,6,4,11,10,11z\",baraboveleftarrow:\"M400000 620h-399890l3 -3c68.7 -52.7 113.7 -120 135 -202\\nc4 -14.7 6 -23 6 -25c0 -7.3 -7 -11 -21 -11c-8 0 -13.2 0.8 -15.5 2.5\\nc-2.3 1.7 -4.2 5.8 -5.5 12.5c-1.3 4.7 -2.7 10.3 -4 17c-12 48.7 -34.8 92 -68.5 130\\ns-74.2 66.3 -121.5 85c-10 4 -16 7.7 -18 11c0 8.7 6 14.3 18 17c47.3 18.7 87.8 47\\n121.5 85s56.5 81.3 68.5 130c0.7 2 1.3 5 2 9s1.2 6.7 1.5 8c0.3 1.3 1 3.3 2 6\\ns2.2 4.5 3.5 5.5c1.3 1 3.3 1.8 6 2.5s6 1 10 1c14 0 21 -3.7 21 -11\\nc0 -2 -2 -10.3 -6 -25c-20 -79.3 -65 -146.7 -135 -202l-3 -3h399890z\\nM100 620v40h399900v-40z M0 241v40h399900v-40zM0 241v40h399900v-40z\",rightarrowabovebar:\"M0 241v40h399891c-47.3 35.3-84 78-110 128-16.7 32\\n-27.7 63.7-33 95 0 1.3-.2 2.7-.5 4-.3 1.3-.5 2.3-.5 3 0 7.3 6.7 11 20 11 8 0\\n13.2-.8 15.5-2.5 2.3-1.7 4.2-5.5 5.5-11.5 2-13.3 5.7-27 11-41 14.7-44.7 39\\n-84.5 73-119.5s73.7-60.2 119-75.5c6-2 9-5.7 9-11s-3-9-9-11c-45.3-15.3-85-40.5\\n-119-75.5s-58.3-74.8-73-119.5c-4.7-14-8.3-27.3-11-40-1.3-6.7-3.2-10.8-5.5\\n-12.5-2.3-1.7-7.5-2.5-15.5-2.5-14 0-21 3.7-21 11 0 2 2 10.3 6 25 20.7 83.3 67\\n151.7 139 205zm96 379h399894v40H0zm0 0h399904v40H0z\",baraboveshortleftharpoon:\"M507,435c-4,4,-6.3,8.7,-7,14c0,5.3,0.7,9,2,11\\nc1.3,2,5.3,5.3,12,10c90.7,54,156,130,196,228c3.3,10.7,6.3,16.3,9,17\\nc2,0.7,5,1,9,1c0,0,5,0,5,0c10.7,0,16.7,-2,18,-6c2,-2.7,1,-9.7,-3,-21\\nc-32,-87.3,-82.7,-157.7,-152,-211c0,0,-3,-3,-3,-3l399351,0l0,-40\\nc-398570,0,-399437,0,-399437,0z M593 435 v40 H399500 v-40z\\nM0 281 v-40 H399908 v40z M0 281 v-40 H399908 v40z\",rightharpoonaboveshortbar:\"M0,241 l0,40c399126,0,399993,0,399993,0\\nc4.7,-4.7,7,-9.3,7,-14c0,-9.3,-3.7,-15.3,-11,-18c-92.7,-56.7,-159,-133.7,-199,\\n-231c-3.3,-9.3,-6,-14.7,-8,-16c-2,-1.3,-7,-2,-15,-2c-10.7,0,-16.7,2,-18,6\\nc-2,2.7,-1,9.7,3,21c15.3,42,36.7,81.8,64,119.5c27.3,37.7,58,69.2,92,94.5z\\nM0 241 v40 H399908 v-40z M0 475 v-40 H399500 v40z M0 475 v-40 H399500 v40z\",shortbaraboveleftharpoon:\"M7,435c-4,4,-6.3,8.7,-7,14c0,5.3,0.7,9,2,11\\nc1.3,2,5.3,5.3,12,10c90.7,54,156,130,196,228c3.3,10.7,6.3,16.3,9,17c2,0.7,5,1,9,\\n1c0,0,5,0,5,0c10.7,0,16.7,-2,18,-6c2,-2.7,1,-9.7,-3,-21c-32,-87.3,-82.7,-157.7,\\n-152,-211c0,0,-3,-3,-3,-3l399907,0l0,-40c-399126,0,-399993,0,-399993,0z\\nM93 435 v40 H400000 v-40z M500 241 v40 H400000 v-40z M500 241 v40 H400000 v-40z\",shortrightharpoonabovebar:\"M53,241l0,40c398570,0,399437,0,399437,0\\nc4.7,-4.7,7,-9.3,7,-14c0,-9.3,-3.7,-15.3,-11,-18c-92.7,-56.7,-159,-133.7,-199,\\n-231c-3.3,-9.3,-6,-14.7,-8,-16c-2,-1.3,-7,-2,-15,-2c-10.7,0,-16.7,2,-18,6\\nc-2,2.7,-1,9.7,3,21c15.3,42,36.7,81.8,64,119.5c27.3,37.7,58,69.2,92,94.5z\\nM500 241 v40 H399408 v-40z M500 435 v40 H400000 v-40z\"}},T=function(){function t(t){this.children=void 0,this.classes=void 0,this.height=void 0,this.depth=void 0,this.maxFontSize=void 0,this.style=void 0,this.children=t,this.classes=[],this.height=0,this.depth=0,this.maxFontSize=0,this.style={}}var e=t.prototype;return e.hasClass=function(t){return c.contains(this.classes,t)},e.toNode=function(){for(var t=document.createDocumentFragment(),e=0;e<this.children.length;e++)t.appendChild(this.children[e].toNode());return t},e.toMarkup=function(){for(var t=\"\",e=0;e<this.children.length;e++)t+=this.children[e].toMarkup();return t},e.toText=function(){var t=function(t){return t.toText()};return this.children.map(t).join(\"\")},t}(),A=function(t){return t.filter(function(t){return t}).join(\" \")},B=function(t,e,r){if(this.classes=t||[],this.attributes={},this.height=0,this.depth=0,this.maxFontSize=0,this.style=r||{},e){e.style.isTight()&&this.classes.push(\"mtight\");var a=e.getColor();a&&(this.style.color=a)}},q=function(t){var e=document.createElement(t);for(var r in e.className=A(this.classes),this.style)this.style.hasOwnProperty(r)&&(e.style[r]=this.style[r]);for(var a in this.attributes)this.attributes.hasOwnProperty(a)&&e.setAttribute(a,this.attributes[a]);for(var n=0;n<this.children.length;n++)e.appendChild(this.children[n].toNode());return e},C=function(t){var e=\"<\"+t;this.classes.length&&(e+=' class=\"'+c.escape(A(this.classes))+'\"');var r=\"\";for(var a in this.style)this.style.hasOwnProperty(a)&&(r+=c.hyphenate(a)+\":\"+this.style[a]+\";\");for(var n in r&&(e+=' style=\"'+c.escape(r)+'\"'),this.attributes)this.attributes.hasOwnProperty(n)&&(e+=\" \"+n+'=\"'+c.escape(this.attributes[n])+'\"');e+=\">\";for(var o=0;o<this.children.length;o++)e+=this.children[o].toMarkup();return e+=\"</\"+t+\">\"},N=function(){function t(t,e,r,a){this.children=void 0,this.attributes=void 0,this.classes=void 0,this.height=void 0,this.depth=void 0,this.width=void 0,this.maxFontSize=void 0,this.style=void 0,B.call(this,t,r,a),this.children=e||[]}var e=t.prototype;return e.setAttribute=function(t,e){this.attributes[t]=e},e.hasClass=function(t){return c.contains(this.classes,t)},e.toNode=function(){return q.call(this,\"span\")},e.toMarkup=function(){return C.call(this,\"span\")},t}(),I=function(){function t(t,e,r,a){this.children=void 0,this.attributes=void 0,this.classes=void 0,this.height=void 0,this.depth=void 0,this.maxFontSize=void 0,this.style=void 0,B.call(this,e,a),this.children=r||[],this.setAttribute(\"href\",t)}var e=t.prototype;return e.setAttribute=function(t,e){this.attributes[t]=e},e.hasClass=function(t){return c.contains(this.classes,t)},e.toNode=function(){return q.call(this,\"a\")},e.toMarkup=function(){return C.call(this,\"a\")},t}(),O={\"\\xee\":\"\\u0131\\u0302\",\"\\xef\":\"\\u0131\\u0308\",\"\\xed\":\"\\u0131\\u0301\",\"\\xec\":\"\\u0131\\u0300\"},E=function(){function t(t,e,r,a,n,o,i,s){this.text=void 0,this.height=void 0,this.depth=void 0,this.italic=void 0,this.skew=void 0,this.width=void 0,this.maxFontSize=void 0,this.classes=void 0,this.style=void 0,this.text=t,this.height=e||0,this.depth=r||0,this.italic=a||0,this.skew=n||0,this.width=o||0,this.classes=i||[],this.style=s||{},this.maxFontSize=0;var h=function(t){for(var e=0;e<k.length;e++)for(var r=k[e],a=0;a<r.blocks.length;a++){var n=r.blocks[a];if(t>=n[0]&&t<=n[1])return r.name}return null}(this.text.charCodeAt(0));h&&this.classes.push(h+\"_fallback\"),/[\\xee\\xef\\xed\\xec]/.test(this.text)&&(this.text=O[this.text])}var e=t.prototype;return e.hasClass=function(t){return c.contains(this.classes,t)},e.toNode=function(){var t=document.createTextNode(this.text),e=null;for(var r in this.italic>0&&((e=document.createElement(\"span\")).style.marginRight=this.italic+\"em\"),this.classes.length>0&&((e=e||document.createElement(\"span\")).className=A(this.classes)),this.style)this.style.hasOwnProperty(r)&&((e=e||document.createElement(\"span\")).style[r]=this.style[r]);return e?(e.appendChild(t),e):t},e.toMarkup=function(){var t=!1,e=\"<span\";this.classes.length&&(t=!0,e+=' class=\"',e+=c.escape(A(this.classes)),e+='\"');var r=\"\";for(var a in this.italic>0&&(r+=\"margin-right:\"+this.italic+\"em;\"),this.style)this.style.hasOwnProperty(a)&&(r+=c.hyphenate(a)+\":\"+this.style[a]+\";\");r&&(t=!0,e+=' style=\"'+c.escape(r)+'\"');var n=c.escape(this.text);return t?(e+=\">\",e+=n,e+=\"</span>\"):n},t}(),R=function(){function t(t,e){this.children=void 0,this.attributes=void 0,this.children=t||[],this.attributes=e||{}}var e=t.prototype;return e.toNode=function(){var t=document.createElementNS(\"http://www.w3.org/2000/svg\",\"svg\");for(var e in this.attributes)Object.prototype.hasOwnProperty.call(this.attributes,e)&&t.setAttribute(e,this.attributes[e]);for(var r=0;r<this.children.length;r++)t.appendChild(this.children[r].toNode());return t},e.toMarkup=function(){var t=\"<svg\";for(var e in this.attributes)Object.prototype.hasOwnProperty.call(this.attributes,e)&&(t+=\" \"+e+\"='\"+this.attributes[e]+\"'\");t+=\">\";for(var r=0;r<this.children.length;r++)t+=this.children[r].toMarkup();return t+=\"</svg>\"},t}(),L=function(){function t(t,e){this.pathName=void 0,this.alternate=void 0,this.pathName=t,this.alternate=e}var e=t.prototype;return e.toNode=function(){var t=document.createElementNS(\"http://www.w3.org/2000/svg\",\"path\");return this.alternate?t.setAttribute(\"d\",this.alternate):t.setAttribute(\"d\",M.path[this.pathName]),t},e.toMarkup=function(){return this.alternate?\"<path d='\"+this.alternate+\"'/>\":\"<path d='\"+M.path[this.pathName]+\"'/>\"},t}(),H=function(){function t(t){this.attributes=void 0,this.attributes=t||{}}var e=t.prototype;return e.toNode=function(){var t=document.createElementNS(\"http://www.w3.org/2000/svg\",\"line\");for(var e in this.attributes)Object.prototype.hasOwnProperty.call(this.attributes,e)&&t.setAttribute(e,this.attributes[e]);return t},e.toMarkup=function(){var t=\"<line\";for(var e in this.attributes)Object.prototype.hasOwnProperty.call(this.attributes,e)&&(t+=\" \"+e+\"='\"+this.attributes[e]+\"'\");return t+=\"/>\"},t}();var P={\"AMS-Regular\":{65:[0,.68889,0,0,.72222],66:[0,.68889,0,0,.66667],67:[0,.68889,0,0,.72222],68:[0,.68889,0,0,.72222],69:[0,.68889,0,0,.66667],70:[0,.68889,0,0,.61111],71:[0,.68889,0,0,.77778],72:[0,.68889,0,0,.77778],73:[0,.68889,0,0,.38889],74:[.16667,.68889,0,0,.5],75:[0,.68889,0,0,.77778],76:[0,.68889,0,0,.66667],77:[0,.68889,0,0,.94445],78:[0,.68889,0,0,.72222],79:[.16667,.68889,0,0,.77778],80:[0,.68889,0,0,.61111],81:[.16667,.68889,0,0,.77778],82:[0,.68889,0,0,.72222],83:[0,.68889,0,0,.55556],84:[0,.68889,0,0,.66667],85:[0,.68889,0,0,.72222],86:[0,.68889,0,0,.72222],87:[0,.68889,0,0,1],88:[0,.68889,0,0,.72222],89:[0,.68889,0,0,.72222],90:[0,.68889,0,0,.66667],107:[0,.68889,0,0,.55556],165:[0,.675,.025,0,.75],174:[.15559,.69224,0,0,.94666],240:[0,.68889,0,0,.55556],295:[0,.68889,0,0,.54028],710:[0,.825,0,0,2.33334],732:[0,.9,0,0,2.33334],770:[0,.825,0,0,2.33334],771:[0,.9,0,0,2.33334],989:[.08167,.58167,0,0,.77778],1008:[0,.43056,.04028,0,.66667],8245:[0,.54986,0,0,.275],8463:[0,.68889,0,0,.54028],8487:[0,.68889,0,0,.72222],8498:[0,.68889,0,0,.55556],8502:[0,.68889,0,0,.66667],8503:[0,.68889,0,0,.44445],8504:[0,.68889,0,0,.66667],8513:[0,.68889,0,0,.63889],8592:[-.03598,.46402,0,0,.5],8594:[-.03598,.46402,0,0,.5],8602:[-.13313,.36687,0,0,1],8603:[-.13313,.36687,0,0,1],8606:[.01354,.52239,0,0,1],8608:[.01354,.52239,0,0,1],8610:[.01354,.52239,0,0,1.11111],8611:[.01354,.52239,0,0,1.11111],8619:[0,.54986,0,0,1],8620:[0,.54986,0,0,1],8621:[-.13313,.37788,0,0,1.38889],8622:[-.13313,.36687,0,0,1],8624:[0,.69224,0,0,.5],8625:[0,.69224,0,0,.5],8630:[0,.43056,0,0,1],8631:[0,.43056,0,0,1],8634:[.08198,.58198,0,0,.77778],8635:[.08198,.58198,0,0,.77778],8638:[.19444,.69224,0,0,.41667],8639:[.19444,.69224,0,0,.41667],8642:[.19444,.69224,0,0,.41667],8643:[.19444,.69224,0,0,.41667],8644:[.1808,.675,0,0,1],8646:[.1808,.675,0,0,1],8647:[.1808,.675,0,0,1],8648:[.19444,.69224,0,0,.83334],8649:[.1808,.675,0,0,1],8650:[.19444,.69224,0,0,.83334],8651:[.01354,.52239,0,0,1],8652:[.01354,.52239,0,0,1],8653:[-.13313,.36687,0,0,1],8654:[-.13313,.36687,0,0,1],8655:[-.13313,.36687,0,0,1],8666:[.13667,.63667,0,0,1],8667:[.13667,.63667,0,0,1],8669:[-.13313,.37788,0,0,1],8672:[-.064,.437,0,0,1.334],8674:[-.064,.437,0,0,1.334],8705:[0,.825,0,0,.5],8708:[0,.68889,0,0,.55556],8709:[.08167,.58167,0,0,.77778],8717:[0,.43056,0,0,.42917],8722:[-.03598,.46402,0,0,.5],8724:[.08198,.69224,0,0,.77778],8726:[.08167,.58167,0,0,.77778],8733:[0,.69224,0,0,.77778],8736:[0,.69224,0,0,.72222],8737:[0,.69224,0,0,.72222],8738:[.03517,.52239,0,0,.72222],8739:[.08167,.58167,0,0,.22222],8740:[.25142,.74111,0,0,.27778],8741:[.08167,.58167,0,0,.38889],8742:[.25142,.74111,0,0,.5],8756:[0,.69224,0,0,.66667],8757:[0,.69224,0,0,.66667],8764:[-.13313,.36687,0,0,.77778],8765:[-.13313,.37788,0,0,.77778],8769:[-.13313,.36687,0,0,.77778],8770:[-.03625,.46375,0,0,.77778],8774:[.30274,.79383,0,0,.77778],8776:[-.01688,.48312,0,0,.77778],8778:[.08167,.58167,0,0,.77778],8782:[.06062,.54986,0,0,.77778],8783:[.06062,.54986,0,0,.77778],8785:[.08198,.58198,0,0,.77778],8786:[.08198,.58198,0,0,.77778],8787:[.08198,.58198,0,0,.77778],8790:[0,.69224,0,0,.77778],8791:[.22958,.72958,0,0,.77778],8796:[.08198,.91667,0,0,.77778],8806:[.25583,.75583,0,0,.77778],8807:[.25583,.75583,0,0,.77778],8808:[.25142,.75726,0,0,.77778],8809:[.25142,.75726,0,0,.77778],8812:[.25583,.75583,0,0,.5],8814:[.20576,.70576,0,0,.77778],8815:[.20576,.70576,0,0,.77778],8816:[.30274,.79383,0,0,.77778],8817:[.30274,.79383,0,0,.77778],8818:[.22958,.72958,0,0,.77778],8819:[.22958,.72958,0,0,.77778],8822:[.1808,.675,0,0,.77778],8823:[.1808,.675,0,0,.77778],8828:[.13667,.63667,0,0,.77778],8829:[.13667,.63667,0,0,.77778],8830:[.22958,.72958,0,0,.77778],8831:[.22958,.72958,0,0,.77778],8832:[.20576,.70576,0,0,.77778],8833:[.20576,.70576,0,0,.77778],8840:[.30274,.79383,0,0,.77778],8841:[.30274,.79383,0,0,.77778],8842:[.13597,.63597,0,0,.77778],8843:[.13597,.63597,0,0,.77778],8847:[.03517,.54986,0,0,.77778],8848:[.03517,.54986,0,0,.77778],8858:[.08198,.58198,0,0,.77778],8859:[.08198,.58198,0,0,.77778],8861:[.08198,.58198,0,0,.77778],8862:[0,.675,0,0,.77778],8863:[0,.675,0,0,.77778],8864:[0,.675,0,0,.77778],8865:[0,.675,0,0,.77778],8872:[0,.69224,0,0,.61111],8873:[0,.69224,0,0,.72222],8874:[0,.69224,0,0,.88889],8876:[0,.68889,0,0,.61111],8877:[0,.68889,0,0,.61111],8878:[0,.68889,0,0,.72222],8879:[0,.68889,0,0,.72222],8882:[.03517,.54986,0,0,.77778],8883:[.03517,.54986,0,0,.77778],8884:[.13667,.63667,0,0,.77778],8885:[.13667,.63667,0,0,.77778],8888:[0,.54986,0,0,1.11111],8890:[.19444,.43056,0,0,.55556],8891:[.19444,.69224,0,0,.61111],8892:[.19444,.69224,0,0,.61111],8901:[0,.54986,0,0,.27778],8903:[.08167,.58167,0,0,.77778],8905:[.08167,.58167,0,0,.77778],8906:[.08167,.58167,0,0,.77778],8907:[0,.69224,0,0,.77778],8908:[0,.69224,0,0,.77778],8909:[-.03598,.46402,0,0,.77778],8910:[0,.54986,0,0,.76042],8911:[0,.54986,0,0,.76042],8912:[.03517,.54986,0,0,.77778],8913:[.03517,.54986,0,0,.77778],8914:[0,.54986,0,0,.66667],8915:[0,.54986,0,0,.66667],8916:[0,.69224,0,0,.66667],8918:[.0391,.5391,0,0,.77778],8919:[.0391,.5391,0,0,.77778],8920:[.03517,.54986,0,0,1.33334],8921:[.03517,.54986,0,0,1.33334],8922:[.38569,.88569,0,0,.77778],8923:[.38569,.88569,0,0,.77778],8926:[.13667,.63667,0,0,.77778],8927:[.13667,.63667,0,0,.77778],8928:[.30274,.79383,0,0,.77778],8929:[.30274,.79383,0,0,.77778],8934:[.23222,.74111,0,0,.77778],8935:[.23222,.74111,0,0,.77778],8936:[.23222,.74111,0,0,.77778],8937:[.23222,.74111,0,0,.77778],8938:[.20576,.70576,0,0,.77778],8939:[.20576,.70576,0,0,.77778],8940:[.30274,.79383,0,0,.77778],8941:[.30274,.79383,0,0,.77778],8994:[.19444,.69224,0,0,.77778],8995:[.19444,.69224,0,0,.77778],9416:[.15559,.69224,0,0,.90222],9484:[0,.69224,0,0,.5],9488:[0,.69224,0,0,.5],9492:[0,.37788,0,0,.5],9496:[0,.37788,0,0,.5],9585:[.19444,.68889,0,0,.88889],9586:[.19444,.74111,0,0,.88889],9632:[0,.675,0,0,.77778],9633:[0,.675,0,0,.77778],9650:[0,.54986,0,0,.72222],9651:[0,.54986,0,0,.72222],9654:[.03517,.54986,0,0,.77778],9660:[0,.54986,0,0,.72222],9661:[0,.54986,0,0,.72222],9664:[.03517,.54986,0,0,.77778],9674:[.11111,.69224,0,0,.66667],9733:[.19444,.69224,0,0,.94445],10003:[0,.69224,0,0,.83334],10016:[0,.69224,0,0,.83334],10731:[.11111,.69224,0,0,.66667],10846:[.19444,.75583,0,0,.61111],10877:[.13667,.63667,0,0,.77778],10878:[.13667,.63667,0,0,.77778],10885:[.25583,.75583,0,0,.77778],10886:[.25583,.75583,0,0,.77778],10887:[.13597,.63597,0,0,.77778],10888:[.13597,.63597,0,0,.77778],10889:[.26167,.75726,0,0,.77778],10890:[.26167,.75726,0,0,.77778],10891:[.48256,.98256,0,0,.77778],10892:[.48256,.98256,0,0,.77778],10901:[.13667,.63667,0,0,.77778],10902:[.13667,.63667,0,0,.77778],10933:[.25142,.75726,0,0,.77778],10934:[.25142,.75726,0,0,.77778],10935:[.26167,.75726,0,0,.77778],10936:[.26167,.75726,0,0,.77778],10937:[.26167,.75726,0,0,.77778],10938:[.26167,.75726,0,0,.77778],10949:[.25583,.75583,0,0,.77778],10950:[.25583,.75583,0,0,.77778],10955:[.28481,.79383,0,0,.77778],10956:[.28481,.79383,0,0,.77778],57350:[.08167,.58167,0,0,.22222],57351:[.08167,.58167,0,0,.38889],57352:[.08167,.58167,0,0,.77778],57353:[0,.43056,.04028,0,.66667],57356:[.25142,.75726,0,0,.77778],57357:[.25142,.75726,0,0,.77778],57358:[.41951,.91951,0,0,.77778],57359:[.30274,.79383,0,0,.77778],57360:[.30274,.79383,0,0,.77778],57361:[.41951,.91951,0,0,.77778],57366:[.25142,.75726,0,0,.77778],57367:[.25142,.75726,0,0,.77778],57368:[.25142,.75726,0,0,.77778],57369:[.25142,.75726,0,0,.77778],57370:[.13597,.63597,0,0,.77778],57371:[.13597,.63597,0,0,.77778]},\"Caligraphic-Regular\":{48:[0,.43056,0,0,.5],49:[0,.43056,0,0,.5],50:[0,.43056,0,0,.5],51:[.19444,.43056,0,0,.5],52:[.19444,.43056,0,0,.5],53:[.19444,.43056,0,0,.5],54:[0,.64444,0,0,.5],55:[.19444,.43056,0,0,.5],56:[0,.64444,0,0,.5],57:[.19444,.43056,0,0,.5],65:[0,.68333,0,.19445,.79847],66:[0,.68333,.03041,.13889,.65681],67:[0,.68333,.05834,.13889,.52653],68:[0,.68333,.02778,.08334,.77139],69:[0,.68333,.08944,.11111,.52778],70:[0,.68333,.09931,.11111,.71875],71:[.09722,.68333,.0593,.11111,.59487],72:[0,.68333,.00965,.11111,.84452],73:[0,.68333,.07382,0,.54452],74:[.09722,.68333,.18472,.16667,.67778],75:[0,.68333,.01445,.05556,.76195],76:[0,.68333,0,.13889,.68972],77:[0,.68333,0,.13889,1.2009],78:[0,.68333,.14736,.08334,.82049],79:[0,.68333,.02778,.11111,.79611],80:[0,.68333,.08222,.08334,.69556],81:[.09722,.68333,0,.11111,.81667],82:[0,.68333,0,.08334,.8475],83:[0,.68333,.075,.13889,.60556],84:[0,.68333,.25417,0,.54464],85:[0,.68333,.09931,.08334,.62583],86:[0,.68333,.08222,0,.61278],87:[0,.68333,.08222,.08334,.98778],88:[0,.68333,.14643,.13889,.7133],89:[.09722,.68333,.08222,.08334,.66834],90:[0,.68333,.07944,.13889,.72473]},\"Fraktur-Regular\":{33:[0,.69141,0,0,.29574],34:[0,.69141,0,0,.21471],38:[0,.69141,0,0,.73786],39:[0,.69141,0,0,.21201],40:[.24982,.74947,0,0,.38865],41:[.24982,.74947,0,0,.38865],42:[0,.62119,0,0,.27764],43:[.08319,.58283,0,0,.75623],44:[0,.10803,0,0,.27764],45:[.08319,.58283,0,0,.75623],46:[0,.10803,0,0,.27764],47:[.24982,.74947,0,0,.50181],48:[0,.47534,0,0,.50181],49:[0,.47534,0,0,.50181],50:[0,.47534,0,0,.50181],51:[.18906,.47534,0,0,.50181],52:[.18906,.47534,0,0,.50181],53:[.18906,.47534,0,0,.50181],54:[0,.69141,0,0,.50181],55:[.18906,.47534,0,0,.50181],56:[0,.69141,0,0,.50181],57:[.18906,.47534,0,0,.50181],58:[0,.47534,0,0,.21606],59:[.12604,.47534,0,0,.21606],61:[-.13099,.36866,0,0,.75623],63:[0,.69141,0,0,.36245],65:[0,.69141,0,0,.7176],66:[0,.69141,0,0,.88397],67:[0,.69141,0,0,.61254],68:[0,.69141,0,0,.83158],69:[0,.69141,0,0,.66278],70:[.12604,.69141,0,0,.61119],71:[0,.69141,0,0,.78539],72:[.06302,.69141,0,0,.7203],73:[0,.69141,0,0,.55448],74:[.12604,.69141,0,0,.55231],75:[0,.69141,0,0,.66845],76:[0,.69141,0,0,.66602],77:[0,.69141,0,0,1.04953],78:[0,.69141,0,0,.83212],79:[0,.69141,0,0,.82699],80:[.18906,.69141,0,0,.82753],81:[.03781,.69141,0,0,.82699],82:[0,.69141,0,0,.82807],83:[0,.69141,0,0,.82861],84:[0,.69141,0,0,.66899],85:[0,.69141,0,0,.64576],86:[0,.69141,0,0,.83131],87:[0,.69141,0,0,1.04602],88:[0,.69141,0,0,.71922],89:[.18906,.69141,0,0,.83293],90:[.12604,.69141,0,0,.60201],91:[.24982,.74947,0,0,.27764],93:[.24982,.74947,0,0,.27764],94:[0,.69141,0,0,.49965],97:[0,.47534,0,0,.50046],98:[0,.69141,0,0,.51315],99:[0,.47534,0,0,.38946],100:[0,.62119,0,0,.49857],101:[0,.47534,0,0,.40053],102:[.18906,.69141,0,0,.32626],103:[.18906,.47534,0,0,.5037],104:[.18906,.69141,0,0,.52126],105:[0,.69141,0,0,.27899],106:[0,.69141,0,0,.28088],107:[0,.69141,0,0,.38946],108:[0,.69141,0,0,.27953],109:[0,.47534,0,0,.76676],110:[0,.47534,0,0,.52666],111:[0,.47534,0,0,.48885],112:[.18906,.52396,0,0,.50046],113:[.18906,.47534,0,0,.48912],114:[0,.47534,0,0,.38919],115:[0,.47534,0,0,.44266],116:[0,.62119,0,0,.33301],117:[0,.47534,0,0,.5172],118:[0,.52396,0,0,.5118],119:[0,.52396,0,0,.77351],120:[.18906,.47534,0,0,.38865],121:[.18906,.47534,0,0,.49884],122:[.18906,.47534,0,0,.39054],8216:[0,.69141,0,0,.21471],8217:[0,.69141,0,0,.21471],58112:[0,.62119,0,0,.49749],58113:[0,.62119,0,0,.4983],58114:[.18906,.69141,0,0,.33328],58115:[.18906,.69141,0,0,.32923],58116:[.18906,.47534,0,0,.50343],58117:[0,.69141,0,0,.33301],58118:[0,.62119,0,0,.33409],58119:[0,.47534,0,0,.50073]},\"Main-Bold\":{33:[0,.69444,0,0,.35],34:[0,.69444,0,0,.60278],35:[.19444,.69444,0,0,.95833],36:[.05556,.75,0,0,.575],37:[.05556,.75,0,0,.95833],38:[0,.69444,0,0,.89444],39:[0,.69444,0,0,.31944],40:[.25,.75,0,0,.44722],41:[.25,.75,0,0,.44722],42:[0,.75,0,0,.575],43:[.13333,.63333,0,0,.89444],44:[.19444,.15556,0,0,.31944],45:[0,.44444,0,0,.38333],46:[0,.15556,0,0,.31944],47:[.25,.75,0,0,.575],48:[0,.64444,0,0,.575],49:[0,.64444,0,0,.575],50:[0,.64444,0,0,.575],51:[0,.64444,0,0,.575],52:[0,.64444,0,0,.575],53:[0,.64444,0,0,.575],54:[0,.64444,0,0,.575],55:[0,.64444,0,0,.575],56:[0,.64444,0,0,.575],57:[0,.64444,0,0,.575],58:[0,.44444,0,0,.31944],59:[.19444,.44444,0,0,.31944],60:[.08556,.58556,0,0,.89444],61:[-.10889,.39111,0,0,.89444],62:[.08556,.58556,0,0,.89444],63:[0,.69444,0,0,.54305],64:[0,.69444,0,0,.89444],65:[0,.68611,0,0,.86944],66:[0,.68611,0,0,.81805],67:[0,.68611,0,0,.83055],68:[0,.68611,0,0,.88194],69:[0,.68611,0,0,.75555],70:[0,.68611,0,0,.72361],71:[0,.68611,0,0,.90416],72:[0,.68611,0,0,.9],73:[0,.68611,0,0,.43611],74:[0,.68611,0,0,.59444],75:[0,.68611,0,0,.90138],76:[0,.68611,0,0,.69166],77:[0,.68611,0,0,1.09166],78:[0,.68611,0,0,.9],79:[0,.68611,0,0,.86388],80:[0,.68611,0,0,.78611],81:[.19444,.68611,0,0,.86388],82:[0,.68611,0,0,.8625],83:[0,.68611,0,0,.63889],84:[0,.68611,0,0,.8],85:[0,.68611,0,0,.88472],86:[0,.68611,.01597,0,.86944],87:[0,.68611,.01597,0,1.18888],88:[0,.68611,0,0,.86944],89:[0,.68611,.02875,0,.86944],90:[0,.68611,0,0,.70277],91:[.25,.75,0,0,.31944],92:[.25,.75,0,0,.575],93:[.25,.75,0,0,.31944],94:[0,.69444,0,0,.575],95:[.31,.13444,.03194,0,.575],97:[0,.44444,0,0,.55902],98:[0,.69444,0,0,.63889],99:[0,.44444,0,0,.51111],100:[0,.69444,0,0,.63889],101:[0,.44444,0,0,.52708],102:[0,.69444,.10903,0,.35139],103:[.19444,.44444,.01597,0,.575],104:[0,.69444,0,0,.63889],105:[0,.69444,0,0,.31944],106:[.19444,.69444,0,0,.35139],107:[0,.69444,0,0,.60694],108:[0,.69444,0,0,.31944],109:[0,.44444,0,0,.95833],110:[0,.44444,0,0,.63889],111:[0,.44444,0,0,.575],112:[.19444,.44444,0,0,.63889],113:[.19444,.44444,0,0,.60694],114:[0,.44444,0,0,.47361],115:[0,.44444,0,0,.45361],116:[0,.63492,0,0,.44722],117:[0,.44444,0,0,.63889],118:[0,.44444,.01597,0,.60694],119:[0,.44444,.01597,0,.83055],120:[0,.44444,0,0,.60694],121:[.19444,.44444,.01597,0,.60694],122:[0,.44444,0,0,.51111],123:[.25,.75,0,0,.575],124:[.25,.75,0,0,.31944],125:[.25,.75,0,0,.575],126:[.35,.34444,0,0,.575],168:[0,.69444,0,0,.575],172:[0,.44444,0,0,.76666],176:[0,.69444,0,0,.86944],177:[.13333,.63333,0,0,.89444],184:[.17014,0,0,0,.51111],198:[0,.68611,0,0,1.04166],215:[.13333,.63333,0,0,.89444],216:[.04861,.73472,0,0,.89444],223:[0,.69444,0,0,.59722],230:[0,.44444,0,0,.83055],247:[.13333,.63333,0,0,.89444],248:[.09722,.54167,0,0,.575],305:[0,.44444,0,0,.31944],338:[0,.68611,0,0,1.16944],339:[0,.44444,0,0,.89444],567:[.19444,.44444,0,0,.35139],710:[0,.69444,0,0,.575],711:[0,.63194,0,0,.575],713:[0,.59611,0,0,.575],714:[0,.69444,0,0,.575],715:[0,.69444,0,0,.575],728:[0,.69444,0,0,.575],729:[0,.69444,0,0,.31944],730:[0,.69444,0,0,.86944],732:[0,.69444,0,0,.575],733:[0,.69444,0,0,.575],915:[0,.68611,0,0,.69166],916:[0,.68611,0,0,.95833],920:[0,.68611,0,0,.89444],923:[0,.68611,0,0,.80555],926:[0,.68611,0,0,.76666],928:[0,.68611,0,0,.9],931:[0,.68611,0,0,.83055],933:[0,.68611,0,0,.89444],934:[0,.68611,0,0,.83055],936:[0,.68611,0,0,.89444],937:[0,.68611,0,0,.83055],8211:[0,.44444,.03194,0,.575],8212:[0,.44444,.03194,0,1.14999],8216:[0,.69444,0,0,.31944],8217:[0,.69444,0,0,.31944],8220:[0,.69444,0,0,.60278],8221:[0,.69444,0,0,.60278],8224:[.19444,.69444,0,0,.51111],8225:[.19444,.69444,0,0,.51111],8242:[0,.55556,0,0,.34444],8407:[0,.72444,.15486,0,.575],8463:[0,.69444,0,0,.66759],8465:[0,.69444,0,0,.83055],8467:[0,.69444,0,0,.47361],8472:[.19444,.44444,0,0,.74027],8476:[0,.69444,0,0,.83055],8501:[0,.69444,0,0,.70277],8592:[-.10889,.39111,0,0,1.14999],8593:[.19444,.69444,0,0,.575],8594:[-.10889,.39111,0,0,1.14999],8595:[.19444,.69444,0,0,.575],8596:[-.10889,.39111,0,0,1.14999],8597:[.25,.75,0,0,.575],8598:[.19444,.69444,0,0,1.14999],8599:[.19444,.69444,0,0,1.14999],8600:[.19444,.69444,0,0,1.14999],8601:[.19444,.69444,0,0,1.14999],8636:[-.10889,.39111,0,0,1.14999],8637:[-.10889,.39111,0,0,1.14999],8640:[-.10889,.39111,0,0,1.14999],8641:[-.10889,.39111,0,0,1.14999],8656:[-.10889,.39111,0,0,1.14999],8657:[.19444,.69444,0,0,.70277],8658:[-.10889,.39111,0,0,1.14999],8659:[.19444,.69444,0,0,.70277],8660:[-.10889,.39111,0,0,1.14999],8661:[.25,.75,0,0,.70277],8704:[0,.69444,0,0,.63889],8706:[0,.69444,.06389,0,.62847],8707:[0,.69444,0,0,.63889],8709:[.05556,.75,0,0,.575],8711:[0,.68611,0,0,.95833],8712:[.08556,.58556,0,0,.76666],8715:[.08556,.58556,0,0,.76666],8722:[.13333,.63333,0,0,.89444],8723:[.13333,.63333,0,0,.89444],8725:[.25,.75,0,0,.575],8726:[.25,.75,0,0,.575],8727:[-.02778,.47222,0,0,.575],8728:[-.02639,.47361,0,0,.575],8729:[-.02639,.47361,0,0,.575],8730:[.18,.82,0,0,.95833],8733:[0,.44444,0,0,.89444],8734:[0,.44444,0,0,1.14999],8736:[0,.69224,0,0,.72222],8739:[.25,.75,0,0,.31944],8741:[.25,.75,0,0,.575],8743:[0,.55556,0,0,.76666],8744:[0,.55556,0,0,.76666],8745:[0,.55556,0,0,.76666],8746:[0,.55556,0,0,.76666],8747:[.19444,.69444,.12778,0,.56875],8764:[-.10889,.39111,0,0,.89444],8768:[.19444,.69444,0,0,.31944],8771:[.00222,.50222,0,0,.89444],8776:[.02444,.52444,0,0,.89444],8781:[.00222,.50222,0,0,.89444],8801:[.00222,.50222,0,0,.89444],8804:[.19667,.69667,0,0,.89444],8805:[.19667,.69667,0,0,.89444],8810:[.08556,.58556,0,0,1.14999],8811:[.08556,.58556,0,0,1.14999],8826:[.08556,.58556,0,0,.89444],8827:[.08556,.58556,0,0,.89444],8834:[.08556,.58556,0,0,.89444],8835:[.08556,.58556,0,0,.89444],8838:[.19667,.69667,0,0,.89444],8839:[.19667,.69667,0,0,.89444],8846:[0,.55556,0,0,.76666],8849:[.19667,.69667,0,0,.89444],8850:[.19667,.69667,0,0,.89444],8851:[0,.55556,0,0,.76666],8852:[0,.55556,0,0,.76666],8853:[.13333,.63333,0,0,.89444],8854:[.13333,.63333,0,0,.89444],8855:[.13333,.63333,0,0,.89444],8856:[.13333,.63333,0,0,.89444],8857:[.13333,.63333,0,0,.89444],8866:[0,.69444,0,0,.70277],8867:[0,.69444,0,0,.70277],8868:[0,.69444,0,0,.89444],8869:[0,.69444,0,0,.89444],8900:[-.02639,.47361,0,0,.575],8901:[-.02639,.47361,0,0,.31944],8902:[-.02778,.47222,0,0,.575],8968:[.25,.75,0,0,.51111],8969:[.25,.75,0,0,.51111],8970:[.25,.75,0,0,.51111],8971:[.25,.75,0,0,.51111],8994:[-.13889,.36111,0,0,1.14999],8995:[-.13889,.36111,0,0,1.14999],9651:[.19444,.69444,0,0,1.02222],9657:[-.02778,.47222,0,0,.575],9661:[.19444,.69444,0,0,1.02222],9667:[-.02778,.47222,0,0,.575],9711:[.19444,.69444,0,0,1.14999],9824:[.12963,.69444,0,0,.89444],9825:[.12963,.69444,0,0,.89444],9826:[.12963,.69444,0,0,.89444],9827:[.12963,.69444,0,0,.89444],9837:[0,.75,0,0,.44722],9838:[.19444,.69444,0,0,.44722],9839:[.19444,.69444,0,0,.44722],10216:[.25,.75,0,0,.44722],10217:[.25,.75,0,0,.44722],10815:[0,.68611,0,0,.9],10927:[.19667,.69667,0,0,.89444],10928:[.19667,.69667,0,0,.89444],57376:[.19444,.69444,0,0,0]},\"Main-BoldItalic\":{33:[0,.69444,.11417,0,.38611],34:[0,.69444,.07939,0,.62055],35:[.19444,.69444,.06833,0,.94444],37:[.05556,.75,.12861,0,.94444],38:[0,.69444,.08528,0,.88555],39:[0,.69444,.12945,0,.35555],40:[.25,.75,.15806,0,.47333],41:[.25,.75,.03306,0,.47333],42:[0,.75,.14333,0,.59111],43:[.10333,.60333,.03306,0,.88555],44:[.19444,.14722,0,0,.35555],45:[0,.44444,.02611,0,.41444],46:[0,.14722,0,0,.35555],47:[.25,.75,.15806,0,.59111],48:[0,.64444,.13167,0,.59111],49:[0,.64444,.13167,0,.59111],50:[0,.64444,.13167,0,.59111],51:[0,.64444,.13167,0,.59111],52:[.19444,.64444,.13167,0,.59111],53:[0,.64444,.13167,0,.59111],54:[0,.64444,.13167,0,.59111],55:[.19444,.64444,.13167,0,.59111],56:[0,.64444,.13167,0,.59111],57:[0,.64444,.13167,0,.59111],58:[0,.44444,.06695,0,.35555],59:[.19444,.44444,.06695,0,.35555],61:[-.10889,.39111,.06833,0,.88555],63:[0,.69444,.11472,0,.59111],64:[0,.69444,.09208,0,.88555],65:[0,.68611,0,0,.86555],66:[0,.68611,.0992,0,.81666],67:[0,.68611,.14208,0,.82666],68:[0,.68611,.09062,0,.87555],69:[0,.68611,.11431,0,.75666],70:[0,.68611,.12903,0,.72722],71:[0,.68611,.07347,0,.89527],72:[0,.68611,.17208,0,.8961],73:[0,.68611,.15681,0,.47166],74:[0,.68611,.145,0,.61055],75:[0,.68611,.14208,0,.89499],76:[0,.68611,0,0,.69777],77:[0,.68611,.17208,0,1.07277],78:[0,.68611,.17208,0,.8961],79:[0,.68611,.09062,0,.85499],80:[0,.68611,.0992,0,.78721],81:[.19444,.68611,.09062,0,.85499],82:[0,.68611,.02559,0,.85944],83:[0,.68611,.11264,0,.64999],84:[0,.68611,.12903,0,.7961],85:[0,.68611,.17208,0,.88083],86:[0,.68611,.18625,0,.86555],87:[0,.68611,.18625,0,1.15999],88:[0,.68611,.15681,0,.86555],89:[0,.68611,.19803,0,.86555],90:[0,.68611,.14208,0,.70888],91:[.25,.75,.1875,0,.35611],93:[.25,.75,.09972,0,.35611],94:[0,.69444,.06709,0,.59111],95:[.31,.13444,.09811,0,.59111],97:[0,.44444,.09426,0,.59111],98:[0,.69444,.07861,0,.53222],99:[0,.44444,.05222,0,.53222],100:[0,.69444,.10861,0,.59111],101:[0,.44444,.085,0,.53222],102:[.19444,.69444,.21778,0,.4],103:[.19444,.44444,.105,0,.53222],104:[0,.69444,.09426,0,.59111],105:[0,.69326,.11387,0,.35555],106:[.19444,.69326,.1672,0,.35555],107:[0,.69444,.11111,0,.53222],108:[0,.69444,.10861,0,.29666],109:[0,.44444,.09426,0,.94444],110:[0,.44444,.09426,0,.64999],111:[0,.44444,.07861,0,.59111],112:[.19444,.44444,.07861,0,.59111],113:[.19444,.44444,.105,0,.53222],114:[0,.44444,.11111,0,.50167],115:[0,.44444,.08167,0,.48694],116:[0,.63492,.09639,0,.385],117:[0,.44444,.09426,0,.62055],118:[0,.44444,.11111,0,.53222],119:[0,.44444,.11111,0,.76777],120:[0,.44444,.12583,0,.56055],121:[.19444,.44444,.105,0,.56166],122:[0,.44444,.13889,0,.49055],126:[.35,.34444,.11472,0,.59111],163:[0,.69444,0,0,.86853],168:[0,.69444,.11473,0,.59111],176:[0,.69444,0,0,.94888],184:[.17014,0,0,0,.53222],198:[0,.68611,.11431,0,1.02277],216:[.04861,.73472,.09062,0,.88555],223:[.19444,.69444,.09736,0,.665],230:[0,.44444,.085,0,.82666],248:[.09722,.54167,.09458,0,.59111],305:[0,.44444,.09426,0,.35555],338:[0,.68611,.11431,0,1.14054],339:[0,.44444,.085,0,.82666],567:[.19444,.44444,.04611,0,.385],710:[0,.69444,.06709,0,.59111],711:[0,.63194,.08271,0,.59111],713:[0,.59444,.10444,0,.59111],714:[0,.69444,.08528,0,.59111],715:[0,.69444,0,0,.59111],728:[0,.69444,.10333,0,.59111],729:[0,.69444,.12945,0,.35555],730:[0,.69444,0,0,.94888],732:[0,.69444,.11472,0,.59111],733:[0,.69444,.11472,0,.59111],915:[0,.68611,.12903,0,.69777],916:[0,.68611,0,0,.94444],920:[0,.68611,.09062,0,.88555],923:[0,.68611,0,0,.80666],926:[0,.68611,.15092,0,.76777],928:[0,.68611,.17208,0,.8961],931:[0,.68611,.11431,0,.82666],933:[0,.68611,.10778,0,.88555],934:[0,.68611,.05632,0,.82666],936:[0,.68611,.10778,0,.88555],937:[0,.68611,.0992,0,.82666],8211:[0,.44444,.09811,0,.59111],8212:[0,.44444,.09811,0,1.18221],8216:[0,.69444,.12945,0,.35555],8217:[0,.69444,.12945,0,.35555],8220:[0,.69444,.16772,0,.62055],8221:[0,.69444,.07939,0,.62055]},\"Main-Italic\":{33:[0,.69444,.12417,0,.30667],34:[0,.69444,.06961,0,.51444],35:[.19444,.69444,.06616,0,.81777],37:[.05556,.75,.13639,0,.81777],38:[0,.69444,.09694,0,.76666],39:[0,.69444,.12417,0,.30667],40:[.25,.75,.16194,0,.40889],41:[.25,.75,.03694,0,.40889],42:[0,.75,.14917,0,.51111],43:[.05667,.56167,.03694,0,.76666],44:[.19444,.10556,0,0,.30667],45:[0,.43056,.02826,0,.35778],46:[0,.10556,0,0,.30667],47:[.25,.75,.16194,0,.51111],48:[0,.64444,.13556,0,.51111],49:[0,.64444,.13556,0,.51111],50:[0,.64444,.13556,0,.51111],51:[0,.64444,.13556,0,.51111],52:[.19444,.64444,.13556,0,.51111],53:[0,.64444,.13556,0,.51111],54:[0,.64444,.13556,0,.51111],55:[.19444,.64444,.13556,0,.51111],56:[0,.64444,.13556,0,.51111],57:[0,.64444,.13556,0,.51111],58:[0,.43056,.0582,0,.30667],59:[.19444,.43056,.0582,0,.30667],61:[-.13313,.36687,.06616,0,.76666],63:[0,.69444,.1225,0,.51111],64:[0,.69444,.09597,0,.76666],65:[0,.68333,0,0,.74333],66:[0,.68333,.10257,0,.70389],67:[0,.68333,.14528,0,.71555],68:[0,.68333,.09403,0,.755],69:[0,.68333,.12028,0,.67833],70:[0,.68333,.13305,0,.65277],71:[0,.68333,.08722,0,.77361],72:[0,.68333,.16389,0,.74333],73:[0,.68333,.15806,0,.38555],74:[0,.68333,.14028,0,.525],75:[0,.68333,.14528,0,.76888],76:[0,.68333,0,0,.62722],77:[0,.68333,.16389,0,.89666],78:[0,.68333,.16389,0,.74333],79:[0,.68333,.09403,0,.76666],80:[0,.68333,.10257,0,.67833],81:[.19444,.68333,.09403,0,.76666],82:[0,.68333,.03868,0,.72944],83:[0,.68333,.11972,0,.56222],84:[0,.68333,.13305,0,.71555],85:[0,.68333,.16389,0,.74333],86:[0,.68333,.18361,0,.74333],87:[0,.68333,.18361,0,.99888],88:[0,.68333,.15806,0,.74333],89:[0,.68333,.19383,0,.74333],90:[0,.68333,.14528,0,.61333],91:[.25,.75,.1875,0,.30667],93:[.25,.75,.10528,0,.30667],94:[0,.69444,.06646,0,.51111],95:[.31,.12056,.09208,0,.51111],97:[0,.43056,.07671,0,.51111],98:[0,.69444,.06312,0,.46],99:[0,.43056,.05653,0,.46],100:[0,.69444,.10333,0,.51111],101:[0,.43056,.07514,0,.46],102:[.19444,.69444,.21194,0,.30667],103:[.19444,.43056,.08847,0,.46],104:[0,.69444,.07671,0,.51111],105:[0,.65536,.1019,0,.30667],106:[.19444,.65536,.14467,0,.30667],107:[0,.69444,.10764,0,.46],108:[0,.69444,.10333,0,.25555],109:[0,.43056,.07671,0,.81777],110:[0,.43056,.07671,0,.56222],111:[0,.43056,.06312,0,.51111],112:[.19444,.43056,.06312,0,.51111],113:[.19444,.43056,.08847,0,.46],114:[0,.43056,.10764,0,.42166],115:[0,.43056,.08208,0,.40889],116:[0,.61508,.09486,0,.33222],117:[0,.43056,.07671,0,.53666],118:[0,.43056,.10764,0,.46],119:[0,.43056,.10764,0,.66444],120:[0,.43056,.12042,0,.46389],121:[.19444,.43056,.08847,0,.48555],122:[0,.43056,.12292,0,.40889],126:[.35,.31786,.11585,0,.51111],163:[0,.69444,0,0,.76909],168:[0,.66786,.10474,0,.51111],176:[0,.69444,0,0,.83129],184:[.17014,0,0,0,.46],198:[0,.68333,.12028,0,.88277],216:[.04861,.73194,.09403,0,.76666],223:[.19444,.69444,.10514,0,.53666],230:[0,.43056,.07514,0,.71555],248:[.09722,.52778,.09194,0,.51111],305:[0,.43056,0,.02778,.32246],338:[0,.68333,.12028,0,.98499],339:[0,.43056,.07514,0,.71555],567:[.19444,.43056,0,.08334,.38403],710:[0,.69444,.06646,0,.51111],711:[0,.62847,.08295,0,.51111],713:[0,.56167,.10333,0,.51111],714:[0,.69444,.09694,0,.51111],715:[0,.69444,0,0,.51111],728:[0,.69444,.10806,0,.51111],729:[0,.66786,.11752,0,.30667],730:[0,.69444,0,0,.83129],732:[0,.66786,.11585,0,.51111],733:[0,.69444,.1225,0,.51111],915:[0,.68333,.13305,0,.62722],916:[0,.68333,0,0,.81777],920:[0,.68333,.09403,0,.76666],923:[0,.68333,0,0,.69222],926:[0,.68333,.15294,0,.66444],928:[0,.68333,.16389,0,.74333],931:[0,.68333,.12028,0,.71555],933:[0,.68333,.11111,0,.76666],934:[0,.68333,.05986,0,.71555],936:[0,.68333,.11111,0,.76666],937:[0,.68333,.10257,0,.71555],8211:[0,.43056,.09208,0,.51111],8212:[0,.43056,.09208,0,1.02222],8216:[0,.69444,.12417,0,.30667],8217:[0,.69444,.12417,0,.30667],8220:[0,.69444,.1685,0,.51444],8221:[0,.69444,.06961,0,.51444],8463:[0,.68889,0,0,.54028]},\"Main-Regular\":{32:[0,0,0,0,.25],33:[0,.69444,0,0,.27778],34:[0,.69444,0,0,.5],35:[.19444,.69444,0,0,.83334],36:[.05556,.75,0,0,.5],37:[.05556,.75,0,0,.83334],38:[0,.69444,0,0,.77778],39:[0,.69444,0,0,.27778],40:[.25,.75,0,0,.38889],41:[.25,.75,0,0,.38889],42:[0,.75,0,0,.5],43:[.08333,.58333,0,0,.77778],44:[.19444,.10556,0,0,.27778],45:[0,.43056,0,0,.33333],46:[0,.10556,0,0,.27778],47:[.25,.75,0,0,.5],48:[0,.64444,0,0,.5],49:[0,.64444,0,0,.5],50:[0,.64444,0,0,.5],51:[0,.64444,0,0,.5],52:[0,.64444,0,0,.5],53:[0,.64444,0,0,.5],54:[0,.64444,0,0,.5],55:[0,.64444,0,0,.5],56:[0,.64444,0,0,.5],57:[0,.64444,0,0,.5],58:[0,.43056,0,0,.27778],59:[.19444,.43056,0,0,.27778],60:[.0391,.5391,0,0,.77778],61:[-.13313,.36687,0,0,.77778],62:[.0391,.5391,0,0,.77778],63:[0,.69444,0,0,.47222],64:[0,.69444,0,0,.77778],65:[0,.68333,0,0,.75],66:[0,.68333,0,0,.70834],67:[0,.68333,0,0,.72222],68:[0,.68333,0,0,.76389],69:[0,.68333,0,0,.68056],70:[0,.68333,0,0,.65278],71:[0,.68333,0,0,.78472],72:[0,.68333,0,0,.75],73:[0,.68333,0,0,.36111],74:[0,.68333,0,0,.51389],75:[0,.68333,0,0,.77778],76:[0,.68333,0,0,.625],77:[0,.68333,0,0,.91667],78:[0,.68333,0,0,.75],79:[0,.68333,0,0,.77778],80:[0,.68333,0,0,.68056],81:[.19444,.68333,0,0,.77778],82:[0,.68333,0,0,.73611],83:[0,.68333,0,0,.55556],84:[0,.68333,0,0,.72222],85:[0,.68333,0,0,.75],86:[0,.68333,.01389,0,.75],87:[0,.68333,.01389,0,1.02778],88:[0,.68333,0,0,.75],89:[0,.68333,.025,0,.75],90:[0,.68333,0,0,.61111],91:[.25,.75,0,0,.27778],92:[.25,.75,0,0,.5],93:[.25,.75,0,0,.27778],94:[0,.69444,0,0,.5],95:[.31,.12056,.02778,0,.5],97:[0,.43056,0,0,.5],98:[0,.69444,0,0,.55556],99:[0,.43056,0,0,.44445],100:[0,.69444,0,0,.55556],101:[0,.43056,0,0,.44445],102:[0,.69444,.07778,0,.30556],103:[.19444,.43056,.01389,0,.5],104:[0,.69444,0,0,.55556],105:[0,.66786,0,0,.27778],106:[.19444,.66786,0,0,.30556],107:[0,.69444,0,0,.52778],108:[0,.69444,0,0,.27778],109:[0,.43056,0,0,.83334],110:[0,.43056,0,0,.55556],111:[0,.43056,0,0,.5],112:[.19444,.43056,0,0,.55556],113:[.19444,.43056,0,0,.52778],114:[0,.43056,0,0,.39167],115:[0,.43056,0,0,.39445],116:[0,.61508,0,0,.38889],117:[0,.43056,0,0,.55556],118:[0,.43056,.01389,0,.52778],119:[0,.43056,.01389,0,.72222],120:[0,.43056,0,0,.52778],121:[.19444,.43056,.01389,0,.52778],122:[0,.43056,0,0,.44445],123:[.25,.75,0,0,.5],124:[.25,.75,0,0,.27778],125:[.25,.75,0,0,.5],126:[.35,.31786,0,0,.5],160:[0,0,0,0,.25],167:[.19444,.69444,0,0,.44445],168:[0,.66786,0,0,.5],172:[0,.43056,0,0,.66667],176:[0,.69444,0,0,.75],177:[.08333,.58333,0,0,.77778],182:[.19444,.69444,0,0,.61111],184:[.17014,0,0,0,.44445],198:[0,.68333,0,0,.90278],215:[.08333,.58333,0,0,.77778],216:[.04861,.73194,0,0,.77778],223:[0,.69444,0,0,.5],230:[0,.43056,0,0,.72222],247:[.08333,.58333,0,0,.77778],248:[.09722,.52778,0,0,.5],305:[0,.43056,0,0,.27778],338:[0,.68333,0,0,1.01389],339:[0,.43056,0,0,.77778],567:[.19444,.43056,0,0,.30556],710:[0,.69444,0,0,.5],711:[0,.62847,0,0,.5],713:[0,.56778,0,0,.5],714:[0,.69444,0,0,.5],715:[0,.69444,0,0,.5],728:[0,.69444,0,0,.5],729:[0,.66786,0,0,.27778],730:[0,.69444,0,0,.75],732:[0,.66786,0,0,.5],733:[0,.69444,0,0,.5],915:[0,.68333,0,0,.625],916:[0,.68333,0,0,.83334],920:[0,.68333,0,0,.77778],923:[0,.68333,0,0,.69445],926:[0,.68333,0,0,.66667],928:[0,.68333,0,0,.75],931:[0,.68333,0,0,.72222],933:[0,.68333,0,0,.77778],934:[0,.68333,0,0,.72222],936:[0,.68333,0,0,.77778],937:[0,.68333,0,0,.72222],8211:[0,.43056,.02778,0,.5],8212:[0,.43056,.02778,0,1],8216:[0,.69444,0,0,.27778],8217:[0,.69444,0,0,.27778],8220:[0,.69444,0,0,.5],8221:[0,.69444,0,0,.5],8224:[.19444,.69444,0,0,.44445],8225:[.19444,.69444,0,0,.44445],8230:[0,.12,0,0,1.172],8242:[0,.55556,0,0,.275],8407:[0,.71444,.15382,0,.5],8463:[0,.68889,0,0,.54028],8465:[0,.69444,0,0,.72222],8467:[0,.69444,0,.11111,.41667],8472:[.19444,.43056,0,.11111,.63646],8476:[0,.69444,0,0,.72222],8501:[0,.69444,0,0,.61111],8592:[-.13313,.36687,0,0,1],8593:[.19444,.69444,0,0,.5],8594:[-.13313,.36687,0,0,1],8595:[.19444,.69444,0,0,.5],8596:[-.13313,.36687,0,0,1],8597:[.25,.75,0,0,.5],8598:[.19444,.69444,0,0,1],8599:[.19444,.69444,0,0,1],8600:[.19444,.69444,0,0,1],8601:[.19444,.69444,0,0,1],8614:[.011,.511,0,0,1],8617:[.011,.511,0,0,1.126],8618:[.011,.511,0,0,1.126],8636:[-.13313,.36687,0,0,1],8637:[-.13313,.36687,0,0,1],8640:[-.13313,.36687,0,0,1],8641:[-.13313,.36687,0,0,1],8652:[.011,.671,0,0,1],8656:[-.13313,.36687,0,0,1],8657:[.19444,.69444,0,0,.61111],8658:[-.13313,.36687,0,0,1],8659:[.19444,.69444,0,0,.61111],8660:[-.13313,.36687,0,0,1],8661:[.25,.75,0,0,.61111],8704:[0,.69444,0,0,.55556],8706:[0,.69444,.05556,.08334,.5309],8707:[0,.69444,0,0,.55556],8709:[.05556,.75,0,0,.5],8711:[0,.68333,0,0,.83334],8712:[.0391,.5391,0,0,.66667],8715:[.0391,.5391,0,0,.66667],8722:[.08333,.58333,0,0,.77778],8723:[.08333,.58333,0,0,.77778],8725:[.25,.75,0,0,.5],8726:[.25,.75,0,0,.5],8727:[-.03472,.46528,0,0,.5],8728:[-.05555,.44445,0,0,.5],8729:[-.05555,.44445,0,0,.5],8730:[.2,.8,0,0,.83334],8733:[0,.43056,0,0,.77778],8734:[0,.43056,0,0,1],8736:[0,.69224,0,0,.72222],8739:[.25,.75,0,0,.27778],8741:[.25,.75,0,0,.5],8743:[0,.55556,0,0,.66667],8744:[0,.55556,0,0,.66667],8745:[0,.55556,0,0,.66667],8746:[0,.55556,0,0,.66667],8747:[.19444,.69444,.11111,0,.41667],8764:[-.13313,.36687,0,0,.77778],8768:[.19444,.69444,0,0,.27778],8771:[-.03625,.46375,0,0,.77778],8773:[-.022,.589,0,0,1],8776:[-.01688,.48312,0,0,.77778],8781:[-.03625,.46375,0,0,.77778],8784:[-.133,.67,0,0,.778],8801:[-.03625,.46375,0,0,.77778],8804:[.13597,.63597,0,0,.77778],8805:[.13597,.63597,0,0,.77778],8810:[.0391,.5391,0,0,1],8811:[.0391,.5391,0,0,1],8826:[.0391,.5391,0,0,.77778],8827:[.0391,.5391,0,0,.77778],8834:[.0391,.5391,0,0,.77778],8835:[.0391,.5391,0,0,.77778],8838:[.13597,.63597,0,0,.77778],8839:[.13597,.63597,0,0,.77778],8846:[0,.55556,0,0,.66667],8849:[.13597,.63597,0,0,.77778],8850:[.13597,.63597,0,0,.77778],8851:[0,.55556,0,0,.66667],8852:[0,.55556,0,0,.66667],8853:[.08333,.58333,0,0,.77778],8854:[.08333,.58333,0,0,.77778],8855:[.08333,.58333,0,0,.77778],8856:[.08333,.58333,0,0,.77778],8857:[.08333,.58333,0,0,.77778],8866:[0,.69444,0,0,.61111],8867:[0,.69444,0,0,.61111],8868:[0,.69444,0,0,.77778],8869:[0,.69444,0,0,.77778],8872:[.249,.75,0,0,.867],8900:[-.05555,.44445,0,0,.5],8901:[-.05555,.44445,0,0,.27778],8902:[-.03472,.46528,0,0,.5],8904:[.005,.505,0,0,.9],8942:[.03,.9,0,0,.278],8943:[-.19,.31,0,0,1.172],8945:[-.1,.82,0,0,1.282],8968:[.25,.75,0,0,.44445],8969:[.25,.75,0,0,.44445],8970:[.25,.75,0,0,.44445],8971:[.25,.75,0,0,.44445],8994:[-.14236,.35764,0,0,1],8995:[-.14236,.35764,0,0,1],9136:[.244,.744,0,0,.412],9137:[.244,.744,0,0,.412],9651:[.19444,.69444,0,0,.88889],9657:[-.03472,.46528,0,0,.5],9661:[.19444,.69444,0,0,.88889],9667:[-.03472,.46528,0,0,.5],9711:[.19444,.69444,0,0,1],9824:[.12963,.69444,0,0,.77778],9825:[.12963,.69444,0,0,.77778],9826:[.12963,.69444,0,0,.77778],9827:[.12963,.69444,0,0,.77778],9837:[0,.75,0,0,.38889],9838:[.19444,.69444,0,0,.38889],9839:[.19444,.69444,0,0,.38889],10216:[.25,.75,0,0,.38889],10217:[.25,.75,0,0,.38889],10222:[.244,.744,0,0,.412],10223:[.244,.744,0,0,.412],10229:[.011,.511,0,0,1.609],10230:[.011,.511,0,0,1.638],10231:[.011,.511,0,0,1.859],10232:[.024,.525,0,0,1.609],10233:[.024,.525,0,0,1.638],10234:[.024,.525,0,0,1.858],10236:[.011,.511,0,0,1.638],10815:[0,.68333,0,0,.75],10927:[.13597,.63597,0,0,.77778],10928:[.13597,.63597,0,0,.77778],57376:[.19444,.69444,0,0,0]},\"Math-BoldItalic\":{65:[0,.68611,0,0,.86944],66:[0,.68611,.04835,0,.8664],67:[0,.68611,.06979,0,.81694],68:[0,.68611,.03194,0,.93812],69:[0,.68611,.05451,0,.81007],70:[0,.68611,.15972,0,.68889],71:[0,.68611,0,0,.88673],72:[0,.68611,.08229,0,.98229],73:[0,.68611,.07778,0,.51111],74:[0,.68611,.10069,0,.63125],75:[0,.68611,.06979,0,.97118],76:[0,.68611,0,0,.75555],77:[0,.68611,.11424,0,1.14201],78:[0,.68611,.11424,0,.95034],79:[0,.68611,.03194,0,.83666],80:[0,.68611,.15972,0,.72309],81:[.19444,.68611,0,0,.86861],82:[0,.68611,.00421,0,.87235],83:[0,.68611,.05382,0,.69271],84:[0,.68611,.15972,0,.63663],85:[0,.68611,.11424,0,.80027],86:[0,.68611,.25555,0,.67778],87:[0,.68611,.15972,0,1.09305],88:[0,.68611,.07778,0,.94722],89:[0,.68611,.25555,0,.67458],90:[0,.68611,.06979,0,.77257],97:[0,.44444,0,0,.63287],98:[0,.69444,0,0,.52083],99:[0,.44444,0,0,.51342],100:[0,.69444,0,0,.60972],101:[0,.44444,0,0,.55361],102:[.19444,.69444,.11042,0,.56806],103:[.19444,.44444,.03704,0,.5449],104:[0,.69444,0,0,.66759],105:[0,.69326,0,0,.4048],106:[.19444,.69326,.0622,0,.47083],107:[0,.69444,.01852,0,.6037],108:[0,.69444,.0088,0,.34815],109:[0,.44444,0,0,1.0324],110:[0,.44444,0,0,.71296],111:[0,.44444,0,0,.58472],112:[.19444,.44444,0,0,.60092],113:[.19444,.44444,.03704,0,.54213],114:[0,.44444,.03194,0,.5287],115:[0,.44444,0,0,.53125],116:[0,.63492,0,0,.41528],117:[0,.44444,0,0,.68102],118:[0,.44444,.03704,0,.56666],119:[0,.44444,.02778,0,.83148],120:[0,.44444,0,0,.65903],121:[.19444,.44444,.03704,0,.59028],122:[0,.44444,.04213,0,.55509],915:[0,.68611,.15972,0,.65694],916:[0,.68611,0,0,.95833],920:[0,.68611,.03194,0,.86722],923:[0,.68611,0,0,.80555],926:[0,.68611,.07458,0,.84125],928:[0,.68611,.08229,0,.98229],931:[0,.68611,.05451,0,.88507],933:[0,.68611,.15972,0,.67083],934:[0,.68611,0,0,.76666],936:[0,.68611,.11653,0,.71402],937:[0,.68611,.04835,0,.8789],945:[0,.44444,0,0,.76064],946:[.19444,.69444,.03403,0,.65972],947:[.19444,.44444,.06389,0,.59003],948:[0,.69444,.03819,0,.52222],949:[0,.44444,0,0,.52882],950:[.19444,.69444,.06215,0,.50833],951:[.19444,.44444,.03704,0,.6],952:[0,.69444,.03194,0,.5618],953:[0,.44444,0,0,.41204],954:[0,.44444,0,0,.66759],955:[0,.69444,0,0,.67083],956:[.19444,.44444,0,0,.70787],957:[0,.44444,.06898,0,.57685],958:[.19444,.69444,.03021,0,.50833],959:[0,.44444,0,0,.58472],960:[0,.44444,.03704,0,.68241],961:[.19444,.44444,0,0,.6118],962:[.09722,.44444,.07917,0,.42361],963:[0,.44444,.03704,0,.68588],964:[0,.44444,.13472,0,.52083],965:[0,.44444,.03704,0,.63055],966:[.19444,.44444,0,0,.74722],967:[.19444,.44444,0,0,.71805],968:[.19444,.69444,.03704,0,.75833],969:[0,.44444,.03704,0,.71782],977:[0,.69444,0,0,.69155],981:[.19444,.69444,0,0,.7125],982:[0,.44444,.03194,0,.975],1009:[.19444,.44444,0,0,.6118],1013:[0,.44444,0,0,.48333]},\"Math-Italic\":{65:[0,.68333,0,.13889,.75],66:[0,.68333,.05017,.08334,.75851],67:[0,.68333,.07153,.08334,.71472],68:[0,.68333,.02778,.05556,.82792],69:[0,.68333,.05764,.08334,.7382],70:[0,.68333,.13889,.08334,.64306],71:[0,.68333,0,.08334,.78625],72:[0,.68333,.08125,.05556,.83125],73:[0,.68333,.07847,.11111,.43958],74:[0,.68333,.09618,.16667,.55451],75:[0,.68333,.07153,.05556,.84931],76:[0,.68333,0,.02778,.68056],77:[0,.68333,.10903,.08334,.97014],78:[0,.68333,.10903,.08334,.80347],79:[0,.68333,.02778,.08334,.76278],80:[0,.68333,.13889,.08334,.64201],81:[.19444,.68333,0,.08334,.79056],82:[0,.68333,.00773,.08334,.75929],83:[0,.68333,.05764,.08334,.6132],84:[0,.68333,.13889,.08334,.58438],85:[0,.68333,.10903,.02778,.68278],86:[0,.68333,.22222,0,.58333],87:[0,.68333,.13889,0,.94445],88:[0,.68333,.07847,.08334,.82847],89:[0,.68333,.22222,0,.58056],90:[0,.68333,.07153,.08334,.68264],97:[0,.43056,0,0,.52859],98:[0,.69444,0,0,.42917],99:[0,.43056,0,.05556,.43276],100:[0,.69444,0,.16667,.52049],101:[0,.43056,0,.05556,.46563],102:[.19444,.69444,.10764,.16667,.48959],103:[.19444,.43056,.03588,.02778,.47697],104:[0,.69444,0,0,.57616],105:[0,.65952,0,0,.34451],106:[.19444,.65952,.05724,0,.41181],107:[0,.69444,.03148,0,.5206],108:[0,.69444,.01968,.08334,.29838],109:[0,.43056,0,0,.87801],110:[0,.43056,0,0,.60023],111:[0,.43056,0,.05556,.48472],112:[.19444,.43056,0,.08334,.50313],113:[.19444,.43056,.03588,.08334,.44641],114:[0,.43056,.02778,.05556,.45116],115:[0,.43056,0,.05556,.46875],116:[0,.61508,0,.08334,.36111],117:[0,.43056,0,.02778,.57246],118:[0,.43056,.03588,.02778,.48472],119:[0,.43056,.02691,.08334,.71592],120:[0,.43056,0,.02778,.57153],121:[.19444,.43056,.03588,.05556,.49028],122:[0,.43056,.04398,.05556,.46505],915:[0,.68333,.13889,.08334,.61528],916:[0,.68333,0,.16667,.83334],920:[0,.68333,.02778,.08334,.76278],923:[0,.68333,0,.16667,.69445],926:[0,.68333,.07569,.08334,.74236],928:[0,.68333,.08125,.05556,.83125],931:[0,.68333,.05764,.08334,.77986],933:[0,.68333,.13889,.05556,.58333],934:[0,.68333,0,.08334,.66667],936:[0,.68333,.11,.05556,.61222],937:[0,.68333,.05017,.08334,.7724],945:[0,.43056,.0037,.02778,.6397],946:[.19444,.69444,.05278,.08334,.56563],947:[.19444,.43056,.05556,0,.51773],948:[0,.69444,.03785,.05556,.44444],949:[0,.43056,0,.08334,.46632],950:[.19444,.69444,.07378,.08334,.4375],951:[.19444,.43056,.03588,.05556,.49653],952:[0,.69444,.02778,.08334,.46944],953:[0,.43056,0,.05556,.35394],954:[0,.43056,0,0,.57616],955:[0,.69444,0,0,.58334],956:[.19444,.43056,0,.02778,.60255],957:[0,.43056,.06366,.02778,.49398],958:[.19444,.69444,.04601,.11111,.4375],959:[0,.43056,0,.05556,.48472],960:[0,.43056,.03588,0,.57003],961:[.19444,.43056,0,.08334,.51702],962:[.09722,.43056,.07986,.08334,.36285],963:[0,.43056,.03588,0,.57141],964:[0,.43056,.1132,.02778,.43715],965:[0,.43056,.03588,.02778,.54028],966:[.19444,.43056,0,.08334,.65417],967:[.19444,.43056,0,.05556,.62569],968:[.19444,.69444,.03588,.11111,.65139],969:[0,.43056,.03588,0,.62245],977:[0,.69444,0,.08334,.59144],981:[.19444,.69444,0,.08334,.59583],982:[0,.43056,.02778,0,.82813],1009:[.19444,.43056,0,.08334,.51702],1013:[0,.43056,0,.05556,.4059]},\"Math-Regular\":{65:[0,.68333,0,.13889,.75],66:[0,.68333,.05017,.08334,.75851],67:[0,.68333,.07153,.08334,.71472],68:[0,.68333,.02778,.05556,.82792],69:[0,.68333,.05764,.08334,.7382],70:[0,.68333,.13889,.08334,.64306],71:[0,.68333,0,.08334,.78625],72:[0,.68333,.08125,.05556,.83125],73:[0,.68333,.07847,.11111,.43958],74:[0,.68333,.09618,.16667,.55451],75:[0,.68333,.07153,.05556,.84931],76:[0,.68333,0,.02778,.68056],77:[0,.68333,.10903,.08334,.97014],78:[0,.68333,.10903,.08334,.80347],79:[0,.68333,.02778,.08334,.76278],80:[0,.68333,.13889,.08334,.64201],81:[.19444,.68333,0,.08334,.79056],82:[0,.68333,.00773,.08334,.75929],83:[0,.68333,.05764,.08334,.6132],84:[0,.68333,.13889,.08334,.58438],85:[0,.68333,.10903,.02778,.68278],86:[0,.68333,.22222,0,.58333],87:[0,.68333,.13889,0,.94445],88:[0,.68333,.07847,.08334,.82847],89:[0,.68333,.22222,0,.58056],90:[0,.68333,.07153,.08334,.68264],97:[0,.43056,0,0,.52859],98:[0,.69444,0,0,.42917],99:[0,.43056,0,.05556,.43276],100:[0,.69444,0,.16667,.52049],101:[0,.43056,0,.05556,.46563],102:[.19444,.69444,.10764,.16667,.48959],103:[.19444,.43056,.03588,.02778,.47697],104:[0,.69444,0,0,.57616],105:[0,.65952,0,0,.34451],106:[.19444,.65952,.05724,0,.41181],107:[0,.69444,.03148,0,.5206],108:[0,.69444,.01968,.08334,.29838],109:[0,.43056,0,0,.87801],110:[0,.43056,0,0,.60023],111:[0,.43056,0,.05556,.48472],112:[.19444,.43056,0,.08334,.50313],113:[.19444,.43056,.03588,.08334,.44641],114:[0,.43056,.02778,.05556,.45116],115:[0,.43056,0,.05556,.46875],116:[0,.61508,0,.08334,.36111],117:[0,.43056,0,.02778,.57246],118:[0,.43056,.03588,.02778,.48472],119:[0,.43056,.02691,.08334,.71592],120:[0,.43056,0,.02778,.57153],121:[.19444,.43056,.03588,.05556,.49028],122:[0,.43056,.04398,.05556,.46505],915:[0,.68333,.13889,.08334,.61528],916:[0,.68333,0,.16667,.83334],920:[0,.68333,.02778,.08334,.76278],923:[0,.68333,0,.16667,.69445],926:[0,.68333,.07569,.08334,.74236],928:[0,.68333,.08125,.05556,.83125],931:[0,.68333,.05764,.08334,.77986],933:[0,.68333,.13889,.05556,.58333],934:[0,.68333,0,.08334,.66667],936:[0,.68333,.11,.05556,.61222],937:[0,.68333,.05017,.08334,.7724],945:[0,.43056,.0037,.02778,.6397],946:[.19444,.69444,.05278,.08334,.56563],947:[.19444,.43056,.05556,0,.51773],948:[0,.69444,.03785,.05556,.44444],949:[0,.43056,0,.08334,.46632],950:[.19444,.69444,.07378,.08334,.4375],951:[.19444,.43056,.03588,.05556,.49653],952:[0,.69444,.02778,.08334,.46944],953:[0,.43056,0,.05556,.35394],954:[0,.43056,0,0,.57616],955:[0,.69444,0,0,.58334],956:[.19444,.43056,0,.02778,.60255],957:[0,.43056,.06366,.02778,.49398],958:[.19444,.69444,.04601,.11111,.4375],959:[0,.43056,0,.05556,.48472],960:[0,.43056,.03588,0,.57003],961:[.19444,.43056,0,.08334,.51702],962:[.09722,.43056,.07986,.08334,.36285],963:[0,.43056,.03588,0,.57141],964:[0,.43056,.1132,.02778,.43715],965:[0,.43056,.03588,.02778,.54028],966:[.19444,.43056,0,.08334,.65417],967:[.19444,.43056,0,.05556,.62569],968:[.19444,.69444,.03588,.11111,.65139],969:[0,.43056,.03588,0,.62245],977:[0,.69444,0,.08334,.59144],981:[.19444,.69444,0,.08334,.59583],982:[0,.43056,.02778,0,.82813],1009:[.19444,.43056,0,.08334,.51702],1013:[0,.43056,0,.05556,.4059]},\"SansSerif-Bold\":{33:[0,.69444,0,0,.36667],34:[0,.69444,0,0,.55834],35:[.19444,.69444,0,0,.91667],36:[.05556,.75,0,0,.55],37:[.05556,.75,0,0,1.02912],38:[0,.69444,0,0,.83056],39:[0,.69444,0,0,.30556],40:[.25,.75,0,0,.42778],41:[.25,.75,0,0,.42778],42:[0,.75,0,0,.55],43:[.11667,.61667,0,0,.85556],44:[.10556,.13056,0,0,.30556],45:[0,.45833,0,0,.36667],46:[0,.13056,0,0,.30556],47:[.25,.75,0,0,.55],48:[0,.69444,0,0,.55],49:[0,.69444,0,0,.55],50:[0,.69444,0,0,.55],51:[0,.69444,0,0,.55],52:[0,.69444,0,0,.55],53:[0,.69444,0,0,.55],54:[0,.69444,0,0,.55],55:[0,.69444,0,0,.55],56:[0,.69444,0,0,.55],57:[0,.69444,0,0,.55],58:[0,.45833,0,0,.30556],59:[.10556,.45833,0,0,.30556],61:[-.09375,.40625,0,0,.85556],63:[0,.69444,0,0,.51945],64:[0,.69444,0,0,.73334],65:[0,.69444,0,0,.73334],66:[0,.69444,0,0,.73334],67:[0,.69444,0,0,.70278],68:[0,.69444,0,0,.79445],69:[0,.69444,0,0,.64167],70:[0,.69444,0,0,.61111],71:[0,.69444,0,0,.73334],72:[0,.69444,0,0,.79445],73:[0,.69444,0,0,.33056],74:[0,.69444,0,0,.51945],75:[0,.69444,0,0,.76389],76:[0,.69444,0,0,.58056],77:[0,.69444,0,0,.97778],78:[0,.69444,0,0,.79445],79:[0,.69444,0,0,.79445],80:[0,.69444,0,0,.70278],81:[.10556,.69444,0,0,.79445],82:[0,.69444,0,0,.70278],83:[0,.69444,0,0,.61111],84:[0,.69444,0,0,.73334],85:[0,.69444,0,0,.76389],86:[0,.69444,.01528,0,.73334],87:[0,.69444,.01528,0,1.03889],88:[0,.69444,0,0,.73334],89:[0,.69444,.0275,0,.73334],90:[0,.69444,0,0,.67223],91:[.25,.75,0,0,.34306],93:[.25,.75,0,0,.34306],94:[0,.69444,0,0,.55],95:[.35,.10833,.03056,0,.55],97:[0,.45833,0,0,.525],98:[0,.69444,0,0,.56111],99:[0,.45833,0,0,.48889],100:[0,.69444,0,0,.56111],101:[0,.45833,0,0,.51111],102:[0,.69444,.07639,0,.33611],103:[.19444,.45833,.01528,0,.55],104:[0,.69444,0,0,.56111],105:[0,.69444,0,0,.25556],106:[.19444,.69444,0,0,.28611],107:[0,.69444,0,0,.53056],108:[0,.69444,0,0,.25556],109:[0,.45833,0,0,.86667],110:[0,.45833,0,0,.56111],111:[0,.45833,0,0,.55],112:[.19444,.45833,0,0,.56111],113:[.19444,.45833,0,0,.56111],114:[0,.45833,.01528,0,.37222],115:[0,.45833,0,0,.42167],116:[0,.58929,0,0,.40417],117:[0,.45833,0,0,.56111],118:[0,.45833,.01528,0,.5],119:[0,.45833,.01528,0,.74445],120:[0,.45833,0,0,.5],121:[.19444,.45833,.01528,0,.5],122:[0,.45833,0,0,.47639],126:[.35,.34444,0,0,.55],168:[0,.69444,0,0,.55],176:[0,.69444,0,0,.73334],180:[0,.69444,0,0,.55],184:[.17014,0,0,0,.48889],305:[0,.45833,0,0,.25556],567:[.19444,.45833,0,0,.28611],710:[0,.69444,0,0,.55],711:[0,.63542,0,0,.55],713:[0,.63778,0,0,.55],728:[0,.69444,0,0,.55],729:[0,.69444,0,0,.30556],730:[0,.69444,0,0,.73334],732:[0,.69444,0,0,.55],733:[0,.69444,0,0,.55],915:[0,.69444,0,0,.58056],916:[0,.69444,0,0,.91667],920:[0,.69444,0,0,.85556],923:[0,.69444,0,0,.67223],926:[0,.69444,0,0,.73334],928:[0,.69444,0,0,.79445],931:[0,.69444,0,0,.79445],933:[0,.69444,0,0,.85556],934:[0,.69444,0,0,.79445],936:[0,.69444,0,0,.85556],937:[0,.69444,0,0,.79445],8211:[0,.45833,.03056,0,.55],8212:[0,.45833,.03056,0,1.10001],8216:[0,.69444,0,0,.30556],8217:[0,.69444,0,0,.30556],8220:[0,.69444,0,0,.55834],8221:[0,.69444,0,0,.55834]},\"SansSerif-Italic\":{33:[0,.69444,.05733,0,.31945],34:[0,.69444,.00316,0,.5],35:[.19444,.69444,.05087,0,.83334],36:[.05556,.75,.11156,0,.5],37:[.05556,.75,.03126,0,.83334],38:[0,.69444,.03058,0,.75834],39:[0,.69444,.07816,0,.27778],40:[.25,.75,.13164,0,.38889],41:[.25,.75,.02536,0,.38889],42:[0,.75,.11775,0,.5],43:[.08333,.58333,.02536,0,.77778],44:[.125,.08333,0,0,.27778],45:[0,.44444,.01946,0,.33333],46:[0,.08333,0,0,.27778],47:[.25,.75,.13164,0,.5],48:[0,.65556,.11156,0,.5],49:[0,.65556,.11156,0,.5],50:[0,.65556,.11156,0,.5],51:[0,.65556,.11156,0,.5],52:[0,.65556,.11156,0,.5],53:[0,.65556,.11156,0,.5],54:[0,.65556,.11156,0,.5],55:[0,.65556,.11156,0,.5],56:[0,.65556,.11156,0,.5],57:[0,.65556,.11156,0,.5],58:[0,.44444,.02502,0,.27778],59:[.125,.44444,.02502,0,.27778],61:[-.13,.37,.05087,0,.77778],63:[0,.69444,.11809,0,.47222],64:[0,.69444,.07555,0,.66667],65:[0,.69444,0,0,.66667],66:[0,.69444,.08293,0,.66667],67:[0,.69444,.11983,0,.63889],68:[0,.69444,.07555,0,.72223],69:[0,.69444,.11983,0,.59722],70:[0,.69444,.13372,0,.56945],71:[0,.69444,.11983,0,.66667],72:[0,.69444,.08094,0,.70834],73:[0,.69444,.13372,0,.27778],74:[0,.69444,.08094,0,.47222],75:[0,.69444,.11983,0,.69445],76:[0,.69444,0,0,.54167],77:[0,.69444,.08094,0,.875],78:[0,.69444,.08094,0,.70834],79:[0,.69444,.07555,0,.73611],80:[0,.69444,.08293,0,.63889],81:[.125,.69444,.07555,0,.73611],82:[0,.69444,.08293,0,.64584],83:[0,.69444,.09205,0,.55556],84:[0,.69444,.13372,0,.68056],85:[0,.69444,.08094,0,.6875],86:[0,.69444,.1615,0,.66667],87:[0,.69444,.1615,0,.94445],88:[0,.69444,.13372,0,.66667],89:[0,.69444,.17261,0,.66667],90:[0,.69444,.11983,0,.61111],91:[.25,.75,.15942,0,.28889],93:[.25,.75,.08719,0,.28889],94:[0,.69444,.0799,0,.5],95:[.35,.09444,.08616,0,.5],97:[0,.44444,.00981,0,.48056],98:[0,.69444,.03057,0,.51667],99:[0,.44444,.08336,0,.44445],100:[0,.69444,.09483,0,.51667],101:[0,.44444,.06778,0,.44445],102:[0,.69444,.21705,0,.30556],103:[.19444,.44444,.10836,0,.5],104:[0,.69444,.01778,0,.51667],105:[0,.67937,.09718,0,.23889],106:[.19444,.67937,.09162,0,.26667],107:[0,.69444,.08336,0,.48889],108:[0,.69444,.09483,0,.23889],109:[0,.44444,.01778,0,.79445],110:[0,.44444,.01778,0,.51667],111:[0,.44444,.06613,0,.5],112:[.19444,.44444,.0389,0,.51667],113:[.19444,.44444,.04169,0,.51667],114:[0,.44444,.10836,0,.34167],115:[0,.44444,.0778,0,.38333],116:[0,.57143,.07225,0,.36111],117:[0,.44444,.04169,0,.51667],118:[0,.44444,.10836,0,.46111],119:[0,.44444,.10836,0,.68334],120:[0,.44444,.09169,0,.46111],121:[.19444,.44444,.10836,0,.46111],122:[0,.44444,.08752,0,.43472],126:[.35,.32659,.08826,0,.5],168:[0,.67937,.06385,0,.5],176:[0,.69444,0,0,.73752],184:[.17014,0,0,0,.44445],305:[0,.44444,.04169,0,.23889],567:[.19444,.44444,.04169,0,.26667],710:[0,.69444,.0799,0,.5],711:[0,.63194,.08432,0,.5],713:[0,.60889,.08776,0,.5],714:[0,.69444,.09205,0,.5],715:[0,.69444,0,0,.5],728:[0,.69444,.09483,0,.5],729:[0,.67937,.07774,0,.27778],730:[0,.69444,0,0,.73752],732:[0,.67659,.08826,0,.5],733:[0,.69444,.09205,0,.5],915:[0,.69444,.13372,0,.54167],916:[0,.69444,0,0,.83334],920:[0,.69444,.07555,0,.77778],923:[0,.69444,0,0,.61111],926:[0,.69444,.12816,0,.66667],928:[0,.69444,.08094,0,.70834],931:[0,.69444,.11983,0,.72222],933:[0,.69444,.09031,0,.77778],934:[0,.69444,.04603,0,.72222],936:[0,.69444,.09031,0,.77778],937:[0,.69444,.08293,0,.72222],8211:[0,.44444,.08616,0,.5],8212:[0,.44444,.08616,0,1],8216:[0,.69444,.07816,0,.27778],8217:[0,.69444,.07816,0,.27778],8220:[0,.69444,.14205,0,.5],8221:[0,.69444,.00316,0,.5]},\"SansSerif-Regular\":{33:[0,.69444,0,0,.31945],34:[0,.69444,0,0,.5],35:[.19444,.69444,0,0,.83334],36:[.05556,.75,0,0,.5],37:[.05556,.75,0,0,.83334],38:[0,.69444,0,0,.75834],39:[0,.69444,0,0,.27778],40:[.25,.75,0,0,.38889],41:[.25,.75,0,0,.38889],42:[0,.75,0,0,.5],43:[.08333,.58333,0,0,.77778],44:[.125,.08333,0,0,.27778],45:[0,.44444,0,0,.33333],46:[0,.08333,0,0,.27778],47:[.25,.75,0,0,.5],48:[0,.65556,0,0,.5],49:[0,.65556,0,0,.5],50:[0,.65556,0,0,.5],51:[0,.65556,0,0,.5],52:[0,.65556,0,0,.5],53:[0,.65556,0,0,.5],54:[0,.65556,0,0,.5],55:[0,.65556,0,0,.5],56:[0,.65556,0,0,.5],57:[0,.65556,0,0,.5],58:[0,.44444,0,0,.27778],59:[.125,.44444,0,0,.27778],61:[-.13,.37,0,0,.77778],63:[0,.69444,0,0,.47222],64:[0,.69444,0,0,.66667],65:[0,.69444,0,0,.66667],66:[0,.69444,0,0,.66667],67:[0,.69444,0,0,.63889],68:[0,.69444,0,0,.72223],69:[0,.69444,0,0,.59722],70:[0,.69444,0,0,.56945],71:[0,.69444,0,0,.66667],72:[0,.69444,0,0,.70834],73:[0,.69444,0,0,.27778],74:[0,.69444,0,0,.47222],75:[0,.69444,0,0,.69445],76:[0,.69444,0,0,.54167],77:[0,.69444,0,0,.875],78:[0,.69444,0,0,.70834],79:[0,.69444,0,0,.73611],80:[0,.69444,0,0,.63889],81:[.125,.69444,0,0,.73611],82:[0,.69444,0,0,.64584],83:[0,.69444,0,0,.55556],84:[0,.69444,0,0,.68056],85:[0,.69444,0,0,.6875],86:[0,.69444,.01389,0,.66667],87:[0,.69444,.01389,0,.94445],88:[0,.69444,0,0,.66667],89:[0,.69444,.025,0,.66667],90:[0,.69444,0,0,.61111],91:[.25,.75,0,0,.28889],93:[.25,.75,0,0,.28889],94:[0,.69444,0,0,.5],95:[.35,.09444,.02778,0,.5],97:[0,.44444,0,0,.48056],98:[0,.69444,0,0,.51667],99:[0,.44444,0,0,.44445],100:[0,.69444,0,0,.51667],101:[0,.44444,0,0,.44445],102:[0,.69444,.06944,0,.30556],103:[.19444,.44444,.01389,0,.5],104:[0,.69444,0,0,.51667],105:[0,.67937,0,0,.23889],106:[.19444,.67937,0,0,.26667],107:[0,.69444,0,0,.48889],108:[0,.69444,0,0,.23889],109:[0,.44444,0,0,.79445],110:[0,.44444,0,0,.51667],111:[0,.44444,0,0,.5],112:[.19444,.44444,0,0,.51667],113:[.19444,.44444,0,0,.51667],114:[0,.44444,.01389,0,.34167],115:[0,.44444,0,0,.38333],116:[0,.57143,0,0,.36111],117:[0,.44444,0,0,.51667],118:[0,.44444,.01389,0,.46111],119:[0,.44444,.01389,0,.68334],120:[0,.44444,0,0,.46111],121:[.19444,.44444,.01389,0,.46111],122:[0,.44444,0,0,.43472],126:[.35,.32659,0,0,.5],168:[0,.67937,0,0,.5],176:[0,.69444,0,0,.66667],184:[.17014,0,0,0,.44445],305:[0,.44444,0,0,.23889],567:[.19444,.44444,0,0,.26667],710:[0,.69444,0,0,.5],711:[0,.63194,0,0,.5],713:[0,.60889,0,0,.5],714:[0,.69444,0,0,.5],715:[0,.69444,0,0,.5],728:[0,.69444,0,0,.5],729:[0,.67937,0,0,.27778],730:[0,.69444,0,0,.66667],732:[0,.67659,0,0,.5],733:[0,.69444,0,0,.5],915:[0,.69444,0,0,.54167],916:[0,.69444,0,0,.83334],920:[0,.69444,0,0,.77778],923:[0,.69444,0,0,.61111],926:[0,.69444,0,0,.66667],928:[0,.69444,0,0,.70834],931:[0,.69444,0,0,.72222],933:[0,.69444,0,0,.77778],934:[0,.69444,0,0,.72222],936:[0,.69444,0,0,.77778],937:[0,.69444,0,0,.72222],8211:[0,.44444,.02778,0,.5],8212:[0,.44444,.02778,0,1],8216:[0,.69444,0,0,.27778],8217:[0,.69444,0,0,.27778],8220:[0,.69444,0,0,.5],8221:[0,.69444,0,0,.5]},\"Script-Regular\":{65:[0,.7,.22925,0,.80253],66:[0,.7,.04087,0,.90757],67:[0,.7,.1689,0,.66619],68:[0,.7,.09371,0,.77443],69:[0,.7,.18583,0,.56162],70:[0,.7,.13634,0,.89544],71:[0,.7,.17322,0,.60961],72:[0,.7,.29694,0,.96919],73:[0,.7,.19189,0,.80907],74:[.27778,.7,.19189,0,1.05159],75:[0,.7,.31259,0,.91364],76:[0,.7,.19189,0,.87373],77:[0,.7,.15981,0,1.08031],78:[0,.7,.3525,0,.9015],79:[0,.7,.08078,0,.73787],80:[0,.7,.08078,0,1.01262],81:[0,.7,.03305,0,.88282],82:[0,.7,.06259,0,.85],83:[0,.7,.19189,0,.86767],84:[0,.7,.29087,0,.74697],85:[0,.7,.25815,0,.79996],86:[0,.7,.27523,0,.62204],87:[0,.7,.27523,0,.80532],88:[0,.7,.26006,0,.94445],89:[0,.7,.2939,0,.70961],90:[0,.7,.24037,0,.8212]},\"Size1-Regular\":{40:[.35001,.85,0,0,.45834],41:[.35001,.85,0,0,.45834],47:[.35001,.85,0,0,.57778],91:[.35001,.85,0,0,.41667],92:[.35001,.85,0,0,.57778],93:[.35001,.85,0,0,.41667],123:[.35001,.85,0,0,.58334],125:[.35001,.85,0,0,.58334],710:[0,.72222,0,0,.55556],732:[0,.72222,0,0,.55556],770:[0,.72222,0,0,.55556],771:[0,.72222,0,0,.55556],8214:[-99e-5,.601,0,0,.77778],8593:[1e-5,.6,0,0,.66667],8595:[1e-5,.6,0,0,.66667],8657:[1e-5,.6,0,0,.77778],8659:[1e-5,.6,0,0,.77778],8719:[.25001,.75,0,0,.94445],8720:[.25001,.75,0,0,.94445],8721:[.25001,.75,0,0,1.05556],8730:[.35001,.85,0,0,1],8739:[-.00599,.606,0,0,.33333],8741:[-.00599,.606,0,0,.55556],8747:[.30612,.805,.19445,0,.47222],8748:[.306,.805,.19445,0,.47222],8749:[.306,.805,.19445,0,.47222],8750:[.30612,.805,.19445,0,.47222],8896:[.25001,.75,0,0,.83334],8897:[.25001,.75,0,0,.83334],8898:[.25001,.75,0,0,.83334],8899:[.25001,.75,0,0,.83334],8968:[.35001,.85,0,0,.47222],8969:[.35001,.85,0,0,.47222],8970:[.35001,.85,0,0,.47222],8971:[.35001,.85,0,0,.47222],9168:[-99e-5,.601,0,0,.66667],10216:[.35001,.85,0,0,.47222],10217:[.35001,.85,0,0,.47222],10752:[.25001,.75,0,0,1.11111],10753:[.25001,.75,0,0,1.11111],10754:[.25001,.75,0,0,1.11111],10756:[.25001,.75,0,0,.83334],10758:[.25001,.75,0,0,.83334]},\"Size2-Regular\":{40:[.65002,1.15,0,0,.59722],41:[.65002,1.15,0,0,.59722],47:[.65002,1.15,0,0,.81111],91:[.65002,1.15,0,0,.47222],92:[.65002,1.15,0,0,.81111],93:[.65002,1.15,0,0,.47222],123:[.65002,1.15,0,0,.66667],125:[.65002,1.15,0,0,.66667],710:[0,.75,0,0,1],732:[0,.75,0,0,1],770:[0,.75,0,0,1],771:[0,.75,0,0,1],8719:[.55001,1.05,0,0,1.27778],8720:[.55001,1.05,0,0,1.27778],8721:[.55001,1.05,0,0,1.44445],8730:[.65002,1.15,0,0,1],8747:[.86225,1.36,.44445,0,.55556],8748:[.862,1.36,.44445,0,.55556],8749:[.862,1.36,.44445,0,.55556],8750:[.86225,1.36,.44445,0,.55556],8896:[.55001,1.05,0,0,1.11111],8897:[.55001,1.05,0,0,1.11111],8898:[.55001,1.05,0,0,1.11111],8899:[.55001,1.05,0,0,1.11111],8968:[.65002,1.15,0,0,.52778],8969:[.65002,1.15,0,0,.52778],8970:[.65002,1.15,0,0,.52778],8971:[.65002,1.15,0,0,.52778],10216:[.65002,1.15,0,0,.61111],10217:[.65002,1.15,0,0,.61111],10752:[.55001,1.05,0,0,1.51112],10753:[.55001,1.05,0,0,1.51112],10754:[.55001,1.05,0,0,1.51112],10756:[.55001,1.05,0,0,1.11111],10758:[.55001,1.05,0,0,1.11111]},\"Size3-Regular\":{40:[.95003,1.45,0,0,.73611],41:[.95003,1.45,0,0,.73611],47:[.95003,1.45,0,0,1.04445],91:[.95003,1.45,0,0,.52778],92:[.95003,1.45,0,0,1.04445],93:[.95003,1.45,0,0,.52778],123:[.95003,1.45,0,0,.75],125:[.95003,1.45,0,0,.75],710:[0,.75,0,0,1.44445],732:[0,.75,0,0,1.44445],770:[0,.75,0,0,1.44445],771:[0,.75,0,0,1.44445],8730:[.95003,1.45,0,0,1],8968:[.95003,1.45,0,0,.58334],8969:[.95003,1.45,0,0,.58334],8970:[.95003,1.45,0,0,.58334],8971:[.95003,1.45,0,0,.58334],10216:[.95003,1.45,0,0,.75],10217:[.95003,1.45,0,0,.75]},\"Size4-Regular\":{40:[1.25003,1.75,0,0,.79167],41:[1.25003,1.75,0,0,.79167],47:[1.25003,1.75,0,0,1.27778],91:[1.25003,1.75,0,0,.58334],92:[1.25003,1.75,0,0,1.27778],93:[1.25003,1.75,0,0,.58334],123:[1.25003,1.75,0,0,.80556],125:[1.25003,1.75,0,0,.80556],710:[0,.825,0,0,1.8889],732:[0,.825,0,0,1.8889],770:[0,.825,0,0,1.8889],771:[0,.825,0,0,1.8889],8730:[1.25003,1.75,0,0,1],8968:[1.25003,1.75,0,0,.63889],8969:[1.25003,1.75,0,0,.63889],8970:[1.25003,1.75,0,0,.63889],8971:[1.25003,1.75,0,0,.63889],9115:[.64502,1.155,0,0,.875],9116:[1e-5,.6,0,0,.875],9117:[.64502,1.155,0,0,.875],9118:[.64502,1.155,0,0,.875],9119:[1e-5,.6,0,0,.875],9120:[.64502,1.155,0,0,.875],9121:[.64502,1.155,0,0,.66667],9122:[-99e-5,.601,0,0,.66667],9123:[.64502,1.155,0,0,.66667],9124:[.64502,1.155,0,0,.66667],9125:[-99e-5,.601,0,0,.66667],9126:[.64502,1.155,0,0,.66667],9127:[1e-5,.9,0,0,.88889],9128:[.65002,1.15,0,0,.88889],9129:[.90001,0,0,0,.88889],9130:[0,.3,0,0,.88889],9131:[1e-5,.9,0,0,.88889],9132:[.65002,1.15,0,0,.88889],9133:[.90001,0,0,0,.88889],9143:[.88502,.915,0,0,1.05556],10216:[1.25003,1.75,0,0,.80556],10217:[1.25003,1.75,0,0,.80556],57344:[-.00499,.605,0,0,1.05556],57345:[-.00499,.605,0,0,1.05556],57680:[0,.12,0,0,.45],57681:[0,.12,0,0,.45],57682:[0,.12,0,0,.45],57683:[0,.12,0,0,.45]},\"Typewriter-Regular\":{32:[0,0,0,0,.525],33:[0,.61111,0,0,.525],34:[0,.61111,0,0,.525],35:[0,.61111,0,0,.525],36:[.08333,.69444,0,0,.525],37:[.08333,.69444,0,0,.525],38:[0,.61111,0,0,.525],39:[0,.61111,0,0,.525],40:[.08333,.69444,0,0,.525],41:[.08333,.69444,0,0,.525],42:[0,.52083,0,0,.525],43:[-.08056,.53055,0,0,.525],44:[.13889,.125,0,0,.525],45:[-.08056,.53055,0,0,.525],46:[0,.125,0,0,.525],47:[.08333,.69444,0,0,.525],48:[0,.61111,0,0,.525],49:[0,.61111,0,0,.525],50:[0,.61111,0,0,.525],51:[0,.61111,0,0,.525],52:[0,.61111,0,0,.525],53:[0,.61111,0,0,.525],54:[0,.61111,0,0,.525],55:[0,.61111,0,0,.525],56:[0,.61111,0,0,.525],57:[0,.61111,0,0,.525],58:[0,.43056,0,0,.525],59:[.13889,.43056,0,0,.525],60:[-.05556,.55556,0,0,.525],61:[-.19549,.41562,0,0,.525],62:[-.05556,.55556,0,0,.525],63:[0,.61111,0,0,.525],64:[0,.61111,0,0,.525],65:[0,.61111,0,0,.525],66:[0,.61111,0,0,.525],67:[0,.61111,0,0,.525],68:[0,.61111,0,0,.525],69:[0,.61111,0,0,.525],70:[0,.61111,0,0,.525],71:[0,.61111,0,0,.525],72:[0,.61111,0,0,.525],73:[0,.61111,0,0,.525],74:[0,.61111,0,0,.525],75:[0,.61111,0,0,.525],76:[0,.61111,0,0,.525],77:[0,.61111,0,0,.525],78:[0,.61111,0,0,.525],79:[0,.61111,0,0,.525],80:[0,.61111,0,0,.525],81:[.13889,.61111,0,0,.525],82:[0,.61111,0,0,.525],83:[0,.61111,0,0,.525],84:[0,.61111,0,0,.525],85:[0,.61111,0,0,.525],86:[0,.61111,0,0,.525],87:[0,.61111,0,0,.525],88:[0,.61111,0,0,.525],89:[0,.61111,0,0,.525],90:[0,.61111,0,0,.525],91:[.08333,.69444,0,0,.525],92:[.08333,.69444,0,0,.525],93:[.08333,.69444,0,0,.525],94:[0,.61111,0,0,.525],95:[.09514,0,0,0,.525],96:[0,.61111,0,0,.525],97:[0,.43056,0,0,.525],98:[0,.61111,0,0,.525],99:[0,.43056,0,0,.525],100:[0,.61111,0,0,.525],101:[0,.43056,0,0,.525],102:[0,.61111,0,0,.525],103:[.22222,.43056,0,0,.525],104:[0,.61111,0,0,.525],105:[0,.61111,0,0,.525],106:[.22222,.61111,0,0,.525],107:[0,.61111,0,0,.525],108:[0,.61111,0,0,.525],109:[0,.43056,0,0,.525],110:[0,.43056,0,0,.525],111:[0,.43056,0,0,.525],112:[.22222,.43056,0,0,.525],113:[.22222,.43056,0,0,.525],114:[0,.43056,0,0,.525],115:[0,.43056,0,0,.525],116:[0,.55358,0,0,.525],117:[0,.43056,0,0,.525],118:[0,.43056,0,0,.525],119:[0,.43056,0,0,.525],120:[0,.43056,0,0,.525],121:[.22222,.43056,0,0,.525],122:[0,.43056,0,0,.525],123:[.08333,.69444,0,0,.525],124:[.08333,.69444,0,0,.525],125:[.08333,.69444,0,0,.525],126:[0,.61111,0,0,.525],127:[0,.61111,0,0,.525],160:[0,0,0,0,.525],176:[0,.61111,0,0,.525],184:[.19445,0,0,0,.525],305:[0,.43056,0,0,.525],567:[.22222,.43056,0,0,.525],711:[0,.56597,0,0,.525],713:[0,.56555,0,0,.525],714:[0,.61111,0,0,.525],715:[0,.61111,0,0,.525],728:[0,.61111,0,0,.525],730:[0,.61111,0,0,.525],770:[0,.61111,0,0,.525],771:[0,.61111,0,0,.525],776:[0,.61111,0,0,.525],915:[0,.61111,0,0,.525],916:[0,.61111,0,0,.525],920:[0,.61111,0,0,.525],923:[0,.61111,0,0,.525],926:[0,.61111,0,0,.525],928:[0,.61111,0,0,.525],931:[0,.61111,0,0,.525],933:[0,.61111,0,0,.525],934:[0,.61111,0,0,.525],936:[0,.61111,0,0,.525],937:[0,.61111,0,0,.525],8216:[0,.61111,0,0,.525],8217:[0,.61111,0,0,.525],8242:[0,.61111,0,0,.525],9251:[.11111,.21944,0,0,.525]}},D={slant:[.25,.25,.25],space:[0,0,0],stretch:[0,0,0],shrink:[0,0,0],xHeight:[.431,.431,.431],quad:[1,1.171,1.472],extraSpace:[0,0,0],num1:[.677,.732,.925],num2:[.394,.384,.387],num3:[.444,.471,.504],denom1:[.686,.752,1.025],denom2:[.345,.344,.532],sup1:[.413,.503,.504],sup2:[.363,.431,.404],sup3:[.289,.286,.294],sub1:[.15,.143,.2],sub2:[.247,.286,.4],supDrop:[.386,.353,.494],subDrop:[.05,.071,.1],delim1:[2.39,1.7,1.98],delim2:[1.01,1.157,1.42],axisHeight:[.25,.25,.25],defaultRuleThickness:[.04,.049,.049],bigOpSpacing1:[.111,.111,.111],bigOpSpacing2:[.166,.166,.166],bigOpSpacing3:[.2,.2,.2],bigOpSpacing4:[.6,.611,.611],bigOpSpacing5:[.1,.143,.143],sqrtRuleThickness:[.04,.04,.04],ptPerEm:[10,10,10],doubleRuleSep:[.2,.2,.2]},F={\"\\xc5\":\"A\",\"\\xc7\":\"C\",\"\\xd0\":\"D\",\"\\xde\":\"o\",\"\\xe5\":\"a\",\"\\xe7\":\"c\",\"\\xf0\":\"d\",\"\\xfe\":\"o\",\"\\u0410\":\"A\",\"\\u0411\":\"B\",\"\\u0412\":\"B\",\"\\u0413\":\"F\",\"\\u0414\":\"A\",\"\\u0415\":\"E\",\"\\u0416\":\"K\",\"\\u0417\":\"3\",\"\\u0418\":\"N\",\"\\u0419\":\"N\",\"\\u041a\":\"K\",\"\\u041b\":\"N\",\"\\u041c\":\"M\",\"\\u041d\":\"H\",\"\\u041e\":\"O\",\"\\u041f\":\"N\",\"\\u0420\":\"P\",\"\\u0421\":\"C\",\"\\u0422\":\"T\",\"\\u0423\":\"y\",\"\\u0424\":\"O\",\"\\u0425\":\"X\",\"\\u0426\":\"U\",\"\\u0427\":\"h\",\"\\u0428\":\"W\",\"\\u0429\":\"W\",\"\\u042a\":\"B\",\"\\u042b\":\"X\",\"\\u042c\":\"B\",\"\\u042d\":\"3\",\"\\u042e\":\"X\",\"\\u042f\":\"R\",\"\\u0430\":\"a\",\"\\u0431\":\"b\",\"\\u0432\":\"a\",\"\\u0433\":\"r\",\"\\u0434\":\"y\",\"\\u0435\":\"e\",\"\\u0436\":\"m\",\"\\u0437\":\"e\",\"\\u0438\":\"n\",\"\\u0439\":\"n\",\"\\u043a\":\"n\",\"\\u043b\":\"n\",\"\\u043c\":\"m\",\"\\u043d\":\"n\",\"\\u043e\":\"o\",\"\\u043f\":\"n\",\"\\u0440\":\"p\",\"\\u0441\":\"c\",\"\\u0442\":\"o\",\"\\u0443\":\"y\",\"\\u0444\":\"b\",\"\\u0445\":\"x\",\"\\u0446\":\"n\",\"\\u0447\":\"n\",\"\\u0448\":\"w\",\"\\u0449\":\"w\",\"\\u044a\":\"a\",\"\\u044b\":\"m\",\"\\u044c\":\"a\",\"\\u044d\":\"e\",\"\\u044e\":\"m\",\"\\u044f\":\"r\"};function V(t,e,r){if(!P[e])throw new Error(\"Font metrics not found for font: \"+e+\".\");var a=t.charCodeAt(0),n=P[e][a];if(!n&&t[0]in F&&(a=F[t[0]].charCodeAt(0),n=P[e][a]),n||\"text\"!==r||z(a)&&(n=P[e][77]),n)return{depth:n[0],height:n[1],italic:n[2],skew:n[3],width:n[4]}}var U={};var G={bin:1,close:1,inner:1,open:1,punct:1,rel:1},X={\"accent-token\":1,mathord:1,\"op-token\":1,spacing:1,textord:1},Y={math:{},text:{}},_=Y;function W(t,e,r,a,n,o){Y[t][n]={font:e,group:r,replace:a},o&&a&&(Y[t][a]=Y[t][n])}var j=\"main\",$=\"ams\",Z=\"bin\",K=\"mathord\",J=\"op-token\",Q=\"rel\";W(\"math\",j,Q,\"\\u2261\",\"\\\\equiv\",!0),W(\"math\",j,Q,\"\\u227a\",\"\\\\prec\",!0),W(\"math\",j,Q,\"\\u227b\",\"\\\\succ\",!0),W(\"math\",j,Q,\"\\u223c\",\"\\\\sim\",!0),W(\"math\",j,Q,\"\\u22a5\",\"\\\\perp\"),W(\"math\",j,Q,\"\\u2aaf\",\"\\\\preceq\",!0),W(\"math\",j,Q,\"\\u2ab0\",\"\\\\succeq\",!0),W(\"math\",j,Q,\"\\u2243\",\"\\\\simeq\",!0),W(\"math\",j,Q,\"\\u2223\",\"\\\\mid\",!0),W(\"math\",j,Q,\"\\u226a\",\"\\\\ll\",!0),W(\"math\",j,Q,\"\\u226b\",\"\\\\gg\",!0),W(\"math\",j,Q,\"\\u224d\",\"\\\\asymp\",!0),W(\"math\",j,Q,\"\\u2225\",\"\\\\parallel\"),W(\"math\",j,Q,\"\\u22c8\",\"\\\\bowtie\",!0),W(\"math\",j,Q,\"\\u2323\",\"\\\\smile\",!0),W(\"math\",j,Q,\"\\u2291\",\"\\\\sqsubseteq\",!0),W(\"math\",j,Q,\"\\u2292\",\"\\\\sqsupseteq\",!0),W(\"math\",j,Q,\"\\u2250\",\"\\\\doteq\",!0),W(\"math\",j,Q,\"\\u2322\",\"\\\\frown\",!0),W(\"math\",j,Q,\"\\u220b\",\"\\\\ni\",!0),W(\"math\",j,Q,\"\\u221d\",\"\\\\propto\",!0),W(\"math\",j,Q,\"\\u22a2\",\"\\\\vdash\",!0),W(\"math\",j,Q,\"\\u22a3\",\"\\\\dashv\",!0),W(\"math\",j,Q,\"\\u220b\",\"\\\\owns\"),W(\"math\",j,\"punct\",\".\",\"\\\\ldotp\"),W(\"math\",j,\"punct\",\"\\u22c5\",\"\\\\cdotp\"),W(\"math\",j,\"textord\",\"#\",\"\\\\#\"),W(\"text\",j,\"textord\",\"#\",\"\\\\#\"),W(\"math\",j,\"textord\",\"&\",\"\\\\&\"),W(\"text\",j,\"textord\",\"&\",\"\\\\&\"),W(\"math\",j,\"textord\",\"\\u2135\",\"\\\\aleph\",!0),W(\"math\",j,\"textord\",\"\\u2200\",\"\\\\forall\",!0),W(\"math\",j,\"textord\",\"\\u210f\",\"\\\\hbar\",!0),W(\"math\",j,\"textord\",\"\\u2203\",\"\\\\exists\",!0),W(\"math\",j,\"textord\",\"\\u2207\",\"\\\\nabla\",!0),W(\"math\",j,\"textord\",\"\\u266d\",\"\\\\flat\",!0),W(\"math\",j,\"textord\",\"\\u2113\",\"\\\\ell\",!0),W(\"math\",j,\"textord\",\"\\u266e\",\"\\\\natural\",!0),W(\"math\",j,\"textord\",\"\\u2663\",\"\\\\clubsuit\",!0),W(\"math\",j,\"textord\",\"\\u2118\",\"\\\\wp\",!0),W(\"math\",j,\"textord\",\"\\u266f\",\"\\\\sharp\",!0),W(\"math\",j,\"textord\",\"\\u2662\",\"\\\\diamondsuit\",!0),W(\"math\",j,\"textord\",\"\\u211c\",\"\\\\Re\",!0),W(\"math\",j,\"textord\",\"\\u2661\",\"\\\\heartsuit\",!0),W(\"math\",j,\"textord\",\"\\u2111\",\"\\\\Im\",!0),W(\"math\",j,\"textord\",\"\\u2660\",\"\\\\spadesuit\",!0),W(\"text\",j,\"textord\",\"\\xa7\",\"\\\\S\",!0),W(\"text\",j,\"textord\",\"\\xb6\",\"\\\\P\",!0),W(\"math\",j,\"textord\",\"\\u2020\",\"\\\\dag\"),W(\"text\",j,\"textord\",\"\\u2020\",\"\\\\dag\"),W(\"text\",j,\"textord\",\"\\u2020\",\"\\\\textdagger\"),W(\"math\",j,\"textord\",\"\\u2021\",\"\\\\ddag\"),W(\"text\",j,\"textord\",\"\\u2021\",\"\\\\ddag\"),W(\"text\",j,\"textord\",\"\\u2021\",\"\\\\textdaggerdbl\"),W(\"math\",j,\"close\",\"\\u23b1\",\"\\\\rmoustache\",!0),W(\"math\",j,\"open\",\"\\u23b0\",\"\\\\lmoustache\",!0),W(\"math\",j,\"close\",\"\\u27ef\",\"\\\\rgroup\",!0),W(\"math\",j,\"open\",\"\\u27ee\",\"\\\\lgroup\",!0),W(\"math\",j,Z,\"\\u2213\",\"\\\\mp\",!0),W(\"math\",j,Z,\"\\u2296\",\"\\\\ominus\",!0),W(\"math\",j,Z,\"\\u228e\",\"\\\\uplus\",!0),W(\"math\",j,Z,\"\\u2293\",\"\\\\sqcap\",!0),W(\"math\",j,Z,\"\\u2217\",\"\\\\ast\"),W(\"math\",j,Z,\"\\u2294\",\"\\\\sqcup\",!0),W(\"math\",j,Z,\"\\u25ef\",\"\\\\bigcirc\"),W(\"math\",j,Z,\"\\u2219\",\"\\\\bullet\"),W(\"math\",j,Z,\"\\u2021\",\"\\\\ddagger\"),W(\"math\",j,Z,\"\\u2240\",\"\\\\wr\",!0),W(\"math\",j,Z,\"\\u2a3f\",\"\\\\amalg\"),W(\"math\",j,Z,\"&\",\"\\\\And\"),W(\"math\",j,Q,\"\\u27f5\",\"\\\\longleftarrow\",!0),W(\"math\",j,Q,\"\\u21d0\",\"\\\\Leftarrow\",!0),W(\"math\",j,Q,\"\\u27f8\",\"\\\\Longleftarrow\",!0),W(\"math\",j,Q,\"\\u27f6\",\"\\\\longrightarrow\",!0),W(\"math\",j,Q,\"\\u21d2\",\"\\\\Rightarrow\",!0),W(\"math\",j,Q,\"\\u27f9\",\"\\\\Longrightarrow\",!0),W(\"math\",j,Q,\"\\u2194\",\"\\\\leftrightarrow\",!0),W(\"math\",j,Q,\"\\u27f7\",\"\\\\longleftrightarrow\",!0),W(\"math\",j,Q,\"\\u21d4\",\"\\\\Leftrightarrow\",!0),W(\"math\",j,Q,\"\\u27fa\",\"\\\\Longleftrightarrow\",!0),W(\"math\",j,Q,\"\\u21a6\",\"\\\\mapsto\",!0),W(\"math\",j,Q,\"\\u27fc\",\"\\\\longmapsto\",!0),W(\"math\",j,Q,\"\\u2197\",\"\\\\nearrow\",!0),W(\"math\",j,Q,\"\\u21a9\",\"\\\\hookleftarrow\",!0),W(\"math\",j,Q,\"\\u21aa\",\"\\\\hookrightarrow\",!0),W(\"math\",j,Q,\"\\u2198\",\"\\\\searrow\",!0),W(\"math\",j,Q,\"\\u21bc\",\"\\\\leftharpoonup\",!0),W(\"math\",j,Q,\"\\u21c0\",\"\\\\rightharpoonup\",!0),W(\"math\",j,Q,\"\\u2199\",\"\\\\swarrow\",!0),W(\"math\",j,Q,\"\\u21bd\",\"\\\\leftharpoondown\",!0),W(\"math\",j,Q,\"\\u21c1\",\"\\\\rightharpoondown\",!0),W(\"math\",j,Q,\"\\u2196\",\"\\\\nwarrow\",!0),W(\"math\",j,Q,\"\\u21cc\",\"\\\\rightleftharpoons\",!0),W(\"math\",$,Q,\"\\u226e\",\"\\\\nless\",!0),W(\"math\",$,Q,\"\\ue010\",\"\\\\@nleqslant\"),W(\"math\",$,Q,\"\\ue011\",\"\\\\@nleqq\"),W(\"math\",$,Q,\"\\u2a87\",\"\\\\lneq\",!0),W(\"math\",$,Q,\"\\u2268\",\"\\\\lneqq\",!0),W(\"math\",$,Q,\"\\ue00c\",\"\\\\@lvertneqq\"),W(\"math\",$,Q,\"\\u22e6\",\"\\\\lnsim\",!0),W(\"math\",$,Q,\"\\u2a89\",\"\\\\lnapprox\",!0),W(\"math\",$,Q,\"\\u2280\",\"\\\\nprec\",!0),W(\"math\",$,Q,\"\\u22e0\",\"\\\\npreceq\",!0),W(\"math\",$,Q,\"\\u22e8\",\"\\\\precnsim\",!0),W(\"math\",$,Q,\"\\u2ab9\",\"\\\\precnapprox\",!0),W(\"math\",$,Q,\"\\u2241\",\"\\\\nsim\",!0),W(\"math\",$,Q,\"\\ue006\",\"\\\\@nshortmid\"),W(\"math\",$,Q,\"\\u2224\",\"\\\\nmid\",!0),W(\"math\",$,Q,\"\\u22ac\",\"\\\\nvdash\",!0),W(\"math\",$,Q,\"\\u22ad\",\"\\\\nvDash\",!0),W(\"math\",$,Q,\"\\u22ea\",\"\\\\ntriangleleft\"),W(\"math\",$,Q,\"\\u22ec\",\"\\\\ntrianglelefteq\",!0),W(\"math\",$,Q,\"\\u228a\",\"\\\\subsetneq\",!0),W(\"math\",$,Q,\"\\ue01a\",\"\\\\@varsubsetneq\"),W(\"math\",$,Q,\"\\u2acb\",\"\\\\subsetneqq\",!0),W(\"math\",$,Q,\"\\ue017\",\"\\\\@varsubsetneqq\"),W(\"math\",$,Q,\"\\u226f\",\"\\\\ngtr\",!0),W(\"math\",$,Q,\"\\ue00f\",\"\\\\@ngeqslant\"),W(\"math\",$,Q,\"\\ue00e\",\"\\\\@ngeqq\"),W(\"math\",$,Q,\"\\u2a88\",\"\\\\gneq\",!0),W(\"math\",$,Q,\"\\u2269\",\"\\\\gneqq\",!0),W(\"math\",$,Q,\"\\ue00d\",\"\\\\@gvertneqq\"),W(\"math\",$,Q,\"\\u22e7\",\"\\\\gnsim\",!0),W(\"math\",$,Q,\"\\u2a8a\",\"\\\\gnapprox\",!0),W(\"math\",$,Q,\"\\u2281\",\"\\\\nsucc\",!0),W(\"math\",$,Q,\"\\u22e1\",\"\\\\nsucceq\",!0),W(\"math\",$,Q,\"\\u22e9\",\"\\\\succnsim\",!0),W(\"math\",$,Q,\"\\u2aba\",\"\\\\succnapprox\",!0),W(\"math\",$,Q,\"\\u2246\",\"\\\\ncong\",!0),W(\"math\",$,Q,\"\\ue007\",\"\\\\@nshortparallel\"),W(\"math\",$,Q,\"\\u2226\",\"\\\\nparallel\",!0),W(\"math\",$,Q,\"\\u22af\",\"\\\\nVDash\",!0),W(\"math\",$,Q,\"\\u22eb\",\"\\\\ntriangleright\"),W(\"math\",$,Q,\"\\u22ed\",\"\\\\ntrianglerighteq\",!0),W(\"math\",$,Q,\"\\ue018\",\"\\\\@nsupseteqq\"),W(\"math\",$,Q,\"\\u228b\",\"\\\\supsetneq\",!0),W(\"math\",$,Q,\"\\ue01b\",\"\\\\@varsupsetneq\"),W(\"math\",$,Q,\"\\u2acc\",\"\\\\supsetneqq\",!0),W(\"math\",$,Q,\"\\ue019\",\"\\\\@varsupsetneqq\"),W(\"math\",$,Q,\"\\u22ae\",\"\\\\nVdash\",!0),W(\"math\",$,Q,\"\\u2ab5\",\"\\\\precneqq\",!0),W(\"math\",$,Q,\"\\u2ab6\",\"\\\\succneqq\",!0),W(\"math\",$,Q,\"\\ue016\",\"\\\\@nsubseteqq\"),W(\"math\",$,Z,\"\\u22b4\",\"\\\\unlhd\"),W(\"math\",$,Z,\"\\u22b5\",\"\\\\unrhd\"),W(\"math\",$,Q,\"\\u219a\",\"\\\\nleftarrow\",!0),W(\"math\",$,Q,\"\\u219b\",\"\\\\nrightarrow\",!0),W(\"math\",$,Q,\"\\u21cd\",\"\\\\nLeftarrow\",!0),W(\"math\",$,Q,\"\\u21cf\",\"\\\\nRightarrow\",!0),W(\"math\",$,Q,\"\\u21ae\",\"\\\\nleftrightarrow\",!0),W(\"math\",$,Q,\"\\u21ce\",\"\\\\nLeftrightarrow\",!0),W(\"math\",$,Q,\"\\u25b3\",\"\\\\vartriangle\"),W(\"math\",$,\"textord\",\"\\u210f\",\"\\\\hslash\"),W(\"math\",$,\"textord\",\"\\u25bd\",\"\\\\triangledown\"),W(\"math\",$,\"textord\",\"\\u25ca\",\"\\\\lozenge\"),W(\"math\",$,\"textord\",\"\\u24c8\",\"\\\\circledS\"),W(\"math\",$,\"textord\",\"\\xae\",\"\\\\circledR\"),W(\"text\",$,\"textord\",\"\\xae\",\"\\\\circledR\"),W(\"math\",$,\"textord\",\"\\u2221\",\"\\\\measuredangle\",!0),W(\"math\",$,\"textord\",\"\\u2204\",\"\\\\nexists\"),W(\"math\",$,\"textord\",\"\\u2127\",\"\\\\mho\"),W(\"math\",$,\"textord\",\"\\u2132\",\"\\\\Finv\",!0),W(\"math\",$,\"textord\",\"\\u2141\",\"\\\\Game\",!0),W(\"math\",$,\"textord\",\"\\u2035\",\"\\\\backprime\"),W(\"math\",$,\"textord\",\"\\u25b2\",\"\\\\blacktriangle\"),W(\"math\",$,\"textord\",\"\\u25bc\",\"\\\\blacktriangledown\"),W(\"math\",$,\"textord\",\"\\u25a0\",\"\\\\blacksquare\"),W(\"math\",$,\"textord\",\"\\u29eb\",\"\\\\blacklozenge\"),W(\"math\",$,\"textord\",\"\\u2605\",\"\\\\bigstar\"),W(\"math\",$,\"textord\",\"\\u2222\",\"\\\\sphericalangle\",!0),W(\"math\",$,\"textord\",\"\\u2201\",\"\\\\complement\",!0),W(\"math\",$,\"textord\",\"\\xf0\",\"\\\\eth\",!0),W(\"math\",$,\"textord\",\"\\u2571\",\"\\\\diagup\"),W(\"math\",$,\"textord\",\"\\u2572\",\"\\\\diagdown\"),W(\"math\",$,\"textord\",\"\\u25a1\",\"\\\\square\"),W(\"math\",$,\"textord\",\"\\u25a1\",\"\\\\Box\"),W(\"math\",$,\"textord\",\"\\u25ca\",\"\\\\Diamond\"),W(\"math\",$,\"textord\",\"\\xa5\",\"\\\\yen\",!0),W(\"text\",$,\"textord\",\"\\xa5\",\"\\\\yen\",!0),W(\"math\",$,\"textord\",\"\\u2713\",\"\\\\checkmark\",!0),W(\"text\",$,\"textord\",\"\\u2713\",\"\\\\checkmark\"),W(\"math\",$,\"textord\",\"\\u2136\",\"\\\\beth\",!0),W(\"math\",$,\"textord\",\"\\u2138\",\"\\\\daleth\",!0),W(\"math\",$,\"textord\",\"\\u2137\",\"\\\\gimel\",!0),W(\"math\",$,\"textord\",\"\\u03dd\",\"\\\\digamma\"),W(\"math\",$,\"textord\",\"\\u03f0\",\"\\\\varkappa\"),W(\"math\",$,\"open\",\"\\u250c\",\"\\\\ulcorner\",!0),W(\"math\",$,\"close\",\"\\u2510\",\"\\\\urcorner\",!0),W(\"math\",$,\"open\",\"\\u2514\",\"\\\\llcorner\",!0),W(\"math\",$,\"close\",\"\\u2518\",\"\\\\lrcorner\",!0),W(\"math\",$,Q,\"\\u2266\",\"\\\\leqq\",!0),W(\"math\",$,Q,\"\\u2a7d\",\"\\\\leqslant\",!0),W(\"math\",$,Q,\"\\u2a95\",\"\\\\eqslantless\",!0),W(\"math\",$,Q,\"\\u2272\",\"\\\\lesssim\",!0),W(\"math\",$,Q,\"\\u2a85\",\"\\\\lessapprox\",!0),W(\"math\",$,Q,\"\\u224a\",\"\\\\approxeq\",!0),W(\"math\",$,Z,\"\\u22d6\",\"\\\\lessdot\"),W(\"math\",$,Q,\"\\u22d8\",\"\\\\lll\",!0),W(\"math\",$,Q,\"\\u2276\",\"\\\\lessgtr\",!0),W(\"math\",$,Q,\"\\u22da\",\"\\\\lesseqgtr\",!0),W(\"math\",$,Q,\"\\u2a8b\",\"\\\\lesseqqgtr\",!0),W(\"math\",$,Q,\"\\u2251\",\"\\\\doteqdot\"),W(\"math\",$,Q,\"\\u2253\",\"\\\\risingdotseq\",!0),W(\"math\",$,Q,\"\\u2252\",\"\\\\fallingdotseq\",!0),W(\"math\",$,Q,\"\\u223d\",\"\\\\backsim\",!0),W(\"math\",$,Q,\"\\u22cd\",\"\\\\backsimeq\",!0),W(\"math\",$,Q,\"\\u2ac5\",\"\\\\subseteqq\",!0),W(\"math\",$,Q,\"\\u22d0\",\"\\\\Subset\",!0),W(\"math\",$,Q,\"\\u228f\",\"\\\\sqsubset\",!0),W(\"math\",$,Q,\"\\u227c\",\"\\\\preccurlyeq\",!0),W(\"math\",$,Q,\"\\u22de\",\"\\\\curlyeqprec\",!0),W(\"math\",$,Q,\"\\u227e\",\"\\\\precsim\",!0),W(\"math\",$,Q,\"\\u2ab7\",\"\\\\precapprox\",!0),W(\"math\",$,Q,\"\\u22b2\",\"\\\\vartriangleleft\"),W(\"math\",$,Q,\"\\u22b4\",\"\\\\trianglelefteq\"),W(\"math\",$,Q,\"\\u22a8\",\"\\\\vDash\",!0),W(\"math\",$,Q,\"\\u22aa\",\"\\\\Vvdash\",!0),W(\"math\",$,Q,\"\\u2323\",\"\\\\smallsmile\"),W(\"math\",$,Q,\"\\u2322\",\"\\\\smallfrown\"),W(\"math\",$,Q,\"\\u224f\",\"\\\\bumpeq\",!0),W(\"math\",$,Q,\"\\u224e\",\"\\\\Bumpeq\",!0),W(\"math\",$,Q,\"\\u2267\",\"\\\\geqq\",!0),W(\"math\",$,Q,\"\\u2a7e\",\"\\\\geqslant\",!0),W(\"math\",$,Q,\"\\u2a96\",\"\\\\eqslantgtr\",!0),W(\"math\",$,Q,\"\\u2273\",\"\\\\gtrsim\",!0),W(\"math\",$,Q,\"\\u2a86\",\"\\\\gtrapprox\",!0),W(\"math\",$,Z,\"\\u22d7\",\"\\\\gtrdot\"),W(\"math\",$,Q,\"\\u22d9\",\"\\\\ggg\",!0),W(\"math\",$,Q,\"\\u2277\",\"\\\\gtrless\",!0),W(\"math\",$,Q,\"\\u22db\",\"\\\\gtreqless\",!0),W(\"math\",$,Q,\"\\u2a8c\",\"\\\\gtreqqless\",!0),W(\"math\",$,Q,\"\\u2256\",\"\\\\eqcirc\",!0),W(\"math\",$,Q,\"\\u2257\",\"\\\\circeq\",!0),W(\"math\",$,Q,\"\\u225c\",\"\\\\triangleq\",!0),W(\"math\",$,Q,\"\\u223c\",\"\\\\thicksim\"),W(\"math\",$,Q,\"\\u2248\",\"\\\\thickapprox\"),W(\"math\",$,Q,\"\\u2ac6\",\"\\\\supseteqq\",!0),W(\"math\",$,Q,\"\\u22d1\",\"\\\\Supset\",!0),W(\"math\",$,Q,\"\\u2290\",\"\\\\sqsupset\",!0),W(\"math\",$,Q,\"\\u227d\",\"\\\\succcurlyeq\",!0),W(\"math\",$,Q,\"\\u22df\",\"\\\\curlyeqsucc\",!0),W(\"math\",$,Q,\"\\u227f\",\"\\\\succsim\",!0),W(\"math\",$,Q,\"\\u2ab8\",\"\\\\succapprox\",!0),W(\"math\",$,Q,\"\\u22b3\",\"\\\\vartriangleright\"),W(\"math\",$,Q,\"\\u22b5\",\"\\\\trianglerighteq\"),W(\"math\",$,Q,\"\\u22a9\",\"\\\\Vdash\",!0),W(\"math\",$,Q,\"\\u2223\",\"\\\\shortmid\"),W(\"math\",$,Q,\"\\u2225\",\"\\\\shortparallel\"),W(\"math\",$,Q,\"\\u226c\",\"\\\\between\",!0),W(\"math\",$,Q,\"\\u22d4\",\"\\\\pitchfork\",!0),W(\"math\",$,Q,\"\\u221d\",\"\\\\varpropto\"),W(\"math\",$,Q,\"\\u25c0\",\"\\\\blacktriangleleft\"),W(\"math\",$,Q,\"\\u2234\",\"\\\\therefore\",!0),W(\"math\",$,Q,\"\\u220d\",\"\\\\backepsilon\"),W(\"math\",$,Q,\"\\u25b6\",\"\\\\blacktriangleright\"),W(\"math\",$,Q,\"\\u2235\",\"\\\\because\",!0),W(\"math\",$,Q,\"\\u22d8\",\"\\\\llless\"),W(\"math\",$,Q,\"\\u22d9\",\"\\\\gggtr\"),W(\"math\",$,Z,\"\\u22b2\",\"\\\\lhd\"),W(\"math\",$,Z,\"\\u22b3\",\"\\\\rhd\"),W(\"math\",$,Q,\"\\u2242\",\"\\\\eqsim\",!0),W(\"math\",j,Q,\"\\u22c8\",\"\\\\Join\"),W(\"math\",$,Q,\"\\u2251\",\"\\\\Doteq\",!0),W(\"math\",$,Z,\"\\u2214\",\"\\\\dotplus\",!0),W(\"math\",$,Z,\"\\u2216\",\"\\\\smallsetminus\"),W(\"math\",$,Z,\"\\u22d2\",\"\\\\Cap\",!0),W(\"math\",$,Z,\"\\u22d3\",\"\\\\Cup\",!0),W(\"math\",$,Z,\"\\u2a5e\",\"\\\\doublebarwedge\",!0),W(\"math\",$,Z,\"\\u229f\",\"\\\\boxminus\",!0),W(\"math\",$,Z,\"\\u229e\",\"\\\\boxplus\",!0),W(\"math\",$,Z,\"\\u22c7\",\"\\\\divideontimes\",!0),W(\"math\",$,Z,\"\\u22c9\",\"\\\\ltimes\",!0),W(\"math\",$,Z,\"\\u22ca\",\"\\\\rtimes\",!0),W(\"math\",$,Z,\"\\u22cb\",\"\\\\leftthreetimes\",!0),W(\"math\",$,Z,\"\\u22cc\",\"\\\\rightthreetimes\",!0),W(\"math\",$,Z,\"\\u22cf\",\"\\\\curlywedge\",!0),W(\"math\",$,Z,\"\\u22ce\",\"\\\\curlyvee\",!0),W(\"math\",$,Z,\"\\u229d\",\"\\\\circleddash\",!0),W(\"math\",$,Z,\"\\u229b\",\"\\\\circledast\",!0),W(\"math\",$,Z,\"\\u22c5\",\"\\\\centerdot\"),W(\"math\",$,Z,\"\\u22ba\",\"\\\\intercal\",!0),W(\"math\",$,Z,\"\\u22d2\",\"\\\\doublecap\"),W(\"math\",$,Z,\"\\u22d3\",\"\\\\doublecup\"),W(\"math\",$,Z,\"\\u22a0\",\"\\\\boxtimes\",!0),W(\"math\",$,Q,\"\\u21e2\",\"\\\\dashrightarrow\",!0),W(\"math\",$,Q,\"\\u21e0\",\"\\\\dashleftarrow\",!0),W(\"math\",$,Q,\"\\u21c7\",\"\\\\leftleftarrows\",!0),W(\"math\",$,Q,\"\\u21c6\",\"\\\\leftrightarrows\",!0),W(\"math\",$,Q,\"\\u21da\",\"\\\\Lleftarrow\",!0),W(\"math\",$,Q,\"\\u219e\",\"\\\\twoheadleftarrow\",!0),W(\"math\",$,Q,\"\\u21a2\",\"\\\\leftarrowtail\",!0),W(\"math\",$,Q,\"\\u21ab\",\"\\\\looparrowleft\",!0),W(\"math\",$,Q,\"\\u21cb\",\"\\\\leftrightharpoons\",!0),W(\"math\",$,Q,\"\\u21b6\",\"\\\\curvearrowleft\",!0),W(\"math\",$,Q,\"\\u21ba\",\"\\\\circlearrowleft\",!0),W(\"math\",$,Q,\"\\u21b0\",\"\\\\Lsh\",!0),W(\"math\",$,Q,\"\\u21c8\",\"\\\\upuparrows\",!0),W(\"math\",$,Q,\"\\u21bf\",\"\\\\upharpoonleft\",!0),W(\"math\",$,Q,\"\\u21c3\",\"\\\\downharpoonleft\",!0),W(\"math\",$,Q,\"\\u22b8\",\"\\\\multimap\",!0),W(\"math\",$,Q,\"\\u21ad\",\"\\\\leftrightsquigarrow\",!0),W(\"math\",$,Q,\"\\u21c9\",\"\\\\rightrightarrows\",!0),W(\"math\",$,Q,\"\\u21c4\",\"\\\\rightleftarrows\",!0),W(\"math\",$,Q,\"\\u21a0\",\"\\\\twoheadrightarrow\",!0),W(\"math\",$,Q,\"\\u21a3\",\"\\\\rightarrowtail\",!0),W(\"math\",$,Q,\"\\u21ac\",\"\\\\looparrowright\",!0),W(\"math\",$,Q,\"\\u21b7\",\"\\\\curvearrowright\",!0),W(\"math\",$,Q,\"\\u21bb\",\"\\\\circlearrowright\",!0),W(\"math\",$,Q,\"\\u21b1\",\"\\\\Rsh\",!0),W(\"math\",$,Q,\"\\u21ca\",\"\\\\downdownarrows\",!0),W(\"math\",$,Q,\"\\u21be\",\"\\\\upharpoonright\",!0),W(\"math\",$,Q,\"\\u21c2\",\"\\\\downharpoonright\",!0),W(\"math\",$,Q,\"\\u21dd\",\"\\\\rightsquigarrow\",!0),W(\"math\",$,Q,\"\\u21dd\",\"\\\\leadsto\"),W(\"math\",$,Q,\"\\u21db\",\"\\\\Rrightarrow\",!0),W(\"math\",$,Q,\"\\u21be\",\"\\\\restriction\"),W(\"math\",j,\"textord\",\"\\u2018\",\"`\"),W(\"math\",j,\"textord\",\"$\",\"\\\\$\"),W(\"text\",j,\"textord\",\"$\",\"\\\\$\"),W(\"text\",j,\"textord\",\"$\",\"\\\\textdollar\"),W(\"math\",j,\"textord\",\"%\",\"\\\\%\"),W(\"text\",j,\"textord\",\"%\",\"\\\\%\"),W(\"math\",j,\"textord\",\"_\",\"\\\\_\"),W(\"text\",j,\"textord\",\"_\",\"\\\\_\"),W(\"text\",j,\"textord\",\"_\",\"\\\\textunderscore\"),W(\"math\",j,\"textord\",\"\\u2220\",\"\\\\angle\",!0),W(\"math\",j,\"textord\",\"\\u221e\",\"\\\\infty\",!0),W(\"math\",j,\"textord\",\"\\u2032\",\"\\\\prime\"),W(\"math\",j,\"textord\",\"\\u25b3\",\"\\\\triangle\"),W(\"math\",j,\"textord\",\"\\u0393\",\"\\\\Gamma\",!0),W(\"math\",j,\"textord\",\"\\u0394\",\"\\\\Delta\",!0),W(\"math\",j,\"textord\",\"\\u0398\",\"\\\\Theta\",!0),W(\"math\",j,\"textord\",\"\\u039b\",\"\\\\Lambda\",!0),W(\"math\",j,\"textord\",\"\\u039e\",\"\\\\Xi\",!0),W(\"math\",j,\"textord\",\"\\u03a0\",\"\\\\Pi\",!0),W(\"math\",j,\"textord\",\"\\u03a3\",\"\\\\Sigma\",!0),W(\"math\",j,\"textord\",\"\\u03a5\",\"\\\\Upsilon\",!0),W(\"math\",j,\"textord\",\"\\u03a6\",\"\\\\Phi\",!0),W(\"math\",j,\"textord\",\"\\u03a8\",\"\\\\Psi\",!0),W(\"math\",j,\"textord\",\"\\u03a9\",\"\\\\Omega\",!0),W(\"math\",j,\"textord\",\"A\",\"\\u0391\"),W(\"math\",j,\"textord\",\"B\",\"\\u0392\"),W(\"math\",j,\"textord\",\"E\",\"\\u0395\"),W(\"math\",j,\"textord\",\"Z\",\"\\u0396\"),W(\"math\",j,\"textord\",\"H\",\"\\u0397\"),W(\"math\",j,\"textord\",\"I\",\"\\u0399\"),W(\"math\",j,\"textord\",\"K\",\"\\u039a\"),W(\"math\",j,\"textord\",\"M\",\"\\u039c\"),W(\"math\",j,\"textord\",\"N\",\"\\u039d\"),W(\"math\",j,\"textord\",\"O\",\"\\u039f\"),W(\"math\",j,\"textord\",\"P\",\"\\u03a1\"),W(\"math\",j,\"textord\",\"T\",\"\\u03a4\"),W(\"math\",j,\"textord\",\"X\",\"\\u03a7\"),W(\"math\",j,\"textord\",\"\\xac\",\"\\\\neg\",!0),W(\"math\",j,\"textord\",\"\\xac\",\"\\\\lnot\"),W(\"math\",j,\"textord\",\"\\u22a4\",\"\\\\top\"),W(\"math\",j,\"textord\",\"\\u22a5\",\"\\\\bot\"),W(\"math\",j,\"textord\",\"\\u2205\",\"\\\\emptyset\"),W(\"math\",$,\"textord\",\"\\u2205\",\"\\\\varnothing\"),W(\"math\",j,K,\"\\u03b1\",\"\\\\alpha\",!0),W(\"math\",j,K,\"\\u03b2\",\"\\\\beta\",!0),W(\"math\",j,K,\"\\u03b3\",\"\\\\gamma\",!0),W(\"math\",j,K,\"\\u03b4\",\"\\\\delta\",!0),W(\"math\",j,K,\"\\u03f5\",\"\\\\epsilon\",!0),W(\"math\",j,K,\"\\u03b6\",\"\\\\zeta\",!0),W(\"math\",j,K,\"\\u03b7\",\"\\\\eta\",!0),W(\"math\",j,K,\"\\u03b8\",\"\\\\theta\",!0),W(\"math\",j,K,\"\\u03b9\",\"\\\\iota\",!0),W(\"math\",j,K,\"\\u03ba\",\"\\\\kappa\",!0),W(\"math\",j,K,\"\\u03bb\",\"\\\\lambda\",!0),W(\"math\",j,K,\"\\u03bc\",\"\\\\mu\",!0),W(\"math\",j,K,\"\\u03bd\",\"\\\\nu\",!0),W(\"math\",j,K,\"\\u03be\",\"\\\\xi\",!0),W(\"math\",j,K,\"\\u03bf\",\"\\\\omicron\",!0),W(\"math\",j,K,\"\\u03c0\",\"\\\\pi\",!0),W(\"math\",j,K,\"\\u03c1\",\"\\\\rho\",!0),W(\"math\",j,K,\"\\u03c3\",\"\\\\sigma\",!0),W(\"math\",j,K,\"\\u03c4\",\"\\\\tau\",!0),W(\"math\",j,K,\"\\u03c5\",\"\\\\upsilon\",!0),W(\"math\",j,K,\"\\u03d5\",\"\\\\phi\",!0),W(\"math\",j,K,\"\\u03c7\",\"\\\\chi\",!0),W(\"math\",j,K,\"\\u03c8\",\"\\\\psi\",!0),W(\"math\",j,K,\"\\u03c9\",\"\\\\omega\",!0),W(\"math\",j,K,\"\\u03b5\",\"\\\\varepsilon\",!0),W(\"math\",j,K,\"\\u03d1\",\"\\\\vartheta\",!0),W(\"math\",j,K,\"\\u03d6\",\"\\\\varpi\",!0),W(\"math\",j,K,\"\\u03f1\",\"\\\\varrho\",!0),W(\"math\",j,K,\"\\u03c2\",\"\\\\varsigma\",!0),W(\"math\",j,K,\"\\u03c6\",\"\\\\varphi\",!0),W(\"math\",j,Z,\"\\u2217\",\"*\"),W(\"math\",j,Z,\"+\",\"+\"),W(\"math\",j,Z,\"\\u2212\",\"-\"),W(\"math\",j,Z,\"\\u22c5\",\"\\\\cdot\",!0),W(\"math\",j,Z,\"\\u2218\",\"\\\\circ\"),W(\"math\",j,Z,\"\\xf7\",\"\\\\div\",!0),W(\"math\",j,Z,\"\\xb1\",\"\\\\pm\",!0),W(\"math\",j,Z,\"\\xd7\",\"\\\\times\",!0),W(\"math\",j,Z,\"\\u2229\",\"\\\\cap\",!0),W(\"math\",j,Z,\"\\u222a\",\"\\\\cup\",!0),W(\"math\",j,Z,\"\\u2216\",\"\\\\setminus\"),W(\"math\",j,Z,\"\\u2227\",\"\\\\land\"),W(\"math\",j,Z,\"\\u2228\",\"\\\\lor\"),W(\"math\",j,Z,\"\\u2227\",\"\\\\wedge\",!0),W(\"math\",j,Z,\"\\u2228\",\"\\\\vee\",!0),W(\"math\",j,\"textord\",\"\\u221a\",\"\\\\surd\"),W(\"math\",j,\"open\",\"(\",\"(\"),W(\"math\",j,\"open\",\"[\",\"[\"),W(\"math\",j,\"open\",\"\\u27e8\",\"\\\\langle\",!0),W(\"math\",j,\"open\",\"\\u2223\",\"\\\\lvert\"),W(\"math\",j,\"open\",\"\\u2225\",\"\\\\lVert\"),W(\"math\",j,\"close\",\")\",\")\"),W(\"math\",j,\"close\",\"]\",\"]\"),W(\"math\",j,\"close\",\"?\",\"?\"),W(\"math\",j,\"close\",\"!\",\"!\"),W(\"math\",j,\"close\",\"\\u27e9\",\"\\\\rangle\",!0),W(\"math\",j,\"close\",\"\\u2223\",\"\\\\rvert\"),W(\"math\",j,\"close\",\"\\u2225\",\"\\\\rVert\"),W(\"math\",j,Q,\"=\",\"=\"),W(\"math\",j,Q,\"<\",\"<\"),W(\"math\",j,Q,\">\",\">\"),W(\"math\",j,Q,\":\",\":\"),W(\"math\",j,Q,\"\\u2248\",\"\\\\approx\",!0),W(\"math\",j,Q,\"\\u2245\",\"\\\\cong\",!0),W(\"math\",j,Q,\"\\u2265\",\"\\\\ge\"),W(\"math\",j,Q,\"\\u2265\",\"\\\\geq\",!0),W(\"math\",j,Q,\"\\u2190\",\"\\\\gets\"),W(\"math\",j,Q,\">\",\"\\\\gt\"),W(\"math\",j,Q,\"\\u2208\",\"\\\\in\",!0),W(\"math\",j,Q,\"\\ue020\",\"\\\\@not\"),W(\"math\",j,Q,\"\\u2282\",\"\\\\subset\",!0),W(\"math\",j,Q,\"\\u2283\",\"\\\\supset\",!0),W(\"math\",j,Q,\"\\u2286\",\"\\\\subseteq\",!0),W(\"math\",j,Q,\"\\u2287\",\"\\\\supseteq\",!0),W(\"math\",$,Q,\"\\u2288\",\"\\\\nsubseteq\",!0),W(\"math\",$,Q,\"\\u2289\",\"\\\\nsupseteq\",!0),W(\"math\",j,Q,\"\\u22a8\",\"\\\\models\"),W(\"math\",j,Q,\"\\u2190\",\"\\\\leftarrow\",!0),W(\"math\",j,Q,\"\\u2264\",\"\\\\le\"),W(\"math\",j,Q,\"\\u2264\",\"\\\\leq\",!0),W(\"math\",j,Q,\"<\",\"\\\\lt\"),W(\"math\",j,Q,\"\\u2192\",\"\\\\rightarrow\",!0),W(\"math\",j,Q,\"\\u2192\",\"\\\\to\"),W(\"math\",$,Q,\"\\u2271\",\"\\\\ngeq\",!0),W(\"math\",$,Q,\"\\u2270\",\"\\\\nleq\",!0),W(\"math\",j,\"spacing\",\"\\xa0\",\"\\\\ \"),W(\"math\",j,\"spacing\",\"\\xa0\",\"~\"),W(\"math\",j,\"spacing\",\"\\xa0\",\"\\\\space\"),W(\"math\",j,\"spacing\",\"\\xa0\",\"\\\\nobreakspace\"),W(\"text\",j,\"spacing\",\"\\xa0\",\"\\\\ \"),W(\"text\",j,\"spacing\",\"\\xa0\",\"~\"),W(\"text\",j,\"spacing\",\"\\xa0\",\"\\\\space\"),W(\"text\",j,\"spacing\",\"\\xa0\",\"\\\\nobreakspace\"),W(\"math\",j,\"spacing\",null,\"\\\\nobreak\"),W(\"math\",j,\"spacing\",null,\"\\\\allowbreak\"),W(\"math\",j,\"punct\",\",\",\",\"),W(\"math\",j,\"punct\",\";\",\";\"),W(\"math\",$,Z,\"\\u22bc\",\"\\\\barwedge\",!0),W(\"math\",$,Z,\"\\u22bb\",\"\\\\veebar\",!0),W(\"math\",j,Z,\"\\u2299\",\"\\\\odot\",!0),W(\"math\",j,Z,\"\\u2295\",\"\\\\oplus\",!0),W(\"math\",j,Z,\"\\u2297\",\"\\\\otimes\",!0),W(\"math\",j,\"textord\",\"\\u2202\",\"\\\\partial\",!0),W(\"math\",j,Z,\"\\u2298\",\"\\\\oslash\",!0),W(\"math\",$,Z,\"\\u229a\",\"\\\\circledcirc\",!0),W(\"math\",$,Z,\"\\u22a1\",\"\\\\boxdot\",!0),W(\"math\",j,Z,\"\\u25b3\",\"\\\\bigtriangleup\"),W(\"math\",j,Z,\"\\u25bd\",\"\\\\bigtriangledown\"),W(\"math\",j,Z,\"\\u2020\",\"\\\\dagger\"),W(\"math\",j,Z,\"\\u22c4\",\"\\\\diamond\"),W(\"math\",j,Z,\"\\u22c6\",\"\\\\star\"),W(\"math\",j,Z,\"\\u25c3\",\"\\\\triangleleft\"),W(\"math\",j,Z,\"\\u25b9\",\"\\\\triangleright\"),W(\"math\",j,\"open\",\"{\",\"\\\\{\"),W(\"text\",j,\"textord\",\"{\",\"\\\\{\"),W(\"text\",j,\"textord\",\"{\",\"\\\\textbraceleft\"),W(\"math\",j,\"close\",\"}\",\"\\\\}\"),W(\"text\",j,\"textord\",\"}\",\"\\\\}\"),W(\"text\",j,\"textord\",\"}\",\"\\\\textbraceright\"),W(\"math\",j,\"open\",\"{\",\"\\\\lbrace\"),W(\"math\",j,\"close\",\"}\",\"\\\\rbrace\"),W(\"math\",j,\"open\",\"[\",\"\\\\lbrack\"),W(\"text\",j,\"textord\",\"[\",\"\\\\lbrack\"),W(\"math\",j,\"close\",\"]\",\"\\\\rbrack\"),W(\"text\",j,\"textord\",\"]\",\"\\\\rbrack\"),W(\"math\",j,\"open\",\"(\",\"\\\\lparen\"),W(\"math\",j,\"close\",\")\",\"\\\\rparen\"),W(\"text\",j,\"textord\",\"<\",\"\\\\textless\"),W(\"text\",j,\"textord\",\">\",\"\\\\textgreater\"),W(\"math\",j,\"open\",\"\\u230a\",\"\\\\lfloor\",!0),W(\"math\",j,\"close\",\"\\u230b\",\"\\\\rfloor\",!0),W(\"math\",j,\"open\",\"\\u2308\",\"\\\\lceil\",!0),W(\"math\",j,\"close\",\"\\u2309\",\"\\\\rceil\",!0),W(\"math\",j,\"textord\",\"\\\\\",\"\\\\backslash\"),W(\"math\",j,\"textord\",\"\\u2223\",\"|\"),W(\"math\",j,\"textord\",\"\\u2223\",\"\\\\vert\"),W(\"text\",j,\"textord\",\"|\",\"\\\\textbar\"),W(\"math\",j,\"textord\",\"\\u2225\",\"\\\\|\"),W(\"math\",j,\"textord\",\"\\u2225\",\"\\\\Vert\"),W(\"text\",j,\"textord\",\"\\u2225\",\"\\\\textbardbl\"),W(\"text\",j,\"textord\",\"~\",\"\\\\textasciitilde\"),W(\"text\",j,\"textord\",\"\\\\\",\"\\\\textbackslash\"),W(\"text\",j,\"textord\",\"^\",\"\\\\textasciicircum\"),W(\"math\",j,Q,\"\\u2191\",\"\\\\uparrow\",!0),W(\"math\",j,Q,\"\\u21d1\",\"\\\\Uparrow\",!0),W(\"math\",j,Q,\"\\u2193\",\"\\\\downarrow\",!0),W(\"math\",j,Q,\"\\u21d3\",\"\\\\Downarrow\",!0),W(\"math\",j,Q,\"\\u2195\",\"\\\\updownarrow\",!0),W(\"math\",j,Q,\"\\u21d5\",\"\\\\Updownarrow\",!0),W(\"math\",j,J,\"\\u2210\",\"\\\\coprod\"),W(\"math\",j,J,\"\\u22c1\",\"\\\\bigvee\"),W(\"math\",j,J,\"\\u22c0\",\"\\\\bigwedge\"),W(\"math\",j,J,\"\\u2a04\",\"\\\\biguplus\"),W(\"math\",j,J,\"\\u22c2\",\"\\\\bigcap\"),W(\"math\",j,J,\"\\u22c3\",\"\\\\bigcup\"),W(\"math\",j,J,\"\\u222b\",\"\\\\int\"),W(\"math\",j,J,\"\\u222b\",\"\\\\intop\"),W(\"math\",j,J,\"\\u222c\",\"\\\\iint\"),W(\"math\",j,J,\"\\u222d\",\"\\\\iiint\"),W(\"math\",j,J,\"\\u220f\",\"\\\\prod\"),W(\"math\",j,J,\"\\u2211\",\"\\\\sum\"),W(\"math\",j,J,\"\\u2a02\",\"\\\\bigotimes\"),W(\"math\",j,J,\"\\u2a01\",\"\\\\bigoplus\"),W(\"math\",j,J,\"\\u2a00\",\"\\\\bigodot\"),W(\"math\",j,J,\"\\u222e\",\"\\\\oint\"),W(\"math\",j,J,\"\\u222f\",\"\\\\oiint\"),W(\"math\",j,J,\"\\u2230\",\"\\\\oiiint\"),W(\"math\",j,J,\"\\u2a06\",\"\\\\bigsqcup\"),W(\"math\",j,J,\"\\u222b\",\"\\\\smallint\"),W(\"text\",j,\"inner\",\"\\u2026\",\"\\\\textellipsis\"),W(\"math\",j,\"inner\",\"\\u2026\",\"\\\\mathellipsis\"),W(\"text\",j,\"inner\",\"\\u2026\",\"\\\\ldots\",!0),W(\"math\",j,\"inner\",\"\\u2026\",\"\\\\ldots\",!0),W(\"math\",j,\"inner\",\"\\u22ef\",\"\\\\@cdots\",!0),W(\"math\",j,\"inner\",\"\\u22f1\",\"\\\\ddots\",!0),W(\"math\",j,\"textord\",\"\\u22ee\",\"\\\\varvdots\"),W(\"math\",j,\"accent-token\",\"\\u02ca\",\"\\\\acute\"),W(\"math\",j,\"accent-token\",\"\\u02cb\",\"\\\\grave\"),W(\"math\",j,\"accent-token\",\"\\xa8\",\"\\\\ddot\"),W(\"math\",j,\"accent-token\",\"~\",\"\\\\tilde\"),W(\"math\",j,\"accent-token\",\"\\u02c9\",\"\\\\bar\"),W(\"math\",j,\"accent-token\",\"\\u02d8\",\"\\\\breve\"),W(\"math\",j,\"accent-token\",\"\\u02c7\",\"\\\\check\"),W(\"math\",j,\"accent-token\",\"^\",\"\\\\hat\"),W(\"math\",j,\"accent-token\",\"\\u20d7\",\"\\\\vec\"),W(\"math\",j,\"accent-token\",\"\\u02d9\",\"\\\\dot\"),W(\"math\",j,\"accent-token\",\"\\u02da\",\"\\\\mathring\"),W(\"math\",j,K,\"\\u0131\",\"\\\\imath\",!0),W(\"math\",j,K,\"\\u0237\",\"\\\\jmath\",!0),W(\"text\",j,\"textord\",\"\\u0131\",\"\\\\i\",!0),W(\"text\",j,\"textord\",\"\\u0237\",\"\\\\j\",!0),W(\"text\",j,\"textord\",\"\\xdf\",\"\\\\ss\",!0),W(\"text\",j,\"textord\",\"\\xe6\",\"\\\\ae\",!0),W(\"text\",j,\"textord\",\"\\xe6\",\"\\\\ae\",!0),W(\"text\",j,\"textord\",\"\\u0153\",\"\\\\oe\",!0),W(\"text\",j,\"textord\",\"\\xf8\",\"\\\\o\",!0),W(\"text\",j,\"textord\",\"\\xc6\",\"\\\\AE\",!0),W(\"text\",j,\"textord\",\"\\u0152\",\"\\\\OE\",!0),W(\"text\",j,\"textord\",\"\\xd8\",\"\\\\O\",!0),W(\"text\",j,\"accent-token\",\"\\u02ca\",\"\\\\'\"),W(\"text\",j,\"accent-token\",\"\\u02cb\",\"\\\\`\"),W(\"text\",j,\"accent-token\",\"\\u02c6\",\"\\\\^\"),W(\"text\",j,\"accent-token\",\"\\u02dc\",\"\\\\~\"),W(\"text\",j,\"accent-token\",\"\\u02c9\",\"\\\\=\"),W(\"text\",j,\"accent-token\",\"\\u02d8\",\"\\\\u\"),W(\"text\",j,\"accent-token\",\"\\u02d9\",\"\\\\.\"),W(\"text\",j,\"accent-token\",\"\\u02da\",\"\\\\r\"),W(\"text\",j,\"accent-token\",\"\\u02c7\",\"\\\\v\"),W(\"text\",j,\"accent-token\",\"\\xa8\",'\\\\\"'),W(\"text\",j,\"accent-token\",\"\\u02dd\",\"\\\\H\"),W(\"text\",j,\"accent-token\",\"\\u25ef\",\"\\\\textcircled\");var tt={\"--\":!0,\"---\":!0,\"``\":!0,\"''\":!0};W(\"text\",j,\"textord\",\"\\u2013\",\"--\"),W(\"text\",j,\"textord\",\"\\u2013\",\"\\\\textendash\"),W(\"text\",j,\"textord\",\"\\u2014\",\"---\"),W(\"text\",j,\"textord\",\"\\u2014\",\"\\\\textemdash\"),W(\"text\",j,\"textord\",\"\\u2018\",\"`\"),W(\"text\",j,\"textord\",\"\\u2018\",\"\\\\textquoteleft\"),W(\"text\",j,\"textord\",\"\\u2019\",\"'\"),W(\"text\",j,\"textord\",\"\\u2019\",\"\\\\textquoteright\"),W(\"text\",j,\"textord\",\"\\u201c\",\"``\"),W(\"text\",j,\"textord\",\"\\u201c\",\"\\\\textquotedblleft\"),W(\"text\",j,\"textord\",\"\\u201d\",\"''\"),W(\"text\",j,\"textord\",\"\\u201d\",\"\\\\textquotedblright\"),W(\"math\",j,\"textord\",\"\\xb0\",\"\\\\degree\",!0),W(\"text\",j,\"textord\",\"\\xb0\",\"\\\\degree\"),W(\"text\",j,\"textord\",\"\\xb0\",\"\\\\textdegree\",!0),W(\"math\",j,K,\"\\xa3\",\"\\\\pounds\"),W(\"math\",j,K,\"\\xa3\",\"\\\\mathsterling\",!0),W(\"text\",j,K,\"\\xa3\",\"\\\\pounds\"),W(\"text\",j,K,\"\\xa3\",\"\\\\textsterling\",!0),W(\"math\",$,\"textord\",\"\\u2720\",\"\\\\maltese\"),W(\"text\",$,\"textord\",\"\\u2720\",\"\\\\maltese\"),W(\"text\",j,\"spacing\",\"\\xa0\",\"\\\\ \"),W(\"text\",j,\"spacing\",\"\\xa0\",\" \"),W(\"text\",j,\"spacing\",\"\\xa0\",\"~\");for(var et=0;et<'0123456789/@.\"'.length;et++){var rt='0123456789/@.\"'.charAt(et);W(\"math\",j,\"textord\",rt,rt)}for(var at=0;at<'0123456789!@*()-=+[]<>|\";:?/.,'.length;at++){var nt='0123456789!@*()-=+[]<>|\";:?/.,'.charAt(at);W(\"text\",j,\"textord\",nt,nt)}for(var ot=\"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz\",it=0;it<ot.length;it++){var st=ot.charAt(it);W(\"math\",j,K,st,st),W(\"text\",j,\"textord\",st,st)}W(\"math\",$,\"textord\",\"C\",\"\\u2102\"),W(\"text\",$,\"textord\",\"C\",\"\\u2102\"),W(\"math\",$,\"textord\",\"H\",\"\\u210d\"),W(\"text\",$,\"textord\",\"H\",\"\\u210d\"),W(\"math\",$,\"textord\",\"N\",\"\\u2115\"),W(\"text\",$,\"textord\",\"N\",\"\\u2115\"),W(\"math\",$,\"textord\",\"P\",\"\\u2119\"),W(\"text\",$,\"textord\",\"P\",\"\\u2119\"),W(\"math\",$,\"textord\",\"Q\",\"\\u211a\"),W(\"text\",$,\"textord\",\"Q\",\"\\u211a\"),W(\"math\",$,\"textord\",\"R\",\"\\u211d\"),W(\"text\",$,\"textord\",\"R\",\"\\u211d\"),W(\"math\",$,\"textord\",\"Z\",\"\\u2124\"),W(\"text\",$,\"textord\",\"Z\",\"\\u2124\"),W(\"math\",j,K,\"h\",\"\\u210e\"),W(\"text\",j,K,\"h\",\"\\u210e\");for(var ht=\"\",lt=0;lt<ot.length;lt++){var mt=ot.charAt(lt);W(\"math\",j,K,mt,ht=String.fromCharCode(55349,56320+lt)),W(\"text\",j,\"textord\",mt,ht),W(\"math\",j,K,mt,ht=String.fromCharCode(55349,56372+lt)),W(\"text\",j,\"textord\",mt,ht),W(\"math\",j,K,mt,ht=String.fromCharCode(55349,56424+lt)),W(\"text\",j,\"textord\",mt,ht),W(\"math\",j,K,mt,ht=String.fromCharCode(55349,56580+lt)),W(\"text\",j,\"textord\",mt,ht),W(\"math\",j,K,mt,ht=String.fromCharCode(55349,56736+lt)),W(\"text\",j,\"textord\",mt,ht),W(\"math\",j,K,mt,ht=String.fromCharCode(55349,56788+lt)),W(\"text\",j,\"textord\",mt,ht),W(\"math\",j,K,mt,ht=String.fromCharCode(55349,56840+lt)),W(\"text\",j,\"textord\",mt,ht),W(\"math\",j,K,mt,ht=String.fromCharCode(55349,56944+lt)),W(\"text\",j,\"textord\",mt,ht),lt<26&&(W(\"math\",j,K,mt,ht=String.fromCharCode(55349,56632+lt)),W(\"text\",j,\"textord\",mt,ht),W(\"math\",j,K,mt,ht=String.fromCharCode(55349,56476+lt)),W(\"text\",j,\"textord\",mt,ht))}W(\"math\",j,K,\"k\",ht=String.fromCharCode(55349,56668)),W(\"text\",j,\"textord\",\"k\",ht);for(var ct=0;ct<10;ct++){var ut=ct.toString();W(\"math\",j,K,ut,ht=String.fromCharCode(55349,57294+ct)),W(\"text\",j,\"textord\",ut,ht),W(\"math\",j,K,ut,ht=String.fromCharCode(55349,57314+ct)),W(\"text\",j,\"textord\",ut,ht),W(\"math\",j,K,ut,ht=String.fromCharCode(55349,57324+ct)),W(\"text\",j,\"textord\",ut,ht),W(\"math\",j,K,ut,ht=String.fromCharCode(55349,57334+ct)),W(\"text\",j,\"textord\",ut,ht)}for(var dt=0;dt<\"\\xc7\\xd0\\xde\\xe7\\xfe\".length;dt++){var pt=\"\\xc7\\xd0\\xde\\xe7\\xfe\".charAt(dt);W(\"math\",j,K,pt,pt),W(\"text\",j,\"textord\",pt,pt)}W(\"text\",j,\"textord\",\"\\xf0\",\"\\xf0\"),W(\"text\",j,\"textord\",\"\\u2013\",\"\\u2013\"),W(\"text\",j,\"textord\",\"\\u2014\",\"\\u2014\"),W(\"text\",j,\"textord\",\"\\u2018\",\"\\u2018\"),W(\"text\",j,\"textord\",\"\\u2019\",\"\\u2019\"),W(\"text\",j,\"textord\",\"\\u201c\",\"\\u201c\"),W(\"text\",j,\"textord\",\"\\u201d\",\"\\u201d\");var ft=[[\"mathbf\",\"textbf\",\"Main-Bold\"],[\"mathbf\",\"textbf\",\"Main-Bold\"],[\"mathdefault\",\"textit\",\"Math-Italic\"],[\"mathdefault\",\"textit\",\"Math-Italic\"],[\"boldsymbol\",\"boldsymbol\",\"Main-BoldItalic\"],[\"boldsymbol\",\"boldsymbol\",\"Main-BoldItalic\"],[\"mathscr\",\"textscr\",\"Script-Regular\"],[\"\",\"\",\"\"],[\"\",\"\",\"\"],[\"\",\"\",\"\"],[\"mathfrak\",\"textfrak\",\"Fraktur-Regular\"],[\"mathfrak\",\"textfrak\",\"Fraktur-Regular\"],[\"mathbb\",\"textbb\",\"AMS-Regular\"],[\"mathbb\",\"textbb\",\"AMS-Regular\"],[\"\",\"\",\"\"],[\"\",\"\",\"\"],[\"mathsf\",\"textsf\",\"SansSerif-Regular\"],[\"mathsf\",\"textsf\",\"SansSerif-Regular\"],[\"mathboldsf\",\"textboldsf\",\"SansSerif-Bold\"],[\"mathboldsf\",\"textboldsf\",\"SansSerif-Bold\"],[\"mathitsf\",\"textitsf\",\"SansSerif-Italic\"],[\"mathitsf\",\"textitsf\",\"SansSerif-Italic\"],[\"\",\"\",\"\"],[\"\",\"\",\"\"],[\"mathtt\",\"texttt\",\"Typewriter-Regular\"],[\"mathtt\",\"texttt\",\"Typewriter-Regular\"]],gt=[[\"mathbf\",\"textbf\",\"Main-Bold\"],[\"\",\"\",\"\"],[\"mathsf\",\"textsf\",\"SansSerif-Regular\"],[\"mathboldsf\",\"textboldsf\",\"SansSerif-Bold\"],[\"mathtt\",\"texttt\",\"Typewriter-Regular\"]],xt=[[1,1,1],[2,1,1],[3,1,1],[4,2,1],[5,2,1],[6,3,1],[7,4,2],[8,6,3],[9,7,6],[10,8,7],[11,10,9]],vt=[.5,.6,.7,.8,.9,1,1.2,1.44,1.728,2.074,2.488],bt=function(t,e){return e.size<2?t:xt[t-1][e.size-1]},yt=function(){function t(e){this.style=void 0,this.color=void 0,this.size=void 0,this.textSize=void 0,this.phantom=void 0,this.font=void 0,this.fontFamily=void 0,this.fontWeight=void 0,this.fontShape=void 0,this.sizeMultiplier=void 0,this.maxSize=void 0,this._fontMetrics=void 0,this.style=e.style,this.color=e.color,this.size=e.size||t.BASESIZE,this.textSize=e.textSize||this.size,this.phantom=!!e.phantom,this.font=e.font||\"\",this.fontFamily=e.fontFamily||\"\",this.fontWeight=e.fontWeight||\"\",this.fontShape=e.fontShape||\"\",this.sizeMultiplier=vt[this.size-1],this.maxSize=e.maxSize,this._fontMetrics=void 0}var e=t.prototype;return e.extend=function(e){var r={style:this.style,size:this.size,textSize:this.textSize,color:this.color,phantom:this.phantom,font:this.font,fontFamily:this.fontFamily,fontWeight:this.fontWeight,fontShape:this.fontShape,maxSize:this.maxSize};for(var a in e)e.hasOwnProperty(a)&&(r[a]=e[a]);return new t(r)},e.havingStyle=function(t){return this.style===t?this:this.extend({style:t,size:bt(this.textSize,t)})},e.havingCrampedStyle=function(){return this.havingStyle(this.style.cramp())},e.havingSize=function(t){return this.size===t&&this.textSize===t?this:this.extend({style:this.style.text(),size:t,textSize:t,sizeMultiplier:vt[t-1]})},e.havingBaseStyle=function(e){e=e||this.style.text();var r=bt(t.BASESIZE,e);return this.size===r&&this.textSize===t.BASESIZE&&this.style===e?this:this.extend({style:e,size:r})},e.havingBaseSizing=function(){var t;switch(this.style.id){case 4:case 5:t=3;break;case 6:case 7:t=1;break;default:t=6}return this.extend({style:this.style.text(),size:t})},e.withColor=function(t){return this.extend({color:t})},e.withPhantom=function(){return this.extend({phantom:!0})},e.withFont=function(t){return this.extend({font:t})},e.withTextFontFamily=function(t){return this.extend({fontFamily:t,font:\"\"})},e.withTextFontWeight=function(t){return this.extend({fontWeight:t,font:\"\"})},e.withTextFontShape=function(t){return this.extend({fontShape:t,font:\"\"})},e.sizingClasses=function(t){return t.size!==this.size?[\"sizing\",\"reset-size\"+t.size,\"size\"+this.size]:[]},e.baseSizingClasses=function(){return this.size!==t.BASESIZE?[\"sizing\",\"reset-size\"+this.size,\"size\"+t.BASESIZE]:[]},e.fontMetrics=function(){return this._fontMetrics||(this._fontMetrics=function(t){var e;if(!U[e=t>=5?0:t>=3?1:2]){var r=U[e]={cssEmPerMu:D.quad[e]/18};for(var a in D)D.hasOwnProperty(a)&&(r[a]=D[a][e])}return U[e]}(this.size)),this._fontMetrics},e.getColor=function(){return this.phantom?\"transparent\":this.color},t}();yt.BASESIZE=6;var wt=yt,kt={pt:1,mm:7227/2540,cm:7227/254,in:72.27,bp:1.00375,pc:12,dd:1238/1157,cc:14856/1157,nd:685/642,nc:1370/107,sp:1/65536,px:1.00375},St={ex:!0,em:!0,mu:!0},zt=function(t,e){var r;if(t.unit in kt)r=kt[t.unit]/e.fontMetrics().ptPerEm/e.sizeMultiplier;else if(\"mu\"===t.unit)r=e.fontMetrics().cssEmPerMu;else{var a;if(a=e.style.isTight()?e.havingStyle(e.style.text()):e,\"ex\"===t.unit)r=a.fontMetrics().xHeight;else{if(\"em\"!==t.unit)throw new i(\"Invalid unit: '\"+t.unit+\"'\");r=a.fontMetrics().quad}a!==e&&(r*=a.sizeMultiplier/e.sizeMultiplier)}return Math.min(t.number*r,e.maxSize)},Mt=[\"\\\\imath\",\"\\u0131\",\"\\\\jmath\",\"\\u0237\",\"\\\\pounds\",\"\\\\mathsterling\",\"\\\\textsterling\",\"\\xa3\"],Tt=function(t,e,r){return _[r][t]&&_[r][t].replace&&(t=_[r][t].replace),{value:t,metrics:V(t,e,r)}},At=function(t,e,r,a,n){var o,i=Tt(t,e,r),s=i.metrics;if(t=i.value,s){var h=s.italic;(\"text\"===r||a&&\"mathit\"===a.font)&&(h=0),o=new E(t,s.height,s.depth,h,s.skew,s.width,n)}else\"undefined\"!=typeof console&&console.warn(\"No character metrics for '\"+t+\"' in style '\"+e+\"'\"),o=new E(t,0,0,0,0,0,n);if(a){o.maxFontSize=a.sizeMultiplier,a.style.isTight()&&o.classes.push(\"mtight\");var l=a.getColor();l&&(o.style.color=l)}return o},Bt=function(t,e){if(A(t.classes)!==A(e.classes)||t.skew!==e.skew||t.maxFontSize!==e.maxFontSize)return!1;for(var r in t.style)if(t.style.hasOwnProperty(r)&&t.style[r]!==e.style[r])return!1;for(var a in e.style)if(e.style.hasOwnProperty(a)&&t.style[a]!==e.style[a])return!1;return!0},qt=function(t){for(var e=0,r=0,a=0,n=0;n<t.children.length;n++){var o=t.children[n];o.height>e&&(e=o.height),o.depth>r&&(r=o.depth),o.maxFontSize>a&&(a=o.maxFontSize)}t.height=e,t.depth=r,t.maxFontSize=a},Ct=function(t,e,r,a){var n=new N(t,e,r,a);return qt(n),n},Nt=function(t,e,r,a){return new N(t,e,r,a)},It=function(t){var e=new T(t);return qt(e),e},Ot=function(t,e,r){var a=\"\";switch(t){case\"amsrm\":a=\"AMS\";break;case\"textrm\":a=\"Main\";break;case\"textsf\":a=\"SansSerif\";break;case\"texttt\":a=\"Typewriter\";break;default:a=t}return a+\"-\"+(\"textbf\"===e&&\"textit\"===r?\"BoldItalic\":\"textbf\"===e?\"Bold\":\"textit\"===e?\"Italic\":\"Regular\")},Et={mathbf:{variant:\"bold\",fontName:\"Main-Bold\"},mathrm:{variant:\"normal\",fontName:\"Main-Regular\"},textit:{variant:\"italic\",fontName:\"Main-Italic\"},mathit:{variant:\"italic\",fontName:\"Main-Italic\"},mathbb:{variant:\"double-struck\",fontName:\"AMS-Regular\"},mathcal:{variant:\"script\",fontName:\"Caligraphic-Regular\"},mathfrak:{variant:\"fraktur\",fontName:\"Fraktur-Regular\"},mathscr:{variant:\"script\",fontName:\"Script-Regular\"},mathsf:{variant:\"sans-serif\",fontName:\"SansSerif-Regular\"},mathtt:{variant:\"monospace\",fontName:\"Typewriter-Regular\"}},Rt={vec:[\"vec\",.471,.714],oiintSize1:[\"oiintSize1\",.957,.499],oiintSize2:[\"oiintSize2\",1.472,.659],oiiintSize1:[\"oiiintSize1\",1.304,.499],oiiintSize2:[\"oiiintSize2\",1.98,.659]},Lt={fontMap:Et,makeSymbol:At,mathsym:function(t,e,r,a){return void 0===a&&(a=[]),r&&r.font&&\"boldsymbol\"===r.font&&Tt(t,\"Main-Bold\",e).metrics?At(t,\"Main-Bold\",e,r,a.concat([\"mathbf\"])):\"\\\\\"===t||\"main\"===_[e][t].font?At(t,\"Main-Regular\",e,r,a):At(t,\"AMS-Regular\",e,r,a.concat([\"amsrm\"]))},makeSpan:Ct,makeSvgSpan:Nt,makeLineSpan:function(t,e,r){var a=Ct([t],[],e);return a.height=r||e.fontMetrics().defaultRuleThickness,a.style.borderBottomWidth=a.height+\"em\",a.maxFontSize=1,a},makeAnchor:function(t,e,r,a){var n=new I(t,e,r,a);return qt(n),n},makeFragment:It,wrapFragment:function(t,e){return t instanceof T?Ct([],[t],e):t},makeVList:function(t,e){for(var r=function(t){if(\"individualShift\"===t.positionType){for(var e=t.children,r=[e[0]],a=-e[0].shift-e[0].elem.depth,n=a,o=1;o<e.length;o++){var i=-e[o].shift-n-e[o].elem.depth,s=i-(e[o-1].elem.height+e[o-1].elem.depth);n+=i,r.push({type:\"kern\",size:s}),r.push(e[o])}return{children:r,depth:a}}var h;if(\"top\"===t.positionType){for(var l=t.positionData,m=0;m<t.children.length;m++){var c=t.children[m];l-=\"kern\"===c.type?c.size:c.elem.height+c.elem.depth}h=l}else if(\"bottom\"===t.positionType)h=-t.positionData;else{var u=t.children[0];if(\"elem\"!==u.type)throw new Error('First child must have type \"elem\".');if(\"shift\"===t.positionType)h=-u.elem.depth-t.positionData;else{if(\"firstBaseline\"!==t.positionType)throw new Error(\"Invalid positionType \"+t.positionType+\".\");h=-u.elem.depth}}return{children:t.children,depth:h}}(t),a=r.children,n=r.depth,o=0,i=0;i<a.length;i++){var s=a[i];if(\"elem\"===s.type){var h=s.elem;o=Math.max(o,h.maxFontSize,h.height)}}o+=2;var l=Ct([\"pstrut\"],[]);l.style.height=o+\"em\";for(var m=[],c=n,u=n,d=n,p=0;p<a.length;p++){var f=a[p];if(\"kern\"===f.type)d+=f.size;else{var g=f.elem,x=f.wrapperClasses||[],v=f.wrapperStyle||{},b=Ct(x,[l,g],void 0,v);b.style.top=-o-d-g.depth+\"em\",f.marginLeft&&(b.style.marginLeft=f.marginLeft),f.marginRight&&(b.style.marginRight=f.marginRight),m.push(b),d+=g.height+g.depth}c=Math.min(c,d),u=Math.max(u,d)}var y,w=Ct([\"vlist\"],m);if(w.style.height=u+\"em\",c<0){var k=Ct([],[]),S=Ct([\"vlist\"],[k]);S.style.height=-c+\"em\";var z=Ct([\"vlist-s\"],[new E(\"\\u200b\")]);y=[Ct([\"vlist-r\"],[w,z]),Ct([\"vlist-r\"],[S])]}else y=[Ct([\"vlist-r\"],[w])];var M=Ct([\"vlist-t\"],y);return 2===y.length&&M.classes.push(\"vlist-t2\"),M.height=u,M.depth=-c,M},makeOrd:function(t,e,r){var a,n=t.mode,o=t.text,s=[\"mord\"],h=\"math\"===n||\"text\"===n&&e.font,l=h?e.font:e.fontFamily;if(55349===o.charCodeAt(0)){var m=function(t,e){var r=1024*(t.charCodeAt(0)-55296)+(t.charCodeAt(1)-56320)+65536,a=\"math\"===e?0:1;if(119808<=r&&r<120484){var n=Math.floor((r-119808)/26);return[ft[n][2],ft[n][a]]}if(120782<=r&&r<=120831){var o=Math.floor((r-120782)/10);return[gt[o][2],gt[o][a]]}if(120485===r||120486===r)return[ft[0][2],ft[0][a]];if(120486<r&&r<120782)return[\"\",\"\"];throw new i(\"Unsupported character: \"+t)}(o,n),u=m[0],d=m[1];return At(o,u,n,e,s.concat(d))}if(l){var p,f;if(\"boldsymbol\"===l||\"mathnormal\"===l){var g=\"boldsymbol\"===l?function(t,e,r,a){return Tt(t,\"Math-BoldItalic\",e).metrics?{fontName:\"Math-BoldItalic\",fontClass:\"boldsymbol\"}:{fontName:\"Main-Bold\",fontClass:\"mathbf\"}}(o,n):(a=o,c.contains(Mt,a)?{fontName:\"Main-Italic\",fontClass:\"mathit\"}:/[0-9]/.test(a.charAt(0))?{fontName:\"Caligraphic-Regular\",fontClass:\"mathcal\"}:{fontName:\"Math-Italic\",fontClass:\"mathdefault\"});p=g.fontName,f=[g.fontClass]}else c.contains(Mt,o)?(p=\"Main-Italic\",f=[\"mathit\"]):h?(p=Et[l].fontName,f=[l]):(p=Ot(l,e.fontWeight,e.fontShape),f=[l,e.fontWeight,e.fontShape]);if(Tt(o,p,n).metrics)return At(o,p,n,e,s.concat(f));if(tt.hasOwnProperty(o)&&\"Typewriter\"===p.substr(0,10)){for(var x=[],v=0;v<o.length;v++)x.push(At(o[v],p,n,e,s.concat(f)));return It(x)}}if(\"mathord\"===r){var b=function(t,e,r,a){return/[0-9]/.test(t.charAt(0))||c.contains(Mt,t)?{fontName:\"Main-Italic\",fontClass:\"mathit\"}:{fontName:\"Math-Italic\",fontClass:\"mathdefault\"}}(o);return At(o,b.fontName,n,e,s.concat([b.fontClass]))}if(\"textord\"===r){var y=_[n][o]&&_[n][o].font;if(\"ams\"===y){var w=Ot(\"amsrm\",e.fontWeight,e.fontShape);return At(o,w,n,e,s.concat(\"amsrm\",e.fontWeight,e.fontShape))}if(\"main\"!==y&&y){var k=Ot(y,e.fontWeight,e.fontShape);return At(o,k,n,e,s.concat(k,e.fontWeight,e.fontShape))}var S=Ot(\"textrm\",e.fontWeight,e.fontShape);return At(o,S,n,e,s.concat(e.fontWeight,e.fontShape))}throw new Error(\"unexpected type: \"+r+\" in makeOrd\")},makeGlue:function(t,e){var r=Ct([\"mspace\"],[],e),a=zt(t,e);return r.style.marginRight=a+\"em\",r},staticSvg:function(t,e){var r=Rt[t],a=r[0],n=r[1],o=r[2],i=new L(a),s=new R([i],{width:n+\"em\",height:o+\"em\",style:\"width:\"+n+\"em\",viewBox:\"0 0 \"+1e3*n+\" \"+1e3*o,preserveAspectRatio:\"xMinYMin\"}),h=Nt([\"overlay\"],[s],e);return h.height=o,h.style.height=o+\"em\",h.style.width=n+\"em\",h},svgData:Rt,tryCombineChars:function(t){for(var e=0;e<t.length-1;e++){var r=t[e],a=t[e+1];r instanceof E&&a instanceof E&&Bt(r,a)&&(r.text+=a.text,r.height=Math.max(r.height,a.height),r.depth=Math.max(r.depth,a.depth),r.italic=a.italic,t.splice(e+1,1),e--)}return t}};function Ht(t,e){var r=Pt(t,e);if(!r)throw new Error(\"Expected node of type \"+e+\", but got \"+(t?\"node of type \"+t.type:String(t)));return r}function Pt(t,e){return t&&t.type===e?t:null}function Dt(t,e){var r=function(t,e){return t&&\"atom\"===t.type&&t.family===e?t:null}(t,e);if(!r)throw new Error('Expected node of type \"atom\" and family \"'+e+'\", but got '+(t?\"atom\"===t.type?\"atom of family \"+t.family:\"node of type \"+t.type:String(t)));return r}function Ft(t){return t&&(\"atom\"===t.type||X.hasOwnProperty(t.type))?t:null}var Vt={number:3,unit:\"mu\"},Ut={number:4,unit:\"mu\"},Gt={number:5,unit:\"mu\"},Xt={mord:{mop:Vt,mbin:Ut,mrel:Gt,minner:Vt},mop:{mord:Vt,mop:Vt,mrel:Gt,minner:Vt},mbin:{mord:Ut,mop:Ut,mopen:Ut,minner:Ut},mrel:{mord:Gt,mop:Gt,mopen:Gt,minner:Gt},mopen:{},mclose:{mop:Vt,mbin:Ut,mrel:Gt,minner:Vt},mpunct:{mord:Vt,mop:Vt,mrel:Gt,mopen:Vt,mclose:Vt,mpunct:Vt,minner:Vt},minner:{mord:Vt,mop:Vt,mbin:Ut,mrel:Gt,mopen:Vt,mpunct:Vt,minner:Vt}},Yt={mord:{mop:Vt},mop:{mord:Vt,mop:Vt},mbin:{},mrel:{},mopen:{},mclose:{mop:Vt},mpunct:{},minner:{mop:Vt}},_t={},Wt={},jt={};function $t(t){for(var e=t.type,r=(t.nodeType,t.names),a=t.props,n=t.handler,o=t.htmlBuilder,i=t.mathmlBuilder,s={type:e,numArgs:a.numArgs,argTypes:a.argTypes,greediness:void 0===a.greediness?1:a.greediness,allowedInText:!!a.allowedInText,allowedInMath:void 0===a.allowedInMath||a.allowedInMath,numOptionalArgs:a.numOptionalArgs||0,infix:!!a.infix,consumeMode:a.consumeMode,handler:n},h=0;h<r.length;++h)_t[r[h]]=s;e&&(o&&(Wt[e]=o),i&&(jt[e]=i))}function Zt(t){$t({type:t.type,names:[],props:{numArgs:0},handler:function(){throw new Error(\"Should never be called.\")},htmlBuilder:t.htmlBuilder,mathmlBuilder:t.mathmlBuilder})}var Kt=function(t){var e=Pt(t,\"ordgroup\");return e?e.body:[t]},Jt=Lt.makeSpan,Qt=[\"leftmost\",\"mbin\",\"mopen\",\"mrel\",\"mop\",\"mpunct\"],te=[\"rightmost\",\"mrel\",\"mclose\",\"mpunct\"],ee={display:w.DISPLAY,text:w.TEXT,script:w.SCRIPT,scriptscript:w.SCRIPTSCRIPT},re={mord:\"mord\",mop:\"mop\",mbin:\"mbin\",mrel:\"mrel\",mopen:\"mopen\",mclose:\"mclose\",mpunct:\"mpunct\",minner:\"minner\"},ae=function(t,e,r,a){void 0===a&&(a=[null,null]);for(var n=[],o=0;o<t.length;o++){var i=he(t[o],e);if(i instanceof T){var s=i.children;n.push.apply(n,s)}else n.push(i)}if(!r)return n;var h=e;if(1===t.length){var l=Pt(t[0],\"sizing\")||Pt(t[0],\"styling\");l&&(\"sizing\"===l.type?h=e.havingSize(l.size):\"styling\"===l.type&&(h=e.havingStyle(ee[l.style])))}var m=Jt([a[0]||\"leftmost\"],[],e),u=Jt([a[1]||\"rightmost\"],[],e);return ne(n,function(t,e){var r=e.classes[0],a=t.classes[0];\"mbin\"===r&&c.contains(te,a)?e.classes[0]=\"mord\":\"mbin\"===a&&c.contains(Qt,r)&&(t.classes[0]=\"mord\")},{node:m},u),ne(n,function(t,e){var r=ie(e),a=ie(t),n=r&&a?t.hasClass(\"mtight\")?Yt[r][a]:Xt[r][a]:null;if(n)return Lt.makeGlue(n,h)},{node:m},u),n},ne=function t(e,r,a,n){n&&e.push(n);for(var o=0;o<e.length;o++){var i=e[o],s=oe(i);if(s)t(s.children,r,a);else if(\"mspace\"!==i.classes[0]){var h=r(i,a.node);h&&(a.insertAfter?a.insertAfter(h):(e.unshift(h),o++)),a.node=i,a.insertAfter=function(t){return function(r){e.splice(t+1,0,r),o++}}(o)}}n&&e.pop()},oe=function(t){return t instanceof T||t instanceof I?t:null},ie=function(t,e){return t?(e&&(t=function t(e,r){var a=oe(e);if(a){var n=a.children;if(n.length){if(\"right\"===r)return t(n[n.length-1],\"right\");if(\"left\"===r)return t(n[0],\"left\")}}return e}(t,e)),re[t.classes[0]]||null):null},se=function(t,e){var r=[\"nulldelimiter\"].concat(t.baseSizingClasses());return Jt(e.concat(r))},he=function(t,e,r){if(!t)return Jt();if(Wt[t.type]){var a=Wt[t.type](t,e);if(r&&e.size!==r.size){a=Jt(e.sizingClasses(r),[a],e);var n=e.sizeMultiplier/r.sizeMultiplier;a.height*=n,a.depth*=n}return a}throw new i(\"Got group of unknown type: '\"+t.type+\"'\")};function le(t,e){var r=Jt([\"base\"],t,e),a=Jt([\"strut\"]);return a.style.height=r.height+r.depth+\"em\",a.style.verticalAlign=-r.depth+\"em\",r.children.unshift(a),r}function me(t,e){var r=null;1===t.length&&\"tag\"===t[0].type&&(r=t[0].tag,t=t[0].body);for(var a,n=ae(t,e,!0),o=[],i=[],s=0;s<n.length;s++)if(i.push(n[s]),n[s].hasClass(\"mbin\")||n[s].hasClass(\"mrel\")||n[s].hasClass(\"allowbreak\")){for(var h=!1;s<n.length-1&&n[s+1].hasClass(\"mspace\")&&!n[s+1].hasClass(\"newline\");)s++,i.push(n[s]),n[s].hasClass(\"nobreak\")&&(h=!0);h||(o.push(le(i,e)),i=[])}else n[s].hasClass(\"newline\")&&(i.pop(),i.length>0&&(o.push(le(i,e)),i=[]),o.push(n[s]));i.length>0&&o.push(le(i,e)),r&&((a=le(ae(r,e,!0))).classes=[\"tag\"],o.push(a));var l=Jt([\"katex-html\"],o);if(l.setAttribute(\"aria-hidden\",\"true\"),a){var m=a.children[0];m.style.height=l.height+l.depth+\"em\",m.style.verticalAlign=-l.depth+\"em\"}return l}function ce(t){return new T(t)}var ue=function(){function t(t,e){this.type=void 0,this.attributes=void 0,this.children=void 0,this.type=t,this.attributes={},this.children=e||[]}var e=t.prototype;return e.setAttribute=function(t,e){this.attributes[t]=e},e.getAttribute=function(t){return this.attributes[t]},e.toNode=function(){var t=document.createElementNS(\"http://www.w3.org/1998/Math/MathML\",this.type);for(var e in this.attributes)Object.prototype.hasOwnProperty.call(this.attributes,e)&&t.setAttribute(e,this.attributes[e]);for(var r=0;r<this.children.length;r++)t.appendChild(this.children[r].toNode());return t},e.toMarkup=function(){var t=\"<\"+this.type;for(var e in this.attributes)Object.prototype.hasOwnProperty.call(this.attributes,e)&&(t+=\" \"+e+'=\"',t+=c.escape(this.attributes[e]),t+='\"');t+=\">\";for(var r=0;r<this.children.length;r++)t+=this.children[r].toMarkup();return t+=\"</\"+this.type+\">\"},e.toText=function(){return this.children.map(function(t){return t.toText()}).join(\"\")},t}(),de=function(){function t(t){this.text=void 0,this.text=t}var e=t.prototype;return e.toNode=function(){return document.createTextNode(this.text)},e.toMarkup=function(){return c.escape(this.toText())},e.toText=function(){return this.text},t}(),pe={MathNode:ue,TextNode:de,SpaceNode:function(){function t(t){this.width=void 0,this.character=void 0,this.width=t,this.character=t>=.05555&&t<=.05556?\"\\u200a\":t>=.1666&&t<=.1667?\"\\u2009\":t>=.2222&&t<=.2223?\"\\u2005\":t>=.2777&&t<=.2778?\"\\u2005\\u200a\":t>=-.05556&&t<=-.05555?\"\\u200a\\u2063\":t>=-.1667&&t<=-.1666?\"\\u2009\\u2063\":t>=-.2223&&t<=-.2222?\"\\u205f\\u2063\":t>=-.2778&&t<=-.2777?\"\\u2005\\u2063\":null}var e=t.prototype;return e.toNode=function(){if(this.character)return document.createTextNode(this.character);var t=document.createElementNS(\"http://www.w3.org/1998/Math/MathML\",\"mspace\");return t.setAttribute(\"width\",this.width+\"em\"),t},e.toMarkup=function(){return this.character?\"<mtext>\"+this.character+\"</mtext>\":'<mspace width=\"'+this.width+'em\"/>'},e.toText=function(){return this.character?this.character:\" \"},t}(),newDocumentFragment:ce},fe=function(t,e,r){return!_[e][t]||!_[e][t].replace||55349===t.charCodeAt(0)||tt.hasOwnProperty(t)&&r&&(r.fontFamily&&\"tt\"===r.fontFamily.substr(4,2)||r.font&&\"tt\"===r.font.substr(4,2))||(t=_[e][t].replace),new pe.TextNode(t)},ge=function(t){return 1===t.length?t[0]:new pe.MathNode(\"mrow\",t)},xe=function(t,e){if(\"texttt\"===e.fontFamily)return\"monospace\";if(\"textsf\"===e.fontFamily)return\"textit\"===e.fontShape&&\"textbf\"===e.fontWeight?\"sans-serif-bold-italic\":\"textit\"===e.fontShape?\"sans-serif-italic\":\"textbf\"===e.fontWeight?\"bold-sans-serif\":\"sans-serif\";if(\"textit\"===e.fontShape&&\"textbf\"===e.fontWeight)return\"bold-italic\";if(\"textit\"===e.fontShape)return\"italic\";if(\"textbf\"===e.fontWeight)return\"bold\";var r=e.font;if(!r||\"mathnormal\"===r)return null;var a=t.mode;if(\"mathit\"===r)return\"italic\";if(\"boldsymbol\"===r)return\"bold-italic\";var n=t.text;return c.contains([\"\\\\imath\",\"\\\\jmath\"],n)?null:(_[a][n]&&_[a][n].replace&&(n=_[a][n].replace),V(n,Lt.fontMap[r].fontName,a)?Lt.fontMap[r].variant:null)},ve=function(t,e){for(var r,a=[],n=0;n<t.length;n++){var o=ye(t[n],e);if(o instanceof ue&&r instanceof ue){if(\"mtext\"===o.type&&\"mtext\"===r.type&&o.getAttribute(\"mathvariant\")===r.getAttribute(\"mathvariant\")){var i;(i=r.children).push.apply(i,o.children);continue}if(\"mn\"===o.type&&\"mn\"===r.type){var s;(s=r.children).push.apply(s,o.children);continue}if(\"mi\"===o.type&&1===o.children.length&&\"mn\"===r.type){var h=o.children[0];if(h instanceof de&&\".\"===h.text){var l;(l=r.children).push.apply(l,o.children);continue}}else if(\"mi\"===r.type&&1===r.children.length){var m=r.children[0];if(m instanceof de&&\"\\u0338\"===m.text&&(\"mo\"===o.type||\"mi\"===o.type||\"mn\"===o.type)){var c=o.children[0];c instanceof de&&c.text.length>0&&(c.text=c.text.slice(0,1)+\"\\u0338\"+c.text.slice(1),a.pop())}}}a.push(o),r=o}return a},be=function(t,e){return ge(ve(t,e))},ye=function(t,e){if(!t)return new pe.MathNode(\"mrow\");if(jt[t.type])return jt[t.type](t,e);throw new i(\"Got group of unknown type: '\"+t.type+\"'\")};var we=function(t){return new wt({style:t.displayMode?w.DISPLAY:w.TEXT,maxSize:t.maxSize})},ke=function(t,e){if(e.displayMode){var r=[\"katex-display\"];e.leqno&&r.push(\"leqno\"),e.fleqn&&r.push(\"fleqn\"),t=Lt.makeSpan(r,[t])}return t},Se=function(t,e,r){var a=we(r),n=function(t,e,r){var a,n=ve(t,r);a=1===n.length&&n[0]instanceof ue&&c.contains([\"mrow\",\"mtable\"],n[0].type)?n[0]:new pe.MathNode(\"mrow\",n);var o=new pe.MathNode(\"annotation\",[new pe.TextNode(e)]);o.setAttribute(\"encoding\",\"application/x-tex\");var i=new pe.MathNode(\"semantics\",[a,o]),s=new pe.MathNode(\"math\",[i]);return Lt.makeSpan([\"katex-mathml\"],[s])}(t,e,a),o=me(t,a),i=Lt.makeSpan([\"katex\"],[n,o]);return ke(i,r)},ze={widehat:\"^\",widecheck:\"\\u02c7\",widetilde:\"~\",utilde:\"~\",overleftarrow:\"\\u2190\",underleftarrow:\"\\u2190\",xleftarrow:\"\\u2190\",overrightarrow:\"\\u2192\",underrightarrow:\"\\u2192\",xrightarrow:\"\\u2192\",underbrace:\"\\u23df\",overbrace:\"\\u23de\",overgroup:\"\\u23e0\",undergroup:\"\\u23e1\",overleftrightarrow:\"\\u2194\",underleftrightarrow:\"\\u2194\",xleftrightarrow:\"\\u2194\",Overrightarrow:\"\\u21d2\",xRightarrow:\"\\u21d2\",overleftharpoon:\"\\u21bc\",xleftharpoonup:\"\\u21bc\",overrightharpoon:\"\\u21c0\",xrightharpoonup:\"\\u21c0\",xLeftarrow:\"\\u21d0\",xLeftrightarrow:\"\\u21d4\",xhookleftarrow:\"\\u21a9\",xhookrightarrow:\"\\u21aa\",xmapsto:\"\\u21a6\",xrightharpoondown:\"\\u21c1\",xleftharpoondown:\"\\u21bd\",xrightleftharpoons:\"\\u21cc\",xleftrightharpoons:\"\\u21cb\",xtwoheadleftarrow:\"\\u219e\",xtwoheadrightarrow:\"\\u21a0\",xlongequal:\"=\",xtofrom:\"\\u21c4\",xrightleftarrows:\"\\u21c4\",xrightequilibrium:\"\\u21cc\",xleftequilibrium:\"\\u21cb\"},Me={overrightarrow:[[\"rightarrow\"],.888,522,\"xMaxYMin\"],overleftarrow:[[\"leftarrow\"],.888,522,\"xMinYMin\"],underrightarrow:[[\"rightarrow\"],.888,522,\"xMaxYMin\"],underleftarrow:[[\"leftarrow\"],.888,522,\"xMinYMin\"],xrightarrow:[[\"rightarrow\"],1.469,522,\"xMaxYMin\"],xleftarrow:[[\"leftarrow\"],1.469,522,\"xMinYMin\"],Overrightarrow:[[\"doublerightarrow\"],.888,560,\"xMaxYMin\"],xRightarrow:[[\"doublerightarrow\"],1.526,560,\"xMaxYMin\"],xLeftarrow:[[\"doubleleftarrow\"],1.526,560,\"xMinYMin\"],overleftharpoon:[[\"leftharpoon\"],.888,522,\"xMinYMin\"],xleftharpoonup:[[\"leftharpoon\"],.888,522,\"xMinYMin\"],xleftharpoondown:[[\"leftharpoondown\"],.888,522,\"xMinYMin\"],overrightharpoon:[[\"rightharpoon\"],.888,522,\"xMaxYMin\"],xrightharpoonup:[[\"rightharpoon\"],.888,522,\"xMaxYMin\"],xrightharpoondown:[[\"rightharpoondown\"],.888,522,\"xMaxYMin\"],xlongequal:[[\"longequal\"],.888,334,\"xMinYMin\"],xtwoheadleftarrow:[[\"twoheadleftarrow\"],.888,334,\"xMinYMin\"],xtwoheadrightarrow:[[\"twoheadrightarrow\"],.888,334,\"xMaxYMin\"],overleftrightarrow:[[\"leftarrow\",\"rightarrow\"],.888,522],overbrace:[[\"leftbrace\",\"midbrace\",\"rightbrace\"],1.6,548],underbrace:[[\"leftbraceunder\",\"midbraceunder\",\"rightbraceunder\"],1.6,548],underleftrightarrow:[[\"leftarrow\",\"rightarrow\"],.888,522],xleftrightarrow:[[\"leftarrow\",\"rightarrow\"],1.75,522],xLeftrightarrow:[[\"doubleleftarrow\",\"doublerightarrow\"],1.75,560],xrightleftharpoons:[[\"leftharpoondownplus\",\"rightharpoonplus\"],1.75,716],xleftrightharpoons:[[\"leftharpoonplus\",\"rightharpoondownplus\"],1.75,716],xhookleftarrow:[[\"leftarrow\",\"righthook\"],1.08,522],xhookrightarrow:[[\"lefthook\",\"rightarrow\"],1.08,522],overlinesegment:[[\"leftlinesegment\",\"rightlinesegment\"],.888,522],underlinesegment:[[\"leftlinesegment\",\"rightlinesegment\"],.888,522],overgroup:[[\"leftgroup\",\"rightgroup\"],.888,342],undergroup:[[\"leftgroupunder\",\"rightgroupunder\"],.888,342],xmapsto:[[\"leftmapsto\",\"rightarrow\"],1.5,522],xtofrom:[[\"leftToFrom\",\"rightToFrom\"],1.75,528],xrightleftarrows:[[\"baraboveleftarrow\",\"rightarrowabovebar\"],1.75,901],xrightequilibrium:[[\"baraboveshortleftharpoon\",\"rightharpoonaboveshortbar\"],1.75,716],xleftequilibrium:[[\"shortbaraboveleftharpoon\",\"shortrightharpoonabovebar\"],1.75,716]},Te=function(t){return\"ordgroup\"===t.type?t.body.length:1},Ae=function(t,e,r,a){var n,o=t.height+t.depth+2*r;if(/fbox|color/.test(e)){if(n=Lt.makeSpan([\"stretchy\",e],[],a),\"fbox\"===e){var i=a.color&&a.getColor();i&&(n.style.borderColor=i)}}else{var s=[];/^[bx]cancel$/.test(e)&&s.push(new H({x1:\"0\",y1:\"0\",x2:\"100%\",y2:\"100%\",\"stroke-width\":\"0.046em\"})),/^x?cancel$/.test(e)&&s.push(new H({x1:\"0\",y1:\"100%\",x2:\"100%\",y2:\"0\",\"stroke-width\":\"0.046em\"}));var h=new R(s,{width:\"100%\",height:o+\"em\"});n=Lt.makeSvgSpan([],[h],a)}return n.height=o,n.style.height=o+\"em\",n},Be=function(t){var e=new pe.MathNode(\"mo\",[new pe.TextNode(ze[t.substr(1)])]);return e.setAttribute(\"stretchy\",\"true\"),e},qe=function(t,e){var r=function(){var r=4e5,a=t.label.substr(1);if(c.contains([\"widehat\",\"widecheck\",\"widetilde\",\"utilde\"],a)){var n,o,i,s=Te(t.base);if(s>5)\"widehat\"===a||\"widecheck\"===a?(n=420,r=2364,i=.42,o=a+\"4\"):(n=312,r=2340,i=.34,o=\"tilde4\");else{var h=[1,1,2,2,3,3][s];\"widehat\"===a||\"widecheck\"===a?(r=[0,1062,2364,2364,2364][h],n=[0,239,300,360,420][h],i=[0,.24,.3,.3,.36,.42][h],o=a+h):(r=[0,600,1033,2339,2340][h],n=[0,260,286,306,312][h],i=[0,.26,.286,.3,.306,.34][h],o=\"tilde\"+h)}var l=new L(o),m=new R([l],{width:\"100%\",height:i+\"em\",viewBox:\"0 0 \"+r+\" \"+n,preserveAspectRatio:\"none\"});return{span:Lt.makeSvgSpan([],[m],e),minWidth:0,height:i}}var u,d,p=[],f=Me[a],g=f[0],x=f[1],v=f[2],b=v/1e3,y=g.length;if(1===y)u=[\"hide-tail\"],d=[f[3]];else if(2===y)u=[\"halfarrow-left\",\"halfarrow-right\"],d=[\"xMinYMin\",\"xMaxYMin\"];else{if(3!==y)throw new Error(\"Correct katexImagesData or update code here to support\\n \"+y+\" children.\");u=[\"brace-left\",\"brace-center\",\"brace-right\"],d=[\"xMinYMin\",\"xMidYMin\",\"xMaxYMin\"]}for(var w=0;w<y;w++){var k=new L(g[w]),S=new R([k],{width:\"400em\",height:b+\"em\",viewBox:\"0 0 \"+r+\" \"+v,preserveAspectRatio:d[w]+\" slice\"}),z=Lt.makeSvgSpan([u[w]],[S],e);if(1===y)return{span:z,minWidth:x,height:b};z.style.height=b+\"em\",p.push(z)}return{span:Lt.makeSpan([\"stretchy\"],p,e),minWidth:x,height:b}}(),a=r.span,n=r.minWidth,o=r.height;return a.height=o,a.style.height=o+\"em\",n>0&&(a.style.minWidth=n+\"em\"),a},Ce=function(t,e){var r,a,n,o=Pt(t,\"supsub\");o?(r=(a=Ht(o.base,\"accent\")).base,o.base=r,n=function(t){if(t instanceof N)return t;throw new Error(\"Expected span<HtmlDomNode> but got \"+String(t)+\".\")}(he(o,e)),o.base=a):r=(a=Ht(t,\"accent\")).base;var i=he(r,e.havingCrampedStyle()),s=0;if(a.isShifty&&c.isCharacterBox(r)){var h=c.getBaseElem(r);s=function(t){if(t instanceof E)return t;throw new Error(\"Expected symbolNode but got \"+String(t)+\".\")}(he(h,e.havingCrampedStyle())).skew}var l,m=Math.min(i.height,e.fontMetrics().xHeight);if(a.isStretchy)l=qe(a,e),l=Lt.makeVList({positionType:\"firstBaseline\",children:[{type:\"elem\",elem:i},{type:\"elem\",elem:l,wrapperClasses:[\"svg-align\"],wrapperStyle:s>0?{width:\"calc(100% - \"+2*s+\"em)\",marginLeft:2*s+\"em\"}:void 0}]},e);else{var u,d;\"\\\\vec\"===a.label?(u=Lt.staticSvg(\"vec\",e),d=Lt.svgData.vec[1]):((u=Lt.makeSymbol(a.label,\"Main-Regular\",a.mode,e)).italic=0,d=u.width),l=Lt.makeSpan([\"accent-body\"],[u]);var p=\"\\\\textcircled\"===a.label;p&&(l.classes.push(\"accent-full\"),m=i.height);var f=s;p||(f-=d/2),l.style.left=f+\"em\",\"\\\\textcircled\"===a.label&&(l.style.top=\".2em\"),l=Lt.makeVList({positionType:\"firstBaseline\",children:[{type:\"elem\",elem:i},{type:\"kern\",size:-m},{type:\"elem\",elem:l}]},e)}var g=Lt.makeSpan([\"mord\",\"accent\"],[l],e);return n?(n.children[0]=g,n.height=Math.max(g.height,n.height),n.classes[0]=\"mord\",n):g},Ne=function(t,e){var r=t.isStretchy?Be(t.label):new pe.MathNode(\"mo\",[fe(t.label,t.mode)]),a=new pe.MathNode(\"mover\",[ye(t.base,e),r]);return a.setAttribute(\"accent\",\"true\"),a},Ie=new RegExp([\"\\\\acute\",\"\\\\grave\",\"\\\\ddot\",\"\\\\tilde\",\"\\\\bar\",\"\\\\breve\",\"\\\\check\",\"\\\\hat\",\"\\\\vec\",\"\\\\dot\",\"\\\\mathring\"].map(function(t){return\"\\\\\"+t}).join(\"|\"));$t({type:\"accent\",names:[\"\\\\acute\",\"\\\\grave\",\"\\\\ddot\",\"\\\\tilde\",\"\\\\bar\",\"\\\\breve\",\"\\\\check\",\"\\\\hat\",\"\\\\vec\",\"\\\\dot\",\"\\\\mathring\",\"\\\\widecheck\",\"\\\\widehat\",\"\\\\widetilde\",\"\\\\overrightarrow\",\"\\\\overleftarrow\",\"\\\\Overrightarrow\",\"\\\\overleftrightarrow\",\"\\\\overgroup\",\"\\\\overlinesegment\",\"\\\\overleftharpoon\",\"\\\\overrightharpoon\"],props:{numArgs:1},handler:function(t,e){var r=e[0],a=!Ie.test(t.funcName),n=!a||\"\\\\widehat\"===t.funcName||\"\\\\widetilde\"===t.funcName||\"\\\\widecheck\"===t.funcName;return{type:\"accent\",mode:t.parser.mode,label:t.funcName,isStretchy:a,isShifty:n,base:r}},htmlBuilder:Ce,mathmlBuilder:Ne}),$t({type:\"accent\",names:[\"\\\\'\",\"\\\\`\",\"\\\\^\",\"\\\\~\",\"\\\\=\",\"\\\\u\",\"\\\\.\",'\\\\\"',\"\\\\r\",\"\\\\H\",\"\\\\v\",\"\\\\textcircled\"],props:{numArgs:1,allowedInText:!0,allowedInMath:!1},handler:function(t,e){var r=e[0];return{type:\"accent\",mode:t.parser.mode,label:t.funcName,isStretchy:!1,isShifty:!0,base:r}},htmlBuilder:Ce,mathmlBuilder:Ne}),$t({type:\"accentUnder\",names:[\"\\\\underleftarrow\",\"\\\\underrightarrow\",\"\\\\underleftrightarrow\",\"\\\\undergroup\",\"\\\\underlinesegment\",\"\\\\utilde\"],props:{numArgs:1},handler:function(t,e){var r=t.parser,a=t.funcName,n=e[0];return{type:\"accentUnder\",mode:r.mode,label:a,base:n}},htmlBuilder:function(t,e){var r=he(t.base,e),a=qe(t,e),n=\"\\\\utilde\"===t.label?.12:0,o=Lt.makeVList({positionType:\"bottom\",positionData:a.height+n,children:[{type:\"elem\",elem:a,wrapperClasses:[\"svg-align\"]},{type:\"kern\",size:n},{type:\"elem\",elem:r}]},e);return Lt.makeSpan([\"mord\",\"accentunder\"],[o],e)},mathmlBuilder:function(t,e){var r=Be(t.label),a=new pe.MathNode(\"munder\",[ye(t.base,e),r]);return a.setAttribute(\"accentunder\",\"true\"),a}});var Oe=function(t){var e=new pe.MathNode(\"mpadded\",t?[t]:[]);return e.setAttribute(\"width\",\"+0.6em\"),e.setAttribute(\"lspace\",\"0.3em\"),e};$t({type:\"xArrow\",names:[\"\\\\xleftarrow\",\"\\\\xrightarrow\",\"\\\\xLeftarrow\",\"\\\\xRightarrow\",\"\\\\xleftrightarrow\",\"\\\\xLeftrightarrow\",\"\\\\xhookleftarrow\",\"\\\\xhookrightarrow\",\"\\\\xmapsto\",\"\\\\xrightharpoondown\",\"\\\\xrightharpoonup\",\"\\\\xleftharpoondown\",\"\\\\xleftharpoonup\",\"\\\\xrightleftharpoons\",\"\\\\xleftrightharpoons\",\"\\\\xlongequal\",\"\\\\xtwoheadrightarrow\",\"\\\\xtwoheadleftarrow\",\"\\\\xtofrom\",\"\\\\xrightleftarrows\",\"\\\\xrightequilibrium\",\"\\\\xleftequilibrium\"],props:{numArgs:1,numOptionalArgs:1},handler:function(t,e,r){var a=t.parser,n=t.funcName;return{type:\"xArrow\",mode:a.mode,label:n,body:e[0],below:r[0]}},htmlBuilder:function(t,e){var r,a=e.style,n=e.havingStyle(a.sup()),o=Lt.wrapFragment(he(t.body,n,e),e);o.classes.push(\"x-arrow-pad\"),t.below&&(n=e.havingStyle(a.sub()),(r=Lt.wrapFragment(he(t.below,n,e),e)).classes.push(\"x-arrow-pad\"));var i,s=qe(t,e),h=-e.fontMetrics().axisHeight+.5*s.height,l=-e.fontMetrics().axisHeight-.5*s.height-.111;if((o.depth>.25||\"\\\\xleftequilibrium\"===t.label)&&(l-=o.depth),r){var m=-e.fontMetrics().axisHeight+r.height+.5*s.height+.111;i=Lt.makeVList({positionType:\"individualShift\",children:[{type:\"elem\",elem:o,shift:l},{type:\"elem\",elem:s,shift:h},{type:\"elem\",elem:r,shift:m}]},e)}else i=Lt.makeVList({positionType:\"individualShift\",children:[{type:\"elem\",elem:o,shift:l},{type:\"elem\",elem:s,shift:h}]},e);return i.children[0].children[0].children[1].classes.push(\"svg-align\"),Lt.makeSpan([\"mrel\",\"x-arrow\"],[i],e)},mathmlBuilder:function(t,e){var r,a=Be(t.label);if(t.body){var n=Oe(ye(t.body,e));if(t.below){var o=Oe(ye(t.below,e));r=new pe.MathNode(\"munderover\",[a,o,n])}else r=new pe.MathNode(\"mover\",[a,n])}else if(t.below){var i=Oe(ye(t.below,e));r=new pe.MathNode(\"munder\",[a,i])}else r=Oe(),r=new pe.MathNode(\"mover\",[a,r]);return r}}),$t({type:\"textord\",names:[\"\\\\@char\"],props:{numArgs:1,allowedInText:!0},handler:function(t,e){for(var r=t.parser,a=Ht(e[0],\"ordgroup\").body,n=\"\",o=0;o<a.length;o++){n+=Ht(a[o],\"textord\").text}var s=parseInt(n);if(isNaN(s))throw new i(\"\\\\@char has non-numeric argument \"+n);return{type:\"textord\",mode:r.mode,text:String.fromCharCode(s)}}});var Ee=function(t,e){var r=ae(t.body,e.withColor(t.color),!1);return Lt.makeFragment(r)},Re=function(t,e){var r=ve(t.body,e.withColor(t.color)),a=new pe.MathNode(\"mstyle\",r);return a.setAttribute(\"mathcolor\",t.color),a};$t({type:\"color\",names:[\"\\\\textcolor\"],props:{numArgs:2,allowedInText:!0,greediness:3,argTypes:[\"color\",\"original\"]},handler:function(t,e){var r=t.parser,a=Ht(e[0],\"color-token\").color,n=e[1];return{type:\"color\",mode:r.mode,color:a,body:Kt(n)}},htmlBuilder:Ee,mathmlBuilder:Re}),$t({type:\"color\",names:[\"\\\\color\"],props:{numArgs:1,allowedInText:!0,greediness:3,argTypes:[\"color\"]},handler:function(t,e){var r=t.parser,a=t.breakOnTokenText,n=Ht(e[0],\"color-token\").color,o=r.parseExpression(!0,a);return{type:\"color\",mode:r.mode,color:n,body:o}},htmlBuilder:Ee,mathmlBuilder:Re}),$t({type:\"cr\",names:[\"\\\\cr\",\"\\\\newline\"],props:{numArgs:0,numOptionalArgs:1,argTypes:[\"size\"],allowedInText:!0},handler:function(t,e,r){var a=t.parser,n=t.funcName,o=r[0],i=\"\\\\cr\"===n,s=!1;return i||(s=!a.settings.displayMode||!a.settings.useStrictBehavior(\"newLineInDisplayMode\",\"In LaTeX, \\\\\\\\ or \\\\newline does nothing in display mode\")),{type:\"cr\",mode:a.mode,newLine:s,newRow:i,size:o&&Ht(o,\"size\").value}},htmlBuilder:function(t,e){if(t.newRow)throw new i(\"\\\\cr valid only within a tabular/array environment\");var r=Lt.makeSpan([\"mspace\"],[],e);return t.newLine&&(r.classes.push(\"newline\"),t.size&&(r.style.marginTop=zt(t.size,e)+\"em\")),r},mathmlBuilder:function(t,e){var r=new pe.MathNode(\"mspace\");return t.newLine&&(r.setAttribute(\"linebreak\",\"newline\"),t.size&&r.setAttribute(\"height\",zt(t.size,e)+\"em\")),r}});var Le=function(t,e,r){var a=V(_.math[t]&&_.math[t].replace||t,e,r);if(!a)throw new Error(\"Unsupported symbol \"+t+\" and font size \"+e+\".\");return a},He=function(t,e,r,a){var n=r.havingBaseStyle(e),o=Lt.makeSpan(a.concat(n.sizingClasses(r)),[t],r),i=n.sizeMultiplier/r.sizeMultiplier;return o.height*=i,o.depth*=i,o.maxFontSize=n.sizeMultiplier,o},Pe=function(t,e,r){var a=e.havingBaseStyle(r),n=(1-e.sizeMultiplier/a.sizeMultiplier)*e.fontMetrics().axisHeight;t.classes.push(\"delimcenter\"),t.style.top=n+\"em\",t.height-=n,t.depth+=n},De=function(t,e,r,a,n,o){var i=function(t,e,r,a){return Lt.makeSymbol(t,\"Size\"+e+\"-Regular\",r,a)}(t,e,n,a),s=He(Lt.makeSpan([\"delimsizing\",\"size\"+e],[i],a),w.TEXT,a,o);return r&&Pe(s,a,w.TEXT),s},Fe=function(t,e,r){var a;return a=\"Size1-Regular\"===e?\"delim-size1\":\"delim-size4\",{type:\"elem\",elem:Lt.makeSpan([\"delimsizinginner\",a],[Lt.makeSpan([],[Lt.makeSymbol(t,e,r)])])}},Ve=function(t,e,r,a,n,o){var i,s,h,l;i=h=l=t,s=null;var m=\"Size1-Regular\";\"\\\\uparrow\"===t?h=l=\"\\u23d0\":\"\\\\Uparrow\"===t?h=l=\"\\u2016\":\"\\\\downarrow\"===t?i=h=\"\\u23d0\":\"\\\\Downarrow\"===t?i=h=\"\\u2016\":\"\\\\updownarrow\"===t?(i=\"\\\\uparrow\",h=\"\\u23d0\",l=\"\\\\downarrow\"):\"\\\\Updownarrow\"===t?(i=\"\\\\Uparrow\",h=\"\\u2016\",l=\"\\\\Downarrow\"):\"[\"===t||\"\\\\lbrack\"===t?(i=\"\\u23a1\",h=\"\\u23a2\",l=\"\\u23a3\",m=\"Size4-Regular\"):\"]\"===t||\"\\\\rbrack\"===t?(i=\"\\u23a4\",h=\"\\u23a5\",l=\"\\u23a6\",m=\"Size4-Regular\"):\"\\\\lfloor\"===t||\"\\u230a\"===t?(h=i=\"\\u23a2\",l=\"\\u23a3\",m=\"Size4-Regular\"):\"\\\\lceil\"===t||\"\\u2308\"===t?(i=\"\\u23a1\",h=l=\"\\u23a2\",m=\"Size4-Regular\"):\"\\\\rfloor\"===t||\"\\u230b\"===t?(h=i=\"\\u23a5\",l=\"\\u23a6\",m=\"Size4-Regular\"):\"\\\\rceil\"===t||\"\\u2309\"===t?(i=\"\\u23a4\",h=l=\"\\u23a5\",m=\"Size4-Regular\"):\"(\"===t||\"\\\\lparen\"===t?(i=\"\\u239b\",h=\"\\u239c\",l=\"\\u239d\",m=\"Size4-Regular\"):\")\"===t||\"\\\\rparen\"===t?(i=\"\\u239e\",h=\"\\u239f\",l=\"\\u23a0\",m=\"Size4-Regular\"):\"\\\\{\"===t||\"\\\\lbrace\"===t?(i=\"\\u23a7\",s=\"\\u23a8\",l=\"\\u23a9\",h=\"\\u23aa\",m=\"Size4-Regular\"):\"\\\\}\"===t||\"\\\\rbrace\"===t?(i=\"\\u23ab\",s=\"\\u23ac\",l=\"\\u23ad\",h=\"\\u23aa\",m=\"Size4-Regular\"):\"\\\\lgroup\"===t||\"\\u27ee\"===t?(i=\"\\u23a7\",l=\"\\u23a9\",h=\"\\u23aa\",m=\"Size4-Regular\"):\"\\\\rgroup\"===t||\"\\u27ef\"===t?(i=\"\\u23ab\",l=\"\\u23ad\",h=\"\\u23aa\",m=\"Size4-Regular\"):\"\\\\lmoustache\"===t||\"\\u23b0\"===t?(i=\"\\u23a7\",l=\"\\u23ad\",h=\"\\u23aa\",m=\"Size4-Regular\"):\"\\\\rmoustache\"!==t&&\"\\u23b1\"!==t||(i=\"\\u23ab\",l=\"\\u23a9\",h=\"\\u23aa\",m=\"Size4-Regular\");var c=Le(i,m,n),u=c.height+c.depth,d=Le(h,m,n),p=d.height+d.depth,f=Le(l,m,n),g=f.height+f.depth,x=0,v=1;if(null!==s){var b=Le(s,m,n);x=b.height+b.depth,v=2}var y=u+g+x,k=Math.ceil((e-y)/(v*p)),S=y+k*v*p,z=a.fontMetrics().axisHeight;r&&(z*=a.sizeMultiplier);var M=S/2-z,T=[];if(T.push(Fe(l,m,n)),null===s)for(var A=0;A<k;A++)T.push(Fe(h,m,n));else{for(var B=0;B<k;B++)T.push(Fe(h,m,n));T.push(Fe(s,m,n));for(var q=0;q<k;q++)T.push(Fe(h,m,n))}T.push(Fe(i,m,n));var C=a.havingBaseStyle(w.TEXT),N=Lt.makeVList({positionType:\"bottom\",positionData:M,children:T},C);return He(Lt.makeSpan([\"delimsizing\",\"mult\"],[N],C),w.TEXT,a,o)},Ue=function(t,e,r,a){var n;\"sqrtTall\"===t&&(n=\"M702 80H400000v40H742v\"+(r-54-80)+\"l-4 4-4 4c-.667.7\\n-2 1.5-4 2.5s-4.167 1.833-6.5 2.5-5.5 1-9.5 1h-12l-28-84c-16.667-52-96.667\\n-294.333-240-727l-212 -643 -85 170c-4-3.333-8.333-7.667-13 -13l-13-13l77-155\\n 77-156c66 199.333 139 419.667 219 661 l218 661zM702 80H400000v40H742z\");var o=new L(t,n),i=new R([o],{width:\"400em\",height:e+\"em\",viewBox:\"0 0 400000 \"+r,preserveAspectRatio:\"xMinYMin slice\"});return Lt.makeSvgSpan([\"hide-tail\"],[i],a)},Ge=[\"(\",\"\\\\lparen\",\")\",\"\\\\rparen\",\"[\",\"\\\\lbrack\",\"]\",\"\\\\rbrack\",\"\\\\{\",\"\\\\lbrace\",\"\\\\}\",\"\\\\rbrace\",\"\\\\lfloor\",\"\\\\rfloor\",\"\\u230a\",\"\\u230b\",\"\\\\lceil\",\"\\\\rceil\",\"\\u2308\",\"\\u2309\",\"\\\\surd\"],Xe=[\"\\\\uparrow\",\"\\\\downarrow\",\"\\\\updownarrow\",\"\\\\Uparrow\",\"\\\\Downarrow\",\"\\\\Updownarrow\",\"|\",\"\\\\|\",\"\\\\vert\",\"\\\\Vert\",\"\\\\lvert\",\"\\\\rvert\",\"\\\\lVert\",\"\\\\rVert\",\"\\\\lgroup\",\"\\\\rgroup\",\"\\u27ee\",\"\\u27ef\",\"\\\\lmoustache\",\"\\\\rmoustache\",\"\\u23b0\",\"\\u23b1\"],Ye=[\"<\",\">\",\"\\\\langle\",\"\\\\rangle\",\"/\",\"\\\\backslash\",\"\\\\lt\",\"\\\\gt\"],_e=[0,1.2,1.8,2.4,3],We=[{type:\"small\",style:w.SCRIPTSCRIPT},{type:\"small\",style:w.SCRIPT},{type:\"small\",style:w.TEXT},{type:\"large\",size:1},{type:\"large\",size:2},{type:\"large\",size:3},{type:\"large\",size:4}],je=[{type:\"small\",style:w.SCRIPTSCRIPT},{type:\"small\",style:w.SCRIPT},{type:\"small\",style:w.TEXT},{type:\"stack\"}],$e=[{type:\"small\",style:w.SCRIPTSCRIPT},{type:\"small\",style:w.SCRIPT},{type:\"small\",style:w.TEXT},{type:\"large\",size:1},{type:\"large\",size:2},{type:\"large\",size:3},{type:\"large\",size:4},{type:\"stack\"}],Ze=function(t){if(\"small\"===t.type)return\"Main-Regular\";if(\"large\"===t.type)return\"Size\"+t.size+\"-Regular\";if(\"stack\"===t.type)return\"Size4-Regular\";throw new Error(\"Add support for delim type '\"+t.type+\"' here.\")},Ke=function(t,e,r,a){for(var n=Math.min(2,3-a.style.size);n<r.length&&\"stack\"!==r[n].type;n++){var o=Le(t,Ze(r[n]),\"math\"),i=o.height+o.depth;if(\"small\"===r[n].type&&(i*=a.havingBaseStyle(r[n].style).sizeMultiplier),i>e)return r[n]}return r[r.length-1]},Je=function(t,e,r,a,n,o){var i;\"<\"===t||\"\\\\lt\"===t||\"\\u27e8\"===t?t=\"\\\\langle\":\">\"!==t&&\"\\\\gt\"!==t&&\"\\u27e9\"!==t||(t=\"\\\\rangle\"),i=c.contains(Ye,t)?We:c.contains(Ge,t)?$e:je;var s=Ke(t,e,i,a);return\"small\"===s.type?function(t,e,r,a,n,o){var i=Lt.makeSymbol(t,\"Main-Regular\",n,a),s=He(i,e,a,o);return r&&Pe(s,a,e),s}(t,s.style,r,a,n,o):\"large\"===s.type?De(t,s.size,r,a,n,o):Ve(t,e,r,a,n,o)},Qe=function(t,e){var r,a,n=e.havingBaseSizing(),o=Ke(\"\\\\surd\",t*n.sizeMultiplier,$e,n),i=n.sizeMultiplier,s=0,h=0,l=0;return\"small\"===o.type?(t<1?i=1:t<1.4&&(i=.7),h=1/i,(r=Ue(\"sqrtMain\",s=1.08/i,l=1080,e)).style.minWidth=\"0.853em\",a=.833/i):\"large\"===o.type?(l=1080*_e[o.size],h=_e[o.size]/i,s=(_e[o.size]+.08)/i,(r=Ue(\"sqrtSize\"+o.size,s,l,e)).style.minWidth=\"1.02em\",a=1/i):(s=t+.08,h=t,l=Math.floor(1e3*t)+80,(r=Ue(\"sqrtTall\",s,l,e)).style.minWidth=\"0.742em\",a=1.056),r.height=h,r.style.height=s+\"em\",{span:r,advanceWidth:a,ruleWidth:e.fontMetrics().sqrtRuleThickness*i}},tr=function(t,e,r,a,n){if(\"<\"===t||\"\\\\lt\"===t||\"\\u27e8\"===t?t=\"\\\\langle\":\">\"!==t&&\"\\\\gt\"!==t&&\"\\u27e9\"!==t||(t=\"\\\\rangle\"),c.contains(Ge,t)||c.contains(Ye,t))return De(t,e,!1,r,a,n);if(c.contains(Xe,t))return Ve(t,_e[e],!1,r,a,n);throw new i(\"Illegal delimiter: '\"+t+\"'\")},er=Je,rr=function(t,e,r,a,n,o){var i=a.fontMetrics().axisHeight*a.sizeMultiplier,s=5/a.fontMetrics().ptPerEm,h=Math.max(e-i,r+i),l=Math.max(h/500*901,2*h-s);return Je(t,l,!0,a,n,o)},ar={\"\\\\bigl\":{mclass:\"mopen\",size:1},\"\\\\Bigl\":{mclass:\"mopen\",size:2},\"\\\\biggl\":{mclass:\"mopen\",size:3},\"\\\\Biggl\":{mclass:\"mopen\",size:4},\"\\\\bigr\":{mclass:\"mclose\",size:1},\"\\\\Bigr\":{mclass:\"mclose\",size:2},\"\\\\biggr\":{mclass:\"mclose\",size:3},\"\\\\Biggr\":{mclass:\"mclose\",size:4},\"\\\\bigm\":{mclass:\"mrel\",size:1},\"\\\\Bigm\":{mclass:\"mrel\",size:2},\"\\\\biggm\":{mclass:\"mrel\",size:3},\"\\\\Biggm\":{mclass:\"mrel\",size:4},\"\\\\big\":{mclass:\"mord\",size:1},\"\\\\Big\":{mclass:\"mord\",size:2},\"\\\\bigg\":{mclass:\"mord\",size:3},\"\\\\Bigg\":{mclass:\"mord\",size:4}},nr=[\"(\",\"\\\\lparen\",\")\",\"\\\\rparen\",\"[\",\"\\\\lbrack\",\"]\",\"\\\\rbrack\",\"\\\\{\",\"\\\\lbrace\",\"\\\\}\",\"\\\\rbrace\",\"\\\\lfloor\",\"\\\\rfloor\",\"\\u230a\",\"\\u230b\",\"\\\\lceil\",\"\\\\rceil\",\"\\u2308\",\"\\u2309\",\"<\",\">\",\"\\\\langle\",\"\\u27e8\",\"\\\\rangle\",\"\\u27e9\",\"\\\\lt\",\"\\\\gt\",\"\\\\lvert\",\"\\\\rvert\",\"\\\\lVert\",\"\\\\rVert\",\"\\\\lgroup\",\"\\\\rgroup\",\"\\u27ee\",\"\\u27ef\",\"\\\\lmoustache\",\"\\\\rmoustache\",\"\\u23b0\",\"\\u23b1\",\"/\",\"\\\\backslash\",\"|\",\"\\\\vert\",\"\\\\|\",\"\\\\Vert\",\"\\\\uparrow\",\"\\\\Uparrow\",\"\\\\downarrow\",\"\\\\Downarrow\",\"\\\\updownarrow\",\"\\\\Updownarrow\",\".\"];function or(t,e){var r=Ft(t);if(r&&c.contains(nr,r.text))return r;throw new i(\"Invalid delimiter: '\"+(r?r.text:JSON.stringify(t))+\"' after '\"+e.funcName+\"'\",t)}function ir(t){if(!t.body)throw new Error(\"Bug: The leftright ParseNode wasn't fully parsed.\")}$t({type:\"delimsizing\",names:[\"\\\\bigl\",\"\\\\Bigl\",\"\\\\biggl\",\"\\\\Biggl\",\"\\\\bigr\",\"\\\\Bigr\",\"\\\\biggr\",\"\\\\Biggr\",\"\\\\bigm\",\"\\\\Bigm\",\"\\\\biggm\",\"\\\\Biggm\",\"\\\\big\",\"\\\\Big\",\"\\\\bigg\",\"\\\\Bigg\"],props:{numArgs:1},handler:function(t,e){var r=or(e[0],t);return{type:\"delimsizing\",mode:t.parser.mode,size:ar[t.funcName].size,mclass:ar[t.funcName].mclass,delim:r.text}},htmlBuilder:function(t,e){return\".\"===t.delim?Lt.makeSpan([t.mclass]):tr(t.delim,t.size,e,t.mode,[t.mclass])},mathmlBuilder:function(t){var e=[];\".\"!==t.delim&&e.push(fe(t.delim,t.mode));var r=new pe.MathNode(\"mo\",e);return\"mopen\"===t.mclass||\"mclose\"===t.mclass?r.setAttribute(\"fence\",\"true\"):r.setAttribute(\"fence\",\"false\"),r}}),$t({type:\"leftright-right\",names:[\"\\\\right\"],props:{numArgs:1},handler:function(t,e){return{type:\"leftright-right\",mode:t.parser.mode,delim:or(e[0],t).text}}}),$t({type:\"leftright\",names:[\"\\\\left\"],props:{numArgs:1},handler:function(t,e){var r=or(e[0],t),a=t.parser;++a.leftrightDepth;var n=a.parseExpression(!1);--a.leftrightDepth,a.expect(\"\\\\right\",!1);var o=Ht(a.parseFunction(),\"leftright-right\");return{type:\"leftright\",mode:a.mode,body:n,left:r.text,right:o.delim}},htmlBuilder:function(t,e){ir(t);for(var r,a,n=ae(t.body,e,!0,[\"mopen\",\"mclose\"]),o=0,i=0,s=!1,h=0;h<n.length;h++)n[h].isMiddle?s=!0:(o=Math.max(n[h].height,o),i=Math.max(n[h].depth,i));if(o*=e.sizeMultiplier,i*=e.sizeMultiplier,r=\".\"===t.left?se(e,[\"mopen\"]):rr(t.left,o,i,e,t.mode,[\"mopen\"]),n.unshift(r),s)for(var l=1;l<n.length;l++){var m=n[l].isMiddle;m&&(n[l]=rr(m.delim,o,i,m.options,t.mode,[]))}return a=\".\"===t.right?se(e,[\"mclose\"]):rr(t.right,o,i,e,t.mode,[\"mclose\"]),n.push(a),Lt.makeSpan([\"minner\"],n,e)},mathmlBuilder:function(t,e){ir(t);var r=ve(t.body,e);if(\".\"!==t.left){var a=new pe.MathNode(\"mo\",[fe(t.left,t.mode)]);a.setAttribute(\"fence\",\"true\"),r.unshift(a)}if(\".\"!==t.right){var n=new pe.MathNode(\"mo\",[fe(t.right,t.mode)]);n.setAttribute(\"fence\",\"true\"),r.push(n)}return ge(r)}}),$t({type:\"middle\",names:[\"\\\\middle\"],props:{numArgs:1},handler:function(t,e){var r=or(e[0],t);if(!t.parser.leftrightDepth)throw new i(\"\\\\middle without preceding \\\\left\",r);return{type:\"middle\",mode:t.parser.mode,delim:r.text}},htmlBuilder:function(t,e){var r;if(\".\"===t.delim)r=se(e,[]);else{r=tr(t.delim,1,e,t.mode,[]);var a={delim:t.delim,options:e};r.isMiddle=a}return r},mathmlBuilder:function(t,e){var r=\"\\\\vert\"===t.delim||\"|\"===t.delim?fe(\"|\",\"text\"):fe(t.delim,t.mode),a=new pe.MathNode(\"mo\",[r]);return a.setAttribute(\"fence\",\"true\"),a.setAttribute(\"lspace\",\"0.05em\"),a.setAttribute(\"rspace\",\"0.05em\"),a}});var sr=function(t,e){var r,a,n=Lt.wrapFragment(he(t.body,e),e),o=t.label.substr(1),i=e.sizeMultiplier,s=0,h=c.isCharacterBox(t.body);if(\"sout\"===o)(r=Lt.makeSpan([\"stretchy\",\"sout\"])).height=e.fontMetrics().defaultRuleThickness/i,s=-.5*e.fontMetrics().xHeight;else{/cancel/.test(o)?h||n.classes.push(\"cancel-pad\"):n.classes.push(\"boxpad\");var l=0;l=/box/.test(o)?\"colorbox\"===o?.3:.34:h?.2:0,r=Ae(n,o,l,e),s=n.depth+l,t.backgroundColor&&(r.style.backgroundColor=t.backgroundColor,t.borderColor&&(r.style.borderColor=t.borderColor))}return a=t.backgroundColor?Lt.makeVList({positionType:\"individualShift\",children:[{type:\"elem\",elem:r,shift:s},{type:\"elem\",elem:n,shift:0}]},e):Lt.makeVList({positionType:\"individualShift\",children:[{type:\"elem\",elem:n,shift:0},{type:\"elem\",elem:r,shift:s,wrapperClasses:/cancel/.test(o)?[\"svg-align\"]:[]}]},e),/cancel/.test(o)&&(a.height=n.height,a.depth=n.depth),/cancel/.test(o)&&!h?Lt.makeSpan([\"mord\",\"cancel-lap\"],[a],e):Lt.makeSpan([\"mord\"],[a],e)},hr=function(t,e){var r=new pe.MathNode(t.label.indexOf(\"colorbox\")>-1?\"mpadded\":\"menclose\",[ye(t.body,e)]);switch(t.label){case\"\\\\cancel\":r.setAttribute(\"notation\",\"updiagonalstrike\");break;case\"\\\\bcancel\":r.setAttribute(\"notation\",\"downdiagonalstrike\");break;case\"\\\\sout\":r.setAttribute(\"notation\",\"horizontalstrike\");break;case\"\\\\fbox\":r.setAttribute(\"notation\",\"box\");break;case\"\\\\fcolorbox\":case\"\\\\colorbox\":if(r.setAttribute(\"width\",\"+6pt\"),r.setAttribute(\"height\",\"+6pt\"),r.setAttribute(\"lspace\",\"3pt\"),r.setAttribute(\"voffset\",\"3pt\"),\"\\\\fcolorbox\"===t.label){var a=e.fontMetrics().defaultRuleThickness;r.setAttribute(\"style\",\"border: \"+a+\"em solid \"+String(t.borderColor))}break;case\"\\\\xcancel\":r.setAttribute(\"notation\",\"updiagonalstrike downdiagonalstrike\")}return t.backgroundColor&&r.setAttribute(\"mathbackground\",t.backgroundColor),r};$t({type:\"enclose\",names:[\"\\\\colorbox\"],props:{numArgs:2,allowedInText:!0,greediness:3,argTypes:[\"color\",\"text\"]},handler:function(t,e,r){var a=t.parser,n=t.funcName,o=Ht(e[0],\"color-token\").color,i=e[1];return{type:\"enclose\",mode:a.mode,label:n,backgroundColor:o,body:i}},htmlBuilder:sr,mathmlBuilder:hr}),$t({type:\"enclose\",names:[\"\\\\fcolorbox\"],props:{numArgs:3,allowedInText:!0,greediness:3,argTypes:[\"color\",\"color\",\"text\"]},handler:function(t,e,r){var a=t.parser,n=t.funcName,o=Ht(e[0],\"color-token\").color,i=Ht(e[1],\"color-token\").color,s=e[2];return{type:\"enclose\",mode:a.mode,label:n,backgroundColor:i,borderColor:o,body:s}},htmlBuilder:sr,mathmlBuilder:hr}),$t({type:\"enclose\",names:[\"\\\\fbox\"],props:{numArgs:1,argTypes:[\"text\"],allowedInText:!0},handler:function(t,e){return{type:\"enclose\",mode:t.parser.mode,label:\"\\\\fbox\",body:e[0]}}}),$t({type:\"enclose\",names:[\"\\\\cancel\",\"\\\\bcancel\",\"\\\\xcancel\",\"\\\\sout\"],props:{numArgs:1},handler:function(t,e,r){var a=t.parser,n=t.funcName,o=e[0];return{type:\"enclose\",mode:a.mode,label:n,body:o}},htmlBuilder:sr,mathmlBuilder:hr});var lr={};function mr(t){for(var e=t.type,r=t.names,a=t.props,n=t.handler,o=t.htmlBuilder,i=t.mathmlBuilder,s={type:e,numArgs:a.numArgs||0,greediness:1,allowedInText:!1,numOptionalArgs:0,handler:n},h=0;h<r.length;++h)lr[r[h]]=s;o&&(Wt[e]=o),i&&(jt[e]=i)}function cr(t){var e=[];t.consumeSpaces();for(var r=t.nextToken.text;\"\\\\hline\"===r||\"\\\\hdashline\"===r;)t.consume(),e.push(\"\\\\hdashline\"===r),t.consumeSpaces(),r=t.nextToken.text;return e}function ur(t,e,r){var a=e.hskipBeforeAndAfter,n=e.addJot,o=e.cols,s=e.arraystretch,h=e.colSeparationType;if(t.gullet.beginGroup(),t.gullet.macros.set(\"\\\\\\\\\",\"\\\\cr\"),!s){var l=t.gullet.expandMacroAsText(\"\\\\arraystretch\");if(null==l)s=1;else if(!(s=parseFloat(l))||s<0)throw new i(\"Invalid \\\\arraystretch: \"+l)}var m=[],c=[m],u=[],d=[];for(d.push(cr(t));;){var p=t.parseExpression(!1,\"\\\\cr\");p={type:\"ordgroup\",mode:t.mode,body:p},r&&(p={type:\"styling\",mode:t.mode,style:r,body:[p]}),m.push(p);var f=t.nextToken.text;if(\"&\"===f)t.consume();else{if(\"\\\\end\"===f){1===m.length&&\"styling\"===p.type&&0===p.body[0].body.length&&c.pop(),d.length<c.length+1&&d.push([]);break}if(\"\\\\cr\"!==f)throw new i(\"Expected & or \\\\\\\\ or \\\\cr or \\\\end\",t.nextToken);var g=Ht(t.parseFunction(),\"cr\");u.push(g.size),d.push(cr(t)),m=[],c.push(m)}}return t.gullet.endGroup(),{type:\"array\",mode:t.mode,addJot:n,arraystretch:s,body:c,cols:o,rowGaps:u,hskipBeforeAndAfter:a,hLinesBeforeRow:d,colSeparationType:h}}function dr(t){return\"d\"===t.substr(0,1)?\"display\":\"text\"}var pr=function(t,e){var r,a,n=t.body.length,o=t.hLinesBeforeRow,s=0,h=new Array(n),l=[],m=1/e.fontMetrics().ptPerEm,u=5*m,d=12*m,p=3*m,f=t.arraystretch*d,g=.7*f,x=.3*f,v=0;function b(t){for(var e=0;e<t.length;++e)e>0&&(v+=.25),l.push({pos:v,isDashed:t[e]})}for(b(o[0]),r=0;r<t.body.length;++r){var y=t.body[r],w=g,k=x;s<y.length&&(s=y.length);var S=new Array(y.length);for(a=0;a<y.length;++a){var z=he(y[a],e);k<z.depth&&(k=z.depth),w<z.height&&(w=z.height),S[a]=z}var M=t.rowGaps[r],T=0;M&&(T=zt(M,e))>0&&(k<(T+=x)&&(k=T),T=0),t.addJot&&(k+=p),S.height=w,S.depth=k,v+=w,S.pos=v,v+=k+T,h[r]=S,b(o[r+1])}var A,B,q=v/2+e.fontMetrics().axisHeight,C=t.cols||[],N=[];for(a=0,B=0;a<s||B<C.length;++a,++B){for(var I=C[B]||{},O=!0;\"separator\"===I.type;){if(O||((A=Lt.makeSpan([\"arraycolsep\"],[])).style.width=e.fontMetrics().doubleRuleSep+\"em\",N.push(A)),\"|\"===I.separator){var E=Lt.makeSpan([\"vertical-separator\"],[],e);E.style.height=v+\"em\",E.style.verticalAlign=-(v-q)+\"em\",N.push(E)}else{if(\":\"!==I.separator)throw new i(\"Invalid separator type: \"+I.separator);var R=Lt.makeSpan([\"vertical-separator\",\"vs-dashed\"],[],e);R.style.height=v+\"em\",R.style.verticalAlign=-(v-q)+\"em\",N.push(R)}I=C[++B]||{},O=!1}if(!(a>=s)){var L=void 0;(a>0||t.hskipBeforeAndAfter)&&0!==(L=c.deflt(I.pregap,u))&&((A=Lt.makeSpan([\"arraycolsep\"],[])).style.width=L+\"em\",N.push(A));var H=[];for(r=0;r<n;++r){var P=h[r],D=P[a];if(D){var F=P.pos-q;D.depth=P.depth,D.height=P.height,H.push({type:\"elem\",elem:D,shift:F})}}H=Lt.makeVList({positionType:\"individualShift\",children:H},e),H=Lt.makeSpan([\"col-align-\"+(I.align||\"c\")],[H]),N.push(H),(a<s-1||t.hskipBeforeAndAfter)&&0!==(L=c.deflt(I.postgap,u))&&((A=Lt.makeSpan([\"arraycolsep\"],[])).style.width=L+\"em\",N.push(A))}}if(h=Lt.makeSpan([\"mtable\"],N),l.length>0){for(var V=Lt.makeLineSpan(\"hline\",e,.05),U=Lt.makeLineSpan(\"hdashline\",e,.05),G=[{type:\"elem\",elem:h,shift:0}];l.length>0;){var X=l.pop(),Y=X.pos-q;X.isDashed?G.push({type:\"elem\",elem:U,shift:Y}):G.push({type:\"elem\",elem:V,shift:Y})}h=Lt.makeVList({positionType:\"individualShift\",children:G},e)}return Lt.makeSpan([\"mord\"],[h],e)},fr={c:\"center \",l:\"left \",r:\"right \"},gr=function(t,e){var r=new pe.MathNode(\"mtable\",t.body.map(function(t){return new pe.MathNode(\"mtr\",t.map(function(t){return new pe.MathNode(\"mtd\",[ye(t,e)])}))})),a=.16+t.arraystretch-1+(t.addJot?.09:0);r.setAttribute(\"rowspacing\",a+\"em\");var n=\"\",o=\"\";if(t.cols){var i=t.cols,s=\"\",h=!1,l=0,m=i.length;\"separator\"===i[0].type&&(n+=\"top \",l=1),\"separator\"===i[i.length-1].type&&(n+=\"bottom \",m-=1);for(var c=l;c<m;c++)\"align\"===i[c].type?(o+=fr[i[c].align],h&&(s+=\"none \"),h=!0):\"separator\"===i[c].type&&h&&(s+=\"|\"===i[c].separator?\"solid \":\"dashed \",h=!1);r.setAttribute(\"columnalign\",o.trim()),/[sd]/.test(s)&&r.setAttribute(\"columnlines\",s.trim())}if(\"align\"===t.colSeparationType){for(var u=t.cols||[],d=\"\",p=1;p<u.length;p++)d+=p%2?\"0em \":\"1em \";r.setAttribute(\"columnspacing\",d.trim())}else\"alignat\"===t.colSeparationType?r.setAttribute(\"columnspacing\",\"0em\"):r.setAttribute(\"columnspacing\",\"1em\");var f=\"\",g=t.hLinesBeforeRow;n+=g[0].length>0?\"left \":\"\",n+=g[g.length-1].length>0?\"right \":\"\";for(var x=1;x<g.length-1;x++)f+=0===g[x].length?\"none \":g[x][0]?\"dashed \":\"solid \";if(/[sd]/.test(f)&&r.setAttribute(\"rowlines\",f.trim()),\"\"===n)return r;var v=new pe.MathNode(\"menclose\",[r]);return v.setAttribute(\"notation\",n.trim()),v},xr=function(t,e){var r,a=[],n=ur(t.parser,{cols:a,addJot:!0},\"display\"),o=0,s={type:\"ordgroup\",mode:t.mode,body:[]},h=Pt(e[0],\"ordgroup\");if(h){for(var l=\"\",m=0;m<h.body.length;m++){l+=Ht(h.body[m],\"textord\").text}r=Number(l),o=2*r}var c=!o;n.body.forEach(function(t){for(var e=1;e<t.length;e+=2){var a=Ht(t[e],\"styling\");Ht(a.body[0],\"ordgroup\").body.unshift(s)}if(c)o<t.length&&(o=t.length);else{var n=t.length/2;if(r<n)throw new i(\"Too many math in a row: expected \"+r+\", but got \"+n,t[0])}});for(var u=0;u<o;++u){var d=\"r\",p=0;u%2==1?d=\"l\":u>0&&c&&(p=1),a[u]={type:\"align\",align:d,pregap:p,postgap:0}}return n.colSeparationType=c?\"align\":\"alignat\",n};mr({type:\"array\",names:[\"array\",\"darray\"],props:{numArgs:1},handler:function(t,e){var r={cols:(Ft(e[0])?[e[0]]:Ht(e[0],\"ordgroup\").body).map(function(t){var e=function(t){var e=Ft(t);if(!e)throw new Error(\"Expected node of symbol group type, but got \"+(t?\"node of type \"+t.type:String(t)));return e}(t).text;if(-1!==\"lcr\".indexOf(e))return{type:\"align\",align:e};if(\"|\"===e)return{type:\"separator\",separator:\"|\"};if(\":\"===e)return{type:\"separator\",separator:\":\"};throw new i(\"Unknown column alignment: \"+e,t)}),hskipBeforeAndAfter:!0};return ur(t.parser,r,dr(t.envName))},htmlBuilder:pr,mathmlBuilder:gr}),mr({type:\"array\",names:[\"matrix\",\"pmatrix\",\"bmatrix\",\"Bmatrix\",\"vmatrix\",\"Vmatrix\"],props:{numArgs:0},handler:function(t){var e={matrix:null,pmatrix:[\"(\",\")\"],bmatrix:[\"[\",\"]\"],Bmatrix:[\"\\\\{\",\"\\\\}\"],vmatrix:[\"|\",\"|\"],Vmatrix:[\"\\\\Vert\",\"\\\\Vert\"]}[t.envName],r=ur(t.parser,{hskipBeforeAndAfter:!1},dr(t.envName));return e?{type:\"leftright\",mode:t.mode,body:[r],left:e[0],right:e[1]}:r},htmlBuilder:pr,mathmlBuilder:gr}),mr({type:\"array\",names:[\"cases\",\"dcases\"],props:{numArgs:0},handler:function(t){var e=ur(t.parser,{arraystretch:1.2,cols:[{type:\"align\",align:\"l\",pregap:0,postgap:1},{type:\"align\",align:\"l\",pregap:0,postgap:0}]},dr(t.envName));return{type:\"leftright\",mode:t.mode,body:[e],left:\"\\\\{\",right:\".\"}},htmlBuilder:pr,mathmlBuilder:gr}),mr({type:\"array\",names:[\"aligned\"],props:{numArgs:0},handler:xr,htmlBuilder:pr,mathmlBuilder:gr}),mr({type:\"array\",names:[\"gathered\"],props:{numArgs:0},handler:function(t){return ur(t.parser,{cols:[{type:\"align\",align:\"c\"}],addJot:!0},\"display\")},htmlBuilder:pr,mathmlBuilder:gr}),mr({type:\"array\",names:[\"alignedat\"],props:{numArgs:1},handler:xr,htmlBuilder:pr,mathmlBuilder:gr}),$t({type:\"text\",names:[\"\\\\hline\",\"\\\\hdashline\"],props:{numArgs:0,allowedInText:!0,allowedInMath:!0},handler:function(t,e){throw new i(t.funcName+\" valid only within array environment\")}});var vr=lr;$t({type:\"environment\",names:[\"\\\\begin\",\"\\\\end\"],props:{numArgs:1,argTypes:[\"text\"]},handler:function(t,e){var r=t.parser,a=t.funcName,n=e[0];if(\"ordgroup\"!==n.type)throw new i(\"Invalid environment name\",n);for(var o=\"\",s=0;s<n.body.length;++s)o+=Ht(n.body[s],\"textord\").text;if(\"\\\\begin\"===a){if(!vr.hasOwnProperty(o))throw new i(\"No such environment: \"+o,n);var h=vr[o],l=r.parseArguments(\"\\\\begin{\"+o+\"}\",h),m=l.args,c=l.optArgs,u={mode:r.mode,envName:o,parser:r},d=h.handler(u,m,c);r.expect(\"\\\\end\",!1);var p=r.nextToken,f=Ht(r.parseFunction(),\"environment\");if(f.name!==o)throw new i(\"Mismatch: \\\\begin{\"+o+\"} matched by \\\\end{\"+f.name+\"}\",p);return d}return{type:\"environment\",mode:r.mode,name:o,nameGroup:n}}});var br=Lt.makeSpan;function yr(t,e){var r=ae(t.body,e,!0);return br([t.mclass],r,e)}function wr(t,e){var r=ve(t.body,e);return pe.newDocumentFragment(r)}$t({type:\"mclass\",names:[\"\\\\mathord\",\"\\\\mathbin\",\"\\\\mathrel\",\"\\\\mathopen\",\"\\\\mathclose\",\"\\\\mathpunct\",\"\\\\mathinner\"],props:{numArgs:1},handler:function(t,e){var r=t.parser,a=t.funcName,n=e[0];return{type:\"mclass\",mode:r.mode,mclass:\"m\"+a.substr(5),body:Kt(n)}},htmlBuilder:yr,mathmlBuilder:wr});var kr=function(t){var e=\"ordgroup\"===t.type&&t.body.length?t.body[0]:t;return\"atom\"!==e.type||\"bin\"!==e.family&&\"rel\"!==e.family?\"mord\":\"m\"+e.family};$t({type:\"mclass\",names:[\"\\\\@binrel\"],props:{numArgs:2},handler:function(t,e){return{type:\"mclass\",mode:t.parser.mode,mclass:kr(e[0]),body:[e[1]]}}}),$t({type:\"mclass\",names:[\"\\\\stackrel\",\"\\\\overset\",\"\\\\underset\"],props:{numArgs:2},handler:function(t,e){var r,a=t.parser,n=t.funcName,o=e[1],i=e[0];r=\"\\\\stackrel\"!==n?kr(o):\"mrel\";var s={type:\"op\",mode:o.mode,limits:!0,alwaysHandleSupSub:!0,parentIsSupSub:!1,symbol:!1,suppressBaseShift:\"\\\\stackrel\"!==n,body:Kt(o)},h={type:\"supsub\",mode:i.mode,base:s,sup:\"\\\\underset\"===n?null:i,sub:\"\\\\underset\"===n?i:null};return{type:\"mclass\",mode:a.mode,mclass:r,body:[h]}},htmlBuilder:yr,mathmlBuilder:wr});var Sr=function(t,e){var r=t.font,a=e.withFont(r);return he(t.body,a)},zr=function(t,e){var r=t.font,a=e.withFont(r);return ye(t.body,a)},Mr={\"\\\\Bbb\":\"\\\\mathbb\",\"\\\\bold\":\"\\\\mathbf\",\"\\\\frak\":\"\\\\mathfrak\",\"\\\\bm\":\"\\\\boldsymbol\"};$t({type:\"font\",names:[\"\\\\mathrm\",\"\\\\mathit\",\"\\\\mathbf\",\"\\\\mathnormal\",\"\\\\mathbb\",\"\\\\mathcal\",\"\\\\mathfrak\",\"\\\\mathscr\",\"\\\\mathsf\",\"\\\\mathtt\",\"\\\\Bbb\",\"\\\\bold\",\"\\\\frak\"],props:{numArgs:1,greediness:2},handler:function(t,e){var r=t.parser,a=t.funcName,n=e[0],o=a;return o in Mr&&(o=Mr[o]),{type:\"font\",mode:r.mode,font:o.slice(1),body:n}},htmlBuilder:Sr,mathmlBuilder:zr}),$t({type:\"mclass\",names:[\"\\\\boldsymbol\",\"\\\\bm\"],props:{numArgs:1,greediness:2},handler:function(t,e){var r=t.parser,a=e[0];return{type:\"mclass\",mode:r.mode,mclass:kr(a),body:[{type:\"font\",mode:r.mode,font:\"boldsymbol\",body:a}]}}}),$t({type:\"font\",names:[\"\\\\rm\",\"\\\\sf\",\"\\\\tt\",\"\\\\bf\",\"\\\\it\"],props:{numArgs:0,allowedInText:!0},handler:function(t,e){var r=t.parser,a=t.funcName,n=t.breakOnTokenText,o=r.mode,i=r.parseExpression(!0,n);return{type:\"font\",mode:o,font:\"math\"+a.slice(1),body:{type:\"ordgroup\",mode:r.mode,body:i}}},htmlBuilder:Sr,mathmlBuilder:zr});var Tr=function(t,e){var r=e;return\"display\"===t?r=r.id>=w.SCRIPT.id?r.text():w.DISPLAY:\"text\"===t&&r.size===w.DISPLAY.size?r=w.TEXT:\"script\"===t?r=w.SCRIPT:\"scriptscript\"===t&&(r=w.SCRIPTSCRIPT),r},Ar=function(t,e){var r,a=Tr(t.size,e.style),n=a.fracNum(),o=a.fracDen();r=e.havingStyle(n);var i=he(t.numer,r,e);if(t.continued){var s=8.5/e.fontMetrics().ptPerEm,h=3.5/e.fontMetrics().ptPerEm;i.height=i.height<s?s:i.height,i.depth=i.depth<h?h:i.depth}r=e.havingStyle(o);var l,m,c,u,d,p,f,g,x,v,b=he(t.denom,r,e);if(t.hasBarLine?(t.barSize?(m=zt(t.barSize,e),l=Lt.makeLineSpan(\"frac-line\",e,m)):l=Lt.makeLineSpan(\"frac-line\",e),m=l.height,c=l.height):(l=null,m=0,c=e.fontMetrics().defaultRuleThickness),a.size===w.DISPLAY.size||\"display\"===t.size?(u=e.fontMetrics().num1,d=m>0?3*c:7*c,p=e.fontMetrics().denom1):(m>0?(u=e.fontMetrics().num2,d=c):(u=e.fontMetrics().num3,d=3*c),p=e.fontMetrics().denom2),l){var y=e.fontMetrics().axisHeight;u-i.depth-(y+.5*m)<d&&(u+=d-(u-i.depth-(y+.5*m))),y-.5*m-(b.height-p)<d&&(p+=d-(y-.5*m-(b.height-p)));var k=-(y-.5*m);f=Lt.makeVList({positionType:\"individualShift\",children:[{type:\"elem\",elem:b,shift:p},{type:\"elem\",elem:l,shift:k},{type:\"elem\",elem:i,shift:-u}]},e)}else{var S=u-i.depth-(b.height-p);S<d&&(u+=.5*(d-S),p+=.5*(d-S)),f=Lt.makeVList({positionType:\"individualShift\",children:[{type:\"elem\",elem:b,shift:p},{type:\"elem\",elem:i,shift:-u}]},e)}return r=e.havingStyle(a),f.height*=r.sizeMultiplier/e.sizeMultiplier,f.depth*=r.sizeMultiplier/e.sizeMultiplier,g=a.size===w.DISPLAY.size?e.fontMetrics().delim1:e.fontMetrics().delim2,x=null==t.leftDelim?se(e,[\"mopen\"]):er(t.leftDelim,g,!0,e.havingStyle(a),t.mode,[\"mopen\"]),v=t.continued?Lt.makeSpan([]):null==t.rightDelim?se(e,[\"mclose\"]):er(t.rightDelim,g,!0,e.havingStyle(a),t.mode,[\"mclose\"]),Lt.makeSpan([\"mord\"].concat(r.sizingClasses(e)),[x,Lt.makeSpan([\"mfrac\"],[f]),v],e)},Br=function(t,e){var r=new pe.MathNode(\"mfrac\",[ye(t.numer,e),ye(t.denom,e)]);if(t.hasBarLine){if(t.barSize){var a=zt(t.barSize,e);r.setAttribute(\"linethickness\",a+\"em\")}}else r.setAttribute(\"linethickness\",\"0px\");var n=Tr(t.size,e.style);if(n.size!==e.style.size){r=new pe.MathNode(\"mstyle\",[r]);var o=n.size===w.DISPLAY.size?\"true\":\"false\";r.setAttribute(\"displaystyle\",o),r.setAttribute(\"scriptlevel\",\"0\")}if(null!=t.leftDelim||null!=t.rightDelim){var i=[];if(null!=t.leftDelim){var s=new pe.MathNode(\"mo\",[new pe.TextNode(t.leftDelim.replace(\"\\\\\",\"\"))]);s.setAttribute(\"fence\",\"true\"),i.push(s)}if(i.push(r),null!=t.rightDelim){var h=new pe.MathNode(\"mo\",[new pe.TextNode(t.rightDelim.replace(\"\\\\\",\"\"))]);h.setAttribute(\"fence\",\"true\"),i.push(h)}return ge(i)}return r};$t({type:\"genfrac\",names:[\"\\\\cfrac\",\"\\\\dfrac\",\"\\\\frac\",\"\\\\tfrac\",\"\\\\dbinom\",\"\\\\binom\",\"\\\\tbinom\",\"\\\\\\\\atopfrac\",\"\\\\\\\\bracefrac\",\"\\\\\\\\brackfrac\"],props:{numArgs:2,greediness:2},handler:function(t,e){var r,a=t.parser,n=t.funcName,o=e[0],i=e[1],s=null,h=null,l=\"auto\";switch(n){case\"\\\\cfrac\":case\"\\\\dfrac\":case\"\\\\frac\":case\"\\\\tfrac\":r=!0;break;case\"\\\\\\\\atopfrac\":r=!1;break;case\"\\\\dbinom\":case\"\\\\binom\":case\"\\\\tbinom\":r=!1,s=\"(\",h=\")\";break;case\"\\\\\\\\bracefrac\":r=!1,s=\"\\\\{\",h=\"\\\\}\";break;case\"\\\\\\\\brackfrac\":r=!1,s=\"[\",h=\"]\";break;default:throw new Error(\"Unrecognized genfrac command\")}switch(n){case\"\\\\cfrac\":case\"\\\\dfrac\":case\"\\\\dbinom\":l=\"display\";break;case\"\\\\tfrac\":case\"\\\\tbinom\":l=\"text\"}return{type:\"genfrac\",mode:a.mode,continued:\"\\\\cfrac\"===n,numer:o,denom:i,hasBarLine:r,leftDelim:s,rightDelim:h,size:l,barSize:null}},htmlBuilder:Ar,mathmlBuilder:Br}),$t({type:\"infix\",names:[\"\\\\over\",\"\\\\choose\",\"\\\\atop\",\"\\\\brace\",\"\\\\brack\"],props:{numArgs:0,infix:!0},handler:function(t){var e,r=t.parser,a=t.funcName,n=t.token;switch(a){case\"\\\\over\":e=\"\\\\frac\";break;case\"\\\\choose\":e=\"\\\\binom\";break;case\"\\\\atop\":e=\"\\\\\\\\atopfrac\";break;case\"\\\\brace\":e=\"\\\\\\\\bracefrac\";break;case\"\\\\brack\":e=\"\\\\\\\\brackfrac\";break;default:throw new Error(\"Unrecognized infix genfrac command\")}return{type:\"infix\",mode:r.mode,replaceWith:e,token:n}}});var qr=[\"display\",\"text\",\"script\",\"scriptscript\"],Cr=function(t){var e=null;return t.length>0&&(e=\".\"===(e=t)?null:e),e};$t({type:\"genfrac\",names:[\"\\\\genfrac\"],props:{numArgs:6,greediness:6,argTypes:[\"math\",\"math\",\"size\",\"text\",\"math\",\"math\"]},handler:function(t,e){var r=t.parser,a=e[4],n=e[5],o=Pt(e[0],\"atom\");o&&(o=Dt(e[0],\"open\"));var i=o?Cr(o.text):null,s=Pt(e[1],\"atom\");s&&(s=Dt(e[1],\"close\"));var h,l=s?Cr(s.text):null,m=Ht(e[2],\"size\"),c=null;h=!!m.isBlank||(c=m.value).number>0;var u=\"auto\",d=Pt(e[3],\"ordgroup\");if(d){if(d.body.length>0){var p=Ht(d.body[0],\"textord\");u=qr[Number(p.text)]}}else d=Ht(e[3],\"textord\"),u=qr[Number(d.text)];return{type:\"genfrac\",mode:r.mode,numer:a,denom:n,continued:!1,hasBarLine:h,barSize:c,leftDelim:i,rightDelim:l,size:u}},htmlBuilder:Ar,mathmlBuilder:Br}),$t({type:\"infix\",names:[\"\\\\above\"],props:{numArgs:1,argTypes:[\"size\"],infix:!0},handler:function(t,e){var r=t.parser,a=(t.funcName,t.token);return{type:\"infix\",mode:r.mode,replaceWith:\"\\\\\\\\abovefrac\",size:Ht(e[0],\"size\").value,token:a}}}),$t({type:\"genfrac\",names:[\"\\\\\\\\abovefrac\"],props:{numArgs:3,argTypes:[\"math\",\"size\",\"math\"]},handler:function(t,e){var r=t.parser,a=(t.funcName,e[0]),n=function(t){if(!t)throw new Error(\"Expected non-null, but got \"+String(t));return t}(Ht(e[1],\"infix\").size),o=e[2],i=n.number>0;return{type:\"genfrac\",mode:r.mode,numer:a,denom:o,continued:!1,hasBarLine:i,barSize:n,leftDelim:null,rightDelim:null,size:\"auto\"}},htmlBuilder:Ar,mathmlBuilder:Br});var Nr=function(t,e){var r,a,n=e.style,o=Pt(t,\"supsub\");o?(r=o.sup?he(o.sup,e.havingStyle(n.sup()),e):he(o.sub,e.havingStyle(n.sub()),e),a=Ht(o.base,\"horizBrace\")):a=Ht(t,\"horizBrace\");var i,s=he(a.base,e.havingBaseStyle(w.DISPLAY)),h=qe(a,e);if(a.isOver?(i=Lt.makeVList({positionType:\"firstBaseline\",children:[{type:\"elem\",elem:s},{type:\"kern\",size:.1},{type:\"elem\",elem:h}]},e)).children[0].children[0].children[1].classes.push(\"svg-align\"):(i=Lt.makeVList({positionType:\"bottom\",positionData:s.depth+.1+h.height,children:[{type:\"elem\",elem:h},{type:\"kern\",size:.1},{type:\"elem\",elem:s}]},e)).children[0].children[0].children[0].classes.push(\"svg-align\"),r){var l=Lt.makeSpan([\"mord\",a.isOver?\"mover\":\"munder\"],[i],e);i=a.isOver?Lt.makeVList({positionType:\"firstBaseline\",children:[{type:\"elem\",elem:l},{type:\"kern\",size:.2},{type:\"elem\",elem:r}]},e):Lt.makeVList({positionType:\"bottom\",positionData:l.depth+.2+r.height+r.depth,children:[{type:\"elem\",elem:r},{type:\"kern\",size:.2},{type:\"elem\",elem:l}]},e)}return Lt.makeSpan([\"mord\",a.isOver?\"mover\":\"munder\"],[i],e)};$t({type:\"horizBrace\",names:[\"\\\\overbrace\",\"\\\\underbrace\"],props:{numArgs:1},handler:function(t,e){var r=t.parser,a=t.funcName;return{type:\"horizBrace\",mode:r.mode,label:a,isOver:/^\\\\over/.test(a),base:e[0]}},htmlBuilder:Nr,mathmlBuilder:function(t,e){var r=Be(t.label);return new pe.MathNode(t.isOver?\"mover\":\"munder\",[ye(t.base,e),r])}}),$t({type:\"href\",names:[\"\\\\href\"],props:{numArgs:2,argTypes:[\"url\",\"original\"],allowedInText:!0},handler:function(t,e){var r=t.parser,a=e[1],n=Ht(e[0],\"url\").url;return{type:\"href\",mode:r.mode,href:n,body:Kt(a)}},htmlBuilder:function(t,e){var r=ae(t.body,e,!1);return Lt.makeAnchor(t.href,[],r,e)},mathmlBuilder:function(t,e){var r=be(t.body,e);return r instanceof ue||(r=new ue(\"mrow\",[r])),r.setAttribute(\"href\",t.href),r}}),$t({type:\"href\",names:[\"\\\\url\"],props:{numArgs:1,argTypes:[\"url\"],allowedInText:!0},handler:function(t,e){for(var r=t.parser,a=Ht(e[0],\"url\").url,n=[],o=0;o<a.length;o++){var i=a[o];\"~\"===i&&(i=\"\\\\textasciitilde\"),n.push({type:\"textord\",mode:\"text\",text:i})}var s={type:\"text\",mode:r.mode,font:\"\\\\texttt\",body:n};return{type:\"href\",mode:r.mode,href:a,body:Kt(s)}}}),$t({type:\"htmlmathml\",names:[\"\\\\html@mathml\"],props:{numArgs:2,allowedInText:!0},handler:function(t,e){return{type:\"htmlmathml\",mode:t.parser.mode,html:Kt(e[0]),mathml:Kt(e[1])}},htmlBuilder:function(t,e){var r=ae(t.html,e,!1);return Lt.makeFragment(r)},mathmlBuilder:function(t,e){return be(t.mathml,e)}}),$t({type:\"kern\",names:[\"\\\\kern\",\"\\\\mkern\",\"\\\\hskip\",\"\\\\mskip\"],props:{numArgs:1,argTypes:[\"size\"],allowedInText:!0},handler:function(t,e){var r=t.parser,a=t.funcName,n=Ht(e[0],\"size\");if(r.settings.strict){var o=\"m\"===a[1],i=\"mu\"===n.value.unit;o?(i||r.settings.reportNonstrict(\"mathVsTextUnits\",\"LaTeX's \"+a+\" supports only mu units, not \"+n.value.unit+\" units\"),\"math\"!==r.mode&&r.settings.reportNonstrict(\"mathVsTextUnits\",\"LaTeX's \"+a+\" works only in math mode\")):i&&r.settings.reportNonstrict(\"mathVsTextUnits\",\"LaTeX's \"+a+\" doesn't support mu units\")}return{type:\"kern\",mode:r.mode,dimension:n.value}},htmlBuilder:function(t,e){return Lt.makeGlue(t.dimension,e)},mathmlBuilder:function(t,e){var r=zt(t.dimension,e);return new pe.SpaceNode(r)}}),$t({type:\"lap\",names:[\"\\\\mathllap\",\"\\\\mathrlap\",\"\\\\mathclap\"],props:{numArgs:1,allowedInText:!0},handler:function(t,e){var r=t.parser,a=t.funcName,n=e[0];return{type:\"lap\",mode:r.mode,alignment:a.slice(5),body:n}},htmlBuilder:function(t,e){var r;\"clap\"===t.alignment?(r=Lt.makeSpan([],[he(t.body,e)]),r=Lt.makeSpan([\"inner\"],[r],e)):r=Lt.makeSpan([\"inner\"],[he(t.body,e)]);var a=Lt.makeSpan([\"fix\"],[]),n=Lt.makeSpan([t.alignment],[r,a],e),o=Lt.makeSpan([\"strut\"]);return o.style.height=n.height+n.depth+\"em\",o.style.verticalAlign=-n.depth+\"em\",n.children.unshift(o),n=Lt.makeVList({positionType:\"firstBaseline\",children:[{type:\"elem\",elem:n}]},e),Lt.makeSpan([\"mord\"],[n],e)},mathmlBuilder:function(t,e){var r=new pe.MathNode(\"mpadded\",[ye(t.body,e)]);if(\"rlap\"!==t.alignment){var a=\"llap\"===t.alignment?\"-1\":\"-0.5\";r.setAttribute(\"lspace\",a+\"width\")}return r.setAttribute(\"width\",\"0px\"),r}}),$t({type:\"styling\",names:[\"\\\\(\",\"$\"],props:{numArgs:0,allowedInText:!0,allowedInMath:!1,consumeMode:\"math\"},handler:function(t,e){var r=t.funcName,a=t.parser,n=a.mode;a.switchMode(\"math\");var o=\"\\\\(\"===r?\"\\\\)\":\"$\",i=a.parseExpression(!1,o);return a.expect(o,!1),a.switchMode(n),a.consume(),{type:\"styling\",mode:a.mode,style:\"text\",body:i}}}),$t({type:\"text\",names:[\"\\\\)\",\"\\\\]\"],props:{numArgs:0,allowedInText:!0,allowedInMath:!1},handler:function(t,e){throw new i(\"Mismatched \"+t.funcName)}});var Ir=function(t,e){switch(e.style.size){case w.DISPLAY.size:return t.display;case w.TEXT.size:return t.text;case w.SCRIPT.size:return t.script;case w.SCRIPTSCRIPT.size:return t.scriptscript;default:return t.text}};$t({type:\"mathchoice\",names:[\"\\\\mathchoice\"],props:{numArgs:4},handler:function(t,e){return{type:\"mathchoice\",mode:t.parser.mode,display:Kt(e[0]),text:Kt(e[1]),script:Kt(e[2]),scriptscript:Kt(e[3])}},htmlBuilder:function(t,e){var r=Ir(t,e),a=ae(r,e,!1);return Lt.makeFragment(a)},mathmlBuilder:function(t,e){var r=Ir(t,e);return be(r,e)}});var Or=[\"\\\\smallint\"],Er=function(t,e){var r,a,n,o=!1,i=Pt(t,\"supsub\");i?(r=i.sup,a=i.sub,n=Ht(i.base,\"op\"),o=!0):n=Ht(t,\"op\");var s,h=e.style,l=!1;if(h.size===w.DISPLAY.size&&n.symbol&&!c.contains(Or,n.name)&&(l=!0),n.symbol){var m=l?\"Size2-Regular\":\"Size1-Regular\",u=\"\";if(\"\\\\oiint\"!==n.name&&\"\\\\oiiint\"!==n.name||(u=n.name.substr(1),n.name=\"oiint\"===u?\"\\\\iint\":\"\\\\iiint\"),s=Lt.makeSymbol(n.name,m,\"math\",e,[\"mop\",\"op-symbol\",l?\"large-op\":\"small-op\"]),u.length>0){var d=s.italic,p=Lt.staticSvg(u+\"Size\"+(l?\"2\":\"1\"),e);s=Lt.makeVList({positionType:\"individualShift\",children:[{type:\"elem\",elem:s,shift:0},{type:\"elem\",elem:p,shift:l?.08:0}]},e),n.name=\"\\\\\"+u,s.classes.unshift(\"mop\"),s.italic=d}}else if(n.body){var f=ae(n.body,e,!0);1===f.length&&f[0]instanceof E?(s=f[0]).classes[0]=\"mop\":s=Lt.makeSpan([\"mop\"],Lt.tryCombineChars(f),e)}else{for(var g=[],x=1;x<n.name.length;x++)g.push(Lt.mathsym(n.name[x],n.mode));s=Lt.makeSpan([\"mop\"],g,e)}var v=0,b=0;if((s instanceof E||\"\\\\oiint\"===n.name||\"\\\\oiiint\"===n.name)&&!n.suppressBaseShift&&(v=(s.height-s.depth)/2-e.fontMetrics().axisHeight,b=s.italic),o){var y,k,S;if(s=Lt.makeSpan([],[s]),r){var z=he(r,e.havingStyle(h.sup()),e);k={elem:z,kern:Math.max(e.fontMetrics().bigOpSpacing1,e.fontMetrics().bigOpSpacing3-z.depth)}}if(a){var M=he(a,e.havingStyle(h.sub()),e);y={elem:M,kern:Math.max(e.fontMetrics().bigOpSpacing2,e.fontMetrics().bigOpSpacing4-M.height)}}if(k&&y){var T=e.fontMetrics().bigOpSpacing5+y.elem.height+y.elem.depth+y.kern+s.depth+v;S=Lt.makeVList({positionType:\"bottom\",positionData:T,children:[{type:\"kern\",size:e.fontMetrics().bigOpSpacing5},{type:\"elem\",elem:y.elem,marginLeft:-b+\"em\"},{type:\"kern\",size:y.kern},{type:\"elem\",elem:s},{type:\"kern\",size:k.kern},{type:\"elem\",elem:k.elem,marginLeft:b+\"em\"},{type:\"kern\",size:e.fontMetrics().bigOpSpacing5}]},e)}else if(y){var A=s.height-v;S=Lt.makeVList({positionType:\"top\",positionData:A,children:[{type:\"kern\",size:e.fontMetrics().bigOpSpacing5},{type:\"elem\",elem:y.elem,marginLeft:-b+\"em\"},{type:\"kern\",size:y.kern},{type:\"elem\",elem:s}]},e)}else{if(!k)return s;var B=s.depth+v;S=Lt.makeVList({positionType:\"bottom\",positionData:B,children:[{type:\"elem\",elem:s},{type:\"kern\",size:k.kern},{type:\"elem\",elem:k.elem,marginLeft:b+\"em\"},{type:\"kern\",size:e.fontMetrics().bigOpSpacing5}]},e)}return Lt.makeSpan([\"mop\",\"op-limits\"],[S],e)}return v&&(s.style.position=\"relative\",s.style.top=v+\"em\"),s},Rr=function(t,e){var r;if(t.symbol)r=new ue(\"mo\",[fe(t.name,t.mode)]),c.contains(Or,t.name)&&r.setAttribute(\"largeop\",\"false\");else if(t.body)r=new ue(\"mo\",ve(t.body,e));else{r=new ue(\"mi\",[new de(t.name.slice(1))]);var a=new ue(\"mo\",[fe(\"\\u2061\",\"text\")]);r=t.parentIsSupSub?new ue(\"mo\",[r,a]):ce([r,a])}return r},Lr={\"\\u220f\":\"\\\\prod\",\"\\u2210\":\"\\\\coprod\",\"\\u2211\":\"\\\\sum\",\"\\u22c0\":\"\\\\bigwedge\",\"\\u22c1\":\"\\\\bigvee\",\"\\u22c2\":\"\\\\bigcap\",\"\\u22c3\":\"\\\\bigcup\",\"\\u2a00\":\"\\\\bigodot\",\"\\u2a01\":\"\\\\bigoplus\",\"\\u2a02\":\"\\\\bigotimes\",\"\\u2a04\":\"\\\\biguplus\",\"\\u2a06\":\"\\\\bigsqcup\"};$t({type:\"op\",names:[\"\\\\coprod\",\"\\\\bigvee\",\"\\\\bigwedge\",\"\\\\biguplus\",\"\\\\bigcap\",\"\\\\bigcup\",\"\\\\intop\",\"\\\\prod\",\"\\\\sum\",\"\\\\bigotimes\",\"\\\\bigoplus\",\"\\\\bigodot\",\"\\\\bigsqcup\",\"\\\\smallint\",\"\\u220f\",\"\\u2210\",\"\\u2211\",\"\\u22c0\",\"\\u22c1\",\"\\u22c2\",\"\\u22c3\",\"\\u2a00\",\"\\u2a01\",\"\\u2a02\",\"\\u2a04\",\"\\u2a06\"],props:{numArgs:0},handler:function(t,e){var r=t.parser,a=t.funcName;return 1===a.length&&(a=Lr[a]),{type:\"op\",mode:r.mode,limits:!0,parentIsSupSub:!1,symbol:!0,name:a}},htmlBuilder:Er,mathmlBuilder:Rr}),$t({type:\"op\",names:[\"\\\\mathop\"],props:{numArgs:1},handler:function(t,e){var r=t.parser,a=e[0];return{type:\"op\",mode:r.mode,limits:!1,parentIsSupSub:!1,symbol:!1,body:Kt(a)}},htmlBuilder:Er,mathmlBuilder:Rr});var Hr={\"\\u222b\":\"\\\\int\",\"\\u222c\":\"\\\\iint\",\"\\u222d\":\"\\\\iiint\",\"\\u222e\":\"\\\\oint\",\"\\u222f\":\"\\\\oiint\",\"\\u2230\":\"\\\\oiiint\"};function Pr(t,e,r){for(var a=ae(t,e,!1),n=e.sizeMultiplier/r.sizeMultiplier,o=0;o<a.length;o++){var i=a[o].classes.indexOf(\"sizing\");i<0?Array.prototype.push.apply(a[o].classes,e.sizingClasses(r)):a[o].classes[i+1]===\"reset-size\"+e.size&&(a[o].classes[i+1]=\"reset-size\"+r.size),a[o].height*=n,a[o].depth*=n}return Lt.makeFragment(a)}$t({type:\"op\",names:[\"\\\\arcsin\",\"\\\\arccos\",\"\\\\arctan\",\"\\\\arctg\",\"\\\\arcctg\",\"\\\\arg\",\"\\\\ch\",\"\\\\cos\",\"\\\\cosec\",\"\\\\cosh\",\"\\\\cot\",\"\\\\cotg\",\"\\\\coth\",\"\\\\csc\",\"\\\\ctg\",\"\\\\cth\",\"\\\\deg\",\"\\\\dim\",\"\\\\exp\",\"\\\\hom\",\"\\\\ker\",\"\\\\lg\",\"\\\\ln\",\"\\\\log\",\"\\\\sec\",\"\\\\sin\",\"\\\\sinh\",\"\\\\sh\",\"\\\\tan\",\"\\\\tanh\",\"\\\\tg\",\"\\\\th\"],props:{numArgs:0},handler:function(t){var e=t.parser,r=t.funcName;return{type:\"op\",mode:e.mode,limits:!1,parentIsSupSub:!1,symbol:!1,name:r}},htmlBuilder:Er,mathmlBuilder:Rr}),$t({type:\"op\",names:[\"\\\\det\",\"\\\\gcd\",\"\\\\inf\",\"\\\\lim\",\"\\\\max\",\"\\\\min\",\"\\\\Pr\",\"\\\\sup\"],props:{numArgs:0},handler:function(t){var e=t.parser,r=t.funcName;return{type:\"op\",mode:e.mode,limits:!0,parentIsSupSub:!1,symbol:!1,name:r}},htmlBuilder:Er,mathmlBuilder:Rr}),$t({type:\"op\",names:[\"\\\\int\",\"\\\\iint\",\"\\\\iiint\",\"\\\\oint\",\"\\\\oiint\",\"\\\\oiiint\",\"\\u222b\",\"\\u222c\",\"\\u222d\",\"\\u222e\",\"\\u222f\",\"\\u2230\"],props:{numArgs:0},handler:function(t){var e=t.parser,r=t.funcName;return 1===r.length&&(r=Hr[r]),{type:\"op\",mode:e.mode,limits:!1,parentIsSupSub:!1,symbol:!0,name:r}},htmlBuilder:Er,mathmlBuilder:Rr}),$t({type:\"operatorname\",names:[\"\\\\operatorname\"],props:{numArgs:1},handler:function(t,e){var r=t.parser,a=e[0];return{type:\"operatorname\",mode:r.mode,body:Kt(a)}},htmlBuilder:function(t,e){if(t.body.length>0){for(var r=t.body.map(function(t){var e=t.text;return\"string\"==typeof e?{type:\"textord\",mode:t.mode,text:e}:t}),a=ae(r,e.withFont(\"mathrm\"),!0),n=0;n<a.length;n++){var o=a[n];o instanceof E&&(o.text=o.text.replace(/\\u2212/,\"-\").replace(/\\u2217/,\"*\"))}return Lt.makeSpan([\"mop\"],a,e)}return Lt.makeSpan([\"mop\"],[],e)},mathmlBuilder:function(t,e){for(var r=ve(t.body,e.withFont(\"mathrm\")),a=!0,n=0;n<r.length;n++){var o=r[n];if(o instanceof pe.SpaceNode);else if(o instanceof pe.MathNode)switch(o.type){case\"mi\":case\"mn\":case\"ms\":case\"mspace\":case\"mtext\":break;case\"mo\":var i=o.children[0];1===o.children.length&&i instanceof pe.TextNode?i.text=i.text.replace(/\\u2212/,\"-\").replace(/\\u2217/,\"*\"):a=!1;break;default:a=!1}else a=!1}if(a){var s=r.map(function(t){return t.toText()}).join(\"\");r=[new pe.TextNode(s)]}var h=new pe.MathNode(\"mi\",r);h.setAttribute(\"mathvariant\",\"normal\");var l=new pe.MathNode(\"mo\",[fe(\"\\u2061\",\"text\")]);return pe.newDocumentFragment([h,l])}}),Zt({type:\"ordgroup\",htmlBuilder:function(t,e){return t.semisimple?Lt.makeFragment(ae(t.body,e,!1)):Lt.makeSpan([\"mord\"],ae(t.body,e,!0),e)},mathmlBuilder:function(t,e){return be(t.body,e)}}),$t({type:\"overline\",names:[\"\\\\overline\"],props:{numArgs:1},handler:function(t,e){var r=t.parser,a=e[0];return{type:\"overline\",mode:r.mode,body:a}},htmlBuilder:function(t,e){var r=he(t.body,e.havingCrampedStyle()),a=Lt.makeLineSpan(\"overline-line\",e),n=Lt.makeVList({positionType:\"firstBaseline\",children:[{type:\"elem\",elem:r},{type:\"kern\",size:3*a.height},{type:\"elem\",elem:a},{type:\"kern\",size:a.height}]},e);return Lt.makeSpan([\"mord\",\"overline\"],[n],e)},mathmlBuilder:function(t,e){var r=new pe.MathNode(\"mo\",[new pe.TextNode(\"\\u203e\")]);r.setAttribute(\"stretchy\",\"true\");var a=new pe.MathNode(\"mover\",[ye(t.body,e),r]);return a.setAttribute(\"accent\",\"true\"),a}}),$t({type:\"phantom\",names:[\"\\\\phantom\"],props:{numArgs:1,allowedInText:!0},handler:function(t,e){var r=t.parser,a=e[0];return{type:\"phantom\",mode:r.mode,body:Kt(a)}},htmlBuilder:function(t,e){var r=ae(t.body,e.withPhantom(),!1);return Lt.makeFragment(r)},mathmlBuilder:function(t,e){var r=ve(t.body,e);return new pe.MathNode(\"mphantom\",r)}}),$t({type:\"hphantom\",names:[\"\\\\hphantom\"],props:{numArgs:1,allowedInText:!0},handler:function(t,e){var r=t.parser,a=e[0];return{type:\"hphantom\",mode:r.mode,body:a}},htmlBuilder:function(t,e){var r=Lt.makeSpan([],[he(t.body,e.withPhantom())]);if(r.height=0,r.depth=0,r.children)for(var a=0;a<r.children.length;a++)r.children[a].height=0,r.children[a].depth=0;return r=Lt.makeVList({positionType:\"firstBaseline\",children:[{type:\"elem\",elem:r}]},e),Lt.makeSpan([\"mord\"],[r],e)},mathmlBuilder:function(t,e){var r=ve(Kt(t.body),e),a=new pe.MathNode(\"mphantom\",r),n=new pe.MathNode(\"mpadded\",[a]);return n.setAttribute(\"height\",\"0px\"),n.setAttribute(\"depth\",\"0px\"),n}}),$t({type:\"vphantom\",names:[\"\\\\vphantom\"],props:{numArgs:1,allowedInText:!0},handler:function(t,e){var r=t.parser,a=e[0];return{type:\"vphantom\",mode:r.mode,body:a}},htmlBuilder:function(t,e){var r=Lt.makeSpan([\"inner\"],[he(t.body,e.withPhantom())]),a=Lt.makeSpan([\"fix\"],[]);return Lt.makeSpan([\"mord\",\"rlap\"],[r,a],e)},mathmlBuilder:function(t,e){var r=ve(Kt(t.body),e),a=new pe.MathNode(\"mphantom\",r),n=new pe.MathNode(\"mpadded\",[a]);return n.setAttribute(\"width\",\"0px\"),n}});var Dr=[\"\\\\tiny\",\"\\\\sixptsize\",\"\\\\scriptsize\",\"\\\\footnotesize\",\"\\\\small\",\"\\\\normalsize\",\"\\\\large\",\"\\\\Large\",\"\\\\LARGE\",\"\\\\huge\",\"\\\\Huge\"],Fr=function(t,e){var r=e.havingSize(t.size);return Pr(t.body,r,e)};$t({type:\"sizing\",names:Dr,props:{numArgs:0,allowedInText:!0},handler:function(t,e){var r=t.breakOnTokenText,a=t.funcName,n=t.parser,o=n.parseExpression(!1,r);return{type:\"sizing\",mode:n.mode,size:Dr.indexOf(a)+1,body:o}},htmlBuilder:Fr,mathmlBuilder:function(t,e){var r=e.havingSize(t.size),a=ve(t.body,r),n=new pe.MathNode(\"mstyle\",a);return n.setAttribute(\"mathsize\",r.sizeMultiplier+\"em\"),n}}),$t({type:\"raisebox\",names:[\"\\\\raisebox\"],props:{numArgs:2,argTypes:[\"size\",\"text\"],allowedInText:!0},handler:function(t,e){var r=t.parser,a=Ht(e[0],\"size\").value,n=e[1];return{type:\"raisebox\",mode:r.mode,dy:a,body:n}},htmlBuilder:function(t,e){var r={type:\"text\",mode:t.mode,body:Kt(t.body),font:\"mathrm\"},a={type:\"sizing\",mode:t.mode,body:[r],size:6},n=Fr(a,e),o=zt(t.dy,e);return Lt.makeVList({positionType:\"shift\",positionData:-o,children:[{type:\"elem\",elem:n}]},e)},mathmlBuilder:function(t,e){var r=new pe.MathNode(\"mpadded\",[ye(t.body,e)]),a=t.dy.number+t.dy.unit;return r.setAttribute(\"voffset\",a),r}}),$t({type:\"rule\",names:[\"\\\\rule\"],props:{numArgs:2,numOptionalArgs:1,argTypes:[\"size\",\"size\",\"size\"]},handler:function(t,e,r){var a=t.parser,n=r[0],o=Ht(e[0],\"size\"),i=Ht(e[1],\"size\");return{type:\"rule\",mode:a.mode,shift:n&&Ht(n,\"size\").value,width:o.value,height:i.value}},htmlBuilder:function(t,e){var r=Lt.makeSpan([\"mord\",\"rule\"],[],e),a=zt(t.width,e),n=zt(t.height,e),o=t.shift?zt(t.shift,e):0;return r.style.borderRightWidth=a+\"em\",r.style.borderTopWidth=n+\"em\",r.style.bottom=o+\"em\",r.width=a,r.height=n+o,r.depth=-o,r.maxFontSize=1.125*n*e.sizeMultiplier,r},mathmlBuilder:function(t,e){var r=zt(t.width,e),a=zt(t.height,e),n=t.shift?zt(t.shift,e):0,o=e.color&&e.getColor()||\"black\",i=new pe.MathNode(\"mspace\");i.setAttribute(\"mathbackground\",o),i.setAttribute(\"width\",r+\"em\"),i.setAttribute(\"height\",a+\"em\");var s=new pe.MathNode(\"mpadded\",[i]);return n>=0?s.setAttribute(\"height\",\"+\"+n+\"em\"):(s.setAttribute(\"height\",n+\"em\"),s.setAttribute(\"depth\",\"+\"+-n+\"em\")),s.setAttribute(\"voffset\",n+\"em\"),s}}),$t({type:\"smash\",names:[\"\\\\smash\"],props:{numArgs:1,numOptionalArgs:1,allowedInText:!0},handler:function(t,e,r){var a=t.parser,n=!1,o=!1,i=r[0]&&Ht(r[0],\"ordgroup\");if(i)for(var s=\"\",h=0;h<i.body.length;++h){if(\"t\"===(s=i.body[h].text))n=!0;else{if(\"b\"!==s){n=!1,o=!1;break}o=!0}}else n=!0,o=!0;var l=e[0];return{type:\"smash\",mode:a.mode,body:l,smashHeight:n,smashDepth:o}},htmlBuilder:function(t,e){var r=Lt.makeSpan([],[he(t.body,e)]);if(!t.smashHeight&&!t.smashDepth)return r;if(t.smashHeight&&(r.height=0,r.children))for(var a=0;a<r.children.length;a++)r.children[a].height=0;if(t.smashDepth&&(r.depth=0,r.children))for(var n=0;n<r.children.length;n++)r.children[n].depth=0;var o=Lt.makeVList({positionType:\"firstBaseline\",children:[{type:\"elem\",elem:r}]},e);return Lt.makeSpan([\"mord\"],[o],e)},mathmlBuilder:function(t,e){var r=new pe.MathNode(\"mpadded\",[ye(t.body,e)]);return t.smashHeight&&r.setAttribute(\"height\",\"0px\"),t.smashDepth&&r.setAttribute(\"depth\",\"0px\"),r}}),$t({type:\"sqrt\",names:[\"\\\\sqrt\"],props:{numArgs:1,numOptionalArgs:1},handler:function(t,e,r){var a=t.parser,n=r[0],o=e[0];return{type:\"sqrt\",mode:a.mode,body:o,index:n}},htmlBuilder:function(t,e){var r=he(t.body,e.havingCrampedStyle());0===r.height&&(r.height=e.fontMetrics().xHeight),r=Lt.wrapFragment(r,e);var a=e.fontMetrics().defaultRuleThickness,n=a;e.style.id<w.TEXT.id&&(n=e.fontMetrics().xHeight);var o=a+n/4,i=r.height+r.depth+o+a,s=Qe(i,e),h=s.span,l=s.ruleWidth,m=s.advanceWidth,c=h.height-l;c>r.height+r.depth+o&&(o=(o+c-r.height-r.depth)/2);var u=h.height-r.height-o-l;r.style.paddingLeft=m+\"em\";var d=Lt.makeVList({positionType:\"firstBaseline\",children:[{type:\"elem\",elem:r,wrapperClasses:[\"svg-align\"]},{type:\"kern\",size:-(r.height+u)},{type:\"elem\",elem:h},{type:\"kern\",size:l}]},e);if(t.index){var p=e.havingStyle(w.SCRIPTSCRIPT),f=he(t.index,p,e),g=.6*(d.height-d.depth),x=Lt.makeVList({positionType:\"shift\",positionData:-g,children:[{type:\"elem\",elem:f}]},e),v=Lt.makeSpan([\"root\"],[x]);return Lt.makeSpan([\"mord\",\"sqrt\"],[v,d],e)}return Lt.makeSpan([\"mord\",\"sqrt\"],[d],e)},mathmlBuilder:function(t,e){var r=t.body,a=t.index;return a?new pe.MathNode(\"mroot\",[ye(r,e),ye(a,e)]):new pe.MathNode(\"msqrt\",[ye(r,e)])}});var Vr={display:w.DISPLAY,text:w.TEXT,script:w.SCRIPT,scriptscript:w.SCRIPTSCRIPT};$t({type:\"styling\",names:[\"\\\\displaystyle\",\"\\\\textstyle\",\"\\\\scriptstyle\",\"\\\\scriptscriptstyle\"],props:{numArgs:0,allowedInText:!0},handler:function(t,e){var r=t.breakOnTokenText,a=t.funcName,n=t.parser,o=n.parseExpression(!0,r),i=a.slice(1,a.length-5);return{type:\"styling\",mode:n.mode,style:i,body:o}},htmlBuilder:function(t,e){var r=Vr[t.style],a=e.havingStyle(r).withFont(\"\");return Pr(t.body,a,e)},mathmlBuilder:function(t,e){var r={display:w.DISPLAY,text:w.TEXT,script:w.SCRIPT,scriptscript:w.SCRIPTSCRIPT}[t.style],a=e.havingStyle(r),n=ve(t.body,a),o=new pe.MathNode(\"mstyle\",n),i={display:[\"0\",\"true\"],text:[\"0\",\"false\"],script:[\"1\",\"false\"],scriptscript:[\"2\",\"false\"]}[t.style];return o.setAttribute(\"scriptlevel\",i[0]),o.setAttribute(\"displaystyle\",i[1]),o}});Zt({type:\"supsub\",htmlBuilder:function(t,e){var r=function(t,e){var r=t.base;return r?\"op\"===r.type?r.limits&&(e.style.size===w.DISPLAY.size||r.alwaysHandleSupSub)?Er:null:\"accent\"===r.type?c.isCharacterBox(r.base)?Ce:null:\"horizBrace\"===r.type&&!t.sub===r.isOver?Nr:null:null}(t,e);if(r)return r(t,e);var a,n,o,i=t.base,s=t.sup,h=t.sub,l=he(i,e),m=e.fontMetrics(),u=0,d=0,p=i&&c.isCharacterBox(i);if(s){var f=e.havingStyle(e.style.sup());a=he(s,f,e),p||(u=l.height-f.fontMetrics().supDrop*f.sizeMultiplier/e.sizeMultiplier)}if(h){var g=e.havingStyle(e.style.sub());n=he(h,g,e),p||(d=l.depth+g.fontMetrics().subDrop*g.sizeMultiplier/e.sizeMultiplier)}o=e.style===w.DISPLAY?m.sup1:e.style.cramped?m.sup3:m.sup2;var x,v=e.sizeMultiplier,b=.5/m.ptPerEm/v+\"em\",y=null;if(n){var k=t.base&&\"op\"===t.base.type&&t.base.name&&(\"\\\\oiint\"===t.base.name||\"\\\\oiiint\"===t.base.name);(l instanceof E||k)&&(y=-l.italic+\"em\")}if(a&&n){u=Math.max(u,o,a.depth+.25*m.xHeight),d=Math.max(d,m.sub2);var S=4*m.defaultRuleThickness;if(u-a.depth-(n.height-d)<S){d=S-(u-a.depth)+n.height;var z=.8*m.xHeight-(u-a.depth);z>0&&(u+=z,d-=z)}var M=[{type:\"elem\",elem:n,shift:d,marginRight:b,marginLeft:y},{type:\"elem\",elem:a,shift:-u,marginRight:b}];x=Lt.makeVList({positionType:\"individualShift\",children:M},e)}else if(n){d=Math.max(d,m.sub1,n.height-.8*m.xHeight);var T=[{type:\"elem\",elem:n,marginLeft:y,marginRight:b}];x=Lt.makeVList({positionType:\"shift\",positionData:d,children:T},e)}else{if(!a)throw new Error(\"supsub must have either sup or sub.\");u=Math.max(u,o,a.depth+.25*m.xHeight),x=Lt.makeVList({positionType:\"shift\",positionData:-u,children:[{type:\"elem\",elem:a,marginRight:b}]},e)}var A=ie(l,\"right\")||\"mord\";return Lt.makeSpan([A],[l,Lt.makeSpan([\"msupsub\"],[x])],e)},mathmlBuilder:function(t,e){var r,a=!1,n=Pt(t.base,\"horizBrace\");n&&!!t.sup===n.isOver&&(a=!0,r=n.isOver),t.base&&\"op\"===t.base.type&&(t.base.parentIsSupSub=!0);var o,i=[ye(t.base,e)];if(t.sub&&i.push(ye(t.sub,e)),t.sup&&i.push(ye(t.sup,e)),a)o=r?\"mover\":\"munder\";else if(t.sub)if(t.sup){var s=t.base;o=s&&\"op\"===s.type&&s.limits&&e.style===w.DISPLAY?\"munderover\":\"msubsup\"}else{var h=t.base;o=h&&\"op\"===h.type&&h.limits&&(e.style===w.DISPLAY||h.alwaysHandleSupSub)?\"munder\":\"msub\"}else{var l=t.base;o=l&&\"op\"===l.type&&l.limits&&(e.style===w.DISPLAY||l.alwaysHandleSupSub)?\"mover\":\"msup\"}return new pe.MathNode(o,i)}}),Zt({type:\"atom\",htmlBuilder:function(t,e){return Lt.mathsym(t.text,t.mode,e,[\"m\"+t.family])},mathmlBuilder:function(t,e){var r=new pe.MathNode(\"mo\",[fe(t.text,t.mode)]);if(\"bin\"===t.family){var a=xe(t,e);\"bold-italic\"===a&&r.setAttribute(\"mathvariant\",a)}else\"punct\"===t.family?r.setAttribute(\"separator\",\"true\"):\"open\"!==t.family&&\"close\"!==t.family||r.setAttribute(\"stretchy\",\"false\");return r}});var Ur={mi:\"italic\",mn:\"normal\",mtext:\"normal\"};Zt({type:\"mathord\",htmlBuilder:function(t,e){return Lt.makeOrd(t,e,\"mathord\")},mathmlBuilder:function(t,e){var r=new pe.MathNode(\"mi\",[fe(t.text,t.mode,e)]),a=xe(t,e)||\"italic\";return a!==Ur[r.type]&&r.setAttribute(\"mathvariant\",a),r}}),Zt({type:\"textord\",htmlBuilder:function(t,e){return Lt.makeOrd(t,e,\"textord\")},mathmlBuilder:function(t,e){var r,a=fe(t.text,t.mode,e),n=xe(t,e)||\"normal\";return r=\"text\"===t.mode?new pe.MathNode(\"mtext\",[a]):/[0-9]/.test(t.text)?new pe.MathNode(\"mn\",[a]):\"\\\\prime\"===t.text?new pe.MathNode(\"mo\",[a]):new pe.MathNode(\"mi\",[a]),n!==Ur[r.type]&&r.setAttribute(\"mathvariant\",n),r}});var Gr={\"\\\\nobreak\":\"nobreak\",\"\\\\allowbreak\":\"allowbreak\"},Xr={\" \":{},\"\\\\ \":{},\"~\":{className:\"nobreak\"},\"\\\\space\":{},\"\\\\nobreakspace\":{className:\"nobreak\"}};Zt({type:\"spacing\",htmlBuilder:function(t,e){if(Xr.hasOwnProperty(t.text)){var r=Xr[t.text].className||\"\";if(\"text\"===t.mode){var a=Lt.makeOrd(t,e,\"textord\");return a.classes.push(r),a}return Lt.makeSpan([\"mspace\",r],[Lt.mathsym(t.text,t.mode,e)],e)}if(Gr.hasOwnProperty(t.text))return Lt.makeSpan([\"mspace\",Gr[t.text]],[],e);throw new i('Unknown type of space \"'+t.text+'\"')},mathmlBuilder:function(t,e){if(!Xr.hasOwnProperty(t.text)){if(Gr.hasOwnProperty(t.text))return new pe.MathNode(\"mspace\");throw new i('Unknown type of space \"'+t.text+'\"')}return new pe.MathNode(\"mtext\",[new pe.TextNode(\"\\xa0\")])}});var Yr=function(){var t=new pe.MathNode(\"mtd\",[]);return t.setAttribute(\"width\",\"50%\"),t};Zt({type:\"tag\",mathmlBuilder:function(t,e){var r=new pe.MathNode(\"mtable\",[new pe.MathNode(\"mtr\",[Yr(),new pe.MathNode(\"mtd\",[be(t.body,e)]),Yr(),new pe.MathNode(\"mtd\",[be(t.tag,e)])])]);return r.setAttribute(\"width\",\"100%\"),r}});var _r={\"\\\\text\":void 0,\"\\\\textrm\":\"textrm\",\"\\\\textsf\":\"textsf\",\"\\\\texttt\":\"texttt\",\"\\\\textnormal\":\"textrm\"},Wr={\"\\\\textbf\":\"textbf\",\"\\\\textmd\":\"textmd\"},jr={\"\\\\textit\":\"textit\",\"\\\\textup\":\"textup\"},$r=function(t,e){var r=t.font;return r?_r[r]?e.withTextFontFamily(_r[r]):Wr[r]?e.withTextFontWeight(Wr[r]):e.withTextFontShape(jr[r]):e};$t({type:\"text\",names:[\"\\\\text\",\"\\\\textrm\",\"\\\\textsf\",\"\\\\texttt\",\"\\\\textnormal\",\"\\\\textbf\",\"\\\\textmd\",\"\\\\textit\",\"\\\\textup\"],props:{numArgs:1,argTypes:[\"text\"],greediness:2,allowedInText:!0,consumeMode:\"text\"},handler:function(t,e){var r=t.parser,a=t.funcName,n=e[0];return{type:\"text\",mode:r.mode,body:Kt(n),font:a}},htmlBuilder:function(t,e){var r=$r(t,e),a=ae(t.body,r,!0);return Lt.makeSpan([\"mord\",\"text\"],Lt.tryCombineChars(a),r)},mathmlBuilder:function(t,e){var r=$r(t,e);return be(t.body,r)}}),$t({type:\"underline\",names:[\"\\\\underline\"],props:{numArgs:1,allowedInText:!0},handler:function(t,e){return{type:\"underline\",mode:t.parser.mode,body:e[0]}},htmlBuilder:function(t,e){var r=he(t.body,e),a=Lt.makeLineSpan(\"underline-line\",e),n=Lt.makeVList({positionType:\"top\",positionData:r.height,children:[{type:\"kern\",size:a.height},{type:\"elem\",elem:a},{type:\"kern\",size:3*a.height},{type:\"elem\",elem:r}]},e);return Lt.makeSpan([\"mord\",\"underline\"],[n],e)},mathmlBuilder:function(t,e){var r=new pe.MathNode(\"mo\",[new pe.TextNode(\"\\u203e\")]);r.setAttribute(\"stretchy\",\"true\");var a=new pe.MathNode(\"munder\",[ye(t.body,e),r]);return a.setAttribute(\"accentunder\",\"true\"),a}}),$t({type:\"verb\",names:[\"\\\\verb\"],props:{numArgs:0,allowedInText:!0},handler:function(t,e,r){throw new i(\"\\\\verb ended by end of line instead of matching delimiter\")},htmlBuilder:function(t,e){for(var r=Zr(t),a=[],n=e.havingStyle(e.style.text()),o=0;o<r.length;o++){var i=r[o];\"~\"===i&&(i=\"\\\\textasciitilde\"),a.push(Lt.makeSymbol(i,\"Typewriter-Regular\",t.mode,n,[\"mord\",\"texttt\"]))}return Lt.makeSpan([\"mord\",\"text\"].concat(n.sizingClasses(e)),Lt.tryCombineChars(a),n)},mathmlBuilder:function(t,e){var r=new pe.TextNode(Zr(t)),a=new pe.MathNode(\"mtext\",[r]);return a.setAttribute(\"mathvariant\",\"monospace\"),a}});var Zr=function(t){return t.body.replace(/ /g,t.star?\"\\u2423\":\"\\xa0\")},Kr=_t,Jr=new RegExp(\"^(\\\\\\\\[a-zA-Z@]+)[ \\r\\n\\t]*$\"),Qr=new RegExp(\"[\\u0300-\\u036f]+$\"),ta=\"([ \\r\\n\\t]+)|([!-\\\\[\\\\]-\\u2027\\u202a-\\ud7ff\\uf900-\\uffff][\\u0300-\\u036f]*|[\\ud800-\\udbff][\\udc00-\\udfff][\\u0300-\\u036f]*|\\\\\\\\verb\\\\*([^]).*?\\\\3|\\\\\\\\verb([^*a-zA-Z]).*?\\\\4|\\\\\\\\[a-zA-Z@]+[ \\r\\n\\t]*|\\\\\\\\[^\\ud800-\\udfff])\",ea=function(){function t(t,e){this.input=void 0,this.settings=void 0,this.tokenRegex=void 0,this.catcodes=void 0,this.input=t,this.settings=e,this.tokenRegex=new RegExp(ta,\"g\"),this.catcodes={\"%\":14}}var e=t.prototype;return e.setCatcode=function(t,e){this.catcodes[t]=e},e.lex=function(){var t=this.input,e=this.tokenRegex.lastIndex;if(e===t.length)return new n(\"EOF\",new a(this,e,e));var r=this.tokenRegex.exec(t);if(null===r||r.index!==e)throw new i(\"Unexpected character: '\"+t[e]+\"'\",new n(t[e],new a(this,e,e+1)));var o=r[2]||\" \";if(14===this.catcodes[o]){var s=t.indexOf(\"\\n\",this.tokenRegex.lastIndex);return-1===s?(this.tokenRegex.lastIndex=t.length,this.settings.reportNonstrict(\"commentAtEnd\",\"% comment has no terminating newline; LaTeX would fail because of commenting the end of math mode (e.g. $)\")):this.tokenRegex.lastIndex=s+1,this.lex()}var h=o.match(Jr);return h&&(o=h[1]),new n(o,new a(this,e,this.tokenRegex.lastIndex))},t}(),ra=function(){function t(t,e){void 0===t&&(t={}),void 0===e&&(e={}),this.current=void 0,this.builtins=void 0,this.undefStack=void 0,this.current=e,this.builtins=t,this.undefStack=[]}var e=t.prototype;return e.beginGroup=function(){this.undefStack.push({})},e.endGroup=function(){if(0===this.undefStack.length)throw new i(\"Unbalanced namespace destruction: attempt to pop global namespace; please report this as a bug\");var t=this.undefStack.pop();for(var e in t)t.hasOwnProperty(e)&&(void 0===t[e]?delete this.current[e]:this.current[e]=t[e])},e.has=function(t){return this.current.hasOwnProperty(t)||this.builtins.hasOwnProperty(t)},e.get=function(t){return this.current.hasOwnProperty(t)?this.current[t]:this.builtins[t]},e.set=function(t,e,r){if(void 0===r&&(r=!1),r){for(var a=0;a<this.undefStack.length;a++)delete this.undefStack[a][t];this.undefStack.length>0&&(this.undefStack[this.undefStack.length-1][t]=e)}else{var n=this.undefStack[this.undefStack.length-1];n&&!n.hasOwnProperty(t)&&(n[t]=this.current[t])}this.current[t]=e},t}(),aa={},na=aa;function oa(t,e){aa[t]=e}oa(\"\\\\@firstoftwo\",function(t){return{tokens:t.consumeArgs(2)[0],numArgs:0}}),oa(\"\\\\@secondoftwo\",function(t){return{tokens:t.consumeArgs(2)[1],numArgs:0}}),oa(\"\\\\@ifnextchar\",function(t){var e=t.consumeArgs(3),r=t.future();return 1===e[0].length&&e[0][0].text===r.text?{tokens:e[1],numArgs:0}:{tokens:e[2],numArgs:0}}),oa(\"\\\\@ifstar\",\"\\\\@ifnextchar *{\\\\@firstoftwo{#1}}\"),oa(\"\\\\TextOrMath\",function(t){var e=t.consumeArgs(2);return\"text\"===t.mode?{tokens:e[0],numArgs:0}:{tokens:e[1],numArgs:0}});var ia={0:0,1:1,2:2,3:3,4:4,5:5,6:6,7:7,8:8,9:9,a:10,A:10,b:11,B:11,c:12,C:12,d:13,D:13,e:14,E:14,f:15,F:15};oa(\"\\\\char\",function(t){var e,r=t.popToken(),a=\"\";if(\"'\"===r.text)e=8,r=t.popToken();else if('\"'===r.text)e=16,r=t.popToken();else if(\"`\"===r.text)if(\"\\\\\"===(r=t.popToken()).text[0])a=r.text.charCodeAt(1);else{if(\"EOF\"===r.text)throw new i(\"\\\\char` missing argument\");a=r.text.charCodeAt(0)}else e=10;if(e){if(null==(a=ia[r.text])||a>=e)throw new i(\"Invalid base-\"+e+\" digit \"+r.text);for(var n;null!=(n=ia[t.future().text])&&n<e;)a*=e,a+=n,t.popToken()}return\"\\\\@char{\"+a+\"}\"});var sa=function(t,e){var r=t.consumeArgs(1)[0];if(1!==r.length)throw new i(\"\\\\gdef's first argument must be a macro name\");var a=r[0].text,n=0;for(r=t.consumeArgs(1)[0];1===r.length&&\"#\"===r[0].text;){if(1!==(r=t.consumeArgs(1)[0]).length)throw new i('Invalid argument number length \"'+r.length+'\"');if(!/^[1-9]$/.test(r[0].text))throw new i('Invalid argument number \"'+r[0].text+'\"');if(n++,parseInt(r[0].text)!==n)throw new i('Argument number \"'+r[0].text+'\" out of order');r=t.consumeArgs(1)[0]}return t.macros.set(a,{tokens:r,numArgs:n},e),\"\"};oa(\"\\\\gdef\",function(t){return sa(t,!0)}),oa(\"\\\\def\",function(t){return sa(t,!1)}),oa(\"\\\\global\",function(t){var e=t.consumeArgs(1)[0];if(1!==e.length)throw new i(\"Invalid command after \\\\global\");var r=e[0].text;if(\"\\\\def\"===r)return sa(t,!0);throw new i(\"Invalid command '\"+r+\"' after \\\\global\")});var ha=function(t,e,r){var a=t.consumeArgs(1)[0];if(1!==a.length)throw new i(\"\\\\newcommand's first argument must be a macro name\");var n=a[0].text,o=t.isDefined(n);if(o&&!e)throw new i(\"\\\\newcommand{\"+n+\"} attempting to redefine \"+n+\"; use \\\\renewcommand\");if(!o&&!r)throw new i(\"\\\\renewcommand{\"+n+\"} when command \"+n+\" does not yet exist; use \\\\newcommand\");var s=0;if(1===(a=t.consumeArgs(1)[0]).length&&\"[\"===a[0].text){for(var h=\"\",l=t.expandNextToken();\"]\"!==l.text&&\"EOF\"!==l.text;)h+=l.text,l=t.expandNextToken();if(!h.match(/^\\s*[0-9]+\\s*$/))throw new i(\"Invalid number of arguments: \"+h);s=parseInt(h),a=t.consumeArgs(1)[0]}return t.macros.set(n,{tokens:a,numArgs:s}),\"\"};oa(\"\\\\newcommand\",function(t){return ha(t,!1,!0)}),oa(\"\\\\renewcommand\",function(t){return ha(t,!0,!1)}),oa(\"\\\\providecommand\",function(t){return ha(t,!0,!0)}),oa(\"\\\\bgroup\",\"{\"),oa(\"\\\\egroup\",\"}\"),oa(\"\\\\lq\",\"`\"),oa(\"\\\\rq\",\"'\"),oa(\"\\\\aa\",\"\\\\r a\"),oa(\"\\\\AA\",\"\\\\r A\"),oa(\"\\\\textcopyright\",\"\\\\html@mathml{\\\\textcircled{c}}{\\\\char`\\xa9}\"),oa(\"\\\\copyright\",\"\\\\TextOrMath{\\\\textcopyright}{\\\\text{\\\\textcopyright}}\"),oa(\"\\\\textregistered\",\"\\\\html@mathml{\\\\textcircled{\\\\scriptsize R}}{\\\\char`\\xae}\"),oa(\"\\u212c\",\"\\\\mathscr{B}\"),oa(\"\\u2130\",\"\\\\mathscr{E}\"),oa(\"\\u2131\",\"\\\\mathscr{F}\"),oa(\"\\u210b\",\"\\\\mathscr{H}\"),oa(\"\\u2110\",\"\\\\mathscr{I}\"),oa(\"\\u2112\",\"\\\\mathscr{L}\"),oa(\"\\u2133\",\"\\\\mathscr{M}\"),oa(\"\\u211b\",\"\\\\mathscr{R}\"),oa(\"\\u212d\",\"\\\\mathfrak{C}\"),oa(\"\\u210c\",\"\\\\mathfrak{H}\"),oa(\"\\u2128\",\"\\\\mathfrak{Z}\"),oa(\"\\\\Bbbk\",\"\\\\Bbb{k}\"),oa(\"\\xb7\",\"\\\\cdotp\"),oa(\"\\\\llap\",\"\\\\mathllap{\\\\textrm{#1}}\"),oa(\"\\\\rlap\",\"\\\\mathrlap{\\\\textrm{#1}}\"),oa(\"\\\\clap\",\"\\\\mathclap{\\\\textrm{#1}}\"),oa(\"\\\\not\",'\\\\html@mathml{\\\\mathrel{\\\\mathrlap\\\\@not}}{\\\\char\"338}'),oa(\"\\\\neq\",\"\\\\html@mathml{\\\\mathrel{\\\\not=}}{\\\\mathrel{\\\\char`\\u2260}}\"),oa(\"\\\\ne\",\"\\\\neq\"),oa(\"\\u2260\",\"\\\\neq\"),oa(\"\\\\notin\",\"\\\\html@mathml{\\\\mathrel{{\\\\in}\\\\mathllap{/\\\\mskip1mu}}}{\\\\mathrel{\\\\char`\\u2209}}\"),oa(\"\\u2209\",\"\\\\notin\"),oa(\"\\u2258\",\"\\\\html@mathml{\\\\mathrel{=\\\\kern{-1em}\\\\raisebox{0.4em}{$\\\\scriptsize\\\\frown$}}}{\\\\mathrel{\\\\char`\\u2258}}\"),oa(\"\\u2259\",\"\\\\html@mathml{\\\\stackrel{\\\\tiny\\\\wedge}{=}}{\\\\mathrel{\\\\char`\\u2258}}\"),oa(\"\\u225a\",\"\\\\html@mathml{\\\\stackrel{\\\\tiny\\\\vee}{=}}{\\\\mathrel{\\\\char`\\u225a}}\"),oa(\"\\u225b\",\"\\\\html@mathml{\\\\stackrel{\\\\scriptsize\\\\star}{=}}{\\\\mathrel{\\\\char`\\u225b}}\"),oa(\"\\u225d\",\"\\\\html@mathml{\\\\stackrel{\\\\tiny\\\\mathrm{def}}{=}}{\\\\mathrel{\\\\char`\\u225d}}\"),oa(\"\\u225e\",\"\\\\html@mathml{\\\\stackrel{\\\\tiny\\\\mathrm{m}}{=}}{\\\\mathrel{\\\\char`\\u225e}}\"),oa(\"\\u225f\",\"\\\\html@mathml{\\\\stackrel{\\\\tiny?}{=}}{\\\\mathrel{\\\\char`\\u225f}}\"),oa(\"\\u27c2\",\"\\\\perp\"),oa(\"\\u203c\",\"\\\\mathclose{!\\\\mkern-0.8mu!}\"),oa(\"\\u220c\",\"\\\\notni\"),oa(\"\\u231c\",\"\\\\ulcorner\"),oa(\"\\u231d\",\"\\\\urcorner\"),oa(\"\\u231e\",\"\\\\llcorner\"),oa(\"\\u231f\",\"\\\\lrcorner\"),oa(\"\\xa9\",\"\\\\copyright\"),oa(\"\\xae\",\"\\\\textregistered\"),oa(\"\\ufe0f\",\"\\\\textregistered\"),oa(\"\\\\vdots\",\"\\\\mathord{\\\\varvdots\\\\rule{0pt}{15pt}}\"),oa(\"\\u22ee\",\"\\\\vdots\"),oa(\"\\\\varGamma\",\"\\\\mathit{\\\\Gamma}\"),oa(\"\\\\varDelta\",\"\\\\mathit{\\\\Delta}\"),oa(\"\\\\varTheta\",\"\\\\mathit{\\\\Theta}\"),oa(\"\\\\varLambda\",\"\\\\mathit{\\\\Lambda}\"),oa(\"\\\\varXi\",\"\\\\mathit{\\\\Xi}\"),oa(\"\\\\varPi\",\"\\\\mathit{\\\\Pi}\"),oa(\"\\\\varSigma\",\"\\\\mathit{\\\\Sigma}\"),oa(\"\\\\varUpsilon\",\"\\\\mathit{\\\\Upsilon}\"),oa(\"\\\\varPhi\",\"\\\\mathit{\\\\Phi}\"),oa(\"\\\\varPsi\",\"\\\\mathit{\\\\Psi}\"),oa(\"\\\\varOmega\",\"\\\\mathit{\\\\Omega}\"),oa(\"\\\\colon\",\"\\\\nobreak\\\\mskip2mu\\\\mathpunct{}\\\\mathchoice{\\\\mkern-3mu}{\\\\mkern-3mu}{}{}{:}\\\\mskip6mu\"),oa(\"\\\\boxed\",\"\\\\fbox{$\\\\displaystyle{#1}$}\"),oa(\"\\\\iff\",\"\\\\DOTSB\\\\;\\\\Longleftrightarrow\\\\;\"),oa(\"\\\\implies\",\"\\\\DOTSB\\\\;\\\\Longrightarrow\\\\;\"),oa(\"\\\\impliedby\",\"\\\\DOTSB\\\\;\\\\Longleftarrow\\\\;\");var la={\",\":\"\\\\dotsc\",\"\\\\not\":\"\\\\dotsb\",\"+\":\"\\\\dotsb\",\"=\":\"\\\\dotsb\",\"<\":\"\\\\dotsb\",\">\":\"\\\\dotsb\",\"-\":\"\\\\dotsb\",\"*\":\"\\\\dotsb\",\":\":\"\\\\dotsb\",\"\\\\DOTSB\":\"\\\\dotsb\",\"\\\\coprod\":\"\\\\dotsb\",\"\\\\bigvee\":\"\\\\dotsb\",\"\\\\bigwedge\":\"\\\\dotsb\",\"\\\\biguplus\":\"\\\\dotsb\",\"\\\\bigcap\":\"\\\\dotsb\",\"\\\\bigcup\":\"\\\\dotsb\",\"\\\\prod\":\"\\\\dotsb\",\"\\\\sum\":\"\\\\dotsb\",\"\\\\bigotimes\":\"\\\\dotsb\",\"\\\\bigoplus\":\"\\\\dotsb\",\"\\\\bigodot\":\"\\\\dotsb\",\"\\\\bigsqcup\":\"\\\\dotsb\",\"\\\\And\":\"\\\\dotsb\",\"\\\\longrightarrow\":\"\\\\dotsb\",\"\\\\Longrightarrow\":\"\\\\dotsb\",\"\\\\longleftarrow\":\"\\\\dotsb\",\"\\\\Longleftarrow\":\"\\\\dotsb\",\"\\\\longleftrightarrow\":\"\\\\dotsb\",\"\\\\Longleftrightarrow\":\"\\\\dotsb\",\"\\\\mapsto\":\"\\\\dotsb\",\"\\\\longmapsto\":\"\\\\dotsb\",\"\\\\hookrightarrow\":\"\\\\dotsb\",\"\\\\doteq\":\"\\\\dotsb\",\"\\\\mathbin\":\"\\\\dotsb\",\"\\\\mathrel\":\"\\\\dotsb\",\"\\\\relbar\":\"\\\\dotsb\",\"\\\\Relbar\":\"\\\\dotsb\",\"\\\\xrightarrow\":\"\\\\dotsb\",\"\\\\xleftarrow\":\"\\\\dotsb\",\"\\\\DOTSI\":\"\\\\dotsi\",\"\\\\int\":\"\\\\dotsi\",\"\\\\oint\":\"\\\\dotsi\",\"\\\\iint\":\"\\\\dotsi\",\"\\\\iiint\":\"\\\\dotsi\",\"\\\\iiiint\":\"\\\\dotsi\",\"\\\\idotsint\":\"\\\\dotsi\",\"\\\\DOTSX\":\"\\\\dotsx\"};oa(\"\\\\dots\",function(t){var e=\"\\\\dotso\",r=t.expandAfterFuture().text;return r in la?e=la[r]:\"\\\\not\"===r.substr(0,4)?e=\"\\\\dotsb\":r in _.math&&c.contains([\"bin\",\"rel\"],_.math[r].group)&&(e=\"\\\\dotsb\"),e});var ma={\")\":!0,\"]\":!0,\"\\\\rbrack\":!0,\"\\\\}\":!0,\"\\\\rbrace\":!0,\"\\\\rangle\":!0,\"\\\\rceil\":!0,\"\\\\rfloor\":!0,\"\\\\rgroup\":!0,\"\\\\rmoustache\":!0,\"\\\\right\":!0,\"\\\\bigr\":!0,\"\\\\biggr\":!0,\"\\\\Bigr\":!0,\"\\\\Biggr\":!0,$:!0,\";\":!0,\".\":!0,\",\":!0};oa(\"\\\\dotso\",function(t){return t.future().text in ma?\"\\\\ldots\\\\,\":\"\\\\ldots\"}),oa(\"\\\\dotsc\",function(t){var e=t.future().text;return e in ma&&\",\"!==e?\"\\\\ldots\\\\,\":\"\\\\ldots\"}),oa(\"\\\\cdots\",function(t){return t.future().text in ma?\"\\\\@cdots\\\\,\":\"\\\\@cdots\"}),oa(\"\\\\dotsb\",\"\\\\cdots\"),oa(\"\\\\dotsm\",\"\\\\cdots\"),oa(\"\\\\dotsi\",\"\\\\!\\\\cdots\"),oa(\"\\\\dotsx\",\"\\\\ldots\\\\,\"),oa(\"\\\\DOTSI\",\"\\\\relax\"),oa(\"\\\\DOTSB\",\"\\\\relax\"),oa(\"\\\\DOTSX\",\"\\\\relax\"),oa(\"\\\\tmspace\",\"\\\\TextOrMath{\\\\kern#1#3}{\\\\mskip#1#2}\\\\relax\"),oa(\"\\\\,\",\"\\\\tmspace+{3mu}{.1667em}\"),oa(\"\\\\thinspace\",\"\\\\,\"),oa(\"\\\\>\",\"\\\\mskip{4mu}\"),oa(\"\\\\:\",\"\\\\tmspace+{4mu}{.2222em}\"),oa(\"\\\\medspace\",\"\\\\:\"),oa(\"\\\\;\",\"\\\\tmspace+{5mu}{.2777em}\"),oa(\"\\\\thickspace\",\"\\\\;\"),oa(\"\\\\!\",\"\\\\tmspace-{3mu}{.1667em}\"),oa(\"\\\\negthinspace\",\"\\\\!\"),oa(\"\\\\negmedspace\",\"\\\\tmspace-{4mu}{.2222em}\"),oa(\"\\\\negthickspace\",\"\\\\tmspace-{5mu}{.277em}\"),oa(\"\\\\enspace\",\"\\\\kern.5em \"),oa(\"\\\\enskip\",\"\\\\hskip.5em\\\\relax\"),oa(\"\\\\quad\",\"\\\\hskip1em\\\\relax\"),oa(\"\\\\qquad\",\"\\\\hskip2em\\\\relax\"),oa(\"\\\\tag\",\"\\\\@ifstar\\\\tag@literal\\\\tag@paren\"),oa(\"\\\\tag@paren\",\"\\\\tag@literal{({#1})}\"),oa(\"\\\\tag@literal\",function(t){if(t.macros.get(\"\\\\df@tag\"))throw new i(\"Multiple \\\\tag\");return\"\\\\gdef\\\\df@tag{\\\\text{#1}}\"}),oa(\"\\\\bmod\",\"\\\\mathchoice{\\\\mskip1mu}{\\\\mskip1mu}{\\\\mskip5mu}{\\\\mskip5mu}\\\\mathbin{\\\\rm mod}\\\\mathchoice{\\\\mskip1mu}{\\\\mskip1mu}{\\\\mskip5mu}{\\\\mskip5mu}\"),oa(\"\\\\pod\",\"\\\\allowbreak\\\\mathchoice{\\\\mkern18mu}{\\\\mkern8mu}{\\\\mkern8mu}{\\\\mkern8mu}(#1)\"),oa(\"\\\\pmod\",\"\\\\pod{{\\\\rm mod}\\\\mkern6mu#1}\"),oa(\"\\\\mod\",\"\\\\allowbreak\\\\mathchoice{\\\\mkern18mu}{\\\\mkern12mu}{\\\\mkern12mu}{\\\\mkern12mu}{\\\\rm mod}\\\\,\\\\,#1\"),oa(\"\\\\pmb\",\"\\\\html@mathml{\\\\@binrel{#1}{\\\\mathrlap{#1}\\\\mathrlap{\\\\mkern0.4mu\\\\raisebox{0.4mu}{$#1$}}{\\\\mkern0.8mu#1}}}{\\\\mathbf{#1}}\"),oa(\"\\\\\\\\\",\"\\\\newline\"),oa(\"\\\\TeX\",\"\\\\textrm{\\\\html@mathml{T\\\\kern-.1667em\\\\raisebox{-.5ex}{E}\\\\kern-.125emX}{TeX}}\");var ca=P[\"Main-Regular\"][\"T\".charCodeAt(0)][1]-.7*P[\"Main-Regular\"][\"A\".charCodeAt(0)][1]+\"em\";oa(\"\\\\LaTeX\",\"\\\\textrm{\\\\html@mathml{L\\\\kern-.36em\\\\raisebox{\"+ca+\"}{\\\\scriptsize A}\\\\kern-.15em\\\\TeX}{LaTeX}}\"),oa(\"\\\\KaTeX\",\"\\\\textrm{\\\\html@mathml{K\\\\kern-.17em\\\\raisebox{\"+ca+\"}{\\\\scriptsize A}\\\\kern-.15em\\\\TeX}{KaTeX}}\"),oa(\"\\\\hspace\",\"\\\\@ifstar\\\\@hspacer\\\\@hspace\"),oa(\"\\\\@hspace\",\"\\\\hskip #1\\\\relax\"),oa(\"\\\\@hspacer\",\"\\\\rule{0pt}{0pt}\\\\hskip #1\\\\relax\"),oa(\"\\\\ordinarycolon\",\":\"),oa(\"\\\\vcentcolon\",\"\\\\mathrel{\\\\mathop\\\\ordinarycolon}\"),oa(\"\\\\dblcolon\",'\\\\html@mathml{\\\\mathrel{\\\\vcentcolon\\\\mathrel{\\\\mkern-.9mu}\\\\vcentcolon}}{\\\\mathop{\\\\char\"2237}}'),oa(\"\\\\coloneqq\",'\\\\html@mathml{\\\\mathrel{\\\\vcentcolon\\\\mathrel{\\\\mkern-1.2mu}=}}{\\\\mathop{\\\\char\"2254}}'),oa(\"\\\\Coloneqq\",'\\\\html@mathml{\\\\mathrel{\\\\dblcolon\\\\mathrel{\\\\mkern-1.2mu}=}}{\\\\mathop{\\\\char\"2237\\\\char\"3d}}'),oa(\"\\\\coloneq\",'\\\\html@mathml{\\\\mathrel{\\\\vcentcolon\\\\mathrel{\\\\mkern-1.2mu}\\\\mathrel{-}}}{\\\\mathop{\\\\char\"3a\\\\char\"2212}}'),oa(\"\\\\Coloneq\",'\\\\html@mathml{\\\\mathrel{\\\\dblcolon\\\\mathrel{\\\\mkern-1.2mu}\\\\mathrel{-}}}{\\\\mathop{\\\\char\"2237\\\\char\"2212}}'),oa(\"\\\\eqqcolon\",'\\\\html@mathml{\\\\mathrel{=\\\\mathrel{\\\\mkern-1.2mu}\\\\vcentcolon}}{\\\\mathop{\\\\char\"2255}}'),oa(\"\\\\Eqqcolon\",'\\\\html@mathml{\\\\mathrel{=\\\\mathrel{\\\\mkern-1.2mu}\\\\dblcolon}}{\\\\mathop{\\\\char\"3d\\\\char\"2237}}'),oa(\"\\\\eqcolon\",'\\\\html@mathml{\\\\mathrel{\\\\mathrel{-}\\\\mathrel{\\\\mkern-1.2mu}\\\\vcentcolon}}{\\\\mathop{\\\\char\"2239}}'),oa(\"\\\\Eqcolon\",'\\\\html@mathml{\\\\mathrel{\\\\mathrel{-}\\\\mathrel{\\\\mkern-1.2mu}\\\\dblcolon}}{\\\\mathop{\\\\char\"2212\\\\char\"2237}}'),oa(\"\\\\colonapprox\",'\\\\html@mathml{\\\\mathrel{\\\\vcentcolon\\\\mathrel{\\\\mkern-1.2mu}\\\\approx}}{\\\\mathop{\\\\char\"3a\\\\char\"2248}}'),oa(\"\\\\Colonapprox\",'\\\\html@mathml{\\\\mathrel{\\\\dblcolon\\\\mathrel{\\\\mkern-1.2mu}\\\\approx}}{\\\\mathop{\\\\char\"2237\\\\char\"2248}}'),oa(\"\\\\colonsim\",'\\\\html@mathml{\\\\mathrel{\\\\vcentcolon\\\\mathrel{\\\\mkern-1.2mu}\\\\sim}}{\\\\mathop{\\\\char\"3a\\\\char\"223c}}'),oa(\"\\\\Colonsim\",'\\\\html@mathml{\\\\mathrel{\\\\dblcolon\\\\mathrel{\\\\mkern-1.2mu}\\\\sim}}{\\\\mathop{\\\\char\"2237\\\\char\"223c}}'),oa(\"\\u2237\",\"\\\\dblcolon\"),oa(\"\\u2239\",\"\\\\eqcolon\"),oa(\"\\u2254\",\"\\\\coloneqq\"),oa(\"\\u2255\",\"\\\\eqqcolon\"),oa(\"\\u2a74\",\"\\\\Coloneqq\"),oa(\"\\\\ratio\",\"\\\\vcentcolon\"),oa(\"\\\\coloncolon\",\"\\\\dblcolon\"),oa(\"\\\\colonequals\",\"\\\\coloneqq\"),oa(\"\\\\coloncolonequals\",\"\\\\Coloneqq\"),oa(\"\\\\equalscolon\",\"\\\\eqqcolon\"),oa(\"\\\\equalscoloncolon\",\"\\\\Eqqcolon\"),oa(\"\\\\colonminus\",\"\\\\coloneq\"),oa(\"\\\\coloncolonminus\",\"\\\\Coloneq\"),oa(\"\\\\minuscolon\",\"\\\\eqcolon\"),oa(\"\\\\minuscoloncolon\",\"\\\\Eqcolon\"),oa(\"\\\\coloncolonapprox\",\"\\\\Colonapprox\"),oa(\"\\\\coloncolonsim\",\"\\\\Colonsim\"),oa(\"\\\\simcolon\",\"\\\\mathrel{\\\\sim\\\\mathrel{\\\\mkern-1.2mu}\\\\vcentcolon}\"),oa(\"\\\\simcoloncolon\",\"\\\\mathrel{\\\\sim\\\\mathrel{\\\\mkern-1.2mu}\\\\dblcolon}\"),oa(\"\\\\approxcolon\",\"\\\\mathrel{\\\\approx\\\\mathrel{\\\\mkern-1.2mu}\\\\vcentcolon}\"),oa(\"\\\\approxcoloncolon\",\"\\\\mathrel{\\\\approx\\\\mathrel{\\\\mkern-1.2mu}\\\\dblcolon}\"),oa(\"\\\\notni\",\"\\\\html@mathml{\\\\not\\\\ni}{\\\\mathrel{\\\\char`\\u220c}}\"),oa(\"\\\\limsup\",\"\\\\DOTSB\\\\mathop{\\\\operatorname{lim\\\\,sup}}\\\\limits\"),oa(\"\\\\liminf\",\"\\\\DOTSB\\\\mathop{\\\\operatorname{lim\\\\,inf}}\\\\limits\"),oa(\"\\\\gvertneqq\",\"\\\\html@mathml{\\\\@gvertneqq}{\\u2269}\"),oa(\"\\\\lvertneqq\",\"\\\\html@mathml{\\\\@lvertneqq}{\\u2268}\"),oa(\"\\\\ngeqq\",\"\\\\html@mathml{\\\\@ngeqq}{\\u2271}\"),oa(\"\\\\ngeqslant\",\"\\\\html@mathml{\\\\@ngeqslant}{\\u2271}\"),oa(\"\\\\nleqq\",\"\\\\html@mathml{\\\\@nleqq}{\\u2270}\"),oa(\"\\\\nleqslant\",\"\\\\html@mathml{\\\\@nleqslant}{\\u2270}\"),oa(\"\\\\nshortmid\",\"\\\\html@mathml{\\\\@nshortmid}{\\u2224}\"),oa(\"\\\\nshortparallel\",\"\\\\html@mathml{\\\\@nshortparallel}{\\u2226}\"),oa(\"\\\\nsubseteqq\",\"\\\\html@mathml{\\\\@nsubseteqq}{\\u2288}\"),oa(\"\\\\nsupseteqq\",\"\\\\html@mathml{\\\\@nsupseteqq}{\\u2289}\"),oa(\"\\\\varsubsetneq\",\"\\\\html@mathml{\\\\@varsubsetneq}{\\u228a}\"),oa(\"\\\\varsubsetneqq\",\"\\\\html@mathml{\\\\@varsubsetneqq}{\\u2acb}\"),oa(\"\\\\varsupsetneq\",\"\\\\html@mathml{\\\\@varsupsetneq}{\\u228b}\"),oa(\"\\\\varsupsetneqq\",\"\\\\html@mathml{\\\\@varsupsetneqq}{\\u2acc}\"),oa(\"\\\\llbracket\",\"\\\\html@mathml{\\\\mathopen{[\\\\mkern-3.2mu[}}{\\\\mathopen{\\\\char`\\u27e6}}\"),oa(\"\\\\rrbracket\",\"\\\\html@mathml{\\\\mathclose{]\\\\mkern-3.2mu]}}{\\\\mathclose{\\\\char`\\u27e7}}\"),oa(\"\\u27e6\",\"\\\\llbracket\"),oa(\"\\u27e7\",\"\\\\rrbracket\"),oa(\"\\\\lBrace\",\"\\\\html@mathml{\\\\mathopen{\\\\{\\\\mkern-3.2mu[}}{\\\\mathopen{\\\\char`\\u2983}}\"),oa(\"\\\\rBrace\",\"\\\\html@mathml{\\\\mathclose{]\\\\mkern-3.2mu\\\\}}}{\\\\mathclose{\\\\char`\\u2984}}\"),oa(\"\\u2983\",\"\\\\lBrace\"),oa(\"\\u2984\",\"\\\\rBrace\"),oa(\"\\\\darr\",\"\\\\downarrow\"),oa(\"\\\\dArr\",\"\\\\Downarrow\"),oa(\"\\\\Darr\",\"\\\\Downarrow\"),oa(\"\\\\lang\",\"\\\\langle\"),oa(\"\\\\rang\",\"\\\\rangle\"),oa(\"\\\\uarr\",\"\\\\uparrow\"),oa(\"\\\\uArr\",\"\\\\Uparrow\"),oa(\"\\\\Uarr\",\"\\\\Uparrow\"),oa(\"\\\\N\",\"\\\\mathbb{N}\"),oa(\"\\\\R\",\"\\\\mathbb{R}\"),oa(\"\\\\Z\",\"\\\\mathbb{Z}\"),oa(\"\\\\alef\",\"\\\\aleph\"),oa(\"\\\\alefsym\",\"\\\\aleph\"),oa(\"\\\\Alpha\",\"\\\\mathrm{A}\"),oa(\"\\\\Beta\",\"\\\\mathrm{B}\"),oa(\"\\\\bull\",\"\\\\bullet\"),oa(\"\\\\Chi\",\"\\\\mathrm{X}\"),oa(\"\\\\clubs\",\"\\\\clubsuit\"),oa(\"\\\\cnums\",\"\\\\mathbb{C}\"),oa(\"\\\\Complex\",\"\\\\mathbb{C}\"),oa(\"\\\\Dagger\",\"\\\\ddagger\"),oa(\"\\\\diamonds\",\"\\\\diamondsuit\"),oa(\"\\\\empty\",\"\\\\emptyset\"),oa(\"\\\\Epsilon\",\"\\\\mathrm{E}\"),oa(\"\\\\Eta\",\"\\\\mathrm{H}\"),oa(\"\\\\exist\",\"\\\\exists\"),oa(\"\\\\harr\",\"\\\\leftrightarrow\"),oa(\"\\\\hArr\",\"\\\\Leftrightarrow\"),oa(\"\\\\Harr\",\"\\\\Leftrightarrow\"),oa(\"\\\\hearts\",\"\\\\heartsuit\"),oa(\"\\\\image\",\"\\\\Im\"),oa(\"\\\\infin\",\"\\\\infty\"),oa(\"\\\\Iota\",\"\\\\mathrm{I}\"),oa(\"\\\\isin\",\"\\\\in\"),oa(\"\\\\Kappa\",\"\\\\mathrm{K}\"),oa(\"\\\\larr\",\"\\\\leftarrow\"),oa(\"\\\\lArr\",\"\\\\Leftarrow\"),oa(\"\\\\Larr\",\"\\\\Leftarrow\"),oa(\"\\\\lrarr\",\"\\\\leftrightarrow\"),oa(\"\\\\lrArr\",\"\\\\Leftrightarrow\"),oa(\"\\\\Lrarr\",\"\\\\Leftrightarrow\"),oa(\"\\\\Mu\",\"\\\\mathrm{M}\"),oa(\"\\\\natnums\",\"\\\\mathbb{N}\"),oa(\"\\\\Nu\",\"\\\\mathrm{N}\"),oa(\"\\\\Omicron\",\"\\\\mathrm{O}\"),oa(\"\\\\plusmn\",\"\\\\pm\"),oa(\"\\\\rarr\",\"\\\\rightarrow\"),oa(\"\\\\rArr\",\"\\\\Rightarrow\"),oa(\"\\\\Rarr\",\"\\\\Rightarrow\"),oa(\"\\\\real\",\"\\\\Re\"),oa(\"\\\\reals\",\"\\\\mathbb{R}\"),oa(\"\\\\Reals\",\"\\\\mathbb{R}\"),oa(\"\\\\Rho\",\"\\\\mathrm{P}\"),oa(\"\\\\sdot\",\"\\\\cdot\"),oa(\"\\\\sect\",\"\\\\S\"),oa(\"\\\\spades\",\"\\\\spadesuit\"),oa(\"\\\\sub\",\"\\\\subset\"),oa(\"\\\\sube\",\"\\\\subseteq\"),oa(\"\\\\supe\",\"\\\\supseteq\"),oa(\"\\\\Tau\",\"\\\\mathrm{T}\"),oa(\"\\\\thetasym\",\"\\\\vartheta\"),oa(\"\\\\weierp\",\"\\\\wp\"),oa(\"\\\\Zeta\",\"\\\\mathrm{Z}\"),oa(\"\\\\argmin\",\"\\\\DOTSB\\\\mathop{\\\\operatorname{arg\\\\,min}}\\\\limits\"),oa(\"\\\\argmax\",\"\\\\DOTSB\\\\mathop{\\\\operatorname{arg\\\\,max}}\\\\limits\"),oa(\"\\\\blue\",\"\\\\textcolor{##6495ed}{#1}\"),oa(\"\\\\orange\",\"\\\\textcolor{##ffa500}{#1}\"),oa(\"\\\\pink\",\"\\\\textcolor{##ff00af}{#1}\"),oa(\"\\\\red\",\"\\\\textcolor{##df0030}{#1}\"),oa(\"\\\\green\",\"\\\\textcolor{##28ae7b}{#1}\"),oa(\"\\\\gray\",\"\\\\textcolor{gray}{##1}\"),oa(\"\\\\purple\",\"\\\\textcolor{##9d38bd}{#1}\"),oa(\"\\\\blueA\",\"\\\\textcolor{##ccfaff}{#1}\"),oa(\"\\\\blueB\",\"\\\\textcolor{##80f6ff}{#1}\"),oa(\"\\\\blueC\",\"\\\\textcolor{##63d9ea}{#1}\"),oa(\"\\\\blueD\",\"\\\\textcolor{##11accd}{#1}\"),oa(\"\\\\blueE\",\"\\\\textcolor{##0c7f99}{#1}\"),oa(\"\\\\tealA\",\"\\\\textcolor{##94fff5}{#1}\"),oa(\"\\\\tealB\",\"\\\\textcolor{##26edd5}{#1}\"),oa(\"\\\\tealC\",\"\\\\textcolor{##01d1c1}{#1}\"),oa(\"\\\\tealD\",\"\\\\textcolor{##01a995}{#1}\"),oa(\"\\\\tealE\",\"\\\\textcolor{##208170}{#1}\"),oa(\"\\\\greenA\",\"\\\\textcolor{##b6ffb0}{#1}\"),oa(\"\\\\greenB\",\"\\\\textcolor{##8af281}{#1}\"),oa(\"\\\\greenC\",\"\\\\textcolor{##74cf70}{#1}\"),oa(\"\\\\greenD\",\"\\\\textcolor{##1fab54}{#1}\"),oa(\"\\\\greenE\",\"\\\\textcolor{##0d923f}{#1}\"),oa(\"\\\\goldA\",\"\\\\textcolor{##ffd0a9}{#1}\"),oa(\"\\\\goldB\",\"\\\\textcolor{##ffbb71}{#1}\"),oa(\"\\\\goldC\",\"\\\\textcolor{##ff9c39}{#1}\"),oa(\"\\\\goldD\",\"\\\\textcolor{##e07d10}{#1}\"),oa(\"\\\\goldE\",\"\\\\textcolor{##a75a05}{#1}\"),oa(\"\\\\redA\",\"\\\\textcolor{##fca9a9}{#1}\"),oa(\"\\\\redB\",\"\\\\textcolor{##ff8482}{#1}\"),oa(\"\\\\redC\",\"\\\\textcolor{##f9685d}{#1}\"),oa(\"\\\\redD\",\"\\\\textcolor{##e84d39}{#1}\"),oa(\"\\\\redE\",\"\\\\textcolor{##bc2612}{#1}\"),oa(\"\\\\maroonA\",\"\\\\textcolor{##ffbde0}{#1}\"),oa(\"\\\\maroonB\",\"\\\\textcolor{##ff92c6}{#1}\"),oa(\"\\\\maroonC\",\"\\\\textcolor{##ed5fa6}{#1}\"),oa(\"\\\\maroonD\",\"\\\\textcolor{##ca337c}{#1}\"),oa(\"\\\\maroonE\",\"\\\\textcolor{##9e034e}{#1}\"),oa(\"\\\\purpleA\",\"\\\\textcolor{##ddd7ff}{#1}\"),oa(\"\\\\purpleB\",\"\\\\textcolor{##c6b9fc}{#1}\"),oa(\"\\\\purpleC\",\"\\\\textcolor{##aa87ff}{#1}\"),oa(\"\\\\purpleD\",\"\\\\textcolor{##7854ab}{#1}\"),oa(\"\\\\purpleE\",\"\\\\textcolor{##543b78}{#1}\"),oa(\"\\\\mintA\",\"\\\\textcolor{##f5f9e8}{#1}\"),oa(\"\\\\mintB\",\"\\\\textcolor{##edf2df}{#1}\"),oa(\"\\\\mintC\",\"\\\\textcolor{##e0e5cc}{#1}\"),oa(\"\\\\grayA\",\"\\\\textcolor{##f6f7f7}{#1}\"),oa(\"\\\\grayB\",\"\\\\textcolor{##f0f1f2}{#1}\"),oa(\"\\\\grayC\",\"\\\\textcolor{##e3e5e6}{#1}\"),oa(\"\\\\grayD\",\"\\\\textcolor{##d6d8da}{#1}\"),oa(\"\\\\grayE\",\"\\\\textcolor{##babec2}{#1}\"),oa(\"\\\\grayF\",\"\\\\textcolor{##888d93}{#1}\"),oa(\"\\\\grayG\",\"\\\\textcolor{##626569}{#1}\"),oa(\"\\\\grayH\",\"\\\\textcolor{##3b3e40}{#1}\"),oa(\"\\\\grayI\",\"\\\\textcolor{##21242c}{#1}\"),oa(\"\\\\kaBlue\",\"\\\\textcolor{##314453}{#1}\"),oa(\"\\\\kaGreen\",\"\\\\textcolor{##71B307}{#1}\");var ua={\"\\\\relax\":!0,\"^\":!0,_:!0,\"\\\\limits\":!0,\"\\\\nolimits\":!0},da=function(){function t(t,e,r){this.settings=void 0,this.expansionCount=void 0,this.lexer=void 0,this.macros=void 0,this.stack=void 0,this.mode=void 0,this.settings=e,this.expansionCount=0,this.feed(t),this.macros=new ra(na,e.macros),this.mode=r,this.stack=[]}var e=t.prototype;return e.feed=function(t){this.lexer=new ea(t,this.settings)},e.switchMode=function(t){this.mode=t},e.beginGroup=function(){this.macros.beginGroup()},e.endGroup=function(){this.macros.endGroup()},e.future=function(){return 0===this.stack.length&&this.pushToken(this.lexer.lex()),this.stack[this.stack.length-1]},e.popToken=function(){return this.future(),this.stack.pop()},e.pushToken=function(t){this.stack.push(t)},e.pushTokens=function(t){var e;(e=this.stack).push.apply(e,t)},e.consumeSpaces=function(){for(;;){if(\" \"!==this.future().text)break;this.stack.pop()}},e.consumeArgs=function(t){for(var e=[],r=0;r<t;++r){this.consumeSpaces();var a=this.popToken();if(\"{\"===a.text){for(var n=[],o=1;0!==o;){var s=this.popToken();if(n.push(s),\"{\"===s.text)++o;else if(\"}\"===s.text)--o;else if(\"EOF\"===s.text)throw new i(\"End of input in macro argument\",a)}n.pop(),n.reverse(),e[r]=n}else{if(\"EOF\"===a.text)throw new i(\"End of input expecting macro argument\");e[r]=[a]}}return e},e.expandOnce=function(){var t=this.popToken(),e=t.text,r=this._getExpansion(e);if(null==r)return this.pushToken(t),t;if(this.expansionCount++,this.expansionCount>this.settings.maxExpand)throw new i(\"Too many expansions: infinite loop or need to increase maxExpand setting\");var a=r.tokens;if(r.numArgs)for(var n=this.consumeArgs(r.numArgs),o=(a=a.slice()).length-1;o>=0;--o){var s=a[o];if(\"#\"===s.text){if(0===o)throw new i(\"Incomplete placeholder at end of macro body\",s);if(\"#\"===(s=a[--o]).text)a.splice(o+1,1);else{if(!/^[1-9]$/.test(s.text))throw new i(\"Not a valid argument number\",s);var h;(h=a).splice.apply(h,[o,2].concat(n[+s.text-1]))}}}return this.pushTokens(a),a},e.expandAfterFuture=function(){return this.expandOnce(),this.future()},e.expandNextToken=function(){for(;;){var t=this.expandOnce();if(t instanceof n){if(\"\\\\relax\"!==t.text)return this.stack.pop();this.stack.pop()}}throw new Error},e.expandMacro=function(t){if(this.macros.get(t)){var e=[],r=this.stack.length;for(this.pushToken(new n(t));this.stack.length>r;){this.expandOnce()instanceof n&&e.push(this.stack.pop())}return e}},e.expandMacroAsText=function(t){var e=this.expandMacro(t);return e?e.map(function(t){return t.text}).join(\"\"):e},e._getExpansion=function(t){var e=this.macros.get(t);if(null==e)return e;var r=\"function\"==typeof e?e(this):e;if(\"string\"==typeof r){var a=0;if(-1!==r.indexOf(\"#\"))for(var n=r.replace(/##/g,\"\");-1!==n.indexOf(\"#\"+(a+1));)++a;for(var o=new ea(r,this.settings),i=[],s=o.lex();\"EOF\"!==s.text;)i.push(s),s=o.lex();return i.reverse(),{tokens:i,numArgs:a}}return r},e.isDefined=function(t){return this.macros.has(t)||Kr.hasOwnProperty(t)||_.math.hasOwnProperty(t)||_.text.hasOwnProperty(t)||ua.hasOwnProperty(t)},t}(),pa={\"\\u0301\":{text:\"\\\\'\",math:\"\\\\acute\"},\"\\u0300\":{text:\"\\\\`\",math:\"\\\\grave\"},\"\\u0308\":{text:'\\\\\"',math:\"\\\\ddot\"},\"\\u0303\":{text:\"\\\\~\",math:\"\\\\tilde\"},\"\\u0304\":{text:\"\\\\=\",math:\"\\\\bar\"},\"\\u0306\":{text:\"\\\\u\",math:\"\\\\breve\"},\"\\u030c\":{text:\"\\\\v\",math:\"\\\\check\"},\"\\u0302\":{text:\"\\\\^\",math:\"\\\\hat\"},\"\\u0307\":{text:\"\\\\.\",math:\"\\\\dot\"},\"\\u030a\":{text:\"\\\\r\",math:\"\\\\mathring\"},\"\\u030b\":{text:\"\\\\H\"}},fa={\"\\xe1\":\"a\\u0301\",\"\\xe0\":\"a\\u0300\",\"\\xe4\":\"a\\u0308\",\"\\u01df\":\"a\\u0308\\u0304\",\"\\xe3\":\"a\\u0303\",\"\\u0101\":\"a\\u0304\",\"\\u0103\":\"a\\u0306\",\"\\u1eaf\":\"a\\u0306\\u0301\",\"\\u1eb1\":\"a\\u0306\\u0300\",\"\\u1eb5\":\"a\\u0306\\u0303\",\"\\u01ce\":\"a\\u030c\",\"\\xe2\":\"a\\u0302\",\"\\u1ea5\":\"a\\u0302\\u0301\",\"\\u1ea7\":\"a\\u0302\\u0300\",\"\\u1eab\":\"a\\u0302\\u0303\",\"\\u0227\":\"a\\u0307\",\"\\u01e1\":\"a\\u0307\\u0304\",\"\\xe5\":\"a\\u030a\",\"\\u01fb\":\"a\\u030a\\u0301\",\"\\u1e03\":\"b\\u0307\",\"\\u0107\":\"c\\u0301\",\"\\u010d\":\"c\\u030c\",\"\\u0109\":\"c\\u0302\",\"\\u010b\":\"c\\u0307\",\"\\u010f\":\"d\\u030c\",\"\\u1e0b\":\"d\\u0307\",\"\\xe9\":\"e\\u0301\",\"\\xe8\":\"e\\u0300\",\"\\xeb\":\"e\\u0308\",\"\\u1ebd\":\"e\\u0303\",\"\\u0113\":\"e\\u0304\",\"\\u1e17\":\"e\\u0304\\u0301\",\"\\u1e15\":\"e\\u0304\\u0300\",\"\\u0115\":\"e\\u0306\",\"\\u011b\":\"e\\u030c\",\"\\xea\":\"e\\u0302\",\"\\u1ebf\":\"e\\u0302\\u0301\",\"\\u1ec1\":\"e\\u0302\\u0300\",\"\\u1ec5\":\"e\\u0302\\u0303\",\"\\u0117\":\"e\\u0307\",\"\\u1e1f\":\"f\\u0307\",\"\\u01f5\":\"g\\u0301\",\"\\u1e21\":\"g\\u0304\",\"\\u011f\":\"g\\u0306\",\"\\u01e7\":\"g\\u030c\",\"\\u011d\":\"g\\u0302\",\"\\u0121\":\"g\\u0307\",\"\\u1e27\":\"h\\u0308\",\"\\u021f\":\"h\\u030c\",\"\\u0125\":\"h\\u0302\",\"\\u1e23\":\"h\\u0307\",\"\\xed\":\"i\\u0301\",\"\\xec\":\"i\\u0300\",\"\\xef\":\"i\\u0308\",\"\\u1e2f\":\"i\\u0308\\u0301\",\"\\u0129\":\"i\\u0303\",\"\\u012b\":\"i\\u0304\",\"\\u012d\":\"i\\u0306\",\"\\u01d0\":\"i\\u030c\",\"\\xee\":\"i\\u0302\",\"\\u01f0\":\"j\\u030c\",\"\\u0135\":\"j\\u0302\",\"\\u1e31\":\"k\\u0301\",\"\\u01e9\":\"k\\u030c\",\"\\u013a\":\"l\\u0301\",\"\\u013e\":\"l\\u030c\",\"\\u1e3f\":\"m\\u0301\",\"\\u1e41\":\"m\\u0307\",\"\\u0144\":\"n\\u0301\",\"\\u01f9\":\"n\\u0300\",\"\\xf1\":\"n\\u0303\",\"\\u0148\":\"n\\u030c\",\"\\u1e45\":\"n\\u0307\",\"\\xf3\":\"o\\u0301\",\"\\xf2\":\"o\\u0300\",\"\\xf6\":\"o\\u0308\",\"\\u022b\":\"o\\u0308\\u0304\",\"\\xf5\":\"o\\u0303\",\"\\u1e4d\":\"o\\u0303\\u0301\",\"\\u1e4f\":\"o\\u0303\\u0308\",\"\\u022d\":\"o\\u0303\\u0304\",\"\\u014d\":\"o\\u0304\",\"\\u1e53\":\"o\\u0304\\u0301\",\"\\u1e51\":\"o\\u0304\\u0300\",\"\\u014f\":\"o\\u0306\",\"\\u01d2\":\"o\\u030c\",\"\\xf4\":\"o\\u0302\",\"\\u1ed1\":\"o\\u0302\\u0301\",\"\\u1ed3\":\"o\\u0302\\u0300\",\"\\u1ed7\":\"o\\u0302\\u0303\",\"\\u022f\":\"o\\u0307\",\"\\u0231\":\"o\\u0307\\u0304\",\"\\u0151\":\"o\\u030b\",\"\\u1e55\":\"p\\u0301\",\"\\u1e57\":\"p\\u0307\",\"\\u0155\":\"r\\u0301\",\"\\u0159\":\"r\\u030c\",\"\\u1e59\":\"r\\u0307\",\"\\u015b\":\"s\\u0301\",\"\\u1e65\":\"s\\u0301\\u0307\",\"\\u0161\":\"s\\u030c\",\"\\u1e67\":\"s\\u030c\\u0307\",\"\\u015d\":\"s\\u0302\",\"\\u1e61\":\"s\\u0307\",\"\\u1e97\":\"t\\u0308\",\"\\u0165\":\"t\\u030c\",\"\\u1e6b\":\"t\\u0307\",\"\\xfa\":\"u\\u0301\",\"\\xf9\":\"u\\u0300\",\"\\xfc\":\"u\\u0308\",\"\\u01d8\":\"u\\u0308\\u0301\",\"\\u01dc\":\"u\\u0308\\u0300\",\"\\u01d6\":\"u\\u0308\\u0304\",\"\\u01da\":\"u\\u0308\\u030c\",\"\\u0169\":\"u\\u0303\",\"\\u1e79\":\"u\\u0303\\u0301\",\"\\u016b\":\"u\\u0304\",\"\\u1e7b\":\"u\\u0304\\u0308\",\"\\u016d\":\"u\\u0306\",\"\\u01d4\":\"u\\u030c\",\"\\xfb\":\"u\\u0302\",\"\\u016f\":\"u\\u030a\",\"\\u0171\":\"u\\u030b\",\"\\u1e7d\":\"v\\u0303\",\"\\u1e83\":\"w\\u0301\",\"\\u1e81\":\"w\\u0300\",\"\\u1e85\":\"w\\u0308\",\"\\u0175\":\"w\\u0302\",\"\\u1e87\":\"w\\u0307\",\"\\u1e98\":\"w\\u030a\",\"\\u1e8d\":\"x\\u0308\",\"\\u1e8b\":\"x\\u0307\",\"\\xfd\":\"y\\u0301\",\"\\u1ef3\":\"y\\u0300\",\"\\xff\":\"y\\u0308\",\"\\u1ef9\":\"y\\u0303\",\"\\u0233\":\"y\\u0304\",\"\\u0177\":\"y\\u0302\",\"\\u1e8f\":\"y\\u0307\",\"\\u1e99\":\"y\\u030a\",\"\\u017a\":\"z\\u0301\",\"\\u017e\":\"z\\u030c\",\"\\u1e91\":\"z\\u0302\",\"\\u017c\":\"z\\u0307\",\"\\xc1\":\"A\\u0301\",\"\\xc0\":\"A\\u0300\",\"\\xc4\":\"A\\u0308\",\"\\u01de\":\"A\\u0308\\u0304\",\"\\xc3\":\"A\\u0303\",\"\\u0100\":\"A\\u0304\",\"\\u0102\":\"A\\u0306\",\"\\u1eae\":\"A\\u0306\\u0301\",\"\\u1eb0\":\"A\\u0306\\u0300\",\"\\u1eb4\":\"A\\u0306\\u0303\",\"\\u01cd\":\"A\\u030c\",\"\\xc2\":\"A\\u0302\",\"\\u1ea4\":\"A\\u0302\\u0301\",\"\\u1ea6\":\"A\\u0302\\u0300\",\"\\u1eaa\":\"A\\u0302\\u0303\",\"\\u0226\":\"A\\u0307\",\"\\u01e0\":\"A\\u0307\\u0304\",\"\\xc5\":\"A\\u030a\",\"\\u01fa\":\"A\\u030a\\u0301\",\"\\u1e02\":\"B\\u0307\",\"\\u0106\":\"C\\u0301\",\"\\u010c\":\"C\\u030c\",\"\\u0108\":\"C\\u0302\",\"\\u010a\":\"C\\u0307\",\"\\u010e\":\"D\\u030c\",\"\\u1e0a\":\"D\\u0307\",\"\\xc9\":\"E\\u0301\",\"\\xc8\":\"E\\u0300\",\"\\xcb\":\"E\\u0308\",\"\\u1ebc\":\"E\\u0303\",\"\\u0112\":\"E\\u0304\",\"\\u1e16\":\"E\\u0304\\u0301\",\"\\u1e14\":\"E\\u0304\\u0300\",\"\\u0114\":\"E\\u0306\",\"\\u011a\":\"E\\u030c\",\"\\xca\":\"E\\u0302\",\"\\u1ebe\":\"E\\u0302\\u0301\",\"\\u1ec0\":\"E\\u0302\\u0300\",\"\\u1ec4\":\"E\\u0302\\u0303\",\"\\u0116\":\"E\\u0307\",\"\\u1e1e\":\"F\\u0307\",\"\\u01f4\":\"G\\u0301\",\"\\u1e20\":\"G\\u0304\",\"\\u011e\":\"G\\u0306\",\"\\u01e6\":\"G\\u030c\",\"\\u011c\":\"G\\u0302\",\"\\u0120\":\"G\\u0307\",\"\\u1e26\":\"H\\u0308\",\"\\u021e\":\"H\\u030c\",\"\\u0124\":\"H\\u0302\",\"\\u1e22\":\"H\\u0307\",\"\\xcd\":\"I\\u0301\",\"\\xcc\":\"I\\u0300\",\"\\xcf\":\"I\\u0308\",\"\\u1e2e\":\"I\\u0308\\u0301\",\"\\u0128\":\"I\\u0303\",\"\\u012a\":\"I\\u0304\",\"\\u012c\":\"I\\u0306\",\"\\u01cf\":\"I\\u030c\",\"\\xce\":\"I\\u0302\",\"\\u0130\":\"I\\u0307\",\"\\u0134\":\"J\\u0302\",\"\\u1e30\":\"K\\u0301\",\"\\u01e8\":\"K\\u030c\",\"\\u0139\":\"L\\u0301\",\"\\u013d\":\"L\\u030c\",\"\\u1e3e\":\"M\\u0301\",\"\\u1e40\":\"M\\u0307\",\"\\u0143\":\"N\\u0301\",\"\\u01f8\":\"N\\u0300\",\"\\xd1\":\"N\\u0303\",\"\\u0147\":\"N\\u030c\",\"\\u1e44\":\"N\\u0307\",\"\\xd3\":\"O\\u0301\",\"\\xd2\":\"O\\u0300\",\"\\xd6\":\"O\\u0308\",\"\\u022a\":\"O\\u0308\\u0304\",\"\\xd5\":\"O\\u0303\",\"\\u1e4c\":\"O\\u0303\\u0301\",\"\\u1e4e\":\"O\\u0303\\u0308\",\"\\u022c\":\"O\\u0303\\u0304\",\"\\u014c\":\"O\\u0304\",\"\\u1e52\":\"O\\u0304\\u0301\",\"\\u1e50\":\"O\\u0304\\u0300\",\"\\u014e\":\"O\\u0306\",\"\\u01d1\":\"O\\u030c\",\"\\xd4\":\"O\\u0302\",\"\\u1ed0\":\"O\\u0302\\u0301\",\"\\u1ed2\":\"O\\u0302\\u0300\",\"\\u1ed6\":\"O\\u0302\\u0303\",\"\\u022e\":\"O\\u0307\",\"\\u0230\":\"O\\u0307\\u0304\",\"\\u0150\":\"O\\u030b\",\"\\u1e54\":\"P\\u0301\",\"\\u1e56\":\"P\\u0307\",\"\\u0154\":\"R\\u0301\",\"\\u0158\":\"R\\u030c\",\"\\u1e58\":\"R\\u0307\",\"\\u015a\":\"S\\u0301\",\"\\u1e64\":\"S\\u0301\\u0307\",\"\\u0160\":\"S\\u030c\",\"\\u1e66\":\"S\\u030c\\u0307\",\"\\u015c\":\"S\\u0302\",\"\\u1e60\":\"S\\u0307\",\"\\u0164\":\"T\\u030c\",\"\\u1e6a\":\"T\\u0307\",\"\\xda\":\"U\\u0301\",\"\\xd9\":\"U\\u0300\",\"\\xdc\":\"U\\u0308\",\"\\u01d7\":\"U\\u0308\\u0301\",\"\\u01db\":\"U\\u0308\\u0300\",\"\\u01d5\":\"U\\u0308\\u0304\",\"\\u01d9\":\"U\\u0308\\u030c\",\"\\u0168\":\"U\\u0303\",\"\\u1e78\":\"U\\u0303\\u0301\",\"\\u016a\":\"U\\u0304\",\"\\u1e7a\":\"U\\u0304\\u0308\",\"\\u016c\":\"U\\u0306\",\"\\u01d3\":\"U\\u030c\",\"\\xdb\":\"U\\u0302\",\"\\u016e\":\"U\\u030a\",\"\\u0170\":\"U\\u030b\",\"\\u1e7c\":\"V\\u0303\",\"\\u1e82\":\"W\\u0301\",\"\\u1e80\":\"W\\u0300\",\"\\u1e84\":\"W\\u0308\",\"\\u0174\":\"W\\u0302\",\"\\u1e86\":\"W\\u0307\",\"\\u1e8c\":\"X\\u0308\",\"\\u1e8a\":\"X\\u0307\",\"\\xdd\":\"Y\\u0301\",\"\\u1ef2\":\"Y\\u0300\",\"\\u0178\":\"Y\\u0308\",\"\\u1ef8\":\"Y\\u0303\",\"\\u0232\":\"Y\\u0304\",\"\\u0176\":\"Y\\u0302\",\"\\u1e8e\":\"Y\\u0307\",\"\\u0179\":\"Z\\u0301\",\"\\u017d\":\"Z\\u030c\",\"\\u1e90\":\"Z\\u0302\",\"\\u017b\":\"Z\\u0307\",\"\\u03ac\":\"\\u03b1\\u0301\",\"\\u1f70\":\"\\u03b1\\u0300\",\"\\u1fb1\":\"\\u03b1\\u0304\",\"\\u1fb0\":\"\\u03b1\\u0306\",\"\\u03ad\":\"\\u03b5\\u0301\",\"\\u1f72\":\"\\u03b5\\u0300\",\"\\u03ae\":\"\\u03b7\\u0301\",\"\\u1f74\":\"\\u03b7\\u0300\",\"\\u03af\":\"\\u03b9\\u0301\",\"\\u1f76\":\"\\u03b9\\u0300\",\"\\u03ca\":\"\\u03b9\\u0308\",\"\\u0390\":\"\\u03b9\\u0308\\u0301\",\"\\u1fd2\":\"\\u03b9\\u0308\\u0300\",\"\\u1fd1\":\"\\u03b9\\u0304\",\"\\u1fd0\":\"\\u03b9\\u0306\",\"\\u03cc\":\"\\u03bf\\u0301\",\"\\u1f78\":\"\\u03bf\\u0300\",\"\\u03cd\":\"\\u03c5\\u0301\",\"\\u1f7a\":\"\\u03c5\\u0300\",\"\\u03cb\":\"\\u03c5\\u0308\",\"\\u03b0\":\"\\u03c5\\u0308\\u0301\",\"\\u1fe2\":\"\\u03c5\\u0308\\u0300\",\"\\u1fe1\":\"\\u03c5\\u0304\",\"\\u1fe0\":\"\\u03c5\\u0306\",\"\\u03ce\":\"\\u03c9\\u0301\",\"\\u1f7c\":\"\\u03c9\\u0300\",\"\\u038e\":\"\\u03a5\\u0301\",\"\\u1fea\":\"\\u03a5\\u0300\",\"\\u03ab\":\"\\u03a5\\u0308\",\"\\u1fe9\":\"\\u03a5\\u0304\",\"\\u1fe8\":\"\\u03a5\\u0306\",\"\\u038f\":\"\\u03a9\\u0301\",\"\\u1ffa\":\"\\u03a9\\u0300\"},ga=function(){function t(t,e){this.mode=void 0,this.gullet=void 0,this.settings=void 0,this.leftrightDepth=void 0,this.nextToken=void 0,this.mode=\"math\",this.gullet=new da(t,e,this.mode),this.settings=e,this.leftrightDepth=0}var e=t.prototype;return e.expect=function(t,e){if(void 0===e&&(e=!0),this.nextToken.text!==t)throw new i(\"Expected '\"+t+\"', got '\"+this.nextToken.text+\"'\",this.nextToken);e&&this.consume()},e.consume=function(){this.nextToken=this.gullet.expandNextToken()},e.switchMode=function(t){this.mode=t,this.gullet.switchMode(t)},e.parse=function(){this.gullet.beginGroup(),this.settings.colorIsTextColor&&this.gullet.macros.set(\"\\\\color\",\"\\\\textcolor\"),this.consume();var t=this.parseExpression(!1);return this.expect(\"EOF\",!1),this.gullet.endGroup(),t},e.parseExpression=function(e,r){for(var a=[];;){\"math\"===this.mode&&this.consumeSpaces();var n=this.nextToken;if(-1!==t.endOfExpression.indexOf(n.text))break;if(r&&n.text===r)break;if(e&&Kr[n.text]&&Kr[n.text].infix)break;var o=this.parseAtom(r);if(!o)break;a.push(o)}return\"text\"===this.mode&&this.formLigatures(a),this.handleInfixNodes(a)},e.handleInfixNodes=function(t){for(var e,r=-1,a=0;a<t.length;a++){var n=Pt(t[a],\"infix\");if(n){if(-1!==r)throw new i(\"only one infix operator per group\",n.token);r=a,e=n.replaceWith}}if(-1!==r&&e){var o,s,h=t.slice(0,r),l=t.slice(r+1);return o=1===h.length&&\"ordgroup\"===h[0].type?h[0]:{type:\"ordgroup\",mode:this.mode,body:h},s=1===l.length&&\"ordgroup\"===l[0].type?l[0]:{type:\"ordgroup\",mode:this.mode,body:l},[\"\\\\\\\\abovefrac\"===e?this.callFunction(e,[o,t[r],s],[]):this.callFunction(e,[o,s],[])]}return t},e.handleSupSubscript=function(e){var r=this.nextToken,a=r.text;this.consume(),this.consumeSpaces();var n=this.parseGroup(e,!1,t.SUPSUB_GREEDINESS);if(!n)throw new i(\"Expected group after '\"+a+\"'\",r);return n},e.handleUnsupportedCmd=function(){for(var t=this.nextToken.text,e=[],r=0;r<t.length;r++)e.push({type:\"textord\",mode:\"text\",text:t[r]});var a={type:\"text\",mode:this.mode,body:e},n={type:\"color\",mode:this.mode,color:this.settings.errorColor,body:[a]};return this.consume(),n},e.parseAtom=function(t){var e,r,a=this.parseGroup(\"atom\",!1,null,t);if(\"text\"===this.mode)return a;for(;;){this.consumeSpaces();var n=this.nextToken;if(\"\\\\limits\"===n.text||\"\\\\nolimits\"===n.text){var o=Pt(a,\"op\");if(!o)throw new i(\"Limit controls must follow a math operator\",n);var s=\"\\\\limits\"===n.text;o.limits=s,o.alwaysHandleSupSub=!0,this.consume()}else if(\"^\"===n.text){if(e)throw new i(\"Double superscript\",n);e=this.handleSupSubscript(\"superscript\")}else if(\"_\"===n.text){if(r)throw new i(\"Double subscript\",n);r=this.handleSupSubscript(\"subscript\")}else{if(\"'\"!==n.text)break;if(e)throw new i(\"Double superscript\",n);var h={type:\"textord\",mode:this.mode,text:\"\\\\prime\"},l=[h];for(this.consume();\"'\"===this.nextToken.text;)l.push(h),this.consume();\"^\"===this.nextToken.text&&l.push(this.handleSupSubscript(\"superscript\")),e={type:\"ordgroup\",mode:this.mode,body:l}}}return e||r?{type:\"supsub\",mode:this.mode,base:a,sup:e,sub:r}:a},e.parseFunction=function(t,e,r){var a=this.nextToken,n=a.text,o=Kr[n];if(!o)return null;if(null!=r&&o.greediness<=r)throw new i(\"Got function '\"+n+\"' with no arguments\"+(e?\" as \"+e:\"\"),a);if(\"text\"===this.mode&&!o.allowedInText)throw new i(\"Can't use function '\"+n+\"' in text mode\",a);if(\"math\"===this.mode&&!1===o.allowedInMath)throw new i(\"Can't use function '\"+n+\"' in math mode\",a);if(o.argTypes&&\"url\"===o.argTypes[0]&&this.gullet.lexer.setCatcode(\"%\",13),o.consumeMode){var s=this.mode;this.switchMode(o.consumeMode),this.consume(),this.switchMode(s)}else this.consume();var h=this.parseArguments(n,o),l=h.args,m=h.optArgs;return this.callFunction(n,l,m,a,t)},e.callFunction=function(t,e,r,a,n){var o={funcName:t,parser:this,token:a,breakOnTokenText:n},s=Kr[t];if(s&&s.handler)return s.handler(o,e,r);throw new i(\"No function handler for \"+t)},e.parseArguments=function(t,e){var r=e.numArgs+e.numOptionalArgs;if(0===r)return{args:[],optArgs:[]};for(var a=e.greediness,n=[],o=[],s=0;s<r;s++){var h=e.argTypes&&e.argTypes[s],l=s<e.numOptionalArgs;s>0&&!l&&this.consumeSpaces(),0!==s||l||\"math\"!==this.mode||this.consumeSpaces();var m=this.nextToken,c=this.parseGroupOfType(\"argument to '\"+t+\"'\",h,l,a);if(!c){if(l){o.push(null);continue}throw new i(\"Expected group after '\"+t+\"'\",m)}(l?o:n).push(c)}return{args:n,optArgs:o}},e.parseGroupOfType=function(t,e,r,a){switch(e){case\"color\":return this.parseColorGroup(r);case\"size\":return this.parseSizeGroup(r);case\"url\":return this.parseUrlGroup(r);case\"math\":case\"text\":return this.parseGroup(t,r,a,void 0,e);case\"raw\":if(r&&\"{\"===this.nextToken.text)return null;var n=this.parseStringGroup(\"raw\",r,!0);if(n)return{type:\"raw\",mode:\"text\",string:n.text};throw new i(\"Expected raw group\",this.nextToken);case\"original\":case null:case void 0:return this.parseGroup(t,r,a);default:throw new i(\"Unknown group type as \"+t,this.nextToken)}},e.consumeSpaces=function(){for(;\" \"===this.nextToken.text;)this.consume()},e.parseStringGroup=function(t,e,r){var a=e?\"[\":\"{\",n=e?\"]\":\"}\",o=this.nextToken;if(o.text!==a){if(e)return null;if(r&&\"EOF\"!==o.text&&/[^{}[\\]]/.test(o.text))return this.gullet.lexer.setCatcode(\"%\",14),this.consume(),o}var s=this.mode;this.mode=\"text\",this.expect(a);for(var h=\"\",l=this.nextToken,m=0,c=l;r&&m>0||this.nextToken.text!==n;){switch(this.nextToken.text){case\"EOF\":throw new i(\"Unexpected end of input in \"+t,l.range(c,h));case a:m++;break;case n:m--}h+=(c=this.nextToken).text,this.consume()}return this.mode=s,this.gullet.lexer.setCatcode(\"%\",14),this.expect(n),l.range(c,h)},e.parseRegexGroup=function(t,e){var r=this.mode;this.mode=\"text\";for(var a=this.nextToken,n=a,o=\"\";\"EOF\"!==this.nextToken.text&&t.test(o+this.nextToken.text);)o+=(n=this.nextToken).text,this.consume();if(\"\"===o)throw new i(\"Invalid \"+e+\": '\"+a.text+\"'\",a);return this.mode=r,a.range(n,o)},e.parseColorGroup=function(t){var e=this.parseStringGroup(\"color\",t);if(!e)return null;var r=/^(#[a-f0-9]{3}|#?[a-f0-9]{6}|[a-z]+)$/i.exec(e.text);if(!r)throw new i(\"Invalid color: '\"+e.text+\"'\",e);var a=r[0];return/^[0-9a-f]{6}$/i.test(a)&&(a=\"#\"+a),{type:\"color-token\",mode:this.mode,color:a}},e.parseSizeGroup=function(t){var e,r=!1;if(!(e=t||\"{\"===this.nextToken.text?this.parseStringGroup(\"size\",t):this.parseRegexGroup(/^[-+]? *(?:$|\\d+|\\d+\\.\\d*|\\.\\d*) *[a-z]{0,2} *$/,\"size\")))return null;t||0!==e.text.length||(e.text=\"0pt\",r=!0);var a=/([-+]?) *(\\d+(?:\\.\\d*)?|\\.\\d+) *([a-z]{2})/.exec(e.text);if(!a)throw new i(\"Invalid size: '\"+e.text+\"'\",e);var n,o={number:+(a[1]+a[2]),unit:a[3]};if(\"string\"!=typeof(n=o)&&(n=n.unit),!(n in kt||n in St||\"ex\"===n))throw new i(\"Invalid unit: '\"+o.unit+\"'\",e);return{type:\"size\",mode:this.mode,value:o,isBlank:r}},e.parseUrlGroup=function(t){var e=this.parseStringGroup(\"url\",t,!0);if(!e)return null;var r=e.text.replace(/\\\\([#$%&~_^{}])/g,\"$1\"),a=/^\\s*([^\\\\\\/#]*?)(?::|�*58|�*3a)/i.exec(r);a=null!=a?a[1]:\"_relative\";var n=this.settings.allowedProtocols;if(!c.contains(n,\"*\")&&!c.contains(n,a))throw new i(\"Forbidden protocol '\"+a+\"'\",e);return{type:\"url\",mode:this.mode,url:r}},e.parseGroup=function(e,r,n,o,s){var h,l,m=this.mode,c=this.nextToken,u=c.text;if(s&&this.switchMode(s),r?\"[\"===u:\"{\"===u||\"\\\\begingroup\"===u){h=t.endOfGroup[u],this.gullet.beginGroup(),this.consume();var d=this.parseExpression(!1,h),p=this.nextToken;this.gullet.endGroup(),l={type:\"ordgroup\",mode:this.mode,loc:a.range(c,p),body:d,semisimple:\"\\\\begingroup\"===u||void 0}}else if(r)l=null;else if(null==(l=this.parseFunction(o,e,n)||this.parseSymbol())&&\"\\\\\"===u[0]&&!ua.hasOwnProperty(u)){if(this.settings.throwOnError)throw new i(\"Undefined control sequence: \"+u,c);l=this.handleUnsupportedCmd()}return s&&this.switchMode(m),h&&this.expect(h),l},e.formLigatures=function(t){for(var e=t.length-1,r=0;r<e;++r){var n=t[r],o=n.text;\"-\"===o&&\"-\"===t[r+1].text&&(r+1<e&&\"-\"===t[r+2].text?(t.splice(r,3,{type:\"textord\",mode:\"text\",loc:a.range(n,t[r+2]),text:\"---\"}),e-=2):(t.splice(r,2,{type:\"textord\",mode:\"text\",loc:a.range(n,t[r+1]),text:\"--\"}),e-=1)),\"'\"!==o&&\"`\"!==o||t[r+1].text!==o||(t.splice(r,2,{type:\"textord\",mode:\"text\",loc:a.range(n,t[r+1]),text:o+o}),e-=1)}},e.parseSymbol=function(){var t=this.nextToken,e=t.text;if(/^\\\\verb[^a-zA-Z]/.test(e)){this.consume();var r=e.slice(5),n=\"*\"===r.charAt(0);if(n&&(r=r.slice(1)),r.length<2||r.charAt(0)!==r.slice(-1))throw new i(\"\\\\verb assertion failed --\\n please report what input caused this bug\");return{type:\"verb\",mode:\"text\",body:r=r.slice(1,-1),star:n}}fa.hasOwnProperty(e[0])&&!_[this.mode][e[0]]&&(this.settings.strict&&\"math\"===this.mode&&this.settings.reportNonstrict(\"unicodeTextInMathMode\",'Accented Unicode text character \"'+e[0]+'\" used in math mode',t),e=fa[e[0]]+e.substr(1));var o,s=Qr.exec(e);if(s&&(\"i\"===(e=e.substring(0,s.index))?e=\"\\u0131\":\"j\"===e&&(e=\"\\u0237\")),_[this.mode][e]){this.settings.strict&&\"math\"===this.mode&&\"\\xc7\\xd0\\xde\\xe7\\xfe\".indexOf(e)>=0&&this.settings.reportNonstrict(\"unicodeTextInMathMode\",'Latin-1/Unicode text character \"'+e[0]+'\" used in math mode',t);var h,l=_[this.mode][e].group,m=a.range(t);if(G.hasOwnProperty(l)){var c=l;h={type:\"atom\",mode:this.mode,family:c,loc:m,text:e}}else h={type:l,mode:this.mode,loc:m,text:e};o=h}else{if(!(e.charCodeAt(0)>=128))return null;this.settings.strict&&(z(e.charCodeAt(0))?\"math\"===this.mode&&this.settings.reportNonstrict(\"unicodeTextInMathMode\",'Unicode text character \"'+e[0]+'\" used in math mode',t):this.settings.reportNonstrict(\"unknownSymbol\",'Unrecognized Unicode character \"'+e[0]+'\" ('+e.charCodeAt(0)+\")\",t)),o={type:\"textord\",mode:this.mode,loc:a.range(t),text:e}}if(this.consume(),s)for(var u=0;u<s[0].length;u++){var d=s[0][u];if(!pa[d])throw new i(\"Unknown accent ' \"+d+\"'\",t);var p=pa[d][this.mode];if(!p)throw new i(\"Accent \"+d+\" unsupported in \"+this.mode+\" mode\",t);o={type:\"accent\",mode:this.mode,loc:a.range(t),label:p,isStretchy:!1,isShifty:!0,base:o}}return o},t}();ga.endOfExpression=[\"}\",\"\\\\endgroup\",\"\\\\end\",\"\\\\right\",\"&\"],ga.endOfGroup={\"[\":\"]\",\"{\":\"}\",\"\\\\begingroup\":\"\\\\endgroup\"},ga.SUPSUB_GREEDINESS=1;var xa=function(t,e){if(!(\"string\"==typeof t||t instanceof String))throw new TypeError(\"KaTeX can only parse string typed expression\");var r=new ga(t,e);delete r.gullet.macros.current[\"\\\\df@tag\"];var a=r.parse();if(r.gullet.macros.get(\"\\\\df@tag\")){if(!e.displayMode)throw new i(\"\\\\tag works only in display equations\");r.gullet.feed(\"\\\\df@tag\"),a=[{type:\"tag\",mode:\"text\",body:a,tag:r.parse()}]}return a},va=function(t,e,r){e.textContent=\"\";var a=ya(t,r).toNode();e.appendChild(a)};\"undefined\"!=typeof document&&\"CSS1Compat\"!==document.compatMode&&(\"undefined\"!=typeof console&&console.warn(\"Warning: KaTeX doesn't work in quirks mode. Make sure your website has a suitable doctype.\"),va=function(){throw new i(\"KaTeX doesn't work in quirks mode.\")});var ba=function(t,e,r){if(r.throwOnError||!(t instanceof i))throw t;var a=Lt.makeSpan([\"katex-error\"],[new E(e)]);return a.setAttribute(\"title\",t.toString()),a.setAttribute(\"style\",\"color:\"+r.errorColor),a},ya=function(t,e){var r=new u(e);try{var a=xa(t,r);return Se(a,t,r)}catch(e){return ba(e,t,r)}},wa={version:\"0.10.2\",render:va,renderToString:function(t,e){return ya(t,e).toMarkup()},ParseError:i,__parse:function(t,e){var r=new u(e);return xa(t,r)},__renderToDomTree:ya,__renderToHTMLTree:function(t,e){var r=new u(e);try{return function(t,e,r){var a=me(t,we(r)),n=Lt.makeSpan([\"katex\"],[a]);return ke(n,r)}(xa(t,r),0,r)}catch(e){return ba(e,t,r)}},__setFontMetrics:function(t,e){P[t]=e},__defineSymbol:W,__defineMacro:oa,__domTree:{Span:N,Anchor:I,SymbolNode:E,SvgNode:R,PathNode:L,LineNode:H}};e.default=wa}]).default});\n\n})(!$tw.browser ? $tw.fakeDocument : window.document)\n",
"type": "application/javascript",
"title": "$:/plugins/tiddlywiki/katex/katex.min.js",
"module-type": "library"
},
"$:/plugins/tiddlywiki/katex/mhchem.min.js": {
"text": "/* eslint-disable */\n/* -*- Mode: Javascript; indent-tabs-mode:nil; js-indent-level: 2 -*- */\n/* vim: set ts=2 et sw=2 tw=80: */\n\n/*************************************************************\n *\n * KaTeX mhchem.js\n *\n * This file implements a KaTeX version of mhchem version 3.3.0.\n * It is adapted from MathJax/extensions/TeX/mhchem.js\n * It differs from the MathJax version as follows:\n * 1. The interface is changed so that it can be called from KaTeX, not MathJax.\n * 2. \\rlap and \\llap are replaced with \\mathrlap and \\mathllap.\n * 3. Four lines of code are edited in order to use \\raisebox instead of \\raise.\n * 4. The reaction arrow code is simplified. All reaction arrows are rendered\n * using KaTeX extensible arrows instead of building non-extensible arrows.\n * 5. \\tripledash vertical alignment is slightly adjusted.\n *\n * This code, as other KaTeX code, is released under the MIT license.\n * \n * /*************************************************************\n *\n * MathJax/extensions/TeX/mhchem.js\n *\n * Implements the \\ce command for handling chemical formulas\n * from the mhchem LaTeX package.\n *\n * ---------------------------------------------------------------------\n *\n * Copyright (c) 2011-2015 The MathJax Consortium\n * Copyright (c) 2015-2018 Martin Hensel\n *\n * Licensed under the Apache License, Version 2.0 (the \"License\");\n * you may not use this file except in compliance with the License.\n * You may obtain a copy of the License at\n *\n * http://www.apache.org/licenses/LICENSE-2.0\n *\n * Unless required by applicable law or agreed to in writing, software\n * distributed under the License is distributed on an \"AS IS\" BASIS,\n * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n * See the License for the specific language governing permissions and\n * limitations under the License.\n */\n\n//\n// Coding Style\n// - use '' for identifiers that can by minified/uglified\n// - use \"\" for strings that need to stay untouched\n\n// version: \"3.3.0\" for MathJax and KaTeX\n\n/****************************************\n*****************************************\n* TiddlyWiki: moved the katex-module definitions to wrapper.js\n*****************************************\n*****************************************/\n\n //\n // This is the main function for handing the \\ce and \\pu commands.\n // It takes the argument to \\ce or \\pu and returns the corresponding TeX string.\n //\n\n // TiddlyWiki: replaced `var chemParse =` with `module.exports =` ... no more modifications in this file\n module.exports = function (tokens, stateMachine) {\n // Recreate the argument string from KaTeX's array of tokens.\n var str = \"\";\n var expectedLoc = tokens[tokens.length - 1].loc.start\n for (var i = tokens.length - 1; i >= 0; i--) {\n if(tokens[i].loc.start > expectedLoc) {\n // context.consumeArgs has eaten a space.\n str += \" \";\n expectedLoc = tokens[i].loc.start;\n }\n str += tokens[i].text;\n expectedLoc += tokens[i].text.length;\n }\n var tex = texify.go(mhchemParser.go(str, stateMachine));\n return tex;\n };\n\n //\n // Core parser for mhchem syntax (recursive)\n //\n /** @type {MhchemParser} */\n var mhchemParser = {\n //\n // Parses mchem \\ce syntax\n //\n // Call like\n // go(\"H2O\");\n //\n go: function (input, stateMachine) {\n if (!input) { return []; }\n if (stateMachine === undefined) { stateMachine = 'ce'; }\n var state = '0';\n\n //\n // String buffers for parsing:\n //\n // buffer.a == amount\n // buffer.o == element\n // buffer.b == left-side superscript\n // buffer.p == left-side subscript\n // buffer.q == right-side subscript\n // buffer.d == right-side superscript\n //\n // buffer.r == arrow\n // buffer.rdt == arrow, script above, type\n // buffer.rd == arrow, script above, content\n // buffer.rqt == arrow, script below, type\n // buffer.rq == arrow, script below, content\n //\n // buffer.text_\n // buffer.rm\n // etc.\n //\n // buffer.parenthesisLevel == int, starting at 0\n // buffer.sb == bool, space before\n // buffer.beginsWithBond == bool\n //\n // These letters are also used as state names.\n //\n // Other states:\n // 0 == begin of main part (arrow/operator unlikely)\n // 1 == next entity\n // 2 == next entity (arrow/operator unlikely)\n // 3 == next atom\n // c == macro\n //\n /** @type {Buffer} */\n var buffer = {};\n buffer['parenthesisLevel'] = 0;\n\n input = input.replace(/\\n/g, \" \");\n input = input.replace(/[\\u2212\\u2013\\u2014\\u2010]/g, \"-\");\n input = input.replace(/[\\u2026]/g, \"...\");\n\n //\n // Looks through mhchemParser.transitions, to execute a matching action\n // (recursive)\n //\n var lastInput;\n var watchdog = 10;\n /** @type {ParserOutput[]} */\n var output = [];\n while (true) {\n if (lastInput !== input) {\n watchdog = 10;\n lastInput = input;\n } else {\n watchdog--;\n }\n //\n // Find actions in transition table\n //\n var machine = mhchemParser.stateMachines[stateMachine];\n var t = machine.transitions[state] || machine.transitions['*'];\n iterateTransitions:\n for (var i=0; i<t.length; i++) {\n var matches = mhchemParser.patterns.match_(t[i].pattern, input);\n if (matches) {\n //\n // Execute actions\n //\n var task = t[i].task;\n for (var iA=0; iA<task.action_.length; iA++) {\n var o;\n //\n // Find and execute action\n //\n if (machine.actions[task.action_[iA].type_]) {\n o = machine.actions[task.action_[iA].type_](buffer, matches.match_, task.action_[iA].option);\n } else if (mhchemParser.actions[task.action_[iA].type_]) {\n o = mhchemParser.actions[task.action_[iA].type_](buffer, matches.match_, task.action_[iA].option);\n } else {\n throw [\"MhchemBugA\", \"mhchem bug A. Please report. (\" + task.action_[iA].type_ + \")\"]; // Trying to use non-existing action\n }\n //\n // Add output\n //\n mhchemParser.concatArray(output, o);\n }\n //\n // Set next state,\n // Shorten input,\n // Continue with next character\n // (= apply only one transition per position)\n //\n state = task.nextState || state;\n if (input.length > 0) {\n if (!task.revisit) {\n input = matches.remainder;\n }\n if (!task.toContinue) {\n break iterateTransitions;\n }\n } else {\n return output;\n }\n }\n }\n //\n // Prevent infinite loop\n //\n if (watchdog <= 0) {\n throw [\"MhchemBugU\", \"mhchem bug U. Please report.\"]; // Unexpected character\n }\n }\n },\n concatArray: function (a, b) {\n if (b) {\n if (Array.isArray(b)) {\n for (var iB=0; iB<b.length; iB++) {\n a.push(b[iB]);\n }\n } else {\n a.push(b);\n }\n }\n },\n\n patterns: {\n //\n // Matching patterns\n // either regexps or function that return null or {match_:\"a\", remainder:\"bc\"}\n //\n patterns: {\n // property names must not look like integers (\"2\") for correct property traversal order, later on\n 'empty': /^$/,\n 'else': /^./,\n 'else2': /^./,\n 'space': /^\\s/,\n 'space A': /^\\s(?=[A-Z\\\\$])/,\n 'space$': /^\\s$/,\n 'a-z': /^[a-z]/,\n 'x': /^x/,\n 'x$': /^x$/,\n 'i$': /^i$/,\n 'letters': /^(?:[a-zA-Z\\u03B1-\\u03C9\\u0391-\\u03A9?@]|(?:\\\\(?:alpha|beta|gamma|delta|epsilon|zeta|eta|theta|iota|kappa|lambda|mu|nu|xi|omicron|pi|rho|sigma|tau|upsilon|phi|chi|psi|omega|Gamma|Delta|Theta|Lambda|Xi|Pi|Sigma|Upsilon|Phi|Psi|Omega)(?:\\s+|\\{\\}|(?![a-zA-Z]))))+/,\n '\\\\greek': /^\\\\(?:alpha|beta|gamma|delta|epsilon|zeta|eta|theta|iota|kappa|lambda|mu|nu|xi|omicron|pi|rho|sigma|tau|upsilon|phi|chi|psi|omega|Gamma|Delta|Theta|Lambda|Xi|Pi|Sigma|Upsilon|Phi|Psi|Omega)(?:\\s+|\\{\\}|(?![a-zA-Z]))/,\n 'one lowercase latin letter $': /^(?:([a-z])(?:$|[^a-zA-Z]))$/,\n '$one lowercase latin letter$ $': /^\\$(?:([a-z])(?:$|[^a-zA-Z]))\\$$/,\n 'one lowercase greek letter $': /^(?:\\$?[\\u03B1-\\u03C9]\\$?|\\$?\\\\(?:alpha|beta|gamma|delta|epsilon|zeta|eta|theta|iota|kappa|lambda|mu|nu|xi|omicron|pi|rho|sigma|tau|upsilon|phi|chi|psi|omega)\\s*\\$?)(?:\\s+|\\{\\}|(?![a-zA-Z]))$/,\n 'digits': /^[0-9]+/,\n '-9.,9': /^[+\\-]?(?:[0-9]+(?:[,.][0-9]+)?|[0-9]*(?:\\.[0-9]+))/,\n '-9.,9 no missing 0': /^[+\\-]?[0-9]+(?:[.,][0-9]+)?/,\n '(-)(9.,9)(e)(99)': function (input) {\n var m = input.match(/^(\\+\\-|\\+\\/\\-|\\+|\\-|\\\\pm\\s?)?([0-9]+(?:[,.][0-9]+)?|[0-9]*(?:\\.[0-9]+))?(\\((?:[0-9]+(?:[,.][0-9]+)?|[0-9]*(?:\\.[0-9]+))\\))?(?:([eE]|\\s*(\\*|x|\\\\times|\\u00D7)\\s*10\\^)([+\\-]?[0-9]+|\\{[+\\-]?[0-9]+\\}))?/);\n if (m && m[0]) {\n return { match_: m.splice(1), remainder: input.substr(m[0].length) };\n }\n return null;\n },\n '(-)(9)^(-9)': function (input) {\n var m = input.match(/^(\\+\\-|\\+\\/\\-|\\+|\\-|\\\\pm\\s?)?([0-9]+(?:[,.][0-9]+)?|[0-9]*(?:\\.[0-9]+)?)\\^([+\\-]?[0-9]+|\\{[+\\-]?[0-9]+\\})/);\n if (m && m[0]) {\n return { match_: m.splice(1), remainder: input.substr(m[0].length) };\n }\n return null;\n },\n 'state of aggregation $': function (input) { // ... or crystal system\n var a = mhchemParser.patterns.findObserveGroups(input, \"\", /^\\([a-z]{1,3}(?=[\\),])/, \")\", \"\"); // (aq), (aq,$\\infty$), (aq, sat)\n if (a && a.remainder.match(/^($|[\\s,;\\)\\]\\}])/)) { return a; } // AND end of 'phrase'\n var m = input.match(/^(?:\\((?:\\\\ca\\s?)?\\$[amothc]\\$\\))/); // OR crystal system ($o$) (\\ca$c$)\n if (m) {\n return { match_: m[0], remainder: input.substr(m[0].length) };\n }\n return null;\n },\n '_{(state of aggregation)}$': /^_\\{(\\([a-z]{1,3}\\))\\}/,\n '{[(': /^(?:\\\\\\{|\\[|\\()/,\n ')]}': /^(?:\\)|\\]|\\\\\\})/,\n ', ': /^[,;]\\s*/,\n ',': /^[,;]/,\n '.': /^[.]/,\n '. ': /^([.\\u22C5\\u00B7\\u2022])\\s*/,\n '...': /^\\.\\.\\.(?=$|[^.])/,\n '* ': /^([*])\\s*/,\n '^{(...)}': function (input) { return mhchemParser.patterns.findObserveGroups(input, \"^{\", \"\", \"\", \"}\"); },\n '^($...$)': function (input) { return mhchemParser.patterns.findObserveGroups(input, \"^\", \"$\", \"$\", \"\"); },\n '^a': /^\\^([0-9]+|[^\\\\_])/,\n '^\\\\x{}{}': function (input) { return mhchemParser.patterns.findObserveGroups(input, \"^\", /^\\\\[a-zA-Z]+\\{/, \"}\", \"\", \"\", \"{\", \"}\", \"\", true); },\n '^\\\\x{}': function (input) { return mhchemParser.patterns.findObserveGroups(input, \"^\", /^\\\\[a-zA-Z]+\\{/, \"}\", \"\"); },\n '^\\\\x': /^\\^(\\\\[a-zA-Z]+)\\s*/,\n '^(-1)': /^\\^(-?\\d+)/,\n '\\'': /^'/,\n '_{(...)}': function (input) { return mhchemParser.patterns.findObserveGroups(input, \"_{\", \"\", \"\", \"}\"); },\n '_($...$)': function (input) { return mhchemParser.patterns.findObserveGroups(input, \"_\", \"$\", \"$\", \"\"); },\n '_9': /^_([+\\-]?[0-9]+|[^\\\\])/,\n '_\\\\x{}{}': function (input) { return mhchemParser.patterns.findObserveGroups(input, \"_\", /^\\\\[a-zA-Z]+\\{/, \"}\", \"\", \"\", \"{\", \"}\", \"\", true); },\n '_\\\\x{}': function (input) { return mhchemParser.patterns.findObserveGroups(input, \"_\", /^\\\\[a-zA-Z]+\\{/, \"}\", \"\"); },\n '_\\\\x': /^_(\\\\[a-zA-Z]+)\\s*/,\n '^_': /^(?:\\^(?=_)|\\_(?=\\^)|[\\^_]$)/,\n '{}': /^\\{\\}/,\n '{...}': function (input) { return mhchemParser.patterns.findObserveGroups(input, \"\", \"{\", \"}\", \"\"); },\n '{(...)}': function (input) { return mhchemParser.patterns.findObserveGroups(input, \"{\", \"\", \"\", \"}\"); },\n '$...$': function (input) { return mhchemParser.patterns.findObserveGroups(input, \"\", \"$\", \"$\", \"\"); },\n '${(...)}$': function (input) { return mhchemParser.patterns.findObserveGroups(input, \"${\", \"\", \"\", \"}$\"); },\n '$(...)$': function (input) { return mhchemParser.patterns.findObserveGroups(input, \"$\", \"\", \"\", \"$\"); },\n '=<>': /^[=<>]/,\n '#': /^[#\\u2261]/,\n '+': /^\\+/,\n '-$': /^-(?=[\\s_},;\\]/]|$|\\([a-z]+\\))/, // -space -, -; -] -/ -$ -state-of-aggregation\n '-9': /^-(?=[0-9])/,\n '- orbital overlap': /^-(?=(?:[spd]|sp)(?:$|[\\s,;\\)\\]\\}]))/,\n '-': /^-/,\n 'pm-operator': /^(?:\\\\pm|\\$\\\\pm\\$|\\+-|\\+\\/-)/,\n 'operator': /^(?:\\+|(?:[\\-=<>]|<<|>>|\\\\approx|\\$\\\\approx\\$)(?=\\s|$|-?[0-9]))/,\n 'arrowUpDown': /^(?:v|\\(v\\)|\\^|\\(\\^\\))(?=$|[\\s,;\\)\\]\\}])/,\n '\\\\bond{(...)}': function (input) { return mhchemParser.patterns.findObserveGroups(input, \"\\\\bond{\", \"\", \"\", \"}\"); },\n '->': /^(?:<->|<-->|->|<-|<=>>|<<=>|<=>|[\\u2192\\u27F6\\u21CC])/,\n 'CMT': /^[CMT](?=\\[)/,\n '[(...)]': function (input) { return mhchemParser.patterns.findObserveGroups(input, \"[\", \"\", \"\", \"]\"); },\n '1st-level escape': /^(&|\\\\\\\\|\\\\hline)\\s*/,\n '\\\\,': /^(?:\\\\[,\\ ;:])/, // \\\\x - but output no space before\n '\\\\x{}{}': function (input) { return mhchemParser.patterns.findObserveGroups(input, \"\", /^\\\\[a-zA-Z]+\\{/, \"}\", \"\", \"\", \"{\", \"}\", \"\", true); },\n '\\\\x{}': function (input) { return mhchemParser.patterns.findObserveGroups(input, \"\", /^\\\\[a-zA-Z]+\\{/, \"}\", \"\"); },\n '\\\\ca': /^\\\\ca(?:\\s+|(?![a-zA-Z]))/,\n '\\\\x': /^(?:\\\\[a-zA-Z]+\\s*|\\\\[_&{}%])/,\n 'orbital': /^(?:[0-9]{1,2}[spdfgh]|[0-9]{0,2}sp)(?=$|[^a-zA-Z])/, // only those with numbers in front, because the others will be formatted correctly anyway\n 'others': /^[\\/~|]/,\n '\\\\frac{(...)}': function (input) { return mhchemParser.patterns.findObserveGroups(input, \"\\\\frac{\", \"\", \"\", \"}\", \"{\", \"\", \"\", \"}\"); },\n '\\\\overset{(...)}': function (input) { return mhchemParser.patterns.findObserveGroups(input, \"\\\\overset{\", \"\", \"\", \"}\", \"{\", \"\", \"\", \"}\"); },\n '\\\\underset{(...)}': function (input) { return mhchemParser.patterns.findObserveGroups(input, \"\\\\underset{\", \"\", \"\", \"}\", \"{\", \"\", \"\", \"}\"); },\n '\\\\underbrace{(...)}': function (input) { return mhchemParser.patterns.findObserveGroups(input, \"\\\\underbrace{\", \"\", \"\", \"}_\", \"{\", \"\", \"\", \"}\"); },\n '\\\\color{(...)}0': function (input) { return mhchemParser.patterns.findObserveGroups(input, \"\\\\color{\", \"\", \"\", \"}\"); },\n '\\\\color{(...)}{(...)}1': function (input) { return mhchemParser.patterns.findObserveGroups(input, \"\\\\color{\", \"\", \"\", \"}\", \"{\", \"\", \"\", \"}\"); },\n '\\\\color(...){(...)}2': function (input) { return mhchemParser.patterns.findObserveGroups(input, \"\\\\color\", \"\\\\\", \"\", /^(?=\\{)/, \"{\", \"\", \"\", \"}\"); },\n '\\\\ce{(...)}': function (input) { return mhchemParser.patterns.findObserveGroups(input, \"\\\\ce{\", \"\", \"\", \"}\"); },\n 'oxidation$': /^(?:[+-][IVX]+|\\\\pm\\s*0|\\$\\\\pm\\$\\s*0)$/,\n 'd-oxidation$': /^(?:[+-]?\\s?[IVX]+|\\\\pm\\s*0|\\$\\\\pm\\$\\s*0)$/, // 0 could be oxidation or charge\n 'roman numeral': /^[IVX]+/,\n '1/2$': /^[+\\-]?(?:[0-9]+|\\$[a-z]\\$|[a-z])\\/[0-9]+(?:\\$[a-z]\\$|[a-z])?$/,\n 'amount': function (input) {\n var match;\n // e.g. 2, 0.5, 1/2, -2, n/2, +; $a$ could be added later in parsing\n match = input.match(/^(?:(?:(?:\\([+\\-]?[0-9]+\\/[0-9]+\\)|[+\\-]?(?:[0-9]+|\\$[a-z]\\$|[a-z])\\/[0-9]+|[+\\-]?[0-9]+[.,][0-9]+|[+\\-]?\\.[0-9]+|[+\\-]?[0-9]+)(?:[a-z](?=\\s*[A-Z]))?)|[+\\-]?[a-z](?=\\s*[A-Z])|\\+(?!\\s))/);\n if (match) {\n return { match_: match[0], remainder: input.substr(match[0].length) };\n }\n var a = mhchemParser.patterns.findObserveGroups(input, \"\", \"$\", \"$\", \"\");\n if (a) { // e.g. $2n-1$, $-$\n match = a.match_.match(/^\\$(?:\\(?[+\\-]?(?:[0-9]*[a-z]?[+\\-])?[0-9]*[a-z](?:[+\\-][0-9]*[a-z]?)?\\)?|\\+|-)\\$$/);\n if (match) {\n return { match_: match[0], remainder: input.substr(match[0].length) };\n }\n }\n return null;\n },\n 'amount2': function (input) { return this['amount'](input); },\n '(KV letters),': /^(?:[A-Z][a-z]{0,2}|i)(?=,)/,\n 'formula$': function (input) {\n if (input.match(/^\\([a-z]+\\)$/)) { return null; } // state of aggregation = no formula\n var match = input.match(/^(?:[a-z]|(?:[0-9\\ \\+\\-\\,\\.\\(\\)]+[a-z])+[0-9\\ \\+\\-\\,\\.\\(\\)]*|(?:[a-z][0-9\\ \\+\\-\\,\\.\\(\\)]+)+[a-z]?)$/);\n if (match) {\n return { match_: match[0], remainder: input.substr(match[0].length) };\n }\n return null;\n },\n 'uprightEntities': /^(?:pH|pOH|pC|pK|iPr|iBu)(?=$|[^a-zA-Z])/,\n '/': /^\\s*(\\/)\\s*/,\n '//': /^\\s*(\\/\\/)\\s*/,\n '*': /^\\s*[*.]\\s*/\n },\n findObserveGroups: function (input, begExcl, begIncl, endIncl, endExcl, beg2Excl, beg2Incl, end2Incl, end2Excl, combine) {\n /** @type {{(input: string, pattern: string | RegExp): string | string[] | null;}} */\n var _match = function (input, pattern) {\n if (typeof pattern === \"string\") {\n if (input.indexOf(pattern) !== 0) { return null; }\n return pattern;\n } else {\n var match = input.match(pattern);\n if (!match) { return null; }\n return match[0];\n }\n };\n /** @type {{(input: string, i: number, endChars: string | RegExp): {endMatchBegin: number, endMatchEnd: number} | null;}} */\n var _findObserveGroups = function (input, i, endChars) {\n var braces = 0;\n while (i < input.length) {\n var a = input.charAt(i);\n var match = _match(input.substr(i), endChars);\n if (match !== null && braces === 0) {\n return { endMatchBegin: i, endMatchEnd: i + match.length };\n } else if (a === \"{\") {\n braces++;\n } else if (a === \"}\") {\n if (braces === 0) {\n throw [\"ExtraCloseMissingOpen\", \"Extra close brace or missing open brace\"];\n } else {\n braces--;\n }\n }\n i++;\n }\n if (braces > 0) {\n return null;\n }\n return null;\n };\n var match = _match(input, begExcl);\n if (match === null) { return null; }\n input = input.substr(match.length);\n match = _match(input, begIncl);\n if (match === null) { return null; }\n var e = _findObserveGroups(input, match.length, endIncl || endExcl);\n if (e === null) { return null; }\n var match1 = input.substring(0, (endIncl ? e.endMatchEnd : e.endMatchBegin));\n if (!(beg2Excl || beg2Incl)) {\n return {\n match_: match1,\n remainder: input.substr(e.endMatchEnd)\n };\n } else {\n var group2 = this.findObserveGroups(input.substr(e.endMatchEnd), beg2Excl, beg2Incl, end2Incl, end2Excl);\n if (group2 === null) { return null; }\n /** @type {string[]} */\n var matchRet = [match1, group2.match_];\n return {\n match_: (combine ? matchRet.join(\"\") : matchRet),\n remainder: group2.remainder\n };\n }\n },\n\n //\n // Matching function\n // e.g. match(\"a\", input) will look for the regexp called \"a\" and see if it matches\n // returns null or {match_:\"a\", remainder:\"bc\"}\n //\n match_: function (m, input) {\n var pattern = mhchemParser.patterns.patterns[m];\n if (pattern === undefined) {\n throw [\"MhchemBugP\", \"mhchem bug P. Please report. (\" + m + \")\"]; // Trying to use non-existing pattern\n } else if (typeof pattern === \"function\") {\n return mhchemParser.patterns.patterns[m](input); // cannot use cached var pattern here, because some pattern functions need this===mhchemParser\n } else { // RegExp\n var match = input.match(pattern);\n if (match) {\n var mm;\n if (match[2]) {\n mm = [ match[1], match[2] ];\n } else if (match[1]) {\n mm = match[1];\n } else {\n mm = match[0];\n }\n return { match_: mm, remainder: input.substr(match[0].length) };\n }\n return null;\n }\n }\n },\n\n //\n // Generic state machine actions\n //\n actions: {\n 'a=': function (buffer, m) { buffer.a = (buffer.a || \"\") + m; },\n 'b=': function (buffer, m) { buffer.b = (buffer.b || \"\") + m; },\n 'p=': function (buffer, m) { buffer.p = (buffer.p || \"\") + m; },\n 'o=': function (buffer, m) { buffer.o = (buffer.o || \"\") + m; },\n 'q=': function (buffer, m) { buffer.q = (buffer.q || \"\") + m; },\n 'd=': function (buffer, m) { buffer.d = (buffer.d || \"\") + m; },\n 'rm=': function (buffer, m) { buffer.rm = (buffer.rm || \"\") + m; },\n 'text=': function (buffer, m) { buffer.text_ = (buffer.text_ || \"\") + m; },\n 'insert': function (buffer, m, a) { return { type_: a }; },\n 'insert+p1': function (buffer, m, a) { return { type_: a, p1: m }; },\n 'insert+p1+p2': function (buffer, m, a) { return { type_: a, p1: m[0], p2: m[1] }; },\n 'copy': function (buffer, m) { return m; },\n 'rm': function (buffer, m) { return { type_: 'rm', p1: m || \"\"}; },\n 'text': function (buffer, m) { return mhchemParser.go(m, 'text'); },\n '{text}': function (buffer, m) {\n var ret = [ \"{\" ];\n mhchemParser.concatArray(ret, mhchemParser.go(m, 'text'));\n ret.push(\"}\");\n return ret;\n },\n 'tex-math': function (buffer, m) { return mhchemParser.go(m, 'tex-math'); },\n 'tex-math tight': function (buffer, m) { return mhchemParser.go(m, 'tex-math tight'); },\n 'bond': function (buffer, m, k) { return { type_: 'bond', kind_: k || m }; },\n 'color0-output': function (buffer, m) { return { type_: 'color0', color: m[0] }; },\n 'ce': function (buffer, m) { return mhchemParser.go(m); },\n '1/2': function (buffer, m) {\n /** @type {ParserOutput[]} */\n var ret = [];\n if (m.match(/^[+\\-]/)) {\n ret.push(m.substr(0, 1));\n m = m.substr(1);\n }\n var n = m.match(/^([0-9]+|\\$[a-z]\\$|[a-z])\\/([0-9]+)(\\$[a-z]\\$|[a-z])?$/);\n n[1] = n[1].replace(/\\$/g, \"\");\n ret.push({ type_: 'frac', p1: n[1], p2: n[2] });\n if (n[3]) {\n n[3] = n[3].replace(/\\$/g, \"\");\n ret.push({ type_: 'tex-math', p1: n[3] });\n }\n return ret;\n },\n '9,9': function (buffer, m) { return mhchemParser.go(m, '9,9'); }\n },\n //\n // createTransitions\n // convert { 'letter': { 'state': { action_: 'output' } } } to { 'state' => [ { pattern: 'letter', task: { action_: [{type_: 'output'}] } } ] }\n // with expansion of 'a|b' to 'a' and 'b' (at 2 places)\n //\n createTransitions: function (o) {\n var pattern, state;\n /** @type {string[]} */\n var stateArray;\n var i;\n //\n // 1. Collect all states\n //\n /** @type {Transitions} */\n var transitions = {};\n for (pattern in o) {\n for (state in o[pattern]) {\n stateArray = state.split(\"|\");\n o[pattern][state].stateArray = stateArray;\n for (i=0; i<stateArray.length; i++) {\n transitions[stateArray[i]] = [];\n }\n }\n }\n //\n // 2. Fill states\n //\n for (pattern in o) {\n for (state in o[pattern]) {\n stateArray = o[pattern][state].stateArray || [];\n for (i=0; i<stateArray.length; i++) {\n //\n // 2a. Normalize actions into array: 'text=' ==> [{type_:'text='}]\n // (Note to myself: Resolving the function here would be problematic. It would need .bind (for *this*) and currying (for *option*).)\n //\n /** @type {any} */\n var p = o[pattern][state];\n if (p.action_) {\n p.action_ = [].concat(p.action_);\n for (var k=0; k<p.action_.length; k++) {\n if (typeof p.action_[k] === \"string\") {\n p.action_[k] = { type_: p.action_[k] };\n }\n }\n } else {\n p.action_ = [];\n }\n //\n // 2.b Multi-insert\n //\n var patternArray = pattern.split(\"|\");\n for (var j=0; j<patternArray.length; j++) {\n if (stateArray[i] === '*') { // insert into all\n for (var t in transitions) {\n transitions[t].push({ pattern: patternArray[j], task: p });\n }\n } else {\n transitions[stateArray[i]].push({ pattern: patternArray[j], task: p });\n }\n }\n }\n }\n }\n return transitions;\n },\n stateMachines: {}\n };\n\n //\n // Definition of state machines\n //\n mhchemParser.stateMachines = {\n //\n // \\ce state machines\n //\n //#region ce\n 'ce': { // main parser\n transitions: mhchemParser.createTransitions({\n 'empty': {\n '*': { action_: 'output' } },\n 'else': {\n '0|1|2': { action_: 'beginsWithBond=false', revisit: true, toContinue: true } },\n 'oxidation$': {\n '0': { action_: 'oxidation-output' } },\n 'CMT': {\n 'r': { action_: 'rdt=', nextState: 'rt' },\n 'rd': { action_: 'rqt=', nextState: 'rdt' } },\n 'arrowUpDown': {\n '0|1|2|as': { action_: [ 'sb=false', 'output', 'operator' ], nextState: '1' } },\n 'uprightEntities': {\n '0|1|2': { action_: [ 'o=', 'output' ], nextState: '1' } },\n 'orbital': {\n '0|1|2|3': { action_: 'o=', nextState: 'o' } },\n '->': {\n '0|1|2|3': { action_: 'r=', nextState: 'r' },\n 'a|as': { action_: [ 'output', 'r=' ], nextState: 'r' },\n '*': { action_: [ 'output', 'r=' ], nextState: 'r' } },\n '+': {\n 'o': { action_: 'd= kv', nextState: 'd' },\n 'd|D': { action_: 'd=', nextState: 'd' },\n 'q': { action_: 'd=', nextState: 'qd' },\n 'qd|qD': { action_: 'd=', nextState: 'qd' },\n 'dq': { action_: [ 'output', 'd=' ], nextState: 'd' },\n '3': { action_: [ 'sb=false', 'output', 'operator' ], nextState: '0' } },\n 'amount': {\n '0|2': { action_: 'a=', nextState: 'a' } },\n 'pm-operator': {\n '0|1|2|a|as': { action_: [ 'sb=false', 'output', { type_: 'operator', option: '\\\\pm' } ], nextState: '0' } },\n 'operator': {\n '0|1|2|a|as': { action_: [ 'sb=false', 'output', 'operator' ], nextState: '0' } },\n '-$': {\n 'o|q': { action_: [ 'charge or bond', 'output' ], nextState: 'qd' },\n 'd': { action_: 'd=', nextState: 'd' },\n 'D': { action_: [ 'output', { type_: 'bond', option: \"-\" } ], nextState: '3' },\n 'q': { action_: 'd=', nextState: 'qd' },\n 'qd': { action_: 'd=', nextState: 'qd' },\n 'qD|dq': { action_: [ 'output', { type_: 'bond', option: \"-\" } ], nextState: '3' } },\n '-9': {\n '3|o': { action_: [ 'output', { type_: 'insert', option: 'hyphen' } ], nextState: '3' } },\n '- orbital overlap': {\n 'o': { action_: [ 'output', { type_: 'insert', option: 'hyphen' } ], nextState: '2' },\n 'd': { action_: [ 'output', { type_: 'insert', option: 'hyphen' } ], nextState: '2' } },\n '-': {\n '0|1|2': { action_: [ { type_: 'output', option: 1 }, 'beginsWithBond=true', { type_: 'bond', option: \"-\" } ], nextState: '3' },\n '3': { action_: { type_: 'bond', option: \"-\" } },\n 'a': { action_: [ 'output', { type_: 'insert', option: 'hyphen' } ], nextState: '2' },\n 'as': { action_: [ { type_: 'output', option: 2 }, { type_: 'bond', option: \"-\" } ], nextState: '3' },\n 'b': { action_: 'b=' },\n 'o': { action_: { type_: '- after o/d', option: false }, nextState: '2' },\n 'q': { action_: { type_: '- after o/d', option: false }, nextState: '2' },\n 'd|qd|dq': { action_: { type_: '- after o/d', option: true }, nextState: '2' },\n 'D|qD|p': { action_: [ 'output', { type_: 'bond', option: \"-\" } ], nextState: '3' } },\n 'amount2': {\n '1|3': { action_: 'a=', nextState: 'a' } },\n 'letters': {\n '0|1|2|3|a|as|b|p|bp|o': { action_: 'o=', nextState: 'o' },\n 'q|dq': { action_: ['output', 'o='], nextState: 'o' },\n 'd|D|qd|qD': { action_: 'o after d', nextState: 'o' } },\n 'digits': {\n 'o': { action_: 'q=', nextState: 'q' },\n 'd|D': { action_: 'q=', nextState: 'dq' },\n 'q': { action_: [ 'output', 'o=' ], nextState: 'o' },\n 'a': { action_: 'o=', nextState: 'o' } },\n 'space A': {\n 'b|p|bp': {} },\n 'space': {\n 'a': { nextState: 'as' },\n '0': { action_: 'sb=false' },\n '1|2': { action_: 'sb=true' },\n 'r|rt|rd|rdt|rdq': { action_: 'output', nextState: '0' },\n '*': { action_: [ 'output', 'sb=true' ], nextState: '1'} },\n '1st-level escape': {\n '1|2': { action_: [ 'output', { type_: 'insert+p1', option: '1st-level escape' } ] },\n '*': { action_: [ 'output', { type_: 'insert+p1', option: '1st-level escape' } ], nextState: '0' } },\n '[(...)]': {\n 'r|rt': { action_: 'rd=', nextState: 'rd' },\n 'rd|rdt': { action_: 'rq=', nextState: 'rdq' } },\n '...': {\n 'o|d|D|dq|qd|qD': { action_: [ 'output', { type_: 'bond', option: \"...\" } ], nextState: '3' },\n '*': { action_: [ { type_: 'output', option: 1 }, { type_: 'insert', option: 'ellipsis' } ], nextState: '1' } },\n '. |* ': {\n '*': { action_: [ 'output', { type_: 'insert', option: 'addition compound' } ], nextState: '1' } },\n 'state of aggregation $': {\n '*': { action_: [ 'output', 'state of aggregation' ], nextState: '1' } },\n '{[(': {\n 'a|as|o': { action_: [ 'o=', 'output', 'parenthesisLevel++' ], nextState: '2' },\n '0|1|2|3': { action_: [ 'o=', 'output', 'parenthesisLevel++' ], nextState: '2' },\n '*': { action_: [ 'output', 'o=', 'output', 'parenthesisLevel++' ], nextState: '2' } },\n ')]}': {\n '0|1|2|3|b|p|bp|o': { action_: [ 'o=', 'parenthesisLevel--' ], nextState: 'o' },\n 'a|as|d|D|q|qd|qD|dq': { action_: [ 'output', 'o=', 'parenthesisLevel--' ], nextState: 'o' } },\n ', ': {\n '*': { action_: [ 'output', 'comma' ], nextState: '0' } },\n '^_': { // ^ and _ without a sensible argument\n '*': { } },\n '^{(...)}|^($...$)': {\n '0|1|2|as': { action_: 'b=', nextState: 'b' },\n 'p': { action_: 'b=', nextState: 'bp' },\n '3|o': { action_: 'd= kv', nextState: 'D' },\n 'q': { action_: 'd=', nextState: 'qD' },\n 'd|D|qd|qD|dq': { action_: [ 'output', 'd=' ], nextState: 'D' } },\n '^a|^\\\\x{}{}|^\\\\x{}|^\\\\x|\\'': {\n '0|1|2|as': { action_: 'b=', nextState: 'b' },\n 'p': { action_: 'b=', nextState: 'bp' },\n '3|o': { action_: 'd= kv', nextState: 'd' },\n 'q': { action_: 'd=', nextState: 'qd' },\n 'd|qd|D|qD': { action_: 'd=' },\n 'dq': { action_: [ 'output', 'd=' ], nextState: 'd' } },\n '_{(state of aggregation)}$': {\n 'd|D|q|qd|qD|dq': { action_: [ 'output', 'q=' ], nextState: 'q' } },\n '_{(...)}|_($...$)|_9|_\\\\x{}{}|_\\\\x{}|_\\\\x': {\n '0|1|2|as': { action_: 'p=', nextState: 'p' },\n 'b': { action_: 'p=', nextState: 'bp' },\n '3|o': { action_: 'q=', nextState: 'q' },\n 'd|D': { action_: 'q=', nextState: 'dq' },\n 'q|qd|qD|dq': { action_: [ 'output', 'q=' ], nextState: 'q' } },\n '=<>': {\n '0|1|2|3|a|as|o|q|d|D|qd|qD|dq': { action_: [ { type_: 'output', option: 2 }, 'bond' ], nextState: '3' } },\n '#': {\n '0|1|2|3|a|as|o': { action_: [ { type_: 'output', option: 2 }, { type_: 'bond', option: \"#\" } ], nextState: '3' } },\n '{}': {\n '*': { action_: { type_: 'output', option: 1 }, nextState: '1' } },\n '{...}': {\n '0|1|2|3|a|as|b|p|bp': { action_: 'o=', nextState: 'o' },\n 'o|d|D|q|qd|qD|dq': { action_: [ 'output', 'o=' ], nextState: 'o' } },\n '$...$': {\n 'a': { action_: 'a=' }, // 2$n$\n '0|1|2|3|as|b|p|bp|o': { action_: 'o=', nextState: 'o' }, // not 'amount'\n 'as|o': { action_: 'o=' },\n 'q|d|D|qd|qD|dq': { action_: [ 'output', 'o=' ], nextState: 'o' } },\n '\\\\bond{(...)}': {\n '*': { action_: [ { type_: 'output', option: 2 }, 'bond' ], nextState: \"3\" } },\n '\\\\frac{(...)}': {\n '*': { action_: [ { type_: 'output', option: 1 }, 'frac-output' ], nextState: '3' } },\n '\\\\overset{(...)}': {\n '*': { action_: [ { type_: 'output', option: 2 }, 'overset-output' ], nextState: '3' } },\n '\\\\underset{(...)}': {\n '*': { action_: [ { type_: 'output', option: 2 }, 'underset-output' ], nextState: '3' } },\n '\\\\underbrace{(...)}': {\n '*': { action_: [ { type_: 'output', option: 2 }, 'underbrace-output' ], nextState: '3' } },\n '\\\\color{(...)}{(...)}1|\\\\color(...){(...)}2': {\n '*': { action_: [ { type_: 'output', option: 2 }, 'color-output' ], nextState: '3' } },\n '\\\\color{(...)}0': {\n '*': { action_: [ { type_: 'output', option: 2 }, 'color0-output' ] } },\n '\\\\ce{(...)}': {\n '*': { action_: [ { type_: 'output', option: 2 }, 'ce' ], nextState: '3' } },\n '\\\\,': {\n '*': { action_: [ { type_: 'output', option: 1 }, 'copy' ], nextState: '1' } },\n '\\\\x{}{}|\\\\x{}|\\\\x': {\n '0|1|2|3|a|as|b|p|bp|o|c0': { action_: [ 'o=', 'output' ], nextState: '3' },\n '*': { action_: ['output', 'o=', 'output' ], nextState: '3' } },\n 'others': {\n '*': { action_: [ { type_: 'output', option: 1 }, 'copy' ], nextState: '3' } },\n 'else2': {\n 'a': { action_: 'a to o', nextState: 'o', revisit: true },\n 'as': { action_: [ 'output', 'sb=true' ], nextState: '1', revisit: true },\n 'r|rt|rd|rdt|rdq': { action_: [ 'output' ], nextState: '0', revisit: true },\n '*': { action_: [ 'output', 'copy' ], nextState: '3' } }\n }),\n actions: {\n 'o after d': function (buffer, m) {\n var ret;\n if ((buffer.d || \"\").match(/^[0-9]+$/)) {\n var tmp = buffer.d;\n buffer.d = undefined;\n ret = this['output'](buffer);\n buffer.b = tmp;\n } else {\n ret = this['output'](buffer);\n }\n mhchemParser.actions['o='](buffer, m);\n return ret;\n },\n 'd= kv': function (buffer, m) {\n buffer.d = m;\n buffer.dType = 'kv';\n },\n 'charge or bond': function (buffer, m) {\n if (buffer['beginsWithBond']) {\n /** @type {ParserOutput[]} */\n var ret = [];\n mhchemParser.concatArray(ret, this['output'](buffer));\n mhchemParser.concatArray(ret, mhchemParser.actions['bond'](buffer, m, \"-\"));\n return ret;\n } else {\n buffer.d = m;\n }\n },\n '- after o/d': function (buffer, m, isAfterD) {\n var c1 = mhchemParser.patterns.match_('orbital', buffer.o || \"\");\n var c2 = mhchemParser.patterns.match_('one lowercase greek letter $', buffer.o || \"\");\n var c3 = mhchemParser.patterns.match_('one lowercase latin letter $', buffer.o || \"\");\n var c4 = mhchemParser.patterns.match_('$one lowercase latin letter$ $', buffer.o || \"\");\n var hyphenFollows = m===\"-\" && ( c1 && c1.remainder===\"\" || c2 || c3 || c4 );\n if (hyphenFollows && !buffer.a && !buffer.b && !buffer.p && !buffer.d && !buffer.q && !c1 && c3) {\n buffer.o = '$' + buffer.o + '$';\n }\n /** @type {ParserOutput[]} */\n var ret = [];\n if (hyphenFollows) {\n mhchemParser.concatArray(ret, this['output'](buffer));\n ret.push({ type_: 'hyphen' });\n } else {\n c1 = mhchemParser.patterns.match_('digits', buffer.d || \"\");\n if (isAfterD && c1 && c1.remainder==='') {\n mhchemParser.concatArray(ret, mhchemParser.actions['d='](buffer, m));\n mhchemParser.concatArray(ret, this['output'](buffer));\n } else {\n mhchemParser.concatArray(ret, this['output'](buffer));\n mhchemParser.concatArray(ret, mhchemParser.actions['bond'](buffer, m, \"-\"));\n }\n }\n return ret;\n },\n 'a to o': function (buffer) {\n buffer.o = buffer.a;\n buffer.a = undefined;\n },\n 'sb=true': function (buffer) { buffer.sb = true; },\n 'sb=false': function (buffer) { buffer.sb = false; },\n 'beginsWithBond=true': function (buffer) { buffer['beginsWithBond'] = true; },\n 'beginsWithBond=false': function (buffer) { buffer['beginsWithBond'] = false; },\n 'parenthesisLevel++': function (buffer) { buffer['parenthesisLevel']++; },\n 'parenthesisLevel--': function (buffer) { buffer['parenthesisLevel']--; },\n 'state of aggregation': function (buffer, m) {\n return { type_: 'state of aggregation', p1: mhchemParser.go(m, 'o') };\n },\n 'comma': function (buffer, m) {\n var a = m.replace(/\\s*$/, '');\n var withSpace = (a !== m);\n if (withSpace && buffer['parenthesisLevel'] === 0) {\n return { type_: 'comma enumeration L', p1: a };\n } else {\n return { type_: 'comma enumeration M', p1: a };\n }\n },\n 'output': function (buffer, m, entityFollows) {\n // entityFollows:\n // undefined = if we have nothing else to output, also ignore the just read space (buffer.sb)\n // 1 = an entity follows, never omit the space if there was one just read before (can only apply to state 1)\n // 2 = 1 + the entity can have an amount, so output a\\, instead of converting it to o (can only apply to states a|as)\n /** @type {ParserOutput | ParserOutput[]} */\n var ret;\n if (!buffer.r) {\n ret = [];\n if (!buffer.a && !buffer.b && !buffer.p && !buffer.o && !buffer.q && !buffer.d && !entityFollows) {\n //ret = [];\n } else {\n if (buffer.sb) {\n ret.push({ type_: 'entitySkip' });\n }\n if (!buffer.o && !buffer.q && !buffer.d && !buffer.b && !buffer.p && entityFollows!==2) {\n buffer.o = buffer.a;\n buffer.a = undefined;\n } else if (!buffer.o && !buffer.q && !buffer.d && (buffer.b || buffer.p)) {\n buffer.o = buffer.a;\n buffer.d = buffer.b;\n buffer.q = buffer.p;\n buffer.a = buffer.b = buffer.p = undefined;\n } else {\n if (buffer.o && buffer.dType==='kv' && mhchemParser.patterns.match_('d-oxidation$', buffer.d || \"\")) {\n buffer.dType = 'oxidation';\n } else if (buffer.o && buffer.dType==='kv' && !buffer.q) {\n buffer.dType = undefined;\n }\n }\n ret.push({\n type_: 'chemfive',\n a: mhchemParser.go(buffer.a, 'a'),\n b: mhchemParser.go(buffer.b, 'bd'),\n p: mhchemParser.go(buffer.p, 'pq'),\n o: mhchemParser.go(buffer.o, 'o'),\n q: mhchemParser.go(buffer.q, 'pq'),\n d: mhchemParser.go(buffer.d, (buffer.dType === 'oxidation' ? 'oxidation' : 'bd')),\n dType: buffer.dType\n });\n }\n } else { // r\n /** @type {ParserOutput[]} */\n var rd;\n if (buffer.rdt === 'M') {\n rd = mhchemParser.go(buffer.rd, 'tex-math');\n } else if (buffer.rdt === 'T') {\n rd = [ { type_: 'text', p1: buffer.rd || \"\" } ];\n } else {\n rd = mhchemParser.go(buffer.rd);\n }\n /** @type {ParserOutput[]} */\n var rq;\n if (buffer.rqt === 'M') {\n rq = mhchemParser.go(buffer.rq, 'tex-math');\n } else if (buffer.rqt === 'T') {\n rq = [ { type_: 'text', p1: buffer.rq || \"\"} ];\n } else {\n rq = mhchemParser.go(buffer.rq);\n }\n ret = {\n type_: 'arrow',\n r: buffer.r,\n rd: rd,\n rq: rq\n };\n }\n for (var p in buffer) {\n if (p !== 'parenthesisLevel' && p !== 'beginsWithBond') {\n delete buffer[p];\n }\n }\n return ret;\n },\n 'oxidation-output': function (buffer, m) {\n var ret = [ \"{\" ];\n mhchemParser.concatArray(ret, mhchemParser.go(m, 'oxidation'));\n ret.push(\"}\");\n return ret;\n },\n 'frac-output': function (buffer, m) {\n return { type_: 'frac-ce', p1: mhchemParser.go(m[0]), p2: mhchemParser.go(m[1]) };\n },\n 'overset-output': function (buffer, m) {\n return { type_: 'overset', p1: mhchemParser.go(m[0]), p2: mhchemParser.go(m[1]) };\n },\n 'underset-output': function (buffer, m) {\n return { type_: 'underset', p1: mhchemParser.go(m[0]), p2: mhchemParser.go(m[1]) };\n },\n 'underbrace-output': function (buffer, m) {\n return { type_: 'underbrace', p1: mhchemParser.go(m[0]), p2: mhchemParser.go(m[1]) };\n },\n 'color-output': function (buffer, m) {\n return { type_: 'color', color1: m[0], color2: mhchemParser.go(m[1]) };\n },\n 'r=': function (buffer, m) { buffer.r = m; },\n 'rdt=': function (buffer, m) { buffer.rdt = m; },\n 'rd=': function (buffer, m) { buffer.rd = m; },\n 'rqt=': function (buffer, m) { buffer.rqt = m; },\n 'rq=': function (buffer, m) { buffer.rq = m; },\n 'operator': function (buffer, m, p1) { return { type_: 'operator', kind_: (p1 || m) }; }\n }\n },\n 'a': {\n transitions: mhchemParser.createTransitions({\n 'empty': {\n '*': {} },\n '1/2$': {\n '0': { action_: '1/2' } },\n 'else': {\n '0': { nextState: '1', revisit: true } },\n '$(...)$': {\n '*': { action_: 'tex-math tight', nextState: '1' } },\n ',': {\n '*': { action_: { type_: 'insert', option: 'commaDecimal' } } },\n 'else2': {\n '*': { action_: 'copy' } }\n }),\n actions: {}\n },\n 'o': {\n transitions: mhchemParser.createTransitions({\n 'empty': {\n '*': {} },\n '1/2$': {\n '0': { action_: '1/2' } },\n 'else': {\n '0': { nextState: '1', revisit: true } },\n 'letters': {\n '*': { action_: 'rm' } },\n '\\\\ca': {\n '*': { action_: { type_: 'insert', option: 'circa' } } },\n '\\\\x{}{}|\\\\x{}|\\\\x': {\n '*': { action_: 'copy' } },\n '${(...)}$|$(...)$': {\n '*': { action_: 'tex-math' } },\n '{(...)}': {\n '*': { action_: '{text}' } },\n 'else2': {\n '*': { action_: 'copy' } }\n }),\n actions: {}\n },\n 'text': {\n transitions: mhchemParser.createTransitions({\n 'empty': {\n '*': { action_: 'output' } },\n '{...}': {\n '*': { action_: 'text=' } },\n '${(...)}$|$(...)$': {\n '*': { action_: 'tex-math' } },\n '\\\\greek': {\n '*': { action_: [ 'output', 'rm' ] } },\n '\\\\,|\\\\x{}{}|\\\\x{}|\\\\x': {\n '*': { action_: [ 'output', 'copy' ] } },\n 'else': {\n '*': { action_: 'text=' } }\n }),\n actions: {\n 'output': function (buffer) {\n if (buffer.text_) {\n /** @type {ParserOutput} */\n var ret = { type_: 'text', p1: buffer.text_ };\n for (var p in buffer) { delete buffer[p]; }\n return ret;\n }\n }\n }\n },\n 'pq': {\n transitions: mhchemParser.createTransitions({\n 'empty': {\n '*': {} },\n 'state of aggregation $': {\n '*': { action_: 'state of aggregation' } },\n 'i$': {\n '0': { nextState: '!f', revisit: true } },\n '(KV letters),': {\n '0': { action_: 'rm', nextState: '0' } },\n 'formula$': {\n '0': { nextState: 'f', revisit: true } },\n '1/2$': {\n '0': { action_: '1/2' } },\n 'else': {\n '0': { nextState: '!f', revisit: true } },\n '${(...)}$|$(...)$': {\n '*': { action_: 'tex-math' } },\n '{(...)}': {\n '*': { action_: 'text' } },\n 'a-z': {\n 'f': { action_: 'tex-math' } },\n 'letters': {\n '*': { action_: 'rm' } },\n '-9.,9': {\n '*': { action_: '9,9' } },\n ',': {\n '*': { action_: { type_: 'insert+p1', option: 'comma enumeration S' } } },\n '\\\\color{(...)}{(...)}1|\\\\color(...){(...)}2': {\n '*': { action_: 'color-output' } },\n '\\\\color{(...)}0': {\n '*': { action_: 'color0-output' } },\n '\\\\ce{(...)}': {\n '*': { action_: 'ce' } },\n '\\\\,|\\\\x{}{}|\\\\x{}|\\\\x': {\n '*': { action_: 'copy' } },\n 'else2': {\n '*': { action_: 'copy' } }\n }),\n actions: {\n 'state of aggregation': function (buffer, m) {\n return { type_: 'state of aggregation subscript', p1: mhchemParser.go(m, 'o') };\n },\n 'color-output': function (buffer, m) {\n return { type_: 'color', color1: m[0], color2: mhchemParser.go(m[1], 'pq') };\n }\n }\n },\n 'bd': {\n transitions: mhchemParser.createTransitions({\n 'empty': {\n '*': {} },\n 'x$': {\n '0': { nextState: '!f', revisit: true } },\n 'formula$': {\n '0': { nextState: 'f', revisit: true } },\n 'else': {\n '0': { nextState: '!f', revisit: true } },\n '-9.,9 no missing 0': {\n '*': { action_: '9,9' } },\n '.': {\n '*': { action_: { type_: 'insert', option: 'electron dot' } } },\n 'a-z': {\n 'f': { action_: 'tex-math' } },\n 'x': {\n '*': { action_: { type_: 'insert', option: 'KV x' } } },\n 'letters': {\n '*': { action_: 'rm' } },\n '\\'': {\n '*': { action_: { type_: 'insert', option: 'prime' } } },\n '${(...)}$|$(...)$': {\n '*': { action_: 'tex-math' } },\n '{(...)}': {\n '*': { action_: 'text' } },\n '\\\\color{(...)}{(...)}1|\\\\color(...){(...)}2': {\n '*': { action_: 'color-output' } },\n '\\\\color{(...)}0': {\n '*': { action_: 'color0-output' } },\n '\\\\ce{(...)}': {\n '*': { action_: 'ce' } },\n '\\\\,|\\\\x{}{}|\\\\x{}|\\\\x': {\n '*': { action_: 'copy' } },\n 'else2': {\n '*': { action_: 'copy' } }\n }),\n actions: {\n 'color-output': function (buffer, m) {\n return { type_: 'color', color1: m[0], color2: mhchemParser.go(m[1], 'bd') };\n }\n }\n },\n 'oxidation': {\n transitions: mhchemParser.createTransitions({\n 'empty': {\n '*': {} },\n 'roman numeral': {\n '*': { action_: 'roman-numeral' } },\n '${(...)}$|$(...)$': {\n '*': { action_: 'tex-math' } },\n 'else': {\n '*': { action_: 'copy' } }\n }),\n actions: {\n 'roman-numeral': function (buffer, m) { return { type_: 'roman numeral', p1: m || \"\" }; }\n }\n },\n 'tex-math': {\n transitions: mhchemParser.createTransitions({\n 'empty': {\n '*': { action_: 'output' } },\n '\\\\ce{(...)}': {\n '*': { action_: [ 'output', 'ce' ] } },\n '{...}|\\\\,|\\\\x{}{}|\\\\x{}|\\\\x': {\n '*': { action_: 'o=' } },\n 'else': {\n '*': { action_: 'o=' } }\n }),\n actions: {\n 'output': function (buffer) {\n if (buffer.o) {\n /** @type {ParserOutput} */\n var ret = { type_: 'tex-math', p1: buffer.o };\n for (var p in buffer) { delete buffer[p]; }\n return ret;\n }\n }\n }\n },\n 'tex-math tight': {\n transitions: mhchemParser.createTransitions({\n 'empty': {\n '*': { action_: 'output' } },\n '\\\\ce{(...)}': {\n '*': { action_: [ 'output', 'ce' ] } },\n '{...}|\\\\,|\\\\x{}{}|\\\\x{}|\\\\x': {\n '*': { action_: 'o=' } },\n '-|+': {\n '*': { action_: 'tight operator' } },\n 'else': {\n '*': { action_: 'o=' } }\n }),\n actions: {\n 'tight operator': function (buffer, m) { buffer.o = (buffer.o || \"\") + \"{\"+m+\"}\"; },\n 'output': function (buffer) {\n if (buffer.o) {\n /** @type {ParserOutput} */\n var ret = { type_: 'tex-math', p1: buffer.o };\n for (var p in buffer) { delete buffer[p]; }\n return ret;\n }\n }\n }\n },\n '9,9': {\n transitions: mhchemParser.createTransitions({\n 'empty': {\n '*': {} },\n ',': {\n '*': { action_: 'comma' } },\n 'else': {\n '*': { action_: 'copy' } }\n }),\n actions: {\n 'comma': function () { return { type_: 'commaDecimal' }; }\n }\n },\n //#endregion\n //\n // \\pu state machines\n //\n //#region pu\n 'pu': {\n transitions: mhchemParser.createTransitions({\n 'empty': {\n '*': { action_: 'output' } },\n 'space$': {\n '*': { action_: [ 'output', 'space' ] } },\n '{[(|)]}': {\n '0|a': { action_: 'copy' } },\n '(-)(9)^(-9)': {\n '0': { action_: 'number^', nextState: 'a' } },\n '(-)(9.,9)(e)(99)': {\n '0': { action_: 'enumber', nextState: 'a' } },\n 'space': {\n '0|a': {} },\n 'pm-operator': {\n '0|a': { action_: { type_: 'operator', option: '\\\\pm' }, nextState: '0' } },\n 'operator': {\n '0|a': { action_: 'copy', nextState: '0' } },\n '//': {\n 'd': { action_: 'o=', nextState: '/' } },\n '/': {\n 'd': { action_: 'o=', nextState: '/' } },\n '{...}|else': {\n '0|d': { action_: 'd=', nextState: 'd' },\n 'a': { action_: [ 'space', 'd=' ], nextState: 'd' },\n '/|q': { action_: 'q=', nextState: 'q' } }\n }),\n actions: {\n 'enumber': function (buffer, m) {\n /** @type {ParserOutput[]} */\n var ret = [];\n if (m[0] === \"+-\" || m[0] === \"+/-\") {\n ret.push(\"\\\\pm \");\n } else if (m[0]) {\n ret.push(m[0]);\n }\n if (m[1]) {\n mhchemParser.concatArray(ret, mhchemParser.go(m[1], 'pu-9,9'));\n if (m[2]) {\n if (m[2].match(/[,.]/)) {\n mhchemParser.concatArray(ret, mhchemParser.go(m[2], 'pu-9,9'));\n } else {\n ret.push(m[2]);\n }\n }\n m[3] = m[4] || m[3];\n if (m[3]) {\n m[3] = m[3].trim();\n if (m[3] === \"e\" || m[3].substr(0, 1) === \"*\") {\n ret.push({ type_: 'cdot' });\n } else {\n ret.push({ type_: 'times' });\n }\n }\n }\n if (m[3]) {\n ret.push(\"10^{\"+m[5]+\"}\");\n }\n return ret;\n },\n 'number^': function (buffer, m) {\n /** @type {ParserOutput[]} */\n var ret = [];\n if (m[0] === \"+-\" || m[0] === \"+/-\") {\n ret.push(\"\\\\pm \");\n } else if (m[0]) {\n ret.push(m[0]);\n }\n mhchemParser.concatArray(ret, mhchemParser.go(m[1], 'pu-9,9'));\n ret.push(\"^{\"+m[2]+\"}\");\n return ret;\n },\n 'operator': function (buffer, m, p1) { return { type_: 'operator', kind_: (p1 || m) }; },\n 'space': function () { return { type_: 'pu-space-1' }; },\n 'output': function (buffer) {\n /** @type {ParserOutput | ParserOutput[]} */\n var ret;\n var md = mhchemParser.patterns.match_('{(...)}', buffer.d || \"\");\n if (md && md.remainder === '') { buffer.d = md.match_; }\n var mq = mhchemParser.patterns.match_('{(...)}', buffer.q || \"\");\n if (mq && mq.remainder === '') { buffer.q = mq.match_; }\n if (buffer.d) {\n buffer.d = buffer.d.replace(/\\u00B0C|\\^oC|\\^{o}C/g, \"{}^{\\\\circ}C\");\n buffer.d = buffer.d.replace(/\\u00B0F|\\^oF|\\^{o}F/g, \"{}^{\\\\circ}F\");\n }\n if (buffer.q) { // fraction\n buffer.q = buffer.q.replace(/\\u00B0C|\\^oC|\\^{o}C/g, \"{}^{\\\\circ}C\");\n buffer.q = buffer.q.replace(/\\u00B0F|\\^oF|\\^{o}F/g, \"{}^{\\\\circ}F\");\n var b5 = {\n d: mhchemParser.go(buffer.d, 'pu'),\n q: mhchemParser.go(buffer.q, 'pu')\n };\n if (buffer.o === '//') {\n ret = { type_: 'pu-frac', p1: b5.d, p2: b5.q };\n } else {\n ret = b5.d;\n if (b5.d.length > 1 || b5.q.length > 1) {\n ret.push({ type_: ' / ' });\n } else {\n ret.push({ type_: '/' });\n }\n mhchemParser.concatArray(ret, b5.q);\n }\n } else { // no fraction\n ret = mhchemParser.go(buffer.d, 'pu-2');\n }\n for (var p in buffer) { delete buffer[p]; }\n return ret;\n }\n }\n },\n 'pu-2': {\n transitions: mhchemParser.createTransitions({\n 'empty': {\n '*': { action_: 'output' } },\n '*': {\n '*': { action_: [ 'output', 'cdot' ], nextState: '0' } },\n '\\\\x': {\n '*': { action_: 'rm=' } },\n 'space': {\n '*': { action_: [ 'output', 'space' ], nextState: '0' } },\n '^{(...)}|^(-1)': {\n '1': { action_: '^(-1)' } },\n '-9.,9': {\n '0': { action_: 'rm=', nextState: '0' },\n '1': { action_: '^(-1)', nextState: '0' } },\n '{...}|else': {\n '*': { action_: 'rm=', nextState: '1' } }\n }),\n actions: {\n 'cdot': function () { return { type_: 'tight cdot' }; },\n '^(-1)': function (buffer, m) { buffer.rm += \"^{\"+m+\"}\"; },\n 'space': function () { return { type_: 'pu-space-2' }; },\n 'output': function (buffer) {\n /** @type {ParserOutput | ParserOutput[]} */\n var ret = [];\n if (buffer.rm) {\n var mrm = mhchemParser.patterns.match_('{(...)}', buffer.rm || \"\");\n if (mrm && mrm.remainder === '') {\n ret = mhchemParser.go(mrm.match_, 'pu');\n } else {\n ret = { type_: 'rm', p1: buffer.rm };\n }\n }\n for (var p in buffer) { delete buffer[p]; }\n return ret;\n }\n }\n },\n 'pu-9,9': {\n transitions: mhchemParser.createTransitions({\n 'empty': {\n '0': { action_: 'output-0' },\n 'o': { action_: 'output-o' } },\n ',': {\n '0': { action_: [ 'output-0', 'comma' ], nextState: 'o' } },\n '.': {\n '0': { action_: [ 'output-0', 'copy' ], nextState: 'o' } },\n 'else': {\n '*': { action_: 'text=' } }\n }),\n actions: {\n 'comma': function () { return { type_: 'commaDecimal' }; },\n 'output-0': function (buffer) {\n /** @type {ParserOutput[]} */\n var ret = [];\n buffer.text_ = buffer.text_ || \"\";\n if (buffer.text_.length > 4) {\n var a = buffer.text_.length % 3;\n if (a === 0) { a = 3; }\n for (var i=buffer.text_.length-3; i>0; i-=3) {\n ret.push(buffer.text_.substr(i, 3));\n ret.push({ type_: '1000 separator' });\n }\n ret.push(buffer.text_.substr(0, a));\n ret.reverse();\n } else {\n ret.push(buffer.text_);\n }\n for (var p in buffer) { delete buffer[p]; }\n return ret;\n },\n 'output-o': function (buffer) {\n /** @type {ParserOutput[]} */\n var ret = [];\n buffer.text_ = buffer.text_ || \"\";\n if (buffer.text_.length > 4) {\n var a = buffer.text_.length - 3;\n for (var i=0; i<a; i+=3) {\n ret.push(buffer.text_.substr(i, 3));\n ret.push({ type_: '1000 separator' });\n }\n ret.push(buffer.text_.substr(i));\n } else {\n ret.push(buffer.text_);\n }\n for (var p in buffer) { delete buffer[p]; }\n return ret;\n }\n }\n }\n //#endregion\n };\n\n //\n // texify: Take MhchemParser output and convert it to TeX\n //\n /** @type {Texify} */\n var texify = {\n go: function (input, isInner) { // (recursive, max 4 levels)\n if (!input) { return \"\"; }\n var res = \"\";\n var cee = false;\n for (var i=0; i < input.length; i++) {\n var inputi = input[i];\n if (typeof inputi === \"string\") {\n res += inputi;\n } else {\n res += texify._go2(inputi);\n if (inputi.type_ === '1st-level escape') { cee = true; }\n }\n }\n if (!isInner && !cee && res) {\n res = \"{\" + res + \"}\";\n }\n return res;\n },\n _goInner: function (input) {\n if (!input) { return input; }\n return texify.go(input, true);\n },\n _go2: function (buf) {\n /** @type {undefined | string} */\n var res;\n switch (buf.type_) {\n case 'chemfive':\n res = \"\";\n var b5 = {\n a: texify._goInner(buf.a),\n b: texify._goInner(buf.b),\n p: texify._goInner(buf.p),\n o: texify._goInner(buf.o),\n q: texify._goInner(buf.q),\n d: texify._goInner(buf.d)\n };\n //\n // a\n //\n if (b5.a) {\n if (b5.a.match(/^[+\\-]/)) { b5.a = \"{\"+b5.a+\"}\"; }\n res += b5.a + \"\\\\,\";\n }\n //\n // b and p\n //\n if (b5.b || b5.p) {\n res += \"{\\\\vphantom{X}}\";\n res += \"^{\\\\hphantom{\"+(b5.b||\"\")+\"}}_{\\\\hphantom{\"+(b5.p||\"\")+\"}}\";\n res += \"{\\\\vphantom{X}}\";\n res += \"^{\\\\smash[t]{\\\\vphantom{2}}\\\\mathllap{\"+(b5.b||\"\")+\"}}\";\n res += \"_{\\\\vphantom{2}\\\\mathllap{\\\\smash[t]{\"+(b5.p||\"\")+\"}}}\";\n }\n //\n // o\n //\n if (b5.o) {\n if (b5.o.match(/^[+\\-]/)) { b5.o = \"{\"+b5.o+\"}\"; }\n res += b5.o;\n }\n //\n // q and d\n //\n if (buf.dType === 'kv') {\n if (b5.d || b5.q) {\n res += \"{\\\\vphantom{X}}\";\n }\n if (b5.d) {\n res += \"^{\"+b5.d+\"}\";\n }\n if (b5.q) {\n res += \"_{\\\\smash[t]{\"+b5.q+\"}}\";\n }\n } else if (buf.dType === 'oxidation') {\n if (b5.d) {\n res += \"{\\\\vphantom{X}}\";\n res += \"^{\"+b5.d+\"}\";\n }\n if (b5.q) {\n res += \"{\\\\vphantom{X}}\";\n res += \"_{\\\\smash[t]{\"+b5.q+\"}}\";\n }\n } else {\n if (b5.q) {\n res += \"{\\\\vphantom{X}}\";\n res += \"_{\\\\smash[t]{\"+b5.q+\"}}\";\n }\n if (b5.d) {\n res += \"{\\\\vphantom{X}}\";\n res += \"^{\"+b5.d+\"}\";\n }\n }\n break;\n case 'rm':\n res = \"\\\\mathrm{\"+buf.p1+\"}\";\n break;\n case 'text':\n if (buf.p1.match(/[\\^_]/)) {\n buf.p1 = buf.p1.replace(\" \", \"~\").replace(\"-\", \"\\\\text{-}\");\n res = \"\\\\mathrm{\"+buf.p1+\"}\";\n } else {\n res = \"\\\\text{\"+buf.p1+\"}\";\n }\n break;\n case 'roman numeral':\n res = \"\\\\mathrm{\"+buf.p1+\"}\";\n break;\n case 'state of aggregation':\n res = \"\\\\mskip2mu \"+texify._goInner(buf.p1);\n break;\n case 'state of aggregation subscript':\n res = \"\\\\mskip1mu \"+texify._goInner(buf.p1);\n break;\n case 'bond':\n res = texify._getBond(buf.kind_);\n if (!res) {\n throw [\"MhchemErrorBond\", \"mhchem Error. Unknown bond type (\" + buf.kind_ + \")\"];\n }\n break;\n case 'frac':\n var c = \"\\\\frac{\" + buf.p1 + \"}{\" + buf.p2 + \"}\";\n res = \"\\\\mathchoice{\\\\textstyle\"+c+\"}{\"+c+\"}{\"+c+\"}{\"+c+\"}\";\n break;\n case 'pu-frac':\n var d = \"\\\\frac{\" + texify._goInner(buf.p1) + \"}{\" + texify._goInner(buf.p2) + \"}\";\n res = \"\\\\mathchoice{\\\\textstyle\"+d+\"}{\"+d+\"}{\"+d+\"}{\"+d+\"}\";\n break;\n case 'tex-math':\n res = buf.p1 + \" \";\n break;\n case 'frac-ce':\n res = \"\\\\frac{\" + texify._goInner(buf.p1) + \"}{\" + texify._goInner(buf.p2) + \"}\";\n break;\n case 'overset':\n res = \"\\\\overset{\" + texify._goInner(buf.p1) + \"}{\" + texify._goInner(buf.p2) + \"}\";\n break;\n case 'underset':\n res = \"\\\\underset{\" + texify._goInner(buf.p1) + \"}{\" + texify._goInner(buf.p2) + \"}\";\n break;\n case 'underbrace':\n res = \"\\\\underbrace{\" + texify._goInner(buf.p1) + \"}_{\" + texify._goInner(buf.p2) + \"}\";\n break;\n case 'color':\n res = \"{\\\\color{\" + buf.color1 + \"}{\" + texify._goInner(buf.color2) + \"}}\";\n break;\n case 'color0':\n res = \"\\\\color{\" + buf.color + \"}\";\n break;\n case 'arrow':\n var b6 = {\n rd: texify._goInner(buf.rd),\n rq: texify._goInner(buf.rq)\n };\n var arrow = \"\\\\x\" + texify._getArrow(buf.r);\n if (b6.rq) { arrow += \"[{\" + b6.rq + \"}]\"; }\n if (b6.rd) {\n arrow += \"{\" + b6.rd + \"}\";\n } else {\n arrow += \"{}\";\n }\n res = arrow;\n break;\n case 'operator':\n res = texify._getOperator(buf.kind_);\n break;\n case '1st-level escape':\n res = buf.p1+\" \"; // &, \\\\\\\\, \\\\hlin\n break;\n case 'space':\n res = \" \";\n break;\n case 'entitySkip':\n res = \"~\";\n break;\n case 'pu-space-1':\n res = \"~\";\n break;\n case 'pu-space-2':\n res = \"\\\\mkern3mu \";\n break;\n case '1000 separator':\n res = \"\\\\mkern2mu \";\n break;\n case 'commaDecimal':\n res = \"{,}\";\n break;\n case 'comma enumeration L':\n res = \"{\"+buf.p1+\"}\\\\mkern6mu \";\n break;\n case 'comma enumeration M':\n res = \"{\"+buf.p1+\"}\\\\mkern3mu \";\n break;\n case 'comma enumeration S':\n res = \"{\"+buf.p1+\"}\\\\mkern1mu \";\n break;\n case 'hyphen':\n res = \"\\\\text{-}\";\n break;\n case 'addition compound':\n res = \"\\\\,{\\\\cdot}\\\\,\";\n break;\n case 'electron dot':\n res = \"\\\\mkern1mu \\\\bullet\\\\mkern1mu \";\n break;\n case 'KV x':\n res = \"{\\\\times}\";\n break;\n case 'prime':\n res = \"\\\\prime \";\n break;\n case 'cdot':\n res = \"\\\\cdot \";\n break;\n case 'tight cdot':\n res = \"\\\\mkern1mu{\\\\cdot}\\\\mkern1mu \";\n break;\n case 'times':\n res = \"\\\\times \";\n break;\n case 'circa':\n res = \"{\\\\sim}\";\n break;\n case '^':\n res = \"uparrow\";\n break;\n case 'v':\n res = \"downarrow\";\n break;\n case 'ellipsis':\n res = \"\\\\ldots \";\n break;\n case '/':\n res = \"/\";\n break;\n case ' / ':\n res = \"\\\\,/\\\\,\";\n break;\n default:\n assertNever(buf);\n throw [\"MhchemBugT\", \"mhchem bug T. Please report.\"]; // Missing texify rule or unknown MhchemParser output\n }\n assertString(res);\n return res;\n },\n _getArrow: function (a) {\n switch (a) {\n case \"->\": return \"rightarrow\";\n case \"\\u2192\": return \"rightarrow\";\n case \"\\u27F6\": return \"rightarrow\";\n case \"<-\": return \"leftarrow\";\n case \"<->\": return \"leftrightarrow\";\n case \"<-->\": return \"rightleftarrows\";\n case \"<=>\": return \"rightleftharpoons\";\n case \"\\u21CC\": return \"rightleftharpoons\";\n case \"<=>>\": return \"rightequilibrium\";\n case \"<<=>\": return \"leftequilibrium\";\n default:\n assertNever(a);\n throw [\"MhchemBugT\", \"mhchem bug T. Please report.\"];\n }\n },\n _getBond: function (a) {\n switch (a) {\n case \"-\": return \"{-}\";\n case \"1\": return \"{-}\";\n case \"=\": return \"{=}\";\n case \"2\": return \"{=}\";\n case \"#\": return \"{\\\\equiv}\";\n case \"3\": return \"{\\\\equiv}\";\n case \"~\": return \"{\\\\tripledash}\";\n case \"~-\": return \"{\\\\mathrlap{\\\\raisebox{-.1em}{$-$}}\\\\raisebox{.1em}{$\\\\tripledash$}}\";\n case \"~=\": return \"{\\\\mathrlap{\\\\raisebox{-.2em}{$-$}}\\\\mathrlap{\\\\raisebox{.2em}{$\\\\tripledash$}}-}\";\n case \"~--\": return \"{\\\\mathrlap{\\\\raisebox{-.2em}{$-$}}\\\\mathrlap{\\\\raisebox{.2em}{$\\\\tripledash$}}-}\";\n case \"-~-\": return \"{\\\\mathrlap{\\\\raisebox{-.2em}{$-$}}\\\\mathrlap{\\\\raisebox{.2em}{$-$}}\\\\tripledash}\";\n case \"...\": return \"{{\\\\cdot}{\\\\cdot}{\\\\cdot}}\";\n case \"....\": return \"{{\\\\cdot}{\\\\cdot}{\\\\cdot}{\\\\cdot}}\";\n case \"->\": return \"{\\\\rightarrow}\";\n case \"<-\": return \"{\\\\leftarrow}\";\n case \"<\": return \"{<}\";\n case \">\": return \"{>}\";\n default:\n assertNever(a);\n throw [\"MhchemBugT\", \"mhchem bug T. Please report.\"];\n }\n },\n _getOperator: function (a) {\n switch (a) {\n case \"+\": return \" {}+{} \";\n case \"-\": return \" {}-{} \";\n case \"=\": return \" {}={} \";\n case \"<\": return \" {}<{} \";\n case \">\": return \" {}>{} \";\n case \"<<\": return \" {}\\\\ll{} \";\n case \">>\": return \" {}\\\\gg{} \";\n case \"\\\\pm\": return \" {}\\\\pm{} \";\n case \"\\\\approx\": return \" {}\\\\approx{} \";\n case \"$\\\\approx$\": return \" {}\\\\approx{} \";\n case \"v\": return \" \\\\downarrow{} \";\n case \"(v)\": return \" \\\\downarrow{} \";\n case \"^\": return \" \\\\uparrow{} \";\n case \"(^)\": return \" \\\\uparrow{} \";\n default:\n assertNever(a);\n throw [\"MhchemBugT\", \"mhchem bug T. Please report.\"];\n }\n }\n };\n\n //\n // Helpers for code anaylsis\n // Will show type error at calling position\n //\n /** @param {number} a */\n function assertNever(a) {}\n /** @param {string} a */\n function assertString(a) {}\n",
"type": "application/javascript",
"title": "$:/plugins/tiddlywiki/katex/mhchem.min.js",
"module-type": "library"
},
"$:/plugins/tiddlywiki/katex/fonts/KaTeX_AMS-Regular.woff": {
"text": "d09GRgABAAAAAJfUAA4AAAABFTwAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAACI+AAAAFIAAABgRn5aCmNtYXAAAIlMAAACWgAABGrY0j2RY3Z0IAAAkbQAAAAgAAAALgfFB59mcGdtAACLqAAABYsAAAuX2BTb8Gdhc3AAAJfMAAAACAAAAAgAAAAQZ2x5ZgAAAUQAAIN6AADscAY6+Q9oZWFkAACG8AAAADYAAAA2EIN082hoZWEAAIjYAAAAIAAAACQERwgTaG10eAAAhygAAAGuAAAEHP0cJNRsb2NhAACE4AAAAhAAAAIQaU+kKm1heHAAAITAAAAAIAAAACACSwyAbmFtZQAAkdQAAAK6AAAGz8vN2PZwb3N0AACUkAAAAzwAAAk/V4vQ9HByZXAAAJE0AAAAfQAAAIqPieHHeNrcuwd821aSB/xmXkMhAIIAQVJUIymRlGRJtiiSrjIdx01yr1HkEltOjxMnTpzqVDub2953c7ne++W7ve29Xi/be+/9ejf94YGk7Gjt9X69mPrpR+DNgDLmP/838x+QIJkghPw5JgklkmhvFgwILh2puBW3VHELE68/PjGByfPfn4D/hTDiXriA78V3kzrZTHaTQ+SXGvFtoLHr9++jBKqAhE7PPF/eeV2jl2gEiAZHCWOJGV1yanBCcE4Aoo1bszPPj0RWTGP3dEx/0uqnGri4dXa2kQVycG73zlUrJ8aHhwr57q6kJwWpQ90U/sjgRK06WSoVpEj6qV5M+lIU8qVidbJWmajVa16iNpEKvEQqqEwElyzWfVkpFRGreeUXLpfGsCSFrEzIYqkavpGpShFe5izp1r+EpsuTtuDHb2LSlHafZp14ULMZvOjxWKpXGoK98VnUzFtiLxbmuQch77zKpbMwWtP94cyxY//JqOWCzKSx4Jnd27KJ0cFhm3JNk5IxoUkzYWUhDzWNQfPTzc8ml5pSEwy5oZk5z9biMARpmKMy13z73thzcOcZd+Ud179N5nr6SqCjIEQQM4zYHfj7ZAlZTjaSWXIXeRR+eeZ5I7z7HgFKppejTm0wZB3QYNNhYMxwKYiWQKPLQdc6q1ytlq7keCWf2dnZ1seNEJ1KqsuTMZDEQGkc1QSjlJI5Qog1Y3JEhDkC4MLW9p+xjGhUp5p+kujK884FT8Hwio6l/+2fVf7f91k/i4/zQp/Z8F+jd8WKRx85fc+unVs2r9i4YuO6tdXJ8bHhcn9fVzpvieSIN1mvBKnwpTApZaXzTshCCM96rVILwRsvFYulEK+peiEVxEOrUslN1RTei4W8FCKZ9IqFUipQrhP10EGteJPFcFn6nYsX/Eq4Vpos5YuFQjI8qVLBNN/7gfSdvabubTTgVEpi9+9l3/F2k+nZ7gQP/3nZHsm+JG/njPHbJatvWT3lJgLfpG9P6KGTNagPTCYtYa3csiIBIG0R9EmG8fK+Z+Zo2Soi47aZPoPPShOZv7OvL+vXh0TpSGIgZt/by9HUBJPIjQT2JgwJkqUtPXH+7xOaZeHEebl6083duiXzNz0EJkOra2LJzGS8pxD0esnVzd0rZ2yuPtMdn9o56oA3vPVsnD7zlCmlIISS0oUf4h/ge8haspccJu9sOAPAcT9odN8gEq1DXmUdiCY0Ik6GLhqh2jzhHOcYICZmJAgRRdODDo0VF+xDE8Ip8vmO4wusG0t+qiGAONCxF7AjBEoGyNzs1plVKybGc/3dXWnf0MlaWGtE1BYFUEiRV0AohrCo1SdqFRXBKNyViVQqKUWp2HoVWqDwO8tQK4iIFpWDslBXGKyKgigUwnP489K007PD1zzaOHAyznnw3AO0bC6fqPfEpIPU0QRjVkxQLT6xeXhIX1IcHk0OPRWUDu9ym7fYtLpsH+9+eMCUYl2CUg9+kzHDciwfX2MI3e5fZQdB77kjwb3Bfa92kCYDxj2Py49KyYWdSW/I+cXiG+cPbHydTMy48KWEN77/9SO9z67xpVz7iuyj2TNiNTI7YISReMhvz4f8ViIryEwY0+ca+rVrVleZRqEdzTzRKFINT+qXUoBcyEq7FccrWDqLLK9qFCV5w1u1csf2dY2VM6tmUpOZ4pJlhuga8erhPhNmZKoTukKh1EroKbyY0JOpyUIhjIvbTupEGK68dMOgLKRxmMgqqcP3KnJjWFCXlL/5zMa+W8556PS/8Q7rD39bcq6nHEenlLJ4kJH8i9XlnFJ+QjKkMJtPsVhvue+eBJqZ24I/2+2MPF4oDq5mpgQut+FvM6oFTx51a9uX3nBfDJkUXEqgQuq4VDcESh7rQnBize82v287lgVdkLRoLHv+70WcmcN/V4xPLX3JiGx+5l239u1704a54lAXMirFYcJJLIzZ42HM9pFj5FZyipwBr9EzAULOH91JNXE7GNpdAMZtQOH+GxCJCCMZC+OzmmjCEJoRpiUQoOSkAwTDnzuJER4acNQydSqEnCVSWjNxO8YZIpsljNmsQ/P/+6/hhtf43+TuLHJXuBi6914g956595Ebjx86eGD/ppD8a9WlYemSz2UzXsKOSUH2wT5XZXg+CnWLljs5HSSFkDLXhk20DbRAU6/nglTSD0uYdsKHngpjyWizUNYt1NH2blEMkVXnVQW0FI1qGvUxXnidfFTgwJtdu+dQGhHjyzYse7iXutLEbsHOv0/hKjPEORflbPhe4phGuaVpjBZ8Nz9ZWykNiu7kSjduWpIx+dHbWPjvNkTOYWPVjDkP2THblnpC/x3OgGb6nL4Ph9XZSvn0M5puOcMH0pbEPxCsBTlqazhhWFTymGRU2zudNuOlfFJzTeDG4C0P8f7+oS6PUoP9wrNcwAd1+/yf25qQFk7E+kdRcqf5sZ22JTXOLN78PHR18cDRkbAIhZtDFG4nh8g8uYP8TSNAINrhgwjk1htTlFE4DkhZm0ZGCQUEiidNXVJCtNkYaJo1Q9ppH58xBDLGZwnnNo8Y5UpOzhWd/rfYu1zhKUXIDUcO7Nu5g2wn21OBP5gsjo1ZonsEghb7Kwwp+s8LqV7JegsOlYl2AdABma94KTx5BXCl2rCZqBaLVU8BZwE34RtcQzWpxcJ4l93abM7iOiI6S+tOPGFwRGG4+Z5rfKSp4gAzTdF8fjGGPh5hpFqRiBymamYGH9ENJxFPUvx9rv0+M6Rw/bRT0rLIdaE9+hCy/lx/LmVor3u90P2l+R75xDPSNUCa9uWAU2jBgjnbPg3JEBfSx+bHtuuGYeoOJSyqC34Y1gU7yFFyOzlD3tsI4kDJPOhwzEWhP3Bqbpgx3sHCEAGiC9DniTANSTkTaiOnZA6BkMQMYUybI5rmaR0clNQCBULnL+d5iXljyU+31DR2oG3PNFUi+CfuuOPMiTO33FQe9FPlKT/fiImeEbhaJaDiHa3Xq5OtIIcEoiAhWqsRWC5WFqmL1UIqtK9WLykVvEJUTSYnarXwagpesO+n1wr7y7l6vDzrS+kst4VpClgtuakVEiZqN26+thJ/6FcCVXL0tAqJ7CO+3hDwlk4NMfpiGdMYZHPCQW5KfOflK4jtH3vd9nUB88X0Oq8Qk0YEDM3IBVvXo53zKNqvPh1VIKva9cUb1unUmv1g4g/7WtVF86263WVunTFiKBvLexKaqiDtkDX+K2SN68lN5D7ywYaBQHQNTIJtbAwTkzAw2dGQ/A2NE6LPJizUdWvGdSSnHABnL+2Cr+zhXMbjZzZudcd5Qk7dc+KO+WOHDoZ/cdimb53ZcG1jbUgUyaSfTCc9hZUWEQgp3HgYyYgYFAm0KKBajbjhytSgYKPcW5tNi24KbUTJhd6kGIdJ5btwjD82uciWJaIsd0luNj8gTVNPD3P+r5wPZXRdl+GpRTQBU9IwZLaXxxD/FYDpIHq7Qj/5EXYHYyz8hfB60E6ozuQEC7lDGpJJaonm15vf4DaVXJ2wTUnt2KPnzj2p2fQKhMFsQ1LGeu567LEgP6U2AwWgJXqLRzSJG5tf3Ph6c4XXOUEIEv/CBbg7xMYoWUEee8swIuGdIrRLMCSEz2rAuTUjKao4kQUULLJwFllccbEV5QQhqogIP3e0HCTTg7rILIrqJWFdaCDddgirit4vDdRNKjIjgjHmdUWhebtkTM90eUwIMZIND+Qnw9vLOTvB8YX3WGocWzeZa5JL5JoBGejSLSpZuKZuYOz8h2LRDVTZJC68Cb4U3rFx0iC7yfVvqcURZOeedRNCJBCpmJADPyIYItJZQqml7smVl53wrjRiG9Z7ywO/lMlr4f+mPlnrbHkt2lP/+0t5r32vUME4rKFA3RDXlaJFoV6cThbbvNmLVXVKlHNxZyhp2zRdMSUyr9CjQAszEWjLgiP6R/fENh6Cg+pmSYkIm1NIfxTYbkwkmKkzA63evmGZKvSkPYp9JoxBRXdesInFYs0fN79nrLuGr8JXaVqq+ffND1kxCCU1SINz/k1WwpJWxqU6BzOOLiGMBBcuUBLe0yPhTnaaPEN+rRHfuWUp5eKBU2sTcQ68w1T9lqlLxrkIYSWENRMSCkMOQOYoEGKTFjIX2zmXsbuKiUsUSjNPn73zxC03Hzt66ODe3dtn/CBkod5k3gmLlUFfdnS5Wi1EZUnKZBBcmXWqL6CdZKrVFxXbdpXONhZGi0TaHlwC71z4PvxsVQjR0mS0qy1rbWDhKiXG0+e4cMwYp7kDx+IWYoz1ddiIsYtsxFiHjQY0jnj7Tbbtu75kjz0WM7WRXcHPQ1e8y5bG+X+6SE3z/k7J0aLpdS+Ox7rhxhszj1rM0SWTUjOAy+FbT1n23ce6OG3RksqhDi21EyjiJU1M3vT0zYc9N5XoptQRkmm6NNd7rwZsPh/viuEtl/BU3ISAOSYmmyd+DRwrxQHvfaRgC4cRutCJTZINZBd57s0NwIW+udCpRQ0pKACZjfpmXeP0BU3VyBVMncWmV7dqtUh+vbprZ9jCb6hvSAWZ5JDvmmECe52Ad/YpBYeFlijpX3ZzSlUvdjs0HtrDZIgTdYnwnCuhqgKYDlyGKM3lW8Zr242oz8lysbjP+eItURQRGaWAcFBQjQUDlmqUVUxQGLL5/eb3zLjARGpHOW1J+SYK2k/uLT18oUWBALokxs7/kSgxoBKDpNbS2OkvtfP3cfIi8isN/8zJW2/aPlVOCW4QgOlzQGBLK0h9MZNRAJyjgGjNWLrkjBAxa2gohC2iAC02cy5j9tMtXKECE9x/7113qPS9bn+v7434q6op1xY9IbdWaiGhLqSmYtpeTPnt6rPSTlRJo41I7UULBYbyW41FKbAlZJm4YKMyP5RHoBSG0PNCw/B9KIy4KnZ+pVJS2e6FHwD5ZPhJVTcYtWQ87nULEOz0KQ5bjmaBHT3K+X2npa5TZ9RiiDQVYz7LmM2/aJ8TAH1nbgAtRvHRM4gsCNe5qfL9zyWDTccP6PSRB0wzkAY8WKlIyXBqSphIkWv0/DauMzchu0xcipSZyKVgDH776+vxG9/lqDJby+jN/2n+jzRSHBh4hmRxXYYOwDZeu78AW5uf/zIyRBiG4QukeaFl1+J/DV71A5M1v9r8TtCzLDz6BJ5/nxNjDE3H6flHMOwYPf+7jEJUd/wA3xMiZhPZTV7fSMQBcOfmFV0mJzABYkHW7NM5jULMIqxIUA0m0TR7hgjhtbCy2My5jFmjjwhNnLqCmasprNgz0/5QUPRHCtmEEWEkKjpU2REBJYRJCyWp6uTCRlzp9KRSuG6EB0qlfykaBosKDiRVn6ym7YTwMaDopLvT5l33IAztLf4K0nRfIHVdvlcyZmjjgjIZ4/RLn6aUpvpSqtn4c8mx+htvfyAO8H7AuCkRQU+bIMKDNI9zG6F2YtlHf+sPzKSLosXDOmcDZvNvmh+TnCNkIfjm97R0Z/VtH/s3H89/GGxjRO2/+bCX/FY4I8uQGtlJ7iY3vmV+BVLs0GqSIJI5EvWJlC5Skr3wPFKC85cuNdIXzwLQA+01qiTityzpGc4xkR6BqL5Re6oUrUFWKxdD3Se8u7LTvbWbQvWaVCY81BaFtLFloBZLxchzsKUaJJOpBblSJtspHYUMtg0kjm275kDcNNNrjv7Krx6d9ilNbpn+Tp95zUjNo9SrpXJOf5/bH9Q8xrxatvlVZwUd1VjM5St97dcsROztNim8kXUJCwH6nAxqfb0AaC3L7u9zJvHtrNx/YnPxxcXDq44fn74/saySOL1lm8ehXDvbt/6a3qdrvs2Y41VfVD45fK6a+ZuTuzMCDYetOlIufWKnpEO7NvRu3vIhdKgEgJGlm5/cGazbNwQAMtt18JWz6/vXtjXkfWH+1MgGcl3Iuq9668FtG6i+ULzniE4AdZjXBHLeEZAXyk2bRuG7vKGzyPBqNi6N0mf3zlIqmSn6GaUc93SU41YkogC3FZtFNdIiIbl+UUcuum6qWCy0kJDsxLEeboyti6pTUWCT8rdfsqW3XNwd715ZWOVPrQSgBvC+tG6aMuTNxaryp+QJpSrfztlH5MhkUgskLY/KqiVX0pwjUj0c9KE9RTcSlLXk0uOjPbXehMkfSuZWJxm0Kp3LqcuD1oK6rNmQhu69a8eZiLMXvxjta7JLndvQZomRzTeNSJYY3rlmyCGEh7k3E+XeKNlC5sPd87Xk8w37PmDUAc5eAQIUF/aEkRogwIWAW4ggKPAGQmknJ5W8JqEj4kUDhI4tC88D40cXO0XxHw4tyx1LQigjdP4SD0RxgAiBB5XrzmxjSJlyECevajuraqInn3jZS5547ZOvXbNq6Xhvd9LLaSLZyvlOygsZUaUKYypoU8A4diY74ckWCywigdY0Qb6QBKpLO8LP4BgqFrjIAWLBq0gL4cpFHUm5lGBbuu/otmdyihN695StdGbbcDrjcytWW73mob35NEtMr2gRxcy3h1s8kai/kCe6P0vbLLEiqf1aHBRH0Dico47FbQDotyOaQGkolohXPr+SUSxO7Y51ZbSYPXBtwlS8cc1rii8ePLy6b1zjsq9nUFCqdbv+3vySOEutmH7APR4yyY6kLC9/qu9s77nlLR6pvai8vD58rpZ2WItHVhwtlz6+y2CoiOSVuZOTYEjU6Oj4pqciImEostm5kEdya8//EiIbn7IAEO16LkF4xCvvD3llBdlI9pPbyAPAZp4fC3ESJyDI/HUbqSEcQINOZ194ygxPzbbAN0iMmIlIDTyqSxSizT6WximlMMtgYYB1JWPnMsZjP5uxGw0tiWmgYeLJ0B6uZh6Nt0/fd8/dJ+/as2vrzDXrVq+q18bHyqVCvjubTuXtS8bbbTZbmEYXQgAVrtT3LZp1KzoLp9YK0206q9VLFwky6bfojCrGy8tCeFHlY77/A+lHRi1uFW5N3LV3wIu9Vc4fKy70eIsVJ/YFeVerd2Nf2UkLJc+g8ZGly3K+zyw7PB9nwLpveKIKgrp2uveB3kNWtTXWTm/tSeQmujcFXPuFu3Vu65p89g2Pnejm9HKCE0tb7X4tIrozZwJuycE7XySsVX8rTWciPVTuHkwyDkbvkaPNX59GOvb2MWcVYaT7wr9gHN8TousYOUdeB9ONxBrg7N7jx7ZNcV1zgESMZ0WPREjJ5gQwFpKcpvE5opQoouut0eZMW7/uNP65q7q4i11ayrhOgOgwf1nXRQ6RMh7aEKkxOd/x7Jg7i80nflZzV0kSAz9pScNFSo4seKhKVQHWe/UrDx+a2bJqRa1aGR8veHkjLKgG27O0QotLS50RWlRkXVIHhT9qqTN7b+nti2cvLTf1QycLQiFS4X+wvqDEt5Ar23tw56UArPwjNKuep4jxN95Z6O7rzqfjuiY5Y9Iy87Jk10cqOT+uS2v79I0HsyP3YCE2Xk4NKisumYIrd25YZsvxdSi3791yIBvsRs4Mw7QSTDbfwzCxpDy0Z3Z/XNOYyA47Xldp31T5Gk/0IKOAFCArdAvd9x6+nRmmiOlM3n0PMygNilVzyBhI6D2pbJAcWNW/5Mja1cs2u0htnVkGl++Xum4A9cf36lgf40b/ilzf2olReKQHkTsJrmfjiaHpifLQwOC1Y8lC3rOzpbUjfYWgVEgH5dFEsq8pkLOVIGzqq/o6F7LqwxGrriVbyA7yqw2fExRkes0KwUDg9IiPotMf5zmACA/xZERabRFDW1y7XcHSWWR5VaN29bZ1xk/64wP++GAiqt5q0XBW4aiNCTV9jV86cetosq5ir4jAItDV64VQqAK30C7ivGjulqMaXqtRZjBhxmXRGa2akno92YjCnhemKbt7fM7MiaVOUTqmJiTbaa1wdOibU5ot+8JKy9fxVzRKtbdIFtO6ss6wlmHY/Hzz84bBMaIo25TIDRtyMIgsow07mW49xuXr9IpjNn8Mw81PNb+R0rQEpit63CSUxMO+58NhXDaSQ+RG8tSbbwROFqRcPXpujRA6a0ikNKQCzhf1PottnBfYNDKEE+BwZLEViTQjNQbdsjn87I3dI36QWVFQmhEEbR2wUzO30mrysiKiv1AXXSxxonjVeVRGd9qnoNJOzfB0eJRM4dtjpjbo6wyQuZPrHzIfnhqKcWSykNY4l7BCmqbIjrJwXcar8WJlML5ET0gAOdClmbHmP/JbOaKZ6+6SudArayI85AzroCH+vhY3K+nay9/m7aitFuuGVye+/nk7xoTkQqoICRbjq373zZt61/s8IZf45Yr9K78cG6/EpKYt0cExP/rp2MaBboObUh+4Nv6j75pZGx0qCCUk1Az+LozWGrKTXE/ubZh792zdsrwi6ELMAk227jTMcQCI2NvrpMviVaez2ggIJfTUotUoSPb1121Y708G5eKAp6vwTHb6/omgM3qU1MZW7YpR5VmMBF21Gg0gAy9oPwYzODlZm6zVF8Sh0HowiJTgeiEfsp/nUMMQN+/IcjC1wI8/0bOpHySXlD39cjPISlOyZ98oeKbX1u0HjSSnE5UEb74ZObw0Fpx+Sjfd9JPdAm7RqGnqIp3G7T0ZJgyHUQ2pjPl28882/vZ24ByhDPV40bQFY0ImhB1ycPNf/Qnt7KNzyVWaLkFivNz8r+ZXw2auCtnjQd3J9fRkLZMwwi/8kH4tmibeRh4Otb5XNdxBoOTsI/cdm9uxfbkGtCPWZwxdM6VgklIyyxEVjV1Mn8saODMXcwconPpJg4itugl57NG7Thw+pCaEW6c3bmisnVg6XO7rTcZUjxGlQKVTWKGSZcawEImo6j2NcuHSGEZbmldLKEG+nUG5TnSTQaoXW6UZn2wFb6K94w2Gx/lwXcWzVi2WcDBU+6IWVyn1eWkY7xTCC2ztM5zZTOzfDdll6WMcY9q3Y0mPyydu7OdgSMfW88fgySHhZ6VhQq9pCt835X7pGkgz154/xe/T9OM3Qym7NxmHF2lrG4j2XbdgPu7eB9NBRgIH1JmNz8QEjzFNzZjTXed/kzOmf+2zsPKuFV+jyPChNEdHEwoNTNGlmbyv+WWAIWTHY2VT0xW+rLh0Gj9wJzJbPzK7PsP9eLz5jea3ZpFt/scdtR7HosiC5uea/4xH6MhSWLOH2jwjMxktTwhb6B3myZkQF68kf9BwJgDwpWefumt3tyDQwUXejgkWjX3neCTrOZahS06INhc3UdNsrQ2QxZbO5SyvatRS93oJecXLH3/s1N0330jmyfyhg9u2FkYG/DF/MF1www0vVZystUqkUvHSLI641o8KqIhiwyVVO0WDuZY0IZJqNaTh5CUjoTaSWoV9+1ltSauFqHZKKGf1YMqk6lUVDShcRfMdKKrHtWVlsjtk6K7lf+DQyRcXvaQ0BH/DG4RCRkEavnEt384Mz4lz9i+cucnc0lp2J/+D3r4u2zV+4Tku7GRlzxAgq69FPR3XDCb1xur0su8URqCxFqXFy18cXA2rrSmG3AK/eQ4YZNNToMVj1fcmxPRHy0HEDrYhmYRgMH73jbab9LoTJjKGZsIM1uVuo/r58miXp0ykoXHdeNkqWLvRsAI/G9OYxvBxHYD1XtP8rTUzSYEIqHuyBlvW3BCYpnRiMUic/1OaoFY6TQmhEX7eF+JnC7mB3Exe3TBvPrinr9sQZGG+02NogjNK2awpkTFrRlecALOXPhK52MhZZPTT1l1oP6A0f+y6A1tnyBayZcO1A0mFk5joag+oW7qiAsRCJdRCTjVkmYUduJ5rI6StNrT25/buoZ5F8pWSnBRRjVSthisKBX7IHfhm0495fmnbdoq87qp5T/Md6neiKoHekFqWA9OyVWEDpuBBF0Vz0w6K54DS+KBDleT1o9N6kCl5xyjj93Bx4ACTcC6+zESJvy91F2ngrXjwzOkHaZrblqq0eRpvOvb7w9etQNcwo+pbioQUPPnkSz9N9bir92tSd9iYaUFxbFPu+VtuNy3LvfPUs79kWjwBrrRU/ve0q9wKWUtmyF5y9i11B2Fhcx4mEBoBO0kYDX/ulAIJwVmiGMDUNUopnzUgekos+1OMncXGs42urVsJ2bp3657pTesbtSqpkGXJ5cuTxZjIjKSib0d47VTNl+pTWK21J642lX67eooyVEgpcjSsX4VoLQxOKj+ihjdeOLhpPTtWMtY+9t6xmyuHXcYTpo6CUob//d+xDXfcfFjfeWt55Q6bO9LsQYnN7/1uogYIAHocfnXpJGLzNaJSeeffMu578UQfGNS842+h7g/MeLq9zxtJAzI0JN77x7/7rI2Wv39l1uTaX1OJ+KgZpw4yabvI2fk/1hGWNv++txf9hGli+3suQbQvnyZPkVeRdzfsDSC1V7z4Rbu2cCAd8i0Rw9KRgEHmTZAyeoorZOCIQwUAzvKLD/pcwdy5nPnPZtl6+CN39uzZV5191SMPnTxx+ODsdXt2XxtqLrVJpbn43pAbV7OBqHiSQlFri1mjNFPBK0bdSLRlt4lVLVZb9B3v7N+VSGdszdmj3GufDrirJMCJiNLj0sakCnU1anK8WikfLoYrfqWWmCyV8lK25+wog9LRnKWJl8WGDNf4gprFuVTjAJSeoFRwKnxFsx+VzJS+QFSH5s56l0aBlo3EqEfBk4b5frP5y+VBQATG1O8lIxByOHJq+oCA2drBA5D0zZleZxze6bIDWUuIN9vV9hgOAABRai9BStnK1bIQixpqg0mzoKGtDcQ0gwuAT326YMSHA4dp3dHGPgc5Csg0Zp//msU0FQkEoI4FRxEoGGj6zcfZ3Xe5CevgkoQvCEFiEoKqzjtHXkH+u5F8+W29lPEUUKYDUjp93R7UNre+JVN1TBSpZLz1wJ8LLAEUGZ23YwZVQLB0VBjzAJHMBj7QBfXlf5+z0kp+Nj9nkZ8C39jPPU3I06/4uVeQc+Tc2ScfOX3i9ltuPHrk4PUH9u3eNb157ZrVq3aVigPDe3NuLh0WBjm1jReq7QfLhukYqxYjAqmGMIzklog+1JHa8kPLIMRevZIsRNJ1L/ZhpV6LCgK1trAkfDX8EkKGB8mKei99mw1jodAWqCtJGoI2qVSXGtL4mYfjZm6VRj8Qc21dUhU/xumjZ+xJ+2w+hupg2wycoJqdLfj62IGV1+pGoqRRn3tpWVjbGBtn3Z6uJeb3x6SzI0sPvVHduvj0/mztzKOUR5N0KnXbjX0Aqe2MB1vHRmOmGRuhdAxMNrM1Ah9wC7EvmE0hV++A/inVQgPEMTAoK2i9Q+YK2L41Ru04joULfJA9i4iWAbDk+r7wDY/oMNwTmPKD1wN4XsLbovaP/gu76Gvww6SXrAsx9xvwXCP53Ha0xXEw7We2IddfsQENxqZbqLuG6CY3dX6S2MTUbfMooQQoHLk4q7RACDlHpIzPxIBzNkcYs5W0Z8wRw/AMBcGu/91XchddSYG5sXAlGbrYUhy94iWveB3FulML1yEEJcH5K13vCldprL76BTRiUM2Y/4kLsdYXvnp+5Zeefc3LX/L0Uw8/cM/dd95x3f59u7dsunb92Nhozrl0dqvY0ZeiM75tzW9rqTAR2qrQpfJj9AptlCkUVVq1tl83mtmoo0u+aiLDdxcFjtb+3PmuQEsVKYTJ0coUb1Id5/OF9qww+iB4WWZ4mX76zct6DS66/uU3/+CxkxnB/c0TL/1zfdTdu+6603GO7kdeEsvnYqcO9XRPO8jddTc1/8t8j6nZnnANwVksJjz7qZcHo9t9D7WVgzqXfemYbcb8fg4yrWV8J8s8eiRBAc1RUa0CM93Q5YnCElaJpaUWo7C84WdcD98rwDl7dPVUtjs51vvsJ07d+LresWS2+9R1U3sCkP3Dv3gknfUK9os/6CJa0+nc3Cm74GXTN+568vwDlJYBhAGvkIwBlJkY6sn2x0VfRYn6yfHq+nhi1BBcz4yoXSK2XjtsDtsIc9cbUbd//7KSDgDUwIPXAxeupxh++ML34Tz+kBwmd5O/baT2zAjKhQaMb2CEErZ+JYa/p1u6+iiRhFBJ5gkjEc+G/pqO0dfMxBwRIqFE9kXy2AgRJKLnKzpf4tJYenVrAP1A20ePvm0W3HnH8fm52V07pjc1ppbXBgupZM5QEkBL/44wtDBiiTAa9f7tki9cqCssjqHMK8CJtmauqopUrR5V69FMUcnjdeUSoT5JlVMk0rVqEIW1L+mWH8NyUbdqPcMWpz2vTQws6xvd6YYUunKwOD60ORDU9PtFMg7gD8X3sm4hOfUCiY3JRH1SM0wAZu/fkw388qBEPU359TuMrhUZ14Sge01pjdTwhNAHi+msri8ZXneNv3q9/5kxbrr7lxaXLimNbA+S+YxBE8tWDkrPBKvbqAHw1VPIY4XiUHhOMfwkYtG04uksUFzbXP7GnKA93tjGwdty5fFCkRAIUfHPOIFvJbdDsmH3AVINSPgyFp7JqRLd1ExdO8kBBBAJ5DiRxNSlOU+i2QkinSOUWi1KikGH2Yav6uwsODuLnUciZ0bZPVe+whWcGxNX89NCU804suCP0VDQv+2Wudmd2zdvGCoHk7lgoFSw1GNBntIAOiiqVyfbFWdEOapUjXqHVKsuVfWlr063Mdh+HEVVpx1ItgFZnezIvja2F4YfMbJFHmMiXlyS0ANHN5Fu22gnPLp9m27r+vMO07lZmRpdZ8qJlJ30PEcPvJhZmo6ZvVWDuZVyd783aop+zdXBEG7gprvgPxgw3dakQZGyOCKTYogxKk3cpnGh26Yp1juFRGg0ONCb8iova3h22hsJNKPrhoD2Z0LGq7y4siyuj6Xk4z3rB6lN40kCF/4Jl+nDdBvpJ/GGhUA2EUJu7e0B4Y9A6z+bHywOqMkSk0zJ2q07NjhQmeB6XlMl9Pl3nW1+9NWAr2z+1RPn34VCUDul8SyOoeMibsHTMXQH8FByWTo1kTyEAzFbMAB2y/HbCBDEe/UMfYqsIL/aKhC6OMOF76UgwgGiJCKCgDva39XuI4QxchMHFpoxevwyZqWrXOiq11BAcgghK8iK4WJ/74ZlQgQLu2e0e/UPTmEIB1X/SSHZAk2parKf21jIh7VlXe2rAzSu5dfXpg7vveGeXf0uMPiKkYqBpBrmUm9rfvcTAxs3ZDfN7z58ane/Gz7E199ZzXvvhI30CaBab3G4j+NrqGCMr+EipdVnMpTqvYMXT09x3ZPLZwmBf/skLiPW5WPqXS2m/P9gSNXnfxPvvfA//z+P6X/+8/+tMSX1C78fTlEOkWEi3tTrwtIwOycC9Ur5UqiqrfUNu0RC0dZEWHhVgqj0Kkjpw5F0rsuyMYZ67I67u2q63l3buw+pAd2jy7cU3rS2/oYPDJbBBsrCH3bic5xqALthO3IARC4Rf+k5JATI4IX/wi/Bn5B94V8xTKK/IiJIBxUBViKabHGk6JBtvR4pAi2yXYuqzCypyXRkoI5arKtswgJwoF7DN7ldDtu0QU+5wuCQXe8yv0dPzC0tOTrV+q3tR96s9XfF0+m1m3RTt3rpwJTFkx7joLkHKwOOzqxMDBpQ0PvhT2w7ZvGxET+/Il7w0WSmdArjOScwYxOr+pZN3Y3xuOn45VEnnu7/X5v7DsA2jivtnTdtOxYdBAiSKATB3gmKkljUJVJU79WyLdmS5Rbbkaviloud7hLHJYntS2++FLeUy8Xp1Rc77Zov7U8uvTm5XBJC/8wsAELFOTl/jWJisTvYfe+bmTdv3nzzdhcBrFNKRZH+dDicDHX1p6DjceJIzW2tU3se+rSIFpx05YnLNYQubMuAaENhpUMoGlFqgq/3hElaXXpJ0uOYvA9B1oQeaDHL45wYlKC/4ybNeax+5L5CYLotJzAtDYm4lw+Y9F1q9KnsKSMW5yVJwhuokltYZOSvHrOOIrIYG2GkIzzYxQmwAMSZZ1aGLsdxoLkzvD7imOTSS9KMvsjRC6O/D0VMDC5zA9TxorpB6gawkUGCDJfHg5bLcWsWXQaYvphBTGDYdeIn8LfwXm2XwLDbEhjmBypb1n03MKaCujKKmxNzlly9d1lzMCvoqHU9AUxWnBdX1Cm/jfqLtyjyzh2hVDslsHcP4Fw6Bli3ONgRvQDW6JSDGUulL14c7eyIThxtSjFGrCWjFhT0iA3c0jHE0iGHw569BFixMZi5aGfvum23LU0RivG7dAvnRhFCiBT2XDYRShWCzR1dyyyM7SXdHc3BXCIxfvmeApElRnPYcqc3ckohPXvDrpmencpKnEC/Fm0pJHBgCPX55i3IM8IdzgRzagkUfcFluu2U9zsOuvU3xHHYr+Bdrjt3ruPpHspwyzGEX/CTEz+FR+BP2oC4U6Ps6bwHy7ZXyqh5YFuuCpjARza5ZvB99nhw0A/JGohhHOqZQl8FgxjffjZo2QlgXLowuvWNp8VXm5GlVrhnMgqUMEwjfVNf/CL1A7OOWOrPd3FmOAFKQJ6wg87cCceg0Z5JJd030Nvgz1pJSJeUeoYrBMWqLcmyaDwijiu1q5o8z1VUGAxWpr2jth6gPMb+2ZiIJzwKNJKEQDjgMQdBV++PpAbB3qkvn7fPa7QJ/MINxRlAdKglEgHgzcXr33x4JtOcGUjg9t6KDv2T6D3MzAUWyVY5cuIb8DIh5bCQMjsvpQBJfNQmzD4RTTXRirTi3/A8viPjnNkm5br9r/9qFYI0RFMmR4C4F+SBkKljXcACz34laDpxBPA7HjcZYdRoNmJNYe4hh8Tp6n2H1y4ZWxi2iLEm/fvfAcFOfCQZbHGVTf8xTMEnteVCytF2KWVEyNQIMRaLxATTyI+01xhGyl7UekV9R8rJvqV2+w/G/tN+M0bMQM3rN7WvPRKmNHLr7mjjhlUe4U5kYlm0qbsjP3lREyEddxbGBxoDhThb4nLnSRtlaeAdgWBQ5xiIiZ2Gm3Y2CWNw6DaHtBkOD/A8I7ZR3Pj6xNBg4vHVYRchhJwmCzHHlphPapPo7ehRrVdokweF+cjg/BDDuTKQESVuTfoK6mrS+BVuBN04s2i8XYiwb11CDq2JdfsA8/Y4tXBjGuu0c7PrbkYPuQyYZRiL+g0KQI2Q/9G/yDAshoA45/XqCb1XSDUmpHqoIpVX316VKL4RrjM/WSWKFLzKzvoyahSCiOcGAps7KSdCijNJmGoIog8jLJ9sxIze8xwC6AwSNg9lDU+iNaotwu8Xci0Scg0ZQi4twjNqWJhfDhMeBsu11fAR8lWTQ4imMeQPORHxZRC/3y3vG7GbAohS3entLX/XiQ0QI9EQiNHsEl0fHIkFGhIGGYw6D7wJH8KU61ZP92c/jTTb3RjqjiJsG3zlSi+5NWhiSLfp3V3Uppmx7mZiBrckPAD8AKJWaOlyUL2rIvuUkL2kq3GzNFgq1QmkmMJDAsU6pAMgFBtRMJ+kaE44I/azz44MVcRa+dqVbmwAG4mUE8+1tLhuezwXd1IJAVLExrT8hTpFP/tZ+4+6DbPrsC8deA2bgyZp7iw2RZnL0vFCVxqwGdgYdxmt0xR0vw424b9DD2kD1RYrZKuM2XxQHqujTEtcasBZJqMaraKw+s1XsI1GD7bH4l6qk19vzKR6wqk2AxVQJ0GMIVL+RvmfjbZUuCc1Y1zPO1NePNb+x0VHEOSG+3S+cAPPDXcaomhIlDU6h3N8w0Ku9w3nAB2RI4qQ7pF66VoZr4yKpRwXx+oo06IiLqWRTEa110Fp4/yWK5bs8COH8/GTxRNshG/44qFOVDhZvHj+jxMXnIV4F1TQI1zIV5QjwSnoZWroRWuYZU7HDJ6pSlWVY67nhXAqno7QOiFBU50E9QhlaggN13DJ1HAhTVVc5npOFQGeeSEsiqehANroiW/hT8OEkKEkMusNdKYCcDIS1fhYhEmJgizbFpxHonWokrUjqoJiNWDQt1Kt5+7etnRVbu0gT/JyewUVKC9ePjnKCWrdtz0arWGUe83w9IYd0+ttjsonXBehCkbfWDExNpEd7481pqSsOSHrI0LWTm2hkHWwK4uErOEh33GNzqMTi7M6IIPSQg6LEbyU9Rl0ciVHLd08uHm9JUT14QrO9vbOBhWoUl4nQAcnN67KPDw51jHQtaMVBUITOrr73ctmu9flfPEGdjQ27hjwNRBieyeQk1/x5OTUgjHL7D/UOeogDYkp4yY6KOp4h6jj3morq3bQEbW7TLnl0gFSTnm80gHaRI0LLXyrLr8rh1PYpaz6UCe4PxTFpZFdcKjYQ1Kj/Lq2NqKbuG+kIVFaUCS6AWtnEg0jfdjUSVvbdXw0RXq6zj3YrgovW05oNteaX0tMg9wNb8CGSdbmW3NZSpYvk0Xjcdr1x/ELzaXjerENKEX9Iw3J0lg7whitXZtsGOlHlEJbUR9fal68YOFFsiBALtfaOospQ/feixjFs62tuRyALIPsfXWjh0JlkEhvc+jsre+LGWbQTw+drVk+2/EHeWIwOQtzfVYDk8JCQx+DZ7RtAovlvt9R633xhX3SPw56aqdhMJjzrZHSdWRqb5torumC+SqE1CKb/1F/UH9cf2InRogASzCYs4oNwR6aHgu1EOgfO4QgN9puiasIEbFZ+FfYtrH4QuyuwQJylvcFoljZdg19VMhcEDJH1GxeNlb5r2K0clWRvZKqkUrfRN2FCwjt6Gj0aE+woWjNKRkIIoljrzILaS8Oz1wwgXFsKFdwUGGwy5Y7U5UIHooSKRSy2kdzgDSk9iA/hr6irRAyuLUZS9UhVtz2qt8pBPPnwiN17pzvuim5/F43PDIsi6ByLDzYPDM9mGzvY67D+fFzR8Yv2rtwWkeAvXTO6WKEYsva1WsQxGlpe5AC4dbSwRDBVu5d6EvAgkMdnaOvXxbkrkuar/1UITZevGYlRchNBfUooYkG4KRjvQfGngKjkEpQII2dHicNocYLbpf9o0fo9k30ZW2l0C1dr5uvnFpaO3kaqqZWShVVMD6fUUmWqrmI6CazaTS2dEnP+rgbY+7AUotTTIMd0w1cCGH07ooBYcjpbWqNQOBNlzS0nPvW/i7OXMYHs6Xt6EuIWvnU5t7k6rBhd6QJ0EQKKAut6DQAO+s7LGhIUJIOiInqkTdHyIXnHNjjcPG/wJHzlpc2qp5/4n3wDNyurZdjnvIbh2qLLXHG+fysoH6HaJ26VR5IhZKZi/g/Efr2gvg/uqzRanHN/jYLOrrbHGN0cD8E1hV7Vm0Y6JtdtA9Z+1c6PIAhPJyd3LjpZde+xyscTnFMUxbH2KIxHB4iLjQXCZBwm+X0xnQS6z90S8y9YlMhkQ80jB28Nc23/02eA3UpJVZzx4aDV23Z8a5ruwcuHQmAYfT0JjFCGHFrSzdBFY2/JjTeIDSeUh58SU13ZU1Fcr5tk8ZK9ZvCcJVCWNOxro1W5x+1pEcl1bXe3clYR4/ptliNTW7EbrZxjFoYcytFMU8dLnj3HOXJa99juGsHIoAD3Fm6zyEk/MQNjfFL73MRCqwbHDWcTrjeoawYEpoXUcTrLFkcSU2SvT2GAYGRS7sHX/K3NnrXtfn82Lkpi1ABAPCWl62NrYpd8RYSessVfIxfsak/RvSErOmPnRhHL4XHtJjQO6z0DvoGPRrxB7SKifhYhHdMR2MIMmNdBtAkBQTow/Z0wWbxuBlrN8o3lW8ktk3EPdtPjGs/qNyT+VgO1oyj32SGZSf+Ao+oOxldYxlAzYWF8G67PFOekbdBx9ENRnvMjMf1hrYzyimtRDBYCZZFfasW9P7+pBu28Ii4p0XKN5ZvrN1toY0+jD58upy1e/qWe3jI76OVe9br799zujxTpz+6AR3XQNpc/Hdwv5bWxoT3U8o0AAi7UOfotKgmkanzg9CIHEqqswDVgdQkIC59t3nfunxt+VplZG9Ft1adoT8/0TMbEpcbOkx0C7oVXJOIYtcY7WlX+HHo+apvqQx41R8q35PaMQC5oR4LkYDNwOxZkEGH62Rv9GVvFrLXj3NKOiVczbNUig0J+SuaDddUk5rVHE0pm6xUIdt1FR8TB6VeTIe0mCxcU74GLBeEZreYHQ1CsyJ6vup1qhZS8TTLv1xyPrhhUuo0gToBgqyeoRxc6MfP3ydkX6mNirocyKixrgZkE0RjdejSjDLROemdKWax+hRqqpgpfliCKCQy+hoBYzAb+wz0cvRyYrri7LUtTSyBesIrOi1zVzsYxS2m1bki3ANx1tSCHjUtk4PZP0UMimhsqt8EbjoctfSbQ3hgc5Kx0fNJeOcQY8nNA3jI7G8Rkm86MQE/h8dUrCtR8SzU+KjCu3UdkeXEAVYdSPpRtVPVLrXpyCIgXevTbnp9NxXw0aaFHaZuYJsjc2g8Shmn40OmaWJDN9sXthAEbW0XULqm0/M615iHitJNKRp/ft52ZX0Z/UlT6p/sN/78n66NbaOtyYufgnSDLuUVsUe1iCJ9+rgUJq4+Gc+plpFprWsXpbrWUgpgsw7P3cVT8JQtPmASib6oDCWNqAxZN8RED9rGPKxj554MK+KOXxExiqhBVEVoCutxhfWQkD1TidPE4kHfRCv3IijOjMTrzIoUWiWynLcIP7RM3RKQUsnFFZAibluG2bGwiaIji2j3fA2QloXtJrzLQc6ffy/wVM1J4Cl7sDz3vFFMy8Z+yKyvg6Y2QwOB8m8EyqBFtS7RF5vinppFnd4VRQYpLqCNipP1NkYg/ikcj1vRdgMdR8dV55spT9t79mD0KHrU3pOTV2NFQ1pGYqM/CHQzoxXLHuFDPxV/Bs81AeVL8qRja3UyJbReIVN70pIyIdHTfUZQPHqScUPDp9kL2Ujgt/E4RgZunbWFBZ1WFu1l6LjRHrXmlgnZPqxklfa6GLNE0eCyTtDAgihd28UjypAZXaOZ8gPVsaOUR2D2zSZ8Cf8Nvx9i2hptu5Bw60w/ExK2RnhGjccyglGJqYhv1cmIqnvRChSutQCTgNmFaEZ+CrafnykmJjeSiEOlbKaE3+eU39icck3upJuftrtbTG5i5PBznmpgyIx9aj93IshMDtr33ZNp0pnOnAxzdERc97ZXoZaW97zHKX/gHW8Nr212A13tDnKa72HO7ETSMVevdAcXhSnDYD25iDOd80VPOoTScP+4CzNrdG5xNuNlgsjWmQtoehqct4PX4+k83mRMS85+5sS/4E8LHHaJHBRXa+bjV15ywZ4dHVjUltBQKi23SvgMsOo2QZaVZyUPWyjpwzWs+uqwgoyL676bU6XuyrHSz2AvZ4UDMa5+V0FH4JiRESy/gPgJ7Ozeu8vqaAEKTdjN3jwdwtScuSnr4iZxqjGIot7xm2MR1+KOjM0+WS3q5G6aDmNuTN+Uc1TRlg7rxpsHCLW9817z2lhs2CA02x676qoEuncqHPuZQSKeON+eBXI3doZWWJQw0rj66ibqUNJ09eok5ZRYpRTEYjrMTjQ6FEWKwcW2J4oSyrEsKvAFUbQJGKHWiiEHozcTYn8GguEcoxDKhWCmMxhs9Bb1yy/17W6ttlu0u03rBrlodyFhF+dbE6/GywaqM2Z/vlwfSvJBl3UgF3QEe1XWR0ngStsyqgXKguIuoza6oDnLKKNeuvmrVl+TGQLkkQNPhW1kxj55LvEQhMzEiFX+x2zKVC2Purz8Z8e5/VU0yYMGeu974H6n/LtM89vf5hR60o7Xg7a49uwsEzChtSvdkQVhajhPLqK6an0WGDTcvcSdXWWqxhfIBpHjOkBXBNrDCAxjehaMdCJg8ISGtJkTrxd24lwVdY5ZfsQsU2ENKivQ1uZ3OuX0uJhHM7L7ZU73gDIxETp1555FiEI8FMlmybZPW5R9ZivJZiOhOMIACLpd5M09oS9ca6DL0GXEskj5teXXGusW6LDKG7E4gE4KxUGwnruaY3Ls3y0YLBaAYYwQt2zTXDfGgTk2Bb54xjTlCCfkv1/IPyHkzyX8yHNGSl1n3woVJ0dKyXzjK6txHA/Pu3iqWltFbcEPpDTlfy3/K3YcjGIoVlUohysK4VxNofJPyj9R5fIoL7Uqv6b8GvuPpinFU/bvLyikrkuNEFfzOD+6q2piwanR3awMTqlGmeUu5CqNTw2EQiv1+QJh3ksuxVseMXS2eSsUdJnwCHQHcO+gYbR37yytbzd06Ok6LcAJa96EMaxdi/I8aoKtA6Od3ZTmOtZ1rc1RiorFWsQTy3Ue8n21olLSJoQFGx8bGcgDfvHrPUTUnbieyVc+X8T6zyYX9QUC5X9Ed1YOznZFaH2Siw+u/gpdNld04VpA6dISdE0mdRk5RbbWF7lqtPlUAcE663Wkn9fJ+NWzXFJS8+Sfoo/hWW1E8lTCsm/EFNWyVAlqqDVPKWnQ8+mclaXQqK/LcDXgcZs+1V4YNzE2U9Ewsi544AITQF8xGgq7bfqtESS4kCZGDNIzbZPmkXgyEWZT43oqvWw5H56cGOFoBA3zzoUmRdF9fPnSphSfnAITMnHhB2DRg3eiX+Pd2pSwyFsF4utmRY4nQ7Yefw2pZpXVsB4PBiBXcaJH5PBXUKX8odDfkyq/CKOM5C4VxaqIhuUhg8hgybr15SHb0hHmTsAbHeaM8FtfHgwTaoSbSyOOtWhRhnvGlm0m4x9O86BxQnPQHT3dSA/yJnT/xo1o8gp4q2HAjIjkIpvTlcuB8blzOVErTqHXIux4Frwqu6oVYVuga9yWXd2KiFd+BjUByq5JvxqJDMMog3H5x8TXfg7+Eaa1xdpG7UKh/YGd0xNNGlZsngh38WAkVhe/qYStpfJyIM8NVWxbbQU4Lj9HeDVGF/W3VWoyPC8yp4g196wWjdRteYeP6g5n4fYGIBT6SHBi+R57xt495PblXB6xuzoxYZCxEAou3n2sIbVlkYjlMgR/jAyHQssujFk4wOIE0DVuc/qNeWAYcPlvOlJdkR4vtPGYhWHa8jgNtiYQM8iaLcnEzqkVQYTCQ1ZHsxXhdmtRXhgaFc/cObmbmWN2sRv1cXD2LRELNBmvgNZiNxz+5cwY4YSg8gdBT4Ukw+PYxoC0mQcFx+Lz6AnVwttl1DSerWXEqoT5K22iVHtHil+iftWf3dcS8dweNx0gi+N0y1ZKRE/asZ1iFJ4pilmYHehb0Ja6IE1p+IqZRqSHI9KASEwsggIs5DJwGxqifEWT0WLqZpY2H3KKHaHlB0JEQ8Ki/BA9hFyNCxkZoHlLUrUIfu/WQFtw4m/hGShrhtYsPJOUx0D57MJfU1lJNPG7YSV5UP3eXzlCm9Ji13Y42lT+oYs6kGk4HHWI235TrhJ9E74SSTcVm9LlkSS//wEnUP6SeFT5S66LhiV+uwTf4H3o/VpQyGaBmh+K+1NScbtb822FXQ5nKIYagLucieHuP4Cj+7jz1WcxZ9x5+hnM5ZqX1gjPoG+LEWCJkHxBXxwpX97fatAmEK6PPKpRQC3SKOpULTqn3ttUnzslHoNnEv07G5M2jodT+/vWjYvN/rHGg8sGdzWpc407+xPp1f2D561Ol5fNHrJDa3pZes2hwbZxuy/SnW3Om8OJbPdgc1df30DfyIramUgI6MDI6rXnyRyu0/nmrsU6OrJm9Ui7DZofi4f7xMyzQaCiy1Y1qARHWm2ywRFV042VHpgojppsrFsYrbhtqvwbZCLLkURjFkDjaDWxDEbR+jevKX8JGZbDfQ/0Z+L+XxSc0HaBVluuUYfqM7SqsWOaPzUfFDWdU+ttAj/GpAcvHsphlDHgDqbljxJkzgbRPwUC36IBjxiJxc3XNN12uxTAhLdgkM8n5eMUOfuvd0XlRzyy6fxV+dfmkenL8hUhS5uW1/qELF3FgGxzVFY+qhiWfM3+1sKlauIgKfxZEiHSksB9tu7MPRMAjMFG2z7dTLlt3IIQRrmc+IPQzcarmhmU70AXI2LHWnQLxTmjOmX0vXsDlm6xJRh0sv1j24kOGE0xFNiwJfBh+HDHEr+Vajej96seRKuxP9n6dzmuIko95DjlLY7kBp742QmC2uEXWl6UjVaiBmK2G/eV8NdceZDl2vzojE/iK11lGQ6H4VGu21Z72C55zCYwOkZ0OzQ5Ct91CH/wzf39to6o1Rq0+uceEmdQGjX29yFb58GxIYXkj9E0ekTTtbBA0jMpgoqksvoy8pHBkhSm5Lq2pVMPReRjCGcuF86KXd5gOfK2j3DKudKEAROadEvPvKa12OkjP0S9+HWiVAkyrh4SVB3NV+lmgc3KLeLP+CRlIjeNoztsy0rJ+RnvDoszyYFpoZgz98MV29F1Ar/3LlqMXGqtmp37B4czSG5fUb7FcdDGRV0hh/HGvlk5WiVOvB9uRt/SDGExkmK0ioU8mwOWVkqtNQrjCvKPsFlE/FXnUDCXTORyA7mbskOZ7BD6rfibbMii+5NZcTJXvmkomx3KHsvKD/mMeO0ZYa1RPCMRCfrPCNee0Tr/tOpT4pWHoOcrB29Vj8lUH9NQeVqX/xzVy2+Bp9FRrUvG8jTpHSlnu55MJZu2j3TVgBXa/FQXbHUo4XmtvcRpiXUdmBwIhAaLeSaTJNHdq4P64MqVE636oraCcUuxdzgdypqIWjMDJsnlB9MskZo5DPbwSIZ0tHeYMeX73yrs5yVap1ydYkIWpMjEQsHKqFXzMOfXLWr7waAwu5MwbBrJ9lWZ5paJyVxbPtvctcCkjDKwVw50tDf2T+Rz6JLLNzZwFrS72ycCgdEFwZAXP28ihQllJdoz0RDqXBAM+si0CGSe1TYKacbC9chIYAaqGFWorbE6oJogqiTlUtQcr+OnDQ9Vlw7n4etYxCc2xQngJdMGYO6smY6mdfGDNokk4xjhqBMShca3RAm5g+rcnmJ4RpQRy+lNTqSg++AW+UQA8Nrd0iEzdmymKODhYFYAzXnQdfvbUpEiH/fgPdTgxnpONjFVIMAi7e0CfBVLz8I/oqc1rmJlLaYad0OVUZpG/KqvSZ+rMe6a8OBApbWUHLjBdedugtv2L21IdS9akW1vGunIi1oJIKezfzy3cuHCFbnRGQYWJQR92HVc2/3i2osNd2BhMFTMj2VwztOX9XVn+weya0ezlCvO4vnCN3yVdoGohyWyHsLK7VMDaBPUu8bC0VOiyL0zVepimxwspAbVTyl8lWAlhmLlN1ecZhmsqOooSq0IDLXl2ltXTkQ6UyiZLBHKdWd4EDeWZihOoKUlJ9EYCyxK33uP7ZafHCj849fE55qOImeeVSjMznJqf7ij++aXO9adr1uSjZCx1UUvMbgZAzqe7ZuJBNMdbtJFPb37CbVEle3EeKKrOYZ0WLA1gCm9YAhs1905AbZnr1pFucXJ8ikgnBm2iF14jFtw+QIbCt02nexu9mtwQLTY72pFbYOowWUDMQDfXtR1lMHSwOCAcmvqKlN9j0eqDnV9+QHZAU8uXdoz27p84ZKFbUuLCaAGQsjdt6JtydRYoq2zPRcINRjMaxb/LV3kNIuCU4s6JkVBksCB0Jb+1qkl4xFZzok0oBVLt0NDLh8rxlJpVFi5JZHP6p7HwomYFXraChVkBgRI5vLRYjTVlO3IFnpEaeZ5JNIgbeTgiX+Cb8BSYS+2aYeEjdyzfUVPHuE6LqPSQZrGeiarv3pdYVKPyJadK5zhQqm2NO4n3RBfkWo31YAPy33U89LxzI79Jb68I0kNao92p9obooWNB0pWx2qXY9uxrCUwcc4KPUdbN+0bMzrXVM92WrGWcGFzabJFnQTbnbvEIhwtRyvA5GTzb2GCcL5gkvYmu3W3eWQ27DCzNEF78m4g3dSYLozNrdxLQR8d5z35kCVPtS3QiSiTT5PevBFsLt/kcIMS4CbnBCn/VBf29WfCr54S7WMsG6Dgzy99b3RQaaXAqFnbXCEqrtcPA5VIRq6Kp6CtuY/wdYtL69gjAZMdONcBVgolS+kwBufTnvdp9T013CS/n3uAmYFHrBXpzNruIH3ERcKvHl2+eog7NsUsNNmoFxtyQU4/FKDz3zCzHD6bcaeSWd/LvtXXQq0zdJy1FpkmLK5k/htx4TrEMQ7M3fyXZEMUc+JwrhERXbgLnoFzNEOLaBnREp1Jsz3fHA/ZHIgkIYxU3shAhQD+Ul69LKR2HU0VWqbyzS3lZ124PuCWnyo/dZIwhn8Zlcdb+eLm/HHxdMfSUb00X/cvaUKqwIn74Y+wQ+NaSODUIaVqbUlHPZNJqUL+ZCobP7NMynVSFjUgnYUBdkaJ4C0DuWwylQEiy+RefgaBfi38jUxLqkFK5J64T0lUh1NR4aQrnCoPZC+AE69N/+Am4c+IB87deUapOrJD0svJSanyiYYzivVoqiUjSmka1DyOnJBItKWCbzGVCKoRKYJrpcVn1BChSKU5UXFtORaJD45KKUx27GqeSPCrjzFTCuH9Sn77lfDIu9d1d6+TDUk1IiM9mzZUa5Y0QPWN3rQ/nd6flggpWeBrmq01CL+9XyLU25ZtDDumRAhFKo6PRIL5c0TfCTszYug34725VKRxcufUXbNNnSw5ZKLyH85ck+f1TIScgcbe8cnLm4sjFmpnsbbvngG4qpTP4l1aVEuLcWZYSjnYWWhJxi2NCOiUV6B2fPk7kBRyIv8JRFqGC2eW9B+CmH0cCAGCOIOPM+xdtR69GY3nywLcG4S4n1TiXu+Le5OLvkddyiy0CggwKD9hMWrzD91W/gWg8V+cUWosVlE3wGPway0lkO0RI0V7a7YpoOHqbjHCY3HimzU52R8eUVNQVPF9CvFCW0VyeFi3efn7f7r0FaiF4BArf6f8HHBk69BFydzjAVjqBeY+6rou8uQh/NrlOnvFS4enXkEZDcErbgNqW0woCjA3Yhk8yfkXVETfdE6SMy5mxR1CztZMU9Kpef2EqIknpb7z1VpqLYRPl3GTyXTUipoQ51B+rvwdFsIEtfxh7j84Ok2+f2PubbchGqFw2ysgJGR8xVUn+NzG0yQDbWP5e/Ao/Eq0zc2ip0xmQj7TQhsc8EVSACpLpkmvKqhWkgZrc+ZBBa4L6qiO0V/vh42Io8JWDlOYOwSXny//7tidyKTEoXzuE+IDXdPbD0B1O5+fnbWcT4jVrNh73mU55Vf0mI0uEKxbOXGFE+eplavFBfRtisKOS9j1N46tvJ4xyh0UpoSz8iz1BgeRbbBCHuQcNDgxGMOGwbw+M+0icAxeaMXK3Vs/A7xO+6S2RWg/lTUR+F6GpmpEqzj4ra2Ftvz/kvo75GRlihFC5z7BqUMospB57I7y8+TF6w8/5uWfU+ISWv65wynj1924YNX1jDB9bvzFASAQWHOCoXfBL0Ttny8Q2L2ly5IIVOgFdTMh+U+6CxFhrtX+tOoSB6uyjWvTIflPbYgrDPkMSd/3DlfiX7X3NlwQ1nnfoGO1tmWE8l5LQwvHYF3pIuReaQHm4oRn67w502HbfplgPnJqmUg++PqXnEtNxHcFYCzSBP8cJo09tpVNRmzdMqORlEGw88rHSaOXIk+80sHESEWipqXbkVhrrViD5xd7gqS8RvK4X8xrMP/87L2f+MCdzEHW1Q+FMrdd3tmm+syJXtFqPi1WUFYJzJZP5axqVElYRD+QXV3AqoYFJ6AKpdBdHKrexQWMvAkkjq1MrqeSSAwedaj+0MOwflYnOnCjITZWuki+lpp95CNTi02CdffCjpZlrkPI/v2xHTHasbH4JizWGVGpMYXKP3pvhHqz029+g0GQxe32nksvGezTCSM627n1xutMcDj+GqCwl5EdqLu76++6IFIMzQJ5ghwpleBWsq5ew0XajNBw5WSLCRVbJfzFUIV5zZjvQCoXXEVBK3r7O7d8rUdy/js5CrmCSziX/ndho0PZ2/4WPUilNuuLrah/7DyD6I8/CXhJf4wTofYRtGo1p1LJA1ONrejBNwYI+vIWQJjprmuNFux/tQugC1XXooUUHPf+DWsbkr0GcfUd2/BN+9uE8uzreV/J3htH16K1K2zynSKiViDZFD0aYodZRPX/r8FjOKNtUqvlO7esiQs942rGWOP6qjmC/FuZi1aUD+C6DtBDZc3zTCWpQ2UqOjIsej4qZUW1xoaHNjrXT47D2LKrLUJCH/18ItXPiet0Fq8H7hBjZv34+OTsqxk1WOB2pzXRGPQwQYsXoYcd65//OdNMmO2Ojg5baH0flD935PB11Lv3PkhnRizCGXW3noNKU1cx4nB9/34yJvQ2ssU77m4uTBqcMnspC1mOzhF6/es8anKYWc1FUXQ7Ao7+cP0bYKgPYa0Oj7WKtbJl/YIGgcdIbTW2pDBRQfR4FRFc5U+rldszY+DPwYddjMQKr2w2IhnqIdsgxvEbx9N7d76DCmEoWpxdshILSF7RPbjPpPprs+sKCMZPQ8C5fng4P9Pdgd69GhXyCL6dGbEZp3x8/HVrutvXU3GHe7yH3wbinqz80UiiyyWM6su81hC64zWnam9S78abkNcaC6NFGbxtGzoIQbXLRUT84V+FX7FG4JBrDGjw3/gU2WGha+U1UXUrUPUz1Hly+V92N97pbF5sWmE7OdLSNJJo60gE20cBbHfDIhYa6GwZqJwrYYB/fWE/5M+TSX3dURMwa0qmet0Ec2Z6cy1rL7FRKtytvk8Ptmh1usa1FULX5oQD8MJ+CX5Rem4y+Au4LO7Z6/gF5pzuy/x591lq13UCw3PwLi2hVgDyKVtqp/Lg5/3enfcHOBoj0gwrtZXWRI1mQuW80Aees3U8dxU3dRduIbptzb3jTWjBTciam7V0DLdzy+JzV2HdMmHHm8qfuwmZj3Lnl0RUBmXCd7XYvy98SR9iJXmSxRj55fw5IeMmIeNjQsakNizZbClVAyE5haQVWUjOl7VUko6Iny6FxmNEeR3ZfFWV0sgm25Ch+yziHIn3bP0LDdkYsZtufunry3/AsDLK8dyvbrkFEWyFmGCBfBdxC8OADvBqz4aXXithRtdcA0GHoUtKpYHFl+DyrWGL4udGRy/mVgiuuQZx3aboFxhpSvJDQvJlYsYwLiQf7fBXxlQzaK0lwRFNJK88CbFC4eJqxqU4j9RydamCflQGHtPdAImVf3zo5jC1LBJZtxrZG1MMh0Nswe4Lxrne1vbGoTC9OGLpYA0PP3llAzWbxlc9K9LxBROP9YQwcUyOecM1bcMJHGZju8cLNiDd6b+wo+MtMdNbPTK8CGNuRuzcdQO+DgeVDh0qejLYmay1fykPjVVpHZV/Sjnl5BQqfo2wAbV3JYjq8EuxTQ4PYaN4ACUX9YQZF4+MfOqSr8fAJNQjEGg+OHmp1OX9Hc6NIX3Zlb8mCZqgxGn40+FhCwwY4FZqou9SUZQz6fjjdOmBMMVeuHt/KR+XCi24sX1utSCbLrvCRkgnXLeQeXhkdcCu69NFbZvQqa89Wbdiqf4JHepSPsiqkVJXquZFGrPHZFXobVt+tXZpGzFN0rZ07a+2tOlg2CG9d/ZjU9lY27EWPvf6s+7yfxc3vcW9hxIcAY9xQDxxqHdxwMbRdaN7CgFL9xYdTZS3nIUBqEOiQ9uh9iumnZolZznCmU83qFVnrSH6/wb+CsNukbbyD6/dHwDdivj6J7PHMnqIMFOi9OvpZWZs7m1nDQZ62jItDmx67ALPjPsIGIGFF2cDMUzDPkxobu3ZoIGEX9cn/LpPivGdfaiFSBYW8FoCELmIoRgnSsXhAaHmQMXZifpMy8pkQOnNIr73N49BIYdu+pwBOjD3vAOzh/Npx0lPbE9ugUMXYKQDd/bvsawtO11smNwJFG9fGgDTWDp+UxCA2zojOPjy1LT5hfLlhvRSP/MUwQZzXEcHB33pqwCO+8RHMIWmPSsirsMT3UfHEh4JZJffHCIW46GrF1qxOg3l7pk8VTuhQkoNJbjaCqSMZi0xSQ2AcIn7UUX11Z/6iFlcpVHM76dCt+bf7etz4LzAtquklkPnNm+AntH4WAIp9R+QL4u6K4gxMyR3991LHUqoMWM8mCaOzsWxu3f7IMqvQhtAqIo+93GdgiMXL4XmeNclXZf1InGeocEp6ozdENSZoXv3rEwYVgIve2XQNGyCkyv3NoWk9RIe26M4I+Zv54n2fe7WmWTFgxX1VUtmJ//5UxA1A/E5xOIoADkpnwAnNjCo1uILuTZ2BheugKqZXCJ++vpD9oV2r+1MnyeUjA6PzzTlVu3KZgkR1RVgacE1IoIFdUFiOGkaLcXhhndYzrt2bWFNrSc5c9ts9IaVm/OrDombBLZOBs67lgbSlzfSxkuno7l8eMPC8YiBAWbXg3TXwoXgcrk8Qgn819hN4wghy3MAlu0+2adz4WlqhA+uCC4LTu6Ps99UvNoPKa/2HIHR9g09biWy7E9yFUCVCX2VAqASHWV8iOpxqMznay7tkHohGfUtgLxBLZH3RueBt1r5okMLGennL7VCa1scp+GylR2Li60p9BqB0NeergBxxHGub03t2y9UePrAgRHnPe/gBP2cxHSC0b69qcA5r4thHITzmQfU4Qbs2MSkd/tggzOws+2i4rLzQtbe8YD01OZx8HRv7zgQypn3q58RamMQX7bQEMf0O9+By7Z5uWxwjRz/Np8IiB5zrdauVpdWDIbl+JeXPaRQlw1RWIOTOk41a+egDP6pjcg19khtQS4nl6/9QIiY1j5ww3hq9WUNrtv4N1vQ0KbCg45z38PWmivEmYYr1lgP3zf39w6yCkYiiIOM24CskJ675pjllL9fXGJwx0rnLrmEk3Wug/XwecvEGFycPWwBkv0Gm9umCv29bVPbTPxPzMvp8QB2AzrDyPB4M4iGkh93XCfVDIT689sAfEjoXFAz+PEeD6otQuhU1waUMazPSiJOBefJ1JE6XZW2SllZ9cfH0ysva3Cc9Cu2WW99wNf0SvG94UqpqeOgdDERw1R3ukJXXCZU/M9iF8jZcFfouus5gUPEw0bovGXFi9qEjthxlYZtvX1KQ2cux7yeVAxstz8ilevtB8cdjAjl1M6Sbwl/JqV5wgLalV08PqNK/S204U3EhmWBwNzXoVOGDamBwLKJZFTZ4g9YKKzym4j7fLFyHx1QZc04HmR+xFzcbtKFo1zXuYjZe7Bx7r3oj0mOzblvmpJ/SNHzMq68QPAdvgYrBNehR8wvNsi48uzqxX2taQ/J6PeZaKZVyp//Go16wpSMzNXVT61sfKggi8hVYpTsLhX1g7Nbo4QEV8wcieW783tfEZRfSh+5+r1TXuOGg9fIj7U9Tcmw277QADAWdbIC61wkDt3nxjaOLWrrHIXhIAosmb5SbFY8d/W6MDHid+xXx2NzH33v1Qc3RuNTlQ/BbhF36LCTtrgDQuJm4nDFvs7RhcXO0UWahk/C4OUi+ntksVQfv2j1sRqF4j5rfUAt57rgx1Tqe19sPi4nSkoTp3iwoo+W6oj9JX94OHu8ZiMuY1dhTDDEkI7tMEKYIWhML8SUO1ETOnujsVxuAsyIa2C8qLFRlkXhxkpB0Xf1QNioFTNeBMQ3eBG8tVAotIYNhIKW2bwkJiYTnQjHXMeEWMw0vWAzmE4gAqgzGpUlLc/zy23CEPZco1bKOLlGFA96Qd9fWSM+3W8+C93Zw9mL7zmWo4zR3LE3EPtFYFECRFiIEQTEtTWq+HzPwAc0RwtqURHHT2uBSTuVFL0lFHCZRiX5rk1sJqt0XoqDGfWv+rnSJohzOG5isMqfjIr1lunyL4v+B7HRGrTGIKKPH6UGQkdRY/kH8r/yR1G6/H35n4ZPlkCg6T8Yn/pgJB6GTnsgys89CtNzj57+qNpjtDotbfGMuJbVOqWW7YWGRCwacE7XEomDeGhIE6Q0GuQu5pzFuSJrxjOligDXS9tVfuq+S+Z+Tv+j/GeKYdXNkc7mBs7RLcGLY/Ytt96KzFuqcgnDdqGJ0VUPXU7LXwdk07l/wRhaXxHtbElyHW4rviRmvfJvEKrHo8YjOyMerQKLfJXhdTooaNLneJ0CTBHOmXvL7+p4Xhp0CjZnvMq/LTEuqHJyMlrZyyI+ooxn9qlVH9vi6OMu8srL0Mc85JaXBsQXeIM4/Ja8fp8soEGNI2poDZLtZzOA+juHa0dyTKm791O1hxwOBMpvqN187oLqUfnzPMl9jPCUekJYywmMkjH5FHz6U/7i8x477QAdEg++t+7BLySCBie+cOIEdMDj2qC2WPJ6h1uMKqdxUM6Na8kiq5kOJdkoWkkczRifTzU5JHPyS89v1LXdO29/FbFNTtPnXn9sf44CZeUf7l6tnNSCGWGMYcMJDnTdPTwKdDghE+KVP/ewmDcynfH0sVdSrIsSnBzccqNjFTu6zJjOwTJodGzoPTC1aHGzAK4m+ULBSF4j0Fu1fGJxEWFf+ujg/BKVeF5tmYr5VKkX0gLn5A95SSpTGpGa/OjAOUJ83SKxntDG9Rst59OxXfF3CF++/Pqh5GkKPdvw6fHO0u3IdCxLavWtyy5Dls4oahiK7QOXcafhUBJc01uUPk2z51MPDC6+D6G0FdCQ0u5eod0SyXtHqKJVXOaBVxs7/OSfQsGau6nW3rgkzQ7LjJ88Ko84q2WxFBXj2pA81CD3KRK4+xNErkVCcWPL3XffLfR5v2VJHyvXMSO9xJLBHaM54hSEGvaJuYYDDeig697/5tc8GXApKqxveo1aXLOM8rcd5/jxbHG1cOCXJkYdzqymiJPXNKjpsEabFW1r7XQ/gtP0kLy0U+rJryYezSiVoi+sEMpFT1Lq6MGLdU/nDjSUYocOHLCcn0U3RABd4IidoWdSDfUsyZyk3rfOuUj3XB0TlBwR9WV5Tnh9OBKS3vU/n1FLlJuS7LSavylsndA0HHIVx5r54fEa6zsOXpaodPwg+mol4u1Q6NIZdngRytZ11/0Jki6SMWzToRhxAoG5E+hff44WLnwpqn9SQGsUT4pFiCbnusKm+gu2KihKkXR6sp6c/5YK51vcsAgMGa4fgEbO8O1NTQDwp+uuu7QdudDqlX9PmWPK4DK6t2HKDZTz6KULF474q/ZXieddpzTLi17WnJLaiV7W+sLa0cp6PeN/Sc+5b/or9chd+YIa/75q0uokkZoXhCSZtNReWsu/pD2qyfIXcSjvrwozegZEAm4Fkbkf1gRSI8Ru0ozeKPgMA6IuihlV68jPsatkqb2LYbi2C3F4pJZSy58li8vwP4xNY1G3tEZ3p7p4dPFmE1D5Q+UPqm2Hs2gtemPfVFcuFO1YaLHhdoZSg2vA3rS4Id45pqNVwyYCfyMi2rd0UJaRZXvGDaRpSHh5Xeh59Ija6RCQ0S7qYpW4IOdHPwebQAU60DghpmM0WmhmuilFP/H3pmE1zcw8pnOLNCETWcKp14GxoJWykQaVMffLwtNqlWsKLdH5iHEoPk8fZtX4YA9oET8x6qilW+S+xVfNRBCXnfZKwm3CGMVXXIx+Gyh3eh76BjypW7z8Dy/73YMdiJuM/8dvDA+DZfzqR3MXJ3QjZtRJYGgFyem1uJJAeRbySUg9F89v3BsJ1e2hQi6Sza/c5aHnsWezwYelPNR0CMbfBcoINSlceQV8xOKqxudEeOFCtEnJYxFmom8yEzCH3z3v+x/ac9rHNVdgzDWkfJzhyj52uVld+jWYk1dKv2Y5sdevJxx0/hZqIH9/2NcFBzijRbTV2l7RrrdOD8TteT+8bg+l7GpcQiw1qL2NyzeTqsWpEa1uh4DCW/ju4TPdCV2s63HXbKQkFsvmo5GI+zmX0cz0kaMX6txpXL4fBVy3/Ov9yxsdrl949Mh0hnInvXxf+deOgwL7lqf/tfb7eCYXi0Q8aAZOUlbISidjsVimJRxYzNyW6SNHjjicNi8/R2bCPbC8WdxGnJpuUScPOK5zzvLm8v3AacoMWU1JIaf4qSdq+A5NhysEG7JJy4oazjZH/PGjXn/O4yfp3SZXh+4Qd25deeToIZM7h48cOexw44KK/MX3LbgC/buTXaVO6+LvEUOIc/iwEGf0fWNXnPTUvGxXza5qV3Wwx4Mn4SwnkSgod8zMP9ewas9Udz+CPlLs37wNfZtXHl0eqTyUG0eEiOXr0a5i77atfu6UnwjP+TGVJ8yp7NgStYe0eESqKmpPq6OayHX5kiKalBzPQmgMDQNyPIrK/wbsrrsw07mD4J43vvEeQCoyj8rvLX+IIYwMiwJagOmDDwKzDHGCP/zWtz7MEa6ToV3IYMkWHas8C2k1CoefeCoyT39hMo662XMQoGEhh2XMP1lAzfBdd5mvy8y0xtTDGFqLNiOr7sFKJAYPPmg8kN/Y5nN68/AM+ketU60JDvYkZP2jSN16Q/2micGBOiav3+BRhTaWKcAzARMjyw50LIjqfctm0u2dMbGbO2ABtMpTvSvWNBfVqblDHlwtQkK3uCiVaY4nI8EimEMLAhFwRNtt6i0WwRiWX+1zyt8OUO7YOlcRp5/CW2GJ2muS8WutFi6PD8j+djKRqJpgzFdFLFki+4kpxDFGbumOeNxGht340snFRK3+iMjw2LZG6NFtaPw5bnYcMAa+0qdjsPUQDt54449bsWmS8FDrb4+udLCS5idKmn4hTahu16S/T2NoHCpJtuv5S36MP1d5rfIF4vnbxgRZH4ACwzYDsnjiWKOUMx6/o+QijDmaesKOSRGclUd/M9jFOQUCYOHWnxy/KYhDQlqs931lwADHacY/bwQ/0vpteAxkzGG9qNNF/W1MzqqEsRJp9AdEAL5u9bAWYJV/1IVKIIJWjpRGdSFZXs1VGdv80EtQuLltIHF/wHnLO4OIb7jYQcicKWXSkfztb3EC976Jn39vmMKBQHk6XBxe0NjEH3xLIPDgQ3zUQ+0t/KEHA3986ZttxB3TQAgjFDm6Xk8l9YlzGgOMIrXRD5kv2xPfIB3PFb2rW6MY6bZlgLuQBFv7dTCUtya0fVRo2620XTwcqMVYTw6x+hw58a8+zqpCV4qjLoApKaJufUC24jyI75uq6tDwfefpD9xb0bmlpTRtApjTpVyj0tq5Kz8dT3Tnxkpt4TXlgKu0hQ6lLehSoeN7Eivie27Shd6qZyLdbTww7oXC3nhFcWS8TlxJFlb3rnAYT3Khr+5IfX2PSLS7c2GrsBsr5UpjR9wR+sakAz8s5a0sn81vQR+CYalmpfKiqmStUNR3/f2MP+Lq9iRHBBnNhatXbbwlkyKqcsBsbj48dnxllqE7xXVqTXb2LWPA5XHiogRFUffp5v6Xu4Da8h0Diwbb29lXvhBwlqPI8t5Mtm1Naw/90udd93239zi5ngVF/X3vc933vLLL6u62ul75nnqditpytY7sKB6MnIJFpdBsfguJv3U3Gq9tMBF51bK1Tfi16xE/m5S4CussQ6nUev2K2Zdnk7JhmeIUuH+zRanE7xMI8+W7l3NQ+34rOsHWQE2pzv7FA4Ue/uUvOM7TXzWXrvU1CgTe9z69fXRBO3/kfU6gTiGkjSp9vqMtFrYh6NsG4a0IcSsLHBUpRS8aGIip7TL1VVFo8/PZ5lS+lCibEUKB3bniYqxThIWQtg4IEUJh8eF00qKqItxL11jiwBrq2hYFZMQCjz9hlnJjOkLnHHACn0SIdmZSbZGPfdB1P/DaPrd7nJZDrisIFsGmFebjjztqteJboieltYTWIUflhuCZOLo1im6r8obqMzZsZbAUuENo+feKe2vjKvcWfaapOxmzItKF8mKAKEOheWYtcSWxljK+Groz8XaDxsP5XDTAoV4mxbBvS1sVT6GeOjvPnA1XltDr3LCNQgSYojVGLEG2YsT+jpJN2bhuxJ3GgPCummNWHxjMrTFeq+Jdx0n5D8lOA7iVtmKtoTiNaxoWNfxxMgejikuzXniUK0Y7056csxHf0kuujJq1lWKDShakxf+6S3Dc1qlhiKSnZcAYQ54SjF2G504ARmj5X3ux6FmE3vMaIrVFnYAQdXWGyz8q/w/E/qpLys+uoNIo/PWNEpWxjhZPzh/jqpZQD/FXNAdIjXCEhHNX99UfQ5FiQ7Wq4d2/qGp6/tK0bjME0cu+dGRjI2KuTlASNWNKiZh1/oSg5iDGiKOca9tu+Z9PaDpXxe8t/+wgZmjENKiJUAIlgRA891k9xADC7yz/eDOwpZbHEEotumi000NMd+nd9yIaonDfnXAwiNHt93E9pvM332oZXJbbeMewdP9seucbCLUpK389YlBADTvv7AKq5vblG+BhfJWcT6sVgKGOfHNA7fWtcMMUxydfc1soUWygmlPF5QQyRvz2TEQbqVHFHrZ0Y+6bQDEBboMhdNBtA8oGGr83SZy5DwagV7hYT7vIIoxAGzU5nnsGwmCg/8qW//BVZKCP6/Y3gHiMYPp5Bg43GXzy2jET2FctQ/lcj7kEo2cws0yKvxFy6VPO+esRrdMqIWYN40Kr/lxLSu2HCPv1p0QUR77oUnJe04hWFFVEuGgdQU6AcFC3HIx+48tnCyQ7COciipGqKgMLdEcqeTPSLqMGhIhQiZsIOSiqA3qXrVsMPiGlZKZuo69jSef7xiMVdR6ydani4IFOoG5IQGdaDB06jJH0IjRN+EzPaREVo22PeUbFi6gnLvmEs1MJZvEz8tA2VShWuh3WM0M/uiNOMIydyi5DuhPEp5HQ0McMy6dY4cjE8Owei15xGsXMOoWEptXpEFI6dEdtNM+xV95dxa3nZ086+1Q4hK3hw39qcJomVnx9c/HSs2abwReiqdUjh03DDgsG3Pi+s+GZSXtf4ZnsUTyTc/auMv1dxIMDNV4Jd2FwoFIttZc1ReKnsYSy7Ew0YeXa1XZS51oF94ZHYhud9GtuEa/2kGPRTCQXRtBj7g37DKKONya5bhf6b/WqBCL33PisAdGu4MZ6nomiV2zcWBwJ7F2QRn0E42wYbXCdJP/sZ4lkHj/au6UvzkYO+byiy8Ysz2NgJ1bdJJlFLHxogdPSd0nxk/U8E8Wv+PwnLMQ5MlydG4hqGqrxp3cK/2JjH6pwycWU47R6LM3ziiqvMa0wqlW2v9ig9OSVZ89V1P40sDbZ168Pd0XB6ejwiUY2BwjetGS2wXK/M+w53DSwu3dn5wDfvMkQ4G0Jd0RDkXWrJF3pwMHQ7nXPfs225xGyBfXm092HByjRw2M3hDizSOjm5TmPE+i9u72RO25EEI5cHX/ly0J/9zN9BwcRGI7ruPC9x0H0X72OgaM8x/K98DT8s7BE+0V7WdcVnvdZoqdvLMJqCPFJdvU78GVLUfNadaIuz3NbpJZHUU0EsurCVg4TlDsUyr8t//7YHcjG1Hd0bBIAfffUkjWcU0B0YIRgoruZoRiLTJWG2lt1bDtgDDe1hYKTa2KjhRjX7dFSl1NsLy6VmdjRU3LLEddxxTPCutpzZM7tbWah9edNMYaB7jsAyNJh6pyC4w21FyezLSy0uT+r06kgHFiRddyDF0DWSHS3x3O5OoQaFCtpffdf3ns09L8Jou2cSLeLUuV22QQjG1nH7iz/Fqj1v4YRPCu3JWEPCyfNZZzQGwRUN1Di/Xn5XwtSHUpt2iUCpb0LG62K/RcKnxRW4PPz+UKVqvO/CbMNbvqp23bsdeTSHHe84e8mLOc7I57DLR07e3fc9lTa/V/EDj3O3I6mvasaMHV4Y/tdfYxC712y3zmRVXubOsy5Q/8bMCxoFwsM94ylpO1GFSpXLZRXb5MklH40Af3vgRA+7DR++hXb9zpEl6a79O8KwoDDHcycvdtv+1SjM3fH/yKGjzFHYhhxpBW/u4cT6LurO8Edihskhs7c1r8aQ1zhlT6ldVSzAC7o6kwy4VnRbGvFAxkKDRdq273q9gv5cVPOZCIb7hLheuGhLBHxpxF4yCg/1VgYajA9cnvx/RYh5iMfXDBqUNvu7S90bUXMJbR5+sAYj9o2RYAaf0jKv3urtaP9nuVbrurxGBqF4CadMKrrmzbffNygJrOOHIVQrODOfYOTQfRcoftGry/VaMOt6CI4jtbTT9ZrMyTWWKeFNquXLRzJq6x0A6LeB2q1rFK01aXYrxBdZIvI+YdB9SrvrFiTFSvIQ3F/d99A/iDa+Y4lsHQ5JTpzlobCMQMdPV9O8h77IBnriAp9+2NJ1Na2Weem+8hrMMJQ7N08NvaNRwzWXgTkQKpjtvneeyk3WOCujo6hGBruNRllDO3cSIxj57Z5xuG+iXC4zYFO99rlP/1VKNZx443o0GYntmkPHNdwxWPJKtbZHqHj7k2rVi6M48qYLDyNHlytqrokfKIXVILcPaCS6tXGXl/x0pBk+LWqqoRoLFapSkWK3WitXlUajbzikE7IP3zCoB1NplDfzhXW5FuZy3T3lbmlBXTo8591rK893Rh1zQBtSExOcQILt4wPW2kH/+GzpPzNTDE+o2e6rzUsuOcNxJwa0LlQfPf2lPmS3SYXNXzehSjjBUUN21OhFg9B+UfE900WNnj61HIASn+OnutIv7Z5XQ7BFeg6eC3yImYBe9fWcMloywVneKfAZcfW6dXdVoU7oPQI+XP1ikmtbu2C6JnBUBPHCciq3h8WYTtFhVA+zpBoGzw2stG1X919DUlH9jKiBwHGFvUO77EJqWzxOng6IALIvl5++GLHYN9+rRMBdPFlmBSKn7iDT8G34ai7NDYGziKk6SRA3/pwJNVlEJeoPV4SDDgVDV1AeePNw0M2+tAS3fjVL4ZGEDl6FO1e/XfooFrDugaeQddoGeG1mSpXUsUg1gctTib6rzWcYPvY1guM0Mjg62Z5iFGmt7TvuzqfXX5lq3mNZfCmVT0rDRTsv8elIcAQHGvfZwQPrA6p571WPa9F5i2vxMvrcnGMg4K57n2RJcewjFT2wK3nb5poo8TWQ27ny9c25fJNG+/IE3TQsFCoO3tgYfeUqRsQYokV+wKUehevkmvH+okN+Ab4jJbSerVj2s8mG8cRgUnEyNQCoGwnMvT9iBt0zV7E0Wr/Dd4jmlCHUf1STTeYblws7oIwkq+/1naZSNNC0xpjZJdGiCff6s53aZyHefUt3EOn/Fr+AogG51Zuc+bfTg684M8MjWODn/ZzNiNes5sC7eiRQ+dv37p65bIlpcGujmyz52opSFnyvdK1pb96NP2qRUNqKpLzY+3+inSrjMXXXuYuPqNcjo3zfL9YbcXNv93wUDUI7799ozI7K6B3ehunzn9DS6Ild+OW2c1bZrbemGv54OiaRei5S568iEXIq7/pwi/f9vpvNNtzH123AByyopuFDBMJOZnrssTFxaF+e2zxaEPjjuVb+vRQWF5BBFyHbVvZNpSKOQtLetdi+Ewkc+d5y1dvXbflZdmmpuzLtqzb+tytnYlIeeWlH7kAWV96fWPg3T/+0PG+B8c26aiNRm0TsfcKlV/eUxhMUNduzHX1iDGQJcKIbVkWA8TYxPKh9mS3zR2LuOtka0UD6GNiPSwhV9Hn3yio8mjUAo0FTwCxDH/ogzJn+jvejggTlUgRohg+7K/Qv+OWNrnS3YGSHRS0uvtGqr0OydBqZWOSmhR54ubonZbx9ndgxxH31kHekaGBAFqr7kmAdpR/2EFZZe0QfQxdrEWr9wsLQ+5LqkSsCDlj87e/Q0r5wQ9hgv0bXhwof6iSzxh8CevvqCS0am/V8eViVUkH0V2GpStdQRf3FJIK/fcFmC8aEHVjcTftxGK8W+gblHzq+XUpTWkbYUjjLEzdEPzbSocy93zxMr2jTvBTLuUh+NNKy3EPl79U3mN7dXcKV/NaBv3AAdJifrhSE1Mql+rBfnQJ6jzfZdQh5Y+XL1gegr+lrtdfvqn8pcOuYxE0i965MqShOsaiYBFq6FSm4snkxFMIieKnJzEe9Ucl2xFOZzueifl5JnKjzCoqckheDxOKe84VVgKqUMk3xyH5/uNzAzdOTXJL5+immwMRw6Ko4fZX2hSVf1z+PrUMDeruIXlJiQjX4Az3aRuCNq7eyH/SHfPPidcPw3e/d/qd2wH9m/Hb34BqwzVGkpCTaOh0NtKpxJtTOUdK158LOScV9maNZx+NAKh2uzkAVuDmmxDXLQ6ZmCEEKn+//GNEbQ3qfhsTOkYCJsCpvw8PCe8sJAxa/Y2e/+737lslFDzpfpAGVP7gfb/9TZ1mqrW6gM7I6DoDwelUApfagXcdnCu4Kk1aUa4UZEJqJbuS5i1eYa0z6W/5Nw+FhiAHwt7GB9A457p+Q3pZFlHKbrwOE5fg625khDi//dOP0Y9fchWCz3D2ua6LhsAg1OBf/hQAwKe+zLlMjIyuL+8TrkP53XH64ceETv0im/px0W8W1PIQirYwpKiS4biUJ+pLE1Vmvj6vxbCazdTGjkF0yT5ECCJsL7rvWDsCIDcciyZ7TUzo1ddcczUl2Oztvfp6AgCB0HH0SoRyiIAAiyIi/gEhu7ehpetfy3WAHeJ/ADp/7Z1o+y5CQN4YqXbxHPwcnlI8BFfZx9o0C5+cc7ZiLwfljDjUKr7CvwYxS2yYed8YWE5HwKZ45QpMY42NzM12IoQwegkKNsd1eMoizIos3v6P5eeDthvR8XXX6JjYgUhsbAYLSNHY15O+te478RMcgi+r97F3A6plU3KxRNqfB8ZFR2+rTr7V+noTriRYGseiwHDFefKnDbH5Vyv24E8x9AhDBHR40sAtQw9utwxiUcT7bz3QFMPEaH0dGBiz8oZaoczA1mOdAnBmWycXgqcIYwSLA4KOPh00svdHDFxeb1BkbTzXIcGR3Gu2IAoUn1wstHety9Df2RG/UP41m2UhDdW1X8EnQOgvt92/1GL/clNVqzRvgU7crTjRfcIzT/u5QeuZXdHakYroK1qX8lBDvl8CbaqB1HO8akcR5v4AKCMmYRR+4DKdV5hoOFVhej1W+ZzbaDIT/QtTL7oxWblVfOVo0qekaRrU+IgprV/m10r/9/kR5IoDiTeR+fN/OQnCJ3VgqEUuP4pPqF2F614440G5B9ArbgaMCKakcsmslzautf33GQ7QQLzujDbywmmXYF0IquccAv06XHCmtEvlmZDtn7AZINPPiy6UeQb+qDUIBvcuUdNrx7uLgXnem1qFiZ+8tz9cZar4AZW6Pal+0H1oIFhXQhyddh3uB+Iw3REpABDo1ArWZQCY2Leia3DxkkUXbCaIWboIgXQMwvULhzpWeQZqnL8ItnvyJfgvZAUM/Bz6F2BOSOQOQOIJFP1i7qqVexItPflF/WFuhnVn+e4EWptvz3jhdPkP1UvpTN3pelyS2iJtt8BldqKn3cXYT0D2AukQ0P8yMDt59OSkCUGrljQBrvyrkfkWN8LzORVQqJZTYe6NLx4b0DZW9mmmBDaCX5IJYdnnxuHMLIDSCJb7FJWmiiVf2aeofE6V6g5dN3X/KlSXkkvRAtjcJwS+1HBQerDbpMTGyAzy5t84TvmHQz0hG+Wyv3PQr5tXZ12bkeM3Llh5nFZ4AkIIUk7rTn8fMRy5ezPjuE5/v6Vj4M15p16HBvVet75mu541ED2NNhD8b1TY6FSyakmpqdAEOYpD8FtM/qL8cJAFRKyaMcp8RgE9/rKxlccJmWt9YfFBW1C+Hr4K/yVmQm8T0j+4u7KmkT/DmobkPFS4Part1YKodGiwPltwHUtjUOUXaAKxslm/ny/iRwVq2W/VbCua5TwSO/mKuluNjFihSFbSrlEsqB9/OPY6ZGLq17H9B28imslPqJS9tDe4JNM9AJwwTFAp02X3FNU1m4hrdlOxmwZd0j5lREwUChWAct3J6REDRXqy+cxiHSfQ7pXdA1YANaZXRfvzLa3q3HC637MyscxM0QsaYQuJn7mgsd/KhRR+ySWDiy6jciHlt0wMOHY4lJpsYiw+2RttbEAYMAJ0K0axJEsEGyeaGY9N9ga8EAJAdhd1WGvvDqAW17eGemOIGuFgalIl2V1yTgNjaMlS0mPGgqmp5rg4t7o35QDXe1PFrkh3A1BL51pdfTZobxf1+dAeq7oCUxkVyMkrMP9fVOh2AwgsZZRSMSL+mykXcEykH3td+feY/vr/UZX+hv+WYQ+zq69R6z6XiZq9hJPAn3f8X69UIhgQ/fAY/qmWUrk/V8n9xqPdHYVsU1AjtcQf4l+MVGI5heoAq1VSLrLKJ5/nd9DKgCP+VQgU8LBhWWjVZ/7EEf8TGI5O5j5DTZ3D2NwTLiwPqGyM/ifRAcNCZnJBSy7/Ow2pn+Hyb/8LDPxTh1sMpVbtxefsAWbpFnpW+jMUf33upUnOk/yj6u8DgJ7BxDEYOnoYQjaVv0Dnil+Ytlans9wX2autkTov7utubUk6Gpmnfig96zgr/PSsnXUskIr7UZnxDUgSyAW6YxDgc/8FlqSATGBusrnPJqSarvCCnvM8WIY4xlJ3mNVtg4iiHKwQLf97+d8QNxEKoSYXIC0UZeQT/yBUVWQQZjgEP/PIGXJ8PjRfMgSHjyJq2vTgYYrqvbqgyhfcEtJrPmid+yYmJQPxF3BKlQdac+AY9APDIeDlH/z5jC4pXGcZFpGOXNDhgEwET4mqOLMrWi+fp3Ur+ax6r7MmStx3jGPxk+RWRme4zvesymJV3WIXoaropjPxCWTKPKAVB5TrShr+TuUP6xSIVXFAKW/aecMJapt1uS+7tENCvk1DcYBawl5leaKRCkNFCFala7dW+LqKrIv+2myY8OoAZW70qzM2pfbM/rFxi9suJ97ssfIPRh1n1J00Pv7FyNwXXnxqzH8yHTfwruUxwLGWkaVbAtwV96WxDaUNpnR9EaDA0QNze//KPKE1rDJuZQWVVcnaCqKKoR8eUmZbQanCxnQw9tdj9agz6k3wj38pQrjjcGt8bP+MQ4gz89Woy2iAhGaOocZRZ+5NLxos9GXmgAIkRtW9A1uWjrTEMMSWvyvgOmZs09BGwymvfXFgyd315X+Gr4hxtVtkEbxZePGX71qxOO/ied7WOBuMq0ZWXbevtTL1T/im9Ynsa4OqBFeVrc/CFD2p6AuVVUU3OjM/OfzSKAIEQmDsciPv9Szc0mC5O0pdobzBHRdY9KUX/nTGgWv3rMivGV+fDmWygU3+qLlkxM0VnLbplcVgNuO19RBsOruXt06PT2dlqWIPBov6xYpWZsNkryy2QRel0O+4wzr6LweTcMCIc2dJdyJbDDEKoWJTY/cShzsWxC7v7+BW+fpl+5rb+y1CGtc0Mx4Z3RYgmAR6ewOEOCO5dPT3S/c3t/c6lDrD+SbGIuKtApRgp78rTEhqJh2rr4E2wfa8XtTARVsmS2kTV9qswl211zoqkmywolYqlLTw/5EKgEfd6Z9eeHVYR67DeGuoa2xbwhKZsHq8Vh5xkB6++siPp93E/17odZt3DFwWR5YAeby/sakY4gSC7dlE/3iKovhlAx3MLV/8vwi68iYfUd5kt5odXLUo78KLaPG4OimtX32v+op1zqL0FRX14gxeZFt2fl/W0Blrzt8wVX9J9IkfHT21T5R2qD7RHVR9AlO/TzTsXJWLd463Usi0Ikx4oDlTq44E2rNin+EEQpnIeH8F/ATatXzJgSLgTDSkG1a2uejXqKqqZSNepkfQOcUPpnrqalp1lc6+U7pKIaK6SnOye6nDLQPHLu8TXWXuj0v3Ma8jRqeWIWRzvGyKeJX6QhyW7WsgBKVzU053kNLkjDq59JwlcTLVlbJ1e6Eq3TjdJOp7wTaH4pgOsnSPR6lqBXV12qa9RdTppSNpE86+D6H/R1Xq97JjEQ6qlwW7VS/bNjbfy47+aNqdu+X/SnWq7td3eRwMizsT/clm1f3CbbXu19/J3Lmf/p+tSA2LaHq7ysDeo40oZvTiBcP9bdzPwF4ag5Gz3H7lnTJJONvNVqfMCdDTZ7XBqryibhKgWOsVLbq1YW2x0GLR6FBfAPCL3VcVOkWLs91EhU5RA/7tbDdOzTXXa6I8quPwKA5oBW2PzDDdHTol61hd0rEaUa2ackz5UhV+VaSWNqHmSfkdZqRUl6ft7HOQvdtBlwyOUs+G7uKWjZbz+c7tb1cZL4bzDVy3UFfHxi2cWAfPmx59+zs4+YHMRlZN1GUj9SpiS+Qi2y8TdUH5h8xbNEltHRPW2wuW5wwdBIszb7yzweOoNFjhpmxaCYTWo9Kq8lGv6PLUet5Z5SXDLxqUs85V9mIAgecr+dnaLlLp2SQgMnVZn0zOZsGff/ViEFHvifux9iv0fq1ZrL54tVwgNYq5ymSiEplUOYzyrXnFJodxZ3jUI9zpSIsTrTYvyffoXVFssRxqjJXKjvNsV5NtU97m6GPqOf+B7kGPaKPiOcW6N+uJVavKftF4Hdc06OdPYer5vTDM5zmUo7bucDi0E3RTpxziDZwJQNJ5xUmaehnYukugIcmZDSSbRw+5lB88ODnY3WVTszETcAOMCvwi5acc6867C7O7dggZZ2c912OEkFjE5yW8B56GPVqHkLUpqFYGB2LyXzziJy70o9whxeMSfWhg0N8SluM8gvYlMknHBRsM+6LLkiOG0TiyeQtgEzV2j67OfWiidM9TrUXkIkwQJuToPwtpENqIZoEiBCA0gjffD1KK1hN/hOfQB9WKYIdan6yR/uVOADF5rDJDazExlYBsPm2OejfAUPWNQ/6+gfmkO3LzDXwomAyQlcuNeJCZFKWWBkkkbYR29bUFDKy3OLP7HtVbkl4iMbHSsAynCefHHRoNE4r04O7BfMAgToONJlHOaEFig53t0J7OSHaBl4uARSweyPVmAjHLHljY3D9+GXieFYgUuwNeomUXAaxTSkWR/nQ4nAx19aeg43Hi+L30B5V3ZkzJna0d/807M6S1Hc4U5F9FGPG1jCrL6/9VOwwzL/yKDGSjUPkXjoNChFBAiBscBRyn/Gv/r+NZ5V+84Fsx5m517Qcc1+ntoQRxo7PL0z35fZdl7KnXJqnebjre+Zd56Gevzgu/8uKs9Hnht1z8+coXVkjpswsew/doL9VuEvrcdO2mDFQZfeMwXH0bhZqcy+iszHOrzKaLpTtVWdRVDlk1RWrdfhUXaikm6smPNaMqHiHbM1IOWVTc5xxmEP3Nb8ALYfN5j5nE4ajrUGf/1gE0MsaJ3G8y0AKtvbMGpcbLrowke9/zLpvyv/sAhwiNoLsFL/JZMKNGY8Bi7lI+LqmRK5enkufsFwcXHuzQ4yZaNPM3gPDiPgOjePy9NuNEn14J+ANQ7N+ii0dEesOJ9jh66J2cODS24g3nRSIFgzLC+aISLJq5FWyDcQJxuiAwqowUaxpr3JJxKP5MiFTM8cwsEKqbFlzTsCwtfCuUwY1JRJZNofq3Buzw9wbtXvxi3xrA4tVlrADUXuM3Ikf9XIVOPQ5/zdsD8DpY/fHzCXcI+uoXe/sZs922NgQkudnyiDk9W9Qjxl/5KoGPQGZnn+MSdP7eK1+iiwKwbz84HdQjzMy17ooMxU97q0ANp21qT8zeHWsTsmUOxIQP/6JeN6GcfV79qr7LRqeACw+1Saxbq2+dOIjE+yB6z+a1E+4rb9FRp/XBDwKxOBjvew9BzbklVGD28r3nEQct9V888c6uLkReetZvnphaeiC1eQthhNsb16/c+iZZEC2jxUEhxBfr3zxR6bWXaNcJbK68bHtcYlPpUir0qBpTPTUdatiAaBV18LRlX3TnRZLGHZemYBw2yp5lxKw7bowTQr7+NdTeKin2XpYJzrky0CuXl1KNUFp+tcCNu1ddA8Xi2fdb9CZSfu9/IrvBtBrsrOxTjRMtsHosQGxGDp13xaU6cSicF+trQP0CTZrJPDy7Od28kFHG7QVjl7/krDssbMFvRVflppuaZrI+xo8JjBdp+7TL5Wz2nFWy/bXKeYBCSH7GT2F4j0PdSzTVoToarmXFVPxXVSnS++ARn3CZ4y6oHNNYhELFreoyR4/Ah+3yVzJ5dMxxylcVG3/8I9v+za9iIUcPkiA1KEo3O8765ma6eo3jvCOTx4mVF0uHXTinxy5xPMINh9pWPMa4M3U0taARveb19tUHk6UcrJJufPzS5cbRS/6eBtbPOJx4+xf4m9P626IhVjBiDgLpFK5eTYnjOuvXYi5TCV9cEM47NOeB4wCkUtKBcX6/8PgUIi4AIGTumCjuLY5vN+E//6h2+X0YHhMj5oXC89kQ83f5ZUZKar7+ggmT/clLTIJV/8Z/30lXn3XoV9zJIZEooYL5SNVdR+uHu/fu1Zfl9+dOmcZsuTaMcWDdopbJ7buyiQDX3caGQsFxDnaNHjxoOf+jZcnb3mrbH/xgJm/pDmpI7d4lnODgZPD+BzjhzNu0inrR0vmVvMoISfjAvGi9t8JbtKchwAeLEVsnvQXp0k/uqLjuCtzBRTbHgNo7kLyWvCAJhNa3t/O1K0R7O3xogVudzcRV4KLWbGRjqeVcFRbtRbZHAY1/JlRSG0xztJCFqDAV9am4Fy4JuE4Dk80nzV2OAoNxmbq886XjobNvjD9zrOM3vnxJsb9h4tr70H8G4GOOvfUGAbsD33AdYHmLpJpHGccBfWEgE0TcG9gWXRHZsLB78Kza44xHdQtQx90tNod9gfJuAOvI+mA2542qdvch5aldKtrduYtUu6s1jOGTD8XwOW8mY6fOFVWR+jy3uVqHrYfdT+FdA32TPWO1myuXc+I8YBWtS45yYl11VSRo6yzgEQEWzrUsuyBWmzhK1C+bGYpJmPe8KpXmQR198ikB9JFIx89+bDnlpkiDyx2XmALntP15EvCbDmde8lBSGjLLgP5ixGFG3kzYMq6wZXGrnwNboQbuurGNCt7904GOCAJHZ9X5ZP+E7bbKX4GruJRIIHeNtklmlOQCOaq0U/rJYaUewVrW8xcOQFQGIc5OmmfDo075zp5OjolhA2QzakPs49EtsWJXpj7oUN9b1y/s39rbVfkNzmS2bBYz7O2dYoZ9DfNKgwQF1H4oShlX6Bje+cuLwqOaDzYckR108Z5ETJU2aXtBds2DQ2CptyEAfEjovV3ovfRkvdsqa03Z+pcli4PaANuv7PlpTef0YISv/ENOuZBrpRgIcCOVjodN4qzsH9y8zXE+n80TrFMHNTW0JCP1sYVa8EElxp/qzS777nesa6k3PIwRsjjt6uCUU29mLRa6Dg5hajMEvCcH9TEFpxZxUJnwZQOQ1kf8D3UJjxRrXFgfSpBcH+4fHowOiv/O8/939uWQLCdKiXICS6Qhv4y89j8Bw0CqjgAAAAEAAAEHAKcABgAAAAAAAgAwAEAAdwAAAJYLlwAAAAAAAAAWABYAFgAWAO8CdgNfBDkFfAaCB5cIpQk+CegK/gvIDOENqA6BD2YQrRHeE1gUJBT7Fb4WyxfrGMsZihqyGrIb6x2jHq4fyiAKILQg9CGeIeEiXiKLIy0jsSPWJCUkeCTLJTIlfSXJJicmiybaJyonayetKAMoXSjoKW4pyCoKKngq5SteK9osBCwuLFgsgizgLT4tmy3zLlEupi7wL0EvxTB9MQQxZDHJMiYyjDLyM0UzxDRjNLU0yjUDNSc1jjW+NgQ2VjZsNqk20TcbN003gTfHOA44hjjSOWc53zp3Oto7ITtsO7U8ADxGPJk89D1IPZU+FD6VPy8/oEAUQJxBIEGWQgVCV0K0QxZDgEQFRIxE/UV1RgdGlkcQR35HokfFSEdJEEl2SbdJ6Uo/SnVKoErRSxNLcEvfTEFMtkzrTSNNaE2xTgNOL05wTrVO1E9hT5xP3FAeUGFQt1D+UUtRwlI6UqRTDFNnU7FT/VSIVRFVfFXlVkdWqVc8V8FYUljlWYdaKVqQWwJbjlwXXE9chl2mXdJd+l4jXkpeb16YXrhe4F8CXzRfVl90X6FfxmALYGJgqWEmYVthsGIHYlBi3GNqY8xkK2UTZf1md2byZ0JnkmgoaL9pgGo6ayRsCWxsbNFtXG3lbhlub26yby9vlm/+cLdxS3HZcotzL3PDdGt1CHWEdgJ2FnYqdjgAAQAAAAEAAJg3f2lfDzz1AAsD6AAAAADYspj5AAAAANiymPn21f4xCSoD6wAAAAgAAgAAAAAAAHjafZM1kBRBGIVf9+Du7u4O3UO0hLh7hmXkRUS05EW6ETlOunkVIZZuhPu539x7ez1bfatVX/1uOzMYxAHwZ04D1GHfY74tYSblVjKP+ix7G7OSGdhK5pgiFpluTKG+RLHkJeYzbxHtDcybJ1mt24VVjK+XTpB8x+Sgq+dqxudD8/5iZvIG62jvsKuwY/rqrHP6alig9xP5wn6O+ZvNQsxSnPW7mEtf9tOUs5+MHbEPGe9GgRzlHE+OBOkmXYUnZ4O9cfJ9pNKZKxz1+WQP53hhnqBMtudSPWocw8VYRqwP8lSQfvIRFMglzdG+usM8wz3al6in5CbxvMfloIKbZkn22xSZ25395m3LyFLVEi8ZOBLkQeIj5pI5db6LgQuC809I1uEDu5Qb4UWUl/e5FNkFkka4GHubvKf+QHr2tsp7QlQfw+fk7C6kqhFmSa3P44ALeNuPi2J8F+oluEBt38mH4YmrnxPd4+oI/rr4I0zTuxLDeyDyHN54Saj/BF37vMR+vjOXyD7ZvC3eqX52KtrsnNZxKY6jovcn+51/N1Fde8IzNbsAgTvAGFH7rWgAAHjaY2BkYGB+/c+QIYpT9tvV/3s5tYAiKICRHQChNAZieNpjYGL6wjiBgZWBgamLaQ8DA0MPhGZ8wGDIyMSABBoYGN4LMLx5C+MHpLmmMDgwKLz/z6zw34Ihivk143kFBob+OGaQLNNqIKHAwAgAVSISGQAAeNpkz1OYG0AUBeDJBrXt3JOd5OvUtm0bL7Vt27Zt27bN2bmpbTuq28vz+gshrD82ubCIYGworKGUXNisJQP/tOgrHKK8cIraooWYKxaJ1eKFxRN2OCzCarUa6wtnNopFHspMOakQjaXxNINm01xaQKtpHW2hHbSHDtIZ0mToBt2CBXbEQFzER0KkgBvZkA+FURwlURoVUAU1UBfN0BId0AX9MAJjMQPzsBxrsAlbsROHcAQXoXETT12u8KMyuowt48vEsr2cJzfIzXKX3CuPu+2eeB5n6seqvuqtRqrJars6rE7eiHIjzo1kz30+nxABT6H/PGF/ebL/8EwPeebTClpLm2k77ab9dJiu//LY/vA4kRV5UeiHpzwqoXrA0zjgaY3O6ImhGIPpmIWlWIn12IrtIc8xXAbjngt/eNrJuXJ9wLPzH08vNUhNUpvUIXXihuNG9BsJn38NgG77Dvg2+Pr4evg6+DJ/+/K1/tdSX8O/lPmSy/vWm9xr58/8gV/wfJ7H03kqT+HJPIZH83AeyoN5IA/gbtyVO3MnrsHVuDyX5lJckgtzQc7C6Vixh90sGUycipNxXI7NsTgGR2ErC/PevDMvzHPz1Dw2j8wtc9PcMF5jzDWzKMKid+sdeqvepOvpjNqpU+okOpH2j+/WlZvHb+6+9vFa/bXEa9HXgq+ZXtO+pq7wTuGNwgtBdmDqG2aAkQ2IYWwmIMGErgCUBQkAFlY2dg5OLm4eXj5+AUEhYRFRMXEJSSlpGVl0lXKUuFURia2ALpkHIuSRRW7gN01FFcYCABVRErIAAHjarFXlmutGDB2HluEyuCDfudlu47EvM9tx0suL32cX7aXf5fYZ/DRyyv/6aD1yskylhWhGo5GOjqQJK0OsluMoIXr5u5qcf8mNxY9jvmnzbJJuUL4cc6WZ/TGshtXqql6xHYdVwirU7Z6yVJgGHluGKd3wuGJojfjPOa7NfNybtUbDaDVa+CR2tGPnMfHcXOzw08Qmviuru0lCRd8oW+NZqAY74qtyfhWWcBYTQOQZ8ehcnEJDcjYqq9uyup3aaZIkNltukmhWc/F6knhcNQQ/tWYGQPVwLua6DrihA8BP2Eo9rhkNXLRW1FcCkpN+cPnEebTK1ZYDfUg55fBdXK03kdZ8nM7Z2UIS6wSnTxdjHNmS1CCyx3XDQ6HbU5U+NQ1sdaBBsQ4yrqxssLUK/1xveTxkSECOhau/19QKiQd+miZikrZLkMOmNzSmwihoOVtkj5jd5I/2vViuhh4ZpxTlOqO1AVPKFjaZbIDcRMnVps7a/RBjh1zny7ilcOugS+OmTKg3NlqNYsfWTtJyPJ4wRaUS8VrW9njSwJCIx8MXch0LHSQ8IbsF7Caw83gKbqZLSggMrCIuT4Yp5SnxJEjzeNq8XIqL2lo7ucwT6/pHj0+Yl/Pxy8W+0nagP1XqT5pCTYXLcTE1hfplAU+50qRo3aAYl48JfLB1VhPymIsLIQ/ZBnlOZdiWo3Ftc233z3EF/6UmQSZd4O9Cu7tUhxSwUOqUBlshq8c9y7LKWp0yqlCVaCnmKR1QxGM64FEETgNKEf6X6WlLTaogyNPiZMPl71z7Emg6jdxOuR6fMYUl8ix4FnnOFFWR501RE3nBFHWRF03REGmbYkjkO6YYFvmuKUZEfmjIZ+szj1vl4iuP3XLxtcfvGcUT7r/A+D4wvgffBIwiHWAUeQkYRWpgFHkZGEU2gVHkDDCK/AAYRc4Co0hj6GHZap5B2OmUQoEQSjkg2Ui/+YY9lz1M0hVD1KVDKqGzu1qesSMt0EoeX90qj3WWr7SKunUmiq8mZYLXSmYOPb5u6FaJ9wbsrGh/EEwYgh+sV2d/VvLTfqzvFtetM8joJvIH4IPxsgqzux7fMv65hx7fPs4UTbgK8zsoiTrbJJ+6Mryg8nmed3UX0x6vIH+2MNG3LevMacS/a4AKA4K/0oRHQnc99zXRwxy+7m0fk9/3wTUdiBVxKvP+dD7+qUJVsn+qzFQvJoG8gcMhBqy01h1MH6q5By2Bjf5jXwnTNc3VMFubi7HJbKxTeYP23sk0IfSM7qCGGhE6yAuijJLSQUG0RNE4SSG5joaq7/MKj5JRswSBz7n+K7cdCyW/LxwQNPWZAQf6Iah5IGrkqgOcdXRXgkm1Hoq+TGDAqFqKfXqoHRuaTSWcbVPeaGL3fOe3b79QB3XwoDJa2vjRAEG4WZpUvp73prhZysdGky+sdfAwP0z8wrdOYwCfbKnndqqf7rY+0OaZ4bvugU4Dw/fcHIGlWYB2vw3K4rMP03Crw8DuVgtqtLqv7w7ctfFo4A3/F63Y/b+6T+BndwFL4wnZUW8nGWCMhIzN/DuSv6MHBOi7u1PuIuUz/eHsKZnDUz7fxCx+dIj+uSmUdfoU38L6heE7EC+FtQi8UicHikHYV0bakV9i+dr08M5g8QYLSxZvTc8qNX/1WNdmDgNAFISPoY+LBA0ccywzs2VmLkvQoHdWkM3z9ycWOxL6SwbzJ5HFEDkMkccQBcyXRBFDlDBEGUNUMD8SVQxRwxB1DNHA/Es0MUQLQ7QxRAfzLdHFED0M0ccQruU9p4d5wPDepYZaH1IjvZ5kfMoYW95LqicM1VNK9YxSOre815QuGEqXlNIVpXRteW8p3TCUbrWgOy3o3gofb66Sj6dv03twvesn55S8U+wzK3FNYwB42mPw3sFwIihiIyNjX+QGxp0cDBwMyQUbGdicNjEwMmiBGJu5WRk5ICwhZjCL3WkXMwNQmhPI5nDaxeAAYTMzuGxUYewIjNjg0BGxkTnFZaMaiLeLo4GBkcWhIzkkAqQkEgg287Iy8mjtYPzfuoGldyMTUB9rigsAaUMkpwAAAHjaY8AESkCoyqDKtPr/f6bVTKIMDEz7/r+FsABhWQdueNpMzKENAjEYR/H3fW2PnGhzRSDOgUWRMAEbnMXBKPhTDADBMwxzIFiBQP6i7pcnHrCyggEAE8hGzyQ7C45yYM1JjlQuciJzlbumZ9txlwujveSh+df/P2CxBx72lo2lz7JT/CYHDv6UIxv/yIkxVLlrevZz2MqFfZrlofnX3//bGnUtNw7DwH3WV+Dtmkzbup7eq0t68pZhZMRiojYi3f7+EKa368O2A+4uQHC5KCeV6SeO3sbvKGo0vteiRrNBK2xNP6f92HAec0ibeayCp+TmpyvyN9pOdE6Lse5xNtnWB3xyutje3+P+INXVWpG7taLqM0WqQVN0d1+7ITwLHHFlTZFTQzXUp1fqC18skN7OjEYjlWmXXOixkqxz736r6BvhpYT0deRaHAYj4xLaY8vVkHt09Rjq6Izvn6GC4CAx9vpqvzh3I10xSSA1MedWRIO8xxW5hGl/s0XdkvNrcuuaENLtg5uqqcTsXkt6qE2qz1ImX4emtcVd0m4qSJwrp+p1G1emdFZZk14VXO+utV6/wTIKlJiggkEfCRwIbxHjnZwRGjK+o+ZRUxZhBQzruTkI+4gFs+AYjFAimx4rBL90buLTnfM3iW0LR3vXRcSCemBkot8WfCD4BKdy05ace2BxHCCFFvc1FKJy/qwkzt5f+WqnZD3X1x47/AbjCCy7hfG5SLyVX5/+sH/h73fQ+8xg5IdCBg0n/hdyjqFu3jqHd/+x048zXt6w9EPOo8whAmEaXxf5jlnfpyFY+HT3M4QOtKj5xd9Q4hJILBEn+0i1L+hc0Mj/gahvGKmcse+Zvck0ENzzuclXw169iZacXZSe+9C59cghBD374SaUX76yF/MSNIayjMQ1zpD62H0/tM+4iF2PHaYQSNzJKAXXZVjE/s9KOMFKlnjddbiOruhbf6P5AVnrUJ8AAHjabMHTQQUAAEDRex+zbTzbftlaqr8GaLYaIW8QvzuHAH++bqnwD6OABAgSI06CJCnSZMiSI0+BIiXKVKhSo06DJi3adOjSo8+NAe6549kgDzwaMmzEqAMOOuSwI4465rgTTjrltDPOOue8Cy665LIrrrrmuhtuuuW2MeMmTJoybcasOfMWLFqybMWqNes2bNqyzYcdu/bsu+Oue+574KFHHnviqWeee8E3QfCArQAAAADs7Xzftm3bzLZd12wbGDFqzLgJk6ZMmzFrzrwFi5YsW7FqzboNm7Zs27Frz74Dh44cO3HqzLkLl65cu3Hrzr0Hj548e/HqzbsPn758+/Hrz7+AoJCwiKiYuISklLSMrJy8gqKSsoqqmrqGppa2jq6e/pAgeDBAAAgAANjtP0g2P9u2sUl3omLiEpJS0jKycvIKipGgpKyiqiaoa2hqaevo6ukbGBoZm5iamVtYWlnb2NrZOzg6Obu4url7eHp5+/j6/VucCxzJdSAAww938DCGxCA2asWwJ2julpqU4dMPpP6Av0LJNy/ng1JJ/bdfLqY5scrcPR+O683qclpKpVaxqx+NsuOsVl00XrQGHXoM4qDvFtN0eTtuts/3czQddvtnacaEGZuYFBq0mLFgRfayQo0OPSbM2LCLxaDFAR16DBgxYcaCFRt2sSbMWMWm0MwapXG43Zyuzx9Pm2cKVdQDusfrdLlepufD5bw4/r84744baRmNBi0OOKK7e95vps32MrFpx5unw+lwXEzkVRw0GnSYsGEXR40GLTr0WETn0GPAiAUbdtEr1GjQokOPBSs27GJQqDFgxIQZ2YsKE2as2LCLSaHGgBETFqzYsIvZoMUBRwyYMGO5WV+eT4vnveTFY8SEGQtWbNjFqlCjQYsDOvQYMGLCjA272BRqdOgxYMSEGQvWWWsM2tmhhNs/XWn1/fwElkAZAjV8K3cYvUZztz0cj5v18vL+67cxytub5+mw2L1cZSBbdFJfn8mrWNSsU+Os11Y0ajZy+TQ20VckDyM69BgwYsKMRYwjOjGP6NBjwIhJLCM6zFh+bEo59BgwYsGKDbuoFWp06DFgxIR5tveKDfsX2nVo4gABAAH//wAP",
"title": "$:/plugins/tiddlywiki/katex/fonts/KaTeX_AMS-Regular.woff",
"type": "application/font-woff"
},
"$:/plugins/tiddlywiki/katex/fonts/KaTeX_Caligraphic-Bold.woff": {
"text": "d09GRgABAAAAAC2wAA4AAAAAS3QAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAAjgAAAAFQAAABgRrFhEWNtYXAAACPUAAAAgwAAAWL22LJqY3Z0IAAAKmQAAAAaAAAAKgDTCp1mcGdtAAAkWAAABYsAAAuX2BTb8Gdhc3AAAC2oAAAACAAAAAgAAAAQZ2x5ZgAAAUQAACDJAAAzNHN/ZYFoZWFkAAAijAAAADYAAAA2FbN1UGhoZWEAACNgAAAAHwAAACQI0wONaG10eAAAIsQAAACZAAAAsHLTBXhsb2NhAAAiMAAAAFoAAABaEr4FKG1heHAAACIQAAAAIAAAACABSQw6bmFtZQAAKoAAAALBAAAHFP1QmCtwb3N0AAAtRAAAAGMAAACa0lYi83ByZXAAACnkAAAAfQAAAIqOiODGeNqVewVg29iy9pmDIsuSLNuyDInZDscYjtOmwaZJadtsyryUl+3yZWbmxwyX+T5mZmaGn5l5+0tWnGbhklXyOTOu9c3MN6AThFENIfRrOIoIEkj6MqeA8Nhg3ayb5bqZr33kRq2Go//v39Tg857syL3/gA34LWSgQVToZAtpTDCsIUCYAL6OCEE7CCEdHU9VWgblziDNlZqNVrtVr9fisXgsapNSPic4FzaP2v5Kre3tNhulZqkE3/G/n9w86yTscfnhseL3JafHHE0GwJjp36UzjAFkc+9Vd54wOOhHJ2+9CnKOo2aH6Ki54ub0sTE9566Yo3QoixCgLYTg38NvoyYa7FTCgKD7NeEuQohhxK5SwJhcQIQY5PjZ5tOFXJtzdzDSaLQarVqrXfe+l/+Vo9HgT5vnc6Wc/0ez2fBvp9nIc5HjPJ8vlbaAgsDOa1c1YVA8M0MVoccef2AvrguVzEyDUiSGIxUVAm/gghNKocQV+vM/h3mEmxrGmsmjFH/0I4QAUBkhQHWEMPNwXkQf/HIBMIW19c+Fts53sghxytEdRDGmtxAgjoBfJz5GFxBjBjueXP+c7QnmAkG69zUkO/lDQpzi3ZeT2t7uhOdmhqrZvqSbcIqG4LFBK1fyQeiZlIvuxYXwcPOsGWwEy/lcueQL+8u+ncue+aNdrQ83snr5bTPanbFyNOG08oTW4vHv0VVJECViUhn6MOb0N3+LCMro4zdGw9mt/oEhwDJUcm4qMgnaSKHdlzcNWwfsqCqAnjAFZpL4dsYJxkQxY5Qem+0PZwszMVlgHLJdH9uxe8M45HnGJjrRWY8B43mgBK8hJLhAfA8RRhnxMAEkEIjriCNGOLveBfIcohTvIEzx5ubG0uL8bLNeLWf7SrbkwRLxsQig8SDo3qTgQsT3/+U7T9nb9fe894L7G/VagIqPi7fpgxQEhPf+8+PlxTLV76xtPBLT+jPTWvhsxRnq3104+3oVBkqFobQmKJHLzWMRKR5KGKMlKkDuz2lVU8oODMNzkbF8pZIzw82j48OJ9PhA1aU0OpMbXawXqutHuFoYGc4NRCX/xiIz8fZ6n6kyzGyLY8yMiXhltIIQRv335nAG/hhNojnU6cxOA8UmAMVrBDDFdzkgGQQSVxQJUwo7DAAMOD41hdDU3NSsp1bPNkrZqWxL5cnBeOkggLwbDvBAXXroek0v4Dy48vnuv4LI8zijbXIR/3OFymxs/C1vppxgCicpIZTq3CXe21KZKgr13K1MVBGyHixcTRz7wNruL1ApIuscvwl7QvGYBO/yuYow+su/hNkY89aZY4Uw3AP8qbOAAE16/sE8/9hA1ztXNABJB47nQfAyMErXZEASuosEp1z4kcM4ZbveEmAJriOMuMD8OmKEsHOIMbKDCCObgNZX52Ym26PD2f5kImKqMtqADYXbg1DzfKEXKvnoPu0Etx14y4EbBe5yEEaCd0UCOFvBHvyGjrGz9pgRKVoERO3IdLs2++HHd2ZHyvkjWMswTGRaGovxhhHWrNGzZUkOxxlmACyyfGbzhA6/7YYxc9d0TJ9hmYR7ZeHmE9NjM9mKNOc5lYwJkUgCQtn02StOcVJlKvnUhbMYCE+mKMJozMsPOv4QGkBHUatTV4AzWEMUAaKwhwhClKDrCBDj4EUU534seQrHJ4vRcrmSF56HQCnv3ZyPiNinkqgdoBPwiLfSizNRKvuCQSLxPSiInVIJPmxTWx1aNGMEcLw+cGV6arE5srQy8fjCytvNkni8MFOQokUnFhriVHEaRMNpM0QFCHxSoQP9Q3fCOJOen7q1ccONFdb/5j3nb2ng3swUisnyH0SwHBq6daRgaWWghq4nnlir+LzS8fxmBP4KTaGpTnscCE4BEOzfPb2LCAZMPAgAHkcIY3QOIeTfPMKbE62RoVLeda4xHh2M2PGadyvxWo89fCDuk0f3BvN5Lg7ItdzoMe731aUcgw+/GYcwPnlyQqGAWSHuFBiw88nZHH3kPUySGWW2T64FTBQjyhj8hiAYA05ZmF68tP6GymxNstPpmIh/8J1DS0UgdNIhDDOJ/ksqEU4Q2bfxh1EZtdEaGukMLjbyGj1cB1C4XwhMTkysTa4NDWQSOf/+ivahlFAKCCCgvHqtR4yeOWPEI8CeaePeLqm1mgFPlsrlnL8Rw/rbHq0OL2+YyWVKo04moyUGJ3SKLX5pd0uSGjPPHp24YLE+Y2bZ4KUnZleryopRVRThDh3/6auPKeb2QiXXKBMayg7XJsasaJ/AcGb51BjHJH0JpPEGHg6p6ajaX9F4/vlrw6OilJDKcpxxd2h2ZhZ1/X0EezGDxtBx9MMdddbCnCmAAXv5WummYfDh9fI18nnC4wcBntoVxDnZCYoPL2GnPcm8L0kA730t0U71JVIcEeDEJx6Ez/medaGrtuXl7SigI53GeCWfiIdUztAYjEke48S7JVkX6i5ntNrN3AtSddcY3lYvcUW6ZCMCc2Rwvd7qkVDpP65te6GUi5emSo5NgLnlSPLSTH9KDS1UxupEo/2JjerE905S5pSiBmEEALtu0k6o/QpQkv+D+YVMsZguxrRCYm3TEPkQn+lfbpeGykctG7g9e+4j/+5UEt+GiK4pOWVtXSllVEXtX1SG5pNOGWFUvve75K/xf0CL6BT63o6SA0K3QCa+AcoerHVEqEyJvMcBS0zCbA8xITGxi2QkYVm6hkABBOgyolTsICF04cE82dNCXMIS9+DGvu7uIV3+8rrbnSSg1aX52cn22MjgQF86aoc0WUKLsKj2sPfh88DdJ/N2ux6AfpABbSveo/qA/L3Lt005X+5aAVrTuOkFfqncFPw9lfmEGZLDjJYdhgdvfuAZlqbKXBqrRKaE4WjY1IRMnaGEagynj+Wyk7rs8Pe/X1YvzpTAsZLrD6oUIHxqfHrYnTc1iEVSoL7+x/9I0hQ5WuVAgJHU657/2eXNeEiLg6S46UifDnnjRgE0/dmqAyMSu/hmqcDC7vt8Hqx4/PCP+Oc9z/1Yx24BZhNlTPEyIPpAv59+9i0zijCjDNOuK1PkgSoRSSZ7AAixHQ6MhdaRJJEdAYTovvM3X6yBgCE4UEQAL6e33TGuXLq4c/rkQHmwmspZipdjih67+MW8b4tevdXtSoLLWw8sk/Oj4iAkPFPM4S5VeebpVXb3mbiXnzzL4emHtqQBESum9Oxr86HRE8nG1VSqHomXiyltxK3ECYlV3fiY9nbZMuMqpoI88mojUslMA3unKj/JccNOPfQWKbZaS2OIDjXV+Yk3/OKxY9wKl3ShDrhKMluIFr+w9+j5PiOFLcneuPOJTzpa1EplxCIRFrkO1KONMIZwprOzwWn10fV5N3ZGh2RIEBKODpGCbyv73r/F5/DPojk03ZkYrWJC/XSNCabET9eY+CgzjHzXB8w8sDH24AXQ4Xhl0B1uG37XVDxUw/T43KPzgEP8Ld6rVfbBDvgkagdejqvJSHXqyjVhPfQ0Ca+++99ioDxEM+ECZwXVOuJKVAHZFbh8fW7FwAujndnx8Z+MqPGR4qwMb3g0Yz9z+2ejAMIaiUQia3o8S2hImKMJHi4sn3uFHXlkstKsIYxshMhT+DOohhbRF9c/53heqLoqBoSBcLyWDN6x4N12IJDZb4p8CgAEGF3vErKguMfeOU+qgLxthu4gYJx1hbt4vUi2U/laYj7Hrwug1KB+12Ui1JltN1ANjcfeVk1L3BmsB/Q8j30Qc4G78p6Ldq9al7npgTmgUfSK53LURzugm0fCRJnop/J2CEqnLU5paMrVaByHqoOt7VfCoptYxlAfbu994s+VbTzw/P9lJpacqzL7iaePJzShchEtSdj++79S5Yhlh7idZ9giytDgQGJYArD+fPPkpdVdDeCtn7UAxL/6Oxuv188PI0DFe/8RP+H52gPoZOdEEgAPAyVTwDhZQxgBwn6FCBSIH+AcKN9FPkhd1gWfdQG6RUVoPaDacrHsvVJTEk8NRu5nrn0WjdsH2BzUy1G7y7r7HtlLad7KPnjRnk6vKvmzvvzM8NsXuQTOfNRRZMByp8JVRzXc8mTCiUZODMSoPO6GMxtDWQkemKw2M3Ykk0mmG+87oeaG009Q92kKNyLDhc7c6IIAkGVTi4Sk/ITAOuujtgenU055X8zikpWXGaa10jCVh8fclK1Y2DTSjQ0VRN+2aTxyhiBA5r1/IN/n+fAWKOufMzzX08sAZBo400BCZC3ZWxD7C9uBWBlhYBDkP+CI8esUALpe5wGKkLSDJEmXfId2PfHhA3EukOB3EPP+ZOLqV1UqeUqDL1YiFAATuN7TPqzSGfv60pKEzu3rIGlz24sK+/jq0SML85MTjfF8nxOzI5bMo4Pthme9DPWsvp9S87xHRT2+7vGQb9pB7NfV2cBH/LbLd4QDFjdPFfzSCgtI5hlOV08X6cf08bgS0szy1Anyv/9vRI9i6UifJStXBs8DiZQgqoNsLKct9uNKvdD3SIMZMb2ZkwuJCQxA/E9idHjnS18w9KgiqZbr5AgAxUaI8NgII4wyQbXNR7hiGW7FiH/LxOgSB6wWu7Og2r334u/GP+sh8ZMdHYGM4gC4CRyIl0llD/YBJCOM5Duoy2TdKQ4Ffp0BRYSSywghsSOBECHkG8r0DRVo4L1vRKUz/mJpRglld3pK6KU6nqH0k5vZSinnDhTLBYWnB6Exgnu0v1/5dCPOW3hRBvWW9w3ZPrCib8YgsgNqO+A8HDZy8eip8ZWkfHY1l55LqavZZEru35o6tqGWl49EhWJF2o5mT85lebbABh8bubhLws9du3VXVaQH0o5kD0WnnbiVFoBrusVxdmw333/8hlm8lB7BJns49ehbhuoaqIRwORyJpDCVCctu6272qUtJ69oPNCc5JOx+Mzo0EktbeiQbI0Fm/T3yBS9O9yC0/rkRD/NYGlS4BUidB4FHgbJJ4JStJV9uQ6LMj9uUpzaOVECgoj0NuvD7bEgFo3sKYBkEw+IGohJwyi8TAAjB8WTw/zUIgAp3kYrUu74uuvtympx3Z1p8p/sRm8nO9FdVQxLlVOIvUJd66sjX9szeB+jRh69e3j67uXHsSKM2MlQpptyopQgPiL0Qtwcj9+upgKSFsOv1rjscMHPUW2ntr/jO0RsUNYOSjIu8uN8BN/ZLinyvsu4WGT7pd6cIfMALxU89iuPDyQgw4YjHdskxN7SSdNTB1XC4qoQ5M4+6MTK19Vw2HFcUEK7Akm6fvqL1J0NMM0bKUWJkk/HJyfB0QU66mOoChlqtpLEKP2vJsc1bEji2myivXEiB+ieVaNWiqTv/euv0QAWwiOfsfH2KSpqlJ7BGLt9OEAZQvNTpV00ta/DqyZMrGGQ5Mq5iAC20cJyqeDBVTQ4iBPf+GUL4X3tetIxe3VF881eAULwWcHRZAoQp7s5v/YptVwDGsIPAczkOhLCd3qC3+GJJBJ4sAnz9sNx2J+53jNOT4yPlYj7rOqaMlmFZPrBakCW9wq5Wr+/zqdifRYh4/VAG5eIghdbrASEH5fWEg0W4uHL8VRAtDE2lvqhLoVZ66ZipRJNDR+Tbt+ShuotDVyZjg7/4j1SLJwvWwsTUYGlYHjx/Rh7JWPBfTCrF7PFMloAiiZCdE5BKtR79/JYCcpVYRCodUykAppoRTarixM++b1ZTohVZ+DHZvPce8nEPzVW021HSgMGnMLwWBFoOYeCA+V633PPrXsQQu9JNeNt+wgO/gHux0EHOQox1cxW74KttbXeU6kBislIt+jOttn2I9QI4Ath6RBZcB6gevg6YsRszv0bPzzpmrV+pQOeCUp+ZzLajXJhH3DhLLZ99aKyN3/gGXdJqCV2NiXylPGBac684tzmR3fCY0Bitx1/LYrQ2zcML9sfYP7uqiHBy3lTiOZNZWxNLfTrtwmplJQwg+i5e/NR83yMzA3p60naTqfAwQtjv78gRLx/l0DW03XlgtR9zOAUEFUGQBGBB1yRAnHBE9mQgghOxizgPBsPd2g3vUOhO/Qp5QBceXF5amB2s5q8VrjkxRUI5yCkv5oleF8zv92ZNwYPRaYCPd92fJfV6aZsLjxVapXKAqV/+9Tpr/7oWH5PfItu2wgSOpY5mVHWpPyWWh5LMHcSfSJLI+y64XI/1lQbXVIyl1Mp7z89gixUjqYmMauFwRCs8MVAU1thxJ2xG8q4u1JqMM14Pxo8SmVDJunbzbV86ZceHsSn0T37m9mU9FH/+zVEhz5zCLBxtzf3grBSNcDe7tVVTIGRMVIkSVjim2lK+L6xk6u++klZCGrdzVjenVL3O+j94yK+hH+zoWcBkBijHgCSyFgyRWogABuJnat9Ld7sJmu4iyoD6dbQETPLr6G6H7DUbMkZI91P8xDekKCGQUKDfU93uJACtLC0emZ5sNevj1VJ/xomhNVjzbRgPjHVwBTk8Foz5eK82L+V74yUh6r6B4r1U0HP+vODzMapkdNWO6+Gx4433LRNCsEoGxrl8thgjSVeEND2yUHHjPDPxqs1yiG+XYth457Kcnzzz7KgRGjJNIayYahd2WuMf3Jnf4gBj1UQo0TJIhLr9Wih59YduDGtgawDulEGkyQsahCJYSvrIl+79Llv1kL+FFjsLO2sYQR0IPQWMkDWEgEJAreBTK2FAmN+78Cdw4PKM6ez49asz+UTfiCW469erQZfSQ8aHJXDOHlhdAHCvRfbf6mSfD+6XSk1+n267V3lfpOTHw1CMSfFCSEnOdKIUpGM5XaZzq1kKd8rv+JUpTKQoD6cE1bBbTSQxJRK2J4ZjsYgc4XmhxOBfL6kdvRqSJcatsf7RIcYLS0tHvRKoKVG7dFLEKHD7I9/9Ay6Nj8jGf/yhYwAP5F/zCxOAccGMdJ7/67XWQFqLgUUlQWVsp+JcYD03Pv3Kj1P6t3NyQ+uXARNnbvWx95ixt3zn9+QkSJuSn/f+5b3fpSfJCjqLbnbUYxLmJAEU+VRd9Nw8jThBiN9BGBGOiU++QBG9ggC6LJ3x9wlHey8vsN0Jnz2zsT47PThQzCey/hPNdoByzxYZEt83x31uDmrVPO+5arkRzOVfDH2ux9WjuWpYMbPTFsjh6T4hcUzx1E7FdXWAyeVydnirWnEKFg8dG1exlus0NQAQS3mVcr01MH+WkuzC9LKq57Jpx9LUd+Y0584Xf8IJRfOYsxD9zK+fGx4xAcjf/9Ur64t9RjG/JBNWVVnq0d/9/SEADDgxRkjk6NYzf6UY3/fJj9gkaqeTs5aGAM17HH63yyTtTiMMgGaBAV5DCANGsIeAYWC7Pk133ZdcQN1Z2tJiX7VayXGeGAR/hCZeNDHr0fX92D2o6fe39uXtXi/ubTXx358+YYcMMxFV1eF6AuS+8Q9uWE7GWD8zUHzbuaefyVjnnzO5kfzYQ1mbKyYVIjQ1Pzgtgxx5+nzKvf1O+PADe4oSzwzb6gCJMJIZOn4zRKjxyh87s/6GoRmsf8vZTH+rdfnjDZNgSdLTfZnpEzeoTkt9G5eY/ZmnEMJexf7T5IRXHdTROnpHx4oChiXgeD7gWOrPLeN+1XVQAvQ4EgFFuwIQepwddMe+Gw59DUlEAMg5T7KbFwlsdsf1RxfazeHBbMq2ZIHqUJd6JGpFWvmXHfi0awdPmrvUEPABeJwatbvywhfrzes/ETeei2MonXrJ4KdSyTzzVHNOcn/lycWGJpl1yVyEH+88HsIAoQLX+guvaxVCgPWjFitDHIrWy0x/zP7ygpO88F43nKi/WouV8GP9FCSNPfO2KLewNNzX5mZYDCBAz97bJW/3/O8K+qeOtglIWqwVCKF4/5hDU/aWQOp6IpWAephRInXJlUukOxiSuoMh9jiSpO5DxFB3ClH2lKcRkmQJyXtIBkmG3W/qIzoLL9EWEohdJHwS20XfwGf4ze+VS+VyqVoc3ikbfvNbPJzODj3xih0ubg4qk0Nj//v00iuHDp0P2O+VYvF6DU+48czW4lg6aixtJ+pve3jXTZIwrThnbheHL+68mqzcOuIygqXVvBaG6MNj01Iur6y9ant0qJqlcistZe49tynDk5dmW83jCj65KJp/YxmxlCMoDl1db06/8tyiyYHbr7t8cm17Y7VBommJSO44lmROTrRdBUAqp2QFTC5FyhIG9ZmTD4vQ5Wfd5J0ZQ1/cZEFX/B/IH/tdMfpEJ+IAhnN1LKQjQNnhEGsjDBJgaQ9JAiQffAbCx5kCOwgj+f4kiiu9Oqb5jWgiIgdFe0+v+9Dm9s3Llx44u7ayMD87XeqLR4OWVb0fgc18zqf/l5261upBAu/ZTfTyR3COKFjtGfMlBg0GlPlo78N/MqU+G2FgsDMR+cWBSortxNKJS/mCIeHQwMTVkND64rTSL0lD5ZEhB/Pk1HvmonIxGc1VTSMsG1HimZc7r+6zmpNPxwBHN/JmeNE0eQJUiCogReSXBLJiWWkzHVWnxo9WuWLNjPB1FfeVTCwZ8bEJEiomj245MVlgU3DbN7Zo9xVGLYsS++d+40IqVvZtnfDmvb/vxfiD6OmOUgNCMQDqRXgBEYooucPBNwnsds/V9B4udM8e6d3GNRBDe19TbrsTAbR1YmZqfLRSMnT0IDwo/BaiFg9w7x0Q6EEdXM2DBqPHn71ZsWeM++cKAqu+8BlP6zddrIRdQbAoTp6eGs7paqT/kaViQcVCPz5x/tKV8qhQlrIpGmL2+EhinBvhsBsbfbaSvrB1+w1l5cFWWS+eiUPO0LWIQUVI545TMtWMY2cSg8V4Ol327BKOVY+nhu1Iw4nERrBJLRYPcRbSJCPnxiKGbgyMlQZn9ipNCI+k6256NSl1a9WfJF/Ev4cW0d2OHgHAGBAZBYp6XUKGAyKUdEtW+ngXTAaEwDYCCJHuuTAM+O4LpXyBs8jvhT1ZIBtdzGemR4bzacvUZP8Bpzg8KGi3+r3f7YMRDs/lRd77M+fnqPvNnC86h7sa+V5kzcaJfWv6aHgbrm/LmT6uOLg6fQxTApizSKI/fH28jp28IqyjOQfLORuMZGicsdA/kxgQpZ2JwO+YXN6Yz+sYgEc4tpL5cQkAfvE3pa2lmBQvkohkrizi+cfqvy2HQprB5UhF4X7l+d/v/UtCPIY6jX4leLSjd4CiYcB0FBgma8nDCxyT3pyuigQg8DhDAkQB+WSDgeJdErQA/oE6DoFXB5+bIwAC7iKBxF1fB931NOjdF0h2Sl9ViF9AnOvr+wHQHd2c3Dy6MD1ZHy/knJgi0Gk4LR9upHs0dPDgzV/0DXVoR9jxXu9xUNUdeh7Se3YXTtjZ3XFszabl/rYuu7ZjlE781BRNqGp4JRnPCmukGGbCqSSSEXv2SP4IYe4/fMqNz9uR0WpYGGF7FFesUCwzzKBdXnZWXtPM9bVcK974Z3vyXDIZL5vxlXDz9R+anTdULQpWKGpnsjBhx5rX/rPWd2Fktv3YhdGoZSuJgGm+SLhnswba/MqwjikGz9MTHsYuQoAB+W0tBUx3fU/uTUk7NoHgQCj2UPWUPGjpQ9sddWggm/FPOjIe64LnQxfwQHwfg5LH3r1TrYcyddMnD1wu1RIzOSl6sr4UlQCsD5+u6oQ0co5fxEuTi/L4vdsnLGFRat9y8EbEHpMwm3/g5+cu1vS9h+tFLpJ5kk/PWOrWTKbwq3/ywIjaGtw+NQTSkhncK/2Kd6+X0ZmvLGvBvXajOokYwoh17xUd3CtGqDvDj/r/ZP4wF7PDd6tfvHDm1ERrfCzp5rh//qhxcApBROdwYPJuQ+MnODsWAHEYh+CZ9wEMgu8nOc9PsDjIk03DXyklNirj1UsmxURo/OkrA2KtoIEKQqEXsxSHn27pgkDejctWThutYXV880cWNYVTherTZQ76d/7xqCKxCJg3kwVJw5eddmrur1sj7ohOJF28+9sWCVgQbxIBEI4pf/HPXG699XYqKilOPy44TjuM16cMY+Pqd3xlVVDMB3/jl1+XeP5//VNd0KLO178P+o5aiu9REwjIOzyU76LXdtSVAUxRGwjF+1APvjTWD7f+QdfPYX/4msMvjWFC73rCxOPY+5PXvd0L23MzrUZtLNsnc3QX7vrhC/ueVqt3kfeBbh2ksW7sHtQcUW8z1qs4DlWPvUNTvQM8gXz+0AOyVnk/K/rkDHKsM1iallTNsdMq6KvbJu8PMUKkjWJ6MGrmFj+WAYuncrLIZR3s1NfVYkGUI6okYwrATzyV4xJ1DDs7JCJyshiN9G/8vs5BcC5bqivLJTxmOlN6CKjlzpI3URiYNAS1KciS7Ixn3UTKSU2cMxn+JAxUaSwSdcZVwFrJHj3psbQ6tpgRVJYIk+SwnVVx3olnEm7nKcEwXViNFkyV274NC/cukLRnwzPoyY5+ChAYwNAqcNbLg31YYAQMkP9QlAPzC3pEOb1yQBG5gCKw2I8d7sUOp5SfQ5zTC77sVrdvW+jMTDVqxUI6KRg6A2ekA96t1+7XEPXa/dq9N8/tlYz+deiAcK9e8XNjQCreJfiqEzvxoGM3qunEcEQGXAw9NKJO5BQ1EyVKvSNjffhte++41NbCzRWVlm2dqel0ViJug6XiHOQFO12sKSU8aBnxNRYaSjcvfvfpnFQK7z7VJ6dLjp6cUmBuVI6XRr/9u99w9YhO5kZskZvz+NgCnqFWmLGIAegN1UxeCJ9d0QhC5KyH8mNwPmi/wiEAdHUAM7oIQiJrweOog2Wtt3ywwvdXtvdPXDQQdAv1PSQxwSSxFwKqccwkyq7rgBDeIcFcQgh5R1WwLBtyr/ervVjXE9WDYxuHPuXFmv73a391TaQxqp319Dm8jPrX0tSAM89bPFX0Uk3/cXaeooduX7549szpUyePH12YnWjURkfKuZTrRDQFPUYfC/sUUMp369H7Kdln48OthYjXavV9VzoYmQZHhusveLIm9g9Te1evTssfTGjqdf893n3dWjxhUqWdNS2HmLNXHk+kfy5RiBokljxzM0aoyrJyCIt6RmAx7LCz701Pxf8wX4kJZacvTtRWdmkrNF/9d+lWStMSWij/gTcmRkdNJpVscWQhMdcy8RyT7eSAKsDgUru2oTKKTa3v0uUYABcaluw8UKAbe3EAgvPpVNtgamUzMaNjX1I1dHfvW2IgQlwxkhQ7MxMRhJH3gv+Kbuz/HAsLfo5lvFmPZr3fN2Dohv/alxt6Obm6Lxe8EAJfzpPy5fgXAUEg4+/9f/0HvxQAAAAAAQAAACwAcwADAAAAAAACAB4ALgB3AAAAhAuXAAAAAAAAABYAFgAWABYAawDKAXgCEAKIAyYDpAQYBJ4FXwYoBv4HdQg0CNcJ0AqrC84MdQ0YDdUOkg9KD/oQhBE6EjYTLBPoFIcVYRXXFooXbBgfGWQZZBl4GYwZmgAAAAEAAAABAADo04uzXw889QALA+gAAAAA2LKY+wAAAADYspj7/+X/LQVJA0gAAQAIAAIAAAAAAAB42i3KAQbCcBzF8e9+vwKB+MOAUGsls5YosC4Q3SBSukIIJBAQoCNUF+gOHSEiRAiQYrB+GD7eezwyEgBvDGQgKZGZmJ6JTc0Miz4qMtYDTXkTygKna5xMaWhEVU4kerO9yZ9aoa9LQnW0yjMCPeYv3ZFqG6dnVnq33wVftgRyzb/ywC/t8bXLQH7UNSEiA+9jOsAc/i+oIKQAAAB42mNgZGBg9vivyxDFmvT/6b+LrJ5AEVSgAwCZbAZoAHjaY2Bi2se0h4GVgYGpC0gzMPRAaMYHDIaMTAxAwMEAAQ0MDO8FGN68ZYCCgDTXFAYFBoX3/5kV/lswRDF7MFxWYGDoj2MGyTKtAxIKDIwAQkIRW3jaY2BgYIZiGQZGBhCIAfIYwXwWBgcgzcPAwcAEZCswWDJEMSx4////fwYGIM+AwRHI+wvkPv5/5f/Z/x0COkB9KICRDYhhbCYgAcSoCkBWowIWVjZ2Dk4ubh5eqAAfv4CgkLCIqJi4hKSUtIysnLyCopKyiqqaOgN9gQZZugCEMxXcAHjarFXlmutGDB2HluEyuCDfudlu47EvM9tx0suL32cX7aXf5fYZ/DRyyv/6aD1yskylhWhGo5GOjqQJK0OsluMoIXr5u5qcf8mNxY9jvmnzbJJuUL4cc6WZ/TGshtXqql6xHYdVwirU7Z6yVJgGHluGKd3wuGJojfjPOa7NfNybtUbDaDVa+CR2tGPnMfHcXOzw08Qmviuru0lCRd8oW+NZqAY74qtyfhWWcBYTQOQZ8ehcnEJDcjYqq9uyup3aaZIkNltukmhWc/F6knhcNQQ/tWYGQPVwLua6DrihA8BP2Eo9rhkNXLRW1FcCkpN+cPnEebTK1ZYDfUg55fBdXK03kdZ8nM7Z2UIS6wSnTxdjHNmS1CCyx3XDQ6HbU5U+NQ1sdaBBsQ4yrqxssLUK/1xveTxkSECOhau/19QKiQd+miZikrZLkMOmNzSmwihoOVtkj5jd5I/2vViuhh4ZpxTlOqO1AVPKFjaZbIDcRMnVps7a/RBjh1zny7ilcOugS+OmTKg3NlqNYsfWTtJyPJ4wRaUS8VrW9njSwJCIx8MXch0LHSQ8IbsF7Caw83gKbqZLSggMrCIuT4Yp5SnxJEjzeNq8XIqL2lo7ucwT6/pHj0+Yl/Pxy8W+0nagP1XqT5pCTYXLcTE1hfplAU+50qRo3aAYl48JfLB1VhPymIsLIQ/ZBnlOZdiWo3Ftc233z3EF/6UmQSZd4O9Cu7tUhxSwUOqUBlshq8c9y7LKWp0yqlCVaCnmKR1QxGM64FEETgNKEf6X6WlLTaogyNPiZMPl71z7Emg6jdxOuR6fMYUl8ix4FnnOFFWR501RE3nBFHWRF03REGmbYkjkO6YYFvmuKUZEfmjIZ+szj1vl4iuP3XLxtcfvGcUT7r/A+D4wvgffBIwiHWAUeQkYRWpgFHkZGEU2gVHkDDCK/AAYRc4Co0hj6GHZap5B2OmUQoEQSjkg2Ui/+YY9lz1M0hVD1KVDKqGzu1qesSMt0EoeX90qj3WWr7SKunUmiq8mZYLXSmYOPb5u6FaJ9wbsrGh/EEwYgh+sV2d/VvLTfqzvFtetM8joJvIH4IPxsgqzux7fMv65hx7fPs4UTbgK8zsoiTrbJJ+6Mryg8nmed3UX0x6vIH+2MNG3LevMacS/a4AKA4K/0oRHQnc99zXRwxy+7m0fk9/3wTUdiBVxKvP+dD7+qUJVsn+qzFQvJoG8gcMhBqy01h1MH6q5By2Bjf5jXwnTNc3VMFubi7HJbKxTeYP23sk0IfSM7qCGGhE6yAuijJLSQUG0RNE4SSG5joaq7/MKj5JRswSBz7n+K7cdCyW/LxwQNPWZAQf6Iah5IGrkqgOcdXRXgkm1Hoq+TGDAqFqKfXqoHRuaTSWcbVPeaGL3fOe3b79QB3XwoDJa2vjRAEG4WZpUvp73prhZysdGky+sdfAwP0z8wrdOYwCfbKnndqqf7rY+0OaZ4bvugU4Dw/fcHIGlWYB2vw3K4rMP03Crw8DuVgtqtLqv7w7ctfFo4A3/F63Y/b+6T+BndwFL4wnZUW8nGWCMhIzN/DuSv6MHBOi7u1PuIuUz/eHsKZnDUz7fxCx+dIj+uSmUdfoU38L6heE7EC+FtQi8UicHikHYV0bakV9i+dr08M5g8QYLSxZvTc8qNX/1WNdmDgNAFISPoY+LBA0ccywzs2VmLkvQoHdWkM3z9ycWOxL6SwbzJ5HFEDkMkccQBcyXRBFDlDBEGUNUMD8SVQxRwxB1DNHA/Es0MUQLQ7QxRAfzLdHFED0M0ccQruU9p4d5wPDepYZaH1IjvZ5kfMoYW95LqicM1VNK9YxSOre815QuGEqXlNIVpXRteW8p3TCUbrWgOy3o3gofb66Sj6dv03twvesn55S8U+wzK3FNYwB42mPw3sFwIihiIyNjX+QGxp0cDBwMyQUbGdicNjEwMmiBGJu5WRg5ICxBJjCL3WkXMwNQmhPI5nDaxeAAYTMzuGxUYewIjNjg0BGxkTnFZaMaiLeLo4GBkcWhIzkkAqQkEgg287Iw8mjtYPzfuoGldyMTUB9rigsAaBEkowAAAHjaY8AEE4AwlSGVaf//90yiDAwwGgBduAd3AAB42kzMAQYCQRSH8e+9N7sKO3ZgMYAQCBB0gUCwN0joAJ2jU6wA6BYBQqfoGJE/Bvj58AGTZQwAmEE2CrPsJC5ysOUqJybucsfAIvdNH+zAU85U+8pj8y//f2BpDSzusrHxh+ys/CUHJ3/LiV1UuaPGUe6bPvgtznJm333ksfmXX2tktd1IDINhXc9T6G5p4sBymZn5rseduBm3Q8d26O33j8qQ5WPSaD79kuWR/mJZDZ3tpIHfJu+41Wh8r7UazQYvGW87BR8m1hSJiXm9SFT0HG5+GsHfeDPVBc8num3y4aY+MmfnizqzHaer1CYLZdZeKYuwUrqO4ZZq8AS/gGoj6nXviXHelgU3VEN9GlNu/Gq9/Haq3++rXIf0Sg8U8s+8+6073AZew6VvPDfBcdS3IeUD443rmTaPrsU7OjcvL6Si6Ci1/gY5LC9DXzvDcGQ2MYVHcLdoG8chNXy4vsW7lSlu4K0bIOa7izdVU0HsIZZ1T9tMX2SGpR7NK/P7rMNElIZQTdTrPnG2Cl55m40Kr++ubI3/Q4tUUkVDcmSpQykFYnpLCb3D2aIGxneqidXEYloiQ17YAl+HIC08BU5DMTzrYiuKfqncpE/3yt/g2wSjRXUelKY2FHPEb8I+gn1G59DUlImeg1UhwoJdQKYM/ArOgoKcDoyRTErqnsD6tVLtXutP2BNwTrpSSv0NUrI+/WF349/vr+hMUV+Gopw0Behf4RyQur3/DL37j+/wNOP1LaWfMI8zxxSBtFIX0wEIL33qkQHP96/FtEMa0ea3XkhRhHEkX/6JyiGsS1h90E7UhBCNRHrobzN3YbelFpbqjESv0xbOXWQC+0R564lCTPzixZukZEllr+Zl0tTDsvBruqBMfA/90ZJxnvbFDjRBEfwBo4Jdx/CUyBtWFGAryZ7dd7xOu4jf+puYH31VY+YAAAB42mzBRQHDQAAAsBwpGMNzzMxTV+GtgSYiUFcu2uwQRElHV0/fwNDI2MTUzNzC0sraxtbO3sHRydnF1c3dw9PL28fXzz/EkEIOpRl7aV6mgYGjAYh2dXNzgdKuUNoNAEGtETIAAAEAAf//AA8=",
"title": "$:/plugins/tiddlywiki/katex/fonts/KaTeX_Caligraphic-Bold.woff",
"type": "application/font-woff"
},
"$:/plugins/tiddlywiki/katex/fonts/KaTeX_Caligraphic-Regular.woff": {
"text": "d09GRgABAAAAACzEAA4AAAAASPwAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAAijAAAAFIAAABgRYdYoWNtYXAAACLgAAAAgwAAAWL22LJqY3Z0IAAAKXAAAAAaAAAAKgB9ClVmcGdtAAAjZAAABYsAAAuX2BTb8Gdhc3AAACy8AAAACAAAAAgAAAAQZ2x5ZgAAAUQAAB/aAAAwoNp4c6ZoZWFkAAAhnAAAADYAAAA2FNd1GGhoZWEAACJsAAAAHwAAACQHxQLmaG10eAAAIdQAAACWAAAAsGPbBMVsb2NhAAAhQAAAAFoAAABaBBT3jG1heHAAACEgAAAAIAAAACABYww/bmFtZQAAKYwAAALJAAAHLx46VQhwb3N0AAAsWAAAAGMAAACa0lYi83ByZXAAACjwAAAAfQAAAIqOiODGeNqVewV8G1e29z3n0vCMYMTMtiSDwDJbSeyA43Aax3VKcdqmsN4kXe4y4+8tPGZmWPwYto+ZmZk+Zm6+GckTu32cUWDunDPR/R/+34Qg6RBCfhxdQokkyhcEA4IzzW6oG6p3Q+XOl9/qdND9f/+mA58hSOr3/xJ+Gn6YqKROJoY1DoQCMoJ7hDHYJQAWbAEp5qNhxxaMqKAKEW1GOjE3Wi71e3Px3hQtl2rlkpDe5brRWDzW7azSfv8/333mF3/p1h9QIz6RZxrmZlWFQ3wiki+24gbCD7/pjf/m39x5xy9WW51kCDLR0LR2Zub4iZCMphfbTYMQINcIge+GHyFTpD/s6EBgapJQTuqAnG4SIHCPEMKR8D0GiPQGodShW/XK6+qVkhCpZmRu0J0beFe3E3ejcf+b+d9beN+35P/S73lP/Of9vpDl+jWGiclEr6ExriAToWFCYXrkic3HIzpTEsOQQiG+mZLwKUaBy4QQL30RJXIRciSidEKCM4Ff97UaSgKkRQi85H33E2R1uLQkkLMSAOIm4QwZxzsEgSHsE0IYJ2yPANDd8fc/fmxxfqJWyKVi3ibcZsT/kt5Xd6PSYtJC6eHfHe1rtC5kVHpbqc/0ve0MRrvt9zxzSOGriFJt8Nzm1bsWIItG6rGUiBioPHv7BVUqTJgGp2kUX/jINCDCdw7t/oVj/RzyeLKRgvOLKysrIuyKUDYc1w2qCmCriHouxFG+G8G7BXRspHebRnt6ZpDzn0WSKQJk8n4Dftzzqavk0vB8HRhdA2S4SRhFyvytE4pkXwIBSjwIOKGMUw8CIWCbAIgbRIC4COTCuUG/3apV4lFTJ1fhquJ5XnxkQSnHfuZvtl6r18plf/eduYG34i1524+Nd+9jMnYAH0BPLx7zFMc3QnpOUPe94HaymArztDY5nU30ndSUmKgJwY5RoeWqO4udRLowU6DqRjdkX+mthvKnNESJb4ghmo9tONHXL8eKspxwixxohEft0q2F0oyCQg+hBGFvdvZaMpmMF3JJ25hY1Gm5MayWVvMcAKD+hOLGlNWHDDxfrGYLhCDJ3F+FX4OfJwtklWwNzyzlkGK5hEBNILAwO0OYIGzTBQpnCFK8x4FIEEQ8ripIKewyAHBga3FxcXVxNbRec8OT85c0kWnGB91OZ66zygaDvu8ytX5/MEanGw91Y3HXC4KDMPHvZNl3o3J9EBJSviSyzJQal4wj0Lc/lUU0Tp36OKORiNhmlLJtQD1cDTMq9cWTN0O6eKqzvP/VAgAAEdn7gWMkErp588cYipdvMSwhO3YCVWCUFSSi+EuYWb/6lX7Udzzv+aIXOWfJ5eGF2TZy2gMEDkShvguxewRBAVTuEIWAQvYJJVxQvkcEARSwR4iUZJsQIneJJPJCrV4vV9qlRk0V2WY86m1y7Dl+nNS9LQZe4H26nqOMH/ou47r+k5LrHnGgkWytPorJb8i6kk9cTCcncnY0Vb5Yl3YIEQRSRtfP1BONksrUc++ediAZrtR2BjOF9K3lWHx+k2VTiVwrnkZ1XXcvnFxac5MnVMG+I3tRnwPIcGGzsLmrPHTNVUKnlq4u91tL3HloJVvM+/4x6WXsH8evIj1ymjwz1PJAGQHBcfPsp7WL14cl4t0zepugH2/Mg4NwQfgTRIggn6eH5bEQufO3SO0MtfrcZHmi7SGUbkb8dDOKnFEcHcSOj9sYHT+rjjPQoDdG1bsGXmAK4ftUgHi99iXxhWa3MZt1udFp9p1ExN5sLW2tz82/Q80k4llLs3komgkll/Np9iER19pdQ+0XJzKuxU24VWskS4uzi+F4dKnX1hm1jj/yDc9/c7v6fKqYi8UtjQHVdBlZm3suAvLJU9cq+WbKXT2z3jhJgAw8z/oT+DkPuZPDE24UGVIgrJRCSvx6guDHEqOM0DuE0rsEGcNtgsh2CUN2AchUq5gPO7pKetDzy+Cg5LvCwMvGXsS40SBwxqUweuBY45w8VyqL8YOzBqclYJxzQ1brX/kWRk+doV2Nolaf1IBdza5MQ+PyV3JFZwz/O0r2I8hAMotRhsVHb/IrH6ucrrB6nSe+/FMzl1cQgLI1lyIhlDTv/xvPN76aTJJlcpH0hrOnuyWdc4qwSQgDpAT3OFAa2Hh1pdVcubh6sbncWk7Gi6N686DcCOn9Hlhc+BnjwMCe3cd/Lo1sG4+Pq44XGLRzkJC9oCuNUYi9pXN246YFieSyYTXK4RB39i+cf42FjWJXtdNmQgt/fmoroWzMa72Qgtqx1vKVvHHGKisKjy84/Bre7pxcEOFWtVJV1FSpVK8bTmh49fJQiQ2n6hmuhcxErFw7vdhtFlJquyKL7VA6rNRm/9+3nJqpl4xpNcZ5eGI5Zi9cGMdPA37Cyy99sknWh8fWbJTCg4cRIZnYU4AQQAJ7BAlH/hiRMijMQNaPLwxmpyteM2RoUpA+9NWgJPnGPqhI/SA2HhQfH9KuD6Vfug46j8goSHwAj1SyN3oBYGpCTU+eaNVFc8ux1qY6MXsuXa+gxbiFW9d1cWa4sLB8Ifez0fJEJmEAddK9eno6rM/m3bhlCufY0juluo7G4vL2cjs7sFwA7V2PNrq3v6lZWeonc/Cv7FTq2Km6sZSazEw/tVdKEiS5+z9Lu/jrZJ1cIT979tN1L5OYpzeyVMHJKnLAzfT4Xg3ud85+OuYJtQhShfrZ2C/aBO6ooBBBFHGLARAJ8jFCqXmWcG7xrfT4xROEIr1HUMF7f7PWWGE4fSCrerKKKlTldqBCVE9DfbXGzs7QunJ5qXKyMVXzENa8nD/ws/VBChr40eo76ah9kiP0c+j9Mkr44mhm865+uT6+r1W9G/+PQsqu94Zc3tQoTrgqq259zX5IkYhKN+6AyU2QHHhYL9kOMGMi7YajRZuplkB4z3vMsn1jUJ7DSSb04w/xpIZgaC81M3MRN4POc7/5ByWUTHEKzse++evOr/BMlOpSOJa3FLeESIjS4nQEKUR64bf1//uZH11x3/9BpeYwxggBUrj/l/iV+BJ5gXzdMLIMwJpA4eIaEloEVJhXHuIe9tPEL7ngZzi/AOz7I4Iib6saEsJ2OTDmGUtR8IYARAs9C8z8NRpEKnf+RpWdYRrI3TtPP3nziRsPn1xfWpiZKuTDIfICvKB74QIlH/3x1fedfpwpgks8eDzXH/S8lVIQRr6FokJGB0fq8bilO9rOjQwbROK4OSwJmDXzVquhnEvnpLscj3a7odBMzYrXLHMqp00lZtKAEE7b4by4KVWq+Y2t+tjblOTNOEU1PnXRNAfreuJbn4hktjoWsoW4tCaH57sNHm63hrwE1/SQq9o2ZlOpSWlZE1xY5xLlR75ssLZj23GDxR6+9dI/kzZjVDPBCEf5LFI0xG2Fak+H4bwW0rRqfq4lePjKQr54+p5JO5YSqliTU5NrhmP3Uinq29i4/2foejZeICeGwwQw9BMXUmQj66BnHQGjiWifII6i7nCGm+u1m6VCPKwIsgAL0rNEtfOgpfExDlAeAxvgGUwUQTofFXL4Azva+arTx6e3QvVH+h/YECrGtlDWzUzSkTpDPWHxZHq6vTU3ffnCZtec/h5dS5+4VJ1//+Lxr3x8bl0C0FXmTJ5OJhWmsFhrImTFI279Tc8/uXvnXDRHCJIIIfgyfg+ZISfI1LCJQKhfxSinhN8hwIASoHuEc9wliA5u1ZpbzWvOaPDzJ9O+t53ukWLmXwc7XcO5yFx5pizG2xR81LKMB4Tu2DGrYRr79HPZXOyJ/d6eWvjIh747f/0ck040qSuPJSmlwzMmMNDb+PhzW3umXT5vVd/0+JdnOfyWgRrduC0hkl99c2niI7efjnNAJnQrorDofwSaYuVJ1NBJnnz9fAntx37qh0t0+vyXJ1zfwjkvinuehTfI24eaC4ALwIXf25mjZAtIEW4TwTgTfBSRgrI9gkh2CSEji/ttr7SkF7ntsTi98/eS3xnq1XK94pXuU4o3LUQOylfnaO/rLY3Hq3Hd6gTAHnpGN/CpsUv93oVC9cNnaIRvR2RCnwk5UrnycMFsNtYSdq5Vy1ysWOdWLs1pnajjdL/+3MZNt3UPnm2sd1qD8xImTCtdtZK61GyrvZ7IzGRT1NCsHAUzv11KTC2ed3K6Elu/emq+2rq17uMXvv/7dMXzmisQHeoRoJBgSChujqvVjO9FjJLbRFWkoso7hAngCuN7uoYHbdEomQWgeBWr5un1HuhxoQh+qA6e3tgPGfHn/ydeqdvxdPsHuuzOP0h5uPgP0VOlsn2grcgLO14VjBJCrpBLp0/F50K1k5XqG4qGVwtBlA/y6SLOdbr+LBz1l+a8RFmWY2tGu/76ODGUg0wQ5IiOrxKU0lXslcFsFBzuXO5Cqtk/Wfw1ZZIuJx3QQrdvghLJGfjii6rflM9GDPZ5emoyvl4W7oUC0/M1nfNwyVYZc6tXplETJ/Gpks6MfIMBgJJKTdg6cmBQOP9IDVAwNRRK6+LTa7m2hKEiVb1ImV7RuChd/af/TJ9Mo8+73P8QbuMXyXVyfLh24RgKmQPqkw9CghTggUckEJ938aHdG2VN9Ls8vks4N+VWc3JicrFRL41iIBrsNHBs/yr7rYGPRdcD4oBACvqGo4TDYb93sNg/mIyE/PjpU7XSYonpfD5hpSanNu6m6meXHc+tK4q+dEqJhyrFMOenL4fDp1oLZvY739iemZSNGoeBW6jYppVF0BKrZ2fnzjFYvfhkvHZRLYequvbYV23dy0qa1bkfJjwXrl9tCcp6JrYGz7a7b/iBnAEymWBKetfNabodntWpcIxIqfxV26Po+Xla9qLnWfJbZz9d8pw3nAYNlkDgAjBxBjhjm+lXL0pvcWfcXdQI0VAjeEcFVEAwFJ6PSk/Na6Q1DXYpAJjaVnr88lYgTQGIRkDbO6rGOdsmjPHdkf6F9LAbiBPJOJP8r1eTgRrxtbxAcG7dfPTG6XqjlakNqo7uBUFkbJAgr/kO7936n8DGFrrRwPKHNdIb5YSUo5A4yIa+1jgjBqPwGo5uxzLVSLr1ZTdmLanamTe+SbonFL0ViajzzboOCFWlLPR01dXjd9ejoqFVaei1+zJdiQpzKuxQXVRqcqpiMsxEI7kEq0zNe7yBVApehbGrw4slywwdu3sVEpv/0rBToNPEp77uo7dU16AVHtHTHC01OtlDp6nd+SRlkNh9fCCdpAEyG370HXEE4Ay1tKYCOB+5WHZDLUvNEQL3/5AQfLfnAw+RM8OTA0/KAAIj4hIYHwUQ8wNISO9WsD2qICFBCQaytXl8ea7fquczbljXyEPwkOp3Gj5KYzzH9cH/PEgpc17NHV+DckmIYFCWQSfY8SS6QY8nHzyWsPkcA0Cu5bxqrV/qRuvf/oNUmulC5GwkEUmUYtFcjQ7NeowuxzSF69lKhCWeXnoUuxeqX6FRzzxybc2Ox7NZOzepbAACKIaepQZXSksGBwAmdTMpMdGa/8DO8u4EA+AaS9h6mulSPdtIMBCCCSMlECL9lde/0LjWVgkBMn3/Q/SUh+FJcusLRUAGB913hjCCZMyBAsJjFAjhuwI4N4mX8kvBY2+FAmGc7BEEGJEQsOtrXNgZhgjx3ruxutzrTNTbNSliTQjq85E2WgYTe+DD7mEy84EOJD2xoPWjqyoq/VjE6neyBUWJTjXftBRx+xcidiKXjyKeW6nm1jJoTVwdauub8RsVDtzNZaNciU5+2/XoPn6PSjkN582ZL7v29kpird87pdKpWqXQiSYpmqgpseV1d/K66H3Hr6+pIOI7hvDe7ZQKp54cedFohvltfIlUyKPkXUO7kURkJ4CLEACnHoY5D8PGAwwFchR+GvDbGQUIOeh4JRzQXFOHcFPv4zkt5XTUB9G/TmFnaExXK1Nuotks+mQhHEn6D9of/6ofGUu4R7Ef9MfiYJ4fFci5o83QmBLpPagOI3baL+OOMNLNmRwo/aitdZsV02TRtDMeQ+DrdA0cQ9DWt8y4ZrzweFU3JpdUUYiEWeQdF03am25c5FBo/suzrXy2mMN/jVZ+/unb3/je8xjKGSz9nq9++81LUrWCgeP1qmqbNujPzLhRo3Lq1reEebkQituKOn8OnK2Fn1igCpbrvfflQpjPpHLBVPlxzyLnycXhOQIKyQHQDjDPHMTvNYjioamAQsEDGTig35v7uYLvBd2MeVYAYxbbOr914li5Uq+WJiuqSDehd5gqx4OcTzAGJzZHRjrvqh/B/yBZBJ2pGx0bB/4HG2Ss6YlUNhSKSZEa7N6YtkxFSVeTNnWeXbbjuUR5Z65ta04nbKOIV6quR+g1t59Gg614LzFD046NkmeUk+bka0/dXZ+c1lVIJNCMxcMJDY2ZayZlPG5TUJ2UjsKIV7Yv/cD1Y+1rKnStkJFOGKEYAY/B/1l218PseZ+/X6whJ7M5pKMcSpCMD3+8zz4ZjTD7hFH2gpA4ckdKLZ9p2rm+tXnieDoRsg2dPA/PK/7gPHZGHBGNnQCjV1CxfS+ypTiaAMZcnL9yNCOMqdwDHINmJR74bcT7ybZ0bsq2YJpQYinLNWPVLNdStkkRlCJyEVO/43zxYcmEZ+WJlDNpmpWFfqNapEpqIDCnSM4jdUMpbxxLCi1Z4cgZL/Us2+V4PvLif8xRhi/Fw/aw/fL/et+psMkcwwzrekSAbTZyaZnmX/svVSFS2g9eqWwzKs31czPfOJj/yi/7yNpAhaytyFZOClcAj//wZz5b0DJA9fw//+xsbeF89D2QrQDza9mfeKzWL1GXXPO7wQFwrKpIuW8IpMjpnRH0BAhywD0BRy1w5tSxtel2JuWGyDW4Jsf4ewgFfGfggWPuTxzOQfWe/73GWI9c95BW8k30avDnYNumfHZjrsej+erUdLx3DR1qKhk1PFdJMx5uDOYAQNa9EmZMTXm0loK8uNiZTiUK82FDkUy4NUu6xUtJxpQGviSp+/1f+NId9cJb3vet7030VNCsZk6lYUtVB+/8xV8wARAB7YwIbz7x/Jve4gLNf/d3fLydKCXCbWMMqXXzz36voFgJAmTx/l9SdTSPLg3nM8AI+J0AZSPwGNlFEfjtIdOwstTrTDbSSV0lG7Axhu4oRTMuSgGAD9iGwK8DwkEcDu1jcdy+/nCi9Om76xsL7bWTYEyf/kjaRenBpWYv7xtwrXNyfm7pVtw9s+UmQs28queLJmdavnvx+Si+9JZbZzdf84WJZCz79ocL6u1L77ga4mAw4VFB335bLXz0WDWVfdvm+vrOa4xQczOqZ5GL+ObCjTASIJH7P4a/41X0c2RxOHARCfOACA4LOHLPi4SPjj9SINJtQqnfFFG8sBlvxNpf7kiRPuQl/HO42Hj8CsiJoCHynj6YFQ5bTR+ycGQV+zUZkBZjhgJzzVozh29ciSsS1X4iufr1F2IM043k1ddnIpWVD2UxdX1C12biXDFfWwJG8QF1cUhVgLKUSHtZ0zpxLOv2VqlgqGXCINaXqsWZ4rz+7//HC04orTBehAjYspYBgIDFIATIvftvoxHPS3bJB/ypG3B5GqXiT92TI87RRxDhDlGopIr0KwRVRuQNEVw8Rnwekfg0YjD7zv4VDcmp5Pt/kyLxa3etNjU1UY00SqPafUhZHYyrI3r31TNa0FTKIPf51ytLj/eeA87oIOzxW27t3ji3kVDatbX2TNyKgpF5d69VeGJ78I2XcvkT/cfBfPvOsXWTnn78eNyVXMnWotR5ftGJ15rTT92YLZlhO5rRqtu9Xr17PTMB3/jEi+c2HsmWL7S9aQBM1cjVnfaLr79zes/i5WOfKGjPf265FRc0UQzFLDXL0eTa7DmNKlq1IJihm1GVAhh6NHl97irxvdWL2g38bnKLfPVQRyBywUUuAhZkjhApJBF3iOBSeKj62NJ9QlFS3CfIJLJ9FaQ84EOUcflOD3t/H0UCnioBuXegtjN0H7lx5fKZU2vL84OpVq2Sy8w7mogF0eBb4gFLJ+RhIZp7MC8Exhhfpf4qDnxbBRO1Kw7jZODHSf9okITefLlz+er27WqbWu+4gjSUngglcuG8YziZsB3ObTySzuqslg8V88lQ1MF0Lc4idGOqX+p9RRwx93iMe92Z1FB/U4q/MnQGu1HLTmYWTHvrTUXGk8Mn4mXbsaO2AoZZOBMXoHazF8+nQ9TSk2EAUBuzG1OxMlj2f/ufAz2UUzlNQQWqyiuiKez1XO/Gl8YcxhYwgM0H8cCAA/N7LCC7Iuhg6Y2gaq2tzE5P1N2IppLrcO0w9QZ5dHxMFxB4R9PPODACwG0U7pFzKf86eBywqvAXaw9zrmdrKpOMWdbJ0sNJXk0PzpQXqNFJp5571xvW3FazG+N2ilMBkf6T76qbGH72dHxWQ1Qz1RdPUeqPBV9sz5qxiJ5lKBzTGweMyJmQOVlOpkq56VXTWuolQ2cupyveUSXVVR7Tqe7Ek4njl5P5sBz2SuFqW0TCSqM8dUwA+PiV7v8Legx/hiyTLxlqLWCQBmR4MILlCAOE0UyAd4kPIAWAgyEMttLjlJU5KjWaxoBx2PPl/UGtQggn914lA8C3/beMaA4OPvdgEUKWydLkUqtelCL5YKIYmcP1fx9fQW+7ij6+o1niQRIKshX+6Uwq5DhLmfjTN6XMGn2eqkb6umkrlSguLjBUce81ph2lsh01FTudvzfQ/w1+T0m1opGS4IDp1OumfjX8yNlamOncunxa+cs/VNBExhsRLs284E6l1joukcD9/3D/j/EHfA4AnLOfVj087CJIWAAkM03kSDfHJ3nBMnuw/IoV4a3s7IxfUCUSCEhyR4FR97vPALn32ffR9yeE4IDQt1HziDDzPvuE+UDvk79exf8mJQog4R6RRN7ztXzrILvnaeC9QHJY+5uEBN4jQlgHx5Q+fRoHcuXSiWP97nS7kI+GJQ+oDD9rBb33UeI7mKw77oFNo4eHiuP63ROHkfbqf6yVDJ1YXO6n7fKKrZUr8dLpz63FzCzTpqJhpjjdlRhjipazHf5INBxLTlNx97mNBccKKZW6HlmbslXdjkWzuG4kyoVe+WTj4ocXi6VmLzbz52+brFzmThJ1J19/y3+9smFLxi0rXxOJ2KnvAiY/udHUELW1qeLk8Y8/M52LOl458aMoef+n8ZOeD8yTi34UIcBmFsjpsYWShBIg/tAH6H32/RAIgiNCCPWQpUDvEUDw4MVndoba/FyzEXdL7ODftAXFtxv0O35i7wXD8SvjYi44yEvOpJeaOxoCpCPPfTzK2oVwzGbG1ByLfWLr1iMxZCaq9mJ+ImQ7+Gan1Ljy8oWnVTMWeuxzQ93INTHhdlRk6z09857vv379ogYJYTW/f+WnttsaH+35p5jm7flh8ug/HlYMyhA2gw37Awwyv+u9SzgnXpD7na/vVoWjzyig/3h79NhnIQn3SBvr4evntvq96XYuUxKHCIwwkINVGhSzMS0ZDBmBf/SOdCtUSHHQlwiJNGDJPMEp9ACazR6ru3bKQUCh6uI1O8coAm9HDcpjGzbQ3OCFNMunDdcWwjF6mPzifsIWQJWFMKXsq/8oplpCMUNmbrFh45vDhW6icfHerWfDCJ6LqZ/4mtcqVCjcyQp59g/+c5iVzn3zY6aTrXbaKorE1bDzrS+//Clbs/jpP/21TSFe/o2X/0sa4nY4+dibH51/9OoMAdIjhNY9jJ8hHxw6SYYEJyPIybkRp3AQ/5qKCL5r3SGEA/E7DQacHUS+BMbErgJCOMJPxhR8N/N1CN4bZ2bO+L1XiO14FiTe33n7+rUL51eW5nqzM8V8Jl0t6j5/doBigL3ngfHOgUm8B8GU513SL5tBQxkLotmvjVMY9Ju+9Pj45DDKx4N4GdZLjQgYNxdzkZgmVUCA9icNTNpL2WQ64hRPfyipaNyscyVf0RXQi51N185HBQBnIN++r2CGKlTqM/FkZiJVWflYW1G0DOqIT9XRYHSi44QambdrrhCZR9LMLDDDmSimc4lYZumqzWH3zeF5JY9SrUar0tk8qwl1tXHljMvMiqBCC6WL6dpEKjV9LQ3vGazqfmyT/P27+JOevU6T7zr76SnPOtpJIGACJ7iZ9m9wfBOcAaQIJ4zwcTSMxsMx7+/nhvELCkcl6Khmb/sS42kSyAUvUwvwU7d/0ssZepY/EEUci/qzFaBfYiNAet12K+/tUXJyGk7LI0k6HgtFhRuYctTJH238j06kcw+m8r4nG5BOV8LR7vrVzjXExkem9Vi8aEUMIQvJlpL5xHNbH28wJRYuzaYT1D6ji+YlR7DwbmJCUzO4aerR/sbrX/5z87Ta/rqPl5x0wk26NYHR8slc4fl/8/z5pwUI41gj3oytCwD1uM5qt060/s3JKAd11AdWCcH7HvLPw8LQ6oIUReB0CID0oJHfIlIwIX0gqWB+I84F9YMFBcd9YmimZpj+WQzRDNT2dAAYB4TXNdq2c5aYJtm1HCTEIUHtPf/3eqcCQoLY1gE0hIce/A1/zVuHl/5eLyS2SUyb/I0vPvpOz+p1IM/efurW1csXz2+eWT++styZnW4364V8Mu5GbEuVPmkW8jyhO06Pg/KofR10R38e1ZIHZwzjsj2O/fjhGZCMdkf5+WAur9ePUpTB/HhY0f3o71qpb/tIYmZaryhvLjyZsJITJ85lqmVNZnPpSEgtvXMVIrK9se66LSsCGN69lbKmDayENNQmQ4l33OPl5aevdt2iJqZTwlAYY+HC2q5WGjx1ezqXcjUj/rH3JUAocZsVn8s7oOnxvBtxUZdVY/oUB10FcEFDlLHXPJ0BjAnqpAG44BTib7nJQFNoayJSlEi5Pd+4EEFN1wxCkBBCoEVuHfyfAT7+PwOz/a7b9X7eGv/4+8uBL+dJ+XLic0BgLOM/+/8Zu27jAAAAAQAAACwAdAADAAAAAAACACIAMgB3AAAAmguXAAAAAAAAABYAFgAWABYAZADCAUAB3wJfAu8DjAP9BI8FGgX7Bu0HYwfeCH4JfgodCx8LwQxdDSYNwA6FDyYPqhA5EQER4BKAEyEUIxSdFU8WJxbkGBoYGhguGEIYUAAAAAEAAAABAAAa8Ek2Xw889QALA+gAAAAA2LKY+wAAAADYspj7/+L/KARxAxUAAAAIAAIAAAAAAAB42i3OgcbCABTF8f937weI0sCYtSJRI82I3mFEBAjUC+xNAiAAAVCgVwgEAgIRgCAwWKeEn3MuB5eKDOCvACrli4EsJZWhRJL9+lRGn+4xsW1JrEnDncBaui+0bUHqhbJb323P2CptjiT/ByLP64dHzOxE4BNKnxPYCm3pWVk/bUPoN0I7k9uOjl3pf39KRVjDG+i3I+YAAHjaY2BkYGAW/a/BEMWy8f+jfw9YCoEiqEAHAJ4lBrEAeNpjYGJKZJzAwMrAwNTFtIeBgaEHQjM+YDBkZGJAAg0MDO8FGN68hfED0lxTGBwYFN7/Z1b4b8EQxSzKcEOBgaE/jhkky7QaSCgwMAIADsQQuAAAeNpjYGBghmIZBkYGEIgB8hjBfBYGByDNw8DBwARkKzBYMkQxLHj///9/BgYgz4DBEcj7C+Q+/n/l/9n/HQI6QH0ogJENiGFsJiABxKgKQFajAhZWNnYOTi5uHl6oAB+/gKCQsIiomLiEpJS0jKycvIKikrKKqpo6A32BBlm6AIQzFdwAeNqsVeWa60YMHYeW4TK4IN+52W7jsS8z23HSy4vfZxftpd/l9hn8NHLK//poPXKyTKWFaEajkY6OpAkrQ6yW4yghevm7mpx/yY3Fj2O+afNskm5QvhxzpZn9MayG1eqqXrEdh1XCKtTtnrJUmAYeW4Yp3fC4YmiN+M85rs183Ju1RsNoNVr4JHa0Y+cx8dxc7PDTxCa+K6u7SUJF3yhb41moBjviq3J+FZZwFhNA5Bnx6FycQkNyNiqr27K6ndppkiQ2W26SaFZz8XqSeFw1BD+1ZgZA9XAu5roOuKEDwE/YSj2uGQ1ctFbUVwKSk35w+cR5tMrVlgN9SDnl8F1crTeR1nycztnZQhLrBKdPF2Mc2ZLUILLHdcNDodtTlT41DWx1oEGxDjKurGywtQr/XG95PGRIQI6Fq7/X1AqJB36aJmKStkuQw6Y3NKbCKGg5W2SPmN3kj/a9WK6GHhmnFOU6o7UBU8oWNplsgNxEydWmztr9EGOHXOfLuKVw66BL46ZMqDc2Wo1ix9ZO0nI8njBFpRLxWtb2eNLAkIjHwxdyHQsdJDwhuwXsJrDzeApupktKCAysIi5PhinlKfEkSPN42rxciovaWju5zBPr+kePT5iX8/HLxb7SdqA/VepPmkJNhctxMTWF+mUBT7nSpGjdoBiXjwl8sHVWE/KYiwshD9kGeU5l2JajcW1zbffPcQX/pSZBJl3g70K7u1SHFLBQ6pQGWyGrxz3LsspanTKqUJVoKeYpHVDEYzrgUQROA0oR/pfpaUtNqiDI0+Jkw+XvXPsSaDqN3E65Hp8xhSXyLHgWec4UVZHnTVETecEUdZEXTdEQaZtiSOQ7phgW+a4pRkR+aMhn6zOPW+XiK4/dcvG1x+8ZxRPuv8D4PjC+B98EjCIdYBR5CRhFamAUeRkYRTaBUeQMMIr8ABhFzgKjSGPoYdlqnkHY6ZRCgRBKOSDZSL/5hj2XPUzSFUPUpUMqobO7Wp6xIy3QSh5f3SqPdZavtIq6dSaKryZlgtdKZg49vm7oVon3BuysaH8QTBiCH6xXZ39W8tN+rO8W160zyOgm8gfgg/GyCrO7Ht8y/rmHHt8+zhRNuArzOyiJOtskn7oyvKDyeZ53dRfTHq8gf7Yw0bct68xpxL9rgAoDgr/ShEdCdz33NdHDHL7ubR+T3/fBNR2IFXEq8/50Pv6pQlWyf6rMVC8mgbyBwyEGrLTWHUwfqrkHLYGN/mNfCdM1zdUwW5uLsclsrFN5g/beyTQh9IzuoIYaETrIC6KMktJBQbRE0ThJIbmOhqrv8wqPklGzBIHPuf4rtx0LJb8vHBA09ZkBB/ohqHkgauSqA5x1dFeCSbUeir5MYMCoWop9eqgdG5pNJZxtU95oYvd857dvv1AHdfCgMlra+NEAQbhZmlS+nvemuFnKx0aTL6x18DA/TPzCt05jAJ9sqed2qp/utj7Q5pnhu+6BTgPD99wcgaVZgHa/Dcrisw/TcKvDwO5WC2q0uq/vDty18WjgDf8Xrdj9v7pP4Gd3AUvjCdlRbycZYIyEjM38O5K/owcE6Lu7U+4i5TP94ewpmcNTPt/ELH50iP65KZR1+hTfwvqF4TsQL4W1CLxSJweKQdhXRtqRX2L52vTwzmDxBgtLFm9Nzyo1f/VY12YOA0AUhI+hj4sEDRxzLDOzZWYuS9Cgd1aQzfP3JxY7EvpLBvMnkcUQOQyRxxAFzJdEEUOUMEQZQ1QwPxJVDFHDEHUM0cD8SzQxRAtDtDFEB/Mt0cUQPQzRxxCu5T2nh3nA8N6lhlofUiO9nmR8yhhb3kuqJwzVU0r1jFI6t7zXlC4YSpeU0hWldG15byndMJRutaA7LejeCh9vrpKPp2/Te3C96yfnlLxT7DMrcU1jAHjaY/DewXAiKGIjI2Nf5AbGnRwMHAzJBRsZ2Jw2MTAyaIEYm7lZGDkgLEEmMIvdaRczA1CaE8jmcNrF4ABhMzO4bFRh7AiM2ODQEbGROcVloxqIt4ujgYGRxaEjOSQCpCQSCDbzsjDyaO1g/N+6gaV3IxNQH2uKCwBoESSjAAAAeNpjwAQpQOjK4Mp08P8rJlEGBhgNAFF6BtkAAHjaTMwhCMJQFEbhc+/dJiJ77BXBRZtJEIvZHmYv2qxWewd7sord3sEe7MlgL6L84bWPEw4wtYQBAAPIRmaQnREHOVhwlCtmXOSalpvcFL21DQ850dtH7op//v8Dq8bA1SeyMfe77CR/ysHOX3LFKpZyTR97uSl666c4y4l1/Za74p9//+23NerarhyEgXr2V+htmy+3bE/vvfe3HOJLbBK3A9z29ztRett+bEAMMyMhqnrkbJoFfpu8406r9b3RabVbvGC8TUveT6wpExPzapmo6Cm5/emK/I3XM13ybKK7phit6wNzcjqvc5s6XWc22TNpL9duqSrDUuVSwx3V4jF+xmvcEF89ODLO26rklmqpT6/UHb9YOL+dGAwGqtAhu9BDhSqm3v3WZW6El4D0NXItjqOBDRnvGW9c33T56nK8pQvz/Foqig4y668p+9V5GGhnGEBuE1N6iHtl1zgOmeH91Q3erk15Td64JsR8e/G2aiuY3WtZ97XN9VluWOrRvDS7yzqMRVkI9Viz6RNn6+CVt/lV4c3tpY3XT2ieKqppRI4spZRRIKa3lNA7rB1q4ftODYnaGEwLZMgLt8RuH0wLpMRqKAayKrGi6JfObfp05/wN2Do4WlxnwdLUhWMB/TriA8QndApPTbn4OUQ1FBbcPTJAejjRwJeogkuQ1QE3kk9J9WMYv/ZrPHb8C8URdk76VMmNWqRkfPrDfse/33HxmaCBfAqd0xTgf4F1SOqmF1P07j++zOOMlzcs/ZDzKHNMEZhW6mLpmJc+9cmAz3cvx7RFGmrzW6+lKMJ3IDv/yGUf0TmiAdhO3IQhHon00N9k7iHuSi0s1RlRr9IG1m1kAveR88Yjh5j42Yu3ScmQyl7My6Spj2GBazqjXLD7/mjJOEu7Egcaowh4wFcjbuLzcHNksQ+IFQa87jrepG3oN/5G8wNrp2zaAAAAeNpswUUBw0AAALAcKRjDc8zMU1fhrYEmIlBXLtrsEERJR1dP38DQyNjE1MzcwtLK2sbWzt7B0cnZxdXN3cPTy9vH188/xJBCDqUZe2lepoGBowGIdnVzc4HSrlDaDQBBrREyAAABAAH//wAP",
"title": "$:/plugins/tiddlywiki/katex/fonts/KaTeX_Caligraphic-Regular.woff",
"type": "application/font-woff"
},
"$:/plugins/tiddlywiki/katex/fonts/KaTeX_Fraktur-Bold.woff": {
"text": "d09GRgABAAAAAFhoAA4AAAAAi0wAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAABNdAAAAFYAAABgRrphw2NtYXAAAE3MAAAA2wAAAZrCd5kKY3Z0IAAAVLQAAAAnAAAAOgJLDw9mcGdtAABOqAAABYsAAAuX2BTb8Gdhc3AAAFhgAAAACAAAAAgAAAAQZ2x5ZgAAAUQAAEm9AABxCg1qrlxoZWFkAABL7AAAADYAAAA2FUZ04mhoZWEAAE1UAAAAHwAAACQIAgRHaG10eAAATCQAAAEuAAABiOS1Dspsb2NhAABLJAAAAMYAAADGeuVfBG1heHAAAEsEAAAAIAAAACABpwybbmFtZQAAVNwAAAK+AAAG5H9rG3twb3N0AABXnAAAAMEAAAE+MpFEfHByZXAAAFQ0AAAAfgAAAIqSjPzKeNqMeAVg28jS/8ystCvJDJJMMcmW48RJHGOTBlwIFNODtpfCS+EY+475MTMzM/PB//8xMzPzY2a45tPagXv9HgXl2VlpZ34DvxEQNADg98gEBgK0z3AFgeqjzUgzUmlGnMZrr240yHziiw38BBDctP4t+Dp9AqIwBDc/EhaEgPsPfNx35KpeGADsA4BIp4AoTgfTBz4e2JCbl8irP1G/FwAEQjojV+Dg6urqo5mUbRYZN0djrU6zYVtmXARJmEK0iEmJFedO0b0vkXd0QrQt1A0nWE2lh4fTmQrd4mZTqp3T1d//DVVB5PimJ/4mUcg1nBIAgYEfh8/SoxCCHFx4hBExkrbo3tksYIxOAlH/gHBSQQAb5cl9T141f3z1p21bXe2FENKpWERwCGFI5fHRWMM2uRBOxW23up1mx271zeMhKrZdT2iGQ0Yg4I+EBTeuHbYNgT6/3y+0CD0anrpvL15561BSUyltC5GMXncOcXLnA8Cgtv41tkSPwSm4CR6GL/bsXcjFCoK66CfUb0cNC8g0dcPMLqgcQL0edEDQ8QJwA0HncB6EUE6CongGaho7CYzF+0hJ2yJ9BJ1fZLv9U7b3Gj91pwaMNHZ+EAhrWzcS0olpFe6/58KtZ9dOXH744FR32M1nIyE4pZ7yeQ7FStF1iqaMEG5attVsdDvdbsvqC4QXJRV38N8duLzbaQ9c3xgoCGFb3rfdabcqbqUoiu223ejfpdnk5ZZ3b27GPQW5EeNyoVtx5bcjN3O2K5/fq4bVFUUrF9J2pJBT/H5fwJxaXVkkrdZuT554TlStJ5fTudne2sPBSCPdLsUXO2NlVi9m2lMc1dCV5jXPiVoqu3i2miy5iSBLG3MXn3jgcmvWcq6acQNInOfDAVxDwmFxjRdeWjjoiy/ryBhqQyXnaJOUeCB4bG80vVxPVsO41DxdmzxdSBadSDo2dPVcM0/1XWPFNLJkAolj92up0XqlMZlhIVG+7OL7Vu6PcefE8W6cMSU6lAZAOIKfhrf2syTWC/ejGvpBbReJW4O0NOMhijuO57cjyaiD0bBu+P302nCkZPCbzyE/cxMgPHd9EU/Sv0MB+KeiiPVR7DZMU/qu71fv24xLkCqu9KpEpoMrPqxYc3G9FczmkoyM9mQm7zeZax+if2G6Hk8sfvDA6S/fkktlNCFYYGJod+cpzw998ra9x+TJb1hfwEX6Vyh6T4zJJ8ZaTUt+y6dtgt7udjvyW6Lufd9ASAxLmSuqiXTMrR71IZuyq7FQzBwfqtFfG4havPvKa5/7lusvH2uESNPIjJdvWXvNi0/eNuVE5VOH8dfRpE/DFFR6pW5nojbi5IciAUNgQNZKQIRVAAjhQa96mSRLQaXbkWfwHu9FrIxB7zDtpsm57QVZw7blSQfByYXnHc9dTrvT9mK0HVBYUJ2KBAP7DKEFMqk4y6KGtCdKQg8vhkgwlh41RVBfFFpWQeUAftUk0lg2oGkVgwvDigS50/Qx7TiOB3RDc32oIkUtPw/yScU3VRalaX9H2rVj/aNsgY5BAmq9agIJlgM+wiUAhnAUGBAyOg8AuAoIeCjuOnGFJwYoF3iInIiQOeUU256RhQj+ShLxFkXRPvqxRBIffVRRNTxNK+Ktb9WNGF78E0N/1ztRXo4Dwt3ru+AJuAnyEO4FUj6CJQC4oYheX+gO+sIAUm4OMrzb2UDUbbt352M+1YjlOKE62VDQj8G8Sjo1+Gw0o6jJatYfYD4qTU9HMTgd4SE7wGbQDwgd+BLbhTHQINuTqYBwvG8foTQQADTQ+r3Jw66Ql9W8I/z4ID7IVPGlQEqeHhCuW/86fBmuBQ3GDny84FVNn7zJSUCMyJYR3rqxlAGurH46FiVuScNkdyu617nT7kjHrSWKxbpTBITq+n5y6c/BD6GeXyAsS2cMS2dgtGk3vDBB4XkZw59ljPlV82I7mbweg/ibSKj86JmIfwhAMLL+LTLx25CEcWjKjFwetGXfZo7HoX88BMDjGzKEldXPuKVx4qYEdjOPLqmrtheZ3EvqfhHeBALLcRzZNbqQcI9Vq/nCwZv8SIF9szOGYhaqdafQGmv4fcx/A35Z81vVhSsb9cM70iHf2rKws77T+2fKTI9eOTm+mkzmnWw5Gpq6to8QUAk/D2NQ743VkMn8YoDIrlcQINHvOScG5ILBUMKMh4MwxsYG/VcWrq3i02yalmkX2q1Wu9sv+vLc7dagwFfcNfHZBnKVExfKkSOIF6P4rHBC44z0aNK/o0aI+O+aUlxcfvlNioFIFIvZ3KcwEmqw+Kwr0+WyoQoRCgEg1ICoiV+EBhzu+Uo+IhhHRuT15DHP/wkAJAS6AIieBUTslOyfzAPDBAS8XYJ3+5Pkq49cMzdd7Oea7FKCc49AVCQQzcYAniAJLrEoeTQjzrmQWDltqYHNMbd8QBiqouv3LongzqWgVWXLB0j1qUoKs1Gvkgfw7ZVHUsdmjqVO4kp5ssgU5CLAFzRstlKZkSpbXCaVUCcVa5Mc0WruS/VjJbc+Tz78LCzAdT1f0UeAXVRUaWfWszPLEUBVQD2/yQw8axWlzxai0tr0toICTGFrW3oeo+rFEPbu3jk1ORGPahwWcEF4oHYb/WCTTpCFUhbV5laUciHZgSUFfUk/aPsx2x2whT7cjtN+5ZV35q2JuH9kXAkpBVo6Eixqh3KBYmQpxQiZJhbWwtqLzyVzVxwYNny+XftunEiXqrNP8f/R3PzokMX0DAuwFDY09HfiQ5NubEwQKQry6YlE6vR9QaUcZ2gYam7RnWnuDJkuEATWZ6iNXwUXujDZGy8hAe73IbHlrCWrLGO0KgP5wEaFxTgebE06xVhN4ZbMRUv2Txbnpog3TCEcL/1MwQc2ylAueHiLdku6Rn6bZrPd6eCNZ1FRUSBeb+hHFU3LBqeRdMSLv/TRj9kKMoy078n9JyL+a5hzHGpf/E6kpBuIuWwwdmOQMUM19Yq53B36t3/7q30JRrG5d48qyo7wLRL/2Ppu4vjvMC3xtxBYg0gFiX9K4g+MI6gMzgMRnhxEu6r26V5UkfhvK6igqMralh4N8O+0yk4mFfRrHKZxuo9/UcIekYkdIsccNASz2U+FbcjHFadS3IRdov65bleNKn/5FxQIve99qCDjwe7MQ7P1F93sr1xzGalMIUTUtPD8zOrNi782jIJwnqhWQ1KYoZQWRhiLzjYP3Hh/iEaQSGqTL6Dlb1ldOARAUPdqrUO/BpOwgMd6IR0JrTiptBu5yja4uAMEKif1vMCNuWiTgXM+oNCsP3/8dFX7EtXAparmT1XN/OJ3rUpVgaDA7ZsbfpqqLGf5S1Q5MM7WtnbIFuhuqCiApOD5bVXG+PGNO3K2str/6pkIvblOa2LcLQ2lQwGYxElN0v/GBr5CluztMO9ugS/4ZpOSdaHRYa5Uk/V/u1Hhf4uugarwGwEzPJS2ZpsrfgzsXTByu8f2z9funJ06n8keXbn3hWSUfFfMj/QM9M2VRsd360i/JojtRkRVqCoPNg69VvhUreKjbPvovvna5K7u/JGzn9hzrY4X2Y6FIZV07aU7srNVHrVkJ1vfSSv4r5CCKx9RgQg2J9Gw/CDbcVgiEsUNCLbliU25J0LCOzblMktWP9NdKjJuS5reLZgDxut4bmjJBhHrVBzhTmUIvydqB970UNAvGjWiykv+nNGvPKrjvbTGE3rrur/9dhrJMNq/hGWNqRwYjK3/kLL0B1CD3XBU9t6D0wW/IsfnjebE6HYFGcNTg0q1d8+eo3uPNiaSdkGV1EF2JgnJ5tS1PaMNKES3PwQMPthF19nCqT99yRLPZOJKrW2ugSMadq9O5EP544HgTis3hnr96MsutCbS+ZvDhILOJXitfQ3jjLToRCXbCjp2gCeWusuqf990HPPD2bqTod+jXKI4PJTb3da0Yjix3/XzmfoVU7WFaq1eF0gqLewNR0bHmwb6c5PJ4bxrREeH8lokPPvE2+YbwcjwTN4IW5Oj9YPRIBAMrc9SGT8LIzALt/SCHVRYFFHREJDtH2ReQUVGCjHlAqACCsKFzW4IpwAgKolY9v/qKAAKnJGqsiCGa6OtxuhsbaZaSVpF7rm5HOfC8VzYbvbHi06n3d3sCFve3aAJ5cFwu5kGcpXKX/kTE7WTt1TH/ciwWDykiZitTYyPh5RiPFm+ENAffvnFf2l356yJymhJ4LxbUP/pt/9ScEM1tHprag8Pq6o/kCEk33BlPpLY1RkKJ5viFZcfml2csyKZKk8/tZvnCEAw5b1X+m38ffCBDacHPNkExM3IJ7qkAsUAAAnw/JOXeoltKWN0fGONZO14pFwq9UlSrDXgRbIYROW1PfgwVUzlxseymaKatTtxbTyfwJcmi4VUIpe/+OZ6ueiLpDLypDvWd8Nf4h9AGJqw/KkC0tLgZUgECOmO/pkZAoRlRtp9GcM+xWe4zfF7AQQzpnFPLaxINipPtJ0AzY6kp1vsmotKZQsXqSGvO/dmapMiPBZmhQAZkn9FUxW/2eBB0vVRnSGr6AbTlAj+gZMoRcjVdCei0sXXIw5NjFuJkbYWZFxM5fSQTqG6L8T9Rpgj6UBgwftpAo+DH5JQ7OUAARjCeWBE7PjGOy5GK22nPeCdnItCd47JKWj7kiZQwye+riIhIgoUl348xvIspGgKpxdsXUkPD69/A99Lj0MdZuATPb2Y07myXRAtZcOPaF8SF74fWzUvWXV+5t7JfkyRDJa1bSWZeElAT0AIPyGoBi/2dk61m5EQ1LGuSij7qWTHhXAHWDa2h6R4/1JsZV6fc7InBeSfuvWEKJfj0fLB65+fpmI4M3naSiqF4nRIK+/IZHxjs28eK2Qro/nsCL2klLbSGsZNLZ2u53atadHpkUTcOWA1kowplh3spuOB9EjcDDT2j8098e6UW0xmhkuAXk36d7aTPgrPgF29udsR6cE7b5hrqwzPnTEYMLbfCnAGS4DECNkFYEAMbgWApwKRSQdPnTy43y1FIzJ0yw2r31gmqCW2e2/F7W6+VemLBuV7q+h7olb3kpB+ElUP0fbruG67NUdtqez1hf4rEJObkt3a/a7N2qgW7+LMVyrfeYevOuZkRNxZ9Pnxuodyt5P/ilY4MNZleq7pY8XhPUFdRz4eYEzPO4Hg6sGz0WHf8/OerBKwnQsJIxodb/gOyi6O5Vqkphuc+xJpjTAzxJTRs1FKHGZMOXAADx/yjQ4lFT2vCdq9kjz1EktvHdZpuGRo1tCEzY18oVIQQqCSyqm6xiNF10xE5qbbOlrnU+mg2LOSiqVPxwi16IiRH7G01bturwybaSPNORKlE+7nepVAhYUazSgwmPIQ+236MNwJz4V3wtW9s8951m0M+d1xEvhq1EQNiSn7QVG5qvALwFHleCugUFHcCkJThXYraEzVmETRSw3G1JOgqv0kCdLBN7/xJS98+sM337h398hwMe/mdTlUDPAYzEbNAX0WTUv+lwhtthGJt/DohMRn4/unwS4j3ENyU0PC3v8g2YDdlwvh9XW5dYPB2RbKeU4+gsufrQM15HPob/wzYX8waBuxSNpgiH/OVX7/4WRUveJYuDLsppoHD7f9xSPLcU2QoQ+H789XI7pCvvFgwwyFCvWIv+QYqpE+MUFoEjOUcrZaCer+QGDi4fnmiYxKpCn3XlDwu8mgCOQT2dxIFlHBkfdp1ZBV8VNYrZ8xzj13wc0GQjo3NN2iD6ei7aZpcGboSDcQhq7qFZdMtdVlQhGppKARXzCIXLX1RTuX8AfF7frDc/GKUJ1sMBFynJhfBILVbtqPRJwlsrFwdTgbjYWHwsGJdntcQ+J09H/OXoWR1PDufDxdQT178b1vslGQ6QadvaiNWEJhnOk2ICyv/xv9Db0bzkKn10wjo/FQgAGj/Uf3LexRaLlP1cCT3A6AcDsgBvHg6VNXXNZtD7syvVGSq+287c/UG9h1W0/mzx6j7spKsBkaUmOe+jkrGV1jkN5SsSlVBHckzPgFV//f2v4CMI4rWRuGu+pQM0x3Tw8zaUY4ICaDLFmWITFzmOP1OrB5F5NsFu97ly4z8+Jl+v+PXmZmZmaG1degsRx/l8Hsme4z6nOqnqp6CuQwEhQ/nVGVTKWDlNg6IU5m75Hde9VO2YAPIlW1ydR5dbbyNx9bNrDLzCv1JcX2770nDYAIqaLhB5QhMi2zXlCyjlLDx9UJo73imd4wV5+ThZCz5WY6Yx2ZTpsc9c5HP3X+tM/pItBA8II2QPlDJ5+wg+uPqvJcqizb+laaAj2eU5FxlYqU4I4yGzMa/5C8iT8Vsnlrm8uXz546uqzJgki3gBLc7c8ibkuUIKGYQCbelsbGSNp76omF0WR3vcZ4ekzUCL/WTpjuxEwcGgrxgHaN9z3cwIcAM3wtwsOHlEyIsdIS/S/96pfObzDQdcXcnn3yi1v2v7o0heoUde6+6nO065ff7peLsyU3sGRl9qZp3GgViNLLWxaKztyqqhtdU6FqZUJTqGi0p0139SOPVhzxDPg/9N2nl67qjOvlxuKt3CJ4bx+/HaQunZWt60d1JIWewjO2b6nK0TO651SFnJnKe2mdyMVat8wIrQaGSnSvMZ1JWdzOlCoZmej1NNYiOdzd/4f410L79FrIHGTOnz1NCL4AlFgmSpTsbg+bDYo7icHPHUgwJVEASe/FO56Icf7XfdOJGCTt2WcuXxr0O534RPh9QY621X/YTU42O/qr798HoYGFnNd5exrrsWMtkhgl4fAjni28fZrUD0+0PbZ5YQwDR4e7Ayv7wsfzys4JffBc9/S3P1b0lg2oU2Yur00aXe3CZ3zkhmMZzPANJFiubKCqaRNloEQlMk/ZiCurvDIlrBUrZSsZpjGVu9xsNJbmNVRUbSprlwQuGHd3rpwK8s+A2ua5+nHtdJDffkyuXd1TidqqByLFBz0O9mTGE0g1TVVcZHK/Q1AmsmlltxddvdNW+0Wu1BWV2UQmhGiZbC7wBWduKD6tV/KmcCSQnP07+Ffxi6GVurJ5cQeQ3Lr4yOn5Cc7oi09fIxIjuxJFhpTdlZiELHIqBEqRjQIUkcWSOPDHxr6Zj3vvvP0H3vfcs8ePri5PT3a7ckSMt1uhR3AQuATphMNN31eOwzO7zwP49/nQQ4MWJ1Z45LC0kwX8BKfCt0VNiOjW+8h3cHzxqmN+0UMgVCYnNkwjyNoamO7UxMpMmxh7PbunYtB+2ky9M6znmx7hskEz/flbU0faFzdyKlHNTNMCglcXjcass1DwQBw1vYXVySoFaLdCrBJL7ZFpzM/tnCzWdnc4olp3K/q3CRGhCzZ11G3ddRe3JyZn2tUjttK+1PeXi8LM1oZDIa945W0FKVOMC3NLaaOepyj0oqaqN7pATGoXvDRynDmqWVOz1SlO6jW9mdawe7yUSy/uVfomX98Kmnb4lBWDSRhpI9nDr4T+4BvSd2+mjgGQR8/tkIjKXVIVIh1oYk2SSGhBCETKxpBFKMhYrG924mZEjnbpN78ySRFXfo2LQGIU2JPJJaHzbbzvtbt3nnws9FhaPFLi+ISj4/XHMDimfqOfiUrHpxgddDpW5yBigwMRn3V0/pH0iHR4zxh2DzV2PqFP78Pt4D7bjMbTFJg7PdEt0Iu3Av7EUt+VmTysFuZOT+c2M69fP3q+LtKnb/KA64vrFiAyVJQVXYeJ11P8bKCuEJQH3WVPUSoWtYyqpmMq322eLGT2nlcLjz49O3m9lsEnTqv1sueRlZMpIPXyKJ1JBRNnckG2UyXyeud7r7401IzuHMoot3IcABAYK22Yu6tQOGdA0PD+iV4yW5m0w4XQNFIsktyrXYMrBQPc/M7S+25XUhs6Xj29MztJI13cfxv/XWjvvkm6vnllFkBCEOzTH/vQTUr5FSCU7kogoQTh0QjGmYg8T8o4vSNRwmjoaxLyXkmSmJDiQ7Nx77OfefvN97z81BOXLx47Mtkt5OUoghgr7nCMtesYqedYU+fn/XT6kLlocz85gbTXn09wOb52XBzCxZj1jiA6PV4lofdjj+WBQOQ+RkzjIUSAyKK8tMJA9RZndojCgSKb7lqWTKubggMC/RjzijobbhkNIgosQGRkdDvd6Rk304ahV1AIwHNnM6q10CkWgTCZFU2h1XI2p5W1TGawm6asqJE0u3BhtqpSPeVVASlCbqtp2TJr1E62CkxvXrm2RBT0/ImF6R5hFJB1DA68SymgD/RFYMA7ciMjLLW8oHQRCekNdACtaK/1l+/dEqkU0v5AJZ1aHawSI/VgpXLmxZue3DVAVvoN3Whl+dkzXRVlOQNUMJI/mhIgahJKlf1/iu/Bn5CaIQvzxKa5NVlPU4JXIx8ND4Lx4vj8x6yjEYUWMbVrRhz+b/C+Q0MbrF6+OBrMBFUWcZTzDwUc6SDWwftHFNtP0mofwHRQwvhgI+UMqa3k1XE5gR+rfWJ0Bf+G/nJBbm3tBURuHlERkYJ9e8cwnb1Tja1ZJUBZUdhil8nOYMtRqVO0tMBtl3JEFYjqsauapaorBtE1TWu3nn1+ZU0rFPDNCZCzeQpTMiEC9JN1gdT11vQakxX15f/9/VS15xZMLiolS5ZbtePOpeMTDa5o24tCRnmyq1jZnSMzRqtam82f7AjHkSTc/+/7r+Bz+ONSW3qPtLd50gKUZiouYXAWOCW7EkYbCiESsvDXnTg9FmkbD3/dSbj1qHjKkPZu37x04fSpY0cK2UZV8PR4d5O99YQfb+00GTuYtVYcirH5OIE83saxmoxV736811q4z2zEgPuwY/p/THTTjULhXD1/1AUQT15PdfXJbMOhbjWfyzNwdJvOwNt2HONobtM2Uymh2cHU5imjNMx1Xc4URa95GVOB3u7qrC0D7TbalYIsOymOjFQW8fNBykqNMoJxjUznucvTmkEg5Te5gV6OH39NixTVbZbL1ZmlzWK/PtHpV2d01FIjt9w3PZU7QIOpjLG1yBqDUmGQazVCL0OvTnJeW5dQ8vb/CWmF8v+G9Cl4aTOfAYILXaTqxz/64XUq6OlTyJT3giyNq6mOSyqJ8kEhGFKFCiU0aoqkMOmuBpKsSPKdcQIrVoKQ31UU+boky2bE9PLrEucOT3is3/lazv21zHit9O/JWtHXtXlCIqgiUe9KKkWV3vlNV/u1F4pIsyJIH3z/66++/OK1K4+e292eH85O16teSnoD3tCTNO7DFiHJ2vL6gQ2v1xIBDe67gekwwhReRA6JdBkTGAnlMggeiqW4EJ4XSfWhWEewEgszxLIdpGPaKXIf//9+AHKuwyBf27j9kdTtuXQFHVAi5yr/2rmN647ho/rkraLfbumOlzIqBOCHvI6aS2eBmXZGrjYoscqPzNbckp4qGrOlKaYRAsJrFDsVN5dO5QOjWzMExSJc8oITxwyKAnl/9T2ars7W8i6vbz6xRDScmJrv72mBVtbvAeiLmxP1XHl+Q1Yey8uN1pwHik444gJXke+dA82wA001g5VU9djNnKEBAUDFRq/rNdI1SxVKYHarGjsCL3lPuhYr8KyTbmu9kgRSaf8f4f8Kbf4LIDadZ2+j4FUPQSwtIKHkoNRzVhIcuIhwCBGekSgSpOSuJEljVolz+37tgpNkI3/b95nxfZnf0edt9iUuCYmLUOgh/HXn173z8KZIMlNPP3nr5oVHB3PdTiGXzdTkKF0Vydu7omxPCC/+d4J8gccfxMjaAabyUK42cJ0uPACNh6noaLlBEN4zjiwwhydmn0yjzIKSTGA0/zlrbjZTfbtGPFnFSmW4vnBk6ZmbRZSx6mt5E2xlal4x/VzNtQCVrqs6QJd7T3zrSrPDPLngcgLfTrwckbE0MXVGSWUL9uxyO88FkuUl6FGDkFdlwizI18WVwoSh1UsUXLWeAj11eVYGwlQzbakid6SQbhYUWj5b33PSa+pIqzgyGr2Sx91JCaT8/t+jfy6UmD8HxzdL3/uZjxOVfPGVuy/PMab+/x9FqpHdX9k5vuLpHLYTQDoryQpXZH5XB4kTLkUMc0SYhfZMRZVF3oKmonZH0qiqReYNVBqeoKLEBy2uS0KE/1JV91ScXhwnsM/9usuqjKuRtUTOMMQnjSeL82Rx/mssnqy7efZ3syTAe9+9LI9iljJIX/3K93zXN3/hD37q7TdvXj93ZmNtqlcspOxw//6cETFuNS4iCYlIsvv2ttV+gCWaG5e3JXI29mW5iF8xUQieBLzxDcGYZ09Q8108/Aw+bLnjTwjGt45fuS/sgRfF/IfuQT/K9YQALEREZYVk/UFa48BXID9T3UkDXVLOnbJU33PMatZAGZ3pspN2BckUFbRIb5ivGLxc4ERm9oq6+wWl165UCKeIUdHFYjbt2un6lGYWNk51p3WnkLVswyiWDafXWzWpwtUNVFpNQxb+wtlXO/KTPa6d32bq6Z6Qd0+3666l2XbFkzU9jwBO40hAFNRGwiwRwSkCEPgadDrAMq0sgKoqatqUHXx8smB0Gj9zL3Vmx5JTqpLRiElS/aKsgggYZPiVL701n0c1z+xWxml+46ve4Dm1l4/ddJRlZ821GJ/SROHUT/zQekNBxbILbqpU8rJ6s9WoCqIw3qwS2ZvsZGxNN1szx8G+pMmrMqwpYj1jMOpXhgpVgCAXijNtC/dWr/B9hfgVAAdempl79sdaPNPyAGQgQvRrWi7iz3L7/4D8afwx6dukv7IZnATKv/XNF19YanBGvwBCIrvPgNhOfJY5CQgnwO9GriRlUoiMgkZ8DKJxv5rDiOx3qGxCmCJStupv/0YnvHFzcP8eyhlPOCCecED817g1uivSGOdzn/ng+69d3dleXx3229WYA4qFcawDD7uqvDV6OLc0zi4FYxEfS3QQ3+Q/GNTP+4Hnj2OPtpPIcz1eq3XoL9fTYyWNy0riOPTf15aytcB8cn172eSOXp7n3C90uhx8yhaQFmcNQqyto7echnJu4LrdxtVLqw7XNdk0me7lmLdaswwiAsfhCqvkAeyjF3XNaVlas21EzHhKt9OmoeUyg64AGWyitdkzz+iaVtjJKE6pxd7cDtxja3/ruc1aeF/GrSzkdN1M53NFsICQRpXIRnm2IeuaMlwYKGCuZ3rd0nZB9zNGWkbZRKWW07B3ebn6SD3vcE0FQomsdieFnZ9xoamHbgMA0+1yvSS421pQ/aE1XHvxqr6zzWglozrVDkgg6aEEvhf/ivTeiCm/cwSpdOkRJHRyAgHJrkQoUhLhPFCEEDDpODiMudmXnr91ozEzFQWFEOUNhPcAyf1rsORjjnwD/7/HXkL/YYb8MIv0wOXtersdloTBNxHGAAC4pZ+6sXb78ZQsrL6sv3Rjd6XUmzxyrel71SZV1clJey8lzFSvZgpluFh1QObzMirOsM1ACxZSav3NW4VBU9V7jdm14qCz2PjAnCz3+/iXAQFRV0xGKNO9C1e6E53a+T1DvdQsy4pfEHqZqNrCAk3VTCtVaI66eVeEmtELFBAMqnWZyF7zzKqJ3HHbQxtII8d11Ee773x0o2BoFNG0cGlFQqm6XyVfxq9KH5K+CFub5fkmEvnHv+WbP0M5+Ym3XieMv/T8E49SKujudaAHiLActWBIcmjpOGGER0oqCBN3VBCUCJpoqfJAlp0QN1Jzhyaxy+98BTNeYe63vULwrq9hc+k3u5nS9/5aC5AkNPnIh0H64R/88Bc/8sXX7j3z1CNnR8OpXq0ifQg+pI2z+5EcJVpfu19nnojbGFzmH6KbvXS6zg/tZnz/WICjFzw/RptRVN00rl990IQfmFMYB0ZjZ3KYNEuE/2sNp9lYE5zwE/5kcWZj6eUBBQ+AkLVNX0Hhr57qdpemThQAtaPHt4Z519f1FrNTBmcgK4vVmkJb5bSiHM1M1DPZzQs6VNrbhkHT1mzQmslVKBXyQqlYymXktA4AzB5Nwr9N51F0+orOlfWGX5JlAgCASCmmmoMpI9AnXziGL08E2dWRP7VTMwBxopk+4lum6shB8VzW9mvHAMVcqSBro+MWUlAEpbkg7cpqfdib9LNp/5FUxZAn9LUdlRI3PSEE6Fe+0eWpml+hTNEeKeVNBXG4+YH87ZnW//6LuTRTC3MblmcourOeB1RkxdA1mVjMZCoXHIOO0XC+/gW77UkxXn2JfGuIV5+SHtk88/GrUWbieaRsoo1A+l1EoLvTEKX3GGE08gKBkTioYIChF8jG+BUz0++89fqrq8tReeoU5/5viGEm+l4iIgte4I9tziGwjTMPv2/QJjTSqfbsSq7VEdDYKwTiyqaqbixu3DxtN4JuLVAIQvB7j3Yy5jOUVFXfQMYVt2WopDIhaK6YIUrG1IgHvycIWN7/R+QvhAj47dLXpP++Wf70VJGg/JPf/81HFEbx/Ckk/EPACN1973vOEbad4NeSFNlWId+VZAQ5PF6KHOOqCoI8IrUZEhYd+nvHnY1xGOliTLj8dhcI3rXA5vLD9yIFjCk+iCk+AskK8PAKcZuh/93f+bF33vfaC8/fuLZ7sjdRr2YDJSJUQph4d71NgiyJs/8QVi30034smkyI8JUyHghYfyEUNRHh0v3yDnFgiPmYR4/eTpYrkfuBR73+gJgGyeIQX26hJ7xBzOEPEwfrHJqopMw8kWtVU5Dh+ceZrL3nWMZk1q3LlrXhK0zoWsWTdeCmtdUTlmEoMgKXqxUTGDX9QJ3M4cVLjZYFoBoTO4uUaLmsjn8NGZ3PUDndUGVZfm5KpcJxVR81M7t6a2aO1vMW5QHNNXRBz9nTeNnK2uZCRwCApl9+paDkNEWW/wtqCMzQgkDIXq1SNJ3pwSMaHMsUNPO6SyZSnTndRDSAiUJAhIgDDERNF6sna8V83ZUNoqr9/ubAnxharapWp0RfWljS8XuA0FlkRZmp8nMackN2QZXT83/ox07USdYyZNnMs1wr0K3BjBbAFTcMU421o1wjND80kDlWbzpCskfDSqFP4ZekJ8Nq0xfWVlBQTUbOcFcSlFERmUNOWSRKSDneGbtgoFBQwjBYoop0RwVJpiGVN+4AHdMxID1++/LFUyePH50fzc3UKpm050hPwpNaHLYeVFYP7tckDPrjHpRx8uZdVaeJUM2PqxjiKw5puncVpB68Ch8Zru30XE9Q5ueMAW9duHC0evpSytvtfvjH25NvfJeFreWP7D2hU7H39DA7mXLqClVlozM8VfMz2WvX/bRbKdcWNTnf/Nn3n/x43ptu9pYmbj8F+f5E55TBkTFe8pxpGVxj90Qo6rvZPeF/82te+tz2e1YbHqlPm1EJtStUtd2YdhV9akbmprM3VWvsbdy4N5go1Wurpu16cbXIPyA1/LJ0T3p68wkTgD92ChlMtPIE2UqcPUMQOxKPk97hsQBCxH2MFZ4AJXdkkGKuP2qpjelZJzqFuy9fPH/0yMJwdqpW1lXpHtxT4hL4KKl5UH/TfjAoEg+UNiTs/sP1JREiLAzGABHrcKSQD/BeXuBxUXs3jYXfubMIHPj6klGb6S37K449XE+5S9ZossTMFJ9YVglhbPlJR5HF9KWtGnPSenNJQ3LjvHVNBK7WXcqI2R0FxfPnSqO8lVMzCsAjiAXug/3l69xovPYqvjVFbSpWFoiq0OKilw0Gyzk7yM0ZmHYFoNbgjGt8dEwHWitQQLknawo515XlIGMGVmc0Y1xYV6ht5S23kNNsTijAMSiIStnmp18RkIp9gNT+XyfPxt7yxGbrmWPDuRYjOxJBck9CwHsHzVeSKe298fruTqcUdd40o+LcCF0THEx29b7ljlUirr5OtjUS/YeyKxbeP5tx6Vzoy7VGEUIn3Ep4+YOuY4LR4T/Is/z/IE6qDun2GhETBrVbu0qVHO9ptNjimHoe1nc1RHN6AdRTN5nQdOJ3gOeXlKVlU7t0qxLYJU9FFBqAUDYuEJkxQDQRZOYpFmMKralKRm2bAHiSvoDF0hpCqtInVEOaIwYEICrcAnzBnOnxRngAj1Z848kRpbKMVqWqsmb/6bOl9PoGEMwWZCttmtp3dp/5MElQkWZmkRICBkGZuW756MIL31nUN3RTZ5SqUSVwNqw8+CMhlj0vfaf0/ZsOgMDHgIvPf3JviwIfs9FDCamgGFG9nIoI2YByCFWHQaQ7dxMUA0hKSk4lR5j/HdzmSGHKMnjxhXfe/sD7X/jOF7/z6SdvXBsNKqE7HKvfQtq/z415JTwserwPaqMDw7uQSMTDtDKPiL743V+DujhkLpLeh2mSxBwL9Wk8VOTAi2SKJE3O0bWfG4FZKDZURGTEmqztbC4VF3rrH55eORklzuaD+ZIakhaTznatn6eW5c8LUps4bTETKFtDInfaisJ44czHnZb8ao3eOlPLTZ5sqvxXCp5FZIKafsxR/UY2MxmYwi01SjJAhy0vgigcbS2fqVfxOQ6KrLj5Vk2uuylPKVlnKyema7O9lJVfWCAUNM7bTsvHVH327xwpdCdVYQe+O7SEWinVezKxgNBmkbNUt2MbhmJZtWcN8F7QH+k4XY/i//5zpYpzwe1ZBa/WNt1VGzXDzFIMyk0tTW369Gm1Nwk0a2WqipBIxI7Rvxby1R+Rflb6y8A3az//Ux+8Qpmu/vJzzxChfx40sXUMI3z+BOhwEkDaSULjG1IURmDkm4EiR0ZTVSDignVF1e9IulD0qJJJU0TEBRuKZtyRDK4YkWxRJSmLUOi4BDemhgkxo643h+3lf3+Wdw6Wv7pZ+JN/7Ktf/o5ve/utN16/eH5v98jG8lJ/bqJVrU2YEdESFa0dGuYQjtJewo2N490DIz5Nx9JmIU/gLqkAjoVxMDbXD4s2F4dNDA9SzdEnsXcR2fzBOt/o+nfV4PHagUKx9oGqWcj99OENGxjfgz9SSmUmuHhx3VPqo+1qyuUEUo+niJfiikp+THfn1ZThqBlxYrrviuwo4xh2xp5Zm2n5k8c0zuszm65zcmrl2FpQ2nPAsvI1wzC17a5iGFo11/N7S8tr/eEba6agxN+A86Yh1E7DRLUqK5kqM7pXj6oVt6oxX6cI4MwOEJFQhagyGyx//Qd0LlopOKscO8blev5alStWu8pdZaNo43ekcs0Vxq/ZNN9Ehqgi2ucXVT19fmcqXyvq5I4wACmRMVB1PW9F6i3KaaOvqDopTkyabG7zkxfe68qzhJueW6j4KSvIpBbSTMgsG2TyTXfBa6wsuvajjivsXpWg0jD0Uf/GI76Rr3OiVTIoAiNoPrZSNPI5wlIrdUAEQAhyRFBeqGD1Bx/XWk0gxNJaBFyLyMrul55ajCs4K/t/mxwLc+fvhJUjoXvF+LOPniSUlREVUgRAuvvkaeQ7Emf8nsQouycpBIkSU4Ik8keFJBMhPy5RKZLpxyUA8wC53/zI+//Aq3efeKxx7Lnu1ITKc6ER9g9L0iPZe5AdfFclUcSv1Guc18UwLhsajA6j7IRwWYgl6aCYfS76d1JQFiTJmJaIGkqj3nEe+YF+ZI9jt4pUCeOVE165hYJtHq8KkOXrJ5oZRbP92VpnAllzQrZMpVBtpuzzzqDE0pWyaDaOkXJ9qZr3qy4yqqRWz6TY7VHTFPqiO3UkRaiT0W03a8GVntatemhd4ifzpxwQllL+BL16ziyopTn9qq4hdQcWYyDvnnS4/EgnrRDFzbY7rKwjUfKl1eUNEwAgXwDwn56cMZSSS7mSWlkzQR41F2RrZNaznItGVuNUkbtplmpkqXPrPQYRpsi7tz6iI3KPRadb2++SO6Gn9C2hVS58y6mTEiWyp6JEIr4E3/oICqC7zwE7wM2+JFNCI0Yu8qYkvHt/XASl4zRsfL5C8BsS5ym+l/8t3uQ8cFPUBPf5z33y4x/6wM3r3U5zclrh2R54Byy9OHSB32WZx/A1Rq8x5DyUVxjXAr4rVZaAzgEZc4h146RAeEcZk/IYJ14zRjn4XzgUVnfBN8noRNlSatMaIYNWs0ZZu3N6pujPn9AVxTm2YgXnO65ig7k2NdPy3NwRzSwcWVN1nfE5hevVsmURc+vM3f5Z39YZpk9vDRUiK6y8h5ii1rxwP/iNM9Nz17M1WwjuHV1+4fgLbmpbromJtoB/DW35w+c1JTthC3DzRK/JqkzYoJULFLXkKkuqqjjHpzTa8Vprj7bUm6O253p+9ajhq9ncciNCUVooOOl62c84ijq3uN6uZMuGszSRY0RRaKFnp965tFr9+KuO98GWXsxuVgGNqe6Rl6Hw/M6uh6hOypIE+/9r/yW8iz8i3ZZ2N7dzIAGAkDaTeicmqGA0ShgJyiPLJpgkxl3E44EABuxdu/LI2d2djbWwMbjVkqNqsoXwBKMTTSxOvWZycT+JenD+4/resSyMpaG9jmP7dL+y+CARO41/rgeoKLKzcxzVEyOr6OW1AiuDzln+jtLbuvjSxtJQnzpbefap84+HZqJYSdcU5tXcJgPL4ysTuj4yzKnlmelRtdS41GxYwCjUj4Om0pmNNG91KDWoT3JgKzR3EdXlzb3hlIoEQbdm3/zGc0cdpsjpyslu2Q5A0UlVxoy3dezo5Oju/KVUQBEoiXS0sf9h6R/gP5LcaF4LgoSwawLu6ADbEkp473DuyI0osjnXrA+iTuFUTTiRYA/88HHrziD61z/ATxP2ESTk6g3O3dsn8I/q/+ufcXA18gyiIYFk7n9Q+nP4D6SMNNrsB6m4fVkH2DEB4w97JZ4icnHcHAnSWZQcS2ZSBjNx+2M8kCLUvnjakhP9Jwr8B8634ZuELlwpEyEAg/cNGb6FHH9FhgwiwP/6Tkp9FUgQPS/AH8Id/DuSJfGfESSaL1Sjfq01lAY0sg7tFjTh6/8NctACqGh6AP8ev/9vgoZg/DfgwsC/KKF0bv/v4y78NWlK2olmvqRUQaSdzY2VMMzOZdJKMnZm5wRElNpwYXgQTifFioNInsoYvuJ7CUsWRXGRaLXa7gGalDGh2xZGkQ/UDk3ROdc6d13vHk1VygSRADEJDIIMPXmi41hw4wayG+IHHIKKTcAtZNRsTfMi/Zh669XXKW8sCtsghglI1LUX94b6hqpQHRfnh47FUUG+MI9404Ih87uPN9uGW0jJusPUrn7DPU+YhNKl/b8H/w1/WlqRHpXknzt7vE1wtudGwh+YeKAjfhCTNPORt+Yn6hIj4vS4eGAYb0D0C8KHiruyeUw6+Adxy0fPr6SJi7pKc0EJ4KTdUVRM+ZsNonLy1MWNwNrso45UpBBBEMIRJJ6T6zzQJ3UAe6srm9TFC6OiroEsEy/fu6M05MKMmuUcFTVn8fTpC9tDRgfdjKz0J/Hxf3Rm9qUSaIz5suKxr//gaoPIREOZp/nuNbem93VSMzakUAX2/wn8OPx1aVpKb7qRr9+qFzSaHPUMRJPnYpcgnijRfsixjY7eF7FnMDYKf+Rxe6Ladvw2Y/rEhMJ1xiki6ZH+aI6O7pXU0TEgyPgk/NA8UYwUpHMzoFQt0m7NTE5lkTax5fle9YQtt4+5q8vV0imSiVByf/8fwT6+IR2XcpsBgrRz/OhUs57zRfKlbq4D96KTS6xQOhjbPS7ClXEYBZUHDUMWRg+QPEFi7kaHfXyZI1cYe+dHPEKgyZ3M0lM2u3aUAolGGpxMaWpVuGARtCuNCZnwHnM+dyVjViZUVcGlShmw+pJBlCGrKO+/5+tuY4PjYImWd2cvOqj35nTGSiIlVs62plK2l3Uoao985miLGXdT1CBCllB6ZP8fwxfhr0pd6YjU/IVGRmXIDgKwnzsI3X/uIBb/2Urp/kMHsUj6sczFSfyIakmPkX0Gkzkv8WMm1Vpef2FcqfLqs8du1czRxd0CmNnTFOyC5pdAAf7Ic4x2F8o6EB2/zdEZAhI0AcOTlauGZcCHFmun0yp2N0eeZhKmun2uUqGDCXxus9wrau5096kjKlEVhooltiZdOZsTaSKrIsKs+n4NXsWvSJvShzatSOb7ABLurq8iD5+4HY0GkLjE7wlImvNibvAJicXl9Y+PB+V0HryGUPKKxJCyy4eXM3pVooyejodnrCxN9SZahZxtaYq0CZvx8IxWeyzSfT/2axMPOvpnLSR1k6EL7WG9HpERkbSMkvxBZBzTARdgrba4Ugx0uCerzhliMwq035cV1RAiRaE/51TSae4RfbCiERjl/BzlhWVcogZRvEK/W0VQdX/y2z43KaO4va3RuuseeWX5rRsdMEvgbQ0sc3VGa9qcFxejxhBnfxaLIVKvS49Lr0RW58Ww0WiixlEaASDuVkoo7cTDKAgk5F00I+PJJ5545clX+rOFXGR1ghCoIiAeR5eJa3A/DRIE47KQIHLporhznJtrDfsL7jSpt8eoHkXMUfNIaBSG88NRJFRufxy71riIHY2vGicAgOqC8rXpUZ6gMOiUnxd0osdFHbIWQeviJVsnGpnfGG5Sx0bw8Oy3RXQZIBCdguW5fviupQEFIc+0Sy4RHsL/AZWuvh4YZ5FQja/nTm5MIa/mcybh6HHF9RCPf8hIrzx9zNbtK8d1AN9pEFXRcQn+LBBEcI7sjVq6mbJsUlTFaOUi02SOCCh/vZrK287gOIe3EByfFySQru7Pwf8M5fZqaGt7CszGQxUSyxZXzyay4x+EU0HkZ/nj2H7sSI9tR7sVbenBNiZkahSJJUTo6LaNhqZe6TgaMgQuNkxEUrwS+N2jBgD4wNwjj6dSlCnlGu8yQt1+pVwCToEH2fURIEWvpKAhAL8F1FaLz/uqAApISPWK+94Gmuu26mcZBSOvlJb+r8cV4R07r2pIaDqvLP3MwqlTBiqBMC3tuYWqrVTyzRkEgaWaOvHL33TnMrOohBLZ/6ewHTL9hrQaWtG5jJJY0fn46b1YcNx+5CscuJrjPEiIvOHTi1pCC0YoNi5EOmmthWdd0M4CqRa+H8oVClbrQgbBymoeCprTXRcc2+3MGEW3SoXsUXxan9M9L1DgZN7/utBUE0DNrKVSZc0jkN768Y5sCllWQTOydc0z0tUjp++YaYtEfQf/en8k/Rv8SUmXRuET1EwZoidYiA5znJMe91wE/tiy8Hr4IIdnGR1k+96EqGt5N9t0a466+XFKlTYzFaAswMIslC4iraD6SEbnHIiXcV3Ejzd4SU27fs3Oueq/eAoJTxOZEeXEre95j5mfgsIO6MD7vUxx80fepxTzVFZRQqkW7vlXw6/4YsjUrm4uXT53WqbSztpojkDchSvR5941m/Dxw9mETzx2/NjmeqNeLbMI/CKWPQgOMpmeH6WkHkioD3g8TCuI8llR++e4MCyW4lG9HZ5yzCK0Ih8pLplMRuDx8Zyt/jqNjG+8RRAkyqwqSiPtRFptZp8AxmctPBYm2Y3M5zlM9TCdm0NFm322UarMpqKrOh25KldABiDAVDQNRJlMPC6DYROfC0cxhEJ0zAkgHL8fKCLwqDMzO8kDGxR7GbhYKzgebmdAz5nptxip1hTNS4nSspfJ1fXqM2dlE3iWX/iBNU4oIG22ABmWPiorOnFr7Y6OwKOPyIKMmpKTQHpq/5/DYsjx9EIU6LghChw044wW1kkZF+bHmWQegySJ22p5uHNPqcABkXICmuYszacjN62e51wGwzTMvPUxsJyFM5/5+C9mKyLSVIBmXW8UNBkoyc7129/32tOGaVGmpvTHIOVHltQOs57vwN+SPhvlbv7gJz729oduXr1y8cjKsJm3BDrSzr27L+/1p3jiLNUrEB18OojqsEV8YomDO24nDZJEy0GmJT7yGPzHqJVAVuRqxPo9BqxkcqyIlDjyv2LmNCKK+EEf0xjV2sNohXDJWOn7HhciXBneeKITxZZt22qrCqZXFwSgTpEUCCWE5AoACPmNuSzQbF0VSKm1aVWqQArcouR1MOwSKoT4G6zRBAr5PAhTlifkgigVAAQCpFJ+GphqL23k5wAAz66o8FenFQomsznLqrE7reYsRLC2LhR2MqyGVNMp1Yndrqd4vamFgcrZ9xPFpbqBH7rRlF3G4KKb7pj9q+endFQtXTeN1pk5blJK6zXCNM7KzNcmq2BMXhluyinG0DAVBQxtYjpfZJqanZpRozNkYefBY6En/mgoT2d6UQQXbXGEOFE4EgHnoWloJzGGH27yGKEiEB3OYHw4SUpzmHB/wh9HLyipPjU4kEIW6GirBAjOtElkgPKMF6InlEu50iKvl5kCAhQViUJsosvy5iYGHQc2N330ildU+LZH3zwSMFMQXbOqixnETN8yQ0o9aNoGpw47N3m8Uq35mSnezlOsHtl7NSerQBjIwAVDMjll50QmU521UDUbRIona/8dJPAPpIK0ECLwVMUCnI1Z+TKOyx1jT3504MrHvuw4rIyFdezKw4qvbly1wZAJ6Lefz6ROTmogqzRzuomEAiDmGOhrCwojJEv1NfjLBm9mqf+17Y5g8uqUqk7VFS336sJlRK1bBkA2+9R801KmHKLdeHG2xkCJbMb+/hwKnJL2pMejmYUnt48ZGkEhAexeeHRmeqoTeDLsxGlThHiMFUgpJ/xzj0TeV60dg2I9LhqZj93JhdB1GvNrEXoE95OefhKEiahvIqm+G8NwVKnLowDbQn+cM4jE4KOKCkyZ7hiMw5peUQBF1mRaZc6CFCA1gNXcz6UHKyoAphSiLh+zle6UIufzCz/vEJovwtpehHkKA6v1Z5nJ/wIBlleYjgtqLp26+lZ4pY7E6s2YDAhzLR7+2+w+puU8CgCMqPPaey+OeGne4HmO6pc0PcCTTNNfeUWusfbOamdK5VZ08pf3p5DAP5ZaiffQaWTCk2fzMXlQGxfrHLhSEb1gYhTmxFOhSLs23qH5WCwWIh2BF4ybNwEeAwKqgZPzj5vDGb1e100TFfeUqyrPBwTTAKNUplZBBpSY3T/08sfL8yN4FpXdI5vnMVMcMV9GP81x6nvvPffdm4LnBWV4govedxdQXjS5aeOPntABaaS7RhhF/+HQH78c6u4RGnmEPMa2CAajNHYSli7MJzOfhVevJdUHrXHzfQK46yTUZ55Q7WO4jVQ6IhsM3GrU3UwXh3JK1whSWvZV1wHMDzMRBhqBC0QFFZBQM1sBnmrloPhqUa4vMpMQQI2BmlPTaWAUPgxTQWA6JeaxKW6pMiLjcyplFDgP6g6oVKQskmKli8xnm0w23SwKQwFVTW07crVLVYJczJ1Y3tCVtMwFCC7B/j/f/zvw9+HvSJejqueze4VAZkQ6CUhwN4rYZycQtikkfe2HZQXwPEjbW4sL05PSZbjMkkqOZFJUPdmH+03LBx62/1D/cty+GW1udM1B7fu4cSQ2yPNxV2ca3mwsELK9LU+cojJBwgBkIaMx2Ao0u44M3W/POxuLltfsKKC8n7C2qfQupAERMVdJn23qJYRItOqplAc/1VAFJbNzbA4ZYEfNVoKMDNQsq0wESKcyuc2lZUMe2SzDTHwcCEF9zSZgWhM9zyl3UnpHJrsnBwNwNVWLpKgXxv7fip+U5qWZzckCwI4uYzyGKiIPMZ6p8vjBAG2QTk9PTXTyOceOp1BFoZvwhIjrYaMsT4glC7FZH4wi6eORWY7csXhbx9Eu7JxEIHDliq1oJ9glAEJ0lm6fOeOisDKgPpfNLhOCvFLeqjoACwumEqr1+c+uU0QkqNDUN8/MChCmz8lXQCbEcyeuz8yF/4+9EiXkE6+FWrETasVOHkKtHkZnObZkrUS8IyCLmnITdo0LflCWtxA5FKPYi/IiTzJOli7EnAb86iqb7K05KOTpdY+wGYN1ha2bx46QdotoDkMwM6PgKCCurKGOVipgIl8SpNE9W8bbgd/WKSsFMrD+BwermTyVuTk9A4Wi2r62eaKgUNlT887372YqBT8tI5gvfnOx3gVVE6JQWYmn4P3jMAKsSUvSaam1WT96ZGlh0CvlZZAimhm2I9R/RZIkV9rbOdFqIveSTAyPeDSeCG7sUCUKnkTgEZ3Axf2Y2+/HEBLLeHR86cNWY/hvBGiBfbh41La5rHbqKUo4RVFH9bQBVAeCOvKWDQAnG42zq6/nlgxip6pq2xoxgxUJfAc5q/BAfGpem9cLXDChVrMqpcfnj6/W5LbLeG1Lo5SkbCo7HccUYiqdruWPmj7jsvn3s66a04+/f1iO8Hth/++RGWxKt6XXI9b41cevXgzzELNTk6Ym7WxD4nLevROzxunIW3wQ3dqHBi/uvR4E3ngHDp4/8BOGeRyijJ3R8Qi1UeIMRV5nutmuJWFHYhPidFf4Af9s7iXgopaN9BTQ5p4P3K/nPYpAgRFNc/IGvpBhU1c1OH8ezI22B1jSZDBv73mQurqoUKAYxcjTajBJKHyiAKeAAhjGUzYKNUu06t01PCOUng8UgbCZ53ZWuR8QVVdyE3kfAJCmPMP0M1pzyyGFOnWc/pwom3Lx/7peYxDuiqINbYLMLp94tDEhHDtKO+bOfvh/KGWY861Ws2dps6R4/DNVZkW6Je8fh18KecLnQ916uhjqVhAz8lGhdOyItw5cxPtVV743CPdxmE7HW+kdCGErVsjD9p/Y8Yh8inq4wYfvDPzgvhcvs+ZEUY52Dmjk3qZFnpvQ2Sn62ekQIoAwkg8sojqi4gJZ1SnVOFCCtNYAPwRvgKtXSG9SVouWZteumAhTkeNtX8mo19KMT/Wzsllf/6wDIDNOiI46KgQKA9Owi05qchIIp/XAJqDYosQAG5xqVXX7SUEYDzKyLAtFXpxv1KkZeCnPrlmE0Ty3CKW5ZpStWd2vo4RTMXuzmAl3rmnG1Hb74cKjQTqI7U4kges45nJwTA7WW2PXJJbkRKojoxPn1UoIGTHsoVIqOcQCBCstkGqLFQDLIZ5dhK6aL9BCqr9iKoB67/JeGbGm27OObZV0nSG1lh3kmQICo447Yt2qUs/b2sr3H2XUTjucKyK9WAYSsUt+xnULwnFJSskHPFf6+n90ZpTOxOW5FHggRFpX0hM3z1ybOlPDSFr1rzTynNN0Jpm50IX3h5K0JO1Fs2yPrMx2PcGjHJYK0g6BeKTtIYkI0omtWkVagqUkdWVikj2+PypIPDiL63CmbbRBo/DCg81y28MkMo599/jF7zDyepXIQl98bjozreU00XFLW46nEnZyz3xtxlOefH8qaO5Av5dlxCkdw+OnOGzWPJOqnMIrikijkNW5o64zUVDNjMabQq0eP7m9VWE4P79ZEGB+8gmLqLZgtF7yVaGknNLX/62Hi6cDwkvTMmWz6ZWhBNIIvkv6FfxDUlGyNw08+B4DrhPT7eng3cnTd1X2/igack3h6SojSIumwrS6ZqZr0/iHwDDm8oaVanUUoahU9Qnr+eVMrjqYi/R5GT4t/V/4s1JJqv5sykZp+z7l78eUf/ItgX4mFadkkn79w21OosJWexpHreEaLekyN1q6UnJzuquo2rQRBWsMv0ukCB8WXK8ylSsbAefW8boRlIWngh5V7B7Z/8co4evS2VAzpvORZsQInbiqSfo3+qQHu3uSGk4T3z0vbP6w0vYQQ+DSHClP7G7nbd2XVUQOoGIgjvgGD2ZzU0d3bNqjijYz4FeZOD+rI0EZqdl5goMQum7ojOlcdDLLW7/cXbKyxX6gIEbLIAWVFDmz5XRlXve3Pv8NKhfFMh1u1nW6UmifWLOEWp4nSKiqaaps97d38vlqSgKpuT8J344/J52JPJR05LfHvSLRcPhxxVW9thDVuwjRT1KdnucHERAmFvwwGzaIMwdJ/UOd1+dj0wMQSjfoQml4AaECdR0YEIDusm7ZADiaR+SkZGtqysrLdqOFH1aNzKMOkxcHuuA1AQAvIKKb2jo7rZk1RwEkCAgFriqAjCj9PgBFXzDgdtZyiqHt4KrqTf7CM0X3metwcUP/839aip+0CW+GbNVWhHpm9KTJTL3wdNsPDeCrifpBbTSPTzjwI/qhHj1f9CuxuwfWe4JqRpAJVIdqo0ptQlUzucoWY4iEknqBKLkSkFauzN4kGe0JTNH6jsY5Cl2TERk8Jquqh+nTqf4Zx0GR8hFOMwDKpmQoBrV6rpxjvGB6a1+fX30DALg5U1k+dnThA9f0yPM4tj+JbsiYrEqPhJHj1tqwEEWO8Uz7emKskt6wRCQTSE9SsvdD6wfm5ETDksj9IuPw+misTrQPsDk9mSaTw8fqNdNEkKMDnHmphEz0t9SJWUpU2TS5wG9lK+0XHsWjmn+r5VNipes0yPcBnLML+scLTfcz+eparabrstxVGvKZHTkQcnXeRpK20HMJ9SujG2/eqNuew74A1jF8cmIO3SNn+pVizilqRkZmL7+AVoFJIFVD//Nt/KJ0IdJUI9bUQdRGFz3MmGxLCNpR3JIwzlNHhF3CLcSMEo98q346OtRxf7zwI8Y3SSTC/DoAENTpsWXf7q0gEMrhBDg1RSFITKAGVcz5Y2lUkNYyrgnLS3QSSlVGaK1oawTh7Yx+nVRGJ13GBESy3miZZrMJRK8tfGiLMz0Nc8/PTmqgirqSUeoVjaNXzk23SKO+TSo1wqYLxSLlBWP6Y13Vr8e1dQ3yIv6Y9N3hs19ZiXjXcXHLBo6tS/Qs76pfao25y4caov2DmLKM6Yen/axjnBAb9P24HvQ+w9lOqO1x+7MYtw0FAT9Mb/yk5puucIkPJheZ51N2/6xTmE5vVgtdgYsTCltoHxV2UHQ70zoR6aXjV+2V3rEiBXPj9bIapr4JEcBPcePzn+sNzk7kdWIU9LkIO4jz2vH5Y8WmO1FtGdhUagYBHAjLvK3s9lpOZ0kDJFowXEorZq3QenJAUaMpEoAp5PwVC7CWn7j9zk61mfNkUljqerrcmCi2qGznfMPsDSuynrJ6vaHiV07JAOrUUUepNdRS+Uxqa/hHvkHVP1LXSimHWAWjD+xl1py6/Nx3fPkkybo2g5ycT1Fhtl4/ranyEV42tClF1Sxv2HUU3ZmMJyS+D/8A/mnpxfD0Lg+imNA7aJYZt0slcXs9VtjDQQ8mxpxJcnTJxMNDzIrPepD8d1zQFEf+SVZ/XK4GMgO13jnjzWbat/TawEIDDKswM+ybHK2NiT2j4oDXZgYl3UzgkHw1/Xq6Ji+k5eL8ddn1l8qDoafdPPVa5+SerZkFv6KqzpkjPF3L6vqUZqA1Wzz2xlaurRPQ3XSH1Wpd3zdZQQWCtuFT3i8GzAg0ClrZTE32zkwxQNloWpXmV26e8gUIKo4Uo+Jzra9DJsK48Af8J+mpg+9OyJLvTjg3GvjV8PdTMPlU9OPguslf67pBdF3yI7ID0Y+n4uv4z4AEyTXRe/8vhoNXbQAAAAABAAAAYgDWAAMAAAAAAAIAHAAsAHcAAACuC5cAAAAAAAAAFgAWABYAFgB8AOYCDwIzAmwCpwMTA1EDjAOvA9gD+wRdBLgFLAXCBiwGsQfCCBkIrwlCCZcKCQpICvkL0gzuDZUOSQ8mEBARDRIMEsYTjBUHFiAX6RkqGe0bghxuHecerB+EIE0heCMqJBklQCXrJiEmYyaFJv4nfyfTKEcovSlaKhkqoSsCK1ssHCxiLUQtwy4cLsAvIi+lMEUwrTEaMaAyWzL4M4A0CjQKNEM0hTT+NXM13TZaNtg3tzhPOGM4dziFAAAAAQAAAAEAAJuzZzdfDzz1AAsD6AAAAADYspj8AAAAANiymPz/6f8hBNgC5AABAAgAAgAAAAAAAHjaLZADaC9wEIC/u/u/17Nt27Zt2xwyFhdmL01pmcu2Zzu7xjTztxuqrzMZ5RSAPAXXka/EMski+88Rt19IFSlOtDzggMVzwWWcy3Mu/+tLDjqHnHPOEWe7s9RZ7ZyY8x91thK46FzQe6yTEu/1nK2RNVzUJh5YK9ttOY+0kZVWzCN7zXzNZYdmhRFbyxpbxbZIG5utjU1WzxJrYOeMbGS788rWuXzNKu+zMdLkOS/ZYe3s0rIwLsIeZ5k+Q/QzL1y+k3re69MQpJ2XksRufc1K/c9HeYzJk9Dr8V3ykj9WxArNYZ7+JFa/hKBveC/Vft/i0CnpHNanLNQvXLB8zvuPFrh9RWrCCKPAJGedS/qYm5LBXklkr//htqT77i1+WxsrpR/kCPAHpgAwOFAkAAB42mNgZGBgevJfkSGK5fr/l//fsNwAiqCCJADDjwhPAHjaY2BifMS0h4GVgYGpC0gzMPRAaMYHDIaMTAxAwMEAAQ0MDO8FGN68ZYCCgDTXFAYFBoX3/5kV/lswRDE9YbivwMDQH8cM1P2JaTUDA1CWEQBlCRMVAAB42nyKBVkEYRCG33O/W3TdJQROB9yhBJKDAJQgDC5/gE3AMyzujH4GVF7XoQTAMRVKz7zKAWChUaFNxCTTzLLOFkecBKaqqVYuIkBA9uzNs8lu4RmqpJr5Q2EquZUbuZYruZRzOb2dcZfdRW2PEv9UqV7sGy4D5e8BqFRrQL3RbLU73V5/oA0Nj4yOjeuGadk4uHh+EEZxkmaPU9fQ1NLW0dXTNzA0MjYxNTO3YLC0YmCwtrG1s3dwdHJ2cXVz9/D08vbx9fMPCAwKDmGgLgiFs8LCidcFADwWMrgAeNqsVeWa60YMHYeW4TK4IN+52W7jsS8z23HSy4vfZxftpd/l9hn8NHLK//poPXKyTKWFaEajkY6OpAkrQ6yW4yghevm7mpx/yY3Fj2O+afNskm5QvhxzpZn9MayG1eqqXrEdh1XCKtTtnrJUmAYeW4Yp3fC4YmiN+M85rs183Ju1RsNoNVr4JHa0Y+cx8dxc7PDTxCa+K6u7SUJF3yhb41moBjviq3J+FZZwFhNA5Bnx6FycQkNyNiqr27K6ndppkiQ2W26SaFZz8XqSeFw1BD+1ZgZA9XAu5roOuKEDwE/YSj2uGQ1ctFbUVwKSk35w+cR5tMrVlgN9SDnl8F1crTeR1nycztnZQhLrBKdPF2Mc2ZLUILLHdcNDodtTlT41DWx1oEGxDjKurGywtQr/XG95PGRIQI6Fq7/X1AqJB36aJmKStkuQw6Y3NKbCKGg5W2SPmN3kj/a9WK6GHhmnFOU6o7UBU8oWNplsgNxEydWmztr9EGOHXOfLuKVw66BL46ZMqDc2Wo1ix9ZO0nI8njBFpRLxWtb2eNLAkIjHwxdyHQsdJDwhuwXsJrDzeApupktKCAysIi5PhinlKfEkSPN42rxciovaWju5zBPr+kePT5iX8/HLxb7SdqA/VepPmkJNhctxMTWF+mUBT7nSpGjdoBiXjwl8sHVWE/KYiwshD9kGeU5l2JajcW1zbffPcQX/pSZBJl3g70K7u1SHFLBQ6pQGWyGrxz3LsspanTKqUJVoKeYpHVDEYzrgUQROA0oR/pfpaUtNqiDI0+Jkw+XvXPsSaDqN3E65Hp8xhSXyLHgWec4UVZHnTVETecEUdZEXTdEQaZtiSOQ7phgW+a4pRkR+aMhn6zOPW+XiK4/dcvG1x+8ZxRPuv8D4PjC+B98EjCIdYBR5CRhFamAUeRkYRTaBUeQMMIr8ABhFzgKjSGPoYdlqnkHY6ZRCgRBKOSDZSL/5hj2XPUzSFUPUpUMqobO7Wp6xIy3QSh5f3SqPdZavtIq6dSaKryZlgtdKZg49vm7oVon3BuysaH8QTBiCH6xXZ39W8tN+rO8W160zyOgm8gfgg/GyCrO7Ht8y/rmHHt8+zhRNuArzOyiJOtskn7oyvKDyeZ53dRfTHq8gf7Yw0bct68xpxL9rgAoDgr/ShEdCdz33NdHDHL7ubR+T3/fBNR2IFXEq8/50Pv6pQlWyf6rMVC8mgbyBwyEGrLTWHUwfqrkHLYGN/mNfCdM1zdUwW5uLsclsrFN5g/beyTQh9IzuoIYaETrIC6KMktJBQbRE0ThJIbmOhqrv8wqPklGzBIHPuf4rtx0LJb8vHBA09ZkBB/ohqHkgauSqA5x1dFeCSbUeir5MYMCoWop9eqgdG5pNJZxtU95oYvd857dvv1AHdfCgMlra+NEAQbhZmlS+nvemuFnKx0aTL6x18DA/TPzCt05jAJ9sqed2qp/utj7Q5pnhu+6BTgPD99wcgaVZgHa/Dcrisw/TcKvDwO5WC2q0uq/vDty18WjgDf8Xrdj9v7pP4Gd3AUvjCdlRbycZYIyEjM38O5K/owcE6Lu7U+4i5TP94ewpmcNTPt/ELH50iP65KZR1+hTfwvqF4TsQL4W1CLxSJweKQdhXRtqRX2L52vTwzmDxBgtLFm9Nzyo1f/VY12YOA0AUhI+hj4sEDRxzLDOzZWYuS9Cgd1aQzfP3JxY7EvpLBvMnkcUQOQyRxxAFzJdEEUOUMEQZQ1QwPxJVDFHDEHUM0cD8SzQxRAtDtDFEB/Mt0cUQPQzRxxCu5T2nh3nA8N6lhlofUiO9nmR8yhhb3kuqJwzVU0r1jFI6t7zXlC4YSpeU0hWldG15byndMJRutaA7LejeCh9vrpKPp2/Te3C96yfnlLxT7DMrcU1jAHjaY/DewXAiKGIjI2Nf5AbGnRwMHAzJBRsZ2Jw2STAyaIEYm7k5GDkgLFE2MIvdaRczAwMjAyeQzeG0i8EBwmZmcNmowtgRGLHBoSNiI3OKy0Y1EG8XRwMDI4tDR3JIBEhJJBBs5uVg5NHawfi/dQNL70YmoD7WFBcAd1kkywAAeNpjwARFQAgETEv+P2Rax3jj/6P/+kyiQP46IH89430YHwAlkw9hAHjaTMwBBgJBGEfx930zswozdkMYhHSEogN0gb1ACNA5OkI6wAZAgM7SOQIEYv0xwM/DA9ZWMABgBNnIjLITOcuBLRc5suImJzIPuWt6tgNPuVDtI/fNf5j/AYtLYLKvbFS/y87CX3Lg5G85svOfnKhhI3dNz34NR7mwT5PcN//h3xpVLLmuQ8Fe+yvO7pGjwLs4zMy8m9I4mlgB22Ur9Pe3owwzlal93CR55L+YZsPcNmInf0f/SK1S+V2qVaoVWTKFbSRyGFmTRCaU9SRSwUNy9duI/Es2Y53IfKTrpjPc1Efm7Hwl1y3XzRfSdn0lTdxKmjeM1FRFJuQeoTRiPJ6cmLywaSIVVVHfnqkYPtlR/p7q9/uqo13c1APF3Jl/3tT7StjiSI8nY3EY9K2L5cAUJu+ZuoyWIzu6Y+4vRAXBUWyL8efD9NL1dW6Eg7aNTFJQ2E3qJhcXGzlc35LdzCRj8taYEMr1oquqqmh2qxXd07atL9pGfBctK/P7ot1EEDuXTZTLRZTbzBWqsO1R6fLuytbzX7CIFBmGyGHRQAwHwd+I8A+fNVR4/EbJoyovwRIMCs9N+HaIiNgQR7yHnKx7rBC86lzFtxvnX5xtkqO96zwiojoMOtRvEh8Rn+EcK8j51qJXl2iBCW3yVvhM4PwzZ5bxCcr3nYC84FC68XgL5wSG71y9zxP6K399e+cuhm/fR+8zhb4/FDrQcPRv8jmAulrvDP75wv2+n9i6Yum7nHvJIQIyre8lOPDrMvzagyFfbv6OYAeaavPiH1EIeBzRy6K4pz4kuiTqk517lzGjzWfk9664SuwS130H8a2MV69ji89dZJ5713nrnkMIefSnq1D+8s2ezBVo9HhZzjUueOfszr5onziPfY8dJhBw7nhkxGUeBSL/7zI4YuXT2zc7XcYu9Vsf0fwBng5ZXwAAeNpswYNBRAEAAND3dc627cu2bXOVdqrxaoF7Twj8fSsq5QuBUCSWyMrJKyhTrkKlKtVq1KpTr0GjJs1atGrTrlO3Xn36DRg0ZNiIUWPGTZg0pWjajFlz5i1YtGTZilVrNmzasWvPvgOHjhw7cerMuQuXrly7cevOvQePnjx78RqEfvwGURAHSZAK0kEmyAa5IB8U0v8rzcs0MHA0ANGuxgaGUNoIShtDaRMobQqlLaC0JZh2c3OB0q5Q2g0ACSYsYQAAAAABAAH//wAP",
"title": "$:/plugins/tiddlywiki/katex/fonts/KaTeX_Fraktur-Bold.woff",
"type": "application/font-woff"
},
"$:/plugins/tiddlywiki/katex/fonts/KaTeX_Fraktur-Regular.woff": {
"text": "d09GRgABAAAAAFZIAA4AAAAAhjAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAABLVAAAAFMAAABgRb1ZkWNtYXAAAEuoAAAA1wAAAZICN3XSY3Z0IAAAUowAAAAlAAAAOgIrDw9mcGdtAABMgAAABYsAAAuX2BTb8Gdhc3AAAFZAAAAACAAAAAgAAAAQZ2x5ZgAAAUQAAEekAABr0Nvu0tBoZWFkAABJ0AAAADYAAAA2FIl04WhoZWEAAEs0AAAAHwAAACQHRgOLaG10eAAASggAAAEpAAABjMKCDctsb2NhAABJCAAAAMgAAADILTBICm1heHAAAEjoAAAAIAAAACABlwyWbmFtZQAAUrQAAALAAAAG/5pHBENwb3N0AABVdAAAAMkAAAFIkbrRonByZXAAAFIMAAAAfgAAAIqSjPzKeNqEWAVgG0myraru4REPiGksySKD0BRHTuyA7cD+5DbreDl0y4HPzMzMzJhlPsbPzMzMDPbvGSk+vgvOdHWPu6pevVfdQNABgPeQDQwUUJ+XOQLNNbuxbqzWjXmdb7zc6ZD9f3/TwaeBYHf/X+Fn6WmIQQ4ub92un71nlAQEAqTrABDZAiJ2LzAWZtuZrdvzwm4f2AkYsQf9abCdGaUBEG4CEt4EYowuTJYSO7uz88LUtFvmcrKZ6A26HdtSZEWRvSrVelXmjzi2JXvl6lUrX2UUT8gaZhGNUtItlZxkmR6vFLvJgvPaKwzxyxI8/H/vFgY35U0BEKh4G95BL0IC8nBsZFphgxHiZgLp+NijKACEfE9wFxAjJDZr39ks4QVApF0gpDM7z1cy00x2m4lqtd8bDDtiZ65j22K3tjfsBfu2vXK/JCfUGCpkGaRr5Dywruu6gc9lvzOdjMoYZtnM7o7C/zrllq9d1AiAwfz+v9Hv0SvwFHwufB38zMhasomUE8jZZVQ522wiw5Nbt9tit/OgAIEi4ovEGL4RCBgndnnshKrKuyDL1hZwLu2CJFnSncTMfKSFHCQuPfCB62URhCaAIoKgkHLzIyx53+ydnZH1RV/w8TffePXB+0+fWju8MFevtTTZbiaCSA26w47Iovgzya3ruOJtICz9Xq1aq1a9sqIMe8O+mOIEM4dDS7aFqWz7yVeU8YphsGJ+OPmQAIWYUhv/3+8J67Dnf0q2rcn3xW9mBQv7VTE1MP5iZmvRZMQIVWoPi/nzMak2t1JnKKvkkqZH0rl8wUBUKJo3tPPZz06HmVkazGnTWUmp1+SwZc67OpKlJ6realLttDTt1MmnFpdGhf7TUxknnguZDGO2VDIj/3Hf8elW2ekcr8koVbr4FcujjQd1QhzUOs1Wx6Cjd2/M6mG53U/oqXDcZBS3iCEiIc4gMSS3On2loKh1naToyaKCJGO4fLQ2TUZNVborh86d72cKr+baEWdYn24aYe6k83uvnrzuxLhz7NpdkWwNAGEDn4MvFFUQhlSA+uf9fIu6fBYAHtl5toR+rnp+7cmKVfaT0t/w8hkW1TX61txU+O0mkXbxvlRQGPvHsEJ/BAWwR/EsAoMTMYTj/pfy/nfQFpkZ52CcNdv2/BxPUjTASt04bBI3O3YkpiFPGOXF8DRGzuboj+K56Pk/bDTWj713NW1EVEWWYkdqj//u8fA/vaEIgLCzv4EW/QGkQH42DDjXdPv+Jyc4qvWd4Gf64JB3zL4zpVEuv66Uo2fLFssnTrwak+zaoddax1+6davCbcPof8PFz4v91KdsbwJCGd8Kf0XPwQZkRsn1wwvz7XLGjRgqmXDCd64+jbLVTPS7toiSJZy0hwJhjuM7GwDUdWRFuFmzHfHkef1Bv+9bysLvAJkiAIOh64iJvc9Io4SGOSthCJmWmtbMRC2GEVLmNY0YkRxjoUwujHrDtnuxSEg19Lxh0E9JwsZl1nJDmlblGEMmh7OKGk4bmEC5rsipGVfloZVMSLdThoUsGwqRp2kYVXQtraknAWF2/yfpnXQ32NAa1RkQnDA0QpE/hvAGYEDI6CEAwB1AwFO2E7d8bkbhbKykKKWYcKnfL/nOD0t4RckqOFDkvd+wbNz7aY4ScqzRCabR3jsS1t7Padr3fa/OwqQDIFzaX4Nfg8egIPIXZSJ/ouh9Gs3TuKCDYI3zGdTrJU8lrmrFKMnJvoy6HNJimmWY0mrBJC53GllbSVa3KUJMtWwvFbeykbgJgDADf0tvwwQYUBzlCAERLhAeeMVAlsBgOvNT2iv5fg18j1bxCB5R5P/7FA2RIcbRSjjIFAZi+f4/wXvgKmiQCEQj0Iswbntxkh3hyKDjBDJ1oTBX9pJOsZkulee8KR9Z+5v4y/RLYEBkZEo4hlM6qLl4V8BBAcXyan/+DtL0RHzvK9GxMYxvJ+L1//1xRASCxv6/4HvwbyEJs9B5to54YiwHhu/XLgCEfZGNgu/ghckYwpmd51ptf3OJQcfH3fux5iTMyoQc/eqZYT47Cvu/h+TQ4YfCPFPaWFzK5bsrSnxtuL69Xkovz0wvMokxlGIlV43jnylS8vLhhDsYHOs2zMQjJ7zs9urgPaduRqcePr08G0VENF076kGAuz38WfxV6MGtUWIqScSqyKmLgGxTQen42KMycELkQmyI7QJj0S3fnXsBwNqScaxoo+KdSQyIM7r0IVN2RmEA6EHvgaOZ8l2iLJqS0BLhutK/oyITPej7A0IqOj0BwwPaEuLRtRQb31b/7M2Lzbi2uUU6MtmMFPJhtNzTWjlDyDTGZE466yZWwoiMc4ZtMRr6mk9aExCVwyHGCDW5feLKNyd1CZkRcgFhBRD/FH8b2n79cURWQkLaBAYIDP3GKvCZLgKRRdsN++JC0Bv51BIkTQika00otuNXof+qlA6YUHgl30TOqLK+IBmNFVJy32IpWNssf7XMTHPv+uz9U17M6hQS2/gUqpzzdFfFxZoTv/DtDkqEhJwxVihGWzvNRsnLljtlQKgJFP8E/hZswMpo8bCuAieYQS7RJgASgt/zSUjSkyBxlPiTwIFx9iAgRnH7QsNtLnZkOd1EsT8faEq1FjjjezPpCwo0eZS92gwJhA7dCTyDVPmc2g18xPlejYXVqquEtbUlnbTeQpgapWoESf7iNFHkS3cfUJJxRYmuNE7UB16+fYSHWER5uGkrhCeaHYpYXFcWNao01MRyrZRQOEf2aYab1D7u8TgZGpIZUjP1hbtmjphxLOvNZFIGAn1/Df8IfxdmRRZnRy1foo8DcaSrwDnsBBAERHYRGLPY9uKgNV0q5LNJSdS6VBsIkhCiUOqL6jtMjtCRQEhEGn0MdrpDX329soiP7drMCwjR6nZFdeLQZIS491v41V99l4TEmFeVdMYU1MjRm3TR1E+f8tQbN5U3m+oitwv6nMJU6dd+LSMhZ2bY0s6e/WmZI9UY4fZZiULmpS9YSuDJl5eDyjyBL+FPwxxcHsVcm4DVVJlJUEEusc2t2zVRl2lgABKDSyABl/gDQIQ7fm4pqEcEYkgPvW8S59IFkCS+688+szPS6tV61y77CKgETZpSq8VKliIc9nwoC9H0ke3nP2Co2nDYdSZNH54+cqg/q2kanjfML/gChZDJ+sLoWHttdOqLu0NdlogU1q7dM9dIrZ2Z0WQJT1G1hhLDiztEPFkc3H3foRM2N0NIGFnqAkFbMOpv0GswC6vwxMgoILClJvloHvNQQUYQXoB0CRijXSAKbSnI+YT1hdPZgxliHJDjAwczmSAgd34OYWEwtzq/OlVOuYYGszirCrnBcff6gUTsE04wLiIyblODoHRXiXUE/gP4B00wrm6c18Nr9flhrnh4/fMevskVVJlRUTnT7Zyj1O7OnlS8+kZkZS09fTS/aaNRLeEn379RyDU33bRuf97uT3/eNQdR4fEyR+Yv73n3fIWWTDp7P7w9ak8vFuzQJw5bgFDZ38J/FoydhvWRriMBbnKEifREAQlvAVGgPwEM7PGQP3YBAPxYgH9uWrA3gnPToD8Qctdxu7ZCiuL1BAEEjblXXs4jzx+i7/v61F9+vHmSWde++BLDH/xB/KzTnEmMolN7z/9FSpGzX/Mb38o4Asgwvf/v+HP0VpiDdTgOp+AcvBHOjcy1akC6mxjscz44sRIwIHZ9fMRhLMighf5+D0wMkGFwCAKROv3hB/u9dDLOfYUeig0fMJRz8Hhw5gh8UORATvx3109WTZHvaInry+ywrPgnnMH4X1dQuRLYHfdAf/8+qtr5Q9kixu+PhmMb8eraoTNR65NasUrxlJVw6tQItw1KFn/2QV3XrbgpMxY5bfZi6g4hR0IiOfg3olpcXXBTxVS2ci4fLaXoFQWVULbSTchnDxmGOW+3ls8vdky6pzZ9pOm1zVgcS1SKtLuqNe+1b+1GCCOhUNSMx/TFZW1q3vkE4kQ4/ue8ZDApXywPptejsdVitT6TB4Ks3+Hgr4EHQxiMuiChLwHX5aAw4EkAhsCeDIJNE0WoTLWaU8PKoFTL1BShb5UA9UFcJ5Ec+BQwCbcX6Hat8z4tkCfhwysceXJp1pSlyOHCciJ2/FxUe2T2eGvnnxPqLy8Yjy+tbiwLKTZwujmoh0P3opmNcKaVlh9cqU31pxW1tfF1V+5+ycy+q6UsLtx13SQ0zg2WHghJAAQdcQfyw/he0MGB+7Zue+M7DhyDfivoUg4uQOrCmAAAJMBL728aJQ9GDy4/hI3YGf/yY8o7uPyYtJCJ97v16GScbLWacnMs42Yr9ZSdxa92vPJcqbT3XKpSTTuFIgAJDj8Kz+JPgw4tWBhTdhQI6dbBZieI94eCbnjSwgKKCvWmyn6Fxt/3c5n/eIB2/2BzcM7y5Uso2Ww+mZqqJF2ytZBZMjgq9QpnJmOmEc87TGH4SXNeOZkq7u1zLeS1TMvg00uznCmkxZ1KJtHyUDZiGsoABAP4fPo1vA4mpKA8KgAGmLkEjIhdmBArozPdXrfrBwtlRbFLxb7Q01LRfv8X8RXO957fex5V3MKtD3x5EmMxIvTw3XceAAhm9v8Nr9DzMA+H4KmROZfLMMIFZESbH5Tx0EHGrSDj7Q+XcetjZHykrywNeq1GNeCXMdTv3I0cHJ19nwLT+PcE9cIiT8Ah++A4UzITDwwPbaBWycxWnFhGNkx3HuWMW+24dr2kRadaxTLlnWSJco7t4V8nm0m72l8/FJfbnal6QZxwiwmOiha1ZlRmFbNeozV9dkmnqWyumNjrOuVC2vFKAAjO/p/T2+kluAXLo4VrDy/PW5pMDDePr0YZHgdiyEgkEPEGMAa7HAEibBvhDec2jjYbcAtvSoH6Ba7JgZqJAnaFd0OBqr7QQOF1wJtK0IPfucFxw6xvid5XUKdPDZPeIQjLgTJa76Poai0YPuDjLibPnWc1OXcjq6azGT3XnvIy0miVYUjLhYkhR66WTCkcY3KUa/nVRjEaxcuXSZpdMM32qq6qpU9YPpL2uoNRY4M0w+3VM9OaSVqfKaWcrvbP3aCfuO+ei+eNzBNZYg6mtFw2acdefn1NnZtFFbV0utB67HO2B6H0hqQhqTHFnS8gnaxWTm5qp2KsIkty6kL3/0t7C/g4siRNPCMeJkNlVhYzqEBSqUAsW2ZZlszdpmachul2d0/3DjPDMg79ZpaZ95hv4ZiZb5n+zDT+Z2ZVWd4+vpOpSgmqfC/eF198EfG8uTB56ObyaL1uWW52Umm3CwGTKGstyb1aMRd4g9WLClEG936LjPEXlNeUTylfV35pN3j9KYVwooPC3wSpfPcBoqT7UzQ6rghGmIg9HGeEv6JwhfEYjyVT5CuKioBqNGdSJmphIujGjI1GrwDSMWLs/OfdgSqoUnx6fqf59ZEu+LWvfP6zH//o3VdibXBjtd4vajzswSyCsUn6Pv/nc/Sf0Z9YC1g9mubpzM9lpSMnHB8/mu0pl0qsaoZfiYdtpoNwFhwlp059DczUwvi1mNKrWfBHlimIUckwqnUb1IVDPxsI4b7azFeqDf4z7eEZqhIEK3f+eHbFc3Xj1JC7i0FaWmFBF+1c2wM0jZ4k3LK6gllG/cwJR310l2srw6VeI+04uikNO/eNr1MonTw9slyiSV5xyr20BcrzV0tuDlCm2Pa63WoUz6/XuD7eQpoCIIGrynSgQ7vQ2hgOHNW8ZaoqHu8gR8iC22/5nWrzuZPjnUMdsvlAczL5emCbrXbOl5rM1wwj8NZC18wW8tUdFZ9U1aUwdIzDdUMKp3P6mBbWMxQznWDV0O1auvmN7zx8mHFirC9oy10kmiymOVyL8WDr3u/i4/hTymPK4m730Svbmxuea0sFYX+t0ya4F5O/12dKesyYV8dbNwhP92DmuWPKGzv5YRDMpj6alogPT1aPYxLUziZzFgUkp01RUHB/ZgDR63p7JhglBjAB88SJL7wv7bEUsf3DFNwtoFvripRBPvJZUmPuufVAT5f7vcscwfYF04wSnu00FiiwDFUts7Z8BTmiYZaLbqzHjvmb1z75NQcB1LZmmmdDpAwg9dPfqV6/YBqjgsa1MEiXydJYUFXTKyx7hnvc3l5byR6r9W0AG6hacPuNk/1cIOMYP3/vt/D3onF7Qjm/e/axLeTsNBB+HpDkswiU7iucEcbJ3fvqBmPKnWm+ZRp/xCvr0Ts3H7540Gt0qyLmDrGx08C3cc6gphYuppLB2mh1bvzzdRILkUIkUxEcLSjxgMx+dIvJ6htXf3RTh7WRKK3WjzWC0/uXl8N6y9WEkOGgyM3VKxId26kKIusvapxR1NIjYI0FCV79jL1559FUvtoOG397cuKzB6dt0DWOd65C+f98/0e90iQ/zJcCs5GyNSlF7USa4VJNY17dT3UMoTmp/TVGKAXp7PhAwR1vZInIFIctVa/VM+Xe8Tf+2bp1cuNdjHH7Y7HBPRxZ5nujEX5ZWdsdP3OzSBSytOjawEDB/dsnkOwpRCH3bTOJ2Sw8uHxxbdJpL8ReGUQtHquZtc39zdzIxvHAzJIMa9GBQPBpPHcEQmuR1T5ovtGrYOqdxvGZ3A/j41O9Gp86D0ySoqMSPYuljxtSasWiq/kawXxmYfHZG+9xpdG+GA7XDdWtNH/88nqL6ns7AQu4efKZHILlC66bKRX10YJWGFNBPF3TxcqQ8UJThScWCMdAJ7r2aIBSEJnS85Xdc/WsZxDTf+HED1w/DeC3cna5rVKk9N1XP/HoNVWOyxrRUe019cWx4IIELMMxdQWQopZZXdzYKZeB81bI44HU7z2Pz+BPKx+ONIQn1wFwAwgczyAlly40CKN3QLJ3gSL4vsKopExGXkdQKV5RhEKFEscGlBH6tBIHd/zx+bTYcPDB97/x2vPP3nx4Z2s0XOxVSq04sRSnh/yj4OnIrOM3tZnl1ubcKpxOQnw8mKoLs+nzp/JZ4o3q9xfNdDlMISm+b7xy4kPt9urcwaT/gjn0w+Vu380MFz2n2DmtWk9vEBWdYCdNwDb8O+dSYfHlRinHpN9yzUstP28vnCtniFNydvLcIb5PbGK7qnDrxBnmrGvHNjdL9aDGqeNmy0hoXRZzvpYyvA+lHvYOyla3v5ttDs7ttspBeWG1J0BucpDF52wNMr0Tl7kYZTzkLTfvPm0JfrxZmCyAk3c2q6rvkFwpIA6RBRKcWq1mTz5Tztte+YpzJhVmPE/XMU1tzrycgsrJiOf9Kv68shXlIz++640FgvLEDSQU9zdDjcRxtZ4IQvHymSOSE0fWs4UUE+PCf+SMNMb8eLb6FEqAPn10KM4lmg9dO9jvLpRyaT+hjP507qKZTUji3KnH+DVKJCNu4wNySnzSMJklLsb1KaNOMO5BMVGIcDrF0aSuJeg4W9yr8KZH2MnMlrZRrNcg/ipMNBo6DH4EK6mL3T7b1/qXvfp+UX74c8sXL0IRNtYRtMnDwMV6bpk9fPJhx31uo+dnxudTGR1On8oxKZCEy5ypFiIOgreWvDEvbJTLCAQ2PHQC+DZcXjn+7HW9uGrlwfmF73rv7vLAaja0xSYi2qX158T3XN2NBnfnoLWY6lF0+OkzDhcSgHd9y7UWFnbqOTXJfcC99+HH8YvKJ5Ubu9dXAMECoXzgJjJB9jsLLQJ7isIFV8RdRTAuEsWWJ4otfW2m5D2tcD7V3/nBRz/ywvOP3rly6eTuYq9W6Uoe9MJooNdmiyHh8EeLcPa9eMJin32UpL3P3RKHlC7jA6wvyj5gNHElPHI+s8XI46XoW1MUnn9TBxWQ46mK0Cp1KQvI8yuhOlq+ZsPGcYOZKyEEN8v1fUtTZU1HIqwQvZ0bjvPIcY0FFcndg1ZgZ3yq8kyo6mlbFwNTgLlU7nmpnSGFPAABRgSeqBlu6Fs65W7VQRMQObmgI1aFLLRsnh7eOplPLx7f2NY3CLC6q+nBQxVBmd5Z0KRtFisTdDZXVdbl4UP7n76Z0uwzvgo6cobliqkbJPPU6NrYfLES8PQVQc4MuFQZp4Jo5HrDdENdoCjFMWopWpV+hK+VKHC/u2ucSjFClIeBUdyfrsemghBHnDFtiJX3u/MUlX2/GsCKcyf/GeelWSyCXb3U6NeW2pxne5DEbPMZSearPQfCZKZhHBvE/DtHFCIBz4RthLOw1ucPJO5R03auGPV3VzU+buk+BcpU1mu0N7u3NjwvXS5+o4VEK+1RJg3J/YHN6/maJgGGZ00pjQ1p1LsXH2LpFK/UZA6/asNOT5iLIDftnomE2d/U6nTyoDvh//cQcIHmwh5rldQyarXFxxf3H9Z5CvWdgUrQ3GrVB1dXz15vnDEA1aLwFLz3v997E7VozHuRtnhy93gdCMC+ggooSaBLFIg1La4kYRGNfr8yLY2YVb3EEc/25milUkpXRZyFezAiSUBnyhzarZnPSvhBK1lBJKIfU881813JaM7Gcz7QR4n2mWg+oyw/VMqHuXw/zAQGtcIulQTrtzMaLy4NSsixejwtCOMsV09/B1BIX84tWBLQCrPV4VrWZQJAjvYYApiUrxjols6eufxoTnLVMP0Mfl9gW3XfVBF9pACBu6hS4I0mhc2WhoQRc6eT+//+OOok3c3Zw81Nxz1/bPzC6cJSSAzU9FPbDAQysbkkUtVb35W7evbMdtA/bZoKKm7EjX8cfzSiA59W/txuKQOUbC0iU986gZI9cXhAuHwZhML2XwARJQwzkd3vKkhViupdRWVUjbEsZhevKJJTmYSrNAlXBVVENFnkyNQzFxQh0iJaEicVSpDQOIGlElSjqJaR6Z3I9E5keicyvRN58E7Tm8QJx9fvdlrLjY12drmm8WIvYoCjKeU+knGS+ZxHrtGxSWsm6oQJmCahcGwcySIRMURO3wdHwug8EBbxXeaoOF6DB6nLcHUtObMd/3XZquZPCNUusOyw4J58xG3JyxUqGFcB1Jvnr9y2iL38WJ1r9YrBCoGuM6h3DuqoCduVxWK1IprVUmBoeUsyPZN1MgsrQCHIRGq+pvfKFXiXxg17fVlSlRH4BwBo6kiIlZIvVhv02cpKefR4TdWPbZbMVRWsgZfNLkhOQSMbm9cvjlqavXKcwfJSUKSQAidV1YGZ9XPtfuDLpudxd8Frnh2rPNAbaTNfSq15BPVFbMA7kfn7hlEq2+Q6IJp1JkVRowoo1QgrPx6t22eUP7PrXdeQK0/eqdgU+CoQJDO87CsK40zhdxXglEOEgxQ5xVem6gXnztuq23L/RdekYw1w8f7pHBiHVxSgDGKQQDa/6Oj8mPgYt29ePmj3T3VbIkbd8X19i8d2w4WYAm4MB0mMER6B6RKZRWvzjNIRAieeeCowBn46HadfarG+soTwz1musLxxiWKvDZlxR/D0+y8Rl62f8DVJLUD0s+WbXvrKh9Syl9NVmW5KSmXGcy32Zoq2xxcv3BWSndgRpunZFKycMUzpOvxNfdtaTaVOLC89fL3rFSYducKh3vEKmgqq8XR3iPqYWIJTfcekTAM6bGRSkFrTjXD/yd7OwZ6ElZ3mSBomQgCUE1MXaWUaO9NMVKPzd5Tf2i09euEEYfLbPvrYgCrsPcAVsv9Xf/lnfvgHv/KWKfkMHSaKIEBEBNdMxpJV5O24VOLVzF+b6VyzQCOufksYjy0P8lMBffQfu5gokhH59B+9SayYjRSK9PX/jEuPrornPvXHf+kLn3vphUduX7967szOZien8nTMs9pHotaDYfnbZLCZVDZzEvejlCMhLLn6QVUsnMHKURpq5pB4rLO2Z9LbDEmOBIWZ1xF8xseSRH5yZvIz5h9wRtxiXj691mJN5MgzuXxIRH1ZG2QWT7ePNXMhSLOeNVCkVuscfMoHGjRrpiCTEzeEeWJUsai6clFEEkdgUMiZ9Y0Fg+dTlqtqmhtmrZWWTgp6Rpd6n3DEc05TVbFYBAooaGkJ0GLMTKlGulSqhoxI0vK4KsvWliy7hu1nKaetkq26bt6rZ/zUsZRbcDjQU/zaVa4t5IjghiFNajpooNbM5jn01VLt7E9+6WwzzHiWm+2WysJMWa1WaAEhuSbh/uJi1nGHk1MqdAtNqW67mA7KguaMbJtjylop6iqojsg3dL772b3dpusDAQjGRl6IyeTue/NU7/JuD0BoanNVGn6uo7qDwRvvGmua3nTPi5zgXM0KS12qSYLUM/Lf8urn1jYMr2aQzNpfeEvf2ydqi8VDoBMrWTe/QzYiRPw+5Xt3w/eDgBdBEd/3hYuH5yQnCtn/TsDZgllRKAdOY34jOIjE3wmF3J1DXOLwUn8k2tsdvv0aofA4pE+40StHVx5dFPvL973n9btPPdHvLLdykmfjqoBZ0q/+oMHxt4vDUQ7Zn5vreGbw9/WY+cmifX8tjGeudWr4JRIG87DlKJAMgqN8bTo6Or9JXHKDbxDJhy7qDlNNN69b9Ua9qoLaUdXUyyWNF/Isu0WJN/BS7TKFi/mqn7HtbJuo9QHyxYnjqCvtwNZ46oUdKsCgm4tLWUAAOAYLm6l83kv5piks28xicTlP7aJtCdsrEbgr1QzPEPlS9ptqT7jajkuAaUsbFi+Vz6ZI69a3XUrpzm2JHmbIZeRreubgAs2rf+eJiqUx0c3pMtvdyFCtsFzRHF6sZga5XOBZ3upjAqBSO4WMEIDrsGhREDzfaHFDZSiDWt67ePONzYokSEJdB3KZiQVtgdkxAhsRQ/td/KfKi8p37hpnTyFVlvqIZB6FVBQaxxWxeInR71cYzKIL88J9bSD9Hz9vrhCU3naKAgwUGucE5zqBS5WnnugsNGqmrrxIX+SxVlBLrGTGtuLamtk0H1nR1LymznLmKWe2MveVYcj52zMNQXo0M5d59Rj8pL6pbvuMsEKZCqkydeXwYGnvdNeqtZ+/HhYObzbyakMu5NGuuVmb13umVao5pdKGQ6RGc6wW2pmQcWKeNAjVDg6WF0rbjwTFheYyXicVw/SzBQ6eYELTBLdz733+Y9dL7dI1j5KGwxH1BtrQD3I2WuNKqpjrDgrmQn+xrTFG06xRLCwWWl3TsVVjsqMhQKEkxYnhqXde+kC+qSQ5+xZpRL70U8pPK7++W/vKmQmh8ke/r1rIBVyhP/Y5JFz52HteIEzQ/Y+8juzc1CmuaCB4rBrcVUGJ1zl/+t/jQ2OCnbqQVKDP86SL9y+MQyiJ8HTsCCmRTx7d6IGLdvtH5zP22n/0GhpbQ/EznwblB7726Z/+zE9/4H1PPnbq5NbGyrKuKp+CT+mRZTSH4WyW54RqrvLNKtEelDAecJoPRmHRuxKGU9b19kTUEkngIonGanyelZjMYGz2M9jwbUrJ2n1KnwhVwk34HeSyGcp9b7denTDKeLchoJMLCpZAyysia+QN5MapaLb32nWTMt764EbJT6tU6pqbFpDAy5LfcYmueaEkoF5ZXRSGpeVUq6lrKsAjEKCqcnPgu35pUaNcDLey8HhjBKK1IFC1lqTImyohVob7aqNfz/ONl0JUvyi/8JXspFXpdIum7a4tBkQUtjzP5BQ1p+wzbi1XK8JKe40LQdiur5lMDK463n7eZTHaxJBDsk61KnQvTBXqNcPV2ZMnekCpRphJKX/kUNLTGsjiQxvnfGJp5naMjU/ltNtLNUFba+tZg5qpcocLwzeXunkVeK+5Yn7ju1N1AokO/aeJFeHTJ5Q/ths++VidMGV/sUeQnlvCmPyvADk3haq2wuJwPSHxSszHkUS/X+FHSHSf+6f/c09PaH/z33+mAhwUFuPXnO6nqPKB9505dXyns2CbyifoJ8QRgo3XjuHaH4GwowKBqSIwk9cEr89d4ExIi6PDyBL/26ENCQlyTLuPbZ8HY93TZT018rhZrgrQV8YUvGsdDVBvVSPIe6gYZCPBmVMqnXzd+i/FPOZwmitx/Qj1xn+xJl9/sqyJYtgRGFDTFIUc8mJdck9SUjckWxSESb/esv4rcTB/77fJesSNvqj8SeUv7NZfBk5+6Nu+9QuPMoVfPkRUBChE4BBAsP2FVonAjCltqiAZYfIoNa5w5EkZrOAYsyDgIg76YBZpzHhQKu6u2XrbxUd5dWRKbDKCTW/B3n6LWJvLfPlLX/qTX/6T3/s9H3zfm6+/8PzO1mK/UVvWeNBrBpzH9P1BDbVeC7hIJPJ67ah8Yo5wD2b75hxqbmntI2CchRVHtYozzeLBNPtqrLrHDItPU4lhkA5mCgaZBw++iNO7k/qSaC8Rsg4fAahUAAXK0k5xoDEEdHuR8bwH0OikGyUppBz3PI1rbt7FzEoqfKWQ72WKywVNRXtYVVHT9JyqE1lqMCQdozDaoQJ1un0rRZGsu8MxTQ1TGiNcb1CDEgqAiCDkw4fuILqccdK0afN/LRbzNQnA0vnB+XMgdckJBQrIzextB56Czc1g4O00HG3BIAStd+6ZZvAOvVOTUmon0zJO8nqt1TMf/+UtK5Mvlic139W5KbrtPKIqhOc6KVU4C8MUN4YrTtiVAPsTlclts61Cy19rqiYAAKUUkNDqlsGzXDOqj9bDQwurxewpx5DZcU/VUs0GICWSGCzF0qWap4ByMmJl/2vky28pe7tnHl5CILDfyiHdUyiJYlECJE61wOsKT7h5rPkKpog4tTzPu1w82D934vjq+NhCrSrjCis/yVoO59TpwXrHUXg/nzZOhwlXnqdL31bXeN8E5xCUDjgsH8898kR1uVnIovM3v+tLh5cn53+wWAFMf1eHuT7vOcRA6uysWmFvfLKdzbjqytKFL77Hyb65tTha5Ona/uFCxfULxeyqOYCf3PaDbGplwXU+9C2PPfGtL91830gK0C+rgMZIBQ2NlfU0I0GpaeuoL5750Of/rIM7g73V0ypYNpftfLOWDVQSJp0av4U/iH9WeVZ5ePdaCkDJA4pnJhXCcREI399Dyti+56CyF6vAPEmUJNmTpxUh5ll6QugthVKLHjz+6KWLp07ubK0sd2prMq6BnWdIRjMMTwdzcW+eIjlCejEf5Fly/igsmi3htdEc3+N71udLWFzooDk++5bYfvJKuVOvQb3Ksyu9ZUM7p8Lisq0JtZRqaO7lpkoHxzSpXT3HtIVjZb/sS9rd1DhThyv2w+Xe6rpORHDZxhM3r/Vyxyvwav1sKLcnZ4nnhEXC9cVFYkoU0RoTpfF6xXc8y29ky6raBrGpmsi0O03EuGdIBd6Pl8qga/ijdHlntyL90w87uV6uuZWLe7vu/U409t+Hf1J5Q7m5az7x2NmToyKHvWcBZ/46PbVghSivUyBIXp8FFP/eA+k4xLQVJbrbG6++8/bNrY04k7hmEdGa6udzXDtK2I/8t9O6ZAYezGckCeD01OJ9XsAI3u5LJ6Ngug7a81qAZK6ErTpUXWg7jmyxkGjtFScYVEu6BlohyAkWVnTOqdkekHwuyF5MNde6lGiQfiggOspcQABoLS1ppgAU4azb0NRdKFSHge0E3cur2bAJmupRkyz1icFaor5kW+1zh90g3xyUA2GDDLONpus7gxOLQbGUctyldUBNaKXNxWzq2q/fZPa2jRxl4cSELp/ZPtXH3pMSXcCZHvEpzNeGLmNYTlOm0NhbJkrCc8pnlW+JulW/ups9AwI+8Oqls8vtVlkq9GPAFQTJ6SwkXFEEUBAxHZoVAydSWEyD3ia/HSWp/guvSRJWqU9/8q03n3nykdunTx7bHg+7rVhAW2vNXN2D9YIPzjIPkkj/vjnE584m/CiZFdy3jKMw8oF8i+BT8SK6pv4ADAqRVDrOa2qaq/W6P6oHw9so7dFYY3aqmKlr4slqfSmXMqywqElg20uaM9RJdY1gb//1d/cFkvLBtmH2eiUtk7FMrRS2DMmgreZHDc12M5V8f/2JFjc2hwZuaBKzQ5lbaWd0XfBMtRxINqSF9eL59y9E0f833gWIKUrz1HDWqkKo2eqp3ukvrzjFlO8GuXw9lbJAQu54jjvlvBRh81ilv/r4S7ny5RQp+8xkjghLo+O1g36f66dWrXQzo+pMNasTDkPjJzLf5ZRrWmGTlLOCIK9Weo7/+cdkdiC6Z6utAQAoRKlEGm4psqAPKj+l/DXlM7uf/BOf+mSv4dpCqi8B1XH/OChwfgEgrtJRFRJndmT0+xVFk0JqkfNihm4w/a4iFWFI8XRiCiYcpTF1PSlitC4ohpG0KKf5ASi/+stf/N7v/I6PfuSb3nz+2Scfv3P7oajgYmW5WlY+CB+04jbA2tskpHZEwWcYMTeGaeHUXFQtyWE0sUI8mIb7I7ZRj41g+vq+Oj+vyJqXNbLZoaOrQ/9tWdQZ80qCRTFO4sXEuvyY1AX+/VP/cmdC1PaCaW5kNF21XNeuFhyVrOy/eKzdcoPFiW+eyrm3VnW1dQY1IomgQkgW2oQy1vYzVCvTpUo7XSwtdg/Tqaxa7ZV1Z3e/kpaGycpdXQBF6NfKhnF+ZbPtb+NZJi21N+AAOZTWgonMKjY3O0VHNFM2ZyBZS7pYai7/Tr9NHRqUogMVtr5WUjfXUuGx4Ta+q9vUtVxvsRIE6bFBYxdh5Nx0u1JK+StrV2rNUbC44Fhne+4jNumDAAYEAISuU1Ys1083a4cnbtV5J1OwpVfiHJ3AF72UJKi1dQ0ZIF2qZjW2dvzrr07CugHU2VM9Y+cDj6nSXnMQVKOQQr2Vv7Syfbzd8+22Gr0NS//f4XvKqGFQymjmzR8cqd0uQsAazBocV0ApRL7qV/Bnlfcr79p97f1lHSkoL985PEEp4n7NYUTfU3RFn5WYqQSl+g4FKYn7xAShMbPnRPDIpBVJtDgVoBAVSFx1YV2YAtq733r9tZdefOH5xx99+PrZ01sbw5XB0kI7DIzYVBNUC9NzgT+K6x6Q8JMu5NiSgpGwiBCJuDBVMKawFoh5NjEpq+b321nisrU5VK5NErusJ20Yk7nIKp4w+LlJVrvSCHzG2xdTiyAK3ErrPuGItdPpbbOQWmM/6yGnFCBzss9jIN/b4DVebZnwqpF1LPNYSzUJIcX15nZP44t1ViqovbytFcqTUMXMuN11EC3mfJZky8NyRVsRcE/jBxs50JbyZ1z94sBMW1uqpyY9uqkFdSMdFq4+Y/lEMIoAEraNg7cMAJFRg9tUUPvQ7RhGcb24aOAiJ41qWCYi33+ss5KmSInNU+VXuqNADLVplqmFvxkh1CeUp3Yff+J2N5vxuQKvPY9M+ciHkIvzQDndXwLcUwAVBOWuBEURXJlhkcIYvzOdSkqT9J5HDiCK9d968+UXDy+c3G01VKF8Aj6hxpxk1Y1H998tbo64RpK+m0qZ8ffjV9PjR0hzxK2P5i7GjHnNjRAzOJsZSHS5eKBGdCZMrX3pV0gudaZ1LiAoi30OqdJpJ9fqTU4UB+et8SRssKVT/YZXyPmWg0bf2x68vJgKT3aE22zyjX67tVRrphr5oJZT7bxX9NiaZi+ulzqTbLNuAqVmPtMIqJE/diu70WOcktrEfq8JUr80aS+vStMS+do4R0SY73Qdf7EwPJYt3wla0i+t9JdWanY2SBs6XP7c7fSPPL2w0d9RaZ2HFNsL3S0/s7A0euavfupKUDOZ6jmlmqZ/yzOu3V6Wfq5ugORuLVdHWlw4JizBVwbWtF7xTfQjneiJSPvMI6iYAkXNgiSXgMvJGAXrAxU84jBqwmG4ZILHDceSx6k7oVBBn1BUdcZEtFlrOZjx7FtsrhoN4wslZ3f/C67cHdy/CDRI2mD+g1cnl8RaUh6Uxx65eHDm1HZUFt5dKORsjVHlCXhCn+LFZG2UmNcseJ8b0INNPrMwZMaRxLw99yhPcj+714p58IxDJ4b7nSN+xhHSGXkX3eFEgmp3+luZ2uMDi5jbnrF3o9tuLphcC/yMquvLHS9UPSkIADdrln34UH35wrDHmSgKtnjTVPu1jHcNL2KdP5FihrRZsUnVTKXb6Xf4xDYHo7vPl7S1lJRYnFiOJxxZN7nkqfqiniL2Nz/3UG0xIFLraUAvdPJ+oYIynvM3730Q0vibSloZ7C4CKCjjv/YdwD0T4Ny8YH3WG/VIHFZcbjeGcWcUCDcetngvizg/6rqjOI/uQ/AWYS8hOuvHs8BSF7fw14z/93c5qBoKhF+AXyBgGgrc+3/vfUD5Gv66klHGuysqKJABouB+Csi5KYTElkXeiLEEb8x6KlG51FpJNeNup3A1mgg3JhSTUcxl43f1+B3gO4GtblCRNUvetoXIJzv950EjGULjn4H/75c4BPGzK/DL8D/gv1Lc+c4L7mriQcKE6SQKdfdHIox85VVP09/xjsfG2ykH/s7iLy4a2ut3DSFfevGR4bYnk/rQfwn/E/wjZVU5VNq7jXUABfaDFCp7506tDPrlnIBz89LqFw4v9DHucjpGgiM7mhbdxnBXxvQocl7TirLWuC2SuutZUNY+QsRwFHcJtSaTeuthvb6/AkgxlS1JKjEjQhrrtOB6sAxsZ4toRgBw4wY0uwLAIO91iCwjEFYOuH4tAGsRXhLhoAQACKamMzCJQTH7yOXzx2PRylpbdfyGLInjxxdW9MBaf/JMvsXM5U+lFlwiK2kcWaZ4/WUSz9CNe/8W/lRUab6uXIn3mTh5YrNbkAIk7M1iUsVVDvbOtlsYr8LQT+A55PcJ4zwTGYZ+el6935p1MG1jaxKPQ6pd41Mgf0CkbU/arVdcRuz+jgt1XJaIxO2Ulzhj7m0AF8PTy5dVettGnYNU/2QAXp5pWc3vZw1uVmWGmTZ+dR8Q9ErfwDIsX7dObSOxamEDibZoYt/52OO61c8u4kO2d/IHf+lDzJASkQJ+459J1URui7/n9w1WsJefuVjlPFlhe/d+A56Dv6dMFH83WiIplbHpzjCTMcQjED/01BDmMlLo8xkrbk2m0z6OhyRp/OQ2abV/LkRD3xSg5YcOIgH8qqm5VxAQkfJrV5CxSr5lWFnGji/DJxfuesdMU99gQNSiSqOvOI1qXeeMOXJhuJ5Z83A0BmEF4KXbgMuogGLe+9fwk/ikcqBUd0tL1ZKhMAVgPwPKufk0vrC/d3wHp1Aaf8DppAWzWeNJa9oyxp+/PZ60k1kehuHwfmgwm7u5a44ZGc+b8HyBQHvhzhMmVPB2akXX2ahSDIACAjSO1SUSCpwWHFMTRnGpyjSjZwZnzi41AlFB20Qcm1pq4UCz6MD5pSvitNWSsp0pBvrlq/0UQ0IjITFAAEkbbru6vrLDzXw+lT54z7Whf6bhE0NB5ey9X4eX4e8rPWUn3tFnfVivFXN8tudNO562pp8O5h067fvLc7aMwyR4uW+bpDVt5090q4RiwpMs6C+tIwQlLZNHKijR9J53uXXCVl+87IFZ7WuSLfvfR4GgT2orVcsOs7zyPJrgVCsNv6hlKtbC6OT6khC8oA+HA1195oxlmWY1xwIN+hTR/6IMK1VLs31WUEAp3avDKfwxZTeu2+wAQdeJ2fd+KR8Q3NvdQeXcbDerpxVg8Z4pNNnX4MkY/W/FlnyYynd6tZDzXIS+kykfjnlYtO7a04rW6S5VsQULEcFXrV1vx0YRjJJvxBr4vJbmRhMQ4Om0UanoaaJWhppey1iORgBLRXuhDkiI9EJK32WZjwIwQi4AZUL/Jx9HDMy/+ssZHQZXi6q5MtFlVjIgiFCrogTY6W42JEfH/Zmf10qW+QUqAGIhzL23DL8WYfQosuk7ysru0ghii7517vT2+uqwWctn0h5YsIcwa2z1lIOLh4d3Lt5Z6pNoxsO1VmTOR5Vk05leXfMjm+c84EFQxiR16s9LeaHV5jNETwYmbpMZT9ZqZDirrE+C3LT7EbLELECNIrus1z0Vuxt2ZkAQ4jIGeSZ13CoL5ly4YtZh8dwlH4GCpg0Q1lYlsFGt6XI8dmadHH7sVbYuXCuz9vRhBeWK8E0KOYeaBYgxgmH/z121nqvhtWCPE4b6jurB/6zmJgtqYXdbN/RBve499hjTCflGvlbWqrcyfGkyIIfxzN8bwc9Hsd3DSnE3N1islDNpruxdv7a5IGZgdvEQYuI+C/MnU0AeT3eFi4BhGqvfh/kgzuQl5e7zgs24qyTec+Ztpe4iSIf/kF4gYHppQMkAkMeCS6UgfcYcqGNDZz7fWlUrp1xgIFR982EdQSUaQKMBRc0mAgYNKv0VO7SG7ExYqZli8Yc/9vRr1FSRAw5zbsbnFqEaNOjiSurqOYf22qwS8uDpS3e2rvoXHtZQogbFMlROXX21330CGsgr6r9opGJ/Z937Q9Dx64qjbCnylxbTOsFBL5XwRD8GxKQYtTaNKeK3c/89PGpxjinm0VPv9aUEsB3N2LA6CItcGO3Vuq0RTTJdi/Gvi8AOFxhm80IAuoRl8IWOkOB6mrFt9gn8H4JrlWHdENk7h+uVnONRQlIOsOP1ZuvYwYVLDg8sRcF7/8e9gfLL+DXFU9aiz14NNIg/+1oC5DN1Pd50RgyjQKqMznT5zqsB4lR+637I9GyZC80yzUDaJgmJoEv4HHYNFQQx8NNugaQ2VamnQHBPInE8Ez9eENK2LCtQbRPzRGWAf/go1lW+9I17z9Y9+j1emgCYI13Lrv+l6ov50OaaEVdEZ+79DryIP6dcVB5VdnY3SxmHUWXvxMZ4QOGcQgkq9B3/oa27Hrp28fDC+eWlfpcl21y1YkIxipArmLeoCQtFkFjrNAqI34twxEU9iIclIScx8E87/seTcUzB2pGVr3EugqPuq0dJUiin6uOWQVy0yoUM0azLItA6HA2w0np/cUl63+IEJW1lAJxqBxfpCxSgXlO97nd2C4Qea7hEBiY8At/2Rc0AaFSJUHuhQA5mobLVk0IfMVPv1jUWpMDO6kugp3/JDjIyk+HcHq09pHoOpkqWc8bugJb+meDYmXCSzerCD8wY0Z+KbNePuNpyxICrerz32NowaYGMf89JV9yIvjZLi8bHAz7rkQzS6X+5hAhSFMygS2RNguQoBKOqQLfbyYDO5UpXstpB6AAXGd2tozE2ql/94Hs+VOGcUNfM+tHA2Bpw0X3qWv5/TpdETQFFRtXK/xP8c+WD0ee6GH+uVFz5H7OLMEbdwB8lsxUmdur7MfomODsDmiAdzNL9sy7p9kwcnJH72Kojlz2fqfh47Jb8WbO9hZPkqsmUVPoGvAyGmYXjx0+uQtHPN21jX7UMSJyONBwtoFzl8J6SYRJTEm5n27bWYRpANA3thdBCQgCQ6JIAC5yqZywbQJYYC1UrpRKiszQXOXjVgDu6lQ3TK8OOk0ql7FTREE3CKQNp8q6obG7VcrrvUI0QChbAOxYd1zh7sLye0aSpUZYh4rU3CK3XeLXWTiEjCMhXD3eu+sB1qXKRFy+9V+4AZSlp2AIY99UmdQ/2XykkfWn+vd9HjEb9aozyl3U1XlUX99abNU8TU5QfDxPKmkgrMWUNYruI8TwsseFobXUYzgd+bYr+MTWo1du16eDHO3nEIzsb21Z8VPCyPl6RrMm+VT0ed1MTQQhSQoI04ta2aeeBAwHQazXKGTbqAO3rSZzipqmG6AjXg7sawlJPsCLdfJl3dHvhY8+7TGMM0dA1MZmkwo5RO3VwijkaxOoABMHd1wkf434MD8UcZSdvpB52FhypaTGmn7r3m/Bl+DdKQZnE/K9RQGUvhOkYDAeQSFRrR809U7Fg2swaG1MzMps4epsFa0cx3im0zTNXVQJw9pjBPaK9esNjzsQVYKBoXc6inVFBOJ2WSplaSb/nEy8w0T4mYdGh2VtPPqUjP9sU1Bqk5d87LgUtqPnJxaUtTXU6OlErLytUMe714aexqJxUbkQk5nHlsd3cTQCE/csHzUouTFucabgXNaYPqHJuqsek5ordfOMiX4mbEY++Cwo+dBSA39pVH7p+cncyItyf5ZIm90vq0/E6jH0HD5OYNhbXyuj7M3Vu2qweRIYz1Usmdc5iU5ncX6I8CKJ13m5Hg9qqp0NJwo6eyrn5gg6G2xYAAOI5YVOGcqtlAk3DqUiE8yUAucBVECDzoOcJN42BrVVrBmj9yz8gAHMucbOSBS35v+cb0sh1irqEglPrSFsVeIWZhIJoW4wSk0+Of3wb19dqllzbOGl3Ocn9jFdGuv7GyROSsxSnZlZdyT+2R9soEApBoKCyfa8JPwD/WhkrlyJPev5Yn+EgChLCgE/T0pNZV1M7juiSvc4ShjAoYWw/yWoaJaesjuNhicfpSP0cJUMJ3yKHWU3DeOeBRx1gzQWEFNUf79oAlDBcKOi1ehKNSsYuAxJ1/aRNAGkJwRuCkAVjkvrsGstZqnSf+0xHW9zSkHUXpVYROf7O27YYV3UEAqHAMANIjP4r79X9y2OTM59pJz+5wlhqRJkjk71P3Ht/AB+DfxZ54dZu/WyrxmgseoQahQg2NtfwAcWjv5TsuBiDxcyzHqWI/XAWR81ROE7eTGX5UTo9tZkHKpdjM6nzuCHsJWnW/IlRFELkA86lET85eL50A8MOAo04wkGmFzK02wcgUF04n1/3UVCg6BmuB6CzEvx9YVbsSk9LM64ONMIBgVLheNIRqi+JJewnL2W1IBfZL7gQFsbepu+urSzu9jlFYqlCgqCspsC9/z6K878b/qXygnJp96AOlFy+sFejSMt5VJDsY6KmUYVi3PjAqBI3UwFls1ImQim5MauSIPTw2ae3o0RcptHiPOxFTz7PruEDJSQzgtaOt3iInd7RXh1TF+jP+ujqM2FlNJXK0/MmBIvUxbyhnwuuEu4OLb+Y8az1PlW5agZMdx02Hgjd5nBQ7yIi8fOu5YZdxsk1gfruSRcA1SzR1OsdN6sTQBvSp9anZdSMT7qq6eQsh+lE9UZS46xRytSXenULJRbyqpPXV4/p/jAsAAAQ3basGmXgADnHAEROEOo1rrgIrRQLVG5VCldWmFasAEEAypdtoqoGm+Yn/hAewQ8rk3gPwjGistfIpcl/eAvX4crykleisVnGlG+aGoo5nh8moziKxzvwk4759pToJcFuNNS/STWbUw4EEDi8oPqHAGbdMUSlAuR0rQaPU4AbGX0V1vDDTFqcSqIxj09OLBmZS0+kGmbBBNsJcCXMXKTb+5UzPTAyRvdDHQUU9d7vIUSr6jDeCfNUExFg/+DsmY21lWUTVWXvaM/waalHYymXaLFT7TCJK6YwHE/+dHKPllftfiaEi7hrILaHaQQ28uNQduqUJ6vwg5QQQ9hSU8sWcOuKq1KaFinCu4tNl1F/2DIAiSW8KjNzRE+d90ppIFynsDLYLlNchH9AaO7lZ9dGGQNMbqB5xlYBls1qLleznJZJKUkV1l54rMa5BRLsTbvpXH08v9WxIB3WHHXxpfAdrpGNHc5a5It/Hj1lpFxXcrvh1XEvTDmWUPaqM4e8eywhJYlCNkr7ScRN/Cll9RO/M18p8fMt43xTOn+KrvM1NWs5nWWoA/+ZAAEJMCobGsD58+5GB8ASgrzwol+tWgRQpgRBdpdQ7tJG2UxnygJIuIScIFiNog7/Rx7i5eGaha7uOjCZ6A3LwiXvU5EXJ2sbfjVv8Pyzj2ebRs7kHLX0t+uPO001cEnJKy+/q7Njom8CAPcCIbxkh8bfxJ9FX3lK+UC849QtAOX5Z+5sTgYpgYD7D13aPxeB71BFPEfgQUt5IXp9t1FVnoKnaLLj1APD0mpF5j0Pu5dEbdpLJWYqMz/C36PSoOE8jA3Tfky5Ex4eDKf5V9HmNgZHYBQb3ZSG40/SCqXw6O0gf8KUU1UCQm4JjQrKKNGzPUAgmuaK3NArqygJaCFFy69rVGW6Zpg6gNM8ozU2skA+g0HJWPuq44c9AK4GvaqBgSe4BIbIivDd1z7xnEVgODCduqAIha6x1Lq2gDZVGScxVmUJPPWUFnhBWs0OW1XV2r5+o5MyS6Yk0q80NaKlXJkKLZ0F3MhuizCve94zaHislGOaEWSeuuaknTLHql3rnlqtBox68QrV7p2Gl+CfKA/H+7bpKsdoVna2V1qSPeAVr1xOuZhYbhx2hkGQJADqs4CaizlznGkn0VueHG2350s9DEJxNCkzEXwWj7eswRrdoPrLrUyphFILNTXnc6BAzYapar6vphgDoN8CUquEujYsZcPQgA19NR8Y6ZFBgHDDV5nroQrvGfXJEFXHubnpZLPELGX9TnllL6caVc6oplMNCWMafVaqJVdVx91wQZMMGWsQOxvmnHxvy2J66dLz60L3pQpcgciWW/Az6CiH8d7inopKpEFGvHTBnscaI5gNzigdhxjTKtwI3abVuPcTvtOQ4mjzsweUo9h0E0gbT6Zh3qI7sgCZNPMUcW//TF0HGgiD/iAS1Khnnyuk9ZTEbY9YuY7dcB/qMN0G5IxaDL5veIaA9Gwj16Dgp1ZXuyYlggfaJysfv5y3+NcAKErZ7FV6B99x/lyhJoys9m/76XPHhXX6DXuJUV6UQvharLz8X/e6sAn/WJkoF2OPtVuvEgKwz+MEOgJGBkKihUvIXIk8d2Zl0G6VCnRW6nAkT3AepOcxyLy0ZnUtIZCTtaN05KxL8ahq6z6TWJbE2V6z9As2qniR8f4QjRBOn1aXFsfq5Ou03QtIbyR5Jy8Np/WdutRPtH0OQuZL9aplqUKFS5LaWwsabwwkdQx8FBDtgr6y+8wZtrGRLfae/zq1bKM9MDUzs8Jk4W/oKNWNzXKWxV2yXtAeXqweCjW2Cvii8lX8ZSWrOLsmzvYFT7mJKQzD5NMfVSTN628/T1Ve5Vj0AbOqcP26mcVftoytjLB5aqlCqJGxeWXSD3Ir8epbgc8pPxBVBteV0i/YEIdB7en2//bR9v+1ZCvyeaPL0U7sc+UrwcPYskZY0A0jbWu2U9FttBA4GtwrBwTwiyLl5DthOleq9s20DgRV6tvVEneX6yYIFLF/u3Dv38BP408oy8peFDkcG9YkDnowy6LU4/nBWSFdDM90Mt2d56gwQtSmdRJH0zoVbVrwE6RGbt5AeTKTNwGNQY8LQjNmzTDIrkE58pBq/b1vta/jR5E7JULAOSxJMUIA+EW6rX3+Ne3kCTIKsqbZ6O0/06pyCqjxwC2lzp4ykIMsNx2jXF4K8PRS+fhjvaLDmXVCjP5MxyZCKKDUI078s/gO5Xyk42R5rOOME9Oddw8dNaDx+DnncVGiiyZHjqpPZ0m+ZYzxr03dzsAlx169aFGAMqdqf/cYZ7uklgbQ0GSBdxrBpdQWGUkMSRznErAcKyO4T71hlrCNjkzZLL24Z2k5t/Z9T3tC1Lt93CDlsOi3bl3zdObZQwmUOiKrGa29x0uabU0GxoVPj9Ku+2Sbxc9XvNeBa/ijysno+TaDZO9+nMySIgkuxw9zVD4Zk0suYoCaec8RTyinEPG/tWlJ2yfVJ3ytUgFgTLdWshrP1XXKVQ1gEMpcIVdHc7S+QV36UADG2JAOCl/wdAl4nfk66NZuo5pLF8YcM1JKApyvFmSumnPF8AqwgHV//Vv1zJNZgtm1YTup26rAMfwRZS96hq0CDOZFf/c/XvSO87lQH7OF2RbFieo5f9BpyVXSki34rL7vF/0CYbsMXqYWvY0AIGTOqNgaJ+BZlBBc7OeMXI4yD9RTPgedHG/xMEcBaSrj4LOFQOrOW47gAau1irK5lvpAa3mYnmQpIqz2+5Xv+nWPgq+Dn7niaGx900Wos6UlEHVbU1AZRxj7FyOM3VKuRSvr8um2HcfkvD6Lwmdb6sVbUgzDJHFzZJBzaBmPRg9sNTKO1n3Co/lRBjOaX7j285hKd4gN+VsVo9xu84vAYm6IHqI13BThxrWTmRbj1OrfWdxVdeTm5qEPlIJOzEzWv5R66sNBbllkLr37hPCOeSJlWx2I1mbhlZPWB2whDW/thAiHLmW3IXBPTHrZwYUu/m0igGa5ZrPOo8cbws4FRt9QQMlFsdAW/rRyOZrRCcQzGs8Ln6E/96dOdN6FnuypHWfnYo8ahNMcXlAT08PtiH7M9O1oCIazvabe8z6OFupswbEYIIxGdWFktKIpqWnk3jCNGwilCgVeq0V+xPPVLkVAVipX7JQGOgAKYuJDtwSqtFrIVFnagYWFbS/VMGuCOJXjzPVWVuvpQSmbQ9fLDJZdT20gIvvXJyBtrH9tk1Pmy3qyAv8AbuMJZTV61uVc/Kw8mAdy8wRzDCeJ7S5h0hUwe5x4fhOkCXz+t7X3S+8J8IMCElEqEKBQbp5qq2kLVQBcXMoYE1hYAJSAg7OPMjP36PNG6LgBuI4DmcK4KlMGSqL/wBuQMc+0qiRIU0BkCRuc6aoPR5/xlIw/Y0xY+DTdEE55TJB+IP5anZWCzDd89dPpmXoWr7V28GC12pz1CM4zIAiBtUIeKlLHLFnvlHcJWusWiVUtktJJNo8E3dqqpXHX42CuHvMldxazviSsKLHETJ6Ct4AThH4YQlNIs3L4xnlB3LxTEvUrjXdnbVERlGSuP3/Y8FqqDsA52vmJKayFvMaFKfIj26yYGiveLdSeL3NO1NjLRV/QV56Z/R9bbPp/bK1MRsEo+vPM9Os//zxQ4q9nkvP4L4AC03PiY/8/5I+WvAABAAAAYwDRAAYAAAAAAAIAHAAsAHcAAACaC5cAAAAAAAAAFgAWABYAFgB4AMoB+wIhAl8CjQMBAz8DdAOdA7oD2wQ9BMEFHQWfBgoGhAcWB2QIKwiYCOwJTAmKCh0K4QwlDMENcg4sDxEP8hDcEZYSTxNyFF8V+xcgGAUZcBqJG+scjx1NHiAfQSCjIZIihCN+I7sj/CQhJKclLyWKJgkmcybzJ5EoHyh9KNgpfSnJKoQrCStmLCIsmy0jLeIuRi7PL1UwKTC7MToxxjHGMfgyPzKtMx0zfzPsNGg03jUwNbI1xjXaNegAAQAAAAEAAHA9A6xfDzz1AAsD6AAAAADYspj8AAAAANiymPz/5/8gBB4C5AAAAAgAAgAAAAAAAHjaLZCzXvBxFIef83tt27aZbWx5ytjSHYS5JXclXUPmmm3z3zcMz+eYbPMTwBJAOvaeDAY474b5QS8RVkmJSLO7vHSrfJPMlvwqmWLrvBQfxTfhL96Jiyf2F/FGvBePGeSn+Kbav1bEV9fO3VNlfHe5+J0K5pGrI9llc+nUDUJdJ+Y+8tS999ZdMzdcIy9OP+TRqWDhx+VT/jyWvCT56FSA8lu0W5U3cSqIR6fv8tx1KB6inulcsruU211v11ZBhDrT3pVE2wpXrIZIi+SpbWrGBRLsHlftgbeh+H27T5bz9Idr3LYpwlR7WdJfsRvW6s1bgvqf4YKDf6fO6tZK3b0iWe1tsQ0M8EX8sCXibJlXyn9iMTy2DX5Lf2iJstdU8xkE5MABCOBPzwAAAHjaY2BkYGB68l+BIYpF6v/z/29Z5IAiqCAZAKMXBtcAeNpjYGKcxTiBgZWBgamLaQ8DA0MPhGZ8wGDIyMSABBoYGN4LMLx5C+MHpLmmMDgwKLz/z6zw34IhiukJwwMFBob+OGag7hdMN4FKFBgYAT4MEt0AeNp0imW5wgAUht/5ru+6u1e4gqTAvQC/yUAIShAGtwBLwHMY7kc/A7TJ3qEAUPSYMuI6eeAKBw2bF375x0+MJAVKT9c9yxUR4ImPkRMkQcZzrnq4fc/qSVta0pSG1KUq5bbvPuzkUNhaisnMVlRAXQ2AphuAadk7u3v7B4dHzvHJ6dn5xeXV9c0td9zz8Pj0/PL69v7x+fU9mJa2jq6evoGhkbGJqZm5BYOlFQODtY2tnb2Do5Ozi6ubu4enl7ePr59/QGBQcAgDdUEonBUWTrwuAJArMF4AeNqsVeWa60YMHYeW4TK4IN+52W7jsS8z23HSy4vfZxftpd/l9hn8NHLK//poPXKyTKWFaEajkY6OpAkrQ6yW4yghevm7mpx/yY3Fj2O+afNskm5QvhxzpZn9MayG1eqqXrEdh1XCKtTtnrJUmAYeW4Yp3fC4YmiN+M85rs183Ju1RsNoNVr4JHa0Y+cx8dxc7PDTxCa+K6u7SUJF3yhb41moBjviq3J+FZZwFhNA5Bnx6FycQkNyNiqr27K6ndppkiQ2W26SaFZz8XqSeFw1BD+1ZgZA9XAu5roOuKEDwE/YSj2uGQ1ctFbUVwKSk35w+cR5tMrVlgN9SDnl8F1crTeR1nycztnZQhLrBKdPF2Mc2ZLUILLHdcNDodtTlT41DWx1oEGxDjKurGywtQr/XG95PGRIQI6Fq7/X1AqJB36aJmKStkuQw6Y3NKbCKGg5W2SPmN3kj/a9WK6GHhmnFOU6o7UBU8oWNplsgNxEydWmztr9EGOHXOfLuKVw66BL46ZMqDc2Wo1ix9ZO0nI8njBFpRLxWtb2eNLAkIjHwxdyHQsdJDwhuwXsJrDzeApupktKCAysIi5PhinlKfEkSPN42rxciovaWju5zBPr+kePT5iX8/HLxb7SdqA/VepPmkJNhctxMTWF+mUBT7nSpGjdoBiXjwl8sHVWE/KYiwshD9kGeU5l2JajcW1zbffPcQX/pSZBJl3g70K7u1SHFLBQ6pQGWyGrxz3LsspanTKqUJVoKeYpHVDEYzrgUQROA0oR/pfpaUtNqiDI0+Jkw+XvXPsSaDqN3E65Hp8xhSXyLHgWec4UVZHnTVETecEUdZEXTdEQaZtiSOQ7phgW+a4pRkR+aMhn6zOPW+XiK4/dcvG1x+8ZxRPuv8D4PjC+B98EjCIdYBR5CRhFamAUeRkYRTaBUeQMMIr8ABhFzgKjSGPoYdlqnkHY6ZRCgRBKOSDZSL/5hj2XPUzSFUPUpUMqobO7Wp6xIy3QSh5f3SqPdZavtIq6dSaKryZlgtdKZg49vm7oVon3BuysaH8QTBiCH6xXZ39W8tN+rO8W160zyOgm8gfgg/GyCrO7Ht8y/rmHHt8+zhRNuArzOyiJOtskn7oyvKDyeZ53dRfTHq8gf7Yw0bct68xpxL9rgAoDgr/ShEdCdz33NdHDHL7ubR+T3/fBNR2IFXEq8/50Pv6pQlWyf6rMVC8mgbyBwyEGrLTWHUwfqrkHLYGN/mNfCdM1zdUwW5uLsclsrFN5g/beyTQh9IzuoIYaETrIC6KMktJBQbRE0ThJIbmOhqrv8wqPklGzBIHPuf4rtx0LJb8vHBA09ZkBB/ohqHkgauSqA5x1dFeCSbUeir5MYMCoWop9eqgdG5pNJZxtU95oYvd857dvv1AHdfCgMlra+NEAQbhZmlS+nvemuFnKx0aTL6x18DA/TPzCt05jAJ9sqed2qp/utj7Q5pnhu+6BTgPD99wcgaVZgHa/Dcrisw/TcKvDwO5WC2q0uq/vDty18WjgDf8Xrdj9v7pP4Gd3AUvjCdlRbycZYIyEjM38O5K/owcE6Lu7U+4i5TP94ewpmcNTPt/ELH50iP65KZR1+hTfwvqF4TsQL4W1CLxSJweKQdhXRtqRX2L52vTwzmDxBgtLFm9Nzyo1f/VY12YOA0AUhI+hj4sEDRxzLDOzZWYuS9Cgd1aQzfP3JxY7EvpLBvMnkcUQOQyRxxAFzJdEEUOUMEQZQ1QwPxJVDFHDEHUM0cD8SzQxRAtDtDFEB/Mt0cUQPQzRxxCu5T2nh3nA8N6lhlofUiO9nmR8yhhb3kuqJwzVU0r1jFI6t7zXlC4YSpeU0hWldG15byndMJRutaA7LejeCh9vrpKPp2/Te3C96yfnlLxT7DMrcU1jAHjaY/DewXAiKGIjI2Nf5AbGnRwMHAzJBRsZ2Jw2STAyaIEYm7k5GDkgLFE2MIvdaRczAwMjAyeQzeG0i8EBwmZmcNmowtgRGLHBoSNiI3OKy0Y1EG8XRwMDI4tDR3JIBEhJJBBs5uVg5NHawfi/dQNL70YmoD7WFBcAd1kkywAAeNpjwATeQAgETIf/v2Baznj9/+P/ekyiYP5TIP8ejA8AHscPQQAAAHjaTMwhDsJAEIXhf2baEsQurQCxHoMGwRVwDR6H4SjcgZCg8SgkB+EcGBJ4Yp/68sQPLCxj/DeCbCRG2ZlwkIMlR7lhzlluSVzlrvqTbbjLmWJvua/6w68fWDMFbvaRjeIX2cn+kIOdv+SGVczklhJbuav+5KfYy5l1+5T7qj98W6Oq7cZhKDjP/or7tuQosMxcZn7rUR01VsD2kRT6+50qJS/TMY3Gc+cS6P+xrObO9vIgd7N70mm1njc6rXZLPhlve4XsZ9YUmUlltchUUhdT9+hC/EzWc13I+0x3zWi+rg/MyemS04MwdnumNx5qt1QWYal0PSMd1ZIXUtM0LkXfJY+M87YspKVa6tEPak2/W6zcfTWdTtVIh7yvZ4rZ39z7rQYuAwek9IJZBKfJ1IZc9ow3bmK6ctGUbOmRqbejkuQgt37xe788D1PtjJAY2swUnoHjomuchNzI/uqGbFemWIg3FoJUrppuq7ai2U2s6Im2Q302NBJr0bL0fld0eJHkIVQvmk2fOVsFr7wdXhTd3F7a+PEffESJCnM4WPSQI0BwFxnu8dtBi9dzNCJq8xF8goGP2oKnfWTEhjiDQUpmNWKF5JfObTy6dn5Gbp0aHV3fIyPqwmDE+HXiA+ITnGIJjqcBvcZEe2R7RENyjv9KRof4deRNzKNi1S8gP/Fp1J3+QHnEk4OHjbmFuVR8Hv3hXNPfn2z0eYVpvBRG0Aj07/M7g7rs/Q3u/ccN1DMOLlW6prmdOUVCpY11SZyY5+MwgaFerjcl2IJmtPnpdhQSXgf0svC16H2ic6Ip1S66LBRDfrM4O3+ZcUzcjTVIrMrE6FVs8LuNCtTWnDdqDinkm023ocCnVlk9r0BjwseS1zjDMHI3c9Ex43vsRhzwAgn5wKsibvLydHOwPAdixYde15NuYpvxG38T8wWUF2BVeNpiYGIAg//NDEYM2EAyEDMCVQFqioeEAAIwAKPf2Nm2azyTbdvt866r1fHi39s8DR0DBxcPn4AKKqmimhpqqaOeBhppopkWWmmjnQ666KGPfgYYZIhhRhhljHEmCImISUjJyCkomWSKaWaYZY55FllilTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljtF5Z0PRVN0xVBMxVJsxVFcxVN8JbDeXh+iaCn6eS2N/o/lRE7lTM7lQi5/X19fldfk9S+dIi6XAAAAAAEAAf//AA8=",
"title": "$:/plugins/tiddlywiki/katex/fonts/KaTeX_Fraktur-Regular.woff",
"type": "application/font-woff"
},
"$:/plugins/tiddlywiki/katex/fonts/KaTeX_Main-Bold.woff": {
"text": "d09GRgABAAAAAIqIAA4AAAAA7XAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAB63AAAAFYAAABgRulibGNtYXAAAHs0AAACtwAABEo2OMHSY3Z0IAAAg/gAAAAuAAAAOgK2D7tmcGdtAAB97AAABYsAAAuX2BTb8Gdhc3AAAIqAAAAACAAAAAgAAAAQZ2x5ZgAAAUQAAHSwAADGagQb7BdoZWFkAAB4TAAAADYAAAA2FnR1i2hoZWEAAHq8AAAAIAAAACQKAwf5aG10eAAAeIQAAAI2AAAEaDToPxdsb2NhAAB2FAAAAjYAAAI2SlAXym1heHAAAHX0AAAAIAAAACACSAx6bmFtZQAAhCgAAAK0AAAGwNxUMPFwb3N0AACG3AAAA6IAAAcnRxroD3ByZXAAAIN4AAAAfgAAAIqSjPzKeNqUewV4W0fW9jln7lyQdCVd6V6BZRDLtmzLFhplxUkcx3agadLUcdo0dcpp6iZd3jItM2+X2+Xts/Dsx8zMzMzLDFX+mSuZlr7vr9rmwox04D3nvGdmAgRlAPgNcoCBBvpnVQWBxosVq2IVKlam/JYL5TI5z/13GT8FBGuAqNAvQhj6IddK64iAy4AI6wDgrAARWwfG/GzVzg+nFTVWDFfrlXIkGnFs0lRNzaQLeZLPIuKJms6vTaTSYzrWCbkSjivUwIl8plRaHqfnJUdSCaYH2q9WGJGm4OXn/ic3TqVsbrwEBHk8jP9DPwZ9MAMDrV4FkfAKRyJYZwgQoNVSNFOKplW1pxhyZXBsKYD4/Vq1UZefeqYqBar/yLf5sVy5bsRXvR6v6Q30JE1S0AhFs3/9Q57T7FL52ORA9tys7jU11fD2DpcNGxVj4oc8B4LW1Xl2v9DlNngJHGkt95oEuA91jZYVIvCbxFXgNwd8pHoN0nRVO88QMbDiQV0P6atX7rnr9ls3zqydOnF0dXF/PncgV81X86Gg2ies30g1mtRwNVQ1u1Jxldu5lY7RtIxmq3tu1Y6vhDHC1cz33LomqrjfWm805D2XY7rf0H3eiqLNjGKKvH4zpBy96TzTcoOKZsmbG25UQpHbb1MiEXroYXH5ylcobCjPNNu0Ttx0vnMdNkMnbrghGv09BTUv517GHnooSjHxWswS/+8+xTuDAW/vK+9iZsgf/iZ5Iy98VDHDprgUXxf2ookri0RMt0Pi2vvIwyxg+XRUaevagwqhx7ZMk0XzwUDGMAi9fupM23oGTHjoN7BNn4cjcBrOw/HWkXFkyslD+xln64fTDPlqlAhVRkB8GRSmXAbOkHHcBCSGdElFAkZwCQDuBcYctnrj2Z5QYmzI1gRAc7aqOZlaJp/J52tdOKpaWktHIlHxqZRrtUJe2l26rlKrOBX5XA7KbD1v1MVVxpETmOrY4nW0Vg1V8wWnUhYex/atZ5pEvmPnc6mBQm9UI+QGdzJ9OlpnJ9JLU9kYa/Kh0O22kk+GAkZvT8SgnmRJPX6bjlfPadF59p7JIdIiPaG/PH+vt1oh3y3HU4VCfzynku7ljk+/clmxD5dnD9zi+KsVVUudt8KpYVL0cC6W1YgijvZb5t2rHN9sH7b9JRNvvLHNjk8bf657HVBg39XfYPcLC4/DAlwLt8Cp1okcqsQR2BgKTy8rSKAyUjeAAWgMNkAD1DXcAB08Xt1zASQiToPXy9cNMYMfO3fD6VNHVwfzucF0tlBM+UQ8oExAhagdcSTQ5Y00uIyHjp3llfsG5EvxJpzPpDXXnvJlrVrIoxy8Z/b3DaFHyuUTq15E/UxiwNSWjtbHDw4VTp23oy8+HAiaFtFzP891Xz/d4DMilt9vxQdiiYIHbx1fPDiU7c75+T3v6Lw/yQlVShdeXzTRe8epjfp471yArgtbpqLy5xyu9eucfoVisVtujcWSg0fPFjztF43P1a97Q3fC+J53wGD86tfYAZHNj8ENcBfc3DqnIBjriHD4ADHcQGIpVASgTWR4GBgSMtoEw1DXQVWdFQ1l4vfqBBAUuYhIWeeoKBFlFeDmm06eEN977OiR2clsLjsUTvkEzlGaqOJkND9pmmuwurBYrSKt6XrGzTJbObjWvao3ynUJ+E6O1iS0xetGplaouqaXxhdPmC2/XcZDXnwP3WzdcZ1PPZccSk2kggP1Sv+EoTZJO9O8+aao5/TG8buD1ONbqDKWJP/1TQqpPVZq2EmfVvjInV7P9Epy8aeSCdPIe6kneObviyMHat7r5xQdeT/+DGPN0txoMxNUnMF4yGcwRfGUWuM+tb7Y9JmDWas2hJp+7NqE2TxhIBrBA2O5ZG2Jea+5x2tMXy41X5hpKIGS3nNk1n9N+8dmlpL64h2ql2lZQFjGw8hFNeiVdS2KJCusLG4gaxu4pW20kGZqdE9dk2B0rVZv1NzCtewWqOjhgMo9fs++CLI99ensjM/w+/XSSdXPuSxDgHDbVQ0fEDHYB7GWE+zUdkC4DIh3RCMZUp1iWHx/F//S7sFuJGTyrq8uWi++MRBkWqDUe/RDqLFg4MYXWxxPPfrn86ToaqBaed1ftX/jQ8Q8jJp/8WihWgEUuVXD0+JXU9DfShACSn0BLxMC3IEQCUMKU0y1i9F0BxdWsNBBhoBPuSKYxJY42pkef3/49ufHvH6DSFGZ+/O85/5i4VsBJZDsfTMiWm/r9QUUg6MUoFIt/O4TIz0gII9l/JqQYlFkd+NAMaUrJARZ+WTv8etbNgAwYCI8iFBgHNGk1USrBwAZnBb3ipvkN+SwdTny2FrLGBuMjQ269CO85SanW3nd3NER2/VbwXHJkFSptlVo5ciOUTvJqZb/76TtDDj3KLoe6Y++BGm2RdEBx9CUe5zkYPIHv6BfCvXEw84deJJYxun3jNgR8vU5aUYn8Q4n1NMT+iHvXL/cz+boRZCGSmucIYKDjKiLCEZMsC1pj1PSHrSmICEdyWazOduSSmNdosRJdRnFVr6s1Tr8oZGqVfH9+qBBuCwowDPPkGGHDXrm6WiI42G64Nj86Q90avgHnubhsLhDw3Y09oGnQcbI1SYSfAySEG9FAIDWgci/AoghXC0NutHRcC33veEh+Ekm7dp4uZQfjicjiSkfVw2/ofiHbVIZMiXk5Eun8uOpzMJMeaFkyDAhf2FGiwaZXgZAMOGD2MQIMIlYAEQ4BQC4RoiARzpgsZiIlkYt5Zg48cHNTSkzIHxNyGxBuBWU49cB0Y+rBYfUiJS20ZW3K+5yoV8xalEz1WsEktGBUwNjOg7Z8d5Rg8Ix1z+qy0mCYLX823FaSMlvQ4kzTSVyNW3UAX9Zt/0hxI/8RsgImWEkfIj+yrZ9RvuWdu9YKOQ32TNAMHr162TRa8CBUeiTAAdiIIDNmCttBFeHioNJyeuxUzK3/VqVvC/q5mNVk8XQrYZCK7dmevx5/VMOz0y95dNjofDYtbP8vvh8oc82UFcnsvWeICExeg0m/qDYeM3i85+evv3w5tm6indO9jkH7i+/rZgsjvXcrS/H70lPSlWPA+Dn6bUQh1qrbKPCcRm4wi+DAowUtqEiEazpGjIAP6wCiJFxO53KWpZlqIliKp/UMrVKrZoRuasmJHWTmmVVHPzHSPvHbPNRmlyyrCdXvf6IQo8z1vzyl63mpO5V2n/f/vsmIEwBEBeWmoczK5/0iSSRAuCMA9sERsRuBQQOyDeASDkDiuJXRMZI7xrDGV36AYNE5hiN5EcKncwh80O3CO7YW3y0rnHronbKe0eEk8u8JQHp8BEx+M+LmfGoHohcaC3WZweKU4l9vSuN1mtMw6OwJgZ8rH0t0s2Xg+Mhz+HZsDrAeBLbueJgoCdnF0pWLFdZ2D+VGAvPjHBWpKiNCrvnElfiPYxt3Bdu1Pr6Z1ZQUxhzAFCyCfILnyzBodaBfaipHlR4ChmxZdBUrmp8E0hhCgn1AVQN1A3goBBXXHyd7eArN+QUBnOltK727uodtS3dXXu41nDzyjbpEpmykO4w4bJ4W++aoZNh88evHDv5vCA9FjieS6nhJ269d98Q0WguPzao9/YP7gvr4X6rXFBVz4AW9FI2lyyOFCojqXQRv3Hg5OyUJ7RZVpzxkVIkunR039BUemw8Nx7liu6dik5NNiwdiYdDGhH6lmsjhZhdyw4VgSAJQP30OhiALBxsLaQixBVc9qDIcKBw5bLXIK6ihMJ5zQWsR+8CNimmJrPJjJg6YFmRhoBtyicskpJKSeCmao36PJXLXVQ4glSJ/wqWqkUpbD3+5pC52f73T3yCqYpiqnGFM1pbW/urNx2+JKB8Q/Mv/xIZknj5J38i79D5ibMoMS08yIUHT8CtrY1Z1NQ5JK0PGVkIjCMCX84jX+pEGiMgBpsGAhLgJVBA1RRVsnJiGm0Aor4OoiTpqwjLSwcWJuul0eJQb0/U8ehwAk94REVvdIqh68QmyUyRL7jo7cDerYIS+PL9bqojxjiOQEH3oRzdrZWPpoYrjBemqv0+LyHpvkjq+LBm+KOcZJ0mFjh08thRLzcU48gLwn2etIqEKpWatzz05isD2eF9plH81+FU3UJloN8czg3mvIV+n90wFC/76PpJhsQTvYo3EPTdaDE2NYXIMHHvuY17DXMqm4gmiwC0HQkl2A9v/KwHVS6ZhEckiQwogKDgJjAARTYxCFyVGUBV3RoWEcRi5ZOOGJr7vqGcu0k4uLJ78P/pK9fWWp6hXG5xcCSlieyHro3lRzCS3WVHzWzHUPeZy0U0Mb4zPNKNt3we39gfKfQP2n6VMWYn4pmXTid7U9lr5l80O/mGJzDILw7ouWTfMDrZeMIfNHTUY41WUENOq6YVLiTnhmNM6THNG0tH6geT6f71U29/0yd9eDIWTQ3mk8U/dvyhSKp/btWuFSMvOJwFt+J9jcboaSjBI5/lCITLndSbAJIovF1aghS8AIyZKxwBIiCtOSqG9HaGwOYPHCNeM4Vd/t4x3dfCehZCujdqW0GfASUsqQK7vMPS3E5Emk707/VQtVJxe+9yRNiv09Zo3Q9CsoDeu82jbOP1qmY1MT0wYHgm9LToiB8jep8xZjBECnqHMgHjPW8InSFU1YWQwiRqDa4pRLEY4z9mLt3ff7CmTgDr4uw1kIMy7IPR1vBYys+YMMtW3VZwp3AL0fZV940WY5E0d4l8t6JEu02VG1y72q+G/JO75VuiRQwMl927brsbOR+9sVX0DuWPKdycNbxjTR544NzpF9oeI7qse5bQO3VaT92sY0I/5G8u5/D9pEbGjlBxtI48WDgZt+o5rvWcrYfjy6fmGrFMsme+wLX6ydErxclVG5u9tlpoXx4Zy/Xg2cjI7HQTaFvjEaHvdKvhRa4SgkLLoCCgIlxHoHJyK4tkBS4lPwuMRdjqUC47WChmZAA0bM3FsfjUhDJb1FTc72Y13aUYJnSNuoM7Ccqd8JeFRGokHfbEOXKnJ17YV7yV39A4UtRfWwi8tnXs0Nl8sn8wlBgPqVNBpmqFvkIkqHpfnOvxxgKB7IvCWo/pS0w/rl+ezmLsPbPH/+pU/sD8wHABo6XZKkP/Rqh4NBRPUsDjjwJ1uCP+DJgwILvCrRXX4O4V10Kk4K64hqq7eaT2/bxyIlOOuaxycGwvxcSDBypdhvmze9kmScYN33QlGIPx1ugQKpREJiy/RxZlXbKYFWAsxFbHRmKZQpp/n0hq565z6yacmqQyDfeTEQN2S1jK+Y2BbGXE9Hj8yDWWt3wcKerL7hL2H5YmmOdgZf6+Ya/h15ARcp3lR3syTAWEm65+jPXRCvRDtGXHd/pLALhjNCTZMhd5LpPLdoCfzVa2Sg3nEUWJRlifZertn27/FDMMBQ/iAqrMbxlK+6/afx3CLNrcmPRZ73yKGT7TUJ56O4VMn6G86lWeVz7KDQCCFtzN5vDl4IMYlFojAAoiAZ4HYoxOSReucWTEjpgmgBkzY7YlxvqqqoxTV6hUp4/i2ze2djpqc7wNb1NCkefGhZDdazziCTt6Z/nzHwzHNpDpeS/sskOP7Fq07+uzgwHowZ5On+3+DOYL2U7/GYFo1x4PmiGb0b4Xvan980wL+Q16UjEM1v6p9s+cssygjzA8fegdiu4zLWz/lmIIO7Cn3gkE+wDx7+hnoALzUG9VQp1VDWDEgFxWSMqlrSbDWQFF4evAuZ+vZoulUj7oLuJ3pNrp6dyPurUMV+8E6BaBcNwoZlL4bhl7erZA5p2HX1EeWJgcSBiISFwJ2won5KFmjEwzkEo7aaSBlLsFkcuX8CuFpKWKH02OtgZThVSe5fs8jIj5UmORaw7Ex2J2mHOuqYjW0EB7Znt7wl3T/zabo5+GU3Berqydv+44A0PobHjAY8AmMJVUJnTXxa3u2fD6CDRUGagXANHV3tkOqLiyKtx349rpY6uHD7Wa9crwYG9PKOj3qgqcwlOm8FmuvMX77UilIrL33ta3m9S75nNts/0m4151R7j5r9KZLEDlfmWHZNMvNj/+5nedPPaZt+ivvzeezSoaUe/Hnz3WvO0hk8hXH333Rs2874N91syMElgeQQVRjYyUb3yeH0fm7o8Y1432+i1OqL5sqNkbHx3tGZga/uTTr/3g+rHHX/1edVAnrpHCfQfCvW+/198TD96+OL+M5osulBevf4EX08hQ9Tm3nNJ7r52+hoJLOnvoUdaP2YnoxK+I/4BgEIDN0k/BGNRgX6vpRx8Y5DNuBsacFY+uMMmwTa+AMaouyZaOKtXGq2LG2OhQIZ+yUtb+mPh/QO3bZtrCrqEtjhRybFHfM9tv8oWC3BuRD2W5zKgODpovuMVvVKvf5Ezl0T6df7Na9YZe/c6QOTri8UWuRiI4Mnry1mqZbmGsSUgXFU5kKM+9CakpnmBP/2SjIa4/hw8+8F0CYFAAoC/Ss5CCUWhIzQKoqbgMKmhM1c5zgxQF1hEBzBUdGaM1IPLTKoCQcbw4NJgXU1PJgf6ElfKIbBeudTHQjSLJAXbuhGIWr8ooEg2F0DtaFUpa8qrwj/9mnLrPT+jNZxfRPz8eMRPe4luVq9+6iO8dymo3nj1xrXFT4vQdd9y8YazTZhP5akuPWOpEf9JC8qbs4NBYX+ZOC7FJ5XtKU5y+jGT/6X0RbH8FydlieG36SWjKvh6QFEJlE2R6YJeAaGubkTE3QiJ8daoxURrMpwaiTlrdzWrEPle3M7I1t8i4HxfOwWi39ku8u0Dfxv9C+E8/emzBjHFapQhxRBWVMUVDLTVyjafnVYv1+uKre/Ubxvs1Nsy0A2de+ZE/DxM++sYPZPUgnydimmf8FfsIibinWToUpGv2tf9u3zUYXCpNeBUixX/6wJln3mBHY0DSr2xC+NWGLBRbg4pKjLkKSl5KtLU8BJCIxyJilG1J9h6V/tvtsK7L8hnppR2W8u//o3yx4Vvy9y3f6/2vf7+I4/rK4rEzfYuDE8x3k3QO9v9FZeKRM+HYdMB1COJzv4dqYHT6LfO9Z28CdHH3x/RhqMKZ1mnwIKAHNoEzYpw2fQjAODDZbZCCdN6Lum6sgWGYKxoqinoWVNWvriJUJoYHs5m0C8BYxAr4fZrKFahiVeYtFHVfiJ+pyRQlgVbu6FBxVNKclPsqJXe1BL0WIzq4xONzI9RsktNrFZKHNs6lByxPk4r43CMXL9Ld1MOaSJ65A72nFvEhyk+H238RHho2OLa/G85njzSIUfs/iTVppKmo/6MqCvmPX2Mo/9XV+QNC52G5Dwtc13SubYIGHkPzyI0mg3TjvIqMKWugKOaKF92k4ttZZxqG4aHBQi6dCqfyWUv27f5d2WRHm+qWMpVdFhB3Dn7E/tRTjk9ocgOLs6buqZSS51t9M8Os2WTDM31Psh3JjZGZea/+DSpM2u2/sCcL9I1mJ4q+zo6IKDoBK60lB4lNosIBQWHLQExlpG5qqOrIFZWf31N2XfxFYPXw0qH55tzsTL06Wsymz6QMkTdybr3oFhJJkdxIi35/oG318HZke4dHqC4v5dKMSKCd4iPG0csmH3zPbZejVG2+cPkI8yvXtnoMZXfsqcyYHymMPrKY7utLLz4+OK/i6wK9n/BN9A45zHucOOPehcDY5PKJd9jR209eKCQwHzBoTywye+psNLyUue3p2zJL/QlWKzcZIjZvORljRH1Gx+/srIjFEqy3rgcdwqSHz5uGxqSnfV6Pyrl0tx3yu1Uk4ljBAKpbPi9BaWx0pCgdn+9Cva9XRK2wigSAi4LoXhRUujthAuI7N9ZOcbFS4gZfZ7/jqbCAgi/81Dts30XMXPR1n3T/bP/tRQmHsiwd//M/8v/P/Z5bRvT2N5uAEAfAd7g5ZqI1prm4VTlJVfTOgpOxg1yZYbrSWl5X2uT3CCtFenW4/Qu2efmyab/3PfJP9+e7Pyyxp4sMHhC/OALlVokQ3EqFgCpsKohI6wyJzBUA4Gc7KTxSsF5vOdluX9ZJzjuQqexgZqdRq9YFQX+239trHwgr+OpA4iO+cdMvEOG5BpW+8xPTj4475YXy5Vw/8ZZ/369+tePwr/3KbGC135yLF/RUsZjq+v2kkHY/nG6dbBXCjBgu+3TX7+tej9H1e8gyXb/b4WDAv+P3/bB/Yd+UzLjlifHSqHB9cqAnHrO3fO78YJ9bgp7tDQihWbqfBmgPuaCMqmnO96NAefr9B72hJ4xkqMdP2p333eVBnqiMPzZW8oRe8uYeM5vBX0I7MryDjPY/0Wtf3THBhbMePX9w4dPoooRQs8LZX2p2M9+jwhI9UGhlVXR7EoUYMzvbvGvgKp3qqJaSq7PInNRevbotdaNCjw4898tCYOepTzr+J8dr6umhfi82sa/978o2XNBYGL2gQue3lV7x2zW4tnU8iyYLIJm0DCYjZt7eSbccpSP8Xs11RDDg8xg6alueqEGtWhEuKHaCT4iYsNx/XA9sp15Je8LuHmkj1Qm3LsaZ7CTIhRdl0u4+wLT/837j4kX0cD2xtlmZW0voKupCKav9Z5aIRSu42PeoojsR/Vte2rI1n/699tX7Xv1703w7EqPo5HPvX2j/kaLrdKL9lfYXm7Ar4wxDqzVXQIk7g5OEna6pbLu2rJvyjMqe4pISGBOaRVyM+fco6K6WQ9T1ScclQU3tpm3Gdmn12OM6I7yEFw33npgnbCvMYv/1d11NFMbai4hPuvD5/fYfKJpCaCvYi77nvtMEcmtMP/0ExGHUXZHYIWc7S06DIsjcM2DdruP7GxK+fXZih5R9+cRNE74nn7YQA0du+2jB++QzQUqM4i/Xb72lPqJYL0glelIvsBR6zTAG3veEJ5vx3H/sAgafetSOX7P/SuHYsYOvric/XvB4Ch9P1l8NHaZFfyhs3QsjMNWqgwGcDL6hozS3W8fVTjbc2S/KpJL9YnyvNTwh8e5VE3siubyHMosgDecLe/iXDNp32iJo/+zHDvW/MusZmLin/5ZzF0v60ZXlU9Exv6mpxY6lSe29mEzURpdsjv/YpEuI7X9H1dsXn52L9/YAc0+H5YSlG3AdnIP3tgJHD5ChlxCMGhIwsQZaEAucEx7xgAwgSVd0Q9Pl+q+rnXCJYXTybnxlaxE5hGLVs/aj5hD55UR3dSmye95aK4Fw7ob1tdXlmalqOZuOOnbIa0ADG163E4046naulp4ujO/xeb2xGw2a63mR0dn2WQ5BKspbrX400rUoy4v3ov8qs7BXo1yfFfWED2bMMDLEQHos34FJ9l2XIx3w9I/f7Y1EArnD3v8YX5kojvekhioaat5quln2ot8zo/iumMneRm005LcqpyI+nQ72HFJMhaG6Bab1i54OxE4cvqvCe716j+6h5Vy8r7rw6Mb9Ga6awVj/vB9Nz9JbJkYeaocTiUxK4k2cqzkj8LYPjsNa67oo6j5ZBXXSVWFqH+iqT9/w7qDP6LBIj4s+aWptHYRhNIHDw4cW98M+0fXNN2fLpaHBTCrV4ZTxvXjcBUdh2u6nS6bFS9cjW/St4BJPS4K2SG6TV5MP8RXht79N1plf/ovUIwcy6C1mplGl/QGF62po3I4TcmVE4VQrKM7TJY/G1eCY/8D0xbvS1+ZnDxx1rlWNbvLwrxRrYXUi12sjo0zLHJ+3qv2OwLyqmoVJDVuBsNVqhiaC/Co06frYVeT+05FxK7bVAzYFez0pe92I9K9krZwR3wQOjMOulSIVAVwjRuQSybEj83PFoWzaDsJJPKm5YOy2Q/kt6Lmg6lolYu+gNJN2kReJfE+iyriktjtbWjISwbXG7JLyXraw7rU3FnWd39zSehIkWSsRZ46taOi5cKI8WxjgT7HWdV4KFB800lcOaVTvDCI95Cia8sJKvbrcQxkM3XU4lZ1Z5FjisTgSsZ5PxxmRsON1E2MDo15KY+jcgt8eLF10cJRPELH42t2ME5JirR6VVhsCoK/TByAHh1c+mRYJIb5dt82VXfXcz0TgRwHEWwLc2PtmreXtVPiiW+HDDdmtOG7rJT97CGqm03w6mSGHPuA0PY5dtiZH3h6M/cLPx4JvH5m0yrbjaeJHvqqqX0FVvTWdMjk+95eyoFABuZlK36oCurFyxK2Dc63pIBqEy1trNb6ttRpzJxGx7TKYTUtJIzkRDqYogtgpeNJxW0DfxaydyNaBBPGQOkUQjTdd/vlrCipu02s0Vlc+GUe8SM8KKX/nD/QLV+6szGm//9tS6L/+W8++qdcaf/yHLq+++i22IqTOQaNV7UdCXFYQliRxlEaXxFHhruDdpRgxMheVAjvZcMor5e1KxlRV0zISomxHXIlQlyTSceeeDZEsHr/Yr/OKqvdffHzDG37yqZB5/bmbfL6yc+56V9b2b39rQYJv4VtYk8L+7V8leu+b+GuXacSufkt5lZD1OCy1Dq7MTicUKa7fNHSFI7pcyusRltalvG6VcAU+DsePHRHp5+CBBZl95OJYbC5uPWy5wu9wV+Ynp7uCKNM0CUz4Ke26oLpXq7QTbjTyhT0PyiHhEPbG8PP1dKg3QNr6fYnZAa7zSNTQqe+JzVGVOHkMf0Qx+MBs4spZb+iRN8bN0dH3NJsRc+cO330LPesy3PYfHHr3MfJwUkxUVvFc+29fZDGhKnEPHXv3IRx3WVn7pve/v17oXuJ70bVUCoDtl3lbdgMzcc/ubmDtf+0GZJae2+4GxvI5tx/or7heT+3tBuZJlMU9/q5mdm411ZFZKLoTbcJsmrvOiIeij9wX8OxrbWyMTd5ytzf0qveGzMPTMy8aHfUGXn5f0Hj42hMBfzNx30Vv6JXiVS67ePTIkdExqegTL1s4/nqp8skTz6D889570bHX8h9yzbCxecedKLEdBmDXuB3c4dbiUFx3rZBFZcnbtYSLbmkIn1u3/OZODzkCog0WSVOw8IbUO2ztXU2t7Xa/q2Njj+aqbHjohvDb3i4K0d0vucsbftX7bEGFvWP29ddfn8t7QlcumPpdF++/W4j8p+//aSl50Frsf+yxx1yNnv6pP+msgADQ47KjkLsNKnKFFE6bQKgQXuquc8joRHR3B/2s00RUF3P1l6Q0UVzD4VTSLQO2G6DRaapsLU25e7xycSrp8hmoVDup0HGO+9CDHsWDvzByIRZjFPCZweOr6ViwMDBgYfvz7c8rXsL7lf1He15qIj6LQDwaRGz/8743Z7PojQZiMxdQl6tTOvGYpdAMohp/g6oTIDx0VcUcfR40GGzlAOB7t5AUdwsJQAzQRFLkarQYtTpd+0PP3H77t9l/zH33DXOw6+RYaM/JsaE0ydXhfHcFNRSKRmQmrUILLb9P40roNz6CGDJto/0g/Z4Z1sgYa/e2bzHMsI3sQ25WVOHndiSUAgETIiK6IuIaIOFeCcMd/mLFn3nmdvrU3Hdjc+wSIDxAOv4C/Rj4Qf0MRxwXpUhU650jwg+8j96TRjY7Pz/LME3TL8UX04RMohNSHbj6y9S8+vX//XyeI+obNecqFQCC5NVv0xj+KlRgH/xhKxBFhc0VSSWOmsq65zcmQGHElNuBVEbqpa2F6Jg8kgHrqJNL4DQNznauYTXRqcblzkTa/P+Y2Sr96Ek6due4Z6fiKA8qRBEa9bGRbLq/N2JbAUODCpYNwYRS6TEqdHe1JY4rnf2ijMB4J3d33R5xRK3sbH/m7IiEvGCHEuD4pWRm0Gbe+tnl2yeKxx4OjdczYR7IpQZytHH24VlH5+jP2oaXtR8rNqf8pLMbJwaZJxb2VA9OZ2ZCKdWeqrFoZKCQ7ZsqNaMJf+amF/jRiMQ4vWhgNOEoYbxbG+iXvugTvrhe+D8Bo/CClo8jx3QqyFRO3XYn5Qaxhm4U7z0Y0y1hiVbuB49hzN8ZCO64tZZDMJgf6OuJ2aGAqauQoIQuLBYui/pmuXvBjsspZKG2gpI711DaTnO2SXatmsTPorp4+pYX8Ycvnj7gRAYGiE+Y+J7o0ZkJXU3kQ9GROU2lZ/X2Pw/df7t22/NmemOIozjKrWb7I42i9hUt7dPGBhNLx11W9G38O4HFIjy/5RlCDiFEoi4Is8CBgAsQIhBe2ubAAhaILk2KM1d9dxht/shxa60wQi6bGohHA6ZHgyIWJXHGLh2uSNK09xxtd59w68RyJo+FhVK+HO41Zvq4bjtMU+JLpZEzczc19z//07lW3uRBfM21J1evDWj7fAoxgzwHegNDsw/eNnPwQiqbS8ZDBAR54fPz9GOSCcq//ZFBVRHxh2oYSWPLwDms6R1fdptU4cutBUU3DLqXtMpgZmp0ZKiQTkadoM+jwzAbljGA8pynFZRaOXYmLZSp1XZU6mzy1aqug8PdblRaobM20cBzuL6uul61n7LR01p602RUC26sGolTs/Lx/MQhTctGoyb5/X2lxTGNnlUUsXjy+9waGFAjES33golmJLN4nRdz585Jv39ygrhjL7RGB8eCvXWjm4Xw8/grUIAJeP5nB1HlW6ec8hoCUxgom6ACA5WdB85dFAtDKAqud5JA4kcMjO0eKICPMCE2CNMDiZgV0FUoYEHvdvD29+4Jdx4Jfr29UlMvdI+FORX8/ZDpNB64+GSATs+fGdYPFac9ytvf1jyoemvpgMo9896ziZI3yH7/Sc0b6Dt2x3ow/LzWGHoGpy9YKhlHV1TMhoJe/uoH4nZP1QSEQQD8FfoZGIHHfyxjkqptmWEEVE3R1NtB07rb5Ia7QKijRIQHO50Dsm4OHe0MVzb/T+PXWpEtFjM06GSdRXcd1/yeddxaY+cvpWyHQdqlAN1V8qr5krv9xsH9+5GCl45STJ2ORQanB/1sqMrx8sXrJOFqNWdmPNPzKrJkPD2Qzw0krHKBT9Wb7V9oAijQf7VBY/jrsALH4Sa4Ak+1gn0BUuEkklrmxERQdM62VUEDpmhso1NKsHsWZ/tSUfR1D+p6RLZRrg16uLDM+PY0Rbw1FL0zH7rTXZjEdk9Za8VuPX/3Xeev3Hrl7JlrT+xfmBabr7lM0SsP27uH+rfxEt11flCe19VkMPVr3dPi3dSyvYaW3ApArIh+W8unpSW3j/aGC+nMzjEEt5+/JRPT9MJw4+Lhcd9YI+zP9kbCPQrXiRGPExlCK040PHllYUyLhNXT5/XZ/NH8gfYfHcijiFB8TEPG3up5hYEhZ/Cgh9hAMloS6+mpiZVzw+FoPDBSGst4tMLUdKEWUzNqeMjps62QiogaMT83NdMX0OdytajPZ/dzEo9DI2sjycnJgRE/d7IaPoE4Xa9reW89GK77kwPt96LqEzUvbztRr8R3DoDuEdluEk62rlGRBL7BNGHd30lxmtYtVz5dZURMth9c4S5VJWjUZIcxKkEqklxC7DlEHTscsnwemKTJwFbxctyFjs5ipbPTTEgLboXuztNuZRuUdQz1wZO+2OKSl/CgYW5eElBGFk1Uljzygf/SPeKBzHiinL3vfUbZ+n/dvQeA28aVMIw3BR0gARKsy04ut3ILl9xObZG00qrLKpYt25Il25JtxYqKe4vjmh478aWdz+m+9O5c+jntS71+l34tPZercfpS/wyA5XJlWVb+/v+ivSQGQ/C9Nw9vXgcaHNMeepAr4Pc+KGXTjQHlecf4EZhgMjkneNkZ0ImeFFQhJzRmJi0gC8uZYwFXeLMbkksy0XWLUXCT4Q0tm3bDaMzS0nJGLpzngci28mGJC/TVmHEkNvhFxIlLLhEbsn7NMYMjEI/r6MrlHJ17CGnezmF85NVEFxsCOvNnZ8bAdiGsCLfPqF1AxCxQsrzrlgXC7b8jbVCLItonuVALlLqGRIJvvF18pkjo8fNPdfdeXeMBVlZtGdYqeiWcl8/Gr9oKfLUqQ6WqdyPUKojhemQZ10+JQGhw6vTErnIm1R3EqjYeQBJl+1cb1nLzSzNmOLJppJLu7syEOtBm+6t/pxDqWk0pQUCbGE9O8oh/dzlGCQVYHOrrwOKCoOssGOEypx/Hc7HRFBlTKl6qSsiN9yNhYoxFYiq9PSUeCE0nE044yHhXloRJNGmuqFXPjIBF2u1dpuefgzldJevISEYJXCslTEcDcc+kPjF2fIOsX3qtrQQCY+NRZ51sXHetKS8zaHPjrl4v9jWoDC68wmXLBVbb8bw2BvX3m36Ge4RHSrkg3Ocpjn51E0a+ZuGEAqahM7QlkQoRHPE0xdVs6EPby/UFdv8cu95Yvl0IWXpw9e8yOYDfA0+xWP2xmWsJ4DAsmiDLwqUIHOyK4nB45SAUMBSJ8u3LtoJuXFp2bxQQdmzbtMii9uvWspDk1AQzUoeH3KB0Z3ElGB00ZZGn3kc4zJzsy5mh5xcSFzTKRcf7QURrbrgmo6mj165fXJEVLeFxfmkCH5N3o4vGLRFpC88iUFYfvepVLRqiGxgN6zx6T0ASqBc/lCS2B5rIpaJh+J/PKVKB5Uq55OIh/NKy0GE0DqiyUId6YJli0XaBesFUgc5DFyJOGQF6e9aEfWl6bnQ9HfF3KM10xLBQ5pa2u9cTb6/HeFm9Q0IuG4vomhBGISqGVwq22tsc+AVb7n7sht1HOkExu6TH+o3R/vHPjR8embhevCk5152KBDSz48YOU1Phc2Df11NqHEp2dk7etW/NOg125x1rcnG+YeXzVmN+Zty14Jhjn61JUagKV8zsp6AIvT1IlW1AKtPmFYUth+YtjSyvfFZVzy7b1JasYBOGzEB/F3MrMU5OxDkSoaDJVqaIinprs/NKRDwNo/zMdaDLJlt1uGWvIXl+1+EbZ+avXzuurFqIu5KF9f2y2L2mXKiwVemmxTu/PDOTF9/G1+Hpp9k6LCZ7pf+SRjLDVx5ybZcGOsiwTTN7df3MPLdVZYVnQyCOKlyKgO/lXAlzN4Sz0ctmyqVMf7bP9b1HOvMac76XVqoxvESb+ioZUx4erbWFLeD13VOVK2dmThwMZIILA8yoHltmtdt3DNHAeGdjor+b9MSjjcmjV59WkT6k5LqWPsbx+cCO92iFwSs3r7tMB28XgI8xXHr4Pl2gSJSKIIgMEVGUmM9BkoI8e2P542r5GM4VOQ6poMJUZsHL2PUy7J1nrkh1lN9PrgCCVzVKEpbVWRX2qsbtx/x1wO+mUHxVJgilcsoKYkTCd8r797buBblYXOgJJzsYwNx6hMeYxbzA964wECgCJjpIuA5UIIuu3YPA1Wgxbn3kNoEIlMY3cdPS/0yZOJibmRirVXlmYSwSsoQFWFDceiUOuvdq6bpM9rfHkmpeoJKNeLeb6zhww58jy8mJkR8eNoNBoz7fsaBDpOu2asUOKSpuRY/wSP9VVXoVvSqBPrq5lIyo/ByoIYcQ0ZyqNNgWJIqKbhQaVOvJNyxFRjh4SdCNGGXytUQYbBS7RA2/qiNgIGwft0V2vr+bUck58zu4E93Gdrvjm96XZlpNxXP/EYQRwcdFcL10nFf5RzcMGWylW8a51dC96guCxGbtbX1t1VweTAqXnU7LstxgEsvp8yIxviLfKvyXJL8yuOYOv6nx4hcDRmaHIoX1BhKrnUb8thhdJMyp3ImOmZ9uvPzVCpAkUXq6s/mSVKppeLf9yEPVaPRiDlyJ+RH4bjDN4x11IKgf2J9FyesNIyPfJvIW260Z9j9SJmamJli+Ymcxz/bMhKkJ02iar3uIt93w19T1A/Piy9qIz8ejTniVS8FX1waQvwFcfjmIAJJqFgPFugoEOGt/gf+B0GtCoPX1hbKbLzIQIGmA7QGEvP/DkqUTsTeL9BkkJoLHOK8/+aTrRshktLJEu0e0e++WTVdrS5xZQmuBW8rdM519CYKFDZKIMdc9KfGwde/NmGUVYuWQl7vTijSI7n9edH51TCJSHam7znl4pbFjQRbX22QyXA3JtEKUUDU8Sez1sn7ouKEM1qr4GojF3L4IXfJ9/SdLnJVLJ/vvk7v4zXrjSfgBAi9u9ntcYrBu59G+8Xoa81DU9vlGHxE2aKosEcrBVkTqaju+J2/b1oV1czMcfCexKbxDPysAxeA3aV7M511bs2wihhH/tCrUEGVrtmok77CAoBdjO27uEuNcm6QzsUNx8FibUomEDREdjFZjIBpdmszOzUr6gesZwn19LG0KaXiNpFx8pS3H43A5RJKD44wCXNFs/KoBBHHoqYb+Z/yuKdAoVdkoJ8axY11D+6SExD8j8tPa3C3uKjqCgBYZZWaExZkFDQCxmEsmgPGGmQGCBUZ+inmpj8QjtcFNhq64C6ypnq94zbQbmBiq9IUKEUaoSMhNO60uq9P11YE3z6HVHnCSVoWbRjq5s5MN/Ktx2S5FOtCRKhTn1l8k6weP2EpHIQ+oWCjJ5n527oqRaTyzu7vbP7cdwizfx2a45XM9PTsu5lj29vR18/fpDXjH1eAFmyDSMexyRPTMmMu9o8LJGTsqIwVGa0hQ0GKuQ8dog2d75QQFBEE5IlGCue3B9TfkbkPyfkGWEzKvreZzQBGOP/ukfTNmdagzxJIuGYXyKiNQNMyZoH52WDJaX02dFc+nq/w5hV3JyGhRDlvjp9g9cPgGQ4lFj8ZSI4OSd6ccuR6KU/ni5oRYSMVLeO3VTgKP6P2lu5vuqv9gZM0p/uGH/4bnU9as6aQL2bjMuSDL/nwdeJ3M5csFo27s6shZoatge+gqyTzCfoTrfNNYZXmte74+WvR7UtRqy25dwU0CWY5tiaLj+D5RriP6wa1woTCof+YzRAPU/G3vWKRUlGgmA9YXv4g1dM9tWk8tOKXzERG9A8mIhHWEm28HELWhwWQIRPgyD6U4BoZ3PR4EGlgXjSGO8fozIvyaxYz2CptnNu4BEQZSCFO0KCCRioge51YYiAIw55TAayoOCZgQvFfwkmcw2UaE9Wtn1/T2FNmmqynCXrKXm2TQqmD1vbj8ja+sl3oUdP+2uhcMoCncOVKrtbb2Tib6ll+1kZH6FGL11vAOlJaTRJKsQzGKQJvN6wB6Ps/TJcW1dUuSSOyeRqeOAADJViwd7rBE0eoIp2OWzAej6OeASMiWgA5p+WvuFqfzFoBl9xTEMwJNlxBIdoigrli3+kCAZfnZJiEgRyxHkQHkPP+jOFZE5s4RO57IBh64hlHwBWckN+qmCdmZlKogfHZllywKGmheZVfZCrpKiyU+HlGQHHZU5Tcx+DZ8mzjx3y/G2ldkD5dEm0UEYj8QVAdMuBceEFDkFvCDIC5n/zMXIsZkr0AIDysQvO2iHevWToxVh1Is5d+W3MIMT4ntwJEwjzC5L19r8l9OOCx2IEdqu9lcN3PLN18ru3kdQT+fp74Vx1+wplt9NmojvbTmBSmCJftKvlxiMe+t16zGl6tmS4D+DXUlBx4IZJ+T1JnAA2p3rEtkBzKIg+7iFXpsvnr5aU6JVAmBbIfcOjvhyyx2c7GQ43WSaVeSmwoSNsQBFgTEKQaMfgiEvX4TEAG25XtKmEdD61E/2ODGxn1CcLvF3ZwZFb6lm6FsdzRf0EOEN9GR8tlEZ/txCvYiROxYQbewgtF6KRNd+Zzg1uMBFIXvMT+XJkR4RSQGDgUnWEDYXAyVvBrScKsLTSTqZluHecL+mYFsvjIlm9ljA3OVgWKmHz20ttJfmAgjtDVfqeSLfajfjb5Po0/BSSHMrVMKSNABEPK7GAkIueFYXqYkoC3FzkEP81yO35fLGd65Evv1XRS6oGxhhKSII6Hmz5o/i8LzkSHR5u9pOEyPHwc17HCcHkcxeAx9SggyCdoxExewABiuaCWlos3O3nJbKqoTbvFYlIdBPTPKNYHfHt97VVKqlrSO8XzxM7GiGESxiKHt1Az0wOioEcz0isiJdgaDHQbY0YQiioobUf8unkbfEMrC1My4YyGeMiFghE9wZQ/4kh8UgfsjdrM3QdrHU5clHokuC2WrFC4Uc0XeliTqtcaxWj1yGP1XtdGxvA973S45frMc0AIxebmNjvtWcDvlQAHc97e+1Qm1muk0v+u+cz6968wQfPrMr4SkUJjJLkfrDy17/hO88oidS8yO7XBTCdh2yJXcqB8JLEg1nkvn2kPfi0sDahdou17XU50IEJR5nWbXpqoABOPozNYAAajCQEALYb5WzILA/8VyM3YIFwsnZm4gwGw2IksykVhupKqounLcCSEpAKruF92ArBy0PQVon1u3HzQ1rv7sD1uGF7fZuVMQdl68c8+ui9hld2zf4vrC1s7OjNW5XyeSG0o4VqiQi7QFckbr9uhZtUUVcaWIikd6XOQKXgM9/lqpSqoVvHSckOV+gG7j5mt0eaTa+brOGXS7V4EkJ7NKwFHTWr8yV6xYUcNoNIasSnF6X66WzNkINaCP1VzteGKQ6ZPvK9TqC1wzuhxuvKxBxJ9TXpbUmI2IkogBoPkbEMVIrKI3v6HvNkT4uWLky0fDBPu1TD+/8UZowFGQXvhCbsM/ceb76O+RLVQZP+oDPXknKAsSr7n1rD6DR4ZCmzD4PSQM9klAJ91RFgT7SKLSbbead3pFPiv9N6RoW+eqsiutC3m/ZQAj4xNBjejk1KlTpzFWTAuhU+wfQpapYHz61KkTCsJiCpETbAIg+IVuY3Tq5En22daxTPn3qIx1G8Hpk6eeTyEtU/HEyVM3ISy4udCfwdNsb6oIa4QtvANABJAwPz2RIpw7FpMJJmcBYOGc6eiLG4YHu8t2kPCdsMzurxEXhZWyYq9yNhr2MWzlMOclYIac6DvKhrklEWIqsiAtW7LfrMTjgLKTmexg5R03HVhABMAIJCpV/eYIWQxmr3ls5wYL4QT0984FTw06ht2B3vAYSrEOJM0vQLJ37WuHTXkmDeUyRIfm1u85umv73g6AULQnTTbL218fz77gcie5LUpRD3qRpe8u7d+550Dp6V9AsPnP+64tNBMIG5FbChu494b5BkfQx5mF9ZSXeWIvAFESIJN+EBBeXARhIbl6cBFEgSzu86aPCjLBRMbHlwN/LgnJPi/ezj2qIqhenjJCrQMeaa2e95t8MqjLWS5uB8G46OWSr187VufB+qDpetUJRsJ22KJxf8tKyNVfo/a08ajLg21hkbrfCcjfutq6IVkWG+vMd772KuZZWrdODB7dXNVenGSivaLK9hF6Yv9IKpqLx7KWNGDLHaVMXmWA2KVYoquySwICSlB1vKBtY4M1OAahyxS7v1CIUqquf/n+q7IduXg2G4+GyUi0vnVvytFMmyKEI6mJgf71UvOfmt8HfndhHt/HaeanmmNx3SuED81ECcjCBCjyXt5ULoUwKQDF1A86jQuKrMnKEYEY2OD+Fk1AhoYOCpJgEMk4ZKpIlr1Ab2yTDhi3XFjJmQnvu9rxP/jLbFkSa+cvu3T7VpZ9vmntptk1nZ0ldgeMFN1kvtAIX4iVVna86+iqNBHugG3LFRmtuop1e7pRKS85rhsQwr4/lk/l/hP2vZnPPG8WiWsuu/KoSl7zGrpp68YYVS2H0kjtxJENpHp5Jf3iPK4uvtsBaiSihc4gT0PKdqLwdfLXk7Fmd2+hVigTEwNFj8YQXHloCNHKsassERnbtqzTqYiVYGZznfRq5ArdHM5VxXyXWdR0NzmpvO0OjUx055r/nC1FollF7owTUNeIrvR5HE+h3YyOMaEojMwM+Vl4bNMUAROEDwqEUrLX719A6DZdZz7rpB7TY/VinhfvAmdWnwh0VWuHthNw8VRv3/iact9E84zX5eFqYkeaw+P93dOTveU18B89U/xs46dM/ZG8Xg//0NUY7+9qTHg89jBKo14hy+TkBK8vUhBCwihglAwjwNjNVY4si0nC1789cgDC8GCpYDNdCrJu5ID7OF39Y0VzKkuSq6K4KESXWw+4ddeYrShf0PKIKEF+aKBQ6MnmlMMsnnDlUEkvFHqzuWMjC1+omnsTpirii3ff31FeMxMg1RJ8PjA5EQM0OirO3MXjCwqZnHSP5+/Yt2bnnKhM53dsyzoPv6z5SXPmeZdmFNg97WY4/xpugM8J4yxXTM0CAgyEIj9fpCQgoOAWDxCg5HnLuU9Br96V62NxJr6edV6sfZ6XLlUd7Oli+XUhQxPGYVxaaZnhChy/V5JY8HsOLt8nosMo5CeR1t0WC3zwS8NrERwEqisdYsakUlB0sKSFt9WGFxjnnjXs7JQH+2QVLYGtm0GxYzAoIhJMVBfc0d9DWA20j3Jt66IzT5Pj6KPCorBfeJsn4ucFwgAkIk8PUmRR4QJBViX5oKBpXlw3wKPUrY+qyvdSLrh13d9LGb1mz3eVfYJ/EZeExjmvwWgZZg16t8yztGkrlutycmP5OTeVnytZhXx7L1i3B1h1RVcrrzQoWK2t+WUKvjujCp2dXnyrlafHiNGDvvdvoxfFr3rL4Mby7n+MVrbWv//3OIEagLRCsitzcK46JuaDJpYbDRmbwbw4Vt26S9q8Pqg1lr6tDB3vbczvHts9PiJJkHa1LyrON/bdv3/rExaly6rb/s6kIv8cQAwGzEhWbX5DzUZMtjquKgfqlq2jFEKD+Uj2RQffd9FEYSDzqU/6u8NlbHfoFqaEdTySoYIqdeURZ2eBYoIpS2RSBUxVfFBXkCQtRzJkcJlUQy6XNqaBJ6Ova6yrVft7yiWe3OjYpi6LQjd0G373Kj9V5/yCXMSr2huP8v11RXoXT7880njnDQuyvPboucT1bevWXS4md8dVO7PpqhAFKRiDoiulxVuOjQ3cOSlJk88QzOvWwaOwmJ6/pDhxRWxkaiSRNzyRLAhw5hdnRuEt8FlhVLjmyXgsgEFYTgwrCCAQAchxVwhf7XcFPTs5o9g2i/33vHNOY66yYqmvXLfdTqZMurXd0W6nGc8q8x0Xq7UQz1qwR+vQLRvlUsyWpIAYJhIt1HfoNzpoeIhEtzvpdH5bXKrkY5koMdTeKLoSMJwO6riQKAQoImq8Mh/YxJjnS19Q5suqIlUMK1NNRZMpGpoX4X4l8H84S/qFCMPH0SNCmH07iPm3GyiDWGiDu8Z8H/rLqYhhdmZmFrBIDcCvQa/BgG5WDQox9g+ooSYw2rMHYbcrJ+qAf0dXPHfedYjZXdvhMdQxP8+/93P4FXwVPSVY3B8hg7DAVRJH2Mz+WmAhdwvy1T6eTObe2/BAR3dC3bg5FAY6XImYKnqqkkjZUqkrFgfaGI9QxANV7Mo72JVNnumuckvTvXAeRMc3bpjWL0lcbJzoSTqh8TEUDm3eqCbQrR19wbVrUTzWVZIsAYSr4RfwDTc/pIfViQex62WzATZg4GKWYQ0Q4HunrlIiRCBCPC/kaKu7NfdZsQP2g5AZ20irWujApGNN7a1ibT2am64olPXTXCDm1euoYndWecdYZAi/YJ4ao71jbFTYHA0iMeI1RGo19/rc4mA5jZXBSAgZg6VcnwTZUJ4nRkAVxdDQhfhG4Ll8IzDxhztHXI8Y6mIep4/8P+URQx9+Do/YfXAGfo6+zDijLKRcC/kjPgcmP8Q/HN334Xy2B3GeYT/Kae43SIyGPbWofdQd+ZjaSYvITIGMFXVQBmvkFSsj6Yo1AmfEKIY7aEYGFCoiCRLWcG9rqCvJDoVWVf4TQpbdo6oAg+doJOL1vPJrOtvbh0xzNwQC0PKZWnyu1t43hICkk32FjESWeL0MEsYEAd+HPsZQzgjyh1MJA6HB3lJY8mpcBNf8r7q15ZESp7soRauj+D6leah5JRbhNKE6SSSIgeEERs2nIjuV3puuff4/P193mzph9DqqIIRlsnRMIr/ufCS4+Rt/BiBgt4p8mmknUaGPwaA+WekvxgMID7J1f2bNOAel5O5GZ1WMUx5aZv8ztd853v/E84e1u98eV127+4+vYUY5aoy+Ih68YqeSuitRyCfuSinNOxufbzQ+j6wtl4D54pPdg/dcyuzrba7tvfskiTx699r+h7OSlH24f+3pb3w1n2f/CV6WGFpidOpi62G0rwcX+MuZ0vaqRDY/kgYp+/lX6NKl8E+YmhCPiArF/wSXava9f2wb/ZXNm9Hi5ko/WyOMrhBNCpjq8tKbsRst++pX0Fe+DA3e8VEQ0NfRm137Y4LRq7OUiLMLcck/knVG2B0SLviKUFZy4zhRRpecS5ucg8tuEJu/si3FSaor6G6CUSYDVA8362E7k7m2AXONRvNTb1UagDXcocIHtCT7AA0F/uqvAPDReg2wooxjSski/stP53LsvzPC97CqTCgEASDCPqj4e61OB08IqXPx8HmanuDa2W1O+hoNxq/up6WVOq8m8yXOsGtHELs2YF6X5T8SY7iVppHzb5Z8q4kQJwJnLL46w9W6FwVk4S/UzDQ/2vwgBrH4/Idhx+wjgBjeG5mcT3ASgbF9V+n0JSefJxGq3JtbsG09cO0r8BXlPoOfDjSfJgSIIuYP33Ng87sRtmIUuSohiNKeiyTywAslRVZOp2aCQYTkzr69Jvh44GlW8zzO8Cgg8PmfLaerbbgfw1LBNZElcSWdxm9ivdzbyuFzZugls5tvTGBJGzqQzM1fTLSKtj1MZ0pxAg+YkeZjUfMBIPHSDA1vZ6dQ35qtJw5JqCN+R1q9aCIoS0oUpI31Wfm1r3ITbV4rz9Y3ShBVJJkB2aJ4t1AX5hgHMoO0JyzglVWtcVhcb2B7/S0nt7uBM7iLLhZ+EnhphImTfNhVO9HB8HvezRqGmA9srtU2szfzrOPmj5Ae62OR5bQK0mDNBFDTPTkG5bWgTfef6J/W4NrGWYff/rVsDjOPhancPjEq418r5nCL4gyPnYziXQKsht9/uazjN0n1n8PShpM1ymH27qNWqLGlEfIFQi/w4FcXB26UwJJUTdbwrVK/AmjQtiIElhFEWB3sQwiUfulWosqaKllAb+7p6qHwgIuOEp94VZ1HrFTXr6SvF4tHBm1J++IXObrNE0BDFy8WpfU6QtQ2VR5IHH3ldFiSajX3PqkybDUmZ/dz/gKXv1b3sOCmaSvg6fcUb/lvvAInX3T4poJrhdWqrVCeGwnw77aluV17To9epgHW6l198fKQISJRRdAAO4jYja0BLXVIcvNhWeooUdAw262CNjuNVDbRGCrH6by+9mgXqytPZqauomYkMLd1eK4gAYiYatUgYAzXXIN4QpipzN59WVel9PGPlypdl909q5hhwk5ccw2fE6xqFIsAUkG5zLxq2/F1CV4dKPyGu96fW0utudWBv6lWBe9b5I4L/Ra5w//WBGwUnmaaT4bHWBJuz00TYAO/Huz108NB2JZJ5ZHoeFE3j+1aep0XvpbC/PjpwaITSuUviukEr3qoBzy1YUgx53tuvCgmItWQZGnluR7/Dz5RBAnPg41oxP3lcR6dxuAijoFjjoCjPlbPZZLxPGHow1noc4HBsY/yz/R8J6F7uODYqfwuJ4CwGLdSfQoGSEQ6B0B71jOPlQZdmu1yFIjpprOhS9PBqBbOPSz8/+qZYzxi2Q+fYlbBdmHXh03OmH4xUQQDEBEJFAQeC3Q2LZcLRQQq0JNnnUWeQ2x6vLe7sxh1FEnYDtslnjHXZpxU675kaLE0wzrqp+t6+ry4oun1Il/Vq480yGidt1u+O52P2VIg0ZOmIIGCwrlUfwCFkcKOaLonmcrnU8melAhWGJASUKkSCChUDShusoLEwORepTvzHU5OROEgpHCHPJPLFHokKzcjd+AUBMOFeiEcRJNzUjB//YmnHFl2njpxvW4bphyQIuIMDYa9rq51l2rrhQd53c6aNMLC3ZcjRUSLMogaKKqoHKKAscveQqhVb+fwqId6qaCqCXXzg/ffctN1R68+vHf34sZ1c/WRnnIh54RsfdkoTWMuUmsjq2jGs/Rb/e49dZhL5OUYCBfRfiyu0x7xdq0RLqRXriCFly8R9vXpsOOSfcVTP+JdIz9TTMpmQA7RmEgsn9wWEWP90Y5iPiXa/WeP22IqD4V6TwdByIi4JyIGQqSjN5EsFDoSzzzRk+iA7yYLiGIF6Qghsa+azeR7pGC22ieyY91hi1oI+6cafLEy/plwoTkxkXMMN8kjM97g38qMZ9zEG8PJTeRbp9LuIqdb57iYZrKPfN59DktBqAnJmRhBiJudFCPveSwx9nJEMXGOZ7KUzj1yvue2wI/Pf7z6uS7d5zkSgEGcg02oKjirKve7XH9AyBMoqOU3dU2S/yyPYOlzSJXJJMH3kkAPQdXhnKrbzbtFK4Yx0uH9Ul7jcnnpXxCc+Uf0N0KOe4S4FopHWmpCWxUS1+28DIVc558G9IAhBsthPVgphXXD0gky3vWuaBROhNFH1JBiFC3NNnXJKjEGNzWCTFDCtpHkwPef+TW6h8nTK9jvJbkOFuGXD41yu8mN1zHngydGPBqHJS/d09sNn6m71KvLoy0XRisC6I7d0pddqO49wlN9DFWXQZcRicxuNG1sPfm/ZIsSZWxzKXQIaZUgBiMSTgd8z7sdWlfSlVK6FpgKx+u9hTBuIEVOODqkvjofAABs0hSmGJOAODefW2dbWO4lzj47OHFjr00lDULpAe6Wl618eUJEgcRwqPjHo4kYizTSX4kRT7b8GqeZbJkXHmY2+NF1Y9wGD3GXgl8qmUF+IsIy6jzdeFn3d8nQntXW6tQZaoubeuPllkt3VaC7pfVyakejaeTqvC2vryeVfwsGJQG8cWvfTF5WQ2siDkaUN8m1EztoUb11Jpoc1NK54fUqQurhtQFRxPr+F5soN3A5+Wz92gH1cNpgZ8JRBYGe3GDTfNAergS6q6nh8pV7naEraqlMKiCBhDdv0lNVluAdKWhgFSvECBp9Y6EE+iSAXEkOxikBiWoqRtxbGugg0BPsGJSjG4cZR+r1BXbWChF85UY5OTm8MQjN/1UHbdiJiIQiqgf0JLImYsFAOKQm+hvlmKlQfbao65incWEESErEO9IBRoZq2NEVKxKKFnsFdObMmZ+7O8CcsJWt0uLa6RhbpVGxIHq6iXtzeHRfrcMFkFtK7nnYG9ilfIvu4Nl1Ev/KVTNAJRxBLOcsEghao3vyBaJOB5FkjfTtTmAFgDqRiZ0gYUZaohhIbszMDBT6ApB0ImEnWdAOJ+VTdYQgxc6jaMIMyf3zm4beui4pwbQWy8bXb5/bm7BqRWooKJFcBxLCgIhuS8FSMZmdg6ViT++BF2vPvzojIGHDmQr6e/iasEs4wPC9dPdIjnuGhluPbfFDXv7TQVbdfeURtvnUGD2WVQH/HOc8jzgrXMmmYK9Xl8uZ8JJSFCG5tKEUDJobbjzWWUzCwEBIMqe6NSskN3QAMSrGDq/XcRATqhTrSN5+w+59M5cEJTH20iMDE09EM3ijqIt/UgiHQCxsyM9OdsxckR3Mi1CrpYuhTG1BxcjaSRw9hoemg+WBqz6oI13SuK1yf5Xq+tHR3tpAPFuIXXpjvTLf/PPxDk3aPZmLc5dlz5n/xGPoi8LLhDcxqrz2Fddt4VzgbrU8oB3lmLlZJKN1L7bN//i1Ohxp9z7020+zY07E0ZaK1OZf9MlporBbTsK+4Epir57EdSgXPPbyCC4tyzxWmwBld1XcSjU/kbJzMiNTUQEC2AExgkNVS5IZFZRAKp5RQynTontTRSSSHiIiTBREQE9VNk3sGYuVNz5A02KE0PrFknhSBduQZBCzyaRZNMtD6YwyNKeCcQSkRmyguNgdJURWTYOidIPa6d0ZGoaDR3QgWmfH7WJWQmGIYEOiZRkTOpbujsd33fxEpNyTMgOhTDIz9Ef9GZMiRINhhEzN6c10FKr99c1rY4GMCAgf+hMiUbKGgiShYydoKRuNOSrVk3mkrR0iX5LI0Jh855qoU3SSoJiSht3ILrzuuGT0aFObewED4CCqLnuQ7mR70J1sD5ppWcbuKpHqKOdf17/CqeqfWO6X7lGde0MdSXQJHW15+vmr2C5kWzKWr7qf8dD2pBX+Be83jhIkigC4SKACgDpoWVVERxFFEZECxbGyLIEiRhRJIhgRMYaUbSb2ZiD2LbH5TUBUwkq2S0bIXEe3LGIuTAM1FSVCRKH6kIqQjDcbWCEh9CEkKupshvwUI4XcpiOwOpMDHVZK0pGYI4iFk9V8T8rqCDgEI9u5V5GmR7X0MJsh4uBshv4g0zUQ0+2OQoeYIAMyIBwKU8Su7XRltFDEjNa3BBES8URdTw13eLv+zJn/IFNIFEqM4h0a99m5+Q88/VPkDNxyI3gSNOKKSYmSsuM0r2xeeV1EVCM2EWn4potN8+KbwlTEoYgqhiaKQXgM4rodleCS54dMQNjedXOUmAaJ3rzLIgjM0EXryyowGMwza9AQW/VBBkPZgkHXXvGNXW51VFsL3Up0wxb/gC0OTU6TKbG33+EAAkzYS6UkfusOi1BZM8tXNlTQ7YgM6szBMrxEDzgim31qG5IxQYCQZGw/ESJUdAK6UdioN9/UfFMkApfD5frGgsEpNMsoNI1EYYBBVzSAS5bRXMllqpZHyuMqk7oSlefmcuD5rNkI/DE8FsqNRoiGilikodO7bQBAiGKKdp8OUclxyZWMM3IeivzO1sEozrE5GuUk23mrI8qIZ1tiQODcutOmLuFSDsgu5Rou5foYbHndhc3PEXQzy/l7qD1bUBR9ZcQF3+T0OTijIjkSkjCojSvLJqeltePWOA6qEnHu2G4TusWjDKPJfjGEgqT5xuabOHE8UoZObI+o+rZTbKLI+cmn1gKDqAc4P7WYJpobdX+2Pno+mp2L8WCqxVR/CrveEcpNB122Ox85l/Y9kzfRCtsxKm/cHjLPT+NzMK7Aqd58mlH9jLCR4Tist/Mr/2/4GcwqWdGzF0FsLUKttWJtvHxbjEi2eBYXr14gItoSid+2jdHdX0aXwf+utSqGIpurWPt9zcfft2rdTFlZzfzoM/y8u4oNJhX+VphkGHZz24P6uAgFJ+L4aLgIjCyniy0/GI698bMFV2PlOgiZsgxRJP+y9CACUtBFRSRRQFKuqlqitDB/aKtmm6a5/8bY8xL3f35h85t6uqU3mxaGz6IsJjhU2rMxzt4hjIlqrtl8YGOA2jg3rpqara7DV0ROvWN67qXFguxCvYZMM6inGdRRAQZbz86pC6OjK0+lG217iJ1ny0d9/1WrkjQP7Ohyw5IlGNgPI6nb4mtnOqYIiohEErUdh9fNSaKlVnMSgihhGOmOQkVYWvN6Qv48aGiqBGQbKPFrk3pRFr0uKBM5bNPApss3rzFVgsNcUsX7qtGeSnTpT+4H5EmaLIP/I8KUT/VWxq9QLY/UfBZzmcuH2gn78deWe7BariA3Fts5y7tn4e+jm85F9dnD23VJDrSTvbtHQn/k0n3pnzjdO/dsOAfdJ5Rz0n0F7ginu58gAKIgSdGVwOEKsDWfbbzbu2X5SMCOSNpkdG/+1f7mV1t0NwOypO08J9kJQl94WBXRRyxO9+bvtzV/FT8KHuEVzXw2unczgx8dvlNCbRJ+gu8/QV/riDoXKuTzPFeHIzerOEETbrpwef8IYKBsZ5bhHZHIKy9U8MMrIhFf0j7FoK4xqHMcalh+alzhObfvXL2l8pC+NXtFY3sNX8B2/lh3XXcaefgN2dyI2d2T59/ZcVcpHuikuCPt0/jPGbSzDNqSyWnMlO8LpXDLfq5Xfdlzx2gXvOEP2Fihsi2oi8bO0Vx+KqrDtYU+dKHkHirGs1G7dwJ3JDHtDLha6ndcnSnH+Z22dCY3Ot+gLVvTo7WvKznNEDIAAcUifvkiF/IOlbCU71ujwjt9PQlIiEgUYfZafJVFkSjLidGNIzIs62kQd3/TFFb0tKhvuxY8X0JFdAOs7k/ubu5WZ3rzEpaoQ01ZXnw5FjEFBBqGn/s/Kdc3jCZkWRTtVy26P0wlYlFPGjEs+V3Bsx1S+rLe44lIhp/nikrjsLsinqrzDninuqaP/aKObf6LGx7B3GwxUDPcdFzdRh7ZOJowJRDth7cggjBnNQIgL2sOPoaWp/t7XT/FsIlWMr5c8o4uVyT9DH5KNCBIwY9skGWTekTtnVEZ9nuiEEWIhKjIlXO05WFbdCm6oS6D7PheHn7nf53hOMcsx4FcSudenvPjSc9H+OckAv7hc67MZ89Dp1edf9U4Ff+aYVRw77MKp6Kw4vbgUHvA8wPPpRTlY3yoDRv/5fv64KOyFaFEzXSrsNGtaGq+uvmo2V2Lu091H+8LwLVwHR/+SPNJuTenUjFCDVnZ/OLxyTRGinXdh2ooQ2QZRGt0QAMsObYGWiZhAiAMHXnVfSgeKENTlqqIwQc3pgKiTLAm4dhDl3Gc0sw+eJztL2s5Tpz3ab5sccXKvb+ssNvPzNterGCBD7p7+Sq/j2/2uZiV8/xJDPAXIU0tpkWM00WVAgAhVHFkBJh0NrpUQwSEM47x9jlRN+imz2QwAtFQuxqdEiD5z6PoNr17RCF0pFtvxt9AAGGMQjJ0QBbjbC6MiImKhAQU+coPm+ZX9wcIKSKToHAuK/ICBDm0vFpT/mrldGjjPS/Jx9clfaHXfhP4twD76z5F3a32KbOhmShbpI1qd0ZDiDMFW4jah64LKoDTLzk6XFRkg0ZEquZ65eaTzSejUb52Zv84EglC8Vq32Xy0+SgbDAZAGxi1JYUgMXjZQzEsaRTJYuHo8JqgqKjW1JACatgyQC0kwXXVJzJsUb3VarirtYPb8CUuqRoSXwEruBzTdlfCfZkkX8HL/DbiawLRYd94YS/H4gPuLQ/vB4wwJlTEfJUI7Rvu0b1VemSnowLFVFRF9hdUZ+cj3nLpPcN9CiA5asgEUGu10Z+AiLighZDc/H6T6TuFZMRdMUwDCy/rTGJDlDCWRAMnO1+2EKDYXbtIsiBBFjrkMGILH3ywGW+xgICEAbaWW9la7nR9c5ft6QLErR9vH5ByywJlOOL7cqPtq9oSbC254t+HFcr2FMLPAV9gz4eUY3fl9ThPDBIc0eAftYjlyOwgr8hAmbn93jBCBoYj2+ZLksJn0UTIkZs52QklqDtPKs1vOwKiZwGLWEHvvSSCTk72aUvvpT3zemkW7ZjoQzluHQ/PBwIdmVzckJAYxKqO37RGooSqEkBpcXZHQGRzggPZpKomswNBPiuwY3axBBgwpphQwj7Amjf1N7+b71QI84o59eE4l71pZkU97lpRlzJ67d7s06s63E6eQueK/TTaFmTItzV9iSwbT1Jb8Dba6UuHaMRjHwsuJpgw8OCKzxAiIlFzrkwYAEa6OBXS2DEhTx2UbOngU62zprly7jNXiLuNCUI6CprW0SuKhZiGlhBBKrx/AWESsaiMqiHlweZ/Pqg4dgbJ1IoQjDY8qapPbmibgLLtp9d/wPigvkDErpy2dKuWHBWVvqiG7mfUgTP/ie5yY/VFRp1CKmKilj3A8M35BqUkCp7gw5gW8tznOwoBTZZls1SBi7uLqm4bNqDmd6lsmDJ55GH4i1e+IlfesBG9RrcQie+65oqtcSesK0vHqSwTWITF/4bFfW96M1+hqTP/gV6JviDUhE0MhrWjvWnk6vZRN53fe/Rwq7Nk29NEWqu0krOC3Zwi/4Es+bKfNwXPq01FQQcFL8ys6daprAeGM9EssQ9vCXTL15yyunZcdLcYvmGipsUv3r720pmBWCAm0RmIz3dacjDswNe7emBErfQ0Zrp13YzmBlIRRV+3V4LAnceG17750v0a46iFXPno3FTz8XUD0a7pUjh1cRSxjSJz0UWuLgeowehc4Dajq/vz2y1X80Jqbp6lJUo5vxSYI7QDIRGpAK/9u7+LhumPf2QTajUHePHvO772NWLDpVQmIqJwBtx6ICW4dLstejXAAnKztipnnkRBxvlTwjbhEMvaOrhjsZEQsG+veoWb/u7rPx+j5TwQ3afsr8Q3mZQocDEaag86MYYPMY5YfuLIiOf8r5VF6U+0sKoiKdSbcTKJgzPlnEEopVJID6mIApKK4fLkpqGJrgwWEcIE8S5Qj8TErnGqEsCAypVdSDvZUSrWVDYAiACUKxstXcxkEAkNPvS8QzeO9NdUbLB/Fh+WApQgkunf9tYH316Iqgg0g4RFjaBv4Xq5/qIrDqhJRTn5YhBAWXpftDeb3GP/ONgXRRQDOvFSngt75seY944PCR2MB2NhFfkaGiOBwP0MjFaIVTeVo2lcHrZHxxQ8qTRfJFK1ror0k/svg/8KDF49D/AvGL2Rawl06TKZEkIl2P3EE4BuSl78ZzdjeJ0kgHDwzDvQY2iTMMb9OqLnTRsd5u3MXMHji2pO5eWRldZSUX/E8zIc/Ph9UBxPPo/YkRM3SjFt8w1h+RdPs6OnfyHb+2fSTvz0CXZ03a3RI2/o0H734Cc08CrCAQgOXbOQ0pF3jPRU42BMw8RXm0jg3oPdbha3D+vEirZcHV69rfh1696u6955yyN+ehh/8ZFT9Pobo8/fvcdEyNx92QuVG65l3HzitBTTN3G4f8GOfrEM96kTUbQRkcD23aeC4Yh5etclCoDCfhK7oB9Zz0D3jldA5zeCC7PwXZyCuKAzmKnA6dtec3cTL65bgAVGl++uVNJ5WlIKT6O40M3vUd8yOKsGX3IjL6zUgt247WX7u/ynMvvF+OwNKV0K+MX67A1F0apafHjzW2go8pa3+jgVfNhbXfqDPG+WwwCe+EVehH+0LsBn5bBpA/zp/7IV2wgBgrvRt8JMtDavanZUbNs08Fvbr2TzrGUEg/8HmvwLwHbPDngaviFsZVfblONwScP1dmej5MlndyPlotl1PfJ83LzvDPZ3zJYz0t1P3cAzvwjsdKB/0lAkJxXBgf41d0Y6HFGx+8cp1VC6M400SldNWNMfwG1zIOWEsvDeF+b7FFwIpzQQA9F+rSNcAD3f09Exq1qxmKXMdXS0T4gGRGifE4xHXWuN4dqEbzFZkGSyIBExAPkRorNKJchIZ14MR4Y/OFxBOj4wMXNob9C5cnoG7t7zml27XwNPxWBi8ujlxwNocvLoK7/7mj17XrNHgJXr85UBOPe1n3HN1Rfja7L1zGb8HTzixVQszufLVGaXCgkrvuCw4CotFcSNluukiCi9NqhS9DGoP+QQRQ3asPQjLFsWhWuPQjDc9YGIpBDpapWg5p+gzNNFSbFMiuH3m7EMFL78Jc1IcjrNstyFBqvKqrv79uxYb5bv237iRStZf5iXTBV8D/VyXMDv7sK3Hc9w4o+yXc4Obj12HzfkaEK5fJ1Vb2w0Q5YIaigQOH1xNKiJEzsrg5tvsEXJumwtkfQndmubLst1Faxm59CMOjw/OaxEoir/ZhLuxSh4eZSK63abGJfLiGyORE15a9a+cmNiLjW3T4NbzEMJVTxZlndMrrk4gPzpvEkrx5FMweeELqEh7GJ76MaZ8f4wYL5m/p7ZHrNtx3JZb+TPVfZp0vaArtLKRurjy6d9t9zz9iNBae+xQnrDzEYLUODuS6/eWenxhhYbbKjSg49vrQfVnvKOWQlqxsL6QLC6JagspZXQ2EUq2lqoWOEju8VRbRGeNG4JyVfFpMroFXI0rew+xjIo/IEDUnT79NhnGvsVFEhfJKOGucXEta7IW9DcgOQcrESwdZ2ISUPbzjltVBDQW9CXXcloc4la5ajVWn/qILis5rrsTSThaM4/WAgCACAVopDWsaypGNY/NLv0H6AZakDRACGE3T9IDEADNhJNQdQQKWx/bLH5j6BoSFYNSWjveMRgEBkMF9LXCAmvPCPDe9i3TCHHeDRta4DYN/3l8e2/amsRraC/dl9Twwrl1rocsbW3aBIVZUmlCLEx2VH/OYpEjbIf+hYNQ8TGCEuq2uxt9qiaiKKejwl9Cu0XMgzWkLISIRA8e1NoBW3AJJJ4hWlBFAJICRgSgkAUbENVUfOXo4dr3UEkBy1DRP3IRAqS0NL/VBA1bRkhuPapq3ekkOzJ+v9s/V7M9+gzhKBur4hooZWiASOdM1ZCAVBrL11PVNWwIdr8LwQiUMWUleY/A5oybQWWzlwN9gNEtk2K+pf+GwEBJCtoBMjKb17qxit1fz1YBgJn5WWfAhcBYSfsOL5M4xLIFw4s7OEoQCBx09oF+/b3xYDwnVBBIG67fubWDWMSICUY+1J68IUmgiv6O3ZfBChwvRgcTH8pFqJ//jlxYDY5UBoVP/fnNNROAR6hjGtubCDqhHm43t+JuHJaY6/l9JxopO2B4OhxF5jIu//tXVHgikSIg6K86vDNiy4k6NJlULbtu3g7h0QKMEiIE+agrFsYXAVJP7qZZYmsYZDUIwwSN/HS8X/Nd020EmH4OTdbs9ZKWPP/5JeDdl/tTLF16XBCpiwr4REdmQuDuXhPl4zLmXTX6pNmPDu2sb/HPdUz0Q22EyyEqvs//U91sbYzqNUHA062q7v9xPxMdgzXhk027kIvHMNT8IBb6yS5ulMrp7clvWrevR5uT0RzxD2KceX6oDJQy6+ZTg/0z+2WdUU7uqc6zI8rlbnd0rFkaP99CuoI16p28vDGWNzQLnuJd3TVxqhHu/cITbQg9K7wcZuG4W8PLtnaeoX5jZg7Z5LW+s1ABzOqmo2IsqOTvku7zUi2n4KjxJVAAg0xELcGafWSqWw6071Jx6ATEtlf7ivOT108QPVa2Ypqnr92CU/DL4VxYTOTGpvmZAGt7K6t3Ly0zEV5ixzSqsS8sElGRqsTuD6BqjmOQY4RSDJ7R7ZQE8Y30F6SVpNG3IpG9Np2g8q6rKcnDq/fKfUUc40RNoQRlTuiohjNdFdGx2azcE0ksjT426QdS093jYBYwWnsiLZoUAlN9nShWMxQG9X9NZyOO4WJHhwNWMovemQImrbuddH5AZ5Gd7KVrQmzbCebrFe6JYHvZBe6wtKq1hWtg7D03EuvRcO+hsxwiEaw/xkOn5cl/kQNObKnN/8Tlw6uA9fT0LIMF53xySVsfYb7iOB6DFYD3JYQ6uPmKxfsOORGZC9gdt2djsuR63Yl4qOXbimV8tUdJkIgGYQY121LJ+qXTc8XJGP9QE7THNW6Yr4jPrJ/U1fn2fOqB9x5/dst2UB6/7bDol7rNfRKniRJjGhpd6CQpFBOJwMdzV8MppK1eVGr9ZhG+xx1lM/pzAQ1O+5y6j8xSjhCydXBhjoVjxKRNs9IK/qfJiv1k5Bf9ltXRydQZHntfQL6sgizEKmidZ24sb+/0n/jiS5NsQxC2UvB99yT7kil77knurTJnfOSl4oqICoapK/79Ek+01Sj99wTK+RjbBJyQjFFS++Oy3J8d1pTDN0GIEhG14cpDV9vL33FPX+NCQBKdA+bEQvZ14cJYee8+rNjDMu/EnQhJvTwCsiUbVCXd5+NJeEZGdp7z82CzfmzMrW3nIvpkLk6KVvAvoz4jRAQOoQBXsVacoKrYEqTVTCxg7MlwjJIoGIRcahWIIw/486HT6rhiIhAwpJMbe2f2rrAtO5yxOz1cZxiNYU5oc74oT8fcGt6uWFWKpZ9HcQXqSblQcNoBDh3rAIMpyxDbn68+TGs2Do6SUTM1hjNH739jmuyOTBgDZWWLokaKhXDqVLP8MhkChYikVHdfv0bsKLbqgh9gGxDV1CuOjk1GAy84DWi3PyV4igWBt0Oae2QxoR+BmkxbrTJ2FJJcGsYPE1JEimVngHkXQwm7kiEpY9Kim0q6AGiKLj5seYngs8ALR5kwNDHbgNHUhIWNL9MFDaA3/D6f1oN08yZl5BpdJTX+jCYKtkgpx7xmit0+vQrFav+lmQgEj3vSfQ9y1DEP3pN82uiophQgglEAiFLb/5386eQgARbbT7hNX/0rBMWYza+aNc7iaIbivrG9wSNsCw++ro3vJ7Kz3aihcW1q7Hwfbo+QYWWSd6PGOil852csQxRpWivpija0p9SSTZsmXLomj9t/rduwRXnP4826zbBzY8onORK8yMYW4Yu09e/4XWPikroPOc87xNOoY2uVpdozw/qbEX03ajUKkeE5OdqYiYkElTpP9T85/rRqKwocvTFX/5Ab1oSI4GQGNm75faQOb1rem9EHNet7Ib6qRhFIHNIZEDJLTP9E9mgoXYcWTeVoRBKVdYd6RBaMC0KnQwmh8Nk+xtGGi27pEm7w8PzeJQPWEaSSuneD3z5JeFQ+fMnmr+K0aRheXAEJ3YzOFA2Zucm+me2JBEYwTTgxMTHspbug4BsDoIHwTsZBJuECs8jkXz/4QSqDz/TgRhtdxrmPKfhgU/cB06hbyz5HiZoPvAh2bHXXxcxRGt2/grlQx/gIvGHezI7781nV/sLiX3lXGd/pmPneMMEz00oWoc2rlumSQeDqJ/XkPgeDfa753USltsdgx/8QOC6x5IamHsuOhn76DuiNn3/WYC9n/sDARkPHuyupMXTu7daZNkfiCkHrZL2QeOutDb5UnFj7mMDZYnfBX8QpUKdKwLbHb9g0tUiESqGksWuwaHxJIyxM3D0gqjZjMl9kjfNx6GD4dAvjDMcqpUgoD+Utsu7EZ99YXSO8m1oDMYcBz154RT//UPuhqSzzVMQUJs9xvWS+ZG4hv5AmwwY7d1THFOn6ntfxYLvfH0uk605EHkFkqKOiF7hOBs2GLyt74YNkQu15JrftplrhYaRTRfWayFH4dlQGzaA7K/KFFuVlDDIszk6dXfn6ixbodU7FM1ZuXNt+3cFJZBNKkZS5d6R+nQadkYizU83P4PujjhLE1FRdNLl3lq9kYY9bGBHnIRhHMYZ9Q3bkWHpm2YwIvM9n79zWs/5nJ4UygyeXEc8gLwsGitXauNgP8IUbWOIuSi6q/mZ5mciEZGuQMMjTUv7IkyYEdjDYIiM2joqA2dMFmV6pS3KP5YjzrLOAcJ6AdBH2VpHln3Wo27SNHOuuL8T9XOocy9UImEFEDUo5CFnE/ewKcdjEWAvEiA8iPX37IgAab8u95MqXNKWOPxl7Dt9chZ/Qx9lwH48KILr/4FfKxFm7NmiGHSv6cSXfovEWEygjCNvZ6t2sxATMkK3MCSMCoEZvVblPcQTcRtTT4y2Bzda+nPJcgvQgHcZcwPsDBl3GjAaV4szn3zcqWqb17w9DmC9++Fg6urdT8QRHEB3PKoBnA4gClkwjky/kzm0tD3rT8IhaP4TBfTbJ75kgJq66K+1zpL28ncHUfdFfx2ZgKz2yO0ipBCbJD68ZWDppZCT7ltsGJCQmv+YE3AbJnmhj2merJA0aWN8PgS8IKok5WB4Ofh/bqjRJ/UnXvzOPSMKcM540Ts0WHoBA3rXOWGdufePTqw7LDYff+09EgNx8yoqF5jUmhIWOJXnpmsDvaV84vxUBhdGN7ZMy55Mro8yPynPIYr6xRN02WM6Wn4W+Be23XLd1vjAxNG/br72WssszC28BAYpDI4fPXpUihUKWvPf/yqx7cjN29Wj58QJspODQTQ4ceSvX300mlx/ya371r/kKxK73pGjQ/OXXT4f+de/xCg4MCkdXbUSZWGcrcRQd5EhiZ8DSdH3jzPVIMrR83HyQqjPglZt25HxG3KjqcLcT37sLFA4etePGBZXvbrAMDo3Hn0DuWTXFEfgxz8JzEtH7v4BYXDvXVz/gQ0RYRXsRWGQwd5Tek4uGvGrmRis4NYkeZ6DZwH50+955NXvfPcjj76z+bGRmcaVjdHucwLa8cr3vPvVr3jvuwBPVYemZyvdDcnNCgR0B/qwEOO5jytxR8fJpbHravEDcbNeH+yfgomoTZ5+mofd2NYQog+/EhSsSWEZPfwwDUUEPwZ/J7umxa6pia7mttxt2/L2ldxMHH4MajCmerIpCgtd2iOPOLGl22ORRx7xroF5DjL3tEZlDpdrlqD6BK62YoWevCuwxTSVFTPOjw+6V+YRwddoQeQrBEuPxyIwxF6q4OGOpxmcYe5tlz39rs4kjUsCPxCZ65yVqeL1AVdh0TVqIxnZwCK7yjAD+HH3yorvOcePMh94xzk858umac5h7+xtxZWegoZnijbQU+7bim+9+UEP7rdw07j5gZiAhMCZn6FBpAlJN48knzJbWUmruaiVJhwtu5p6fRRiIOv0Nxgh/GuRqApmnzFGvyUnDvePHrp3fv5epALGv5KJLBH5lwQh9BuRKBKlv0F/eqi/fvjeubl7eb8L4W3C07BdMPnqIpdq7Q6AzsXBvG/llwd+lxvxbflh9k0eKOiEX7pVCBNRYHCHI06rhSfjeI6C77GvoLKJltV7/+GnXtMeXjU2DIOdvb0HVElR4U220wW6hEQxvG4wNl8RRSTp0FV+s6pI6oHe3k4xAj+jH8KUapqo0cugPLCbh981JNpr+iLTPSLSJAxk957LKZugUYo/RDV+5+bOfBN/EXUIErNB6uzO7euKh0UekyqNFIgUJsNefKNYFv10RYtDyMvY6kV+Z0NxKO+Eq6MNcRS/CJp/DHAITSs8x735ji2Vv92zG4kRWQshiv70r4a3wsUSialLv+XzdKO7NjlZ69Z/97WvAnxtMobh85XkrUNDEEWRCBy8JTXwBRRr/vprX/u6JMUy+XwmJrnV92f+VXgaP+lX3zM52ZWJGAQPnqPY3jr/yLmK7c93NLrKbwOfXX34Z2d7dTgXkc+7XJRy99bubMLSEH4GN5XOe9jOa/Dj1Qfn5MLCOT8yeF4gXEXega95JuVCz6AKXMDIC1ZTBz59/mNsrSJQc+l8hwIIT52R4edM0kTZnRQWXanNGG6Yq5/VduH4lGwSbNjRWNq8k8mWY9dzoYi+ERD99JPf3xBzJbbFrsc7v1vLkXLqi9aVrCmYdgXq9ddHw/SuO23yT7EIfAm+vJwUJbSg+rknGVp7ieVCxBN7nuIC/5sMjjMWRd9wYr+/wYWCWssQsO8GuA7qyk7P1vKFsSh1RW36DVcKU+vXXvrVl+HL7CKbbNGV5deTKXi1G6NXW/GU1fnCDI7VflcWEjQs3cmUEm/7h6nBd9+TLscpWEYgcOr75bn58tuu7coGrg8G9GBHtmjfLqeuj/VnZKIEgqHXpkTR2Zvp9SJRwp1kGh505b7aqpd5hmOYQZHL8noYPYTFxPzOhz+0c/ZLdyUkbHUEHoYhGHzYhActQyVacr530Sjfm9CJaljWG99ocetjnQD4z1i8KyRkeYQ1rghoOePGtkfb/ErYrReSRIxZWuGlEQxf+guiBA2FwGOAIv9VviISAaK87QMfhMMfAMWRRQTTsCCaCl06RUQS0uCi6UcLBRD15m+bPwYQEJeEKI062G8X2G/HneBKpsYqZ1a5TeTluGQDAp+nikKbMwoXdvD4KunGhgCav6PcF0SbTQJR0FaJNCSsPVPBfwa/EKLefhcPUuTrAvVqrv2XOwWmtdbzBTZoM8vaHl1rKugr34A3ExtB80rC8yVx82qKcRru+FHz9SjxsYWFD+yDv3e1AznMMF86RWUZo/sVMQaku/md48cxxF4quPh/i+GfFMJu1loyYnH8qfezrXocgct87G8NKO0J+hmiIKAgwqcVJt2n/V3AjGEA3l9A5qdEQJgLcy7qvXyPfjLFVjrhemzLKT8vJrtcKtbGVi6HU9/q4A/x9vXbf3gRfOwlY1t0QvTN4y/79ndflA5vtQmxt4bxUPd33vzKqx4cikR6vvvmt3yvN4J2nj498MrtHRd37HjFwOnT0eSBO9nnOw8kP3Lri0fmX7buJetuffGLblv3EjdueBeeRn/hVuT161xOdDIngdfnpi09tFbws3f9Y/9Vr67UUjocC/RHdynDOCLZpKub2FIED+NgdndcuSSjgTLRv2soMZChumkYUmrd+DXdI3jttGKRTXJgbk1Y4rF52ZbCa+YCeSuHwbypUrGkTetrM+XM6PqAqQXmLu7bMb7hIrrrZgU8uv4Yc7r2CNu5p6p3uTrEL9isr+570qZK+a9Rt1drGvvP7Fh5IELbU/5mp2prk+EDVSmRnd4wPrID6dOhbPf2nv4Qf8pOqJ99zIamdfTRqRmgXRunBsdSipoZ3Vo+1tsZSqeClYZER6iyUJXhZ9c3hlBwrVKIlLOTL8ipOzbHst2zubG+cLh3LD/Tk41t3qF++pL1Aalnx5ZaZ3+fafb3rSkfu3p8R0Ci2mRXKtXbUMDzEl2Np9i6dQvzDPPxgZCrNbYEI2eqVeKqQkYa2F2yKBcmtXzL3VutLfta4UMisY1s/cj9UYJw5P4j9axuh/Rs/egDyMAiQiI20FN36HIRqwgDufWtKhHffjMBLXvdSzUqvhF9DUXGN77sWlu1iWhf+7KN444zvvGlx5BCJFmVJaKg1/99WDlBTYJB+uRLVEpf+gkJzOHX3sg+PuA+0Y3x42UML165O6QA7+gS9UTiSraQ/xC64bbea8/CtJwn88upul+o9yV2Iu34jrX1BR12xAHjeBmH6NpD5Z75aP4WeTXj0tnJQqSxZ9NoEI6X+yYOBPR1B4rD22jkwAT0IhyT0bGdM7VRi56DfeXuIqLBI+vXXWMSv4oJ7mC7Mc+Q5LniYcOXtj7IAcSgDPo4OiG3+UUA+RnZd071TW3R0cSahxQrSRDCbNOl6JSDtSkLAwJjj47gC4mZuhLdt/3iXRRUgv6FyFgjL2n+dsxEBfGVL7OuO2wyOMbP5OA+9AN2v9Tc6G8CoVbv2GCVhwPcTB6T+vWqBU5cL9sHRgoMTIf5D9agPNIJArjxDqqLCAFCBEs4QPngbc833DHQYGDsGoBrjqC/RQGVNH8Po5OIfa/5gubdGGGMAIOs4Y9NjohsFN4KbyGo2Xg0khx69NGhIQbrmjNZuJPVCl8jnGSwPu/ogQri9lcFj9S9NhDWykqP1pZvdWZ98EO+3v5AW3WV1fZ5JWGw5iZt81H/WAyNFPhs91I7qcRxRYhX6zIMKdINYgdFXm2j5M1ZIDhL2Lgka97J1gdqrcyi3iT6eUgVZ9yRF2NJMrWwNIZFWYQ+ouKxSYok8dWyoih0dpYQS8ouToYJDqpkbpYoxDvf/NvWx/mEwiaTzpI7tzJMcVDD7AgeejRgZdlEPuw+uUqCOzn3cd3SjXrU3NCPRwspvKJF3XUgOpwAuUtBB9g/Ww8r+OD/BH88ess0CodFUH/0I/z9n4iGFVZ+6O4dEqxh102w6wbaq6F5a4+29le1TjcUxtNl9X0HDuzTFVsPHTjQWzuA/lK3JaRk/vrHwZ/8dca2DfqT7+Mjd/3Q73shfg2JbmQkxqEuPXfR7HC42ooYly+kXBbAhHEvo/n8pbLgRxZAOMDg+jmDa5h3QrVWcqQvtFTWy6JG3/8DamPdbOsLLof1aCcbDMbNF067CwT/QsiKJy8Yt+ei+oWh7NXpSToqCJsYxmPnqKpseWtWl1b6J9j4hddXoiDs8fw7Q+eqs4Qg7PVPX2C9pc9bqysu4fw1ly2M3T4eU+V2PlxVb5jzRy+4ZnGvm+GB/uqZVYd+mgV634WXLx5z80BW1yC6WSLPXbzo7Zt/LXMcdwgn2B5weGcvoLNX9oLxOt8Ct2hWHfGotopLVq0/euTCsT/P+oOJ/m6FwpDwSXw2Q7WzyXOT7Fm4pfmG1gKAwVegndM8v6kv03jmZZ/T6q9QjVYvXK7lVjVZoAilIPUHSbmluxFu67UAf1i3Bb9v+nvcGuTh5d2IG0+tx7WwuNfKo0fax1sPpOf9+6eR6x/xppYVp/tk+tqYJalkYAC6BwYYTa3w1VuvDrtD7B/hdaikeap5Emsa5iNYQy93VISMSEhES19Hw4g4EWPlmKhplSBEbEmyCeKn7VbU/aMMjxGef9Rl+flo7bkZfvpmuYK8JfEzOKA9VQr9biVH48cJSPm5Ey+OykqXn8Wx9PBKJQ/6aFuqxo5PETm3nEghK3p6OZ3j9y9YSZpqyxDoFKoM1r5yBKHV2RyudkWW7Y/2bI5VeWdtqR3lUPgbze+vSUtSzJERCh5sJXdYbcC+fCXPIx00AC9e1j+RC0v2LZtaeR6//9zq2qTHz1TQd7mXpeWH8jPK2/O7P6lbCCFAkq1bWGpirPx1SJcpxpdgwzIUavz+Xdjt0Mz+Md/FYQELEsOcEuCrNOQ/NOAw9B3m//x5feeaV+XzvH8cOv7vMJ/HoAMBvDn83P8GZAOcVgABAAABGgCjAAUAAAAAAAIALgA+AHcAAACDC5cAAAAAAAAAFgAWABYAFgBbAMEBkgJDAv0DyAQFBEAEgwUMBVoFmQW0BdwGBgZaBpsHJAetCAUIqQlVCd0KVgrSCxMLcAuxC/QMMgyrDWQN0A5GDrwPDA+GD+kQghDuEScRfhIDEkESuxMbE3ET0BSpFUgV4xY/FpoW8BeFGAgYahjUGPkZJRlKGWkZhBpKGsobRBvHHEsczB27HjMehB8FH4MfvyBhINkhKyGiIggiYyL2I2gj4CQ2JMMlPyXGJj8m4CcIJ6gn+Cf4KCkoYiiiKPwpOCnqKlYq5yu3LJUs6S1hLe8uxi9XL90v/DAlMEEwbjCTMM0w8DExMYExzjICMj4yljLWMzAzXjPCNBc0ezTyNXg1eDV4NXg1eDV4NXg1eDWTNa418TYuNpU2+zeWOHg41jkFOT05xDqXOw87mjx/PTg9ej3JPhc+YD7SP0M/nj/+QFpAukEVQWxB0kIMQkVCfUK3QyBDikP3RGFE3UV1RgRGRka4RvJHiEe+SBRIbkiKSMxI8UkYSY5JvkniSiJKlEsXS1lLdEuvS+dMIUxoTK1NDE1LTY9N+U5fTuRPV0+hT+xQQVCLUO5RU1GdUd5SJ1JxUtNTMFOeU+ZUJlRSVHlU3lUsVaNWAVZQVnpWnFbOVvZXKFdpV4ZX3lg3WIxY1FkrWVNZdlmUWbRZ8lolWmNaoFrjWxpbZ1vGXENcr10aXV5dtF5ZXoVetF8AX1Jfy2BEYLZhamHMYixigmLYYv9jE2MnYzUAAAABAAAAAQAAm9RTZl8PPPUACwPoAAAAANiymP0AAAAA2LKY/f3i/vUIDQO3AAEACAACAAAAAAAAeNptkjWQUDEQhv8kuLvLubv7Pdzd3aHCocSd7mrc6XF3OpzqOty7a9DHvzsvM2fFN/9Ksslugl/IAwAzAaANsxBz7DwkudsIbDUC6hC3FTmmGmPNHawiEh/DWKCxbegoKmtJJplMSkkOialnB5FqLYE1FpNA1A7GELVXIMXlIdnJ2RuQbOvIa/r76e9GsrmIvnYq2rg9jF9EcovhzO0mi5nvFulC5rZRY5DqNjO2An1bnEEfaizpbu/o3bfbatW+1K0ENhsx3DfQhLo/yXZGjFmEFOYG0U/k2hSzKLxmF3ENbc4mUeLM6z7Gk0wtc4+pd9BTcoz1czyD2pP0NqHOZCT37xAli2XuojbUGR3X2YbY1qIbUmmfF9/OwEDWiVGbag6iT4saTKMfY66EdVEPu6L5/yAbyEqd8wqTL/XJHpkZ712is05ibyFydH6chcTqab6pA9wn/zfIuYhpel+02Aqwfpm+/zysIUmGPQgtO/ONZyMe+PvWHkam1DW1YWjfYzTtNHmDFtoLOlGHRBp4jRjitaVFQIY0k1NYb1A9zRbl/I3dhAqq1M2SvtnvEsJ/J2jcM8bbXDfRSX1iX6I4eqsafZ/6lEJnxTyVfBZtwmLB31Ps5mA9nxtKe6TQtJb2N4R4f4h7qnfrLG9A7cM7xIrdsjNJxw4T4j7p6tXPzf3DCK6PpQ4XlbivGWmM4TmklFSTbeK37khSsbjNROp4QqUtsSHyj+r1dFz+j8kAsBz4D1sz0KYAAHjaY2BkYGDe/u8rQxSH399H/2dz8AJFUACjFACyrAcJeNpjYGJ8wbSHgZWBgakLSDMw9EBoxgcMhoxMDEDAwQABDQwM7wUY3rxlgIKANNcUBgUGhff/mRX+WzBEMW9n5FZgYOiPYwbqPsS0joEBKMsIAFJZEe8AAHjabM8DFBwxEADQuU1tG8kca9u2+1Dbtm3btm3bNq43OdW2dpumZjJ+/ADAvmcKsIF+rLjebF/3CMyj+1HoD5GgJNSDvjAflsNq2ADb9fU6SLgD72xZbNWMXMYx45Rx0/CxyWw6m8XmsvlsEVvKVvBIPBpPwJPylFxwF8/Kr4nYIq6IL5KIFCKHmCGWipVijzggTosrCMgwIkbB6Bgfk2Eq5GhHJ6bD/FgYi2EJLI0VsDI2wCbYCnvhIByGY3EGLsHleBSP41N8bo9utzs3OXc49zgPOZ+6Grnaue+7P7jNtIXSrvfzp0op7eHQ4Ltj/VfHta+Ot9pRVTuOGieM68YtNuk3xxK2nBs8Ko/Pk/AUnP/HMV47VojdYr92nNcOQzsia0c8TIgpvzvc/zgaY0vsiQNxqHZMwIXacVg7nmhHFDv+5qjvauO+53791bFOOywNCamgOqB2qm1qs1qrFqgJapQaorqoAirlp7zWamuVNc+aa94375hhM2gGTGmS6fMP8Q/y9/J393f1d/a39zeRB+RIOUIOl4PlANlCxpZM2ugZPaEwBWgbbaUttJk20mpaRStoOS2lJbSYJtMEGkdjaTQNp6HUlTpTe2pItakmVaeqVJZKUwZKT5Epku+Z76a3nLekt5i3oDf+zUU3Z97Az7spflPs2pVrqQrfBKWAqWyYAEY2IIaxmYAEE7oCYL5iYWVj5+Dk4ubh5eMXEBQSFhEVE5eQlJKWkZWTV1BUUlZRVVPX0NTS1tHV0zcwNDI2MTUzt7C0sraxtbN3cHRicHZxdXP38PTy9vH18w8IDAoOCQ0Lj4iMio6JjYtPIOjGKSlgKgtEJDGkZx5PvXGTgWEHkHeegaEtO5eBIfkowxUgd1oikMgv6OufNHnCxBy4/qnYDM0rqmIor6hMq2YoBgBOWioqAHjarFXlmutGDB2HluEyuCDfudlu47EvM9tx0suL32cX7aXf5fYZ/DRyyv/6aD1yskylhWhGo5GOjqQJK0OsluMoIXr5u5qcf8mNxY9jvmnzbJJuUL4cc6WZ/TGshtXqql6xHYdVwirU7Z6yVJgGHluGKd3wuGJojfjPOa7NfNybtUbDaDVa+CR2tGPnMfHcXOzw08Qmviuru0lCRd8oW+NZqAY74qtyfhWWcBYTQOQZ8ehcnEJDcjYqq9uyup3aaZIkNltukmhWc/F6knhcNQQ/tWYGQPVwLua6DrihA8BP2Eo9rhkNXLRW1FcCkpN+cPnEebTK1ZYDfUg55fBdXK03kdZ8nM7Z2UIS6wSnTxdjHNmS1CCyx3XDQ6HbU5U+NQ1sdaBBsQ4yrqxssLUK/1xveTxkSECOhau/19QKiQd+miZikrZLkMOmNzSmwihoOVtkj5jd5I/2vViuhh4ZpxTlOqO1AVPKFjaZbIDcRMnVps7a/RBjh1zny7ilcOugS+OmTKg3NlqNYsfWTtJyPJ4wRaUS8VrW9njSwJCIx8MXch0LHSQ8IbsF7Caw83gKbqZLSggMrCIuT4Yp5SnxJEjzeNq8XIqL2lo7ucwT6/pHj0+Yl/Pxy8W+0nagP1XqT5pCTYXLcTE1hfplAU+50qRo3aAYl48JfLB1VhPymIsLIQ/ZBnlOZdiWo3Ftc233z3EF/6UmQSZd4O9Cu7tUhxSwUOqUBlshq8c9y7LKWp0yqlCVaCnmKR1QxGM64FEETgNKEf6X6WlLTaogyNPiZMPl71z7Emg6jdxOuR6fMYUl8ix4FnnOFFWR501RE3nBFHWRF03REGmbYkjkO6YYFvmuKUZEfmjIZ+szj1vl4iuP3XLxtcfvGcUT7r/A+D4wvgffBIwiHWAUeQkYRWpgFHkZGEU2gVHkDDCK/AAYRc4Co0hj6GHZap5B2OmUQoEQSjkg2Ui/+YY9lz1M0hVD1KVDKqGzu1qesSMt0EoeX90qj3WWr7SKunUmiq8mZYLXSmYOPb5u6FaJ9wbsrGh/EEwYgh+sV2d/VvLTfqzvFtetM8joJvIH4IPxsgqzux7fMv65hx7fPs4UTbgK8zsoiTrbJJ+6Mryg8nmed3UX0x6vIH+2MNG3LevMacS/a4AKA4K/0oRHQnc99zXRwxy+7m0fk9/3wTUdiBVxKvP+dD7+qUJVsn+qzFQvJoG8gcMhBqy01h1MH6q5By2Bjf5jXwnTNc3VMFubi7HJbKxTeYP23sk0IfSM7qCGGhE6yAuijJLSQUG0RNE4SSG5joaq7/MKj5JRswSBz7n+K7cdCyW/LxwQNPWZAQf6Iah5IGrkqgOcdXRXgkm1Hoq+TGDAqFqKfXqoHRuaTSWcbVPeaGL3fOe3b79QB3XwoDJa2vjRAEG4WZpUvp73prhZysdGky+sdfAwP0z8wrdOYwCfbKnndqqf7rY+0OaZ4bvugU4Dw/fcHIGlWYB2vw3K4rMP03Crw8DuVgtqtLqv7w7ctfFo4A3/F63Y/b+6T+BndwFL4wnZUW8nGWCMhIzN/DuSv6MHBOi7u1PuIuUz/eHsKZnDUz7fxCx+dIj+uSmUdfoU38L6heE7EC+FtQi8UicHikHYV0bakV9i+dr08M5g8QYLSxZvTc8qNX/1WNdmDgNAFISPoY+LBA0ccywzs2VmLkvQoHdWkM3z9ycWOxL6SwbzJ5HFEDkMkccQBcyXRBFDlDBEGUNUMD8SVQxRwxB1DNHA/Es0MUQLQ7QxRAfzLdHFED0M0ccQruU9p4d5wPDepYZaH1IjvZ5kfMoYW95LqicM1VNK9YxSOre815QuGEqXlNIVpXRteW8p3TCUbrWgOy3o3gofb66Sj6dv03twvesn55S8U+wzK3FNYwB42mPw3sFwIihiIyNjX+QGxp0cDBwMyQUbGdicNkkwMmiBGJu5ORg5ICxRNjCL3WkXMwMDIwMnkM3htIvBAcJmZnDZqMLYERixwaEjYiNzistGNRBvF0cDAyOLQ0dySARISSQQbOblYOTR2sH4v3UDS+9GJqA+1hQXAHdZJMsAAHjaY8AE/UBowmDCtI6BgWkb4yEGhv92TKJA9s7/X5m2Mx79/+u/BYgPANtqDHsAAHjaTMwBBgJBGEfx930zsypm2iVhUHdIALrDAghB51gAQRdIIB2nU4TOEeuPAX4eHrC1ggEAI8jGilF2Imc5sOciR9ZMciJzl7umZzvwkAvVPnLf/If5H7C4BF72k42N32Rn4U85cPK3HNn5V07UgNw1Pfs1VLlwTJPcN//h3xpVbLcOA9FZ+ytm98hR4HGZMVBudz2qo8ZqHdvHVujvezMuMx3T1ejCjDz2X0zSUWY7oeOvwTeuVSr/S7VKtcJLJredmHcDa+LA+LweB8q7T67+GpP/8WaoY54PdNt0R5t6zxwdN7SNF5KovZLEbiXJOoZrqsITfLNbGm/fWx6YLLdJzBVVUb+e6Mx/tDX+OjUYDFRXu/BMDxUSZ769qt1L4TlKuqgUYt8bWBfyjslN1jdtHg/CTd01t0ZQnrcX2rzY201O3UBnhlGIbGDiHKpe3DYZu9Dw7nqdW6mJC3K9IPh8NXFVVRXMbrSs+9pG+iQyLI1oXpnfZu0mvNC5dKJczoPMpi5XuY3GHZdbK/Wnd2iREkppRBlZ6lBIjpi+UkDf8K1RBdd/Kgmq4mFaIkO5cGOsdikANsAB3j4q64IVeS86V+nXtfM/1DbB0eI6TwFQG45d6DeB94CP6JgawBacBXhHYKzgG5OTb4YUI95KOp0gflRbulY/v3uAnUxmHWcwPJU8v954Zv7rT018pmggl8L0mhz8z/AdYl3MOEPfPvF07yaeX7L0bc6dZJ88MK30xbQjcxns9smAz9d/hKlJGmrzxF9Q8PFQDbHK7+h2gU6BBmBmoi8YEb6BnFp+mdUDbks6Sz9G1OtUx7dFqXBvO9fvOPjED/5xlZQ80tmjuUya+jJDhPcJ3qjdOhEtifO0LdjRBHmoO1wpcBlXDreMLNYOWEl6dH3GZWpBX3+P5gJQTU08eNpswVOCFQAAQNF7xzbf2NYbG42t7K00P9m2bX+3iMwV1Arid+cQwj+/VgjyHwYACSGUMMKJIJIoookhljjiSSCRJJJJIZU00skgkyyyCZBDLnnkU0AhRRRTQilllFNBJVVUU0MtddTTQCNNBGmmhVbaaKeDTrropode+uhngEGGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZjVrWMs61rOBjWxiM1vYyja2G8J+rrLCET5zkB8cYhcXeckl3vCQR4bylm+GGW4EH/jIJ97xxUhuGmW0McYaZ7wJJnLBJJNNMdU0083gMU94zgue8owdvOKOmWaZbcAcc80z3wILLbLYEksts9wKK62y2hprrbPeBhttMmizLbbaZjsn7bDTLrvt4bu99tnvgIMOcc1VHHbYEUcdc9wJJznrlNPOOMsN55x3gaMcc9Ell38TBA9GEAMAAMAuQ75t27bZjZuIiIqJS0hKScvIyskrKCopq6iqqWtoamnr6OrpGxgaGZuYmplbWFpZ29ja2Ts4Ojm7uLq5e3h6efv4+vkLwqLoat1RHgoD8C9Tl2tBCoVDdNz1NIXVkmcHmciWu59Cvu6p8C4BYgvTccdJnEnPP1qzGCYwnb1kbctm3xrSbP6Otaea/feL//eJz77yS8sW3wfFRd/9/6nh/39SfHzMcxwP+vAAAxjCGCbzlndGk03z46TrlMvXZ8nutJErduY8dL0o3jwQJ6m0ZEotv6A9Y4KGZsWk7B8EnfViisywnpT80mjbrPuHzkanXuMBM9SdHTAO4RFGMLYmIYxhYk0zmFszB7ow29rRT2Kc3fqWmGF3C6c5Pt81TvM5GWdq35MHq6v3JBUTG3rkSlOnORNLagf9pEgvL5LV/FpckKD26lKZqtEN09MLPNeHAQy3TGmSXN21TDcoRjDeDrIfeql53zExY91FkG15PgzWor/wignW1SuEvdzyTpNUVI1Pzkx3vS4Ub7lg0j53cKC/qvruIg11GpXcGjgb+m34PRPUVRg1TGBqPSYwnSZKUpmTIr2/JeOF9FbSWdAjekjQs89HhTV2oQd9eFhXXFaCBmEUSuHellojNB/EE8oRjK2JB3142A0kB+pqXhnBJKp4Kjss6l7/PYgshOgXBSytpTvpOxGMYQJTq+dBfzJIb8Ywt2aoF+VMDaymKQtDF3ovKmFOSHJYwHLyWEQwtpYBDOERRjCGCcwmE7+0JjB1RgvHs5ZlDgtY/gEBHN7nAAAAAQAB//8ADw==",
"title": "$:/plugins/tiddlywiki/katex/fonts/KaTeX_Main-Bold.woff",
"type": "application/font-woff"
},
"$:/plugins/tiddlywiki/katex/fonts/KaTeX_Main-BoldItalic.woff": {
"text": "d09GRgABAAAAAGMIAA4AAAAArdAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAABXBAAAAFIAAABgRtJZqGNtYXAAAFdYAAABeQAAAlpAfqxiY3Z0IAAAXuAAAAAoAAAAOgKdD6JmcGdtAABY1AAABYsAAAuX2BTb8Gdhc3AAAGMAAAAACAAAAAgAAAAQZ2x5ZgAAAUQAAFLMAACRYvARY4doZWFkAABVQAAAADYAAAA2FWZ032hoZWEAAFbkAAAAHwAAACQIMgOjaG10eAAAVXgAAAFqAAACGFCAPttsb2NhAABUMAAAAQ4AAAEODMDn921heHAAAFQQAAAAIAAAACABuwxtbmFtZQAAXwgAAALRAAAHF9/GpkFwb3N0AABh3AAAASMAAAGdk10z3XByZXAAAF5gAAAAfgAAAIqSjPzKeNrNvQWAHNeZIPy+71FRU3VVM3MPTw/0kEYtHo3IYrRleWRZhihjtgOOkzjMyWL2luGWbi97+Z1lZjqGZabD7MFSdi3/9aq7ekbkZOGH6ZGmu9571VUf0/uKIOkQQn4eXUKJJNqrggHBqdGZ2EysOROrdr7iaqeD7mv/tQPfS5C8mxD4LP4cyZI2Of4qBSCwfugzE/ed66UJEEqAbhJC3EOEUrzIADGMh7O9BCFAniJA4anhgIOHz/dC+Vy9mmvn2+0oF4lR6CRcRwqUQlQrzcbcrN2dn+92VnFmnlYac3Oz3fkZNUXA4+Um4kcR9UQWxSzwZhoYpYD/JNsezyWLjR34c5WsMOTNt1OGyCWHd7NEXQIAvLbojUznY81sc5Eg+WE4gS/j50iKTJP53sxUEgnAOgck+LSkghICFxkARMjhTBpIq1kqpKcz05Gw5CQFKU04o1DxLnV+JuFfvBTqU9e71K6YudcAZAu1lZFqrddYCFlxDF/KJ/74jiPoVPKjCzjVPHR+rq0nNI5o9C7odz1ICJK3v76Tfsa7k8fIM+RIb30HMH4ZkQCuawJZWEeKjD4UMRBDJgJB2JDAeeSQBYTY5PDTmzcef3jjgfvPnj5+9PB6O7GYbnQac9GoyI8mKwr083M+UhQSZrrd2a0P3pD/6+NGhtFNdrwJwRHXOyJlckaNyaqUzkzwVggpqsGp/U8wW+3P6P50ntL3HDsqbFtcfnBk9M1vUu9eenkktCTyliaYZVOxd0fIXDp5eNWVTA9FNXTKkR333ee6V654CzZd950v98fUqb7Nfws/d/LkyKj37ycKmqR/C1SLu5IePw5UOt6bY+knrHmbYjSsC+vlJwHhY89UvY8hLUYbO7NPQSiW0MCb7v/9+LPemH+e/lu01NBxwsh3v/4L9Hvxf5BZcoDcT26Qh3sPTYwhxxIwE9cV1wgEsUGQcIl8g0gLiCbJRgg0YpiasUFMxsyzxDTZRd1bw44dXAPy2PUrl0/ct3b/wYu7et35kVYh79iRkCHJLMyGAzLs9qGeTMx0uvMDjAii4OwPEjKn3jebFdfxIR738CiFermOWuIth4BeAwx7r858cjDRddSp1bTjCzvb81e4lS84Bx5//ljYMEJRZK/NSKaHo5RCC2ots7G2aoAb3zuSuFbVjFQoYrsZQavLBofT09PlydOm7YgH4q3LBRMi5VrKjWbcsBlPdBICLu5fOntgIwbh+IGTYRGzdC5esynGQhoXMAeTqGGBG9M7lk/ENMjv4Wahvn7OrYL+5Erp5l/gnoX1A48nKLiPT+x4tqEDPLenkHz0ZCbsxCefLCiO+cjrn6cve9Lsg+Rr4UAvswyU7dXR4A8fRM144T4UJlt/DEw4eOgzhifilgllnFG+STgxNK7QRIRueojUiC41fUNxUuQQYQwvEkRPCkoJFwlAAg5nD33G9U6xIzjFF11qGPwi4Tx620km/qHX0VscrkbCKLKNNz5LsDYGh8+fP98rAvmqr/jYh5556sYT9188duTAvt7q3MzYiGOTD8IHQ8IJZLj3cpIJV73doqOu93dAUDPznYRPp64zIE5veLbZ8IlMBoTrL21I4dNdckB4c7PNpjoiBxJHLW82muq86rWK1UZTnQ+q/tmEHKycbzboWqqUt1w6JltW6Se+8ruOLmhuR6Mo3e7SUUqZTid369iIZVLFnCtDkVQtbaf1TrTSQn1prFikCJhElhl980/sr1pQ4bzGGiZPldLFTqWxqCPQyEE7PZMSYR0oy07dfA4pplIiBrqZjghuAeDncsnKTCrNxsDcecQqjz73wlrnSLJ0coduGhnLLZ1ZXNABphp6bDEVzifTLZ1yw6qmLzeMalmER+dNAMDz4Vx4OjP5ppk1LbkypzObpnIslU+VpqtZFgubi5NWpJgSURPRKpc6N/8XuNymmumxUZcBIUB+A07At3j6wiXNXs0BpfaI0npUjV4kvsoD4is6F1x2N0XXV2ZLSnVVasutJU91GVcKgeaabB46veQpqajcc1FX3/hNr0vsenKxTGK9MAECTxFCHh0ro6f7uaNw3ScUWxFIJxkQ0gD7sDcbQi13ysj/s7fF9UiUyqjbqFrPTDtL4r+GgZWf+I5dc98B1bOWRK7xcLw1GvvmL9x/8oOXNAKk9LqEV73vzpFkz7F9w2VglcCjOf8KYNYnyKRHUVJEsOpfSp/eGhBPh6W5IZbn7/9YOGwboQff3qh0NfwDk5lPfG944zcf+JaHdKCmNM/+wde+7/H3ngurk/8r6OD7ve+8j5zuxUqAcHS8iozgIaCEenZT0mPmJAFUcECKhG4SSp8kiCFlNcX7I0jQG6ZEmU6Pnu8ZBw+MjRRyUSbc0XilqS5xZgKbPgPNJws45/0ZSn7pvetrhKTPTQVMJvzba06g6wN2oBi6Uvx5mRfgZUgvpahWiNsWHWkgFcjLbiwJM1IrhpY5N+8xqRpXk94i4P31RhgmzLRJtXCiLKWEkSbkKisyloxHBH2Jc1drA9591g5u92cdRwLkq1//NL2AF0iNTPbGbABU9AkeMDjhHpEqKj1LAYBcYECAHK3XXKc+LURmlHtabWCcdNXt92FRHpgdDvoSBz609slPJG3xVV/dqKubqdWg5rqf/mo4hHrMjK9DDUF34xqFr/iEEYmG5Ec/5qt9xm/+Oo1GFX7PvL4KOfJNJEVm+pLZO0p8mRs+RABsJW6Hh5zBofOv7m9WqEiOdmc9vAzUcLXPS/Nz6t3Ti601Hj62aEket/bVIzmjUOu1ls4k3R1PK3bSZg5kpKyoK7hA/im8Ag6JkmIvF5U4IGsgZ0mfiQkca1YUdccDlhJCSiWQ30y1l17iepxpb3+JhsDiFJnOD2sMgFnq3E8TAmnv7kJkun93ljrxRQRCwuRwdttHh3i2vAlElyQEIepJCt/yHZChEJ8r1Kk+VylVcbVWMPXieK3Y6hIgVU8efLvHH3FS6GWpL4F8qaDO+SgQUydxiKvTJQfWS3ebRbM7HKOIa1S3QnHKX/sB1P46Gpac0+9gZiykc+Nvz6OmtPwTr38eX8EvIw4ZI/v6d+IQIBSBbhBEclGJw4S6ozsPx9SdRYA06+mkqRMHHO5dDldGa8BYgTRsKsPIP6hEhifJqlWfw6D6fRCarC7d96amfnAt2zp4/GcnqvU9EXekwHkxFY4ZC9XU5HjsszntLc9dWDwE1pkTy49907EL76yNdMrT3/ZiLetm6wL1idIP/V8KL28jBEP45WSGPNgzUgA4BoziwA3L9VlkIMHjhwRHStlFwliYHc6+wbDDvDsNeyMzpPN8rdZsSJEeVaJ4VgpFLwNh6L86boJSJxDQSmn7dnwfIq/R6xAZmbK5YEyPjE4cnY9JF9YOXuO6zuVI5vHGQ3ZSQ4Z8fjUM34AgopRzqVlRDWisuMuCCL35Ozd/G5EZjs0pANo8TxkgAXLSw+V1D5eb5D/2rCc2LlFdSwEydfcF7+4nCCNIGG4SgRwF3yRANB20DaIbQJhONigg8ovK8UnwwJ6aHa5C6v3eIIJyerfFhNKttX+PZTHu2VC9LJAH7j91YnWlOzc90awXspm0qZNN2DSF44n0RgDIbQpQSJns9K0YNeKP9Uf6SrNZ6cvyhlKg3dm5AFPKs/Lt9sDC7+szH5n9M4jPl8fqbvdws9DUvtyOluY+OD5dMFNubSNRTcfzlGqYynLGozOdBR4Kh5ud5XJMhiympxM6IhgLjc7eXPJIwYgfjInSLqeuYdRphkKRjKUnkIUT++HCaDl/JLs7a0H6w91GuTh7MFnJG8ikpZeiBkge7s1O6YB6qQ5aaDTEADlDRGzfX5+sRyNzq+4l9wDIsezUhAg5WEnnTZkWuq2H88VsfmyWEPC4/M/waY8yHiFf3zPiwMX4Nq6YVxat1LVNQjnjlCkcSR3kBhFE4eyqAYRoF4mmRYdmcwIVju+5UDOACI0MzxAsi+FhH8VXLnuO9LED+1ZXZjuNWi7jofgReMS8xU8bolgmt5m7itf6ck7hLJH0nblAqjQVvhWBeIdWsTtAr/LdfDvFQ3hwUihVWhOLj3EtfGlklKY2DFhwi++9WHFbXZ2NNVPFYlIgak6islhN2dFYvN5AiSZntUk7UzRNq3d2MWFE0oakmOWWpetZ+NpmaWZqJQr16s54+EZHQOPIxNjOg9zoVK346EI+kRnRECizzXA1dWgl78YFABNag6LQa6X2VKKzr1CMpcKmZWjcyUXibmhJYW/h9VUsezLtIPnPPbsEnE4D4/MgmACJbGAqjRDKqaf+GX+KMOZLsPChvrIVQl4iUiYOaX4wQ3F2xVvR2r6CADLYuOd8RSeNu8wXRBIhr/rrgtlfZKITTFQeUxLI7t5MZ3Ki1SjkImHLIAfhoO5rEd/y8rDm+ym+jFX8Gd+KpQiU0se/h1fvgOyogQIOqKaqYi1CwIlkNhpLNcrVfXHDCll2TvzH81ombQi3IKrf9pgtxpcdqGrViXy9kFJUjAKtWKdghajGteZPZl19Vw+1kAjLaFRq4Sj/NjhXKEjMuFrylZt/czEC4Ij3x9M552s1QKrTKDd5FBasYgycjMLfc4r7PPydJO/rQ3KKCC482FCgDDYJIAW8QTiRGlfMQyjT+mr2kh5o37/bEl8zp4GsrykPdHqyVsln4zHJyUk4YQygOzCDb/EeA5bZHmOc8WVrAPSBQdZUfLWFCXUM5J6jODGSKdfTWiRRbpZjViyRnMg6k0VNj9lMP42CYWTn+tphm3EpEQV98j11iuGIkKOTRx+Q8ZfOF+LRg7smFgvp3ISOICKJRMjOnr2QHJHRukFRWQynqeDZjNC44VIU9DpdWACk7vH1XPb0UzFOkLziwfspT9rNknXy46+GgQOs94MUNUWPhF0nlBBGyQbh3OeUqCL6oWDrM1S9Pxc2v9hkhdHqHZOBcAF8Y/vULz4rhj5XGAuV2sh4uyFFdpQMfP+BnnJ8mAfKbwtRCnfKiHV99MjGAIsqIBWgtgt/WnR5lFe09t543NXGZzo7EjkrVpFVo723u9rYi+Hq6Nc9FnmRTtiR1G5topyrJoxkLuEpF52F3RSD/z41oiPniPpiq34IRCtXbk+WxveO61VZSmfGnknbbz5z9cPGxq6k9tZGrr67cD2aqBZ0LX/h/rzihQ94NsoveLywl1zrhbMANAJIVkAgHWijIiGAQJThIADFDc6QEiAUFJAS4nD2jWfEhEf5xki+vlifjir4QaVRvYWkPa0fGAl94lavLYPVkR5kqT95tunHZURVoIwds8yji4041xNpKucWKEI6z7hhLcwmY0bIEpoz2UWTegcphL/ntBwvj4bQnPkuizGG0m2mqjpFqrPr14GCkK7MRvRCmutU201N5EwDtP/g5mcqozVmRauf+28xAEIoueHB6zGPlutkkRwih3rmgV1z9UJMUIQBwOIECFJAZUmRi2QgL+446osEY8fyWCubbir/eBDJ7AeIfPu1OXjjA2XA1x7peQAcCIlEMqmMeFAKte/6K53rTYM/K7Wl++Ub65ctROvwLi2pSRF/4exysWdBzB5r5ZcxQq8kGWfxkRnW1Io3f+bCwnEDGHenFzBam4ZN5+CoXTj35OKClbN2nSrrybwzm1h/2EqvcnOkVm4nv2PRANwX5ZqlRQu1mjV680MnlseZEdPD8VozlD1JCJKXPN5/woPXHFkjX/eqDSgC3q9KIAhAFPNzQRXTESTCgxAAu0QYS7CAm2v+VCSw+UZzv4RpMaZsWhfInl1LC1MT1XLCsQwyB3MqM9IdyE7fhPHZtyvFVpznFitXDIPUMOvx9q0x6X+dKrUFUhGNVfYnrJzUtLH5vc2KIcacPfXppbp8Ccxa84NnMsXFfdM2LOSThWkzlEl1UtHWRNz4bC41nqIUqWhX7LVsVrTKhVa8cG6tvGInIfXpgvHE+WvviYvp6d1JDZ7OFPOJ3PUH3REj8aYzY4Sg7wtfhh8mEZInx/oQTLIgThbtp7t4kO66cyTId8VjUSDpZDQfy5s6iUBEBCa/8qoG2ore4jv/ba7RTiTAoLnGypu2/GjINHJjxRiFar65fPOPt7nVBFVcYnC1bXK6f7VZvu2aEPseobo6mx7O3nXUGYye78WAtOrZjGPf+5plEMvw0TuMZXgI3X79n1ls7jaSO+ej0hJ2J5+xdZkt33Inv95aOp6pnVhbjupWZHR6QmJVZbbIm+hz8AFiEFfFgghhAEjgCkFK8TRBpOc5UKRHTJMQ0zXdWNiba8wIFSNTF1P2Yz986+0vJ10G63DQdV+bGb6FI/qI5ud2fjd4o6D5q4Tgw/hzHredIR/rGXuB8DTg0LeY0IBwyv3gHXKKNwgSJpENlakffxcXdRAirIT72B0LgHCiVGSwMJjuCOVLrB8EcuK+g2fWz/RWJ8ca1WLe0sgarBlbvoRCxO0BUzfpznSGbsYANYEWVegZRtsVAm/Lr0aSJT35tgM0Kna223Zy+oUccg24YSei3IinmJSpszx0JBOJ049AMioj8fbctBuV5UkMMrDww7lkJL37qg7F0upobbq+5lIejgAqx6+sIYuGZxOwPj6StPAcRPPRRCYcb0WSeqxUnry5d1uSliD5ltf/ir6MP0JOkofIV/SMdTC0eeDGln+n6YauGZsEOXCETSKJrkl9gxgCOBoebAnxqdpDBgC9SCiNKcL/0hdGti8834te9hKl8Wa1PdqsjFRMkR/1pVYAfqkElx9w873sIEPhwz7QPep4o+kPBnk7hbLBkK+v+xgKcm7zdOHpjXJrbUc8vbechN955yvRao1KkImT73rnkx+Pcwg7ncXvftSZNr91LnpkqjayUjXmFo9dMPIPrhy7WnESaOxE4LoH1e9xZ6vF8kwuv9TRW/ATD13XwmOh9N6Hdu7891MCWZSF062r59OV7sLJw6c2NHDfPTV7/z8vJ2lVlE4eqtSeX2mepYCG+JtISAOxfuPqXLH8jl6js9L8aoIerxDa9njmADlGnunFDoImwgC4o2gjIxAYQnmiEQQNrxAh3EOSU6oiikzHQYQxT4Qmngom3TLuDMz/Y4eXFqfG69VcIhaxTMnJAditGKOs4lFe+Lfjqe+qlB78/MhnH6B9XMz32SNu91nE8XS/vQ0B/lwRbwqVvO7C76UNozUCFPlvFIt8Pq1xrZo4dDCa5JIyZsQnMwLgB3+AmSWziFpU5qHdZoaGVGskr1QvF0OVkUNj58ZsrSCgmJqfneMxLGkUAACpwaJxTVBA6MI8syJw7Fv33/w5ZMhNnqeUASA8+tLivpf6FlOPELoTv4fMkb3kBHm5Z2hAYBIoC/ihRVAo53FTOaVMyCtD+R46pOnIGD1PKA0rDrj31Mi2qY6i+QTxdN/BtdXlxXkyR2bGR9PdqiGSKkpoz1YCAp8JDCtF2cmE+jhIBPpZlWAWeDarFM7MQBbRWYUnxTeqcuD7YP++cwqwQrJf/TXzk8w6NFsMMUqpZpyNcz273jkY+f3fM5maMA1/JU6fzBcPruun8mZ3TPxwuQznzpszu1cFpMBGH74JigDJTSsxvR4PASAmd0YiVi59fLJoIjDTn4FT+MILCBi/WE0t3/yK1Qh9z3sAgYavEfBk0OfpR/DHyGGy2bN2AmGHDi5QQQKY1weW0SZBIAg3fMHBYbvISSiA32PeHRLGmG+OtQ8p2zO7JVuC7Psq78x3hvGjQMIE0t33n5LqvSJ7v5zGH+/OU7Zj+VNnZ4sJLzp1cDoOFCgwFJyZKSb1wjdfttNPf1lC86A0980bqerSWpW1Woyabg+pkQpbgiIC/O6hM4/33nVq5tjxAzMrVKcCGCDTZPL0Oyz60Lni+PzUqfVjV8MsV+SFImKI3XydckTBwjoh6NPvMx79tsgucvpVHQgEln6KbREqF6iMJzKwqraGIsOhgVkVJWR6Yqztna+x3p2RAUlWA5rcCtML9es7SY25ARk2qxSdgQO5KpRWVNQ3Ns765PfL/1q7/rxV+N53pcf/xeYjFAYk9/vywN79B8ZOOx9djCUUCBBBT99OcNpbHp+af+X7kxyAA2ho+zQGcPNPb/4povtS/ZzRCGUsN2ZWkrsJAR8yNfx28hj5jl4kpiOBDiDfAEMLZOYOwgkSrsiHeb83iC6F1IXHvpoU2g3CiNSZ3PCTuOd9OJqgacYFYhhhwwPj8hdZDxQIB7IRnGi42jE8SNuPPXLlwXOnZw40Zzsj86ndlsh7eSw7qAZSMCwPVNvgSJAK8UOUSugq2nSCEq+uP17xxoUcyAJF21tCuBxgcOb7PwBj49RUEhUb4QyVETPBdJHOFy6vLEWXxiPcSGgRg+6mqCXSQnCZK3PMm6PmnjXt/Hip7dc/aYbmrXqUov7aLw7Ex/RuwBpgIGu5IX6L694nY0lvtnXj1yNQXY4JbrCbf0HVCifnJEIw+t2jCGDN1y8zkwq13NC/wBkbSJIBLl0Pl9fIV/ciUSCwCkI+cBz1IS7nb8eFkAoJmwr2QiFxixkM0DT9ItH1sK7C0vdaGGAvOMNwmaMrPrl29f4zc81uvXZovrHbvBV3t6FOYW6Cj6J0pPQRE0SW0Z/gzVeoqzalEBG8TWn2h4dYm+JC5wJTW0jTzLQzks+JLhQLyUa8YHMj6R3fhcKMVqnM1zJFGWEMlpb6KnSq8MzII/EEY0zQAF+c6TFbYoCuxJLuFtywRoHRF14APbzPFkqz3fwbrke5mXNTJryY3RWN0G1KNcasqI6oOO+bX/8z+mFPul8h7+1F88Cg3Ux4k/aDkAG6xghlklG5SaQGgkux4YehEZSNr1BziHA+jE+80fSImu6o6VuBi/CDDzSv19sj883DZcNDTd1nkO1CXUH5rlJ9LoghD1WEQlh3iyf98GY3kewbo1WnrzDwlYObnzzmGi3qPDr7NRekEW3LY+075D3Go9Mjae2l/Z1S4srp5o4wC1kLi31OnCw8umHnJPd+mKgWZ4FL0RtZOuxGVk+V4l+zuXBEAwh1blMCUXd+pJwH+9zqu8/OHD1WyWqdzhZWACiXcZtz+svIK4FU/K+evniLws18y9EYgWceObmfaRLXh5F7YkhqXBEM/ZpNDoptwiFTZ1JqFy3QtLB2OHv3iZFbJzqah48MId4XvvD0E1evXL504ewLneb7K53m+WpE5G+3eBTAO336F0EBY3cwvuoxhxqf2ZpA0bmDYQIp142rEkh6zwnbLaN45825jQk/lTo9nc+//M583h9iVDfd683GRjw5GNx3YGy8z0kjmccaV+Mx3pd8sOvld8KuW8ds5o/dpsowSMI++xx4v/7hsMaHh32Nto2zIv4qBojs5s07BxRWZwnB4x5Wl8iFnpXQkMBMHbdydikcSr/bs9hbQ5G7ZbCXyOL7O3MvVqVIB5gaJlX7qEg6t2DC+xjGauXWPPZnPEg/oKgcOIvPPpO/nuxDbXZ234HJKTaAc+KJVvOak/RnzQ5gNrhbRBzcrQ+cW0FG+1Jn0YvlfdaDwW7yRM8cyyNSHWBoUhZFEH1TgPRNw5AyEvklMshB32VGZDgjxlXICciO5ZmpdjWTCIfIbtgtg7hcP6/cSfogUQLGVpmRW0DVnR9Q4Sj6uSYpBhP+SaGRiyMFQC3pUg0L0yF8y8qOAbjchefP5rPqg9S92rBIKZY5vOvUxanc8k9V8qkpExCASuCdloQ/RNiCFwzey/+z9NIeWGuVRnL1iaWBBPhlD04ve96kvXEWifZkO0yBHFhGHLqTBUOXVOVxLRM1zaMaRinAVmDutgmRWyY42PdwvK9467NPP/7o+Zm553c0Hkk3Q8q3H5Yj+jBz7ERye/WDlI1B6rWreF70QwDSp60gAL2dyX3j9J7iQ7ierK421IS+9OjM0x8SJuVGbDpnNC+/8Clsl6hhgFFxLlzK1Hzpa9jV8PwcSDdaMzCZUizNmBZzHzm8xe2BWbtddgBnnelyBb/zu3kqGmFCMKrp8YtLPfweQ3LL0STm1h+Am9+AiEJLRigPBLSjsXe8DMCjoYxBL15WVA92TAto/m7igyK+7xX23vdSTTo+J/Qx63PACrnRi7ga9h3ZeeA0QGuJMEIJo5vbBIIUSCk/TzgPKza4c0pk2xRH8UGEELJCllLNTvPRqiYyd8rwO2X0IGXSz0aFcWCM3iGFnytsZlM+KHfu9GTDauPkpKEx17AkR7jE9JvCfAOZSrEvH+KtV4oUqeScvaYNzcg+hNg/8SC0SV7oxUbU8hIA7l9Cui2Swn32Z6AkhKEJP1CiS5MGkZSt8cht434kJQ9k48rZ00fW9612ZztTzXo6EQlrgmzCY5ZfztUPmMx34/bcbX6VHzhRoPIDW3dTcreTvz2HPoP0z4PNWUoTW6zii+FTUca4WZy1922RrFemZtJSleLXfZ2wX3wrhgbUGyg3FnGurj9gB9T+3p97fwul7iaYxKOwq2csJwRjTIZiJwv5ox6ROhI5OGDTLX+NmvgHf5v4m7/ULKDhbbgZSKWAtjEFN3/xP66ipMgFxRnwrMybr3EhGDiKA7bbLKe9aEGsE0Oke7MIeAhxC2tZwVChhfto00AhRQbRr1tGI9tHg9jX2v7dvcX56XallHbDpibIabjPuANb25CVSProazSV2Tg4tEX2ql7NwUEIH+6wUQYomYnvG5L+85fz7LceRG06ZVHh/VAtdrJYOBJ2NZRGYjf/KoWgdJ7d/O9v2Wv3bYyqe/xewGc398DbAClSLp0kDthDzXvtmymlyHH0ZsbaZkoQJN/gxWSu4I8Sl0yQg32gJghiEHendKu6b2sgsjUQ1Pe1Gumkoak6Zx5UZmyFau/YKjFIFQYCAr79xY8lWr/0ZfEx48H5faHM285d+Mn3pkJ7JqeLGU2GwyuNdPbKQjqdjr383MqhD/+gBdbczudn5970T8fHkX+KR7uLD1+aa9QmapWGXnp+5vLVQYyk68vFo+TpXlgDAg5oZA44C8inHBRFSF/qoW/x6gIZ4xcDyXiXOZFgTiAa44Ts3e0FFlbI8vNzI7F21dgSj9vzdFugUJt3thTcnW6fiqoIGcAniKmc44bvwf3MzxsHLlqAkfddCZ8+lRURxnwfkSkLtLkR+Hnw63JPbzTX3ZueTsftSDgWiE9m0LBy24DvXBBuRj/5ZAjhzenlcLjvFAq65dqpaMu3P8m0QnptKZEMxwj1aGanTzNz5Cx5iHxNL3L/uWMHmCZH7SiFYQh1RgemgeZXMgABSvwAqSakyusE+yo0rb+v4hAZ1AV98VWR4arYYJVvdjz4wMXzh9eXFsgc8apZ2s0RFVitB3spgiTBXBDou4M6peskBiRJtxIRfUpNDn33gSdJFbZcoXxC/DPNZEZk7IBuT7fQGquce3s2uY2Ys+9/UAcwU4n7LOHs25sKHV/K2LGqwKqg+p7WfDYcGq3aExz/tRxPjNB2aZTauqB2uXDJxqWlVkKjcv/qzM7tdP/M97QZAMOk3YjA76wd5c6Jxvjo+yYd53BdatWpjqtTq7a/9l0zzs0HZ3NuOoJ+1NDz0E94HPEAeZZ8bZ8jcsCNsyAx4IgOoVxwKjaJQTg1+Ia+ZTKYGgohLxIpw4Mc5yDHfe9FkW2LnOGiGFNZOUIee+Shy97F3H/m2NreXTu7c+Nj9Wq7aonEHbzjh8C3l/oNEtu3lnkGQRUVLpOOeGPuCvjPP3Ini/3YL7qobZbDxclLEaMbbxk8FWaCJTJMZIpjRvaHItGK1ZuDVRhy3rXGFSfgvH/Ld62UZIyxztF8tW3pHj6cO7iPAjh7csWZsV1FIWqr+itsDkNTIYZMSLfRDuOm1etZ43HB8C/h7pz5UqEXjaGmNWv5kUgoGXYIAXLeqwf5MS8Sc5m8u2dngUENKDsCnND1g8APDP19JphCmiBMkBvbIjFK0vGLgYd0z4mRYOLAUXKBnD29a3W0XSlm0vEouQyXNeF4PDioAmlsr9qcUYgbeEaVph/mrFb63LaF7CCU5lb8oLN3ju4q62O8PxMemT8xhh/E8YVI/ezsdOjClAY7UE/OIzficanR52f36WibIdx/IHI22nl/MRHaWNQhW+QhKYFlmSkEp6oix/vZXx4/s7xgQxWsk/P1kStTubY2DSH2q0zTBC+Ll1cmLS2bNLky00cfq3c+XpNjEhNpylBsxtqplAUoeCTuHM5GCJB/Tgi9jt9MTpBP98w2IJstIkUlH9tK+XCgCEhhU8CAMTyz3DdStMEOgYETO5xImACkDDdunfbGM5Sx4xdR7tm1sjQ91ajmMlFlmZ6Aw7pv6/hY8RhBcUK8KmSY+YDfikeXfI4bHuzHnKtV6gcuPUx5K/pG5y9kdC4OHABdr0b31aaTTtFJ6JagIp1g+jpyAS1oMaMGqNGEy3SgWmelsS9S03R4r+Bc3QbXZfaVzvTbY3GbU6jWPrQbbNBEyp1MlW0hkBvyN6lUBiX9DWU7ItNpfCE7mb35+R2fqFSp8qxoiAnsW5G/7tk3v+nJvJPkkZ61LxOmgFPAIFBSGcn7HqzCQUiVLvtA8+2dWwcjweDA5kkCOXRw78r8zEjLMx8dUyMn4eRWVeoq3ttBHRbmDEIGzYr3uos5KeRAd8GvPPE+ijPTd3c+5xYpPpHWPzTBr0DYLFTE0JLMH1YOoSjv5jPjemb9bOzKpWQk9Cs/eacD9Z/+xLYiZ8H5sA0vK9EitVsMSPz5H8ieW91PgPxHD57/zoPnPnLgVQ3ocPe6c2vYMMjVObcGCYepuVPXGq36sxk/NefYrlTeT6MPhfkBDIJ4QUUKosS+H8uldLAvaQhT2Xd44F/Nw949e/aysbQKpcrS0Wxmt+noTAt3XMbg5js4tbJ5alBotVrNkE6N6MRG+vKErktImG28IW5eEvD4E088TlHqMUdHtFV4XDL62tcq0gSmAyzBAkg9amsU0aNQX9GR//D659kXPJi8SDZ6kSNLY67kBGolNIZxqLQuOEWuAKFJRvtJJcNIqHzSHWMRfyzmZ4uef+6xR69cju1vN96fm3txWmWLOB1uI9/udvukpWqdk/420aY/6c7wqZD+HKHgHSjEZBCoCiI0iAHAZ9UX0f4HuNKt1lhfPUYnHkw9kEgyLlh7RNc0fXT2AYbojfthPanbF6uVy374VK/7E+jzO3aInRnGuFZPHN4fcqnJuB7dYdB/9qoWwVQadRa3/7b/juPTiNwY6DmMgmMzCo9ce+SRg+e+cXQUb4sFcgB/UPzSo9dFjIWjg7IAqQkrrhn05q/e/CVLV0d0+Pf/hvKbx/0PCne7CKHf4OHu4+TNvfjFGaTsQ48XKaEvPRmnQIbRAU1wqqKkEpSUNvU+URsAEIbD2VvHI7eMO6Dw+N53vf3ZG080Xxg7fb3dfKSs8FhPdma2h8BEQNidbqfbx2GA5+1YFnIEVQYikXSU2VLtc80q87Hc7fb3p/lYlGEqZfy2uIDCeV8Heyf0WC6MUkBrmmvS0pnWTJ05aWe4wbieWC4IyZ57dnaejo5RUxciOnYtcy3pULWH0dQk4hLUS7tBjCYVezDgmohfLJ2KZSKCg0gsFXWGI4sLjvPS2Kiyqjy2uVSvXYknfedWRgwQs2maHE+c2sOBhvvGDYCPd1eTnL7rXR/4kKk0ua2keUyarkL0VwO0qwcpUi0Q9ADC5E4YuEQK473VRPLmZ30rK24MJBjAe/fSTCd1PwHyrwmhv+Zh/CFVV7O+kqJIp2MIeD9sxRVyGmdUhQ78GJjnE/ra1Aj07a3DkeHwILKQFeTCWW9r9/59vYX5sXa96MYjIfKQeMj062qCeOcglOkhYUvXbsf0KPrVtL75VPFW+VO8sSG3BuIxgkI6/Si8kAJPOtebj6Qqg5zS3HSsNrN/bITrElHS2OQjCom6phWqY0ZScPh3Hk9LsDRk4djx3MFwkpqaYS8lmKAf/XAmAxd8ncMZDtNKBz76yV+iXGd5FD53Orb2jtzeaPQLgNgP+8h+IBpqUhP47d/66KPQ59ikH7F8gBBqexjYRR7vGTuBsxwABqKyRjhD5mdmgSEoc9NP8YWC4g6/6uae0yKDaYOKG31hudUYrag9rTC/FV8jMtlROdntSVk/nDbYPm3P+bwiFA9VBtiBAhd/9megaQA3U4zLqbXs+npe6GmXGacQ9b94DQEN/Ks/T2UiY3jfhQxy0EwrzcUe/DZOgUlaRPrarzAEEX7wnCuRm/2MOANGbYdBATIAIE4d4SHKOdPp7ykJde51AX+E/4MUSKc3aQKQNCgjkhACSGDDL+E865dwMr+EkxBvaqHaSHGRHE16Itz2d4MP3FxVp74Vl7oWgre8CFy8HKbcGhmtfareaDBDIhdf4AaHP4U/AE6lwS2Xw6de+/5PqUvOI1fC7fW/9a7rA8F1RcHHPcF1gsRvjUIIpf4mWv+6SHBdqWrDv66B/vJgvS3LOuORsK97jG3XQ011PS8PrvQLg6uBT+LBTwaXww1+M3UzD5wSABsRT+HnSIVEeyECZE1tkc9lwC/2FNLfINbXnUFEJrBs1Qj8JL7XOyuNgmDfSQUT9FlAoJG4xlC2zaTAU/ehwCIzBHtKUfVzlHJGRTgOrK67XGHsodd/Cp97/S9ISO0pRgBC4DT6IkKNHlPETKxZKtxR7m+XGYj5Ll4Ph/gXvkDNEDeEkfGN3JREgt4Z/wpfgJ8ms+Sgl8G1IyAwAUxkgLIOEMoGuzfrhAkqGN0kiP4OlEFFsgRKySWuoW+7+iVrIADFZjD/XlN9M3ffnqXu9GSjWio48ZCpmqVsmbkeBjtKIPWLpToD7eP2rdth4ewAwFLEG31Vt7WhyJsF2qGLncOvUMoMOltRIiU+kS3XEUKppJAxI82kEbJzDRnf1dQX3hSqiXipaKdjLlithVFhtLSzh0+dfNYCyDOlkDMJ+b6PWzwinPMJVSWbq+XbJo6JJmw0Q1C0V/edrNi83pWtbyQEyaMebEsevbTJHvJkL2wDoAYUisC2JVCUF0AGHoIvXaL92gMBA5AOp0TuMcVPJK6ujI9WStlE2CJtaMvtYFTu7VDKD+SSs9XII4ieCinFYNNOMtguDdahc5TNTzHQQoal+bIc6VeEbVooTo4cPS/LL87f383XRM6XwglNmNFkbiYUcxztzLrtpH71xwH6gpsBahF821vcM4eKxa9czsIDy2mWZYbRip0ZTaeioXAzW7/vmKLjhz24JeCnyBR5+NUmMD7cQ0EYB86uE7+Q5gbhPIAGIcEGJiW//Vmw+QbTlPxO1EcaFV9+d53EzDDcE4TxgjieOjYI8Q2DzL87NvHQLosLK2Ee+Koj10Ncpj9+Pby/VJqopoqNSj4/kgrbsRdHamzZCiWkMPesrsTsSKn4wIt6NtmudfKJdk5GnE5ubdeAB9/t0UmPnCaf6iWygDQGgGGQoG5/FQjjA3oZIVwyydkm2Uo6SzngMA2UqhJ6wIx3TI7cc7KftDh+bP+eHcudybGRWinpWgbpQc/YRkl9GCU7t5NU/7hDxd+dOe3krgtWfKQqIZXaTmTuzrWQTT/5d2PUXGpnCB125UpAc5xSFpGvfY7bXwLDIrnm4SHjycIqmVKahwAjDIgfnQLBNu5KSNW6p9krZeVudv2770d+tzo0bbGZcs+7gwDwTGcVf//4xgFFRC6AdeATRzpHk9WPXl06yu1DO58ooPknpXSl0M0nGksLxbceW7VCLtesPbmph5YWjzzQmYrEd2Rdc/QnE7lI5iEZqxN4/fOvdzHlVeKfIb/y6jRwEfDNFOGCCn7dCLYgCTEouNfAtzXBvykA/RLR9YwehIc6/XV00wgqGb74yjdYFLnHosHGe69/1r7V5VmvdrlRK+UTtqGTM3BGGbbJPgTdTtKvr0Xvv6GjGvQRuYVR+zD2Q+/q+Bb4twXs53emi2nJWNqQBdCjIgMLC1zXGfKlZZaIjF3eVUpMVNLFIhNxKWJUIO7q+RPYnr2pciRZGusa8cmdE+VcqpSWALXUp8XU2cInoN8dgQEF9+ni+VIiX5nJpap5tOPXwlVdGw6/89WVS2MrERxrVjsEydzr87jgUd802Uf+TGkLiUkQsj3IKlkeQkYJI1wJQMToNlYmQvgWql/kRi8RSjNU4VAp7jG1hDC++SWuUXifJAgSUG4Ga7/Ysi9lhbN9hdpmarabjVqrulTWRG60LrYQOhAzfcYZbDId7n+RMwPdFPT08KtUBwiHh0cmN5sxPVKsPLoDI926LEQT+aUlSLz77NdNh+xUyWWRQnsljObbCuncDostFGOGUSsV8q7rnih2ss3lic4qhzyPpZPaf/1DWNhxZC4hc8lCinq2/tgr2ULdFX8kYhmBpeIzpwgBckBZUJ70PkHe1wsra1UABQaMBzq+PRTDW7peykCU+FI4sJ/unBu511zfgFI7rLuzk+O1SlrJ6xNwQh+0ZJmbj99VSCsJHOyc3h4t3Op4EGx6mRuIKj+285ZEfuHsnQK6VKF0Zu+eo8wYdzXbzkS4dGSKSRo9vTC5K7ISTeyeTqPHNjXNu8A/hjO3SGb+rncyQGwsLJmphRcWIiE7M2MLZBrTF852WpHWN3TTyR1ljb2mx5IEyf7X/xo+4kE6RA6R/b09K8Cxk/fL0ghHilzt2mJI2Q2xlSXyyb6fGVL25tREoxaL9JvhyGCTVgAPIYe7m733HmyEbxfckgfqNwJQ23i9V6O6fQs0tFL5etoQ6eLs50ba4ys60olUSgLVprNMT6WZdEb2mvHpnQAwMaWOT+WYnlbgcrBTTORGJOZTpcmPVxoVTQvr+NadO92wTvnlMEemRVr3xej0KOoC4W1vA3/kgQj3wbWX4Ot/9HoXvsmDjkn2k6Ved8lXAISiQCoUOQVO7CAj4HOmn2LJ8MP18dZcrTbYz7DVuk0Guz2DkvE7m58M7t5fow7065HtechOltLFyXKyFONWYSHKIcxiHggS1cVGfaWejdvhaRY93c2U5pORiWq6QC2KQOmIQx9meL0wlU/npwu/FjaXKiFqINOMxmIpXk3Xw4f3L/6sPrHHksV4ujpVyCRtygDdZR0+mgr4cYcHhxvkn/WcgB8vM1TFwovAYFCL0CWM65zpm0SXXJc3iBRcihtbPBqo+4EI04yAR7/Iysi9Vvpa7trD9188fvTgAdWZr1FPqw25N+CGeS+uDax1Eeyi92Otg6Z8c4NNgp0graVs98Rt/KxQNKBbP3/ZHHScedFVHH2HXT81jTGnPlusN9fabZoqjpRAllv2SodZU+lxC3WQWsKTmVxzhIdOs7rTopacXeOFnE1dWzcNLaZlnCGvB5Y//4mfDMXqM06KnpjewXKpcltwLRdanFRtxppazFqQpi5K8ZYjkWlW6lKSYndSlGQlHIOTa2nToLrC7qnX/wru97C7RC73wuNAWRWALsL2jWtACVVm26D2NHSre3DHeOQWv+D7zo231mNclac6wXaezi0CYMAHd0cUFb9oaVosCojAqCF1D0a0fMAMV5cjoawb23UnxD8Je9N6vMcMxoH63PxinOaTTir22Jk9gNuh6NuyCgr7vT2Xv+bZCm8lh3prL1YRyLP3o+S4ToAIAiqjyr3fG4aG6t4YRV8Mci4vmjpKGZOHn37y+rWL51vNudFGe2GmouLG8UFDouotWYBkAYfZ8OSW6vjSlIcYGlx+64P+8QiqgtXB0a4nTP+lMvO1mJFiMh4brXgWcIFRZHRixUrsa4Rj4dr00m6lZGxEI52wzUDNxDw10wvUDKwwCW7LKZQr1E4cWxAFGTNkPe0WGg2AF0Tc9wG0yHhzUgc6LREEtizMG0U7me/roI5lgFVONYdaaKY51EL4f6wQljOOwA98ECLRdOKi/rb87hom8urYp78GIwPM4Gc9zFwgvd6OcwDkFAjm44UTUG1Bmfd7Q4JCC4WBchIXNfCbR7Q9fIwodOhfAjq+OBb+7tD+hB6q3wPIfweQPpMoL165OywX7go39H3+857PnyAjKrYV9I3w97wHTU4PNEcrTKRG49ubRAQqaG42OYCDL+YGeuuDzVfOteW7kyhT730omvr2LL71yKF2PiO6LKkXu1HvHYzvOQnxN1uZSvHic2F8xcpEl19c2zH2tmJqIQK19NjbSgRJ7PVVvOThdc3D7NneqX3ASQhAc4EiXSeCa1xomzqosIxU8j66rZZoWP9t08OqkuHw+t49C3MdL2FeTNsxyyBrcEBpgGF3X/+WhNgq86s0giKTZeyusrn520ljsLvT+4/6CmAABgUFCT908Fw1We5dCNujbahlc365X2G9s2I6ujBjqRU9HjElbCOLRMlxuL2rpi/s/uf2TKPgu9qhRnYxKuCn6alDuw+NV3aGMAWf2Kq/tGO2/j/rR5cns8BtJyCM2VSYIR0RzZtfO18K/O1yQiicb3gw3efBtEMOKIslDAJGBvacEP1KEN9l6W/EOcRhILFtdrhVa55LOt2h7xDwR7IzEFHObTs5tm0t9grq4327ZhCNUCs9zoCNyZFj56j9yiMsPt1MphuWMPcdGIBLKzmftNNcUsbNTEukzobn81OhWIuG6kUV/ioWQu6Zo4573csrYT7MTcPwylP/eGt7RbCZ2OOpK/BYp5lpfl09LstpllWbogaSY9yDxg6yo7eUBILLTQTSBcGoEh+MAFNRVe/3Bt8uPvqCo96otWeUAXeH2Aj8KR8sdzjJYZTbZcO/CmVSQxt+qWoYiy1Nm1wZ3xvWJmqp4pRTSTlukpbrXLZcJ5AClwc8vryuYVUT9XrRduuzudR0ygmHqux9n4o4mSGzAznt6fA/9u50lTzWM4qAdAcQjsMgH1JO8TrhhHJyg1AaOJKEBDVeKsjnz+KbbzBNBfkak/X6ZNkP8vmI9ngiKBi6M2YwqB0NJIuC39C0/b5C+1KaopbB86wyWph609G6PVJKpPPJ3LKjGdKpdt1Vc+rrS9WJzkQtXWCLoRU9wWMmxNGcbYxOHmjF86WxbDyXN9pRwzI0qZlWbWc69xZpTFbqnUKmTQiQsx5svhPfTdbISm8xDgQWgHHs994knDLK2aYESvvdPQfao08D+1rdVKtebymeiA8cFb8F/FYQytkWDVGYd/uRz62Od9sKGlW4UzwmLcFBTI/bNuWNZCoXs08wXefIJsZprQworGhoLBdY95iZ2J1JzR6oVttWEt5uaH7y9OAhFs9lEuLg/kHjSEDr4+9hlhYxUSZ26sLwDkeb+12tOxL68AcRBtzwFR6NnPO8amMREE4DGfaSbA3DDZKBZDf8xBz3w0oCGCOXtGEMdOz2qZxHg0TeHdP9KOjJ42v7el7N4Gi7kIuFdUnOwTkj6Cw6ELy3id5OwFpb6tibaKsxn3jQ9Y7eYZb7zd7DCLNf3XW0VMq2Boxn8ND4frRoe8nESMkyp9JpM3sAlW2TzME65sKWEfCo07BzmR1VPZka0d4994m5cKiYbPvcaCQi7hEDakUtHG+dGpvI7IhpBU4hJ0JYzqbg5r8FS0/n0+0B7x5s2KGqbodDgRXThp8hK2SqN74InPqeJEfKN4f9V317MlDNrdZcc8T2k6Gz84GBOCicnL8r1AKSHJovcx5bwiend9ei0sisj6YL/9SpxmV8W1DB7TbGJnrhsrscDS2NMlrNwNP5udlWrVcurF+Lm6/U91/qxMytKMLaSH6q7VbOrVf2iey3x6x8KhZYz653dw+Qn+mZF1dQsBiAwEGQrUwYFZSJTd8GkdxX5so+g0sI6mZVmCzs58SCiVJGD/mzOdxtcuZLO+uXeEIVO7NGRkabc81aSxmKA5fd2dZ19N5wv4NS5xRVBvhwnW27VAOk4EvThWo9lso2Z1PlPSOOPrnwGafiaJWMKbmMSxWcj5/otDxyDTdMtquZBcR5FOi23PwiYroYi5oRM5EUdCoET+fmZ07svDJ/OGOlTGvyA+X95z2qnXUTA6rtrCuSdStXZ133wEI6r5u/Kj2KTTtS/KkMJWolzYokx89nzFIxPKDUC56c2CD39y5UAOgM+PJDOwU6YesEgYOvJkzg5g1iamBqN4hGQCM3BCg5wHy5IYEQ/ZIBuh7TD1++/9yZk8fnWq1atTU34tfUdLd6FM43G3dAVSWKhj3vg8TbVs7jDqc8yIz4cwNe+LQTysTNQpYi6GYm4SzEmWZrKSaZ/eBS+PyYbM6O7xyvpzz4pAw1VzMT5UR6rhXRgonRs10rddybOTOx00hPpooTy9Fy9G3XHM22pWnkdvihJAzPH9HGRHNxotHNpWJ2KsSj5VD93LujiVg3nh7M6RyyUE2ayjjjudRk2of2PJ73oH2e/NuesQAIh0GTOEwzIDBAphr1aJq8HkjlIHLpt4ZUZrG4RITIiCBEPb19HZHa5hdf2Ju7Y82WXL/3uvO+gO8/GmF+Vgl4O2Jo5DycH6a57sozdwr4nbiKgx6WAreKWgeIlH18qxCNNwRzB493B+wykPDxg+2BgA9XTHNqrKJVNceU9XQqB9do8YF9ex7KyfFqqpjUYrGVSTeMQGlB27V7/uO3MMv0XgF9drnU8iT8mPGx8tEWJvLZlLz5hH6qW+uG7ep0PllKavxAcYIKROj7qQse3+Q9TN5PDvT2aiBJC1AZ3pqkUvPbX0mqWnwiQ842fSMcgJBBDzIBvoG1+0P1RsOZHC377mrQztC3OG7veaX2sQaFGFKIfs1lwEhBY7IBg8mKqAZRRz/A4g393FjbNt1awxGarXM9kWeUGtm5x+Yy3djL2uSEjqJjoJZ4qJuKRsu5sB4yZT7FNW8iivxie9dcZo5RU+yqzHFmRbkSBG4Uvq1ARSqNRiqiUcEY5W5p97nx5DQ1MJamAnXNXTiMgidszqhRl1SgYUwvtufHk1MIwEFJZqrFKkkCYJL/hO+Ac6RFZnxmwKcIAwKMbKr/4KwfhKUcVakGEC/LVXDjsQhpQUuoavbKNnMisdX1dCjXA3hBQzq5sUw0DBZPl2vh/JgppEtxplzUIk7MiBci2fHQf3I0mRm1NAbUzbT1uMYZn8yaqLNwomn2s500hr9ANsjj5F/0Yj1Aug46eI+yQUasIJy2GKTziIGABijjUwM0KG4QIBYBa2MrKUh0nVw0Q8NA6e1rCSOCM7Fx5zluWXm+VwbyyNX7L54+eezI/r07VuZm2s1yIemGLcnJBmyE/XDp3JziTEVu/k66QfWh4jr18olx2wNM5ofUFuzeCHKC0gd2QLN9WKvWklKoFaoz9/cdF8cXS1FGRxaYNIDVStCkyfldZyOrzSptucl0sZ4RwDHaXS2G8g6MjIGuI5sZd1yMi+XJdmFCo0Yyzxh1j0+O5Zay7aKxMy7SOTOkdURzmlLz02FAJmkDBeNfrh1szvJ2bfVYJpxNZiYFQIJ1VtJPngQE1HmN8SPHtRERiTSzJuPCOjiaMLWQKeo9tCgQhDCW8Dn8PmKSpHqqBoXggQAROFyr1fw4yvZQf3fbewh3a+nmQiNT/ZcLtUxtvpGp4aXqQjlb61YzlQX/HyEID2IJj+LPkhhpk32v2rDVFdQmlKioO0H0nXfX7xJECEFKPKRTAHp24LJROHb+c/OXWmX/ira1AxpI39kJPuihOmwnC29p7ilr5RINHZw5GBevAqWCa8Jk0ZSpR92MNmZZ+LVtEIV8SK+NtMxoiVPBKAKA4CU7rMUShHgk9voqfAuJkwZp9Ko5gtg3c+lTfd4FIJf628Ca7uyYury6I9xtHtRAdatecM3KttbwcJVTuewJ+e6j7XCc5t+cDgm9lQ4hRzY5wQykDtDIVDzejFncyjPIR0IxGmPzyAGREyQHCWFT+D3kFfIx8u960QZQtj6FXPPiU1ulw3uJRjnVlHEjKZc3iGXohqXSEsTQyY0YyAgYljQ2ogIpZef9WHjYRJsRApdCQYXx3+M0kW2nCQqRR4F89CPve8873/G2tzzj7dF/8NKFc/cdPrB/5+pid3y0Vs6kHDskyCvwStzfuXPn5invFY8HKtdvBpn0U4+3NiuSt+3PSlJ/m08jCPv12XvYY39bt6KB+TvjKW7VdQ5mK9J/4MZMFw6kdS6r7uHsHsthzMzsMPA7vz2Z4LpOBYUcZEOQA2o4GUG5m8kd65TKicVELsIlcxNMh71ayLIsjXMtGpvK5vMw3dtTzrrZvI4iPehpdDMaptzMj0I+/+ED+w14MAGLR2L6c6XV6OBRCqoWXQBqCqBxyvWoLShyg/0OVSlhGeqJesXS3/UuwLC9w2aIXLv5eU2T8UooIeWzzwKG3Hi5dSCBIuh4JExuJiR9/il45hmO04Bw6aVs5F2Ees/7+QH6DvwLMk/2ktPkUs/jPYQTe3dTigYQStenAdZiQAZ7utzbdu4GjXTc2zbuDlv9ru1fWhhpDVr9DgshB9moht8+odtUYvaWpP8AZ6qARgbSWjjJeYDEth2r6jR0/ITT+cCTH7hvbyzkxpDyhMYoZstAgXHcA9b+ua9/sJ5fOxyJFwXjLEE5/+bGnvO7erVSTOjvB/vmexqHU5WnFlOprKDXrl3DV9beunP3d19cL7jhjIvckrqo1JEyhrueLOnPP3HiWpgX7EST0gjTtUer8zNPXHmwtlL6Vlh/7Q8aWvaF2Y0n5ksJ461vfZuqYv1zz1b+LP4oeYF8Y8+cGEMB+0CKwFheIAKkFNeJwQkxrhNNC1oAEAA8H1Rr9JuFqKDWVoXNkloKQm6qtdwgm1/64vM95/lnn9p86PLa/l07lxf3eJrLNkV6NOlIH7zx7ZU1M328dJcwsc36lcJjOtXnvi+jt4zerUeADZAa4Ksvvf0XDgtw/FVvr4ZCIT0ylYLuIjV1Lp6jupa4eg5RiBhfu2qiNHbsVJRej4WjHDH85rWpHbViPFOKxSwZj3GNRsuGNhYTkRirZyOtaMSIhVlt2nIy1dVsujmvKvJOtTNOrLYK4hWgftE/p26ncGSdA4yOWXoyFDt3PspFpBWPFeJGw1w6O1svjabsSiIiYquONKNavLyYL+Sm4uHcrngsVRDMiO6L/MLNv5w42VrOmpNrnTyh5IRnUe3ybOoFsp+cJed7Z6KgwX2ga91pJIyuB/E7ohPKdXqVaFoQ5Tb8ajwpTOozkKrs2LtnZWluZmqi1axXVf/8SIgswIIV9M8P4OuzzRA/QlbDOPA3B5oq8DObAnzPJpCg3JeTyk8dYAe0+66xXWtfnpnXQZbdQnjProl9IWGl33qtA4JNjB5bjRqxmLnv5V1dZtejKZyC795ZrHUS4ex7GvZrf7DcmktFTDtKR3aPd2OatrRz376D80aU8lgyn68UI3YmM9NAs5zWRydXw7E414y9FZGzQ0W41olm56scWsm/qtRKS2OHdrjVsYW9FUIoWXv9A/g8znpwXfPg+tGeLYDiHmC0COCBNQngSan2oJMykv6DTIPCj9se0JceTEG/VGRj+4Re4fYxAHZ2MIN5Zorfbvm+oytLk+OxiEKGGD5UT96SjJJbiWLfOBhIuGCv/kxSfdgScK7b8fDZxSAb4XMNntcS42PGGIQ++UTUbjctuKjEmB8J1VuMRaZkxdx1KmqPV1EgwhkQ70/nK7nlfNICxOc+9nnbC9kUx0bjMZy1NbEwb46diMs3fU0IQww2qcWZYPgEGK31YvrEqlnRZwwMAQK8CcR3xML5U3sPagUN8FMP3fx1ipoMJ08c6dVjBPp1OCpToaokJ4CSWgQRcJ30G+FvEkACeCNI38XwcHeuUkolykobxP9BNTYf+7sW1sA3/b2qacir3s67b/Ok9+PkFfLve9FVsMSDII3rBULN4Z72Y0SF8Q0VXNY1qav20iZBc5OY4P3eIDohqJMNYll+oY3flcCP1vtbTvxiuPAhEgoNN7z/Xc8YGZ4xMjyjo864lQJJvP2tT97wnKlLZ04dbHVGKgvLc52wCho2GtWgReBdmjsOm74H6lkN+a2VtqwyRaYTdBSFVL69mnVbF0I66xt4QVuOrbAi/W4s1LJTZbWPHXatZfa2C61tPSAfFqD9689MTO/Lv/RlPLZj+TNP1Irzk6Pf+hNc4sAQY8gi7nS9JZcS9bHphFOMcHNs2KZQ/M7YpIjiqZ1rldiOkmc82pHJMc6gmArBOwt7YjEKPNRp3D/sD6n9H5NyABD6y2+xk7nHLp1/VJMSgDJtYH+lSvlcw9HxgY8BNeIrMYlM73cwFGYJdtTTEDpw4n37dj41nq6Pln/iM5kSoV5l93+nu+BfkUmyj5yC0Z7hgKEj8KEZsEKUcSK4anDAhME2iKYNM3u6Pnyr8sqmH86685mjS3c9BxmcIgiI3esMHVULdccZJAEJl9/4RMSPwwUrkWg6ahu3neHu61QIOw/k+NH1tZ07ZjrtVqNWLibdeFQTZBIm+zquuZWKmh849NuDSlXhbtdydSe5ZSAOJWt9UIYik75cxfsenqVM23vl0BmMPHU2nQw/OHL4iYfywqq+o9aZsDyneqDibhqdVtk27UQcQu1mKeWkNB0TpYxr31dkydBaK1vXdlDUli8cijtXv9yVsHdxV8TOptZDDBYLxwPtdmWWl+1k/eyxqsNHK9k9x6bG/lsqxxMPhSCsNQh4VXvz8A5fls71OukoApkHynAr40vIli6jF/vls52psXara3OR9NsPC7mtRm8Yy3ecsBxmYbbMNMXsXmYKDJW5G80HmTuIlKbGpzrriuS5pofkNIs/slOGRpcmKqlSko6l6VWK8Lyfslv1S/IMmV8oFebHKOe6bjulynz2Z/W5Axq06sWZXCKXj+yT8PGw9f+HnVNQgP+Jl/B9pELSvYQOSGAdBtoeHx2vz1IfloM8qCKlIBAhw1QGD/+CQp4zhmxpEnftEgZHQ4TDrbGmIQVl4gWkeEbWKRZT2ZykNaoIz006nCM9Rf26rT/HCr4VN0iUeDkrE259JOR5VAeOEOINR+eo8pz6oastqQw0bAr+vd/LDA25wIrUzTJF5CYr9/fOwXPw5/gg/ghJkNZnjcB9+xwAIa7Hr/6biHLQ/Ec7QQKHFowQtz3+A8eS+QL/aJgzFDykIb5bJvBHislanB2RFKkTElTQt4oIARiDP4f/4n1rnvRl0quk/33qr/q6z1ZAuP14k/IdHO8Lw9SvPaj2ATs2kXcjWqMIAJTqlOkCVOjwaWbhM+mpiLFrGYACYxw1SjUOCHiOhQlACf4W3+5RVlk9KRf9tgGD2BMy9L8cSC4TjxmSlKHM/dv17/b2HRrbsjR4Nc3tKyvSvb8aQqpHwzosNXZPpUym4+dsGumesGAtU7b1uK4ZNMaLzZFEISQIkL/GBHydF3WLkEwvieA/qRMgAoeB6BqJQITeWXMsYEexPlGjeqk5VtAwUS7Up02oFSodHQlBJFjC//H/QZQNM/8oUTYwcQ7f4WGoRUZ7ra2AeD8Orq49gofvjIbDP240HOdUOHwkdK9wOEFIwRfwnfjjJE6aZHcfwCEKQOBp9LknUJbbDkaUCjR9PD9FAeDR8+c/12ptAfmWDvA+U915DK4kKolKXHuEUSYLlAPsefWOI/iNxUIyFdcuAcQ51+nz8rbPg26Nf4XfTvYQ8dmZMEy9cfNvP7WrXv5Dd51AwgRb+e/S2Ru+MGwSjQw0z9feMQ8fgGf88ig79eyo1wbafuO23dRpp0uRnGTA4LXfhNt79/nPxyGEPog/R1KkRLRXi5kwxalRmOkMkku29KBXLvnZIuLFK3Daf/4mPs55WOaoFPgdYODNV26+hzKk8BfcXHp4/6lP//Kv4M8CgsZeO4uSA1ADOX690F/7Cfj0/Zu/AsSPiH2evgN/jCTJDHmIGN93cLadM4FO9TG5VVg5fFA6Dzae3PYQdH9MCRmVi5gLgpBD2He7HsjFVsNWNQH+w95TF95RyDojf/Itj34waXB3/SR8endPWKsrxyZjZQErrc6hPel0O50JiZs/W6GfAmSMZ2yht1C4ui1CAm455uC3Zvaszq3t3P2pHz13rDrlWbUvPfjmLz94WkJ9+s0jL03q+autTMcuzh5aO1k34kJnINGinHKDfjM3qRYTtx7p6238vIed3R6NLQqYUoHc7WQz2Hrdweas8LOgAdC2BtULfNrysJlMujP4G45EGolfqlUeclzKrfYIZOHJhQWjk2ZMhqL3za6accaMVNHWGVwXOstlDUyaRnU1xvJobDVw+BDFn7m6waN+q8dBPBUYUHxWUDTYzZ/82q+lhJJzhNBD+M2kSU6Slz1MXzy13EpHFaY9fM1VhwaVFLd1KgoYV/Z3g1aDNMDAblAz/AbTg/pUX2UnO4P4c8k/lxobpJncmcSW5zU/g7+vs9Bv/YLGJLVQY2NMn1Fcl4Y0M+wIFyzhhj9o0fe+jzLBnXSoTYUedaKI3hGupxJUwzby9OVkF1G/+fs3f5+ZNeRaSPcb7oNw/9NPxTjXDaBAKdN0CX9sjHCNAkVb1C2OyEz+XUwwZU6cOehSFL9Jw978UIxRFqLfygQ3qOZ9tgVyjX0rlVCz6Q9SplbQfyE1JoVbiRoUKBhOiVreBAqDfpv/xZNMFz2qad5VMgVNn5UsuncDbn/ZvSfdIbHwv5oDeQTq4J1dtv2Bl995x+hdxVjQ9zUQXXf2067BvQaJr+oIfUL1N1LymXhQgO2udJDf8MksjK5vp2+vzNsiIl/0KdmtRukDw9wEA+wslW+cXl9H+rVfTZ98Mbc+OlKQnCeskIZnVQ7i12/+GjNRg13ywnETfBvye4YZBjeSXpkR7IMfEJzRl94KCExrNw87FDWGxn9nPp45k0C0b/8KF+t9i5P8ASH0Oz25ecq7r91FmNp6Ikp1q/60zw9Jd3vhV3USh7U0YZT3VkLxefjV1uR+ixksk5ahxJkJJoy82IhQfXq1t2d2n8mNZJpREOHJnVNjGTDjejXQSy9MjD+bsH1071w9HIJ/t7xUMxkCl1ZufJcEsN8HlYR9ebrTmy+HBAJlZliEdy5dY2OHSx+5XUfB1A5CyXcTQhc9XF4im+S9ngR567MP3X80Tz156KvVoRF9l2ZdM9u7dfnJZ/+11bzTdW4hbSmD1Z4lNK/YxoNcoHCSqsaoWfFPtK3sGx7JaMbRjRAPF77qfgtC1tLioC2s232p9GQ65feeX91pqfticrZ6v41o7BvbuyGtcB9w2mTh+eeyrT4D7XwYCgVAoILOdkJayK7/oW+DAxQiYeDR6YmQ9FTVdUDQV8Zi4Uxx5YgOYnbizh71s1ZWSgAeLu6VLTmy36mYs9MMtpdJD/js6158CyBAaGa2lMpHvNpyCoy/uLTIQjPdXNKx0gTIrxFCv87Dwwse7XUVT5W3CQu/0dGgpGeAEJ+TBrCbm7dn3wg1Mz44b+0EOVALEdyGJV+7gR6QGIRC4Te3bF2GbJ1HJpZpAwxrVoOHnmHbURA0pZ5OZoBxi91XoiI9JTxE6YIndCdcOb1nwwiwYaeeO/fmgZyhnQ7a67XxUiPvpJBZjs4BtIVMfSG3nqYI8IE7m7D9zMXHEASOvxiJnTcQmWFFJGrO/Fu7kxZswV+iL6meIYRe8Dj6mgfVaUtxdEW5BbdugfJIMYBLnxQ7CsoBxG9JGKkSiq5vGt1mw9+WKMJ9J54YpWEm+eXDKc4N0JmbFhyRTjcskcoZ+pmnf+DJj0TZbP7IdKRaGtco01ydK83YbFBk/XUsvt5O5g2KH3rwUw/FrzoXFm2GwLgpvoVrHIX3pilspICyFu+utkr1x848fvxINLF+ZOL4rN2mAFyzJhyKPCTOnOMc1GqJ9t4PH5nZtxLJPKE6sXi+3nMw9iV0YoF7dWKBse2tWAiQd5K/Zt/2pZ8z0AZd9lXeOV+7+dprdz3rT8JJ+BB+jmRIq1d3gWDaf4wBBTUIQwfMjmqSZCDDgohAYP4EKVlfR8/DWKE2VtRK2vTyyIIlZIhS40ohAf+nUqjM6oj2nkOnl1pGRGqa3HNRJ0B+A07At3jf7yoP3QECsE6Q4NPDJ+j4PnokLDlxwWVDB3km2A1T8UvDBCwVaisjldpyaylkxdWXolPJjy7gZNP7yraeiPpfSJB8Hk7iZ71vLJKdal/JQgoJro4WTKbuW1JBCQN16xz8ey+XgMzNtJqlneWdblyTpAhF7VYoNGdvBYQPivIXGYcLA1CNM+g1BsDC8KV8AsL3HAngGF1CDQ+dn28qUHJEo3dBf4MhguSH4QS+7N11ikyT+d7MVBIVqDkoWKubVtBm4IM7kwbi3W8hPZ2Z9gGfgpR2F8Crm/JhP3OvAcgqpFRr3l14SPFv4Y/vODLA01Tz0Pk5D0/BNd/1oMIfIYS+Qq4SSqTnA3KFtqnR6bkZt+z9u4o/fFX99OfB2N3mzah5/R9F5Ornqj9PfBYI9Oeosf8bnWKL4AABAAAAhgCeAAQAAAAAAAIAJgA2AHcAAACTC5cAAAAAAAAAFgAWABYAFgB/AOQBqQJ9A/wENQRzBK0FTAWdBd4GDAY9BnAG2AdWCGMJQgoiCtoLqAxADNgNkg3pDlEOkA9SECoQ2RGUEjkSxhOsFIMVURY8Fr4XUhg/GNAZqxpeGssbeBxUHUgeDB7OH3YgACDeIdcimCMvI3sjxyQIJDEk3yV7JfMmtycXJ/Yo0imHKhYqmiuJLAws2S11LcUuby72L2sv+TB9MTwxqzKRM0g0LTTXNS41LjYdNk82rzb8OC043jnXOoM7Szu9POA98T5kPqU+6D8ZP1Q/kT/YQAJAYkC2QRZBeUG2QkhCq0NjQ+ZEUkTMRZBGO0bNRvdHIkdiR5tIFkh7SI9Io0ixAAAAAQAAAAEAAFsdrCtfDzz1AAsD6AAAAADYspj/AAAAANiymP//5f8GBPoC9gADAAgAAgAAAAAAAHjaLZADqN9xFEc/93t/abZt27Zt23aYbeTZcTbDlJu9OHthen7nj+p0TaWqgSRZbwldtkZrw2zd9LNaDid9ibbbJL2xVzoK5UJfPcC3B98QO6gRyIX4KsIsWAYDk3ozWALrYDPMgRWxfBhCj+XYL5HHfYK6eX2185bos9Qu/IEX2Ct1zFepnb1UozBRzbHbhetqF8VyV8FQHfaCSTmS2BYN91I64/P1mp7Po016hmwPD8M9jWHuMJuUlR76WgFmT4hTSNNhclKfYruyfiEbY3clvwv5H7C7WnUN4h9dmNGF2GTIj3+i/SXnkwbbag3lb13wdXEh60MDYt/EHywnv5VP1hT0PF7YxpE31bPUnfuPhj1Zf7h9AD27xWZGi3UJe4KtZja7Qhlif5BLoBaUIy/FLwXFekOx2F/Yb0isn1fln9Kw2I/oMxbfO+RJ5Cvkotit0UGtpsdteMPev+Cmr5OslqRJUjZ5EnN5AAB42mNgZGBg+vafjSGKZd7/p/8rWH4BRVBBGwC15wfbAHjaY2BifMy0h4GVgYGpC0gzMPRAaMYHDIaMTAxIoIGB4b0Aw5u3MH5AmmsKgyKDwvv/zAr/LRiimL4x/FJgYOiPYwbqPsy0AqhEgYERAGVWEwoAAHjarIwzYGVBFIb/mYu17ed2bdbbLard2OiL2Khj27b6uIvtpH1lNDcndtLlmB8AaccfgwEA+wsJbKuX2QcAP/EDCi7CiM/4iv+why8CkYVcFKEKTWjDECaxgCX2kv3h73k77+YjfFyKk5KkVClDypJypQKpWHdb90D3xEpEAHQwb7C+wxaOp7J+b7DaeCcf4mNS7AFWvlSku6W7r3ts1YholmZomqZokiZolFqoieqonAoomaIplPzJm17TrbUXWo6WrcVrcWJSjIkRMSQGRb/oE71TXlPuU67XI8FwhsJU7AEZB8CPHgCSrKg4d/7CxUuXr1y9dv3GzVu379y9d//Bw0ePn+Apnun0BqPJbFmfuoamlraOrp6+gaGRsYmpmbmFpZU1g42tHYO9g6OTs4urm7uHp5e3j6+ff0BgUHBIaFh4BNCCSMKOjGWIBpKJIGYMQ3wCilxNUjKCEwXEqWm1dY1N9Q0EzEzJKGDIzcuPK2TIBACBNoVkAAAAeNqsVeWa60YMHYeW4TK4IN+52W7jsS8z23HSy4vfZxftpd/l9hn8NHLK//poPXKyTKWFaEajkY6OpAkrQ6yW4yghevm7mpx/yY3Fj2O+afNskm5QvhxzpZn9MayG1eqqXrEdh1XCKtTtnrJUmAYeW4Yp3fC4YmiN+M85rs183Ju1RsNoNVr4JHa0Y+cx8dxc7PDTxCa+K6u7SUJF3yhb41moBjviq3J+FZZwFhNA5Bnx6FycQkNyNiqr27K6ndppkiQ2W26SaFZz8XqSeFw1BD+1ZgZA9XAu5roOuKEDwE/YSj2uGQ1ctFbUVwKSk35w+cR5tMrVlgN9SDnl8F1crTeR1nycztnZQhLrBKdPF2Mc2ZLUILLHdcNDodtTlT41DWx1oEGxDjKurGywtQr/XG95PGRIQI6Fq7/X1AqJB36aJmKStkuQw6Y3NKbCKGg5W2SPmN3kj/a9WK6GHhmnFOU6o7UBU8oWNplsgNxEydWmztr9EGOHXOfLuKVw66BL46ZMqDc2Wo1ix9ZO0nI8njBFpRLxWtb2eNLAkIjHwxdyHQsdJDwhuwXsJrDzeApupktKCAysIi5PhinlKfEkSPN42rxciovaWju5zBPr+kePT5iX8/HLxb7SdqA/VepPmkJNhctxMTWF+mUBT7nSpGjdoBiXjwl8sHVWE/KYiwshD9kGeU5l2JajcW1zbffPcQX/pSZBJl3g70K7u1SHFLBQ6pQGWyGrxz3LsspanTKqUJVoKeYpHVDEYzrgUQROA0oR/pfpaUtNqiDI0+Jkw+XvXPsSaDqN3E65Hp8xhSXyLHgWec4UVZHnTVETecEUdZEXTdEQaZtiSOQ7phgW+a4pRkR+aMhn6zOPW+XiK4/dcvG1x+8ZxRPuv8D4PjC+B98EjCIdYBR5CRhFamAUeRkYRTaBUeQMMIr8ABhFzgKjSGPoYdlqnkHY6ZRCgRBKOSDZSL/5hj2XPUzSFUPUpUMqobO7Wp6xIy3QSh5f3SqPdZavtIq6dSaKryZlgtdKZg49vm7oVon3BuysaH8QTBiCH6xXZ39W8tN+rO8W160zyOgm8gfgg/GyCrO7Ht8y/rmHHt8+zhRNuArzOyiJOtskn7oyvKDyeZ53dRfTHq8gf7Yw0bct68xpxL9rgAoDgr/ShEdCdz33NdHDHL7ubR+T3/fBNR2IFXEq8/50Pv6pQlWyf6rMVC8mgbyBwyEGrLTWHUwfqrkHLYGN/mNfCdM1zdUwW5uLsclsrFN5g/beyTQh9IzuoIYaETrIC6KMktJBQbRE0ThJIbmOhqrv8wqPklGzBIHPuf4rtx0LJb8vHBA09ZkBB/ohqHkgauSqA5x1dFeCSbUeir5MYMCoWop9eqgdG5pNJZxtU95oYvd857dvv1AHdfCgMlra+NEAQbhZmlS+nvemuFnKx0aTL6x18DA/TPzCt05jAJ9sqed2qp/utj7Q5pnhu+6BTgPD99wcgaVZgHa/Dcrisw/TcKvDwO5WC2q0uq/vDty18WjgDf8Xrdj9v7pP4Gd3AUvjCdlRbycZYIyEjM38O5K/owcE6Lu7U+4i5TP94ewpmcNTPt/ELH50iP65KZR1+hTfwvqF4TsQL4W1CLxSJweKQdhXRtqRX2L52vTwzmDxBgtLFm9Nzyo1f/VY12YOA0AUhI+hj4sEDRxzLDOzZWYuS9Cgd1aQzfP3JxY7EvpLBvMnkcUQOQyRxxAFzJdEEUOUMEQZQ1QwPxJVDFHDEHUM0cD8SzQxRAtDtDFEB/Mt0cUQPQzRxxCu5T2nh3nA8N6lhlofUiO9nmR8yhhb3kuqJwzVU0r1jFI6t7zXlC4YSpeU0hWldG15byndMJRutaA7LejeCh9vrpKPp2/Te3C96yfnlLxT7DMrcU1jAHjaY/DewXAiKGIjI2Nf5AbGnRwMHAzJBRsZ2Jw2STAyaIEYm7k5GDkgLFE2MIvdaRczAwMjAyeQzeG0i8EBwmZmcNmowtgRGLHBoSNiI3OKy0Y1EG8XRwMDI4tDR3JIBEhJJBBs5uVg5NHawfi/dQNL70YmoD7WFBcAd1kkywAAeNpjwATVQGjCYMK0joGBaRvjkf8//tsxiQLZ+/+/h/LNQXwAA9AOR3jaTMwhCMJQFIXh/967N3CyscEcuG4xir3YbMtiE3vvzd5FMNox2oM92XuyGTzhnfRxwg8M1mD8N4FsVEyyM+cgByvOcsGCi5youcpl9te24SE3jPaR26zfUdmXwIoZcPOQjd7vsjP4Uw72/pYL1rGUE2Ps5DL7az/FUW7YppfcZv2OPv1apYrlxoEg2md9Rd+W5DEshxkN4eSWmsgTaxJZUklj+vC973MrzFSCabceNPjfYpKOMtsJHX8OvnCtUvlbqlWqFV4yue3EvBtYEwfG5/U4UN5dcPXHGPyHN0Md83yg26Y72tR75ui4oW28kERtXnc6ssFKEruVJOsYrqkKT/A1qDRGFaAHkwcmy20Sc0VV1I9HivUfrJY/Tw0GA9XVLjzTQwX3mS8v6uCCeI6ULjIF2fcG1oW8Y3KT9U2bx01xU3fNjXaU5+2FNi++7SanbqAzw0igFRPnYPXitsnYhYZ31+vcSk1cgOsFwOfLjquqqiB2zWXd1zbSJ5FhKUTzyvw2azfhhc6lE+VyHmQ2dbnKbTSuuNxaqT/+5XrEtEgJpTSijCx1KCRHTJ8poC84a1TB9ZdKElXxMC2RoVywMX7tAmmRiXEa8pFZl1iR96xylX5cKf9BbhMYLarzQGlqQ7EL/ibiPcRHdEwNxBaYBWhH1BY/RxqxBWcF2ZicnBk8jTgpqXuC+EGl0pXWDaVXIA+AysYTEW+Gl5Lnxysn6798tqIzRQO5FGakyUH/DOeQ1EXvM/TlA3dw2/H8AqVvYm45++QBaaUuph0gcplTnwzwfLUppiZpsM0j21HQ8ZAN8Su/xdtFdIpoAGQmfEEUW5Gp5RdePcRtcWepxwh7neo4W5QK9qZy/ZaCT3xvx1VS8khlD/oyaepLDxHeJ3gjd2MiWhznaVtiRxPkIe9wpYjLuHIKZGspOcRK3KOrGZepBX79LZyH/sX/AZelY7kAAAB42mzBg3UkABQAwPlr42zbt2fbttXKWVEDwWOe43QSs5KkgcxIAAvfNCzlJ0JCUkpaRk5eQVFJWUVVTd0yy62w0iqrrbHWOuttsNEmW2yz3Q477bLbHnvts98BBx1y2BFHNRxz3AknnXLaGWedc94FF112xVXX3XDTLbfdcdc99z3w0COPPfHUM8+98NIrr73x1jvvffAlEn5o9s2MVm3+6NRlVI/eSBozH6lIR8akKdPGzUZWd+QiH4UoRinKUYmqDn36DRk2YDBqUY/FCbGX5mUaGDgagGkjY3MI7WwJpR2htBOre2JubiJrSEZqSSKbT2JuUkoiU0QmU0Ama3Bmem4ie2hBcWZOfh5zQEYmc0BxJkibq5ubC5R2hdJuAK3RR8UAAAEAAf//AA8=",
"title": "$:/plugins/tiddlywiki/katex/fonts/KaTeX_Main-BoldItalic.woff",
"type": "application/font-woff"
},
"$:/plugins/tiddlywiki/katex/fonts/KaTeX_Main-Italic.woff": {
"text": "d09GRgABAAAAAGZ0AA4AAAAAuhgAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAABagAAAAFMAAABgRalZOGNtYXAAAFrUAAABfAAAAmKgp23hY3Z0IAAAYlwAAAAqAAAAOgJKD2ZmcGdtAABcUAAABYsAAAuX2BTb8Gdhc3AAAGZsAAAACAAAAAgAAAAQZ2x5ZgAAAUQAAFZNAACd2pxbGFloZWFkAABYxAAAADYAAAA2FMp02WhoZWEAAFpgAAAAHwAAACQHjwL9aG10eAAAWPwAAAFjAAACHCPkOnBsb2NhAABXtAAAARAAAAEQA+4qZm1heHAAAFeUAAAAIAAAACABtAxwbmFtZQAAYogAAAK4AAAG0k8nB4xwb3N0AABlQAAAASoAAAGn2dpETnByZXAAAGHcAAAAfgAAAIqSjPzKeNqcfAVgHFeSdlU9apoe6mGNNCDNiCxLmhHL0hhFhjiO7dgyruzgxRvYcBYuS7eB41s8Ztjjc35mZmZm2GOmyH/3m+mRrNjJ/rcxTb+vuqeL31dPCwSTAPC3KQUMFBi3JUeg8ZFGvBGvN+LVyc/fmJyk1Ltfm8SfB4InAfA1+vvgQQmutCyOCFkkRusbP1d94OFWHhAYIHuaI0BqAxijTYFELh0vtDIcAeFZQIbPdlc8On6hlUynEHryqVK6ZBngoSelN4KT6VRKSSWrlWZiZnpmiRrTrFKbmp5u+CuexPVU8fg6Iy+1xqwCMyQZP57qYUM9meIY/f1s2v6v/5XJBP5FlXOREb3bLGSLQ4V0fgyA4OfwVcrTO1CEBRhoVQRxBoCbDBGjcLyvF2Gg2rvQt6AEFLGov47/6KZ+dMpTsv29ak3/e01PSSUb77uKRqYw2pcpUupgLiuJxyJHiw5nzu17X6YDuXTvaDVvpu2Lq8U4j1vW7EZRIsn7XQeC5+4ssUX/jZ6C52GldURyopirGALhjahBELHJtMC8LpCx6IaDlpWwjn/41nPP3Hr+w89/wxNb18+f21hbXjyUrFfzyanJRFwWR2aaMw3/DaqVem3Kf5lGY2YmeEflKZeU6nxKef5nlWmkPVVVMuVfyfj/lLJaVa5QWhG+cNO338zMnksz1XptQAvNTD8X+9la7eYjzHHYM0+fPC1Nw8FDsUoGzR/1PxnKxY31kyddjTqdE1KKwsUPnzIT0ahtMNKANvxHuhdDqRNR/A8/Uqv5v75kWSeOI4mII+n7flBGTfap0rExSvj/DgTY578LLS+AIJcJyfH7EgO9xXRMCL0cgu+++PnPo/qzvsiJ48Dh2+78bXaKfhXm4TTchJfhRus6QwkFJEHr3CEAKUBugQBSgrZAATMU24qgAZZtWFtgI9rnwbZx00S08dSZBxGef+6xRzcvPHjzzM2N9QOLzcn9+6rlXCZiwzzOu51I8WRKAoSqnQaYCv5dr7fdMbCgvu47pDZQY3JmOvhPNKuVtr/6jptJz0xO68v6jm25wK+1XMaHyqpsg732DdiCiiBt//z2beLSiBDDAqatifHGQnRw/1EVjcnKIKpT05lcNhubvpJVW4ciXG6/PCpZMet5CdeMWFHDPJQgdIeHD06WyvM9ZrMu4jiyOkICvVrEcWNVm9f6B+lXbRMZyu3Xtj9JPGKQFLiCh5DHC0bi1MmraSLrSDMmNz6dd6OpY+iuRZFePYdWvXT6aK/R75oolbn8Wmz7D1am19+q51Z6yq3n6yKGxY8+jGK03DfXKi9S9MhJIPj4nf/LKn6eexXewKVWaiXrMi56UPIH0ZRXJSmLd1LeAnAhBZdPg3TQtKQZGNVS5yM2WQCGBVuAGN0AIdgmMOYnRcOgTSBK+zlx4+dG/VvMdW/BQHAmtj7gVp0b5PQN9vs3mP76b2AAGXQ1uA/6KflAV9CUjjSdXTcAx5LO+8tfuHChVfroa69/4rU3PvrGKy89+/SjN69cOn92fW1pcXZ6oJpJVVyZGkFPVn3n0341PTPTrHZSZSbwTBWkDxl4rU4x/nrXTbULtsFB6pmq1Sra93yhcFk7aCVwx45DTzV9P297dCOADEz6l6oBIpVOp9L0bH+hXOf9ubnRGU+SE69kqowVT/L9lP4zX1h/pq/XTY+aitynj1jmxFypL54pJCQjVpkej8XjTCJVWE+2UKr0Ver9PB25dPLQ9Cuj0ZhIkBrfr0hEyvH09n/IFrze3jRSDEezFRqq7qvlar0zdRvTbqZcse2to2zlaCHx1g/P7N832zt8eNqpZrL2+c/ZdHCyNp6Ke72CVKE61ls9ahdMM4pWrTBcKxbOTJRWV5L7vnVi32i/XeyvVtK5ZGyiz+tNCyROFQCEf4Gv4su6svW3ynkExPUEwgphUN9AlzeEdlljH1jWcLRToRJzpV7OuOu8p0KdWhlMMl2J8iaSBIRvvSNJ+DmwCJmWB0HJJ0R8HMC/0jPHfJfItJOR/5//4HT7wdqKGf9D9TfGGonJz6wdcQzF0s+vnEpQT4l7fzj2pYsnLvzWT5wfQy6498SP//m/kq2cfHJSCAMQ4nckfsZ/ZgV6W4WEfmtAQP/JAI8T5DJQoUrwvplK+OzAW3yvq9X9jzOTjUb3i1Tbz30g7j8XCYXgwtFf6cjaH4bP/qvZsv9s5EiSof5mv/1jZycAEP4atmjV/yYPwkRr7MTKoZwpCA4iI1pPIawiAsGzHIlR0AQ9fuzI8uLEeKk3IXy9JLUlGulMpp1y/XTsf/CkUt2Q0NEi05lAVVLn53otpWRgtyBWZgL7TbUjrRas/VohhhzF8IhUllBGBA1KU85xenuXmZRWLK0+SugMNrjAgmswPjgc8XFOXJiRyY9KlScS6blj2WKTC3osWkAcGi4PHUgrgyN54kT/gOcNIYvZaZstoJnt5SISzRANDrH1hbRyXPNLD7Iem5uRfCkaL3EFCG/e+Vv0G7QPhuDFjZ+z/PTVC4T0rEQB4jmGCIDnGSLCJd0wPuAnubSPSncBHEEg3ACipJ8CP0jcT1IuAAzBUHPaa9aUzI0IXSRnAu2125puvlF+YdPtS7WqPFISXzDscvnTn2aRCHvjjUqF8YhhL7NPfZo7Dn/jc3gExZxjyNc/STIr6XPfJExH0R2T9EdO27/DLUA4emcJ/je8DCU40C4acabdAIjcDUBMBLl455rXuXahFUHfdS0DSljivvPOTGoXDey+48SVTtEPvOWXmuQtR2uSR+1EfijJiUWdTKE/h9bLhxPOlZVE1WO+LfrGFx0kkU33DEoEhIfgl/As/BHEoK/VQ1qFZwkRYRMA4RSAvxKbDiJ3QCup7Xj6G+BJ5RAVLj/DuZTqjxTj40wg40xkcyqQfhIA/pf/7g5MtN/dgeDGhAAuHC/s+uiB/8Y2giHBQScIVt1Vh6b57lRPNF9OFfcVMolMbyFdHAEE746kx/1oSwa5hjAIeQAIck0SksNMpnRzpLyUhHY3MzMNM9P0kHIR3/3nXJqWUIQ0yjn9qmMQIvvjg9JQwmHsL0kDgODWna/RJH0J0rAfPrPxcz2BJwJjsMkRILIBRDqtpn0Ttt/PCxYYAdu6e23inmu5wPS5XZcR6XxnkfBUUGKjCIMDhZxtQhrTQvd7YcrU8d9xhBmmq+BOZqtWZBuF3/udPUNHmmvZXNG7wJzC4PBsc/lfDfe58ZG+YnOoNyu8YjPW2ygZjL70s61v+OGzB5NSlj4+s/CZ8xf3jRjv/p2BMRndP/rPfmS0b1hhf2boH35sKgMItwDwn9OXoQEfblnjCFjTea6tpRwAEgI9DYiRDY5EugFyWaioNGhz6Xy4e/WeCx7z240/NfD8YDEm/AhOVrT36f+CSp/yGAUNbKbRaQuCt6/o1kHrJNlU8vc9A5Pl3NFpAzl319aVPVGRStiJi5XyuYpCys8llHrBGMWv2W5MILOLaxYZ9vZ/3v7XXCFHk2KuILIpR1Kgif8ERR4Qjt/5v1T3tfAUXrp9BU0LfQVk/fdrAgcC7ivAtBG4CVtAIAXJLTAM3NRqActKBttksalQiLTwdaOVNwOWYRqW+fQH32OPuFbt1HvEEQwLja333GaP8OifTDjnC7fmP1iOScHO75VmInDzC60iwiM3Ni+cPtVamp0e3z9UL/cV8xHb1+tTjvR8k9emtNF3KmHnP520te8HhS+o5ErXQ10A291gKvioO8swQPSCbPeO+kKQG7olVv3rXMkuzJX7avWj56Xd3P8NI974gCHL0yt9SdEzZnNhZwSybGN0gtWbIxnHjBhRm1MqJnnq5uqZ8RFHDvXbzugD6Ziyp3tRCcKEsB2KLo3hA5W8kSmfmSu7yavr2cL8zP7lnFuetNBx0ZgsO0KwyNnxIVbpFcyIVBySknF79aMj44uzJ/qygw1mnlseyUdt9hg3o67JWbSWiBozpzggXPP9cdL3x6t4ohWZBTJhY/UQMxR1/VKZhqmMpwHAVGBuAaLYBCG0K/nuyLneX8SCnYa8BFKm5Y5fMiRk9PT973Fv8dAv94oLQCZwK7zN/YRH/2TCOV+4NfmBcgZIQ17rivPj2h/dq5v1geV6f32gNmDJ4gg2pwPyqeM/bb/yPU+7zl37lY6HZjqupHTNDPc4wcZHqkx6V6723bTiL6On0CnW+eUsrRV6Dvu+kcgbKmILMzpVzZfIOXzw2NSKa1juwRF3+e2HlTt92MYDVdGXRTFWi+dL2ZIXGZJlmSAXW6wHOSFmvtVIrdnZVk+zJxGJ2LZZcysz/b0xeXBqfHw4m86UR9bTcujBzY+bOLNfeuf8RzFeHVZOpnyqkZ9w2/0AjN1Zwv/oe9Uq/LWWm0WG+5EYoeCsk+8HumomAE56s6q9QVwCIdIbIGWi6wiVDgtI7NkQfg/k8PsjcyGyVboXCITk4kYbEtjTGhjKDg3vG1CyMOI32M12btDESJAWkh0TpnRK0RmlubvtVprz6Fg1oLq0Td+tiOzC4FwqqVgsURD/9GKkGk2iKpz7yYw7spRgqbhhuMlIMp1Gs5gzhWHFBivxmGsq1yv+yFcEmZlojFGaGbG4+DP4DSMJFwXWjv/2T2ZzSpw6kjPcmGNsXkAyGbMcoUQUj8zkDTewyRN+pM/4NjkBv3a7jIbC9XarPGb6H7gyeBCeSIChNrZAqTBEpNSFNd2tx6PvlSJQBqmu9N0yo/9fMrmgsk98HXDG5PmOkGS6AYoDwAk4Mex51cGh0bwle0aStamAFA6sNNm1UKch0qZRei0IvEo7KDvxWU11I69bBKp/XZ1FxpnV/FTL4SSt4uVRzykUFGfMEumZ+ebA6NtXWErMHTucTFczjO8bkO5EpTedKBRWppVwcFwIhg8xKfJ5ISlpFccUCXLsUe/cUHXs5CM/GKfVpWvpeG5AVUfJHq1fPNrfN3jUICB4ybfiFH0JpuE4/NZtQg643t4Y1YADAn8MALQOIwGNpKu+tt8OjaQDsN5G49MfDK/qeA3hDIAz2LofePSDwSEd1aq8ByeBJF3twkU7t1rDXn1kaKgexCI2ZyZrO5W6nT0zuy3a7fWC62GDp7olXKZ2Ol/8J5PIBEVz42PLA3GjPJKOrdVS0p2bOHBovjpCVmLs2ZU1u0dUyslENpEa6i0qp3rAc1Ll3sFiJZNwDOobjnNBkfrkhxvC6I+KY6PDuZ7Dm4MTtbHrPd5a6/uvzhtoDPQPJhPpv9ZbIbmyUHkiVxrM9Rxfnu8HhG/yLfqKH5eHMXG7gMhCe1YCbwdSQQUCEjpFsk3JSdtKqbQ63tns9neRuxEAusYmd7A9X+9dtclLITJYBBQMt7oyIW70A3E5H9eqhRD/wjN3w8R5ECLYOgrQjZ2/qRuqp2dm0tW44Ycuykq4OdFkhe7Sg114OqWmu6VT93NLfLLRbuhZ2xOaQZrGX4uU0tFEcu6xokKKJ8RsT4HiMRllfKgp7UJCCptZY4eIM5JSxaT1o5tGJJGtk2j8mE2OiHqFh2cdJDT487NzKNkAsZKBPf39iq4wRYSScfe3t7+/Ekn0W4m/iyoOwGDL3wkO+VatwTychC+3rLWDk0UlGGGnAmYEEnU3hozt2RimNG9BDGjr7sWJey/qrWF+93VEdr6zytp7w+RgHWH5QH1+cN5LQA0HwsmZJlc1SaRDZBfBqneMmtCvSL1lSqczmXQnH2IQSSGRWq/riMTvP3D8sbyDdaOGFL20XO6fPeEqp3YrEhknEXtsWUQaZ5UYM9NSMNkoe4Pb/2l6aH7TQUMmauM8v5436cut2StHkhzL5uDhvDp4M21PjqSy/cXLs8oeWshnF69ZOLS2P5KI1I2EEMh7m8PF+ui2GJk+3pCxTNxOlIYSkxsFCKaQfnwFlpiDDcTbKZQijLABhUCI8BhIIJAU5KkwFyLyS8B5mgc6zwbpVYMJ8OkPQGvz9e+gGQjJxFYodTd29OvC5nxsa+h9YJzj+Q4Y+QM6jFIIK0cPLDQmRuo9eceCOZwzNCuk65zydMyEPHuXH9B2D8nEnXHQlB922Ny1CdKiPxFP5eI8Giu4ztTYQC8yRMEHJlW87NUynp1aWFunhPxYad8Lx49uZFUZH1iYqPl5NF0u1vqWSuyNVMzrEyQMk7kHJh6VNmdcDNtkRSdqoz2j5xZXTFQ/fvbJH9paGI+6ZnkIv3d9OLV47FKxz5+//HwCOjPmJv4s2JCFp9q6z/CQvo7tHiprdd9v2QvqUQqQIzCErd3Xg8CJOAhewslGskqAjbbsbDGbnTaQ7eae/k+qZ18xVRx7IuSgcLrHK44WUsXR7b+7w0cRHLuz1Pnuw/DU7Qrq5NBmO3Z/x7u4kNH7rHpBx+TpFyCErV2X26TQ0GDMbX93sfe7B//QpnapuyOZqsn26DV8ma+M9I5Jb9GoGMTd2HghicSU4unCrpf7g76RxXTPQ6tWlSe4iI7P1iIY/C8HBB+BTzMDPwwOZKHS6gOEzvdkTFNY7AIwYiea1akKl9kR8FS51HbGcpk3Z8olTbSWy8yIbv+H7f/IHYdhFavvvhoN/uK2zf3L/wEfSZvtge1/Cf6RFwRA8NcAqE5/H9bgLHxXy1k5whjIE6gM6qh7v4kguQT+NHAmObsVRJihI0ziJiGinsSpTQuVcoOKtm+vBCGCBJRbXdEQ7ymfqSxurCOcPrV+duPs8oF9IwP9fcWY69iwhmt2aI+Z6bCi7WYsuuNTXdy6dO4SafhUM6yOKhOQ//FdZx6+Fs/w2MpoMZVOkUlTSzKxzzy3pBLRdDpqBdyDFVusFnqHMVNPLBXNAsXmeqqZsV4h8rw/PByBP5uK8diBx3oT0sSjs9ns8qB5cFxlejLpSFFKZiX6Bof6FkcxUXTHs259IOY0Y4naIYdkT766fXr3OYov3vkdlqK/AtfhJfhXLfP6FRM4mKHPz4BpgWXC08AkyWBraPgfDWvLRlAoGcgbIW+QCtyeb+rMqGvi/5949C7x1tR7JAWgIXDrHnfoygVhlXj61s2tyxf7B4c2hvoHRyqOLI4MyL28arvl7KTbGd2vKKn2NquTe9vYZrUpQ7I+WOojHaWK7XBR4T2DJ9HjyA0nUs7nBJ5djcUnpm988ehCsV7su3zZyqUtZDajJ1+qj719oIiJ69XUh56kqHjh8BSJodTIYsMTKPjc3PLGVy6MVTxTeEayUp5IFU3WeyA9MGjFM8XKSCaT/DOuaaTOn5lRyUsvOiwz+h9eP/10yuJ2nRM3BWIjJj/WPF22vuWFWuIhB8+uXM2lG69XDtctjpzt3zxy62dL6ZyFpvjUZ3A2herA6Pr6qYyKeXOXL4lYHYBgHoD+tI7Xh3yu2EmjQUcPCwYYxmsRDJBoyOtAlNpQgjFE2OQmdcYERSCDng1Bd63ruUGOw0OnD7Xm56Yaw/29PamkbcIaX7H8SJyuyGqHCg7M0oTAOr76kwmfLdYhKFW1Vm2jZpZEY9IPwXpwLCUwiA/UEYo1qre5xsY7YzNWJGg9l3sl4mkiwSqSEkmOxlhcWSzS96B3MhEjJGRciRYT/7JU4cMOI8akFUHCKHne6EOXLxNZLI+Sj1hIdBEZkaTtP7/9DknFjBwjNJjDTCYQM2Jpbe4AKSNPksVchZxhicqVBz6PAAzmAOjf00/BLJz0Y/HN21GUIozCPhAgScgtjozBBQi6U4Wd+YOLmmi5Jyy6A/NQ2wD8NQFsK4TuWtfRc/Hcg6fWjrYWppsj9WKuYgQzTX/XlsnskGGdDZxuS/2gGJ/qtKWTk40g+yV83U/VfLK2Jtp5sFLVUK8xo7OjCmLFk9oy/scgTv4dl++84zzukYxeW7Dt5jGZePxwZvCHHrmKSEII7qpqRtCbKGcSkvB7F+R6YiCDNqdFOn7Cmliz6KP84nmsVs8e7olNrdXpixGJlDxneD2xiZMxRubqVCq1eDUmESUik0acIUqT0yhHIinUjfUIIhr8d4iQIicb5l9GpG9+CzmSiD+yPDQLgPD5O19jo36uXIMv315FCaF9BjpN39NACIS3AIBvCuQ8FXShuwiXifcDRzW4y7QM7sH5EADJYQuQMTzfwWJAsLSsemGs3j9caW/GO/vwMBtpSl0HQXiOaM9+3Ad1hzBBzGim3WdK6a8sLD96eaI8bOG+yfUHPp5jMpoiVIXXz+QqBXnycc+k+LVqz6PPxSrGSj+juDdAKNxSP8loTBLHX9nYvNBY33rUSF+cmPz0mQiXInvm0ymJ9odODNZS2Tc+MpQ+56A7K+OpOir+6TdRMKmkkwaCWQCm/IjYB6uw1ekiBQaDOx0A/O4AGL1rOaqXdxw/BSBQz+f43Q5vPjkwtL5QkTKv/TxkJ/R/93buqbp27qTX0KoNi0qlUuu4Ov1bLn/2F9WZR5cWNxePmb909aL2Yi7u8uLBpdLUROXmeJ/Njy5huq+nLxU49Ddr1zU+ffO5W4/NDTr3c9d3f1IY8cnPXDvRHzn6oKE9992/BQjTAPS/6MfhMfjetsaWQCJDyZ4GJpCJW2AZyrCCTT8YCm6BAMMSxhZHRM0BRTZMBLAvOGjbru1rbvEDbkAcURJuhXfaEfdsP6unAeAxeOT61fMPDeYyg8MDtcGBiF+SG1qvgU59pWr+vF7rNFSeVOGsp1utdb1uhEVcO21oopqG+TYJxocaEEJSPqJ8QCne258R1eoxbtZKRExwunNHFZFSUYOJ6nhia1q4jA70ecuFYowxlohzxHKJIYvFmBRGpLQwevT4xb4Har11i3E3wuWWZNt/qHjMFShN/xRB1tFKisWJlPGvSUkuoqXK+JAiRMV+k2EkftCRXBF+6nWOjHGvlIhHje3fjXDkTqP/Wo6IJN+WBNqKSP/Ot+IT8L23CQF3ujFFnFTQ30ri8hYYJpqG3vyahjS3BAY9u979Wnr4b4cz+qn7STKBpBhthbfYkdNFuYhw9fLD506dWDm6MNcYrZQKeb8wK3gCbzrBxrWyKzpCS1ZrgSXLO3b0c3w7RHxTVmS1zc7rPe4Sm2y30NSGtlvnqpI6ce0aBK/EdyJIW7LeI5Exhb/VNqRC9HkGmvei5TRGGCuVxudjmbyNhCQNFVXLFKDsTGx2vFSKlCv+S1AsuVkunUYrDK+uHUXMUdqMQpGwxGB2qs4QUYlPfCNKVRthFhMoBLsDXClRLhek/PhrLmMk7ZRA1JXi/+pKcQV+reXWkPHLKOQFBME6phwCxhVn6mkDlYlSKBkMRcJ9jabfLARIg85tHyAQ3RHIQVhnavcQED5EwNUdwaDVHg2BhAicId/qSuxmA7WopqwKCGfPnDxxfOVQa2ZqdLhSymUjNlzBK8GuSVS+vuIytbtMpduptGP+cNvuh3t7EuwDO0yIxDee/Nz7F52gZi2WC5a4/MC+U3FpO056NK2UsFPXUg+mTImMy8iInGaMRxORjfR3vvB+dajgV7ADl4+vVbNnbo72R/btUwZyHfhBHo5FpPtPRDSR2mjnXnbJr1dvw1+5PYmiG7UjIMAF4W6ZkrMgzRqKsSDTxqIRiwPYm8lE3OE63+pO7r4i0feIeEGKHtKrGioIt0LZe2B94/UD+N/w7bc++40f++irzz/z1JOP3Lxx9cLZjfX42drsQPzs0IDXTc97Sl5g0XRjt1V0E6g76sB0U3tRui8PMJTyetnkZLsL6cS0qt71jCDqfRRNpvfAwgQeFk7um+/IwYk5w9KmTEw70syqGOevv35gL0KZrNif4exNJqRtuKJPp39meudyl3NW58Z4+PXXyxUmlGVG7kZoO99Vd6MR2bG7Yr3X861olP53bNeS4kaWoTDEu/9cME4Y1IQEIVF4K0KT8LOfNmj3IgDCBAD+se89B+DW7QHkLPSebPfcZ2RDImPtXtHloavsrEd3rXu8fQqH2tTZXQt6kBp/ZKj+yES7X6xWw+Kr966ZzrRbx6Y+k9MxSKVruIDvbxsOR4czmXZRjQ5trvYVmFRIlWFHSnrTdgfTHBkXyJl3OX+1x1aKeLGW841JzzhBvWRIGKiHciSRk8n8M12KmOKRBEPSuyXWtgAgnPT5+1u+jubhJ24ndtXFXuAggIund+kKhGCXuo338D1R0S4q123Pe0KUVh5H2NqNaZXvscyYON8BCRYQvS1zqH+m9mI56CoxOC69o16dB3UaDJSr5C46oX1OVHbPwSTwz5/xTCTGBcX3Xc0edaOSzMSgZK9S8vqy8uZXamUvj9WsYLF0LSp6mi57hZ6zSLCoVqzJUqQYOnI7I6YfsHBusjaWThaGGPoCZM7VFP4P6GSuTV+vb8FPteJzSOyZWw+O6UYZMCxYJVMKFhCYhuIs6DAijsV0r+DqHX6o5T246N04D4LjnnpJ45DR1l6Ar78qwusf91PT1YsPr68dOXzowOzMUL1SLhXSnq3gLfxs9K7m4wPylNQdx2TIzYWHyrSedY/RrkMVpTK9lEpntFhIKOhDRW1CIYB5UnbyVGMX7Fis257szVPzhi45QuehWg1/6LUpTumYQhaJrWYaXtRUzJNL05LjtausulSIjCRFkNic4mrieDJCgf3tsckJtrCE0hFp4Zgp0aNzX7T/YuZU2L/cK025IshFX/jSG4/vVwa6zKYcCSJkRtSVaAxLOv2Aef0nVjGNisV9IZQsElN59sbnmk2OmXHvgmSMUGc8wo6v0Ed8X1mCT4UjSYGAAp5mO3sIjgDygkIpXakd45646C6cJwPHCCFADHUt2w3QpDkALMFiOjvw/NCAIfP3L1RhrO3OZDqw9GLnevUexcWtXstdSsUlUn3BNji+1TqSOXKkxFVZPoyUL/7Ze1cFVLyAEiX3U9g/Ii6SFy66pknsXeRab/MA7Dd9vT0On2/ZDxQJiXAXeSYwiBmOunc3pA4IU9ksDK3Ru0HRPSAdVwV/RaCOqfesXuj08mfPnFg7vOi3bSMD1VwmETMkPI43wl4+iIu9mtRNXNJLBOxNWNMrYWm4R7CEAZkEpa9QnfnI3bhVVyElW3H+qa7Sr11jDBs/+OBptPDPKoslcmZZsje5OdgjkDHlVh9On0g4RKxLB725/UWUiSRRkw4dXIhpWKRvLXkQLZ5DwaqKEmLHPoze/XcMk2++gQLbVZpZQZWWyALfd1Tg+9F2INHwu9+PSnI6Ie7A9u9hiXcQu7q8G/BN75zI0U4RKkpGgWMLTkEIGAigNm3LZHo6oYNgDyh6F8hTgQmDhQADhFt7Vn0TegD+g29sXR4aTn9bamyqMeDoZs0PAW24ZLj7ak/gM94Sb590q++KCR/aMaOOCyalCs9asgp1CVPPpUq3BWNcRX2DfZbtL+vM8/BqmujCReLKiTtTB03u/0/aQ9NWv2H1RMlQJov1e57ka/EB06J0XDV700/gR+eTRAyJkDHOYqve8ZQyHNc3lkG9SJL7OQgF/d4fIHfz44cm/qndx0QyIhlix2iOFTO2/+Ox76wNKPWt5xaxum2wPi5ZjBTjpJspgu/yd18e/WVIwwS80hndA5FmhlJ75vqjuxej3cVcd66fAAbI8GoXQ76dsgBwv5H+OwvDI6VgXoa76aSdn8TLdI+9qF1DCP0f9ThF9+HH8wPnTl7cv//y8uqnr5z6P2uHY+nZm5XxGM03ZSJttGZXBvsMpL9MkbcfW13/8PkTxdjy6msf/Q8Hmv/k1JZwrx7b+kS6uHHNRnJnV56/fFKfgp8BoH+j8/bD8C3hET4TGJhsy9jJ3IITgNy0FHVz9z2R0buQOnuXgPxlk3ArRO+BtB345MaRZViCpXMTtZGBoQFbFvYk8d37iB3aWar7bRCwVu+SzMrrKtPfSi69N7v//M/b5ypxL7d1IHf1XG/vvbp+/M/yYLTsoSWwmkgcPKpaA8W4g2jfM/EjRQ+V+geGGyejEl980SC2q7GnVxERDXr72DFCOVBc2ZdNyFFgvocuaQ+dhnNwHVkrcn15hhmqahDysCZMAjfQ0CexEJBBMAJThlBb4XktPf9su/IGACTCQvHBktGuZK4rqZ19/L6SBiAzcOcOoVxrbK9I93T4XlEtELTHiWtXNi8cX1uYGx8bHhocjJkyMyL02aCp3YGiS0/oAe1pajda/CV9sd6c1qjMnvFedxQXBFt7XEv5DSYYE0ODV3VgnfVj7dpUQiXR3Dh+y0bupZg1Ukkb3DDJGjvP/8+B0b60p8g6P95j8dasdM6cuFRzxqIcvyfflxuolJt/9XxxzBNITicADXJP92TGjqTUa7c+0hByuC6wkumxTdX77Q7++uCRZGqfrQ595tTpWmJjy8RT195pTl/fHzeqlaF8OR3EqX8y5p/5cXoVXsFky6qidJoIXadoApcgua9lByR35Ja9E7uGIgBzM2KRabrtHyqA8McCht9XNnqXrNeVzYmuS3VlyZdyCLfCm9xfsrX/vkLAQDBx9S5ZU/tGL8BHnn1sC67C1SsXzjwQMI+Lc43JsVE/V7gy8wG5ou0q2mV2jsRo5incaHWOa983mfgOFOYT5bJUm5nyf90jl3zfj0fJXF6PjbzO5WzETaXdmEmj3J0oCmf5eDQ2qZaXSuVdKYYLLpPns5t5KgwOylmnkEBLKOUl3XzPYrOvtxIx7p1jGJJ7arJceniE8f5DzndRPpPyBmzLMAenJM7MeIvLkYU44Se/cU/+GesvGzoFFXuOn5xGVNF4Y7wKgLDu+9nLmqH8yZZVQMZXEVToZV3uEBRwBbd2U5MAYlPu/nGT+6OjO2jtD0N7gF3C0UcJOB+CQZwKksSFh8+cXjnanByuV8v5rB5FzqTDzbE2ov9fLTzhnVkiPa8P9tA+zVzrmFoHf7o9vtwZ5CuXlI+r6HlxeIjjJ9jKckINrVg05I9qk/m+eO6JxZj10JCbixBKiswxFjOUJORPzV7Mpz47ExUy/vB8uf/mfpNMhyeJcXLmg1McTHzH4hJZpxt25kCKxdNO4uDxfcsXFR2IFl1C938wRpwrkSu+/qEDhX1qqLgUj7uVzOHHs5FliyyXpxAN9r+lZDyWDez1UwCsRj8Cp2Dzto0EO7NhDEzOnpZI1BmNCU33QJsmahVDBICPQaCtcF2zQS1rsPb80MhwLSCDku0fRitPZlIZT/80pZIB7xrOYu7b+euErcMyGZB5HaD6BUGHhcKffRVxADmVGBE3k9nE1D4hGL3F1LFBoVm84Rd6H/drI6JTmik4R48xue9D1XTJ4nhbcPH3YkogEsp/jYyIITe9hWJv1pBInN79p5yYCpr4cBvGCUUEM5hUjEbzV/IcEP6q3xMGfft5+KlfPIS02tZewegQrIrprl0z3WaXeB9+DyS6A8l1620uWDK6/OtuQKt3z1qXTze7fHoOYX3t4IHZ6f37yn35XDbpOnAez1shm/6BHKxLuw4AJu7q92d2t/o+rP0fvnL6UY4370uoRkYiBRfF9MSxpfkCXgv7+/nGg1a3tRdXKTVSik01s+mnHsh6Cr/zHhzp+E9MPrXIyl5zodl4iOMrbq/u54m63by1/VnVmq46w44ChH/gW+mGb6UV/wQEIOt6eUpxYgFrJwVpdm+H2Nu7qHv4HAttkwwuBgBNhIY0Xg8wYM8FSwB4XsvBpkZh2yb2QHxzulq/WdAHntOJlNfJOqFqdzOlFYW6a2EUlCPdvujR1qSGhZbCT+Dw5z7H2KDNOA/4nSONZIKkQma2qtvfo1Iex54eGnQ9vUdCIsHF2NSHY227OC16lG33cvxfXxOGzHDOA0V2ydPJd39USYaLuIyu5EgOM0kQY9oQbc3yQLMvwV9tOR957MZCuZhXdlfBBd+wjCIyUKMpBeeBloMpbjocStwLEtWQnN0NhPb1EGgjbIWAVr//L7Cf0wit9c49YDOEd1RfRnj26a3rly6ePbW+Nj/bmJzYP7ZvcCCTcg14CV9yw6N592SsU14i1T4jrU2xOw7aRV4fyVti7XwWrneZQJ22MDx1q49fpvTR6ybVa//XM4kLilQ2lnrzmufOjNmYeL5vOo5ElWiUScGlXZ+9FTdNwThzZmzTxMljxxqIuZyjzR4prTQTUUMxa77I+fZflKm4JMOKZjf7DleUFzMwh5w+ygxp3E2Ou2hktx+O/fP5G6VKP4sw7kUkY2Ysyin+ta8hXnz9k1cCTtDpeoZm+fYZ/N2vSkm/8m8zmdGfmHt1CZUwOL1AJgDCJACb08zvV1qJhTki9rBDSJ+8SmyH+u01BAXEk5Jt5tc2dbg4Fu2wU3tR0R1USPv26BUfpRmqPcu+3bNvffb1Tzx548qlM6fXVlcOzc58W2p4wHfe3EijEh7EDCw7RnrIvJfRaNd2mfHSk9O7rDvdXKLJkOzd5Sh6O+H/1+n+6rvY3pnwBuGRvvZJ3GrgUC030PHxBj2+xdnYPmaO5XV02sPz9rDlVJNkmYJJ21JVatFnmPIiNtOUBzHOomu5qZ6EQaiQxefrscYn+OwMN8eKHJngrCd+vHAyqilf6TCXek/h6MjDxCtucGFppjZsc8f1sQ32ykcc9U2fYCZqzoQhoplwJJKp6M99H7eV7aJiEWYyoYs/CWSaFcvbc18QP/gD3AqWPUJEFCwW9VFoSvwf2Jh8nCmVJUs4EUmA8DcB2JO+h3wIvtByLs4LhtBA2iEuLbPNNBqaaYxshBxleDa69l5QdBdIH5Eu6OsaRIBbu1c1ccnhwnk9B1iamxkdHuiv9uYytgkf4tcD4hLuInqj5Or2ZIeev2vU2JzWycH/r+1T3RrZTR+dQ2nto4SsMUm/OTrdPiy4WI999OW8iijTGQrr5rJfN81gazCQEYYrc80pMsYqjHN3bPaZuKWUSOYt6xz9HY52KcIIuZQR+nGmTw2ygdj3fOHR3HQvmsR04ewOCm3smck8+jM/wy20yIkLxvQCcZK0/V/+WFBCepayDKY0u/wAAP1l30oL8KXbjV3TwwHgDFmwOdeDwFvAWLsf1z+LRJsQHsIffj9wtAvWR/Kre3A+BBgXbGsXqvP/2bEAs4MjmZm68qMYAy17jIWHdKYb7dO1pGSps+NPwMxMYIaQMdNJvtmYbtCfE+r3f//gtfKhSm+fEraMkTzN2fZxYorwvyOguXpCrQ7WsopxN4NLnNM/p58SzHFp+19s/0s0YiP1axkj0O/2HxARYzJDhEmcQhvRGq6dTBFZjP61LwgIa3ck/kX6VejR5+IJGBC7DoAI56E9PAQ8lZruH9A8n0cqOJyk/U1Xf58s75wcruLl/471PkcwLufmGP8twfy/hPMQ/VX642eQzIgjiZPF/hFnJHjcAcA7v+k//dHu0xE6rQsROwuMBSpm1H16xn9aMMIN8mGoUNVpQhpn7v3wf0jsW3ae/ccTO89GTlGK0TvQC9GWYyCsAsDjlf9X3FvAuXEk++Nd1TQMGmnETLuCZTCuZVxjzHYcvtjhxNlj5sAx/+i9o89j5sPHzMzMzHDwyP5rRhpJWa9Df1JoM9vd1ny7uqq6uvpbENJADexiqBbDa7fNIOU9DHImfXSygTlvVHdbJVURAm2g+JVIOcULHLHNkwzmurN6WkjGIIGC4luQ4msUFsjv7dd/BFvX/5J4AfvPGOdLCEDgREgG4p4dEA8FchJITjzhzw/uwtwrJeIfvOoxQIFK7KfXuOEicAAWOEJAkNx3/QtYhM+TbeQ0eV1PWwHgJRAQXaevEeCCg9gI1pITOPjh5mh4MZLC8GZkUwJhnBG+EbXfumV4zefwoV07Fueb9XzWc8g22KYMbnXFcRCYCldAtABG0eGquIHpLeknV1bkKL18lF8+8Ebh543EOkXTNDxPMKpyFymmisn8XNoCENhfUbHpBc09uzKVq6dUh6Z3Os1i0c+7XlJ3vXg+a0o/DV/n+Nf+0lb8PDIzfiwOgJSBdaGYLLsqcFwU1qnthfb+xzNeTCY0Z3ennNx34FRWmY2phluLeZeuCJMQJI9e/wL8al92qmQ7ecWnMoBsrIdCx5wxcnsAsjm6cxrCPUp63dzO3rJdgDCSAN1iPuEZGqOkitUAYW+hf/rUxzM+ulEcRX28UWaaF5+8tx8Aa6P4OKwfMso1MdPeeWi+vn1+ZukgPiz0fEIA5bltppzOxZMx1JuqPd0UbravWkTsiXczUb19/7kza/XC+QMZB77DYCwwyN5//8gZtBeqtx9p+rLDnR3q/kcDKX/g+hfh1+FzZJlc+HSX4PiacG7TNeH+2w4jcy4GO/joTu6Wv++TquzotGI8ULGN5iinKhKU6G7DSK7GgjfEBj6eSiec/ZWUDYsyViuuTmtKHKm1cmu6mFK37eX25QOVlHZ7DMsZN1mBN3tU+Gd33KZ4R1w04/NGnHF7j8dRv7Avmzr22rTV75JveG7dIcPVt9qXih65lfx4T18ClEWBCkYuxAxBqUhUNgZzL8Rg9xzefA1jiSEbROAQjPZ1N+9l36xXrxN1UCHicAS4WfPBrvzULQf27dqxMNeo5TJxl1HSg16wK4dQzOjmlfxs6zhYxqsjGaQ3LOiB0wEfg0PrxkdgckFzduOCjm/sV7x8OYaLEAmpGy1saRZNM76s0YVASJ3//g7hFWm0rlls86o+8wYL4wn+8yKS3Ws/EC3vvF0QylKc/zQ3B3c2vwi/0deiHbKTLPbmiJDAiGBBvGOg+5xjQ9sILhwnZPvK/Gy/cXsh3VlSRKq9urVQRhgF0bsR50Z1dWkUxg8ONn/eWWZ2Qj2zPJDM3fer6bXmgmLd1isVwKC0uarS+Nxnf6KUisX2F4z0HfXZP+xVTsYArX2heK7b0Fy4WC/17g+CebViH6Xiobf7eZG8JasB9ZKB3f3r60vwI/jD5Bz5j56OoJLpOvIw9G6EZyMqAaI+SDgLvJ1gMSq3E0VJHBNhTrmE8O4fY+ESzYxYGeYH/WDjhXTsPFtH+6Yde90b+iiEqAq5LAEEIAO8PNE+JEk5e7pV3zFVS9eXqgOSlNUB9DI+9KFlNZiIkS4d02mEN7wxZPZdGmULLA9mc5IAEu5ueNwxmZVdWhTIGF9ZztasVKnY5E51ppRzfVByMW7ZUrNoHGgu3ekIZFR2ZwAZJpP5VU1W58pZ18d7CkmZVPe+G7i0LQbv/vy2e+dnDWyUso1ETLKMgzzpNI/atyv6+57AfiNDIhe++oappaBVvp4IZHnm+iL8Q1+Wd5Kz5EufaoIImTesgA9Die4fh3ZdyhCroYWP6N5C8pIMj64hd5XoFvDz7FQdHLVRSZncGHV+rn7Pq0t8skswv0kgx47u6UcXO+1aJeSi2wk71YBIcTCNi37gkAdzOKm3xuSFIWWO78cHB9bDUO/Ihg6N6DDH5mEnFUQz6gU33dHBtgAoTs/F9NklemevlEaLzxaB5Qzd27EjOOK/Z8eT9fuXDXW6rgHMS6eNCuZzpWzsZLw/kqQogr3x9hUAhDI1zvbOv79kU+BNAMUCO/53f0Tt5NTCvnT1R05Qc9kC+mNUTSyCUmw+cpCEvH1fwFLf9pwi7/rUOqACI5vDBBWMbkR8rCObM/I3RtRYbgD9TTrYN+nQNx9Ijh89sG91pT1dKWZSps4oOYWntMhLCbOhR27K6E7paF809l0mXRUpxmwAY5cm9F6qNWW+t7TbcPIuohvzMh7lunCR0coxxWl0nK6CoOcUvn9e17JZLSS1gQ9H9iMwFqr+9AdQtFfnczM7T8+4Bos5ub0GR6aoL0thp5FovWlFTcd4GdTz8dLDV0vSck08H1kOguRY30acww8QnayTY73DNkgBR4kUTMjRrdwRcUyAnAIj6EiInGns2b263JoqF9JJY91cr1VU4Qe8miNtIhciToSbIzZMMI/UVjXKSf+batJN1n3Xj9faCHAJhOPdgBSFS0LqXiztMgYxR7DUUiKOFxM1301W/PfONDxOv0DjTtydQGemalr0C5BwDBViuV0OhYDw63zdooTg9T/qW5ZHQ1wOkLf3tDRIMQOc4VjpjDDinN0/CdHY+71jpOQnmwvGrz5r+0s9xzCMA8b+ab/WnQ7wzLZhAk86IrwKzsjCw4RNqj46WRixZoWYglZOeslmPJb4nHAWTmjKmi/n9ZwJzrkFJVFt1/pQ5wXPJosOuww02SjHbYGoSrw1XvNjybJ/7ZcElaUrFi67VuYnWo8v4dy6huVipuo5ZQ8T2XkD3q2ZVmkm07QABusZ/qW/nh8mH+jpLwFULgjkdOxJcsooZzeuakojXBgTt0sYEIvdrIN9kw7hqr6/H6E8dqS3c34u4dkmo+RhfHi0quM0dAg3kx83G6OL40MHJxHK7hodOo+LCyMa3bDPkL6jWrnZar+Ppt2p+Uy1nCuW8k4yG1cF930/3c3nJBcbTMYVpsesfncehlwl5xDPT9nO9KJc4yZnkEqoW6gA59oj1Dc7y26yUay0PSdZ4iAVymx3vpxmFCFz0raLSSWH1KukEwkAZNSd3xsT29rqtDKTQAaXz2U3KQYC5GJ/5rb1Z65L7v1UbWJnWCDIKEO6Md758WjOAr/9Zg3sY9Fe0EUy3Rw66F3shjQQN3fQRzf1n4nnR9C6weeeXgRe2FUewxO604a5yZ1eaNki/tp/efvk2x7r36o/C58nryKne7ekPZPq4r5ToaQaoAsm9JE21BQM9i4ISMhQEaoSQ1VISL//yx975Mrl6UyhudhpJBumyAfMWYNX8gd5L2GMIFy+Q0sSDxXjjWpxDW8wJcHp7lLspg9Hi71SPS3QyC9xq562OdO3fSAHaueIoz2sGk7BRXCW85QboRJNzWfL9RlElY0szoKuZUrU2oWHALnlZ1PdmqYOnpwETJiqGwiSyRB8wbXmbSZQ33E1Y9sCpHfaeK/Izew+NRdHCd7VgcY904jPVDVDpPW3Lg5N0gWv9MiblWxegYzQExkjYfp7nfJDg0fbFUsvW4mziHw4PxjMz23kUG+/AQpfB4Z4VAWFU64Elx2DyboqITipBQinJqAZEMCYy4KZuY1cTGWyzeV2oxnRmY2uJr5Iux7i3n8WAF8VE8g7bjJZ2JNENFcPLz63hZ/AuzlFfWpbujOCl+rdxWR6WXBmrj63oR+jyj/+VdQyyjSX2hNiiOSBPoa8j6FDmgHrcEipS0Kkxsy4qalGOQhSRtR8o1dPThK+j8sS/PbhEwfOvu0ux18/zf3t9VqhuC2bS8ULVMPqmpeyAd66/c6jd3xTnN1xNJt69Edbi4napTsXZlJxkDs7/ZAEQSKur6Hof6+j5O5g9e3SUYosBOyZs8DWNZBCETIIAwgRzW1EyO+OUydiwSxfunjL8f4461PN84ebtaYusuOJ9v3keJqjyGigcYY3A8aXZcacpc9cUoPL2ZNS0O8VznaqUuxKZXUlDEatNGNKwcdEoiJZOvh+QnMOxw54iqRMxCucbd9FE7oeLaHXG8u5FdeIj6JVSm007VhOK0uDiFUetQw7e44pIJljSMQgEZcB6Mpf/bVma8O18vXnF5u546MwVuWdYTxnDb7cx3eVnCT7e71lAwMnb8TKEu5/yO0KEJJ+BpxAgkuk87OtSi4Vc3SVrMKqOiB0H4c7AzgiMuAIyQCsycsYIb+GFN5Ngih/tv0QM2/dOZVbLamaWtW1g+tD5Bhj0jqYSe83NYqUCXdWF35c7bzixtiJfse+dOLom/PenKqJpKJe+7trfzbAKmSF4NRxuGQXTskyvGLLeEmoY+DPwj3moz1NA6TTwEQUTCgTpILigxJEYAeuBkBF0hhxoFQGbcTGzRsFNyLCU5ZUqlmrpxSRiczDCMxJVtPlKN4ZqZqtdDxTD3pGthxLTu+sZJxkSdpFlc1NK5UKG2iUuMKT6bG+NhqXTNhh5DXZrmebnjNlUbRBPWW/+x3qSG8w+zIiD7mWvwBf1UflINno6UiQk+aQclrvw1IlnCDhD4bJ1eFWIQqwT1Kq1QatcOPZmvUjGwf379kd3k9N1kVwgLEUUYZGrGnjGinNsbcrKwNpGuWYBb8bAwnHqqaTX0iqllKpp91KI7VyeLpatpRizk2WNa6mFsqpZNGyW3U1Z6nF7pnuWiGZh0NFj2tm23N9I7hB71S6jcOJtu3krWSxmXBrDlOzhjGX9m1bVblZcLNzs2vd6Ww18p5eiS8j+8mVT7nhzbeI5y8k2maUU8Y3pMBAQDAUkCgJs/CMJggkaMUIvTJoMCDn3E96wdKMH6g3lUBdD9zWkFh/nGwbHyTKVaXFEkPXaswtMWnWlqp3SQloNmc9J3AyS+jFoTsjzZfUhK5KDqbhpGZcLmwXhdSt4nSxMLVYr0IX3irDc2o4tS+rWHnl+ElAyXzzg/5creCC6A/FpNzR1hlyJ52eT7tLU+aH3ws4tOk74HPkNHm6p+dBkTtbYTb1DTynDCSDqwPvXsqh0aIAMJGqOBuxI27utmWPCMbT5NRUM9VsJqc3OQV+YsIVCIlPF5LDs6ChFVydOAsKj6cnvITxGj0tmDddrLZmwK0pYr5bdo8GZv4Y0JgubdMVrouMe5V4o5k0KejtpR17TCeRtBPeYDcbmAKmH2wW29N+995uLnWwkxQUmjKbV679hrRjeZBWs+OAQOTUPV1M0pSt6VNr22rd5R27O164tSUQ7vT/Dr6X7CatXpNQ5Ej5BgnZEyPxi0LB6dVGczo2uAy5MvKLRpujiS1lhNcmwAKA+pjA26szKa/QTmeKzT37vaI/eitHsOIJ6SiVaXALmrpTMVrLvoScCW+L19v5xqlXHqjF/b07ywfP7Wl5o935Rhpn63739HQjdxyNjfO5dKNoDiXps/13u4u8smesAkI3uCOPkSjVCQIDZMH5nzMgbZEQxOAEMDawfC4JGVw4BcphI2p/s6aXesZ0PtOZXm00ymrAVxVN/XNDs7oaYBgt0qE19BeHHNeB6hpBPtJ08Kb6zn2H5reGr67QvaooJjkC3UHNYgG9so7lNC0kyyWtD2l/DhK5THU55s9VPEHby3vWFp/aAtX7ZmPOGdRXNIcmufuXIpsXJ942b/lGvk7z7Tc2A6ytYHbqFx9bPuKKpGUE9mFHH3vo24e7yTf0zLUZVFjMREoxMpzLRGGcKQ8SHjC4XyU6Mh2vkqDJ/SpEm3XnmBbYyjvAwGEe5uqgH9+4oSNDevXmPS/1ikAunDtxbF9v++rifEATNyCn4pTcDXebYZJmc1NkXEbuSGRegwmMZmmTUV4d7QBGczpWB+GswYmd9eZSfbEcBspTmpqdStIVxFazkjGRua7C1VZqevpQTuq1qdpCOeska0LRXF1mY3SF0o6mLBZM4cYBYmqxXdS3bWtX880gXp4zmL1f/S1DdeenC10VFau05ha3aUYlaOE5LYtKSa0Z9Vcd255He2+Zg6DAla497zvhWllEDT5HzpDf6dm5QOuCgE4DOaPDw82lQIWCVCAgH+GcPbhJ8xIAcTsRwp0MWkWM8c/oKxjfeF6de9tG6ntz/+foOiSrPkNOT023GnX/WRR5QHgS6nE6Kn813g8IOdrfiOejyYuteKMe+FcPZ994YGqbAuFkc53FWbLQrjQTOmPV6nMq82rpf39Ez+bx2q23PNAsc7UwFUyyY1Idk/XpvRkTKI3foMtX+t7Fr/TX3K3kaG9dASBwlAyYEzeIYESwq4QRRTJlkOFDYRhhlLdrKoZ0woT0O1+oT9UquRnfb+ki305GW9wRVXBEMxBd6wl/XtmJA8givsQRY5U/3lqNyaVldZeQrbe9Yrbsp+oMkdoeQ+bMZouK4mfSjqpoKUFR6I6QntW+urOm6LFGzS9v16iwNcnd/Go+b6i6nY27ph2PB8wYgnL96Jtfppq65wgIkreWSh7yfI6iUJsWCGRm0dv+6I6mBmCYnbxKgTEvv5Z3KDNzcdUqGQGOXyK/hDthjTTJSm+RAiC8jPDQx90I/oUXB/ZRIEFyEki9ls94rm2qCmlCU4p4u14J0ltCqQqBmJC4aqi7hziAxmyRWCgqhuKmUk5yUWHSAr+USMWZIWw3rjI127Z+ydakN68gslSyq7iM+SXTRel6HKdMguTWvq79XvwZ8gB5nHxPEJVGehKEEYVT9xOkhCLZIJJrXGobDIgOXBJ+mWjEEJoxYjpOBOcgyu0qKEr6GDHN4Y9Kfynu3TwKAUIR6OUbR9t6jIBF6vHHHnno/vvuvP3cmXpjdulAszpVsYJQWFDecnXyuDGgmA6NYrUSkUaFajT0WvsPFv0I2YGQReydjWZz8jg6ENHQiq5WGzKQ3/jiyn8b1UrC4152eq3sb9vVa2DRF0daaxad6XSECvTOONeYkIJxULROseDaLN3RGLdTGLtrd3o+m0/O7FW9WZujemwh5iNDwGyiJ5SKkyglZuF4LA5nTlrzpRVfP77roWqqgiDvOzAnP4UgkBaBnnWn7IRjKDoXWUOCnCvrTEFl+znHjpkzJuYNhWq1RQ4AD58X19RsiRIEhi3s4MeIRpLk4KdNjjDK+7YYhnm4FAgxIaCrpRCmX9GQJINh0PbkpZ5p6J6rJ41ktcKFPzg/SIYmLBkgHpk0YK18i0/n47k/afFSSmPxbBcvpdudfCuT6WZqAtOJYoMQhG1YQMSfIx4pkiOD7+JN3rQN689iVFpp67u2AYduPptMaJJ44PERcfZoJsMzTL8vC5HGhu+ozajZPcLZ5WGx2EJ9ujVrWO1sWsWfq5e82JINM9KuF/MKnJ9LxksZPbBxd1zfDrcSQhqk0avWFKSBgiSURPUqEO4Y1PtKtI7Mhzl5gVbzh7URq9UWzmJjOZTRMQXFbzA1UxLI2M50520FEd5BQGSMlXek27OuKSWXjmXNVPxpQEpBMyiCalYKTMPFISMn/VQ/5/N95OPkv6IVq1BOQydHUi6vEkNTNUPdICpqKl51QdqgGVIbEMJcIoyZxxxLpwHgJozTuV/UUPbEUFHO995nH4UwAVRh9PJ4uM1jBFcCP/p/nn7yzW967atf9vjDD95z16WLJ0+0ao804rWM24uJfLtcCZVio7k0SEgMtIFXbQ5YyJLDoOMw/tEMmOLC9mGJkC1IyBoRDZUMtcdmRrmgSRSF2oP9RjLiGLUoLM3QYGRMBFoJqLknudt0JQWKXOhr5dh7/nc+p3Am4IuUFYDFNMlRgBOb7dREgqUZrVTqu+Oev4m3TACTttVrlIqV8jbnQj1X10c0dL/3e2H+ueUnVFoqvHPXLmQtjXKOwAS0kXOBEujHdu+qVBAAOSAYuoasW/gC6KA4MUqF+B3kIASNd8oty1FBE0+9U5WN6UmeMy6dYsKXyhvfhAL15eadmYixLuQZoUy+4bUPPcwVmUHGYwqVgBtIERDFtX8AePppQskT13+INvBvySo5Ti6Tt/XMW49M0yBZeb6NuD4uQB1Wl45u6zM2Ucli/oYW9qhFepAqN6wgR1nAcsoQ2cVhA4bBtUL9zjt2bW/Wm1OBGgtqlY4md7JUTKLiJyd3TU05OIVrLoXmAcYpD8NgUr9vcsC4v7oUxHH73YeS88u7n7rr8Akle8uKCmwfAyrieAwYXQb12OnXb+/dskPUGojUo4D0IPzc/EFm4OlDa7WSASDk0V/a/4AOweeXHnwI0krtnrkHlrsOrhx57I2/vzZrQEsAO83A5sDuAM7WHwnuHr9+Od1h3S7oFAEooxdwaQXUg70H772klYpKMXbp+tlWpxySwcD1t7wZkiKVWnzTw2+IB3lQ/3B9CffhD5PHQfS8AoCYAUZ2b0fOEKTCRvlQjITu/Pg6+ogBfcSZNKDoJlJm5CgfKqJQeiEdO1t1tJ+zY6876oNEAAZJf4QwIC/Zsn14Of3qow/ef/ulfb1tK/3Mv3o+uJyejMv44CAxtjyR6TQSnUhSkn7AICTGDNHxUSZmdDk93CaEWVMjBjzclFx1upVgCd3K7u10QpLDmS7KmDv31KsTQN3DZSEYz7u2IR5Zay5n/SxLcc1MqFrR56pBIeVlbMuW6WqxW3JN895Yrp3NS7tYC/KsHq3HGKBRajwBJ4ZEh4DdS/UrdzMjbuy72LJNM171k83UkT7dXaqUy5sUqGYw62zMjvsOxXK33snbTi6xXilNxY369H//x96XtHMqVouFZiKwiuf7XuVvhBHeC+QBcrF3bhso/MIOVJW0hwRKgIQdJSCJBBJWxZOgyitEUQbBtGADHuwyGMVwTRNy261nTh893B/vQKMzVWvWmobItushsGM6gHFCYXN0hr6pvmK0uifKDU2mGS70JwX6/xnms4UbcvgRI2vaiu2KQwtSYgIAtfLeY7s6lGkV02WMz3fvaSqAWumW30RupM0Y1VZ2dfdUyref+75izokdqRjm9I7dVXbNWLO0hRYr5SF++pUx8Ye7CtvzukSwD2g+MhrPrixyq2UbNAaUT6/HfFud726cBpFyDDREbWa6Wyl69K2pPE+ezQrgTi177V/nqHtMvOEVqE2/6VSKULL7+gexiwWySHrkDDnTszRAsh6G2C0ghzexoTjPYEPZ/HwUSdeOH11drpYbTCRCnTkQ++TK4kj6E/GRwgwxl1LI8b4XxpwMC0EB6aVnFrv4yNRLz5WzzZJ6BhgyabRbVQQw1qbPbQuYThL9D0PhIp2ClVQtlThVcTm+7J1s98rLLdevVpczvgrZuaN3fXVF9+jjyITkO7b1za+l+CnlrhMzK15wtTKXRZMBEyvwVSmz/a69jZT10VMNOH30o1zVM81bersVMoxsnoPPkZ1kb2+NAmdwlHCGLDxvAIZwNUxCEBDAFFE2u/Q4kMX59nQhl4iZepBjJ8NEhBefq/QbLzRFCT73glOTkHzV9b9l2b6uf5Q8AW/q6ZqChHqAJNoEnrJAVxVVVzaIEhDvXx3RfIS81FeJRoBqAbODEUZT+spcVeUlIqU5YvS3gu3cBBlF50WMa4/GtUfjxkfjpnnkHdzyXONKoupSvbx5/JuN2jvyXAMKYqjCuHzDwCbhJr97NCoLrUuGkDe+/qWP9+F+9P7Ld1xsNGYrB5vxKd8OMm/98Eyg0hy7oHJEaTzyPyeTy4epLSvB9cZkAReTycXI4Q0HWQ4c0klynAFxxmpzE0d4lN5Fv4LjXsTAHVEc95b5SnXvbZUdxULFUAbuJvvM11ZanWI2dereJ+46dpIrlDKVZqZ5TKfmt38HpYFX6yGicP2Fas3Mx8FgUHTsld0wVTCp/I9K040f6D2cwEZ5bXshnRanmA7/yJm8dh25pHbVSUv13e9joNrT0xeLbOBjAqgad9917xt+p7egAYAGjCJQyfueq6DeTNZOFpyQB5u+fvcuRNmcs+TVSp6766/9Hmv6ntWlQu5SDHrx1cBCXbn+d/gb8KNkHzlP7iff2jMuBNc2dy8h45HY7xhlhmmEco0GZbMiT0NVx7lhUQQxSB3Th7wBL7pzeki5fPne224NiE9CgpypgP3C0cg+2GeMT8sjczaIpQ3kY6KyYSK+2TAO/NfwB29s9CINXJ+ophqKyJ/tOKTFLmxLlygFBduluAZU5O9oTq2q9ODSq0toNGqWcWBxaBSFt3JM8ee2JxiP+dsez2Wb9WI2sRCLr+TTBkLfkdB4Y82z8sdv0zF+1/5i9/ArciYDKCWzACLfDDLyD5WyVJ+pdXdS82BoEg1vxYJ2iwk/1oU7mrNz7Ucu1o4bpQuHbnGm0zmQy62qACy0OCEQ5liuw+fJDvLYpzsmchaldNcEjPR3cExAGBsbuXDrngmMX33UbHgosGW7wb3GHWR7a6neWZVBJeNR+oL/jPzJiYBwciKBsjE+0zktiqnFOnenZsO8SfeWOdWbSbpB4mSO26lE2qFXKKhmJl9IhJmT4AtqLdVbKuBcKxZmTM4f1DHppoKUyWICEulZFd5vCjfmZovLFsD/Xzf6wIMvYg7fRNIk0YslgaxDUMg/EHJI4zhSI+To8D0Z1jFbWUGNmwgfZgzF7FJKMCF8raVu4BvTHBjeg0Bn5wXLAGeuUqY9AuTPsYTLeIIkbnZ7MEG8VSoS4VRF2YBzCT8+mIe/k5Ry/Pi5kwAC0HSfxJKkzLApCACRAgYQDHoG/g0b+Dnik1Ivz8ND+JAR8OUEwIbjQAyN+ODT4OWCRbocbSjjckDRAY/wOOCHqKU7nsqOx6ZTqMK/JSQA4v9G1StocodViqEkBKAM/wafws8Rh5g9LdjnkuPt0Zw1BpCFEwWfynFUriAtxDyN70OLJtlbuFBiOVf9QDBSDCnu7s9/nkz16kkVEeAoQQYEyd0Uht/djzuWIkke8jz6/oNEnBE79+D/AupaeGJpTaN6jHbqcydsJjQPwHkY6fpqS6Ea92Vj5kBH5xogw11XCJB/wxps4MeITnZ/ik7w9hpjvt5Abbok5IWIyskDORlWkx9UyIpgjQopQT2qhoS1iXpG8FtYwK/6/zyuiKdeTFzxSziDO/GjpEkuHfuOckDmPD4uYAKjCQrjsqXnOk+41PO2OlKA/2ePFHDm2c8UQMKXsBeuki5RPlVKqgTn2hChN8JvwAm/9WN4qszYth1AKdOdds1VFcCviR5xLXqEn2N5VSr7DlAhJT+6K80Z3Pgk4qz9YfwG0iPiu5ME5l5I9YlmZcyCPapHILesKvF3fzcsRkB5uhQ7vjtF8T1muZKX1PQvZ+7NPEu9CC54bNafqiscULI+o5GkVEtJjmGttEOE4D/0ZdonuT6m2ZQRYFouD1iuSBSE8GIyXhVNWiHxEvyfa1/O5W0KfyxQcDfB6f6DSPGl98G1j8LPICLF75YMqRDXvu7aV1OGF+D6NUBCJ7gzW+Qeon1m31ItbRI696xslpuoLOVSsMkLYqPDgkx7MFy04ZWyfoMQSYvb2AdzK8rLvzt84O5LJ0rG0ryXOHP8jinrCcSHHgqIN5I2DQmJAaltqVs/3YoY87dOP/LwvR/dPr9+pyOO3/Hduz6Mmg6WJVS6z/BNnTNESuVWD4fcvfhUH/9TfflxQ/mJOKQDox6LJiCW8CMpGbOnTqYt9qVpebQPDly3iEBr3VSQilozAV/1SUDOnRijPihWLjkiSzUPZTPHbCvkBjFXdUUivuqqTsuooRjwzqy11nSRQpotInShDSwQyv/+nykLmAYGKpQDhZDh2RV9xhgKv/fzvsZ9ASGVTDD3RwnBf+lzjE2RC+SJ/tzffXF+2sb+3HtLISWYP6Aur4y2F9XhtlVUh/LAfT850pMroRCMMuxWR9TLQsrw2A4mw69+mGEW4OIvbmKIGEjcv0p4agMghxSl4lDBJHN+5vP9H7kwmINiGl4GHLwYohdHVOCJJ0ED9FwG0H8AtCQBgT/5BOfymiWLAMBshzJgEgCppNpnf8KigltCaMJB0QWg9Bp+FCUHoPLtEjkgS1YNSYHypZhElPDOPwYBcv0oF5JWINieA5cIJ05QoJIiV1gM4p68dlQy+r8oBHOixFqqDgAUVKOVUIJR/jdFiiMe9m8gDzyXniqXh4wlQj6P4gqx4TwIiZMtn02VwXbYPn7+bNUTcP0QvO1tEKs761s121rnjZ9e+yuxZZ0EDjlIATI4/OF91/5MTDYZ8p1QK+AJC1bkCKnhCc9SwBkSYDS5FV4aGLqEHwsFVIbFx8Yb62ECfvmihP/5P0vNdRmSyAGnLNrR8nTmjPH4ffgqBPqBDz72+OH8bK5ZpMJ2UMRi05wivfafklGAD74fTtz5zSyNoYId7FAb8eV0mgHCtT8AivLpdwOTZr55UWeIcnHh5ZYIcxh/nRDawx8mt/ffqxW8V3k4m8G0D5aFF77LaBdRaTaXB2eLQxU7ef12YK/Gu45nVnPATPKhwmMFMzxASu61NMrXEyCbjZiy6jEleAHA1L7K1KEdCAAU3fiR+7jenTeYZSuIjfzC1J7WEdOfSQ+qPEQ1UQQqHGqn95Vlo4HuohkIPgBoZ7rp2865voao0Ony63RYu1dSpmo8W57a83XXfo8qwAaVH4Jd+icIwd/qz/FV8gbyjr42evtb3rCxRwss0dJoIdxI8x46ZMlnnN4ED7eqYjHGtG+ilpaDpIHJ6mh7sG/IAusfWbd6UAMAk2EP+NXMdHOwVpz2/Zk7E64cEsZjjOqleyqWNKt7r3YVREj0EcrQYR2M5AP5RyLI95kapRogAiBQs7B41BTg3Hr4sq5rRSrl7mbMzC3OgX5RhxMg/AvlHG4oDIaFMzCg8w8p59lxBkpmf7bgJ6aqB3Iq0vM4wnI8KbRFVaEwgYgAirmzEfNdcWrbko6d9psAwazH09u2d1rarxz38NovgEgcCuve/SIhdFt/Jp7sS+XdRQjtwSjwGyC7NEjzufm00JBTa6TT48mgp4hk2MbnnKCV5WD4yC1bDmbpF/XmnJrSrX0SVpYBQOzcekIeRhD40k66biRqRSPM2lXSnmN51cNvsXR9cnL8BzdPjo7UTT6sq9D/0UTF1oXeyc8tde7MAPu1Xw8E/sbZuHYrILS+4+50eAoKjFInn1o4tHw1jt0O3Wpe2i0AVKde05ybilMFLR0gwP0KIfilkKNVfPc2v4/7qp+UA3KrPgghHMPaShPyPjq2HtWnHR1ahziO/bVRvL46HOhDjALQ3VW/yPUffo1QqHHna10K6hFndi2VilXaiprQKDq2PIT03FkBLHlsPtHav8s2tndeqgBXMLH/rJSAiW+hLJUuoVSz517idRqv+S4D4OxxO+OIUy/xtx+p1zgYdtcPC+N9JSBX7ONPXJy5/ejuI6jX7/ix/NvLS+aizYFL4z0gA4Yg8mVsQf65GYJWn5sh6MubGIKAvJJ8mVmQJ84zR789HP0kIcE2fHE8eqkP9wDY8huCoelTlIFEem33YGhgiCgdCG3Vj8Pr4WH8NEmTaq+kABy+YZsLJOEFcREaUhuOUg3D755ciHJr/n3paLXIkVnKnmoMgZluMjcDrz94/q6WTz1Fzh/tIMp0Ij9DAksCr4fXhrv+Wq+cCTfdMSDr49o35Hi4tc5DfhSxCP+gifTsQf6ekAI6yWynmMxjbHupwCizjIN5g1EDd6f9QqeaUX395PqUR11N23YsowIKguRf4fV4V/jeC6Tdm6IQvjaF4L05spBqM5sBMtPJLGQXBgiExe+HCARC/UwEFqPfbIYGmiE2wkTQJsD5uuApUyx1C8BsztUxYoNnMUWZABHJd8DrMRNiuJPUe5XgSwfoUQjhKxaA1KuFncWdAxjFc8K4+OwgK0OQE3vTKYHMMQcgf2rrxxPY33Y477IQ+7wAFDd7ToC0rv8rLuBnyCv6GuViNdAoS164RRm6iyNipEADj73zwK8Iz6yj/Oa4iA9kNDICw0LKYdPwvUbKOqp1YOHwF63HgO2mqgcK0MWOZChsTAonULUnDlkx0zSx2PZOxU2NbTyeF3xxrbtXlwtJK+F5tup7ht48auiFZY25i1O5ktfVRUlxg6wV13dTGQo/EItrFC1h2dx0EorKkEkxzRiVOq4sMlAtmXR1S9J6BV6KlNdrhaS3+N6eZ6W8tq9omXt8Wkor6fjiuxbnHXUmKd+S31+nFnVC7pD+B7+PXCGUSKJ8ijMIduPzy4uJcv+fK/BvV4LPoB10tmq3GLQbfIKVGnyuhO3EdwOBQZvgd/8XR8SijQAAAAABAAAAhwCfAAQAAAAAAAIAKAA4AHcAAACJC5cAAAAAAAAAFgAWABYAFgB6AOMBpgKKA+cEKARiBKcFOAWxBgEGLwZeBo8HHQegCOgKEwrdC8AMqQ2UDlkPSA+mEBwQWhEeEjIS4hO0FGsVBRXoFskXwxjiGXQaIBs2G9Icth2IHhIe2R/mIRoh8iKSI2UkEiUdJi4nASepJ+goJihhKJApRCnUKk8rMyukLJktjS5FLtEvdTBSMMkxmTI7MoczNzPLNFY08TWDNjo2qDdmOD45IDnEOhw6HDsQO1o7sDv7PVQ+KD9HQAZAp0EeQphDg0QPREpEgESzROpFD0VQRYZF3EZGRpBG8EcmR7BIJEjkSXlJ5UprSzBL7ExyTKFMz00KTUtNrE4VTrdOy07fTu0AAQAAAAEAAEbetHxfDzz1AAsD6AAAAADYspkAAAAAANiymQD/4P8GBGQC7gACAAgAAgAAAAAAAHjaLZADjJ5REEXvzCuC2kZc2wpq27atqLaNoLYV1gxqt1Ftm7vfnh9JTu7gvpm80V9VlCRrIRHLKmmYuw6FihoHyz3SVGp3bb2WQXaLdJ7aQmoNbKDao8Oo5YKRSZpDbygLQ2EyzIN+MAw/qCEzxidnrfNXqulnVMOvaI1/U3Xfoaq+WFVDBvJXqmozVMEzq2Uw6uOoT8dPnber8VaL60O0opoyYy+9c3A1AFoRLvkAtWZvE6sUfbXI0rG7GwywKxoOg5LxMPpv0LLkDfA3I39M3sCkTtyjmQM9/MpAfYDtIF/Pn5urk+cnvoJnHXpDNe1lvFcV7y9uq2DqbOyG6vi6h3H8I9Iszx999CvqgK+OsTM81Bby/tac3fghJ70XaFsoDjnwfQ/17IExmzxj/C4V1TB+i2PMXcctuBFzWlO7i25Er8fn8veQqgnMuAh33fUNDnkhlfQTkpWW1F9KA3i5lCAAeNpjYGRgYHr3n40hivnf/wf/C1lSgCKooB0Asg4HkQB42mNgYlzKOIGBlYGBqYtpDwMDQw+EZnzAYMjIxIAEGhgY3gswvHkL4wekuaYwMDIovP/PrPDfgiGK6R3DLwUGhv44ZqDunUyrgUoUGBgBOcMScAB42qyMM1yvURjHf+e8uLb953xttX+aasvm2pKNOdu2tect27U2pvP2ZNfWY34BSAf+GgwAmB0ksL1eZhYALGEBBbdhxG/8hS0cEYAQ5KIApahFKzoxihksY419ZNb8O+/ifXycT0mJUqqUIWVLuVKBVCyV6R7rXuje6O+tEBEAHcw7tP+wh/OlNKsdWifv4aN8Uko4QSuSSnWPdM91r3doGhEt0DzN0SzN0DRNUDu1UiNVUTGlURxFUBD50md6tPVBy9fytCQtUcyISTEuRsWIGBKDYmDWZ9Zz1n3G734sGK5UmIojJOMA+NkDQJIVFdeu37h56/adu/fuP3j46PGTp8+ev3j56vUbvMU7nd5gNJm3p6auoamlraOrp29gaGRsYmpmbmFpZc1gY2vHYO/g6OTs4urm7uHp5e3j6+cfEBgUHBIaFh4BtCCSsCNjGaKBZCKIGcMQn4AiV5OUjOBEAXFqWm1dY1N9AwEzUzIKGHLz8uMKGTIBTyyHLHjarFXlmutGDB2HluEyuCDfudlu47EvM9tx0suL32cX7aXf5fYZ/DRyyv/6aD1yskylhWhGo5GOjqQJK0OsluMoIXr5u5qcf8mNxY9jvmnzbJJuUL4cc6WZ/TGshtXqql6xHYdVwirU7Z6yVJgGHluGKd3wuGJojfjPOa7NfNybtUbDaDVa+CR2tGPnMfHcXOzw08Qmviuru0lCRd8oW+NZqAY74qtyfhWWcBYTQOQZ8ehcnEJDcjYqq9uyup3aaZIkNltukmhWc/F6knhcNQQ/tWYGQPVwLua6DrihA8BP2Eo9rhkNXLRW1FcCkpN+cPnEebTK1ZYDfUg55fBdXK03kdZ8nM7Z2UIS6wSnTxdjHNmS1CCyx3XDQ6HbU5U+NQ1sdaBBsQ4yrqxssLUK/1xveTxkSECOhau/19QKiQd+miZikrZLkMOmNzSmwihoOVtkj5jd5I/2vViuhh4ZpxTlOqO1AVPKFjaZbIDcRMnVps7a/RBjh1zny7ilcOugS+OmTKg3NlqNYsfWTtJyPJ4wRaUS8VrW9njSwJCIx8MXch0LHSQ8IbsF7Caw83gKbqZLSggMrCIuT4Yp5SnxJEjzeNq8XIqL2lo7ucwT6/pHj0+Yl/Pxy8W+0nagP1XqT5pCTYXLcTE1hfplAU+50qRo3aAYl48JfLB1VhPymIsLIQ/ZBnlOZdiWo3Ftc233z3EF/6UmQSZd4O9Cu7tUhxSwUOqUBlshq8c9y7LKWp0yqlCVaCnmKR1QxGM64FEETgNKEf6X6WlLTaogyNPiZMPl71z7Emg6jdxOuR6fMYUl8ix4FnnOFFWR501RE3nBFHWRF03REGmbYkjkO6YYFvmuKUZEfmjIZ+szj1vl4iuP3XLxtcfvGcUT7r/A+D4wvgffBIwiHWAUeQkYRWpgFHkZGEU2gVHkDDCK/AAYRc4Co0hj6GHZap5B2OmUQoEQSjkg2Ui/+YY9lz1M0hVD1KVDKqGzu1qesSMt0EoeX90qj3WWr7SKunUmiq8mZYLXSmYOPb5u6FaJ9wbsrGh/EEwYgh+sV2d/VvLTfqzvFtetM8joJvIH4IPxsgqzux7fMv65hx7fPs4UTbgK8zsoiTrbJJ+6Mryg8nmed3UX0x6vIH+2MNG3LevMacS/a4AKA4K/0oRHQnc99zXRwxy+7m0fk9/3wTUdiBVxKvP+dD7+qUJVsn+qzFQvJoG8gcMhBqy01h1MH6q5By2Bjf5jXwnTNc3VMFubi7HJbKxTeYP23sk0IfSM7qCGGhE6yAuijJLSQUG0RNE4SSG5joaq7/MKj5JRswSBz7n+K7cdCyW/LxwQNPWZAQf6Iah5IGrkqgOcdXRXgkm1Hoq+TGDAqFqKfXqoHRuaTSWcbVPeaGL3fOe3b79QB3XwoDJa2vjRAEG4WZpUvp73prhZysdGky+sdfAwP0z8wrdOYwCfbKnndqqf7rY+0OaZ4bvugU4Dw/fcHIGlWYB2vw3K4rMP03Crw8DuVgtqtLqv7w7ctfFo4A3/F63Y/b+6T+BndwFL4wnZUW8nGWCMhIzN/DuSv6MHBOi7u1PuIuUz/eHsKZnDUz7fxCx+dIj+uSmUdfoU38L6heE7EC+FtQi8UicHikHYV0bakV9i+dr08M5g8QYLSxZvTc8qNX/1WNdmDgNAFISPoY+LBA0ccywzs2VmLkvQoHdWkM3z9ycWOxL6SwbzJ5HFEDkMkccQBcyXRBFDlDBEGUNUMD8SVQxRwxB1DNHA/Es0MUQLQ7QxRAfzLdHFED0M0ccQruU9p4d5wPDepYZaH1IjvZ5kfMoYW95LqicM1VNK9YxSOre815QuGEqXlNIVpXRteW8p3TCUbrWgOy3o3gofb66Sj6dv03twvesn55S8U+wzK3FNYwB42mPw3sFwIihiIyNjX+QGxp0cDBwMyQUbGdicNkkwMmiBGJu5ORg5ICxRNjCL3WkXMwMDIwMnkM3htIvBAcJmZnDZqMLYERixwaEjYiNzistGNRBvF0cDAyOLQ0dySARISSQQbOblYOTR2sH4v3UDS+9GJqA+1hQXAHdZJMsAAHjaY8AEIUCoyqDKtJqBgWkb467/3/7bMYkC2Qf/vwLzv/43BvEB8gYNuAAAeNpMzLWBgmEQhOH303P3yyAmQSqggz8mwSohxwtACqAY2kA7QAfZ6Fkb4Ns8YzhWArLhnkS2REqyI0VF9rzRkANP9OV4NX8yOYbyM/9mKr9e5b8d8h3G3wFjM5cNn7YlWx7tWHYU7UT2pO1aDvy7dzlezZ9s3WXkZwqhI79e5b/t87etUcV26zAUnLW/4u4eOQo8ZoaUud31qIoaK2D72Ar9/ZvKZaZjGl/NzKWfWT4rXDfx8tQ8k1aj8b7WajQb8suWrpvKunE2NTaWdmpUdJZM3qsD8juZT3Qq343u2OFsXm/Ynd1F7dK21wNn/mSp/5MVXSst1ZAPcnJeqwgXAlu2KF2WSkM11Ksr6osvLVCefppMJmqofdLTU8WsX57dquhDYZ8hXUUqcRxNnE9kzZa2GNuOHDQjS3poT7WhomgjcWV1tp7t+4kurDDAVmxaUjVKO7YQn1hZby/Icm7TirxQEWI56ripmopmJ1rRY+0Gem9gJRSi5c/3VdH+Q5R4n3+o10tTuNyXqnSDg4rry38Wrj7BT2TIMUMBhy4SeAiewuAZvy00eL1HLaAmH8EvWJSBm/JvHYbYEhu+Y0baAStENzo38erY+R1j8+To4PodhqgDiyH188QbxDvYxSKxI6cNTzQgNviDjBEfvgUz2eCvQrUfIJfqa2ccbmZswdKbfYdcQm8Vnld3nF98+wkGn0+YhEthCA1P/x6/U6jDXr/g2SNO+mzG/iFLn+acyRwjItOFugRroS/L0zEs+XK8GcESNNX2im0o+kSMJvwrz+jWifaJJmQWQV8xqq1YssrDXCPiTsguoR4b1G0s8LuMPHBPOy+ccYghF3bchApPqOzSvAKNMR/HuMYe34ydmogOGb9jNWCPD4gY97xy4jqvEiZsLYcnVnzodTzjOpapX7iP5j8uPFLueNpswQNaJQAYAMD5n821bb61bdu6ytq4wFYf+5y7SeZJ6gLNSABzH7Qs5AtCQlJKWkZOXkFRSVlFVU1dQ9Miiy2x1DLLrbDSKqutsc4GG22y2RZbbbPdDjvtstsee+2zX8sBBx1y2BFHHXPcCSedctpZ55x30SWXXXHVNdfdcNMtt91x1z33PfDQI4898dQzz73w0ivvIuGT3z6Y8tc/37TrMKxLdySNmI1UpCNj3IRJo6YjqzNykY9CFKMU5ahEVZsevQYM6tMftahHI5rZ+ZXmZRoYOBqAaSNjcwjtbAmlHaG0E6t7Ym5uImtIRmpJIptPYm5SSiJTRCZTQCZrcGZ6biJ7aEFxZk5+HnNARiZzQHEmSJuRoYEbiHZ1c3OB0q5Q2g0ASORKBgAAAAEAAf//AA8=",
"title": "$:/plugins/tiddlywiki/katex/fonts/KaTeX_Main-Italic.woff",
"type": "application/font-woff"
},
"$:/plugins/tiddlywiki/katex/fonts/KaTeX_Main-Regular.woff": {
"text": "d09GRgABAAAAAJTgAA4AAAABD5AAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAACFEAAAAFMAAABgRb9aFWNtYXAAAIVkAAACzwAABGJ2Eb0LY3Z0IAAAjkAAAAAsAAAAOgJUD4BmcGdtAACINAAABYsAAAuX2BTb8Gdhc3AAAJTYAAAACAAAAAgAAAAQZ2x5ZgAAAUQAAH7YAADoBlf+PwBoZWFkAACCgAAAADYAAAA2Fbh1W2hoZWEAAITwAAAAIAAAACQJFQcSaG10eAAAgrgAAAI2AAAEgNaAOPZsb2NhAACAPAAAAkIAAAJC6DStiW1heHAAAIAcAAAAIAAAACACTAyBbmFtZQAAjmwAAAK8AAAG2+pYUGtwb3N0AACRKAAAA60AAAdTF2OqhnByZXAAAI3AAAAAfgAAAIqSjPzKeNq8vAV8W1eaPvy+By+IrtCSZRDLJIPIGCsOOLEDbaCp41LqdsqdTNvhDrY7TEvDvMxD7SwzzX7DvMy7A8sMU+c75+oKHOh0Pvj/2iRX9zxHunrOy+c9AgJzAPC7JAYUJBhPCIZAZiaqTtUpVZ3c3FvvmJsjsae+OYcfVtgTgPA75JMQhCG47gmBCLix+aHcdTe2koBAAelFAIhtMqSUbAMhAXJssBUHQHhIDeJD3QGHHNtq+UKh0FBoaLyY5SIxEak1qnPxWJRIkcuWiiQSVy/a1/Va40QuOVAoI3HCBMurydFBfyTqH8yR749lM3G5e4AaBsVfeuqbZGQwHzTNYD49CkAgiy/GR8iTMAhNSLUSFBFhmyBAEI81aqPDqYEsE7H2Zyfcz5Miqz6v2WjWckJ/erH5NGPZTGogNpyODgVF1LefIWX+UDL3yaveJS9K5iLZfSuNsaFghDLf2paPEJlLXfWufvb5S/uoqZ79HFyAtdYqIwQCfsIF8NuDPiJsk0hDyAsUEYObFhpG2Dh2283bN95w+vrrjm0eWNu3Eo3NFRrRWj4cEkPqOzar6tH1l4lKEZPei3is/apNdk7KqPdtc1J/x/YXrjcve6X/rTYVD7kir7VnVZvzgX8dH2PMFyblMfwldSks4S+N4UeClrjl1mjskYeEFdQQ734/JBD6xWjs4YdC+Icaqf7gtl++513CDLO3fh8n+sqU1veoS+n3cXrsOFJhtxGWuv89gvQuFSTIFYILVH8fA6DQvPS7+IvkH+Ak3AJ3w9HW4dmhJKVYtYkgd5iEwRpyxjZcIQXO+MNAgQhKdkAAMAE7wFiSHTtxbH9r38rUZLmYHgxLJTjNqOIsFk/EEwmnlC0WS0VXWhW11Xo1ltADitY2cY1qs14slfRdLdpC6qm5ek5PqnmLEanlsgofi2pMopoo5rKxWKNRK35wOCG4HDnOGHKT3jge3TcTK5GK/9RUmiIbiiRGhhNs6EYWHEuNzWwsDFq0Im4pjlA0RqQZG95PWCRXqY5TQciSSXFypfoL8VEatJYNxBgSgtEz4xP7bkrYRqWC/qWJBYdH4iOJ+AiSgzb+D7XD6dvq6/fGrOlKeLHSCvMRg2bx2POkf6lcWvUhwRfRxx+3j952CJiS3N+lhmJ7ATbhJrgIR1qHGBLglPAdoACCgiYWpcAdkKCWzdwByzCsc2BZxjYYlnHy/ntvu+X8jaeuWz+4sjSWK01mbJGcQNccKBLjiX7joKnTrM4pFvdxRaOErrBGGo1C0SVVc1qtKky9FvHmdN8kUvR4T/RA5FBz5cCaZgyJVSo0RnLXbTR9vDSyfoNYlDcvEE4o5dT04VNPGUwYfop/dO9zdn8mkoo6EZ8/Go6ySGT6s2qOqJZK7Tf4JT0YtbhdELYeJc9LDiNFZDw7d+PCfLz56MmLJhlZ9SMGN4hBGGLA+tb/cuYzGKd45L0/uhqJxFvPW4uGI9MXbt/1nXy2SZqLN27pueiPRBILrQMDzRCJTN9+ASiMX/oG+Yqy2BtqHR6EL7VipxHJfa3FhUQkJDmSjSwSPNq24TkwDNj2DLiCbVMkJLRpIudiW6IQcXFscPNDkwqaUSiDgLFzdWDSBc4p4EgHqCAKywnu7IW1CldFCMHPdYFcnNza2mrFL9x64vjBtX3L9WoxnxkZHhpMFSxtvPU6u6vZNtJSKaMShGa9Vszl6tW4Ws1qLCdkgGgbpvVK3Wo0lX4KkVOy1BWVppYCLQN6ek1JQKlIo3FXGIpK6qbVfPEbpdpYPWhmxp3Bw/7SXX6jcChSSnIzfO8pvwieSKERFEcqEklWVsaL87TMT7ZOH/fZJ288dm9KXv8+KnPFBDNOW0jNz81PtvYZlA6dSAUtZ2gAt++86XRtjJqb1eFc46j/wstD1uzzRg0nUqG0wvPoT1qPLppIMqJYzxvm0iZdMc3WTfsni/Z1+BCuVDbXg+a5JjFpwFnZNVaPVzihbPCeynDYGaoDIJzAF8MXXX8YbTmgnSG4vlD5QdLzg9Gese/5uhNZ5dWGBpVXoyzSdWt5161lXlq73H8h3HJJ4HFlBQbAaQUAQVlWgHvSGSLiEzya03bPce1eo+m5oVAijsfDfhn72FDlHhmmfp+w3/Uu+59NEf5BnH/Rne+5TQSpoMz+wafe8oM2ACq7LrCoPmNQf4YXZ+A96Vn9GZHmXLWqFttxv46Q+gupTwtpc7vMOPd1P8fnk2i9610Wkr9H9VG7v/vinffqj2IG+j5AHvmADw1AaGELP6o+aw1mWlMrtfLwUEJKwOUGIUA23C9IEYh6BELuQVicH0zCGq4xEZ2IeFxqU+9eaSmsqcfRNj8h9WtPdNsXro1LJFzHUWpqwb0jGLOrZ4bza8yKB2z2HAxgxB+MYuB5diBusbW1M1VbDywNpqXESCAYwUB8dZgKfEciGDBTxUB4mBmhuC0EOY3yMZ8ddnxvvUEIOx4y2PBoMWUGIiE1OBmNbm7aTsj31lAlgRRQWfOfJp8n6xCDemvO5AQwEiKMel8ZGGUPEwRK4SxBALrFkQI9Hg5HwrmwEKmJRq2ZqbsK6mSUaGUckS05mfkATqBl+iWOB4O7X5Ypufulv0/Jt77Vr14ZA8bulwMBHHdl9tI++Dy8EAZg5olIX8xpAwBuA2IAjw32Xjl4bOuJgbgrzw0tz3tDt3pWS/OJTKqYI4GlgBG29gnk/kAqN5dvzUZCW61AmHFrddtHhf50Gz6KMfgWUBhuDQIgwln9SVsEEfA4gBqgDtWhQD0Ts9H66NGj+pkB4HfgBWBB+ds+7MfyYS2uyuLoR22rWi2XH0jlllPZnPonD+4qCDeCCUKiFXUlnaASda2+EEzoB0jobwiK6HhcRkGKTenDmyj3Gz7c/SEu/8cnLfpLzEKf5N86ZFlAoHTpG/hJ8k6Iwiy8cPNDafWcMSDENQr+TaDUfca4euL2l4gAAKFAdvYOVa42lNTfc6B3F5Ge88Yoanv+5FRiPMPEwEREi4Yn+F2XXihqfyyjyhx7FlvbCWWTi/Vi8bb5C0ebg5HCRLoxPvFwfSKJOHRmOB4iSFgoPjg+NhgPMYIkRI5eP5caP/3d7zq1mIrdc+pdN79wdXQ0sXa9WIvfVjy8Eh8ejq8cLt4WXxPXrwHCaQD8CcVHBm5qBX1IWdomRAl6CtmRNgMJYEAJozscCYEtKZACBODY4NVHHFBpThAAMpBZyJQyTsZQCpHRwYbyTDpccbJS6OuGNoRKQyLxJRLD9ztveoPjSy06RoiIykIkcmY+7CdRicG5TIrSCkWbcBrGCs1Zfip2v7T7xWAFAHU2h7+mvkETPvTEIBLAjfayjgJj7rL4NwUC8G3gPLIJhNAtoDRA9TIOK9wwIDCObOeaKM1CuoMCrnCEw04/5mmGHXpMe/IIQnV2cnxkKBqWHJrYlJ6N1OralQQpE5oh11PLWMbV3rYI6FhNTXFVWzyYHn3g2A3P8ZNc+my+tXTsPRYTzCqnd99I8PQDIwcO7VvME0Z5ciSDP5VPHbnr5s1wcLE6fnRkZR45Ru0FSj9OI1GKt7ywtH1sbavGJCf5gWQOUMdP+AnyDjgDu63AcQQZRi4mkVHqEVsxEKSQIC4C5YxTdhEEcCr4DkjpMQ6MuUlvnHQInLxyFoIElDvd2XvmVL6jOUmddc8+Azgh7Jw3iRE3xkogHDm8ujLfmJ4q5keGDAFn8IzZXZ1mW1MT7fTFS2Rk200VPVsrpGzHTDp+miZ6mqu8+qVeuLaX08CXDY6cXwrmzEx2zaFHm5wTY+VMZOCBA2vPCluFVDqfisvG4WbaaQUr45QIkh6erORiqbkisyilLDqYwc9kBxeOS+ShzIrlLN0cJYjEuXlprFg9MD8dm8/lBxNZTqbqmYPRW0cFItFBBRfnVvbHA4PEZAyRZOMDGSCQBsCvkB+CHJTgua1QIUE4s1Hrfwh5J0gesU3CBVLC6QVgzL8pXXW3jK4hGAHG2UN9sB7CMwiJfB4gX8oXIQe5ghOOx5Vh8Il01zC05byeqbtZYTXhqPjVTQkT1VjJoQn8dODhFwTMkQnLYLj71NveQUgkLG66CbkxO/SRP3yA0goyYpDaXOVvv4ZE7NYq1bEAl1j5Ap7Y/Si6lkJJtrYUR/DGVngKuZhDyavI6AFEYJ50V4FRoAwuAgdpcLlj6bkEUAmRcD2EztaMkLYR5jaYZtzsiHgVBBcPXXP+taZO/j+ZmjQ7SjJ71algqJcG7b1F/8RW45nOMU1yzptJTK0uW61BhH3LjdpMZWKsVEgmomGfJbji9IitdKbZ9ue5RFwrRFcBPBen/q82qm3PVp2LxfTtUqyTx7gg9Z+GNe4byGRjkgb3ja+PRAZTxRNlJm2HEBSEhPcfXN9vcOP6R0eS1sJyJH7g7MtuXp2MBIYNHP1yJpkY5aPjy4Xtu/KZg5IK9hPDp+x5IlJpFvZfEOQnK9x53sntx3O+WL5O/TQ9CsS1er+rZKMCB7DwhEDBtR+xFL9FYNq43w0AdBsoVTLAuWvm1GoI0WeytPiU2mi8+O3hWmQKXTgFvRw71wJPPjNwsms7c1eAUfsmvtMPbZWvjSJEnPOwQltKvfaqJhAdqxTDUgxOYLGkVjaW8PJQZSA9H+ato7adnnnUhjThCkIs6klGY4XUivjcePnw9DQaY4cruYGZYIz75ibqoYFIcGNy6djBxuri+tDMEE1PFhKzPmsmUx0MGgbZitPl/a9l/uVIoD48uxhORJdqUzajgbWb33f/B6eK+xrJ4XRy6mv5xOwDW9nh8WJssRkKLSy6udM38K/JD8IcPNCy/UhxLuVGO51YD4ESpDtuLLjHE0W8RMsb99hLte8SSh4GpBTPAaJedKSKr5Y5VhpOV2NM52UqN69Vq8qgxdXfXlquI72Y6CadCqIZcv+L5ZoYCkWjw5uPvfBgsBglNYshspHwwBALnoi2Kjf/tMmkYATL+HvkvvsIswKsdHOsmqbXv2ZsPTBkms5AZig4/urXjG6tChKNDjqEAlCYcL37O2EYZuEwPN4y16bCijuCG//Hg+Hp+emSGwwXXQK0rOzJCT2jUagVS13ZSSR0SIxRXc5omxc3b9Sk/eRsPRQ/2zx4hw9J8Jhvnmw+f+vFi0k8Ml+WqXo+medLizggGrv/dcPC2AHHyRmbgYxp+FajBp4cPbwwMTTVXJ8X4bixNmMUyfLW9Q+fz1cf+O+JZQPzidGJJC8UMSgmdv9g6Xh2MDU0kTFmzZjgYmwpBX0WpApH4BMtK4iCUwRGPGILwBBQW1sByARq5XX1UBHtmYp4N9rMdcEEuCB8pztpD7TyTKBJqvX82ihK4ZyHBepGRNZALjs2VS5rLW/q4CbqZSPaQ7fV26v4Nufm4r1MRotyTa1ir7Koxb0dBhV/KuawAEtkI3ImU+JjG9fNDyVHirUjlDKTxozrKxPLuZ3G6vF6YuhOK1wcjPk5ny2yxqzBS7fF0hTRRIv45uZfJ42Dh/IHa4sbxZpEJOGz517/hgvzq0sX0/gfZDC+snGwXJzmd22cyA5VgLTzUvxpsCAG59v0xjplINef0u1upD959UFHUxiBrlfs3lVSnI/mw64U93JZ58q01vsHH/LS292/6Oa5xM32f899whxs/3/+hB/PZfL6ERP9jxjSEWqnSFAq6iIyyQmZ7TxvJrWfBRqmCBO0pyykBCMs3Xv6363lnpOOXt8yQ4z551dFNEQRdDZ56avkSZKGGEyrugVgx6rYgBjRch6HdikA4WF9S5cCBsLt6pjI5ktupQja9QsmeZw8aQZ2/+DNb5EGWQlIU+7+5f+SARkRwdcdPMQtm2M4KAzxmudfEu7uEXwX+Tw+GyxIQLY14rFxAQil5KyXjxF6PNFdsWZGfxDPFGPqcpiq60xxPkBeEgzs/vrur4dC5FGUlAafeiygt2ak3zaQfzTIkVPJ1Ov+b5yEcCsYCxFYB4AIHMuiiE2ENcss4VYXOc+5Zq6gKmL5kkowJBbf8mYpye6f7P6ZCFOGo/918TW7f8YIBvz660U5ee1rSJgL/prn1fe/hutv2ATE95Nfg0U4Au98oo5AcaMTSOjvBkQpOKeEP9gxw7FNgZyzbWAswLwS9TXBwR7YUeBW7jKct+O5049S9iK4tLR0ZOnIgf3TUzeEpGI27Lm0uUa1t48Yi3ZKHdqE6+zIiw4D3DP4e7c/H6+MLJemFAHsu8rB5i2KDkbtEEUMRuNDYSucnJkvIGWUEUTKxvb1NkjJUOJILsXxZHpkdfzATQPFtI8gJ5PLrbHx0chI3j8RjqaRqrkUEdEeS+xu9W+i6n3IfyefVzzrnZwvffzBByzKukw3gVrM0smlBAFSaJNqUWLt2MgQQTK4Azh3Y+2YjsvcwD1pePb6O5ke3DO9Vb9ipgmcmHznynfozdPrE77nrttuOXe2EBkvl7ML5bxPDE1gNEC8jaW+iM3bLE10bHqiG8WXejbd20xoVrur1Yv23NFCF6unK2S9VCSfN+MzuUMpTTiXlbWIeEVWFirnROTGJh1IuvsgRjhoFXMz55dXlpeP3+pPvOSGaGblLbNySZx+4UuPHzz2LB9+5GWGc0xfkd3/yw5atNLIZadtXy0jRAZvnlk/mJ/TJHBRweFXpDMnakcdPC0QzcAjb/ZHZOpVt23cOjk0VHzbXdXK6ReG2GiCCmaOTmaL33PBynzP7/hQXd0Wfz9F+94Dp+dqNDBvfdKa17qnN9c/RT4JVViGR1qBJtqkgGiQDYaw3haNUbDBQNu4AITENk2p5Qu2dH7EuJcqjwKxyUMd3F6IlyvHAZYXoArV2ZmoypKdUiOX8aslq/ZS5XBYJ8mK6nCinSLnvLE5tValnOz43lhEra+7U30pfGHLJ4NHonj3XUhDZpThryUos2vDZvDiK4KW//DAwNejUSpKcf72oXh0rnrns3TVrUSxjlU0UOBTv70umIV6YyZMjqwvLQnO/E4Ft8+1lt76NgSgup5AXk9+AvKKoxPw/a3QLBAOYRQ8HyNUUE+FRoCDoFxcYAjgVYxkr4FCq8rYVWHBHszRAfgQoBrjCDsdaN+4Fn1n88haSyWr5ezoyFAma+hYXImr3iPrVXVkvBPAeIXJRhNV0JnNFrMim9OmK1ZtajluNCLqfinXt2faeMyKjGU+8Ql/I7uY8J1asw7f6Ufiv/2Q/8tfzoxFLHy0Po5JZfFTxE/p6TMWlaI0l1qevvMOJETcMjsenqiSBy2GFSRmVKU46erZEDVOLItwwlg6YxE1oFj/zemDBiJK9pKXIEFCAod2v7lwnY2vfT3hhIvAhlsv/yZ5p7Jaq/AnrWgBGRaHCGUrSLhiPofoFXSLQJlgVFyUKDgT/EG3UEpQOwvgHLY9P63t1dOhg110EjqeJX85WgGBUWQ7/djW2NPAAPg5D8zBjUeDALAKq6XicDZd1NVkTMSE6DM9bp286oWiCdfxqEtH5tRoX/LQSRqa5PsEv//sUL6QuviOMKLzzoujEeKjA9bRhn94kKGgUoisQPPEfGTk7sMniyMPrx+938cFogief11civiPPmpmM9aLfiwhkPjrvlJBzdr9mhD2qRdE5OGTP/LCw0sH71lPRqQbmQwCkN9UepGCBtz/8XwKKO3u6ST6lIBfqQSJPuHne4Q/5go/Rdjhe4XeLD+WmZjNCpHqCnvcNcx7Rbwn305I8dafUr3SFeqfKMdv/64AIYE33e//xCdcaTZJIpvOxrUsI7GMc/s38ydk6PikJ8HIYz/8YLQSffYHwm25Jauu0O5+bfdvqElIdGj/Rw7m768NAUISgLyB/ChswEtawQFtJ1ZRyA00umZCFyekYNJVbkMpNyUEALdcqnT3j+slA7qgVQTUg9oSXD6pC3RMZVxDRw4fWmsUnFgxM+hkbTHkUZSJ6QJGrt6TGFftFSO6GO+oAXV7r+Z3CvWC6FK9pvTlmjayHAiUkfgOnLIW7zBMio39wXSUlMskmg7ubyBSUameDyzudwImwzKWyFMf19yS+zSF7JGHkTEavuUQR4IWedELkRtj49Hdr0XHxwyOr3q11neUU5XCcpJQSnf/l1LNtMfo7YrR/fDKli8JhMH+aSI58egcBwqCU6EZ4pLxCwS7bPoMIqW5ZVvEI7QMSBCY5vOyWT2oR2l0dWV5aXG+2chENa8rTtZ/LVq7vO6jbVYrVHHaDil6TqzL5JRiUhJzei5168yEoIi18WLG1lTameJ4DY1Q2i4M+lJveFnEvpzCWWNh2eKccPKKlyGLFrKx3a/FsoUow5e/3OCIFY82125+g/ypsptb8Out5BIKulwlXJxOBqnEMBLJNhaQesZzDLgAweGiZRIwEGW7MEy3GVKq7KeUe/cwnn5C0Jvg1ZMmO1iGHun9kyQh8pyHl0RXmMIAsAVb5aK2jJXZ79bijFqP1f8NTahr+WLt8K70nVtMzyTU3aWr468NvMYqWPZoiBgBKy+JoCwQd/yR1sxcYeiZWdLNI8+eXrdoyHAWU+hQRKz42F3PElbQ8Y2mQ/Lb2dWffveJ4+NZa65mI62AJ/NfVJb1EHyxFcpGgsA4HGrM5Zgd6sj9FHAI2Tx0wRKMaok3DUkJ12Ifc4LUtn1b0Ug44Oc+X8DnLdu1JwWvmOSoSa0Jb1zD22bIm38lWpvo4oH9rdV9rt7UqjOVqcmJ8bFyqTA6PJR2nJwK+xwnGxdDXfvd7ucRUluay2458XYA2FEdR+tc71ZXm2xn11FaEpOIQ3tey1j3RcTa/Uvc89o17J6uvOhF/9Z78dRnetcYfPVreq8AIQaAp9WqjMFjT45YhHSTp7SOz9iW4ERvJBntbSLT20jyqO/HBPdgHNBFVz0g0d14vmzQU4kxGBvXDOq/tEpkiqOdveeGE3JzGU3gqCYwK3v+rxrDI6Hd/wrZ8dKgjxPCfYOluB1CY+8dHRZTg2IC49RQL7zXu9/Y/br7WkulqgV+zpXK32r56yMEyH5HUISOSI5KBIIE8CJHQtq2wL8JiGIbOk1nlWvggl1cr+dsuItTCAUFSnb6Ua3cVQFC4DkPhu2GsxjCyuLczHSpWMhn/TYcwkNGd1tHikS3LWGZNGr1ZVKs1TrmoaqthWt3PFZD7YpgzksPtwbzQzFKeGJ4JGAOlTiiiIRX0r7Em61yPBMmRmgwZjBE6+K6SNLGEQPzH84ND4wyJCIQoObiGI7MLR/LJuuVyWzKkJbmHRE1+WQ3bqyeIua+SW6N5Dt24c/UClyAH2/5L1y3eTgRDoJhdKOurGRuLCE4JUybgpDPpoZhbgUDfotpJ+itweXI4OVIx9RpXXtUQw2EnSshitvRW2++afv81o3nbjhz6MDa/tZ8sz45XhwdGZ7V2u6I5F5tz3m7K7ofrZT1GO6ZdqHbO7vpX7ZYzPZSQG3tA0RKbcKvYQjiAw2C+D3fQwhJE4nMch4y0tKI+1AENif5R/5QWIHweMwgwZFo3nxRzDYq1D5xjgdS/go1lq5iIBzy7ne96c2MGnGJ7YVhef6TZPfjZtCwdGyItJISIvSCx1gg6Zu69RZmY2VP7HJYrdc0vLVlh4FImEYhSWe1OiUP3l4LSoheMxOFMLbAMAJeeeUayGAP6Rh6tTogPaqBEmGnD6JXKzA1EUuWHZ2AZ62eJfZaK91NfRrq6UNNdSxXr4gF7fDLvy/sGyzY6ZChCRCH11NL8zal0SgZIE/9414Li9xQgfLXqE7onBNHeTJKON29RLnH0RAAfb7iaAPe3QpvLNWnx1JJG0wGuHEQuVeDGKFuvkBQE+S3DMoY3/bZpq5A8gD3eOqHBa+AOVzn1gSRtkPAq4zr5tQjh10vtlyd09a2kFnMZANdpnQZKR4JtxtYqtdwVcukXiJSZEs0JqLRWKS/lKHy7cc1h/fewzh+dufkMEHK7rm367FCylBr/vDrjI2ybyD6jjqm/1l3+w3nYJB6rHL21B8j+/x1SK7itYaPb9wWiTz1VikEuSccPn/4yO6/5JkeZcOiL7aowztbA7PThUTctiSSEgKSjUGkR3qVnyHJCCFUOy1KtWDqCr1tGT3Hdjko2AfyPNugHtAYpGRn76jmOwoAdajX5goZJ1dyCrmMTzu3Hl1OzrUS2vsnnH5pFZI6QurgD0qOSzL2mGLWvsHPUPITZ89GDjhGeOdZftM5qjvBAkEqdi9yzWubEpLXFvd/VQXiB/WVupfb/eruVwmjghwzdr+1+5RiD4gbT+vqaRJm4NbOfgYhXj0aKN1bYugNBr1Br0owAAiEInEb6Ok5b4zqosCTY+WprC7iY7Q/qNX/dfp1qNd606lDeskt+fxvvi6VuPcdEX5qJL55m+k8cD4+vBYkl8aK5UL9kMXvml2Ni4O1NR7Ds2/7InM+8Jzk+KvvzYf2mXjEyZ16JIypcDh132Z64QunxjDQuvFHFtLv8HL8i0pairAM39uyZ4GYUERKOjYsAyYQapIdo5fv9yIdrzpfuSow2AN6lfkRQDVqIux0wHsR2oA1as/VepmfzGStfrXcU+26wkVgUQlRt+7ltTG1CwK/8Kvy+PP9hPhuW43fecseL4A3pprLKV8yjAFK14+LA02/VxIQ5w8Y8ZixcNrP8QXP79l8MhK3ESV74xtRrB2drgJVcrNKvqrkpg43wB3wey3f2X1EGtUSge4W/QxQCZK6PSuG5IZOpTpyJSVsmwgQ17ti7vZE2OP0aeYFe/OSe+a1JrtTEARHsdOdKhWaSNjpwTXfSYSdC9tbRw8vzlemCqpbP+CDOtYtFT5xbz9kj3x6zRIxr/Ki78torxYvRanWxiYa/SV4T55LtXqxGe1rshH4+Ot+HQMH9gg1CRweX/T7+dBUcY6iySXWJ0RkLJkOBK3xV9YLTqIwKHwDh+uN89K/v+GE1+4bYEgLqVhmcNCONmOD8S++LWNevKFP/GfCzzszmxGYMuZKWT8Pr1+wSDK1tBwkvvOFOTOy4DNSZz/45jNn/TgViN/4nt+8IUwJkYFY2jKpFZkZ0bqiLMQfKV25Tq3z77cCWwGgPriuVaaiu9JVoFynwBfBB5z6+AW7pzYWCiG3TF2ICHQXLe4u9tjTTg32T3W6U5N6vWe7s1DhfVq1vOnXmqOboW656YbTJ45tbhxdP3xIH9SozU2OK8uc9e+tNHdrzV4voKuEnUpSs9tGKLz8uzhNct0sLtevmlnRUcyGq5muYv7Mz0eoNZW7NYBnFwknhBpHHIyijDnMz/12lEq/z8glQ6nvTxAU5ljKWlvDthN96cs8L3q3dW4rWEQ/pYubRwYd21NfisSMzJzm9vyZCCIipeU19ijLZwWxo2Vbciu/ZAtxr/1obLBkEHzssT4H+yfLRa3ijz/uH3TGy6PgdeD8m9LxM/CLrUgJGZZ1jfokcqAbx7tBzLhEQYEKuNhfm6a0e+l16sa5lwFdbUawNyPYnZHkurjVB6bIzimIeuU2/nAO5zws8JOe1z0Dpw+uzc1MjBXzqYG8oTvf1XLFO8ax5P7XdypLB4TtikpMeV092j5l48lBvLsVKgMkpi/c0zxb4uFbfWyyOZWbD2+SxWP7KuXyydlgJMZtRtuVlLC6cs4UirUD2RHrzDpfOHr+qJW6d40TFg8TQwok4b9UsnonmkdmJ9Z9AR7G6J0Hlm9JRLNWZESGOEPx90I4Lx0LHahnF0I8GiHxe9ZPPSdIFjnykSSieO7zCQeEPAD5KdUbugJ3tewBNHBykBCj580MJGiQixIRvYYhgTq64Yx4TdEjHQyAQhmAO30Ih+rjsAPz2kWV982Z2kPpPeFMLN6pGLYz9axO0B2vQtjL5HUir0e7HVN5DJMdDJeRyKRTjM0PJmyKhpNvDPtjuz8f8w838o6B1E4MTlsTyVGDYBl/QeWIQrh/seiFoZjNqUl2v7n7d3Ynr7cxijFiUpSxwfuiTEA7u3fjwgV4U8ucGNY1p25eOXRlkQk4t7fBtuO2542uBAW7oKSt85Mri0m2zc95GG67tb/a3Hi5VFTkld1qke9q1aJoL0FR1PYPSt1/JkWn5/KyChEzc1MtJ7R8wmYqKDT9n23HhEiJ8+jZ/csX44j9haFP/llyf2GC2te3Ep/8xU5o+DufCqBx3XNGFl9ifkGzFlGs/YFirQov+Gi2uxmVMHibCim8RLzbF1u5clgT5bWwjoIJ5sPt2wpw1gPAtjsDQXMUmJ7IZcLpa+RwrisNV73++v7cLkqkmCCKGUoessOFITPw4Avidqxis49hafrseJKbzu032EJuxP8cadA0A5Q8/Fxyv83bjFiUkt3oPS/7GzMS0zfG8Kn3o2EQXELdhRi+9A36z4qJU/C+VvDYxtFGnBPEjVVGwGMl7bMNybj+OgG/ZQoutH5R7C8spzojHpYA7lD0KskldYXk4Q4EEc513wi3vRmAmqQUgHqSU9efPKI82IH9kxlnf2msnMsEvWKyR5UUhEivkhwgbU9F1Iu9zHlHCV3t7bsfi4TrNfcWHQjffdwn/DNxg9LbbyPcCVNy4mT8xAJhUYfh71FhB4qOOX72eUHbXwlZxzZX98eFVUkbgXtfGLP86297Ewkt2OQntHrGDSF3P737RcIl+bf/aP3bx5hEgeQFzEJWIaRiUMG++fe/8SlyVLQDz/BuCT8SJSzdrh4nAMiX1UrcqqpEwfPXESS4MbMnscuaws3ZDMkZ06ldwCKIsBUK+n0272Z3VyKDe5FeijfaHtVQneRdCVELMgygHujWjSPrh9060b7aXGZYy/B8LuPsyfi091FrMEF6TAvp9kbWG6W9ot4W9j0hhYbp7WwZoO1hPYYB/yO3+wxna5S97yM03AhEzeCzH43b3Bknzyd4t/AHRwyzjTmVpYfXPkWNdGlEgV6csIUzfqRQoMQKxoNriKNxtzxaEv+GBOM0qBfA5vQXPoC232nb1xy95y4ku7+qGEF3WNKHFhYoCSRyiTsoykCc6HqqDUD+Qq1TC97VsprFjM/kvZryqJJmqpMfLd9M15V9blk44O+vK1+JC/bhvOUZbg9poFtfvgzgaUsLWqsr1dlpVbQfdNdF/RXcuzD1eqm4Z2GEbCuGovyydZGdPcUYEaGXv1SFY0sGvetuGpiJRc3QRcV9eIaeveHYCVIxTfv2Q3kZPD2It95EaCA4rYvRaKuyyE/9NA24tidI3vLmlz+G1BxyNYBN4fvfefc9zKBtiW8CkBnF5BT8cCswgYJFEUkGKVKPzaJUNwkTuukLGcEHOTIGW+2OYER6vtuKWHladNBDe72J+cuBAAoqgO30wby9/imYckqFRDliiJRuWqy7bXoCxJymtrvrqqIE3TBYb4TDdS8xyh2y8UsCye4bSHphy9x/0C9kGUP//M+Usl/62bf4bymPRvEXzE8OKjFG+tRPE0RzfmHwqGkQtY9qIOH+gIGTWEAUC7VjRDP2vEsCLpF/AAnlVuEqPYUMdVMhgAJI5Yj173q4p1fUn+e99sKF/6FfK3/r7nL/ecaAe57RPdbZPb9byBIR7xxGhnZRA+Z90pIMb/IZlqS7P0j+UPos+a0DAZ/F6C/pqXH1bO/rPZt+FKAXgCC6D4dbgAT3PlvE3XetOvHXvvYC+e3ytwbK9O2AcJFE8DHyJERBfDSEODMRaaqERUjpdlfrcKFUajZ+ecl4pZB+1qg3/YPSIH6/lScvWTAeJdIIkJnKtD0gBQkFLLcGD5d+Hf/10t9++3OkMRX14b/uKxQACGQv/Tv+Pf4qrMJJjDyRxbai+5SwLUD3eJdBDEp0K7VBhdE9dzbQzs60DAZ0oOBdMq9x9jt6g2TvDZKs17y39w16B8y8N7rW9Fb9Gc0Eb2InVdnSQcyxjcOFMX3wohjSQUw429cur9MQr0lP64R3Lq3e7o7pFcWqbgu28sMKn6h5ZQSvif71lWHDf2J+7UKQI3IR8AtRRmLOZJIlScNsdn/tVMAoJbIH7w0Ia65wIP59SMlri/ZMrrxgEpwdjQfCg8PLM4HchdszZiDgm8iXyjJdyCUZjbGxyXwkMl1KBEdEPBvKFI3gUPyDi2geiSazlZmc1CseVd2WFnlSn72BD368XktSwXt9rYzBtkQAN5D2VknboMvOvEzuAQf3gp094Faue8qli78C1d4MW1qYmykXMyOJmN+GCk7pzbDIPqKPclS9bK/T+q4dKQmSnE5MtO+tVXW/mHYJUqXy/SXI251yVFtc2jwVDq7fSvwPnz3elBaRHHlUjSQyYWJZxf8dkIfHBR+e9odbBcPw+WLkQ0jJ295OaIUGXnhjJHT9s5dkmPpNYiKO4xSL+EkigUh2/5IuGv8sZ5Si2vFca6OwCujq1fuUXs3AW57II4WOVuUAkCLcDZQgJQ8Coit9A/2VDo/ffBtKLz4ttpW9HMY137izt3RijhUKxXJIdylBW6T3NB64LcLVbo+pGut0p6pb+NzKcJCjmUpUh6ZHxg4lI+MhIvwBkZzbnpvaiSL6Di8ffUWc4uxIPBHkBNno9IOnples2ILBBI2UjySqzxc1ecvSzEEzkPDsDkkoKZyCFfRtfqikvm9opUIoFVmUlGxkkK0PXn6Lr295x1sBsXOcQwjYNhDAFb2uOZKy3xyV+ucErzrH6c1xukswfu054E3pq3PoUUFB7HRnXR3qnYNdnJ+d1mdg0yknYEqYwilTy/tcol7rk+mmln8n1I4ls7qdrO/IV6K/91dVQf5tY7Er0GFP7vXL72fSWDh6uLEvgI9+ZergbDHpjI9M51oRhj8/+6y7u6KMSMnuZ3c/TaN+UrGwKWemm1vG4IVX3rGaTx3e9+yxTDEjgEDak+48TMP9LQsQhINIyEbHMhBAIKgtPhABF8DrYFfcIfbOyeS6OAZcML7TxfdQWy0rFx8sFPLuMbhCVGZ6EuudqrisKzoudT6krW6siu+Tu38Tzd84MRS1qfBHaeT0ciS5cD7iu/8ks7ZvPWXul4FaJio+/e9SBjeKG6PRUVtYzKwd4PapxXzhppdZeN/aAwmKM6MLEgAhBYCPqJraAny2Fc4jZxGk3EYktK83Od/5xrFN6VZhBFIa2jTc8o1lkk6kPNmPDV4L63Q7PrNqTIGQki6nwcuRrVFNJ1V09sB7IVte68YCLBSdoehhJ57L2H0htXf4SF3VdRuuLq7FOycLm7liezMj5p4Z9rbE0Qk/cHvACKV1U8H6OpLQqRV0eG4mXUmHmekfKFkCn30/MsOaGGm3cJAPfqCydsBqHpRIxrOJdDoRjhPCxoajm2uV93+QGIRhBSgMXZrDv8bfgg04Dw+rvqOEDyXfjwJHkIgVNOhD88Q0uOfBZkEAoYLoIKNjLb2S2UD3OLEXrgBjKU/Vn+FEZ89Et21Joj7LC4ACcKf7HlfDax+nfnTq5nNnTx4/ul6dLeWH0/mMpQJR9CrSWo6btWa9u1XhmWNXwbtlbbn3CEFT/9MJUhLSizPauxRSRLyy3RU/c4FHJ+cHRqOhUU44Mj4QNQjJDE7fNlO1U6azemZgJVcigX1Lp0+t7AuQkaBj54cmB2PHpquTH8pWRsucUt/a0DinX483q0MH/NEENeYL4cxouLAgCb5jcjQZig4HtPwhshAnhI7NjJUOpaPhnCMQkZujpaWwmB0eUT0ZIjg2FDTESL1SmmyOl0aKqUcb85nB0EFnJZN2dn9AjZnFmG0mSpIxo5Tg/myn72SYPKkk44dazvVzlSBwMHGjtWxyhp4q5jo22C12eUtrCEJ1bUYiYgA9GehBg9eAOgrayugPAW7udNGXY3Qh+8SxQ2ur+5YWZqfHVERTjcxaIqEK2Uuks/unVqKu+3pq9VpNN/ZcbvI95+tlq91Jdbfc096cikbVskbj0dgvGqVAyPD/tt8IBUoGXuYD9p16sQ+RGbG0hzHqiChHRqeyOYG47KayAcNMF2erS4OF02vNUdzjEX5u8zny8ZcTr/0qRF7zamN0KJurY64xEMykYm5cqXP1S+Q94Ic51VXim0oSynBjLkyItxAZ8Chq/2KFS29oU+xtwtbLMKIw4FZir4R5JxF6CA6McrbTN+7t3s9Ol1WHXzzqBMEP/qLeR9h75Cmyx9pphdnDv+twH+uec3qzffN22DNwzKjait582ClGkfJAOkHe03ek6akdz8K9+a1WtMfi4xbHCgC59IlLVfgDl6kF+EI7LCyDpITIu12KDE1RLzJxzx2Km0CIlOgcWR3TeCrJxWcyQXNa6kxQWPA6ja8KbxWuQCoQUMnoTh9Ou5A4QKOuOjXyudHBpEezeQXN1HPWvUB9bh9pUyxE96cLtf17f5fse4aFzxw3CLJUNkrUI4aTvvBYDBkiD56anzo4XBnZQ/m3fpXT4FEfvltEbdSUI7qc7/7RdLCyMj2m2uASSQCEKABeUhbjTvjVVuiGEznKgOPGzq1HDzLpyWkZOAXK4WIvyGSuRzYNYTMAuW2hlAHpUXslPng1vKPwrXE1gBwp1zvjyOHB7pQrwIrfIQK3X7jlpuObuvVnvllVjatDqVgE7iR3+nSboLYgtVpjmejWwCsMSCzhyfXeZkGv9hjf0wLeTliFlJfZm/xVrAkuLzMR46b/XpnwRSzk/kPTGy+TgdyILXybt/sNOcDoLegLpDyTY/+mbTydefnbv2k0hGmEvQZDXlpl+HNmxLVKxJGSv87yJ+YXO+anE4NJtYqzcL5lU/fo6/Q4Yd4CJnoLRzkB6J7H7I0E+0Z0A0fLIVCZHCu5/M6SWfHt+fXaWLssjl+FK4+B8E2Klqe1sL+1+xv93y8JQKv48/A4Gq3UOFLrxRfOzc8mg2Do5ox7n3V4zeSi4+BqAbQst/l0YFNfdrW6p+B+25SEu5sRBun3eN/5XAc75ZkyCGaJc2oaZdY510iAMhJXwbfyArnGcWsHrgnTJmXgBc979v333H3n7WdObR6JlAtj9SnlOoNiaI/r9Bampn/j5Aqxj6rLqtvH8Uw8qIjG0iQei3nv/p372ELbCSA2di7EyQCtHnzJ0zlb/SZP74RzE9GR9USiXzzKRTxOj/JhOvNt/LAIXGOgEyspmdqCT7Zi40jN67RAcS1Qq0t98VIBTPNKMbhaxPTMwD2BGQaTMrMnKZej3COIJtWR1dURboHu+GY1Um7LhfWdy8W1BeI7Xu6HvXX+f7ae7IGnX0o3y/4P/IrKsqNQguXOjxEQ0s1Jej/9cdUfBNl6slwby+u2vWbfr9F2j/JF+huc5tzj4elHrg+Z51qHuW9rNTE0nNi85Z+4PTw4b5PI6NEXcefL249ZpHV4Jzq4enNIiMgLMYy+9PXhyq3llR8Y3Z842a4v7iOWkrODcFp1lSWzKEkOUZ44XqeG2+LKNtb2EbHerspMgZSd33cFxO6lYXj1Wa5zVtdChbvBzISa5NYHBtpz4OmmtEpAQSKVO0AADYI710DqrjIC1588trG/tbKk8rOC6w0OkoO6qyzx7b2tZriP4tJlkuaectWkx9yI6Kq+1Vg5HrcO30Ks4yvDowdrRp+A4fetTBKTrtfG1sezje8LGDKZnZyqD2Q3FmeH9niTVEpOksCLzkVC+29JWJPy7LmOnOGDh+41cP8/HinMA4GMWqmEWqlJWIUHWuHVqTAwKcaRAtnIjWh36v0WrxDtxh5Ft5TtjlH3dGSvfW+EIIKQKHaujthq2QNHcpFiYixjiPREwauX1xudJp7EXLPZ71L7IvOIpq0bt7g38bnLx+fPJ0fZgdp4cVgeGBMYChV6ZHlxOh0+SH1keWxofkI4QXEoM7u8PDl/SBy8KxVFf9MolXb/YvfPSO9YCdnGs1s+JAdmD6/d5yMY2ujEjPcrnjaw1AoN+wnDFUqAkY0jqGPGgCuRDIGzu4Hzq0izMImO7AwvbPRqmN0fiXlmc0rf0RxH9mqYvTl7lebKGa1iF0xBx6kXgKiXBHf2Are22sqyrnoY1lozk+VSdjQZd4KwQTasbujUzm3rpctVxS1UdOtJyvi2e4o8wxvbc8Z+j5bkwyFtfCOVYjpaGh4fMgiJhYyywHZdyXRrUNcyuodG83a0EB9Kxx2bIRGGLN5YKqX9Q/Gw4G6xqX2aKKNqm3cpq7sBb2+lD6wQ4AdRQg2ptJHRQUTGNyLI8Gib3oqBuoFNIOeueniXvW64pE52vUvU5khNkBzOKRhIyuWFayDdGrE6Pttamh9T9KYGwiHYwI32byXuLQhpayP15rb61yuCukPe6RTvP811Ys49f9julVN3ir98EzEnKwux1TAGSvcvTxqmELYhBTIS8HNqhHP7LoRDKWdkPrpm4xtZtDwcNP2mQoi0mMf37vezgZhp+YYPiXBpeCMvTcEtcXJ/lCDzFUeqJ4bCEYNJ2xrZx+yHA4QEDWkL8bgQolIDhLDyccfJXZCH5z4xiLpi4NHa3qtlhBJGLwpsb69iaFNfyi2Q0g04etX30p4JgJLgWZAKzSS50ENqS+TECtGC4zjaEqkNWreQGe9t7GlCO/ap3V/wxvKrX40oArlJC8vcrk80WhxPmoVUhdwY/NnKW16SCZbWDVU/qETLc0tV+cbXFujQjNu79u9uzLUG/9AOgZzaVCLEGMGNUYQjk8jXB6+4Jzq7HHmJ2ttTgwCEtGy0ZSug9de75J6WXwvr9LAO7/bOaJTCMyA710K2Ri8HgYfpHHPzdjGW1QE21RpXGE4PJv02rOF+s7trF+/uxGm/6RkCVZ1UFPftZ3R2T/VwtwZzz/9d23sAxnEciaJT1WHybI5YYBM2IIdd7AIkCIIBJJgAkSIpkSIlSqREKseTbFFOSpYsy5bT+Tvn9JyDZJ/DJWdLzu9Z5wsOz/GCs33PQVj+7pnZ5ZKiSF0CSOzsTE93dXV3VXWlDlVjbt56M1rNRFYZ0DFkeBcvpepgJVKY3ySeADBj0kTTKMNHgODDH+Mxw9EzOyE3MTwRDEZcW8aHPuIbNRZqhjpWV++8Nq0FXeLgesv9Dp6A9yujyo55u1pG6SDWl2JEWfSwG+WMEKkNpiDR27ZshsVX+aSdBiqF0lyRKhbLpeKEm7UvXuu4nnj+XFgZxUrxVEeVhp9JHnaxof6ZJDOnw3gXsmiEvRBowEomuXHBJQHNqZBaLTubDlJ4P+IoKdHW+5iuw5XM0NBzhXOE9+/yG7Vg1F0+YTH7/kr0aknYaCKCjBSQSUPk9s210bDNwe9bUlMZGu5OTOcolxgF3z4Tlzf8xzLzgf/AzUq5bcumjc2pyfGRITn2CalmW4IlmZUSCtL3yfXz6+qp60pNTgmOJqc6CEpnNqEZaooCXffhM+P7cWCwN6qp9q6NnHEwyVjwVhqOUBgf3WMwcXGnGuyJc3PnfoGk8vAwmGG9yHWiF6Lc2HrQVuF5Qe2Ewm67nYci6CJKHWq9X1Phvnt/WlE1uNl3JcQAPPfZNDuZuSKUprrHEHx/KCrweLHy+vm+XkBy/tpC1mKAB0EBsrU2miFk8eJNlLStP5mT8aPBbYbO3amjqV1Wn7OU8eNuvchR6bZ2+kNpR7ho//IO4Qe/uLBBjsHOGWm/SXbnrPHRWPAQ6WLSlZ/aus7THAk9V3lf+ur2WKvwtvNCLPbFwO6tJnc25+nY6KrVqId5X0bt3zA8xbX+tVqqB6iF0hxi792uc3UiF4gn1V4Mzq3DwOoQN/YeCOvEjO+ENYQGDBTIZXk6N7u0E3WC0nuKmeRCrVAkqh5UwRXJQmo8a5RJbM+F6PmzcbgedlFVM8XSdddt3V2365RXzUdLhXyQKshBRv6OD2USlCx62lWZTEjcPaYySiTSPQObAqAdUDQtrXWdOuGF7T51wflsu4x4Jov5wb2dEmJ0rOlIf7JYnK4GpZ91vBPNKymhHJhTfQhjkfpTHSXhqkbHBzNBk1LVDjh9/ZHQ4jZ1RA+o5p6LQ5o+dvnocDJMuL69mRZkI4K7Lw5UGiw4MLW+N+akKSLl1nRt6KOfcNEXOqHATTfpwYiL7SJ++1/jsxZMVBJylmfEn5cIXE4on3p4DBhtZ2QtKowiZcfanmS+x5mLFnLglLTd/V5RvOEcZYefVlnXk61wejFF+n/Tw12FJCPS46kNjYEo91zYmp4Pm8o7Kb79hKDSc73iSUJKs9j2ZR80AHZzCIU25O4an0sORWMqRqNBeP/7JWkHhqs2hFJOUq2Ciq8hGjcsSCYODH0YiJbOnBcEDp8U/5HpNiBcToHxQOI8XeJ03QkOHxIeYwtKc74+DYCrQZ6JIpUbSKi7IWUIT0rDs2Fd6UBxuMB5aohF/ZiG+pQUSKSWws2D7bnm+b+THdcNt0vyys+yJNmskLXhQzy8/VobAShYGwdMzs2BjRYFANSS6UYpiAke5QSd6VKUMzCuq80zYMbGAQfJT2xea6gviOX2mQDZEZ7mI1krfev9ai6WDmoA3LIJIb2BiP38O/lSMVwf4nc+3870I5GO4bedUF2fOV2ejqVrFKlU1nYO6+gPSke8eKEScpP0h/6/tOqe2fAHB34MP7YDTzS6sLhKmZ2fmQRgI4AwVEWKZKvimoGYzKSLFKSoQoibc1xudShZnm6WBouVSYlK6e7nCsbSMVdcSHurS/fc36JcbD5mm95JGmPoqYXK66ihn3eVQwCMTcMSeZUFk3nIa9xoaoxqE5sNAIgeyYeaEstgbJ7QKP6DzRs1vfUrrb8u0DbcZ/f82QsE2uqqbfLBHLv/vt09pp6fMO67n+UGuHs+wOPwRphTepX6/IQJoKTd9OA6KItJwM0KEAQ3fSgqpO1lArhcGCh0DjpwyUwzkeiYiaVLVEWe//SieCI2MpQsplXHieYjTigxNOx/64NxJxzuVS0TkhVdbV8WpD5nQdDYW/GvlZ2C/31rPhwCwCVQoQSUzwCjtBNBBqgiqDcorqhznQacIqdiXTOk7Lq23spNeuWu3DRxnRqe/quBU16dnzjHW5JOS9m1845rFzx/174Ld118/sVrVk/VRobE6Opeqs7mybTYkjw0y93HZMn73WlyvYnikpjusCTfBUVOnYjLOyue2X1haTpR6M1W45FQMkOLDVNPF8artdUxZ6xibY6zC9aVsqc/3ZCNOPLxlih7bX54q5EfXhvA4ur9WtBZVYokk+E+DSeJsW5wdDGSGCvl+8YWo3xkNhqeP3iGEtl8OJ3vlUVGZ6OtqxYmLhyiuGFy55AhR/gSHISXC3ukqaSVujea9smD7GxXv4jghjWgG9tHwI1meKS/Gi342Vh9Bwbpv+Clt/FxeUk+lcznU6nc3/ZEQMOETFZexCPxYjGeKPJQIZqnUEgkCznpsavsw8NwRLGVgfkyA1QMjtKpSAGEmwWg6Hq04j4BMu6I9IeJGLqwTCua8HKbT+WnHXRUzVYNHVombEirxPiVbV99tezly7APDuGjSkgpKMsPO3DSpT1CAWUbl7TjoWNESmDtdSaeAuAFFLy4aRQ9n7cj4d5EuBAplAtMehK3VRodR9DEpB8p6p/4FH+5Vu/fnuY8vbnS0OBoKZ1lSWZDKm5a+PzeStMOR+xmuY86gflI34AGkOjpNUwXKwp+Q2Q6zio3e+ldexCkPpMK32P/vA1K2T6lvRssyiIugT1Z7pQiT/nUzzRghiKRUCQeDWs84+L35OlXMe98HfdvWTzxTtlB1VA1Bt45O+KvTOEqbrf+D8yn1Ve8gpqclW59mTyA5xdaUhOfEHJjE9fiJnxEKStj88M9yViYIhOcgbkc9wY5/3zPdon4MG6Ph8Ph+s1tDj8pDJqTba5XdE/8cf9O1Yt13x2see9FEMoUR+IPBExaKIh2N4n/qGbGz7suQOGrB+7UQLNMFZ/4K8ch6+TfLz8GVmT/ppDk3XecGIFbT/yLWBND81UCRAm4Hm4OwOb2zGhH0qdhe7x/ICSXQkLqE9puOkVVyOK1tnfBV3fTqD0a6r9v3GakeEHKGAkFNk/EuBofzoTLFEoAST3UbzA//yW5Ct8tUHBEeXQ+sj+LHNeCqm0DULsdzUYCwCzwg6wVFbh6qUPRPw3FlsY74np+QSc241wvBbpe8jcjQwqRz+VxhU9+s7u0H7Vx5NCBiy7Yu7wks781p4qhSHk4FCnmg6e6mEVkwrKoDD8cZZ1UZZOdBHDFdvq3yTnsTv3W8U7zHOW9vJvFioPCwlMDJXzZPkvVtqSMj27BiUyVmRFxQNTAFk0AWd06TqpVMr61CkTXtq3dMpE0KFSxAq2Ilw7nlSU9whgZS7H/T08wmBjfsJGQ0XIUY6MUfgx0uDGeDHMEQ9hrcvMyx9l87pnH0QAMjC/MpzsZ4gjRRC65q1LNgBNOj+I1DrAX3udqGl6m6Hgr/KsypszM68P5qEoVhK0doosK3gT+WHV/l4h9pDJadVMpl6Iulal0H6LW9LlPO8VY56gUsWzxVktnhR3HrryKcNQsFPEux44StDTk5Korj+0oMN2ix8QP7dWsnCh3DN2HXJbj7isobu7IWRrVjl155TFNcfMHfBa/jj8WPZlVtinPlBqGmVza4ET0BwAWe8Uc/Z9JRzFvSvc5IcrEqVQ3NKU41wn17jbACH5U9zDTla1ClTPQ2ws36+FgpVJQ5BfXbQ7HpzUtBJSIqQrx5RhnkVddFctcuEOdhlwmo18eAjfof/8187NasLbhsvn16ezr37BnUoXWZ3L26FTtYAYf3MeYwXnKGIXorpuz1cHUjW8K0TF6YQxGRvQDL9HXuyH+iz10sH/HznftuWZkpUVayzC93WxJ7ZaamigpIP304XHhZ7ofnjOf2AnEyIJGdAB5jgrsRmQK2+oZH1YpGkEiI385gsqPKYbh+566qcl1fxMrE5zIqeVqqQ/4elNvhFZ314AcbviPVTF8tioCZ6wi1F2FPxVmTq9CB++Q1Es7dT1VBfPNJzVPFemXcLhTx5nfdC0ZYqou71jcvH5dQ2S7qpSS8YBjW5wK1F/oOtqc7hTbaHadoMBVP8a8UDkpF/IuT0uphpFPOkcUcZWTULEok0jddZHl26qWloCifWDVzAVRc92oPrPlss3r4zwVCadiFPSwShIlla/OV3XOrPGmICylERWAEGLy0EmH2i1LJrCx1bWBdG99R5jlnrm8/Uo6FXCi6WSkx0TkwIaz6YFnr8rL0205kI3T58fZUFFt/WPrnwBAIUpJaA0fFvaP80RY5I3K++aTWyxU9AgQ7QqwyOWHkFkjQBnb2ony0U1dMYV5yaIWozcopkIsU8gmmmIxzTpsgK63zYc2UNp1NGfz9HcRQBRXQD98ei3db8qszTdcd+zogQt379q4PtlfifXHSuWg0x2uI8mgRwQTvO0y7h+BFj9JH+TfTiLuqXo7G6MYIdWX+0sdK3mtJqR8JgT9emVK7WjF3IAea0s9G902lNwxvHwRENr60cFsJle3kJI04dya6U8nL5pX04dW7xlJrl5zdbIPgFV71UQPZ0HOAQgE4aF4X7mQU/Ho0eQJRQc0117m0OFCfdGL+Ull0Z7qrV6zJ4zUun/AGq0YlBAWqqyytM1a/9BkprRqYFCnsaKWG1MRiOcAF0jEG9FCcdYC5PmNv9JK3HAcoGNV08mOr3Gp+D8KKp5SbCWmFJUlP6xeQYVQFNj3PaAjHYfNOJOicec5VRhll3SKSauVXipGYiU3Hy7I5dDZNdF60xUcE6fchblyXz1EyrmJMGn90cE7hPh49+9P3oNvZKsTmpMrj2uPp1UtqX2m893NgX3ilfC4gH9CmRN67gvmo2tMJBgD6dbCAWEx67Kh4W5OkzyV00TanKbrruAxWxenp0aGomGPx9RrQjvtYDt7tQS9zvmU1OZXvAjszsST3KjrFBW5H0Q12jEw1eHAPAYDqIfULEnQuecebA4UCpToOiH5PGOV4UruUGN0gHCIVkyeWipGC/ufTekHUbdZNHNlSoV3XYeo6jSYcaZIjG46cMnzYjg7i4BMnr48A5RlD9a2rJpoRICUSZDA5uqeI4Ovu02jrS8hcA7qkVxTYMLz2RX2qX5hIbCyphuR3U+xzbjj7aMtpE3AH2Nfg33Gp764GBXj4mquu2+LozEqUyLQnQlNTO1peN7+v7P6257FwRaVTSLi/9v416LlmyD08BRw2pawZvysQpdK4VXnqmQsriU8Jid4+wQpXfd6uk0xze6Dd85WQaBTQaBTQahTQQrauo661P1xqfs7vSJTARMu6apP10+idFJ0y6BoHD7X6/5L7SCPq44dOrhzuR6Kldf2D/evd88i4Kj6MepdkV7NztF7NU8mF8SuLJ92pRFu1LrSMxf89Mw+XZ1DYTkFL2NOx1HDH13ybajCo1/WzcJU+uje4xHwEycFB8cKpv65z2aqCGDmk3Nrk1upQWB2A1T6ZN7h3ipsmAViaJt2bsuWogBYbbFYg9q45+ZLt6ZTE4mURogGjit1A6Bqzh98qy9fzemGigCu3E5Btehl2aQFYODxZyIbmJA5nicGGD7/PjQAnUzxuUTnQOC2KJgfOX7LJ9NaNLI1//BHClvcGJTfoYySnRBeTbuU292IJyPRFfE00IlkkhoVQ7lUh5OuABrIcKaOVa3SLiueimIGUw+33+ouKdNn71reumWgWE2XSkLdYfLeU+KffFbmDuKph0q4A1nz/ABOMrDOKXFMDmyHq+HP1NYP79DCW1KUpwlnofNW9yTOG+brjsxNnR8CtGvrXzuTsBhQOn/Rrn2tA6Wx/p5iwOT67MR4/wiU1DkaCDvzIX7s6L9rqvWmNO42OWGh2joe2aDvLjav0pJ9xvb63Eg0qFK+fEO1GE0M5zdOZybW9o9fe1392hggiy/HHVQU8LzjBU0aUm7zrDe9UsOrsGPd7mGKQg+cEr7TJwuBdMI+c6n5TLsAAV/r3vVYWhCig6Gpal6yrcTT9ljPPA0/9bc8Tc/0/4mYcHmE7/PwbiUk6gxQWacksmJ6uBFdCVn3TZwZgM0mvQ5ogGxY6CvjYV1Ulcuu5XE2MRGX2qIFzMH7cOncseURsaVfgCsxN+paTh+DP8D9+AklqFQ/rElGLAf0EbmhjQmq5l4EJLPVxUUQgihZrX+cslop1+pSgIaDgs+BOHjcgVqDhvET6VDQgblVjgMbNvOYaOUq0UpFtBJQch822608rHiNyE/ZhsiCc/L8cdmEKtfLVT2hoElutgObt4GDLw71mOQVBGxn1Rw4ouYDSOCVYkzSSm6+VwO5VTcAF2XfFbhEkmncHhsqEKlDjrfzd9e6jkuYktT0Tm1+tLAq6JTo7Gi0JxMdnaUlwLeMzvXn+xLMnLkwqKrBC2dMBpKuLGNJ+ZwbHdLwmJaldFKMSlYQRok2uAB95iqT7wiCpLjhF+RJ4RcPdoIqugMmXItoEPvgn/6HNKJwbo0ohP5zKlFpJ8EpeCO+VulVds2Hn2QnERMgLzoRdqksdvpgyz4kn8qGsu+R/7oVBV/0lFaU26EFb8VPKY6AecxDsk4AiTdJvWt/MQSCAVACvcFexQGHuiHBftR7J8K1++vXwhmKF0FhjJp/efISP5UO6Rp9TgjwPiPVfa108v++UxkRdKHAYLz7/IA26/f5RijyVOcFhBxHMm57+YadmoFw1vMBQLPo0TlEnbT+ufUvp5wIgIogFSSMjykBgQvt4VCQKzg+VPPPGpdjoYj+VojclNUYnE9oQE8wAuezV/779Mbj/44M8WNUVenKIjLR/T/c+MATIKrsyoxaU9Yqhsh1MCAPZhw/SxpTX4Lx2WXXKR1lIhW74n9xqhh7qqymra9ZcWrhRY0pzV6ayeVqB/omemL7/1D9U7X6p6fKbzpMwLlg+eXrKjuuTlgzk+ffc+n21Xtat72hUBD/FHBPQnqFwE5DjFVU8gVomzHDfXQyPtntsDFVRhVd0Lvuih6EYZ7buqMSPHyEUqpRkwdpjxa4SiTashfhpfAA8kqSaaHLdprc3hCAv8bPaMix9Tetv+SMoOdeFGHwLWhtCxNqh+V3VgU8KvA86OZifZsSUbJKQ+A5n4tFORLJbeq5WCJacM1jOdeeVpAK8ryLx3yMVGqTp8el1mrqmIbDWlVTndaSo2rVA1WoV6utx56nRaMq4UbvZz6bMThRo1ENVt4B8A7AyAxhjMxE8Pd/UauJf60nPoIjGYsDIcCtzAh+pHN6gZj1owKToe5Zf+bE/qHImRL74yfOncXfnfhuAuRvnEzbhmuEs/H3T35v5wd6tcxtJyCKS/5cEpDE8jKpSLnpOouUXaKTz/tCueciJzEmZD/in4tSl1K5qCcFre//4xapZwvO9x5/9nFgBHKQzVSdtXsqd115LNmwHUp+txJbM5csmwDV/0d+RihQ4CwSXsy/8N3vcyIUPYH50E6dvji/PRKWx8kACSerB4iGxIdZrqpFAfM4l1gsFk5qnjurqb1JFo86B7zET88rKD3fOvka+RIz1fNWR6M3lQlgqjm2LpvOj6vBCIGpYj07abUpTKT1rYib5tsxafgKHi5OGZhkxrp9rO/hADg3Ncfs0NKoSRkwEEqV+nPCb3lTh+QA017+vtwjYSj3adSlEqI/rxJjsEXZrVwiZu9BEZ5dVcTszXeDWexyovWTvIySU482kEPXle5XbXcXZKqvkFsg0TYVF0PohFt/H/a7gRBYnNsbAgjtnVsMAHJmBQKyqwLMdkZzZ8fxVCCQOr7D8dDQekgcW0iM6PTU7xY2zK5xgPnd2weoFca38kiYbx0vaAj7GKFwsvv70Ng0kckVeiY2GbjPRQzs3SQEmxp3Nn3bXNy8YbOF0PpyZ6xlXn/+4eU+OdaFclvL4f8mJqfOhAk1KhHXzkfuWmi56v0KLJ1pIrjoXdAZELs4pBYtA0ijJ6vDmXABwOIXMTCsojo8TInGE6Yt3ht5ud2eI13I/TsVbBNWeJxQRH0wueo5jbROHn/8VKw8/rg58pZVyUEdKaY4SaZqq6t3JnFkpHvm7M/8oJZKypU7LDDzNqFjOCQ5KMqVG1VlGk0h8SWiPmpqbp+6ToDpHN7qex7VfARNCbTJ791JhDqnecf86sBRPw6BUBWoqlFiN4ZZKCjiEQwt/qJLuB54cP9MWDOC85VgiA03bEpEKaiGAnBgawJR17I5Qz06OHhFI8uNXFbTo7aKsHcvMuaMBBgyIMFSds3RhoiZ7tl2rQY7Jtf39OVKjaNrsqUgAVEiMOIwhnv3AgKjRu9k9ZJLm4M9D9ajeyaWCv3NSy+pTkjMKMrv4TfQe+69wpSbh+r3pZL/FvnJ032L/MR/ax6OC1n5ESWjxIUaDxUFxYAABGD7UNWTyqOnqHg93Ef9rfHnCqlyLIjWSJaTiLWOAqF2MF2Aj6X6K9mRiLN9phAh1Fq/z0JUC7K9JdHe/xbt9SjR+VBb6ylaSycLeHJ3Ee02zNWL3pelQjoZ6+2J9gYI7TSW6sfbU8VI/tl1kf7gZFtF2ZHnwnH4hrv3aCiV+X4GQAABD1GOrqAISqM+UMn2hoO2qaQhrXqSYncHuzsfPwsmvkvDne4XiwIpARBI+UPnqhs9+EiUt8Gc7K/0jqVVgacftS+7Uebm+RG9uMXFWFN6gHXcSiTWGvVcn8Ac7WDOXxqnYa55lmeFvMBqX0ZglUc7SC0+dsa7LqoLc2sap+I6fca7XvbkKtwjON065TfzDlcQlNnRHpMioO8aGWMAFDzdsXRt6ng1WeJhwr3l7ZEYACRPPnbO9m7s7O8Wz/bu6JMeBtoP53u9AAmC5GYGsuYLZM14EQV3++P+zOv9I73FYVcLIrdBUkcg0R7rnk/CMN9mch16NSUpVZcc4FK9R+weK6hyMA0IpQbj4VQykqwWGGHMDhOe4SRsM/GtUE3KR/HBniCAYeJb+gzdjPYvzvcyolmJ/oStq8XMXPMTXxnkfPArn2jOZYqqbifCoaSlI+udX5TJk8Vo1dzRWlCeKzwmnGEVEZ517cXLVOscbDKpEOQok45zFbl63WlYjmwzQVW1iwzQtLjUv6b1Tkb70948Fcdd76Xa74lXJL6f8r0nvyL1tc+49aYbLj9SHMyIcRBOE26a4bqQkV1V3WSjc8a/e77EKEqn+e5IKuH6wl1fRn8g+tCL7Q+5dUiOM3mGgeSFMw5izeVfD+8yLUAjpo2EI0lNN0KpkhYzECwzXo77j0rJUCYZCY/4D3ZZKvWH1R9xqlqi9Jlu40vHxjLNNSEgDO14xBTzxURGAK21zd54KhXvbc66D00nHYnb7iN7bbO1e2ysd3U1LeeBO0HS1dVucf+mnBzeXYXIM8npgvIMxVDiSl6Z8uZCgCJKvQojfkD8qXdCrimrP9rf3x+Wq6F58jTvkkBP5/rJh4/DXxVTaf/KvzXrn+SdPO1TAaVPkQr5cSWkxObDBJTNAMItVvwPQQhP7v3RJ97hZuNz6TLCeylRg+nrmYPj/QlmqK3zKNOpCn9ryLzvrQGkJ36AX1IKcs8opRMiYe7Ki686xGNQRXcB58vHTV1ljBlZk5tDOVQJp6o99u532zYcTeIjmsVoQIg4ps55fAB1RFOPVEE3VLusgDiN/zc4iR9VrhbtLWVEe82IlPrbko8r5bvt+dsDCUPUJ+pqUZW+O37QWnuqS5eWmizo89JKZ4JL6bLLQX7wDqOnzCzKg+XhsB4P6CaSHZuccIQs7dAdXf9AgOrMrM2NrDPVyYQTi0QCejximZWtltk3ZdBQrZrJRUZMntNCOhg8FA8l0/B7ClR35LFXSGgQkap8gAqcm7hDY1x3TJNvCBTDolCpvy8RqT04H3GSkaG4ZqQPxUkupaWitRfUJoL6aEJ9bu+GEnFIMOZRqX/HhwWVaip3C13Hs5YnEcfb3M87M3XKc1PuSsVX6T5bJd6ee+I2EygtnyIkxtp2nVHiux0Is47EbK0PpdTd8UiQCBUPXaSL2prP3L20rbE66JjZCYE1zoiaOjRcHZyu98SSmejgKg2c6N6azpixXRzkjEdsFcdyNs1F1HLe5GCXDuprZo14LT+jT48bnGlqwnDK0Dvdkx8a7K3MmJxq5WFT21yo1LZS1YA/7bqlXtoWMcJRjQDnlj0ejS7M2mJCbRhWY7litaGalrpvIfQ2aqbyGJhPJfR8TzoY6+nZHARkPakRdZBwM4QANJvsG+g19LFcMBLQYmJxhRxtIR+qD5lM4Fw98W/woJuxbYfA+ebZPBM475+MtxFc5+5n3Z2oDV/+nuwSOrjaZT/xpnbH1d5zw4d9WjC0Z82FMYS+PGEGNwbykCjvGB9DgSgLsfc9WhSQIovFyqN6IWU4yCGZzQ6HA1H16h52LGIEl+91AHqzlqYZlRwHk6za9/qbtxowoqXSzjs+occwMBxx4qV8Rc1iJhwEff2m92+iEEzpd90fl7Nrw4kq3gifVZaVS0VPD+wayaO7M4l2rHGdqeTHj/qHI0iX57Z2sR1IwE9m3Ty5DOu1SfBq88OI5AO4Kp6ND1bKiWAhH8+ve+ZoQrxsDDFzywTVtpV478WzGrU46ol0rE89dH+91hvft3ekluqtjmE52ToRShgslmewAWlEx2tjVqx3oLJvba40qgYuX6qipmasplBjrrpGg8uWjoVK0/vfb6FmW5QM9F5eKb+rGdOKN1y1fyikj1RWn1AyPWjO5myLXGjMrnZ1jFWhC3xUaNFeqLxRYOa1D20soqBSHUOO62RYP7lbk6uxMwnC3oY+ERUF3Sg1n1Z1DpCRtbjJvYVukHcIlsrdujxu6tpbot4hAV2HvLf1jDEeEXvkmqR6k+KB79x3UyarJbWwGeAAqJYKOtaS20v5RGHLHSRCbcQHkT0QBRNzWq5IeJIg7iXgNHLxXmSEXAt6aKJQHVobAKqZWihKNfESCQDTVDu/pDHkJDHc15/ryXCg94Zw587icApyGSenadba4uBvxnI6o8ZgIJ9MFLWewUqvFtpcDKdS1cIqHRBav0OCbIvKzc+ZPMiq/Wq+GCCMwg6EeKCZZSGOl09OqKv2lA/WC80BRDR0qnFKow7BADJGKEuM7ax8/gO5QWuxlk/k+0b6tPRLYe2arUNgpew1jdQax0EnmfS1EUP4iODk/MMXJCWXcSdhZ8/cGT45iQVSQZK7qc49OaZ9NNGH3nD6J4XwDmVtWyumyq5XR/umuNvNgrYX+lQ1kuTWuAnB8ZwK1AzotF8Dg5Is6CkeETdUJFXGdeKwiOFQEmAqAzBNBMAMYnAmYIc0rtF+csPz0wx6gWez4eE8aw4GEAiW0IqEw8HicDHaN7c7jMHpSpY5vYGSPTFstr5Hkx8NGWrcSPRHoyXDntUMndg0aGSj4bidQG5GQ2FVt94VioIWnMukMmMJXbxJjr8sw+iq64I00V+sBnuLDICibRLi7XV+Rz4AJ5SqwG1WF7hVomrew8nJ4NyKy83nmM+X1Tz5QGCFkqM5HrNURAxfvjlAwpsvDwMCoRqP8b4rCT4BPKmR5eNxYjJDNbbclOHMppmbthCLagRNEr/tfBeG0Im18AMxvnUBw0jI1TbJjBuNeqMT7iQGMSpGxD3PZzIuLqOxqBdS6rqAy0XTYwAyVHFwKTlmgqUhYOiabeIGQzC4fss6VU2r6ujSJLw+Qt04PwRzMrdqc9AAruLSzRFARCIeRUnuUmOl4Dj4HWNTOSF98X0slQWEfaaAsCFlJ4kYMTdcmtB98rdkK+7MlHEJK5srKQ2iAk9Ei1+xUdc3XhFXKapWjGevWSE/S6tT2wS3oGAyPRrbcGWCBEniyg2xiMEEhp51noufORc/TdH6WETqnMQ4RDmPci+OSVx6pw9741UoCztOXcIl1XShoJv+JuRyq2/7ONp2TQgBNQu0Rmm82Y0j5LYlsLQ8vreDpMjNS6hyMIITF/eUnVOQBNfD9dQEZ6UgEdU9n9YLWIvoWi0anWlTrpwdXWeedw0wCbe8OfX6q+WcOzMuLzvThIRfGdSbaec9K06eAsdnmqTcnZmtX8IPCFUuF73ZFDnTzDz73PQen3mwzjxcp0/lYYtQQnU5ma/d2j1QcowSpwynLgoSfap46oC6M/7fumd8c12YEm/O3xI+dc6jHMYnDTyhkdF9qdOGHlv+2ug9sYZ8AL+mTAscDUQ7umJJoAULlBaebs2T7HohnlBO+gFKphePyYd1EtXHe6hG57fkQhunbUqioYXzo8H+BD7YgheCXNSctv5sxw9HR9i0Cduj3Fm+eGHGQKZCjphFPUpUc8hE9qJW6xaKVLMR4YEdPxgZMfuCR/d50SdryJd8aMvu/Kz7bjOT3kh65F/C5knKcsyUjlpPzOaiP3q4STQ/vRDIr5kzmYa0Z9xtvklHR364o/VnlMv1JZpvPQiJUjB6/kII/0J0sN8gaa4Tc2bh4mWHR0MXXJlOqiMjPxCvINoaRQovPPEgQ9EPbz31C3g/qqwW8A4idPYM0EenOgwu7kMd803WXQozWVhIFooIizF15BQemHzp8u4SIDRN1cM3asycW5MPLEw73EN4KQEPtgQ8gG/RLMTWn02+ZHl3P0DA6LvygpCPdZPoPE2M/i6kwwspujOin3xAwDzXnhGNLk1edI40lc58AM5r7rPOfPDhV7m/8av0yvqnEaG0e/mlk3Cf6iIWWre0HsREv4vYKKH29MZQbt0M5YxqYiheJHqy72g0GgDo3738kkl4AfGQ27rFR67sfNEkaUQElaEhx6OLfkla2+/yonYI1NOh967I4AmGM9zSOAP84VnpfwYYD4pi8C6Ls+iabWfnBdvWRBnnrPyCd3uQ0lEB6ZSANGe4nJsXz8263d2AT4jp6O6Zp8HHZ9OB1YPp9Aw8eGTDufg5y4XjhSrBcFTpgrEmYBQSpit519v8wHUXfBpY/czM7j0zqbQLxdnZ6Y83HNkQDaMPwzn5alP5sTvWCQGdoUjoBChtoi5H3UWYgGeOAzXum2WUcBZEwsePEWIHAj/mmsbVnS8LAnAauus8oiW1kzzQcesNoDuHPA9ob+t1Mu1JEzg5HAg88RuWVbf3c4JBi7O19xgUFI2LyliPunRpiHLqvPw8lUs5xIc4Lmq2XZ8AH2/itx2bJ0cdPxwVNc3eGgWNqE+8znGIU9uVYPBbk9kPbreAsaCUhso3zdkd6cZxPdBM9KUbn1x7uakbrixDDqvmA7OMWxIHiV21J34tpBdVdeielzpUYGDtjWUFvd7jGwSMo2LHVU7ZgF1w1k6BE86MmKeCf+Xup0IYvtztmd3Vsdb1T4HDEz8V8NnuCu/RpTR1usQrAKj77L3mO6W56GB5cSkhFdsVIkXg1xm1IouaKt364sFRg3PjiteNCkyEWbFm4OGA0/pY62NGdQflzbqBD4FKyKts1WgsyPWiv3RTzCLMYCR91wELQCfWQsNQbVMDra9CMFnVgBE383z2xBxu8OW/uBz1hDzL2ZUU2omfTprfJa3yBQxRRl6ExKVrfyU/NMMGWI21NkeVmhfe1UMIJQJDd11oUin5zdct0C2H6YNpxHRJhw8HbJiECXMyq6m2xfnQmw6bFEOH3zQkNTeqlpswW19tfcUO4QutxhrKZsat1se6cDwhPS5Om6cCn12Lu5l39ZDiqiwh9r657HVj0OH8vLflMqGQQCvlVlSideV1ThAfbCN15eagg4flKCCaxHjDgqOyIEvffZFONOrhM8Da6GQBF/lGF0Yl7YwoEr7JRCji49Al4j4dl6R8yndx8FMVRMS1mysg1ICXWDpY9XkPn/uelxGNZ563z0Pm2oYFhm4YoA9IbJZ1FR+xxTFqXzUnch42h193hezbsIfL7KQJEzBpy1nzF3ZjVmBzwsIHA96pGT8hn0NH2aYcEGtqz46qu6Y6gnVUegBVPKLeh200++pSH891eS6NP81HURbueICzSl5U4s5rL6IQ6hYJ0cyo+rvfEjqaYXGVU7rxnnzUNKP5B+Yo5Wqcice//d2pjw0jmn/BPIef6CtfLK4xjKmCjk29MCWu0EJL1TZMawCUTm+wqAHI9T/fFOE0SHlk+0M6RzCo9dQlXmo/qhX7ORdGbGHUFp8CL9nWL3EDocom5UKBl11bylTiZY74KyEh0SO9pENyxKSPW9sXQQ6u/yvR05G8pczn4iThr5lQZ7ShgAQZ0dS+e3ZZqLLQ3DqAtfMhpqK1ppnKTibUoJqYTPfOzMrH4YWaqtYWwvLx7MzB25IjBLN5TfM/8TdEIyS06968inYYQU03/rz1v/+8nlEBwzaqqdFYYc2acHjNmt70WNIv0zfC8EI20ueXSY7tXZdapLRR1Ff26/4Vvl3aw4XWa9jzXxV4yWbiKPASavvq5KXXfkOSNsVFhALCXSsStjSDkeFhsRqMhM2ccOsJwqKMtFbgda1f3ncc36TZKvmzW27uWZ0DHcN0ZS9RVYrvaLUAWq+DdaLdQdFuQ3iWNl2N68LqmI7ufqDbEaJLqXi6I17nlGVVSoMJ99o/v7njVvKlSIoGttRSqpXn5x+O1/fvvGxqU09cRZ7YtnF9JNEXXR8i0eWeTHk+MlB6dKeQbSeiRjQePmLxHWORSBieiIUNu7HFZhB44OjqXQ/v2lYayBX1nlzy6MY5m6qJjeb5jZuLZn9GzfeUvnRlEEbj4cIFi/lLwN6RXzPjxebDb/ERlw/rCON+OoKQTMXnxcd3ouTfZBA0v/Z1x4F7W/eJv89o3Y6vSKuaunKM6SCD4rPuH4UolRMfgscIVerKZmW/8Ei6YMuG6ZT0SEpIDLZDfX1sSR1XW4xWTz0gwpvlER99UswSKz8iyhPf3U5oLV39mRold6uOaWqZaLkvPTg5P5Rj1CCEG/KulQpVy5G+xkJ/waLM5PQjg1Z4spR0gKbOjwybz0kLZ4tMnECEqLB7yVS1QkXrGd77+ofO35wfCKNVMAzDvWulKxe87fV7h/omAhTsYJkS/EcSIeOF590Qm1OfX4O++VcVV/46ne296LA6Fxu/b8oyCbZ+IH1ET3yXhIUnku36iEYCums3kdjuzF4mZm88XAuPMvx71novYaNi0r4XH2hp+Af4I76VEkJxZZHKyfqxJQDWAnQ9uXef+DvcjBnXL7Ai/QK9HBZ+egHV4wJ+7oN24kX3ka9r2f2mmyFXTx4O2MeuT2+7Kszhk4FAayMPX72l5/pjduDSa5MHHgizP972egtU29ABWOTShaSNWlJDO7nxSJCDbtoqDTz7goT0bhbwbBLw1Dpyo7Ti+DJxx77bbHsPSZ9zd551JXuslM9vN8sirz6iXnGpC1xOuGMuxHlro+PAJ3l8IRErZiSIqInWnWdfkNyUOHinJoA0dWCaYwYbuwSYYl4KMHc1gmaAcwDdxZnyY3wEHEUVMPKOrCgQtNvBBRHC94mfucF6rgywH78Bv1WyomS4s0Y6aSQkl/U32Z3Fgs/yM0nIv4xrFsfW//FTSnzTrbf1CwHUy24tMW7SV7zCTSnRfeZfQLSlKuCvGEVqvuKqnCfbVAsOEGZrFrTextQ/WqpBPkUNsFT2xIJhdNfh+Gv6P3ZMICjzShE+DF9XtshdL5fvCxA6R+jE2svVZdhd213vwrUkcPFEXtcFfe6O6/+RnQQN7YjNZnt6OLdjBj6Xj+7XwwGNklvsiBPoegSlhd71o0nvIfTdG4zoAEEr9BxOhVcUSaYNXIPxYd0JxBB33xu0AwHbfRiNyIcQKjjZuOU9ltK80oRPwicFVvrE+ksGDZSWJRf2jna97a/WCXT85C1Lu2cajZnzxd+rK1Mj5fXrq+Nj1fV/2Hnj7PR5y43Z2emJdHp8+bxx8fe8ZYn9TjtyL4bwpDZOqbOrHvnu4olpsofklF7xbios13GH44hXI5PhsHsRI0RWSS6hEcC7AInK3gtf+SrRrCD553+lAZ387YeCnAA9Ami07oX/BR8QXJC3eltplcDbFQXlTknM6Y8r48pGgY21tQKipBpt7uW2UvSZlieGeRn4fHuubzVqts1yXUbe6SO7Lt8dSKpD16zWilQLho3z5/qoPjk6nOqJIUmHN68vjhFU9z67kJ9YW9q4OqbtnZUFhAeoY9LR1X+37/4jkbK1ZZFVEJ3DozS6OB+3scbr6c2MWC8JJG/avOVaDF4qn+yxEIxLFYV4uzXRowHB07YJnjM/MzYYB+nD7QsLJ/162+EtnQwUnnDcgMm2fdHlQ1DoigP0enhfff3e5XK/oy7sGqrk+1ZtJ8OF2sLeHafewlfOL523vjmxupnNaUutqXXbV43E4/X6Kvl906wFLxpekx2LGIfzQTNx63a1cbDn9Butv7583darcuV91QHjEGw5sn72sKPl3a+7DTzpef2IkhJzRZOUoubp9RSflTqoAsvLq81BNCABfRbRTAKb7l/X+jUYYNrS04AHYA62UFPnDM57/dbWoy4dV7rznon6maj/7DnOULlbUJ3rRfmgUhAzqjesAbZxH3RxLJAcCnocPx4PctVDfPAeFjA5olQyAYXPykw84hMouFQTvyfmxBMNanLAO+B6+L7mXq0UjhPgJiVfkpgQstph3KukJb1z92ie0TMsp+soVgjx7OT1cBjmVM2kcNddGGacIfnZz0Czwii+L6sqtP6p9TgPg0pUjK78G0AwzGEAisppbcQ8TYhopA8TkYi3rqOILhNHbIKpnVo5sCiTbW5UTVn5yr9h1K289bhIWSDahSIMdLUxINpI2B7Gp+pSipf//ZTI/p64jp2M/5KzXyhGhIKeLT9zcdfd+R7qcmk0stmrVj1nc4FDzPlqduJeB6HSPzg5WxsY4F/+YsBegOjCWL5Q2VoaZY9+oQsCaUOz/d1kLCqlMPm/I+l6REgOYzunRAOXTd2FoPSsTUv3FtIMQDfELXSev8eFQMW9gQ4MQxNrJsuj6mNftO2vfsXYsMMDIOB7LP4dPuZqtRspyf98/yRVlUtRtub/dqfglrtC117d+RVOl5lqJh7iOrEDjhEI2aFkLLOF6cMJu/MgGDb1YHIiXOjprwzfGBeBbeE0QTTA0Hiy8P57b3zzJfcEYKS3t/uRrg8VXrny6/2VHjLrrcN7BCW9Xplsr8Nm4STJ7sPOifouC2yndul2i1H5ggPa0mrDjFjpRq6vkRysDBd6ijpzqDYlUtNqmfjodu9uU8V78qa69TIdCe9L94w5qVRkod8K5cPRyWXBKYMb5K2RHVkXl+9VvoOblVI77iZSbxsvugzGbTffjl9NM7N+CzWGBnQ6GI335Ndubn+JZXDGObwlGRrbsWMgbe8cjAJaztFNydDo0rZB/4bLafsFRr6mDCp1QQkmR+IyGkoRfe/uubjwaK8cvY5KpSbDlcBX2uXL+Ehm/VQ0YhSy5YX5QraPNgdLKNrcvdEoDPTG6+69xhJduTOItwdl1i74Wm7+YEi1A1MTjlUtT/TlFw/rdtCqiq+LjdbzA0y1LU2V/EKJ4zdwhxi3NcpWwS8W51dPaYrkF//h8VN9gFm+HBOXfcQF/j80qikpMjqtv239bTAoCJ1KiNubw09vsG+zVc0yNWAfDjCpa6Oyi57MI0biB8qYcokYidXjvHskOoqDzki0u+0xzM5RBU/1wHPJfFJFYtDmaj09+VJ2U9EZqaqRycoEEYNG9ZmhaAgtOjSJzxoe4OL+KF958ZnvZ6h1wfxpVcAPsjM7g7pjjsaMlA6pbL23z4oPz9saJGGHvNPbaN34pFu9uWBwemv3Wy5mggIzPxRrY53AzHgl3fFi63TPpTsOUdu4GmWRkwYeeeNU+5Sp6ebt91mphPP8262gCQRV3H/x4tzaxYv3o5t8+/MLqxY3Xbw/YAat25/vJFLWA7eJgoH98DXVNg6HUKgjDUsjjKIKi9lEIruIFCmhrf8dj2cXbV2z3FLhy0Qp3V6UkT+S9uDrFUNJKEUxh3PpmK2hnMNnnJHQ5fc5feYJF+q4fl5kq6rdPafEd/iW7/cp2/ZXua6ElB7RdioatNTutvPlqL9PUjt33FaDK/cG5adssLNuPymnsK2yv3Z3R+9rr1MUe8lb8RG8Q7RREiNV7AuIOezHWFM1nqAJeVUs9VfKkkuKnVIX+XizZqmtH/zphvsgR4ngt99rfQdVaXwdZnTlowHcINr+hIN3OKrG77ttat19jLMw3nc/MsvkFFTEFcfUT4ckoeSlLiptd+YMpe7GlrGiOxdKzVL5JBbON7gGJegDVcXWd1rf42FCIff7lZ+q0IHgGHfuv1+KCXj/fa5oct+tJ9SVwU7bQl7/lNBDTytpZUq0PdQblG1Tb2fRL/ru5gNuxj0tPyiJszzC51ga0/XWv7ZaSAjBfkYJcThZOYEEoHmWh9WgSdkrX0SpQxkMIQBzNE5aP2n9CPhTP5KrzYW+qexR3i2gP3phqGu1KZ7Ch7Z3jJNyf1kTv/LP0/rwL9aisA2X/icqFWub6w6GKKHY+sV9zze4anJYf+cceD8I3T9nuek/+dzKCVBh4pRan3/ff0utWFRtpra+y7j4pa/csoVZQV7aXIBz/FwHCcK17nf/fMvW/8i7rhbqcbE+elx5IyHlDRb1eUPBnYVtdU+j5nn5+jwfH4kGWfCVx/9vhRoGrWzY8cs9FQ11K6yNLX1yXSFeeUZODSWT98xOUFTjKoKaPDq2JmCR2PL0wXLAVEOz1ybdmHq/fSk/ZyxoUwneThXj6sM7AW1dEYCTDUkpTFp5xaE/xFkw6jWcLjwjr4UpN1Cr7PnVto1GHBzTMFUk0fq7k0mvcT2w+rpCIE5YZM3Y0aQK4GvjHmlr47iUCE9N9ymh6fjsuRA8WRsXyVYmk68J2G94ZwjUndfZAMb2Zr432v+CN9iBV71OvfxVkW51HAGIXnue1pPW1l6aCXAG7jYOjOceTCi+Pu5hAdHI09PH+aKgiyhPE+e3KDVx2mtf5YOVyzW3GYjGtmYx4wKGmmzzOQe7lXAEQHMyl80Fw5HgnA8b6Aoqu31qOqo0BE2YmqhwSRP+Y5hqK+KeLsaiDk4ItvNV2P+0UNfa5KkAfdr/sIB2xKW/9fEA4n8Ui21gny42wQcWjz1drK5k2/B27eQ2CXhXDdoK/gd2c6ytKKkJgItyDbnqTWkREDnkzr3Xa/1BxllQeHMw+GakGYruxbk3gFeZnMXW7dTj+s6d1LLoTvdylz9bvoR3SFlD9CcVtRFPeiOEfE5bIaTDdS+mFu4Q6HsU64LFfojpYARxr7h8h4PXWFRqYC3JXNGESGuyLW6Ilub9eRlU0lJPGNEQu6winlk3lD/Z0LyDS6qmqSsfcoJYW3nUCeAFXjMXyezNK98yiLTdwm9XGm12roCyRjR1UIxPWO4aUdIIrrr6Fb8dcZ2/XDUtQ0oN1CDysjUecCAIvZDRqWjvC+IL9p1WF/M0QW1NTT7UmJTVsR0WdVU28DWpCzdbJ6glK7IDK9/HrEDTFwSCFIUJOeO9QqLcrCSUnKCjk8JbKzBvNepDg9VSKmkDE0jv8qfvTtrEQp4ncqzkhfiH8hDKexHkMJUPuXuoVx6980GRfzGwPLs0PrlzcbR6CQRggA0Mbz+s4RbzocMOEAi2vtD6hbxGWN36JQHn8EPwo8suO3p33Lnl/FWpQH+yfMU9veotd0MQw3337NS0q15sY+uXrS9A0L0ETRPWVPvFikK6+tOvTAgpdbhczNhAztKNcidaJZaPTfk9eCrg8VIBaLAvkzhwl4lbVj5qvvQKNd2jXvHSM0J8h4SORR64XBvXtKtfbAMIILtxXlSGBX2Zkzhf3ZgYqfZnU2fFeclXVgq2VmaSSEqjN0iyI83g6qTMvsDV+BnR/m/brskk9kz8zaFLidG6bnFxeOqSQ3CR+KwfOvTs686jd87PP3fzGbtx/gwLTfzNpYdQr553w43LQ1OHDrW+1776zEby3HXrnrv5FNxXlbrA/ehAQXSHnKs7nv5dZo4ok0m/L/HEWTpx2f0TEXrxTV8lxsPH37148Y1fhf6FpwI8+prr923tO3jTV1Bf+e27jl+/U1xCz9Ap0E4o6wS0a5rlpwNthzdNntSgkHqjYy6R5c8Iujttjm2YT2Vu2JSZ6xFXeqSx8Z/KabBofmCoMBlTz9iJFyCLnb98bO30/H6HuZf9/VtntrT+rW+YAh3MiyMVHaUr1iDg27d8CuO6ULtU8xJJUwzLVOFTgUBrg6Qt+OdBcFpfUNPq6TVYriVD1uBbhGU9OOSSpY3BIHxSViSrgKYg2dAU9fg1fBNf27FEddcgQYBXuRV8Kxh0DWb/x4XhiKhAcrEzvd/vu1z53cBvir2jaH3Q7cZQLqmJd/GIaHzlNb4OmwwJnXT+yTpsf3ss4htjk/Wav0PuaLbbe2MAgM7uuK3ubj3kbozhteDvi1sPKahYigU/hZ+K+dMr+EYmZXX0330YPZlPy80+kaiIGd34NWEc6Xeo+IecEfaPBBH/8dFPfergoUPwY3H9HU3TvoPyJieGeP7Pn/rUoYMHZRS/8pfK56GhGNJK6I7tk6M4/9jeqovyRAnCr+DHro4ywcGTs+o1b2I32lGKakLI60XfKqIWhMDclpdlUptv9AGlqGLfXzPQ14atfQcsQMyXNm0q5RHBwthCdWI/gg6Qxr9FUfQzkLNYVucjH7IgX9m0qZIHiw7eHUuOUABLUuf0iT+RK+EPChd0rybW3PhoVgOpg+sPFmiUJhJuICBW2imsBF8TK8v3sZhD94KVCsFao5+sw9Y74QIcUC3C8a1f7IVPfl1DQOCMcRAX2tdfn81+9u3IUQxYrfUOAIQLJuGhz+PnoBpAuOSWEFz3DEA04TsmIjzjQCR80yHAwC+/0LoBPiejcE/8X+Xz5G6B9ZiSE9D2JsO2iuQU7IfOeNkek1M/+vwRgg+1L97ZGTMix5guQMOL+RWt9aUindb+84G8f3yqQF7R4j3KEXoHqSumaLEgWsymIo6nTepqBk42A1237zm9pa7G8fd+I61/O/1CAeV9Jzi83bUb8Q87vo+pn4OiWHQlofdR65prpDh46JAkF/gdiyJPcnxi2YGgqCEmarBlDW06xVwq40ZEerlbwJYvHjpEbJtcd61B/lW8SD7gVqKpp8FAXat72aeUbUj+0qKSxhw6JOG45o/UIl8IgvPEsltHFwxSBuOyhojnRFNou7bXQo0/mSqa117Yw7hNDh0y8OeiggbTwXcQIB8IejTvdmHHvFvJd+wJbf18Ld72Lm/rW3OqQ7dFjaHFe942fvyWK+cNU7c0gNG1z3pn6zf3AkdGb2eOZq9vHuZsfs0hW1MtYiLMD+36FGpIwW3vXtHe7W6ktSnbU7xdcxe3c/vQrRolLw1bQGcSV7yoNr9u8sVXJGakdGkZc1df9bznXnX1HNxuaQzNNdG9vYbRu1emNGaaFdg5OjQ0utO1TFhwOf7U3SFHZZvgOrj5x5m3ea13oNGU33t5KnY7GhsuI9qFEVcXQvOjO3TGUd0fcr+z3fMq/pToNp29xXlxZa4PjFvuYmub28tERdAYmbvJeaiyxru945Z+4npM+PA0pXd3SOI8HpOnqvO4gCYhrtVi+3AcAcMslhtl9zSrNVhfjW4BAffPZfPBgxqJXjiSJADeV5Vp+tJIGVYwcyw5lI5bOsXnraW2Tkb2jU/yyys3oXZHctB78Nx5wjSmlbdt3nhLsdmnoJC/FTIr7GEhJSG4SjRsInp+vv4RYO6oRCKVuhi/GJl1VnqDhMCVSC2V0r/42FTrEWw9ErVV3aRcnv0lGmn9r9a7bcTDK68FRUFJg+HbggYnlazkW+kQc/lWh8z6o+HT35JHbdNtmvqY3J18vk1p4U6frsI/uyT0NhVVjWi3uGT1Fy4dlX06MUBm4bd+n2Jh1d2bCiSStgnVXTMsHxUMi4w6H/s4oQ6l7/uoxoL4yZWrYCvCVvitanPRlf+FhCCshz22haZehZXX4pGuXoWVlMRbJAASb27Mjs+E+93+ocdo4NuSbcCjX6K6zuAhJplE1WMoRgBvvYWwOCM/IRhoLXocw/OhGBBE5FHB76elDaHgtgFt5+Xuk8o7KZSgfmosvL+g5C9cs37N7tk73h7CZPkdN4xND2UueFVtfQASxVfg8772Kn1gbODP3h5jVvK5F21eigffdvWOAOLD8fjg118c79m29eY3ZSwWOLzt0meZ5aXNV726dfQdP4+A2fexO4oDMxOXvbrch+F7Dt0VdVffs4VU9bgyL2b7RNj3UPFPi5VA+ft9CbB756S9y119ni26j7bVZ/jNdRvrm1QUrNik66nJEpOp0nojEMmHy4TZe7ftmuSqQRmlQGFy14XlERUeO3r7QEGjVNu2Pcx0FVE1WGj7No32JQrcyay6ppjeeN367Xc6OiJHA+7cvmNm/UbuaTa+K6B/TNCOvdIzc7pHkfN10nVuPWkV9jwH26HMHg3z4zOkT6xv/XRf6k5W5ZX3DZRq4TvTe1NIIstj1JoubQPjuuRifzmqccpUnZJouX8xeZ0BEyPZ8NHB0o2VUlrmqw8Nnje4qdA/0xiq6jRg6sSoDKzRKcXH1o4TVp3mkJl+EY/gjcfTm/pnRuMIqmaMzvRvSh+/ESN86RpRQ+St2xfmr+ufHKMs25es7GgcvOjiyZGB6kzSdKarVXDxcLE7ij3KiIxO6HU1ItAm016qoVOcoxOeH3A7x530jr7J4qZ6/COO8/DtNE1vfZtl63pv4Z5L7SQjeN0rw+FXXte+QLE0jP/3djtsv+u3uv6z15m2GlXT/Q9+IjmrU/aVl4dCL/9K+0KexSjm2M/xW8oeMce25V3Jv7N18kfJhaPZlVysA7iaSHTuxDuHGZ9pcsJaunmsMVoL4uxoODFRQIrAuJHXCmgtr+HBweyuCKLdZIYJ4lmh3pccmIjHdtTGN7Cu+bq2Mloe2B0MbboioIo6AEwrnrdq69L63AU6hKpXmOPm1jEWTwCISpzoofn68PD08IB6+vz1NG+wHX8uNQ5iXPKpoDc/E6FOfhD/nGsinGEide8Ev5jMT7Td1PSBZm3BBIh/OWjbHIB+sJEa1xlsG0jjz3nrS7xn/SRPpvVXv9jkcDscR7W1+5J4SBu86y3bLpoVra87kYeN+B0l5baeTTudXUjIRan4dEMt/LgAmSFApCThAVxnBxmz7Jn4lagHHcYceyp5lPPKhwAg2bu/H79uq60fMZbQB/hKyVYfZTymD/Kjm+EdbzesfsfteR524DeVy5QrRdvHjmyNS5ordIuyw67N2fWzkgel+z5XovfyyotVaj7pq+vqHpe4mWpKopOYdPfU0g7dqVV8UUPiKtQQ/VYJBgNUOqLC7kGSJIAMgUQoYeJK1e3u63YxQIgyBPBKelWIq7W9hbW7L2G7kTC+cSOnnGCoNp8LvIAYgKH6WpVVCxYhhL3j7Z3LK4665VJLl+UCx44i0QCTy5epXiWiXAKWTDvR+lBOyhzXneCwQ84T6WvjSq0eVrAedpMoeCGcYsbDDjClp+ZHP0qISgiEcf9FF+3/qWoaKnzHgO+ojEKY/fxn9Gc/9zyVOMRFvbF2DJR/tFs4ii5tk0Rc0Lpmp1LV0EyQVeI/yjpbBaNVUA1T9asE5b1d0loEJKTd4pAvktVOleC6hCe43JeIfOks6stuvrj0q7YgdHNHJGtLb+W5LGjHu6UmT1ZTfimgGZcxRG7/prqEsG7hsS03nyKyTU37Ahn6oqOK2r4QaUtr+A+++FWazpDgDZ7kSHWLrrk5dv9dp0pqfoQc+52fdSBvSmjy8XPnHXgbWxcI/PGvzh6vCI52zqwDrrXpdzz0n4jo3+2w9WcLQfzjXz6diH7Rf9UUrW+WNjfd7f+52z43ev5wVsjUcyHu7GCfG6ci6ouH0HZjlfMByb2kgujpR9cVKp0IOwjTX7n6oz/NniXGjn7G1zdh61udSLv3+uqlc8fZQTvSzod9VMDe+A9HrFUKRXYybI3+7RnD1v6UdYLMPBm2BgCtT7dEWfr9pxm9BtCJX0MJrWoIaNe60ty2+RDg2SA+9wDIu3Ban/yhYK8/c49Wn21gPisf/ukW1ntqlz/RGaWn6PFZB012vvX+NkK6R68pV/N/Y9Q2WzjrSvrEfz5qO6Mo+HURz3KhgHQ0JueZaN316gsFpSOfrzPP53wFiNznhIJSrvaPGYt7eb1inddCef+53FfLR95z/LoWjQ3pAPpQLInIsfXe1vvEBybFXUT/brB0SerCqE3dsghFeT+qcSu4Z/2eoMXx5dxipnRI+TExOXHCFICGHcJNDgmIc3kvxBE0R5bjItH19yAHfdxkFtd0BsC6bdZVZVzM1rGhtLur9KfjOR0d2sdH4SNRU5NOBb/cseEsPg8rb/QDUc5LGEHPu+Cp/R/+pdtS7cI4qEwKGCdGem086QlB5XQ5uyuE4kPpu0S0fnz8UAA18ymdIlY+4oMJ17veEXzbqmNBI/EU7hEtpx1V88CJAXy22McF23quRKGj0vBCot4QZTZ8AqmlWa1xSh8Pq2qaXCywpLEnjiMRfRU/MKwcUYiiir4yClLWnvDz3B/xfpSnXQ4U+XNElhMwgQJeGfns/wcohhdtAAEAAAEgAKwABQAAAAAAAgAsADwAdwAAAIMLlwAAAAAAAAAWABYAFgAWAG8AzQFzAioC7wP3BC0EXwSVBREFUQWQBasF1AX+BoYG5wePCIUI/AoKCv0LfgwrDPcNSA2tDewOJg5dDxEQGxCtEWwSORLDE2wUCBTmFbEWMRbyF8oYXBkUGbAaKxrMG8Ecvh2THiAeux9AIAUg2SF+IhciPCJlIooitCLPI8gkeyULJeomaCcgKC4o9CmJKkcrKiuaLMQtnS34Ls0vYTBYMQ8xfjJSMr0zYTQuNNQ1fjX/NiE2ljbgNuA30TgVOEQ4oDkMOVw5mzqHOuw7nDzYPc8+Lz7OPzlAYkEYQZRBvkHiQf5CMUJeQphCzUMqQ4NDykQRRD1EoETxRUVFjkXoRlBG3kdrR/hH+Ef4R/hH+Ef4R/hH+EgTSC5IZkicSP9JXUo0S0FLj0u6S/JMh01BTbZOQ08lT9NQFVBmUKVQ+1FiUfRSS1KjUv1TW1OwVAJUUVR9VKpU1VT8VUxVpVX+Vk5WplcyV75X+lhuWJlZI1lRWZlZ61oAWjZaWFp4WuNbF1s1W2pb01xLXHtck1zQXQJdNF11XbZeD15cXphe619dX+pgTWCLYL9hBGFCYaFilGLUYxhjYWOrZAJkWmTCZPdlKmVQZXZl3mYwZpxm82dbZ3xnnWe9Z91oE2hJaGForWkEaTtpdGmvadBp8WoSajdqb2qpavFrPmtva6hr2mwMbGhsx21LbZpuF25WbpRvK29Xb4Bvx3AOcE9wjnD5cVdxrnI2cotzBXNXc6tzzXPhc/V0AwAAAAEAAAABAAA/LQ3tXw889QALA+gAAAAA2LKZAQAAAADYspkB/in+8AcLA4QAAAAIAAIAAAAAAAB42l2TBchVQRCFz937/u4uu7t11+7uIO3u7u5WwiBsCVtpKUk7qJ+SllTqJ+z2zDAPLgIf59yzb2bz4Qd6AEA0EaBHVIlJ0Se0iIciUL1onIsOmh/GHOKZD2EWJGNdntUE0pZMJz1IB9Io4T3pSLSXwB7TSRCN3sKLdw1o5p6gkaun/4U6dxs17jRq4hIdq4mWo8I5fucyX089j8aSa+1t1Km+Y10nePZoJWOkLJVCKbWK5LmF8Jx/i6yZWkldR0BasK48eqTagtoo6oFa5o35XRNV0vf4+9IVo1w8z6ZGc+5T6pg3j45x7AT1MOfjGLMyrqOUmidee37CUNZvFSXT5dyZj6Sf6y4iUM/qPrhO5rvio2jGb2Y6Vs5+rc030nV8wSh+N5a12V42EOn3hqwgs/i7ya4hKrb72aFnNxRddJ6HaMZ5O+hZ1es9eGow7SRnE79PvxFy05gO6NgHaiWG2DvYR+TsvJA6x6wMTYA/7V0jdJD+0XVkuV0YTt9O9sh6z5oSajD1po3FG+pTSwhJ5MFQz35NE9pClPcAV4YOVH2jsm/udwaR9zeDSJ5mCPH29sdwTHvLuu3ODrHOJ+F+eGY6TrV1UY1gTFdsrTbv9P9V+pkfQj9Q0Pok9jYEekIW6try7Q7i+BBqxcv5Zzgc5l08IBVpTZ9fdEkJ8Xb0Z11tWnWd1ttoJP99MtR0DZHa+yRkjoXPXIIZWcPh6QN9yBqm6vmuGiX2eTLqBAhYBPwDU5XVswAAeNpjYGRgYG7594Ehit35n+b/fezcQBEUwKgAAJzlBjN42mNgYlzDOIGBlYGBqYtpDwMDQw+EZnzAYMjIxIAEGhgY3gswvHkL4wekuaYwODAovP/PrPDfgiGKuYVRQIGBoT+OGah7F9NqoBIFBkYAKpARZQB42mzPU8AcMRAH8Pk2tW0ks4fatm291LZt27Zt27bd+25yqm3tNk3N4f/1BwDs+6aAMPgS6wD7mlJABFYEAM7AAIgEFaA+9IMFsALWwEbYBjvgGNwACXfgXVjWsOpGbuO4cdq4ZXjZFDaDzWbz2AK2mC1jK3kkHo0n4El5Si64i2fj10VsEVfEF0lECpFTzBTLxCqxVxwUZ8RVBGQYEaNgdIyPyTAVcjTRiemxABbB4lgSy2BFrIINsSm2xt44GIfjOJyJS3EFHsMT+BSfm9FN09zo3Ozc6dzrPOx86mrsau++737q/uC20hVOt8HHnyqlAIBDQ61ZrjUbvmuuf9W81ZpqWnPMOGncMMLZ5N80S9kKbvCoPD5PwlNw/h/NBK1ZKfaIA1pzAQENrYmsNfEwIab8rnH/o2mCrbAXDsJhWjMRF2nNEa15ojVRTDQ3/KZp4Grrvud+4n79VbNea2zNCaqAOqh2qx1qq9qoNqjFarIaq4ar7qqwSv2pgL3OXmsvtBdYD6171h0rZAUtv+WzpG+4b6ivr6+Xr4evm6+Tr7k8LMfI0XKUHCYHy9YyrowoGb2gZ3SHgrSTdtB22kZbaB2tpdW0ilbQclpG02gyTaQJNI5G0QjqQd2oEzWhelSHalENqkDlKDNloqgUxfvCG+6t4qnsKecp7SnmSXxr+a15N1038WbKmymu3brWmltx+ecB092wAoxsQAxjMwEJJnQFwPzGwsrGzsHJxc3Dy8cvICgkLCIqJi4hKSUtIysnr6CopKyiqqauoamlraOrp29gaGRsYmpmbmFpZW1ja2fv4OjE4Ozi6ubu4enl7ePr5x8QGBQcEhoWHhEZFR0TGxefQNCN01IZGJIY0nNA7GSGzOyTabduMzDsAvIuMjB05OYzMKQcZ7gG5M5IBBKFRRMmTpk6aXIeXP90bIYWlNQwVFZVZ9QylAIAQpY1bwB42qxV5ZrrRgwdh5bhMrgg37nZbuOxLzPbcdLLi99nF+2l3+X2Gfw0csr/+mg9crJMpYVoRqORjo6kCStDrJbjKCF6+buanH/JjcWPY75p82ySblC+HHOlmf0xrIbV6qpesR2HVcIq1O2eslSYBh5bhind8LhiaI34zzmuzXzcm7VGw2g1WvgkdrRj5zHx3Fzs8NPEJr4rq7tJQkXfKFvjWagGO+Krcn4VlnAWE0DkGfHoXJxCQ3I2Kqvbsrqd2mmSJDZbbpJoVnPxepJ4XDUEP7VmBkD1cC7mug64oQPAT9hKPa4ZDVy0VtRXApKTfnD5xHm0ytWWA31IOeXwXVytN5HWfJzO2dlCEusEp08XYxzZktQgssd1w0Oh21OVPjUNbHWgQbEOMq6sbLC1Cv9cb3k8ZEhAjoWrv9fUCokHfpomYpK2S5DDpjc0psIoaDlbZI+Y3eSP9r1YroYeGacU5TqjtQFTyhY2mWyA3ETJ1abO2v0QY4dc58u4pXDroEvjpkyoNzZajWLH1k7ScjyeMEWlEvFa1vZ40sCQiMfDF3IdCx0kPCG7BewmsPN4Cm6mS0oIDKwiLk+GKeUp8SRI83javFyKi9paO7nME+v6R49PmJfz8cvFvtJ2oD9V6k+aQk2Fy3ExNYX6ZQFPudKkaN2gGJePCXywdVYT8piLCyEP2QZ5TmXYlqNxbXNt989xBf+lJkEmXeDvQru7VIcUsFDqlAZbIavHPcuyylqdMqpQlWgp5ikdUMRjOuBRBE4DShH+l+lpS02qIMjT4mTD5e9c+xJoOo3cTrkenzGFJfIseBZ5zhRVkedNURN5wRR1kRdN0RBpm2JI5DumGBb5rilGRH5oyGfrM49b5eIrj91y8bXH7xnFE+6/wPg+ML4H3wSMIh1gFHkJGEVqYBR5GRhFNoFR5AwwivwAGEXOAqNIY+hh2WqeQdjplEKBEEo5INlIv/mGPZc9TNIVQ9SlQyqhs7tanrEjLdBKHl/dKo91lq+0irp1JoqvJmWC10pmDj2+buhWifcG7KxofxBMGIIfrFdnf1by036s7xbXrTPI6CbyB+CD8bIKs7se3zL+uYce3z7OFE24CvM7KIk62ySfujK8oPJ5nnd1F9MeryB/tjDRty3rzGnEv2uACgOCv9KER0J3Pfc10cMcvu5tH5Pf98E1HYgVcSrz/nQ+/qlCVbJ/qsxULyaBvIHDIQastNYdTB+quQctgY3+Y18J0zXN1TBbm4uxyWysU3mD9t7JNCH0jO6ghhoROsgLooyS0kFBtETROEkhuY6Gqu/zCo+SUbMEgc+5/iu3HQslvy8cEDT1mQEH+iGoeSBq5KoDnHV0V4JJtR6KvkxgwKhain16qB0bmk0lnG1T3mhi93znt2+/UAd18KAyWtr40QBBuFmaVL6e96a4WcrHRpMvrHXwMD9M/MK3TmMAn2yp53aqn+62PtDmmeG77oFOA8P33ByBpVmAdr8NyuKzD9Nwq8PA7lYLarS6r+8O3LXxaOAN/xet2P2/uk/gZ3cBS+MJ2VFvJxlgjISMzfw7kr+jBwTou7tT7iLlM/3h7CmZw1M+38QsfnSI/rkplHX6FN/C+oXhOxAvhbUIvFInB4pB2FdG2pFfYvna9PDOYPEGC0sWb03PKjV/9VjXZg4DQBSEj6GPiwQNHHMsM7NlZi5L0KB3VpDN8/cnFjsS+ksG8yeRxRA5DJHHEAXMl0QRQ5QwRBlDVDA/ElUMUcMQdQzRwPxLNDFEC0O0MUQH8y3RxRA9DNHHEK7lPaeHecDw3qWGWh9SI72eZHzKGFveS6onDNVTSvWMUjq3vNeULhhKl5TSFaV0bXlvKd0wlG61oDst6N4KH2+uko+nb9N7cL3rJ+eUvFPsMytxTWMAeNpj8N7BcCIoYiMjY1/kBsadHAwcDMkFGxnYnDZJMDJogRibuTkYOSAsUTYwi91pFzMDAyMDJ5DN4bSLwQHCZmZw2ajC2BEYscGhI2Ijc4rLRjUQbxdHAwMji0NHckgESEkkEGzm5WDk0drB+L91A0vvRiagPtYUFwB3WSTLAAB42mPABElAqM6gzrSagYFpG+N6Bob/dkyiQPbB/6+A/AP/v/43BvEBx9cL3njaTMwBBgJBGEfx930zsylm7CZhA9IJUjfoAgsgIB2lCwQRQOkEnaVzBAgg5Y8Bfh4eMLeCAQADyMaEQXZG7OXAkoMcmXKSE5mL3FQ925q7XOjtJbfVv/v/AxbHwM3esjHzs+wUf8iBnT/lyMo/cqIPC7mpevZj2MqFTbrKbfXvfv9va1Sx3ToMRGftr5jdI0eBx2XGQLnd9aiOGqt1bB9Job/vjVxmOoYBXxiNF7N8ZHQndvw1+sa1SuV/qVapVnhJWd1JeTfSKo1UyOtpJIL74OqvMfgfb8Yy5flItlV3tCn31NFxQ+p0R3V6iTQrWepWMtNRXBMVnuAbQOkS8bBzoIzVWcoVURG/nhgxfHRG/jo1GAxEV7r4TA4FfGe+vWruS+I5WrLoFOQwGGgX846yyvRVm8fH4absqlsHEUGwF2tbfNvNTt1AGsVoJDpSqQWrl7aVYRcr3l2vcytXaQGuF4CQr05cFVUBsRsuy77UiTxJFPtBJK/Mb7N0E0HsXD5RLtvI6NxZYXUynrjcWqk//YUWKaOcRmRIU4dicsT0lSL6hlijCq7/VPJZFQ/TEimyHpui2gVSo5MiKgrRWfe5oOBF5Sr9ulb+h94mMNKrzgMlqQ3FLvibyPeQH9ExNZBrYHZIQbNHCWpDK5Sh53w06CvvIPy8E8SPKpTuarwKc4DKjE/v/Rj6wj+/3rjF8A17HOtM0cBfAvuQ5KB/hjhEXZx3Bj6ft++7jueXKHkHc9s5pABI7edivzHr99QnBTxf/x2mJkmw1RN/REAnQDdGZe/wdpGdIhsAaTy/QCSIkd+avfTqIW97d/bzKM9epzpii/Ix9o5y/Y4C9v7gH1dJ+MdP9qgvY6q+P0OC9wne6N3aiPSO87Ttc0cTFKDvcOXIy7gs1Axp1A658O7J9Y7L1AK//h7OBfyrVjB42mzB06EQAABA0Xufbdu2rZ6t7FGybdt23w2ROUFNEL87hwD++bWFBv7DPEACCCSIYEIIJYxwIogkimhiiCWOeBJIJIlkUkgljXQyyCSLbHLIJY98CiikiGJKKKWMciqopIpqaqiljnoaaKSJZlpopY12Ouiki2566KWPfgYYZIhhRhhljHEmmGSKaWaYZY55FlhkKctYzgpWsorVrGEt61jPBjYawHb2c5UtHGEnnznIDw6xi4u85BJveMgjA3nLN4MMNoQPfOQT7/hiKDcNM9wII40y2hhjuWCc8SaYaJLJpvCYJzznBU95xmZeccdU00w3w0yzzDbHXPPMt8BCiyy2xFLLLLfCSqustsZa66y3wUabbLbFVk7aZrsddtrFd7vtsdc++x3gmks47KBDDjviqGOOc9YJJ51ymhvOOOscRznmvAsu/iYIHowcAAAAgF2GfNS2bdvet4kfv/78CwgKCYuIiolLSEpJy8jKySsoKimrqKqpa2hqaevo6ukbGBoZm5iamVtYWlnb2NrZOzg6Obu4url7eHp5+3x7oqstR5kgDuCfbFyehUBC4BJdd72tQCXpM41sy8jbb6D/O7FfSVrqMLOt8LzEG/WDozOLYQLTyUtqGpp8u7Kh6TtqTjX990v890lMvopLQ7PvvRaya///dBX/f9JiWOZ7ng8DuIcHGMIYJtNGtNawS/Pj6M4r56/Piu6MVQs6CxHu/ChePbBgpY0iredf0J6Q5P66IKW6B8lnMxsj2y9HlbhcjWvW3UProlNnsMD2desOjEN4hBGMnUkIY5g40wzmzsyDO5it3eknOdxuSUhsvyGE4x2f/zVc8zkZbur2yQ+Lm/esNMkVPwptuDWC5Jyb3jxpNvOLolrcijOW3Nyca1tdzZXMuIG/C+ABhmvShpXQdw2ZK4oRjNe96vpOGdG1JCfUXiS7lh/Aw1J2F1GRpLZeIOzUWrSGleZqWDmx7e13pkUjJCm3bu/BYFF17UVZbg0qufPgrfi3Ffckua1wapjA1HlMYDpelJW2J81m+zcZftisFZ8lP6KHBD23Piqc8Q76MID7ZSVUJbmXVqMUbl2psdKIXj6hHMHYmfgwgPtNz6rnthaVlaRQxapsP6s7MzwI5CFEvyhg6Sx3o4EXwRgmMHX6PgycqQfd+kMawBjmzgz1opzonmoeszDcQf9FJe0JSQ4LWI4eiwjGsIDolwcYwiOMYAwTmI0mQelMoBup8HxnWeawgOUf3lLrLwAAAAABAAH//wAP",
"title": "$:/plugins/tiddlywiki/katex/fonts/KaTeX_Main-Regular.woff",
"type": "application/font-woff"
},
"$:/plugins/tiddlywiki/katex/fonts/KaTeX_Math-BoldItalic.woff": {
"text": "d09GRgABAAAAAFc0AA4AAAAAmYwAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAABLkAAAAFIAAABgRrBZp2NtYXAAAEvkAAAA3QAAAcrTnKJPY3Z0IAAAUtwAAAA9AAAAaB+SBSpmcGdtAABMxAAABYwAAAuX2xTb8Gdhc3AAAFcsAAAACAAAAAgAAAAQZ2x5ZgAAAUQAAEfJAAB+AhXZPFpoZWFkAABJ/AAAADYAAAA2FTN06GhoZWEAAEtwAAAAHwAAACQH3gM0aG10eAAASjQAAAE5AAABlAVzDjNsb2NhAABJMAAAAMwAAADMWil4Sm1heHAAAEkQAAAAIAAAACABhwxObmFtZQAAUxwAAALQAAAHF/nLmVdwb3N0AABV7AAAAUAAAAHbvYckjHByZXAAAFJQAAAAiQAAAJWB93OaeNqEWgVYW1nQnZmr78U9JGgcQigkhFCjVIAuUPcNVboubdfld3d3d3d3d3d3d3eh/303Rrvd/Yu/mZfve+fMzD1zUiCoA8BPUAIYKNDfKjkCzVYbkUak3Ijk6592u16nxP/+dR2/0eTWANga/Tgchwtwc+MbZk5fXh4BDRK13Aai6Q0lGEOENncIoAibWRMnTS/1kh6IV2HzyvIQwrkzB/a35ueq5bFMOh7REo7jUVfFq41cc761sNCotxZa9WjU+7VRTyVjsVQjmVBS5nOlfE7mvSyTlDTB5nyp3JxQMp4yeYm4kqrspeAMNZs5pVL1Zulw3OE6lM1FBf74TzIVTDhxB2sz1aqfcx2JXisWbsVSjqMw5Rv2hfA+FPN7wtpxhJqIr2eO4M9yV+D5C089raORqCJOEpu4l2nuYzs/vPPD6BfhuEMUiUUdRPGsoL0tzoi78ahgiISvjB7NIX7QByPuA2AGA2AX6OugAYfhLNxbdjUC1pA4rXfwnQAJikt1UyAAtgGxsKEd4pzaDImKZDAeAzRRibDdS96VUSWDcgrgxGNrxw7uW1yABsxVJyvltbyrktXWQjQ6nyuXygZDg2Iy2cUtJ1U+Z1Ds/i2VzOd7SThfLucNyI0F7082b+42f6p4o9VaMBe+CFdXLgvFuFT8T39sduhDQ7W3mWYkNZOni8nI+Ic87vzNn/m4F5+jkwdu3RodO3/e1y745veL55+dmMDbT/jnj7psSWIao0TM5eEkI0SRebYwemmMkDA4OzJVzB85JZH7OtG/WIzgG2+YWOTKxM6frMQRP/RDkZACG4sRAITW/b9nl+j7YR2+f+MbygbZoAnCKiINI+NsPWsvyMGFK520InhsIL8LHo/sRSCCtkSA6Q1gTLRBiJrYzHbYmnw42aYRyTZIWXrghkfllh6RWxGbV64su4uTyYPVUlipbBXriTh59V8qlUuthaYhwCtzJS1PibghzWsGS8ZCfUBgzqTZjmo1PGIteYeTy8ScREITIc1mp5zMZ25NZSPDHLPBZGvLma4utkNCTzHFUh9/c7p5+zOL+enF3/3U+LTaqs7UGNH3B/jOfSYISXAnGjzVzDh4fepI6d6Uih7LJQLFaGqrFRLENXfOvN+Qf+XQ3vOX2q98vIOh+dwEIgDZLvgk0wUlOACXOz0wjsR6PZDmg9oXkhijNnRLPwloggxhexCwFR8GqO+pVaEEhQOtvOn9h0vdQDAobql2VXfJK2hGcQ9C+/FQUf/m7znPvl8AMfyTnzK25/t/t1fJH7+xos+fXl2bfzK53oomG5mgz324hPUzN53xhPq83xgS2K/czz12zIe48xc7f0Hk5v2JhVszrXlAi8pe+gp4Cr52ORZxCHAOSexF6dxAV/MuOAdBAIGgu0DcfL4IjpLKkXdBaiX1i8BBOVxtMw/CKxZCH2rtPg6uW3QNgvv/n/uRIQiDb++F+ndXXQNz9Knb166eP9uYLJXqi6X0Eb8aqbbmo635fM4rNg+7CQOyLb9OsVp0ZcJOD/PpTe5UnLy4yfcSbFyqHvxL3FBlX0JJNdFjqfHFH4nTNebTxDSdDqaYTKYEJza9oK5d2VdsRFIZl7uxiMuPMJGMBphM++qTvqrvsctjZ+cqVSZIuW5Ssr3Dw+T87+d3SZw7glRAIuETI4xx8+N3haNlYiixuEcj/lYIUTll04bC5Tv/xrR0pS8bHlEcq19TJe7MVW6JABOoJaoPPXSI8y7HXTYnDZs34VOXfZbNx9HRvRJfeJgFqTz473qoywfpc1Frpw2OU3QMffPvdmOPt94r9G+rOl573Lx25WyzUikWJg1rvv+PtQ4rKq5UZ+jb9rFTqJdhEvJl82eIGrvPXhN+FGPLfcboeOraWRwbzc+EpyPcjUe4c5i4DpsYU3F/vTSmQpzjvn3M5wg1N/rK1NPxiHhPsoK5yHpQIGdvvIEyeDyiSCq5899CkdbhbDSrBL6ZPRwOMRJurHMsh3osLd7/B3bRnBJX4eOX3RlUvIxS9UiqgVSgJNx1ERxEDbgNSvG2QM7tmC9ugNasDYzVmOHmvfLtqK/28yvMkJJFOHNq47HDh5qN2nR+YigVCjgSruJln4rbqa/sORzvDvMZ6k31wVBPWawHB4Sl05KTk8qeDknbV60O0+a3lLmwwPIph3Gez8+jUHK/wyUJfvSDPuqrA4jp+9+WnHFON0StxkgOzgt2LjP5/GdXKhFx9+aFsi/kX1oSnk6qj9+ptDFu5BFnxH6GxLAmYdIX37inDzhf/zsB9Ne5OeVxcHBILlL8zZL/2tnTd4rJi2f3hBbrA80Ene7hzJwQb8GHLIcXKnHNAV956twq1312SsDAVcy9KTkxADQwe+0SDPgcrpRu+1Hroja0FEzAy7HHRu+mB9Kq2rCRAYC34I2Xn7998/rW45feqJc/IlcvX8mH1MjDZ4kHocFcdvhRZnYZLdSNL5mG8OKNQQKjeG+mvaNLWrF58wrsXRN2H0Sxxr2RWzOaOIm5uZGRT/mUkREb4szxJZ4tl27HUt3gytp0jbte601lnivf7ncQHv6UT8HDj4w9dHQRRU2XcaRXX0PzaS8HtehftsdXrxX7HWUCxHd23hGwnI4C0EHDaR165zwNznkpyORfAc6LvHPOE1rCBoEqNywFAaAOs5dypdcN8EN9ZuwUa/SA7+M+mE05pbpJn2UgvcZdV/J445XRZ9NxRxCfn19Zu2breTr7W0PFkCtFoweJ1O44EVHYFGjvyXvViihd3wgnQJi6//f0beb59sGNb8sliBF2n3MMCBgQu8sRQLQlClHw9J599BrarambYWImiQRs9+IV7D71PmiulDPlsvfUWLeP5RWfVLI7t3sgeDGpuo2/EG2aAtsFD32p9DHhG64dOIThxw/UFqbGT0VwKi+DY/mx5GxgMj8UorcOHAwafBILb4xdo69zlfAn1L/8F9ZXg34ntl9EKw1NhezwrMvU6FBZ4Z8SKseC1Ote9tcGiQ+Au8vhJx8n0HVE2FgiQtbFZNR1FAMw/ecjrQ3/nDFEaovekjPsBWwSatgehLt6LwlgXv7tV19+8fkr+eYba+U39lcCaqSDTAcRZdpIctWVx6mkCnK7QiploOrMzRaTIZLq3dvzPfteJrDUOQ57Y/W3pE8KlNG5UR4h3PkPvHSJnJrPr4VARkLJ6OXC9UxRCfOPy2hJfuDQSDOVxkd367u1fr6AHy9HQ5JLLnQ5s5k9aDmKB1Eojd+N3/QNyLSKsQCXRIhMKHPsCYZOJFG8fh3f2Z3v0vof/3GEw8yVsbDeNZfpxw2z++H55VBCE2ANGW+iYD1ix4EDA87u7mpuJYkxcQWEKApD7WgvxTY5R9geJFSFITcEAPth71CxXn4mr1XmUfP34fnalSmexpfSSsdHTtDXR1/KpDWh4IcOrawVVqMfs6SdeFgLwutklOEf+Pi7j0NG3e5PfV1CMSUE32EPaT7+wwadF+G15UjVu3sLkdb2E4N+4Y8IJGJtjowZbael9Ucc5WNdAyVrIiYFGW0/GLX2yYgB6+alCyc3Vg8tNhtzldJQMhTUEl7EZ/1GNNRt4S4Y0Rbz+n6AWMPgEk14hRptdaTDI08n0x8PVn8zDh3NMc+YJEp0U5W0qSdHBRe+sfnoyoqp4A7E7/9+LrKb6dS5Pd/MRPCNtyhg0a4PzqRw4on169FekcsP3bnJ/IlIkBYX8OjhY0nJOVeB8Ol9pjbjigTGMcr6REjG/ve/eS735jHkTGhkwQEv3cJW1C3rJMUZ/u+XMr/yI5Zxgu38+85/Ciklx3hEP6AzbsALy+HFCBE7gUiXiAaEZSUnjzFhGdPoMaL6fteQQGYSLF+DWN/rOn/2+LFDB5oz5cJQIujTEm7glvsOogY8GXhHqVH3yCvnyrn+oLLDvEdSXipP71XJ3EflclzKxIMTrEdMI7bSL/33uTwewA/6IGTXMOiOp/1Mmn9Mh8+MnoxmPZmu3OQR8RkkQq7fr/iXnT5zeOlYtDOWJuKnRh7NBv7RH+H7aw8foeIpIkLskSDwf7+YaaVx9KM/hu7/N5eDsQNA0DT+zB6jvOMwCY91kE4CkZ0Y1mqBNjeJNQPyIFAaBCrgDQoETzf7HIhjXBhchd0qB6PAKoHY/MNy2Hzg5Y/8LAycX/r+11/75LhKL3zic9985vjs9dyBiYmTx1eXzk9n/SryYR8Qkx915/ztJ9rFkaNrX33xKP7XxvmpwqGX3zx84kp13wee2Jzq+Rmn7FQ8Ac92/Ix55Iz6I1EBMUXbcpenZ2VNu6d3RgFNUCFs93IHCVb3RAGOHj50APbDvteb1cm884D2sau16XHz0X1mlfd0gYo/vJ31ctHburvbXWed68xJl3Mu2W//SYTUyoXpIx868eSNrAxxPj0rpMO7B1TSJs3hf6gzJ6rDJy6m66lEJBCO9YYmd1kw7BAhQ3Q3jxzefykt8M7Q/mCQBHciUckQKcL9Xg7NIn7FPRT+4fTRViodigEztbFka2Ma1qENn77sP7aXtCoECfs+6ZyDXKPmeBeki0pLtQ1CUNva0qB1R1t1ygUAJk0Zvdc9pf49lcE9toc3N8A41hvtzfbywbk9MA3T05VSxafS1aIVYT3x1TQ/H1F8hhJbcsyrwU4JplKWgv7+Zj4wZ66bxC4VzRL9gHb9bnz/6ZMhju7Uno/47F21evRnZTjuj531y8zp9dsn1idjDcXUQkFGknJmWKn1yqQfd/40PRvQubFxF9EfdbXKjUy0L6RqOdIPVvUvn3XTDsuH8BdOXdpY//ITzctT0h2vaaRAKygaT2zf0ztfOZwIaI4uZ8gZq9maN/17z9T8LXgdvng56dV8FoU7jkycQpJbqEh0uaoDE1IweRdcEMwV286gD3yapFRtUKrobci24GteR8z2b0KT7iJs9+4e3FLt31LxeiQLcO/FZ56EW3CjfX7z+MqRfYuze8rFVt7/COc71R8PSnV+700HE7bs9Njt+1TWEnkPtYjzpVKVun33CCPxp34+v1UvssiZXM0vffGxaCIT4JFRxSSLJoVIjdfCxe8PhUr+6L4juLRLFD5d2o51z0taqjZq+aUxFeF8dUM1JnJR38Ouo/DPFmeT/vW5ZJBzGZ2oyA9SoyMkC0mXk1QiXJzxSf5cZP+BwFxEIXL690eIQvzbsXH5fqPL4QghqmRqZQoQDpkd56dMZ27DRyynriKKIAIeQM6mJ4g4X68grXXXc4XWk2J3gXFk/EVA7Ow+pj85t11XM0L/PRJL/cQKGXoTCFvtM6f2tmb3jA67GrbxpvaMkpz1PDoz3rZRbwr2WtMyYn41BLZankPePwh6vNoP27tdXyXZqi80exozn6dnfQ5tri6c8lFLfKw7d0gl3r4cGL+4P5AdV1EhyKcU8uwonxWc8ydOF4pLYRxxhw+t+TYzrorNrT4dnXJXy5zhYVLJBRJOCH9K+WRaHDm2OCtD82GaoPClfZmRCy8FaVjGMjLAOXKSd19SUoTS7uF94fHjIljJKCcY5un19OhQeq2x4qKvILCBGOC/wTUgJAEYpy+Gc/CZy+4UEm8iI29qThpSJgQyQmJ4V2K3c4w6t7JFY0fRdFfWfiJwk8o4bT+Y9p4ZVv6Yd6EQjh05uN/0YGE4E/Zk6jk84fTf6TNI23eQYnlp2zDIe3akiU2Md3tMetd6TnI+z6zlmBxsc/J4xhFybQ0dJx9e2bM3U8tkR0mQ8rlJSeVYXEg8ise4O04YyHEHSSczqbWplVBBO/hhUnRWM0dlP6w+934RaxDmCx99BKMofWOjF0SIC9ScyVdaLeV1Cf2K4wriDgUbw7kJR+/8/cFPzOUZE72Ni2yf/AN7wUzHLbjx7SezQYZ9MyCjRGeV9RgoeBVuIOsJnbREsnFOuN0PWamT8sTkxrGl/ebwn8jEfRq2cMvpS54lms+/64LUOXc8uJektQNKJjf3SG3ZkZbmNzz+2icTNupmCvVX0OHbyVRXzc+3GHv/H1wUPBiLRoMOEinmG83Jh1WlnDginqaxT3zCCd+8Hoq6P/tj79ypfvH34pHQjS+LRhfW1o/vKzNCJKUflpN85yl+5V4AAWHJoPuaQXcDtpZ9JYcIlmyRd2WkkpwRQVugZgCFjZ4/G7cXbJQBbfds2BSHlWNmqkx1LFgpYINveMhiD5pUZ+FROSVBSdUB2owNlh84Tx66XlnaoWPGiz3lm6UezPRR4fXMajAhFOPCidYTgrOdW4wHMxmmKTjmX6hUrAqP1548X5roOgRTpXI8vrH56TiTlkJIrujrCNECGNOKs//9HMYVCo0nvvoItnpQ9Vd+ZH9458U7d34frR8QZwIQDt7/e/7t1lm9tuzeReApROhBN+RoKUwa8LbPVcybDoRdjyplr3QTkMM2Ydedilvn9NU7L5x/fd/K0+lqpexXIwOPSirJqK+T2LyS/T9KjDV7zvTD7p0B0RSlGQblcnPgXg9ybPd7OXGTU+opW5vAv8x6XOl5H/vB75PoKG8KsH0f/dGCtBNOMB9SuVwocseRMjy1PXQjlXYY5+V0ZCg7u+8ZKQsF+/ZDIXktf6Pz3wOSvsmh7IccOeruzXAudD75WHZ/zxkjxXZ+dufnJEpGjOMPst//PUGSIVcKm9jk1iyURNTxyIn/4i+zza2vnJ6hwTsS9j8QkPrZX5a/8txzIsKDA8+lBMC+0zD2YfDScrScJKTXAgT4zBYxDX0/bbdDVth4wF2zLviwCdgcINx+IFzVXT/tw+AD33rjzgsfPrnw1FTihUrZ89MaXn13vDKPilK53OViiffnjG2PnMob7C0X5QFbvdFiCfV4tfp3l9+weytpLdgzXMVT9caurUU1Q1KgTLZj8h8dQcsHajXuMjQfnLHI7FOZp9IRzoVvH/FSEU9XKroc0p6TW0pfOBfJCMfRPt9iySfZL25udkQVD8VulIrb8TTnvrFxvI70RL2+R2jld7gupy+ejUif9dMC9O9ugH/shxB3pZ+5XDAkIrsL47lzeGZyku32gu2vWjJOv4L0pV/e9yOiGI0JRPylp+cbxJAFOzsQAkIFgD1v2G3DE8vhs4cIxDQi5JNEAwfCG1mec+xo8qxj787BW+JD3lWbgQK2+zHrkkYAoA0XJ5tPF5rPrJZdNby7LXd7n+oR7o9h8lHN6VEZjzbMxUHfmVPE2J+PK2stHwnHP/IzMxmsTQuDmBTBxBOb27GoNdbqc5HCqWOGQe31Xu3Z7LPpBBNuVo+/iOHI4vgbwZG09X9OLizT1zna6y/0Jz71y555BjuLZYqxnsGz9nHf8aWMO53mCmsnqWjnvyKRg/kP4mFr8dj+OQbAigbhVXh12a0gI4aiP/GKwAiIwV2JIAjEi9DXRSCEXVKK3vTLvyOPgxU9vayqNwljCPv3zs4U88MZV8MqrigV7yBOniU5Xm6WPHmzxCx4Xd0jZe8YMR9d3ZOQiCm7iyyJOn1NJHiByNn5552/JaZRqcx4NTH1k8kPWT2haqUzRe5G40IeJa88BUrUiozV9e+Hzo5cbI8hR86Ug1VDzs6/Ms45Mj1GWg/nZ5Izv5n6OEQZrtwJSMEd+n0ukZBrGkG+88c7f4zcvdnmfq6QAUHp/n/QdfwRaBgs32/ZTSPjdQTrc4xaLLlk0vN1icobIKUFZs+GQsZgS2iyUia7XAFCifR/vb0FnBtH0jfc1d3TPaQRDYiZtStppdUyyMtgZjtOnMROziHH4eSY6WFmZmZmOviY8WVm5vdJ8k2PRlqZLncfBS11jX6r6uL6Vy27M6J/GKkX9Rxbn+93WpViOhkJaQrqQU/4ZkdEPeM8en7U9vADHb9pfZdoV1nUT8E58xO92fm/duGGGr6x3eocK1HMrLiTzpYoRKyYCiDJYckiXClt67x4LLT+gr2kh7uxoGnm0+2i6mTlC2fypf0X46G8hGkwaSsf+HqLBdOtEiMWx1Sm6ecDOGl14H1dKTxTOH5+JZ/iNnu/QNa5nAT8m6iJBi4KzIgAYBkIZIFOFNJ9TfaCRK9r3BYyKdBIPiPHJJWHkHgSubTQni4Vko6hoyY0+Zh5Xle4UikUKl5/aMRM06UQfxgXzwTT/OrZqHj2V848hsncDAU5oOoy6DKm9rF9I0IyWWV6+vyTNHzsQnOzPa3zUALDYCpvhTTDlC+esCKh/+3PAYZlW4kQGiQf+CBQ8/Ipx3x8+wJcWa9p4cHzphzdzlv13PwJYSHf/Q/wNvwZmkYLg34DKIYDoXoE0zujJll1GEdLw28NSChgNKxwNA3TbKIs6KOAOBvVaopHlcEjVwXk5hudSz8SqrBan1NMm4VYNitjUq9smJUQf+xjg6Cc1vflS5ePH74ZAF5OGMH8VNqu24wXU8tPpZOn1oLE1rm+h3ytuene9So6jb5tYMcAEwMAa8ChCFRaAURHlZIGkjjlEhUa5F2ne/ec+7ohg/iOTPHV6H7iykOJvVq0QBq4FZHpWiWfNiMKR6uwqk6oksscp/tgmSBDrfoalMr+3mfmcwxi8ftl5FsgHEqo7KtTr8c/FqM3btwlMW//Og2mC9nEe+lYw5ObP0cNtIg6g+mgjBGBAyQhgiRywy8tCEOF0KjTulWpnqjlmeg4jeVhAkknVKbrJUz2GJzBWXlU2htWfX7u0Q9vevLx44++rAJm8vZ/J4Q1QFZOgd5e/aEKUQE1sjP1mk2hdqWy/uFzI2k5eZyFo3Ym8TMhgF5Hp/PZKtFm/6t4MpneNAAg6Ah/Nnh3Ht/Bf4CuoC8MjAXANAyAMSBFWA7VlaI2ohKW6C0k6mzKLSRJnnhMHXIYJZ7et5avIVmekUc5/8zwMXxHPAcKuvPeDz78mcpDnhF1AePyxUZ1IVap1OejKk83HZM7PQ/7hfu+K/TBEWOgi8vvMWLMTV25H7xYvVHKVbR8Z+qXYYUB+1JB1sJBKcLyqZUVog27fmsQNU6vaGlWa7Xz8WycS0yVLFkCYAy+jg3zrsNdsLN6drHYUKLtQdvV//PlNJBS5H3Z3/l+8EtlGGN+/dgZDnwqV+imYrk4F2qdDDZKhRIQPwfD8KFfaX/ErUHiqVqhKxr96N05nHLlchmdRe8M9N0YZrw1hSWvtq27FzGFKJLE/Xms81Xac6h+/UXYeHINETLjprVD3zstnkFUuvPVPiRuvIMwcMD8zujh93zuq3qkOfnIlWEh6HB/sDbTbtSKedsMBtAyLHuFoJEX99XKsXu+6zEw97NE/zIt5gpJdygkBc6qfgFPPOyjYQ3yty/cIOFvfIYQgjWyUJGGHj1WKOh6tLvz+pt5o1WMZ0hUWemVLBkCGujT14vpWDkRlLW6Sp1eKZuP4ZAsXzplRp/6rAKQkYRnl25+9tPt1ky6UQomCp1MIpaAUtQinWmQIi+kMqFgSK7/RJ01nPg+G+R6CIHn4T/uWv3L6EODSAgAMyCQA046QKURmLM2MuETvp5zT4F8lzby9feTVh5CemWg1ev9qcZ+PSS78b4tWByNPtjTe6XqyWK35wjviZ7G1+AV4cbA47emcrt791v3ghyWqLJwvBy9gbVWiEDANjNBiYeYRXgkul3WlXKmH1wx43PNoknWsCInLB3SkLnLyPNP5rcjYSI3qXUlElp6vRmRuAbRTDvEMJXDheoSw8FEN1r6gflErJwtSP+e2QijmGvzX3S5HkC7LrL4QgsoCXuIPkQJJ9QVW84IZ7flUQfiCHjdFgKMH1HAKzcHDUDH1hbmphqlfDJu7AZ3FY4CEFDHFedRyEnGkajouPsBvWCYnxd5LLTuDUvFm4Bj6XJcZfHs7MXuFoYnQNKVFMsaPrc081S/u4vhyXvets7ibtZONThOx3Ltt7/QmZJV/DZEdCPEUh3BoFCit+u9+5dgqsHJdxF+99+8OwdfcnmkoU30ud9aWZ4hTALf9LSQKO8wrxZPydNIFHSHQHVJ8lounqzhazJgPCOyz/bEAxKht9/jCVHGD+gLc61mpZSIRcP6ZmCzVFC43QSh5b6Z91g64p0PYxoK3wR7+0d9GssXSTjWzsWz7byT+4fNxVYhlotIWA41LfIEIXJgph7SOQ8yk3Icb2wkEq9beKaLg89vRvCtTCcdT89k/vLv1crZXspOOUy2Fzh8PBQMhHTSM2MhCVM1UB0ktEMWCv7Fl6S5XY34er7hcvM59HNHet4FKl0Hxkd6Po+opEhUcd0klxR+G3EmuVI4ofW+22z7VlT1g7z3erLysCc9dOnTTz169eyZ4/vzc9PNajlu6Sp6Dp7T/Jjv4VbBMr1Yx7+B4lDcZ4+GDuxR+0xItQ+9OYoKBb0PQvUqzzes/IMMRWeGpHobhXq1WDpDYtmpPCNqMp3eMuvA5HqkY5tKmChy0aRiHEEvLIdD8vxJack0wHRkR06a91sN6Y//mGCItFei9kz1ppyKFeqMERw0VqIFAC4ZKbsQ6ClpEj4h7lNWsudjfK7NcrwRls9eCuSE5U66NqTm3uiMwIQ0gKIcYJrNEAJ4XG1DmALFcGecdrhXCDCC9iYfQFCZIBCVGUBCA0IBmaEZaIskBUZx9oOS10q/f/9tQVRE05FoRFP8aJqY5Xy9u6Xij93DcPybbtzMjFTOqgzjZmW/kmsUWDiI6SQLEQgbSv6ZG5+8Iixo1vTa+Ijhg7Hn5wxcEdQULL6QRPFY+FRZJ34G9vyzjz926cLh/sb68mJ7uiIaQEFdRa/AK4GR+M3ND02m3+Ppu+XyUVt8rNrOZC/Wz+0nmTP2TKOP8t2VX7Wc9FffZOXK0QgOl2LefAtgp5kpTWULYVmaatvF23kJlMZMvvAJB/NAxVSSXUOSPYOrmBd6y6V4sBRUmu16JYVXqNW1crkC4LEXs+SEJX/v/r4cTl+PCBeFCSNnyrFwqMikis5WVUmph7QLmp1MzN+YjRj9hkdGk93DgpOPlB9bLTndTLJF/43aSVjKJz9L1UjK92yd4a3gX3Jv5QI6NTg+uhUJH4xrKaJGKt2WQVwKhXElgCvYv5ITh8dc0NhMu1z0L+MCXFC/isvw++Vf9RUE8Vfk9uycnX+/9ZV5nEvzbPYr8ZRPa5J0esjMfvghzHSa6oc+6DIPYVR1uTdwuWehOpoZtMTEFxwgSuERDF7sSshk+aAQdwKqIiMLLDbikMcGL071g6Kqr6qTA1nv3Hj18rGb8aissMffUqxPPpJ/8+pzDUcHbLR54rAZj4blq5deuDCISnD5QiZ//tUI+/TZl1ZPsFBUbyiwVj6ziVwf/Q/fXcNn3J9313Wm1wfXaoBpEAg+CwrpA1NWAYF0gAhWMFHuCNc6nDJw71xRvIGymt/WVcEDsgC6cO74wdLibLdZd5UxbkZkCe3CMeELuFfCXcaiLOkHMUdO1h+eclWyNwF3Ycy8p4YPQ01jJudjiBUxFaaFY8tKNKgR6mf9PDLM+jd1pTQIre9fuEHNK6duLJagnEx5gIdg6DARX4Mv59PTZdXJZqylYNCrC/xpJBxR/nn5xFLbMMhkCeA5Q5QALp4JZF7fXU3BdxwBAbGVHtYDPtCVwt3ciXNePWYNV1zedtGW0CUNRIOYszYgXk1gSugBYmwoGG0RY/tN2EMJfEBWnbr8XFuZm51uVjKOHTJUGXWhO1GW9DRnyDjzHnzlGDAy5w0NcK+AMqlY/dm/4hbQItvnX57rBGpTnGnbu2POnEgl94ygAPclapGIMv3JRHsnH46Y65nVMF2VRRntfZunCwFVU1UXEvn37oJEmnz/AKgJr5b3CidOFNazpvRvFN/iw79xObKCtgcbOQDS4RiDZ1skwNIdJCGQ0G02ti3VQz7SlX6vUSsVMkkzrKloBVbksUUZG4T7hUn8dyKlH8cWgvYbrVyhQiDMeCLqS0u4tCpppW1D6a62V6YqsWwiYBt6wDbj6XIFO3LCUj/7nSGm54hx4IlEsHJVh6TF60tT1flUrBjTOWWSplW+4ztJW/j4Rfcb/xW3priJXhyoJcBkQxhTv35SRJhIZPi9kfT0RJERIXrNQxuJsZIJKuJy54FkbrFjsLY4X69k07aZZ9xqzgv1EI5JDPQUK97398zsET98dvijneLg7kT4exKLc9npdCEt2xo0upnpF2v8eFSup62UJcdZ/ESYqsHuZnouM/9NH6horVI8QxcCYbsRdhQJKNHmK83WHuiNUDjbjFtJS8YMWooaUHVFjxaXWlMXlqJ2qZtJ1AWvrHf/I3wCfwLtooPBrg6ANyj2UiqCycuIg4gG7khetYcCxuNCgC8g6ytz/emm6K1HwwpDu7A7UpT+/HgCzSv3jEJOPy+diCgNPITsTGamTBz98dJhodhqU1V4v7leJCLZLScToQrG18Q0B6a9Hi4UAMtGpRyL+OG/VGwtOrzbDn7+84DpsNO3v682k7ayGywpyrCPJ0T/6z9DlGDEIMVEMSgSgHhrMSz73vibXI25jL5+EOwRzKSTADgHBIjfDKkhJmGJiUE9kDDcPnLGVQ9ETK5R8IPFqXtIFRBEo/ypfTe5V8o9e3pvZ3XJdTzlTMoM6yq6DJfVUauJcf7QMLI6LqoIufN99t3m/ugS+PBTZt3cCztWrhSJ4HBAjwQnKrdKfj1E5PKUGv9UgslKXSMQSHQCfqaqmnt1XZ7ZM7qs323yXWzB7ycs/p17u65LD5hLRxXchEl4RsEXwhktmis/nzQlpuG5upfs00znGMedRqjy4RVta0ZmkJBHEVEK/gIdQ1d/owqUjHLYDKIEEYqG3QEJfJUcAcmSDyBoTxJcGSjVfqLWHteB58ZOfqSD47LIw7k4dpf/bKuyUQxQouRjnM3mizXFOr1YbP0y8K7gVrqlj9P9893elit/6su7u+e6AZmxcCRg6IHC7Hw9Xbv+bXnrc5bc/ITHHLJY9pjD0529fjlSuVpuID92Fzx5HP3irwdBgv0hS1KIeFbqDqOeAHKQJLjmAzjcYqDh9ZsIkxiRvCklL6C/ny5x32e176F5748RBcHQuTOuAC/PuMiwYj0ic2eY/juTEcaIk+LvauV+LzIZkM7fK7kTvSr/4vAHZ7M0Mq/MPJMuP9VLtkrPd/JY6mkEU+a0bD8MjTRP6vp6yTHiWvREI0so7mMR66eSmG7lEpGgY1Gi5mKcwYuZBWLvpmt/Z87oJWMzuQU10vhU0gxRppg7XjhqlC6FccnJhirrhYXKwWwe1JT6P8pueK++9EzIjO4mQtmpC0GDRcIBQxXTCK5EX3KtylPo0cHVmgjfvNqVA+gAGN53KSjyFgio7j+3kcqR6lUE3H9uSyAkmHgGWAPG5GsKyHJNPn790QvnThxWnXqtXK7ZeQ+aMypU3c1Px/vfpF8ep0+TDJ0M/Kvjjxhx3nb9m5+dZntTW2EqUdMinMYvNQtl5YSjNmZOpZRWyXXimhUL6SxvkFlMe9VCPeTTGrGbg3Mdublcj3XUeNujxEnVLsqCEp4vLdYNikU+oJ9pRCBYVBtrkUS1Jxy9ohAdBxv8vw1Eg6VYqjUkDCS6m02lF04vpMzpIRlTy46gGmrNHD50+X4J/Q8DVQMMhzCcM1X9IjkF0WzkSJb5LQQwHAZpD8uuihccukfsGmJsho0q8jOTzyEu33nvBwf9+56RpKpfOHj4c1c8n3Dy+O72YK3fm2rkMlYkoKNLcEn1e58PtlITNR7GzdENz0b8N/FE6dcnG+Gj++4BxI5fIXzmbhsW5K1DXenuBLsSzBWypn4AQn1uUvupQWfqqYwyXYxls3rCZo2NsCxJOb6+EQvWP36XTWM1/byOe7Vg7SOLWMEbTigEUMWduBl450V16WLUmA2ZhZm0ky4SrB52UoBJSNxjwdWfpHuPj7obFFQCKloHro7QCQtIRUJh7iDCMSdYTJ9JGET8RrFEb8sgQn1F84yahwJh4Id6a+NHZU64LIqd4hNu3/MJ6CEf4I1tXbpw5uTuzuaxXmeq6XbjE6a4okfhmj5y2377ig/9zQQMfXwNR2kmnzSOPpDEn8wfK7M9igDgLyOBlJlv3TxXkXXZyulz9bkpGSgNJyinxmEnmYwqdqkSo3IsGTQC1IhJRIu12jfPlmV59voCG1Kqido81aO6XZuKqbJiSUyGP6eq7MZG06cGRZkQ4AAhG1MiScH28ZCCJSdGIaqaKjAJs2Cp0zq5XuQaBkooD+RSVRUIiydkOaNSf25UcXcmrLtRle7tTFhoYubF5Y7noTCSEHZdC8H+eoSQ51u8jDfMRm2tzIgOgaDEgG7cRfUVCRxPn7T+Z3p5pxLbkFnqvRdcFIsCNWtOZHkP3YSQG29CoK0VeXMFPgeverldJPZ68z13HZgtZa5FgcLbfwXunXZDGC0jRD6Lv4hslEE7vxEDgkao4wgAQhFR5sBXKGAcFnHQvW86IvYJIJROIhtZ+ZrE7GZPtDGQ2MjU9cUqYplcilbF2ERv9hjDBKeJHABZZxmZYvYF9Z0nvmv9+LWf+nt/nzFK8Y8RmYJMWfTt25gzgIv//WOv/HdAEUFz7gTJcfyHyEFT6Izby9YPVl2KhWm/E1oWnVAFJEqodAtxRCVOnxwNgoUOZWAs6tVtvBpHfAxdn/afIXe+qoe+FnrTrav7axt2tzfWV5b6PTFgkkroCnLA0djY2o4HCUZzljAGCUyMmfDZ+eKogDZc48Asb6uS74a9M3j6G34MtPOD13/e6el/0jYe3b72xjykrpwbLK9M9fPha2fP7y1vx6M/SVycgRIJkUCTxnL01i3/VR1LspELf+ojGeXSDy0+o4P9LdOdp3938URMh398/rFMenn7U9v9c4906m/eOP7DOKiFOFDtl9UwCQCo3gv2k5QTBGgKISK78nXcxQ5ry4BJScHoCHeNCIkc3g2+DgsOP+jAQUPk9c7W4ly7ls/4yOvj9LjicjFf8Lg1xLPPDdM+NAyqPQmcVLXJge5et09mvWhFtChcIo/1kdBBfDNgetBrLV6MSJTAh7Gi2UFNxbC75yNCr5WeHI9mN2OhdmKl8VEAqRH3odc+8NrkmAqzcRsUAlwmb38DhvuQ1xh+DBpPbP13AAT70GtE0BpC5Ab+MZePF9FH4fODRBEQjlNEAC23sUTPAJdfvo41VfJTmUUCXsx3S3FPVDf40EHVNPVpJOwfRjeQhGQuyU8yA1PqCqqmBa6hQCAcGAX1Sw/6AFnVbn9VnyBUcJmAH3Z+7R/ha+TKvR+h3vkaPuP/weNOQGQbVwbZ1vRbb7x4+6kbV6+4UdLWYH1xfnZm+mLrYm1+uRJkMZF99PtF0V4cAgkKrDCy95OjKOI9SWBgzWGxoms7QsDcdyvzs8IJjBy115/hvve2TMtxhXHel+Oj6bF8zs8VCZGl6H/6GwahigrEg2tyU2J9LDHoQpeqBaBqKEyVdypZ8sM/QignFcZMi7CGRIH+8I+AQkk0QmRcw1T+RRoW/kUB+o//U4xyLSJxGnEfnidEfufL73yZatEgg78pzxCZAOHBHA5gmUhUIb9EhxMuv0BliqV4mKugRSim+vlzlDEalYByE7sksvTDLunfwzIPtA3AQIAA3QxR90iVfpeKspimXD5p+xPW2PXpj6CPDwzPp5/fbRcoJSOvnmT4yJsrXCKiyuqFJ3QkQHEEgkisA7mX4GFnDvWQRo9cfnNzs//m5lxsQ2UPWHrkeGGX778fvqRFPPZeRBNensRG+6Xgc/fvdhgduKtYHnJ6j/f3FwyMvP79O1dK8LBDERVvI0Q+7eKft9D3DoxVQLQLWGpOlKpKRzulAIlSFULewpXQOPMIjyFDhXtpKUISRTcmKd+TyCFejLV5bHmpVq3tMk8DR6N4xaIzvBbu+Amnr0cTKiNC5PkWHl2i7wnIDOjGxkHo+SfPncGM/8RPv/QT7f3WdIIrrvjrGB7BrgL88Tt/RDUG09erv0Ju3eSi7vaJAMRBikU1+BOWlKaThSSBz32WqRJ/4wPAtanmZohhptN/QQjFkiaz/E76Y9LP/oSaxxKRVPrXicYRoBxCpODORl5B3zkIJhMYEwUoXhLRxcGwdJKTwQOu3uIgQgoAhEKHIknwVl+EpRGT8z4dvfNQwveicSTBYt2u1y7tVaqNjuJKf3RUaLbuTuPbuD83ziwMf8nD5Nocv7bSW8PzYqSpMqoeDDEu/wMLOOGrSY0X2peeOZ3XNUmNWpQA5uuZ6Mm5mIqLxcU1b3x8JvPvUg2DUMrI+hqUyqAAsw5aLUZValucRm7gPwRqPlttBgIbveuDWLagMQyEqiqNSM7tXp1982fhaIgcgGmSJsbI2Td+O55uZ2MHmq1RDJKhzZ1CBKURwn/Tlf3H0Evo064FitRTGMFiDxOCLh9iSnwdmNhF5DLRH72fNEGTC4kmTx904BufKELoMXTt0um9rZl2rRC3ODObImMQ/uKo7tLzej4PH95j3HQyeFTtCmJm8YfZoOhkjCmwdO4Hic8tcgML5+PXMf9lXDbOvxBi1ZO/EaEYY4gvLfojytb8R/IvJWLeopm19ZAS6V/e4WBYcxc/awQCsLQ0tFbtzBtTL9sRz1qt/xjgQKyXCDInn81gAqs/4VJgltUM0ZEebOkYjLXHFcDKUjNktqcvmxjgKQz37ZvZKQBmqcWKpCUyU8VFDbqzQO6fS/524IGkqbdamazK4N8AwAebSw6AvLku22FaQ/4UrO3e+5vuFGxQ1Ad6JmboCeBsdOEFCj5s2jVzo/Vhthfx8yuI8zAfXX0OETpcyPIwuvcgcbgQh+Az77t+9dzZqcpbK/2wwhLN6KxfZvPVzbs0vyUi3h7Lwkgbi5z7Gf+k+orrFmLxldRWxDaj8vVyVFaDZHlFqnO9XJ3pLi36Sx+shY/m7sQNiSkS+/DMTHK7pIcUPVaWV5YlhdGEbkdTP3AnoBu+Mrcz/yxVHykzNlRCcFG9UEwF4AtFjacIdi88nZhLT/cCX/wSjJdC4KH6cvyFL6qZk/H5nNNRsXuqBznW7I3HXtFgdobCA3Rc69cBGLH61ZXIrrjlRxEir7sW933om3/z5mMYjVsAWQ5exH1rNJ0TO8QgunLsrrgi55FJBN15GN17kAwVPfLk4xfP7u8uzDbrpbwVzcvMa/PNj1oG/dm7r8yHy/tJ4MS6ywmk+Rr20StCKixz4tC1Fv6GCct0ftSarWhqoiLzen0lUnn0re86t5kIxlJbS7FYdjEo1yQadhhp2BbF0s3TcUmi9m4tUydweuMjH1N0yofvAqaSEg4pErxBgWcS/ZNFxwnuDFaKeri61rvUn8nlylsriTSWyHmCFQbSY9PTQuapxHHk8IM7C7dbTFte+tlvjH1/fHk2QsVJkCSnomcUSpVqmvkojC+59bk+OoFOD05kAphI3RpmBB/kgMH+uN/sr34YsTw5bClSjr0cHNDmscX51lS1ZJkKR33oy2xyjMFzcXOTqDRvxUNvmCGOStdeM4xNmsxhY7aFq9XKf77+WrHxLU+dfiGmKZaieRA0Lb2gYUlnKQlH9RTIS40oW89Qfe7J63ZpvRUMBIPhq9dvqphSAFW+fHFwbO/CzmrWokrPKnp4M56/eBA0D4skqBsSSeTAmGdysQCfsFuRWG51M3luV8ZSqdEwjF1EUMpFKnzIRfpX0Xl0HV0bXDnNMWfXQOYDkGTTAxIjGUlUlsQ087A0HBKYBa+UFRX1Yo+BpqhHWtjl3PVHH7l48vj25ny/WU/Fw0FUhYrKjkqQgnfjNEa0XYtDzxQZyqrjN/TxZBnDFfRqwZPPES7WccQJn/WcE3fp4L8+c10KraiB9Pe8GrHXelpcz4WBq7pJGP4hKf7ssVLizNbmej9JNjDemD+cijqBIDCCWWMlVys64cxaraJSVbOeK7IoDutacRr/wfZuLHR8lpnNtZe+MYCzcrzzoS3MMeEUfyC0/1rMeGF5qXdcfuc/qkq4v9aI9rpLuXRIIQa1rWiKaTKJJ87+MgEqqo/Su9P4GRcTsI7ePPzlgmsetAxQ6JYwQfgg6b3C/qsrQ4KEBIgSisgdH0rkiSohaQ8CeHSI8fgqfAIfAri04N5CQheF6jXmfg0B8Zvc2Sxuw98W49fpg9iv9foTXJPgo2JJ51yi0Te2EpZ60M6GKKbOGS5FuKErF1ZVkJKhYMA0QoYT47YUqD99paJxEgYk+kXa2qMyDp3qboQwVWd/iBJJkULf8Z0JY++ZgRV1wubilW3TOLcSCc3mtIg6QlUB/p+9ecDWoKkAARCgEfwyAgIv+7uafJ1dmCvkkgkxvyf52tr3hGciFBoKnytv/ldy7MllHiPM/+R+0//42Kt00OpvMDbVjuR1IN8tJepTGVKglp0yCA/My1XWqMbDq+XaN8y24mY03QZMa5FcNCU/ckFefTVfC2n65cX5kiHjPFYyiUqcZGkgxoLJebnCyofLO7vds3bi843pWOyJ9v4ZYkZy8zcQRqV3/zn8Tfiv3e9+Cv2oG1mCTA1Q5CWQFGUC+zs3GlZTgUsCvCtGJ2SFyjeQgiSueKo7aeaQX5j8v/OgiYbz+KdOHu6jHbSzWKkXy62KxpKjdUV+dDF/V+PP9N4egU663YlGqtD+4VaVYWOiOuuN5rsq/SOyEVj5xh+LQUeRFKzmT35iux+HQtQIOdnsJwpcAiK1V+vTijHNd+RsqkzVrdWp9qwuvxkOTdVLHwxoqnnpjqRvdFQ1Eg8rleJ+KRS1C1pQ7arhiISjkXQo4CgiAsjWNO4YJBLWX8YSQRh13J6d4tYiT6Ar6OzgVAIwZCNYwlNA2AHBiNCDNGDhU5DEsMsrhghiROSgEQ+95EXqloByXb50+tTmMQFjitnoBJwQ3kTqepnO5GKY/khGxdyR92ePQ4Xhgpkhj44AO2N3Pe8yOFrxlkcUhYuBnUgAdDm2tMc/As5nuitEUW01BCBLBDQ9cS3obOUyYXXmghk5wb5JTkd0jkEbtHOXZBpVuRn/uWBGx4RCzAl9lx4ydFmJWHTmW7LKT32mW04s2qauskKWASYtKxwjeliuvLnam7mWI1M4YIVsNRLlrQ1bk7gaAq7hL3nL9umwEzqNL7se+gBtDNYLgGHRm5VGGBBgdOcIAZb0eGgKlEpa8jzyfL9ezaatiK6iAzgYe+T7ByMmBW8yLjLwpGWbxO76mDAc9eZyJyGE02P8rjtvQiCYCcwxc8ZJLy3hCWyuDxDTldFsrg8aHIFzqXXFCZG112b/mtpM2dI/+bvaJPaWiAlU3HA7FTFUQXNodjAjIBCUSDfGnYLRBI5v62Y7zXq5mE4GFBSDGD+KTkQjZTJ0n1xOx1ypgrFT7YuCE/ufzz7SrG6eukYMutrawNrh/P710H+TThaWomaYhv8k986/SKZz2cxUjD/+BKTlVx699cHn9s9qUJn/gGU+/Xtr50MYL1W7y5Xaqr6KP/zOtzfms+nrVxIY+OsIxGwqfNy97ypqDmqIeDnMnaFFwRhdGxvvTNoR0wNVqEqTX+YewMW9icmP9PYixZwix6pOllXrhjJ32fB7/Lp12KrKnelA5/pHSoFiwlbj3/NMzjaWG7rXsddj1cWA5s9XiJ/wKvr5YeKmVUqYwAmQmOeVxSs8fHVlSNBDlMiEymKlvSQzEU6SsXOW5fEfJQld8wBZprcc7gFPeYig6PAhdO8z/oLHc4d7A3estjdTyKUSmoKuwlWVTYCqRxyyzGFH9y7o43BuDXMx/OaPUzx8mqJa9QrMT1q5aduWKzE7ZxhamFtTm9WpaiLdLsVSgNN2Q0+GKcacfEHgblPR4fhEcTEcdqey2Ex6R4E6CJVQfvPSJTMVtwMLswS4KgUKfdNOxbOdtCNHjbxiBigotwJdJatGt/1xiXNxPt/hRVqMqBQo/Dh0kDeh/a/x1+PfRB30lvdLNH6jDgjgIOn+nwCMfrNGZDS0EjokFE+27OyjE0SIeUhheHr/wbgJFwRUyjtWQEcd6Pgy6YpkqTfnJV3+lIQnjGiMoSx6Zwbl7LpVsCgUAa8tMDNDZND1kPMBh4JGNSJx0u/pCYne6j013YjwQCDTcejfw5/7mF7FmAWVIC1Ib/8Yt4ksCuVE1uR/Onur3QxSPkQhTOOfdSV2x50fMRAQJgEiBgAalR5yiGGCmdgHjXHSwxWja745BUiDBy5llFCXBAkKRGn0fjIx6Vebq1Tr1WpetKnLHiCn4A9AeCNT9+OhxuCOh65JgF9Y35sq6xC2mTkTSwP5pOQJWzoNdGeqYTG8C07byh3eY423dbm0EWjNKWTvUqCZcQxsG2YqYSuvvc7N6G45qmFIkHbCCr7zt2L3LElIWZ4tegc/7vKtg24NVBsQxIEifOALj1dYIRgDRA/vqcwJb+QdY5g4vf9gVJn7rYWpmVpZYvHmvHBPFR84sYa7I6/O5yd19WhhUaXRAlKyJNHZJko4lAvsBc2pVvCR/UfylDsNO0NS57/z30uBGFeC5Bd+mxKZm2FKCAagQenXf4OVdy+/EtaLKVvR33f+O6eBirDEeXce/hH+otgbjD6B3hi8WncwBhsU/CLIyjIQ+Y0gVrWTIKnsAHEJSRy5koEUGSs3kIwIlcVAO9JUqj2BVPdYlW56gY4OCHm5oMWOA/roh9968/VXX37puWefvnmwt7WxON/tVMvoNtwOeCGPX4H3yrrjCFFYnzXZD30EI3rjvXjD0McyxTsiSh8GkUU/nfaj94kR0iHGL2o7XRHAExFRChtY5AUO+6ZC/qvITliS7NOGXDZbb2KvsUSpxKhMRIBEOQDWa9fyjpPPOWE5XuLJuUw580a/hanoVaeCJGTE8N/AHZB7JcXeX1IiGo/W9rnRgUgwdiloybmCJHPGviukSHhbKawEa+Er65pSnavVHqmHJRuToKRJMpUoYF1l4RqnpGXnGFXCSvJcrapKljkIAUiRVF3TrZChwkmwFlWpsqjgJI2FuIH/CwqMvPNPJQkIwHtOnySPpk/M+6ZP2P//0yeAHPfn/VH4fbTrxToUEFB0hwkh9iZlo4d4XIlZW+7PiMg57miywHZ7sbOfxPo9UXZvZCdm+EUmW7gn8/PX1lqm9wK+nCpoeoB2ZoAbTHNU7KpVys5TbOzHg/taL6nZNuHquXPwf/xCX7aTNt3bwTCjzcqd1crCyg7DFFILscblOjOCdsrSFB7/zLESBZrUACRZMu4oADSQsEscQFfyzx6GQ5kmwp4Ff8StBGRQT8RFIreAg9Fa2OTdVZU0Pl6v12t5YU7Ak++jAkqBG9j/3q7dlcYBrfiG/u0B3jpRU7bPXhxsnF4qMQBsxqjZcTJPsAo0y6nteiRMqkaidVA0oxH47iao53fPfa5UjlPAF6/JzaQtw6cjt4KJ7HJqQfkBzIzEZvHcTkHcY/7d74Ivu99jCf3SCAfs/w4qJmGKCCXXEcbDb4VHkIHCiAZRl0i6zUCgfe+lTLznp301H3TFb5MsocW5fqeVTcecSIgLERoDrv1W7RiYOpT2uw2MYPHIuvQgoan0iWO42B603D3jpzIRO8iipsXDKy9EZEWPkF+WGidmox2Fh3SuGk5fNnRFauewuduYu5nqKbYWMuJ6UMYLjUg0Eolq5BJO9WbO65zaIcJE5aPoashPuBqSQ22h0UlvKw0BPx3wXM2ERk81ysWYHZJRDnITGu2BqrpCp0czHpb/Jz8p8L323N+6+Iwc+9zTEM3VZ+Mfr8t2xVjrUwKnz9YaM/2FUPLM+aqals+cTKUf//hQphsRjlmc2a+fPguZYrTeOdHdP23dHmr3v8ZPuj97E+2O2uteIRffIeBPb0eFZMfFJT7kzHTv7reKu9VqR8h9dKKZWLSEzI+U3eubF450/Yvwu7/D8hUtdeYGWDZh9YSTBrhGe/ZMx/L1GX4PMM9PhyWM4eu+hdnZpKVQCQIK1qyR4vpYd3zNxbofR+uDFWPoLDA+GEFox3Db5D3J2cZgpuUaLDscdF8d96RNLLifRMnek6zeizeftLyC4q7KPuw98mwAsNTVHrT7oJSbDTZkfF2eam06OKA4Mc66xahZUkPW/OWqPDcQba5QdYiIvX/hQbD2fD0UOdXafFylAV0NBAw1mFkIxJbi7b3Gy9OWt1m9hv/I2y9yEr1vYKRBogBYWgKCiR9NJT2OAHi36a/ANseVyyxCaLJgeS+FG33v7w3c5Qjt6XIhHPIken5YLJlsdYyjAMd/z/aGdjwrb4kzX0pgYj27n/z+9pxEN6/rmGfmDYotgWJpJONK+oWAnk5cegVHt7aBm997I1GNg6JLjbSTgi/0m5VDp6zLgWJs90U78H0/hCF0ckmx08lXhcNmmtI4OJY1Q20D5852fyoA9NJhOnH2E1EGBHYOIJFP2DL8eKXZyraWOxywMjeVEH39d+fxL7j8PId++7dO9ouEYfAD+eo9w7doXB3xZ29ljJAl0hyvXNy8l5zSqA+xuP+RQfsrU8vg0o2HhCzuL9w92NsYrCxNT2VSjuUK+Dk4p3gGx9ve4V3R2IAyXrxr+qxnzvn35PdM7BGKWNBMwJCrnnYsJYz/hDHDsULRimgBR2IsGlODlRNvNdMJE7JzmdcIN1SD0o9+LFVrJzlLByRKrLhMlU5WzX6sVkpLZy5msoE/zWjGvwFZSfDri3NWxAoGCWDNcBa6JXdTD4bMbOYlYBDQVC5/4MMf3zqM0opOsK6lmzJemn8+eupiMqv6OP6/4uahT3hxC3hji3dGHd7hdJrHZvNwGBFfOHfyxNZGo1qdLXHmiGzAr1RNqP6k4ouWesSrxTuOhwWau9sOTBY//LW74/k2r637xu49I8/rBceYpngjwfAPgyQHYxL5QVDq1ROdvO7ZhrrlRCOVhHl1ZW9ddmIgxUzCLQdIqvOpby3/fjgwMfrsjZq8mgrxYzYH/AEiS0x6W8AlopWTrbLhWQs90EgH9djyYHvpffnqo9dB5PVw8QrFWtG3qb/m2tRDwcFd0X9FNSBiFBRhwAjuSB4P2XgizSTH41PlerYW4izZRF54ysfhjc8cwQFxwkYyVPX+d3dvdMRkuzvvlVrhUiOT4WamkMw6lq0awBrp3k4lHUid68RSp+ssGukvzG3rLBBbDKmykg+uRuW5yzWZqCq0s3Z6ECCqYeim46QinKSS4Uy+P1+vvpo9diUkL8hRrbg6EysHc9OPnIxINBcOnl6MmY12jKbmEg7CHi++2e2+Pe1mZYcDt8qDMYcDxAEDF9AmCt7v32NeTByaVGRKR8X4V15+9tZj1w72lhdnWrVKIiaPW22G5EEMecfjyags//Byqd/WHBtVv0o4lrzJyptVnfVL+b4C4+cNm4CXUBEMkQBg83SrfjDzzFQGOzG4u7BKzHKuMbOtYicOOBjMl7PJqhWTte3mnK4vljLOzvS8DvDUfLvigLLX0LChw8uqLOmYE4oxxkTe/3ytkK1l5uI6vf4Eniy8jhZPhIKP3eSaWQwEIZs6vXcNCHWKU3vZfHbOUBtLt9tLlJM/vdDJNjVpsWSuDxBBPVe/f8PV70W0hy6hK7+5t4oZjCDuKSR6nxL47ZChuoeFy7KEU3vgseMfu5WUixfidj0ey3OW8ON4yxtDPdp8wIvcoEcNlOJIfOfW8RolxLUGRxJfHJb2/MZJD/4bYpmUExpkaeX66hZo569/N40RhTJKvHqo7Sh/lMFS/Hc/TDNUY0xSr/LW6VgtROKZpZMEJ55otOLBxTTgX8diwDm4nHyJNzuXgtLjO6fkRwPlqKmCOMFXrwQ/o8SMoHnzTQavRprxWOCdv/rOD2Fay3QuB+ONeIYBNTd3LzfiYp8cFtke+RM3Hpx1ebo32DaAiTV5CiZYEZMuDBN2m6sS8RejRj1gixc9CAn3fjvG/sZgcd79gJ7LlUZdE6mQbU2u4B8tffZ5NxkSjneeFqWJpfz9/N1QeT+iIE9jbj4zSKe3KmGNAexccRLTuaktyZpuR8f5IDwLt1i+kX/nl6emp2Zydpy8/R9xL0rq+WKpfWAQzQpLskThhJoKOc6Zj1lqPz6DOeBHLBavHl5/Ug5Ej1JELBfSlVdm1/N2eXre0Qne2dCNXCFsXezpEpHsCMLo8N01L2NcRWfRJ4feXt0Bxh0ALMrUoxdk3DsuIq/cLvaQc+4xNnk4MiZegc8C75cGe0v2bwn/Rb4SrRDhark6VXi6VvNmVsyR+o8bqL4rqlQ8dPPdaw3HW/b8uZYx30c1avLdcihY0beeTtsmp7KQZiBYojJJpLO1zXMGiznByrneiXBN2Tlz6cJHrna1c7XiUiValeGYyGJxgPG+NKcmZJlikFksFsiJ2FYfVsdIvGQUll54YepWt6CAdmHv9UsXutp6sdKLfWqWW9tudivPpOpiCsGdR/9TV14XUHswVQSC4cBfRndjombvo/lMOF52yldaYcb8YV7htB17FM6MlXjUlxkCcfgEnKpgsV98nag4PxeVJZ2SZqTSe/T9Yalbef8+1II9WaZ2p6e6U43XHsPRhPTHytc/ASyrS7QmUZsZO1tmyDi7MbMiAZONmAKAA3smA+CRpAw4LnTQ/Yt8Et30fyu7NPyt7DP9npV3/72Jf/+m+GtIB1MPousJuuFfLomgc6kEHfs1QDCkEWf/F9ByJRsAAAAAAQAAAGUAhwADAAAAAAACAB4ALgB3AAAAiQuXAAAAAAAAABYAFgAWABYAvwF0AkICzQO0BIcFUwY9Bq0HMggfCK4JhwpECqoLUgwkDR8N8A6zD2IQABDZEcgSeRMeE8MUWRS5FXUV4RbBF7QYbxkBGagakRsRG9wcexzTHYEeCh6DHxkfoyBlIO8hziKKI24kTiROJO4lRSYeJr4oOCj5Ka0qdytzLGYtPi3WLo0vJi+lMGQxDzGaMgcyWDMqM7E0TTTKNbo2EjaSNvY3ozgBOGU48TmZOm47DzuVPF49CT2rPmE+yz7fPvM/AQABAAAAAQAAPznKRl8PPPUACwPoAAAAANiymQMAAAAA2LKZA//p/ygEwwLVAAMACAACAAAAAAAAeNodjwPMFVAcxX/3/F+csu2672XbrnnZHBsyxmbFKdvG3JDtmtUQ5vz57Nt2dPEHZQwESHPAnlhDKVaSYwDD4qK1D1k3rFsYHp/IqZoO2kKfeE7WL3Jhs+/uGlMYovfWNQyJ9WTdYZx20SI6Wc8ytjCFMXGLHjpFr6jDZG2zb0BJiV5aad+HPhrOeHUGHaaUDtIqfa7+pcX2i2lbqE8rPTVm0FMLqr+pg/80dm7KiHSM5rpgP4xWMc66n6y51kwXykB7yXGPUbGKodGDYsxgbHiX2MQUHaOTqmmvZ551A0v03/UP0M7/66ihfWO6pQr6a77rDaRXOkwPeT7/66UHdNEEevi+Ze1cF62r6ZLO01lX6aoGzlv87wdD9IpO+mP/yrhtPGFQvMbvmZW+eKbdkIrAaqgBdqBFdgAAAHjaY2BkYGC6+l+DIYql7P/L/wYsh4EiqCAVAKgYBxgAeNpjYGJiZtrDwMrAwNQFpBkYeiA04wMGQ0YmBiTQwMDwXoDhzVsYPyDNNYVBkUHh/X9mhf8WDFFMVxluKDAw9McxA3UfZloBVKLAwAgADxkR6AAAeNpMyrURAkAUBNBllqEJNKIP2iCjDWogwt01pAASnAxvgBwnW+ZwOfn6APD9HbDcI9AHn5UDVjTv2QvPvbLdox9BFBllkhnmWWSFdbY44YxrHnjZGWOAu/MhcHeRP1djk+27Wz3d9Q43pmc6Jqm6KiqpoLyyyiitiEK6rfNP/p8cgVSgK4gEjGxADGMzAQkmdAUgLxIALKxs7BycXNw8vHz8AoJCwiKiYuISklLSMrIQeTl5BUUlZRVVNXUNTS1tHV09fQNDI2MTUzNzBopAMBA7IwtYkGUMACWfQi0AAAB42qxV5ZrjyA4th5phGHxBnpr07ZuUPcxsx8nwNH6fa9Fu+r28+wx+GjnL//bR9shJc/dyQ1SlUklHR1KFlSFWq0lsiV79pKYXX3Fj+b2Eb7o8b9MtylcTrjSzn0fVqFpf12uu57GyrCLd6StHRWnos2OY0i2fK4Y2iH9Z4Nrce/15ZzyK1+Ol9xNPe26eEC8sJB4/tS7xXVndtZaKgVG2wfNQDXfEV+X8KizhLCGAyDPi8YUkhYbkbFxWt2V1O3VTa63LTttazWoh2bTW56oh+Kk1MwCqRwsJ13XIDR0CvmUn9blmNHDRRlFfC0lOBsHlkytpvM7Vlgd9RDnl8F1crTeR1mKSLrjZkk20xenT5QRHLpLajuxz3fBI1O6ryoCaBrY61MRKhxlX1rbYWUd8rrd8HjEkICei9Z9qao3EAz9NrZiknRLkqOmPTKgoDlveDtljZj/546UX4NDQI+OU4lxntDFkSrnCJpMLkNsoudrUWWcQYuKY63wZtxRuHXVp0pQJ9SfGq3HiudqzLc/nKVNUKjFvZB2fpw0MiXgyeinXsdCh5SnZLWE3hZ3PM3AzW1JCYGAdcXk6SilPiadBms+z5tVKUtQ2OvYyT23qb3w+YV4tJq+WB0rXg/5UqT9pCjUTrSbFzEzEThbyTFuaFK0bFpPyMYUPds5qQh4LSSHkIdswz6kM2/I0rm2v3cE5ruC/1Fhk0gP+HrT7S3VMAQulTmmwFbF63Hccp6zVKaMKVYlXEp7RIcU8oUMe1+i3kFKE/3521lHTKgzztDjZaPOXbfcSaDqN3E61fT5jCkfkWfAs8pwpqiLPm6Im8oIp6iIvmqIh0jXFiMh/mWJU5L9NMSby/4YCdj70uVUuPvW5XS4+8/k/RvFU+y9g/C8w/ge+CRhFesAo8hIwitTAKPIyMIpsAqPIOWAU+T9gFDkPjCKNoYdlq/kGYWdTijS2kZQDko30W2DYb7OPSbpiiHp0TCV0dlfLM/abFmgln6/ulMc5y1daRd05EydXbZngtZKZY4+vG7pV4r0BOyc+HAQThuBH69XZ75T8dB7ru8V15wwyuon8qXcMXlZRdtfnWyY499Dn279nyk60DvM7KIk626SAeqy0dPaLPO/pns4oWUP+7GCibzvOmdOIf9cAFQYEf6UJj0XtzTzQRA9z+Lq3e0zBwAfXdChWxKnM+9PF5NsKVcn9tjJXvWhDeQNHI8p1aa27mD5U8wBaAhuDx74SpRuaq1G2sZBgk7lYp/IGHbyTaULoOd1FDTUidJEXRBklpaOCaImicZJCch0NVT/kFR4lo2YJAp8Lg1duNxZKfl84IGjqc0MO9ENQ80DUyFWHOOvqngSTaj0UfZnAkFG1kgT0UHsuNNtKONulvNHE7sXeb99BoY7q4GFltLTxoyGCaLs0qXw9H0xxu5SPjaZAWOviYX5ogyJwTmMAn+yoF/aqn+63PtLmmeG77SOdhobvtXMElmYB2sM2KEvAAUyjnQ4DuzstqNHqgb47dNfBo4E3/C+0Yu+f6j6Bn90FLI0nZE+9PTvEGAsZ2/l3JX9PDwnQd/en3EPKZwbD2Vcyh6cCvolZfH6M/oUplHP6FN/C+qXhOxCvhLUYvFI3B4pfe6wH5AgCIICiMe6RYjoXiO21zVnbxxpccPuPiq+r/pj+Zv+F29H8U0bE1veMIqo4BDGxDw9AXHEIEjQfiiQNSNGANA3I0LwosjQgRwPyNKBA86Yo0oASDSjTgArNp6JKA2o0oE4DGjSviiYNaNGANg0wxLwNT3OHwXxUdV09qXqcGYZnHfpi3oX1gMGth8itR8hNx2Leh+mEwU2nyE1nyE3nYj6E6YLBTZfITVfITdfiXJ4cBT9Pr9fmhWEeX8V3wTflZg9Fdk1meNpj8N7BcCIoYiMjY1/kBsadHAwcDMkFGxnYnDbrSzMxaIFYW5U4+DiYOCBsHTYJNjCbw2k3xwHmAwxMDJxAHpfTbgYHIATzmBlcNqowdgRGbHDoiNjInOKyUQ3E28XRwMDI4tCRHBIBUhIJBFtVOAQ4mHi0djD+b93A0ruRCaiTNcUFAAZ5J2gAAAB42mPABZqB0ITBhGkfAwPTccY9/3/8N2MSBbL3/38P5B8B8nWBfIS6dUC5nYyHgeJ2MHVA/hGYPgBQyhzJAAAAeNpMzCEIwlAUheH/3rs3cLKxwRy4bjGKvdhsy2ITe+/N3kUw2jHagz3Ze7IZPOGd9HHCDwzWYPw3gWxUTLIz5yAHK85ywYKLnKi5ymX217bhITeM9pHbrN9R2ZfAihlw85CN3u+yM/hTDvb+lgvWsZQTY+zkMvtrP8VRbtiml9xm/Y4+/Vqlqu3WYSC4z/6KfbvkKHC5zBgot289qq3GCtg+lkIfft/vWC4zHdNqMjuzkH/LSTrJdDuy/Dn4wrVK5W+pVqlWeEUZ3Y55P9AqDpTPm3EgvLvk6o+c/Ie3IxnzYiBD1Z9sywN1ctqQNlpKeiFvWtnTwVoS27UkayuuiQpP8TWplLMK0oPgkcqMTmKuiIr48Uix/oPV8ueZ0Wgk+tDryLGA+9yXF3VwkdgFJAukSPa9kbYR7ymjsqEKOW+Km7KvbrQjPO8g0qb4bT85tyOZKQaAVlRskDWIQ5WxjRTvb9a5laq4INcLgs+XHVdFVUDsOpflUOqePOspdoVIXlvcZWmnvMjadKpcNkGmU2uE0b284nJrrf74L9cjpmVKKKUJZaSpTRFZYvpMAX3Bt0YVXH+p5KIqHqYVUmQcN8ZpH0wNJMZXkQ9k08WCvGeVq/TjSvkPsG1wpFNdBEtSCMU+8rcRHyA+oVNqILbgLUG7Bwb8cJaINXLWgMZk3TeDp3JOwtU9RfygUulK66bSy5lHYGX5RJw3w0u458crJ+u/Yra5zgyN3CWof1FfB98xzkXvc/D5uB3cduxesOQtzk1nnzwwtauLaS/vy81pSAp8vtoUU5MkstUj2xHQ8YBG0DK38vYRnSMagZm5/IJRbEWBZS68BohD585OU7nsTarj26I0595Srt9SwNzv7bhKwj2usgd9GVUN8Wjgks7wBnZjItI5LtJuHgObIg+4xZUiLuMyUMPWcLaIhXPvXc24TC3k19+S89C/+D84W2PheNpswdUBgWEAAMDzW0W3T9eb7m6PJjE4C7gTAd+P4J83YiJxCUkpaRlZOXkFRSVlFVVBTV1DU0tbR1dP38DQyNjE1MzcwtLK2sbWzt7B0cnZxdXN3cPT60cQXBtACAABALu8u7srtjAFBS1jkujoRqOnb2BoZGxiGrWZuYWllbWNrZ29Q5SOTs5Rubi6uXt4enn7+Pr5S6QyuaKteRqSLYihaFVHy/mef9ueRtW5bWv1L3rBNc5hYwWHhxeH5I6XJSffRg+cPvNSKJ78Q/IO5AvSkrOfpoeirtC7AfTeA+FFYzgWtpqkvlPpYuBMhzK82QRyycENxFBbM+dNw2kRZldjsgCrS5CdndqZmvZuzxHxCg18ZGNc2diV0n7rkrrUKad+6BG2iSPqI0eexsntXp85fXN7ex31TdS3OxJ4YqkAAQAB//8ADw==",
"title": "$:/plugins/tiddlywiki/katex/fonts/KaTeX_Math-BoldItalic.woff",
"type": "application/font-woff"
},
"$:/plugins/tiddlywiki/katex/fonts/KaTeX_Math-Italic.woff": {
"text": "d09GRgABAAAAAFk8AA4AAAAAoCAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAABNsAAAAFMAAABgRYlZLmNtYXAAAE4EAAAA3QAAAcrTnKJPY3Z0IAAAVPwAAABAAAAAaB8ABGpmcGdtAABO5AAABYwAAAuX2xTb8Gdhc3AAAFk0AAAACAAAAAgAAAAQZ2x5ZgAAAUQAAEnqAACE2rLvSQpoZWFkAABMHAAAADYAAAA2FHp04GhoZWEAAE2QAAAAHwAAACQHHgKcaG10eAAATFQAAAE5AAABlOJIDGtsb2NhAABLUAAAAMwAAADM6ZcJpm1heHAAAEswAAAAIAAAACABcwxtbmFtZQAAVTwAAAK2AAAG0k4rEqZwb3N0AABX9AAAAUAAAAHbvYckjHByZXAAAFRwAAAAiQAAAJWB93OaeNqMWgVYG2m3PvLJzGSiRHEiE5xCIKkBqQt1Yyndsl226+67d/f+z/pv193d3d3d3d3dXcre+WYSAvzd3v9pC+l870HOe95jX4BgBgB+kjLAoMH6NiUQaNdYLVlLVmvJ0syn3zczQ5lbfzOD3+RjSwD06/SzcAhOw/WmM4kg9yADnVz6xtK5u5q9YIEES94AxPElJYgBeFUjc4VP9fjHaOHTbczW4zE+tdJ0Ry7nUt4Lnlexdd9YzZutNxq1eqMOjXq9VstmulK5bG0mm82ktVKlolcq6pLnNUJUtaSVVpl0bmbLMc5S1X+sczOjWpOIHR1UuEbSTiVVby/J/RFbMstI6mLhep+rkAWJdN1x/75YRjHZxayc5MmuY2n85QL2JKauPvCAtrqJeUrRMtts48b3bXwfR1BIcuOaSMlElJnin753v7R0QTjSjllEKCJYxLGec5+JABz48F/pa2APnIV74VOaMUAJA6jkKrLilicHQIJiqdYFAuAqIJaXjKNoFYgqdKpn6Ru928K8DmzMhzX7AAWCRFhvQ7eer6w0k2t3X7l48sShhdnpEe/ITUtnx3B2kotFr+g7sWr8W68N5rK50O9ahwRo38VVb242OK7NmE8pOevjq0VVKimDNE/9x2ye+mSkfdt0Nmce4iAJYSlHuyLvELEU+Bpy7Eh1uCt7Y845eP7g6Yf1z/4kC5JSRFTPUEzyB/GhUp++nB6PRmOC5/H8eXfkRDpTnyqr089jKZnKH1nRB27Ss8hIiCQ5niIkx/NqpaHhAxG2TzaOL560kVhq3UXIbAsqHynusggRlfhXTbpW9jb+anyvRKSPP3pUIKK+HwBh5t2/pv+kH4KT8GPfdgIVYIumCiggUPQkEALh4wAgViUKMb4EiLwKzBNsyBq/E9jbBA8H4GkfXNwJRmDktY4N+OQO7wD5BwBK+FwjMy63viry2RWfaKc6OVr1Rota9/gMG0ZUSzLZFlP1WigebeQTkmvYnfHJ7ycfs0CNRgjJKFUKtEcfOnF4buHR+UYMT+066k3suyclZDRD+U+8Wio98OEuvTTx5rl902W1f4RcGzmvEwmKq9hgmVQ8IZEI/+jiWmHysRtvWJmnZ4rJ/OMHosIia+XjM/bzq33lF5868nB3Cp1hSrjdKpGkuBZvfQglS06kgWAIgEu+mqZhCZ5oOi4CwpaMlNuiH7ldP6Pbjr3guKObTKAbRliX2/ViDz80vK9+U+nuLTppySSbzbXVESf/6Vzowy3yMHBVNPqgTDobHCwQDmzKocjIUtCPfcVw+ux1t3fl5muxH35iBYmF1dWSwReeOUr5Un8pj1FJH587cN5ZO1CeHG4HvuZYFyGiTL1+Y2bXU9cezBBKFEhuQoYh/4knr2hEtMQtX2GI8QPlez4fEAYA6H/pK+EJ+MzQd/NAEAGKPAkR9P8+DkqwUPwksBQsTUQKhWLdRgBnBRynvGShlHoVtK5o34X7/h97x7ckB9bbX2jTekz71SD1+KP337zn+vCRXGW4MNqourrPd3h9LsgmQeSqTNbPPHXjQlmb6eeceWio8EE+puQD/HxjAOavH8UZ/3yo6O2gZW625FXDQjLkk6e0CW36btVXGXrxstCM87mCfWBPQtmISFIrqQQyDg0xd7OSOp06N6sWc4evz/dNH/AclWP1kOSNP/vN4x3a6EPCmhgwFUbRqO5GSrkaf9jZb41P2hqRNf8jYbIcGWTbUIKGsjffImbOdHf1WVbmXRKI0kmcW80KEnpDEooOqZKGhWZSMpZiLeRvkFbQYvTvfEYfhs8IGW2AJkFaPAlCkVCPg2WjbeGToMC2lL1u9MgrwFxechARViMIUDGZZu69LFkiaab19pfo2I2Bz2KfgPUb165eOHfy2P69szNeub8vn41G4GHxoKvTY41iq4zcmQ4fUK/PBbS2uNe6Zog3xM4u0IxpD9IUQDfp18pkNl+TPrrkfVfvStrl2xLS0yYExWRm95VzwiIcGmzsV0PxTMx4RCrp6kXyMYqELqQONgYHlXusEJgnRwjlnZgQJB3Z13e8yxaIrPD11xBVPFVny/hOSn4XhJY61pvu1+p9r7ikTB+haGvdeRb+zM/fyOIJlKqd24aBhRasnwRtoZJarYMQuEpomi+QElaNNCcgqD93xnsd/DC0S1DlI/HSR0hY69gJPzbG2jhCBMEo1rcYAMjl9teWEBSiAsLK8pljB5t76hNj5WJPIWLDs/is48eDLH5UVWcuLF+t6pULkoB52IqbWtZ/EpjEpMFpA41ZJtK86qzJHHjw+c/+fyuTqWz3vZCi9NQrqn41yfmeyUpI+fB93cfjMUJCFpZKZywWHFeshGQmJmK2B6QQQ49mP+3VOxawvF/7Rn/kA6nMntFVPVm21qQlUIlkVBFa7LLNEpHZikb3ZN3uZCoS0ZJYlhxkHvBaGucX/fr3JfA9TecqungKmdoRUgUXJLlyPRaN2MII04kTgJ+olWCiTmtuusn3hHvb4GOmk6+YgxDlAq637XbgfK4rCJ/16Z/2KR96//teeubRm2uXzi8dXpxv1CbHyiYPaPgS/PyEzzvOZNNGpsWwOIblsZbNtdVbMnnCTwJBle0kilIYADth21E7e9kwOHLZ7d8vaG3TtVrDt/ZtyJiYL+VDjQE/EFEkJZGyHDFnCWY/gUwOSBMO8cqNwuV0krDTrB78pE8aKrLetQ3AW5rZ7f2vkBQfWctf7ooS8bbv0qcTQnzSJ+FALyvt2nFZVhxLXR4avEhfLVwryYiKpLz1K6yZNIeBgxEO+1uJivGdt6XCzUOb3M3eN95plZPmleJ46wuKF7qb8Tgxv/iMRYIQnYwtiQChGwD/04+3w/DKtxECtjvhgkTDvEBTPFRQBHRYPEyrtR3gbQGM+QDThrFEQqb1rScmgDIIe3dPjnuV8kAh52g4jItWUDg6NIfNayPll3UvzA+GZXNSy7YmlSCitN4RK2OGEnbVfBxRumOuOkrOfFqRYMGx4ycbTdvRzILTA0NRxceLRe1MDAaMJir3FVZbvtRIo98w0Y15EibpReOCiLTl+J+Ztdj48w9/yELGlv+NZvf4Wf0l34d1+KpvG0Ep2j7sBwEShHySOk0rSMnXNseI0duivE3U8Oaw0dtGARKCQFjfimkO3eaYWS63QJLPrQS9brnaeG4o7HVL25JrrjWGh741r0zqNgemZAczhZEf/sDdBUXClMmHes4kIkgsdNweV2LvImZeOTt/eqQ4IYe6Ld097Z1IiBfoKVfqeFRtFtVY9K//E+fvmp8u1cb7hiWx7ju0y8XfbeU+48cPw+c1YxMuAT5wXxmE3uz+BxUTGydJQcaZMTfCWlurUcdmy6pYoUt34rwduDEf1+w3RwFMI6zvBJhIzb/z1sc+/9QT6zdWr64sZya95OUe7/mbcd13mzmhXZ+UVkH64RkI2haT41opp1FvdT9h+cqZ2SL40wlg3Q72Gd+0GqdWMgyYMQuQj2yusG/npBHmnSRLIXrrluDziE+IWCGhkWOJpXw9Hbc1cmJp3qWfRtv2EkuSOFbJBDKIDDdeSDkKjUicmX17Dx/O5UzWU1pGkst+kkpEecvosmVESZkXlrTTSCbfbPwwDoqYHacIFUgSIVuigFJOWvj5mM1eHf4mReSEGmJWMuEKLsgPf3Bu7u5rQXazKRGThHLrnAMIgwD0jh8hF+GNbwMUgJvrFQEMgrcqTSGzXAUpKzIoiLeFeR3YmDTrlRaio6Ot52bq3l0vjFa+42Y4dd++Fvn0tEhVWgV/dWdwaZjDtApENrhz44J9Oxcp7NZPxGbd+FiOg42W9I64OrY/Ubbt1MzSojc8nddCulE1MslMvEHblyxb1yddiIyISvquRUtM/8OBTymXBaKTzZ1upi22xdPvcxTS9oUKoNlwiR7f6y/DJ3/HU090MVLb731bq4RjKTbJ3tYR7lSKbSBvByioFj2darHz1Hi8T8GzTz/y8Nrdd51bOtFcaMyVBrvz8Si8rF42I8dQsBlUVS+UWquTKPpDR8iKUV8um8qkF1TDENAIc53KqFZjcluRdSSWmlOazRhKVcq05w+FkdiRnuPJPCuNlD6eFG8wojNacAhJqfWzBcbj+ZG5vXvnRlwXJap77mGhxFA9aDU2NXVpcOB8fIum6PjRux7+Mbuf+Zh6Rx10TKoVwvBHmgqkRFlR1BWB1J20QCFu/Rph5cDFu+++dCDdhSJgj31k2Eb8KustYuJEKCXswzx+6Ks3fsLWkmZmbv2VMyStWIJwS/95AT6pmah7ZSY+hEjmjFuk9yhBhlAZsG6FBd6mDuXbIV4H0iK8IJENwDC+/SycJo4fPbC4f+/cRKmYz8QiloILeNoJm4Q2x11tehsBvyabhgnXPAtHyJlQjO2ky4ZXDCjsdAyTce0/OpyWb9NcfwSN4GjtdI7m5h7F+lwzQ8RIRCQ4dqKn+1DUwNPHUp9GXTF+F15vMaSiA6fTR9DmblRctqkXqbWuRPnqqxvy134l1i01R9kSgojJMbmQK7e+WRNdvfUfYqhVIQEomBD/lH4QcrALXg79nQEiWAWA8SVgDtLWBLb6gs6ht3k4jO2JLwUMyLi2iTGbsDwAEAOtAyPycsuK0cxy3z4+NTIodH4MjUp2LIbNn2AlvNkjmH1MNtQJ/kzSc+59fnnP+YcefuTYKUzd2zv4BI4dmY+mMomFRm5wsrmn1p2b3/dCo49+EGOf+Pg7L12oHT588pWS84FnBnuv/dape10WkYlUZd93XT1+X9LyznzzGoQbQfqHoEO9G9769hyQ3pL2NRBruqG2bwXFKghREUE03hbmdWBjItyqKww6gTZ0y7mJysjRlepblf3eTUv37sz7fto38dfylgktre5cuDurdTOtxEin29uPLavDVi75ge+P7jvrIrmzRx7T967199+hIOP94yP6RLKcNavEUhHPX7IOlXtSTqsKtLMGOYs1lS5Ye2qHU4gvPBt7j4K7zysZeaKlPv5tY+54PUdHgP0YXQhidBbOwQ2UzejFM7tZW32CgNut2jSwBs3wpI0SLC2tdVAq8P34koNaB/E4sQREgZdHRBDQdzT0OobDOwxNsE99hKEPBxMuna+wzaw50bYABCVRrd/GsoM3DXT+wvn63Mry+RsXbhw6MHeufs4rTY15EV0Yk/4qc267VhotDSmtM2kTIGEP7T9tycrjGZO26kHm2roBqfl5LjfTqAZaCw8yafwEjk96D7e19VKgty9/KkmIdu+At2ArbZMeOVooTJZny1Myenotjoers7tmrr4Yx3peHtOT4yiGXM0KhZ3uPxepaSEiHQlGjCzf/qtZS6LUXO2fGozZKvdSKbIPi7O77LnvfdEZem6mvzD+S69H+h+cy1gTzQ9knEaEkFUpWzRaffdv6F98rT4KbyA0HUAH1lDTlqCQSrJ6EhyQ7Mh1u6NbC5UKd82bJE2ECr6jodcxHNs0HO4ExaYh+iaOEXjrK7yHWXP8PS2AQJBY6xjqICZyr7z4zBMP3Hd92V+KHt/TmJ4aHa7ejNz22s20++2kGr5oXxqYxNDJttXZBQ6Dwqt+FDsR6Xmlzi1EmEp8axzY2UzS135tbHWqInKvjCt9SMpYPia8hFRuOt8/bGUeHLARiSyKj8XT80cGhzobj/Ja/sr2jQceyxxedLu7MCrx4JEz3QdKieyOyzqk6PTwtJNeaSSld9yd3TVQ6qP4bEy5qep4hBYT+Ug0YXU7exIzeU34+pukb7/YiGSjiBZv/A8hqsiu3FL/AADCrF8r3/K3qVfgN5vuhWOkYaSHxGYK8kADgzYXFML/a+7n5KpCKceXWgvPTiG9A9rroDuVtbQTLQhR4FrHyjQ6IztQ/gGAlrAOAlEst7+uwGCPmjp/9tTS0cNTE15lsL+QK1o6E17shXU2W+vUGBMlVa1akRB2NBmTXzazief/7SzYcg3TCqVbBrN1GjlyoHFzoMBvYTy335LxhTfd7HrD6e1VOrqXUlGJJMXykhObWnJoVr3J43N7hmvHhY48OLoPFUX3qGgamazDJ68uDIxbVBKJscvd/T29H9NLjcjAgLD4L5XkeKH7QJMiZ2pWrpnDEkWXZmce6RuPYLOJsT9TthJyCBAyAPSD9GWwBo986zwKPBEyOASCkQU+uTmElZc0ESKsWO2bjIE2BmQwH/F6BxHeWeQULF8+vTQ9VS33dcdj0Qisqet2MDp0hu5QSrXW5mm2swfxX7Uz+tBMJpNLm4Qe1PVJqobLRa4WNwcJM2z4drqIX9Dzaum1UjzYMPfuzyQtROmUkpGjfQOHMmPZnkGtIhxV/dm40virb2MJBUWVJoFsu/Fq7+BkQeKHo7H5YpSQhSQO35GgGCVy6UOHx7BLSWV391/LWorU1SMjXVoiEqrfRCZClKjT9UKuP2ERssJbvyLMVycZjOuAsN/Xz7t+tr4Gn990+2MuI00hYFs/BS2ZEWlVIVF5CQC2ZGVvJ8DbBAxv1vKcQgowQLi+9bjZu/1ECFhunYMIxBC5/4WxauWD2aJpuBrpoHSm7tjgB382b7oXyIDvuCOOkVafOb/7wquFe7d2+vGTPd2HTafPXcdStGvE7v/8G+cfjyBRbXrPnde7WG8Qfbgx//ASvuPcruWX3/tV/SsfvHZSJXMp++d+3NJ0m2Ut/cIfpWOt/Mbo83MC3teMF5Egg4ro5LgiOB5SlLW0ZGG6e4HBRQAoNaHa7k+bhyFCAZkuaFgFza4i9Yw5I4LlwJBWQxiQ7/xmAgBOwLHu/OWBTLJq+5uOriCXGDc2WnXIeDyd2uxeiq3mNkSYLNXafWiIk+mJPCZzibdPOxwZXXw+4wRizWStPt6LJ058MsmJ8A06S6kjKa1tjtUHyfYxG5+oZCrFgsseqokIvaqFlWfmYI1B0qGNKD733N8LR+Zk6w06WqRizH3koBK3voYNsaxwLy5wBBBq7/61yPtefR2+oJm8fqZaEQSvLOwb6JfOZqPSE3Vt0wQYz1paoDC+jaDjTDiBc28P8QLIsA9plv1X5DwTHhg3tyC02jYLXd0DAK/Dax/z0mOP3Hfv3ddWr5xeqjw/XvmkdEx3B15v3G6nZDyfCtrDamsFmduhhVw6lWksyPAaLUj6CzJkp4Ux6Y0pbDdoLlSD+c8smdqxV0fd0b3OeCRaSVOLqr6uOA3h554l1qrcGy6neovzfWcTSYWUn3UYB4nsWKa7lHlNVLMxQkQSPntLyYNdPi+sF4sav+orUaXigofc7MMDS2VU6S4aR0oMGGaz0c6GSiqpN0Y1pj9YGWWBmqPpcBEiekwBYuFu7HOZ47ny5EL5T1xOJB12jN4MKqLyxFMR3PjNjd9ELRn/Qqcq3914cxEdzfQS2hIhvP3gS34svAaf20w9emq4IpBeJDI5cD9yS2T9OlxmKElm4RFxrGBH5W5ZeexEeR3U5taj15zo1tqjc9xZfLz2ygvP3X9z7a6L5w8f2rdnt1+SnqtWElGdH6uF8gr6uipVd9yLtuWms7kQYaKiGAJacmyFjfmjg1EkN/MR+y5jO+e3FcVwCDHBYjAhaDRhbkmuTDu/io9Ju94bVLVYcTl7Ke0oTXEvRhODc1M9WQc5Iy3bEkK5uRvLrqVtTpyetk3avLK8eFA4tZJPZfzUQP+FcHhVbiqdxMkp/B60+tBBl1m5XefSZyLCjQnkaeevELMyguE1OrLKaylcfPzSvtpALmHFFVldZo0cJoZhG5nE2j34BV8qbLQiGYlm8xWXiNqi557/BbKcLoWOikTDGOgHpP/xY+A6fEozetesZIRjE0SbZbDXtmTAlVYOmzwg0PAMW25ad2K8Dia4Xu0OHgcYAlzfemhygIDlK0cPLy7M76lND3tDPZmuiA3XxbWI36PANlkHdwJtxoteOAps9i0Nz2i3NRxsTdbFjEnVZqbYlqzppV17I1GN1HV8wn7jte6ew0nbXEdeal4INF2qFiR3F0Yu2F2lsql67q75l7ucgHt3933IItHt5R/R9mCSWEZi9JXsmB2YnLA/+zMefERGWGdsiRgoFpUjH3jgub+0BTrkphiZA0KjcuNPkEVX33jfq07UTrB/GteAsBeAfsXnZQE+6dvqyJu3amYjLQDFkyDY/2sadVqFoEPZvvC/A9Yz2M7Wv7gTRgBIsA7bVv92ZXf12Fjd3J41/CYaGtViWORinAlyp2k6gn7b8APmLS1t0dYMh61su1dRipzI4lXr1JU8EiH6qYsHraTNxH/xF1Ld+kfklTXrxOVebVvaFpkLkv/+74ituIt02Rg4F06ykgJJOo927+5HhSSZ8re+jhjRPnwi0V9wImLjv5mIg6n83/G/8bugAWfgY5tOBUGfQgkmwLvN+0IsBC01yCdBiOoSaB0EZ3VJoZSdwac5DII1C/1kB39bqGm5zRJ3/96pyWGvXCyYNwg1sGFa7spMdusM42W8zuvOO0XCpNaeZc0zmW4PN61dSVAFFf6FrQRnB6NdVmLRrJX/r7i3gI/ruvaF99p4eGYODDOTNCNppJEsSx7bkiVLZoodO40dTsHVTekmr4yXqfTax8yvvd+7SbmPmZmZmfnF/mafOWc8piQfPvvetjqz9/x89lp7wX/91xLG/R53jnXyILb7h0aLzWjedPezqu65nGLlzhcL+VzJaFG8pMdbzY1ozoCvAaXEuFQ0FbxgAmCM5zQYdreifPSh6txCPmqYd/663QbFPeUC9KrdpNJV6J9RjHhnq3v2MokijJp3/zP8ZvwG6qITaHm0qPlFYER8kucBQijIIdF4v6zt+jrYxKeOHknu1TNlLlIdx0/QJrUi+cYBdBScy2BcuqhXpgVHZyDN9sSa30/5vAY/C0ZZcRjl5baRNgabv+pGLn2GLy7hmCuoJ9WGkP+xgVUYzGNCKpgno8lSOVWI2fh36Pbny7u2Q3hWw9i4NDr4PWblR3JZ+FN/yhKEORYmd75+DvQNTCn8tFZI9ZPRYuL4zi4CVB6fwO+C76I11BzVECaUYHoQItIN+foT4A6d6rRrq00mUlIXPPdh4U9eux5UTkO0OXjNAGz+CnUKm0/HY+9pO07uM3vcrORX6zkn7kYVQnWnnM948XQxqqcTjUj0XYfVVx2qZlctfLU2N9/ff1kBPTkoNDwnVhRM6JYaT+8e72XnE0lsbWuTG4P1sTxPohvoF14/D5iE1qePiIpVgg8mcKLEIxV9EnqrKr+OOB9nzCABJQZBrvO4LfXHbJE0O0BXx6HgzvbRIyuDbquYj7uGzgg6Cbuy5gWb2DcofOaGyAePvVfByS6Pj3gQhg8ypiThTQqAKMnlfiNSd8D4Ip5eGuo88oZtbZ7y3GGOwTJwPedxIEwBp7IdX57cq0J++ZCiVvE3gWBFvPmLmhbeIYU+4ro9df2Uw9sc07/IDOqTphyM73z17OSO0Wp3V6/+PEIYNQJN66IN1B/NzSWxf9kYwoRhSYELVY6QUOUS1UZrr85FOtQ5eSyhzsmju4eslMU9VC7UPc+VP4V6d+H9w3rcLineZ25AhLTXVcDe1YXLNcB6u31wUs3zzUptIam7pez6IUf4qrebMTKLR+q1M7c1qBWpZYuduAkYjIVCb3hZ+2cDN7eZJ4BZMhtBCNDw7hKuj5Gtk+i/SZ4gZQiQKu214WOalGFGX0ISBFVfQoz5Rri7LyBMxhsyGVduIEVZkKSIAHz1t+EDuQ9UdPBONi681cb6YzeO5h7aQ5BkCT8r834AFcOzM+tlwm+d2IrXB7Vqo5EoaSLXmdx1Z2W4LIUVQKQhohXYxrEAhxMZiTAq4pXKRPMD+sr42YczOBEzNrLQ6xEhvabZ7NvEazc71YVqpltRbSOnKrY5nLMFjsyvJmpqea2225ef/XreLsHxrwLB1I4AA8A3tadrJdws5ZrtWozxev75YxhzGWa+9nubX10pNkv51vgTqana3SX4e2NNHaBd9F9fL4HgEIiwqwDCAOilicfl3D/PnjQOE0a77CBgNxBjCzKW8d30nL8HIzh4Z5sCc0UJJ5QfTDe/3b53tKUzu8UHwQFtH19bHWOX1WI+4WkKGsBAOvzERCwyGg1zDN8s3bNK/n9O6L6BuVqBeRw4uODyDVf27KQrsLZYjyeaCtfMatcwj+7n5q/Mt+ZbGFtZ032FOB/Z+4DHqnBBiRQTWIV2IZuKba4tK9WduJ1xBDH0uaTT6St5HV/fPnLoZifexyQRNSJ3DrGVna4aSTfhZ9PZBGjt2jNbxbMntJ9CgPp3/zPu+N7gD420FHCyBkIJ04N5pIAARRwgHyoOqoZVeUCBbfctPlZxyMXtPnZX/bG7Rt3pBooIp0TSvx63PCijHzu6sT4GPWvVcj4bdw0NnYSTM6RcmQrIuxPBE4EMnFnXEDB03UA4viSCApasY/gP4Fc3FrWeSRZs5fiSKBeZWTASX5w6AxmKVOtifWd4jKjzNih6dsEi3HSARitlrVeLZl/diiTWsXXB/MKnjUwkiU+Fpl9X9Z/6EsFiDPUlIksfX4hb2saSTgkDa73eQRh5Yy8wj7+MdLSDPrH/zbi0i2F8igQngt9GAL4DuJcY9OStwdcVkNGXtFIP7kAIGIJnH71+TF40jdHm2nCuUyunE8aOuVMtqyLecaShCcIW4h/uQLLbAxDZtXC5XKnU5ZFPDzPQa3ma0xa4b9dTdqqZtJOJRh/fYDGcjBcjGDCj3OIkvZgpNAcM5uZYzNK7KcIsVVDi7OCriXrSjjeTb35zvhHj4/pb1E0mShvAAHOuXyl78w0zhl99Na6luHfJoEAZVdcuIYTv/qe7A/iif4q76DsjiwOgFhB8GAQngamaQwRzLOth8l/9wsyhyoglzBhmzI4UxfzMJszF7bfbNeo+uAEhoFISj1ou4eF4tXtitVL14WHwzz/hn78YBHVU7nJ56n50tDgp0Xue1NrQ/ASy8HV6nBsvD6BVT8cSuJqxk1paNzJLMaCcCUvh+X65AhZLuunUwhKJnu6lko1+M+UkimzsKixdLxTj+FK64cUyDe9P5Kh6qE0UwIq5W88wADVaKUX/6B9TOsdNXi5l63Gn6sCharvzyz5+SxFoYmHgv44tzAvoayMtD5jUg6qpNj7MVaRK9w8HCBNB8EtIMCLYbd+f0tv3UT96MtDmY4UNoN61+7eKg3e8d+yQb95opOvVXqPaLUuH7EyNwiaeqnJwlKEb5iIocYbqHaLuwTqZu0kY2MIhw9S+P7P5cWk0FhedpJU5nGxW85VywUmVE8IwyvNOI9foxfpRVc/YkZSLbQtzlmmnkvNDzs1qycRmQqcsHTESe9XabL4zzmwU8Sf+iDBiZvpwJNMsVefidqpCsFGONHIlnTsl2zMPK81I6qyCaex60R7Oq3XFNFKWvnBj3jCdiKFB9+d/PsyDEKD6WGbaWGYraGnUnytwQgD2EGCCgRyEGIME5n2TPF5fzaRsC63ACpN+0bcTzkp9ME/L09f3TxgL1891ppG9VG15hj8+twKfBEwJpyrTSJKCxGB/lhi/gMGiUZqN++G6DVGR7Wr60pzBMJbOAkPYR6Yr+ps/tLBJcgoGHL3iAjAqhtGjGkYIpFUl1+C76CPo6uhyq4wxrAIXeA/5tGjfTsLYTuoqBiCSXUuIbyPRdU0xSPCi73/fzXddubS3e3R0+FB/jAAUcnEJaH0EPmJOXnww9M3jrHWcSVLGmuP/Dx/MfLzzkUf2CDfWCKs/s4/fa7n1BkmpejIZ2lPLTSZzR1I66Bvnbrmg1BYKxYf9VHrLTtUzSatrSCd3YkGUSszMJxXAZSWmzzzTI+mvfl1EjKpwbviGl5i1Q4nknKNifXSBaF1Xn3iyfuKeJ3uqriazBaf2oQ3pBSOXjM9/Rsu4hGL9s8XtDp55GMgGb41lcw7tj3bzDGMAKRcOWFpNBpzdVgBgQrTsTRqARBAQTOCYpcXenOzPsaOags7BOS0Qhx2eoWzJeZQsQhm4UgSPl0Bw1KcwJBOOrnEcszjLbyrqeloHffP0+Hy1OTtWXjCx/ZjDlQcJXZPZjZrXdoFzQmMftvDkHOUJrn24n0jv9pTHnh/CPhbxt+A7yENNVB9VCiaW+XuYDzakDwqJcs255AN8Nz7TKktCdsa9A4KCVVSO7BZqP/5TVzQg6uHm1lO9um2frMYtuHCkX/Jc+A7oT+6sr+9eO3eUR9PRpVvl5Tt/tLPEk1dWzvPUrUPNUycRvvvX727Cvx/L8yK6jc6PzpzQsOAFUAXeWwW6o4HgktFzoIC8XgAI9SReMIGOpvQ1SUxC6OUXr1wef8/5RuPymbbX0IOKXSDFe3CS4CHBpCEZRXmyGF+UvXbxmQb8sEvfHt5/RWuzmJN/IWWG5p9NjptOOpnb97S5vo85OalnDsXT8VgmxqANhDCmcI1K9IBwLXrSPuEosn/fLTPyIQwpQwnvJRxMkSkR4WnB443iim07NsQ5URqH0smR2tYxNi6OesNjz9qcGwkGvxPwxMTRqCEw9pv6QefwFyymtoIL2Qtxq8zh+LtpUm+Nb8KZXeRjPZvwp8ZyOIROo+Oj0bEqlnka4nxyk/zIY3rqMo5RAKEWOkXRyZ3Nw0u9VqNSSnqGhg7RVZnxsACVXw7JfsPBIxDOoW/qCZaVlikj1XkEHMPd7WiEUBHtazzugqg0Z/DNtUpSKRva9k5Z+McrqajmAwDM7wMFayTKBX3iPADNzoCbgyRLKuqdf3XnH1ElaGjB/EHExbc88LvHJ7SB3vf6AjCAIDApIQYY2EsII8DoNp+xPgKCvKU8WYMPHr/IbwoaLM51GtVs2okqHG3AhhLapsf6ibFGPxCGDKdY4cQQnUvrytTiT3S0kYpLDan1uVubr+Sc1Grc8pxSXtNy5Ynx2bQbgcoEGufEbA5KS4N2tdiJ2wsRU4v2o+UP/pSaQYCWx9j6bxifzWn0oZHWBEKPAyJh5FZBhCJKXuKAANALiFJfkXrT7LnJZPPdZBU6kMsogtuPXHdt5EgrPlzutmuVqIVOw2khOdGLYVsJTwRkXD/ImmcTdZsFVEM81Y8ugr+uCJPuDzsJJ2oCJkAiud6pQqSktpgnTKHyVmv+wi0X51NRN68Aocm5xkpEa81bvSiG2MIX3pMVtV8bt2NFhQEAUyILKa8Y5QowkHFmbnl1brDFrGzFjpYilMW7FdtSVU14C9wt117YjLiFNgLkjPVsD7+CjqPbb2yWMWWwF05aAASvIEbktx0oAktTjgGhxiRmDZkNlfvWYUByKUPkuZlVE3rDcTRqNOPumrsS0hsmZZopuhT2D8r/WbkHAg4fMVZhWV7xSloIwJHOsuMRo2w6DtUJXlwS5nuqNYCMYIstTcHccKm+kKq1q0sqrlRgCT4liKSGwLnzPAtR0zgZa2kalpXwn/+ywrQ2qDtRjxMFa8WjTraWVxz7p34acBAPNMaadwX93MggwFk5TQlgvDdB7bqIM8wmsyQYhtvq5LiClvzefhgrBA1kPTUs6jyw7zE7fITh9P7RI2sr851CLpWImIpAV+CKNmn/9EgITgcJbmADeQi+BoFD/fFJ8gw7coK+/lnLOQXZRFSPYFvWffKrSvRYivPFQbfc0gCLRpypLOEVY9Os2W1Xau1Fu6VAstguuwxX84YSg29ErDt/gOltUkkcUvz6z4cdvMr4vJ1cEn2z89J6wtK94ijIobebxV7N7d1eViL1ZtU16Jd+tKVEAsv4F+F76Kis+iAMFGTVA2DS+RCUPXiYARxanesU80nP0NFROCqmWcDKUJ7E485BnkRQ+ZDL/Ls6PaF/P9rHaj3KHaEupadvnVzMVBqLJDJPmLmY8TZbSsOsJZJp18kd0Y8esaP9Z/t2NEXsW5MXNM42vG41porax5YzsU609aWs3a0YkURtrlA5d3rtU2H8+X+M3/V59M2R+tSVdozCFM+sywCUcTiYahm+LiQq/ICaSdV8/OqHlLKlAsIMS6UMdjxmbYB4Xb927uyJ4+vj/tJmLZ2yDPQ8PB/qozvRp4cPcik4ysl1DtLSxyrnjHoGPnp5fPt99fz9lruOsR6xEzvthALVaD0BFLcd1164yM25LSs+Vz1+HvOHtVRTa4d4rNW3u7Re7ZQYhmyRmlJLzX8S05O5nG68dniRaYt500lUQD9SvHiq99EoFLK5/OhIRm2+fL++5u39CO5V3d6HF8zm3IaayDH48MeE9FeVsRS1sdV4XnL+0jrG5MwhTJXQYy0jTHSCXzJAZ0SXQIFCmHIbKZQqL2hASBiKqkApvyFCoGE42acfPLyRKPT2Y3deG8URQs+j8WSQi+dr1Xq13ajWGqbISZscnnbiATc/uK8oGOaFiw/amBD/t3BleoE2cTBtQO6uHOI009uxRGXdNEmt31qq5Jzkoq45Jq/bZIBJNtHeMmQqiGPLvcGJam5OjR1KatVsp4I5BRIxrGpaz3JLAEsn5o6ZmFkQl6jEjo6rmRht98qFdtyejwHnOLqo/FkzEklmdzoaUUDbnK8dmYvgViyRb7drMSAYCGdz9kFiNU8yRjK7PacS/+Ytwb8by+wF9PdH1jngrAcKzwDBJJDaAHGmMK4cIEzJWHoP2nqkKBPqpQ/23EAAC1Mm8/LsXorJwTvbPFqdOowHv+CttwZX9caTZ07JqzrXKeWdmK6iF+CF4KrKSsBMwDyVoby7U4azv+Dt3Yik6k61ZHJR5VX9M5b7jIju9FZ6pzKa4yW6E3ESOxpVYmp9y9Yprc0tHXu0U/Ha5bFTwRDx3Uqi5UU1R637FzZ958POwsVkum+ly44TCJULjvVzqyUOhGT6c49wMCcaxfmWg3nt/QPpYpIJFxpnKl8Jbyz8pbH0n0BXRhe3gSsy7UcKwuMTVzhS+G1EEcJUtrkgTeXas4EDCgo26nVDx6raVE8hJL/k0oXTe9VyZ6vaqJQ78qYl7nWsrFTKIbmiPE1W4lOjuRRwWwImWWJRfvBwRDS5npUW59Fq+/nTGYMZra6TazKLecQ8XDVYJG1ahbjKYhlBiG5y1c3O3TqXMyLxypLTPKJSbrg4cnaZ67FsytMUq1thMZ0TquY7/RsnslFddyKKbDhurHJs6FYeK3M6cEyjxdLyEztFA1SzkVepBsrgvA5WwmPssOL3NwL+8/i3ohNyvkYdqN/ZGFq/PKIYMA3G4ND7xhfEUAhuF8NV0/E60f0H11Xewbe95YKErOL4mdHacL5bKWXSnqMJdAJGCp8dl/D4ITvyp3C6UkhPD7KBkPm3YE87OmYn6MDdyQQdDsAKncy1HSoI/BQ3TqQwF4Bj7s1q5Ylpg8Z0Ro4cczKZkcN4rJPoNxXqj0J68y9ijvmkg5WB3+XYR4i4+E8hDxXR515PAIYwkogiAHs/aFgMDtMKnkcfeF55zPruQ88T4+fyEYZXZh5dG/95vb26SHiiUxNclIrjm4BkOLboH1TcJkRw7BaXG/U6cYHiO1+88yWKMWNYETxGGfzmH2zcfPqH8N+EUlYwA4oJ/i4Fn3GM39yFs4A++ak7dzEuFn4SITLT3TlAt6A8Mq7tY8GPL2NGw3piRwVGCWUvIYEoE/SZ8B8c9TudnClen/JNeO3/yhYXQrZqN9hCDt7ZHnmkPQU4ltWZg7fYPLtt1H38jgc6U6PYl8bIunWzOmhU17tnWkWN596yD9XnP3IuZgM7/0MxGI4TskoY0sktEwslE7rJDyGEWSk/unF1/uQ2NhUT736207dg+4iSSKqbPzLGVfCnMfnMZwglxDQYicUIMd37nzBMFfeRLa7/8PK7NQDl5cu3PqQVLzxnYKxdPf7yj9u/DesaWBFMsBBHtzDRZn4ebVGMJj34+FePb8w2+v7IWF1KEEyOAsIhJySOCLH3BadEHigDhUwvT/Bp9JGfVt5yb/cxn8rrJD/A5JUHP5iIMUHR6Mhiv1OVzKWIyRnaptsqdztLk3bGAGKVEkPLPkZhy2GgQc/szHwguUSSWhtlNDMN9N9ZW4kNIyYwCKKNihiuCS/GwXWBgFJJCdMsXPQuuVEOOLYWiVCBMdyVgIpDCPP704BELN4n+FkQHO788M53KWMgs248Yava/2H9tULxzpBRJS3nfkYEImgZIaKOu5Ra6CL6OLz8+nOgqaHdWiUAmGIY30FFVcRLOqiapr6AEMIgey8mjaXPcKA0s480zbhhgmHEjFBEa4/Yr6ja7Xf0BcnxFxwKvoAe/N/5BqkH6w98g3rwf+Er/u/vThgTnUleunTp45c+9qEPvPfFG0+69cry/LDZKVt8nAoMxq1XCS9EZfwSxZgHWq9M0gCLTIDBFUe2ZAUls+ltn/wQmI/hsCSvPZGrg2VBEhFfXMeLKzKZu7dD8NLfEfDbXgUwiYKxnCmHBYjcH/oXXLWAAFeEIZqq37PleoSYpmD0a19njOtR0QQcM2Ur6Z0/zQnB3xZ58OFpAEGccvnLLz7XJMLQuWmIOelG7/wr/CuxYACEbUVamioEF0NKCVd6RBY6Gf7CnQ8AMLhywW86chxIeIIx/GslWyfpejbnd/6HoOSrdLwVFIOWYoRgWScpV+h43Vc5JjiY8PCRcQT0HPqd04lPMvhJI6IE3QmqmLDZuYZnA5+sMmlx8K3JI9ZU3uZbHvthEOxkAD159cKZ3e3N4WJfgsF+yPMcPK2/TchTnHbVVsrvbNiYLR0Exw921vZjjw6ILsDF2bkq+C2Hhe1uw8//vPr5+8eFPTpcmhm1wt78a/RRM7845CABuPTmPyYz3bETfjypj/nx2+hLI20RMKvBBP1L+sR3hjBi98+mRZRGp6NpYyQUWfnBtRQhJtOJmZVvuyhBfIp8fW57uN/iXA6YCvtQG5W47Xncm1zexXsw6rSxoVIaZ2xoeYAnVfBSKZ4IglT8D6lqtlu5n/o0+zy47tnq16HTfyN+ozqoc64R7wrgTOkf3/nHgsGhX+UnaASykCU0AzRiKPBHtY5ST2bijIJ25x8TjMG2d0o/CVhkW9dtocM/IRSEwkCPUdhn1LAJJlz8dcyY9LpZhPD3xzzMG+gjI60MiM4HvHn/3IiKEWUUsQMFwhZhe18AYz7YHJPAyNstSvAJlPrE5Z3tI6tLC61GqZBKqALdgOsadztOuT6D40+44WEFJO5O8rRwfqKYxPj36f3M1Ilh0FQeoh9zCifp9aeWMocxBqwmR5dKFUcrtQWzPegWVud26vszYzE/kHspoXMOqrdlK0JREkkHCz2xWT+iEVXHCSDMnbuZnH+1JmEAGp87KBlYXbugC6n7NFuY2/rinb+tccynjTyeSjHHSqFw/elzVqu1nFprFjSGCEoihD/t9+S8D31E4tt5EOjgfWcJFXgvzMIEokjQAwIITY5VpmGU+sytGJtmYeE6DEAmMz7uW/WWCxI+2Sjy3K293WPrK4Na7HJJ4cnZ4WnSoDw47En2ToU1BAuLsuBvJZYV2cgXNq0O5Xxte1lKM+j7d7gIIA547lrSHzcTOfPExo52bxwUUzEDjDHH516LpD57iZkJlYI3I7sfyT4/IzvsRbvF91gYq09/dBTz3nMK7OTZSr2an/vFXF+70V3YwAfmZCYNDqdFmRXN4xxAvTzK55cvxwBToOeMh4XJLmJutM4aqmYMri4q+Ik75wAWZCfy2rGllMdh8Nr3sLGyfrY/j4LO718aS/rj6J+NtH3gSHLPQhl3kOAKF8oB9XnGBDCOTugmDBCK72ugKOp1pKoxNRR3K9xCAFPw24sfv6H2zjckxhtGjYfXymVcIP7s7Eo/nHntR195zwvPPXXj8sW9cdWu35tvVctdnXudoRR1AEBPplF57qSePvQTmPEHj1UvERjPsK/fTQRzVMtTahvn3luq21/7rTrPW3qzTVuaTlbTRIiMuRxpVALlOndpc1fTp8pldpbB6DXWMkLJLbJ20SAAQBhPeolI8tVrFY3g+GM1LfHV1NcaCwm7R7Ea0UHZ0FP1fvNy1iLZ7PsGf8kg5H41Y73f+ZeoVV9/MeOe1kEABkqIxtOZtRsfjyv4CnmE9biCAJ1DiNjjvPo96OsjLeJLhkGYGxUpIO6TrSWZE0kdIiALq4rAs5ai5K/jCA4eu/Ct14T2wkMIvQe9+/q1U3vHj62ttBpPpFQe7yzVGwGm5oMLnhwWMJaTVAT/b9jiOZPySrWQZFz/g2CjmKI7ITOlPjUXwTZeeUJmZZgRjzIAEyI5bYHyQk4BzNRD9dHe+uqLJ1q91cTpo1nHcY0KODrTU1T6cV6rEnLtGgeqp2P9Znrp3PH9E087IBQZRcZ3CdXpqUMWBiCduOt32xrJ2vlTbTVfTM9dzQ8STidzob97uXp1r5mlAJiqkRW/wYWfOwuYKZHmUv308cWbZ46dXjrxRaM5v32h6tWbGgM0Ye/g6/BdtIouSV7M9qAqKKCci6VEDWBwUkxlAIwDu40494ObjEStJ2bCxacAnTuzsd7rlIuZpBNDq7AqkTOYlAmEXyyfHZJfkdyx+0fl+82144WeXAbTSS3DYWNQX55nQax5wqO5kzqQCOFWkskSL9fbabGVIMt8b3/nCQ1I5Oeukwg99kSUw0Kasjuj+Va6uLosTEoBAIThleLbg1TMhR9XiPn+W1byvIWxYwqiciNe2BUV0p5wiZ78WQ1OHs3Vc3s3LHbn33aWFKvJdEpVtRKrtzdK5cjJ2ugkwihxdxNvjCOXMtpFnxpZ20drLuVkpYDZ1LrWw6as6KSZQAFCHHmEEwBnXwDGnqRJ1+VFxB946+V+21+1gtDWsXHj31xlt7qLyqjc3ZeqLyFmO1DYoGWZC6mt01EmFfCJSrOTkPC0ujN+GIw6yfFfQzP9dHxuFUfokbOrfXPpZ25pmWt1OsI2DOtVvhzBYG16kcHVNDsGsL745Aus0u6cJdYfkAnQa9alw+VIXYH9wwtPFc2lcy/+TARv8ze5HFTauKUmbbZErfdfjN75HyqLrh792Zf4oYpVECIrvZV+t4kL8B10CK2MlnQAtLaaJBTw3rSBVJ5J2GWakfVfj55aXBgrVbzEJMw48IOvSvA6wYyoRHy2kSu8+/JvsO4IXoEbv7x/PooxtlwWf+aQkeH9zbgFTNSWPMCWye3zyxwrdsqlLAZqlwM8d3e5LTvPYkefVEC/cvVwiurRp19oAHAC9V/ztZi5vfuSSrIa3/wZx9YQRtUxm+UP4j+NVtAO+u3fOt6pE4pChKOAgCAC6AD5XbK3fVwopKq42AcyHr0s+sCy7jv5NpksAnllwuhAFL0y86H0r9r6uFt6I1GWpwqTRsmw8uC59zDDYEi4f7b1IM4Kf7VDcKWlBa035Gr4gxlPp5ZXcqmSjyjPVoqdxqFcRrTL9R4w53pzAyukxqFXUyKxFwz7zu/qdzNeuh4xXO1GxcVfcQqY2VkGnq53X+3uDp+5tF+wbOfUYjb1/H7BozFxZpnpraGGIU6VN/9ab9VLv7xc3sy3afFjW1LDMnf/BfxO+EPoKPoLI/1IAitcmRnJsizBUyYbFrhQhKy5gYIUeYoCKSCUZ8PWrIyvhDcQxqngyP9vbfYFsfi2+6TZxjen230naG9uDAdLC51Wo1Yq1O2SOpbT0OfQTBTcl1jAfmjU710GKcoZMUp3mMdyQ7kh+NbnXikR3aLxm6OVWrFZNFOakvDSN1cj2/OJpKma1cXLC6WYytXCou0kNC/2rrI2Ojh5mOOIULpLrrXa6HRjnlBThXK60meFSDauZkpuwYmpmFjATT2uqaboSFl07w7gr46jikvo+ZGhUAyomAoGA7SDOhDD/sxlhCngZ33bGJ6CJ7Pm3ENLGCKMPC1XSuKbMe7ROby81DhS4lKNp103cW9laRIN+G/v1+OkioZJwbRfcaLe9SBoWJp0R9/rbRzWoYnTNjAMGEskPimceNrEqr1aSBjq6vNxe0/9WD9KIum+YmfikQphXOiMJwtpK1Vj60djT1uJn9hTOf7MRpSTlMcsAvIPBswiuqXEgBu8/vOn1gZPlVnbWTCi6eJCBCvUZYqukoiOc27FJm5cnf/o4vCp73dZzK9oN+G/wnfRUbQ5Wi9AQGVGgNHBPYJgxicIuvJEPXZKFsL687XKhCIoCTQKfwxF8DH05aAa4Ezpyo9lCR5JhXxlunaImkXLhlenHOXH0ATvUZSTf/tfikzMFPBP7mNwE1QZW9c/M/bJadRCK6g1qiOCKCP01rQKMutO695ye6PoQymyfyWUeGDUgrdMhLztuF/YEMPKvT5pOAIWW8k3sLlavt4tJEQ3t6zVXtn4+HKpslhxF/q3mGn12R+EQlK3m90e/n3AuusvZKKf++DOu+NWYfWX9Zf/2CeOf+qFzpEPHdEB2MmTfzUmPrqxlTaObk+6Vv4LnBpLsSPZTylAmABBeI/K/4WR3wSRmS0IAaqWEp6uoA60GXfDZtzZF3qQ/RWQNhZhzeTJ4rBR481MUit3NGzmo47arulM4+sLKY0AZ1/DiltbzDjJdDmavfrbKixjW7zyG54txKP6UjavUB/TWRjHl234LrqMzo5OFfOY4LqJBcF7iAkqmO/DfUfjyOq5/2/PBEQuBSPkSibX2TPb4xEtg8VsOuEJji7DZTVUxpA/KOJTpGZKXJmUzSfk1QeG/8k9D/bJ+DN5Llruu6hkFMaikDfyC53cXHWumnFSWMsti6HJsPsZjzCuR6LRlEO4qXKKvVqmOj/gRvb5KIZEhvgq+xFVMgz10XGIinizGk01U42ETRUWmeMdFVtbWtrNu3HHSu3KJjEK2tlaZmVebSixiD8I9OkXhN+J0Lv7n3AXv4EaaP31EgCBwCDGECGBHmMISoARhKSbJ88GT6690Wmly5QnJaovtdoOjFlFGi15PNPQaDjA0hH85pjzZBL+DEQNyrdS6rsOHz68YdhVhf309tZz1C3E8K83FNIjb/4h3DclYG7F7uLt7e0TRtEyxI8fOwYQ1+cQApS42/Q7KHZlXkEAIwqA60CgD4xQyaoAhP3MLrOvAELOvpgao3tmaLS5PJjv1ir5rB1VBNqFXZWHlMfZMO6BSReDkJoU2qFQU6bc0iN4vA/+peWegnu99/fNt9BWRoOWbnqKErUtF77oM003MT4es+fLrFqlZshsDFvtZ2ZbaFRbSXSXL2QUK2ZqeJdnIWIa/ymiJ8/z2Ir42Z/x+cxzd+9ge3xGfbQ70jwgSAE8najoIoIwIvgAAKGMrK7HZIDw8OMEHgt6LzknBT1tHBMTlxZe8fAkpMEOmsCCrHZPNoHN9wkmgjz3a/Nm3fRY8x99NaWRKPBOd9LZNZlSD9/QFf69HwIQaPzgff2Ypbif/QtVQSjH3/imJTiNyWatgEP1vbEvfxl9bBSbB4KPH14e77+Ww5yRgGZcRcARB3QQ2GXprTkwLrsQo74z8pBkGYfL5JMfedRav1dUYrpnxiM+ZL8oo+hleFnhQfPtxAJMBzVObd+wUa4HEaoEicJoIOEt+e4sjAP4faGRhYPMVT6cDiKGWOGK5HY3XNWz8XfgWIyA2s51VAJU4PqTJwyStYEBz9jbOpEBQT4era9pVIFhKpZIGZCr5OfT5nZOxWaL/D7SKpX+dNZ2iEsJGxsKFe9CYdNImGxlrZHn8sDryxsvpphh7kY5SXg6pcRjQkYIwnTe1S94QgMNc0uP2VQhjf2kbSllF06D1+9USuht+3Yy074dN+jb4f8b+nZ8ljregG+go7LvrwsUclmMKN5D1KfvH3CCAXz02NnH4DuM5Xq92WyVBc90ar4vmDZOVfxmGhyQG5alDlTK4STD2UBmvCJw7fCNnBfRuQMiyZ4BKsgx0ygkVGzul5VisxBP2owbjrZ9TPyNX0vdIj8yIkZB1GJ5xegerxrbz7iYQiRn3LmbyMaYrmd/9QeSPBpJK0Sj0Zc1DMIr6Di227u2ayOEpdWEO2OLUEB9mfW20phOpBK6xjAv22eTGwJI/hqopGfqqAAF7jvGRpD+T8YwhhSlMKZFASNTiPhEcIdK+HkSbZy4hg0aN5ZHr111Lb1Sj2dSihKFG+VS5YRnJWNKt1iv1r2/ltfgS3w4uGIBMa4cvfbbEiyZObiVViz4z3vz6/OFZ7cqrWplV9qBwt0vw5fHb3NY9vpUNMzwClAkOxwJI5gd+AG6bFOROSd9evqaxOdvDxYLuXTKtdFhOCzkiy2Gd/ihCTZ+LsqDLCaRx/Lp1L/LRX8vFrfxT+B1A0j04+e9ZL8UtwyhF0u7H9Cgg385BcYgsVQRMa9nCq7EdxJ23IIzUN6mVsrcf8miMd3SIyASTwypNsjjyxgYxalSc6Riy1QMokj5Fcb6enisr1k0hzqjJgGM4RoCcCZBDYMgpmk1ink3ZmooC1nOp9z0WVCiUgmjUCeMO8Ob9u3tS6n0lUEyDz/5E26Brx9m9uXVk4lfc3mj1fCUTmNlrhXX9Se3ltdWL7kaAcMuaFir9w4ur0YZlM51WjdryfZCr3OthwDZd/8jZvANNIdWR8sYEC76kSULI0sKgSnweUquFE6zls96jqmhOZjjfuFsedwDGiKqwemXvaDzeHl5EmEEuHnDA3XJreT5r/+1zHVM/ktQKGKWiZQW9Yzg8wtsWGccshoAOEdjGYoxi5tpgjH8+t/KInZJ+/XVq64HoKwogbf5L1iH76FdNBgtLAHBMWAywiSYYcJkYDxpDM7MBvzt+ur6WjmonQYucjY6fnuiayANf6FUSfhV9Xgy7US8zWsx2/piFIhSfYjNmhpkSq0+hkiv1/G8zilPyVuUwicT1W6xtr/e+USev0LNhDF3837O6qWqO9+UnNVPzHf7Suy9JzN2J2soYvJbDOr43f40qFNob7RzHDhNAHBpJBlnlPs4WdCiOjkGzgPUEfmgI6ATW5uHF/rVsh0zNLQGaz54O5vKTYDwCYTQqIdYwnQMkusjvCFInphamKlngP+yehjHTu1dyxXTRebplhUbypji+FWWO2p6Sj+lAosdr9qYi0yitzL/iX5z4UrWslSLXz2VsnsGhu+e2XSiz5/ZdTn+LUlVNryavx0AwL2562Y/cUyh2upT2XgqMszGwIlfGb6nW/+Nnf65nfL+HO7bdm/N7/5P3R3gq+PT2ke/fxT1QGAMSIyW0oQishcOVECCCuRPqBOU3H4wPeHcm0658Nh0bPqDuzhhhLODB3bPbhzNP24PQYywp+/fKvxZDLnm0G1nq1GFZ+W1C6rVibBBNBCJmD6QZYxpIit7UWcmwgTFUP9abrlKdnSqrJupDAfydzknNsavvaqWGuW4leZE8YhCWNmJRvQLhVxLpX+HUS50Aq+9KurVVExYIm4APK1Re70dKay8K/1fCI4Jwj732eJHzx5P2hoGqrt1RenN/3iJ/3tCdM4Y/dxncz+xs6AzopXFJHLEr+E30C30xusCQIRNabI4CVzIKgTlQG+jaXGSyDzRd4xh1iC59o/awij7wCP3TX4PI0b4lUdteXj1ZATP9avnTh8+tDLotFzHNNAtuKVKSzi5NaFEHDvsPXXvMxbLDxidaTO4ZFq9pf35dc0Fex5I0ovbJj5/CYjpnr/APXv0fldIW1L3UmnFEpmj157WEklsm3xeiF8DovYoWwTf6Vfc3sca7aTNFdgf/8VCHTP0vo2Z85Hj6Whb2hg1WZkrJppH7bNHn3jqXcA5Zr9EwPu4JarPP2SlEKDI2AfeGNvjc+jQaFhDmKKjSy1CaASAkL3p73yS58lAtioE2eqJrfW13ly9WeY8MbHKsyld+N/3sAup17NuUfLJZm5AAMxMzfO/rccXsJZdfdJOnMsDn192o168F6W6N7A0w7AAoid0aDcN3q8qoGkZoRaI5nE9tdCoLMZFKQogDfVZ3T517us5cRqLocGU+LFkvtt79kycCaZElPitMzyydBiUruI02l2TVDWj242yaL3QPZvwevmoSiYTdfDSGJ26il5EJ0bHbwLjzxuIUCKtNkGEooPQSkenJsOHikNY/saT44xn//jRtWEmWRXc6zg8SG2D3ObeUd0L25eW8lz65nJoByYLHoPpxScue5LrJJZW/jleOp7LJpLZVAJjjjfy673mItVjer9r+kQzTdEoBUE1T3ffv9ps/zTFidRDiF+hO/ynS6lsqoCNFy3IwtXE7yvs5hJzy5euAYZUqr+9szYvC3m3Tx9aM3TA8rsJEQ4w8tQv1TIfNLKxy88/CAkuf+OlRHyrJIwTbfpBRFBnbEmOjy3JKjqBrqFXRlEDCDp75DABUgEMYRrqhUTqzP6MRwxMiIdkKW52hY+zyE0EveJ/OPNc1kkGS4VcMrFAx/KAlXUcsijDVDG468HJj49Ximk2nB0OZe0zsTQcBiPxa35TQUXyK4eLE7wDvkYVxeR5EaGUK8evW+zL787GaDKJiTneq2CLbVw0WSrz/OZygUG+cOfvby6L3jxWXlyxIxF4ba1nAZnvAwC0Mwdphr/JORYfzG5GogDa7qqdvPa1OH/6JsaCPXkDCOg7g1h6YWFwwYvR1z7y5j9bGbHv/wBHL2Qb89cXNxX8ve9jYNbiT2cQRs7d/0KG8A20ip5EF0ZnCQgCezlQ4CRSMMEKOUBEYCJuc4aDeUPOvgpyohZoIeR39cqp/XFpc73brpYlM1FXZUlZD1P6+ixDXSZx9+VwAUNRRi1TIFcG0Y3SvdbikHnqWdgLHmFlZUjo1jNqIsZOWN4i95qJSipM7+Bl0Kkb15M2AFXKV0tt5XeJO6tswxFH6rX5k1FCLIsDgHnm2OohbWddAfF+B4P3zPzy7paqxyozKV/KlG7GzeQLP7ab1jAsFvPi9Ols6kI8+96jAnN5MIKsN9578izC6PjdTT8nXEV76N2TCKWCiABpKGQZ6V5YMrENQSE0M6oiihB98a3WBuDJzvbGen++UUt6loFWYaCEKcnKw4mkLBhNiyPxMGGe8ISlw+J2GP5NLfOfPrHVjc5kmJ+/yb3zDQoYM+CqMb/2o46OCbdMDoqm2bt/1M85tVi0UazV697vbq/O/dXFacr5rm9GYE/VtKxoeRnNVFzdMwyDcqYyBn9S5qDJ9aPV5qJMQsGfFvvxsT4uyuymAjKdDiGlAEW6hSj1O4ucWfvquoO1erUmYYSh/6oPjlgKguAgYQvHvIsJqf4ntF6iFDGLDY0olBHeaHfq1aXNXunlTdysR7CNK3V6s0R/0XTf+Oul1m4uSnhaRCJEizmWc+3I1cPddQYiYjMA/aahao6CMEKSIYmeQ0QWA19nFBDudxaWl7zS+P+fg//0nPwzWQfdR61bkusmfxACuW68Sq7jvwcQTNbIz/5PKpmdPgAAAAEAAABlAKQAAwAAAAAAAgAgADAAdwAAAHMLlwAAAAAAAAAWABYAFgAWALgBkgJfAwQD7QTOBd8HFwe5CF0JbgopCx8L3wxoDTEOPg91EFoRFRHlEpATlhSYFWQWCRa6FzsXohhwGOIZxRqpG3McFhzaHbQeHh7sH4Ef1CCYISkhtyJdIvQjtiQsJQ8l6SboJ48njyhSKM4p6yqtLBAs9C2mLmIvVzB6MWAyAzKuMx4z3zSlNVI1zTY1NpA3MTeNOB84izldObA6KDqPOwg7YjvCPEI82T2oPoo/HD/NQIlBMkHRQjdCS0JfQm0AAQAAAAEAAIpVQ5FfDzz1AAsD6AAAAADYspkEAAAAANiymQT/2f8mBBsCzQACAAgAAgAAAAAAAHjaHY8DrJ1BEIW/ma2tZ9u+vrVtN6rNmFVYhXVj1bYR1bZt22/yLwfnZL/lF5UA0gssRt+Rpd9tn6bStSRDH5Gm80lzzSxvQ5rsJVGLCLt+Vl9HujtFlsuy+DeVOo8MF2f3d/ONxaddidENtNQu+NxWqlxL83Yi1WoRbUqGbCJftpGpdSy+RJ68Iih3qadtKZdhxMia/1+0rsWF5LppxOhQqz0lU77/vymHzXPC8qv4ZSLNtaXXi9EztluSJa8sv0iW96fxxt+Oco9xN1n6DL9rY7UGRIwtWVcTr2OIcTXoq3OMJ0Cc1qK+HCTbuJJkN8Xy0XsrS0ZRbnwV5ivTEcTJO0qs73FpxDhqWm0yaRolTXbRTJONZwmVOosEXWjxNBprH7sHUuRaevoOsox8PQhSDIyBas9RRF8AAAB42mNgZGBgOvtfjSGK+dT/m//dWKSBIqggFQCi5ga/AHjaY2Bi3MM4gYGVgYGpi2kPAwNDD4RmfMBgyMjEgAQaGBjeCzC8eQvjB6S5pjAwMii8/8+s8N+CIYrpLMMtBQaG/jhmoO6dTKuBShQYGAE9CRJGAHjaTMq1EQJAFATQZZahCTSiD9ogow1qIMLdNaQAEpwMb4AcJ1vmcDn5+gDw/R2w3CPQB5+VA1Y079kLz72y3aMfQRQZZZIZ5llkhXW2OOGMax542RljgLvzIXB3kT9XY5Ptu1s93fUON6ZnOiapuioqqaC8ssoorYhCuq3zT/6fHIFUoCuIBIxsQAxjMwEJJnQFIC8SACysbOwcnFzcPLx8/AKCQsIiomLiEpJS0jKyEHk5eQVFJWUVVTV1DU0tbR1dPX0DQyNjE1MzcwaKQDAQOyMLWJBlDAAln0ItAAAAeNqsVeWa48gOLYeaYRh8QZ6a9O2blD3MbMfJ8DR+n2vRbvq9vPsMfho5y//20fbISXP3ckNUpVJJR0dShZUhVqtJbIle/aSmF19xY/m9hG+6PG/TLcpXE640s59H1ahaX9drruexsqwi3ekrR0Vp6LNjmNItnyuGNoh/WeDa3Hv9eWc8itfjpfcTT3tunhAvLCQeP7Uu8V1Z3bWWioFRtsHzUA13xFfl/Cos4SwhgMgz4vGFJIWG5GxcVrdldTt1U2uty07bWs1qIdm01ueqIfipNTMAqkcLCdd1yA0dAr5lJ/W5ZjRw0UZRXwtJTgbB5ZMrabzO1ZYHfUQ55fBdXK03kdZiki642ZJNtMXp0+UERy6S2o7sc93wSNTuq8qAmga2OtTESocZV9a22FlHfK63fB4xJCAnovWfamqNxAM/Ta2YpJ0S5Kjpj0yoKA5b3g7ZY2Y/+eOlF+DQ0CPjlOJcZ7QxZEq5wiaTC5DbKLna1FlnEGLimOt8GbcUbh11adKUCfUnxqtx4rnasy3P5ylTVCoxb2Qdn6cNDIl4Mnop17HQoeUp2S1hN4WdzzNwM1tSQmBgHXF5OkopT4mnQZrPs+bVSlLUNjr2Mk9t6m98PmFeLSavlgdK14P+VKk/aQo1E60mxcxMxE4W8kxbmhStGxaT8jGFD3bOakIeC0kh5CHbMM+pDNvyNK5tr93BOa7gv9RYZNID/h60+0t1TAELpU5psBWxetx3HKes1SmjClWJVxKe0SHFPKFDHtfot5BShP9+dtZR0yoM87Q42Wjzl233Emg6jdxOtX0+YwpH5FnwLPKcKaoiz5uiJvKCKeoiL5qiIdI1xYjIf5liVOS/TTEm8v+GAnY+9LlVLj71uV0uPvP5P0bxVPsvYPwvMP4HvgkYRXrAKPISMIrUwCjyMjCKbAKjyDlgFPk/YBQ5D4wijaGHZav5BmFnU4o0tpGUA5KN9Ftg2G+zj0m6Yoh6dEwldHZXyzP2mxZoJZ+v7pTHOctXWkXdORMnV22Z4LWSmWOPrxu6VeK9ATsnPhwEE4bgR+vV2e+U/HQe67vFdecMMrqJ/Kl3DF5WUXbX51smOPfQ59u/Z8pOtA7zOyiJOtukgHqstHT2izzv6Z7OKFlD/uxgom87zpnTiH/XABUGBH+lCY9F7c080EQPc/i6t3tMwcAH13QoVsSpzPvTxeTbClXJ/bYyV71oQ3kDRyPKdWmtu5g+VPMAWgIbg8e+EqUbmqtRtrGQYJO5WKfyBh28k2lC6DndRQ01InSRF0QZJaWjgmiJonGSQnIdDVU/5BUeJaNmCQKfC4NXbjcWSn5fOCBo6nNDDvRDUPNA1MhVhzjr6p4Ek2o9FH2ZwJBRtZIE9FB7LjTbSjjbpbzRxO7F3m/fQaGO6uBhZbS08aMhgmi7NKl8PR9McbuUj42mQFjr4mF+aIMicE5jAJ/sqBf2qp/utz7S5pnhu+0jnYaG77VzBJZmAdrDNihLwAFMo50OA7s7LajR6oG+O3TXwaOBN/wvtGLvn+o+gZ/dBSyNJ2RPvT07xBgLGdv5dyV/Tw8J0Hf3p9xDymcGw9lXMoenAr6JWXx+jP6FKZRz+hTfwvql4TsQr4S1GLxSNweKX3usB+QIAiCAojHukWI6F4jttc1Z28caXHD7j4qvq/6Y/mb/hdvR/FNGxNb3jCKqOAQxsQ8PQFxxCBI0H4okDUjRgDQNyNC8KLI0IEcD8jSgQPOmKNKAEg0o04AKzaeiSgNqNKBOAxo0r4omDWjRgDYNMMS8DU9zh8F8VHVdPal6nBmGZx36Yt6F9YDBrYfIrUfITcdi3ofphMFNp8hNZ8hN52I+hOmCwU2XyE1XyE3X4lyeHAU/T6/X5oVhHl/Fd8E35WYPRXZNZnjaY/DewXAiKGIjI2Nf5AbGnRwMHAzJBRsZ2Jw260szMWiBWFuVOPg4mDggbB02CTYwm8NpN8cB5gMMTAycQB6X024GByAE85gZXDaqMHYERmxw6IjYyJzislENxNvF0cDAyOLQkRwSAVISCQRbVTgEOJh4tHYw/m/dwNK7kQmokzXFBQAGeSdoAAAAeNpjwAUigFCFQYXpAAMD00HG9f+//tdgEgWyD/x/BeTvhvIR6lYD5bYx7gSK24HVHfz/CsjfBeQbg/gADBQbd3jaTMy1gYJhEITh99Nz98sgJkEqoIM/JsEqIccLQAqgGNpAO0AH2ehZG+DbPGM4VgKy4Z5EtkRKsiNFRfa80ZADT/TleDV/MjmG8jP/Ziq/XuW/HfIdxt8BYzOXDZ+2JVse7Vh2FO1E9qTtWg78u3c5Xs2fbN1l5GcKoSO/XuW/7fO3rVHVduswEJxnf8W+XXIUuMwMKXP71qM621gB28dS6O/vdl1mOhaMVzOLP/NiVrpuGuhp8oxajcb7WqvRbNAv9q6b0XriOEs4pnaWmOg8ufnqgPyO5lOb0ffEdng4m7cbvLO7aEPaDnbgkj95Fv7kZZepZRr0gU7eaxXhgmGLS+/yjBqmYV5dkV98aYL09NNkMjFD8dWzUyNRvzy7VdKHwr6YbGWpxHE0cSGlNfZcjrlDB8XQkh3yqTJMFG2kzldv6/l+mNiSSQxSCmdeVKOswyWFlGm9vUDLBWcVeaEixHRUcdM0jTg70ZIdWzewewMmTcTSn++rZMOHKA2h+FCv+6R0RfDGu8FBxvXlPwtXv+AnchSYoYRDFykCCE+R4JncLTTke4+aoqZswi8wvHIz+VtHIpgFJ3LGYmkrNohu9NzEq2PP78Q2LxyrXr8jEdQBYyj6ecEbgnewi0XBQXhtBEEDOGH+QS6qoHcpkVj9G832A+hSfe20h1swtuS11LpzzbABo/vVHfsX376D6ucTJvoZDA/z6sk9hTms9QuePWKnz0bsH7LsGc7pyDEiYTrNi7CmdbG8jsHCp+PJEJZgRc1XTMMgkm9DkIM/o1sXtC9oIsxS9cqopqJd84exRoI7Gp3UJ6u6jQW5l1Eo97TnhTMeYtCFGTdhdGtml8YlWIxlO7Fb7MkptlMdsRrxO1YVB3xAJPYgXyG4Lp9HolMrEAQbjT447nEdy6JfuI/mP8d8UxYAAHjabMHVAYFhAADA81tFt0/Xm+5ujyYxOAu4EwHfj+CfN2IicQlJKWkZWTl5BUUlZRVVQU1dQ1NLW0dXT9/A0MjYxNTM3MLSytrG1s7ewdHJ2cXVzd3D0+tHEFwbQAgAAQC7vLu7K7YwBQUtY5Lo6Eajp29gaGRsYhq1mbmFpZW1ja2dvUOUjk7OUbm4url7eHp5+/j6+UukMrmirXkaki2IoWhVR8v5nn/bnkbVuW1r9S96wTXOYWMFh4cXh+SOlyUn30YPnD7zUiie/EPyDuQL0pKzn6aHoq7QuwH03gPhRWM4FraapL5T6WLgTIcyvNkEcsnBDcRQWzPnTcNpEWZXY7IAq0uQnZ3amZr2bs8R8QoNfGRjXNnYldJ+65K61CmnfugRtokj6iNHnsbJ7V6fOX1ze3sd9U3UtzsSeGKpAAEAAf//AA8=",
"title": "$:/plugins/tiddlywiki/katex/fonts/KaTeX_Math-Italic.woff",
"type": "application/font-woff"
},
"$:/plugins/tiddlywiki/katex/fonts/KaTeX_SansSerif-Bold.woff": {
"text": "d09GRgABAAAAAEhUAA4AAAAAg5gAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAA8mAAAAFYAAABgRuBhfmNtYXAAADzwAAABTAAAAiJym1SAY3Z0IAAAREgAAAAuAAAAOgMBEApmcGdtAAA+PAAABYsAAAuX2BTb8Gdhc3AAAEhMAAAACAAAAAgAAAAQZ2x5ZgAAAUQAADikAABnzq1rTE5oZWFkAAA7CAAAADYAAAA2FIl05WhoZWEAADx4AAAAHwAAACQHTwOkaG10eAAAO0AAAAE2AAAB+BguHJRsb2NhAAA6CAAAAP4AAAD+4cDIZm1heHAAADnoAAAAIAAAACABigw/bmFtZQAARHgAAALAAAAG/O5MD5Vwb3N0AABHOAAAARMAAAF9LbDAfnByZXAAAEPIAAAAfgAAAIqSjPzKeNqUVwV421gSnpn39CSDbMmSJdsxO7a3dcCxHXspXbuUpM1tupjm0sWU26XSMTPfLeMHx8zMzMzw0R4zfXTU9J5kN83ybhsYzfzy++Z/M/NPgKABAF+lODBQQfuQ4AhUrzXNplltmqXG7bsbDYqf/FMD3wcE1wPI8IfBhDLs+HDBJUa4bft7Szt2dh2QsSWOiPp2IGKLwFiEzQ2tCURXAyabW+xGAHJpOwYmGI4i4jXLcUkVolipyv+TrU67ydoN13EdWxWqKElvVTr/rVBYYZELI4ypQmG9Or+cWwqRiCkjtbhAUujDqlhpqgqiwv/wtZjN6OTPiZSYuFRYnFCzajVhARCU8eP4RplNAibg+m5sopBPJjRJAsGoTUgkMwvJzGyOSIT7FCSCJYYAOs0N9bO2vBgefWDood4ozS0udgOJxKZEoidEqma1m+1m03HjfmpFP99Oq1Stdh4pUGEcez3GpUHpHKOYFY2Kvzyck94jkLMXdM5GEsRobJRQvPChLgCCqVMXsAXJwH44Cq/phjsV4soSI0Aa3GpFE8QjAWLE2bXRIJEeIgTCa1RUFH172CCAGMiUHxUYXQUudqsIR244fGD3NYsLl1w0Nzu9pTs12RwfGS5mM4m4ZYYDsB/3m8KuuUW/CNp++j4NzQto8rTZaUumGk5c1oZQVbv5UIfr2WpJ8hhfY4vSmo/1HThZKsp37Ganc7/lFrWYwufnC0NiaZcdv/FGafynXGbBlJUoqhZXZmfz6xXdkUDVksAdylB+1y7bxvul8axnFQYxLSaRM94T1mdmEauzM/bnkqZ6IrkhGiUMZTNBhltnWN963vMVNxlTjyd6kSgduUWNSWT/gQUzaV0CkfWtQdD/GB9JyJC9knArAIOJU1/F39NfYStcDAsw1T03ioAL0yXgnC6ZbI1wxtk2IOBA/EbgTH5dDwgM2VUA4MJcd0NjvFZKKMKtWRVJk89pc1LyGo97jejaar8oq8VKqRr3PD6xcdvntTpZ8nq35d+EF2s2zZZHbtyWdsNqT7aqv9t+VTO7LhtlSmlc2Xx+DAOaxkR4rE6CKB/JJbbcbaSUqG2RurTJwBgyTQm2N4eRUNVNK8JxoVLBfPTohcuTOT0YrFQ1DJRDilJvaMFyAPGuoDCcTbs/lWGBrIYxO2iMhDjfRyIwbhDet0E381krsvJmuzOeAUV2wFfZlyVnQUhDHXowD1u6GxVEYIRsGQhAECyDAC0gtN0Q4DywAIEAX1KDxAN8PpvZvm3zpt4FneZZlUw9W6+UNxVCIlFDu1SUBDYkE5IeR6bf8dKvlIpCxK1+DcJqxYIqyn2wT6hfplZlwJz/Jr75Ax++jwzlQ7/k8XhALRbVQDzOx2MJQZQT4ZiZDPKTv1RCuOs+jPFNta15PTnS/fAvwxtVRVE3hhUa/trXP2rg1618McONq640eLaYP3lz0gwFOH1XDbuxqC5ONhXtaxKVGX3OznHHyGC4XjC7PbNQj03UgcH4qT8ypG/CNCzCAXh319i3VLF0TSAfrxKtTo2kipzDkkCA+HYFEWmJIZHjj811DwS4awBJHzAmAY50Sg/SVWuQXM6ZjLSkC4EvSwgRLqy+jjS/KKesOzuDsGd5ZnF2sdUYWV8qwDROa3KgYJ9rVZWcuq4s0gmfb8f1CZcz178kNy4GNV6V7uJAijobqONZbQko+rcSd6RXXowEsKpQpa//ARKGS7MHI7mnxUrDo4G9o4I0rFcjksrdIcSslTt3JBQWofNaCWNmWjEWrpg/bIrJ6LBqBLjILc8aWuasmEB13LHiUfE0lTM3bmiBUjMc30DfXN6WzHfndWV0bFTbeXtM6EFFaIVX7wtjSLGVwCHBDApWSVvPpqes1HQj6ihBQfqOJ112JEALrWq7YyAThUIunx7T2MoLgoy7zey4QhEW7wHCDvw4/NLXxF1d3VNDTmDjGTE0wddC8JQN1iqhAZ7krfU/yOVr4Iek/jHhPrL+XfR4FQ0Q5k+peL3s3SEwuxFAwCMAcGA2RsKpKbZa8vYI7+78swZ9FTdcB69XZwP3FjWteG8Acbikhq5ytGeF/spV9YV/nbh54u/PVzHAlMjxL0xdvfKluyMAKOeEwF3yrKw8y3ccAcQD6+ryLC+Z5mBPidJqxbRbVd/cxIZLp08rZUKM9EtSkUjqEp3+TJp/3l9fqCJxToq5743zf59/wwGTqQAIm7CMv5RnzsFEd0wgwnTBbzIZY+DVPUdiSMsAwJaAAZtPD9XSQ0V/wWj5syUuM257aufXflGo3nwRpYqsbltG7T75nVZ7UnLjlbs/s/ql3pSt4VYltPKTopOo6rqdKJuhdDmBR/BYopwOmeWRVEXTq6ag1MPEkFSm06etTNpWzjsXLaeoYyWd04exrOfSFdSL6/AYipxOWT0grYcDqFpGP7fP/ytZig5ACerd0TACZpAzSQUCxwVCUJBxYNcAIl+SLj4/bJftSsyjotPqFPwb6Y/XeGGwDXjZe5Xn7RRTBRwmFgwa2RDhsNTym2+mwIYA3Xxz4T8p47WvExERzIrXvbYvw/I5k5FPGPY65tTt8Eu4+TE7BoAWgSjy4I5Z43+Qy1zbMZ0n1DGveLh9DyEMH8cJNMGERDcuHQgL/nYuQzjf3kjCkWz5qtTXIf+gcIofuyKrmqaaueKYkvptUSXk4dRQmCOp4DEA4DNgwDkfCTNigDgQgjAhot/9EZDpnXk0vVUwKA0D9Ekml/+OzGzQPH6mv2Ccs17LZIRefjdz9kLGEBXW6wn060H1dx0Lct20zsg70x8BhAAHEEIBsNBi/h75ULHdZ7lIuEDBVCyJyso7ePDfSVMwwW7hbspUmPG/m7gJBLVTf8T/0DcgCWfDS/opOf484760AWMed+hgX9jWRt3VaNKPNmTUAgbI8KozIO/Sk55FDGgZGCJbGLzH0JezKMLYSHooEoYkJhVfxrJM9vCqTLX6stR2vd2iJL2+FsWdgZ61Oy1/8UBtw87JTBB5qfOyl3ZKHBMFd+cxu0QaFo0QJ6SIbSUTlh2RpkLfKE/t3jtjTChP23zw4OanKRPGoZc0hkeOpFEru9P5ve5m7fKebVl273Jts7uneBkgzAHiz+ibUIaXdiNRRGIImEXO2KAcUoACQXqXgcjbDBjjTwbOI9zX/Qcj3DMIUyJkkJCOrCLWBiVRFkIhn0pasYiuqVDGsirJsmRF+a1/uv1Ns5klWQWFimz8dqc52SqJE06MXMVZbkQDXB0RdGkooA6tfNQIqNYSpakecwohQj4RQUyKlR+t/Ehohl4IqhEnZmr//GcIAGEMAP8qc5+CZ37k7HaNcYaDpDOA/rXfCAC05CcOjPHFtXk/FOSugvzUh1bjBIAEy2eiMvePnHNoxC4qIlnDlqwC9XRprO7w/prjqP3iaDZ8x+qmKYHVSZ8gvKRdC4peUgkqjsbzXJTOH+vWx7pzDCeSvfX8hhemN4qcGPy5/ZlPWRryezen/9/eW8C3dWSLw3POwCVJVyxLMoglS0bZMsWgQJ2kTtqmSZuk3CTbLeN2mZmZeR8tY5t0mRl+j5YeM3f3LRQetOo3c8lynYXvz1QnqnXmyJ45THMzCH+2sAesi2ODBq/ryM29g9lo7rZz962OLFTYKQYq+R4ecbJvkRoq6L+1b7KtaCa160FJs0XyF/e0p1NUBHajJVcFAXErEUz+uZkwLv/c3EdBzpXLo2nqaN6v/kgm+EiW+kRv/IKPcEI5vTL4pLJcE2dHDbjBKeVHvd/AqaO4ZrVUH60lJTfym2xRdjtIVF1fXOpPmdoqopykHWkC1R9YzVZSYkfJCuVzYB289ZqbToQe9/TH3XgkDTYwzuz1Y3P1gdpkUzAGSzBUxXyjAKFmuFYV3Dx4ySUnV3jjKbfduWAzejHVzFnaWV3eoSOI/QKE1iUEyYh8EXiGTJEFcqRrZoAwG4CgX9cRHBkCAUZOEUrDGwQgIi3aoxdstRADVdeZnp5emJ6vP6XWKWlSJqvykMrZ+lKpPG7Jq/HEpdhJeWy3XYmU3lmSpt6pJ4WmZVCkKjnkCVZvqBLPnXdyJXl/bAmT0VA0Ye7WhcYgV0n9ENb2Rza+WE7MzYs4d2o983PqtVrj8DuWhsCpoU39zu8mEu9+Z+4FL8kBAVKV0vdjee4F8umubVKnWqGJCnDmm6txXQKY0FSyzIXLbqGhOEk8LxbeLoe/+kP2FknsNn8Rvi+G/sdAGbkoIXLDC9VyrdJZrBpStBK1ekxKTyFQaIfYM360k/RCBfVOZaFeEirxbkozPSalxiGqfDl1EkVaZK/sLD18Yne9kBaGiO6aWCppVrEzYkQhpyfhVFJTyszzg/IFz9nDKHSW7rxvZzVC50p2dWLlvCPpkcWYRggG2t0kK+Tvu5EYoMrmcbDPHxQIouMipUIz5tAkqqjj5ntpomha7cfLnA0vS3zaDxNKGKfsZIDfj+V74XyAxeUCJ1cG2MobFwkQN6oOsAjhR/2fw4lSbsfbzHcmWoXhbCYaIU1oKm/DSxPoWNx5Kc+S2CqXLDk5v5ZyOeCxSFCHB25hZM6tDEBmz5XtpCj8LaUULbqS1xg3RsqLezStdO7BiUreNgeK59d5KmTlcnpkqRBJMpGev/aJ56+P/mcMIH+ZAB4/9zrLWBivHT9/Y6w0NFqG3wIePn96V6UL0cy13alx4tjd+yVn7iEtcm7XKiYQUMBmyS9GABzDF96gHt02YbYPO94NIxkeiJqkhU2mwqygsDY3Xy55mu55n7Tvb4QmqLQG3w818qBdczwOLx7eoxWEK4FsyjzR/CqPC6TG5/RU1YoWY9YL//1UEhwHsqpUG5AleD4bMf+19/v1OKGelH2LFMgU2UU+dtoCHnheJQ6cUX7ST0FTGwIY2xqybcfK+Fj9oVvex5JrBJgXwxEvhCuRIIILsADYUf8HMTeWi7enlxamd7V3jbeq5bRyDSk3UfNVV1GpX2nnpAuvyhKDKytuEYm2ZUgn4U5hbZitPPbkuPXe3fEwcqRj2crfXt45fL2gMNGBfK6ejyQj2YmOKdanB1Bj1fyiqQHqdh7FVY+B1EeO1U0GCBAbnjj3r6vzz39GAxHsfRujI8hFdWKpWYjM9C6aWNuXSqRHU/vy+ULY7NPtcdIlH+xGVoGzIaA8CRjotiquUeT0JGHMIz5B3Er77UiZACkLQUwYICEBhCsDXBUYFQhxfPHJTSQAPOr9FHTpbmTG62O1old4bycUtT0J9cMjRdr5+ZILrjn571xnjtf88mXGq9/V7lh+zNcz7JY9l++ZsuOCly3KuFYZWxlJCgpsdO94uTRr6gAm0FhmMaSFw+VUaBYwhK+b7z00t/zXR2eGzIim77KoVhgfXm9oS9HY/rHKhpGx2VErNjl04U2ZLBX5J6ZDc+ME3ewKvknCZJjc1o2EGaEEcrEoRapUdiTovRCA6AYDSvHSLXlmkgAhFMjVW9a2g918sxuKRCLDkfxCLe7UgYWsozjxiUo+6aOytL+m7LnCzcoo07ambLCGTOzsRCky2vvdrfkbqqzZO1WNvKubcE9VS6cijGEJqOODLVfvGKOP3TwgQeyLnUcc+ZDod5wdw6XAgIsBhKA8b//69qUgqpZh9cDAHkWF7KOp8ItS8S3keNXZ8vItRPn6WZJ0JCvkCpqDN5AQyZHJ7hghDAAJyL1Rihc5HTQOFOnBcJiQcC6cS8UlbmhGKGOiLG6x6GQ43M0Li26544riMIeDcNAyrcLDp4rxsHp3QBY6YE9o2UChy+pN+O9DQ3aaul0HZycEvoFfIA2yTG7sWgWgsDCBnPmeohIkJZTJP/2xNmP8OOE8wiWJfzVajEt/Yiy0WvWSKl754bIirRe7ePZRSwqn0VDzEpazNQihnSwemgzrnGEhv//wY2+ePRRHEJF6LcIAQEvtj9+0vWc4Wcl04gyPUT1S33v4QGN1v1UtmQAcoNHOHb4w0XvZWXuIK4/cj+/Az5NpsldGz4cGQaPjwAWeSwRyFFwemmg61U4SnaDQUVm6/tDEcN0pkLXVzkxztF4tjuQGknFdkGmYNp2YIgjf1JdruTxIpqaCi1jSLTzLEqcjkQkv15BguTDvhxe/89GP337pK9vWWmshbUP2sz+szTyrIMxESU//1eLinftXIsc1fe+JIWaKgYGMBmDUw/GCZhXapnX6o1+4Yh2MwdbFizcvhT7+D1ctnA84GMLez563d3eOG4zruxIa3I/JgVnzPHM9ruvUKF9ye8bpMjbly8fwDKmQWbJ+ugGM+B46SRhBYHjCCaYpeKlFP9hWYDexMKYmOumFAlftFZfx8U1DXq8XVXgR1OxlZpGpdeoORJtpdyQQyuzlLGPS78XpbIenLRaN9h4soRkX4zVbGN9l1hUMUR/WGtaJE5rRxbsReZI9/DIj6QQo2tQ0nsS4QECuh0y8nSXfGRF6qHFF+qkFSOW+TCi5jAC+w6mf10iHPL4bp4DEBk4ngHEEYMw7+ogXKiib4yUTmhMtCJ8K2zBsH8MnSLpZJ2R2ut5pdkaGBrNkgGQ6uiqmuTmBamk4QVeQGchkoZxSrs4RCTrTXqXzMrxQ0CdIjCR9w9tLF1x1YDnypub4VYUP3art2zOzJzveSWWezpvNxcE0zi1o520Ay+Az4joAt44dWNkI08JzD0zNRRieB/AZqs228tlUbwSNRCU/t2gC/JAQcDTlBY6mNLrVvgCdUnIp87WgMJzPmrqSfb4p+15BMpO00WW2iqhVNOS0ZebnnGOqqBreffeZwtrbWsu7NmZyYIUop1wKzcDoTVeeuHl59zgVDJFZAAbEFw5IqX7swReOmFbM0LSVLqN609Ke/JOnpIrIKCByRq9h3Bxx9Fzx9U8lX1OkrLJkxVUEoEGWHHBRHQiOM5+JwYLtL/hZMiGDuWyGpEjiTh7wzM+FWWyTYbGZOa/VpHik2DlYjX8mCcPHznla9O3P0DfW9144+MQ4C9iC+d5nPnhsVxgUP3pJEJnnNibuuJ2APAXBw3gXWSG3dKODKaQ4A5wlDQRCg6CZEU6YlDpKvTRApU9w3M/7tyHYAYJ7sgQny4tTE2OlbCZukxW+olKjalsxsT2zpey0NXEtiZK07bVS2ZHRLfkspPh9cd3iEBeO1f6LP0/oIknhA9w148BDhthx8NxsTnvu8/yE9nnPfTIFERcFv/KET43rTvo6NMzjSongN9W77IB8wdPEo8+spM8YOdG1y4NImA4IeaDokyfrpYdXcyBEtRpYeMOfdNm+Zm/4wy4xJdvZdCzCKRmDUaEKudvP+Yspg6THvQIIT8jvFBVmZ1wqvHWTCrhMP7x5pmc/++wn97TxNdK3T5Od3dVmERmXp2QtEDKAJ4Acgd+q2Ew5C+yPo6ziUiJEVhyodyrlctOpbs1FXfeUFMLTUF9B59uy1jOJUoedgCnmBkwrn7j7tqsiQDkNUcZZtLp38aYTJ2+aymO1KgBp9uiNlFHkNzz+rvfCqbsndA7RUkwqqF0pPPXHT9VnZ0BMTFIOjPZ+ghSnPc59VurnBLmgG07rhAKZKCANYpUUAcIosKsRlJJycHm2FW4ruMsvo5NuVNNtN2Xw3W8q5TWSnHdRdRqvoFXcZN1lIomzbcUSGFFZ7TUq1Ai+6f2Vzzl8i8sT8VT5n1+2eviF/ncvftGLXuxxT0nmRYSQB+T54mT6nrg6XuBDLbkSVOWcd0Ep7u6FNop03wGi/iYvCja5bTtyC96vdSu075e/tUgOnRkUiMEvjbq/FBEu60/oHLgdwLNqR2E3bbtKrRDV0GqOTqmGFnh7ikW9PpNbqM84dn0uFpWRXI1NtxXRwDh16MTBCJgmtUKF3cNNpiT0bodOvX/r3a+tH2wIrs/toFZ8PpPkoAEXcU8qPiP33yHL3dDMeDGdsohG0D9FmIKybwBuf8p9bzvvVYPqzEpnucRktFFNas4GsaRp/ToayEVGOSInO/AHkCCNn4kvLgjd+i5OTjmRZlNpK7aaqsIBryodaIBls+WlCNLndLtg0UxUQzSgNjlx2aUeC1xzzqP681/0itL+OugUIgYI/qzVtd5LuW+x0vKEebLRDaUjSDBMcbN6GwvqOHCJLyIKZgcw12aHgSSilk7ykGWOtU5nznbQWExy5Z+TtqGM0Bc+l9ADMco+9wlmVNX4ebBvhzs/7v0roLtP+ni5zz3kpm5oz0Kjmg8RjTrylJb7jAN4vjOywaA/e1WDiUgo3upi+Itb4baC+/nrrrXpqVJhIN3mItUn+yrrb7vq64M2NTgW0wQVwVsVTpZS0T6VpnsPhGOacWo/7r0yqkfDB9e5p9bnOfodf/4Q6FE5lhjTQkfXTQDF8kbd0yuhxaK9+7+YpjTxhV4xqoutug7yy9rXe+8BkEsSN/0vn5zBR3r/Eej/pn3rkCVpmzIhwjaVMeyShvqkCbskoR5J7pmZWhhvM5HpI0Y8k2nHoltNmZtYTaC0Z1py6+G7x0Q6YvwV1/tOLM+/sTpg2Lr2hFtBxy3nRZoM9wrhJCCIR5k2poWMh3+Ocdxff03fCZGsPvLP+CeyppQgTXLc573veba3Wrct+vYm7jdZ/WUlFWdGq/WrlSonoioSCRrcRXXmqnJXbpnHtT5uz3QVxnBAiNf8ts2Mdu/e574rZ8N/xN6y+0jItFNjo53R9XidAVwMVyfhDS8Z6eydePD2mxY+8tmNtdZlJ2b3ykGMocWbeDU068aPBJ8l+ZchVXKoaxKgJAObE1MDhBFABqqv58eRLje3Lyn76jK2ONupSSnPuoz1o4W+MAJqLfTj/Zpi5OvfVrrrE9krjvhWHy4fWWwt77g4VxlOOJwDXvjkPUMMbrnFN0HV6AO62ZmemnJ49Hr8U8mjMtkgn+1G1oHxECCzAZwAyZAnKRJOGePXOpMM/padVB8vI4jpQLFLCpFydusvxZz4NTCzikyFrUhuAnkqQKYHnELgtdnqUuuQEDlPEApOnO0mSF43XQ1+lVxlqAblP2eYsdZxKj3ttpSf9jDLZNLzgZjAhQeSg9oGje/ZzTVLD4kM0+q6IzP3Vp9+9dgwD+1csW1cpDHDGArXNMOgOg3RtEimXBHqvfD9l2YT/BrOoxqCAWZSrwBKiXrotqPLz95b3XeBRY8D57YGFHRm8yGcWrjzBk+2Xi5la5wskiu7NgFG4oB8PIPQF7dygsDxar96uplub1vrz7kj853Z6VajXBrK3e5UmDZzFF/etLg/LOIazj75I15yqTIYKX5CS+VKsQ+mf6seuTYdZ2/QqC5iEwumRi8473IlkjPTCR1eUpkUB/btPaBNuLYkekO1fsekLqB3f4SLkOAAVGOveuULX+SJKLzzqjEN4JsAGgEyLe1IVcroHvLR02EguNkNQEooklt9a5HaCOL0NPOtyjaszCZWNmjX530sZ42wKwNsqroB/irxxkg5KMoe9X8QYU5VOgZkZrpWKY4k42QP7BGO31V5ufpSL37tazO0LjuhtSeQQfdY9Y/n1tA15TB1LYSb5kp7bOgiCxaXn7F04UwsiLUjpXM6166yx/G9lzz1zkb56MGEu8R1c3mjfM3FMTYa5xHLji9dySPXzO5IZjXNC74jleGNmRQMYvrJ+265Q4THLO6tGIsJQ/moBiEyKPsIGSO7u1ZLIJDBPhMXUzK11bb5sH6jduZxnSdOOZZ6rljYrHjJY8tMOHBKNFaWQKGANVWL3k2hAXXHJesl2kodGB4MTNzg8IFUi2pcKEeMH/bzoCzI8lXvp74MRSGKqjpYHI47/lZK0TulTjXJkdMENqPtGIIXbtPLNvu+/oLtLvi93Yg7XX2Vs0SUG2rNj7bdwwWxo/zrdh9m5/uAqZRfW/byCRU0gr5j9fY4AyecnNE5FwBQ7D1QF170HtX/6adsaep45if/qEc5qpAmkTr4lH80v/vpoRsJkDwB/II8VZXMnMlYffF8CKCfL87bgCWns6tOxJ7wdueMz6oT+D1misrtqElYVGPmnTmWCdHzLjIZXn0+hDJ8YpzGb7uFWdnX5Sx2y21O5J7mf/Kz8VAGBv4EU1zV2bTe13pfYQldTzDYAYua6k8MEEJV1nMu2XXPzjjSTW22OaO0P3j3IZvhu8w8iPzkvrWFtQWhaoZSjVDt1NcarNcUlTch2FdplaXFefeQASST8gH0rxOwcVSzkmJltxXSWXuvBuFdUyKUojuWRNLCdyfpTImmQmzqINU3Gkxi7lizQgab2Ssyx6PczLAanjGjWu9ve58bTnAUIqJ/EcIzDPY99FkryQF5QuCdLKlcclL/eO/7JTOxBoU3hBUyt/Wv9u6bEnfAobWwRFYSWyUEz0ha7SerXWNfJQuMBuyNIKATPftprwtQYbOf766fMzFx9aiqrc4nZt0OmG/p22q6dRjVyPRmkhPBpGv3Xas/wdS8tEvNsvxs/d4bb0a0GY/EUqZdsqywxuOrrXNGTWpporsWl02dk/+BEFtfD3N2np2Jh3REw2hEz9W49Xy7AIfgFa+hAm0NgGla7sjKqWWbGoCWpXHxqpdg76NM3TgBztid6VI+FkK0Iyu5OzTGLIsSV3rwy5IibbLYNSda5eIg/zUl/p56NZtpU6c960ZWbpo3p9oOLhm8nq2NUoQ0785SR70O2HRtVcvErFuqAJBLXy9Cea0zR6PMePIzwIjNjMd0jeKznoWI74gKABSJ0HuXOQLyVuntwjYQgCWECN/9qac/LSkAdc3gT3nqZz/DnFOtEILXOpnA0W4oYSKBiSJSDCqRDLxOmHM4eqlfndpcsP0Fl/U2Jc36UNYOkQ7tOBOGTNrbkjKsvvR7ZhgqrjC47/p6pTL9hbf0Hk4ZYQExA0SS/uhertsICL3fgcSAHqYsKZyc4YEH3QX80AdwHwUtNZxXpgtsnSYKAntpBjwhVJ2KowNNlgV74GfEmfcWsIo/JkOqgpwFdfeMOPNXcNJpjh31joX0/Fqx5jqRoLleLsf8b11ll9nPdez4FUYsptdGRmp6LGZcccxN6vBe5GrAlT/0Vff/Kn+h7xNxR6rkLjS5i0G1Cw0ocXZBkWzvPRdrCyVnF7Nb8yzPs8/E1LcDOfYxv653/HJvO0WWwy+WNSdxeuhiEefehugSqhjnRszCJ5ysv306AUD6522JM0AcVibRf+t6n9N767scMz67ydWklN16qV5X3TblWG+8keJcB+ExgmrlCkCrpf6oGXmsiRcAAjxDZ7oGUK1Uqm68RR55NVYf+adfNlOc2jZTnGP3fWlBjRTPf+k+ntvljhTnc+5IMZIROaHyQ/gTMk3WyJu7EQsIzANnFUCuAtqk6p8ICUDG8da+zi9jeCndUj4onw1NIijcYAjrF2HF+rFkxBaR4r82s1avz0+qybagTymceYFZVQPqv8EzgZ2O8NitTMaM1p5bQc1LNWFnvn5kzaImNYAix/NPfDYBKr0eyyYzYuCi1mJ9fHls93WRSxrt8C0JrAjoTNRXLdQPm5QjBYTa8403vN7JqvVkPFYYa46f09oRSYvv7mhmimjs0M2pOFXZ59wjD6DlyEuDfMKtuCRNoJgCThuDyLiBSGRrKr8dDBJ83P3IIEHcHHlzyE0uBYH+cJU/0rUFB8Ch9eYQloNib0WJ9aN4w7z16shQNmOHNEbykHfHq+pnKb2p71LJat8NKw12rs1pCT457hSoxltO8GSsHH5P7wsj9ZVUNJxYLoyZrRzfUmN7wpNF40c/vXNkdOTCQ4V6zvGpUg6/IeVwgox2ayYAsZ2A1p/Jc4TEl4/W4vguptynf5Erk3FKgcKJ2SPUvSA003aLnGk3vqv+Lma0/TMtTnWNCh4dmWllywmLxoZjCXNjZwhCCDrENy659x//Mg7JBBeiWVN3SPIJOzPaGF7dFdEndUCTHmNcLxGCzp7/U/K6JLXnfa6uJDIAGAYOow1kvAQOq7dBqeK0+4G8z8VNxVIXWfsZPfJoFEo9RhMXzcGwt2LE+jFUPl6uLdTdwZyq6JtUzKj/b7OZdael0PHa2yk4tbJ+fHI2N3XrOYsmijg75lfaxydY7t3l9lhtuDE5YHPRmJnf8dQr5i+vaE+8U49uKUdp+XfvXK3dnxmIZtJ7CJLhRx6Av4Q/JkXSUtMXJeBM2ndOADmo/Hg738uVVrUz7V002fQ2Lru3clsWFNzNp2aGfxBr6e/O8Re/OBsfbF24V/AQggbRCy552nNgN69NDA3kzI/9w9/akPlsTSCt7IwkOxzRpIcp16pPOt0eT6SXGQEyRAg8Db9AFshHu/E4UBhyxi04mQXBmTchNOQkqAgAqs2sBg8YOOcQIiJ8luYlTC4Kwk/2oQcoE78AxVYoMaE43req4H6HMONhqKzXqnRqldaupFTNQemenRF8FU7NeVOCDvVqdZ9OAT37h9VlNQKjSUsMvRR0YbNmWXlonZpDzXELYbhsxmJmcUhlSeNjCR2MBrwrFcexpezNBoBB+XSbCtSHRsTqiutW3/c+Lw18/wcIJbFH2piG75Fl557jhd3z5ZpQTXyxlEfkHdApUzKBlONJIgS5FFxiUqpfSnQ9u0E0zakY5NiBo0cObuzZtboi+6FysiNRNFRDZlaey48r3RnRuh+ZOL5BrbgDk8EUjHspS76knRnxckki0r6LpfJLuaLfOzYXmt2hUSYEGtTMrA52Z69c72BNXHqNvnEgLG48HJ9+3O5Sozwswklt9HcuzmQna+nW2Hzj2HBahBa0oxfyARh7b0HkgLJKUWhITaPWPd4qZ0JsNIwA+uRUPLNzt4bD0YVKfUfIyg2Vi/pYtjUnXdbMXO/bw0UjG8uFQjkdwIlXOoTAQ9ImzZDD3ej0KDolTdIY6itQpd1WKqKnYUF1Si3YmwtBaeqezmJzoehWP4PgIhgxV/TwDcXZOjZfXzuxvpc7/nZinDnJtQiHMiODRa7S6z7foToazz9/fs1425vdUnZUf8s7eELjidw4f9bTt3Zq4uJFzuwzIeT38B6SI+NyBiScjCGB8XKeumH6kD+ydzx4XIJrP6mvif7q2R+mcHz7wxSceYJWozBEciQ97DQ+hnkynXQLwoog7qD9DN3eCzyNJmpAkbLkTUmGYNm6ng9vBKf39QjvAQ0E6lxmvENGyDRDXNaiKPT+zW/2PM4v5+Mjn3hkhvyjpECCzJEnn7E5AgHv6Lm+8XlK3Xm9y1xlyfuzoxQQKN66idmPtH3d7l+Xg3uthdFGwRWNzQExfyKZpr2KeF9uH9Rb3FDtqkd1bZE/vpmvW9yNz6Z1zjkAQOJ5+1cjcaB4WrkUvir/+t889FAqqS997UERd8sw8dSRZ99vPL+gaXQnOp27NfnyE6kTS3LWIJoDip12VSVhGgnmOlWnziVSUObob+s5xW1/wYHZm7CYU2+a6Cwf9jqYWqlUdu81C/Erupiu0dWSygbBT6K6kbWKuQh2V0VGKGmolBzlqFYcxdkRKscwFNYW54VJ337+MR0zcQYWHD0i0nx5x6Nbme9+/5JVioJOkfKwxt4CNzzRQgJkjhDyjf92He657fJ7tg53hxA6KW39XplNx89Z5YRRstIeHU6ZAmkwPMBBkVUDVAZIMHQzjO1wt3rQtaqLtcXaQrno+jgV0Pgmyt/e2czTLzBZHne+suPmm7J0x7X71kVgoQDAaE0NpugvgfB0c8wJgJ994YZ+ZL6rvf3N3vHf/g4+UsoNB0ZsOwDeFLXUxH3Wt+HwXcmnx3QjpqYEba6VoJtUigeyF+3r4bbPshJTxEs4OfNRBcVLPai6ytZcGi25quufPOVPgP06Nr7jn3cgMr1rci41wn65kYfT3hEzQ1YzlBha/OV2Xln3gpydETJGtMhI/yxb9FGzbIO5REzjxALLnWVTlsVVrfrsBHU7S/4lTYj/7PpbYuPGV9+AZqqaX7PNUDQlZ1OjIeveJzxZh4G/vPe+Sn0sFZke3tgxb6dS9ryb162iJaW3SCbIH3aTyTByqZUolLkVqqTFvP76sA6cSzJTdHyNilk0tU+lR3FQfBpQjTYGalkHPzc7K+aIwiSbiAzOjtkt/aJ1RDjuIqmIMFsuARmtlybKE/lsJh2zTY0UoWi4Gd92VQhulKglWtJSGS8IqsHuc9qbYj82zlPCOOdcNOn+evONgyvVUTFYmc5latbYiRO+WbpIsl8MixYsLD3nqyMcnjNwP881qgfPOejkUqvwn5K+NTKrnqcS05GTqUlkvOCMqAvg3JfroFKgjhfHA3U5jFyfaTQWaxVNZIOsUGU2weBL/5U497uECv+cLGcCy9W70GK7p82YPt3iQWqj5Fif2zMxes2/HEkmJydqYXsode8PYjBphLxSVe8Pe9/1ZfjUY7WxxBSshV6wtz7a+r14NOzaWjglz1Uhr+jayYQkOEdSyfaVEZMECSVInfGKvuhk4qxrMeqr+oC/5ipE3/r2pSB6kY5qITmmSmX9Wi/VwqWZcs1bdHyOp0edpF5LdGsQosI0zLkDHHxL7+v00KA5Ms5Bu0YAXRzlN90Q2H0nz3up1OGdZLm7mASELDB5eMKQICO3buo0B0L8VA/I6nJnZmTIDpOdsFM17Oadhp3q123ytT/td4cKhrW+wmNQffvjnTV6hE/vro0enbHmZnR0SgCRkfnWcL4oSjyjx7SIERJ7b083LzvffRaOYMWdF44NhiAmff2s/CjoGaq5NQErl7LTeZNy4MAo5xqbOPSMNB/VuXr8jShXCAGSlOe+Ew+SHeTkmWQIASHIENXlaqahKoBRcFjEubjMnfZTN5DVOgVQKBzIyb7V490UEPW8i+JINhOLmDrZATt09/p1x+sZdPq6W1vSOtX+kktqIRlBRSRHH3blkoBaSIvGQSSx2VAKML2gx2L6goy/QnZt2GS6YVBqSAGamdIY3JHK2jwk6Oys5+fbbTe7u/aZQ9EQzWqA1RHn0mp1oTPyzNsIkFlZK3kIvkna5A3dUKsQphQZEIqe1Uww8EJzchlw9CMwFcRm3CUOEqgQgnk3pT7eMrl0+3L/Sqx/xesIN6qDubitC9KGKSVgakBF2QYlY/0k9BzHmpqt3Br7wBtzKdDnTq6tm0yRbmLc8f5Mb6a02SgqJVFWxLMnY/GsbSxjczL5wbd7Adpvf9gIYWTJfOmLvFqJCuzjHAkQVRT7I0mvJtl3Jqv6h770hDxTEJRePRiS2z1Y8NZ/rsXSRsWvRvsTWv4QXdvLfQP7WJ+guZBg1TpLheC41SxwM8NHo9GwwJWRESvDVtdYxgqHKtUs3KWFQfUTofc35edfG0px5KZA41tXn3D6jKnG6B2PP+p1h35XnmWVXN41ZSQTR07QzVGC9uLWuNsHE7zdB29C/JjbbTuukuXGwtq833bs7zo6/Dx71zExt0mL2TlXcfBTCbiemimxskvG2GJgkAEdHmB6Row2Rcqk1ydpocUGjXV9lVntHMsYbKNWR3OAVeGbZlT0niCSTscwdPX1i2Z44klXCLffKuCFPKEDipHeA6V/MfISpPfuhZe9mKU4uPSBP5H06coKiDE/OWCwTfKEKWwnjgPcTEiC9wFhDHnDpTY5zURa5iNOLqJmbSLUIYZW8hpJdb/7qARBtR37BitTTlkE/mS4NqkbdnUM0TDDWk3XTFnSsQEOnSd3iBihUyP5MFqjuf2gmfOTMfaqRuNCpJkMpcnFPZSGoylr1dIoAI1zZNeeArjkCkaFLcACe65wijJhhbj2CZhuX0O5qrI9MuNI/hzZ3zWa+RgyCKgR98MqcOb0SE6dXgGVxewDytlEQsgcmV0cbaq7daCEXGgiyDylgvs3EdXbvs5jMqWgrkTAVxMHj0DyvKlobh83QYsM1+opwzIuvzxGm02esqKtKgCbC1MpBDUpBHH2ox6d2Wsx+3KOCGEzNRwqD373B3rYAEAtNnDb1XUBoc7768LrJY/Il0/K0zbIMfeIqf6+iN9U9Bmf8K7Pnexf2g51PP2Z2f11pzMHfr23f9IdU/5dr81FCP1mOCNiVI9SOMA1LSTgbz8Wzidz/MMf4jmO9rnwRBTmkGFEBCBoZjalYe+PARO5ioaoV1MGJq52Zyi/Kqv5x0iFjHVHCQPCjgqO1BnScG6gXoYS5ly4rJBKpVGuqNDNUeDg3okjqZ58uqrqMgy+KGCtHYmMVAcjGQbCedITih3jA+nMoAuCY7qYO4/qg8mmKQAZ02hkYpdupJNNQydEqgoehm/hPSRFWmTuTMytmQS6pUodzvCJ8iJ9722QQzOt5Ybf75Qyk3StZ6nmVTwygY3175+X1U1W3p5OM7BkQS6qGQxRfNuy2dSkiAmkTNdio1PREJ7GsA1RnklogFwYbIrZY+m0cDxFIi10jSNwFRF+AnPwYSd/HyILzq63jWKG8SzzmbYa+qnUa4fc/QexvS8Daa/YKcHfKS7QMGvnG4f00uxI4+NDhZHhwWIZ3zwIkcTYqi1fx3PtqYidGbAJkB9iFlRFYYBMeR5JScEdCACKiH1vbfAeRzRAUutUpBzVdBUzYLaKRaXyfVEDeBuF0qBFkYlDCBRgD54xGAV8IQBwhpwbT0QKBMhLHunC6iP/SOIk4YzG+2lPY0ZVLQK2KG45N0xrL7mc01KZilUKdHaG0bvFK5yZWfpqp+LF/DqJ1M04OaevTjLk1Umifp3EL530X90J3qnSyf+v2gl8eFuND9wan9xJlcy4G1BHjAbT/zlwnmjlOv0AdPx0vuVPE22vvTl0Vm2yOa9Cd/Ojy20hQwguhkZ4QeeAHL7+6PJaMW8Bi9OYvkNV38j/Yt3yG+E+uZdXkSKRCZHlTA8gIKGSRpRet75e3OkODEjfp65LzWQy7b7n123OXNyYynDT0BDHgt9JxWMAO3OI11LE54WgUpW/1ALK9WcAAD5bKOk5gFPwR/haElOVi7BJUQLVFoAQOOo/ngvI+UQ57UjH1QV16Vv+Xv/WN/wBZYx+9qaL0ZFJ+By+Vj1ehgIH6YAEOM8EwwZ8X9Hc172I96RRBI/c/QCbKBtQqxW9w7c3I1z3eWS+Obigng4bEE0c2EhEwQglW4fqGwerh/AVdcNQHXymmtZGdW/GsjIEyD48Qv7ZqcPPn04CgYDzjiKo47qcD97axDMEOTIwQp0yupZMb1bR3Wj7d1FD4UQAVMRvTAhEEeUdvAdUcsGZ0AweN6JCs0U6xW2BBMnPMQf/9F9rHeGXWkfQ/v+YR+UPseLYxwpZ9+ftmeMBryIA9FLlG6kylGeDOxYz8t/JU+KZX+Epb8asVPwzJE3GyaoXmiMoJnLKqMvVfojH2HgmQ0hmPNMqjMiPJgdEYOltDMxPEG5uh4Il6qOI5Qrliv0AAvb8x3aQ3D4Tu84BBKQitBArG8o7nA22eYPnLjJMxF05ClOtRH9EtH30VY3xw9PdelA8SScGDjdrwSWuN27e84tYgL2f9H4S9GTIMiH0GJ5xqoX6afkzAada4JdWSSaplZsomqymOgUycSeducx8G7Wke326Dk/j+5bSlm0BpDEeskbn9uw7fN7hfXvmRq1QHCFjXwrwztTdd8HSRTlnyFOL8YdfH05xAJ6y8BYceB7tvXYcAJ77mTVCqLrzQbP4baKRjNyTeU8lG9E5UEmDaLEQk3+rfQ8sUlJO59rbysCSP6twA9zae03v1XDzHVeOzd5xdHYklrmMsXuDC5OPd7+DI/DE3ot6r7v0ec953frBicGxpRtf/GK40slymy3/qkqr6dweGyUE1Z2lMcmZKICk1fwSTc/49843x0hTQvPDeP/uOWhWqDRcSkPWpJ8wRKzVoQMmGz9kitl1CyPcmqpEhPEJauJpRRzt4ddYEY2j+vYtkDlqLH3y4TSPoECuRSy8SUsRqrqK+CH8CBkh8+QiSa2NhfFijEhqgRzXE87Mnl8lKPZdHi0Jvhn8+Zt08KiyJo+6l1us1uruTTy8I/V73d9NGyEOKYqgxG4Q8pt3TXtZ+v3v+QT+3vunNc41EKn0V8uFH6SNcHBZt/dnvT9PCZBYOo4igh4TtZoXTlSqIi7g2c735YqiP3AqjPFqvPePiCAUhvfEhWpNJDhu3oW6ixQkXyJbNCbWf6OruFVnsMbPfhHTVxrR+0rvq74IQBISvR/17vW1x527VDfAF+RvLdvyt1Yr2yjnJLBKVzw2bOFCuepGerALzslaURHQ5zu9381TfMLjZtduk6tqqyd8KotYqPfKT+vJ9ae6V5mLzn60QUPwl70IF9efZBqVwS13e+nvGraVP6zotEoIzeK3yG654wkNpoKHervS4M7z+o+lch3c9p6U/IT8VNBo0Y7ZVn36eCQbPaccDyGNN1LjlR1T9TnLvjoHMJzKxsoMfNICABgL1IzwIkIOdS2S6NRnLbT3l2bQ3mimE5nkejMR0SKpRDJWvjPypU94BP/2rVeDMOgTwwDhbCqibIVH/yWyjxyW0n9gY3lHEZT095UVZS0xoLh49NRIrRb48LYkguQQRoPHcMkv51Fq7oN74RKcnlRMoMA0fNLK0tLKk1BjQNXJpqfkyRiaEr64KOEmMhAasPhoOZGe1OH7sfrYhAAw8LQjV7UaQKS7dvWVO7sRgFrNO2K9ocDdq06sKnCjEe8NwJgW3bWyVq6qWDRuW73vhicnjHVz3pU/mpPnPyy5uTOjrJGXKgdfW04rX4KvzlzAdPdLGvT5LSN0/hd+OVMezOlUAIjBt5g1EZzX/sogk0CqK1uAWnx6KVQ2NQAeGYtpACKpCKYKjWLZ5gBaaJLh7fZQ0YBI5ty10nubTKvXvZM3RrH8pZHF/ZkI6DFu2+r2fnyhcGRj8OBI5B/+watD/s0/0MErshtHCnssIECmCcF/lL7ikDx/LaLO71XXXYa7xw4eODYTXKApbj52Tdv+6Es/pnP7Ry89fsQwW7VwJMef/MSE2kZCbrkRuyA5W40s0gKMvfLC2aWR1MJ87IJYgyWEq6YSOaZj2hqZ1fAw3nnwSKXcvPzIxFSrKNRxRwoKD2p7plJHL0gmvjc1fP3ulZXm/v3FLU/GjIj47Fph/eY5s3jRhtJfQn6CVdj7yyZrY79ishYGt47Wuj+VbcBeEjnbT+2U/J9a8C5IFtSPZBGey/GH//3h//B+JGqlsnolQA7Bp8hfO7HYnm44AkCSCQS2ee8nQtwnuV/h51kBwMu0nLQ0TdIDGabS0XpnywyC86AloR0VtToGz1GijDL4lHju/Hzw7CRGn4uM/G/1BHMkL4ZPoe7FsZd249UIAmk1swOKhPomCeMMQOOCKqJRL3/aBnRImfIi3PFGfWTYJar+i4k6c3bwK7fR+rpfi/pn48f/+1dWkCj1uo+c8v6FHe7+CzvTnZlUUf49BWOn1H8e3tjZ8GYUnvufq8FEYik8cRcQcHHU2v8H4Q6w+AABAAAAfgB0AAUAAAAAAAIAIgAyAHcAAABtC5cAAAAAAAAAFgAWABYAFgB9AP4B5QJ/AxYEBwRdBJMEzQVTBaAF9gYhBlsGjgclB6MIPQkACXwKLAr5C18MGgzQDTsNyA4NDp8PMQ+nEDQQkxD2EYYR+xJjEtMTDhNuE98UMxTTFUQVsxYWFuEXaBglGIsY9hlOGeQabRrYG1UbmBvaHCAcShzyHY4d6B6HHuAfiSAyIKohKyG8IkQifyMUI5kj3iSOJPoleyX3Jn4nFid8KAwokykKKXUpxSnFKiQqbSquKtgrHStxK7cr9ywrLG4ssyz9LVotwC31Lj4ujS7VL1kvlC/tMFQw1DFUMc0x+DIgMmgyvjMwM7EzxTPZM+cAAAABAAAAAQAA9CNcLF8PPPUACwPoAAAAANiymQYAAAAA2LKZBv+5/wYESwLuAAEACAACAAAAAAAAeNo9kCVQBFAURe//uLu7rLsm3N0dEu7eAxEq20kk+swmeqXgHTJbcO7DwpkzT7/gBV4AUL0AXugtbGonDFEh1GojPNExqI2qh0t5MaDO0E8k3xw1gVrJsT9ZzFwtsZEe4vyljBj+41+kX5AdOo7cQ7CSGX3O8wrpAzJHWJNYdWNUx3H+jblWzERdEOZJHWf+zRkPZ8zSRxdFpyGfNpB8fYJaNY5+ks97rBPoFN7Rg6B6hIE2qE+UqgGUsJbBOKAApyr9DOss1CsgGDWHgORZL5c5YlD7nD/l3DGyGftVBIX6Afm0UKLu5B8wgxeAntYrCNNXPPNIdsr+3/sIPUT+p4N3fpI5sqnlzSHU8M/q+A4La87f99dKjq6ja2kP+xHdA3DHIBnQThwSg4owZwcwD3wBvq9QqAAAeNpjYGRgYHr3n40hisXn/87/l1m8gSKooA4Ao2sG+QB42mNgYtzNtIeBlYGBqQtIMzD0QGjGBwyGjEwMQMDBAAENDAzvBRjevGWAgoA01xQGBQaF9/+ZFf5bMEQxvWP4pcDA0B/HDNR9imkbAwNQlhEAWJYS9gAAeNpkT0NCBkAU/mbev8/WbHNtMu6R6xbxBLXJtm2us20f4L/Am172swGAPjgQCi+gAl889eY73gIpMHC8eMlIRSZyUYQytKMf45jGvIrV8XpVr+sLfU3VVE9N1Ert1EW9NGA8jZ8JcooIAPPSnY5s5P/rXnnpPtNXVPWju4f6jYfxNYFO+9L+KA9yL3dyK1eyJNMyIoPSJ9FPYbbZNtkKW86nfMQHvMe7vM1bvHlXcJd7l+1a9v7R88gHjGxADGMzAQkmdAXAoGNhZWPn4OTi5uHl4xcQFBIWERUTl5CUkpaRlWOQZ1BQVFJWUVVT19DU0tbR1dM3MDQyNjE1M7ewtLK2YbC1s2dwcHRydnF1c/fw9PL28fXzDwgMCg4JDQuPiARaEEXYkbFwVlwMulwJMicaTJaWVVaVVxAwMyEpgyE1LT0+kyEZAISCbYx42qxV5ZrrRgwdh5bhMrgg37nZbuOxLzPbcdLLi99nF+2l3+X2Gfw0csr/+mg9crJMpYVoRqORjo6kCStDrJbjKCF6+buanH/JjcWPY75p82ySblC+HHOlmf0xrIbV6qpesR2HVcIq1O2eslSYBh5bhind8LhiaI34zzmuzXzcm7VGw2g1WvgkdrRj5zHx3Fzs8NPEJr4rq7tJQkXfKFvjWagGO+Krcn4VlnAWE0DkGfHoXJxCQ3I2Kqvbsrqd2mmSJDZbbpJoVnPxepJ4XDUEP7VmBkD1cC7mug64oQPAT9hKPa4ZDVy0VtRXApKTfnD5xHm0ytWWA31IOeXwXVytN5HWfJzO2dlCEusEp08XYxzZktQgssd1w0Oh21OVPjUNbHWgQbEOMq6sbLC1Cv9cb3k8ZEhAjoWrv9fUCokHfpomYpK2S5DDpjc0psIoaDlbZI+Y3eSP9r1YroYeGacU5TqjtQFTyhY2mWyA3ETJ1abO2v0QY4dc58u4pXDroEvjpkyoNzZajWLH1k7ScjyeMEWlEvFa1vZ40sCQiMfDF3IdCx0kPCG7BewmsPN4Cm6mS0oIDKwiLk+GKeUp8SRI83javFyKi9paO7nME+v6R49PmJfz8cvFvtJ2oD9V6k+aQk2Fy3ExNYX6ZQFPudKkaN2gGJePCXywdVYT8piLCyEP2QZ5TmXYlqNxbXNt989xBf+lJkEmXeDvQru7VIcUsFDqlAZbIavHPcuyylqdMqpQlWgp5ikdUMRjOuBRBE4DShH+l+lpS02qIMjT4mTD5e9c+xJoOo3cTrkenzGFJfIseBZ5zhRVkedNURN5wRR1kRdN0RBpm2JI5DumGBb5rilGRH5oyGfrM49b5eIrj91y8bXH7xnFE+6/wPg+ML4H3wSMIh1gFHkJGEVqYBR5GRhFNoFR5AwwivwAGEXOAqNIY+hh2WqeQdjplEKBEEo5INlIv/mGPZc9TNIVQ9SlQyqhs7tanrEjLdBKHl/dKo91lq+0irp1JoqvJmWC10pmDj2+buhWifcG7KxofxBMGIIfrFdnf1by036s7xbXrTPI6CbyB+CD8bIKs7se3zL+uYce3z7OFE24CvM7KIk62ySfujK8oPJ5nnd1F9MeryB/tjDRty3rzGnEv2uACgOCv9KER0J3Pfc10cMcvu5tH5Pf98E1HYgVcSrz/nQ+/qlCVbJ/qsxULyaBvIHDIQastNYdTB+quQctgY3+Y18J0zXN1TBbm4uxyWysU3mD9t7JNCH0jO6ghhoROsgLooyS0kFBtETROEkhuY6Gqu/zCo+SUbMEgc+5/iu3HQslvy8cEDT1mQEH+iGoeSBq5KoDnHV0V4JJtR6KvkxgwKhain16qB0bmk0lnG1T3mhi93znt2+/UAd18KAyWtr40QBBuFmaVL6e96a4WcrHRpMvrHXwMD9M/MK3TmMAn2yp53aqn+62PtDmmeG77oFOA8P33ByBpVmAdr8NyuKzD9Nwq8PA7lYLarS6r+8O3LXxaOAN/xet2P2/uk/gZ3cBS+MJ2VFvJxlgjISMzfw7kr+jBwTou7tT7iLlM/3h7CmZw1M+38QsfnSI/rkplHX6FN/C+oXhOxAvhbUIvFInB4pB2FdG2pFfYvna9PDOYPEGC0sWb03PKjV/9VjXZg4DQBSEj6GPiwQNHHMsM7NlZi5L0KB3VpDN8/cnFjsS+ksG8yeRxRA5DJHHEAXMl0QRQ5QwRBlDVDA/ElUMUcMQdQzRwPxLNDFEC0O0MUQH8y3RxRA9DNHHEK7lPaeHecDw3qWGWh9SI72eZHzKGFveS6onDNVTSvWMUjq3vNeULhhKl5TSFaV0bXlvKd0wlG61oDst6N4KH2+uko+nb9N7cL3rJ+eUvFPsMytxTWMAeNpj8N7BcCIoYiMjY1/kBsadHAwcDMkFGxnYnDZJMDJogRibuTkYOSAsUTYwi91pFzMDAyMDJ5DN4bSLwQHCZmZw2ajC2BEYscGhI2Ijc4rLRjUQbxdHAwMji0NHckgESEkkEGzm5WDk0drB+L91A0vvRiagPtYUFwB3WSTLAAB42mPABNOBMIohimkbAwPTNsZbDAz/7ZhEgewz/18xHWS89f/bf2MQHwDstg0VAAB42kzMAQYCURRG4XPvfTMq3msiYRAIAUi0hRDMDkIAWkeLGBDQFgbQSlpHIPLjAZ+DA2ysYADAALKxZJCdxFUOdtzkxJqH3JAZ5bbq2U685EJvH7mr/qv/P7A0B572lY2tj7Iz80kOzv6WE/tYyA19HOS26tnvcZELx2aSu+r/a42KdlIHgug89+3+wTxKUpZCeFBiTFBDQiASLTG+mbUsdLW0TXel+vf3MPWiEI3em5vNZKanZ86Znf211b8oytfKrlLPR0mLe1F00u5F3YgvjbOrnOPEmjwxIY/zRAWH5G5/Sz7mSapzHiZ6YdavEz03d/exzl1sKrs8L7LFqMj9qKhWhnsq4gEfUNpbzmfYramcLXKOVKT6XwwafjopH53Wda3W2qeP+kXB+6z1o+nfGp8A6QZpmsOgtj7lG+NMtTEL3l6Jr/TaHF5GBcE8ta4hxMXS17oyDCCzickdWp/zhanYp4bj8ZRnpckb8rQhhPzn2l3VVRB772W90TbTD5lhmUbzaHjN2g+C1Pty0Om4pLKld8rZbDt2Zzaafv2HLqigkl6pIksrSskT0xEl1ELuUYRzQm2pugimSzLkhJvjKwbTAsmRDYVAxlIrCr5V7lJ/p3wMbAKOFtUhWJoWUFyjf4J6jvqO7ikWhkM2orukc7hk4I6Qc/KSK/gZcVEy84D4G5X2TuenvFvBsAnxZfgoif5fbjT8+U5F55RqOQq70eSh/4j8gu/m3mfU+o+733d8emPpj5w955ACMK3MxXQDhpM9bciAz7tXYroijW7z7csoCnDm0LPk9hRiVEtUNXoqUWoYGTI2JzqN6zPqhSiyTGake0xT5BmVwv2oPN1TCIEcvnaXlIRM9qkvk6YNwgLX9ECZYO+70eI4pGupPQ0oAO5xStQdHEeJ7KAkj1ohoLXbdodm6J/+S89vQQZdu3jabMFDQjQAGADQ9409v20b89s2s3WQvK4rtG2bb5J5krpA70kAu6Nq9jOAkJCUkpaRlZNXUFRSVlF1wEGHHHbEUcccd8JJp5x2xlnnXHDJZVdcdc11N9x0y2133HXPfQ88VPPIY0889cxzL7z0ymtvvPXeBx999sVX33z3w0+//PbHX//8V6deg0ZNmrVo1aZdh05d+iJh3Kgxm5YiadlOpKxZt2HFVqRNRiaykYt8FKIYpSibMG3GvAWz5qIS1dibAHtpXqaBgaMBmDYyNofQzpas7om5uYmsIRmpJYlsPom5SSmJTBGZTAGZrMGZ6bmJ7KEFxZk5+XnMARmZzAHFmSBtrm5uLlDaFUq7AQAZ3T7oAAABAAH//wAP",
"title": "$:/plugins/tiddlywiki/katex/fonts/KaTeX_SansSerif-Bold.woff",
"type": "application/font-woff"
},
"$:/plugins/tiddlywiki/katex/fonts/KaTeX_SansSerif-Italic.woff": {
"text": "d09GRgABAAAAAESkAA4AAAAAePAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAA48AAAAFMAAABgRbRZLWNtYXAAADlEAAABSAAAAhoVQrJlY3Z0IAAAQJgAAAAqAAAAOgKQD7RmcGdtAAA6jAAABYsAAAuX2BTb8Gdhc3AAAEScAAAACAAAAAgAAAAQZ2x5ZgAAAUQAADTbAABdBkXGBfhoZWFkAAA3QAAAADYAAAA2FFp05WhoZWEAADjQAAAAHwAAACQHHwKyaG10eAAAN3gAAAFWAAAB/AICLv1sb2NhAAA2QAAAAQAAAAEAT95nem1heHAAADYgAAAAIAAAACABiQxDbmFtZQAAQMQAAAK+AAAHDh/2EXFwb3N0AABDhAAAARgAAAGPMPGRenByZXAAAEAYAAAAfgAAAIqSjPzKeNrV/Ad8HMeRMIp3VU/cnGbzLjZHAIvNCCSwBEmASAQJJoFRzKRESRRlW9bnHE/2Z8lyuuBwtnwnf86W/xLps3zOvuxwOef8O4cLDpfM5b97Zme5ICHaL78HMMx018x0VVeumiFIaoSQX0WNUCIT5aokAMGxct1dd+fr7nTtJ8/Uaqhd/2YNPslg7ycETuM1YiU+smPp6dSeuzpBAmwC8DIhxLlEEOk6odRBlyPPM+Wmy+vXUo1MUpCCZW+7XtMkWU6nmi3aajdqmqylf2usWg0nJ/N5/y4fnNJOwaevw5U3sb/d3zsGiMeRIHkd/AH8IVuJRspkqBMVAQk+RIEQOCIAgJMsFzO1YqYqSWH2kEY63Wy0+bNkSZL533Sqveno68adDqtarSKIaLHXbaHgl24bgT98CSAdrYAshawVbb8Gt5wTJIduTNN9bH3HySXyqqsdkFVYXHq6ygiWsygouxxWKomydMbutFFRQCQgkpNEVZ1LFAA8wMiXowAEHrozuLq83kmcOEHIiUsn7jl7ij3v+NHD+/YuLy42m75cpp3xuaVYOevXfHJalmQpncrnmq0WR/7mOTtNs/8a7XrbmErpZ616u832pFX3yxLKMj9jYzV2JsuBWoDfk9NMlvMO9NXNa2nI5frB0hIVLXaBwq5M+tix/tn8roOH7M4vZBVNFC8/SG0W6ZGXLi+hTfABvgng2LH5JZTtqg3ozl0H90sWUfDsuzuf+xnI5Y4d0686+mHVqlrf8x4qWwVJ+qldC9A7Ft/xDlAtdnm3u2yxIEp2q4Tw7vcgFSWX3P0zoPC296DbripveTugZFNFAWDPnvfh7t1oXEIIJeM3fhWb+B2yQtbJGdLoVCNAIAFIjh87uLI4X84oFOkiYf88xHmbAp7mvE2Wt04W8tkRQfKX29PYzOVzjH46sWqtVo/DZNkX8AcCnNPYfDovy/4eCZ0o8VkuA61mI81m8+wqBuxt8y3yMbhmK9DI5WV+t1brbzESoEKtc2whogAARSGbQaRom6pYwSo60oWgVQwGgtFZdFzaZRGAAmQzoIqNfDoo+SRrbe6laBkLWiNeEY9H/RWw2GgyN2d/yX0AYF+d3PmKiEW0WANgZT+AakbBmCOTtilw3/2Ce+RoxLr8iBsDIt9ShCKgrLmCjrbdMmbFuCT4KqFaQUHE349V5D8XZdR2EJE8deNXaYXR1kvSZILsJXeT6c5UAZDAIiEEKWG0pARECqcZtKyI8mmiCIJyiCiKcEQCQRFWW+FSeTRfKCRVxtTQqveYUJZMjg0w3uXnms9frzFSZVt1HYLoIA0dpk1o/0rzWn2idzW7uK5fDIFcIhmq1puzNikZLSnBTySDPo/DYvc5HMEUvEeUPBSvP4WS6hTx2d01qD6azFRiYYtvIl1QXAFHIitZt74yKWFiJEmtjmASfyfsyu85ubLHiuH8cix9ecvcUGSmEoxH7aFjX6DoESW8LqDsBAT5b0914FXdI4Hhwni8dGA8bUPZvjgWjE+cOTUP6su2tB3Bo4SS+Rv/hN/Er5Id5DDTNR/qOE8dr8fcVgnEYUBApnXiTOuEiCiSI7KAhGhLEgDgEQqIflyOGHo8oM+JQMTTt06PPN90iE13YhtmEOFQHwBwdX19veMj5OK5+Tm2wh1jo+ViKuFRJK23fX6+CbLfz44CjLebAX/dGAnoG1iXZH2DjF3K891j8sT2Wt8vc7/1DQ/4/FrAxwFaNJfPm6P+OhtpwKdFNeaNJd3pR72gyY5R+0v3WDIZCG07Mk6DkVRti4KCqMw3lhd9J49eyEgoOkd9E8OIkmNfy9UcVmioqFgBwD0R1lz3T0fkWDahQFP2jBWL+BtgtW9dyywcs9O2Y2jVvv6kB60Wsfyig1XJandSr7/oHFcr6+5IRJsY9WbjDmvBH4mtPuyVH90KUiVRHPeq1EKpYC/FAtnulj1rbl+okBbdHTtQu0MgQD7HLN6qbvFCHT/h5o5wa0d6xq5KpcDzWLrP9SwYoIgWW92+iQUjQC7ckOCbTD79xN1xEALkCgG4WEwiU2rAbsi2BXWKBgxbwcgK77Bls84Lb4jY1+iy5fBQ40UV/FsL2g93//4Tuxc+ca9oe8EnL7zqd948wW+H7P6vZ/cPbrj/kFe/fyOfr3MWMIWSuwTtlrcFw7uVZRUtuJKtnQmmUn7rsvDVHX74xkfusVionV760MP/89qr4pmkWxU+Dmv3ECDvhhqOs+cskHpnzAME5idGE5pISRsEypQ3ELiCQCi5IgIV6BUiCBeL5S35skf3FRqcLRljcl3cYsd8RXLbOODL4kuU0ukU1/H5PNfd7JiRw4GycWQw6BfTHtEChRx4hbDbqbnc98mKw+eUVorH5YRXkF0xlVkzQVQFZ8LpSeQaboFaXG6XPD9yTMW7tSEhmaTwYrD73XZly9ZZ6nN6nVLWNynbvSlrSHYLQjS5RY25nfLD/oQFgc/LSf+ExEl76cbHqIzzpECKnRwRqHCFcFdCBEoIPcD+o+SwToPdIb93wqtjTnxyso9Dz0PINdrJJhc5E39GgCSVnd3fnpREh2Idkp2C8Na3uVwwirE4RZdsj8suQYAsSEGl+5d2m1WRHk8teryg+lXEtzymOC2K7dHkitfD1zlz4zXkt8gp4iR1Qwu5CCBwxsYjBNHB9cvGITcur19Nazq3tw2H0cd4hXswqcPcW8xnq3ZnzOlEw1WcmY6mpwmQOnkOloESlSQ6MQQCQA4hGAJEYBWJLBIVVSr5yt5mUuMeaaM1CxZFft3rHACI2RRuI8B0LNFXrJCCsWIrG4B1AuDgPlv/zA3L68+mqsg9AtOv1dd3qrcwAkS6IeEhxqluEu9E9DX1uZNcBGK1EDe4+YoCKb4lpN3zvogsRTQELKIkUdUGeP0PqPBfPpQo/SIKaFOVH85QmRAkdzHbkMUPkAgZIz9lGAKNIJIjhBD7EqGUow9+4Fo+MTjpvGWSY+o1zfTGqZHNpkLA/f+bowD0UG+OAjcK69dCpZEqDwGgxaztoOSbxpyr95xpzhlATWfEZgNKY6N0eN7tp/ZUYc9Y2+HeXq5o8fbwF/zx2XI6FrS6/ZNTvlLWjo8HS5mRxUjk4RMv7aQtWK6c33L3Ww5sL3m3T73+vslC0e3PJXdenSvtIEDuIgS+zGiVJI+ZJhMIoUBOE0T7EhcaYZ0IgkMwqTUI4LwVIKUDIOAVE2oDwPPNuYVlbjJVb7KePuTmcgmS3GhMI9fpLW4S9YiJ+9tymruJ9TYsT6wgUFAktFB/anXKaoNXbN3q/MhH0EpfVscxLwKqsl3MgGSroHj9o7gAtjHbdwkBHv1hnmHdJC+/5lWQe2Mmn/Ssi30wqOOYD05ujPhMPgFCkCE1OHXbKI8DORuk7y+ndDZosL12oNzb+1tYQvJx7HmoqCVbM9hq67/wldZYol7QXOBxRXa/eNddFkBrPXUsYbO9NS7tyb7bhd0HBUGdfTCQiZx3InyrPh4YyySSQ1TM37s0K3qDnu3t/Ha/qrwQAZZl9PjzrWPuiP/QPt1EjTP5STDqLJCPdewxv5UKZGIEqWB6VTEiEEoEenmAWJTiETLoWUX6QECIwCmwAWTkDiCGh5W4fRaRHurBUMPJsnam281ycTIlSn6DmIxseWaiDO0d0MkpaZJhwwzaGrKWr7WabIA7XLp8sYtSzTY/5iT+XCFVOhCTAZwOdeWs7JgueuxBUBaCCWqJ+HNoWRnfMnVfR4YoFey+xkpj1QJblUrFJc5ieU5FjMeTw1kVIDGkrqoQdTgTeVRwbVrzoGj3l5t22/iZWGyvuguo6HMO752RHKsu7rhKoMwPOwiSaUJQxSdImCTJ6tUoAIFFg7R+3Y+QRAQBkAKeMrltswnOcB1HJBJJRhJeT62WZs4PU84e7tugrNWZJUmnDVuS5Lhnvbrq2T3+5+zsLjjiGh1xu48rqrvbBRAQXKvo+/XgN+cgNIfdUxRxAVb3ZIZXRdGnZuEFwt4bQ8AljPFQma1+mryrY/GAiCUQJOwhkCaSKIiSoDMQEjhJkIgSiqeJINAjhFI/NXnkR4KGOOKF54eiVDjUgxUo45mOxTtRLhT8s8yclL0tT7NRrzMW4a6XbugHrb4ZJHG/wPDMe6yS1hV0+nWw5yMfpgLKN7yChaIglhvb96aSD2xzuQ+OW72yUwrTxEmfUutY5SGbS/Z7i6m94AV4BIGC1adkjvhHbVakkVMLs1u2rFpx3BoVQPXISWk/WvduzXsaTEpdLW7VjjOKZphUVskO8sdX3UDRVFoJgtiTQ5MqwSU98pGAED8x9Vcfzvn8cHx74maU/7xQIz8CKsSgOpE+gMjGRHKiD8i1PdsJL5DOdLOeHvL7rCqpQlXmVt/0xIxAifkkvrxpD9kgk9Cav973mfkmeQeiIb5JDOoHuxdj0RcsjLciAWdSUay50ZHSjpJNlGaWqcvignDK4Rbc7dhaIfyePW6huigJIw7PzGjQqfrvP3L3qaNvz0ZFasN0GgRXZPj0EBWEmgogptLl4VDgvm2ZKUWAznGwnJ0OxZci8o7M7hIB8uYb38f9jOuTJMDjP4JA8LThGEwMJ41YxQhSnGi4+ynD5HOE5VST/fcx5Te/wQVNCb9+XydKa1XH7IfjVcUJ/+sDgCKeKwGXtFzk0Sdf8RInqLW//3xqVHIAgCTxbOYK45IS45ICaZKd5M871lGgOKSiQE3tHedaVaTC6T7XbMYrt0E5N+OUqLnFJvRtfHIHGINLkrdPEyIeMoFEsmryyvZtE+ON2nDJ7yMFKAzwCv9l6ts4HrChsq/Gj3osYuZHWrJuJtKSccqYZem4NzbjzVAJxKXo6F2Z7PQ+G3Vl1lUMzs2Pzf700casDcZKk0vTYyVqgfaukfJcMeE/ujCc31qwOYAC5nZVhpdjtk7d6cwNzWUEsI2ubDmfKmN291RN8uSLK/9arIBybG54dKZOCOr7lMSnSJ5Mkg92LHZAagXAmyZWJBRFyoXL9FsRb3FNI2xcEIlw2gTeCDJyBxDDVU3cPguAh3owCLqJVXeVy9lcQnfK6rV+4qmla0SDdZvtwYTShnxUoGZAwcOOd3vTFw8f311xZ+RENb3Lnw4Bgiiu3FX0+yNW7+zye3cVhsqB8FAUHGIs69+BT/3y7MH3nj9U8Q8rsZH48ByVEKkw7ffuHi2Uj25f/MilQGJybz1Xl8GjLRDkcQqE4Rf1TP1hg0gaAdAp6LrFaRvZfNJtuG2GHdnott05f/9xS7UqivyfVSN//6Yx8EfY3+5bzPw9j/x664uQe4z1hbldemjDOoQjfX965A4QboFHG8Zkf7nmFFvup9IaW68ohTZbbz983LjsfiB52+qNkJJHV+TVNApXiIP4SaozdPPRlOKBHr2QrngDjTGdVq1kIsDzXckEl1CJxdbsLPk4hWnYKthsQvfL3S9RW8mBL3W5rr8WLiMKUUFPZf9VWGbxM3/mxwjBIH6BZMkoecigW4wNU4L08oBTviEUqd4RyKBexJw33XRz1iBgarJcSnECQkM3QSwFxH2BgTzqBhUOJivAc7nS0oICouQOW7a0C+rLVkr+bM4u5fMOV7GwZaz7XSMonh4KVqRcFi02IQTOiyfaCX92vh0He3371NbhzPUf9jnnxTd+gF/GL5IWs/6fv1oAWTSt/ygBgQhALt/MH7NThQm1JOnmVltSgRDTsTaY6kdf5dx4VWe4fwElkkil07deOAjO1EYIyOy2qYmRcj4bj/p9FoUiYRSyMLWdrbXrsjSoMgacLiMMNoicMy2/rkp6m8APmdaGtx/YuldK3zeuhjvV+YOLlUdXCsMH94UDb1g8UbC9aMUfSQ4JDn/dq5zbM++VLkIkmwzFstXsXHrHtrCYbiigxV937CX3L5z1Wc8eWT92+KUnk8VT7wtKDq9rCNx37T0zlDj+MCyXpr3hc+Pl6fQs58QoIfhyPR8ZJytXAyD0vXKNCARBwDN6IkGkaCRHNht3A/fJCYmGiUZ86axXYp5BveX11r3MswloaU6WpCw5EZo8cKnnc1HhV3/pQsMak6VLiIHuP2a8SfcIvMz3RPjKFczIcBgOdD+49JlSmXrkn5JnElNRwBWtdWMUfN8hhHLNiL/A1h0nNTJHHl562qaLByWiQMUBV8C0Nw7Txt8O5NwAdKd5N+GcoJaXmpO5sm5A/KZnLUuGu9P21v0B02AzI2444Rq3y4arDezcV2cnvXMep8H3tx6h1oWx2jb1nT9pUXPuxTe8OXpfQg1VLmXl3YsB0U7p7HpmWykuhbq/Ag04eFgZP+RWh1Iz9tVVuFfd3dJslT3BsAUARoY/sY+RTwysaIFcbufQdYD7g1scDlRdpUTC7qx2/wZ/AAigNDNeLR9NWBEIAfJSJpFfZxJZISevir3oLD5oUzSuqY0Y5XaD49wwOWhwzFFucErFIjc4RtUg4GeUYPhv8HYZVTTJiYbc9DPU5w+f2L/khAyKwpaDQ6G11/qkM+nKxFLLglQMNeYmMraDk7srtb1RfLwek+AEgkArkv9dp4cybx5zBxISeP0lW9iN9ol9j9x9/MS2oK75CX6T8ZCXFMlRzkGb5tUchn+yeV6NT2427gaObrNZMuyrzhQ3gzDOKMCCLspODWYwueP9i+/4SeXEfUuj77xLufJxxgpwUFrbPemIy8qBA7b/sVhxYrAIR+EwgPvxS6+6b+Giou84nIXut7c9lk4DoPbA3DlPeHZkle/qQULwaXyGFLiMxE0TIiA9be6cLiPiOhFFh2hiehuQcwPQnebdoi4j3iu5THaWywiPzRvcXnPbkueG2owYUsyG6xmhAE8IHcQn4G//BhWBPv0J8Afe/6QeNTz5/ipcixxytFzYHUbEjwIiZnw+oHjPBR46KBmAf0AEWJGwh++TDN8hcs7AN9hb6slBfM3s3mbzTnN+0ynTlDa927M1ZkoN9BI97BzIq47sOCkbxeA0xwp+ARUqfPCDEAy87e3Uit0/TMgeQWg0BvERHryEYGvYfjpxwOvhmLyMxV5/zORxgqyaxl8gFIUNREcUjxBRDIm68SfcpsFpE25glu1I3tcuFHca1ZFpbNcMqy/JTEvdFEEmgTPY6x7QK1Caodz0SsnL5i6/aQ690v75oQyANbWzoVnOvc2Jd+/NlPPIcHRMTinKb0MThEPbtpx5vd8C1oPvu7JLhISTHgdqGYqi++r9QefxhxRFVdOunQBSIkul/wRL0H3pYN7YP0qYTKbINlPoKCFAyRkBjPysKXS3jRtmSK370v7UGsczy7IhrZSeDTJ1syahlmzriPFsURpF2A6T9/wcqxM0dMV7HrbCPAwNnX8rXECArQhPvr+nUil0/xwE4Yk3U7i+jyKXrkOEwBpbrX2wjuBcMhWDcWbWEfxuXkfweo1HG0t6cpE9qNFQLTku1MaN+eMIkFEWUQV0C7dgVlX43W6LiQbHzUDITpAAwgk+w23W1eGCm0froFOg76s0jeqrUaVlniA8MnkGXgiuw9sc2s7JrKK4EShAYvYBzTUEHwQHla7/uTC9ZsWgU/D5RiiKgLV1uviYkXmnLrbePGl/KhsLUAKmJ2FH4FaUgmFhB8+5Rb2WHc5pXE222bo0c6sMJdFLYbXrAZDYOtMVzEnfghGs1fTdqtZEwaeoXkE89uDXJtrdL8LRo7Td3r0Kb/sL+GNE0xj6/UfzxXV/YPXkJ6D7z/D1b0jw8U/AK4wdRIGt2kPqG6gMgEfN2tXAkFm7qm3n9OxtptZiMj+wo6+e2/9OB/3612/u6s8C7FSNjSVAjhJCn2TPrJLTnxrxESrolAqwh3sQAAwF1CdX3xsDLt2XN9Jys3E34QpquB7yb9d9fWQC7LspAf6AJ6C1wJSAZsvrabeYWpaAKTBmc7EJUzsrdqiM6iT+CbBvp1HwDj36VjiG0x0ARJY7HR8uC2Dbhie7n/uzGcC+iOzvXlzy7IDfaRq8jAjDMIwiBWG4O3cCvM5ZeGLe4BbsMhpkSfOqF358XqlH/bO6ByHhAK8EfAypAGfhtileHJM8tOGVJiJvhejDVgqutKNz9K3wNkqTV2Q8Cdd/bmD157vLLbsIy+/bAcMGAnbbI/DeYUKQvIjJ43/jV0mQjJJHbqnCaf9XF9quFUdKHR3vWi+P6Lsl4vA2uCuV7qlxM3EI36QeMZred0ZwPLj/6PG1bSONc63Hv79jyuOz1U5kV3ZM2l0zWy/m7fgboGhvuTcZOnt1fGs9+6K5d/3Ewnr3P1bO2VGaqd/35j3322llz7sbpOc3/f/Y3kVImVtZm25FBQIoAMfoZn7HYVZPbp93mvPPM+VGzsS18R0lHvHf4kHJaZ7h1nr7nzUwZ1624Um9f/HxJ5SdR8ZjR8f8Z47Fo7pmhy/OtOTlhWh8ddV+oeAyXCjr+o6FnZm2VQSKb3iVwQf/UW1J8OgbEdC9ljL2/TX6vqfJTvJPHcswiDQMROSZLQvDLEmoIIr0gtHLIQj6fmp6cvEoMfOGnFlSHFCg4uU7QnJiJTZCAhEoCKc3wo38KDgjG5ndHMRMSXJAkezRM5L27Z2JVom5AgtJidkpcTCa3cB0chzZMW8gYYRn1QbmyPf8V9OZ7zMgfKlQWZvVeW6pz4gv3C0LFs2i+ATxkUNboNkMBGDUtuzCuS2S1yedfe/OjqT5JUVxmHyomrz5XE2QtKLXWVTV5/BVAMMjOOw4/hpbfvVeG4Djzx5fvdcOgD0efY7x6BCpkitXnYB6fsFm9FARBBFP3kxFUui7+ZsBOPsAzzfnBt3pbRZSngqjXtjkVz1RpGduPQGukfquCDQ2xoaca//nY+r2ozYE18JI3fkC5h4uZt+WTNa5pYNfv2DftxYUHQJduitwJm3t8e9sQynJC+NJt0S7v6HC18+98116NCAsexFeGJx1OFFwLQYJkBbTXicZF7fJmzoOCYDkgEIWkNLbwrzbi59GOEcJ3F70vH0qZAi1MbppkVMtFdLJYkqQ/L1GnQDnmRRnHj0K5L8bSpu9YlU/YM7lnvy5B44sWFSLF+ztA9uOlRxTDcnrXaK2i7sK5RceVnPqrodaxaAjPCk1Oo5yFf78yNvKUihYBXtrtVqKKS47Fe21o27P3AuC9hn5lLoYd/lT+U6Y2j2yb4kAeYoQ6seniUbWDQp5BIoAZP127WbODOq1jYOmRuvYOIWJZ9ZbE7n/wDJsyaQT0xR5sNBkDmtTfsouwBj7VZQfdjrQaMArX453zytAC5nub3V/CxApHgJu9slreNeg7nPtv5ocqKi6EXouCz06UH7cOGHG6g4ChAK9G6HnLV4rBIruXl6YG9N+aM5/2RDKZkzQ68X8hfr5s4CrvmD5UGDIjrXq0bslfyYevuv8wQesgBR+7dsUuklwuU8G5dFkYVz85t/Tbie+bTTtnTu5gh4x4LATAuRJQugQwydGygYiNoABmpqnpheWGTVqULRe090azjNsjb30MGWixljlT6faLUmu2+wgpXb/pr8yeuzBr7dashLXZSgz3P3dUwfjVsEz8wQczcK7P9/9AAwPf7K3GqHBVtMgW67VEbFPXocAaIi+sa4NA3xlHUttbLjsjYT4Jmd9co1TiVPT4Gv92Edp2uBnPqmnBanMRpA30XkgK4Br5AMTJ8HuoULiS1OHPvaxcy5JQQRAOT396sbJGsA5DP3CrgjKhQdg90Oi8qnu/kmnZR1e/yLofqD7lAC/u/vnErVxRRTDyz/R/c8LFPE9LiHe1b1QByH4A4Zdmqx8KuK20JtNI3YAQysO8jgfHES5f97j7GtaMWB4Zg3UrQKzELyxhePFNOEQMudS7wdkg3D3J2DL1mLVrmXfkXuw9jchOBngG/TI/K6p+VdfkeQPr8ADANsB106Gi8WfL7b+PYRXS8cDQXzr22b3vlWSP72fAPkpQmiRYRAku64FpN7+2Eyu2Sijd+ak9au53JjOSnzlngDfn4CPyDxJwfvq8z+1dYv8GiX6X2qz3n2njLF4rQ6x2Al8Fp3dvx7KQ9gK0L1XFh99IyC88Q1fJ0DahODn2OqiZJqv4HnbbW4fN9+uaKX36WERaeoFvpTREeqTZUrrrbpP1lhX33b4WyUsHy88rcrf/a4ofvffPn12v7sr21pYRQDMZZH6g92/7/4DWHcg1gmQ4g0JPsQ7OAeqHSf71Q6erEO6mtZyeubKjMO4itJzG5rEva7G2y8ePKjnZ0qlw4dLJdfBgz+Ef+ulY7qHu8dExI4FKSFw46/Y807yjnH9eZQgUDxJgBA4QAz9CGQlnU75dObxIePuRrtZZ2kVozOqBifP3iN+1HUg/uJ4qYxWevAgfhu7xa4tbOngY9h6DOw1G+G9tehEjVHcRTQ9kiLwkBEA+1NG9Ms21a8no/OSzojQrC/WqstDjjDsyS+nLNP42tq+fVD1FXExl1K36n0fj2Pzxh8TOwnyjQIeMfb7DWf1ttoAbz3ph1hT8n/9pxP+6z8RhKUszgNyqhCCZOuNH8AfwddIlWwj/9CxVEAQvYB6D4nGuGOICESWBPmMXinm3BlcIpKER26KoZ+BpTcDYwAcdiA3G/jx7pj6ce/4fFDuQSjdjbQGCrlStphyK1K07OVlkJ7rKGk8Rt5YWuUGpW6Ydb0elWtRn2Fp2Jgeyzx1cCfaaNRbqEIhdFipi60pvxzPiOpUeuEenyjmZe+hbSKAxVEays/a0WIdPhWIwPvLINtnxgQH/eVLiJkw+lBp5EK+SMUaEUMhV9WNoxR2d383GCnExYKA4LZyhUiWWNYtomvFGvnq1REQBehtUEQ35Kbf7uJ+Ox41++eNzRm6BYRLuAFHTLDAj75T6se502YQ7gEIYzNUFtAX86ZHyhukfL1y38AbF3xfzEjKrE/p9v4di8MjW8BiWd6nydlhsK7tWJofkyWsjPLMRrtWiWmRIWdc9FeXT3Fjit2/QxDEPFoOTjiVVx+aK8sQl/SoyjI2brFEdj2uDr+EEOBUhu/CV0mFdzYrAGQUEHDRdEGDg8WE0sRIWldFDa4M/NxZ1LgI31I54A6iz4n8XObJyqWfPOsan8xKLieCiLl0XHPaGotWbHp8lt0LNpH9OGhn1+oJFX7+gY/aHUExnwcACkNUQNuxHS7HQljNS1goIJUgSvftEjl/LLAqyTLjjwRpk1detQLcyh+iqC/cZWwNbogshm4FYZMcru83bwbhHoTgexrOlfJ1o6n0ZhKnae6m4U4Ym9wQjY6QGeyJmKTLFPxefJ0lc1QRE9NbNJHHCtbOjpW9E1L3X6sVtziaYfvvDGWpBbfscUhYfKyXzIk4EL1x8J53RXzSpb37S5L0/Uob1IJy8QJKzgDIa3MRTqV5tr9/yPY3RcpkstN2AgIsEpEAimCEThLcss1AyqV8Nhx02CSRpCDF+2FAt3bJfjzJk9E9tjWxDOQMlq3DricU7P4WHcmo/pU1UECZmvFoq6e2br8kyPtwOB8KVdJ/BF/9qXTBmYTRaRUrAuxEKsYUem7tyL7DfngyX3H4t3D+PE4IfAe/SMbJu65WgIqm4xcloqg3JDiXEAihDA1zH43kzh1h3GDW8cNsDIEAJaf70CaEnhARqSCevglkTHGJtmSK7XQoX+PdfuDjxlgzkqSMCQx92kizI6ZV9TOza5TbJ15plCVefoGXOesNyPF3Fw6LoqbmIJVU5FSSgpdt7pTkivmi6AI1llyIiDZHswmfobMU4VrxZCCAGAicLF7Tm+nBIh9gFTkZBBFhSQBqg5p16wyhxHajhuPwK2SN3E0eJm/taAErIklGUMYqUPniTlQVoUfVMpEJFWTKEEY0jIsuPsoRqwUVhYmIquqFDA8vc/wIaPcg9HoncPLkyYdPPnz5/jOnThw7dCBX2FoIF2y8LDXYltfM5fMNflzndkrWNYvMdMzg22V5Q9OYoSmXtb6w5Rv8qKc+e21ZlMubfrahK/fldoujU0ynticoAI5plbSCYBsqu2Q7iOBBdaw6J/uGMxKC1T+/5n1RcfdritnKrAxgm1BAECGZGgr4w5lMvDK1R9lW9aruELU3I9Gxdatg83y26I/FCzs9riEKyA29oApCxu1GCQAkzCTsts5YwwGagOj2hmUA6jrSzC4r1npCcNiFrQUGaHE7W5+Kp6y2bYV4aqn7L4CiktYUKWwXk37V6rH5uJQsEIKg53AXO5YAEAqLKYD5m8VSxtNcAMiAjGw2zln7WibXShrhQ88EbSgF+GjL6NUytJ0H3rfHYqkk7PGobozczFLNrC3eL8IMHFMmYdsk2qdjj726XwDwdP9xy8lgSOz+gYiYAI0gWSQEpvCDxEo0ct8zXsB5I/pxDRQKEV2GSR4cd94cL/BgcKDU7UIDQ8CHbvUVmfBeZckcPchg6bRmXWPaWEtLjVpPg38WfHCB/9UOH2MrxtkziGfw9YjdFRFRJHjjfTcasEdfcZ48eTUOQr9jNnJzzSIguvr9sB7dG8wMgjg3BcnxxJeJye0A+rvZIAAKl02ggWmumJwOWyoR1Gx5Rz7DE4gbmrTkBtu8gbpTo91P6Xj+3FpviJKlwYzV4fvQPj8iadVS0OOW/WlfhPHnZXxhHYJR9vdnAbAL4ticBXwWATNZJWBxuiSUCZBlQjCu2+WT16KABE2V7TEDK9eSQNEsqRQ2mXGzmZuD5Ehv0MzaJMhQwZ/jAX0yn3LSmwUV1PgBDxhlmbsn8ILTWCg6naWSXnc4eNRhnwxeajVPn46mO9XfzqR3zpkFh+4esFlrvmMABw5sXfoJIAR0vmz/H6kpvn2RWfeREYt6e01xgee0mFaeI2/vWIJACSzmQehJrE8EnoFHQK5RJTCr5LlN59xCv3Gaz+ERnZAGGMAAlJEMNKYMh8icMgxaK5sbGS5XuUFr8/BbdlAf74zuGS72O8b5ZIP4N00lcftpauHu4bIMCECF0Gp2IhBTAKTRiWjC1A6m5hg4rIwifB5igkXi+pAGkk5XAiiCUHaqg2rDYuqVDSd9XQi/TEpk/Zkw0B5J3WTARPUbNW+fcJt5AFe/jmuOs8xKa7TM37G6jTx+kyJ3JsGWrRzxO2E73NgMR4JkJ4uGrCxmdZM0KXSy5tqCfG1MQIyeZyBDMb3j3Q1ucZOOd5/kbfTfAOtJ/b/vPiP6HzvgUZzBmYWP7GlUoqG1oKVVKWU1X8V6dlWLHn+DBQXHyaX7Pwqp6oQlcSqVrE+FbZFthCBJ3ZjGMOPjGBklz3QsORCFIKCIfVdcEEzq9kOipb6uK/RccVc/fNoUrKoXbQgIQITLd4AcAOKfFNgEEpeNYCxVL+ZS3HEPtDxMI0rabcGY/vYKDEZhvKySgtcfVgRx3xG7JTucrexJZ5dr1coo7HG4g75QQgtSrTF7T+7zgC9GyAHSUVT2bj06fyLnqdG/A2yjqoYvXZQqD+8ubeX029WjX5JUyKmOhZsSBYDRz3RhecQhUUTUsTBqlNxoewi3BZzhH9oUhndguAgZLmXT7ObJ0nhN5okXCX3cDLSb3D1K39ImGWDKU2Yom+zRbmEYHx2tVBCV2F05m8eeKmVCy+WErzw5hIKUsk6PDq81y61RmxN+Rbr+CoQ/U6nIfBnH2vjqUm3JbYlF7a7oe3YnZ041O6O2HT2t+kGGcYYc62k7s1X2FunM3T5nCmjQHDZ2l5ABGQ1mKrfJqPF6Bz9FZuzZv1w2F+8ulxSgehbfOruCVlQoKFLnkocGAzgywkUzI9plFTmI2lTATpMxYc+49IIHEAmQNIutnmUy2eaxswRAUoB0MHYeKMQURospo2lZL7P4pLTZcKd7pT3O44l8nmozTLJZY+Fm+oLj3O4t9UgcRLG5M+VKeW3l4dxovXm8eCCoYAzUyZUZTYqqxZxY91phaXqHzwa7gdIhxZPy2WXFah8vdupNv0eQFgS5VLY6Qg5RUdBb8Gt6zu4kw+adOMXfbO1YiiBBGYg0UFtFpOeIBAQkclkEADwi6M6JzHXPYCUU6ZU7wXXiG0DYJIOSEM4YANzIa0AKuUQsHNS8TrtFJWMwpvRf2x2Mq3ga1mhj6wdgmo+Rzq9pXGw/OSXiGORzilwoKIoolUp2x/btzu3bxRJNDY8IjvGaz3owELP8HdVjqGQqFseZaeAhlvq7LkctLswKYkCgnD6HWb4hBL9I8mT1WjrZ82sKhn8NBJBcprpFFUw8N4z3dTTzz4BEgz6PVSF5yN9U09PIe/P675K09RfIei5pu8Gk9QPFNGAuUxl1+bLR9Ni8BTqshAJMHyXvtSQLDsn2zAcRVo49bXVZR1MClBAMjzUDqIUJkEuEYJRh4CPzVxW4WUSx9YTLzEUWNoy5+0l6XO8n6TNFvd7Tpsx7DjBqm6UeJ6Y/ufOYlEfv+7WREXjlqxoNCZ5FTP339pAyDloO4M/+FHpr+S+2lq1kP6vWjkUdws312I1n30yOjmwYNFZkN1bUO+fpzq1beEt4wC8wkrZz2MybRR6frNXMipl+Xm1P07a53iaXMOYG997lTL8dcnAE0SUAoNqIdzwH/BSt5ci85Bsers9cqdcVSQAKIEarB6XjIoWPUQGx9PRaIiGIaEk/MP3ytPytPUM+Kg0dbz9mzcOZR/4MxOrLK+NbIgpAaNvl9+sSB4ToHJVhdR+vW6Z3oEDheSiA5MrNuk8wrBn5uVFkhasAx5erOln/xARTNg3JLPu0/9o1XYGzwyOpwuJpFWNTvrNvovUaM2T+grZ22uHohF70vdCZBVxaShWXVBqd8J2CvxTg0F0QLAXucjimQ1d0DG7UdY6qkjn+phHtacCeZ2Ws11SCHr5mPkbJlYEx5neWCrGw5mOKSTOqPn6z6qz1ds1HekY5pWcHmjyKr7MpXlS8r1IBEDAloyDImdK+6OHub9hmO4JN84guSbIIQiLpCoQZPUbgOeRvuP38XX530oHW6MLaGytwveu9qAKlALAbAG2W7Kp836U/5dhFee6JYRfqv/FjNsbowTLHwGTQzSfd2GvApkDoaXPU2KzsbNboSO5VkqBd8/XSv239jb3Wq+RnnhHF7hde8QonfOYzknDp91/8MIWfzgD6A90vAO4QEUOBe38fwM1X+yvkizgG82SIjHRKgl5zoYCE4CGqp2dEzi2rQMIht1ORKJIhGJL4OxMpmbmtLaNZvvc6PJOFfhITpobUZfuOWiiS1myq05LLAailSCSoCFo08d+TQmM3BIaQSpZhBAHS0w4nSMEIQfI3OIdRFiWrJEDMgqahCxEIsZvJ2MFBJ3CKbfieBAUjaL+Wq9d7FGvWuXr3pVgimh3LPr0q9jfaKYsFTn3ZC6eAimipVnHXccTRCqDAo3gK9pBlBAiCG53wb3iVuEiUbDfqlF5CBc6ZJ/rvK/Ctu23UiYb+DgZ8HkUiLnBx/Q26/h5ozOE9u7ohatVbcDk7GczNRMRY3unpFEZiuTHBgwV0ZpPxYAmkdNSvhaJHk+FgEq2GHe5A+MY/EisZ7aliPnoFzc+YWfqnF9f5CQO0apTJTkD/qAEX+JPgiNqby+gI2itfQH/Jt0aDBf+qGdMi42mVxJ+Rgczrj7jKuZaZrGcIIRfXn0kAu5unnw75oJ4Fgef6+Q/Q8x9xdpcwmbzqBSSmKXQNBk7Gcl2EK6mBofWrpXZCT77cmopgot7Lz33FzD8UEyXNakHqzYaKKnzmZtrB5pJo1u2mTAJc/1dVHP8I/gHH8HF2F+ZxAsUeIheB2K2KTJzg5KbGqyssJjeSrLdt/pF5z8JqLZetVfFx45751Sqs7eNrfQ4L2MCHiW2zSmamrucRprFp2KfUc6AoV58VBPXZq1iEbB7Ao+WAX9ZCJ9YZzgrxMjLfRNmrpyLAWBF/n2n7UfnQvmWHCx/cKa/tdngIkL9HJ7yHXWu55VrNSGPk6zziTzN6fUc5NlLGXG5kFD9kX1tDmN/FcfhD+CFuZdf7SZI5dCgAQXKCAgCTYCAet8MmS8QP/pvy0a6b3SvskNtaODe9hzLostOf36XSJdfYHPxwbdrhtoq2CU2dyirCdINHDL+FHVjVs23bDC1i7ZWrTR0yOOQ0mI6fHhjM+T1bT+uYsajGzPj9Flisep4PZ2s1nuIjCK9GJ57+v003/NX/Rt3wKziEY/gUGSJLBiW8hqIXgRCjmmwnvDfuedX/esd9uwWA/0MWANef1wQQJL/X41EL0fib6xs0vS/jMxLNZn6SG/v+ISjF0dFgvLUswu/0j/DeJciO7lPpnt7/vd5/fD0+Q1xEesYpwNjGN0G4EjsETyC8GxWBvvOdr8QLg297XH8fcsEu8XwcWydjWqJcddkEwDHepO/RklnI8UisKoGc5PoDwf3tez/WfWP3jfCvFEDufkODL1FqFxfgEJy4voyAMxpFipHudMJmbwQgTQglD9/4J5rB3yB+MkomieVTrbFsUCV0rCxuyNL02+28Zu5BF5ub34gQB7K58MpHnihnX7G8YyYrPbol4Yq8dn318XQ5nd7WiriWPP672s3WykUHdtctzzJfgv/jf/KRY0dXX5mMg/eRmT0TkyffO5zD13ps/mY0cN8rxkeaE5HCz573hJ74s95ruj1PCOd4NxijMCWMwvUW4c60R/OlDQdal/Be65QcpfAAPQ8rrbbo8SiIAIJjZvyJ8LCIHxUF4foBBOp97n/9j0QsbZEdhZc91P3+GBBC+S7gdXyaWImXFBiN8lGPQwZGI28jmeRIJ7ONNuV7K/sSlLUm1CexNUnrSZ/EX1z6IsTZr6p0/7r716rkgV/0dHc8Cm5BcGrx1Eh1agjSqgrXn8NPAEK5BFDuXjsAcAC6vwprCFAqAfbffHmGaAxba5+fkgmtn+JrJyk1XiiygZX9dwFeid1Pz24zOQuu70dEYCIpdb/W/arRg0RH+Ns07J4RO3DeknpqoO7jeBmfOTO882RC32DY9vOZX6+ol2t/oqrdr3e/8aafAhtv9tFzRDWoCoLyHTzf/V7mD1Vj8T/zFNjf9JgkamoePP48IcDfb6ZL+FVSZc9NOfhzGQv1OSvN0fEOfnjEyGfygK6f2MRvYiwS9m/LWhs5uGBdcpYdblmzD9uPqVL4zNRL5Ww12ixMLVAsW9RY2hp/bf7friGy+OKuxD5NlgONuL0x+/Gk+9hoODjf1uycvC8lBP+B0WOUzJBlttMLc1NjMWQ7neV5N/5eEMuFmIzV0vM3vP3LiPQD/r6Y0Ea/8YAHBW39u55Ma6UwwC6CTwaqVbBaBRBVYb4+KzmPbJ+aF8DKvEO/bfG8Q7RF330qZtl12gq24LhfhXTqz2dqSAXcCS+tee65gBTrdQRwlCf2Bf2T55IxK0KzDniWon1tyh3JJlYecsGbAVzr20V3OjjqUd7/5MsbHd6G9hkInMzyXfgIIfQgw3aF7cJyDhiWjHdbPeR4t3aeO7I1HknfRMawk6j1JN/4reuf1ZFk81ePGWA/aCDK77EqTq9ip42GHKF25xIVKDC1eRLuASk8NevxeRXqstsmGi4p4vc5Uis7zsqowSmEcwAI8WdK7UIkFhVwxoJobcilzlLu0hAg/1gwhS4jUezK0aMFh+SXJFwAOhSfecvKvAv49UiADBNCgfHaPMMy7+G81hhsDNE0n5HLqAeavF21t7sbPqzBQf39T1OlOd6edgt/+sQuLTp71muLhKQfevauAYjxoKJ87TWK9/hrA+puez0dj6lOOWfb68Ifgkp9V70S/Nv2JdG2b7JYrd93YdIRDSPuA6CIEpYOzGVLQy//iBXWdsZiBx70zo6URwXQP1lFM/IEeBfCxte8voVNGL9Tz5n3+XrOwNtvOjPuJBR/1J2SCX6nZMK4E3wPvuuErq1rv+1u5rcrfWTE8FHsBAn3wAgA94kGz53c5c4W9HwNyD6jWMatfEDvVgjUoKkxFpDQEq6FAlRwSlGnE9vHEWUpbKkU94OiJB1bgPxf/s1MBA/8AZ7V8SqStoGZS2RQwHERoIfcxiGOX0fNFlIMR0kKb45jYFPE33A74l/6sWiBt1Pn/wPf0GY/+IvkTO/L5KLxZfIq84aT7O8Z+N4Z/mPAwfBmcHUOZ/wQAhyOQXE46RkgYMDwuf8/rGVogwAAAQAAAH8AeAAFAAAAAAACACIAMgB3AAAAawuXAAAAAAAAABYAFgAWABYAWwCrAYYCNALgA9QEBAQ0BGgE6gU+BXMFlwW9Be4GhAb/B44IUQiwCVkKKwpsC0AL6ww7DJ0M1w1YDhwOeA8hD5oQDBCEEOkRZBG7EekSQRKcEtYTWBOxFDYUrRWIFhAWqRb7F2MXqhgZGHoYyRkVGU0ZghmsGdEapBtXG7QcRxynHUgeOh6ZHvIfgB/lIBMgwCErIXciFyKQIvUjXCPsJE0kkyUVJXYl5SY8JoUmhSbRJyAnTydyJ7sn5SgRKDUoUyhzKKko3ykuKYcpuSnbKgwqaiqeKuErCytHK5MsCix9LOYtCy0yLW4tni39Lk0uYS51LoMAAQAAAAEAAGhgzjBfDzz1AAsD6AAAAADYspkGAAAAANiymQb/oP8GBDQC7gACAAgAAgAAAAAAAHjaPZEz3NdhFEe/9/6ybbdk23Zbtl1bNte2bNvWkpbspqyl1+b5czif8/i5ULbaSZKNlBjLemuJpWpr0FdjcRd83NM12KrpgW3VPHDW9wWltIi13txrjyewVgzGRWkHXaBXdDwFtsPIMJyH3rwxzj7pvO/VCqgDE3y91vgbjfPRGuNdYa/W+iON4fxYzrbyG+zV09hgoSaxPs6/ahl3MN6GW6iTnybmS9rM3cPBJR3G5WCnz1Rna6im1rDgG3E8gHb2TT29qIbbPQ3HQ/FgaxeOt0xorgQNs9IFh+yfRohxUEtDw+dSNRA3giE2hjPr1djmazrzCfZci/ysFmELc1V1OP+U+gr/cFlFu6fp8beJBT7DHUu1Tvg3fCLn1/7dNhl34X04775qRt2Wkwv1UrNQbahXZ9bO4zX4LG5h5Bb8Vbtw34B3K7G21e9J1kLSLKkQ/kp6twAAeNpjYGRgYHr3n40hivnF/wX/XVhMgCKooB4Aot8G1gB42mNgYpzOOIGBlYGBqYtpDwMDQw+EZnzAYMjIxIAEGhgY3gswvHkL4wekuaYwMDIovP/PrPDfgiGK6R3DLwUGhv44ZqDuPUzbgEoUGBgBNRUScAB42lxPQ0KAQRT+/nntszXLjE3GPTJOkS+QbdvmOtv2Af5lmullPhsA6JPdYACAYQeC8e5b4B5ABOSr5YJIRCMeychELprRjWFMG8EiVCyKVXEizqmcqqmOGqmZ2qiTeqSddJbuJjMDkK+9sUhE6r/eBbEsjsQZlf3q7aBuaSudpJupmfmWb/iar/iSz3iOx3mAOzng2VvX6VpdqAvUkdpXu2pbbakNta7WrtKvUq6SrPI+fnkZuYCRDYhhbCYgwYSuABhkLKxs7BycXNw8vHz8AoJCwiKiYuISklLSMrJyDPIMCopKyiqqauoamlraOrp6+gaGRsYmpmbmFpZW1jYMtnb2DA6OTs4urm7uHp5e3j6+fv4BgUHBIaFh4RGRQAuiCDsyFsGMQZcrReZEg8my8qrqikoCZsYnZjKkpWfEZTEkAQAltWsbeNqsVeWa60YMHYeW4TK4IN+52W7jsS8z23HSy4vfZxftpd/l9hn8NHLK//poPXKyTKWFaEajkY6OpAkrQ6yW4yghevm7mpx/yY3Fj2O+afNskm5QvhxzpZn9MayG1eqqXrEdh1XCKtTtnrJUmAYeW4Yp3fC4YmiN+M85rs183Ju1RsNoNVr4JHa0Y+cx8dxc7PDTxCa+K6u7SUJF3yhb41moBjviq3J+FZZwFhNA5Bnx6FycQkNyNiqr27K6ndppkiQ2W26SaFZz8XqSeFw1BD+1ZgZA9XAu5roOuKEDwE/YSj2uGQ1ctFbUVwKSk35w+cR5tMrVlgN9SDnl8F1crTeR1nycztnZQhLrBKdPF2Mc2ZLUILLHdcNDodtTlT41DWx1oEGxDjKurGywtQr/XG95PGRIQI6Fq7/X1AqJB36aJmKStkuQw6Y3NKbCKGg5W2SPmN3kj/a9WK6GHhmnFOU6o7UBU8oWNplsgNxEydWmztr9EGOHXOfLuKVw66BL46ZMqDc2Wo1ix9ZO0nI8njBFpRLxWtb2eNLAkIjHwxdyHQsdJDwhuwXsJrDzeApupktKCAysIi5PhinlKfEkSPN42rxciovaWju5zBPr+kePT5iX8/HLxb7SdqA/VepPmkJNhctxMTWF+mUBT7nSpGjdoBiXjwl8sHVWE/KYiwshD9kGeU5l2JajcW1zbffPcQX/pSZBJl3g70K7u1SHFLBQ6pQGWyGrxz3LsspanTKqUJVoKeYpHVDEYzrgUQROA0oR/pfpaUtNqiDI0+Jkw+XvXPsSaDqN3E65Hp8xhSXyLHgWec4UVZHnTVETecEUdZEXTdEQaZtiSOQ7phgW+a4pRkR+aMhn6zOPW+XiK4/dcvG1x+8ZxRPuv8D4PjC+B98EjCIdYBR5CRhFamAUeRkYRTaBUeQMMIr8ABhFzgKjSGPoYdlqnkHY6ZRCgRBKOSDZSL/5hj2XPUzSFUPUpUMqobO7Wp6xIy3QSh5f3SqPdZavtIq6dSaKryZlgtdKZg49vm7oVon3BuysaH8QTBiCH6xXZ39W8tN+rO8W160zyOgm8gfgg/GyCrO7Ht8y/rmHHt8+zhRNuArzOyiJOtskn7oyvKDyeZ53dRfTHq8gf7Yw0bct68xpxL9rgAoDgr/ShEdCdz33NdHDHL7ubR+T3/fBNR2IFXEq8/50Pv6pQlWyf6rMVC8mgbyBwyEGrLTWHUwfqrkHLYGN/mNfCdM1zdUwW5uLsclsrFN5g/beyTQh9IzuoIYaETrIC6KMktJBQbRE0ThJIbmOhqrv8wqPklGzBIHPuf4rtx0LJb8vHBA09ZkBB/ohqHkgauSqA5x1dFeCSbUeir5MYMCoWop9eqgdG5pNJZxtU95oYvd857dvv1AHdfCgMlra+NEAQbhZmlS+nvemuFnKx0aTL6x18DA/TPzCt05jAJ9sqed2qp/utj7Q5pnhu+6BTgPD99wcgaVZgHa/Dcrisw/TcKvDwO5WC2q0uq/vDty18WjgDf8Xrdj9v7pP4Gd3AUvjCdlRbycZYIyEjM38O5K/owcE6Lu7U+4i5TP94ewpmcNTPt/ELH50iP65KZR1+hTfwvqF4TsQL4W1CLxSJweKQdhXRtqRX2L52vTwzmDxBgtLFm9Nzyo1f/VY12YOA0AUhI+hj4sEDRxzLDOzZWYuS9Cgd1aQzfP3JxY7EvpLBvMnkcUQOQyRxxAFzJdEEUOUMEQZQ1QwPxJVDFHDEHUM0cD8SzQxRAtDtDFEB/Mt0cUQPQzRxxCu5T2nh3nA8N6lhlofUiO9nmR8yhhb3kuqJwzVU0r1jFI6t7zXlC4YSpeU0hWldG15byndMJRutaA7LejeCh9vrpKPp2/Te3C96yfnlLxT7DMrcU1jAHjaY/DewXAiKGIjI2Nf5AbGnRwMHAzJBRsZ2Jw2STAyaIEYm7k5GDkgLFE2MIvdaRczAwMjAyeQzeG0i8EBwmZmcNmowtgRGLHBoSNiI3OKy0Y1EG8XRwMDI4tDR3JIBEhJJBBs5uVg5NHawfi/dQNL70YmoD7WFBcAd1kkywAAeNpjwASxQOjL4Mu0mYGBaRvjcQaG/yZMokD2mf+vgPwz/79C+ADUBwxOAAB42kzMAQYCURRG4XPvnRmi95qBkUGAQIBoAwGC2UACAVpJq3gbaAstYNbROlJ+POBzcIDRMgYAzCAbG2bZ6bjJwZ673DDylFsSRe6qnuzES85M9pH76j/8/4E1K6A4srHzIjtrf8vBxRe54RBbuWWKs9xVPfkjrnLm2C5yX/2H3//bGhW1tM4E0fOcXzGPFtJtUvqgRYSiFEqLRVPEN1nTabPapiFZG/333zjx84aiVC+XZbOHkzPnzOxe7oq30q0zTydph/pRdNbtR3FEV1y5dU5J6jhPOaRJnprgUBwP3sWnNM1sTqPULnn7NrULvn9IbF4lXLrVxNuNS8e73I935ZqpbyIa0oGo26i+Zu+4rNwup8hEZvBNu+GX/dLJeV3XZmt99mRfjeRfdH40w0fhs1C2YZriMKidz+iWKy73vKT3sejabvlwIBMEi8xVjSDZrXxtSyYhZB7OKyl9yZdcks+YksmM5gXnjXjWCEL6f+zYxEbM/tSS3Vu3sY8bJu3G0nh0Q9YPg8z7YtjrVWnpCl+Zym3e2+7Nx7Pv/+ASOxR4QwmHNTJ4EE6QoiNnH5GsM3QVxbIJV2BUqs1BSJAKZsGpfENhJooNgqPOMQafzqfCTUVj1XWEVNASjK3UTwUvBN/jAYkqKjlZfVeS54XbCE4xlsQcXs9SMlmTjPY9BB1x6ra9fqW9U76C03ySPKN78MvbDX9+v+pzjlqXwRYWXvyf5HyF+Zj/Ap1/9w4Hic+NSnZb004OEYjSaV+EW52LUWIPFj19vhbhGlaq+egLGQSyFuLnhG87JIJWgmpYlOrUKJr3YfVpUl8EL9WRtDPW6glmcs5RqLbtPGs76AscvnYMo1s7+zKXYLGX7YS3eJSvcK27sZo4wo1ijyEC4b2sQnBPVoVU76CAF2w0ffN52z3MpX72NzX/ATPgYm4AAHjabMFDQi4AGADA+X5bz7b9P9u2Mi8S912hbdt8k8yT1AWakQB2RjXtZRAhISklLSMrJ6+gqKSsoqqmrmGf/Q446JDDjjjqmONOOOm0s84574KLLrnsiquuue6Gm2657Y6mu+6574GHHnnsiaeeee6FV1574533Pvjok8+++Oqb73746Zff/vjrn/9atGrTrkOnLt36I2HMqA2LkbRkO1KRjoxVa9Yt24ysichFPgpRjFKUoxJV46ZMmzNvxmzUoh6N7O5K8zINDBwNwLSRsTmEdraE0o5Q2onVPTE3N5E1JCO1JJHNJzE3KSWRKSKTKSCTNTgzPTeRPbSgODMnP485ICOTOaA4E6TN1c3NBUq7Qmk3APT0QvQAAQAB//8ADw==",
"title": "$:/plugins/tiddlywiki/katex/fonts/KaTeX_SansSerif-Italic.woff",
"type": "application/font-woff"
},
"$:/plugins/tiddlywiki/katex/fonts/KaTeX_SansSerif-Regular.woff": {
"text": "d09GRgABAAAAAD9kAA4AAAAAdHQAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAAzqAAAAFMAAABgRbRZbGNtYXAAADP8AAABSAAAAhoVQrJlY3Z0IAAAO1AAAAAuAAAAOgKPD8NmcGdtAAA1RAAABYsAAAuX2BTb8Gdhc3AAAD9cAAAACAAAAAgAAAAQZ2x5ZgAAAUQAAC+sAABYhCNUxN9oZWFkAAAyEAAAADYAAAA2FDB052hoZWEAADOIAAAAHwAAACQG9wNFaG10eAAAMkgAAAE+AAAB/P+pG7hsb2NhAAAxEAAAAQAAAAEACVIgS21heHAAADDwAAAAIAAAACABggw1bmFtZQAAO4AAAALEAAAHF3AnSqVwb3N0AAA+RAAAARgAAAGPMPGRenByZXAAADrQAAAAfgAAAIqSjPzKeNrdvAVgXNeVMHzOuY8H39DTiAc0MyJLGtBIMmhkS7YFtmQUmCUldtIwJ02TcjcNNOU2ZXJT+Nvsl1qh8lK5XSwvM+8WvoV4/N/7Zp5GkmUv//CN4ui9e857c+655x6+AoIsAHyFwsBABe2CIiFQb2fOzJnpnJnIvm05m6Xwxb/K4i8CwU0A8B1aARf44JrJp+Izc6UIIMIxAPBMAhGbl5AxL5tqmHwqeQWoyaE1gG8dYH6+5OYfn9sXSCZkxeos5qmQz4ZDFA7F1UIufI+xaOw3Fl9I4adSiKnywRQ+v7gIQNCK38UxmzYL7ljxMSLAicmnDEGFhEiEZ1VZEcPzDAE85NAYFlC8fSNws3EfCQrDbjeA23JbAdPrARe4gqamRDqDnDxFTRT7i/lEbs11bNFszfp86HvauaDDi2c6Dm/fjuT8BoKBSzuYzuk/DdfBgxcAZZt8QWBKIgKvh2QF5EW/z80Ul06qpqhLDBE9kwZqWkDjFF8d0ecgzpeaz5w5c92Zc8tLJ47NHj04vXfPrlKoLZkshsZCcVNp6gzmi7lsIVDsz2UjVojU0OpdOKSo/DYXCalKIqHyGytr8VE1EQ8TH4qnCvn+YjG/8TbBL4q5Ir9OpFPplJwvVh4e8N533yEmuVU3zuDJU4eYYiieTCg0N+8zlBOnFNXnu+N2xfBxLAe0Dsvrf0HRvL477lBlwl/s/Jx44CSe9KiI/ZJuqFL5NxHta13Vntg7jlqdzKLWQBE5c9walr+2CnGu3zk+jqrHJ0cbChxLlv4veq/9ADDouvQV/Cz9LWyBApSgvZQaKvb2tGeSTfWhgJd5CHEChCzSCUC0cKqxIRZiQjQ4E7hE5DirOLPUEGdBIhyxmRlOFFJpwZwih1mFdIrfWQVVCYciVjoeDhf7+wv5VHF+bJxZHa0thtfIbZdHFxZGx+fHXJpqbJvUXcV9Lum9xrb0bTqqTfFWvDh6i7uvx+sJq7QP1Yz+Q9/tU/tv9fX1GFmVMJPWet30v8l3oGgO/7LcPNxaeFy6+WbJO9iWGASQuSR+hWl8ll6IQQ5GYRZeM/mUxQUxLRsEQAxoyY0KaLqiLYOuukjSpVOAyI4BY37kkthdwwQGqDBc+4Qk6bOg69KxyqPT86VEgUsMwv59e3dv35ofLYx2d8ZziVydFfBrCnjR61FCnUEhfkKobH71W6lE3OZTLsvlinMpnWJxGwK2qKoKqApWRFZI4hWf+qWBAwNtXXs76/Jt2zUW8XobI0yrd8myK6GJNX2Oy6fuRirvkiX8zODM0Ba/mRkzPZeh09/eeeTa7anZ7MiZbV37qbFl5+gQGYPBVFtw8GLWo5FC9C+S7ta1F8tMwjffdWjvS0xlOJ/qO719Iz4w6Lj0l/R5+gbsgsOwDJ8vBZZnD+0f2d6XrtOZpCIwmqjoYAskiY4BUXhSRsbgGCJABBwFtyk4aoMza8HWZeBuDg7xQRTCf2oVT+Ir3AAEEiNpiYMB2Ozqowym5/mn5Fk6s3d3aUdrcyam8C0g2+uWTitKZQWry1Esit9V1SI0At8gWb4u9tpkIzk1pIhRsVrZEOYri8c3SgWDpdJxRalsFoFCn80NR/zbCx61QxvdXW92jpqegjeRUSKFdP/wNPnvM6PbBqSEe3ccCXEKkbD3Zld3794uKn+sqbEjoDNT8rYHQhp6D/SiFaXmRKMeGt6l+shI8tVmjZI+kGlOjOe8DS3myN4bt3ct7wpo+xa92X2jCd+ReyRFwjCRwj56k6s5cJB60n09keT2QcOdiNY1yOXpIwuhEDb2xYs6awFAmMfvwmdtu3XiAsOa0QqAbbMYCuMDaw2WCcIurQOsH3MMlQugYp6kDeZp4XJLBAgTlxTcx/e9C8ySV5B2GyBeFw4SfzriLxZzquK3rER64rw5Zbz73caUWaI7Pma6zl+877zLFA8U+RuGrviGdDpnRfwqp+HH4uHz4jXj9Fr+7PmLrz1vusQDw5jFz/A3lGBraUABQijl21uaA6pQXMiITQAgAy5uKCExpCUAEHoH2HRLW3tLG5eH+s5gv2251PVyJeyUkL20FalcpdJFIYxVQUylbZnkj1jWd5jl99WRclzVzXqXVMhbTQXJVW8qxnEkVmf6BUzTNsLom95g0PvACKsL+l1yY6PH1yi7/MGoNNLYuJUFI5vDAJDr3E/Rb9AeCEO21KPLBBj0k8R3OIdJOEsIMjIJ2BlAlI7xIWk6EAgGEgEx3f58MVYQc7XMGDfMMVOJp83YgBc70dA9Knb4fOXfUevV8m//Tb36trd5+J1Wp5V/x+vFDiGBl14Fn4XFK0kgANC8kCyvLYHxVQlcB9g4Zl4ugbnNJLAmfxzxeQwjAwbNXL0AIhwBAJwnRMB9AMBBJlPCncVCLOxC4/nxcUBYALCpZ9BbIc7tPIReYYpqtyZy18eovccmaGFxcdHmv2Jbdh9YpZAtueKJ6wD4iM8SyJaQE2FZIhE1BKoyqbrxOJM9mhvLH5HVf3GrBvucZKBblV8cMwwgSF/6S/wGnYcgZODeyadaha8JRI4/zBgeA8QIOlwNgmMy14Eym4GiYmp1tVFENluFMRQKeCUTzcQkpY7vBdvtWGc6i1UjKMaFHbTN4J2D41u7uxuT+wb2XzuQZ54fKGapsT4U7PCHQ2auqd6iGwdbmrfNPvY7MwPzsx8sxd/QQTuGHn1ox1BI0+pfc9ejQ32CcYcA8FNi1tyLDSDJOFGZer2CADKBvATCaZWQiC2AEyzEBQYg4G2raOswrgB0goYgguk3dE1VZIlBEIOq8Bf4puaBTDhWyHH3wrYjhZMvG1Ktl5Y//jJET9eQh5aVfuXih8bHf/oTlLyI42IGHQD4JfoIpOCakktXScQWjISxbbaXEMBegmpIs24KQUAAQlhaC9ow6hC9YnZn4mKFbLPGiUun+crkspWlqv4UBfkVY4en9gz1bDel+qjcfbd3f/4kecb1jtR4zvXud5dvHesqbG3ow69sO7St5I/FPfd7Y6UHfN6dY3qydazXhUenR7uzhfhWQOFX4Ff5Cg3DL5X8USRpCyJtG8oyQFadZIutB4DwDEiSfAxk2TOpIoByDLgxV5zpNoEMEsnS0ir6BqTM1ZGiHKmU2AyuKDDroIEiBLoURhjoT3EF5/W4DU2BYRzW+CoXs8JBTqe5C5mz+SRuhXirXNZT/J4j5HLZ6g5YZweKRX79j7lt2c6eHvSZmUCss7cj29bcEI5QzFMYI6/EhpdMpc3sbZf2uvDBuZtndFVpUMb69w4VRg1MpZBI825vz3TWB7tbW4iSRoeGI/lQeChXFw+xvinVe/SeGaOtrUEeACBoBMDv0uPggSicLrl8iIATLkQcr7pyCgrlo8pUtW+LjhBtChGCVLK8XgJv1GutbgAPeQRr0Bb/BA8xhAwFTVuk7PgNfXjDsWMny+V777EQ9UcljdhheozKx6be976p7/x6+RTeIStHf6L6ZAkBEGKX/gq/xOkuwG9dyCKQ2NUNIjYVco0EtwADSWaSsE+2vPg3k5fkZdgyCBWxtAG3+9/GdaSn4ypomwtRZ3tzYygYMP0+TYECFqpCVMynbbERejGRMGOcb6Ecl6airT8d8amoUD5a5GO/N1CiXaq3LhAPyu3teKSMSDIl+8LqtoNetTW9p63rmt0RDBm6FJnu3z/yYB3p/naNIb58+tgCIsM69MzvSFjD+Z1N3r0RCeN+v5zsA6ru0Y9ABkrwtxdsC1jdmgmxWUiSb7EzKApWcyt1kyDL7DgwFlnVRjEHVWAhAS5tgpj5txGjNmIPR2y+HFEGJrPTAl94ARmwxVO6BSQZJfmmNXiMybPVN8psxo4RgmJLd3e2NIVMXYUMpoXaxqwlVsDWiUouIrZ0zYJVYodCXgyyuL1gNTtWjeewu7+A2JPbMethiGr/uOL1ezsT2WJsrG84uyV7di5muckl+Yz2QksopXlc7s5ogLt0Hwm2JUNLRwKoZnUkrX/y3PJYR1tH+n3LDz4X95T/iI8dHljoS7qJjGxyYk8ia2vTn/GVehyCNe/JZr4PgN+isM6IXnTEet2wiSIVVnWciGx/h46Jt9B01XsKgmlV/fdYWFWYEubbuaLnimoHvs/4UExdkrTM+2QXnaeho9Oer5T/dajbZY33/N3TiocQgEEnl6avcI2fhB7YAR9bafaQRI5hbhKRnEyS8C0c30SWN/gmDQDACNiSg7weJXM1FNtXab0ciijPVnFktHend2gg19fVkWqzwnG+riJvUtPcaq6yCx2PnbMgLYQhkq1ofCEH1V+2MHCcWw4NnwtqUvCIitkRne4/dPB+0keyJCNlh964PDSQzw0915LNFQ/pwS0tMfzp+HV7Bustd2QiKQXHtxjhhTvuWAgbW8aDSBjet6O/Lz84mO/7YMv40HUWNSVHS7Bmr3bBTniyZDQhkzk+cxwGYf8YyXzmklTLhW7CX0kGaclBXo+SuRqKw9+NUESareJQhb96e1dHWsTj9Ze7hdli0WabLVmFNUE6H7AqmzFk68Fcf9VhfKy3uL2zPlA6N3Jod7+OgWBfV8Ddud2DEhnDh0137x6N6pojn4829Q2qiHIy6q+r88YyqotemWgO1J946rlzuzIyxWJtzHVwh1TnkfTt5LpjJNQ0uDvd2GHtyumn9dSAoaDqm863JkYBqOLv42ftfPUNVaMpIaId9/orPpm8moTu2RTsZKHDABxGgGfWjnNGBSSJg1RJVWQ7WhDCKAJoVo0YkP+vfJ5HDiSipyo9Pvj4BRUlcuKnJmCSxM7K675dmldQkrySs/CNHIndfmWcnqvimJJwjW0wgOxMpQYUix6y5+Lj6k6vzkZ1ZrMuIFt0QrLq5JzATOSm4ZX0G3gbGGBBvNQCANVvYoyOVJ1aYvusUDJghxw8HhWCJcdSYX7ZzPh1LDXgpZf5vOUvl7/s99P9qDLmu/gqr8jVam6XhvJzPhllpkpuTRXfWQTA99MXoQ3a4dSKHwjJUa3NILYXslucaMoS0ZQ0L1e5dlUEwZWSJ5VKtafaw10NKcUmOJXOVw29rWvWatlVf1Kw7FADprdty7h2HxiYdeF+NKLjZJDZl0s2J1oOLlIJJ1AKNqE+Pba3d/K0EmtOD7SfKZGOkVhXwuWqu/icLTUDl35Gy3x222EGZkr7EqgynACFZFJk4cqoGlOXQANSNBKKw97ollDMcEyv5OcQJvaODA8O9Oc7MvEWK2RosB23G9yCyo6CrGxxS9hN1bGcjj0tpGx/p5Y+E9GSmDpbDQ6rajSdwlc//KVA7N1L/plCnX+QSe7ZrWoorIydjGw5pYRTlkwssT3YPHnWgw+ccNWN5H0z3nDDRLshhUODHu+Weisw6Im6fvPNwwPLr9Db/HUznxgI715yIXofnC0Wrgmim1CSB5XQA/NGy63vcSELyL5woBfL5M0s97Yk0/avUsWDpgdoBfzQCi+5EERp1eKGQQJCiRZtHSszcuxucnOgsL7rxn2r48IWATTWgx/8ZrhPUazOHNeYuWDA4q5JOibSksFUOlz1p7OCmY0vYj7/wMuov39n+c9xm/z7JupHZIPRH0vyVrqA5Y+WP0r0DLHzboqWDLnwE3ejSGu5vecBmNBrtMjnVQ/tsBVef8GNEqsJfMW5FSp/rYlWsDbFq2OJuV6O4FuHIPQeQLa3pyvW0tzACamLCU3BY4iIYynUmiMm/guKOkau33G8gqlUJ9n31YGFh95k3ZKNupI3y+kbGmUzPD8Yib/yJer+ifFDDVMt7p1N6Xi2t3PP0WNW76hG8QCtoBSeSKfq6vYkXOkjIX8i3rnDJRTbjYi/jyoPZ0LZVl/5l039RZSNfNxQ2+MBQNjK99MkfQnaIVVKhIIk/OVqZpDxbYNoZ66jNLWnvaMSdKdsMa9lQSou/dokSdbeJ2Hq6dyb96tHt26LpXe3ZwfGtniQWNfw4Y8vjt00cysLqdPTDbS1sQH1/ftvPTw8HQtFmvVgsF2LtDx85r733jDjwqjBAAjmAOgJWgET4nDWqZ+uzwhJtSXdFOo4jbUldAA1ua2LhINggj8mO8tXi19UsWo8vqmaehE6p+be+lbPzQ/7iHxHdp/0vO0+14H9+w+q/fONqT3DKVpBCj55V8iK+l95dNRHfCno4vdQ3tq7a+H461oDAAhHAaiDngYPPOgILAGTyE5XwnyFfkmS5xWUZa/szO5qWCbHuhzBtw6hMlvwgCdmmjFTVaKdORG4pcMx/pMrho/ir336KdxV/tzKCj09g9+d+ms86tDr5fQacHOF3ujllMirJjh5ZQRhfy+H+RyYKIMAgAGGoE9Ymhp95lF89sknMV3+viDtj6fK34CqHM9yu5CBnaXhOpQlQkAVGbAJcDIysiwywJI1qaCQ8EqAhtDaHAm5dDv+z2BGRFJt2WIhUciZG3W/xbWXo/1t3Y+/0Lvzrt90nVru7jn78HDf/p1jC7v6/CjJE4s+de6uE+PNo/6Hp8r/Knd5Wj77sjtOjbfHopZ0Epm0A41337L0pjqjytUbRSWjJtsIEkPpDNlRqiJTrTdgc6jJoesBPgfgrLYLXKb4VFab85P/S5icnedwz7lz5edopfx9TF+cEMsuODoLAF/gVDEYq+WHPZNU22frxkwnZ+xzbufXJ43Fd86eo5WLohJhR1av5m+34OaSywQi8CCSU5jzb+LtJy8bjzouvj3uWzfO5YcACU8JCAh/7kJ7mtNhdbZxOvxiP1dSWaLKbsc92HINMl/g0MD4/gCTJEltnzwSeAUVyn9R/hM11pTpjukRy4qgmhsFtDXSw5z+Opgr6VbYJUm1CNaL9sJIjJzcf3LDqMlHKwM+Z0CwS7CvDurqgqasWIJhYQtztqWMBK1Eegul04oanltGnLn1Va07TbPub703XR/Z3syMmXZa4Vv21EOxsUAgU35X5P2xE1sk3+GOP6iuJf6EU6vCEacQYTMSkRYY1qjcCKgQKsZ868aqMbYKap+Ise21LXK9MXvu+id6+RK/E/EAAMJxAOalFWiHhy4YyGwOhUW6F7Gqmr2TsuSwqSr7TKgFusVGWQtNXgEqaFwP8K0C5quapB3ao2ZLVZPkrGayApbVH9xBxaLYBSzkZaqaSBO3YGElFAqbx39BRpepvdONgbdqpgvlh06gty0+1RCebfyIi5BWvKxpS6h87aC+D98Q2tLEvHzr9GG3J3v9/K/uLY7j89sMDIeunT5Y/nZVXl7CORGAIyumSv9NwhKAgBlxhMWK8EmJTZ3O84mkzbk3m1r/W4dPvNnc8WydRCuJ4I3lbz5CixcnEvhyvGe7cfE9drzAq+VP0tehEXrhXTZNtWpLeEO1JbkpsLYRa0BrA7DProsxQIanVnHo6rUYEXh3dyZiXTE7j7OaT6y55eLH9tgxv04v20b6j3aORkMjt6SHJP+bb/IHQ/7TexLRrDd4EN928kCzbkhHz546rEXC2oFF+nCajOnSqXtj0bs+YRL59iS65m/uH9hzR/lPr30iwNB4//W3PhkgMp+seiN7bE+6Be65UL/G34yCBEgSrkkJybXtdWUEscSXw3wOjDPCB2CFQ6bwqztEX4DjnjjMSJjCpzRrPuXcY2/wHL1Z9t40aSzMfkQ9OD19UL0hhHVx4Zd47poMWDtP6FT+W+Eglv8aMbCgRHpauysS8SpbItpgDwYv1CHJTmQeAybJMjtXybxJkiMHskzHgSiyuovjAlFi8i1XxUz+OzCj5MjW5pjWBkwhaK3rMWUglGl59Qnhe7StRwGQmJ0DIpJnqy+USSRbhfXcNTLY35FprI+EOevD6yVR/IS5Pkmk0rZMOhLJQ+NCjktizVtMxGsdF8JHrsmnbyTYYmB2ULs30eWOpW45XpHTv5y/vrUVFcUn7bjuqOLpO1JfWD5ghCMySbhGYm8+UFevIY7NGH2jkjHnSO7FF+iV2NUtK6Y88+DNT7qxmJm58+b3+gmxKsPX2VFTBl5RMpIoSx4k2THA9VWmnanl3pQ1ceFVMIQfcDnQ5wCFLPsBeKDUCPVQH+rhoZK1GipV2uQEby01ztUYl+g1oZKQ6offoBcz/dsPjbhd7lzoZD6Pc7Nv+V+eQwcPHo8eDhAFaQVRD9Uf6d16qo5r8iOJ9yHiE+8sf51uIPxbVEK7lJQyAQhd3AP5KX0DtsPHSq4mJOxAAnIYEHacifCkEw5FHA9sM2DUqQnUgNYGYLdQgRWH6JSDU1WBaDsrS8BxYbbWmGFLnzFYTCUbonlJFPCLQnpWK8+2/quIW807deRM8NPhaUUuuwJbTzU1uU1/qq/f25gbtnK7jMid07P7QiYyqW13Ib/LReju828vRYu7Xr7cGJ2bUbOntwZlxb09M5wwdI/PXXdsW2vDyP60gWeQsdbGLWkl4JV7Lc3ndzdcu33+QcndJwMgJAHo1fQU6DBfYWlAYlSLV2pacSOkqg6dQce1q1k9HTQzZlu9YEFEBdyAq0k6/cAD5x6g0zMzePF9dAaF18Mt2xytQMLxq03CqnezYUHXA5zFdAC+dYCSFxAYslOEjmu50hlJmSI4FpmuiBMW99u9i6GwWI2KwbLXa/YcopHs2Ln1kFtCPIESeg8PdvdN39/s0xC//NOf/VwvJbvHB8wt3/nZT5ND7zUZ7lgMBw4ON3fqgq9eAHrE9jz3XFCw5ki4ETcy1hlzWGrf1ph5IdwRYIKL+VzOCnCiuSAFee4rrJBwhlLk7e+ve9qL6Ek+0tjTQ5dkdgOTL9FnaHu5a5LJ3bfjzZNEF09rhqHR+yu0sQ9w2nrh5DPtEZ2xWlWHUGaClnV9zuuHRRDjjPicEb7mJoMt3W2JlqaACb2sV1FCNsnCiQtb/YUK1cKh4xeiwij6nhlLpIUXpCpMTTDyZnMUaVJOI2rR5ciZprt1JP1exSuxueWlXC7yco3f39N4ZmmZLqA+uRwpf7Qgo6JvuQdP7D9XPj3tch3Ej4Z7XW5C4gmp8ziBX5rig+VT1+ACzq9Zl1Y4+kwjf/F/k4vXCq3RcMZ28USsIoIA4elZlZyjkguJzrJ0nqtN78jIzpH7mne04n37Z9H4xK3IbssP40MP3Xvt2f4ti8ePHT/+gfShDrrpXvL8nNgHJubwmZU3vQmnR98EgCAB0NttuRp/JmTK7L8kWXVWqy1ZRZtWkSH1SqrKN6pQWtK27X0fkHH0Ef069DXEuiKvv+bhlgmTc378J1666ytetNJ9O2PfKv8VRr695eZ6QV0RgHrtePHWksGQgQ8JHWUdEbLiqA9Emq+RuhnUIboG8K0Caoy3IGjevqplGIVzWa5mRVtJMFAQSjYxhn+68kyXMTDf/GhZXXlGrVdPdNB1+3LlPyv/GSEeKGAUo4Qo6D95SUGD/hZUyJTaNqkDSCgKAZWYyjTtr7VEDwL/d/KTR478C/vzqRefmhJvilxS4Mu1N4kHgfFXIdqvErJIuO5NQi2ZIp8R+eQnj9AHp16sm2IzgDBNPvww52kQshfciKt9825Bs+0UeYCzqXYrtN2FNsusLW1EjSe458OlL8Gr+2/aObmzxJBJLalSi9LdnWpjtHzw4AxDnEgphQIiEzOAS4/hTy794N/uVwtzxuNPbpvi8yZIXfo5vh2/AV2wFZ6+4EG0vVKrmr9VZKasFgrrKulZJ1XhuKSXY3G4QHVynKJsdEVMcx1mqdXxGR3kjSi27W7ramtPiHRwQ9VrFD+iRrIutVTMCWterSqoYjgYqpiQQiEhdvmxkT1xZTjVrOGCa8eRiNaeRU9h711BlDubJktMJUJiPdl4st8lu4bzyUb8eBzdPfGc/sQ70moHufbm/FJ7fVyONsqxrnaSEXmWQCr/uCHWWu9pCpFbDwoeT/Ka/B/SCkShHVtLLkAZ2utJkqkatzcAY3Zy3GGLJAk2O0FehKO0bEQh8lbwwEGz/u03xf99b0pujmZuQOupovmuhlZqAgBZAnlJYF4Gn7c/JT2dNCMdayrBa8PRVDpt79hgpBKBVoNS9fz0sWioa9DtK7VHomODJCGdWGCBTKupFAZyvW5vrk3Ht2aNyD37BhLZCa/WiQwxRSuPl2fq69E1/fKDBrVpAAhxvgvey3fBFpgouRsbNEbYXG2yE7MMA2JtgjWfJQi1/hRnlLstmY7VVsfKAQtO8Pow2j5dwe/XxjbX7Dg41N/h8jIWz2+p17fkOlLhxvGdXkIkIp3tnmpQ9uUH0I0Pj7jrxFkKokiAPAe3Ffb79ZQWDodChBLF0LNt1/EG7SAQxPi8nrP1ezd8r+QDlFh3HcmSjCizCUdmqpluewabbvKWjSiX7/Dk5mjmJopAoPmuhlZqcipDAvMyeEVihsKdCdMUEoOm0MNrWVnNK2+hRK0np9KRU8RTCyeMHfvD+lhbk+IqtjU07t+leAOxENOQefMDS0owoKUbFHwHNl+c6FJ7KDg9NGV19B8IeNr3eb0eZMaBkVdaSK6kLup/nMPvw29CG/TyjhtARlgVmmYFZSDGwzVH3usmnRxEVFiARkC7LWmphlgD8/g4lUr1pnpChVBnRmSX2/ie8NL64woV5ReOrfYcVQIVod3C+GZFiM3OyQZ14hoPkWdo6+Sh3m6p/Buu1inJfXhk0NvbzXQaaHLdupszmySMo+fGff5Q0H90aGD70LmgVN90wIPdT3fn0LU1ZMcfwrIcoy9BCzxaMggR2BqPocneJyoCVA5v0LyCRP5JqLUPXBXJrl808FsZnQqGg1mBVlrm6vimqrbMydCCzVq1TYurBbHaYr3DwsgnhHmuygMq7V2uWJPWWaeTTNefXdi1C9UDQzJ9yXVQclsu2Qjlh8fLj+Lt4715ZetRHQEYX90s/gn+GpRgAk7CcyWz2etmBGFUKSURU1l14h2gApNUtiSmAscQq8pXPwa67rVPutltiPWyw4WrPmGuf6KUQQSOpwItOY9tjiqa2KYmjxyaPDl1MtHRnk4djbS7lMbOYipfLDrHCdJ2c0HOsuJpW1jUtOVEs3aEa0XWtLc5OyovUIX5ZFk7SE6vbXY7GAkpSnRxz2AH8qzLLkVVGUt0Sh4WlHn+f1dXWialee/hukMtEfK/bP/M/X4K08XO9lRHR6rdlZ31m72BvUXNtMhob0s17U/oRvuW8dNxklDi5KKKKFF3YfyUxUg3kzq/9XbHkpaaG96R1/zJJPvL49nC0UL5hURzyB9UiaRYxC2HTQ8gjAPgC7YOfKhkABKYa0oiEZAk29+uqndWq8NcAWo6ts+G+jaBio59sHvqBIIzzJXWM2YkGYrJStTxWuzTdk7hV9i4D207fHNIwhNCvyZCLQqeWMCHt11jffTD73mvPBRq2aq++hV8KkCwCwA+QU/afUev39h3ZNPsn5RrQeGVwCZzZlNrPnKAV29KukpXEtfHu86dWaDSuXMXv4ifLY8CXfqVSzn4ok1vPTxwQUKJHL+4Qd5AF0iS3edZv0pbtNZNtBGh1Oi0eNZwauBKWixqed2b0KhUq1Up3lOWr6jPuXMLC4iKZ7g70xv3E2PNyaxpz+N6CpT/6Q+ygUze9Gg7ZSQpGgdAEMHDd+347sGSboU0JhE6EV7ACY78G6PUjRDTMY42xLcBUhuk+dU4tlbYslYLWyb3eRU70efUtRQ1PDW7tP/GgwcU9hGmLQ374mHSXd1uWilPnj18eE6XfiK5j0eyLczj7nU/DAgTAPDh/+YK5cSCU6EcB6DvcI3aAc9WcnfudkYMOFWiRbGhcqtWb+erm7Rymk9FjYl9ptSKV91XgNb4WQ+q6ndOEmq0DqNUJ0ZkrDSCqirNC5DDXQshk061tTRF6wJ+t0uVoQM7dNvURKziZht4424O92Nv31BQ3Tq3YVPXrmaH8dcSbVpp/RavXeGXh4YdHca51gBnKjosvEaHBWwVJOF6/dWzEeKsVdDWTbNiFOero1XddLCim0QafXP99P7iKHkldnNYWjcJ/IWiis4UHMKh6h19F79h13S2OXqGaDNvKAgIlRN0tdH5lVRb5VAKhFbdu2ofWaULznHs8LsPnGrQJnpHbp93tygHvbt29LVltjWlLf8cDn72deTNjSzPP2yg97t7DicyM8sdQbnVjsx24B9xvkYgie5KMOYClKC5iWSJJkTwVR1itSFrI9Y6BC46TlQn4lxmM3+191houACtjer8kzYeXAHN+rff1PPveVOpabUjtwYSzpeAOz51MmmGBtZFYWEnRknYAl3huhquBGLn9y6F9XyJHdqpBPcOatxY/cHu/lxKbx005Z4SviXH/K+b1g7f78MO5c/pgdDXdhxPar+TR9dhsGOTHfgc530YknCq5NNRgmSEZMmLzI5NelZnjs7M7YChNqVGe0KzNYBAXJ1RSee+sBlOiOkUHamxCpVYQRVOdFstKhMxWezEmKtJGeow7AihwcyP4Q5fezpa19Y1nh9sU3504tU6upLa4MW7/0rpZIr/le9py7iD+3pGFrIaVDQn7uEz8sFrbNV0oXKepkH8ZuhoMxMQV1ezpsguA9R0WLiyuAIKNWAt/DzjLGRFc62YkYBZDUBzYv58uvbqfWLnIdUYOGwQLhzB1+w8KI0W9Hvuxi+PA9o79RzfqQMwJXrGCVtRlG0u37MAa+Nfp8RSG+XKvz/flmisT9mllR2Us3do1Wl0trCtYEKq0/dTq6tUHdFGVBU0xvYM+1i9pzcf6gt5RrfLmu/guMpns2131qM0GX29VjGoze6fGg8kMJNW2lO61uQzdJcR6Yo2Do6p2MKHmdRc73Y3+WRDdzdxOz+6N26vVoDPeB9thWY4csH2rydW25uJ3SajbW0rkYmiwHFHT9XbYA7gGArhmRpQTN0y+SeSF5mpNkt071W1VkFEIjkRlVQrGf04FGzdOuT2utOatG/m8Gtfi6RZsqdzcQ95w2r9aOT194w/+OD4XXe7unRiwgZwel/Az0IUXlcyJEQwkSFVg/gAIYAtI+y4UwuoGs8qhI8JsHQcJCm6GozVoOY6aAXA5jcChBfLN1XStC0Fn5FVTcoUCmuD8PETqLTEpxtkrhPU0ZtaAykF0f3UU0+F3YPuzEvfWR5NS916cFirZPjx83xeJsxcMNZUXjxok1ZrpOlZPyi2gH1PcNv6BhoTzMyI3UBD6TwvvIgOjv6AKGCw//Uh3NJDgdM6Hm9Z+DDXP0SUL5eHY2hMEZV3V+ihd3N62uFQSW9pliWJ1WoOhCS+v8bing2jwmeuDDC4rTrAedaZaKjz2zwTJZWwyETkbHEv5u1rxUeJtHDYKmdLEum09xg7rKE85T0S2KsSar6hwFxz265cjh2VEds63KynZxd+1ij/7VHdGLvUPfyPgwZDd3LvLw8t3/djNLBx3CA59frH0y78MQAC/+A3+LyaYN8zdW6J/cc5ve4w9UpdtM3WMsV0rlKLsESRuZmE7ylydmIa/S9cuGbbtobWob4+9kjr0fCWJjSuGfEmNb0pMbz8wp98d3Iy3j6JysfS10b74+SeC/YZrkzf3B+KdbiUt+WiB3asaCoxcDaoiY7M2g0K9Zw6MSYYvmZsfqUjk+nlBDqFOKtQKcOpCqm1zGI+VajoJyHD6S0s7e3p9dygoHZW6+7O5q6TGpJ1yaihiGjB3ZLwKD6f0uJ293b0ufhujF2CGUOfRTWEr3xl+afargYTkSHifpTcTGt0H6DGxjuWb28UGhYA38Tn44ObK7UW96a1Fv+GWkvPFaAmVSJNDkJgZy6vtPjAa7atVlr4lCund+1zWtfedG3I/dKXll9/xyvuwNsm+t7w2no/7ss9cR4rZ6a/hO/HPdAgupeFa4OzhE5eXmgYGRmymUA4EQjHhXmtVMorIRTXCXZUVdHs4cQhNtBVn4wHJZUbB1bsbGirXn8jv6chKmG32+VcABCcpd34SDWuHa1WM2UmMREi2uVkFDEpoV3fINuHtcGA+64ckQrVe3bxzCLtXuQfIDhAPuymFQjxOQ6Ib7m8jcoj+Ltx0CfkKpBuj9tyJWa9MVViib81FMoeMra2NTa2e4iM7W2ZIYM+vK33Brq7IWkEEprbozYlko2qx+1pb88Ijr/+UglbLv05+CBY8jsnugM4lYoRV2NWRWwVH8ULnNWfTqZSsmSqrR0dshy8/iC5XJ3BA8h/dYETv+Fn18dv/jXxW48ztj5+w/mrxW92GA9YieP528MwdEFGQGdT+u2QFQBqe5IPAd62Zmj+QiocE1UutVKGMdcG4YVioiVV1yZTLQB3n2oJmwqqqK6G3lLq/8UK2zT+Gf/exyAI0VJEs01VxfwA0XWhtpD9+lQxmxPfwB3OSNhW5alp+83d3UpLib+5JL6MHkEsFJTUBPKNxL8JEMYog5+iu//t+p3YzmN4HWWmpwVVv0Y+fD/nhgcyFTa4YA0XxF2NCZ9JmUKgsCj+ko1NHJcnlHecoEDKN5Zq07QYnzhhuNs8gFV5OkQ+7LLf31dls/1GQofNzq39DSUXga6ChzxMNBSkc5W2I5GOOEIndnhimtaWGvOlAvQZOhjocrnwgNkdtjMD+CJ+3N6TAytBRoDOsnqFCAGdYogotv+6AR/yHZlsC/rFjgxkK80hq8eL+E3kO4eLbKqQbu/sak/1TzGaLqZ1OX9Y0HUkJ+tpu5OXSvAFW+sUaqJUTUqhMC+Xrcf6PSKUzOw5kSgSlP0e+fCF/0nt8gf/Me1yiFq4hHyEUzNWOQMaArRV+Gk7vLJX0j65d2Vdz6OpmroP/mfUPXVsqu+vqUqvBibsWK/vjzn6fv2IWPFSQNcBdFM3PQZooPVVGgj7clkRsOaci2sGerawUVqo/CLfR1F9h2r/b7V7+2lQQHkaAXurhyHMWXz3E0+IQxAX3w0EHQAswunTIQLahYBHQertDAbto1ethX5MpexmGCuXT9PX33fD+96PF0OIt5GM5PsV1x/8QfN78DgulM+XzyMi0m7FLxkD5QUL2Q48CgwGLv0V/QZ9AxqgF/JgPJPtSzeFJMa/I1876+8clXFqP7ixKVcEV8jVwsDTL9fM8eEDZ91Evp3NkbE5d1Oz+873+hBv8Nf1dA5P3DqvRTtTew73DZW/gWdx7u3fcWMs88RSpDd02+GEOeAhCvzi/QbuoWji0ZO3vtskf/PjS9fvP1b+wuJixYuh3ZwfEc41GbHKixB3WFPCfxXCytREPP/orWdvubXYL6H1iE4NHddTd5fDCEJD3oOfPuCS6hafKH9eIwAm+Ey30FO23XdxPuiaLCEIPvBpYfVfD20rS/jZi5c4CXNzc+U/nJ0t/+rcHKye9nga1DWrWTmIQZY4hvH0xX109uI7AaFYPfVkcUzVxhSxQTptN71ZFXWlCF+pqPw+u+NOWvrbv9VNMx+9duGg+4c/NHCY0SOPTs+gKxQebn7pK+408Uj1rWIdM/ytFgi+ZC27ByFbSaPVsmh2ICxu+KWoTP3wtUmk+APyyCn5BGWareA2QzqnBGZb/Q3sBKUaOukb30L/ijpbMrTmbq3xFYm//trX/rXrIckfadOM5EigFYCtzqoROmCA869nS0ezDzn/UPg/EasqRQnx/QkuQiLpXcyG8xWyKuF3MMXFf7XVGQcWWaLp3p5wePDTbBFV7czjj5/xIQUa50wi87jZcIcuS13BCR9lMvSKwksUPXOmc6Hjpc0v6S8gmq949hUm/f2HPPGjWpd2NCkruJNh+XmX1rZPi5Q6M7DKtRXYxrnWIqSpzU5ii5/KX2ETCYxKPVPIv2CZvQFSgoWpRKJg6yHnBw8vZsy034Ut/hBrcOUZKtTiIZWaPqMteo9e7+aXnhZSkOULrNHlRpT1+obsC/ivZdn0xYbbpx+JcRcJtT733Z6vxvCGG8h//2nPna4+jY+qmdTyzqZCqtMvKO8CoI/w9d4p1puw11GKtra2V1r4OIJ87nFXebqhh5SDxAyLeSctMtb0nnNvPj6KUryry/CSi7rDB16Ukn5Xj8t9y/zhGzV080t/UnrxQLibPF6ja5dLpui+a0/tnveo3fP7p6MJGfGod2Q+WXe2q6NzZml+t+Lt7Og6W5ecH/EeRZQT0el7RhpCqUpE+Nf4Exz4tz2Ogt0x9NdTU9Wn2J/9e59if1Z9agG/C5+jFXBD/gIgrRp3D4cR0knHXXHuHa/NDAeZYgnu2q15IcHRBS2m94mj4b5FGggfDtt/uvT/Q3+7juBT+F38TXu2URhe8QDVJuyXEGUUU2SOB7V+yPaidDMc4lMX1nbd1Itrbz6lxbUqH76sx7TLWHLGufg/4O/R8g92wXL17wLLlb8L3FeN7ZYrH/h34yGIz7LAc+yFwBGw/xutY+zlAAEAAAB/AGoABQAAAAAAAgAiADIAdwAAAGQLlwAAAAAAAAAWABYAFgAWAGQAxAGWAgkCzQPABAUEJgRHBMMFAQVFBWAFgwWtBigGiQb5B7cIEwjLCaAJ8gqhC1gLoAwSDEwMuw1YDcQOYw62DyIPeg/HECUQcBCfEP8RVhGSEhcSZBL9E20UXxTgFZAV0RY8FooXCBdoF7cYFxg8GGEYnRi4GWoaOxqnG1gb0BxHHSkdlB3sHlgewR7wH4sf5yA3IPUhXiG8IjUijSL5I0EjrSQFJG0kwiUAJQAlMyV7JaEl0CYSJk4mfSaZJskm/Sc7J2Inqif4KDUoSCh4KNAo/CkcKTEpXCmcKfcqVCq2KtEq7CseK2MrrCwMLCAsNCxCAAEAAAABAACfX9BVXw889QALA+gAAAAA2LKZBwAAAADYspkH/8X/BgPnAu4AAAAIAAIAAAAAAAB42k1QA2i1YRg97/v9tm3jC7/N2bbtZeOGORs3c/aWFqcwp6UhbmG2z3Ndnc5jHOzgPQCoEAA75D8oVWt4ZPzDV7IprDfwRt1AgipHIPGF8T/GGeYZY99ZciJjUv+SiCLeOHCPeOzhvxWWeum1zZjEF23FV+Iekagt+KEnEK9jEKu/EVb6fYhlfRxr3+pu5h4gzihCsu6jPcN+i4MryCZMXYdnuhVx7L1gtOKCMHFMZ+GLeoxU4oZaQxgBNYsX+jiCVA+ekB+T76n3uCu30w/AIrzU2cN+NY9g2oHGHQRI3JEPsvXEUhcL+wpwxZYb5r4GXCBDbNXBHHURfcl5rI3gnhqZJ7PlFgd8iEGHhgH8WX6Ydvg5tr//4Y3oxl9ErzeiDfX6wtgXDzZZD2MOcGpNv5l4pExAgGzgCAW+aRUAAHjaY2BkYGB695+NIYr5xf+j/68zPweKoIJ6AL92CEAAeNpjYGKczjiBgZWBgamLaQ8DA0MPhGZ8wGDIyMSABBoYGN4LMLx5C+MHpLmmMDgwKLz/z6zw34Ihiukdwy8FBob+OGag7j1M24BKFBgYAT00Eq8AeNpcT0NCgEEU/v557bM1y4xNxj0yTpEvkG3b5jrb9gH+ZZrpZT4bAOiT3WAAgGEHgvHuW+AeQATkq+WCSEQjHsnIRC6a0Y1hTBvBIlQsilVxIs6pnKqpjhqpmdqok3qknXSW7iYzA5CvvbFIROq/3gWxLI7EGZX96u2gbmkrnaSbqZn5lm/4mq/4ks94jsd5gDs54Nlb1+laXagL1JHaV7tqW22pDbWu1q7Sr1KukqzyPn55GbmAkQ2IYWwmIMGErgAYZCysbOwcnFzcPLx8/AKCQsIiomLiEpJS0jKycgzyDAqKSsoqqmrqGppa2jq6evoGhkbGJqZm5haWVtY2DLZ29gwOjk7OLq5u7h6eXt4+vn7+AYFBwSGhYeERkUALogg7MhbBjEGXK0XmRIPJsvKq6opKAmbGJ2YypKVnxGUxJAEAJbVrG3jarFXlmutGDB2HluEyuCDfudlu47EvM9tx0suL32cX7aXf5fYZ/DRyyv/6aD1yskylhWhGo5GOjqQJK0OsluMoIXr5u5qcf8mNxY9jvmnzbJJuUL4cc6WZ/TGshtXqql6xHYdVwirU7Z6yVJgGHluGKd3wuGJojfjPOa7NfNybtUbDaDVa+CR2tGPnMfHcXOzw08Qmviuru0lCRd8oW+NZqAY74qtyfhWWcBYTQOQZ8ehcnEJDcjYqq9uyup3aaZIkNltukmhWc/F6knhcNQQ/tWYGQPVwLua6DrihA8BP2Eo9rhkNXLRW1FcCkpN+cPnEebTK1ZYDfUg55fBdXK03kdZ8nM7Z2UIS6wSnTxdjHNmS1CCyx3XDQ6HbU5U+NQ1sdaBBsQ4yrqxssLUK/1xveTxkSECOhau/19QKiQd+miZikrZLkMOmNzSmwihoOVtkj5jd5I/2vViuhh4ZpxTlOqO1AVPKFjaZbIDcRMnVps7a/RBjh1zny7ilcOugS+OmTKg3NlqNYsfWTtJyPJ4wRaUS8VrW9njSwJCIx8MXch0LHSQ8IbsF7Caw83gKbqZLSggMrCIuT4Yp5SnxJEjzeNq8XIqL2lo7ucwT6/pHj0+Yl/Pxy8W+0nagP1XqT5pCTYXLcTE1hfplAU+50qRo3aAYl48JfLB1VhPymIsLIQ/ZBnlOZdiWo3Ftc233z3EF/6UmQSZd4O9Cu7tUhxSwUOqUBlshq8c9y7LKWp0yqlCVaCnmKR1QxGM64FEETgNKEf6X6WlLTaogyNPiZMPl71z7Emg6jdxOuR6fMYUl8ix4FnnOFFWR501RE3nBFHWRF03REGmbYkjkO6YYFvmuKUZEfmjIZ+szj1vl4iuP3XLxtcfvGcUT7r/A+D4wvgffBIwiHWAUeQkYRWpgFHkZGEU2gVHkDDCK/AAYRc4Co0hj6GHZap5B2OmUQoEQSjkg2Ui/+YY9lz1M0hVD1KVDKqGzu1qesSMt0EoeX90qj3WWr7SKunUmiq8mZYLXSmYOPb5u6FaJ9wbsrGh/EEwYgh+sV2d/VvLTfqzvFtetM8joJvIH4IPxsgqzux7fMv65hx7fPs4UTbgK8zsoiTrbJJ+6Mryg8nmed3UX0x6vIH+2MNG3LevMacS/a4AKA4K/0oRHQnc99zXRwxy+7m0fk9/3wTUdiBVxKvP+dD7+qUJVsn+qzFQvJoG8gcMhBqy01h1MH6q5By2Bjf5jXwnTNc3VMFubi7HJbKxTeYP23sk0IfSM7qCGGhE6yAuijJLSQUG0RNE4SSG5joaq7/MKj5JRswSBz7n+K7cdCyW/LxwQNPWZAQf6Iah5IGrkqgOcdXRXgkm1Hoq+TGDAqFqKfXqoHRuaTSWcbVPeaGL3fOe3b79QB3XwoDJa2vjRAEG4WZpUvp73prhZysdGky+sdfAwP0z8wrdOYwCfbKnndqqf7rY+0OaZ4bvugU4Dw/fcHIGlWYB2vw3K4rMP03Crw8DuVgtqtLqv7w7ctfFo4A3/F63Y/b+6T+BndwFL4wnZUW8nGWCMhIzN/DuSv6MHBOi7u1PuIuUz/eHsKZnDUz7fxCx+dIj+uSmUdfoU38L6heE7EC+FtQi8UicHikHYV0bakV9i+dr08M5g8QYLSxZvTc8qNX/1WNdmDgNAFISPoY+LBA0ccywzs2VmLkvQoHdWkM3z9ycWOxL6SwbzJ5HFEDkMkccQBcyXRBFDlDBEGUNUMD8SVQxRwxB1DNHA/Es0MUQLQ7QxRAfzLdHFED0M0ccQruU9p4d5wPDepYZaH1IjvZ5kfMoYW95LqicM1VNK9YxSOre815QuGEqXlNIVpXRteW8p3TCUbrWgOy3o3gofb66Sj6dv03twvesn55S8U+wzK3FNYwB42mPw3sFwIihiIyNjX+QGxp0cDBwMyQUbGdicNkkwMmiBGJu5ORg5ICxRNjCL3WkXMwMDIwMnkM3htIvBAcJmZnDZqMLYERixwaEjYiNzistGNRBvF0cDAyOLQ0dySARISSQQbOblYOTR2sH4v3UDS+9GJqA+1hQXAHdZJMsAAHjaY8AEcUDoy+DLtI2BgWkb4x4Ghv92TKJA9un/r5gOMp75/+2/MYgPANTbDFwAAHjaTMwBBgJRFIXh/947bxLea4JiUICAQLSKYnYQMEBLaRExG2gLrSC0iHYRdfAO+Bz8wMoKxn8DyMaCQXZmXORgxyg3rLnJicwkt9Wf7chDLvT2kbuqv/z1A2vmwN1DNjY+yU7xpxyc/SU37GMrJ/o4yW31Z7/GKBcO6S13Vf/bGhX1JK8E0fPct/sP5lGSshTCgxJjQjQkRCLREuObWctAV0tpugvIv7/jwFXlatQvXzabOTl75szszD8Q//Nlta3dPA90lDWokyQnzU7STuiCvZuXlGaOy4xjGpaZiQ7F7e6L+Jguc1tSP7NTXmwv7YTv7lNb+pRrN7vh+aqw9WBZhsGynjN1TEI9OlA197Iv6FuuvVuWlJjEdL/oOP60ZTo63Ww2ZmFD/mifjXRw1vjRN/aJT0LZHbNLjqONCzndsOd6zVN6+Rhd2QUffslE0SR3fidIl7OwsTWTEIXLuPSSuiqnXFPImdLhiMYVlzvxaCeI6b9vt03biNlbLtm1dYV9KJi0G0uD/jXZ0IvyEKpeq+Wz2lXBG++Kl7Zb48Ho6xecY4kKW9RwmCNHAOEIGRoSO0jknKCpqC2XcAGGV20JQopMMAvOwIiFGSo2iL51bqP76nws3KVorLr2kQmagrHAVniLieA73CNVhZfI6jvDjaA5VihghRlIzRJBYy08ay2jnfdA33g1D9x+p77VF5mN9kBS0+jt/nLG8c+nrD6n2OgxWMAiiP+jxGeY/QzO0Ph72zio+LRX2feaD5VjRKJ02hfpxLzOaQ0WPb1ujHAFK9n87ZYMIjkT8XPwHxxSQTNBG90Hg/aKQmIGVp9d1ZXgqTqSdsaaPcRI4hiVat87jz44xKD/bbsNo1c7+7QuwWIt1wlv8YBCubfZWK3Yx7XigB4i4YOcSnBLjkemM6gQBButXrxOu4Wx5I/+JOdfy6BlsHjabMFDQi4AGADA+X5bz7b9P9u2Mi8S912hbdt8k8yT1AWakQB2RjXtZRAhISklLSMrJ6+gqKSsoqqmrmGf/Q446JDDjjjqmONOOOm0s84574KLLrnsiquuue6Gm2657Y6mu+6574GHHnnsiaeeee6FV1574533Pvjok8+++Oqb73746Zff/vjrn/9atGrTrkOnLt36I2HMqA2LkbRkO1KRjoxVa9Yt24ysichFPgpRjFKUoxJV46ZMmzNvxmzUoh6N7O5K8zINDBwNwLSRsTmEdraE0o5Q2onVPTE3N5E1JCO1JJHNJzE3KSWRKSKTKSCTNTgzPTeRPbSgODMnP485ICOTOaA4E6TN1c3NBUq7Qmk3APT0QvQAAQAB//8ADw==",
"title": "$:/plugins/tiddlywiki/katex/fonts/KaTeX_SansSerif-Regular.woff",
"type": "application/font-woff"
},
"$:/plugins/tiddlywiki/katex/fonts/KaTeX_Script-Regular.woff": {
"text": "d09GRgABAAAAADR0AA4AAAAAYCwAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAAqZAAAAFIAAABgRgtY6mNtYXAAACq4AAAAcQAAAVp1bn61Y3Z0IAAAMTQAAAAhAAAALgBLCmNmcGdtAAArLAAABYsAAAuX2BTb8Gdhc3AAADRsAAAACAAAAAgAAAAQZ2x5ZgAAAUQAACfaAABIXiA++bhoZWFkAAApiAAAADYAAAA2FVt0mmhoZWEAACpEAAAAHwAAACQIEwHvaG10eAAAKcAAAACDAAAAiFtrBURsb2NhAAApQAAAAEYAAABGUUM9am1heHAAACkgAAAAIAAAACABgAyjbmFtZQAAMVgAAAK7AAAG8zvmoaBwb3N0AAA0FAAAAFgAAACG0dQigHByZXAAADC4AAAAfAAAAIoOiuLIeNq9fAVgG1fS/5t5b99bBmnFZEmWZFmWQbIkcxSwYwxjnTZpnJSTuu21KfNhj5mZr8d3HzMz/5mZmT64a/5aUdxce9DefV4lWngzI5j5Da4Ikgoh5HcwQCgRRP42Z0BwvFR1qk6h6mQr771QqWDgu/+pAl8njGSv/iX9S/xDcopcJI+Rd5EjzYOPnb/JZVx+2xv35pnguEqYIIKRbQJE5iBvEd465GKLIFprhFLfGiFE2iSSZEvrt9928vjhg/sXd81PN0rltMJDpUawWmnU64V8IV+bbNQb9WolFGrUd6G3W60EAy6iEK2DRsVCLoTZOuLZbL51JptpURVaR5k+rbfeO4ZGRrQWh4IeLylfaB15W8BtnQm2VnpbIzRZyOdb9N2VwWrIO78uJhurGgc1ODsVHMhVLu5S9A//A0NRAW1Zlr7yqwafLivM4ExeWNGRUwQcG+WoqOgf3DOhmbccHAvZihP3W75AIayYdA5o852XkKcpvPnNLzxduC1g2b5hg/r1sM6AB7WlDbseRg6RxWLSrygzB31UCgeYNJealDlQ//j+PcfTln9SVp97vWyaAJTTF/79C78TUPxlBV1NnrddKnNEkIRpcsXP1PWQFXJ8GVMOOP4owxyMbF1EtXKS/9Zv/Z+CrijBmZoeSMddW6Eggv5zy9ZHl8apgtHlmSFXpSGOkE3ILqEkdfVf04/jb5APkufJL+Obm5HP3B91mKlnwLaWwfBdBFW5Fbgqra59TTl0qnmUmLqlm9a2C5YDts+yt4iPCOITW8TwA2EG2SKMSAqTtohCVK6oW0TXYRMBoKUynNNNQqm9RjRN3iSybMvrsbWvaS3WNxAEHVDffqUiyEtLcNsS9J+YhN57iP7E30O5JeHU9RIIEN0EfetHkPTS/JvHfxysNSJr8tm+BLp+2vtrTnz4Q0B+7me/9Y2vf/lDz3/4S+942+ueffjBO2+/sHXuplPHN9b27p6fq0+OjgT8lko+CB8McLcEGc/s29ZcbVQ6wNH6P2hhqIUDnlkHO8/cA4kWRnhLW9cF76KBBz21yS6GZL1zvA8nHpi0sKTQWtaGqB5qtEAjm2kv7LFonfbWtwgCPWm5Sqh1os3cW1Wv1kP5bDbDM20houpdygM5C8pa6a2fMyVVFfctG0aWcYlyS9MKcvioEQ6hmoiPbm5ky7lg84BKJU2WzFNFs75n16Eos6YqIT8LreR2v3NB2LlYczA84AuVAnHaHFbM2ZVy88z+s2f0dPVYMbPx9mp8VMa90xOhsaqEISajlg/mj8OmM6YHxjQ7UF3ezSSWljTOdBkQAZnp8CQDftonxu/O3u9DSHM5ZNlMlbV8JRha3Ku7+UxAK5VGcsuZgeiSr47ITR2Brced3KFbZvM2lRMsfTHXPMRBcWsjg+FgJsapEY+juTp2+pljd+9TUXckc72RPJyUnUY5sLSRNRFl2wmac1Pp5K4Hhe42AwOpIat65hgFyAMgBYl7igiEIIle/be0in+f3EfeANVvT4PEoItE80QjQDTYJhKjTKLbRCFEU8jWDl/FJM62iKriZs9hiU0ihC08a1JfHRO3zUR79a/kVb4Iz7rCTz925f777rnztpvPHj+6ujw/WxlfOjWp81AJXC5EJtvWZ7et0PVKV98r9eo1AxKeD91pDLXJfLZ7zjOpvt3UO0bYtoWu4XUMp7PAsxNpMtvzyNVKZQE9djDlUM5ZdTg1yeF57imhtuvo5+4FS0plVSt56LerE8ysJXPFXCI6nqupEA3ZymC6ZOkSRqmiW+HowbwS3BUUg+kH5m3fniUQ7pTmf3Ymuflo3YE/LRjW3On5NQsAJUlh/+JwBj9Nwwg0HlhJoUJPg3Vs7b0W4EAiGB0aPD9rKu7a9EplsKAFq0slJvuDVC9MJmxdCNR1K5TMFOY1OmY6ojxdXZdxZe9AbPWEDTPJ4drNtUhack7O3BIAAISJh6uEkn1X/wU9ib9BbiGPkDfCu5qRO25VKfBnwdBOgmocBFllq/eCAStrXzNaetMkKHEJ+TaRCAeJe983VYBuEUUHzVC0LUII2ySMWWvEMDpAvUZUdYf+Wa+ST88Y4j+m1zPY4rPQ58MIkRjZell+L82lOfvDM1CJUMXZPh+57W6awTe89uknH2/ZxJkbJkuD+WKhPJw2eaIEHZ3e4R96wN9W6x06Pdk7FwpW+9daEB/Y4XI6nmUUO+4kFOpxCtVrta4U4Ya6FgWeUXiP1nGwiv96+KOu7/zxhDlrwm6NZtZiDT8A6owqkuC+JxdTA5O7xtLVE7eXJ744rQKTwo4la4LGKOizMycv3Jiva3puPJ4aCaB752hCTQVqB04tzjV00Mc2942v7VMibigz8uyhye9+Z0gSskS5mpUdwOyj1F4Nu6tL3J4FPpPZu8QkgQBUYPDA25NGbWJutTa8N6rfFwbkQtJMheqZqHrL5UurR8MS00AyNcaGTBYLzl9+eN9c6pxwTa3yxLn6sWGOivBNPX/pha9KAAgEyejVv8Q/wl8nz5F3QubbBhAdVjvB0jqRRIs/3yaqoRiq0sI9MJRbzNYSTSfatgd7sgd7MjFU2fC+fZ2AvkWEaAcXlhe+tAHRRk/3Ui2eqz+IJyVComLr5Xjv5Nhce0lmcPmVcGtpZRbI2976zFMPPnDpzttvPX/TyeOry3Ozk5XSUMCvKeQ5eM7ibqmRuaZ7QS/QaWNvL39q5K+hcE9fdwQ/3vFO7e5FKb2YRvCQp6ndNKp3NtBV0uvXcv9kIdNi9G+F46YGM8JX3y8DDX7lyP4tW4jRL2oAAu0nD5ZM/QOgrIwEnHi2FEmmTEVIiqEHHDmtq4ZmpoWwE6sBXpgYmGVI80rdlcfilaxALZted3QWuHNmLDGlIvrnXB4vyxQh+qsRu3CzHMwPD2QULGSZZuvLt1bKbjQRetcCQ6olXHnj4Yh+qyGNHPLJyWh8jy/ITFWhCFog41NDKMnaiN9nBa0YKCOlY0N+ifplpfVmpXDw4lgyopq7kv79CWHqUgL1vcMGoAohRGCEUFK4+o/pP8V/RnaRL5Cvw1803QTI8PzjyOhrQGFv2UChsG4osmYAQUAC2wRkBPkykSnK9DJRmGCK2CZCY0K7TChhCmVejKxzTfeS6Hbq3A741U2iqrbaS1V+bCzdNkvjx/8qoz/uV9lcfoXcOFG5erbPFDs+IA3kC5/79Kc+8qF3v+uxR44f3b84XR8diYQcSxFkF+wyvQzDs6BuTuBt2UzPdDoBUNskQsHeIs/w+gGQt0HfdDzTzF7LRDq21FncWMBqpec1RLVb+6gEuobKhYkd1i369qkdHqjSNlSoN9ovjf6p4foYKLFiam6tqA7OT15qDuyaPxz3U8AwZXIUzLGTD2yCMjjziyeEkwiU9s4NDHznY8yMny4OT+4pjAleyCyGuN/gVvTpuu0LThci9VH0dF5xhoYKI6hFgzofHjP1FKiBhgnUoTg0CMJ2qFRwirlw/q5bE5nmDblIrDQUtvF5xwSPGJ8TUjzKQJGjAxx9+XNj6ZHa1FAMgxR9ANw3ZPJdw8sbJi+Nr98tA5MTUVn57u+YwqcPRAfWxvapXHVjMqfcipQFQmzgeC02kwQEv5Dc8anGeQkZKrNhnjKslCsBlCnYpiyFIsBhqZhIn4mJYnk8F8BcIAJMD4ASJkj0q/8I/yX+IXmCvAU+2TTfAEQ9DSgvgsRo137rXvZKFHVLB0JkJPIWQSIYinZ6y5nkAfl1ublLe+H/K6G229TGq5JtvirZkVchu1n9wYScUE7P9um1bh0gBeSZp67cf8/dt148d9OhA/v27JqvVRMxQyNPwBNGyyb9lZ6Vte2sl54Ifi1g88yJ9z3dNf/YudR2bRnOXc82u8bZyVC6llWYzPazmX5k1091YLK7334Ff1SicjB1x+ide3V1haGInHpuz4KNcnm8SR9Ot04IYMGgaeiRYDiaefO+2WOmCBmdTF2zAYGqy+OuHI0lR0pBlNRizlTGZikNpm8aTwcHl0/uMWRVtqMzzWERxplUshoPfZC7H743AAtMSeUmHs3fqOOcKcdSDxwrBjnGlfwMPuFHV0ZmxTNpJze3NzuxOxUzfe640U7AkQumcTeMPBSaW8szAXJKYLkgs/H0eGFkcWqPzDTTiJ3dNe4zqnDCrcaTv2eievDzKUKQJK7+Y/YPWvbyFfJLeLipIhCDgU6waysXCJdkicvbBC1qId0m1LGoc5kYDnEM0gJpInEheaEQU2UvZyUWqtYWcfxAdIdsEUVpaZPPp20STWvt6bq5SUzTt0YA7E1it/56TvAnL8ttyzL+Ft9X9G/tfTXP/iAxGvEJzbf1g8UBscE+25Hak2V23GwZyDe+9qUvfPLj73vXc298+qkHr1zcuumG40c31vbtnp2qTpSK4ZBtyYJ8Bb7itsPbQqbjNOtVz8IyHR+Y7Ue97Uej729rXXPk2c5xr23Qi3B7SVrrRKjSqHbxoettMx5Z16V7frjhUQe7Lraf49UyorXouvJgB0l6YBDqAtIF3Zaq0ShV8fCV2VUzc8cUE+gExdGf9wErSCgBCjEYP667thUM+TQui6BaH/UZciJva4mJUdc5OB+ngtHKJyA6MK3c+vwhObxKtdGb/oLKHKTobn91urLY6Ts4DldS8ekJxdkWyoAx6YumpmWcW45MPTsTy14IUEkve0jDKnnVWX58EhUlJt61q7omgkOGAPOTR29Wo/skBTlVtyMU2ZhEOSKCUjL9KccMRmKWxIW2FlRi0UDML2kh1T02FzMVefc/ANBf/2YT5229Nnu/AzB4Jn18fEw6SzlDRFUrRhsaSrdGYoWp4HIEQKPHLsQWNm15XtFNX3qshUQ4lpPin9yNABTCh5sEyezV/0a/0cKWo+QuUmoOGQQRYPVCpUjJMiEEkIAXHPYczaEDjWyGeW2kyT6y5zsxV79M5X1bC9hvD/XcRaObzDTqO/IoC3nXBeShXttZCgiFen5itjbogbchC4gmarptHzwWd+OnUTv1xu2nijpliqrK96znhwbl5fEoMkojVKJUMsPbM4ace2jfqYMTqzLgv3GAHn5kVguMKTikUpXlmtP5/OzQbOuDYYgiaFpS8EQsmpaSJw175vGV1KAj+RUmBD9+oXpmA8O708NBLUxRlX1JJxGvHDKZVt9KDacGGO4zIDo8p8f3jwt7zGUWn7nlQCFPKDnzwm+xS/iH5FbyMHkrmW1ORYHAs49MUIa4SoDAvR7G30uQ4b2EUcpOEsa8z5vRg489ur46VR/MBH2SFxx7dtX7RE1sPdoGu/Nz3fmxup7Zeqf6DrsXy/bL+F7oW2t99vl+IC08++/noI3GAoLbQ4ZGtneNHVNBMOp77+HwAFVlpBSBi/HiqAIMAaOcSVw4D+6xZOlmOrXmkwydSrIZqt/hp0hV+tjrj85p/oMol+ML91XvCFmPU5Yr67FdQ3edfayKcOjW6exunad8NLe+cOw7vzZNBZaW7t4AZJvfmDDjDPB3maUwalx6urDIgw7jMkO08yNlpvlDfkQ9MuBzfRPnLWrID5voGwpx5IrfV0hLlFKVvfWmaQMXXZFZCpQHrJDkPs8RjJnhRPbwTK4Sy1Ywkiknzg8H/AXXoNMPHjv2nZ8ZBT597hYIlqv2pI91PPM/Yt/CPyRfIz+LV5rBx0FTn4RWQgS2EgY0oqBjr013inDZq0hsEwMQDGy7FLmL8YqH8QqxHcVuYbwPLHAsD+NRB/QivnZGdg3pXa/aTDYJIS7pxbw/Gf52m7/xE3795k/49Ud+oq+/efR7WKtEE6q29cOLoKT1ONvnb3Zj8wwhP/Xtb32jpV9f+9xnPvKh973n2acfeejSxUL4YqScy+aH/F4FNeOlor1AulG/FnHv6B14gNzF2Z0+POtmM300uM6Lt2ho79R4o9Jx6r2IoOKtbl0reMI7mMAt3Fnn6iHPzuptljc8wR6Y4K0iQHHXxt3nD9T2Y9dtBnSbNUZcX6lSXjywIiIOVXPZWMzWbX9ANkLDBjqITii5O0jlVMEnx6frIsQz3KwPM+Ry/aNIkVl5G2QUm7cNbE+gSm2fZaBOs5sJKSHGH55VqUgP22pN47U9quNQSXXih8ZVrToVNUYZ6sNqJKwrWQpFduru1d1DRb/Vdp0ilEwIqzJ67tJJJR5gTNdsQ9fCcVWXnWkfCCmRq0uQiIRjBjcyLCyywqoPo1+my39OASDJOEgzbxtZ5kANQwYYz/Ihee62FNcy4wtjicgUhk6ZyI1g/JBGd9Wrk7Emp3NaFoRFKDGv/jemtZDmCnkdeS/5g6b12idQVfyg82EwwEubQy0lXyIouEDuaaBAtV0G1YG3y55k0wRCWkqsKO3KfGsPgG5KDNttZ8Po7Xvp5L4+I5koqqxsvTzDl2fTrq++6x3Pvf7RRy7fdf7mUyfWV2emKhPjo/nBRCwUIFfgildfhZ1RQqZblAn2lKhXUe3Onrx4+iSURK8ytCA1Gju6YfWu6rU0M+vRdsdQqlUvKvG20GR7QoWKzmHLgryVPdWdpF8vTgyVDo7HZvb7QDnkjC4bsHoylVgrCyckBm6eKGTi8tSJiLpr0c0ntJM02Ay1CkIiFgQctoyQGVISUjL6pqkok+eyw+fyCYmpnCFKNHs4nRwMpZpKLktTebFS3zWW2+WEFFb+daq8aWPKgu/8bxbU/RA31f35yCT+4XC+vLCnEtNCNjPuCc6OqwE1PKNwSS6tODpISUWKawgso/ARk3NgLGPpYSellcTwQiqnuPkTkWxBSJbCAIsDyf3JVCSpAi1WlTP1XWH3SMjmNPrC/5Jo7sDcgvTdPwMQuso02dYJkOTVP2K/jH9KniHf/fZJoACrnSbtOKEggAqvPyrdR4QCMhHyVqcsQQjfJJz71ghiuzflsl76+KPR2W26+CuS1xx9GRIkTEJ2HSnv9GwJab3Tpx9/9Mr9N589uLG4Z3amVEyrPNAdmrq2efGrMBHbmUj/Sgd7RU+Xueji7wKtVKtehf9F6ttoL8FreU+tR2Zib1lvwOqQWQiKucXM7v2FpU9d3jvAA8BUus3+VagWi6CUqb93z8SeqaAqf4nKYTo3b5Yq8805SpXsnkScMpC4bPOiu6cedBN2sDY5nTMSo9byvxkVSm76Mwu84JwaCx/cO5TMz6e04HxQVNJOqBgcc9Dcnz18amjx4aMzcRUlA5/lL3w1vV4Zo8XZr29UmlW/oX1AFXRlw913/oGbTo2p0lw0TwUiR2nCvxBSHP/Y6r6DF5t6bMI+/sL/ClEcueHEvz0uIGEsVSI3HRyKpzICU6qZnPQ7bowQaNc7fgb/LjkDRtM3DEiXgCMC4QyA9Cr8eYKUUw+huAACnGx1+k+M2R4i9SbgPMX7IVe77dXGj8Q7+iPwbma/dyEQCaSz/fWsk8EHgJw+eWhjZrpY8NkyJ2fgjNzP1HuqSNqpc9the/jp7exom/KAB6W9LeOlB7XaZFv1elnAixNrL5GeGXbVlRuKG1CW0La5NmFLAJL0gTuW1hUqSwztSOjo5kcvqRQzyJQCp5qmf6z67N3RoLbVT37XRCgZR9+NpUvwZYqcOYcPxp+MFZOUcRDyX15ayjKFZoDJuj31xD/9e0GKyJ21w6H8cny0XrN8/3zu4znlWs5KCJJzrbnIHP46SZHXkCtNSwKO94HEpzSkjHZ7lznCJCox6jUpJcYlL21tx2jt2Yx2zdMH3rfQX0cIcoJbvfU7Vp1u2nfcdujA6vJYOZsOugOihQHQz66E8J66NYt+0SLUn7HoD230c7PetGW17YcqhZ0zTa2tHyHt7DK2XRmeNe8ejSGfHdbd6Fbj9k3FXT8J2vErz+/+8/cn8mFn7cDmkakJSy+UZuaPhxXVHCgrqJnU9IUCMgJa84aSPjncmNIZQoYiF4Fdx+7KDijW6LxKWXBYBvz10dgg13NLAYkPNBbfPH6DCfTIui1ue+IrJwfuWPfreuX2Rz46N9ag2kDp5IPrEQUBVEdBRjWDq7IsUXmCauu1pcvrAUCTo5q89cZHVkIKlgoqQ9RanpAguaGVLQn8A/Jm8gH4103fAUDigorPAoWHQBasX/tHohJUt4kKrcdlDUACKoB68bSseCBOCDvdGXpQlDaCu7yXB70SartNbbwq2earkh15VbK9KcTqD6ZWCFf42T4TL3WZvo6KMEKQka2XouZcOdmVq/CDpzsZSuzd73rzm5547MErrVmn2y+cX1temKuMZ9OhgO5Fdi7PtrZeIb9TRMj3qgjXDfrtnOi7buajnUuEQvVrBaWeJXariTtnCAOdIUKv0dCR1y2NNLyQL1Stt2XhzzmIwu/TJNR06eHJqZDWfOup03ctx0pCyiQ1PTc0NjzlE4AYQwWV1Ng7F2y5XBVWcaj+5k8EG9bd80Ibo5IiEghsaCL9YFMO+41c7fRfnLktQKXEfMuBRvwUJ3Mzb19ulH1DgjGxf1D7S4o33wbq7OF0BOCXWARpyNZkZmrqJ2dn/VojN3I0uRr36dEEimR6av+0G/IBalEnrFbGli7rWC5Fg9VGtXCXCdoQU5OuoDyJyEbmdi+P7pXRqY8fOb/gweehgBWIouSPRVf3TjbDoahpx5v3i2feAbAxP1kIe8hab9X/7sc/JPeQ18MDTfUmUNgBUGmvt1AlhAAjsCWAaaBQpmwRWb428iZtcpAk2xsW6u5KvUG+GcKEIpji4SyIFgsiPA7iB3PomXKzz0HRhKJdvsaIaFRoPxSfwqt8Ja/+RbTNJPq61z72yP333Xn7DaeOHl5f2bMw3SjkYpG07jmW/kxrIe89ez7iWhd859xTT+tNrAQ80+kU+Dz33ffohWuW0zGaa26oP2lFvb1eo3wBOw4KVpc3dw9pzBQIQYsZpi4X3jNWPhJRAtNvOHxYdkaGjycMLfknb5IkBuOrhlk4GBcOUl0aC+6bD/iMldO+Sd9Ss3F0caJSLJSmkmq2enjtnJ9uNNPRK8emVPyiyl1ZSsYHUjktG0vNNMPwzNTRWtmyYo6QmCxAxCLJWPCBil33xYeH71suyaBG9iTzqcKt/3SDUgoRlCcHFdSrTi0oBoVfcnPpciakanGLBwp7LzxxwnZrNZG4Z7WqvvD76FOFN26JqgKouhQJu/pCS+OvtDT+feQL5BfIr5M/bIYOAvIPnjjgMobVkRTVmdwNNCst7VkkDHVk+rYFhkY0r0ujKyBTXfbKNpJGvZ4sIaARL+Joo7K1ZoIQ7d7PtVmKvd/LhxNkHLdelt/3cDndTD7/xW9984u/8PwvfOLj7333W970zNNPPX7P3avTI8VSPmPzWKnRK8n3Gq0dCNwJur3zfcjtJyw7IbfSuTGkE/OI0I4U3Wv19jHdE9Zi3+XXlpMVvK+O/R4wtKe+eYtTpfvC6I7cvjHe1mXRimhFRjw5FFEpQ5gejmUPPfjUucaiheHJG/btf+3RRInDnmAwPKJk81FEyKKCfCnp37dfUsuTaB1JRt/+URoQ9y8ZZS6hZcgZqqVzS5ob0MGWx/PCJ0tg+IM5ziSsNUMAiGHdsqaeOF4cSfn1QxlfQA+3sh/8pk3tqbVx0y/7KahHJ9NjisETxzM+lVIaPhAxPocUAPDhQBQA5WDULnzmp8/P1AymhELlcwMbCW5Mmfa8URwe8ikIlsP04vmSs0eFcsmVjxxJ+i4ZkBMxWwVJkZXcSFAvt0a7W/uBUDRp72uoybAlS4InbcOSNjYHFQHAwjc9UwpqIuMLumU9HIAvZW1mVM5sBIFi/MDEC28Vkigs6hxR38g676MAnQ4y/Uv8DXIjuQzPNK3bgygxBCIzANIbuZggCqdc8XqSXoTMvBFPlCXcIrIKBGSy1dZsArBjSFX/0QndNqHxSiVGX6lEr44w+oMJgQgQZz163h6r4Aq/lyhUuff7kAgBJ7vCQBzsBkZAbj53w6nDB+dmJivFXCrh9zK5G+FG7fpMrjOr3c8RWls12KmFZbKZa8FT9bqZ2G65VbxEizSfESZ6HPot0tkhK3zH3bmBQkBYD+2rq5AtX7nhiF8CwRmCRJtPlSct1ly4TY+kch94SOclru0eOnOH6fimIlJq/M3vkhM3RtVuhkdPCtcKDLuBwpT50KIeja2JUDzFQvcOlWtRBXg5W5SMkXy1kKSS0BQGuVi6rOljAwMDQ5N/4cMxJ1S+MbOaY8HgWlbKD227MGYHDKfTo9yjyhIfyeSWVtyJE+bwBAFy5uo/ov+6Nfn3ILy/acaB4u2g0FngUk95awRlKrcb6opMlctEUYFISmdOWUjcc9O9sRkhdlSltFdC3CtNGa9GsvlqJEdeueRm5QfSCcIEO9snl9f7Kn3h/OmTi3tnpmrVUjEa9tmqIA/Cg9rOe4N6o3g9x9LS7EKo72K4+D6zQTuLbLW2QVw/EdsJZPINjzrUKanB+RvA/TePcSfpm9g/kxhMtkfyrETEAmctGYgN5/f+1CErNH30ujkgZeBcMnbklszy3sTEgsUFDi5W1GQxufJk2hZ6ORHYV4ohQJQyPTiZOQI3rdt881sWUHkgLCud0TqUGGOBU5PZ2c2Jk4/o9PqhH5+S1bOvL1/aKi5UNKQUrJQM3DzXzPgs2ZWcpdECGjKCH0AJDgwfCDcIAdJoRSi/gn9IHiUHmmuHAPDSqXkqCVzlgAQIwjYRVKJC2iZAvCRt510AkiRvKtAevPdSsvM33zBSHBouZVQeK8HktVHiF33e4z1c2YkmOxv4Hpq8aDq/WulR9IY5Wlu3INXaWjxq141o4uD4kM6PfrERURGNYiGVKU6rjGKcy3Jg757DeqDpR3R++fLsyO411CbYL/IxKqM5eDqD7v1v2hMfU8LUzn7kwXk7Jc3M+0wuWQ6TrcLBFWmcajFraXzvAN06Mu5L4bnBQZDvOZobELYlhQOtkkfDB2DIYvKemVkLq7LtyEe+nvM3Z3Vz37J44f/Iy0UT+VwR45/92rE0KGzkNz97PDZpgDxnuzJKXA1kdulNW3aV0olqRXrq9r3ZBUKATLW+qyP4h+Qu8khTTQKQ88ABu2XyImEUKUPve+IEvMKfRPgtBAkB7JUJu3nG8EuulS6/xOLTTfO2W06e2Lt7pFScdgQPlWDSC+9Mlsm+6MvrtPO6XbvrpgF4tX3K23aOFfRn+ES2x8fzT/3xHKDjyWIWGVIqMWFQyqLnhhX3sBtB1R9PCim4PsBsm0pqrRYynaACmrG60DgyXakrTPLu4Z0dXhwrDedWbk6aijbAzfqesGmB996Hc42ojkOGFRijHKl3TmL5fQqO2IGEIQFTtCjXynclGAqt+S/PZYdztqrvWzv62MxEmrs6l9hgc+ziUq2Y23NywJZ1jsya/tD23hFJ5ohROhyKmwTIaKuXhviH5C3kcPPAXZvIyXAQGcdVQkEBqmwTWRAhk22itJ4U4ZkXZ4Rvde6YlaANpG94Xavs8cD25YvnDm5MNwaS9bTKgyV/y0p2ofdR7wisRe9z7p3rDcT0tm7dolcR7JHtsJ4Wx07H9trYVeMlJrLaHeC+3f77VKmi6c1l3ZYNOVPMTCQtduPh6dP7BdqKbkxMlEujxwWCeebWUqY+HJ9cSsrIJaARVl0aSQRTw6MPbFcsOyhn4tphyVe1HXzsd87FAVoMxcIthbg2mjvlhtzeaFUA1IVJ2UkPxzT4Sz0kOWdXdJkpQ4cWH16Pa3eebZ5fl1Awd/W+Ww8vPqowUFaO1Ypnl/NLQw5HlkGqY+zkejU9Njx644kJi0vaxEzg2+rg0VD4nf/2QhJkJi9ePTfO9KIRivqc9rwUZcw44cNEKJrQCZBbW9/unfiH5Jvkfc13ZwbQsd5ro02fmUCJnFpDVdw3i5oqrRLHopZDW1gqqZJQt4ntAyLZXtbFDJAEk7ymp8a9Pr5l9W+XprS3qwPnHay15XVvtP1DH3jn29/4hqefeOjKvdt33bF17tjh1dad943q+HAyHgpoCvkmfNPfdpU779tzhejsJzHgdlOwbO9epQ7Mtr1m+1zA7babvNtvvStiRxla8BfFgztGaQs7p+LbCtTWxn5d4LrbrybrtU4w2ddWOJsvmuFbd8+Xn0wLwejeT9blSCgcHo87QSYFkonqxsGhnHCpBQ7iyIiq7+WnXGvxkMK4xABdKT8SXBmT7Pq8hqjQgwdnRnl4JWMn/W4wj05ZlbXwlOPbd2ykEYk7PodiJsOCxnRjvHp7cUKDiim78dCUgYBxUBSqpqPHSjKcLWYS6ebtqcTNwX0DBl1/mwKAluEOBS2uMtcdX7lYA9BpAMHwb62oRySRuFtnoKmjY745GehcYyQIKNMDYwMaZJxwdELXcyoboLKlhUXiwuSBrEJDCHImeGHX6PhCffe4pI+iiAwc3E0FUrQGHcsaHc1PyR5Qk+mWP/jldo37L5vmMZBxFbi0DoLTrk+Y64OMJHMh3Ua4aD1fJqoGBFWvhkBkCb16q7IjeDvTDxu9ksT8Th6yxLd/NCbN2ZejBy8WVLa+h88O6lYcmADymnvvuO2GU4cOLO/fs3tuZqSl4LpK3gxv9qq+/l4VoVO39YCtB2t9FdsBe9eFht2bLDo13WyvjNGyiKx3td9v6aHedWXkyeqO6UJv+1C5hv57d715wbpQdExZ1eS7qcLMpM8raiifcSwrNblHYopazldWFopTn9qojO45lo7ESigG/bKgsFLWpZuumJShKaNKB0cNVl9Uk2ds+/DHa6V82hdJTFR0BIA4SpZEQZsOpA5AuFzyyzderO0VRScVD2QCrvZRbol4MCGokjb+d8i1k5miJTMRG5l585Xa2qNRp3AoHcCW9hkuFdEw6G91AIFXhyIReeOcvzowh8ZdB5vFaNIOLO6fby1BO2qrQVPauxKLNgklR6/+dya3sO/r5NfIH8P+ZvA9T4epYV1aREc5C7ZEV28BG1Y6WfRhwpnCeEsLDF/npwM0oCowTtkFohBHUpydv4Bgmr06p2U5a8S2Oz+04MUk3fS8p54H+4yRmBaaWz+cgJdn29zocez9/sEPwfll+XkqXALyh7//W7/xCz/77W+9/71vee7xh1/TipW3bt48ffjQyv49C7XKQNLSyNfh6zvw2tt2DjsHQzujpx749u+zTlITRRe4hYe+7fuOGtXe2ut/TcUrt3VKAYW8NzIwi97RdQNbL4bpxmRP2XvID5OF9rpAzyKgvbrbb4TJ4igog8XabRfRYuVpV4tF5PnhqSnNHbWEak41pqs2Un/Ch4iXAAEAKaqA83O3P21aS5XS6SAyCjjAtcG7qnoobIzOBuyj+08aECicL0/59IXTuVhU0VFCylh0wCyFjfnIkC+RTYTPHhgoMZg1FDcRLFFIIDMZV7lh2fVFGd89OJEOZ6LgJMuDVUf6zmf2VcqGEpvfZSKcLeS9m5Rq+Q0FcplIwtEcU9JW02M6Dpi23x/P+30yQmEqThkFYEBRkqgO8JYzquQfiaPEqBcLji5piHJak/NetBooGUydvKcCIPm8eNOdzziGEw3Z4aJu89DhgaUIEyOMR1Nz4waAz5IN15fSAwG7ZiJkozTmVMogFDOQN777VS0okGpJRpC0/mCEXOj+4o/U+cWfiVo1UG39u9D5Iz/0OiDe34X2Ov5NINBZ4137/7M5aHIAAAABAAAAIgDQAAQAAAAAAAIAKgA6AHcAAAC4C5cAAAAAAAAAFgAWABYAFgEYA2gEvgZJB6UJiQshDU8OAA7uESMSXhOZFKIVhRdPGMgaQhuiHRkd7x7JH7gg9yI2I/kj+SQNJCEkLwAAAAEAAAABAADL3zPuXw889QALA+gAAAAA2LKZCAAAAADYspkI//7+xgTZAt8AAAAIAAIAAAAAAAB42iXIAQYCQRjH0d9+/xVIB0hTsZLIYqk2AQQQFJBBMkQIOkBAIBCgU3SK6BoBBCAYVBEePCIFQDIDIigj04mWXairwtQKch3o2pqq7jj1mKQNvM44bamlJU0dcfZgpRdL7Rlq/nkr/O6JV5uR7SjVIdeVjd0Ya8CCCEn/jwBf6TMW+gB42mNgZGBguv/vGEMUi8X/f//OsdwEiqACJQDFKggGAHjaY2BiesA4gYGVgYGpi2kPAwNDD4RmfMBgyMjEgAQaGBjeCzC8eQvjB6S5pjA4MCi8/8+s8N+CIYrpPqOVAgNDfxwzSJbpLJBQYGAEAEKrEYUAAHjaY2BgYIZiGQZGBhAIAfIYwXwWBgsgzcXAwcAEhAoMUQwL3v///5+BAch2BLL/AjmP/x/+XyegBNKBAIxsQAxjMwEJEEZRALKSAGBhZWPn4OTi5uHl4xcQFBIWERUTl5CUkpaRZaAvkCNLFwCFtxILAAAAeNqsVeWa60YMHYeW4TK4IN+52W7jsS8z23HSy4vfZxftpd/l9hn8NHLK//poPXKyTKWFaEajkY6OpAkrQ6yW4yghevm7mpx/yY3Fj2O+afNskm5QvhxzpZn9MayG1eqqXrEdh1XCKtTtnrJUmAYeW4Yp3fC4YmiN+M85rs183Ju1RsNoNVr4JHa0Y+cx8dxc7PDTxCa+K6u7SUJF3yhb41moBjviq3J+FZZwFhNA5Bnx6FycQkNyNiqr27K6ndppkiQ2W26SaFZz8XqSeFw1BD+1ZgZA9XAu5roOuKEDwE/YSj2uGQ1ctFbUVwKSk35w+cR5tMrVlgN9SDnl8F1crTeR1nycztnZQhLrBKdPF2Mc2ZLUILLHdcNDodtTlT41DWx1oEGxDjKurGywtQr/XG95PGRIQI6Fq7/X1AqJB36aJmKStkuQw6Y3NKbCKGg5W2SPmN3kj/a9WK6GHhmnFOU6o7UBU8oWNplsgNxEydWmztr9EGOHXOfLuKVw66BL46ZMqDc2Wo1ix9ZO0nI8njBFpRLxWtb2eNLAkIjHwxdyHQsdJDwhuwXsJrDzeApupktKCAysIi5PhinlKfEkSPN42rxciovaWju5zBPr+kePT5iX8/HLxb7SdqA/VepPmkJNhctxMTWF+mUBT7nSpGjdoBiXjwl8sHVWE/KYiwshD9kGeU5l2JajcW1zbffPcQX/pSZBJl3g70K7u1SHFLBQ6pQGWyGrxz3LsspanTKqUJVoKeYpHVDEYzrgUQROA0oR/pfpaUtNqiDI0+Jkw+XvXPsSaDqN3E65Hp8xhSXyLHgWec4UVZHnTVETecEUdZEXTdEQaZtiSOQ7phgW+a4pRkR+aMhn6zOPW+XiK4/dcvG1x+8ZxRPuv8D4PjC+B98EjCIdYBR5CRhFamAUeRkYRTaBUeQMMIr8ABhFzgKjSGPoYdlqnkHY6ZRCgRBKOSDZSL/5hj2XPUzSFUPUpUMqobO7Wp6xIy3QSh5f3SqPdZavtIq6dSaKryZlgtdKZg49vm7oVon3BuysaH8QTBiCH6xXZ39W8tN+rO8W160zyOgm8gfgg/GyCrO7Ht8y/rmHHt8+zhRNuArzOyiJOtskn7oyvKDyeZ53dRfTHq8gf7Yw0bct68xpxL9rgAoDgr/ShEdCdz33NdHDHL7ubR+T3/fBNR2IFXEq8/50Pv6pQlWyf6rMVC8mgbyBwyEGrLTWHUwfqrkHLYGN/mNfCdM1zdUwW5uLsclsrFN5g/beyTQh9IzuoIYaETrIC6KMktJBQbRE0ThJIbmOhqrv8wqPklGzBIHPuf4rtx0LJb8vHBA09ZkBB/ohqHkgauSqA5x1dFeCSbUeir5MYMCoWop9eqgdG5pNJZxtU95oYvd857dvv1AHdfCgMlra+NEAQbhZmlS+nvemuFnKx0aTL6x18DA/TPzCt05jAJ9sqed2qp/utj7Q5pnhu+6BTgPD99wcgaVZgHa/Dcrisw/TcKvDwO5WC2q0uq/vDty18WjgDf8Xrdj9v7pP4Gd3AUvjCdlRbycZYIyEjM38O5K/owcE6Lu7U+4i5TP94ewpmcNTPt/ELH50iP65KZR1+hTfwvqF4TsQL4W1CLxSJweKQdhXRtqRX2L52vTwzmDxBgtLFm9Nzyo1f/VY12YOA0AUhI+hj4sEDRxzLDOzZWYuS9Cgd1aQzfP3JxY7EvpLBvMnkcUQOQyRxxAFzJdEEUOUMEQZQ1QwPxJVDFHDEHUM0cD8SzQxRAtDtDFEB/Mt0cUQPQzRxxCu5T2nh3nA8N6lhlofUiO9nmR8yhhb3kuqJwzVU0r1jFI6t7zXlC4YSpeU0hWldG15byndMJRutaA7LejeCh9vrpKPp2/Te3C96yfnlLxT7DMrcU1jAHjaY/DewXAiKGIjI2Nf5AbGnRwMHAzJBRsZ2Jw2MTAyaIEYm3lZGDkgLGEmMIvdaRdzA1CaE8jmcNrF4ABhMzO4bFRh7AiM2ODQEbGROcVloxqIt4sDqJbFoSM5JAKkJBIINvOzMPJo7WD837qBpXcjE1Afa4oLAJLBJSl42mPABHpAaM0gxaDCoMJ07f8HJlEGBiD9HkQDAE6mBrUAAAB42kzMAQYCURSF4f/eOzMjes8MSQZACAhmEQWYBQSEltIWIhAQYFbQSlpHAFEH74DPwQ+sLWP8N4FsLJlkp+UkB1vOcsWKq1yTuMtN8ScbecqZwd5yV/T7Xz+wagE87CMbG7/JTvZZDg7+kit20co1Q+zlpviTX+IoZ8Z6lrui339bo6rlyIEY2M/+Cr0deWfhOMzM/JaaeJX1JKayZ+nvT1GYoa52bana3a0eDcR/Ni+GpevEnj5HX6jVaPyttRrNBs1x5ToZ7UaOs4hDWs4iEzwkN39ckP/Qamwzmo5sm9Phqt3jo+PdqHSF3+FON7HlQp75hbzsMLVMg0boLqV2xXkKO+CycnlGDdMwP54JGj6ZlD6P9ft9k1ofn9mBkdkTX96U/kp4LpC9RC7FYdB3PqYdrrjscZsujkQbNuV7hzFBsBe76vLrbn7q+7ZkEiBxEWeV6LpZm0vyMdPu8hptFpxdkteUIOmvz9w0TSNmt1qyPesSe5IwaRRLC9PbZP1IEHtfjNTrlUaoTOWSi8z1zYW1579gFjkKDFHCoYMYHoTPiPBFagsN+f1FTbumPIQ5MCrlZiDsCtMJkkllhIIsa28QvOrcxI8b5z+CrQrHquu0sCzaYKSiX5V+T/ojHOs88RNfjx2w+HaRwAq2gFy0XmspOOsUo5lHQM+61O77vJl3AEapm8g1cwNGnx/v3Gj49p2qzxj6+jNIYeHF/0zqAObq3BP48h93f3/i+RXL3uXcmxwiEKbTXKQbq3RPPbDw6eaWCBuwouYXbsYgkN+eODlU97S70p1K19ebEI8rRiI10s1VV/O60rc1AWkmVvUy1qRuolDuXee1ew4h6NE9N2H00WRPziVY9ORxglucIFHsditWJ05jW3uPEQSCe/kV0tflV93ZQgWj05ObPdexKfq1j2j+AUZRXJQAeNpswYURwkAAALC878HhzuM2HYPTBZqIwP+nGzNBECVTM3MLSytrG1s7ewdHJ93ZxdXN3cPTy9vHN8SQQg6lDSvNyzQwcDQA0a5ubi5Q2hVKuwEAunsQPQABAAH//wAP",
"title": "$:/plugins/tiddlywiki/katex/fonts/KaTeX_Script-Regular.woff",
"type": "application/font-woff"
},
"$:/plugins/tiddlywiki/katex/fonts/KaTeX_Size1-Regular.woff": {
"text": "d09GRgABAAAAABooAA4AAAAAMnQAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAAPSAAAAE4AAABgQ2JZAWNtYXAAAA+YAAAA7QAAAhobTaO1Y3Z0IAAAFnwAAAAKAAAADAAAAABmcGdtAAAQiAAABYwAAAuX1RTb8Gdhc3AAABogAAAACAAAAAgAAAAQZ2x5ZgAAAUQAAAyXAAAYrO5FPkxoZWFkAAAOZAAAADYAAAA2E2h062hoZWEAAA8oAAAAHwAAACQGkwLaaG10eAAADpwAAACMAAAAzHYWCaVsb2NhAAAN/AAAAGgAAABoij+Qfm1heHAAAA3cAAAAIAAAACAA0Ax7bmFtZQAAFogAAALBAAAG50jJ4LVwb3N0AAAZTAAAANMAAAGcu8W4hHByZXAAABYUAAAAaAAAAH/i0Eg6eNrtWAV420q21jkzGskiW7IlOYljx3ZiO3HQWAxs4ZZxy11Ibm4vM0O/9rvpMjNT+xiWmZmZmZmZo74Z2c7zMvN6PkU0+c//n3PmjGYklCqSJL0RXYlIiqQ+j1GQcLJctat2sWrnK49erFTQXf5KBZ4lgfTY4Bz8G9knxSX2nBiByXKz5jSrnptQmB3zxTlfwMfefm2Kac98psZS197+k9fB1DwjVH99cO/gfm/UKWHzMCVxrDzHmuJYLseyBdZQApV8rlBvNBt2rFgo1hrVqufA1G3XmaaK2tOfrqFqmhzyDcE756ki66+FW+DW1+qySuaDd3DEZnAONY4Y5YgR4IjQqFY8l0kKC3El+JSqR0wIjlFm8jP8K9lsmBr5yemIONHTHOPNnNX9OYbCMUDiGHG76ub58eZXPparp88o/eRppZ+zpaGwleBGigWpWOBGfU9CjZtgNDgGwC8UCv8avFgzjQg9TdSoEfnJaeEDLzgnvb9tjYCwVudO54f3ylc+loyUfrK3RO/B+13KWX2M99vD+02EyhRhjLdirc5P/OCtUK81mqLVxFGv1cMb7sVKo1Kt+iJKTGHixJvie6K5Cd8TJ/gYM62hhcGoCkAhPp3RDEoNLTMd57egRotXOYBIGVpMHd2hy8AyhR1G9FjOkUHWd4yqwX8yvX/cyT4tWbxMA5jIWpQyw5RlamU5Zf0As4rJs+nEVJoBsxw0xlPWU5/ASplCD2UD430p9oSnWqlxA50uvbu43lLol2ZFeJU3P+EKvoJ0S5CQk3ATrsJE43EW6sPWvmqGjuLP+d9xzPOLq2RZNlfEGttGVXV0m9ESOrgwmGJA3Ol0ggHITu5Y1Dg+KFQm7k4VBgrZC1yonT3bEppZZRLbIeaqTEfk07LOeL/OLBMpS6QTPezxT2CpvvEBRjOTLZmVDCBBOyrB+R9iEWv4RcnjSs0wj3I0L8hWmw1O3aM+11gsDILPgh9BRIW4szX7IAIeizAKcnAen3STE0PQtJKzCx9DHVMGcp3ILcADOILvlooc2Q19GCamaNVKsyncx7MgTFrR8jlFEXa50blpUx6cWjskR9Zu0Ay9z7Tuss72ekprB2Wt9cTCp1SB+b0UahGuk3iaVpUVp+ueM1h+KxYl9bfQFnzld9S2/D48cD7o1ga/pbZA/6OIQwBJwggebVdNuVU1s3Y1bADlZ5fx6PK/iUPE4hreu4yHpQTnq4d8myKVXTGA7bwthiMfrLBFVnbcWzYWdpplc+eCIS/h7oh+0ySO0qFtRqDCD41tQ3QUR38O0RCIQ9yuSHZXgAncOrcAq9pAezrI94QfBmob5o4VcMFxNUd8Fx6ShkU9bnEUDhU0C2GlUXgd5GcmDLRIMyZoc+InVUr3PGU4Y5JhbfOcBmVjYEyWU0WjrG3YpA0TMzP8FLwgpkTOHUvqchlsOVdXn/98eJSRm2PqSNkILocr1EZWtqEs68ljLT7A+RwO+aQ6CjmdcEjzguwLyw2hVxASDIVoTzCGLgKgzW1uM9jTxXLThq/CFcHlHfvwqOc/X63nOvbPdVPNNkS9P8/ILfh1aZCzSVPORvb8qputVwWZrB3vuuM88vWsm+feIY6xwwpebW2OkeBKWLkmsc0WmbNKw8oTqrRUomUxg+0O9nRuykqZX2FPn9RleUjMuaHlX2GL0/h50z99RcccTAtzAI/o3AjbP2+Oc9hNFlaMg7SK2/4Ct91cqcONbNZPo8+HcejxbM71JN9TIFGttMtulRuXB8RwC0d5bQJr6wn8J/zHsOZrmEh48zPNE+ngW/clsBEYDR75vo9FL5u5ZrVmlqKrreBwcJgwAi88fvzFLwL8Kl7VN93PYM2hRFxBIMEGjLBgLwB1Bo7GsuX/GgFEhVD88JVXwvnzekx47OrgLPkpnz1SIpMVkTkVnhZSU9QIFxgyXhmKvCqE5yYocOJigAAVg0fpS2ueuAGUmMHhYk4Wenf86OtfB5rVdIctv+jW4KUP5N2Xf2pYvb1ruaWHnf+W9FK8XkpyS0rLP7wMxcLKU1+HhXW0UavVH04HZADi2AQAF6NRXH4qRqNaJFturtkwvWFNs5yNSBIKNHh8iDbFa8pArwL4KxCbv8nMx1vXtvNrTGq/ion4unk7LpAhaRPXNZPmurxKe7ZVEq0a2+hqlUbVExU3txJzUXJF704TRPnL/SOpJKiU6DTmx82kYUetWC/t2dKTxqg8MZ0KXxMatb3RhGFqViyhmX7/VG96S9p4eH8ibQABBA2NiFWYfMfL73yL+9CJGAOyftxLtV4jyKpR67/o3i9d+p/aBWPTSXPa7fMkFIrIy0JFD+C+vdfiTBr/WKoG/+K+gZvbb3Vqe471K/6ZkmjM/+M6NvWHBEUiIipysh2Vd0naC97yXyIy5I8YmX/GF27+C4261F8qschK/Toh3Szdh+fV0h3XX3LPyV+VV832ZBauF6axyY9fG1v+z62lE7+0UFEs+v9hjtdEjzxjLjdQFyg1/lnihongVjjKz+dBLEpkasIGX1V798tRmwJoKvzy6MQ11e/qiDozolo7Ut8DAIKj6yeHAOU3jA2ogCxGWKxQ//kYjr12GIkMua3JXDa5P4uUgiZvn5Z/uXdHH3YCI7xvNtfpax3Kz5QTbWdjHQCMnbXxjXFGUxv7yhfEKKN9Wx7kyoq1rfX9opAIfl1Ki1W5WFH7LX+25mPP8YUnW5/qSCSFzcd9QJhFvccz8eyePZh0+MXgpQ8KvszMH/XYjKjkkcR1aFD9wuc1aicdcgIm4WE//ZjidNsT30s9KObkWmgIGo6IazXMAIVhZ3lAxrFYaPqOZxHoWX/5qpEYmp6TxD17zqLlWrpCjUcN7R8GxNc6yTj96YefDpWn3TZKnKRNtc9/IahSW5W1FPzPpd+8EbVuBuOcgQVCcWjKjvHwcwKCTXuxYrfm8BrW28sUkZnkAdG+TATBeMEpOQIRQx0bW9h8UAOMZNI6orXqwM0bplfv1BE+NNDPYB3MqktPNwFA791y5FY1eGXwWtY/cAU8/XJz35oDmdRFc2bwsm5eY5xXbmVF6Ntx3+sMhmbNqYuHITPRQhe1uG/WYv06AYyevrsTv/nAKgvRTAmi2sHtF5YWi4vbBUmCn9X65OBlwcvNI7eZeGDNflNQyfSz4LXBK5XbjmxPalpy+5HbFJiFdcxq77m8iuyT5J/dc3nzD97R2nC5tbVTAmbYp3unxPZ+UAq3Seh9fgWO2LkphTg/ubX0S3FsjlP/XOkHwVvoffh+iwSwSpLgQrG26+CIdR1fSnVWc/PB2XCPKNHJaKj4CULijhvGGbHmOM0G3BjHU6dPn0LbZHjnqVN3okL2OUrwqeCTvH1KcQwF8pBWIQ15xRC4OznuTW1cox0fHhjHSSC28iQeJ7gT44bcAmSmHZogsw7oSvCx4NNq8OngY4rhKJCBAd4ykkTEVzxN87hn+JpqI6+Gd1lXGYwD4bzbqeh1ylm7jLVrYQNqK1nJEivLa5HEQ2JMtWoj3HBkV1Qdy934ynrBgFzh4fOH77lwYP4RhVyu8Ah8wQeeECl7pfu80gGwj97tQQPDzdGb/ttlQaKcHhwrbyzjW/KgJB5y2e6768XFu84/vJDPc4i7Li4cnH94cOA/PuuA7L/+YdpG7X4XXppkevpZdwwMD4wO53MjI5Ikd2kbkWrSeq4vOmvMzTTqE+PD2TjIv1mkH1Zs3pRsvJAv2tmwKNhZ0d3zoZm1eadfK/LrQPCSo4/yAG640lBluAG8R+57S/BAsLbWHrof3grBA+VHvunXCX3Di0Gbu/L5MlxDROfnX7nmp++HG+Rbj83u0eAqmUPZ7/hZtWPSGmmbdFio3b9jw/rKb6tWbs9gYh1dLECjWSgq7ehCscbCN2Lyq/GXxfYuYVgYfq0HYJMI8kW7raUzZ5aso0H6zNLSmcgmE8DchI+N5GdynXsr+O6ZdVt4n+sTk4nrj1q/zismyPY6TUBpG5YvFdDmkRt5Jtx4BL6ngwDtPLkheNrS2i1ntI0morlRk7Cr1h3k3/vbmznA37XexWvNamsLsSp86VZbDs3nxV/uVOHSuvDtb1kYz2VukRWVOT2afCtLetpsE4gfs3wCzVnN+x3LZtDotVdPa7rMSFybXk2NvqTOVq8hVjxukTWrmd5V7/vErpOYCWWmZDnrWKhJiLazdqx9SSK6u3x1UkEkmhYTE80IRjJZBT/UJ6suI09lFtPSLNgSbIEXwgtZP7+eEKtW/oNRafFnd8Km6lW3yo/F1u+37weS+C3ytlJ9RR/x7v8AozlAwgAAAQAAADMA0gAFAAAAAAACAAAAEAB3AAAAIAuXAAAAAAAAABYAFgAWABYAPABlAIcAmwC+ANIBSgG/Ab8B7AItAloCmwKyAtsDBANMA5MD0AQOBGkEngTFBQoFcwY+B2oIMAhoCKkI9QlBCVMJZQl3CYkJmQnFCfEKXwrWC2sL7QwgDDQMSAxWAAEAAAABAAC6weBlXw889QALA+gAAAAA2LKZCQAAAADYspkJ/cz+ogUYA1IAAAAIAAIAAAAAAAB42lXKIQjCQBSH8e+9La2zLFgvadgZtZgumwWLSXvPwpqwZC/2ng6rYE/2JAdD3w0nGH78Hx+PxAxAApBAImcz1RWNXIjfrXXNPiOBuvdLHQL9Dfp7UYloxzErKhaDK01WTvDFk4MEWnW08rA+t36iGe7ln9yiqcfVTrzt1oRygx/9/h1k7OADRvspE3jaY2BkYGAO+reIIYql7++Z/2WsEkARVGAMAJ6LBnIAeNpjYGJqYZzAwMrAwNTFtIeBgaEHQjM+YDBkZGJAAg0MDO8FGN68hfED0lxTGBwYFN7/Z1b4b8EQxRzEGKfAwNAfxwzXosDACAASxQ/yAAB42mNgYGCGYhkGRgYgYBQB8hjBfBaGH0DaikEByJICkpoM+gyxDNUMtQwLmI4x3WFmVhBTnKg4WfGi4mUlQSUpJWUlVSU9pcPK3MoX1F9qMWmxaLG9////PwMDUK8GUG80kl4mJL38UL3aSgeUOYB6X2gxgPX+BWp+/P/O/+v/1/zv/9/3P+ev+1+jv7z3f99rvNdwz/me0z32u//vfr/77e7Huwl3Ze5E3HC8pn1N65qmgDHQBxQARjYghrGZgAQTugJQkEEACyuYYiPBeHYOTrzyXAzcZDtdQoxBBsaWhFA8JGjn5YOxANbHSYoAAAB42qxV5ZrjyA4th5phGHxBnpr07ZuUPcxsx8nwNH6fa9Fu+r28+wx+GjnL//bR9shJc/dyQ1SlUklHR1KFlSFWq0lsiV79pKYXX3Fj+b2Eb7o8b9MtylcTrjSzn0fVqFpf12uu57GyrCLd6StHRWnos2OY0i2fK4Y2iH9Z4Nrce/15ZzyK1+Ol9xNPe26eEC8sJB4/tS7xXVndtZaKgVG2wfNQDXfEV+X8KizhLCGAyDPi8YUkhYbkbFxWt2V1O3VTa63LTttazWoh2bTW56oh+Kk1MwCqRwsJ13XIDR0CvmUn9blmNHDRRlFfC0lOBsHlk1Uar3O15UEfUU45fBdX602ktZikC262ZBNtcfp0OcGRi6S2I/tcNzwStfuqMqCmga0ONbHSYcaVtS121hGf6y2fRwwJyIlo/aeaWiPxwE9TKyZppwQ5avojEyqKw5a3Q/aY2U/+eOkFODT0yDilONcZbQyZUq6wyeQC5DZKrjZ11hmEmDjmOl/GLYVbR12aNGVC/Ynxapx4rvZsy/N5yhSVSswbWcfnaQNDIp6MXsp1LHRoeUp2S9hNYefzDNzMlpQQGFhHXJ6OUspT4mmQ5vOsebWSFLWNjr3MU5v6G59PmFeLyavlgdL1oD9V6k+aQs1Eq0kxMxOxk4U805YmReuGxaR8TOGDnbOakMdCUgh5yDbMcyrDtjyNa9trd3COK/gvNRaZ9IC/B+3+Uh1TwEKpUxpsRawe9x3HKWt1yqhCVeKVhGd0SDFP6JDHwW8aUorw38/OOmpahWGeFicbbf6y7V4CTaeR26m2z2dM4Yg8C55FnjNFVeR5U9REXjBFXeRFUzREuqYYEfkvU4yK/LcpxkT+31DAzoc+t8rFpz63y8VnPv/HKJ5q/wWM/wXG/8A3AaNIDxhFXgJGkRoYRV4GRpFNYBQ5B4wi/weMIueBUaQx9LBsNd8g7GxKkcY2knJAspF+Cwz7bfYxSVcMUY+OqYTO7mp5xn7TAq3k89Wd8jhn+UqrqDtn4uSqLRO8VjJz7PF1Q7dKvDdg58SHg2DCEPxovTr7nZKfzmN9t7junEFGN5E/9Y7ByyrK7vp8ywTnHvp8+/dM2YnWYX4HJVFnmxRQj5WWzn6R5z3d0xkla8ifHUz0bcc5cxrx7xqgwoDgrzThsai9mQea6GEOX/d2jykY+OCaDsWKOJV5f7qYfFuhKrnfVuaqF20ob+BoRLkurXUX04dqHkBLYGPw2FeidENzNco2FhJsMhfrVN6gg3cyTQg9p7uooUaELvKCKKOkdFQQLVE0TlJIrqOh6oe8wqNk1CxB4HNh8MrtxkLJ7wsHBE19bsiBfghqHogaueoQZ13dk2BSrYeiLxMYMqpWkoAeas+FZlsJZ7uUN5rYvdj77Tso1FEdPKyMljZ+NEQQbZcmla/ngylul/Kx0RQIa108zA9tUATOaQzgkx31wl710/3WR9o8M3y3faTT0PC9do7A0ixAe9gGZQk4gGm002Fgd6cFNVo90HeH7jp4NPCG/4VW7P1T3Sfws7uApfGE7Km3Z4cYYyFjO/+u5O/pIQH67v6Ue0j5zGA4+0rm8FTANzGLz4/RvzCFck6f4ltYvzR8B+KVsBaDV+rmQPFrj/WAHEEABFA0xj1STOcCsb22OWv7WIMLbv9R8XXVH9Pf7L9wO5p/yojY+p5RRBWHICb24QGIKw5BguZDkaQBKRqQpgEZmhdFlgbkaECeBhRo3hRFGlCiAWUaUKH5VFRpQI0G1GlAg+ZV0aQBLRrQpgGGmLfhae4wmI+qrqsnVY8zw/CsQ1/Mu7AeMLj1ELn1CLnpWMz7MJ0wuOkUuekMuelczIcwXTC46RK56Qq56Vqcy5Oj4Ofp9dq8MMzjq/gu+Kbc7AERbE1geNpj8N7BcCIoYiMjY1/kBsadHAwcDMkFGxnYnDYyMGhBaA4UeicDAwMnMouZwWWjCmNHYMQGh46IjcwpLhvVQLxdHA0MjCwOHckhESAlkUCwkYFHawfj/9YNLL0bmYC6WFNcAJhIJBt42mNAAgAADAABAAB42kzMtYFCYRAE4PntDncPsQYgxiF/ORFWChWgIW4VUAp1kOODbPStDYCI8EDgVRZACzhh0RL/aNIKKbRpjSD6tIEbU/rvZ+4WOaxpDxLiRPt+8v3PfAWh7QDm4kwLROSQlvDIA63QkEdaIyuvtEFCZei/n7lb9lSR9iBvVrTvJ9//yK/eWqOi1tSZIHqe8yvmsUJcE/GhlVKQrwiiVFpL6VvZrlOzbYwhu5q2v/6brl4xpXK9l8uy2cPJmXNmZ1flR2UXmacz06Jukly0u0ma0DU7uyhoZiwXhmMaFUZF38Vp70t8TuNMFzQwes7Lj7G+58enmf3k9I4X61xXw1Xhh6tqwdRVCfXpQNHeSX6gHrhydlVQohLVO9Jl/GObdHZZ17Vaap+96nclyVetk1rfFb4JpbfMtjiOauszumPH1Ybn9HUhutFLPryKiqL7zLrtz9nqxde6YhIit4YLJ2XrYs4V+YxpNprQtORiK55sBTH9unKqxE3M9rWkN9rm+jlnCp1oGg5uSft+lHlf9jsdZypbeqeczb9a7kyHk+N/8B9WKPGBChYLZPAgnMGgJWcXiawLtANKZROuwXBBW4AwgxHMgo18Y2FGAStEv3VO0ds7nws3Fo0OrgMYQXMwllI/Fnwv+BFPkmfxKTjFHVhc18ihJWEoWQV8OCvhOWSo0HEfdMSj3XQ5UfUAlq+DDZkkGSrs3h/OMj59msHnEnVYCktoePF/lfMdanfnK7T+4dSbiW87lT7UNJJjRKK0oS8KE3NhThuw6Gn/QoQbaKnmo6+ixCkSPhPGNSpngl4E1eEdxGGnyOU0YW5ul7YWPA/5FDriUD3CRM4pyqA9dJ40HGLQ91cOfcludNbMJWhsZFvhNZ7lK9zBTHRIHOA2YI8+IuG9rFJwR5aDCe9WwgtWIT3fT7mDqdRP/qbmf7W5WNkAAAB42mzBQQEBUQAA0Zm/AAAAgAicoQh0UQJcdaIMcN73CPy9j8yJswAkEJGnQI0VazbsOBh48DQyYdKUaTNmuZjjzN28BW4WLVm2YtWadRs2bdm2Y9eefQcOHTl24tTZp2a5NmAgimEA2oWHMQS74znCzDj+JyvVM0jtz/VAlFNSSbrvw3m9Wd0uy3gR4nF78Xzefp97N7m+/a49m5bnz33wH+M9NYTJFIUjWMIK1mZJkKFA6ytN4QzmsDArSk7qKbRcTgQZChzCcbRumgrWsPFEcFtwAAABAAH//wAP",
"title": "$:/plugins/tiddlywiki/katex/fonts/KaTeX_Size1-Regular.woff",
"type": "application/font-woff"
},
"$:/plugins/tiddlywiki/katex/fonts/KaTeX_Size2-Regular.woff": {
"text": "d09GRgABAAAAABkkAA4AAAAAL4wAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAAOlAAAAE4AAABgRWJbumNtYXAAAA7kAAAAyQAAAdqK1xeEY3Z0IAAAFaQAAAAKAAAADAAAAABmcGdtAAAPsAAABYwAAAuX1RTb8Gdhc3AAABkcAAAACAAAAAgAAAAQZ2x5ZgAAAUQAAAwCAAAWjK6904RoZWFkAAANwAAAADYAAAA2FFN06WhoZWEAAA50AAAAHwAAACQJfAGCaG10eAAADfgAAAB5AAAArH3JAgZsb2NhAAANaAAAAFgAAABYadFve21heHAAAA1IAAAAIAAAACAAyAxmbmFtZQAAFbAAAAK/AAAG50rK5LZwb3N0AAAYcAAAAKkAAAFCunBaJXByZXAAABU8AAAAaAAAAH/i0Eg6eNrlWAVg21gS1fwvsGXLtmxBwLEMiexwYll2aZOmFGjKzHhQ5i6Wl5nhmJnTHDMzM/My826s3khO2vSY73Y34tHov5k3k/l/zBAmzzDMF4nKUEZgfMM8CwzpaLZkS85aciZ/6+Z8nqjle/PwXgaYk+VzSSd7mIkz/FCQQEczKELGNLOmXShFS5amKgIv8JRXFT2qa6STj7/49sZCYfF34ryUSL4z5fOZv5fKRym/7NlbP/LLX3wMrGGesqFU7h7nmjkHDs5xFj4VYhAnUz4XXoM4CcSRXJxYoWhZmqa7CETIpE27WCrGinYhS7IIn/FJ0iiSFBIg+HvT50u9M5kIsnt9rIv1q59/zPnaMOuD0FPwrjkHD8yBffc0Jj2sCejTI4glIRbPuFjoDVMqut4wAj9XI9dQKmvlfZSiphbgf0BFoolP56iIX/8SLf0Cfi3g1+B9LVtqBo9f3nkS2RIE6+l1FuqVRlFCqOcHj7lMOmsyWbNo5XWNIY/oEQTYBxAOBHlKrilfVyWy/I+5QFikTzfiCJHyucyTo0gUXCQbA4RH5M47T7KzraeetvjXot65iJRBvXmo1+AhIV8uSWY7Mb1roVjCrZsUXBLdA521dFXh3eCFiaLixT0EQdd0xT1UHc+4aSrJ8JIUHDJYACCckN4isqy4JS1wBIAFdXXzZF8gxFOfafSGUURB32bxYvDlCbwFEu41TB8tH+LZ7v1y0zceCVSFl1hUqPJRa0m4OvBw/cSXhyjMmVitET4kcTSs53vFh5u6rw0BLJ9WTSnfdRAgdG1300OB3rweppw0zuMB9Lh+LFvyFYtVZczyinvomVK5uklU6CKlIrof9c6lUrZCUOXURs/lwpLU1bYgxoFgN9t+Sv3JmmUB4GIL2rokKcSzbJAtzBeBQLCtubE94N/bGvO71IA4v4DvWHZrmOM0o9SvPXS3MKPUXMVyQYljw0rPSuHuh7T+kqFxfMjvpyzRF1hB+JGU7zESMZbt7I0n5aavPyJYC3TCUj/DwKlniU3voyyjoZ8+Fv2keTSb1RU+49qbTQs8xixtcvDDZxrgMS5ADOPIxMfpoxOPGAYJkFV9i6W3AM34fenw9OnhtM+fQfYYsoneSR5g2nFUXXbzxcprHmdW3k0NpEXTdRzayyLcMojjISGkqwAdcm5mtmV1R9CcO/+cDsoTQjlf/bLL5rR3xu217WeL50/pIfcHguEUT+rUKjcrfP5ItLlVEmJni3KKysBIjNgMO95n+PM+j8T+Aadx3Cqy6dSpf8Xrct9/zmtmgtPFfo6+n2lA65Ke15plqSkbbSvJKTk27sl0bcvYKRUNZNOxS0UnIh6qoU4ATt8HqqvNksheI57QnC8tKRYH/ewHym8ov7FyuymeCISLxcXMONws4kYruH8eicqpP0V+dt8ZNHgI0QAeH/fkYo8HRBPewH5wHHrJ6eK2I/pkRM95Fa6YSukJomOoK1tDSmd0TQDFSpaK3mZhRLikNwG5QWOyBTQLsoUplKwkKydJyTDNCWhhbvdXO51vOT/1wTcIQPmh78Bb01cM3LRIVXJ0yqTym8tvwlBl0pf2gAjTbpjoPAH0JLnMGExzoUZEnSFRCJQv4wlbfhMQIVq/sbaVf8PLgRCBsNncHf3QTmDFF+bCjrAbv13lg3QEK1Lt2JwCed2dTDIZdIJ6SeSWm1gNlh96t0zKv44KcpBw9mvD0aQ/Wp2rL3xzsfPaIM8ejrJPD5YETvkoaYmqWV800dk0pdwGAjXhVFp0WRt5HX0PN5/pQixbcVlTBDeNNY+faKyLloqY27pSqXhY405nM26EjhXDbMFVe7NN2FiNFLLsePPKSzW9zTJShtVF6+J60qZUpOEoR5KpVC5Rvf5oUmtoaZ3a2k0StXqyXNscolQByXrm+FMkSqoXL7xkgVY1rbMulaxqDrHUR0Twr1r5lRtfXv5J2Tkyffek7hkd8VSSIa4P3Cc9Hw7hGmT/Ilsh/6If3P+GBBL57/NX9c/yTl3ehY+O8v5RRvzA0I0u9/Rf5/6FFDgYeW7E/F/PFa/OLGBezBzEXNm1ZePSvsQf5Uqs0gtgJbZKUVfwV6JHK8t5nhcyAjkrjNBFSq4Wytzlm57HARsKWV4IEcHCBxz1TKTbOuY0tLUld0wX/UubWq2sRX1/lvuOQbOtzdiJagtbW60z0fMJNTHC1be09QR5XpmrAaHV0HbEX+3K2WDV9DUSGRenb0O7OXn6ogWzOqfyLXD08lumFfzwpwRe5/zcnDRrwaLpnT18i3Pry2+ZUSGSvsM4uorTtPl5faq+zJJC8sXNl/bVX5c4vorjIy/ui1TmQdag7/dmD6XSZXnLEGCEUR6LTKnSNugaa8SVRIh1tjvbqJRQ6oDCZ0jQiIcIfI6AsyuWqOXZ657dxdbWKQLr5zS2uoo+8zuBMn8OaXTlDN74XnQQc7RRKdWqhsTDjXAbhOuUOBBnMpHidWHinEOBXhwzaoLPHmRvJjWJmECFZ35Hq2oop4r0NM4w04Y4YW8+rKzP3T0WwUBj5E05gukxGnb5tNDLIuLTCsEbdg9sCHEAQOPpWhZA/O0b+mftvMoHwNam4xQAqq4/SochsqT0qhV1i5yjzkRW1jWZhY/CJ8QbvleTO7lbdHqcGays6Sj9Anwx8Jlzt1R46PZ46DjdQRRd//HjCFo4mnJyBC+ekIx1EGO9Ao1MILVROV6xamDWjvFWBbKzb9p2boux9JWT1qtoP70u4lrlzHB6xqyCT8BHXasinDPRmRBYOXhdv8UFF3VvvaxuERyFLzCjneYpXFNwZzrNFHaavwTjvkqf2cJUukRod7XOdIkpOSNHwLC8HpH/7l8Yy3J7Vssb6ukW68+OhDope8RyflV+G/9dbDfdkXZj7xVArRrUUnnUKtmxaMljT1Cpu16OxVTNo4ruft8ranm/GAzBUG6dpg0NQVgMB2pf8VgI3g37Zwb8YVFw5m38bbHozHHmC4GwMhP2I8ZStMTtnXXECHrWpk2EiRUIGW2fEYNiUHaLERgaet8QgVAgIsAHhoc/AEL53IgowHtgCOAdcFIQZQmcXmd2yBlwekFiGIqr3m7uXZiddcwUZgAr28zuNkMGilk6ro2shBzdqK9UuFKRO13J3CZzXOdQtAtoGOC/ktd2Ztw8Jq9ItE0OnNj60x0D5tSbX/nF+t2ZIefuQXy45dWwLGC1a++99KLJiXl9j706WpeI7tzw4lc1tbzx8LnOnXau3rKyqXYfwfILofxLfnzzG/fv/vCFJ2o4ruobt1YeLpkFrL532xtWr3/1NRe9PkSI2Nr+pq279r0Z5MHe8nDOIvlsLp+tCzIMN87fRmYi08ssYcJTg4P9kye1tRoJGbi/5XhMzqCEuH6nwMxk5VTStk0Td/QaH1QV/faaKSikUnKFFNz+GgcPkRbzfSMGBzG4IcryEMMNpIs2HXPudO537nfvN1/yDnKt+8BvW4PsVAe5v0ZI+SaSZf0556lPJIJA6gmUfwSE+OihH81e9+xLSHbsYbNMGtx3YgsS1t2bOIufdqabmc9sdvlZu7i355x8k/F38IOJUckMFeeuUqngVu5sRaB4HWYRTGRQYHQvYWxUoJpp6mlGVbxBK3n0t1ImFvS9+ZLGZds+/elPNx53fuU4x/lcUm2ZJ9ZUscdp3A/Lt34ayKiwegf/hS9y4BwqRM6/LToleuuFEeuv5xNI6+Pschz9M2x8dflDwB6bUrB27XvVNbH6zDFyKIivnJExWfPIL/gvfZF3LgJiinMw/0JzRJNhyLjKuhlX9nOsekL+ieoKox+oqsu7Szq+RpZVZUzRtjNp784ueD9n2YV/oCLDZ9lqT3fLdhrRayVDsNQtwIXjdSEOtqiWYEi1eoRu3/JPlG7nNe4n+C3QWtmQBNi6NO6vqfHHl24FQTLkWoqo4+fi4p/MQXJqjBw1TrQ4yyuKqqLjqQYza08h5hS2WCjYE0Z9oPXopzdBCgbn2E4x4Ts955SvLF9FDpCDaLAmK0rvmvMO3XDpDYfOW9OrKIaAxNSeLXQjiH/Qwmwe/X2Yq/w+3GlbqoXH5srf368Hrh5qod7Y3OPquO/+AMfzgJUAAAABAAAAKwC9AAUAAAAAAAIAAAAQAHcAAAAgC5cAAAAAAAAAFgAWABYAFgBKAIAAnwCzANQA6AFhAdUB1QIAAk8CewLKAwYDRQOqA+AEQgT+BhQGyQb+BzIHggfUB+cH+ggMCB8IUQiBCPkJiQovCsQLEAskCzgLRgABAAAAAQAAf0Tz9V8PPPUACwPoAAAAANiymQkAAAAA2LKZCfwT/KIHvAVQAAAACAACAAAAAAAAeNpVyjEOAUEUxvH/zOyqJ9HolbbSvClcQYkD0NM5jNYRHEa5nT0Dgu9JRqL45f/y8nFnDhCWoJu44iLTNKOEK71qao4njs43aXg/0gDwHMukeVFce8b038cOaxbYqGDfe/MvZnrJv245yLq9Uaq6DR04dvABg04iLgAAAHjaY2BkYGAN+LOIIYrN4o/wvxr2PUARVKANAJIcBgUAeNpjYGK2Z5zAwMrAwNTFtIeBgaEHQjM+YDBkZGJAAg0MDO8FGN68hfED0lxTGBwYFN7/Z1b4b8EQxRrAHKfAwNAfxwzXosDACAD6LQ+wAAB42mNgYGCGYhkGRgYQuALkMYL5LAw7gLQWgwKQxQUkNRn0GWIZqhlqGRYwHWO6w8ysJKgkpaSndFiZW/2lFpMWixbb+////zMwANVqANVGI6llUuIHqtVWOqDMof5CiwGs9i9Q8eP/d/5f/7/mf///vv85f93/Gv3lvcd099fdV3cj74resLymfE3pmqKANtBFJABGNiCGsZmABBO6ApCXIYCFFUyxkWA8OwcnXnkuBm4GcoGwIIMojC0CoXhI0M7LB2MBAO5wM9cAAAB42qxV5ZrjyA4th5phGHxBnpr07ZuUPcxsx8nwNH6fa9Fu+r28+wx+GjnL//bR9shJc/dyQ1SlUklHR1KFlSFWq0lsiV79pKYXX3Fj+b2Eb7o8b9MtylcTrjSzn0fVqFpf12uu57GyrCLd6StHRWnos2OY0i2fK4Y2iH9Z4Nrce/15ZzyK1+Ol9xNPe26eEC8sJB4/tS7xXVndtZaKgVG2wfNQDXfEV+X8KizhLCGAyDPi8YUkhYbkbFxWt2V1O3VTa63LTttazWoh2bTW56oh+Kk1MwCqRwsJ13XIDR0CvmUn9blmNHDRRlFfC0lOBsHlk1Uar3O15UEfUU45fBdX602ktZikC262ZBNtcfp0OcGRi6S2I/tcNzwStfuqMqCmga0ONbHSYcaVtS121hGf6y2fRwwJyIlo/aeaWiPxwE9TKyZppwQ5avojEyqKw5a3Q/aY2U/+eOkFODT0yDilONcZbQyZUq6wyeQC5DZKrjZ11hmEmDjmOl/GLYVbR12aNGVC/Ynxapx4rvZsy/N5yhSVSswbWcfnaQNDIp6MXsp1LHRoeUp2S9hNYefzDNzMlpQQGFhHXJ6OUspT4mmQ5vOsebWSFLWNjr3MU5v6G59PmFeLyavlgdL1oD9V6k+aQs1Eq0kxMxOxk4U805YmReuGxaR8TOGDnbOakMdCUgh5yDbMcyrDtjyNa9trd3COK/gvNRaZ9IC/B+3+Uh1TwEKpUxpsRawe9x3HKWt1yqhCVeKVhGd0SDFP6JDHwW8aUorw38/OOmpahWGeFicbbf6y7V4CTaeR26m2z2dM4Yg8C55FnjNFVeR5U9REXjBFXeRFUzREuqYYEfkvU4yK/LcpxkT+31DAzoc+t8rFpz63y8VnPv/HKJ5q/wWM/wXG/8A3AaNIDxhFXgJGkRoYRV4GRpFNYBQ5B4wi/weMIueBUaQx9LBsNd8g7GxKkcY2knJAspF+Cwz7bfYxSVcMUY+OqYTO7mp5xn7TAq3k89Wd8jhn+UqrqDtn4uSqLRO8VjJz7PF1Q7dKvDdg58SHg2DCEPxovTr7nZKfzmN9t7junEFGN5E/9Y7ByyrK7vp8ywTnHvp8+/dM2YnWYX4HJVFnmxRQj5WWzn6R5z3d0xkla8ifHUz0bcc5cxrx7xqgwoDgrzThsai9mQea6GEOX/d2jykY+OCaDsWKOJV5f7qYfFuhKrnfVuaqF20ob+BoRLkurXUX04dqHkBLYGPw2FeidENzNco2FhJsMhfrVN6gg3cyTQg9p7uooUaELvKCKKOkdFQQLVE0TlJIrqOh6oe8wqNk1CxB4HNh8MrtxkLJ7wsHBE19bsiBfghqHogaueoQZ13dk2BSrYeiLxMYMqpWkoAeas+FZlsJZ7uUN5rYvdj77Tso1FEdPKyMljZ+NEQQbZcmla/ngylul/Kx0RQIa108zA9tUATOaQzgkx31wl710/3WR9o8M3y3faTT0PC9do7A0ixAe9gGZQk4gGm002Fgd6cFNVo90HeH7jp4NPCG/4VW7P1T3Sfws7uApfGE7Km3Z4cYYyFjO/+u5O/pIQH67v6Ue0j5zGA4+0rm8FTANzGLz4/RvzCFck6f4ltYvzR8B+KVsBaDV+rmQPFrj/WAHEEABFA0xj1STOcCsb22OWv7WIMLbv9R8XXVH9Pf7L9wO5p/yojY+p5RRBWHICb24QGIKw5BguZDkaQBKRqQpgEZmhdFlgbkaECeBhRo3hRFGlCiAWUaUKH5VFRpQI0G1GlAg+ZV0aQBLRrQpgGGmLfhae4wmI+qrqsnVY8zw/CsQ1/Mu7AeMLj1ELn1CLnpWMz7MJ0wuOkUuekMuelczIcwXTC46RK56Qq56Vqcy5Oj4Ofp9dq8MMzjq/gu+Kbc7AERbE1geNpj8N7BcCIoYiMjY1/kBsadHAwcDMkFGxnYnDYyMGhBaA4UeicDAwMnMouZwWWjCmNHYMQGh46IjcwpLhvVQLxdHA0MjCwOHckhESAlkUCwkYFHawfj/9YNLL0bmYC6WFNcAJhIJBt42mNAAgAADAABAAB42kzMtYFCYRAE4PntDncPsQYgxiF/ORFWChWgIW4VUAp1kOODbPStDYCI8EDgVRZACzhh0RL/aNIKKbRpjSD6tIEbU/rvZ+4WOaxpDxLiRPt+8v3PfAWh7QDm4kwLROSQlvDIA63QkEdaIyuvtEFCZei/n7lb9lSR9iBvVrTvJ9//yK/eWqOK5ciBGPrO/grdljxtWA4zM99SHY8y7sRUdg9+/SodpuUyvZIftKSyGtamk1p6m7yjOAy/t+IwCmmBG9MpaD8xXCTs02qRKO8pOfp0Rf5G66kuaDbRbc6H6/qAT073zYjjPe50M10vlYVdKusOU6xCGqMHjNYN5YXSEdeNKQsKVag+vXJK/8Vj0tuJfr+vcm3TCz1Qkjz17reOfiO8lJK+rlyLfa9vbEp73HDd4zZdNURbOueHrSjPO0hNc/1zvzy3fV0zSSEzCReNyLpFm2uyKdP+6gZtV1xckzeuCT7dthypSInZvZZ0T5tMn2VM7iSalmZ3SdsxL7W2GguCJqlNZRvVmOzqyMH20sbrfzCPEhWGqGHQQQoLwlskeCffGKFc39FyKJKHsABG47gFCPtIBLPgRN6+VFYdVvB+6Rzh053zN6mtC0c711kkgtpg5KJfF3wg+ASnkmcwEhxjDyyuXWTQkrAkWQWs+9ZSZ5eh3InHQK94tB67/CbrCCxvmYHLJMlQ7vn0h7P0f3+azmcCfXcp5NCw4n8h3wHUTc9TePcfp/448fKGpR9yHiX78IRp3LnITaxxc+qBhU93GyJsQYuaX92KEidP6qlUmkfKfUHngvpuD+Jww8jkm7i5NTdpXcFtl0/uROzUq9iQ7zYqx33ovPHIwQc923IE5R53shdzCRo9eYzUNc7kLbUHM9EucRa7DluMwZO6lasSHMjVIHF7q2AFK5ee3U05wLboN/5G8wPUoVjhAHjabME3AYMAAADB//Teu4Vs2ZNghOIFE7QVT6AGDHDHCAC6lA9D3oCMGLNmw4kffwIiEkc0tI6dUDglp6Zy5tyFS1eu3bh1596DR0+evXj15t2HT1/zviW5NkAAhoIAWrPNF7SL74G7w/zRq97J/3EmstRVksnvfNvtt8/7pi0iTEPxMMA49AQZCtSu0hKuoIWuu4hLOH5LBBkKnMJ5M6YUYISpAMYdQXoAAAAAAQAB//8ADw==",
"title": "$:/plugins/tiddlywiki/katex/fonts/KaTeX_Size2-Regular.woff",
"type": "application/font-woff"
},
"$:/plugins/tiddlywiki/katex/fonts/KaTeX_Size3-Regular.woff": {
"text": "d09GRgABAAAAABHYAA4AAAAAH7gAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAAHnAAAAE4AAABgRbpbgGNtYXAAAAfsAAAAogAAAar/FJbOY3Z0IAAADoQAAAAKAAAADAAAAABmcGdtAAAIkAAABYwAAAuX1RTb8Gdhc3AAABHQAAAACAAAAAgAAAAQZ2x5ZgAAAUQAAAVKAAAHzrxbewZoZWFkAAAG6AAAADYAAAA2EIN07WhoZWEAAAd8AAAAHwAAACQGBgH2aG10eAAAByAAAABbAAAAbD0F+5psb2NhAAAGsAAAADgAAAA4GmscjW1heHAAAAaQAAAAHwAAACAArwv5bmFtZQAADpAAAALCAAAG50zL6Ldwb3N0AAARVAAAAHoAAAC6UaNkMnByZXAAAA4cAAAAaAAAAH/i0Eg6eNqtVWOcJMkTzcjMyiw1Sj3asdZo7uxgrcFitP7btm3bONu2bX86W2uruvYiu/vD2RHlehUvX0T8ogglaULILTQgjEiiXyg4EDpzSsbJOJ0ZpzX9j4+l0zQobk7DuQTIveEAvVI7jTQQcb5DYeYU8GVrZ0cnYR25bMGFfKGQSQW+FNRJem5Vil4pGnlDV3TbDClnQL6rgTcK6/or52182gpHmeDVvTBGe1Z942vDtBvGequ5YNy+rXhV9PXo+iMk+ttWmyBrC7LGkbUOWX2OrO1JyOYzmapUFfEUHQUhZWtLRy5fIHBG9A09nkBWyCvW6DZkTSTkjG5oOsxq4Dc6R9ro9OKNw1/7+uriDdHpSMv1GUPwI8VVCAfYw8gVIJdBkMtrUdLypJDPpFNSMIFpkmK1lQDGvkC1pO2A+GNjdO2G6BEuwwHX5NQw2pntWm704+HwjJ3hXm6pyPtRBcfIEiNDKbLTHLQ6mWA/xO6+OxwwPti3v75PIWdX1lCFyHg5y6K1pbMDOkgnzaHyVFUKUqTKZQ8nzYTk0SMbomsb/5a0Y4JD6waY2/j38BNW0uLM2slGh+F3uh2nBg/37gzPGI6+jAxWOADVlbUwUGvJNTvNuYxjQSzafbf2ub59x/bpTyHyJ7jqzyByJSKbFRJUwTtwY1Sd0bP5fKHknqtOhUwVlgR7QLlgVB1lnEpZlUrh5vkBntSujgH9jGiIf+g7rgZo9kcW2wCU63Nn5WOAprXfmGwQ1Gyr/aDPSw8SH1/JbEkNZ+wLSfUNB/+DtW0mDVcLMfH7A0E3OLDAXPHjdsmZrzPe3L14xIQF4PQE/x6TIpGklLv+8g/4s6Pt0Y6eYPG3JlPBgRmTv78s6Il2zhy402H0A8t9l1OaVNX4aSUDSzEDHaoabjbfTStiPJSBjk2IIpXLimDVjr00W8mMWz4VCipfmDf0n2q2Fk984NuuAJTsfKq9WjLg2pzJCxMUnwj32x9IxJOCS07/UQMUYtmq9kkzff/yOryp+Uecar9oQMnf7a/qjXZE18S/MT7B4iJmou76Gcs3xaOrox29Vf3fnSi4KYUhGMDw7xz6teTK+fUNTTWG+eHjHfpV53fDgqPKIyHNaiczTjxUaXJUyURboaDxjC9lS1tri8ax7NyEz1x2GXwWnXOt2MNZ9N/o/4xzuoGNTZk6Ogae94uFCz1P5Q3oR7Tj6FbSjhFlqd87y+nIpMtJy6TxuqrUKNjcyltbpLDMj/i//Eqmq9se+uH6OdMKx+8LmPn10/5or7eHfry+a7p6QD/SzJq0KQkd9PZaXa6SzVprzgaQHaU7ZD+0lmYJe7keeB09h9a+XBAvdr+xIDi0iX7kSPRyPfC29Bz65PsgCMgXw34WYhfWI3udp9ixj7KlTuvo7CwUvGx5QlX5ROKwgFPoQ9AkHa4JGRscuhdCKmxhQ/EBzgI7HAROgWWtCUJqeuw73w5nM/1TmmlKfd9N3FDV24dd34182sunVbOzDxZHB0uzat9jlTmySqFePkdaHQsW95VmiNH8BrEyGG1fH0gVat9jfeT1YoFC5cDtiy4Pf20040RC1A/CfvoHRKUQ5WqIKuQ8t6Q8CBj1PS/wVfbZDza/SK1kzHkeza1O0Bd3ObSf9vOEG9OLVxSvEsWrilcacSfBab9i/wCu8YuVmWuX534OI2cZDtxyiTE0o1J8vwEjvgCG71j0xc2bN4MeDjQYdCFdIOgCuihGaSrBixcVL3KKFxYvgAShBA2mko9V/rBa+Q87K5cJMrh/rGzkbeOAKPuYwpXzWcaody8Bug6YdwAAeNpjYGRgYJBmCGBgYgACMCnAUA4kpbingwQAFRABtAAAAAAWABYAFgAWAFEAhwC0AMkA+gEPAZACAwIDAiwCawKUAtMDCwMeAzEDRANXA4MDsQPFA9kD5wABAAAAAQAAd4gR/V8PPPUACwPoAAAAANiymQoAAAAA2LKZCvpY/EoFpwWqAAAACAACAAAAAAAAeNpj+MVgxAAEjL4MDEA2A9MDhotArMQiwmDOJMDwHUhbAGlupncMTUDcDFLDuuT/H9YlDIxADRFAHMv8giGfyZ3hGxBzQ2iw+jogjmPUYWAAYYYUBgYASjgYwQB42mNgZGBgXfXHiyGKdcmviP9vWJcDRVCBNACq/gb/AHjaY2BiWs04gYGVgYGpi2kPAwNDD4RmfMBgyMjEgAQaGBjeCzC8eQvjB6S5pjA4MCi8/8+s8N+CIYp1FfM2BQaG/jhmuBYFBkYALwQQzQAAeNpjYGBghmIZBkYGEFgC5DGC+SwMHUBajkEAKMLHoMCgyaDPEMtQzVDLsIDpGNMdZmYlKWVu9Zfv////z8AAlNcAykcjyTMB5TnUX7z/C1Tw+P+d/9f/r/nf/7/vf85f979Gf3nvfr/LdUNPQBpoGwHAyAbEMDYTkGBCVwDyAgSwsIIpNgbiATsHJ155LgZuBmoAQQjFQ4IWXj4YCwD1UyhaAAB42qxV5ZrjyA4th5phGHxBnpr07ZuUPcxsx8nwNH6fa9Fu+r28+wx+GjnL//bR9shJc/dyQ1SlUklHR1KFlSFWq0lsiV79pKYXX3Fj+b2Eb7o8b9MtylcTrjSzn0fVqFpf12uu57GyrCLd6StHRWnos2OY0i2fK4Y2iH9Z4Nrce/15ZzyK1+Ol9xNPe26eEC8sJB4/tS7xXVndtZaKgVG2wfNQDXfEV+X8KizhLCGAyDPi8YUkhYbkbFxWt2V1O3VTa63LTttazWoh2bTW56oh+Kk1MwCqRwsJ13XIDR0CvmUn9blmNHDRRlFfC0lOBsHlk1Uar3O15UEfUU45fBdX602ktZikC262ZBNtcfp0OcGRi6S2I/tcNzwStfuqMqCmga0ONbHSYcaVtS121hGf6y2fRwwJyIlo/aeaWiPxwE9TKyZppwQ5avojEyqKw5a3Q/aY2U/+eOkFODT0yDilONcZbQyZUq6wyeQC5DZKrjZ11hmEmDjmOl/GLYVbR12aNGVC/Ynxapx4rvZsy/N5yhSVSswbWcfnaQNDIp6MXsp1LHRoeUp2S9hNYefzDNzMlpQQGFhHXJ6OUspT4mmQ5vOsebWSFLWNjr3MU5v6G59PmFeLyavlgdL1oD9V6k+aQs1Eq0kxMxOxk4U805YmReuGxaR8TOGDnbOakMdCUgh5yDbMcyrDtjyNa9trd3COK/gvNRaZ9IC/B+3+Uh1TwEKpUxpsRawe9x3HKWt1yqhCVeKVhGd0SDFP6JDHwW8aUorw38/OOmpahWGeFicbbf6y7V4CTaeR26m2z2dM4Yg8C55FnjNFVeR5U9REXjBFXeRFUzREuqYYEfkvU4yK/LcpxkT+31DAzoc+t8rFpz63y8VnPv/HKJ5q/wWM/wXG/8A3AaNIDxhFXgJGkRoYRV4GRpFNYBQ5B4wi/weMIueBUaQx9LBsNd8g7GxKkcY2knJAspF+Cwz7bfYxSVcMUY+OqYTO7mp5xn7TAq3k89Wd8jhn+UqrqDtn4uSqLRO8VjJz7PF1Q7dKvDdg58SHg2DCEPxovTr7nZKfzmN9t7junEFGN5E/9Y7ByyrK7vp8ywTnHvp8+/dM2YnWYX4HJVFnmxRQj5WWzn6R5z3d0xkla8ifHUz0bcc5cxrx7xqgwoDgrzThsai9mQea6GEOX/d2jykY+OCaDsWKOJV5f7qYfFuhKrnfVuaqF20ob+BoRLkurXUX04dqHkBLYGPw2FeidENzNco2FhJsMhfrVN6gg3cyTQg9p7uooUaELvKCKKOkdFQQLVE0TlJIrqOh6oe8wqNk1CxB4HNh8MrtxkLJ7wsHBE19bsiBfghqHogaueoQZ13dk2BSrYeiLxMYMqpWkoAeas+FZlsJZ7uUN5rYvdj77Tso1FEdPKyMljZ+NEQQbZcmla/ngylul/Kx0RQIa108zA9tUATOaQzgkx31wl710/3WR9o8M3y3faTT0PC9do7A0ixAe9gGZQk4gGm002Fgd6cFNVo90HeH7jp4NPCG/4VW7P1T3Sfws7uApfGE7Km3Z4cYYyFjO/+u5O/pIQH67v6Ue0j5zGA4+0rm8FTANzGLz4/RvzCFck6f4ltYvzR8B+KVsBaDV+rmQPFrj/WAHEEABFA0xj1STOcCsb22OWv7WIMLbv9R8XXVH9Pf7L9wO5p/yojY+p5RRBWHICb24QGIKw5BguZDkaQBKRqQpgEZmhdFlgbkaECeBhRo3hRFGlCiAWUaUKH5VFRpQI0G1GlAg+ZV0aQBLRrQpgGGmLfhae4wmI+qrqsnVY8zw/CsQ1/Mu7AeMLj1ELn1CLnpWMz7MJ0wuOkUuekMuelczIcwXTC46RK56Qq56Vqcy5Oj4Ofp9dq8MMzjq/gu+Kbc7AERbE1geNpj8N7BcCIoYiMjY1/kBsadHAwcDMkFGxnYnDYyMGhBaA4UeicDAwMnMouZwWWjCmNHYMQGh46IjcwpLhvVQLxdHA0MjCwOHckhESAlkUCwkYFHawfj/9YNLL0bmYC6WFNcAJhIJBt42mNAAgAADAABAAB42kzMtYFCYRAE4PntDncPsQYgxiF/ORFWChWgIW4VUAp1kOODbPStDYCI8EDgVRZACzhh0RL/aNIKKbRpjSD6tIEbU/rvZ+4WOaxpDxLiRPt+8v3PfAWh7QDm4kwLROSQlvDIA63QkEdaIyuvtEFCZei/n7lb9lSR9iBvVrTvJ9//yK/eWqPCnsSBIPo+91fMR0nKUpAPSowJOUNCIBLFGL+ZtYx0tZSmu1D11984cB7cSc67XDbbfXl9897s7LJ8rdw8C3SUNqiTJKfNTtJO6IK9mxc0TR0XKcc0LFIT/Spud9/FJzTKbEH91M548TqyN3x3P3VvfHzN81Vuq8GyCINlNWfqmIR6tKNobiWfULdcebcsKDGJ6R7oMv60TTo6q+vaLGzInuyLkeTzxpda3xY+C2U3zKY4jmoXMrpmz9WaZ/R+Ibq0C969iomim8z5zc/p8jHUtmISIncpF17KVsWMKwoZ03Q4pknJxUY83ghi+nHltmkbMftZS3ZtXW4fcibtxNKgf0U29KIshLLXavm0cmXwxrv8veXWZDA+/AffsESJV1RwmCNDAOEIKRpydpDIOkVTUVs24QIMr9oChClSwSw4lW8szFCxQfRH5za6H84nwo1EY9W1j1TQDIyF1I8E3wi+w73kObwJPsY1WFxXyGElYSBZBYKelfCsGUY77oEOeDT3Xb6ougXL18NpJkmG0d39y1nGX5+m+pyh1mWwgEUQ/yc5X2C2dz5H4z9OfT/xeauye5rd5BiRKJ32RToxr3Nag0VPHy9EuISVaj74KkacIuEzYfxe5VTQo6Ba34FBW0UuZ6pz89u0leCZ5pN2xFo9xFjOCUrV7jqP9xxi0G+v3IbRrZ19mkuwWMt2wls8yFe4nZlYTezjSnFAD5HwQVYpuCXLI9V3KxEEG03PP6bcwkTqx/9S8x3ziVjpAAB42m1JxQHCQBCcucMdvhSBu2sXuLtXQC30BM1gyT6zMgoFYz53JGE1UQCEgoYXPkRQRQ119DGkwhMvatrwoJ0OOumimx566aPfeduv4vFG3OBUPOm+rrbT2eSwG/+TZCqeFy4IN4SbBuc6eWGj73S7beGOcPcL1/sicgAAAAEAAf//AA8=",
"title": "$:/plugins/tiddlywiki/katex/fonts/KaTeX_Size3-Regular.woff",
"type": "application/font-woff"
},
"$:/plugins/tiddlywiki/katex/fonts/KaTeX_Size4-Regular.woff": {
"text": "d09GRgABAAAAABgoAA4AAAAAKwgAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAAANiAAAAE4AAABgRuZdBmNtYXAAAA3YAAAAugAAAcoB+528Y3Z0IAAAFIgAAAAKAAAADAAAAABmcGdtAAAOlAAABYwAAAuX1RTb8Gdhc3AAABggAAAACAAAAAgAAAAQZ2x5ZgAAAUQAAArKAAARUELbjX5oZWFkAAAMoAAAADYAAAA2EIN07WhoZWEAAA1oAAAAHwAAACQHMgKeaG10eAAADNgAAACPAAAA2JZiEF1sb2NhAAAMMAAAAG4AAABueip1+m1heHAAAAwQAAAAHwAAACAAygwAbmFtZQAAFJQAAALAAAAG507M7Lhwb3N0AAAXVAAAAMoAAAHIC8Bi1nByZXAAABQgAAAAaAAAAH/i0Eg6eNqtWAV4G9fS3Zm7e1crraQFyUySbCu1QxaGoRhDmL7Gf5lCZW6dr244KTMzM7eBnx5zmZmZG7a1eXN3peDj9/Zq0aNzZs7Mzr2WhFJKkqTfYlRikir5nuIySDi0NW2mzWTaTKSuPjqVwmjhqxQ8JoH0TV89buKvStUSfyKEMLRViqiJeLI5KZkG5PK5dLosonKGpmFb5WRpWMCTzkR4otJG0+ShNUeceuoRa/paOQc2GL5h/8PWw7d1NnBuf+r8xlldeKPwurPa+c2nxBUjrhbiqhVcQFx2Jp1OlZeVSwZwNcETiXg2k8/ZlmkwTDbHbF+QyOAJZ2KSc1XhpnnvIUuXHnKvyf+kEZtjb1npWIMZ+Fn0BSiHldiB7bASyl+ISsQ2rK9e/hWxRYgtINgglyqLRniUSypPxJuzmVw2J8kX+6tsgL6HUTN0C0Cexn+vmzrIoG5YIutWQFwFFkkAQfJ+POGphAeSwDNj0YSZjkIQMl991VcfeKZ9w1vtuzBHyTKIbpw5EadUHhEOCHmlZCY5zNRtFeVpAJZuaNj3MABfo1u6vGGJSqwBugosUgEJUemrh+FFbuYql42ZsWzaVCDj/PErflH7hvb2QBNZXkpeXkWWs8hyqBu1mqBs0jCZODYnB8uZ7CjMZcZgPkcJzudtg47uVbo8GqVsc5WGaYijWlbuDtMQRzGiUcKPWT0HtlFoyHx293jkwOgSZRzfbfsYAqpGy4LYkLIY97dNr6jjAIE5nZNHDqionxMA8HdUxcqr/H1NXBs9t+O/dLgYLjPqaib2thACU7giKwpDRBlaeifW1JlwGVykt+1zwuTKygA3dU2unpMZO0FzepxFWu+CKcnGukh8Qa93f1Z3rCoSkjVd2kWLaaTF4GIeRmIpENOig/ikymqQxylY8WEibDFUr0Q8acySRM1FLQ1Skj6XMi1gRAY2nx/jDAGU0JETUAVE4GzCkSEFABmvPDjfGQlbnPF0spvC12ZHk9khbelkdLYGoM6frCL/P0P1l9UevipSpTunOg921M6+ahAqqmKQGjjoqtm1Hc5Dzil6VWTBzFyzn5tBVa4deNQyDZbAUu3ceVXx1vKK1njVvHM1WApLtKNuGSJzUmD7j9imnsAmShWkgN+thsZ0Si5PiSwn4k1NiiyKUbx08By8rCN7VOUy19BpdQbR3gKaygDwg4WvMj+WxQ45/PBD6iPkEpC6iAeph7C8NIywa11st8jFSKfyuaZcWqhLTF5FCSJXtERc5QpPiMt8xi1BPKyxfMLgjvm9U5v3aR66FsrHy6CACgnjmQPfumpUqmNu56xUY8uAgWudT8fJKENAbjTWHngDy6Kmt6Y1WbZnRsi+vk4BzdZy5jB6XFvJS89HaH6LnraQIlsuwzYp+A8psu2EHYoo/r+piK26imy5DQ/a3v8fUWSb01h+0JC/psjotn9UkYbav6uIdGJfHeunt6RG9EkmvJby5HdZecTtk9lMElmGq2oyny+zLXgDCqAE1QAUXmIsqhtdSxoMo6prIsw9pn+0/wIW8KvqhoVMQ5wDa3ALjmuIVV13DRTuKtwjFbvo2cSm7NpFYyYEYaHzjtdDL5eKHe9kYbdrx0uYCixsd7td4IS/gpYmPAi2Q0KAbbi8fS+sklUWBrQ7V/bNDZxAvZOwEoWTWae82J0Jgy6WSBUi49FIMVvN2VzecmdFdgD3/+EXYdHzWvdDBVh0CixXfWDJizmTQ857BcPhN8YadABAK/3da6wC3tB8IHi2b4Lb8EipknjCSDxKnMe9WshmjbzQPlVG+kfNCNwEVnUwxxggyLh/IBoEGTQAYP5zHoLBTAaIH+vcvdL1voe8v0h476FCaR5nzUy0MVGJFFC5ZZWXsU5u2uBTnSsPbZAFcivFYdb/8kF/YRnj4NNgHT6/EYalLQQAvWHDi87cwuoNIdKyvnAyHkQq1Qqe3eZwu8zeoZMoGhQR1ZuBEBHBQkGk4H4uUc09l9U3MPnMADE5BxbaNju/KzH99DKchhO+yrQqEsDvtm/Cg/4xpXC/f1QpiqCHIvCUCkkiAqpx0dwtOycuPKG4ikDRDKvkDfWX3VNjKjgs7+XZOYfyXOjRmL818xW2w2kvbGxhxSz3f+4kvSyPLZyL15NOe9b5WOh2thbOVdUZWydKwo4OV+AciZXsYmaarGbgnMLdkovTQzhL9qxwsgC10KOqWyfOoJikwrnQLdhKFW66bwt0z5AHz9iylT9BSCrBde/FpJaYCKOHMJbs+ZaQhXNX4Xn+xJatxAS9lJNn2RIpQVZR159y0TpFQxOnSJQG3RSzlPHWFfhbTmJOPMYAGQCMlgyKPOlXpfYPsiWiFLmcvecYYDWXyoHhTT+ijCJxH3yjrb90SLNKvt1fWAhb5JVShlhrdu2sHrdaWqaI1VWCF7mTSMfmTLGlki+wDMft41IHDh87J8R9iw/IqQAy4Fz3qbFGB9APniuerXBr550vtJvOmz5Mk5UpS44+Sfvi0ZHu47e/1EFdpSHEAbX9nj1P//IjJrTpX4TPSn733QjutvYqVqvwkPair/gsTwRu7GrlRMcyLQbQ5jPaFqkc+pdwPuP6WYf410AtykCC/LBRHz/0mlkyB9vLAmyBnLfC3F0PrpYEKAUsgxejewFZ2v3hZWcMAO/iOhT6CjzKasOOt5oW/rtKmogLRDcWD/sRNM3A8smjPf12954tBt7ee9Jc7ZsnRgnff9xQ8t2yJeF9YSE+K7K55zwp2pOQqDRDety7lVLJAcMLbq+8iTj3zvCKUtqcrbul7ZGRfyHN/qegAiWhSv8i2EL5bCyp0rRH1ZEqnl85KjLaszRyO/1SR09aETBsUfuTjgkL3zQoFvaJc89v59w2ReXfezRg7cU8MKLpB1nMx/0X4KfsHqmKWMsVoU5ITlAdMaY2J2kStmzbtIUj+ClwJD/0msrXXp7J1eDEiUed9Sb4Nd3Xfx1wZDhjEq7CJfcrvuANNzqvOFcXFuCP+GMwTCwX9jXg//FX3XWQ7SOWfNa2KIaUWKREo5Qp1ftPhV24aTP6qIljKOJU/LQJbCOi4+YfLXwX32NBGeiBtm1aIVlo0QzbZPgeoR9H6NcRehmhB7weSy07J+WBBBIa2naUocpXG/ZUOGCaU2GHI0HcvImo9L4GAvyJ/e4n5WHNiFisECvELTrEmCkB/i+taT/FkyWNkBWBLMeTnhwmvlelutGHQpCCVDBcuFnyviFn8BApQN/Q0K22fIxKLGZSZeH/yjrMDoedn6lVKk7UZToV/hAKSbD98+2t8EfpLHee0ASTmsy6NZhyI3DXi26V0iFhcV9X77GLmCWbCICGpZ2+brgVkNXwKzwRWtY+RgNOlclBnT6hLMKR8DcR/puEL2Y3XSb8ZDaT9gqsPCpKy6t0kQO/IgeWn9Hb5eNmWJXrh83sGTPCQBhVV4MT2peFEhz5sNYDKoIchd8U9B9houu3DYTL8m7n8cYO1130ZIWLGDQqY0VMwPDsw4ZWEBccRLDlVqxSAAvfG6NhIhOeE8ObxCBWjL7iHCBk8GDdKVQIJQYFBC8LbSqGHjY77EnjX3N6rNIIyogWTHTVCUcbPXUCh1bGrHIKo8hyPemzY75KZGNRP9x51lmShBJtMFA6uvgbh+L9xtGWTUfTtB/tbf+4HUhiO5pGic21EX/7M1+qRNkAAHjaY2BkYGAwYwhnYGIAAjApwFAOJKW4p4MEABiYAdYAAAAAFgAWABYAFgBMAIMAqwDAAOkA/gGEAgUCBQIzAo4CvAMXA04DYgN1A4gDmwPPA/oELgRkBI8EwgTWBOYE+QULBRsFLgVpBbwF8QYZBlAGpAbfBxIHQQduB4cHowfTB/8IMAhjCHIIhgiaCKgAAAABAAAAAQAAdWBqS18PPPUACwPoAAAAANiymQoAAAAA2LKZCviR+x4HbgbWAAAACAACAAAAAAAAeNpFxiEMglAUQNH7/oOR6DZxbiSTyWY02TObm8FAJmGfAbPJas8Gm713isXgHEF8f0x/OLuXjjmArIEOdMTDTKIPC7eSdCix5jQeHSRF/0wKHLyP5qwtpasldTXxr7qTacDYevd1J1kGYE18tZK9VlyGhveNMkrNOZhtlLmrJ7e+Na9/GzMDjw18AXIuNDMAeNpjYGRgYLv2W44hij3xx8T/L9jzgCKowAwApaQG1QB42mNgYmZlnMDAysDA1MW0h4GBoQdCMz5gMGRkYkACDQwM7wUY3ryF8QPSXFMYHBgU3v9nVvhvwRDFdo3lkQIDQ38cM1yLAgMjAPoPEIIAAHjaY2BgYIZiGQZGBhA4AuQxgvksDCuAtBqDApDFBiQ1GfQZYhmqGWoZFjAdY7rDzKwkpcytvFZ5u/rLB4wPQ97///+fgQGoTgOoLhpJHRNQHYfybKC6Fw8YHga8/wtU+Pj/nf/X/6/53/+/73/OX/e/Rn95736/y3Wn+k7RDScFHbl7AmZAVxAJGNmAGMZmAhJM6ApAXoQAFlYwxcZAPGDn4MQrz8XAzUANIAiheEjQwssHYwEASs00MAAAeNqsVeWa48gOLYeaYRh8QZ6a9O2blD3MbMfJ8DR+n2vRbvq9vPsMfho5y//20fbISXP3ckNUpVJJR0dShZUhVqtJbIle/aSmF19xY/m9hG+6PG/TLcpXE640s59H1ahaX9drruexsqwi3ekrR0Vp6LNjmNItnyuGNoh/WeDa3Hv9eWc8itfjpfcTT3tunhAvLCQeP7Uu8V1Z3bWWioFRtsHzUA13xFfl/Cos4SwhgMgz4vGFJIWG5GxcVrdldTt1U2uty07bWs1qIdm01ueqIfipNTMAqkcLCdd1yA0dAr5lJ/W5ZjRw0UZRXwtJTgbB5ZNVGq9zteVBH1FOOXwXV+tNpLWYpAtutmQTbXH6dDnBkYuktiP7XDc8ErX7qjKgpoGtDjWx0mHGlbUtdtYRn+stn0cMCciJaP2nmloj8cBPUysmaacEOWr6IxMqisOWt0P2mNlP/njpBTg09Mg4pTjXGW0MmVKusMnkAuQ2Sq42ddYZhJg45jpfxi2FW0ddmjRlQv2J8WqceK72bMvzecoUlUrMG1nH52kDQyKejF7KdSx0aHlKdkvYTWHn8wzczJaUEBhYR1yejlLKU+JpkObzrHm1khS1jY69zFOb+hufT5hXi8mr5YHS9aA/VepPmkLNRKtJMTMTsZOFPNOWJkXrhsWkfEzhg52zmpDHQlIIecg2zHMqw7Y8jWvba3dwjiv4LzUWmfSAvwft/lIdU8BCqVMabEWsHvcdxylrdcqoQlXilYRndEgxT+iQx8FvGlKK8N/PzjpqWoVhnhYnG23+su1eAk2nkdupts9nTOGIPAueRZ4zRVXkeVPURF4wRV3kRVM0RLqmGBH5L1OMivy3KcZE/t9QwM6HPrfKxac+t8vFZz7/xyieav8FjP8Fxv/ANwGjSA8YRV4CRpEaGEVeBkaRTWAUOQeMIv8HjCLngVGkMfSwbDXfIOxsSpHGNpJyQLKRfgsM+232MUlXDFGPjqmEzu5qecZ+0wKt5PPVnfI4Z/lKq6g7Z+Lkqi0TvFYyc+zxdUO3Srw3YOfEh4NgwhD8aL06+52Sn85jfbe47pxBRjeRP/WOwcsqyu76fMsE5x76fPv3TNmJ1mF+ByVRZ5sUUI+Vls5+kec93dMZJWvInx1M9G3HOXMa8e8aoMKA4K804bGovZkHmuhhDl/3do8pGPjgmg7FijiVeX+6mHxboSq531bmqhdtKG/gaES5Lq11F9OHah5AS2Bj8NhXonRDczXKNhYSbDIX61TeoIN3Mk0IPae7qKFGhC7ygiijpHRUEC1RNE5SSK6joeqHvMKjZNQsQeBzYfDK7cZCye8LBwRNfW7IgX4Iah6IGrnqEGdd3ZNgUq2Hoi8TGDKqVpKAHmrPhWZbCWe7lDea2L3Y++07KNRRHTysjJY2fjREEG2XJpWv54MpbpfysdEUCGtdPMwPbVAEzmkM4JMd9cJe9dP91kfaPDN8t32k09DwvXaOwNIsQHvYBmUJOIBptNNhYHenBTVaPdB3h+46eDTwhv+FVuz9U90n8LO7gKXxhOypt2eHGGMhYzv/ruTv6SEB+u7+lHtI+cxgOPtK5vBUwDcxi8+P0b8whXJOn+JbWL80fAfilbAWg1fq5kDxa4/1gBxBAARQNMY9UkznArG9tjlr+1iDC27/UfF11R/T3+y/cDuaf8qI2PqeUUQVhyAm9uEBiCsOQYLmQ5GkASkakKYBGZoXRZYG5GhAngYUaN4URRpQogFlGlCh+VRUaUCNBtRpQIPmVdGkAS0a0KYBhpi34WnuMJiPqq6rJ1WPM8PwrENfzLuwHjC49RC59Qi56VjM+zCdMLjpFLnpDLnpXMyHMF0wuOkSuekKuelanMuTo+Dn6fXavDDM46v4Lvim3OwBEWxNYHjaY/DewXAiKGIjI2Nf5AbGnRwMHAzJBRsZ2Jw2MjBoQWgOFHonAwMDJzKLmcFlowpjR2DEBoeOiI3MKS4b1UC8XRwNDIwsDh3JIREgJZFAsJGBR2sH4//WDSy9G5mAulhTXACYSCQbeNpjQAIAAAwAAQAAeNpMzLWBQmEQBOD57Q53D7EGIMYhfzkRVgoVoCFuFVAKdZDjg2z0rQ2AiPBA4FUWQAs4YdES/2jSCim0aY0g+rSBG1P672fuFjmsaQ8S4kT7fvL9z3wFoe0A5uJMC0TkkJbwyAOt0JBHWiMrr7RBQmXov5+5W/ZUkfYgb1a07yff/8iv3lqjiiXXYSDYZ3/F3B45CtQyMzPftrTObKyA47IU/Po3UZaZyqB2u0HQTHuZqcSOfkd/qFQoTOZKhWKBVtiaSkLHkeEk4pA2k0gFT8XFkYF4grZjndBipMvc6G3rE764PDZ9HjniSquus7Vm4taaWYWppAo0RQ8UuRvJC9QZZ9Y0Eyqoghp5ZZbhi9Ok3zOdTkc1tIuruqukee7Ph6Z+Y6wJpYfM0BwGHeNiOmLLWZvLNFgQ7ekGP1yKCoKT2Njhz+PmtevojEmIuok4sWJrJWXOyMVMx5s7tJ9yMhTvDAUh3S65qIpKwu69pNva1PVVncnPRNPa4iFpNxXEzqVT+byNMpM6q6ypD6ac31/bef0PltFEih4yGFQQw4HwGxH+yFhCQa5J5DwqykNYAcN6bSJfx4gEs+BI3qEwmx4rBO8mFzFylzwh3LZotE9dRCSoDEZD/NuCTwRf4FL6DPqCR3AEltQW6tDSsCZdCZwfM+HZdyg/4ynQKxm5xykfVJ2B5W1hfCdJh/LPyCf3Mvz4bvqcGXT8pdCAhpP8qoxdqJs1z+HPD+7648bajUo/0jxsDhGI0vh5kd8x6/epDRY93Z0QYQ9a3PzqqShJCoSPhbGPnMeCrgV1xJf5hKGiLmPk983etLUEl30/+Rmxd29iR8Z9pF77MHnnUUIIenbKRSj/+Jm92EvQaMtjhNe4krdwD/ZE+8ZFHHrsMIVAeCdXKjgvl0UknUa+nWAlj2Td7XIe++Lf+YrnPxKAWPF42myKwwECABSG35dt23XL3dIg2fYEzdJOtUw89/hLFPKr11VK8q9qn+WTUopRTOKQhjSlJV3po5C7PFCikhtqNGjRoceAERNmLFixYceBExduPHjx4SdAkBBhIkSJESdBkhRpMmTJaS/bRaHQLvx+uVDSnxfr8WS02wy/yruluDYAIIYBIDZSmLqA7f03ejw1isl3Hrx4/4/Nh4WV7X95Dhw5cebClRt3Hrx482H53+27aefxrt57Dt+heA4cOXH+NhNWthvTfGCxAAAAAQAB//8ADw==",
"title": "$:/plugins/tiddlywiki/katex/fonts/KaTeX_Size4-Regular.woff",
"type": "application/font-woff"
},
"$:/plugins/tiddlywiki/katex/fonts/KaTeX_Typewriter-Regular.woff": {
"text": "d09GRgABAAAAAE8kAA4AAAAAjFQAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAABPUy8yAABDaAAAAFMAAABgRUxZnWNtYXAAAEO8AAABLQAAAfJpPBnjY3Z0IAAASvgAAAAvAAAAOgI9Dl1mcGdtAABE7AAABYsAAAuX2BTb8Gdhc3AAAE8cAAAACAAAAAgAAAAQZ2x5ZgAAAUQAAD+3AABwNgrsPsxoZWFkAABCKAAAADYAAAA2Epl0ymhoZWEAAENIAAAAHwAAACQFKAGaaG10eAAAQmAAAADnAAACFAl4Hwxsb2NhAABBHAAAAQwAAAEMi5Cn9m1heHAAAED8AAAAIAAAACABkwxHbmFtZQAASygAAALDAAAHI41OEZZwb3N0AABN7AAAATAAAAGy1sq8EXByZXAAAEp4AAAAfgAAAIqSjPzKeNqcegV8G0fa9zyDy5JWC2JbkgW2bMcWxhBbITuxFWh6BScp5NLrpQdpit9d72VmZmZ+r8cvMzMzMzND3W9mpbVdeqn+xd2dfca783/o/zwzCKM2QuhHsY8IEkh7P6eA8FKrk+qkGp1Utf05j7Tb2H/hL9rwbin70wjBEN9GCZRH88NZW8OAYAcBoGsIIX+XAiH4GsLYw6NkMplP5ueCCuNhK93td4LAE4LzSr3RqKeDwPd4tVLvdfs/Xc6FU4zz1GKSc7aWmZrOZafKuJedhqn2Z73L0UTiXZ+5fz8uZXPTU9n8NMLoObgAn4EfRy6qoelhcSaXElR9CQH1KRgQ8mHUzDRdyjPq3W35NsG5kG9s1OuN+uCVQ8+V5qYEJ5rmpTWNcPHul93jTa+Q9+3XX8sKTRPZazecl90jhNEMQvBn+CZ6HH0w+pRhcr6IMUGgo1v3Y0MnO7vvKl6+fzhngm4g/R4GhNi7CVsQALzHKcY4uetoGCHjmgWG4Rmj/LCpxiMZhOGRozNfJro3LDx157ln73zwUx/86CMPPnDv6y7unq6FtdDvnq4lebE16G6QQafX7/e61YaEfdDvdPoD+dMOQ4/73uSu0w7Gt+1QASSqPo8eloSCqypvRYRZvdGVf+nl9xLKWjSo5qiXzWBBLNiC1Px8NuTHjlFqYH1ep4luR10avu3hRL7AM7lqBVKteRCYE4ohw48tYjERSHa6h9fHeQhTnS6k1L8f5oYgGhDy8YDBCnICT9W2WDptJd7Kjl5iLes5EzGKGeaM06yGMT59Ronw/8fhJdfip7ASVr8QQasvvhN+Hn8AXUEPocfQaHh+dMrUKCI3ew7BtLNcnsoyKbuDEKEE0TuIYkKll2AgGG4jgoDchwiBa/ICLj304LmthVapIP3Cb8HECQYN6RV+GAYR6lyM0a40Gj35oC4FxqqRo0EYxmODvlJZpEo1z5e/5Q/vViOd+F4YdMJuvaGUOejDzxdyQcGhqWUOxtVW0J8/SXTNLwkw3fRgg+tJLyglwg4xs4Wl/j3ExtNTRC+kNZ2E+kMF7e8h5VRt0Q+Mr1pqgPDW4IfypWLopUTZxA9cJ/75+vx2Z9aGfMXQgkIBE5G+d8V1TGcqSPoDAT+HmR1eXLi7DwIcVsxzFzSjnKckvCv31q8jeipvJxdy1g+X2/bDD5slxFD1xW+GP5O4u2gaddEWuhutDY8v5jGg8zMYU7xDACGgCG4iKu/vQ5Ti64yrR5cr5TOn1lbn58rdSrdREzxQYWDQHiPlTdx+UK/Wx0ANpPGSSoQpipHmSPDBGPijc7qNiuByigK12pgBk+T9Wq2kWSW/9iAFjJ2E/Jd0fAAIsOEl5MX+nxP9GxozRCv4zZlpYRW85huTxMBYZ+r30rELOuCgsX3snEHC5tMaJunKgqF+l154yHcYpvgHWFpdsBc2uPvRyzs6+PWdxXMW9uo7zWReb+r5vI4IKrz4T/Dn0vZ20FV0C10b3r8LIO7NYQwPnEvYEqBbc5jQNWCE7Sg7xZTcQUJM4jfCWFkpJHeVU7FrHBgL2OiNj951efPEyvHO8uJ8fWaqWNG5r/BUwEzsNQiVLSpwGpG1qkdRwFAPFVgSYAWrQrHRiCKGElRzIkwblWolUoUKQqTeqMQW3B48vD5wg2Kl4leT1rIIS8QAoFhzjve56/JsLtnOC22mYlozXoL1k/5jttlZb6w7hq/PFEj4mVlCcMHGlr6oQa6exSGxc9hs1OCnz14znJ12b3m6mpo5bw0uixIAZ6m0JYg4Lkjr45YtfbaQnHK9i3mta5m9pflycanhVgvW9uVVGxb03GJXX5qh++9aWc7SYPZEAhYRAvQ8TMEDMg/k0dSwEAKOkiSGpxDGEdI2HrWyFSITo3sURV6N3bpXkQj91HTOSuSnO349YRhFf3qOgMAhTrWnmbnRumujGOhQMF07earlAAL0NTJOvV/6SxmVhvk0IFBvRQjumyRoQJdKZSxdgXnVShxDJlE/en/046kgAu+vJ6idvfuBq/WlvEkTdUxTJ+upRLHYeiTRK2LmbXzPW77w7cszHsNFyg1z/mS2ce5rzj05NNR77pNf8qj8kiLKDH05IEcQQsq0EFxqlXHkjmrdhyuv1JWrKT9UX3ZfI0HMwt3XR8vn0knf1e2PKPDW3KUAf14JU1+++1OeOLdsuYGpXfvK6dbNvXuOO+q9Z9BV+FGsoSfQPUOLIQzoxAATjGXmrcvMG1JQBs5AWTgiJNJFmsg068kLgshDRwSwTKnOzRsXR2srzXrguVzZfL+v8qPwPO75Kq72D+Iy59I0cWdMaxqLuFqRAl7g+dLmx/lx0O32uz2ZNCtSdhL2oz8wUOLyTlmC/BNtKdOtd3v138bBdIABAM8vU4MnMwl6A5atbAISYVLXrOUqUQ/DRPKlUuBkzSXyCkH4EyeddopFLWWbhEBWIhm6vol7kOOObnluSHkxAEJMO6UVi4m090phzeY58mriCv06ugv+BKfRFFoYzvkpjAlFGAHeoYAZAMJwU8F8DRGSRqNupdqtljnPtWrjTKdsMqIlvSjk+gchBGbdlG/D5cs8DPnly2D7KVfeZDLy5s253JUrWHQFvnIll/sqrLUVKwL0zhefgRvok1AOlYclhBF+KnIClTE8NAKUsAVDOchR7rXKlTH4h0FehqR+9AN6uVErzXa3ejo3ExbBDthljzm18lRjbWF41SWOY6QMYGaGRRisQAJ+Ee5B4sDy71GWv4cAwYW0qyzf7Q7KcmHllSI8XCrtfxlkurrRjvzm+xDASH61idLD5MRjwIHRTEVNHMQfKW3n++r56bnG1HRtq9SsT0/VawgkT/nmiKekVdSxCZ4EAHgSA0KPATJ1lIY0kSsOXyXVPZj0MIYdYQSOj2H/A5p5t+9QjeH3OL7vEI29cDHhI4zmXvxn+H38VgljHdWGFUX5X5Y9Ahj5vl/3a4vNckT+lTrjvKvQVXCHPI7vipLKseo3zi7k+Mr89cev8Dk+WLy+9XGD0zNzqzpbObnZcWx8VwHMYw9+xdvfk4To4sbn6ebHXH7k/BWwPn/vwkc5kd5vIoDvl/mvhnrDdnKMAQMEGBC+gwBUjYIxuYoIccgI0FQxm0mnEjaqQY1LZNLSU8dsS/5T352aMOHyxDYjdvXxrsMdz6Ebdc20c0a/x91g/xdCl/f6QOgsfJ1hO34S48SlhJl94V+IKORMXWaU7/teTIoIUBcB/Kr8yjX0xPv7gBhMSoMZLm8IQzInE4zJo4ixCNEIW3oVUepQGa1qR8UYwbdfVW5vmAbU69RmCvmMZwi0BmtivMLxAhXVn0SuiK7L0YNMVD7kl0o7MjcLpb7HMsWznZkGGT3lGzNe9/g73vCou6QLjLmz//G2junPhOtB6urpQQmbefjcUra/69qjzWL5RL/UXXyYgem6unCmZ5jNmeMmGf9mt9+aqq6cXWQpN1NQGpyXDOZ35JIuK/ayQzASSWDcA8KaQAnd0QAJLhCXa2eUEUm3uQSDs5tIiBgESqMqNMAjQGdPr691l1uzMxWpBIEuw2V9gkIUvCeMUAQx946pycQ1lIVODLTSOAqKGoh49tiyPzgskvnpxVmceXbJuzLHly3A9ttfd//TOi4G/rQ+c8/VGf3MMTZbZWmdOeWet5oqbAyKgDEAnYLvns5VO1Ya2O709NW1DGse525GO3Pt9HGLh5JoG97MdjpzbJ0BFkVP5wRToyTBLrsAAIRqlq/iXBEB/I209GU0QGeHpzpFTHACgOAdFwic1wUmFAAReARh7O8yQIjvacC5w0ftNkJtmZLk5OVyrbpXbhoyOg9imiAtpBo576DvRoGjI6FLHURpP3Zy0UipZPgXto65zuvNj/zIJMMgfofaFg6MZkLMzyniNjffrMvnJPjc8keWXw+ROeiMXAdus2zOhBvMBJHY/0Ki9TVynTBpNwX9H6Df+ekuIOVDMg79Kr6JRrLSdhYBWAowbAMSqs42pDPNIwwCsJD8FiEhfQkBZqpWoGQPqQJaU4u/jjgPuHSqhSPiINDt/1p+bxgCOn3yxFpneaE1HTqWLtAIRsq0Bu3YXgQX42wSAdhZxf12e1JKi6rfHhxSP67kYpPjnsTxn47fu1yzkqOmsFyXmRSAJxhN+oXSTOoLQWCGCUDwIR8MRmu1UeltgfFB1z/mmFUK/CkNJ1n15OmVYyd1smwwLAz6JV9MHQbAMCWcaVTC+03MT3hvOOXw3UcfLC6VCoFrUpykKsIvTDywg7bRheGOAYAzwAhWHJZgUFFHA8YJuxnxWQFR8OecXpNYBXTU6wLaWO9u97Zbs4VcKiEY6kBHQQOT9KUQmcQVFX2EP4YiThJRFo7L3nSFC5koohpi4ol12FwbFTIWneFFPeEtjlwdzOEFNzlodixcmFoY5KZS4uZDO5sng84lkiks69Lfw2oq8Gv49mo/UwC7zhKccmZe7M8wqs1io9k55QaLG1MLDgfnaz/iwU9utfZ/dWVxbrFvYzes9aYagZ+M4tM/w+9KOtFSGcYFHCVZoHuIUluF34jfjD0rUEwjn8uGCVvXUAtaPMq9E9ZdVaqO7SMCoHy4fkUxff6Tczz3dFP7Y13LetRkGIuqVN2FFMEsOZ3+Ig7CaM8vfO8XtTXT1TXMLDa/QP2kpQkzYSSmM9/xd9zSYBoRtCC/+ndk1p5HfXQWnRiuzgAjHlAmtUoQo7Eyo0TOgdI4kx8fDDcGZ4+f7XWXjuVzFXGk8os/VX51HDsr9ThGRk01+avWrVe47wXtPmlHUVMqPcr8q89enNHOPbw5jwkBwo9t6oDtZ7/uWRuDcbqDVYlnzS7Cma3XnxvdP3rbygVmbh1buahX4SeHN8C8ujZ/OgEAgLF7ssndUDtz9eoZLZSB5VQ6GhfpzfJMt11vttv7X3Zq0UrVls4s+t42wmhxYuHz6BR669AQwFkdKFF1QkKlYUSU199CHCHC0c0j6VW1GKLMotKwEkPjDPTacntDY7ZWq83NlQXPtyBKLwqlw86CiC3+ZVlnQOqTojiIzX8gAYSPW31963ihbUGmePKRK8cv4NSlY8eL05cbhWKYKXCz1q6cd9vlZj23q+tNz8/PnU5ogC0gy9l8+7TILp8onlu9+AE/+JDRQlJWuK2wWAqMhFno3QYoO/VLU743q+mNkuMn9CHCY14KzyMThYpbxg3fZGzvikvNzMxUonbrEZaaejXGGv8fHhtT1/r+f8YcFqPnJW+/K3pTFRWGWTlCMHno4IUwqtVf+Zr0IXAKxriSPHzlYFArNhorjbwp6bpTTgl6+PJvMVenGuvHLg4aTiJniFTZIRAxeTSAX8QLKI+6788CAsXRAmkcZszL00jaQPLlFfbe++Yjll8bx7mZqKaZiYm2gwUL4BcDWwi+/43UNCnczTTNCSz8iZ/LYc66mvAI+RVqlkzyK4R6CcfC9z9Mv9tCCKM6+gH4E/hypCEPbe2+qyo/Jo0wBYLJAwgA7Y0RykvYEAKM4AbChOB7lJL2IrELe0NL13VP9/ppN6Lmk1qkHk5awuoj60X4mFJu/6lcsZihP/xDuRJ8SE5WKLr+FXouq0PCyxpH8MlJfDIA6ACfWFlpUPi8rPqP8YmDCI3YAx03AAYbeFCrr6QdTXC4h1oW3f9GLoTtmwqd/V82sZFMK3isgkV/hRCvZEbomAqdDYTgp/FjaA710FuG5gwQHCQxRE5tjZ0aAyZwBwHFQG8f9GKUs7JriDGPjfKvKeYfFdsb6r7nLyxWOM/FKznooEzq/bi3MiaK8rEMjko0GF9u3L7ryf5sw0hfSmPQkmHg6Cx8LqFjHDx6NhTFxeKHlXNyL6Rbgr9aHy6Ul5fKmtla16dKCU04par3wKZmsySrhY7tT5X2H81ORzsk0whhmaP+HX5PYnEc7aDh8EQGBIYdxAQIFi1MRAtDgmFxM+6DhGqB/BriPMtH2WalKU23o/FCK30kUsXkOBqYcBx/kp1joYP0PROzICkiJaTA/Me9kduh/7HrzeXOjmNUFs8WXEdkC8PB1tZsR/P7NSsf0LTdPZ8IHfbGT4Tb1TwzHC03Vc3TDC1A+x3vMoFXX3x2vXmxV25eaO8YHnN75x6/fa5p4IqBhWdbXYuA+c67790yMLXPzLbk/7GJMFJx62/x4+gEGqHBsDvcwJooAyC8gzREkEZej4SQ2Y9iosyVQVR7n9tq1OqhV+8mdQlGbRJlqpM0N5AprVGVIPBOuzNJgweRXFYYrjKBiNq4QegR2R+NAPLaPYkN/HA25dJLFwPMzXRCiE8TAgg20ybH/qVL1E1l0zBYIczlx5lHycoAvgkgn6F3aCY/SgZ5DYtSgpoCAPD01NQ0xiBMmihqWMsr2/9PoFpCYCwS2v5//idg+A4BovAJz5kSj+fUzkYKgazlb6IFtIrOo5PDDRcAzwBXrICpuorfoAAQFVP2rgCEyJ4GUbhH6Mypkxvd9vIxOXvheLmp8/BorZCKmY26C8KlCUfgQkwYrxCkrqqG/rgBkJZ8Ib6XI41x9eCHoc8NhnUbPvGTLVE5nki158zOeSNxesHMijOnNjZEZb6+hpfK7PzZ7QsmZsXqQS0BP0GYQZOuor4E6wulcmV2y2XGvYNirrWmY+zh9wLWO+XS4v6XNVcZ/CRQwMYSAtSUDOEPJUMYoHPDsz5QxfI4UXXmHaTIEYYozRNycMmYpMIx6VNVQa1azHuuLtAABpokfiwuvCNziNYdO8wk+cf+FCX7SUrjHLJv+egPvp7UNjqqdmPSH5xAw5gmvaymp6cGvYXzJ5Y2F9a8IOPSp80fePs73mfhOmAidNdIs6vXmCV0YebrJxa2P+iJrZVTi66dCEZvRhglEcAfSf2X0BxqDZtHdM0iXfNY1816rSKlSoNyTUR67nVjJccaDw43r9LdSJepjlxiPUiKtOe5WhJ4Aj70Q/TTx7a2l04abx2t8M5St7d+HkQpYypdmRknqlJwYvP6J3z8vesOhvm9jzFgvwfOcwhQGgH8s/zau6A8dGzAqAaEboDQ4opvgABTDLeQxoTQbiGCOCP8hgkYR8nRVlqKqpTkrgFC6FeRrjv6KD/OEMePTGeauPO/mZ+T81fG8+md//0fGA5eay6iiGmU3TzyN47O3NvbG7qXLox2zpwOUl6umvKzn2Hxogzacb2pFHMYk3s96WLjVvOR8Xj4IFiNe0BS7kDL6YBzv1BvLoU/kyIYM5NK8xP4d55xMy43WTyiP/NP8orPREPc2T8fcJOHmUzIU/hESYAt2NuYxbAm7KnK+5KhS+TdJ0Ujepj8ibmWvCRq7OOYzbVi0ubKMhTfCBDAn0vtn0cfOzRi7cfJfTFW3RHUhETNOERNByG0PaRpjibxPhbj/T+csTdMbp89cyqMMTb/jxiXsIqB1ZdAGyhoi/XmcuYXjkL7B29/GbRv3zI41+2fUpBmcrnMq0H6PS+H9Hs5TdgyAr4Ey7qMbn8b7RJ+7u67Moq0ZVKYwllAMvLnD+50ebc3FmghoQFnQgL12uFPj8KfQve/k9Z1bzwFqRkSXef8tu93ZoNGfa5sSGxrh0xjHDLD9svjZeMou5i06aoSfrX7GEQoj5kYvKVxcuuZ0LKCNwyT2soxDpphH4ZQDRMnv6yx9Qtry17QygXFoq1rzjcEybQlHD+0C42nHuisrnTuuaPjGk0k45iqCbdcWgHzk++59OFZo7NYBmB23RJ21kvi5x3NRAiiCPuf0mqvo/PDrTkAxcMoMhE1bwhGxic/QAVcy9AIQvqeY+PIsRGSc66/7spdly9dOHumPJspp2Yl40nw4suz7CQWl/CEeinjO0y+R8ZTh2346tGmnn84rtIu04Xa3BIpj73uboNzEg18vxzRVSL++oOhaITIkXjS98cjEoh0io4zsJadElgZYYLLgfe+V86laov1YGi/J4d4QtpoPOsnfzIeQYDOIYAflAg20eywTkAhFmUoCggxCR5jDlNoNVGzPNcr1wXPThB6GT7M92IUorU+ZBsuP7G5eYK7Pv3ar8E6YYDjEbkG7qTyWrSCfEkA5phzg8uR/Z4ccS2haqCoj3ATtdHycLE5jSmR6iVAgdA7DCYlmX20H12rSZ7zGapscOPoEatOKs7jr95/7svY0fjxgBIr6Qd5+yld8JQWZIClHtzY2jNxIfRLtNzcKDBot/HUugDOE6bMqj/z9T17cfXYHE9mi8VQd5xZfelrfjqqb92oU3xzfKpi9/zp9hSLNksIViSARkapcYyQ2DN0LIQjJMpS+u5jfq0xX+uVa6ayxVcCHcSL8TZxrId4hUIEU3jCktWzaO+z0eDCn7j2bJhSdCEtUiGMdn3FHWDvvpTj8q1ttWppZWe3qnMX3TRLBR9m63a6wnO+KPTzck7SP8IlihpYOXnz5IUZeOIOczypugkqe3ubFz4JAJuZgi5tzk+QdXO5bi1vVZ6OJiJAWYTgTyPNXn9/AJjAJNGUEAGMyS0OAJPykckBeh1R6qm9mSklAATfeQ0J2Q4qN8/VZDNK8Pxka2xily/Lv0IaguqgHckUdSkxzx57o+qfV2u/oRp+M8yKMu3PPr7a4kwQIvTpbHZaFwQLfAMTra8sdq7FlRizuMqrAJgKbVoTAn5CyAtmIUDyH0ZyxfegneH2SQdzFao4JpiTO6aBVRkMEKVFFbgIvaZBtM2EkJxyz+vuvrBz9sz6Wqc9PztTrZTz2Z6lWoUTA2hP2GHYjsvi2AvluoNJZTkJWJIHR4X0OMRz33+5QKodJD3WP+FxWp8FOB4wZpobPe4mg0QiSLr01GmqrkGUa9xat3itLODoAxzihF8U2LLEh36SR4Hmv23bNgSXfu0n8H5PPs1rGEd3v//zYu7xD9czGf3DH58TP//7R5/BTyBAHkLwr9E+xMZwbQYAnyxgBF3giBw6U1w+8Wu6hjn3uIJthEazM7OZ2ZraaCm8algfN8XdMEy9ekTnIk6F0ouOxPfWS+P421hg4Pw7TOKnNZ1hzfmicRDX0r5m8FyJZnQePmepx68ev7GU2N3/4mMm/MAr4zdOSUGWTZ+EG8vm/vpB7MbouOw6/yJ+K3JRS/UNj/RSCIkbzK1mtkx5ZuIKL+kjs/rkINDRFqgqkx6tveFua7W4uJjZ/ojtzCJ0rLnZ1lwyb4p8MZPptnWTMTwqg8gu/NVfL/iW5S/89V+V0hbWk1PfnHpuoVTgtNBceO6p8jzCUV3xu1KDy2hD9fSRQAQJcoPH1VCca7Q416ytHO9Fm2QnPrtc13k2ioIvUVyn3e63pdW3O3FRxMcai+NcVCI1JuXv7CFJDjQtPz3rFk+1YNRpYGvBC/M1fvZUJhSp4J2DWX5iff0Enx3AIZ/LlgSAONUdppxTc56ZYPAFREU2+Kq5dUPWdwDGeqSLZyNdVNAIvXmY2JnHjJwCyqYBKJlEtzJihFJ2CyFAT6HJWd6o8wXXx9rKDytKhjB657WFZHtsJV+aq7kqzzEV6tXxxuj3IpboxJqOgAkDUq8IB8c67kQ7B7FUoIjfBlZKl+0SeygELhTbJzPrvm3jxYkZ+E6jVHqm8HToOBhTNywtUEwM6iXwdImCb5iYWJZ68qypY4FXV4GZc7kHts/81cLYRjJfstpKra3hjzFDZzTcuJjb7JgWY77e5AkKBJppjyV3N9ZHhY0OUnXzi/+EDWkxl9FD6GeHzjRwYxMoHwCKoPQklLOIcoToLWQgTg1+Qz/SRyEYIXbd1HB0ui4/7pt2/5sJ2lUTNM2JZ6Px3GFbTeMU3Xm1eSCn7Y2nIULiSbJkzCF03z2vuyIXcPnc1tlTayvdznxL0kvrlU2cI6qIz6bKy8mPOgEVJ63Jxl4j4uVHSWU6NvTJ/t1LY9Ob35Y7tuWIQJItYJAxouyUZBQwM/gMT+LlxgMpDMQ5xhbmYoLZ1eZbrXmtMK+LzivJprXR8gqL1VJaADCcLaVPrOr5VJaZlBDhLZ68pfUGWtOA741DFU5j+B7ArOwn0jPt8e7yP0UnNO5Hu8NzjoYJ2uhhKvBO1C4FmJx3iS7j3U8GlAa7SIjJJR1d2N0+e0KePqiHjYoWb1pIWMJJAowCQ9z6iY88Rj8R2vHxdAXiGNzDXaOIF8ppjTFHeONOTetWTNsWWqhhjJnW1nSRud4YGDippxOXtrXmmm2S66dE6uYqTWA9GWiYcD2bkXKfPJeZbSZt+uF0ZQQ/fOoNYARimpM0+xrGqa4Lw05frk9pZiZwTMNNEWe1XqhtP6hDnWKSw3qaXWnWE1zXNffRdOmRkklxCZx7EaAcAvh76Skr6A1Dc1rCTJKAIS7bpyhgQIBvMQCY7LJzUJQTRYQzP5yeSKA7ryGyNzRDWZB/Xi2VVs3qfkQQqjFi4+MKr1mmpw7q8Q/X7bO3sZjss4LmcB4U67PLmV88WpLfHlfgv2On65bkTpUpW0S7ric2UvSldfh+b1J3M4TgxRdkvEhKFLZRZ7jkAUOwM+4ykz1NYLUkxFicEBGSctvNuUav1mjoas/wsD4QnMc9+N7R0i9+Hh1GCcbN9sjhJlLyCv494s9hBvh2f2r6/JMCooQD1/biBxS0xSKf5sVFjUL0lAkZ5ias+RufF5uv96zbd4vnv3GcdSYP3pWbezKBobKseNFyJVn+3HfJ57bD1dpR+sV/g3+Taz+laqRVQNgAirCkRkAQiqtfRGmWjjbX+93F+UatkA/88U6zJ1dVwspjev1eX+0PVSsTEkTGjYAqwQdkkRD59BCUX0uECWyn2AoBICvUtXEiSGjOFwgmMOZ22t3cxMJhG8wReHMjnbY5DuDCSKoYnwgTbLCT/qeWQQmZ+0d3d4UlwrQlKNUtPUEtsf/i/gvMYRjLX0AAhEUTChGaUGu2Xvy3iEvfh44Pe/cCR9OlAsEc7yCOMOJYGrPaYaAAYO8SwDiLR7s7G+uD7mxzzU+qFitUYgKoaiXCeXyYJFpglR9sG1ejEECqB3HaV6ApQwj9QRycIwTVTQ8+OJdy+Ydwt6RVCxpPYN9nlkb0OkBdJ5rFfB8nuFaoaiWfDmUlnMr5dtpmQNIJZm1ZLJEmwOQIDhNhXiNEy1fJ/gu/1BM6YGaLuXfVNNDq75wTNsOgi94vgVSLhEYKhgl69lvfvGu5mw/s2r5v7z6w6Vq7b/7WsxQBKkzq0T20MuxfOH98xnx5PRo7vq7F5agU3uvKzfWpXr0eUeiYh6llNxpHPERZS8WLIu+gGkkdQCWEN4XjKkzJDySeDdVXCsabdaKt+FkQrvYE9Pqhr8msdeGCsqKilncc08nq07pzYcRdNx+2lzeHYSAv6cWLQUmHejrtulXKXUe3J6TtHXdscuvWOFdFBlUluCf7ecU+qaZsLQLq1i363AeBqt6wKFUJwKWG/O8SAE56KYdHdQdEfjVSeJ2cr5v0EK69o3BpEKMlCw65Y7Le7wWDmabOM0dTvUTwAK+DmFIZH25rK1C61fo4kMTlWJVzcSTLv8fWcVRRBFeDwBu3+y9e0AWf1ik/h7cs3bWZML7IMlLCD6TQK4qNr1/6vuV4E0CFlgoFw/wyn5DgC3Jq3SqiCCclI87y9y19/UGZgQAtIYDfk1hsoi8fOiEg7AGgFSA03hmoSiGK4BaihNBHEUKTJpJiRVcnPaR8vE98IIoouf0assPaWIze+S/lJNVyEJLftRkUPq+WPdKbQoPBa2WpEh0fyRVHOwJqSGw7OgaYY9ZvH01VjKWzlWrL/1ZsYg4Y9n+ZWX9ztAsPMtglGYPv5u5LUxYWRDM1+Wj/FHfn5+Pe+9ktZnOF6y/Lc/x/gD+AptDisIWBYNiZHC24GR0tuO/I0QKEpNhUeX6gzhWE9UYqOTEkcaTv5om/SgrMbPb44/EZNpdfvuuuy9wNrlAP3gxvoQmKDw6qFQR54VOlFxjoJeebUwpVQE8igMealSPHCVAYHzBDjfpqOumbAnYw9hK+qe1/ADD+THWY+YWLTKPyIoHfwzSEAM3KdfblXw5Qe3gsDYA9IGpbGKPJqXVCojMM0VpRtNYABb3yzHitr+iAhSkuhmG8Mk+u9v+39xUAbtzcujrSCGZM4/GA2WteZi+DF4KbNtz8afoHmqQ/ly8zMzNj8UF7mZmZmZmZodsnaTy2kzR9zLcNeDSys3MkHfy+Y8eg6XMKAoyfIrxY4ti0Xxtz1Dm+LquO/17u3Qbyug4GQPCMShqhU6OTVRKip/2gjIcq67VWnbH6EHRs6TUixDG7nQHLNC3BKIMnQP6SL4QaIR+Pb2BoCM8CZlt2mhpkG7aIQdPyiuFjOpP5ZfCzr//Bm+HW/btw6w+FsHVAr8JtuIpfQiVU745kNVQmCXD8bmRMMV/DEeWt3Vc8fQyyN6/SRNCtZ1Oxwsh+MW+IeCoRsV7q8MX5Co1tT7x1vxjDkEpaPd5LVcVjs6//M47DN6BV6Tn9a9eeBorWUhhLdz0OCE6EAVbbBCQlImlRFHFM+U3EmPa5sgcCFI7JCKudhRCLPdqbTp/8z8+fkvPn33R+hJPSL3UFMKeyhbNv8ibUfw8SInqLqvflQNbeZVgxPzlRr+YDxxYMrcKqFcKah8M1ZcGGcButdo93soXVNo1QqgrRHnTUn54b5lg+2C97lYurYv2SgDFW5qZjNCZHbcLB2jy99/DEiQcmx1N0qm7W6gYzSPLbxIetekutqV0Tw3zFL7kVsI4u0ifeQ0FYmYLAIkUEsMaljXqn4hiE5kY5gM8LH9EgzWS6PFovMrWOhsSt/Kk8C5NoDX3hwatVKVY3C5gUgBqdRcyohTFixsnCvcMghy+Hb6lGkhuUW7MqQkNXgGOEckip7zecA5AMJ3LQ8y53PUCry3Mz1YrnJOOcokmYDGv57Uh1k7Ti0w4lNaLsZnRi2bICuuq4WUkXmnuLRGvvOIVKJQhga13pabPezpYWZvz4AliV4vmjR1Zra0nDnhlfPM0mfS4w0yQv4OWSAKWlr11jPme1dHrzStHojrenf239UrPAP2Cyc16dt10py5+Gb0Qz6Kl+Bjut7RsmlGC14wyDPiZFEO03w0CPMIgENDSNUOPxN56nOQZjbYmtz7pO3EQzMMO1eKLjrVO/Ede70671K3YLw/U8qD/8MZ2VSwbHzkrX9RSI2YKCGSQXuo92FxyW8jJGxppmH3z9zM5uDCCe8Up+pexRABx7cG373GLKxNyNuY+oXVSR2kDIXdRCK+j7Q+aXo5Q6A45mgfCK5hEU7hkc3kH9HEpEjsweKDBEGNkrEkb4uRP3n4jkPP1Sg8ZyymcYe6PZqD8ZMRbNlac8NioRVK5kiwnl2GrzFnSGt1p6oQ826vRC2uWeXJc7UW208uSlrXkz2maW2Pb9rW3DMZd22tWl3QtHFvYbREB6M56O0dmdX7z8kSPsY6Mtlj7EiVzRxCIw+bide/fxtUvHWYa877xDQJzp6V34SbnHRtG8yn4zAAYnowIIB4aAMLiBKI2edaD7xsbG5sfmN9puvT0nFIpuOcJPqcpHoI5Kz/cZJmXIkaAVYev/0bLYxRscrPjnfx5JPbyx7mqfx4l5V1YO3j+f3F2p/3uz2WTZuXY+Bt8g0wyXeDyd5GDNbK7EKCEiY3njc2f3amNb7ymmX5qYNqGdU66i/A1fJ/Fz6+g7u5YPGLKAMO75krWI56QYAYYRksrsAw6UsstIMSkiV7I/M3izman/ws/8L/k4ZR7i1ZZfbUrMccZUIAXlsas90zO1WpKhso8YdkM10eodhdMJMBOPs9TVrSk/XfKcErY6SdjbUdWnnb31NVUlPfyOpOmwtfXlJebAJ6Rjotx2JlZINhN4Rd826LhRLmky7eEfhVVTlnBUVTUgCnJXer0Ar8E3o110Dj2GvqQbMBAoACy6FUz4OpjGTbBM2qNvLqrMvMHJTSSETryFOyp6qU6meQWZZu4AWZZGMuaV2OaH3xbuw0iQ93uTxNRcky0UHjh17Ehwzp+QyOaYKtaFh1Adv8jLrDMpyd5FW6u1pWBeMmMiYmutxyRc1ue2HR1QTX2Qb2WZKO03VNzYuHViqpUwpyfqMwW3kCIYDO4Gjx6MNU3DSXEKqYp7PN893TxyeKQFJIhnqJHOsODi7OhSXiyMEoErY6+IJ2v5VMCm37V03cS2B87+1Qxn+ZGSW8pzAFGf3r1uU0ukC4ABjPj+xmxrb290brLm2IYoNbPjsdZ4e3Y2447OAps+/H7gqaBkxZabRUYDJxuGP1rP7iuMnA2A1wEJlSE1hEHEkwNlF/kvWV07RIg9bIWMo73drc3mqOvXW4tVR5eTZenkLnuqWLa9C9fzQp03FLaGjALOUji6ZwRbQ2YVJ3eTZvFWQEGqvm8PUYWuD6RYWW4mOFajPxW0CjH4kYFlvXGthfHlzLlS5v2VAozghE8+S4vZKSdrXb2qhjlCWKMTfhzfQjE0qnJ7BSDGoCFKoJW7YobYugYcnVK/uVD1GjVVAB6GsZMwd9ljwWpfYnAuf7iW9eu1IFf9cDPxCbs7vg83rqUJ3tzQp/B5H88E5YrnVyqHWsUFwDc0NOi558Jzx0N9XYT3xbeQhdYVHmUSDLqa1ARpDtggBiZq1QZwYHoZUaqp0tHJkCT4hfFqqeDYsfX4ujJO/gToZwgfQT6LF4SquwdbaHWGYVIDontbtQwBqh/Lz9W+LCiJap4HKmUKJ0/4PiGxZMbNxt+m2C7u4vSJ+TWbQ1E/5/hI5bVPqPgMMPc8J7X0lT8KohRCoX7/b7xj9Rr2C6lkbkT5QQkE8C9yl15AZ7oPnAZhnpMpRpfq+E4IffYTB9jCCPVaH3CKlUlmoaEHdOrEbnd7c6UzNzNSyQbplGDoAlyIKTpTbTi9xFVCxA+C8Kre726gkklhoiSiJ9wNndQlAU+mpiCjknNve4fKLXnVavqos2F11/XVv/dtIxmfjeWULayOqATTY28zHIeNVNUVFjFjdYnFDAIbm3BTp+Z0bqkkIL2XPpO42LtSAAkMsJ2sCVEd2dYZJiz/CIEuKZpQ4JWY8eqrG2tKegsI4Jel9Kqo3W0kwEAKv2T0cC19NE5SFlt9P/PplOXuRMWFCfYQStjb3AuDlXWMzzQ58w8/yqfc+gy56BrPZtqHWKV/iqYoqZSPPJkCwet/iwBn4WvRw+gnQ3OQKecxJpe2mgTkBn5gEQOcKOhRcdfo5fANlZjAyuunBibEPkjETWYojI6looIkigK5cVUw689Cb/qObltNDr3CQcR270zl0GURkj/8wxfPHz+2uzPh+fVGs+p7SaX1fL+/Y5SQwrBebwu1OfrkOKnhBuovCt+U+bj/jY8KbO8TgzR10mmHpoOxUZagC9WVHBvbbPoBB0jLCe+TMIscMzNdbRv3DpzCSV/tmyCOAQLA8aAQIyxdmaZjuWDe+IgP0fdp0qmTZ26PJVKro+ytl99oDEU2Q65iF70QLorFgaIZwAp42L8w8cnemhVMUN4jaE9HMIOohBO/I/BuosEMZJr3m9ytRzWWbDgN3TtL5+u2N13Xl1Yp26pZIcpTa+FgQS/Df7EZ6oSmTJkjqaMBNrYnS5PJvhmi1r1mSBsu+DgpXuHR8UTQucMEGda9JqhciEEAWrcvSl/8F6Uv7qPGMNYi28da5OBUY3z8HqxFqJO0VqLKLeknAZ7de3Bu9HYG5+beaSfXF8+kMY7D7vHlzvGjK6WlZAneb9tbeG/bWZu+kcG1xcfshn3q9uq5C8ubV6vBpI7m6/Cn8HVoSlqbzwuXM8aBo6UONrlcbnUlwqv+eo8jYmJTRg8qaz20qtqTyB0w6BklR9e+o8lIiGhldVx1/zfJ9V1baVRdN5MZu3N9NQd1WCZqQb27V5PeEcuHa2su748eeCps37hZKNNpc3g1P2sojtdLy13K6u1SGLRftHDlyiP9pfw74J85COIxqr1ex1UpwXEpwbXusm1iKT1gqgwdSSc7CBvD1gaPIEIcckoi9puNenOvFz0uz4cBpDLVA9Z2v+PGYk1nhiIHVXmiHVXFZ6z2ntM4aRzpCCfrpVhoeH45tDtYrO2ffk8Czp/ppMRG2YTKQ+bSyV+48n4mjLGY41ip1356YF+uXWUT73lQ5LfO48RmuhTM3uAPKo2QRQB/IJ9xAX11TyNYgFERCKgtoi64utA7pCJvj4QsZInAUztccBz6/trRGg7NqxFb+f4TuxPDc/rRO8Zh0cQenq1Ugy0nLKCFquu1a80JU7lvZerKraNkG8VWKjHUj65C2zdwan8Ch1nv/RvbWVb0MnkDJrz2PIXuNnO8wx8Mgkfn5oIAXgEGlDBuMmd/Ihn3yn6G0Fjm+BTb2SKioNRxPg4BqL8URlae/R+WZ/8sOt89k3c1eJsqBydCX4daIHrJedjaKacp7b3X9BSgBw729zbXx9q1kVzgJNFZOKtY2815pd6iZHPYRCsYonuFO2eYDNZH9/SCJLXThskvYHxgNTh+1HtrpX0JF831ggncsnuQ7MAByGTmOpV8IjtzvXwujWnq2vFjM4p4FJ+Uc7iZ8wTjwdH1IB2PxcXIiYnKqLwbI9zK0Pk5GufxjCdiqbibMG1um+VtkRaWO71QoJR5GbrZcaRkDXtP7b+clN134nG0hj6oG69kMTGWLcyl8ELge1MAwhwjrng/Gb07yGW1L2wlx0ixqnyZQYyn+5PvM0+3DVhanJ2u14p539NdaNZgLZRyFFT2i/s6dA/TZFqg/dYBbtA7pfA5Ofvm3lqzzmBuhjlgJm4At11bRT6v9rsEvOUtwNfWY2CKr094O5eb9S321LuJKKVjYn4hYaqQZ25uuDnAO99Dd047XGiL/fq/YAGvoGX0geHBSs0XMSYVMDDXeKdCf4SHI5Euz1Gd9mZaCFxnLAB6flN1+F6ktJMq5hiIKuY3mm1Z3tUZsKYblr/74I3hKDHwlECGA45IYj4WKuGVoObc7rsDivuRoUFAbB3kwpGtDSWwbb9VNDFL0/zxVOtdHxrGg8oZ/oLPL8/FSpffBUpJK2k991xCaa7X/xX+Vkqmo/odjWkKLO2hOjgLnUcAVwM6OqgjH6W11FCpLgg7K+r6Pa/V6u0QHnc3miOsVffhG7/u+/n84hI2XctKWpZr4qXFfC5w6fnzGg6e8aamvOyU52rUBryijAo897zhUADqGM8/B1yGSLiH2fiET9h64BOGUBq2fJZ/lc9yA+13d86fHm25lGswu0qeyO1sYNNAKOqdpbRjjkuF8fBbThzrbsnOcPOVUiohKLoBN4brEFHQ4+nVWOp1VRr0elA0mY7Oe/QCo54e5S7rk+J1rYgzT40wJSw10Frybc+4cJZpS2TQCgDxBTaCjMPjwmBZeV3k2lyx5zUyuFjCLC4yPvOY6Ss9KLhXyDoslSpyuJn2NERBxUH5kW/2KMRGzuSJSBIjzr0LDYExI5Mvj5JwjgIKpwGee9GIMYJ5OvdolnNilB5LJAWYsYsPPac2OoTdWJRUI27lpYv1mqFaYlUA4ETIt1OBio46h1qxXLt69szByb2dtZXJ8ZWWq7mVOoKSopIC6IOBB9gGL5AVejk0XHKVQqv5FRy5eiHuYb6jA1K/HzKUGLN2lzpBYb420uNanj+nYs4iX5jlZYedPR9pEiXr2Tko55flVNW75WU/kYlNJnmlQnkm6b2cMFuJlMFOnIByY7dPvuyBHGB/H0i9IMhweXdnB4/WjoMCIydUxOfaGHZda3YWFEZbUF3ozb9e1CftIYUhqgBHp7QTRAkmqkip5Ki1SJSlaLQnvY2xxUbo/Chkwz0sGe4FfoSRkZILg/FIcjXOsJ7V7wzmSWGGnM0/XdizC/kggIgcI9IOxqZxhBFzNe5lhO2/OJBXNg/04/HocRnuzZZ8r+xggvlizsgBfPSrE6GK6SOpARgLrG+q0dj0f2yDAvFaw6LC9uFD9HZOLLSCUsEjlGO6oYhCgGoI4FekfHbRVwzwDxs9/EPqvvgH+278g3t//IN9f/zD/edFTtMu2l2Vp/5zG3k+DDCNeqDci4CgnpvUK6AxEMPRyooCYxrBa/5PmkNgPZrJVxuT3rcqEg8GAIbNj3/3xO+YZtaJMBA06TmUsODPfK8Y9kqZnVUQCDnGYtyyCCfmR9ycKFQtbRAXOz0MxLxEHfyKxAZsow/u2ivzjVqWYrqVjJOwIjClpYspohKjqNABFBN6k4Fue8Cg3/dAtvINhR/NReHUW/dO1UW1uZlx2Uw3kxYUbcO2Lqr1qOdSVjM47AGr/ohEqbjo6o/5vtLlXMN1tegCH/5jwcnQkdHSu1wMJHVgLGFL4dcsvGQcpAi4n69cKWGaovh4CnBsVIjRGIaESvtyDIZ9xLr9GK2YQIBY1ElTS74As8JuP3aFg2mOmmbl9k02naUsOyUevTWCAP2uxFWMSdmZqgufSQ2kuzTf3RLCDRtC6m5rylP8XdXgzzAn4/gL8/nXJlgmp9ZhrrcOx1RHg801ixtAlwDDTKVIDN19F1FA9Kacig3AN7W0VU9YlZIxyOmd7fZ4fqzKWC6EVKjTr5zV+T6wOYmVp+pyve8GfQ4Ux18JNpR2Z9AI7IhRbZfWtkyA+BlSymOHSGHmS+TBJAB231UcLSa4Eue7U0SJ0zCkPEnq3UUpY4a/FoNhTo3WPqbWNDEGVrK5pSyB2ZBD1hFbgXNMzxVmgd56VExlGSbZaXbztlEwheuZDCkRPgtfBxQ10Wx3KgWAapoRi8AgcAkD0idTygPIFapW7fR8ozVfUy0XQ2GHPRvUC08/ceTD19UDKqv8UxatFxNGatZOGFYyAcHORCbhOHokbsTUyCYQPJaZsJMSBxfsEC7y0cU6wujtmMNz+BaKoxIKuu6gPXdCshtynX4jlwiKV+tFqmGXDHndensxcGmz5PPlHwlsTAHi2fIK90u442chVnPz0+mc+tisP11A/1v+xa+Dv5HSfhdKoOxdHBeAsNclnKo3m3f9y0rEIS5AZ1u+bn6knZWNXUeD9PsFKTufT6ZyeLpYzaadYjWXduJpO2/bCNAXvD4JX43m0QRqdesV6Ld4RAiFnoSDlb85gcaLhVGDeRPBNB7u5NeeJoOkcwUP8h1fbXFm8mRjq9Js5q2YYEBsmkkJGyC24gnsP1Fc/VlKUwlXcAzARdpWaG4er9ZJimJi+THDmbBzaXEkrjzFsDIibVJRZY5TIfMVoGcjVOUyCqxVNSRDFTLuzeofx9+47NG6T7EDwlqH/PdnVberKmAyTTAo4DEgDBjBkxq7hnpuuq5P5VW6f3y04js2p2gWZnW/rv/Kksat/8JCxpX/wvrF/xn4sEfhu+BlvIOyKNf1qe5oDICwhOBh/I5sM02iPp/BcFe7XtH+acvkWxsbGzzBjUTK/AjnY2gqjpetbBAEgpQtnxpT04T6ZhkBOgF/C9+Dd1BSdTEeQqLpR1fIuyRKdkjILWwPfLrrcQtc+vxzJuM+/C1NpqsMc2rHigqh9t3we/C5+GaIHISwG6rqhYoHoYpSAv2WZr+byqTMjwOTOH7cJCePw+817AxnY4CzdkwuqB+olXlWfupJ+akusr4Byc+cBObd2WY8Amw/6yRBkM+m8mOt4ydJnBp4NeUbMEF5xm4EPqFJrjFy8I/w7fITS8pe6sbxcA0bWC83oMCX68FQCUpU99JTWptN4J6QwwYcvW0Kn9sCJ9vdTia3t3NOxi0wknA+30kQajF8sxZkPMvyMjknSVIGNuSvOCH/XSjA/9V68BL8NHydlFQTPdi1BrYvhO4FyDB6Wv+AQi/93evzDNoUXhvMMBRd7X+GZcQ37msZ7/Vm/s2biRjXs4h9TQFgVj3XvYSdvnP7hszon/rJYbbOrzTrKvx/7KECv4cXfRdZR0f1mN5FikYY1fU3ejyBsqiFxNfVijbB8idbmNdxd+A7StQjSoCORCZN47oW/YL84f6Q0hQvYYtxIC/Y+PAqtl8gZgcwhvkjxj/CaBc/DsANZhiv/VjKEgDCSuEFI/UMSZgk9epfmfgTfwEhcgeH9rTUNDIAduNAZt+QMBsxKVUbcQXy1HUpHmF/5iMuthd1HKpF2NC7GbW5PptyerE9lRNEvfw6mnFd08SmyHoJwZNeVoQXqXvZtuaASunHG5OT+QcVefKFhAlSwhhzLt9/KymiC6Hj/LLKl0hp78k94CCYjQgdqpWW4+jMUbgpHEcR4IKhsql8tpA3qjtsKSH0TPOiIm+kHVhZJcKh1OZlz8BrK+DYIu1/aWDyXCbuGB2AjuHEMzlu+j2aBgYAkKtIIcmNw385PASsebVmMWMJwLB4Lv0vbQaseZg+twhYI10ttWIKPfgnciePo5PotlyxRw46UwkkVwzKxPVdN+qD3elUlfjvbRFLQsqsHlFOkLwXnYS6OgXcl6PVO/o1R5YefooIhdvkiv932G8cSniCUa/QbM0Ex4JW2sDYSLeCjx96+WyQhlq/mfPNJCPAbHwTM0wNFotZ8vQLYdpC2GHwLFNrSQKHX52JiTh9hMZFLEPp8MVXQNKLqX7P6oSpfs9xVmsYCTHcFUWtc0at8/1bmty/dYmamr5v65Lf+PX/rj4lw01JoimDMfUMowjgdxXnRD7DIlf66v48Q1c7aJwv9HbzcIulsP1ZaxR7lLnFenva//5hJfYPO6maA4x+8F9gPshmHD7lY/zZn4fxdkHcSTzEb8stl3Ai/ou1cpLrTMb7S+GbnqD4X6nxD0z36Qf4fclt3ZQ/eV3/5FIlhG12hrDiYXdr7oWrUO8hODotBS3Vt1jIxPvczowFBg5OLBxN00wuhbHtmor0A0sK3PEdCtvRwaLBHOoRnJq3N6bwe/Y3DZfdOrWYNXEiGKmQ1JX6K18xDPr4ileM95ViiM/5yYQ/d1Soc6Xgs78jJX4aXUXvlufq1vVHzs4yea6ciHAfAXG8hUCB8PrcghrjipHcB+aoB6nX5TNGVHPts6nBdtDpI/K0GyDloCFoWpV+gk+Zm62mbmlITrmMMaZ45VoC48TVVUzl5Ya+8yO+mViXVwZe1TevrWJDXpZL6zizapo8vWIZ+Jb8jZ01h6d1x5YIrXMVQGyOmilbjG0KgKt93E46ydW9jXFhp8yxDXUPfn8tZ8XilpW3yNNkbT3nJuRrtTubqqoqZXVVrvFRr7fGbsgNVd8wMZwQDUtKIXBYpeP7pIxB24K7d0Gos8JcvHzDA40qw9jJpg0o5H0frl9VS18oAHGyDsas2giEyQzHAOKOnDYpHt4a1Dw94iptm47jFPxKuYYL1tS8bX3yJ4dBUbgt4JM/2bLnpq0CrpVBmK7DBUu5W619l1wf3jjXibvf2soRTm3XSyFAIwjgT+VuvyIlMYJh9s4vrun3vh8aqocAnEHMPABpqnPcn9PW1lQFqVF9dPRDruQKJ24bYqJgWW6mkTa5PsknTiQZtqUPa5nduXiic9wiplV0bLt312aAzVzdzVhWYY4CfOblD6OpZ85mg8VHt8pStLFG2DU/TjGNG+nKsenJI+1GefnAxNuziXS50T4yNbFfTasJzG62qNuISamXt57a5Oh/P0Pnf9s34vwMPAir0p/wVNTqwh1fVgen8sPMsfARQ0dK/vqZkl+xDcZI6BOqJDHe8EslkYhfv5INnZbslQu6H/h7wW+if0RTymdR+4tqc9zubOAlyUaPFL4ESCqbvYHV2HJE6oPfFInD90kxAMAEzETMNIBAFwjGZtZkAO+dNnjy5UtOzovHqAEYTNPIjDR+//edrBsTFOQ8k5mpo8pXlf/BJLrV+yY/Gn6T31xnwVuQv2+F//2XzwM1D91S8+STAYJwjrr3nwDcbt8aAAABAAAAhQB+AAUAAAAAAAIAIAAwAHcAAABxC5cAAAAAAAAAFgAWABYAFgBaAKYBkQJNAucDqgPlBCoEZgUlBWsFpwXGBeUGGAZnBroHSAfnCFwJCQmYCfMKegsSC0cLjAvVDBwMZAzqDXUN/g6LDv4PVRBUEPoRrxJQEp4S/BOLFAQUoBUuFYEV9BaaF4sYLxiyGTAZqhpEGtwbYhwOHFUcghzAHQMdIR1iHkYe7B9pIB4giiE+Ih0inyL2I3AkDyRUJTcl5CYtJs4nQCfiKIApECmdKgMqritSK+IskC0uLVQt3S4uLmcuZy6gLtcvLC9sL9AwEzBIMHIwnTDGMQYxJDFbMbsyRDKPMtAzRjOpNDo0nDT5NVU16zZwNvI3MzduN6A35Tf5OA04GwABAAAAAQAAkj/Nnl8PPPUACwPoAAAAANiymQoAAAAA2LKZCv/0/xsCIQK2AAAACAACAAAAAAAAeNpi+MVgxAAEjL4MDEy8YHwOiKsATc2lQbZhFADQ95eGu7u7uzsk4hdxGYBt6DQcBoARsAkYgYidcJFwHrlKPaPUUc4pR6SYp5ETRrhhlFa26KedCvrpoD3uzqg/ZYTGuCdpp5wcmskmj0Ia47/MCLmUkE4+w6h1q6Of0r8ZH28RT6c8art5YpQW1hnhjG7+M0tV/OuoiPhyxDLoM/8l4v1x11LMMiURKyabCkqjppdnekixTxL3NYe/dq2zyQq3HLDKCNek6KGEOoappIZsmmmkhQaqOeOUe9r/tCcJSbKdJJ9NcCyCAHjaY2BkYGDa9l+aIYqJ9/+X/2+YFIEiqKAVAJzEBsQAeNpjYGLiZZzAwMrAwNTFtIeBgaEHQjM+YDBkZGJAAg0MDO8FGN68hfED0lxTGBwYFN7/Z1b4b8EQxbSN4akCA0N/HDNQ93qmZKASBQZGAAKPEXkAeNpUS0NCxXEQ/v4zHaBddvtcx+sO2bbtVa5n28unC8zv2eP5AIDL3QkNhUiAi1cnmmAGMIze/NWMaWzhCFd40kZoin5IR14K8Bwv8Spv8Bbv8gEf97b1jg4OpLPZLIDeBsc3/ZGb/Dxb59jno97WokPlLbHsR/Yte5+9yE5mRtSu2lELal7CEhCfeMQtTnGIPZxb2gO/O3ECrUA3kgwY2YAYxmYCEkzoCoBBwcLKxs7BycXNw8vHLyAoJCwiKiYuISklLSMrJ6+gqKSsoqqmrqGppa2jq6dvYGhkbGJqZm5haWVtY2tn7+Do5Ozi6ubu4enl7ePr5x8QGBQcEhoWHhEZFR0TGxefkJhE0JGpCGYKulwtMicZzqqrJ2BmemYhQ15+QVoRQxYARYVhVQAAAHjarFXlmutGDB2HluEyuCDfudlu47EvM9tx0suL32cX7aXf5fYZ/DRyyv/6aD1yskylhWhGo5GOjqQJK0OsluMoIXr5u5qcf8mNxY9jvmnzbJJuUL4cc6WZ/TGshtXqql6xHYdVwirU7Z6yVJgGHluGKd3wuGJojfjPOa7NfNybtUbDaDVa+CR2tGPnMfHcXOzw08Qmviuru0lCRd8oW+NZqAY74qtyfhWWcBYTQOQZ8ehcnEJDcjYqq9uyup3aaZIkNltukmhWc/F6knhcNQQ/tWYGQPVwLua6DrihA8BP2Eo9rhkNXLRW1FcCkpN+cPnEebTK1ZYDfUg55fBdXK03kdZ8nM7Z2UIS6wSnTxdjHNmS1CCyx3XDQ6HbU5U+NQ1sdaBBsQ4yrqxssLUK/1xveTxkSECOhau/19QKiQd+miZikrZLkMOmNzSmwihoOVtkj5jd5I/2vViuhh4ZpxTlOqO1AVPKFjaZbIDcRMnVps7a/RBjh1zny7ilcOugS+OmTKg3NlqNYsfWTtJyPJ4wRaUS8VrW9njSwJCIx8MXch0LHSQ8IbsF7Caw83gKbqZLSggMrCIuT4Yp5SnxJEjzeNq8XIqL2lo7ucwT6/pHj0+Yl/Pxy8W+0nagP1XqT5pCTYXLcTE1hfplAU+50qRo3aAYl48JfLB1VhPymIsLIQ/ZBnlOZdiWo3Ftc233z3EF/6UmQSZd4O9Cu7tUhxSwUOqUBlshq8c9y7LKWp0yqlCVaCnmKR1QxGM64FEETgNKEf6X6WlLTaogyNPiZMPl71z7Emg6jdxOuR6fMYUl8ix4FnnOFFWR501RE3nBFHWRF03REGmbYkjkO6YYFvmuKUZEfmjIZ+szj1vl4iuP3XLxtcfvGcUT7r/A+D4wvgffBIwiHWAUeQkYRWpgFHkZGEU2gVHkDDCK/AAYRc4Co0hj6GHZap5B2OmUQoEQSjkg2Ui/+YY9lz1M0hVD1KVDKqGzu1qesSMt0EoeX90qj3WWr7SKunUmiq8mZYLXSmYOPb5u6FaJ9wbsrGh/EEwYgh+sV2d/VvLTfqzvFtetM8joJvIH4IPxsgqzux7fMv65hx7fPs4UTbgK8zsoiTrbJJ+6Mryg8nmed3UX0x6vIH+2MNG3LevMacS/a4AKA4K/0oRHQnc99zXRwxy+7m0fk9/3wTUdiBVxKvP+dD7+qUJVsn+qzFQvJoG8gcMhBqy01h1MH6q5By2Bjf5jXwnTNc3VMFubi7HJbKxTeYP23sk0IfSM7qCGGhE6yAuijJLSQUG0RNE4SSG5joaq7/MKj5JRswSBz7n+K7cdCyW/LxwQNPWZAQf6Iah5IGrkqgOcdXRXgkm1Hoq+TGDAqFqKfXqoHRuaTSWcbVPeaGL3fOe3b79QB3XwoDJa2vjRAEG4WZpUvp73prhZysdGky+sdfAwP0z8wrdOYwCfbKnndqqf7rY+0OaZ4bvugU4Dw/fcHIGlWYB2vw3K4rMP03Crw8DuVgtqtLqv7w7ctfFo4A3/F63Y/b+6T+BndwFL4wnZUW8nGWCMhIzN/DuSv6MHBOi7u1PuIuUz/eHsKZnDUz7fxCx+dIj+uSmUdfoU38L6heE7EC+FtQi8UicHikHYV0bakV9i+dr08M5g8QYLSxZvTc8qNX/1WNdmDgNAFISPoY+LBA0ccywzs2VmLkvQoHdWkM3z9ycWOxL6SwbzJ5HFEDkMkccQBcyXRBFDlDBEGUNUMD8SVQxRwxB1DNHA/Es0MUQLQ7QxRAfzLdHFED0M0ccQruU9p4d5wPDepYZaH1IjvZ5kfMoYW95LqicM1VNK9YxSOre815QuGEqXlNIVpXRteW8p3TCUbrWgOy3o3gofb66Sj6dv03twvesn55S8U+wzK3FNYwB42mPw3sFwIihiIyNjX+QGxp0cDBwMyQUbGdicNkkwMmiBGJu5ORg5ICxRNjCL3WkXMwMDIwMnkM3htIvBAcJmZnDZqMLYERixwaEjYiNzistGNRBvF0cDAyOLQ0dySARISSQQbOblYOTR2sH4v3UDS+9GJqA+1hQXAHdZJMsAAHjaY8AEIUDow+DDlMzAyJTMuJ6B8b8ykygDA1Pe/69MKYw7/v/6LwPiAwCxmwqkAHjaTMwdDEJRGIfx533f+7HgnJ0rrV3KCoMgd+hSnIXl7jlG5cs5hzhfrm3tD8d+e+AB5pYxAGAC2ShMstNzlIM1J7lhwVVuSdzlrurJdjzlzGhfuVT/4f8PrJkBN+9lY+kP2cn+koO9v+WGTazkljEOclf15Oe4yJlt+5FL9R9+rVFRT+pMED3P/RXzKElZCuFBiTEhGhICkSjE+GbWMtLVUpruQuXff+PApxfVqDc3m2ZOTs+cOTsL8T9fldvKLbJAR2mDOkly0uwk7YQu2LtFQdPUcZFyTMMiNdF7cbv7Ij6mUWYL6qd2zsvtyM749m62LbmuXODqmhfr3FaDVREGq2rB1DEJ9ei9rLnXfcXfcOXdqqDEJKb7Rej409R0dFrXtVnakD3aZyMZzho/usm+8Ukou2N2zXFUu5DRNXuuNjynl6vRpV3yh0uZKJplzu8U09VDqG3FJETuUi689K6LOVcUMqbpcEyTkoudeLwTxPT/vdumbcTsrZfsxrrc3udMGsfSoH9FNvSiLISy12r5tHJl8Ma7/CV3azIYf/0H51ihxBYVHBbIEEA4QoqG1A4SOSdoKmrLR7gAw6u2AGGKVDCjkMqIhRkqNoi+dW6j++p8LNxINFZd+0gFzcFYSv9I8EzwLe6kblEKrtU1gKVeg8V/jVx0FQYytUDQWgnPOs1o9h7oW7fmod+v9TfKejjNQTLX6Nf95abjn+9afU5R6zFYwiKI/6PUZ5j9Hs7Q+Idvcjjxaa+yf2oOJseIROk0F+nGvO5pAxY9vb4a4RJWuvkHL2UQyZkhE8YfeEwFPQiq9UUYtFfkUlPdoN/PXQueqxtpNtbuIcZSJzqxOHAeHzjEoA/v3YbRT5N9OpdgsZHPCW9xj1y5t+1YndjHleKAHiLhg5xScEuOR6p7KBEEG52ev+67hYn0j/+m5z+bBGupAHjabMGDAQIBAADA67Nt2+Z8Ye5aoDsB8H05+eeDkEBYRFRMXEJSSlpGVk5eQVFJWUVVTV1DU0tbR1dP38DQyNjE1MzcwtLK2sbWzt7B0cnZxdXN3cOPIHg4QAAAwDD6/dlumGzb1izdW6FrE9QmmZv0XoQoMeIkSJIiTYYsOfIUKFKiTIUqNeo0aNKiTYcuPfoMGDJizIQpM+YsWLJizUYGGdmx5c1FJq78ZJZFVh48eXHjIxsH2eWQUy655ZFXPvYcOcmvgIIKKfxvWZ4RGAgCAADGeU6sLrbdHtbW+8OrpppqkKRe783/juo/m63e38kgc5Q5Li8iIaLyFQMfVbaRiNOo8CSFIylfCBJR9aYd4UoWj5gUj45UBJHBg+9utputr7P5fJo5y5y/AeyLSTAAAQAB//8ADw==",
"title": "$:/plugins/tiddlywiki/katex/fonts/KaTeX_Typewriter-Regular.woff",
"type": "application/font-woff"
},
"$:/plugins/tiddlywiki/katex/katex-logo": {
"title": "$:/plugins/tiddlywiki/katex/katex-logo",
"text": "$$\\KaTeX$$\n"
},
"$:/plugins/tiddlywiki/katex/latex-parser.js": {
"title": "$:/plugins/tiddlywiki/katex/latex-parser.js",
"text": "/*\\\ntitle: $:/plugins/tiddlywiki/katex/latex-parser.js\ntype: application/javascript\nmodule-type: wikirule\n\nWiki text inline rule for LaTeX. For example:\n\n```\n\t$$latex-goes-here$$\n```\n\nThis wikiparser can be modified using the rules eg:\n\n```\n\\rules except latex-parser \n\\rules only latex-parser \n```\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nexports.name = \"latex-parser\";\nexports.types = {inline: true};\n\nexports.init = function(parser) {\n\tthis.parser = parser;\n\t// Regexp to match\n\tthis.matchRegExp = /\\$\\$(?!\\$)/mg;\n};\n\nexports.parse = function() {\n\t// Move past the match\n\tthis.parser.pos = this.matchRegExp.lastIndex;\n\tvar reEnd = /\\$\\$/mg;\n\t// Look for the end marker\n\treEnd.lastIndex = this.parser.pos;\n\tvar match = reEnd.exec(this.parser.source),\n\t\ttext,\n\t\tdisplayMode;\n\t// Process the text\n\tif(match) {\n\t\ttext = this.parser.source.substring(this.parser.pos,match.index);\n\t\tdisplayMode = text.indexOf('\\n') != -1;\n\t\tthis.parser.pos = match.index + match[0].length;\n\t} else {\n\t\ttext = this.parser.source.substr(this.parser.pos);\n\t\tdisplayMode = false;\n\t\tthis.parser.pos = this.parser.sourceLength;\n\t}\n\treturn [{\n\t\ttype: \"latex\",\n\t\tattributes: {\n\t\t\ttext: {\n\t\t\t\ttype: \"text\",\n\t\t\t\tvalue: text\n\t\t\t},\n\t\t\tdisplayMode: {\n\t\t\t\ttype: \"text\",\n\t\t\t\tvalue: displayMode ? \"true\" : \"false\"\n\t\t\t}\n\t\t}\n\t}];\n};\n\n})();\n",
"type": "application/javascript",
"module-type": "wikirule"
},
"$:/plugins/tiddlywiki/katex/readme": {
"title": "$:/plugins/tiddlywiki/katex/readme",
"text": "This is a TiddlyWiki plugin for mathematical and chemical typesetting based on [ext[KaTeX from Khan Academy|http://khan.github.io/KaTeX/]] (v0.10.2) and [ext[mhchem|https://github.com/mhchem/MathJax-mhchem]] through a [ext[Katex extension|https://github.com/KaTeX/KaTeX/tree/master/contrib/mhchem]].\n\nIt is completely self-contained, and doesn't need an Internet connection in order to work. It works both in the browser and under Node.js.\n\n[[Source code|https://github.com/Jermolene/TiddlyWiki5/blob/master/plugins/tiddlywiki/katex]]\n"
},
"$:/plugins/tiddlywiki/katex/snippets/logo": {
"title": "$:/plugins/tiddlywiki/katex/snippets/logo",
"tags": "$:/tags/KaTeX/Snippet",
"text": "$$\\KaTeX$$\n"
},
"$:/plugins/tiddlywiki/katex/styles": {
"title": "$:/plugins/tiddlywiki/katex/styles",
"tags": "[[$:/tags/Stylesheet]]",
"text": "\\rules only filteredtranscludeinline transcludeinline macrodef macrocallinline\n\n/* KaTeX styles */\n\n{{$:/plugins/tiddlywiki/katex/katex.min.css}}\n\n/* Force text-rendering (see https://github.com/Jermolene/TiddlyWiki5/issues/2500) */\n\n.katex {\n text-rendering: auto;\n}\n\n/* Avoid TW5's max-width: 100% */\n\n.katex svg {\n max-width: initial;\n}\n\n/* Override font URLs */\n\n@font-face {\n\tfont-family: KaTeX_AMS;\n\tsrc: url(<<datauri '$:/plugins/tiddlywiki/katex/fonts/KaTeX_AMS-Regular.woff'>>) format('woff');\n\tfont-weight: 400;\n\tfont-style: normal;\n}\n\n@font-face {\n\tfont-family: KaTeX_Caligraphic;\n\tsrc: url(<<datauri '$:/plugins/tiddlywiki/katex/fonts/KaTeX_Caligraphic-Bold.woff'>>) format('woff');\n\tfont-weight: 700;\n\tfont-style: normal;\n}\n\n@font-face {\n\tfont-family: KaTeX_Caligraphic;\n\tsrc: url(<<datauri '$:/plugins/tiddlywiki/katex/fonts/KaTeX_Caligraphic-Regular.woff'>>) format('woff');\n\tfont-weight: 400;\n\tfont-style: normal;\n}\n\n@font-face {\n\tfont-family: KaTeX_Fraktur;\n\tsrc: url(<<datauri '$:/plugins/tiddlywiki/katex/fonts/KaTeX_Fraktur-Bold.woff'>>) format('woff');\n\tfont-weight: 700;\n\tfont-style: normal;\n}\n\n@font-face {\n\tfont-family: KaTeX_Fraktur;\n\tsrc: url(<<datauri '$:/plugins/tiddlywiki/katex/fonts/KaTeX_Fraktur-Regular.woff'>>) format('woff');\n\tfont-weight: 400;\n\tfont-style: normal;\n}\n\n@font-face {\n\tfont-family: KaTeX_Main;\n\tsrc: url(<<datauri '$:/plugins/tiddlywiki/katex/fonts/KaTeX_Main-Bold.woff'>>) format('woff');\n\tfont-weight: 700;\n\tfont-style: normal;\n}\n\n@font-face {\n\tfont-family: KaTeX_Main;\n\tsrc: url(<<datauri '$:/plugins/tiddlywiki/katex/fonts/KaTeX_Main-BoldItalic.woff'>>) format('woff');\n\tfont-weight: 700;\n\tfont-style: italic;\n}\n\n@font-face {\n\tfont-family: KaTeX_Main;\n\tsrc: url(<<datauri '$:/plugins/tiddlywiki/katex/fonts/KaTeX_Main-Italic.woff'>>) format('woff');\n\tfont-weight: 400;\n\tfont-style: italic;\n}\n\n@font-face {\n\tfont-family: KaTeX_Main;\n\tsrc: url(<<datauri '$:/plugins/tiddlywiki/katex/fonts/KaTeX_Main-Regular.woff'>>) format('woff');\n\tfont-weight: 400;\n\tfont-style: normal;\n}\n\n@font-face {\n\tfont-family: KaTeX_Math;\n\tsrc: url(<<datauri '$:/plugins/tiddlywiki/katex/fonts/KaTeX_Math-Italic.woff'>>) format('woff');\n\tfont-weight: 400;\n\tfont-style: italic;\n}\n\n@font-face {\n\tfont-family: KaTeX_SansSerif;\n\tsrc: url(<<datauri '$:/plugins/tiddlywiki/katex/fonts/KaTeX_SansSerif-Bold.woff'>>) format('woff');\n\tfont-weight: 700;\n\tfont-style: normal;\n}\n\n@font-face {\n\tfont-family: KaTeX_SansSerif;\n\tsrc: url(<<datauri '$:/plugins/tiddlywiki/katex/fonts/KaTeX_SansSerif-Italic.woff'>>) format('woff');\n\tfont-weight: 400;\n\tfont-style: italic;\n}\n\n@font-face {\n\tfont-family: KaTeX_SansSerif;\n\tsrc: url(<<datauri '$:/plugins/tiddlywiki/katex/fonts/KaTeX_SansSerif-Regular.woff'>>) format('woff');\n\tfont-weight: 400;\n\tfont-style: normal;\n}\n\n@font-face {\n\tfont-family: KaTeX_Script;\n\tsrc: url(<<datauri '$:/plugins/tiddlywiki/katex/fonts/KaTeX_Script-Regular.woff'>>) format('woff');\n\tfont-weight: 400;\n\tfont-style: normal;\n}\n\n@font-face {\n\tfont-family: KaTeX_Size1;\n\tsrc: url(<<datauri '$:/plugins/tiddlywiki/katex/fonts/KaTeX_Size1-Regular.woff'>>) format('woff');\n\tfont-weight: 400;\n\tfont-style: normal;\n}\n\n@font-face {\n\tfont-family: KaTeX_Size2;\n\tsrc: url(<<datauri '$:/plugins/tiddlywiki/katex/fonts/KaTeX_Size2-Regular.woff'>>) format('woff');\n\tfont-weight: 400;\n\tfont-style: normal;\n}\n\n@font-face {\n\tfont-family: KaTeX_Size3;\n\tsrc: url(<<datauri '$:/plugins/tiddlywiki/katex/fonts/KaTeX_Size3-Regular.woff'>>) format('woff');\n\tfont-weight: 400;\n\tfont-style: normal;\n}\n\n@font-face {\n\tfont-family: KaTeX_Size4;\n\tsrc: url(<<datauri '$:/plugins/tiddlywiki/katex/fonts/KaTeX_Size4-Regular.woff'>>) format('woff');\n\tfont-weight: 400;\n\tfont-style: normal;\n}\n\n@font-face {\n\tfont-family: KaTeX_Typewriter;\n\tsrc: url(<<datauri '$:/plugins/tiddlywiki/katex/fonts/KaTeX_Typewriter-Regular.woff'>>) format('woff');\n\tfont-weight: 400;\n\tfont-style: normal;\n}\n\n"
},
"$:/plugins/tiddlywiki/katex/ui/EditorToolbar/katex-dropdown": {
"title": "$:/plugins/tiddlywiki/katex/ui/EditorToolbar/katex-dropdown",
"text": "\\define toolbar-button-stamp-inner()\n<$button tag=\"a\">\n\n<$action-sendmessage\n\t$message=\"tm-edit-text-operation\"\n\t$param=\"replace-selection\"\n\ttext={{$(snippetTitle)$}}\n/>\n\n<$action-deletetiddler\n\t$tiddler=<<dropdown-state>>\n/>\n\n<$view tiddler=<<snippetTitle>> field=\"caption\" mode=\"inline\">\n\n<$transclude tiddler=<<snippetTitle>> mode=\"inline\"/>\n\n</$view>\n\n</$button>\n\\end\n\n<$list filter=\"[all[shadows+tiddlers]tag[$:/tags/KaTeX/Snippet]!has[draft.of]sort[caption]]\" variable=\"snippetTitle\">\n\n<<toolbar-button-stamp-inner>>\n\n</$list>\n\n----\n\n<$button tag=\"a\">\n\n<$action-sendmessage\n\t$message=\"tm-new-tiddler\"\n\ttags=\"$:/tags/KaTeX/Snippet\"\n\ttext=\"\"\"$$snippet$$\"\"\"\n\tcaption=\"description shown in dropdown\"\n/>\n\n<$action-deletetiddler\n\t$tiddler=<<dropdown-state>>\n/>\n\n<em>\n\n<$text text={{$:/language/Buttons/Stamp/Caption/New}}/>\n\n</em>\n\n</$button>\n\n[ext[KaTeX functions catalogue|https://khan.github.io/KaTeX/function-support.html]]\n\n[ext[Chemical equations reference|https://mhchem.github.io/MathJax-mhchem/]]\n"
},
"$:/plugins/tiddlywiki/katex/ui/EditorToolbar/katex": {
"title": "$:/plugins/tiddlywiki/katex/ui/EditorToolbar/katex",
"tags": "$:/tags/EditorToolbar",
"icon": "$:/plugins/tiddlywiki/katex/katex-logo",
"caption": "katex",
"description": "create and insert preconfigured KaTeX snippets",
"condition": "[<targetTiddler>!is[image]]",
"dropdown": "$:/plugins/tiddlywiki/katex/ui/EditorToolbar/katex-dropdown",
"text": ""
},
"$:/plugins/tiddlywiki/katex/usage": {
"title": "$:/plugins/tiddlywiki/katex/usage",
"text": "!! Reference:\n\n# Mathematical typesetting: [ext[https://katex.org/docs/supported.html]]\n# Chemical typesetting: [ext[https://mhchem.github.io/MathJax-mhchem/]]\n\n<hr>\n\nThe usual way to include ~LaTeX is to use `$$`. For example:\n\n```\n$$\\displaystyle f(x) = \\int_{-\\infty}^\\infty\\hat f(\\xi)\\,e^{2 \\pi i \\xi x}\\,d\\xi$$\n```\n\nSingle line equations will render in inline mode. If there are newlines between the `$$` delimiters, the equations will be rendered in display mode.\n\nThe underlying widget can also be used directly, giving more flexibility:\n\n```\n<$latex text=\"f(x) = \\int_{-\\infty}^\\infty\\hat f(\\xi)\\,e^{2 \\pi i \\xi x}\\,d\\xi\" displayMode=\"true\"></$latex>\n```\n\nThe KaTeX widget is provided under the name `<$latex>` and is also available under the alias `<$katex>`. It's better to use the generic `<$latex>` name unless you are running multiple ~LaTeX plugins and wish to specifically target KaTeX.\n"
},
"$:/plugins/tiddlywiki/katex/wrapper.js": {
"title": "$:/plugins/tiddlywiki/katex/wrapper.js",
"text": "/*\\\ntitle: $:/plugins/tiddlywiki/katex/wrapper.js\ntype: application/javascript\nmodule-type: widget\n\nWrapper for `katex.min.js` that provides a `<$latex>` widget. It is also available under the alias `<$katex>`\n\n\\*/\n(function(){\n\n/*jslint node: true, browser: true */\n/*global $tw: false */\n\"use strict\";\n\nvar katex = require(\"$:/plugins/tiddlywiki/katex/katex.min.js\"),\n chemParse = require(\"$:/plugins/tiddlywiki/katex/mhchem.min.js\"),\n\tWidget = require(\"$:/core/modules/widgets/widget.js\").widget;\n// Add \\ce, \\pu, and \\tripledash to the KaTeX macros.\nkatex.__defineMacro(\"\\\\ce\", function(context) {\n return chemParse(context.consumeArgs(1)[0], \"ce\")\n});\nkatex.__defineMacro(\"\\\\pu\", function(context) {\n return chemParse(context.consumeArgs(1)[0], \"pu\");\n});\n// Needed for \\bond for the ~ forms\n// Raise by 2.56mu, not 2mu. We're raising a hyphen-minus, U+002D, not \n// a mathematical minus, U+2212. So we need that extra 0.56.\nkatex.__defineMacro(\"\\\\tripledash\", \"{\\\\vphantom{-}\\\\raisebox{2.56mu}{$\\\\mkern2mu\"\n+ \"\\\\tiny\\\\text{-}\\\\mkern1mu\\\\text{-}\\\\mkern1mu\\\\text{-}\\\\mkern2mu$}}\");\n\nvar KaTeXWidget = function(parseTreeNode,options) {\n\tthis.initialise(parseTreeNode,options);\n};\n\n/*\nInherit from the base widget class\n*/\nKaTeXWidget.prototype = new Widget();\n\n/*\nRender this widget into the DOM\n*/\nKaTeXWidget.prototype.render = function(parent,nextSibling) {\n\t// Housekeeping\n\tthis.parentDomNode = parent;\n\tthis.computeAttributes();\n\tthis.execute();\n\t// Get the source text\n\tvar text = this.getAttribute(\"text\",this.parseTreeNode.text || \"\");\n\tvar displayMode = this.getAttribute(\"displayMode\",this.parseTreeNode.displayMode || \"false\") === \"true\";\n\t// Render it into a span\n\tvar span = this.document.createElement(\"span\"),\n\t\toptions = {throwOnError: false, displayMode: displayMode};\n\ttry {\n\t\tif(!this.document.isTiddlyWikiFakeDom) {\n\t\t\tkatex.render(text,span,options);\n\t\t} else {\n\t\t\tspan.innerHTML = katex.renderToString(text,options);\n\t\t}\n\t} catch(ex) {\n\t\tspan.className = \"tc-error\";\n\t\tspan.textContent = ex;\n\t}\n\t// Insert it into the DOM\n\tparent.insertBefore(span,nextSibling);\n\tthis.domNodes.push(span);\n};\n\n/*\nCompute the internal state of the widget\n*/\nKaTeXWidget.prototype.execute = function() {\n\t// Nothing to do for a katex widget\n};\n\n/*\nSelectively refreshes the widget if needed. Returns true if the widget or any of its children needed re-rendering\n*/\nKaTeXWidget.prototype.refresh = function(changedTiddlers) {\n\tvar changedAttributes = this.computeAttributes();\n\tif(changedAttributes.text) {\n\t\tthis.refreshSelf();\n\t\treturn true;\n\t} else {\n\t\treturn false;\t\n\t}\n};\n\nexports.latex = KaTeXWidget;\nexports.katex = KaTeXWidget;\n\n})();\n\n",
"type": "application/javascript",
"module-type": "widget"
}
}
}
$:/core/ui/AdvancedSearch/Filter
$:/core/ui/ControlPanel/Plugins/Add/Plugins
$:/core/ui/AdvancedSearch/Filter
$:/core/ui/ControlPanel/Palette
$:/core/ui/ControlPanel/Plugins/Installed/Plugins
$:/core/ui/ControlPanel/Info
{
"tiddlers": {
"$:/themes/tiddlywiki/snowwhite/base": {
"title": "$:/themes/tiddlywiki/snowwhite/base",
"tags": "[[$:/tags/Stylesheet]]",
"text": "\\define sidebarbreakpoint-minus-one()\n<$text text={{{ [{$:/themes/tiddlywiki/vanilla/metrics/sidebarbreakpoint}removesuffix[px]subtract[1]addsuffix[px]] ~[{$:/themes/tiddlywiki/vanilla/metrics/sidebarbreakpoint}] }}}/>\n\\end\n\n\\rules only filteredtranscludeinline transcludeinline macrodef macrocallinline\n\n.tc-sidebar-header {\n\ttext-shadow: 0 1px 0 <<colour sidebar-foreground-shadow>>;\n}\n\n.tc-tiddler-info {\n\t<<box-shadow \"inset 1px 2px 3px rgba(0,0,0,0.1)\">>\n}\n\n@media screen {\n\t.tc-tiddler-frame {\n\t\t<<box-shadow \"1px 1px 5px rgba(0, 0, 0, 0.3)\">>\n\t}\n}\n\n@media (max-width: <<sidebarbreakpoint-minus-one>>) {\n\t.tc-tiddler-frame {\n\t\t<<box-shadow none>>\n\t}\n}\n\n.tc-page-controls button svg, .tc-tiddler-controls button svg, .tc-topbar button svg {\n\t<<transition \"fill 150ms ease-in-out\">>\n}\n\n.tc-tiddler-controls button.tc-selected,\n.tc-page-controls button.tc-selected {\n\t<<filter \"drop-shadow(0px -1px 2px rgba(0,0,0,0.25))\">>\n}\n\n.tc-tiddler-frame input.tc-edit-texteditor {\n\t<<box-shadow \"inset 0 1px 8px rgba(0, 0, 0, 0.15)\">>\n}\n\n.tc-edit-tags {\n\t<<box-shadow \"inset 0 1px 8px rgba(0, 0, 0, 0.15)\">>\n}\n\n.tc-tiddler-frame .tc-edit-tags input.tc-edit-texteditor {\n\t<<box-shadow \"none\">>\n\tborder: none;\n\toutline: none;\n}\n\ntextarea.tc-edit-texteditor {\n\tfont-family: {{$:/themes/tiddlywiki/vanilla/settings/editorfontfamily}};\n}\n\ncanvas.tc-edit-bitmapeditor {\n\t<<box-shadow \"2px 2px 5px rgba(0, 0, 0, 0.5)\">>\n}\n\n.tc-drop-down {\n\tborder-radius: 4px;\n\t<<box-shadow \"2px 2px 10px rgba(0, 0, 0, 0.5)\">>\n}\n\n.tc-block-dropdown {\n\tborder-radius: 4px;\n\t<<box-shadow \"2px 2px 10px rgba(0, 0, 0, 0.5)\">>\n}\n\n.tc-modal {\n\tborder-radius: 6px;\n\t<<box-shadow \"0 3px 7px rgba(0,0,0,0.3)\">>\n}\n\n.tc-modal-footer {\n\tborder-radius: 0 0 6px 6px;\n\t<<box-shadow \"inset 0 1px 0 #fff\">>;\n}\n\n\n.tc-alert {\n\tborder-radius: 6px;\n\t<<box-shadow \"0 3px 7px rgba(0,0,0,0.6)\">>\n}\n\n.tc-notification {\n\tborder-radius: 6px;\n\t<<box-shadow \"0 3px 7px rgba(0,0,0,0.3)\">>\n\ttext-shadow: 0 1px 0 rgba(255,255,255, 0.8);\n}\n\n.tc-sidebar-lists .tc-tab-set .tc-tab-divider {\n\tborder-top: none;\n\theight: 1px;\n\t<<background-linear-gradient \"left, rgba(0,0,0,0.15) 0%, rgba(0,0,0,0.0) 100%\">>\n}\n\n.tc-more-sidebar > .tc-tab-set > .tc-tab-buttons > button {\n\t<<background-linear-gradient \"left, rgba(0,0,0,0.01) 0%, rgba(0,0,0,0.1) 100%\">>\n}\n\n.tc-more-sidebar > .tc-tab-set > .tc-tab-buttons > button.tc-tab-selected {\n\t<<background-linear-gradient \"left, rgba(0,0,0,0.05) 0%, rgba(255,255,255,0.05) 100%\">>\n}\n\n.tc-message-box img {\n\t<<box-shadow \"1px 1px 3px rgba(0,0,0,0.5)\">>\n}\n\n.tc-plugin-info {\n\t<<box-shadow \"1px 1px 3px rgba(0,0,0,0.5)\">>\n}\n"
}
}
}
{
"tiddlers": {
"$:/themes/tiddlywiki/vanilla/themetweaks": {
"title": "$:/themes/tiddlywiki/vanilla/themetweaks",
"tags": "$:/tags/ControlPanel/Appearance",
"caption": "{{$:/language/ThemeTweaks/ThemeTweaks}}",
"text": "\\define lingo-base() $:/language/ThemeTweaks/\n\n\\define replacement-text()\n[img[$(imageTitle)$]]\n\\end\n\n\\define backgroundimage-dropdown()\n<div class=\"tc-drop-down-wrapper\">\n<$button popup=<<qualify \"$:/state/popup/themetweaks/backgroundimage\">> class=\"tc-btn-invisible tc-btn-dropdown\">{{$:/core/images/down-arrow}}</$button>\n<$reveal state=<<qualify \"$:/state/popup/themetweaks/backgroundimage\">> type=\"popup\" position=\"belowleft\" text=\"\" default=\"\">\n<div class=\"tc-drop-down\">\n<$macrocall $name=\"image-picker\" actions=\"\"\"\n\n<$action-setfield\n\t$tiddler=\"$:/themes/tiddlywiki/vanilla/settings/backgroundimage\"\n\t$value=<<imageTitle>>\n/>\n\n\"\"\"/>\n</div>\n</$reveal>\n</div>\n\\end\n\n\\define backgroundimageattachment-dropdown()\n<$select tiddler=\"$:/themes/tiddlywiki/vanilla/settings/backgroundimageattachment\" default=\"scroll\">\n<option value=\"scroll\"><<lingo Settings/BackgroundImageAttachment/Scroll>></option>\n<option value=\"fixed\"><<lingo Settings/BackgroundImageAttachment/Fixed>></option>\n</$select>\n\\end\n\n\\define backgroundimagesize-dropdown()\n<$select tiddler=\"$:/themes/tiddlywiki/vanilla/settings/backgroundimagesize\" default=\"scroll\">\n<option value=\"auto\"><<lingo Settings/BackgroundImageSize/Auto>></option>\n<option value=\"cover\"><<lingo Settings/BackgroundImageSize/Cover>></option>\n<option value=\"contain\"><<lingo Settings/BackgroundImageSize/Contain>></option>\n</$select>\n\\end\n\n<<lingo ThemeTweaks/Hint>>\n\n! <<lingo Options>>\n\n|<$link to=\"$:/themes/tiddlywiki/vanilla/options/sidebarlayout\"><<lingo Options/SidebarLayout>></$link> |<$select tiddler=\"$:/themes/tiddlywiki/vanilla/options/sidebarlayout\"><option value=\"fixed-fluid\"><<lingo Options/SidebarLayout/Fixed-Fluid>></option><option value=\"fluid-fixed\"><<lingo Options/SidebarLayout/Fluid-Fixed>></option></$select> |\n|<$link to=\"$:/themes/tiddlywiki/vanilla/options/stickytitles\"><<lingo Options/StickyTitles>></$link><br>//<<lingo Options/StickyTitles/Hint>>// |<$select tiddler=\"$:/themes/tiddlywiki/vanilla/options/stickytitles\"><option value=\"no\">{{$:/language/No}}</option><option value=\"yes\">{{$:/language/Yes}}</option></$select> |\n|<$link to=\"$:/themes/tiddlywiki/vanilla/options/codewrapping\"><<lingo Options/CodeWrapping>></$link> |<$select tiddler=\"$:/themes/tiddlywiki/vanilla/options/codewrapping\"><option value=\"pre\">{{$:/language/No}}</option><option value=\"pre-wrap\">{{$:/language/Yes}}</option></$select> |\n\n! <<lingo Settings>>\n\n|<$link to=\"$:/themes/tiddlywiki/vanilla/settings/fontfamily\"><<lingo Settings/FontFamily>></$link> |<$edit-text tiddler=\"$:/themes/tiddlywiki/vanilla/settings/fontfamily\" default=\"\" tag=\"input\"/> | |\n|<$link to=\"$:/themes/tiddlywiki/vanilla/settings/codefontfamily\"><<lingo Settings/CodeFontFamily>></$link> |<$edit-text tiddler=\"$:/themes/tiddlywiki/vanilla/settings/codefontfamily\" default=\"\" tag=\"input\"/> | |\n|<$link to=\"$:/themes/tiddlywiki/vanilla/settings/editorfontfamily\"><<lingo Settings/EditorFontFamily>></$link> |<$edit-text tiddler=\"$:/themes/tiddlywiki/vanilla/settings/editorfontfamily\" default=\"\" tag=\"input\"/> | |\n|<$link to=\"$:/themes/tiddlywiki/vanilla/settings/backgroundimage\"><<lingo Settings/BackgroundImage>></$link> |<$edit-text tiddler=\"$:/themes/tiddlywiki/vanilla/settings/backgroundimage\" default=\"\" tag=\"input\"/> |<<backgroundimage-dropdown>> |\n|<$link to=\"$:/themes/tiddlywiki/vanilla/settings/backgroundimageattachment\"><<lingo Settings/BackgroundImageAttachment>></$link> |<<backgroundimageattachment-dropdown>> | |\n|<$link to=\"$:/themes/tiddlywiki/vanilla/settings/backgroundimagesize\"><<lingo Settings/BackgroundImageSize>></$link> |<<backgroundimagesize-dropdown>> | |\n\n! <<lingo Metrics>>\n\n|<$link to=\"$:/themes/tiddlywiki/vanilla/metrics/fontsize\"><<lingo Metrics/FontSize>></$link> |<$edit-text tiddler=\"$:/themes/tiddlywiki/vanilla/metrics/fontsize\" default=\"\" tag=\"input\"/> |\n|<$link to=\"$:/themes/tiddlywiki/vanilla/metrics/lineheight\"><<lingo Metrics/LineHeight>></$link> |<$edit-text tiddler=\"$:/themes/tiddlywiki/vanilla/metrics/lineheight\" default=\"\" tag=\"input\"/> |\n|<$link to=\"$:/themes/tiddlywiki/vanilla/metrics/bodyfontsize\"><<lingo Metrics/BodyFontSize>></$link> |<$edit-text tiddler=\"$:/themes/tiddlywiki/vanilla/metrics/bodyfontsize\" default=\"\" tag=\"input\"/> |\n|<$link to=\"$:/themes/tiddlywiki/vanilla/metrics/bodylineheight\"><<lingo Metrics/BodyLineHeight>></$link> |<$edit-text tiddler=\"$:/themes/tiddlywiki/vanilla/metrics/bodylineheight\" default=\"\" tag=\"input\"/> |\n|<$link to=\"$:/themes/tiddlywiki/vanilla/metrics/storyleft\"><<lingo Metrics/StoryLeft>></$link><br>//<<lingo Metrics/StoryLeft/Hint>>// |^<$edit-text tiddler=\"$:/themes/tiddlywiki/vanilla/metrics/storyleft\" default=\"\" tag=\"input\"/> |\n|<$link to=\"$:/themes/tiddlywiki/vanilla/metrics/storytop\"><<lingo Metrics/StoryTop>></$link><br>//<<lingo Metrics/StoryTop/Hint>>// |^<$edit-text tiddler=\"$:/themes/tiddlywiki/vanilla/metrics/storytop\" default=\"\" tag=\"input\"/> |\n|<$link to=\"$:/themes/tiddlywiki/vanilla/metrics/storyright\"><<lingo Metrics/StoryRight>></$link><br>//<<lingo Metrics/StoryRight/Hint>>// |^<$edit-text tiddler=\"$:/themes/tiddlywiki/vanilla/metrics/storyright\" default=\"\" tag=\"input\"/> |\n|<$link to=\"$:/themes/tiddlywiki/vanilla/metrics/storywidth\"><<lingo Metrics/StoryWidth>></$link><br>//<<lingo Metrics/StoryWidth/Hint>>// |^<$edit-text tiddler=\"$:/themes/tiddlywiki/vanilla/metrics/storywidth\" default=\"\" tag=\"input\"/> |\n|<$link to=\"$:/themes/tiddlywiki/vanilla/metrics/tiddlerwidth\"><<lingo Metrics/TiddlerWidth>></$link><br>//<<lingo Metrics/TiddlerWidth/Hint>>//<br> |^<$edit-text tiddler=\"$:/themes/tiddlywiki/vanilla/metrics/tiddlerwidth\" default=\"\" tag=\"input\"/> |\n|<$link to=\"$:/themes/tiddlywiki/vanilla/metrics/sidebarbreakpoint\"><<lingo Metrics/SidebarBreakpoint>></$link><br>//<<lingo Metrics/SidebarBreakpoint/Hint>>// |^<$edit-text tiddler=\"$:/themes/tiddlywiki/vanilla/metrics/sidebarbreakpoint\" default=\"\" tag=\"input\"/> |\n|<$link to=\"$:/themes/tiddlywiki/vanilla/metrics/sidebarwidth\"><<lingo Metrics/SidebarWidth>></$link><br>//<<lingo Metrics/SidebarWidth/Hint>>// |^<$edit-text tiddler=\"$:/themes/tiddlywiki/vanilla/metrics/sidebarwidth\" default=\"\" tag=\"input\"/> |\n"
},
"$:/themes/tiddlywiki/vanilla/base": {
"title": "$:/themes/tiddlywiki/vanilla/base",
"tags": "[[$:/tags/Stylesheet]]",
"text": "\\define custom-background-datauri()\n<$set name=\"background\" value={{$:/themes/tiddlywiki/vanilla/settings/backgroundimage}}>\n<$list filter=\"[<background>is[image]]\">\n`background: url(`\n<$list filter=\"[<background>!has[_canonical_uri]]\">\n`\"`<$macrocall $name=\"datauri\" title={{$:/themes/tiddlywiki/vanilla/settings/backgroundimage}}/>`\"`\n</$list>\n<$list filter=\"[<background>has[_canonical_uri]]\">\n`\"`<$view tiddler={{$:/themes/tiddlywiki/vanilla/settings/backgroundimage}} field=\"_canonical_uri\"/>`\"`\n</$list>\n`) center center;`\n`background-attachment: `{{$:/themes/tiddlywiki/vanilla/settings/backgroundimageattachment}}`;\n-webkit-background-size:` {{$:/themes/tiddlywiki/vanilla/settings/backgroundimagesize}}`;\n-moz-background-size:` {{$:/themes/tiddlywiki/vanilla/settings/backgroundimagesize}}`;\n-o-background-size:` {{$:/themes/tiddlywiki/vanilla/settings/backgroundimagesize}}`;\nbackground-size:` {{$:/themes/tiddlywiki/vanilla/settings/backgroundimagesize}}`;`\n</$list>\n</$set>\n\\end\n\n\\define sidebarbreakpoint()\n<$text text={{$:/themes/tiddlywiki/vanilla/metrics/sidebarbreakpoint}}/>\n\\end\n\n\\define sidebarbreakpoint-minus-one()\n<$text text={{{ [{$:/themes/tiddlywiki/vanilla/metrics/sidebarbreakpoint}removesuffix[px]subtract[1]addsuffix[px]] ~[{$:/themes/tiddlywiki/vanilla/metrics/sidebarbreakpoint}] }}}/>\n\\end\n\n\\define if-fluid-fixed(text,hiddenSidebarText)\n<$reveal state=\"$:/themes/tiddlywiki/vanilla/options/sidebarlayout\" type=\"match\" text=\"fluid-fixed\">\n$text$\n<$reveal state=\"$:/state/sidebar\" type=\"nomatch\" text=\"yes\" default=\"yes\">\n$hiddenSidebarText$\n</$reveal>\n</$reveal>\n\\end\n\n\\define if-editor-height-fixed(then,else)\n<$reveal state=\"$:/config/TextEditor/EditorHeight/Mode\" type=\"match\" text=\"fixed\">\n$then$\n</$reveal>\n<$reveal state=\"$:/config/TextEditor/EditorHeight/Mode\" type=\"match\" text=\"auto\">\n$else$\n</$reveal>\n\\end\n\n\\define set-type-selector-min-width()\n<$set name=\"typeLength\" value={{{ [all[shadows+tiddlers]prefix[$:/language/Docs/Types/]get[name]length[]maxall[]] }}}>\n\n\t.tc-type-selector-dropdown-wrapper {\n\t\tmin-width: calc(<<typeLength>>ch + 4em);\n\t}\n\n\t.tc-type-selector-dropdown-wrapper input.tc-edit-typeeditor {\n\t\tmin-width: <<typeLength>>ch;\n\t}\n\n</$set>\n\\end\n\n\\rules only filteredtranscludeinline transcludeinline macrodef macrocallinline macrocallblock\n\n/*\n** Start with the normalize CSS reset, and then belay some of its effects\n*/\n\n{{$:/themes/tiddlywiki/vanilla/reset}}\n\n*, input[type=\"search\"] {\n\tbox-sizing: border-box;\n\t-moz-box-sizing: border-box;\n\t-webkit-box-sizing: border-box;\n}\n\ninput[type=\"search\"] {\n outline-offset: initial;\n}\n\nhtml button {\n\tline-height: 1.2;\n\tcolor: <<colour button-foreground>>;\n\tfill: <<colour button-foreground>>;\n\tbackground: <<colour button-background>>;\n\tborder-color: <<colour button-border>>;\n}\n\n/*\n** Basic element styles\n*/\n\nhtml, body {\n\tfont-family: {{$:/themes/tiddlywiki/vanilla/settings/fontfamily}};\n\ttext-rendering: optimizeLegibility; /* Enables kerning and ligatures etc. */\n\t-webkit-font-smoothing: antialiased;\n\t-moz-osx-font-smoothing: grayscale;\n}\n\nhtml:-webkit-full-screen {\n\tbackground-color: <<colour page-background>>;\n}\n\nbody.tc-body {\n\tfont-size: {{$:/themes/tiddlywiki/vanilla/metrics/fontsize}};\n\tline-height: {{$:/themes/tiddlywiki/vanilla/metrics/lineheight}};\n\tword-wrap: break-word;\n\t<<custom-background-datauri>>\n\tcolor: <<colour foreground>>;\n\tbackground-color: <<colour page-background>>;\n\tfill: <<colour foreground>>;\n}\n\n<<if-background-attachment \"\"\"\n\nbody.tc-body {\n background-color: transparent;\n}\n\n\"\"\">>\n\n/**\n * Correct the font size and margin on `h1` elements within `section` and\n * `article` contexts in Chrome, Firefox, and Safari.\n */\n\nh1 {\n\tfont-size: 2em;\n}\n\nh1, h2, h3, h4, h5, h6 {\n\tline-height: 1.2;\n\tfont-weight: 300;\n}\n\npre {\n\tdisplay: block;\n\tmargin-top: 1em;\n\tmargin-bottom: 1em;\n\tword-break: normal;\n\tword-wrap: break-word;\n\twhite-space: {{$:/themes/tiddlywiki/vanilla/options/codewrapping}};\n\tbackground-color: <<colour pre-background>>;\n\tborder: 1px solid <<colour pre-border>>;\n\tpadding: 0 3px 2px;\n\tborder-radius: 3px;\n\tfont-family: {{$:/themes/tiddlywiki/vanilla/settings/codefontfamily}};\n}\n\ncode {\n\tcolor: <<colour code-foreground>>;\n\tbackground-color: <<colour code-background>>;\n\tborder: 1px solid <<colour code-border>>;\n\twhite-space: {{$:/themes/tiddlywiki/vanilla/options/codewrapping}};\n\tpadding: 0 3px 2px;\n\tborder-radius: 3px;\n\tfont-family: {{$:/themes/tiddlywiki/vanilla/settings/codefontfamily}};\n}\n\nblockquote {\n\tborder-left: 5px solid <<colour blockquote-bar>>;\n\tmargin-left: 25px;\n\tpadding-left: 10px;\n\tquotes: \"\\201C\"\"\\201D\"\"\\2018\"\"\\2019\";\n}\n\nblockquote > div {\n\tmargin-top: 1em;\n\tmargin-bottom: 1em;\n}\n\nblockquote.tc-big-quote {\n\tfont-family: Georgia, serif;\n\tposition: relative;\n\tbackground: <<colour pre-background>>;\n\tborder-left: none;\n\tmargin-left: 50px;\n\tmargin-right: 50px;\n\tpadding: 10px;\n border-radius: 8px;\n}\n\nblockquote.tc-big-quote cite:before {\n\tcontent: \"\\2014 \\2009\";\n}\n\nblockquote.tc-big-quote:before {\n\tfont-family: Georgia, serif;\n\tcolor: <<colour blockquote-bar>>;\n\tcontent: open-quote;\n\tfont-size: 8em;\n\tline-height: 0.1em;\n\tmargin-right: 0.25em;\n\tvertical-align: -0.4em;\n\tposition: absolute;\n left: -50px;\n top: 42px;\n}\n\nblockquote.tc-big-quote:after {\n\tfont-family: Georgia, serif;\n\tcolor: <<colour blockquote-bar>>;\n\tcontent: close-quote;\n\tfont-size: 8em;\n\tline-height: 0.1em;\n\tmargin-right: 0.25em;\n\tvertical-align: -0.4em;\n\tposition: absolute;\n right: -80px;\n bottom: -20px;\n}\n\ndl dt {\n\tfont-weight: bold;\n\tmargin-top: 6px;\n}\n\nbutton, textarea, input, select {\n\toutline-color: <<colour primary>>;\n}\n\ntextarea,\ninput[type=text],\ninput[type=search],\ninput[type=\"\"],\ninput:not([type]) {\n\tcolor: <<colour foreground>>;\n\tbackground: <<colour background>>;\n}\n\ninput[type=\"checkbox\"] {\n vertical-align: middle;\n}\n\ninput[type=\"search\"]::-webkit-search-decoration,\ninput[type=\"search\"]::-webkit-search-cancel-button,\ninput[type=\"search\"]::-webkit-search-results-button,\ninput[type=\"search\"]::-webkit-search-results-decoration {\n\t-webkit-appearance:none;\n}\n\n.tc-muted {\n\tcolor: <<colour muted-foreground>>;\n}\n\nsvg.tc-image-button {\n\tpadding: 0px 1px 1px 0px;\n}\n\n.tc-icon-wrapper > svg {\n\twidth: 1em;\n\theight: 1em;\n}\n\nkbd {\n\tdisplay: inline-block;\n\tpadding: 3px 5px;\n\tfont-size: 0.8em;\n\tline-height: 1.2;\n\tcolor: <<colour foreground>>;\n\tvertical-align: middle;\n\tbackground-color: <<colour background>>;\n\tborder: solid 1px <<colour muted-foreground>>;\n\tborder-bottom-color: <<colour muted-foreground>>;\n\tborder-radius: 3px;\n\tbox-shadow: inset 0 -1px 0 <<colour muted-foreground>>;\n}\n\n::selection {\n\tbackground-color: Highlight;\n\tcolor: HighlightText;\n\tbackground-color: <<colour selection-background>>;\n\tcolor: <<colour selection-foreground>>;\n}\n\n/*\nMarkdown likes putting code elements inside pre elements\n*/\npre > code {\n\tpadding: 0;\n\tborder: none;\n\tbackground-color: inherit;\n\tcolor: inherit;\n}\n\ntable {\n\tborder: 1px solid <<colour table-border>>;\n\twidth: auto;\n\tmax-width: 100%;\n\tcaption-side: bottom;\n\tmargin-top: 1em;\n\tmargin-bottom: 1em;\n\t/* next 2 elements needed, since normalize 8.0.1 */\n\tborder-collapse: collapse;\n\tborder-spacing: 0;\n}\n\ntable th, table td {\n\tpadding: 0 7px 0 7px;\n\tborder-top: 1px solid <<colour table-border>>;\n\tborder-left: 1px solid <<colour table-border>>;\n}\n\ntable thead tr td, table th {\n\tbackground-color: <<colour table-header-background>>;\n\tfont-weight: bold;\n}\n\ntable tfoot tr td {\n\tbackground-color: <<colour table-footer-background>>;\n}\n\n.tc-csv-table {\n\twhite-space: nowrap;\n}\n\n.tc-tiddler-frame img,\n.tc-tiddler-frame svg,\n.tc-tiddler-frame canvas,\n.tc-tiddler-frame embed,\n.tc-tiddler-frame iframe {\n\tmax-width: 100%;\n}\n\n.tc-tiddler-body > embed,\n.tc-tiddler-body > iframe {\n\twidth: 100%;\n\theight: 600px;\n}\n\n/*\n** Links\n*/\n\nbutton.tc-tiddlylink,\na.tc-tiddlylink {\n\ttext-decoration: none;\n\tfont-weight: 500;\n\tcolor: <<colour tiddler-link-foreground>>;\n\t-webkit-user-select: inherit; /* Otherwise the draggable attribute makes links impossible to select */\n}\n\n.tc-sidebar-lists a.tc-tiddlylink {\n\tcolor: <<colour sidebar-tiddler-link-foreground>>;\n}\n\n.tc-sidebar-lists a.tc-tiddlylink:hover {\n\tcolor: <<colour sidebar-tiddler-link-foreground-hover>>;\n}\n\nbutton.tc-tiddlylink:hover,\na.tc-tiddlylink:hover {\n\ttext-decoration: underline;\n}\n\na.tc-tiddlylink-resolves {\n}\n\na.tc-tiddlylink-shadow {\n\tfont-weight: bold;\n}\n\na.tc-tiddlylink-shadow.tc-tiddlylink-resolves {\n\tfont-weight: normal;\n}\n\na.tc-tiddlylink-missing {\n\tfont-style: italic;\n}\n\na.tc-tiddlylink-external {\n\ttext-decoration: underline;\n\tcolor: <<colour external-link-foreground>>;\n\tbackground-color: <<colour external-link-background>>;\n}\n\na.tc-tiddlylink-external:visited {\n\tcolor: <<colour external-link-foreground-visited>>;\n\tbackground-color: <<colour external-link-background-visited>>;\n}\n\na.tc-tiddlylink-external:hover {\n\tcolor: <<colour external-link-foreground-hover>>;\n\tbackground-color: <<colour external-link-background-hover>>;\n}\n\n.tc-drop-down a.tc-tiddlylink:hover {\n\tcolor: <<colour tiddler-link-background>>;\n}\n\n/*\n** Drag and drop styles\n*/\n\n.tc-tiddler-dragger {\n\tposition: relative;\n\tz-index: -10000;\n}\n\n.tc-tiddler-dragger-inner {\n\tposition: absolute;\n\ttop: -1000px;\n\tleft: -1000px;\n\tdisplay: inline-block;\n\tpadding: 8px 20px;\n\tfont-size: 16.9px;\n\tfont-weight: bold;\n\tline-height: 20px;\n\tcolor: <<colour dragger-foreground>>;\n\ttext-shadow: 0 1px 0 rgba(0, 0, 0, 1);\n\twhite-space: nowrap;\n\tvertical-align: baseline;\n\tbackground-color: <<colour dragger-background>>;\n\tborder-radius: 20px;\n}\n\n.tc-tiddler-dragger-cover {\n\tposition: absolute;\n\tbackground-color: <<colour page-background>>;\n}\n\n.tc-dropzone {\n\tposition: relative;\n}\n\n.tc-dropzone.tc-dragover:before {\n\tz-index: 10000;\n\tdisplay: block;\n\tposition: fixed;\n\ttop: 0;\n\tleft: 0;\n\tright: 0;\n\tbackground: <<colour dropzone-background>>;\n\ttext-align: center;\n\tcontent: \"<<lingo DropMessage>>\";\n}\n\n.tc-droppable > .tc-droppable-placeholder {\n\tdisplay: none;\n}\n\n.tc-droppable.tc-dragover > .tc-droppable-placeholder {\n\tdisplay: block;\n\tborder: 2px dashed <<colour dropzone-background>>;\n}\n\n.tc-draggable {\n\tcursor: move;\n}\n\n.tc-sidebar-tab-open .tc-droppable-placeholder, .tc-tagged-draggable-list .tc-droppable-placeholder,\n.tc-links-draggable-list .tc-droppable-placeholder {\n\tline-height: 2em;\n\theight: 2em;\n}\n\n.tc-sidebar-tab-open-item {\n\tposition: relative;\n}\n\n.tc-sidebar-tab-open .tc-btn-invisible.tc-btn-mini svg {\n\tfont-size: 0.7em;\n\tfill: <<colour muted-foreground>>;\n}\n\n/*\n** Plugin reload warning\n*/\n\n.tc-plugin-reload-warning {\n\tz-index: 1000;\n\tdisplay: block;\n\tposition: fixed;\n\ttop: 0;\n\tleft: 0;\n\tright: 0;\n\tbackground: <<colour alert-background>>;\n\ttext-align: center;\n}\n\n/*\n** Buttons\n*/\n\nbutton svg, button img, label svg, label img {\n\tvertical-align: middle;\n}\n\n.tc-btn-invisible {\n\tpadding: 0;\n\tmargin: 0;\n\tbackground: none;\n\tborder: none;\n\tcursor: pointer;\n\tcolor: <<colour foreground>>;\n\tfill: <<colour foreground>>;\n}\n\n.tc-btn-boxed {\n\tfont-size: 0.6em;\n\tpadding: 0.2em;\n\tmargin: 1px;\n\tbackground: none;\n\tborder: 1px solid <<colour tiddler-controls-foreground>>;\n\tborder-radius: 0.25em;\n}\n\nhtml body.tc-body .tc-btn-boxed svg {\n\tfont-size: 1.6666em;\n}\n\n.tc-btn-boxed:hover {\n\tbackground: <<colour muted-foreground>>;\n\tcolor: <<colour background>>;\n}\n\nhtml body.tc-body .tc-btn-boxed:hover svg {\n\tfill: <<colour background>>;\n}\n\n.tc-btn-rounded {\n\tfont-size: 0.5em;\n\tline-height: 2;\n\tpadding: 0em 0.3em 0.2em 0.4em;\n\tmargin: 1px;\n\tborder: 1px solid <<colour muted-foreground>>;\n\tbackground: <<colour muted-foreground>>;\n\tcolor: <<colour background>>;\n\tborder-radius: 2em;\n}\n\nhtml body.tc-body .tc-btn-rounded svg {\n\tfont-size: 1.6666em;\n\tfill: <<colour background>>;\n}\n\n.tc-btn-rounded:hover {\n\tborder: 1px solid <<colour muted-foreground>>;\n\tbackground: <<colour background>>;\n\tcolor: <<colour muted-foreground>>;\n}\n\nhtml body.tc-body .tc-btn-rounded:hover svg {\n\tfill: <<colour muted-foreground>>;\n}\n\n.tc-btn-icon svg {\n\theight: 1em;\n\twidth: 1em;\n\tfill: <<colour muted-foreground>>;\n}\n\n.tc-btn-text {\n\tpadding: 0;\n\tmargin: 0;\n}\n\n/* used for documentation \"fake\" buttons */\n.tc-btn-standard {\n\tline-height: 1.8;\n\tcolor: #667;\n\tbackground-color: #e0e0e0;\n\tborder: 1px solid #888;\n\tpadding: 2px 1px 2px 1px;\n\tmargin: 1px 4px 1px 4px;\n}\n\n.tc-btn-big-green {\n\tdisplay: inline-block;\n\tpadding: 8px;\n\tmargin: 4px 8px 4px 8px;\n\tbackground: <<colour download-background>>;\n\tcolor: <<colour download-foreground>>;\n\tfill: <<colour download-foreground>>;\n\tborder: none;\n\tborder-radius: 2px;\n\tfont-size: 1.2em;\n\tline-height: 1.4em;\n\ttext-decoration: none;\n}\n\n.tc-btn-big-green svg,\n.tc-btn-big-green img {\n\theight: 2em;\n\twidth: 2em;\n\tvertical-align: middle;\n\tfill: <<colour download-foreground>>;\n}\n\n.tc-primary-btn {\n \tbackground: <<colour primary>>;\n}\n\n.tc-sidebar-lists input {\n\tcolor: <<colour foreground>>;\n}\n\n.tc-sidebar-lists button {\n\tcolor: <<colour sidebar-button-foreground>>;\n\tfill: <<colour sidebar-button-foreground>>;\n}\n\n.tc-sidebar-lists button.tc-btn-mini {\n\tcolor: <<colour sidebar-muted-foreground>>;\n}\n\n.tc-sidebar-lists button.tc-btn-mini:hover {\n\tcolor: <<colour sidebar-muted-foreground-hover>>;\n}\n\n.tc-sidebar-lists button small {\n\tcolor: <<colour foreground>>;\n}\n\nbutton svg.tc-image-button, button .tc-image-button img {\n\theight: 1em;\n\twidth: 1em;\n}\n\n.tc-unfold-banner {\n\tposition: absolute;\n\tpadding: 0;\n\tmargin: 0;\n\tbackground: none;\n\tborder: none;\n\twidth: 100%;\n\twidth: calc(100% + 2px);\n\tmargin-left: -43px;\n\ttext-align: center;\n\tborder-top: 2px solid <<colour tiddler-info-background>>;\n\tmargin-top: 4px;\n}\n\n.tc-unfold-banner:hover {\n\tbackground: <<colour tiddler-info-background>>;\n\tborder-top: 2px solid <<colour tiddler-info-border>>;\n}\n\n.tc-unfold-banner svg, .tc-fold-banner svg {\n\theight: 0.75em;\n\tfill: <<colour tiddler-controls-foreground>>;\n}\n\n.tc-unfold-banner:hover svg, .tc-fold-banner:hover svg {\n\tfill: <<colour tiddler-controls-foreground-hover>>;\n}\n\n.tc-fold-banner {\n\tposition: absolute;\n\tpadding: 0;\n\tmargin: 0;\n\tbackground: none;\n\tborder: none;\n\twidth: 23px;\n\ttext-align: center;\n\tmargin-left: -35px;\n\ttop: 6px;\n\tbottom: 6px;\n}\n\n.tc-fold-banner:hover {\n\tbackground: <<colour tiddler-info-background>>;\n}\n\n@media (max-width: <<sidebarbreakpoint-minus-one>>) {\n\n\t.tc-unfold-banner {\n\t\tposition: static;\n\t\twidth: calc(100% + 59px);\n\t}\n\n\t.tc-fold-banner {\n\t\twidth: 16px;\n\t\tmargin-left: -16px;\n\t\tfont-size: 0.75em;\n\t}\n\n}\n\n/*\n** Tags and missing tiddlers\n*/\n\n.tc-tag-list-item {\n\tposition: relative;\n\tdisplay: inline-block;\n\tmargin-right: 7px;\n}\n\n.tc-tags-wrapper {\n\tmargin: 4px 0 14px 0;\n}\n\n.tc-missing-tiddler-label {\n\tfont-style: italic;\n\tfont-weight: normal;\n\tdisplay: inline-block;\n\tfont-size: 11.844px;\n\tline-height: 14px;\n\twhite-space: nowrap;\n\tvertical-align: baseline;\n}\n\n.tc-block-tags-dropdown > .tc-btn-invisible:hover {\n\tbackground-color: <<colour primary>>;\n}\n\nbutton.tc-tag-label, span.tc-tag-label {\n\tdisplay: inline-block;\n\tpadding: 0.16em 0.7em;\n\tfont-size: 0.9em;\n\tfont-weight: 400;\n\tline-height: 1.2em;\n\tcolor: <<colour tag-foreground>>;\n\twhite-space: nowrap;\n\tvertical-align: baseline;\n\tbackground-color: <<colour tag-background>>;\n\tborder-radius: 1em;\n}\n\n.tc-sidebar-scrollable .tc-tag-label {\n\ttext-shadow: none;\n}\n\n.tc-untagged-separator {\n\twidth: 10em;\n\tleft: 0;\n\tmargin-left: 0;\n\tborder: 0;\n\theight: 1px;\n\tbackground: <<colour tab-divider>>;\n}\n\nbutton.tc-untagged-label {\n\tbackground-color: <<colour untagged-background>>;\n}\n\n.tc-tag-label svg, .tc-tag-label img {\n\theight: 1em;\n\twidth: 1em;\n\tmargin-right: 3px; \n\tmargin-bottom: 1px;\n\tvertical-align: bottom;\n}\n\n.tc-edit-tags button.tc-remove-tag-button svg {\n\tfont-size: 0.7em;\n\tvertical-align: middle;\n}\n\n.tc-tag-manager-table .tc-tag-label {\n\twhite-space: normal;\n}\n\n.tc-tag-manager-tag {\n\twidth: 100%;\n}\n\nbutton.tc-btn-invisible.tc-remove-tag-button {\n\toutline: none;\n}\n\n.tc-tag-button-selected,\n.tc-list-item-selected a.tc-tiddlylink, a.tc-list-item-selected {\n\tbackground-color: <<colour primary>>;\n\tcolor: <<colour tiddler-background>>;\n}\n\n/*\n** Page layout\n*/\n\n.tc-topbar {\n\tposition: fixed;\n\tz-index: 1200;\n}\n\n.tc-topbar-left {\n\tleft: 29px;\n\ttop: 5px;\n}\n\n.tc-topbar-right {\n\ttop: 5px;\n\tright: 29px;\n}\n\n@media (max-width: <<sidebarbreakpoint-minus-one>>) {\n\n\t.tc-topbar-right {\n\t\tright: 10px;\n\t}\n\n}\n\n.tc-topbar button {\n\tpadding: 8px;\n}\n\n.tc-topbar svg {\n\tfill: <<colour muted-foreground>>;\n}\n\n.tc-topbar button:hover svg {\n\tfill: <<colour foreground>>;\n}\n\n@media (max-width: <<sidebarbreakpoint-minus-one>>) {\n\n\t.tc-show-sidebar-btn svg.tc-image-chevron-left, .tc-hide-sidebar-btn svg.tc-image-chevron-right {\n\t\ttransform: rotate(-90deg);\n\t}\n\n}\n\n.tc-sidebar-header {\n\tcolor: <<colour sidebar-foreground>>;\n\tfill: <<colour sidebar-foreground>>;\n}\n\n.tc-sidebar-header .tc-title a.tc-tiddlylink-resolves {\n\tfont-weight: 300;\n}\n\n.tc-sidebar-header .tc-sidebar-lists p {\n\tmargin-top: 3px;\n\tmargin-bottom: 3px;\n}\n\n.tc-sidebar-header .tc-missing-tiddler-label {\n\tcolor: <<colour sidebar-foreground>>;\n}\n\n.tc-advanced-search input {\n\twidth: 60%;\n}\n\n.tc-search a svg {\n\twidth: 1.2em;\n\theight: 1.2em;\n\tvertical-align: middle;\n}\n\n.tc-page-controls {\n\tmargin-top: 14px;\n\tfont-size: 1.5em;\n}\n\n.tc-page-controls .tc-drop-down {\n font-size: 1rem;\n}\n\n.tc-page-controls button {\n\tmargin-right: 0.5em;\n}\n\n.tc-page-controls a.tc-tiddlylink:hover {\n\ttext-decoration: none;\n}\n\n.tc-page-controls img {\n\twidth: 1em;\n}\n\n.tc-page-controls svg {\n\tfill: <<colour sidebar-controls-foreground>>;\n}\n\n.tc-page-controls button:hover svg, .tc-page-controls a:hover svg {\n\tfill: <<colour sidebar-controls-foreground-hover>>;\n}\n\n.tc-sidebar-lists .tc-menu-list-item {\n\twhite-space: nowrap;\n}\n\n.tc-menu-list-count {\n\tfont-weight: bold;\n}\n\n.tc-menu-list-subitem {\n\tpadding-left: 7px;\n}\n\n.tc-story-river {\n\tposition: relative;\n}\n\n@media (max-width: <<sidebarbreakpoint-minus-one>>) {\n\n\t.tc-sidebar-header {\n\t\tpadding: 14px;\n\t\tmin-height: 32px;\n\t\tmargin-top: {{$:/themes/tiddlywiki/vanilla/metrics/storytop}};\n\t\ttransition: min-height {{$:/config/AnimationDuration}}ms ease-in-out, padding-top {{$:/config/AnimationDuration}}ms ease-in-out, padding-bottom {{$:/config/AnimationDuration}}ms ease-in-out;\n\t}\n\t\n\t<<if-no-sidebar \"\"\"\n\n\t\t.tc-sidebar-header {\n\t\t\tmin-height: 0;\n\t\t\tpadding-top: 0;\n\t\t\tpadding-bottom: 0;\n\t\t}\n\n\t\"\"\">>\n\n\t.tc-story-river {\n\t\tposition: relative;\n\t\tpadding: 0;\n\t}\n}\n\n@media (min-width: <<sidebarbreakpoint>>) {\n\n\t.tc-message-box {\n\t\tmargin: 21px -21px 21px -21px;\n\t}\n\n\t.tc-sidebar-scrollable {\n\t\tposition: fixed;\n\t\ttop: {{$:/themes/tiddlywiki/vanilla/metrics/storytop}};\n\t\tleft: {{$:/themes/tiddlywiki/vanilla/metrics/storyright}};\n\t\tbottom: 0;\n\t\tright: 0;\n\t\toverflow-y: auto;\n\t\toverflow-x: auto;\n\t\t-webkit-overflow-scrolling: touch;\n\t\tmargin: 0 0 0 -42px;\n\t\tpadding: 71px 0 28px 42px;\n\t}\n\n\thtml[dir=\"rtl\"] .tc-sidebar-scrollable {\n\t\tleft: auto;\n\t\tright: {{$:/themes/tiddlywiki/vanilla/metrics/storyright}};\n\t}\n\n\t.tc-story-river {\n\t\tposition: relative;\n\t\tleft: {{$:/themes/tiddlywiki/vanilla/metrics/storyleft}};\n\t\ttop: {{$:/themes/tiddlywiki/vanilla/metrics/storytop}};\n\t\twidth: {{$:/themes/tiddlywiki/vanilla/metrics/storywidth}};\n\t\tpadding: 42px 42px 42px 42px;\n\t}\n\n<<if-no-sidebar \"\n\n\t.tc-story-river {\n\t\twidth: calc(100% - {{$:/themes/tiddlywiki/vanilla/metrics/storyleft}});\n\t}\n\n\">>\n\n\t.tc-story-river.tc-static-story-river {\n\t\tmargin-right: 0;\n\t\tpadding-right: 42px;\n\t}\n\n}\n\n@media print {\n\n\tbody.tc-body {\n\t\tbackground-color: transparent;\n\t}\n\n\t.tc-sidebar-header, .tc-topbar {\n\t\tdisplay: none;\n\t}\n\n\t.tc-story-river {\n\t\tmargin: 0;\n\t\tpadding: 0;\n\t}\n\n\t.tc-story-river .tc-tiddler-frame {\n\t\tmargin: 0;\n\t\tborder: none;\n\t\tpadding: 0;\n\t}\n}\n\n/*\n** Tiddler styles\n*/\n\n.tc-tiddler-frame {\n\tposition: relative;\n\tmargin-bottom: 28px;\n\tbackground-color: <<colour tiddler-background>>;\n\tborder: 1px solid <<colour tiddler-border>>;\n}\n\n{{$:/themes/tiddlywiki/vanilla/sticky}}\n\n.tc-tiddler-info {\n\tpadding: 14px 42px 14px 42px;\n\tbackground-color: <<colour tiddler-info-background>>;\n\tborder-top: 1px solid <<colour tiddler-info-border>>;\n\tborder-bottom: 1px solid <<colour tiddler-info-border>>;\n}\n\n.tc-tiddler-info p {\n\tmargin-top: 3px;\n\tmargin-bottom: 3px;\n}\n\n.tc-tiddler-info .tc-tab-buttons button.tc-tab-selected {\n\tbackground-color: <<colour tiddler-info-tab-background>>;\n\tborder-bottom: 1px solid <<colour tiddler-info-tab-background>>;\n}\n\n@media (max-width: <<sidebarbreakpoint-minus-one>>) {\n\n\t.tc-tiddler-info {\n\t\tpadding: 14px 14px 14px 14px;\n\t}\n\n}\n\n.tc-view-field-table {\n\twidth: 100%;\n}\n\n.tc-view-field-name {\n\twidth: 1%; /* Makes this column be as narrow as possible */\n\ttext-align: right;\n\tfont-style: italic;\n\tfont-weight: 200;\n}\n\n.tc-view-field-value {\n}\n\n@media (max-width: <<sidebarbreakpoint-minus-one>>) {\n\t.tc-tiddler-frame {\n\t\tpadding: 14px 14px 14px 14px;\n\t\tmargin-bottom: .5em;\n\t}\n\n\t.tc-tiddler-info {\n\t\tmargin: 0 -14px 0 -14px;\n\t}\n}\n\n@media (min-width: <<sidebarbreakpoint>>) {\n\t.tc-tiddler-frame {\n\t\tpadding: 28px 42px 42px 42px;\n\t\twidth: {{$:/themes/tiddlywiki/vanilla/metrics/tiddlerwidth}};\n\t\tborder-radius: 2px;\n\t}\n\n<<if-no-sidebar \"\n\n\t.tc-tiddler-frame {\n\t\twidth: 100%;\n\t}\n\n\">>\n\n\t.tc-tiddler-info {\n\t\tmargin: 0 -42px 0 -42px;\n\t}\n}\n\n.tc-site-title,\n.tc-titlebar {\n\tfont-weight: 300;\n\tfont-size: 2.35em;\n\tline-height: 1.35em;\n\tcolor: <<colour tiddler-title-foreground>>;\n\tmargin: 0;\n}\n\n.tc-site-title {\n\tcolor: <<colour site-title-foreground>>;\n}\n\n.tc-tiddler-title-icon {\n\tvertical-align: middle;\n\tmargin-right: .1em;\n}\n\n.tc-system-title-prefix {\n\tcolor: <<colour muted-foreground>>;\n}\n\n.tc-titlebar h2 {\n\tfont-size: 1em;\n\tdisplay: inline;\n}\n\n.tc-titlebar img {\n\theight: 1em;\n}\n\n.tc-subtitle {\n\tfont-size: 0.9em;\n\tcolor: <<colour tiddler-subtitle-foreground>>;\n\tfont-weight: 300;\n}\n\n.tc-subtitle .tc-tiddlylink {\n\tmargin-right: .3em;\n}\n\n.tc-tiddler-missing .tc-title {\n font-style: italic;\n font-weight: normal;\n}\n\n.tc-tiddler-frame .tc-tiddler-controls {\n\tfloat: right;\n}\n\n.tc-tiddler-controls .tc-drop-down {\n\tfont-size: 0.6em;\n}\n\n.tc-tiddler-controls .tc-drop-down .tc-drop-down {\n\tfont-size: 1em;\n}\n\n.tc-tiddler-controls > span > button,\n.tc-tiddler-controls > span > span > button,\n.tc-tiddler-controls > span > span > span > button {\n\tvertical-align: baseline;\n\tmargin-left:5px;\n}\n\n.tc-tiddler-controls button svg, .tc-tiddler-controls button img,\n.tc-search button svg, .tc-search a svg {\n\tfill: <<colour tiddler-controls-foreground>>;\n}\n\n.tc-tiddler-controls button svg, .tc-tiddler-controls button img {\n\theight: 0.75em;\n}\n\n.tc-search button svg, .tc-search a svg {\n height: 1.2em;\n width: 1.2em;\n margin: 0 0.25em;\n}\n\n.tc-tiddler-controls button.tc-selected svg,\n.tc-page-controls button.tc-selected svg {\n\tfill: <<colour tiddler-controls-foreground-selected>>;\n}\n\n.tc-tiddler-controls button.tc-btn-invisible:hover svg,\n.tc-search button:hover svg, .tc-search a:hover svg {\n\tfill: <<colour tiddler-controls-foreground-hover>>;\n}\n\n@media print {\n\t.tc-tiddler-controls {\n\t\tdisplay: none;\n\t}\n}\n\n.tc-tiddler-help { /* Help prompts within tiddler template */\n\tcolor: <<colour muted-foreground>>;\n\tmargin-top: 14px;\n}\n\n.tc-tiddler-help a.tc-tiddlylink {\n\tcolor: <<colour very-muted-foreground>>;\n}\n\n.tc-tiddler-frame .tc-edit-texteditor {\n\twidth: 100%;\n\tmargin: 4px 0 4px 0;\n}\n\n.tc-tiddler-frame input.tc-edit-texteditor,\n.tc-tiddler-frame textarea.tc-edit-texteditor,\n.tc-tiddler-frame iframe.tc-edit-texteditor {\n\tpadding: 3px 3px 3px 3px;\n\tborder: 1px solid <<colour tiddler-editor-border>>;\n\tline-height: 1.3em;\n\t-webkit-appearance: none;\n\tfont-family: {{$:/themes/tiddlywiki/vanilla/settings/editorfontfamily}};\n}\n\n.tc-tiddler-frame input.tc-edit-texteditor,\n.tc-tiddler-frame textarea.tc-edit-texteditor {\n\tbackground-color: <<colour tiddler-editor-background>>;\n}\n\n.tc-tiddler-frame iframe.tc-edit-texteditor {\n\tbackground-color: <<colour tiddler-background>>;\n}\n\n.tc-tiddler-frame .tc-binary-warning {\n\twidth: 100%;\n\theight: 5em;\n\ttext-align: center;\n\tpadding: 3em 3em 6em 3em;\n\tbackground: <<colour alert-background>>;\n\tborder: 1px solid <<colour alert-border>>;\n}\n\ncanvas.tc-edit-bitmapeditor {\n\tborder: 6px solid <<colour tiddler-editor-border-image>>;\n\tcursor: crosshair;\n\t-moz-user-select: none;\n\t-webkit-user-select: none;\n\t-ms-user-select: none;\n\tmargin-top: 6px;\n\tmargin-bottom: 6px;\n}\n\n.tc-edit-bitmapeditor-width {\n\tdisplay: block;\n}\n\n.tc-edit-bitmapeditor-height {\n\tdisplay: block;\n}\n\n.tc-tiddler-body {\n\tclear: both;\n}\n\n.tc-tiddler-frame .tc-tiddler-body {\n\tfont-size: {{$:/themes/tiddlywiki/vanilla/metrics/bodyfontsize}};\n\tline-height: {{$:/themes/tiddlywiki/vanilla/metrics/bodylineheight}};\n}\n\n.tc-titlebar, .tc-tiddler-edit-title {\n\toverflow: hidden; /* https://github.com/Jermolene/TiddlyWiki5/issues/282 */\n}\n\nhtml body.tc-body.tc-single-tiddler-window {\n\tmargin: 1em;\n\tbackground: <<colour tiddler-background>>;\n}\n\n.tc-single-tiddler-window img,\n.tc-single-tiddler-window svg,\n.tc-single-tiddler-window canvas,\n.tc-single-tiddler-window embed,\n.tc-single-tiddler-window iframe {\n\tmax-width: 100%;\n}\n\n/*\n** Editor\n*/\n\n.tc-editor-toolbar {\n\tmargin-top: 8px;\n}\n\n.tc-editor-toolbar button {\n\tvertical-align: middle;\n\tbackground-color: <<colour tiddler-controls-foreground>>;\n\tcolor: <<colour tiddler-controls-foreground-selected>>;\n\tfill: <<colour tiddler-controls-foreground-selected>>;\n\tborder-radius: 4px;\n\tpadding: 3px;\n\tmargin: 2px 0 2px 4px;\n}\n\n.tc-editor-toolbar button.tc-text-editor-toolbar-item-adjunct {\n\tmargin-left: 1px;\n\twidth: 1em;\n\tborder-radius: 8px;\n}\n\n.tc-editor-toolbar button.tc-text-editor-toolbar-item-start-group {\n\tmargin-left: 11px;\n}\n\n.tc-editor-toolbar button.tc-selected {\n\tbackground-color: <<colour primary>>;\n}\n\n.tc-editor-toolbar button svg {\n\twidth: 1.6em;\n\theight: 1.2em;\n}\n\n.tc-editor-toolbar button:hover {\n\tbackground-color: <<colour tiddler-controls-foreground-selected>>;\n\tfill: <<colour background>>;\n\tcolor: <<colour background>>;\n}\n\n.tc-editor-toolbar .tc-text-editor-toolbar-more {\n\twhite-space: normal;\n}\n\n.tc-editor-toolbar .tc-text-editor-toolbar-more button {\n\tdisplay: inline-block;\n\tpadding: 3px;\n\twidth: auto;\n}\n\n.tc-editor-toolbar .tc-search-results {\n\tpadding: 0;\n}\n\n/*\n** Adjustments for fluid-fixed mode\n*/\n\n@media (min-width: <<sidebarbreakpoint>>) {\n\n<<if-fluid-fixed text:\"\"\"\n\n\t.tc-story-river {\n\t\tpadding-right: 0;\n\t\tposition: relative;\n\t\twidth: auto;\n\t\tleft: 0;\n\t\tmargin-left: {{$:/themes/tiddlywiki/vanilla/metrics/storyleft}};\n\t\tmargin-right: {{$:/themes/tiddlywiki/vanilla/metrics/sidebarwidth}};\n\t}\n\n\t.tc-tiddler-frame {\n\t\twidth: 100%;\n\t}\n\n\t.tc-sidebar-scrollable {\n\t\tleft: auto;\n\t\tbottom: 0;\n\t\tright: 0;\n\t\twidth: {{$:/themes/tiddlywiki/vanilla/metrics/sidebarwidth}};\n\t}\n\n\tbody.tc-body .tc-storyview-zoomin-tiddler {\n\t\twidth: 100%;\n\t\twidth: calc(100% - 42px);\n\t}\n\n\"\"\" hiddenSidebarText:\"\"\"\n\n\t.tc-story-river {\n\t\tpadding-right: 3em;\n\t\tmargin-right: 0;\n\t}\n\n\tbody.tc-body .tc-storyview-zoomin-tiddler {\n\t\twidth: 100%;\n\t\twidth: calc(100% - 84px);\n\t}\n\n\"\"\">>\n\n}\n\n/*\n** Toolbar buttons\n*/\n\n.tc-page-controls svg.tc-image-new-button {\n fill: <<colour toolbar-new-button>>;\n}\n\n.tc-page-controls svg.tc-image-options-button {\n fill: <<colour toolbar-options-button>>;\n}\n\n.tc-page-controls svg.tc-image-save-button {\n fill: <<colour toolbar-save-button>>;\n}\n\n.tc-tiddler-controls button svg.tc-image-info-button {\n fill: <<colour toolbar-info-button>>;\n}\n\n.tc-tiddler-controls button svg.tc-image-edit-button {\n fill: <<colour toolbar-edit-button>>;\n}\n\n.tc-tiddler-controls button svg.tc-image-close-button {\n fill: <<colour toolbar-close-button>>;\n}\n\n.tc-tiddler-controls button svg.tc-image-delete-button {\n fill: <<colour toolbar-delete-button>>;\n}\n\n.tc-tiddler-controls button svg.tc-image-cancel-button {\n fill: <<colour toolbar-cancel-button>>;\n}\n\n.tc-tiddler-controls button svg.tc-image-done-button {\n fill: <<colour toolbar-done-button>>;\n}\n\n/*\n** Tiddler edit mode\n*/\n\n.tc-tiddler-edit-frame em.tc-edit {\n\tcolor: <<colour muted-foreground>>;\n\tfont-style: normal;\n}\n\n.tc-edit-type-dropdown a.tc-tiddlylink-missing {\n\tfont-style: normal;\n}\n\n.tc-type-selector .tc-edit-typeeditor {\n\twidth: auto;\n}\n\n.tc-type-selector-dropdown-wrapper {\n\tdisplay: inline-block;\n}\n\n<<set-type-selector-min-width>>\n\n.tc-edit-tags {\n\tborder: 1px solid <<colour tiddler-editor-border>>;\n\tpadding: 4px 8px 4px 8px;\n}\n\n.tc-edit-add-tag {\n\tdisplay: inline-block;\n}\n\n.tc-edit-add-tag .tc-add-tag-name input {\n\twidth: 50%;\n}\n\n.tc-edit-add-tag .tc-keyboard {\n\tdisplay:inline;\n}\n\n.tc-edit-tags .tc-tag-label {\n\tdisplay: inline-block;\n}\n\n.tc-edit-tags-list {\n\tmargin: 14px 0 14px 0;\n}\n\n.tc-remove-tag-button {\n\tpadding-left: 4px;\n}\n\n.tc-tiddler-preview {\n\toverflow: auto;\n}\n\n.tc-tiddler-preview-preview {\n\tfloat: right;\n\twidth: 49%;\n\tborder: 1px solid <<colour tiddler-editor-border>>;\n\tmargin: 4px 0 3px 3px;\n\tpadding: 3px 3px 3px 3px;\n}\n\n<<if-editor-height-fixed then:\"\"\"\n\n.tc-tiddler-preview-preview {\n\toverflow-y: scroll;\n\theight: {{$:/config/TextEditor/EditorHeight/Height}};\n}\n\n\"\"\">>\n\n.tc-tiddler-frame .tc-tiddler-preview .tc-edit-texteditor {\n\twidth: 49%;\n}\n\n.tc-tiddler-frame .tc-tiddler-preview canvas.tc-edit-bitmapeditor {\n\tmax-width: 49%;\n}\n\n.tc-edit-fields {\n\twidth: 100%;\n}\n\n.tc-edit-fields.tc-edit-fields-small {\n\tmargin-top: 0;\n\tmargin-bottom: 0;\n}\n\n.tc-edit-fields table, .tc-edit-fields tr, .tc-edit-fields td {\n\tborder: none;\n\tpadding: 4px;\n}\n\n.tc-edit-fields > tbody > .tc-edit-field:nth-child(odd) {\n\tbackground-color: <<colour tiddler-editor-fields-odd>>;\n}\n\n.tc-edit-fields > tbody > .tc-edit-field:nth-child(even) {\n\tbackground-color: <<colour tiddler-editor-fields-even>>;\n}\n\n.tc-edit-field-name {\n\ttext-align: right;\n}\n\n.tc-edit-field-value input {\n\twidth: 100%;\n}\n\n.tc-edit-field-remove {\n}\n\n.tc-edit-field-remove svg {\n\theight: 1em;\n\twidth: 1em;\n\tfill: <<colour muted-foreground>>;\n\tvertical-align: middle;\n}\n\n.tc-edit-field-add-name-wrapper input.tc-edit-texteditor {\n\twidth: auto;\n}\n\n.tc-edit-field-add-name-wrapper {\n\tdisplay: inline-block;\n}\n\n.tc-edit-field-add-value {\n\tdisplay: inline-block;\n}\n\n@media (min-width: <<sidebarbreakpoint>>) {\n\n\t.tc-edit-field-add-value {\n\t\twidth: 35%;\n\t}\n\n}\n\n.tc-edit-field-add-button {\n\tdisplay: inline-block;\n\twidth: 10%;\n}\n\n/*\n** Storyview Classes\n*/\n\n.tc-viewswitcher .tc-image-button {\n\tmargin-right: .3em;\n}\n\n.tc-storyview-zoomin-tiddler {\n\tposition: absolute;\n\tdisplay: block;\n\twidth: 100%;\n}\n\n@media (min-width: <<sidebarbreakpoint>>) {\n\n\t.tc-storyview-zoomin-tiddler {\n\t\twidth: calc(100% - 84px);\n\t}\n\n}\n\n/*\n** Dropdowns\n*/\n\n.tc-btn-dropdown {\n\ttext-align: left;\n}\n\n.tc-btn-dropdown svg, .tc-btn-dropdown img {\n\theight: 1em;\n\twidth: 1em;\n\tfill: <<colour muted-foreground>>;\n}\n\n.tc-drop-down-wrapper {\n\tposition: relative;\n}\n\n.tc-drop-down {\n\tmin-width: 380px;\n\tborder: 1px solid <<colour dropdown-border>>;\n\tbackground-color: <<colour dropdown-background>>;\n\tpadding: 7px 0 7px 0;\n\tmargin: 4px 0 0 0;\n\twhite-space: nowrap;\n\ttext-shadow: none;\n\tline-height: 1.4;\n}\n\n.tc-drop-down .tc-drop-down {\n\tmargin-left: 14px;\n}\n\n.tc-drop-down button svg, .tc-drop-down a svg {\n\tfill: <<colour foreground>>;\n}\n\n.tc-drop-down button.tc-btn-invisible:hover svg {\n\tfill: <<colour background>>;\n}\n\n.tc-drop-down .tc-drop-down-info {\n\tpadding-left: 14px;\n}\n\n.tc-drop-down p {\n\tpadding: 0 14px 0 14px;\n}\n\n.tc-drop-down svg {\n\twidth: 1em;\n\theight: 1em;\n}\n\n.tc-drop-down img {\n\twidth: 1em;\n}\n\n.tc-drop-down a, .tc-drop-down button {\n\tdisplay: block;\n\tpadding: 0 14px 0 14px;\n\twidth: 100%;\n\ttext-align: left;\n\tcolor: <<colour foreground>>;\n\tline-height: 1.4;\n}\n\n.tc-drop-down .tc-tab-set .tc-tab-buttons button {\n\tdisplay: inline-block;\n width: auto;\n margin-bottom: 0px;\n border-bottom-left-radius: 0;\n border-bottom-right-radius: 0;\n}\n\n.tc-drop-down .tc-prompt {\n\tpadding: 0 14px;\n}\n\n.tc-drop-down .tc-chooser {\n\tborder: none;\n}\n\n.tc-drop-down .tc-chooser .tc-swatches-horiz {\n\tfont-size: 0.4em;\n\tpadding-left: 1.2em;\n}\n\n.tc-drop-down .tc-file-input-wrapper {\n\twidth: 100%;\n}\n\n.tc-drop-down .tc-file-input-wrapper button {\n\tcolor: <<colour foreground>>;\n}\n\n.tc-drop-down a:hover, .tc-drop-down button:hover, .tc-drop-down .tc-file-input-wrapper:hover button {\n\tcolor: <<colour tiddler-link-background>>;\n\tbackground-color: <<colour tiddler-link-foreground>>;\n\ttext-decoration: none;\n}\n\n.tc-drop-down .tc-tab-buttons button {\n\tbackground-color: <<colour dropdown-tab-background>>;\n}\n\n.tc-drop-down .tc-tab-buttons button.tc-tab-selected {\n\tbackground-color: <<colour dropdown-tab-background-selected>>;\n\tborder-bottom: 1px solid <<colour dropdown-tab-background-selected>>;\n}\n\n.tc-drop-down-bullet {\n\tdisplay: inline-block;\n\twidth: 0.5em;\n}\n\n.tc-drop-down .tc-tab-contents a {\n\tpadding: 0 0.5em 0 0.5em;\n}\n\n.tc-block-dropdown-wrapper {\n\tposition: relative;\n}\n\n.tc-block-dropdown {\n\tposition: absolute;\n\tmin-width: 220px;\n\tborder: 1px solid <<colour dropdown-border>>;\n\tbackground-color: <<colour dropdown-background>>;\n\tpadding: 7px 0;\n\tmargin: 4px 0 0 0;\n\twhite-space: nowrap;\n\tz-index: 1000;\n\ttext-shadow: none;\n}\n\n.tc-block-dropdown.tc-search-drop-down {\n\tmargin-left: -12px;\n}\n\n.tc-block-dropdown a {\n\tdisplay: block;\n\tpadding: 4px 14px 4px 14px;\n}\n\n.tc-block-dropdown.tc-search-drop-down a {\n\tdisplay: block;\n\tpadding: 0px 10px 0px 10px;\n}\n\n.tc-drop-down .tc-dropdown-item-plain,\n.tc-block-dropdown .tc-dropdown-item-plain {\n\tpadding: 4px 14px 4px 7px;\n}\n\n.tc-drop-down .tc-dropdown-item,\n.tc-block-dropdown .tc-dropdown-item {\n\tpadding: 4px 14px 4px 7px;\n\tcolor: <<colour muted-foreground>>;\n}\n\n.tc-block-dropdown a.tc-tiddlylink:hover {\n\tcolor: <<colour tiddler-link-background>>;\n\tbackground-color: <<colour tiddler-link-foreground>>;\n\ttext-decoration: none;\n}\n\n.tc-search-results {\n\tpadding: 0 7px 0 7px;\n}\n\n.tc-image-chooser, .tc-colour-chooser {\n\twhite-space: normal;\n}\n\n.tc-image-chooser a,\n.tc-colour-chooser a {\n\tdisplay: inline-block;\n\tvertical-align: top;\n\ttext-align: center;\n\tposition: relative;\n}\n\n.tc-image-chooser a {\n\tborder: 1px solid <<colour muted-foreground>>;\n\tpadding: 2px;\n\tmargin: 2px;\n\twidth: 4em;\n\theight: 4em;\n}\n\n.tc-colour-chooser a {\n\tpadding: 3px;\n\twidth: 2em;\n\theight: 2em;\n\tvertical-align: middle;\n}\n\n.tc-image-chooser a:hover,\n.tc-colour-chooser a:hover {\n\tbackground: <<colour primary>>;\n\tpadding: 0px;\n\tborder: 3px solid <<colour primary>>;\n}\n\n.tc-image-chooser a svg,\n.tc-image-chooser a img {\n\tdisplay: inline-block;\n\twidth: auto;\n\theight: auto;\n\tmax-width: 3.5em;\n\tmax-height: 3.5em;\n\tposition: absolute;\n\ttop: 0;\n\tbottom: 0;\n\tleft: 0;\n\tright: 0;\n\tmargin: auto;\n}\n\n/*\n** Modals\n*/\n\n.tc-modal-wrapper {\n\tposition: fixed;\n\toverflow: auto;\n\toverflow-y: scroll;\n\ttop: 0;\n\tright: 0;\n\tbottom: 0;\n\tleft: 0;\n\tz-index: 900;\n}\n\n.tc-modal-backdrop {\n\tposition: fixed;\n\ttop: 0;\n\tright: 0;\n\tbottom: 0;\n\tleft: 0;\n\tz-index: 1000;\n\tbackground-color: <<colour modal-backdrop>>;\n}\n\n.tc-modal {\n\tz-index: 1100;\n\tbackground-color: <<colour modal-background>>;\n\tborder: 1px solid <<colour modal-border>>;\n}\n\n@media (max-width: 55em) {\n\t.tc-modal {\n\t\tposition: fixed;\n\t\ttop: 1em;\n\t\tleft: 1em;\n\t\tright: 1em;\n\t}\n\n\t.tc-modal-body {\n\t\toverflow-y: auto;\n\t\tmax-height: 400px;\n\t\tmax-height: 60vh;\n\t}\n}\n\n@media (min-width: 55em) {\n\t.tc-modal {\n\t\tposition: fixed;\n\t\ttop: 2em;\n\t\tleft: 25%;\n\t\twidth: 50%;\n\t}\n\n\t.tc-modal-body {\n\t\toverflow-y: auto;\n\t\tmax-height: 400px;\n\t\tmax-height: 60vh;\n\t}\n}\n\n.tc-modal-header {\n\tpadding: 9px 15px;\n\tborder-bottom: 1px solid <<colour modal-header-border>>;\n}\n\n.tc-modal-header h3 {\n\tmargin: 0;\n\tline-height: 30px;\n}\n\n.tc-modal-header img, .tc-modal-header svg {\n\twidth: 1em;\n\theight: 1em;\n}\n\n.tc-modal-body {\n\tpadding: 15px;\n}\n\n.tc-modal-footer {\n\tpadding: 14px 15px 15px;\n\tmargin-bottom: 0;\n\ttext-align: right;\n\tbackground-color: <<colour modal-footer-background>>;\n\tborder-top: 1px solid <<colour modal-footer-border>>;\n}\n\n\n/*\n** Centered modals\n*/\n.tc-modal-centered .tc-modal {\n\twidth: auto;\n\ttop: 50%;\n\tleft: 50%;\n\ttransform: translate(-50%, -50%) !important;\n}\n\n/*\n** Notifications\n*/\n\n.tc-notification {\n\tposition: fixed;\n\ttop: 14px;\n\tright: 42px;\n\tz-index: 1300;\n\tmax-width: 280px;\n\tpadding: 0 14px 0 14px;\n\tbackground-color: <<colour notification-background>>;\n\tborder: 1px solid <<colour notification-border>>;\n}\n\n/*\n** Tabs\n*/\n\n.tc-tab-set.tc-vertical {\n\tdisplay: -webkit-flex;\n\tdisplay: flex;\n}\n\n.tc-tab-buttons {\n\tfont-size: 0.85em;\n\tpadding-top: 1em;\n\tmargin-bottom: -2px;\n}\n\n.tc-tab-buttons.tc-vertical {\n\tz-index: 100;\n\tdisplay: block;\n\tpadding-top: 14px;\n\tvertical-align: top;\n\ttext-align: right;\n\tmargin-bottom: inherit;\n\tmargin-right: -1px;\n\tmax-width: 33%;\n\t-webkit-flex: 0 0 auto;\n\tflex: 0 0 auto;\n}\n\n.tc-tab-buttons button.tc-tab-selected {\n\tcolor: <<colour tab-foreground-selected>>;\n\tbackground-color: <<colour tab-background-selected>>;\n\tborder-left: 1px solid <<colour tab-border-selected>>;\n\tborder-top: 1px solid <<colour tab-border-selected>>;\n\tborder-right: 1px solid <<colour tab-border-selected>>;\n}\n\n.tc-tab-buttons button {\n\tcolor: <<colour tab-foreground>>;\n\tpadding: 3px 5px 3px 5px;\n\tmargin-right: 0.3em;\n\tfont-weight: 300;\n\tborder: none;\n\tbackground: inherit;\n\tbackground-color: <<colour tab-background>>;\n\tborder-left: 1px solid <<colour tab-border>>;\n\tborder-top: 1px solid <<colour tab-border>>;\n\tborder-right: 1px solid <<colour tab-border>>;\n\tborder-top-left-radius: 2px;\n\tborder-top-right-radius: 2px;\n\tborder-bottom-left-radius: 0;\n\tborder-bottom-right-radius: 0;\n}\n\n.tc-tab-buttons.tc-vertical button {\n\tdisplay: block;\n\twidth: 100%;\n\tmargin-top: 3px;\n\tmargin-right: 0;\n\ttext-align: right;\n\tbackground-color: <<colour tab-background>>;\n\tborder-left: 1px solid <<colour tab-border>>;\n\tborder-bottom: 1px solid <<colour tab-border>>;\n\tborder-right: none;\n\tborder-top-left-radius: 2px;\n\tborder-bottom-left-radius: 2px;\n\tborder-top-right-radius: 0;\n\tborder-bottom-right-radius: 0;\n}\n\n.tc-tab-buttons.tc-vertical button.tc-tab-selected {\n\tbackground-color: <<colour tab-background-selected>>;\n\tborder-right: 1px solid <<colour tab-background-selected>>;\n}\n\n.tc-tab-divider {\n\tborder-top: 1px solid <<colour tab-divider>>;\n}\n\n.tc-tab-divider.tc-vertical {\n\tdisplay: none;\n}\n\n.tc-tab-content {\n\tmargin-top: 14px;\n}\n\n.tc-tab-content.tc-vertical {\n\tdisplay: inline-block;\n\tvertical-align: top;\n\tpadding-top: 0;\n\tpadding-left: 14px;\n\tborder-left: 1px solid <<colour tab-border>>;\n\t-webkit-flex: 1 0 70%;\n\tflex: 1 0 70%;\n\toverflow: auto;\n}\n\n.tc-sidebar-lists .tc-tab-buttons {\n\tmargin-bottom: -1px;\n}\n\n.tc-sidebar-lists .tc-tab-buttons button.tc-tab-selected {\n\tbackground-color: <<colour sidebar-tab-background-selected>>;\n\tcolor: <<colour sidebar-tab-foreground-selected>>;\n\tborder-left: 1px solid <<colour sidebar-tab-border-selected>>;\n\tborder-top: 1px solid <<colour sidebar-tab-border-selected>>;\n\tborder-right: 1px solid <<colour sidebar-tab-border-selected>>;\n}\n\n.tc-sidebar-lists .tc-tab-buttons button {\n\tbackground-color: <<colour sidebar-tab-background>>;\n\tcolor: <<colour sidebar-tab-foreground>>;\n\tborder-left: 1px solid <<colour sidebar-tab-border>>;\n\tborder-top: 1px solid <<colour sidebar-tab-border>>;\n\tborder-right: 1px solid <<colour sidebar-tab-border>>;\n}\n\n.tc-sidebar-lists .tc-tab-divider {\n\tborder-top: 1px solid <<colour sidebar-tab-divider>>;\n}\n\n.tc-more-sidebar > .tc-tab-set > .tc-tab-buttons > button {\n\tdisplay: block;\n\twidth: 100%;\n\tbackground-color: <<colour sidebar-tab-background>>;\n\tborder-top: none;\n\tborder-left: none;\n\tborder-bottom: none;\n\tborder-right: 1px solid #ccc;\n\tmargin-bottom: inherit;\n}\n\n.tc-more-sidebar > .tc-tab-set > .tc-tab-buttons > button.tc-tab-selected {\n\tbackground-color: <<colour sidebar-tab-background-selected>>;\n\tborder: none;\n}\n\n/*\n** Manager\n*/\n\n.tc-manager-wrapper {\n\t\n}\n\n.tc-manager-controls {\n\t\n}\n\n.tc-manager-control {\n\tmargin: 0.5em 0;\n}\n\n.tc-manager-list {\n\twidth: 100%;\n\tborder-top: 1px solid <<colour muted-foreground>>;\n\tborder-left: 1px solid <<colour muted-foreground>>;\n\tborder-right: 1px solid <<colour muted-foreground>>;\n}\n\n.tc-manager-list-item {\n\n}\n\n.tc-manager-list-item-heading {\n display: block;\n width: 100%;\n text-align: left;\t\n\tborder-bottom: 1px solid <<colour muted-foreground>>;\n\tpadding: 3px;\n}\n\n.tc-manager-list-item-heading-selected {\n\tfont-weight: bold;\n\tcolor: <<colour background>>;\n\tfill: <<colour background>>;\n\tbackground-color: <<colour foreground>>;\n}\n\n.tc-manager-list-item-heading:hover {\n\tbackground: <<colour primary>>;\n\tcolor: <<colour background>>;\n}\n\n.tc-manager-list-item-content {\n\tdisplay: flex;\n}\n\n.tc-manager-list-item-content-sidebar {\n flex: 1 0;\n background: <<colour tiddler-editor-background>>;\n border-right: 0.5em solid <<colour muted-foreground>>;\n border-bottom: 0.5em solid <<colour muted-foreground>>;\n white-space: nowrap;\n}\n\n.tc-manager-list-item-content-item-heading {\n\tdisplay: block;\n\twidth: 100%;\n\ttext-align: left;\n background: <<colour muted-foreground>>;\n\ttext-transform: uppercase;\n\tfont-size: 0.6em;\n\tfont-weight: bold;\n padding: 0.5em 0 0.5em 0;\n}\n\n.tc-manager-list-item-content-item-body {\n\tpadding: 0 0.5em 0 0.5em;\n}\n\n.tc-manager-list-item-content-item-body > pre {\n\tmargin: 0.5em 0 0.5em 0;\n\tborder: none;\n\tbackground: inherit;\n}\n\n.tc-manager-list-item-content-tiddler {\n flex: 3 1;\n border-left: 0.5em solid <<colour muted-foreground>>;\n border-right: 0.5em solid <<colour muted-foreground>>;\n border-bottom: 0.5em solid <<colour muted-foreground>>;\n}\n\n.tc-manager-list-item-content-item-body > table {\n\tborder: none;\n\tpadding: 0;\n\tmargin: 0;\n}\n\n.tc-manager-list-item-content-item-body > table td {\n\tborder: none;\n}\n\n.tc-manager-icon-editor > button {\n\twidth: 100%;\n}\n\n.tc-manager-icon-editor > button > svg,\n.tc-manager-icon-editor > button > button {\n\twidth: 100%;\n\theight: auto;\n}\n\n/*\n** Import table\n*/\n\n.tc-import-table {\n\twidth: 100%;\n}\n\n.tc-import-table svg.tc-image-edit-button {\n\tmax-width: unset;\n}\n\n.tc-import-table th:first-of-type {\n\twidth: 10%;\n}\n\n.tc-import-table th:last-of-type {\n\twidth: 30%;\n}\n\n.tc-import-table .tc-row-disabled {\n\tbackground: <<colour very-muted-foreground>>10;\n\topacity: 0.8;\n}\n\n.tc-import-table .tc-row-warning {\n\tbackground: <<colour diff-delete-background>>50;\n}\n\n/*\n** Alerts\n*/\n\n.tc-alerts {\n\tposition: fixed;\n\ttop: 28px;\n\tleft: 0;\n\tright: 0;\n\tmax-width: 50%;\n\tz-index: 20000;\n}\n\n.tc-alert {\n\tposition: relative;\n\tmargin: 14px;\n\tpadding: 7px;\n\tborder: 1px solid <<colour alert-border>>;\n\tbackground-color: <<colour alert-background>>;\n}\n\n.tc-alert-toolbar {\n\tposition: absolute;\n\ttop: 7px;\n\tright: 7px;\n line-height: 0;\n}\n\n.tc-alert-toolbar svg {\n\tfill: <<colour alert-muted-foreground>>;\n}\n\n.tc-alert-subtitle {\n\tcolor: <<colour alert-muted-foreground>>;\n\tfont-weight: bold;\n font-size: 0.8em;\n margin-bottom: 0.5em;\n}\n\n.tc-alert-body > p {\n\tmargin: 0;\n}\n\n.tc-alert-highlight {\n\tcolor: <<colour alert-highlight>>;\n}\n\n@media (min-width: <<sidebarbreakpoint>>) {\n\n\t.tc-static-alert {\n\t\tposition: relative;\n\t}\n\n\t.tc-static-alert-inner {\n\t\tposition: absolute;\n\t\tz-index: 100;\n\t}\n\n}\n\n.tc-static-alert-inner {\n\tpadding: 0 2px 2px 42px;\n\tcolor: <<colour static-alert-foreground>>;\n}\n\n/*\n** Floating drafts list\n*/\n\n.tc-drafts-list {\n\tz-index: 2000;\n\tposition: fixed;\n\tfont-size: 0.8em;\n\tleft: 0;\n\tbottom: 0;\n}\n\n.tc-drafts-list a {\n\tmargin: 0 0.5em;\n\tpadding: 4px 4px;\n\tborder-top-left-radius: 4px;\n\tborder-top-right-radius: 4px;\n\tborder: 1px solid <<colour background>>;\n\tborder-bottom-none;\n\tbackground: <<colour dirty-indicator>>;\n\tcolor: <<colour background>>;\n\tfill: <<colour background>>;\n}\n\n.tc-drafts-list a:hover {\n\ttext-decoration: none;\n\tbackground: <<colour foreground>>;\n\tcolor: <<colour background>>;\n\tfill: <<colour background>>;\n}\n\n.tc-drafts-list a svg {\n\twidth: 1em;\n\theight: 1em;\n\tvertical-align: text-bottom;\n}\n\n/*\n** Control panel\n*/\n\n.tc-control-panel td {\n\tpadding: 4px;\n}\n\n.tc-control-panel table, .tc-control-panel table input, .tc-control-panel table textarea {\n\twidth: 100%;\n}\n\n.tc-plugin-info {\n\tdisplay: flex;\n\tborder: 1px solid <<colour muted-foreground>>;\n\tfill: <<colour muted-foreground>>;\n\tbackground-color: <<colour background>>;\n\tmargin: 0.5em 0 0.5em 0;\n\tpadding: 4px;\n align-items: center;\n}\n\n.tc-plugin-info-sub-plugins .tc-plugin-info {\n margin: 0.5em;\n\tbackground: <<colour background>>;\n}\n\n.tc-plugin-info-sub-plugin-indicator {\n\tmargin: -16px 1em 0 2em;\n}\n\n.tc-plugin-info-sub-plugin-indicator button {\n\tcolor: <<colour background>>;\n\tbackground: <<colour foreground>>;\n\tborder-radius: 8px;\n padding: 2px 7px;\n font-size: 0.75em;\n}\n\n.tc-plugin-info-sub-plugins .tc-plugin-info-dropdown {\n\tmargin-left: 1em;\n\tmargin-right: 1em;\n}\n\n.tc-plugin-info-disabled {\n\tbackground: -webkit-repeating-linear-gradient(45deg, #ff0, #ff0 10px, #eee 10px, #eee 20px);\n\tbackground: repeating-linear-gradient(45deg, #ff0, #ff0 10px, #eee 10px, #eee 20px);\n}\n\n.tc-plugin-info-disabled:hover {\n\tbackground: -webkit-repeating-linear-gradient(45deg, #aa0, #aa0 10px, #888 10px, #888 20px);\n\tbackground: repeating-linear-gradient(45deg, #aa0, #aa0 10px, #888 10px, #888 20px);\n}\n\na.tc-tiddlylink.tc-plugin-info:hover {\n\ttext-decoration: none;\n\tbackground-color: <<colour primary>>;\n\tcolor: <<colour background>>;\n\tfill: <<colour foreground>>;\n}\n\na.tc-tiddlylink.tc-plugin-info:hover > .tc-plugin-info-chunk > svg {\n\tfill: <<colour background>>;\n}\n\n.tc-plugin-info-chunk {\n margin: 2px;\n}\n\n.tc-plugin-info-chunk.tc-plugin-info-toggle {\n\tflex-grow: 0;\n\tflex-shrink: 0;\n\tline-height: 1;\n}\n\n.tc-plugin-info-chunk.tc-plugin-info-icon {\n\tflex-grow: 0;\n\tflex-shrink: 0;\n\tline-height: 1;\n}\n\n.tc-plugin-info-chunk.tc-plugin-info-description {\n\tflex-grow: 1;\n}\n\n.tc-plugin-info-chunk.tc-plugin-info-buttons {\n\tfont-size: 0.8em;\n\tline-height: 1.2;\n\tflex-grow: 0;\n\tflex-shrink: 0;\n text-align: right;\n}\n\n.tc-plugin-info-chunk.tc-plugin-info-description h1 {\n\tfont-size: 1em;\n\tline-height: 1.2;\n\tmargin: 2px 0 2px 0;\n}\n\n.tc-plugin-info-chunk.tc-plugin-info-description h2 {\n\tfont-size: 0.8em;\n\tline-height: 1.2;\n\tmargin: 2px 0 2px 0;\n}\n\n.tc-plugin-info-chunk.tc-plugin-info-description div {\n\tfont-size: 0.7em;\n\tline-height: 1.2;\n\tmargin: 2px 0 2px 0;\n}\n\n.tc-plugin-info-chunk.tc-plugin-info-toggle img, .tc-plugin-info-chunk.tc-plugin-info-toggle svg {\n\twidth: 1em;\n\theight: 1em;\n}\n\n.tc-plugin-info-chunk.tc-plugin-info-icon img, .tc-plugin-info-chunk.tc-plugin-info-icon svg {\n\twidth: 2em;\n\theight: 2em;\n}\n\n.tc-plugin-info-dropdown {\n\tborder: 1px solid <<colour muted-foreground>>;\n\tbackground: <<colour background>>;\n\tmargin-top: -8px;\n}\n\n.tc-plugin-info-dropdown-message {\n\tbackground: <<colour message-background>>;\n\tpadding: 0.5em 1em 0.5em 1em;\n\tfont-weight: bold;\n\tfont-size: 0.8em;\n}\n\n.tc-plugin-info-dropdown-body {\n\tpadding: 1em 1em 0 1em;\n\tbackground: <<colour background>>;\n}\n\n.tc-plugin-info-sub-plugins {\n\tpadding: 0.5em;\n margin: 0 1em 1em 1em;\n\tbackground: <<colour notification-background>>;\n}\n\n.tc-install-plugin {\n\tfont-weight: bold;\n\tbackground: green;\n\tcolor: white;\n\tfill: white;\n\tborder-radius: 4px;\n\tpadding: 3px;\n}\n\n.tc-install-plugin.tc-reinstall-downgrade {\n\tbackground: red;\n}\n\n.tc-install-plugin.tc-reinstall {\n\tbackground: blue;\n}\n\n.tc-install-plugin.tc-reinstall-upgrade {\n\tbackground: orange;\n}\n\n.tc-check-list {\n\tline-height: 2em;\n}\n\n.tc-check-list .tc-image-button {\n\theight: 1.5em;\n}\n\n/*\n** Message boxes\n*/\n\n.tc-message-box {\n\tborder: 1px solid <<colour message-border>>;\n\tbackground: <<colour message-background>>;\n\tpadding: 0px 21px 0px 21px;\n\tfont-size: 12px;\n\tline-height: 18px;\n\tcolor: <<colour message-foreground>>;\n}\n\n.tc-message-box svg {\n\twidth: 1em;\n\theight: 1em;\n vertical-align: text-bottom;\n}\n\n/*\n** Pictures\n*/\n\n.tc-bordered-image {\n\tborder: 1px solid <<colour muted-foreground>>;\n\tpadding: 5px;\n\tmargin: 5px;\n}\n\n/*\n** Floats\n*/\n\n.tc-float-right {\n\tfloat: right;\n}\n\n/*\n** Chooser\n*/\n\n.tc-chooser {\n\tborder-right: 1px solid <<colour table-header-background>>;\n\tborder-left: 1px solid <<colour table-header-background>>;\n}\n\n\n.tc-chooser-item {\n\tborder-bottom: 1px solid <<colour table-header-background>>;\n\tborder-top: 1px solid <<colour table-header-background>>;\n\tpadding: 2px 4px 2px 14px;\n}\n\n.tc-drop-down .tc-chooser-item {\n\tpadding: 2px;\n}\n\n.tc-chosen,\n.tc-chooser-item:hover {\n\tbackground-color: <<colour table-header-background>>;\n\tborder-color: <<colour table-footer-background>>;\n}\n\n.tc-chosen .tc-tiddlylink {\n\tcursor:default;\n}\n\n.tc-chooser-item .tc-tiddlylink {\n\tdisplay: block;\n\ttext-decoration: none;\n\tbackground-color: transparent;\n}\n\n.tc-chooser-item:hover .tc-tiddlylink:hover {\n\ttext-decoration: none;\n}\n\n.tc-drop-down .tc-chosen .tc-tiddlylink,\n.tc-drop-down .tc-chooser-item .tc-tiddlylink:hover {\n\tcolor: <<colour foreground>>;\n}\n\n.tc-chosen > .tc-tiddlylink:before {\n\tmargin-left: -10px;\n\tposition: relative;\n\tcontent: \"» \";\n}\n\n.tc-chooser-item svg,\n.tc-chooser-item img{\n\twidth: 1em;\n\theight: 1em;\n\tvertical-align: middle;\n}\n\n.tc-language-chooser .tc-image-button img {\n\twidth: 2em;\n\tvertical-align: -0.15em;\n}\n\n/*\n** Palette swatches\n*/\n\n.tc-swatches-horiz {\n}\n\n.tc-swatches-horiz .tc-swatch {\n\tdisplay: inline-block;\n}\n\n.tc-swatch {\n\twidth: 2em;\n\theight: 2em;\n\tmargin: 0.4em;\n\tborder: 1px solid #888;\n}\n\ninput.tc-palette-manager-colour-input {\n\twidth: 100%;\n\tpadding: 0;\n}\n\n/*\n** Table of contents\n*/\n\n.tc-sidebar-lists .tc-table-of-contents {\n\twhite-space: nowrap;\n}\n\n.tc-table-of-contents button {\n\tcolor: <<colour sidebar-foreground>>;\n}\n\n.tc-table-of-contents svg {\n\twidth: 0.7em;\n\theight: 0.7em;\n\tvertical-align: middle;\n\tfill: <<colour sidebar-foreground>>;\n}\n\n.tc-table-of-contents ol {\n\tlist-style-type: none;\n\tpadding-left: 0;\n}\n\n.tc-table-of-contents ol ol {\n\tpadding-left: 1em;\n}\n\n.tc-table-of-contents li {\n\tfont-size: 1.0em;\n\tfont-weight: bold;\n}\n\n.tc-table-of-contents li a {\n\tfont-weight: bold;\n}\n\n.tc-table-of-contents li li {\n\tfont-size: 0.95em;\n\tfont-weight: normal;\n\tline-height: 1.4;\n}\n\n.tc-table-of-contents li li a {\n\tfont-weight: normal;\n}\n\n.tc-table-of-contents li li li {\n\tfont-size: 0.95em;\n\tfont-weight: 200;\n\tline-height: 1.5;\n}\n\n.tc-table-of-contents li li li li {\n\tfont-size: 0.95em;\n\tfont-weight: 200;\n}\n\n.tc-tabbed-table-of-contents {\n\tdisplay: -webkit-flex;\n\tdisplay: flex;\n}\n\n.tc-tabbed-table-of-contents .tc-table-of-contents {\n\tz-index: 100;\n\tdisplay: inline-block;\n\tpadding-left: 1em;\n\tmax-width: 50%;\n\t-webkit-flex: 0 0 auto;\n\tflex: 0 0 auto;\n\tbackground: <<colour tab-background>>;\n\tborder-left: 1px solid <<colour tab-border>>;\n\tborder-top: 1px solid <<colour tab-border>>;\n\tborder-bottom: 1px solid <<colour tab-border>>;\n}\n\n.tc-tabbed-table-of-contents .tc-table-of-contents .toc-item > a,\n.tc-tabbed-table-of-contents .tc-table-of-contents .toc-item-selected > a {\n\tdisplay: block;\n\tpadding: 0.12em 1em 0.12em 0.25em;\n}\n\n.tc-tabbed-table-of-contents .tc-table-of-contents .toc-item > a {\n\tborder-top: 1px solid <<colour tab-background>>;\n\tborder-left: 1px solid <<colour tab-background>>;\n\tborder-bottom: 1px solid <<colour tab-background>>;\n}\n\n.tc-tabbed-table-of-contents .tc-table-of-contents .toc-item > a:hover {\n\ttext-decoration: none;\n\tborder-top: 1px solid <<colour tab-border>>;\n\tborder-left: 1px solid <<colour tab-border>>;\n\tborder-bottom: 1px solid <<colour tab-border>>;\n\tbackground: <<colour tab-border>>;\n}\n\n.tc-tabbed-table-of-contents .tc-table-of-contents .toc-item-selected > a {\n\tborder-top: 1px solid <<colour tab-border>>;\n\tborder-left: 1px solid <<colour tab-border>>;\n\tborder-bottom: 1px solid <<colour tab-border>>;\n\tbackground: <<colour background>>;\n\tmargin-right: -1px;\n}\n\n.tc-tabbed-table-of-contents .tc-table-of-contents .toc-item-selected > a:hover {\n\ttext-decoration: none;\n}\n\n.tc-tabbed-table-of-contents .tc-tabbed-table-of-contents-content {\n\tdisplay: inline-block;\n\tvertical-align: top;\n\tpadding-left: 1.5em;\n\tpadding-right: 1.5em;\n\tborder: 1px solid <<colour tab-border>>;\n\t-webkit-flex: 1 0 50%;\n\tflex: 1 0 50%;\n}\n\n/*\n** Dirty indicator\n*/\n\nbody.tc-dirty span.tc-dirty-indicator, body.tc-dirty span.tc-dirty-indicator svg {\n\tfill: <<colour dirty-indicator>>;\n\tcolor: <<colour dirty-indicator>>;\n}\n\n/*\n** File inputs\n*/\n\n.tc-file-input-wrapper {\n\tposition: relative;\n\toverflow: hidden;\n\tdisplay: inline-block;\n\tvertical-align: middle;\n}\n\n.tc-file-input-wrapper input[type=file] {\n\tposition: absolute;\n\ttop: 0;\n\tleft: 0;\n\tright: 0;\n\tbottom: 0;\n\tfont-size: 999px;\n\tmax-width: 100%;\n\tmax-height: 100%;\n\tfilter: alpha(opacity=0);\n\topacity: 0;\n\toutline: none;\n\tbackground: white;\n\tcursor: pointer;\n\tdisplay: inline-block;\n}\n\n::-webkit-file-upload-button {\n\tcursor:pointer;\n}\n\n/*\n** Thumbnail macros\n*/\n\n.tc-thumbnail-wrapper {\n\tposition: relative;\n\tdisplay: inline-block;\n\tmargin: 6px;\n\tvertical-align: top;\n}\n\n.tc-thumbnail-right-wrapper {\n\tfloat:right;\n\tmargin: 0.5em 0 0.5em 0.5em;\n}\n\n.tc-thumbnail-image {\n\ttext-align: center;\n\toverflow: hidden;\n\tborder-radius: 3px;\n}\n\n.tc-thumbnail-image svg,\n.tc-thumbnail-image img {\n\tfilter: alpha(opacity=1);\n\topacity: 1;\n\tmin-width: 100%;\n\tmin-height: 100%;\n\tmax-width: 100%;\n}\n\n.tc-thumbnail-wrapper:hover .tc-thumbnail-image svg,\n.tc-thumbnail-wrapper:hover .tc-thumbnail-image img {\n\tfilter: alpha(opacity=0.8);\n\topacity: 0.8;\n}\n\n.tc-thumbnail-background {\n\tposition: absolute;\n\tborder-radius: 3px;\n}\n\n.tc-thumbnail-icon svg,\n.tc-thumbnail-icon img {\n\twidth: 3em;\n\theight: 3em;\n\t<<filter \"drop-shadow(2px 2px 4px rgba(0,0,0,0.3))\">>\n}\n\n.tc-thumbnail-wrapper:hover .tc-thumbnail-icon svg,\n.tc-thumbnail-wrapper:hover .tc-thumbnail-icon img {\n\tfill: #fff;\n\t<<filter \"drop-shadow(3px 3px 4px rgba(0,0,0,0.6))\">>\n}\n\n.tc-thumbnail-icon {\n\tposition: absolute;\n\ttop: 0;\n\tleft: 0;\n\tright: 0;\n\tbottom: 0;\n\tdisplay: -webkit-flex;\n\t-webkit-align-items: center;\n\t-webkit-justify-content: center;\n\tdisplay: flex;\n\talign-items: center;\n\tjustify-content: center;\n}\n\n.tc-thumbnail-caption {\n\tposition: absolute;\n\tbackground-color: #777;\n\tcolor: #fff;\n\ttext-align: center;\n\tbottom: 0;\n\twidth: 100%;\n\tfilter: alpha(opacity=0.9);\n\topacity: 0.9;\n\tline-height: 1.4;\n\tborder-bottom-left-radius: 3px;\n\tborder-bottom-right-radius: 3px;\n}\n\n.tc-thumbnail-wrapper:hover .tc-thumbnail-caption {\n\tfilter: alpha(opacity=1);\n\topacity: 1;\n}\n\n/*\n** Diffs\n*/\n\n.tc-diff-equal {\n\tbackground-color: <<colour diff-equal-background>>;\n\tcolor: <<colour diff-equal-foreground>>;\n}\n\n.tc-diff-insert {\n\tbackground-color: <<colour diff-insert-background>>;\n\tcolor: <<colour diff-insert-foreground>>;\n}\n\n.tc-diff-delete {\n\tbackground-color: <<colour diff-delete-background>>;\n\tcolor: <<colour diff-delete-foreground>>;\n}\n\n.tc-diff-invisible {\n\tbackground-color: <<colour diff-invisible-background>>;\n\tcolor: <<colour diff-invisible-foreground>>;\n}\n\n.tc-diff-tiddlers th {\n\ttext-align: right;\n\tbackground: <<colour background>>;\n\tfont-weight: normal;\n\tfont-style: italic;\n}\n\n.tc-diff-tiddlers pre {\n margin: 0;\n padding: 0;\n border: none;\n background: none;\n}\n\n/*\n** Errors\n*/\n\n.tc-error {\n\tbackground: #f00;\n\tcolor: #fff;\n}\n\n/*\n** Tree macro\n*/\n\n.tc-tree div {\n \tpadding-left: 14px;\n}\n\n.tc-tree ol {\n \tlist-style-type: none;\n \tpadding-left: 0;\n \tmargin-top: 0;\n}\n\n.tc-tree ol ol {\n \tpadding-left: 1em; \n}\n\n.tc-tree button { \n \tcolor: #acacac;\n}\n\n.tc-tree svg {\n \tfill: #acacac;\n}\n\n.tc-tree span svg {\n \twidth: 1em;\n \theight: 1em;\n \tvertical-align: baseline;\n}\n\n.tc-tree li span {\n \tcolor: lightgray;\n}\n\nselect {\n color: <<colour select-tag-foreground>>;\n background: <<colour select-tag-background>>;\n}\n\n/*\n** Utility classes for SVG icons\n*/\n\n.tc-fill-background {\n\tfill: <<colour background>>;\n}\n\n/*\n** Flexbox utility classes\n*/\n\n.tc-flex {\n\tdisplay: -webkit-flex;\n\tdisplay: flex;\n}\n\n.tc-flex-column {\n\tflex-direction: column;\n}\n\n.tc-flex-row {\n\tflex-direction: row;\n}\n\n.tc-flex-grow-1 {\n\tflex-grow: 1;\n}\n\n.tc-flex-grow-2 {\n\tflex-grow: 2;\n}\n\n/*\n** Other utility classes\n*/\n\n.tc-small-gap {\n\tmargin-left: .5em;\n\tmargin-right: .5em;\n}\n\n.tc-small-gap-left {\n\tmargin-left: .5em;\n}\n\n.tc-small-gap-right {\n\tmargin-right: .5em;\n}\n\n.tc-big-gap {\n\tmargin-left: 1em;\n\tmargin-right: 1em;\n}\n\n.tc-big-gap-left {\n\tmargin-left: 1em;\n}\n\n.tc-big-gap-right {\n\tmargin-right: 1em;\n}\n\n.tc-word-break {\n\tword-break: break-all;\n}\n"
},
"$:/themes/tiddlywiki/vanilla/metrics/bodyfontsize": {
"title": "$:/themes/tiddlywiki/vanilla/metrics/bodyfontsize",
"text": "15px"
},
"$:/themes/tiddlywiki/vanilla/metrics/bodylineheight": {
"title": "$:/themes/tiddlywiki/vanilla/metrics/bodylineheight",
"text": "22px"
},
"$:/themes/tiddlywiki/vanilla/metrics/fontsize": {
"title": "$:/themes/tiddlywiki/vanilla/metrics/fontsize",
"text": "14px"
},
"$:/themes/tiddlywiki/vanilla/metrics/lineheight": {
"title": "$:/themes/tiddlywiki/vanilla/metrics/lineheight",
"text": "20px"
},
"$:/themes/tiddlywiki/vanilla/metrics/storyleft": {
"title": "$:/themes/tiddlywiki/vanilla/metrics/storyleft",
"text": "0px"
},
"$:/themes/tiddlywiki/vanilla/metrics/storytop": {
"title": "$:/themes/tiddlywiki/vanilla/metrics/storytop",
"text": "0px"
},
"$:/themes/tiddlywiki/vanilla/metrics/storyright": {
"title": "$:/themes/tiddlywiki/vanilla/metrics/storyright",
"text": "770px"
},
"$:/themes/tiddlywiki/vanilla/metrics/storywidth": {
"title": "$:/themes/tiddlywiki/vanilla/metrics/storywidth",
"text": "770px"
},
"$:/themes/tiddlywiki/vanilla/metrics/tiddlerwidth": {
"title": "$:/themes/tiddlywiki/vanilla/metrics/tiddlerwidth",
"text": "686px"
},
"$:/themes/tiddlywiki/vanilla/metrics/sidebarbreakpoint": {
"title": "$:/themes/tiddlywiki/vanilla/metrics/sidebarbreakpoint",
"text": "960px"
},
"$:/themes/tiddlywiki/vanilla/metrics/sidebarwidth": {
"title": "$:/themes/tiddlywiki/vanilla/metrics/sidebarwidth",
"text": "350px"
},
"$:/themes/tiddlywiki/vanilla/options/stickytitles": {
"title": "$:/themes/tiddlywiki/vanilla/options/stickytitles",
"text": "no"
},
"$:/themes/tiddlywiki/vanilla/options/sidebarlayout": {
"title": "$:/themes/tiddlywiki/vanilla/options/sidebarlayout",
"text": "fixed-fluid"
},
"$:/themes/tiddlywiki/vanilla/options/codewrapping": {
"title": "$:/themes/tiddlywiki/vanilla/options/codewrapping",
"text": "pre-wrap"
},
"$:/themes/tiddlywiki/vanilla/reset": {
"title": "$:/themes/tiddlywiki/vanilla/reset",
"type": "text/plain",
"text": "/*! modern-normalize v1.0.0 | MIT License | https://github.com/sindresorhus/modern-normalize */\n\n/*\nDocument\n========\n*/\n\n/**\nUse a better box model (opinionated).\n*/\n\n*,\n*::before,\n*::after {\n box-sizing: border-box;\n}\n\n/**\nUse a more readable tab size (opinionated).\n*/\n\n:root {\n -moz-tab-size: 4;\n tab-size: 4;\n}\n\n/**\n1. Correct the line height in all browsers.\n2. Prevent adjustments of font size after orientation changes in iOS.\n*/\n\nhtml {\n line-height: 1.15; /* 1 */\n -webkit-text-size-adjust: 100%; /* 2 */\n}\n\n/*\nSections\n========\n*/\n\n/**\nRemove the margin in all browsers.\n*/\n\nbody {\n margin: 0;\n}\n\n/**\nImprove consistency of default fonts in all browsers. (https://github.com/sindresorhus/modern-normalize/issues/3)\n*/\n\nbody {\n font-family:\n system-ui,\n -apple-system, /* Firefox supports this but not yet `system-ui` */\n 'Segoe UI',\n Roboto,\n Helvetica,\n Arial,\n sans-serif,\n 'Apple Color Emoji',\n 'Segoe UI Emoji';\n}\n\n/*\nGrouping content\n================\n*/\n\n/**\n1. Add the correct height in Firefox.\n2. Correct the inheritance of border color in Firefox. (https://bugzilla.mozilla.org/show_bug.cgi?id=190655)\n*/\n\nhr {\n height: 0; /* 1 */\n color: inherit; /* 2 */\n}\n\n/*\nText-level semantics\n====================\n*/\n\n/**\nAdd the correct text decoration in Chrome, Edge, and Safari.\n*/\n\nabbr[title] {\n text-decoration: underline dotted;\n}\n\n/**\nAdd the correct font weight in Edge and Safari.\n*/\n\nb,\nstrong {\n font-weight: bolder;\n}\n\n/**\n1. Improve consistency of default fonts in all browsers. (https://github.com/sindresorhus/modern-normalize/issues/3)\n2. Correct the odd 'em' font sizing in all browsers.\n*/\n\ncode,\nkbd,\nsamp,\npre {\n font-family:\n ui-monospace,\n SFMono-Regular,\n Consolas,\n 'Liberation Mono',\n Menlo,\n monospace; /* 1 */\n font-size: 1em; /* 2 */\n}\n\n/**\nAdd the correct font size in all browsers.\n*/\n\nsmall {\n font-size: 80%;\n}\n\n/**\nPrevent 'sub' and 'sup' elements from affecting the line height in all browsers.\n*/\n\nsub,\nsup {\n font-size: 75%;\n line-height: 0;\n position: relative;\n vertical-align: baseline;\n}\n\nsub {\n bottom: -0.25em;\n}\n\nsup {\n top: -0.5em;\n}\n\n/*\nTabular data\n============\n*/\n\n/**\n1. Remove text indentation from table contents in Chrome and Safari. (https://bugs.chromium.org/p/chromium/issues/detail?id=999088, https://bugs.webkit.org/show_bug.cgi?id=201297)\n2. Correct table border color inheritance in all Chrome and Safari. (https://bugs.chromium.org/p/chromium/issues/detail?id=935729, https://bugs.webkit.org/show_bug.cgi?id=195016)\n*/\n\ntable {\n text-indent: 0; /* 1 */\n border-color: inherit; /* 2 */\n}\n\n/*\nForms\n=====\n*/\n\n/**\n1. Change the font styles in all browsers.\n2. Remove the margin in Firefox and Safari.\n*/\n\nbutton,\ninput,\noptgroup,\nselect,\ntextarea {\n font-family: inherit; /* 1 */\n font-size: 100%; /* 1 */\n line-height: 1.15; /* 1 */\n margin: 0; /* 2 */\n}\n\n/**\nRemove the inheritance of text transform in Edge and Firefox.\n1. Remove the inheritance of text transform in Firefox.\n*/\n\nbutton,\nselect { /* 1 */\n text-transform: none;\n}\n\n/**\nCorrect the inability to style clickable types in iOS and Safari.\n*/\n\nbutton,\n[type='button'],\n[type='reset'],\n[type='submit'] {\n -webkit-appearance: button;\n}\n\n/**\nRemove the inner border and padding in Firefox.\n*/\n\n::-moz-focus-inner {\n border-style: none;\n padding: 0;\n}\n\n/**\nRestore the focus styles unset by the previous rule.\n*/\n\n:-moz-focusring {\n outline: 1px dotted ButtonText;\n}\n\n/**\nRemove the additional ':invalid' styles in Firefox.\nSee: https://github.com/mozilla/gecko-dev/blob/2f9eacd9d3d995c937b4251a5557d95d494c9be1/layout/style/res/forms.css#L728-L737\n*/\n\n:-moz-ui-invalid {\n box-shadow: none;\n}\n\n/**\nRemove the padding so developers are not caught out when they zero out 'fieldset' elements in all browsers.\n*/\n\nlegend {\n padding: 0;\n}\n\n/**\nAdd the correct vertical alignment in Chrome and Firefox.\n*/\n\nprogress {\n vertical-align: baseline;\n}\n\n/**\nCorrect the cursor style of increment and decrement buttons in Safari.\n*/\n\n::-webkit-inner-spin-button,\n::-webkit-outer-spin-button {\n height: auto;\n}\n\n/**\n1. Correct the odd appearance in Chrome and Safari.\n2. Correct the outline style in Safari.\n*/\n\n[type='search'] {\n -webkit-appearance: textfield; /* 1 */\n outline-offset: -2px; /* 2 */\n}\n\n/**\nRemove the inner padding in Chrome and Safari on macOS.\n*/\n\n::-webkit-search-decoration {\n -webkit-appearance: none;\n}\n\n/**\n1. Correct the inability to style clickable types in iOS and Safari.\n2. Change font properties to 'inherit' in Safari.\n*/\n\n::-webkit-file-upload-button {\n -webkit-appearance: button; /* 1 */\n font: inherit; /* 2 */\n}\n\n/*\nInteractive\n===========\n*/\n\n/*\nAdd the correct display in Chrome and Safari.\n*/\n\nsummary {\n display: list-item;\n}\n"
},
"$:/themes/tiddlywiki/vanilla/settings/fontfamily": {
"title": "$:/themes/tiddlywiki/vanilla/settings/fontfamily",
"text": "system-ui, -apple-system, \"Segoe UI\", Roboto, Helvetica, Arial, sans-serif, \"Apple Color Emoji\", \"Segoe UI Emoji\""
},
"$:/themes/tiddlywiki/vanilla/settings/codefontfamily": {
"title": "$:/themes/tiddlywiki/vanilla/settings/codefontfamily",
"text": "\"SFMono-Regular\",Consolas,\"Liberation Mono\",Menlo,Courier,monospace"
},
"$:/themes/tiddlywiki/vanilla/settings/backgroundimageattachment": {
"title": "$:/themes/tiddlywiki/vanilla/settings/backgroundimageattachment",
"text": "fixed"
},
"$:/themes/tiddlywiki/vanilla/settings/backgroundimagesize": {
"title": "$:/themes/tiddlywiki/vanilla/settings/backgroundimagesize",
"text": "auto"
},
"$:/themes/tiddlywiki/vanilla/sticky": {
"title": "$:/themes/tiddlywiki/vanilla/sticky",
"text": "<$reveal state=\"$:/themes/tiddlywiki/vanilla/options/stickytitles\" type=\"match\" text=\"yes\">\n``\n.tc-tiddler-title {\n\tposition: -webkit-sticky;\n\tposition: -moz-sticky;\n\tposition: -o-sticky;\n\tposition: -ms-sticky;\n\tposition: sticky;\n\ttop: 0px;\n\tbackground: ``<<colour tiddler-background>>``;\n\tz-index: 500;\n}\n\n``\n<$list filter=\"[range[100]]\">\n`.tc-story-river .tc-tiddler-frame:nth-child(100n+`<$text text=<<currentTiddler>>/>`) {\nz-index: `<$text text={{{ [[200]subtract<currentTiddler>] }}}/>`;\n}\n`\n</$list>\n</$reveal>\n"
}
}
}
Die 1-Norm $$\|A\|_{1}$$ einer Matrix $$A$$ mit $$A \in \mathbb{C}^{m \times n}$$ ist eine induzierte Matrixnorm.
<$details summary="Beweis" tiddler="1-Norm einer Matrix Beweis">
{{1-Norm einer Matrix Beweis}}
</$details>
Sei $$A$$ eine $$(m \times n)$$-Matrix. Dann entspricht $$\|A\|_{1}$$ der maximalen Spaltensumme:
<$latex text="
\|A\|_{1} = \max _{1 \leq j \leq n} \|a_{j}\|_1.
" displayMode="true"></$latex>
Um dies zu zeigen, betrachten wir die Einheitskugel $$\{x \in \mathbb{C}^{m}| \sum_{j=1}^n |x_j| \leq 1 \}$$
unter der $$\|\cdot\|_1$$ Norm.
Für jeden Vektor $$Ax$$ im Bild dieser Menge gilt
<$latex text="
\|Ax\|_1 = \|\sum_{j=1}^n x_j a_j\|_1
\stackrel{Norm}{\text{Def. }\leq} \sum_{j=1}^n |x_j|\|a_j\|_1 \leq \max_{1\leq j \leq n}\|a_j\|_1.
" displayMode="true"></$latex>
Es gilt also
<$latex text="
\|\cdot\|_1 \leq \max_{1\leq j \leq n}\|a_j\|_1." displayMode="true"></$latex>
Wählt man $$x=e_{j}$$, wobei $$j$$ so gewählt wird, dass $$\|a_{j}\|_{1}$$ maximal ist,
d.h. $$j=\arg\max \|a_{j}\|_{1}$$, so gilt $$\|A\|_{1}=\max_{1 \leq j \leq n}\|a_{j}\|_{1}$$.
Sei $$D$$ eine Diagonalmatrix mit
$$D= \begin{pmatrix} d_{1}&& 0\\ &\ddots&\\ 0&&d_{n} \end{pmatrix}$$.
Dann gilt:
<$latex text="
\|D\|_{2} = \sup\limits_{\|x\|=1} \|Dx\|_{2} = \max_{1 \leq i \leq m} |d_{i}|.
" displayMode="true"></$latex>
<$details summary="Beweis" tiddler="2-Norm einer Diagonalmatrix Beweis">
{{2-Norm einer Diagonalmatrix Beweis}}
</$details>
Die Matrix $$D$$ skaliert die Einheitskugel entlang der Koordinatenachsen.
Betrachte dazu die Multiplikation von $$D$$
mit den kanonischen Einheitsvektoren $$e_i$$. Jeder Vektor $$e_i$$ wird um den Faktor $$d_i$$ gestreckt.
Dabei entspricht die maximale Streckung dem betragsmäßig größtem Diagonaleintrag von $$D$$.
<$details summary="Einleitung" tiddler="Bemerkung">
Sei $$\{e_1,...,e_n\}$$ die Standardbasis des $$\R^n$$. Wegen der Linearität von $$df(a)$$ gilt dann für
jeden Vektor $$h=(h_1,...,h_n)^t \in \R^n$$
<$latex text="
df(a)h = \sum\limits_{\nu = 1}^{n} (df(a)e_{\nu})h_{\nu}. \qquad (8.4)
" displayMode="true"></$latex>
Dann ergibt sich mit nachfolgender Definition
<$latex text="
df(a)h = f'(a)h. \qquad (8.5)
" displayMode="true"></$latex>
</$details>
Den Zeilenvektor
<$latex text="
f'(a):=(df(a)e_1,...,df(a)e_n) \qquad (8.6)
" displayMode="true"></$latex>
nennen wir //Ableitung von $$f$$ in $$a$$.//
Es seien $$f,g:I\to\R$$ in $$x_0$$ [[differenzierbar|Differenzierbarkeit: Analysis]] und $$\lambda\in\R$$. Dann sind <$latex text="f+g,\lambda f,fg" displayMode="true"></$latex>
sind in $$x_0$$ differenzierbar mit
<$latex text="\begin{aligned}
(f+g)'(x_0)&=f'(x_0)+g'(x_0)\\
(\lambda f)'(x_0)&=\lambda f'(x_0)\\
(fg)'(x_0)&=f'(x_0)g(x_0)+f(x_0)g'(x_0)\\
\end{aligned}" displayMode="true"></$latex>
is zusätzlich $$g(x_0)\neq 0$$, so gilt auch $$f/g$$ in $$x_0$$ differenzierbar mit
<$latex text="\left(\frac{f}{g}\right)'=\frac{f'(x_0)g(x_0)-f(x_0)g'(x_0)}{(g(x_0))^2}" displayMode="true"></$latex>
Außerdem gilt die [[Kettenregel]].
!! Beweis
Die Linearität folgt direkt aus der Definition der Ableitung.
Für das Produkt wählt man $$r(x)=r_1(x)r_2(x)+r_1(x)(g(x_0)+g'(x_0)(x-x_0)+r_2(x)(f(x_0)+f'(x_0)(x-x_0))$$ und bekommt sowohl die Differenzierbarkeit, als auch die Ableitung (durch Umstellen).
Für die Quotientenregel zeigt man zuerst den Fall $$\left(\frac{1}{g}\right)'$$ und benutzt dann die Produktregel.
<$latex text="\begin{aligned}
\left(\frac{1}{g}\right)'(x_0) &=\lim_{h\to 0} \frac{1}{h}\left(\frac{1}{g}(x)-\frac{1}{g}(x_0)\right)\\
&=\lim_{h\to 0} \frac{1}{h}\left(\frac{g(x_0)-g(x)}{g(x)g(x_0)}\right)\\
&=\lim_{h\to 0} \frac{1}{g(x)g(x_0)}\lim_{h\to 0}\left(\frac{g(x_0)-g(x)}{h}\right)\\
&=\frac{1}{g(x)^2}(-g'(x_0)).
\end{aligned}" displayMode="true"></$latex>
Eine [[Reihe|Reihen]] $$\sum_{k=1}^\infty a_k$$ heißt ''absolut konvergent'', falls
<$latex text="\sum_{k=1}^\infty|a_k|" displayMode="true"></$latex>
konvergent ist.
Die Zahl
<$latex text="
K_{abs} = | f'(x) | \qquad (5.5)
" displayMode="true"></$latex>
heißt //absolute Konditionszahl// des Problems $$x \mapsto f(x)$$. Für $$x \cdot f(x) \neq 0$$ ist
<$latex text="
K_{rel} = \left| \frac{f'(x) \cdot x}{f(x)} \right| \qquad (5.6)
" displayMode="true"></$latex>
die //relative Konditionszahl// des Problems.
<$details summary="Gut und schlecht konditioniert" tiddler="Gut und schlecht konditioniert">
{{Bemerkung: Gut und schlecht konditioniert}}
</$details>
<$details summary="Beispiel 1." tiddler="Beispiel 1.">
Beispiel ($$f(x) = x + a$$):$$\\$$
<$latex text="
f(x) = x + a, \quad f'(x) = 1 \qquad \Rightarrow K_{abs} = | f'(x) | = 1
" displayMode="true"></$latex>
Für die relative Konditionszahl ergibt sich
<$latex text="
K_{rel} = \left| \frac{f'(x) \cdot x}{f(x)} \right| = \left| \frac{x}{x+a} \right|.
" displayMode="true"></$latex>
$$K_{rel}$$ wird groß, falls $$| x+a | \ll |x|$$, also wenn $$x \approx -a$$.
Diesen schlecht konditionierten Fall bezeichnet man als Auslöschung: Für
$$a=-1$$, $$x = 1,000001$$ und $$\Delta x = 0,001$$ ist
<$latex text="
f(x) = x+a = 0,000001 \qquad \text{und} \qquad f(x+\Delta x) +a = 0,001001.
" displayMode="true"></$latex>
Der absolute Fehler ist also $$0,001$$, d.h. gleich dem Eingangsfehler. Der relative Fehler ist
<$latex text="
\frac{\Delta y}{y} = \frac{0,001}{0,000001} \approx 10^6 \frac{0,001}{1,000001},
" displayMode="true"></$latex>
wobei $$\frac{0,001}{1,000001}$$ um den Faktor $$10^6$$ verstärkt wird.
</$details>
<$details summary="Beispiel 2." tiddler="Beispiel 2.">
Beispiel ($$f(x) = ax$$): $$\\$$
Betrachte die Funktion $$f(x) = ax$$. Die absolute und relative Konditionszahl lautet
<$latex text="
\begin{aligned}
K_{abs} &=& |f'(x) | = |a|, \\
K_{rel} &=& \left| \frac{f'(x) \cdot x}{ax} \right| = 1.
\end{aligned}
" displayMode="true"></$latex>
In diesem Fall ist die absolute Konditionszahl schlecht, falls $$|a| \gg 1$$. Der relative Fehler bleibt fest.
</$details>
<$details summary="Beispiel 3." tiddler="Beispiel 3.">
Beispiel ($$f(x) = x^2 -2x + 1 = a_2 x^2 +a_1 x + a_0$$): $$\\$$
Nullstellenbestimmung: $$f(x) = x^2 -2x + 1 = a_2 x^2 +a_1 x + a_0$$.
Die Nullstellen sind abhängig von den Koeffizienten $$a_i$$.
Betrachte die Abhängigkeit von $$a_0$$: $$f(x) = x^2 -2x + 0,9999 = (x - 0,99)(x - 1,01)$$.
D.h. die Wurzeln des Polynoms ändern sich in der Größenordnung der Wurzel der Koeffizienten.
</$details>
Sei $$K$$ ein [[Körper]], $$a\in K$$ eine Nullstelle von $$p\in K[X]$$ und $$p\neq0$$.
Dann gibt es $$q\in K[X],\deg(q)=\deg(q)=\deg(p)-1$$ mit :
<$latex text="p=q(X-a)." displayMode="true"></$latex>
!! Beweis
<$latex text="\begin{aligned}p&=p-p(a)X^0\\
&=\sum_{j=0}^n p_j(X^j-a^j)\\
&=\sum_{j=0}^n p_j\left(\sum_{k=0}^{j-1}X^k a^{j-1-k}\right)(X-a)\\
&=\underbrace{\left(\sum_{k=0}^{n-1}\left(\sum_{j=k+1}^{n}p_j a^{j-1-k} \right)X^k\right)}_{\eqqcolon q}(X-a)
\end{aligned}" displayMode="true"></$latex>
Die hermitesch adjungierte Matrix $$A^{*}$$ (oder nur Adjungierte) einer Matrix
$$A \in \mathbb{C}^{m \times n}$$ ist die $$(n \times m)$$-Matrix, deren $$(i,j)$$-ter Eintrag
das komplex Konjugierte des $$(j,i)$$-ten Eintrags ist, d.h. $$A^*=\overline{A}^T$$.
Es gilt:
* Falls $$A=A^{*}$$ gilt, so heißt $$A$$ //hermitesch//.
* Für reelle $$A$$ ist $$A^{*}=A^T$$.
* Falls $$A=A^T$$ gilt, so heißt $$A$$ //symmetrisch//.
Die Abbildung $$\Phi:\,\R^{n}\rightarrow\R^{n}$$ mit
$$\Phi(x):=A\cdot x+b$$ ist genau dann eine Kontraktion wenn für die
induzierte Matrixnorm gilt $$\|A\|<1$$, denn
<$latex text="
\|\Phi(x)-\Phi(y)\|=\|A\cdot(x-y)\|\le\|A\|\cdot\|x-y\|.
" displayMode="true"></$latex>
Es seien $$r\in\N,D\subset\R^r$$. Weiter seien $$f,g:D\to\R$$ in $$a$$ [[stetige|Stetige reelle Funktionen (Über Grenzwerte)]] Funktionen und $$\lambda\in\R$$. Dann sind auch folgende Funktionen stetig in $$a$$:
<$latex text="\begin{aligned}
f+g\\
\lambda f\\
fg
\end{aligned}" displayMode="true"></$latex>
und falls zusätzlich $$g(a)\neq 0$$ gilt, gilt für $$D'=\{x\in D: g(x)\neq 0\}$$
<$latex text="fg^{-1}:D'\to\R" displayMode="true"></$latex>
ist in $$a$$ stetig.
Die Menge der in $$a$$ stetigen Funktionen auf $$D$$ ist also eine Algebra.
Die Aussagen folgen direkt aus der Definition von Stetigkeit zusammen mit [[Rechenregeln für Grenzwerte]].
Ein [[Körper]] $$K$$ heißt ''algebraisch abgeschlossen'', falls jedes nicht konstante Polynom $$p\in K[X]$$ eine Nullstelle in $$K$$ hat. Insbesondere zerfällt also in solchen Körpern jedes Polynom in lineare Faktoren.
!! Beispiel
$$\R$$ ist nicht algebraisch abgeschlossen, da $$X^2+1$$ keine reellen Nullstellen hat.
Folgender Satz ist nicht mit den mathematischen Tools dieser Wiki beweisbar, allerdings trotzdem wahr und wichtig für die Eigenwerttheorie:
#[[die komplexen Zahlen|Komplexe Zahlen]], $$\mathbb{C}$$, sind [[algebraisch abgeschlossen|Algebraisch abgeschlossene Körper]]
# Ist $$K$$ ein [[Körper]], dann existiert ein Oberkörper $$L\supset K$$, der algebraisch abgeschlossen ist. der kleinste solche Oberkörper heißt algebraischer Abschluss von $$K$$:
<$latex text="\overline{K}=\bigcap_{L\supset K, L\text{alg. abgeschlossen}}L." displayMode="true"></$latex>
Die ''algebraische Vielfachheit ''$$m(\chi_T,\lambda)$$ ist die Vielfachheit der Nullstelle $$\lambda$$ von $$\chi_T$$ mit $$m(\chi_T,\lambda)\coloneqq 0$$, falls $$\lambda$$ keine Nullstelle ist.
Es gilt:
<$latex text="g(T,\lambda)\leq m(\chi_T,\lambda)." displayMode="true"></$latex>
!! Beweis
Sei $$\lambda\in K$$ und $$\tilde{B}=\{b_1,\dots,b_r\}$$ eine [[Basis|Erzeugendensysteme und Basen]] von $$E(T,\lambda)$$. [[Ergänze|Basisergänzungsatz]] $$\tilde{B}$$ zu einer Basis $$B=\{b_1,\dots,b_r,b_{r+1},\dots,b_n\}$$ von $$V$$. Dann erhält man eine darstellende Matrix der Form
<$latex text="M_B(T)=\begin{pmatrix}\lambda I_r & *\\0&C\end{pmatrix}" displayMode="true"></$latex>
mit $$C\in M((n-r)\times(n-r),K)$$. Es gilt also
<$latex text="\begin{aligned}\chi_T(X)&= \det(X\cdot I_n-M_B(T))\\
&=\det\left(\begin{pmatrix}(X-\lambda) I_r & *\\0&X\cdot I_{n-r}-C\end{pmatrix}\right)\\
&=(X-\lambda)^r\det(X\cdot I_{n-r}-C)\end{aligned}." displayMode="true"></$latex>
Insbesondere gilt also $$\dim_K(E(T,\lambda))=r\leq m(\chi_T,\lambda)$$.
Berechnung von $$Q^*b$$:
<$latex text="
\begin{aligned}
for \ &k = 1 \to n \ do\\
&b_{k:m} = b_{k:m} - 2v_kv_k^* b_{k:m} \\
end \ &for
\end{aligned}
" displayMode="true"></$latex>
//(Referenz: [[Householder QR-Zerlegung]])//
Berechnung eines Produktes $$Qy$$:
<$latex text="
\begin{aligned}
for \ &k = 1 \to n \ do\\
&y_{k:m} = y_{k:m} - 2v_kv_k^* y_{k:m} \\
end \ &for
\end{aligned}
" displayMode="true"></$latex>
//(Referenz: [[Householder QR-Zerlegung]])//
<$latex text="
\begin{aligned}
A^{(0)} &= A\\
for \ & k=1,2,... \ do\\
&A^{(k-1)}=Q^{(k)}R^{(k)}\\
&A^{(k)} = R^{(k)}Q^{(k)}\\
&\bar{Q}^{(k)} = Q^{(1)}Q^{(2)}\cdots Q^{(k)}\\
end \ &for
\end{aligned}
" displayMode="true"></$latex>
Definiert man sich für beide Algorithmen [[Algorithmus: Simultane Iteration]] und [[Algorithmus 2. : QR-Verfahren ohne Shifts]] eine weitere Matrix
$$\bar{R}^{(k)}:=R^{(k)}R^{(k-1)}\cdots R^{(1)}$$, so gilt folgender Satz: [[Simultane Iteration und QR-Verfahren ohne Shifts]]
//(Referenz: [[Zusammenfassung: QR-Verfahren mit und ohne Shifts]])//
<$latex text="
\begin{aligned}
R &= A\\
\text{Setze} & \text{ Einträge von } R \text{ unter der Diagonalen auf 0.} \\
for \ &k = 1 \to m \ do\\
&for \ j = k+1 \to m \ do\\
&\qquad R_{j,j:m} = R_{j,j:m}-R_{k,j:m}\overline{R}_{k,j}/R_{k,k}\\
&end \ for \\
&R_{k,k:m} = R_{k,k:m}/\sqrt{R_{k,k}} \\
end \ &for
\end{aligned}
" displayMode="true"></$latex>
//(Referenz: [[Cholesky-Faktorisierung]])//
<$latex text="
\begin{aligned}
for \ &k = 1 \to n \ do\\
&x = A_{k:m,k} \qquad \text{(d.h. k-te Spalte)} \\
&v_k = sign(x_1) \|x\|_2 e_1 + x\\
&v_k = \dfrac{v_k}{\|v_k\|_2}\\
&A_{k:m,k:n} = A_{k:m,k:n} - 2v_k v_k^* A_{k:m,k:n}\\
end \ &for
\end{aligned}
" displayMode="true"></$latex>
//(Referenz: [[Householder QR-Zerlegung]])//
<$latex text="
\begin{aligned}
for \ &k = 1 \to m-2 \ do\\
&x = A_{k+1:m,k}\\
&v_k = sign(x_1) \|x\|_2 e_1 + x\\
&v_k = \dfrac{v_k}{\|v_k\|_2}\\
&A_{k+1:m,k:m} = A_{k+1:m,k:m} - 2v_k v_k^* A_{k+1:m,k:m} \\
&A_{1:m,k+1:m} = A_{1:m,k+1:m} - 2A_{1:m,k+1:m}v_k v_k^* \\
end \ &for
\end{aligned}
" displayMode="true"></$latex>
//(Referenz: [[Hessenbergverfahrens]])//
<$latex text="
\begin{aligned}
for \ &k = 1 \to n \ do\\
&v_j = a_j\\
&for \ k = 1 \to n \ do\\
&\qquad r_{ij} = q_i^*a_j\\
&\qquad v_j = v_j - r_{ij}q_i \\
&end \ for \\
&r_{jj} = \|v_j\|_2\\
&q_j = v_j/r_{jj}\\
end \ &for
\end{aligned}
" displayMode="true"></$latex>
//(Referenz: [[Klassisches Gram-Schmidt-Verfahren]])//
<$latex text="
\begin{aligned}
\text{Gegeben}:& 0<\mu_{-}<\mu_{+}<1,~\rho_{0}\in\R_{+},~x^{(0)}\in D(f) \\
for \ &k=0,1,\ldots\\
& \text{Minimiere } \|f(x^{(k)})+f'(x^{(k)})\cdot h^{(k)}\|_{2}^{2} \text{ mit } \|h^{(k)}\|\le\rho_{k} \\
&\mu_{k}:=\frac{\|f(x^{(k)}+h^{(k)})\|_{2}^{2}-\|f(x^{(k)})\|_{2}^{2}}{2\cdot f(x^{(k)})^{T}\cdot f'(x^{(k)})\cdot h^{(k)}} \\
&if \ \mu_{k}<\mu_{-} \ then\\
&\qquad x^{(k+1)}:=x^{(k)}\\
&\qquad \ \rho_{k+1}:=\frac{\rho_{k}}{2}\\
& else \\
& \qquad x^{(k+1)}:=x^{(k)}+h^{(k)} \\
& \qquad if \mu_{k}>\mu_{+} \ then \\
& \qquad \qquad \rho_{k+1}:=2\cdot\rho_{k} \\
& \qquad end \ if \\
& end \ if \\
end &\ for
\end{aligned}
" displayMode="true"></$latex>
//(Referenz: [[Nichtlineare Ausgleichsprobleme]])//
$$\begin{array}{ccc}
QR & = & A \\
y & = & Q^{*}b \\
x & = & R^{-1}y
\end{array}$$
//(Referenz: [[Beispiele für Stabilitäten]])//
<$latex text="
\begin{aligned}
U =& A, L = I, P = I \\
for \ &k = 1 \to m-1 \ do\\
&\text{Wähle } i \geq k \text{ mit maximalem} |u_{ik}| \\
&\text{Vertausche die Zeilen} u_{k,k:m} \text{ und}u_{i,k:m} \\
&\text{Vertausche die Zeilen} l_{k,1:k-1} \text{ und}l_{i,1:k-1} \\
&\text{Vertausche die Zeilen} p_{k,:} \text{ und} p_{i,:} \\
&for \ j = k+1 \to m \ do\\
&\qquad l_{j,k} = u_{j,k}/u_{k,k}\\
&\qquad u_{j,k:m} = u_{j,k:m} - l_{j,k}u_{k,k:m}\\
&end \ for \\
end \ &for
\end{aligned}
" displayMode="true"></$latex>
//(Referenz: [[LU-Faktorisierung (mit Pivotisierung)]])//
<$latex text="
\begin{aligned}
U =& A \\
L =& I \\
for \ &k = 1 \to n \ do\\
&for \ j = k+1 \to m \ do\\
&\qquad l_{j,k} = u_{j,k}/u_{k,k}b_{k:m} \\
&\qquad u_{j,k:m} = u_{j,k:m} - l_{j,k}u_{k,k:m} \\
&end \ for \\
end \ &for
\end{aligned}
" displayMode="true"></$latex>
//(Referenz: [[LU-Faktorisierung (ohne Pivotisierung)]])//
<$latex text="
\begin{aligned}
for \ &i = 1 \to n \ do\\
&v_i = a_i\\
end \ &for \\
for \ &i = 1 \to n \ do\\
&r_{ii} = \|v_i\|_2 \\
&q_i = v_i/r_{ii} \\
&for \ j = i+1 \to n \ do\\
&\qquad r_{ij} = q_i^*v_j\\
&\qquad v_j = v_j - r_{ij}q_i \\
&end \ for \\
end \ &for
\end{aligned}
" displayMode="true"></$latex>
//(Referenz: [[Modifiziertes Gram-Schmidt-Verfahren]])//
<$latex text="
\begin{aligned}
\text{Sei }& v^{(0)} \text{ ein vektor mit } \|v^{(0)}\|_2 = 1. \\
for \ &k = 1,2,... \ do\\
&w = A v^{(k-1)}\\
&v^{(k)} = w / \|w\| \qquad\qquad \text(Normalisierung) \\
&\lambda^{(k)} = (v^{(k)})^* A v^{(k)} \qquad \text( Rayleigh-vuotient)\\
end \ &for
\end{aligned}
" displayMode="true"></$latex>
//(Referenz: [[Einleitung: Potenziteration (Power Iteration)]])//
<$latex text="
\begin{aligned}
A^{(0)} &= A\\
for \ & k=1,2,... \ do\\
&\text{Wähle einen Shift } \mu^{(k)}\\
&Q^{(k)}R^{(k)} = A^{(k-1)} - \mu^{(k)}I\\
&A^{(k)} = R^{(k)}Q^{(k)} + \mu^{(k)}I \\
end \ &for
\end{aligned}
" displayMode="true"></$latex>
Statt die QR-Zerlegung von $$A$$ zu berechnen, wird nun eine QR-Zerlegung von
$$A - \mu^{(k)}I$$ berechnet.
//(Referenz: [[Zusammenfassung: QR-Verfahren mit und ohne Shifts]])//
<$latex text="
\begin{aligned}
A^{(0)} &= A\\
for \ & k=1,2,... \ do\\
&Q^{(k)}R^{(k)} = A^{(k-1)}\\
&A^{(k)} = R^{(k)}Q^{(k)} \\
end \ &for
\end{aligned}
" displayMode="true"></$latex>
Die Matrix $$A \in \mathbb{C}^{m \times m}$$ wird zunächst mittels QR-Faktorisierung
in $$Q$$ und $$R$$ zerlegt. Dann werden $$R$$ und $$Q$$ in umgekehrter Reihenfolge multipliziert.
//(Referenz: [[Zusammenfassung: QR-Verfahren mit und ohne Shifts]])//
<$latex text="
\begin{aligned}
\text{Sei }& v^{(0)} \text{ein Vektor mit} \|v^{(0)}\|_2 = 1. \\
\lambda^{(0)}& = \left(v^{(0)}\right)^*Av^{(0)} \qquad \text{(Rayleigh-Quotient)}\\
for \ &k = 1,2,... \ do\\
&\textbf{solve }(A-\lambda^{(k-1)}I)w = v^{(k-1)}\\
&v^{(k)} = w / \|w\| \qquad\qquad \text(Normalisierung)\\
&\lambda^{(k)} = (v^{(k)})^* A v^{(k)} \qquad \text( Rayleigh-Quotient) \\
end \ &for
\end{aligned}
" displayMode="true"></$latex>
//(Referenz: [[Einleitung: Rayleigh-Quotient-Iteration]])//
<$latex text="
\begin{aligned}
for \ &k = 1 \to n \ do \\
&x(i) = b(i) / U_{i,i}\\
&b(1:i-1) = b(1:i-1) - U_{1:(i-1),i} \cdot x(i) \\
end \ &for
\end{aligned}
" displayMode="true"></$latex>
//(Referenz: [[Einschub: Vorwärts- und Rückwärtssubstitution]])//
<$latex text="
\begin{aligned}
\text{wähle }&\bar{Q}^{(0)} = I\\
for \ & k=1,2,... \ do\\
&Z=A\bar{Q}^{(k-1)}\\
&Z=\bar{Q}^{(k)}R^{(k)}\\
&A^{(k)} = {(\bar{Q}^{(k)})}^TA\bar{Q}^{(k)}\\
end \ &for
\end{aligned}
" displayMode="true"></$latex>
//(Referenz: [[Zusammenfassung: QR-Verfahren mit und ohne Shifts]])//
<$latex text="
\begin{aligned}
for \ &k = 1 \to n \ do\\
&x(i) = b(i) / L_{i,i}\\
&b(i+1:n) = b(i+1:n) - L_{(i+1):n,i} \cdot x(i) \\
end \ &for
\end{aligned}
" displayMode="true"></$latex>
//(Referenz: [[Einschub: Vorwärts- und Rückwärtssubstitution]])//
<$latex text="\begin{aligned}\end{aligned}" displayMode="true"></$latex>
Eine Matrixnorm kann analog zu einer Vektornorm definiert werden. Sie muss die folgenden Bedingungen erfüllen:
#$$\|A\| \geq 0$$ und $$\|A\|=0 \Leftrightarrow A=0$$
#$$\|\alpha A\|=|\alpha|\|A\|$$
#$$\|A+B\| \leq \|A\|+\|B\|$$
''Gegeben'':
* W-Raum $$(\Omega,{\mathcal{A}},P)$$ [Detailsicht]
* Ereignisraum $$(\Omega',{\mathcal{A}}')$$ [Grobsicht: Modellausschnitt]
* Abbildung $$X:\Omega\to \Omega'$$ [Informationskompression]
''Fragen'':
* Wann ist $$X$$ mit den Ereignisräumen $$(\Omega,{\mathcal{A}})$$ und $$(\Omega',{\mathcal{A}}')$$ verträglich?
** $$\to$$ messbare Abbildungen, Zufallsvariablen
* Wie kann man auf $$(\Omega',{\mathcal{A}}')$$ in Abhängigkeit von $$X$$ und $$(\Omega,{\mathcal{A}},P)$$ sinnvoll ein W-Maß definieren?
** $$\to$$ Bildmaße, Verteilungen
Wie für Funktionen zeigt man, dass es höchstens eine solche Abbildung $$L$$ gibt.
Diese heißt //Differential// oder //Linearisierung von $$f$$ in $$a$$// und wird mit $$df(a)$$ bezeichnet.
Bzgl. Basen in $$X$$ und $$Y$$ kann $$df(a)$$ als Matrix dargestellt werden. Diese heißt
//Funktionalmatrix// oder auch //Ableitung von $$f$$ in $$a$$// (bzgl. der Basen) und wird mit $$f'(a)$$ bezeichnet.
Im Fall dim$$X=$$ dim$$Y$$ heißt die Determinante von $$f'(a)$$ //Funktionaldeterminante// von $$f$$ in $$a$$.
<$details summary="Beispiel" tiddler="Bemerkung">
Eine affine Abbildung $$f: \mathbb{K}^n \longrightarrow \mathbb{K}^m$$
<$latex text="
f(x) := Ax + b, \quad A \in \mathbb{K}^{m \times n}, b \in \mathbb{K}^m
" displayMode="true"></$latex>
ist in jedem Punkt differenzierbar. Ihre Ableitung ist die Matrix $$A$$ und das Differential die
durch $$h \mapsto Ah$$ gegebene lineare Abbildung $$\mathbb{K}^n \longrightarrow \mathbb{K}^m$$:
<$latex text="
f'(a) = A, \qquad df(a)h = Ah \quad \forall h \in \mathbb{K}^n.
" displayMode="true"></$latex>
</$details>
Für $$a,b\in\R,f,g:I\to\R$$ mit [[Stammfunktionen|Stammfunktion]] $$F,G$$. Dann gilt
<$latex text="\int a f(x)+ bg(x) dx = a \int f(x) dx+ b\int g(x) dx." displayMode="true"></$latex>
Ist $$g$$ [[differenzierbar|Differenzierbarkeit: Analysis]] und besitzt $$Fg'$$ eine Stammfunktion, so gilt:
<$latex text="\int f(x)g(x)dx = F(x)g(x)-\int F(x)g'(x)dx" displayMode="true"></$latex>
Ist $$g$$ differenzierbar, so gilt:
<$latex text="\int f(g(x))g'(x)dx=F(g(x))" displayMode="true"></$latex>
!! Beweis
Alle diese Aussagen folgen direkt aus [[Ableitungsreglen]].
* Beide Schätzer sind ''konsistent'' in dem Sinne, dass für $$n\to \infty$$ <$latex text="\textcolor{blue}{T_n\xrightarrow{P_\theta}\theta}\quad\text{und}\quad
\textcolor{blue}{\tilde{T}_n\xrightarrow{P_\theta}\theta}." displayMode="true"></$latex>
* $$T_n$$ ist erwartungstreu (engl. unbiased) im Sinne von <$latex text="\textbf{E}_\theta(T_n)=\frac{2}{n}\sum_{k=1}^n \textbf{E}_\theta(X_k)=\frac{2}{n}\sum_{k=1}^n \frac{\theta}{2}\textcolor{blue}{=\theta}\quad
\text{für alle }\theta\in\Theta." displayMode="true"></$latex>
* $$\tilde{T}_n$$ ist zwar ''verzerrt'' (engl. biased), aber fast erwartungstreu, denn es gilt: <$latex text="\textcolor{blue}{\textbf{E}_\theta(\tilde{T}_n)=
\frac{n}{n+1}\theta}." displayMode="true"></$latex>
* Wir berechnen Erwartungswert und Varianz des zweiten Schätzers.
* Wegen $$P_\theta(\tilde{T}_n\le x)=(x/\theta)^n$$ ($$\forall x\in[0,\theta]$$)\ hat $$P_\theta$$ die Verteilungsdichte
\[p_\theta(x)=\frac{d}{dx}(x/\theta)^n=n\cdot\theta^{-n}x^{n-1}.\]
* Damit ist <$latex text=" \begin{aligned}
\textbf{E}_\theta(\tilde{T}_n)&=&\int_0^\theta x p_\theta(x)dx=
n\theta^{-n}\int_0^\theta x^ndx =\frac{n}{n+1}\cdot \theta.\\
\textbf{V}_\theta(\tilde{T}_n)&=&\textbf{E}_\theta(\tilde{T}_n^2)-\textbf{E}_\theta(\tilde{T}_n)^2
=\int_0^\theta x^2 p_\theta(x)dx-\left(\frac{n\theta}{n+1}\right)^2\\
&=&\frac{n}{(n+1)^2(n+2)}\cdot \theta^2.
\end{aligned}" displayMode="true"></$latex>
Ausgehend vom W-Raum $$(\Omega,{\mathcal{A}},P)$$ sollte das noch zu definierende revidierte W-Maß $$P_A$$ in Abhängigkeit von der $$\textcolor{red}{\text{Information}}$$,
dass $$A$$ bereits eingetreten ist, folgende Eigenschaften haben:
# $$P_A(A)=1$$,\ denn $$A$$ ist jetzt ein $$\textcolor{blue}{\text{sicheres Ereignis}}$$!
# Die Neubewertung der Teilereignisse $$B$$ von $$A$$ ist proportional zur ursprünglichen Bewertung: <$latex text="" displayMode="true"></$latex>exists c_A>0\: \forall B\in{\mathcal{A}}, B\subseteq A:\: P_A(B)=c_AP(B).
!!Neubewertung von Ereignissen
Es sei $$(\Omega,{\mathcal{A}},P)$$ ein W-Raum und $$A\in{\mathcal{A}}$$ mit $$P(A)>0$$. Dann gibt es genau ein W-Maß $$P_A$$ auf
$$(\Omega,{\mathcal{A}})$$ mit den Eigenschaften 1 und 2, nämlich <$latex text="P_A(B):=\textcolor{blue}{\frac{P(A\cap B)}{P(A)}}
\quad\text{für B}\in{\mathcal{A}}." displayMode="true"></$latex>
''Eindeutigkeit'': Wegen $$1=P_A(A)=c_A P(A)$$ ist $$c_A=1/P(A)$$. Also gibt es höchstens ein solches W-Maß.
''Existenz'': Siehe [[Bedingte Wahrscheinlichkeit]]
* Zu vorgegebenem $$\alpha$$ wollen wir möglichst kleine Konfidenzbereiche $$C(x)$$.
* Möglichst kleine $$C(x)$$ direkt zu errechnen ist oft schwierig. Wir berechnen zuerst <$latex text="C_{\theta}:=\{x\in\mathcal{X}\mid\tau(\theta)\in C(x)\}\in\mathcal{A}" displayMode="true"></$latex>so, dass $$P_{\theta}(C_{\theta})\ge1-\alpha$$.{}
* Wenn $$C_{\theta}$$ für alle $$\theta\in\Theta$$ bestimmt ist ergibt sich auch $$C(x)$$. <$latex text=" C:=\{(x,\theta)\in\mathcal{X}\times\Theta\mid\tau(\theta)\in C(x)\}" displayMode="true"></$latex>
[img[CX.png]]
$$P_X$$ ist die Gleichverteilung auf $$\Omega'$$.
!! Beweis
* Jede $$n$$-elementige Teilmenge von $$[1:N]$$ hat $$n!$$ verschiedene $$X$$-Urbilder.
* Der Laplace-Raum $$\Omega_{\ne}$$ hat $$(N)_n$$ Elemente.
* Also ist $$\textcolor{blue}{P_X(A)=n!/(N)_n={N\choose n}^{-1}}$$, für alle $$A\in \Omega'$$. D.h. alle Ergebnisse in $$\Omega'$$ sind gleichwahrscheinlich.
iVBORw0KGgoAAAANSUhEUgAACeQAAAldCAYAAABbR7FmAAAACXBIWXMAAC4jAAAuIwF4pT92AACAAElEQVR42uzdf4zc9Z3f8bcnNgHOJXbgcj5QSOHSwClcaoXmLFsIYS7ZcyxzNQKfN4XkMOccjiAROkyhIcEOifhhn88Be3fmO6uyf9wfnJqoPy6RrlIVVKGWO6uioopbt3KljbB0G46kka8WJXLa7fe7u+OM1zP787M78515PKQ3qzvWu+uZ5Y9IT72+EQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACXx4PQBAAAAAAAAAAAAi7Aqv6P5TUzf0en/HwAAAAAAAAAAADBPl+X35/HLGK9xr0z/OwAAAAAAAAAAAGAOV+X3alwa4zXuB9OfAwAAAAAAAAAAALRxbX5vRvsYr3HF5/y6lwsAAAAAAAAAAAAudXN+P4q5Y7zG/Wj6zwAAAAAAAAAAAADTtuT305h/jNe4n+S32csHAAAAAAAAAAAAEb+X37ux8Bivce9Ofw0AAAAAAAAAAADoW3+U3y9i8TFe434x/bUAAAAAAAAAAACg73wjlh7izbyDXlYAAAAAAAAAAAD6xfvyG4n0MV7jRqa/BwAAAAAAAAAAAPSsK/P7XixfjNe4701/LwAAAAAAAAAAAOg5V+f3V7H8MV7j/mr6ewIAAAAAAAAAAEDP+Pv5/Y9YuRivcf99+nsDAAAAAAAAAABA6W3MbzzSRXYLDfvGp38GAAAAAAAAAAAAKK1P5/d3Mf947hf5/Zc5Pucv8vuj6c+d79ctfobf8XYAAAAAAAAAAABQRv8kv5/H/KO5d/P7vfy+F3MHeTH9ue8u4OsXP8vnvC0AAAAAAAAAAACUya/ldy7mH8v9JL/N0392vkFeTP+Znyzg+5yb/tkAAAAAAAAAAACgNO6K+T1W9kf53dT05xYS5BVunv4a83kc7l3eFgAAAAAAAAAAAMroizF7JPdmfr8+488sNMiL6a/x5hx/bq+3AwAAAAAAAAAAgDI7GK0DuR/kd1WLz19MkBfTX+sHbf7MAW8DAAAAAAAAAAAAvaAeFwdyr+R3WZvPXWyQF9Nf85UZn1/38gMAAAAAAAAAANAr3hdTIV0RyB3Jb9Usn7uUIC+mv/afTn/uv5n+3gAAAAAAAAAAANAzrsjvvnl83lKDvIb7p78nAAAAAAAAAAAA9KVUQR4AAAAAAAAAAAD0NUEeAAAAAAAAAAAAJCDIAwAAAAAAAAAAgAQEeQAAAAAAAAAAAJCAIA8AAAAAAAAAAAASEOQBAAAAAAAAAABAAoI8AAAAAAAAAAAASECQBwAAAAAAAAAAAAkI8gAAAAAAAAAAACABQR4AAAAAAAAAAAAkIMgDAAAAAAAAAACABAR5AAAAAAAAAAAAkIAgDwAAAAAAAAAAABIQ5AEAAAAAAAAAAEACgjwAAAAAAAAAAABIQJAHAAAAAAAAAAAACQjyAAAAAAAAAAAAIAFBHgAAAAAAAAAAACQgyAMAAAAAAAAAAIAEBHkAAAAAAAAAAACQgCAPAAAAAAAAAAAAEhDkAQAAAAAAAAAAQAKCPAAAAAAAAAAAAEhAkAcAAAAAAAAAAAAJCPIAAAAAAAAAAAAgAUEeAAAAAAAAAAAAJCDIAwAAAAAAAAAAgAQEeQAAAAAAAAAAAJCAIA8AAAAAAAAAAAASEOQBAAAAAAAAAABAAoI8AAAAAAAAAAAASECQBwAAAAAAAAAAAAkI8gAAAAAAAAAAACABQR4AAAAAAAAAAAAkIMgDAAAAAAAAAACABAR5AAAAAAAAAAAAkIAgDwAAAAAAAAAAABIQ5AEAAAAAAAAAAEACgjwAAAAAAAAAAABIQJAHAAAAAAAAAAAACQjyAAAAAAAAAAAAIAFBHgAAAAAAAAAAACQgyAMAAAAAAAAAAIAEBHkAAAAAAAAAAACQgCAPAAAAAAAAAAAAEhDkAQAAAAAAAAAAQAKCPAAAAAAAAAAAAEhAkAcAAAAAAAAAAAAJCPIAAAAAAAAAAAAgAUEeAAAAAAAAAAAAJCDIAwAAAAAAAAAAgAQEeQAAAAAAAAAAAJCAIA8AAAAAAAAAAAASEOQBAAAAAAAAAABAAoI8AAAAAAAAAAAASECQBwAAAAAAAAAAAAkI8gAAAAAAAAAAACABQR4AAAAAAAAAAAAkIMgDAAAAAAAAAACABAR5AAAAAAAAAAAAkIAgDwAAAAAAAAAAABIQ5AEAAAAAAAAAAEACgjwAAAAAAAAAAABIQJAHAAAAAAAAAAAACQjyAAAAAAAAAAAAIAFBHgAAAAAAAAAAACQgyAMAAAAAAAAAAIAEBHkAAAAAAAAAAACQgCAPAAAAAAAAAAAAEhDkAQAAAAAAAAAAQAKCPAAAAAAAAAAAAEhAkAcAAAAAAAAAAAAJCPIAAAAAAAAAAAAgAUEeAAAAAAAAAAAAJCDIAwAAAAAAAAAAgAQEeQAAAAAAAAAAAJCAIA8AAAAAAAAAAAASEOQBAAAAAAAAAABAAoI8AAAAAAAAAAAASECQBwAAAAAAAAAAAAkI8gAAAAAAAAAAACABQR4AAAAAAAAAAAAkIMgDAAAAAAAAAACABAR5AAAAAAAAAAAAkIAgDwAAAAAAAAAAABIQ5AEAAAAAAAAAAEACgjwAAAAAAAAAAABIQJAHAAAAAAAAAAAACQjyAAAAAAAAAAAAIAFBHgAAAAAAAAAAACQgyAMAAAAAAAAAAIAEBHkAAAAAAAAAAACQgCAPAAAAAAAAAAAAEhDkAQAAAAAAAAAAQAKCPAAAAAAAAAAAAEhAkAcAAAAAAAAAAAAJCPIAAAAAAAAAAAAgAUEeAAAAAAAAAAAAJCDIAwAAAAAAAAAAgAQEeQAAAAAAAAAAAJCAIA8AAAAAAAAAAAASEOQBAAAAAAAAAABAAoI8AAAAAAAAAAAASECQBwAAAAAAAAAAAAkI8gAAAAAAAAAAACABQR4AAAAAAAAAAAAkIMgDAAAAAAAAAACABAR5AAAAAAAAAAAAkIAgDwAAAAAAAAAAABIQ5AEAAAAAAAAAAEACgjwAAAAAAAAAAABIQJAHAAAAAAAAAAAACQjyAAAAAAAAAAAAIAFBHgAAAAAAAAAAACQgyAMAAAAAAAAAAIAEBHkAAAAAAAAAAACQgCAPAAAAAAAAAAAAEhDkAQAAAAAAAAAAQAKCPAAAAAAAAAAAAEhAkAcAAAAAAAAAAAAJCPIAAAAAAAAAAAAgAUEeAAAAAAAAAAAAJCDIAwAAAAAAAAAAgAQEeQAAAAAAAAAAAJCAIA8AAAAAAAAAAAASEOQBAAAAAAAAAABAAoI8AAAAAAAAAAAASECQBwAAAAAAAAAAAAkI8gAAAAAAAAAAACABQR4AAAAAAAAAAAAkIMgDAAAAAAAAAACABAR5AAAAAAAAAAAAkIAgDwAAAAAAAAAAABIQ5AEAAAAAAAAAAEACgjwAAAAAAAAAAABIQJAHAAAAAAAAAAAACQjyAAAAAAAAAAAAIAFBHgAAAAAAAAAAACQgyAMAAAAAAAAAAIAEBHkAAAAAAAAAAACQgCAPAAAAAAAAAAAAEhDkAQAAAAAAAAAAQAKCPAAAAAAAAAAAAEhAkAcAAAAAAAAAAAAJCPIAAAAAAAAAAAAgAUEeAAAAAAAAAAAAJCDIAwAAAAAAAAAAgAQEeQAAAAAAAAAAAJCAIA8AAAAAAAAAAAASEOQBAAAAAAAAAABAAoI8AAAAAAAAAAAASECQBwAAAAAAAAAAAAkI8gAAAAAAAAAAACABQR4AAAAAAAAAAAAkIMgDAAAAAAAAAACABAR5AAAAAAAAAAAAkIAgDwAAAAAAAAAAABIQ5AEAAAAAAAAAAEACgjwAAAAAAAAAAABIQJAHAAAAAAAAAAAALXwupiK7+d6PQ5AHAAAAAAAAAAAAlzgYswd2Cz1BHgAAAAAAAAAAAH3pYAjyAAAA6HVZfCtq8Z/zO+TFAAAAAAAAlsvBEOQBAADQq4ZiQ2TxH/ObaLqjXhgAAAAAAGA5HAxBHgAAAL0oi535vdMI8SrVSiPI+6EXBwAAAAAAWA4HQ5AHAABALxmNdVHL/9m0irfpwU0Tn3zok1P/dz2OeJEAAAAAAIDlcDAEeQAAAPSKegxGFmONEO8jX/3IxGMfe2ziax/+2tRCXj3+Nv9fwqu9UAAAAAAAwHI4GII8AAAAyi6La/L7V40Q78qjV078/u/8/kS1Up28Dd/Y0FjL2+vFAgAAAAAAlsvnYiqim+/9OAR5AAAAdJNa3B9ZjBfBXbGCt+UPtkwcWXtkIots8oowbzrGO2MdDwAAAAAA6CbfC0EeAAAA3WAoNkQ9vtNYxfvQNz808cSNT1wI8Yo7euXRybW8yc+pxT4vGgAAAAAA0E0EeQAAAHRePR6ILH5WhHZrjq+ZuHvb3RMvvf+li2K84m77/G2Ndbwx63gAAAAAAEC3EeQBAADQOcUqXhZ/2VjF+8TDn5h49upnLwnxinv8o49PPsJ2+nP3evEAAAAAAIBuI8gDAACgM5pW8YrH037l419pGeIVV61UJ2584sZGjHfGOh4AAAAAANCNBHkAAACsrKZVvNkeT9t8g1sHGzHeRNRinxcRAAAAAADoRoI8AAAAVk7TKt5sj6dtviNrj0ysf359I8gbs44HAAAAAAB0K0EeAAAAy69pFe/aA9fO+njambd1cOsv1/Gy2OvFBAAAAAAAupUgDwAAgOU1vYrXeDzt8TXH5x3jPfaxx5pjvFPW8QAAAAAAgG4myAMAAGB5NK3ifWrvpyaeX//8vEO84qqV6uSa3oUgrxb7vKgAAAAAAEA3E+QBAACQ3vQq3kIfT9t8991+X/M63ph1PAAAAAAAoNsJ8gAAAEhnehWvUq1MbLt724IeT9t8R688OnHl0Subg7y9XlwAAAAAAKDbCfIAAABIox6DkcX4x7/y8YlvfuibiwrxGjdwz0BzjHfKOh4AAAAAAFAGgjwAAACWZmoV75Wrn7160Y+nbb6vffhrE8XC3oUgrxb7vMgAAAAAAEAZCPIAAABYvHoMrjm25sd37bhr4qX3v7TkGK+4G5+4sXkdb8w6HgAAAAAAUBaCPAAAABZuehUvxeNpm2/vp/Y2x3jFPeLFBgAAAAAAykKQBwAAwMLUY/BXv/Wrf/vQJx9KFuIVN7R66P+tf359c4x3yjoeAAAAAABQJoI8AAAA5mcoNrxv6H1/vu3ubckeT9t8t33+tovX8Wqxz4sOAAAAAACUiSAPAACAudVj8BMPf+J/fWPDN5KHeMU9fd3T71aqleYgb8w6HgAAAAAAUDaCPAAAANobig3XPX3dX6R+PO3M+81Hf/PidbwsHvHiAwAAAAAAZSPIAwAAoKXLhi67b8ddO/5uOR5P23wPffKh/z0jxjtlHQ8AAAAAACgjQR4AAAAXG4oNmx/Y/O+X6/G0zXdszbFz659ff/E6Xi32eRMAAAAAAIAyEuQBAABwweYHNj/+2Mce+/lyh3iN+927f/dn1vEAAAAAAIBeIcgDAAAg7tx153V7/9HeH1Yr1YmVivEO/73DZyrVinU8AAAAAACgZwjyAAAA+tyDmx48dOiqQ+dXKsRr3C1fvuV/WscDAAAAAAB6iSAPAACgT+3/6P7NB649ML7SIV5xT1/39JszYjzreAAAAAAAQOkJ8gAAAPrMUAyt/epHvvovV/LxtM1XXVU9u/bI2lPW8QAAAAAAgF4jyAMAAOgjz17z7BeP/MqRdzsR4jXu87d9/l9YxwMAAAAAAHqRIA8AAKAPVKN6y5G1R051MsQrbmj10MnLjl32X63jAQAAAAAAvUiQBwAA0MNGY/Tyb1/x7aO1VbX/2+kYr7jNf7D5sHU8AAAAAACgVwnyAAAAelQtavcee/+xt7shxCvu6K8cLR5Ve3JGkDdmHQ8AAAAAAOgVgjwAAIAeUzyedmj10Pe7JcQrrrqqevaj//Sj/+ySdbws9nrHAAAAAACAXiHIAwAA6BHF42mzyA7WVtV+3k0xXnHPXf3cU5HFqRkx3hnreAAAAAAAQC8R5AEAAPSAetR3VCvV/9ZtId7kOl6lemrN8Jo9l6zj1WKfdw4AAAAAAOglgjwAAIASG4qhtVlkr3RjiNe4R37rkc+2WMcbs44HAAAAAAD0GkEeAABAmY3Guj2b9/ynbo3xXrzixe9GPe67ZB0vi73ePAAAAAAAoNcI8gAAAMqqFvdGFmeKwG37P97efY+qXVU9O7h1cFP+8520jgcAAAAAAPQDQR4AAEDZjMa6yGJk5upct0V5L3zwhWfyn+tLl6zj1eJ+byIAAAAAANCLBHkAAABlUottkcV4i0fAFqHb2Yf/4cP/thtivOHK8NhN+2+6oeU63mhc7o0EAAAAAAB6kSAPAACgDIpVvHpUI4vzLWO8LF7N//3G+Odx7eGrDh/pdJD35G88uTv/ab9oHQ8AAAAAAOgngjwAAIBuV4t7I4sz7VbxYiQeLUK85utklPfiFS9+d/LnuHQd70wMxVpvKAAAAAAA0KsEeQAAAN2qiNey+LM2i3gXreK1ukMfOPTCSsd4tVW1n27fuX1j/nM9aB0PAAAAAADoN4I8AACAblSPT0cWP1zIKl43RHnPffC5A9PreKdm/NxjMRqXe2MBAAAAAIBeJsgDAADoJqOxLupRjSzOL2YVr9Udvurw0ZWI8YYrw2Prn19/fYzEbut4AAAAAABAPxLkAQAAdIt67Igszix1Fa/5isfHDq0eOjm0ZuivlzvI++Ob/3hH23W84vG7AAAAAAAAPU6QBwAA0GlFrJbF0ZSreMXd8cAdNw9Xhk83grnljPJeuuKl709+31brePV4wJsMAAAAAAD0A0EeAABAJ2WxM7/TKVfxGst4zTFe446tOfYfUsd41VXVs8X3m17HOznj73E6RuNybzQAAAAAANAPBHkAAACdMBrropb/s/Ui3qJX8ZofU9suoDu+5vjrKYO8Fz74wjOT37seD7aICu/3ZgMAAAAAAP1CkAcAALDSarFtOVbxihvYPXBLtVI9NVdElyrKG64Mj920/6Yb2qzjjU0+jhcAAAAAAKBPCPIAAABWShbX5DeyHKt4C4nxGje0ZuivlxrkPf4PHr9n8vvX4suX/H3q8YA3HQAAAAAA6CeCPAAAgJVQjx2RxXjLEK8e5/KPT+V3/WJjvLkeU7scUd6LV7z43Qs/QxZvzvh7nY7RuNwbDwAAAAAA9BNBHgAAwHIajXWRxbH8zrddxcti02JDvEaMN7x6+M3FRHXVSvWtw1cdfnHBf3ZVdm7XwK5bJ3+Gkdjd4u+115sPAAAAAAD0G0EeAADAcqnGHZHFmZYhXi3O5h8PLGUVr7g7Hrjj5oU8pnZGjPc3e27fs6X4Ooc+cOiFhfzZ5z743IGmdbyTM/5+p+JgrPYLAAAAAAAA9BtBHgAAQGpZXJPfyCyreCeXuop3YRmvMnx6MTFe8ecGtw5e9DMcvurwkXmGfKdu2n/TDdPreF9oERvu80sAAAAAAAD0I0EeAABASvXYEVm80zLEq8e5/ONTS13FayzjLeExtX8zM8ZbSJT35G88uXt6Ge/6yTW8i/+ep63jAQAAAAAA/UqQBwAAkMJQrI16VNss4hUx3okYiVuXGuIliPHeKpb1Zvv6s0V5x9ccf/XC59biyy3W8e73ywAAAAAAAPQrQR4AAMBSZbEzv7G2q3i1eCLFKt5SY7zhyvDYroFd84oCD33g0Astvsb5P9zyh7fPso43PhkmAgAAAAAA9ClBHgAAwGKNxrrI4pW2q3hZvB4vx5YUIV6CZbxTA7sHblnI95sZ5f3JVX/y7Qv/vh77W6zj7fNLAQAAAAAA9DNBHgAAwGLUY8fkIlyrEK8WZ1Ou4i01xhtaPXRyoTHezCiveNRt8TNcWMerXbIIeDoOxmq/GAAAAAAAQD8T5AEAACzEUGyIenwnsjjfZhXvjRiJz6QK8ToZ4zXu8FWHj3z9w19/8ML/byQebfFo3gf8cgAAAAAAAP1OkAcAADBfWezM7502Id57qVfxuiHGu+Ss4wEAAAAAALQlyAMAAJjLaKyLLEZmXcWrx2eThm9LjPGqleqp5DGedTwAAAAAAIBZCfIAAABmU4v7I4uftQzx6nFuOVbxUizjDW4d3JQ8xrOOBwAAAAAAMCtBHgAAQCtZXJPfK20W8aZW8V6OLcmjt25dxrOOBwAAAAAAMCdBHgAAwEz1GIwsxtuu4o3EM8uxipdiGW/ZYjzreAAAAAAAAHMS5AEAADQMxYao5f87qQOreI07vub4G10X41nHAwAAAAAAmBdBHgAAQKGIy7L4WSdW8ZrvW7/2rUezyM53VYxnHQ8AAAAAAGBeBHkAAEB/K1bxsvjLTq7iLSXKW/YYzzoeAAAAAADAvAnyAACA/tUlq3iLjfJWJMazjgcAAAAAADBvgjwAAKD/zLWKV4vX8o+bOhHizTfKG64Mn96+c/vGZf85rOMBAAAAAADMmyAPAADoL7Ot4tXibP7vn42RuKHTMd5sUd6KLONZxwMAAAAAAFgwQR4AANAf5lrFq8eJeDm2dEuI1y7KW7EYzzoeAAAAAADAggnyAACA3jfbKl4W7+X/fv/kGlwXxnjNUd7w6uE3VyzGs44HAAAAAACwYII8AACgd821ipfF6926itfq1j+/fuWiwSy+ZB0PAAAAAABgYQR5AABAb5ptFa8e5/KPT5UlxOvIFbGidTwAAAAAAIAFEeQBAAC9Ze5VvDfKtIrXkavHPdbxAAAAAAAAFk6QBwAA9I56DEYW421CvPeiFk/kH68X3VnHAwAAAAAAWA6CPAAAoPymVvFeabuKV4vXYiTuXOmwbdfArltv2n/TDdbxAAAAAAAA+oMgDwAAKLe5VvFG4plOrOINbh3cNFwZHju+5viJgd0Dt1jHAwAAAAAA6H2CPAAAoJzmWsWrx4n846ZORG3FMl61Un0ri2yiuKHVQydLEeVZxwMAAAAAAFgSQR4AAFA+s63i1eNc/vFAJ1bxGjFesYzXiPFKFeVZxwMAAAAAAFgSQR4AAFAe81nFezm2dCpoK2K8IrybGeOVIsqzjgcAAAAAALBkgjwAAKAcZlvFy+K9qMUTnVrFK25w6+Cm5sfUli7Ks44HAAAAAACwZII8AACgu821ipfFq51cxZvtMbWlifKs4wEAAAAAACQhyAMAALrXbKt49TiXfzzQyVW8xjLeQmK8rozyrOMBAAAAAAAkIcgDAAC6z1yrePU4ESNxZzfEbEWQV1tVe7u0QZ51PAAAAAAAgGQEeQAAQHeZbRUvi/diJJ7p9CrezNtz+54tpX1krXU8AAAAAACAZAR5AABAdxiNdVHL/9luFa8Ix0bi1m4K8Zpv72/vvbO2qvbTuWK8aqX61vad2zd2xc9tHQ8AAAAAACApQR4AANB59dgRWYy1DPFqcbYbV/HaPb62CO5mW8brmhjPOh4AAAAAAEBygjwAAKBzfrmKd77NKt4b8XJs6fYQr8VS3ttd/Zha63gAAAAAAADLQpAHAAB0xtQq3njLEK8e5/KPT5VhFa/V7bl9z5bmx9d2XYw3tY7372a87qes4wEAAAAAACyNIA8AAFhZWVwT9fhOm0W8Isb7fv5xUxlDvOZ7eOPDnymivOHK8OldA7tu7aqfr9U6Xi32+eUEAAAAAABYGkEeAACwcmqxre0qXhZv5/elsod4M6O8rlvGs44HAAAAAACwbAR5AADA8huNdZHFsfzOt1nF+9f5beylGK9rzzoeAAAAAADAshHkAQAAy6seO/ppFa8EQd6JGe/BmHU8AAAAAACANAR5AADA8ihW8erxnTYhnlW8TtxI7G7xXjzilxUAAAAAACANQR4AAJBeLbZFFmfKuIq3/vn11/dskFeL12a8F+PW8QAAAAAAANIR5AEAAOkUq3hZHMvvfBlX8Qa3Dm4argyf/vr1X/9CDz6q9p5L3pda7PNLCwAAAAAAkI4gDwAASGNqFW+8jKt4TTHeWBbZRG1V7b0nb3zyvh4L8k7MeE/GrOMBAAAAAACkJcgDAACWpljFq0e1rKt4M2O8pjvfM0t5U+t4M9+bvX55AQAAAAAA0hLkAQAAi1eLeyOLM2VdxStu18CuW6uV6lszYrzeivIuXccbt44HAAAAAACQniAPAABYuGIVL4uRNiFeKVbxihvYPXDLcGX4dJsYb6InHl/bah2vFvv8EgMAAAAAAKQnyAMAABamFtsmF9ZahXi1OBsj8WgZQrViGW9o9dDJ2WK85iivtEt5WbxxyTreaFzuFxkAAAAAACA9QR4AADA/xSpePaqRxfk2y3ivlmEVbx6Pqe2dKK8e91nHAwAAAAAAWDmCPAAAYG61uDeyOFP2VbziBrcOblpojNe4Y2uOvVaydbzXZ7xf70yGlQAAAAAAACwLQR4AANDeUKyNLP6szSJeqVbxGjHecGV4bDExXvF424HdA7eUJsYbiS9YxwMAAAAAAFhZgjwAAKC1enw6svhhL6zi9V2M13odbzxG43K/2AAAAAAAAMtHkAcAAFyseKRpPaqRxfleWMVb6mNqSxnjjcRu63gAAAAAAAArT5AHAAD8Uj12RBZnemUVb6nLeNVK9VTpYrypdbxTl6zjFY8fBgAAAAAAYFkJ8gAAgJiMtbI42kureMVt37l9Y189prbdOl4Wj/olBwAAAAAAWH6CPAAA6HdZ7MzvdC+t4hW3a2DXrUVU11cx3tQ63uvW8QAAAAAAADpDkAcAAP1qNNZFLf9n60W80q7iLfUxtaWO8UbiCy2iyn1+2QEAAAAAAFaGIA8AAPpRLbb14ipeYxmvWqm+1XcxXnH1ODHj/TxjHQ8AAAAAAGDlCPIAAKCfZHFNfiO9uIonxot7rOMBAAAAAAB0liAPAAD6RT12RBbjLUO8epzLPz6V3/VlDdK279y+cbExXvHnSh3jtV7HG7eOBwAAAAAAsLIEeQAA0OtGY11kcSy/821X8bLYVOYYrYjxioW7vlzGa7eOV4/9fvkBAAAAAABWliAPAAB6WTXuiCzOtAzxanE2/3igzKt4xQ1uHdzUt4+pbdxUVNn8/p6xjgcAAAAAALDyBHkAANCLsrgmv5FZVvFOln0VrxHjDVeGx/o6xptaxztvHQ8AAAAAAKDzBHkAANBr6rEjsninZYhXj3P5x6fKvoonxrsoyDsx430et44HAAAAAADQGYI8AADoFUWEVY9qm0W8iclwayRu7YUIbfvO7Rv7/jG1U4+q3dniUcT7/McAAAAAAADQGYI8AADoBVNh1ljbVbxaPNELq3iNGG949fCbi4nxqpXqqZ6J8aaCvFdnvN/vxGis8x8EAAAAAABAZwjyAACgzIr4KotX2q7iZfF6vBxbeiVA2zWw61bLeNM3Erut4wEAAAAAAHQXQR4AAJRVPXZEFuMtQ7xanO2lVTwxXst1vNdnvO+n42Cs9h8GAAAAAABA5wjyAACgbIZibWRxLL/zbVbx3oiR+EwvxWeDWwc3ifGarh73tHg08QP+4wAAAAAAAOgsQR4AAJRJFjvzO9MmxHuv11bxGst4w5XhMTGedTwAAAAAAIBuJ8gDAIAymFrFG5l1Fa8en+218Gz7zu0bi6hOjGcdDwAAAAAAoAwEeQAA0O2yuK3tKl49zvXiKl7jMbWW8azjAQAAAAAAlIkgDwAAutVoXB5ZPDfrKt7LsaUXozMxnnU8AAAAAACAMhLkAQBAN6rHpyOLsbareCPxTC+u4jUHebVVtbcXGuMVEV/xmNtefV2s4wEAAAAAAHQ3QR4AAHSTqVW8Y/n9n35bxZt5e27fs2UhK3nVSvVUEfL17GtiHQ8AAAAAAKDrCfIAAKBbVOOOycWzPl3Fa3V7f3vvnbVVtZ/29WNqreMBAAAAAACUhiAPAAA6rVjFq0c1sjjf76t47R5fW61U3+rrGM86HgAAAAAAQCkI8gAAoJOs4i1kKe/tvozxrOMBAAAAAACUhiAPAAA6Ya5VvFq8ln/c1O8hXvPtuX3PlubH1/ZNjGcdDwAAAAAAoDQEeQAAsNJmW8Wrxdmox7MxEjeI8C69hzc+/JkiyuubGM86HgAAAAAAQKkI8gAAYKWMxrpZV/HqcSJeji3Cu7mjvL6J8azjAQAAAAAAlIogDwAAVkIttkUW4y1DvCzei3rszz9eL7hz1vEAAAAAAADKS5AHAADLqVjFq+X/bB3iTUwGV1bxnHU8AAAAAACAniDIAwCA5TLbKl49zuUfnxKeOet4AAAAAAAAvUOQBwAAqc29ivdGv63irX9+vcfxWscDAAAAAADoeYI8AABIabZVvCzey//9E/nHvorTBrcObhpaPXTykd965LNiO+t4AAAAAAAAvUyQBwAAKcy1ileL12Ik7uy3sKyI8aqV6ltZZBPVVf+fvfuPkbO+8wT/accebOHj8Cw6mFGGOcM4du4STWtAMeedsxovIJv13nmHQXbEasUPz5IZMlkCZuibyLGxPTSJadruH67neYqzNRmhEVp0YrVoOB1zXsl/IFnIIiuzsnQ+rU+wCkGI8/pw5I46o7oqO06a6q7q7uofVc9Tr5f07mLG3Z3up6ue+uet97d0SSnPOh4AAAAAAECRKeQBAMB8zbSKV44D3baKV8vDDzx8V2lZ6Se1Mt71KOVZxwMAAAAAACgyhTwAAGjVTKt4WZyuPm7sxlLZY5sf23Rs2bELk8t4SnnW8QAAAAAAAIpOIQ8AAFrRbBUvi8vVx33duIp3/ZjapCf5ZLoynlKedTwAAAAAAIAiU8gDAIC5mM0q3vHY1K2Fsqd6n7p/pjKeUp51PAAAAAAAgKJSyAMAgNnKYlfDVbw0xiOJ57t1Fa+W3d/YvaW0rPThbMp4SnnW8QAAAAAAAIpIIQ8AAGYyFrdFGn/bcBUvjZPdvIp3Pa+sfiWbSxnvekZXjL5rHc86HgAAAAAAQBEo5AEAQDPNVvGyuFx93NfNq3j1Gbpx6EdzKeONLR/74IGdD3zNOp51PAAAAAAAgCJQyAMAgOnMtIqXxekoxxYlvKk5surIa8p41vEAAAAAAAC6kUIeAADUa7aKl8Z4lOOAVbz5lfKU8azjAQAAAAAAFJFCHgAAXHcibo6k+rHRKl6tOFWOu5TI5lfKG10x+q4ynnU8AAAAAACAIlLIAwCAmiy2RxoXpi3iJXHJKt7ClPJGV4yeXL9n/VrXxjoeAAAAAABAESnkAQDQ3X69ijfRYBXvTByPTcpj8y/ljawYOaWMZx0PAAAAAACgyBTyAADoXtdW8T5uUMSrFfT2WcVbmPzgN39wQBlvyjreO3XPuXPW8QAAAAAAAPJNIQ8AgO6Txi2Rxb9pUMSr5cdXy3pKY7J463jbp6wyJvEtL04AAAAAAIB8U8gDAKC7JLG1ySreeGTxolU8sY4HAAAAAABAKxTyAADoDifi5khjZMoq2a9zJsqxRVlMlmgdr2IdDwAAAAAAoHgU8gAAKL5rBSireNIp63jv1j0HL1jHAwAAAAAAKAaFPAAAiqu2ipfFv2lQxLOK1yRP9T51/yurX8nWvLRGUXFh1/G2TbPS+G0vVgAAAAAAgGJQyAMAoJiS2BppfGQVr7UyXtKTfJZGWjm66ugbSnkLmCRO1T0XP7aOBwAAAAAAUBwKeQAAFEttFS+NkWlWyKzizbGMdz1Dq4ZeV8pbpHW8JL7lRQsAAAAAAFAcCnkAABTHtVW8jxuu4iXxvFW8uZXxlPIWdR3vgnU8AAAAAACAYlHIAwAg/2qreFmUmqzivRvHY5NSWGtlPKW8BUgaO6Z5Xu724gUAAAAAACgWhTwAAPItiT+OND6yitd6ntj0xOaZynhKefMu5L1T99z82DoeAAAAAABA8SjkAQCQT7VVvDTKDYp4VvFmmd3f2L2ltKz04WzKeEp5LSaL7VOen0l8y4sYAAAAAACgeBTyAADInyS2Xl0Ys4q36MfUNsrhmw4PuoazXsc7OWUd70Ss9EIGAAAAAAAoHoU8AADyo7aKl0Up0piwite+Mt7Y8rEPHtj5wNdcx1mt4z005flqHQ8AAAAAAKCwFPIAAMiHJP440vjIKp4yXs7X8T69WiwFAAAAAACgkBTyAADobGOxOtL4mwZFPKt4S1jGG10xeloZb05lvB3W8QAAAAAAALqLQh4AAJ0ri/sijbNW8TqijHem79G+Da7jnAp579Q9Zz+OE7HSCxsAAAAAAKC4FPIAAOg8tSM9syhNWReziteuMt7J9XvWr3Ud55AstlnHAwAAAAAA6D4KeQAAdJYstkcaH01bxEviklW8uWfXvbs2Jj3JJ62U8UZWjJxSxmupkHd6yjpe7fhlAAAAAAAACk0hDwCAzlArK6Ux1GQV72Rk0avstXTLeMp481rHq3/+Pu1FDgAAAAAAUHwKeQAAtF8SWyONsw1X8crxtKLX3PPEpic2z+OY2jPKeC0X8t6yjgcAAAAAANCdFPIAAGifE3FzJNWP0y/iWcWb5zJeaVnpJy2W8U72Ptm7znVsIWnsmLLymMS3vNgBAAAAAAC6g0IeAADtcW0V77xVvIXPrnt3bUx6kk9aLeNZxptXIe9k3fP5I+t4AAAAAAAA3UMhDwCApVUrJ2VRsoq3eMfUHlt27HwrZbyRFSOnlPHmkXLcbx0PAAAAAACguynkAQCwdMpxT6RxbtoiXhaXq4/fq+Z25a7Wy3hJT/JZq2U8x9Qu+Drex9bxAAAAAAAAuotCHgAAi+9E3BxJHI40rjRcxUtjo1LX/I6pPbbs2AVlvLaV8XZMUzLd48UPAAAAAADQXRTyAABYXKXoizQ+mraIl8Sl6uM+q3jzL+MlPcknrZTxRleMnnRM7YIU8t6ue35/ZB0PAAAAAACg+yjkAQCwOGplpGureBMNVvE+sIq3MGW80rLSh8p4bUwW26c8z63jAQAAAAAAdCWFPAAAFl457ok0zk9bxMvicvXxe1bx5p8nNj2xudVjakdXjJ7pe7Rvg+u4AEniVN3z/GPreAAAAAAAAN1JIQ8AgIVTKyGlMdBwFS+L01GOu5S45p+HH3j4rlaX8UZWjJyyjLdAKcf90zzf97sZAAAAAAAAdCeFPAAAFkYW90UaFxqu4iXxvFW8hVvGU8brkKTxdt3z/WKciJvdEAAAAAAAALqTQh4AAPNzIlZGGkMNV/HSeDeOxyblrYVbxkt6kk9aPKb2pDLegpbxdkzzvB9wUwAAAAAAAOheCnkAALSuFH2Rxvlpi3hJXLKK1znH1CrjLUoh713reAAAAAAAAEymkAcAwNztj+WRVj82XsU7E+W4X2lr4bLr3l0bjy07dqGVMt6x5cd+3Pdo3wbXcQGTxUPTPO/3uzkAAAAAAAB0N4U8AADmJomtDVfx0hi3itdZy3gjK0ZOKeNZxwMAAAAAAGBpKOQBADA7tVW8LEpNV/Gy2KastfDLePMp4/U+2bvOdbSOBwAAAAAAwNJQyAMAYGZJ3B1pvD9tES+Ly1bxFi9DNw79yDG11vEAAAAAAADIB4U8AAAaOxErI42Bpqt4x2OTktbiZf2e9WtHV4yenEsZr/b5lvGs4wEAAAAAALD0FPIAAJheFvdFGhcaruKV44BVvKUr5Q3fMPzObI+prX2+62YdDwAAAAAAgKWnkAcAwBddW8UbqeaKVbzOyZqX1tw+UynPMbXW8QAAAAAAAGgvhTwAAH6tFH2RxnmreJ1bymt0fG1tGc8xtdbxAAAAAAAAaC+FPAAArq3iZVGKNCas4uXv+NrRFaPvOqbWOh4AAAAAAADtp5AHANDtrOLlupQ3umL0tGNqreMBAAAAAADQGRTyAAC61UyreEmcqj5uVMbq3FLe4ZsOD1rGs44HAAAAAABA51DIAwDoRs1W8ZK4FFm8GOVQ9BKxjgcAAAAAAMAcKOQBAHSTWomo2SpeFqfjeGxSwhKxjgcAAAAAAMDcKeQBAHSLJLZGGh9PW8RLYzyy2FN9vF0JS8Q6HgAAAAAAAK1RyAMAKLpaeSipfpy+iFe5WjiyiidiHQ8AAAAAAIB5U8gDACiyZqt4WVyuPn5P8Wrp8lTvU/e/fNPLR1wL63gAAAAAAAAUk0IeAEARzbyKd8Yq3tKX8ZKe5LM00opSnnU8AAAAAAAAikkhDwCgaJqt4qUxXv3356uPtytdLV0e2/zYpqQn+aRWxrsepTzreAAAAAAAABSPQh4AQFHMtIqXxKkoxxZlq6XN7m/s3lJaVvpwchnveg7fdHjQNbKOBwAAAAAAQHEo5AEAFMFMq3jlOGAVr73H1DaKpTzreAAAAAAAABSHQh4AQJ7NtIqXxenq40Ylq6XPE5ue2Fx/TK1SnnU8AAAAAAAAik0hDwAgr5qt4mVxufq4zype+8p4x5YduzCbMp7ja63jAQAAAAAAUBwKeQAAeTObVbzjsUm5qj3pe7Rvw2yX8epz6NZDT7uG1vEAAAAAAADIL4U8AIA8yWJXw1W8NMYjieet4rU/L9z2wp+mkU7MpYw3umL0ZO+TvetcP+t4AAAAAAAA5JdCHgBAHozFbZHG3zZcxUvjpFW8zkr/nf0705708mzKeCMrRk6t37N+retmHQ8AAAAAAIB8U8gDAOh0zVbxsrhcfdxnFa8z8/3f+v6fzLSUp4xnHQ8AAAAAAIDiUMgDAOhUM63iZXE6yrFFmarDj6+99YU/b1TKG10x+m7fo30bXCfreAAAAAAAABSDQh4AQCdqtoqXxniU44BVvBwdX3tH/yNJTzJeV8Y7aRnPOh4AAAAAAADFopAHANBJaiWgpPqx0SperThUjruUqPJdyqsdU9v7ZO8618U6HgAAAAAAAMWikAcA0ClK0RdpXJi2iJfEJat4BSjl3dm/c/iG4beV8azjAQAAAAAAUEwKeQAA7TYWqyONkWomGqzinYnjsUl5SsQ6HgAAAAAAAJ1NIQ8AoJ3KcU+kca5BEa9W0NtnFU9k0dbx3ql7zX1qHQ8AAAAAAID5UMgDAGiH2ipeFqUmq3g/rv77dqUpkUVbx9s+zetvwM0JAAAAAACA+VDIAwBYaklsjTQ+alDEG48sXrSKJ7Lk63gXreMBAAAAAAAwXwp5AABL5USsjDT2N1nFOxPl2KIs1Vl5qvep+x/Y+cDXXIvCrePVv/6G3KQAAAAAAACYL4U8AIClUI57Io1zVvHylSc2PbE56Uk+O7bs2IUHdzzY65oUZh3v3brX4KfW8QAAAAAAAFgICnkAAIuptoqXRckqXj7LeKVlpQ/TSCu1VP/73K57d210bXK/jrdtmtfjgJsVAAAAAAAAC0EhDwBgsZSiL9I4axUvn8fU1pbxrpfxJpXyPnR8bc6TxKm61+JF63gAAAAAAAAsFIU8AICFViv3pDFiFS+f2f2N3VumK+NNXsp7bPNjm1yrwqzjDblpAQAAAAAAsFAU8gAAFlIW90UaH1vFy2dqR9KWlpV+0qiMdz3Hlh278OCOB3tds9yv431qHQ8AAAAAAICFpJAHALAQTsTKSGOgmitW8XJ9TO0nM5XxJh9fWyvwuXY5SRo7pnldDrh5AQAAAAAAsJAU8gAA5qsUfZHGWat4uS/jfTbbMt6kUt5PlPJyU8h7p+61edE6HgAAAAAAADP5Zlwr2c02Pw2FPACA1tTKPGmMVDNhFS+/eWzzY5vmsow3OSMrRk6t37N+revY4cli+5TXZxYH3cQAAAAAAACYyf5oXrCbaxTyAACmk8TWSOPjBkW8ichi0Cpe52f3N3ZvqR09q4xX+HW8k3Wv0U+t4wEAAAAAADAb+0MhDwBg8dRKPFmUmqzinbOKV+xjamsZXTF6pu/Rvg2uYy7W8R6a5vU64GYGAAAAAADAbOwPhTwAgMWRxB9HGh9Zxct/ntj0xOZ5lPHefWDnA19zHXO7jnfROh4AAAAAAACztT8U8gAAFtaJWBlpjDQo4lnFy2EZr9VjakdXjJ50TG2uyng7pqzjZXHQTQ0AAAAAAIDZ2h8KeQAACyeL+yKNs1bxHFOrjJfLQt47da/ZT63jAQAAAAAAMBf7QyEPAGD+aqWdLEpT1rWs4injST6SxbZpXr9Dbm4AAAAAAADMxf5QyAMAmJ8stkcaH1nFU8arZWTFyCllvFwW8k7XvXYvVnOLGxwAAAAAAABz8c24VqKbbX4aCnkAANeMxeqrC1pW8ZTxlPGKsI73xddvFgfd5AAAAAAAAFhs/y4U8gAAIpLYGmmctYqnjDfpmNozyni5LeS9Vfca/vTqMdQAAAAAAACwyBTyAIDuVivpJNWP0xfxrOLlOLvu3bUx6Uk+abGMd7L3yd51rmMOk8aOaVYuh9zsAAAAAAAAWAoKeQBA97q2infeKl5hl/FaLuNZxst1Ie9k3Wv5YjW3uOEBAAAAAACwFBTyAIDuMxarI4tSk1W8D6zidecxtSMrRk4p4+U45bh/yjpeFgfd9AAAAAAAAFgqCnkAQHcpxz1Xj6FtVMZLolT9HIWsLi3jOaa2gOt4tWOpAQAAAAAAYIko5AEA3aFWyknicKRxpUEZ78eRxXalJmU8yW0Zb8c0r+v9bn4AAAAAAAAsJYU8AKD4StEXaXzUoIg3EVkMVh9vV2rqzjLe6IrRk46pLUQh7+0p63hp3OIGCAAAAAAAwFJSyAMAimssVv9yFW+iQRnvgyjH/cpMyniuY85TW7esf51ncdBNEAAAAAAAgKWmkAcAFFM57ok0zjco4tXKOi9axev6Mt6Zvkf7NriOBUgSp+pe459fPaYaAAAAAAAAlphCHgBQLLVVvDQGmqzi/Tiy2KbElP/s/sbuLa2W8UZWjJyyjFeQ1FYu61/vtWVMAAAAAAAAaAOFPACgOLK4L9K40KCIVyvsfM8qXjHyxKYnNh9bduyCMp5UX9Nv173Wr8RY3OaGCAAAAAAAQDso5AEA+XciVkYaQ01W8d6NcmxRXnJM7eiK0ZPKeIUq4+2wjgcAAAAAAEAnUcgDAPKtFH2Rxvlpi3hJXKrmeat4yniW8QpbyHu37nV/MU7EzW6MAAAAAAAAtItCHgCQT/tjeaTVj41X8c5EOe5XWlLGs4xX0GTx0DSv+/1ujgAAAAAAALSTQh4AkD9JbG24ipfGuFW84qXv0b4NSU/ySatlvN4ne9e5jtbxAAAAAAAAYLEp5AEA+VFbxcui1HQVL4ttykrFzAu3vvDnaaQTcynjHV119A3LeNbxAAAAAAAAYKko5AEA+ZDE3ZHG+9MW8bK4bBWvO3Lo1kNPz7aUd3TV0TfXvLTGc8I6HgAAAAAAACwZhTwAoLOdiJWRxkDTVbzjsUlJSSnPMbXW8QAAAAAAAKDdFPIAgM6VxX2RxoWGq3jlOGAVz/G19RlZMXLKMbXW8QAAAAAAAKAdFPIAgM5zbRVvpJorVvFkLkt5tWU8ZTzreAAAAAAAANAuCnkAQGcpRV+kcd4qnsy1lDe0auj1NS+t8dywjgcAAAAAAABto5AHAHSG2ipeFqVIY8Iqnsz1+Nojq468poxnHQ8AAAAAAADaTSEPAGg/q3giYh0PAAAAAACAAlDIAwDaZ6ZVvCROVR83KiOJWMezjgcAAAAAAEAeKOQBAO3RbBUviUuRxYtRjrXKSCJiHQ8AAAAAAIC8UMgDAJbWTKt4WZyO47FJCUlErOMBAAAAAACQNwp5AMDSabaKl8Z4ZLGn+ni7ElLx81TvU/c/sPOBr7kWYh0PAAAAAACAIlHIAwAW30yreLXCjVW8rirjJT3JZ2PLxz5QyhPreAAAAAAAABSJQh4AsLiareJlcbn6+D3Fo+4r46WRVmpRyhPreAAAAAAAABSJQh4AsDhmXsU7YxWvu8t4SnliHQ8AAAAAAICiUcgDABZeOe6JNM42KOKNRxLPVx9vVzpSxlPKE+t4AAAAAAAAFIlCHgCwcGqreGkMNFzFS+JUlGOLspEynlKeWMcDAAAAAACgiBTyAICFMdMqXjkOWMXrvjz7lWd3JD3JJzOV8ZTyxDoeAAAAAAAARaCQBwDMz0yreFmcrj5uVDLqvjyz4ZntpZ7SpdmW8SaX8voe7dvgGlrHs44HAAAAAABA3ijkAQCta7aKl8Xl6uM+q3jdm1337tpYWlb6cK6FvKFVQ6+veWmN5411POt4AAAAAAAA5I5CHgAwd7NZxTsem5SLpFbKO7bs2AVlPLGOBwAAAAAAQDdQyAMA5qbZKl4a45HE81bxpJWlPGU8sY4HAAAAAABA3inkAQCzM9MqXhonreJJozz8wMN3NVvKG141/JYynnU863gAAAAAAADknUIeADCzZqt4WVyuPu6ziietLuVZxhPreAAAAAAAABSFQh4A0NhMq3hZnI5ybFEmkrks5ZWWlc4p44l1PAAAAAAAAIpIIQ8AmF6zVbw0xqv/fsAqnrSSB3c82Hts2bHzynhiHQ8AAAAAAICiUcgDAL5ofyy/ukzVaBWvVpwpx11KRDKf9D3at0EZT6zjAQAAAAAAUDQKeQDAryVxd6Tx3rRFvCQuWcUTEet4AAAAAAAA0JhCHgAQMRarI42RJqt4Z+J4bFIeEhHreAAAAAAAANCYQh4AdLty3BNpnGtQxKsV9PZZxRORRVrHe6funvOpdTwAAAAAAADyTCEPALpVbRUvi1KTVbwfV/99u9KQXE/fo30bXAdZwHW87dPcfwbcnAEAAAAAAMgzhTwA6EZJbI00PmpQxBuPLF60iieT039H/yOlntKlF2574U9dD1mkdbyL1vEAAAAAAADIO4U8AOgmJ2JlpLG/ySremSjHFmUh+UIZ787+nWlPejmNtFLNxN7f2fu46yILsI5Xf/8ZcpMGAAAAAAAg7xTyAKBblOOeSOOcVTyZRxnvV3nh1hf+3PWReazjvVt3D/rUOh4AAAAAAABFoJAHAEVXW8XLomQVT+aaZzY8s326Ml4tSU8y/v3f+v6fuE7SwjretmnuRwNu1gAAAAAAABSBQh4AFFkp+iKNs1bxZM7LeHf0P1Ir3U1XxvvCUt5tL/yp6yVzXMd7p+5edNE6HgAAAAAAAEWhkAcARVQrt6QxYhVPFrOM98tMHPpvDu1x3WQe63hDbtoAAAAAAAAUhUIeABRNFvdFGh9bxZOWynh39u+cQxnvV/mrf/RXz7t+0sI63qfW8QAAAAAAACgShTwAKIoTsTLSGKjmilU8WcoyXi1Dq4Zedw1lFut49felATdvAAAAAAAAikQhDwCKoBR9kcZZq3jSrjLempfWeH7JTOt4b9fdmy5axwMAAAAAAKBoFPIAIM9qZZY0RqqZsIonLZfx7uh/RBlPFjW1+1D9fSqLg27iAAAAAAAAFI1CHgDkVRJbI42PGxTxJiKLQat4spjLeEdXHX1DGU9muY73Tt096lPreAAAAAAAABSRQh4A5E2txJJFqckq3jmreDKbPLfuuYeSnuSzVst4vU/2rnMdZcZksW2a+9WAmzkAAAAAAABFpJAHAHmSxB9HGh9ZxZOFWMZLe9LLjqmVJSjkvVV3r7poHQ8AAAAAAICiUsgDgDw4ESsjjZEGRTyreKKMJ/lZx8vioJs6AAAAAAAARaWQBwCdLov7Io2zVvFkQcp4d/Q/kvQk48p4skSFvDfq7lmfWscDAAAAAACgyBTyAKBT1UorWZSmrEtZxRNlPMlDavenqfevITd3AAAAAAAAikwhDwA6URbbI42PrOKJMp7kNmmcrLt3XazmFjd4AAAAAAAAikwhDwA6yVisvrogZRVPlPEk3+t490+5j2Vx0E0eAAAAAACAolPIA4BOkcTWSOOsVTxZ0DLenf070570sjKeLGmyeKPuHvbp1WO4AQAAAAAAoOAU8gCg3WollaT6cfoinlU8UcaTvJXxtk+z8jnkZg8AAAAAAEA3UMgDgHa6top33iqedFIZ7+iqo28o40nLSePtunvZxWpuccMHAAAAAACgGyjkAUA7jMXqyKLUZBXvA6t4YhlPcpdXY/OUdbwsDrrpAwAAAAAA0C0U8gBgqZXjnqvH0DYq4yVRqn7OWuUeaSXPrXvuoVbLeMOrht9SxpN5ruO9NmUdr3YsNwAAAAAAAHQJhTwAWCq1UkoShyONKw3KeLWja3co9ch8lvGSnuQzy3jSlpTjrsjict19bb+bPwAAAAAAAN1EIQ8AlkIp+iKNj5qu4qWhDCWtl/Hu6H8k6UnGWynjHV119A1lPJl3snhryjpeGrd4AwAAAAAAAKCbKOQBwGIai9W/XMWbaFDG+yCy2KbMI+0q41nGkwXJq7F5yn0ui4PeBAAAAAAAAOg2CnkAsFjKcc8vj6GtNMhI9XPWKvOIMp7kPmm8Vnd/+/zqMd0AAAAAAADQZRTyAGCh1Vbx0hhouIqXxIXq4w4lHlHGk0KkHHdFFpfr7nOHvRkAAAAAAADQjRTyAGAhZXFfpFcLd41X8ZJYp8Qj8y7j3dm/UxlPOiJZvFl3n7sSY3GbNwQAAAAAAAC6kUIeACyEE7Ey0hhquIqXxgeRxXblHVHGk0LleGyact+zjgcAAAAAAEAXU8gDgPkqRV+kcb5BEW88sngxyrFWeUcWIs+te+4hZTzpmCTxet0972KciJu9MQAAAAAAANCtFPIAoFX7Y3mk1Y+NV/HORxYPKe3IQubhBx6+K+lJPplrGe/oqqNvKOPJoq/j1e6JAAAAAAAA0MUU8gCgFUlstYon7cque3dtLC0rfTiHMt6b6/es93wU63gAAAAAAACwyBTyAGAuaqt4WZSs4km7s/sbu7fMZinPMbViHQ8AAAAAAACWjkIeAMxWEndHGu9PW8TL4rJVPGnH8bXNlvKU8cQ6HgAAAAAAACwthTwAmMmJWBlpDDRdxautRSnpSBvyVO9T90+3lHd01dE3lPHEOh4AAAAAAAAsLYU8AGgmi/sijQtW8aST88SmJzYnPcln18t4wzcMv71+z3rPS7GOBwAAAAAAAEtMIQ8ApnNtFW+kmitW8SRHS3mfOaZWrOMBAAAAAABA+yjkAUC9UvRdLdxZxZOcZde9uzYq44l1PAAAAAAAAGgfhTwAuK62ipdFaZr1J6t4IiLW8QAAAAAAAGBGCnkAUGMVT0TEOh4AAAAAAADMk0IeAN1tplW8JE5VHzcq44iIdTzreAAAAAAAADAThTwAulezVbwkLlnFk6VI36N9G1wHsY4HAAAAAAAAxaCQB0D3mWkVL4vTV9eglHBkkfPMhme2l3pKl/bevvdfuh5iHQ8AAAAAAADyTyEPgO7SbBUvjfHIYk/18XYlHFns9N/Zv7NWxksjrSQ9ybhSnljHAwAAAAAAgPxTyAOgO8y0ipfGu1bxZKny7Fee3VEr4dXKeNejlCfW8QAAAAAAACD/FPIAKL6ZVvHS+J7ijSzlMl7Sk3w2uYw3uZTXf0f/I66TWMcDAAAAAACAfFLIA6C4Zl7F+yBejc1KN7JkZbw7+h+pX8ZTyhPreAAAAAAAAFAcCnkAFFM57ok0zjZcxSvHgerj7Uo3slT59te/va3UU7rUrIzn+FqxjgcAAAAAAAD5ppAHQLHUVvHSGGi4ipfF6Wq2KdvIUh9TO9synlKeWMcDAAAAAACA/FLIA6A4ZlrFy2LQKp60Iz9Y84MX51LGu56Xb3r5iOsn1vEAAAAAAAAgPxTyAMi/mVbx0jhzde1JyUbamMM3HR6cSxlvcPXgyJqX1iiQinU8AAAAAAAAyBGFPADybaZVvHIciCTWKdlIJ2ToxqEfzaaMV/s810us4wEAAAAAAED+KOQBkE8zr+J9EK/GZuUa6bQcWXXktWZlvFdufOW4ZTyxjgcAAAAAAAD5pJAHQP7MZhUvDYUmyd1S3tCqodeV8cQ6HgAAAAAAAOSXQh4A+THTKl4Wp6vZplQjeVzKs4wn1vEAAAAAAAAg/xTyAMiH5qt4E5HFoFU8yWspzzKeWMcDAAAAAACAYlDIA6CzzbSKl8aZyGK7Mo3kNYduPfS0Mp5YxwMAAAAAAIBiUMgDoHPNtIqXxkgksU6ZRkTEOh4AAAAAAAB0AoU8ADrP/lh+dZmp8SreuXg1NivRiIhYxwMAAAAAAIBOopAHQGdJ4u5I470GRbzxyGIwyrFWiUZExDoeAAAAAAAAdBqFPAA6w1isvnoEbeNVvPORxTblGRER63gAAAAAAADQqRTyAGi/ctxz9Rja6Yt4lcjiiFU86ZQ8t+65h4ZvGH7btZBCJI3jdffcT63jAQAAAAAAQOsU8gBonxOxMrIoNV3FS2OH0ox0Uhkv6Uk+SyOtDN8w/E7vk73rXBfJ+TreeN19d8CbEwAAAAAAALROIQ+A9ihFX6RxtkERbzyyeLH6eLvSjHRSGS/tSS/XynjXc3TV0TfWvLTG81TymSzerLv3XrSOBwAAAAAAAPOjkAfA0qqt4qWxv8kq3pkoxxZlGenAZbxPJpfxrmd0xejJ9XvWO1JZ8lbG651mHW/ImxQAAAAAAADMj0IeAEsnibsjjXNW8SRP6b+zf2fSk4xPV8abvJSnlCe5ShrH6+7Bn1rHAwAAAAAAgPlTyANg8V1bxRuo5opVPMlTnv3KsztKPaVLzcp41zO8avgtx9dKLvJqbLaOBwAAAAAAAItDIQ+AxXXtWMSzVvGkiMt49RlaNfS6Up7kcB3v82pu8YYFAAAAAAAA86eQB8DisIonOc4zG57ZPttlvPocuvXQ066hdGzKcZd1PAAAAAAAAFg8CnkALLxS9FnFk9wu493R/8hcl/F+dWztDcNvW8iTjk4Wb9Tdky/GibjZGxcAAAAAAAAsDIU8ABZWGv1W8SSv+fbXv70t7Ukvt1LGO7rq6Bvr96xf6zpKB5fxeq3jAQAAAAAAwOJSyANgYVwrerxvFU9yu4x3Z//OeZTx3rSMJx2fNI5PWcdL4xZvYAAAAAAAALBwFPIAmJ/9sTyy2GMVT7p4Ge/N3id717mO0tF5NTZPs4434E0MAAAAAAAAFpZCHgCtu7aKd7ZBEW+i+u+DVvGk45fx7uh/ZD7H1FrGk5wcV/vGlHW8sbjNGxkAAAAAAAAsLIU8AOautoqXxOGrpbvpy3jnrOJJHvLMhme2Jz3JeCtlvOEbht9WxpNcpBx3TXO/HvJmBgAAAAAAAAtPIQ+AuSnHPZHG+1bxJPfLeHf27yz1lC61UsYbWjX0ujKe5CZpvFZ3r/68ei//sjc0AAAAAAAAWHgKeQDMXhZ7rOJJEfLsV57dYRlPuiKvxubq/Xn8C/fr2sIpAAAAAAAAsCgU8gCYWRobqnnHKp4UZRkv6Uk+a6WMd3TV0Td6n+xd5zpKbpLFj+ru2RdjLG7zxgYAAAAAAACLQyEPgMb2x/JIo//q8YZW8aQIZbw7+h9pdRnPMbWSw6NqN05Zx0tjxJsbAAAAAAAALB6FPACml0VvpPG+VTwpUhkv7UkvK+NJF63jvVF37/48yvFlb3AAAAAAAACweBTyAJgqjaet4kkBj6m1jCfdk+Ox6Wp5evL9O4nD3uAAAAAAAABgcSnkAfBr11bx3rGKJ46pVcaT3B9Xe9w6HgAAAAAAACw9hTwAIvbH8kirH+vXlKziiWU8ZTzJX16NzdX79njdfXzEmx0AAAAAAAAsPoU8gG53bRXvnFU8sYw3qYx349CPlPGupf7auCY5SBKvW8cDAAAAAACA9lDIA+hW11bx+pus4n1gFU+6chlPGU8hL885Hpumua8PedMDAAAAAACApaGQB9CN0thQzXsNiniVSKIU5Vir3CJ5zPd/6/t/Mp8ynmuokJfrpHHcOh4AAAAAAAC0j0IeQDcZi9WRxsDVgsb0Zbzz1exQapG85tCth55OI52wjKeQ15Upx12RxeW6+/qANz8AAAAAAABYOgp5AN2iHPdEGmebruKloYwkXVnGe2X1K5lrqJCX+2TxZt29/Yp1PAAAAAAAAFhaCnkARXciVv5yFe9KgzLeB5HFNmUW6eYynmU8hbzc53hsqt7PJ+ru7yPeBAEAAAAAAGBpKeQBFNm1Vbz3Gq7i1coa5VirzCLdWsZ7+aaXj7iGMxTylqc//9U1q/63a9KhSeN43f19wjoeAAAAAAAALD2FPIAiGovVv1zFm2hwPO2F6uMOJRaxjGcZb6aMfXXs/evXbOwrY//BNenAlOOuyOJy3X3+hDdDAAAAAAAAWHoKeQBFk8YfVnOu6SpeEuuUWKSby3iDqwdHXMPZZXjr8FvXr9vR/+nom65JByaLN+vu81es4wEAAAAAAEB7KOQBFMWJWBlpDDVcxUvjg8hiu/KKFCVDNw79qNUyXjuX8XZXdvf98MgPXx7ePPz3yark/6sdA5t8KZlIViafj/7+6OnBpwfL361893/ulOt85Ikjf/Ora7dnMPPc67Acj01T7vtJHPamCAAAAAAAAO2hkAdQBKXoizTONyjijUcWL0Y51iqvSNFyZNWR1+Z0TO2NrxxvZxFv5B+P/PvZ/qy142G/W/nuP2v3NT7w0wPfuf4z1f7b867DksTrdff8i3EibvbGCAAAAAAAAO2hkAeQZ/tjeaTVj41X8c5HFg8prYhSXlp5ZfUrWbuW8Q69d+gv0mXpL1pZ9Pvh//rDgXZe372VvY9f/1n+svKX/8JzrsPX8WrvCQAAAAAAAEDbKOQB5FUSW5us4lUii0GreKKUdy21f29XGa9WqGuliPeFY3afH0zauex3/efYXtn++55v1vEAAAAAAACAxhTyAPKmtoqXRanpKl45diqriFLetQytGnq9XWW8/T/b/2fT/Uwj/+PI/7nvH/Z9a0dlR+/1z+2t9K7bW9n7L4eeHPrrdHn68/qvOXj+4Hf9ncU6HgAAAAAAAHQ2hTyAPEni7kjjfat4IrMr5bWzjHdv5d7/Prkx+S+Tf55jv33sPz1Veer+mb72jyp/9AejfzD67uSvTW5Ifja5wCfW8azjAQAAAAAAQOdRyAPIgxOxMtIYaLqKl8V2JRWRX5fy2lnGq2XwLwePfaGMd+ex/1gr6c3269dU1tw+vHn4779wdO3Tg2V/Y7GOBwAAAAAAAJ1LIQ+g02VxX6RxoeEqXhrHreKJfDGHbj30dDvLeLUyXbIy+fxX63ZfSia+Wfnm/zDX77O5svmrX1jZ+430Su17+xtbx7OOBwAAAAAAAJ1JIQ+gU11bxRup5opVPJF8ZW9l7+MLtWw3+P3B0cnfq/a9XWPreNbxAAAAAAAAoDMp5AF0olL0XS3cWcUTyWWG/mzoxOQSXX+lf2er36v2tZO/V+17u8bW8azjAQAAAAAAQGdSyAPoJLVVvCxK06wfWcUTyVGGNw///eQS3drK2t9t9XvVvnby96p9b9fYOp51PAAAAAAAAOhMCnkAncIqnkhhktyY/JfJJbqFTPJfJZ+5xtbxrOMBAAAAAABAZ1LIA2i3mVfxzlnFk6Ln0K2Hnj6y6shra15ac3sRfp90efrzxSrkpb+RXvGcsY5nHQ8AAAAAAAA6k0IeQDs1X8WbiCx+FK/G15RRpOhlvDTSiVrZbGjV0OtFKOUtWhmvlmXpLzxvrONZxwMAAAAAAIDOpJAH0A4zr+Kdt4on3VbGu54ilPKSLyUTi1bIW57+3HPHOp51PAAAAAAAAOhMCnkAS635Kl4lsjgSJ2KDEop0YxmvKKW85IbkZ5N/n1WVVV/2NxfreAAAAAAAAFB8CnkAS2WmVbwkLlQfdyifSLeX8YpQyhv970bPTP5dvlP5zoP+7rKA63gD3lQBAAAAAACgMynkASyF5qt4E5FcLerdrnwiynjFKOUd/edH/7fJv8fAvx3Y528vC7SONxGvxu95YwUAAAAAAIDOpJAHsJhms4qXxXalE+mW7P2dvY/PtoyX51LewfMHvzv5dxhbO3au1e+1p7Lnn5e+XPq/jzx65LW9lb27N1c2f3Wmr6kdkbv/Z/v/7OjDR9+o/W+nv5FeSZenP689lm4p/eejDx79dwf/48Fn11fWr/W8zNk6XlJ9ZwEAAAAAAAA6lkIewGIpxz2RxtkGq3iVyOJIJLFO6US6JX2P9m0o9ZQuzaWMdz21Vb08/a4PVh78eros/cXk3+HATw98p5Xvdez3jp2d/H1G7hv535t9/r5/2Pet0m+Wfjqb65r818mnrf5cYh0PAAAAAAAAmEohD2Ch1Vbx0hhouIqXxrnI4iFlE+nG9N/ZvzPpScaLvpA33bG1ycrk86crT//TuXyPwUODR+uvx97K3scbfv5fDh5rpfA4+Pxg4vlpHQ8AAAAAAACYP4U8gIU08ypeVv0cR0RKd5fy7uh/ZLalvFdufOV4Hst4tTxeefwP61fykhuSn9WOs53NkbPTleuO/c6x/6vR1xx679BftFLGu56Bfzuwz/PTOh4AAAAAAAAwPwp5AAth5lW885HFNiUTkdmX8vK6jDc5L/31S3813e82tnbs3MCpgf/lqcpT/6RWvrtewqv+3/f/4PUfHCjdVvp/pnzdsvQX3618959N979zd+Xu9bUFvvqvGd46/FZ/pf+baytrf7f2eWsqa25/rvLcQ/XrfVezPP35H1X+6A88P63jAQAAAAAAAK1TyAOYr+areBNXV/GSWKdkIjK1lJf2pJeLtoxXn6FvDr0+n+W666kt4DX63xj4u4G99Z9/8KOD/7rZz7W/sv9f1X/ND1/+4Suem9bxAAAAAAAAgNYp5AG0auZVvHORxXblEpEmpbw7+3fWL+UN3Tj0o6KU8a7n8OjhH7ZcxvuN9MpM5brhzcN//4Vr+GdDJ2bzcw0+P5h8Ybnvq2Pve15axwMAAAAAAABap5AH0Irmq3iVyOJI9XPWKpeIzK2UN7h6cKSov2ftONrR3x89PZcy3kjfyP/xeOXxP5zpe9cfV/udyne2zuZneqzy2Kb68p/npHU8AAAAAAAAoHUKeQBzMfMq3geRxTalEpG5l/IO33R4sGjLeA2Kef+ktpg3/MDw35V+s/TT5EvJRLos/UWtDFe6pfSfa///l/76pb+qleVm+z13VHb07vuHfd+qHY977LeP/adVlVVfnu3XTi7k1X4Wz0freAAAAAAAAEDrFPIAZqv5Kt5EJFGyiiciecraytrf/UIhb2XyuetiHQ8AAAAAAABonUIewExmXsU7H1lsVyYRkbxlf2X/v5pcyBveOvyW62IdDwAAAAAAAGidQh5AMzOt4qUxEkmsUyYRkTxm7Ctj/2FyIe/Qe4f+wnWxjgcAAAAAAAC0TiEPYDr7Y3mk1Y+NV/HOxauxWYlERPKaH7z+gwOTy3ilf1T6Se0IW9fGOh4AAAAAAADQOoU8gHpJ3B1pvNegiDceWQxGOdYqkUi3p//O/p2PbX5sk2uRv+yt7H18chmvltrxta6NdTwAAAAAAABgfhTyAK4bi9VXj6BtvIp3PrLYpjwiEr/df0f/I0lPMl5aVvpw1727NromOSvjLUt/MbmMd+RfHPlb18Y6HgAAAAAAADB/CnkANeW45+oxtNMX8SqRxRGreCK/LuOlPenlXx11uqz0oaW8fOTA/3vg2/XLeKN/MPquo2rbmDSOW8cDAAAAAACA4lDIA7rbiVgZWZSaruKlsUNpROTXx9TWlvHqS12lZaWfKOV1dg4nh1+aUsb7+uh7vZXeda5PW9fxxuved/7WmzMAAAAAAADkl0Ie0L1K0RdpnG1QxBuPLF6sPt6uNCLyxWNq60tdk0t5jq/tzNSOpK3/e43845F/r4zX5mTxZt17z5Xqe9N/6w0aAAAAAAAA8kshD+g+tVW8NPY3WcU7E+XYoiwiMvMy3jSlPMfXdlA2VzZ/dWTjyKn6v9PwA8N/t6ayRuG4vWW83mnW8f7GmzQAAAAAAADkm0Ie0F2SuDvSOGcVT2T2+f5vff9PZlPGc3xtZ+XpytP/tHRr6cP6v8/g84OJ69MBSeN43XvQRLwav+eNGgAAAAAAAPJNIQ/oDtdW8QauHgdoFU9kwZfxplvK63u0b4Nr2J4ceu/QX6TL0l9M/pskX0omDn508F+7Ph2QV2PzlHW8pPpOBQAAAAAAAOSeQh5QfNeOBTxrFU9kcZfxJufwTYcHXcP2ZPDpwXL93yO5OfnkO5XvPOj6dPA6XhobvGEDAAAAAABA/inkAcVlFU+k9WW8O/ofSXvSy62U8V6+6eUjrmF7MvTk0F/X/z3Gvjr2/oOVB7/u+nRIynHXlHW8LEretAEAAAAAAKAYFPKAYipF3//P3v0AyVnYd57+jf5YVlDEStqASYxiYWRNJSQ1aAYLy0QH9hmfHdZRQrEoxYWNyOLIi0jmQIp02IKRLCSNpJEEGqn77dFKFVOUgyGxb9e7Th11zhWuM0clHN4NtdyF26JWV/jiPXt9xHLQeride3skYamne/5ppvt9334e12e5E0iI1ojpKb75va7iSdNrx7U77pvuZbzDVxz+0pJ9S/zeakF7/3RvX+2vx9FfO/o/rRpZtcLrk6Eq8dyY63gn4nqfuAEAAAAAAKAYDPKA4kliu6t40vTaefXOBy/nMp4xXmt6YOSBjydzkncuuYz3oWP/xhgvc2O8rjHX8ZI46hM3AAAAAAAAFIdBHlAc54YOr7iKJ03zMt7yHfcmkQx7TG3+GvylwZcv/vUozy0P3zdy3y1em4yVxEnX8QAAAAAAAKDYDPKA/OuLeVGJLa7iSZd5Gc8YL5dtGdnym9P5dWuU13SWOhHrXMcDAAAAAACA4jPIA/Lt3FW8v24wxBtO//yAq3jSBJfxrt1xX7mjfNYYL5898Y+feNYgLxePq33OdTwAAAAAAAAoPoM8IJ+qV/HKcWB00FB/jPeaq3jSxO2+enfvdC/jDSwaOOo1bH2lq0unDfIy3lB01/l85ToeAAAAAAAAFJBBHpA/Q3FzJPGKq3hS68Z4h644dHLJviV+n2WgZE7yjkFexkvi6TGfq0pxg0/oAAAAAAAAUDwGeUC+VGKLq3jS5bfz6p0PTneM5zG10hQ6EevSz09nL/l8VYmST+gAAAAAAABQTAZ5QD4k0Zn2vKt4Umsv4x1YfGDAayhNoUp8acznrBNxvU/sAAAAAAAAUEwGeUC29cW8SGJ72o9cxZNaO8YbWDRw1GsoTelRtWvGXMdL0s9aAAAAAAAAQGEZ5AHZVYmuSOIVV/GkbIzxluxb4vebNLXreM+N+dxVig/4BA8AAAAAAADFZZAHZFMSva7iSdkY4x1adKjiNZSm2MlYOzrAu/jzVyVKPsEDAAAAAABAsRnkAdmSRGfa867iSdkY4x1cfPCIy3jStB5Xe3LM57CheL9P9AAAAAAAAFBsBnlANvTFvEhic9rbruJJLuNJue5ErEs/b52t+Tw25JM9AAAAAAAAFJ9BHtB6legaHdy5iifNaDvft/NzLuNJLagcz9R8LnvbdTwAAAAAAABoDwZ5QOucu4q3fXR0V3+M96qreNL02rF8x73ljvJZl/GkJncy1o75vFaOUz7pAwAAAAAAQHswyANaI4nOtL9sMMSrjhdKMRQrjDuk5j6m9sDiAwNeQ+kySuJkzee0H7mOBwAAAAAAAO2jpYO8cpR/KYnksbSvp/2/adVLPj9J+7u0b6V//kgpSh/1ywQFcu4qXt/oQKH+GO/1tPVGHVLzx3gu40mX2VB0RyXOXPJ5rRIln/wBAAAAAACgfbRkkFcd4qX9+RRGAn+V/vUf8csFOVe9ileOF8e9ipfEcqMOqfljvIOLDx7xGkqXWSW+VvO57W3X8QAAAAAAAKC9NH2Ql0Ty2bR3pjMWqETlv/dLBjmVRG/aDxuM8V6NSnzKmENq3WW8JfuWGMNKl9PJWJt+Phuu+fx21BsAAAAAAAAAaC9NHeRVB3XTGQrUdNAvG+RIJboiiecbXsWrjhWGYoUxh+QynpTrkjhZ8/lt2HU8AAAAAAAAaD9NG+SVo/zbDcYA/zr9c3enf7zmwl97LI4tqkTljvTbjqedrf0+6V+/0S8dZFxfzIsk/X/HXgu68HjaN9I/rjfikC6vDbdtWFPuKJ91GU9qYUPRHZU4U/O57ilvBgAAAAAAAKD9NGWQNxiDy5JI/lPNEOBvKlHpmuj7lqL0C+lf9xc13/fMxQM+IGNKcUOU48Vxr+KVY6URhzQzPXrNo/dP9ULewKKBo147aYaqxNfGXMerfi4EAAAAAAAA2k5TBnlJJPtrhgDfqY70Jvv9+6JvXvp9vl5zJe+IXz7ImHNX8bY3vIqXxKtRiTuMN6SZb+f7dn5uspfyqmM8l/GkGepkrK3zeW/ImwIAAAAAAABoT7M+yDs/pvu7i4YAPzkex6+b6o+Tfp8lNVf2/r76Y/slhIyoRFck8UqDId7Z9M/viaFYYbwhzV47rt1x30SX8g4uPnjEayXNYOV4Zsx1vBNxvTcGAAAAAAAA0J5mfZCXRLJ+pi7bVaKyr2ZYsN4vIWTAuat4bzcY472e/ua902hDat7jaxtdyjPGk5pwHa8cp7wxAAAAAAAAgPbVjEHe4MVjgEpU/uvp/ljV71szLhj0SwgtVI6etBcbDPFG0t+0A67iSa25lFc7yjt0xaGTHlMruY4HAAAAAAAAzK5mDPK+fvEg4CvxlfdM98eqft+aQd7X/RJCC/TFvPQ3994xV4Euvoo3FHcba0ita/t12++5MMpzGU9yHQ8AAAAAAABojmYM8v5TvcfmzVD/j19CaLLqVbwkXnEVT8rBKO+D2+/ef+X+fq+F5DoeAAAAAAAA0BzNGOSdncVB3t/7JYQmqV7Fq8QXx72KV4k7jDQkSa7jAQAAAAAAAO2qGYO8kVnsHb+E0ASluDX9zfxaw6t4SZx0FU+S5DoeAAAAAAAA0O6aMcj7ySwO8s76JYRZdCrem/4mPpr2tqt4kiS5jgcAAAAAAACMrxmDvDMXj+j6om+Olx1y4NxVvNddxZMkyXU8AAAAAAAAYHJmfZBXjvKLFw/yKlG5ycsOGVa9ileJ0pjrP67iSU1px7U77rv97ttv8FpIruMBAAAAAAAA+dOMC3lP1zxmttfLDhnlKp7U0nZfvbs3/Tw5XJpTOm2UJ7mOBwAAAAAAAORPMy7kbawZ5P3b6f5YQzH0a+n3/9/ThtIf97eOx/ElE32f6iNy07/2t9Pv81T1753292lnz//xP6R9Jf3zv3cqTr3XhwNta+KreK+5iifNbjuv3vlgdYx34fNlaU7ptY3rNq712kiu4wEAAAAAAAD5MeuDvJNx8ueSSN6peWzt70znx0q/7/9W8+N8bby/vhzlu9O/7s2aQWCjvjfdnxfk2vhX8YajEl+KE+FSl9TEMd6Fjs85/oZLeZLreAAAAAAAAEB+zPogr6rOY2v/Lm3NFH+Mx+uM6NaP89fvn+QQr7aDPixoCxNfxXvdVTypSWO8juRMo89Lx+ccf33DbRvWeK0k1/EAAAAAAACA7GvKIK8SlQ/VXslLO1N9nO1E37f6yNkG47p/1+j7pH/us9Mc412o14cGhTb+VbyR9DftkTgVnUYYUmsu4xnlSa7jAQAAAAAAAPnUlEFeVTnK2xoMDf5tJSr/bCiGfrU6vqv+tdU/pt/WlbYl/fP/vs73eSf98T5S7+/zZDy5+PwFvtrv81za7V+Jr7zn/N9jXvrj/1d1rvdVO1uK0i/48KBwJrqKV4430j+uN76QZr/dV+/uncwY70KlOaXvbly3ca3XTnIdDwAAAAAAAMiupg3yqspRPnWZl+su9NlGf4/0z/1Bnb/+n4z380r//F213yf9ue704UGhjH8Vbzj9DVod6i03vpBmvx3X7rhvKmO8i0Z5p2/93Vtdr5RcxwMAAAAAAAAyqqmDvKokkh2XMcT7+0mM675e830GJ/nzOnjx96tE5SUfHhTCZK7iVeIOowupeVVHdYPzB1+e6ufBg4sPHvH6Sa7jAQAAAAAAANnV9EFeVfVxtEkk35riEOFfpN/vQxP92LWPqx2Koe7J/JxOxInra8d/PjzIvaG4Of1N8dcNruKNpL8Zj0Q5VhpdSK0Z5R2fd/w7xniS63gAAAAAAABAcbRkkHfBUAz9avViXjnKf5b+8c20n6S9c/4S3n+ofnvatupYbrI/Zvr9rkm/z93nH4/7N33RN2cK3/fi8cNPfHiQW9WreEnsbXgVL4nXohJ3GltI+Rjl9S/p3+P1klzHAwAAAAAAALKvpYO8LPlKfOU9NQOIv/PhQS5NfBWvkv41K4wtpHyM8g4sPjDgdZJcxwMAAAAAAADywSDvvCSSu2pGEM/58CBXJr6K93pU4lNGFlI2R3mD8wdfrh3j7V269zGvj+Q6HgAAAAAAAJAfBnnnJZH8Vc0Q4rM+PMiN8a/iDY9exSvHSiMLKT+X8vqX9u/yukiu4wEAAAAAAACt9dtxbmQ32f42DPKqW6UtNWO8/6v6CFsfTmTexFfxXks/wO8wrpDyNcrbfdXuLV4PyXU8AAAAAAAAoPX6YvyB3VQr/CAviWR97SMCq4+v9aFE5o1/FW8kKnEk/WtWGFdI+WrJviXLvQ6S63gAAAAAAABANvTFNMd3H7s6Rno/FCOffl/7DPLOj/HeqRnj/XMfRmTaxFfxXo1KfMqoQpIk1/EAAAAAAACAy9MX0xjj/c4HYiTp/mn/dEXxB3mVqNxTexkv/ba/8KhaMm38q3jDUY6Sq3iSJLmOBwAAAAAAAMyMvpjiGG/dz8VIefX5Md6vLh5JVs8Z/f/+Rz9f3EFeEsnn6zym9n85FscW+RAikya+ivd6VOIOYwpJklzHAwAAAAAAAGZOX0xhjPffvC9GSqsvuo73i7eMJL/08+/+//+3y+NvivYCVR9JWzvGK0f5z43xyKyJruIlcTTKsdKYQmpdG9dtXOt1kFzHAwAAAAAAAIqnLyY5xvv0NZc+pna0pfeNJNfedum39Yz+mLl3PI4vSSJ5vs4Y78/6om+eDx0yKUl//zW+ivdanIh1RhRSa9t59c4H088nw7uv2r3F6yG5jgcAAAAAAAAUS19M8jG1l1zGO9+xeftGkiW/P+bbK93xxTy/KEkka9LeqPOY2oM+ZMikUtwQ5XixwRDvbFRiIIZihRGF1Np2X727tzrGu/B55fFlj2/zukiu4wEAAAAAAADF8dtp/2K8/vG18e/Kq+O/1I7uNr7vqtExwdG5B0aS1XPGXs/L6aW89J/ps2nv1AzxfpL2T3y4kDl9Me/8Vby3G4zxXo9KfMp4QsreGO9CLuVJruMBAAAAAAAAbaI6qhsztEu76/0xcvvcW94dE/zu1deO1Pvr8nYprxzlI3Wu4v3flajc5KOB7P0Gjc5xruKNjF7vKcdK4wkpu2M8ozwphyVx0nU8AAAAAAAAYMqSnthcb2R39/tj5B/Mj5HNc37/3SHBb8y9feS33h+5HuWl/xzHawcSlai8dDJO/pyPBjLlp1fxhhuM8X4QlbjHaELKxxjPKE/KUUPRPfoo+Es/737ZmxMAAAAAAABgXJXu2JJ0x3DtuO6+FfHvq2O8aodi4N0RQW/HA6PfVv3z9UZ5WX98bTnKD9UZR/zrU3HqvT4ayNZvzuiKJL7V8CpeJb4Up6LTaELK1xjPKE/KSZV4znU8AAAAAAAAYErK3fGFupfuVseRqxbE89Xh3ap5P3/JgOBIHB5ZOn/OSPrn/8dkdfTn6VLeUAz9avrP8E7NKOKvjPHIlFPx3ijHFyKJtxuM8U6nH8x3G0tI+R3jGeVJmR/jddW5jveUNykAAAAAAABAQ8nq6G00xvvnN8bPXxjkfXrubWMGBDfM+8XRQV71r2s0ysvipbxylF+s+Wf5SSUqH/LRQGZUL+8k8cq4V/HKsdJYQspOO6/e+eB0xnjV+pf27/IaShksiZOu4wEAAAAAAACT1ugxtem3D1RHdhcP8jbP+f0xA4LfmHv7u4O88UZ5WbqUNxRDvzadsUSjfBQxo/piXlRiSyTxI1fxpOJfxqu2d+nex7yGUibHeGvGXMcrxylvVgAAAAAAAIC6qpfrxruMVzvIOxQDY0YEvR0PXDLIy8OlvEpU/tggj0wqxQciiW+5iiflqx3X7rhvumO8/Vfu7/caSjm6jpdEpzcsAAAAAAAAwBjnL+ONjHcZ7+JB3qp5P193SHAkDo9cs2Du87XfJ8uX8tKf9xsGeWROEttdxZPy+Zjackf5rMt4UsEaiu4x1/GS9FsBAAAAAAAAaiWro7fuY2prLuNdPMj79NzbGg4Kbp7f+b/W+35ZHeWlP+d3DPLIjHL0pL3Y8CpeEkddxZOK95ja/qX9u7yGUoarXqWtvY5Xihu8cQEAAAAAAAAuUe6OL0z2Mt7Fg7zNc36/4ajgd+b91v/R6PtWf9wsP74WWurcVby3GwzxXk9bbxQhFXCMt6R/j9dQynCnojPK8daYgTwAAAAAAADAxRo+prbBZbyLB3mHYqDhsOCROVv/43jfP/377ql7kS8Dj6+F1vxmjK5I4hVX8aT2G+N5TK2Ug5I46ToeAAAAAAAAMK6kJzZP5TG1F3f9gn/wP483LjgWg+8MrVq1YrwfI1kdj9X7+7uUR1vpi3lRiS2u4kn5befVOx+c7hhv/5X7+72GUsYbiu70c/HZSz4/V6LkTQwAAAAAAADwrurobaqPqb24T8/7tX8z4dDgZx9eP9GPk/48Pt/g5+FSHsV37ireX7uKJ7mMJynDVdL/jf0c3emNDAAAAAAAADAq6Y7t03lM7cU9MOf3Tk84Npi3v38yP1ajUZ5LeRT7N2LsHX3cnat4UluO8fqX9u/yGkq5GON1jbmOl8SQNzIAAAAAAADAqHJ3bKr7mNpJXsa70L6Ox3800dig3HH0hcn+eOcfX+tSHsVXvaiTxPOu4kntO8bzmFopV4O8L435XF0d6QEAAAAAAACUu+MLdcd4U7iMV63yC5/uKkf5v0w0OKhEcmZo1aoVUxzlDRvlUVhJbE5721U8yWNqJeWgoeiOcrxV8/n6KW9oAAAAAAAAgMaPqZ3iZbxqpfc+ev+kxwc/+/D6qfzY5x9fO+zxtRTrN6CreJIxnst4Uu4qR6nO5+xOb2wAAAAAAACgzTV8TO0UL+O9O5qbe+jkpAcI8/b3T/nHbzDKcymP3OmLeZHE9rQfuYontfcYb/dVu7d4DaXcX8f7sjc3AAAAAAAA0OZm6jG1lwzmOkqvTXaAUO44+sK0/h4NHl/rUh65UYmuSOKVBkO8YVfxJGM8SRmukv6v9vN3KT7gDQ4AAAAAAAC0sep4baYeU3uhyi98umsqg4RKJGeGVq1aMa1R3rlLeSMu5ZG/33zRO85VvNdiKD5m7CC1xxjv8WWPb/MaSrkb41VH9Wcv+fxdiWe9wQEAAAAAAIA21nCMdxmX8aqV3vvo/VMeJPzsw+unfY2vwSjPpTyy+RsvOtOeb3gVrxID6R+XGztILuNJyvQg78iYz+Gu4wEAAAAAAED7mo3LeO8O5OYeOjnlUcK8/f2X9fc89/hal/LIrr6YF0lsTnvbVTypOO1duvcxYzypzUpiTVTiTM3n8a96swMAAAAAAABtarYu4707jusonZ7yMKFj8NuX/fc9N8obdimPzDn3WLvXXMWTCnYZ76rdW4zxpLYc5D095nP5ibjeGx4AAAAAAABoQ7N5GW90FLdsw5rpDBOSKJ8dWrVqxWX//c89vtYoj2w4dxVv++h/qK8/xnvVVTwpn/Uv7d9ljCe15aNqqyP7szWfz7/sTQ8AAAAAAAC0odm+jFdtaMHu3ukN8pKRyqKtd87IKNAoj0z8hovOtL9sMMQbiXKUYihWGDdIuR3jTetzXfURt15DKcdVP3+7jgcAAAAAAAAkPbF5Ni/jXag89/Az0x7kzTswYz+XodXRW2+Ul/7zftFHA7Pq3FW8vrQfNRjjvZ623qhBchlPUs46FZ1RjrdqPq8/5c0PAAAAAAAAtJmk8ThtRsd4o9fpOkqnpzvISzoGvz2TP5dGo7ykJw77qGB2frON/of6F8e9ipfEcqMGKZ/tv3J//3Q/xxnjSYV4XO2XXMcDAAAAAACANlfujk1NG+Mt27Bm2mO8cw2fuPb2G5oxynMpjxmXRG/aDxuM8V6NSnzKmEHKb3uX7f28MZ7Uxp2MtaMDvEuH9qe8AQIAAAAAAIA20szLeKPjtwW7ey9zkDdSuWL7PTP98yrfGA/WvZTXHXv7bo15PlK4LJXoiiSeb3gVL4mjMRQrjBmkfHfX7Xd1H5t37FVjPKlNS+Jknc/xnd4IAQAAAAAAQJto9hhvdPg29/AzlzvIK889WJqVsWCjx9d2x14fLUxLX8yLJP1/a6/l/PRqzhvpH9cbMUjFGuUdn3P89cl+Tnt82ePbvG5SARqK7qjEmZrP9V/1ZggAAAAAAADaRDMfU3vJI2s7Sqcv+0Jex+BLs/XzazjK64nDPmqYklLcEOV4cdyreOVYacQgFa9bf/fWztKc0msu40ltVCW+Vmd43+MNEQAAAAAAALSBVlzGGx3jLduw5nLHeOcqnx1atWpFs0d56evzRR89TOjcVbztDa/iJfFqVOIO4wWp2G24bcOa8UZ5xnhSgToZa+t83n/KmyIAAAAAAABoA626jDc6dFuwu3dmBnnJSOWK7ffM6s/VpTymoxJdkcQrDYZ4Z9M/vyeGYoXxgtQ+l/LqPb62f0n/Hq+PVKDK8UzN5/zhOBHXe2MEAAAAAAAABdeqy3gXKs89/MyMDfLmHTwy6z/fG+PBuqO87tjbd2vM8xHFpb/BRq/ivd1gjPd6VOJOowWpTUd5845/58Lnr71L9z7mdZEKfh2vHKe8MQIAAAAAAICCa/UYb/SRtR2l0zM1yCt3HH2hGT/n8S7lGeUxqhQfiCSebzDEG4lKDLiKJxnlVUd5+6/c3+/1kFzHAwAAAAAAAHKulY+pfXeMt2zDmpka452rfHZo1aoVLR3luZRHOTZFEj9qeBVvKO42VpBUbcm+Jcu9DpLreAAAAAAAAEDOZeEy3uiobcHu3pkd5CUjlZ996I5m/fwbPr52dRw1ymtD5ehJe9FVPEmSXMdzHQ8AAAAAAADaRNITm7MwxhsdtM09/MyMD/Le07+nqaPCBuPGcrdLKG2lEl8ccw3n4qt4lbjDSEGSJNfxAAAAAAAAgAI5P8YbycIYb/SRtR2l0zM+yOsYfKnpw8JGl/J64rCPuoKrXrxJ4lsNr+IlcdJVPEmSXMcDAAAAAAAACiYrj6l9d4y3bMOamR7jnW+4fF3Xymb/8zS6lJe21+NrC6oSWyKJH7mKJ7VXG9dtXOt1kOQ6HgAAAAAAALSxcndsytIYb3TAtmB37ywN8kaGFm2/uyX/TI1GeavjqFFegSTR6Sqe1J7tv3J/f3X4vfN9Oz/n9ZDkOh4AAAAAAAC0oaxdxnv3Ma9zDz8zW4O8yrwDLftna/j4WqO8gvyGiu2u4kltPcYb/TxT7iifffSaR+/3ukhyHQ8AAAAAAADaSFbHeKOPrO0onZ6tQV7SMfhyK//ZXMor4m8mV/EkY7yxn29cypPkOh4AAAAAAAC0iSw+pvbdMd6yDWtmbYw3WvnsqQ/c2tnSC4ANLuWlr3/JR2fOjH8V7zVX8aRit3fp3seqj6mt9/mmeinPKE9yHc91PAAAAAAAACi4LF/GG70gt2B37+wO8tJ+9uH1Lf/nbPzrUHIpLw+/kca9ijcclfhSnIgbjBGk4nZg8YGByXzOMcqTXMdzHQ8AAAAAAAAKKsuX8d69Hjf38DOzPcirzDuQjfFhg1Fe+uvkckpW9cW8Ca7ive4qntS+j6lt1O6rdm/xukmu47mOBwAAAAAAAAWS9ct47z6ytqN0etYv5HUMfjMzA8QGj69Nf72OupSXMaW4IZL46wZDvJGopP87FZ1GCJIxnlGeJNfxAAAAAAAAoMByM8ZbtmHNrI/xqhfyIjmT/PKS5Vn55250KS/piaeM8jLg3FW8vjFXbn7a6bT1xgeSR9Ua5EkabSi6XccDAAAAAACAgsrDY2rfHaYt2N3bjEHe6Chv0dY7s/TP3uhSXvXxtUZ5LTT+Vbzh0at45VhpfCAZ5RnjSXq3Sgy4jgcAAAAAAAAFlJfLeO+O0uYefqZZg7yh9/TvytwgsfGvV8kor8kmuopXjjeiEncYHUjt26FFhyqT+XzTv6R/j9dLaqOqj68vx1uu4wEAAAAAAEDBJD2xOU9jvNFH1naUTjdrkJfMffL5LL4GjUZ5LuU10fhX8aoddRVPUrWBRQNHxx3jLe3f5XWSXMdzHQ8AAAAAAAByLumJvtpBV+bHeMs2rGnaGC+tHKW3hlatWpHJS4EeX9sak7uKd6exgaSLO7joYMkYT5LreAAAAAAAAFBQeRzjjV6GW7C7t5mDvGqVRVvvzOzr0eBSXvrr+5RR3iyY6CpeJb4UQ7HC2EBSvY4sPPK0x9RKch0PAAAAAAAACiavY7zRq3BzDz/T7EFeMnfgaKZHih5fO/smuoqXxOm09UYGkiY7ynMZT3Idz3U8AAAAAAAAKIA8j/FGH1nbUTrd9EFex/HvZP11McqbReNfxasO9J6Ocqw0MpA02bZ/cPvdXgfJdTzX8QAAAAAAACDncj/GW7ZhTdPHeOcaTn55yXKjvDYz0VW8crwRQ2FUI0mSXMcDAAAAAACAdpP3Md7o4GzB7t4WDfJGKos3fyoPr1H5xnjQKG8GDMXN41zFq3bSVTxJkuQ6HgAAAAAAALShpCc2532MNzo2m3v4mVYN8pJ5+/tzM1x0KW/6TsV7I4m9Da/iJXE6bb1RgSRJch0PAAAAAAAA2lDSYJyVtzHe6CNrO0qnWzbI6xj8dp5eq0ajvKQnnjLKa2AyV/Gq/zHdqEBqy5bsW7Lc6yDJdTwAAAAAAABoY+Xu2FSYMd6yDWtaNsYbrXx2aNWqFUUY5bmUV2Piq3jfi6G425hAat/2X7m//8kFTz5vlCfJdTwAAAAAAABoU0W6jDc6Lluwu7e1g7xkpLJo6515e93KN8aDRnnjcBVP0gQdWHxg4MLngcH5g99ctWXVCq+LJNfxAAAAAAAAoI0UbYxXrTL3iedaPcgrzz1YyuWY0aW8Br9Rom+cq3in09YbEUgu49V+Lnhi4RPPGeVJch0PAAAAAAAA2kSRHlN7ySNrO46/3upBXtIx+HJeX7/RS3mr46xRXqoUN0Q5Xmx4Fa+S/q8cK40IJGO8Rp8Pjs4/+oLH10pyHQ8AAAAAAAAKroiX8UbHZNd1rUyifLblg7wo/yD55SXLcztq7I7P1fv4SHriqbYY5fWl/4znruK93WCM970YiruNByRd/JjaRrmUJ8l1PAAAAAAAACiwol7GG33k6qLtd7d+jHeuoSv/6cfy/FqWVsf9bfn42mT0P4iPdxXvuTgRNxgPSBrvMl6dUd7XXMqT1LCh2OU6HgAAAAAAAORQUS/jvXshb+7BUmYGee/p35X313P0Ul67PL72p1fxhhuM8X4QpbjfaEDSVMd4Fzq88PAzRnmS6ozxVoxe3730fceXfeUCAAAAAAAAGVf0Md7ogGzuoZNJx+C3J12U35rkI2jfmtKPm1aZd6AYI8cb48HCj/Iq0RVJfGucq3hfGn2UnNGApEk+prZRW1duvdNrKOmSKnHEdTwAAAAAAADImSI/pvayBnyjo7xJjCjSv66dX6fCPr72VLw3yvGFSOLtBmO80zEUdxsLSLqcy3gX2n3V7i1eQ0mXVB38l+OtmvcfT/nqBQAAAAAAADKsHS7jGeQ16VJekUZ51cszSbwy7lW8cqw0FpA0E5fxjPEkNbiOt8d1PAAAAAAAAMiRpCc2G+MZ5LmUd5G+9OdZiS2RxI9cxZM02fqX9u8yxpM049fxkvjBJe9Dyum3AgAAAAAAANl0fow3YoxnkDejr1l3fC5ZHWfHfGz1xFOZH+WV4gORxLdcxZM0jTHesDGepBm+jndkzHW8JDp9FQMAAAAAAAAZ5DG1Bnmz/vjaOqO8TF/KS2K7q3iSptr+K/f3u4wnacY7ETeMuY6XpO9GAAAAAAAAgOwpd8cmYzyDvFY9vjZzl/LK0ZP2YsOreEkcdRVPUr0OLD4wMN0x3uPLHt/mNZQ0znW8gTHX8Upxg69kAAAAAAAAIGNcxjPIa2aVG+O+eh9vmbmUd+4q3tsNhnivp603CpA005fx9i7d+5jXUFLDTkVnlOOtMf8HAgAAAAAAAEC2GOMZ5LXq8bXpx9iZTI3yKtEVSbziKp4kj6mVlMHreEdcxwMAAAAAAICM85hag7yWP752dZxt+SivL/17VWKLq3iSWvGYWmM8SdO6jleJkq9mAAAAAAAAIENcxjPIy8zja1s5yjt3Fe+vXcWT5DKepBxdx6vW6SsaAAAAAAAAyAiX8QzystTQTXF3vY/HWR/lJbF39HFvruJJasFlvMeXPb7NayhpEmO8rrQzNe9ThnxFAwAAAAAAABnhMp5BXttfyqtelEnieVfxJLmMJykHg7yBMe9VqiM9AAAAAAAAoPWM8Qzyslxpddyffiyeqf34THriqRkb5SWxOe1tV/EkGeNJynynojPK8VbN+5WnfFUDAAAAAAAAGeAxtQZ5uXl87WxcynMVT5LH1ErKW9X3J2Pfs3T6ygYAAAAAAABazGU8g7xcPb52ddwzY6O8vvSvT2J72o9cxZN0ue1dtvfzLuNJakpD0V3nOt6XfWUDAAAAAAAALZb0xGZjPIO8XF7Kq/NxO6VRXiW6IolXGgzxhl3FkzSNMd6wMZ6kplRJ/1f7/qUUH/DVDQAAAAAAALRQ0hN9tYMmYzyDvNxcyrsx7pv2pbwkese5ivdaDMXH/Md+Sc0Y43lMraRpjPGq/0cFZy95/1KJZ311AwAAAAAAAC1kjGeQV4RKq+P+9GP2zJiP5Z54qu4oL4nOtOcbXsWrxED6x+X+Y7+kSY/xlu59zGU8SU0e5B0Z8x7GdTwAAAAAAABoHWM8g7xCPb72xrh3wsfX9qV/TGJz2tuu4kkyxpOU205FZ5TjrZr3MV/1FQ4AAAAAAAC0iDGeQV4hH1+7Ou5p9Pjanzke3aODO1fxJBnjScr/dbyBMe9lTsT1vsoBAAAAAACAFjDGM8gr9KW8m+Lui0d5pZ4Y+c3fi5GOcvx/DcZ4r7qKJ2laY7xlez9vjCepBWO8rrQzNe9nvuyrHAAAAAAAAGgBYzyDvHYa5e38eIz84u66I7xzlaMUQ7HCf9yX1MwxXvWqntdQ0rSrvn9xHQ8AAAAAAABaL+mJzcZ4Bnnt0L5bYnnnY/GnCwYbjvH+z7T1/qO+JJfxJOWqU9EZ5Xir5n3NU77SAQAAAAAAgCZLVkdv0h3DxngGeUVv7cOxbv6xeLnRVbzb/1mMHPpo/OmSJ2K5/7AvaToNLBo4aownqUWPqx1wHQ8AAAAAAABarNwdm4zxDPLaoaUD8VhHaczVmNGWHYyR3s/89OP/8EfiGaM8SdPtwOIDA8Z4klp+Ha+cfisAAAAAAADQPC7jGeS1Q12PxCfmH4sXGl3Fu3ZP/MUTa+I/1/4+MMqTdDkdvuLwl4zxJDWtodhV531Op694AAAAAAAAoEmM8Qzyit6+W2L54sOjj24brjfEm1OKN68+EH/wqU1x445Pjl6KNMqT1NRLeY8ve3yb10nSZXcibkjf2/yg5r3OV33FAwAAAAAAAE3iMbUGeUXvw1viY/OPxcuNruItHIxnb+6Nj1bHeBd69OPxgFGepJnuyMIjT7uMJ2lWS+LomPc75ejxVQ8AAAAAAAA0gct4BnlFv4q35HDsGe8q3lUH4qGLh3gXN3opryd+XPv748mb4xtGeZKm26FFhyrGeJJmpVPRGeV4q+Y9z1O+6gEAAAAAAIAmcBnPIK/IdT0Sn5h3PF5tdBXvZ56MP75pW6xrNMa7ZJTnUp6kWbqU17+kf4/XQ9KMVYmBmvc8w3EirveVDwAAAAAAAMwyl/EM8opc9SpeRznO1hvipd/+t9f0x6aJhkNRVoEAAIAASURBVHiTeXxt9VKe//gvabpt/+D2u70Okmb1Ol45/VYAAAAAAABgdhnjGeQVtdseiDXzj8ULja7iLRyMZydzFW8ql/Ke/Eh83aU8SZLkOh4AAAAAAAC0IY+pNcgrassOxLaOJM7UG+LNKcXp9+2LB6YzxJvMKO+Jj8TXVn0xVhgDSJIk1/EAAAAAAACgTbiMZ5BXxH7lkfjU/GPx8mxcxWs4yuuJH9d7fK1LeZIkyXU8AAAAAAAAaANJT2w2xjPIK1qLD8eR0f/gXP8q3hszcRVvSpfy1sZzLuVJxW7JviWGt5JcxwMAAAAAAIB2dn6MN2KMZ5BXlNY9FGvnH4+XGl3FWzAYf37LH8aa2RjjXejRj8cD9UZ5T34kvt61NVYaCEjFa+/SvY89ueDJ543yJLmOBwAAAAAAAG3KY2oN8orW0sOxqyOJM82+ijeVS3lP3hzPe3ytVKz2X7m/P/338HD138WD8we/uWrLKtcwJbmOBwAAAAAAAO2k3D06FjLGM8grRGsfjnXjXcVbeDT+ZLav4k1xlPcNj6+VinMZr/bfx08sfOI5ozxJruMBAAAAAABAm3AZzyCvSC05HHvGu4p3TX9savYQb8zja3vix7W/345+OF5wKU8qzmW82o7OP/qCx9dKch0PAAAAAAAACs4YzyDPVbzmN3opr84or3opz2hAKs5lPJfyJLmOBwAAAAAAAG3EY2oN8trkKt6byx+Pe7MwxBtzKa/+42uf79oaK40HpPx0YPGBgUn9e/ncKO9rLuVJch0PAAAAAAAACsZlPIO8NriK987CwXi2+4/itqyN8S65lFdvlPeR+PqqL4YrWlJBLuPVdnjh4WeM8iS5jgcAAAAAAAAF4TKeQV4bXMV7I4tX8aY0yrs5vmGUJ2W7DbdtWJN0JGemOsirtnXl1ju9hpJcxwMAAAAAAICccxnPIK/gV/FGFh6Np2/aFuvyMMabxONrjfKkjLf9uu33lDvKZ6cyxtt91e4tXjtJruMBAAAAAABAzhnjGeQV/Crem9fuiY15GuKNuZTXEz+u9/jarq2x0qhAyvAo74Pb757sKK/6iFuvmSTX8QAAAAAAACDnPKbWIK/AV/HeqV7Fu7k3PprXMd5Ej689+uF4waU8Kf+jvMeXPb7NayXJdTwAAAAAAADIOZfxDPIKfBXv9PLH4968D/Em8/jawTXxTaM8Kb+PrzXGk+Q6HgAAAAAAABRA0hObjfEM8vLYbQ/EmvnH4oUGV/FGrngiThbhKp5LeVKxeqjzoTvKHeUfGONJch0PAAAAAAAACibpib7aQY8xnkFeHlp2ILaNdxXv/Xvi/iIO8VzKk4rR1pVb70w6kjPVfxfvXbr3Ma+JJNfxAAAAAAAAIOeM8Qzy8jjIm+gq3sLBePaWP4w1RR/jXXIpryd+XO9SXtfWWGl0IGW3B7oe+MTuq3f3ei0kuY4HAAAAAAAAOWeMZ5CXx0HeBFfx3rx2T2xslyHeZB5f61KeJElyHQ8AAAAAAABmmTGeQV7eBnkTXMV7Z8Fg/NnNvfHRdhzjTfT42uqlPKM8SZLkOh4AAAAAAADMAmM8g7y8DfImuIp3+pr+2NTOQ7zJXMozypMkSa7jAQAAAAAAwAwzxjPIy9Mgb4KreCMLj8aftPtVPI+vlSRJruMBAAAAAABACyQ9sdkYzyAvL4O8Ca7ivXntnthofDf1x9dWR3ldW2OlQYI0/fYu3fvYhts2rPFaSHIdDwAAAAAAANpUsjp6k+4YNsYzyMv6IG8yV/Fu2hbrjO48vlZqRQcWHxio/ruzNKf03Y3rNq71mkhyHQ8AAAAAAADaTLl7dJRjjGeQl/lB3nhX8TrK8f1r+mOToZ3H10qtHuNdqDrKcylPkut4AAAAAAAA0EZcxjPIy8Mgz1U8l/KkvI3xLhrlnTbKk+Q6HgAAAAAAALQBYzyDvDwM8q4+EL2NruLNKcWb1+6JjUZ1LuVJrezQFYdOjvfvUY+vleQ6HgAAAAAAABScx9Qq64O8dQ/F2vnH46VxruI9fXNvfNSYbuZ69OPxQKNLeV1bY6XBglRnjLfoUGUy/y71+FpJruMBAAAAAABAQbmMpywP8vbdEsuXHo5dHaWaKy3n6yjH96/pj00GdLN4Ka8nfuxSnjRx+6/c3z+pf496fK0k1/EAAAAAAACgmFzGU5YHeWsfjnXzj8XLja7iLRiMf9X9R3Gb4VxrHl9bvZRnlCdNb4x3oeNzjr+xassqv48kZaeh2OU6HgAAAAAAAEyDy3jK6iCvehVv8eHRR6UN172Kl8QP/2F/bDWWy8bja43yZIw3vTFeuaN8dsfyHfd6DSVlaIy3In2v9b2a915f9pUTAAAAAAAATMAYT1kd5HU9Ep+YfzxeanQVb+FgPHvTtlhnJJetS3ldW2OlIYOM8YzxJOW8JPpdxwMAAAAAAIAp8phaZXGQt+UfxYorB6K/oxxn6w3x5pTizWv6Y5NhnMfXSsZ4kjQLnYrOKMdbNe/BnvLVEwAAAAAAAIzDZTxlcZC37qFYO+94vDreVbybe+OjBnHZ6JFPxr1JT/zYKE/GeNMb422/bvs9XkNJmasSe1zHAwAAAAAAgClIemKzMZ6yNMjbd0ssX3o4dnUkccZVvHz1hU/G/eWe+KFRntqxg4sOlozxJBWqcqxM33v94JL3YuU45SsoAAAAAAAAaOD8GG/EGE9ZGeTd9kCsmX88XnIVL+ePr61zKW9wTXyza2usNHBQETuy8MjTxniSClcSj425jleJLl9FAQAAAAAAQB0eU6usDfKWHI49ruIV6PG13fGf613KM8qTMZ4xnqQcdCo60/dg3615TzbkqygAAAAAAACoo9wdm4zxlJVB3q88Ep+afyxedhWvgKO8BpfyPL5W7T7Gq7bj2h33eQ0lZbZKDIx5X1aOHl9JAQAAAAAAQA2X8ZSlQd7oVbxynHUVr7iPry33xA/rXcozylMbj/GGjfEkZbpyrEx7y3U8AAAAAAAAmIAxnrIyyOt6JD4x73i86ipe8dvy67Gh3qU8ozzluUNXHDo57THe8h33eg0lZbqh2DXm/Vklunw1BQAAAAAAABfxmFplYZC375ZYvvRw7HIVr/1GeY0u5XVtjZXGD8pTBxYfGDDGk1TgMd6K9D3ZD2reoz3lqykAAAAAAAC4iMt4ysIgr3oVb045Xmt0FW/B0fgfXMUrbl/4ZGz0+FrlvYOLDx4xxpNU6JLor/M+rdNXVAAAAAAAAHCey3jKwiBv0ZE4GkkM1xvidZTj++/bFw8YrRW/Rz4Z95Z74u+M8pTHjiw88rQxnqRCdyJuiEqcqXmv9mVfUQEAAAAAAMB5LuOp1YO8tQ/HuvnH4oXxruLdtC3WGau11+Nrk574sVGe2mGMV+4on91+3fZ7vIaScvK42l1j3q+Vo8dXVQAAAAAAABDGeGr9IG/ZQHy+oxxnXcVTg0t5Yx5fO7gmvtm1NVYaRcgYT5KaPsZbkb5H+94l79kq8ayvqgAAAAAAACA8platHeS5iqfJ9IVPxsZ6ozyX8mSMJ0ktqBJ7xrxvq0SXr6wAAAAAAABoey7jqVWDvH23xPIlh2NPRxJnXMXTZC/l1Xt8bfVSnlGe8jrGSxs2xpOUq05FZ/pe7bs1792+6isrAAAAAAAA2l7SE5uN8dSKQd4TPzPwnXnH41VX8TTVtvx6bHApT1nr0KJDlemO8XYs33Gv11BSzq7jHanz/q3TV1cAAAAAAAC0taQn+moHLcZ4atYgb8vKLe+4iqeZHuW5lKeWjPGuOHTSY2oltdV1vHK8dcl7uHL8S19dAQAAAAAA0NaM8dTqQd7DH3rYVTzN2qW8rq2x0mhCzejA4gMD072M9+g1j97vNZSUw+t4e1zHAwAAAAAAgIsY4ylrgzxX8eRSnvLYwKKBo9O9jOcxtZJy2VD6uTWJ79aM8b7hKywAAAAAAADaljGesjbIcxVPs3kpzyhPs9X+K/f3G+NJaruSeKxmjDccpbjBV1kAAAAAAAC0JWM8ZWmQt/X6rT9xFU9GeWqnMV71MbXbr9t+j9dQUi47ETdEJc5cMsgrx7/0VRYAAAAAAABtyRhPWRvkPbHw0CuGZJrJHvpM3OXxtZrtNty2YU3SkZyZzhjPZTxJua4SAzXX8aqDvB5faQEAAAAAANB2kp7YbIynZrTvlli+++pdpyczThl8z5G/NCJTsy7lVUd5XVtjpUGFZqLqlbvqo2en8phal/Ek5bpT0RnleMt1PAAAAAAAANpesjp6k+4YNsbTbLf24Vg3/1i8/PCHHh4xyJPH16rwo7wPbr97MqO86l/jMp6k3JdEv+t4AAAAAAAAtL1yd2wyxlMzWjoQj3WUzl1NMchTpi/lfTi+fevD0WlcoSaN8jymVlL+G4oV6Xu879UM8r7qqy0AAAAAAADaist4akZdj8Qn5h+LFy7+D7QGecpKD30m7nIpT60a5VW/7dFrHr3faySpANfxPu86HgAAAAAAAG3NGE+z3b5bYvniwzEQSQzX/gdagzzl5fG1t/9B3GBooRkZ5V23/Z6kIzlz8WW86rd5bSTlvlPRmb6/+0HN+71v+IoLAAAAAACAtuExtZrtPrwlPjb/WLw85lLK+fp+Ycd/NMhTXh5f27U1VhpcaKYu5Z0f5XlMraTiVBn9P8Cofb93i6+6AAAAAAAAaAsu42m2r+ItORx76l3FqzanFG9edSAeqg7tDPKUm1HemvimUZ5m8lKey3iSCnUdrxxv1bzne8pXXQAAAAAAALQFl/E0m3U9Ep+YdzxebXQV72eejD++aVusqw6fDPKUw1Hey7c+HJ3GF5IkjXsdbzhOxPW+8gIAAAAAAKDwXMbTbFa9itdRjrP1hnjpt//tNf2x6eLRk0Ge8vr42lVfjBUGGJIkNbiOV06/FQAAAAAAAIrOGE+z1W0PxJr5x+KFRlfxFg7Gsxeu4hnkqQijvKMfjhc8vlaSJNfxAAAAAAAAaFMeU6vZatmB2NaRxJl6Q7w5pTj9vn3xQKOxk0Ge8v74WqM8SZLreK7jAQAAAAAA0GZcxtNs9CuPxKfmH4uXp3oVzyBPRRvleXxt+7R36d7HNty2YY3XQpJcxwMAAAAAAKBNJT2x2RhPM93iw3Fk9D+41r+K98Z4V/EM8uRSnvLY/iv391f/fVSaU/ruxnUb13pNJLmO5zoeAAAAAAAAbeb8GG/EGE8z1bqHYu384/FSo6t4Cwbjz2/5w1gz2YGTQZ6M8pSHDi46WLr430nVUZ5LeZJcx3MdDwAAAAAAgDbiMbWa6ZYejl0dSZy53Kt4BnnKew99Ju6qO8r7cHz79j+IG4w0itWBxQcG6v17qTSndNooT5LreK7jAQAAAAAA0AbK3bHJGE8z1dqHY914V/EWHo0/mcpVPIM8FfxS3ku3PhydxhrFvIxXZ5Tn8bWSXMdzHQ8AAAAAAIAicxlPM9mSw7FnvKt41/THpssZNRnkqaiPr3UpL/8NLBo4Opl/P3l8rSTX8VzHAwAAAAAAoKCM8ZSHq3gGeWqXS3lGefnt0KJDlcn8u8njayW5juc6HgAAAAAAAAXlMbVq0lW8N5c/HvfO1JjJIE9Gecpa/Uv690xljHeh43OOv7Fqy6oVXkNJruMBAAAAAABAzrmMpyZcxXtn4WA82/1HcdtMDpkM8lT0Ud6xm+JVo7x8devv3tp5fN7x70xljFfuKJ/dft32e7x+klzHAwAAAAAAgJxzGU9NuIr3xkxexTPIU1F76DNxV4NLeS/f+nB0GnIUdpQ3vGP5jnu9bpJcxwMAAAAAAICccxlPs3wVb2Th0Xj6pm2xbrYGTAZ5cilPOR/lDe+8eueDXi9JruMBAAAAAABAzhnjaZav4r157Z7YONvjJYM8GeUpr6O86mNqXcaT1NbX8ZL4sq/KAAAAAAAAKASPqdUsXsV7p3oV7+be+GgzhksGeWq3UV718bVdW2OlcUe+R3nGeJJcx0srxa2+MgMAAAAAACD3XMbTLF7FO7388bi3maMlgzy5lKe8jPIG5w++dGGMt/267fd4XSS19XW8SvyFr8wAAAAAAADIvaQnNhvjaTrd9kCsmX8sXmhwFW/kiifiZLOu4hnkySjv3CjPpbx8tWrLqhVPLnjyG8Z4klzHcx0PAAAAAACAAkh6oq920GGMp8m07EBsG+8q3vv3xP2tGisZ5KndH1/rUp4kyXU8AAAAAAAAaDJjPM3GVbyFg/HsLX8Ya1o5VDLIk0t5Hl8rSXIdDwAAAAAAAJrGGE+zcBXvzWv3xMYsjJQM8mSUZ5QnSXIdDwAAAAAAAJrCGE8zfBXvnQWD8Wc398ZHszJQMsiTUZ5RniTJdTwAAAAAAACYdcZ4muGreKev6Y9NWRsnGeTJKM8ob7Z7+EMPr/c6SJLreAAAAAAAALQxYzzN4FW8kYVH40+ydBXPIE+KGx/6TNxllDf7HVl45Onqv0N2X7V7i9dDklzHAwAAAAAAoA0lPbHZGE8zdBXvzWv3xMYsj5IM8uRSnlHebI/xLmSUJ0mu4wEAAAAAANBmktXRm3THsDGeZuIq3k3bYl3WB0kGeTLKM8prxhjPKE+SXMcDAAAAAACgzZS7Y5Mxni73Kl5HOb5/TX9syssYySBPMspr1hjPKE+SXMcDAAAAAACgTbiMp3a6imeQJ43toc/EXUZ5sz/GM8qTJNfxAAAAAAAAKDhjPE2mqw9Eb6OreHNK8ea1e2JjHkdIBnmSS3nNHuMZ5UmS63gAAAAAAAAUlMfUaqJu/1x0zz8W3xznKt7TN/fGR/M6QDLIk4zyWjHGu9DepXsf8/pJkut4AAAAAAAAFIDLeJqoZQdiW0ep5krJ+TrK8f1r+mNT3sdHBnnS2D73W/HrRnmzP8Yrd5TPbr9u+z1eQ0lyHQ8AAAAAAICccxlPl3MVb8Fg/KvuP4rbijA8MsiT6vfQZ+KuUk+8aZQ3O2O8tGFjPEm6qKHYVed95y2+cgMAAAAAACDzXMbThFfxkjhT9ypeEj/8h/2xtUijI4M8afzH15Z64vtGeTM/xtuxfMe9BjiS9O4Yb0X6XvN7l7z3LMeLvnIDAAAAAAAg84zx1KjbHog1C47F842u4i0cjGdv2hbrijY4MsiTxu+/+434TY+v9ZhaSZrVkugf8/6zFLf66g0AAAAAAIBM85ha1WvfLbF82UB8vtFVvDmlePOa/thU1LGRQZ40cX/4mfj/2bv7IKsLO8/332bsgEwqWWlj62ZCyuwm0amEq+mDjaJc2wKnvWov8ZEsMSYYEjq0kSBCT0BBZ2XBtkGwT/c57d5Y88fU7B2ncuOObqyiCmuwyEM5s6bcZJKa1FwrTuFKDYTIxVwnpqrvOYgKp8/p5/P0O69X1fufKAS7TU3/5nzq++tyKe/9dv3hru9M8TLeiMt4klTQk3FRZOKNgp9BX/D0BgAAAAAAQE1zGU/FWrI+rmhOx9+PdRVv0bpYnOShkUGeNLHWd8WtQ6k41OijvEc/9OhjU72M9+D5D3Yb30hSQcOx3XU8AAAAAAAA6ko2FT3GeCq8ijdvdzzUqFfxDPKkaY3yRl3Ky/1nP2+EUd50XlPrMp4kFSkTn8z97Hn0jJ9FM/E3nuAAAAAAAACoWafGeCPGeHq3jrXR3jwYP27kq3gGedLU+8at0dmIl/KmM8br/UTvSsMbSSpSNraO+nk0E52e4gAAAAAAAKhJXlOrws7ZHdtdxTPIk6bbt/5DfL6RRnlTHePletsYT5JK9GRclPsZ9LWCn0m/7ykOAAAAAACAmpRpizXGeHq3S74dy5rT8feu4hnkSUZ5lRvjeU2tJI3RcPSP+rl0OJZ6kgMAAAAAAKDmuIyn02vti3Wu4hnkSWV8fe2Rwv97k/vPfp6EUZ7X1EpSmcrEJ3O9UfCz6T5PcgAAAAAAANQcYzy9W8faaG9Oxw9cxTPIk8rZ+q64NYmX8ozxJKmMPREPjfr5dCiu9jQHAAAAAABATfGaWr13FW9H3N2UiaOu4hnkSRUc5R1JyihvOmM8r6mVpHHHeBfmfiYt/Dn1hdgWZ3miAwAAAAAAoGa4jKeJXMWb/Xg87SqeQZ5Uju7piq5MKo7V+yhvqmO8fA+e/2C3sY0kjVM2do76OTUTKU90AAAAAAAA1AyX8ZTvnN2xvSkbJ4oN8ZoyceT8HbHWaMggTypn3/oP8fl6fn2ty3iSVOb+S+7/FgwX/Lw6HM97ogMAAAAAAKBmuIynK+6NJc3pODDWVbyFm2KJsZBBnmSUV5bLeG/3fqJ3paGNJE3odbUPFfl59UpPdQAAAAAAANQEYzy19Mfmpky85SqeQZ5US33j1ugcSsWRehnlTWeM5zKeJE14jHdh7mfUwwU/s+7zVAcAAAAAAEBN8JpaV/FcxTPIk2q57pvi+nq4lDed19S6jCdJk2g4to/6uXUorvZkBwAAAAAAQNW5jNe47bgy5p+zO7Y3ZeOEq3gGeVI9vL52cGG8WqujPK+plaQK9WRclPtZ9bWCn12/78kOAAAAAACAqsumoscYrzG75Nux7KzB+KmreAZ5Uj11T1d01eLra6dzGc9raiVp0tfxHnMdDwAAAAAAgJqTTcW2wkGDMV5jNK8/trqKZ5An1fnra2tmlPfoBx8d8ppaSargdbxMvHHGz7CZ+BtPdwAAAAAAAFSVMV5jdsW9saQ5HQdcxTPIk5JwKa8WXl+76w93fccYT5Iqeh1v+6ifYzOR8oQHAAAAAABA1RjjNWYt/bG5KRNvuYpnkCclpW/cGp1DqThUrVHeVF9Tm+ttr6mVpCn0RFyY+9n1tYKfZb/vCQ8AAAAAAICqMcZrvDrWRnvzYPzYVTyDPCnBr6+t+Chv5zk7t7uMJ0kVLhtbR/08OxyXeMoDAAAAAACgKozxGq/WvljXlI0TruIZ5ElJv5RX7PW1Q6n4+a1fjbZyjEKu/vLVFw2eNfgTYzxJqlD/JT4Tw6N+rt3nKQ8AAAAAAICqMMZrrJavjkua0/GDUlfxzn48/mvbxugw5DHIk5L++trcf/baijuiveqjvKbsCa+plaRpNBz9o36uzUTKkx4AAAAAAAAVl01FjzFeY7Tjypj/4f7Y2TQUbxS9ipeNYy2PRq/xjkGelNTX1xa9lJf7z77yxbiiWqO8/GW8+z55380GNZI0xZ6MiyJT8PPtcDzvSQ8AAAAAAICKy34u1mXb4m1jvOR3xb2xpDkdf1/yKt5APLVwUywx2jHIkxpylFetS3lN2RO9/673doMaSZpG2djpOh4AAAAAAABVl2mLNcZ4jdG8/tg6xlW8N8/fEWsNdQzypEYa5RV9fW2FL+XlL+MZ40nSNHsiLsz9THu44Gfc/9vTHgAAAAAAABXlMl5DXcU7UOoq3uyBePbS3lhqoGOQJzVa37g1OktdyqvIKK8pe+LeT9273JhGkqZ9HW+z63gAAAAAAABUlTFeY9TSH5ubMvFWsSHerKE41NoX3zTKMciTjPLiF5W+lDfQPPCD3k/0rjSkkaRp9mRclPvZ9mjBz7rf98QHAAAAAABAxXhNbfLrWBvts9Oxr9RVvLMH4qlF62KxMY5BnqR3RnlFX1+bitdW3BHtBi+SVMMNR/+on3eH4mpPfQAAAAAAAFSEy3jJr7Uv1jVl40Spq3jn9cV6AxyDPEln1n1TXF/09bVlvJQnSZqB63iZeOOMn3mH43lPfQAAAAAAAFSEy3jJv4rXnI4DY13FW7gplhjeGORJGvP1ta8Wu5RnlCdJruMBAAAAAADAe1zGS3YtfbGp1FW8pky8fv6OWGtsY5AnaWKX8oq+vtalPElyHQ8AAAAAAADyjPEa9yre7MHY17YxOoxsDPIkTbzVt8XSwYXxyqhR3qc/fWTFHdFuCCNJruMBAAAAAADQoLymNrmd90hscBWvdpr/x/Gn8/4oDkyk+5u//RuDPKkuXl/7i/f+b+e5d5z832VmfsdRozxJch0PAAAAAACABuQyXjJbsj6uGO8q3sUPxPUGNZWt9cLIfujcGJlIm5rvHTHIk+pklJea9Wp23qoz/reZ+fjVv/H6WklyHQ8AAAAAAIAGkk1FjzFe8pq3Ox4qeRUvG8da++KbRjQGeZJmrj1/+J/+ptj/PvOX8ozyJMl1PAAAAAAAABrAqTHeiDFewq7iDcaPx7qK17YxOoxnDPIkzUxdq+am9sx95Nmx/jeamX/Nb7y+VpJcxwMAAAAAACDBvKa28a7i5f76VuMZgzxJMzvGe+yDO747kf+d5i/lGeVJkut4AAAAAAAAJFCmLdYY4yWnK+6NJWNexXs8nnYVzyBP0sy3d07//on8b/S9Ud7Hr/6N19dKkut4AAAAAAAAJIjLeMnqnN2x3VU8gzyDPKn2x3jvj/KWHDXKkyTX8QAAAAAAAEgAY7zGuYrXnI4DruIZ5EkqX33nbE1PepD3B7tHshd/fGQoFa8Z5UmS63gAAAAAAADUMa+pbZCreJk4fu7OuM9Ypnab/8fxp/P+KP52Ij3QvPmYQZ6UkFHeqTHeu//3d2hhvLrijmg3npEk1/EAAAAAAACoMy7jNchVvME4+Olt0WUkk5zyQzuDPKn+R3mZpsH/N3PRp/+fwv877FKeJLmOBwAAAAAAQJ1xGa8BruJl45ireAZ5vl5SjY7ymjJvbvnUl1evvi2WDqXi0KhR3sJ41ShPklzHAwAAAAAAoA64jNcAV/HSsX/Blug0iDHI8/WSam+Ul2kaOr7xs7evfPfvyY/yBi+Ln7mUJ0mu4wEAAAAAAFBnjPESfhUvE0fyV/GW9UTKEMYgzyBPqr1RXuEY74xR3sL4RbFLeSvuiHajGklyHQ8AAAAAAIAa4zW1yb+Kd2lvLDV+McgzyJNqc5SXH+N9++IvfqnU33Pnf4wlgwvjFZfyJMl1PAAAAAAAAGqcy3jJv4pn8GKQZ5An1XbfuPrKcV8lfmqU51KeJLmOBwAAAAAAQK3KpqLHGK8+61gb7c3pOFDqKt7sgXiubWN0GLoY5BnkScnp5OtrL4ufuZQnSa7jAQAAAAAAUGOyqdhW+IG+MV591NIXm0pexcvGsfP6Yr3hikGeQZ6UzPKX8gYWxssu5UmS63gAAAAAAADUCGM8V/FkkOfrJdX3KM+lPElyHQ8AAAAAAIAaYIyXwKt4mThy7s64z0hFBnlSZbp5RWt7vqq/vnZh/MKlPElyHQ8AAAAAAIAqMcZL5FW8ZxdsiU4DGRnkSZWpa9Xc1N45/fsHPrD7R9Ue5Z28lLcwXil2Kc8oT5JcxwMAAAAAAKCMjPESdhUvG8fO64v1xjEyyJMqO8Z7bO7Op9//31KNjPKKvb7WpTxJch0PAAAAAACA8jDGS9hVvMfj6YWbYolxjAzypMq+pnbvnP4Do/73NGfXwdtumr+4Jkd5LuVJkut4AAAAAAAAzKxsKnqM8RJyFS8Tr5+/I9YaxsggT6qNMd7po7xavpT3lS/GFQY5klzHcx0PAAAAAACAacp+LtZl2+JtY7wEXMUbiO8u2BKdhjEyyJMq3+NzH903/v+uavj1tS7lSXIdz3U8AAAAAAAApifTFmuM8RJxFe+Iq3gyyJOqdxlvImO8uhjluZQnyXU81/EAAAAAAACYGpfxEnMV79m2jdFhFCODPKk6Y7z8q2gnOsarh1Fepi0Of/ULcY2RjiTX8QAAAAAAAGCCjPHqo9a+WFfqKt6soTjkKp4M8qTqtndO//7JjvFO9ftvX/zFL1X7zz/WKO+u3F8z1JHkOh4AAAAAAACMw2tqa79ru6OtOR37x7iK991F62KxMYwM8qTq1LVqbuqxuTufntIYrynz5gMXfq1mBtUlX1+bitdW3BHtBjuSXMcDAAAAAACAElzGq/1a+mJT01DBlY5TNWXiyAU7Y40xjAzypOqO8abymtp8maah4xs/e/vKWvtnKjnKWxivfuWLcYXRjiTX8QAAAAAAAKCAy3h1fxXv2baN0WEMI4M8yRivXKO8gYXxcrHX1371C3GN8Y6kxPVEPFTk5+4rPTkCAAAAAAAwLpfx6uAqXjZOFL2Kl41j5+6M+wxhZJAnVb89cx95NoljvPEu5eVHeXfl/poBj6QEjfEuzP2sfbjgZ++XPDkCAAAAAAAwLmO82q1jbbTPTse+Ulfxzh6IpxZuiiVGMDLIk6rbzSta2/fO6d+f5DHeuK+vTcUbXl8rKTENx/ZRP38Px1JPjwAAAAAAAIzJa2prt/MeiQ2lruLNGopDF+yMNUYwMsiTamOMl9TX1E5hlPfa2ltjmTGPpLruybgo9zP3a2f8DJ6JH3p6BAAAAAAAYEwu49VmS9bHFc3p2D/WVbxF62KxEYwM8qTa6PG5j+5rpDHeRF5f+9UvxDVGPZISdR0vE52eIAEAAAAAACgpm4oeY7zaq7Uv1rmKJ4M8qX4u4zXqGG8io7y7cn/NsEdS3ZWJT+Z+9j5a8LP4Pk+QAAAAAAAAlHRqjDdijFc7dayN9uZ0/MBVPBnkSfUzxts7p/9AI4/xJvD62je+8sW4wsBHUl2Vja2u4wEAAAAAADBhXlNbg1fxdsTdTZlRVzhcxZNBnlSjda2am5rqGC/blHkzSWO8CYzyXlt7aywz8pFUR9fxXjvjZ/LheN5TJAAAAAAAAEVl2mKNMV7tdG13tLmKJ4M8qf7GeI/N3fn0VMd4D1z4tbVJ/dqM9frar34hrjH2kVTzPREPuY4HAAAAAADAhLiMV1tdsD1WN2XisKt4MsiTvKa2UUZ5d+X+msGPpBoe412Y+1m88OfzF2JbnOVpEgAAAAAAgDMY49XWVbyzB+J7ruLJIE+qv8t4A3N2HTTGm9bra9/oWR7XGf5IqsmysXXUz+dDcbWnSQAAAAAAAM7gNbW1U+uOuLspE0ddxZNBnlR/7Zn7yLPGeDMzylt7aywz/pFUg9fxjha8qvaHruMBAAAAAABwBpfxaugqXjqeKXUVb/bj8bSreDLIk2r6NbX7jfFm9vW1X/1CXGMEJKmGBnkPuY4HAAAAAADAmFzGq43O3xHdpa7i5f7zI7m/vtbgRQZ5Uk2P8Q4Y45VnlHdX7q8ZAkmqepn45KjreNl4wRMlAAAAAAAA73EZrzau4s1Ox76xruIt3BRLDF5kkCfVbi7jlf/1tT3L4zqDIElVbTg2uI4HAAAAAABAScZ41e+C7bG6KROHXcWTQZ5Un3Wtmpt6bO7Op43xjPIkJbxszM/16hk/sw/H854qAQAAAAAAOMlraqvb8tVxSXM69ruKJ4M8qb5fUzswZ9dBY7zKjvK++oW4xjhIUsV7Ih4a9XP7cNzgyRIAAAAAAACX8arc+Tui21U8GeRJxni+jlMb5WXa4rBLeZIqPMa7MPez+msFP7vv82QJAAAAAABAZFPRY4xXna7tjjZX8WSQJyWjvXP69xvjeX2tpAa+jpeN5Z4uAQAAAAAAGlw2FdsKP9A2xqtMF2yP1U2ZOOoqngzypPqua9XclDFe5Ud5AwvjZaM8SVW8jne04FW1z3u6BAAAAAAAaHDGeNXp9rviM7PTsc9VPBnkGeQpMZfxDhjj1dalvPU3xg1GQ5LKVjY2j/o5fiiu9oQJAAAAAADQwIzxqlNrX6xzFU8GeQZ5SlZ952xNG+N5fa2khhnjzY9MvFLws/wLsS3O8pQJAAAAAADQoIzxKt+13dF2djqecRVPBnkGeTLKyzZl/nXLp+/8iq+bUZ6kunxd7boiP89f6SkTAAAAAACgQRnjVb7zd0R3UyYOu4ongzyDPCW7/nMezEzkMt63L/7il3y9jPIk1WFPxkW5n+ELf65/0XU8AAAAAACABmWMV9luvys+Mzsd3y95FW8gnm3bGB2GFDLIkxpjlOc1tUZ5kuq84eh3HQ8AAAAAAICTsqnoMcarXK074u6SV/Gycazl0eg1npBBnkGeGuf1tcZ41R/lrb8xbjAokjSNV9VeWOQ63kueNAEAAAAAABpQ9nOxLtsWbxvjlb9ru6OtOR0/KHkVbzD2LdgSnUYTMsgzyFOy2/2h7f/VGM+lPEkJKhubR/18PxxLPW0CAAAAAAA0mExbrDHGq0wtfbGpaSjeKHEV783WvvimoYQM8gzy1Djt+vCffccYzyhPUmKu471W8DP+Pk+bAAAAAAAADcZlvMrUsTbam9Oxv9RVvObBOOgqngzyDPLUmN2zqLPL18EoT1ICr+NlotMTJwAAAAAAQAMxxqvgVbxMHC16FS8TR87ri/XLeiJlGCGDPIM8SUZ5kuqwJ+Oi3M/2RwteVfu8J04AAAAAAIAG4jW1lbmKNzsd+0pexUvH/raN0WEMIYM8gzxJRnmS6rjh6B/18/5QXO2pEwAAAAAAoEG4jFf+WvtiXVM2ThS9ipeNY/N2x1ZX8WSQZ5AnyShPUgKu42XiDdfxAAAAAAAAGpTLeOW/itecjgNjXcW7tDeWGj7IIM8gT/XbzSta2/P5WiRzlDdwWbxolCfJdTwAAAAAAADG5TJeeWvpi00lr+Jl4rireJJBnuq/rlVzU4/PfXTf3jn9+43yktltK2OxS3mSXMcDAAAAAABgTMZ41buKd9ZQvLhgS3QaOUgGear/MV5+iPf+v5+7f5T/z3xtXMqT5Dqe63gAAAAAAAANxGtqy9d5j8SGklfxsnGs5dHodRVPMshTMsZ4j31wx3cL/x3dM/eRZ13KS+6lvIGF8bJRniTX8QAAAAAAAHiPy3jlacn6uGKsq3j5v3bxA3G9QYNkkKdklB/elfz3dM6ug75GCR1ifj1SRnmSXMcDAAAAAADgpGwqeozxZr55u+OhMa7ivZn761tdxZMM8pSgy3hzdz493r+r+cHebTfNX+xrltBLeYvioFGeJNfxAAAAAAAAGtipMd6IMd4MX8UbjB+Xuoo3ezD2uYonGeQpWU1kjHf6KC8/4PN1S143fyXaBxfGL4zyJLmOBwAAAAAA0IC8prbCV/EycTx/Fc9gQTLIU8JeU/vBHU9NdIxnlNcgl/IuixeN8iTX8VzHAwAAAAAAaCCZtlhjjDdzXXFvLBnrKl5zOg64iicZ5Cl5dV/VcX1m1uCxyQ7yMk1Dx+9Z1Nnla5jM7vyPscQoT3Idz3U8AAAAAACABuEy3sx2zu7YXvIqXjaOfXhXPLysJ1xBkgzylNA2LLhlxWRGefkx3sbP3r7S1y75r68dWBgvG+VJruO5jgcAAAAAAJBgxniVvYrXtjE6jBIkgzwlv/VtXbdOZJSXH+N9++IvfsnXrKEu5f3IKE9yHc91PAAAAAAAgATymtoKXcXLxPF5u2OrIYJkkCeX8s6oKfOvLuM16CjPpTzJdTwAAAAAAACSxWW8Cl3FG4yDn94WXQYIkkGejPJcxtMZr6+9LF40ypNcxwMAAAAAACABXMarwFW8bBw7d2fcZ3QgGeRJhaO8/BjPZTzdtjIW722PA0Z5kut4AAAAAAAA1DGX8SpwFS8d+xdsiU5jA8kgTyoc5RnjqXCUN3hZ/MwoT3IdDwAAAAAAgDpkjFfmq3iZONLSH5uX9UTKyEAyyJOKjfKM8VT09bWL4qBRnpSwnogLXccDAAAAAABIMK+pLftVvAOX9sZSwwLJIE+SpnIpzyhPStwgb53reAAAAAAAAAnlMl55r+LN2x1bjQkkgzxJmk5dX4/U3vY4YJQnJaBszI9MvOI6HgAAAAAAQAJlU9FjjDe1OtZGe/7y3RhX8fa3bYwOIwLJIE+SvL5Wkut4AAAAAAAACZdNxbbCD3SN8SZWS19sKnkVLxtvtvTH5mU9kTIekAzyJGnGR3mXxUtGeZLreAAAAAAAANQQY7zyXMWbPRDPLdgSnQYDkkGeGmAYtaK1/bEP7vhu91Ud1/t6qNKjvFKvr11/Y9xg9CS5jgcAAAAAAEAFGeOV5SresXm7Y6uRgGSQp8aoa9Xc1MCcXQfz/z4NzRo8smHBLSt8XeT1tZJcxwMAAAAAAGgwxnhluYr3rKt4kkGeGusy3t45/QdO/3cqP8r71mU3fN7XR7VyKc8oT3IdDwAAAAAAgDIzxpvhq3iZON7SH5sNAiSDPDXWGO/dy3iFZWYNHtv42dtX+jqpotcavx4pozzJdTwAAAAAAAAqzBhvZq/i5f/apb2x1BBAMshTY1/GGzXKaxo6bpSnaozyvL5Wch0PAAAAAACACsmmoscYb+au4p27M+7z4b9kkCeX8YzyVC+vr11/Y9xgECW5jgcAAAAAAMAMyH4u1mXb4m1jvBm5ird/wZbo9KG/ZJCnBrs+tmpuarzLeEZ5cilPkut4AAAAAAAACZdpizXGeDNwFS8bx/JX8Zb1RMqH/ZJBnlzGm2hDs9KH8r/e11GVvpRnlCe5jgcAAAAAAMAMcxlvxq7iHWjbGB0+4JcM8tSYY7zJXsZzIU+1cimv1OtrjfIk1/EAAAAAAACYJGO8idXaF+vGuoo3b3ds9aG+ZJAnY7xJ15R58/5Prl7j6yijPMl1PNfxAAAAAAAA6pzX1I7ftd3R1pyO/WNdxVuwJTp9mC8Z5KlBh0yr5qZcxlOSX1+b+3nxrXtvjOUGU5LreAAAAAAAAIzBZbzxa+mLTU1D8UbRq3iZON7SH5uX9UTKh/iSQZ4a9zLewJxdB43xlKRRXrFLefmfGdffGDcYTUmu4wEAAAAAAFCEy3jTv4p3aW8s9cG9ZJAnr6k1xlOjjPK8vlYqY0Oxushzx5WeXAEAAAAAAOqAy3gTuIqXjRNFr+Jl49i5O+M+H9ZLBnkyxjPGUyO+vtYoTyrbhbyfFzx7vOTJFQAAAAAAoA4Y45WuY220z07HvlJX8c4eiKcWboolPqSXDPLU2HWtmpvaO7fvOWM8NfIoz+trpRkd43WPev4YjqWeXgEAAAAAAGqc19SW7rxHYkOpq3izhuLQBTtjjQ/mJYM8yWU8NdwA9euRKvb62vzPlPfeGMuNqaRpj/Hm5/rlGc8gmfihp1cAAAAAAIAa5zJe8Zasjyua07F/rKt4i9bFYh/ISwZ5vl4yxlMjj/KKXcrLtMVbRnnSNBuODaOeQzLR6QkWAAAAAACghmVT0WOMN7rWvljnKp5kkGeQJ2M8aeqvr839nHnivhvjZsMqaYau42VjnydYAAAAAACAGnZqjDdijPd+HWujvTkdP3AVT5JBniZ0HWzV3NTAnF0HjfFklBftRV9fm4oTvdfFSgMraQau42VjuadYAAAAAACAGuU1tUWu4u2Iu5sycdRVPEkGeSr3ZbxsU+ZNYzw1zCgv9zOn19dKk76O92rBM8kLsS3O8iQLAAAAAABQgzJtscYY7/2u7Y42V/EkGeRpsmO8qV7Gy4/xHrjwa2t9HdVIr6/N/fz5llGeNI3reMNxgydZAAAAAACAGuQy3pldsD1WN2XisKt4kgzyVInLeF5Tq0Z/fe19N8bNBlfSuBfyfuk6HgAAAAAAQB0wxjvzKt7ZA/E9V/EkGeRpMnWtmpua6mU8Yzw11P9Wvh6pUqO83hvidqMraRLX8TLR6WkWAAAAAACgxnhN7fu17oi7mzJx1FU8SQZ5muwYz2U8afqvrz05yrsuVhpfSaMu483P9WrBM8pLruMBAAAAAADUGJfxTruKl45nSl3Fm/14PO0qniSDPJV6Ta3LeNLMvb420xZv3f8n8SUjLGmc63jDsdQTLQAAAAAAQA1xGe+dzt8R3aWu4uX+8yO5v77Wh+aSDPJUaoznMp5UnlGeS3nSGdfxflnwrPKiJ1oAAAAAAIAa4jLeO1fxZqdj31hX8RZuiiU+LJdkkCdjPKlKr6+9IW43yJLreEWu42VjuadaAAAAAACAGmGMF//2gu2xuikTh13Fk2SQp6nUtWpuyhhPqswo774b42ajLDX4dbxXz3hmycQPPdUCAAAAAADUiEZ/Te3y1XFJczr2u4onySBP07mMNzBn10FjPGmGh65fj1Sx19fmR3n3/0l8yThLDdkT8dCo55ZM3OLJFgAAAAAAoAY0+mW883dEt6t4kgzyNO3LeHP7njPGkyo7ysu0xVu918VKAy012BjvwtyzymujruNti7M83QIAAAAAAFRZNhU9jTrGu7Y72lzFk2SQp5loz9xHnp3KGG9o1uARYzxpmq+vzf0s61KeGv463nCs8HQLAAAAAABQZdlUbCvygWZDjPEu2B6rmzJx1FU8SQZ5mm75QV22KfPmVC7jbVhwywpfQ2lyo7xSl/KM8tRA1/EKn2NedB0PAAAAAACgyhp1jHf7XfGZ2enY5yqeJIM8zWQPXPi1tdmmzL96Ta1klCeVtWxsHvUck4lOT7gAAAAAAABV1KhjvNa+WOcqniSDPJWr+z+5es1ERnnGeFL5Xl+bH+X1XhcrDbeU0DHe/MjEKwXPMi+5jgcAAAAAAFBFjTjGu7Y72s5OxzOu4kkyyFO1R3lDs9KHvnXZDZ/3tZJcypOm8Lrada7jAQAAAAAA1JBGHOOdvyO6mzJx2FU8SQZ5qvYob2jW4JHuqzqu9zWSZq6ur0eq2Cgv19tGeWqA63j/03U8AAAAAACAKmm0Md7td8VnZqfj+yWv4g3Es20bo8MH2ZIM8lSOHrjwa2tPH+V5Ta1U3lFesdfX5kd5Xl+rRF/Hy8ZyT7oAAAAAAABVkE1FTyON8Vp3xN0lr+Jl41jLo9Hrw2tJBnmq1KU8r6mVvL5WmoELeT8veLb5uSddAAAAAACAKsh+Ltblr4M0whjv2u5oa07HD0pexRuMfQu2RKcPrSUZ5KmSozyvqZWqeynPKE9133BsGPV8k4lbPO0CAAAAAABUWKYt1jTKGK+lLzY1DcUbJa7ivdnaF9/0QbUkgzxJSv6lPKM8JexVtRfmnmleKxjj/TC2xVmeeAEAAAAAACqoUS7jdayN9uZ07C91Fa95MA66iifJIE+SGutSXrHX1+Z/Nu69LlYaeanOXlW7edRzznCs8MQLAAAAAABQQY0yxjt5FS8TR4texcvEkfP6Yv2ynkj5YFqSQZ4kGeW5lKc6HOPNH3UdLxsvuY4HAAAAAABQQY3wmtr8VbzZ6dhX8ipeOva3bYwOH0ZLMsiTJK+vLTbKcylPdfK62nWjnncycYunXgAAAAAAgApphMt4rX2xrikbJ4pexcvGsXm7Y6ureJIM8jTlAc+K1vbHPrjju/cs6uzy9ZAScynvuWKvr3UpTzV/HS8TrxQ887zgOh4AAAAAAECFJP0yXv4qXnM6Dox1Fe/S3ljqg2dJBnmazhhvYM6ug/nv0dCs9KHuqzqu93WRknEpr9jra/M/O7uUp7q6jjcUV3vyBQAAAAAAqICkX8Zr6YtNJa/iZeK4q3iSDPI07Staq+am9s7pP3D692loVvp1l/Kk5FzKe3xR7Cv2+lqX8lQX1/GG43lPvgAAAAAAABWQ5DHeeFfxzhqKFxdsiU4fMksyyNN02zunf3+x75VRnpSsS3kDi+JgsVGeS3lyHQ8AAAAAAIBEv6b2vEdiQ8mreNk41vJo9LqKJ8kgTzPxmtrCy3hFRnleXysl6FJeqdfXupQn1/EAAAAAAAAaWFIv491+V3zm7IH4XqmrePmLeRc/EEYRkgzyVJEx3umjPJfypESN8p7z+lq5jgcAAAAAAMBJ2VT0JHGMd8H2WN2UicMlruK9OW93bHUVT5JBnio9xvP6WqmxXl9rlCfX8QAAAAAAABrIqTHeSJLGeONdxZs9GPtcxZNkkKeZrP+cBzOTGeP53kku5Umu4wEAAAAAACRMEl9TO+ZVvEwcz1/F84GxJIM8uZAnqVyX8oqN8vI/cxvlyXU8AAAAAACABMu0xZokjfGWr45LxrqK15yOA67iSTLIU62M8oZmpQ8Z40nJ7fFFsc+lPLmOBwAAAAAA0CCSdhnv/B3RXfIqXjaOfXhXPLysJ1I+HJZkkKdKjPIG5uw6ON5lvO6rOozEpYRfytuzKJ41ypPreAAAAAAAAAmXpDHeRK7itW2MDh8KSzLIU61cysuP8TYsuGWFr5PkUp7hmFzHAwAAAAAAqHNJek3tmFfxMnF83u7Y6kNgSQZ5qlZdq+amCkd5+TGe19RKjVexS3n5n8l7r4uVxmNyHQ8AAAAAAKBOJeUy3rhX8Qbj4Ke3hbGDJIM81dTra4dmpQ95Ta3UuK+vdSlPruMBAAAAAAAkSFIu4415FS8bx87dGff50FeSQZ5qbZT32Ad3fNdlPEl72+O5YqM8l/LkOh4AAAAAAEAdScJlvPxVvOZ07C95FS/31xZsiU4f9EoyyJMk1eyrrL8eqccuj++6lCfX8QAAAAAAAOpUEsZ4rX2xrmko3ih6FS8TR1r6Y/Oynkj5kFeSQZ6vlyTV66W8/M/sLuXJdTwAAAAAAIAaVu+vqZ3AVbwDl/bGUh/qSjLIM8iTpHrLpTy5jgcAAAAAAFBH6v0y3nhX8ebtjq0+yJVkkGeQJ0n13OOLYl+xUZ5LeXIdDwAAAAAAoIZkU9FTr2O8CVzF29+2MTp8gCvJIM8gr5x1rZqbevij6zf7Wkgqd3sWxbPFXl/rUp5cxwMAAAAAAKgB2VRsK/KBXl2M8ca8ipeNN1v6Y/Oynkj54FaSQZ5BXjm7eUVr+945/QfyX9f+cx7M+JpIKusA+OuR8vpauY4HAAAAAABQg+p1jDfeVbzZA/Hcgi3R6QNbSQZ5BnmVGOMNzNl18PSvrVGepEq0tz2eM8qT63gAAAAAAAA1ol7HeONcxTs2b3ds9QGtJIM8g7xKdNtN8xeX+nob5Umq5qW83utipeGZXMcDAAAAAACokHoc403gKt6zruJJkkFeNV5TW6r+f/PQE75WksrdnsvjKZfy5DoeAAAAAABAldTjGG/Mq3iZON7SH5t9GCtJBnmVvIw33hjPKE9SJSt2KS/X20Z5ch0PAAAAAACgjOptjNexNtrHuoqX+2sHLu2NpT6ElSSDvEpexpvo19goT1ItjPK8vlau4wEAAAAAAJRBNhU99TTGa+mLTU3ZOFHqKt65O+M+H7xKkkFexcd4c3YdnMwY790eOXdzn6+hpGqM8ry+Vq7jAQAAAAAAzLDs52Jd/jpGPYzxTl3FOzDGVbz9C7ZEpw9cJckgr5J1rZqbmuxlvHcbmjV4pPuqjut9HSUZ5cl1PAAAAAAAgDqXaYs19TLGG/MqXjaO5a/iLeuJlA9aJckgr9JjvL1z+g9MdYy3YcEtK3wdJRnlyXU8AAAAAACAOlcvl/EmcBXvQNvG6PDhqiQZ5FW6226av3igec/LUxvjpV93GU9SLY3y8s8GvdfFSiM11/FcxwMAAAAAAJikehnjtfbFurGu4s3bHVt9oCpJBnnV6OYVre0Dc3YdnOplvHsWdXb5OkqqZnsuj6dcynMdz3U8AAAAAACAaaqH19Re2x1tzenYP9ZVvAVbotMHqZJkkFeN7uy6eMlEv5bFLuN5Ta2kWn99rUt5ruMBAAAAAAAwAfVwGa+lLzY1DcUbRa/iZeJ4S39sXtYTKR+gSpJBXtUu4019jHfIa2ol1cvra++/NlYZrbmOBwAAAAAAQAm1fhlv3Kt4g3Hw0t5Y6kNTSTLIq9fLeMZ4kupslDfy4NLoNl5LaEOxushz15WenAEAAAAAACag1i/jnbyKl40Tpa7ifXhXPOwqniQZ5NXrZbxM09Dxb112w+d9HSXVcnsuj6eKXcp7YGmsNmBL5IW8nxc8e73kyRkAAAAAAGACanmM17E22menY99YV/EWbIlOH5BKkkFeNbvtpvmLB+bsOjjV19Tes6izy9dRUj2/vtalvMSN8bpHPX8Nx1JPzwAAAAAAAOOo5dfUnvdIbBjrKt683bHVh6KSZJBX7bpWzU3lvh4vTfU1tcZ4kozyVIODvJ+e8QyWiR96egYAAAAAABhHrV7GW7I+rmhOx/6xruJd2htLfRgqSQZ51e7OrouXuIwnyetrjfIS1VCsHvUclolOT9AAAAAAAABjyKaipxbHeK19sc5VPEkyyKuX19QONu/92dTGeINHuq/quN6/c5JcylONXcabn+uXBc9i+zxBAwAAAAAAjOHUGG+klsZ4HWujvTkdP3AVT5IM8uqhm1e0tk/jMt7rGxbcssK/b5ISPMobuf/aWGXgVocNx4Yiz2PLPUUDAAAAAACUUIuvqW3dEXc3ZeKoq3iSZJBXL6+pnfplPK+pleRSnmr6Ot6rBc9kL8S2OMuTNAAAAAAAQBGZtlhTS2O8a7ujbayreLMH4jlX8STJIK/mLuNN8GtUbIznNbWSktqey+Mpo7wEXscbjhs8SQMAAAAAABRRa5fxLtgeq5sycbjEVbwjLY9Grw82Jckgr9Yu401jjPe6y3iSXMpTjV/I+6XreAAAAAAAABNQS2O8/FW8swfie67iSZJBXt1dxmve8/LUxniDRzZ+9vaV/v2S1MCjvJEHlsZqo7eaHuN1j3o+y0Snp2kAAAAAAIACtfSa2tYdcXdTJo66iidJBnl1dxlvymM8r6mV5PW17+ZSXk0P8n5a8Iz2kut4AAAAAAAABWrlMt7Jq3jpeMZVPEkyyKvHMd5g896feU2tJM3M62tdyqvBhnLfk8LntOFY6okaAAAAAADgNLVyGe/8HdHtKp4kGeTV7WW8D+z+0VQv4xnjSTLKKz7Ke/CauNsQrqav473oibqcRmbl+kKuv8z1q1y/zfVWruO5ns+1NdfHfZ2m/XUeOTMAAAAAAJiGWriMl7+KNzsd+1zFkySDvEa7jJdpGjpujCdJY47yRv7TNbHBGK5Gr+NlY7mn6nIZyX1tR/559FhsVL/P9WfvjPeY4tfaIA8AAAAAgJlRC2O8C7bH6qZMHHYVT5IM8hrxNbXfuuyGz/t3SZLeb8/l8ZRRXk1expsfmXjljGe2TPzQU3W5nBzYjUyy53LN8bWb0tfbIA8AAAAAgOmr9mtql6+OS5rTsd9VPEkyyGvQMd6h7qs6rvfvkSS5lFcXDee+9oXPbZm4xZN1OYysm8IY792e8PWb0tfcIA8AAAAAgOmp9mW883dEt6t4kmSQV/eDkbk7nzbGkySjvIa9jrctzvJ0PdNGPnXqFbSnD8SO57o/10Xvv5Z25OO5NuT6dZFR3uW+jpP+uhvkAQAAAAAwddlU9FRrjHdtd7S5iidJBnmNfCHPGE+Spv/62oevjk2GchXsiVg36vltOFZ4ui6HkYGCcdihd8Z3Jf/+/DDvnwt+zZ/7Ok76626QBwAAAADA1GRTsa3YB1qVGONdsD1WN2XiaKmreOfviLU+dJQkg7wkj/KM8STJpby6vI6XjVcLnuFedB2vXEZeKRiHdU3g19w6esTHJL/ub5329XvL1wMAAAAAgAmp1hjv9rviM7PTsa/kVbzH4+mFm2KJDxslySAvyaO8oVmDR4zxJGlmR3ku5VXpOl4mOj1hl8vI7wrGdbMm8GvOKvg1v/N1nPTX/cenff3+ztcDAAAAAIBxVWuM19oX61zFkySDvKQP8vLddtP8xQMf2P2jEpfxXv/WZTd83r8zkuRSXt1dx8vEKwXPci+5jldOI78tGNd9aAK/ZlbBrznh6zjpr/tfn/b1+0tfDwAAAAAAxlSNMd613dF2djqecRVPkgzyGmWQ9/4o77GXCsd49yzq7PLviyRNvz2Xx1NGeRVsKFZX7zreyB/n2prrmVy/OfVK0fz1uOO5Xsj1WK7FyXuCH/lewbjumxP4NR0Fv2ZfDfxz1Nn3L/dj2/tfv13+P0kAAAAAAJRUjTHe+TuiuykTh13FkySDvEYb5OW7eUVr+7tfF2M8SXIpr84v5P2k4Jnuf5b/Ot7JIddzBQOzsfq7XJcn5yl+5IaCf75f5/rYGH//nFw/Kfg1d1bxz1+n37+RO077M93h/5sEAAAAAEBRlR7j3X5XfGZ2Or5f8ireQDzbtjE6fIgoSQZ5jXApb8/cR541xpMko7y67Yn4UpHnuuXlfYod+Vqu309izHV6f5qcp/mR5wv+2X6a6yNF/r6P5vrbgr/3J1X8c9fx929k+Wl/lv/D/0cJAAAAAIBRsqnoqeQYb/7D8aWSV/Gycazl0ej1waEkGeRJklTuUd7DV8cmg7qyXMf7eXmfYvODrCkNuU7v0WQ80Y9ckOvw6KHdyDmn/voHcm069SrY0/+e/K/5RJX+zHX+/Tt52e/dP0er/68SAAAAAABnyH4u1mXb4u1KjPG+/OW46OyB+F7Jq3iDsW/Bluj0gaEkGeT5ekmSXMqrk4ZzX7/C57tM3FK+p9iRL5QYaP33XLe/M1B77+/94KnXug7meqvIr/lKMp7s869xHTlR5PWu+SHe/yryz53/zxZU6c/q+wcAAAAAQHJl2mJNpcZ4H3s4Vo1xFe/N1r74pg8JJckgzyBPklTO9lweT7mUN6Ovqr0w90z3WsEY74exLc4qz1PsSEuuXxeMsv4x1yUT+LUfLfJ61xNnDsDq2cjSXL+dwGW5fdW76ub7BwAAAABAglXqMt7td8VnTl3Fe7vYGK95MA66iidJBnkGeZKkao/yXMqboet4w7GifE+yI48UeTVryyR+/Vm5nin4PR5LxlP+yWtyfzXGEO9Qrruq/Gf0/QMAAAAAIJkqNcbLX8WblYlXi17Fy8SR8/pi/bKeSPlQUJIM8uptkHdn18VLHvyju+/zfZWk+mzX4vgLo7xplo35kYlXCp71Xirjdbz8GOv4aUOs3+X6xBR+n3MKrrT99p3fu16NzMq1Pte/jDHG+8tcc6r85/T9AwAAAAAgmSrxmtqTV/H2xv9VbIh38ipeOva3bYwOHwRKkkFePQ7y8mO8wea9P8v/WR85d3Of760kuZTXoK+rXVfkea+nfE+zI8tn7jLayI6C32t5fT7hj3zq1JW58V5T+5tc/77Kf1bfPwAAAAAAkqcSl/HmPxxfasrE0aJX8bJxbN7u2OoqniQZ5NXrIO/0Md67PdLywF7fX0lyKc91vPhlPBllvMI2MlAwwlo6jd9racHvNVB/T/gnB24niozv8lfo/qzIUO8fc32oin9e3z8AAAAAAJKl3JfxTl7FG4jvjXUV79LeWOpDP0kyyKvXQd5tN81fXDjGe2+U51KeJNVtjy2Kp4uN8h6+OjYZ303iOt5wfLm8T7UjzxSMsD4wjd/rAwW/1zP19YQ/cnuJS3hP5Go99fd8rMhrbMf45zz56ts23z8AAAAAAJiAcl/Gu2B7rG7KxOGiV/EycdxVPElSvQ/y8pfxxvvzu5QnSfVb/+L4c5fypnkdb1ucVd4n25FfT+DVrFPtX+rnCT8/mhv5XcGf/3/l+t+L/L0dRf5ZHyzx+37h1F//ba6/zvVN3z8AAAAAACiinGO88a7inTUULy7YEp0+4JMk1fMgr9hrakvVd+79u32vJak+23N5POVSXq1ex8sbeauMg67f1s9T/shPC/7s/5DrI2P8/euL/PMun8Dv+998/wAAAAAAoEA5X1M75lW8bBxreTR6XcWTJNX7IG8yY7x36/83Dz3h+y1J9dmuK+I7LuXV4nW8vLKNufL9vj6e8kduKvhzH3/n1bTj/rq/KPLr/vi0v/7NiY32fP8AAAAAAGhg5bqMN95VvOZ0HLj4gbjeh3mSpCQM8gaa97w8mTHee6+vPXdzn++5JNXpKG9x/IVRXq1dx8sb9ZrWmeyt+njSH/mrgj/3n07w183J9XLBr/2nXOe8M8w7+Zra0//ar3z/AAAAAADgNNlU9JRjjDfOVbw35+2Ora7iSZKSNMjb+ZFv78j9mX4/mTFepmno+Lcuu+HzvueS5FKe63gzaeREwQhrVuM97Y8cLvgaXDCJX/uxXL8u+PX7cv1zkYHb13z/AAAAAADglFNjvJGZHOONdxVv9mDscxVPkpTEQV6+//xvN2yd6BhvaFb69XsWdXb5fkuSS3mu4820kR8WDLoWNt4Tf+GVuUn/+o4JXJv7ie8fAAAAAACcUo7X1I55FS8Tx/NX8XxYJ0lK8iAv3yMtD+wd71Le0KzBIy7jSZJRnut45TLyFwWDrnWN99Q/6rWvH53C77FhjDFe/ordp3z/AAAAAAAgJ9MWa2ZyjLd8dVwy1lW85nQccBVPktQog7x821s3PTzGZbxD3Vd1+L+LkuT1ta7jlc3IVwoGXS9P4/e6Ktcvcj2R66Zc50zj93p56hfrJv3f9Q8FX4NvTPH3+asSg7yVvn8AAAAAABAzfxnv/B3RXfIqXjaOfXhXPLysJ1I+nJMkNdIgr9SlvPxlvPVtXbf6HkuSS3mu45XTyEdy/b5g1HXHFH+v/1Hw+3xvir/P5um9QnbS/33Zgj/3r3LNmcLvs7jEIO/5qf1+vn8AAAAAACTITI7xJnIVr21jdPhATpLUqIO800Z5717Ge/2eRZ1dvr+S5FKe63iVMOq1p8dztU/y93i4yBBt+RT+LJ2jf5+y//MvLPJnf3KSv0dHrl+P8dra58o4ymvw7x8AAAAAADVvJl9TO+ZVvEwcn7c7tvoQTpJkkPdOfedsTefHeBsW3LLC91aSGqf+xfHnxUZ5D18dm1zHq4SRTxW5snbindehjvtrZ+V6pMiY6x+m8Oe4NtdvqzPoGnmmyD/Drgn8utZce8cY4p3ewXcu2vn+AQAAAADQQGbqMt64V/EG4+Cnt4XLP5Ikg7yC7uy6eInvqyQ1Xn1XRrphLuXV1HW8d41sKjEieznXN3IteGe8dfLvzY+4Lsm1Idc/Ffk1+XHY5ZP8778911vF/wwV+ef/WK5/KfHP/5VcHz3t782P8G7K9ee5flfi6/arEiO/X03+ep3vHwAAAAAAdWqmLuONeRUvG8fO3Rn3+cBNkmSQJ0lSA17Kq7nreKfLv6Z1Qpfexutrk/jvnJPrsbF/v4r981916nWv0/3n/x+5Lsj1wVx/V2LwttX3DwAAAACARJuJy3j5q3jN6dhf8ipe7q8t2BKdPmiTJBnkSZJUYpR3ZWQSfSmvJq/jnW7k/mkMufKvK71zEv9d+Vec/qLg9zhc3UHXyMJc/zyNr8Hed0Zq7/1+H8n10yJ/X5fvHwAAAAAAiTUTY7zWvljXNBRvFL2Kl4kjLf2xeVlPpHzAJkkyyJMkaWqX8up+lFfT1/FOd/J1pi9Mcsz133J9ahL/HX9b5Pf4x1z/vvqDrpFzTl19+90k/vn/+ztft6K/30cKLuXd6fsHAAAAAEBiTfc1tRO4infg0t5Y6kM1SVJSB3l3dl28ZNWf/G8dvheSJJfy6v06XqGRBacurn0316FTA7Xfn7qk9qtT//mmd0ZYk/69C8dcT7zzitdif61q//wfeef1rSN/leufTv1z5/9Mb5365//rXOtzfWICv1f+1a7/Z651vn8AAAAAACTWdC/jjXcVb97u2OqDNElSkgd5+THeYPPen+X6hVGeJGmm23VFfCcxo7y6uY5XKe8NtvKvc72qxF8z6PL9AwAAAACgXmRT0TPVMd4EruLtb9sYRgmSpEQP8t4d4737+xvlSZLKUd+VkS42ynv46tjkOl49G3k518oSf82gy/cPAAAAAIB6kk3FtmIf6ExkjDfmVbxsvNnSH5uX9UTKB2eSpCQP8grHeEZ5kqRqjPLq5lKe63iTZNDl+wcAAAAAQN2Y6hhvvKt4swfiuQVbotOHZZKkpA/ySo3x3vvvad7zcv7v8b2RJLmU5zre1Bh0+f4BAAAAAFAXpjrGG+cq3rF5u2OrD8gkSY0wyFu9dOHSscZ4p/13veRSniRppuu/MjJ1dynPdbwpMOjy/QMAAAAAoOZNZYw3gat4z7qKJ0lqlEHeeJfxjPIkSV5f6zrezDDo8v0DAAAAAKCmTWWMN+ZVvEwcb+mPzT4MkyQ1yiBvsmO800d5Xl8rSWrYUZ7reFNk0OX7BwAAAABAzZrsGK9jbbSPdRUv99cOXNobS30IJklqlEHeVMd4+YZmpV/vvqrjet8nSVJDjvJcx5sigy7fPwAAAAAAalKmLbYUHeN9Lh4rNsZr6YtNTdk4Ueoq3rk74z4ffEmSGmmQd3KM9wcDr0xxjHfIGE+SVM76r4xMzY7yXMebBoMu3z8AAAAAAGpOpi3WZNvi7Ylcxjt1Fe/AGFfx9i/YEp0+8JIkNdIgb7qX8e5Z1Nnl+yNJathRnut402DQ5fsHAAAAAEBNybZFb9ExXpHLeGNexcvGsfxVvGU9kfJBlySpkQZ5q5cuXDrVMV6maej4ty674fO+N5Kkhn19ret402TQ5fsHAAAAAEDNKPma2oLLeBO4inegbWN0+HBLktRog7z8GC//utmpvqbWZTxJUsOP8lzHmyaDLt8/AAAAAABqQsnX1BZcxmvti3VjXcWbtzu2+kBLktSIg7zpvqa2+6qO631PJEkN/fpa1/FmgEGX7x8AAAAAAFVX8jW1p13GW746LmlOx/6xruIt2BKdPsiSJDXiIG86r6nNj/FcxpMkGeW5jjczDLp8/wAAAAAAqKpsKrYVfU3taZfxzt8R3U2ZOFz0Kl4mjrf0x+ZlPZHyAZYkqREHed+4+srOwT8YeHWqr6l1GU+SVA+vr/3PS2Kr63j1wKDL9w8ASLg/9CUAAACoYdlU9Iw1xstfxZudjn0lr+INxsFLe2OpD60kSY06yDv1mtpfeE2tJKkRLuWVdZSXje5Rz52Z+KIn98ky6PL9AwASbFGu13It96UAAACoQcNtsWGs19Tmr+LNyuQe7EpcxfvwrnjYVTxJUiMP8k6N8ab6mtpDXlMrScnsyhWfbPf62ikN8l4tePb8uet4U2HQ5fsHACTUilz/X/4Hhlwncl3qSwIAAFBDMm2xpdRlvC9/OS46eyC+V/IqXjr+f/buB8rq+j7w/ucOMwyDEwgMChpEbf0Ttxs3egchgDgYDLbJsomtPaS2NnrKrpaEda06bsgTJhARJHSiINw7nDUn7ubU87DrqZu68TzuY07Nk6xZn6zbJG2yJX3cNY9d3EOXSHUrD2Pvc3+AzTDzu8P8hjsz98/rdc775BQExt+d6/Cb36ef7/NXfS5u8qBNktTMA3nJZjvH1EqS0srl3jnWOv1nL3XO+eFjF17x+O31PKBX8fjanthU1WG8Qnwm5f7z0+7ex8NAl9cPAGhAfXFyEG9oPy13vksDAABQA4rXxN2pw3j52HX+tlhfcSteMd7q2hWbbMWTJDX7QN7v9qy4KRmqG+8xtTbjSVJjN3ygJpd756226f/zxVnzXu6/6AOP3rp47Q0rG2Ior1rH1xZjURTilWH3oD+Nr8QMd/DjYaDL6wcANJDk78R/ECOH8d7tpXIdLhMAAMAUqnRM7cPXxb6O3fG1UbbivXjl58MmH0lS0w/knc0xtXun7Xll/erFq113SWqugby0Wqb9r4PnzP7zx+df/Icb62FAr9LxtQ/2RO9ZD+Tti/Uj7kMLcac7+PEy0OX1AwAaxPxyL0blYbx3O1Au53IBAABMgWJ39KU9QPnYP45/lyvE6xW24h2Z3R/bPVSTJBnI+/JLyWY8x9RKkqoxkHd6fzvY2vbXf9o550eFhZc/sb5Wj7ittCnv4etix1luyDs47F70lfhKvNdd/HgZ6PL6AQANYkOceRjv3b7ocgEAAEyyU5vxTntosnNFlH7xC/FfohjHK2zFe/6qz8VNHqhJkgzkFUuPtT3yJ2czjOeYWkkykDfWcrl3jrVO/9lLnXN++NiFVzx+ey0N6FUayttxfWyr2na8gVjnLh4AAE54PMY+lPebLhcAAMAkKV4Tdw8/pvauX43SzEfjr1O34hXiaNeu2HTjp6PbwzRJkoG8U+UKfzPeYTzH1EqSgbyzHNB7q236/3xx1ryX+8+/7A/uzK9Zu6oWj6/94g1xb1W24/VFqzt5AAA4YXq5P46xDeS9XW6ZSwYAADDBCvn43NAHJI8ujdKKf3Zi6O6dClvxXrQVT5JkIK867Z225xXH1EqSgbyJqLXtzR/PnPWTr86/+A83Ll57w8q6PL62EJ9JuS/9tDt5AAA4TVe5n8TYhvL+R7mLXTIAAIAJMvyY2t/59SjN+vLIIbwTW/GKcWRuf2z28EySZCCvesN4jqmVJAN5k9PfDra2Hf1+55wfFRZe/sT6yTri9qyH8kZux/vv8ZWY4W4eAABGeH+5IzG2obwflpvlkgEAAFRZsTs+/e4xtf3LorT4/vRBvFNb8Z6/+oFwlJ4kyUBeFYfxfrdnhY2zkmQgb0rK5d451jr9Zy9NxoDeuI+vHSj//PD704H4lLt5AACo6MZyx2NsQ3n/rtw0lwwAAKBKit3R9+5DkH/ya1Ga8/sVt+IdsxVPkmQgr7oDeckw3h1r/sEq11aSDOTVShM9oFdpKG/H9bGtwma8ReV+OOwe9WD0Ras7egAAGNVdMbaBvKRHXC4AAIAqKObjgXe34q28O0othYpb8V646nNhc48kyUBeFQfy9k7bc9AxtZKkWhvIm4wBvUzH16ZtxyvG77ijBwCAMUkG7cY6lHeXywUAAHAWCvm4MzmmduPHR9mKV4ijXbtik4dkkiRVdyBvb9ujP7YZT5JUDwN5EzWgV2lT3kM9sWnYhryDw+5VfxpfiRnu6gEAYEySo2iTI2nHMpCXHHF7o0sGAAAwDoV8fG7X8ji++P7Rt+Ll7w+DApIkVRjIWx+fLi2LZaXL4/IT//s78TulfbHvjMN4D+eeeHtu26GXk2EGSZLqbSCvmgN6lYbydl4Xu04M4xXiMyn3q3e7qwcAgExmlfthjG0o70i594/lN/1kua9LkiRJkuLrtyyMH931q1Ga9eUKW/EejePnfCz+bO7CeEGSpGZozoL40ezz4vBYeqDtvv9vc+wpXRFXpX7TMhnO2xk7Kw7jfS7+dWlWvFWq9+ELSZIqljv2zrS2l342o/OR/9Y5b+2fzHnfzP9rtK/Dv3ll/Ne0obxPXhF/Edvi6Gn3rF+Kv4n2eMa9vSRJkpS5/7PcsTEO5f2kXNeZBvL6Yuxn4UqSJElSw/ahi6LUfV/lrXit/yxKnZdGadY8SZKUVm/b75VmxodG/Xp7ZVyZuikvGcbrjL8xqCFJarIBvb8ptbZ9s9Q+s680c3ZPaVbXjBFfXz/xiyMH8n7n11PuW5e4r5ckSZImqT8uN91AniRJkiSN0t//VJQ6Hq2wFe/L5Z9bHaVZ5xm0kCRptC7ILRnT191fjV89bRhvcxwwjCdJUsqA3nu6Ok98jf21S38+jLevO0rzvjTs3nVruRb39pIkSdIk9riBPEmSJEmq0MWfTB/ES2rbGKX3XGjAQpKkM9U5J/m6mhvT1972aC99Ib5wYhhve/yr0px40wCGJEmpHS9Na32pNL1jZ6lnYXdpx/LW0i9uSbl/XeXeXpIkSZqCNhjIkyRJkqThtUSp/ZGRDzNmPBqljusNV0iSNNZa27J9Db40Li19Mf5l6bx4w7CFJEljLNdxpBRXfb0U6z5div73nrh/nb6n/LW1zf29JEmSNMn9dbm/byBPkiRJkoa3auQw3qIHo7R9ZZR+/VLDFZIkjaX2meP7OtwZWw1XSJI01n7hP5TiV+8txWe7S7Fnxt/dw17y2+7tJUmSJBvyJEmSJKlW+tzpw3jveSRKjy2OUjF/MkN5kiSN4aja3Hi/Fs8o94oBC0mShpf7m1Jr2zdLrRc9VMp96mN/tw1vaK17o/RL/8R9vSRJkjRFPR6jMJAnSZIkqTm7ZuR2vN+69efDeIbyJEk6c9PO+oi8m8odN3ghSTKA1/bNUvvMvtLM2T2l91w4o9T6T0fes77bL30uSje+3329JEmSNEX9cbnpow3kfbLcv1VTdugMnzyHXCPJe1aS96vUsE2Lr8eDMXjaQ42Ho/TLvzByIC/pU38v/uvchfHHkqam2efF4dEGgpKfd52kiWnOgvhR8h5Lq31m/K/qfBNzv0EMSVKTDeAde2da2/99ZMZ7Hv2vnfPW/smc98381rtfe8+5OX6U+3IcSxvE63zk5P8j2dqFvuck+R6xJO9XSVXs35c7NsbvZf2kXFdABV8/wyfQv3WJwHsW8H6FhjUQnxrxcGNNufdG6R9WGMrbtTz2//KdcbWkyW/uwnhhtIG85MGl6yRNbpfm45byV9TB6gzkTX+nte3lP2md/rOXJE1u09pe+tmJYzErlAwMuU6ayhplAC+Xe+dY8u/TOedHhYWXP7F+xbrLlgz/2nr1A7G6fW88V2kr3uV9Udq+snzPeoHvOYHvEQPer0AVzSr3wzF+H+tIufe7ZPjCAt6zgPcrMFxftEYxfnraw43t5eaeHMhL+pVLDOVJBvIkVerGO6K7dXq8HFU86qNteryY/L6ur+RrrDS0Rh7AO+292B+bc4U4mjaIN/PRKK27LUr7uqP0jy7wPSfwPWLA+xWoomnlvjHG718dL7faJcMXFvCeBbxfgTQD8bERDzk+8vNhvHf75BXxF4byJMMCkkbWOScKUcVhvHebe0Fsdn0lX2OlehzIyzqAN3QrXtve+HalrXgXffHkVrzkXvQ3Lor/4ntO4HvEgPcrUFWPZvje1Z0uF76wgPcs4P0KpDm5He8Hpz3kePj07Xh/13nxfzx8XewwlCcZFpD08y6+KtZF1Y6qPb1cLo7m18Qq11nyNVaq9YG88Q7gZdmK9+ufOrkVL7kHHcjHVt9zAt8jBrxfgaq6K8P3rR5xufCFBbxnAe9XoJKB+NSIhx1rUobxTg3kxb+ICwzlSYYFJJ3FUbW5jEfXzogXXGvJ11ip1gbyqjGAN9ateBdui9K2np/fe54axvM9J/A9YsD7FaieG+PkEbRj+X7Vv4uTR9uCLyzgPQt4vwIjnNyOd/C0hx3bK2zHGzKQl7TzuthlKE8yLCA1e+fMjscj28a7Usd7HF0r+Ror1eNA3t8OVmsAL8tWvHW3/Xwr3om6y3eyvucEvkcMeL8C1fT+cj8b4/epflhulkuGLyzgPQt4vwKVFOPTIx56fKTCMN6wgbxRN+WtiIIHZZJhAanRu+gDcWtkPKp2RufJ9+j0joxH17bEkatXx2rXXfI1VprEDXhvtU3/ny+eM/vPHz//sj+4M79mbVWPUD/TVrxf3BJ/u/WG0+81h2zG8z0n8D1iwPsVqI6ucj8Z4/eo/ke5i10yfGEB71nA+xUYTTFePu2hx8PxZsXteCkDeaNuyjOUJxkWkBr9qNq2+HFkGKor//N/9x59T1eUWqZlG8prnxnPuPaSr7HSBB9B+/LMWT/5ajKAV60NeFm34rXsi+O/deuwrXgjN+P5nhP4HjHg/Qqcvenl/niM35t6u9wylwxfWMB71nsWvF+B0RTi10Y8/LglflRxGK/CQN5om/LKP77TAzPJsIDkqNqTR9V2zj39fTpzdvajaxdcEhtcf8nXWBnIq84A3uDRthl/9e3Oru8/OtEDeGPdijd/R/zFtp4YHH5vmbIZz/ecwPeIAe9X4Ox9JcP3pW51ufCFBbxnvWfB+xUYTV+0RjEODnv48WosiH8/noG80TbllX+830MzybCA1EgtvDzWR9ajas9Jf6+2tWcbyGtpidfya2KV10HyNVYG8sZzBG1r29Hvd8754WOLrizcNhkDeGPdipcrxpvL74mny/eQx0fcV6ZvxvM9J/A9YsD7FTg7n87wPamtLhe+sID3rPcseL8CZzIQnxrxEGQg7o3z4rnxDuSNtinPUJ5kWEBqpKNqW6bFK5HlqNrpcazSe/XE0bUt8U6W36+9M57yWki+xspA3pgG8Kb/7OVzZv/541MxgDfWrXjln/vuPR+LR9KG8UbZjOd7TuB7xID3K3B25pd7cQzfi/rfy+VcLnxhAe9Z71nwfgVG85WYEcX46bCHIMm2vEVnO5BnKE8yLCA5qnbEUbVvvacrjoz2fi3/nkcj48a9ZEuf10PyNVYG8tIG8GbO+slXF1zyrzdM1QDe0Lq+FA/kCnE4dSteId7u2hm9exbHF8Y5jOd7TuB7xID3K3B2ZpT7g1He7/+xXIfLxNn6ZLnNo/RJlwi8ZwHvV6h7A7FuxMOQQvSeGKi7PH43LowvVSz5+TMM5Dm+VpqcFv29+OfzfyEKlUp+3nWSqtuFV8TtkXFwrmthPDBnQfxotOGe5OfbZ8YzWX7flmnx6tKbY7nXRfI1Vs07kDd0A97Cy59YXwsDeEO34rXviWcrbsV7LJ5feU8sK+SjdxzH1PqeE/geMeD9ClTX5pTvP/203PkuDQAAwFgU46VhD0NePbEdbwyDdlmyKU+S1IBH1b4aGYbm2mbEC2PdtnVVT9yUa4nDWX7/jlnxpNdGkppxW+ufP37eRV+/58Y75nXX4sc36la8YryZbMXbviIWFa+JzWexGQ8AAKiudeX+5tT3nd4s90GXBAAAYCwG4lMpD0U2VXsY70yb8h6+LnZ6kCZJqqc6ZsXXIttRtUevvC4+muX4y3kL474sf0ZSsrXP6yNJqpeteKs2xJJ/cXVcUIXNeAAAQPUtKfeX5f6RSwEAADAWfdEaxTg47KHIwYnYjjeWTXmG8iRJ9dL5l8WdMY6jat/99WMdyEtqnxnPZflzWlriNUfXSpJqeivevnhj/s64O9mKlwzj2YwHAAA1baZLAAAAMFbF+PSIhyOF6J3IYbwzbcpzfK0kqdZLht1apsUrkWFILhmqG/p7ZBnIu3p1rM61xJEsf945s+Nxr5UkqUa34r3wkbsinwzijTaMZzMeAAAAAABQf4rx8rCHI69O9Ha8sWzKM5QnSarpo2o740BkO6r2rXePqh3PQN6Jf/6C2BzZjq4dXHRl3Ob1kiTV2la8dwfxRjum1mY8AAAAAACg/hTi11IekmyarGE8Q3mSpGY5qnbewrhv+O+TdSAvqW16vJjlz22ZFgdXrIslXjdJ0lRvxWt/LL4xdCueY2oBAAAAAIDG0hetUYyDwx6SHJzM7XiOr5Uk1eVRtS3xWmQYimubEd++8Y7orsZAXrJlL9m2l+XPnzkrvuq1kyRN2Va8YryZbMXbviIWnTaM1x2bHFMLAAAAAAA0joH41IiHJYXonYphPJvyJEn1UvvMeDqyHFXbEoeuXh2r036v8QzkJZV/rj8cXStJqpOteKs2xJKhg3inNuOl3vvZjAcAAAAAANSnr8SMKMYrtbIdbyyb8h6+LnZ64CVJmsrmXxwbowpH1Z7tQF5S6/R4OTIeXZu2pU+SpAnZircv3jjv4bh3+Fa80YbxbMYDAAAAAADq10Csq7XteGPZlPfQ9bHFgy9J0lS0eG2szHpUbfvMeG603/NsBvKuWBprI+NwYGdXPOq1lCSd9dfE3ljZvjueHm0r3sfXxweHD+IlDeTT/x+wbMYDAAAAAADqWzFeqsXteGPZlGcoT5I0RUfVPhPZjqo9nF8TqyZqIC+pc048luljysWxiz4Qt3o9JUnj3ha7Mza27IvXKm3FK//83WmDeDbjAQAAAAAAjWsgPlXL2/FsypMk1ehRtaWo0lG11RrIS46gbW2LH2f5uMr//J86ulaSdBZb8QYrbMV77iN3RT7rMJ7NeAAAAAAAQH3ri9Yoxsu1vh1vLJvytl0fD3owJkma6JItd8m2u8h2VO3TY/m9z3YgL+niq2JdZDy6dvZ8X0MlSdm24uUK5a+FaVvxCvFXC7bHXZUG8WzGAwAAAAAAGlsdbcdzfK0kqVGPqq3mQF7SObPj8ch2dO1bV/XETV5fSdKoQ+n3x6r2vfFc2iBeUsdj8UcfXx8fHG0Yr5CP3vK923HDeAAAAAAAQGOqs+14hvIkSVPZeRfFPZFx+1zya8b6+1drIG/FuljSMq38NT3Dx9k2I17wGkuSKrVge2wYZSve62faipc0kI9tqcN4+XjIzTkAAAAAAFD/CvGb9bgdb2gPX5d+1JGhPElStbt6dazOtcSRyDbk9nyWP6NaA3nvHl2bbL7L8vF2vS82ea0lSUNb3BsrO3bHk+X7xcHUrXh74g/PtBVv1GNq8/FQX0+0ukEHAAAAAADqW1+0pmzHe7VetuMNbdfy2G0oT5I00V2xNNa2tsX3Y4zDbS0t8dpYj6qdiIG8pJmz4quR7ejao1k/ZklS4zZ/Z2w82614SfvzsSXtnm0gH1vdnAMAAAAAAI1hINaNeKgyEPfW2zDemY6v3XZ9POhBmiSpWt14R3TPmhf9uVwcizMMt82/ODZm/f2rPZC39OZY3jItXg1H10qSMm7Fa98bz6UN4mXZindqM97mtGNqDeMBAAAAAACNpRg/GPZQ5S/rcTveWIbybMqTJFW7iz4Qt7a2xY+jwlBbx6x4cjy/b7UH8pIWXRm3jWWAcGjzFsZ9XmdJas4WbI8NuUIcOtuteEkD+fR7tGJ39LspBwAAAAAAGsdAfGzEw5VC9NbzMJ7jayVJU7Etb/a82JnLxVsx9NjXlji8eG2srJWBvKTO98b+yHJ0bUsccXStJDXfVryO3fFk+f5w8Gy34p0axttW6Zjavp5odWMOAAAAAAA0jpHb8V6t9+14Q/vS8tjn+FpJ0mR15XXx0dbp8XKcGmZbeHmsH+/vNVEDecnRtbmWOBQZhvLaZ8ZzXl9JaqqteIersRUvqZCP3rRjaovd0eeGHAAAAAAAaCyFuGnEQ5aBuLdRhvHe7eHrYodNeZKkydyWN2te9I/3qNqJHshLuvCKuL38N4HBcHStJGnoVrw9caBaW/GSitecuBczjAcAAAAAADSJYrzcyNvxbMqTJNVzEzmQl9QxK74W2Y6uPZRs1/PaSFLjNW9H3JcrxKFqbcUbMoxXShnG63czDgAAAAAANJ6BWDfiYUshPtOIw3jvtvO62GVTniTJQN7J8mtiVa4lDke2o2uf9tpIUmNtxWvfE0+lDeKNdyveiWG87tiUdu81kI+tfT3R6oYcAAAAAABoPGnb8fbHJY08kJf0+ytiwFCeJMlA3snOvyzujIxH1y64JDZ4fSSp/luwPTbkCnE4dSvevnhj/s64O+sgXtL+fGxJO6Y2GcZzIw4AAAAAADSmQvxas23HG8umPMfXSpKabSDv1NG1T0aGgbyWlnjN0bWSVN9b8Tr2xIHyfeBg2jBe22Px/Hi24iUN5NPvtQzjAQAAAAAAjW3kdry/jEJc1iwDeUlfWh77bMqTJBnIi6sXr42VuZY4EhmG8jpmxde8RpJUf83bEfflCnGo2lvxhmzGG3GPVeyOfjfhAAAAAABA4yrGx5t5O97Qvvyh+JpNeZKkZh/IO3Fs4SWxIbIdXTu46Mq4zeskSfXR0rtjefueeCZtEO9st+IlFbtjU9oxteUf73MTDgAAAAAANLZi/GDYw5dXY39c0owDeTblSZIM5P289s54KrIcXTstDq5YF0u8VpJU252/I+5s2RcHJ2Ir3olhvGtiR4XNeH1uwAEAAAAAgMY2EKttxxvZruWx21CeJKnZB/KuXh2rc7k4GhmG8s6ZHY97rSSpNlvcGys79sSB8n3f4ERsxTOMBwAAAAAAkLYdrxCXNftA3mib8hxfK0nNVX5NrEo2xV3VEzc120Be0ryFcV9kGMjL5eLYxVfFOp87klRbzd8ZG3OFODRRW/GSCvnorXBMbb+bbwAAAAAAoPGlbcfbH3cbxvt5v78iBmzKk6Tmrn1mPBsnB82OJsNpzTaQd+oaPBcZhvJa2+JPb7wjun3+SNLUt/TuWN6xO742kVvxkgbysS1tGK/841vdfAMAAAAAAM2hGC8PO6r2ldgflxjEG9tQnk15ktQER8ReEJtj2LBZ+8x4evHaWNlMA3nJlsBcSxyJDEN5nXPiMZ9DkjS1nbcz7mnZF69O5Fa8U8N4u9LumQzjAQAAAAAAzaMYHx/xUKYQnzGAl17/snjCpjxJaq6uWBprk614kXYsa0sc6XpfbGqWgbzxHl170QfiVp9LkjT5Le6Nle274+m0QbxqbsVLKl4Tmw3jAQAAAAAADN+OV4xXoxCXGb4zlCdJOv2o2tFKjnJNtsc1w0DeuI6unR4vO7pWkia3Bdtjw2RsxUvan48tacfUFrujv68nWt14AwAAAAAAzaEQvzni4cz+uNvQ3Zn78ofia46vlaTmPKq2UrmWOLTgktjQDAN5V6+O1ZW2Blaq/HH1+5ySpIkvf3+sat8TT03GVrxTm/F2pN0bFbujz003AAAAAADQXIrx0rCjal+J/XGJgbux9fsrYsCmPElq3MYzdHbO7Hi8GQbykjq74tHIeHTt5dfGJ3xuSdLENX9nbMwV4nDqVrxivNm1KzZtXxGLqjWMN5CPbYbxAAAAAAAAEgOxesRDmoG416Cd42slSSdrmx4vRoaBs5aWeG3FuljSLAN5yRG0rW3x/XB0rSRNeYt7Y2XH7niyfF83WGkr3qoNsaRag3hJhXz0ph1TO5CPrW64AQAAAACA5lOMl4c9pDlYbpEhu+odX2soT5Lqt673xabIMGiWtPDyWD9pR+nWwEBeUrLxLpeLt7Jcp9nnxnafY5JUvRZui/W5QhxK3Yq3L96Yuys2V3Mr3pBjao+nbMbr7+uJVjfcAAAAAABAcxmIj414WFOIXsN1jq+VJP18+1vnnPJXx4jBGMOQWed7Y/9kfny1MpA3zqNrj16xNNb6PJOksyt/f6xq3xNPVdqK17o3fljtrXhDhvFKNuMBAAAAAAAk+qI1ivGDYcN4r9iON3HH1267Ph70wFCS6rOLPhC3tkwrf50c7RjWtvjxZB1VW4sDeUnJUbSRYSivbUa84OhaSRp/83fGxlwxjqRuxSvGm127YlO1t+IZxgMAAAAAAEhTiN9M2Y73GQN1jq+VJKWXDNvNnBVfjfThssELr4jbJ/tjqrWBvPEcXTv3gtjs80uSsrX07ljesScOpA3iJbXtje9+5K7IV3sQL2kgH7vS7nXKPeRGGwAAAAAAaE5p2/GK8XoU4jLDdBO/Kc9QniTVdwsvj/UtLfFaDD2qdk4UpuJjqbWBvHEdXdsSR67qiZt8bknS2DpvZ9zTsq/8dajSVryd0TsRW/FG24yXDOP19ZTvMwEAAAAAAJpSMX4nZTteryE6m/IkSWPfltcxK54sf1UdTI6ynapjV2txIC+5FuVrcjAyDOW1z4znfF5J0ugt7o2V7Xvi2Ypb8R6L76y8J5ZNxCDeqMN43dHnJhsAAAAAAGheJ7fjHRw2jPdK+X8XGaCb3KG8bdfHgx4sSlJ9N//i2HhpPm6Zqj+/FgfykpJrUv5bx2BkGMrrWhgP+JySpApfb3bGxlwhDqduxdsXb0zkVjzDeAAAAAAAAKMZiE+NeIizP+42OGdTniSp/qrVgbwTR9fOiUJkO7r20NWrY7XXVZJ+3tUPxOr2vfFc+b5tsMJWvO998LNx40QN4iUV8tFbvnc5bhgPAAAAAABgONvxDOVJkgzk1fbRtc94XSXpZOftjHtyxTiSuhWvEG9P9Fa8pIF8bEsdxsvHQ26wAQAAAAAAbMer1aG8wQd7YpOHjpKkRhrIS1p0ZdwWGY+uPe+iuMdrK6mZW9wbK9v3xFOjbcX7wGfjlydyEG/UY2rz8VBfT7S6wQYAAAAAAJqb7Xg1U/+yeCLtwdYXVsV9HkBKkhppIC/pnNnxeGQ7uvZIfk2s8vpKasa6dsWmXCGOpm7FK8abk7EVL2l/Prak3bMM5GOrm2sAAAAAAICE7Xh1cXytTXmSpEYbyFuxLpa0TItXItvRtU97fSU1U/n7Y1X7nng2bRDv3a14K++JZRM9iHdqM97mtGNqDeMBAAAAAAC8y3a8ujq+9qHrY4uHkpKkRhnIG+/RtfMW2hwrqUm24n0pHsgV4nClrXhz+2PLZGzFSxrIx67UY2q7o9+NNQAAAAAAwLtsx6u7oTzH10qSGmkgL6mjMw5EtqNrDy29OZZ7nSU1alc/EKvbHosXamEr3qlhvG2Vjqnt64lWN9YAAAAAAAAJ2/Hq9vjabdfHgx5UStLEdOMd0d0Iw171NJB34ujalngtMgzldcyKJ32+SmrIger+2JwrxNFa2IqXVMhHb9oxtcXu8h0lAAAAAAAAQ9iOVxf1L4sn0obybMqTpImpsysebZkWr1x4RdxuIG/yWnh5rI+MR9cuuCQ2+JyV1FBb8fbGt2tlK15S8ZrYYRgPAAAAAABgLGzHa4hNeQ/2xCYPLyWpel2xNNbmcvFWnBr4Omd2PJ5sbzOQV5tH1yZb9RxdK8lWvAkdxiulDOP1u6EGAAAAAAAYzna8RhnKG3zo+tjiIaYkVefY1Na2+HGkDH1dmo9bDORNfIvXxspcSxyODEN5M2fFV33+SmrgrXgvrNoQSyZzEO/EMF53bEobxhvIx9a+nmh1Qw0AAAAAADCU7XgNN5Tn+FpJqsJRtXPKXw0rD34NJtvybrwjug3kTWzJMbSRYSAveW3q/XhhSbbijdiKty/emNMf2+79h3HJZA/j7c/HlrRjapNhPDfTAAAAAAAAaWzHa8jja794QzzgwaYkja+Lr4p1uVwcizMdkTotXll0ZdxmIG9ia58ZT0fGo2vraVhSkq14o27F2xvfXXlPLJvsQbykgXzsqrQZz400AAAAAABAGtvxGnoo76Ge2OwhpyRV56jaURqcPT8eNJDn6FpJqupWvEK8fd7Dce/2FbFoKobxTm3GG3GPUeyOfjfSAAAAAAAAlQzEOtvxGvv4WpvyJKmqR9WmDuTVw5a8eh7IS+paGA9kfV2STYc+pyXV5Va8x+I7U7UVL6nYHZvSjqkt/3ifm2gAAAAAAIDRDMQ3bcdrnPqXxRMpQ3nHvrAq7vPgU5LO3EUfiFvHclTt0DrfG/sdWTtpR9c+m+W1SY4UTjYe+tyWVDdb8YrxZteu2DRVg3gnhvGuiR0VNuP1uYEGAAAAAAAYzb7osR2veTblff7DscEDUEmq3NKbY3kywBUZBr6So22TX2cgb5I2Sq2O1VmPrk02Hvr8llQnW/G+N5Vb8QzjAQAAAAAAnC3b8ZptU96gTXmSVLlzZsfjkWHQK9mkV09HojbCQN54j669NB+3+ByXNKX/7fpSPJArxOHUrXiFeLtrZ/RuXxGLpnIYr5CP3grH1Pa7eQYAAAAAADgT2/GadVPesS/eEA94KCpJp7fw8lhf/uo4GFk2r3XFo3V1RGKDDOQltc2Ib0e2TYZ/6vNc0lRtxWvfE8+OshXvhWvvjRumchAvaSAf29KG8co/vtXNMwAAAAAAwFjYjtfUx9du+XBs9IBUkk62Yl0saZkWr0a2Aa/vJ7/OQN4UHl2bi6NZXrPZ58Z2n++Samkr3tz+2DLVW/FODePtSjum1jAeAAAAAADAWNmOZygvH8c+/+HY4EGpJGU/qjbq9AjURhrIO/Hvc0FsjgY+YlhSA2/F2xvfXbUhlkz1IF5S8ZrYbBgPAAAAAADgbNmOZyjv1FCeTXmSmr3zL4s7o8GPqm3UgbzxHl174x3R7XNf0pRsxSvGm3N3xeZa2IqXtD8fW9KOqS12R39fT7S6cQYAAAAAABgL2/EM5Q07vvYLq+I+D08lNWNLb47lLS3xWmQZ6JoeL9frQFcjDuRdeV18NJeLt7K8hrPnxU6f/5KmYiveyntiWS0M4p3ajLcjbTNesTv63DQDAAAAAABkYTueobyUTXlfvCEe8CBVUrPVMSuejGxHnr6VDIDV679vIw7kJc2eHw9mfB2PXbE01noPSJqUrXiFeLtrZ/TWyla8pIF8bDOMBwAAAAAAUA2246lc/7J4Im1T3pYPxz0eqEpyVO0om9XOje31/O/cqAN5J46unR4vZnkt22bEC46ulTThW/Eei+draSteUiEfvWnH1A7kY6sbZgAAAAAAgKxsx9Pom/JKWz4cGz1cldTorVgXS3ItcSiyDXB9u94HuBp5IG9cR9fW+YClpBreileMN+fuis21tBVvyDG1x1M24/X39USrG2YAAAAAAIAsbMfTGI+vNZQnqeGPqu2MA5FhcKvcYD0fVdsMA3lJnV3xaGQ8gviqnrjJe0JSVbfi7Y3vXntv3FBLg3hDhvFKNuMBAAAAAABUi+14MpQnSVefd1HcExmPqp17QWxuhH/3Rh/IS2qdHi9Hxs2H3heSqrIVrxBvz+2PLbW2Fc8wHgAAAAAAwESwHU/jGMr7/IdjgwevkhqppTfH8qxH1bbPjOca5d+/GQbyLs3HLdGkA5eSJq7FvbGyfXc8XXEr3mPxnY/cFflaG8RLGsjHrrRhvHIPuVEGAAAAAAAYL9vxdIb6l8UTNuVJavTaZ8azkeVI05Y4nF8Tqwzk1VfnzI7HI9vRtUevXh2rvUckpTV/Z2xs2RevpW7F2xdv1OpWvNE24yXDeH090epGGQAAAAAAYDxsx5PjayXp6vkXx8bIMKSVNG9h3NdI16BZBvJWrIslLdPilci2CfFZ7xNJFbbiDVbYive9lffEslocxBt1GK87+twkAwAAAAAAnI1CfH3Yw6ODtuPJUJ6kZuqqnrhpHEfVPt1o16FZBvLePbo2l4u3srzmXQvjAe8XSe9uxcsV4nDqVrxivNm1KzbV6lY8w3gAAAAAAAATKW07XiF6DZ7JUJ6kJjuq9plo4qNqm3EgL6lzTvlvPRlfd0fXSs1d/v5Y1b43nksbxEvqeCz+aNWGWFKrg3hJhXz0lv/uftwwHgAAAAAAwESwHU9VHsr7/Idjg4e1kuqp5NjZyHhUbXK8bSNei2YbyHN0raQsLdgeGypuxSvE6+Wfv6uWB/GSBvKxLXUYLx8PuTkGAAAAAAA4W7bjyaY8SU3e4rWxMpeLo5FhIKujMw406vVotoG8pPMvizvLr+tgls+BBZcYPpea6mtFb6zs2B1Plu+XBlO34u2JP/z4+vhgrQ/jVTymNh8P9fVEqxtkAAAAAACAs1WMbw17mPSq7XjKWv+yeCLlod6goTxJDXlUbS7euqonbjKQ11h1zIonI+PRtckwp/eQ1PjN3xkb630rXtL+fGxJG8YbyMdWN8YAAAAAAADVMBCrUx4qbTJgJsfXSmqWut5X/rqX8aja5HjbRr4mzTqQt/TmWN4yLV6NbEfXPu19JDX2Vrz2vfFc2iBePW3FO7UZb3PaMbWG8QAAAAAAAKqpOOLh0uu248nxtZKapfyaWJVriUORYQCrbUa80OjXpVkH8pIWXh7rw9G1ksot2B4bcoXy14g634qXNJCPXanH1HZHv5tiAAAAAACAatkXPVGM46c9XCpEr6EyGcqT1ERH1T4X2Y4oPXL16lhtIK9xB/LGc3RtS0u8lmzX856SGmcrXsfu8n8HijFY71vxTg3jbat0TG1fT7S6MQYAAAAAAKiWYnxr2MOlV23Hk6E8Sc3S3AWxJTIeVTv/4ub4b1izD+SN5+jajs444H0lNcxWvMONsBUvqZCP3rRjaovd0eeGGAAAAAAAoJpObsc7/SHTQNxrkEzV7JEPxR+mDOUNGsqTNNVd1RM3ZT2qNtmm1zTDik0+kDfeo2vPvyzu9P6S6ngr3p440Chb8ZKK18QOw3gAAAAAAACTZeR2vNdtx9Nkbsr7/Idjg4e/kqaqthnx7ch2VO2hxWtjpYG85hnIG8+Rxo6uleqzeTvivlwhDjXKVrwhw3illGG8fjfDAAAAAAAA1Za2Ha8QvYbHNMmb8hxfK2lqBi8Wxn2R8aja5Nc01XG+BvJOdPXqWJ1riSNZPlfOmR2Pe59J9bMVr31PPJU2iFevW/FODON1x6a0YbyBfGzt64lWN8QAAAAAAADVVoj/MGI73v64xOCYJrJHPxR/ZChPUk0cVZuLo5HtqNqnm+06Gcj7eV3vi02RcYDzwividu83qbZbsD025ApxOHUr3r54Y/7OuLveBvGS9udjS9oxtckwnhthAAAAAACAiVCIm2zH05RtylsW/9rxtZKmejteLhfHIsMRpM10VK2BvIpHHL8QWY6unRavOLpWqt2teB174kD5PmgwbRiv7bF4vh634iUN5GNXpc14boQBAAAAAAAmGwP75QAAgABJREFUykB8c9hDp7+Kr8T7DYtpMprzSCyqcHztoE15kiary6+NT7S2xfdjDINVyXa0ZrxGBvIcXSs15FD2jrgvV4hDjbYVb8hmvBHDeMXu6HcTDAAAAAAAMFEG4mO246kWhvK+/KH4WtpQnk15kiarG++I7s455a+CEYNR+aja55J/zkCegbyk2fPjwch2dO3gpfm4xftNmvqW3h3L2/fEM2mDePW+FS+p2B2b0o6pLf94n5tgAAAAAACAiTRyO97rsT8uMSSmGtqUd8ymPEmT2UUfiFtbp8fLMWyYKpeLt67qiZua9boYyEsv7XMlRj+69mCzDnVKtdL5O+LOln1xsBG34p0YxrsmdlTYjNfnBhgAAAAAAGAiDcRq2/FUa0N5jy6NbxjKk1QT28/Oje3JEF6cGqSatzDua+brYSAvvSuWxtqhnydjKdnE6D0mTX6Le2Nlx544UL7vGWzErXiG8QAAAAAAAKZaMX4wYjteIS4zGKaprtKmPMfXSprsLr82PtHaFt9vnxlPN/u1MJBXufK/f384ulaq6ebvjI25Qhxq1K14SYV89FY4prbfzS8AAAAAAMBES9uOV4zNhsFUK5vy9iyJ523Kk1QLJceLLr05lhvIM5BXzaNrk0HPqf6Y5yyIHw39mH7ri/H58fw+v709Pjf095l7fvyZ/3aoVlp6dyzv2B1fa+SteEkD+diWNoxX/vGtbn4BAAAAAAAmw0B803Y81fpQXoVNeYOG8iTJQF5DHF3bFY9O5cf80d+NnUM/ngW/EP9xPL/PBZfFd4b+PjfdFbu8Z1QLnbcz7mnZF6828la8U8N4u9KOqTWMBwAAAAAAMFkG4mMjHkoVotcQmGqxR5fGNxxfK0kG8hrx6NpcLo4lxyJP1cdbKsUN5Y/hnSEfzzuvl2LN2f4eb5ditfeMprLFvbGyfXc8nTaI10hb8ZKK18Rmw3gAAAAAAABTrRjfGvZQ6i9tx1MdbspzfK0kGcirueONW6bFK1FHR9cuvDJeGPrxrPnH0X82W/aSbXneL5rKFmyPDc2wFS9pfz62pB1TW+yO/r6eaHXjCwAAAAAAMBn2RY/teGqkoTyb8iTJQF4ttfDyWF/+G9dgZBjKmz0/Hpyqj3d9f/zz0z6Wc+Ngps+L8+PPhv76394en/N5oKkof3+sat8TTzXDVrxTm/F2pG3GK3ZHn5teAAAAAACAyTRyO97rtuOpHrpia1xiU54kGcirhzpmxZOR8ejaK6+Lj07RsbXd01rjfw39eA78dawby6/9Vik+MfTXtUyLY+Xf71qfA5rs5u+MjblCHE7dileMN7t2xabtK2JRowzjDeRjm2E8AAAAAACAWpC2HW9/bDHspQbYlDdoKE+SDOTVSktvjuUt0+LVyHJ07fR4aao+3r+3Ip4a+rFcc1P8q7H8umW/Vv6b5JBfd8XSeNrrr8lscW+s7NgdT5bvawYrbcVbtSGWNMogXlIhH71px9QO5GOrG14AAAAAAIDJVoxvDHtI9Ze246keh/IeXRrPOb5WkgzkObq2Oj36n+KOoR/HjHPicKkU+TP9upnvif8+9Nf1/VH8rtdek/Ye2xbrc4U4lLoVb1+8MXdXbG6krXhDjqk9nrIZr7+vJ1rd8AIAAAAAAEymk9vxjtuOp0Y5vnbPknje8bWSRuuKpbF27gWx2bUwkFdHR9cevXp1rJ6KjzXrcN2IIb7O+B9ec01G+ftjVfueeKrSVrzWvfHDRtuKN2QYr2QzHgAAAAAAQK0oxreGPax63XY81ftQXqVNeYbyJN14R3QnR4CWvwKW2mbEt6dqyMlAnqNrsx5dm3y+TsXHOvz42cuujWeyHHPb/SvxhNdcE938nbExV4wjqVvxivFm167Y1Ghb8QzjAQAAAAAA1KJirBjx0KoQvYa61Mib8hxfKzV3s+fFzhi6eawlDnctjAdcGwN59XB0bdf7YtNkf5zfKcXHh71njpdK8aG0f7b8492tbfHm0H/+wF/HOq+3Jmy49e5Y3rEnDqQN4iW17Y3vfuSuyDfaIF7SQD52pQ3jlXvIjS4AAAAAAMBUKcY3hj20+qv4SrzfQJdsypPUiF1+bXwil4u3osL2sSuvi4+6TgbyJrP2mfFMZDm6tiWOTMVWx7nvix8M/Th+4wvpRz7/7mNx/9B/bva5cdDrrInqvJ1xT8u+eK3iVryd0duIW/FG24yXDOP19USrG10AAAAAAICpMBCrbcdTozfnkVhUaVOeoTypCY+qbYvvx2jDTrl4a/a5sd31MpA3WeXXxKpkS2NkGMprnxnPTvbH+Y/+WWwf+jHMvyReSvvnLvql+ObQf+7G2+MRr7Oq3eLeWNm+J56tuBXvsfjOyntiWSMO4o06jNcdfW5yAQAAAAAAptJAfHPYMN4r5f9dZIhLNuVJasQ655S/0o1x4CnZlndVT9zkuhnIm4zmLYz7IsNAXtL8iyf361epFDfkcvHO0I/hL0unv0fK/0zP8H/m9VKs8Rqrms3fGRtzhTicuhVvX7zRyFvxDOMBAAAAAADUsn3RM+Ih1v642/CWDOVJauCjao9FhoGnc2bH466dgbxJPLr22Syfny0t8drSm2P5ZH6MF14Zfzz0Y7jht2P30J//xO/FQzGGLXrSeFp6dyzv2B1Plu9bBitsxfveBz8bNzbqIF5SIR+95b+7HjeMBwAAAAAAUItsx1OTDuVVOr728x+ODR52Sw19VO2PI8uw07R4Jfl1rp+BvEkbNro5luda4lCWz9OZs+Krk/kx/tN/Eb839M8vv7b/z9CfP/fC+M9Df/43vhCbvbaqRuftjHtyhfL7I20rXiHebvSteEkD+diWOoyXPzEICwAAAAAAwJSyHU+G8p63KU9qnpKhpch2HOjgRR+IW107A3mT3YJLYkPy+Zfl8/X8y+LOSTy2NhlufXPon/9cKX41+bm/KMWvDP3xXEscL//zy72uOtuteO174qnRtuJ94LPxy408iDfqMbX5eKivJ1rd4AIAAAAAAEw12/HU5M15JBZVOL520FCe1HglA0vJ8Z4xxgGnzvfGftfNQN6UHV3bGU9Ftm2Or07m0bW/tDL+zdA/f8UtUUx+fNVvxZ6hP/6L18SzXk+d1RHJ2+L2ilvxivFmM2zFS9qfjy1pw3gD+djqxhYAAAAAAKAW2I4nOb5WatLjQDs640CcYftYy7Q4OJnDTQbyVI2ja5PP7cn6+HZ/P24f+mfPPi/+y4nPgfPjz4b++Gf/TXzG66nxtOKfxpJzHonHR9uKt/KeWNbog3inNuNtTjum1jAeAAAAAABALbEdTzptKK/CpjzH10oN2vyLY2OuJQ5HhaNqF10Zt7lOBvKmunkL477IdsxyaTKPWT7nvfH/Dv2zv/rT+M2h//f0jjhSKkXea6nMG013xJ0t++K1Slvx5vbHlmbYipc0kI9dqcfUdke/m1oAAAAAAIBaYTuelGlTnqE8qTFbvDZWzpwVX41h2/I650TB9TGQVyu1zYgXItvRtQdXrIslk7LB7Jby3yKH/NnnLoqXh/7f/+DD8QdeQ2XditexO57MFeNYs2/FOzWMt63SMbV9PdHqxhYAAAAAAKBW2I4nZd6U97k1cbsH5VJjlmzDa5kWr8bJYaZXbrwjul0XA3m10tWrY3WuJY5EhqG8ZNB0Mj62/1SKtaN9HMnGPK+hxtrCbbG+ZV/5v8W24p2okI/etGNqi93R54YWAAAAAACgltiOJ43anEdiUYVNeYOf/3Bs8MBcasyW3hzLOzrjwMLLY73rYSCv1up6X2yKjEfXXnxVrJuMj+3cC+M/p/35nXPiv3ntNOateHviQPm+ZNBWvJMVr4kdhvEAAAAAAADqhe140vg35XXHW4byJMlA3lTUOj1eigwDeck/Pxkf18298WDan3/9b8Rer5tsxRv3MF4p5e+h/W5mAQAAAAAAao3teJLjayXJQF5ddsXSWJvLxVuRYSivc048NtEfV6kU15c/rneG/9k/KMXHvG46i614L6zaEEuaaRDvxDBed2xKG8YbyMfWvp5odUMLAAAAAABQa2zHk6o5lOdYS0kykDepla9hsiFrzAN5uVwcSwb5JvrjuuiXyn/HHPLnJsfYer00rq14++KNOf2x7d5/GJc02zDe/nxsSTumNhnGcyMLAAAAAABQi2zHk8bVnEdiUaWhPMfXSpKBvCk4uvblyHZ07cs33hHdrp2musW9sXLUrXh747sr74llzTaIlzSQj12VNuO5kQUAAAAAAKhVtuNJ1d+U1x1vfXZN3OYhuyQZyJusrrwuPpr16NrZ58Z2105T2YLtsSFXiMOpW/EK8fZ5D8e921fEomYcxju1Ga+U8vfMfjexAAAAAAAAtcp2PGkij68dNJQnSQbyJrPZ8+PByHZ07dFkkM+101RsxWvfHU+nDeKd2Ir3WHynWbfiJRW7Y1PaMbXlH+9zEwsAAAAAAFDLbMeTqjaUt2dJPJ+2Ke9za2K9B++SDOQZyJus2qbHi5Ht6NqXHF2rmtmKV4w3u3bFpmYdxDsxjHdN7KiwGa/PDSwAAAAAAEAtsx1PqmpzHolFaZvyCt1x1FCeNDUlQ0YGjQzkObp2DEfXzo8HXTvVwFa87zXzVjzDeAAAAAAAAPXOdjxpQobyKm3Ku/+X41YP46XJrbMrHm2bES9cvTpWux4G8prq6NpzY3tkPLr2iqWx1rXTlGzFK8TbXTujd/uKWNTMw3iFfPRWOKa2380rAAAAAABArbMdT5rQ42vTNuWVO/bZNXGbh/LS5LToyrgtl4tjkQwbtcTheQvjPtfFQF4zbYdsbYsfh6NrVftb8V649t64oZkH8ZIG8rEtbRiv/ONb3bwCAAAAAADUA9vxpCkZykuOr/3f1sSdHtBLE9uKdbGktS3+NIYNHLXPjKcXr42VrpGBvGbo4qtiXfnzfjAyDOUZXNVkbsWb2x9bmn0r3qlhvF1px9QaxgMAAAAAAKgXtuNJUz6UZ1OeNLF1zIonY5SjOQ0dGchrmmOb50Qhsh1d+9aV18VHXTtN6Fa8vfHdVRtiSbMP4iUVr4nNhvEAAAAAAADqne140qQ155FYVOn42ns/Gus8tJcmYCPTJbEhxrAVrH1mPGtbnoE8R9emvjeec+00IVvxivHm3F2x2Va8k+3Px5a0Y2qL3dHf1xOtblwBAAAAAADqge14Uk1tyrv/l+NWD++l6h5V29ISr8VYt4G1xKGLPuB9aCCvsVt0ZdyWbL6LDEN58y+Oja6dqr0Vb+U9scwg3t9txtuRthmv2B19bloBAAAAAADqie14kqE8qZGP53xv7I8sx3O2xJGreuIm185AXqM3c1Z8NeN741B+Taxy7TSWur4UD1TcileIt7t2Rq+teD9vIB/bDOMBAAAAAAA0AtvxpCkfytuzJJ43lCdNTAsvj/UxhqNqh9b1vtjk2hnIa5rtkdPilch2dO3Trp1G6+oHYnX7nni24la8x+J5W/FOr5CP3rRjagfysdUNKwAAAAAAQL2xHU+a8uY8EotsypMm4KjEtbFyHMNGz7h2BvKa7ejayDi0ev5lcadrp8xb8Yrx5txdsdlWvNRjao+nbMbr7+uJVjesAAAAAAAA9cR2PMmmPKmB6+iMA5HlOM5cHL3yuvioa2cgz9G1Zz7WORl4de005q14e+O7194bNxjASx3GK9mMBwAAAAAA0Chsx5Nqbiiv0qa8z66J2zzwl8bevIVxX2Tc+pX8GtfOQF7THl3bEq9leb8kA6+unc64Fa8Qb8/tjy224hnGAwAAAAAAaHy240k25UmNuqlpdazOtcShyHZU7bOunYG8Zm7h5bE+Mg6xXnhF3O7aNfGx4L2xsn13PF1xK95j8Z2P3BV5w3cjG8jHrrRhvHIPuVEFAAAAAACoV7bjSXW5Kc9QnnTm2mbEC5FhqCjZDJZfE6tcOwN5jnnOdsxzy7R4denNsdy1a77m74yNLfvitdStePviDVvxsm/GS4bx+nqi1Y0qAAAAAABAPbIdT6r55jwSi2zKk8Z9VG0pS/Mvjo2unYE8xdWL18bKXEsczvL+OWd2PO7aNeVWvMEKW/G+t/KeWGbwLuMwXnf0uUkFAAAAAACoZ4X4+rCHZwdtx5Pqa1PeZ9fEbQYDpNNLttxlHSZyVK2BPJ3egktiQ2Qbah10dG3zbMXLFcr/jU0/ovb43F2x2VY8w3gAAAAAAADNZ38sTR6YDTuuttfwk+T4WqneS4brIsMgUTK8d1VP3OTaGcjTiPfS05Hx2GdH1zbwsPP9sap9bzxXYRCv1Lov/vP7++Jjhu4qV8hHb/nvb8cN4wEAAAAAADQi2/GkuhzKc3ytVP2jas+/LO507QzkqTpH13bOiYJr14AbE7fHhkpb8co//vac/thmK97oDeRjW+owXj4ecnMKAAAAAABQ705uxyvZjicZypOa/qjaznjKtTOQp8p1LYwHIuOQ66IrHafeMEOZvbGyY3c8Wb5fGEwbxmt7LL537b1xg4G7cR5Tm4+H+nqi1Q0qAAAAAABAvRuIbw57mPaq7XhS/TTnkVjk+FqpKkfVHkmG+Fw7A3mq7nurtS2+f+Md0e3a1Xfzd8ZGW/HOvv352JI2jDeQj61uTAEAAAAAABpBIbqjGMeHPVTbZMhJqsNNedfGdwzlSePf4pX8GtfOQJ7O3NWrY3Xmo2vfG/tdu/rdite+N55LG8SzFS/zZrzNacfUGsYDAAAAAABoJMURD9detx1Pqs8+eF9cZlOe9HdH1R6KDMNCHZ1xwLUzkKcJHXodvDQft7h29dWC7bEhVyj/99RWvLNuIB+7Uo+p7Y5+N6UAAAAAAACNIm07XiF6DTZJdb4pb0k8byhPjtMc+6BQS0u8tvTmWO7aGchTttpmxLcj29G1f+ro2vrZitexO54s3x8M2opXlWG8bZWOqe3riVY3pgAAAAAAAI1i5Ha8V23HkxpjU56hPDXtINcFsTkyHlU7/+LY6NoZyNM4j67NxdEs77fZ82Kna1cXW/EOV9qK17Uzem3FG3uFfPSmHVNb7I4+N6QAAAAAAACNpBgrRjxkG4h7DTNJjdGcR2KRoTw13UantbEy2XYXGYaD2mfGM66dgTxN3hBsLhdvXbE01rp2NboVb08cGGUr3ndW3hPLDNmNveI1scMwHgAAAAAAQLMoxNeHPWR73XY8qSGPr/2uoTw10VG1z0SWwaCWOJJfE6tcOwN5muSja6fHS46ura3m7Yj7coU4ZCte1YfxSinDeP1uRgEAAAAAABrN/lg64mFbIXoNMEkNenzttfGdtKG8z66J2wwhqFFKjp2NjEfVdr0vNrl2BvJ09l15XXw02XyX5f03e3486NrVxla89j3xVNognq14ZzGM1x2b0obxBvKxta8nWt2QAgAAAAAANJpifGPEdrz9cYnhJalxN+U9ujSesylPjVqy5S7XEociwzBQR2cccO0M5Kl6JQN2kW0odvDSfNzi2k1dC7bHhlwhDtuKV93252NL2jG1yTCeG1EAAAAAAIBGtC96ohjHbceTmqs5j8Qix9eqgY+qfTYyDAK1tMRrS2+O5a6dgTxV+eja6fFilvdictSto2unZitex544UL4PGLQVr7oN5GNXpc14bkQBAAAAAAAa1cjteH8VX4n3G1iSmmNTnqE8Ndzg1gWxOTIeVbvgktjg2hnIU40cXXtubHftJq95O+K+XCEO2Yo3YZvxRgzjFbuj300oAAAAAABAoyrGCtvxJEN5e66N7xjKUyN0VU/clMvF0cgw/NM+M55z7QzkaeLq7IpHs7wnk/dwcuy0azexLb07lrfviWfSBvFsxTv7it2xKe2Y2vKP97kJBQAAAAAAaGSF+Pqwh2+vx/64xJCSZFOeobz6LoYNuDTN8Zgz4tuR8ajaZIjP54yBPE1srdPj5XB0bc10/o64s2VfHLQVb4KG8a6JHRU24/W5AQUAAAAAAGhkhei2HU/Su815JBbtWRLPpw3lfXZN3GaAwUBerTd7fjwYGY+qvfCKuN3ni4E8TXyXXxufyHp0bXL8tGtX3Rb3xsqOPXGg/Pf+QVvxDOMBAAAAAABQbcX41ojteIW4zGCS1Lx98L64zPG1BvLqseR4y1xLHIoMwz4ds+JrPlcM5KmGj65tiSOOrq1e83fGxlyh/N/JtK14++INW/HOvkI+eiscU9vv5hMAAAAAAKDRndyON/xh3GYDSZIM5RnIq8faZ8azkW3Q57BBHwN5mtySI2hbpsXBLO/V8nv7adfu7Fp6dyzv2B1fG2Ur3vMfXx8fNFB3dg3kY1vaMF75x7e6+QQAAAAAAGgGAyeOqrIdT1JqPb8X7zeUZyCvXupaGA9ExqNq518cG32eGMjT5HdpPm4pvwcHs7xf5y2M+1y78bVge2xo2RcHK23Fm78z7jZMV5VhvF1px9QaxgMAAAAAAGgWxVhR7vhpD+UK0WsISdLwTXm7r40XDOUZyKvlruqJm3K5OBoZhntmzoqv+hwxkKcpPLp2Tvlvnlk2Wpbf4zZaZmtxb6xs3x1Ppw3i2YpX3YrXxGbDeAAAAAAAAM3u/2fvfoD0oOs8z3+eJx1CSJtIghDGEED5EwfQyNNJZ0PsCRyojMCgjpIxisLICYMODMbNDOxeeoKEZLyuBgLpfjoelLrWaLEzo6VTWsctU+eWlJ7H6rnMylXujjp2ceEOysoY11DB63seIGun8zydftLP0/3006+X9a6ZCeBKL5Pkqf7M91fOd8Z9U+7nruNJqncpb8/a/MQob/ZVnJeX8/qYpfrfd/Cw56E0MOwpFvPcug/kEv+MGORp1j1d+11fu4au4j3rKl7r21vK9lrP1JZ7Mti/MV0+eAIAAAAAAMwFI1ntOp4kz9fOgfHSm/Pv8/qQZenp+Q+d/mRtoZhfZBKjntPPzc3++TDI08y38m25Pg0+Xeup6Ylbd3suWfhgHnUVb9ou4+2qdRmv3JN+HzoBAAAAAADmkqOv473gOp6kyTxf61Le7Orst+d/yusjlrde3PmXpd55eS6ff2K+n4kubHXnb/2zYZCn9mnRkjwcFy6bM3C8J9cXh/JMzat45RxYNpC7dm7ISkO65jRSyg5jPAAAAAAAAKpjvA1HfZNub7YbG0nyfG3ndUFf/iavj1gufm/+1ZwZbS3P9kIxz2fckKfyYy+uuSZ9/tkwyFP7tGFTeovz8kwae7r2733tftuarek76YF8qVDOy/Wu4l16a3qN6JrXcClbaz1TO1LK3T5wAgAAAAAAzDXl/N24b9L93HU8SQ0/X9ubJ43yjr+Tl+dnGTMu+djn898dz7/Px3fmX4z99xn/LO3YP1797+fUs40fyCULTso3M+Y5TE9dGuTJ07Wd1ooduakwnOdrXsUbyv6lA9nmKl5Lnqk9VOMy3mD/xnT5wAkAAAAAADCX7M26lHPIdTxJU+38u3P2Q2vylFHe8fW+P8kXMmZYsvwt+V+O59/nd87NE2P/fd57SwbG/vHbH8kdh//YnX+Tz8zFr/UpK/K5QjG/qI7z/LNnkKf2bWF3Hk0Dg7zqxcu5/HTtuttzSfUqXuX386/UGuN17clTruK1bIw36jIeAAAAAAAArynnsXHfrHvBdTxJrXi+9s735HoDk/qNjuayQiG/yeFhSeW/f2E075nqv8fB0Vw+9s95bDQfPPzHx/+xudQ7L8/lnqo1yFP7X7Ws9dT0RFVHfHPyouA9ub44lGdrXsUr58CygdzlKp4xHgAAAAAAAK02ktVHXccbyYBRkaSpXsrzfO1xPjP4tnwvY4Yl7/lvMziVK3vVa3m+rjLIM8ibzVWfoU2DT9eefm5unktX8Rbdn4frXcWbvyc/fPctKRnPNb+RUgZqjfEq3euDJgAAAAAAwFxVzt8d8U274ezPI1llUCSplZfyjPLqd9Ng/iJjRiVL3pR9DQ2TTs9/GPvXf3xn/oWvqwzyDPJmeyctzpfSwCCvWMxzc+Hp2tN35ebiUJ6rexXvC9nqKt70XsarjvH6N6bLB00AAAAAAIC5qJwNR13HK2e3IZEko7wZfba2Z15X/kvGDEse/WU2Teav/bejef/Yv644Ly9X/v3W+rrKIM8gby4+XbtoSR7u1K/HhtvSu3B3vlr3Kt5DeaLvjqw3nJvmMV5P+n3IBAAAAAAAmMtG8g+u40mayVHene/J9YYmR/e7G/K3GTMqufi9+VeT+evW/2H2jv3rzl+Xb/p6yiDPIK9TOmVFPpcGBnnVzjg/N3Tc0+Y7clNxKM/WvIo3lP2u4hnjAQAAAAAAMBOGsvGob+KNZMB4SJJLeTPfA/8uN2bMoOTERXlxdDSlYz7p+Ib857F/Xf+38ye+njLIM8jrpBaclMfSyNO18/JMpzxde8Wn09P9QIYnuIr35Oo7c4XRXOsaLmVr5fcvh4zxAAAAAAAAOJrreJKM8tq6Rsd1R434uvP/+DrKIM8gr9N6+8a8t1DIP2WOPV27fGdurXsVbzgHXcVrfSOl7Kg5xivlXh8uAQAAAAAA5jrX8SS14Sjvz/4g7zc2qf/87Llr8/eNPHPb8/v5sq+jDPIM8jxd+2qvnFPKh2brVbyFD+bRia7iXXRnrjSYm6Fnaku5t39junzABAAAAAAAmOtcx5PUpqO8Le/LJmOT13piNNdmzKCkUMyh0dH8s1p/buXHe7rm58DYP//RX3bu1/K8tXn/296V9/nnRAZ5nq7N5J+u3XfFjemZTX+PZ34+m7uG8nTNq3jlHHAVb3raW8r2WmO8kVLu9sESAAAAAAAA1/EktfUob6gnL3q+dszI6M359xkzKPnIX2ZbrT/vTx7KPx/75y15U/Z16tekOqjpOiE/LhTyqyWn5R7/nMggb04/XfurNDDK6z45w7Ph723DbelddH8enugqXt8dWW8sNy2X8bbVeqbWGA8AAAAAAIDfch1P0iwY5d1xzex8WrDZ/cGfZWfGjElOOzs/qnlF6YLKz+1j/rwrbsj9nfo1qQ5qxv69ds3PP571dpcVDfIM8uZiS9505M+R6YCna0/flZuLQ3mu3lW8pYPZ7ire9DRSykDNZ2p7MuhDJQAAAAAAAK9xHU/SLHq+9s/+IO+f62OT0dFcVijkNxkzKPn5aN477s/ZOP7PeWE07+nEr8eZF2Vz5e/15dQY2Sw+JYOz7TlKGeRp6lUvZqaBUV7X/Py0Xa/iLdydrxXKlZ/jXMVrhzHejnrP1PZvTJcPlgAAAAAAALzGdTxJs2yU5/navPOMt+V/zpgxyWUfz+6xf/z9n829mcQVvU6oOC/7coyhzXlrDTkN8gzyPF17jKdrl+WBdvp7WLEjNxWH8qyreO3RcClbaz1TW+5Jvw+UAAAAAAAA/JbreJJm6fO1c32Ud9v/kM9mzJBk8Sn5v8b+8TedkZ+M/eMf+cts68SvQ/UCXib5JOWiJXl4w6b0GisZ5BnkzY26T85DaWCQV7202Q7j3Vev4j2YRyu/L3/FVbz2qHxxdhnjAQAAAAAAMDmu40maxZfybvlA3jeHn63t6ZqfAxkzJnlsNB+s/rH/czS/P/bHC8Ucqvz5l3Ta1+Cst2dTnadq67Z0ebYbKhnkGeR5ujZt+nStq3htO8YbrTHGG/RhEgAAAAAAgCO5jiepAy7l3XFNPjRXhyYX9OVvMmZIsuFDKVd//NKP5cGxP/7Wi/PdTvt7r16665qfp9Pg0OaKG9NjpGSQZ5A3d3p9uNvQ07VLTss9bXgV73uX3ppeA7lpHuP15K5aY7yRUu7u35guHygBAAAAAAA4kut4kjpjlPfcXB3l7f5pbsjYEcmp+d9fHSGdnv8w9sfv/Jt8ptP+3k9anC9lFj5FKYM8tfXT1v/154u3vWv6LrBOeBVvKPtPHsyOLVfnbAO56W1vKdtrPVNbHeP5IAkAAAAAAMDRXMeT1GGX8m67JtfMxaHJojfmP2XMkORL/zEfHfs/n7AwvxgdTakTBzaNPFc7ExevZJCn9rmoWZyXZ9LIRc0T8qNW/+daszV9E17F25Mf9t2R9cZx099IKQP1LuP5IAkAAAAAAEBtruNJ6rBR3nBP/umfX5nNc25o8qHKz+JjRiRvWpkfj/2f3/Hf5K879e+9evGua37+Mcd+qvYfPVVrkGeQ5+naRka8afGQd/nO3FoYzos1r+IN5+Cpf5UtOzdkpXHcjF3GO2qMV+559dIiAAAAAAAA1OA6nqQOGOU92Jsna13Km2ujvH83mmsywaCkejGvk//+q0O77pMzPMHQ5pXqEMcgySDPIE/db8zeNPZ07T+98/Jc3uyreAt255u1hnivXsV7KE+4ijdzlXtyV61nais/3u9DJAAAAAAAAPW5jiepwy/lzbXna990Rn6SGmOS7pPzf8+Vr8E5pXyo+sRkja/BsCGSQZ5Bng4PeIvzsi8NjPLmn5jvT8tVvHIOLBvIXUZxMzjGuzi76lzG6/cBEgAAAAAAgPpcx5M0R0Z5d1yTD82VkckHtuae1BiS/N5HsmeuDW6WvCk7C4X8Kq89VfvTDZvSa4hkkGeQp8OdcX5uqPz88EoaGOUt/Z1sa/FVvCddxTPGAwAAAAAAYLZyHU/SHBnlDfXkubkyyhsdze8VCvlNxo1I/v1orpqLg5vz1ub9XSfkx9X/aoBkkGeQp/EtXJyvZZqerp3wKt5wDi77Qrbu3JCVRnEz13ApW+s8UzvowyMAAAAAAAATcx1PUgeP8h7szZM1RnkvzpXna8+8IP+QMQOS6jO2hjcyyDPIU42Lddekr1jMc2lglLfgpHy3yVfxvrd2Sy4ziJvZRkrZUWuMV/nxu314BAAAAAAA4Nhcx5M0R5+vnSujPEkGeZpcK87LTWlgkFdt2Yr8eTOu4i0dzHZX8dpijDdQ65laYzwAAAAAAAAmx3U8SXP7+drnt7wvm4xQJIM8gzwdrnr1Lo08XVvMixM9XXvMq3h78sNLb02vMdzMV74424zxAAAAAAAAmBrX8SQZ5T3/Z3+Q9xuhSAZ5Bnmqtu4DuaRQzPNpwtO1E17FK+fA0oFscxWvPdpbyvZaz9SWezLYvzFdPjgCAAAAAABwbK7jSTLKOzzKe/GWD+R9hiiSQZ5BnqqdembuqPxu+ZU0MMpbfnZubeQqXt8dWW8I1zaX8XbVuoxX7km/D40AAAAAAABMnut4kozyjhjluZQnGeQZ5GnM07V/nwafrl1zTfqW/ff587pX8YZzcNkXstVVvPZppJQdxngAAAAAAABMnet4kozyaj5fe9s1ucYQRTLI83XS2zfmvdWRXRoY5RUvyn+qexXvoTzuKl57NVzK1lrP1I6UcrcPjAAAAAAAADTGdTxJRnn1RnnPeb5WMsjzdVK1U1bkc2lgkPdqfzruKl45B5YOZNtkruJdd0YuNJSb1mdqD9W4jDfYvzFdPjACAAAAAAAwea7jSdIxR3ku5bVXJy3Ol047K3/qayGDPE1380/M99LIIG9ZpQdev4q3Jz9cuyWXHWsctvOCrFzclYFiIc9U/3uDuWkZ4426jAcAAAAAAEBzuI4nSZ6vnUWdfm5urvzq9Uql0QUn5ZvVZyR9XWSQp+nqnZfn8kIxv0gjo7x35ZWlg9k+mat4a5fksmIh+w7/tWecmBuN5ozxAAAAAAAAmC1cx5Mkz9fOsiFMcV6ezZihS6GQf1r25tzl6yODPE1Xp56ZO9Lg07XnvSHXHusq3pKu7CokB8f+dQvn5euGc61ppJSBWmO8Svf6oAgAAAAAAMDxcR1Pkhq+lGeUN3MtOCnfTZ2xS+WPPVZ6Ty71dZJBnqbl6doT8oM0MMirPj/7qbfk3FrDsFVvyFXVP17rr6sO9Or9dWr+ZbzqGK9/Y7p8UAQAAAAAAKBxruNJklHeLGrZivx5jjF4qT4jecqKfM7XSwZ5amXrbs8lC7blG1nc2JW87nnZPf4qXvXHKn/s0ER/3ekn5iYjumkY4/Wk34dEAAAAAAAAjt9wvjVukPeS63iSNPnna2+7JtcYpkzfU7WFYl7MJEcvC7rzt+s+kEt87WSQp2a38p5cXxzKM6/+/vnjjQ3yKh1avSRXVEdhFy3OlcVC9k3mr5tfyOOGdMZ4AAAAAAAAtLO9WZdyDo0b5O02vpGkxi7lGeXN/FO1dXrlbe9yxVAGeWruVbyFD+bRyu+ZXzni99DnNDbKm1/IT7rnpVx9inayf031z73ujFxoUDe1hkvZWvn1+5AxHgAAAAAAAM03/jrecPa7jidJ9fv9P8nqPWvyzPhv4ld/zPO1M/9U7fiWLs92XzsZ5KlZLd+ZWwvDeX7c/zHLqxV25eXCCfkvjf481WjLTshdRnXH30gpO2qO8Uq514dDAAAAAAAApua163hHfjNxpPIvgxtJmrBNH0vv0Jo8W+v5WqO89niqtlrXCfnRFTemx9dPBnmaahtuS2/3Axk+6ire681/KE+u3ZLLqmO5tHiQN7+Q7xnWNfmZ2lLu7d+YLh8QAQAAAAAAmJqR/MO4bya+5DqeJE2uD30ypVqX8jxf25rmn5jvp4HBSqGQX523Nu/3tZNBnqbayntyfXEoz9S8ijecgycPZsfODVl5ePRVHcylxaO8S5el18CusfaWsr3WGG+klLt9MAQAAAAAAGDqhtOTcg6N+6bibiMbSWrKpbznXcpr4kjqd7ItnqqVQZ5m4Crewgfz6LGu4o0fflXHcoXkQDxb206X8bbVeqbWGA8AAAAAAIDmKeexI76pOJz9ruNJUlMv5T1304dzuVFLE56qLeSf0shzjifmcU/VyiBPU2nFjtxUHMq+yV7FG9/SExofEqexZ2ufMLSbXCOlDNR8prYngz4UAgAAAAAA0By1ruONVP5lWCNJxz3Kq3Upb0/lxzxfO81P1Rbzi+qIz9dOBnk6ntZsTd/C3flao1fxxnfdGbmwmPzHtHCU9+5TUjK4O+YYb0e9Z2r7N6bLB0MAAAAAAACaY/x1vHJech1PklpzKa/6Y56vnb6napetyJ/72skgT8fT6btyc2E4Lx7vVbzDnXFibiwW8vO0cIxXbUlXdhnd1W+4lK21nqkt96TfB0IAAAAAAACap5wNNb7JuNuYRpKm3qaPpbfWpTzP107PU7ULTspjvnYyyFOjbbgtvYvuz8OFcl6eylW8T5yVVQvn5etp8RDvcMVC9hne1a58cXYZ4wEAAAAAADA9hvOtI77JOJz9ruNJUusv5Q315HnP17b0qdoXPVWr8a383fxFdWQ32ZacmhcN8uZWK3bkpuJQ9k31Kt7KE3P9dFzFG9/6N6bPAK/mGG+0xhhv0IdBAAAAAAAAmmtv1h31zcaR3GdAI0nNH+XVupS3p/JjLuW15qna08/Nzb52Gt9pZ6c80cCu0QzyOqc1W9O3cHe+Vvn98CtTuYp37Zuzen4hj2eah3iH656XISO8MWO8ntxVa4w3Usrd/RvT5QMhAAAAAAAAzVXOd8Z9s/El1/Ekadov5Xm+doLe9q68r9Gnahd251FfOxnkabIt35lbC8N5sdYQr9KhxYMZmMxVvOULcksheSEzNMaLZ2uPaG8p22s9U1sd4/kgCAAAAAAAQPMNZWP1G4zjvuG422hGklrXpo+lt96lPM/XNuep2mIxz637QC7xtZNBniZ1Fe/BPFrvKl5xOD+bzFW8d5+S0oJ5+U5mcIg3trVLjv2fudMbKWWg3mU8HwQBAAAAAABojfHX8Yaz33U8SZqeUV6tS3l7erLvxg/nUiOZ37bktNwTT9XKIE8t6JRd+VxhOM9P9SpetfmF/DBtMsbLa8/W7nYZ7+gxXrkngz4EAgAAAAAA0BrlbDjqOt5I7jOUkaTpe7621qW86vO1RnmeqpVBnlrXhtvSu3B3vlZniDfpq3hju/bNWd1VyFNpk0FesZCf77xgcmPCTqvck7tqPVNb+fF+HwIBAAAAAABoneF8a9w3H19yHU+Spn+UV+9S3i0fyPs8VdvgU7Xz8oynamWQp4k6fVduLg5lXzOu4o3vU2/JufMLeTxtMsp7a3eum3NjvIuzq85lvH4fAAEAAAAAAGid4fTUuI43YhwjSTPzfG2tS3l71uTpmz6cyz1VO+leOevt2WRwJIM81WrN1vQtfDCPVn7f+0qzruLVasv5OXvhvHw7bTDIWzQvDxvjGeMBAAAAAAAwHcr5t0d8E3I4+/PFXGgYI0kzN8qrdSmv+nztXBzlHc9TtYuW5GGjI02mlb+bv6iO6CbbklPzokHeLB9hfiF/WhjO8624ilevhfPy1czwIK+QHJgrz9YOl7K1zjO1gz78AQAAAAAA0FqvXccbHXcd7z6DGEma+edr613Km2vP1zb6VG2hmBfXXJM+wyO1oqUr8j2DvNnZuttzycLd+Wqrr+LVq3qhLjM8yjvvDbm208d4I6XsqDXGq/z43T78AQAAAAAA0Hojrz7VNfabkS/lkawyhpGk9hjl1bqUt6cn+278cC6dCwOa7mV5IA0OTk47K39qfCSDPI1t+c7cWhzKvum8ilerk0/IjsrPU4cyQ4O86qW+Dh/jDdR6ptYYDwAAAAAAgOlRzobqNyDHXccbMYKRpPa/lFd9vrbTR3nnrc37G32qdsFJ+XvjIxnk6XBrtqZvwe58s84Qr+VX8Wp12oLcnhka5RWSlzr12dryxdlmjAcAAAAAAMDMKuc7R3xTcjj788VcaAAjSe3Vpo+lt96lvE5+vrbrhPwoDQxNisU8V3rP3LgcKIM8Tfoq3rMzfRWvVssX5JbM0Cjv9BNzU6eN8faWsr3WM7Xlngz2b0yXD34AAAAAAAC03khW17iOd5/hiyTNrkt5e9bk6U68lHc8T9WecX5uMEKSQZ7W3Z5LFj6YR+tdxevak6em+yperd7anesKyYFM/7O13+6wy3i7al3GK/ek34c+AAAAAAAApk+t63iPZJXRiyS19yiv3qW8ThrlHc9TtSctzpcMkWSQp5X35PriUJ6pN8brvi9DW67O2e0yJrtoca4sJC9kep+tPfCpt+TcThjjjZSywxgPAAAAAACAmVfOhqO+QTmSAWMXSZrdl/I65fnahp+qnZdn130glxgjySBv7rZma/pOeiBfKpTzcs2reEP5yar+XNWOo7JLl6W3WMizmcZR3mkL8pnZPsYbLmVrrWdqR0q52wc+AAAAAAAAplc5f3fUdbwv5kJDF0maHW36WHo79VKep2plkKdGW7EjNxWG83ydq3iHFg9mYOeGrGzncdm1b87qrkKeyvQ9W/uNDnim9lCNy3iD/RvT5QMfAAAAAAAA02dv1lW/MTnuOt59Bi6S1BmX8oZ68txsHeV5qlYGeWqkdbfnkupVvMrvZ1+peRVvT55afWeumC0js9dHeT/J9Dxbe/ATZ2XVLB7jjbqMBwAAAAAAQHso57FxY7wDeSSrjFskqYMu5a3J07NtlHfFjekpzsu+NDAo6Zqfpz1VK4O8udnKe3J9cSjP1rmKN3ryYHa0+1W8Wu28ICsXzKv8fn16nq293RgPAAAAAAAApmIkq4+6jjecIaMWSeq8S3mzbZTXfXLlV6RGrjsV8vI5pXzIMEkGeXPvKt6i+/Nw3at4Q/nJRXfmytn8HOuW83P2dIzy5hfy+Gz6uoyUMlBrjFfpXh/0AAAAAAAAmBnl/N24b1oefHWkZ9AiSS7lzWDVYV3lV6lX0sCQpHtZHjBOkkHe3Or0Xbm5OJTn6lzFO7RsIHfNxqt49Vo4L19Na0d5h959Skqz+TJedYzXvzFdPugBAAAAAAAw/crZ4DqeJLmU144tOCnfTQMjkuK8PFN94tZASQZ5c6MNt6V34e58td5VvPkP5Ym1W3JZpwzxxtY9LyNp4Shv2QnZOmvHeD3p9yEPAAAAAACAmTOSfxg3xtufR7LKiEWSXMqb8bHNpvQuXPzqJahjXsnzVK0M8uZWK3bkpuJQnq01xCsMZf+yL2RrJ13Fq9WyE3JXWvds7RPGeAAAAAAAANCooWw86puYIxkwXpGkzhzlzdZLeSvOy03FYp7LRE/VnpxhIyUZ5HV+V3w6Pd0PZHiCq3hPrr4zV3TyEG/cKG9r5efAQ5lDz9YOl7K18uvXIWM8AAAAAAAA2o/reJLkUt4sGeWtuSZ9C7rzt6lxLa9rfp6uXtMzVpJBXme3fGdurXsVbzgH58JVvFqdtiCfKSQH0+RR3sknZEe7/b2OlLKj5hivlHt9uAMAAAAAAGBmuY4nSS7lzbJRXp1rea94qlYGeZ1/FW/hg3l0oqt4F92ZK+faEG9sb+3OdYXkQJr7bO2Ts+KZ2lLu7d+YLh/wAAAAAAAAmFmu40nSnO1Dn0xptl7Kq7buA7lkwUn5ZuVXs9Elp+QLBksyyOvczvx8NncN5emaV/HKOTBXr+LVavWSXFFIXkoTR3nr35i+dvh721vK9lpjvJFS7vbBDgAAAAAAgJnnOp4kuZRX71JeT/bNhlFetTPOzw1X3JgeoyUZ5HVeG25L76L78/BEV/H67sh6Q7wjW7sklxUL+XmaNMhb3JWBNriMt63WM7XGeAAAAAAAALQP1/EkSa9fypvNz9dKBnmd2em7cnNxKM/Vu4q3dDDbXcWr36XL0lss5Jk0YZBX+ffZN5N/LyOlDNR8prYngz7UAQAAAAAA0B5cx5MkjemPP5K+4VJeMMqTDPLa4Srewt35WqGcl13Fm1rXnZELuwr5SZowylv1hlw1Q2O8HfWeqe3fmC4f7AAAAAAAAGgPruNJksZ1w0ezfs+aPGOUJxnkzVQrduSm4lCedRWveX3irKyaX8gPM8VBXve87J7u/+zDpWyt9UxtuSf9PtABAAAAAADQPlzHkyTVadPH0uv5Wskgb0au4j2YRyu/L33FVbzmt+X8nL1gXr6TqT1b+/OdF0zfGLJ8cXYZ4wEAAAAAADA7uI4nSZqgD30yJaM8ySDPVbzOa+G8fDtTGOWd250PTuMYb7TGGG/QhzkAAAAAAADai+t4kqRJ9McfSd9wKS8Y5UkGeTN4Fe97l96aXkO65rZoXr6c4xzkVf/alo/xenJXrTHeSCl3929Mlw90AAAAAAAAtBfX8SRJk+yGj2a9UZ5kkDftV/GGsv/kwezYcnXONqBrTYu7MpA2fLZ2bynbaz1TWx3j+SAHAAAAAABA+3EdT5LUYJs+lt5WPV/7tnflfRs2pdc4SQZ5ruL916t4e/LDvjuy3miu9Z18QnZUPiEcSoOjvLcsyuZW/OcZKWWg3mU8H+QAAAAAAABoT67jSZKO8/naZo/yrrgxPV3z83RxXp4986JsNuSSQd4cv4o3nIOn/lW27NzQuutrOrrTFuT2NDjKWzgvX2/RZbyjxnjlngz6EAcAAAAAAEB7ch1PkjTFUV4zn6/tPjnD+e3A45Xq/1wd6Rl0ySBvDl7FeyhPuIo3c1Uv3hWSg5nkIK/y5+7fcn7znhMu9+SuWs/UVn6834c4AAAAAAAA2pfreJKkKXbDR7O+GaO8lW/L9YVCXs64kUf1Yt55a/N+oy4Z5M2Rq3jlHFg2kLuM4tpmlHcgkxzlLV+QW5oyxrs4u+pcxuv3AQ4AAAAAAID25TqeJKlJbfpYeqfyfG31Cl5xXp5JvctLhby8+JQMupYng7yOv4r3pKt47dXqJbmikLyUyT1b+42+pVl/2oJ8ZklXdi2al4erT9lW/+virgxUn8K9dFl6jfEAAAAAAADoTK7jSZKa/Hzt8Y7yupflgUxi7FG9lve2d+V9Bl4yyJt9rbwn1xeHsq/mVbzhHFz2hWzduSErjeDar/VvTF+xUPn/u2P/PP2bSq8c68+bX8gT1XHe+Cduh0vZWueZ2kEf3gAAAAAAAGhvruNJklo0ymv0+drqc7SFQn6VST6JWP1zzynlQ0ZeMsibPVfxFt2fhye4ive9tVtymeFbe/eJs7Kqq5CfTPbn6slULOTn1Wdxq//+I6XsqDXGq/z43T68AQAAAAAA0P5cx5MktagbPpr1kx3lVZ+g7Zqfn6aBAcf8E/N9T9fKIK8zruItHcx2V/FmT596S85dMC+PpYmjvGoXLMn/9sA7j36m1hgPAAAAAACA2cF1PElSi7v1Q7liuCcvHWuU131yhtPAaMN1PBnkdchVvD354aW3ptfIbfZVfWZ2fjFPTvRz9QkndI+eeuqFoxdcsGn0He/4xOhFF3301f+5+uP1/pq3Lc7o2FGeMR4AAAAAAACzh+t4kqRp6JN/lMuG1uTZiUZ5XSfkR2lgkLfktNxj3CWDvFl8Fa+cA0sHss1VvNnbqjfkqkJysNbP0eeee9Xotdd+ZXTr1l+O/st/OXpUn/vcL0avueaR0eXLV9f8OX7DKa//WtGTwf6N6fLBDQAAAAAAgPbnOp4kaRr744+k71jP175+Je+VHGOMV33a1lO1Msib3Vfx+u7IeqO22du1b87qYiE/H//z8+LFK0Y/8pHv1Bzh1equuw6N9vVtGy0Wu476uX7TynzZhzYAAAAAAABmD9fxJEnT3A0fzfqao7ye7Ds8yjvr7dlUnJdnMsFTteevyzWGXTLIm4VX8YZzcNkXstVVvNnfwnn5xvifn888c+PoZz/7/056jDe2P/zDR2uN8v5jpRN9cAMAAAAAAKD9uY4nSZqhbv1QrhjuyUsTXcrbsCm91Wt5hUJezvinat+UnUZdMsibhVfxHsrjruJ1RhctzpWVn48Pjf25+dRTLzzuMd7hNm68u9YQ+xM+vAEAAAAAAND+XMeTJLX5KK/amRdlc9f8PJ3DT9WekB97qlYGebPsKl45B5YOZJureB11He+rGfuMeNeJo7feum9KY7zDz9cuX756/CDv3/rwBgAAAAAAQHtzHU+S1Ab98UfSV/P52nGjvOoA76TF+VKhkH9627vyPoMuGeTNoqt4e/LDtVtymRFb57Tl/JxdSPZnzGiut/f2KY/xDnfNNY/UupJ3jg9xAAAAAAAAtC/X8SRJs+xSXrU116TPmEsGebPkKt5wDi4dzHZX8Tqvc7vzwYwbzN1yy8+aNsj73Od+MXrCCd3jB3mf9CEOAAAAAACA9uQ6niRpFo/yJIO8me+KT6en+4EM172K91CeePctKRmvdWZLurIrY8ZyS5ee07Qx3uFqPFvb74McAAAAAAAA7cl1PEmSUZ5kkHecnfn5bO4ayj/WvIo3lP2u4nV+i+bl4YwZy11wwaamD/Iuuuij4wd5u32QAwAAAAAAoP24jidJauM++Ue5zChPBnntOchbd3suWbg7X5vgKt6TfXdkvcFa57dwXr6eMWO5d7zjE00f5FX/PXPkIO8RH+YAAAAAAABoP8P51rhvnr7kOp4kyaU8ySBvolbek+uLQ3mm1hCv0qGlA9nmKp4LeS7kAQAAAAAAMLfszbrqN0zHfQN1t/GHJMkoTzLIq3sV78E8Wu8qXtdQfrKqP1cZqc2tlnRlV8aM5ZYuPafpg7zly1ePH+T1+0AHAAAAAABAexl/HW84+13HkyQZ5UkGebVavjO3FobzfK0hXuXHD548mB2u4s3Nzu3OB3PkWG70M595pmljvL/4i1+PnnBC9/hB3id9oAMAAAAAAKB9vHYd78hvpo5U/mXwIUkyypMM8sa04bb0dj+Q4XpX8eY/lCfXbsllhmlzt0+9JecWkv0ZM5jr69vWtEHeH/7ho+PHeNVW+VAHAAAAAABA+xjJP4z7ZupLruNJkqatJdmVS9N7PH/tJ/8olxnlySBvelp5T64vDuUZV/F0rBbOyzcyZjDX3b18dOvWXzZlkHf++deOH+P92Ac6AAAAAAAA2sdwelLOoXHfVN1tICJJmpbOyI2pDioKOZBluSs7s7JZl/IeXJOffvwj6TPwkkHe1K/iLXwwj7qKp8n2lkXZnHFX7Nas+fSUx3gf/ehjta7jfdqHOgAAAAAAANrHcL51xDdVh7PfdTxJ0rT0icqvN8U8k7HDigV5LO9OyfO1Mshrj0Heih25qTiUfa7iqdG6Cnkq48Zz11zzyHGP8aoX9k45ZdX4Md6vK53iQx0AAAAAAADtodZ1vJHKv4xEJEnT0cJ8O0dfOqpey9ufpdnW6LW8upfy1ubHRnkyyGusNVvTt3B3vuYqno63VW/IVZWf0w+N/fm9WOw6rlHe5z73i9Fzz72q1nW8fh/qAAAAAAAAaB/jr+OV85LreJKkaem03J5aY7yxzc+T6cv6Zl3K+/DmXGLsJYO8Y3f6rtxcGM6LruJpqi3uykCtn9+rz9dWL95NZoz3mc88M/rmN6+r9evEzyqd6EMdAAAAAAAA7eG163jjv8m620hEktTyrsuFKebnOdYg77VreQeyLHc1ci3P87UyyDu+NtyW3kX35+FCOS+7iqdmVL44u97xxvx/tX5+7+5ePtrXt+3VwV2tId6tt+4b/Wf/bMvoCSd01/r1ofpU7Tof6gAAAAAAAGgf5fzdEd9kHc5+1/EkSdP0VO3XM5kx3uGq473qiK85z9f+wKU8GeQd3Yoduak4lH2u4qmZY7zqz7tDF2d09Rsn/nl+6dJzRi+4YNPoO97xidGLLvro6KmnXvjq87Z1/vzqGO8qH+gAAAAAAABoH0O5MOUcOuKbrSO5z0hEktTyzsiNaWSMV21lrj+e/7cmupT38Y+kz/BLBnl555qt6Vu4O1+r/H7wFVfx1LQxXk/uGv9z71WnZ7SQ/KbhXwOO7D9XutwHOgAAAAAAANrLcL417putL7mOJ0lqeZemN4XKrzmNjC8W5ttT+X+z7qW8Nfmp52s11wd5y3fm1sJwXqw1xKv+H28sHsyAq3hqtL2lbK/8PHto/M+7I6Xcndeemf1Rjm+M961Ky32YAwAAAAAAoL0Mp+eo63jl7DYUkSS1vPl5PI0+VfuJqQ/GJ3i+9kcfvCG9BmCaa4O8V6/iPZhH613FKw7nZ67i6XgaKWVg/M+1Y8Z4Y7230l9X+uUxfi2oPk/7lUobfZADAAAAAACgPY28+s3X337TdTj7XceTJLW803J7Gr2GVH3etkn/77uUJ4O81zplVz5XGM7zruKpRZfxjhrjlXsyOMGnk+689gTtv6i0u9Ijr//X/rw22nujD3AAAAAAAAC0r1rX8UZyn6GIJKmlXZvVKWR/Gnuq9l83+z/HBJfyfmyUp04f5G24Lb0Ld+drdYZ4ruJpSpV7cletZ2orP97vQxgAAAAAAACdq5yvjPvm60uu40mS2u6p2kJeaMZTtY1eyvN8rTp1kHf6rtxcHMo+V/HUkjHexdlV5zJevw9gAAAAAAAAdK6hXFjjOt6IoYgkqaWdmi1p9Knat+a6Vv5nmuBS3o8+/pH0GYSpUwZ5a7amb+GDebTy+75XXMWTMR4AAAAAAAA0UznfOeKbsMPZny/mQmMRSVLL6sv643iq9uvT8Z9tglHeD4zy1AmDvNO+kD8tDOd5V/HUqoZL2VrnmdpBH74AAAAAAADobCNZXeM63n3GIpKktnqqtphnc930jcXrjfL2rMnTH96cSwzDNBsHeetuzyULd+erruKplY2UsqPWGK/y43f78AUAAAAAAEDnK+cr474Z+1IeySpjEUlSWz1Ve0ZunO7/nBNdyrvxw7nUOEyzaZC3fGduLQ5ln6t4avEYb6DWM7XGeAAAAAAAAMwNe7OuxnW8EWMRSVLLujarU8hLaWSM1z1zvzZNMMr7kUt5mg2DvDVb07dgd75ZZ4jnKp6aVvnibDPGAwAAAAAAYG4r5++O+KbscPbni9P3HKAkaU4+VftEGnuqdl+25OyZ/M880aW8D96QXiMxtesg7/WreM+6iqdWt7eU7bWeqS33ZLB/Y7p88AIAAAAAAKDzlbOqxnW8+4xFJEkta2m2pdGnai/Kle3wn73uKG9dvu9SntptkLfu9lyy8ME8Wu8qXteePOUqnpp4GW9Xrct45Z70+9AFAAAAAADA3FHO3qOu4z2SVQYjkqSWdGl6U8iBNPZU7VA7/T3UHeWtyU9dylO7DPIW/15+XBzKM/XGeN33ZWjL1TnbkEzNaKSUHcZ4AAAAAAAAsDcrUs4vx13HGzAYkSS18Kna76WRMV5Xnsqncm67/X14vlbtOsh7wxkZPeGjlf/d2ZPf1BriFYey77z+XGtEpmY1XMrWWs/UjpRytw9cAAAAAAAAzC0j454wq17H+2IuNBiRJLWkZbkrjT1Veyirc0W7/v1M9HytUZ5mYpB30pqMFv+q9kW8w1fxdm7ISiMyNfmZ2kM1LuMN9m9Mlw9cAAAAAAAAzB3lrKp0aNx1vPsMRiRJLakv61PI/szip2obvZT34c25xHBM0zHIe8PvvH4Vb6j2EK9rT5666M5caUCmFozxRl3GAwAAAAAAgKpy9o4b4x3II1llNCJJano7szLz82Qafap2S86eDX9/RnmayUHeooszWtwx4VW83VuuztkGZDLGAwAAAAAAgFbZmxUp55fjnqsdMhqRJLWkpdmWDnqq1vO1aodOfmu+v+Aj9a/iFXflV+f151rjMTW7kVIGao3xKt3rgxYAAAAAAABzUzl/Pe6btgczktVGI5Kkplcd1hUqv840MshbPDufUHcpT9PV6btyc3Egv653Fe/ED2b0lDfm3xiPabou41XHeP0b0+WDFgAAAAAAAHPPF3NOyjnkOp4kqS2fqq3++dW/bpb+PX/yj3KZS3lqVRtuS+/C3flq5fdvr9Qa4s37lxntPi+jb5yf0VMX5H80INO0jPF60u9DFgAAAAAAAHPXcB4ZN8bbX/mRVYYjkqSmtzgDafSp2rW5bLb/fU/0fK1LeTreVuzITcWhPFtriFd4MKMnvi+jS056bYxnkCdjPAAAAAAAAJgOta7jjWTAaESS1PTWp6/hp2qXZFen/P17vlbN6opPp6f7gQzXvYq3PaPdv/vbIZ5BnprdcClbKz9/HTLGAwAAAAAAgPFcx5MkTddTtV15Ko2M8Yr5Wbbk7E76Okw0yvN8rSbT8p25te5VvIfym/FX8Qzy1OxGStlRc4xXyr0+XAEAAAAAADC3uY4nSZqulmZbGn2qdlWu6sSvxUTP1xrlaaKreAsfzKP1ruIVh7JvyZr8r7WGeAZ5avkztaXc278xXT5gAQAAAAAAMLe5jidJmo6qw7pGn6rtzu5O/pp88o9ymUt5mmxnfj6bu4bydM2reOUcOHkwO7ZcnbNPXZDHDPLUqvaWsr3WGG+klLt9sAIAAAAAAADX8SRJ7fpUbVd+0mlP1Xq+VsfThtvSu+j+PDzRVby+O7L+8GDKIE8tvIy3rdYztcZ4AAAAAAAAcJjreJKk6ag7Q2n0qdqLcuVc+fp4vlb1On1Xbi4O5bljXcUbO5oyyFMrGilloOYztT0Z9KEKAAAAAAAAqlzHkyRNR6tzRcNP1S7OfXPt6zTRKO/Dm3OJcdrcu4q3cHe+Vijn5clcxTPIU4vHeDvqPVPbvzFdPlgBAAAAAABAlet4kqTpqJifxVO1kx7llXtyoNbztUZ5c6cVO3JTcSjPNnIVzyBPrWq4lK21nqmt/FzV7wMVAAAAAAAAHOY6niRpulqZ61PIC/FU7aS64+pcVXOU5/nauXEV78E8Wvl92SuNXsUzyFMrKl+cXcZ4AAAAAAAAMBmu40mSprNPVH6NWZhvxFO1U36+1ijPVTyDPE3jGG+0xhhv0IcpAAAAAAAAGMt1PEnSTHV6bkohL8VTtcc/ylubHxjlzZ2rePMfyvcuvTW9jQypDPI05TFeT+6qNcYbKeXu/o2Vn60BAAAAAACAMVzHkyTN9LW8Rflyxj9Vuz59vj5Gea7ivX4Vbyj7G7mKZ5CnZrW3lO21nqmtjvF8kAIAAAAAAIDxXMeTJLVLb811KeSFVAd5S7Pd16T+KK/ckwOer51DV/H25Id9d2T98Q6qDPJ0vI2UMlDvMp4PUgAAAAAAAFCL63iSpHa7lrc492VnVvp61O+Oq3NVzVHe2vzgw5tziZFbh1zFG87BU/8qW3ZuyMqpjKoM8jSFy3hHjfEqP/cM+hAFAAAAAAAAtbiOJ0nSrB7lDfVkv+drO/Qq3kN5YipX8QzyNJXKPbmr1jO1lR/v9yEKAAAAAAAA6nEdT5KkWd1nr861wz15yfO1nXUVb9lA7mrmuMogTw2N8S7OrjqX8fp9gAIAAAAAAIB6XMeTJKkj+tzV+WC952uN8mbXVbyuPXlq/WfT1+yBlUGejPEAAAAAAACg1VzHkySpo56vNcpr71bek+uLQ9lX7yre0sFs37khK1sxsjLI02QaLmVrnWdqB314AgAAAAAAgIm4jidJUkeO8oZ6st/zte13FW/R/Xm43lW8+Xvyw4vuzJWtHFoZ5OlYjZSyo9YYr/Ljd/vwBAAAAAAAAMfiOp4kSR3ZZ6/OtcM9eanWKO/Dm3OJgVx7XcVbPJiBVl3FM8hTA2O8gVrP1BrjAQAAAAAAwGS4jidJ0twc5a3ND4zy2uQq3kN5su+OrJ+uwZVBnupVvjjbjPEAAAAAAABgKlzHkyS1qk/49aRd+vOrct1wKQdrjfI8XzuzV/GWDmb7pz6Yc6dzdGWQp1rtLWV7rWdqyz0Z7N+YLh+cAAAAAAAA4Fhcx5MktXKMV8hLWZSH86mc62vSxqO8dfm+Ud70X8Xr2pOn1n82fTMxvDLIU43LeLtqXcYr96TfhyYAAAAAAACYLNfxJEmtamG+XvmVZvTVinm28qvLVb4ubTLKq/N8rVHe9F7F27khK2dqfGWQp7GNlLLDGA8AAAAAAACmynU8SVKreks2V36lOZTDg7zXOpTu7HYtb+b77NW51ihvZq7izd+TH150Z66c6QGWQZ4ON1zK1lrP1I6UcrcPTAAAAAAAANAI1/EkSa16qraYZ3LkGO+3FfPzVwd7vlYzPsob6sl+z9dOz1W86v8RxOLBDMzkVTyDPNV5pvZQjct4g/0b0+UDEwAAAAAAAEyW63iSpNY9VfuN1BvjjW1RvuxaXhs8X1vKwVqX8j68OZcY2TXpKt5DeXJVf65qpyGWQZ5eH+ONuowHAAAAAAAAzeA6niSpFa3M9Tn6qdr6FfNsrs1qX7sZHOVdmc3lnhwwymvNVbzu+7L7Ux/Mue02xjLIM8YzxgMAAAAAAIBmcR1PktSqp2oLeSGTHeNVm58nsjMrff3a9FKe52vrdsWn09P9QIbrXcUrDudn6z+bvnYdZBnkzd1GShmoNcardK8PSgAAAAAAAHA8XMeTJLXmqdqvp5ExXjE/z3W50NfO87WzrTM/n81dQ/nHWkO8wnAOLh7MwJarc3Y7j7IM8lzGGz/G69+YLh+UAAAAAAAAoFGu40mSWlFf1qeQA2lkkFd93tbXzqW8WdS623PJwt35Wt2reEPZd9GduXI2DLMM8ozx/ms96fchCQAAAAAAAI5XObvHffP4JdfxJElN6dL0vvoE7WTGeAvymK9Zm47yrszmeqO8uXwpb+U9ub44lGdqDfGqLR7Mfe1+Fc8gzxjPGA8AAAAAAACa6bXreL8e9w3k3cYHkqSmtjTbU8jBTPRU7SeMwdv9Ul65Jwc8X5t3brgtvQsfzKMTXcU7rz/XzraBlkHe3Gm4lK2V//09ZIwHAAAAAAAAzVbOXx/xTeTh7HcdT5LUktanr+61vOW5xddodo/y5srztSt25Kbq4K7WEK8wnIMnD2bHzg1ZORtHWgZ5c6ORUnbUHOOVcq8PRwAAAAAAADAVD2X5UdfxRir/MjiQJLWyU7MlhezP4THewnzb16Uznq/t5FFe9Spe9wMZrncVb/5DeXLtllw2m4daBnlz+JnaUu7t35guH5AAAAAAAABgKqpP0x75zeSXXMeTJE1L707p1Wt5hbyQ63Khr8nsu5RXa5T3QG8e78RR3pmfz+biUJ7pxKt4Bnlzp72lbK81xhsp5W4fjAAAAAAAAGCqylnlOp4kaca7NL2+Dp01yqs+X3vNp9LTKVfxFt2fhwvlvNypV/EM8ubMZbxttZ6pNcYDAAAAAACAZhl/HW8kB/JFF4okSVJjo7xyTw504qW8s7ZnU3Eo+zr9Kp5BXuc3UspAzWdqezLoQxEAAAAAAAA0w96scB1PkiQ1ZZR3ZTbXvJS3Lt//8OZc4iqeQZ5mdIy3o94ztf0b0+WDEQAAAAAAADRDOV854pvLw9mfR7LKqECSJDX7+drZNMpbsSM3zbWreAZ5nVvlfye31nqmttyTfh+IAAAAAAAAoFkeynLX8SRJUisu5dV6vnb3ujw2G56v7b4/D8zFq3gGeZ1Z+eLsMsYDAAAAAACA6VDO7qOu430xFxoSSJKkZlzKqzXKqz5f266jvLO2Z1PXUJ6eq1fxDPI6dow3WmOMN+jDEAAAAAAAADRTOauOuo5XHegZEEiSpCZeyqv1fO0DvXm8nUZ5V3w6PYvvy+Bcv4pnkNdhY7ye3FVrjDdSyt39G9PlAxEAAAAAAAA0UzlfOeo63khWGw9IkqRmX8qrNcqrPl97zafS0w5X8YpD2VdriFfp0OLBDMyVq3gGeZ3T3lK213qmtjrG80EIAAAAAAAAmm1vVlS/wXzEN5xHKv8yGpAkHU9vyWZfBx3rUl6t52tn8lJe9SreSQ/kS5XfB71Sa4xXHM7P5tpVPIO8zmiklIF6l/F8EAIAAAAAAIBWKGfvuDHegcqPlAwGJEkNtzLXV35lGc38PJ53+7VEjV/Ke6A3353uS3kr78n1XUN52lU8g7wOvYx31Biv3JNBH4IAAAAAAACgFcpZVenX456rHTIUkCQ13Kdybor5eaqDvGqF7M+p2eJro3Z+vnbxfRl0Fc8grxMr9+SuWs/UVn6834cgAAAAAAAAaJWRDI0b4+2v/NhqIwFJUsMtzDdyeIw3toX5dq71a4sav5TXyudrz/vLvH/+Q/mBq3gGeR05xrs4u+pcxuv3AQgAAAAAAABaZShnHXUdr5yHjQMkSQ23PLek1hjvt9fyXshbstnXSvVGeeWeHKgxynu82Zfyrvh0errvzwOFcn7lKp5BnjEeAAAAAAAA0DzlfOWIb0KP5ED2pmQYIElqqHdXfu2oPk870SDvt9fyvuFanmbq+dqztmdT11CedhXPIK9Tq/zv0NY6z9QO+vADAAAAAAAArfTFnFP9xvO452qHDAIkSQ03P49nMmO8w83PE75uamSUd9+6fHOqo7wlg/mCq3gGeZ3cSCk7ao3xKj9+tw8/AAAAAAAA0Grl7HYdT5I05U7NljQyxqu2Klf52qnRUV71+drjvYo3/6H8wFU8g7wOH+MN1Hqm1hgPAAAAAAAApkM5qyr9etw3pB82ApAkNdSl6Z30U7WHW5Qv+9ppMqO8ck8OTOVS3hWfTk/3Axmu/B7nFVfxDPI6ufLF2WaMBwAAAAAAADNpOI+4jidJmnIL8+00MsYr5pl8Kuf62mlSo7wrs7nWpbzd6/LYsUZ51at4xaHKP2+u4hnkdXh7S9le65nack8G+zemywcfAAAAAAAAaLUv5pzqN6LHDfJGfONfktRQy3NLGn2q9q25ztdOTXq+9rsfvCG9Na/i3Z8H6l3F69qTp1zFM8jroMt4u2pdxiv3pN+HHgAAAAAAAJgu5ex2HU+SNKWuzeoU8lIaGeN1V3798bVTEy/l3b8ufz/2Ut55f5n3dw3lH+tcxRvtvi9DW67O2YZcBnmd0EgpO4zxAAAAAAAAYKbtzYqU88tx36A2kJAkNdb8PJ7Gnqr9madqNdVLeeWeHKj1fG3fbelbdH8eLpTzq1pDvOJQ9p3Xn2uNuAzyOqXhUrbWeqZ2pJS7feABAAAAAACA6VTOX4/7JvVB1/EkSQ11arak0adqz8u1vnZqxaW8rb+f0WUD+aeJruLt3JCVRlwGeR32TO2hGpfxBvs3pssHHgAAAAAAAJguX8w5KefQuG9UP+wb/JKkSXdpelPI/jQyxlvk1xo191JedZT34NqMvveWjM7fU3uI17UnT110Z6404DLI68Ax3qjLeAAAAAAAANAOqk/THvnN6kOu40mSGnyq9ok09lTtvmzJ2b52amaXfTrbVt6T30xwFW/3lqtztgGXQZ4xHgAAAAAAANAae7Mi5fzyiG9YD+frvqkvSZp0S7M9jT1VeyircpWvnZrWcM59/f/A4FCtId6pf5XRm/8w/6Zc8kStQV5nNVLKQK0xXqV7fdABAAAAAACAmVDOX4/7pvVB1/EkSZNuffpSqPza0cggb0l2+dqpaZVzbaV99a7iVZ+vfWDdayOl4VK+bpRnkNfpl/GqY7z+jenyQQcAAAAAAACm2xdzzlGXZIYz5Jv7kqQGnqr9YRoZ43XlJ9mZlb52mnJ7c3ZGKv+qcxVv4e78H1vfl5fHj5WM8gzyOnqM15N+H3IAAAAAAABgpgznkXFjvP2VH1nlm/ySpElVvXTX6FO1a3OZr52m3Eg+WPl9yzN1ruL9utKfV35Pc+LwxXlvuZRfG+UZ5BnjAQAAAAAAAK1V6zreSAZ8k1+SNKlW54pUB3aNDPIW5z5fO03xedqVr/5+pc5VvEo/y1A2jv0tz8iaXF4u5ZdGeQZ5nVDln9utlX9uDxnjAQAAAAAAQLtxHU+SdLxVn5xt9Kna+XnCU7Wa4lW8zRNcxavWX72KV+u3PfVGeSM9+ddGeQZ5s6WRUnbUHOOVcq8PNwAAAAAAADCTXMeTJE2lpdmeRsZ4hRxMX9b72mkKV/G+POFVvJFcfqzf/ni+1iCvI5+pLeXe/o3p8gEHAAAAAOD/Z+9+Q+w67PXePyMkIuHBcWL3Rjn4DFEaH1TqgNEMR0aIQTFSblTUYnDO9SlJjTn0XN9AL5iLQLk44EECOcYIuZ0rZq+9hQQyJqjohWkDfnEgL/TiFL/QtcGiAxVUkEDSYA5GWBdPmVLdtUdSLM3sNZo9f/da+/MpXwJRToJ3lFnb6OlvAcBWch1PkrSWV9V2B3b9varW6FurvYp3tPyucn01V/F6uXcpzyjPIK9WdcZzstcYrz2eU/7GBgAAAAAAALaa63iSpLW8qnZ7rqefMV73X388e3x+6qtO+XumyPSyV/E6eX41X4WM8gzyanYZ781er6k1xgMAAAAAAIBB4TqeJGnzXlV7O3+ZF3x26nOM93L5HeW3y1zFm+7nKl4v90Z5XywZOU3kilGeQd6g1B7PmZ6vqZ3IWX9TAwAAAAAAAIPAdTxJ0mrbm2N9v6r2yZzw2anPq3gXyubW+ypeL619+ZFLeQZ5AzzGO131mtqpQ9nub2wAAAAAAABgELiOJ0la7atqt2U2/b2q9pOF/zufn1ZSOy+V30tubuRVvF68vtYgbxArf/+d6PWa2mIiU/6GBgAAAAAAAAaF63iSpNX2jZxOP2O8lM8br6rVSq/itXNpyXeUDbqK18u9S3leX2uQNxAV+/K2MR4AAAAAAADUget4kqTV9ExeSndg188g7+t522enQb2K10t7X471GkG5lGeQtwVjvDs9xnhn/c0MAAAAAAAADBLX8SRJm/Wq2m25kePZ4/PTGq7ifbrRV/F6KcbzotfXGuRt2RhvIm/0GuO1x3Nq6lC2+xsaAAAAAAAAGCSu40mSVtPjOZN+xngjuZ3JHPDZaZVX8ebLX58p//GprfrKZJRnkLcVdcZzsteFxu4Yz9/IAAAAAAAAwKBxHU+StJr25lhGMpd+BnlP5g2fnVZ5FW92K67i9dKayI+L8XyxZBw1kStGeQZ56117PGeqLuP5GxkAAAAAAAAYRK7jSZL6rfvK2X5fVbsjHy284tbnp/6u4nX/PwqcKr+bPDFQX5/ujvJcyjPI24zLeEvGeMVEzvqbGAAAAAAAABhEva7jFZk2DpAkLdto+azoZ4yX8lnzXI747NTnVbwbZQcH9WvUvdfXzhvlGeRtRMVE3uj1+6v856f8TQwAAAAAAAAMqsXX8bp/IH4hB4wEJEnr+qrab+akz059XMWbL3/tnUxl+6B/laoa5Xl9rUHemsZ4+/J2xWW8KX8DAwAAAAAAAIOq13W8Vi4bCUiSKnstz2Rbbqa/V9X+xqtq1ddVvE6er9NXqva+HCvG84VLeQZ5xngAAAAAAAAwzFzHkyT1W3dY93jOrPhC3khu54cZ99np3lW8Y+X3jdmKId6d8tdP5VxGa/m1aiI/LsbzpVGeQd5aKn+/nKh4Te1Zf/MCAAAAAAAAg8x1PEnSWnouR7Its3nUIO8bOe3z0sJVvCLTy1zF+zQzOVT3r1dVr681yjPIW0nt8Zzu+frj8ZzyNy8AAAAAAAAw6FzHkySttePZk9HMlE+V+fQa423PJ15Vq0dexStytvxWsrMpX7GqRnntiVwZ5lGeQd4jx3hner2m1hgPAAAAAAAA6sB1PEnSel/L647vHn5V7S2vqnUV7xFX8WbL7x8TTfyqde/1tS7lGeStqGJf3jTGAwAAAAAAgDpzHU+StN51L+F1X087krl0B3lP5g2fi6t4FUO8+YWreOcy2uSvW/cu5X1plGeQt1yd8ZzsNd4sJnJ26lC2+xsXAAAAAAAAGHSu40mSNvpa3mO55FW1ruJVjPE+Lf81zw/L166qUd4wvr7WIK/nZby3e13GKyYy5W9aAAAAAAAAoC5cx5MkSZt/Fe9O+eunym8hO4ftq1d7In/t9bUGeYtrj+e0MR4AAAAAAADUnet4kiRp86/ifVx+35gY5q9g7X15ddhHeQZ5X1X+936i1++H9nhO+RsWAAAAAAAAqBPX8SRJ0uZdxZsvv3u8M4xX8XoZ9lGeQd5Dr6md73EZ7+zUoWz3vxQAAAAAAACoC9fxJEnS5l3Fmy3/Nc/7AvawqlFeeyJXmj7KM8j70xjvjst4AAAAAAAA0ASu40mSpM24ilfkrZzLqC9fvQ3rpbxhH+QZ4wEAAAAAAECTuI4nSZLWWpGxtHNmmat4n5bt9cXr0Vr78tNhG+UN8yCvPZ4zvcZ4ZW/5XwMAAAAAAADUket4kiRpbVfxjpbfHz6pGOJ9WTZVftvY6UvXyg3bpbxhHeRVXcbrjvGmDmW7/yUAAAAAAABA3biOJ0mSVlsrz5TfHS4scxVvtvzXTPjCtTrDdClvGAd5lWO8iUz53Q8AAAAAAAB1VWTadTxJ0iN7NXuzIx/lmbzk89C9q3jHyu8NNyqGeHfKXz/lKt7aVV3KK//5SwZ5xngAAAAAAADAILl7He/LRX94/oGRgSRpSbtyuXxy3FloNDN5Oc/6XIa0TvaU3xcuLXsVr8hBX7TWz3KjvKZcyhumQV5rPCd6/fdpjAcAAAAAAAB1V+RXi/4Afa5sv7GBJOmhvp2/zf0x3v1G8seM5RWfz9BdxXvp3uCu1xCvO/L/eaay3Zes9df0Ud6wDPLa4zndc4w3nrf8LgcAAAAAAIA6O5fdPa7jXTE2kCQ91It5LiP5hywe5N3vsVzI8ezxWQ3FVbwzlVfxWvlPmcmzvmBtrKpRXms8l+s+yhuGQV7la2rH89bUIUNWAAAAAAAAqLci04v+MH0+F3LA6ECStOhVte+naox3v225ke/mJz6vxl7FO1p+T7jhKt5gaO3LT3teWNuXC3Ue5TV9kNcZz8leY7z2eE75XQ0AAAAAAAB1V2Tvkut4rVw2OpAk9XhV7XweNci7X3e851pes67i3R3wz7mKN1iaeCmvyYO8Yl/e7Pm6YWM8AAAAAAAAaIhe1/HOZ9L4QJK04lfV9h7kfeCza8wY70j5/WDWVbzB1bRLeU0d5LXHc6bna2onctbvYgAAAAAAAGiCTp5ech2vnUvGB5Kkh9qR36SfMV53vPfDjPvsXMVj81Rdyiv/+UsGeQMxxjtd9ZraqUMGrQAAAAAAANAMRd5bch3vQg4YIUiS/tQzeSn9jPG6fSuv++xqXrv8791VvNqpGuUV+zJdp0t5TRvktcZzoud/LxPl/4oAAAAAAACAhjiX3Uuu4xW5YIQgSVrSWF7Jtvw+KxnjfS1/l1+W/xc+tzqP8U67ildfTbiU16RBXrEvbxvjAQAAAAAAwDC4+wo61/EkSSvrtTyTXfl1lhvjdUd7L+dZn1dtX1F7pPw+cN1VvPqrHOWNp12HS3lNGeTdG+Pd6THGO+t3KQAAAAAAADRJkb2u40mSVtXu/KzyWt538xOfUQ0rMpZOTrqK1yytfflp1SjPIG8TxngTeaPXGK/8/E9NHTJsBQAAAAAAgGYp8p7reJKkNV3LeyyX8uAYb1c+8NnU9irebMVVvPmyKVfx6quul/LqPsjrjOdkxed+yu9KAAAAAAAAaJpOnr73B+yu40mS1lb3Il73Wt5I/uhVtTW8itfKTI/vBPf71FW8Zqjjpbw6D/LKz/VM1WU8vxsBAAAAAACgiYp0lly/6eQF4wRJ0qqv5T2XIz6LGtXOsfL5f91VvOFReSlvXy4N4qW8ug7y7l3GWzLGKyZy1u9CAAAAAAAAaKIie8u+fOgP3tu5ZJwgSdLQvKL2pKt4w6lqlFfsy7RB3torJvJGz893IlN+9wEAAAAAAEBTtRdeTffwFZwLOWCgIElSwzufybRy1VW8If8qWHUpb8BeX1u3QV6xL29XXMab8rsOAAAAAAAAmmom31lyHa/I+0YKkiQ1uCJjaed02W1X8eha5vW17w7K62vrNMgzxgMAAAAAAIBhVeS9Htdw9hsrSJLU2NfTHimf9dddxWOxQb+UV5dBXms8JypeU3vW7zIAAAAAAABosvP53r0/eP/qD+LbuWSsIElSYy/jvekqHssZ5Et5dRjktcdzumLUeMrvLgAAAAAAAGi6ItNLruJ0Mm6wIElSwzqfybRy1VU8VmJQL+UN+iCv/HzO9HpNrTEeAAAAAAAADIMie8u+XPQH8u8bLUiS1KiLeGNlb5TNuYpHP6pGecW+TG/VpbxBHuSVn8ubxngAAAAAAAAwzFq5uOgP5Odcx5Mk5ZcZyw89DxpRJ0fK5/sNV/FY9dfFfflp1SjPIO+rOuM52fNzmsjZqUP+NwYAAAAAAADNdz7fu/cH8V/9wXwrl40XJEn5et7OSObyzby5MM7zmdTzKl47p5c867/qY1fxWKnK19fuy7sGeQuX8d7udRmvmMiU3z0AAAAAAAAwLIpMP/QH8+3cdh1PkrRwGW8kt8onxZ2FduRafpD9PpsadT6T5bP9k4ohXneA/04uZqcvQ/Sj6lLeZo/yBm2Q1x7PaWM8AAAAAAAAGHadPJ0iXywa5F0yYpAkr6pdGODdH+PdbyS382ROuJZXi6t4ZxZG9r3HeLNlB30RYrUG4VLeIA3yWuM50fPzGM8pv1sAAAAAAABgmBT51aI/oJ9zHU+SlG/mZBaP8R5se67nuRzxWQ3sVbxry17Fmyr/G4Q1qhzljefMMA3y7r2mdr7HZbyzU4f8bw0AAAAAAACGx/l8L0XmF/1B/QVjBkka8iZz4KFX1VY3vzDccy1vkC7jvZlW+d9d7zHex+WvTfgCxHraykt5gzDIuzfGu+MyHgAAAAAAANC9jje96A/q513HkySvqu35qtrl2pUPfHZbXCdH0srVyqt4Rd7Kxez05YeNsFWjvK0e5BnjAQAAAAAAAF/p5OkU+eKhP6xv54pRgyQNeY/n3fQzxuteyfuLvOiz27KLeGPl8/tMj4u397tRdtAXHzZaa19+utmjvK0c5HVfy9trjFf2lt8NAAAAAAAAMIyK/KrHdbwXjBskaYg7kMkVvqr2q7oDPp/dVl3Fe6F8fl9b9ireuYz60sNmqbyUN54zTRrkVV3G647xpg5lu98JAAAAAAAAMGzO53s9Lum8b9wgSUPejvx9+hnjbc8nC6+49dltxVW808tcxfs4nTzvCw9bofJS3gaM8rZikFc5xpvIlP/2AQAAAAAAYFi1cnHJdbwLOWDkIElD3DdyOv2M8UYylx9kv89u06/iHSmf29crhnhflv28fMrv9GWHrVR5KW+dX1+72YO8YiJvGOMBAAAAAAAAD+t1Ha+Vy0YOkjTETeZARnI7XlU72N29ijdXMcabzUwO+aLDoNiMUd5mDvKKfXmz4vLfKf9tAwAAAAAAwDBzHU+S9GDdV87uyLX0M8bbkY+8qnZTh3hHy+f1tYohXrcpV/EYRJWjvHV6fe1mDfJa4znR66/DZTwAAAAAAAAYdq7jSZIW9/W8nX7GeCmfIwcy6bPbhIqMlU0veXY/eBWvncO+4DDINnKUtxmDPJfxAAAAAAAAgGqu40mSHuy5HMlI5tLPIK874PPZbdZVvOuu4tEEG/X62o0e5FWN8VzGAwAAAAAAAFzHkyQtrd9X1W7PJ15VuwlX8dp5d9mreJ0874sNdbMRl/I2cpBX9Zpal/EAAAAAAACAu1zHkyQ92JM5kX7GeCO57VW1G34V76Xy+Xxjmat4067iUWfrPcrbqEGey3gAAAAAAADA8lzHkyQ92Pdz1KtqB6hO9pTP5gtlc67i0XTr+frajRjkuYwHAAAAAAAAPJrreJKk+3VfObsts+lnjNd9te3x7PH5bdBVvFZuuorHMFmvUd56D/KqLuMZ4wEAAAAAAABfcR1PkvRgo5lOf6+qncukEfeGXMVr59KSZ7SreAyJ9Xh97XoO8rymFgAAAAAAAFgZ1/EkSQ++qjblc6CfQd7jeddn5yoebIRiIv9myQCuj0t56zXI85paAAAAAAAAYGVcx5MkPdj2XE8/Y7zt+WThFbc+u826ivepq3gMm3ujvFW9vnY9Bnku4wEAAAAAAAAr5zqeJOl+38zJ9Peq2lv5Qfb77DblKt58+esz5T8+5csLw2i1r69d6yCvmMgbLuMBAAAAAAAAK+M6niTpfpM5kJHcTj+DvO6Az2e3GVfxZl3Fg6Q1nv+j39fXrmWQd2+Md8dlPAAAAAAAAGBlXMeTJN1vRz5KP2O87r/eq2o3+irenfLXT5VP6yd8aYG7in15vZ/X1652kFf1mlqX8QAAAAAAAIDeXMeTJN1vNNPp71W1txcu6vnsNvIq3o2yg76wwFL3Xl97ZyWvr13NIK81nhPGeAAAAAAAAEB/XMeTJHV7Ji+VT4X59DPI+1Ze99lt2FW8+fLX3slUtvuyAtWK8fx8JaO8fgd5VZfxvKYWAAAAAAAAqOY6niSpW/eVs9tyI/29qvaaV9Vu4FW8Tp73RQVWpj2e4z1HeQ+8vrafQZ7X1AIAAAAAAACr4zqeJKnb1/N2+n1V7YFM+uxWdRXvWPm8na0Y4t0pf/1UzmXUlxToz6NeX7vSQV7Va2pdxgMAAAAAAACW5zqeJKnbczmSkcyln0Hekznhs1vFVbwi08tcxfs0MznkCwqsXuWlvPGcWckgz2U8AAAAAAAAYPVcx5MkdV85uz3X41W1W3sVr8jZ8qm805cTWLuqUd6//k7+63KDvL/68/xnl/EAAAAAAACA1XEdT5K0ulfVzmXSeHsdr+LNls/fCV9MYH3de33tknHdy0/3HuMd+3butPblf7qMBwAAAAAAAKyO63iSpNW8qvabOemzW5erePMLV/HOZdSXEtgYVZfy/urppWO8mX09X3NrjAcAAAAAAACsgOt4kqTX8ky25bfpZ4z3tfydV9Wuy1W8T8t/zfO+kMCa/cuy/7hcf/V0ZnuN8u5fyvtfd/ce43lNLQAAAAAAALByruNJkkYznf5eVXsrL+Y5n92aruLdKX/9VPkU3unLCKyLqZX8/Jr8Rz0Gd2XH/8JlPAAAAAAAAGCtXMeTJH0/R8snwnz6GeQ9mTd8dmu6ivdx+byd8EUE1tXUSn+G/bNv9x7luYwHAAAAAAAArI3reJI03B3PnmzLbPoZ4+3IVa+qXfVVvPny2fuOq3iwIab6+Vn2o93Lj/F+Opb/4iMFAAAAAAAAVs51PEnSDzOe7bmefl5V+3Ke9dmt6irebPmved4XENgwU+lnXLzM62v/+Z8t/Pp/8JECAAAAAAAAK+c6niTp/pW8x3MmI5nLowYs38rrPrNVXMUr8lbOZdSXD9hQU+lzkNftX33n4THev97zp18zyAMAAAAAAABWyHU8SdLiDmRy2dfXfi0felVtzzHemWWu4n1attcXD9gUU1nFIK/bC9/Knf/7n+TOv/izh/55gzwAAAAAAABghVzHkyT1qju4617LS/lceHCwsi2/z6vZ6zN66BW1L5TPz2sVQ7wvy6bKp+1OXzpg00xllYO8igzyAAAAAAAAgBVwHU+S9Kiey5Fsy43cH6aM5RWfy72K8tO4exVvrmKMN1s+Vyd84YBN9y9zd0S30v5bDPIAAAAAAACANSsy7TqeJOmRvZZnsiuXsyO/8arae53P5DJX8e4sXKA9l1FfNqAW/mMM8gAAAAAAAIA16eTpe6/R+2o80M4HRhaSpGVfY+sq3v2rePMVY7zP0sqPfNGAWjHIAwAAAAAAANaoyHuu40mS1EedHEk7H1VexWtnJhfzhC8ZUDsGeQAAAAAAAMAanMvuHtfxrhhbSJLUc4i3p3xWvl02VzHGu1k+Rw/7ggG1ZZAHAAAAAAAArEGRadfxJElaQd3nY5Hry17FO5dRXy6g1gzyAAAAAAAAgFWayXeWXMdr5bLRhSRJD1RkLJ2cTDu3XcWDxjPIAwAAAAAAAFap13W885k0vpAk6U9jvP1p5yNX8WBoGOQBAAAAAAAAq9DJ00uu4xV53/hCkqR7tXPaVTwYOgZ5AAAAAAAAwCp0L/osvo7XyQsGGJIkQ7wcLZ+L1yqv4hV5y1U8aCyDPAAAAAAAAKBPF/NEiny+aFxwwQhDkhrey3k2u/J+fphxn8cyV/GKzFUM8WbLDvoiAY1mkAcAAAAAAAD0qci063iSNITtygfpDkpGcivfzt/6TB6okyPl8/C6q3gw9AzyAAAAAAAAgD508nSKfPnQyKCdS8YYktTwdudnWTws2ZXLeTV7h/pzKTJWPhtPuooH3GOQBwAAAAAAAPShyNklY4PzmTRWkaQG131FbfcqXq9xyUj+Id/K/znEV/FmXcUDHmCQBwAAAAAAAKzQuexech2vyPvGKpI0JK+qXa5d+XVezrNDdBlveuGV7a7iAQ8zyAMAAAAAAABWqJ2ZJaOD7nUgYxVJam5jeSWPGuPdb1t+n+/mJ43+PLpXYVu56ioeUMEgDwAAAAAAAFiBTp5Okc8fGh20c8VYRZIa3Gt5ZmFkt9JBXrfRTDf4Kt4bZXOu4gHLMMgDAAAAAAAAVqCVd5aMD7pXggxWJGm4X1X78IW8mwsjPlfxgOFlkAcAAAAAAAA8Qu/reB8Yq0hSg/t2/jb9jPG6/Xn+pmEX8cbK593pstuu4gErZJAHAAAAAAAAPEKRsz1GCPsNViSpwb2avdmVK1npGG9XLjfqr7+TI+Wz7nrFEG/eVTyggkEeAAAAAAAAsIxz2Z0iXy66jvdrYxVJGpLG8kpG8sc86lW13QFfcy7jvbnMVbxPM5NnfUEAKhjkAQAAAAAAAMto51SPq0Cu40nSMPVyns3X8mGqBib/uPxXNOGv83wm08rVZa7iTZX/b7svB8AyDPIAAAAAAACACjP5Top8sWiQ8KFxiiQNad3h3bb8Ng+/qvaDBlzEGyt7o2zOVTxgjQzyAAAAAAAAgApFOkuuA13IAaMUSRriXssz2ZXL6Q5LRvIP+WHGa/3X08mR8vl2w1U8YJ0Y5AEAAAAAAAA9nMvuFPnyoWFCuwFXkCRJ69NYXlmozlfx2jl9b3TXa4z3sat4wCoY5AEAAAAAAAA9tPKO63iSVKNezd6FfBaP7nwmy+faJxVDvDsLz8CL2enLALAKBnkAAAAAAADAIhfzRIp8vug63hUjDkka4J7MiYzkj7W+Wrc5V/HOlN2uGOPNlh30RQBYA4M8AAAAAAAAYJF2ZlzHk6SatSPXcn/wsSuX81qe8bksuYp3bdmreFPZ7ksAsEYGeQAAAAAAAMADzud7CwO8h0cKl405JGmA+8u8UP4En8+Do49t+W2eyUs+n4XLeG+Wz7JbFWO8j8tfm/AFAFgnBnkAAAAAAADAA4pMLxkrdK8KGXRI0uA2Wv7srhp/PJYLQ3str5MjaeVq5VW8Im/lYnZ6+APryCAPAAAAAAAAuKeTp1Pki0VjhQ+NXSRpgPtlxrItv89yA5Bhu5ZXlJ9JO2eWXHz9qhtlBz34gQ1gkAcAAAAAAADcU+RXS0YL7Rw1eJGkAa47tFt+/DFc1/I6eaF8fl1b9ireuYx66AMbxCAPAAAAAAAAKJ3P95ZcEmrnirGLJA14j+VSVjrIu3stbzbP5UhDr+KdXuYq3sfp5HkPfGCDGeQBAAAAAAAApVYuLhouzOdCDhi7SNIAdzx7MpJb6WeQd7f5PJ53G3Mtr5Mj5XPresUQ78uyn5dPuZ0e9sAmMMgDAAAAAACAodfrOl4rl41dJGnA252fpf8x3oPX8n6fsbxS68/g7lW8uYox3mxmcsiDHthEBnkAAAAAAAAw9FzHk6R69rV8mLUM8u63K1dqdy2vyP7y+XW1YojXbcpVPGALGOQBAAAAAADAUHMdT5Lq2Yt5LiOZy3oM8u5ey7uZvTlWi7/2Vk6knduVV/HaOewBD2wRgzwAAAAAAAAYaq7jSVI9+2bezHqN8R5sNDM5nj0D+nrao+Vz6pqreMAAM8gDAAAAAACAoeU6niTVtx35KBsxyBvUa3ntvLvkmfXgVbxOnvdgBwaAQR4AAAAAAAAMLdfxJKmeTZY/q1P+zN6oQd4gXcvrPpfa+WiZq3jTruIBA8QgDwAAAAAAAIaS63iSVN8ez5ls9BjvftvzSQ5kckv+Ojs5mXZuu4oH1IhBHgAAAAAAAAwl1/Ekqb5ty2w2a5B3t/l8I6fzWp7ZlL++85l0FQ+oKYM8AAAAAAAAGDqu40lSffuLvJjNHeN91bb8Nv84L2/oX187p13FA2rMIA8AAAAAAACGjut4klTfduX9bNUg736PlU+NX2bMVTyAJQzyAAAAAAAAYKi4jidJ9a07ghvJP2SrB3ndtud6nsuRTbiK96mreECNGOQBAAAAAADAUHEdT5Lq25/nbzIIY7yvms/3c3SDruLNl782U/7jUx7eQI0Y5AEAAAAAAMDQcB1Pkurd1/JhBmmQ9/W8vaq/jiJjj7iKN+sqHlBTBnkAAAAAAAAwNFzHk6T69nKeTfci3SAM8UYyl2/nb1f119HJCwuDu95DvG5ny6fVEx7aQE0Z5AEAAAAAAMBQ6ORp1/EkqcY9mRMZjDHe7YzllVVexTuz5Fn0VTfLDnpgAzVnkAcAAAAAAABDociU63iSVON25Fq2fox3K9/P0XW+ije/cBXvXEY9rIEGMMgDAAAAAACAxuu++q/I567jSVJN+8u8kK1+Xe32XM9kn0PuR1/Fu5FOnvegBhrEIA8AAAAAAAAaz3U8Sap338jpbPUY7+U8u45X8bq95Soe0EAGeQAAAAAAANBoruNJUv3blhvZqjHejvx9X2O8lVzFm8khD2igoQzyAAAAAAAAoNFcx5Okevf9HM1WjfF25UqOZ8+6XcVrZyYXs9PDGWgwgzwAAAAAAABoLNfxJKn+PZZL2Yox3mja+WXG1ukq3s2ygx7MwBAwyAMAAAAAAIDGch1Pkupd9zrdSG5ls8d4j+fddbqK1x3odXIuox7KwJAwyAMAAAAAAIBGch1Pkurf7vwsmznEG8lcxvLKOl3Fu1H++mEPZGDIGOQBAAAAAABAI7mOJ0n1b1c+yCCO8do5tsxVvG7TruIBQ8ogDwAAAAAAABrHdTxJqn+vZu/CSG4zxnjb8vvyP+3YCl5Pu2dhbFd9Fe9m2UEPYmCIGeQBAAAAAABA47iOJ0n178mcyOaM8W5kcgXPiJVcxesOwgGGm0EeAAAAAAAANIrreJLUjHbkWjZ6jLc9n+TlPLvGq3h/SDuHPYABFhjkAQAAAAAAQKO4jidJ9e9AJrPRY7wduZrX8oyreADryiAPAAAAAAAAGsN1PElqRo/nTDZyjPdYLq1gjHdmmat4N8sOevACLGGQBwAAAAAAAI3hOp4kNaNtuZGNGuM9nncf8YraF8rnx7VlruKdzbmMeugC9GSQBwAAAAAAAI3gOp4kNaO9OZaNGuN9Mycr/3OLjN27ijdXMcT7Q/nrhz1wAZZlkAcAAAAAAACN0M5x1/EkqQF1Xye73kO8kdzOWF6p/M88n8lHXMV7r+wpD1uARzLIAwAAAAAAgNq7mJ0Ll4seHE+084FhiyTVrOPZk5HcyvqO8W7l+zn6iKt48xVDvM/Syo89aAFWzCAPAAAAAAAAaq+dU67jSVID2p2fZX3HeH9ceAVur/+sTo6Uz4+PKq/itTOz8Dp0APphkAcAAAAAAAC11h1LFPl80YjiimGLJNWwXfkg6zXG25bZ/CD7ewzx9pTPirfL5irGeDfL58hhD1iAVTHIAwAAAAAAgFor8nPX8SSpAb2avRnJXNZjjLcjVxf+/Rb/Z3SfD0WuL3sV71xGPVwBVs0gDwAAAAAAAGrr7nW8zx4aU7Ry2bBFkmrYkzmR9RrjvZZnHvr3LjKWTk6mnduu4gFsKIM8AAAAAAAAqK12Ti25jnc+k4YtklTDduRa1jrG25UrOZ49i8Z4+8vnxUeu4gFsCoM8AAAAAAAAqKUiTy25jlfkfaMWSaphP8j+rHWMN5rp/DJjD/37tnPaVTyATWWQBwAAAAAAALVUZGrJdbxOXjBskaQa9o2czlrGeP9Lji8a4h0tnwvXKq/iFXnLVTyADWGQBwAAAAAAALVzMU+kyOeLxhUXjFokqaZty42sbow3n2/l9SVX8YrMVQzxZssOepACbBiDPAAAAAAAAKiddk65jidJDWlvjmU1Y7yRzOW7+cmf/n06OVI+D667igewpQzyAAAAAAAAoFZ6Xcdr55JRiyTVtMfKn+H9jvG25bf5y3tD7CJj6eSkq3gAA8EgDwAAAAAAAGpl6XW8OzmfSaMWSaphx7MnI7mV/sZ4vy9/6h944CrerKt4AAPDIA8AAAAAAABq41x2p8gXi8YW7xu1SFJN675ytp8x3vZczw8zfu8y3vTCK8tdxQMYJAZ5AAAAAAAAUBtFppaMLrrXkYxaJKme7coHWekYb0d+k5fz7MJV1FauuooHMJAM8gAAAAAAAKAWLuaJFPn8odFFO1cMWiSppr2avRnJXFYyxtuV9/PLjJU/+98om3MVD2BgGeQBAAAAAABALXQvHi0eX3SvJBm1SFI9ezInspIx3uN5N/82P3AVD6AWDPIAAAAAAABg4HXydI/reB8YtEhSjduRa3nUGO+J/Lvy5/3pstuu4gHUgkEeAAAAAAAADLwiZ3uMMPYbtEhSTftB+TN8+cHGfJ7Nvy1/1l+vGOLNu4oHMJAM8gAAAAAAAGCgncvuFPly0XW8Xxu0SFKN+0ZOp2qsMZJb+d/y3jJX8T7NTJ71gAQYSAZ5AAAAAAAAMNDaOdXjKpLreJJU57blRnoNNbbli/xf+X+XuYo3Vf6/7R6OAAPLIA8AAAAAAAAG1sU8kSKfLxpkfGjMIkk1bm+OpddI42v5Ir/If3cVD6DWDPIAAAAAAABgYHUvIS2+jnQhBwxaJKnGPZZLWTzQ+LPM5bSreAANYJAHAAAAAAAAA+lcdqfIFw8NM9r5wJhFkmrc8ezJSG7lwXHGP83/zL/rOcb72FU8gNoxyAMAAAAAAICB1Mo7ruNJUsP6bn6Sh8d4d/L/9BjjdZ8BF7PTwxCgdgzyAAAAAAAAYOBczBMp8vmi63hXjFkkqfavq/33uT/KONBzjDdbdtCDEKC2DPIAAAAAAABg4BSZch1PkhrWOzmcnfkf6Q4y/lnZTI+reFPZ7iEIUGsGeQAAAAAAADBQel3Ha+WyMYsk1bgib+Z/z/+X7hjjr5dcxbuZdg57AAI0gkEeAAAAAAAADJR2ji8aatzJ+UwatEhSDevkSFq5uvCzvPuK2r9ZMsabzrmMevgBNIZBHgAAAACBg3H1AAA92UlEQVQAAAyMIk+VfbZorPGhUYsk1e4i3ljaObPwyvHi3utp31xyFe+YBx9A4xjkAQAAAAAAwMAo8taS63jtHDVukaRaXcV7ofz5fW3Jz/Ovfq7PuIoH0FgGeQAAAAAAADAQLuaJFPl80WjjinGLJNXqKt7pP13FW9rNshc98AAazSAPAAAAAAAABkKRqUXDjflcyAEjF0mqxVW8I+XP7euVV/FaeWdheA1A0xnkAQAAAAAAwJbrdR2vlctGLpJUg+5exZurGOP9rvz1wx50AEPDIA8AAAAAAAC2nOt4klTHV9TuTytXK6/itTPjKh7A0DHIAwAAAAAAgC3lOp4k1a9WTqSd2xVjvBvlr//IAw5gKBnkAQAAAAAAwJZyHU+S6vR62qPlz+lrruIBUMEgDwAAAAAAALaM63iSVKcx3rsLo+neY7xZV/EAiEEeAAAAAAAAbCHX8SRp8Ov+XG7no8qreEV+lYvZ6aEGQAzyAAAAAAAAYIu4jidJg18nJ9PObVfxAFghgzwAAAAAAADYEq7jSdLgdj6Tj7iKN+0qHgA9GOQBAAAAAADApnMdT5IGt3ZOL3sVr53DHmQAVDDIAwAAAAAAgE3nOp4kuYoHQBMZ5AEAAAAAAMCmch1Pkup2Fe9mOnneAwyAFTDIAwAAAAAAgE3lOp4k1eUq3nz5azPlPz7l4QXAChnkAQAAAAAAwKZxHU+S6nIVb9ZVPABWwSAPAAAAAAAANo3reJI06Ffxup1dGFADQP8M8gAAAAAAAGBTuI4nSYN+Fe9m2UEPLADWwCAPAAAAAAAANoXreJI0qFfx5heu4p3LqIcVAGtkkAcAAAAAAAAbznU8SRrUq3g30snzHlQArBODPAAAAAAAANhwruNJ0uZXZH9auVoxxOv2lqt4AKwzgzwAAAAAAADYUK7jSdLm18qJZa/izeSQBxQAG8AgDwAAAAAAADaU63iSNDhX8dqZycXs9HACYIMY5AEAAAAAAMCGcR1PkgblKt7NsoMeTABsMIM8AAAAAAAA2DCu40nSVl/Fmy/r5FxGPZQA2AQGeQAAAAAAALAhXMeTpK2+inej/LXDHkgAbCKDPAAAAAAAANgQruNJ0lZdxes27SoeAFvAIA8AAAAAAADWnet4krRVV/Fulh30IAJgixjkAQAAAAAAwLpzHU+StuYqXncQDQBbxyAPAAAAAAAA1pXreJK02Vfx/lD+2mEPIAAGgEEeAAAAAAAArCvX8STJVTwAhpVBHgAAAAAAAKwb1/Ekaf3q5PVlruLdLDvowQPAgDHIAwAAAAAAgHXjOp4krb3uz812PlrmKt7ZnMuohw4AA8ggDwAAAAAAANaF63iStNbX046lk5Plz85bFUO8P6Sdwx44AAwwgzwAAAAAAABYF+0cdx1PklbZ+UyWPzevLXMV772ypzxsABhwBnkAAAAAAACwZhezc+Fy04PjkXY+MLKRpBVcxWvnzMKIufcQ77O08mMPGgBqwiAPAAAAAAAA1qyVX7iOJ0l91smRtPNR5VW8dmYWXgcOAPVhkAcAAAAAAABr0h2LFPl80YjkirGNJFUO8faUPyvfLpurGOPdLH+OHvaAAaCGDPIAAAAAAABgTYr83HU8SVph3Z+PRa4vexXvXEY9XACoKYM8AAAAAAAAWLXuaKTIZw+NSVq5bHQjSYsqMpZOTqad267iAdBgBnkAAAAAAACwakVeX3Idr5MjxjeS9NAYb3/a+chVPACGgEEeAAAAAAAArMrFPJEiv1s0LHnf+EaSHqid067iATBEDPIAAAAAAABgVYpM9bjydNQAR5IWhnhHy5+L11zFA2DIGOQBAAAAAABA37ojkiKfu44nSRVX8YrMuYoHwBAyyAMAAAAAAIC+tXN8ycikkyOGOJKGuu7PwSLXXcUDYIgZ5AEAAAAAAEBfLmZniny2aGRyxRhH0tBWZCydnHQVDwAM8gAAAAAAAKA/rfxiydjkfCaNciQN8VW82cqreK1cdBUPgCFikAcAAAAAAAArVuSpsi8WXcf7wChH0pBexpsum68Y4/0hrfzIgwOAIWOQBwAAAAAAACvWzvElo5N2jhrmSBqquldBW7m67FW8i3nCQwOAIWSQBwAAAAAAACtyMTsXLj49PMb7tXGOpCG7ivdG2ZyreADQk0EeAAAAAAAArEiRny8Zn3RyxEBHkqt4ruIBwD0GeQAAAAAAAPBI3ZFJkd8tGqB8aKQjaQgu4o2lndNlt13FA4BHMsgDAAAAAACAR2rn1JIRSvdalLGOpCbXvQJa5LqreACwYgZ5AAAAAAAAsKy71/E+XzRE+TtjHUkNv4z3pqt4ANA3gzwAAAAAAABYVpGfu44naWjq/nxr5aqreACwKgZ5AAAAAAAAUOlidqbI7xYNUn5jtCOpgRfxxsreKJtzFQ8AVs0gDwAAAAAAACoVeX3RIGU+nbxgvCOpUXVypPz5dsNVPABYM4M8AAAAAAAA6KnIU2VfLBqm/J3xjqRGXcVr5/TC2NhVPABYDwZ5AAAAAAAA0FORqSXjlHaOGvFIakTnM1n+XPuk8ipekemFYTIA0A+DPAAAAAAAAFii+2rGIp+7jiepoVfxzpTdrhjifVb+2l97EADAqhjkAQAAAAAAwBKt/MJ1PEkNvYp3rfIqXjszC4NkAGC1DPIAAAAAAADgIRezM0X+sGio8qExj6SaX8Z7M63cqhjjfVH+2o88AABgzQzyAAAAAAAA4CFF/o3reJIaUydH0srVyqt4Rd7Luez2wx8A1oVBHgAAAAAAAPxJ91WNRT5bNFb5jVGPpBpexBtLO2fKf5yvGOLdLH/9mB/8ALCuDPIAAAAAAADgT4pM9RitvGjcI6lmV/FeKH92Xau8itfOTM5l1A99AFh3BnkAAAAAAACw4O51vM8XjVauGPdIqtlVvNPLXsXrjowBgI1ikAcAAAAAAAALll7Hm8+FHDDykVSTq3hHyp9b1yuv4rXyzsLwGADYSAZ5AAAAAAAA0PM6XiuXjXwk1aK7V/HmKsZ4vyt//bAf9ACwKQzyAAAAAAAAwHU8STV9Re3+tHK18ipeOzOu4gHApjLIAwAAAAAAYMi5jiepjrVyIu3crhjj3Sh//Ud+wAPApjPIAwAAAAAAYMi5jiepXq+nPVr+nLrmKh4ADCSDPAAAAAAAAIaY63iS6jXGe3dhNNx7jDfrKh4AbDmDPAAAAAAAAIaY63iS6lD351I7H1VexSvyq1zMTj/UAWDLGeQBAAAAAAAwpFzHk1SHOjmZdm67igcAtWCQBwAAAAAAwJByHU/SIHc+k4+4ijftKh4ADByDPAAAAAAAAIaQ63iSBrl2Ti97Fa+dw36QA8BAMsgDAAAAAABgCLmOJ8lVPABg/RnkAQAAAAAAMGRcx5NUv6t4N9PJ836AA8DAM8gDAAAAAABgyLiOJ6k+V/Hmy1+bKf/xKT+8AaAWDPIAAAAAAAAYIq7jSarPVbxZV/EAoHYM8gAAAAAAABgiruNJGvyreN3OLgyIAYC6McgDAAAAAABgSPS6jtfOB8ZBkgboKt7NsoN+YANAbRnkAQAAAAAAMCSWXsfrDvJeMhCSNABX8eYXruKdy6gf1gBQawZ5AAAAAAAADIFe1/GK/L2RkKQBuIp3I5087wc1ADSCQR4AAAAAAABDwHU8SVtRkf1p5WrFEK/bW67iAUCjGOQBAAAAAADQcK7jSdqKWjmx7FW8mRzyAxoAGscgDwAAAAAAgIZzHU/SIF3Fa2cmF7PTD2cAaCSDPAAAAAAAABrMdTxJg3MV72bZQT+YAaDRDPIAAAAAAABoMNfxJG39Vbz5sk7OZdQPZQBoPIM8AAAAAAAAGsp1PElbfxXvRvlrh/1ABoChYZAHAAAAAABAQ7mOJ2nrruJ1m3YVDwCGjkEeAAAAAAAADeQ6nqStu4p3s+ygH8QAMJQM8gAAAAAAAGgg1/EkbdVVvO4gGAAYVgZ5AAAAAAAANIzreJI2/yreH8pfO+wHMAAMPYM8AAAAAAAAGsZ1PEmu4gEAW8MgDwAAAAAAgAZxHU/SetbJ68tcxbtZdtAPXgDgAQZ5AAAAAAAANIjreJLWZ4g3Xv78+M0yV/HO5lxG/dAFABYxyAMAAAAAAKAhXMeTtB61cqLsVsUQ7w9p57AfuABABYM8AAAAAAAAGqKd4z3GMy8aGElap6t475U95YctALAMgzwAAAAAAAAa4GJ2Llyueng8c83ISNKKr+K1c7tiiPdZ+es/9oMWAFgBgzwAAAAAAAAaoJVfLBnRtPPS/8/e3YTIdd/pAv4ttNDCCy96oUUjHMiFLLwwaCHwwqsEHPBCYIEVJIwwFlhgQS8ECjgwTS54mO29NH3OKeGGEYO5eCFBG7Ro6IAWAt1BxBCBF4IRjCCKKERfI8EEwsD9V7UxVnWd01+nqs7H85iXCj5K1H2+IPDylqKRiFQmj7MpW6WreEWsj78OGwDgYBTyAAAAAAAAaLlRWSaPnYkSzQNlIxGpKOKdTvmiYhXvSTr2ay9YAOCQFPIAAAAAAABouTx+bx1PRA6cr+Ld8VdaV63ircUbXq4AwBEo5AEAAAAAANBio9JMHsOJQs2W0pGITF3FG8QfreIBADOkkAcAAAAAAECL5bEyZd3qovKRiEyU8c6Ov8raKh4AMFsKeQAAAAAAALTURrwZeTydKNZsKx+JyGsp4kureADAnCjkAQAAAAAA0FJ5rO4p1wziIwUkERlnEL9J74WHVvEAgDlSyAMAAAAAAKCFRiWaPHZeK9dkcU8JSUR+LOOtWMUDABZAIQ8AAAAAAIAWKuL6lLWrDxWRRHqePM6m3LeKBwAsiEIeAAAAAAAALbMRJyOP4UTJ5kH6PK2QJNLjZHEtvQdeWMUDABZIIQ8AAAAAAICWyeIPU1avfquQJGIVb2qy2LCKBwDMiUIeAAAAAAAALZLHUsrLicLNfaUkkZ6miC9TXpWU8Z5FFu97cQIAc6SQBwAAAAAAQIsUcX1K6eacYpJIz3Iz3oss7lWu4m3Em16aAMCcKeQBAAAAAADQEhtxcrx49Xrp5p5ykkjvvqL2i5S/W8UDABpIIQ8AAAAAAICWyOP3e8o3RXyooCRiFc8qHgDQEAp5AAAAAAAAtMCoZJPH04kCzraSkkgvFvFORxFfpryyigcANJxCHgAAAAAAAC1QxP+0jifSwwziN+l5f2QVDwBoCYU8AAAAAAAAGm53HW9nooizpawk0vllvH+yigcAtIxCHgAAAAAAAA2Xx++nrOP9VmFJpKO5Ge9FFves4gEALaSQBwAAAAAAQINtxMnI4+lEIWdbaUmks6t4X6T83SoeANBSCnkAAAAAAAA0WB4re0o5g/iN4pJI54p4Z6OIB1bxAICWU8gDAAAAAACgofJYSnk5Ucq5p7wk0rEMYiWKeGUVDwDoAIU8AAAAAAAAGiqP1T3lnCJ+q8Ak0pEU8U56ru+XruLl8b/HxVwAgPZQyAMAAAAAAKCBRl9NmcfORDnnvhKTSCe+nvZ0yr9EFj+UFPGGUcQFL0IAoIUU8gAAAAAAAGigLP5gHU+kg7kZ76Xn+WHpKl4R6+NCLgBAOynkAQAAAAAA0DAbcTLyeDZR1LmrzCTS+mW8f6pYxXuZjr3vBQgAtJxCHgAAAAAAAA2Tx+fW8UQ6toqXxb3SVbw8bsVanPLyAwA6QCEPAAAAAACABhl9VWUew4myzrZSk0hrV/G+SPl7SRHvSRTxgRcfANAhCnkAAAAAAAA0SB6rU9bxPlRsEmldEe9sylbpKl4R67EWb3jpAQAdo5AHAAAAAABAQ+yu4+1MFHfuKzeJtCyDWIkiXpWu4uVxzgsPAOgohTwAAAAAAAAawjqeSPtX8bK4V7mKNyreAgB0l0IeAAAAAAAADWAdT6TdyeJGxSre03T8fS86AKAHFPIAAAAAAABoAOt4Il1dxfsmfS55yQEAPaGQBwAAAAAAwIJZxxNpZ4q4bhUPAOi438Vuye6g+Vso5AEAAAAAALBQ1vFE2pWv4t19V/HW4y0vNwCgA1ajumB32CjkAQAAAAAAMEPW8UTalUH8sWIVb5iOfeDFBgB0yGoo5AEAAAAAANAa1vFE2rOKV8SDylW8PJa81ACAjlkNhTwAAAAAAABawTqeSFdW8S57oQEAHbUaCnkAAAAAAAC0gnU8kWbnZrxXuYqXxYZVPACg41ZDIQ8AAAAAAIDGs44n0uwU8aVVPAAAhTwAAAAAAADawDqeSFtX8Tat4gEAPbIaCnkAAAAAAAA0mnU8kTau4u1EFue9wACAnvld7JboDpq/hUIeAAAAAAAAc2UdT6Rdq3h53E1/5pdeXgAA+9oMhTwAAAAAAADmxjqeSJtW8YZW8QAADkUhDwAAAAAAgDmyjifSllW82zGIZS8tAIBDUcgDAAAAAABgTqzjibRhFe/ZeBVvNU54aQEAHJpCHgAAAAAAAHNiHU+k+at4a3HKywoA4MgU8gAAAAAAAJgD63gizV/FAwDguBTyAAAAAAAAmAPreCKLSR5nI4t7Fat4X6cseUkBANRCIQ8AAAAAAIAZs44nsphkcaNiFW+Ycs4LCgCgVgp5AAAAAAAAzJh1PBGreAAA/aCQBwAAAAAAwAxZxxNp0ires3T8vBcTAMDMKOQBAAAAAAAwQ9bxRJqyincrBrHspQQAMFMKeQAAAAAAAMyIdTyRJqziDVPOeSEBAMyFQh4AAAAAAAAzYh1PZLGreFlsjIuxAADMi0IeAAAAAAAAM2AdT2SRq3hP0/H3vYgAAOZOIQ8AAAAAAIAZsI4nsphVvDwG6Z9lLyEAgIVQyAMAAAAAAKBm1vFEFrGK98wqHgDAwinkAQAAAAAAUDPreCLzXsW7lbLk5QMAsHAKeQAAAAAAANTIOp5IvRnESsUq3hOreAAAjaKQBwAAAAAAQI2s44nUVcQ7k56f7YpVvEGsxRteOgAAjaKQBwAAAAAAQE2s44nUkyxupPxQUsR7FkX82gsHAKCRFPIAAAAAAACoSRHXp5SHzilYidS2incrZcnLBgCgsRTyAAAAAAAAqMFGnBwvd71eHnqkZCVyiFW8Il6VFPGG6fh5LxoAgMZTyAMAAAAAAKAGefx+T4loEB8pWonskzzOpmyVruIVsT7+OmgAANpAIQ8AAAAAAIBjGpWF8ng6USR6qGwlsk9GX/Ncvor3JB37tRcMAECrKOQBAAAAAABwTNPW8Yq4qHAlUpKv4t30nGxXruKtxRteLgAAraOQBwAAAAAAwDGMSkN5DF8rE2VxT+lKpCSDWLGKBwDQWQp5AAAAAAAAHEMeK9bxRA6QPM6m3LeKBwDQaQp5AAAAAAAAHNHuOt7TiWLRfeUrkYlkcS09Gy+s4gEAdJ5CHgAAAAAAAEdUxHXreCKVX097xioeAECvKOQBAAAAAABwBBtxMvJ4NlEuepA+TytiiaSsx5X0PDy3igcA0CsKeQAAAAAAABxBHitT1r4+VMQSq3hxJj0Ld6ziAQD0kkIeAAAAAAAAh7S7jjecKBo9tI4nvU8W19Jz8MIqHgBAbynkAQAAAAAAcEhFXLeOJ7JnFe/b0lW8LDas4gEA9IJCHgAAAAAAAIcwKhVNruMV8UApS3qbPK5WrOI9iyze9+IAAOgNhTwAAAAAAAAOIY9PreOJ/LiKl8dW5SreRrzppQEA0CsKeQAAAAAAABzQapyIPJ5MFI/uK2dJ77IeV9K9/9wqHgAAExTyAAAAAAAAOKAiru8pHw3iYwUt6U2KeCfd99tW8QAAKKGQBwAAAAAAwAFsxMnI4+lE+eiekpb0JnlctYoHAMA+FPIAAAAAAAA4gGnreEV8oqglnc8gzljFAwDggBTyAAAAAAAA2MfuOt5wooh0X1lLOp/1uJLu9RdW8QAAOCCFPAAAAAAAAPaRx+dT1vE+VNiSzuZmvJ3u8y2reAAAHJJCHgAAAAAAABVW40Tk8XiijPcgfZ5W3JKOfkXtilU8AACOSCEPAAAAAACACkVcnlJKOqe4JR0s4p1J9/u3VvEAADgGhTwAAAAAAABKjMpHo0Ww14tJ31nHk84lj6spz63iAQBwTAp5AAAAAAAAlMhj1TqedDo34+10T98tXcXL41bKkpcBAAAHpJAHAAAAAADAFBtxcso63iMlLulMsrhWsYo3jCIueBEAAHBICnkAAAAAAABMkcfne0pKg/hIkUtan0GcSffz/dJVvCK+SX9m2UsAAIAjUMgDAAAAAABgwu463tPXSkpZ3FPmkg6s4t1I+aGkjPcyivjACwAAgGNQyAMAAAAAAGDCtHW8Ii4qdElrk8fZlO3SVbw87lrFAwCgBgp5AAAAAAAA/MxGvBl5DCfKSveVuqTVq3h5vCgp4j1LORerccLDDwBADRTyAAAAAAAA+Jk8Vqes432o2CUtXcXbqljFu52y5KEHAKBGCnkAAAAAAAD8aHcdb8c6nrQ+g1iJIl6VFPGG6dhlq3gAAMyAQh4AAAAAAAA/so4nXVjFy+Je5SreWpzysAMAMCMKeQAAAAAAAIR1PGl/srhRsYq3YxUPAIA5UMgDAAAAAAAgrONJd1fxivhTDGLZQw4AwBwo5AEAAAAAAPSedTxpa4q4XrGKN0zHLljFAwBgjhTyAAAAAAAAes86nrQtX8W7lat4WWzGerzl4QYAYM4U8gAAAAAAAHrNOp60LYP4Y8Uq3st07LJVPAAAFkQhDwAAAAAAoNes40mbVvGKeFC6ilfEN1bxAABYMIU8AAAAAACA3rKOJ91YxdsZr+IBAMDiKeQBAAAAAAD0lnU8aXpuxnuVq3hZbFrFAwCgQRTyAAAAAAAAesk6njQ9RXxZsYo3jCw+i9U44WEGAKBBFPIAAAAAAAB6yTqetHkVL48lDzEAAA2kkAcAAAAAANA71vGknat4O+nYZQ8wAAANppAHAAAAAADQO9bxpG2reHncTX/mlx5eAAAaTiEPAAAAAACgV6zjSbtW8YaRxXkPLgAALaGQBwAAAAAA0CvW8aQ9q3i3YxDLHloAAFpEIQ8AAAAAAKA3NuKkdTxpwSres8jiUqzGCQ8tAAAto5AHAAAAAADQG0Vcto4njV7Fy2Iz1uKUhxUAgJZSyAMAAAAAAOiF0dpYHo+t40ljV/FGhVEAAGg3hTwAAAAAAIBesI4ni0oeZyOLe6WreHncTlnykAIA0AEKeQAAAAAAAJ1nHU8WlSxuVKzivUzHL43vTwAA6AaFPAAAAAAAgM6zjifNW8X7Ogax7OEEAKBjFPIAAAAAAAA6zTqeNGsVbzguiAIAQDcp5AEAAAAAAHSadTxpzireLat4AAB0nEIeAAAAAABAZ1nHk2as4u2k45c8kAAA9IBCHgAAAAAAQGdZx5NFr+JlsRlrccrDCABATyjkAQAAAAAAdJJ1PFn8Kt55DyIAAD2jkAcAAAAAANBJ1vFkUat4edyOQSx7CAEA6CGFPAAAAAAAgM6xjieLWcUbjlfxRvcfAAD0k0IeAAAAAABA51jHk3mv4mWxmT6XPHwAAPScQh4AAAAAAECnWMeTujOIlcpVvFEBFAAAGFHIAwAAAAAA6BTreFJfEe9Mun+2K1fxBrHsoQMAgJ8o5AEAAAAAAHSGdTypK1ncSPmhpIy3k45dGt9vAADAzynkAQAAAAAAdEYW56eUp84pmEmtq3hrccrDBgAAUynkAQAAAAAAdEYef5koUD1SMpNDreIV8aqkjDccFz4BAIAqCnkAAAAAAACdUMSFPSWqQXykaCb7Jo+zKVulq3hFrMdGvOkhAwCAfSnkAQAAAAAAtN5qnIg8vp8oUj1UNpN9U8T1ilW8J+nYrz1gAABwYAp5AAAAAAAArZfHp1NWzS4qnElpvop3032yXbmKtxZveLgAAOBQFPIAAAAAAABabdo6Xhb3lM6kNINYsYoHAAAzoZAHAAAAAADQatPX8T5RPJM9yeNsyn2reAAAMDMKeQAAAAAAAK21u473ZKJU9SB9nlZAk9eSxbV0X7ywigcAADOlkAcAAAAAANBa09bxBvGxApr87Otpz1jFAwCAuVHIAwAAAAAAaK08vreOJ6VZjyvpfnhuFQ8AAOZGIQ8AAAAAAKCVpq3jFXFREU3Gq3hF3LGKBwAAc6eQBwAAAAAA0DqrcWK8cPZ60eqRdTyJLK6l++CFVTwAAFgIhTwAAAAAAIDWmbaON4iPFNJ6v4r3bekqXhYbVvEAAGDmFPIAAAAAAABaZXcd7/uJwtV3Smk9Th5XK1bxnkUW73twAABgLhTyAAAAAAAAWmXaOl4Rnyim9XQVL4+tylW8jXjTQwMAAHOjkAcAAAAAANAau+t4TyaKVw+V03qY9biSrv1zq3gAANAoCnkAAAAAAACtUcT1PeWrUTFLQa0/KeKddN23reIBAEAjKeQBAAAAAAC0wkacjDye7lnHy+O0olpPksdVq3gAANBoCnkAAAAAAACtMG0db1TQUlTrfgZxxioeAAC0gkIeAAAAAABA4+2u4w0niljfWcfrQUZfSZzHC6t4AADQCgp5AAAAAAAAjZfH53vKWEVcVFjrcG7G2+k6b1nFAwCAVlHIAwAAAAAAaLTVOBF5PJ4oZD2yjtfpr6hdsYoHAACtpJAHAAAAAADQaEVcto7XmyLemXRtv7WKBwAAraWQBwAAAAAA0FjT1/G+t47XweRxNeW5VTwAAGg1hTwAAAAAAIDGmr6O94kCW4dyM95O1/Vu6SpeHrdSljwMAADQCgp5AAAAAAAAjZXHXybKWY+V2DqULK5VrOINo4gLHgIAAGgVhTwAAAAAAIBGyuPTPSWt9biiyNaBDOJMup73S1fxivgm/ZllDwEAALSOQh4AAAAAAEDjbMTJyOPpRFHrYcpphbbWr+LdSPmhpIz3Mor4wAMAAACtpZAHAAAAAADQOHl8PqWsdVWhrcXJ42zKdukqXh53reIBAEDrKeQBAAAAAAA0ymqcmLKO98g6XstX8fJ4UVLEe5ZybnzdAQCAtlPIAwAAAAAAaJQiLu8pba3HFcW21q7ibVWs4t1OWXLTAwBAZyjkAQAAAAAANMbuOt7j10pbRTywjtfCDGIlXbtXJUW84bh4aRUPAAC6RiEPAAAAAACgMaat4xXxoYJby1bxsrhXuYq3Fqfc7AAA0EkKeQAAAAAAAI0wbR0vj/tKbi1KFjcqVvF2rOIBAEDnKeQBAAAAAAA0gnW87q7iFfGnGMSymxwAADpPIQ8AAAAAAGDhrOO1N0Vcr1jFG6ZjF6ziAQBAbyjkAQAAAAAALJx1vPblZrydrtGd0lW8LDZjPd5ycwMAQK8o5AEAAAAAACyUdbz2ZT2upGv0vKSM93JcsLSKBwAAfaSQBwAAAAAAsFDW8bqzilfEN1bxAACg1xTyAAAAAAAAFsY6XldW8XbGxUoAAKDvFPIAAAAAAAAWxjpe81PEO5WreFlsWsUDAAB+pJAHAAAAAACwENbxmp88rlas4g0ji8/G1xEAAGCXQh4AAAAAAMBCWMdr9ypeHktuYgAAYIJCHgAAAAAAwNxZx2vrKt7OuEgJAAAwnUIeAAAAAADA3FnHa98qXh5342b80s0LAABUUMgDAAAAAACYK+t4bVvFG0YW5924AADAASjkAQAAAAAAzJV1vGat4uWxXbGKdzsGseymBQAADkghDwAAAAAAYG6s4zUng1iJLH4oKeI9S8cuja8XAADAwSnkAQAAAAAAzI11vOav4mWxGWtxys0KAAAcgUIeAAAAAADAXFjHa/4q3qgwCQAAcHQKeQAAAAAAAHNhHa+5q3h53E5ZcpMCAADHpJAHAAAAAAAwc9bxmrqK9zIduzS+PgAAAMenkAcAAAAAADBz1vGauIr3dQxi2c0JAADUSCEPAAAAAABgpqzjNW0VbzguSAIAANRPIQ8AAAAAAGCmrOM1aRXvllU8AABghhTyAAAAAAAAZsY6XlNW8XbSsUtuSAAAYMYU8gAAAAAAAGbGOt7sk8fZylW8LDZjLU65GQEAgDlQyAMAAAAAAJgJ63izTxY3oohXFat4592IAADAHCnkAQAAAAAAzIR1vNmu4mVxr3QVL4/bMYhlNyEAADBnCnkAAAAAAAC1s463qFW84XgVb3T+AQAA5k8hDwAAAAAAoHbW8ea/ipfFZvpccvMBAAALpJAHAAAAAABQK+t49WcQK5WreKMCJAAAwOIp5AEAAAAAANTKOl6dRbwz6fxtV67iDWLZTQcAADSEQh4AAAAAAEBtrOPVlyxupPxQUsbbSccujc83AABAcyjkAQAAAAAA1CaL81PKY+cU7GpcxcvjbqzFKTcbAADQQAp5AAAAAAAAtcnjLxPlsUdKdodcxSviVcUq3mdW8QAAgAZTyAMAAAAAAKhFERf2lMgG8ZGi3QGSx9mUrcpVvEEsu8kAAICGU8gDAAAAAACoRR5/niiRPVS2O0CKuF65ilfEZTcXAADQEgp5AAAAAAAAx5bF+T1lsiIuKtxV5Kt4N52n7cpVvLU45eYCAABaRCEPAAAAAADgWFbjROTx/WtlsizuKd1VZBArVvEAAIAOUsgDAAAAAAA4ljw+nbKO94ni3ZTkcTblvlU8AACgoxTyAAAAAAAAjmx3He/JRBnvQfo8rYA3kSyupfPywioeAADQYQp5AAAAAAAARzZtHW8QHyvgvfb1tGf2WcX72ioeAADQEQp5AAAAAAAAR5bH99bxKrIeV9L5eF5SxHuWztcFNxEAANAhCnkAAAAAAABHMiqTTZbMirioiPfjKl4Rd6ziAQAAPaOQBwAAAAAAcCR5/HmiZPbIOl5KFtfSeXhhFQ8AAOghhTwAAAAAAIBDy+L8nrLZID6yihffWsUDAAB6TCEPAAAAAADg0Pau433X6zJeHlet4gEAACjkAQAAAAAAHM60dbwiPuntKl4eW1bxAAAAxhTyAAAAAAAADmw1TkQejydKZw97WcZbjyvpd39uFQ8AAOAnCnkAAAAAAAAHlsene8pno2Jan4p4RbyTfu9tq3gAAAB7KOQBAAAAAAAcSNk6Xh6ne1PGy+OqVTwAAIBSCnkAAAAAAAAHUsTlKSW0q70o4g3ijFU8AACAfSnkAQAAAAAA7Gt3He/JRAntu16s442+kjePF6WreFm87wYBAAAYU8gDAAAAAADY17R1vCIudrqIdzPeTr/nVukqXhYb6Z833RwAAAA/UcgDAAAAAACotLuO93iikPao0+t4g1ixigcAAHBoCnkAAAAAAACVsjjfm3W8QZxJv9u3VvEAAACORCEPAAAAAACgUh7/PlFM+76T63h5XE15bhUPAADgyBTyAAAAAAAAShXxwZR1vE86VcS7GW+n3+tu6SpeHrdSltwMAAAA+1LIAwAAAAAAKLV3He9xx76i9uOKVbxhFHHBTQAAAHBgCnkAAAAAAABT5fHpnpLaelzpRBFvI34VRdwpXcUr4psYxLKbAAAA4FAU8gAAAAAAAPbYiJORx9OJotrDlNOtL+ONvnK3fBXv5fhregEAADgKhTwAAAAAAIA9pq3j5XG11UW8m/H2j6t4/ygp4921igcAAHAsCnkAAAAAAACvWY0TkcfjibLao1av4+2u4v1nSRHvWcq58e8NAADAcSjkAQAAAAAAvKaIy1NKa1+0dhUvi/9TUsQb5XbKkosOAABQC4U8AAAAAACAn0xbx8viSQziF60r4w3i4/Tzvygp4g3HxUOreAAAAHVSyAMAAAAAAPjJtHW8Qay0bhWviDuVq3hrccrFBgAAqJ1CHgAAAAAAwFjZOl4ep1tTxluPK+nnfV5SxNuxigcAADBTCnkAAAAAAABjbV7H228Vr4g/pd9l2UUGAACYKYU8AAAAAACAVq/jVa/iDaOIC1bxAAAA5kIhDwAAAAAAoJXrePut4mWxGevxlosLAAAwNwp5AAAAAABAz7VxHa96Fe/luGBoFQ8AAGDeFPIAAAAAAICea9M63n6reEV8YxUPAABgYRTyAAAAAACAHmvTOl71Kt7OuFgIAADAIinkAQAAAAAAPdaGdbwi3qlcxcti0yoeAABAIyjkAQAAAAAAPdWGdbw8rlas4g3Tz/vZ+PcAAACgCRTyAAAAAACAnmryOt5BVvHyWHIRAQAAGkUhDwAAAAAA6KEmr+NVr+LtjIuEAAAANJFCHgAAAAAA0ENNXMfbbxUvj7txM37p4gEAADSWQh4AAAAAANAzTVzHq17FG6af77wLBwAA0HgKeQAAAAAAQM80aR1vtIqXx3bFKt7t9LMtu2gAAACtoJAHAAAAAAD0SJPW8UYlwCx+KCniPUvHLo1/XgAAANpCIQ8AAAAAAOiRJqzj7beKl8VmrMUpFwsAAKB1FPIAAAAAAICeaMI63n6reKPCIAAAAG2lkAcAAAAAAPTEItfx9lvFy+N2ypKLBAAA0GoKeQAAAAAAQA8sch2vehXvZTp2afzzAQAA0HYKeQAAAAAAQA8sYh1v/1W8r9PPsOziAAAAdIZCHgAAAAAA0HGLWMerXsUbjguCAAAAdI1CHgAAAAAA0HHzXMfbfxXvllU8AACAzlLIAwAAAAAAOmye63jVq3g76dglFwQAAKDTFPIAAAAAAIAOm8c6Xh5nK1fxstiMtTjlYgAAAHSeQh4AAAAAANBR81jHy+JGFPGqYhXvvAsBAADQGwp5AAAAAABAR81yHW+0ipfFvdJVvDxup79r2UUAAADoFYU8AAAAAACgg2a5jle9ijccr+KN/n4AAAD6RiEPAAAAAADooFms4+23ipfFZvpccvIBAAB6SyEPAAAAAADomFms443KfFWreKMCIAAAAH2nkAcAAAAAAHRMnet4RbyT/vvblat4g1h20gEAAAiFPAAAAAAAoFPqXMfL42rK85Iy3k763700/vsAAABgl0IeAAAAAADQIUVcmLJid+0Iq3hbpat4edyNtTjlZAMAADBBIQ8AAAAAAOiQfLyG9/Py3ONDrePtruL9tWIV7zOreAAAAJRQyAMAAAAAADpi9BWye0t0XxyoiLcRv4oi7lSs4t2OQSw7yQAAAFRQyAMAAAAAADpgtFq3u4b38xLdX2MQv9i3jLceVypW8V6Oi35W8QAAANifQh4AAAAAANABWZzfU6bL4sa+q3h5/FvFKt5WrMdbTi4AAAAHpJAHAAAAAAB0QB7fT5Tp/nNcuCsr42VxLf2Z5yVFvGHK504qAAAAh6SQBwAAAAAAtNy0dbw8rk4t4hXxTsqddPwfJWW82zGIZScVAACAI1DIAwAAAAAAWm7aOl4ep6eU8T5J//6vJUW8ncjiUqzGCScUAACAI1LIAwAAAAAAWmxUottbrvti4utp/0f6d/9WsYq3ZRUPAACAGijkAQAAAAAALbZ3He95DOIXP5XxRl9dO/p304t4wyjispMIAABATRTyAAAAAACAlsrj0z0lu0GsjIt4G/GrKOJOSRFvlNuxFqecRAAAAGqkkAcAAAAAALTQapyIPP78Wskuiyfp83Ssx5X0+deSIt5/WcUDAABgRhTyAAAAAACAFpq2jlfEH1L+Nf3nf0wt42WxGYNYdvIAAACYEYU8AAAAAACghfL4fqJw9yLlWckq3k5kcclJAwAAYMYU8gAAAAAAgJYZlev2lu7+u3QVL48lJw0AAIA5UMgDAAAAAABaJo8/lyzhTa7inXeyAAAAOIbfxW7J7qD5WyjkAQAAAAAArVHEhX3LeKNVvPV4y8kCAADgmFajumB32CjkAQAAAAAADbEaJyKP/9hnFe/S+M8BAABAHf9PVCEPAAAAAADopDz+WFrGK+Kb2Ig3nSQAAABqtBoKeQAAAAAAQCfl8X+nlPH+X2Rx3skBAABgBlZDIQ8AAAAAAOikPP55ooz3MAax7MQAAAAwI6uhkAcAAAAAAHRWFn+IPL5Ln/8rVuOEEwIAAMAMrYZCHgAAAAAAAAAAABzbaijkAQAAAAAAAAAAwLH9LnZLdAfN30IhDwAAAAAAAAAAAI5tMxTyAAAAAAAAAAAA4NgU8gAAAAAAAAAAAKAGCnkAAAAAAAAAAABQA4U8AAAAAAAAAAAAqIFCHgAAAAAAAAAAANRAIQ8AAAAAAAAAAABqoJAHAAAAAAAAAAAANVDIAwAAAAAAAAAAgBoo5AEAAAAAAAAAAEANFPIAAAAAAAAAAACgBgp5AAAAAAAAAAAAUAOFPAAAAAAAAAAAAKiBQh4AAAAAAAAAAADUQCEPAAAAAAAAAAAAaqCQBwAAAAAAAAAAADVQyAMAAAAAAAAAAIAaKOQBAAAAAAAAAABADRTyAAAAAAAAAAAAoAYKeQAAAAAAAAAAAFADhTwAAAAAAAAAAACogUIeAAAAAAAAAAAA1EAhDwAAAAAAAAAAAGqgkAcAAAAAAAAAAAA1UMgDAAAAAAAAAACAGijkAQAAAAAAAAAAQA0U8gAAAAAAAAAAAKAGCnkAAAAAAAAAAABQA4U8AAAAAAAAAAAAqIFCHgAAAAAAAAAAANRAIQ8AAAAAAAAAAABqoJAHAAAAAAAAAAAANVDIAwAAAAAAAAAAgBoo5AEAAAAAAAAAAEANFPIAAAAAAAAAAACgBgp5AAAAAAAAAAAAUAOFPAAAAAAAAAAAAKiBQh4AAAAAAAAAAADUQCEPAAAAAAAAAAAAaqCQBwAAAAAAAAAAADVQyAMAAAAAAAAAAIAaKOQBAAAAAAAAAABADRTyAAAAAAAAAAAAoAYKeQAAAAAAAAAAAFADhTwAAAAAAAAAAACogUIeAAAAAAAAAAAA1EAhDwAAAAAAAAAAAGqgkAcAAAAAAAAAAAA1UMgDAAAAAAAAAACAGijkAQAAAAAAAAAAQA0U8gAAAAAAAAAAAKAGCnkAAAAAAAAAAABQA4U8AAAAAAAAAAAAqIFCHgAAAAAAAAAAANRAIQ8AAAAAAAAAAABqoJAHAAAAAAAAAAAANVDIAwAAAAAAAAAAgBoo5AEAAAAAAAAAAEANFPIAAAAAAAAAAACgBgp5AAAAAAAAAAAAUAOFPAAAAAAAAAAAAKiBQh4AAAAAAAAAAADUQCEPAAAAAAAAAAAAaqCQBwAAAAAAAAAAADVQyAMAAAAAAAAAAID/364d2yAMBAEQvDbdzfdEUy6DwCEIGf1mnpG2iw0Y8gAAAAAAAAAAACBgyAMAAAAAAAAAAICAIQ8AAAAAAAAAAAAChjwAAAAAAAAAAAAIGPIAAAAAAAAAAAAgYMgDAAAAAAAAAACAgCEPAAAAAAAAAAAAAoY8AAAAAAAAAAAACBjyAAAAAAAAAAAAIGDIAwAAAAAAAAAAgIAhDwAAAAAAAAAAAAKGPAAAAAAAAAAAAAgY8gAAAAAAAAAAACBgyAMAAAAAAAAAAICAIQ8AAAAAAAAAAAAChjwAAAAAAAAAAAAIGPIAAAAAAAAAAAAgYMgDAAAAAAAAAACAgCEPAAAAAAAAAAAAAoY8AAAAAAAAAAAACBjyAAAAAAAAAAAAIGDIAwAAAAAAAAAAgIAhDwAAAAAAAAAAAAKGPAAAAAAAAAAAAAgY8gAAAAAAAAAAACBgyAMAAAAAAAAAAICAIQ8AAAAAAAAAAAAChjwAAAAAAAAAAAAIGPIAAAAAAAAAAAAgYMgDAAAAAAAAAACAgCEPAAAAAAAAAAAAAoY8AAAAAAAAAAAACBjyAAAAAAAAAAAAIGDIAwAAAAAAAAAAgIAhDwAAAAAAAAAAAAKGPAAAAAAAAAAAAAgY8gAAAAAAAAAAACBgyAMAAAAAAAAAAICAIQ8AAAAAAAAAAAAChjwAAAAAAAAAAAAIGPIAAAAAAAAAAAAgYMgDAAAAAAAAAACAgCEPAAAAAAAAAAAAAoY8AAAAAAAAAAAACBjyAAAAAAAAAAAAIGDIAwAAAAAAAAAAgIAhDwAAAAAAAAAAAAKGPAAAAAAAAAAAAAgY8gAAAAAAAAAAACBgyAMAAAAAAAAAAICAIQ8AAAAAAAAAAAAChjwAAAAAAAAAAAAIGPIAAAAAAAAAAAAgYMgDAAAAAAAAAACAgCEPAAAAAAAAAAAAAoY8AAAAAAAAAAAACBjyAAAAAAAAAAAAIGDIAwAAAAAAAAAAgIAhDwAAAAAAAAAAAAKGPAAAAAAAAAAAAAgY8gAAAAAAAAAAACBgyAMAAAAAAAAAAICAIQ8AAAAAAAAAAAAChjwAAAAAAAAAAAAIGPIAAAAAAAAAAAAgYMgDAAAAAAAAAACAgCEPAAAAAAAAAAAAAoY8AAAAAAAAAAAACBjyAAAAAAAAAAAAIGDIAwAAAAAAAAAAgIAhDwAAAAAAAAAAAAKGPAAAAAAAAAAAAAgY8gAAAAAAAAAAACBgyAMAAAAAAAAAAICAIQ8AAAAAAAAAAAAChjwAAAAAAAAAAAAIGPIAAAAAAAAAAAAgYMgDAAAAAAAAAACAgCEPAAAAAAAAAAAAAoY8AAAAAAAAAAAACBjyAAAAAAAAAAAAIGDIAwAAAAAAAAAAgIAhDwAAAAAAAAAAAAKGPAAAAAAAAAAAAAgY8gAAAAAAAAAAACBgyAMAAAAAAAAAAICAIQ8AAAAAAAAAAAAChjwAAAAAAAAAAAAIGPIAAAAAAAAAAAAgYMgDAAAAAAAAAACAgCEPAAAAAAAAAAAAAoY8AAAAAAAAAAAACBjyAAAAAAAAAAAAIGDIAwAAAAAAAAAAgIAhDwAAAAAAAAAAAAKGPAAAAAAAAAAAAAgY8gAAAAAAAAAAACBgyAMAAAAAAAAAAICAIQ8AAAAAAAAAAAAChjwAAAAAAAAAAAAIGPIAAAAAAAAAAAAgYMgDAAAAAAAAAACAgCEPAAAAAAAAAAAAAoY8AAAAAAAAAAAACBjyAAAAAAAAAAAAIGDIAwAAAAAAAAAAgIAhDwAAAAAAAAAAAAKGPAAAAAAAAAAAAAgY8gAAAAAAAAAAACBgyAMAAAAAAAAAAICAIQ8AAAAAAAAAAAAChjwAAAAAAAAAAAAIGPIAAAAAAAAAAAAgYMgDAAAAAAAAAACAgCEPAAAAAAAAAAAAAoY8AAAAAAAAAAAACBjyAAAAAAAAAAAAIGDIAwAAAAAAAAAAgIAhDwAAAAAAAAAAAAKGPAAAAAAAAAAAAAgY8gAAAAAAAAAAACBgyAMAAAAAAAAAAICAIQ8AAAAAAAAAAAAChjwAAAAAAAAAAAAIGPIAAAAAAAAAAAAgYMgDAAAAAAAAAACAgCEPAAAAAAAAAAAAAoY8AAAAAAAAAAAACBjyAAAAAAAAAAAAIGDIAwAAAAAAAAAAgIAhDwAAAAAAAAAAAAKGPAAAAAAAAAAAAAgY8gAAAAAAAAAAACBgyAMAAAAAAAAAAICAIQ8AAAAAAAAAAAAChjwAAAAAAAAAAAAIGPIAAAAAAAAAAAAgYMgDAAAAAAAAAACAgCEPAAAAAAAAAAAAAoY8AAAAAAAAAAAACBjyAAAAAAAAAAAAIGDIAwAAAAAAAAAAgIAhDwAAAAAAAAAAAAKGPAAAAAAAAAAAAAgY8gAAAAAAAAAAACBgyAMAAAAAAAAAAICAIQ8AAAAAAAAAAAAChjwAAAAAAAAAAAAIGPIAAAAAAAAAAAAgYMgDAAAAAAAAAACAgCEPAAAAAAAAAAAAAoY8AAAAAAAAAAAACBjyAAAAAAAAAAAAIGDIAwAAAAAAAAAAgIAhDwAAAAAAAAAAAAKGPAAAAAAAAAAAAAgY8gAAAAAAAAAAACBgyAMAAAAAAAAAAICAIQ8AAAAAAAAAAAAChjwAAAAAAAAAAAAIGPIAAAAAAAAAAAAgYMgDAAAAAAAAAACAgCEPAAAAAAAAAAAAvjjmmuzudo4hDwAAAAAAAAAAAD6s+T3Y/ZshDwAAAAAAAAAAgEdaY8gDAAAAAAAAAACAbWsMeQAAAAAAAAAAALBtjSEPAAAAAAAAAAAAtq0x5AEAAAAAAAAAAMC2NYY8AAAAAAAAAAAA2LbGkAcAAAAAAAAAAADbjrkmurudY8gDAAAAAAAAAACAba8x5AEAAAAAAAAAAMA2Qx4AAAAAAAAAAAAEDHkAAAAAAAAAAAAQMOQBAAAAAAAAAABAwJAHAAAAAAAAAAAAAUMeAAAAAAAAAAAABAx5AAAAAAAAAAAAEDDkAQAAAAAAAAAAQMCQBwAAAAAAAAAAAAFDHgAAAAAAAAAAAAQMeQAAAAAAAAAAABAw5AEAAAAAAAAAAEDAkAcAAAAAAAAAAAABQx4AAAAAAAAAAAAEDHkAAAAAAAAAAAAQMOQBAAAAAAAAAABAwJAHAAAAAAAAAAAAAUMeAAAAAAAAAAAABAx5AAAAAAAAAAAAEDDkAQAAAAAAAAAAQMCQBwAAAAAAAAAAAAFDHgAAAAAAAAAAAAQMeQAAAAAAAAAAABAw5AEAAAAAAAAAAEDAkAcAAAAAAAAAAAABQx4AAAAAAAAAAAAEDHkAAAAAAAAAAAAQMOQBAAAAAAAAAABAwJAHAAAAAAAAAAAAAUMeAAAAAAAAAAAABAx5AAAAAAAAAAAAEDDkAQAAAAAAAAAAQMCQBwAAAAAAAAAAAAFDHgAAAAAAAAAAAAQMeQAAAAAAAAAAABAw5AEAAAAAAAAAAEDAkAcAAAAAAAAAAAABQx4AAAAAAAAAAAAEDHkAAAAAAAAAAAAQMOQBAAAAAAAAAABAwJAHAAAAAAAAAAAAAUMeAAAAAAAAAAAABAx5AAAAAAAAAAAAEDDkAQAAAAAAAAAAQMCQBwAAAAAAAAAAAAFDHgAAAAAAAAAAAAQMeQAAAAAAAAAAABAw5AEAAAAAAAAAAEDAkAcAAAAAAAAAAAABQx4AAAAAAAAAAAAEDHkAAAAAAAAAAAAQMOQBAAAAAAAAAABAwJAHAAAAAAAAAAAAAUMeAAAAAAAAAAAABAx5AAAAAAAAAAAAEDDkAQAAAAAAAAAAQMCQBwAAAAAAAAAAAAFDHgAAAAAAAAAAAAQMeQAAAAAAAAAAABAw5AEAAAAAAAAAAEDAkAcAAAAAAAAAAAABQx4AAAAAAAAAAAAEDHkAAAAAAAAAAAAQMOQBAAAAAAAAAABAwJAHAAAAAAAAAAAAAUMeAAAAAAAAAAAABAx5AAAAAAAAAAAAEDDkAQAAAAAAAAAAQMCQBwAAAAAAAAAAAAFDHgAAAAAAAAAAAAQMeQAAAAAAAAAAABAw5AEAAAAAAAAAAEDAkAcAAADAY70BIgKNtg/JwnsAAAAASUVORK5CYII=
Sei $$T\in \text{End}_K(V)$$ mit $$\dim_K(V)<\infty$$. Dann gilt:
# $$T$$ hat nur endlich viele Eigenwerte.
# Seien $$\lambda_1,\dots,\lambda_r$$ die paarweise verschiedenen Eigenwerte von $$T$$, so gilt:
<$latex text="\sum_{j=1}^r\dim_K(E(T,\lambda_j))\leq \dim_K(V)=n." displayMode="true"></$latex>
!! Beweis
# Angenommen man hätte $$m>n$$ Eigenvektoren $$x_i$$ zu paarweise verschiedenen Eigenwerten $$\lambda_i$$. Dann wären die $$x_i\in V$$ nach [[Elementare Eigenschaften Eigenwerten und Vektoren]] schon linear unabhängig, was ein Widerspruch zu $$\dim_K(V)<m$$ ist.
# Seien $$B_j=\{b_1^{(j)},\dots,b_{n_j}^{(j)}\}$$ Basen von $$E(T,\lambda_j)$$. Dann ist $$B=\bigcup B_j$$ nach [[Elementare Eigenschaften Eigenwerten und Vektoren]] linear unabhängig.
Zwei [[Folgen]] $$(a_n),(b_n)$$ heißen äquivalent, wenn folgendes gilt:
<$latex text="\forall\epsilon>0\exists n_0\in \N\forall n\geq n_0: |a_n-b_n|<\epsilon" displayMode="true"></$latex>
Seien $$x_1,\dots,x_n\in V$$ paarweise verschieden. Dann sind äquivalent:
# $$\{x_1,\dots,x_n\}\subset V$$ ist linear unabhängig.
# Jedes $$x\in\langle x_1,\dots,x_n \rangle$$ lässt sich eindeutig als Linearkombination von $$x_1,\dots,x_n$$ schreiben.
Außerdem sind $$x_1,\dots,x_n$$ genau dann linear abhängig, wenn es ein $$1\leq j_0\leq n$$ gibt, s.d. für $$\lambda_1,\dots,\lambda_n\in K$$:
<$latex text="x_{j_0}=\sum_{j=1,j\neq j_0}\lambda_jx_j" displayMode="true"></$latex>
!! Beweis
Die erste Äquivalenz folgt direkt aus der Definition. Für die zweite Äquivalenz:
"$$\impliedby:$$" Angenommen es gilt $$x_{j_0}=\sum_{j=1,j\neq j_0}\lambda_jx_j$$ . Dann folgt $$0=\sum_{j=1,j\neq j_0}\lambda_jx_j-x_{j_0}$$.
Nun ist aber $$-1\neq 0\implies\{x_1,\dots,x_n\}$$ linear abhängig.
"$$\implies$$:" Angenommen $$\{x_1,\dots,x_n\}$$ ist linear abhängig. Dann ist $$0=\sum_{j=1}^n\lambda_jx_j$$ und es gibt $$j_0:\lambda_j\neq 0.$$ Es gilt also <$latex text="x_{j_0}=\sum_{j=1,j\neq j_0}-\frac{\lambda_j}{\lambda_{j_0}}x_j." displayMode="true"></$latex>
Wenn eine [[Relation|Relationen]] $$R\subset X\times X$$ folgende Eigenschaften erfüllt, nennt man sie ''Äquivalenzrelation'':
# $$\forall_{x\in X}: x\sim x$$ (''Reflexivität'')
# $$\forall_{x,y\in X}: x\sim y\implies y\sim x$$ (''Symmetrie'')
# $$\forall_{x,y,z\in X}: x\sim y \land y\sim z\implies x\sim z$$ (''Transitivität'')
!! Äquivalenzklassen
Man nennt dann für $$a\in X$$
<$latex text="[a]_\sim=M_a=\{x\in X|a \sim x\}" displayMode="true"></$latex>
und $$X/_\sim\coloneqq \{Y \subset X | \exists a\in X: Y = M_a\}$$ die Menge der Klassen von $$\sim$$.
!! Hauptsatz:
$$X/_\sim$$ hat folgende Eigenschaften:
* Für $$M_1,M_2\in X/_\sim$$ gilt $$M_1=M_2$$ oder $$M_1\cap M_2=\emptyset$$.
* $$\bigcup_{M\in X/_\sim}=X$$.
Insbesondere liefern die Äquivalenzklassen eine disjunkte Zerlegung von $$X$$.
Sei $$M\subset V$$ eine Teilmenge eines [[Vektorraumes|Vektorraum]], dann ist
<$latex text="\text{span}_K(M)=\langle M \rangle_K=\bigcap_{\stackrel{U\subseteq V\text{ Unterraum}}{M\subseteq V}} U" displayMode="true"></$latex>
der von $$M$$ aufgespannte Unterraum.
!! Beispiel: direkte Summe
Seien $$U_1,U_2$$ [[Unterräume]], dann ist
<$latex text="\langle U_1\cap U_2\rangle=U_1+U_2=\{z\in V|\exists u_1\in U_1,u_2\in U_2:z=u_1+u_2\}" displayMode="true"></$latex>
| Power + Inverse Iteration $$\\$$ ([[Einleitung: Potenziteration (Power Iteration)]] + [[Potenzmethode (Inverse Iteration)]]) | Rayleigh-Quotient-Iteration $$\\$$([[Einleitung: Rayleigh-Quotient-Iteration]]) |h
| Konvergenz: Quadratisch | Konvergenz: Kubisch |
| Jeder Schritt: $$ O(m^2) $$ Operationen | Jeder Schritt: Lösen eines Gleichungssystems: $$ O(m^3) $$ Operationen |
| $$\Rightarrow O(m^2) $$ Aufwand | $$ \Rightarrow O(m^3) $$ Aufwand |
| | Lösen des Gleichungssystems kann auf $$ O(m^2) $$ reduziert werden (QR- oder LU-Zerlegung) |
Sei $$B=\{x_1,\dots,x_n\}$$ eine [[Basis |Erzeugendensysteme und Basen]]von $$V$$. Für $$x\in V$$ gelte<$latex text="x=\sum_{i=1}^n\lambda_ix_i" displayMode="true"></$latex>
mit $$\lambda_{v_0}$$ und $$\lambda_1,\dots,\lambda_n\in K$$.
Dann ist $$B'=(B\setminus\{x_{v_0}\}) \cup\{x\}$$ eine Basis von $$V$$.
!! Beweis
!!! 1. $$B'$$ ist ein Erzeugendensystem.
Sei $$y\in V$$ beliebig und o.B.d.A. $$v_0=1$$. Da $$B$$ eine Basis ist lässt sich $$y$$ linear kombinieren:<$latex text="y=\sum_{i=1}^n\mu_ix_i" displayMode="true"></$latex>
und es folgt:
<$latex text="x_1=\frac{1}{\lambda_1}x-\sum_{k=2}^n\frac{\lambda_k}{\lambda_1}x_k." displayMode="true"></$latex>
Dann jedoch auch $$y$$ aus dem Elementen von $$B'$$ liniear kombiniert werden:
<$latex text="y=\frac{\mu_1}{\lambda_1}x+\sum_{k=2}^n\left(\mu_2-\frac{\mu_1\lambda_k}{\lambda_1}\right)x_k." displayMode="true"></$latex>
Also ist $$B'$$ auch ein Erzeugendensystem.
!!! 2. $$B'$$ ist linear unabhängig.
Sei also $$\alpha_1x+\dots+\alpha_nx_n=0$$. Dann folgt
<$latex text="\alpha\left(\sum_{k=1}^n\lambda_kx_k\right)+\alpha_2x_2+\dots+\alpha_nx_n=0" displayMode="true"></$latex>
<$latex text="\alpha_1\lambda_1x_1+\sum_{k=2}^n(\alpha_1\lambda_k+\alpha_k)x_k=0" displayMode="true"></$latex>
Da $$B$$ eine Basis ist, gilt:
$$\alpha_1\lambda_1=\alpha_1\lambda_k+\alpha_k=0$$. Nun ist aber $$\lambda_1\neq 0$$ nach Voraussetzung. Dann folgt aus der [[Nullteilerfreiheit|Nullteiler]] erst, dass $$\alpha_1=0$$ und dann, dass $$\alpha_1=0$$.
Also ist $$B'$$ linear unabhängig.
Sei $$B$$ eine [[Basis|Erzeugendensysteme und Basen]] von einem [[Vektorraum]] $$V$$. Seien $$y_1,\dots,y_r\in V$$ [[linear unabhängig|Lineare Unabhängigkeit]]. Dann gilt:
# $$r\leq |B|$$
# Es gibt eine Teilmenge $$\{x_1,\dots,x_r\}\subset B$$, s.d. <$latex text="B'=(B\setminus\{x_1,\dots,x_r\})\cup\{y_1,\dots,y_r\}" displayMode="true"></$latex> eine Basis von $$V$$ ist.
!! Beweis durch Induktion über $$r$$
''Induktionsanfang:'' Sei $$r=1.$$ Dann folgt die Aussage durch das [[Austauschlemma]].
''Induktionsschritt:'' Nach Induktionsvoraussetzung gilt $$r\leq |B|$$ und $$B'=(B\setminus\{x_1,\dots,x_r\})\cup\{y_1,\dots,y_r\}$$ ist eine Basis. Jetzt sei
<$latex text="y_{r+1}=\sum_{i=1}^r\lambda_i y_i+\underbrace{\sum_{j=1}^n\mu_jz_j}_{\eqqcolon \zeta}" displayMode="true"></$latex>
für $$\lambda_1,\dots,\lambda_r,\mu_1,\dots,\mu_n\in K$$ und $$z_j\in B' \setminus \{y_1,\dots,y_r\}$$.
Jetzt gibt es zwei Fälle:
# $$\zeta=0$$ ist im Widerspruch zur linearen Unabhängigkeit und es folgt $$|B|\geq r+1$$
# $$\zeta\neq 0$$ impliziert zusammen mit dem Austauschlemma die Aussage.
iVBORw0KGgoAAAANSUhEUgAABQwAAACSCAYAAAAAToeWAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAKKBSURBVHhe7J0JXMzpH8c/45YJRVQ2Z7U5Q7GbjSVyb65139fKHu5zHXs4FmWt/Bdr5QgrbNa5ZJVzxQoVoSIUTUqFRqLM8//9Zn6lY2aaqZmp+L5fr4ffPL+ZaX6/7/f5fp/n+3ue7yNiHCAIgiAIgiAIgiAIgiAIguAoI/xPEARBEARBEARBEARBEARBAUOCIAiCIAiCIAiCIAiCIN5CAUOCIAiCIAiCIAiCIAiCILKhgCFBEARBEARBEARBEARBENlQwJAgCIIgCIIgCIIgCIIgiGwoYEgQBEEQBEEQBEEQBEEQRDYUMCQIgiAIgiAIgiAIgiAIIhsKGBIEQRAEQRAEQRAEQRAEkQ0FDAmCIAiCIAiCIAiCIAiCyIYChgRBEARBEARBEARBEARBZEMBQ4IgCIIgCIIgCIIgCIIgsqGAIUEQBEEQBEEQBEEQBEEQ2VDAkCAIgiAIgiAIgiAIgiCIbChgSBAEQRAEQRAEQRAEQRBENhQwJAiCIAiCIAiCIAiCIAgiGwoYEgRBEARBEARBEARBEASRDQUMCYIgCIIgCIIgCIIgCILIhgKGBEEQBEEQBEEQBEEQBEFkI2IcwjFBEARBEARBFAss/Skep7yEomMqQnnjmqgpLid/VTqRIf3pE6S8fCO8rgBjM1OIy4mE1wRBEARBECUXmmFIKIVJw7Drhx0ITdN3PJkhLXQHftgVBimFrouBN5CG++KHLaFIE2oIHZEWii0/+CJcmjVQJAyJ4WwYz3OEblmNXeHPhEAHoXfYM4TvWo0toc+FCgNAbVrPyJB6YRVaW1rCUl5aY/jeO5yXKs0k48JPPYXr4ctk7I1+JZwjCIIgCIIo2dAMQ72RBsnN24h7WcTbW9kSTZtYoJLw0hCwlPNYMfM82i6bjs4WFYXaAshMQKj/3/jn7Ckc9duP03elivpGXeHuPhnuo3vA3oz/rleQBHhg4qUu8Pv2Yyi+na9bgwX/OWP1PGeYlLoH76VV1m+QEuSFmf7NsGxhF1jIZzy8QbL/XNj0WI1kZZcjHgGf0M0Y2TC/Xry5uREdm07GeeF1FuK+Pgj5cyQalRUqSiiqfr9KxG0w8MuRGDZsMHrb10L+OTAMmZKTWLrgBrqtngInkxJ+A/LBkC6JQHjcC+F1YakCy6YfwqKS4Rq2chum0G3r7quRItTkgtPt7SG/Y1Sj/C1QnW6H+o1EQ/7RW+ZDBCxdhf+6LcY8p5ooFWYsXYKb4XF4KbwsHCLOdNmhiYWR8NoAsCcIWvEj/NvOwcLOHyhpewqoTZc2ZHgeuBB2K61x+tg42L5rj7SfB2Ku3UZ8eNoH42wN2asjCIIgCIIoJHzAkNAHMcxvtDUfcila6ePDomXCVxqCl+HMZ+wY5nE5iWn0ZzPiWfDO+axXIzFDoz5szsaD7FxEIssQTstS77Mg3++YW5tJzPtGPHt0cglzMbZnU4/HC+8QkCWxyx5j2FifcPZSqCo9cLIe1Ui5/LQpfbYbUNYy9jJiJxvb9xd2+WmmUJcTGcuI8GZuwm+zmnaESV5r8ONkCSxgblsGsSubuvkUi05V9t0lnXh2fKo9E/HX3s6LhbxSct0ZCSzcfxOb2tGKuz+t2BjvUJaq9PZksmeXf2F9x+5kt9MMJlwdkcHi/Nxz62ihynDmE50ufKcBKNCGKXS7j0gk/328bsdnaKrbbRS6/bty3ZY9u8g8+n7NfCJShZoSTpwfG5VPXtoWK9bHJ0ozf6ETUlmEz9esr8dF9kzjP0ptWjP4a1vDug7zZfffCFW5eMEiD29m249fZhExiSxV3m649pQaxyKCj7PtS8awNibDmPdtqeLtWvOGPQuYzyy6erMIpX9fn3DXEXeSLXNrxhq5ebCzCVm9GB3yLIDNsRjIvCNKXy+HIAiCIIj3E1qSrDes0H9bFB+Q5UoM/EY1Eup5JsEvLkM4l7NkIDUhGiH+m8ANWhRvvfEYyQZbjyNF+LYV2NnEHV84mBYwQ+YNpNF/Y9mAjnAc8TfE7n/iTogfVk5yg7NtzeyZGSJxPXw8eBF2/d4CB0cPwvDJKxGY2gwOttWFdwiITOH45TdoufMnbAsXZieWGjhZb78jyDC/rP989DqHjEuIrNOvY9ucw2iyYCQcqimbJSNCuTo2sBd+WmaFyqisUc6ll3iaWB3u23+D5/iOaCAuhTNw3iTi3pUY+aFV55awrqDkusuZoUnXiVhz+C949XmKbePHYMreKGQIp99SFlUdx+L7lkcxb3sY0oXa0kE5WPTfkK2vcX6ThHqeRhjlF5NDn7OKDBmpjxEd4o/NU10hlr/3ER4n578z+kETG1YE3U5Q6LbHBOW6LaraFl9+b4udc/5AeDofTyvhWPTH9izZxflhlFAtZ5Qf4nLJVigZqUiIvgb/zdPRUS7gWM50PTPQslGG9PA/MGdnIyz4whFVNREbD7VpjWDPg7Hp259x4skLKFffMmAJ/hjdvQ0+rGsG4/JlIBKVQXljS3zo2B2jVz5Gj30rMfLDKsL7SxOvEH3sNyw4dAN3D/2MpYdL+1JogiAIgiCIokMBwxJFOYjNGsCeH7Qc3AcPV25Ee/cOHiRmCuf1CUNG5F4s9KqJb4a3LmAgxue924lvug/GwsAGWHzyCHbO6oZGKoNDZSFu8TmmdsnE6Sgp4PwJHOoqWeps1BwDvzHD2gV7EZlRCgbbRUKZrO8aSNZpiPxjFdZaDsdwdYHhSiawrGciP5Q8SMSzAkXyBsmnNuPnCpMw362+kuV8RYTF4sjX4+Gl55xlLOYajp9P4VqEPfp/Ygt1Q1+RuDXGL/oKTriGrZPX4HCcssBYVbQYOBSWXh74I/JdzxQpQjlxLTSw74rxa3xxyqMPxIjF9QdKFwHrGC1sGKfbFoXQ7dUV3eW6XV6ozY8IRi364hvLXVjwxy28Fmp1RwYkR+ain9fV4ss5Wk4MswYt0XW8Bw6eWgNXMWe6rj9AonBar2Tcwh8L/4DlNwPgUFXzhxHUpjWAPcHF/y3BD//EChXaYIdec7wRGOaL7zt/oKZ9lGQqweazr7DcrRkauU3D3B4NuJ4LQRAEQRDE+w0FDEsooqqO+GLRRDRDPBJSdD/szAeLR+CGzbg7/HO4WKjr7iuChVP6f4NtUc0xbfdGLFKTQyobUU04dv0UFtyhVaemqKe0J14eFi4DMeLuZmwIjIdMqH3XyZJ1c5FhZM0Sz2LDijiMGNUeFuqCKmWroVZDU8VxcCwSCphuweeNW7tIgkkzu6GuPnaAZC+QEHUbj5JecwN/ffEGKZGhOCs/VjITNh8iGDX7FP3txUDKAfx2/K5SvRVZtMfI4RKs2HAWie96LDwLkSkcvpiBGc3SEJ1ggBloGtswjkLqtvus7gXrtugDuIzqjrsrtiMwQdczK98gNeEeLj16CkM8WlBPWVR1GIlFMzqAEzBS9C7gTCQGbsfKu90wyuUD1Q868kFtumC4e3RxLw4+t4KjUKMaU8w5Ho3EmAiEBAcjOCQScanXcWTlOHRqUFULuZQ8RGafYv7B67hzcA5nQ5Q81CQIgiAIgnjPoIBhSSFTiieSJEgzs0Ye3GCsdUf0s0pAXJL+Fz2x2LPYvrkaRnVrAtWp6xky445h0edfY2tkObRZ/BMW96qr4UyyMhB/YI3m/AyPdmpmeBg1R++Jpti8/Sxi39WIoUpZJxpA1q8RG7gPm2v2QvcW1YQ6VZigXnNh3aZ8pqua4AdLxqUNaxA6fjoGW5fG5WhZPEP4vxcUm2K0aoMWymbC5qVibTS0r80dSHDiRCgeKQ0eVEPr3n1htnkfAmMN8ACgWMiE9MljPJG+DWWJqjZDl3718SAuRe9LNzWzYVlwut0sp26rCb/l0O0hjTTZ2EMEo9Y9MNHsEHxOxeoxuG1oOPsvTYLkifRtsFJkitZdOsHqQTyS9L0Em8UicPsh1BjVGS2MtAlLUZsuCJZyEVsO18aEEY6oINSppbwxalrZwt7BAQ72NrAQ63w+OUEQBEEQBFECoIBhSSHxBGZaLsCJxBzTNKrUR8tOr7nBbFF3KS2INESdPITD9Tvgk8ZqgkjsIY4v/R6/3JYCdl9hxVTtdjQuY1wd5gXO8KgCm7afoP7hQwiI0vd1FxOcrGfVyS9re0PIOuMOTu4+g/q92qFxgYPu8jCtXUc4Vjf7kSEtbBe++68nlg1rrNmAs6QiS0DUpfvyQwvXZmig7Zo0lbPVRKhg44ie9c9g98k7SvKivQtIcGJmL8w8IRFe81SFdcsWiH2QCP0uJNfQhmVTON3WeKllhfpo29McR3afRtQ7k17hDWe6FsBy5okcy49FqGLdAp1i45H4XJ9TDBkyok5h92Fz9PrERoOAcA6oTauHX4q8JQiN3HuhobLcjgRBEARBEMR7CwUMSwQMr+KiESq8ekttOE35Ef3rldPv8lz2GNdOXkJ55+ZoWFnVgIHP4bUJszdc4Y4t4DplENqbajfykqU+RbyzM1rXrSTUKEOEyg2bw7n8JZy89pi7M+8aamT9zQ96lzWTXMfJgMpwtq+LykKdasqhWi1zKDK9JUCiavZj+nX4fPcvXBd+jiaVSveAkz2+iXMX+ICXDbq1tYaxolo3VK4Le+fKCDh5HZJ3T7GBV48RnS+/ZDnUdpqIA/3rcQZAqNIHGtmwnPC6XTtbt1XO7OV1+/vC6LYYDe3tUT7wX1yTvCvh4TTERUcLxzmo7YQpB9xQT68CzoDk2r8IKG+PFg0VW+loCrVpdfBLkffBv9EA9Fbrl4ubZ7iy8RsM6mQLkUjEFUfMDUgEMhMQuv8XzJu3FJ4eC+A+ZCIWbzmP2HSFLrL0GJzfshRzF6+A57IZGD1kOjz3hyAxe3a/QNoVbJwwHL0dLRXfb/ktAp9n6TPjTm/C+EGdYC3/25botuU2p+2vkBh6AJ7zvsUyzxVY5D4CYxdvwal7z9/BfgtBEARBEO8rFDAsblg6ntw8gXUrNykJIlWAhUNP9HGw0KugWGI4Th9PQ5s21qip6g+xRzi980/c5o/FPTCup63Wic3L2I6D/zl3NC1g9ZKopjX3W9Jw/Ez4u5XvLYesQ/JdlyFknYnEsIs4Lm2MNrY1UHD4oyyqmddFfflxgorZj2m4u28ddrWdqsHO2iUdGVJvBcNfvkl3Szg3q6XZ9XCD1uh/7yqOq1aAyhR3ohqwbdMY0uNBCDPI5jaGQob0Jzdxct3PWB6aP2hUxsIBffo4wEKPRkwjG5YLzXX7jzaF0e1yqGnbAm2k/+F0WGKpDyCw9ATcPPk7Vi7/R6jJQRkLOPTpCQcLPc4tZokIO/0fpG1awLamNp6H2rQ6WMJJePxpgXG9tNykir2A5MoBrJs/D4s9POGxeCamL/PRY7CsGhzc12Fv4EUELeuqqHr9AIEbDuKx40T8tGIhZs1eiv+tckXsrGEYveIsEp6HYfevQTDuNxcrf5yHWQs8sG6aBfYP6IcJv+fZ3drIAe6bd+FwoB+WOSkeI7xFxJ3+At57T+Jq0Eq0k+tCOiSn/sTR563x9U/LsWDWPCz53w/oHusBl57LcSLhXbLvBEEQBEG8z+gzDkWo5DcMsCyveJJdpjLMmnbH7H1RwjlDw5AhuYewFEu0rF9TpUKw+2fgs1UeLgQ6d0RbKz0mBC9TE/VbWuJp2H1ItF3Ox9LxNF4CiaSoJWeOwaLwGz6vU6GEyJob5ETfQYqFNeqbaza4L1vrAzSXH93Fv9EJeTZa4HTn7l9YtLEelk9uW8DO2qUBKaKuBkO+oNa+LezraTbjhknuIFiILYjbNoSlyom3FWBe3xoWKXcQLdE2o58M6U8TlOiptiU+V47BwnMXPgPqKvRaVBaVzZrCdfZuRZ44g6OZDcuLprq9zL1wul3GvD5aWsQhLDqxdC5X9RkAS7l8RShTuTaaus7CvuIRMJCRiOiwR7BoWR/mWvVaqE2rhMXhxC9BcJzaHXXLa6PgL3F951YcTmuNictX4MfZszD7Rw/8NLIqDrkNw/cBD/Wn7yIjmJrzKQde4O7ew5B0G46udasIQWARyll9ggGDq+HU6l+wdNkJVBvWH/YmWQFmPldwVwxp9wyH1/+NkLT8/l0kNoG5sSodKQuxaU35DNXXIb74Pc4Bw9vXRfbE43L10GlAN5jc/hPbT8Vy0iUIgiAIgij9UMCwWOgPj+MXEczvMBh0En7rp6GjdqusOGR4fvFXjB/9OTpZG8sHdcaOvTFy9GiMlpeRiuU71t3gvnwvriS+Ej6XF4b0JAnucd3gqkblVMy+eIMn4ZcRID82gXP3VqirV80pB6OqXLf8nkTLRPoMr29ux2AbS1haFrX0wKKAeO4bi0p/rDqmG1mPK7Ks05EUFw/UMIaRprsYm1rCVjENC4/vSnIHhDLv4/DqP2G+eBycTbRNDFYCYQm4eV4RFDfp2BwNKmpyj2RIjcragdUC7dpao4b8WBncgNbImDsfj0fabm7z+ga2DXZUoqfaFhu0W3QSCUUezVqhl8dRhV4HX0CA3/8wtaOwiYhW6EK3NbFhSsip23eU6LbnPrluf6Jl6oVsylWGcY0M3HuUrPcNX/RCLw8cl8v3MoIC/sT6qa7Q2nTpynalJ+PRvQzUqFpZ9Ww/ZVCbVkEmEk744OynX6CfVkuRy6OmTXt0HeeOiTmDZVxXslLdrpg8vRp+7jsLm2+kCvX64jYCKznC1SZPNktRRa7vUBGQBuBU1U/QKe9u6eUqQSzmrvf+HTx4UtiwZjxO70yHo6t1nlUW3D0wMkIlPMb1O/F4KdQSBEEQBEGUZihgWCyYoWELBzjwOwx+3Bn9J/+E7ZsnCfm0NKUMqn78Fby3b8SiAR9yr50wfY0Pdmzfju3ysgN7T91C6onJqHbAHR0Hr8ZZpUumMvE08TFSud9kYapq4PASMbevQ76qC3bo1NQS+g0PVYKphRnX6X+MxKfazJwQoULTSfBPZWCsqOU/rOlmoXnwQSW8rFvnk7WpVl+skPUWQdaiwsqapSIx9ilgWRummuZjK18dFrYW8kPpvQSkZA9KuQFnwCb8jHGY3dVSB/epBJByF1fOxnIHVujg0EjDDX2e42bQRcUMJk4u/T62UmNURahkWhuWeIrYxFTtgtEVWsDdP0aJnmpbUhG5pjtqFdnyV0CNhs0Veu3gBJf+X8JzuyfGaGfEOHLrdpYd81Gm2wcnq9BtTWyYEgrQ7dWi8XLdLvStqmQCC0tjpMYm4qkuJisbmhoN0UIuX0d87DIAkz03YPMYO+GkpuhCvpzpepqI2FRjWFqYcN5BC6hNK4UlBGDt2VaYqrXtLgvT9hMwrb25ks8Zwdq5M9pJj2LN+lN6zulogTaO1qip8sd/iJ5OajbHkabihZDnsFDIl8arWsQtRdLzl9DJAgWCIAiCIIhipsjDRkIXVIJV20/QQXiVC9ltbOn2CeYGPlE+GHl1H1f9IwCxI9ra5d0dtCzEDbtg0CB7vDjliQV+t5F/s0cZ0l+kCsFATfgA9WsbqRlkZCLRfy5sRYqlbPJi/Sl6Zycrb4B+PpHcX9WAonbqSySayVopgqxZAbKWCrLON+xmr/AiKU14oSFlqqJWA+FvRcYjWVgizpLP4Ocf0zFjbhdYaDfiVMEzBHv2RNWcepO3lG2M8ScuYFVnM5RRdj6rWH+N/bGqdr1VBcOL8CDsl08za43uDhoGitJuIWBPsPzQZOxwuDWuIj9WTxqSXrzSLrhQ4uGXA7aGSwdlc9DSEbllECznBuKZqovOY8dyq5Sg2wPf6nZuO6atDRMoQLdnznPViW5Lk15As4nSDGnBq/GJsRKdzi6V8eH4fZCs6oxqSs9nlZYYt/++bnWs3Ado6+IgvMiNLHILuvEbRTxTsVNykeTL3Zn0F0jSWsDUppXCL0Veew0dpnZGLZ3Y7rcoluFLEeUbiCulMKcjQRAEQRAEkRsKGJYQRMZ10GZUI1TPm0tIGoeI63Xw4QdipUE62YMw/BPKjaTatYRtDXXz/lJw914ClKX21w5TVDdWlx69HMy6rUQkP/NB9gx3dn4Ji7tncfR0WYzyvo5U2T38Ncr2vVY8XtaOBchaGW9lba+ZrHUyeq0KC2tzxeH9WMQlc0N5lojza9chxn0yetcreK9lzagGh6//QGRcHOJUlUfnsdbVCVP9wvFI2fmscnEF3Ky03YDhJR6Eh4CfiwSrlmiq0XW9QfLFv7FLvvyuK2Z90VFHwdNSikiMOm3aw7Z63k0ppHgY8QjNP7SEWMX9Mbwd48mp2zH5dPszg+8ay2+u8BWORinR6exyH0Fr+8Jiqh/uKD2fVQLg5VZPqc8oPOVgXMceo2yr51mKKYP04R1cb26NOmLlsise+VKbzk86Yv7ahDMdRqFrLa22OdGOlFCERmsd4SUIgiAIgiBKGBQwLCnUdMGC7bPhUjPnYIrhVdRV+KfXRR2lO0O+wdN7N3GZO7L6yAZ1lEmTxePmeT57e3181MxKSQ6qMqhUxbiA3FTlYVq7jnAsxYt0FbNI8iKqiDKy54qlXeJ26NnFVmXAQCliY1Sp9A6qKC/rbQaQdd57zcmjSg2Vi7RUUBG1rBoIxw/wMCENzy9txbxQN3w/xAa63BdVVKk6zC0sYKGqmNfgrkmEitVrKT+fVWqKtdvxk4fF4crxq/JDcU9H2FXRQFEzInDAayduMxO0WfwtJn+k6U66RqhRpaKOgzklAXO4LFiHBS5CEC4L+eyyl2hcx0SFw9FQt+W71iqzY5rYMGWo121lrbAwiGtUyZHrrQBElVDdXIlOZ5faMBVzv6xidZgpPZ9VuLaiVbI/TSjLma7Z2L7ABTWFGgWKjUXSG9dRsUN1UeXL35YqqKGtgKlN50d2Hyc3n0TYzvkYk51H8m0Zu3AH5Hu93N2BReMUdeM3XoF8Xjp7hvAdU9HW9nMsD3yYfwZ7LmIR/iCldMy4JAiCIAiCIFSifPxGlBCe48apAIQ2tYZVNWWzMrgO/IUgpMAOPds2Qv6FUwwZUWfhFxCLKq5TsKBPQyUCL4fqZrVhjERIklUlba+Iep90Q1/5gO0mrkamaLakmD3GtVP/KY7bfYJWH2gaXkpHsiSRG+XVhll1bUI/DK/Df0M3tUv6NC1tMd1fYsABDy/rQPWy/veCQtZt1Mta7DpVLut83yIyhplVdSDuMZI13kymHEwt60KxnUUiHj04j23fXcfIZYNgq9XOmiWc1Bjc+I+fi1TQJgdZpOGurydmHbzPta1FWD/TWYP8aAzpyY8Rh+qwMjPWLrjwOgwbu2XtSlyUYgzb6cd1sOmJpjCk3TiD/aF1YWel6ppz6LYaO7Y/h27ntmOa2DBl6Fm301MgiUuFsZUZqr9DTSUfaRE4tf82mtrVQTWl11lU+XKmq7oZrIxTESdJ0XwDGWrT+Sljh3F/n8eRHVk5JHOWrVjn7qQIDjYaiSVbFPXe7g6KXICpV7Bj3jpcjvKD574QJCtxISw9Dc/lArJC03omJT+AShAEQRAEQaiFAoYlFobMGH/8b/lxiJt+ADNlMaQ3cQg/xe8A2RxtbU0Vddm8gTT6OFbNXoEbLitxYNuXcKyq7EtEqFTDAg2QiudpmdxfVU6ZBt0xY0Yn7ugatvueRayQ70sdTBKMowejuCMTtOvVGvU11rZMpD1PBRpYoIbGU3N4RKjQZDT2qF3Sp2k5hiWdlSV21wcKWf/6k2ayblOArA9un6xC1pVQw9IcSEpFmsYZ2Xn9MEc9+XEE9s6Yi6OuX2NYE+3nc5VchNmd8qmwzeBqX1Cus1eQBPyMiV9uRUanJfhLZdvKCyfntFQkwRx1ami53LVCM4zZE6xET7UtUbiwpIsONj3RkMxoHP7fZgSJ6+IDs4pCZR40tGPXO61Qodua2bD8KNPtr3Sn25kvkZpUHg3qmGq3UUepIh0xh72xPKgKmn5gmv8hBU+R5ctRyRR1GpTXYjMJatM6x7gBWnVyQscR32PjN+1hls85MmRI7iEsBRC79kPvFnnz7BIEQRAEQRClDUMNGwmtkCE9xh9LxszCthQxbJpYIe8wi4fFXIP/eT6j+0Oc2ekFT09PoSzF3NEDMOSHINT8Yh+C/Gajs6WKwTo3aC5v0QAtTOIQcv+J6pmDIjM4z/wJHq5WSNm2At/7hEGqZuDGpGHYumAptsqnIdihc6u6mi9flT3B/ZA4VG9RHxbazvQpcEmfpkUfS/qU8VbWW5OrqJX1cUHWZ3etUytrFwtVsq4Ei4bWMJHcwf14zTcFKWtSCw3lR1LcNx2MheMdUdUwkVQD8QoPQi8jlD+0cERrGzUBI/YMN/cswrC+K/Gw/684sWs2uqhsW3l5jfj7dyAxsUZDC21DSGVQqaCl2BoVc9QU6zF3WQ5Y+n34L/kGE7bdBmysYWWqPACTU7cLsmPKdVtDG6aEvLq9YFwbnem2LP4+QiSWaNHQTGfLm0sU7AVi/D0wZsJvSEF9NLHKu5mJgqLLl6M8v9t8HUhC7iNeIwFTm9Y5orro+tXnaNCkM1wbK5E1n/9zty8uiHth3vdD0cLonXISBEEQBEEQ7yUUMNQbaZDcvIorV65w5Tqik3IGaBIRHcbX5ynB5+C/3wdec4fBuWkP/HiKX05VG82Vztx4g5TIUJwFg3jMLKz4YQ5mzZollIVYuf0Ajmz/EZN62cOsgMCXyKwpOnY3wuXLd/BEzWBMVPUjzNx/BD7uVeA3oQdcxq2Cb+BNPMme8sGQ+eQmAn1XYVzXebje/TeE/TkVNhYd0dG+uvCegmFP7nC/xQjdP22qZBZDSaQgWWedK6qsIZf1T98XVtblYNbiY3QX38LlyCROWhpiVg/NG/EHnbB49SQ4m2gy86b0wKTh8D/EZ1jj6GAPG+O8ZpHX6wic278O0z/7GE0nhMB+7Qmc8Z4MJ5XBWSWwJERevgVxdye0MDNM0K5oMKRLbmfrbFh0olDP8xpJ0ddz67S8/Idz/vuxw2suBju3Q/cfj0G+9UHzD1BLqdrk1u3C2jFNbVg+8uq2iqCm9mTiSWQYLovbomMLM6WBtBJBugQ3s2QXFo0koVpOUjTCcslWUYLP+WP/jrWYO7gTmnZfjFNyAdfDB7WUtQXdyJd/YNWiY1uIL4ch8kmGUKkaatOF4Q2kT58qlnynpiA1X9qKsjD5eBxmfnAEM386jJtP0rN9CEuPwbn/zYP7/g/hdWIT5rbTl85n4qWUXzSdDqk0PX8eRfYKac9fcQev8DxNya7VmYrP8T5b+lJJFsas8+lpSEvPa0g4nXn5QmHPpC/wMt9UVxn3sTT5/Ut/zv2vsYMlCIIgCIIouYgYh3BM6JRY7B/jggHb7wivC0tHeAQfxiyHvDMknuOK5+doM/sGXL0DcWycXRGiv2mI3DIRDmua4cTFeXAqKDk8kyLm0gkcPHAQ+//cj9N3s3ZDtICD2wD069MDvT/rDHt+CSJ7hqhrT2DRqpGGG54wpF1cgY9cb2B68CaM+zB/xquSByfr0Z0wwEeeLr4IqJe1Iyfrrpys/+ZkXeiwRsZNbBnohjVtduDSAidFbqqCYPewZ3g3fG++FmdW90Ct4op+yG5jS4/xiJh7ECtcahZtQCqLwo4BXTHqwH2hoiBs0HFUP/Tq0gMD+rVHAxW7waolLQjLPhqJy9MPYd+4JqVg1lkmJPu/geWAjcLrwtPIIxi3Zzkgf0iF1+2BnG5fl+t24e2YljYsi2zd9uJ0u7sOdfspLi7rh66XRyJ431gd5vtM565zFDpGuOP2ShdUFWoLjWQ/RlsOgI/wstA08kDw7VlwyCdgXcmXISNyKwY67ECbE/uxwMlEqM8BtenCkXYFG6d4IUhpHLYcLAcuxvLeOXfczkBK+Ans3HEEwRJ5xkOgjClsO7lhoJuzkl3StUGG54ELYbfSGqePjYNttrI8w5WNi+AVGIGYtJqoW6McZEmxeGRUBw1cpmHdpJoI/PZH7Ll+T15nVRl4GfsIaXUaoPngRVjukoTfvvkFgff4OivUKJOJpJgnMKr7IVymLIF74zvcPeDOxz8HalRHZbxAbEwG6jTshWnrJqDxrc34xusE7vF1daujjOwpYh6VR90GXTFl3WjUClyBhXuuKuqsuD7Ly3jF72w+FEuX94ZV1s17Hoi5dhvx4WkfjLN9dxMVEARBEATx7kABw9KKPHjiggkn2mJ9+B9wb6Lt7re5YTF7MLzpRjRVNRgzGNzAwHMIOl4dgxs7B6Ne4aOg7w6CrMdzst5QZFm/RsyeyWi61Br/XJqHj0vTsjFdBgwNDuPG5T+jS8ebmBq+AYPr6nJ/6VIML9OenTHev02Rdbvk2DCOtMvw7DIKV6cexa7BDXWoqzoOGOobHco3K7i7tOk2XFrQTrOHHXqF2rTuURUwfEeggCFBEARBEKUMCseUUtjjmzh3QQJm1RJN61UWaguPyKoDRk94hT2BtyDMGSge0m7i+PZnmDC6A6xIO+VkyRo6kXUFWLkMxIRX/yAg7JlQV0oQVUEtGzvUqVGhlAULeZ4h7PjfeDJhIFysKLCQBa/b53Wk2yXGhvGBpLCT2P7EDaM6WelYV8vCuFYDfFSnupLZmiUPXcqXEzBcRvfD6z1nEJZWEp5zUpsmCIIgCIIg3m0oJFMqkSH1VjD8pYBJ/4/RVNPld+oQmcNl8gQ02vUnAiUF54jSDxmQBO7DzkYTMNnFnJRTTk5ZO+lE1iKzDpg8zxI7fc5BUprmF4us0Pt/3phiX+LnVeWDSc5hxy4LzJvcoZTk5TQEWbrNdKPbJcKGcbCHCPQ5jkbzRsOllq4XqZaHRe+V+GtK6xIww64gdCxfPgery2jMbeQPn8CHKG7TRW2aIAiCIAiCeNehmEyp4gVu7piD0aMHoc8X6yDhalKOrIT76K/hdTFZ8ZZCI0J520FYOuUJ1u26iufFMBpjz69i17pETF02SIc5v0orymS9QpB1rq0JCoERbIfNwdS4Xdh1JbnYB97vPCwZV3btwqMpszHMtuSHefRPbt2O4xTwrW4XxY4Vvw3jN454fsUP6+KGY9mwxprvDP9OoS/5cpRvjGFLhyFunR+uPH8jVBYD1KYJgiAIgiCI9wDKYUjkJv0mdnzpgcdfrsZMR1PDLf3kBmDBq2dife3ZWD+yCSi7j75hSI/8A1/OfYIvt30Nx2q62h2WyM0bPA/+H0avr4kVvw7Dh5VpKpLeKS4bxsGeX8Lq0TtRe+VPGGmbd/MiQjdIEbljPuY+HoHtMz9CVYM3KWrT+oNyGBIEQRAEQZQkaIYhkZtKTTBi9XhkrN+EQMkroVLfvIIkcBPWZ4zH6hEULDQMIlSyHYLVc2RYvyYQkkx6bqB7GDIlgfh5vQxzVg+hwIKhKBYbxpH5EIE/70LGnO8wgoKFekQM2xHfYU7GLvwc+BCZQq1hoDZNEARBEARBvD9QwJDIh8jEGfO8eiJ+016E6j25PENa6F5siu8Jr3nOMKHxlwEpCxOnKfAamIRNPmHFvFHEO0haGHw2JWGg1xQ4mdAMTkNiWBvG8xyhPnsQP3AJ5jmVth28SyGimnCatwQD4/fAJ/S5UGkAqE0bhhPj8WFZEUQiS3TbchvFuPhcBzxB4FxH7lq466nWGav4/CIEQRAEQRClBFqSTBAEQRAEQRQ7LP0pHqe8FHLrilDeuCZqikvDnuCqkCH96ROkvMwKe1aAsZkpxOXosQJBEARBECUfChgSBEEQBEEQBEEQBEEQBJENLUkmCIIgCIIgCIIgCIIgCCIbChgSBEEQBEEQBEEQBEEQBJENBQwJgiAIgiAIgiAIgiAIgsiGAoYEQRAEQRAEQRAEQRAEQWRDAUOCIAiCIAiCIAiCIAiCILKhgCFBEARBEARBEARBEARBENlQwJAgCIIgCIIgCIIgCIIgiGwoYEgQBEEQBEEQBEEQBEEQRDYUMCQIgiAIgiAIgiAIgiAIIhsKGBIEQRAEQRAEQRAEQRAEkQ0FDAmCIAiCIAiCIAiCIAiCyIYChgRBEARBEARBEARBEARBZEMBQ4IgCIIgCIIgCIIgCIIgsqGAIUEQBEEQBEEQBEEQBEEQ2YgYh3BMEARBlAoYMqL3okKjIcJrgiByIpPJIBKJhFcEQRAEQRAEQWgLBQwJgiBKGywBgfOHYoWlBw5MaQ0joZogCIIgCIIgCIIgdAEtSSYIgihlsPhL8DvUEOP7NqNgIUEQBFGKeANp5FF4Tu6NTr0HobejJYwdh2HRliBIMmkOA6Fn2DNEHlmDyV1d0HtEbzgaW8Jx0CJsuRiHTOEtBEEQxFsoYEgQBFGqeI6wfdtwzm0IXK0qCHUEQRAEUdJhSI/0xZTFt9B2sR9OHdmLI5dv4cocS/iPH4zhS05S0JDQI1JE7lyExWGtsPjvABzZeQSXJScxp85ZjHedgCUBDyloSBAEkQcKGBIEQZQimOQMfttQGdPGfgxTStFGEARBlBZYLP5ecQJtF09GB4uKijpRNdgOnIUl02ri1I/fY+3ZRMgUZwhCp7C4E1jxR1Msnv0pLMopOlAicRMMXPQtphkfw49f/4azyW/k9QRBEIQCChgSBEGUGoTZhX3Goo9NFaGOIAiCeNdg6U8RL5FAIi/xeCJ9B+Y+pdzC2QM+mD1tC0LTcswkFNWC02fdYYEL+ON0BLJPsXQ8jc+6B1x5IqUZYAZBhvSnCW/vuyQJ0lI/8/MNUq5fwIHjyzBtwzWkCbU8IlMHfDbSAbgdgNPhz/BW/d7BNkgQBKElFDAsgTBpGHb9sCN3Z+qdhSEtdAd+2BUG6ftwucXE+6VTzxG6ZTV25ej0vSuw5MvY/XtlTB/nhBrvnPV+A2m4L37YEpqrI6830kKx5QdfhEtpNkFRMJxtIV9BvE/IkHphFVpbWsJSXlpj+N47pX/mXbnKqFpbDGlsMp7nCkCVgVE1U3lO3tgHiZwXF0i9gJ9aZ90Drgzfi2iafmgAknHhp55v77vlZOyNfiWcK62IUM7IGLWRgth8gedKqGZmzP2fgAeJLxRV72obJAiC0JLiH3KydDy5eQ77t3hirvsQ9O49CKNHj8Zo92/htecsIp9mCG98g5SgtZi59947FwTICUs5jxVT/ob5xEGwN+Kny79Bsv8smIpEECkrxiOxQ4UTf3NzI9or+Yxxvx2F7nCp+k6VxbgtBs1dhwOhCSqeCotgZD8IX5j/jSkrziOFBoI6J1unvtBcp3zupis+nIfSoVNVYT9qMMz3LcKKoMR3yF6kIerAVhxsPxg9bLK2OsmEZL+7/L4YO/bGSN525igjezvCmL9n1p64ouLBeOYVT1iLjGHd6XPF50byScAV99raI9hAszl4++6FKftq4ItRLYSNXPSsp0YtMOqLGtg3xQtBKQYOGkr2YzT/m4wd0Xtkbpm9vf+d4HlFKnwgD5lX4GnNvce6EwbJPzdcvnGA/Do5WQdnuU09k9+25Efb9m3s2A/TPA8gNDGvXyNfQbyHdPVGxBsGxuLgP86u9D/lr9oei8+FIvLcPLSvmvNqXiPuzi08hgnaOTREjSxzUtUFK+P463+DZwHzYSFUE4agIqd+t/CG8fd/L8bZVhLqSytlOPWbh3ORoTi3uD3XU8wBS8Sdq7HcgR0cGplw3oaHe7/LcsTJrz8RAXMbymsJgiDeO1ixkclSowPY+knOzKTNOObx5wUWkfiSyYSzTPaSJYafZJvnfsu8Ljxirx4fY9PtrBjnvBjnvN5NXoYzn7FjmMflpLf3IRsZy4jwZm6cyHixWU07wuIz8r8rH7IEFjC3DROJXdnUzadYdGqmcKKoxLPjU+3lvwXtvFjIKyW/JSOBhftvYlM7WnHva8XGeIeyVFU/WZbELnuMYWN9wtlLoYrQARroVB+RqFA6BV6nftexTk1rqTOdkj27yDz6fc18IlKFmtKNLOkkm9usP1sb8kyo4ZGxl3G3WHBwMFf+YRtGNVbcP3mpz9w8jrD/+HNXolmKqvuUEs2uBF9mQQHb2ZyOFgxtpjHvkxfk33klOkWJ3uga7hoidrKxfX9hl58p0yV96mkme3b5F9Z37E4W8VL/V5rNyzgWLpfZf+z0hrHMVJQlMzCxmwc7dpk/F8KiUzKED+RBlsKir3DvCTrBfOZ05T7XgU319mdBBchap6i1LcpIZAFzHBTX2W6t0vYtS73DAjdPZx3F3HtsJrLN15XoH/mKAkhnCSEHmNfc6WzO0lXMY+kc5j51OdseeEe1/y0A2YO/2Az3ZWz78cssIiaRpcrbH9cuU+NYRPBxtn3JJDbOO5y9Vry9eJDrxTA2zDdaQ33UBXw/9hzzXTufu8eL2CqPJWzOpLFs0ty1zPdMBEvRxE6p5A17FjCfWXT1ZhEG7/Ryso07yZa5NWONOHt0NkGFHdIlr8OZd5/6DCZjmc+dF0JlTorzfpRwZKnsQZAf1+a/ZlMX/cRWLZrBpi3dxYLi0oU3FAbeXrcrpjFXOosLWMncGjVjbstPsQS9N2gZe833MTi/YzJ0J7vzWtkf5O7H3E/e7TEoQRCECoopYJjlDEyYzZjf2OUENU4tQ8IueE5mbj2acQMNi3fYWKeyGxtGsK4eF9kzVc5RepYtslIMKi3mBLCcYQOVyB4wv7GuzN3vLtNply/zOtvgbCL/LVaLzjKpUK0MWWow83LjOoJoxcb6RrJXQn0+Xlxha7uOYBtuvBsBnuJHM51aXFcRiNFep6J1O0Dkdaq9aaF0SvnvkLEXIV6sa5/f2A1DBoP0wgsW4T2c2U0+xOJUXgp3vUHLWTM+ICMU8VBfdl9DgykPSNrZsKEGHXBzvAxlG/oMVh940quePmMha4eyPhtCWZpQY1BeXGBLmxtnywziccz3gUormRvZY/kghpfzA4MKjbctI9Xblrzk8hln1LTvpyzYo7viXtgtZAFJSgK95CuUI3vKbnhPYk5jvFlI8lutl728w/6a1pF1WnyCPVI6GFbPG24w3TVLP/MVK/n3xhUpOFZU+MD/GtbV2JB9RCm7e/h/zHPPZRb3Mudf5Pq3J5cwF2Mxsxm1gV1OLGzPqzgDZC85fzNQkK8h7mkqu+09ipmIe7DFJ2NV9FUpYKgMWep15jttIBvq8TeLSMnR5lND2dZ5a9mZQgd7izFg+OYW8+5qIejfQOYdoedHQy9vMO/BNkzcaQk7qTLISgFDgiDeX4phdcMrSAI8MLzPXATWnY9tq8fD0UzYKU0Z5czhNGU6hllUECreRRgyIvdiwVozfDO8NaoqX9kFVDKBZT0T+aHkQSKe8e5ULW+QfGozVld0x7zPGqCcUKsLWMw1HD+fwh3Zo/8ntlC3/YJI3BrjF38NJ1zD1slrcPjRa+FMHoyaY+A3Zli7YC8iMwq8OEItmuuURSF1ar5bfZQXanUBr1P+hdWpOGVrMEUwatEX31juwoI/bsFAqzT1AksOwpY1LzF50qewUCVL/nod+mB6n/rCa0C6ewcOhKUKr9TxGrH/7MavGIwJrnWF5TiGIA2Rf3hgreVwDHcwVf139aqnVdFi4FBYrl2F3RFZuYsMiJE9Bk5zg1h4Celf8Dpwk/OUBcNiT8F7PcNXEzrBymBCU9iWhV411duWPLz1GXbo2aaRmvZdFXYffQQr/vD2YRy6/ERemwvyFUp4g5SLm/DNrMcYMu1z2Ju81XpRpUboM2cG7HbPx4LdN6F8Ib+2iNGo11x4B57Coe9ds3ccLQ5YShD+N+dnnNDE1OkEvg3swYwZfgi7cRMPUnJ6l4qwcBmOLz4zR5TPbAxbdhKJpU5FK8Hms6+w3K0ZGrlNw9weDfS4FJofE/yCySteYNbBTVjU+QOd9lXfZfj8sVu/GYPvRWPxy8wesK0utPnMhzjltQRLV3hhY2AsH3UrXZSxxmcLZ8CtUTO4LfsCPRqqGSMWFe5eBfw0DyteTsDBXbPROWvnboIgCCIbAwcMuU5W9AEsmLwSp6Tt8NXC0fjYtKxwTg3lOecxZQxcs0dU7xgsHoEbNuPuiIFwsVAztC1bDbUamiqOg2ORUEDaLT6/1NpFErjP6o565XXZmecGJpGhOCs/bgYH2+ryI9WIYNTsU/S35wSYcgCbjt9VkTS4PNfRHogRdzdjQ2A8JRYuCnKd8tarTtXV6QAxS6f4rq32OvUbp1NKf7roA7iM6o67K7YjMNEw2fh0TwYkp/fDp/kg9G2RK+tOfsrboPuoHlCE1njOYKPvJSQXNGJ4fRMH1v2D5uPdNLPJOoIlnsWGlY8wYlR7NYFQDj3rqciiPUaNiMPKjeeKYXBvBJvu/TEwW2gpuLDBD+eTCtJXKcIO7MDuZtxnPzYzXJA3y18N/1y9bclFTp/RHG1sBVkqheFNxmshd2YCbj1KUeILyFfkIyMCf61cj1ONXfBpYz55f25E5q3Rs/MrbP/JFxeStc/ZWX7OMcQmxiAiJBjBwaGIiJPg9pEVGNepEcQGUz4lsCe4uOUYnjezEyoMAcPLh3fwX9Qp+CyZh+/+js6tgyJjmFnxPkyKqD1ncT219GmoyOxTzD94HXcOzuHaub6CKIoJBCO+icGIv7wx34WChRrD2eFznvMw9d8OWDWrM2rlbIOvYxHk64+7wsvSRzmYtZ+Fg3eu4+C3XfT3MIIPFi5xxzcxn+OvXTP1qOcEQRClG8MGDNlD+Ht6YGuUFOKuozDS2UzDHyCCUZPOGNK5mvD63YLFnsX2zdUwunsTIdm/KkxQr7l83gVw9w4eqAuAsGRc2rAGoeOnY0gj9d+qPc8QfiGIG9ZytGqLFnU1cLIVa6OhfW3uQIIT/4TikapBuVFz9J5ois3bzyKWRoGFhtcpH++qmulUsxKiU/9eUGxkUBidOsHplFJ94WxH6x6YaHYI20vjk3aetOv487dbGKXRLLLysOwyBF/bZT1dkeL2pv04LVE3v/INks/7YWNYB0zun7XhiCF4jdjAffCu0QvdWxRk2/Wtp9XQunc/mHnvQ2CsihnQekRk+SnGfu0svOK4/Sd2nX6kVl9Z8iXs3nAbfdw/QysVG47ogyx/NapbQbYlJy9w73qYwmfUb4km9dQlz3+N+Pt3uFbNUw0NalVV3k8gX5EDhtc3A+B98D4snJuiQQUl+iCqAds2jYGIA9h3Ib4QtrACjGtYwdbeAQ4OLWBrIS4BwR1+VuVeHLYajBEtq0NksGZQBsbNe2H+GGfY9JqIrzvVza2j7BXSngtzhBtYoEYlw7XP0kMmEs+uxuiVwLcn12Fc02qKhx4p57B63cW3uyQTSmBIC9uHpavPof7ogXCxzLMCy6g1xm3Zio2/rcP3vQy5YqAUweJxduk3WImpOLlpFJqK+QelnD059xvWXUxWvIcgCIKQY8CAIUNG1D/YvOMKd2yCFr0+go2yTq0qyteFg4shnyAbijREnTyMw/U7wLlxAbOHUB6mtesIx/FISFE1sOU7E7vw3X89sWxYY+5TOkaWgKhL9+WHFq7N0EDbCUlqZwhVgU3bT1D/8CEERBXD8sB3Al6nDuFwPdIpORXqo21PcxzefQpRpW75YgYkgTuxsfIIjGuv4Syyqg4YMrWr8IIj5QA2HopQvSSbPcLpnX/i8fBB6NbAgE/YM+7g5O4zqNfLCY0LDHjpW09FqGDjiB71z2L3yTvFsHzdFB8PGQFX4RVwG1t/O4ZbKvWVn3Xqh02Pe2NcN30uF8yLYFs4f/VJYy0e4MniEPrPDfmhSR8H2FZUI28mwbWTVxXHJp3QtbWZ4jgf5CvekoH426EI4/pWDeqYQnk4thyq17Lk3nEf50Nj8FKoLc2wlIvY4v8B3PvbwtBJa0Rmn+CbrecQeeQHfNYwzwL7jEREhz3iDsRo1tNRu77ue8EbSMP/wHe+tbCcXwZqmeV3GF7cCMR+VtmAD65KISwRF3f74h9pfTjb10VlofotFWHhOACTvugBW3kgjMgFe4bwrZ7wtZiHXYu6wDJ7BdYz3PjnAlhlmmlIEASREwMGDF8j9tJpBEj544ZwbvaBlh08IzRo2wPOdcRKBs1c5+PeeezxWoBpc5fC03MFFk+bgsW//Y3QxByZoNgDHJk/HqNHj1aUkb3haGyLTsN/w5W0rIHZM1zx+hzWxo7oPZJ/3zAMGr4xx3kdwx7jWsAllHdujoaVC+pUlkO1WuZch58nAXFJ6Vz3Sgnp1+Hz3b9wXfg5mujhyTZ7fBPnL/DzP2zQ7SNr5F/8VBREqNywOZzLX8LJa4+VX1+pgSFTEoQti4ahbdveGMnpW9u2I7DswG1I9XlhvE6d5HWqmYY6VTuXTimF16nv9atT5zidYnrRKTEa2tujfMC/uKZ2pl0JJO069nmFwG1KL9honFagChq7DcfY7CWuEvzz62EVNowh49YxbNxaH/PHt8+9rEnPMMl1nAyoDOcWygY8eTGAnlauC3vnygg4eR0SgxseEco37gH3sTkeiv2zB39deSa8yENGBA5tPAa7b4fDpbbOw/eqybYtmvirt2S1b8AKHRwawUTlR/kHi6ew+zC/mM4Ggz2+RE9LVdf3LvmKovIcd66FQopKEIsrqZj5VwaVjIy4d0hx4+wtPCztszLlS5GD0GhcV9QtUetYOR2+fxWnwlI4FR6JhUPtdRz84vqoG7/BoE62EIlEXHHE3MAnQGYCQvf/gnnzuD6wxwK4D5mIxVvOIzZdIWiWHoPzW5Zi7uIV8Fw2A6OHTIfn/hAkZuZpOWlXsHH8cPR2tFR8v+W3CHyeQ1n48xM+RydrY8X5blsQKeP6Ookh2O+5APOWecBj0WQMGfsdtpy6q6SvwwcLd+KbfgvxX8wprJv1xds++egRGDz9T1h/YAoKc6mGpVzHiYNh3FFjtLGtYciBnKAfOeQv1483yuV/PgbpcvnLkB57Hlu+m4/FHh5YNn0shkxbg/2hCULqiSwY9/WbMF4+NuN1WwTLuQE5Zpsqzk8Y1AnWct23RLctt7lvf4XE0APwnPctlnHjv0XuIzB28Racuvc8v1+QBwtno9/U04g5vx6zxo95q38jR2H6msr4oBYFDAmCIHIhbH5iAPgdphx5280VHe56JXvG7h7+jrm6/siOP5Dm2GXzNUsO8WZjnCayjf9Jcu+6lhHN/Cbzv6WRih1BX7IHvpOYic1Etvlaom53F86D7PFhNtnUUuOdtzJD1rJW8nvYiI3yi1Hy21+wOz4TmfOyC5rvXqkVip3qLEVayjEjmHk0kvtuhla/sBAlG19mI+yQZuJ+iD0uzo0Xi0Q6i7vwKxtl48DGbAxiCfIdJDNZasivzE3cio3dHaHbHYZzwOuUu4kF67r5ZqF0Kj+8Tk1g7fWsUxba2oZcOrWWXVPTUBW7fDZj7ocflqId7jJYwvE5zK6PN7v9SssbL989t53i3siLHRvr90CJvUhhQUs7MnFh/kaRyGCPD09lJpy8N9/WbG9i/espvzPoIAaTqezwY31afVVksqSAhcwuW2ZgJmP92KN81yLshi0exrWVF0KdYci2LZy/UmfCc5Ozfbsyj2DVe1zzO3t6j2nFvU+x826BO/q+E75CB8gessOTm3P3Td2Otjl8dzsvFqJFe+ftZ685J5gkLpj95bWIzVn0E/NYtYhNm7acbQ+8w1INfu85+3F8GZvhFy30zxS7+opEhtwlWQWyR+z4dCcmUrvjryYUsCuwLIkFLevGydyBzTkWzAK8NjH/7D6wjGU82MPGmHDt6LtTLP5pKNvl6Ztj5+xM9ixoJXNCfea2IZS7e/mRPbvAljmZMFjMZwHP8v+A7PNdN7MbD08z761nWUz2btGKPrSpyIlNP/4ot99JPsnm2Ijl9k156cjZCGW7nxdwP94bZOxViBdrx98ruWzSWfKNQ8xj+gy2aNUqtnTOdDbX6y8WHPci933XGvW7JMvl386U+w3z2LFb/zAvrxPsQR7587tef3fmIXt6Yy/z3HmVJWftpJ6lu+LBKna6z9JPMIs5J1l+j5F1nm/v19jDwJ1s69kH7GXWBWfcYb5j7JjIbi47nsuXZ7LkgG+ZTS59y1MaebBgpY2WdkkmCOL9xXAPpmRPcD8kTnihK14h7uhS9BoahSH/m4ludavkmH1YHib2I7H8WzF+7jwFG0Kfyr2BnHJ10fHz7rDDY1y7Fq3Im5aLiqhZzxq95k3DyJY1VTyt1wUMGZJ7CEuxQMv6NTV6Sli21gdoLj+6i3+j8z+dy7j7Fxb/VhfLJ7fVePdK7ZAi6mqwYgaOfVvY19PsSRyT3EGwkIFZ3LYhLNU9Pi5TE/VbWuJp2H1ItF1CytLxNF4CiaSoJQnSvE/eNeYNpDd2YHqvX/Bqpje8vvgYZvKkzWUhbu6CPu3ise2H3biY86m9zsjSKUud6tSijfWwzF3POsUf2rfRi06VMa+PlhaPEBadWAzLTQtJRiQOb7iIThNctV/SJjKD89Ah4AYVArexz+dkviXZLC4Qm1bHY+CoLgZeNpcOSfQdpFhYo765ZnPN9a+nFWBevxEsUu4gWqKbfWS1oyxMnQdgcrvsqaFI2eeH41FpwisBFovjm3zwaOAAdLcx5MI97W2Lgpe4d+Oaon1bOKK1jZLdy5gUMRd98f3wwRh/rgEW/3VCvvPu26ViKij1vkJHsFQkRCcJLzTgngRJiqk/GiO7vhe/H34Bh4nfY+WP8zBr9o/4+adBqHpoIty+/wcSA94DlhCAX040wVS3+nrsn2lJphRPYm8gYN1CTDvfEuv9f9fvjr8iI5ia82kBXuDunkOQdBuOrtl9YBHKWX2CAYOr4dTqX7Bs+QlUG9Y/x87ZZVG1dVcMafcMh349ihAls89FYhOYG1fK0afOTdZ5vA7Gjt/j4TzMGVaVsqxCJVh16o3BJhfx+/ZziM359SadsTIylZ+soKKcwiwHXe9wKEP60wQlbVfbEo8nUjX5cw3CGzyNvYtb8uNMpFzaCo9LdTB+lSd+nD0bC1Z6YKHLM/z6+SSsPvsoj5/UHdnyx03s2ZWEbu5dUDev/Msfw+q1P2H5/ioYNqwVTLI2LxGZoHWvXmgnPYpfD1xHHg/HwfWVTWuqWWny9vzrEF/8HueAYe3rIntRQbl66DSgG0wi/sT2UzlzV5eFicsyRCrVO6HcmQWHEjVjmSAIovjRvM9fAmGSE1g6YwMefuaGLkoHToqdFEfVP45vZ+9AWHaniBuYfdwTI5pxw+hNh3EhbwJ9Pj/IwUT07mKtYtm0DM8v/opxo99Oyzd27I2R2csqRiqWi1h3g/vyvbiSc1l0LhjSkyS4x7m9qkYaeihTS9jWVxw+viPJHezMvI/DnvtQe9FYOJvoaUEHS8DN87flhyYdm6OBulxU2ciQGpW1Q6YF2rWxRg35sSrKwagq1xXQelDDJ37fjsE2lrC0LGrpgUUBhUkMz/2KlPPwGDcHe1p+g/mjW8A45y0qUwXVzTldve2Pf0KfCpU8JUinFIcKBJ0yXzwOn+hr91xd6FRbTqfUfaxcZVStkYF7j5KFJTIGJDMJob4e2Hgpp7wL4g2Sz+3GmrTPMcnlg0IYahEqtOiNKUMbZQ/4pAf34VBYzlTyaYg67od9dUbhi+5WGv4NXelpOpIexQM1jGFUTsOr07uecoNsI2PONsXjkaolz/qmQhP0ndIP2cNl6TFsPhSeY0DFkBF1Ej77zDHzCxdYatJUBJmN17Ft0ehP8zAJwgLDFcepJ/DzV2OFvysUfvlZVVv0/+lfVOizGiFBf+CHvnYa7rxbun1FaUFU0xY9uo6E+8QOOYJCXH2lhug1eQSq/vwF3Ddf51q1AWBxOLH2Gj6d21vHO/UXljTc898Ez182YtueA/C/kIxWbp+gSc2CEy3ohtsIrNQGrnn7wKKKXNuoyNmQAJwybodOeXc0L6dYvo77d/DgSREeo50+j2eOzrDO88BJVMkIVbmvl16PRtzLYm4dr29g25A2StqutsUG7RadLIad9HOSiacJcQr/l34ev/oZYfSIHME4PpjWtC++6peE2ROWYHekPA+U/pBEo9JHzvlSpmTLf384jLs4wSLXac7XVq7C+Tkp7ofH4Emh76cEp3emw9E171gtK/3CY1y/E/9O5GslCIIoTgwXMBRmAuiO14g9exA7osqjxccfwlxVv1Gel6o+pP/sx5GwHPmgjFqg71fdIE45gj9yPYHi+qMp13HydQd0slI186UMqn78FbZs34hFAz7kXjth+s/bsWP7dmyXlx3Ye+oWNzaajGoH3NFx8GqcVbqrJ+f4Ex8jFWawMOWf1GlA+eqwsLWQH0rvJSAle5JaJhICNmG1aDxmudbRfDCnLSl3ceUsf7+EXFRCtXqe42ZQkLDrpRP6flxQcKISTC3MuAt8jMSn2jwfFaFC00nwT1Xy1FDr8h/WdLMoxH1MQ9Rfm/Dz5doY+3UftMibR032Ak/j+eF/Ah4k5kzUr0Sn1vjAR5lOHZyskU6Z61CnZne11J+xEHRKnt+sdeF0qh+nU2rDRJVMYGFpjNTYRDzVuHPKkB65C2NtjSGydccOrTveDJkpofCdPRTOQ3/Ez75Bmg80MiJwwOss2k/pixaF3QFXVBeuo/vn6Kgfx/LN55CQ9RvSwnFo8wU4ffUZHDT+GzrSU5aKxNingGVtmGqaa1DveipCJdPasMRTxCamahEAkiJyhzs+LGMM27G7EFmkiHQFWLkOwgTFZXKkIGj5LgQmZN3D5wg7tA8HnYagn4Omm44oZOadR2YG8Vc82e1bDPvvNsJvR9bfFcqOIwhOjUPwwXVYMK4n7M20yR9Vmn1F6UFk6oxvpnWAWb6LFKG8dTu4tXuFQz9vw0mNc8QWts1wbf2ED852GAXXWjqaBpR+EzvGtkYZUWuM3XGzEEFPIzTo9gVmzZrFlYVYtdsHS1tG4QdHF4zwPG2AmZcWaNPGGjVVKuCH6OlkozqPojQVL4Q8h4WjgDx6SalIK+4ZuBVawP34AyVtV9uSisg13ZW0g2IiJQHmndorWR1QFY2d26NZ1C4s2XBezwFOhfxV3hILJzg1Ub35njTpRdEe4rZpAduaqmyBFEnPX3JWgyAIgigKhgsYwhj1mzYWZk5EI+Kh9k+9mPQurkY9UwzkWCLCzvzHuQN1Sb45sp6yIhR//3cfb/fWNIKtS090Ft/Ns3tqJhIvnAd6tSm4U/DqPq76R3DjIEe0scs7eCsLccMuGDTIHtJTnljgdxv5N3GVIf1FKncNWlCmKmo1EP5WZDyShd/Nks/g5x/TMXOeKyz1JlWGF+FB2C9/tNka3R0sNRskpd1CgG+w/NBk7HC4NdZwuUmRO7LFQFoo9q05BKm4I3o7Kbk/0jhEXOc39xDDpIqSgHQOnWrL6VTuzws6NdDwOpX76bAuya1T3QqtU3l2qVSBdp3TFwg/tBnbori7GfUbflC303A+3kAaeRhrt9xHs2EDOTsjRdTmnTicd3mpUnLPLiz8rS8L0/YDMd3JVHjNjS927oH/PX4GGTfwDtyF5bd7wN3tQ+13vS6qnrJXeJGkyb3IgcH0NA1JL15pHjDMjMChH35DJONkvG0zDoUXbcdekenHGDGj+9t7mnIQ3v73uJbNXWvCOWxefh9j3Xugscab4AjkkVlu3vqrF7q0Lbna94fo1ro+tAkHakyp8hVJOLe4PcrIk/YXvhi7H0Gi8I0QGaNWQ/Xz9nPRwAI1dLV5VdbD4Kh/cPRKgmbtppBthl+KvPZsK0zV4QOszPC/8cO2a9zvvoZtP/yN8KJGF0RV0bDXeEwfWR57Zn8Gl9lHEVfcATOimODa+ncdlLZfbUquts5pfqUqxsJYygpN65koaQtZD7+49rX9OC4pfQBEEARBEJphwIBhBVh91JEbOPPH0Th/42GO4J0m8DmqTmLb1WThpZY5e5CiWI4ovOIdanmbThj6WSNIA/5GYKQweGWxOHVIDLePzQocqMsehOGfUG741K4lbGuoe9qdgrv3ElC0YWQWVWFhba44vB+DuGSuI8AScX7tOsS4T8ZndbWY+aE1L/EgPAT8XBFYteQ6KposuXmD5It/Y+cNfpjZFbO+6KjHgGZxw5AWdhq+/LV2bodW5nl1guH1vXCcl0+Ls0WLrOBHDnLrlLo5c/rUqTelTqf0E9CsgqZuEzCGz7lmMwnfaRVYy4RU1BKTZvRBM8fumDDSASLpOfgev51jeakK2COc3umPRkM6o0lhZxdmYdQC/d17CYMLDulRbNgfhheye/D3PoLaXwxAx7xL1TTg/dNTNZT7EG7fTYKtSAybMRPg1lSz4LVqqqFV/2Hom53L4D4ObDiEa2npuOe/Fztrf44RHbWfRV48MuPbd6iifYvb4KPG1eW17zemcJqyBZeDgxFc6HINV5a6wkz4xrcPRjVEXAWVdb6c9z7Oh8ZotvyvMG0m8x7+WnkFHaZ21ulu7uWa9sR3Y1px7akVxnzXE011MXFRZIG2PZxhAilu//ITvM4mahZIJd4xuLb+jbeS9qtNydPWUQ7VzWqDz98HTWZ7p8QhQavZ1wRBEASRGwOGbvgAnat84MwPSMKOXkLUa226UHyi3yewqGeiGChxHeQqNbRJ+G6CBnVMkcu1iqzgMnoAbKT++PUAN4jmg5JRZ3HStoMGywC533PvJi5zR1Yf2aCOsjvJ4nHzPL8rQ3181Mzq7aA9m5xPCjWlImpZNRCOH+BhQhqeX9qKeaFu+H6IjfYzhbSBxeHK8avyQ3FPB9hV0aDXLl9auRO3ufvfZvG3mPyRqeYDXbExquTIl1TyeYWHN0Nwg7tW5+6tUDffhb7C/SvncIE/bOcMh/p5B3ga6tS/76pOOXI6pYG8eZ1at6tQOiWuUeVtYuwCEaGS7XBs5RO0R27ESFtt7mpFmNvUVeRhE1mi3ec9YCeKxT8b/sJFPtClEj7ofBAbL3fDlL6FmPmXj4po0G0QRmSv805B0M++OHbMDxsO2GHy0I9gqvH9yEIHeqq1/eYxlJ4aoUaViprbKe7qbEduRIQsFZFbh8NWBzO3yjRwwTg+yW4WQbuw89hR+G04gxaTB8BZ6zyNxeSv2BPc/u+m4rhdGzSrrYtojBJKla8QoVxNGzg4OBShtIRtzZz+Q4wPbBty/0twPSJOxSzQ14i/f0eexsGiZX2Ya3S73kAavguT27ZGn+UBBcyU0yYfmfZtRhZ9Cr+fuYCds8fnzoEpLxOxcEeIfMno3R0LMVZeNwUbr+RIQ6OKSk0wcutVyNhVbB3ZJHcfUSUMmdKHuBl2F0+Uzmwti+pWDdFYfhyGo0F3KY/ae4k+2noZGFvbo6PcEKdB+rKgYGAiJMnFlJOXIAiCeCcwbA9b9AG6zZqNsTZiSE/4YMf5RPkyK43IiMSRg1XRtYUwK0tUG606f8R1O1MRJ0lRnXcmK1cW13Vr38wyz6CyHGq26Yr+dsCNnX/jYtIzRJ66Bye3pqrzvWTzDOH/XuCG33bo2bYR8sfOFMFHv4BYiF2nYkGfhkpudtaTQm0cejmYWtaFlfw4EXEPzmPbd9cxctkg2Gq7RE1bUmNw4z9+rogmG5fwpOGu72rMOnifuweLsX6mM0w0+onpSJYkcmOK2jCrrs0Ak+F1+G/oZqx8WYd2pS2m+/NLh7WAJeDG+RDuwA6dmlpyQ4Y8yO7j/J7z3IENhn3TC83z5Z3Jo1NC7VsUOrVfQ52KL6ROPSounSpo4xI5vE55YvbBe9rpVHoKJHGpMLYyQ3U9X1J++N1vB2JK17rA7T+x8/Qj1XrFHiJwkx+Mpg9Fex1tMiOq1R4Tvu0uvOKQ/IyBvefj+tCR6NtCq/CPgA70VGQMM6vqQNxjJGu8RlzfesqQnvwYcagOKzNjLQKGekBkCZfxo+EkvASu4ZfPP8ec610wpW8TFZtxqYOT2YWgAmXG+6sqrlN0569S7+A//yjuQAx71xaop/MeRyn1FTqnIuo7OMt3RU9/nqYi7UImXkr5+c3N0Kf9h8IMpYJIwX8+a7Dx8jUc8jyMK0lKghPsFdKe82kOxKjftK6aXHpFo4ztOBwLPpIj92bOsgbubatybdYYjUYuxVZ5nRfcNc7zqSVp17C+fzs0tW+Jdl/uw918D7+zNnXgoTxqxc7rMGzsXi9Puy1MMYbt9OPFvOkJp13mH+LjFvxTQMUGXWp/jrghrC21fThHEARBEG/RefddPSKUb9gXyzbMRSfxBfy6dHsBs22y4PNtHcDNPn3ROnvmX2U0cHaR5wa7H3wH8aoij6mxuHntMWDngq4t8yfmFZk6oO8IR/mutUcCj+HAlSYqdlzOw5s4hJ/id3Ztjra2eWc4vYE0+jhWzVmJGy4rcXD7ZDhWVTb4F6FSDQs0QCqep2naneQ/Y4568uMI7J05D0ddv8awJoUZ+GsDw6uoq+DGRRzN0MW+oBxCryAJ+BlffLUFGZ2W4IDKe6CMTG4AklqIPEsiVGgyGnui4hAXV9RyDEs6m+fTF7VkD45boKV13iTPjBtjHMXmExKI3WZhvrIBeR6dyo2gU7NX4HqnFfrVqRlzOZ36yuA65crplHoNUejUxC+34nXHH7XTqcyXeJ5UXjHLWCuh6ogKdug51pUbQN7Gvt+O4abS2dX87MIDWHeuvY5mF2ZRFS3cBqJPLnG2woTRn8KqMPdCJ3paCTXqmAsJ8TV9bKRvPWXITEtFEsxRp0YxLW/ORgSjFj0woY+wLbSAxYSBcFW5GZcaNJQZ768ObPtSI9tS8Jg5q33z79RX/sJS6it0Dnc9jT/FyK5WSAm7B0l2TuYcsGeIvfUAsO6Jvh/V1vD3VoV169aw6zgKizZOQMdaSqxSRiKiwx4B4i6Y2FuTh62lH9nDEBz9h3/QJUXU5Wgk5Etum/XwgUfJ6hbCsFRohjG+l5W0XW1LFC4s6VL8m55UsEX38T24/kQcQu4/UTLxQgbpwzu4zr3DZmRfdCiMzyAIgiAIAQMHDHkqwqLzbOw6uBIuMT9hzExvBCfyT6dV8QqJwT5Yc60d5vayytHJFaG87SCsWj8JFif9sP9qspIBTDpiTu6H70NnfPfbV+ikdMZONbTuOwRdxZexef46POz+sUaDaBZzDcfP85ncH+LMTi94enoKZSnmjh6AIT8EoebEvQjymw0XC1XDJO4aLBqghYlEhdNXTlmTWuAXH/Gd1fumg7BwvCOqatyBKezOr6/wIPQ/hPKHFo5ozed1UwU3MLm5ZxGG9V2J2H7/w4lds9FZ5T1QguwJ7ofEoXqL+rDQduaQqBKqm1vAwqKopQbEWuV4yjk4TkRCSm6dZtKr8P7xfwiymYzNa0agWeX8362RTn2xT0OdUtWRVE5unRqMBePaaKFTih0vbfmn72N3IeKlksGqUgqnUw/7/wr/nXO00ilZ/H2ESOqgRUMz/S6xVgm/++1QfGX3dnZ1vrvE4nFu235UnjZEZ7MLFfDpILpg1EA74TWH0zCMaK9p0CA3utHTSrBoaA0TyR3cj9c8m23R9LQg+CWbdyExsUZDixIwvC9vg+6jeuDtruHdMX34x4VYQq6Qmb+GMutsqSvbkqN96yt/Yan0FXqiQhP0nzEMdhd8sTuffeFnkPpj804pPps+DJ+a5ZmNKewULMq3UzBnt7qOwqgGLdHDtTGy02pm8wbJ5/2w4YIYnebPxMgWqndDfZcoU98R/bq2QsfBM+D16yi0ybfE5DlunT+HG/yhzSjM7GtXiFnBhO4og0rVaylpu9oWc9QU6ymtglYYwabfZMzvVA4XDp7Frbx9LvYEwSfOQmIzHIumddLjpnUEQRDEewErNjJZanQAWz/JmZm0Gcc8/rzAIhJfMplwlrEMlvrgP+bnsZB9t/MyS8h4eyYXsqfshs83zMn1O3YoIon7lIDsBYsL+o2NaTOQLTsZ87ZeGa/DmXef+kxkt5AFJGUKlerIZEnHZzJuIMfEY/xYnIqfphGyaOY7zJqZuB9mjzX9noxg5tGIHw90YovPPM5xzzQhlQV7dOR7F/JiMvU4SxLOqEOWGsy83OorPjfYlz14I5zIRsYyEm+zs35ebFovOwaxK5vqfYE9UiU3NcgeH2buJo3Y0N13tby24uQli/AeyEQiMbPp0Yu5TT+cfe2y1OvMd5orp+ffMJ8bT1Vck451amgjZup+qHA6dTaB5ROvOrI/yxd7NvWYRDihnrw6FZPvtyrXqTitdSqDPT48lZmIxzHfB6+EuuLgKdf2unPXy+nI5EN5ZCxjryO8WR+76ezwI338Rhl7EbScNZPLqD7ruz1COxlnozs9lT3wZUPFzZj7oVjN23lR9LQgZA/Z4cnNmXgoZ9+KcF065cUFtrSZWN5GxH192B1N3FM+FDIzFenOtvD+Kr6gm58RwXwGN2LcWJWhkQcLVuuEC0fp9BV6hO8PeU9kdp2WsJNx6UIlV50ayrzHtGOdFp9gj17nv1MZwR6skdw2KJMV11e7sYtNG7uSHQ5/zF5mfVwmZTFn/8dG2zqwUV7nCmGXdYjsAfMba8fpmglz8viPvRCq9Qfnm+ICmOe8Nczv8gOWmvPaufvy4PiPzMWYa29qfX5BvGHPAuYzi67eLEJpW0tlIWt7czIzYe3WXmP5vAZvz9ybcedV2NhX19jadibc+V5sbUiqUJkD4bzIZCo7/FhJ4y3g83zbnGwqYlD1ea0p6H68b/Dtcidzb2PDteu/2YOXwk2RPWN3D3/HXBoPZx5nHqof+6glkQXMace6et9S7md5+X9iqlb+7iacPeHkfyj+tVCbhYy9CvFi7Xh7086LhbzKq51vz5so7ccW9HlFn4/3eVqNrdTC3Y+5n6i+HwRBEO8wIv4frpNYfLB0PLl1GWeDzuHs+RDcSQRq1KgMlDGFbXtXdO/REa0tjAqYCZOBp5FB8D9+HKejy6HhBxXw5G4yqrbpovHnJUcW4suwz7BlviY50Z7jiufncJx9A129A3FsnF0RpmqmIXLLF3BY0xT/XJqHjzXZFZXdw57h3fC9uRdOe3ZHba3+OD/D8A9M7u2ObRm10ajGFPhdmgJ7ZROaZFHYMaArRh+4z31KE2zQcVQ/9OrSAwP6tUcDcWFmSTGkXVyBj1xvYHrwJoz7sKg7jhoIFoP947rg821VMTvgAKaBu8dL/oXxB29w61IG2nwxBdPdu8NW5T3hdWogp1PXdaRTE+G4phlOFEKnzqzuruUulPwMw1noPWoXMhrVRo0pf+LSlJbKlxcLOjWK0ynN0IVOPcXFZf3genkkruwbq/+8jCphyIjcioEO43EQw+B95XeMsxUW8LEEBM4fghWWnvhrSmslOeZ0QEYU9kwajAn3h8L/zxloV6hZjDrU04yb2DLQDWva+ODSgnaaLWUskp4WQFoQln08CpenHcS+cU2KaSZqXtIQvWcWuk+IwZgT2zDfqWYhZoUq/FUbzl+56si2OPC25eI8OOWdWVVg+7bH1OP+WNOtcLNbc1NKfYXeeYXE0OPw3X0SdyvUwQcVU3A3sTqc+gxC/46NFBsx5SX9NnynT8TEncDIbVuxdoB1Hv1nyEwJx/Gdf+BI8CNhA49yMLH9FG4De6ODrSn3ytBw8uds6Dde/6rID9gQA5fOR289Lsdk6Y9wNeAfnDp7Cdfj+fyQMrxMeo4y1q3RsUN39OzqiLqF8lk8MjwPXAi7ldY4fWwcbLMb7TNc2bgIXoERiEmribo1ykGWFItHRnXQwGUavCbVxKlvf8Se6/fkdVZcd/pl7COk1WmA5oMXY7nLE/z2zS8IvMfXWaFGmUwkxTyBUd0P4TLlR7g3vouN/PnHz7nOeHVUxgvExmSgTsNemLaOa/u4io1TuPPRyj6/BJNqncO3C3fjurzO/O3n67bG4CLJQ9X9eJ/h2mViKI747sFf/jfxUi4vI1g4dsPAz7tqMPZRxxMEzu2DlR965/YZaVcU+qFUfwqS/zy4JGzn2uwJ3JPXVUcZ2VPEPCqPug26YorXBDS+vZk7fxKPk4Sx4Mt4uZ437D0D69xbA1ybn8J9PlrZ59eNRq3AFVi456qizorzCcLn6zYfiqXLexcuDYsc7n7M64uVtpuL6EMJgiBKIfKwIaEdb24x764WDOjDNoQX/Vm2YqZNR7Y0KEWoMRD8bJ0Oa1lIoWat6AvFLCx+ls/90vQY71kAm2PB9d7E7swvrhDPdHmd6mapU50aZmx4neJnqny6NoSVKJV68R/zcLJjQ32jCznTQ4fIYtjhyQ6cnBUzYaSKyrezC+PyPokvYehUT1+xB77jmHGz5SzoRXFLRsZeBHuydsbFPQtVDwj+SqRrf3UhWagpLkqpryAIjaAZdbmh+2FYCphh+N5BMwwJgnh/oYckhYA9volzFySAVUs0rVdZqC08IqsOGD3hFXwDboF/Rm0oWOxNXPy4GRoU9gG4Pki7iePbn2HC6A6wKjXamWPzjnaOaFZb+7kWvE6d17FOjRr/2sA69QqxNx/go2YFbV5iSPiNRE5i+xM3jHbJmQO1mBBZot3nPWCHFAR5H8JFftdRlohzW7YjYfxQuFiUjHltqtCtnlaAlctAjH/9DwLCngl1xcUzhB0/iifjB8LlHUsQn+WvmI791Z5Aw/qrfJRKX0EQBEEQBEEQpQfqZmuNDKm3guEvBUz6O6FpvmTXhUBkDpfJE9Bo5z4ESvJtt6cn0hB16ipsujWDsVBT/GRAErgPOxtNwGQX81KknFnJ/cWw79IC9bT+4Vk6xXSsU+MNq1MZd3HKvxa62efdhbUYYQ8R6HMcjeaNhkveRP/FQlmYth+K2fzut7d3w/ufGLyRnMdOnw8wwa2k7zCqez0VmXXA5Ll1uOs/B/l+QcUEk5yDz05LzHVvX/w7YOqUnP7qY936q11/GtBf5aW0+gqCIAiCIAiCKD1QP1tjXuDmjjkYPXoQ+nyxDvxkspQjK+A++mt4XUxWvKXQKHZ8XjY1Eet2XcVzvQ+cGTKij2DdVSdMbG9W/LOuBNjzq9i1LhFTlw0qxjxzheEZ7oVFcv9/iG6t60PzvXtz61QcJ/fSq1NpiN7vg6ufDYFzjZIyv/ANnl/xw7q44Vg2rHEJyUnHkb377V0c3roTW3124PKocehrU1LDhfrUUyPYDpuNqXG7sOuKsp3uDQBLxpVduxA3dQ6GvjN58JT5q5U6tS1LpzwxkG3JT+n1FQRBEARBEARReij+TU+It6TfxI4vPfD4y9WY6Wiqv0Ce9BI8p5xCq6XT0dlS8/CWXuEG7cGrZ2J97dlYP7IJKgnVpYIX57C4cQcsSXHHnxFeGGBZgpaVGkSnZJAG/4opR+ywbGEXWJQrGQN49vwSVo/ZidorfsJIW7FQWzJgyQGY/0lfrLwtBcR5NkB571BsxPTl3Cf4cvvXcKxqyIDzGzwP/h9Gr6+JleuHwbYSBZ80xlD+Ki+l2VcQhMbQJh+5ofthWFRsevLeQpueEATx/kI2ryRRqQlGrB6PjPWbEBj3SqjUA+KPMGvLvJITLMQrSAI3YX3GeKweUQoHgK9f41UlK7SZ+BmczEtYDrqcOiXRl06VgdjxG2z53rXEBAuR+RCBP+9CxuzFGFHCgoU8ItM2GDq5C4xFYth9VZJnFxoCESrZDsHqOTKs/zkQkkxDPcNiyJQE4uf1MsxZPYSChdpiENuSl1LuKwiCIAiCIAiiFEEBwxKGyMQZ87x6Iv73vQhNex8mfzKkhe7Fpvie8JrnDJPSOGY36YyVkTH47+eesCyBLSpbpza9Lzr1HKE+exA/cAnmOZWcJfe5MUaT7p+hs91IfP+FE0zf+1hVWZg4TYHXwCRs8gkzzGYaaWHw2ZSEgV5T4GRSknZ+Kj0Y1ra8A76CILTlxHh8WFYEkcgS3bbchkyofm94Hoi5lvz1l0W1zj/J0ysQhuIVp36NUVbE3/9B2BKZLtS/L/CzWr+Fpfz6zdB5ZbRQTxAE8X5BS5IJgiAIgiAIogTB0p/iccpLIberCOWNa6KmuCRs3mVAWDqePk7By6yRSnljmNUU4z27C8WADOlPnyDl5RvhdQUYm5lCXFJWkRgIaoMEQRAUMCQIgiAIgiAIgiAIgiAIIge0JJkgCIIgCIIgCIIgCIIgiGwoYEgQBEEQBEEQBEEQBEEQRDYUMCQIgiAIgiAIgiAIgiAIIhsKGBIEQRAEQRAEQRAEQRAEkQ0FDAmCIAiCIAiCIAiCIAiCyIYChgRBEARBEARBEARBEARBZEMBQ4IgCIIgCIIgCIIgCIIgsqGAIUEQBEEQBEEQBEEQBEEQ2VDAkCAIgiAIgiAIgiAIgiCIbChgSBAEQRAEQRAEQRAEUWjeQBp5FJ6Te6NT70Ho7WgJY8dhWLQlCJJMJryHIApL8egXBQwJgiAIgiAIgiAIgiAKBUN6pC+mLL6Ftov8cOrIXhy5fAtX5ljCf/xgDF/yDwUNiSKQQ78WK9Ovk3rTLxHjEI4JgiAIgiAIgiAIgiD0A0vH08cpeJkVhShvDLOaYpQTXpZKWAz2j1+EhFnr4d6kilDJweLhP6MnevxSGXMC/sJPLrUgkp+QIf3pE6S8fCN/BVSAsZkpxOUUZ4nCw9Kf4nHKSyjUS8SpV03UFJdq7VLo14TFSJj5q1L96s7p19yc+qXDNkYzDAmlMGkYdv2wA6Fp+o4nM6SF7sAPu8IgpdB1sWM4ub9vPEfoltXYFf5McF5E8fEG0nBf/LAlFGlCjV5JC8WWH3wRLs3qEBKGxPA2jXwaYTjeL5/9bvtR6n8RJQ89+rPUC1jhUAeWlpaKMnwvomXCudJKyi2cPeCD2dO2IORFjhsmqgWnz7rDQnQBf5yOyNH3TMaFFb3e3gPLydgb/Uo4RxQeGadeq9A6+762xvA9UVxtKYfTr3OCfuXyE1n6hTz6xbWxn1pn3QOuDN9T6DZGAUOdkQnJfneIRCIYO/bGyNGjMTpHGdnbEcbcOZG1B65kCh/JQ+YVT1iLjGHd6XPF50b2hqMx9xnuc9aeV5AhvE/fsJTzWDHlb5h/MQj2Rho+5chMQOjRbfCcOxqdrI3lv1lerLthsucBhCZmGcBXkAQsRe/lF7kjHhGM7AfhC/O/MWXFeaSUxn6SZD9G89dq7IjeI3PL/a0MO8HzilT4QB4yr8DTmr9XnTBI/rnh8pwEivunWl90TX65v0Gy/yyYZskybzEeCZ+76YoP5+HNzY1or+Qzxv12lIoOAf/7O5Qpk+/3qyzGbTFo7jocCE3gLIEyqsJ+1GCY71uEFUFPSuFgR1P75qnWvtmUUW3fDKPmb5AS5IUp+2pg4sgWMBLqCtLzHSo6cBrpuVELjPqiBvZN8UJQSikJGurVpnki2EDOTBNfpkqGKkuBbf0d8GklFZaOJzfPYf8WT8x1H4LevQcpdNL9W3jtOYvIp1mKxbfztZi5917pHyCooTA+W50tU+bzjPv5FNpn675tlXY/qppC9bsJQu/k9mfJOm90n8M74iX4xY7MfxxsS3tUolxlVK0thjQ2Gc9zLQ0tA6NqpvI+Z+yDRDxXVHLUhMuKy4rrfxaAORZCNaEbunoj4g13b1kc/Mc3Lv1BL231q6oLVsbx1/8GzwLmg+uFCycKAb8kmdAFMvYy7hYLDg7myj9swyg7xomFlyZX6jM3jyPsMn/uSjRLkQkfyYMsJZpdCb7MggK2szkdLRnaTGPeJy/Iv/NKdAr3FwzAy3DmM3YM87icpNnfy4hnwTvns16NxAyN+rA5Gw+ycxGJLEM4LUu9z4J8v2NubSYx7xvx7NHJJczF2J5NPR4vvENAlsQue4xhY33C2UuhqtTwMo6Fy+X+Hzu9YSwzyZY7mNjNg/39H38uhEWnZN2VPMhSWPQV7j1BJ5jPnK7c5zqwqd7+LKgAfdEpauUuYxkR3qyPSCS/JqtpR1h8hgY/SpbAAua2YRC7sqm/n2LRqZnCidJEPDs+1V4hz3Ze7Fq6kuvOSGDh/pvY1I5W3PtasTHeoey5itsje3aRefT9mvlEpAo1pYX89i1Lx+X2bdVhLe2bRTHYN+4aInaysX1/YZefKdNFhZ67CdelrZ6LeD3frErPM9mzy7+wvmN3sttp+r/SIpPHppmKsmStsGnHLvPnSrNNU0bOtr6WhbxS8qm8bX1zCEtV9eU5fFqaUFVqyHjMQv7yYnMnjWGjRrixjp0GsklzvdhfwQ/Zy2JR30yWGh3A1k9yZiZtxjGPPy+wiMSXb+Uqe8kSw0+yzXO/ZV4XHrFXj4+x6XZWrKv3Le6T7yi8fo9T77Pf2rLD2vtslbasMOi2bZVeP6oCtbLMjyw1lHmPGcCWBqUINQUj74v7cW3afRpbtOontmjaTLbUJ4jFaaIXxU46Swg5wLzmTmaT5ixhqxZNY+68PQp5nD3WKPGURJv64CLz85rP3KcuYqtWLWLTpi1nPkGPlN9TfYzRngWwuZYDmXeEoUd9nH2MO8mWuTVjjbj+zNkEXWoR992Jd1lkYrrwOotX7IHvOGYsMmHt1l7jXimBux9zLIrjfugQ2VN2w3sSc156gb0QqlTD+/VzzHetoIMeS9icSWO5drGW+Z6JYClFsk1vuNs5n1l09WYRb4Qqg5Fbv848Npx+iaFKvxT3w7II94MChnpBxl4ELWfNcw6yhvqyBxrqvizpJJvb2JYN9Y3mvsmQpLIbG0ayrh4X2bMC/zDX0O8eZUvd+MCBPRvscZzdUdm55N4b8itzc+jAOtqIufcPZz7ReZWd48UVtrbrCLbhRinuBL64wJY2469RkL14HNt9X8m1KkP2mOust9NKV3QDL/cR6uUuPcsW11UEDC3mBLBnQrVaZA+Y31hX5u4XzV4LVaWOzOtsg7OJ/LqtFp1VHRzgkKUGMy+3+tx7W7GxuyNUXDNnG0K8WNc+v7EbxdNL1AEK+9YsS8e5Ih66Wzv7ZmdjePv2MpRt6DNY/aCM0/NFVopr0l7P7xYweHnGQtYOZX03hJSuhyK8TWtunC1r3qb5PlDa3c2P3KZ9Ukw2TVNfJpCrrZ9hUqFaGVltXcS3dd9I1fYty6ddfy5UlHz4YMTW6fOZd1DWQJbroKbeZWe8xjJbkRXrNNePRRj04U86iwtYydwamTCbMZvY5QQ1/jRDwi54TmZuPZpxcrR4hwOGCp/drQCf/daWndTaZ+s0EKPztvXWj14vDQ9g1KKBLHlkL1lK7C124U8PNqaNBXcvHdicgEThpDq4/ne4L5vmNpZ5HLuVYxDO1d/Yyeb9dIollORbKA9ATGQ2Nl+xnRHPBN/N//ZtbIyNg/wBrbp+WUlAnU21QTHYVO6ehvvOYW5DPdixiKS3bZ2/11t/ZD+dkSjvI/H+rJsOx2jFFjB8ySK8B8ntUZaf0HtM6XU48+7D2TWTscznjopQWqkNGL5hL1MesogLfzKPMdwYVu5zCuo/S9ndw/9jnnsus7iXOe8+5+9PLmGdxGJmM2o9u5xYWE9UnAFDXr8GvtWvzTcNpl9QqV8UMCy58MLr20BQGL70YmtDNDGywlMIu4UsIMmQXV0Zex3hzfo2ns4OxxUU3sly1mJu8NiDLT4ZW3DnUgiGye+F83oWrvTSXrO4w9OZXR9OoV+X8B6ASl5whmKY3GAq5G7C2v1yVfnTpDzIHviyoeJ2bG7AY+XOWi8o5N7HrgC58x3+9qaKaxrsy2IK/IGZLClgEWvn7sce6OUJNq8rc1jftVc0eIpVeGTRPqyPXI6KWbHqr4QbxAR7Mif+/SaTmd8jFfdTFsMOT+7A+niHa6QXJZIs55St59rZN7HB7RvfLoczu8mHWJw6IeYY2Gqr5/c1sFmyuEPsy8bDuQ6hHrSW16uvxnFy0Cg0oAWKe5fLpq29xnXrCoa3acOMi8emaebL3pKrrR+TCLWqULT1dvxDQXVtXfBpjfXk03h9+qrv/1jICx19d0Y085s8iXmFKJnxy+vXl47c/eEGuN8ZKsigGDy4GIOJO61iF5I1sBmvI5nv2Fbc73xXA4Y5fPYjNR4kly3bXaw+Wy9tK9uP3lAdsC/xaCLLVyzm8Pds1KQ5bOlab+Z3+i/m4appwDCrr96OTT/+KMegNWsGjJ12D4AKgpfJ17r0QS/YXd8vmQ13rZMPx+SxSVl9bac811bCyLapyXl+P4dchx0Ma1PlAdgvmI3dXHY818ynrAczYjUP+HQ8Riu2gCF3GxJOs+XyGWArWUCchpM6Ck0qu+09ipnw4+V/YlSPl0thwFAWc5jNG+XO5ixdy7z9TrDDHn3kPkd9wFCwezad2KhF21lQ3vsvi2a+QxsxEcTMZtqxQraL4gwY5tavk48MoV+jFfqlMh5DAcMSzGv2yO/LHMtTxcxu7kn2pCBBvbrG1razYk4el/QaCMmHLI4dn+bEmi/9t4C/q+iAjLXlZ5w4sWmHH2j4JFpovNy9UPuEWT5Dj/ve43EltwNQALJHfmysSZbcuaJRcCSVhaztzeDkyYJ1NfjTBLnc27FmBU4fj2F+o60V19PIgwUXIHRZ8mm2uN0E1U/SioziCY7Gs8AKBTeAOj5TaMMqZsXmJf0y87DnZ5iqe2opzNCzmcOOPS6tQx3evk3OZ9+SClLdbPv2n0HtmyzhGJvGdU4KXsLF6fmoRnrU8xQWtNSlCJ0gNby5xby7tpMPInX91cps2sknBVl+3qb1YqJisWma+LKc5G7r2+9q0GHn23pL3g8WMENBPkOzndyn6VzkXKe7q8V8FvBMF96St0s/sQ4q27GMvQrxYu34eyQewDbcUDdPTBdwg4q7vmysfFWCNkFn7jq43+kqfkcDhoJ+8z5bvQRy2rJVmtmyT/Ths/XVthR+tLntHHZcp0sKDYjGssyB3M5rFjCUJZxi33Wqz2zyPSgT+iDytqzDgCH/27p9ouHMx4JQtP9x/Fij2XIWpMSHKFYriJnY1Ytdk+rauuqCtzZV+djP0DY1gyWcWcZcjJUFYPm+SUe5vVC7IiDHGK3Id7wYA4aGQ5gxZzOALQsoYHJNqZ1hmMXbmXXqx2Zv4wHKH+wlsoA5Doq0boXu3xRvwNBwCA9VbQvSr6IHDGnTE71RHpZdBuNrO7HwWorbm/xwWvJaeK2MN0g+74cNYZ/CvV9WQn7DwGLPYvvmahjVrYmav8uQGXcMiz7/Glsjy6HN4p+wuFddDbfnLgPxB9ZoDnv0b2eLHJuB58aoOXpPNMXm7WcRW0qzlYssP8XYr52FVxy3/8TO0494y6gSlnwJuzfeRt/JbmhlwITXvNx9vKtidHd1cucxQb1mVorDu3fwIFHNFhUsGZc2rEHo+OkY0siQWqxrniH83wtI4Q9btUWLuhXltWqpWBsN7WtDBAlOnAjFI6VCF8GodQ9MNDsEn1OxavWi5MLbtyFK7Ju63Sze2rfJ/Q1p314jNvBPbK7ZC91bVBPqVMHpeXN96nk1tO7dF2ab9yEwVp0vKFkos2m7NLFpG26jj/tnBrdpBfuyvORt65XktWoR2jrUtnUO3qdNEHxaiW7sr/Dw5lWcXTkS3b/chRupeTfoEaGCjSN6NuPavPQC/roUq98NRdhD+Ht6YGuUFOKuIzHS2UzDdN2cfW3SGUM6F9TWSydZ+s37bJX9KDk5bdldzWzZuGl68Nn6alsKPzrB7DC2B5ZOP6q5LAvDc4TtXovVp+pj9Kj2sMjVeLh75zgGW/f8jt98Z6OXVQWhviTxAjeP7ODafypMnJujYeX8rV9k0hCtWtWG9J/9OBL2VKgtSby1qT2+2olwacE2Va/boqWFYffSjThVbwBGuXyQx55Wg+O4Vdiz0Ru+33eHlSpjm3OMVhobnUHhN/n0wPCvYzDiL2/M5+65ZuPld50yMG7eC/PHOMOm10R806kuygpn5LBXSHsubM7VwAI1Kmnm+d8/3urXcL/NetcvChjqk6oOGDK1q/CCI+UAfjsUoXq3Y/YIp3f+iccjBqNbAw06VTojDVEnD+Fw/Q74pLGaTjbXgT++9Hv8clsK2H2FFVOdYaJFOy5jXB3maAYH2+pCjTKqwKbtJ6h/+BACol4IdaUNU3w8ZARchVfc6BpbNx7DrQxV3jUDktN++P1xL4zv1sCAjVKQe70OcG5cVahTRXmY1q4jHMcjIUVVsINxfZJd+O6/nlg2rDH3qVKMLAFRl+7LDy1cm6FBLo+mAcGxSFDV+6tQH217muPI7tOIUqkXJRwl9m1jQfZtl59g3zQIvuqKjDs46XsG9Xu1Q+MCA1f61nNhgFD/DHafvGOwne+LjhKb9lvBNm3T494YVxw2rSBflhd9tnW5T2sn92kno9KEupJIOpIlidz/ElzeuBkHbrzdxzGbSiawsDTmDiS4HhEHFXtk6wCGjKh/sHnHFe7YBC16fgSbClp0NsrXhYOLnfDiXeKtfuvDZy8d2kT3PlvffrSHOQ7vPlUK/ag2stQelnwZuzechNTEHvYNsx7s5aCcBRwHTcAXvewgLonjcZaI2xdv8+qJSlWNoDRmIDKGmRU/ngjFsf/uo+Q9gstpU705m5qqqM5JXpuqNzV+g+SLf2HDP7Go7txMSQBWxKlEGwyaNA69bKvlCSbm5O0YrWT7s+ImE4lnV2P0SmBB4DqMayrc05RzWL3uYo5dkt9PRGaf4Jut5xB55Af0bpDnIVVGIqLDHnEHYjTr6aid739vyKNfzarrXb8oYKhXqqCx23CMNRFecg7hn/WHcSVNmUfgOsi3jmHj1vr4dkJ71DakZNhjXDt5CeVVPMVTwDmbU5swewPfgbeA65RBaG+qXc9PlvoU8c7OaK32CbMIlRs2h3P5Szh57THfVyiFiFC+cQ+4j80xYPnHF39deSa8yENGBA5tPIYP5w+DSy0DPn/KlruyzkNeyqFardrc0I0nAXFJ6fKjfKRfh8/3/8J14edoUsqfCrHHN3HugoQ7skG3j6zBd+l0hxgN7e1RPvBfXFM7K68ko8S+/arevv22tZ7cvtUyoGowyXUEBFSCs31dVBbqVMPruXkuPVdqg3g9/66Qel65LuydKyPg5HVISo2BU2bT9hRo0+y+HQ6X2gZ8bKCRL8tPvrauU/0sLT7NGM36ToB7m0Zo4z4BfZspCWJkpkMq5W2/GDWqVtbj0+zXiL10CgHyiGRDODf7ANrNgTJCg7Y94FxHrKST+wbSe+exx2sBps1dCk/PFVg8bQoW//Y3QhOFWQ087AGOzB+P0aNHK8rI3nA0tkWn4b/lsHHPcMXrc9hUdUTvkfz7hmHQ8I0qbKAO0Eq/89sypeSwZU21aDOaot+2JfjRgFLoRwtpqzTjDVJCTuMg/3C/TQvY1iyF85rYK7xI0jQglYJbtx/iaYkzrjlt6njOpirpRea1qbpvggpYEkJOBOI2N35r42iNmoX+O/r2Z5xN3TgFgzrZQiQSccURcwOfgGUmIHT/L5g3j7PZHgvgPmQiFm85j9h0xTx3lh6D81uWYu7iFfBcNgOjh0yH5/4QJGbm+YVpV7Bx/HD0drRUfL/ltwh8nmOuvPz85+hkbaw4380bkTKGzMQQ7PdcgHnLPOCxaDKGjP0OW07dVRHg5XxM+B/43rcWlu+ajc4WWQ/IGV7cCMR+VpnrPRPK4cYK968iMCwFzGYkFg611/FqJF6/vsmnX9CjfgU8y3rixbjTmzB+UCdYy/+2JbptuQ0ZXiEx9AA8532LZVx/ZJH7CIxdvAWn7j1X0b4U+vWdofVLWJpM6Iucm33Iix0b6/dASe4HRf4IcTFs+CF7fJi5mxSQ70e+ex6/IzJ3Ddrs/FsYhBwtJu6H2GPD3godwicQX8i44XW27E3G+rFH+a5HyCUjHsa8b+s7f0lusuWu4Q5OmSFrWSv5tTRio/xihNqcvGB3fCaw9ssuaL4zaaHRdw7DnDk2tMgpkhHMPBoJMm+1loWoSaDF5x/rJmrG3A8/LHoumOJCsG9c31PQc/X2zdjg9i2DPT48lZmKNJdhXj3P/2t5PZ/InAut50KeF5Op7HCupONFRI85DBUUwqbpY3MXNWjky/JRhLZurdg5vqC2/tanHdapT9NtDsOCUWzMxd8nfW9ko8hhpNCzgWzz7TShvojInrG7h79jXV1/ZMcfSHP8/tcsOcSbjXGayDZejs+dB4jftMCd/y2N5Du757/TL9kDX3dmYjOReYc8UZ+jqojk1G9d+uzC27KC0H/bkrcBlD4/qq0ss9Eoh6GQE5u7f/I+UsYTduPQGjZ92iK2ymMJmzP1W+b1V3Ce3Ul1gC5zGMoessPuzeR9C9X9PEWeXLmedN1cKnOV5bWpersEef5ofhMkTm9OPmYZydfZIY85bNqin5jH0rls6lwv9ldw1i7OBaArf6Yuh6EsiQUt66r4vceCWYDXJuafbbNlLOPBHjbWtK58s5jHz0LZLk9fFpKclRM8kz0LWsmcUJ+5bQhlyryH7NkFtsyJux8q/Gf2+a6/sxsPTzPvrWdZTHZ74W3+JGYibLiT+xZkbTRkxRx6DWOjRo3KUYaxXg7NVNhijvcmh6EaZI/Y8elOTL6hqroNYgqkgByGgn6J1OjXGBPFZkSq9KudSKFfyqSVU79OPs3rwLL0k7f/19jDwJ1s69kHb9texh3mO8aOwW4uOxafN899YfWLchiWfERmcB46BO2El/xSrn0+J/Mtn2Bxgdi0Oh4DR3WBTXl9PWJSBkOG5B7CUizRsn5NlVNO2f0z8Nl6W/Gic0e0tdLjksIyNVG/pSWeht2HRNtlJiwdT+MlkEiKWpIgzfvkQCvKwtR5ACa3M0GWNFP2+eF43in8LBbHN/ng0cAB6GZjyGdOmsk9J2VrfYDm8qO7+Dc6AbkzInHfd/cvLNpYD8vc26KqIVVYL0gRdfUK+HkRsG8L+3qa6TuT3EHwXcWxuG1DWKqZhFvGvD5aWsQhLDpR66WpLP0p4pXqrZbliTSPHLUky76JsgSu3r59PrKzge1bOiTRd5Bibo365prNUdJEzxf/VhfLJxdWzyvAvL41LFLuIFqiYtZPieStTcuiIJvW3UbX+dDUob1NU8C39eBCtfUrGrb1LJ+WEnZPe59WYniBm3//icNS7npdh2Dox5rmFCwEsie4HxInvNAVrxB3dCl6DY3C4HUz0K1ulRy/vzxM7Edi+bdirO70DTaEPuW0SaBcXXQc2AN2eIxr16KRki9xY0XUrNcIveZNw0j7Gnqcdak/n114W1YQ+m9bCj/6qJT50cLaKg1hzxB7+4Fw/BiXNvyGS3VHYtWaHzF71kKsXDMHLsm/Y8AYL5yJyzGrtiQhMoFtmxYFLJdOR9KjeMXh9bt4KNVrVlU9wNvUfblsqs51QYA9fYhbt+SZRMFSLmCDx1XUHb8Ua36ch1kLVmDNwk+R/L9xGLP6NCQFjX0M4c9ERjA159OKvMDdPYcg6TYMXbNttgjlrD5B/8HVcGr1L1i67ASqDesPe5Os1QxlUbV1Vwxp9wyHfj2KkBf5f6NIbAJzY9Wr3bLOi15fwY7f4+E83BlWlbKkUwlWnXpjsEkQft9+Lncux5TTWNLva2yLisWVo3/Ax8cnR/kDR6/URPN6b/tQukGG9KcJym2TViUeT6RFGhEUnkwpnsTeQMC6hZh2viU2nNiMRV2s9OdPs/RLlKVfw/Pp14AC9Gtwu+cK/VKyokC9fpWF2LSmfNXa6xBf/B7ngOHt675Nu1CuHjoN6AaT23/mz3PP6dfS/t8YWL8U6Ms2EdmIUKFFb0wZ2kh4zXWhDu7DobCcK8zTEHXcD/vqjMIX3a0EhTUUDOlJEtzjVLeqUTkVf/sNnoRfRoD82ATO3Vuhrl41pxyMqnJN6Z4ESenaOCOG1ze3Y7CNJSwti1p6YFFAfO6Gqi0VmqDvlH5vOzzSY9h8KJyTdhZcpzHqJHz2mWPmFy6oY9DWmFvuGmFqCdv6isPHdySKJOZZZN7HYc99MF88Dp9ouVS9RMIScPNfRYDcpGNzNKioSauUITUqFGflxxZo19YaNeTHKihXGcY1MnDvUTLX7dUGrpO5bQJs6yjTWy1LuyUIUJcMv0AU9u0bDe3bxO51DWzfhAFFDWMYabrWJ6+e5zQCgp7XXjQWziaF1XOuM2JkzOlGPB6pWiZYUsmyacLLgmyapUGFrYkvUwLf1s8Xtq3zyqFBWy+0Tys5MEkg1q/xh9RmEtb/byzsDbiRjS5gkhNYOmMDHn7mhs5KH86Vh4XLQIyufwzfzt6BsOxBQFmYftwTI5oBtzcdxoXEPGEploiLBxPRu4u17vP/5UJ/PrvwtqwADNG2OD9atdB+dCJslPlFbYvWfrQQstQGloqE6CT5YfqlHfCr0jd3MFtUDU2HjEf/mFWYuGAfIkukTTKCTfcBGGgigiTkPuKVxQLTohD0d4TwovTB29RffzaMTWVPExAtNwBJuLQ+AFXGfJ4jAMIHOJpjyNddETN7Br7dfauAtmRIf3YbgZXaoIt1Hpstqsj9hopcHyQAp6p+gk4WeaxvuUoQiysB9+/gwZMiZLc8fR7PHJ3zPegWVTJCVe7rpdejEfcyxz0w6YyVkan86k0V5RRmOSjJKVoUXt/AtsGOym2TVsUG7Rb9g0SDmoM03PPfBM9fNmLbngPwv5CMVm6foEkNdanLdIlCv1zzPtzOo18d1epXYdNhSHB6ZzocXfP2HcqgkpERKuExrt+Jx0uhVg6nXysinivRq6yiB/0SoIChIRDVhevo/lzXJ4vjWL75HBKyGmVaOA5tvgCnrz6Dg8YOQ4bnF3/F+NFvcy0YO/bGyKx8O6NHKtboW3eD+/K9uJIzN08uMvE08TFSYQYLU1UN9CVibl8XEpzboVNTS64LrU8qwdTCjGuoj5H4VJtOmAgVmk6Cf6qyRqRt+Q9rulkUMbhRAVaugzA+e3u6FAQt34XAhKxreo6wQ/tw0GkI+jlomqBfIfdxOpS7uUq556F8dVjYKrRYei8hx0yLTCQEbMJq0XjM7mr5bhiVlLu4ejaWO7BCB4dGQh6ogniOm0FBitkUcEK/j63U3wsh2XVqbKKWuXeqoKn7n3guU6a3WpbIlehmVsQBC2/fRvXLZ98eZ+lHTvtWRTv7VmQ95wZOibFPAcvaMNU016AGej7LtU4RbIMIlUxrwxJPEZvIdSyF2tKBwqZNyBa27myaYXyZEri2fqWwbV0uPA3aepZPS9XWp5UQMmNwdNVP2MCGwPuvlRhhq0WHNP0mdoxtjTKi1hi746ZmQR1hBovueI3YswewI6o8Wnz8IcxVCUueX7S+sOtqjvycRi3Q96tuEKccwe48T/xZynWcfN0BnVTuNKt7n62xfgu2jLdV6nx24W1ZARiibRXJj+5DqjK/qG3R2o8W0lYVgpSrFuikLJhtZAPnXh/izjYvbDhTxIfjekJk2R0L1k+GzYUAnL+TZyY7Z0liTpzHE6c2wutShtymrsAGDNXepnKjscgdk2ErMobt2F1aBnzv46r5J+iSb/a/CEaN26FXsyhsW7IdZ9QGwA3pzyzQpo01aqo0Ah+ip5ON6jx30lS8EPLQFY7GaGNbQ7WNTEpFWpFWo+mACi3g7h+j3DZpVVIRuaYHzPTmEJRhhAbdvsCsWbO4shCrdvtgacsofO/gghEepwqe7VpkBP1Sec161i+1OWalnHq95LxFyUB9H5fQEWVh2n4gZji97S6l7NwD/3t8x5DruAX+geW3e8Dd7UMtnlCXQdWPv4L39o1YNOBD7rUTpq/xwY7t27FdXnZg76lbSD0xGdUOuKPj4NU4q9QByJD+IlUIBmrCB6hf20hNBzMTif5zOUfGJ/QUivWn6M13iOWvG6CfTyT3VzWgyIa++BGZfowR07sLrzhSDsLb/x74FKgs4Rw2L7+Pse490FjjZZoKuW/JI3cfZXI/OFmHcucoUxW1GghBgMh4JAtLEVjyGfz8YzpmznNFdmy0SDCkBa/GJ8Y5dChfqYwPx++DZFVnVFN6Pqu0xLj997XsDDO8CA/CfvnUstbo7qDhgCrtFgJ8g+WHJmOHwa2xZkvMpUkvUEonHQmosm98aIC3b7uy7ZvmGxco0fOft2tv37ITp2txgzXQc0udeM40JL14peEve4Zgz56oqlTHhVK2McafuIBVnc1QRtn5rGL9NfbHFv6Ju9ymzej+tk0INo231EWxaYb3ZTxZbZ0/1r6t87IzGTtc47aulU9L+w+enwiJs1WUsh+OxwnJT+hcrazS84piDOtxfrmXTWkFNzjdvRwzjjbD5v2rMDZrt0cNyQz/Gz9su8bdq2vY9sPfCNeo92uM+s0aCzNZoxH5UDup8jDpXVyNeqZoXywRYaf/465EMStAZWgna1YBQvH3f/fxNnRnBFuXnugsvovDvjl35OX6OxfOA73aqBlk5bBln/ObBhWs32eyA/A50bHPXqJLn60Mw7at0uVHC2OrtIDT4yo1hCFufWvUq6lsZCEEfUSXsf3AFQ1mFSl8kLFSGyMU3gf5/yv3QUrPZxXOB/nFqAqM58QIDQctx4HNH+DgL8cRIwQPWHoCbh7ZjoNV+2LCxzXldWjeCB+IC3LMSTj3XQflv0mLYux+BPzex4VHYVNnHm0K7788tLapyIzAoR9/QxT3PVHbNuNQ+AvhhGpElaqghtygilG/SV3lAZKsHZuj/saBS4/lPl0t78AYjShhiKqiYa/xmDGyHPbOcYPL7KOIK+6ALCGHAoaGwqgF+k/u9XaHOOlRbNgfhjTZPfhvOYLaXwzIP+VVE17dx1X/CM4HOKKtXd4ZHWUhbtgFgwbZ48UpTyzwuy0PVBUNU1Q3VvcktRzMuq1EJP+0QvYMd3Z+CYu7Z3H0dFmM8r6OVO56/xpl+x4pXjW06j8UfbMfHt7HgQ2HcO1FOu7578HO2p9jRMdCzFbKI/fcnxfkPtAeUp3JnacqLKzNFYf3YxCXzH0rNxA7v3YdYtwn4zO1u19rgwhGDl/haFQc4uJUlfsIWtsXFlP9cEfp+awSAC+3elre35d4EB4Cfl4ErFqiab2C99bll+0nX/wbO2/wQ4CumDmxox4HYiUQwb5lqzln3zZm2Tdv3di3Nmrsm371nBu860XPtaEaHL7+A5FKdVwoj85jrasTpvqF45Gy81nl4gq4qZwNpQm8TRuGvtnOTLBpabxN26szm5YbffgyHr6thxaprc/6Qk9t3cgRXx8NUS5DoTwKWgtXi+nwu/NI6XlFicJFrz6wKtRvfAVJwC/4escH2HBmHcY1q661XMs17YnvxrTiPtcKY77riaYaTcSqAKuPOqGz3KBE4/yNh9AuxM3n5zuJbVeThYDh2yWampGiWOKaPU4RobxNJwz9rBFeBBxDYKQw24nF4tQhMdw+0iCfo4b6zduyhX639O+zJ7nr2ZaV4Lb1riMyhplVdcWxBrPrU6ITNJidqfBBUUptjFB4H9S1ndwHKT2fVTgf1KeuZvks+eXTTQb/hD2LrHH3+F5s8VqNdX9cQJLtQEx2sUCmVNEWLVrWVz1zOBtTOH3jjeDg4CKUa7iy1BVmwjdqz1ubuv40Z1O1DRbylPsQbosnwYbrcdmMmQC3pgUH1UXVzWBlzB8Zw9LCBOpbfhKiE0rb6gfinUFkgbY9nWEikuL2Lz/B62wi6WIJgAKGBqMiGnQbjBEmWa4hBUE/++LYcT9sOPAhJg/9CKaF6BjJHoThn1Cuc9WuJWxrqFsonIK79xKQ/zlUGVSqYvx2oK+U8jCtXUc4luJFuoZdWVFFlJE9VyzRFLdDzy62BSQwzoPYGFWyk8yWXso0cMF4PgFSFkG7sOvYUfhtOIMWkwfAuRA5/wwj97xURC2rBsLxAzxMSMPzS1sxL9QN3w+x0W3+JlElVDe3gIWFqsJ1gsXcX6xYHWZKz2eVGhBrmrsuCxaHK8ev8mNOiHs6wk6TZbQZETjgtRO3YYI2i7/F5I/ULGHIg7hGlbfJbkstWfZNeMnbtzV7BPtmpyP7pi7SoELPs2daaPPHDaXnRqhRpaLGv0xUqTrMleq4UMw5XReJuCZRS/n5rFJTrHqGlYbwNm1cHpu2szTaNL6t+3NtnaNwbX0+19ZNNdcurXwadz0FyNLcVMz9bc5WmpkrPa8o5qgpLozE30AaugUzd1nCY89cdLbQcICfl0pNMHLrVcjYVWwd2aSAgWoWfIDOFRNGOnDHKQj7+xKiXmszZHiDp7FPYFHPRNHJzTnjSiNM0KCOaW67LLKCy+gBsHnhj18PhCGND0pGncVJ2w5oroHe8Pp9UlP9vq9jny3/eblt2XeDbXXrs/Ni4LZVuvxoYWSpDVVh3cpe8f3SF3hZ0AyduMdI1mB6ZvH5IO5+WbRAp96DMW7KTEwZ1xftbU1Rjt/c5Ra/uUsz9HH+EPJ4mFpEKFfTBg4ODkUoXPutWUhbmNemWhb2e8SwHbkBkfwS0q3DYauJ4hs3QOuOfK7pdEil6QUsc0xFnCSl4PQR78gYjTA0DJnSh7gZdhdPlM5QLYvqVo3QWG79w3A06G7uPH5EsUAt3YCIarXH+Pk5lqdKfsbnvebj+pAR6NuiMF0HrlN87yYuc0dWH9ko3zSDxePmeX67ufr4qJmVkg5KOW6wUZtztImQJKtyDxVR75Nuwiy5m7gamVLwVHUe9hjXTv2nOG73CVp9oOmslnQkSxI5Z1QbZtW16VYwvA7/Dd3ULmXVtLTFdH+Jbp5qiCzhMmEMnISXwDX8MvBzzLnuiil9m2ixTDMLDeX+r2Zyj1cp97yUg6llXVjJjxPx6MF5bPvuOkYuGwRbg+58q2dSY3DjPz5PlSabGfCk4a6vJ2YdvA+x62Ksn+kMU00sa3oKJHGpMLYyQ3Wtbt8LhG/8HFXLKNNbLYvtXPirzVWjObx9m/CtEvs2dGTx2besmRYaDogU5NbzOJ3rOUN68mPEoTqszIw1HhCXKHibNn50bpv2OW/TuujXphXZl+WBa+vhXFvXbOMSntxt/dcZ7ZH9DFAtgk8z1tanFRfcwDZ8F+b8VgULvEbnSo7Pw2L2Ycq6EC1n/WmJ6AN0mzUbY23EkJ7YgR3ntZhlkBGJIweromsLYSafqDZadfmI05kCBsJZOU+5oUr7ZpZ5AmrlULNNV/SzE+HGzr9xMfk5Ik/dg5NbUxQ8vydLv5lm+t1UR/qtxmd/WEHPlsdQbatIfnSg+iW2mhat/WhhZKkN5WFuZ48W/KEGG1OImzeEZeVS6IlexiD0/H3Apif6fFS7hPtSzWyqJgu1C4XIDHYf8ykRUnAvrqANgmqjubU5VM8JLm3+7B3ndRg2dqur3DZpVYxhO/2Y/jc9SbuG9f3boal9S7T7ch+i8+20LUK5ylUEHyhF0vOSk8fvfUaTYS2hM6qihdvn6JOrJ9gKE0Z9WsjlQs8QfiGIM/926Nm2kZJOq+IJuF9ALKq4TsGCPg2VCFyESjUs0IDrSD9Py1TZIS/ToDtmzOjEHV3Ddt+ziM3XwPPDJME4ejCKOzJBu16tUV9jbctE2vNUoIEFamj1yFiECk1GY4/apayalmNY0tlcRx0QEYxa9MCEPsJ2hQIWEwbBtVBLAzm5/3uhQLnv5+Qudp2qkdw1g/+MOerJjyOwd8ZcHHX9CsOa5B/alF4YXkVdhb98WmwzuNoXtIkLv7zkZ0z8cisyOi3Bge2T4VhVw9lVmS+RmlReMZNFqNKMKmgyZjMiHynTWy3LhUXoXNRNT7Lh7dvA/PZtdBHsW049z/cdb+2baj2vhBp1zLVMTJ1Hz2fO4/T8ax3qOUNmWiqSYI46BtsJTteosmkDC2/TDOTL3pLV1vl3Fq6tt6mm6UzKwvq04oDTT8kprNtZFl+tGo6m4rzXyPAyLgbptarpd4YaJ8/yDfti2Ya5cDG+gF+XbsfFFE1WN/B5Uw/gZp++aJ29iVxlNHDujM5iKe4H30G8qq9JjUX4tceAnQu6tqyRTx9Epg7oO9wRuO2Pw4F/48CVJko2D1CGYMtYwfrN27Jv+zQqUL81I8uW8fchy2fr0papwoBti/OjzwvtR39Xv8RW06K1Hy2MLLWB7wt3xnjePkvu4H68stC+FA8jojlROWDksHaF9NF6JuMuDs/oDtve3+HIvbybnmQtX68JtxnD8Wkt/VqjolESbCqn7937y/tnKnedlsYh4jrX+bVxw7AOH6hps6XJn70HVGiGMXuCldsmrUoULixx1fumJ7KHITj6D/8wSYqoy9FIyLfJcNZDdd5/CLP9FSeIYkS9Dyd0DL/MpgtGDeSf8gg4Dcfw9oUMTL2JQ/ip29xBc7S1NVXUZfMG0ujjWDV7BW64rMSBbV+qCGRwv8miAVqYxCHk/hPVMwdFZnCe+RM8XK2Qsm0FvvcJg1TNiIxJw7B1wVJsTebfZIfOrepqPutE9gT3Q+JQvUV9WGg7o6fApayalkIsZVVHeRt0H9WDM31ZdMeMER8XapmmpnK/3mkFDqoMYGko9zyUNamFhvIjbuBlOhgLxrVBVT07F8PyCg9C/0Mof2jhiNY2agZW7Blu7lmE4f1W4mH/X3Fi12ytlu3J4u8jRGKJFg3NtO4kFrg0SNOig+Wpb1Fu30a0L+ST/zx6nvs7BD2fs1Ju31TreSVYNLSGSbyqQZNycuv5ICwc76hDPX+N+Pt3IDGxRkOLUtwNUmLTpg/Xr03TiS/LRvu2Pqxv4dp6lk8zadFAe59mYFjiGSybeQx1BnwC09QESCSS3CU2HIF/h6NePZPCtWutqAiLzrOx88BKuMT8hNEztiBY5S7CPK+QGOyDNdfaYW4vqxy/j9MN20FYtX4SLE764a+rSfKhSG7SEXNyP3wftsd3v32FTkqX1VdD676D0VV8GZvnrcPD7h9rFmjRQr95W6Y8WKYbn62dLeMGbpG7MNbWGCJbd+yIlAr1BWG4tqXwo3VKmR8tnCy1ovyH6Df3S3TidPVgYGS+GWUsORQnDkXDesw0TOvygQHasvbwkw58N59A1NFd+OO/x7nbbHo49q7djTdjV2DN+OZqZsMVP3KbOkszm6q/QTnfP3PD3Pm9YHzhHwTeytuW3yA5+BQOSVphzKIJ6KIu53Qp8mfvBwWnL9GsFDZ9iXaUqe+Ifl1boePgGfD6dRQcsx/sZfEct86fxQ2+wduMwsy+doVYtULoGgoYGhqRFbp/MQqK7E/10XeyG1ppkttFCSzmGvzP81vQPcSZnV7w9PQUylLMHT0AQ34IQs0v9iHIj+uAqcmVITJrio7djXD58h08UdNzEVX9CDP3H4GPexX4TegBl3Gr4Bt4E0+yZ+4wZD65iUDfVRjXdR6ud/8NYX9OhY1FR3S0FxIwawB7cof7LUbo/mlTA2/vrk/Kw7L7SMxspug4i/sORf9WeROfawYv9+Mayt1FTcc7S+7BwZzc84+elGNWj9+MjqMTFq+eVKhcZSUZJg2H/0F+YSRHhxawMc5rInkdj8C5/esw/bOP0XRCCFqs8ccZ78lw0irHVyaeRIbhsrgtOrbQIGF+aUGZfcvXGdAMjfR84t4C9LwczFo4obv4Fi5HKgsSqCCnnntyem6iQz1nSYi8fAvi7k5oobPZncVBXps2jLNpmtv5nBjal/Fkt3VeKTrYa9TW7deeKERb574py6d1LNk+Tf6gb84MfL/7Z4xu0wCWlpb5S93m+GyJFBamhgp2V4SFy0zs+udPTK/og669voSnXxAin6TnaM+ZkMZcxn5OX36NaIEZsz5Vcp/FsB2xEn+tr4u/FqzDkchk7lMCLA2Siz74bkUcxhzchIUdVD3EFaGCbXsM7lwf0vKdMVDDzX2ybBnTkc+W67cWPrtZTp+tlS17gfBD3tgWJQWifsPU9f8iWTijDsO1Ld6PXi+VfrRQsuRg0hTEp/LhvxdISHz2VofzURYmH3+Bdes/g+TbefjJ/z5eCn+HSaNw9Jc1OGi/GL8vG6hZDrxiQGTRGm4DO8FtsSe+71VXkK8M6ZJL2DH/W+xtuAwHvD5HwxIctMqyqT/8UQJsqqgmPp6yHL+OjMO336yBf8wLwYbyDy2O4ZelAbD3+BnLhzZWO6PLMP4sEy/lG9qoyLnIXiHtOf/w6BWep73K4QsEMhWf41MdSF8qaSVZ59PTkKYsj14Bn2fc557zp1V9/n2E86PJ8c/kh+kJT/BU1aqeCs0xYZsnejewQh2jN0jP+T72AjH+Xpj9w3FUafMNfP76Af30sjlXceoX5/9evoA8ZK80xyxn49LS5A950p9z/6u4jYZGxDiEY8JQZERhz6TBmHB/KE74zYBToQajb5DsPxc2PVbj9Wg/RG7pX4Td5NK4z0+Ew5pmOHFxHpwKCmAyKWIuncDBAwex/8/9OH0360mVBRzcBqBfnx7o/Vln2JtxHT/2DFHXnsCiVSMNNzxhSLu4Ah+53sD04E0Y92HB2YFKD2mI3jML3SfEYIz/VsxvV5gOrkLu1t1XI2OMbuTuyMv90jx8rElgh93DnuHd8L25F86s7o5ahf7bRSWd++2j0DHCHbdXuqCqUFsoZFHY8Xk3jPrrnlBREDboOKofenXpgQH92qNBvuUlmvAUF5f1Q9fLIxG8b+y7lQNSsG8TOfvmX0T7phM9z7iJLYP6YI2jDy4tcIJGWx/k0PPTnt1RW5eP1tKCsOyjkbg8/RD2jWuiuyVIstvY0mM8IuYexAqXmgYaPOewaSe2Yb5TYf6uAX0Z39YHdMWoA/eFioLQRVvP4dOu/I5xttpsvqEeWeQW9Oh4B3NvL4VL1aIqqcImOS08LbxWg8V8BOjkb2oJS8eTW5dxNugczp4PwZ1EoEaNykAZU9i2d0X3Hh3R2sKoAB3MwNPIIPgfP47T0eXQ8IMKeHI3GVXbdNH485IjCzE57DNsnc/v5ChUqySnLfuT088BOtHv/7d3t0FRXXcYwJ/1rcXARAOaLAx0gCgyYG2ZNFGTMunaALVYG5tNBmRcJ9BGps2aTqYIMXE6DVjRZFoXP1AaOg1IBJPUdMZpNbrgVBsTC7SgA6GtWjS8WEGECkiBPb2X3UWIaHH3cu++PL9PehjEPf9zz7P3cPecY/eS2Rkp+OmDe13IbPkJw3eQnboFvx1+ENHBZrz/iRkrproMNLm25DG7AU/9JQN1Xpej062lNH9I88aLlj/fZXFQEmpE/s7UKZ54HcLVhiOoPPABjp7rt18vAWF4JOV7eCblq9AreWiFnEFrs9CS8wEKpQxSgrhxHid+dxC/r/kUPdJ9t21wCHOiHsd64wakJIR5+EE3HjqnjvwbDYercOCQFecGgxAcMAcB+gSkTKtPFcyzvmrkxhZjaU2Z9O84F4V6UVe8A5bqT3FpIAQRwXNg676MtvlhiDS8hKIXQlD9ys9QdfbiWFu4NJwHL7dhICwSy5/bgQJDF0pe/CWqL8pt4QieNYLuS12YHxEDg/l1bIn9J4rlr1/pk8JjAQLQj8uXhhEW9W28ZJGuR129/et3+P4XFp/EK68dwNlWuU3e59Hx/REJeC4/D6kubcniIPXHtmXFiDkxsT883ECd1F8WnL7r5BQF4xR9I262od56DDV/+gRnO+XFOxsGu/sw6+EEPJmYgrVJjyDCpVyQ2aTufBXLCh/GiT8+j6Xjl5U8vl6TxleLS+NrpzS+fuXq+CrKQmzzW9Jc/iEujo2ZBZhlu45LbXMREZkEs8WExTW78GpVvb0t/D7ph3fa/5/L0+4wv0+XvT9ipf6omdQf90BeMCRv1Ctq9zwldNCLpNJmMepodZWttVKkBT4p8j+65mjRynXpdaWIwLRK8S93X5RPkuueJKR3F4rVPT1IqvvpHkeLtxgULaVGoc+xSj3ihfrPiD2rlom0yvPC5miiiezzmzLjfEi0VmaKwPid4nS/1r1tE/21b4hVgc+LytYhR5tCRptFadJqkWO96mVjylezzEnOtG+NZVqrwoUZbSkVSfo8Ye1lWHquCXPZW03KjW+1M3u4VuxJ3Cv+NuL4uyeQc3R1rJSjF7wyRzWr5UyRMyj58bEMIl916x7N7TzrtYptoUZR2jLoaPBzUn/k6NkfyhiVujNP6JNKRQvfHkns/RHqRn+o/OthUoytHQ3Hzkl/eBRPr4xw+7PluvBEmLKGUFXdjM9vLayqgSYcebsXWaZEhHN03k6u+3Fl674p87+otGpc93s2G0GLI/FY2AIF9+BTi8BA43G83fUdbPrGxH22aJyi89s8hBueQdbQMVgb7R+X0E4vGo/8AV1ZRhjc+U30VHT3YfGSZQgLnuddY8pXs8xJzrQyR6YpXBhd0CIseSwMwUrut0vKmjC+v6vg+JYzu9/RpgZxuQkfr4xHpKsPfCjOnqNlXetgMnhnjmpVyxkzlkExYxlEPmriPRpjh8hvcEnGS4krTTj5UQdE+FcQ9yUFtvvVPQRDdhaiK95DdcdtRxapZBgd1e9if3QWsg0PcXBOQa77KanuULTumYje/66GdXfFXOhTC3HInDC9j5h6EvEZqsuOIDrXBINHn+ynHef8ptQ41y1KRHZuKPaXncTYwZ0aER0nUV6hR252ovJ7/+jCkbqvFOYVbn1AX3W+mWVO9kyriMocyzTFS65fh32HfogVLu4TSjNP6blsfHxLmV3TPv2DnNwzgH/U1GFJcjyCHC2ac+Ro1LZNMHjrXrCa1HIGyRlU5H0ZRNM1+R6NqUPkP7gm45Vs+E9zLY7eABZuWIk4Fw9Nmcx+imC+uQtFFfXo0+CmWvTVo6LoKrYWPOtbe7opxll3IdV9laJ1L9h6VbO6+5dR9NW9j6L2jShIj+XJX1OaOL8pNc7nY2l6Dra2V6Ci7ho0GebiGuoqKtBm/gnSFdzHzrv5ZpY5OTPNnG9kpvmlz89lSrzlvpXZ+975qwrjW2D4wmFY6lfj+1/3lINFbuVofpqC+8CqTu1aErluLM/28R6NyB9xwdCr9KOpPAcm07NY/4MidEgtPYcLscX0I1g+ns7Zdf9PIOI25yKjqRglat9UyzfTJcVoysjD5jj7qZvkNLnu7VJheg7vUrjuedrU3c+IvlqUFJxHxu50xHn2bt0amGp+U3Ccf3E5Nu9eh6aCctT1jToa1SLf4JajoGkdCk1fvusJhP7Bh7PMaUKmmeI95rksUsXUc1n2ZmUze2OzCuP7xhnszb+Ap7ev95jTaCfmaHyAt+eoirUkcpUzzzbyHo3IH/GUZLqN6DmFXS+fwqMFP8Ya/RccrTNpCB3WX2D7mSfwZu50Th2kmaB+3f3MyGew5u/GmeQdyHXpNFly3yh6Tlvw8tF45G//JkJVuQEWGOk4Lv28c0h+0+ziqdHkCu3mNGYazTy/zGwfzVG+/yLPdSvP3pDy7AGlLropT0n2Y954SrLHutMpyf7K/VOS+YQh3Ua38AnkWtais+QgGgZmej1ZYKDhIEo618LCGytNqVt3f9OHhrIqdBpf52KhpmZj4SozLMZu/Lq8UZ1DMQYaUVbSDaOFi4Vq02ZOY6aROvwvs303R/n+izzT5DxTbLFw3HvIjAmATqeDLvk3+LvN0ew3ulCd+zX7679/DXbLj6OTcj7MRMxsqW91oUgubYbfDS95ETpUfv2zcf+an6PdjWfY+YQhEREREREREc08cRPXr/Rg0LkKMTcIi0IC4aVHGLnIhpvXu9Az6NwmZx6CFj2AwDn8TaO7xM3ruNIz6Fgi00nDKwQhgf41upS8xrhgSEREREREREREROP4kWQiIiIiIiIiIiIaxwVDIiIiIiIiIiIiGscFQyIiIiIiIiIiIhrHBUMiIiIiIiIiIiJyAP4HLINolLl4N/gAAAAASUVORK5CYII=
iVBORw0KGgoAAAANSUhEUgAABRQAAAH/CAYAAAAmKlG6AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAPY5SURBVHhe7N0JnE31/8fx92QpmtRICxmJDKLsoshSoZI1aR3KVPRDqSxFJEsyfsnyK4VC/dsYUcpStqhkyRKyRDKiyJLGluX853Pm3HFnzDDGMPfOvJ6PxzzO95x7Z7137r3nfT/f7yfEiScAAAAAAAAASIPzvC0AAAAAAAAAnBKBIgAAAAAAAIA0I1AEAAAAAAAAkGYEigAAAAAAAADSjEARAAAAAAAAQJoRKAIAAAAAAABIMwJFAAAAAAAAAGlGoAgAAAAAAAAgzQgUAQAAAAAAAKQZgSIAAAAAAACANCNQBAAAAAAAAJBmBIoAAAAAAAAA0oxAEQAAAAAAAECaESgCAAAAAAAASDMCRQAAAAAAAABpRqAIAAAAAAAAIM0IFAEAAAAAAACkGYEiAAAAAAAAgDQjUAQAAAAAAACQZgSKAAAAAAAAANKMQBEAAAAAAABAmhEoAgAAAAAAAEgzAkUAAAAAAAAAaUagCAAAAAAAACDNCBQBAAAAAAAApBmBIgAAAAAAAIA0I1AEAAAAAAAAkGYEigAAAAAAAADSjEARAAAAAAAAQJoRKAIAAAAAAABIMwJFAAAAAAAAAGlGoAgAAAAAAAAgzQgUAQAAAAAAAKQZgSIAAAAAAACANCNQBAAAyK6O7FXs6uVaHbtXR7xDJ+XEacumnWm7LgAAALIsAkUAAIBsx9GRbTPVv/mNKlKmvMoUqa02IxZrj+NdnCJH+1e8q6hnv9TmY94hAAAAZEsEigAAANnN4Z81rl2Uuv9cXUO+nKYPu16hT9t11MsztirVTDH+cz7qNVO3PHenruEVJAAAQLbGy0EAAICAcETbJrbVeeeFKCQktY+2mrgtpQnHx3QwdoE+HvSM7qsToZCLKqvh47301vTV2n0keUR4THsXjFf05Av0yICX1OGO+rqvT7QG1vtNg1+bpvUpVh8e1OaJwzS0VAc9ceOlCvGOAgAAIHsKceJ5YwAAAGQaCxTb66p7vtadHR9R7cLne8f9XaU6Ufeq0iU5vH1zVHGr3leHpu01ZltptWjXSFUvO6Rfpn6st2bHqUq7ofpoSHMVy+WLAf/Wgn53q3qPKzV67Tg9GnFB/LF9Wj60hco/daU+2vyWWobnSriqx9k+Tc82/Up1JwxQw4JJLwMAAED2Q6AIAAAQEHyB4loNXPS5nqsU6h0/OWf3XL1Uv6le3nOPRk0cqEfLXpJQQXjkD33/envV77xEdUd/ofGPXqeEKDBWE1vXVfOxtypm63A1K5jTrhz/vTuoUPM1il6c7Hs7OzTvpcf05rUDNfbhCO9rAAAAIDtjyjMAAEDQOqRfp4zSa4uu0CMDeugRX5hocl6p6k92Vc+b9mpy9Hgt2Ouby5xDufOkFgteoNw5/Sc0WyOWj9R3+Z3q3qIEYSIAAABcBIoAAADB6tivmvP+TMWF1VezGoVOfGGXt6TqNK0srflcUxbv8g5eomLlSsZvf9OW7YcSDmmvflm+Qgoro5LhNgXa4zZima5qzzbVdRewciIAAAASECgCAAAEqz2/acWibVKZUip2qU1dTu5CFSlVSqHaqO/W/aGj7rE8KlqlhqpruSbNXaeD8UecXUv1xfifFNbkJl0f5luf0RqxDNfQYu31nxqX0YgFAAAAiQgUAQAAAsoxHdy6RBMHPa3GlQsp5Nq6atXtf5qyaqeS93d29u3RH7vjB8UuV2IOmEQOhRUM1xXard+27nbDQylEeSveqxfaFdLspx5RZNee6hTZXq/+XF3PPV5bBb3k0Nk+R68PcPT807V1OWkiAAAA/BAoAgAABJRv9GKj2mo+4mcVvLOjBt4frp//1153V3tYfWZuSRIqHt0eq8Xe+FRif9uhvd5YIYXV4MVBim4pjR/YR0O+yKPWowaq4435EyoRnV36YdQIbezQXs2K+E2BBgAAAOIRKAIAAASY0Dova9qsiXrz5W7q3Ocdzfp+pFrmmqqX2/VXzMb93rXORIhyFqyt596frY3LlmrV5jka2aacQhPSRB1cPUED5t6ql1r6OkPHHz34u5Z8MVZDBw3TO18s144jjncJAAAAshsCRQAAgIAQolyXFFfkw500KPo/qlfkQm/dwhwKLXuPnn62trT+Iw2ZuEoZESm6cobpmnLldV14PiWuwHh4vcb3+1LletynGy705jofXK33292t2r1nacfB9Zr4VB3d/Pgn2niYUBEAACA7IlAEAAAICDlUoG5njRn7mp6o5E09TnSRIipXUph26/vJS7QpobuKzrsov4rb4NBhnapgMPzqy5TPG6fusLZNf0sjrmzrNmJJeKG4X+s+6KcnxxRRv5HD1KfHa3rnf48rx7svqe/nsSJSBAAAyH4IFAEAAAJeDuUrcKXy23DZam3clZAonlfgKpUOix/8sEG//5tStHdEO37boA0K09WFwnSq1RCdXd9oSI/96ujfiOXoRs16d6riKtRVrbIWSebU5TXuUovwNRr/+WL9QaIIAACQ7RAoAgAABJNcuZXL19H5kqt1Q5WC0qbVWr/1X++gv736ZfmK+G0x3RRxpVJsBO1jjVhGDNOajh2SNmLZtUnLlu2Wri+sy31f4MKiKl+nuOLmbdRWr1oSAAAA2QeBIgAAQED4V3/v2Z/KFOJ9Wrfoe22IH4U2qKLSYV6yd164qjWtHj/4VjGzN8R/haScXUv1xfifpFJ3q2Flt74xFccbsfS+r3RiIxbXkX91IM4bAwAAAPEIFAEAADKdo/3L39K9d3bVu99v0cEkqeIh7Vj8gaJfmyGFNlavZ25XeOICixeqdLPH1KnUX5o84HW9t3JPYiDpHNykGUP+qzd+vlSNnmqqKvlO8rLPGrH0n5rQiCVv0tUblb+QIorGb//Yo3+OJRzS0V3a8tOfUuXw41WLAAAAyDZCnHjeGAAAAJnlyO/65vWueqzzZB2t3UzNbyury84/pB0/zVLMuNnaULy5+r39urrULXy8I7PriHbMe11Rj/TWZ3+WVot2jVT1skP6ZerHemt2nKq0G6qPhjRXsVzJgsJEh7VtSje1mHW7Jv63wfG1ExPt1LyeTXTL8OsVs3KImhXKqcOr39ZdZXorZPQsTX20FO9QAwAAZDMEigAAAAHjsPasm6/Pxk9UzKcx+myJVKlRM911x+1q1Ph2VSyYN1n3Z5+jivt1niZ+EON9XqhqRzZXs6YtdV/DcrosZ2phok2Lnqnn605QhcmvqeXVebyj/hwdXDVSLas9q5+b9dOQNlfq+5eeU59tD2ja3L6qf3nSeBMAAABZH4EiAABAtrVfq0c8qhdy99Qnj16n3N7REx3StllD1PbxPvpsQ5xU4lGNGB+tx8vlTyXgBAAAQFZGoAgAAJBtHVXclt918MpwFThJFWMCR0fifte6dXt1UUSEwkOpTAQAAMiuCBQBAAAAAAAApBlraAMAAAAAAABIMwJFAAAAAAAAAGlGoAgAAAAAAAAgzQgUAQAAAAAAAKQZgSIAAAAAAACANCNQBAAAAAAAAJBmIU48bwwAAIAs5MCBA4qNjdWOHTv0559/6oorrtBll12mAgUKKH/+/N61AAAAgNNDoAgAAJCF7Nq1S3PmzNHUqVM1atQo7+iJGjdurGbNmqlhw4aEiwAAADgtBIoAAABZgFUjjh49Wh06dPCOpF3nzp3VrVs3gkUAAACkCYEiAABAkPv222/VqVMnLVq0yDtyvALxhhtuUN68eRUeHu5OfzYrV65MsYJx+vTpqlevnrcHAAAApIxAEQAAIIgNHz48SVWiVRs+8MADKl++vHckdevWrXNDxejoaO+I1K9fPzeczJMnj3cEAAAASIpAEQAAIAjZFOfBgwere/fu7n6VKlXUp08f1a9f390/HcuWLdMTTzyhhQsXuvtRUVEaOnQooSIAAABSdJ63BQAAQBDxDxNtevPEiRPTFSYaq2a0KdAWJBqrWuzYsaN43xkAAAApoUIRAAAgyNg0Z1/gl5HVhFb1aF/Xt7aifd30NHkBAABA1kagCAAAEESsAUuNGjXcsU1znjt3boZOTU4eKs6fP18333yzOwYAAAAMU54BAACCxK5du9yGKcbCRJvmnNHrHNrX69Wrl/v1jX0/+74AAACAD4EiAABAkBgwYIAWLVrkjq0BS+HChd1xRrOv27dvX4WEhLjfz74vAAAA4MOUZwAAgCBgnZgrVKjgjjt37qxXX33VDfzOpq5du2rgwIHueO3atYqIiHDHAAAAyN6oUAQAAAgCL730kjeSunXrdtbDRGOBoo9vTUUAAACAQBEAACDAWSOWyZMnu+OxY8cqf/787vhss+8zbNgwdxwdHa1169a5YwAAAGRvBIoAAAABzkJEY41SWrRo4Y7PlQceeMAbSRMmTPBGAAAAyM4IFAEAAAKYVQX6phtHRkZmeFfnU7EqxX79+rnj7t27a+fOne4YAAAA2ReBIgAAQACbMWOGN0paLXgu3Xnnnd5IWrx4sTcCAABAdkWgCAAAEMDGjRsnx3Hczs7nau3E5MqXL6/GjRu7Y6Y9AwAAgEARAAAgQC1btkyLFi1yx75AL7M0a9bM3dr06127drljAAAAZE8EigAAAAFq/vz53kiqWLGiN8oc1apV80ZMewYAAMjuCBQBAAAClE13Njbd+Vw3Y0kuIiLC7TJtCBQBAACyNwJFAACAALRly5bE6c633nqru81stWvXdreTJk1ytwAAAMieCBQBAAAC0OrVq72RdN1113mjzGXTnkNCQtygk3UUAQAAsi8CRQAAgAC0bt06byQVLlzYG2WusmXLeiNp8+bN3ggAAADZDYEiAABAAFq+fLm7tfUTA0V4eLg3kjZu3OiNAAAAkN0QKAIAAASgUaNGuVurCrRpxoHAGsP4GrOsWbPG3QIAACD7IVAEAAAIMP7TnYsXL+6NAoOvMcuePXvcLQAAALIfAkUAAIAAs3//fm8kXXbZZd4oMFx88cXuds6cOe4WAAAA2Q+BIgAAQIDxX5/Qf93CQFCqVCl3a52eAQAAkD0RKAIAAASYuLg4b5SwbmGgOnDggDcCAABAdkKgCAAAEGBWrlzpbqOiotxtIClWrJg3kmJjY70RAAAAshMCRQAAgAAVFhbmjQJH3rx5vREAAACyKwJFAACAALN7925vBAAAAAQeAkUAAIAAM2rUKHdbpEgRdwsAAAAEEgJFAACAAFWoUCFvBAAAAAQOAkUAAAAAAAAAaUagCAAAAAAAACDNCBQBAAAAAAAApBmBIgAAAAAAAIA0I1AEAAAAAAAAkGYEigAAAEizHTt2eCMAAABkVwSKAAAASLM///zTG0kRERHeCAAAANkJgSIAAECA2rp1qzcCAAAAAgeBIgAAQICJiopyt5s3b3a3gYSQEwAAAASKAAAAASYsLMwbBZ7Y2Fh327lzZ3cLAACA7IdAEQAAAGm2e/dubwQAAIDsikARAAAgwFxyySXuNjo62t0GklGjRrnbsmXLulsAAABkPwSKAAAAAaZUqVLeKLDs2rXLG0mhoaHeCAAAANkNgSIAAEAA8w/xMttff/3ljahQBAAAyM4IFAEAAAKMf1jnH+Jltk2bNnkjKW/evN4IAAAA2Q2BIgAAQADbsWOHN8p8f/zxhzeSChcu7I0AAACQ3RAoAgAABJjw8HBvJP3555/e6Nz79ttvdeDAAW9PWrlypRzHUVRUlHcEAAAA2RGBIgAAQIDJkyePN5K2bt3qjc6tdevWqWbNmqpVq1ZiqOjrOn3NNde4WwAAAGRPBIoAAAABqHPnzu528+bNblXgueabar1o0SJNnTo1SXOYQO1CDQAAgHODQBEAACAAFSlSxN36qgLPtdKlS3sjacCAAW6w6ONrGrNs2TJ16dLF/QAAAED2EeJkxlveAAAAOKmJEyeqefPm7tg6PV966aXu+Fxq2rSpJk2a5I5tmvOvv/7qjtevX69PPvlE3bt3d/cNLykBAACyDyoUAQAAApCvCtBYoJgZqlSp4o2UGCaaEiVKJAkThw4d6o0AAACQHRAoAgAABKACBQp4o4TuypkhLWslDhs2TB06dPD2AAAAkB0QKAIAAASg/PnzJ1YIrlmzxt2ea8WKFfNGKbMwsX379t4eAAAAsgsCRQAAgABVu3Ztd+vfEOVc8q+STC4qKkpt2rTx9gAAAJCd0JQFAAAgQPk3Ztm/f7/y5Mnjjs+lkJAQb3ScVU7OnTs3U34eAAAAZD4qFAEAAAKU/5Tj2NhYb5T53n//fcJEAACAbIxAEQAAIEAVKVLEG2VeY5bkJkyYoIiICG8PAAAA2RGBIgAAQICyxiyNGzd2xwsWLHC3mcl+lmbNmnl7AAAAyK4IFAEAAAJY1apV3W10dLS7zUwDBw5McU1FAAAAZC8EigAAAAGscuXKiSHeunXr3O255KuQ7Ny5M1OdAQAA4KLLMwAAQADbsmWLu5aivWSbPn266tWr511ybtj3X716tWrWrEkjFgAAALgIFAEAAALcjTfeqIULF6pfv3564YUXvKMJdu3apb/++kubNm1SXFyctm7dqs2bN3uXps5CykKFCrnjsmXLKm/evCpcuLC7DwAAAJwMgSIAAECA69+/v7p37+6O58+frw0bNrhdn8/Guoo2tdkCxuLFi6t06dJuYxgAAADAH4EiAABAAFu2bJliYmI0Y8YMt0oxLaKiohQWFubtnWj37t0aNWqUt3dytobibbfdpho1aqh8+fLeUQAAAGRnBIoAAAABxtYtnDRpksaNG6dFixZ5R5OyoM86QJcqVUrFihVzpyynp2mKfa/9+/e7FY82XXr58uWpho1VqlRRZGQk4SIAAEA2R6AIAAAQAA4cOKB58+bpjTfe0OTJk72jx1mA2KxZM91www0qWbLkWW2QYj/L2rVrtWLFCvdnSilgtJ/HwsU77riDZi0AAADZDIEiAABAJrKmKlOmTNHw4cNPqEa0qcstWrRQ5cqVM3UtQ/sZFy9erPHjx6cYLg4dOlQPPvgg6y0CAABkEwSKAAAAmcCqAEePHq0OHTp4RxL4phU3adIkILsunywAHTZsmB544AGCRQAAgCyOQBEAAOAcsiBx6tSpGjBgQJJAzqYQW4flihUrBs0U4m+//dbtNJ18ivbYsWPdykqmQgMAAGRNBIoAAADniHVsfumll5IEcL4g8eabb/aOBJ9169a5U6EtXPSxSsvBgwcH9e8FAACAlBEoAgAAnGVWlWjhWvfu3b0jCYHba6+95nZMzipSqli0sLRbt25MgwYAAMhCCBQBAADOIqtKfPzxx5NMb87qU4InTpyYZEq3had9+/ZVvXr13H0AAAAENwJFAACAs2TcuHFq1aqVt5fQtblXr14B2Wwlo1nzFgsV/adBW6j4zDPPsLYiAABAkCNQBAAAyGAWpnXt2tVdV9BnwoQJat68ubeXfcyYMUM9evRIrFa0NSOtQ3R2CFUBAACyKgJFAACADLRlyxY3OFy4cKG7b9N933//fUVERLj72ZH9TXr37p0YsNrf5O2331b58uXdfQAAAAQXAkUAAIAMYk1J/JusWEMSC9KY4pvQmGb06NHq0KGDd0SaP38+XaABAACCEIEiAABABkgeJg4bNkzt27f39uBjDVv8p36PGTMmyTqTAAAACHwEigAAAGcoeZg4b968JPtIivAVAAAguJ3nbQEAAJAOycMxm8ZLmHhyNs157dq17lqKxqZBW6MWAAAABAcqFAEAANLJwsSaNWvK93KKNQFPT/IGNjExMWrWrJk7BgAAQOAiUAQAAEiHZcuWqUKFCt4eYWJ6WahoIeKiRYvcff6OAAAAgY9AEQAA4DQRgmWs5OHsmjVrVLJkSW8PAAAAgYY1FAEAAE7DgQMH3AYivjBxwoQJhIlnqHz58m4o6/Pwww+7oS0AAAACE4EiAADAaejVq5cmT57sjq07sa0BiDNnoezYsWPdsYW1vXv3dsNbAAAABB4CRQAAgDSaOHGioqOj3XFUVJTatGnjjpExIiMj1a9fP3c8atQojR492h0DAAAgsLCGIgAAQBrYFNwiRYq4HZ2rVKmiadOmKX/+/N6lyChWlfjAAw9o0qRJ7v7SpUvdKdEAAAAIHASKAAAAp2Ah1/3335841ZmQ6+yy8DY8PNwdW3g7d+5c5cmTx90HAABA5mPKMwAAwClMnTo1MUy0KbmEiWdX4cKFFRMT445tPcXBgwe7YwAAAAQGKhQBAABOgmq5zPPYY4+5aymaNWvWqGTJku4YAAAAmYsKRQAAgJMYOnSoN5LeeustwsRzyDpq+3Tt2tUbAQAAILMRKAIAAKRi2bJliV2dO3fuzFTnc8ymPo8dO9Yd25Rz67INAACAzMeUZwAAgFQ0adIkce3EnTt30tU5E1hDnFq1arlrKTLlHAAAIDBQoQgAAJCCb7/9NjFMHDZsGGFiJrHwsFu3bgoJCXFDRWuQAwAAgMxFoAgAAJCCQYMGuVurinvggQfcMTLHHXfc4d4OZsCAAW7VIgAAADIPgSIAAEAy/tWJkZGRVCdmMqtS9DVloUoRAAAg8xEoAgAAJGNhom+ZaaoTA4N/leK4cePcLQAAADIHgSIAAICfLVu2JHZ2Zu3EwOFbS9FY4GtVpAAAAMgcBIoAAAB+Jk2a5I2kevXqeSMEgtq1a3ujpFWkAAAAOLcIFAEAAPz4ptNGRUUpIiLCHSMwWLVov3793LFVke7atcsdAwAA4NwiUAQAAPDYNFpr+mHuueced4vAcuedd3ojafHixd4IAAAA5xKBIgAAgGfu3LneSKpZs6Y3ChSOjmxbpE9GDNagQYO8j7f0yeJtOuJd45xx/tC8QQ+r8kUhCgm5SNfW7aKP18V5F55d5cuXT2zOMmHCBHcLAACAcyvEYfEZAAAAV9WqVd0KRZtW+8ILL3hHA8VfmtW1gW4duMTb9xR8XjPX9FXdfOfwfeIdU9S22N16KzFDDFWFIfO1qGM55fCOnE3Dhw9Xhw4d3PHOnTtpnAMAAHCOUaEIAAAQb9myZYnTnStXruxuA8sB7fljjzf2s22X9uw75u2cI0f+1YEkBYlx2vvvEZ2rd6lr1KjhjaSff/7ZGwEAAOBcIVAEAACIt2LFCm8UqIFiDuXOk8sb+wnNrdw5Q7yd7KFkyZLeKOk0dQAAAJwbBIoAAADx5s2b524bN24coFNoL9eNDz6hlpUKevvxQquoZa97dGOBczHROHDkyZNHnTt3dseTJk1ytwAAADh3CBQBAEC2d+DAAY0aNcod33bbbe428OTUZTWf1keLt8qWwHY//lmoj567RZdlrwJFV7Vq1RQSEuJOU9+yZYt3FAAAAOcCgSIAAMj2YmNjvZFUoUIFb4RAVrZsWW8k/fbbb94IAAAA5wKBIgAAyPZWrlzpjaSrr77aGyGQhYeHeyNpw4YN3ggAAADnAoEiAADI9rZu3eqNpMKFC3ujdDqyS+vmfamJEycmfEyZq9V/HUq4zNmvbStm6eM3e+vpVg1V+aIQhVxbR/e27aZB7311/HoZwIlbpUmDuqltq1Zq1eoRte32hqZv3OddGs9+zm8+0dBubXVvnQh3+nDIRZXV8HH7Webo17ij3hUDk62jaOtdGv9AGAAAAGdfiGML8AAAAGRjXbt21cCBA91GH7ZNP0f7FwxQtZte0E9+r7AKdpmhH9ufr0n9uqvzW/MV5x0/QfHm6vvWYHW9NVw5vUP+nB3f6L8dnlPvjxe5XyO00kPqNThaz9a8UkmXUTyqXdO76toG/9Vu74gpHr1Ya56rKG37TqN6dzvpzxJap5+mfNRFtS5P4SfZNlGtCjXXOG/XJHztSin83Ie159cV+nFVrPb8eyzh0HmhuqriTapaJDTZz316fLdblSpVtHDhQu8oAAAAzjYqFAEAQLYXHR3tbi+55BJ3m35H9ffW35S8Xm7bV311/613qd3JwkSzIUY9mrTTwO//0onv+B7VXz9MSAwTTdyS99X7/xbrL2//OEeH9sUlCRMT7f5WAx964JQ/S9zsV9R2+Lfa6+2ni/O3Vr3zH1UtVlm33t1UzZs3T/ho2lxPfLJG/3pXS68bb7zR3VpjFgAAAJw7BIoAAACeUqVKeaMMtvQbzdl2g1oP/EBfL16rzVu3aOPKbzSh3wMq4V0lUdwXeqXXh1qxP3mk6OjIv/+eEALGHfhXR7zxKR3bpGl9uqjHwuvU9aMF2rjrgI45jo4diNU30fco1LtagjitGTVdi/d6VYWn68gWzXqljRq3Gan13qEEoSrRerj+r20Fne8dSa/Q0OM/8bp167wRAAAAzjYCRQAAkK35B1H+AVWGKhilUQu/0Dud79etlSIUXvAqXVOmppo//4Y+Hf3YCaFi3Fdva8SsrSlUKZ6ZXZ+8oh4jC2vIvA/0SssbdU3YBe6U45ALCqtGZCs9FJZwvUTblmrlrwe8ndNwZItm9nlCjbvHKGm7lHDV6TlRc0dGqkxoDu9Y+hUtWtQbAQAA4FwiUAQAAPCctYAqb0mVu/aSE9cLDLlYZR7uqGduL+gd8FmpyfPW6h9vL6PsXrJReXt11qPlw074WULyF1Tx/N5Oom3a+MdJJ2mfwIlboXcea6TbX/4yWTVlKTXq+47+78XbVDDnmaycmLIdO3Z4IwAAAJxtBIoAAACZKde1qntfDW/nuG0xP2p9mucyp9Vtimp0vS709k4tTrv3pXWlQ0dHdv+odzu0VpsxS5NVV1ZQ69Ef6/0XMjZMDA8P90bSn3/+6Y0AAABwthEoAgCAbC3zK9vO19XXldcJtZEbftFvOzI4USxaXtddfaYrF6bs33Ux6t28iRsmJhF6u57+aJyGPXKDLsrgwsQ8efJ4IwAAAJxLBIoAACBb869sK1CggDc6l0KU+4pwlfP2jvtD23efaR/kZHLkVq4cGT/d2MSOHKABs2O9PU/oHeo56R1Ftyyr0LPzbQEAAJAJCBQBAAA8+fOfsIjgORFywYW62Bsf97fiDqSzw3KgKFhU112TXzm9XQAAAGQNBIoAAAA4O9a/qai2b2vx3qPeAQAAAGQFBIoAAACeAwcOeCNklLivXtaT/b/StiNJ27QAAAAgeBEoAgAAeGJjk60BeI4c+2eP/vDGx12lK/Ln8sbBIFTFG/XXZzOGq2WYd8i1W4tefUHdY35RBq8ICQAAgExCoAgAALK1smXLeqPM4ujAn5v1s7eXKOxKXX5xsKw+GKoSrYdr8v910d23t9HAUU8pIkkTlqV6N6qzhizaGf/bAgAAINgRKAIAAGSqQ/p9/WqdUBtZ5Tpdc0kObyfQXaHqd9dVmVD7eS9QkaY9NKZvQ4UmXJggbrK6/GeoZu844h04c+vWrfNGUmhoku8GAACAs4hAEQAAwLNjxw5vdA7t/0mfjfra2/EJ0013VVTRYH2lFlJA1Tr21aCWJbwDnkWvqW3XGG08nPF1ikWLFvVGAAAAONsIFAEAQLYWHh7ujaQ///zTG2WwXb/ol60pNHxx/tbK94aq//e7vQOe0DvUpkGEcnu7wSgk9Aa1GThAbUv4Vw7Gaf273dRpxI+Ky4BMcf/+/d4IAAAA5xKBIgAAyNby5MnjjaStW7d6owy2+y091qKLRn+zQXvcbsfHdPCv1Zo5rJOatX1fSePEMFV55nE1LZHX2w9WIcpZpLH6j+2pOklmI2/SZx2fU7/Z2854PcWNGzd6o6TBMAAAAM4uAkUAAJDtRUVFudvNmze727MhbtFwRdW6VmG5zlNISA7luayMbnvqXa33LvcJa/mq3ulcQ2FJmpqYEOXMnTvpuoTxQvPk1omtW1K+rvLFX/eEr+sJyanc+ZJ/Ri7lyZ3COo45cyvPCV88JTkUVu1xDR30kJI0ftYcDWgbrS+2Hfb208c/APYPhgEAAHB2ESgCAIBsLywsIe6aM2eOu81wxXtq/NRX1aj4yVK4Urqr6yeaN/JRlXWbmySXQwVuvEe9WlZJDApDKz2kXg9WVgFv/7gTr6viDfR013oqmVqflxzF1aBrO9VJ/BkLqlLLJ/TgjZd7+34KVNaDvR5SJfeqdr32iqpZ0L3oBCEXq2ybVzQh2nf9BKH5jujQwWPeXvrExia0suncubO7BQAAwLkR4sTzxgAAANnSxIkT1bx5c3e8c+dO5c+f3x2fviPaNrG9rrrnLSV5hVU8Wot+fkZl/1qqaRNi9OX0GfrwiyWKUwnVbtlAt9SqoVo319RN1xfUBalVEOIE5513Xvzf2dGwYcPUvn177ygAAADONioUAQBAtlesWDFvdDanPZ+nCwpWUpMO/fX2lMX6x3HkOOs0+6Oh6t3uXtW9gTDxdGzZssUbSREREd4IAAAA5wKBIgAAyPaKFCnijaQVK1Z4IwSy1atXeyOpaNGi3ggAAADnAoEiAADIEvwr1k6XTXFu3LixO543b567RWBbvHixO93Z5M0b7B2xAQAAgguBIgAACHpdunRReHi4QkJC3PG4cePcdRHXrVvnfqQk+fHbbrvN3Y4aNUoHDhxwxwhckyZNcrd33nmne9tXrVpVw4cP17fffsvtBwAAcJYRKAIAgCwlOjparVq1cpuslCxZ0v2woDH5hx238NGnQoUK3khau3atN0IgsmrURYsWueN///3X3dp+hw4dVKNGDbdi8bHHHtOMGTPOqHIVAAAAKSNQBAAAQa9bt25up98qVap4R9Jm9+7d3kiqWLGiN5Lmz5/vjRCIZs2a5Y2k/v37KyYmRlFRUd6RBFZpWr9+fbd6sUmTJm7VKuEiAABAxiBQBAAAQc/WQGzfvr2mTZumfv36eUdPrnPnzurVq5e3J+XJkycxlLLwybc+3+nJqSurt1DfFlUU6h1R8Xpq16uBSufy9nHGbDq7sXUvLURu1qyZRo4cqf3797thcPJwefLkyW7VKuEiAABAxgiJf7GcnlfLAAAAAWXXrl2aM2eOGxZZgJQam9o8YMAA1atXzztynE2Rtao28+OPPyaZBo3AYEGgBYNmzJgxblCYGlsnc8GCBW4AmdJ9wgLJyMhI1a5d2w2lAQAAkDYEigAAIKhZEw4Li2ztxFOxCsSePXsmBlLJWSh56aWXuuO+ffuqe/fu7hiBwwJjX4i4efPmVG/L5CyItKnSqYWLVrFqAaNNfbdqVQAAAKSOQBEAAAQdC/6mTJnidvX1NefwsVDo8ssvd6fA+rNpsG3atDllWGSNWnzh5M6dO6lcCzDWzdluc7udP/30U7fBzuk6WbhoU6WtatGmRhcuXNg7CgAAAH8EigAAIGgsW7ZMH3zwQYrViEOHDlXNmjVVvnx5NwzyD4osTLQ1FtPCKh6tU7CxZh+2Ph8Cg/9tM3369BSnrZ8uu0/ZuovWITo5q2ht3bo1VYsAAADJECgCAICAZ0GShYjJq8msSu3JJ590g0Rf4OO/DqKxsOjmm2/29tLGVwVn1WoLFy70jiKzPfbYY273ZmMNWDIy5Dtw4IC7bqaty+j7Hj52P7BO4qy1CAAAkIBAEQAABCQLeKZOneo2UEk+rdnWN2zRooUiIiK8I8f5wkAzb968xIq202FTYe+55x6303N6AklkPGuwUrJkSXd8OhWn6WFToidNmuSu15j8vmffm+nQAAAguyNQBAAAASW1INGqxCxEatiw4UmrxHxr6p3JdGX7GawazaoTrQrSwiVkrq5du2rgwIHu+FytbWn3Awul33jjjROqY62Ji02JTinUBgAAyOoIFAEAQEA4WZBo003vuOOONE1xteqyvHnznnHgZFWKzZs3d8dUKWYuq04sVaqUWzF6tqsTU5Pa+p0EiwAAIDsiUAQAAJkqtSDRKgMtrMmsIM9+rlq1ark/k4Wac+fOpTFHJvFfOzGzO29buDlhwgR1797dO5KAYBEAAGQnBIoAACDTWAOVHj16BFSQ6M+/SpGOz5nDv7NzZlUnpmTXrl1uxWLy7tAEiwAAIDsgUAQAAOecTR/t3bt3krUJLUh87rnn0tVE5Wzxr1I0f/31ly699FJ3jLMveZXotGnTAq7Lsi9Y7Nixozsl28eCRZuqH2g/LwAAQEY4z9sCAACcdba+YZcuXVShQoXEMNGCIqv+s/1AChONTXEePHiwtye9+uqr3gjnwujRoxPDXGvKEojhnP1MVjVpYbNVUPrYWosWPg8fPtwNRgEAALISKhQBAMBZZ4HK+PHj1apVK+9IgrFjx6pFixYBvzahhaC+ZhzTp09XvXr13DHOHlursGTJku7Yqlc//fTTxA7egcx+blvv0b95i6+xEFPmAQBAVkGgCAAAzipbA++ZZ57RwoULvSNSv3791LZt26CZDmrTWhs0aBDQU2+zkuRTzdeuXRt0axJasGhVlcmn9VuVqy8oBQAACFZMeQYAAGeFhXBW2WfTmH1hogUqFg698MILQRXI2c/at29ft0LOQi4LinD22DRzX5hoVazB2ODEfmarqrSKVguhzeTJk1WqVCn179+fadAAACCoUaEIAAAyXPLuzVllyqcFiQMHDnTHFnRFRka6Y2Qcu+9YNai9RLVuyUOHDg34KfGnktKUf/ufsJCa6fMAACAYESgCAIAMY1WJAwYMSLJ+XFbqdpt8Ku78+fN18803u2OcOf91Ey1wmzhxogoXLuzuZwXWlMi6m9saiz50gwYAAMGIQBEAAGSIlKoSs2IFln/oZTZv3qzw8HBvD+llYZtVsGaHsDa7/K8AAICsizUUAQDAGbGqPVsTrn79+okBiVVdWeOSrBiQ2Np4Fnb5NG/e3A3DkH52H2rfvn3i/WfMmDFZuvLT/i/s/8P+T4z93vb/Y2uOsrYiAAAIBlQoAgCAdLNqvYceeihJpVWfPn3ccCSrGz58uDp06OCO7fem83P6WIDWsWPHxGnAw4YNc8PF7CKlasW3335b5cuXd/cBAAACUY6X4nljAACANLP17W655Rb9/vvv7r410LBGJddff727n9VVrVpVBQoUcINE+xvY+pG33367cuXK5V0Dp2Jh4lNPPZUYJtp9qHv37tnqb1i8eHG3ytXe4//uu++0detWvfXWW7rmmmsIFQEAQMAiUAQAAKfFQiALfSwI8rEg8cUXXwz6bryny0LF/fv369tvv9WPP/6oP//8UxUrVlS+fPm8ayA1ySsTs0pH5/Sw39nC6BtuuEGffPKJe2zSpEluUF2jRo0s8jc5orjYNVr5+yFdFHaRcp8X4h1PzVHFbdmivXnzKe8prwsAAM411lAEAABpZmsF3n///YldnG165tq1axUZGenuZ0f23qyFYcbCMWssEhsb6+4jZYSJKfPddxo3buzu29+nQYMGWrZsmbsftI5s0az+96l8kTKqVKa0KrYZpeV7jnoXpmL/cr0T1VtTN//rHQAAAIGEQBEAAKSJVeFZ4DF58mR330KgqVOnuk1KsjMLwSwM69evn7tva+HZFFZbXxInslC6Vq1ahImpKFy4sD788MMk96cKFSq4SwwEp/1aN66rGnffqJuHTNbXH3ZQ4U+f0X0vf6Xtqa7kHv85Hw3WJ7dEqfE153vHAABAICFQBAAApzRu3DjVrFkzsXGENc4YOXKkLr30Unc/u7Mw7IUXXnD/Lsb+TiVLlnQbbuA4Xyjtux9ZmDhkyBDCxGR896eYmBjvSEI3cQsZrbozwzh79evscerXsakqXxSikIsqq+HjL+mdWeu050hKaV+sJra6ViEh8ddN7aPVRG3zru3au1jvR3+mXI/00CsdGunW+7pr+MD6WjP4HU1Zf9C7kj9HRzZP0StDi+rlJ6ooH7OdAQAISHR5BgAAqbLwYvTo0YndjM38+fN18803e3tIzsLX1q1bu002jIWMbdq0yfahWUp/l+zUzTm9kndStxD21VdfPfOO4ke2aGafJ9Tk5aUq2eJ+Na16pbR9iT5982MtiQtVidbD9emwh1QmNIf3CcYCxTpq/nkpPdWttgqnVJpwRR1FPVxJl7g7jg4teEWlqg9XxOhZmvpoKbea4ejyoapSfrAiPpqtD1sWVZLM0Nmq6c8+qcl1h2l4w3CqHwAACFAEigAAIEXJ17mz9RJt2qVNycTJWSVep06dkoRAPXv2VHh4uLufnVj3665duybej8z06dNVr149bw+nkvxveOb/i4e1bUpX1X5gje4b/4aer1dUF7ip3jEd3PaDxr7wH7Ud85fq9PtAMc/XUFhi4ucFit+21aKfn1PlUzbjPqJtEzuoUPOvFBkzW2Obeff/bRPVqlBzfRu9WGueq6ScCUfjHdXuea+o4ZvXaNzYB1Q8F+WJAAAEKt70AwAAJ7B17pI3zbD1EgkT08YqOC3w8W+uUaRIkSBeBy99bMq3NRXxD8KsiQ9h4umxasTk63Ta1PF0N2v5d5XGv/KRznvyGT2VGCaa83RBwWpq07ubWofFavYr/6fZfxzxLkuPEOXMnVuh3l5SocqXO2fS6sT9y/Ve37V6uHtjwkQAAAIcgSIAAJntyF7Frl6u1bF7laZTdydOWzbtTNt108HCRFuvzT9MtDCD9RJPT/LmGsb+ro899liWb9hi96EuXbqofv36iVWanTt31pw5c7J9E5/0SmmdTmvWYksQnLZchVXlrnv15P03Kv8JuV2Ichapq4cfqyTFLdIPP+9R+qcz5VD+YqVVXn/qpy27lNDX2dG+X1ZotorrlpJXxl/DJ6ERy0fVotTyupQjSAAAEDgIFAEAyDSOjmybqf7Nb1SRMuVVpkhttXlrifac9Ozd0f4V76rNs19q8zHvUAayIMgqnxYuXOju+5qv0DQjfXwh0NKlS1W1alX3mAW11rBl+PDh7lTWrMSmydtaiTa1Ozo62j1mVYk2xXngwIHKmzevewzpZ+tO+oeI1izJptiflpACqv5MT91/7YXegeQu0MWXXRS/3aM/9pxZE5gcRSupcfVcWjrpG608GP/g5uzQD198rdiwm3TL9b51IH2NWK5Sr//c7DfFGgAABCoCRQAAMsvhnzWuXZS6/1xdQ76cpg+7XqGJbTvo5RlbU68Iiv+cj16apVqd79I1GfwsbtMn/Tvw0jQj45QvX96tzvOvVrRGNzYd2KZBZ2jn3kxgP7/9HrVq1VKrVq28owlVidOmTWOKcwazKfX+oWKNGjXcgPq0XJBfBS5M5UHE+VvbNvwVPyim66++OOm0ZFecti6bpEFPW3foi3RtnVbqNuwLrdp92LvcT97yevCF1iox+wW1iOysvp0e0+Ovrlb15x7WbQW9RRidbZr5+hjp+cd06+XHV1QEAAABzJqyAAAAn8PO1pi2lued5OMJJ2brYe/6fo7FOZu//9iJfvp+p3bxUCe0UiPnsRffdqat+iv+qyZ31Pn7m5ecUirlPBLzm3PMDv37k/Pm7QUd1RvtrD3qXimZA85vH7V1ynf92tnpfkLGmT9/fpLfccKECd4lyGhr1651oqKikvy9q1Sp4sTExDg7d+70rhUc9u/f7/7c9vP7/z6NGzd2fvzxR+9aOFvsvlS1atXEv/uwYcO8S87Msd9jnEfC5ITePtRZts//wWazExNZ3Pt+oU7xOo85Lw58xekReZMTGn8stM7LztdbD3rX9XN4izM3+kGnhPd5JVq/66z854h34RHn7+9fdW5uHP+4928GP7ABAICzhi7PAAAkcbwr6V1PPaLahc/3jvu7SnWi7lWlS46v/mUVPave7axmUSO1tWJLtWtaSZcdWq+pH3yo2X+WV7sx72pI82t1vCnq31rQr6Gq9yio0WvH6dGIC+KP7dPyofeo/FMF9dHmt9QyPGkLVWf7ND3b9CvVHf+KGhbK7R09czZd0iqcfKzyySqgcHbZ392mBU+ePNk7ksDWq7S1BwN5rUGbGj9p0iR3erOvotXY9OZu3bq5la44N3zLFGRYZfGRXzWxQws1f7+wome/o2cr5/erUPS6PI/7V3V6vqUxz9dXkQvOcx//Vr7dXrXaTdKlrUdp2lv3qtgJTVUOa8+vP2vDgfwqGXGVQnN6lx9coRH3DdC/L72pjuUvTjjm7Ne2H+do6rc/Ky60tGrdfavKXZbSYzEAAMg0bqwIAAA8vgrF2k704n+8Y6dyxNn1TR+nygmVN8ecw9vnOdGNr3EU+oAzeu0+77jxVfr4Vzva934i5e99bLvzTc/Gzv3j1jqHvEMZwSoTQ0JC7M1F98P2cW7Z39wq+ny3ge/DjgVS1aL9HNOnTz+hutI+fBWWVrGIcy82NjZJlejQoUO9S07T4Vjn6553OqGhdzg9v45NobJ6mzOz72NOZLuRzuI9vsc5z77vnL7XXxT//RvEP37t8Q6eyj7nl3FRzk095zg7E6uy/3HWjnvCKRF6kxPZo6fz1F2lHJVo53y0wf/xEwAAZDbWUAQA4Ewd26gpr43WorCH9UrfB1Qm1Fe5GKKcl92sJ1/8j6rHfabo9xdrr3eJdT/NnSdpBeJxFyi3r3rHZY1YPlLf5Xeqe4sSyqjaROs0bJWJ8a8H3H0qEzOH/c2t2s/+/rbmoI9VLlpXaOuubZ2hrRrwXHeHtuo3WxvRvr/9HFY56ev+bRo3buz+3NbEx6rkaN6TOayjuN1OViFqOnbseNprKjpx6zXl5cfV9MOrNGTBh3rp1sI6cTXDK1W3+9sa+0aUKl3sV6Ft8hZT5VuLxw9+0ORFsV5H55Nzts3Uf0cUUM//3Kz87lmJo8PrPlGXJz9T4X7DNaJPbw1+Z7A65XhP7fpO09aEhyoAABAACBQBADhDx36Zp/cnbVJYyztVo2DyuC9EecvWUrNy0ppR07R4r6818yUqVr5k/PY3bdl+KOGQ9uqXZSuksDIqGW5ToD3WiKXXdFV7tqmuu+DE9gjpYUHRQw895O0RJgYC+/tbJ+TY2FiNHTs2MRwyFuJZsxPrDh0SEqIuXbq4AZI10rHbMiNYx2n7evZ17etbV2rr1myhpn+IaD+XTatdu3atG4RyvwkMyUNFa/pj+2nhxK3Qux1a6v75N2ninGF6tExKjVhO5UIVuCosfrs7/n60SafsX+5s1+whb+pAxyi/RiwHtH7WZ5ocV05NakXI4umQy6uqaYvrtXv8V1rwx5GEqwEAgEzHGooAACThW0NxjaIXf67nKoV6x1NzVLumd9W1Dd5RmTe/0ey2ZVOo6tmqKW1v1d1vldSbqz5Q2+vyxh9ztH/Ja7qt8n91wZAv9GXHCjp/10w9f3MTvV19rFaObqZC7hn9QW3+uJMa/dBYM/7bQJdnQJ6YfM21efPmJVlDEYHDAj4Le7/88ktNnTrVO5qyqKgohYWFqUiRIipUqJB3VAoNDVXRokW1Y8cO/fnnn95RKS4uTitXrtTu3buTBIYpsZAqMjLSvZ9Yx2oELvv/thDYqkbNqd4sSAgTH9UAddCnwx7yq7A+XXFaMqiRKneerbCnpumX1+srv3fJiY5q74L/6o4BBfTu+EcUkbjeou+xspZitg5Xs4L2aGqPye3jH5PXpvExGQAAnAsEigAAJOELFFerz2cv67q1n2rsR5/osz2lFHlPc7V4+D41KHOpX2h4WLEfP6Ei932jyJjZGtMsPIXKHjvRvjv+RPuQXvxmil6u6Z1mO7Ga8p+muvvNI2rRpZEKrRqvIV8UUb/vP9Tz1RIaIbiNWOpN1o2fDVbLIn5Vi+lkVWgNGjRIDBOtEs6CIgQ2m75qFWfVq1dXw4YN3cpA/2YoGc0CxCZNmqhUqVJupaJVvyF4JH/TIOVQ0dGR3Us17pkOej/8eY3qcoeKnSpMPLJXew5dqEsuTOF6h1dqRMP6ajcjj+7/6Cv9X8trUq9y9DVi6T1CHcvl8w4aX9OX2wgUAQAIcEx5BgAgRd/oxUa11XzEzyp4Z0cNvD9cP/+vve6u9rD6zNwSf4rrc0jbY3/1xqeyXb/t2OeN44UUVoMXBym6pTR+YB8N+SKPWo+OVscbva6qzi79MOotbezYQc0yIEw8cOCA24HXvxssYWJweO+999xtmTJl9MILL7jVZzt37nSnHcfExLi3pa2/aFWKp8PWQLTPs8+3r7N06VL369rXt+9joRRhYvCx22zw4MHentzKUptKf5yjI9u+Vp97HtfkEi/r/3redeowUXu1/I0o3fncWC3Ytj/+K/g58qcWvzNEg7/aqtDb2+uZO4qcZMr0fm0YP1zvlXtCD9/gHyaafCoUUTB+u0t7/vE9ysY/xm75LX57jcIvp9MzAACBggpFAACS8FUojlBonZc1YcwzqlfkwviT46OKW/muom55TB8XaKePpg1Sy2I2ddlXfRibhgrFhOuMjb9OEkd269dVv+lA/mKKCM/nVT86OrhqpO5/9pBemthe5fImfFXn4O/6cebX+vbnvQotfYvurn+DLkvSwCV11ljDN7XVAqT27du7YwQ2m/ZcsWJFt3nO9OnTVa9ePe+SU7OK1L/++svbk/LmzXvaAaEF0faRP3/qE1gRmL799tvE5Qys6tTWVHRv/6Nr9E7DeoqaFps0GDxBcb/HNQsh5+r1Tk+r88f7VTuyiW67/nKdf2i7fvp6ksbN2abijXro7RFPq27B1IM/Z9vnat/iOzWa2Ef1E9dO9DmmvfP66MZbPlL1mOka1ayIzrPKx7vqqV1IX62d+qgiKIcAACAg8JQMAEASIcp1STFFRnbSoOj/eGGiyaHQsvfo6WdrS+s/0pCJq+RXa3hmcobpmnLldV1imBjv8HqN7/elbujeUjd4YaIOrtb77e5Wnd6ztOPgek18qo5ufvwTbTx86vcGbcqsL0y0KrY2bdq4YwQ+m67qU7lyZW+UNhYCRkREJH6kp9rQKt2sw/OMGTO8IwgWNs3ZljUwVpncu3dvNxyWs0+71p8qTEwuRDkL1tZz78/S2pk9dNvF6/Vp787qPGCW9lz/oN78dI7mfdz5pGGirxHL/g5t/Bqx+DtP+ao01VONDurdbi9p2NSZiunTRZ2/KqpOzzRQCc5cAAAIGFQoAgCQZr4GLP/V7hpvauXstiqT86DWvROpkm0WqeVHs/VBy6IpvFuXyhqKqTqsbVO66Z5Zt2vioAa6wv2C++O/z2Oq1Gaf+i4dq6fKX6jt03uoVoPJxyt53M89kVUlWZMGY2Hi0KFDlSeP9U9FMLA1DC0Msttu5MiR3tFzx7pKG6twmzZtGpWKQcjeUOjYsaNb5WpT3K2beGY4unqE6r6QW29/8ohK5k6tstoqIWdpYNv26v7Zmvj9CoocMVJDHq+kS9JWjA0AAM4B3ucDACDNcihfgSsTOpcuW62Nu2yNr1wqcFURhWmTfvjlD/1rl51gt377ydYvu1yFLj31WojOrm80pMd+dXy6thcmxju6UbPenaq4CnVVq+zF8Qdy6vIad6lF+BqN/3yx/jiWcLXkbLqsL0y0QKhnz56EiUHEbj/fmpctWrRwt5nFfo4PPvjA20MwsYpk3/qa0dHRGjdunDs+184r0khjRz14kjDRWCXkrXoh5gdtXrVMqzbP0egnCBMBAAg0BIoAAKRHrtzK5fYwyKFLrrlOVeJHmxat19aUgr19m7Rs9gap4HWKKHyKQNEasYwYpjXJG7Hsiv8ay3ZL1xfW5b7eCRcWVfk6xRU3b6O2HvWO+bFOr48//ri3J73//vsKD0+2fiMC2plMdz4brNO0NYJBcLE3EYYMGeK+qWBatWrlrq94roWEFlLRAmlsrJIzn8KvK5d0KQgAABAwCBQBAEjiX/29J1kH00T7tG7R99oQPwptUEWlwxJOc8+7pqqa3l5QmjlNs9cnX1nxqHb9MEPjY0NVKqqBKuc72VOvo4OrJ2jA3FvV+77SyuUddR35VwfivHEa2DppL7/8cmJ1mzXzsDX0EDzsNrQAz9g01UCZaty1a9eEdfgQVCxUtOUPfDp16pSs8zMAAEDaESgCAJDI0f7lb6nlXV317oLfdTBJqnhIOxZ/oOjXZkihjdXrmdtVxPcsmquUmj0bqVJxn+nVAeO1Ks5XLnhMBzd/pSH9xmlN6F16qmVF5fMuSZHXiKVcj/uON2LxyV9IEUXjt3/s0T++Ksiju7Tlpz+lyuHHqxY91kjDt96edXQ+nc7ACAw//vijN5IaNWrkjTLf5MmT3fsXgo815fFVvdqbDfamA+EwAABIDwJFAAAShShvmWZ6oekeDaheSmXrtlLXftEaNKivura6Q9WrPK4xx+qr3+Therpyfq/7s8mpy+s9rbf715cz5hFVq/2gusR/XnTPtrqzbgu9vLCI2o3pqzZlQr3rp+Swtk1/SyOubKv/1LjM72t7zi+hWx6uIS1arJV/2EqNjg6vXaApSy9SvXrldJXfM7p14+3evbs7pqNz8LLgzqdixYre6NyyafMpsfuXf7Ubgod1frY3GYx1fh89erQ7BgAAOB10eQYA4ASHtWfdfH02fqJiPo3RZ0ukSo2a6a47blejxrerYsG8JwZ+xtmrX+dM0geffqpP352kJVfUUeQ9TdX0/pZqWO7yk64D5uyaqedvnaAKkwerpf/aiYkcHVw1Ui2rPaufm/XV0DYF9d1Lz6nPtgc0bW5f1b884atbAORbJ5GuvMFr165duvTSS92xhT/t27d3x+faunXrVLJkSW/vRFbtZgEVgotVJVrXZwsUDbcjAAA4XQSKAABkuv1aPeJRdc/9oj55tEzStROTOKRts4ao3RN9NPmXOKnEoxoxPlqPl0uolrSQ4P7770+sbLMpsxUqVHDHCC5W/efrzr106VKVL1/eHZ9r/j9HaqxJC+tzBh9788Fu24ULF/LmAwAAOG1MeQYAINOdryINB2pk5HUnCRPN+SpYt7MmLP1Zq5as0uYf39ITXphobF07X5g4duxYwsQgNm7cOHfbuHHjTAsTzdatW71R6h566CGaewQhW0+xT58+7tjWUxwwYIA7BgAASAsCRQAAMl0OhRYuogI5U5xInUyIcoYW1nUVr1N46PFJ1MuWLUuybmJkZKQ7RvCxaca+YLhZs2buNrPMnDnTGyVl9zWrajMWRp2qihGByZo1WQdxEx0dzbqYAAAgzQgUAQAIcrbe3hNPPOHtSb169fJGCEbWVMenYcOG3ujcsyn0/o1h/MPFvHnzau7cuerXr5+7b6EiglPv3r0Tw2ELhqk2BQAAaUGgCABAkLOpirYOmpk+fbo7lRHBycJha5ZhrHIsM9e0szU4fSw4rFu3bmKA6KuGfeGFF9wAiiW5g1eePHn09ttve3sJTYAAAABOhUARAIAgZtVsNlXRWABlUxgRvObMmeONEtZPzEz79u3zRlLbtm3dba1atRQSkjA13xc4EmAHP1un0xcW2+OJf5UsAABASggUAQAIUlbN1qNHD3dsUxa7devmjhG8rBmLVfvZ7XnzzTd7RzNHzZo11bdvX82fPz+xUrJixYru1tiUZ2QdnTp1Spz6bI8r9vgCAACQGgJFAACC1IgRIxLXrrNurZk5PRZn7ttvv01cszAQwmGbCmtTmv2DTTtmIaOxac+2ziKyBt9taxWo9rhijy8AAACpIVAEACAI+Xd1Zqpz1uDfAKV27dreKPDYtGefefPmeSNkBf5dn+3xxTqOAwAApIRAEQCAIGNVYS+99JK3l1DN5lvXDsFpy5YtiWthDh06NKCrTa1i0Tc1dvz48e4WWUeHDh28kdSlSxdvBAAAkBSBIgAAQcZCHF81W0xMDFOds4BJkyZ5o4QqsUAXGRnpbkeNGuWGocg6rMnO2LFj3bE9ztCgBQAApIRAEQCAIGLhTevWrd2xdQG+44473DGClzW/8FWF2XTTiIgIdxzImjRp4o2kWbNmeSNkFS1atEjSoGX//v3uGAAAwIdAEQCAIGLTYa0LsBk4cKDbSAHBbcqUKd4oISQOhunrVsVmP6sZPnx44n0SWYN/8x1r0MLUdgAAkByBIgAAQcIasfjW2QuWSjacnK2HaYGcsYDOv6NyoHvyySfdrQVO1qEaWYtNvfeFxlYVbZW0AAAAPgSKAAAEieSNWBD8pk6d6gZyxtddN1jUrFnTGylxzT1kLf73yQ8++MAbAQAAECgCABAUJk6cmNiIZcKECTRiyQKsOvHVV191x8FWnWhsWuywYcPcsTVnWbdunTtG1mH3SV+oaOt8UqUIAAB8CBQBAAhwFjwNGDDAHVujBBqxZA3+1Ym+rsnBxr85C92As6aoqKjEdT2pUgQAAD4EigAABDj/4MmmOufNm9cdI3j5QmJrZhLMIbE1Z6GCLWuztVq5jQEAQHIEigAABDD/6kSbFtusWTN3jOCWPCQO5m7dDzzwABVsWVybNm28EbcxAABIQKAIAEAAGz16dNA27UDKstoU9vLlyyd2Ax43bpz7+yFroUoRAAAkR6AIAECAspP2jh07uuNgbNqBlPlXJ/bp0yeoqxN9nnvuOXdrv5f9fsh6rBLVhypFAABAoAgAQIDyP2mnOjFrSD6FvV69eu442FnY7atStN+PKsWsJ3kl6v79+90xAADInggUAQAIQFadaFMLrWkH1YlZR/Ip7L61B7MCX+hNlWLWxW0MAAB8CBQBAAhAU6ZM8UZUJ2YVvpDYZMWQOHmVIhVsWY/dxrbup3nvvffcLQAAyJ4IFAEACDA2XXT48OHumOrErOPVV1/1RtLAgQO9UdZCBVvWZ13JzeTJk/Xtt9+6YwAAkP0QKAIAEGD8m3b4ml0guK1bt07R0dHu2EI365qbFflXKd5zzz10A86C/LuSW6gIAACyJwJFAAACjH/TDqoTs4YuXbq462EaX+furMp/ij7dgLMe60o+bNgwd/1PC8kJjQEAyJ4IFAEACCA2hdBXnRgZGZmlmnZkVxMnTkys5Bo7dqwKFy7sjrMqC8GjoqLcsa0ZuWXLFneMrMO/O7n/eq8AACD7IFAEACCA+KbFWuMD/6mFCE5WveWrOLXbtEWLFu44q7MqRV8YPnToUHeLrMOm7PumtvvWewUAANkLgSIAAAHC1tnzVbJZdaJNLURwGzFiRGLFaZ8+fbLNbWqBk2/qs4Xky5Ytc8fIOtq1a+du7f5NcxYAALIfAkUAAALEhAkTvJH0wAMPeCMEKwuIu3fv7o5tCrD/NNHsoGvXrt5Ieumll9zu5cg6atas6Y2kuXPneiMAAJBdECgCABAAbGpsjx493HG/fv2UP39+d4zgZOGZNWLx6dWrV7ZbD9PuwzExMe7YKm+tezmyDqu2tccqY8E5gTEAANkLgSIAAAHAv7HBnXfe6Y0QrMaPH5+tGrGkxtYB9a2117x5c8XGxrpjZA21atXyRtK8efO8UQKr0KUhDwAAWReBIgAAAcAaGziO44Yv5cuX944iGFmQ0rp1a3dst2d2acSSEqtis+nOPsOGDfNGyAqso7c1GzIWottjmBk3bpxKliyp9u3bJx4DAABZC4EiAACZzBpW+Bp3WDMWBC/fVGdfiDJw4MBs31zHAnLf1Fhr0DJjxgx3jKzB95g1atQod+kG+x/wdX7eunWruwUAAFkPgSIAAJnsyy+/9EZS7dq1vRGCUfKpztbtGFKnTp0SK9lsrVALnhCcrKOzheb9+/d3w8MaNWp4l0iLFy/W6NGjE98gadKkSbZbOxQAgOyCQBEAgExkwYqvE3Dfvn1pxhLEbKpzq1at3HF2n+qcnFVp2v3bwiULmwYMGOBdgmDz559/upWm9rhlayhu3LhRFSpUcC97+eWX1aFDB3dsKleu7I0AAEBWE+KwsAkAAJnGpn/Wr1/fHf/444+JJ+YILlapdf/99ydWJ65Zs8ZdQw5JWVWbL0C3DtDNmjVzxwge1mjFbjdfFeLJrF27lipdAACyKCoUAQDIRG+88Ya7temgNGMJXoMHD04y1ZkwMWX+U5+t6zNdgIOPdSyfOHGiqlat6h1JHWEiAABZF4EiAACZxMIUXwhl3VBZayw42Zpyvqq7qKgoGuuchE19fvvtt729hPv9/v37vT0ECwsVrcLUFw6nxP4XAABA1kWgCABAJpk1a5Y3kurWreuNEEwsFH7mmWfcsYUrvXr1csdInVXiDhs2zB1boG5NPBB8LFR8//33vb0ThYWFeSMAAJAVESgCAJBJbNqgsQYednKO4GLrJvbu3VsLFy50923aM7dj2rRp0yaxgq1jx45ulSeCj01pnj9/vreXVNmyZb0RAADIiggUAQDIBP7TnWlMEZyssm7UqFHu2Crubr75ZneMU7Opz1bN6ZsyW6NGDdZTDFJ2v+/Xr5+3d1xoaKg3AgAAWRGBIgAAmYDpzsHNunN36NDBHVulnVXc4fRYNadVdfrWDrX1FK3qE8HHmu1YpTUAAMg+CBQBAMgEn376qbu1MIppssFl3bp1ql+/vju2CruePXu6FXc4fVbdNnToUHdsFbtZYw3KI4qLXa0fV29R3BHHO3YyRxW3ZbP+StN1A5Pd/wcOHEhjKQAAshECRQAAzjH/6c41a9Z0twgOu3bt0kMPPeTtye1YHB4e7u0hPawy0beeYnR0tIYPH+6Og9KRLZrV/z6VL1JGlcqUVsU2o7R8z1HvwlTsX653onpr6uZ/vQPBydZT7Nu3r7cHAACyOgJFAADOMaY7ByebjtutWzctWrTI3Y+JiXE7FuPMWZWibz1Fm0qeWqOPwLZf68Z1VePuG3XzkMn6+sMOKvzpM7rv5a+0PdXiw/jP+WiwPrklSo2vOd87Frzatm3rjaQrrrjCGwEAgKyIQBEAgHPMujs7jkN35xQ5OhK3Rat/XK3YuCPesZNz4rZq01+HvL2zx9b7GzlypDu2JhQ008k4NmXW/i98oaJV7mZY5+dtE9X6vPPc6bgpf1yrVhNjvSv7O6aDsQv08aBndF+dCIVcVFkNH++lt6av1u6UpifvXaz3oz9Trkd66JUOjXTrfd01fGB9rRn8jqasP+hdyV/8fX3zFL0ytKhefqKK8mWB2cL58+fXzp07NX36dJoUAQCQxYXEn9AE74ItAAAEGZsye+mll7rjsWPHKjIy0h3DHNK2WUPU9vE++mxDnFTiUY0YH63Hy+VX6lnLXi0f2lYvh/XWJw+XUA7vaEazabj+TVisoo51EzPesmXLVKFCBXds4aKFjGcculugeNU9+uzOjupWu3AK76bn1BV1HtbDlRL+LxMcVdyq99WhaXuN2VZaLdo1UtXLDumXqR/rrdlxqtJuqD4a0lzFcvnumY4OLXhFpaoPV8ToWZr6aCn3+xxdPlRVyg9WxEez9WHLoknvx85WTX/2SU2uO0zDG4Zni3f57fHvr7/+0qZNmxQXF6etW7dq8+bN3qXSnDlzEiuATefOnb1RgmrVqrnbsmXLKm/evLwhAwBAJiJQBADgHLLuwL6GHmvXrnXXHYNxdHjdu7q38tNa1bSvhkReqrn9nter2x7Q1Dl91OCKXN71/CV8TotH/lK3qc+qWr6zEyf632YWcs2dO5cw8SyyykSrULSXqBkSKnqB4vyBi7TmuUrK6R0+GWf3XL1Uv6le3nOPRk0cqEfLXpIQBh75Q9+/3l71Oy9R3dFfaPyj1ynhnnkk/tt0UKHmXykyZrbGNvPW1Yz/3q0KNde30YuTfe+j2j3vFTV88xqNG/uAiicGk1mHLRFgj3EbN27UggULTggLM4oF/OXKlXOD6NKlS7tVkgAA4OwjUAQA4Bzq0qWL23jCgpKFCxd6RwPdUcX9Ok8TP4hRzKcx+myJVOmuhrqz2X16qFlNRVySPOyzcKW9CjV/y9tPyROa8PswNS/k+9ydmteziWoNv14TVg5Rs0I5dXj127qrTG+FjJqpqW1Kn1jBdWSDPn6sg5Y+PEav1L38JFWM6WfhVo0aNdyx3Wa2biJNWM6+cePGqVWrVu7Y/u7Tpk1Lf1B02oHiIW18L0rlIherRcx0jWpWJOl9b/8iDbq9gTrv6qhvfnhRNfO5tYjaMeUZFbv7CzU7IVBspZ+GzNeijuWOV9Du/1FDmw5W7tfeVNsyod7B4GcNp1avXq2vv/7afZxLi+RViKlJayBpS0ncdttt7v8ta5wCAHD2ECgCAHCOWMWOTdMz1g21e/fu7jiwHdK2mdF6sMmLWlSypdo1raTL9YcWfvqhxi/ZJpV4TKM/jdYjZS72C/R8geLXuuupR1S7cErNJq5Snah7VekSL2I5tED9SlVXj4hRWju1jSIS5otqaJUaejpipH778D6FJ0kMj2j79BfVdPJNmvC/u1XwLKSJ/mGiWbp0KQHFOZR8mvmQIUMS/39Oy+kGisfW6J076qrNonv1+ZpBanh58s/YqyWDWqhy553qMnOaXq1bwD16dPUI1S7TWfsSw0NH++b1VulbJqnZtOl6vb6vScl+rXvnCbX+LUpfvFRLYUFenGjTmC3ssxDY170+OQuFmzRpolKlSqlYsWLu7Zje6mzftOmVK1e6U6aXL1+uUaNGeZcmZd/XlpWoV68e1eAAAGQ0CxQBAMDZt3TpUnsTz/2YN2+edzSwHdv6mdOuRFGnTs+pzqb9R72j8ccPbHG+HxHlRITICa0z0Plu1xHvEnPY2RrzRPzvWduJXvyPd+wUtsY4kfa3iZzgbPUOOc5mJyayuBNSPNpZfNg75Dm2a47T86YoZ9wv+7wjGSs2NtapWrVq4u01f/587xKcS8OGDUu8DaKiopz9+/d7l5yG+PtWq5AQp3j04vh7ZhrsnOY8FRb/PWu86azyv1snOuJs/7yjE6owp8abP8XvefYtdKKrhzmqM9RZduBY/J30T2dm15sdhbVzYn7/17vSMefwbx87rct1dab9maafJmDZ41m/fv0Sbx//jypVqri3nf3f7Ny50/uMs8fuF/bzjB071r2fpPQzNW7c2ImJiUnffQgAAJwgO6z/DABAQIg/ufZGctf6CnxxWjH+Lb2Z4yH1eOp2XZ3n+MuGkAuuUrU23fRy69KKmz1Sb8/+3T1rT7ecuZUntZmf+XIrZ5Iqrr1a8d7bWv5wB7Uono6KtVOwaZvWwdk3Jd1uNzrWZo727dsnTom1KrSOHTu6lb7pcnCLlk0crKcbV9ZFIRGq0+p5DZuy8oSOzc6+Pfpjd/yg2OUKS3FZzhwKKxiuK7Rbv23drcT+zXnL68EXWqvE7BfUIrKz+nZ6TI+/ulrVn3tYtxX0pvY72zTz9THS84/p1hMqH4ODVe5ataGtWehfZW3VgMOGDXPXTbT/Hbvt7P/mXKxpaGuaWvWwVSNaJ3Zfp2mrbPWx6snmzZurVq1abvWrVToCAID0I1AEAOAcsXXFjJ3kBkfjgDwqUqW2HnyyuWrkTyFZyXmN7nioiQpqvab/8Iv+8Q6nS/6iKl8+TCE/bdH2o96xfZu0bPYGXXJLhMITv701Ypmglz4urWdbltEF3tGM4gsTfWu12ZqJhImZq3fv3onB0JmEihtebKIqzd/UioJ3qOfAe1Tk57HqePedat7na23zCxWPbo/VYm98KrG/7dBebyzlUsEGz2pUdGNp/H/14pBZOq/1axrZsaryuYH4Ue394X312XiPnm9WLE3NYQKJL0i0ZQD8pzb369fPXQ7AFyIGwtRie3y1ac6+cNE66lvgaex/26bSW7d9gkUAANKPQBEAgHPATlp9J+HWwTYkJBgWTsuhsOpP6vX7Syi3dySp85T34vyyGsFtf+zRvoSD6ZMjXFUa3ygtna25Ky2iOapdP8zQ+NhSalKztMISriUd2aiJr4zXNT0fUY2Uy8fSLXmYOHToUHcfmcuqz+y2eOyxx9x9X6h42kFQ6B3qOW2Gvnyzjzp37q8xs6ZqRMsLNPvlruoe84sOe1c7Izmv0i3PvauFG5dr8aqf9ePIVioT6t1PD67SBwOW6d6XmivC19XZ2a9tS77UO0P/q6HvfKnlOw4lHA8gy5YtU9OmTZMEiRbOWUhnYd0LL7wQ0GuLWrholYsWeFq1sTVt8fEFi9ZJPN2VrwAAZFMEigAAnAM///yzN5JuuOEGbxQM8qpAgQu9cXJHtGvb79qlUJW7vohOrLk8poNbl2jioKfVuHIhhVxbV626/U9TVu2M/8zkLlbFB59Uu4hZeqpFlLr27aTIx1/XmuqP6LHbCnsNX45o+8yRekWP6Km68V/PPZYxkoeJNnXT1xAEmc9CRWvK4l+p2KBBA8XGxrr7J5XrEpWIbKV2g17Ws/WK6gLvjhMSeoMefvoRldVSvTvkM63Yf0aT9v3k0iXX3KBK1xVWaOJc/f3aMH6Y3iv3hB664WLvWJzWvf+MatXup7k79mrjxGdV/uZO+njjfu/yzGWBrXWlt6nNkyZNco9ZkGhVu3PnznVDuuCotD7Oqo3td0keLPqmQlsVJgAASCNvLUUAAHAW+TeXyDKO/ebEPFraUWgTZ8iyv72DxteUxWuIULye88SLrzgDe0Q6VULj90PvcHp+Hev42lQcd9DZOnew07JEaMLnlXjMGb1yj3PMu/TY3985/W56yBm9NmMbsSRvwGK3FQKX//+SNf+w2y/dfA1Y1Nh5c1XC/ero2tFOPfv6LT9yNvvufMkcXhztFI+/TviL3zhx3rGTcZsb3dTNrxHLMeff+O/TOLSgU2fIj461CTn251SnU6lQJ+yRGOf3VL7vuWLNS3x/Y9+H/d2zWkMTaxpjzVr8f8/OnTufk0YyAAAEOyoUAQA4B3zrJ/oaTAS/g9r86Wt6/t043d6rm1rfkM87nlRonZc1bdZEvflyN3Xu845mfT9SLXNN1cvt+itmQ/JJ0uer4C1P6f2FP2nZ4lXa/OMberTMxV4lYpxWf/CG5rbspPsifI1Yjungth/1xTvDNGjoWH2xfHsKlY8nZxVJ/g1YrDLR1oFD4LLbx24nYxWldvvZtNx0yVdAhd0iu7VatnGPmyidV+AqlbY59j9s0O//2pHkjmjHbxu0QWG6ulDYqdfxdLZr9pA3daBjlF8jlgNaP+szTY4rpya1IpQn/kjI5VXVtMX12j3+Ky3443TvyRnDKnVtarlV7PnYY5ZNbba/u1WKZiVWsfjhhx+6VZc+0dHRbvUr1YoAAJwcgSIAAGeZ//qJ1apVc7fB7ZC2zRyk1q0m6qoXR2ns076mEz4hynVJcUVGdtKg6P+oXpELvVAwh0LL3qOnn60trf9IQyeu0omTO0OU85KiKlfpOoWH+sIXR4c3TFa/90qqx8Pl3DUb7djBdR+qXa0m6j13qw5unKinyjfQ4x+vT/NaeBYY2Lpw/g1YCBODgy9UtLVI7fazablnFgCdrwtyeWsdXnK1bqhSUNq0Wuu3/ptwLIm9+mX5ivhtMd0UcWX8vfpkrBHLGL24Jnkjlj3auGxt/PZqFb78/IRDyqdry98gxa3Rxq2JvaPPGV+4btPJjU1vtqnBAwcODLqpzafDQlL7vS009b3hY/cpe2zo378/aysCAJAKAkUAAM4y//UTy5Yt642ClLNXG6e8ogebTNTVQ6Zo8kv1VDBxnTifHCpQt7PGjn1NT1TKn2ytw4sUUbmSwrRb33+2RJt8HZ1Pxtmi6f8dryt7Pnq8Ecvhn/VBlx4aU7izRr7VXz0Gv6n/dcqjd9sN1udbTx0pzpgxww0MfObNm+eGCggeFira7eZjt6d17U3K0ZG//9a+lAoNLahet1gzNsQPQyupeumwhPvqeeGq1rR6/OBbxczeoOSRorNrqb4Y/5NU6m41rHyKoM1rxNKy9z3HG7G4jurfAxnSBiZD2N/NP1y3YM3WScxOHc4tNLXwdPr06YlNs7p37+42ALLKTQAAkBSBIgAAZ9nSpUu9kRQeHu6NgpDzt1a9+5wa3L9QNSd9ppGP3qCLkmeJp5RD+QpcmdDAZdnP2rjrVIniUe2a/bZ6HHhAT99aMDGcPLr+G707+S9VaHKLylqXjZCCqtH0doXv/lqfL9jmTl1NjYUn9evX9/bkVmH5h4sIHhZ42e1n1XTGGulYI5HEqrL9S/XGvS303LvfadvBYwnHXI6O7Fiod6Lf0lcK1+29Htcd4b5e5heqdLPH1KnUX5o84HW9tzJhKrRxDm7SjCH/1Rs/X6pGTzVVlXwneyltjViGu41YHj5hSYB8KhRRMH67S3v+8U1vPqTtW36L316j8MSqxbPL/k42xdm/AdG0adPcYC2rTW9Oq3r16mnz5s2JTVusYtPebPB/HAcAAPEvv20hRW8MAAA8Nk35r7/+0sqVKxUXF+dufebMmZNYyWMnnREREe7Y2JTm0NBQFS1a1A0P7aT88ccf18iRI90OtbYNSm6Y2EVNBzjq9mm0Hklc2/D0HVkySKUqd9aGsGc17ZdXVT9/6pNGnb3f65U739CV77ylRxPXTjyqHVOeUbG7v1CzmNka28wLabdNVKtCzfVt9GKtea6S3/TSBBaeDB482K06MhZCvf/++0luPwSn5F267X+tV69eKlz4Mm375k0981hPfXS0siKb19X1l52vQztW6uuYiZqzobAa9RuuEV3qJqu0PaId815X1CO99dmfpdWiXSNVveyQfpn6sd6aHacq7YbqoyHNVSxJ1WFSzrbP1b7Fd2o0sY/qJ66d6HNMe+f10Y23fKTqMdM1qlkRnXd4pUbcVU/tQvpq7dRHFXGW3/a3v5kFif4dnCdOnBj/Nyvs7md3yR8vjIXX2alqEwCAk3JbswAAkM1ZV8/p06c7/fr1czvH2lNkRnxYB9G7777bKV26tPO///3P+25B5vBfzrLRjzml6/RyPt/wd2LX5dQdcvbs3pfK9eKcVW82c/82ofd/6Px20i/2j7PyzYec+kOWOEn7OlsX6bbxX6O4Exmz2TsWb2uMExn/dYtHL46/RlJ2+0ZFRSXeLnYbn1F3YAQc60Cc/Da2Lr7WUfnw7rXOzLH9nQ6NKjmh8ZeFVmridOj5pvPp4i3OgVTvg0ecfzbOdsb2be80qlQw/muWcGpHdnOGfrrU2X74FP8Fx/50Zna9w2n90foT7ouJDix33mxU1FGJR5zXv/zamfDiHfE/W3Wn07Tf0/A/dmbsvu//OGd/t6zWwTmjJO94bfsAAMBxqFAEAGRbVoVo1YZTp05NbESQmuSViOaSSy7Rnj17vL2klYupscqpFi1aqHLlysHR6ODIFs3s01btlt2iN998SrcWOtVUTEf7lw9X03br1PK1bnrgxqtkM5ITHNKOxePU5YFnNGbbrRo4a7Seq3JpKpWO1ojlA7WK/FXtPn9eNZNUMTo6tOAVlao+XBGjZ2nqo6XcNVyOLh+qKuUHK+Kj2fqwZdHEr7tu3To99NBDSarXhg4dmm2ndGZlVlU2evToJFN4x44dq8jISG/v3Di6eoTqvpBbb3/yiErmTq2K0dGRbbM0sG17df9sTfx+BUWOGKkhj1fSJakXPp6x5NWc1tymTZs2/D+chDWsqVmzphViuPt0gwcAgCnPAIBsyE4OretydHS0dyQpa0hgU5eLFSumAgUKnPYUQDth/+2337RhwwZ3qnRq36dfv3665557AnjK7UGte6e1KrX5WHHekVRFxmjr2GayVeF05Hd983pXRXWerGO1m6n5bWV12fmHtOOnWYoZN1sbijdXv7dfV5e6hU+YlpzIidWU/3TQrMZvaFD9Qicu+rz3G/W88S4Nrz5WK0c3U6GQfVo9opXKtDtPo9eO06MRF7hXs+Yr/uslEp5kD8lvdwuRX3311XMW4jtxW/XbwUtVtEAa1kI8slex637VPxddo4jwfKn/T2SA5GGiBev+4StSt2zZMnf5Cv8gllARAJCdESgCALINCxIt3LMw0Z+tHWYVTNaYo3z58t7RjGNVU2vXrnXX3xo3btwJVYwWdrRu3ToA1+aK05JBd6ty5zne/kn4B4quw9qzbr4+Gz9RMZ/G6LMlUqVGzXTXHberUePbVbFg3pOswXhUu2a9pLrvXa/PRrZQkRO6SJs4rRoRpWrt1qnZkJfV5qpFeumR17Qtarzm/reBLjp44vpnMTExdHLORiw8s8DH9/9u/+d2n8iua+ClVJlIIHZ6kv8NJ0yYoObNm7tjAACyGwJFAECWl1qQaCfUZytEPJnUKiQtWLTqyGzfJOToSo2o+6pyj/RvxJKCI1s0a+DTerx7jDYoVCUiX9P4IY/q0rhtJwRJb7/99jm/nZH5UmqsYZXBnTp1ylZVqra8wx133KGFCxe6+4SJ6Zc8VKRRCwAguyJQBABkWXbiZ1P6/IM7C5fsRLphw4aZvoahneR/8MEHJ0w5tMCjbdu2wbHG4tngxGnLb4d0ZdFL0zD984jiYtdp3T/5FBFxlb6b9VWmTnVFYLIp0D169EgMgexx4K233lKFChXc/azMQtWOHTsmrhNLmHjmbPqz/31n6dKlvGEBAMh2CBQBAFnSxIkTT5iKNmbMGN17770BV5nkCxbtpN/3tGyBR9++fVWvXj13Hydnf8MBAwYkCY+tGYc1wGG9RBh7g6F3795JGjBlh2rFLl26JP5fWAX0wIED3THOjH+jFnu8tuec011vFwCAYEagCADIUixY6tq1a5LQwE6iu3XrFvBVataN2E78/X92CxWfeeYZQrGTSN4sgSnOOJnkbzZk5fuL/+9Kd/OMx98XAJCd5XgpnjcGACCoWbDUsmVLTZkyxd23oOCLL77Qww8/HBQneZdeeqkaNWqkm266yW3isnXrVs2aNcvtFG1rPebLl8+7JoxN5bQA1qpO7W9lLDweMWKErrnmGncfSK506dJu+PPPP//oxx9/dO87Nv15//79qlSpUpYJhOwNCqugM/ZY+MYbb7iPMcg4dl/KnTu3+zht96Urr7xSVatW9S4FACBro0IRAJAl2Bpp/mvnWbBk0xuDNRxIPj3TAoHs3KE2OZtuaFNVfVWJZtq0aUnuA8CpWIWZTZX3vx9ZN3BrYBLMwaKF7bVq1Ur8vVjj7+yxv/X999+f2ARq3rx57htAAABkded5WwAAgtbw4cOTBEkWCNg6YcEcCNhaXDZ9zhooGAsG7CTVgrTszKa025pw9rfwhSVWbRYbG0uYiNNm3XotiLY3IHxsCqsFRMH8v2ZvPvj+P2wtUcLEs8eeZ+w5yMeWqLDHKQAAsjoqFAEAQc1O5HzNTLJqFZ8FG/4VLxMmTDih4UxWZ1VAU6dOPWHtOxrXIKPYkglWFTxp0iTvSEKlswXWERER3pHAZ79HxYoV3cdE+9lHjhzpXYKzyX89Rbvf0PwGAJDVESgCAIKWhYkdOnRwxxYu2QldVu2ymTxUnD59erYJ0iwgsSWffVMKjZ2wB0OjHQSXlIJrY5XCDzzwQMDf35JPdbbKXToPnzv+HbWZZg4AyOqY8gwACErZKUw0VnVpjVrsdzU2vTerT3+2dSTtBL1ChQqJYWLjxo3dE3Wr/iFMREaz6as2DXrnzp3q16+fd1TuY401NLHHnUCezjp+/PjEMNGWfiBMPLesWj4kJMQdW+d5C3gBAMiqqFAEAAQd/2o9C9jsxDk8PNzdz+r8pzOarFgFY4HNBx98kBgY+2SFZhkILtYp2Roj+arOfGx90wcffDCgQm37v/F1cbbg/cMPP+R/JRP4T322xywLqAEAyIoIFAEAQcVO8EuWLOntZc8pfckD1axSnWnVPKNHjz4hSLR1Etu1a0dFIjKNPe5Ytaz/tHsTSFOh/afb/vjjj25lL849exzz7/ps1a48dgEAsiKmPAMAgoZV4Dz88MPenjR//vxsOaXPpj9b5Yux6Y3WSGL//v3ufjCyE3ALRW3tN/8w0dZJtGne3bt354QcmcqaslizFnvMseo/n0CZCm2Bpy9MtP8b1u7LPFYVareBj1VbAwCQFREoAgCCxoABA7Rw4UJ3PHbs2CzXzfl02DQ63xpvNiXTKvuCjQUw48aNc4NEmyLoW/vNAhsLbmydxGDqrouszx5zThYsWpWghXvnmj0G+FhnZ986fsgcdj/x3T/svmFVigAAZDVMeQYABIUZM2a4jUiMVX9Y2JTdJZ9aFyzrKfrWSLQGBv4vQ+wE/LnnnkvSzRoIZLamqd2Xk6+xaPdle5yy9U7P9jqG1rzIt4Ysj42Bw39pCltzM/lSDgAABDsCRQBAwLMAqkGDBm4Fm60ZOG3aNKbAevzDBPvbzJ07N2AbMaTW4MIXvmTnilMEN7tvT5gwwZ2e78/+J9u3b6+GDRuetccs/473tkQAVb2Bo0mTJu4bPoH+2AwAQHoQKAIAAp5/swELE32Vikhg6w/ec889brWfTQWPjIz0Lsl8VkVpDSLs9kve0MKmZrZu3ZogEVmGr/rWpvL7pvD7WGhu4XlGVi3a9ytQoID7v091YuDxr1KcPn266tWr544BAMgKCBQBAGeFVezkzZv3jJum2NfxdXW2E+ZXX32V9cGSsdDOOs3a2m4mELqKWuWk/TwpBSu29qMFoFRSIauy/8l58+bpjTfeOCFIt2o1C/0tXDrT/wH/NxNsXUfC+cBi9wNbI9YeAy1M9j1GAwCQFRAoAgAynFXNWIMCYyfVZ7Imnm/KmImNjc2WXZ3TwtZyq1Chgju2wO6FF15wx+lla1bGxcWpdu3aaQ4nfSHK+PHjkzSJMOdi6icQiOxNEft/SmkNPQuZrMFS3bp10/XY5j+l1tewCoHF3lSxSmw75croKen2xo11+N+0aZP7eG0fK1eu9C7VCctLpMbuP/ZYby655BKVKlVKoaGhKlq0qFsBy2M2ACAlBIoAgAznv66fSW/ljP90sWHDhrmBFFLnPzX8TE5cbU02X8OUU912vinNtj5Y8vXjjG9a87loTgEEMt//ypgxY04I3I39r7Ro0UKVK1dOU4Dj/zgbaEsd4Dj/aenpeR6z+429mWah4R9//OEGhnPmzDmh8vts8gWO1apVU7FixdxZAzyeAwAIFAEAZ4VVZbRq1crbS98J7+OPP66RI0e640CYxhvo/KeHp/fE1YJE/7AjparQU4WIvimdVj1FRSlwIguZpkyZ4k5ZTj4l2qSlctH/MZbq7cDmey47VSWpLzy00HDNmjXudVO6f5yMBdNhYWHu2FdteCoLFizwRkpzWGnf54477lDVqlW57wFANkWgCABIwjeFyvhPnfJnFQq2PqJJbZ1EOzHyrR3lY1NxO3XqlKbKBgvH7EQovVUd2ZV/leJff/2VOPX8VOx2t7+x/8mrfxMBC0B+/vnnVENEY7ev3eas4waknf3vzZo166Th4m233eZWa/tXhvmmO7M2X+CzKe++ZmJLly5V+fLl3bHvcdWOLV++PMXK1eR8gaFVC/qmJWfEesXJ+V4LpCXctPvgk08+qZo1a1K5CADZCIEiAGRTFvjZtNiNGze61QlnOoXKNyWqSJEiKlSokMqWLauvv/7aDan8n2rsZKhnz55JpkSnxH/aLdWJaee/lqJNrfSvEk2NBRnNmzf39hLYCaJ1jLX7hq2LmNqJbt++fd3bnSnNwJk7VbhorDmVBVIPPvigu5/W/3NkHv91ha2xmAWA9vyY2m1skk8ztmnTmV0J6HvdYEthpPbz2xuA1iSM52wAyPoIFAEgG7GTmsWLF6fYNONc869+S85OWnwVkHbybMEW0i6tlUsWXgwdOjTFhfuvvfZa/fLLL95eUr5KREJE4Oyx/0+rCps6deoJj9c2zdQ3dXbz5s2nfIMGmc/3uFy9enV9//333tHj7M02q/ArXry4SpcuHRSB3MkCcIJFAMj6CBQBIBuw6cMTJkxIdaqqBU/WwMN/CpVJaRqVhZI2ldbHNy3apkTt2bMnzV0ljZ1AWWCYvHmIfzOW9DZ0yc78Kw79p9f52G34wQcfpNh1NiV2//BNuUz+tQCcfb6psbbkgL1JcNlll+nLL790q9h++OEHhYSEeNdEWjgHd2j9sh80/4dFWrFslZbPm645G+K8S6XQSnepSeUyKl2+nCqWv1HVKhfTJTnP7G+cfF1h3xqEVs1vgXCwvzljz9sWKvq/BrD7Z7du3dz1QAEAWQ+BIgBkYalVoNmLfGuakXxNroyydetWjRgxQn369PGOnFzyNRL79++fGH7aGk5UwZ0e/+l1yf+2KU1vTokFyW+88YY7fTqzp9kBSMoXIFq18AsvvOCOsx9HR7Yt1sTJ87U57qh37CIVqd1IzSoXVE7vSFKHtGPJJ+r/XHe9PifWO3YqoSp+Vwe99NJTuq/yFal83VPzX44iK79RZm9gWkWt/+uOtC51AgAILgSKAJBFJa+GMHbyeeedd561KjObqmzdf+1EIqW1lU7G10DEf7qzrc+XWlUlTu6xxx5zT+r8pz1bwGxrXKb1qd+3jmLyClIAmce/m/vJlo7I+v7SrK4NdOvAJd6+p+Dzmrmmr+rmO8874HNUu79/Tc3rddHs48WIaRd6l/rNGKPnqxdQemoV/Z/bxo4d676pl5VZgGrdrX1rM9sbmW+//TZV7gCQhSR/pgUABDmrTrMwyT9MtCDRGptYJcvZfDFva31Z1ePJwkSb4pz8w06KfRV1tuC7j63TlyU5v2tW/4dU+aIQt9Io5No71OnjNTrgXZwRbCqdfW27LSxINPY3tpA2rexzLbiwBjl2Mgwg823atMkbKXF5iuzpgPb8sccb+9m2S3v2HfN2/Pz7k97rPCBZmBimSm1H6fuNO3XgmOO+2eIcO6BdG+dpROuEasJEcV+o+7Nj9eP+9NViWKW9VeoZa3SV1Ws67LWGTdG31x/GgkWr0LSp0QCArIFAEQAynKMjcVu0+sfVio074h07OSduqzb9dcjbSz8Ljho0aJC4gL9VmFlAZ0HiuVgY3aY6+9iJk023tbDQfgb3RC3+wyrekn/4V9isWLHCG8ldmD5L+uMHjevxgZb4Tmw3TNPrr87Q2rTdXdLE1uXyWb16tbu1E1q7L/huC9+H3T621mJMTIwb8CZnay3aCTCAzGcVij7Zu3o4h3LnyeWN/YTmVu4U1js8+vM3Gvvdbm/PExapXi9Fqto1+XWB71NCLlDYNTX0eO+uuj/UO+bz/df6dv1+b+f0lStXzt1mdlO0c8X3nGOvA3zT9O1Nx+AKFY8oLna1fly9RXFH0hICH1Xcls36K03XBYDgRqAIABnqkLbNilbz8qVVplIZFan4hN5avksnf1m5Vyve6axnp25WCjUVaWYVZLbwuW96kQVDH3744Tk94bS1+mJjY91qyJEjR7r7Fhaezs/ga/JiYWi26g65919l5PmH/9/cOnufjF3Xqkns/mMBry9ktGl5FgzbbXH55Zd71waQmayrs/FVu2Vfl+vGB59Qy0oFvf14oVXUstc9urFADu+AzxFt37BaS5M/G99SSWUuSyGUjBdS6FpVvMLbSbReSzbs8sanr1ChQt4o4Q3A7MJeB/i/KRU0oeKRLZrV/z6VL1JGlcqUVsU2o7Vst2+9zlTsX6532vTW1N/O/E1iAAh0BIoAkGEcHV73f2rXuI9+vrmfvvz6fXUt/LXa3jdQM7anVnpmnzNBL31STp0bFzujB+WOHTsmhonWiMWCocxoZmINPM4kCPQt5G5dhelcemZ81YYLFy50t6fDQkZb48uCYVuDkXWvgMAwZ84cd3vNNde42+wrpy6r+bQ+Wrz1eMX1Pwv10XO36LK0PnVcfOHxysQ0yaU8uZOHlWnnXzluDceyE2tCY81ofDp16uS++Ri49mvduG5q3H2jbh4yWV9/2EGFJ3bS/X1maHuqb/7Ff85Hg/VxrSg1KnaBdwwAsi4CRQDZQKwmti6RsFZdah+tJmqbd+0knH2KXfCJBnV6QHWuvUgXVW6sx3uO1PTVO3ViRLhLC95/V5NzPawBr7TTHbc+oD7DX9Dta8bptSm/pFx9eGSjJr4yQSVfbqUb86X/JMU69/qmUFmI5N/VN5j4V2ycq8pK5+Ae/bFt50mmMh3TwW0rNOvjEerftZ0eblhZF/nuN9fW0b2PPK2eQ8ZqyoIN2hNgU5zKlCnjbk+3QQ6AwOV746hUqVLuFmeHs+M3rfrT20lUVNeFX+yNT5+vKYvxVeNnJxYq2vRnY/fjV1991R2flm0T1cr/9dsJH9eq1cSUO3g7BzdrwceD1Om+Oro2pJAqN3xcPd+artW7D3vX8LN3sf5v0GfK9UgPvdKhkW69r7uGR9fT2tff1ZT1B70r+XN0ZPMUvTK0qPq0raqLeT8UQDZAoAgg+wi7S0+9Gu1WwJ3wcdvVOqGWz/lbq97tpNtuaqne846pyiM91fPOK/TLB8+owY1N1DHmFyV5CXpovb55b75UpbLKXmlTqEKUq2Q1Nazwj2bMWK7fT8iajmj7zFEamqedOta+Il1dI41NdR4wYIA7ti6KvXv3dl9UByPr9Oxzps0GnB1z9Urj0t4JxkW6tm4XfbT2H+/SYzoYO1/v9X1EN14WpoKFblWPmdu9y45z4n7R9CFP6JaIcvEnE+3UfeAIvf/FEiWu6b9hjsaPGaI+T7fW3dXLq3KT5/XO91tTCJvjOTu1eMTjqmqNWAo111gn2R1iQ2dVye1/UhT/Mzfspc837vOucPquvPJKb5R03TUAwcn//zg0NPkCf8g4+7Xx6ymanLwbdNlbVLXE8VDwdFkFf3Zn0599jVrs9Vd6pz6H3fWUXk3+Ws79aK/brj7xNnLiVujddk1U/b7XNO9YRT0S3VF3Fv5NH7RtoBvrd9WEDf7PtY4OrY5/jbAmVFVqXKcr3ZdUF6pk9VqqoEWasfSP5JPn4z9lm2a+/oHy9H1cdfKn/w1iAAgqDgBkeZudmFbXOioe7Sw+7B06pSPOrm/6OFUU6pRo/a6z8p8j3vFjzuHt85zoxtc4Cn3AGb12n3c83tYYJ9JehUbGOFu9Q+73jiye4vc+tmuO0/OmKGfcL35fIx2mT59ur2vdj/nz53tHg1NMTEzi77Jz507vaHoccbZ/3tGJP91O/Hrxpx9OjTdWxF9yxPln5RindYlQv8uKO5Exm73PTXBs+xynf6NSftdJ40doDafthz87B7yvk+jg907foilc/6QfRZ2WH26Mv9elz9q1axO/lo0BBLes+D997MBWZ/msGGd0dBcnsnaJ+N8t1Cleu4XzRJdoZ/TnC5wNu//1rnkmDsc/RT/hhIT4P77Gf8Q/X//u/wB77ICzO/Zn55uxzzq1Q5NdVyWc+8etdc70p/F9vb59+3pHsh97fq9SpYr7d2jcuLF3NI2811rFBy6Kv1XT6Nh255uedeK/XwWn9ejlzt7E2/ygs/27wU6j+Ns6tPEoZ+2/vgt895dkrw3iv3erkBCnePTiZN874TXjTfe/7/yS+DUAIOujQhEAUnJso6a8NlqLwh7WK30fUJlQ37vNIcp52c168sX/qHrcZ4p+f7H2epcoZ27lSa1gJF9uJW06uVcr3ntLyx/uoBbF01/tYCZMmOBurTrRphNlFWfWkMXRkX//PV5J6NqtbXEHdXjzZHVu2l5j1icvPfFz5Fd92vNZvfDZGu+ACVedrv+n79Zu14Fjtl7XMR3+Z7OWfR6tliX8bvi4+RrxWDcNX5ysGU/uEqrfrZMa+TcQOKkSqh35mB6qmv7q1QIFCnij7Dm9DshqznjdPecvLRjaSpWtUtqt3G6vYd/8nnJVtXH+1upPXtK9lQsp5Nq6euSV6dp8OMkjW1LWxGLQw97XD9FFVZ9JVvl1nBO3QbPf6aa7y0aoXN3matN5oMbNWR9/SZw2zBmvtwZ2Vpu7q6l45fvUa9IaxaXwbZ0d32jQfVUTl6G4qPLDGjQvheqxUzqqHVM66qLz8igsvLRuafVfzUnyFBGqUk//V4PuL6GUW7iknW9t27///tvdZkf2/N6tWzf3NrMlOZYtW+ZdcnYc+3WaXntttsIe6aF+j9wQf3/xLtD5uqz6I+rZq4H2TR6j9xf4Gu7Ev9bLnTv+Vk9JaPxLupxJn5f3L9d7fdfq4e6NVTxXep+xASD4ECgCQAqO/TJP70/apLCWd6pGwdzeUZ8Q5S1bS83KSWtGTdPivd7qiPmLqnz5MOmnLdruawK4b5OWzd6gsFtKKjxxBkxCI5ZeH12nZ1uW0Zku2+1bO9EaaAS7NWv8A7yz4NgGfTmgv0YkCRNLqHaLhqp+te/U4ah2ffOOuo9Y4u2bUJVoO1hj+t6v6hGXeYv4x59whIarXMNOevuDPrrd/8wjbrJ6952k9f4n3iGXqvITr2ny4q06vDha1yY/5ygerUX/eo0F3I91mj32BTUslv7AOVt1yQaygY0bN3qjpG8YpN0erZ81W0vch8A4bZj9P3X8zzgt3p9yBOfETlPfNr01fsk2xV9ZY17orv/NS62RxjHt/X60/tP5fe/rx3+HRQu04vfk680dVdzqj/XM3XVUt82r+mLDSd7cMRsm6uWmD6jDuyuShYpH9dcPE9T740WJbx7FLXlfvf9vsY4vnpFWKb0J5ROmSk9/oOkDG6pQ0ncGcQZq167tjZSkWUvGO6hf5nyuSXFl1bLZjSp4wk2YT2Xr3KpyIfM1aspy703iHMpf7DqV1/b4l3S74u9pxtG+X1ZotorplpJXxl/DxxqxvK6PqkWp5XWpvasMAFkTgSIAnOCo9vy6WoviTyLKlCuqS1N6pDy/kEpVKyxtW611W7yTpRzhqtL4RmnpLM1daS9Jj2rXDzM0PraUmtxSOv6redxGLONVrNejqhF2Zuvs+K+nVaFCBW8UvPbs2eNufRUcGW3X+EF6+U0LCsNV+6k3NGXxRu06sEazP3ldbSt5t5CzWV+N/khJo83KioysqyIpnkzmUL5KzdT2nhLefoK4ye/Fn4Rn3woUAGdXut4wCCmkSg0qejueld9q4fqUqgiP6I/Fc/R5kpRtid6bvuJ4ZX4Se7X6m7lJHzvDbtJNZfybmBxV3Kr31bHpY3p9jq9xhlV/f6iFv/2tw+6bKYf1z28/6KOuDXSRd434J1aNeaqX3lnh/51TDgHjDvybesVlqkKU68J8Ku7tJbVbS0YN0+CYlSlWSSJ97P4bFRXljr/++mt3e3b8rV9X2Gul4ipXLCxpZaErROcXKaVqoSHa9t06bfHeEM5RtJIaVc+lpZO+0cqD8Te8s0M/fPGVYi+5Sbdc7/vfS2jEMmBYIfX6z80KI28GkM0QKALIRuK0ddkkDXq6qSpfdJGurdNK3YZ9oVUndPc7pn17dsWfQuRXscsv9nsX2l8+FbzWGl5s19advuqLi1XxwSfVrsRMPdUiSl37dlLk469rTfVH9PhtV3kvYq0Ry0i9okf09K0FU3hhm36XXXaZN0Jqdi9ZouWqoNajp+jzwe10V6VrFHZB0qdC54+lmv75Bm/PE14r/gTiJJ09Q65QhbpVvR2fxRo//xcd8vYAIPPlUfEqNVTO20vwo75YsiX+mS+5nVrxzfcnBHbbvvxBq1OqaPx3kxZOXe7tJAhtfJNuCMvp7cU/vu6er+hHOunddb4GWVb9/brG9G2pKkXyKeGaORVapKpa9n1DY9pVdo+44ibppRHf6M8Tf9AMkEMF6r+qNbaMxbT/6YkqyZamiPtKr9//hF78YnM6wsqU0ShLatCggbu1ac/WYO60HNyiZRMH6+nGlXVRSITqtHpew6as1O4jye6bzgHt+cPe3LtSl4cln3HiCSuo4lfEb3/7QzstPDR5y+vB51upxOwX1CKys/p2ekyPv/qzqj37kG4r6E18dxuxvCunW5Ruvfz4/RwAsgsCRQDZx4bealTlYY1YcZnu7Nld9xf5Rf/r2FDVmr+qmdv8Y59D2h77qzc+le36bcfxyo6QgvX04qg+aqmpGvjiMH1x3v0aPfIJ3ZgvIZZ09i7SqD6/q+PzDVOpdsPZFaYqPQfrtUduUGiKf35H+39ZoZnJy1BKF9EVeU72lJlLl15VRElPQeO0fPEGbU/hvDszLFiwwBsByL5CdH6Jiqqf5MFqm2Z8tki/JX+s2rdO305MGhC6Vv6gZZtODH+ObfpRX36329szBXVTzet0ReJD59/6cfQAvbzI7zqhjdStU4OUnw9zFlWDyGYq6+2a3R/P0dLdGRXpJectY1G/nYZPn6LRrZNX/X+v1595XdO2JX8TMn0sRMvuihUr5o2k2FhfxWrabOjZVFWav6kVBe9Qz4H3qMjPY9Xx7jvVvM/X2uYfKh7dqdjFm7ydU4j9Qzv2+tasyaWCDZ7VqOjG0vj/6sUhs3Re68F6u+ONyufeXY9q7w/v6+WNLdStaXEvDAeA7IVAEUA2Eq46Pcdr1pcj9HLnbuoz5kt9P+Ih5Zr9qtp1n6SNJ1toPs3OV8FbntL7C3/SssWrtPnHN/RomYu9SsQ4rf7gDX1zbyfdF+FbF++YDm77UV+8M0yDho7VF8u3n1b1A003TlNoUz3bpvpJpiXFnyDs+EMnnNZceYkuOukz5nnKe3F+nbDa4eLY4+tpZrIiRYp4IwDZWr4yqntv0hpFfbNEq3b4P/s4OrTmB33mPhiGqXjxcPdogoX6dMHm+EdLf/9qy9Jv9V385x1XVU2rFTle5b93iT55bZq347m1geqUSG2d2BDlve5G3ekffu7+QYvXpbzSYcYJUc6winrk1f7qVCrZmnjrx6j//y3TGbbGgSdv3jNoShd6h3pOm6Ev3+yjzp37a8ysqRpxXx7Nfrmrusf8ogyJfXNepVuee1cLNy7X4lU/68eRkSp7kXePPrhKHwxYppa971HJ3N6LCme/ti35Uu8M/a+GvvOllu9gjgKArI1AEUA2kEuXlKijyHY9Ff3s7Srim+IacrHKPvykni0bf47w7hhNTLI205mIPxm5pKjKVbpO4aG+96wdHd4wWf3eK6nuD5XzgidHB9d9qHa1mqj33K06uHGinirfQI9/vD7NL4RtDSLr7mzOekOTrOCmm1ShcCpTnlyHtH3Lb944A/y5Wdt2B0aiWKhQIW8EIHsLU+nqlZJ2sN09X/NWJqxhm+CQflu+UAn1ideq7m1V/a6/Td99vVxbkkw93q2fv1+SdI3BcjVUpXgeb8fRvuXf6MNt3q6neI3458lU3+CJd+HluqZ44grE8bZp/daMeq4+uZDLa6hVu1rens9ufT/2a61IpYnN6ThbawVnebkuUURka7Ub9LKerVfUa5IWf3uF3qCHn2qtslqqd4d8liG3UYL415DX3KBK1xVWaGIl7X5tGD9M75V7Qg/fkM87Fqd17z+jWrX7ae6Ovdo48VmVv7mTPt5I/Awg6yJQBJANXKm63d/W2DeiVMmbepwobzFVvtWWYf9BkxfFetWBOXVRfluP8KgOHT6apN7iRJfr6ssu9MYn4WzR9P+O15U9H9XN+b2f4fDP+qBLD40p3Flvj+ivHoPf1P86XaB32w3W51vT/t76ww8/7G67d++uXbt2ueNgt3u3/7S5DHTKSkNb5P+gbTJG3L/6N/l6TgCQqXKrcIWbdZO3l2CJPpzzsxIX8Ih/zvrhM98yCRV1W5NbVN7bM3HTvteKHX7PU3tXadYny5M8dBasX1ElzvcFMAf026plyaq/i+vmYpeffKpojot1ebHM6lYfqrK3NVQNby/Rym+0cD0hUUbYtCmNU5H9Fair7mPf1RtPVPamHvuEKG9ERd1q+fP387TINy3/vAuVv7iVuf6rw6d6Pg6/Upclf52YAmfbTP13RAH1TGzE4ujwuk/U5cnPVLjfcL3Vp7cGvzNYnXK8p3Z9p2krLwMAZFEEigCyuQtVoLC9+tytZcs2aZf7oi+XClxVRGHapB9++SP+JWhKduu3n+zU6HIVuvSChEOpOqpds99WjwMPuI1YfA+8R9d/o3cn/6UK8SdqZfPEvyINKagaTespfPfX+nzBthQWyE9ZvXr1vJH0wQcfeKPg5JuWO2rUKHcLADguNPR4neCZNPU4r2hF3XVT0o63sZ/9oDWHEpIPZ8caffeNF//VKK8yVcvqpiRTj+drfmJFo6P9q3/Ql0mqD8vp3rpl5Kvdkg5q59bt3thng8Y1L6KQkJCTfBRR83H+TbI26NuNp7c0yJnIUTgi6e/tWq8lG7LGm3eZ7Y8//vBGUkREhDc6A/kKqLCbP6/Vso3e/fO8MF1V+vL4wXr98nsqQfCO37TS7mZXX6lLfSWPqXG2a/aQN3Wgo38jlgNaP+szTY4rpya1ImSvCkMur6qmLa7X7vFfacEf5+oeCwDnFoEiAHhyXZDLW+sphy655jrZROJNi9Zra0rJ3r5NWjY7/tVnwesUUfjkgaKzd6FGvLgpWSOWo9q1cbWW6QpdH//qN+H7hujCa29QnfgXvfM27ki2PlXq7EW4b+pUhw4dgrpzZOZPy/WqU09xPpFmBfPrkgsz76nW/77gH0QACE5Fixb1RmcodxFVuLWUt+OxKc6/2Zpvx/TPyu802SsUL3hThApfcq1urF8i4YBrrb78fr23luABbVr2g5Ks4htaSdVL+09V3qcdvyUPFNMhtJGeqF3s3DXAyHuxLjthmb8zCzXPWgV+EPr000/dbVRUlLvNOOfrgly+SsOLdc0NFlb+pkXrd6QwAcHRvl9WaHb81r2vn7RA0RqxjNGLa+7R883874d7tHHZ2vjt1Sp8+fkJh5RP15a/QYpbo41bD3rHACBrIVAEkPUd2as9+1KJ5w5v0qIZ9iKwuBpUj0hs1nHeNVXV9PaC0sxpmr3+eBfnBEe164cZGh8bqlJRDVQ538keShMascxt6d+IxdjU2n/jL80YHTt29EbSQw89dNrdEgNFRlXfpF8uhV1+ZdK1xcxPW07RXOWodm/brD+9vURXXqlLMzFQ9JdhQQSAgLB//5lMu71E5WrXVsEkb54s0Gc/bNEx7dHyOXOUUHBYQvVvvFYXnXe5ytZMMulZK6cu1vp/HenYZi34dKF33HPTzadYr9YUVYvRi7V169Y0f2yL/VjPVTmHU6BzXq5iN9uyKBnHV4EfHu7f6Cb7sed4X6frmjVruttTi3/t9Pff2pfiFGKbdrxYM6zSMEmgfb6uqXarblesZsZ8o/XJG/A5O/TDF18p1qmhqIbl/KpqU2CNWF5NaMQSkcv/n+eo/j2QMd2/ASCYECgCyOL2avkbUbrrubFasG1//MtNP0f+1OJ3hui1r7Yp9Pb2euaOIscfFHOVUrNnI1Uq7jO9OmC8VsX50qRjOrj5Kw3pN05rQu/SUy0rnuTF5/FGLD0e9jVi8cmh/IWKxJ9O7dcfe/YlTm8+un2Lfoo/Wjn80uOdMdOgcOHCiomJcceLFi1S8+bNtWXLFnc/mPiHXmd2spxe8bdLsetUPnmJ4qbN+uPvk9WjHNKOLZtPCIjDbimp8NO5ITOYf+dv/47gAIKT///xxo0bvVF6nKeLSldW/VD/x7pYzZy1Qn8c3KylM31NvsqrZtnL4699vq4uV1VJekN/N19LNh2Ss2W5vv7Of75zmGo0rariSc4yLtRlV9u0U39/6Ze4nLq8YEEVTOPHlZdckGEF5Gdi15a/4l9dnJns3ijLglXHSXhV1rBhQ3d7SvuX6o17W+i5d7/X1oP+00ccHdmxUO9Ev62vFK7bez2uO8J9gXaIcpW+W892qq64ycP1yns/6R/fi0FnnzbPeEt9//edLmz0kFqeNKxOaMTy/g3+jVh88qlQhM2N36U9//heK/iavF2j8MSqRQDIWggUAWRxF6lMiyfVdM8wVS9UXnVbdVG/QYM0qF8Xtbq9pqq0/UjHGr2qyWPbqXKShbjjT3LqPa23+9eXM+YRVav9oLr0i1Z0z7a6s24LvbywiNqN6as2ZU4yjdQasbw2wW3EUiMseaoUovOvq6GHS/2jRfNX6w/3dfE+rf1+rpaqiupVuPK0H6CbNWumYcOGuWMLFW0/2KY/Z9zJcvrluLaa7rnJf6pevN2zNH1RSlOlPIc36puJySp0VFYtbysbf2qdRv/Gaf+h5PPr40+SjqS/S7RV9PhYR3AAwc3//zgu7sxq3EOuvEF1bk1aJRc3+Tst/XGhvvjOm5Zbo66qFXdXhNP5JSqqfpL1BK2i8Tft+nmRpiX5UcqpQfnCyd4Uu0CXFkoeKMZp08Y/9Le3lx2wDEWCZcuWKTo62h3b65Y0Pz/lLaMW3e/U7gH1dFXZ29Sqa18NGhStfl1b6/bqt6ntmP1q1O9djX26atKGLSGFVO/5V9S/0QGNadNAdVo+G/9acIB6tmumug16alHpTnr3tYdU5iTrJ/oasbz45E2Js1mOu0jX3XKbSuknzV+5PeG1wuFf9f2U5VK9GqpwVS73WgCQ1RAoAsjiQpSzYG09995MrZ3ZQ7ddvF6f9u6szgNmac/1D+rNT+do3sfPqW7BFN49DrlSNbu9oxmzxqrbTYc0a0AXdfngF4Xf01+fzo/R0ObXKvWXiAmNWF7cf7/biCXFl6j5KqrlU3fp8Lt99cKwz/VNzEC17zxDpTo9qoYlTtXoJWXt27d3X5zbYvYWKpYsWVLjxo3TgQNet8MAZycVVarY6pXxp6oLFiRWL5xTuSPU4NE7kk17XqpRr32kJXtTCvcOavPno9xK1yRKNVGLm65M8bbPcXm4Kie/JHa11v9u65d5nL+1bmIP3dVqgjan888wc+ZMd+tbYxNA8GvcuLG79a9ATpeQQqpUv6K349n9hd7s/55meLvhdcroal8yeFHydRRj9c13s/XFzDlKsipgweqqfl3yCq48urpMeSWf5Lv7k7latjelhYoDhHNUhw8lf9wPVdFiV+pib+90+FfeZ9dlKOz1yOOPP+7tSQ888IA3SovzVfCWp/T+wiWa2fN2Xbxmknp37qIBM/fq+gej9enir/Xx87eqYOJ61ceFXFZL3f5vimaN7aCbDs3VgM799MHaK3XP0Ema/8Uruqf4hd41U+DXiKXuFSm98jtP+ao01VONDurdbi9p2LSZiunTRZ2/KqpOzzRQCc64AWRV8SdrAICMduQn581bHnJGr4nzDqTicKwzs19z59r4h+P4kxSnRORIZ9nuI96F6RcTE2MRVOJH/AmoM2/ePO/SwNa9e3f3Z65SpYpz7Ngx7+jpOuxsjWmb5G/gfkROcLZ61ziZY38vcKJvDz/h80NrP+28+fk8Z+XGLc7Wrb85axd/5XzY9wEn/hQ72XUrOW1jNsb/FKmI+8bpWSQk2eeEOVW6jHdWbt7ibFw23RndpbFT3I4XfN6Z+fdR7xPTLv7E1QkJSfgeY8eO9Y4CCHadO3d2/6/tMfLMHHMOLo52yiU+BiX/qOR0mbnDu6454Kwd3SLpdUKLOsWLhiY5Ftb2c+fPlB66/57rvFgq6XWlUk7rj35J/bEy0THn8K5lTszIWc7mxIdDe5x/ItnXi/+IjEnhcT7huiEhJ17395M9zRz83ulbNNnnnPB3STv/5+Z9+/Z5R7OXqKioxL/BhAkTvKOB7ciqN51bGo921v57sjtL/H1069dOv0alvN+vghM5YrGzO70vYwAgCBAoAsDZcOwfJ/bXv9JwkmQOO/9sXuUsWRXr/HM44155rl271g0SfS/c7cP27YTGwqZAERsb68yfP98ZNmyY+/NVrVo18efdvHmzd63TdcTZ/nlHJ9Tvd7eP0Cc+c7Z71zi5I84/K8c4rUskP/lNy0e4U6fnDGfrSW/LHc7MrpVT+NyUPho7b646/RNP+5v6AsWlS5d6RwEEO/9Q6owfy/+e6XQpmPwxx/sIbevEbE36LGbBSo2Urpv4Ee40HrfeSfnRb5+zdvQDJzwuq8RjzuhlJ3m+PLbP2bpgrPN07XBHYc86U//yXfNsB4rHnH2LBznV/a9vH9UHOYv3pe+52j8MTv8bZsHLnud9f0cLFoPlb3Dsn9+dX3cc9PZO4fDfzuZVy5xVm/9O42tAAAheFGADwNkQEqrCRS9VTm/35HIqNPw6VbyusEJTmKaTXhEREZo0aZLbrMU3jdg6KlrDlrx586p///769ttvtWvXLveyc8G+l62dNHHiRHXp0kVVq1Z1O13WqFFDHTp0cH++hQuPr0XoPz49OVTgxubq1bJK4tTl0EoPqecDlZW21iQ5FFomUiPnztDoLo2V1h6foVUe1cDPZuizl25PccrVcZeq5mNP6/6TLrAYquJ3ddLQKQP0UOmkLX3SYunSpd5I7tR3AFlDsWLFvJG0du1ab5RO+cqo7r1JWq0cd+tNqnBl0mexHEXLqUHZk639V02Nbiyc8jIfyqsS9z6j/o2KJr18/Ui1qXG/nnvzCy35dZcOWtykI4rb8auWz/pQ0Y/erohqrfT6nFhp9y7t2XcWpkgf3qx5E77UgnU7vO9/WHvWfa4BnYfoe/cKPtXVqdf9qpg3fc/Vc+bMcbe1a9d2t9mFTXO253x7njdRUVEaOnSouzxLMAgJLaSiBdLYWCVnPoVfV07XhedL42tAAAheIZYqemMAQBZlL+anTp3qrqdooV1ytiaXhXulSpVS2bJl3eYo6W3iYd8rNjbWXSvKGqtYY5DNmzcnLsB+MrbWX7Vq1dywc8mSJe5Jx8iRI71LM0v8ieXGH7Xg+x/144oVWvvrGn07fo42xF8SWukuNbn+Wl1T/gaVv6Gyqlcvq4IXpPW9uqOKWzdd777zsSZOmKg5GwqqdovqKnlNqfivVV7lq1RW+RKX6SRrxJ+U3Z62jmZg/A0BZBR7Y+bSSy91x2PHjlVkZKQ7Tp8j2j7lOZW6e0jSdRBVVE3GzVDMwyWSLbi+Rwv6NVX1HgnB2AluGqJlszuoXO7UHrgcHdn2tfo8FKWXZ232jp2G0JYatfhdtSmZJ37nqHZM6aRidw9L0mE/9InPtXFEQ13m7Sc4ql3Tu6rEHf/VLr8zH7vuhjfvUugPA3Rj9Rd08lUpK6j16DEa9sgNStIcO438bzd7o88ap2UHW7Zscdd39r328IWJefLYbQgACGYEigCQzViF4Pz5891w0QKnk7HKxrRWUqQlMPRnX7tJkyaJIaZVVPoMHz48sZJh586ddCg+TXYbV6hQwR1Pnz5d9erVc8cAsgZ77LSAxsKZt99++8wqvQ6u1cT+vdV/8IdaYslcaCU1evJZ9X/xXpUJTdqrOSEQ/EZvvtxfQ0bMcN9YSRCq4nVa6am+PdQ+lWZU/py4XzRj9Kt6sccoLUpLs+rQKmrxdFu1fbiJbonIn1j55ez4Rv/t8Jx6f7zIDRWtEr3X4Gg9W/PEn8HZs0wfvPa2Zvy6WasmfaElVzRX/3eHq1vNvPpx0D2q3Pkr75rJWbX4f/RC1yf1QI0i6X6Tx2YEWDW+scpS/+e8k/G9SWdNeNasWePOPChU6P/buw/4mO//D+CvUyo4I9ZPjNSKPRtaQREjqhQ1WtRWLR2K2pSqvVqlRVXUqvE3atZM7KAVewZBQoJEkEQSEvn8v58byTeXu8tlB6/n45GHG+7ue5/vZ77v8/18imPmzJk2v0dmkVcjyKsijBhMJCJ6tTCgSET0GvPx8dENUuSOyskNCCaHHESUKVPG5hmQ6oBY6mfgvH4YkCV6tanL+NOnT3XLWLx8YhEVfB1njh/DiX9P48yVszhsmP0NOKFJ54aoWdkZdV3qoG6dmnAqbJdkoDJlBGKCzmH3tr04dPwwPNZshTec0bpDQzjXewcutd9FvTplUSCVS5LImfdjx47V3VYPv/bs2YPw8IRRVePMfnmJtKUf/pITlMxoMngq+xTqKyJkIFH2BRhMJCJ6dTCgSEREceQlWcHBwbogoyRnQzx+/Fh3OykFChTQBQyl//3vfyhSpEiqLp02zsCRl2PLGRlkGzmbxRhckJeQy1ksRPRqUc92O3z4cNxtyrqMy1Co62UZTGzZsqXutq3k7P5Ro0ZlyUumzQUSZRv+ww8/oFatWoZHiIjoVcGAIhERZUnyUqlOnTrpZnLIS7QbNGhgeIasUV9ixkAD0atJ/cOBnPllnK1IWZOlZSjU6yraQs7Y79y5c5aa5SfXSJQ/+pkuo2IMfLZq1YqzEomIXlEMKBIRUZYkB1pyhqNspjhL0TYyyNC4cWPdoE4O5k6cOPHS7KJJRMnTv39/LFmyRFfWU74jPmUEa8tQyLZu0aJFcZdDWyPPtVzXWG5eJnf7lm1kyZIlDc9mDHm8ly9fxunTp82uxWwMJMrj5HIbRESvNgYUiYgoy1IPwjhLMWnq2Ymv0y6iRK8j9eWyrB+ztnfffVcX9JVrCFradV+uaTxy5MgU/Xgm39fe3l4XaJTkWsVSqVKlUjw70LgESlBQEO7fv69ba1keo/pyZjV5DL1798bbb7/NGYlERK8JBhSJiCjLUl8OxlmK1pnOTjx48CAHdUSvMHX9OGXKFIwZM0Z3m7IWebmzDLLJIVdSu+7Letzd3d3sJezycmd5ebEMTFoK6lkj29CkNnF59OiRbtarreR6kM2bN0edOnU4G5GI6DXEgCIREWVp6lmKSQ3GXmecnUj0+lHvHMwd3bOmESNG6DYqkWw9R+pNd4zU9boMPPr7++PWrVu4d++ebiM1a7MH04IxIClnQcoZkKmZ/UhERK8GBhSJiChLM515d+DAgbjNCEhPzlpxdHSMW29yzZo1HOgRvQbUs9/4Q0LWk5pZpLJel+fTuEahbP927dqVZEBSvi4iIiLuUmUpPDxcF3S0hWxLihcvrrttvHQ6qZmNRET0emJAkYiIsjz17LvJkyfbtHj968S4OYMkF8qvVauW7jYRvfo++ugj3XIQXOog61HPsE9J3SyDg/L1xuU+eGk7ERFlJdkM/xIREWVZcpaGXPBdGjdunG5WDunJYKsxmCgHmwwmEr1eevTooftXzmQ7deqU7jZlPjm7Xu6CLMmZ4ympm+UOzqtXr45r/x4/fqz7l4iIKCvgDEUiInopyJkacs0mydZLv151TBMiUi8Lwc2rsg71zPrDhw8nWhMxOeQ5NgaLuZs3ERFlFZyhSERELwU5U0OuEabRaHQD55EjR+oGWa8r+d3V66X9/vvvDCYSvYbkJc6jRo3S3ZabcshAFmUuuXbi9OnTdbdlkDe1QUB5juV7MJhIRERZCQOKRET00pABNLmGoiQv83V3d9fdft3IYOKgQYPiFutfvnw5ateurbtNRK+fVq1a6WYpSzKQJTfloMwjL1M21s/Dhw/X/RBGRET0qmFAkYiIXipDhgyJW09KLlYvF71/3chAqnHdRJkWPXv21N0moteTepaiDGStX79ed5synnEjFSktZicSERFlVQwoEhHRS0UOnCdMmBA3G0cO3ObPn6+7/TqQAVQ5O1GSwcR58+bpbhPR603OUpQBLKl37966wBZlPHV7NHPmTMMtIiKiVw8DikRE9NKR6ynKdcKMQUUZYHsdZirK7ygDqHI/NfndZWBVBliJiGRd8MMPPxjugT82ZII9e/Zg1qxZutvyUucKFSrobhMREb2K3lA6HvE9DyIiopdEvnz5dDNyjhw5goCAAOzcuROFCxfGO++8Y/gfrw65ZqIcpA4bNkx3XwYTZUBVBlaJiIyKFSumWz/Ry8tL91e/fn2UK1fO8CylJ7kRS9++fXH37l1dHb1o0SL+4ENERK80zlAkIqKXlnGmojGIKGfvjRgx4pXa/dm4AcvYsWN19+VAVe52zWAiEZkj11I01onjxo3jpc8ZRG6GY9yIRZ4D7rpPRESvOgYUiYjopSYDazLAZrz8Wc7kkwE4f39/3f2XmY+PD5o0aZJgAxYZQC1VqpTuPhGRKRnImjRpku62DHBNnDjxlfqRJSuS9bL6UucOHTrobhMREb3KNEIuxERERPSSk5ebjRw5Mi74Ju3evRtubm6Gey8XOUDt2LGj4Z5+kCoDA7yEjohsMXXq1LiZzXKjkK+//lp3m9KW/OGnYsWKutvyhy25/EahQoV094mIiF5lDCgSEdErQ87CcXd31136bCQDcS/T5WdycCpnuqgDo8uXL0fPnj0N94iIkibrw65du2LLli26+4cPH0bDhg11tyltyDRu3Lhx3KXOck3fBg0a6G4TERG96hhQJCKiV87Ro0cxdOhQ/Pvvv4ZHoLssWm7iklVn+JkLhsrZLr///jtq165teISIyHZy/UT1EglXr17lzsNpRNbZ3377Lf744w/dff7wQ0RErxuuoUhERK8cOUNEXnYmZycaycuH5UwSeSmxHAhmFfJY5DHJY1MHE6dMmYKDBw8ymEhEKSbXmJWz5oy6d+/OTVrSyM8//xwXTJRtDYOJRET0uuEMRSIieqXJ2YryEmLjZX+SnPknL4OWG55k1qXQcs3H7du349dff427XE5q164dZs6cyVlERJRmVqxYgd69e0N2+2X9J3/E4E7xKSfrbeMPQHKzrHnz5nF9WyIieu0woEhERK88OQtQzlicPn16guCdNHnyZLRu3Rq1atUyPJJ+5HGcOnVKF9w07ghqJAOJw4YN4xpnRJQuGARLG+p0ZHCWiIheZwwoEhHRa8MYWJSzddQzFiU5MGzfvj3q1KmDKlWqpNkAUV5eeOnSJZw8eTJux1U1GUiUl8txIX8iSm/qnZ9lUHH8+PEJ1lgk60yDiXJtXqYfERG9rhhQJCKi15K8FFquUWguyCfJwaK8JLpevXrQarUoXbq07nE5eDSd1SMvXw4ODtbdvnDhAsLDw3X/ms5CVMvImZFERJL8UWXQoEFxu8hzhp3tODORiIgoIQYUiYjotSaDgXL2oKUZhGnFOANSbr7y9ttv81JDIsoUMqgoNxQx1neyblq1ahXXbbWAQVgiIiLzGFAkIiJS8fHx0c0uPH78uO626aXRtpKXMr/zzjuoVKkSqlWrxsE6EWUpcsadDJQZhwJyN2guvZCQXLJi4sSJDCYSERGZwYAiERFREmRgUQoKCsL9+/d1t02VLVsWuXPn1v1xsElELwO5nmyvXr0M94D58+ejX79+nEGtOHPmDD7//PO4jby4kQ0REVFCDCgSEREREb2m5Hqy6t3lZeBswoQJr+0PI/IS5/Xr1ycItE6ZMgVDhgxhMJGIiEglm+FfIiIiIiJ6zcjLnP39/XXLNEjy8t4OHTpgz549uvuvE3mJs7wMXB1MlDs5jxkzhsFEIiIiE5yhSERERET0mjPdrEUaPny4LsD2qs9WlN99586d6Nixo+ERblZDRESUFAYUiYiIiIhIR85MHDduXNzagdKyZcvw8ccfv5Kz9OQl37NmzUqwAdfkyZMxdOhQzkokIiKyggFFIiIiIiKKExISgunTp+sCbUZyxt6oUaN0l0O/CuRmW/LybtPvuHjxYtSqVcvwCBEREVnCgCIRERERESUidzr+4YcfEszek2stfvnll3jvvfdeyhl85gKJ0vLly9G5c2fOSiQiIrIRA4pERERERGSWcX1BOWNRfRm0ccZikyZNULBgQcOjWZe8tFleui2DiWry8uaBAwe+FN+BiIgoK2FAkYiIiIiIrLIUWJSmTJmCxo0b63aMzkrkrs2enp749ddfEx2z3HDms88+46YrREREKcSAIhERERER2cQYWFyxYkWCS6ElOWuxZ8+eqF27Nt5+++1MuXxYXtJ8/PhxbNq0KdHxSfPnz0e3bt04I5GIiCiVGFAkIiIiIqJkk2ss/vPPPxg7dqzhkYTkDEC51mKNGjXg6OiYLkE8GUC8desWTp48ic2bNyeaiSi97Os+EhERZUUMKBIRERERUYrJXaFlQG/9+vWJ1ihUkzMY5ZqL1apVg1arRdmyZZE7d27dc6VKlTIb7JOXLUdEROhuy8BheHi4bgbio0ePrH6WDCLKHambNm2KkiVLGh4lIiKitMKAIhERERERpQl5SfSpU6dw+vRp7Nu3z+xlx+lFrovYvHlzVKlShUFEIiKidMaAIhERERERpQs5e9HPzw++vr66mYXyEuXUBhnVMx2LFSvGACIREVEmYECRiIiIiIgylAw0BgcH624HBQXh/v37utvmyMChJC+PZuCQiIgoa2BAkYiIiIiIiIiIiGyWzfAvERERERERERERUZIYUCQiIiIiIiIiIiKbMaBIRERERERERERENmNAkYiIiIiIiIiIiGzGgCIRERERERERERHZjAFFIiIiIiIiIiIishkDikRERERERERERGQzBhSJiIiIiIiIiIjIZgwoEhERERERERERkc0YUCQiIiIiIiIiIiKbMaBIRERERERERERENmNAkYiIiIiIiIiIiGzGgCIRERERERERERHZjAFFIiIiIiIiIiIishkDikRERERERERERGQzBhSJiIiIiIiIiIjIZgwoEhERERERERERkc0YUCQiIiIiIiIiIiKbMaBIRERERERERERENmNAkYiIiIiIiIiIiGzGgCIRERERERERERHZjAFFIiIiIiIiIiIishkDikRERERERERERGQzBhSJiIiIiIiIiIjIZgwoEhERERERERERkc0YUCQiIiIiIiIiIiKbMaBIRERERERERERENmNAkSiRFwj32Ynf56/F8cBnhsekZwg8vhbzf98Jn/AXhseIiIiIiIiIiF4vGqEw3CYiKeIYprzrhnEXwqHtugYX/+oCRw0g/Nbh06pdsCZci2qT9+DEWBfkNryEiIiIiIiIiOh1wRmKRKZyVUH7EX1Q16kjRvdrgOIa/cOa4g3w2eiOqFC3D0a0r4Jc+oeJiIiIiIiIiF4rnKFIRERERERERERENkvfgGLEKcz7aCYw43cMqpXf8KA10Qg8vBJLt/8Hn3sRiH14HcEdlmBH38o2TqU093p35fWV0mgq5hN4LxqHGet2Y/2Ba8p9Z4zYtxMzmhXRP22VQIT3H/hmxhocXH8AN5RHHEbsw5UZzZBP/x8ogwn/7Rgzbj0CDPcTyw+XQT9igHMBw315Dhfj82FzsCWsAtpXLaTkq6fwO+oJ/1IdMWz2bAx4+ykO/7EM209dw73I53h4Eeiw2h19K9gZ3oMoE0R4Y9E307Du4G4cuBGuVD6j4XFlMprm4yT1pBnq7nlH8Vwp0Jt3eENJQYUW5Zq0RAPHPLp7ekp9cMwPeZq4or5zfbi1ckUtx3zIbnhWz1xb4KG0BU3ZFlBCLLcZR5fW83Ds+UNc3LwD3vpCDqWQo3MDR9UVCbGI9DsP3zw10dClMVq83xLN3i4BO8OVDFmP7Ld+j3nHnih94vj6S+s6E3s2DoWL/Rv6/6amS4sJWPJ/Psjb6l04Kl8+0u8kTqEqGn8yGvMHOHO5l/Qi036QUuYPvExlPhieo1qh2YyThvuSA5xbu6JqoYStn5KRcNTQ7mm7rsXFvz7RLSlEycB2IRkyur9l/vMuT2+K/MznySICD+OPpdtxyuceImOVdjm4A1bv6IsKr002f8nGCjKgmD5ixEOPcaIStKLapKPiqeFR62JFdFiwCPC7IHZObiu0cBBuSy6JF4Znk5bw9Xnl690vJ+P1BtH+wmNKJ1GuXEcx9VCg8q4mYh+KY1PcBOAsRux7YHjQVjHiybEZwkVJeocR+8QTw6Ovrej74szf88TIL3qLnt3biiauncUXI+eJv0/eEZGJEj69PBP3d40WlTVK6UVp0W7RWfHU2mfHPhUBh34SbbXK/680RKy98lBEG55SvpAICwoQfld2iMlujsr7dRbuVyMNzxFlrtgnXmKKi71QOqDC40mya0YSz8XdjQOFvWzpLaVh9ENxdd8C8UVdBwFtQ/HFwiMiINpchaJuCzzYFpBFmV9ulb5VwD4xpW01Ua7tLHHoQXyL9yqKvbtR9LGX/QGlj+cRZHhU7YWIDLoqvDZMFZ84lRJ1v/hdeAVEGZ4zJ0oEeMwQbctVE22nHhAPMqxvYypIeIxqLMqV1irfrZRwnXJYhFg7luhgcca9v3By6i/czwSr+jmU3l6utlrJVyPrKHlKK5w+mSo2/ucrQiLNHfNTcWPtl8JJtp/admLWfw8Tj6+yqui74tiqBWLR9ssizHjQ5h7LQC9df043tu6oH1sfDMjgc6/vb9VXxnkZ099K2L97nOjLZmKbEHtLbBvVV/Ts2U20dlb6qbI86v6cRJPO3ZXHe5r8dRRNysk2w/D/3NzF1YzIbtFhIijgtriyc4pwy5uBn5vlZHTeTZn0i/OKhzizxxNXEI4L6w7gXITMh0nRILu2EBxKVUZ9l6rIa3jUdiavT+GvAbG+ezBz3EbcuLERYyb/g2uxhieMNLlRsJgtMy7NeQPagoVT8N1ePSL8HJaNmAvvYh3ww8I/sXzlZuzdOh3dSpzGiDou+GD0pgzaTflNFC5THo5K/gEKoaJTceS2lneU8+/wXk8MG+KG9mMGonPFgqoZSNmhLeyAUhXfgUvtoobHiLIGjdYexfJytmzKKfV3gQKwmoLZC6JCs88x+49xaIsj+H1gV/Sa+y+eJGoC2RaQbYzlNvMmODyD787fMXbrBdzY+hMmb7uOjGiZM4tGWwBFrBbybLArXAEuHUdh1UF3tPKZDLduP2DbzQjD8yZib2LnjLnYeuMCto75DduuRRmeyATZmmD8lC9QCf7YP206Fh4P1o0SzcpeCDU7dUEn+VezkMlMa0pPL1VbLcIQ5P8Y2haTsHrxCHSoUwb2domHlyLQA3PGr8Q1aFHpq2/Q17lgJtZpyfEcfhu/R4vuX2JAm4H45cRjC49lrMxvF5JHjq1njDWMraeYGVunK2N/K6NSK4n+nWwTZv6SOW2C5i20meaO5cv/wnavf/BLfXtdqtgP+Anr1q1UHl9u8rcB+68FIejiHvzSszZw/jruhGfAycuuRWEHR1SsXw+1UxrQeSVkdN5NmXQLKIpH57Fnyzn9nQs7sPl4kOVOSxaTzekDjJ3SEeXKdcSUkW4oy1nkaS/mJv4esQBhvYajTz3j5UIyIFwWjb6eiJ8GFsX+GYMxYPZhBGXJjJMH/ytdBhVK2KdfISKil5TSAajRCd9+VV+57Y+9E+dhg89T/VNEWUnsFSxtMx6eodYGCHZw+vArTG1bDeXaDsbIVmWUHE66PotDc4yePw5NT05Ht35zcfBBjOE5lWzl8eG4oWhbrhraTvkCrcrmNDyRGexQsvVgzB3iAoTvwLSxf+JYyKscHqZ0J57h6cNS+GpUNzjns1AziAfY/8t0LPQJA5z6Y9a3jVAw08fHUfBZOgAjPYMN9y3JgeKNumF029qoO+AztK8mw0TmHiNr5Nh63FTD2HrEaz62lm3C2CGZ3yZkt4NWq//hwi5fbstLd2jsULhKC3zz8yyMLBSEoMdm2jl6raVTcY5BkNdOnPt8FqbVt1fun8OWPefx6GWJKGqK4b3R63H9+gaMaVqSv8qmOYGIk+vwS77O6FZd/8tIApqScPuiF+rLX9Dn/IqNlzgQJ6KXjKYgqjWsC9kCIvwEPE7ff2l+VKPXhwi+jv8uJj040BRpjNFbzuP6lhFo6pCZAbGsRgO7qp9g/IT3Eb5/Ggb8dAAhiQp6dhR5bxi2XD+PLWOawSF7JkdSNMXhNmo8hlTSKsc8H+MWer08/XPKmt6ojYbVLM04fIFQ79WY/puX0gbWRp9JA9HSIYfhuUwkHsLnv5uGO9bIHw6aYcyWU/h34aeoqpVBU3OPkVW6sfUG/di6WanXfGydxdoEG2kKuqDvkCJ48Oi54REivfQJKIr7+PefcHRq3QGtPqkPjSYcV7YcwJlH/BWUpGe4c+kUDs3ogVZfrcLFRJc1a/CmUx18UE2rDMS98PcJ/1f68ioiehVlg13u3IbLo3Mhf543dbeIso4I3Nz/DzyeGe5SCuVD9RYfoD6Uvu5vf2LzNQuXPmchmqLNMWruV/pLn6fPsH7pM1FSHGugQmELIaKoi1g96RfsDQe0bb/Ad+3KI/PDiQLRN49gk8cjw30iSloulKzigJCHmbhsB2VJ6RJQFEGn8c/9d9CwTBFUbtxS6WRpgCu7se2/B+ywkCIKIYFByr+B+G+ROzZfCNM/rGZnD4fi8hKCQJy/GoBwZhwieqmE4tKxY0oNpnBqgQ+ci1qYvUGUCcRT+B/+ExO/l2uaUeqofwTdCfddPsj68zeyo6jbV5g10Bkaw6XPx/mjP6VEVCwKOJe1sG59BHxWz8DwrbcAbTuMH9cJVTJ9S/RYRPkfwqIfZ+LPjF3Ij+jlIsLhf+WOagyuQa7iDnh6K1gpRUTxNHJnFsPtNPIcfusG49unX+P/+lZBjufnsKjthxi42w/2A7bhyoI2KJpkWxKLUM9xqNRsGaov8cC2jm/gyKb/w+5b2VEkXwyCrt9DztofoGOHZqhZxNylN/rXV26+DNWWeGJbh2w2vv4JvBd9j7nbvbB5hzfC4YwRHrswo2lhw/NGct2NnqjYzxcj9u3EjGZFDI+rPUPQWeXYt+/Df6EFUa5IdoSFvoHybp+gQ9F96FCxH86P2IcrM5rFb/8d4Y1Fg37C9jP7scNbDkM7w/3qCvStoJ/jIvy3Y8yYRdi7eQe8w5UHHEbD48pkNM0n48Km24s7wM3dE//0LYOQszuxfM2/eFY4H6KuX8Cdok3Rs08nNCmTz/wAN+YBzm5fhzW7ffFm2f8BdwOAGh+jf7e60N44hL2XYlAw8jCWXnbBlB/boEyO5HYOXiD84loM7zMB3s4/4M9ZXRNfLvD8DOa5NsW3XtGoNnkPjo91QR7DUyLoKH4dMQ5rlPSZM/NzuChpm1qxPkvxQaXPsFu8beGcm5J5YDDcS0+28H+D4TmqFZrNKKOcwyXogJPY9Nde3NIWQr7nQbjub4faH3ZAh5Y1UMTaVPcE56I4cgb7IShfXbTr1l51/p7Df/s0jFm0TZdv88p8Nb0ugvcsx6wFx5CzbgXkz++KAQMbmUyrl3l0F9au2Ycbb5ZACdyHL2rh0/6dUE97Cx57rwAFw+G59CbemzICbcrkNrxOOX83D+P//tyGqzmLofCzu7gc+j+4dvoUnRs4mlmDQ5arcZixbjfWH5BDV0O+LhuKs1tXY82/4ShcKBLXvR8oA5xP0efj91DG7OUjAjFBZ7F9rVKWb2RH2RJK1vTNhhqf9kW3enlww+MALiE3Ij034fJ7o/Bjm3K6X8FF+A0c2LQVXg/yoXxZe2R/+gA3H+VFtQpPsXV7QYya3wmO6mNOVv53Q/bd01OQ9slLQ13ZH7cMx4/uxoEbSuF3c8fVfzohx6HNWL31LJ4VV+qgu7cQWuQdtGjTBi1rFjV/OYlcL61VU/Q731upOyah0bPz2Lp8Pf59VgCFonzhfaco3Hr2xMdNykGb6Dwmg/Fz9oShnGtXdGtVAfni3i8GT85vw9wVXgivNhXHToxCvdyhJnWvvv7a2beS/lcvcRvbx4zHor17DXWjSd2se36C8vwe3fMOIzyU81BHdx7mb/ZH3nyRCCvZCSMSnYfkMrZN0xCYoP41JRDt+3/44v3P8Gfgexi/eTHGNSuZaFaGrHda6doC5XhnNDW0BYa6fO5WnDXW9W5LcHVnP1TQfZS+vI9V8tzfurRSmoIErzctb4a0ahRrprz1UvJ1fZSyywYR5Yejq1dgm2wncz7A+fMC1T/uhV5ta1quo2yqn8y3TTuVtumhLW2T7txOxIrjR/TfR533t3gpn1daqbuCEJCzKppby/tGIhQ3j+zCth3HcTevA4q8GYY7vhpUbmOmPk7tZ8s2/RulTT8b36YvubIc/Srm0j1tvU1XMZSnz5Ryu8/c8/I7HdiAP7f4IGfJAnh2R9YF76FTz/ZoUCqPSTuv9IE852LE8vOIjX2Ii/KzlTzSun1VFDK+bfYGGDS/P5zl7mSm/RJr+T45aZtm7UI6CPXEyErNMDPQUh/QDOM52hOIPO1X4OzGHiibTZ/3Byll+YzhHCcsq2om7VvJNxF8IwT5XNqiW4e0+u5Kv2TsEmDkiLh+Y4zf3xjUojcW+hSA65TV2Di6IezVp0lJizHTgVFTzR2zIll5T6ErE9Ow7qChLdPlJwttUb9+6KZrD2UAyAurl+xQ+lAFkTPgEs6LGvi4z6doa7G825qemZkP5TGew+5tO7D3vycoUq4I3gwLQ3T5FujRoSD2dmhuaKstlLcU9Q/j20brfZS0oM9f3zTvhUXX7HX5a4OSvxKvnWg69lLaCGXst7NfZei+dVLtv46+T7Vp4zE8KFgGZQtkx9MHd/AojxMqPN+P7Xm/wvyPy0Cp/DBtxHJcjY3Bw4uyTlPerbUrqhYy5qL8cBk0CQOcE268KcJ9sPev1fjHNztKFn6OO5fDUMS1I3p21refCaWyzUsg6TxisV3QSdjPL5nzEW4EFYBLu4/RIbX9PBvTXJPo/CrnTz12Nq0TZDu7sw/KPjybgv6p9bF3R2Wcd264HHtbqM+SzZaxvgcuT2+K/LpjTty/y9Q2QdVuFTN3HPL5L0+g4YJehv6nIiYY1+9kR7nSBaBJVv2fuC66PK0OHu5Noi5S2qBRlZtjRjWlH7ytPXBkM/7afRvaIlo8D7oJ/5y18GHH9kn0/WwsB4nyoux7901hXkyuVObdzG4PdHs9p6VYX7G2W1/hfvWp4YGn4qr7p0IrS4b9t2Lb/WjD49a8EE88RgsHOAjXcbPE5FHLxZmQ54bnFNHB4ox7f+Hk1F+4X3hsZut5/euLa1L4+tiH4tiUlkJpZsQIjyDDg2qRynfqrH9+3wPDYyrRd4XXvD6iUpPhYu1F1fvHhovbu34SIwb3FnWV9HAYsc/s9t+xD/eJkZXkFu2dlXSMNDxqFCueX3UX7fNqhNIREx5PTPdQN25V7yDc3E8Lf89V4s9Dt0Wk8SCir4u1fSoLVBopdpk7F8+viQ0DGwr7Fj+Lfx/H6B+LfSTOzPtEVGrVW0zZfUc5gmhxf9u3wl7bV6y9/Uz/f9JY7O21oqtWyTOoL0Z63FfOqJEx7eVz8jteVj2Xci+UNG2pUdLU4jk3JY/jCyv/N0h4jKyjvF8rMW7uZDHK3VuERBtPgpKCId7CvbezcOq9TJwPNaSzidiws8r/qS9cx+8UtyON3/K5eOg1W7SoZC7vyrLWTTiO2C4ubhsuqrlOEvsCIsXTY1NFdY2L+HbVGREUdwxPxY0NQ0Rd+3Zi1n8PDe8TI8LO/CbaVnITXafsEfeVB2PvbxMDC5YXXdf6Gv5PtHhwcKboM0F9TMrrLiwTfSo4i97uZ0VYwoOKpytXbkIj8/UFH+Hp/pc45BdueF8lTW6vE73ttaLSkJ26z05Iyfc3Nogv33ESLWYdF08Mz8eGnRTz2tUXrbrOELtlfo69I7YNqCbydl0jbiv/JzbksJjSfrTYdjdK/wKj6ABxcHJrkdfNXVxVZyCZ/798T5f//3uizv9dDPn/rjxSXf4vmFed/5OT9pbTsLeT9TSMvbtR9C2o5FPXkeKXuT+JVcfvxJdtESUC9k0SrtrauvcINfceLy4LdzcHpe4YJXZe3ivmzdujOoZIcXvtF8IeLmLITlnOU0H3OS7mv0vkWbGwbWklHyifs0ump0rsfaXc1Ldctp9fFO7t5GstlFPD8w668zBatB+/RwREh4hjk5so7+kiBm+7rZSg1DC2TUr9Y7b+lZ6LR1e3iO9dS4tyrUcK92N3lTNunqx33HRtgYeZtiBGPPQYJyrJz3JbkjCf6ujznGxbzb4+rrwpabXzpPCYt1jsvm1a3koJ1wn7xf0nZ8Vfs9eq2kl9O1JfU1q0XXhWyRmJqeunWxHGg1PVT+cfmeShhG3THXNtU+9KurZp5z0zZyn2ttjYR3leyftzvx8ghqw4LgLi8q7yfQL2iPGu9ZU8d8Zy+QnzEdu+by9aJDhmha5P8IWo33ux+O+BSV0h2fLZTeVnmy+76jZ9yZUIw6NG+ja9nWzvLOUpQ7nVmHs+NlAc/OFrMWHXzfi0jH0sLljtIxk88RAjHKzl5XixT7zEFBd7i/9XnbbxdYrCkLYuFtM2Ne1COjGmi839AUlp80c4K9/DXHoa877lsq5rQyu3FuPV5zH6vvCa9ZGopPQTLoSZ7yckj3KMY6aZHJtS728cLJzkcWvV/QEDJS1GjzZ3zAqLee/zJPOeLj/VL6iklZW2SNtKTDh4Rzy+8H9i9qpT8X0oYx9d+4lYeCFM/1gChva0kpKeO31N0rO9qGwuPQ35UNfvtpoP/0mjfKi0116/iV6V3cTgtedV9cYLEXl7l5g6YrDoX9daeVPq3z4Nkt0/LGXoo1RX9VGqKW2j7KM8iOujpJHYu2LXEBclTZW8ZWnMoaZu/5dcstj+Jy6XMSLEa5ZoP2SbuJvgOyjn7cF+MdnVSWlzTN/P2EdPuozHKu/xQ5+pYldc+2lIf0Mf3nLZTGWbZ8gjPZU+eUryiLEdqOT6o+rYlTR5eETMaqFvr8z2E21iS5qb9OHiypiS5mbGznFtjNLfuXDngHD/85DwM60TrPVPbR57W6jPkisZn/c40QHb1iYkqw5LCWPfwtJxPDkovu9oMk4ystL3qGC1/o+viy6YjJd0ddHK06rxkkJpg0YW14975k7+UbifCVb1qZ+LkDPucWMns/nZhnJg2m+Lz4t/WM+LpmOYlEpl3k1+f1yeg0/j2oNE5yDBmNU2aR5QlIGgbu2VzPfceCCqzjLKqQIT1sQP2rQtfoof2KsZGyqnL8SKq6YdCmNAUb5eFRhQU71++ZVQw4NGMlj0sZWGxkpAUakw/1MKu9Zcx0xHPQg0H1CMG/SbDSgqjIXLQiOiH6Q6iCbfjBQTVl1WspSaDIYMVgqCuXNhPLZKos/G2wkaAhlYGmCvpGc7ZWArz230ExEQ8NjiQDl1wsWFhR11aaRtMU+ceao+SqUSCNgnprStJsq1nSE8AswMUFIg/QKKpRIEwNRi7+8UQyrZKx2SleJqXG1sEO0rNg5wVjoa44THQ9OOr6HTpTy3L1h9BvT5vvyn/UXfSnXFwG1+uvMb++CAmNruPdF26gHxQPcx8UFp+z4bxd0EyasPyEHbzfCjQLQIC7gnHhsrlqfe4he3dmLkWm+Tzqe+ctLqBgCBZvK9pC83Gk0L8c3IKWJV3I8OBnGfbSZQbQwk2Q8UG++qc7QxP5cW7dwvKnldyR9h90XAY/l/osSNFd2VCtNCBSyDcx+oG0p9/s+r0ef/BMkSl/8NdVui/G9r2itkGraUaXjKTBoq5c9aGhrLftz5MWUsw7VF7+UXlBQ3Yaxb7FuIT751Nylbqu9pCMim2FMvMbnJNHHM5P2FCFPK9ifK8clAlmd8msQx1q2WfiwwDtotlVP98w7yPNQfKrbdlfkoWjw4NEu0de4sph6ylDdtpQooal3FF5NmilmzZqn+Jonhnesq59BZtP5mkTgWZL2GtB5QjH/efEAx/ljMv95Y3iqJjr3HWylv7cQ3I2aJ7QEmA5pnp8UvDZQBf7Wpic+jDfWTxsxzSbdN3+rbpjU3zJwn/blFXFk3ZazXlLy/4mLivB99W2wb7BJfhk3F+oltX9YR2ra/iTOJOuoJPzvxz2jGfo6Fz1a16YkDigpjAMvSwNBiQDFWPD0zT7i1GC3Wnrmvqo8UhjpT6zpFHHxgIR8m9blqxu9g7v8a0javtbQd6GwhbVPRLqQXY7rY3B+QjHWTfF3ivpvlsq60Wbc3igFO9qLSyL3ioUny6YPR8rl9iZ5LPuUYEwUUFcbyrBxfoj6zkhbmA4r6vNfSLYV5T+anlsWV/NRW9B63NlG+iWuLOnwlRvy4QwQkeDpWPFM+uz60otpkL6XVU1On5z4RbPJVdelZuaCZ9DS2PdbzoSZN8mGMePLfz6KFVukfzjxmpn+YxI8MhvNlro5V9w8TPqdvL8oZ+yhb9X0cXR+lbUNdHyVtA/Yy4DRTuOrGfs5iwEbfhHnELFX7by6gGFcPm5TLFz5iRftGFsrqc3F34zfig0T9CeW9bAooPhYnlTGd68iN4mqCust4jvQ/yiXuy+ilvM1T5RGzY4gk8oiSlrc3fiucDJMyTN9b/2Ol8ty+eybP2Uim+UeNraZ5q0Rpbjy/Spqbm4xjbGOaDBAjJ1ipE8z1T3Vj73ZJjr3zaiz3t5LF8Hl5bRrrmwsoGvNGUm1CcuqwFDD2LRIdxwsRGXJDeC36TDiZTrzQUfU9Tpup/9uXsVL/m9RF6vGSri4yKU9x4x5Laa2Uo10jlfxsbtxj/MEsiXKQYOKSwpguSebFtakbK0mpzbsp6o8ndQ5UY1YbmZsfnQoRuLZvL9DFFU5xl8FqkKNMPbRtVlq5fQPbtvwLf6U6sVXe2jVQIZ+Zab0aB7j26or61/7CpLn7EWDhYn5bXj/5l/0ITMYxWSYQce4vjP1xC/BhV3zsbG7Hs9wo37AZ6hvupZ9AHFgVBefm+ss+48mNAnLBDvdx/vo9RBoe1Ym9ixPbvBCO6mhYraj+UgMDTeHyqFvXAU+3/I1dctfl7Png4JDf+qVlKSQCPfHbT7sR7vQFFvzaBzXlZVdxjDurvSy7TRZF7bfLqS73jKcp2hC9BtbH9eVzMXffHdnrMniBkENLMXaRL+oP7IiGBU3yr6YI6rVvg2pXNmOD1z3V6/Sen/CEZ/aP0LNpSV3+0+3OufkQtoxujCK643gO/xP74RFeDHUbVkGxBMlbCBXqVlatA5UdWof/Ib9h6nPsnTPYsWcLZnT5DotPPtE9ppcbTs0/xIfYiTmLDiZRxvdi1ZMaaOFkvITaQJMTufMp5zPcF9cDEi5qH+vvjW0etyDqOqNaMXWOzo7CFaqjLm5hi7sHLj1XHtEWhUN++X/CcOvCZTy6ch3+UYkPSFO4LGoWUeVyY/4X+vyfIFkM+T98yyar+T/ptNen4T97tippONRMGra1LQ3zvoXSxfRLISSkvEf7vviq0jUs+2oqVvtY2BzgkS+yubiiRoKypRyvXW7kU942/LwvAiKtnkTrYuQlxmVQPJf6/V8g9OQSDBm+DnD9BpMHNYpLk7QWdvwALn/QCa7F5UYoht30Tv4fRr9XzEydnEJ56+HjQd9h2LBhqr9xmLnuEG6emIbWz1ehRb1OGPXXSQTFpCItU+0KPO3qWilvHtifrwGamO66md0OWq2SGW5dx+3gaMODko3109XNWG+mfjK2TXVamC7Mb9zExkzblEAhVCxd1Myi/kpfw6kNvvkyN5Z9OcUk70cjcNdcDJ37QGma1f0TFU1JNO3RAaW3TsfwpWeV3ow51j970Fe5zHx2enqGO95HsGfvNHTp7o6TEarUzlEezbs2BfYvxSJP/3Rc7yg+bdt0aWI5bXt2jEtbpQY1I/ntwitBBOHQgjlYdK0+BnR5N9HloJqCzmjfvSauLN4Gr6Ckd+NOkeyl0Xb0GAxw0iJ8708Ys/gkniRZZcm8d9imvGf1rQJ9Yfduw0T5Jq4t2nQReZu7wCHB00o/MFceKEeLWxf9EKz+AFV6Duz6bvxl/Aa69PzUWnpmQD6MOItlY35SPqkF+n5c20z/UKlPytdH2/oOhvtq8fWvy4AOVvuH5urf58f1fZQeTUvp2kL97u2HdX2UpJejSgblO6784VfsD5dLJ36JIR+WTpfxgk64Py6c8MMVnwAk3ipC6SOWqwRzC1PZJDYQZ/f9i/0zeqHjL/+q2gVZ57ui64dvYv+clfD0t7ZqagraPJlHxv6syyP9ksgj5k6bCDmKBWPdca1+F3RtWMTk/7yBgvU+QPdq57B4w78ISrKsm6Gk+cX0SvMDR/CkjpU6IVH/VD/2HjPRlrG3udRKrvjPEx92SfuxfqrrsJQJ8/gJX/XqhV66vx7o1KIh6g9YYmGNZVX932NJ4vq/S9L1v7EuSjBe0tVFTcyPDfJWwdsVCphJ6+wo6toFA+vfwvLJ7tgXGN9f1ZWDcTaUg/VKOTDXSUp2Xkyu1Obd1PXHLZ+D+DGrrdI2oBh9C0e2v4m2LiUSfu0cpdGwbX2l8VcSf9seHLNa8dpKgzfLVEVDh3BcW7kWO6+Z76Japn79OuX1adBRVSqB42vWYm9YMdRvXhMlk3ky0lxdueta4qGPXjgehkYiQVUUFQy/68GGO5bcw9303N0pxg87Zk7HQnSF+98z0L2CzDWvqtwoU60GHOCNlUv24lq0oagLP+x1X4srKIuG1Uoi8d6wclHcsqiuvYAtR67CdEubmBs38OyDd1HFJFgULxIP/NSL7JrzCDfvhiTqKGRzrI8+AxrBqW0ruLylXwfMSFOgCErltaWCdUDduuVR2GL5CENoRIyq4hOIenAH15WOqVU3A/EwQeAwH8q/XRPY+gP6DJyDjYcv4GZQeHyef7Ma+s7tjLLGWtCQ/60mSxL5P+m016dh71SnoWUa+0po2KQ0NOFe2HrkljLcN+dtNK9tviOq8zAcEakJgmXPj3KNEp5jEXoSi3WDqNYYPaUPXEwbvjQUfiMf3nNxUkpYJtDYoXCVFhj46wosb3EHM7q7okH/FbgQllkbHiRV3iriA2tpFR6Gp1Gqnpasn5assaF+uogthxPXTzq6tsnS8FJpm8JM2iZbaQqiWsO6sDfN++IODq3eqnSMK6FeJdNOpZFy3GWro6G9P/b+sRvn1B1kW1j67HSVE44NP8KAurXRtus7eCvByciOAkX+h7xJBmhTSZW279qatk/NpW1y24UszL44ihawLXwi/PdjyW9eytevgWpx6xSr5Ubx8mWhfXQEhy88NjyW1jTI7vgBRk/vByco52jiNCw++TCJtJZ5r0Ma5L3KqFuhkIV8o3BwgUsVy6udhT98CnWzn/r0tC0fppwyADz+Nxbu9QfqN0DtkhZ+FI+JQni4mb6GzfWv0j80U//a0kdJvXBcXDET4/b6Adr2mDKxEyqY+6EhreQtg7ebvIGtwwdi4OwNOHzxFoLCjedIGetV7YW5H5dP2YA3W0k07P0x6jq1RLdGZZCgx6bJiyKlCihf14Ygc7LaPH0eWSTTT5dHEp9lHUt5RE4a2LsGv10Jh0PDqijzppm0z1UM5av/D4+3HFP6Jin4uUlJ89pJpPkvKU3zpOoE0/6pbuy9DnvDHTJm7G0c68vPa5b2n5dZbULeZkPx2/LlWK77+wvb/7uG239/p7Ts5iRV/xdNsv7X10XvpE1d9GZJpf9VFrj2N5bsvGbof8lysBoLroQlWQ4ebfGy0EdPKi+GpW6slNq8m8r+eFq2B2kYUJRb8B/H9lyN4VLK9CsZZt7oIoqeWLPvunKa04C2OCpWd1De8xxO+jxKfkfT8HqN8vr/UvJ6U9EBuHD4snKjEMoWzWs5A2ZVuRxRs6GcSRqB8EgLHSZtTbxdPm2Wsk0sHD5rpuK7HVXh/vcs9Kma/+VLw2TJBm3J8qiufMvwQ+fgY9xhMewmTh+4odwoi4olzQdUjYGnwDO3cC9RX8AB1SsW1wXwzdOibM2asNfoOyPmz3Q5NHm7jNIgmLCrhC4LD8JHPTs0JhzBgYHw9wuEbr5daivYRIyDUeVm+FNEWnhvbZOaKJ9XXaW9Ccd232FB72L4b9lwdGpUXSmXDqjk2g2Dp6yAp08o7ArkUZo+A0P+16Qq/yeV9gqZhgsOpF8aGmeZam7h0H++eJSWp8JWuZ3Rv79zfJBKBOP4r5MwcS/QYsL3+Lpe4XQu2/qyk6n1R/bS+HDIl2inDce1Zd9j6KL/EJoZ5yKtKfXTqVTVT+kpfsayOu+LoIs4sEsec25oc1kO9Bh/dcaFo/g32T9Sys+ukeiz05cGdhW6YOG/p7BlTDPDItpCqU4eIjDwDvzuysGG4cfDdDqelKVtUr8OvYREGIL8DYO7yuVQqoAtP5jEIuz6WRyQyVG9PEqaXWTfGJwLwJl03VnTDo5tv8X0Ac5KltmCH8eugHeotR9B9HlvwQkb8p7u/2cE0/Q0N8QxDnbTOz0tiYT/hdPKABCwL1sUBSw1UlEhuHvzkeGOiqr+rZCa/mG6NY5yQ7IdmPPTDoSJUkp7Pwq9a5jpM4mH8F69A5eS+8ONOZrSaPfDRPR2OIdlwzujUbUyKJq3Cly7DMaUFfvhE/4mCmhtC/AnpkWFLj/jX58N8Vc4iCg8vheIQH8/3H0ic3da/9iRvDyS+HNDcf30WaX0WemPGoOhgddx614KRuQyzSf8kE5pnkxy7H0kA8fe6TrWz0J1mCYPHN06onvC/YkM1H2P5ims/5X8WSGJ8ZLNtChZsaxyWOr+l1IOTinlQKRjOUit1ObdVPfHbRiz2igNA4oR8PHcp1SuW/F9b+OU2fi/3t9vRWhFOX3/Fjy2HsfN52nZu30I3wdhqajMU/t6g7jKPSfy5c6Z/pVaWtMUQ4OePeGqvQhPbz9V0FfpIFz3wlav7GgyqjfcEgWM08IzBHrMxdcrS2LBgfno+8oHE008CsCDx/pqN/beLZyRG9nBB7vcf8bs2bMT/y0+hSJDZ2FWz1opuGw0O4o06ITvXPPinOcp3DLOjJSifXFk63/Qun6Bb9wcLZyDWEQFnsOeFXOV49iG475hsCtSDKUcHWC23UkDmiL10HNYa+Q9dwLet9S/d0Xg+hFPeGlbY/Q3zVDK9IDtqqDHH7twZvvv+L6nK8opDdyNA2vwy7heaObcHZP2+cc3dsb8n1ef/1WT5uPyv+voPmmU/zMmDR/5PsDjtKxqU+QFHh3/E2On7QBaDMXUz+uYXQLg1SMvSXoPHZvLH2n8sXfaWhxKr0sWM5Ct9VPhITOV+qlmul3WnpRHHp74956+FIvHD+BrZmxuWepm4qs/O0OICASe24sVs+dg8fYT8A3LiSIOJeFYQukop7OUpG1Ael7lkFmin+D+7RDlhhbVPqgDJ3OzIRJ5jnu3rkNXnG7uwtKfzJSl2T9h8amCGDprJHrWtDQDNI0kuPT5Z92lz0n+CJKJeS+xhOnpPieT09OsKDy8e093yy5fbtgl8wDU9e/upUr/IdH3U/7i+oeZUP+KO9g9exb+lD8aVOqFUX0ttPciCGd330Z0msScZHCjG/44egTbF32Pnk2clMeu4cC6XzCuV1M4d5iBfQHP9P81hUTUXXjvWKqkrzu2n7iNSG0ROJRyRIn86RE0M+QRpeylJI8gNhi3zgQoN8KUYrAUc8zlkdnLcKpIF8yc1QE1i1i6ks2apNPcIzB1aW4zZewdoAu+Z9DYOy7Ynx6fl8XqMDt7OFi7mihL1f96ceOeZJSDWUo5qFU0PWIbSUhl3s1K/fG0Cyg+vwaPLW/hx6XLDNNlE/8t/eFj6CYZeXjgyM20XAsntb8SpNGvDHYFUaKMffoW7nT1BuzfbY9+nR3hN2suVp0MRJSQgY/jWDrNHaFfzcXCQfVhn+Zf8AXCzy7Fd38Vx6x1I9GsuIVLQNJRtmKlUUu3XM0zhEY8syG4HIUQpRCXKCSnXKQB1SVSGrs8KKT7uaAC3u83xGSNNpO/T51TdD409nXRpW8bVPZbgmkrTyIoKlbXYTq+9GfMCu2G5Ys+Rz17M42IeIJL60bhg6a/4o5zH3z3+YeoV8EB2uRuL59cmsJ4t0s3dK5yEbOmrYV3UBSEbMiOr8K02SH4avlsDLI06y17UdRs/Tl+XO6Ja5EPcfPMbriPaIdy4Tvx40ejsCJuvTN9/u/b+S1d/l/pfU+V/5fq8v+iQS6pz/+GNGyVbmkYg8hw/Xey+ut2BhFBh/HLuF+xH50xdVZvOMetaRuBm7s34rBqvZNXTjZ7lKhQSH9b9aPByywj6qeUE4iJfArd/LfgWKVI6z88/phtVSwFdbv5z05vIvwC1g39CE1/DoDzgMH4vE09VHDQIoPmhqQobYunVbuZhcTeOY/95x5BaJujf5uq8bOzrcoGuzx59bMDyryPvkPNlKG4v2/xqbOVS6/SRPylzxU0hkuf/71vsT+kz3sdMi3vJZYwPft9Zy4djX8ZkZ7m2KFQiWKG25aJqAiEmom7q+vfln0Hm/leqr8Mr39fIGT/Ygxf6K3cdsbAmf3haikYEfUIgZF2yJVm/R4l7xapidZf/Ijl+68gMuQmzuxeghGtKyF8//f46MtV8FH/eG4zZXxyaR2GtvoYv96vgwHf9UObehXhkK6z7wx5JImksZRH5HqfeQrJGiivUgz64jtzeSPurwuczfX1bWI9zdsP/CuFaZ5Myti7uDL2zjCGsX76yGJ1WLby+Hh6p/iloVQyu+9hSdy4J8PKQSqkMu9mpf54GgUUBZ5fPoxdNZujjsU1+7KjyLvvo5eT8s3DD+P/PNPgsufwAFw9Hwhoa6BOhRQE8gyvF8rr66bk9aZyFEe19yorN2wNSmU1+vN49v2lOOL5Ncr47cTiOT9h8c5AVBiyAf9M64CKedO6wCmN9cW/MOL3PBg7rxdq2ifMP8JvPQbNP6OkaDrLWxmuH9dVbtzFOd+gpNe/ig7ApSvl8Y5THsMDKRGL8DvXcV5Jd22jGqhgqMw0hR1RpbSsIYIQGJJOMzmeX8Xes02x4chGDCnjj22Lf8KcxbsRUOEbeP4zCR0qmJshGgW/vyegfZf1yKc0ZD2SmkUqovDkSVQalYOnuLz3NlquPwDPIWVxe9sfmDPHHTsDKmCIxwZM61DJzCU8T+D9+0J4qmaFaZTKu3RNN/SdsQ6Htg1H5acnsO+0ccBkyP8t3fX5//Y/qvy/Xpf/K5i9JC059Gn4Udf1yD98cPqkoQjCleNXlH/L4f0mVTNthpiOCMCeaWPwo2c2tJ01Dv1rqhdUjsDNg9cQnScTGvGMIp4hItRQezmUR+limfALaBqT9VPV9K6fUiwa966cxTnllvZ9F9QoYviRxqE6mus2hrN+zOJxEPzlIjOVaqNaqYTrmyZNfvaZRJ+drmJu4u8RfdBlSWEMH90ZVZOon0RUKJ6o18O0INZnOQYsvWLTpVQZk7ZZXSjOb9+EfeFaOPXog87mLvE0KwcKv6XUC/JmwH2EmNk8LOPpL32eNqCO0kfegok/Loa3ucOSeW94b3RdUihN817qZMX0NJULparV1q1LFhUakWD9RzVLM3+zcv0r10leOn05rkApB32G47uW+o1fzBHBfrhodoHdFIjwxu8zPVWbi2SDnX1p1HTrhxmbd2PbYBc89fDCaVt+vIy9gqUDlsNHl1UFYvy2YMRH/bEkfz+M7lE9iUvFYxH1JNTiObVd6vIINPZ4q0op5UYYAgIfKb3OdGBDmod7HLUtzVNLjr0bZuDYO13H+lmtDssOrXppKCND/S/7HsNGdcoC9X847lz1VT6oNBrVLasPnMlyUDWdy0FqpTLvZqX2II0Cikpnau8p1HCrDnsr76gp/DY+7FBDueWPPasO4nKqLntWBv83L+JIoOzAdUGrZAd21K//RHm9bb8nW6UphFpuTVFJY2NQKoXiOuZpThkQXbiIbIXzI7dDDbh26ItBw4ZhUN8OcK3hkPxp90lSGuvA/Zi/6g18NfNTMxWSQGSAH6KK5jezq2Ya0xTDe727o4X2EbzWeuC81XVdXiDk8Hr808ANb6dqIdMI3LxwDoFwRo/PWsTvIpW7Btp/2VLpkt3Cf5cCLOejaF/sXn0i4Q6HNhL3LuNoNnsUyO2AGq4d0HfQMAwb1BcdXGvAwc5CIX5+BZvnrMA11MWHDcsmOieJfi0N88LMGV5KVZ4GxANcOPIchfPng0ONJujQ9xsMG/YN+nZoghoOuS10WqPxxHcP9pwPMVNJ50Rxt24YUD8WD58aK/EMyP/GNBR10dbGNJyRzDQU/v9iy7YbEE5t0a2RfueuzPEMATvmYvDP51G+9yTM6l1dGaqqyMsRziVzprp6nbKXgHh0BUcO3FJuaVGpZ1PUSrDGZ2rF4HHQ/bQpX8kh66ev0rd+SjFxF8e2HlS6lkqd2q1+/BIIcRvD3cLJa0EWAmWxCLt9BafDlXPVrglqJffXavnZW8x8tg1S1qYrfZiL2/HTIm+gfjM0LG/ah1EGtxHKYNRwT/f9vBZghpe8LDcNqdLW2+a0zew5DGlJBh32YdGv+xDu1A/TRrYw2ZHYGg1yv90aX7kpg55bF3DpjqX6UK5Rvg+rjz8w05alA7n+q9L29ZGXPh85gAuJTqo+781R8p6o3zTz8l4ipulpaTuADE7PBN6Afa0maFdJi0fnbiIwuTO4VPXvySxV/4bi3LLpmCg3m9G2xtDvWqOcxcv+oxF48iCO1SiNYslpEi21/zFP4Lt2P84b1yFXy14Kbr27ov5Tk83FbPIUFzcvxaJrWtRX6rjyphvLqH8w1AmB14wF8ErJJicJ6PNI20p5U5ZHkB9vt/8Ebtpw3PrvMu5YfL28SmQzjgen4MoJJc1vrksizU03dEsvurG3KyrZOiEktYxj/XT5vJehDouv//V9D9P4i6z/IzO2/n9+Rxkj+gJOH+GzVk6GsZUsB13glvdp+pWD1Ept3s1C/fE0Gd2IkJNYv7o43OoUtv6Gxu2r5W2vPTh4OelFzy3+OiMCsX/5GnhVGoifxrmhuIUPtuX1c8a6JaMDaM0bKOj6FRaNd8Fl07Xp4sQg+KYP/Az3zMpWGKVrFTfcMaVviHdZ36I3FUKxZeVWnH2U7lUyRNBBTBm2EyU6NkDBsAcIDAxM+Od/EZ7/XMRbb9mr8pUMQnpgarvqKN9uJjzTbI0OpRKv2Qe/LvgCTsd+xY/upyzsgqx8fsBOTHYviu+7VzWzo5Ipy786iAdHsHyhFyp+OwHj3lcHfvKgSvfv8Utve3is2oGT5hpsXVBzI/bYpfyS1hdb12LD2YdWFsw1EROJsFCZL8xtWvICjy6extn88peSdPLCEys3nsajZO0ucBebNpzAPYsvcUKjKsVU+SsUW9Mz/xvSUKQ2DQMPYs9JMztSy81PVq3ENrTC+AVD8L5DuofiLZCD7B2YNHQhrjj1wI/jPkKFBBFZw7qUL0qbLDr9JoqVLg/d6gNmiMDT2L3rhtnylOWIEHgvna/baVHrOhqLhjZBwWSW1filGMwQ93Byt5f+EtsMJeun8eleP1l2FVv3nEVIokwg1+rcgMXbnsF1/DR8n6BOzY0K3cZigXLM+1buwClzm03E3Ma+NdtxRzlXv3/X2MK5Mnx2ojGS/rN/3/bczGcrkmzTDyltuuGuzV7gsf8NXJalwdxmVTEB+NfjX5ibwBJHtztqOaWjFIGIuIGfQFTIM1RMUC9aE5+2Hqv+sZy2q7fFpW0h297YBob+QPsaadwfsJX8/KNY+P1kLEJXuP89ER1Mdu5P0ptV0f2nSejt4IW/Np4yv5mPCMLh5UdhVzxfwnyVbjTIUfZDjJvUQ2khzTHmPUVK8156UaXnqg2nzNQTigxPz4Q0BRvju99Hw/XycZy6ZS6IbG2cEF//ev71TybUv+Yo7bnPBkwYu1lpj+RGLEPQrYqlfozsQ+/GrLErld6xKdvaf7Pu7cQGrwDl3S2oVhtVEuyonQ/la9dUBuImffSox3hSsSJK6uoo41qG5jcwFI9v4txV3TZ6aU6XRxaN0uWRhOuGG1nLIxq8WaULfvqlPxw8NmGDhR3bRchxLN8DFLdpAykzkp3m6UU/9v59Qj0bxt4WjzYZ4j/vyv7TKR/rW5Ll67BMqv8T9FPUYvBg/1os9KqEb+d8qxr36MvBnLk2loP8KSwHqZLavJvZ/fF4qezWKQ3D4yvYPncOfrt2DRd8QpSvbV32XFqlGpcOYuHqo3hgLThQaTSWffoC/xy4k/B9Y+7j5OIJGHzGFRu3jEVrS2vuKa9f3j0myde3KWG6no9xDTJLwSArz8uZbqN+w5qanpi+9DgCE2T+Zwg6uRnbfeS+OkrZCHpsIWhlj9rtP4Gr1hcnfdS/+Mciym83ll8piy+bKO8QFYKgx6YXjivnxLiOk9kdceN/OUgcbH0Tpdx6ocftH1Cr4JvQaDSqvwpw/bgvBk9YgHWHfPDY2nmzgQg/hz9HDMXE1T+hV90yKF68eOI/x+r4cFI4HAqqz88z+O78HWO3XsCNrXMxY+dNVfqklhYVus/BPo9ByDW/Pz6bsw1nAiPizq+IeoBLu37C55P80Xl2X9RM8vLXbKg08gd0f34YBxIMdJRzFHQCi0dOwpl2S7D5xw9Q3GQdGY22OnrOXIjZb61Dr6FLcTJI9Xrd2oF/Yd5pZwxrW1o1Fd04KyAKYSFhql+HEtOUaoavuwfi21qFkSPBec6L8q6d0GfwRCxcdwg+j1WBtVxV0H5IV2WAcRCLlh9AQFweeIFwXw9sDm6OOSNaQht2G7fuRSL6XjDyN3BC/E7RxnJjYXfpuF97zZUrR7h90wZ+g+ugYI5squNV/sq74uM+gzFh4XocSlQHxeLawmmYsf4qwhK84TMEHt6B/TW+QI86xm1Q9Pm/u9/EFOR/G9PekIYVNEr9t8y2NCyQIA0NHN5C7H53rFE6s3FHIp7g6uqJ6DstFkM3LMCoZqXMXKagT3vzQWGZxw0zJC023DaKuYWt06Zi0TUn9Jk0BB3KqX/BlO3GJWxa6A4P+zwmMz+zIW/tD/C1a07cPHkN91XJLKJuYMtyH9T8qpXSTXiKB0FPrOShMISEJR6upJ5ynh4/tlq2dHkh+BI85g9Dt+H/ovIXv2PPX9+hcVHTsxFfV1v84StvDbT/ujXy3rwIn/uqsiiewm/LRlyp2Q6uyt2oB8Fm8mQqyptkJa+Y1k//PbClfrKlbZJlyEp66JRGnVhPzFtzUVWmlfNydR3G9F0AMeR3LBtt3HVWxa4Kus9fhgXl/sGY2TtwVVW36daPdVfqibudsUU5V40sXq6s/+z5ay+q2m79Z4/ttwAYutj8Z6vadG+lTY//asp31rXpZfCVq6U2XWE8FwnK5RvQliqHOvIaPK81WLZHtcGUCMWtSy/wzoCv0NtJi7Crt3AvOhL3AvOjQWXVtk+aUmg6oC9co49gxxHD65WByomjQL2KJrWO2WMwMKTtb+V36tJW3W4Y03Z6wMcW0jY1+VTfHxi39Xya9gdE+GMEWS3kSl4O98PJTXPQv11vrMzWBx77fkYfi0tYWCvrynms2gUzV4/BW8uHKFnoBIJUZUOXfn8uxelG/dDWMTVrT0bj0dmtWLlhg/J3xoYf5nKjbIchmNSntuG+mjHvKTe91qYs76WqLbJWl6jSc9lgfLf4uI3pmcr6Mlmyo8h732LZmsrYNuMvHFf1M/V1wn6su/o/dNLVCY/xODzhINFY/8566//SpX+YbEp7v23uQmxRTojW9RtM7GduIxZZZgJxydMdwz79EnOvAIXy5TLpo6jaf2/L7b+cOZi4/ffGwuE/Y/2N0ITnJuYuDm/6FzV++AR1ElxRpPT3mnbHd67h8NhxAv66PKIMvE+cViq/8tD/LKBF+XcbwknzCF4LV2OPamMXEe6LoxcL4pMRsk/8EFdvPUB0dDACC9RE5bgrEVLT5sXnka3TVyU7j0CTH1V7TsLq2Q5Y1ms0Fp+8r0ov5fWBx/DnvMtoNKwVHFO8juUpq2lec2IXkzS3MnaWUlMn6MbeC5Ice8vVSy2PvZPB8Hmra+5P4VjfxjYhWXVYCsSluXIcZvuR5qjr/zVYvscvPm/F1f9fWqn/U1IXuWDk8rZ4/s9RBCY4RpnWf2Lk4HNot3EpfmzzVsI6RVcOfrStHKhnIKeqfUqmVObdlPXH5TmQsaC0aw80QmG4nSzCfztGf/kDFgcWQ+uqhZAt9iEubj4FNB+H3/8aCOcElchz+G+fhnHrfQ33DZTXXL4KVKxcFg0GTcIAZ2NmE4i4tBXL/Kujf8sy0ASdh8f+y3iiDKLu+d2Cr28Myjb5AB+2dkEZs0GdlL7+CbwXfY95nreV5iEfCiktSqT/XUSUqIY2g+XxKU1WguezIfbxQ4Tm+x+qfDIeU5WMHPetlUJ188BmrN7yH0KLOKJIzucIfVYCTTq3RUNsxocV+2GP0liVa9ISDer1xuSpbUwukVIy0dmdWL5sB66/+RbKF8mJZ8GPkbNBV/RrmR1/t22GfrsDlPbOGa3bf4gBU0eh6YPl+GbeHtz0i0YJxwLKOXkMv7s54FjGDYPm90JRz+kYt+6U/rFSygA/8h78IgrDsXpXTJrSBo7ZZOE6ifWzfsKO7NVQp6iqolK+z51Ll3D28G4cuGEP1/Hu+Ot741bxyfUYx6d8BJdxBwz3rXAYDY8rk9E0n6qBDjyEBWN+wFp0xpyZn8MlzdeqUj7j8TV47d4Hj2PeuPVIX5lks68E17Yd0baREwok+b1DcWnTZvjX7oSWZd5QzuUh7L/yCOLpffjd8oXv8zJo0roNWjcsa31NlpgQ+Bzaia27j+I6iqN84WgEhRSCc7v2aPuuoyEYYyhf6nMbpyw6Tx6NNiY7E8sGyXv9PEzeEYO6dRwQH5KPQegdH1w5ewTrD1xTOoeT8Peq4WhuDNrLyunUHmxY/w8OB2pRs7rSXCqd7EINu6B7i/LI8/QC1s+citm7IlG/x2CMGNgIxbOHGsrNVX1+K5RdKfr+uJu7BMo0HYz5XxSG55gfse78Td1jcnktfbkrg+rGciU/13sjZk3ejex1a6JozvhEE6F3cOnKWRxefwA3tK0wfvNijGtWEjlkPps9B5ea90HDR8r32XoWz4o7KB3dKATdiUTJJp3RpU1NFIk7l8nL/6vGNUfxHNHJTvvkpuFIJQ3jylmoJ0ZVbo4ZYhQ8LgzB/46uxsqjYShcGAi6HgBNVTd07uSGt00vA4/wxqJv5sLzpkzXUiiULQYP/YKR27Eimg76EV8UPYIx49bgvO6xYkpn+in8dfXI2/jE3HewKgZBu8eiwfszcU3rii9GtkL5uKihwLOgC9i3cZOSjuFwGOGBKzOaGn5kMlLKX9BZbF2+EtuuZ0f58kWQ81kIgnO6oEe/xsjx92eo9Nl6COEA59Yt0GLAj5jaGtiRIA+pfisr3tlM/ZocSnvi/YdStx7F84cXsXmHt36AYKy/HdXnXKGrV4uhpst7aNSoEZq6mNYXxvfbh/sPlUGVbGhiQ/EwNDcKVTHWxYb/KsU8wNmtf2HZNh+8Wb6s0pY8Q3BwXjTo0R0tc2wxtCWyKWiN9i0GYOrU9/Dg91SUt6bB+N1iXlG30wqb6ifj97XQNs1T2qb9ltum+HMXDM+R76PZTGCEx1aM+p833Fcew7PC9krmvwl/TWW837kD3n+7hPXlCeQxe+3Drn8Ow/fNEiiZ8xFuBOVH3Rbvo1WzWhaWfEiLz06iTf+wKfrtkWtCG9r0KUq5K3xeX27vhyoZpYBSLmPw+GEE8hWqZSiXQnnP3di4aQ927vDCi4YfoUnZYihVvSlaNymntC0vEH7pb8z84RfselYHPb4bhoGNSpgM4p8pHc6NWLr2EILylUJ+TT7U/bQnWhvX0ZV1xyDlGO4Zj8FQN5RtjcHz+yfs6yUrbY39rVS0C7KuSKv+gK6OnIdjz2Vfdge89YUcSiFH5waOhgCDXuzD67iK8qjv0hgt3m+JZhbPuz7vD1LK+j1jWTfk7bJthmK+0qmMv1hY3+84tG0rdh9V+sqlyqDws4cIKVwH7T5qhXeVcmEtW1sm03kcZqzbpwz/q+rrq0g/HFW662837oqRpucwAYFo3/X4bpMjpg+rpzpWSebnZOS9oUrea6zkPatt0SSlLTpspS1Kop87T/kueYzfxdb0TIt8mFJKGt08jE2rt+JYaEGUk3VC6As4NOmADg1jsclYJ+jyYBP0NG2L06l/mDwCz8/+iqa1v8VRZTipa4fkmNDwrF6skuVO6PqU8Rzg5u6JnX0rmfzfpNv/iv3WK//P2P5PVNqse5gz8gqaD6+HRwf+xtbTkSheIh80z4JxJ0wZd3X9BG1qFjWp9yRZf5zAmqXrsD8oLyrlfwNv1P0EX7RWr8kt8/kurF2zHbtPhKB883pKvZYDBWu0wcdKf02r5J9L63/GD7P34ln97vhuZF80cngzjdo8Kek88pmSR4SlPIJoPPY5gm1bd+PodYFS5e2VPlgECjt/gI/avoNSlpY4SkrEccwepaS5Ui8kneZJjK0rX0+7/mkSY++2lT7DbpHHytg7mZI91m+NQqdM+n+qNmGe0ibEl9B0ahPEbWxX6rT1AYkDZfHyw0VJ+wHOlnZrTmb9r+t7FEFgSuqiiEvYtOwOavdvgTKaIJz1OIwrT57j6T1/3PL1x/Oy76H1h++jYRlrszVtLAe2tE/fK3nxtg15MblSm3fToj2YpHwHx5R9hxQHFOlVIxDlsxoD221D7ZW/4ss6hc00vsr/irqLE8t/QM8Bp9F829/4rY3lRZcpi4q6hJUDv8CG2rOw7Mt3YW8uOCqDXidWYUzPUTjafBkO/tY2jZYFSIlw+KwchnYbqmLFnwNQt6C5y3hlMPAElo/5CgOONsHWA9PxYfHkVIqq/L9iPr6sWyTp/L91E3770DFj8786oJgg0E70qlMH9XZhRtPChsczQsLPnq58Nts9IiIiInrdcTRKeiIA+36eji1NuqOLs/lgoqSxK4F6n4/BpK6PsfnwtYzfEIBSKQYP9i3Gt1uc8dknzuaDiZImNxzq9cbESR/h3pbjuJzqRaZTTjw4gJ+/PYom/TvA2WwwUcoGOwcXfD5xJLoGHsKRy8lc10aV/z9xNh9MlNT5f8sR5n8iIiIiIiJ6PTGgSHoiDA98H8IuX27rl4vpvIk8+XMhzD8Ijzm/9SUTg8cPAvDILjdyJ3mpQzbY5cmLHGH3EfTY2tT49CUeP4Dvo5zIlztn0rOC7PIgf47H8A8KQ7KyJvM/ERERERERkc0YUCS9bI5o0rc9tFv34NgDa8EjgRj/E9jhkQs9utVP3doTlAlyokyTjuijPYgdx+5ZD7rF+OPIDi8U6t4OjVK1xk7qZCvzHvr2AbZuP4kHVidKRsH/yD54FG6Lro1MdllNSoL8b22H5/j8370r8z8RERERERG9nhhQJIPcKNtxAlYPf4qJ3cdjnffdxLtsxoTC7/hKDO+9FHaTlmJma66f+PLRIEfZ9pixuh8iJ32J0etOIuGOUlIMwv2OYeXwb/Cr3Xf4e0brTFw/UZGjPDrOWIDhkT+hx5i18E6w250kEBN+G8dXjkPvX9/EpM0T0CZZ6ydK8fl/Uo8JNuX/GW0yeP1EuU5k0D080O0sFozAoEjrAWGiV4iIeojAB0+VW0/xIPBh4vKZjjLzs4mIiIiIsipuykIm5OYWZ3HQ8xD2H76AqKLlUDJfdt1OupdD7VHX5T00aFQP1U13kaWXjtxg5NTBgzi6/zBORxVBlZL5lAohFHcuhyJ/3fpo3OA91K/uYMMlwBlEtzvyYXgePYjDpyNQtEpJ5NPIXalvITR/Dbg0bohG9atZ2KXVVlkz/8td9ceMW48AeSdXftgjDI8iZSA4LXZpJMrCEuxImAv29sCjR5HK7ewo3vl7TG1TOv3KotXPTu0Or0RERERELzcGFImIiIiIiIiIiMhmvOSZiIiIiIiIiIiIbMaAIhEREREREREREdmMAUUiIiIiIiIiIiKyGQOKREREREREREREZDMGFImIiIiIiIiIiMhmDCgSERERERERERGRzRhQJCIiIiIiIiIiIptphMJwO5mewHvReMw7FoyHF/djh3eg4XEnNOn8LhxzqWKVkX445psPTZrVg7NLc7RqXhuO2uyGJ40EIrz/wDcz1uDg+gO4oTziMMIDl6c3RX6N/n8QERERERERERFR5kpFQFFF+GFTv5bo+OcVOIzYhyszmiGf4Sk9gZjH13BwzVyMHrEQlysPxMy5Y9G/fgmYhhWBFwg9Pgfvu4zELQYUiYiIiIiIiIiIspS0ueRZkxsFiuQx3DFHg+wFKqDZgKn4Y2pn4L+F+LLlV5h7MgSJo5lvQFuwMPIa7hEREREREREREVHWkbFrKGoKoManX+CrSlogfAsmTt6Ma9GpnyBJREREREREREREGSPDN2XR2FdCwyalIa9iDvc4itOB0foniIiIiIiIiIiIKMvL+F2eNTmRO19O/e0ceZHHLuMPgYiIiIiIiIiIiFIm46N5Eddw7J+rENDCqUszOBdJvC0LERERERERERERZU0ZHFCMgO+2lVh+IRxa1xFY+L0bHGzewfkJvBcNQo82dZBXo4FGUxwtl15BrOFZiNvYProX2tQprjwnn6+DkR5Bhicl+fpv8LFrhfjnPYOBmAc4u2kuRo2ajNmzxmJAl/4Yv/QI/KP07yyi/HBk6WSMHD8ds6cMRa8uQzB70xkExVhZ+1G+5+b5GDVwCMbPmoUpI7/B4CkrsP9mqGoTGoEI78Xo97Eryqu+zws8Q9DZzZg9agymzJ6O7wd0R5/xS01eS0RERERERERElDk0QmG4nQrB8Bz5PprN9IbDiH24MqMZ8hmeiRMTAp+d8zCg2zrk/nIUxg7uAhcHw6XPJmJ9lqJVxX44P8IDl6c3RX510FE8gOfoDmg2wxdu7p7Y2bdSwqho9CUs7dwa/bYUwoh9OzGjWRHDEwYiBMendYXL2IcYsfN3tLx2CjHtuqGFYx5oIBDjtx79aw3D7UHLsXZoIez74zKq9u2AmvY5lBe/QOjxOXjfZSGKLNyCdQNqwE7/rnFE+Dn8OehLrCo1DstGu8FRd0l3NEKOzUOXvlfRZcMs9KmaX7eGpJ7xPecir/s/cC9zEfuyv4cuDR1hJ/9TzA2s+/xDdDnWFrsOTkbLopzRSUREREREREREmSfNZyiG/bse82bPxmz135Tv8HG9anCeeAbVpi7Fsum9LAYTk6TJh5IVShjumJGjKEpXLGS4Y4YmNwoWy6/ceIob67YisOWncNMFE3VPInupBuj4SX4cmPMLJk/Zg/zdjMFE6Q3ke9sNXeo/wdbfduBMhEksNuYm/h7eF58dc8W4b1sYgolSDhSs1wOj2l1Ev06zsT/kheFx6Q1oCxZGXuXW8zNrsSTAGZ++ZwgmStnfgmuHlrC/sgHL9/tzliIREREREREREWWqNA8o5n2nMwYNG4Zh6r+xc7DuyBmcmNESz1d+gnofjsGqk/cRY3hN5rgCT7u6aOGU23DfwLhpTLgH9udrAFcHYzDRILsdtFo74NZ13A5W71D9AiGHlmLsIl+4DOiAhgXfMDxuoCmCeu3boNqVzVjvdc9MYDAQB1ZFwbl5OST8xGywy50LdriP89fvIdLwKBERERERERERUWZI84CiJRq7oqjSbAB+3TAXLXzmo0fdVui/9BzCM23KnQPq1i2PwurLqROoiA9cnGASbowXHoanhnUWdYQf9i5Zgysoi4bVSuJNw8PxNMhVvCyqay9gy+GrCDM8mkDdGqhQ2CSAGSccD0MjMzkIS0REREREREREr7sMCyjqaZDd8X0MGdUWeTWnsezb8VjkHfJqXMYbdhOnDtxQbpRFhZJa/WMmNAWKoFReIPDMLdxTxSKJiIiIiIiIiIheFhkcUJRyo3yT99FcqwHCt2CquxeCXoGIYuy9WzgTKG/5YPfSuQnXkDT+LT6FIkNnYVbPmihicWYkERERERERERFR1pUJAUXlQwuXQAW5C4nike8DPH4FAooauzwopJuYWAEt+w5OuIak6d+nzrBnQJGIiIiIiIiIiF5CmRJQFFERCI3S33aoVRrFMuUo0pamsCOqlpYRxSAEhhi+HBERERERERER0SsmE0J5L/DowgkceCSnJdZHz5bVYJismDZEGIL8HxvuZKDcNdD+q5bQ4hZOXgqAev/nBKJ9sXv1CQS/EgtHEhERERERERHR6ybDA4oi9CSWTl+Oy6IUXCdMwXeuRZG8q3/fRLHS5eBguGdKBJ7G7l1yc5SMlgdVuo/HL73t4fnXPzj56IXhcbUXCDm8EXvsiqJAWl3yHHMHnlM7oXz5Tpjq4c9doImIiIiIiIiIKF2lTUBRROBx0FPDHQtEFIIv7cX8bwZi+LG38MWC1fhrXGMzm5MIxEQ+RbhyKyo0AlGJZvJlQ97aH+Br15y4efIa7queF1E3sGW5D2p+1Uq59xQPgp6YCbDFIDI8Qvk3CuHhUYmfF88QEfpMufEMoRHPEu9AHaN/HRCB8MiEr9Zoq6PnzIWY9db/odfQpTgZJN/HQEmjwON/Yd5pZwxrWxrZDQ+rvy/CnyIyxvQTYxEVEakcrfn0iPXdgxljN+LGjY0YO3MPfLl7NBERERERERERpSONUBhuJ9MTeC8aj3nHgvHw4n7s8NZtcaxwQpPO78IxlzpWGYtI/7uIKFUTLo0ao9F7jeBSoaAqqCYJRHj/gW/m7cP9h0ChQrmUl4XiYWhuFKrSFZOntkGpuOCjQEzQWWxdvhLbrmdH+fJFkPNZCIJzuqBHv8bI8fdnqNhvvfL/HODcugVaDPgRU9sUwKlF32Oe51X4RRSGY6HsiH3oj7u5S6BM08GY/0VheI75EevO39Q9Vkr5eN0xlyiD6p+Mx9Smwfh90Fx4+srHSqFQthg89AtGbseKaDpoEgY459cfmhQTAp9DO7F191FcR3GULxyNoJBCcG7XHm3fdYSd7nsYv+8e3PSLRgnHAsgW+xh+d3PAsYwbBs3vhaKe0zFu3Sn9Y6XyKAd0T3/s1bti0pQ2cJRJHHMXhxb8gFFrga6zJ+Hr+sWSOeOTiIiIiIiIiIjIdqkIKBIREREREREREdHrJhM2ZSEiIiIiIiIiIqKXFQOKREREREREREREZDMGFImIiIiIiIiIiMhmDCgSERERERERERGRzRhQJCIiIiIiIiIiIpsxoEhEREREREREREQ2Av4f5UkhtQL4fm0AAAAASUVORK5CYII=
iVBORw0KGgoAAAANSUhEUgAAA0MAAAIGCAYAAACWIlSEAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAHRXSURBVHhe7d0JnMz148fx9ywilqxSrSJZV5GOpZAKRYofleQoN6ESlfvMrVbOioqcOQqFlDOSbP/sljvXylG7RVnHYtm13//M7He11h6zzO7OzPf1fDymvsfsmM/3+Hy/7/l+vp+vzbATAAAAAFiMn/l/AAAAALAUwhAAAAAASyIMAQAAALAkwhAAAAAASyIMAQAAALAkwhAAAAAASyIMAQAAALAkwhAAAAAASyIMAQAAALAkwhAAAAAASyIMAQAAALAkwhAAAAAASyIMAQAAALAkwhAAAAAASyIMAQAAALAkwhAAAAAASyIMAQAAALAkwhAAAAAASyIMAQAAALAkwhAAAAAASyIMAQAAALAkwhAAAAAASyIMAQAAALAkm2FnDgPIJjabzRwCACBrcIoHZIwwBOQARxjylV3Pl8riwLrxTJTFM/na/u/n56eEhARzzLv52roBsgrN5AAAAABYEmEIAAAAgCURhgAAAABYEmEIAAAAgCURhgAAAABYEmEIAAAAgCURhgAAAABYEmEIAAAAgCURhgAAAABYEmEIAAAAgCURhgAAAABYEmEIAAAAgCURhgAAAABYEmEIAAAAgCURhgAAAABYEmEIAAAAgCURhgAAAABYEmEIAAAAgCURhgAAAABYEmEIAAAAgCURhgAAAABYEmEIAAAAgCURhgAAAABYEmEIAAAAgCURhgAAAABYEmEIAAAAgCURhgAAAABYEmEIAAAAgCURhgAAAABYEmEIAAAAgCURhgAAAABYEmEIAAAAgCURhgAAAABYEmEIAAAAgCURhgAAAABYEmEIAAAAgCURhgAAAABYEmEIAAAAgCURhgAAAABYEmEIAAAAgCURhgAAAABYEmEIAAAAgCURhgAAAABYEmEIAAAAgCURhgAAAABYEmEIAAAAgCURhgAAAABYEmEIAAAAgCURhgAAAABYEmEIAAAAgCXZDDtzGEA2sdls5hAAAFmDUzwgY4QhIAc4wpCv7Hq+VBYH1o1noiyeydf2fz8/PyUkJJhj3s3X1g2QVWgmBwAAAMCSCEMAAAAALIkwBAAAAMCSCEMAAAAALIkwBAAAAMCSCEMAAAAALIkwBAAAAMCSCEMAAAAALIkwBPikOJ3Yu0ELJg9R99YNVLmgTQUrN1Dr7kM05atwRcX6xkMFAQAAroXN4PHEQLbLuieDG4o/Fq4F7w3X4HeWKCKorjq92FAPVwpUAZt9dty/2vXNLH12vrlmT+6kygG5Ev/sGvjaU859qTyUxTNRFs/l5+enhATf+LHI19YNkFUIQ0AOyJqD1EXF7Jyjrs++phlR96lTyAj1b1NDxfOluABsnNTO6b318t4mWjbqcRVxhKRr4GsHXE5UPRNl8Uy+tv8ThgDroZkc4BOSB6FHNOireXq/86OpBqG938zRrBW/aNvH32pz9EVzBgAAgPUQhgCvZyg+8lsNfN4ehPbdpIYjh6ln7duV25ybnPHXWo1q9pre/WKzYqJ3as+RWHMOAACA9RCGAG9nRGntmJEavztGqvaaBrV/QP5pNX0zJFsec7h8Vd1/5/XmCAAAgPVwzxCQA9zXltvQ2fCxeqJyD4UqSM3nr9ZnTe9U2rcBXVTM4V/04y/RKvxAdT1Ywj+d97rG19qlcz+HZ6IsnsnX9n/uGQKshytDgDczjmjFB1PtQcjO/zE1qnZbBuEml/xLVNGTz9TVQ24IQgAAAN6MMAR4sYTfv9fsL3YnjlR/WPfffl3iMAAAADJEGAK81nkd+nGlvopJHCv56N26gz0aAADAZZw6AV7rX+38MdwcLqmHSt8qrgsBAAC4jg4UgBzglhtbz/+kEeWracBBx0iweq1doXdq3yTFH9XWrxdo3ne7dOL0WZ05/q9O3VJRj1R9VLWeqqkHAvO79V4hX7tJl5vbPRNl8Uy+tv/TgQJgPVwZArzV8UjtdQYhh4IqekM+GTHbNGPAZG27taEGjP1QU6bP1OwlS7VgyPMqvneSapZ9Rm/ODtOxeA6QAAAAhCHASyWcPqG/zGGnCxH6csRKBXbro5ZV75B/7qTrP37KF1hZTYd/rIWvxml8q+fUdNgaRRGIAACAxRGGAC+VcPq4Isxh6YwOfTVf2+u0Vt3AvOa0FHIXV91eA9S7fLTWDX1ZnaduV6w5CwAAwIoIQ4BP2Kz3fy2pJo8UTfd+IFuR+1W/yT32oYNa2vMdzd17NnEGAACABRGGAJ8QqLrNHlP5PBl1jVBIpe+rlDgY862mLt0p4hAAALAqwhDgpXIXK6WHzWGpmO4reZMLO3RuFb2jtIKcw9EKnRuqfRedIwAAAJZDGAK8Vd4CCggwh83e5DLt112KOBpvjgAAAFgLYQjwVjfcqlIl/c2Rq7VHByLpRgEAAFgTYQjwVrluVblHExu8AQAAIPMIQ4DXKqyywRXN4fM6dfaCOZwZ5VSq2FU0rwMAAPABhCHAa+XVHQ/VVl3ncJT2Rp5Sxo9RNXQx7oIu9ZlQ4z6Vvzm3OQIAAGAthCHAi/mVqaV2zR1N5Q5q084jLnSTHa+jh/bb3+0QoOpNqqp0LucIAACA5RCGAG9mK6E6HZqrvH3wyJcbtf1sBteGjKPaun5z4nD5lzWoWUVdlzgGAABgOYQhwKvlUpFaXTT+jWrSjln6aNkBpd1RtqHYXcv1yZwd9uFq6h7yih6niRwAALAwwhDg7WzFVPftcQqpc0YzurytqVv+TSUQGYqPWqNRXYdracz9ajNtiobVLyGiEAAAsDKbYWcOA8gmNptN7t317GEnepsWDu2pjlPP6PnBb+rlhlVUsmAexZ+O1N5fVuiTQaO1vHBLhbzXR21qlFA+m/mn18j9ZclZvlQeyuKZKIvn8vPzU0JCgjnm3Xxt3QBZhTAE5IAsO0gZZxX1y3p9u2KVVq35RgvW75N/cEM1f/wRVX20tp56/D4F5nPvBWFfO+ByouqZKItn8rX9nzAEWA9hCMgBnAx5LtaNZ6IsnsnX9n/CEGA93DMEAAAAwJIIQwAAAAAsiTAEAAAAwJIIQwAAAAAsiTAEAAAAwJIIQwAAAAAsiTAEAAAAwJIIQwAAAAAsiTAEAAAAwJIIQwAAAAAsiTAEAAAAwJJshp05DCCb2Gw2cwgAgKzBKR6QMcIQkAMcYchXdj1fKosD68YzURbP5Gv7v5+fnxISEswx7+Zr6wbIKjSTAwAAAGBJhCEAAAAAlkQYAgAAAGBJhCEAAAAAlkQYAgAAAGBJhCEAAAAAlkQYAgAAAGBJhCEAAAAAlkQYAgAAAGBJhCHA653R1klt1TZkvjbsOqrYDB84nqDYQxu0bvdZczw7xStqcWfnk9EzfpVW68VHzL9LKUbhY2qleH8qr9aLFWX+BQAAQEo2w84cBpBNHCfq7tv1HMHgf6rcc7192F9BtV5U2xfrqtp9FXVXuVIK9PdT7IljOnb0D+3b8atCVy3SkgttNP+jF1Qqjy3xI65B5spiKDZqj3ZGnrEPX9CJfd/pk0GjtWBfTOJsp+Kq2a2v3mpcRaVK3627A/Ob05OL14nftyj8/1am+Ht7+et31OtNa6pimWK6odBtqnB3oPKZc13h3nWTsyiLZ6IsnsvPz08JCQnmmHfztXUDZBXCEJAD3HuQSh6GMhKoKp1DND2kmSr45zKnXZtrK4s9HO2ZqTbV2mpBtDmp5AiF7u6rqnldCWoXdXxlX1WsF6KooMYaPn64Xq1XToVzX33I40TVM1EWz+RLZXEgDAHWQzM5wCqCGqn3nKVaPqmF24LQtbMpX7kXNGJCWwWYU3Twa32+Psoek1zhpwI3FFZe/6c06KPx6t2g/DUFIQAAYC2EIcAnFNBLMzdp69r5mtC7g+oHB9qn+SuoZhN16hWiaV+H6dCWhRr9YmUV9biwkF9BzfpoQvMy5nioxnWfqFVH483xdBhRWv/5GlUaOUw9a9+u3OZkAAAAV9BMDsgB7m2+4Ggm10wTS03WzOeKm9Oyj3vKYiguYq5aV3lJ85zN5fxVvvdX+nHU4yqSZnY7r8ivB+rJT0pr/oKOqpDPPSGPJkyeibJ4Jl8qiwPN5ADr4coQAA9gU56gZzXsUnO5GO1+Z4QmbDyWRnM5Q/GHl2tYzz/06sgWbgtCAADAWghDADxEyuZy6zT0rY+0MfqiOZ5M/EEtHTVBkd36qE0Ff3MiAABA5hCGAHiOPGXUbNhgNU/qTWHzWL01fqOiL7s8FKvDSyeof+SLGtnmnkx1mw0AAJAcYQiAB0nZXC5am4cO0fhLzeUczeO+0aj+R9WN5nEAAOAaEYYAeJh0msvRPA4AALgRvckBOcC9vfwk703uNsVGbdHab1do9Q97FO3oFOn8OZ0rVFo1Hq+nek9WU9nCeRL/zE2ypseilL3LBajKoM/0caWVarmoir6a2UJBebLmqhA9fXkmyuKZfKksDvQmB1gPYQjIAe49SJlh6Pb+6nxikT4+eLdatnpKD5a9Vf7OZwolKPbYdi1/r486fnenRk4YoA7VirntmTxZd8A9q4jZr6lKq+ly5iGHgLaatfl9tQzKb05wP05UPRNl8Uy+VBYHwhBgPTSTA3zCWW0YNEYr73xNk0e1U+27A80g5OCnfEXvVePhH2te7d/UpW4HDVv7h1x4pGkOS9lczq50KZUsktccAQAAuDaEIcDr2ZQ7b2k1nThOA54sqTT7FMhdXHV79VH3gt9qaJNBmhdx1pzhwVzqXQ4AAODqEIYAr1dA93b9WKPrlciw6ZutSLD+1zJYip6ubiNWKNILQoUtz/W64aakzhJS9i4HAABw9QhDgKXcoDIPVHIORU//TEt/O+Mc9lhJvcd1fE/vNixpTlynscM+U/ipVB7GCgAAkAmEIcBScqtIsRIq7hwO1Zc/HZHn3iqc7OGqXdur68i+amheIIpZPVb9Pg7TKS4PAQCAa0AYAizFprz5/XWdczhKm37er3+dw57GfLjq4JPq+a7j4aq5lK9CMw0d8YwS89ARrR4ySh+HH6e5HAAAuGqEIcDCYn4+oEhPbG0Wt1+L3p6kk736qmW5pPuFCqlSmz4aXCfxupZilmhIv1k0lwMAAFeNMAR4rYuK2TlXb9S+S6Vrv6lPt17FVZJTFxTvcZdWzipi/ij1jO2gYc3KKPkjYm2FKuvlkW+qDs3lAACAGxCGAK/1t9ZPGqbx63YrYt04tR+7Xn+Zc9Jm6PzZGF0wxxRURAU9qhYwFBfxpQb2l0YMe1ZBeVL2E55LhYJbaeTgRjSXAwAA14wwBHiti7pwLs4clgICCijjx5HG63jkYXuESFT8oTK6zZNqgbh9mj/wA3sS6qNmQfnNiSnYiij45b6XN5cbtlC7YolDAAAgcwhDgNcqoKJ3lFDNJm3VqfcnWtK7poqYc9J2Uvt+2WYO11CbOnfbP8VTOJrHjVZ/vXpF87iUrmgut3SU+s3YrtjEUQAAAJcQhgCvFaDgp+vp+ge7aOzoDnokMOPrQkbkBs35JNw57N+orV6qmnF8yh4ZNY9LKbG53NC+dc3xg1rac6Rm7IwxxwEAADJGGAK8lk35KzdRhwPTNG3riYzvmTEitWrMGE2Ptg/7N1XIiBdUNsPQkU1caR6Xkq2IHurST4OqBCSOxyxQz35ztZPmcgAAwEWEIcCb5S6phgMb659Br2rk17t1Iq2u4eL/1dbpb6vruFApqLFGLBmjDhWSuqzOYcYJbZ0yQK9srKsuz6XfPC4lW0ANdX/vTVUxx2kuBwAAMoMwBHg1m3IHPqGBU7spcHknPfjMW5q4YLX+b9fvioqKUtSRvQpfO08hHRuqRvuvVbjNeK1Y9an61r5duc1PyElGzH6tfO81NXn9C8XE/KXIf8+bc1yVSwFVn1G7OoHmuKO53HB94sqVMgAAYHk2w84cBpBNbDab3L7rGWcV9ct6fbtug35av0bzlocrxj9Y9Z+roeCq1fXYw4+o+j2ByufmlnGZKktslHbt/FOnTkZq344ftWzWbH0RHmXO9FdQwzc0+HV7cAu+T3cWTj+uGSd+16+7d+vX+ePUfcJqXXa3UFAj9erZTg2Cb1N+e3ltRYJ0/52F7dExY1mybnIIZfFMlMVz+fn5KSEhwRzzbr62boCsQhgCcoBlT4aiFqt1scaaZY6mrqZCwpapR3D6zfjiw8eofOWeijDH0xMUEqbdPYJduhrGiapnoiyeyZfK4kAYAqyHMATkAE6GPBfrxjNRFs/ka/s/YQiwHu4ZAgAAAGBJhCEAAAAAlkQYAgAAAGBJhCEAAAAAlkQYAgAAAGBJhCEAAAAAlkQYAgAAAGBJhCEAAAAAlkQYAgAAAGBJNoPHEwPZzvFkcAAAshKneEDGCENADnCEIV/Z9XypLA6sG89EWTyTr+3/fn5+SkhIMMe8m6+tGyCr0EwOAAAAgCURhgAAAABYEmEIAAAAgCURhgAAAABYEmEIAAAAgCURhgAAAABYEmEIAAAAgCURhgAAAABYEmEIAAAAgCURhgCrMP5R6MhGqjxxqy6ak3At4hW1uLPzKe8Zv0qr9eIj5t+lFKPwMbVSvD+VV+vFijL/AgAAuAdhCLCEi4reOEXd+i/ViQvxMsypuBa5FFCtu8LCwuyvTVozb7ialvE35yUprprdPtSyDfPVu9qN5rSU8imocUgqf++voPpvaMKsJVobullhvaspwJwDAADcw2bYmcMAsonjl/7s3PWMU6EaVa+++odGKygkTLt7BCu3Oe9aZXdZstrVl8dQ7J6ZalOtrRZEm5NKjlDo7r6qmtdmTkjPRR1f2VcV64UoKqixho8frlfrlVPh3K78bep8ad1QFs/ka/u/n5+fEhISzDHv5mvrBsgqXBkCfJ1xXOEfv6NR9iCErGRTvnIvaMSEtv9dwTn4tT5fH+XilTg/FbihsPL6P6VBH41X7wblrykIAQCAjBGGAJ9m6Oy2eRr1wwXdZ05BVsqvoGZ9NKF5GXM8VOO6T9Sqo/HmeDqMKK3/fI0qjRymnrVvd9uVOwAAkDbCEODLYrdr1jtH1HZgS5UyJyGL5SmjZsMGq3nS5aHdH6j72O91PN3LQ+cVuXy8ekQ008iOD8ifC0IAAGQLwhDgs2K0c8ZkbXu+k+rdltechqxnU56gZzXsUnO5GO1+Z4QmbDyWRnM5Q/GHl2tYzz/06sgWqpCPJAQAQHYhDAE+yVBcxBKN2lxLfRqWpMlVtkvZXG6dhr71kTZGp9KpefxBLR01QZHd+qhNhZS90QEAgKxEGAJ8Udw+zR8cqif7NVAJbsLPGSmby20eq7fGb1T0ZZeHYnV46QT1j3xRI9vco3zmVAAAkD0IQ4DPsZ9gL56slU++rmZB+c1pyH4pm8tFa/PQIRp/qbmco3ncNxrV/6i60TwOAIAcQRgCfEriCfbopfdqULMyymNORU5Jp7kczeMAAMhxhCHAlxh/aMW7q1Wp3/Mqm4crDR4h1eZyq7RlyQQNPvmyxraneRwAADmFMAT4jHgdXfWJ5lXswpUGj5Jac7mndX/HU+o17FkFEVoBAMgxhCHARxhH1+idj2/UGy0qcKXB46RsLmdXupRKFqHLcwAAchJhCPAFxlGtG7dYgX1bKrhQLnMiPIpLvcsBAIDsRBgCvN5FRW+cqonXvaj2wUVEoyvPZctzvW64KakJY8re5QAAQHYjDAFezojeqPHvSW91r6EAkpDnSuo9ruN7erdhSXPiOo0d9pnCT6XyMFYAAJDlCEOANzOOK3zaF7K91VE1Amge57mSPVy1a3t1HdlXDc0LRDGrx6rfx2E6xeUhAACyHWEI8FoXdSp8tkZFNdArNYrSPM5jmQ9XHXxSPd91PFw1l/JVaKahI55RYh46otVDRunj8OM0lwMAIJsRhgBvFbtTc8f9q5d7P6GbSUKeK26/Fr09SSd79VXLckn3CxVSpTZ9NLhO8cTRmCUa0m8WzeUAAMhmNsPOHAaQTWw2m65t1zuvA7M7q+W+BhrfqGTGv2r8s06D6/XUcvtg8W6z9EXLu5U7cY79yxRR0P13qvBVBqprL4tncW95zipi9muq9e3jWjezRYpnCl3UqbBJer7WG1od4xgvrjohX2jhWw+pkJvCrS+tG8rimXxt//fz81NCQoI55t18bd0AWYUwBOSAaz9IxSh8zP9Uued6c/waBIUobHcPBV9KR5njawdc95XHUFzEXLWutVZPrXtfLYPym9OTMY4r7L12qtVziX2N2vk3Usi6T/VWZff0CuhL64ayeCZf2/8JQ4D10EwO8Er+Cu6xznmgc+UVFxaiIPMvg0LCFJd8/v6rD0JIR9w+zR/4gTSij5qlFoQcbEUU/HLfy5vLDVuoXbGcwAAAkB0IQwDgdmcVMX+0+utVDWtWRnnMqamxFaqsl0e+qTpJvcstHaV+M7YrNnEUAABkIcIQALiVo3nclxrYXxox7NkU9wmlJpcKBbfS0L51zfGDWtpzpGbsdDacAwAAWYgwBADu5ErzuJRsRfRQl34aVCUgcTxmgXr2m6udNJcDACBLEYYAn2fo/NkYXTDHLp6PEx04ZxHjhLZOGaBXNtZVl+fSbx6Xki2ghrq/96aqmOM0lwMAIOsRhgCfYyg2arfCw8PtrzD9tHaexn/wlY6Ycw/OnKT3Fq1XmHO+/bUrihNuNzBi9mvle6+pyetfKCbmL0X+e96c46pcCqj6jNrVCTTHHc3lhuuTrSd4GCsAAFmErrWBHJC1XZ7GK2rxayrW+CNzPAOtFily5nNKOgXPLF/rvtXl8sRGadfOP3XqZKT27fhRy2bN1hfhUeZMfwU1fEODX2+oGsH36c7C6XfXZ5z4Xb/u3q1f549T9wmrE7vZThLUSL16tlOD4NuU32b/fkWCdP+dhV3qetuX1g1l8Uy+tv/TtTZgPYQhIAdwMuS5XC5P1GK1LtZYs8zR1NVUSNgy9Qg2u4pLQ3z4GJWv3FMR5nh6HF2j7+4R/N9Dc9PBduaZKIvnIgwB1kMYAnIAJ0Oei3XjmSiLZ/K1/Z8wBFgP9wwBAAAAsCTCEAAAAABLIgwBAAAAsCTCEAAAAABLIgwBAAAAsCTCEAAAAABLIgwBAAAAsCTCEAAAAABLIgwBAAAAsCSbweOJgWzneDI4AABZiVM8IGOEISAHOMKQr+x6vlQWB9aNZ6IsnsnX9n8/Pz8lJCSYY97N19YNkFVoJgcAAADAkghDAAAAACyJMAQAAADAkghDAAAAACyJMAQAAADAkghDAAAAACyJMAQAAADAkghDAAAAACyJMAQAAADAkghDgM9IUGzUNq2aPUa9X26kygVtzieQF6zcQK27D9GUxaE6cCLOfC+QXLyiFnd2bi8Zv0qr9eIj5t+lFKPwMbVSvD+VV+vFijL/AgCAnEQYAnxBfKRCp7yupzvP0O7rHlCLvlO05thFGQnndHjhcLUo97c+bV1dQZWbafDiHYqON8w/BBxyKaBad4WFhdlfm7Rm3nA1LeNvzktSXDW7fahlG+ard7UbzWkp5VNQ45BU/t5fQfXf0IRZS7Q2dLPCeldTgDkHAICcZDPszGEA2cTx67jbdr34w/q6Z1d9UepNDe/4iIrnS+03jvOK/HqgHv9fiHbbT2prDZ6lBYNrqqjNnH0N3FoWD+BL5bn6shiK3TNTbaq11YJoc1LJEQrd3VdV87qy0VzU8ZV9VbFeiKKCGmv4+OF6tV45Fc599Rsc68Uz+dr+7+fnp4SEBHPMu/naugGyCleGAK92XocXjdSoQm9q/GuPpRGEHPKq2JOt1K1OoH34iNYN6adRqyLtp7xAamzKV+4FjZjQ9r8rOAe/1ufro1zcZvxU4IbCyuv/lAZ9NF69G5S/piAEAEBWIQwB3uziPn3z/ufaNLS56jR/T99FnTdnpCJPKT363IPmSKjGjV2hfb7xAyiyRH4FNeujCc3LmOP2bab7RK06Gm+Op8OI0vrP16jSyGHqWft25TYnAwDgaQhDgDc7flBbtjjaMUUpfEEPvTT+R51KnJOK6xRw863msN3mXfr9xEVzBEhFnjJqNmywmiddHtr9gbqP/V7H0708dF6Ry8erR0Qzjez4gPy5IAQA8GCEIcCbFbhRxUumvNEdcBeb8gQ9q2GXmsvFaPc7IzRh47E0mssZij+8XMN6/qFXR7ZQhXwkIQCAZyMMAd4s/wNqN+FtNQ0OUnDTMZrT/WEVMmddKV6nTxw3h+0qlFbxG3KZI0BaUjaXW6ehb32kjdGpXFWMP6iloyYoslsftalASAcAeD7CEODV8iqw9luaH7ZfYfPfUu3AvOb01JzU79v2msMBqt6kqkqTheCKlM3lNo/VW+M3Kvqyy0OxOrx0gvpHvqiRbe5RPnMqAACejDAEWIRxfItWfL41caRMG/VtUkHXJY4BGUjZXC5am4cO0fhLzeUczeO+0aj+R9WN5nEAAC9CGAIs4awOLF+gmc7H/ger8+iuqheYxzkHcE06zeVoHgcA8FI8dBXIAdn7MLyLitkxXR0e7agFcTXU+cMPFPJSJbf18uVrD/bjgZjpMRQXMVetq7ykec6HsQaoyqDP9HGllWq5qIq+mtlCQXmy5qoQ68Uz+dr+z0NXAeshDAE5IHsOUvGKiYrQ9g3zNLr/RO0s31lDhnRT0+Bb3PrcF1874HKimpGzipj9mqq0mi5nHnIIaKtZm99Xy6D85gT3Y714Jl/b/wlDgPXQTA7wKcf108RX9EKtsvYDYR4VLFZe1Zt9pes7f6Zv5gzRi24OQrCilM3l7EqXUski6XXeAQCAZ+LKEJADsu0XOyNW0Yd26+dvP9bAcREKfvk1vda+nioEuO9+IV/79ZFf7V2RWnO5L7Xy7ccUkEV9J7BePJOv7f9cGQKshytDgC+z5VNAyfv0ZJdxWjLpQYX3bKiKD3XSpNBIxZtvAa6GLc/1uuGmpM4SUvYuBwCAdyAMAZaQV4F1u2p07+rSvul6vW4HDVv7B4EIVyep97iO7+ndhiXNies0dthnCj+VysNYAQDwUIQhwCpsRVWjeTPZ45AU862GdhmjpYdjnbMA1yV7uGrX9uo6sq8amheIYlaPVb+Pw3SKy0MAAC9BGAIsw6brSt+nx4ubo/tmaczn23XWHAUyZj5cdfBJ9XzX8XDVXMpXoZmGjnhGiXnoiFYPGaWPw4/TXA4A4BUIQ4CVFCip+2oFmSPRCp24XOFnOG2Fi+L2a9Hbk3SyV1+1LJd0v1AhVWrTR4PrmCk7ZomG9JtFczkAgFcgDAFezVB8zL/6J8bVu38CdMc9SZeG7I7s18GjF8wRID1nFTF/lHrGdtCwZmWUvD9CW6HKennkm6pDczkAgJchDAFeK0Z757+h6oE3qWhgLb2yaL/izDmu+1N/H8/8X8FqHF1pf6mB/aURw55VUJ6U/WfnUqHgVho5uBHN5QAAXoUwBHirUz9r2psTtDnGPhyzUZNHfKNdmW6ZlE/X5c6iB8PAd8Tt0/yBH9iTUB81C8pvTkzBVkTBL/e9vLncsIXaFUscAgB4LsIQ4K3On9XJ0+awy04pav9f5rBdQAWVK57PHAFS42geN1r99eoVzeNSuqK53NJR6jdju+izEADgqQhDgLe6sZwefsJ8xktQY40Y85wq5EocTdOZCP38zW5zxJ6FnqmuewIy+iNYV0bN41JKbC43tG9dc/yglvYcqRk7HZcvAQDwPIQhwFv5lVKDNzuoTpsZ2rFlgfrVvl25zVmpi1Pkynl6/4g5qrrq8XJNBdJKDmlxpXlcSrYieqhLPw2qEpA4HrNAPfvN1Y5zNJcDAHgewhDgtXIpoMZrGvdIqDp2GKcVe48r7T7lLipm51z17zNb0c7x4qo1YqC6PFREZCGkyjihrVMG6JWNddXlufSbx6VkC6ih7u+9qSrmuKO5XP8Z22guBwDwOIQhwJvZblCFdhO0pGcxrX/zCVVvPUiTP/tGP4Tv0u9RUYqK+lO/7/xBiyd20/+qttGMfY7mSuXVcMR0fdbrYQWQhJAKI2a/Vr73mpq8/oViYv5S5L/nzTmusgf1qs+oXZ1Ac/yglvYaoU+2nqB3OQCAR7EZduYwgGxis9nk9l0v/pSO7AzTpk0/KPTn7dr6w0qtj0h+r0YZ1ercSa91aKanH7hN+dwUhLKkLDnIl8rjcllio7Rr5586dTJS+3b8qGWzZuuL8Chzpr+CGr6hwa83VI3g+3Rn4fQbYxonftevu3fr1/nj1H3Cal12t1BQI/Xq2U4Ngm9Tfvv2ZysSpPvvLOzS1UlLrhcv4Gv7v5+fnxISEswx7+Zr6wbIKoQhIAdk20HKiNWJv6N1zsil6wNuUuF87r8Y7GsHXEueqEYtVutijTXLHE1dTYWELVOPYLOruDTEh4/RXVV6ar8L/2zQu5u1u2flDO51S2TJ9eIFfG3/JwwB1kMYAnIAJ0Oei3XjmSiLZ/K1/Z8wBFgP9wwBAAAAsCTCEAAAAABLIgwBAAAAsCTCEAAAAABLIgwBAAAAsCTCEAAAAABLIgwBAAAAsCTCEAAAAABLIgwBAAAAsCSbweOJgWzneDI4AABZiVM8IGOEISAHOMKQr+x6vlQWB9aNZ6IsnsnX9n8/Pz8lJCSYY97N19YNkFVoJgcAAADAkghDAAAAACyJMAQAAADAkghDAOCjHPcMAACAtBGGAAAAAFgSYQgAAACAJRGGAAAAAFgSYQgAAACAJRGGAAAAAFgSYQjwGQmKjfpFyz8dqe7Naqm0zSabraBK12qh7oM/1ILvtikq1jeerA6kLV5Rizs7e9LL+FVarRcfMf8upRiFj6md4v2pvFovViQP+QcAr2Uz7MxhANnEcRLl1l0v/l9tXfiOug/ao/tea6on7y+tovlzSXEndGjLKn065kMtj4iRf5UOGj6st9rXLS1/N/W67Pay5DBfKo+fn58SEnwjALu+XgzFRu3Rzsgz9uELOrHvO30yaLQW7ItJnO1UXDW79dVbjauoVOm7dXdgfnN6cvE68fsWhf/fyhR/76+g+h31etOaqlimmG4odJsq3B2ofOZcV/jSNuZr+7819xnA2ghDQA5w60HK+EsbhnRQp0ONNPvdVqpcNK85I4mh+OhfNevNDmo/41f7+P1qM22GJrWt5JZA5GsHXF8qDyd2DvZwtGem2lRrqwXR5qSSwxW6u5+q5nVlB7io4yv7qmK9EEUFNdawccP02lPlVTj31e88vrSN+dr+zz4DWA/N5ACvFqeo5SHqc6iJFk5ql0oQcrApd8ADajthskLqFLeP/6oZ7dup55e/Kz7xDYAPsylfuRc0YkJbBZhTdHC5Pl8fZY9JrvBTgRsKK6//Uxr00Xj1/t9d1xSEAACehTAEeLOzYfp0wN/q0LeJKvjnMiemzlaostr1aa3yzrFwTen/qTYcv+gcA3xbfgU166MJzcuY46Ea132iVh114ecAI0rrP1+jSiOHqWft25XHnAwA8A2EIcBrJejUT8s0vVZLPVMmtXseUsqlIg/VVRPHxSGH3fM0dfVhF38dB7xcnjJqNmywmiddHtr9gbqP/V7H090Bzity+Xj1iGimkR0fcNt9dgAAz0EYArzWae0K/UER4+vpjiotNGjxHsWac9JUoKwefu5ecyRCy9bt1D/mGODbbMoT9KyGTWirIs5QE6Pd74zQhI3H0vhBwFD84eUa1vMPvTqyhSrkIwkBgC8iDAFe65Qi90Y5h2LC52nYazO16VRGN/4W0E23X7pzQjE/H1AkLeVgGYnN5cY3L2uOr9PQtz7SxuhUdoL4g1o6eqIiu/VRmwr+5kQAgK8hDAFe63oVvrWwOXyVTl1QPO3kYCWO5nJDB/3XXG7zWL01fqOOX/Y7QqwOL52gAX+20Mg292Sq22wAgHchDAFe60Y98uoIjWhaRQHBLylkzit6tFBGu3SsTh47bQ7bVS6um9PvdwHwMf81l0vMQ9HaPHSIJmw8ajaXczSP+0aj+h/V6yOa0zwOAHwcYQjwWvaTuhJPqt/8n3U8bLZ61L5duc05aUr4Rwe3RJoj/rq3cpBu5lwPlpOyd7l1GtrDbC7naB43aoKzeVzrigXN+QAAX0UYAizE+GOr1mxKvM9IqqGXapVRak8mAnxeyt7lNo/TW+NXacuSCRp88mWNbX+PrjdnAQB8F2EIsIyz2rdmqZbFJI4FtO2oFg/ckDgCWE5qzeWe1v0dT6nXsGcVlIdLpgBgBYQhwCKMU1u1cOq3cmahMl00eUA9FeN8D5b2X3O5S7tC6VIqWYTrpQBgFYQhwBLOat/C9zUqNNo+XE3dx/ZR41KuPKgV8HFJzeUSHz50qXe5aHpZBABLIAwBPs9QXMSXervHXMWojJpOmaxh9Utk3NkCYBG2PNfrhpuSniWU2Lvc+I3HlNFTuwAA3o8wBPi62F2a3X+I5kUXV61BH2hc+0ryp3kckMjsPe7PDmP0bsOS5sR1GjvsM4Wf5InEAODrCEOALzP+0obRPdVtQaw9CE3TZwOfUGBukhCQKPHhqv0jX9SI19qr68i+amheIIpZPVb9P96sUzSXAwCfRhgCfJVxUjunD1KHITtUhSAEpGA+XHXwSfV8t4UqXp9L+So009ARzygxDx3R6qGj9XH4cfNhrAAAX0QYAnzSeUWtGqO27VfodoIQcKW4/Vr09iSd7NVXLcsl3S9USJXa9NHgOsUTR2OWaEi/WQo/RXM5APBVhCHA51xUzNZp6vz8TPkThIBUnFXE/FHqGdtBw5qVUR5zqoOtUGW9PPJN1UnWXK7fx2E0lwMAH0UYAnyKobgDC/V6kxCdfjODIGTE6sTfJxTLSR4sJbF3xYH9pRGpPlw1lwoFt9LIwY1U0Dl+RKuHjKK5HAD4KMIQ4DMMxUet0fAOb+tg848zviJ0drPGdl2mKHMUsIS4fZo/6EN7EuqjZkFpPGvLVkTBL/fVoLolEscdzeWGLdQufjkAAJ9DGAJ8hBGzXbP6va0fHpnoUtO4hD/3aWv5krqZFnSwDEfzuNEaYLxyRfO4lJzN5Ua88V9zuaWj1G/Gdp1LHAUA+AjCEOAL4g9r+cBumlPibRfvEbqoE7/vVVzJorrenAL4tv+axw0f+kwqzeNSSmwuN7RvXXP8oJb2HKkZO06b4wAAX0AYAryd8Y9C331DEwv1cykIGbEn9NeRX/TV3F90T8mbqARSYRg0h/I5juZxAz9wNo9rWrqAOTEDtiJ6qEs/DaoSkDges0C9+s/VTprLAYDPsNkP+tTqQDaz2WzuOeF2Pkuop55t/4n2mZNc10TT9sxSu7L5zPGr47ayeAhHeRISEpz/93Z+fn7OsviCa9rOjBPa+v7LqhFyt775bbAeKZCZdXtR0T+M0pOPDtRm53hJNZy8RAs6V9LV7jm+tM/42v7PPgNYDz8KA17rvKK+m6Su3a4mCNkFllbJW68zRwDfZMTs18r3XlOT179QTMxfivz3vDnHVbkUUPUZtasTaI47mssN1ydbT9C7HAD4AK4MATnAPb/YHdHi1rXUeFaEOZ5Jdadpz7ftVPYafxLxtV8fHeXhypDncXk7i43Srp1/6tTJSO3b8aOWzZqtL8KT+kz0V1DDNzTo9YZ6JPg+3Vk4tzk9dcaJ3/Xr7t36df44dZ+wWjHmdKegRurVs50aBN+m/PZNxVYkSPffWViubDW+tM/42v7PlSHAeghDQA7gZMhzOcpDGPI8Lm9nUYvVulhjzTJHU1dTIWHL1CPY7CouDfHhY1S+ck+58nNDUEiYdvcIVvrxKhH7v+ciDAHWQxgCcgAnQ57LUR7CkOdhn/FMvrb/s88A1sM9QwAAAAAsiTAEAAAAwJIIQwAAAAAsiTAEAAAAwJIIQwAAAAAsiTAEAAAAwJIIQwAAAAAsiTAEAAAAwJIIQwAAAAAsiTAEAAAAwJJshp05DCCb2Gw2cwgAgKzBKR6QMcIQkAMcYchXdj1fKouDozwJCQk+EVj9/PycZfEF7DOeydf2f/YZwHpoJgcAAADAkghDAAAAACyJMAQAAADAkghDAAAAACyJMAQAAADAkghDAAAAACyJMAQAAADAkghDAAAAACyJMAT4MCNmjz7v/pQ6fx1pTgEAAEASwhDgk+J0Yu+3eq9DUzWdsE/nLlw0pwPwHvGKWtxZNpvNhVdptV58RIb5l5eLUfiYWinen8qr9SJFmX8BAFZBGAJ8RXyM/jmyV+FrF2jiG8+rcrmn1XPBVnMmAO+TSwHVuissLMz+2qQ184araRl/c16S4qrZ7UMt2zBfvavdKJs59XL5FNQ4JJW/91dQ/Tc0YdYSrQ3drLDe1RVgzgEAq7AZduYwgGzi+BXWbbtefLjGlK+snhGOkUAFN2ysZxs/pcon5qhet3n2aUFqtWidZj5X3PEGt3NrWTyAozwJCQnO/3s7Pz8/Z1l8gS9tZ1dfFkOxe2aqTbW2WhBtTio5QqG7+6pqXle214s6vrKvKtYLUVRQYw0fP1yv1iunwrmvflv3tf2ffQawHq4MAd4uV5Aafx6mLXsOKSr6gDYvmaT+reqq0u2FzDcA8A025Sv3gkZMaPvfFZyDX+vz9VFpNI9LyU8FbiisvP5PadCUcerdoPw1BSEA8AWEIcDb2QrrzgeCdW/ZErq1cL40mskA8A35FdSsjyY0L2Pu66Ea132iVh2Nd46ly4jS+s/XqNLIYerxeHHlNicDgJURhgAA8CZ5yqjZsMFqXsT86WP3B+o+9nsdT/fy0HlFLh+vHhHNNLLjAyrIryYA4EQYAgDAq9iUJ+hZDR2f1FwuRrvfGaEJG48p9btdDMUfXq5hPf/QqyNbqEI+khAAJCEMAQDgdRzN5Xo7m8slWqehb32kjcdT6UY//qCWjpqgyG591KZCyt7oAMDaCEMAAHijpOZySb0pbB6rHhN+UPRlzeVidXjpRPWPfFEj29yjfOZUAEAiwhAAAF4psbncsEu9y0Vr89ChGr/xmNm7nKN53DcaPeBvdaN5HACkijAEAIDX+q93uURmc7noi5eax/35em+axwFAGghDAAB4s1Say701fpW2LJmgwSdf1nvtKtE8DgDSQBgCAMCr/ddcLrG3bUdzuad1f8dT6jXsWZW+juZxAJAWwhAAAF4vsbnc+OZlzXG70qVUskhecwQAkBrCEAAAvsDRXG7ooBTN5TbqeOoPHwIA2BGGAADwEbY81+uGm5I6S3A0lxuiCRuPmr3LAQBSIgwBAOALHL3HjZ6oyI7v6d2GJc2J6zR2+GcKP5XKw1gBAIQhAAC8n+PhqhM04M8WGtm1vbqO7KuG5gWimNXj1O/jMJ3i8hAAXIEwBACAV0t8uOqowSfV453mqpAvl/JVaKahI55RYh46otVDRunj8OM0lwOAFAhDAAB4s7j9WvT2JJ3s1VcvlS9oTiykSm36aHCd4omjMUs0pN8smssBQAqEIcAi+EUY8EVnFTF/lHrGdtCwZmV0nTnVwVaosl4e+abqFkx8zlDM6rE0lwOAFAhDAAB4JUNxEV9qYH9pxLBnFZQn5cNVc6lQcCuNGNSI5nIAkAbCEAAA3ihun+YP/MCehPqoWVB+c2IKtiIKfjlFc7lhC7XzHHEIABwIQwAAeB1H87h31F+vOpvH5TGnpiapuVydpN7llo5S/xnbFJs4CgCWRhgCAMCrJDaPGzTASKN5XEqJzeWG9q1rjh/U0l6jNGNnjDkOANZFGAJ80kXFnkk60bmgk2fOc48A4CvM5nHG8N5pN49LyVZED3Xpp0FVAhLHYxaoZ7+52hlLzQDA2myGnTkMIJvYbDa5b9c7q6hduxWZdA+AcVbHfvteM4a9owX7zEBUpoWGDXhRj919i/In/Yh8fTFVuDtQ+czRq+XesuQ8R3kSEhKc//d2fn5+zrL4Al/azq6pLMYJbX3/ZdUIuVvLdw3So/6Z+U3zoqJ/GKUnHx2ozc7xkmo4eYkWdK501fWAr+3/7DOA9RCGgBzg3oPUES1uXUuNZ0WY4y5qtUh/znhOxa7xnN/XDriO8hCGPI8vbWdXWxYjZr9WTXlbXXt+pn0BnTTv13Fqdsf15lwXxe3QlPp19crqqMSrxf5NNHHjx3rt3sK6mi3e1/Z/9hnAeghDQA7gxM5zOcpDGPI8ltxnYqO0a+efOnUyUvt2/Khls2bri/Aoc6a/ghq+ocGvN1SN4Pt0Z+Hc5vTUGSd+16+7d+vX+ePUfcJqXXa3UFAj9erZTg2Cb3NeObYVCdL9d7oWjnxt/2efAayHMATkAEue2HkJR3kIQ57HkvtM1GK1LtZYs8zR1NVUSNgy9Qg2u4pLQ3z4GJWv3FOuXD8OCgnT7h7BSj9eJfK1/Z99BrAewhCQAyx5YuclHOUhDHke9hnP5Gv7P/sMYD30JgcAAADAkghDAAAAACyJMAQAAADAkghDAAAAACyJMAQAAADAkghDAAAAACyJMAQAAADAkghDAAAAACyJMAQAAADAkmwGjycGsp3jyeAAAGQlTvGAjBGGgBzgCEO+suv5UlkcHOVJSEjwicDq5+fnLIsvYJ/xTL62/7PPANZDMzkAAAAAlkQYAgAAAGBJhCEAAAAAlkQYAgAAAGBJhCEAAAAAlkQYAgAAAGBJhCEAAAAAlkQYAgAAAGBJhCEAAAAAlkQYAuAVjJg9+rz7U+r89Z/mFG+RoNioX7T805Hq3qyWSttsstkKqnStFuo++EMt+G6bomK95Yn3jrJs06rZY9T75UaqXNBRFpsKVm6g1t2HaMriUB04EWe+1wcY/yh0pL2cE7fqojnJ85zR1klt1TZkvjbsOqpYw5ycJvs6PLRB63afNcc9XZxO7N2gBZOHqHvrBs5t7tL29lW4F+07ADwVYQiAh3OcDH2r9zo0VdMJ+3TuvOeell4h/l9tnd9HTz82RGtiSqreq+9oQViYwkK/0rtNi2v/Z73V7PF7VfbRTpqwcr9iMjyRzUHxkQqd8rqe7jxDu697QC36TtGaYxdlJJzT4YXD1aLc3/q0dXUFVW6mwYu2KzrekwvjiouK3jhF3fov1YkL8fLc0hiKP39QM3o112MVglTx8c4aMW2xvgvfq6iYePt8e/g58beO7A3Xd4unakTn+np0SJRKlLo+8c89lr1cx8L0WZ8mqlzuMTV7b5NiSz6lbjMWaWa/dmpUrZj++bK7areZorBoL6oTAHgeA0C286VdL0vKEnfaOHZ4jxG2Zr4xoXtDI8hxZuR8BRmtFh4y35Q1HP9OQkKCOXYNEqKM7wfXN8q3+dj4+e9Yc2JyCUbc8XBjWpv7zbLdb7SZusU47YZ/OonNZjOHrlHcIWOZfT20mrjOOHzuojkxpVjjz2U9jfLOshQ3ag1eZxx1Y1mye59JOLnJGFG9iPPfDQoJM+LM6e7g3rKcNsJCajo/M+NXoFGl8xxjx+l482+vneNz3S/eOL1jhtGmjL8h/xpGp8nfp77dJZwwdkzrbFTvvcb4103bmtv2GQ+QNesG8D1cGQLgOeLDNaa0TbY8BVW0RE11mrhRp+/vpA8mNDff4C3iFLU8RH0ONdHCSe1U5ea85vTkbMod8IDaTpiskDrF7eO/akaH9ur55e9y/J7vOc7r8KKRGlXoTY17taaK50vrsJFXxZ5spW51Au0lO6J1Q/pp1KpI51m41zGOK/zjdzR603Fzgg8IaqTec5Zq+aQWquCfy5zoiS4qZuccvf5cV82IekSDvpqn9zs/euV2Z5zU3m/maNaKcG37+Ftt5uoQgKtEGALgOXIFqfHnYdqy55Ciog9o85JJ6t+qrirdXsh8g5c4G6ZPB/ytDn2bZHjiaStUWe36tFZ551i4pvT/VBuOe9CJ3cV9+ub9z7VpaHPVbfGevos6b85IRZ5SevS5Bx05zy5U48au0D6vu6XD0Nlt8zTqhwu615zi+QropZmbtHXtfE3o3UH1gwPt0/wVVLOJOvUK0bSvw3Roy0KNfrGyiuZ2rhwPZSg+8lsNfP41Td97oxqOHKaetW9XbnNucsZfazWq2Wt694vNioneqT1HYs05AJA5hCEAnsNWWHc+EKx7y5bQrYXzJZ5Te50EnfppmabXaqlnyuQ3p6Unl4o8VFdNHBeHHHbP09TVhz3nisrxg9qyJdo+EKXwBT300vgfdSpxTiquU8DNt5rDdpt36fcTXvaLfex2zXrniNoObKlSNu/ZAv38b1el2k31+uhP9HVYpAzjtPav+1xT3umhdvWDVcI/tUjhYYworR0zUuN3x0jVXtWg9g/IP61VYN9BbHnM4fJVdf+dnn4PFABPRRgCALc6rV2hPyhifD3dUaWFBi3eo3PmnDQVKKuHn7vXDH8RWrZup/5xDnuAAjeqeEl/c8TXxWjnjMna9nwn1bstr5eGcW9l6Owv8zRkXKh9OEjNX39OD+RPew3YijXSxC0/a8WXK/XTyrdUoxCnMwCuDrUHALjVKUXujXIOxYTP07DXZmrTyYyujhTQTbcHmMP2v/v5gCI95YJK/gfUbsLbahocpOCmYzSn+8NKu9FivE6fSHafTYXSKn6DJ9+fkpyhuIglGrW5lvo0LJlq0yxkIeOIVnwwVY4oJP/H1LDabRmE0VzyL1FFTz5TVw+V8Ce4ArhqhCEAcKvrVfjWwubwVTp1QZ7TM3VeBdZ+S/PD9its/luqHZhaZxBJTur3bXudTZikAFVvUlWlvSULxe3T/MGherJfA5Xw6PtqfFPC799r9he7E0eqP6z7b09vOwMA9yEMAYBb3ahHXh2hEU2rKCD4JYXMeUWPZXh1JFYnj502h+0qF9fN3hIikjGOb9GKz7cmZqEybdS3SQVd55zj6WJ1ePFkrXzydTULcuU+L7jXeR36caW+ikkcK/no3brDC7d/AN6JMAQAbmVTnhJPqt/8n3U8bLZ6pNEb1mUS/tHBLZHmiL/urRykm73u4sRZHVi+QDOdLQSD1Xl0V9ULTLrD3ZMZij/8jd5Zdq8GNSsjb/jGvudf7fwx3BwuqYdK3+olIRqALyAMAUAOM/7YqjWbohKvqKiGXqpVRt7VSOiiYnbMVf9u0xXtX0OdZ05TyLN3esd9N8YfWvHuat3Tt7HK5vH25nEJio36Rcs/HanubVurdWv7q9kLeuHlfpq4YIP2nogz3+dhzh/W1pVmEzndqDuKmvcAxR/V1q8mqc/rXdTZXp6WjRqo0ct9NObTbxQeddbcXwDg2hCGACBHndW+NUu1zGwiFNC2o1o8cEPiiMeLV0zUHoUuGKYXn+mlsOp9NWf9Qk1qdW/aXSJ7lHgdXfWJ5lXsotYVCprTvNSFPxQ6pZe6TNii66u21fBPZmjmzJmaOX++Zo1oqtt+HaWqdbtpSmikhz3U1+54pPYeNIdVUEVvyCfFbNOMAZO17daGGjD2Q02ZPlOzlyzVgiHPq/jeSapZ9hm9OTtMxzzn5joAXoowBAA5yDi1VQunfitnFirTRZMH1FMxjw4Sx/XTxFf0Qq2ystnyqGCx8qre7Ctd3/kzfTNniF4MvsVremIzjq7ROx/fqDdaVJB3P6XmrDYMGqOVd76mD0e1U+27A+V/qRMIP+Ureq8aD/9Y82r/pi51O2jY2j/kSdeIEk6f0F/msNOFCH05YqUCu/VRy6p3XF6WwMpqai/LwlfjNL7Vc2o6bLWiCEQArgFhCAByzFntW/i+RoU6HmpaTd3f663GpTz9Bv4iqvr6h/p83V4ZhiEj4ZyO/z5DbQss00sPNlCXMcu0M9pDm2MlZxzVunGLFdi3pYILefPd+jblzltaTSeO04AnS+r6tIJ07uKq26uPuhf8VkObDNK8/WfMGTkv4fRxRZjD0hkd+mq+ttdprbpp9VzoLMsA9S4frXVDO6nz1O2KNWcBQGYRhgAgRziea/Ol3u4xVzEqo6ZTJmtogzu87/k2tnwKKHmfnuwyTksmPajwng1V8aFOmuSJzbEuuajojVM18boX1T64iJc/o6aA7u36sUbXK5HhtmMrEqz/tQyWoqer+8gVivTICyqb9f6vJfV8jaLprhdbkftVv8k99vcc1NKe72ju3rPmHADIHMIQAOSE2F2a3X+I5kUXV61BH2hc+0oq6NVn5XkVWLerRveuLtu+6XrdbI7liYHIiN6o8e9Jb3WvoQDvTkKZdIPKPFDJORQ9fa6W/uY5V4f+E6i6zR5T+esyWjGFVPo+e1kcb4v5VlOX7hRxCMDVIAwBQHYz/tKG0b3UbUGsPQhN02cDn1CgLzzo01ZUNZo3U3WbvSz2E9ShXcZo6WEPa8BkHFf4tC9ke6ujagRY7WE2uVWkWAkVdw6H6sufjijBOZyzchcrpYfNYamY7it5kwsnJ7lV9I7SCnIORyt0bqj2XXSOAECmEIYAIDsZJ7Vz+iB1HLpdVXwpCDnZdF3p+/R44tm2tG+Wxny+3YN+sb+oU+GzNTqqgV7JoBmWb7Ipb35/8xk+Udr083796xzOYXkLKCDAHDZ7k8v0uvl1lyKOem7DTACeizAEANnmvKJWjVHb9it028CpPhaETAVK6t5aib/XO3+xn7hc4Wc85OaU2J2aO+5fdez1uBc+1Nb9Yn4+oEhPuJpyw60qVdLfHLlae3Qgkm4UAGQeYQgAssVFxWydps7Pz5T/oGmaM6COlwQhQ/Ex/+qfGFd/dQ/QHRWTLg3ZHdmvg0cvmCM56bwOfDFOs4PuVcAf2xQeHp7+a9sB/WM+1vPCH7sun/fL7zqR4/nOvj3tnKs3at+l0rXf1Kdbj2f+IaSnLsgjeqXOdavKPZoUoAEgexGGACDLGYo7sFCvNwnR6TcTm8YVy5NGEDJideLvE4r1iIspMdo7/w1VD7xJRQNr6ZWF+67i+TR/6u/jntDVdpyi/z6oTcOe10OVK6tyRq96PbXcXAdHJrRS1eTzXlikiBy/ovK31r8/XOPX7VbEunFqP3b95c/qSZWh82djdCmaBhVRQY84CyisssEVzeHzOnX2QuaDncqpVLF85jAAuI4wBABZylB81BoN7/C2Djb/OOOmcWc3a2zXZYoyR3PUqZ817c0J2ux4ImzMRk0e+Y12ZToE5NN1HnEFzF/BPdYlPhvJhVdcWIhKm187KCRMccnn7++h4BzvA/2iLpz7L2QGBBRQGk/lSSZexyMP64g5VvyhMrrNI84C8uqOh2qrrnM4SnsjT7kQhgxdjLtgXwqmGvep/M1e1zE9AA9AGAKALGTEbNes/kP0wyMTXbpHKOHPfdpavqRn3NNy/qxOnjaHXXZKURHJrlEEVFC54vxi734FVPSOEqrZpK069f5ES3rXVBFzTtpOat8v28zhGmpT5277p3gGvzK11K65o6ncQW3aeURnM0xD8Tp6aL/93Q4Bqt6kqkpbrXNAAG5BGAKArBJ/WMsHdtOc4oNd7Czhok78vldxJYvqenNKjrqxnB5+omTicFBjDQ95ThUyOuE8E6HN3+w2R+ynqc9U1z2W68I6OwQo+Kkndf2DXTR2dAc9EpjxdSEjcoPmfBLuHPZv1EYvVc04PmUbWwnV6dBc5e2DR77cqO0ZpSHjqLau3+y4QCSVf1mDmlU0e8kDgMwhDAFAVjD+Uei7b2hioX6aMyDjIGTEntBfR37RV3N/0T0uPWclG/iVUoM3O6hOmxnasWWB+j9eXOk3RIpT5Mp5ev9I0olsXfV4uaYCPeEql8+xKX/lJupwYJqmbT2RcbMyI1KrxozR9Gj7sH9TvTv8BZVN6761HJFLRWp10fg3qkk7ZunjZRHpPLDXUOyu5fpkzg77UDV1D3lFj9NEDsBVIgwB8HAXFXvGcdOKwwWdPHM+4xO/nOZ8llA/te6/WKuH1tVt1/nJZrOl+/K7PkCBJR5U+1mFVe72a+1m2F1yKaDGaxr3SKg6dhinb/ccT+cENbF3s/59Zuu4cwUVV60RA9XloSJe+DyfyzsauHg+7r97UzxJ7pJqOLCx/hn0qkZ+vVsn0uoaLv5fbZ3+trqOC3Ve4RuxZIw6VixozvQgtmKq+/Y4hdQ5oxmvDNHULf+msr0l3oM3qutwLY25X22mTtaw+iUyCOkAkDab4bgbFEC2cpz8+squ596ynFXUrt2KPGd+nnFWx377XjOGvaMF+8xAVKaFhg98UY/edYvyJ51lX19MFe4OlDvuTHGUJyEhwfn/q3NeUWtD9OIzA7UuKcNlRmBfrd09XLULXftvVX5+fs6yXLvzOha+SO8NHqPvbmygtnWrqmL5krq9WIB9mSco9vgB/bp2gSb1/0DrnWUur4Yj3teUXrXd1n141u4zhmKj9mhn5BnncNyJvVr7ybsasGBr4mz7NjdiVEfVLVkwMdhd4/bm3rLYw8GxzZo1qKdGHwnWay2f0kP3lFaJAPu3iz+tyL3h+m7O+xo643fd1aa3hg1sq7qlCrktoLp/vdjLE71NC4f2UsepMXp+8Jt6uWEVlSyYx16cSO39ZYU+GTRaywu3VMh7fdSmRgnlc1dh7Ny3z+S8rN1nAN9BGAJygC8dpNxbliNa3LqWGs+KMMdd1GqhImc2VqA5ei0c5bm2MHSVZUhSd5r2fNtOZd1w3d7tJ3bxp3RkZ5g2bfpBoT9v19YfVmp9RPLEV0a1OnfSax2a6ekHbnPrSWrW7jPxilrcVcUaTzHHM9BqkX17e+6qt7csKYtxVlG/rNe36zbop/VrNG95uGL8g1X/uRoKrlpdjz38iKrfYw9wblwnDlm2XpLKs2KVVq35RgvW75N/cEM1f/wRVX20tp56/D4F5nN/4xbCEGA9hCEgB/jSQcrXDriO8lxbGPIc2XJi53wuUrTOGbl0fcBNKpwFJ6gO7DOeydf2f8IQYD2EISAHcDLkuRzlIQx5HvYZz+Rr+z/7DGA9dKAAAAAAwJIIQwAAAAAsiTAEAAAAwJIIQwAAAAAsiTAEAAAAwJIIQwAAAAAsiTAEAAAAwJIIQwAAAAAsiTAEAAAAwJJsBo8nBrKd48ngAABkJU7xgIwRhgAAAABYEs3kAAAAAFgSYQgAAACAJRGGAAAAAFgSYQgAAACAJRGGAAAAAFgSYQgAAACAJRGGAAAAAFgSYQgAAACAJRGGAAAAAFgSYQgAAACAJRGGAAAAAFgSYQgAAACAJRGGAAAAAFgSYQgAAACAJRGGAAAAAFgSYQgAAACAJRGGAAAAAFgSYQgAAACAJRGGAAAAAFgSYQgAAACAJRGGAAAAAFgSYQgAAACAJRGGAAAAAFgSYQgAAACAJRGGAAAAAFgSYQgAAACAJRGGAAAAAFgSYQgAAACAJRGGAAAAAFgSYQgAAACAJRGGAAAAAFgSYQgAAACAJRGGAAAAAFgSYQgAAACAJRGGAAAAAFgSYQgAAACAJRGGAAAAAFgSYQgAAACAJRGGAAAAAFgSYQgAAACAJRGGnAzF7Z2tFpU7a8Hv581pAAAAAHyZzbAzhy0sRlsnNtN93X5R3Wnf6dt25TOXEi/+rpWTFml73Cn9seuQohPi9e/OALVbNl7PBeY235QJ7v48lx3R4ta11HhWhDnuUFMhYcvUI9jfHM+E+HCNKV9ZPZN/nDppUeT7WVwOZI8YhY/5nyr3XG+Ou84/uKGaP/6Iqj5aS088dq9K+PvS9pC0H/mpZpOHVOL6K2uThH936qvl4bolJEy7ewTr8tJfvh/6B9fXMxUCdP7w/+mL9fuc09RqoSJnNlZg4ljmUccAAODElSGHC/v1/eeh9oEorVqwSfsTEie7zJZPN91ZSnfeWkS2Yz9r1qy5Wh4eb868Cu7+vEsMxR5YpUl9uqr7yIXaGp3yMwNV972NioyM0JYFvVXFnHrVclVQh42Rijz8m9ZPeFEB5mS4g6H4E7u1bFADVZ64RRfNqdkrvyp0WGDfXuzr2LHNLBqk2gXNWQHtNO3Xg+a8FK/De7T+3VZ64Lpf9GGzyrrjvufV57MwHYv3ld9lkvaj7zX3vf5qF3xRX8+eZd+PHa/DurX+6xr6yTLttS+LjR0qKJf5V/8x//7Adm1YGKLn/X7RnFlz9MWfVTRi4QbtOPCHIt97UkXNd18VD6ljHrSZk69WijqmyLV+HgAgVUbsnwpf/qlGdG+rF154US937qwufSbpq61H5Y6jR45yXBmytgTj/JaJxsM2m+NMzP5qYkzbc86cl3kX90wz6jo/p5OxKDLOnHr13Pp5CQeM+c2DzHL6GxWHbzLOmLOuEBdmhAQ53lfTCAk7bU68egmH5xtN3bhcrOmicS460jiwZa0xf8IbRv0gf+e6DHp3s+ERS9SxzZQ296OgECMswy91wYjes8wY3rC8/W8CjSqdZxs7Tseb83xI5CKjdVL94tJySS7BOGevn2rpfqP7iij7mPs56pgnnd/PfXWMPZPYP8+FOsa5vbivjmnmrnIAABIlxBiH1k402lSpYjQdsdDYfOikec5hPyeJ3GzM793CaDd/r/2I7r24MqQz+u37tfq71O3m+EbN/26/4syxzPIrWFi3msPu4NbPM87rzL9nzZEY/XvqXLaleVvuPMprDiOzHM3Raslmy6XrK7+ot+f+ogvl71OFizHmfG+VR4XLNlC/zxZoWptbFTali57tOkc7Y3LmOpdnsilfhep6OuhBPVLpJvuY+1HHAABSZZzUzulv6InHF+uWwQs0vW9jVS5RyGza7ad8t1bU483rKc/wD7XyqPdeHyIMOZrIfXGjeg1qrYrOCVFaPXuddl1w/JDrY/zK6Ll3R6pTlSAFNxmmjztXVSFzFjxZYnO0qOhzStj/nWa+00Mta1dQ0SvbV3klm38ltX33XfV+8Drtm/GG2o5Yp2M+uPtZQlId8yB1DGBdF3RkcXc9OeZnJf00Am8Uq8NfDtaz7VfrroljNODpO3X9Zb/IndeBOR1V6v5W+mjHD/phxwlzuvexeBgydHb7Wi0oXld1n3tazSqaN/BuWqnvfzuTOOxTcqnwvW005ef9Cvt8gBrcmd+cDs/mp3yFb9athfNlyZUBT2Ar+pi69m6mAEVr8+jBem/dUUc7K3idxDpm8v9RxwDWdUFHD2zVqu1/6KQ5Bd7GUFzEIvXpMEH7yr+kbi/eJ/8rTkDO6M99EYpxHqzP6OTZC86p3sjiYeiktq1YpzsaPaji/nfp8WaVzembtOD7/fbMCyB75FGxei/pLecPEpv0wcSvtS+OOAQAQLYz/tDKseM1LzpQdbo11SNFUmuKcoPub/qautWuplqd31KHh28xp3sfa4ehs79p7ReBalTtNvuCuEGVHq9rNpWL1qYFP+i385yMAdkmfzk9+uw9zsGYJbP1RTi/KQIAkL0MXdj2lUZPDrcPP6jnHi2lPIkzUsgl/wotNG7tJn03uYMqB3hv230LhyFDZ7et1xd3P6Fqxa+zj9uUv1LNFE3lvP0GdcCbFFLp+yqZw2Gav/Y3+WJjVQAAPJejY7GV2uRorF7yQd0XdL053XdZOAyd1La1P+puRxO5pHaQ+S9vKvf59/t1zS0g449r73ezNOKNV9T55bZq3bKZXmjRXSM+/UbhUWczf1/EVX1eUm9ktmSvWhoT7q6w53jmTYRCF0/R4O4t9cILL6l1647q3KWXxszfqN8z7B3M8SDG0im+X2m1XnzEnJ/kWt6XVF7Hd92r72aFaOAbr6lt6+dVu9YzetnRV374n4p1YYU4+9r/apL6vNxCLzRrqZYvNFPbQZ/qu73HnT1nGTEHtHHFam1Yv15fT+yudpN+9JAOAQzFHV6htxvdpYIPvqZPtx7P/PaXpXKr6B2lFeQcjtGOFVt1ML3OaYyzigr/Rp+O6K4W9nXQsnVLNXuhhX1dTtSCHw6Y7ZiTcTygs4zf5dtF6TEKc3QdaZzSgVUfa1D3zmrdoLbqdpmklQdOedjySYWjTKWTlccsk/ORQVdbJl+sY9yynBIUGxWuryb11+udX7bXHS+qUYPGLtYdiXWSX/J/36y7Lv+za3mfC3XcZc8Dufa6MCPx4WNU2lZQpWs9b19fre3bUgNVLpj0fTtrcVTyHTxeUYs7J84rXUsvON7/Qi3736e2HTnWxS9a/ukY9e5s30Yd73W8OvfRmHS306w9NmSGEf2zPurzgX74J71KLnVGzDZ99sZTKltrkFYciTWnWhPLMQtcPKjQLzY5dgnpoSDddp2v3q2cjNnFtvWc2WQMv7eDMf/QeXOCQ4JxJmyMUS1xEzBUcYQReiaTT/aIXGS0cv59R2Ne2DpjYqd2xqAFm43IcxfNNyQYcdG/Gd+GvGiU8a9jdJ/5s3E0Lp1/wy2f53g+zd9GZGSEsWVBb6OK8/MyeLaHq88ZSjhpRKwIMZqWLWnU7D7TCL3U/7xd3AnjwPdTjM7NRxprNs8xy5HaM0DijNPHopzf79c53Y3yzvcFGa0WHTbnJ/nvff+Vw9X3JZbjwqFvjLd7f2is2fPvpe+ZcHqrMa3N/fb3BBudF0b89/2vYF/WkWuMEY7n4lTpYyy69BkXjONbphlt7qpvDJw715i24FfjuHMd/GNsGPSI/XOv7dlVqbq0fjLznKFjxtpewc6/cb7qTjN2u/OxPpl+ztCVEg7MMholfT/7trLwz9SfXJBweq/x9fDGRlBQY2P4st+M6KRtPiHGOLzhfaNVmZJGrYHLjUPnku0LCeeM6KhII/Lwb8b6CS8aAeb33HzhuLHlo4HGiKWOz/nTWNG9ivM5Of71phl73LF8ruk5Q3bOdZ3Gs3PSKFNY3JVlcvz7jjLtTvkxl75fxnVMWUcdM2tzhnXMgzbH+nOhjnHlOUNJdYx9nWZYx6T1nKEUy6mI4/tlsJwuX/exRuTad43mnSYaa3b+bVzarOL+MXYs7GfULljcvr0tMyLSfE5W2nXc5Usy7Tou4/e5WMctOmCfnmCci1hqDM7wfdcm4Vy0ERUZaRzeudwYXr+k/XMd37OeMXDZVuNw5D/G6cu2I/t2djrS2PntSKO+v/199m2t29SVxpYDkUb0pW3Rzr7Mt8zradQMqGf0np98O3X8e38YYfP7GrWK2LfTeVvMeji5y5db8u00veVmc9PyuCThqP3YUMco03a+EXEh5XfMSLxxdFlXw9+5LP2N+ydscd/3cpvTRlhITUOtFhmR5pQskWw57j9/7cvRB59yd1X+ey6kjMBea42Tjn3z6K/GlxMHGN06dTBatWpltGrTzRg0+SsjLPJMirrJO1k0DNlDT+hI497m841DKdfi+V+NCdUDnBuBo5IcHhptznDRpfBS3Aiq0tmYtuNE6htKwjFj04j6RkH7+2oNXmccTWtrcvfnuRpyXHlfwgljx7SORhkFGFV6f2NEXnHgcbDvRIcWGV2qlDFKOsuRwQMRYzYYA4s73pdayEkmNtQYXjIz76tpvLt6lTHx7SXGoSu+Z+KDd6s7vl/5wcaGk8kOvMmd22pMbug4oN9vdP82MsV6uGD8uegV+8mofVkMWm8cd86MM45umGh06f25sSf5Sbk7XFo/mQlD0UbocPsByrke7Cd89u3/YBpFvSqXTm7tn3+VYei/7d3xamR8uCPGnJHMuZ3GLOcJWy1j0IajqewPccbfK3obd9ns+8KIH8x1cblLlX3QO8a6TR8ZfZNOdOK3G5NrBCQ+NLT6RGNLpg+wqcjKMJRM8jKtD00skzNKmmVy/vv2Mv0am6JMl76fK3VMA/vJgwt1jCshx5X3mXVMWZujjvnWLXXMpYezJltOydd90nL6b90nGBf2zzFa1B1mrImMNacld8bYP6udfd/PYLkkSVHHpfn2FHVcxu8z67h+C1M5wU5ex71tfP9HqDGx75xUHnJ8+fvSrAszLd74d+2AxBDo3y7Fj5ApHTYWtapmtJm/78p6Le6IsWbQU4a/fxNj4pboNJZJvHF807tGLX/7+hi0Ko1txs6x3O5M3P4yOjY4H8rutuVh3572TDMale9mLDp0NT+S2f8+Yr7Rtoz50O2QMA982GV2hCH3L8fMVs2+Ki4sxAhy7KvO5bLZOBe52hjZZ5oRmiz4OH54CJ3SIfFH+HnbjNNp7GbewqLN5P7VT1+uuryJXJLrSuuxpvZDgVPifQtX109+AT3yVg+1qnBD6t0h225Ste6DNaj6Ga0b0kODl6dsBpGSuz/vWl1U9MZJatv+E+0r/6pG9ayjwNypfTObcpf4nwb0ecK1Ljbz5lchxy1cGcmVR3lduVfv0vv+1Lr3N6p4x6dU4orvabOv9vv0eHH74O7v9X/7UlvjcYr8Zor6LT1oP2dsqGdr3JJiPeRRYJVHVdfRNfTYyfpyn+OSe24VfaSrPhzdRGXzpbrWsllhPfTKeC0Y8YY69/5IS0b/T3d4dA1wUjHnEszhJDHaOWOYXpnxqwI6v6lXaxRNZX/IrZtrv6TX61zUulGOdXHl+rz0gM6LWzV/WT699L+SiQ+Ry1Vez4+foIG9RmnWe41VwYuaByQv07yliWVy3vRqlmmQWaaKedMqkyt1zCANrhaT7XXM3nKvanSvjOuYUy6srtSWU/J1n7Sc/lv3Z7Vr+RzNXTVQTzz2huZHpLyTLb+CGnfQWxWj7ctloCZt/NecnoasruNe+Z9K5Um5IJLXcZ9p9Cufq0DrZ1TBP+U/kPx969OoC69GLhWp2lDtqwXYd+FvNe2bvWk/2PzsXzoQ84JeaxCUuF4uidXhpe+py9CfdM/gnmp/b+HUt1P7vxVQ7WWFDK6gdUN7q/+iNB6inuljg5uWh3FMP3y6SAFvd1XDEvnMiZlhU55Sz2vMlO6yh0vrci7HhW5Zjne5UG9kiYSDWvbaIyp4WbNNd72K6cHXluhQpp9hbq93ow7rb3NM57Zq7nv7VKdva1UNzH9pn7Plu01VXx6paW/Ga0Lz1uo6fduVTdO9iDXD0KltWjmvlLMXuSv3gQK667EnlRiHYrRj/nptO3s1a/hWVSh9S4rKPIX8d6mOM3iFa3LfOfq/dP8dd3/eNTr7i6b1HqvNClD1Lo1V48b0vlke3XxHKRUxx3LGPm0p95hqF0u9T5T/TlCOaPuhaOekyx3X9g2b7FHHrlYllS5w5a5jCyytyo4bXmI2aen//ZHFJ4pXxxZwr17oN1aTR7+s2iW87xkwRuQqje2/wL5nBqtjk6q6Oa2DWJ6Sqlb/Afu6+FbTvztgr97TcHCdfg+qovKXTh5z66bglhryTh+1rFos/f3NUznKVPrBqyiTi3VMsxyoYzo/pxqpdu2a5CrqGJeX03md+sf8KWffKn27JZWwk7+Mqj1dzj6wUbM37MuhxzIk1nG1iqWRtC7Vcfv0U7Haql+mgHPyFVLUhW5bw/nv1tOtHPeVRWn1rJVpHFcTdCp8lULrPKF7Cly+cxvHf9SHA6bZv31lPVernD2CpqeQKtZ6XPfqV01/e5Z+OJ7eGWHGx4aC6R4bMsc4sk6f7m2svs+VSn9fS5c9XNZorC7Vy6hy8RvtY2lw3A/39duq++ICHfbEA9I1cCzHaXued8ty7Fy9bCrLMekeslHq3ra1WjZqoEYtu6j3mBla7q57yPwCVbXjYM1etEiL3P6arOEdq+m29KrNVNnLfeGC/Rib6O+Zs7SnzrMKLpTKB9mKqkabtmpk26IZ3Qbr022nzBnex4JhyF7Zhq3RvBp1zV7kUrLpurseUdPqAYlBaccqrd2WVV38FlD5B6uppGNwxyJ9+VMGvyhmyN2flxb7MvzpS40NdRwYyuvx+0sojcOvBympRx8opYLmWOZd0JloV28GP6Idf59M+wQcLrpTxW92/oZvitW+FfM1PdpxFKqkB8rckDg5VdereLlyzoe4bgzdq6Pm1CsF6ZG7A32sIgzSo1lWJkcdU/2yOiZrzrGyo45xdTndoHsbd1DbKkEKbvqa2j9SzJyeXD7dUDSxdjm4N1LHnUPZzazjLs8QqSiuR6uXV9Fs3+gL6K6nX1Bzx5MbQ7/SkvBUlpIRpQ3zjumFp8umWN8XdGT1XH24+7TkX17lS6QR5C6xKW+J8qrq6Bx29zxNXX3YvkWl5VqPDZlhL0fo/+nmTk+rzBVX75IYij2wWh/PDZezqkvLdTfq9tL3qHr5osm24XjF/BOlI3u36qe18xTS7ind+78hWv3PGbd3AJGzEpfjLZ3duxz/+6SLitk5W6/3XSmjaieNmT5Ts5cs06JJ3VRLa/RG5SfUdNRaRcVf60LNq6L3PqFnnntOz7n91Uh17735GoJiopizD+vJajencuEgka343XrY+SPwV3p7ygYd9dLtzLfOAVxyXGGrNqh81duV+68oRUWl8vq3gMo9nvi8k2trKpcRm/IUuVVlncPhWvTLoWQ9/VwNd39eWs7p9x2/Kso5fLtK3vLfpVPPlUt58+S6hu95vQrfWtgczkjJ9H+tQ5riIw/oR3NYxUuoWJHkVflx7f15u+MYl8q8lHKp0E23Jl4p+PGAItPcESrorjsyOrHyNllZppypY+6w1zHu5+pysm9L97bTpz/vV9j87nr05pTbnaH4mOP651ROP33d1TruOt1QIG+O1Nm24jXU/CXH0/w26v25oVecOBlHNmq+nlCtK36ojNZvoeGJzXBuKaFAV55nEhCo0s5nQEZo2bqd+ifNk7RrPTZkgvGnQr++QQ2qpn1yKR3V9xN7qtOYH9Nv4mRcVNzFe1TxzmTdHts/f/17AzTow0XauM9QxXp1VcWcde3O69jWNfpq8WItzvC1VOu2/yMd/j99m+r8lK+v9PXGVHoATUvSckznJN25HCf1ci7Hw2knYXM5VrxsORpHV2vwwKNqOfIVPV62iBkobMpduLzqvfWuJr0RoKX926r1+J910tXv7DVsylvAXwHmmB68S3cWTCcq5L5ZpZxpyL6XLlivX6O982dg64WhU9u0avYmre5WQ7cVK6Ziqb7Kqt6wDeYvnjHaMWeVwk+ltzddPb+ChXWrORyx/ZCOmcNXy92fl7rjigjfZw4XUeGC1/rbgzcI0H1PPpXYRnvdNu0/c+X2YBw7pJ2OhrYBT+mFR1Jrgon0XdSpf/669Kt6wHPVVCF5c8SLx3Tg5z8Sh6O/1jud2/zXpW4qr/YTt+vhVq3U5plSCmBluM0VdUyWnAx4ah3j6NJ5lzau/Fqrftqqvb//qaiov3VCBXWTSzcCWZwtUI82b+ysR6PnfKl1R5IHyDP67ZvvVap5tSubv178S3s2RJgjmRfz8wFFesI5WvRe/VQwWPcUSufU68xe/bh4qwLrVNSd6WW+6D36v8KVVTH5iartDjUYNU3Txw9Vj84t9OT9xdN4WObVOKXfFo1Uy8aN1TjD14vqOWuHtP5dtU91fspXS3Uft1F/urqOXFyOm1xcjj/fkHw5XtCRdYv09cVTOhCRvCt6k30brtW6uarriFaPnKcNR9O8+81LJfsh0eGGAnL5lufocG3//Zw54l3S2ZJ8UWITuc8bLtXfCc6e9NJ+XfxN0540m0PsXqavw3Km4QM8RS4VebSdRnQOlo6s1jf/d8wMy0li9fuar7UwpoyajnlVT6fV/hzpOKPft29LvC9LFdX0iYqXhxgjXhdOxSQu91uaacj0mZo5M+PX9DHPqVROXqYrVFR3OG7Adrh4QXEXM5kezp7UMb9bVTS1NtvIJvYQdGSjPu3dWI/226jclWqrTtV7VfbO2xQYeKtu8md/d42fCgU/nXpHCmd36ZvVZdUoOJU7v5Lv+1fj1AVdc4smN7h4ZI9+KRWowumcXCb8uU//d+RevVC7ggql+b54Hd30nY4+UkFFXT1RvWZF9ejQ73Q6tfOlK16nFRZSU2q1SJGpzk/5Oq39i1qpnIu/eSQtx0tXL1KRuBwrJS5Hc9qVUluOp7T/l1+1b+kwvdR2hsKuuLfNpuvurKAagfbB6K3aesDV5vPeI9fNxZX0xE2rsFYYcrRH/iJMjZ4JzrgC8SupGi/UMEfCNXvlNvsu4n5G7BmzlzV/3R8cpJudw1fP3Z+XugDdcU/S2Z2F5C6hmk0aq2l96YPewzX9p0OKsR9hnQ9hXTBUHV7doucmfqpxre7W1fRtY3kXDujHL8MSh8s/rxaPprifI9eNKl65ZOIVtwsxOnveA85uXJH/Dt37eJnE4YP7deho5hqWXfxjrzbdHaTb82fbWU+6rqhjsuRreVIdc15R341R01pPqceh+po2sf1lvSohk/JX0nNd6tu3nuQdKfzXcUKl1Lbz5Pv+1ahcXDfn+G8JF3X8yH6z6WfaEk4fV0T5Z9W4Wmo9ZZri9urraaf1v1Q7gfJ1juUYkanlmCZzOTaoWizZcgzQ/c++pIZla6jNq4+r3PVZuYQz0/Qws68lWnXZQ5ZdZ7ulnKon3TefKUVVxEtbClkqDBnHftXyFZX1v3Tb6ybJpzJPPKfmjhsw7aJmr1GY25vKGbrw9xFtdQ6XU52Kt+na6mt3f15a8qvMA9Xk+GFEOqQ/juZM30nZ7sJ2zZl+kwYtXqW9Hz0l/d+nGtCxjdp0n6iV0ffr7bA1mta1Rhrd/yJ99gPcxkWavCnxhvk2b7+kaimbQNhu1j0173X8MCcdOazI41lzt4rb2QJVtcET5q+Yu7Xz4GnnkGtitGPNWt3UuKru8IjNymp1jKG4iIV66/neWhpRQ/16NtE9BV0tceK9RCdis6aJtffKqzsff1ZNHDuE2ZGCkazjhFSvsSXf9yP269AxF/b9Y4e03dmyLkA1alZQsRw/20nspSvufJy9tkuDcVxb1m3U3/eWV8k079OI19HvZmnirU+ncm+VFWRiOVZybTnWLJ68o55cCqjaXV/t+UHTOz+YShNrex34+05tdKSxgHt1bynzJPFqJPyhDRMHudj0MLOvLhrwSajrTQ+Tu66kHnzavr85bP9DR9P7DMc9V+fNNxS/W2VuS74svYeFwlC8jv28VqEt66XeRWAqbMUfVKP/Jd4YpqhVWhlmr7QTx9zkjHb/HKqDjsFqzfVC1RudU6+euz8vLX4qVLmeOpR3VAJROvDXNTRfuEqX7s/JRgkHf9FyvxsVcF0BBQY/rXbdhmi8o6nWlHfUr3MTPXrpRktklnEqTJ++M8seFfxVpu3bGphqd6nXq0zthmrk6I1KW/TTLhd6MjP+0Moxi7T3ag4IbpNHxeq1UT9H0yCFaurizTru0g5jP+gfXqWPPr9LXeuX8pDK2lHHbLqsjsmajHZ5HfO7vY7JGWe0a/k8zXNk9OIP6aHyaTW4cZwQpDxBv6hjq8Zr6s6r634nJ+q47GILrK6mre+3DyV2pPD34bQ6TkiSfN/fpi37M2qnYejM/m1a5xj0f0pta19L98vudfD7rYq4kFoF4LgC+aF6DVmimFXfa3NUaveiGIrdu0C9u27TSx0eyaKrst7BuRzj0l+Op11cjrdkpnI1jmnjvPnapOKq1eN5PXzzNTSR9QtS42mbXGx6mNlXpH5+v5HuuKpfq25QpXoNVM2xfR08rL9OpnMAvfCX9v+f44jgr/JtauveFF3iewvrhCHjb/28fI8a1qmYTjvcFGy3qVqjx+yr2MFsKufyWX+8zselfwZmnNqu5Qs22YdqadA7rfRAus1g3P1516hQNXUJ6agy2qrPV2zR8XR//HTcGH/UtR75XGoOYQ+24Ru0JJvPj4z4Czr786/6Ld1nVng2I9q+vka+qS59PtZ3h7Omj8RMi/9D3703RENXHZZ/rb6a+k7jVB4a6WBTnjLPqP+gRvZ98lfNnL9BR9K9EcDQ2V8W6mOV0O1Zc/nCdfkf0MsTB6mOvTKJmjpZnzp+DTdnpcWI2a5Zg6fKeLONHk33GTvu4mIdMz8H6piV9jom3QWWiTomU6IVEb47cfA6f+VP64G1F37Xz9/sNEcyYNZx6cuZOi7b2G7RI02byNGvXPScaRr93orUO064JPm+v11fLP81/e3BfsL6f8tX64j9hLXO4Nf1fBlPeKZaLhUqequKr/5IY2Zf/oBKR1Prnz7toUbPzNKtvQfoxbjZ6tN/trYcT34if96+TcxR304D9FOD19XqgfQeLeDLHMvxFudyDJm93aXluDXaXcvRXs+Ez9XoD7apTJthmvR6NRXJwiow59jsh6wX1LdLZfsO+p1WbE55j3QSx5XzrdrgyEIBTdSvdeVU78/yyPOOFCwShhwb8BeaOOeEOe6q61S8el3VN8eiZq9QqItNc/zr36NT323Q4bRO1pwngMM0etMdajNtvHqm+iT9/7j7865dHgXW76Wpg5/S6akTNPG7I/bDd2oMxUet0+QPv5VLjYNsN6l89Qr2/x/X/j/+VWqd1RqnwvXZ+oLq8lxGJxTulev2sqp+crw6v/WJvt97OEWX7H/pnxhPb7Z1Qv/3YXc17T9OU97ppEZ9lulQjrbgcdyU/r0mtW+oJ4b+oFubjtXyz97So0XT+Q3XVkSVu4/T3O6PKm7GaA2edfnBMDnj1M/27S5O3Vrfn8EDGrOD/QBeuYtmfjXMHiOWqGeLPvp0yz9p7DOOHstC9XHX3vrhkdF699ns+VXbtTpmuEaFlsz2OiZm6kRN+O6PDOsY13+sclURlat2X+IPYhEb9ePO1K5IxOrwN+uUu1Mv1XWMnkx6pstFxZ7Jc2Ub+qQ6Tp5Xx2Ufx8nWU+pY3dGRwleaEFYh9Y4Tkru07z+gP94ZrndXpXXMOa+oVZPU553fVaWLva7r9qDrP4BmKXuZy1VW/YBfNaPDU6rZ9C2NGDNGY0a8paY1qqha+xk68dJoje7VVv/73y3aN6O97n+wgToPGq0xY0ZrUOeGqla5lcb/1UQhPWpZ+KpQsuXYvl76y7Hhrc7leF8V9yxH49gPGttrgg4+P1Zz322mCv45/StbFrLdrnq9+6pzmX2a+s5UfReVSlPluH2aP/w9rTaqqvust9U8KLUj7ZXnHR75AGDDZ8UZp49FGof3bDZWTOtt1A/ydyx+w79WX2Puj78Zh6OijXMJ5ltTijttHIuMNCIP/2ZsmvaqUd5xtHW+ihu1Bn5hbDnwhxHpmH/stP1fSSFykdFKdY0Rm44ZFyLXGR999J1x6NxFc6aD/Xsd2mTM6l7H8C/zovHut3uN02l9Dwe3fJ5jWUTZv/MfRsT3Y42G/o6ylDQahnxnRFxWjgzeF/mPcTouxYfH/WWEzXrLqFmkntF7/mYjMtl3Szj3t7FzzUdG7z5zjS1rRhpBzmVYxmg6Ya2x57D989JYBwlH1xmDa5cwVP4NY/7uf83v5mD/fgfWGRN7jzPWRO41FrUKMuz1mBHQdKKxfs8h+/f724h2/vuplcPfKN9tvrHd8e9m+n1JThpbJjxj2E+M7O9L61XGqNmqjzFh/vfGnugL5t9dqwT7JvmP/fs4vpP95dguZ71pVEn6N6u8aczaZN+mk+antp6c/jJWdLv3v+9ad5qxO96cdVUuGuei/zb/zQhjy6JBRu2C5mcHtDOm/XrQnJfidXiPsWXDUmPasDZGFccyD2pk9Jr2g3H4smWdgbg/jU2Tu9j/vrzRcNAC4+dDJy9tJ87tbu1Uo1fnMcbayFhzql3COSM6yvEdDhnb579h7tf3G20+/C5xe7R/t6joc/alnZXijdN7lhkjmtrXg391o827c401YXvMdfeHcWDHBmPRxDeM+sGNjUFf/pZ+3eCQVpkmr3O9TPY6prXNXseE/pNhHVPQXseErNiXYR3TyLkdZFzHXPG+9OqYgIzrmNI2x+elUsekWE53Od/n2nJKOL3VmNW5hnO/96812FiSrE5KOPeH8dOst43e07cap+MjjPktytjXa2Mj5Pu9xp8R3xlj+y00DqWyWTvruFrFnXXcvN/Sr+Mc+5Ojjlu327U6btshR3my6n3uFGtEzHrJvlwDjTofbjNcri2T9v2AOkb3mRuMiEv1rL2ejN5jrJ36hn1bqWF0mrzRiLyiHkxt+8v42JD2+zIr8RhS0Ln9JX8VN2p2n2fsPO2okOONk5vHGXWc6yDFq0xHY+r2aJfrqIt7phn2gO6s6/e4e/Wl67QRFlLTUKtFRqQ5xb3SOhY7luN8l5bjtB0nMlXXO+qBaW0fNmr1XmTscX6+FTiOV4uM3va6ynHuPH/zocT62X6OHLlzlfFhJ3u9GNTYGL7msH2PScuV5x3Zuy26xofD0OFLJ8vyDzbqv9TKaNWkpnlCbn8FhRhhaa09ZwBJ9netkl6NjZpmqHK+UtvRo8OMOdNDjaPmXpZw7rARtupb4+uFnxjDu7UzXmrSxGje7W3jQ1dPlt3yeYnLIvF720/Wm7x0eVkulSP5+wKN4PotjFYv1TeCL1UmnYxFkaktNPtJcWS48fW0EUa3Nuay6tTV6N5rlDFz7R4j2r7zxIWF/Lfsk15prgPzoDYrxOjV8TmjfkP792jVzujaracxaJr9JMdZzmTr99KrphESdvrSvMRpZjkuW3eZfV+SC0b07gVGt/LJtoH0Xpk8cKUtzr5JdnJ+pn9wfeOlS9tjitelddXJWPhnattCgnHOUbHVL2/4V3nVmLbl32v8buYBL2W5XXg5ytGq2whj2rKfkp3MZFbSdmffTjo1NerXb2K06drN6Nb9bWPyl2GXnTQ7xYUZIaVt5ndI2g8Sl91L9YOdB9agkLB0KnU3ijtpHApbbkwL6W10NP9tZ33TsW/mgrSjTEFJy/Uqy5RNdcyfzs/PuI5Jfdt1rY5JDEPJXvY6ZrPj41xZTu9uTns5JZw2Dv20zFxf1Y0qju/dsbPRrc9E48stf5t/Z/8OkRuNKd3qGUH+VYwmA2YaocnD+GVcr+MuK0+Kuiux/su4jnPf+9wrIXKp0aXam8ayP8+bU1yVfN9vYTRp8qJzXbbq1NsImbbcCIs8k0bdlsr2l6Kc724+lYn3XQV7mAudNsBoEhxo/xz7tthqkDHN3Ib/E2sc3fKlEdK5rvO46R/8jNEt5Etjy9G0tqfU+W4YssvG5egMQm3qGW2m2OvJyz7fGhw/+oR9OdHo3alJ4j6QqWOVu887sobN8R/7zg0gPfF/asP43urw8XXqOnWA2la/U/4pe42Lj9E/x47p7/2/aO3cD9R/yjrFlB+gtT++rdrZcs8HAACJEvZ+qqfKtdequtO059t2KpttN0bEKHzM/1R5e1dFznzO7BXSOxkx2zT99Xd1qOlw9albUv/1tB2nqB8WK/yWBmpQtoA5Dd7KOh0oAFftrCLmDdQzPY+pzawxeu3RUlcGIYfc/rop8E5VeKSxXv9wsTZObKKCe+Zp6urDjp8SAQCAl3AGoV4zFffKexr4ZPIg5HBSvy3/WWfyeUo/hbgWhCEgIxcPaPXHXym6blM9/2AR124atxVWpWcaq74OaP0vv7vWeQQAAF4vjwJuuVPVy94ib71mknhFaLA2V31BT92WoGOXdZhkf0WEauWqfCp6A2HIFxCGgIwY5xUTFS0FFEjxy1D6bLnzyDsfPwYA8G6G4s+dkbN39pgzOpfuYwjcLa9KtfxUP/Z/ONWulj1dYhBqq/bTv9KU1lV1R7FiKpbyVbqh3i0apNt8uUc5C+GeISBDx/XTiGaqNrqopoV/onZlXemoOVaHF3TX/c1/Uatvl2jsk4FZ3A0xAMDaTip8ykBNDD1pjqfmBlV7fZg6B1v1OUUZOWE/3j+r6gPWZ9i8PbDXWv02urZu4ODu9QhDgAuME+H6uFtH9TjSUPOmvqn6pQqlHW6MMzr83Qfq2uR9ne46VZ8NrKPA1O4xAgAAQI4iDAEuMmIitP7zT/Te6B9VtOMreql2sO4uV0qB/o42w/GKOfaHDu0O13eLZ2vm1mJq9sYrav9UBQUQhAAAADwSYQjIFEPxMX/pwI5t2rJrrw4djNCuQ9FKUH7dWra07ixRRuUq3a8qFW5Pvcc5AAAAeAzCEAAAAABLojc5AAAAAJZEGAIAAABgSYQhAAAAAJZEGAIAAABgSYQhAAAAAJZEGAIAAABgSYQhAAAAABYk/T9l5gtccr9EIwAAAABJRU5ErkJggg==
iVBORw0KGgoAAAANSUhEUgAABMUAAALpCAYAAACzEJEWAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAP+lSURBVHhe7N0JnBT1nf//Tw+4EtNjHBL9rW7AA0GMmzVZ9J+obAImmnhkICYRT4QYI6wHGA/wYNwYDmVAgbgBVKJgvBIxCZp4ADGLeGQZsihgJCgIRIgQZgQGBpmhv//6dtcwMz0909VV3dWf7n49efRjaqqqu99T9a0P3/p2V3fEOAQAAAAAAAAoIWXuTwAAAAAAAKBkMCgGAAAAAACAksOgGAAAAAAAAEoOg2IAAAAAAAAoOQyKAQAAAAAAoOQwKAYAAAAAAICSw6AYAAAAAAAASg6DYgAAAAAAACg5DIoBAAAAAACg5DAoBgAAAAAAgJLDoBgAAAAAAABKDoNiAAAAAAAAKDkMigEAAAAAAKDkMCgGAAAAAACAksOgGAAAAAAAAEpOxDjcaQDIi0gk4k4BALx0zaibANCCU1oAfjEoBiDv7Mmd9lKkPSP5grMZY7FY/KdG2vNZZWVl8Yxaac9neT1WvK6XT9ozsg2DK5RtSG33T3s+qxBqOwC9uHwSAAAAAAAAJYdBMQAAAAAAAJQcBsUAAAAAAABQchgUAwAAAAAAQMlhUAwAAAAAAAAlh0ExAAAAAAAAlBwGxQAAAAAAAFByGBQDAAAAAABAyWFQDAAAAAAAACWHQTEAAAAAAACUHAbFAAAAAAAAUHIYFAMAAAAAAEDJYVAMAAAAAAAAJYdBMQAAAAAAAJQcBsUAAAAAAABQchgUAwAAAAAAQMlhUAwAAAAAAAAlh0ExAAAAAAAAlBwGxQAAAAAAAFByGBQDAAAAAABAyWFQDAAAAAAAACWHQTEAAAAAAACUHAbFAAAAAAAAUHIYFAMAAAAAAEDJYVAMAAAAAAAAJYdBMQAAAAAAAJQcBsUAAAAAAABQchgUAwAAAAAAQMlhUAwAAAAAAAAlh0ExAAAAAAAAlBwGxQAAAAAAAFByGBQDAAAAAABAyWFQDAAAAAAAACWHQTEAAAAAAACUHAbFAAAAAAAAUHIYFAMAAAAAAEDJYVAMAAAAAAAAJYdBMQAAAAAAAJQcBsUAAAAAAABQciLG4U4DQF5EIhF3CgDgpWtG3QSAFpzSAvCLQTEAeWdP7rSXIu0ZyReczRiLxeI/NdKezyorK4tn1Ep7PsvrseJ1vXzSnpFtGFyhbENqu3/a81mFUNsB6MXlkwAAAAAAACg5DIoBAAAAAACg5DAoBgAAAAAAgJLDoBgAAAAAAABKDoNiAAAAAAAAKDkMigEAAAAAAKDkMCgGoHg0bZO3X5onE0ZfIgOPL5dIpI8MvOJW+elvVsi2plx/ZXy9LJ8yMP6V5R3ejq+W5U3u6gc0yZZnRqRe396On5LiPn5oz2d5yZjq+dJnrGl0Vw1Eez4rkbEs1fM033xlTNU2/NCer0TltXYCAADkkQGAPAteiprMrjW/NlWDTjTRU79vJj+x0NSs2WC21DWYWMOHZvWin5kxk142W2Pu6j54z7jfNGxbaRaMO9dEnfvY+0l0sJmw6F2zq7GDALEGs7VmjhnWO+qsHzW9KseZeYtXmPW1Tn53lXSKJ5/VnPGcNhnHL1yb84yxmJe1teezUmf0tJ/7lPvOGIlE3Kl0tOfLH7stvPC6XudyWzuzkzF3tOez2IbB2Yzea2f4yBdcIdR2AHrp/58MQNEL1ql2TupWPWKG9a4wvYc9ZFbU7nPnu2K7zeaaJ8yYgZeaOWsa3JmZyzhjw5tmZuUx8ftJ9BLnuXe7Czqy3SwZd7rpffVj5p2dTe4874oun5WU8aF36t0FHUlk7ONkXLPLX8aMOv7a81l+9nPVGfH97Cdjxicm2vPlgd0WXnhdr2O5r53BM+aW9nwW2zA4m5FBJ/+057MYFAMQhP7/yQAUPf+d6php3DDfjOgdNdGz7jP/+1H7k+Sm1TNNf+fxRQaY6ppd7tzMZZ4xZhpWzTaVUfvcYiqGPWXe39dxpzK2fZEZc/Z4s6Q28xN9q/jyWckZnzQbOnoXkeNAxu3+M2bW8deez2q/n9Nm/Ib//Zz5iYn2fOGz28ELr+ulFk7tDJYx97Tns9iGwdmMDDr5pz2fxaAYgCD4TDEAhcv8TV64e6LMWvtvcs3YS6Tfp7q4C1qUHX6inFv5Rek35ALpf9wn3LlhiEi3ky6RidVDJOr8VvfIZLl7wXpJ+bFHZpssnf6YHHzHD6V/Rfu/ITe057OSM1bLpAXvp814Rvd8bUNt+ayWjOWRxH5Om/H2q/LSDnXmK1KqaycAAECI3MExAMgbf6UoZnbXTDGnOfeV02eYFR/n9lVM3+Wy9eVhvUeZ+RuSL0NqMrVLJphBVX80tQH+hKLNZ7kZIyFk9PVquPZ8ls046FhP+3n7fneWD75frdeeL0RejxWv67UXXu30nzEc2vNZbMPgbEbeieWf9nwW7xQDEATvFANQoLbLG798Ql6XqJz87dOk7z9F3PnKdDtJLhk3Ss6ybyVaO0fGTvq9bGz1bW6mbqlMmypy4+j+UpGPP0F7Pqs5o30rkeZtqDWfZTPecb2n/dw9Hz0D7fmKSoHUTgAAgBDQtQRQmHa+JS8+utyZ6CUDPt9DDk7MVaiLHNpvqEy8c5CUS72snTVFpi3eIvHTfXs52LS5zpl+Pi8H057PSmScUDXIOY3Xuw315rNa9nPrjDG7SFk71JmviBRM7QQAAMg9BsUAFKT961fJwi12qkI++5lPOj+NNH30nrzx3FyZMWWKzPj5r+TFN96Tj1q92yRvIt2l3w9vlaqzezq/vC73jZ4hL23dK3VLH5R75QoZ3f9wyet7NbTns+IZx8qdZ/Vwfmmbcaqabag4n+Xu5zYZP2xQtg0V5ysSBVU7AQAAcix+AbY7DQB5EYlE7IeSuL950SRbnrlOjvrOLGf6apm/ebqcXftb+ekfDpFzB39FTuoRlaa692XFc7Nk/PxPyg8mj5ZBfT4V6IQ684zJ9svON6bKN08b45zuR6XvtT+SCzaXydceuEPO/HTwd78Ufz6rg4wPOhmz8OH1NmMsFov/9Ed7Piu3GcvKyuIZ/dOeL/e8Hite12sr3NrpL2N4tOez2IbB2YzBa2fukC+4QqjtAPTinWIACtA+qdv6d3daxHzwgtz3h2PkmmvPl5N7HCpdndLWreI4+fLlVTK1cr18//yb5eHVOxKXs+VNFzn0S8PlnqqBznS9vHP/g1Jz3hD5ahYGnLJDez4rRcZzL5QBoX6bY2e057NS72fV21BVvkJXiLUTAAAgdxgUA1CAYtJQv8OdXicLfr5Ozri0nxza7kXMqJxw0dVy48FPyKgb5slbe/J8ahc5XPqPvlOqTq1wftkiL816Wl6t3Z9YpoH2fFZyxtlOxjrF21BbPivVfta8DbXlK2gFWjsBAAByhEExAAXudfnzv3xZvtzRO0kOOUG+8u3PS/3C6XLPs+/n/x0PXbpJ+WH2K/Ycy+6Vm6a/InWazje157PaZLxPbpy2VPE2VJjPStrPurehwnxFocBqJwAAQA4wKAagAHWV8u6Hu9O95GunHCeHuL+190n5bO/jnJ/vyRM/f1nW5vMjJ0ytLH9gtqy7+lFZcMNpzow6WXbXJJn5p1odJ5za81lJGSPxjBPVbkN1+aw2GU93ZmjehgrzFbQCrZ0AAAA5wqAYgALknNgd1t2dbv4GtY50kW6fbH7Hyduy/qN8XYa1X3Yuf1QmrDtfxg76ipw/tkpu6GtzvSSTqubJ8p35vjxMez6rfcbRJ5Y78/VuQ135rOSM45S3Q235Cl0h1k4AAIDcYVAMQAHqIt2P6iHHuL95Vlcvuz/Oz3tNzM4aeWDiJrl87LnSs2tEIkcMkNETrpQ+EZH6hffKbQ/UyM48vg1Gez4rnnFCUsbxV0pvZ5mabag4n5Uyo7OfW2fcoW0bKspX+AqvdgIAAOQSg2IAClBE/unovjLAfRODdxvkb1s/dqdD1Hw52GXXSGXPbu7MbtKzcpRMGnGKM71JFv74Pnn87frEorBpz2c1Z7w8OeP1cveIfs60km2oNZ/VYcZRbTOu3pVYFDbt+YpCgdVOAACAHGNQDEBBivy/z8l/nH6kM1Unf/vH7sTMdKK95bijmk+2w2Jkz1tPxC8HG/OtY6SrOzeu6zFSOfZmGWa/ZK/+Kbn5tsdl9d6w342hPZ+VyDjRXlJXmSLjrbe0ybiqIT/bUG8+q2U/p8t4y+35bYc68xWPwqmdAAAAucegGIDCVHasDLjsaxKVjbJ8/Tbp+NNu9knd1r/Hp6LfOkP+7TMdfNNaruxdKfPu2RC/HOzogyLuzGYR6drzfLlj+nCJn+8vmCS3PbJSGhILw6E9n+VmvGzMOfFL6tpqn/H2R96SvYmF4dCez7IZJyf2c/qMd8f3c+jbUHO+YlIotRMAACAEDIoBKFAHy7HnDZNr+jbKiiWr5YOO3jhiPpSVS1Y5EwPlRyPPlB7J59s5VS+rH5kpb313ZKvLwZIdIr0uGivTL7afmvS+LLhtmvzqXY/v3ghMez6rJeO3jv6EOy9ZUsbbp8uv3tuTWJRz2vNZbsbveNvPkeb9HPY2VJuv2BRC7QQAAAiJAYA881+K9poPnr3Z9JXTzOhnN5h97twWe83mF+4wp0oPM3DCK6Y25s72IfOMMdOwarYZPPwps6Ex3RPHzL41c8ygqMSfp+LiR827+zILW3z5rCAZf+ErYyyWyX2057NaMr6f9vkSGQeXR3xnjEQi7pRX2vOFz/5tXnhdL7VwamewjLmnPZ/FNgzOZsy8doaHfMEVQm0HoBfvFANQwA6Wo867XZ6ed4q8OvRqGffkn2RjfZMz30hT/UapeerHcun3ficnznhcHrvlDKkI7Z0OzvNvWSSTrvuZHHr+aSkuB0sWkYP6XCgTqoeI/fzruicmyPhn1on9S3JDez7Lf8ZyZ9W6J8ar3Ybh5LOSMra7PDZZIuP4yc37OeRtqC5fMdNaOwEAAMLFoBiAwhb5lJx0+VR56Y1b5HPv/UKuG9BTIpFDpe+3xsnTH35B/qtmkcy5rr8cmXbQIgvMXvnob+/I6/OnylWDrpC7Xn5Tnv3lAnl9yx7nVLMz9kT077Jpy07393fkkZHjZNqit+Ufe2PuvCzQns/KRsb4ioq3YS7zWR1l3Ky8HWrJVyo01U4AAIB8cd8xBgB5UwilKG3GzfPNUHvWnvI2wFTX7HJXbK+xptr0Snm/5tsAM3nZTnft1Ox6ndKez0qTsbPn8JKxs7/Rsut1eomI9nxWjvdzuoxpL2HRnk8B+7d44XW9fNKekW0YXKFsQy5P9E97PovLJwEEEa8gTrEDgLxxOjO2V+3+ppP2jOQLzmZ0Ov7xnxppz2eVlZXFM2qlPZ/l9Vjxul4+ac/INgyuULYhtd0/7fmsQqjtAPTi8kkAAAAAAACUHAbFAAAAAAAAUHIYFAMAAAAAAEDJYVAMAAAAAAAAJYdBMQAAAAAAAJQcBsUAAAAAAABQchgUAwAAAAAAQMmJGIc7DQB5EYlE3CkAgJeuGXUTAFpwSgvALwbFAOSdPbnTXoq0ZyRfcDZjLBaL/9RIez6rrKwsnlEr7fksr8eK1/XySXtGtmFwhbINqe3+ac9nFUJtB6AXl08CAAAAAACg5DAoBgAAAAAAgJLDoBgAAAAAAABKDoNiAAAAAAAAKDkMigEAAAAAAKDkMCgGAAAAAACAksOgGAAAAAAAAEoOg2IACthueXPGd+XMERPk588tldXrN8s/6pviS8zej2TL+tXyp8VPyYwbBstXZ7wp++NLcqVelk8ZKJFIpOPb8dWyPBGvlSbZ8syI1Ovb2/FTUtzHD+35LC8ZUz1f+ow1je6qgWjPZyUylqV6nuabr4yp2oYf2vOVCi2109sx1f74sO1hZOr17S1lG/JDez7LS0b+7+mct/3sJ2P2ajsAIGcMAOSZ/1K0y9RUD4jfv7NbdOBPzKLNe937+GMfx5v9pmHbSrNg3Lkm2pwhOthMWPSu2dUYc9dJEmswW2vmmGG9o876UdOrcpyZt3iFWV/bYDq4RzvFk89qznhOm4zjF67NecZYzMva2vNZqTN62s99yn1ndE4E3al0tOfLH7stvPC6Xmrh1E77GN60tIfy5uf3UZfm5qwu5SeflXlG/u9JZp+reGp7+LTnswqhtgPQK0iPCgCywna4/El3YtfDDBg919RsDTYgZtnHy0jDm2Zm5TGJHNFLzJw1u90FHdlulow73fS++jHzzs4md553RZfPSsr40Dv17oKOJDL2cTKu2eUvY0Ydf+35LD/7ueqM+H72kzHjExPt+fLAbgsvvK6XWji10z5WRmx7GHRsIkOGdcnvMZWRkPNZvjJqru0h57PscxVdbQ+R9nwWg2IAggjSowKArLAdLn/sid1lZvwLy8ziuRPNdZX9TFSONP3O+4G5pfph81zN30xDlvpxmWeMmYZVs01l1OlUO/etGPaUeX9fx2Fi2xeZMWePN0tqQzpxUp/PSs74pNnQ0av1jgMZt4d04qQ+n9V+P6fN+A3/+znzExPt+cJnt4MXXtdLLZzamXlGH+0hz3Uzl/msbGQs5f97LPs8xVfbw6M9n8WgGIAggvSoACArbIfLH3tiN9RU1+xyf88dfxl3mVUzh7iXYfQzI55+zzS6S9qIbTVLqoabqiVbna64P8WZz0rKOH9d2oz73VmZ8tfx157PSmQsj3jN+KHv/ezvxER7vnB5PVb8H1NWOLXTX8b2x9Q+d0kbeatL4eWzspKxhP/vsWzG4qzt4dCez2JQDEAQQXpUAJAV/jrVlvZBMUfryzB6jzLzNzS4C5o1mdolE8ygqj+a2gB9zqLNZ7kZIyFk9NXx157PshmbL/tKk3G73zM7h+8TE+35QuT1WPG6XmqaB8UcSXXp6ff3uAua5bkuhZTPylZGdbU9pHyWfY6ire0h0J7PYlAMQBBBelQAkBW+O9WFMCjmdJp3LLvPnBW/DCNqeo+Y3+YyjFjtH03VoAmBLg2xijeflch4dnkk5xn9dfy157PC2c/+T0y05wuP12Ml2DGlfFCsXXt4un17GJzPuhROPit7GbXV9nDyWTZj8db23NOez2JQDEAQZU6hAwDkTBc5tN9QmXjnICmXelk7a4pMW7zFngU43cxtsnTaXJEbr5L+FV3ia4dPez4rkXFC1SCJKt6GevNZLfu5dcaYXaSsHerMh3Alt4ep7Y+pH/1AUXvVls9qycj/PX4lMuqu7QCAwNzBMQDIG/+lqBDeKZYQ2/GGqT67Z/xxpO8Y88KHDfHLLgZn4dIQq9jzWfGMZ/VolzEbl9dY9nGDvBquPZ+VnPH5v+/Jasagr9ZrzxcG+7d74XW91LS/Uyyhs2MqyGW0zbTns7KSsYT/77HsYxd7bc8l7fks3ikGIIh4BXGKHQDkjdOZsb1q97dM1MvyKdfIywN/KtcetVZeeHqhrN7bVQ6OOIvMPtnXrY+cOfgc+VKPT4qdFYT/jM32y843pso3Txsjr0tU+l77I7lgc5l87YE75MxPB3+VufjzWR1kfNDJ2D07GZ2Of/ynP9rzWbnNWFZWFs/on/Z8uef1WPG6Xmrh1M5gGa1Eezjn9DHymsnNMaU5n5WtjHpre27zWTZj8df23NGezyqE2g5AMec/MgDIK/+lyL7b4TvmqnE/MVUzF5o1da2/A2yfqV0xxww78TxTtWhT6m+NykBWymX8W6oGxh9L5Ehz9py/mOCflpJQEvms5IwPve37G7+S2cd0OtXubz5pz2el2M/ZyuicNLlTAWjPl2P27/bC63qphVM7g2V0xdvDmTlpD9rzWdnLqLi25zCfZR+3JGp7jmjPZxVCbQegF58pBqDAlUmXL1wq40Z8XfocdpA7zzpIKk6+Qqbe/0X55eBrZVpNre3J5lfkcOk/+k6pOrXC+WWLvDTraXm1dn9imQba81nJGWc7GesUb0Nt+axU+1nzNtSWr2gUSO2Mt4cq5e1VcT4r1THF/z2ZSc6osbYDAHxhUAxAAYvKv49+XO6/4Fjp6s5pq4t0//K5ctkxi+Xm6x+WP+/J+7CYE6mblB8WTUwvu1dumv6K1CmIdYD2fFabjPfJjdOWKt6GCvNZSftZ9zZUmK/gFVjtTNEeajVdKaU9n5WUkf97fGiTUWltBwBkjEExAAUt0rWrc/rWiUOOk1O+1kvk9Ufl0Ve2ujPzxNTK8gdmy7qrH5UFN5zmzKiTZXdNkpl/UvAuNkt7PispYySecaLabagun9Um4+nODM3bUGG+IlEwtTNlXbLtYbvKY15dPitlRv7vyUhSRpW1HQDgj3sZJQDkTW5Lkf3snAHx5zjylsVmhzs3U8EzNpkdy6aZwSPnmw2NMRP78HlzQ99o/HGjZ91nlu0I9gkqxZ/PSpHxxPKsZgz2uSna81m53c/BP9dFe77cs3+rF17X8y947QyeMdEevp2yPdyroC7lNp+VrYx6a3tu81n2sYq/tueO9nwWnykGIIhc96gAIC3b4cqdlhM7GTTPrPPZrwuaMf6V7t++0czf0ODOaTAb5o8yfSL2ReYe5qzqN8yOAH3OYs9nxTMOTs442vS2+zZLGYN0/LXns1JnHNUm40cBniLoiYn2fGHweqxk45jqXPDaGTTjgfbw/h53Tvv2kPe6mcN8VlYylvD/PZbNWOy1PZe057MYFAMQRK57VACQlp9Odaz2NVNd+a+m13lV5tl1u925qbQ6setVbWp8fpWan4wHxLabZdXDzcj569p+k1vjOjN/5CmJbNEhZuaqXe6CzBV1PquzjCP6ZS2j746/9nyWx4w/W7nTXZC5QCcm2vOFxP6dXnhdL1mYtdNvxrhW7aH1d2M2t4eI2x401M1c5bOylbHdMVUi//dY9nGKurbnmPZ8FoNiAIII8D8ZAGSH7XBlqrGm2vSynVE5xgx5cr3puLu2zSy+xe24DnnSbPTZr/OTMSFmdq+4P37Zxfv7kp88Zho3PGWGVdi/Q0y0crZZ1eAvYPHmsxIZmy9Raqt9xpV7/Gf01/HXns9q2c/pM87yvZ/9n5hozxce+zd64XW9ZGHWTr8ZvbSH4d0j8cfPd93MZT4rGxlL+f8eyz5G8db23NOez2JQDEAQfv8nA4CssR2uTDWtmGH69+pleg8cY+a/18m7HZpWmpn9K5znONKcPecvZr87O1N+MsY1vGlmXnxzq8suku02784bbiqcx7cnqZUz3zTNF+JkomjzWc0ZD1yilCwp489WmI7+ms747vhrz2fZjJdktp/9ZPR9YqI9X4i8Hit+j6kwa6fv495TXfp+4PagPZ+V24x5rO0h5bNsxqKt7SHQns9iUAxAED7/JwOA7PHVqd79v2bKjb82H3TaT4uZ3TVTzGm2w9r7BvPs5jYXuWTEX8d/l1k1c0T7yy6S7Vtj5l3cO/4cUjHczF1b7y7wrjjzWS0ZO917SRnnvdvZZWGp2ftm3vHXns/KbD/HL/vymdHfiYn2fOHyeqx4Xa+dEGunv4z+6pLfYypz4eWzwsxYjP/3WPb+xVnbw6E9n8WgGIAgfPaoACB7bIcrc41m6+Jqc8OcN82uDvpqsV01ZsagY41EzzFVizZ13vlOI/OMMdOwarYZPPypFJddJIs5/eo5ZlDU6VQ7z1Nx8aPm3XaXk3Su+PJZQTL+wlfGzDr+2vNZLRnbX6KULJFxcHnisi8/GTM/MdGeL3z2b/PC63rthVc7M88Y7Jha+3Fm7UF7PivcjMX3f49l71t8tT082vNZDIoBCMJvjwoAssZ2uHyJfWTWzL/TDBv9gHlxxXpT2+Be4NO4w2xY9rSZMORkI70vNdX/87dAA2JWZhljpnHzS6Zq4Mlm6PyN7rx07KvSQ0zUeR6RvmbYk+9mlLm48ln+M5bHv7XMX0bvHX/t+ay2Gb3d02a8yPd+zuzERHu+/PB6rGR+TLUSUu3MLKPbHs78gv+69MTajI8p78LPZ/nKqLa2h5/PshmLq7aHS3s+i0ExAEEE6FEBQHZk1qlOtt80bHzdPDV9rBk6wL2EIdrPnHfVrWb6k/9j1tT5v2SyNU8ZYw2mbtNfzGtPV5thpx4Zv0/FkPvNa5t3O93szjid8F1rzfNV57gdf+dWcbGpXrjabGs+WU2jKPJZWchYHiBj2o6/9nxWBxlf/cBrxnN972dPJyba8+WZ/bu88Lpex3JfOz1l1F6X8pjP0p5Rez7L3q8oanueaM9nMSgGIIigPSoACMx2uLRLm3HzfDPUdoZT3gaY6pqOv6695dvgOroNMJOX7XTXTs2u1ynt+aw0GTt7Di8ZO/sbLbtepx1/7fmsHO/ndBnTnphoz6eA/Vu88LpePqXNmOf2YNfrVJ7zWXbdTuU4Y6H/32PZdQu+tueR9nwWg2IAgohXEKfYAUDeOJ0Z26t2f9NJe0byBWczOh3/+E+NtOezysrK4hm10p7P8nqseF0vn7RnZBsGVyjbkNrun/Z8ViHUdgB6lbk/AQAAAAAAgJLBoBgAAAAAAABKDoNiAAAAAAAAKDkMigEAAAAAAKDkMCgGAAAAAACAksOgGAAAAAAAAEoOg2IAAAAAAAAoORHjcKcBIC8ikYg7BQDw0jWjbgJAC05pAfjFoBiAvLMnd9pLkfaM5AvOZozFYvGfGmnPZ5WVlcUzaqU9n+X1WPG6Xj5pz8g2DK5QtiG13T/t+axCqO0A9OLySQAAAAAAAJQcBsUAAAAAAABQchgUAwAAAAAAQMlhUAwAAAAAAAAlh0ExAAAAAAAAlBwGxQAAAAAAAFByGBQDULzMJnnumstlxpu73RmlrF6WTxkY/0r1Dm/HV8vyJnf1A5pkyzMjUq9vb8dPSXEfv7xkTPV86TPWNLqrBqI9n5XIWJbqeZpvvjKmaht+aM+HuNBqp7djqv3xYdvDyNTr21vKNuSH9nyWl4z5rO3a81ne9rOfjNmr7QCAnDEAkGe5KUWN5sMXxpgTIwNMdc0ud55/2sul93z7TcO2lWbBuHNN1LmPvZ9EB5sJi941uxpj7jpJYg1ma80cM6x31Fk/anpVjjPzFq8w62sbTAf3aCez7dec8Zw2GccvXJvzjLGYl7W157NSZ/S0n/uU+87onAi6U+loz5c/dlt44XW9zGWvdnrP2NIeyjNtD62Oqbk5q0v5yWdlnlFrbc9PPss+V/HU9vBpz2cVQm0HoFeuelQA4JntcGVb7MPnzQ19bSeVQbGUGt40MyuPid9PopeYOWt2uws6st0sGXe66X31Y+adnU3uPO98bb+kjA+9U+8u6EgiYx8n45pd/jJm1PHXns/ys5+rzojvZz8ZMz4x0Z4vD+y28MLrepnKZu3MOKNtD4OOzaw9uHXJ7zGVkZDzWb4yaq7tIeez7HMVXW0PkfZ8FoNiAILITY8KADJgO1xZFfvAvHDbZea8/kc6j82gWGox07BqtqmMOp1+574Vw54y7+/ruNMb277IjDl7vFlSG9KJXVxyxifNho5erXccyLg9pBMn9fms9vs5bcZv+N/PmZ+YaM8XPrsdvPC6XkayXDszz+ijPYRal8LNZ2Ujo67aHm4+yz5P8dX28GjPZzEoBiAIPlMMQJFpkq0vzZMlX/lPGX7cIRJx5yJZRLqddIlMrB4iUee3ukcmy90L1jtbLwWzTZZOf0wOvuOH0r+iizszDMkZq2XSgvfTZjyje1gZteezWjKWOweD3c9pM95+VYj7WXu+UqKhdravS7Y9pPxYprzUJe35rPYZddV27fms5IwaazsAIGvcwTEAyJtslqLY9sXmzhufNZtjG838ob1MhHeKda71ZSK9R5n5GxrcBc2aTO2SCWZQ1R9NbYAXigNtPzejc5Ke84y+Xg3Xns+yGZsv+0qTcft+d5YPvl+t154vRF6PFa/reZWL2uk7Y1Jdevr9Pe6CZnmuSyHls7KVUV1tDymfZZ+jaGt7CLTns3inGIAgeKcYgOJhX7Gd/Yb82/VflyPz8zaHwtPtJLlk3Cg5y74cvnaOjJ30e9nYZPvACaZuqUybKnLj6P5Ska9t2pzRvpVIY0bt+Syb8Y7rPe3n7vnoGWjPV+y01c6kunTr3Snaw70Kjnmt+aykjGrrptZ8VnNGzbUdABAYXUsARWK/1C19XH5/wsVS2bObOw/pdZFD+w2ViXcOknKpl7Wzpsi0xVsk3u23J8rT5jo9/nxfrpbIOKFqkERVZtSez2rZz60zxuwiRdtQb75iprF2JreHqe2PqR/9QFF71ZbPasmos7Zrz2clMuqu7QCAwNx3jAFA3mSjFMVq/8dMHPvrVh+Gy+WTmYjteMNUn90z/jjSd4x54cOG+GUhg7Nw6YqVlX1sM57Vo13GbFxeY9nHDXKJiPZ8VnLG5/++J6sZg17Coj1fGOzf7oXX9dLJZe0MmrGzYyrIZbTNtOezspJRcW3PdT7LPnax1/Zc0p7P4vJJAEHEK4hT7AAgb5zOjO1Vu7/5YLbJK3c/KNsu/ZFccOCdDpvkmSsGynfn9ZDJNc/KTf3sNRr+Bc6YY8Hz7Zedb0yVb542Rl6XqPS91tmWm8vkaw/cIWd+Ovir4NnZfh1kfNDJmIUPOLYZnY5//Kc/2vNZuc1YVlYWz+if9ny55/VY8bpep3JcO4NnTLSHc04fI6+Z3BxTmvNZ2cqot7bnNp9lMxZ/bc8d7fmsQqjtAPTi8kkABc7prP7pV/L8CRfLt7hsMoAucuiXhss9VQOd6Xp55/4Hpea8IfLVLJ2UZEeKjOdeKAOydPIZnPZ8Vur9rHobqspXTAqhdibaw93jznSm9bZXvfms1MeUntquPZ+VIqO62g4A8ItBMQAFzexcLnNf/KyMqDxGDnLnwafI4dJ/9J1SdWqF88sWeWnW0/Jq7f7EMi2SM852MtYpyqg9n5VqP2vehtryFYmCqZ3x9lClvL0qzmelOqY01Xbt+azkjBprOwDAFwbFABQuUyvL57wo3S/7uvTsqvdt/QWlSzcpP8y9XGrZvXLT9FekLuAVWlnXJuN9cuO0pboyas9nJe1n3dtQYb5CV2i1M0V7qNV0pZT2fFZSRnW1XXs+q01GpbUdAJAxBsUAFKj9snP5U/LkEUPkwl6HuPMQiD1RfmC2rLv6UVlww2nOjDpZdtckmfmnWlHT70/KGIlnnKgno/Z8VpuMpzszNG9DhfkKXoHVzpR1ybaH7SqPeXX5rJQZFdV27fmspIwqazsAwB8DAHnmpxTZb4O698YnzLv7OvpGJL59MjNNZseyaWbwyPnxb6GLffi8uaFvNP640bPuM8t2NLnr+ZOd7Zci44nlWc0YC/QNW9rzWbndz5HA3wCmPV/u2b/VC6/rJQuzdvrN2CLRHr6dsj3cq6Au5Tafla2Memt7bvNZ9rGKv7bnjvZ8ViHUdgB68U4xAAWoXt5+8mU5YmSl9DqIyyazweyskQcmbpLLx54bv5wqcsQAGT3hSunjbN76hffKbQ/UyE7bNc6jeMYJSRnHXym9nWUaMmrPZ6XM6Ozn1hl3aNuGivIVvsKqnc3t4bIx56RoD/epOea15rPiGRXXdu35rJR1SVltBwAE4A6OAUDeZFyKGmtM9fGR+P0yvg2dbz7w8YKnva9mgfLFtptl1cPNyPnrTKM7K65xnZk/8pTEdosOMTNX+X/XSODt11nGEf2yltH3q+Ha81keM/5s5U53QeYCvVqvPV9I7N/phdf12gi5dtr7+daqPexzZ8W57SFiM+WzLoWQz8pWRpW1PYR8ln2coq7tOaY9n8U7xQAEEeB/MgDIDtvhyjp78tfL6axy+WQaMbN7xf3xy0Leb3c5Vcw0bnjKDKuw21FMtHK2WdXgr2McbPslMjZfotRW+4wr9/jP6K/jrz2f1bKf02ec5Xs/+z8x0Z4vPPZv9MLrehnLYu30nzF9exjePTG4l5+6FE4+KxsZddb2cPJZ9jGKt7bnnvZ8FoNiAILg8kkAKGV7V8q8ezbELws5ut3lVBHp2vN8uWP6cLFfQl+/YJLc9shKaUgsDI+bsfkSpbbaZ7z9kbdkb2JhOLTns2zGyYn9nD7j3fH9HPo21JwP4WpVlzpqD7dPa1uX8nHMq81ntcqosrZrz2e5GVXXdgBAcO7gGADkTU5KEe8U82CXWTVzRPvLQpLtW2PmXdw7/hxSMdzMXVvvLvDO//ZrydjmEqVkSRnnvbvbXeCdvW/mr4Zrz2dltp+dUz/fGf29Wq89X7i8Hite18tY3t8p5q8u+T2mMhdePivMjOHV9vDyWfb+xVnbw6E9n8U7xQAEkaMeFQB4ZztcWcegWBox07Bqthk8/KkUl4Ukizn9/jlmUNRuTzEVFz/ayTfXpeZv+wXJ+AtfGTPr+GvPZ7VkbH+JUrJExsHlicu+/GTM/MREe77w2b/NC6/rZSyvg2LBjqm1H2fWHrTns8LNGEZtDzefZe9bfLU9PNrzWQyKAQiCyycBFB+zV7atqJGaWvvLB1KzbLVs2xuLL4JlpGnLIpl03c/k0PNPS3FZSLKIHNTnQplQPUSizm91T0yQ8c+sk6bEwhzxn7HcWbXuifE5zqg9n5WUMe23DSYyjp/cvJ9D3obq8pWgvNZOtz1cP9NnXRovE555L/ftVW0+y39dCqe2a89n+c8YXm0HAGSVOzgGAHmTtVK0eb4Zanu0Hd56maHzNxo/r3fa+2vmKV+swdRt+ot57elqM+zUI+P3qRhyv3lt8+402yRmGnetNc9XnWOcE5PEtqy42FQvXG22Nex31+mc5+2XhYzlATKmfTVcez6rg4yvfuA147m+97OnV+u158sz+3d54XU9T3JUO+1909Jel/KYz9KeUXs+y96vKGp7nmjPZ/FOMQBBZLFHBQD+2A6Xdtozps3X6Ulv55dJNdZUm14p79d8G2AmL9vprp2aXS+tNBk7ew4vGdNdCmbX67Tjrz2fleP9nC5j2hMT7fkUsH+LF17Xy6e0GfPcHux6ncpzPsuu26kcZwxc2/Ocz7LrFnxtzyPt+SwGxQAEEa8gTrEDgLxxOjO2V+3+ppP2jOQLzmZ0Ov7xnxppz2eVlZXFM2qlPZ/l9Vjxul4+ac/INgyuULYhtd0/7fmsQqjtAPTiM8UAAAAAAABQchgUAwAAAAAAQMlhUAwAAAAAAAAlh0ExAAAAAAAAlBwGxQAAAAAAAFByGBQDAAAAAABAyWFQDAAAAAAAACUnYhzuNADkRSQScacAAF66ZtRNAGjBKS0AvxgUA5B39uROeynSnpF8wdmMsVgs/lMj7fmssrKyeEattOezvB4rXtfLJ+0Z2YbBFco2pLb7pz2fVQi1HYBeXD4JAAAAAACAksOgGAAAAAAAAEoOg2IAAAAAAAAoOQyKAQAAAAAAoOQwKAYAAAAAAICSw6AYAAAAAAAASg6DYgAAAAAAACg5DIoBKHhm7wey/Hc/lwmjr5QrrrhCrrh8kAw88woZM+VReemtLbLXuCtCuXpZPmWgRCKRjm/HT5HlTe7qBzTJlmdGpF7f3pz71DS6qwaiPZ+VyFiW6nmab74yVqe4jx/a85WW/NdOb8dU++PDtoeRqde3t5RtyA/t+SwvGVMdH+nrUnjbMJ/5LG/72U/G7NV2AEDOGADIM/+lKGYaNy8yE0fcZh5avNpsa9jvzneWNGwwS2YMN30ifU3lhEVmc2PMXeKP9nJZXPn2m4ZtK82CceeYqHM/e1+JDjbjF641uzraj7EGs7VmjhnWO+qsHzW9KseZeYtXmPW1DU4r8cY+TyzmZW3t+azUGScsejd9xj7lvjM6J4LuVDra8+WP3RZeeF0vtXBqp/eMLe2hPNP20OqYmuvjmPImP/mszDOem/kxFbAueZOffJZ9ruKp7eHTns8qhNoOQK8gPSoAyArb4fJl93Iz40cPm5W7mtwZSRrXmHkXHe88fg8zcMIrpjZAn853xpAUZb6GN83MymPi95XoJeahd+rdBR3ZbpaMO930ufoxs6ajNtEJ+zwZdfy157OSMs5Zs9td0BEnY9UZprfPjBmfmGjPlwd2W3jhdb2UQqqdGWe07WHQsZm1B+eY8tsetOezfGXM9JhyM76zM6RtGGI+yz5X0dX2EGnPZzEoBiCIAD0qAMgO2+HKXJPZ/sKNpkJ6m4EjHjTLalN1RPeadfMuczu23zdPbvjYnZ85fxnDU5z5YqZh1WxTGXX2n3P/imFPmg0dvVrviG1fZMacPd4s2R7SiZP6fFZyxqfSZ/yGkzHl8ZRe5icm2vOFz24HL7yu1154tTPzjD7agz2mfLYH7fmsbGR8f5/ubZjLfJZ9nuKr7eHRns9iUAxAEHymGIAC1SDrVy6XOlkrL8+aKg+9+mG899pWF+n2yWhisn6dbNq2LzGNAhGRbiddIhOrh4jdi3WPVMukBe9Lyo+RMdtk6fTH5OA7fihndO/izsw17fmslozlEZtxcvqMt18l/SvC34Y68xUjzbUz+ZhKtIeUH8vU6pjKR3vVmc9qn/HuBevT1qV8bkNd+azkjBprOwAgWxgUA1CgDpETBl4glb2iEj11sAzud7jTjUXxicpJw26T6spjnP27XGaNnS4LNu51lzXbL3VLH5SpcoWM7n94yP+xac9nJTJOrjzWmU6fcdQZR4R8LGnPV2y0186WY+pAe9jQkFh0QNtjKh/tVW8+KynjrTPS1qW8bkN1+ayWjHprOwAgK9x3jAFA3vgvRTHTuGu7qWv1IdFt7TarZw6OP74ceatZvKOj9dLTXi6LO1+T2bHsPnN2ecR5nKjpPWJ+m0tZYrV/NFWDJgS6vMayGf1dIqI9n5XIeFb8cqDcZfR/CYv2fOHxeqwEO6bCqZ3+Mya3h6fbt4fB2Tmm/Aknn5W9jLmrS/6Ek8+yGYu3tuee9nwWl08CCIIXNQAUsIh0jXaXw7p1UMrMZln+4p+diR5y1tjvypcPpeQVpi5yaL+hMqFqkESlXtbOmiLTFm+xZ1LOPt4mS6fNFbkxn5fUac9nJTJOvLNtxphdpGgb6s1XbLTXzuT2MLX9MfWjHyhqr9ryWS0Zy1XWJe35rERG3bUdABCYOzgGAHmTm1IUM/vWzDGDy8tN72GPmFU+v/mrmfZyWQr5YjveMNVn9Yg/lvQdY174sMHULplgBlX9MdA3izazjxvk1XDt+azkjM//fU9WMwZ9tV57vjDYv90Lr+tlLnu1M2jGzo6p7f7f+HuA9nxWVjKe3bNdxsFZrEtB5DqfZR+72Gt7LmnPZ/FOMQBBxCuIU+wAIG+czoztVbu/ZUnTennmuqHy027Xyn//5LvyuWiwV3JzkjGLSiPfftn5xlT55mlj5HWJSt9rfyQXbC6Trz14h5yZhQ84thmdjn/8pz/a81m5zVhWVhbP6J/2fLnn9Vjxul7Gslg7g2dMtIdzTh8jr5ncHFOa81nZytjumHrAyfhpPdswV/ksm7H4a3vuaM9nFUJtB6CY8x8ZAORVdktRo9m14U/myQl3mhl/WG8asvhKs2Ylky+21SypGhh/PJEjzdkPvW2y9IaM+GM6nWr3N5+057OSM875S9YyOidN7lQA2vPlmP27vfC6nnfZr51ZyRhvD2fmpD1oz2dlL2PbYyr4J3UlaM9n2cctidqeI9rzWYVQ2wHoxQfsACgK+9e/KPdVjZbhV1wp19w0Rm6//cdyfeWlMnLKb+TNbR+7a6HgRQ6X/qPvlKpTK5xftshLs5+WV+v2J5ZpoD2flZxxlvJtqC1fkVFfO+PtoUp5e1Wcz0p1TNUqP+Y15bOSM2qs7QAAXxgUA1AUuhz7Dbnhrmny8Ny5MveXf5B36v4ivx/7z7Lglm/LF864Vh54c7t9eRfFoEs3KT8smphedp/cOG2p1GnaudrzWW0y3qt8GyrMV0QKonamaA+1mq6U0p7PSsp40/RXVB/z6vJZbTIqre0AgIwxKAagCEWk62F95Zwx98nc0aeLrH1Irv7eOPnluj3uchQsUyvLH5gt665+VBbccJqzp+tk2V0TZeafanUMemrPZ7XJ6BwfqrehwnxFTWHtTDqmWtqDkhc6tOezUmacpPSYV5jPSsqosrYDAPxxL6MEgLzJXSmKmY9XzDDOqZ3zHFHTe+QCs9nnx2JoL5elka/J7Fg2zQweOd9saIyZ2IfPmxtOLI8/dvSs+8yyHcG/YTTY56Zoz2elyNg3mrWMwT/XRXu+3LN/qxde1/MnO7UzeMZEe/h2yvZwb1aOqWBym8/KVsZcHVPa81n2sYq/tueO9nwWnykGIIhc9qgAwBPb4cqZva+b8cfEX8g1Er3OPLvVX+c1pxmzoBTyxb8Wf/CNZv6GBndOg9kwf7Tpbfet9DBnVb9hdgTot9uMQTr+2vNZqTOOapPxowBPEfTERHu+MHg9VnJ+zGehdgbNeKA9vL/HndO+PQQ9poLIdT4rKxm/3f6Y6hNRtA1zmM+yGYu9tueS9nwWg2IAgshxjwoA0vPXqW40uzauNstXb07zLWkbzfyhveLPITLAVNfscudnxl/G8BR9vth2s6x6uBk5f52z51tpXGfmj+iX2L/RIWbmKn/717KP4bvjrz2f5THjz1budBdkLtCJifZ8IbF/pxde12svvNrpP6OjVXvY586Kc9tDxG0PQY8p30LIZ2UrY7tjauQpiX2rZBvmKp9lH6eoa3uOac9nMSgGIIgA/5MBQHbYDldmYmb3ihnmrKjTGbWv0k5fbna7S9prfWL3TTN9Rb07PzOZZwxXceez+/v+A5cotRUzjRueMsMq7P4VE62cbVbu8dd5t/f31/HXns9KZGy+/Ket5IyzzKrOR0s65P/ERHu+8Ni/0Quv67UVbu30l9FK3x6Gd4/EH98eU37bg/Z8VjYyvr8vdcbWdSmf2zCX+Sz7GMVb23NPez6LQTEAQfBB+wAK0H7Z8d7bsrDeTtfJ1n0x6RKfn4L5WHbv2JeYrjhJTujRLTGNwrF3pcy7Z4NcNuYc6dk14s5sFpGuPc+XO6YPF/tF+fULJsntj7wlexMLw6E9n2UzTt4gl48910PGu+W2R1aGvw015ysaBVI73WOqs/Zw+7SWYyov7VVzPqtVxqMPSl+XbMaGxMJwaM9nuRlV13YAQHDu4BgA5E3mpShmdtdMMadFTzXfu2OueX3zXnd+e7EPnzUj3FdyK0Y8az70+WKn9nJZvPl2mVUzR7S/RCnZvjVm3sW9488jFcPNvHc7fv9LR+x9M381XHs+qyVjm8t/krkZnVM/3xn9vVqvPV+4vB4rXtdrK9za6S9jZu3BPkeQYypz4eWzwsw4d21Y7wYML59l71+ctT0c2vNZvFMMQBB+/icDgKyyHa6MxT4wL9w6xsxZ9ZFzmteBWJ1ZMeNCE7Wd1d4jzZPv+TspsXxlDFFx5ouZhlWzzeDhT6W4dCVZzDk3mWMGxS8Lc07iL/6FebfdJTmds/fLrOOvPZ/VkrH9JUrJEhkHlycu+/KTMfMTE+35wmf/Ni+8rtdOiLUz84zBjqm1H2fWHrTns8LN+KivupSZcPNZ9r7FV9vDoz2fxaAYgCB89qgAIHtsh8uPWMN68+LEkWbE5MfNopo1ZvOu5tec95uGbavNounDE99g1ftSU/0/f+v8Fek0/GYMS/Hli5nGzS+ZqoEnm6HzN7rz0rGv7A8x5fFvLetrhj35bkb7PLOOv/Z8VtuM3u5pM16UGAzxkTGzExPt+fLD67ES5JgPq3ZmltFtD2d+IeNj6kB7eGJtxseUd+Hns3xl9FGX/B5T2vNZNmNx1fZwac9nMSgGIAj/PSoAyJLMOtXJ9pm6914z82f+lxk1ZIDpFe84J27RfoPNqOr5pmbzbqebG0ywjLlXNPliDaZu01/Ma09Xm2GnHhm/X8WQ+81rafehcyKza615vuocU+7cx95PKi421QtXm20N+911Omfvk7bjrz2f1UHGVz/wmvFc9wQ084yeTky058sz+3d54XW9juW+dnrKmIVjym970J7P0p5Rez7L3q8oanueaM9nMSgGIIigPSoACMx2uLIqttfsqs/0teTOZT1jlhVFvs3zzVBnPbtu+9sAM3nZTnfF9hprqtuc1Le/DTDVNZ1/Zb5dr9OOv/Z8VpqMnT1HNjKmPTHRnk8B+7d44XW9jGS5dqbNmOf2YNfrVJ7zWXbdTuU4Y2d1zbLrdSrP+Sy7bsHX9jzSns9iUAxAEPEK4hQ7AMgbpzNje9Xubzppz0i+4GxGp+Mf/6mR9nxWWVlZPKNW2vNZXo8Vr+vlk/aMbMPgCmUbUtv9057PKoTaDkCvMvcnAAAAAAAAUDIYFAMAAAAAAEDJYVAMAAAAAAAAJYdBMQAAAAAAAJQcBsUAAAAAAABQchgUAwAAAAAAQMlhUAwAAAAAAAAlJ2Ic7jQA5EUkEnGnAABeumbUTQBowSktAL8YFAOQd/bkTnsp0p6RfMHZjLFYLP5TI+35rLKysnhGrbTns7weK17XyyftGdmGwRXKNqS2+6c9n1UItR2AXlw+CQAAAAAAgJLDoBgAAAAAAABKDoNiAAAAAAAAKDkMigEAAAAAAKDkMCgGAAAAAACAksOgGAAAAAAAAEoOg2IACp7Z+4Es/81PZewPB8kp5RGJlJ8i519xg0z4+e9l+ZY9ovvL4lE46mX5lIHxr6Xv8Hb8FFne5K5+QJNseWZE6vXtzblPTaO7amCJjGWpnqf55itjdYr7+KE9X2nJf+30dky1Pz5sexiZen17S9mG/NCez/KSMdXxkb4uhbcN85nP8raf/WTMXm0HAOSMAYA881+KYqZx8yIz4eKrzIT5fzLrahucOc68XRvNimerzZDeUSPRs8zoJ1eaXTH3Lj5pL5fkC85mjMW8NJT9pmHbSrNg3Dkm6tzH3k+ig834hWvNrsYO7h9rMFtr5phhtk1K1PSqHGfmLV5h1sfbrDfe81mpM05Y9G76jH3KfWd0TgTdqXS058sfuy288LpeauHUTu8ZW9pDeabtodUxNdfHMeVNfvJZmWc8N/NjKmBd8iY/+Sz7XMVT28OnPZ9VCLUdgF5BelQAkBW2w+VHbFeNmXHJbebZD/a6c1prMrtWPWKGx0+gv2iGP/lXs89d4offjGEhX3AZd/wb3jQzK4+J30+il5iH3ql3F3Rku1ky7nTT5+rHzJpdTe487zLOZyVlnLNmt7ugI07GqjNMb58ZMz4x0Z4vD+y28MLreqmEVTszzmjbw6BjM2sPzjHltz1oz2f5ypjpMeVmfGdnSNswxHyWfa6iq+0h0p7PYlAMQBD+e1QAkCW2w5W53WbNnFFm7OIPO3k11q5zaeIV34rhZt676TrfHfOXMTzkCy7zjn/MNKyabSqjTvty7lsx7EmzoaN3Ezhi2xeZMWePN0u2h3RiF5ec8an0Gb/hZKz1lzHzExPt+cJnt4MXXtdrL7zamXlGH+3BHlM+24P2fFY2Mr6/T/c2zGU+yz5P8dX28GjPZzEoBiAIPlMMQGHa86b86pleclH/wyXizmrvEOl9/kVyWYUzWfcbmfW7v8q+xAIgCyLS7aRLZGL1EIk6v9U9Ui2TFrwvKT/mxmyTpdMfk4Pv+KGc0b2LOzMMLRnLnQOl7pHJ6TPefpX0rwgro/Z8RUh17Uw+phLtIeXHMrU6pvLRXnXms9pnvHvB+rR1KZ/bUFc+KzmjxtoOAMgWBsUAFKTY3/4iS353vfQ/fahMeeXv8ZdzU4l85ng59dQjnak6ee0PK+WDjlYEfInKScNuk+rKY5zTqOUya+x0WbBxr7us2X6pW/qgTJUrZHT/w/PwH28i4+TKY53p9BlHnXGE87eESXu+4qK/drYcUwfaw4aGxKID2h5T+WivevNZSRlvnZG2LuV1G6rLZ7Vk1FvbAQDZQP0GUJBiu2rlPedn/fJfyI8fq5F/JGa3V/ZJOeyfD0lMr/pQavcnJoGs6XaSXDJulJxl3+q0do6MnfR72djUMoJg6pbKtKkiN47uLxXhn9kl2Ix3XC9n2bc9pMnYPR89A+35ikhB1M7mY8ptD7fenaI93JvHY0p7Pispo7q6pD2f1ZxRc20HAARG1xJAQep6wn/IiIE9nKkvyoVn/6t8OjG7PbNfGj92z+aOjMon6Lgi67rIof2GyoSqQRKVelk7a4pMW7wl8Q4ce2nNtLnOWVO+L/lLZJx4Z9uMMbtIRUbt+YpHYdTO5PYwtf0x9aMfKGqv2vJZLRnLVdYl7fmsREbdtR0AEJj72WIAkDe+S1HjLvOPujRfe16/xIzrEe/DmiNvWWx2uLMzpb1cki84mzHIhwnHdrxhqs/qEX8c6TvGvPBhg6ldMsEMqvqjqc3CZxQHzWclZ3z+73uymjHohx1rzxcG+7d74XW9lEKqnYEyOjo7prbvd1cKQHs+KysZz+7ZLuPgLNalIHKdz7KPXey1PZe057P4oH0AQcQriFPsACBvnM6M7VW7v2WTkT1v3C1fOu02WSX9ZdyS38hd/9Hh+yI6lbuM2UG+4GxGp+Mf/+nPftn5xlT55mlj5HWJSt9rfyQXbC6Trz14h5yZhQ9gDp7Pym3GsrKyeEb/tOfLPa/Hitf1/MlO7QyeMdEezjl9jLxmcnNMac5nZStju2PqASfjp/Vsw1zls2zG4q/tuaM9n1UItR2AXlw+CaB4mQ/llaeedk7qotJ7xA3yg9O6uwuAXOgih35puNxTNdCZrpd37n9Qas69UAZk6eQ4O1JkPG+Iooza85UINbUz0R7uHnemM623verNZ6U+pr6apQGn4LTns1JkVFfbAQB+MSgGoEgZ2fPWr+TeOf8n0nek3DvuPOnZVe+rnCgSkcOl/+g7perUCueXLfLS7Kfl1Tpl3+6QnHGWsoza8xU9ZbUz3h6qlLdXxfmsVMeUpm+d0Z7PSs6osbYDAHxhUAxAUTL1f5Y5VffKwn/+gcx5+nY576iD3SVAjnXpJuWH2a9Ucyy7T26ctlTqcnWVm19tMt6rL6P2fEVMZe1M0R5qNV0ppT2flZTxpumvqD7m1eWz2mRUWtsBABljUAxA8WnaJC+Nv0mu/8tZ8uAzk2X4SZ8S3iOGUJhaWf7AbFl39aOy4IbTnHZXJ8vumigz/1Qras6d2mQ83ZmhLKP2fMVMY+1MOqZa2sN2he1VYT4rZcZJSo95hfmspIwqazsAwB8DAHmW1VIU+8ismnOV6d37KjNn1Uedf7taBrSXS/IFZzPGAn3DVpPZsWyaGTxyvtnQGDOxD583N5xYHn/c6Fn3mWU7mtz1/Amez0qRsW80axkjgb8BTHu+3LN/qxde1/MsB7UzeMZEe/h2yvZwb1aOqWBym8/KVsZcHVPa81n2sYq/tueO9nxWIdR2AHpluUcFAJmzHa7s2Gs2L/qJGdg3uwNiVvYy5gb5ggva8Y9/bf/gG838DQ3unAazYf5o09t5XJEe5qzqN8yOAI0yaD4rdcZRbTJ+FOApgp6YaM8XBq/HSnaPqdzUzqAZD7SH9/e4c9q3h6DHVBC5zmdlJeO32x9TfSKKtmEO81k2Y7HX9lzSns9iUAxAENnsUQGAL0E71QlNZteK/zaVORgQs7KTMXfIF1ygjn9su1lWPdyMnL/ONLqz4hrXmfkj+sUfW6JDzMxVu9wFmQuUz/KY8Wcrd7oLMhfoxER7vpDYv9MLr+ull7vaGShjq/awz50V57aHiNsegh5TvoWQz8pWxnbH1MhT4o+tZRvmKp9lH6eoa3uOac9nMSgGIIhs9agAwDfb4QomZhrW/MIMP/3qTk7q/mFqnvtfs81nvy54xtwiX3D+O/4xs3vF/QcuoWorZho3PGWGVTgnTs7jRytnm5V7/DVC//msRMbmy3/aSs44y6xq8Pc8/k9MtOcLj/0bvfC6XudyWzv9Z0zfHoZ3j7jtYbbv9qA9n5WNjO/vS52xdV3K5zbMZT7LPkbx1vbc057PYlAMQBB80D6AAmekacsimXTL69J/9t0dfzD0x2vlpf+plTI+cR/ZtnelzLtng1w25hzp2TW5gUWka8/z5Y7pw8V+kX/9gkly+yNvyd7EwvDYjJM3yOVjz/WQ8W657ZGV4WbUnq8oKa6d7jHVWXu4fVrLMZWX9qo5n9Uq49EHpTumEhkbEgvDoT2f5WZUXdsBAIExKAagoJn6t+Tn1Svk9Bn3yPB/PczppqYW2/C2rPzsP8un3N+B7KiX1Y/MlLe+O1K+dfQn3HnJDpFeF42V6Rf3dqbflwW3T5dfvbcnsSgUbsbvjJTKnt3ceclaMkZsxtumhZhRe77ipLd2thxTnbeHMS3HVD7aq9p8lteMreqSzfju7sSinNOez2rJqLe2AwCyIf5eU3caAPIiEonY6y/c3zLQtF6eue4a+W2vS2XQcR11Wq298reX5srysx+SuRf0cOdlxnfGkJAvOJsxFovFf3pjZO/qB+XiqYfJ9Ae+l+KdBK0Zafzrw/K9flfKb+tFKi7+hSybe4n0avcOiY5lns9qyTht9vdSvCOjtUTGC0/5gfxml/GVsaysLJ7RO+35wuf1WPG6Xkoh1c7MMwY7pv73kUvk+H/y3h6057PCzfioc0xdmnFd0pzPshmLr7aHR3s+qxBqOwDFnP/IACCvfJWixk1mUdU5Jmp7pJ5uA0x1TZ4+TDgE5AvOZnQ61e5v6cRM4+aXTNXAk83Q+RvdeensMqtmDjHlzjmkSF8z7Ml3235wcxqZ5bPaZvR2T5vxIve4yjyjc9LkTnmhPV9+eD1WfB9TIdZOe3/v3PZw5hcyPqYOtIcn1mZ8THkXfj7LV0YfdcnvMaU9n2UzFldtD5f2fFYh1HYAenH5JICCtH/1M3LzXc9Lvft7eifIcUd1dJkG4JHZKx/97R15ff5UuWrQFXLXy2/Ks79cIK9v2WPPhjphpKn+77Jpy0476XhHHhk5TqYtelv+sTfLr253lHFzBhnjcpRRe74ip652JreHP6zI/JiKc9rDf1blvr1qy2dloy7FhXzMa8lnZSNjfEXqEgAUHHdwDADyphBKkfaM5AvOZuz01fDN881QZx27XvvbADN52U53xfYaa6pNr5T3a76lfzeOXS/tq/VpMnb2HNnImPbVeu35FLB/ixde18untBnz3B7sep3Kcz7LrtupHGfsrK5Zdr1O5TmfZdct+NqeR9rzWbxTDEAQ8QriFDsAyBunM2N71e5vOmnPSL7gbEan4x//qZH2fJb2z3XhM8XCpT0j2zC4QtmG1Hb/tOez+EwxAEFw+SQAAAAAAABKDoNiAAAAAAAAKDkMigEAAAAAAKDkMCgGAAAAAACAksOgGAAAAAAAAEoOg2IAAAAAAAAoOQyKAQAAAAAAoOREjMOdBoC8iEQi7hQAwEvXjLoJAC04pQXgF4NiAPLOntxpL0XaM5IvOJsxFovFf2qkPZ9VVlYWz6iV9nyW12PF63r5pD0j2zC4QtmG1Hb/tOezCqG2A9CLyycBAAAAAABQchgUAwAAAAAAQMlhUAwAAAAAAAAlh0ExAAAAAAAAlBwGxQAAAAAAAFByGBQDAAAAAABAyWFQDAAAAAAAACWHQTEAxcXslo0v/kTOHvmcbHNnAaWjXpZPGShlkYhEOrodP0WWN7mrH9AkW54ZkXp9ezu+OsV9/NCer4TlpXYm2kPKfdp8c9pDTaO7+gG2PYxMvb69pWxDfmjPZ3nJmOr4SHdMhbkN85nP8raf/WRs3zYAAOoYAMizoKUo1lBnNq9bZd54Ya75ydDTTdR5PBk632x2l2eD9nJJvuBsxlgs5v6mT2b59puGbSvNgnHnJI4He4sONhMWvWt2NXbwGLEGs7VmjhnWp9xZP2p6VY4z8xavMOtrG4zXZ3VOBN2pdLTnyx+vx4rX9TqT69rpPWNLeyi3GezNa3voHT3QHuZm2B6057Myz3hu5sdUq4yZHlPa81n2ubzVztR1afzCtTnfhsXzf09+FEJtB6BX8B4VAARkO1z+bDTzh/Yy0X7nmaGj/sv87MlFZvHMSxMdWQbFVNGez7IZi+7EpOFNM7PymPh9JXqJmbNmt7ugI9vNkqozTO+rHzNrdjW587zL+MREe7488HqseF0vtXBqZ8YZbXsYdGxm7WHc6b7bg/Z8lq+MmR5TbsZ3doa0DUPMZ9nnyqh2JmV86J16d0FHEhn7BGiHDIoFw6AYgCCC9KgAICtshys7Gs3m+VcnOrIMiqmiPZ9lMxbfiUnMNKyabSqjzjHh3L9i2FNmQ0fveHDEti8yY74x3iyp9XfymfmJifZ84fN6rHhdz5vc1M7MM/poD2f7bw/a81nZyPj+Pt3bMJf5LPs8mdXO5IxPetvP2/1vQwbFgmFQDEAQfKYYAABFKyLdTrpEJlYPkfKISN0jk2XSgvcl5UfxmG2ydPpjcvDtV0n/ii7uzFzTng/hamkPUee35vaQ8mOZmtvDHT/MS3vVmc9qn/HuBes7P6byvA115bOSM1anr0tOxjO6U5cAoBAxKAYAQFGLyknDbpPJlcc608tl1tjpsmDj3sSiA/ZL3dIHZapcIaPOOMI5JQyT9nwIV6I9VFce40y77WFDQ2LRAS3tYXT/w/PSXvXms5Iy3jqj02Mq79tQXT6rJWPEQ12yGTmpAoDCRP0GAKDYdTtJLrnjejnLvu1h7RwZO+n3srHJXhWTYOqWyrSpIjeO7i/d89Ez0J4P4bLtYdyoA+3h1rtTtId7E+2hIh8jpNrzWUkZOzumNGxDdfms5oz2baxaMwIAAqNrCQBA0esih/YbKhPvHCRRqZe1s6bItMVbJGYX2ct/ps11zuzyeVmi9nwIV3J7mBpvD/HhiOb28KMfKGqv2vJZLRnLWx1TbTIqOeZ15rMSGSdUta1LujICAIJiUAwAgFIQ6S79fnir3HlWD+eX1+W+0TPkpQ8b8nyJUiva8yFcqdrD1r0H2kPeL6PVns9yM1ad3dP5pW3GexUd82rzWfGMYzvcz9QlACh8DIoBAFAiIoeeIj+861o5zf7yzn/LDePvlinTGuX6UTou/9GeD+Fqbg+n233vtIfRP5l0oD1ouIxWez4rnvHH1xw4ppozXne9omNecT4ruS613s/UJQAofAyKAQBQMrrIoV8aLvdUDXSm6+Wd+x+UmvOGyAA135qmPR/ClWgPd48705nW21715rNSH1Nf/bTuY15PPitFxnMvpC4BQJFgUAwAgFISOVz6j75Tqk6tcH7ZIi/NelperdufWKaB9nwIV7w9VClvr4rzWamOqVrlx7ymfFZyxtnUJQAoFgyKAQBQarp0k/LD7Ne+OZbdKzdOWyp18U+PVkJ7PoQrRXuojX8LgxLa81lJGW+a/orqY15dPqtNxvuoSwBQJBgUAwCglJhaWf7AbFl39aOy4IbTnRl1suyuiTLzT7WJb1XLN+35EK427cF+qlNze9iusL0qzGelzDhJ6TGvMJ+VlDFCXQKAosGgGAAAJWO/7Fz+qExYd76MHfQVOX/sOLmhr33nw0syqWqeLN+Z78uBtOdDuBLtYeKB9lB1oD3cfaee9qo3n5V8TLVk1HnMa8tntc84+sRyZz51CQCKAYNiAACUCLOzRh6YsEkuH3uu9OwakcgRA2T0hCult7OsfuG9ctsDNbIjj2970J4P4WpuD5eNOSdFe7gv3h52KmivWvNZ8YwT2x9TfSItx1Tet6HifFbKujS+bV3Kd0YAgH8MigEAUAqaL/+5/Bqp7NnNndlNelaOkrtH9HOmN8nCH98nj6/elVgUNu35EK5W7eFbR3/CndnSHiLN7eHtendZyLTns5ozXtb+mJo04hRnWsk21JrP6rAuXd+2LuUzIwAgEAbFAAAoekb2vPVE4vKfymOkqzs3rusxUnnrLTLMfqla/VNyy+2Py+q9Yb/tQXs+hKttezjInRvX3B6627cSPSU335b/9qovn9WSccy3UhxTY28+cEzlexvqzGclMsYvj01Tl2zGVQ3UJQAoRAyKAQBQ7PaulHmTNxy4/KetiHTteb7cMX24xM/vFtwttz2yUvYmFoZDez6Ey7aHezpvD7dPa24Pk/LTXjXns1plPPqgdMdUImNDYmE4tOez3IzNl8e21T7j7Y+8RV0CgALEoBgAAEWtXlY/MlPe+s7IVpf/JDtEel00VqZf3Ns51XtfFtw2TX713h53Wa5pz4dwue3hu+naw5h4e5B8tVe1+SyvGRPH1IGM7+5OLMo57fmslowtl8cmS8p4+3TqEgAUIAbFAAAoWkb2rn5c7vjfge0vUUp2UG+56L/GyqDyiEjdwzJq3K/lvcZcXw6kPR/C1dIe2l2ulqy5PdgvKnTbw7v7wmuvOvNZ/jOOrgr3mNeZz2qbsc3lsclS7GfqEgAUFgbFABSJJqnfslqWLHkr8ev/LpUlq7ZIfROdU5QqI01bFsmk634mh55/mvRsd4lSsogc1OdCGT95iMTP754YL+OfWeccWbmiPV+p0FI73fZw/cxEe2h3uVqyRHuYUN3SHiY8817u26vafFbSMZVxxgnhHvPq8ln+M8bH66lLAFBwGBQDUMDqZfmUgRKJRJzbQVJ+1BfkoumvJxa9c59c9PmjpPygssTy46fIcnqpKAVmr3z0t3fk9flT5apBV8hdL78pz/5ygby+eY9zutcZ52Sw/u+yactO9/d35JGR42TaorflH3tj7rws0J6vJCiqncnt4Q8rEu1hi4/28J9VuW+v2vJZHR1TfjKGecxryWdlI2N8ReoSABQcAwB5VgilSHtG8gVnM8ZiMfc3fTzl2zzfDHXWs+u2vw0w1TW73BXba6ypNr1S3q/51vn9rUgk4k51QHs+Bezf4oXX9fIpbcY8twe7XqfynM+y63YqxxknL9vprp2aXa9Tec5n2XU7rZ1pMnb2HNlqhwX/f0+eFUJtB6BXvII4xQ4A8sa+G0F7KdKekXzB2YxOxz/+UyPt+ayysrJ4Rq2057O8Hite18sn7RnZhsEVyjaktvunPZ9VCLUdgF5cPgkAAAAAAICSw6AYAAAAAAAASg6DYgAAAAAAACg5DIoBAAAAAACg5DAoBgAAAAAAgJLDoBgAAAAAAABKDoNiAAAAAAAAKDkR43CnASAvIpGIOwUA8NI1o24CQAtOaQH4xaAYgLyzJ3faS5H2jOQLzmaMxWLxnxppz2eVlZXFM2qlPZ/l9Vjxul4+ac/INgyuULYhtd0/7fmsQqjtAPTi8kkAAAAAAACUHAbFAAAAAAAAUHIYFAMAAAAAAEDJYVAMAAAAAAAAJYdBMQAAAAAAAJQcBsUAAAAAAABQchgUA4Cwmd2y8cWfyNkjn5OtSr7J3uz9QJb/5qcy9oeD5JTyiETKT5Hzr7hBJvz897J8yx7REDOe8Xc/lwmjr5QrrrhCrrh8kAw88woZM+VReemtLbJXybZsx2yS5/7zMpnx5m53Rj7sljdnfE/OHDFBfv7cUlm9frP8o74pvsTs/Ui2rF8tf1r8lMy4YbB8dcYK2R9fkkdN2+Ttl+Y5+/oSGXh8uUQifWTgFbfKT3+zQrY1ad3RyKlWdXObO0sD7bWzYOumlffaaevmd+Vrnurmm5JYkkfUTQDwxwBAnhVCKQqaMdZQZzavW2XeeGGu+cnQ003UeTwZOt98EHNXCMh/vphp3LzITLj4KjNh/p/MutoGZ44zb9dGs+LZajOkT9RI9Cwz+smVZleArMG2XyLjxBG3mYcWrzbbGva78+123WCWzBhuektfUzlhkdnc6D+kzRiLZWmHHNBoPnxhjOkrA0x1zS53nj/B8u0yNdUD44/R2S068Cdm4Qd73ftkLhKJuFN+NZlda35tqir7muip3zf3PLHQ1KzZYLbUOe2y4UOzetHPzJhJL5utPjdD8Hy5Z/eDF17Xy6egGTuqm5vd5UEFy6e9doZXN3NDQ+20dXOAidh218nN1s1Fm/3XTfsYwf7vaVs3J2e5bgbPl3uFUNsB6MU7xQAgpzbJM1ccL4f2v0zGTn9a/vzRv8jppx0r9e7SfDP1f5aZN/1B/m3KT+W2C/4/Obaim0Scf12jPeTk82+Qh565X4Yd+bpMu2ioXP/LtdLo3i9Ue/5PZk7ZJN+afJdceebn5DPdWv7rinTrKf8xcqyMG9IoC24fLpdOflVqbRdeCbN1kdw9+r/lHfd3vXrIgNHz5I9P3SxfP+pgd17Y9kv96l/Ided/X57ofrMsfXGW3HLR16Vfn57yz4c57fLgqFQcViHy0kPy7Nq97n1QnHTXTUt97Wyum9Xe6madorppFUbtbKmbXztST928uaO6+dcG9z4AgNYYFAOAnOohF8x9V3bVPCdzp90pI4d8VU48Iuouy7c9svaXj8rmK0fJeSkHQrpI9KTvya1jKyUq/ycPj5wkT763x10Wlv1S+8rjcue9E+X6Wx6WmroUF/Z1PVr6n/dlZ2KTvDzpYXlp48eJ+flmNstL0x+Xv36m3J2Rb5+V8S8sk8VzJ8p1lf2cfXqk9DvvB3JL9cPyXM3r8vy9l0u/w/N1YmekaeNv5eZvXytPH1Mlj0+/Qk6uOMhdlrD/L/PkwlMulnte/kBqd+X9QiXklOa6aWmvna3q5s0Py7JaD3Vz077EfA1U1c7Pyk+U181bLrjOU93cTt0EgJQYFAOAUrXnTfnVM73kov6HS8Sd1d4h0vv8i+WyCmey7jcy63d/lXCHnBpk/crlUidr5eVZU+WhVz9057fWRbp90j1hrl8nm7ZpOLlrkq0vzZMlXxkpw487xJ2Xb2Vy8Gf6yplDb5UZv62RXc6JZ81zD8o9Nw2T8/r9i3TruBHknvmbvHDPJJm19t/kmrGXSL9Du7gLWpQdfqKcW/lF6TfkAul/3CfcuUAeqK+dbevmnFf/7s5vTWPdtLTVTls3T9BbN++eKLP++nmPdVPL/0UAoAuDYgBQomJ/+4ss+d310v/0oTLllb/HPxwllchnjpdTTz3SmaqT1/6wUj6IJeaH4xA5YeAFUtkrKtFTB8vgfoe783UztUvkZwv/Va4967OdnDQjwcieP/9SJs2sETn9Irm4g4GGyOFflVt/+2epefI6+XJF+5M/ICz6a2fbujmoQOqmRe30KlE3J85cLub0IZ7q5mndqZsAkAqDYgBQomK7auU952f98l/Ijx+rkW0dndmVfVIO+2f3FeZVH0qqK3Fyp0yi/a6V+Ss2yKYlE+SbR7a9NCRhn9Rtdd8JceRp8u+98/xquNkmS2e/If92/dflSP6X9WC7vPHLJ+R1E5WTv32a9P0nToWhm/7a2bZunnPUP7nzW1NWNy1qZwbcuilO3RxM3QSAIPgvBwBKVNcT/kNGDOzhTH1RLjz7X+XTHfWpzX5p/Ng9mzsyKp8Ive9tP7y6uxzW6oOi2zCbZfkLf3YmeshZY78rX/5UPl8N3y91Sx+X359wsVT27ObOQ6d2viUvPrpcjPSSAZ/vIfn6dB7Aq8KonRnWzUPzfUpA7cyIWzeFugkAgTEoBgClKvoluemlt+Ufda/JQxccIx0OJe3ZJKtfez8+eeTpfeSzqq7AMNK4donMX1wnvYf9RO77/snySXdJPpi6V2XW74+WkZXHSFd3Hjq3f/0qWbjFTlXIZz9j956Rpo/ekzeemyszpkyRGT//lbz4xnvyUZOyr8dD6Sr42tm+bub7fWLUzsy0rpv/Qt0EgEAYFAOAUtY1Kp+2X9vu/tqekT0rl8qvN9np/vKD80+WQ0N/p1gnmt6XZ+97WHb84CH5zU8vk5OieTzrtJf+zFoqJ4z8pvTsqmkjtRaTvVuWO9vqbplQPUWmOCdPU6onysSfPi1vbNrt7O2wNcnW996W/4tPnyDHHXWQ1K/+lVQ/+hf5xMnflv+86Ufyw2/3k0+tnS2Xffcu+c1fd+QhI5BCIddOWzenPaKjblrqayd1EwCKGYNiAICOmQ/llad+JaskKr1H3CA/OK17JyeBYWqS+o3/K09NnisfXPioPH/vEPlcXk/s9svOP/1Knld96c9u+etvZ8ik39bJ5y6/UW6/+Sa56SbndvPNMvIrO2X22UPkvxb/TRrdtcPR6nONHOaDF+S+Pxwj11x7vpzc41Dp6nRTulUcJ1++vEqmVq6T759/s/x81Uec4EE/lbWzVd383jwFddPSXjtt3fxp2rrZ5K4djuS6+WLauvnwagbGAKAjDIoBADpgZM9bv5KpD/2fSN+Rcu+48/L+Kv7+9U7nv2q0DL/iSrnmpjFy++0/lusrL5WRU38jb2772F0rfGbncpn74mdlhOpLf8qkyxculXEjvi59Dmv9hQUHScXJV8jU//6i/HLwtTJ92fYQT55i0lC/w51eJwt+vk7OuLRfinfUROWEi0bIjQc/IaN/NE/e2sPpHTTTVTu11k1Lf+20dfOStHVzWk1t3urmsw+nr5ujbpgnb+6mbgJAKgyKAQBSMvV/ljl33icLj7xK5jx9u5x3VP4/yrfLsd+QG+6aJg/PnStzf/kHeafuL/L7sf8sv7352/KFM66VB94Mc0DHZWpl+ZwXpftlX1d82WRU/n30Y3L/Bcd2cOLZRbp/+Vy57JjFcvOoh+XPeRl0el3+/C9fli937+CdK4ecIF/59udl98IZcs+z74e/nwGPtNVOlXXTUl87bd183Kmbx6Wvm9c/LMvzMujk1M2jvpS2btYvnC6Tn11P3QSAFBgUAwC017RJXhp/k4x6++sy59fVMvykTym5bLK1iHQ9rK+cM+Y+mTf6NJG1D8nV3xsnT723210ehv2yc/lT8uQRQ+R7vfL9UdWdi3Tt2vEHgluHHCenfK2XRF7/hTz6ylZ3Zq51lfLuh7vTveRrpxzXyQd+f1I+2/s45w95T574+cuyNubOBjRRXztT181frtvjLg9LYdROr3VTXn9UfvHKh+7MXPNRN8Wpmw9TNwEgFQbFAABtmR2yet5P5LpnestDz0xWOiDWStcecvawi+V0O732Uamauli2hPRyuNlZI3OerJCRF/aWf3LnFa5Pymc+W+H8fFN++YfVsjMxM8eck7vDurvTzd8+2ZEu0u2T0cTksrdl/Uf7E9OAFoVUO5Pq5rgpi2VziAMmxVM7W9XNl/NTNxPfPtmR1nXzL9RNAEiBQTEAQCsfy5Y//FSuqxYZa9/l8K+H6R4Qi4vIP/U9Vc49xk7XO+d3i2T5P8Lo+NfL20++LEeMrJReB+nfSpnYsuYD2R7KwGIX6X5UT4nvukzU1cvuj7kQCJoUWu1MrpsLnboZ1sfFF2ftpG4CQGFiUAwA4Nov9W/OkRHXbpTLntZy2U+T1G96W/789hbZ21lf/uB/kRO/0isxXb9S3tnYkJjOpaY18vzkW+Wy4z8pkUikg1tP+c6895yV/yg3n1LeMv+KZ2RL4lFyztS9LlMGfV6OP/9OeW69x0ukVn0otaG8ocA5MT+6rwxw38jg3Qb529b8fkA40EJb7VRcN60CqJ2t6+az6zxekk/dBICCxKAYAMBhZO9fn5TrRr4lgzo8qdsuy3+3TP4R2gvNRva8OVMu+NxJ0u+kL0nljOXibUinm/xTGB/a3LWf3PSuEWM6uTXWSHX8nHOAVNfsapk/9wI5Mv4gubd/3asya8Eqee938+QX/7u1kw9a3is7tu1KTJ7SQ47o9IN0sify/z4n/3H6kU57q5O//cPjyWe0txx3VDf3FyCftNXOpLr50z+Lt6MqpLppFUDtbF03H1NcN8Wpmx9QNwEgEAbFAKDkGWnaskgmjXld/uPBezp+l8PHa+Wl/6kN8T+O/bLjvdWysN5O18nWfbGOP/DYfCy7d+xLTFecJCf0oOPfLNL1YDmyVy/pPXCIXHjqEan3rbX/7/LX19Y5E0fK2WefLP8S0vmxlB0rAy77mkQjG2X5+m3OXu/IPqnb+vf4VPRbZ8i/fSaks0+gQxprJ3UzG1rXze95rZtn5aFuSiZ183TqJgCkwKAYAJQ4U/+W/Lx6hZw+vZOTOkdsw9uy8rP/LIeG1el3TuU+dXRvOS16qnzvjv+WWZf9mxzsLklmtr0jry3ZFJ+uGPJV+WIFHf9mXXp/WQYPniJ/XHS3XHBcR99RZmTPihdl3tI6Mb0vkuvO6RViB+FgOfa8YfKffZtkxZLV8kFHb8kwH8rKJaucnwPlRyPPlB6htUMgNZ21M6luXvp56Wioq23dHODUza7xabSqm4vvlu/06uiD7Fvqpjh189o81M1r+jbKilc81E1x6uYI6iYApMKgGACUsqb18uubb5VXjzpKdte8KL9+5hl5JuXtcbn/3qfkoM927/hdB1kXkUP+/WK587oz5ZsXDZIvHdnBkJj5SN56ap78wjkvkd4j5Wc3nSlH0PFvccgXZei578qUR96S+g5OnEz9n2XOXffL69FzpOpnN8g3jzzIXRKOSPf+cv3kEfLZJ6bLfb/bKO0/7vtj2fLSz2XqE/tkwPgfy+j+h3f8zg0gDGprp7+6OfPmM+X/cVbQorluPvyW7PJSN2f+SL55VLjfoxmvm9UjpceTM9LWzYET7pJR/9HJO94AoJQZAMizQihF2cnYaHZtXmGeHHVa/PGk7w3mibc2m12NMXe5f77yNW4yi6rOMVGbxdNtgKmu2eXeOTP2/n7FGtabFyeONCMmP24W1awxm3c1ukv2m4Ztq82i6cNNb5uv96Wm+n/+5mxlf2zGWCz4vjgg1mC2LptlhlTYbdfbDJn5htnasN9dmLlA+WIfmTXz7zTDRj9gXlyx3tQ252jcYTYse9pMGHJy4O1nRSIRd8oHJ+OqedeZUyu+acY8+SezIb6fY6Zx1waz7MlbzcDoF83QGa+YDwIcL4HyhcTrsRLkmApLdjK2r5tPrsxj3bQKoHaGWTezTkvtDKlu+s5nxevm9Wnr5uYAx0ugfCEphNoOQK94BXGKHQDkjf1GKe2lyH/Gelk+5Vtyys1/dH/vRK9qqXnnJunn4woWP/n2vzlDTv3CKPk/9/f0rpb5m++XC47MPGDwfdwoH62rkT+89JIs+eMf5bmn/ij2e8msaL/BcuVFl8vll35T/v3IQ3y/Em4zOh3/+M9AtjwjVxz1HZnn/tpeLxk6/2WZe0EP93dvgueLyd5N/ysLfv1b+d2v58u8P661G0/Ou/hsOftr35RvfuM06XNYsHeIlZWVxTP65+znvy6VBb96RuY7GRcs3yW9Blwg3/32eXLuN78up/fpLkEu8AqeL/e8Hite18sn/xn11k2rcGpnOHUza+1QZe3Mfd0Mls/Kbd0Mni/3CqG2A9CLQTEAeWc7WtpLkfaMJZnPfCz1e7pI9JNBuvstbEbNHX/t+SztJyYMioVLe8aS3IY5qJuFsA2p7f5pz2cxKAYgCD49AABQmCIHZ+3EDgBKAnUTAIA2GBQDAAAAAABAyWFQDAAAAAAAACWHQTEAAAAAAACUHAbFAAAAAAAAUHIYFAMAAAAAAEDJYVAMAAAAAAAAJYdBMQAAAAAAAJSciHG40wCQF5FIxJ0CAHjpmlE3AaAFp7QA/GJQDAAAAAAAACWHyycBAAAAAABQchgUAwAAAAAAQMnh8kkAecdn4wBACy9dM+omALTglBaAXwyKAcg7e3KnvRRpz0i+4GzGWCwW/6mR9nxWWVlZPKNW2vNZXo8Vr+vlk/aMbMPgCmUbUtv9057PKoTaDkAvLp8EAAAAAABAyWFQDAAAAAAAACWHQTEAAAAAAACUHAbFAAAAAAAAUHIYFAMAAAAAAEDJYVAMAAAAAAAAJYdBMQAAAAAAAJQcBsUAAAAAAABQchgUAwAAAAAAQMlhUAwAAAAAAAAlh0ExAAAAAAAAlBwGxQAAAAAAAFByGBQDAAAAAABAyWFQDAAAAAAAACWHQTEAAAAAAACUHAbFAAAAAAAAUHIYFAMAAAAAAEDJYVAMAAAAAAAAJYdBMQAAAAAAAJQcBsUAAAAAAABQchgUAwAAAAAAQMlhUAwAAAAAAAAlh0ExAAAAAAAAlBwGxQAAAAAAAFByGBQDAAAAAABAyWFQDAAAAAAAACWHQTEAAAAAAACUHAbFAAAAAAAAUHIYFAMAAAAAAEDJYVAMAAAAAAAAJYdBMQAAAAAAAJQcBsUAAAAAAABQchgUAwAAAAAAQMlhUAwAAAAAAAAlh0ExAAAAAAAAlBwGxQAAAAAAAFByGBQDAAAAAABAyWFQDAAAAAAAACUnYhzuNADkRSQScacAAF66ZtRNAGjBKS0AvxgUA5B39uROeynSnpF8wdmMsVgs/lMj7fmssrKyeEattOezvB4rXtfLJ+0Z2YbBFco2pLb7pz2fVQi1HYBeXD4JAAAAAACAksOgGAAAAAAAAEoOg2IAAAAAAAAoOQyKAQAAAAAAoOQwKAYAAAAAAICSw6AYAAAAAAAASg6DYgAAAAAAACg5DIoBKB5N2+Ttl+bJhNGXyMDjyyUS6SMDr7hVfvqbFbKtybgrlap6WT5loLNNIh3fjq+W5U3u6gc0yZZnRqRe396On5LiPn55yZjq+dJnrGl0Vw1Eez4rkbEs1fM033xlTNU2/NCer0RROwEAQKkyAJBnwUtRk9m15tematCJJnrq983kJxaamjUbzJa6BhNr+NCsXvQzM2bSy2ZrzF3dB+3l0nu+/aZh20qzYNy5Jurcx95PooPNhEXvml2NHWygWIPZWjPHDOsdddaPml6V48y8xSvM+lpn+7qrpJPZ9mvOeE6bjOMXrs15xljMy9ra81mpM3raz33KfWeMRCLuVDra8+WP3RZeeF2vc7mtndnJmDva81lsw+BsRu+1M3zkC64QajsAvfT/Twag6AXrVDsndaseMcN6V5jewx4yK2r3ufNdsd1mc80TZszAS82cNQ3uzMxp7/hnnK/hTTOz8pj4/SR6ibNtdrsLOrLdLBl3uul99WPmnZ1N7jzvfG2/pIwPvVPvLuhIImMfJ+OaXf4yZtTx157P8rOfq86I72c/GTM+MdGeLw/stvDC63ody33tDJ4xt7Tns9iGwdmMDDr5pz2fxaAYgCC4fBJAATPStPG3cvO3r5Wnj6mSx6YNk5MrDnKXJez/yzy58JSL5Z6XP5DaXVxfdUC3z8uwibdKZdSZrn9cbpr0nGxotH3f1Ezt/8nv/nSuzJk0RE4o7+LOzbGkjDff/Zxs7ORSruaMD00cIn2iIWTUns9KsZ/TZzwnvp/zsQ3V5Sta1E4AAACLQTEAhcv8TV64e6LMWvtvcs3YS6Tfp9qfJJcdfqKcW/lF6TfkAul/3CfcuRCJSLeTLpGJ1UPEjkfUPTJZ7l6wXlKe+pptsnT6Y3LwHT+U/hVhDkQkZ6yWSQveT5vxjO5hZdSez2rJWB5J7Oe0GW+/KsT9rD1fkaJ2AgAAxDEoBqBAGdnz51/KxJnLRU6/SC7uf3jKghY5/Kty62//LDVPXidf5kQ6SVROGnabVFce40wvl1m3zpAFG/cmFh2wX+qWPihT5QoZ7WzjiDs3PC0ZIzbj2OlpM4b7H5v2fFYi4+TKY53p9BlHnXFEyPtZe75iQ+0EAABoxqAYgAK1Xd745RPyunNCffK3T5O+/8Rpsi/dTpJLxo2Ss+xbndbOkbGTft/m8jVTt1SmTRW5cXR/qcjXJm7OaN9KpDGj9nyWzXjH9Z72c/d89Ay05ysq1E4AAIBmdC0BFKadb8mLjy53JnrJgM/3kIMTc5GxLnJov6Ey8c5BUi71snbWFJm2eIvEhyPs5WrT5orcmO/L1RIZJ1QNck7jNWbUns9q2c+tM8bsIkXbUG++IkLtBAAAOIBBMQAFaf/6VbJwi52qkM9+5pPOTyNNH70nbzw3V2ZMmSIzfv4refGN9+SjVu82QQci3aXfD2+VqrN7Or+8LveNniEvbd0bv1zt3rxdNpkknnGs3HlWD+eXthnzd2lnK9rzWe5+bpPxwwZl21BxviJB7QQAAGgR//5adxoA8iISidjvdHd/86JJtjxznRz1nVnO9NUyf/N0Obv2t/LTPxwi5w7+ipzUIypNde/Liudmyfj5n5QfTB4tg/p8KtAJdeYZwxU8337Z+cZU+eZpY8ReVtX32h/JBZvL5GsP3CFnfjr4u3Oys/06yPigkzELH15vM8ZisfhPf7Tns3KbsaysLJ7RP+35cs/rseJ1vbbCrZ3+MoZHez6LbRiczRi8duYO+YIrhNoOQC/eKQagAO2Tuq1/d6dFzAcvyH1/OEauufZ8ObnHodLVKW3dKo6TL19eJVMr18v3z79ZHl69I3E5GzrQRQ790nC5p2qgM10v79z/oNScN0S+moUBsexJkfHcC2VAqN/m2Bnt+azU+1n1NlSVr9BROwEAAFpjUAxAAYpJQ/0Od3qdLPj5Ojnj0n5yaLsXMaNywkVXy40HPyGjbpgnb+3h1K5TkcOl/+g7perUCueXLfLSrKfl1dr9iWVaJGec7WSsU5RRez4r1X7WvA215Sto1E4AAIDWGBQDUOBelz//y5flyx29k+SQE+Qr3/681C+cLvc8+z7veEinSzcpP8x+BaBj2b1y0/RXpE7bRmuT8T65cdpSXRm157OS9rPubagwX1GgdgIAADAoBqAAdZXy7oe7073ka6ccJ4e4v7X3Sfls7+Ocn+/JEz9/WdbykRMdM7Wy/IHZsu7qR2XBDac5M+pk2V2TZOafavWcECdljMQzTtSTUXs+q03G050ZmrehwnwFjdoJAADQGoNiAAqQc2J3WHd3uvkb1DrSRbp9svkdJ2/L+o+4DCu1/bJz+aMyYd35MnbQV+T8sVVyQ1+73V6SSVXzZPlODdutfcbRJ5Y787Vk1J7PSs44Ttl+1p6v0FE7AQAAWmNQDEAB6iLdj+ohx7i/eVZXL7s/5r0mqZidNfLAxE1y+dhzpWfXiESOGCCjJ1wpfSIi9QvvldseqJGded508YwTkjKOv1J6O8s0ZNSez0qZ0dnPrTPu0LYNFeUrfNROAACA1hgUA1CAIvJPR/eVAe6bGLzbIH/b+rE7jQOaL1e77Bqp7NnNndlNelaOkkkjTnGmN8nCH98nj79dn1iUD80ZL0/OeL3cPaKfM53njNrzWR1mHNU24+pdiUVh056vKFA7AQAAWmNQDEBBivy/z8l/nH6kM1Unf/vH7sTMdKK95bijmk+2kWBkz1tPxC9XG/OtY6SrOzeu6zFSOfZmGWa/BLD+Kbn5tsdl9d58vFskkXGivaSuMkXGW29pk3FVQ9gZteezWvZzuoy33J6P/aw9X/GgdgIAALRgUAxAYSo7VgZc9jWJykZZvn6bdPxpN/ukbuvf41PRb50h//aZDr5prVTtXSnz7tkQv1zt6IMi7sxmEena83y5Y/pwiY9HLJgktz2yUhoSC8PjZrxszDnxS+raap/x9kfekr2JheHQns+yGScn9nP6jHfH93Po21BzvmJC7QQAADiAQTEABepgOfa8YXJN30ZZsWS1fNDRG0fMh7JyySpnYqD8aOSZ0iP5fLuk1cvqR2bKW98d2epytWSHSK+Lxsr0i+2nOr0vC26bJr961+O7S7KiJeO3jv6EOy9ZUsbbp8uv3tuTWJRz2vNZbsbveNvPkeb9HPY2VJuv2FA7AQAAmjEoBqBgRbr3l+urR8pnn5gu9/1uozS681t8LFte+rlMfWKfDJxwl4zuf7hzQo0EI3tXPy53/O/A9perJTuot1z0X2NlkP0corqHZXTVr+W9xjAuX2ub8SB3bkpJGUeNCyOj9nxWS8Z2l8cma85Y7hwlediGOvMVJ2onAABAAoNiAArYwXLUebfL0/NOkVeHXi3jnvyTbKxvcuYbaarfKDVP/Vgu/d7v5MQZj8tjt5whFZzVuZzts2WRTLruZ3Lo+aeluFwtWUQO6nOhTKgeIvExnScmyPhn1ond0rnjP2N8zOSJ8TnOqD2flZSx3eWxyRIZx09u3s8hb0N1+YoZtRMAAMBiUAxAYYt8Sk66fKq89MYt8rn3fiHXDegpkcih0vdb4+TpD78g/1WzSOZc11+OTDtoUQLMXvnob+/I6/OnylWDrpC7Xn5Tnv3lAnl9yx7nVLgz9kT577Jpy07393fkkZHjZNqit+Ufe2PuvCzJRsb4ijnKqD2f1VHGzUr2s/Z8pYLaCQAA4HQxASDPCqEUac+YNt/m+WaoHVVIeRtgqmt2uSu211hTbXqlvF/zbYCZvGynu3Zqdr200mTs7Dm8ZOzsb7TserFYzP0tBe35rBzv53QZI5GIO9UB7fkUsH+LF17XyyftGdmGwRXKNkxbO/OIfMEVQm0HoFe8gjjFDgDyxunM2F61+5tO2jOSLzib0en4x39qpD2fVVZWFs+olfZ8ltdjxet6+aQ9I9swuELZhtR2/7TnswqhtgPQi8snAQAAAAAAUHIYFAMAAAAAAEDJYVAMAAAAAAAAJYdBMQAAAAAAAJQcBsUAAAAAAABQchgUAwAAAAAAQMlhUAwAAAAAAAAlJ2Ic7jQA5EUkEnGnAABeumbUTQBowSktAL8YFAOQd/bkTnsp0p6RfMHZjLFYLP5TI+35rLKysnhGrbTns7weK17XyyftGdmGwRXKNqS2+6c9n1UItR2AXlw+CQAAAAAAgJLDoBgAAAAAAABKDoNiAAAAAAAAKDkMigEAAAAAAKDkMCgGAAAAAACAksOgGAAAAAAAAEoOg2IACthueXPGd+XMERPk588tldXrN8s/6pviS8zej2TL+tXyp8VPyYwbBstXZ7wp++NLSlW9LJ8yMP6V6h3ejq+W5YnN10qTbHlmROr17e34KSnu45eXjKmeL33GmkZ31UC057MSGctSPU/zzVfGVG3DD+35SgW10xtvx3z749e215Gp17e3lG3cLy8Z81nbteezvO1nPxmzV9sBADljACDP/JeiXaamekD8/p3dogN/YhZt3uvexx/7OJp5z7ffNGxbaRaMO9dEm7dRdLCZsOhds6sx5q6TJNZgttbMMcN6R531o6ZX5Tgzb/EKs762wXRwj3Yy237NGc9pk3H8wrU5zxiLeVlbez4rdUZP+7lPue+MzomgO5WO9nz5Y7eFF17XSy2c2mkfQzPv+Vraa3nz9vFRN+dm2F6tzDNqre35yWfZ5yqe2h4+7fmsQqjtAPTS3VsBUBJsh8ufdCd2PcyA0XNNzdZgA2KWfTzNMs7X8KaZWXlMYjtFLzFz1ux2F3Rku1ky7nTT++rHzDs7m9x53vnafkkZH3qn3l3QkUTGPk7GNbv8Zcyo4689n+VnP1edEd/PfjJmfGKiPV8e2G3hhdf1UgundtrH0izjfLa9Djo2sY0yrJt+2qvlK6Pm2h5yPss+V9HV9hBpz2cxKAYgCN29FQAlwXa4/LEndpeZ8S8sM4vnTjTXVfYzUTnS9DvvB+aW6ofNczV/Mw1Z6sf5zxiOzPPFTMOq2aYyak+AxVQMe8q8v6/jjRXbvsiMOXu8WVIb0oldXHLGJ82Gjl6tdxzIuD2kEyf1+az2+zltxm/438+Zn5hozxc+ux288LpeauHUzmAZcy/zfD7aa4C6aWUjo67aHm4+yz5P8dX28GjPZzEoBiAI3b0VACXBdrj8sSd2Q011zS7399zxnzEc/vLtMqtmDnEvE+lnRjz9nml0l7QR22qWVA03VUu2OqcK/gTZx20yzl+XNuN+d1am/HX8teezEhnLI14zfuh7P/s7MdGeL1xejxX/x5QVTu0MljH3/OVrf8zvc5e0kYW6aWUlo7raHl4+y2YsztoeDu35LAbFAATBB+0DQMmKyknDbpPqymOc6eUy69YZsmDj3sSiA/ZL3dIHZapcIaP7Hy4Rd254WjJGbMax09NmDPc/Nu35rETGyZXHOtPpM44644iQ97P2fEBrSXXTttcNDYlFB+ipmzpru/Z8VktGvbUdAJAN1G8AKGXdTpJLxo2Ss6LO9No5MnbS72Vjk31hOMHULZVpU0VuHN1fKvI1EtGcsdwJoDGj9nyWzXjH9Z72c/d89Ay05wNaS6qbt96dor3eq6Ruaq3t2vNZzRk113YAQGB0LQGgpHWRQ/sNlYl3DpJyqZe1s6bItMVb7PUiTo9/myydNtfp8V8l/Su6xNfOj0TGCVWDJKoyo/Z8Vst+bp0xZhcp2oZ68wGtJbfXqe2P+R/9QM0xr7O2a89nJTLqru0AgKAYFAOAUhfpLv1+eKtUnd3T+eV1uW/0DHlp6974ZSH35u3SlSTxjGPlzrN6OL+0zZi/y2ta0Z7Pcvdzm4wfNijbhorzAa2laq+tjnkVl/m6GdXWdu35rHhG5bUdABBI/FMJ3WkAyItIJGI/qdf9LRP1snzKNfLywJ/KtUetlReeXiir93aVg20P1eyTfd36yJmDz5Ev9fhk4E6r/4zhCJ5vv+x8Y6p887QxTrc/Kn2v/ZFcsLlMvvbAHXLmp4O/Cp6d7ddBxgedjN2zkzEWi8V/+qM9n5XbjGVlZfGM/mnPl3tejxWv66UWTu0MljH3gudLtNdzTh8jr5nst1crWxn11vbc5rNsxuKv7bmjPZ9VCLUdgGLOf2QAkFf+S5H9BrXvmKvG/cRUzVxo1tS1/g6wfaZ2xRwz7MTzTNWiTam/NSoD2stlVvLFv0VrYPyxRI40Z8/5i/H/JfhtZW37JWd86G3f3/iVzD6m06l2f/NJez4rxX7OVkbnpMmdCkB7vhyzf7cXXtdLLZzaGSxj7mUlX7y9nhl/rGy3Vyt7GRXX9hzms+zjlkRtzxHt+axCqO0A9OLySQAFrky6fOFSGTfi69LnsIPcedZBUnHyFTL1/i/KLwdfK9Nqam1PFp2JHC79R98pVadWOL9skZdmPS2v1u5PLNMiOeNsJ2Odooza81mp9rPmbagtX9GgdmZFvL1W6W6vqY4pTbVdez4rOaPG2g4A8IVBMQAFLCr/Pvpxuf+CY6WrO6etLtL9y+fKZccslpuvf1j+vIdTu7S6dJPyw+zXgTmW3Ss3TX9F6rRttjYZ75Mbpy3VlVF7PitpP+vehgrzFTxqZ1alaK+12q7kSsqorrZrz2e1yai0tgMAMsagGICCFuna1Tl968Qhx8kpX+sl8vqj8ugrW92ZSMnUyvIHZsu6qx+VBTec5syok2V3TZKZf1L0TpGkjJF4xol6MmrPZ7XJeLozQ/M2VJivSFA7syRl3bTtdbvauqmutmvPZyVlVFnbAQD+uJdRAkDe5LYU2c/OGRB/jiNvWWx2uHMzpb1cBs/XZHYsm2YGj5xvNjTGTOzD580NfaPxx42edZ9ZtiPYJ7xkZ/ulyHhieVYzBvvcFO35rNzu5+Cf66I9X+7Zv9ULr+v5F7x25j5jMMHzJdrrt1O213sDt1crWxn11vbc5rPsYxV/bc8d7fksPlMMQBC8UwxAydiy5gPZbrt3aMfsrJEHJm6Sy8eeKz27RiRyxAAZPeFK6RMRqV94r9z2QI3szPO2i2eckJRx/JXS21mmIaP2fFbKjM5+bp1xh7ZtqChfqaJ2ptbcXi8bc06K9nqfnmNecW3Xns9KWZeU1XYAgH8MigEoSKbudZky6PNy/Pl3ynPr97hz01j1oWj77F4Vmi8LuewaqezZzZ3ZTXpWjpJJI05xpjfJwh/fJ4+/XZ9YlA/NGS9Pzni93D2inzOd54za81kdZhzVNuPqXYlFYdOer0hQO7OkVXv91tGfcGe2tNeIpmNea23Xns/qsC4pqu0AgGDcd4wBQN74KUWNNdWml3M/kWPMkCfXm47f2L/NLL6lX/w5ZMiTZqPPKwC0l0v/+WJm94r745eFvL8veePETOOGp8ywivhHppho5WyzqsHfBgy2/RIZmy9Raqt9xpV7/Gf0d4mI9nxWy35On3GW7/3s/xIW7fnCY/9GL7yulyzM2uk3Y1j850vfXod3j8QfP0jdtLKRUWdtDyefZR+jeGt77mnPZ3H5JIAgeKcYgIIU6XqwHNmrl/QeOEQuPPUIibjz29n/d/nra+uciSPl7LNPln/pcMUStXelzLtnQ/yykKMPSt44Eena83y5Y/pwsV9CX79gktz2yEppSCwMj5ux+RKlttpnvP2Rt2RvYmE4tOezbMbJif2cPuPd8f0c+jbUnK+IUDuzoFXd7Ki93j6tbd3MyzGvubZrz2e5GVXXdgBAcO7gGADkja9StPt/zZQbf20+6PTFy5jZXTPFnOY8vvS+wTy7eZ87P3Pay6W/fLvMqpkjzMj560yjOyelfWvMvIt7x59DKoabuWvr3QXe+d9+LRk73XtJGee9u9td4J29b+avhmvPZ2W2n51TP98Z/b1arz1fuLweK17XayfE2uk7Y0j85fNXN/20VyvMjOHV9vDyWfb+xVnbw6E9n8U7xQAEobu3AqAk2A5X5hrN1sXV5oY5b5pdHfTVYrtqzIxBxxqJnmOqFm3qvPOdhr+M4ck8X8w0rJptBg9/KsVlIcliTr9/jhkUdTr9zvNUXPyoebfd5S6d87f9gmT8ha+MmXX8teezWjK2v0QpWSLj4PLEZV9+MmZ+YqI9X/js3+aF1/XaC692+s8YjszzBTvm136cWXu1ws0YRm0PN59l71t8tT082vNZDIoBCEJ3bwVASbAdLl9iH5k18+80w0Y/YF5csd7UNuxPzG/cYTYse9pMGHKykd6Xmur/+VugATHLd8aQZJYvZho3v2SqBp5shs7f6M5Lx75qPsREnecR6WuGPfluRts08+3nP2N5xH9G7x1/7fmsthm93dNmvMj3fs7sxER7vvzweqxkfky1ElLtDJQxBJnlc9vrmV/wXzefWJvx9vSVUW1tDz+fZTMWV20Pl/Z8FoNiAILQ3VsBUBIy61Qn228aNr5unpo+1gwd4F7CEO1nzrvqVjP9yf8xa+r8XzLZWrCMuecpX6zB1G36i3nt6Woz7NQj4/epGHK/eW3z7jQDEs5Jwq615vmqc9wTE+dWcbGpXrjabGs+mU7D8/bLQsbyABnTdvy157M6yPjqB14znut7P3s6MdGeL8/s3+WF1/U6lvvaGTxjbnnKl8e6aWnPqD2fZe9XFLU9T7TnsxgUAxCE7t4KgJJgO1zaac+YNt/m+Waos45dr/1tgKmu2eWu2F7Lt9V1dBtgJi/b6a6dml0vrTQZO3sOLxk7+xstu16nHX/t+awc7+d0GdOemGjPp4D9W7zwul4+ac+YNl+e26tl1+1UjjMGru15zmfZdQu+tueR9nwWg2IAgohXEKfYAUDeOJ0Z26t2f9NJe0byBWczOh3/+E+NtOezysrK4hm10p7P8nqseF0vn7RnZBsGVyjbkNrun/Z8ViHUdgB6lbk/AQAAAAAAgJLBoBgAAAAAAABKDoNiAAAAAAAAKDkMigEAAAAAAKDkMCgGAAAAAACAksOgGAAAAAAAAEoOg2IAAAAAAAAoORHjcKcBIC8ikYg7BQDw0jWjbgJAC05pAfjFoBiAvLMnd9pLkfaM5AvOZozFYvGfGmnPZ5WVlcUzaqU9n+X1WPG6Xj5pz8g2DK5QtiG13T/t+axCqO0A9OLySQAAAAAAAJQcBsUAAAAAAABQchgUAwAAAAAAQMlhUAwAAAAAAAAlh0ExAAAAAAAAlBwGxQAAAAAAAFByGBQDAAAAAABAyWFQDEDxMpvkuWsulxlv7nZnlLJ6WT5loEQikY5vx1fL8iZ39QOaZMszI1Kvb2/HT0lxH7+8ZEz1fOkz1jS6qwaiPZ+VyFiW6nmab74ypmobfmjPhzhqp8vbMd/++LXtdWTq9e0tZRv3y0vGfNZ27fksb/vZT8bs1XYAQM4YAMiz3JSiRvPhC2PMiZEBprpmlzvPP+3l0nu+/aZh20qzYNy5Jurcx95PooPNhEXvml2NMXedJLEGs7VmjhnWO+qsHzW9KseZeYtXmPW1DaaDe7ST2fZrznhOm4zjF67NecZYzMva2vNZqTN62s99yn1ndE4E3al0tOfLH7stvPC6XuayVztzlzE7vOdraa/ltq3am4+6OTfD9mplnlFrbc9PPss+V/HU9vBpz2cVQm0HoJfu3gqAkmA7XNkW+/B5c0Nf20llUCylhjfNzMpj4veT6CVmzprd7oKObDdLxp1uel/9mHlnZ5M7zztf2y8p40Pv1LsLOpLI2MfJuGaXv4wZdfy157P87OeqM+L72U/GjE9MtOfLA7stvPC6XqayWTtzlTFbMs5n2+ugY+P3y7Ru+mmvlq+Mmmt7yPks+1xFV9tDpD2fxaAYgCB091YAlATb4cqq2AfmhdsuM+f1P9J5bAbFUouZhlWzTWXU6fQ7960Y9pR5f1/Hnd7Y9kVmzNnjzZLakE7s4pIzPmk2dPRqveNAxu0hnTipz2e1389pM37D/37O/MREe77w2e3ghdf1MpLl2pmTjFmUeT4f7TVA3bSykVFXbQ83n2Wfp/hqe3i057MYFAMQBJ8pBqDINMnWl+bJkq/8pww/7hCJuHORLCLdTrpEJlYPkajzW90jk+XuBeudrZeC2SZLpz8mB9/xQ+lf0cWdGYbkjNUyacH7aTOe0T2sjNrzWS0Zy52Dwe7ntBlvvyrE/aw9XymhdqbXvm7a9pryY6PU1E1ttV17Pis5o8baDgDIFgbFABQVU7tEfrbwX+Xasz/LSV1aUTlp2G1SXXmMM71cZt06QxZs3JtYdMB+qVv6oEyVK2R0/8PzsE1bMkZsxrHT02YM9z827fmsRMbJlcc60+kzjjrjiJD3s/Z8pYHa6VVS3bTtdUNDYtEBeuqmztquPZ/VklFvbQcAZAP1G0DxsK/Yzn5D/u36r8uRnNV50+0kuWTcKDnLvhy+do6MnfR72dhkr5ZIMHVLZdpUkRtH95eKfG3T5oz2rUQaM2rPZ9mMd1zvaT93z0fPQHu+YkftzExS3bz17hTt9V4ldVNrbdeez2rOqLm2AwACo2sJoEjYV2wfl9+fcLFU9uzmzkN6XeTQfkNl4p2DpFzqZe2sKTJt8Zb4B6nET5SnzXV6/Pm+XC2RcULVIImqzKg9n9Wyn1tnjNlFirah3nzFjNqZueT2OrX9Mf+jH6g55nXWdu35rERG3bUdABAUg2IAioKpe1Vm/f5oGVl5jHR158GjSHfp98Nbpersns4vr8t9o2fIS1v3xi8LuTdvl64kiWccK3ee1cP5pW3G/F1e04r2fJa7n9tk/LBB2TZUnK9IUTt9StVeWx3zKi7zdTOqre3a81nxjMprOwAgEAbFABQ++4rtrKVywshvSs+udE/9iBx6ivzwx9fIafaXd/5bRv9kkkyZ1ijXXa/nspB4xruubZfx+lE6MmrPZyVnvGH83aq3obZ8RYfaGUhzez3dbrqkY17LZb7xjIpru/Z8VnJd0ljbAQD+MSgGoMDtl51/+pU8f8LF8i0u/Qmgixz6peFyT9VAZ7pe3rn/Qak5b4h89dOaLgtJkfHcC2WAmm/80p7PSr2fVW9DVfmKCbUzuER7vXvcmc601vaa+pjSU9u157NSZFRX2wEAfjEoBqCgmZ3LZe6Ln5URlcfIQe48+BQ5XPqPvlOqTq1wftkiL816Wl6t3Z9YpkVyxtlOxjpFGbXns1LtZ83bUFu+IkHtzJJ4e63S3V5THVOaarv2fFZyRo21HQDgC4NiAAqXqZXlc16U7pd9nUt/sqVLNyk/zH4dmGPZvXLT9FekLv6pwoq0yXif3Dhtqa6M2vNZSftZ9zZUmK/QUTuzK0V7rY1/S4QiSRnV1Xbt+aw2GZXWdgBAxhgUA1Cg9svO5U/Jk0cMkQt7HeLOQyD2RPmB2bLu6kdlwQ3201PqZNldk2Tmn2oT37alQVLGSDzjRD0Zteez2mQ83ZmheRsqzFfwqJ1ZlbJu2va6XW3dVFfbteezkjKqrO0AAF8YFANQkMzOGpnzZIWMvLA3l/5khT1RflQmrDtfxg76ipw/tkpu6GtfEX9JJlXNk+U7NVwm0j7j6BPLnflaMmrPZyVnHKdsP2vPV/iondmUaK8TU9TNu+/UWzd1H/P83wMACBeDYgAKUL28/eTLcsTISul1EJf+ZIM9UX5g4ia5fOy58cupIkcMkNETrpQ+zuatX3iv3PZAjezM88vh8YwTkjKOv1J6O8s0ZNSez0qZ0dnPrTPu0LYNFeUrfNTObGpur5eNOSdFe71PzzGvuLZrz2elrEvKajsAIAADAHmWcSlqrDHVx0fi98v4NnS++SDmPk4G7H01C5Qvtt0sqx5uRs5fZxrdWXGN68z8kacktlt0iJm5ape7IHOBt19nGUf0y1rGWMxH47C057M8ZvzZyp3ugsxFIhF3ygft+UJi/04vvK7XRsi1095Ps0D5WrXXfe6sOLe9Ruw2C3jMW9nKqLK2h5DPso9T1LU9x7TnswqhtgPQS3dvBUBJsB2urLMnf72czqoMMNU1wTrUVk4yZpH/fDGze8X9ZvDI+eb9fcmd3php3PCUGVZht6OYaOVss6rBX8c42PZLZPy2k3FDY/qMK/f4z+iv4689n9Wyn9NnnOV7P/s/MdGeLzz2b/TC63oZy2LtzFnGLPGfL317Hd49MfgYpG5a2cios7aHk8+yj1G8tT33tOezGBQDEASXTwJAKdu7UubdsyF+WcjR7S6nikjXnufLHdOHi/0S+voFk+S2R1ZKQ2JheNyMzZcotdU+4+2PvCV7EwvDoT2fZTNOTuzn9Bnvju/n0Leh5nxAa63qZkft9fZpbetmXo55zbVdez7Lzai6tgMAAmNQDABKVr2sfmSmvPXdkVLZs5s7L9kh0uuisTL9YvvpKe/Lgtumya/e3Z1YFIqWjN86+hPuvGRJGW+fLr96b09iUc5pz2e5Gb/jbT9Hmvdz2NtQbT6gNa91c0zLMR96e/WaMV+1XXs+qyWj3toOAMgK9x1jAJA3OSlFXD6ZRsw0rJptBg9/KsVlIcliZt+aOWZQNHGZSMXFj5p3213u0jl/2y9Ixl/4ypjZJSLa81ktGdtfopQskXFweeKyLz8ZM7+ERXu+8Nm/zQuv62WMyyc7EeyYX/txZu3VCjdjGLU93HyWvW/x1fbwaM9ncfkkgCB4pxiA4mP2yrYVNVJTa3/5QGqWrZZte2PxRbCMNG1ZJJOu+5kcev5pKS4LSRaRg/pcKBOqh4j9ovy6JybI+GfWSVNiYY74z1jurFr3xPgcZ9Sez0rKmPbbBhMZx09u3s8hb0N1+UoQtbMTbnu9fqbPujleJjzzntq6GU5t157P8p8xvNoOAMgqd3AMAPIma6Vo83wz1PZoO7z1MkPnbzR+Xu+099fMU75Yg6nb9Bfz2tPVZtipR8bvUzHkfvPa5t1ptknMNO5aa56vOsc4JyaJbVlxsaleuNpsa9jvrtM5z9svCxnLA2RM+2q49nxWBxlf/cBrxnN972dPr9Zrz5dn9u/ywut6nuSodtr7auYpXx7rpqU9o/Z8lr1fUdT2PNGez+KdYgCC0N1bAVASbIdLO+0Z0+br9KS388ukGmuqTa+U92u+DTCTl+10107NrpdWmoydPYeXjOkuBbPrddrx157PyvF+Tpcx7YmJ9nwK2L/FC6/r5ZP2jGnz5bm9WnbdTuU4Y+Danud8ll234Gt7HmnPZzEoBiCIeAVxih0A5I3TmbG9avc3nbRnJF9wNqPT8Y//1Eh7PqusrCyeUSvt+Syvx4rX9fJJe0a2YXCFsg2p7f5pz2cVQm0HoBefKQYAAAAAAICSw6AYAAAAAAAASg6DYgAAAAAAACg5DIoBAAAAAACg5DAoBgAAAAAAgJLDoBgAAAAAAABKDoNiAAAAAAAAKDkR43CnASAvIpGIOwUA8NI1o24CQAtOaQH4xaAYgLyzJ3faS5H2jOQLzmaMxWLxnxppz2eVlZXFM2qlPZ/l9Vjxul4+ac/INgyuULYhtd0/7fmsQqjtAPTi8kkAAAAAAACUHAbFAAAAAAAAUHIYFAMAAAAAAEDJYVAMAAAAAAAAJYdBMQAAAAAAAJQcBsUAAAAAAABQchgUA1DwzN4PZPnvfi4TRl8pV1xxhVxx+SAZeOYVMmbKo/LSW1tkr+5viw9JvSyfMjD+leod3o6vluVN7uoHNMmWZ0akXt/ejp+S4j5+ecmY6vnSZ6xpdFcNRHs+K5GxLNXzNN98ZUzVNvzQnq+0UDuLgfbarj2fVQi1HQCQMwYA8sx/KYqZxs2LzMQRt5mHFq822xr2u/OdJQ0bzJIZw02fSF9TOWGR2dwYc5f4o71ces+33zRsW2kWjDvXRJ372PtJdLCZsOhds6ujbRRrMFtr5phhvaPO+lHTq3Kcmbd4hVlf2+DsAW8y237NGc9pk3H8wrU5zxiLeVlbez4rdUZP+7lPue+MzomgO5WO9nz5Y7eFF17XSy2c2hksY+5pz2d5z6i9tucnn2Wfq3hqe/i057MKobYD0Et/bwBA0bMdLl92LzczfvSwWbmryZ2RpHGNmXfR8c7j9zADJ7xiagP06XxnDEnG+RreNDMrj4nfT6KXmDlrdrsLOrLdLBl3uul99WPmnZ0dbO9O+Np+SRkfeqfeXdCRRMY+TsY1HbWJTtjnyajjrz2f5Wc/V50R389+MmZ8YqI9Xx7YbeGF1/VSCql2BsoYAu35rIwzaq/tIeez7HMVXW0PkfZ8FoNiAILQ3xsAUPRshytzTWb7CzeaCultBo540CyrTdUR3WvWzbvM7dh+3zy54WN3fub8ZQxP5vlipmHVbFMZdbaNc9+KYU+Z9/d13OmNbV9kxpw93ixJuZ3T87f9kjM+aTZ08q6VAxm3h3TipD6f1X4/p834Df/7OfMTE+35wme3gxde12svvNrpP2M4tOezMs+ovbaHm8+yz1N8tT082vNZDIoBCILPFANQoBpk/crlUidr5eVZU+WhVz+M917b6iLdPhlNTNavk03b9iWm4YhIt5MukYnVQ8RuobpHJsvdC9ZLyo9oMdtk6fTH5OA7fij9K7q4M8OQnLFaJi14P23GM7qHlVF7PqslY3kksZ/TZrz9qhD3s/Z8xYjaWdy013bt+axCqO0AgGxhUAxAgTpEThh4gVT2ikr01MEyuN/hTjcWmYnKScNuk+rKY5zp5TLr1hmyYOPexKID9kvd0gdlqlwho/vnYxu3ZIzYjGOnp80Y7n9s2vNZiYyTK491ptNnHHXGESHvZ+35ig21s/hpr+3a81mFUNsBAFnhvmMMAPLGfymKmcZd201dqw+Jbmu3WT1zcPzx5chbzeIdHa2XnvZy6T9fk9mx7D5zVvwykajpPWJ+m8tEYrV/NFWDJgS6dMUKtv0SGc8uj+Q8o79LRLTns8LZz/4vYdGeLzxej5Vgx1Q4tTNYxtzTns/yn1F7bQ8nn2UzFm9tzz3t+SwunwQQBC9qAChgEeka7S6HdeuglJnNsvzFPzsTPeSssd+VLx9KyWuvixzab6hMvHOQlEu9rJ01RaYt3mLPUpztt02WTpsrcmO+L1dLZJxQNUiiKjNqz2e17OfWGWN2kaJtqDdfsaF2Fj/ttV17PqsQajsAIDB3cAwA8iY3pShm9q2ZYwaXl5vewx4xq3x8I1Rr2stl0HyxHW+Y6rN7xh9H+o4xL3zYYGqXTDCDq/4Y6Fs7m2Vj+8UzntWjXcZBWcwY5NVw7fms5IzP/31PVjMGfbVee74w2L/dC6/rZS57tTN3GbNDez4raEbttT3X+Sz72MVe23NJez6Ld4oBCCJeQZxiBwB543RmbK/a/S1LmtbLM9cNlZ92u1b++yfflc9Fg72Sm5OMWRQ8337Z+cZU+eZpY+R1iUrfa38kF2wuk689cIec+engr4JnZ/t1kPFBJ2MWPuDYZnQ6/vGf/mjPZ+U2Y1lZWTyjf9rz5Z7XY8XrehnLYu3MWcYs0Z7PCp5Re23PbT7LZiz+2p472vNZhVDbAejFoBiAvLMdreyVoiap3/hn+d0vfi9bTxsmVw04RrploR+X3YzZl5V8Zpu88l9D5Ct3vez8cqScPecP8vvv95VsnJZkbfslZ3xosTx/5YlZ+YBjmzFwx197PivFfn7e2c/ZyJiVExPt+XLM67HidT3vsl87s58xu7Tns7KSUXttz2E+y2YsidqeI9rzWQyKAQgiG7UcAPJu//oX5b6q0TL8iivlmpvGyO23/1iur7xURk75jby57WN3LXQqcrj0H32nVJ1a4fyyRV6a9bS8Wrs/sUyL5IyznYx1ijJqz2el2s+at6G2fEWG2lkCtNd27fmsQqjtAABfGBQDUBS6HPsNueGuafLw3Lky95d/kHfq/iK/H/vPsuCWb8sXzrhWHnhzu+h+P4ASXbpJ+WHRxPSye+Wm6a9InbYN1ybjfXLjtKW6MmrPZyXtZ93bUGG+IkLtLBHaa7v2fFYh1HYAQMYYFANQhCLS9bC+cs6Y+2Tu6NNF1j4kV39vnPxy3R53OVIytbL8gdmy7upHZcENpzkz6mTZXZNk5p9q9ZwUJ2WMxDNO1JNRez6rTUbn+FC9DRXmK2rUzqKkvbZrz2cVQm0HAPhjACDPcleKYubjFTOMc2rnPEfU9B65wGz2+QVK2stl8HxNZseyaWbwyPlmQ2PMxD583tzQNxp/3OhZ95llOzR8e2eKjCeWZzVjLNA3bGnPZ+V2P0cCfwOY9ny5Z/9WL7yu5092amduMwanPZ8VPKP22p7bfJZ9rOKv7bmjPZ9VCLUdgF68UwxAEYvIP/U9Vc49xk7Xy9pHF8ryf/AZIKmYnTXywMRNcvnYc6Vn14hEjhggoydcKX0izpZbeK/c9kCN7LRd4zyKZ5yQlHH8ldLbWaYho/Z8VsqMzn5unXGHtm2oKF/poHYWC+21XXs+qxBqOwDAPwbFABSoJqnf9Lb8+e0tsrezzujB/yInfqVXYrp+pbyzsSExjRbNl4Vcdo1U9uzmzuwmPStHyaQRpzjTm2Thj++Tx9+uTyzKh+aMlydnvF7uHtHPmc5zRu35rA4zjmqbcfWuxKKwac9XNKidJUN7bdeezyqE2g4ACIRBMQAFyMieN2fKBZ87Sfqd9CWp/Omfxdsn3nSTf+qq9yvF88PZlm89IRPWnS9jvnWMdHXnxnU9RirH3izD7Jdt1T8lN9/2uKzu9Cw6VxIZJzoZx1amyHjrLW0yrmoIO6P2fFbLfk6X8Zbb87GftecrFs52pnaWiJZjSmdt157PSmTUXdsBAEExKAagAO2XHe+9LQvjL8zWydZ9MekSn5+C+Vh279iXmK44SU7o0fxKL+L2rpR592yIXxZy9EHJJ70R6drzfLlj+nCJ9/sXTJLbHlkpob9fxM142Zhz4peutNU+4+2PvCV7EwvDoT2fZTNOTuzn9Bnvju/n0Leh5nxFg9pZMrTXdu35rEKo7QCAwBgUA1CAusinjj5eToueKt+7479l1qWfl4PdJcnMtnfktSWb4tMVQwbIFys6PAUsQfWy+pGZ8tZ3R7a6LCTZIdLrorEy/WL76Snvy4Lbpsmv3t2dWBSKlozfOvoT7rxkSRlvny6/ei+sb8vTns9yM37H236ONO/nsLeh2nzFhNpZGrTXdu35rEKo7QCArHA/cB8A8sZXKYp9YF64dYyZs+oj0+F3IsXqzIoZF5qo8/jSe6R58r3d7oLMaS+XmeeLmYZVs83g4U/Fv02rczGzb80cMyjqbEfneSouftS8uy+zb6Lyt/2CZPyFr4yZfcOW9nxWS8b30z5fIuPg8ojvjJl/A5j2fOGzf5sXXtdrJ8Ta6TtjSLTnszLPqL22h5vPsvctvtoeHu35LL59EkAQ+nsDAIqe7XD5EWtYb16cONKMmPy4WVSzxmze1egu2W8atq02i6YPN30i9qTuUlP9P38zzUv98JsxLJnli5nGzS+ZqoEnm6HzN7rz0tllVs0ckjhJlr5m2JPvZrQ9M99+/jOW233uM6P3jr/2fFbbjN7uaTNe5Hs/Z3Zioj1ffng9VjI/plqEVTuDZAyD9nxWZhm11/bw81k2Y3HV9nBpz2cxKAYgCP29AQBFL7NOdbJ9pu6918z8mf9lRg0ZYHrFO86JW7TfYDOqer6p2bzb4wl3x4JlzD1P+WINpm7TX8xrT1ebYaceGb9PxZD7zWtpt49zkrBrrXm+6hz3xMS5VVxsqheuNtsa9rvrdM7z9stCxvIAGdN2/LXnszrI+OoHXjOe63s/ezox0Z4vz+zf5YXX9TqW+9oZPGNuac9necqovbbnMZ9l71cUtT1PtOezGBQDEIT+3gCAomc7XFkV22t21ft9b0NqWc+YZWnzbZ5vhjrr2PXa3waY6ppd7ortNdZUtzlhbn8bYCYv2+munZpdL600GTt7Di8ZO/sbLbtepx1/7fmsHO/ndBnTnphoz6eA/Vu88LpeRrJcO3OSMYu057PSZtRe2/Ocz7LrFnxtzyPt+SwGxQAEEa8gTrEDgLxxOjO2V+3+ppP2jOQLzmZ0Ov7xnxppz2eVlZXFM2qlPZ/l9Vjxul4+ac/INgyuULYhtd0/7fmsQqjtAPTi2ycBAAAAAABQchgUAwAAAAAAQMlhUAwAAAAAAAAlh0ExAAAAAAAAlBwGxQAAAAAAAFByGBQDAAAAAABAyWFQDAAAAAAAACUnYhzuNADkRSQScacAAF66ZtRNAGjBKS0AvxgUA5B39uROeynSnpF8wdmMsVgs/lMj7fmssrKyeEattOezvB4rXtfLJ+0Z2YbBFco2pLb7pz2fVQi1HYBeXD4JAAAAAACAksOgGAAAAAAAAEoOg2IAAAAAAAAoOQyKAQAAAAAAoOQwKAYAAID/v707AY/x+OMA/l1HHU1UEH9RlERQdxtalFa0rrqpqyVxttHW1boVrZtEXW2pStxEiTrrTCiKVmgccQRxhARBkIiQyPzfd/OGTbKbbPbKxn4/njx2391kZ+ed9/fOzDvvDBEREZHNYacYERERERERERHZHHaKERERERERERGRzWGnGBHleiLhBo5tnI9Rn7dDHXsVVPZ10NpzKKb4/YljUfEQyvtsWxyO+bhDpZLyR9dPRW8cS1Le/lwSojZ4aX+//FPRR8vvGEqfNGr7vKzTGJyovNUo1p4+WUoa82j7nNQfg9KorWwYwtrTZ1sYO8n8eO4hIiIrJ4iIcpjhoShZJEbuEVO69xdTAv4R4fceS1ukbbHXRMgWb9HV1U7ArqkY4n9KxCYrv2Igaw+X+qfvmXgcfUpsHvexsJN+R/492LUXU/ZcFLGJOjIp+bG4Hewresn5CTvh0nacWB4YIi6r81s/2cu/1DS2TJPGybsvmD2Nycn6vNva0yfTnka99nMle4PTKDUElUdZsfb05Rw5L/Sh7/u0s0zsNC6N5mft6ZO9PHmYM+cemfxZL09stzxrT58sN8R2IrJe1l8bIKKXnlzhMkRybLCY9+kYseVGgrJFU5KIPb1U9FY3oN8Svf3DxFPlFUMYmkZLyXb6Hp8QC9qWV/8e7D4VvucfKS/oclfsH9dAuH6xSpx7mKRs059B+ZcujYvPxSkv6JKSxkpSGs/HGpbGbFX8rT19MkP28/j31PvZkDRmu2Fi7enLAXJe6EPf92ljqdhpTBotwdrTJ3vp8tDC5x6Z/FkvXWy3IGtPn4ydYkRkDOuvDRDRS0+ucGXfI3Hed7AYFXgrk6ux8ns+S7ni69BbLL+YVeVbN8PSaDnZT1+yeHz6V9HWTsob6Xcdeq0VV57qzsnku3vEyGaTxf57hjdKsi99Gv3FVV1X6yXP03jXQg0nq0+fLON+zjKNzQ3fz9lvmFh7+ixPzgd96Pu+jCwXOw1Po2VYe/pkL18eWvbcI5M/5+WL7ZZj7emTsVOMiIzBOcWIKHeKP4F1G1zQraEjVMqmjArDtXU39HCQHsZsxMJtYXia8gJJuVaw2qeY6t0VUsMXMUtnYvrmy9A6RYuIxsG5q1Dgu8/R0CGvstES0qfRG9M2X8kyje8Vs1QarT19shdptJcOFHk/Z5nGsf0tuJ+tPX0vIcZOylE89xARkXVhpxgR5UrJ189i/7ZBaNjAAz4Hbqov52qjKlERdes6SY9icCjoFG7oeqNNskO1XmPg3ba89PgYFo6eh83XElJeeu4ZYg7+hlnwxJBMG9Hm8iKNKjmNo+ZmmUbLntisPX2ylDTObFtBepx1Gge/V9LC+9na0/dyYeyknMdzDxERWQ/GbyLKlZJj7+GS9H/csZX4YVUw7qRszijPqyhaqnDK49O3cO9ZykNSFKyGT8cNRlP5cvgFX4ya9ieuJb1o/YqYg5gzC/h2SEM45FRPRGoa5aFE1phGa0+fTE7jd4P02s/FcqJmYO3pe4kwdpJV4LmHiIisBKuWRJQr5avcCF7uZaVHb6FLs+oonrI5I/EMiU+U1pyTHQqx4ppOXhRx88DUCe1gjzhcWOiDOYFRKaNH5NtC5iyTavw5fbtaShqnjG8HO6tMo7WnT/ZiP2umMVl+yYry0HrT9/Jg7CTrwHMPERFZB3aKEVHuZPcuhu06gzsxh7C4Y3ndwSw+AqGHrqgfOjWohDKsu2akKga3z0djfLNy0pPDmD1kHnbdTlDfFvJjjt26ko46jaMwoancmE+bxpy7vUaDtadPpuznNGm89djK8tCK0/eyYOwka8FzDxERWQH1Uh3KYyKiHKFSqeTlq5RnpiQQf2Q63q0/BqfREOP2b8TERjrHRWTKfGk0DePT9wwPj8xCi/ojpWq/Hap8/Q06RubBh4u+Q5PixreGTZN/OtL4m5RGE0xwLKcxOTlZ/b9hrD19MvOmMU+ePOo0Gs7a02d++h4r+r7PMKaJneZNo/GsPX2ylz8PzXvukclpfPlju/lYe/pkuSG2E5H14kgxInp5iVs4sHa91Kizg6vXUPSrX0x5gTLKiyLv9saM8e7S4zic++k3BLfqig9M1CgxDS1p/LgLGpugUWIa1p4+mfb9bNV5aFXpsxGMnWQxPPcQEVHOYqcYEb2kBOJPrsOPvv8BVQbgx3GtUC6f9V7ltAoqRzQcMgHj6zpIT6Kwa+F6/G1ts2unT+OvUhpjrCiN1p4+mbb9bM15aG3pe+kxdpKF8dxDREQ5iJ1iRPRSEnHH4Tv+R+wu1Q++68eiVekCyiuUqbwFYV9UXg5McvRHDJt7ADHWdudOmjTOxrdzDlpXGq09fbJ0+9m689AK0/cSY+ykHMFzDxER5RB2ihHRyycpArsmD8Ogs03x24aZ6F3tNU6Eqw9xD8cW/YrwL1Zg89D60oYYHJ04DQv+uZey2pY1SJdGlTqNU60njdaePlmaNDaQNlhzHlph+l5mjJ2UE3juISKinCSIiHKYSUNR8n1x2re/cHXtL3xP3xfJymZjWXu4ND59SeLB0Tmi/YAAcTUxWSTf2i6GVrFT/127prPF0QdJyvsMY5r805LGN+1NmsbkZGNKjLWnT2be/axSqdfvMYK1p8/85O+qD33fpzczxE6Tp9HErD19spc/D817zMvkv/Xyx3bzsfb0yXJDbCci68WRYkT0EnmCqKD5GOgNjPrDm6McskE8DMaiqRHoOepj9fxBqpKNMWRKX1SSMjBu948YsygYD+WqcQ5Sp3FKujRO7gtX6TVrSKO1p0+mNY3SftZM4wNry0MrSt/Li7GTcgbPPURElNPYKUZEL4lniDvhC6+vr6HHejbqsiX1tpAeX6FtuYLKxoIo13YwpnnVkR5HYPcPs7H6TFzKSzkhNY0906dxEKZ7uUmPcziN1p4+mc40Dk6bxtDYlJcszdrT99Ji7KQcwnMPERFZA2XEGBFRjjE+FCWLx+dXit4Nvsjktp87InjrvyLawDsArD1cGp6+ZPEo5Cf1bSFXnqbPnGSReHWt6OWgnjJF2LX9VZx+bFgGGpd/KWnsoNy6klbGNJ6KNzyNht0iYu3pk73Yz1mncaHB+9nwW1isPX2WI39Hfej7vsyZN3aaJo3mY+3pk728eWiZc49M/hsvb2w3P2tPn4y3TxKRMThSjIhyOYGkqD2YNuIwGv46XfcohycXsOuve8jDIRBpJZzC8hlX1beFvJE/feaokK9ca3w3tzfkRejjNk/DmKWn8DjlRctR0thjZEv1rStpZUzj2KUnkZDyomVYe/pkchpnpuznrNM4Xb2fLZ6H1py+lxJjJ+UgnnuIiMhKsFOMiHI1EXcSft4haDBvBnpXL6q9USdJvnoGp8qUwmvKc5LFIXTpApz8ZIDGbSHpFYZLt1GY212ePeUKNo+Zg3UXH6W8ZBEv0tjmjULKtvTSpXHsXKy7FJ/yktlZe/pkSho76befVan72dJ5aLXpezkxdlLO4bmHiIish3qsqfKYiChHqFQq+f4L5Vk2JF3GhoFfYZPLZ2jnrKvSKkvA9V3LcKzZYizrWFbZlj0Gp9FCsp8+gYTQ39B9VlHMXdRZy1VwTQKJYUvQ2a0vNsUBDt1X4Oiyz+CS4eq+boblnzFpXCml8dNspzE5OVn9v36sPX2yF2mc82tnLSMyNKWksUudftgYKwxKY548edRp1J+1p8/y9D1W9H2fVhaKnUal0QKsPX2yly8PLXvukclpfPliu+VYe/pkuSG2E5EVk05kREQ5yqBQlBgh9oxvKezkGqleP42Fd3Cs8svZJ/8Na5a99CWLxMhdYrx7LeERcE3ZlpVYcXpBVyW/q4he/hdFovKKPrKff4an0V5qoxmaRqlSrTzLirWnT5Y2jfr9ppzGbgbvZ6nRpDzSh7WnL2foe6xk/5hSWDB2yr9vzaw9fbKXKw8tf+6RyWl8uWK7ZVl7+mS5IbYTkfXi7ZNElCs9C92A4RO3I055nrXKcC6t6zYNGyEScP/6ORwOmIX+7Twxce8JbPl9Mw5Hxatbv7oJJMXdRETUQ+X5OSwdMA5z9pzBnQQTX5k1RRrVbzRTGq09fTJdaYy0kv1s7el7yTF2ksXx3ENERNZM6RwjIsoxuSEUWXsas0xfZIDwSKmya/nJfCRIYrC3cNH6e6k/jcXMow+Vd2snvy9LWaQxs8/QJ41ZjXaR35fp1XBrT5/MzPs5qzRmebXe2tNnBeTvog9935eTrD2NzEPjZZm+HD73yOT35vrYnoOsPX0yjhQjImOoI4gU7IiIcoxUmZFr1coz62TtaWT6jCenUar4q/+3RtaePpm1z+vCOcUsy9rTyDw0Xm7JQ8Z2w1l7+mScU4yIjMHbJ4mIiIiIiIiIyOawU4yIiIiIiIiIiGwOO8WIiIiIiIiIiMjmsFOMiIiIiIiIiIhsDjvFiIiIiIiIiIjI5rBTjIiIiIiIiIiIbA47xYiIiIiIiIiIyOaohER5TESUI1QqlfKIiIj0qZoxbhIRvcAmLREZip1iRJTj5MadtYcia08j02c8OY3Jycnq/62RtadPlidPHnUarZW1p0+m77Gi7/tykrWnkXlovNySh4zthrP29MlyQ2wnIuvF2yeJiIiIiIiIiMjmsFOMiIiIiIiIiIhsDjvFiIiIiIiIiIjI5rBTjIiIiIiIiIiIbA47xYiIiIiIiIiIyOawU4yIiIiIiIiIiGwOO8WI6OUiHuHazkloNmAropVNREREREREROmxU4yIcj2RcB9Rl0Pxz87lmNyrGaq1GI/d8U+RpLxORERERERElB47xYgoF4vABs+KKNKwB0bNXY/j919Hg/oVEKe8SkRERERERKSLSkiUx0REOUKlUsE0oSgJURu+RulOvwIeAYhc1hFOyivGMl0azYPpM56cxuTkZPX/1sja0yfLkyePOo3WytrTJ9P3WNH3fTnJ2tPIPDRebslDxnbDWXv6ZLkhthOR9eJIMSIiIiIiIiIisjnsFCMiIiIiIiIiIpvDTjEiIiIiIiIiIrI57BQjIiIiIiIiIiKbw04xIiIiIiIiIiKyOewUIyIiIiIiIiIim8NOMSIiIiIiIiIisjnsFCMiIiIiIiIiIpvDTjEiIiIiIiIiIrI57BQjIiIiIiIiIiKbw04xIiIiIiIiIiKyOewUIyIiIiIiIiIim8NOMSIiIiIiIiIisjnsFCMiIiIiIiIiIpvDTjEiIiIiIiIiIrI57BQjIiIiIiIiIiKbw04xIiIiIiIiIiKyOewUI6KXRBLiokKxf//JlKf/HsT+01GISxIpz4mIiIiIiIg0qIREeUxElCNUKhUMC0VxOObTBnWG71OeZ8LFG8HnhsEtn/I8mwxPo2UwfcaT05icnKz+3xpZe/pkefLkUafRWll7+mT6Hiv6vi8nWXsamYfGyy15yNhuOGtPnyw3xHYisl7sFCOiHCdXtNgwMQ7TZzw5jWyYGIedYsbT91jR9305ydrTyDw0Xm7JQ8Z2w1l7+mTsFCMiY/D2SSIiIiIiIiIisjnsFCMiIiIiIiIiIpvDTjEiIiIiIiIiIrI57BQjIiIiIiIiIiKbw04xIiIiIiIiIiKyOewUIyIiIiIiIiIim8NOMSIiIiIiIiIisjnsFCMiIiIiIiIiIpujEhLlMRFRjlCpVMojIiLSp2rGuElE9AKbtERkKHaKEVGOkxt31h6KrD2NTJ/x5DQmJyer/7dG1p4+WZ48edRptFbWnj6ZvseKvu/LSdaeRuah8XJLHjK2G87a0yfLDbGdiKwXb58kIiIiIiIiIiKbw04xIiIiIiIiIiKyOewUIyIiIiIiIiIim8NOMSIiIiIiIiIisjnsFCMiIiIiIiIiIpvDTjEiIiIiIiIiIrI57BQjIiIiIiIiIiKbw04xIiJLE49wbeckNBuwFbeFsi2HiYQbOLZxPkZ93g517FVQ2ddBa8+hmOL3J45FxcMakqlO4zY/TBnSF56envDs2Q7uTTwx0mcFdp2MQoKV5GUGIgJbv+yBeSceKRtywiOcmNcZTbymwG/rQYRejsSduCT1KyLhPqIuh+KfwLWYN7Q9PpgXgmfqV3JQUjTO7Fou7etP4V7RHipVJbh7jsb8jSGITrLWHU1mpRE3o5VN1sDaY2eujZuyHI+dctz8BB/qFTdPIOWVHMS4SURkGEFElMNyQygyNo3Jj2NEZPhpcWTHMjHJo4Gwk/4ePALEjWTlDUYyPH3JIjFyj5jSvb+YEvCPCL/3WNoibYu9JkK2eIuulewE7JqKIf6nRKwRaTUu/1LSONVrjFgcGCqiHz9Ttsv5elXsn9dbuKKKaDtlj4hMNDyRchqTk020Q55LFLd2jBRV0Fh4B8cq2wxjXPpiRbC3u/pvZPZj5z5J7L6RoPxO9qlUKuWRoZJE7Pk/xPi2VYRd3T5ixprdIvj8VREVI5XLx7dE6J5fxMhpe8VtA7PB+PSZn7wf9KHv+3KSsWnUFTcjldeNZVz6rD12Wi5umoc1xE45bjYWKrncZfIjx809kYbHTflvGHfuSRs3Z5o4bhqfPvPLDbGdiKwXR4oREZlVBDZ4VkSRhj0wau56HL//OhrUr4A45dWcJuKOY8GwINT0mY8xHd9BBYeCUEn/8tmVRa3WQ7F4w0/o5XQYc7p5YNDvF5Co/J5Fxf+HBT4RaDNzIvo2qYoSBV+culQFy6HRgFEY1zURm8f2xmcz/8Y9uQpvJcTtPZg+5GecU55br7JoPGQ59q0djo9KF1C2WdozxIWuxMDWfbCm2HAc3LkQI7p9BLdK5VCqqFQuC9jBoagDsGsxtlxIUH6HXk7WHTdlVh87U+Omt35xM8aK4qYsd8TOF3HzQyfriZvDdcXNsMfK7xARkSZ2ihERmVVZdFx2EbHBW7FszgQM6PoB3ixpp7yW0+Jx4fcViOw7GK20doTkhV21zhg9qi3s8B+WDJgG/0vxymuW8gz3DqzGhB+nYtCIJQiO0XJjX7430LBVPelBBPZOW4Jd156kbM9pIhK75q5GWAl7ZUNOK4PJO44icNlUDGzrJu1TJ7i16ocR3kuwNfgwtv/YE26OOdWwE0i6tgnDO3yN9eXHY/VcT9RyyK+8luLZ2eXoUqc7Zuy9gXuxOX6jEpmVNcdNmbXHTo24OXwJjt7TI25GPE3Zbg2sKnaWwSQrj5sjOg7UK27eZdwkItKKnWJERLYq/gTWbXBBt4aOUCmbMioM19bd0cNBehizEQu3hcGyXU6PcfnUMcTgAvYunIXFf99StmvKi4KvKg3muHBERFtD4y4Jt3ctx/73B6C3c2FlW07LgwIlqqCJx2jM2xSMWKnhGbz1N8wY1gut3F5HQd2FwPzEdeyYMQ0LL9TEV6M+hVuRvMoLL+RxfBMft30Lbl07oqFzIWUrUQ6w+tiZNm76/n1T2a7JGuOmzNpipxw3K1tv3Jw+FQvDaugZN63lXEREZF3YKUZEZKOSr5/F/m2D0LCBB3wO3FRPjqKNqkRF1K3rJD2KwaGgU7iRnLLdMgqjsntHtHWxg13d9mjv5qhst27i3n78srs6vm5aJpNGM6UQiD/+O6YtCAYadEN3HR0NKscPMHrTcQT7D0Q9h4yNPyJLsf7YmTZutsslcVPG2KmvlLg5dcExiAZd9Yqb9YsxbhIRacNOMSIiG5Ucew+XpP/jjq3ED6uCEa2rZZfnVRQtpVxhPn0L2u7EMZ88sHP7GgEhVxGxfwpaOKW9NSTFU8TcVkZCONXH2645fDVcROPgr0dQc9BHcOJZVg93ceT3NTgs7FCrQ31UeYVNYbJu1h8708bNlqVfUbZrsrK4KWPszAYlbkKKm+0ZN4mIjMFTDhGRjcpXuRG83MtKj95Cl2bVUVxXnVo8Q+ITpTXnZIdCFq97y5NXF0NRjYmi0xCROLbjuPSgLJqO+gT1XsvJq+HPEHNwNf6s3B1tyxVUtlGmHp7EzhXHIOCCxjXKIqdm5yHSV+6IndmMm0VyuknA2JktStwE4yYRkdHYKUZEZKvs3sWwXWdwJ+YQFncsD51dSfERCD10Rf3QqUEllLGqOzAEEi/sR0BgDFx7TcLsPrXwqvJKThAxf2Phn29gQNvyyKdso8w9u3wau6PkRw4oU0LeewJJ9y/hyNZlmOfjg3l+67DzyCXcT7Ky5fHIduX62Jkxbub0ODHGzuzRjJuvM24SERmFnWJERLYsnx2Ky8u2K08zEog/dRB/RMiPG6Jf61ooYvGRYplIuoIts5fgQb/F2Di/B6rZ5WCrU771Z+FBVB7QAuXyWVMmaUpGQtQxKa+mY4q3D3ykxpOP91RMnb8eRyIeSXvb0pJw+9IZ/Kd+XBnOpfMjLnQdvFecRaFaHfDlsG/weQc3vHbhV/T4ZCI2hj3IgTQSaZGbY6ccN+cstY64KbP62Mm4SUT0MmOnGBER6SZu4cDadTgNO7h6DUW/+sUyaQRaUhLirv2LtTOX4UaXFdj+Y1dUzdGG3TM8/Gcdtlv1rT+PELZpHqZtikHVnt9i7PBhGDZM+hk+HAPef4hfm3XF94HXkai82zI05jWSiBs7MDuoPL76ujVqlS2CfFI1paCDM+r1HI9ZbcPRp/Vw+J2+zwYeWT+rjJ0acbPzciuImzJrj51y3JyfZdxMUt5tGenj5s4s4+aSUHaMERHpwk4xIiLSQSD+5DrMWvwfUGUAfhzXKsev4j+7LFX+xw9Bb8+++GrYSIwd+wMGtf0MA2ZtxInoJ8q7LE88PIZlO8vAy6pv/cmDvLU/wzivj1CpqOaCBfnhUMsTs35+C7+3/xpzj961YOMpGY/jHiiPw7HZLxzvfeamZUSNHSp388K3BdZgyDfLcTKezTuyZtYVO601bsqsP3bKcfPTLOPmnOB7ORY3tyzJOm4OHrocJx4xbhIRacNOMSIi0krEHYfvhNnY7dQfvuvHolXpnJ/KN2+F5hg6cQ6WLFuGZb8H4VzMWfw5qhQ2De+A2u99jUUnLNmhoxD3cMx3J4r1+MiKb5u0w9tDVuGnjhV0NDzzoli9j9GjfCCGD16C4znS6XQYx1+vh3rFdIxcKVwZ73eogUe752HGliuW389EerK22GmVcVNm9bFTjpurpbjpnHXcHLQEx3Kk00mKm6XfzTJuxu2ei5lbLjNuEhFpwU4xIiLKKCkCuyYPw+AzH8H3D2/0rvaaldw2qUmFfEWroOXI2Vg+pD5wYTG+6DwOay89Ul63hGd4eGwt/Et2RWeXnJ6qOnOqfPl0TwguK+yMOh+6QHV4JVYcuK1sNLd8sC/mqDx2wYd1nDOZ8PtVlHF1lr7IJazx24sLycpmImti9bFTe9z8PTxeed1Sckfs1Ddu4vAKrDxwS9lobgbETUhxcwnjJhGRNuwUIyKitMQDhC6fhIEbXLF4w0wr7RDTkK8smvXqjgby4wsrMH5WIKIsdDlcPAyGr78DBnRxxSvKttzrVZQo4yD9fwK/B4XiYcpGM5Mad0WLKY9TV5/UJS8KvmqX8vDoGVy+/yzlMZG1yE2xM13cHOcTiEgLdpi8PLFTI27uzZm4mbL6pC6acfMs4yYRkRbsFCMiIg1PEBU0HwO9gVHyKIfqRa27Q0xNhVeq1MXH5eXHcVL7bg+O3bFExT8OZ/z3ouSAtnDJb/25lB1R52/grkU6FvOiWOlyUO+67IiJw6MnvBGIrElui53p4+ZuKW5aarr4lzN2Mm4SEeVO7BQjIiLFM8Sd8IXX19fQY7213PaThLiIMzh+JgoJmdXlC7yON993SXkcdwrnrj1OeWxOSeexfeZo9Kj4KlQqlY6fcui0/JL05n0YXsf+xXbPDYhK+StmJ2IOw6ddDVRsPQFbL+t5i9TpW7hnkQEFUsP8jSporAxk0N9VXL+dsxOEE71gbbHTiuOmLBfETs24uSVcz1vyGTeJiHIldooREZFEICHMHwMHnEQ7nY26uzi27SjuWOxCs0D8iQXoWLUa3Kq9i7bzjkG/Lp2CeMUSkzbnc8OwiwJCZPKTGAxvdZuzMbyDY19sX9YRTuo/Yn7Pwv/Gws2ncWnbcqz893YmEy0n4EF0bMrDOmVRMtOJdExH9b+qaNTASSpvMbh+R8/Gp50rnEsXVJ4Q5SRri53p4ub849DvqLJQ3JTlgtipGTdXWXHchBQ3bzBuEhEZhZ1iREQ2TyApag+mjTyMRr/N0D3K4ckF7PrrngVPHM/w4FIodsfJj2Nw+2my7gmPxRM8evA05bFDNVQuy4p/KlW+AnBycYGre1d0qVtS+76VPbuJsEPh0gMnNGtWC69bqH2MPBXQuMeHsFNdw7HL0dJe1+UpYm7fVD+ya/MeapawUOuTSCdrjJ2Mm6agGTc76xs3m+ZA3ER24mYDxk0iIi3YKUZEZONE3En4eYegwdxMGnWS5KtncKpMKRSxVKVfasq99oYr6tvVRefvfsbCHjVRQHklPRF9Dof2R6gfO3T9AG85sOKfKq9rPbRv74N9e6ajo7OuNcoE4kN2YvnBGAjXbhjY0sWCFYQCqNCqF76skoSQ/aG4oWtIhriFU/tPS/+745sBTVDWYuWQSDvrjJ3p4uZnNaCrqytt3Gwsxc186sekETcDp6OTi66J7F/ETUhx8+sciJtfVUlEyAE94iakuOnFuElEpA07xYiIbFnSZfwxfDT+Ll0aj4J34o8NG7BB689q/PTjWuQvU0z3qAOTU6Hw290xYWATtOjWDu866egSE/dxcu1yrJTaJXAdgF+GNUFJVvxfKPwWPD6+CJ+lJxGno+Ek4o7Dd+JPOGzXEuN/GYoWTvmVVyxDVawhBs30Qpk1czF72zVknO77CaJ2+WHWmqdoPPkHDGnoqHvkBpElWG3sNCxuLhjeBP9jq+CF1Li55CRi9YmbC75Bi9KWXUdTHTe9B6Cs/7ws46b7lIkY3CiTEW9ERLZMEBHlsNwQikyTxkQRGxki/AfXV/89VBkq1pyMFLGJycrrhjMofYkRYs/4lsJOToteP42Fd3Cs8svZI/++oZIfXxY7pw4QXjNXiz3B50VkbKLyyjPxODpU7JnbW7jK6XP9THj/dV3KZcPIaUxONn5fPJf8WNw+ulB0dZDzzlV0XXBE3H78THkx+4xKX/J9cT5ggug1ZJHYGXJZ3EtNR+IDcfXoejGlay2j80+mUqmURwaQ0nh6+UBR16GFGOn/j7iq3s/JIjH2qjjqP1q4270lPOYdEDeMOF6MSp+F6HusGHNMWYpp0pgxbvqfysG4KcsFsdOScdPkrCV2WihuGpw+mTpuDsoybkYacbwYlT4LyQ2xnYislzqCSMGOiCjHyCtKWXsoMjyNcTjm0wZ1hu9TnmfCxRvB54bBzYA7WAxJ37MT81C39mD8pzzP2hcIiPwJHZ2yn0Dj93Ei7ocHI2jXLuzftw9b1+6DvC6ZzM6tPfp264men7XA206FDb4SLqdRqvir/zdK1AZ4lu6E5crTjFzgEbAXyzqWVZ7rx/j0JSMh4l9s/mMTtv0RgOX7LsiZh1bdm6HZhy3Qonl9VCpq3AixPHnyqNNoOGk/hx3E5nUbECClcfOxWLg07ohPOrTCxy0+QoNKxWDMDV7Gp8/89D1W9H1fTjI8jdYbN2W5J3ZaJm6arBxaZew0f9w0Ln0y88ZN49NnfrkhthOR9WKnGBHlOLmiZe2hyNrTaJPpE08QF58Xdq8aU91/QU6jNVf8rT19MmtvmLBTzLKsPY02mYdmiJu5IQ8Z2w1n7emTsVOMiIzB2QOIiCh3UhUwWcOOiMgmMG4SERGlwU4xIiIiIiIiIiKyOewUIyIiIiIiIiIim8NOMSIiIiIiIiIisjnsFCMiIiIiIiIiIpvDTjEiIiIiIiIiIrI57BQjIiIiIiIiIiKbw04xIiIiIiIiIiKyOSohUR4TEeUIlUqlPCIiIn2qZoybREQvsElLRIZipxgREREREREREdkc3j5JREREREREREQ2h51iRERERERERERkc9gpRkRERERERERENoedYkREREREREREZHPYKUZERERERERERDaHnWJERERERERERGRz2ClGREREREREREQ2h51iRERERERERERkc9gpRkRERERERERENoedYkREREREREREZHPYKUZERERERERERDaHnWJERERERERERGRz2ClGREREREREREQ2h51iRERERERERERkc9gpRkRERERERERENoedYkREREREREREZHPYKUZERERERERERDaHnWJERERERERERGRz2ClGREREREREREQ2h51iRERERERERERkc9gpRkRERERERERENoedYkREREREREREZHPYKUZERERERERERDaHnWJERERERERERGRz2ClGREREREREREQ2h51iRERERERERERkc9gpRkRERERERERENoedYkREREREREREZHPYKUZERERERERERDaHnWJERC8lgaToEGycPxJd6pSGfZ3W8JwahGihvEyk9ghnVgxDF/dKUFVsDq8pftgV9kAqPRaUdBsnNs7HyC7vwN6+Dlp7+iAoOkl5kUgm8PTMKnzdxR0VVZXQxGsK/HaFIc6iBZUxlfTwNBQrvu4C94rFULGJF6b47UZY3DPlRSIiskbsFCMieuk8Q1zocvR/rxF6/lEIPdeexcPgrVg2pgkcVcpbchX5+/jjB78TiFe2mI5A/IkV+GHVSQs3sK3Fq6ja0we/7z2PxMMT8dbFn9DCrTW+CriIROUd5iTiTsKvfwvU7rkdBXquRNTDYGxdNgxNHPMp78hd5O+z6ocVOBFvhsIUfwJ+P/gj1CYb2Cq8UvUz/PT7XlxMPICZb13BjBaN0eSrAIQnWuLATRtTPX4/l7tjqniA0FWz4HfiobLBlB7ihN8srAq1cOe6tXilGnr+9Dv2XozC4ZluuDijE9yaDEdAuOnPXkREZBq5v1Ms/jjmNe+Gefqe2EUkDiyaipFeveHp+Rla1/kMfmEJyotZE1EHsGjKSHh5esKzZ2vUaemHsGTlRVOIP4aFfT+Be0V7qFQqqEqPQdBDfT/gAY4tHJhyxV/+XVUdjAy6o7xG5iXn/SClTJVW8l/+qQT3Lj2l7VJ5Sf3p4o5K8hXmIVPht+04ohJMWYBMRf4+gzN8H/t3xiMwWyM4EhG19RtUep4fpVGn9WfS3/0BWyOeKu8hk5Pi4sL+Q7H0zmdYvHQU2ri8JjUps/bszEI0er6v0v9UQIcVF/CitMbjzML2Wt4n/dj3xIrwJ8r7jPUMMYfnYdC64ujfsyYKK1tNR4XCtbrg81J/YtD0g7hns6M+VMjn+C4+n/szJtc8gwW9pmHDNXMfow9wfOFI9F36GL0Wz8e4NpVgp0dBtc5yKtUPYg5i+qA/Uap/F9QqbIaeksI14fF5cawbNA+H79nwyJN8/0Odz2dg2eSaOLpgJL7bcMX8nS8aMfW3JSPR2rlIljHVWsspxB0cnj4O60p1gUetIspGUyqCWh5dUWrdOEw/HG2bHWNqBeBYpw/mLvsONY7ORq/vtuDay5wZRrVf9JX72jki4QaObZyPUep2Z0o7oPeQaVgeFIb7SVKBSLqMDQOnG5FXbPuZnpCK8yL0VY9MTonDpUcG4UVPg5Y8D4xWXsstUtqt6cuN7cZricjVksTdwO9EFdiJ6pMPiUfK1swlitjoSHHt3DYxuVk5ad93Fr7nHyuv6SExVkRHXhXntk8RTe2kstPMV5x/prymt2SRGLlHTGlbXbi09Rb7bycq219IfnBITGlQTMBptAh8kM0PSL4rDk9pLn03NzEiMFrZaKuSROzppaJXw2ni8KNkZZuZJV8VAb2ryHFFOI0IFA+UzZqSH98W5w+tE1O61hJ2dQeIBYduSCVTl6zLi1nJ36dfC9G4YVnpO7mI7v7hUor09DRULBneQ3R0kuNsFdE74Kr+v0sGSwz2Fi7yWb2rv7hmSIYnXhVbhtRXl2HASbhP2SduJ2r7Q0niwf6Jorr8PtdPxeQ1B0R4bJLymikki8fnV4re7eeIow9M+Xe1kOLmUe9eovfyUJGNM4JVSb76h/jGa4pYtuOoOH8tWsSq95kUP2IjxfngHWLZpC9EH99Q8TTl7TrcF4cnN5L2ey0xeMdNZZuZJAYLbxe5jPUW/tcyT5VWVlNOJY9DxfLevYT30btmjnHSdzk6R3TovVKcf2zeT7KI5Fhx9XCAmDfyazF43DQxc9w3YsjkVeJwZILyBl2SRcLhKaK8tE8dBu8Qd5Wt5qIZU69mt85nTeVUxIrzy78W7b2PiPtmLj7JD44I7w5fi+XnY5UtuZEUP2//J/6YN1p84eEherRyF+6dvxAj5/0hgiMf6XesJxwWk8tL+9ThW7HjrpnPY1ZA3X6p72BY+0Vf6nZOM+l4suZ2jlx33yu8uzYTvRYeEjcev8iL5Me3ROieRWLchFVi95pvRBVT5FWOtv1yuJ1iNlJMPjxD1Jdistb2nGY53HNb2ZjLpDuWLF6rSIwQgVM6iYouncTU/VGW/3wNuXukmLiLkF17cQ5xOO2/Dyf1ul0hH+xKOKFs5XdQ/62SyrZsyGeHEk7lULlBPbxlr2zLticI3/4rxm4+jUubf8TkLReR/pqvys4BpewLKs+ySVUYxUq9pjyxTSIhBtfDDiPA53M0qdcLSy89RLx8RcYSpPwv6viq8kQ7VUFHVKr/Ccas3IqNLa9geLNeGLHlErSPy8i6vJiV+vu8g888WsBBdQlb1uzFBb1uVxF4GnYC99/9CFJjQvIqHIsW1mvEEplIgfzIZ0iG5yuLZr26o4H6SSyiElQooPUPPUH0lSuAx8/4e58fxnZriAp2eZXXTCDhFJaO2IKqY3vCrYgJ/642qmKo8+VA1F41DUtD45SNuYtIuIfTC8fCs0VdVC7nCPv8eaBS5UF++9KoXKc/liZ2xGSPN5Ffeb92eZG/gHzrYhxiHllqNOcryG9IQbWWcirlVejSaVhZ1QufuxUzc4zLiyJ1emNC7T8xYukp6D/O3fqIuNNY+00fjDpYCM1H/Yg5E0dh+MRZ+HFwdZyb9yv2ZzoqWYW8+V+RcgOIiXkk7WELMSSmWk05FUgIXY0RK10w9vM6eM28BRWqIu/gywmVsHLEaoQmGFr/uosD4z9AxdYj8eu2E4i2VD1OTb5ldiVGTDuOUp98hwXLlmHF1l3YPKMbXg+eiLqVOmH0BqkFklWS8uZHAXVBjcOjJ5ZMf84wqv2ir9zQzkm8iICxw+BbfgRmfV4fpQu+aHKrCpZE1Q/7YZxHXqwev0hqx5pAjuZJDrdTzCYv7IqVgM7m/svQ3s7h75Acvgszxgbg4qUAjJn8Jy6YenBpNuTqTjERcwq7Np9MeXJ6KzYeyS3DtAvCtc1XmNq2OlzaDsHIlhXUFTsyAXEVW0f3x4AJv2DDwVsoUaUyilpz+zZfGXw4ejq8m1zA7E8HYupfUVrKsDWUl0Ko0LQzPq9ij7jAQBy8/FjZnpmHOBV0DzXdnNgRluuo8ErN1hjU3UV6FIdzP23A/tvpG6hPEBX4IwascMHPPp+jQekCynZTiUfY6pmYW/ozfGb2jgZF4Rro/LUj5o79HWEWmafIEuzg0mokfIP2YvP3zeBkSOeT1bKGciqQGPY7xs51xMDP3kYRi2RvEdTs3A2l587E6rDcOU+RPPfakoG98L2qN+Z82xKViipdtUnXsXfeJEyePg8LgyJySZ0uK9ZQTiWJZ7F67CqUHtjJ/BcZ1FQoXLM9BpZehbGrzxo4R2Ex1B84D3PbAFsGN4Rzg37w2RBigc4xgaRrmzBiShw8J3qinlPqBb18sKvQGF9P/wEDSv+NGZ7fwOfAzZeknJLpPMO9A8vx/ZJSGND9XRTTel5QIb9zG4wa1VY6S+d2+rVTksP80DrNbYi6Zee9lHvlcf0Y303thIounTBlZDM452DPVC7uFEtC9KHtONV/JqY1cJCen8SmXacQk0vOTCrHDzB60ylc3DQCTZzMUPmxVao30Hrab1g4YywG9WmPRpVKKBUZK1awBjzGf436cdvxg9cv2KtlrhhrKC8qh+po1rYmIKXTd0eYjlFtGuLPYn+SG+oVy50TZts8VVm4f9oaDvIBFLMJvjsva8x/kzLx/dj5Koxc9i3eN8Ok6CJ6PxZMj0QPj0ZwsthBnB9OTTqjx6XFWBBkaENHypuwIzh4+WGONJTyj9iO69HXcD4kGMHBJ3A+Mgrntk5HH3cXvebrynVyuJxC3ETQgsW41KOzFJszH4NnSiqnRvDoEYnpC/bn2OqHIi4cBw9eyP4CFVKeHfAZhcF/v4+Zwz5ESc1y+TQCh/134pLy9KWR0+VUrjMHLcP0Sy3g0aSM5epFqjJo4tECl6YvM3BFWXmuw1po9cUMbAkJwWYvR+wb0Qglq3TASL99uGy2RSceIHhFAIr064SaWkbrqZzc8flXH6jrQ7OmbMKZp7mk8UEWEouwwwdxDoVhVyiz47kwXFt3R4+XoBmYdTslCXfCTiFUeZY5+b0n9Xwv5WqqUmg0ej0uXFyPMdK5KSdbjLm3U0zcwr9/xqFTqw5o2VUelB6Hc5v2ISTm5RiwSbZEhcI1PkS3Bg5QnVuJeRvPW2TVt2xTlUS9zh1QHzE49Nt2HM/0duVnuHfkGPK9/6YZJkYny8iHku93xNdV5IHjV7Bx4Q6cUlf8U66gD+9/GA2nfG2mTtqniAhaj8UlWqFFTQsP6y5cA637F8PiZfsRYVA75yHObZ6Gls5V8G5vH2w4cVuq3lnSK7AvURaVarnBza0mKjnZ5Wglw/xyspxKnxKxH8sWvwbPFlUtHOtew9utO8Bx8ToEWXTREilfo0Owwacv3nVyQcvxW3E2Ljv3OwjEn1yHybMOoLxnZzQp/YqyXVH4bfTxW4KFv87H963KWf9FLb3lbDmVCiqClm1GCc+PUNMci0DoJNVv3m6J/o6bsczIkX8qOxe495mOrecuIWRmQ9xe+Cmca3+MAT4bcSLaxDfQJt/Emf17MaNdJ3y54iRiMyT8Vbi+0wDVpUdxuwLxzxWL3cBLuUIS4h/GSv+fxdGwu5mWe5VjNTRu+BL0imUl8TL2/rEfeh0p8ns36PleIhPJtZ1iIvo//HnrHTQsXxJvftA8Za6Gczux5ehtjatvRLnEK+Xxzse1pAdXsMk30EqvOsqdd03h0axs1rcri9sIDnZAkxrmWNmKLKZILbTt0zDl8aEN2Hr8PpKi9mBSf3+4zJuK3tX0W9Uy2xIvYo//XyjfqgHetGgDTiY3dt5D+S2bseeCIbemOaDOsN8RHrIYfUsexIjatdHAczKW772U/RE1pJ+cKqeIx4U9W7Cl/Pto+KalY50Kr7jWwcfl/8KaPRctcCHlGeIu78PyyX3QwLkRRuwrgb7+IQjfNQR17bNRlRTROLLGH7vjyqNhrXIopGx+oQCc6nTCF5+3RCWTzqdlBXKsnAokXtiLNVtKoVVDV8tfqFLXb0plYz7SLOQriVodh2HJoRMI/aULiuwbjdrOTdDb2x8HTDVCNyEGUZGxQNxBLJy5DaczXARUoWCx/6G0+nE4zl/PnfNQkrnYoUxlZ+n/01i5eGfm5V5VHFU+qozXXqqpDdISCddwYOE0jF9yXNmiW+p7xy35T9lCZBm5tFPsKSL2/omoVvVQ/hWpYvjmB+gpN9RxFMs2HkN0tnvFnuJ+WBD8JozGeG8f+EwZCS+vCfpP6pl0D2FBfpgwcgK8fbwxZeSX8Bq/CNu0jRCQlyzu9xla1ykN9RKoxixZnHQbJ7b5YcqQgRg5xRs+3j9g/NRVOBjxSHlDesoSsz1bo459yhKzqua+CHv+8VK+bv0BHq3rwF69PGtWS9B2gV9YQko6NszBqFGTpTSMhVe3/hif6bD2lCvNG+ePwYAh4+HtPR5DBnwPv4PXkJB0F6E7A7Bu53YsH9kfo7destioKRH9N+b3dkeD3r/gUIb5PsytIIo5Ocr1LODkvzh5Xbnyn53yIu8HednnAUOlciyXw4EYMmU59pryNq5XKqJJ10bS6f4kNmw5jjs6/rCICsY/JWujknR86u8Jok9swvxRUrrHT1cfhwPkZavTdyakX/a7uZ9UhlNHL4zFKOlY8B43AN16T4Bfph0RaT/Pe/xQDBi/TH38JMWEYufvAdi5ZxlGfvo9tl5O1zmiV16nX9K5NJr7nkWy+nM3wmfUGEzxmY5xXj3Qe7yfafeTyRRBzbafoJ16wot9+NnvZ/h8+xswYhaG1DHfPF8i6hQCAwvqaDS/IGIOYmrzvlgRrs/1RKlhGL4WfSoVQ6XeqxCmc+JnFQo510DD/P9gz3+3DNwnBeBY62N8MSMAIeGr4VUqGBOb1EbtNqPgtysUdyw6WbQtyJlyKo9Y/y/wH+RvWAPOhXR/innKqaRQOdRqWAiBe04hymxF6gnunNkNv5GdUNu5DSYe+R+8NocgZMsMfNGqFhyz2ZBTzwW7SZ4L9k3UrVQ8d09sm205VE6lWlTUf4cQmL8WajlnPnuRuqw2M6ysnn+sqxDawblWLeQP/Bv/RZmwRpfPEVWltM7Y8g/CN/dFmaM/4mPnd9FmpAnOp4Wqov2I3qjr0BBeI1qheoaLM1Kd4/EjpHSF2aNIYUuMx02pU/RLU4eX6z/Ky0odvmemdfhBJqjDy+Q61wls85sq1d9HSnUZH3hPmICpKw4i4rGBbRptst3O0aRfnVJEbMVojxd5qs4z8RDhO3+W8mQMhnT5BAPm/4WobJ23C6D8ux+imXS4xW36Hl6TtuFSrK78LIJant3gpvUCYPp8noyRA77BFL9dOBOTxbGk7341tk6dWTtFRCFoqhd6fTEOi3aeRKT0u7GBP+IrT094Kj99Fx6Duoad7r1R0iad7zWAiLuEvX4/YMhIOT+kdmefoZgil9cEE5ZXrbJRDjWO7dIjA01QDjVk91hSz9Ht+Xy/vjgu5mPogBEYL7V7hmpNT0rZed7GTy2zy9OXvZR49CJe1cHIoDvKazlEWYUyd0kOF/6f9hG+5x8pGx6J876fCin2CDgMFptv6rO0e7QIHFlH2pMtxXdzJotRvsfEvedLZCeLxHvHhG8vN+Haa6k49VDLEsoPAsUIJ+nz3EeKOZMnCt+QO+LFArRPxb0QX9HL1U308g0RsVrWF81yyeJnZ4Vv89I6XpeXvj0g5nk0EI2H+IvTGulLfnxZ7Jg6Ugzp31D6brqW5U0SdwO/E1Xk/Gq2WJzP8PEv8jOzJWhV6Cx8T4eJIN9VYv+1OGUZVSltV9eKXg52osrQ7eJWhu+eLJ5eWi++fMdVNPU+Ih4oryfHBot57RqIlt1niJ23pJxMvi62eFUX9t3XiKta8k9fz877imby98xyuePH0nfuLB/Z0o+TaLb4jDB8cWSpbI1wU/8trfmn1TOpSI0WpVXy52fcb1mVl+TYE8K393vCffx2cfX5ss9Pxd1DPqJplf7Sfrqv7B9DSN9n9LTnn5t81V90t5PS6TBABNzQdqw9EVfXzhVrrz5JeZp6rGS2THTyfXHat7+o4j5RbL+iUZbuHhTeTRtoPY6e54lUhk9f3yd8l+wX155/98fiqv8XwgH1xdDt17V890fi0vqhoq5DO+F99K7yepKIDflZtK3STHSfsktddpNvbRFeDi6iu3/487+hzuteDbKR16lLOsvl6ri4HrRSLNl/VTxOfVPiReHfq4pAlZFih1z2TSAx2Fu4yGXZI0BEKtsMlnxVBPSW0qc+NlxFV9/TIl55yTwSxa0tg0UxlRRfpFaWTsm3xf7xTUUlrwBx9XnszkyCCF/+mfI9Woi5IXHKdi3k+NvMSTh4bdESwwwhleXb/4kA7z6irnTs2NXtI7wD/hO39Uq3/uR412rELnEzMlj8MW+cGDFumvCeOU4MGTJVLAu6qPVclFGsCPZ2l/LIRXgEXFO2mUlisPB2kffHFyIg0siyb/FyKn2kFB8GFCstmvme1X2+MGc5TT1vSfWeLSaKHS8kiNshfwhvKdbZSbGrbi9vERByS6OeY4hk8SRknmggfzf1uSxB3Du9WXgP/UaMmzlTTB4xVIyc94cIjnyULoZqZ9I4lwXNz7phzGGbA+VUXZ8aUEM6V/pqqe9pUJfVZsLVwLI6579YZXtGKXWx6sJry3Uj6lZZMUeZ1UWq5/j3TWl3VPlOBN7V0k5IZco4p6ZZh9e2T1Pq8FLbOtM6PDKpw/cuZq+jDi9LEJGHfhYeUl1pyJqTGueVZ+Lx1R1i6oghon/dTNo3eknbzgmNzWY7R6lTvinVKXdcTVenbPaeVKc8ke58KLVNpDLaTjo/O43YKkK3zhbT9kSIxEeHxOTqdtLnNBaTD8co79VT8g2xY2h96XflfS+d993ai4HjfxLLNweJ4PPXRczz+qMuUp309FLRq0pLMXLdSY02qpTP1/aJeSNniz2RCco2mXw+6JKSJ9uDReC8RWKn5nfXaJvd1PLRxtWpNX5f635/0cbJul2U8l4nKc/0b0NlLvn2XvF976kaZUHapq7Lp7TzT2uUr/RS25Ha05LadpTyfM9tZZsGjbZNhnKobttkVg63mKYcyp8nH0ue7+l1LGXYt09DhW/7CinHxZbRov34XSIy8Z44PFmuJ9YXQ7Zc1YixqWW2lRi/47JGO+eWOOTdXlTRltfP+xQyaSNaSK68SCci/sXm+PfQsELqGIJCqNDwQ3woXwCL2Yo1e7Mzb8Fp/JP4EUb3fhsOz694qpDP4W30njEZrY8MRcdBa3RfrT16DonNv0LvWsU15m3JD4daHpgx/yP80683Bq48k2HZdGOWLBYP/8Ucz08xJqozvH/4BNXsX9xioCpYHs2HeaBG9A1lizZ5UbRMBZRTnmVUEKXKv5H1ErSq+whZsQ6RDdujUdlXlaucUt6VfQ+dupbHud/WYW/6uU4Sz2LFN8Ow4MJH8Pr0xUpdKrta6NrvHRxZswC/bA1Doqo0WngH4vyCTiin7eKJyRWAc8svMEVZOWVES+ccvIIdiZArd9LcBpxpeUm6jD+G90G/w+74bnBTlHu+7HN+FKvXE6PahaLvJz5aJ/A3hKrs+/DsV1c61nZh/YHrGW9Xlm99O/E66pVNN1eMTgm49scEdOgbinbffYFmb2iUpWL10GdUE+k4+hKT995Oc1w/z5OnwVjx2000/Kwhyj7/7gVR1r01ujocxm/LD6SbG0peLc4f3/SajYvtPfDp85UN88KuZjv0bxyJNdOWYuuFeKhKtoB36N9Y0Kl8ynvkvB7RF32PNMlGXr9Y0vnpibX4LdINnzUqh4Kp5TrfG3Dv1BwO59ZjWbZily4CT+LjIB95Dg6vSiXbSKrX0bhrG0gVFEkc7j0VZl79NAFR4RcRU6oiypfSVYbk24G2YNZvzpg4qiXK6TVapQDKdxiKeW3LS48T8DSzq215SqB87dKIOXkZUSZZhVKeLLo2Og5bjEPhIfDvW0I9WbRzvc8wzsSTRSef+h2LtjyCW//vMWPiKAwbPhE/TuuCIpv7oe33u/W4ypgHhezkedye4sGjJyYoj5l4Eo+H6oJqh1cL6LMPM2HxciqVwajLOBnjhNrlS+g4X5i5nOIV6VxdEU4xFxEelb6WYSDxEJf3+mFcF6l81h6NfSU94B8SgkNLhqFjrZJGzk/3DPcjLuGs+nESYv5ZAu9/XkffmT6YOHw4xs7wxndNHuDnT77ArP03spyLT1XILmV/P3iEzAbUGc+EMdXi5VSSGI3wkzfgVLs8Sums2KSU1R8XV8Ck0R+bvKzmKVUetZ1u4GR4tBlH/8sjdNtj2JIgXA5dBq/nt69Pxdpjt0w7t+PTc/hzyW5pD5ZF0wEdUK9YJntRVQB2TvKCYHF4lGCKWG+iOjx01+E76qrDS8fww+AF8Gw2HVF9J+L7rjU0FnDJg4LlmmFY3xq4fTZG2WYYzXbOzO8/QVWNW6mft3NuX1e2pPeiTtl27OdoVi5dnXKkO470HZCuTqlCfqmMVpYz7cYWLNhbER7uZZCvUAW8/2lLuLVthfdd5EZmNkjtmGYTF8K311vqp3HHNmL+xK/h0bYJ6lQuA4fqLTHAZwtCtY74EkiQ6qkDpePrSLtvMbxjDY02qlRHOhGEXQETMcTvuJaRU/dxaulqXHi/a9rvnqZtlnEkqOF16hTGtGvN6yFOrvkVf5d0RqlC+ZT8kNNbAz1Hf4mq68dhoM8BMyxYI5fD71+0bdKXQ6ltk1oOX7SjNMvhVnU59JQnn1fKYR0DyuHzYynyE3WfQfaOJUn+kihfubiUnk2YNe0J+no1hlM+e7i8/zHaupVByddeUc5hImV+THWZHYrBzcprtHNKol6fr9HuyFB8Mnkf7qZp4Kb2KSjPc5DO06P1kufw2AV0c4dr/udFG/kr1EPbD+UT8yVs2fxvNiZILom33nbRuoy6qmRDeA5ogIvL5mDOnusawVODfVW8Xamoln2ZDyXdu8GrwVUsnbQYe0w2ZFw6uJdOxw+7X0Gbvu20L6ud3xkN29RVnpjTbqx8UBNNXdPNUCFVAAoXkaqNceG4GJk2XCdHHMOWwCsQdd1QvZTmSl35UKJSDdR9PqeWtMWuJJxes9RqXlKQcvoQY5SVUz40x3LoZvEM9/b7YezCcNT36oiG6StmKkfUa98a1c9txLpDJlo2XFUSdds0RxX5WJPnCEkz/5lUsb58Arcb1ENZPQOcuPc3fhnriwsNuqF7Q8d0QSkvitX7GJ9VP4VF6/7VftLadxAP6jTUiAcpVAULo4h0fo47FY7INLd1PEXEP/sQGOeEug2ropTmr6mKo1LdN6VfSllh84lULu2c/qfM9ZCS198tvIQGAzplmdcZB2RHYd/KBNRpWhFpS7VUkSxcWKpy3MKpizfxWNlqMBGDUwcOIwJu6PZRVchVcaOIBwg/FQZ5ylj5O+xevhMnHxlQkpIisHNUe3htzazDXpaAuzduAsXtUVhnw0yKg5u3AJMHocMbmd1gmZbK7i14Du4uNUgroGzJzI7xfFIMk2oll6Nw16StbSnOaK6k9mU5/De1DZxrd8JIv904c8e4aWVVJSqhZbOe8Or/vkZlVtpe0BmtBvTEa7M/h9fiU1IOZ6YQytdtiPpSCQoM2G+aOYC0khpXpw5jT4QdXLt9gJoOWs5l2WFkORVx57DV50s0c2+HHvJwfvt30GXcchyJ0rVPpEbL3ShczvTWKXOXU6k8FbZHcdzEjbsJxsX3pGic2eWLkW3ehXMTb/xXwQubw//BlhlfoJXRnWGpknD/diTUzeWEg/g5oDA8e7yl0djLC7tq7fFVh7sY3m8S1oRlPk9T3vJuaFdfinCBO7DXoPn/9JQ+puoKS/owNp5Kvx+2dTYGNGuC1j3kW21Ko06XcfA7Eqm70yfhHiIvJ6J4kUKZ7MeUsiomDUTHcvo3bPUuq/kKoUjxRFy+cc/MHZiyAihR9X20+dQDfbqWxNHlP2HWprN4aLLPTUTUrqWYveseXHtNw0+fv5X5PG15y6Juu3elB38jYK/lpgTJWkod/qOK+tfhEX8CS8f8KP1mU/Tt8hZey3AsSO2xig3QtkFKt69h0rVzXtPRzmmrvZ2jWafs1rBkuvZZSp2yR/WTOuuUsUeuo9wnDVFaPoWqV8b7HcGbhqGRAavCquxqos9vOxAS4AMvd1dlq+LSLiwc3hb1Os1AYPrzTOJZrB7xHZZGtcTwPvVRXLNiLC80t3oVtl2MwZXQa1qmMbmEA3neQcua6ea5zGy/asp2ndrKJUfi2J/7sXtGP/RYpNmJKJVVV3d0b/MK9s5aYfIFa9Tl8LsXbZtMy2HGBsPzcqhefV0ph0ezXQ41jqU+bXX3Geg4ljTFHtmHsx9/gpRVtvPBsdEwbAr+HaMblUr5biIa+3/5EQsvNMCA7u+iWNovDFUxN7TvUQvnFm3BoWjriYKacl+nWOIVHNxSAG3rv562gOUvL+3UBpD7T+O27MZhkxTuwqhQvaZ0sj+GFYt3Z79x8EoZVG/oDFz4A4u3XzDJiVDcO4o1C/YgDm/jo7ec0h1kqRJwLypaeWxOTqhbtyJKaE+EJBYP45M0KupSI+L2dVzMaj5SkzdEc5vicC5pr2PfpiOuYffiNTgHKahVL4OM42pUKFTaGTXsTmPTgfNKRdxYqcHcDnGBfyIoTPN+9Ec4s+8+3qmvBMksPUXE7tX4+VwcnBpWQwVtc5AVKoWKNf6HmE2HcDpWy5lDmZtG5+fdjUN8mivYj3H72nXpGMpMTMbKe2peCz3zWlsRrlsDlUroOqHF4e7Dx0ZdzZbnTAiaPwweY8/Cffw0jGth5NL7UgMsdMlYDLrUFktntkzZdngjNh+7m/JYH0l3EHZgPXz6d8MnM07j8ZMsrpSLWERH3AdK/w/Fnl9mSif+DHb4V8KA9pUz7gc5zau8Mf/IHS2dBHlgX+FNvFOrKiqWzKxioczxF3sL0ffNM79gxpXUPFGtQhP0NmIlNVWxhhg45H04Zsi2lIZKmwZPsfnHpVlcpJFXi+uH33z7w0meC2XcHwgz4Ug2NXk0UtAvGOgxCafcR2LBuGYpFT9DGVtOE85g5aCZOPnOWPy5dxNWbv0HUceG4/WdQ9D0M++MDRa1JNyPviXFVEc4FdPRiWD2cpo62fd9RETHGtYppp53xge9G9RCtU5+uN14GkJuh2DrjD5wr1DEuPiRmZjbKOXeCK4ZYn4RvNmwEapfWIVJCw5mfvW+8Nvw+m02ejltxmCvKdgQ9sCwPMiEtphqcMXZ6Hgah7CV4zD+5FsY/2cgtq7ciqNRezDi9f3o27QfJgVe13r+EPejERFrj9JODlJk0yG1rLarnO6ijUTvsprJRcyCDnAqbY/YiGjcN/VOSkOZs7N3EzjX/hobC/VAgDzScWLjDI00wwgkRe7EzOFLITzn44/53VBJ13nqudfwttcM+PZywKbB32LchnPa6wcWp9ThdRbolDr8C/Kq4n9gwe4IoMF7eKuMjpHcSQmIizN85Gr6do725Olq5xhfp4yLrwm3qiZcOEW9MMS3WBB0BrGR5xEcGABf72/R2U0ZL7p3HNoPWIWw521MgadnAuG76QpQsx7cyqe7oKIqh1ZTFmPZglXYPKWllgvQTmjwUS2U0VksYxGbZr+ml906tZXLUwYNe3VBXdfm6F6/bNpzscoejmWLSjshi47CbEsph7+ci9WzHGasY5miHGoeSx8a2WcQd6kIGtXXvVCLiNgL318OScWvJqpX0Pauwihd0Rl2MQdx8LRUx7dCuaxTTB6FcgRbCn+A+hluzSoM14/aoo26VyzIRKsx5YFdmYqoIRWjuP0nERaT3YaBHcpUklcfuYL9R8MRY3QMkb5/xBkckII9HEqjZFEdlWXxCHdu5PBkdVopE1irR5E/wmMdQdWucS1UzM5qVi+F1AaW7A28WVbPVahiL+P4vkvSA2dUKqN9SK2qqCPK2gNRIVdwU1ufkiEK10T7r5rDTjrWVmw/8+LKS/xp7LlVGbX1HvXxEBePn5ACthNqVC6t7tTOIPWkFXURV26aorM7ZdJfB+lEIFfctFcNXND47Qqw19wJSl4LKa8rWzKvsyTFhbDf8U0Xd7jaV8SHY2+i+55D2PVDUzjpdQuMLk8QFfQTvjtYD795e6JDp+5or/7aB/HTmsO4rU88izkAn/7j4HvgDkrXrqbfqDXxBI/uyiVK9wc8u3ICgR82R31tt6zEHMHiQXOw9Yy2BhyQ/DAGkY1roII+t+vFxeKRuSdhfb6SWghC/D1QUl5JrWR99F5xxvhRg5qUW0JxYTe2HUt7K3IGqtdQrc98/P3vKJRc1AmV7cuiTuu+mBoUlfnvZSXxPNZ+0w3urq/D+UNvRHTfgLBdY/GhU2ajobJibDlNROSfv2L1O99g+PuvKyNp8sKuUkeMm9QP9ntn4Ou5B3Evw99JRsKjWCl26WaxcipF4LvZvtVVvj1nFXpXdUHtEQdRsu9ihIQHYcmw9qjlaMz+yEweFHzVXonzZVHtDQctldDUjr44XFi2A/9EZ9Z4k0eWeeC3v3djasl16FS5KIrUaQ3PqUFG3gpjjphqfDwVkbswfXU1jB/+wfN0qOyqovO4MRhivx0Tv/4V+7VMkyASHknt2Mw/ILWs1iumpV4pldXfBs42SVmNu2umW12V235Htq6Nkurbfvtic/g5/GOS2341JJzFmrHfY1u92dgwryeq6blCasqIoe34d2pxLOr0JooUqYPWnj4IyrR8W5vHiDj9H85JjxycS6Kort2dcA83Lht6+2Q22jnXtbVz0tUptaUxqzpljYooY2eONoh850EluDXpiD7DfPD7kVMI8e0PefxY3CZf+B1IXdH9Ca4cO4BD0iPtHSpS3KvQGD29PjXvhYuXhh0qdZuNf8PWY4x8K6J6WxLi7txEVMQ13HggH4PpB3EYSymHwoi2TQ0XI8uhscdSerrbPnJ9KPbiCeyTzzM6j598KOr4P9hrmSLIWuSynod4hAXtkQrwZozr9WI1itSfXuM242Fluef9CgI3H8FlU972EROJ20aMGIgJv22Cq2Opt2tIChZGYY3bY9IQsbgdno2RHBakcqwHj2GtYH/yHxy7otnki8fFg0E4ZNcKowd+qPetdy+Pp4i5dSulgVX9Pbzj+qp6a1aSb15BiLxEC8Kw028OfHx8Mv4sOg7Hb7zh7VFLywgSQxVGpSYf40O7GBxevgcn1cuVy1cR/wGavq3/FdnkO7gSEik9iMXlHX6YpS39PktxvERXeHt3lBprpridNh8c3+uEYe52OBl0HFc040RiOA5uPgo79y8wsFm5NAFSM693+M7Wkk7pRyOvS1osuqqQv1IX/Lh2C4IOr8OUVpGY+MUQzAzSPmpAP88Qc3gePGcIfD25m7rin6fCB+jZuYr61ZiVG7XMNaKFQyMMW7IAM8Z4oUvDSlpG1xniCa4dO4qSbztrmTNF4EnYMWyKqYamtUprOcEl4NKx/1Dt/TeNv63UpASSpHPMpbP/Yu9f52BX1w1vvfFaxhEbJnEFB09cy6LD7RnizmzE1BHTsa2iF+ZuXofVS3+RKpS6rjTqKX9ldP1xFbZI5/H1Uxrh+sRB8JoZZPhqSiYpp/dw6sB+7Bg+DgtOvFinTT0itn4L9HSKw7nVBxCqjnHZYf3lNJ99Gbz1Xk3YXZLK3ZEzuBT5wIiYoY/USrEskxF2qfSod4m4UARMHY8x2/6HL+b+ge2rl8J3TBMjz3WmjqmmKKfS3zh1CBt3TMGQBf9p3AIkpbaYG9r0dAPOBWJfqCGj5TTKaoZ8Sy2r1bMuqyarX2SDeqTjLAz4sA6c2/riZr3RCFLf9muGkY5J1xE4bSxWlJuGv37zQHWN+XyzJB7gTMAsjBgThIpfzMWm7auw1PdbNDHglryco0xtIClYpPCL+YJMysh2Tro65Y/a6mlyndKxmwnrlNpI59CbtzNZ/VySrzhq9Z6MhSMbSE9OYtvhS8p5OQ7Xz4erH5HpiIQonNy1XNr/vth65BJiC5aAU9lyeP01MxyD+rZtlHJYu6RpasdpWbLP4CluXrkIdRPp8g74ztL2fX/EouPF8I33SHjUTn9bs3XQkUNW6ukFBG56A5OWLMOyZdp//L7vom6QxwUG4uBlE15nz6yXVQ+ZXlXRmwoFi8szN2QhIQZRkaa5Uc7kVCXwbrdP0blqKLyn+eNYdAKEiEfUkZWY5nMPXy3zwaB6JazyYDGrZClY7w2VglNZNO3fHDW1Ls2ckargqyiu7rivhOZ9hmDYsGG6fz5zM2GlNfVefBeoTm/DxiPR0n68i5B/7dC4pjyBq55UBfBqcXmYrT0qtOiDb7Wl+/lPN7gZO++QQuVQF936tsab1xZj2opgRCckSyfMGzjiNxveDz/FsoWfo166z9LM6xZ9h2pJn8aPSfNaTyo7lKv3Ccas+B3L3zmJse0G4pc0jXx9SZW50JX45ttIeC0e9mJ+PXmC6B6fQN2Mk+dc+zPMPHOjPC8TujIwEfdu3UKB/Hm1vOMZ7kVew5Vq7mj4ZsauCHkRiKC1BdCijp6399rZ41VdFQmTkPL68j74jeyAKiUbYcQ+R3gFnMblQ4sw6PmoJX3I+2wVBrzzNtpNDcyikylOxzwkL4ioPzGifT/MeeSJ9ZvmYFCb91CphKlGD+WFXbl30WnMb9i+vD4OjO0Nz1/SNvL1Y6pyqswfF3cHdx6me2fh1+AoF8WIm4h+mH4EjuaoJ20sWE5RGMVfLaDne1PJ82h+gEFpJiV3QZXWo7Qvu28SeWBfsRYaqzMtHnGPs+piikbUvUxuwxIR2DaiF7rNScRX61fjp0Ht0bBSiWwcN1kwSUw1VTlNmT/uf4hBxJ24dJ1zBfGao1yObuNqdMbl9VPOXZmVjqzKagSuVM+6rOoTKe2Kv2qSzhQRdxVHAuTbfmujtucGJHw8Uz3Scdl3HuYZPSPu48SCiVj1xjisHfdRNkcMJiJq2w9o320xHn3lh00/DUTbhpVRwqiR3DmhIIq/Xkp5rJtIiMdDg++eNLKdk65O+Y22+tnzH9PVKTOKwb9zf8K+rEYCqhzRqE9ftLOLw+n9Z3FdPXxGOSeRiUgx+MxafNPyE8y+Xhte3/ZF63qV4WRnxg7pHGrbpGXJPgON+lCFFuj7rbbvmfozGJ+5ZXJ7bg7KRZ1iAk/PHsCOWh+hrs45efLB8d0W8HCVgkncAawNugg9xjJkIhlx1y/ilPTZdu/XRKVsF9o4XA+Te/vL4/26ziZoJKuQv2xVNKoiFTvppBOv47YeEXcXN25kdlNHTnqEs7uvovm6fQga6oyrW37DrFm+2B5ZCUMD12Naxyrahzu/1ATiT+3Aij1XIFw/waDONaQmjn5UJcqhWnk5DGXReDAHVVm4f9paKtcnsWHLcURHH8Pfxeqihp4demoqB7xRraz0IBaRUTGw2Dd4eh67T3yI9QcDMLRCBLYs+hGzFu1EZKWBCPpzEjpWynj7ao7mdXbkd0bzTz+GQ9xGTF8djOw14eT5UrZj3OeH0ei379EhzYTL8lxybdFXnthaniD65y04lu3RM3pIHVIeeQv3tN5nE4Orp1KuVmcgYnDxRBicPn4XVTOUwyTcDlqJha83Q6MsV0ZV5liw/x8cjbgYops8780mzB/aEbWdP8XCm3UwPigEIVumo0+zagY0lqQK+PLZWHj0P2z2kfaLtpVmxRPEP5TnxrJD+WrlMpkL8gmu7PkdCy7Yo5nXZ2hq1K2NmSkM5+Yd0dUhArunr8eRh9kZTG/KclocjcZtQFjYHxjfqLiyLYWIvIjjt6QHDarBpXj683/qqCdd8cAS5VQg4d4tRKIoyjrqOQ9lBvKk5E3RZ0YAQsK3YHy9W1jYtjZqt/kG8zeGINrEc8eoSlVGvZryvtFjcQA7Z1QsrftsKK7sw+IFx4BmPdGnaVnTdYally6mPtA7S0xZTvOgSKNROBB2AgfGN0KamWZENC4ej5AeVIGbi0PGc5f6tv7MzrEWKKtKw8u+rKNRF4jlOd72+o1Cm9rVUX/kQZT0Wo3wqP3mve1XPRfcZPz66teYl2aletlTXFv7A+afyKTOLa5iz+L1uICP4NVHXrnNiAzIUYVQtvpb6o7chIfxOm+DFfdvI9zgxSf1b+dc19bOyak6pTbJV/VYFVj6vspqgy86jFOn+JC+hdnn4MtpCQjzGw+/MH32VHbem0qKwdc2YUSH/lj8Wl+M7qm5Wqo2yUh48ND4W7ytohwaeSxlS36UeKMi5OUOddfdrV8u6hR7iFO7/0PNZjUy7VxSlXgbbTrUlB5FYNeKv3A2zcp42RWPy6dPStUVN/Ts1zTDShxZenodpw+GA64d0K+lq0luhVE51ECzdtL3y2QJduNOSDLN+a1MTNyW8uQpSrxWBE41G6Njn4EYNmwg+nRsjJpOhQ2s1OdySVewY+Ey7I5zg9e0r9FCvbKHnlLn9sIVBJ+J1H2lOTEcO1f/k+nokOzLB8cGbdC/igoXlq3CokXBeL1xxWzeIvca3m7fDc3s4nDl6Flc13nLs3Qs7tyII3cMu3klPXHzLA7mcUDRwk6o6d4RfQYNw7BBfdDRvSacdI0MUvLaXnUFRy2e19mRD8WcyqCY9Cjq5n1kHDegi1R5iNqDSb2W4/W5U9G7mpZ57QpXxcce7lDJL5xeh7UHbmXeqDWIcjX6bqyOyVzz4pVCj7D7wJl08zw9QdSuefh24l5EHjiKM2lG9siN0x2YNuQw2vb+AKWzDDRJiH8oRcAKTihu0ntENCeBHoAV9xthpjwJ9LLv4OHuYsQFgSKo+PbbqNLYA+MW9kNjbbfkJEYj/OQNqb79Efq3rpZJx7s8akReIbQwShV91ayVBFUxJ7ioC+o93H+kb6eYGcppvhJwdU0/wkhe6XoztsS5ortXc1TNMK9L6lXY9JNRp7JEOZXeHx+LuyiF14sXNPL8mTJPjcd3fjgUfgAzGz/Aip5vwblBP/hsMGHn2CvySNuW0jlL17wiqRcj7eDasz3ez6Sz5dm9WzgtPyhVFOadhtSQmGqOeFoAJVyd03WaCyRe2Is1Wy7BoXt3tKqqZeqFgsVQukL+TBZy0SiraXZISlkdNikIUQeCjSurSY/x8G5+VHi9mAEjxaTPig7BBp8v8WHt2mi7MBofTN6O8JAAzOjTGBX0nNfLMPJccEuwMo8HZvauqSVGxyPy0hOUdMik5vPsAW6dljsti6Govdm6bjWYqw6fFw61G6Od1MiOOXkZUaacokaDce2cdHVKnW1A09YptTuLBWv+0TIfZVopC2GUx0ct31Ymx08Z4OHpaoe4HX8hWOfCOA9xYulSHNB2EYwUjxC60Q8LL9ihQdsGqJi+Hf/8YmGqezg04xcc0rqoV3Yo5dD+kUXbNulZps9AJi/Q1ApfNisHXDmNM9d13aknna8u78HqI1nMa5tDck2nmLgXjHVrnNCsTha31qkcUa99K1SXHx/aib/OZlV9eSJVaLVPUCtuH8SyBYdQefAEfKdrFTedva9JuL3XHwsPVcaQH4dkr6MjM6qScP92Cia4X0XQsWtaGubPcP/6ZVzLorjlKVUetXWtmCxuInjnoZT5rczhWRBWBPyHGBNfgTaOXIENxNR2NVCx3UwERhq2+lu2JUXi8IJJGLUwGb18/TCzo3O6hllWXkXVHuMxt5cDglb9iWCti0E8w70DAdhV0BS38KalXmL3szpSwF2JGWcq4SNXfce4pVLhlard8OPc/nAK3ID1wXe1H4v3jmDZLqB0UdNVfp9t8sf6E3d1NBK0ScnrOb2KIXDltizzOuNS5dZMacD1GI1rfadhSJ1iOuLsq3jz4y7orm4Z/Idlaw8hyuSHcUE4OVeEw01dCysUhXPtyohaPAcz1x7Btbh43Ak7iICpffBBi22o9EVXVDk8GR4Df8bOM9FIjLuGYzvmo6+7B7a5D8OAhmlHA2mlzAfhULMCnLJ7MUQbs08C/QrKNvOAR4XaaNn0TS0NN6lcHgyQzkevwn30t+iZfql2g8UhbIUXKqnsUan3KoSZ/eqgpcqpQML53zF+2AHUHf8zZnXXdlFLhfxOFVDTIUpH544FymnqPB4OFeHslMX8XHpTIZ9jbXQc5ot/oi5is5cj9o1ohJJVOmCk3z5cNnol0sJw7TAAo93z4dCm/Tibfml/cQfBu/YjyvUzjBvibtyqpM9J+1NeVKCSPVSVvLAizNwj6S0YTxPOYMX46QisOwnrZn0CF23xKr8jnGu+nskCMC/KqvfawxnKquvnclmdlLGsNta/rKbMyfk6ajo7ZvMCsRRj/IeigXMjjPgT+HjmAYQfWozh3RqauTNMloTo/XPxbUAxdHJ3ROzNKERFpf2JOH8Afx4sijdKmKiOrye96vBmCMeqYh/g219Hw/3skXTzAqdKwp3LYVIbxAjp2jkZawGp7Rxt0tYpA4K1Lw5hjjplRsk49/MszM10LsI4nPnzD+yo+yVGtHZ+3ihXObpj+I8DUCVmKxauP6WlI16KMdeCsDzMCZXNdguoKaXeOq9KN8owAfcelEHVMpqjPF/cZp/1e7OizIMntC+sJe5fxsnzD5RnppRSDmfN0bNt85qZ9qHGsbT3eGZ9BibwSjX0mDURvZwOYeX649oXFxTROLDsbxQsre8t7mnb5kFaVwI3nVzQKSZlyP1z2DpnFn4Ju4DTYfeybMTmK2SnDC3/CwtW/43bOjtf8qDKyO/R4+kB7EuT0dJnRv+DRSMnIaTdYmyc+DFKax3u3AAjl7XF0z//TjeHyxNEBy/ByCEn0XadLya1Kpex0ZO6ZLGuTrVMXlc5vo9RS71Ra/NP8DtyI80wTxEXglXrVfhirLzc9yNE34/XeiDCvibaf90K9pdDEXZL4zARj3BtUwDO1WoHd+lpwu07uJ8h/5LwWKo0ycFG6+p9z3vetXQ4qsqh2cDWuDakDorlzwOVSvXip6I7uvQeggkL1mG/Hvs5a88Qd+9OytWyhHtSXmR2M+0ThG//FWM3n8alzVIjZnu4lkaOnkQ87muZ1yONpIe4FrwBPv07o9WKvPhaCpoLetfUMsmtIrPyYFcDHjMXwPuN3+H5jR+CozXKsnq+tlWY958bhrUtb0DjOxExJzZjxfr10k8I7mUoC6/h7dYdpCPBBW3avaN1gQQRdx/R6gsUOsqjvNKdxySs9nHCUs/RWHT0psa+T0ZC1GEsmXcW7w9riXKax+HzZb+1z03zfF4LbXlW9kMM7BmJwbVLIL9mGZQa9xXdP0HvIT9gwdr9CLuf9hSizusZv8DnjbVZ5vWLKrIUTx4/Sulk1rrqqvQd46UTv/Qos1sSzEXEheOA/1T0+KAjJga9gXdrlMqknDzDo8S8KKmsQBOzzh8BJ+9rjzEGywfHmvXRwu4sjoZpq0gUgmuTtmiHHZjRvT7esH8VjpUb4ZOxB1Bm/Ax4/zgew9s74sLywc/u3sIAABJYSURBVGhRrSResX8DdVoOxobXR2HZlI/1amSLOxdx9GhhtGhczbgJu+VJoLf9ipFt3jX7JNAqh/oY+O3/8Pu3s7D1zO0X5UiK6REHFmKo13bUnbsKq0a8Z7r57pLOY/MPv+KCVLovSOekX/4y39U/y5VTuRK2B9O+/AmPhy3BqkzmD1I5VsMHLQpLZeWilpGh5i+nEHcRdvQs7FrUR00zTNitsnOBe5/p2BISgqDxdXBz4adwrt0JI3/9Eyc0Y182yWV10Pxp6BHlg0HTd+BaanwWDxG+7RdM2Vwe3ovHoXullP1nvEcI3bwYSy9IUfjCrxj8y9+4a6aCatF4qp74fRSmP+6HTauG617FVeWImh+8A7ujJxGmdUSCRln9tEGGsjpzllRW25XIWFbLjNazrCbhTthJHLV7B41rOmaz4ZEf9q83wODNIQgJ/AXDOtaGo0VuP0yZp3FEv0lYs8ATdcuXRunSGX/KVWmLSc9KoJhJRxTrQanD210+rbMO31hKksnr8PL5udFgLF3zJjZPX4nDkZp1Oqkuc20v1p7/Hz5xd5L+/H3cN7ATXbOds+Tw9YztnAAVvL7T0c7RqFMu6zUGi4Jv6VWnfF5njI1BrIkqYnZNGuHNG4sxfOoa7D8ThTiNfSHPY/vPiu8xcIMrli3+EvXTdG4VQOlWY7EpoCeSvv8OMzaf1diPchv1KFauS0SfMR+h5POvYMx+lRhRp1bLol2rKvsBvvimJRID9+BghPyHpL95LwR/oxoqF0p7/Mjv9fpWv/dmzg4V320IV1UMDi1YjV0aAx7kWP13aDF0HdEdrriL81duIzHxDqKK1sKbz4cev6i/a6+fp+a5tvauXA4nvmjbZFYONS5mmLocPj+Wtvyss89A57Eke15uYnEvNrPzvrwadDfMXD0Gbywdgm8W/ZNmhLl63uYlfvjv/b5om2YqgUzyMF3bfMb2y1JkNh+VkCiPrY6I2IrRA77Hopul0KpaceRJvovQjceBj8bh11VecEszv8FTRGydhu/WpVuxQ/qds+eBym86471Bk+DlljoJ+EOc2bAREW99guYV8iL6xH7sPRcjnU9u4dqVcIQ/rYDGrVqjVUNn7be0xJ/BhqXX8Vb/pqigisaJwAM49+ApHt2MwJXwCDx1boRWbVqgYfqGT/wxLBw0B0E3HwLFi0pVEanBci0Rrzu3wpD5/eGG41g4UHr9VurrSbh/Nx5FitdG18mj0VrjVgJ5boV9G37HpsP34ejiiAJP4vDE6X107lgH2NAflfv+Lr3LFY07N0Q9jwmY0vqNtJURucG2eRWWbgnDKxWd4VjgCe7cscd7PXugef5NaFO5L3ZJb7Nza4X2Tb0wdWoj3P51HOYFnce1+BIoVzyflL0RuFH4dVRoMgTzvyiBoDETsfbUZfW2soWAxxE3EP96BdToOh5Tpc9XyR0HxwLgPXkn8tWthZIaS3iLh9dx5twJHFi3D5fsWmL8xkX47sMy2byq+ADHFkppPJxZz38+lO6spEfZIn261BDaj1/GfA9/dIbPjM/RoGR2Ghmpn3sXd0P3Ytsx9RocEjn/30W5Qho5r5TJNxs0wAdNW6Dlh7V137KXVXnRPAaS7iFs/3Zs3vk3LqI0KpZIRPS94nBr1x5t3y2XzVsWUr7PjLW7pRJZDe+Ve1Wd7tBtN1Gq/ef44SeNz068gLVD16LohFFontowE1exVSoL6yIznlhTOKNzuvIsd8DdDzuILZt34u+LAmUrOuBJdDxKuH2MDm3fQdnUPJLzRD5GLstlqyyK50nC3Wt3ULhcZTQZNBFflDyIMd+twSn1tlIv8qzc28+PITk4H1s3D5O3JaFuHSep+pEqCQ+vh+HciYNYt+8C7NwnYuOqERkbG3rltZCS+hsGztuFy+rPLyrFsPu4diM/ylVoJjUKPVEyaDrGrT2Oq/K2slIeP76ZcmzV6I7JU1sbvApr0jEfVKkzHJc8AhC5rCO0XVBODl+BTrU8sDHDoInyaL98FwJ6uqaNF/GHMeXdZvjutPZRFg5em3HulzYaFbS0UtK0EO+tD8KyTuWUrToknoFfl3aYXWc5/hlbX8utfo8QvvVHDB0yE5svxcGubh9MGD8cXq3kOQlTj+UxGLtUHvFaBa1GjsP333ZCHb3mnJH225HpeLfpaQyV9l+fStkd/ShRx9blmDP9Ryw9WwG9JgzHEM+W5pvz5jnpu8eEYsfK1dgafENZySofHCp9gLadW+P9SsUyaaCnisMxn7aoM/waPAL2YllHeV4MXeSRYsPQ2mMVEl3+h+KDAnBkUC09PkORdAw+Vepg+KUvEBD5Ezo6ZfxNy5ZTuezswaTPvse1Hr9gfu9aWdzSGo8wv8/hNrsadv8zCvUyzLlkznIqUX/Xnjg6dDPW9amazXOlAUxarqXvH30CW/3X4o+dZ/BYfX4rDKc6zdH5k2Z4W4/pFPSJcynkkWKrMaC1F5Ym/g8uxQdh/ZFBqJ2NU7zmZ91Y2jHD7YKWjqfqDrFJXhh4rTPWze+hXtFSN4HEsCXo7LYCdXf/gbH1iirbNaWU1W+GzsSmi/qU1e/ww7efwE2vfX8fR6Z0QNOjPaXzbm9UMsXoW3PLYv9ochoRiHMzmqSd502THnHOIFnU4dtW6YedUhMvbR1+vFSHP2dQHT5tG+IZ4i4fwIbVm3H4YTG4SOXgycNncGrcER0bJmNDmybou0uqB7s0Ruf3GsNjklT3Kpe9yTVkmbdz+kntnHXSu1LbOXK9vrxG3NCvTim3NceMk+qMV1PrjKm0tRX0JZV5nzm42nEEujoXRELUaRzafxB/HT6GKzFKvbjQ63Br0jZt/TYDOZ8PY9uWP7H3v3iUrPo6Cty9B1Rtjk87NlJGSyrtDx1ts3nSft2bWdusyR38akyduvipbLRTInFkzTL4772FIlUcoMpbB5990QKVtMWv7Lw3U/K0FTvgv2Yrdv5zDxU/qocyBfKjWM3W6NK0Iuyk/Duzbja+99mNJw164NuRffC+0ytK/X0Pbt2VvlZxKdOSH+Luw8IoXrU7Jk1phOhFcp5fxV3pyC8utfGS79/FwyL/Q9XU9q7y6dkqh2nyOZUx5fCF7B1LEzC1FbAtTbnRKKOlO0t50BrltBZb6Xxx/wL2b9mMnX+HA2UroMSTu7hXog7adWiJd6W2Tsr3SC23qXmYWi6ro/WQ1P6a1HNPStt81szPUd+cK/bKnWJElhErzi//QlRpO0/8e/epsi29Z+Jx5CGxsNdbAq5DxeYbT5TtRCbyOFQs791ItJ17RNxLTFY2ppP8SEQe/lX0quQgXAdsFpE63matEoO9hYt8NvEIEJHKtpyWkiYX4bH+qrIlM0/EVf++wq76VHH4kaUz/74I9m4h7Lr7i6sGffQdsX9cQwGXdmKE714RHpukbM8tYqXv7y6k1ozwCLimbMuavH/fnxsiEpXnekkMFt4uUjnFFyIgMlu/aRbJt/eKCU3bi/F7IsSLM9Rtsd/nN3H4wTPleVrJV/1Fd7vGYvLhGGWLpSSLR8E+or5dH+F/1cLnyeQHIjzIV4xoVUWgyvfir/va88bcDIpzcpl7f64IyWZx0/ysGzl9PkiOEn9NaC+ajt8lbjxNTUySuLd/oZh3+K7yPJ3kcOHf3VVUn3xIPFI2Wcyjf4V3/Sqiu3+4VGptkJXFOSIiykhX1zSRyYnb+zB78N9o3L8j3IrpuqadBwWd6uPzH0aie9R+HDxrjnu9yXYl4faeRRiy6W307+aWbhUpDarCcKrXCz9M7IiojYdx1uhJNyl7XkHZJp+g35PdCDxp4RgQfwY7lj1AP8/3DRypVwz1B61ChEUmgbYWTxBx5irqVX8dufXbiriTWDJhC5ymLsQ4zRHKj85h94Z4FHpVe3VJVfZ9ePZ7Av/As5BvALCcBzi5Yxvu9OuMJlmt/GdqqiKo4N4HM7YcRcT2r9HgtdxTlRQRZ3CkXnWUz7UFVV4J0Qf+TqPUt/aWfj7q6gFO7z4EUUjHyC1VWTTx7IAn/vtw0hyrBuskEH9yD5bdaQvPJmWNGulARERkLuwUI4tJWeGiAIoULpB1xajgq3gt/31ERMfKl9eITCQJ929HIqZAYRTWOVw9VR6pGNojf+wtRN/XdRsomYs8D8KAUaWxcvkBM0zmr0siooLWYaVLPwxoUsrABpwK+UqUQxmb6AxTJF7C3p0l0by2Q65s9Ko7xAb2wuB/z+Pg/BHo6+kJT+WnZ9ehmF2xDErq2p2qUmgyoB9cVq5DkM5VwkxPRB3A8pWlMWrA+8bNe2cMlR3KlC+u/+2yOS4eF/Yeg2vz6rrn77Rm6g6x4egweB+uHfwFw/r2el5OPXt6YOjsQihTUtftjPng2MQTo1x2YHnQdcvVq8R1BC3fAZdRnmhi0G0vAkl3LuDYsWNG/IQg7E5mc+EQEZHNU0aMEZnf0zDh39tNVBm6XdzM9G6Lx+JqwGDhytsnyeSSxdNL/qJPpQZi6I4bmd/KkRguAga8kytvn0wKmSveklsTXf3FtZxMe9J54f91L+Hh0Uk0drGT22HyBCeiVQ8P4dFrtth/L4tbCx+fEAvadRXeR+9a5Lab5AdHhHfzHmLB6Vhliy26Lw5PbiTtK31vn3wkLvmPFF/5h2nccqinpBAx9y25XPQW/tey/dsmcksEjmyQUjZ1/Lh4B2dxW2isOL2gh2jmfUQ8sEhBvSuOencT7RackM6WtipZJByeIsrL+0iv2yfl2L9WfPXVWnHp+S2H+tOMqVdz5G7RJHEvcIxw1SiXGX5cvEVwpgU1WTw+/ato12y2OPrAErd1J4kHR2eLZu1+FacfG3pgKLeja/u+2fix+2KLuJVT58KEw2JyeTkdvH2SiMhasVOMLChZJN7+R/h6NRVNR64RwZGP0jV0pddjr4jDy78V7u7DhX/o/XSvE5lCgrh91Fd41W8rRvofFZGP07dwEkXs1UNi+ZBWwn2IvwjNdXNCSR78JcZVsRNw+EL4X83NzWapEXd+pejdfo75G3HqjoZeovfyUBvuaJA8Pi7mNiktYNdDLL+UoGzU5ZmIPTpP9J6wS0Tqmp8vU6kN3iqil//F7HeqWRP1XIW9LNCBK3c0zBEdeq8U5w3uaHgZPBAhc9tLZae8aL88TCqJWYg9Irx7TxN7IrMq0zpoxNQ1V+KVjbmRPLfr16K99xFx38zFR32RocPXYvl5W77IIJ3DQuYJd7ljrv1ycSlnpt8jIqIsWPXqk/SSklegPH4AQX//hQPq1VTKoIhKXvXvCh6+VhP1P2iI9xtU170iI5EJyCtQHv/rL/y99wD+S3BE1TJFoBIPcf3sQ7xWtwE+eK8RGtRwyuaqndYiCdH7Z6Jrq2m43moC5k35HM1d0q2Em2s8Q8zhefh2Z3VMHqs5h44pPUFU4GyM/bchfEY1RLHcmVFGklcDPIY1U8fgq8VAv9ULMKONi9lXNBTR+/BDVw/8cP19zJw3AQOau2ax4qP1EjEHMf3bg3hn8lB8WNqQFRmzIq/EtEc6Dk6juc8g1C9mQ7foakq6hWNrvDHsq9+lgjoffjPaooLZVzTUjKnjMX/qF2jmnEtjqriDw9MnYuc7w/Hdh2XNc/urvDrm5Jn4t/k4jKrvmEvPPcZ6guhjv2PqsO+wGJ9itd84tKlgwGrGRERkduwUIyJ6KaUumR6AgD82IdT+HTRq+iVmjm6Sc3MQGUz6LqHrMOufNzG8Ty2YtlkhEH9iJbxP18K3n9bMtR0yhnuEMysm4Hu/zVgXUQYen/ZAr96foHEFyzX4U5cK/yMgAEtC7dGyUSt4zRxi4BxEOUuen2z1rBOoPrwHamkuRW8K8Sfg530W737bGdVsac46NYGnZ1bjm+8XY8e6Gyjr0R09e3mgS2MXCx6zL1FMlecnW70Y/1Tvjz61iigbTeUhTvj9htPv9sOn1V6zvQ6xp6FY8c0P8NuxBxFl2+HTnp7o3aWRjSy6QkSUO7FTjIiIiIiIiIiIbA7vTyMiIiIiIiIiIpvDTjEiIiIiIiIiIrI57BQjIiIiIiIiIiKbw04xIiIiIiIiIiKyOewUIyIiIiIiIiIim8NOMSIiIiIiIiIisjnsFCMiIiIiIiIiIpvDTjEiIiIiIiIiIrI57BQjIiIiIiIiIiKbw04xIiIiIiIiIiKyOewUIyIiIiIiIiIim8NOMSIiIiIiIiIisjnsFCMiIiIiIiIiIpvDTjEiIiIiIiIiIrI57BQjIiIiIiIiIiKbw04xIiIiIiIiIiKyMcD/Aef3DuOz7A16AAAAAElFTkSuQmCC
iVBORw0KGgoAAAANSUhEUgAABCAAAAHxCAYAAAC8ts1IAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAO8XSURBVHhe7N0JfExX+wfw3xBKTFRC1ESisYQgQhtUlCJIqbVK0Vpa1ZbWvlZtVUtt3dDireiLavmjtrbW2F+hoiWEECKEDAkJMomQ5fzvzNwQBFnunZkkv+/7mc975sx0TObec597n3sWjZCAiIiIiIiIiEhFReT/JyIiIiIiIiJSDRMQRERERERERKQ6JiCIiIiIiIiISHVMQBARERERERGR6piAICLbIW4hdOlHqNV5Kc6mcH5cIiLFiBjs+swPfpN3IJrHVyIishImIIjIRtxF9J/T0XXobQyZ1g3Vi2nkeiIiyjNNebQYMQb1/m8gBi46CgNzEEREZAVMQBCRDRBIidiACSN+R/U5n6Ovl4NcT0RETyRu4ewf32Kgvx/a92qP+g4uqP/2RCw9FI1U+S2Zacq3wmffdUX4+C8w79B16chLRERkWUxAEJHVCcM/WDT8M6ypOQYz3quDknI9ERE9iQFnf5mISSEvYdJfgfjjlz9wRL8TYyruwwet+2Nq4OUskhB2KO8/BN/2j8f4fnOxPSarNAUREZF6NEIil4mILE/EIfjrfmgxBZi8eylG1ncCB18QET2diP4dH3wQi1GbPkKtTEPWRNw2jPBqg++en4DA/30BP6ei8isZBFIvrcfgVv0R2HIJds5/E5XseNQlIiLLYA8IIrKiNNw+uhyfTwmE66eD0c+HyQciomdLQ/yJg9iwdTqGLfwXSXKtkcbJBx16+wBhgdgTeiuLYRYa2FVqg+GftYV+0Qx8tSkyy+EaREREamACgoisJzkUv06bhx263vjiI184MftARJQNGtjZO+AFxCPquuGRBEIJPO9snEcnBhdjE81Vj7FH9R4jMb11DBaNX4xADsUgIiILYQKCiKwkCREbF+HbTaloPag/OlSxl+uJiOjpiqB008+w/+xx7J/UFKXlWhMRi3P/REkFT/hUdXxyrzL7Oug2pCs8wn7FrCWHEMcBuUREZAFMQBCRVYiYfVjwxQqcrdYVQ7rVAdMPREQ58RzKeVRBuYfmbxBICd+N3zafh2PPnmhXq5Rcn5Vi0Pn1wqDWwO6vFmB1aIJcT0REpB4mIBQjkKrfgcktm2H4Nj2XtsqTRIQuehs131+GUEOaXEcFy22ErFqMn8Ic0frTd+GnKybXq+Uu9IHT4FdzLLbFsqsxFQRyzPEzx5x0uZZywxhzuqsTc+6FYNHrr+L9pSFIsMSJQfIprJg0E4ENpmLN111RNdPklFnK6AVh+BPf/rgbep68EBGRypiAUIhxGcGFA0Zgf8tpmOSv40R6eVIKtd/7Ap9jPt4cvREXU3hGVNAI/V4sXrATBm1TdG/jqXLvhzQYjgdgQLdDaLV0NPyd7eR6ovzrfsxpNd0UcxjM88IYcybfjzmXUhWMOcXr4L35nwAz+2PM7xHqTvaYehmBX32GmXf6Y+PK0Wipe05+4WmKoULjdujiCYSv+BlrQm7L9UREROrgOYsSUi9g/eiBmO80CvMGN4Yjsw95V6Imek7/Au32jMT7cw4gnjmIAuQ2QtYsxYpwwPPTfujs8bQuwnllXG5uI8a8vRROc2dgSKNyTA5S/pcp5swf4suYo4RMMee92f9TMOZoUKJ6V0z/pjn2vj8Es4Ouq9ND0ph8mDoAgy91xfqVI+GXreSDmcbJF/1Gd4RD4k4sWLyXvSCIiEhVTEDklbiJ4wvHom9gfUyd2A1eDo+ut025o4GdS1tMWvoJNDPH4ss/L3GZsAJCxB3Bbwt3woD66NXZB2VVPAqZ7hIPHoOdr47CxN51oOWFGuV3ppjz2f2YU1vLmKOMBzEHX40xxZwU+ZW8ew4u7cYg4DMNvuo3G39G35XrFSKuYt+0wZiFodj5nz7yPpGG+P2LMf9QnPk9T2UPjzZvoZtjIsJXLMPGU09aOYOIiCjvmIDIEynAH/oJwz8/h25Th6MLZ/FXWFE4Nnof0z4riyUjZmJdROaVzil/uoeoHb/ihzADtP490Pnl5+V6FYjrODRvMj4/7Y8vx3dAlWeNhSayeeaYM2J8OGOOKswxZ/o4J3PMOa/ghbimHBoNHItxujUYMWEDIpQaWihuIfTnuVil+wwrJ7aCy/3j3C2c3HEQomT2ekJodL54u08DwLAN36/gihhERKQejZDIZcohEbMVI5u9gz98F2Lr4rcVu8ARsXsxa9J6xCUdxxGnQVg8vRXs9i/H/NXn4VCzDGK27MbNNybj22EtoHto9uuCScQfwFdvvYOvHCbg0OoPUbsELyTzrZRTWNqtHT7YCHQK+BNr+tWCOtNPpiJm2wQ0a7MdvqtWY1F3DxSXX8krtk+ylgcx50cp5nS3eMz5RtqnXQpVzBkvxZyPFIw5aYgP+gZv+f8IhzkbsXqAN0rIr+SKKfkwGm8O/QfVO9d+uDdZ+g2EbnDF52cXoIsuO/PepCFu1xd4teU0hHkMx+a9s9Be9cmBiYioUDImICgX0q+IrcMbC2g7i++P3ZIrlXBd7Js4UCwMNYiU4DmimqaqaNutlxgYcFwkpBtfTxeGfZOFG5qIifuum/6Lgi9FXNs6VnjCXXQKCBX35FrKb9JFYvBc4SsddqDtJ1ZdvCvXKy/92hYx3FMrtK3niWOJpoajkIz2mWBqn1XxoH3ezqJ9KvkvUyFnijm+ppjz3b835UolSPv0pAcx58E+fezxmLM31vRfFHzmmFNTo0LMub8d3xEBZxLlytxIFXGBnwsP4/H0SY+qc0Rwivz27Eg8KKZ5aaX/tqrouSqCxy8iIlIFh2DkirEb7ErMXhKFFuNGord3ableAbeP448D3nitRgnE6y/hmvS/C67v4ov3vR8Zv67HxdjCMiTBDuX9PpB+A0dsnLkAv3MoRj51CyFb/0SQVNJ28Ievm1J9Eh5hHHqxZAF+utwM46b0hLe9gndsM9pn9ZKPtU+HQts+SX3mmDPrp8vmmFNXwaFL0j79ZxYxZ/J7dQt9zJn8vpPyMUejg9+goXhftwUzZ27G+XvGXEFuFIWj33ScFcJ4Iynrx7lR8MnJoj/2NdGyR32pcB6bf9uNcK5ARUREKmACIjeSjmPF5PnYXaErRrz/irIzkBevgi5zOqF60VsI+zsYhlJv44thfih//9+4iyvhpxEFL/h6lpXrCoFi1dBh6PtorV+BiXMDEc1F7/MdEXcUG1YGSyV3tGr7MlyVbDf3CSSF/IbJX+2FrvfHeF/pVS8y2qed3D61WbXPU/fbpyp/IhU+GTFHZ445TkruWNI+/ebsTDFH3qdfuH928GCfblTYYs6Q9+7HHOVWhtCgWJW2GDqoGfQ/z8HX26JM3RVsw/PwbukvbWnAEBiIAxfumKuJiIgUxAREjiXj0tblWLADaPXpu/BTeoxkCXe84qODXVo0QneHAY0b4yXXTHeKxWUc3nwI8HoF9dxLypWFgQb23p0xpHcNhK9YijUht+R6yh/SEH9sDzaFJQDaxujwSkV1Dj6pkdi6eDl2oBUGfdwMOqUzAI+1z1cfb5+bCmP7JPU8iDmtB/WyQMx52j5dmCa9fDTm3JbrlVAa3t36obfHGayYvwEhSbaSgtCgZPWGaOepBQwHselAJO7JrxARESmFCYgcEnH/w4/jAxDu2B4fd60DtU7HxKV/sfVACrxbeePFTFspPXwfVm6Mh1eP5vC2T4chPAThhjT51QJO4wq/Pm/By7ATP/yHa5XnLzcRumcPwozbzLsRfFS5OE9D3L6lmLAoGI7deqOrkkOjHpHRPuu2frx9/lJY2yepInPMGWCBmPPUfbpU4Y05CxYrG3M0uqbo07c+Encsx+Jdl22mF4TG0RNNmrtLpUgEbjqEC7keIkJERJQ1JiByJAVXD/6J38MAz4/eQnOdSmPYjXeLzx7HPtTA6y+748EiWsk4d2ArtuM1fNheOhEVl/DnlJU4YzN3T9Smgb1PJwzvVA7nVvys8B0pUlXSWexbf0w6ydbC64368CiuwuAEEY2Da7cgTDTGR72aKN/74b5ntc9mD9rnl4WpfZLyHo05aq1KkL19ulQhjjnK94J4Hj7deqOTwz9YMc+GekFonOHdvKF0pM4YhsG5bIiISFlMQORE0gmsmbcW4dLJ2MCerzy85JWibiH0fwcRD0/Uruwg1xndwoWQs8CLjdHQswTiD6zGpobd4Vc+J7NM5XPFPNCmT1s4Ju7Egv8eRCyv7fIBgXvhwfjrpEEqu6NJ3UpQvv+Dce6HDZi34ihE4+7o2cRZunRQi9Q+DwaZ2qdXVu3T/UH73NygkLVPUpYx5sxfdz/mKDr3w0MexJxn7dOFNuYYe0FIMSdGsfmHNNJHt0Lvbp4w7FiB/+6/aiO9IIqhgmc9eBuLhsMI/PeazfTOICKigoEJiGxLQ9yh9Vi4IwraTl3QplYpuV4FwoDYqHh49HsTzV7MvEp4Obz64WgMqHgEv04ZgpEHGmDuJy+p1iXXNhWDrvlb+NBTg/AlK7A5nHdnbF8iTu/dhoPGorYeGtdSeGJIIxGLQ7+twg6DOzr1a4laavSwyPBQ+3xwr/h++3R50D5nF7r2Scoxx5xFOy5ZOOY8fZ8urDHnI0/IMSdRrleApiKav/sWPHEESxZusZFVJzQoXrkuWhrngcB5bN0bykQ/EREpSiOMazXRswk9to3ohDbfxaHnqh1Y2b2yindY6alEDHaN64KWsy7Bf+Ef2DzAG2oNhiEFiAtY/W5r9PjtPND4exzbPRh1FU4QiNitGPFqN3ynfxu/nfwRPR66iCLKh+SY01aKOT0Yc6zLFHPelGJOFPx/3IzNA+sqFnNEXCDGvdoZsy6/joWHlmFAbRUTTdklruCPT9qgw6KTgOdk7Ds8CU1L834VEREpgxElm4Q+CKuXHQG0zdDJtyJPBK1J44xGndvBC1HYvnwHTnCMvU0TsaHYs/W8qezoXRm6Ykq3nhTo92/CsnADtB384evG5APlfxkxRzDmWJ8p5rQ3x5wVysYcjZMPOveqDxh2YfmWU7CJPn2a5+FW80VzOSwY/3IeCCIiUhATENlyD1H7/8KaeMgXOLzfbl3G5dGao4eXFgj6A1u5JKcNE7gTcQIHpLYD6NCgfjWUU/pKSlzG/rXbEY+q6NCpIdx4VKN8zxhz/pRjTmvGHKvLHHP+VDjmPA/vlv7wko5gQct22shklPao7OUtHbGNwnAoLJbzQBARkWJ4qp4d4gqCNu2FAe5o2aqOirPrU7aVrArfdsZpsoKxKvC0bdw1oiyk4PrFc4g0lWugaa0Kih90RNTf2Lj5vHSl9gpavfQCD2qU/xljzkY55rRkzLEJcszRKB5zNChZvSHaGedcOLkdgTaRUC8Ch2p10dw4DQSu4d/QKCSY6omIiPKO5+rZYLzA2WS8wEFt+PlUgloLoVEOaJzg1aQBHKVT9JOr9tjOEmb0iNs4989xaStJtFVQzUXp6evuISpoOzYb/wHvRvBxV359DSJLu59Uk2JOC8Yc25ARczTKxxyNoyeaNHeXSubkhoLTXOaaplwl1HY3ZiAMCDt8DlcVW/2DiIgKOyYgnikVsSFB2GqQTja8XkVDDxuYIIokdihXywfNjOdHJ/+Hv5WcmZyUc+8yTh6IMJcdXoBzGYWX7xOxCNnzt3SKrIXXG/XhoebqF0QWkRFzpKIp5phuQ5PVZcQc6RijdMzRlEOtxvWko5gBJ/8KRvhdG0iol3CEzsXBPPfIkRCcvZ5qqiYiIsorJiCe6RbO/H0U8dL5gGOTOqhSkhc4tqKIax208HaUSgexeu853DVXkw0RNy/j9GnTBBBAnWpw1RY1l5WScB5/7zEO8HBHk7qVwP4PlP/JMUcqMebYFmPMaZ4p5twzVyugOFy9G8I4qBAHt2HvaVOfMesqUg7u9VzM5fhziNAnm8tERER5xATEsySdxb71xyBQFW2a14YzzwVtR3E3vNSytlSIR8ihM+wianMEUvQXECLnH3T13FFB0SOOQNKp/2F9mHSyrm0oXRg4m+/WEeVncsxBRsxhlLYdj8YcxToqaFC8cl20NM4DgTActolJH7VwrVHF+NUkF3E66hYnoiQiIkXw1OapBO6FB+Ovk8a7EZ5o5MkLHNvigBdrV5dOkwDD1iCExKaYq8lGpOFm1HmcNpUdUbmiE0oo2oASEf73QZw0Fr3rwbMCR8pTfvd4zGGQtiVSzKmVOeYoOCzBwQ21X3pBKpzH1r2hiLX61b4dypR3kY7cRlcQEhELRlgiIlICz22eKtMFlGM1VNGVMNVmTzpu7/ocLhoNNNZ+OLyLpWcL4joRxVDBs56522r8cRyPsIFuq5RJKm7GRJu6kgNOePGF55WdTE/cQlTYRVPR0bsydMVykt2wrfYZcIZzmJARY45tM8acuurEHI0zPBt5morxB04g4o61MxBFoS33AiqayvG4cCUOHIRBRERK0AiJXKbH3MSh6W/Cd8IeoPH3OLZ7MOpme5I7gdRL6zG4VV8sCn9wkqL1HYufvu6qwGR5aUi6rkdsYgoSY6JwNfoiTv5zAL//edS84sBDtPCath2Hx/tC6TUIrE3E/IFPPDtgUXxV9PxtO1b2qMJeKjbjOnaNbYOWs49KZR+MCdyKmX7llNs+SUGY3uh1TDhhJzXPXdg9pB6Kyy89m421z6nbcHhC4wLXPimnMseceVLMGcSYY2MeijmrdmBl98oKHdNSEfPHKHh2+B7x2n5YFboQ3Stl/4imhvSzS/GGZ39sM54m+gfgzJZ+qM7bVkRElFfGBAQ9QdppEeCvMyZohG7MTnFLrs6+FHFt61hRUyOdGRrPDk2Pl8T7q86Ku/I7lJUuUhKixZngHeK3OQNFi6raB/+ux3CxOfqe/L4C5O6/4vvGjqa/MXfbiFSTHiFW9awq74PdRMCZO/ILykg7EyBe12ikz/YRYwJj5dqcMLdPz4w2YnqY26c6LaUQtk/KmYdiTmCuYw73aRU9FHNys42eJF3cPTZPNDb9frk9pinsVqAY62I8xkrfyWuGCEpMl18gIiLKPeayn8YQjTMn9FLBEZVdnJCTzrBmdijvPwoB09qbxoya/YufJ36NVWcS5OdK0sBOq0N1n1boMeoHbA8+isCAsWhXVfrXw9djyZZwBWftthHFnFHF29xJVH8gFBfuGc+VyCak3MK1i3HyE6Wlw3D5HE6YrnUqoGLZnLfOjPa5dHq7x9vn2cfv6ebds9snx1gXcpljjnHOFHNtDnCfVp1qMUeDYrrKMC2ygQgcOHnZ+vHariQcysp70pVruG5IM5eJiIjygAmIp0i/GoljxnNBVIR3FefcjV/XlEOjQRMwubWbXCEJX4xPBy9B8G01g7l0YlimOvz6zcDaXeswvWMJbFyyBSGJBewCXVMK5VzLmcsXruJGMhMQNiM5DlcuZCyBUQ3uFZTsTnwPVyPPwdQ8czxWPhNT+5z4WPv8ZJCF22enkub2mcT9tzBTLubYwD6dEXMK2j79UMzRKxpzNNqycK1ovOC3kTkXSjhC5+JgLsdHI+amgpNuEhFRocUExBNl3GE1KoeK5UpJp1e5oyndEIMWfIX3PB7ckzLs+BZjFgQhXvVzsyIoUckf41auRkCN/Vh7OMZ0z7jgsIdLtSrmu336c4i8WuD6eORb4mYsotTo6GNiwOUzEabOyqj4Asppi5qrcyHr9vmNZdvnL6tM7XPNIVtYfo+s4+GY46pAzHm/unzxKMnYp+MsHHMK3j6tYswpWQHV6rxg2u76Y5E2trR0LPRxnIaSiIjyjgmIJ8p0hxXO0Dnl8g6riQYlqr+JiVN7w0OuAaKwe/wYTN0ebZGTM422DvpM6YOElXsRVaDOBu1QxvkFmE+zI3DmshrdjCk3RHIibmRsjjrV4KpV8HCTfh2Rx6LNZZcX4JSn9T0ftM/q9z/mQfu0xDVARvu8vXJPAWuflH3GmHNe0Zgz4cvHY860bVcsGnMK3j79eMxR7M/TOMDZrYy5fOIcLhusnIEoUg7u9VzkJwm4ncQeEERElHd5vCJIhf73ATAuu+VQvz169+2LvpkevdvXh4NxSa5qc3H0CXEr9ehcVJOCbrUWXc3/Xe/2qO9gXsqr2pxg6V+wlmTE6WPNRUW6j9ujyluf4ZthvvJzoyB8O3g21l+yxF0FDewqtcHQV09iY8htuS570k4tQtOM5dUee1TGmyvCM12kJeHUojezeJ/0cOiNFRF35fcppQi0rtVQx1S+iajYhPx5ty1Zj1NHj+Jonh7/4JTeVpa+E0iOuwY5RaC85Hjoo83bWlfPHRXynNswt8+vhzaWnxvJ7fPiHfm5msztc5hF2mfnLN4nPVRpn2pLgv7UP1m0hRw+TultYIlBNWLO2MdjzpA5Fo05au3TDwaTPH2fXn5e6b9VzZijhWuNKsafTrrev4ZYmxrykI/jKxER2RZ5MspcShd3ok+L4OBg6bFDLOxT0xib5Ie76DjnD/G38bWjESL+CZMnp8dHiKPBR0RQ4DIxprlOoMEwEbDzoOkzj0bES/+ClaRfFpsHeJn/Ft04sfNmqvxC3qTH7BaTW7hl+p20wuP9VeL8vXwwu3TKRbF5mK/8vXWixfQ94lpKVt87Vdza96XwMr7P4x0x7bf9IiJBmd8vK8bVEPxN38lRNP7+X5VWGFFZ9DrR5/4+kduHm+i07Kz12sxD0sStwHFCJ383bc9V4qKCXyz92mYxwNH82UrORJ91+/wt37bPGBton+q6JNb1qSqk67VM2ywXj07LRYS1N7Ex5gysY/4+UswJvJUmv5A3BSHmmLfvs/fpOsYVp6wQc5Ll+ry7I84EdBMa08pZ7cT3xxLkemuJF0HTWsj7jU74B5yWjuxERER5k8f7hhqU0HnCx8dHerREn4G9IZ3UyiKx6x8Dyr8kvfZyZZR5Qg9pTZnKeNmnPl6pVxGaq1r0HDkE77f0NX3my5XLmG4EWIVIQEzEDXPZ1H0892PMM9M4N8WI2SPg75DxlxkQ/vNnGL7oHyQYw7wts3OD/3s9Yb5HnAB9sgbPFc1qC91FbGQk0OcHHNy7FON7NEFlhX6/rBSp4I560pWuzUzclRu6LlgmhDEhCBG9Dn3kapM+63AlXX4t8yPFuI/+i21LhqO5aUByFE5eu5XpzqDtcHBzfuIxIDfEzRhEmOa31KFODZdMM/7nTUb7bH3/A43tc5ypfRryY/u0e3r7/N8e9dunutzQZdk5SJekUpu4hHV9qsr1Rh9jXXTK4+1GpCAhJgLHtv0HQ5vLEzWevIY4azecx2KOMkOWst6nzTEn3+zT0hV5tvbp3laKOYr9jsVRwb2adFQzuoorN6wdzUrASecsl5NhMCRbsVcqEREVFAoOytbA3qcThndyl59Lpzm/rcCGkOzMQncPUTt+ww/ojv6tK1kv6ZCZ3MXbSFu2FPI0xPwhRVHa5z3Mnt4t00VTJDZ9PhWLgm8YbzPYMA2Ke7fHkJ7Gk3wDwhb8jn0xjy6ydhf6wG8wcEVV/DD3I/jqnpPrLSP5dpKCJ4M2zk4L58r14P/BHGzc/a3pAuP8yYuQO3FbWebx7ErLPLzDHmVLPafgMcPcPufMyKJ9Ho3LN+1Tc799Pnq58HD7bOxi2fZpG+ygda6Muv4f4tuNazDHv5LUcM7hYqyVL61Ujjn5eZ8e/FDMefI+PX9OQYo5d3E76a4NbZ98nOAnIiKbomACQlLMA236tIVpGWuTvVi06vCzZ92+dwob5u9AnQ86opGTjdyJS72D2/IMekrfvYWmDOoOmIYl778kV0gMG/Hl2EXYb+2T4GfRuKHFO+3N2zh+I5Zuu5BpfHkaDKGrMGGBBmOXjcRrznZyvcq0LqhRR2e6CI2PiMFN2z6jVoHxAqM3Jo54DZqIWMTbYhcIRQmkJiXAfK+4DNycHRRMQEhM7XP6Y+1zyph81D5NjWEjArJon+PnW7h92jBN6fr4aEJ/eOEqYuKtvIKOFHMSVI055n36/sfmp32654OY87R9ull5y8YcI2VjTsb8EsatdAMRMZxzgYiICh5lExAoBpdWPTDIM+M+iwFh//kde/SP3iXPLA1xB9ZhUchrGNjFG/ZyrbWpu4SgpFg1vPXFBAzIvPTf7pn4eMZWRKfa8imHHcq/1kXexpHYsHgrTtwzfl/povDSRoz+MAivTv0Ufha+C3WfIRF3bPr3U4L0WxtuQH/d8KA7rMYJL7dqAbdLVxVdl14ZWpQtXVLac5SSipux16Bm88y6fX6Vj9qncY5+qX0uerx9Npk+yHrt09pSDbiuvwHD/W1YFKVfbo433WIQbeXu7haLOZmX5pT36Ssptr5Pv/kg5tjaPq1azLGFIQ9FUKKUg2JD3IiIiIwUTkBISvugx1B/+YkkfgMWbTqDJ6YgxBXs+WUtrr37Nl6vbDsnxQ8tIagK4wzhHTFl/qfwlGukMxmEfTcJE9ade/LvZQtK10WnD5qYywfX449/biJVvxNT+69C1Xkz8L6XFefuuKC3wQtwpaUhdvt4VBy5PdNwCw1KVfNGi6iriL1tC10gUnHHkLEihwNcdI7Iy6KCD0tHcmKC1FrU9KB91nxwy/h++7TyvfKnk9pnx34Z7fP3B+3zQ7l91n7eeu3T2mK3Y6TLeGyPzdRGSrmjXot7uBibKFdYh6VizhfzPnks5kxcF56PYk6mfToj5lhznzbFnAd9MpRjC0MejEuOlpeXHAUSomILYQ9DIiJSmvIJCJRCzY7v4v374zD02PHDZhxNyipqCaSc3oJFP7tj3AdNUd4mz4rlSe5U+W52KO8/Ckunt8t0h+Ff/Dzxa6w6q+7lVd6UhnfHbuhk+tJ78MPSHzB35E/A2G8wrL6T5U8ENQ4oX6Ws/KQwSEJ0RIRczuQFXwxe3xEvZuqgbD3JuBF9VS6rqQpquKp1f87cPgOmtX+8fZ5Rtf9FHhnbZ9fH2+eYr63TPm2GwN3oCByXnz3wAnyHfIkuL9rZRMtRemLVhz0h5kz6hjEnJ1SMOZoy5VHlwThWm2K4kVh45lgiIiLVqJCAkAKorgl6fZRpPf2Ty/GfrVHS6d+jbuHo+lUI6tQNHbyfl+sKGU05NBo0EZNby7OxG4UvxieDliDYJu5kZ0WDYh6t0Kebp+nET//TchxrNRnjWrpKp7dWoHkO9qULR5dykRyDUzt/wqwZO6T29EiLKqKDT6c34KMrLldQnpna54TH2ueng/NH+zTKaJ+ftXSzTvu0BSIZ109tx/xZP2WRgCgOnc8b6OSjUycg2pp8HnOMTPt0y0kFMuZoStijtHLdxYiIiGyOOudbGmc06dlDXg7OKAxrlu9E+CPjTEX0Lvzn66vo1qcVPIrb0n25dBgun8MJ+ZnaNKUbYtC3E9Dp/tKcgGHHNxizIOjZE3hai6YimnfvAJ3pKxsQd0/AJqYPTbiG2Jt5GzUrkm/iql4PfV4fmedoyIvlb6FiEQ00Gg2KlHwBtVuPwhrTEpSFlQGXz2TRA0QlGe2zY6Zb0oYd35raZ7ytt0/TExtqnxa1GG+5FDO1G02RknCu3Qaj15yVX7M1GTHHMjtU1vu0OeZwn84hBWLOk3DIAxERFUQq3fDJvBycmWHjGmwKuS0/M0pC+NZ1WFOxDz5q45bNL5KO24d+QL++XdGimoPpxNKhfnv07tsXfU2P3ni7RXVoqr2OATP+D0dj78r/na3ToETtXvjmp4HwkGuAKOwePwbTtl2x0ClpDolbiDhxFgmmL6fHjuXbEJLlMBsLMyQgMU/jcRNx6r/94eHiApe8PhpPRaASM8y3m4MtR4IRHHwEQYFr8ePQ1rnonl1Q244lmNvnt0seb59Tt0fbdvs0PZHbZ2Jhu5LpgjlbD0ntRmo7QTux7sdhaP5g/sVsKtgxJ1/v0ysKSsx5Mg55ICKiAkmoJlXc2DpauGhM5zKmh+OAzeJauvxy4t9ijq+7aL3whLgnV2VfrAgc4yN9pq+YuO+GyPhIs1SRcH69GNPQSWhbTBd7Y1Lk+pxIE7cCxwmd6XvrhH/AaelTLSAlQqwbYPy7Hvxm8Bgq1l28I7/BRqTfFCcDPha+AwLE2tlt5e/aRNoW1+U3ZFeKiNk7XbTQ+ooxgdfkutww7w8a0/foJgLO2NjvlVPR60SfzPtAn3XiSuadPOWcWPWep9D0WSui5arsy/itzG3nYXLbaeCYh7aTIV4ETWsh/w1VRc9VEY+007zIaP8W3t75qn0OeLx97o2V35BN6Xqxd3JbofX4XOy8kZd9wVIuiXV9qmbaPh+LddGZv/cdcXHVAOH4WH12SPvc2PrSZz673ey5lvuYY46X5piTJr+iKnmfNh875UchiDl+DsrEHPP36CaWhCXJ9Qq4FSjGumjMn+0fIM5YZEd4knSRGDRDeMn7hrbnKnFRuQM5EREVUioOeS0Kp6bdMNzXSX4OxP+yGtsuGO8QpSJm10rMCGuLAR1roJj55ey7G4l/tp0BtPXR0PPR2a+LQlulFd7uVheG3XMxfl0YbHVU62PsKuPNL+dicovMY3MD8NkXGxFhM8uk3YV+1wKMP+CLn+b0xZtv9URn0+34A1jwaxBicvQ103Dnuh76+s3QpHLO7+kXWnauaOjnIxUe3vON0s8uxesun2PX7SfckZPbjpDbzsPktvP2g7aT+/4bZdBo/C5jglN6nMOv3Stn8W3zmXzUPiccaPR4+/wth+3TOG9C1C3Ub98QlbXZ7ex+A/snNTX1FMjLw2HAH5lWeFFKCbg1bIzX5GcPSQ/D0tdfxdhd1+WKRzwScx72cLuZsO50vos5k/wqyRUSeZ8+b1rq0haoEHN8GHOyRwP7RuNwwnQcF0j4tTsq5fsDORERWZu6c27Ze6PLgEyzbRv+xMLfQ5CYfgHbAv7ACx+9hea6HKcfkH4xBDuOG4DG9VC97NNOjONx/kIMrLu4Ws5onJti6PTBaHH/R3OEq5sTStpE0E9DfNA89J0lMHh6D9SWLkqKVG6G3vLEYPG/rMfuqJwsUPgcKnWZj9O7v0KHyvZyHT2bHRwq1kWf6mUeSd7J48jrVIOrNuum/aDt1M1e28n1NchNHJruJ19QVsM7qy+YbqHldxnt0+9+V37bbJ+DpmXVPjfkrH0WcUeXgP9h9zedUCXbc/Q4wXfIUvOwh1w//sXRaa3hLH+ikjQOFdGgT1WUKfbI32OIxpkTFZ+4ooqx3ezMbsyJzIcxZ9ogm44572URc4xfL7cx5xRjTjYJJB36CnUyEoPvrMalgnAgJyIiq1I3ASEF+8qvv41e95eUikfQN6uwZcs6LNzgiYE9X4FTjk9y0nDzwikckUpur3igYlZ/gbiKU/87LxXc8YqXm0rLmamlKBwbfYDZkztJ31sLj/e+xPzRftDZWftsMA2G0F8wYmQ0BiwZhZY6eQZw48Rgvbqa15U3bEHAX2eRk9NByo2iKOc3Gv8d74dyco2ZAeH/HEVyzYool2XLzmbbOZCp7eR6t0tFUkLGUpVJuJF4t0AkIDLa56xJneX2OdU226fLk9tniukFtWhgV84DPj4+eXhIF/nlVFrVppwfxi8bDb9ymZMIAnfD/8G25EqoWC6rhHhGuxHZaze183vMMe/TLo8maSzuwT798U8jH485xq9nkX26MBNITUrADfkZ56QgIiIlqJyAkM4VyjdF/8/byM8k+m/Qrf04nOjZG529c3Oadguh/zuIeOmU+o2GVVFKrn1AICV8H34PjIK29VCM71RF/T9SYSLxAoL2HwdajMWP03ua7vpYl3QSEr0FEz8OQtOfvsCblTKvEVYUTo064gNfY5ZJjx0/bMbRZ902T72CffM/w/Dxg9Dp1SFYEXpL+hdsRSJCF3WFg3zHJ0+P6mOxTYlJKLMr6Qx2rw9Dbc+KyHpR20xtp8GT2866TG3H2nueLTK1zwPm9rlwhvmurHXJ7fOjbLbPp07cJ32Wfi/mjxiJ8UPexKsDVyLUkG8GFOTSbZzcHYjjtavB7fmstqXcbsTTY05Gu/m8U9V8HXNscp9+saRcb2Tep/uZhndmZ5+WPBpzTt6U/gUiIiKyBgucJ5WGd8du6PRQruEl9O/bDG65ucGSFo3Q3WFSoQ4aVn8wv4RZGgwRWzF79EycaDETG5cNRP3SuTmRKgKtazXpX7CC1AtYP/pjDDndGt/PH/zgTqbVGC9IdmLqe8tR8dvpeL/2o3NuSOxr4Y0+Lczlk2vwf/uvPuXkzoDQJV9hQ+VPMHvK+2h6bT4+mb8fTxh5nXO6anCvUFx+khulUOu9JQiPjkZ0Xh8HJ6Kls6VWqU/Gpc0B+CrIHrVdnbJOHGRqOw2e0nZO+s3KQ9uxBC1ca1SRyxYmt8+hp1qZ2qdfxl1Zq8nUPr+f8dT2qTG+ILXP1fuvPbl9Jp/AktHbUXnUDEzp+yquLZqG+Xue8v58T/r9Lm3Dghlboa3tCuesdvlsxpyMdtMgyyTGs2TEnNwExTwy7tNjBtyPOflmn+79IOY8dZ/OFHPmZMScBbYUc55MV88dFfJbNouIiOgZLBDaNCjm0Qp95HHIJr7voFfTF3J1qiUu/YutB+Kl0mXs/WUe5s6dKz+mYWzft9BjShDKfbQGQetG28CJVA6JOAR/Nxx9fymPSQsnoU9WJ14WJZ8IvjsOlz74CkMblH3C9ymFmm+8jZ6mJNO/WPZ/B6F/wtmgiNmDBRvroP/rbigacRw7zjvCu5brE+7YW4emRBlU0Omgy+ujnBYWST+IRFzaNgfv9V+MOOGOWm5Z/5qZ286+lfMLVtuxhEztc+KPE22nffYyt89h9Z2e0T6Nr0rtc/WT2mcqYnYuw6YmPfG6i0DE8b9xHlWl/am0lf9OtaQj+dI2TH1/NP4br4VHLTc8ml4wymg3ogDHnPdWONtkzHn6Pt3tQcx54j4tfWKmmFMkI+bUtK2YQ0REVKiY1sJQXealnNxF52VncrnEmHFpz5HCUfoc7XvrRLSKy0GlnQkQ/qbvC6EbEyhuqr70VKI4v+oT4YGXxHvLQ4W1F0FLTzgv9v02TXT30Eq/QRexMNQgv5KVVJFwbo0Y6ml8r/SbabuJecfis1x2MT3hrDhwPEZ6LUEc+7699H4FllFMOy0C/HXmpeR040TgLauuW5Y7d6JFaHCwCDY+ts4R7eR9z/RoN0dsOSK/lulxZN9WsW75d2JMtwZCOg+X3/+kJQYfbjtXVP+JMi/DqfSygnfEmYBu8mf7iDGBOVxeMleM7XPg/fap4KJ7uZKb9jmspoP5N3ti+5Ted+aIOB4r7T93/xXfN3a0gWUAnyVRRIceldvEn2JOOzd5vzA+uog5Ww891GZMjyP7xNZ1y8T3Y7oLH23Ge6uKPusuyZ+ZWeZ2s1b1mPO6xrz8ojHm3JLr1ZNpn152spDEnHbS+xVYNlOOOaZ/W4o5O28qt1C35feDp8m8JPkjS6kTERHlkoUSEJJ7Z8Wq918S2hazxf9u5DZY3xLBc/ylQKj+Ounp1zaLAY7moKt+AiJjbXI30WL6fhFnxQCfdn656Hz/pDzz4wmJo8SDYpqXfBKYxeOJJyzG/66OgzLrimdOQHjNEEGJ+fAMKXqd6PPIb5erR9XZIjir/IOp7bSW3mNuO8qdLj+JMUnwtvy9tMJr2kHpckcpKeLa5qGmi0LLJCDM7bOF1sbb5/KzuWifm7JonxkJ46qi56qILC/qbMclsa5PVXPbz9OjuZgTnCB/ZmaZ2s2SU6rHnIFOlrrwfHifvlGg9umnxBzpvzPGnMi8bsjMCQgp5hw0KPcDPkhAKH3czA3jsXaYfKy1hYQIEREVBJYbXVjMA92X/oOEXaPR2CmXY8vTo3F850mp0BBvNqqk6vgRTQl7lM48l5tqBJLPrsaY/nMR1XU2lox+FY5W7ANbpEpvrE8wr/n98OMC1vep/vhvbu+L8ScSsni/+RG3sD3KP/b3pCFu/3r8ePJF9HqnCdw0ibhwOBTXjac4eeXyApxKWPEHzC1dFyzL4vfL8ePcaPhkNe7D2HZ2PGg7lp3dwYAbt+9Auek4i6CEvT0s0jwztc/L3ebYdvvs7ZGL9tnh8fYprmH/6jU46dge77RwgyY5EodDYk1XILbHDV2WnYN0+Zfl35f9x26M8sliUuRM7aZzAYw5Gft0zlejUo7y+/STY84PJ93NMadIfog5DnDROVroOPckqbgZEw3jwD0iIiKlqHk+pThx7RQOHNRL55z1UPuhWbFVYFcSpcuaT0j1xyJxNd1UVJh5vOtXA8ZhrfskrPy2G6pYfekzCxBXcXDDFugrtEXnxhWAuAOYN/Uw4nJ7MpgcD320dEIqFbVlSyE/5h/UZmw7+y3VdlSngZ29A8qaytE4FnkdqjTPjPY58HNT+/z1u66Fon2K2GBsWPYvdH3borGzBnF7F2Na8A0bTUCoy6LtRoo5DhaOOYVln74fc3TmmKNRKOYYKRtzBJLjrklHNeMXs0fZUs8V0PlXiIioMMtHCYh0JJwOxjaDgGMXX9QupXJYLuEInYuD/EQdwnACyz8fiy8vd8GyJQNyOXt6PpR+HRGHI4HXXkYtxwSErNyMEiPawyO3e2PqHdy+YTAVHdycUYZnbI/IaDuwTNsxsUOZ8i5wlJ8pS4MSTi/ARX6mloz2OTXqTVP7tN1VQZSVro/A4Xh3vNaoBhwTj2HlcnsM75TFnegC79F2o/IvYKmYM/6z+zGnsOzTD2KOjxxz/rDRmCOQmpSAG6ZyGbg5O9hQAkKHOjVckEU/ISIiohzJB+eUiTi1Ygz69n0bnT6aj2gBxP8xEwP6DsK8Q3Hye1SgcUD5KuZ7rDhxDpeVXgs/9TJ2zfkMQ9dWw7w1j67drx6RfAs3DMp1hs+Vop7oNnciOl7bggUjJuC38gMwvkX5XJ9opV+NxDG9seSIyhWdrNxl1ZY83HaMP9GDtmM+xVWPcZhEyfvbIiEqFjcVvIWuKVMeVUzZDT1OnImG+VJAQZna53f/N7lQtc+itbtg7vRXcO2veRgxahPKjx+CFmULyYWqSdbtZuB7lo45CneBkPfpYWuqFuKY85cccz5WNuYoliW4h6uR50z7HFABFctaO5ql4o4hSS4TEREpRNATGGfxb268ZFJ8lmuRflOcDPhIeMBXDNt8UWQ5Z6Aqbolj8yaKgDPWndZKaQ9WLMkPk+YVFplXvpEeSq+mkGkiOsUnRjO1zw/vt897crX6Cmb7pOzKtHKM0qv5ZN6nN0Uy5uTRozFHuS1lXuFHo5E+W9tPrLp4V663llgROLa+eZ9kfCUiIoUUvl612VYCTjpnc1F/DpFX75nLeXYX0X9OR7f+R/BqwCJMbVcJWc0ZqDyBlIgtmH/MC6087OW6giAdhsvncMJUtrUuq4WZysMk5O7qxm2t7Hh5c/vs+kHw/fZZTH5FXeb2Oa/AtU/KPnVjTsY+/WX7Fy0acwrePq1mzDHg8pkI0+U+HF6AcxnLbKnsYXwlIiJlMAHxRMVRwb0adKZyLPRxyaZS3qTBcDwAA3uuQoWJMzGjTx1oLRLNBVJj92J2/zlIb/cK3ArUGUQqbsZeg3k6sCqo4coRqrZCU6IU5Dn1lO9SXqQc3OvJ6Y3oa4hLNp6x59WD9qmbNMsq7VO0a1TA2idlnzHmVFUt5mTs0w7cp/Po8Zij2J8nEhAbddNcrlMNrlorn6Jl/j5wQGl7W0qIEBFRfsUExBMVgda1GuqYytdx5Xqi6aZE7kknZJc2YnS3CTjddSrmjWoJnZ0lzsqkE9CIP/Fl9z6YcLkl3m7iUsDuYNxD/LVr5jkAdNXgXqG4qZasT1PGGW6qzamnhWuNKsaOFsCVa7ie5zlazO1zzNsTTe1z/mg/y7bPHn1N7bN704LWPin7Ho45lxWOORbfp+WYU/D2aRVjTsotXLtonmdEV88dFax9hibuIvFGxhwQztA5cYYlIiLKOyYgnuLBRHdXEBIRixRTbe6I23/ju/7D8IvrCCyc0QNeDmpP6paO5Ouh2Pr9APjV7YCpu+Ph2cUfDcpZpkO5xYhbiDp90VyuU9X6d4zogRJOqFhZXgcj4Rpibyo5EV2mVTbizyFCn7e7xRntc0XF4ab2WVtr4fa5K05un7zDWJgpHnM+HH4/5lh0n66XOeYUsH36oZijbC8FcfMyTp+Oh7CVFScyLTcKRxeUt6khIURElF/xau0pNOWqoUEDY4fYeJwOu5z7WfxTwvF/wwZidOQb+HHRMLTUPSe/oDCRjJuXz+Jo4GrMG/sOmlT2QtthS3DEdKumPnp19kHZgrbFRQJiIswrOtjEHSN6oNjzeOFFJ3PZkIDEZCVn9bdDuereaGC6t3oRp6Nu5f5ucab2+cPCoVZtn07s/lCoPRRzTuc95oy50NY6Mcd0zVpA92kVY464GYOIeGPJBfXcy1n/BC31DhLk5UZR8QWUUz2JRUREhYHGOBOlXKbH3MSh6W/Cd8IeoPH3OLZ7MOoWz+HZlLiKfVM+QLsp+6DrMwlfdqoKpTpsisQYXLhmgLh9GacunMOJDX/iqHyu8BjfuQjeOQI+9gXrbFDE/IFPPDtgUXxV9PxtO1b2qMIu7DbjOnaNbYOWs49KZR+MCdyKmX7llNs+SUGY3uh1TDhhJzXPXdg9pF7O25apffaT2ud+U/ucIrVPpS7VctY+50jtc2SBa5+UU5ljzjwp5gzKZczJ2KcnSjGnGmOOgh6KOat2YGX3ygod01IR88coeHb4HvHaflgVuhDdK1l3SGH62aV4w7M/thlPE/0DcGZLP1Rnkp+IiPLKtBYGPcFdcXFVP6GVfiY4DhWbr+V08bIEcWb5x6K6cUkt42dY7eEm/Bcel/6agiZd3D02TzQ2/Y3txHf/3pbryTaYl5Qz74NKL1cnSY8Qq96pZvp8xwGbxbUcrw9nbp8e99uJtR5S+/zxWAFsn5RzysQcm9inC0HM+f5YglyvhARx7Pt25t+v8ffi2F1rL3hpXkq5jnz+ovhyx0REVGgxl/1UxVDBsx68jcX44zge8aRbPVkRuBe6EoM/WYyzxvBtTdqm6O6n3F0w25GGm1HncdpYdKyGKjpOkGVbMs3TgDhcvHYrT2PaH6NxhucrnqZi/IETiLiTk4b2oH2GyzVWI7XPtwtk+6ScUybm2MI+XXBjToQ6MSfT3BKO3pWhK2btniMCqUkJMA82cUTlik5ghCUiIiUwAfFUGhT3qI83vIxTQUUiODwW2R/FLv23tT/GtgRh7GVi3UfCSvSrXpDWYc9gQMTx4zAOmdW28YW3cwGbYDPfK4oyblVR01SOx4UrcVBktcz7SsGjYWN4GYuRpxB+9Z6pNntsq31+UKOU/L2ocHs85mR/fRfGHPU9GnMUnJTxziUcPxApFaqiTbPacLb6yJV7uBp5DnpTuSK8qziDEZaIiJTABMSzlKyEuk3cpVO7SOw9eAbXrd2bgR64F4m//zouFdzRqu3LcOXebGM0KKarDG95IQz9sUhcVXIeSunzS1apgybGzzccw8FT1019hYnyNTnmGBMQppijaJuhPDHGnC2ZYo5iSQKBe+HB+OukAdD6ok0DW1i61IDLZyKMX03yImq6PW8D34mIiAoCXrI9i+YFNGzXEo5S5I3fcxRnEng2aCvE1TM4FGK8F1UbLbx14PzctkdTxhU1a8oZiOhriFO2CwQ0zi+hXXdjH4hI7Pn7POQF44jyr4yYIxUZc2yLMeYczhRzlDuBSsHVsGMIMRa9G8LbVaVVS3JCJCA26qa5zCGORESkICYgnskOzt6+aKPVAGFH8O+FJLmerCsVsSFB2GocIu31Khp6sAu7TSruCq8mVczlyHO4eD0nwySyQeMM7+YNoYUBYYHHceEe+0BQfpcRc6SiKeYkmqvJyjJijnSMUTrmiFiE7PlbOopp4fVGfXg8ZwN9De5cxbkT18wdIBp4o3o5BYebEBFRocYERDZo3BqiY4eqUikUu45eUnYiPcodEYeTB44g3njC1qM5vLl8oY1ygLtXTWkrSQwROBetdAKvONx8/dHB+A+EHMLRyDvmaqJ8zBhzOskxZzdjjm3IiDlC+Zgj4sNwYI9x/of66NGyJmwhnS6uX0JopDHDL/29r9XkEEciIlIMQ0p2aCrCt2MzKQxHInDnCeh5k9X67pxH0J/GDqvmE7aCON1ZwVAcFTxqwTiiHTiD/aeu5mAi1+y5f7FmOIyd/15T/POJLM4YczrJMSeQMccmyDFHKB5zBO6c/Rt/hkkX+17+aOn9vFxvTelIOHcce0yLsLyAOtUqoKSpnoiIKO+YgMiW4nBr+ga6OUrXOJu3IyhK4W7kqrgL/baJaDzgD8TKNQWHQFLIHqwyTtjl2x5tbOKEjbKWaaJI6HEk+JzyE7lqXNG0qz8ccR6bN/6NqHyRgSjI7ZPyzhhz2skxZ0c+iTkCqfqt+KzxcPwRkyrXFRSZY047hWPOLYQEbsdJ6Qjm27eVjfTmS8KFkyHyChieaOTpzAkoiYhIMUxAZJNG54vufRtIZ4O78NvOc7nvEiuuYt8Xb6B09fHYFZ/9Bday7y6unz2AdXM/Qaeu0xB05x4K2qmg+YRth3TC5gb/Pq1Rh8MvbJqmXA00bmbuAxEfcgH6FKUzEMWga9oRfT200sXaJuwMz/2YeRG7B1/4VUb1sYGmpfaUVxjaJykhI+ZoFIo5DqrFHIHU62ewf93X+LBTP8wKuoO7qQWty0ZGkkCKOb0VjjlJpxG4KhjQ+qFP21q20ZtP3ELU6YvmsldjzrFERESKYgIiuzTl0aDD6/A0donddAgXcnsRJZJxPeoWfNo3QGWt0j9/LPbPHY4JAfsR6+KFl53k6gJGxB3FhpXGE7am6O5XDcXlerJRRXTwblHbXA45jrCryo9o15R7GR26eAOGg9h8IDLXF2vizg1E6aujfRN387wVinqkfcqLgxBlKSPmaJSJOfXbN1Qh5qQhfv/3+HDCUuyPdUK9lyvI9QWLKeb8Yo45bysac9IQd+gv/HLSAG3LN+BX3UYGE965hOPScdTIsUkdVCnJJD8RESlIUPbdPS4W+rtJZ4FtxJzgm3KljUoJFnOqaQT6rBPRclXBkCKubR4qnDRa4TFwk4hOl6vJhqWLxKAZwks63ABeYsDmy1KN0tLF3ZOLhL9W+jd854jgRBvfMYzts6r0XQtc+yRFGWPO65XyR8wRCSJ4TnPpu34s1l65J9cVBOaY4whzzLmSJlcrIf2y2DywjvSb+YiBmy+pcFzMDelYemyeaJxxvN4UZSPfi4iICgr2gMiJ4jXRaXBXeOAAAtYE4wZnu7O8lLP4Y8lGxJdqhUEfN4OON2byAQ1KVm+Idp7GPgWROHD8EpRfq0KD4rXewODePtAErceaQ7HGs2ei/M0Ycwa9dT/mxHGntryMmKM1xxwXxc6aBFLCtyHgl5PQtu6Lj/1cbWSehRRcDTsG4xTP0DZEM2/O/0BERMpiAiJHikHn1wuDWjsi7D/rsEef3YnBjJNz7cX8ESMxfsibeHXgSpxMUGMsbkFnnAhsC5ZsjESplu3RppaDXE+2TuNYB/6dvKUTWQNO/hWM8HsqXElpXOH3cV+0dgjCf345kIOVA+5Cv28hRgwfiyGd2mLgihAYl/onsr5HY052Bxc9HnNCDYw5Ofcg5mhbdlA45txGyKY12JjwIlr2aIlatjKXkYhFyJ6/pSM1oG3VHA1cnzPXExERKYQJiJyyr4NuQ7rCI/4PLF57Akly9VMln8CSUdtRedQMTOn7Kq4tmoYFe67KL0ritmGYkwYaTc4fTsO2IU7+mAJPXMaugN8QpO2ESeM7w6MY78vkG5qyqOfvB0/jJgs5hKORyveBMPaCsPfubOoFEb9mBdaG3Jbrn0YgOXQ5Rm1ww6g5E9G36V0s+mQJ9lzPdLGWp/a5tfC0T1JHppizKKcxZ+T0+zFn/p5r8osSxpzsyRRzJk9QNuYI/T4E/OcASrUegglda6CYXG9tIj4MB/YY539wR8sOPnAraq4nIiJSChMQOZZxRwrY+cNK7HrmHalUxOxcho1Ne+J1F4GI43/jPKqipltp+XWJ0+v4Lk4Y5+PI8SPuu9dRQOeafITxTtQGzFtxBh69P8C7PmXZLTRfKQrHes3R0dMBpokiD1+BKiOYjL0gPuqD1tiJBYv3PrsXhIjGzgUH0bR/C7gUuYzjO88A3h5wez7ToTFP7bNNIWmfpJ4HMWfHgl9yFHP8K+J+zKnFmJNDj8YcJwVjzm2ErFmKFeE10HvwW/ApbStX+QJ3zv6NP8MMgLYxOjZx5yTPRESkOCYgcsO+LnpPGYwWV9fim58PI/6pFzka2FfviVldPVHsXhi2BuwE/LugTR0OH8iRlHPY/P3P2KHrjamjWio4DpcsxTQMo6O3VIrEzi3/4LIqwxyMvSB6Ysq4ZtCvWIyfD12XTqmfRovqvUaia0173DuxA0u3C/h/0Bp1ijO9RTYkI+bozTHn6XNBPIg5xR+KOcqv61KgGWPOvP/ejznKzTckkBKxBd8v2Avd+6Mx8nU3G0qmZyw3Kh0ZO3REKw8bWZWDiIgKFF7G5UpRODZ6F2P6u2H3Vwuw+pRxtOSTFIW2en14lyuKpH+24KeDTujZrwU82K0xB1Kg37YQE3+OR8cRA9CpCk+K8iWNMxp1bgcvqWjYvB1BUdmdQyWHNOXQqP8gfOi6F1/N/B2nkp9ytaZ5HtVf9UI5zS3888fvOFiqLfq1qsIDI9kYc8wZ+6GrOeaEJsj1WXlCzOFOnQPmmDPp5zjlY464jG1z5+BnvT9GjGyHqraU7Ew6jcBVwVLBE926+sKNeVgiIlIBT0lyS+MC/88mYrjrdnzz9Z+IeNYa7eIa9q9eg5OO7fFOCzcUSY7E4RDO1J8dIv4wfv5mLfQdx2HGe3VQQq6n/MbYO+F1fNjaDTDswm87z0mn+erQlG+Fz777FK6bFuHrjefwrFSHiDuM1T/sQZlendHCrRiSL/yLkOup8qtENsAUcyaZYs6332Q35qy9H3M0jDnZlhFzojt8pnDMSUP8oVX4ZsUNdJzzOd6rbUu9UtIQd+gv/HLSAHh2Ra/mFW2oZwYRERUkTEDkgaZ8a0xcOg6ua2Zh2u9Pv5gSscHYsOxf6Pq2RWNnDeL2LsbU4Bvmk0FOCPZk4joOLZyFry63x5Jve6F2CZ4S5Wv2nmjToym0iETgpkO48KyLqFyzQ3n/UVg63QVrJn6L388nyvVZSUXswS1Ypn8JfTvVhzOuYe+8hQiOkxMQnISSbERGzHFbOztbMWfj8sdjjmnuFcacJzPFnJmmmPPTN8rGHBEfhIXjf8TlbjPx7Qc2lkwXN3Bs+26ESUdnr15voJETu2kSEZE6mIDIE2O32A/x7Yxq5ouciCfPT56uj8DheHe81qgGHBOPYeUKe4zo7GHeAJwQ7AmMd4t+xoSZN9D/m8/wFodeFAD28OjQG/09tDBsXINN2VqpIpeMQzGGTMGMmtsxafrmp9wxvgt9xBnEox5eqVUGiSHrsbxEd3T2kC8POAkl2QxzzPlmukc2Y86LD2LOcnPMMV1WMuY8gTnmjP8qzhxzqpaS6xWQkUzXd8M30zqjio2t4iT0B7Dyp4OAtiOGd6srHamJiIjUoZFOKNgjM69SwrH64+7of6M/9v/yMeo5ZHHnIPUyds0ehalnXFCvpIN0YTQcb0sXO8qegiTj7OovMP2vK7hz6TDW7AmX6nTwadcCtcuWRp3+X2JUU2fzW22ecR37nZj67hAEvfEz1o5shNLs/FBA3MbxeX3RZOhOuI7dgAMzWqKsaqlQ44Rv/4cBbcfj+qDVWDnIB9rH9iPjvrYLswfMxRlPT5TU+GLIhLdQS6v0HcCC1D7JqjLFnAMrP0bdrPZVU8wZLcUcnRxzRkgx53nFu9WnnV2NYdP/wu07l/C/NXtwXqrT+rRD59plYVenP74Z1RSO5rfauMwx579SzHlFwZhzF/rAOej1djDabluKkfWVXFFDCUk4u/RD1O+/CRUG/Iq9P3RQcNJNIiKihzEBoRBx+zC+7voe/mr8I1ZPbgFnBu+8MZ1g98QXz3+BnbPboaKN3S2ivBH6zfi02TtYqH8bv538ET1efE5+RQ1puB08H139t6PxhqWY/FoFjm2mfO9BzFkoxZzmjDl5lSnmBM5pBxc7pX5QcxL04zbz8PzXv2JOhxdhJ79iM5KOYG6r1zH6RDN8f2AZhtTNtGQrERGRwjgEQyGa0g0xbNk8NN3/BWZs10unHJR7iQgNGI8vxGCsndqWyYcCSKNrho8HtYLWsANLN5zEkzuSK6EoStcfiGVrGmPfx99ieywnl6T8737M2TfZFHNMcztQLhljzoT7MUe55IPk3gkEDJwH8dlCfNneBpMPxhU/dv2G/wSlwKP3++jmzeQDERGpiz0giMgqRMxWjGzWDd+mfYjNe2ehva6Y/AoREVlE0j+Y17kzhgY1xo9BP2Ggl4P8AhERkTrYA4KIrEJT/jUM+qI3qp9bi3lrTqjcC4KIiB5m7P3wCxbsAFqMG4TutZl8ICIi9TEBQURWYo8qnQZgeEc77FiwBJufMqM/EREpS9z+ByvnrUW45zsY278RnDjakYiILIAJCCKynhK18c6EIWitX4Ev/hOEOA4IIyKygCSEr52HKTvKY8D0j9GyvO3NTkFERAUTExBEZEVFUdqnD2ZMbonLP8zH0qNxnMCViEhVAqmXtuLbmVugG/A5xnV0t8HJMYmIqKDiJJREZHXCcBQL3u2Kz++MwIENg1DXnn2BiYhUIaKxbWQ3tNnyKjYHTkV7FzWXQSYiInoYExBEZAMy1sofjxsjfseqAd4oKb9CRERKSUXMtglo3u0kem37L8b5lgPTvUREZElMQBCRjbiL6D8momXPSHyyfzEG1XPkiTERkYLMyx8PwvlPVmHloPrQ8iBLREQWxjkgiMhGPAeXduOx9vsyWPjFeoSnMDdKRKQYEYPd38zGsbcXYuEAHyYfiIjIKtgDgoiIiIiIiIhUxx4QRERERERERKQ6JiCIiIiIiIiISHVMQBARERERERGR6piAICIiIiIiIiLVMQFBRERERERERKpjAoKIiIiIiIiIVMcEBBERERERERGpjgkIIiIiIiIiIlIdExBEREREREREpDomIIiIiIiIiIhIdUxAEJHtELcQuvQj1Oq8FGdThFxJRPQ0aYjbNRHeftMQqL8r1xEREZEtYgKCiGzEXUT/OR1dh97GkGndUL2YRq4nInqaonBqMRBz6m1B5wEBOG5Ik+uJiIjI1jABQUQ2QCAlYgMmjPgd1ed8jr5eDnI9ERVWwhCGP+Z+Av8WndCrfX04ODTE2xOX41BWvRw0LvD/bCI+PDsHw+cFIZ4dqIiIiGwSExBEZHXC8A8WDf8Ma2qOwYz36qCkXE9EhVTyKfwyZDZCGo7HX7s34pc/DkN/dDQqbhuG1u/Owc7ox5MQmvKt8Nl33aEfPwZTt0eDOQgiIiLbwwQEEVmXiMPRRVPx+a66mDyxK2qV4NALosItBdF/LcKvDUdg9GsVYWeqKwpt9S6YOLU/HHbPwuB5+xH3WIbBDuVbfozpA+7h28Gzsf5SslxPREREtoIJCCKyojTcProcn08JhOung9HPxwlMPxAVdnE4sW8fto6eiIXHb8t1RkXh5NsGvXUGhP16AKFJWfRxsHNHh+GfoJM+AJ999RcucjJbIiIim8IEBBFZT3Iofp02Dzt0vfHFR75wYvaBiGAH+9IOgOE6rt9OeXgohf3zcLaX/j/qKmJvZzXZpAbFqnfFlOmtoF80F98HcigGERGRLWECgoisJAkRGxfh202paD2oPzpUMV5VEBGVRdNJ63H27HpMalr2oV5RIvoc/rkmFRrXQtWyRc2VjykN72790NvjBH6avRKH4rkqBhERka1gAoKIrELE7MOCL1bgbLWuGNKtDph+IKL77MrBw6OcPP9DhiSE79yEzQYP9Pz4ddQq/uQuUxpdM3w8qBU0exZi5upQcDYIIiIi28AEBBFZwW2ErFqMn8Ic0frTd+GnKybXq+Uu9IHT4FdzLLbFpsp1RJR7AvdCF6NNrY+wNPSWBYY5CCSf+T9MGrUfDSb9gLk9q+PpR42MXhA3sOmb/2KnPkWuJyIiImtiAoKILE7o92Lxgp0waJuiextPlXs/pMFwPAADuh1Cq6Wj4e/88D1VIsoNDYrXfhfzxhXFzDcnq7zihECqfie+GrgAd0b9jJUTW8Gl2LMnjNFUeAVvvekNhK/FvDUnkCTXExERkfUwAUFEFnYbIWuWYkU44PlpP3T2KCXXq0G6cLm0EWPeXgqnuTMwpFE5rrJBpBgtqvcch2/a/Y2+781HkCpzLZiTD1Pf/QKXei3FynEtobPLZivWOKNpv37opI3CjgW/YBd7QRAREVkdExBEZFEi7gh+W7gTBtRHr84+KKviUUgY/sHCwWOw89VRmNi7DrTMPhApy64S2k2ajXH4Ef2+3ILoVGUHY4jYvZj23o/A+NX4qZ+33IZjsf/rJTh0O930nifToJhHK/Tp5mnqBTF/42nck18hIiIi62ACgogs6B6idvyKH8IM0Pr3QOeXn5frVSCu49C8yfj8tD++HN8BVbLRZZuIck7j6IuB0z+BbskkTFh3TrGLfGEIwc+TN0M3fREmtnR9MCFlYhh2rk9CyVLZOIXRuKBp947wQBS2f78GB+K4IgYREZE1aYRELhMRqSvlFJZ2a4cPNgKdAv7Emn61njGRXG6lImbbBDRrsx2+q1ZjUXcPFJdfySvjHdlZk9YjLuk4jjgNwuLprWC3fznmrz4Ph5plELNlN26+MRnfDmuR/a7iRPmduI6gr96D/1dazA76CQO9HOQXcseUfBj8HoaecEHn2mUfuluSfiMUG8p+jrPLukAn1z2NiAvEuFc7Y1ZYDQzcvB4L2rvx7gsREZGVMAFBRBYikHT0G7SqPwpB2n5YFboQ3SsplRZ4mIjZipHNuuEntxk4sGEQ6torlQi4gf2TJiK0x2z0v7MInvUXoXo3X7i3GY1Z73vDQSOQuH8Kar4WiPf2bcCUpmU55wQVGvfbXY3vcHRNP1TPda+jGOwa2xktZwfJzx9XdfYRhI2u/8gynU9yE4emvwnfCXug7bkKJ3/pjheZgSAiIrIKhmAispBbCNn6J4yXFNoO/vB1Uyf5YBp6sWQBfrrcDOOm9IS3YskHye3j+OOAN16rXhLx+ku4Jv3vguu7+MKUfJDfY6LHxVjOuU+Fi6b8axj0RW+4bPoBM38/h9xP+VgefrMOwnh/5EmPc9lOPhg9D++W/vCSSobNm7AzPNFcTURERBbHBAQRWYSIO4oNK4OlkjtatX0Zrqp0DRBICvkNk7/aC13vj/G+0qteFK+CLnM6obrdLYT9HQyD9m18McwP5e//I3dxJfwUoqRLHV9P9n6gwsYeVTr0x6etb+DniQuxzWZWndDA3rs5enhpAcNBbD4QmYfkCBEREeUFExBEZAFpiD+2B5vCEgBtY3R4paI6B5/USGxdvBw70AqDPm4GndIZgBLueMVHB7u0aITuDgMav4qXXDP15BCXcXjTIcDrFdRzLylXEhUi9nXQbfBb8Ahfi3lrTsBm+gGVrArfdt5SIRKBmw/hQgpHnxIREVkDExBEZAE3EbpnD8KM5/zejeCjysV5GuL2LcWERcFw7NYbXb1Ly/XKE5f+xdYDKajb2vuhseTp4fvwy8Z4ePVoDm/7dBjCQxBu4Kz7VJgUg86vG/p6xWPHgl+wy1Z6QWic4NWkARyloiFwFw5cuGOuJyIiIotiAoKI1Jd0FvvWH4OAFl5v1IdHcRUGJ4hoHFy7BWGiMT7q1UT53g/3pSH+7HHsQw28/rI7npNrgWScO7AV29EMH7avA3txCX9+uRJnkninlQoZ+7roNrwjtDbVC8IOzt6+aKOVioaD2MRhGERERFbBBAQRqUzgXngw/jppkMruaFK3EpTv/2Cc+2ED5q04CtG4O3o2cVZx/oVbCD0YhHh4wqty5qUGb+FCyFnpT2yMhp4lEH9gNTY36A6/8tmfKo+oYLCHR5u30M0xCjsWrMb+2FS53ro0FWqgkbejdGyIRODOE9AzN0hERGRxTEAQkcoScXrvNhw0FrX10LiWwhNDGolYHPptFXYY3NGpX0vUUqOHRQZhQGxUPDz6vYlmLz7o/wCUw6sfjsYAlyP4dcoQjDzQALM/eUm6FCMqfDS6Juj1UWMg/P+wcPNZ3JPrraq4G15qWdtUNGwNQoiNJEaIiIgKEyYgiEhdIhZhh8LMZe8G8M48aaNCxPV/sPn3EEDrhx6tqqGYXK8KTSV0WXoKZwPeQqWHjqBFoa39Lhb+bz3mzfgRS8e1hIudiokQIlumKYt6/n7wNPY2WL0fZ+/aQneD51GjoQ8cjc0y/ij+PnPLXE1EREQWwwQEEalKxIZiz9bzprKjd2Xoiil9UZ4C/f5NWBZugLaDP3zdMvdKICLrKAqnRm+gl5cWhu0bsOWELVzsF0UZt6qoaeqDFYrAf6Nso2cGERFRIcIEBBGpSOBOxAkciDeWdWhQvxrKKZ1/EJexf+12xKMqOnRqCDce1Yhsg31NtOxRXyocwPKtp2xgMkoNileujSY6YzkeIYfO4CrngSAiIrIonqoTkYpScP3iOUSayjXQtFYFxQ86IupvbNx8HtC+glYvvcCDGpHNcEB13ybwhAEnV+9BiC2sCONQGS81r2oqGv4Nw8WEdFOZiIiILIPn6kSkots4989x6fJDoq2Cai5KT8l4D1FB27HZ+A94N4KPu/LraxBRbhWFo9craO4oFU/uQGCIDQzD0DjixVpu5nJYKMKvchAGERGRJTEBQUTquXcZJw9EmMsOL8C5jMJLUopYhOz5GwZo4fVGfXioufoFEeWYplwNNG7mDg2O46+/I21gzoUScNI5y+XTOHL2BjgKg4iIyHKYgCAi1Yibl3H6tGkCCKBONbhqi5rLSkk4j7/3GAd4uKNJ3Upg/wciG1NEB+8WtQFNPA6u3o/T96x9uV8cFdyrwjQNBK4gJCIWKaYyERERWQITEESkEoEU/QWEyPkHXT13VFD0iCOQdOp/WB9mALQN0dzb2TS3PRHZEntUfqkBPI3FkGMIu2rty/0i0LpWQx1TOR6nT1/GTXaBICIishgmIIhIJWm4GXUep01lR1Su6IQSimYIEhH+90GcNBa968GzQjFTbfak4/auz+Gi0UBj7YfDuwg4kyh/L6KCpggcXvTES1qp8Rv+xp6QWKsPedCUKY8qxnkpJPEhF6BPYQaCiIjIUpiAICKVpOJmTDTMHSCc8OILzyMnKYJnErcQFXbRVHT0rgxdsZxkNzSwr1YfnTy08nMzre9Y/HbwCIKDg/P4OIx9Wzdg3bo1WL7wG8yeOBR92vng4X9NZtiE79Yct4ElConUoalQA694G6/4I3Hg+CXcMVdbjUZbFq4V5dZ4QY8byUxAEBERWYpGSOQyEZGCrmPX2DZoOfuoVPbBmMCtmOlXTrlhEklBmN7odUw4YYfG3+/C7iH1UFx+KXtSEbNtApq1mYUwuQZ4Ce+vWo3F3T2UTZaYCKQariLiTCj+2f07/rNoBXafN60PAngMx+a9s9Bep/y/SmR14gr++LQtOiw8AW3PVQhd2R2VrDleKj0MS9v64YPteulJNwScWY5+1UuYXyMiIiJVsQcEEalDJCA26qb8pApquGoVnaMh/fJp7D9pvICvgiZerjlMPhjZobz/KCyd3i5Tz4R/8fPEr7HqrJwYUJQGdlodqvu0Qo9RP2B78FEEBoxFu6rSvx6+Hku2hHMyPCqYNM/DzfNFU9Gw5zjOJaSbylZTpBzc67nIT2Khj0uWy0RERKQ2JiCISB0pt3DtYpz8RGnpMFw+hxOm0eQVULFsLu9easqh0aCJmNzaTa6QhC/GJ4OWIPh2mlyhBg3sylSHX78ZWLtrHaZ3KomNS7YgJIkd0qggKgFdlWowTbugD8HJC9YecGQH+9IOcvk6Ll9PlI4oREREZAlMQBCROpLjcOVCxhIY1eBeIed9FJ7sHq5GnoOxAzUcq6GKLvfdpzWlG2LQgq/wXqb5IAw7vsGYBUGIVz0fUAQlKvlj3C+rEFBjP9Ycsv4EfUTKKwptufKoaCpfxZUb1u5xUAJOOme5fAMRMQlsd0RERBbCBAQRqULcjEVUgvxEcQZcPhNhnFYBqPgCymmLmqtzRYMS1d/ExKm9Uf3+GJEo7B4/BlO3R1vkzqhGWwd9pvTB7ZV7EMUroUIiDYbQVZiy1MYmIE06jqVTViHUoGQPIA1KulRBHVOOLxrHIq/bUI+DBETr48FBGERERJbBBASRLUjW49TRoziap8c/OKW3nUsZkZyIGxlTKdSpBletgoeb9OuIPBZtLru8AKc8r+9pjypvfYavhzaWnxsF4dvBs7H+oiXm7NfArlIbDHv1JDaG3Jbrsift1CI0zWp5T9OjMt5cEZ7pYi8JpxZ1zuJ90sOhN1ZE3JXfl18kQX/qnyzaQg4fp/QWvgBNQ3zQPAxZUxYf9fGW9r6sGbfta0WKZL291Nq29t7o81FZrBkyD0HxyiUhNGWc4WYa9aDHiTPRUGOWlewrjgru1aAzlQ24cfsOUpn4IyIisgzjKhhEZGXR60Qf8/38PDzcRKdlZ0W6/JHWlS4Sg2YIr4zv5h8gzqTJLykh8aCY5qU1fbZuTKC4JVfnVXrMbjG5hVum31QrPN7/TZy/Zxu/6lOlXBSbh/nK31snWkzfI2JSsvreqeLWvi/N28bjHTHtt/0iIiFVfi2/uSTW9akqNPe3Vy4fnZaLCItt4nRx58wvol/n78SRW9n83R/dttN2Z2vbTv01t9tW+pwj34nO7/8iztxR6IdJOy0C/HWmv0Hbc5W4aNUmlSZuBY4TOnn7G79PpJLHJyIiInoi9oAgsgW6LlgmhDEhCBG9Dn3kapM+63AlXX4t8yMlATER/2LbkuFoburaHIWT125BzakTs08gNSkBN+Rn2rKlkOdOCpkIww1cvqL8PVSNc1OMmD0Cre9PB2FA+M/jMHzRPzAYL1VsmZ0b/N/rCXMfjgTokzV4zi6rH/0uYiMjpf3qB/xvz1KM79EElfM0hMWa3NBl2TlI17JSm7iEdX2qyvVGH2NddMrj7UakICEmAse2/QdDm8uTj568hjhLNZzkE/jvmM2o+Xkv+JTO5u/+6La9++xte3DvUkzomdttWxSl67+PL+r9iTH/PaF47xDDxRjEp1izQWlgZ++AsvIzw41EJNt6+yYiIiogmIAgyq/stHCuXA/+H8zBxt3fmi6az5+8iFj5ZVvi4OaMMkomIG7GIMI0v6UOdWq4ZFpGM6+kCy+f9zBnRrdMnxmJTZ9PxaKjcabbpbZLg+Le7TGkZ1WpZEDYgt+xLyZVfi3DXegDv8HAFVXxw9yP0NjlObm+MLGD1rky6vp/iG83rsEc/0pSwzmHi7GP/lZqSMLZX2fje5d38Y5PWWk7ZdeDbWtMioUtWP/Mbeury+u2LQ3vbj3h8v1s/HpWgaFdmZe+vKDHDate8WtQwukFZCzECUMi7nAMBhERkUUwAUGU7xkvmntj4ojXoImIhYLDtvPAuErFefMqFYoTSI67BvMMEPYoW+q5HFzIZYOmDOoOmI4l778kV0gMGzFlzCLst8hFah5o3NDinfZwNP4g8RsRsO1CpjkCzJMejp+vwdhlI/Gas51cX3hpStfHRxP6wwtXERN/T65Vj4jdh4Uzo9GrT1O45DT6ZmxbY9lC21aja4o+vaIxc+E+xCp5fZ6chKRk25mG0pwQsaHvQ0REVIAxAUGU7wikGm5Af92A+5fDGie83KoF3C5dtfKdRUvIPLyjDNycHZRNQBgVq4a3vpiAAZmX5tz9FT6esRXRNn2n1A7lX+uCQZ7G2f4isWHRVpy4Z/y+0m92aSNGfxiEJtMHwS/Pd8fzqVQDrutvwHB/GxZF6Zeb4023GESrvjTkPUTtWoMl5dqhjffzcl1OZGxb4z75+LYd85Ea2/Z5vNz+TTgvWYNdUXlN0GjhWqOKuRgfjZibNp7MIyIiIlUwAUGU76Qhdvt4VBy5PdNwCw1KVfNGi6iriL1tG7NAPKBF2dIlpcsnpaTiZuw1qLbCp4lxVYqOmDL/U9S8n90wIOy7SZiw7px0KWnDStdFx35NzOWDv+OPf24iVb8TUz9charzZuD92s8rn7DJL2K3Y6TLeGyPzdRGSrmjXot7uBibKFeoJOUcdv62F+7tGqOmfS63gLRtO33QxLz9Mm/b/qtQ5bvpKmxbDYp71Mcb7nvx204l9/skGO5YNwGhKVEKZZUbu0VERETZxAQEUb6ThOiICLmcyQu+GLy+I160iRX2U3HHkDFu3AEuOkeUkJ/lXTqSExOg/jJ+dijvPwoB09pnmg/iX/w88WusOqNu+iNvSsO7Y1d0Mn3pPfhh6Q+YO/InYMzXGFbfqfAmHyBwNzoCx+VnD7wA3yFfosuLdqq2HKE/gZ2BJdGkbiWUlOtyzrhtu6GTg3ErZtq2Y7/B0AY5mVMiB0pWQt0mJRG48wT0iv1AV3HlRrK0RaznwbKgkoRriGWPDCIiIotgAoIoHxHJMTi18yfMmrFDOnl/5PS9iA4+nd6Aj664XGFNybgRfVUuq6kKariqeBtTUw6NBk3A5NbyaglG4Yvx6eAlCLa5niYZNCjm0Qp9unmanul/Wo5jrSbjs5ZuCvZCyWdEMq6f2o75s37KIgFRHDqfN9DJR6diQExFbEgQthpqokH1vCQKzNu29yPbdlxLVxQz1ahAUxbVG9SEYWsQQmJT5MrcsEOZ8i7mOSxsjSEBiZwDgoiIyCKYgCB6hEi+iat6PfR5fWSeoyEvlr+FikU00Gg0KFLyBdRuPQprTCtAkCVoSjfEoG8noGOmPIdhx7cYsyAI8da8hfs0mopo3r0DdKYnBsTdE8ivC23m3mK85VLM1G40RUrCuXYbjF5zVn7N0pKhjziHeF01uFfIY4LQuG3fbm/BbVscFdyrQRd/DhH6vMyTUQQl7O0V7AlFRERE+RETEEQPScSp//aHh4sLXPL6aDwVgUqsmtBuDrYcCUZw8BEEBa7Fj0NbK7jsZH5kwOUzWQxBUY0GJWr3wrdLBsJDrgGisHv8GEzdHm3VbuRPJG4h4sRZeZ4MPXYs34aQRFvNlqilC+ZsPSS1G6ntBO3Euh+HoXlGl3uLS8aNK1eBsg6wt8vjQAnTtg1/eNsmqbltNbCzd0BZXFVwos6biIpNsM22Q0RERKpiAoLoIaVQe8BaJAgBkdfH2Vl4XYnl8MpWgbePD3x86qOR31sYOHchlrznmcNu3Om4fegH9OvbFS2qOZjuCjvUb4/effuir+nRG2+3qA5NtdcxYMb/4WjsXfm/IzN7VHlrNGYO8JGfGwXh28Gzsf6S2qsn5JB0gRr683gMOd8R/53d1lwXtAGbjprXDSk8nFHF29hupEejlugy8Css+2lADocAKNRuRAJio24CLi/AqUQeEhCmbfs5hp7v8NC23Xg0TsWLeQ1KOL0AF0WTBkm4kXiXCQgiIqJCiAkIovzGzhUN/YwXwo9fyKSfXYrXXT7HrtuPjmcugtKNPsXSZYsw8a0a0n/pi+HfLseKZcuwzPRYgf/bfRoJ2wfi+Q0D0Lz719iXp94bdrB3yLjdbI+ypZ7LYcLEBtlVxptfzsXkFpnngwjAZ19sRESKrVxK3YV+1wJMONAIP83pizff6onOpu4yB7DgtyDE5ORriqvY98UbcKg+HoFx2d0XbmD/pKbmYQ95eDgM+CPTCi9KKQG3ho3xmvzsIelhWPr6qxi767pckSFTu+lqnHfh2e1mb0wWv5W4i8QbGZOy5pZ5244/4IvFsx/Ztr9K2zZHUxikInbfDPg5NJb+5phsJgIKWNLAriRKZyyDoXVAqRI8HSIiIrIERlyifMcODhXrok/1Mo9MPJcOw+VzOFGnGly1T2jadyPxz7YzENr6aOj5vFyZoSi0VVrh7bfrwrB7LsavC1NmDosCROPcFEOnD5Yu3OQKOMLVzQklbSK7kob4oHnoO0tg0LQeqK0tiiKVm92fsDD+lw3YHZWDhRSNEzdG3UL99g1RWfqs7HGC75Cl5mEPuX78i6PTWsNZ/kQlaRwqokGfqihT7JENZojGmRMVnzyhqdxukI12M2HdaWlLKO3Bth08vQe8HB7dtuulbZuTXktpuHNdD339ZmhSWZv/k4NERESUbzABQZTvFEU5v9H473g/lJNrzAwI/+cokmtWRLkntOz0iyHYcdwANK6L6mWfdlEZj/MXYpD7aQNSkZSQsVRlQbpzWhSOjT7ArEmdoZX+5/HeVMwf7QddXsf151kaDKG/YMTIaAxYMgotXZ4zVxsnLOzVFabLVMMWBPx1Ftlex6CIO7oE/A+7v+mEKsWz+/dpYFfOwzzsIdePeqheTv7+Sivnh/HLRsOvXOZ9X+Bu+D/YllwJFctlvZaEsd3sNLUb6bs9q91ESu1Gfnaf5jmUKmsvP8mpR7atLuttuzQn2xbPoVKX+Ti9+yt0qJzd71VAejJlSL2D2zfkxXy5CgYREZHFMAFB9JBEhC7qCocsuoXn+FF9LLYpMQlldiWdwe71YajtWRGP3qM1S8PNC6dwRCq5veKBilm1fnEVpw6clwrueMXLDVreGn2MSLyAoAPHgRZjsXCGuaeBdQmkRm/BxI+C0PSnL/BmpczrDBSFU6OO+MDXOPOBHjt+2Iyjqk5YmB/dxsndgTheuxrcns9qW2a0G5G9dlNbajfm2gc0DnB2KwNEX0Ncck5+/xxs2x/V2rYCyXHXEI0ycHN2YG8JIiIiyhMmIIgeUgq13luC8OhoROf1cXAiWioxCWW2JOPS5gB8FWSP2q5O0qVJVm4h9H8HEQ9PvNGgqvSXPkogJXwf1gVGQdt6KMZ3qvKEzynEUi9g/eiPMfRUK3w/fzD8Mu5GW410garfianvLUfF72fg/drPP36BaF8Lb/RpAY3xhZNrsHr/Nem/ehLj5+3F/BEjMX7Im3h14EqEGpQfUGA7pL/30jYsmLEV2tqucM5yh5fbjZDaTcNnt5vPO1XNIrCWQNmKFYAbCUhKzW6SQN627z9725qcXPuMbStJvYJ98z/D8PGD0OnVIVgReuvp7zeRvkdSAm6gAlzKchFNIiIiyhsmIIgeoSlRBhV0Oujy+iinhUXSDyIRl7bNwXv9FyNOuKOWW9b9H5AWjdDdYVKhDhpUdzLX3ZcGQ8RWzB49Eyf9ZmHjsoGoX9pW0w9auNaoIpctSMQh+Lvh6PtLeUz8cSL6ZHVBaFHyBWqvcbj0wVcYVt/pCd+nFGq+8TZ6mrqz/Itlqw9C/6SrzuQTWDJ6OyqPmoEpfV/FtUXTMH/PMy5q8610JF/aJl3gj8Z/47XwqOWGR1uFSaZ20zAb7aZBlr0oSkBXpRoc9ecQeTU783DI2/Zdadv2m5GNbWssP2PbwoDQJV9hQ+WBmDPlfTS9Nh+fzN+PR6fdfNw9XI08B71jNVTRKZWAcEE993I8ASEiIiqEGP+JbEGyHqeOHsVR4yMkAg8tmHgjAiEZr2V6BO/fht9XfI+x3VugdptJ2G0azvwiXMtnfVdeXPoXWw/ES6XL2LdyPubOnSs/pmFs37fQY0oQyn20BkHrRitwZz/zKhgFQRIi/m8C3hl9CV1/nIvPWrlZJrn0BMIQgf2rZqBXsy74cteLeKVOhad8nzQkphRFeXmCxfg1q7Au5GYWSYVUxOxchk1NeuJ1F4GI43/jPKqilltpKydaniYJ+lP/yG3iBCJuZL64j0VEyOPt5mjwfmz7fTnmjX0HTWq3lX6/S9J7X0CdJ/Qcymg3Qmo3e3+Zl8t2Ywdnb1+00Z7GkbM3nprQeWjb7n4RDb2U2LbS58bswYKNddDfvxKKRBzHjvOO8K7l+oThWpmIGzh75DS0bXzh7Zz1HBn5nqMLypexZosmIiIqRAQRWV/0OtFHao7GJpmnR9XZIjhF/syHpIobW0cKR+k92vfWiStpcrVq7ogzAW/L30srvKYdFInyK3ln/Oxu8mf7iDGBsXK9WlJEzN7pooXWTbSYvl/EpcvVVpB2frnorM20ve8/3EXn5WfFY5s18aCY5qXN4v3mh+OATeLa/b8nVSScOSKOx0o70N1/xfeNHQX8A8QZ1feVvLgk1vWpKjRZ/G05ezQXc4IT5M/MLHO7WSui87Lt74WKgE5Vn9gWjNv2TQdNFt8tt9t2s7ia6T9KTzgrDhyPEekiQRz7vp30nm4i4Mwd+dWnMP07VUWngFBxV67KncfbrRWbkki/tlkMcJR/L904sfNmqvwKERERqYk9IIhsga4LlglhTAjm7XFuNHyyvJGXiAsnQhAPHRo3rYUXLNryDbhx+46CS3raoUx5Fxin3lOfQPLZ1RjTfy4ud5uDJaNfhaMVuwMUqdIb6xOy2O7iAtb39ni8S5u9L8afSMji/eZH3MIOKH//7ykKbfX68C5XFEn/bMFPB53Qs18LeNh0lHBDl2XnIF3IZvn3Zf+xG6N8slqCM1O7aSK1m7xs+2LV0KpnM0Su2oOQLCaLNG7b32+nZ/Hdcrtt2z/UzjVaD7zq7QxN0gn88dNeaHu+hVYezxpSIZB0+iD+jGyGnq2qobhcm3cOKG1vZ9WeNeJmDCKMHcKIiIjIomz61JKIFJIejeM7TkqFhnizUaV8PrlkEZSwt4f60+GZx+F/NfBzrHWfhF+/64oqxax5yWQh4hr2r16Dk47t8U4LN2iSI3E4JNZ0q7jQydRuOkvtJm8Bszjc/Lqh/90dCAy5JddZWhri9q/HDyfd0eudJnDTJOLC4VBcf+LGvYWQrX/iev9u8HNTLv0AOEPnxAktiYiICiMmIIgKAXHtFPYf1ANu9VD7xZJyrZrU7KWggZ29A8qaytE4FnkdaqzgLwwnsPzzsZga9SaWLRlgw5NyKkvEBmPDsn+h69sWjZ01iNu7GNOCnz5vQUGldLvROL+GgZ+54Jfl+xGtxk77LOIqDm7cCr2uLTo3rgDEHcC8qYcR94TvIvT7sfwXF3w28DVIu0IeJSNOH2suah1QqoQNnX7UqQZXqy+nS0REVDgwAUFU4KUj4XQwthkAxy6+qF3KEnfxjb0USt7vpZAQFYubil3BalDC6QW4yM9UkXoZu+Z8hqFrq+G7/5uMNytZ5m6tSL6FGwblBqvkRro+Aofj3fFaoxpwTDyGlcvtMbxTFkMACrxH240Sv4A9qr8zBkOjV+LXo1ZI6qRfR8ThSOA1H9RyTEDIys0oMaI9qmU5+2Ycjq5cieihY/BOdXu5Mi9SkXQ7wVx0eAHOVp30USD1TiJM8/YSERGRRTEBQVRgJeLUijHo2/dtdPpoPvRSTfwfMzGg7yDMO/TQOhsqyNxLATDcSESygldbmjLlUcXUvUKPE2eilb2QELcQuvxLDPzyJvr/NhcD6zlaaKz6bYT89DU2RmdnmUb1FK3dBXOnv4Jrf83DiFGbUH78ELQoW5juDmfdbga+Z2w3cea35EWJOnhvdgecnvELjt5OkystpKgnus2ZgI7X/sKCERPwW/kBGN+ifBYnAmm4fXQFpp/qgNnv1VFmuFP6dUQeizaXK+tQtoRVZ4BA8g09LsjPtGVLwapfh4iIqBDRCONsVURECks/uxRta3yA7cYn/gE4s6UfqiuV8kwKwvRX/DHhpAG6MYEIm+WH0vJLeXMX0X9MRMsOO9Eo4L+Y/743tBa5MBFIifg/DJiuweQlb6MSL4YKuDTEB83DyG1emD6hFXR2trTBzXOfTBt/Eq9/PQS+jgoln9LDsLStHz7Yroe25yqEruxuxf08Hbd3TYBny69MCSbjMeT0TD88z3ZHRESkOvaAICJVaEqUQtmMhQVOnMNlg4KD3ks4QufiYOqZoD8WiauKfHQaDMcDMFC6ONJNmoUZfepYLPmQGrsXs/vPgWjXCG68CCoEisLRdwjmdbuB/ywPQZJcaxOSQrD8PzfQbZ6CyQcjQzTOnDBe7gMObs4oY9X9PBU3Y6/BPCBEi7KlS8KmckBEREQFGBMQRKQKTRlnuDnIT5RWpBzc68mzQERfQ1yex3cIpF7aiDFvT8TprlMxf7Sfhe5Kp8EQ8Se+7NEXEy63RPemLhYa7kHWVxTa2j0wuV9dKDHDgmLs66Lf5B6orfCkjOJmLKJMV/w61KnhIl32W1M6khMT5KFbDnDROVpgVR0iIiIyYgKCiNRRwgkVK8vrYCRcQ+xNJSdX1MK1RhXjVBPAlWu4bsjbWHpx+298138YVlQcjoUzlL/4epx0AXQ9FFu/HwC/uh0wdVccPLv4o0E5a07MR6QWgZT4GFw0XfG7oJ57OSuffGRakQNlUaW8uTcVERERqY8JCCJSR7Hn8cKLTuayIQGJyUquO5hpmc/4c4jQJ5tqcyUlHP83bCBGR76BHxYORUvdc/ILChPJuHn5LI4Grsa8se+gSWUvtB22BEdMF2X10auzD5x4FUQFUhpuRkXgtKlcBTVcrdv/4aEVOVAOruVK8WSIiIjIQjgJJRGp5Dp2jW2DlrOPSmUfjAncipl+5RS702ic5PINz/7YJmpjwOat+LF9xZx/triKfVP6od2U/dD1mYQpnapCqfSDSIzBhWsGiNuXcerCOZzY8CeOPmm5Dt85CN45Ej72zEBQQZSMs0v7osYH/wfoxiEwbBr8Slvxkj/ThJhANwScWY5+1TkIg4iIyBKYgCAilRgvOvpIFx1rpHJV9Fy1A790r6zcnUbjShiNXseEE3Zo/P0u7B5SD8Xll7LHgLMrRqF9n8UIl2usww3+P27G5oF1c/j9ifIJcQV/fNoWHRaesIEVMCSZVtGxiYQIERFRIcKIS0QqyTRMAnG4eO0WUkxlhZSsgGp1XpAK8Th9+jJu5iiVKnAvdCUGf2Lt5INE2xRv+1Vj8oEKrpRYRIRckQqO8G5UAxWs3dEn9Q5u35C7I1XWoWwJ9jwiIiKyFCYgiEglRVHGrSpqmsrxuHAlDnlerCIzjTM8X/E0FeMPnEDEnZx8uAbFa3+MbQkCxk5gVn0krMQHNUrJ34uo4BE3LyPsdLxUqgjvKs4oZq62mvSrkThmXhEUjt6VoSvGBAQREZGlMAFBRCrRoJiuMrzlhTD0xyJxVcl5KFEKHg0bw8tYjDyF8Kv3TLVEZEsE7kScwIF4AWgborm3s5VXnEiH4fI5nDCVHVGzpivKMP9ARERkMUxAEJFqNGVcpRN8OQMRfQ1xynaBQMkqddDE+PGGYzh46rp0qUNEtiUR4X//DyelkrZVczRwtfZgo1TcjI2BeQ0M2+iRQUREVJgwAUFE6inuCq8mVczlyHO4eF3ZXgoa55fQrruxD0Qk9vx9Xr6oICKbIWIRdihM+n9HeLeoA1ern3UkIfpcBMwzQNREg+plrdwjg4iIqHBhAoKIVOQAd6+aMK36b4jAuegkU61iNM7wbt5Q+nwDwgKP48I99oEgsiUiNhR7tp6HQF280dDd+pOtinhcPBVlLnu9hFquSi28S0RERNnBBAQRqag4KnjUgrupfAb7T12FotNASJ/v5uuPDsYMR8ghHI28Y64mIhuQhviTh7HHOP+kV2u09H7eXG1NCRfw757zpqK2ThW4lGT/ByIiIktiAoKIVJRpngbocST4HK4r3ElB49YQnTpUBQyHsfPfawonOIgo9xJwNugAwqCFV/fm8La39sW+wL0LoThgWgHDRpYEJSIiKmSYgCAiVWnK1UDjZuY+EPEhF6BPUToD4YqmXf2ly4nz2Lzxb0TliwzEXei3TUTjAX8gVq4hKnCSTiNwVbBUaII+bWrB3lxrRWm4GXUep03T1drIkBAiIqJChgkIIlJXER28W9Q2l0OOI+xqirmsmGLQNe2Ivh5aGDZvws7wRLk+50TsHnzhVxnVxwbC2GtceXdx/ewBrJv7CTp1nYagO/eQKr9CVLAIJIXswaqTBmj9O6NtHRsYfgEDIo4fh3FFUDjWRd0qptlpiIiIyIKYgCAilZWCR8NXYVyrAoa/sSckVvHlMjXlXkaHLt7S5x/E5gORyG2KQ9y5gSh9dbRv4m6eOFNRsdg/dzgmBOxHrIsXXpZXJyUqkEQsDm34Ayfhjpbdm6L6czYw1uFeJP7+67ip6Ni9FRo625nKREREZDlMQBCRyjQoWb0h2nkaL+kjceD4JSg+VaTGGU1694G/NhIbA7YgJCl3KY4ild5CwOlt+KZDVRST65TjjKajfsSiWeMw4O3XUI19v6kAE7F/Y81/DgIeb6J/Ww+bGOogrp7BoZB4CFRFm+a14cz5H4iIiCyOCQgiUp3GsQ78O3lDAwNO/hWMcMWXy9SgeK03MLi3DzRB67HmkPK9LIgou5IQ/sdv+CXeDa0H9YKfTvl0Xs6lIjYkCFsNUlHri7YNXKSjBhEREVkaExBEpD5NWdTz94On8YxfreUyNa7w+7gvWjsE4T+/HIA+2xmIu9DvW4gRw8diSKe2GLgiBAZmL4hyLykUm5ZsgUHbFD3aeNrA5JMSEYeTB46Y5nbRtmyOV9zYBYmIiMgamIAgIgsoCsd6zdHR08E8T8PhKyosl6mBvXdnUy+I+DUrsDbktlz/NALJocsxaoMbRs2ZiL5N72LRJ0uw53qa/LokbhuGOWmg0eT84TRsK+LkjyEqHFKg3/Ub/hOkRevJQ9DVwybSD8Cd8wj6M0QquKNlh0aoXIz9H4iIiKyBCQgisgjTMIyO3lIpEju3/IPLavQyMPaC+KgPWmMnFize++xeECIaOxccRNP+LeBS5DKO7zwDeHvA7flMh0an1/FdnIAQOX/EfdcGTvLHEBUKSSewZv46hHt0xZB3X0Zpm7jOf7AiB7R+6NGqmgpzvBAREVF2MAFBRJahcUajzu1Mq2EYNm9HUNQ9c72ijL0gemLKuGbQr1iMnw9df8ZcEFpU7zUSXWva496JHVi6XcD/g9aoU5x3R4lyLgkRm5fghx1l8f7UgXjdJuZ+MLqFkMDtOCmVHLu1Q1O358zVREREZHFMQBCRhRiTA6/jw9ZugGEXftt5LtfLZT6Vphwa9R+ED1334quZv+NU8lNSEJrnUf1VL5TT3MI/f/yOg6Xaol+rKjwwEuWC0Adi7sQViO7wMUZ2sp1eBiLuKDb8EiyVGuOjXk2gYwMnIiKyGoZhIrIce0+06dEUWkQicNMhXEhRZ7ZHTflW+Oy7T+G6aRG+3ngOz+prIeIOY/UPe1CmV2e0cCuG5Av/IuR6qvwqET2TuI5DPy/GCn07zJ7+DmqXsJVeRGmIP7YHG8MMgFd7dG7kzBMfIiIiK2IcJiILsodHh97o76GFYeMabMrWRJG5YYfy/qOwdLoL1kz8Fr+fT5Trs5KK2INbsEz/Evp2qg9nXMPeeQsRHCcnIDgJJdEzSBf5h37G+K+i0W3JVHzg5SDX2wBxBXt+WYswuKPT8E7wsefwKiIiImtiAoKILErj3BjvDWoFLQ4gYE0wbii/HIaZcSjGkCmYUXM7Jk3fjIgn9ra4C33EGcSjHl6pVQaJIeuxvER3dPYoYX6Zk1ASPZWID8LC8T9C3/9LTHurGmxngUuBlPCdWL4mDPB4E/3benDySSIiIivTSCfJ6vSBJiJ6AqHfjE+bvYOF+rfx28kf0eNFtSaFky5AIv4PA9qOx/VBq7FykA+0j90AFUjV78LsAXNxxtMTJTW+GDLhLdTSFpVfV0oyzq7+AtP/uoI7lw5jzZ5wqU4Hn3YtULtsadSRLt5GNXU2v5Uov0i9jMCpH6FbkD+2rx2M+qWVbjd5cQtH5/ZE/dEn0fr7Ddgw5GXYyKKgREREhRYTEERkBbdxfF5fNBl6FL7frceGoT4qXhik4XbwfHT1347GG5Zi8msVwE7YREpIQsTq0WjzRSl8EzgV7V1sa3UJY6JzUPN38aPoj817Z6G9zazKQUREVHhxCAYRWUFpePf4GB96xmPHDyuxS6/KehiyoihdfyCWrWmMfR9/i+2xnFySKO8E7oWuwCdTUvDZ2vFoZ2PJB2OSM2TNUqwIL4uOI95DKyYfiIiIbAJ7QBCRlRjvno5C255/4MXv2D2aiJSTMcxrhetEbF83Er6OtjQ0hIiIqPBiDwgishJ7VOk0AMM72mHHgiXYHJEk1xMR5YGIw9GVAVgRXgcfjnkXjZh8ICIishlMQBCR9ZSojXcmDEFr/Qp88Z8gxLE/FhHliXHliw2YNiUQugGjMLSlC+d8ISIisiFMQBCRFRVFaZ8+mDG5JS7/MB9Lj8ZJlw9ERLmUGonN3/6IjboPMHPcG3ixGNMPREREtoRzQBCR1QnDUSx4tys+vzMCBzYMQl17XjQQUU6lImbbBDRrsw9tNq/CnPaVYCe/QkRERLaBCQgisgECKRH/h4/bjMeNEb9j1QBvlJRfISLKDhGzFSObDcSx3iuwblwTODKPSUREZHOYgCAiG3EX0X9MRMuekfhk/2IMqufIsdtElD0iGttGdkPX8+/iwMqPUVfLiSeJiIhsEeeAICIb8Rxc2o3H2u/LYOEX6xGewtwoEWVHGuJ2L8ToY22xYdEHTD4QERHZMPaAICIiIiIiIiLVsQcEEREREREREamOCQgiIiIiIiIiUh0TEERERERERESkOiYgiIiIiIiIiEh1TEAQERERERERkeqYgCAiIiIiIiIi1TEBQURERERERESqYwKCiIiIiIiIiFTHBAQRERERERERqY4JCCIiIiIiIiJSHRMQRERERERERKQ6JiCIyHaIWwhd+hFqdV6KsylCriQiIiIiotxJQ9yuiajjNw2B+rtynfUwAUFENuIuov+cjq5Db2PItG6oXkwj1xMRERERUe4UhVOLgZhb7y90HhCAYwlpcr11MAFBRDZAICViAyaM+B3V53yOvl4Ocj0REREREeWJxgX+n03Ch2fnYMT8g4i3YkdjjZDIZSIiqxCGo1jwbld8jnE4tPpD1C7B3g9ERERERMpJRcy2CWjedh/abFmLr193gTXOuNkDgoisS8Th6KKp+HxXXUye2BW1mHwgIiIiIlKYHcq3/BjTBqTg28Gzsf5SslxvWUxAEJEVpeH20eX4fEogXD8djH4+TlbJxBIRERERFXh27ugwbCA66QPw2Vd/4VKq5QdDMAFBRNaTHIpfp83DDl1vfPGRL5yYfSAiIiIiUokGxap3xZTpraBfNBffBeph6RQEExBEZCVJiNi4CN9uSkXrQf3RoYq9XE9EREREROooDe9u/dDb4wR+mrUSh+ItuyoGExBEZBUiZh8WfLECZ6t1xZBudcD0AxERERGR+jS6Zvh4UCtg94+YuToUd+R6S2ACgois4DZCVi3GT2GOaP3pu/DTFZPriYiIiIhIXRm9IK5j0zf/xc7oe3K9+piAICKLE/q9WLxgJwzapujexpO9H4iIiIiILEhT4RV07eINhK/F/DUnkCTXq40JCCKysNsIWbMUK8IBz0/7obNHKbmeiIiIiIgsQuOMpv0+QCdtFHb8sBK79CnyC+piAoKILErEHcFvC3fCgPro1dkHZXkUIiIiIiKyMA2KebRCn26e0Bh7QWw8DUsMxOCpPxFZ0D1E7fgVP4QZoPXvgc4vPy/XExERERGRRWlc0LR7R3hoorD9+zU4EKf+ihhMQBCR5aScw87fdsEAd7Ts3hTVi2vkF4iIiIiIyLLsUK6BP970dADCtmDtwWgI+RW1MAFBRBYikBSyBUs2RgJaP/RsVQ1c+4KIiIiIyHo0Tj7o/G59qXQUK349iCiVMxBMQBCRhdxCyNY/ESSVtB384etW3FxNRERERERW8jy8W7aGl1QybN6EneHqrofBBAQRWYSIO4oNK4OlkjtatX0Zrhx9QURERERkZRrYezdHDy8tYDiITQcioeZ6GExAEJEFpCH+2B5sCksAtI3R4ZWKPPgQEREREdmCklXh285bKkQicNMhXEhRbxwGrwGIyAJuInTPHoQZj2XejeDjXtJcTURERERE1qVxgleTBnCUiobAQBy4cMdcrwImIIhIfUlnsW/9MQho4fVGfXhw9QsiIiIiIhthB2dvX7TRSkV5GMY98wuKYwKCiFQmcC88GH+dNEhldzSpWwns/0BEREREZDs0FWqgkbexD0QkAneegD7dXK80JiCISGWJOL13Gw4ai9p6aFyrHNj/gYiIiIjIhhR3w0sta5uKhq1BCIlVZypKJiCISF0iFmGHwsxl7wbwduXym0REREREtuV51GjoY5oHAvFHceTMLVOt0piAICJVidhQ7Nl63lR29K4MXTH2fyAiIiIisi1FUcatKmqayqEI/DdKlXkgmIAgIhUJ3Ik4gQPxxrIODepXQznmH4iIiIiIbIwGxSvXRhOdsRyPkMNncFWF1TiZgCAiFaXg+sVziDSVa6BprQo86BARERER2SKHyni5eVVT0fBvGC4mKD8TJa8FiEhFt3Hun+Mwrn8BbRVUc7E31RIRERERkY3ROOLF2m7mctgphF9VfhAGExBEpJ57l3HyQIS57PACnMvYmctERERERGRjSsBJ5yyXT+PI2RtQehQGExBEpBpx8zJOnzZNAAHUqQZXbVFzmYiIiIiIbExxVHCvBtM0ELiCkIhYKL0YJxMQRKQSgRT9BYTI+QddPXdU4BGHiIiIiMhGFYHWtRrqmMrxOH36Mm4q3AWClwNEpJI03Iw6j9OmsiMqV3RCCUutgCGuYv/MYRg2pjcathiLdWduwhCxHfOGD8CwSV9h2oC2aNjja+zS35X/AyKi7BOxezFz4DCM6dsCLYavw9mkW4jYNh/D+w3DpDlfYIBfM/SYuwv6VBWmDyciIlKRpkx5VHE0l+NDLkCfomwsYwKCiFSSipsx0TB3gHDCiy88j2KmstrScftAAL4r0x9zZgzD21Gz8eHwjzBw7lW0nPoDvvtyHCZ8/TnaBk3BpwsP47b8XxERZc8NHJi/GmUGT8eMIe1w+fuxGPbeIMy90gxTA77Dl6Mn4+spLXBQ+v+FQXHyf0NERJQ/aLRl4VpRa35yQY8byUxAEFG+YMDlM/IElCgDN2cHWKYDRByC/ziP1q9VQbF4Pc5dA+IvVEGvL95B7YfmoDAg7OJ1JMrPiIiy5fZx/HHAG6/VKIF4/SVck/53wfVdfPG+N7QPHeT0uBibJJeJiIjyiRKO0LnI5+36c4hUeCUMJiCISB0iAbFRN+UnVVDDVWuhBERJVO4yFJ2ql0BiWDD+MlRFz8kfwb/8gxU40q+E43BUGTTxrY7ych0RUbYUr4IuczqhetFbCPs7GIZSb+OLYX4of/8AdxdXwk8jCl7w9Swr1xEREeUTRcrBvZ6L/CQW+rhkuawMJiCISB0pt3DtojW6H5dC5VfqQmeXjIuhx6SLgJfR8iVdpuTHXVw8vAvbURdt6rmC63IQUY6UcMcrPjrYpUUjdHcY0LgxXnItLr8oEZdxePMhwOsV1HMvKVcSERHlF3awL+0gl6/j8vVERZfiZAKCiNSRHIcrFzKWwKgG9wqZTtAtQUTj6NZ/gLoNUffFEnKlJP0Cdv+yC6jtj5bez0MYzuOf8FuKr3FMRAWbuPQvth5IgXcrb7yY6WwqPXwfVm6Mh1eP5vC2T4chPAThhjT5VSIiIltXAk46Z5jv3t1AREwCExBEZPvEzVhEJchPrCH+PI7ui4Lu9Zfh8dyD/g/p5w5i9fZk+PZvg5ftUxD153wsOWOQXyUiyo40xJ89jn2ogddfdsdzci2QjHMHtmI7XsOH7evAXlzCn1NW4kwSU5xERJQfJSBaHy9FN+UwAUFEqhDJibiRcV1fpxpctZY83Agkhgbh93g3NPSqBIf7+Yc03LxwCkdQG280rIxi8UFYuqk6PvZzsdD8FERUMNxC6P8OIh6eqF05o5uq0S1cCDkLvNgYDT1LIP7Aamxq2B1+meagISIism3FUcG9GnSmsgE3bt9BqqmsDCYgiEgFAslx1xAtP7O8NNyOvYZ4j07o08wt04GuKBxf7YPvB2jx92/TMHDkEbw29wPUtWf6gYhyQBgQGxUPj35volnmIV4oh1c/HI0BFY/g1ylDMPJAA8z95CXYy68SERHlNwlRsbipYEc+jZDIZSIihaTj9q4J8Gz5FfTSM23PVQhd2R2VeJ1PRERERGTDBJIOzUSjxp/jhDFT4B+AM1v6obpCXRfYA4KIVOfg5owyTD4QEREREdk4DUo4vYD7A5QNibiTqlyfBSYgiEgF93A18ryp9wMREREREeVTF/S4kcwEBBERERERERHlI0xAEJHKtChbuiQ4BzwRERERke3TlCiFslr5icKYgCAiFaTijiFJLjvAReeIzPPEExERERGRbdKUcYZbxirTCdcQe1O5hTiZgCAiFSTjRvRVuUxERERERPmSIQGJyenyk7xjAoKIiIiIiIiIVMcEBBHZqHTc3vU5XDQaaKz9cHgXS89mDCkhooKBxxgiIiJL0wiJXCYiUsh17PqsLVrOCpbKOvgH7MKWfp45zHgKpF5aj8Gt+mJRuEGuA7S+Y/HT113hUVxemzjX0pB0XY/YxBQkxkThavRFnPznAH7/8yge/GsZtPCath2Hx/vCXq4hKnTELZz9cym+nbcZUeXtcXXjP0DbD/DJiIHo08glH040y2MMERFRlm7vwmc1W2FWtDFV0A0BZ5ajX3VlZnRjAoKIVBCHvePeQPOZh6WyGzoEBGJjPw/k/HQ+FTHbJqBZm1kIk2uAl/D+qtVY3N0DxeQa5UgXJIariDgTin92/47/LFqB3eflSwWP4di8dxba65T/V4lsnwFnV4zHpKg38e2YZtDZaSAMp7Bm4ifovsQekzb8BxNbuubDJIT5GNO87Sycvn82ZD7GLJKOMcXlGuXwGENERPlA4m6Me7kDZp5NBOzfRsDJ5ehX+Tn5xbzhEAwiUkE60kSaXE7FXaRJp925YYfy/qOwdHo7ZEzEC/yLnyd+jVVnH7+HmHca2Gl1qO7TCj1G/YDtwUcRGDAW7apqgfD1WLIlHCnyO4kKExG9HbN+q4VJo83JByONtha6TRyHYQ5b8OWgxdgXl9Hm8xPzMSZgWns8WG1MPsacSZCfK+nZx5h78juJiIisJk1AZKxolySdxaco12eBCQgism2acmg0aCIm+VeSKyThi/HJoCU4ckvNCx7pQqFMdfj1m4G1u9ZhescS2LhkC0KMB2GiQiUN8ScOYsPW6Ri28F9knqlA4+SDDr19gLBA7Am9JdfmM6ZjzARMbu0mV0ikY8yng5cg+LYVjjGJPMYQEVHBxQQEEdk8TemGGDR/Bt7zeHCP0rDjG4xdcBDxqp+rF0GJSv4Yt3I1Amrsx5pDsVBuISKi/EC6ULZ3wAuIR9R1Ax5eCbwEnnc29k+KwcXYRHNVPmQ6xiz46pFjzLcYsyDI4seYtYdjctljjIiIyPYxAUFE+YAGJaq/iYlTe8NDrgGisHvCWEzdHm2Rk3WNtg76TOmD2yv3ICq7GQhxC6Erv8bS47flCio40mAIXYUpS48/1CPA6pKOY+mUVQg1ZOPOfbbfWwSlm36GfWeOY/+kpigt15qIWJz7J0oqeMKnqqO5Ll96wjFm/BiLH2MSVu5FVF7/QR57CrDCdOyxMLabwsHWt3OO2sdtHF/6NVaG3spXiWtOQklkC5L1OBUajTvy09zRoKSLJ2rpbGEOdSVWwchC6iX8MboHOnwXJFdIPIZi3c6Z6FJJmZl5ny4JZ5fOxDafkRhc93m57gnEdQTN/BLbGo7BhKdMzpd2ahFaeH2C/Vkeit3Refl2rOvtIf92STi16B3UHrjR9Owh2l5YfnwJeldRZoIgi8i3+30a4oPmYeQ2L0yf0Or+nAiPMm7b5rUH4oD8/GFZbdt3pW27wfTsITnatgKp+p2YNv4kXp87BL5OReX6rGR679fSex2f9t6sCKSc/RndfD7Avg6/4Miyd1C1WF5XjrAymznGjJKOMQ+lerIvB8eeZ+2fa6X907xXPP3Ys+zYT+hT1RK/j1KSoD8Vhug7eTwFLumC2rV0sNxfrtaxR4m4kpPjSV6PPSrI1G7GS+3mSVPBPvO3XbYN6/pUf+i39fpkIx4L8fkxZt8npPB9BqHRee31VgoutWtAV8KCcSNfnJvlsH2kXkbgtNn4+/VJ+My3nHRWpBAVV8GQGgQRWV30OtHHeMTJ08NNdFp2VqTLH2ldsSJwbH35e+mEf8BpkSa/klfpMbvF5BZumf5urfB4f5U4f882/nKzBHFm+SDRec4hcSu7Xyvlotg8zPf+b9Zi2m4Rk5LVf5wqbu37UngZ3+fxjpj6634RkZAqv5bP5Mv9Pl3cOfOLeL/zd+LIzWz+7o9u2+l7xLVsbNtpv+V220qfc+Q78eb7v4gzd571y5jf2zlb733EnZMioEd1oW0xVeyMTpYr87/8cYx5ktwfe6ST1vv759OOPXU0ed0/bcElsa5vtUzbOJePTstFhMV2i0zHnlu5P/ZkJ67k9diTveNJHo49isttu2lswd/WlqRI4ftj+W/Py+NdsTzCkrEjP52b5ax9pN86JOZ0HiSWh92WaxRwK1CMddHIf3s3EXDmjvxC3jEBQWRrHr0o67NOXMnq2JOSIGIi/hXblgwXzbXm91adfUQKC7ZAvQSE+aD8rWgt/83mh7voOC9YJGQ3oKhKOkk8uVh08v9W/J3dC1STdHH32DzR2PT3aIXnxD3ilvzKwxLFueX9hFefH8TBAnTRl2/2+zvHxcJO3cWcIzdykPR4dNvuFTez/I+V3La3xLHv3xGdFh4Xzz5lML63ZzbfK0uJEjsntRPVO84SgQVpPzQxH2P8HTJOvIwP8zHmtk0cY57kwbEn2xeoJub981WN8e81759PO/bUKWjHHmMyok/VTNv6Y7EuOqsjSopIiIkQx7b9RwxtLieoqs4RwZY6+BiPPZ3zfux5Vlz53xUljj3ZPZ48eG+SXGN5eWs32fttPyh4Mfu+R5MRVUWftRfl1zJLl8L3NRFxbJtYMrS10Jre21zMCU6QX1dbfjw3y0n7SBeJ0vd8vfNicVKphB4TEESFSHYvxO7LdEHeZ62IlmutS80EhCQ9Xhyb1004GO/EZfxO2k45PDFTyb1QEdDpNTFw86Wc/83pEWJVT/lE2HGo2Hzt0TPbZBG9c6po3Xq62BtjG6kmxeSL/T5RnAl4V3gO3CSic7qjPbJtN129J7+QQfltmx69SQz0fFc6aUiUa54sJ+/NSD54vvdfceJ2Xu7wPJnx+3zaeYE4lmilFm06xrwtnyTLD+kYM/vv69Y/xjyJ8djTuZnp2JPj72jcP9+RewQ849iz57HX8rvsJiAeMN1tbG1MQjz7vcowH3tq5uHYY+rhYqG4kqtjT5hBrrGwTDE7V+0mGzHbvyDG7Puym4DIJP2GODKnk3AwvnfdJblSZfn03CxH7SP9ktj8STPRKSBUPHqGkSsqJiDMQ1eIKB8ritI+vTFxxGvQRMQi3sbmdFKFpgzqDpiOn95/Wa6QGDZiyphF2Bfz8Bz9lpWK2F3LMPN8G/Txc5XHBuaAxg0t3mkP01R+8RsRsO1CphU3zBOPjZ+vwdhlI/Ga85NGLhYWlt/vRew+LJwZjV59mkKX00GWj2zbpVls2wkLlN22Gl1T9OkVjZkL9yHWeArxFNl+r7iKfdMGYxaGYtdPfeDlYBybmob4/Ysx/1Cc+T0KEAmxCD98BTdSn/HF1WI6xkzDkvdfkisk0jHmy7GLsD/WmseYJzEfe2adf9107MnxGGDj/tkze8eeZuUL+7FH+rlK18dHEz+EF64iJv6eXKuejGPPu72b5P7YY/zvLBRXMh9PYp4xaXPGe2ct2v/M45TyHo7ZuWo3j8TsB6HowW875r+M2Q/ROMHnoxEYXucOImJuZfrN1JJ/z81y1D40rvDr/TrOz1yGXf/f3p2ARVW9fwD/jrs4mKCYqJiokFtouW/lvuSCmpaWu1bo31LL1HIpcxcrd63EfqKWZi6JlfseaGopigsq7iCyiQwIspz/nZkLDPsMzAZ+Pz73eWbOvYwzc8957z3v3HuOVR6n0jEBQVToCCSpIhCiOx2eFMxf69wBTncfIiLeQifs5layDt76cjo8dKfNO7IAHgv+QrClOi3iHg5v2I1KwzvDzcbgUxlJCVR+vT/G11V/ptvYtXYvLj5TfxZpn9/9HVM+8EPbeePR0bEwDlpVUJau989w7/A2rKvUE93d8hiANFuZ9u33GfftZ+/7oc2c/zPyvn0Br/XqB4d123D4Xl6dJD22VY8c/tMSbHGchs0zdQfAi8alA74QZYtYvVTHmK9mZIoxC/Hh/L2WizE5kWNPxWGdChB7+uUYe9T18/mNPZIkFcJDIqBK2+/FUf619ujn9AjBEfFymamkx55ubhXkMkOkxh71dLnm2rfp8eTIvQS5LCfytl76xCkjU7cbbx/jHrMTsvluqz6n7SZNElThoQhXpXeKFeUbonO/mrgTHAVTt6DCfW5mSPtQwOa1HnjfYTc2HL4nvTvrxQQEUaGTjLD901Ht0/0Ik0vUQadcHTd0uPcQYU+eh0sg1BQoUaMPZq/4P9SVS6TuAa4u/RIztt9AolxiPgKJ14/gF58q6NnWBfmek6F8I7iPbqv9JcZ3B/b8+1gzGvKcMVtQa+k8jGzwguG/0hQJFq73iTdw8JdjqNmzNerl6wRGIu9bDd+dGfZt7eXzMbJhBSPvWwVKuTTFmzWP4ZeDebWJjNtmOc3RJB+moN+Eo7h7cjUmjx6B4cOHa5ehwzDpu7KoXrmonWTnFGNmWSjG5EQn9rQpeOzRyBR7NPXzuY09krD9+LTqdOwP04kz5WqicYdnuBNW0JkA8qAbe8rlP/b0GZXNvn3fVPtWJ54c0i/29Kh5XI84ZUzadrPF50WjHLM1NN9tFNtNFiHYP7kXPt0fIj9XK486jdxw704YTDsZZmE/NzOwfZSqieZvVoHPL0dwPdF6UxBMQBAVOnEIDgqSH+t4sRU+2tkHL+lcGFb0lUDlrpOxfl5PpP9G+R9+mvkNtgSq5OfmkoiQ//7GoZKN0KhW+rsxXHm49RkId1v1oewoVq1fhSWf/ghM/RYTmlV8jk9kLFvvRchFHDxUFm0b1UBZucxw8r7VVI+M+3ZiU3vT7NuyNdCobVkcOngRIXmdi+hum+HrTEbUkcXoP+YHXFedwx+bvOHtrbNs+gPnXqyDl4rkJcbWFGNykh573IwRe8xZPwsFgYTgIFyQn6V7Ea0+/hr9Xyph0uhjvNgzIOu+nfKNyWPPYUNjj9n6TEY+Zsvf7eqf2G6ySAhF0IXMaYYS0uF7DHb1fwmmPXwXgXMzg9qHErUaNULJQ3/jvxDrSZNnxgQEUSEi4h/h8sEfsWj+AemUKFMUKuaIJu5vooljKbngOaGohJbjZ+LLLk5ygeT69xg3fh3OmvNqEBEG/6P/QNXMDa6VCtIRU6CkS2cMHaj9zTXkR2+c7/wlPs9lXvKizvL1Pglh/qewV1UPzVwLcqKh3bfDpH2rfg3dfWuyrruiIlyb1YNqrx/887onNMO2uicuxWHXcR6upWgGrs5+uTEZTYrqLc7WEmNykiH2FCRKpNdPNU397DTLtPXT2ol4hF/ejxWLfsgmAVEKjk3ehHsTRxOeTKtjj19a7Mn//5PNvpViz7ROTmaIPaf0iz1N9YxTxpLabpoa55id/t1uNH1cLzRSEB9+GQdXfIsF57PGymKOTeDu3gSOpuyNFoVzM4PaRwlUcnVDM9U/OOoflvmMyWowAUGUiYh/jIchIQgp6KJ7r3pBeL+FasUUUCgUKFb2RTToMhnbouR1pKEo3xzjv5uBPjrJbdWBbzFlpR+izBV9E8MQ5P8Ajo1rokpBI6uiGtq/3QuOmicqRD4TUhfwOWNV9T4eIUE3EOVYBzWrFDDRod637/SWB5Izx74thSo168Ax6gaCQvK609aQbZ8vqTFG++uXVmqMibT0GZ6xY4+6fmqePKexB9/jraolNbFHUawsHBp0x2fbrsvrzM0EsUfzxIyx57G+sae2eWOP3G6qNH6J7caobsJ7wEva9qMojrIODdDls19gvCGKDVQkzs0Max/FqtREY8cH8A8Ky/uWDQthAoIog1hc/t8YuFStiqoFXVrPwSFjZPJ7euKvM2dx9uwZ+B36DasndNG5FFhfKXhyahVGDR+ADnVsNQcG26a9MDT1Hu7hQ/F2B1co6nSDx/xfcS4sr0GjrI0CZRoMwXfrxsI1rX9wD0emT8Gc/cEmvjhfFh+JB7cSUbF82YL/6iGiEXTxOmI0T0JwwHsf/OOsNY9tIlZV7+MREfwQqGgLm7SBF/NJs28DEaPZnebYtwqUsLFFRTzEg4j4PH4NSd/W9APrFTbaGPPtj2PhIpekxpi5+x5Y9lcm3dhTwOqZVj81T6T6ufE5jD3oD8+9p6TYI8Ufv4PYvnoi2hscfLSxZ7QxYs8DI8cezRM59sSaL/bkzpBtjcTox+xM3+1z125SOaHn4j3a9nPWF4e2r8SE9jpXj+nNSMfvInFuZmD7KFEW5Ssm4taDSNMP8JlfgoisS/B2MUxqmurmqVmGbRcPdCenTrwhtoyoKxTDfhPBcpH+wsShKU2EAq3EzOMRclmqJBFzc6eY0sxOKDsUdC5j6f+Z2lT+DI6iq9cVw+ddzo/EILF9bOr/Ky8uE8Rvt+PkDUwn5c4WMVhphM+a8lhc8vpQtPbwEr8t7iF/jrbS/go3bI7ylBBx7MseQunyhTgUmSQXWjFrrvfqOcDfrSPQ1UtcK8jOlfdtq2z2rUEM3LfJ17xEV9QWg7cE5Vk307b95abhc+IbkeZ9OH4uDkWbJXLoTx1jPJqk11P1IsWY7XeMNz+6oXRjT4FaupHrp21hiT3irtg+TJ7jX7N8KLYH68aBp+LOlg+FXZZyfWhjDwoSewZL780osccj6749FiZvoK9E8ejYPNFB2UpMOfhQLsuZuh13U2hjT17xRDdO6R97UsTTa5vESFdbqR1+KLyvxcjleUtrN+suG+WYnfrdKvLbbtIkiUjfxdrv+FCoReOwfhKlw/eHcp1SL7XFsN/uyOvUUkTina1ipL1Uvv2uXGaI1PPJvNvQ0dCsbcjqzs1SpYQJ33k99Y6TBrWP5CvCq6ujUA7eIu4UpAJFHxJTqyrkzzpQeF0z3nGOV0AQFTYlqqN5xybSg6y/hqQErke3ql/g8JMcfvNPuI1/912DUDZF87qZpxIsDmWtznj77UZQHVmC6duvFuAWkhQ8U6XmXZPwNM5M93SWcEa/2Z74soPuvdpe+Hz27wgy8WjAIj4WEQUeky4BIYdXYvrJVvh+8XD0e2sw+mp+eTuJlT/75Tmfegbqe5fvRaNpr+ZwVuob6iNw4svXNb80FGSx9dijM1OFkViy3osExEbEyU/yK33f/uiZzb41pHrma9/GISI2QXOGmDdDts2HuH+wpE3VbOtO6lL85dHYH7IAnV4onu167WKLOqO2455pm3ZG6hjz9ZIsMWbaV6aPMTkxduwxVv1s0quZYbFnVrts9rFhizr2GPRe9VIGTs3b4HX5WQYpV7G+WxtMPRyefXuRYw/yiD2xcuzJcpe8EWPPjJMts+7bXwzct9I7fBoegpCmb6CNs76XhZgy9sQiYPc6/C8wRjMuy+zd1/Q+bzFZu9HcppWPdpMmBfHRkYhv9gbaSt+x/te9GK8NGff4rUAJp9fQ4XX1NLCZxSNw/duoOvVwzjNh6NmG1MfvGduvZGlDVnduliYe0eGJJjyOA6qIWBRohnIplqfPnBqLuOSCvFhGTEAQFTolYFutEYa5Vsg08E0KVPdv4OIrdVA9h2CWcscfBy5Ikbh1I7hWzO3OtSjcvPUI+b86UyBZpP+xSDbLTRAaCod2mDDvI3RIOzeyQ3Une5TV/yhuIcmI8luO4YsEPpo3CA1ti6OY8xtpAx5Fbdqpx3zqOorVRH+vv3HkW3c4l9T3w9uj1Ude8qWT+V3+w7m5XeAgv6LxFIZ6n5OM+7aBMrt9a8D89/nat1bEpinG/3EewcHBOS4P/Jahi+MkbL/xINv12uU6Ti13h5OZv4LCG2Nyoq2fI7Kpn+qPlP/62dew2PPx+mziiSGLNvZUNsF+UNhWQ7NhtVEh8+dRBePaxWp4uXr2HcX02NNYv9gjPzOe9Ngzfm52sWeXYfsWpVGj/wpcObIAfWqVk8ssqRwa9BmDEa5S59blQ3zZ5+WCX2avt+zj+pD8xvU0JeHYfQF8Dy9Ab2dDJo00Xhsy+vFboUS1pm3hWiHzcI0q3L/2AK+8XDXHWyzVbeigvm3otmnbkFHOzVIpqqP7t/tw2KqP40In2ZEifRNGJF8JQUTWIq9L0XMULc56dhV2E/aKzBepaSWJiL2fCjvpNZ1mHhMquTSDlOvC291J+n9rir7egQW4nNdCt2CkSokQZzzdhRJK4TLif+LiE9NfBlywy/ySRMyl/4kRrSZmupRb2meHZgjpMKf5Hrus9hfP5DVFjjXX+wLdgqHnvl1zUSTIa4xN99LNvN5+2ra8BSN3GWLMT+JSjOVuNSjYLRg69TPDrWra+llPkV4/i2zsyfMWjJykiPiznqKR3adib0R237xu7Dmea+xRyLEnS20v0C0Y+sceU+1bdTs27S0Y+VewWzC03+3I1pb7bq1HXrdg5CL+jPBs9KqYsDen23m0bcheikN5tSHN8XvDtSz7sqicmxnUPngLBlFhE4uAtQNgm81laQYvrlOxz1zTSanFXcORnVfRoG41ZL5ITSsaAX/7Igp18Waz2sj624VA4vXj2H7oHpRdJmC6ey0zje5rfCL2FvxOXAA6TMWa+dqMtakpKjjAyTYGwSFRBg76I5AU/BdmfuCHdj9+hX41ysjlasVh37IPRreSTmHVAx6t9sG5XAc8kl4r5BhWfPIppn/cD23GbkaAygqmCTQlc9R7hS0cnCoAwaGINOh6RnnffqjHvl0l7dtcL73I774ViI8MRTAqwMnBNo/LeQ3Z9vmmG2NWzxus+fXTUowWe14qK5eraevnqFb20mO5fhoYey7FFPHYgye4dOQQLjSoA6cXstv/Uuzx9dPGnua5x55yXT7WxJ4sJ+UFjT36HFfy3LeSpAc4vmIaJk0fD/c2H2NjQLT0P+TFumNPWrt5mP920/b7Lwv+3WokQxW4C1+NGoeZc8ail/tM7Ags8H0DVk4g7tIx7LhQA3Wdsrs9Q00+fktd/bzakPr4/YV77SxtyDrOzWQiGoG75mGUxxeY49EP7tN2QOrTyytzY2D7iI9CSHAMbJ0cUMFKD+RMQBBlUA71R6zD9Wwv9zVw8Z2JTg7muhgwHnd9vLDAzwYNqttLoTEbycEIOHJVevAKmrmqTyp1SQe/oL1Y/NlCXOq4CL9vGIum5S13Ql0gSbew87MP8fGVLli24iN0dCwtrzCxMvao5lwSEU+eGjB2hvqk/SDmjPRGtWXzMbLBC1kPLDb18eawDtrHl37D1hOh0l/lIP4i1k3eD+dP52H28DYIXTsXK46GyiuLInPV+zKoWLUKEBGDuCR9ThbU5H07Qtq3383TY99uw68nHua9byfPN3DfSu8jLgYRqIJqFcvk2QlI3baqtC3lIFOM6VTVTDEmJ7qxR9/qqVs/c4s9Q9Prp16xR6d+rjz6UF5ZFEnf3919WDl/L5QNqsMhu7ChE3ua5xF7dv1vXM6xp1oBYk8exxWFekVe+xYqBKxbiF3O4+A5eyTaha7AuBUnEJbn28kYe3JnyLZGUpBjdup327BCnnFd/d3mfhOq1IkO+g2TFkZgwLIVmPP5GLQPmIsxq/+23NSV5pAUBJ9VXvBT1kB1hxxiqAFtSH38bpZdItAazs004hD069dYGNoLy9fMx+fvt0HAoq+x5pjhx/E8JT3Fk4iScK5mL0UQ68QEBFEmijIVUMXREY4FXSopzXMvoojF3X2eGDHme0SKmqjvlP3vwOLuf9h7Mkp6dB/HN6/AkiVL5GUupg5/C4Nm+6HSB9vgt/0z83XajU1E4uzSTzB8U2XMWjMLw7I7aJhKSQfUcquGkPO38VCvIS/kA9x7n+PuqPmY2NQ+h/daDvXefBuDNTdI/ocNW30Rku1RLgmPDm7A7+0Go2s1IOjCP7iJ2lJ9KC+vL2LMWu/LwLFWHdiF3MDth/rc06uzb0cvwIRmFfXbt7/mvW+7VRXSvj1jwL59hoe3byDErg5qOeZ1KmLIts8pTYyZZJkYk5OCxB6pfuYeewYaFHu09VMbe+oV1dijHiTw7j6pEzoZ/4tSwqW+EzJ3jdTUsWefHHuObVqea+zJOYmVz9gzRJ99q4496rW57VvpFR8dxardDTGmmxOKBV3AgZt2cKtfHS/kWfHleFJB39hz07yxR243D8/fMUG7yXTMzu31U25hx6yDaDVtsPZqzSfhuB8p7fnSJc04noV5ifjb2DfnI7z/0xXApQ6c7LNLvmnbkPr4LfRoQzkevy1+bqaVctcHX25rgGmj3KBUJEu7+SEipT1cumT2nz0jw9pHysPbOB9SDW61HDKNmWVF5FsxiMiSngaLgLNnxVn1stdT9FRHwNSlp6f464y8Tmc5c3yv2O69VEwZ2ExI8U/ePqd7V9PvRVWO2C4eGH4jnIEsMQZErLi5ZaxwVbwqRngHCOPdqaavBHFnyyihtJsgfLKZCkpXSsxNcfyXueIdF6X0/fQXqy/lNnVYkoi5sU1MqKveVvo+lQPF8vNR2dwDKG137Yy4ECb93wn/iWWt7Qo+dZupFaJ6r72PtKHw8Lmf6/2XmfftmoBs71qV5XPftrHXf9+m3Bc+Hg31uxdUZ9vbFq431jkGhDrGjBMusFSMyUl67Nn9MPc7kc1SP+XYc9Vyw2LoIVYEB5yT48ofwrOn+h7y1HjSX3juPZUh7miWM8fF3u0bxLIp74gmytRtc5paMP3edXXsCc6r7eVCN/bk1hrys28n1rPVfo4c9636dQPFyQuPpHUx4vyyntL2et4LLscT28G/6Bd7xr5S8HvWDaJtN7b2hh+zDW03y/6LzPm48fSa2PdHgIjRbCCPKwIn4e59Pee/sbgU6fB9RW4bp8Rez/7az6pZnETPxXsyth3Ncloc37tdeC+bIgY2cUzffpjUPuRXzUj3+P1bAdpQeny0zLmZmnq62MPij4DH8nr12FVdpL97T2y4qWdb0rt9JIpQnwnCTjlKbLlTwJGlTDgGBBMQRNYg8wB8+V1qLxZns42vqcEuvwOVGcrcCYjUucmdRIe5x0WkRY7aKeKZ1GlyV7YXc/2i5LKMkm96i362qcFcd8lhALJYXzG3oXxwy2ax8/ARD7P8UYqI9ZsvGppxMK98K0z1/lmA8HKvLRrO9ZW6Llmp923ftE6J7pL9wFj67NvQLDtPu29f0XNQNw3N/1NbuHsF5D1Ils62phoQU1/Wl4DQxpiOtlKMmXfCQjEmJzqxxzdSLsso1/qZz9iTU/1MjT3Wsueyd1dsH14n289m2NJeeJ7NrpOijT0KYxz/dGJPdt1e4+/b3dnsW4n8d3onCdLiySX9Ys8rdfSLU0ajbTd9bXM/Zuf23WY5pmg+h5zUyWbJvt3oeiqueQ2UtnUXawKyO9JYi8RMA0/mf6nteVZ6tezoHL/zNVBoKms5N9MhDxKJtmvEpdxzIloGtY8o4Te3vVC6e4lrzwp4oGICgogKJDXYme2gZs4EhDqzvEmMcLETLiO3iBsJBQy4BaEZsdwlx06qWaSEiL0TXxNIzfY/vSVOaX69eg4Ztd7Lv6I0nC/8Yi30bWr27atCofe+lTqEZ5eIVnr9EmLItqZnXQkI3Rjzi7hZ0JM6U0iLPX9bOPa8ytijJscehZFjj6/KUt+m+tfoz4QjUq8CU4mgU5dEWI5vRyee3I6Xy3Ki3ba1rQVij2aGI1fLHrN1pdwR20e4CFjzDEDmonP8Xn0ptytO9GAN52Y6UoK3ixFKCMcph8TjPJu0ge0j9h/h2aqucX6A4iwYRFQQIvQyTviGAE6N0SDDSOeFnfZevQUen+O3mrPw89IBqF0qzxtTTUfhhI7D+yFhy1H46zXytfGJsLP43fs/OA7vgdYOCkQe+x5zzkbkMQhW0WTcel8KTh0HYkzCARzyj5bLzEu9b3dt+A9VhnfPsG9zrmnR8N/7B8LHDERHp1JyWU4M2db0FLYOcGlRDRVLWLA9a2SMMZu/G4ha1jhnuxx7nm09ZtHYo66fmWOPZd6NZaXGHmHk2HPY/7FcZmbiIXx3/YUQxx7o27oKEHkSy+eeRmSOOzc9nnRwymtMKXnb0RaIPep2M6yvRY/ZGcTcwOl916Hs1hT1bJ/vLppRj99WcG6WLgUxV85in8oF3VrUgW2ehxND2odAnP9BbAjvg+EdnSw/PlEumIAgKvJSgx1g178VGpSz5pBkGKG6CO8vpuLr+/2xYZ2HFczcUQIOHYdjWu298D583yKd/pSQIJyOegmvt3wZdrHnsdnbBp/0dcl+hogizfj1XuHwOsZOq4pN3idyHWzKVLT7tiZeb5Fx3+Z0IBchJ+C9qSqmjX0dUn8wV4Zsaw4Kx95YufP/0MjGsm8mc4zJdpR1q6CNPVNr79PEHkucYqfVz9TYszH3+ll06caelkaNPZs3nrRI7EFKOIJO3wZeb4L6djHw3+yDMpN6wiWHnasbTyrnUQFSt53q0c4CsSfjMdvSXdPk+4HwDbFD4xauqGwFcdhyMh+/CxpFLH9uli4e9wMvIwT10aJupTzjo0HtQ9zH4Y37UHvacHQ02yx8+fP8HReInhuxuLxxCoYPfxvuH6yQgh0QtWchPIaPx/JTEdpNCrMkKdB6fo4Jv9XB8m2Z52g2HREfjQhVLpM5layHd+e9h+AV23Eu2vzz4Bdv0B+ec1si9M/l+GTyblSe/jE65DDCdNFkynpvA9d3p2BC8GZsPhdp9pNV9b5dMq8FQv9akfe+FZE4t/lnBE+YgnddbeTCHGi23azfts8TTYyZZn0xJifq2DP3XW3seWKZ2KOpn6mx54uPGHv2LJJjT0EnVNTGno9DLBN7ULwuBi6ZiT6hf2LlJzPwS2UPfNHhxex/YTUknuhsO/jlcnKhmekesy3QbtIl4O65v3ESddGhQdXn8EcDteyP32NHGKENWfjcLI0Ixrm9/+p3ZYdB7SMZT85tx8oH72Leu/Wsd/aLVPKtGERERmTiMSBSHotLXu8LV0UrMdHnTg4DGJlCtDi/fKbwupbX/Ygx4pr3eNHX85SIfi5vgC7KtOMBjOy7VJx5bK3D/CeJ6DNLRb+Rm8S1p3lVQO22ffXa9jmiiTEfCBdYKsbk905lxp6iSyf2RFt37NEvnlhT7LGGdvNQ7J3YWED5kfB5ZK37t7Czgv0csVdMsINQfugjHslF2TOsfaREnxKefccL76tP5BIj4BgQRESpEhD8xzwMGH0WrX9cgzk9a8A8F5oJJAb9heXnG6JTnbwy0Uq4DvkSUxI349vD95GP3zLJailQxnUQvpmSgtXfHUZIktl/i8yDesyCw/h2dQo+WzIIrmVyu2Yzfdsp3+S17fNEG2MGjjmDNl5rzR5jVkgxprNLfq9EYewpunRiz7fWHXvyjifWFnsytptEudSsYgPhu+MClL3bwK3S83n9g+lZOj4KxAb4YUdUbfTu0ACV5NKsDGwf6qv1vt2MxClfYsjLtnKhdWMCgogKkWSoLnhh7OAtcJy1CPOGuUFplvMW6WAQdgyLx3hC9GwJJ30ip6ISWk2bg4EPt8L7whO5kIqG4rBr9TGWD4zAD97+iJNLrUKcP7x/iMDA5R+jVV6Xv+tua8cTXq30GFNl5kLMH/aK2WNMSs8WcCrI/8nYU4QVktiTVzyxxtij0242mrzdqJONWzHK1Rk91l9FsojGpU0/YGXpMVg2vXvB2j/lzqzxMQ5BW8fB1XYQ1gfGQ6j8sWnVVpQZMRPTe9bIeZBIg9rHE1zw3oqHA+dgWqtKVj3wpC6F+jII+TERkZGE4/C0Hui06Kz02BFdvQ7jr1F1C5jxlE7Q7+7ER53H4FCb77BzxRA0UJrjxEXqkAT9JXUMxmHO/cHY+/c8dLPywX2IKD8yxpgdy4egoa35Y8xfJ+eie2Wrv4OXiPJNnYDYgQmDJuOfev3R8elFnK/YAx9PGoWeri8Umk4k5SUOQdtnYNCIU6g3rgWe/nMdFXuOxSSP7nA1y/lrAT05jGn1OmNRsDpVMBBe17wxytU4YyExAUFEJmD8BIR4chrfDBiI2UkfYNfmz9DJMa+pvQoqBfHhV3B081LMmrEOZ1RK1J26C38v6AR7nh0QFTnWEmNOzu+Eirw+lYiILMmECQge4ojI+iVex6+TxuGz229i9dqJpusYiHg8vh+Ic4e2YvnUd9HWuSF6TFR3DNQrm2JI3yZMPhAVReoYM3GsVcQYJh+IiKgo4xUQRGQCETgy9U10XPyP9Lg6ev54AD5j6ubvskLxEMdnj0Kv2SdQZdgsfO1eG6XkVQUlYh/hVqgK4sl9XL51Axd3/YFzmo5ANlotwdmDn6CJDTMQREWKJsaMRs/Zx+HIGENERATEHsbUV3tj8fU4oOwA/BiwCWOcjZOcZwKCiEzAWLdgqBC4cTJ6Dfse1+USy3BC1zV74OPhZrSOCRFZA22M6T38ewRa9GyIMYaIiKwIb8EgouePwLOAzfhonKWTDxJlO7zTsQ47BkRFSnqMsWzyQcIYQ0REzwkmIIjISilQqsGH2BcjoL5Qy6JLzGaMcs3vvPxEZJ0YY4iIiMyNCQgiIiIiIiIiMjkmIIjIBErAxtZWfkxERERERIWSXVVUrlBCflJwTEAQkQmUgb2jg/w4BsEhUYiXnxERERERkfUS8XF4knryXsYGNmWMlzZgAoKITEyFiCdPkSQ/IyIiIiIi6yUeP0JQlPzEyJiAICIiIiIiIiKTYwKCiEygBCpUrgo7+RkRERERERVCr9RBdSVvwSAiq1YMZWzKooz8LOZeGB5bep59gwkkhezFtDaTsCcsWS4jIjKjpHvYN60vPPY8kAuIiIhMTToHfhoLlfzM2JiAICITUKCEjS0qys9UEbGIN1oCIglhx+ejo21rTD0UKpcZkxR0w6/hxPZv8L77KCzyfYpnSYUue0JE2dKJH4cfyWWGSkaUn2faa5gkOiSFI/DEb1jy/iAMWHQJTxOYBCUiInMRiI8IwS35CKesWA5lFJqHRsEEBBGZgAJl7F9EVfmZcSXjaXgIQpq+gTbOSrnMWKSOxYlleH/GepwIs0fj16pIn4SIig51/HioiR9t8x0/UhAfHYn4ZtrXMHqMiDqBJe/PhNeJcFRt3IC3shERkUXZOjmgghEPdgohkR8TERmNuLsV7zUYhF/U1285fo5DV+eiY/nClPNU4dyS3mj22cv4LXgl+jsab/5jIiJ9JJ1bgrpN16LNb4ex4a0acikREZEpPcPdrWPRcPB6xAglGs7dj9PTW8FGXltQvAKCiExCUcEBTrbyEyIiIiIiKgRSEB8bI48BYYuqjnZp47oZAxMQRGQaZexRzVm+eDgmFGGPk7SP8yvpAY6vmIZJ08fDvc3H2BgQbZp7r4mo6Clw/EiGKnAXvho1DjPnjEUv95nYEWiq4bmIiIgsKR6RIWHqoSAkFVGrsq1RbzdkAoKITKPkC3jxJXvtY1UMYuNTtI/zRYWAdQuxy3kcPGePRLvQFRi34gTC0noQodg3sTEUCoXhi/1k7IvkAG9ERZc6fixIjx+PVmriR7i8Nm8CiUG/YdLCCAxYtgJzPh+D9gFzMWb134iUt1AnKCL3TYZ9djEmz6UxJu4zxYC6RERE+ZGEuCcx8uNKqF6pHBMQRFQIKGzh4FRBfhKEa/dV+b5iQTw6ilW7G2JMNycUC7qAAzft4Fa/Ol5Ii4YvotvS81APaWPwErkE3eyLy69DREWNOn6s/P2VtPhx8GYFbfyQ1+cp5RZ2zDqIVtMGo6GtFCuehON+JFCmdEmkjwxTHPbdliAyuxiT53IeS7u9KL8OERGRhaWE4/b5YPmJAxztjXkDBhMQRGQySlR/uZb8+DHuhcXk/5YJm5fx3sL+qFcyFhf37sB+dMbo7nVRWl5NRJQjKX4MWZQ1fpSSV+fpWRLs3p2Et13Uw28JJNy6iKNRTmjesAY4zA0RERU58VEICZbP2x3roGYVvY+YemECgohMpAQqVK4qTyEXiTuh0UjUPDacQumCNm4OUMRdxJ4fj0E5+C10djFuNpaIiqbM8aPcoP6GxY8yruj6Zn0oNVdcJeDOhX9wAa+he5OqnKaXiIiKnqSneBIhj3Pk7IiKZYx7tGMCgohMpDgqONVGPc3jKNx6EIn4fF8CoZaMyBM7sepSTQx5ty2cFLG4dToA4QV6TSJ6PujEj8EFiB/iES6dOA841odrdSZBiYio6El5eBvnQ7SP7dyc4ViSCQgiKhQUKOnoDDd5IoyQ87fxsCDjUIqH8N31F0Ice6Bv6ypA5Eksn3sakZoOBAehJKJc6MQP99T4MSc1fqgJJIVfxtEj/ghLyiUrEXMDp/ddh7JbU9Sz1T2F4iCURERUFKRAdf8GLmoe26FeveqoYOTL/ZiAICKTUVSoLgUuOQMRHIrIglwCkRKOoNO3gdeboL5dDPw3+6DMpJ5w0UQxDkJJRLnIED9U2vjxSS85fkjEbWz/uA86dHTHB7/ckE6/spd8PxC+IXZo3MIVlTOckHEQSiIiKgqS8DgsFNo5MKrBrZYDSmoeGw8TEERkOqWqo2FbeSDK2zdwJ/yZ9nF+FK+LgUtmok/on1j5yQz8UtkDX3R40ej3YCcHbsVHw4dj+Nu98c5nRyHwPYb37ouhUtnIJScQJW9HRIWITvxY9ak2fkzvUFknftiiRsO6UOI2Dv59DRFyaUYJuHvub5xEXXRoUBUmS1smB2LrRyMxfPgAdHlnNm5K/7xH9EevoVJcGrkUJ6J4xRYREZlKHIJvBEE7AkQ9NHOtaPRzbYVQp9+JiEwiAUEbx6DRsE1SIGuPOb47MKOVfEUEEZG1STiFBTOj8eHibrCXi9KFYt+k7ui+rh18gr5DLwdeOUVEREWMuIWt73XBoF9uAg3nwe/052hpY9wUBK+AICITKoUqLvVRU/P4Gk5cfpjjpc1ERJYl8Ozqedx5pRYqyCUZxAbCd8cFKHu3gVslJh+IiKgIirmFf4/e1DxUSsfDqmWNff0DExBEZFIKlK31CtpqLnoIwZmzNzhrBRFZp6Tb2OMdiX7dnKWTI4HEoK0Y5eqMHuuvIllE49KmH7Cy9Bgsm94dTsY/HyMiIrIwgWe3AnBSMwOGHdxavIwqJjjeMQFBRCalqPQyWr+hvQYiyv8WQhKZgSAia5OAoK3rcNF9FLpWLiGXlUCZCkDYsR/x+TsD8cn517BhjydGNnjB6PfDEhERWV4yHt+7iSuax43Qo3lNlNI8Ni6OAUFEJqbCheWD0HjCH4ByFLYErME7NUwRzoiIiIiIKH8e49S8fmg14yhgNwG7r3ii94vGngODV0AQkcmVg0vzNmiofqj6B0f9w8CsJxERERGRFXl2G//8eUHz0O6dzmjuYPzkgxoTEERkYgqUdW2OnnWV0uPbOHnhLp5qVxARFVHJUN27gXsqTplJRESFg3h4Daf81RPO10b39g3gYKJMARMQRGRyCrtX0NXdDQqocOnPs7j+jNdAEFERFncB60e/j5X/RMgFRERE1iwJYf5+2KuSHipboUezqiZLFDABQUSmp6iIxl07oq565Db/Uzh3m9dAEJG1kk7Cjs9Hp/KtMfXwI7nMEHG4uX0VFtoMxeh2DnJZLkQ4/Ob3gq3rdByO4hUTRERkASISl06egfr6B2WnDmjhZLrx2piAICIzKA67xu3Rp64toPKFz+kHSJHXEBFZl2Q8DQ9BSJM30NZZfeuYYcSj41i1IASfzHwLriX1mS8jHtHhiWjWqzmclTwtIyIiC3h6E35/+EsPaqJTn5Zw1uv4lT+cBYOIzEM8wuHP+6PTor+hHLwFAZvfQQ3OZUdERYmIxKkF72HUk8k4uaAT7BnjiIjI6gnEnVqIFq2+wCUzzFjHVDsRmYfCAS379tTMhqHy2Q+/e8+05URERYJA4vVdWLjyJXw5tjWTD0REVEhEw//QAVySHtkN7Il2Jrz9Qo0JCCIyEwVs3Lrh/S5OgOowfjl4A4nyGiIii0t6gOMrpmHS9PFwb/MxNl56bNiUweIefBauhZg1Dn1eKisX5kBEI3DXPIzy+AJzPPrBfdoOBMbzglQiIjI/EXkOuzaflR61xgdD2sLRxAl0JiCIyHxs6qL7oHZQ4jYO7T6FW4k84SYia6BCwLoF2OU8Dp6zR6Jd6AqMW3kC4fJaIBT7JjZGMYUCipyWYi/hrZ/OYPfYRrDRLbefjH2RuoNLxiHo16+xMLQXlq2Zj8/fb4OARV9j9bH8DHhJRERUEMmIOn8Uu6/GAA17oW9LB5j6Aj4mIIjIjGzg0nsoxrgoofp9G3b7P5HLiYgsRzw6ipW/v4Ix3ZxQLOgCDty0g1u96nhBXg+8iG5LzyNFCKiHzsqyxJ7Dsi5tMdbnbtZtIpegm31x+XWAlLs+mPVrA0wb5QZbRTKehD9EJEqgdMn0bYiIiMxCPMDRTb/hqqgJ90nuaGJj+vsHmYAgIrNSOLTGiPGdocRJeG07iwhOh0FElmbzMoYs6o96JWNxce8O7EdnjOpeF/rdBauednMlFtqMxMRu1fP45UjgWXxlvDvnLbhoRhiPxa2L/ohCXTR0ttVuQkREZBbqsYsOwnvbVQiXfhjTwwUl5TWmxAQEEZlZebgNHIWhLsDVVT/jwL0EuZyIyDIUShe0cXOAIu4i9vx4DMrBb6GzSx7jOMhEyCF8M+ehntNuKlDGtQPerP+CNlGREowLBy4BbduiSY3Smi2IiIjM4wn8d2/D7yondPm/99DR0RzpByYgiMgCFI5v4EP1VRCqA1i/6xLi5HIiIstJRuSJnVh1qSaGvNsWTsVicet0AMJzG6pGhOHk2pU40v9TjHot/YYNfYnQyzjhGwLH1q6ozjswiIjIjETIcXj9cBJwGYCPBr4CG7nc1JiAICILKA+3QR/i/bpROLBqMw6HcD4MIrIw8RC+u/5CiGMP9G1dBYrIk1g+5zQiNQmIHAahLFYZr3+9H1cXdUbFYpnWpS5ZBqFMlYKYK2exT+WCbi3qgDdgEBGR+TyB/7b12Hi9Evp8MgKdq5p26k1dTEAQkUUoKr+O8V8NheuN37B820VeBUFElpUSjqDTt4HXm6C+XQz8N+9BmU96wUVzppTNIJSJN7BlRDP0WXMeT3XLMy+ZBqFMF4/7gVcQgvpoUbeSyUcdJyIiSiVCjuH7lQeBDuMw7Z0G0O+mQ+NgAoKILMQGtdw9MKlPCRxYuQ4+QUxBEJEFFa+LgUtmok/on1j5yQz8UvlDTO9QOYfEQDIij/8PXwX0wadvN0QZudQgIhjn9v0LODVGg5fMeepHRETPNRGJc5u9sPH6K3h/6ntoaWfeewAVQp2eJyKyiGQ8ObsCAzrMxL3/24W/F3SCPX8GJCJrF3cGSzpPQNAXW7Gyl1P+fs2J3IdJLj2wbuBuBK3tBQe5mIiIyHQEEgN/wsAmE3B5yAYcXNEPNUqY9+SbV0AQkQUVR/kmwzD/y064v2oF1p+LlMIiEZE1i0PglqWYX3mMZtrN/J1ICcQG+GFHVC307tAAleRSIiIik0q6DZ+la/C742gs/PxNsycf1JiAICLLUtijicdMzO94AbO/2Az/OKYgiMh6qafdXLowCl/oNe1mqjgEbf0/uNoOwvrAeAiVPzat2orSw2dges8aHP+BiIjMIAmPDn2PGWtLYuK3n6BPjXzdQFhgTEAQkcUplK/B47uFGHh7GWZ5X8RTuZyIyLqo4L9tXf6m3SxRGhVwF8e8Psc7vafjfNMl2LNiKBooOf8mERGZnnh0EAsnbkWVuYswq2cNlJDLzY1jQBCRlUhA8J6Z6DT4Nsad+B7jG9vxV0EisjLJUN27hSg7ZzgxcUBERIWFCMa+TwdgwM0hOLHpQzS2tdwxjAkIIrIeIhoBP32GgbtbYte2kQZc3kxERERERFklI/LwV3hjbmks3fwZOjmWlsstgwkIIiIiIiIiIjI5jgFBRERERERERCbHBAQRERERERERmRwTEERERERERERkckxAEBEREREREZHJMQFBRERERERERCbHBAQRERERERERmRwTEERERERERERkckxAEBEREREREZHJMQFBRERERERERCbHBAQRERERERERmRwTEERERERERERkckxAEBEREREREZHJMQFBRERERERERCanEBL5MREVNuIhTixaiO2REfA9UxVT136ObiX/wfoVOxBk+xIqPTqO3Y87Y+F349HRsbT8R0SFTOZ6/v0X6FbiNOs5ERERUSHDBARRoZWCJycWYGSAO7aMScCyuk0x33UgetbshWmL30MDZXEg9gS+rN8Tvw7fg9Nfv47y8l8SFR6Z6nm9ZpjvMiBLPZ9V701sG/EH6zkRERGRFeMtGESFViTO7rmJLq/XQsmoENwIBaJu1cKQr97VdsrSqHD1Tjhi5WdEhUvGen6T9ZyIiIio0GICgqjQKgvn/hPg7loGsVfP4k9VbQz+8gN0rVxCXg+kPLiO0/cqoG0rV1SWy4gKl8z1vBYGf/VhNvXcjvWciIiIyMoxAUFUaJWDc4tGcCwRjzsB53EPr6HTq45QyGuBBNw5fRj70QjdG1eH7m/FRIVH1nreOUs9P8J6TkRERFQIMAFBVNiJYJzb+y/QqDkavVRGLpSk3MKRTYeBBl3Rye0FCNVN/Hs9Ghz0hQql1Hrupq7nOgNNquv5ZqmeN2Q9JyIiIrJ2TEAQFXZRN3Hu+D04dnsNLqXTfxdOueGLrfvj0WpMd7xmk4h7f6zAumsqeS1RISPX8yrdXs1Sz3/d/xSt3++RoZ4zAUFERERkfZiAICrUBGID/LAjygnNG9aAbVq/LBmPb13GGTTAm82dUTLKD+t3u+LDjlV1Ll0nKix06nkDqZ7LpbnVcx7ciIiIiKwPz9GICrVkPAkLRZSLO4a94aTToIvDrs0wLPNQ4p9f5mLsp2fw+pLRaGTD9AMVRun1fKhUz9NrsbaeL/WwxT8/z2E9JyIiIrJyCiGRHxMRERERERERmQSvgCAiIiIiIiIik2MCgoiIiIiIiIhMjgkIIiIiIiIiIjI5JiCIiIiIiIiIyOSYgCAiIiIiIiIik2MCgoiIiIiIiIhMjgkIIiIiIiIiIjI5JiCIiIiIiIiIyOSYgCCyuBQ8OfwFqioUUFh6sX0P6wPj5PdFZEys50RERETPO4WQyI+JyCIEku7uxEedh2PtdZVcBihbTcWP3wyASymFXJJfyYgLD0FYbCJiH93Dw+A7uPTvSez44xzS/7dUSjScux+np7eCjVxCZBys50RERETPOyYgiKxCEh7tm4E3ui/CVbkEeBUjt2zF9++4oKRcYjxSZ1D1EEHXAvDvkR34Ye1GHLkpd9NcJsHn2CL0cjT+/0rPO209b99jEa6kHXm09XytVM9LySXGw3pOREREZE2KfyWRHxORxRRDudqN0aTUZfx6+Dqeacoe4vyFZ3Dp1h6NKhq7a6ZAsVK2qFi1Fhq2fhPvDRuA9q7lEBFwAddv3EVc/e5461UHFJe3JjIObT1/rdQVbD0cmLGed30DjSqV1pQYT971vD/rOREREZHZMAFBZC0UNqjeqDZK/bsfB25Ga8siz+HAtcro0qcZqpUx1ZAtUietTEU4v9oR/fs2g03QQaw+WR7ug1uhasmCXhZPlElqPT+3DweCnmjLpHp+8JoDuro3R9XSZq7ng6R6XuDbP4iIiIhIH0xAEFkRRelqeK1FZTzYtx/nI7W/Dz8Luowbyubo0+4llDVpP0mBEi/URtver6PGPxtwomIndHQuJ5USGZe2nr+YtZ7btkCftjXMXM87opOzkvWciIiIyAw4CwaRVVGgjGs/zJwzFC5yCXAPR2ZMxZz9wTDHgC0K5SsYNnsYnmw+inspcmGRlwxVwBbMXn8BVjU3QtwFrJ+9BQGqZLmgqMihnk+fYvZ6HrP5GO5xJCTTE9EI2PwN1l+Qr3oh4yiyMYKIiIoqJiCIrI4Nar01Dd9ObCU/V/PDdx8txs678fJzU1KgRI3umNjmEnZflG8FyVYSQnZ4aKY1tG3aC0OHD8dwnWVor6awVU95WGcJziXJf5JJ0rklcClmizodBmj/bmgvNLXVTpVYZ8k56X8wh2RE+S3Hx9sq4v2hbjnOipB8eS3apU7jmGVxRj/vQKTna+JweW1fFCuWzba2Q7ExKEHeLg82bhj2QUVs+3g5/KKKWgfDOur5BKme/+5v7E5xCuLDr+LEjvVYMtUDb/dyx9uadjEW05b/iuOBkWl1W0SdxIJPt+NuUU6CiHD4LZyJbVXewbBG5eXCrNRt7PVixbK2Gc0itbGN17O0sWy3NaSNFZDF33ORjhFERFQkqWfBICLrk/LoiPiyg5O6WyIvSuEycou4+SxF3sLSUsTT4Cvi7Nmz0nJArBlWV+e91hR9FvuIM+p154JEVA5vOSUqSJw7e0b4HdogprR3FGg2UXgd9NW85rmgKOl/MDXpM1zbJEb2XSrORCfJZXlIvCN8JraWP6ej6DDvqHiUmN07TRLRx78WDdXbubwr5v5yQgTF6Pl/ZCC9zpmlou/ITeJqnLXse+Ox/npumJSYG+LQ6rGimV1rMcLzN+F77ZF4mvZRksXTsABxaN0sMWX5CRGccF/sndRKoKuXuJYsb1LkxIhr3uNFX89TIlrfXappY9L3ktrG5h7Rq43N+Tm/bcwILPqei3aMICKiooUJCCKrpT6p/E50UapPaFMXqWO//KyIsbpzzBQR6zdfe1ItL8rBv4g7er7PlIiDYmpdFzF4S5AZkg46nl4Qa9zfEZ5nIgz4f1NEwvnlorXmcypF3ZnHRLS8JqNYccN7tGg4bJXwDY6Xy/IrWpxfNlj0XXNePJVLig5tPe9qq0irO6n1/Emh6kuliMTgg2Keez2pYzlGrD3zUCTKa7KKF498l4sP+3QRLurPW2QTECni6aXvhXvX78Q/jw3pZGduY0dzaWOjjNTGCsrS77koxwgiIipKeAsGkdUqjvJNRsBz/kDYpo2Qdxu7v5iDteciNT0166GATRN3THKvKT8HVL9swi5/lfwsN89w78DPWIV3MKZLDemVzCUOgT8vxrKq7+G9JvYG/L8KlHLrhY8H15Yeq3B15Q4cf5T5ZpEEhBz6FuM21sKqJR+glWNBp5csD7eBg1F1uSd+DjTBKBXiHvaMH43lFrk/X1vPF88bCKVcklbPz0ZYWT3PiUBSyEHMeW8kph+qhXkbFuCDpi+ihLw2q9JwaDUaU96tIz8vohKv4Ofpm1H1o7fQ5AVDJjvN3MZ25tjGxm6sbaQ2VlCWfs8mjhFERERGwgQEkTVTVEAjj3n4ceRrcoFE9TtmT1mbzcmthZV0QfdhPWAnPwWOYc0vpxGZVw/y2WXsWn4Ar4zug5b2hnRSCkaEHceahcEYMqwdHA3Neiic0OHdXtrPGvU7vPbdQvrd19oBLaevUGDK/z7F6w45d0MNoXBsh6HvhWDhmuMIM3avXMTi0fWreBDxzDIdfk09n4t1I1+VCyRSPf966lqcCLOyep6dxBvYPn0qvj4Shbr/NxEeLSvpkdCyQa3eYzC+i5P8vKhJQtjhDVh4szuGdaxu+MlGNm0sfSyF9DY2dYPx2liBWfg9mzRGEBERGQkTEETWrmQdvPXldHi4pP8+rDqyAB4L/kJwkjWdZZZE1c6DML5u6vtU4eoP23E0JFF+np1kRJ7cjjX+b2Bs/5wHgDS+Z7h3+Desq9QT3d1ekMsMUQKVX+8vf9bb2LV2Ly4mqPeFQNLd3/HZ+35oO288OlY15i+cL+C1Xn3hsG4bDt/TTl1ZpKjr+VczMtXzhfhw/l4rq+eZJSJk3xrM/Ok/QNkNHw9pCXt9E1o2ddF9UDudKz+KEHEPhzfsRqXhneFmk5/rmrJpY8/S29iUD+Q2ZvErH3RZ+j0X8RhBRERFAhMQRFZPPVp/H8xe8X+oK5doOvdLv8SM7Tek7o8VKd8EgyZ0lZ9IonZh7e5rOb9H8QBHN29H6JB30M3ZjB2JxBs4uOUYavZsjXr56hxJyjeC++i22se+O7Dn3yjtZfhjtqD28vkY2eAFPX4FN4QCpVya4s2ax/DLQSvb70aRUz2fZX31XFfidfy1bieuqx+7vYFWLuU0xfopi5pNWsJNflZ0COlrOYJffKqgZ1uX/CcW5TamaUeaNvY4rY3VWjrPBG3MCCz6not6jCAioqKACQiiQqEEKnedjPXzeur8Wvoffpr5DbYE6jPOgrmUQ70+72Fk2n0YITiwygfn4rL7BVvqpFz5C9//9BK+GNMOlc3YkxAhF3HoUBm0bVRD6gLmV3m49RkId80OOYrVP63Ckk9/BKZ+i4lNDRlTwgBla6BR27I4dPAiQqz5ooB8Kyz1PF3KvXPwOXRb89ixbQM4lzJkz0sdRudmGNS2ms44L+mEKggnti7HtInTMG/JEnjOmoSxs37AHxce6UxR+wz39szGiLQpcN9Dr6Y1UKfD+1h79rG8jUDcuRXoVqcGmvZ6T9pmKAa97YE153KbZrcgEhHy3984VLIRGtVK35OGk9uY5ss5ilXr09vYhGYVTdiRLwgLv+ciHyOIiKjQkwejJKJCICX6lPDsojtlIYSyy3f6TyFpDimh4tDU1kI60ZbfY10xcvsdkXVCgyjhN7e9sHX3EtfMOuViogj1mSDsFQOF17UCjhefckdsH5k6/aiLeMfrkolHoH8qrnkNFLCbIHxCc55jwWDJV4RX19ZiyqGwbPaT+RWKeq6RLKIPfS4cNe/RUXT1uiKM8w6TRMxNHzGzS18xa2+QzjSeKSIx8pzwGtFdjFh7KtM0j0/Fne0TNLNqKAdvyWYGGulv72wVI+1fFSO8zonIbKeINJKU+8LHo6FxZvdQt7FR9eR6YI42ZgQWfc8mihFERERGwisgiDIR8Y/xMCQEIQVdwlU6v1Iah6J8c4z/bgb66PyoqDrwLaas9EOU+nTXGigc0HbwILRWpP7WdxXbvA/iemLGNyiCD+OHbx5iwNBOcClpzt8y4xESdANRVeqgZpVSclk+Kaqh/Tu9IXVAJSpEPhMw7TCapVClZh04Rt1AUEi8XFb0pNZz7a/IWqn1PM9BTc3qGR7evoEQ+ZlxCCQF/4WZPSfCf9A8TO/mjDJpX4MCJexew8j541D2m/cwZs2/UKV9H2Xg1L43+tdVQvXfJdyISh8WVUv620pOqNPzY3w+9FXYlTBhm0sMQ5D/Azg2rokqBT3LULext3uZsY0ZgUXf8/MRI4iIqPBiAoIog1hc/t8YuFStiqoFXVrPwSGjj+CvQJkGQ/DdurFwTes/3MOR6VMwZ3+wzojrlqSdju4jzXR0Wqrft2G3v+4Uj3G4vnc7tlUbhve76zv1ZgqenFqFUcMHoEMdWygUCtg27YWhaZeeD8XbHVyhqNMNHvN/xbmwBPnvMotHxIOHQEVb2BS0EyaiEXQxEDGaJyE44L0P/tnebmIsUifSxhYV8RAPIopy50Jbz7/9cSxc5JLUej533wPNJRFFlriPvXO/wtL7b2Bw5zpSdzIr9WwHw4Y7YfcXc7Fep10p7Jug75CmwNVd2Ob7MFM8SEbkqUO41fONXBJ+Rmpj8ZF4cCsRFcuXRYHnetC0setmbGNGYNH3/LzECCIiKqyYgCDKoBwaePyGGCHUtycVbAlchG4mmR7OBrXe+gwLPKSORho/fPfRYuy881R+bmGKGugyrJ/8C6DaXsxfdwKhqT2iuADsXueLVv/XG03K6ZsEKIbyLf8P6zesxcy3Xpaet8Kkbzdg44YN2KBZNuLXI1cQs38sXtjlgfbvfIPj2SWARAzC7j0Gqr4I+/Sflg0ndTICfvoCH9/sg/8t7qFNovjtwu/nIjWr9ZeEsOPz0dG2NaYefiSX5UTqmNu/iKp4jHthMUW7I66p55Ox0KOJ/FxNqucfe2LnXWvpWMm/NsvPjEHc88XPG88Bbo1Rt0pJuTQzJWo1agQ71UH8uCcAcXKpZhaEvoPQVXkJm34+iXu6GQgRgfMHk+HewUlbV7Ol08YGqIcCldrYd965trFj2UwHLB6H4V6MLao62qGMXJYvchubcLO3po1pyG3MoLovHuL4V2/C1nU6Dme5MsTIjPWedYlw+M3vref7f55iBBERFUZMQBAVRiWc0W+2J76UOhNprnvh89m/IyjTrQ6WURz27Qbik1Zpo1EiatNW7Lul7jgm4dHhzZh/tQc8+ryc7S+8uUq4jX/3XZP6YE3RrG7mKTSLQ1mrM95+uxFUR5Zg+varyHK6LhIQG6HushXke0pAyOGVmH6yFX70HI5+bw1GX83tAiex8mc/PDLopZPxNPwhQpq+gbbO+g7YF4eI2AQ9P0E0zi55E+UVCs0v2tkuxeth9H5fLO7kgGLZrU9d6ozHDnNO76eu518vyVLPp31lLfW8GJQ166GFZreF4OK1YJ1bIvQkdViv/3tT/rskhPn7Ya96vE1lOZTN8QqdYihjYyN17lW49OdZXNdM9aimQCnXdninU02ofHbj4PVYuVz6b8LO4A+0RetKeiRFddpY8zza2IztV7K0MREfi4gCjxma3sa+Xyy3Mc33LLcxQy73EvEIvxeNpr2aw1lpytMeI77nDOIRHZ6IZga9f0NiBBERkfkwAUFUSCkc2mHCvI/QIa3PaofqTvYoW4Af9Y3Kxg39x+rMZqD6A2t3+CMu5Rb2ee3Bix+8hfaOOf3Cm7OUO/44cEHq3bRuDNeKuXWmonDz1iOkd8GMJRlRfssxfJHAR/MGoYGyOIo5v4EhA7WTR0Zt2okjBnXSS6NG/+W4cmQBejvne8LCXLyAJuN/RmBwMIJzWh6cxLIurTBhewAeZLc+dTm1EH2cCjhuhoGsvZ4Xc2qC3lKHXy3kZABupSUD9JR4C3v/9y+0180k4fGjYKnmGuBWCCLidf7PknXQeXBHKFUn8OvhG9DWxGe4d+RvVOzTBPZ6HPXVbexgWhvLbfQCqY3dNn0ba2irbWNDM7SxnG6xykaxmujv9TeOfOsOZ5ONN2Pk96xLUR3dv92LwyZ9/0RERObBBARRoVUcdi1HY/GX7lInXwmXEXOwfHInOJpycDmDlIZzt3cwJO0iiCj4fbcVf+3djjW76mLs4BawN/itJuPxrcs4Iz1yauGCatlFMPEQl0/elB7URIuGTjrTOcoUpVGuorqjn5/vKRmqgE34dHIwPNZNRifH0tpi9aBz770FTVdD9Re8/gw08Rz8NqhYrrTen0BRpgKqODrCMaelSkUoFQqUrlA5+/WpSyVlwe/pN1jmev41VnzW0XrqeUkX9BjTTztWhf8x+OlcdaAP8fgB7jhWRyXNxymGMuVss9bZ3Dg7omKGW4lKwanjQIxxicL+1X/gX/XYA4k3cPCgI7q5Zb6aITupbUzo18YaZG1jijLlUNGgD6FL28Y++TSbNjZkQFobW2/yNmYIa3zPhsUIIiIic2ECgiiDWASsHQDbzJee52dxnYp9Rh+EMiMRewt+Jy4AHaZizXztr27WRFG5HcZ80V1+Jgn5FgN6fo6Lg4eir1t+eijRCPjbF1HSKf2bzWsj6/ARAonXj2P7oXtQdpmA6e61sgY5hS0cnCoAwaGI1P3lOE/y7AQf+KHt91+iXw3du9uLw75lH4zW3HISggOrfHAur0Hnkh7g+IppmDR9PNzbfIyNAdF6XC4tEB8ZimBUgJOD7XPTudCt56vnDdZcdWI9SsKx21jMGfkqoNqH5ZtOGTBTRxyu7zmBKl3rS91FNem1Xm2DTuqmkWv9TMLjsFDESF3/uu3qwynTr+KKSq+hd383KC79gV2nHiEh8BTOt+oENxt9aozcxoTcxuTSdBnb2BfutbO0MUUFBzjZxiA4JAqGjdaR3sba/fhV7m1sdV5tTHqtkGNY8cmnmP5xP7QZuxkBKlOM/2DM96xDRCNw1zyM8vgCczz6wX3aDgTqFa+ezxhBRESFBxMQRBmUQ/0R63A9u8vPDV18Z6KTSQahlCXdws7PPsTHV7pg2YqP0DH1VzerUh5ufQbCPUOu4VWMGf4GnPJzZpwcjIAjV6UHr6C5q32mk+tkqIL2YvGURbjUcRF+3zAWTctn11Etg4rVqgARMYhL0renqO7MHMScEd6otmw+RjaskPXE3qY+3hzWQfv40jZsPRGay6wkKgSsW4BdzuPgOXsk2j1aiXErTiBcXpsz6X3ExSACVVCtYoGG9ys8MtXzTlWtsJ6XrIO35i3CrA52uLpqKdaeCpf2VN7EoxP43+W2eO+11CsTFCjp3BJ91Ld03L6M6w9zupUnBncCAqVa5Ab3rq/ALnNlVDigZd9eaKjwxw6ffdiz6wbadK4DvW54ytTGMpLb2GcL09pYsxeyaWNl7FHNuSQinjyF/ilYuY2NlNtYgxfyaGO/adpYjt9z/EWsm7wfzp/Ow+zhbRC6di5WHA2VVxqLkd9zmjgE/fo1Fob2wvI18/H5+21wefHXWH0sr0Fq1Z7DGEFERIWLIKLCJyVCnPHsK5TKHmLWwXsiUS62Sil3xPaRddXn3Nql1RJxNjZFXmmYlCBv4a55nVZi2MxFwtPTU17miCnD3EXPYTPF2j3nxaPE3F4/UYT6TBD2ioHC69pTuSw3KSIxeL+Y1aGJGLHlRq7fdcqdLWKwUvs57UZuF/eT5RWZpIT6CI/ua0XAsxSRfM1LdFPYidbL/hMJ8vqcPRXXvAYK2E0QPqFG3OvJV4RX19ZiyqEw6dNaEU09dy8c9VxTTw6Kee71BFzGiLVnHubyfqVtH50S309bJo49yrxVinh6bZMY4VJTdPE8JR5n2SHS397ZLjyk9R2+PCIe5bTDEi6INd1qCChriroeO8UDPXesUdpYyn3h49FQoKuXuJZDG8hIt41dN6iNZf+51G38E9F9zUWpTcltBj3FsvMx8npd2u97pKuttN8+FN7XstsmO8Z+z+mSpe3f6y99d1J8ECJJROz9VIpXTTTtM28mihFERERGwgQEUaETK25uGStcFa+KEd4B0ummtUsRsX7zRUNNp6am6OsdKPTqk2ShPRG3k15HOWK7CNazQ5UddYfgXduGwsPnvvTucpYSc1Mc/2WueMdFKb33/mJNgEpek50kEXNjm5hQV72t9FmVA8Wy/yKzff2UmEBx8sIjaV2MOL+sp1DomwyRO3bKwVvEnQJ8/iysMgGhrufjhAsKSz3XSom5IQ6tHiua2bUWIzx/E77XHomnaV+q1GmNuSPObP9OTP1yszj7KF4uz0yqS5c2CY9W7mLm75dFVFpnP1k8DfYVa0d0EH3mHRTBuSbaYqWO6HtCidZi6qFQPferbhv7rQBtLEHc2TJKKPXoBGduY6sv5ZYAyNrGlp+PyuazSdtdOyMuhEn/d8J/Yllru1ySITHirGd7odDEJwi7CXtFhLwmJ6Z5z6nUCZHD4o+Ax/I20dL76yK9v/eEd1BO9UWHqWIEERGRkTABQVSoJIpHx+aJDkon0WHucRFZWE4wnwWKLSNfFbYdFgvfyCS50FDaE3HAUXT1upLPJIbsWYDw6ltHNJzrK3XTskq+6S36yr9YZly0CZQsnyDWV8x9xTab7bWLnYePCM1uX6n/rqFS6iz8ol9nQbN9beHuFSCeyUVGYXUJCG0972gr1fN5JwpPPU+TLJ6GXRHHt/8o5k4YKQb27CMGDhsmhg0bJSbM9RJ7zt7XSUrkJEUkRl0Tx7YsE1M9JoqZixeLuVPGG/D30isE7xb/5+5pQJvTaWPrLhegjaWIZ9e8hLuyvZjrFyWXZaRuY/1sFVnaSo5JSrmtZN1eu6jb2MMsf5Sa/KwtBm8JyqFu61wBUbO2qN1kmTifw9dlnveciaZtOgpF29UiQJ/daKoYQUREZCRMQBAVGqmXZtsJl5FbxI2EQtcrKxj5RBxwF2sCsksbGEL9C+1ooWw4X/jl83aQglP/2vyZcERD4bH7nrR3VSLo1CURluPbkTpTZ5eIVspRYsudvG/WMIhVJSB06/kv4qbmMnQyC502tvpSblf76CElSGwZ7JJjks8sUkLE3omvpd+O8PSWOKW58igHiWeF5+s5JyAsISV4uxihhHCcclBEy2U5M2GMICIiMhIOQklUKGgHO1vg8Tl+qzkLPy8dgNqlsgx3VqSJ0Ms44RsCODVGg5fKyqX5pZ6qcADGJBzAIf9ouczMxEP47voLIY494N66ChB5EsvnnM5lBoVo+O/9E+FjBqKjUym5zEgU5VDZpS6qVSyVdRA9s8pYzzd/NxC1Ms3wQKZj1DamcELH4f2QsOUo/PWd+cHIRNhZ/O79HxyH90BrBwUij32POWcjchwcVty7jFMtG8LZaiZZSUHMlbPYp3JBt+Z1YCuX5syEMYKIiMhImIAgKgSE6iK8v5iKr+/3x4Z1HjnM7lCUpZ6IA3b9W6FB1vk3DaZweB1jp1XFJu8TCLFE/yglHEGnbwOvN0F9OxX8N/ugzCe94JJDVBYhJ7BxsyOmjX0dUl/KuKTOYq+VXvi4UXm5wDIy1/NsZ1ggE8ncxgp6elACDh2HY1rtvfA+fD+XGWFMJyUkCKejXsLrLV+GXex5bPa2wSd9XZB9rYrD9SPn4NKtoR4dfXOJx/3AywhBfTSvWynP5KBJYwQREZGRFP9KIj8mImuUdB+HF0zECK8qWLL3Gwx/WWmWX6lFfDQi40vAppQl85SxuLxxBiZ/+wO+X/0zLkU9Q3z4fdw6dxYhji3RonpBfqUtiYr16qDET6txzqUjWlUta95f/4vZoYZLaVz/0xe3/P/GpZc9MKOXM0pn9yZEJM59vxB/tJuK2d2cpK5dEaSp5xOe03puSTm0sX+N0MaKV0K9VxLx0xx/1OnTDNXKmPc7LlapGlxKX8Gfpy7jwpHbePmziehVI7t2LpAYtAtf73DC+A+awb64WSNBzsQd7J23EDvjemDK9M54Kber3p6HGEFEREWCQn0fhvyYiKyNiEbAT5+h/5hLeHP3Fnj2qmGmE8snuLBiCc51m4pRruXksqJIID7wZ4ybGo5xG8Zb6ZUlyXhydiWGr66EhavexctlraRzZEyaej4F/UZfRE8fS9TzaVI9t5HLyLhUCNz4OaaGDsGGT1ugvDVWX9VpLJlwBK/OnYROjqXlQisQuQ8T63SH19s+uLmmFyrn+N09BzGCiIiKjOf1Jx+iQiABwX/Mw4DRZ9H6xzWY09NcnTL1r4F/Yfn5huhUpygnH9QUKOM6CN9MScHqbw8jONHa8rHqMREO49vVKZjyzaAi2rHQ1vOBY86gjddas9fzFVI97+zC5IPpKOE65EtMSdyMbw/fR5JcalWULTDZa5p1JR+k+hkb4IcdUbXRu0MDVMqx6T8PMYKIiIoSJiCIrFIyVBe8MHbwFjjOWoR5w9ygNMt5pXQyG3YMi8d4QvRsCafnIkIUh12rj7F8YAR+3OiPOLnUKsT5w/uHCAxc/jFa2RXF8RDS63mVmQsxf9grZq/nKT1bwIl9NtNSVEKraXMw8OFWeF94IhdSRnEI2joOrraDsP7aUwiVPzat2ooyI2Zies8aOZ+sFfkYQURERQ1vwSCyOlLn6O5OfNR5DA61+Q47VwxBA6U5TiylzmDQX1KnbBzm3B+MvX/PQzcH3klMppKxnu9YPgQNbc1fz/86ORfdK5eU1xFZShyCts/AoBGnUG9cCzz95zoq9hyLSR7d4WqW+E9ERGQeTEAQWRnx5DS+GTAQs5M+wK7Nn5nhsuAUxIdfwdHNSzFrxjqcUSlRd+ou/L2gE+z5yzCZiLXU85PzO6EirwUkIiIiMgsmIIisSeJ1bPUYhEEnmsF7zxIMdVXKK4xMxOPxg7u4ee0//L1/J7xXb8U5lbwO7THXbyemt6wgPycyMnU9//AdDDrZnPWciIiI6DnCBASRtRAPcXz2KPSafQJVhs3C1+61UUpeVVAi9hFuhaogntzH5Vs3cHHXHzodsUxaLcHZg5+giQ0vfyAT0NTz0eg5+zgcWc+JiIiInitMQBBZBfVUdZPRa9j3uC6XWIYTuq7ZAx8PN6N1ConSaet57+HfI9CiRx7WcyIiIiJL4J2vRBYn8CxgMz4aZ+nkg0TZDu90rMNOGZlAej23bPJBwnpOREREZBG8AoKIiIiIiIiITI5XQBARERERERGRyTEBQUREREREREQmxwQEEREREREREZkcExBEREREREREZHJMQBARERERERGRyTEBQfTcE0gK2YtpbSZhT1iyXEb0PEpAyL6ZaOOxB2FyCREREREZDxMQRFYrCWHH56OjbWtMPRQqlxmTQFL4NZzY/g3edx+FRb5P8SyJs/KSMenU4cOP5DLDiaiTmN/RGa5TDyHSJFU0AeGBJ7F9yTi4D5gL36cJ0jsnIiIiImNjAoLIaiXjaXgIQpq+gTbOSrnMWJIRdWIZ3p+xHifC7NH4tSpQyGuIjEddhx9q6nDbgtTh+CcIj6+HXm1rQmn0ihqGE0smYYbXCYRVbYjX7ORiIiIiIjI6hZDIj4nouaTCuSW90eyzl/Fb8Er0dywhlxM9Z5LOYUndpviszW8I3vAWHOViIiIiIjIOXgFBRERERERERCbHBASRtUl6gOMrpmHS9PFwb/MxNgZEg5cpUaFihDosVFex66ux8Jg5Ex693sa0HdcQL68jIiIiosKJCQgiq6JCwLqF2OU8Dp6zR6Jd6AqMW3ECYWm9t1Dsm9gYCoXC8MV+MvZFcpYLMjV1HV6QXocfrdTU4XB5rV4Sr+PXSasQOmAB1syZivfbh2HRmB9xTLf+Ru7DRPts6rkei/3EfYiUX4aIiIiIzIcJCCIrIh4dxardDTGmmxOKBV3AgZt2cKtfHS+kDbz3IrotPQ/10C0GL5FL0M2+uPw6RKahrsMrf38lrQ4fvFlBW4fl9XlLwN0dy/Brq7EY2bACFIhF+P0ooEwplCyhMwKlfTcsjcymnuuxRC7tBnv5ZYiIiIjIfJiAILImNi/jvYX9Ua9kLC7u3YH96IzR3euitLyayOpJdXjIoqx1uJS8Om+JiLfrizlvv6z9m4R7uHj0JtC8HpxtecgiIiIiKsx4NkdkRRRKF7Rxc4Ai7iL2/HgMysFvobNLGXktkfXLXIfLDepvYB1WwrVrZ9RXaq/WSbnjjwMXSqJt91dRg3PFEhERERVqTEAQWZ1kRJ7YiVWXamLIu23hpIjFrdMBCOdIlFRo6NThwQWpw0kIvXQGvqiF1q5VwBuIiIiIiAo3JiCIrI14CN9dfyHEsQf6tq4CRJ7E8rmnEanpvHEQSioEdOqwe2odnpNah2VJYbh89DguhCXIBdl5jCunz0ClbIYW9SrIZTIOQklERERU6DABQWRtUsIRdPo28HoT1LeLgf9mH5SZ1BMumtbKQSipEMhQh1XaOvxJL7kOqz3D3e3T0KLDG2j7wa8ISpGLM0t+iEDfIKBxI9StXEIulHEQSiIiIqJCRyGdjPHCbiKrkoCQw8vgMScAdRvbQtHSA9PfbghbI9//nhy4FRPn/YknT+/i721HcVMqUzbpib4NKqLEK2Pw7eR2sNNuSmSgrHV4hlSHlWl1OBlRft/ira5TcAQfwSfoO/RyyJocE7c2ol+tYfh35nFc+bodysnlxhWPwK1fYd6fD/D07mlsO3pdKnNEk54d0KBiebwy5mtMbueg3ZSIiIiICoQJCCIispBonFqwGtEfTsnm6pxkRO6bijrd/8DbPoewtldVuZyIiIiICivegkFERJbx7BbO3HkJLhWyuzUoGgG+fohStkYHt0pyGREREREVZkxAEBGRBcTj7p5dCOnXHs7qI1HidWwd9Rpse6xHYHIyVJd2YPXKpxixbAJ6OpXS/gkRERERFWpMQBARkdmlBO2E58X2mNS1KrRDQyhQokw5IOwIvD4fit6f/IsmG37GipFuOmNHEBEREVFhxjEgiIiIiIiIiMjkeAUEEREREREREZkcExBERFTIJUN17wbuqZLl50RERERkjZiAICKiwi3uAtaPfh8r/4mQC4iIiIjIGjEBQUREFiXCjuKrTrXgOvUQouQy/cXh5vZVWGgzFKPbOchluUlGlJ8nOtq2xtTDj8BBkIiIiIjMhwkIIiKyKPE0AvdDXNCrbU0o5TJ9iUfHsWpBCD6Z+RZcS+ozXUYK4qMjEd/sDbR1VsozcBARERGROXAWDCIiKpxEJE4teA+jnkzGyQWdYM9sAhEREZFV4xUQRERUCAkkXt+FhStfwpdjWzP5QERERFQI8AoIIiKygASEHF8Pz523kRTkj8QBC+E5pBGU+iYSxF3sGD0AG5qvwxYPN5SVi7OXDFWgD5Ys3I9kZ4H/zlbCKM+p6O9q6A0fRERERFQQvAKCiIjMTCA+wBuTdzlhsudMDG8Xj+/HeeFoeOo0msmI3DcZFYspoFDksBR7CW/9dAa7xzaCTYZ1jTFxX6jO4JICiUG/YdLCCAxYtgJzPh+D9gFzMWb134iUtyAiIiIi82ACgoiIzEsE4+BKX7Qb0wFVi93HhQPXALc6cHoh9ZBUHPbdliAiRUB9kV6WJfYclnVpi7E+d5GSZf15LO32Yvrgkim3sGPWQbSaNhgNbYsDT8JxPxIoU7okSsibEBEREZF5MAFBRERmpoTrkE8xoJ4Nnl08AK/9QJdRXfBKKX3uv1BPu7kSC21GYmK36nnPYvEsCXbvTsLbLjbSE4GEWxdxNMoJzRvWgK12CyIiIiIyEyYgiIjIvBQvwLVNQ1RSROPfPTvgq+yBkZ1r6XVAEiGH8M2ch/pPu1nGFV3frC+PLZGAOxf+wQW8hu5NqnIKTiIiIiIzYwKCiIgsQkSextZVR2E3pB86OJVC/K3/4B+eJK/NhgjDybUrcaT/pxj12gtyoQHEI1w6cR5wrA/X6mXkQiIiIiIyFyYgiIjIApIQ5vsXNoS8iuF9m8JBEYpjy9fgbKQ6AZHDIJTFKuP1r/fj6qLOuQxQmXkQSh0xN3B633UouzVFPVse/oiIiIjMjWdgRERkAQkICbqGKDRGy/oVEOe/E95l3kFfF/WVCdkMQpl4A1tGNEOfNefxNMOgk5mXTINQ6ki+HwjfEDs0buGKyrz/goiIiMjsmIAgIiILsEGDgZMxr08I/lz5OSb/UhHTp7eHfbaJgWREHv8fvgrog0/fboj83TyRgLvn/sZJ1EWHBlVRXC4lIiIiIvNRCPVPRkRERNYq7gyWdJ6AoC+2YmUvp3xmzkOxb1J3dF/XDj5B36GXA1MQRERERObGKyCIiMiKxSFwy1LMrzxGM+1mvg9asYHw3XEByt5t4FaJyQciIiIiS2ACgoiIrJZ62s2lC6Pwhb7TbmoIJAZtxShXZ/RYfxXJIhqXNv2AlaXHYNn07nDi+A9EREREFsEEBBERWSkV/Lety+e0myVQpgIQduxHfP7OQHxy/jVs2OOJkQ1eyHaASiIiIiIyPY4BQUREVioZqnu3EGXnDCclb5sgIiIiKuyYgCAiIiIiIiIik+MtGERERERERERkckxAEBEREREREZHJMQFBRERERERERCbHBAQRERERERERmRwTEERERERERERkckxAEBEREREREZHJMQFBRERERERERCbHBAQRERERERERmRwTEERERERERERkYsD/A0OZPuCyxmKPAAAAAElFTkSuQmCC
Kontraktionen lassen nützliche Aussagen über Fixpunkte zu.
Sei $$D\subset\mathbb{C}^{n}$$ und $$\Phi:\, D\rightarrow D$$ eine Kontraktion
mit Lipschitz-Konstante $$q$$. Dann hat $$\Phi$$ genau einen Fixpunkt
$$\hat{x}\in D$$.
Für $$x^{(0)}\in D$$ konvergiert die //Fixpunktiteration//
$$x^{(k+1)}:=\Phi(x^{(k)})$$
gegen diesen Fixpunkt, d.h.
<$latex text="
\hat{x}=\lim_{k\rightarrow\infty}x^{(k)}.
" displayMode="true"></$latex>
Für alle $$k\in\N$$ gelten die folgenden Fehlerabschätzungen:
#Monotonie: $$\|x^{(k)}-\hat{x}\|\le q\cdot\|x^{(k-1)}-\hat{x}\|$$
#A-priori Schranke: $$\|x^{(k)}-\hat{x}\|\le\frac{q^{k}}{1-q}\cdot\|x^{(1)}-x^{(0)}\|$$
# A-posteriori Schranke: $$\|x^{(k)}-\hat{x}\|\le\frac{q}{1-q}\cdot\|x^{(k)}-x^{(k-1)}\|$$
<$details summary="Beweis" tiddler="Beweis">
{{Beweis: Banachscher Fixpunktsatz}}
</$details>
Sei $$M$$ ein endliches [[Erzeugendensystem|Erzeugendensysteme und Basen]] von einem [[Vektorraum]] $$U$$. Dann kann man aus $$M$$ eine Basis auswählen.
Insbesondere hat jeder endlich erzeugte Vektorraum eine Basis.
!! Beweis
Sei $$M=\{x_1,\dots,x_n\}$$ ein endliches Erzeigendensystem. Falls $$M$$ linear unabhängig ist, ist $$M$$ schon eine Basis.
Sonst ist $$M$$ linear abhängig, d.h. es gibt ein $$j_0$$ und $$\lambda_1,\dots,\lambda_n\in K$$, so dass
<$latex text="x_{j_0}=\sum_{j=1,j\neq j_0}\lambda_j x_j." displayMode="true"></$latex>
Dann ist $$M'=M\setminus\{x_{j_0}\}$$ immer noch ein endliches Erzeugendensystem:
<$latex text="V\ni z=\sum_{j=1}^n\mu_jx_j=\sum_{j=1,j\neq j_0}(\mu_j+\lambda_j)x_j\in\langle M'\rangle." displayMode="true"></$latex>
Ist $$M'$$ linear unabhängig, so ist $$M'$$ eine Basis. Sonst konstruiert man so lange neue $$M$$ bis das Verfahren terminiert (was es auf Grund der Endlichkeit der Menge tut).
Sei $$U\subset V$$ ein [[Unterraum|Unterräume]] mit $$\dim_K(U)<\infty$$ und Basis $$B_U=\{x_1,\dots,x_k\}$$.
Dann gibt es eine [[Basis|Erzeugendensysteme und Basen]] $$B$$ von $$V$$ mit $$B_U\subset B$$.
!! Beweis
Folgt direkt aus dem [[Austauschsatz]].
Sei $$V$$ ein $$K$$-[[Vektorraum]] mit $$\dim_K(V)=n$$. Seien $$A,B$$ Basen von $$V$$ mit [[Koordinatensystemen|Koordinatensysteme]]$$\phi_A:V\to K^n,\phi_B:V\to K^n$$.
Dann ist $$T\coloneqq \phi_B\circ \phi_A^{-1}$$ als Abbildung $$T:K^n\to K^n$$ linear, also eine [[Matrix|Kanonische Basis und Matrizen]]. $$T$$ heißt auch ''Matrix des Basiswechsels $$A\to B$$''.
Sei $$T=(t_{ij})_{1\leq i,j\leq n}$$ und
<$latex text="A=\{\phi_A^{-1}(e_1^{(n)}),\dots,\phi_A^{-1}(e_n^{(n)})\}=\{a_1,\dots,a_n\}," displayMode="true"></$latex>
<$latex text="B=\{\phi_B^{-1}(e_1^{(n)}),\dots,\phi_B^{-1}(e_n^{(n)})\}=\{b_1,\dots,b_n\}." displayMode="true"></$latex>
Dann folgt:
<$latex text="\begin{aligned}a_j&=\phi_A^{-1}\left(e_j^{(n)}\right)\\&=\phi_B^{-1}\circ \underbrace{\phi_B\circ \phi_A^{-1}}_{=T}\left(e_j^{(n)}\right)\\ &=\phi_B^{-1}\left(\sum_{i=1}^n t_{ij}e_i^{n} \right)\\ &=\sum_{i=1}^n t_{ij} \cdot \phi_B^{-1}\left(e_i^{(n)}\right)\\&=\sum_{i=1}^nt_{ij}b_i.\end{aligned}" displayMode="true"></$latex>
Die Matrix des Basiswechsels $$A\to B$$ ergibt sich als Koeffizient der Linearkombinationen der Vektoren von $$A$$ durch Vektoren von $$B$$ (als Summe über den ersten Index). Für $$x\in V$$ mit den Koordinatenvektoren $$\phi_A(x),\phi_B(x)$$ gilt:
<$latex text="\phi_B(x)=\underbrace{\phi_B\circ \phi_A^{-1}}_{=T}\circ \phi_A (x)=T\cdot \phi_A(x)." displayMode="true"></$latex>
Die Koordinaten bzgl. $$B$$ ergeben sich aus denen bzgl. $$A$$ durch Matrixmultiplikation mit der Übergangsmatrix $$T$$.
Es sei $$(\Omega,{\mathcal{A}},P)$$ ein W-Raum und $$A\in{\mathcal{A}}$$ mit $$P(A)>0$$. Dann heißt <$latex text="\textcolor{blue}{P(B|A):=\frac{P(A\cap B)}{P(A)}}\quad\text{für }B\in{\mathcal{A}}" displayMode="true"></$latex>
die ''bedingte Wahrscheinlichkeit'' von $$B$$ unter der Bedingung $$A$$ bzgl.\ $$P$$.
!! Satz
Durch $$B\mapsto P(B|A)$$ wird ein W-Maß $$P_A$$ auf $$(\Omega,{\mathcal{A}})$$ definiert.
!! Beweis
$$P_A(\Omega)=P(A\cap\Omega)/P(A)=1$$.\ Sei $$B=\sqcup_{i\ge 1} B_i$$ mit $$B_i\in {\mathcal{A}}$$.\ Dann gilt mit der $$\sigma$$-Additivität von $$P$$: <$latex text=" \begin{aligned}
P_A(B)&=& P_A(\sqcup_{i\ge 1} B_i)=\frac{P(A\cap\sqcup_{i\ge 1} B_i)}{P(A)}\\
&=&\frac{P(\sqcup_{i\ge 1}A\cap B_i)}{P(A)}=\frac{\sum_{i\ge 1}P(A\cap B_i)}{P(A)}=\sum_{i\ge 1}P_A(B_i).
\end{aligned}" displayMode="true"></$latex>
!! [[Interpretation bedingter Wahrscheinlichkeiten]]
Die Singulärwertzerlegung $$A = U\Sigma V^T$$ einer Matrix $$A \in \R^{m \times n}$$ kann man folgendermaßen berechnen:
*Berechne $$B = A^TA$$.
*Berechne die Eigenwerte von $$B$$: $$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k > \lambda_{k+1} = \cdots \lambda_n = 0$$.
*Bilde eine ON-Basis des $$\R^n$$: $$\{ v_1,...,v_n \}$$, wobei $$v_i$$ ein Eigenvektor zum Eigenwert $$\lambda_i$$ ist. Dann ist $$V:=[v_1,...,v_n]$$. Es gilt: $$V^T = V^{-1}$$.
*Bilde die Diagonalmatrix $$\Sigma$$ aus den Singulärwerten von $$A$$: $$\sigma_i = \sqrt{\lambda_i}$$.
*Finde die Matrix $$U$$ durch Berechnen der Vektoren $$u_i = \dfrac{1}{\sqrt{\lambda_i}}Av_i$$ für $$i \leq k$$. Ergänze diese Vektoren zu einer ON-Basis des $$\R^m$$ (vgl. [[Komponenten eines Vektors]] Basisergänzungsatz ).
Gegeben sei ein Grauwertbild, dessen Speicherbedarf reduziert werden soll.
''Lösung'':
*Fasse das Grauwertbild mit $$n\times m$$ Pixeln als Matrix $$A\in \mathbb{R}^{n\times m}$$ auf.
*Berechne die SVD von $$A=U \Sigma V^{*} $$.
*Berechne eine ''Rank-k Approximation'' von $$A$$: <$latex text="
\hat{A}(k):=\sum_{i=1}^k\sigma_i u_i v_i^t
" displayMode="true"></$latex>
*Speichere Matrix als Bild.
<<PhotoGallery [[Bildkompression_2 Gallery]]>>
$$\ \ \ $$ Die ersten fünf Hauptkomponenten des links oben gezeigten Bilds aus dem Kölner Dom.
<<PhotoGallery [[Bildkompression_3 Gallery]]>>
$$ \ \ \ $$ Oben links eine Rang $$50$$ Approximation des Bilds aus dem Kölner Dom. Folgend Rang-1 bis Rang-5 Approximationen.
Die $$p$$-Norm für $$p = 2$$ wird //euklidische Norm// genannt.
Betrachte den Vektor $$x = (1,2,3)$$:
<$latex text="
\|x\|_2 = \sqrt{1^2+2^2+3^2} = \sqrt{14}
" displayMode="true"></$latex>
* $$N:=10$$ Kraftwerke müssen auf Einhaltung der Emissionsgrenzen geprüft werden.
* Aus Kostengründen wird nur eine Stichprobe von $$n:=4$$ Kraftwerken untersucht.
* ''Gesucht'': Konfidenzbereich zu $$\alpha:=0,2$$ für Anzahl der Kraftwerke mit zu hoher Emission $$\theta\in\{0,\ldots,10\}$$.
* ''Modell'': $$\mathcal{X}:=\{0,1,2,3,4\}$$, $$\mathcal{A}:=2^{\mathcal{X}}$$, $$P_{\theta}(\{x\}):=\frac{\binom{\theta}{x}\cdot\binom{N-\theta}{n-x}}{\binom{N}{n}}$$ (hypergeometrisch)
* Wähle $$C_{\theta}$$ so, dass $$P_{\theta}(C_{\theta})\ge1-\alpha$$ bzw. $$\binom{N}{n}\cdot P_{\theta}(C_{\theta})\ge\binom{N}{n}\cdot(1-\alpha)=168$$.
* Für $$\theta>5$$ gilt $$P_{\theta}(\{x\})=P_{N-\theta}(\{n-x\})$$.
<$latex text="\begin{array}{|c|ccccc|cc}
\theta & &&\binom{10}{4}\cdot P_{\theta}(\{x\}) && & & C_{\theta}\\\hline
5 & 5 & \textbf{50} & \textbf{100} & \textbf{50} & 5 & & \{1,2,3\}\\
4 & 15 & \textbf{80} & \textbf{90} & 24 & 1 & & \{1,2\}\\
3 & 35 & \textbf{105} & \textbf{63} & 7 & 0 & & \{1,2\}\\
2 & \textbf{70} & \textbf{112} & 28 & 0 & 0 & & \{0,1\}\\
1 & \textbf{126} & \textbf{84} & 0 & 0 & 0 & & \{0,1\}\\
0 & \textbf{210} & 0 & 0 & 0 & 0 & & \{0\}\\
& {0} & {1} & {2} & {3} & 4 & {x} & \\
\hline
& \{0,1,2\} & \{1,\ldots,5\} & \{3,\ldots,7\} & \{5,\ldots,9\} &{\{8,9,10\}} & C(x) & \\
\end{array}" displayMode="true"></$latex>
$$\rightarrow$$ Trotz großem $$\alpha$$ ist die Stichprobe zu klein für nützliche Aussagen.
<<PhotoGallery [[Gauß Gallery]]>>
Approximation der Gaußschen Glockenkurve durch Polynome unterschiedlichen Grades: Links Grad 2, Mitte Grad 3 und Rechts Grad 4. Die Daten in der zweiten Zeile wurde zufällig verauscht.
iVBORw0KGgoAAAANSUhEUgAAAsEAAAH6CAIAAABphgbQAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAAB3RJTUUH3QoHCBwz4qfougAAACJ0RVh0Q3JlYXRpb24gVGltZQAwNy1PY3QtMjAxMyAxMDoyODo1MfIgCUkAAAAkdEVYdFNvZnR3YXJlAE1BVExBQiwgVGhlIE1hdGh3b3JrcywgSW5jLrrEUs8AAB0DSURBVHic7d3bcuOwsQVQ6FT+/5d5HhgrGl3JJkACjbWqkspMPJZM8bLVG6Jvy7IUAICd/u/qJwAADEmGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAi/nP1E2jodrsty/Lp/3r846cvAwA+SZshnlLCK7kBAI7I2WV8mUAAAFXkzBDfA4SEAQDHpe0yvntsOuQJAAiYNEM85obXscTPtRQAcESOt68zZogtr1yOV7cW7c8TG+SJDfLEBnligzxJ804153oIAKC1GTNEmgAIABeaqMu4D9OWZbGmEgAOypwhnsLB4x/lBgA4aMYug71Eric2CN/ZQ57YIFnJEABAhAwBAETIEABAhAwBAETIEABAhAwBAETIEABAhAwBAETIEABAhAwBAETIEABAhAwBAETIEABAhAwBAETIEABAhAwBAETIEABAhAwBAETIEABAhAwBAETIEABAhAwBAETIEABAhAwBAETIEABAhAwBAETIEABAhAwBAETIEABAhAwBAETIEABAhAwBAETIEABAhAwBAETIEABAhAwBAETIEABAhAwBAETIEABAhAwBAETIEABAhAwBAETIEABAhAwBAETIEABAhAwBAETIEABAhAwBAETIEABAhAwBAETIEABAhAwBAETIEABAhAwBAETIEABAhAwBAERMnSFut9vVTwEARjVvhhAgAOCISTPE7XZbluXqZwEAA5s0QwgQAHDQpBkCADjoP1c/gU49rZaYfW4x6dKRM37sW45da1kS7CPLSWukUrziAbP+3CX18jsZ4r3ZQ8OrrNvjy7FdYx/4eea4arvePj+1ZeeTut1KKbe9B03FJ1DLzzxX52k13uU6lfYausnrsZEmVcgQTOPtQVv1rP36AJ1cE14v2FWu0+sWXZZyu/33v8vmLfrlCTR6tj/9fIw6r++XDdR+F4W6ZAhSezwp1z4Xd5gYPr25b3ENXnPDP4+yvP/7vV6f7Zk/1xevD1Z5H3i74Vruw3CQDEFG99Nuy9xw7en87WX1tGvql6BwH0tU9OnnunYjlF+pos7zeNyUzXZsiJk6Q1j0kE2DM+zTNaqf3HDZooENhcXeXiPs7Ua4dis9Pl79nee+QYUJ+jB1hiCJltHh8jN0D7nhbvuAoVavEfC4lfrJE6XuTiVM0AcZgmHNER0uzw13gUDQotfY9wTe5YmrNun9UYUJ0pAhGE3e6NDVyOHRkWLitF7j9zP526SXb2dhgjRkCMZR+1rUW3ToKjfcVficxXW9xlv9DCfOCBOdbHSSkiHoXrPBg+jwU8UL/+W9xluvw4kewkTND3QYS9CSDEHfql52Lh88XD5F367Fm9h+eo1XnTQdy3+fwz9/PPYdH8YSHW53BidD0KWqb56ujQ4D5Ya7dpeb3nqNVz18rKNVx2EmQW0yBP2pdIXpJDqMkhvuTrjA99lrvLp85UTlMGEmQW0yBD2pN+m+XV1YDBcdyrmL8HruNd56Kjuuus12nR17uK1Pr2QI+lDpjHbh7GHcwcPq/Lem/fcab62v71Uv91J3JiFJcIwMQQfqlRcX1haDRofVhRfyUXqNJxeOJWrOJAbNcXRDhuBqh89fV80eRh88rHp4Izr0ZP3CsUTNmYQYQYgMwUUqLRG/ZPaQYPCw6ufCMfr74avGEtVmEj61QYgMwRVqXCsuuU9UmvRQurxgJ3g//DiWuGQmEX9In9pgPxmC01UqL6SHsJ6Lg6F7jbtLksTj/alUG5xDhuBcNQKE9HBE/1eH0XuNu2uThBjBCWQITnTsrHT++CFZeihDXZjTXMWuShIVqo0cLwAtyRCc5cD5SHqoYrgrQqar2PlJokK1kekFoA0ZgvaO9dsnlxdZ00MZc4VBjuURdxcmiUMxomR5AahNhqCxw/3FaaeulOmhDDh+eJJmecTdJUniUIwouV4A6pEhaGmQ/iJreiiJzvz5xuonJ4mjKyTyvQDUIEPQzLEAIT0clG8CnXKsfmaSqNNrZNr6HCZD0Eb3ASJxeiiJxg9Pso7VT04SYgS1/N/VT4CMomeZ24kBYimLADGox/syZ7Luk/dfvdHygf57rIX+cdKtT4g5BLUdCBDGDwflG/V/krLXWN1jRNO99FCvYRrBHxmCqkJnlnOWT+ZOD2WC8cOTrL1GObHaiC+0FCMopegyqCkaIJZTAkTi8qIkvZRukXiyfk61sTwkiZ3/Mu+mZzNzCCo5ECCammH8UDKO9LdL3GuUE6uNyMFoGjE9GYLLtA4Q6dNDmXj88CRxr1HOqjYOfV6DWekyqGH/yfuEAJG7vCh5L5lhuYfrJ1QbkVIj90bnF3MIDussQEwyfihJR/cH5e41SvtqIzKN0GhMTIbgmP4CRO70UIwffsnda5SHakOM4HK6DE7VLkDcyk2A4C79iH0dSDSqNoKf1GA+5hAcsPOC1jRAzJAeSt4RfQsz9Bql2c6/exphFDElcwhOIkAcsZ6cnZ/3WjfaDAOJNt/ZNIIfZAii9rznaBQg9BdsMUmMaJEk9sWI9BuaF7oMRjVJeih5R/Fn0mtAC+YQhFw9hJjhXKm/qEuvEf2eRhF8JEPQlgARo79oJP017voYwUxkCPbbfH0TIAJuNwGirTVGJE4SF8eI9DGNB9ZDsNN1AWKSG1BKDyeY4T5U1Y+XHZ/29DnPaZhD0ESLAOH3X1BX7jfMLX6/hlKDJzIEe1x0lUvfXxQB4iK5Y0RpefeIXw+cfctSSpEhaKHuECJ9gLAA4lqWR+z8bkYR/I8MQWUCxC4+wNmD9B/7FCNoRIagJgFiF+OHrogRe76bGEEpMgQ7/LriCRDb6S/6lLvXODtG5A5llFJkCPqUPkDoL7qVu9e4bIklSckQbHPiEGKGAEHnxIht38ooYnYyBBUIEFvoL8aSuNc4NUaQmgxBR3IHCP3FcBL3GkoNqpAhOKrWECJ9gGBQYsSv7yOMzEuG4BAB4jv9RQ5Zew0xgoNkCLZoexlMHCD0F2lk7TWalxoptxp/ZAjiqgwhcgcIkkl5QawSI4wi5uR3f0Nl6zVGgMjqHiO8xGAOwZXyDSH0FzPI12v4mAYxMgRBx4uMrAGCSYgRL99BDJlOzi7j9nBkL+9O6rd/D/23X0NTyQKE4fackvUaa4zIdGDSWsIMcbvdHjPB0x/v5IYjDg4hkp2njB9mtr70afaBgzFiqf279+icLoOzCRDkk6nXsDaC7WbMEJ8mE2x05H1GpgDh/lE8ynQfqiMxwqqIqSTsMrb4uWACvpMeeJWs16jmv1MaGyWhSTPEzwUTFl1+YghRXCT4ar1ijr6HHFkYYVXEk1uO8dQ7M2aILYFAaKhOgGAeYgSPfr5NHdeM6yE4X44zkQUQbJdjeYT1lXw3Y4ZIEwDPF5tPpgkQbkDJLjluZxmLEVZWTiJhl7Esy9slk/d1D5++AD4xfiAsR68BbyXMEOVDLHj8S7nhNKMPITLdhZCrjH47Swsj+CRnhqCFCRdae/tILRN+7NOnM2Yw43oITjP0e5epTvecY9zlERZX8pYMQSvjBgifv6CdcT+vIUbwSpcB/5AeaG3CXoOszCHYZG+vOegQwmmd04zYa+wdRfiEZ3oyBPWNGCD0F5xvxF5Do8EjXQZID1xGr8HQzCGobLghhNM3lxur1zCK4M4cgt/e/GLTFIa+7Q/JjH4fqk/cJSI3cwhqGmgI4fdf0JuBfr+GUQQrGYJqhgsQ0CExgoHoMphLynExyWTtNcjHHII6hhhC6C8YxRC9hlEEMgSz0F8wnP5jBJOTIaig8yGE+0cxrs7vQ2UUMTnrIUhOemB07kNFt8whOKrnIYTTLml022sYRcxMhiAtAYJkuo0RTEuG4JA+hxAWQJBVn8sjjCKmZT0E2UgP5GZ5BP0whyCuwyGEEyuT6K3X+DKKWEq5OSyTMocgCff1YzZuZ8nlzCEI6moI4QaUzKmr21laFTEhGYLh6S+YXD8xgtnoMhiYQS6s9BpcwhyCiB6KDP0FPOqh11BnzEaGYEj6C3jr8hjBVGQIdrt2COH+UfDdtfehMoqYivUQjER6gC3ch4pzmEMwDCdE2EWvQWvmEAzAgnOI8XkNmjKHYJ/zF0P4/AUccf7nNSyJmIcMQdf0F1CFXoMWdBl0ygAW6tJrUJ0MQY+MH6AFn9egLl0GO5yzGMIJDpo6odewJGIS5hB0xKAVzqHXoAoZgl4YP8CZ9Bocp8ugC05kcAmf1+AIcwguZqAK19JrEGYOwVYtFlS6fxT0oMV9qCyrnIEMwWX0F9AVvQZ7yRBcQ4CADokR7GI9BGfTvELPLI9gO3MINqm1GMICCOhfreURlkSkJ0NwHv0FDESvwU+6DM5gNAoj0mvwnQxBc8YPMC63s+QLXQZtOfVAAnoN3jKHoBUjUMhEr8ErGYJN9n4ow/gB8gn0Gn8fzXA6yEmXQX0CBCSm1+DOHIKajDphBnoNVjIE1Rg/wDx8XoOiy6AWpxKYkF5jcuYQHGWkCTPTa8xMhuAQ4wdArzEtXQZxThnAnV5jQpPOIW4Pe/riMrif0SXwSq8xmxkzxO12e8wNT3/kJ+MH4JPXXmMpi/FEVroM9hEggJ/0GpOYcQ5BjBElsJ1eYwYyBJsYPwB73XsNvy4jKxnivZsx3KNlsUn4zv7BV4s9JCUZ4j2rLB+t88hiJskHFibzyT052EMepUlUMgSbuIcMsNf9jJHkgskLn8tgB2utgY285ZjBjHOIZVncYyrMWmvgO6eIecyYIYrccIxeA/jk9cxwKz6YkZYugyC9BvDEW4vZTDqHoAq9BrByKpiTDMEheg3AGWBaugwq0GvAtASImZlDUIdeA2bjkEeGoBq9BszDkU7RZVCdXgPSEyBYyRBscttzs9o1RkgSkM96aG8PELdyW9wcIi9dBk3oNSAfRzRPzCFoSK8BaQgQvDKHoC2f14DROYT5RIagOb0GjMuRyxe6DE6i14DhCBB8Zw7BefQaMAqHKluYQ7DJUpZdH+/8+H0WAwno3Tp+OB4gfLAzPRmCC4gR0C39BdvpMriGXgN645BkLxmCy/i8BvTDkUiALoOtai2JeP62eg24WosAYTHEDMwhuJ5eA67i0OMIGYIu6DXgfI44DtJl0BG9BpxGgOA4GYIdGi2J+Och/N5waGzv7++OPITFEHPQZdAdvQa048iiInMIOqXXgOoECOoyh6BfPq8BtTiUaMEcgn1OWBLxz8P5/RpwWK3ff7H14SyGmIYMwQDECAjTX9COLoMx6DVgL4cMrckQDMPnNWA7Rwon0GWw28lLIp4fXa8Bv1wYICyGmIo5BOPRa8AnDg3OJEMwJL0GvHJEcDJdBhHX1hn/exp6DfjTQ4BQZMzGHIKx6TXAIcBVzCEI6mQUUdyHirmdfP+ob8/EEGI+MgRJiBFMqIf+gpnJEOTh94YzjxN+f3ctt1IWh2VSMgRx/dQZd3oNZtBPf3GnyJiTDEFCYgSJjTJ+YAYyBId0OIpY6TXIp9v+whBiWj7bSVruQ0Um9mQ6ZA7BUd2OIlZ6DRLoOUAYQszMHIL83IeKcdl16Zk5BBV0PoooPq/BmDr8/MUTQ4jJyRDU0X+MKHoNhtJzf7ESINBlMBe9Bv2zizIKcwiqGWIUUfQa9K3//mJlCEGRIZiWGEGH+u8v4JEMwW/LbevVdpRRxMp9qOhHt/ePemv7EOJWDCsykyGobLgYYSDB5UbpL1ZaDO5kCBAjuNJA4wd4IkNQ31ijiJVeg/ON1V+sDCF4JEOwyVL2hYJBY4SBBKcZq79Y7Q0QFkOkJ0PAP8QITjDc+AHekiFoZcRRxEqvQTsj9hcrLQav3KcS3vB7w2nBHkUyOTPE4+0MlneH7NP9Dt5+DU+W/e3mOooY973LOpCwd1DF0PtS4EC2GGIGCTPE7XZ7zARPf7yTG86RI0YUv7yAA0bfhYY+hGkqYYaAuvQaHGHPIbEZ11R+mkzw095PeP79q1EXVz7yeQ0CEgSI2BBCkTGJSecQPxdMUNfojcZKr8F2OXaVBIctTU2aIX4umLDosro0MaKkeHNJUzn2kAQHbCc2/9bC8STJEPdXaMvFvtbXzCnw6YyHf5shRhSf1+CrHPvGkUNVkfHk59vUcSXJEC75nEyvwSu7xHs3oSKtSddUXv0UxhZbWfn3bzOsr1z5/Ro8GvH3X3xiCMFGSeYQj5Zlebtk8r7u4dMXcI40jcZKr0HJ0l+sMh2etJYwQ5QPseDxL+WGg46siihJY0QxxJ5Sspf+4IFpCDGbGbsMepCp1Ch6jVll6i+KCQT7yRAEHVkV8fcdUsWI4j5Uk8nUX5QaAcIQYkIyBFfKGiMkidzG/f3dn5hAEJNzPQRcyH2ocvPKwp05BHHH64yScRSx0muklDJAVBlCKDLmJEOwRdvrYe4YIUnkkK+/WDVvMVJuNf7IEBxSZRRRUscIA4kEkn3+4q5WgDCEmJYMwVFixE9ixNCyvpEWIDhOhqAj6WOEJDGWrP1F8UEMKpEhqKDWKKJkjxEGEgPJ2l+UqgHCEGJyMgTb/Lr6iREbiRFDyDp+KCcHiMTbkVKKDEGfZogRkkSfEvcXRYVBbTIEm504iigTxAgDiQ4l7i9K7QBhCEGRIahLjNhFjOhK7kve2QGCOcgQVCZG7KLX6EHu/qIIEDQjQ1CfGLGLXuNaufuLIkDQkgzBHhdd69YYkT5JiBHnSz9+uGwRZe4tyx8ZgibqjiJKKUtZZhhIiBFnyn2ZW9ND3QBhCMETGYKdNl/oqseIMkevYXnECSyACH3Pzd8x98blgQzBfmJES5ZHtGYBROh7ChC8IUPQlhgRI0Y0kv4Cd3GAYDL/ufoJMKb1ErftZLw0OAfdY0Tim+7dY0Tua95p0m/MRkfEvoM3fUbjXzIEo1rPlbnv3buejZ2Wj0u/DXMfCHRLl8EZWjQaf99Zr8EPAsSB7yyY8I05BFF76ozSptH4+856Dd5Lv9Ga7vm7D9j0YY0XMgQH9BQjSvZxrl5jr/TbqukOL0CwhS6DU7UrNYpegwfpr2h9BQhmZQ7BMTtHEaXlNKLoNdBfVPj++791+sjGBzIEh/UXI0r78+y19Bqf5N4mJ+zVAgS76DKoYf+EvWmpUfx+jSnlvpa1+P0XLw8hQLCPOQSXaTqN+HuI5NWGXmOVeyOcsw9bA0GADEEl+xuNclaMKKk/sqHXyP2zn7PrBg/D3JueDXQZ1BOara8xovVIfh1IJK42pu01El/F1j32hPGDAEGYOQRVRacR5S9GtDsnpV9rOVuvkfiHPa28KOEjToCglCJDUF8oRpSHJKHaCJun10j8M3ZdXvz3H+fd+uyky6CBA4P11p/X+HuUzNVG+l4j6yXsnPKiCBDUYw5BG9FpRDlloWXJXm1k7TVS/lDl3P1QgKAiGYJmDseIIkkckK/XyPSz3J2cHooAQVUyBC0dixHlrM+s504SOc78OX6KRyfvb0cPpXwvADXIEDR2bKp+2kCi5E0So/caQz/5t85PD+Xg+KHkegGoR4agvWNT9TMHEiVpkhi31xjxOX9x/n5l/EBTMgRnOTZVP3MgUf5NEiVLmBiu1xjr2X5xyY5U4XhJ8wLQjAzBiQ7HiHJFkiiJxhIDxYhRnud3l+w5dY6RHC8AjckQnOvwRezkauPvQfMUHP0vj+j86W101d5S59AQINhGhuB0Nd4Ln1xt/D1okiTR8/KIPp/VLhemhyJAcC4Zgis83klxnGrj73HzJIneLha9PZ+9xk4Phw9JJiRDcJH7eapStVEkif366TU6eRphY6eHMn584yIyBFerVG0USSKkh15j6OvX8OmhDP4CcCkZgg7UqDZKH0mijBkmLuw1Br1+Xfhy15w9rEZ8AeiDDEEfKlUb5eokUYYdS5zfawzaX1z4+po90BsZgs5Uekd8VZIoI48lzuw1hruEXfuCVt6Th9v69EqGoD+Vqo3yb5Iol44lnv6yZyf0GqNcwi5/7SrvusoLapMh6FK9aqM8nH+vDROlg2vSRu16jf77ix5eoyY76ijBjaHIEPSt3kyiXB0myoc80WeYaNFr9HwV6+HlaBUd/vtNe930jEyGoHuPM4mnvwl/y7//cVWYKIOUHRV7jQ4DRCdbXnRgXDIE48geJkof74afHO81eusvOtnIogMJyBAM6ClM1Dhd9hAmyrvhRA9h4kiv0c/4oZNN2moH6y2pMQcZgpHdL26Pfzz4Lf/+R29holx98Qv0GpcHiH62XtvoUKQHrjF1hrjdbosDL4EGHUd5FyZKN01HueiKuL3XuPBd8eVb6eGZ/I/oQErzZojb7fb7ixhL4zBR/r0qlNMjxac88fYLWj2HDb3GaeOHqzbCJ813D9GBzkyaIdYJhBiR1muYePr78Df+94+vO9Bpp/a3V8q319QvXx9/9M+9RvUAcdoPtdcZr37tHRjqmjRDqDBm8fRCv6bGGvfB/OcRNnxNO1+uqa9X4oMX4Ndeo0p/Uf151nJBYihCA72bNEMwqdcz8vdZ1P4z+JZU8fOftPB6Jf70/n77NftxSevu5ZaHH72uk16m2vsbXEuGeO+p5jC3+H2KHdXXV7ZG2/Vz17ldtne9f9zdP/Py3//s/IeVHr2S5aRm8/v+dspT4HSJe/NZMsT9JdyYBoSGf8y7Mc74yRNs3QwfcRr9+dOx16MjTaqYJUMMf4IDgM7839VPAAAYkgwBAERMnSEUHAAQNnWGAADCZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAgAIEKGAAAiZAh+u91uVz+FvtggfGcPeWKDZPWfq59AQ7fbbVmWT//X4x8/fRkA8EnaDPEz9soNAHBEzi7jywQCAKgiZ4b4HiAkDAA4Lm2X8d1j0yFPAEBA5nfkn+YNT3//+mWWEAPQVI6Lb5I5xP2qv+VV+fk1OV5aAGgqSYZw1QeAk+VcU/mdqgIAjksyh9jivu5hWRZrKgHgoMxrKgGAdiaaQ3ziltg/TXtHjZ/zKnvI5CM9e8hG055DVomvMrNnCLfE/mna5SM/PwO8mnkP2biJsrKHbDTtOWSV+yoz45rKu9lOeQE2EXDE5OeQ9D/+1BnCLbF/sgW+sIfwnT2kTH8OSX+Vmb3L+G7yrpef7CF8Zw/hu9H3EBnim5m7Xrawh/CdPYTvRt9D5soQdW+JndKuTZSPPYSK7CF8l2APmStDJHjBWpt8E03+4wPsMvWayu8m/zwSP9lD+M4ewncJ9pC55hBbuCU2q087gD3kbvItYA8hJtMeMt4KDgCgB7oMACBChgAAImQIACBChgAAImQIACBChgAAImQIACBChgAAImQIACBChgAAImQIACBChgAAImQIACBChgAAImQIACBChgAAImQIACBChgAAImQIACBChgAAImQIACBChgAAImQIACBChgAAImQIACBChgAAImQIACBChgAAImQIACBChgAAImQIACBChgAAImQIACBChgAAImQIACBChgAAImQIACBChgAAImQIACDi/wEG6Q/dYkYuTQAAAABJRU5ErkJggg==
Wir versuchen die zugehörige Normalengleichung zu folgendem Problem zu finden:
<$latex text="
A^*Ax=A^*b
" displayMode="true"></$latex>
mit
$$
A = \begin{pmatrix} 1 & 0 \\ 1 & 3 \\ 1 & 4 \\ 1 & 7 \\ \end{pmatrix}$$ und
$$b = \begin{pmatrix} 1 \\ 2 \\ 6 \\ 4 \\ \end{pmatrix}.
$$
Dazu berechnen wir:
<$latex text="
\begin{aligned}
A^{*}A &=& \begin{pmatrix}
1 & 1 & 1 & 1 \\
0 & 3 & 4 & 7 \\
\end{pmatrix} \cdot \begin{pmatrix}
1 & 0 \\ 1 & 3 \\ 1 & 4 \\ 1 & 7 \\
\end{pmatrix} = \begin{pmatrix}
4 & 14 \\ 14 & 74 \\
\end{pmatrix}\\
A^{*}b &=& \begin{pmatrix}
1 & 1 & 1 & 1 \\
0 & 3 & 4 & 7 \\
\end{pmatrix} \cdot \begin{pmatrix}
1 \\ 2 \\ 6 \\ 4 \end{pmatrix} =
\begin{pmatrix}
13 \\ 58 \\
\end{pmatrix}\\
(A^{*}A)^{-1}&=& \dfrac{1}{4\cdot 74-14\cdot 14} \cdot \begin{pmatrix}
74 & -14 \\ -14 & 4 \\
\end{pmatrix}\\
\Rightarrow \begin{pmatrix}
x_{0} \\ x_{1}
\end{pmatrix} &=& \begin{pmatrix}
3/2 \\ 1/2
\end{pmatrix}.
\end{aligned}
" displayMode="true"></$latex>
<$details summary="Daten als Punkte und Ausgleichsgerade" tiddler="Daten als Punkte und Ausgleichsgerade">
[img[linaus_ausgleichsgerade-1.png]]
</$details>
<<PhotoGallery [[Tikhonov Gallery]]>>
In den Bildern der Spalten Approximation der Daten jeweils mit Polynomgrad 1,3 und 5. In der oberen Reihe mit Regularisierung $$\lambda=1$$. Untere Zeile mit $$\lambda =5$$.
Eine faire Münze wird $$n$$-mal geworfen.
"Zahl", codiert durch $$1$$ wird als Erfolg, "Kopf", codiert durch $$0$$ als Misserfolg angesehen.
Wir interessieren uns für folgende beiden Ereignisse:
* $$E_1$$: Anzahl der Erfolge.
* $$E_2$$: Wartezeit bis zum ersten Erfolg.
# Geben Sie den dem Münzwurfexperiment zugrunde liegenden Wahrscheinlichkeitsraum $$(\Omega,\mathcal{A}, P)$$ an.
# Definieren Sie zwei Messräume $$(\Omega_1, \mathcal{A}_1)$$ und $$(\Omega_2, \mathcal{A}_2)$$ und beschreiben Sie die Ereignisse $$E_1, E_2$$ durch Zufallsvariablen $$X_i: \Omega \to \Omega_i, i=1,2$$.
# Bestimmen Sie die Verteilungen von $$X_1$$ und $$X_2$$.
Es seien $$X$$ und $$Y$$ Zufallsvariablen mit $$Y=-aX+b$$ für eine positive reelle Zahl $$a>0$$, eine reelle Zahl $$b$$ und $$\textbf{V}(X)\neq 0$$. Zeige unter Verwendung der Rechenregeln für $$\textbf{E}$$, $$\textbf{V}$$ und $$\mathrm{Cov}$$, dass für den Korrelationskoeffizienten $$\rho_{XY}$$ gilt: $$\rho_{XY}=-1$$.
Wie kann diese Aussage geometrisch gedeutet werden?
!! [[Lösung|Beispiel zum Nacharbeiten: (Co-)Varianz (Lösung))]]
<$latex text="\begin{aligned}
\textbf{V} (Y) &=& \textbf{V}(-aX+b)=(-a)^2\textbf{V}(X)=a^2\textbf{V}(X) \\
\mathrm{Cov} (X,Y) &=& \mathrm{Cov}(X,-aX+b)=-a\mathrm{Cov}(X,X)=-a\textbf{V}(X) \\
\rho_{XY} &=& \frac{\mathrm{Cov}(X,Y)}{\sqrt{\textbf{V}(X)}\sqrt{\textbf{V}(Y)}} = \frac{-a\textbf{V}(X)}{a\textbf{V}(X)} = -1
\end{aligned}" displayMode="true"></$latex>
Geometrisch bedeutet diese Aussage: Für $$\omega\in\Omega$$ liegen die Punkte $$(X(\omega),Y(\omega))$$ alle auf einer Geraden mit negativer Steigung.
Sei $$(\Omega,\mathcal{A},P)$$ ein Wahrscheinlichkeitsraum und seien $$X,Y:\,\Omega\rightarrow\mathbb{R}$$ zwei Zufallsvariablen mit $$X,Y\in\mathcal{L}^1(P)$$.
Beweise, dass gilt: $$\textbf{E}_P(X+Y)=\textbf{E}_P(X) + \textbf{E}_P(Y)$$.
[[Beispiel zum Nacharbeiten: Erwartungswert (Lösung))]]
<$latex text="\begin{aligned}
\textbf{E}_P(X+Y) &= \sum_{z\in (X+Y)(\Omega)} z P(X+Y=z)\\
&= \sum_{x\in X(\Omega),z\in (X+Y)(\Omega)} (x+z-x) P(X=x,Y=z-x) \\
&= \sum_{x\in X(\Omega),y\in Y(\Omega)} (x+y) P(X=x,Y=y) \\
&= \sum_{x\in X(\Omega),y\in Y(\Omega)} x P(X=x,Y=y) + \sum_{x\in X(\Omega,),y\in Y(\Omega)} y P(X=x,Y=y) \\
&= \sum_{x\in X(\Omega)} x P(X=x) + \sum_{\in Y(\Omega)} y P(Y=y) \\
&= \textbf{E}_P(X) + \textbf{E}_P(Y)
\end{aligned}" displayMode="true"></$latex>
! Aufgabe
Mit welcher Wahrscheinlichkeit bekommt jeder der drei Spieler eines Skatspiels genau ein Ass?
!! [[Lösung|Beispiel zum Nacharbeiten: Mehrwegemodell (Lösung)]]
Wie in Kapitel 4 modellieren wir das Austeilen der Karten als Ziehen aus einer Urne mit $$4$$ blauen (Asse) und $$28$$ roten (nicht Asse) Kugeln. Wir nehmen an, dass jeder Spieler zehn der 32 Karten auf einmal bekommt und die zwei restlichen Karten in den Skat kommen.
Als Ergebnisraum betrachten wir für jeden der drei Spieler jeweils die Anzahl seiner Asse $$\Omega_1=\Omega_2=\Omega_3=\{0,1,2,3,4\}$$ und für das Gesamtexperiment den Produktraum $$\Omega=\{0,1,2,3,4\}^3.$$
Auf dem Produktraum $$\Omega$$ konstruieren wir das Wahrscheinlichkeitsmaß $$P$$ mittels den hypergeometrischen Übergangswahrscheinlichkeiten
$$H_{n;\# rot, \# blau}(\omega)$$ wie folgt:
<$latex text=" \begin{aligned}
\rho_1(\omega_1)&=H_{10;4,28}(\{\omega_1\})=\frac{\binom{4}{\omega_1}\binom{28}{10-\omega_1}}{\binom{32}{10}},\\
\rho_{2|\omega_1}(\omega_2)&=H_{10;4-\omega_1,18+\omega_1}(\omega_2),\\
\rho_{3|\omega_1, \omega_2}(\omega_3)&=H_{10;4-\omega_1-\omega_2, 8+\omega_1+\omega_2}(\omega_3).
\end{aligned}" displayMode="true"></$latex>
Für das Ereignis $$\omega=(\omega_1,\omega_2,\omega_3)=(1,1,1)$$ ergibt sich
<$latex text="\begin{aligned}
P\left( \{(1,1,1)\}\right) &=\rho_1(1)\rho_{2|1}(1)\rho_{3|1,1}(1)\\
&=\frac{\binom{4}{1} \binom{28}{9} \cdot \binom{3}{1}\binom{19}{9} \cdot \binom{2}{1}\binom{10}{9}}
{\binom{32}{10}\ \cdot \ \binom{22}{10}\ \cdot \ \binom{12}{10}} \\
&= 10^3 \frac{2\cdot 4!}{32\cdots 29}\approx 0.0556
\end{aligned}
" displayMode="true"></$latex>
Sei $$(\Omega,\mathcal{A},P)$$ ein Wahrscheinlichkeitsraum, $$\lambda>0$$
und $$X:\,\Omega\rightarrow\mathbb{Z}_{\ge0}$$ eine Poisson-verteilte Zufallsvariable,
d.h. für alle $$k\in\mathbb{Z}_{\ge0}$$ gilt
<$latex text="P(X=k)=e^{-\lambda}\cdot\frac{\lambda^{k}}{k!}\text{.}" displayMode="true"></$latex>
Zeige, dass die Poissonverteilung Erwartungswert $$\lambda$$ hat, d.h.
$$\textbf{E}_{P}(X)=\lambda$$.
!! [[Lösung|Beispiel zum Nacharbeiten: Poissonverteilung (Lösung)]]
Wir nutzen die Reihendarstellung der Exponentialfunktion $$e^\lambda=\sum_{k=0}^\infty \frac{\lambda^k}{k!}$$:
<$latex text=" \begin{aligned}
\textbf{E}_{P}(X) & =\sum_{k=0}^{\infty}k\cdot P_{\lambda}(k)=\sum_{k=1}^{\infty}k \cdot e^{-\lambda}\cdot\frac{ \lambda^{k}}{k!}\\
& =e^{-\lambda}\cdot\lambda\cdot\sum_{k=1}^{\infty}\frac{\lambda^{k-1}}{(k-1)!}=e^{-\lambda}\cdot\lambda\cdot\sum_{k=0}^\infty \frac{\lambda^k}{k!}= e^{-\lambda}\cdot\lambda\cdot e^{\lambda}=\lambda
\end{aligned}" displayMode="true"></$latex>
Sei $$(\Omega,\mathcal{A},P)$$ ein Wahrscheinlichkeitsraum und seien $$X,Y:\,\Omega\rightarrow\mathbb{Z}$$ zwei Zufallsvariablen mit $$X,Y\in\mathcal{L}^1(P)$$.
Beweise, dass $$\textbf{E}_P([X-\textbf{E}_P(X)]^2)=\textbf{E}_P(X^2)-\textbf{E}_P(X)^2$$ gilt .
!! [[Lösung|Beispiel zum Nacharbeiten: Varianz (Lösung))]]
Die Äquivalenz folgt direkt aus der Linearität des Erwartungswerts: <$latex text=" \begin{aligned}
\textbf{E}_P([X-\textbf{E}_P(X)]^2) &= \textbf{E}_P(X^2-2\textbf{E}_P(X)X + \textbf{E}_P(X)^2) \\
&= \textbf{E}_P(X^2)-2\textbf{E}_P(X)\textbf{E}_P(X) + \textbf{E}_P(X)^2 \\
&= \textbf{E}_P(X^2)-\textbf{E}_P(X)^2
\end{aligned}" displayMode="true"></$latex>
Lösung von $$Ax=b$$ durch $$QR$$-Zerlegung. Dabei sei $$A$$ quadratisch und habe vollen Rang.
<$latex text="
Ax=QRx=b
" displayMode="true"></$latex>
Strategie: Berechne $$y=Q^{*}b$$ und löse dann $$Rx=y$$.
Wende dann sukzessive die Operation wie bei der Berechnung von $$R$$ an.
Betrachte die beiden Vektoren $$a_1 = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$
und $$a_2 = \begin{pmatrix} 1.5 \\ 3 \end{pmatrix}$$:
<$details summary="Abbildung" tiddler="GS im $\R^2$">
[img[qr_bsp_cgs.png]]
</$details>
<$latex text="
\begin{aligned}
q_1 &=& \frac{a_1}{\|a_1\|} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\
q_2' &=& a_2 - \underbrace{\langle a_2,q_1 \rangle}_{= 1.5 \cdot 1 + 3 \cdot 0 = 1.5} q_1 \\
&=& \begin{pmatrix} 1.5 \\ 3 \end{pmatrix} - 1.5 \cdot
\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \end{pmatrix}\\
q_2 &=& \frac{q_2'}{\|q_2'\|} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}
\end{aligned}
" displayMode="true"></$latex>
Der Vektor $$a_2$$ lässt sich als Linearkombination von $$q_1$$ und $$q_2$$ darstellen
(gestrichelte grüne Linie):
<$latex text="
a_2 = q_1 \langle q_1,a_2 \rangle + q_2 \langle q_2,a_2 \rangle
= 1.5 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 3 \begin{pmatrix} 0 \\ 1 \end{pmatrix}
" displayMode="true"></$latex>
Betrachte die Matrix
<$latex text="
A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.
" displayMode="true"></$latex>
Das charakteristische Polynom von $$A$$ ist:
<$latex text="
p_A(z) = \det(A-zI) = (1-z)^2.
" displayMode="true"></$latex> Die Matrix hat folgende Vielfachheiten:
<$latex text="
\begin{aligned}
g_A(\lambda) &=& 1,\\
a_A(\lambda) &=& 2.
\end{aligned}
" displayMode="true"></$latex>
Die Nullstellen der Funktion
<$latex text="
f(x) = x^{\nu} - a, \qquad \nu \in \N\backslash \{1\}, a \in \R^+
" displayMode="true"></$latex>
sind die $$\nu$$-ten Wurzeln der Zahl $$a$$. Das Newtonverfahren ergibt
<$latex text="
x_{k+1} = x_k - \frac{x_k^{\nu} - a}{\nu x_k^{\nu - 1}} = \frac{\nu - 1}{\nu} x_k + \frac{a}{\nu} x_k^{1 - \nu}, \qquad k=0,1,...
" displayMode="true"></$latex>
Das entspricht dem Heronverfahren.
Die obige Abbildung veranschaulicht das Verfahren für zwei Vektoren:
$$a_2$$ ließe sich wie folgt errechnen:
<$latex text="
\begin{array}{rcl}
q_1 &=& \frac{a_1}{\|a_1\|} \\
q_2 &=& a_2 - q_1q_1^*a_2 \\
a_2 &=& q_1q_1^*a_2 + q_2q_2^*a_2
\end{array}
" displayMode="true"></$latex>
Es sei $$F: I \longrightarrow \mathbb{C}$$ eine Funktion auf einem Intervall $$I \subset [o,\infty)$$.
Mit $$F$$ erhält man auf der Kugelschale
$$K(I):= \left \{ x \in \R^n \quad \Big| \quad \|x\|_2 =
\sqrt{\sum\limits_{\nu =1}^{n} x_{\nu}^2} \in I \right \}$$
eine Funktion $$f$$ durch $$f(x) := F(\|x\|_2)$$.
Es sei nun $$I$$ offen und $$F$$ stetig differenzierbar.
Damit ist auch $$K(I)$$ offen und $$f$$ hat an jeder Stelle $$x \in K(I)$$, $$x \neq 0$$, die partiellen Ableitungen
<$latex text="
\partial_{\nu} f(x) = F'(\|x\|_2) \cdot \frac{x_{\nu}}{\|x\|_2}, \qquad \nu = 1,...,n.
" displayMode="true"></$latex>
Diese sind offensichtlich stetig. Somit ist $$f$$ an jeder von $$0$$ verschiedenen Stelle $$x \in K(I)$$
differenzierbar und hat dort die Ableitung
<$latex text="
f'(x) = \frac{F'(\|x\|_2)}{\|x\|_2} \cdot x^t \qquad (8.11)
" displayMode="true"></$latex>
* Wir betrachten wieder den $$n$$-maligen Münzwurf und die beiden ZVs $$\textcolor{blue}{X_1= \text{Anzahl der Erfolge}}$$ und $$\textcolor{blue}{X_2=\text{ Wartezeit bis zum ersten Erfolg}}$$.
* Für die Zähldichte der gemeinsamen Verteilung von $$X_1$$ und $$X_2$$, also die Verteilung des Produkts $$X:=X_1\otimes X_2:[0:n]\times[1:n+1]$$, hatten wir bereits die folgenden Formeln bewiesen ($$k,h\in[1:n]$$):<$latex text="p_X(k,h)=\binom{n-h}{k-1}\cdot 2^{-n},\quad p_X(0,n+1)=2^{-n},\quad p_X(k,n+1)=0." displayMode="true"></$latex>
* Im Fall $$n=3$$ ergibt sich folgende Zähldichte für die gemeinsame Verteilung(alle $$\textcolor{blue}{\text{farbi}}\textcolor{red}{\text{gen}}$$ Zahlen sind noch mit $$\textcolor{red}{1}/\textcolor{blue}{8}$$ zu multiplizieren):<$latex text="p_X =
\begin{array}{c|cccc|c}
&1&2&3&4&\\
\hline
0&\textcolor{blue}{0}&\textcolor{blue}{0}&\textcolor{blue}{0}&\textcolor{blue}{1}&\textcolor{red}{1}\\
1&\textcolor{blue}{1}&\textcolor{blue}{1}&\textcolor{blue}{1}&\textcolor{blue}{0}&\textcolor{red}{3}\\
2&\textcolor{blue}{2}&\textcolor{blue}{1}&\textcolor{blue}{0}&\textcolor{blue}{0}&\textcolor{red}{3}\\
3&\textcolor{blue}{1}&\textcolor{blue}{0}&\textcolor{blue}{0}&\textcolor{blue}{0}&\textcolor{red}{1}\\
\hline
&\textcolor{red}{4}&\textcolor{red}{2}&\textcolor{red}{1}&\textcolor{red}{1}&
\end{array} " displayMode="true"></$latex>
* Die beiden Zähldichten zu den $$1$$-dimensionalen $$\textcolor{red}{\text{Marginalverteilungen}}$$ $$P_{X_1}$$ und $$P_{X_2}$$ ergeben sich als die Zeilen- bzw. Spaltensummen.
! Achtung
[[Dieses Beispiel|Beispiel: Marginalverteilungen ergeben nicht gemeinsame Verteilung]] zeigt, dass man im Allgemeinen nicht von den Marginalverteilungen auf die gemeinsame Verteilung schließen kann.
* Es sei $$N=7$$ und die nummerierten Kugeln in $$[1:7]$$ seien mittels $$\phi$$ wie folgt gefärbt (r: rot, b: blau, s: schwarz): <$latex text="\phi=\left(\begin{array}{ccccccc}1&2&3&4&5&6&7\\ r&r&r&r&b&s&s \end{array} \right) =\left(\begin{array}{ccccccc}1&2&3&4&5&6&7\\ \textcolor{red}{\bullet}&\textcolor{red}{\bullet}&\textcolor{red}{\bullet}&\textcolor{red}{\bullet}&\textcolor{blue}{\bullet}&\bullet&\bullet \end{array}\right)." displayMode="true"></$latex>
* Also ist $$F=\{\textcolor{red}{\bullet},\textcolor{blue}{\bullet},\bullet\}\equiv\{r,b,s\}$$ und $$\phi$$ zerlegt $$[1:7]$$ in folgende gleichfarbige Nummernbereiche: $$F_r=\{1,2,3,4\},\quad F_b=\{5\},\quad F_s=\{6,7\}$$.
* Im Fall $$n=5$$ (fünfmaliges Ziehen) ergibt sich als Raum der Farbenfolgen $$\Omega_{ZR}=F^5$$.
* Für die Farbenfolge $$\textbf{f}:=(s,r,r,b,s)\in F^5$$ ist <$latex text="\{X_{ZR}=\textbf{f}\}=F_s\times F_r\times F_r\times F_b\times F_s." displayMode="true"></$latex> Daher erhalten wir für das Bildmaß $$P_{ZR}$$ an der Stelle $$\textbf{f}$$: <$latex text="\textcolor{blue}{P_{ZR}(\textbf{f})}\textcolor{blue}{=\tfrac{2}{7}\cdot\tfrac{4}{7}\cdot\tfrac{4}{7}\cdot\tfrac{1}{7}\cdot\tfrac{2}{7}}." displayMode="true"></$latex>
Betrachte die Funktion $$f(x,y) := x^y$$ auf $$\R_+ \times \R$$. Die partiellen Ableitungen 1. Ordnung sind
<$details summary="Bemerkung" tiddler="Bemerkung">
wobei wir zum Ableiten nutzen, dass $$x^y = e^{\ln x^y}$$
</$details>
<$latex text="
f_x(x,y) = y x^{y-1}, \qquad f_y(x,y) = x^y \ln x
" displayMode="true"></$latex>
und die partiellen Ableitungen 2. Ordnung
<$latex text="
\begin{aligned}
f_{xx}(x,y) = y(y-1)x^{y-2}
& \qquad _{xy}(x,y) = x^{y-1}(1+y \ln x)\\
f_{yx}(x,y) = x^{y-1}(1+y \ln x)
& \qquad f_{yy}(x,y) = x^y(\ln x)^2.
\end{aligned}
" displayMode="true"></$latex>
Sei $$f$$ eine differenzierbare Funktion auf $$\R^2$$. Wir betrachten ihre Komposition $$F:= f\circ \rho_2$$
mit der Polarkoordinatenabbildung $$F(r, \varphi) = f(r \cos \varphi, r \sin \varphi)$$.
Differenziert man $$F$$ bei festgehaltenem $$\varphi$$ nach $$r$$, erhält man die partielle Ableitung
nach $$r$$ (nach $$\varphi$$ entsprechend). Es ergibt sich
<$latex text="
\begin{aligned}
F_r(r, \varphi) &= f_x(r \cos \varphi, r \sin \varphi) \cdot \cos \varphi
+ f_y(r \cos \varphi, r \sin \varphi) \cdot \sin \varphi \\
F_{\varphi}(r, \varphi) &= f_x(r \cos \varphi, r \sin \varphi) \cdot (-r\sin \varphi)
+ f_y(r \cos \varphi, r \sin \varphi) \cdot r\cos \varphi
\end{aligned}
" displayMode="true"></$latex>
* Wir zeigen anhand des letzten Beispiels, dass man i.a.nicht von den Marginalverteilungen auf die gemeinsame Verteilung schließen kann.
<$latex text="p_X =
\begin{array}{c|cccc|c}
&1&2&3&4&\\
\hline
0&\textcolor{blue}{0}&\textcolor{blue}{0}&\textcolor{blue}{0}&\textcolor{blue}{1}&\textcolor{red}{1}\\
1&\textcolor{blue}{1}&\textcolor{blue}{1}&\textcolor{blue}{1}&\textcolor{blue}{0}&\textcolor{red}{3}\\
2&\textcolor{blue}{2}&\textcolor{blue}{1}&\textcolor{blue}{0}&\textcolor{blue}{0}&\textcolor{red}{3}\\
3&\textcolor{blue}{1}&\textcolor{blue}{0}&\textcolor{blue}{0}&\textcolor{blue}{0}&\textcolor{red}{1}\\
\hline
&\textcolor{red}{4}&\textcolor{red}{2}&\textcolor{red}{1}&\textcolor{red}{1}&
\end{array}" displayMode="true"></$latex>
<$latex text="p_Y =
\begin{array}{c|cccc|c}
&1&2&3&4&\\
\hline
0&\textcolor{blue}{1}&\textcolor{blue}{0}&\textcolor{blue}{0}&\textcolor{blue}{0}&\textcolor{red}{1}\\
1&\textcolor{blue}{2}&\textcolor{blue}{1}&\textcolor{blue}{0}&\textcolor{blue}{0}&\textcolor{red}{3}\\
2&\textcolor{blue}{1}&\textcolor{blue}{1}&\textcolor{blue}{1}&\textcolor{blue}{0}&\textcolor{red}{3}\\
3&\textcolor{blue}{0}&\textcolor{blue}{0}&\textcolor{blue}{0}&\textcolor{blue}{1}&\textcolor{red}{1}\\
\hline
&\textcolor{red}{4}&\textcolor{red}{2}&\textcolor{red}{1}&\textcolor{red}{1}&
\end{array}" displayMode="true"></$latex>
Memo: alle $$\textcolor{blue}{\text{farbi}}\textcolor{red}{\text{gen}}$$ Zahlen sind noch mit $$\textcolor{red}{1}/\textcolor{blue}{8}$$ zu multiplizieren!
Sei $$f(x,y) = x^y$$. Gesucht: $$T_pf((x,y);(1,1))$$.
Dazu bestimmen wir zunächst die partiellen Ableitungen erster und zweiter Ordnung:
<$latex text="
\begin{aligned}
f_x(x,y) =& yx^{y-1} \qquad \qquad \qquad \qquad f_y(x,y) = x^y \ln x \\
f_{xx}(x,y) =& y(y-1)x^{y-2} \qquad \qquad \ \ \ f_{yy}(x,y) = x^y(\ln x)^2 \\
f_{xy}(x,y) =& f_{yx}(x,y) = x^{y-1}(1+\ln x)
\end{aligned}
" displayMode="true"></$latex>
Auswertungen der Ableitungen im Punkt $$(1,1)$$ ergeben:
$$f(1,1) = 1, \qquad f'(1,1) \left(f_x(1,1), f_y(1,1) \right) = (1,0), \qquad
f''(1,1) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
Damit ergibt sich:
<$latex text="
\begin{aligned}
T_pf \left((x,y);(1,1) \right) &= 1 + (1,0)
\begin{pmatrix} x-1 \\ y-1 \end{pmatrix}
+ \underbrace{(x-1,y-1)
\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}_{(y-1,x-1)}
\begin{pmatrix} x-1 \\ y-1 \end{pmatrix} \\
&= 1 + (x-1) + (y-1)(x-1)
\end{aligned}
" displayMode="true"></$latex>
In einer Studie werden zwei Schlafmittel A und B verglichen. Dazu wird $$n=10$$ Patienten in zwei aufeinander folgenden Nächten Mittel A bzw. B verabreicht. Die Differenz der Schlafdauer $$B-A$$ wird erfasst:
<$latex text=" \begin{array}{c|cccccccccc|cc}
Patient & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & M & V*\\
\hline
Differenz & 1,2 & 2,4 & 1,3 & 1,3 & 0,0 & 1,0 & 1,8 & 0,8 & 4,6 & 1,4 & 1,58 & 1,513\\
\end{array}" displayMode="true"></$latex>
* Wir nehmen an, dass die Differenzen auch normalverteilt sind ([[Begründung|Dichte von Summe, Produkt und Quotient]])
* Wir wollen ein Konfidenzintervall für den tatsächlichen Mittelwert.
* Für $$\alpha=0,025$$ findet man in Tabellen das Quantil $$t=2,72$$.
* Einsetzen in den Satz ergibt das folgende Konfidenzintervall für $$m$$: <$latex text="\left(0,52;\,2,64\right)" displayMode="true"></$latex>
$$\rightarrow$$ Schlafmittel B wirkt also mit einer Sicherheit von
$$97,5\%$$ besser als A.
iVBORw0KGgoAAAANSUhEUgAABI0AAAHxCAYAAADgEEwpAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAAAhdEVYdENyZWF0aW9uIFRpbWUAMjAyMToxMToyNyAxNzo1OToxOJp7ZsYAAKSWSURBVHhe7N0JnE31/8fx9yzG1qQhW1rxtzWTbJF9DcVYxjqhRagkJVuRFpQQKoqQ7Ft2kuxrlCVLYkLhR8auscyMuff+fY+jcGfGbMYsr+fvdx9z7vece06+c2fuve/5fj9fD9cVAgAAAAAAAK7jaX8FAAAAAAAA/kVoBAAAAAAAADeERgAAAAAAAHBDaAQAAAAAAAA3hEYAAAAAAABwQ2gEAAAAAAAAN4RGAAAAAAAAcENoBAAAAAAAADeERgAAAAAAAHBDaAQAAAAAAAA3hEYAAAAAAABwQ2gEAAAAAAAAN4RGAAAAAAAAcENoBAAAAAAAADeERgAAAAAAAHBDaAQAAAAAAAA3hEYAAAAAAABwQ2gEAAAAAAAAN4RGAAAAAAAAcENoBAAAAAAAADeERgAAAAAAAHBDaAQAAAAAAAA3hEYAAAAAAABwQ2gEAAAAAAAAN4RGAAAAAAAAcENoBAAAAAAAADeERgAAAAAAAHBDaAQAAAAAAAA3hEZAEgsNDdW3336r1q1b6/HHH5eHh8cNN9Nm9pljzLFAauY8vUkTxizVUafdgPg5t17fjlqlY/QfAAAAUiAP1xX2NoBEOHDggIYMGaIJEyYoLCxMJUuWlJ+fnwIDA+0jrpo3b57Onj2rrVu3ytfXV23atFGXLl2UP39++wggdXAeXaA3G7+vf7rM1phmD8nLbkc8OP/W/NcaqO/lrprxVTM94m23AwAAACkAoRGQSOHh4erfv79GjRolHx8f1a5dW927d1fBggXl5XX1Y/TmzZvVrl07jR49WqVLl5bD4dC+ffs0cOBALVmyRJGRkerQoYN69eqlTJkyWY8BUrRzG/Te0620vvFcLXzrMfGsTQTHfo1t8pS+uP8LLfnsaeVmDHAq49Cfk9/UW7NOKEfhJ1W/1XMKfDSbvQ8AACB1IzQCEmHv3r3q2bOnFixYoLZt22rw4MHW6CHDjDb6448/rKBo4sSJunDhgn755RcrNLqeOa5r164aO3as6tevrwEDBqhw4cL2XiDpRBxao8njpmjxT3v0vzORynRPHuUvUVF1mjyrRqVzK86DXBx/aWKLynrb2VfrZzynhxhidJMI7Z/VW10m3ate03voCR+7ORbO0Dl68clXdOytVVrYsUjcvxdIGRzntGd2DzVt87V+8yqs58cs1ugWDzP6DgAApHqERkAC7d+/X5UrV1ZUVJQ1Jc2MMLrm0UcftUYTXbp0SU8++aSmT59utUcXGl1jRhyZqWre3t5as2aNChQoYO8BEuu8fh3ZXs/226b8TV5UwwpFlTfDGe1dN0ujRy/Qngt3qXDjPhoz4k1VyHmrYS4O/fVNkMp1D9d7Py/SK/n5WPyfizq8Ya4mfj1UQydt0Wm/Vpp1eIIaxmkYllN/T2mh0h3/1utrlqtHQBySJqQwZzXveX8FjT8i5Xtes38bp0AGHAEAgFSO0AhIgJCQEFWvXl2XL1/WypUrVaxYMXvPVSb0MfWMAgICrKlpZcqUsdpjC42M3bt3q1q1asqQIYNWrFihQoUK2XuAhIrSvtFBqjnYV/0WfaNWBW8MIy78OkxN6nTVD6FO+ZbqoflL+6uqX8zBkfPoRDUt0U4hL67W5o/LKqPdnm45QzW72/P6YuNxHf1zv05kLa5yfiH68Zdjct3bOh6h0RVRu9S/QlkNyfGpNi94WY+Qx6U6EWveUECNz/SHM7uaTPxDM4Oz23sAAABSJyonAPEUERGht99+21r5bPny5W6BkWFGIJnAKL7Mucw5zbnNNcy1gMRwHpmobn1Pqt2MsW6BkZH18dc1ql9dZfd0KWzrp+rw3iqF2fvcRWrbV59qYXh1dXqtDIGR4emrR+u9pM7vDtW09X/p+B/LNbBevoS9uHoXU/vX60rLBmnwqgt2I1KTjOVaqtH/eV/5wTujZTPm6zir4gEAgFSO0AiIJ1NzyKyA1q9fP/n7+9utScecs2/fvtY1PvnkE7sVSAiH/po2Tssy51bUlg36K9oM0lMPNn9RT5tpaa7L2jdxhOaftnfd7PQCDRv7m+6u+5ya5uPl46osKlwtSA3rVFaJR+5JZC0iT+UMfE4Nch7SlM+m628Ch9THp5RaBBVTBrl0bsUMzT3GNxEAAKRuvOsH4uH48eMaMWKEypcvrx49etitSc8U1zbXGD58uHVNIGEitHXzTl0ImaP3X6qtp3quudISjaxlVfbRq3GHM2yTVv8c/Qi3Ewsna+Hxu1W9YW352W1IYr7VVL9GdoUtn6zvDhM4pD7eCmgepMcyeMh1frWmzzosvosAACA1IzQC4mHcuHE6ceKEunXrZrfcPmZFNXMtc00gYVxyOO2yda4o/W/vXv1z9d6NPO9RDj8feZht52mdOBllNd/otH6ct1L/ZCynWtXvttuQ9O5S1acqyjd8g2bNPiiH3YrUw7toMwWVyiAP1yVtmPmd/uSbCAAAUjFCIyAeBg0apKpVq6pevXp2y+1jlt831zLXBBImq55+s5fqF7pX2QvUUo9uQcph77mB8x+dORcpK17yuEt3+0ZTgfnCSn2/+h95FS2rctnj89IRpdBfF2nCiCEa8tV0rf3rxlo95w+s06zRwzT0q6laGXKOURlX3F3+Sfl7RWjrqtU6a7chFfH6PzVrUk4ZPVyK2DRT00NIjQAAQOpFaATEkVnN7MyZM2ratKk8PKwxGbeVuYa5lrmmuTaQEL7lumne3hM6tW+J3quWPfpf+pd+0ebfro4u8shUQuXKuBfMjtq9RTv+ke4u4q/8cSzc4zz9k4a2qKSgAet1zvc+ZT81Uy+VKKGmI7fr4pX/bR/VRo26zNKhTPfrPsd69a5STE8N3mY/Ov3yyuevork8deGXddoYbjciFfHSI02aqHxmD7kub9Ws6b8purF7AAAAqQGhERBHs2fPtpbCNyOAkosZ0WSuaa4N3C7nls3SEmuZJy/lbdxeze5zf2k4s327DkR56eH/+z+5R0rRuPCLBrZ4QzsaTdWqaR+pU5sWer73txrWNEJzu3bQh8O6qOMP5TVixlC9Gfyojs+bpo2hR7V65Lf2CdKxDEVUpICXnCf3aPcRRqmkRp4PNFazSlnl4bqsnbOm61dSIwAAkEp5uK6wtwHEomXLljp48KA2bNhgt8TN5s2bVaZMGWv7l19+UenSpa3tuDIFsR966CFNnTrVbgGSkGOvhtQso66rzsvzvsYa99MMtX7w5tAoUj/3LKEKA/frqdF/a1HbW5XBvqif3qmpXr4jtfjtx65bmt+hkE8qyb/nT4ryKaX3f9moPo95y3nsS9V++DUti/BQtlqf6+yPHe3jU6Mo7fqwnEq+t0WOe1tr1uEJapjJ3hVnFzS1SR49Ozeb2i7Yr9F1/+vBFMlxWMtHT9bGk1FXpzgmioc8s/qrcccGKhKndDKlcir0m4Yq/NICnfMqrLdW79Dg8qn6HwQAANIpQiMgjsx0sebNm2vatGl2S9wkNjRq0aKFpk+fLn5UkfQcOvhNY5VpN18ns5RS13k/akD16KawhWth20fUYFy4mk0/oqlNs9jt0XMeGa2GT23Qi+vHqeE9dqMlUms6F1ONzw/Is/wA7VzTXYVM+STnKa3/epDmnn5MzV5qrjK5oqmplGokRWgUoWWvFFKdUSdUb/xxzW19l92eQkWuU++qz2nyMdfVYuqJ4iHPu2tp0MqRapTKl+gL39xL5cp/pO2XvZS/0zLt/rzqdQEqAABA6sD0NCAeKlWqZG8lnztxTaQPUSFj1anXIp3MUlyvTp6nj6MNjIzLOnXyrFwemZQly61fNsK37JBX6zdU74bA6ApnqH7deVgOeatQlWrKfy0b8syhCi8P0KB3glN5YJRUPJQ5SyZ5uBw6e+pUyi8O7lNR/Tbs158HDuhAom/7te/X1B8YRez5Rm2enarIR7Jd+Zly6ODcqVp10d4JAACQihAaAUB6dG6t3gt+S9+Hl9JbMxbr88B8ijmuiVJUlMsKjTJnufVYkiyBX2hOz+Jyq5d9cZM27oiSyyuXylYKcN8fb5Fa26eSChXIr/z5E38rULC4Osw6Y5/7TvKUT0Yfecily5FJMeULySni97Fq9XRP/d16qpZ/XF85r7zTchxdqOnLz9tHAAAApB5MTwPiyExPGz58uDp2jF+9lcROTxsxYoRee+01pqch6UT8rlHNaun1X4rq/e9mqEd5v1v8BeGMxj6TVy8tyatXf9yjEdUTNskmcvXrKlrjC/2ZtaG+/XOO2mS3dySYQ0dWjNHETWfM4JxE8/D0lX/jdnqmYGJqzyTF9LRIbexeXJUG7VfZQXu0umv+WAI9pCThu0fr2aff1I5q47VqbJDyXVqklwo30NgjLuUKnq69k5vo5gF4AAAAKRmhERBHhEZIE5xHNLt9DbVdW1pD547R80XjkmhcK8x8t15ccEBjElSYOUq/9S2nEn22yqPSIO1Z+ZYeSZNJSNLUNFr5WhHVGnFU1b88pB9eyZ2yhwU7z2nP2jXae8aRRIWwH1G5Go8pVyobCx3+29cKfrqT1hTop6ULu6mEVforXMs7FlXtL/+SK3sTTfxjpoITHZYCAAAkH6anAfGwdu1aeyv53IlrIo1yntHqdxur05aa+nbF+GgCoyjtHvumBq2LsO9f462cObPL0xmmc+cSuAS8M1QrV/925QpeKli+ovIxdCYWLl24eEkujyzKkdM35b9QX/5JQ55tpIaNGqlRom8N1TCotxadunrq1OLirpEKrvuaFmd5QeOmvGUHRkYmVWrZSAW8zY/fMk2fH5rya1QBAABch9AIiCOzitmhQ4fse8nHXNNcG0iccO0c0UrtllbQmMWfq0G0qc0/2rRog85munmft+7Ll0uergidOp7Awsz/rNaqLRFyeeZUuYrF5TYB7NQ0tarZR1ui7PvpWpiOHj0rl1ce3Z8v8ZWfbruMdTRy/z86f+GCLiT6dkkXT87VCzntc6cCF3d+peC6r2t+RDV9MvMz1c9z41srn3It1Ljwle+j65xWTp+rY6RGAAAgFSE0AuIoR44c2rp1qw4fPmy33H4mMDLXNNcGEs6hg9Nf1gszH9OXCwer7k0fav91cZN+2p1PhQveHFR46eFHiyibp1P/++ugYs11nGf0y+gueja4o77aeNZulMJW/aD1/7jkkcFfpcvcHBk59Ne08dpbso78U0FGcttF/qk//+eQMhRQ0cKJqa+UfDwzZlHWLFmUJdG3TMrkk3remlzcMUIt63bW/FNF1HHCJL3mH83UTe+SahH0mDJ4uHR+zQzNOkxqBAAAUg9CIyCOGjdurMuXL2vBggV2S8xOnjz5723u3Ll2q6zt6/fdysKFC61rmmsDCePUqeU9FfTKavkVuawlg3qoW7duN966dlHnju3UquGb+s67kAr/O7XmPxkfe0yFvRz63949CrPbohO5/kM9++owTZk6Uv3GbJA10c15XPMnLdFJecgja27lyXbjS4/zyCz1meSnLm+UU8JKbKcsUQ57Cl9UlBI0mS/yTx044pB3oZIqebfdhhTnwvbhav70G1pw7F7VGzpDg2rnjOFNlbf8WzRRyQwecl3aoJnf/Zmw5wUAAMAdQCFsIB7uvfdeBQQEaMWKFVZh7JjEtu96sf34mX3Vq1fXzp074xQwAdG5uO1TBT7VXctPxmV0g4eyBn6jw/Oel5/d8q+on/X24xU06NyLWrRvlGrHkO6ETQ5SvtazdT5rgDp/t0pDa2fT0dntFPj1/+nFB8fojW/91HvLRvUJuDqkyHF8uXo1e1fnu87R5/VSeMHnmDgdijK3S+cUun+9vnz1OQ3+6R85vf9PrUZ9q/eeflT3+WWWj7eXvL1uXcwpclMPPV7xU51vu1h/jKyVJoK0tCbit6/UtPbrWng0o0p0XaBlA6rJL7Ynr+OAhtUKUJeVl5ShzIfauqG3HmVUHQAASAUYaQTEgxmVsWrVKmsEUGxM4BOXW2zMiCZzLXNNIGEuaG6/97UiToGR4aUHChdWVvveDbyLq3b1B6XQDVqzM+YJar6Bb6lnjfz6vyerKe8fE/T+y/UU9HU+fTy+h14dMk2D6ofpyxbN1HPw5xrcM1jVA4crc6/v9FlqDYwUoRWvF1a2bPcqz4OFVbJmO32zL6Ny5MypnH5n9UOPBir36MPKlyuH7vYL1OgT9sNi5NDhNeu135VLNZ4uT2CUIkXq59FDtPiodH/j4Zrx0S0CI8PrYbXu3FKP+Fx59NavNXD+cXsHAABAysZIIyAejh8/Ln9/fxUpUkRr1qyxW2+PypUra8+ePdq1a5dy5cpltwJ3TsTaN/VY9RHy7b1FG98LUMwDJcJ1dNtqbdh9Up73l1GNSoX034y0CB3b+ZM2/XZMrtz+Kl/BX7lSR9me5OE8pOFPFdUbIc9qwe9fq260CR7uNMexTZq9IkwlG9ZUgWimc0YvSkc2zNHS38N0V0A9NXmC3+sAACDlIzQC4umDDz5Q37591b9/f/Xo0cNuTVoDBgxQ79691adPH+sGpAhRO9X3ydLqG9VTP//ygR5nek2Sc+wfouoBPXX6jXXa8tET7qvMAQAAAMmI0AiIp4iICAUHB2v+/Pnatm2bNfIoKZmRRSVKlFBgYKCmTJmijBmZoIKUwqnj05/V461/Uv35uzSqzl12O5JGpDb2LKnKowtq1M7ZeuE+ZpADAADgziI0AhIgJCTEKlJtVjZbuXKlihUrZu9JnN27d6tatWrKkCGDVWy7UKFC9h4ghXD8rk9rPKl+Gfpp8w+vqcCt6zojjpxHvlVQiTd08q21Wt4jgFFGAAAAuOP4MyaQACbMWb16tby9va2QZ8mSJfaehDPnMOcy5zTnJjBCiuRVVJ2G91bxLQP07nehimuJbdzKGS35sJ9WFeyu4W8QGAEAACBlIDQCEqhAgQLWaKDy5cvrmWeeUYcOHRQWFmbvjTvzGPNYcw5zLnNOc24gpfLxf0NjPi2rDT1e19RDxEaJ59SxOW/p9cXF9PHYrirOjFQAAACkEExPAxIpPDzcKoo9atQo+fj4qHbt2urevbsKFiwoL6/o5+44HA7t27dPAwcOtEYYRUZGWsFRr169lClTJvsoICUL08aPAtVmWW1Nnt9TZShvlGARv41QUKPJKvnN9/qw4j12KwAAAHDnERoBSeTAgQMaMmSIJkyYYI0eKlmypPz8/KyC1tebN2+ezp49q61bt8rX11dt2rRRly5dlD9/fvsIILU4p02DgvXajlaaO76l8jF2Nf7O/KDX63+qbB9M0gc1cjP8FwAAACkKoRGQxEJDQ7V48WItX75cO3fu1Pbt2+09VxUvXlwBAQGqUaOG6tatq9y5c9t7gNTIofPnLilztrtETewEcJ7X2bDMuicbvQcAAICUh9AIAAAAAAAAbhgJDwAAAAAAADeERgAAAAAAAHBDaAQAAAAAAAA3hEYAAAAAAABwQ2gEAAAAAAAAN4RGAAAAAAAAcENoBAAAAAAAADeERgAAAAAAAHBDaAQAAAAAAAA3hEYAAAAAAABwQ2gEAAAAAAAAN4RGAAAAAAAAcENoBAAAAAAAADeERgAAAAAAAHBDaAQAAAAAAAA3hEYAAAAAAABwQ2gEAAAAAAAAN4RGAAAAAAAAcOPhusLeBpAEQkNDtXjxYi1fvlw7d+7U9u3b7T1XFS9eXAEBAapRo4bq1q2r3Llz23sAAAAAAEg5CI2AJHLgwAENGTJEEyZMUFhYmEqWLCk/Pz8FBgbaR1w1b948nT17Vlu3bpWvr6/atGmjLl26KH/+/PYRAAAAAADceYRGQCKFh4erf//+GjVqlHx8fFS7dm29+OKLWrRokaZMmaKDBw9ax1WuXFmtWrVSu3bt5HA4tG/fPg0cOFBLlixRZGSkOnTooF69eilTpkzW8QCA1MChPye/qbdmnVCOwk+qfqvnFPhoNnsfAABA6kZNIyAR9u7dq5YtW+rjjz9Wo0aN9Pvvv1sjh9555x3lypVLmzdv1okTJ6yvXl5eat++vcqUKWONRCpcuLDGjh1rPcY81pzDnMucE0AKF3FIa775QC83raOqT5ZV+Wq11bhtTw2ZuVmhUfYxSCe89EiLvvqoZTZtHPaGGpYtpxen/SWHvRcAACA1Y6QRkED79++3Rg9FRUVZU9LMCKNLly6pWrVq1jS18uXL20deZYIis2/Lli2qUKGCli5dqsyZM9t7ZY04MoGTt7e31qxZowIFCth7AKQk538dqfbP9tO2/E30YsMKKpo3g87sXadZo0drwZ4LuqtwY/UZM0JvVsjJX2bSlbOa97y/gsYfkfI9r9m/jVMgA44AAEAqR2gEJEBISIiqV6+uy5cva+XKlSpWrJjVPmjQIGXLls0aURQdU8eoVKlS1raZmtatWzdr+5rdu3dbwVKGDBm0YsUKFSpUyN4DICWI2jdaQTUHy7ffIn3TqqB87HbLhV81rEkddf0hVE7fUuoxf6n6V/UjOEpHIta8oYAan+kPZ3Y1mfiHZgZnt/cAAACkTryXBeIpIiJCb7/9trVKmlkh7VpgZJgi12Y1tKNHj9otNzLFsfPly2dtm2NvZs5lzmnOba5hrgUghXAe0cRufXWy3QyNvTkwMrI+rtdH9VPd7J5yhW3Vpx3e06owex/ShYzlWqrR/3lfea6c0bIZ83Xcae8AAABIpQiNgHgaMGCAFfj069dP/v7+dutV69evV8OGDa3l9GNybdqaOTY65px9+/a1rvHJJ5/YrQDuNMdf0zRuWWbljtqiDX9FH+h6PthcLz5tpqW5dHnfRI2Yf9reg3TBp5RaBBVThivf/3MrZmjuMVIjAACQuhEaAfFw/PhxjRgxwgp+evToYbe627Nnj72VMD179rSuMXz4cOuaAO68iK2btfNCiOa8/5JqP9VTa6LNjbKqbNlH5W02nWHatPpnMV4wPfFWQPMgPZbBQ67zqzV91mERGwEAgNSM0AiIh3Hjxlmrod1ci+iawYMHy8/Pz/p6K2Z5/th07drVupa5JoA7z+Vw6moRQJei/rdXe/+x7tzEU/fk8JOPh9l26vSJk2IxtfTFu2gzBZXKIA/XJW2Y+Z3+ZBk1AACQilEIG4iHe++9VwEBAVaRag8P61NhvJmaRqbmUdOmTTVjxgy71Z350TTFtnfu3KmTJ0/arQDumLCNGtTqOQ1c51DJ10dr6rvVlN3tTy9OHfuyth7quEyR8lTONrN1aHwDZbL3XhWhIxsX6vufj8mnYBXVr+MfzXmucSg83KFMmWIPmZGSOLT/0+ry77ZGERnKqt+v6/VOUS97HwAAQOrCSCMgjkxQdObMGSvsSWhgtHnz5n+LZHfs2NH6GhNzDXMtc01zbQB3mG85dZu3VydO7dOS96ILjIxL+mXzb1dHF3lkUolyZW4smO04rDmd6ujZL3fLI9tZze5QVqWDJ+hAdKNRnCe08FV/Zc9WUO0XXbQbkfJ56ZEmTVQ+s4dcl7dq1nT7+QAAAJAKERoBcTR79mxrKfz69evbLfFnimcblStXVpUqVazt2NSrV8+6prk2gFTg3DLNWnLcqmPjlbex2je777oX2kjtGtpWgzL00dwJ7+ql1u1Ut2iU/pw1QKM2R9rHXCdsuSZMDdElMy3Ok5fr1MTzgcZqVimrPFyXtXPWdP1KagQAAFIppqcBcdSyZUsdPHhQGzZssFviZ8GCBQoMDFTmzJn1999/K1u2bPae2JmC2A899JCmTp1qtwBImRzaO6SmynRdpfOe96nxuJ80o/WD/4ZGzmMT1aL+er2wbKTqmh//iFXqVKymhh/Mo3YL9+vrOhmvHmiLWPGaijw1QgfvaqTxf85Waz97R0rjOKzloydr48kou+ZTYnjIM6u/GndsoCKpekaeU6HfNFThlxbonFdhvbV6hwaXZ4ohAABIfQiNgDgy08WaN2+uadOm2S1xZ8KmsmXLWoWtTXj09NNP23turUWLFpo+fbpV4whAyuU4+I0al2mn+SezqFTXefpxQPXrprA5dGDoU2oW+pE2DChrTVmLWPOmAmoM077MT2vU3gVql/f60URR2vF+WZX+YJs8qnyqvSve1MMpdbBR5Dr1rvqcJh9zKWETd6/nIc+7a2nQypFqlFJDsjgK39xL5cp/pO2XvZS/0zLt/ryqbowFAQAAUj7GuwPxUKlSJXsrft555x15eXlp8uTJ8QqMjIReE0AyigrR2E69tOhkFhV/dbLmfXx9YGSEa3tINrVsXcqucXRRa6fN0YEoT91Ts4Ua5r7p5dgZqjXrditK3ipcsbLuT8mv1j4V1W/Dfv154IAOJPq2X/t+Tf2BUcSeb9Tm2amKfCTblTdaDh2cO1WrKEsFAABSIUIj4Dbr3LmzlixZomXLllmjhgCkNee09r1gvfV9uEq9NUOLPw9UPrfFsrKq0Vez9daj3lfvnl+uKfP+J4dnDtVpWV85b341DluntVsj5fLKrScr+ct+FFKBiN/HqtXTPfV366la/vHV763j6EJNX37ePgIAACD1IDQCbiNTwPqbb77RokWLVLRoUbsVQNoRod9HtVHLwUdVru8i/fBJXd0wyywG55fP0uJjDnnmflrN695jt/4nYvNqbfrHKQ/fsqpSlklNqUX47tEKrttZv1b5StPeKau8tVuoXl4vyXFMi6b9oLP2cQAAAKkFNY2AODI1jYYPH37LpfKvCQkJsVZImzBhgmrVqmW3/qdPnz768MMP7XsxGzFihF577TVqGgEpjlNHZrdXjbZrVXroXI15vqgy2Xtid0EL2xZSw2+OKXvwDO2fHCRfe89VUfr1vTJ64sPt8qw2TCHLXteDKflPPM5z2rN2jfaecSRRIexHVK7GY8qVyv6sFf7b1wp+upPWFOinpQu7qUQWq1XLOxZV7S//kit7E038Y6aCs1uHAwAApAqERkAcxacQ9pEjR6zC15999pmCgoLs1hs1a9ZMM2bMsO/FjELYQErk1JnV76pO8Pcq8+VCfdYgn26ekRa1e6y6LSqsAd0q3lgAOXKDuj5WRZ+GZFaDcX9p7nM3pQjOw/qiZiF1XulQ8T4/65cPHk/Z09MiflD7AvU0+ojDbkgcD9/6Grt/vl7IaTekAhd3jVSrp1/X4qwvasbKL1U/z3+JV+S6LgqoNlQhjnsU+M0ezXk+N8O8AQBAqsH7FiCOTHhz6NAh+17MTp48qWrVqumDDz6IMTCKD3NNaiEBKUv4zhFq1W6pKoxZrM+jCYyMfzYt0oazmdz2Oc9s146/HJJ3YZUuY9bev8k/67RmW4RcXnn1ZKWiKb+eUcY6Grn/H52/cEEXEn27pIsn56auwGjnVwqu+7rmR1TTJzM/uyEwMnzKtVDjwle+i65zWjl9ro457R0AAACpAKEREEc5cuTQ1q1bdfjwYbslev3791dkZKS1ElCvXr2ivbVq1co+OnYmMDLXNNcGkDI4Dk7Xyy/M1GNfLtTgunlieCG9qE0/7Va+wgXdQh/XmTM653TJI8P9euhB97gp/JfV2hTmkqdvWVUukzrqGXlmzKKsWbIoS6JvmZTJJ/W8Nbm4Y4Ra1u2s+aeKqOOESXrNP5rvl3dJtQh6TBk8XDq/ZoZmHSY1AgAAqQfT04A4WrFihVWb6IsvvtCrr75qt95o2LBhevPNN+17sevdu7f69u1r34vel19+qU6dOmnp0qWqXr263QrgTnGeWq4etZvqO78mCno8mzzs9v+45Ii8pLBTf2jt90fVcPFWDSh7dZH9f50ap8CH22qhI1Dfhs5Vm+sLGjkPaXyTJ/TinOPyqf659i19Tfn4806KdGH7cLV45k0tOpZT9Uas0Hcdiuim7/S/HL9/rAqP99KmyxlVadAurXyrQLSj0wAAAFIaQiMgHu69914FBARYAZKpcXSz6NpiMnPmTDVp0sS+5878aJqgaOfOndaUNwB32MVt+jTwKXVfflJxGSvikTVQ3xyep+f97IZrnH9rUrPH9dzcDHp+zu8aW99OjRzHtKx3kJoN+klnHN4q+d4WbXo/gOX2U6CI375S09qva+HRjCrRdYGWDagmv9jCPccBDasVoC4rLylDmQ+1dUNvPco3FgAApAL8/RKIh27dumnVqlVauHCh3XIjE/TE9RZbYGQsWLDAupa5JoA778Lcfnp/RdwCI8PrgcIqnNW+cz3PvAoePkl96mbV3I4N9NrHn2nwuy8rqPYLmpmzskqbx3jl05NVChEYpUiR+nn0EC0+Kt3feLhmfHSLwMjwelitO7fUIz5XHr31aw2cf9zeAQAAkLIx0giIh+PHj8vf319FihTRmjVr7Nbbo3LlytqzZ4927dqlXLly2a0A0o5Ihf62UZt/O6rLeQL05BNFleX751Sw6SSdyvOC5oR8o/rRhU644xzHNmn2ijCVbFhTBayl9eMiSkc2zNHS38N0V0A9NXmC3+sAACDlIzQC4smsimZqEZmC1z169LBbk9aAAQOsmkd9+vSxbgDSijAd2LhNp+8rrdIP3pw2nNaM4KJqOfWUHnp1iXaNqKE45xEAAADAbUBoBMRTRESEgoODNX/+fG3bts0aeZSUzMiiEiVKKDAwUFOmTFHGjKlj9SQAt+A8rvkvV1KzMX8o6v72WvzHSNW67sfbsXewqpXqrvU+tTVi80K9nJ9SyQAAALizqGkExJMJcT7++GPlzp1bNWrU0O7du+09iWfOZc5pzm2uQWAEpCGXlmn81D8U4bry4pvlLmW+vm6+4y+N6zZQ68Nzq/6gEWpHYAQAAIAUgNAISIBChQpp9erV8vb2VrVq1bRkyRJ7T8KZc5hzmXOac5trAEhDvLLJL1selXv+A02Z84EqXluf3XlKq98LVrcfPFWt3xyNb5uf5dgBAACQIhAaAQlUoEABa+n98uXL65lnnlGHDh0UFhZm74078xjzWHMOcy5zTnNuAGlMppp6vUuAIo475BF+VufOhWrv2kl6t3F5NZl6t16Z+ZMW9SynbPbhAAAAwJ1GTSMgkcLDw62i2KNGjZKPj49q166t7t27q2DBgvLyin68gMPh0L59+zRw4EBrhFFkZKQVHPXq1UuZMmWyjwKQ9oTrz6VjNXbORv1+5IIy5iyokjUaqnmj8nqAH30AAACkMIRGQBI5cOCAhgwZogkTJlijh0qWLCk/Pz+roPX15s2bp7Nnz2rr1q3y9fVVmzZt1KVLF+XPn98+AgAAAACAO4/QCEhioaGhWrx4sZYvX66dO3dq+/bt9p6rihcvroCAAKvgdd26da2i1wAAAAAApDSERgAAAAAAAHBDIWwAAAAAAAC4ITQCAAAAAACAG0IjAAAAAAAAuCE0AgAAAAAAgBtCIwAAAAAAALghNAIAAAAAAIAbQiMAAAAAAAC4ITQCAAAAAACAG0IjAAAAAAAAuCE0AgAAAAAAgBtCIwAAAAAAALghNAIAAAAAAIAbQiMAAAAAAAC4ITQCAAAAAACAG0IjAAAAAAAAuCE0AgAAAAAAgBtCIwAAAAAAALghNAIAAAAAAIAbD9cV9jaAJBAaGqrFixdr+fLl2rlzp7Zv327vuap48eIKCAhQjRo1VLduXeXOndveAwAAAABAykFoBCSRAwcOaMiQIZowYYLCwsJUsmRJ+fn5KTAw0D7iqnnz5uns2bPaunWrfH191aZNG3Xp0kX58+e3jwAAAAAA4M4jNAISKTw8XP3799eoUaPk4+Oj2rVrq23btvr+++81efJk/fXXX9ZxVapUUevWra19DodD+/bt08CBA7VkyRJFRkaqQ4cO6tWrlzJlymQdDwDANY4/J+vNt2bpRI7CerJ+Kz0X+Kiy2fsAAABuF0IjIBH27t2rnj17asGCBVYYNHjwYGs6Wu/eveXv72+NInrwwQetY5s1a6a1a9eqXLlyVlB09913W+1mVFLXrl01duxY1a9fXwMGDFDhwoWtfQBSrohDazR53BQt/mmP/ncmUpnuyaP8JSqqTpNn1ah0bnnbxwFJw6Fze2arR9M2+vo3LxV+fowWj26hh73s3QAAALcBoRGQQPv371flypUVFRVlTUkzI4yMEiVKWKFRUFCQdf+ac+fO6YknnlBISIiqVq2qlStX2nuuMkGSCZm8vb21Zs0aFShQwN4DIGU5r19Httez/bYpf5MX1bBCUeXNcEZ7183S6NELtOfCXSrcuI/GjHhTFXKy3gSS1tl5z8s/aLyOKJ+en/2bxgUy3ggAANw+hEZAApjgp3r16rp8+bIV/hQrVsxqX79+vSpWrGhtm6lpwcHB1vY1w4cPV6dOnaztdevWqUKFCtb2Nbt371a1atWUIUMGrVixQoUKFbL3AEgZorRvdJBqDvZVv0XfqFVBH7v9qgu/DlOTOl31Q6hTvqV6aP7S/qrqR3CEJBSxRm8E1NBnfziVvclE/TEzWNntXQAAAEmNd7JAPEVEROjtt9+2VkkzK6RdC4yMv//+296S5s6da2/9J0+ePPbWjcdeY85lzmnOba5hrgUg5XAemahufU+q3YyxboGRkfXx1zWqX11l93QpbOun6vDeKoXZ+4AkkbGcWjb6P3nLqTPLZmj+cae9AwAAIOkRGgHxZGoOmRXQ+vXrZ9Utup65f//991v1im4eRRRX5hx9+/a1rvHJJ5/YrQDuPIf+mjZOyzLnVtSWDfor2kzXUw82f1FPm2lprsvaN3GE5p+2dwFJwkelWgSpWIYrT7FzKzRj7jERGwEAgNuF6WlAPBw/ftwKdYoUKWLVHYrOmTNndPr06WhrEpnAyYwgMswxZkn+mJh6SXv27NGuXbuUK1cuuxXAnXNR37XMp2bTzsrlkUH/13mZdg6trIz23n85j2p4rUfUaUWk5JVP7Rbu19d13I4CEi5qlz4sV1Lvb4lS5uqfaffSTnqIPwMCAIDbgLcYQDyMGzdOJ06cULdu3ewWdyYIiqmI9fz5862vpu5RbIGRYVZUM9cy1wSQErjkcNp/Z3FF6X979+qfq/du5HmPcvj5yMNsO0/rxMkoqxlIMt5F1SyolDJ4uHRpw0x996fD3gEAAJC0CI2AeBg0aJC18lm9evXslrgzq6P99NNPypkzZ5yCILP8vrmWuSaAlCCrnn6zl+oXulfZC9RSj25BymHvuYHzH505FykrXvK4S3f7xr4metTxbZo35jMNG71Qv529eaKRU6Hr52jlIUIBXM9L/9esicpl9JArYpNmTg8RzxAAAHA7EBoBcWRWMzNTz5o2bSoPD2sMQZyZ4tZdunRRzZo19f3336tgwYL2npiZa5hrmWuaawO483zLddO8vSd0at8SvVcte/Qvopd+0ebfro4u8shUQuXKuBfMvsqpowu7qmKxMmrU7g292b6BytfsriXXFTZ2HJykTp3n6GTG+P3OQdrn9UgTNSmfWR6uy9o6a7rspxwAAECSIjQC4mj27NnWUvhmBFBcrF27Vk899ZR1M48xI4w+++wzlS5d2j7i1syIJnNNc20AqcO5ZbPs4MdLeRu3V7P7on+pjdwxWC1bDdU210MqXraMAh7OpvCtQ9W8XlfNCTmjU7umqXPzIbrrnYEKys3LNW7i+YAaN6ukrB4uXd45S9N/JTUCAABJj0LYQBy1bNlSBw8e1IYNG+yWuDt69KjefPNNzZgxQ2+88YaGDh1q77m18uXL66GHHtLUqVPtFgAplmOvhtQso66rzsvzvsYa99MMtX4wmsDHGaoJTctr1CNDNP6DBiqY1TRG6dRvSzV7xjwt2/yrfl4Tovt7LNbi3mV1l/WgFMpxWMtHT9bGk1FXp+Qlioc8s/qrcccGKhLTAC38yxn6jRoWfkkLznmp8FurtWNwedFtAAAgKREaAXFkpos1b95c06ZNs1viJyoqSmXLltXWrVv16quvasSIEfae2LVo0ULTp08XP6pASufQwW8aq0y7+TqZpZS6zvtRA6rHMIXNsU8zhm2Sf+dnVczbbvvXWW3oF6zep17T1E+fVoofZBS5Tr2rPqfJx1xXi38nioc8766lQStHqlHsawXACN+sXuXK66Ptl+WVv5OW7f5cVVmoDwAAJCFCIyCOTGg0fPhwdezY0W6Jv2+//VYvvPCCtT1r1iw1btzY2o6NCZdee+01QiMghYsK+VqNq7yqhef99erkRfosMJ9iL4EdDecJrfygjfqeeUWThgbqvnifAOlGxB5907qB+u2STu8N0TmPB9R+0R6Nqp3FPgAAACDxKJIAJKPHHnvM3pKmTJlibwFI9c6t1XvBb+n78FJ6a8ZifZ6QwCjqoGZ3bq6PI97QlGEERilbpNb2qaRCBfIrf/7E3woULK4Os87Y546DiN81ttXT6vl3a01d/rHq57zyds5xVAunL9d5+xAAAICkwEgjII7iOtJoy5YtKlWqlH3P3fUrr8Xlx4+RRkAKd+UD/KhmtfT6L0X1/ncz1KO8X/z/IhO2RcPbdtbysp9q3FtldY/djJTKoSMrxmjipjNXfqnbTYng4ekr/8bt9EzBOFQkCt+t0c8+rTd3VNP4VWMVlO+SFr1UWA3GHpErV7Cm752sJjyBAABAEiE0AuIoLqFR586dNXLkSBUrVsxaJt/Pz70oB6ERkIY4j2h2+xpqu7a0hs4do+eLZrJ3xJ3zxEp90KqPDrcZq6+eLaRUV5LGeU571q7R3jOOJCqE/YjK1XhMuRgL7S78N30d/LQ6rSmgfksXqluJq1PRwpd3VNHaX+ovV3Y1mfiHZgZnt9oBAAASi9AIiCMT9tyqEPb1gdDMmTPVpEkT+95/4hsaUQgbSKGcZ7T63ToK/r6Mvlz4mRrku3k+WZR2j+2mRYUHqFvF6KMgx5H5euu5EcrU9Vt9VCdv6pwzHvGD2heop9FHHHZD4nj41tfY/fP1Qk67AVdd3KWRrZ7W64uz6sUZK/Vl/Tz/PV8i16lLQDUNDXHonsBvtGfO8ym/gDoAAEgVeEsBxJEJbw4dOmTfi56n59UfKfP14Ycftravt2bNGntLqlatmr0VO3NNc20AKUm4do5opXZLK2jM4s+jCYyMf7Rp0QadzRR9caLI/VPVPni08vaboQHRBUbOUE159im9tyXKbkihMtbRyP3/6PyFC7qQ6NslXTw5l8DoZhd36qvgunp9foSqfTJTn10fGBk+5dSicWF5y6VzK6dr7jGnvQMAACBxCI2AOMqRI4e1XP7hw4ftFndBQUF64403rHCodOnSdut/duzYYW9Jffv2tbdiZgIjc01zbQAphUMHp7+sF2Y+pi8XDlbdPDG8lF7cpJ9251Phgm5r6svx13S93Hq8CnwyST3KZbNbr+dU6OL31H+Hv2r5uz8+pfHMmEVZs2RRlkTfMimTD29NbnBxh0a0rKvO80+pSMcJmvSafzRTGL1VskWQHsvgIdf5NZox6/CVZxAAAEDiMT0NiCNTo6hWrVr64osv9Oqrr9qtN9q1a5e1b8KECW4jjc6dO6cnnnhCISEhqlq1qlauXGnvidmXX36pTp06aenSpapevbrdCuDOcerU8h6q3fQ7+TUJ0uPZoqmC7HIo8lKYTv2xVt8fbajFWweo7PX1jc+sUo+agfryxP+pRP57lO2hMqrdsIHqVi2jAn7ecp79Xd+P7KO3+q9XwFebNKPVA/yFJ726sF3DWzyjNxcdU856I7Tiuw4qElOtbMfv+rjC4+q16bIyVhqkXSvfUgFW4AMAAIlEaATEw7333quAgAArQLq+NtH11q1bp9atW+uZZ55RmzZt9OCDD1ojhrp27aq1a9dadZG+/vpr3X333fYjomd+NE1QtHPnTp08edJuBXAnXdz2qQKf6q7lJ+MyjsNDWQO/0eF5z+vfkvjOQ5ocXF19XV307RftVS7rH5rwSkO1nxSiSK+7lOu+bIo8/rfORmRQobbTtHJUQ+UlMUqfIn7TV01r6/WFR5WxRFctWDZA1fxiezI4dGBYLQV0WalLGcrow60b1PvRlD9KDQAApGy8FQXioVu3blq1apUWLlxot7irWLGiNm3apOzZs1sBUd68eVW2bFmrztGYMWOsQtq3CoyMBQsWWNcy1wSQElzQ3H7va0WcAiPDSw8ULqys9j0zSunI5K4aeP4NfTfhVZXLdeUDfdaiajNmgb5uWVA+jvMKPXREZz3yqUbP7/TjVwRG6Vnkz6M1ZPFR6f7GGj7jo1sERoaXHm7dWS0f8bny4K36euB8HWeOGgAASCRGGgHxcPz4cfn7+6tIkSI3FLW+HSpXrqw9e/ZYU95y5cpltwJIvZwK3bxafz9SRY/nuCkAcJzRbyt+1PZz2VW0fCWVuC/+S/cjjXEc06bZKxRWsqFqFri6tH5cRB3ZoDlLf1fYXQGq1/gJ5SJ4BAAAiUBoBMTTBx98YBWx7t+/v3r06GG3Jq0BAwaod+/e6tOnj3UDAAAAACC5ERoB8RQREaHg4GDNnz9f27Zts0YeJSUzsqhEiRIKDAzUlClTlDGj+zo5AAAAAADcboRGQAKYFdBMkerLly9bq6AVK1bM3pM4u3fvVrVq1ZQhQwar2HahQoXsPQAAAAAAJC9mugMJYMKc1atXy9vb2wp5lixZYu9JOHMOcy5zTnNuAiMAAAAAwJ1EaAQkUIECBazRQOXLl7eW1+/QoYPCwsLsvXFnHmMea85hzmXOac4NAAAAAMCdxPQ0IJHCw8OtotijRo2Sj4+Pateure7du6tgwYLy8vKyj7qRw+HQvn37NHDgQGuEUWRkpBUc9erVS5kysWoSAAAAAODOIzQCksiBAwc0ZMgQTZgwwRo9VLJkSfn5+VkFra83b948nT17Vlu3bpWvr6/atGmjLl26KH/+/PYRAAAAAADceYRGQBILDQ3V4sWLtXz5cu3cuVPbt2+391xVvHhxBQQEqEaNGqpbt65y585t7wEAAAAAIOUgNAIAAAAAAIAbCmEDAAAAAADADaERAAAAAAAA3BAaAQAAAAAAwA2hEQAAAAAAANwQGgEAAAAAAMANoREAAAAAAADcEBoBAAAAAADADaERAAAAAAAA3BAaAQAAAAAAwA2hEQAAAAAAANwQGgEAAAAAAMANoREAAAAAAADcEBoBAAAAAADADaERAAAAAAAA3BAaAQAAAAAAwA2hEQAAAAAAANwQGgEAAAAAAMANoREAAAAAAADceLiusLcBJIHQ0FAtXrxYy5cv186dO7V9+3Z7z1XFixdXQECAatSoobp16yp37tz2HgAAAAAAUg5CIyCJHDhwQEOGDNGECRMUFhamkiVLys/PT4GBgfYRV82bN09nz57V1q1b5evrqzZt2qhLly7Knz+/fQQAAAAAAHceoRGQSOHh4erfv79GjRolHx8f1a5dW927d1fBggXl5eVlH/WfhQsX6q233tL8+fM1cOBALVmyRJGRkerQoYN69eqlTJky2UcCAAAAAHDnEBoBibB371717NlTCxYsUNu2bTV48GBr9FBM/vnnHxUtWtQ6Zs+ePVabGZXUtWtXjR07VvXr19eAAQNUuHBhax8AIIVznNKOBeM17rs12nv8H124nFkPPVFHTVo9q3oB2SkeCQAAUjXeywAJtH//flWvXl0bNmzQokWLrJFGsQVGhhlhdPToUfveVeYx5rHmHOZc5pzm3ACAlM3x91L1rvGoKr/3qx55fohm/rhCK+Z+qmbZ16pn5ZKq13e5/nbYBwMAAKRCjDQCEiAkJMQKdy5fvqyVK1eqWLFi9p6YLV26VI0bN9b58+etkUTXRhpdb/fu3apWrZoyZMigFStWqFChQvYeAEBK4jy9RG9WbqSvLjbWhJXj1eKh66cjR+nAxGdVre1C+b2+QCsHV5efvQcAACA1YaQREE8RERF6++23rVXSzAppcQmMnE6n+vTpo6CgILsleuZc5pzm3OYa5lpAyhKpv3f8rJCzTvs+kB5d0Lq+nfXV7gyq3v0jNbshMDK8lT/4E3Wr7Kkdn7+uj9dftNsBAABSF0IjIJ5MzSGzAlq/fv3k7+9vt8auU6dOGjRokDJmzGi3xMycs2/fvtY1PvnkE7sVSCHCf1Svp6ro9Rmn7AYg/XGemK1h4/9QlE8pPfPM/dG/mfJ6UPXrlVKGqN819tNZOk7OCgAAUiFCIyAejh8/rhEjRqh8+fLq0aOH3Ro7M83MhEUVK1a0W27NFNc21xg+fLh1TSDlcMhx5cOvy8nMZqRXTh2fP0PLzzrlmaeoHs0V01spT+UpUkg5PZ06s3ymFp4kNQIAAKkPoREQD+PGjdOJEyfUrVs3uyV2ZmW0jz76SB9//LHdEndmRTVzLXNNAEBKEa6NqzfpvOvKmyi/e5X95plp1/HKl095rrzTcp3frPW/RNqtAAAAqQehERAPZopZ1apVVa9ePbsldh9++KE1Iiku09JuZpbfN9cy1wSuiQr9VYsmjNCQIV9p+tq/dMFut5w/oHWzRmvY0K80dWWIzqXSgQ0RRzZq1ujPNWL899p1OvZ/hCM8XKn9o3jU8W2aN+YzDRu9UL+51YpyKnT9HK08xBJcKUbUfv3629kr3xnJwy+7csTyTsrznnvk63Flw3lSO7YduNoIAACQihAaAXFkppmdOXNGTZs2lYeH+RQQO3O8w+FQrVq17Jb4Mdcw1zLXNOdCOuc8rZ+GtlCloAFaf85X92U/pZkvlVCJpiO1/aJ0cfsotWnURbMOZdL99zm0vncVFXtqsLalqlrqDh2e00l1nv1Suz2y6ezsDipbOlgTDkQXmDh1YuGr8s+eTQXbL7LbUhunji7sqorFyqhRuzf0ZvsGKl+zu5ZcV/zGcXCSOnWeo5MZb/07B8nEcVj/O3b1OemRKavuii00ypRJPta3zqljhw9bbQAAAKkJoREQR7Nnz7aWwjcjgG7FBD2ff/653n//fbslYcyIJnNNc22kZxf0y8AWemNHI01dNU0fdWqjFs/31rfDmipibld1+HCYunT8QeVHzNDQN4P16PF5mrYxVEdXj9S3G1PPOJzIXUPVdlAG9Zk7Qe++1Frt6hZV1J+zNGDU5mhGE4Vp+YSpCrnkkNOVOl/KIncMVstWQ7XN9ZCKly2jgIezKXzrUDWv11VzQs7o1K5p6tx8iO56Z6CCcvNynWJcPqVTZ+yaXl5esb+R8vbS1dlrTp0+cdLaAgAASE08XFfY2wBi0bJlSx08eFAbNmywW2LWq1cva2rZzaOMOnTooK+//lqFCxfWnj177NbYmYLYDz30kKZOnWq3IL25+NM7qtnLVyMXv63Hrpvp6Aj5RJX8e+qnKB+Vev8XbezzmLydx/Rl7Yf12rIIeWSrpc+3LlbH/LEUXYmv8Hl67sEWOvbhQS15OZfdmASu/HdPbFFf619YppF1s11piNCqTsVUc/hB5Wm3UPu/rqMbJnlGrNBrRZ7SiIN3qdH4PzW7tZ+9I5VwhmpC0/Ia9cgQjf+ggQpmNY1ROvXbUs2eMU/LNv+qn9eE6P4ei7W4d1ndZT0ohXIc1vLRk7XxZJQS/4bCQ55Z/dW4YwMV8bGbUprTo1X3vvb6IULKGPitTs57LubvT9g41c/5ohaaY58eo/BFbe0dAAAAqQOhERBHZrpY8+bNNW3aNLslehs3brSOGTJkiDw9b/wbdEJCoxYtWmj69OniRzWdch7R6IZPacOL6zWu4T1241WRazqrWI3PdcCzvAbsXKPuhUw45NSp9V9r0NzTeqzZS2peJpc90iGJ3KbQyHFgqJ5qFqqPNgxQWRMWRKzRmwE1NGxfZj09aq8WtMt7w4iOqB3vq2zpD7TNo4o+3btCbz6cykbiOPZpxrBN8u/8rIp5223/OqsN/YLV+9Rrmvrp00rxg4wi16l31ec0+ZhLiZ9E5yHPu2tp0MqRapRCc0Bn6Feq/eCrWhYpZWwwQafntlYWe5+bsG8VmPMFLYiQfJ76ShFLXrZ3AAAApA6p7F02cGdVqlTJ3ore+fPnNWzYML399ttugVFC3eqaSOPCt2iHV2u9Ue/GwMiEQ6G/7tRhh+RdqIqq/TuayFM5KrysAYPeUXBSB0a3Ufj2EGVr2Vql7NElF9dO05wDUfK8p6ZaNMx904vVlX/7mnXaHXXl3164oirfnwpfyrwKqtlb0QRGzhNa+V5L9T7+siYNTgWBkeFTUf027NefBw7oQKJv+7Xv15QbGBme3t7yvpaOuVyxj66KcuhaRS4PL7d0EAAAIMUjNAKSkAmMgoODlTt3brsFSKQsgfpiTk8Vd/u8eVGbNu5QlMtLucpWUkASfB6N3PCeqhQqoPz588d8K/ay5pyO1Lo+T0S//9qtwP+pePvvdNo+961kbfSVZr/1qK7+M85r+ZR5+p/DUznqtFT9nDe/VIVp3dqtirzyb8/9ZCX5x+ffHrlWfSoVUoHo/pvjfSuggsU7aNYZ+9yJFXVQszs318cRb2jKsEDdl1oSv/QmYyZl9LRTI0eULl/dit6/oZGHVRQbAAAgtWF6GhBHZnra8OHD1bFjR7vFnTmmSpUq8vKK/tPe3r17deTIEWXNmlVly5a1W6Xly5fbW+5GjBih1157jelpuFHkar1etIa++DOrGn77p+a0yW7vSDjn32s1fvIGhUbF8lxz/KFZAyYqrM7ber5UZrsxGh6eusu/sdo/U1DxLk1zfp6e/7/GGn88t56bHaJvG9xUMSZiuV4tXFtfHfJV0KQ/9V3wzaOwYuE4ohVjJmrTGfMxPrE85Onrr8btnlHBxNbfCdui4W07a3nZTzXurbKKx78IyS1isdoVqK8xRxzyqfWlDv3wSowjwpzHvtRTD3XU8kgv5Xtpgf43uq69BwAAIHUgNALiKC6h0a1WORs1apR+/PFH5cuXz1pd7ZrGjRvbW+4IjRCdqN/6qlyJPtrqUUmD9qzUW48k07CU21UI+zoXFrZVoYbf6Fj2YM3YP1lBvvYOW9Sv76nMEx9qu2c1DQtZptcfTN2DZp0nVuqDVn10uM1YffVsoRsLfqcGznPas3aN9p5xJFEh7EdUrsZjypVSv61RO/VB2VJ6f+tlZSj/iXav6a6CMfz4OfYOUMWAt7XxcgaVfH+LtrwXYO8BAABIHQiNgDiKayHs2FAIG0nDqSPDn1LB15crqmgPrdtmF49ODrc9NIrUhq6PqcqnIcrcYJz+mvucbhxD5dThL2qqUOeVchTvo59/+UCPp+JSMY4j8/XWcyOUqeu3+qjOjcW+U42IH9S+QD2NPnKtek/iePjW19j98/VCTrshxQnXwhcfUYNxx+RZrIfWX/n5eyKGn7/IDV0VUOVThThzqvWsvzShYYwlswEAAFKk1P3nWSAZmfDm0KFD9r3kY65prg385x+tXrVFES5P5SxXUcXdPrCe0rRWNdVnS5R9PxVxntH2HX/JIW8VLl1GZvH9G/2jdWu2Xfm3eynvk5VUNBUHRpH7p6p98Gjl7TdDA6ILjJyhmvLsU3ovpX8fM9bRyP3/6PyFC7qQ6NslXTw5NwUHRoaPypQvpaweV75FRw/pUCzfnsuHDuqYQ/K46wlVLkdNIwAAkPoQGgFxlCNHDm3dulWHDx+2W24/ExiZa5prIz1y6swvo9Xl2WB1/GqjztqtClulH9b/I5dHBvmXLuNWM8jx1zSN31tSdeJVITqFcJ3RmXNO6992/0MPuq/+Fv6LVm8Kk8vTV2Url0l9U7lsjr+m6+XW41Xgk0nqUc49GjPf+9DF76n/Dn/VSgXfR8+MWZQ1SxZlSfQtkzL5pPS3Jp7KWb+pat7jKeeF37UzJKbUKFK/bf9dF12eylajuRqk2Pl2AAAAMeMdDBBHpu7Q5cuXtWDBArslbswy/GfPnrVuISEhVpvZNstLX2uPycKFC61rxlbzCGlY5Hp9+OyrGjZlqkb2G6MNEabRqePzJ2nJSTNlMqty58l24y9y5xHN6jNJfl3eULnUmKh45VTe3BnlIVc0UzKdOjT9K8094pCHT0lVrnRTsaPU4swqvRPUTjP/d0I/9Gys+s/11PA5P2n/mavhg/Ps71o4oLkqt5ivoj3eVPnUmoylYZ65m6vbK48pc9RvWjDnN0UbG0Xu0PzvQ+TIWlpvvNNUbosAAgAApAK8hQHiqHr16vLz89PMmTPjVV+ofv361uPMbdWqVVZbaGioChQo8G97dMw1zLXMfnNtpEMRh3TomEMuj7v0aLOmVgjkODpXPYee1xuftdUjXmH6fecf/31gdRzX8nee1bC7e2lo8/tS6S94P9VpVls5PSK1efUqhdmtV/5xOrasl1q+OV/HnZJ3sUqqEtOSVSmZ85Amv/KS5hUcoKWbN2nNouFq6pqjrkHl9X+5/JTnoft1b15/Bb6zQB4tvtQXwQ/wQp0iZdKT745Rr/KZtePzzhrya7jdfk24tg1+U8N3ZVSZbsPVozRT0wAAQOrEe1EgHrp162YFP2YEUFytXLnSCoBiu0XHjGgy1zLXRDrlG6i3etZQ/v97UtXy/qEJ77+sekFfK9/H49Xj1SGaNqi+wr5soWY9B+vzwT0VXD1QwzP30nef1YtxCfCUz1N5g4drUp+6yjq3oxq89rE+G/yuXg6qrRdm5lTl0lmvHOOlfE9WUaFUN/vOqSOTu2rg+Tf03YRXVS7XlX9A1qJqM2aBvm5ZUD6O8wo9dERnPfKpRs/v9ONXDZWXV+mUK1Mp9fxunvpV+Z8+alBP3Ses15+nw3Ri31p9+9bTCvzkiKoM+EHfv1tGREYAACC1YvU0IB6OHz8uf39/FSlSRGvWrLFbb4/KlStbK6zt2rVLuXLdnqXNkTqEH92m1Rt266Tn/SpTo5IKZfsvSYg4tlM/bfpNx1y55V++gvxz3eZl1JJhyf1rIkN/08bNv+no5TwKePIJFc3yvZ4r2FSTTuXRC3NC9E19EyClJk6Fbl6tvx+posdz3JQGOc7otxU/avu57CpavpJK3EfMkHqc14GV32ny7BX69a+TupzpXj30WA01ad1EVR5Obc9RAACAGxEaAfH0wQcfqG/fvurfv7969OhhtyatAQMGqHfv3urTp491A1KMqC0aHNRFf7dfpE+fuctuTDphBzZq2+n7VLr0g7p5cfLTM4JVtOVUnXroVS3ZNUI1WL0cAAAAuK0IjYB4ioiIUHBwsObPn69t27ZZI4+SkhlZVKJECQUGBmrKlCnKmJEquEgPTIHvl1Wp2Rj9EXW/2i/+QyNrXffcd+zV4Gql1H29j2qP2KyFL+d3X1kNAAAAQJKiWgIQTybE+fjjj5U7d27VqFFDu3fvtvcknjmXOac5t7kGgRHSj0taNn6q/ohwXXllyqK7MnvY7YZDf43rpoHrw5W7/iCNaEdgBAAAACQHQiMgAQoVKqTVq1fL29tb1apV05IlS+w9CWfOYc5lzmnOba4BpB9eyuaXTXnKPa8PpszRBxWv1WZy6tTq9xTc7Qd5VuunOePbKj+JEQAAAJAsCI2ABDJL5q9YsULly5fXM888ow4dOigs7L8FwuPKPMY81pzDnMuc05wbSF8yqebrXRQQcVwOj3CdPXdOoXvXatK7jVW+yVTd/cpM/bSop8plsw8HAAAAcNtR0whIpPDwcKso9qhRo+Tj46PatWure/fuKliwoLy8oh8S4XA4tG/fPg0cONAaYRQZGWkFR7169VKmTKyahPQr/M+lGjt2jjb+fkQXMuZUwZI11LB5I5V/gJ8LAAAAILkRGgFJ5MCBAxoyZIgmTJhgjR4qWbKk/Pz8rILW15s3b57Onj2rrVu3ytfXV23atFGXLl2UP39++wgAAAAAAO48QiMgiYWGhmrx4sVavny5du7cqe3bt9t7ripevLgCAgKsgtd169a1il4DAAAAAJDSEBoBAAAAAADADYWwAQAAAAAA4IbQCAAAAAAAAG4IjQAAAAAAAOCG0AgAAAAAAABuCI0AAAAAAADghtXT7qAZM2YoMjLSvgcAAAAAAJJK6dKlVaRIEfseEoLQ6A564okndP78efseAAAAAABIKm+//bZat25t30NCEBoBAAAAAADADTWNAAAAAAAA4IbQCAAAAAAAAG4IjQAAAAAAAOCG0AgAAAAAAABuCI0AAAAAAADghtAIAAAAAAAAbgiNAAAAAAAA4IbQCAAAAAAAAG4IjQAAAAAAAOCG0AgAAAAAAABuCI0AAAAAAADgxsN1hb2NdCI0NFSLFy/W8uXLtXPnTm3fvt3ec1Xx4sUVEBCgGjVqqG7dusqdO7e9BzejL5MOfQkAAAAAKQuhUTpy4MABDRkyRBMmTFBYWJhKliwpPz8/BQYG2kdcNW/ePJ09e1Zbt26Vr6+v2rRpoy5duih//vz2EaAvkw59CQAAAAApE6FROhAeHq7+/ftr1KhR8vHxUe3atfXiiy9q0aJFmjJlig4ePGgdV7lyZbVq1Urt2rWTw+HQvn37NHDgQC1ZskSRkZHq0KGDevXqpUyZMlnHp0fR9WXbtm31/fffa/Lkyfrrr7+s46pUqaLWrVtb++jL6N3cl4UKFdL58+et51+DBg2UK1cu+0hp2bJlWrNmjU6fPq1OnTrRlwAAAACQHExohLRrz549roYNG7q8vLxc7du3d/3zzz+uVatWuSpXruwaOnSo68SJE9Zt8+bNrmrVqpkA0VW6dGnXmTNn7DO4rMeYx5pzmHOZc6ZH0fXl2rVrXVWqVHF17NjRtWnTJtfff/9t3SpVqmT1Zbly5Vznzp2zz0BfXhNdX86cOdPqM3Pz8/Nz5c2b99+baXvwwQddly5dss9AXwIAAADA7cZIozRs//791uihqKgoa+qPGRVz5UO3qlWrZk0HKl++vH3kVWZqkNm3ZcsWVahQQUuXLlXmzJntvbJGdpgpQd7e3taojwIFCth70r7o+tIoUaKEevfuraCgIOv+NefOndMTTzyhkJAQVa1aVStXrrT3XEVfuvfld999p6ZNm1rbNytdurQ12ihbtmx2y3/Sc18CAAAAwO1EaJRGmbCievXqunz5shVYFCtWzGofNGiQ9cG7ffv21v2bmXoxpUqVsrbNFKBu3bpZ29fs3r3bCpYyZMigFStWWFOK0rqY+nL9+vWqWLGitW2mpgUHB1vb1wwfPtyaSmWsW7fOCuKuR1/+15eGCY1+/fVXOZ3Of6dMGmaaX506dex70UuPfQkAAAAAtxtL7qdBERERevvtt63VqMxKVNd/MDfFhM2qU0ePHrVbbmSKEOfLl8/aNsfezJzLnNOc21zDXCs5NWnSxKqFk1xi68u///7b3pLmzp1rb/0nT5489taNx15zp/syucXWl9c8/vjj+uijj6wQ7trtVoGRkd76EgAAAACSA6FRGjRgwAAr8OnXr5/8/f3t1qvM6JiGDRtay5bH5Nq0NXNsdMw5+/bta13jk08+sVvTptj60ty///77dffdd7uNIoor+jLppKe+BAAAAIDkwPS0NOb48ePWh+ciRYpY9V1u5uHhYW/JFEG3t27UrFkzzZw509qO7elh6tLs2bNHu3btumGlq9vJjDSaNGlSsqyUdau+NM6cOWOt6BVdHR0TkphRL4Y5xiwjH5M70ZfJKS59aaanGeZ7nBhpvS8BAAAAILkw0iiNGTdunE6cOOFWi+iawYMHW+GF+XorZhn02HTt2tW6lrlmWnSrvjRMX8ZUeHn+/PnWV1P3KLbAyKAvk05a70sAAAAASC6MNEpj7r33XgUEBFjFgK8fVRQfpqaRqXlkVrKaMWOG3erOPHVMUeOdO3fq5MmTduvtlZwjjRLTl2ZFL1OLJ2fOnNqwYYMKFixo74nenejL5BSXvrx+pJEpHD5x4kTr/kMPPaQOHTooR44c1v1bSet9ibQn6vg2LZq/Rn+6CqhW06f16D3X/z3HqdD187T7gUBVe9DLbkO6EnFEGxd+r5+P+ahglfqq45895r/4OcIV7sikTLH/zQcAACDOGGmUhpgP5Ga6lAl7EhoYbd68+d8i2R07drS+xsRcw1zLXNNcOy1JTF+agsxdunRRzZo19f33398yMDLoy6vOnz+v+vXrWyurmal95uZwOKxC19988419VOzi0pe9e/e2jjNfgTvHqaMLu6pisTJq1O4Nvdm+gcrX7K4lx532fslxcJI6dZ6jkxkT9jsdqZvj8Bx1qvOsvtztoWxnZ6tD2dIKnnBADnv/9ZwnFupV/+zKVrC9Fl20GwEAABKJ0CgNmT17trXkuPnQnVCmSLFh6sJUqVLF2o5NvXr1rGuaa6cl8e3LtWvX6qmnnrJu5jFmhNFnn32m0qVL20fcGn0pKyTq3Lmz3n33XT388MPWzWyb4u1t27bVyJEj7SNjd6u+7N+//w1fgTshcsdgtWw1VNtcD6l42TIKeDibwrcOVfN6XTUn5IxO7Zqmzs2H6K53BiooNy/X6U7kLg1tO0gZ+szVhHdfUut2dVU06k/NGjBKmyPtY64TtnyCpoZcksPpkidPFwAAkESYnpaGtGzZUgcPHrSmQyXEggULFBgYqMyZM1tLxGfLls3eEzuz2pqZQjR16lS75fZJrulpielLM1LrzTfftKb2vfHGGxo6dKi959aSoi/N9zCpXavPlBBx7cuffvpJR44cibYQtulTM23SMMfcd9991nZsYuvLatWqadWqVapatao1qglIds5QTWhaXqMeGaLxHzRQwaymMUqnfluq2TPmadnmX/XzmhDd32OxFvcuq7usB6VQjsNaPnqyNp6MUuLfUHjIM6u/GndsoCLpeoqVU8cmtlD99S9o2ci6Mq/GEas6qVjN4TqYp50W7v9adTJePfKqCK14rYieGnFQdzUarz9nt1bslfQAAADihtAoDTHTbZo3b65p06bZLXFnPtSXLVvWKiBswqOnn37a3nNrLVq00PTp02NdaS2pJFdolJi+NKKioqz+3Lp1q1599VWNGDHC3hO75OzL5JLYvrzG1EU6deqUNRrpo48+sltjdqu+NCGWCZaAO8KxTzOGbZJ/52dVzNtu+9dZbegXrN6nXtPUT59Wih9kFLlOvas+p8nHXEr8JDoPed5dS4NWjlSj9Jx6OA5o6FPNFPrRBg0oa9KzCK15M0A1hu1T5qdHae+Cdsp7/fMiaofeL1taH2zzUJVP92rFmw8zlBwAACQJ3lOkMZUqVbK34uedd96Rl5eXJk+eHK/AyEjoNVO6xPy7vL291alTJ2v7yy+/jPOUM/oyZqa4tbFjxw7r663c6poERrijvAqq2VvRBEbOE1r5Xkv1Pv6yJg1OBYGR4VNR/Tbs158HDuhAom/7te/XdB4YGeHbFZKtpVqXsodbXVyraXMOKMrzHtVs0dDteeEMXaN1u6OuvPgUVsXK9/PmDgAAJBlGGqUhZkTH8OHDb1nA+mamhowJi0xdnqJFi9qtcWdG0bz22muJGh0z0V4p61a++OILvfzyy1a9mltp3bq1vRV/Ce3L65lRRqVKlbK2g4KC/l0dLDZJ0ZcpTVL0pdGsWTPNnDnT2o5L/6TFvkQaF3VQs998QSOz9tCEj2orD5/8U7BIre1TQ20nH1FUEvyK8fD0Vc1PVmlUUPRp2fkFL6pwo3E6lr2lpoVMUdN77B22c9Ob65HgGfrnvvZatG+Uat8wdQ0AACDheEuazpkRMGZVqkWLFiUoMErvtmzZYm+5K1mypL0lzZo1y95CdObMmWOFQuYrkC6FbdHw4Gc18eGPNWMAgVHK56X8VVvpxZfaq337pLkFFrcKW0XjvJbPWqxjDk/lfrq56t4UGJmpa5tXb9I/Tg/5lq2isgRGAAAgCTHSKA2J74iOkJAQa4W0CRMmqFatWnbrf/r06aMPP/zQvhez5BzRkZw1jW7Vl2aEllnNyywHb5Z29/Nz/wuxOc816XV0TFz6MmPGjIqMjJSPj48iIiLs1hsx0ghplfPESn3Qqo8Otxmrr54tpFT3md95TnvWrtHeM44kKoT9iMrVeEy5CM6uurBQbQs11DfHsit4xn5NDvK1d9iiftV7ZZ7Qh9s9VW1YiJa9/iB/EQQAAEmG0CgNMR/O41pw2KxAZQo1m2XhzdSp6JgP6WYFsFtJr4Wwrw+ETJgR3apf8Q2NkqIvU9rqafHpSzOdb/Pmzdb2zcyS/QsXLrRGxO3evdtujVlaLCqOtMdxZL7eem6EMnX9Vh/VyZs6P+xH/KD2Bepp9BGH3ZA4Hr71NXb/fL2Q025I5yI3dNVjVT5VSOYGGvfXXD2X3d5hcx7+QjULddZKR3H1+fkXffC4W2V1AACABCM0SkPiurT5yZMnrSLAPXr0UNu2be1Wd3ENjWJb2jypJVdoFJe+NIXDnU6nPD09tWnTJpUuXdrec9WaNWuskVyGWeLdjEa6leTsy+QSl77Mnz+/xowZo4CAAOXMGf0nxWvBUvfu3fXJJ59Y27FJi32JtCVy/1S98uIUFfpkknqUM4uq38QZqimtW2tvl+/1QamUHQQ4Iy7qkuPKz6l9P+E85ento0w+jJW5yqnQr+rooY5L5SzVV79u7K1iXvYu29mpTfXIs98p7IFX9EPIl6rJ9DQAAJCEeFeWhuTIkcMqvnz48GG7JXr9+/e3pgKZlWp69eoV7a1Vq1b20bE7dOiQdU1z7bQkLn1pRmi98cYbVjh0c2BkXL/KV9++fe2tmKXnvjTTyMzooZgCo59//tneunrsrcSlL28VrgK3k+Ov6Xq59XgViCkwMmHB4vfUf4e/avmn/JEjnhmzKGuWLMqS6FsmAqMbuHTmzDk5XR7KcP9DevCmwEgK1y+rNynM5SnfspVVhsAIAAAkMd6ZpSGNGzfW5cuXtWDBArvF3bBhw6ybGfnx0UcfxXgzq6kVLlzYflTMzHQhc01z7bQkLn1paj6ZQtj58uWzW/5z7tw5a6U3o2rVqqpQoYK1HZv03JcmCOrXr59Wr15tt/zH9OVLL71kbQ8dOlQPPPCAtR2bW/WlGfllvifmK5DszqzSO0HtNPN/J/RDz8aq/1xPDZ/zk/afibJ2O8/+roUDmqtyi/kq2uNNlScISMe8lDNvbmX0uDrF+eah4c5D0/XV3CNyePioZOVKuqnaEQAAQOKZ6WlIO3LkyOGqWrWqy+l02i03Mt/yuN5mzpxpPyp65hrmWuaaySUoKMh16dIl+97tdau+NNauXet6+OGHXR07dnRt2rTJ9ffff1tfK1WqZPVh8+bNXefOnbOPjtmd6MvkFN++NP14fV9mzpzZNWLECPvI2MWlL69/ngPJynHQNal5AVfhZiNcP4VedrnO73aNb13IldFDLg/vu1y5H8zn8svk6fLwyOgq/NIc11GH/TikW46jE11BuTxdXvledM3/x268Iurvpa6e5f1cXleeO8pQ0vXejivPJwAAgCTGSKM0plu3blq1apU10iI6V77ncb5FV9j5embkiLmWuWZadKu+NCpWrGjVM8qePbtV7Dlv3rxWgXFT58jU6DHFn++++2776JjRlzf25ZNPPvlvXz7yyCNW+6uvvmofGbu49KWZgnn9VyB5OHVkclcNPP+Gvpvwqsrl8payFlWbMQv0dcuC8nGcV+ihIzrrkU81en6nH79qqLy8Sqd7nnmDNXxSH9XNOlcdG7ymjz8brHdfDlLtF2YqZ+XSMgv1e+V7UlUKUQAbAAAkPQphpzHHjx+Xv7+/ihQpYtXauZ0qV66sPXv2aNeuXcqVK5fdenslVyFsI633ZXKiLwHDqdDNq/X3I1X0eI6b0iDHGf224kdtP5ddRctXUon7bv/vOKQykaH6beNm/Xb0svIEPKknimbR988VVNNJp5TnhTkK+aa+FSABAAAkJf6GmcaYD8kdO3a0ivzGZYWphBowYIB1DVOLJq1+MKcvkw59CRieyl26mntgZHj56dFazRXcpBaBEf4TdkAb12zWoYtXtn1y69HKz6hZi4aq/GhuZTq7WN/9eFJOrwfV8NkaBEYAAOC2YKRRGhQREaHg4GDNnz9f27Zts0Z4JCUzgqNEiRIKDAzUlClTlDFj8lVpTc6RRkZa7svkRl8CQNw5j8/Xy5WaacwfUbq//WL9MbKW/vut5tDewdVUqvt6+dQeoc0LX1Z+t5XVAAAAEo/QKI0KCQlR9erVrRWkVq5cqWLFitl7Escsi25WnMqQIYNWrFihQoUK2XvSLvoy6dCXABA3F6YEKU+r2TqvDCrcZYV2DK4oH3uf468xavREB33vVV+j1s9SWxIjAABwmzA9LY0yH5rN8uXe3t7Wh+klS5bYexLOnMOcy5zTnDu9fDCnL5MOfQkAceOVzU/Z8pTT8x9M0ZwP/guMnKdW673gbvrBs5r6zRlPYAQAAG4rQqM0rECBAtaoi/Lly+uZZ55Rhw4dFBYWZu+NO/MY81hzDnMuc05z7vSEvkw69CUA3Fqmmq+rS0CEjjs8FH72nM6F7tXaSe+qcfkmmnr3K5r50yL1LJfNPhoAAOD2YHpaOhAeHq7+/ftr1KhR8vHxUe3atdW9e3cVLFhQXl7R/4XS4XBo3759GjhwoDWSIzIy0vqAbpYoT656QikRfZl06EsAuIXwP7V07FjN2fi7jlzIqJwFS6pGw+ZqVP4B8RsPAAAkB0KjdOTAgQMaMmSIJkyYYI3SKFmypPz8/KzCwdebN2+ezp49q61bt8rX11dt2rRRly5dlD9/fvsI0JdJh74EAAAAgJSJ0CgdCg0N1eLFi7V8+XLt3LlT27dvt/dcVbx4cQUEBKhGjRqqW7eucufObe/BzejLpENfAgAAAEDKQmgEAAAAAAAANxTCBgAAAAAAgBtCIwAAAAAAALghNAIAAAAAAIAbQiMAAAAAAAC4ITQCAAAAAACAG0IjAAAAAAAAuGHJfQAAgFQlSqG/LtGS9Xt10jOfytStp0oPZ7X3SecPrNOS5Zt1KCq3Hq/xtKoUysZfCQEAQILwHgIAACCVcJ7+SUNbVFLQgPU653ufsp+aqZdKlFDTkdt18cr/to9qo0ZdZulQpvt1n2O9elcppqcGb7MfDQAAED+MNAIAAEgNLvyiAY1e09620zW6+cPythrPa3H7RxU4Ja/e6ve41q1+XN9Mf1mFvH7XF3Uq6Y3lp+SZ/3Vd3veZdTQAAEB8MNIIAAAgxbuon/p31o/VRmvkv4GRkVkFCuSTx4VNGthjs5764CUV8pGcJ1Zq/trTcro8lTV/IftYAACA+CE0AgAASOGcRybr43mF9forjymj3XaVQ8eOHpdLHspQuplaPHo1TvLM1VzvD+uurv0naumkl602AACA+CI0AgAASOHCt+yQV+s3VO8eu+EaZ6h+3XlYDnmrUJVqyu9lt3vmUIWXB2jQO8Eqk+taIwAAQPwQGgEAAKRwWQK/0Jyexa+blma7uEkbd0TJ5ZVLZSsFuO8HAABIBEIjAACAVCpyyxptOuuUR9Yyqlw2k90KAACQNAiNAAAAUqUo/bFmgw47PJSheEVVymY3AwAAJBFCIwAAgNTIGaqVq39TlLxUsHxF5aN0EQAASGKERgAAAKnRP6u1akuEXJ45Va5icfnYzf86NU2tavbRlij7PgAAQDwRGgEAAKRkzjP6ZXQXPRvcUV9tPGs3SmGrftD6f1zyyOCv0mVujowc+mvaeO0tWUf+VMcGAAAJRGiUDoWGhurbb79V69at9fjjj8vDw+OGm2kz+8wx5ljEjL5MOvQlAEQvcv2HevbVYZoydaT6jdmgCNPoPK75k5bopK78jsyaW3my3fiWznlklvpM8lOXN8opo90GAAAQXx6uK+xtpHEHDhzQkCFDNGHCBIWFhalkyZLy8/NTYGCgfcRV8+bN09mzZ7V161b5+vqqTZs26tKli/Lnz28fAfoy6dCXABC7sMlBytd6ts5nDVDn71ZpaO1sOjq7nQK//j+9+OAYvfGtn3pv2ag+AVeHFDmOL1evZu/qfNc5+rxebv5CCAAAEozQKB0IDw9X//79NWrUKPn4+KhQoUI6f/682rVrpwYNGihXrlz2kdKyZcu0Zs0anT59Wp06ddLAgQO1ZMkSRUZGqkOHDurVq5cyZUq/S/re3Je1a9dW9+7dVbBgQXl5uVcgXbhwod566y3Nnz+fvrxJbH156tQpDR8+XBMnTtRff/1lHf/uu+/qlVde0T///ENfAkhfwjboo8atNd6jntoGPqKLu5ZoyV+l9eH4D1Qr6xZ99lwrfbznUT3/QlXde3KjFqy6pOp9R6h3rftEbWwAAJAoJjRC2rVnzx5Xw4YNXV5eXq727du7rnzgds2cOdMEhdbNz8/PlTdv3n9vpu3BBx90Xbp0yT6Dy3qMeaw5hzmXOWd6FF1fxubcuXOu++67z1W4cGG7hb68Jra+XLt2rfW8rFSpkmv69Omuv//+27p17NjR9fjjj9tH0ZcA0ptLriNbf3DNnDTJNWvVXtdZh91sCXf9vWOla+7Uqa45K3a6QiPsZgAAgERipFEatn//flWuXFlRUVHW1B8zksP47rvv1LRpU2v7ZqVLl7ZGG2XLls1u+Y8Z2WGmBHl7e1ujkQoUKGDvSfti6svYmJFcY8aMUeHChbVnzx679Sr6Mvq+3LVrl7Xv/vvv19q1a/99HpoRRc2bN9fcuXO1dOlS1axZ02o30nNfAgAAAMDtRGiURoWEhKh69eq6fPmyVq5cqWLFitl7roZGv/76q5xOpw4ePGi3yioyXKdOHfte9Hbv3q1q1aopQ4YMWrFihTXVLa2LrS9jYoKNxo0bW9MAowuNDPrSvS/vu+8+/f3339YtT548duuNQefMmTPVpEkTa/ua9NiXAAAAAHC7URsxDYqIiNDbb79trTC1fPnyaEMOsxLVRx99pMmTJ/97u1VgZJhzmXOac5trmGslJxMWmFo4ySUufXkzE8b16dNHQUFBdkv07nRfJrdb9aXZZ8KiV1999YbAyChTpoxVe8vczPbN0ltfAgAAAEByIDRKgwYMGGCtNNWvXz/5+/vbrUnHnLNv377WNT755BO7NW1KSF+aAuKDBg1Sxoy3XuSYvvzP559/bn01xdlv9tBDD+n333+3bmY7OumpLwEAAAAgOTA9LY05fvy49eG5SJEiVn2X6JipPsbNU3ziy9SeMdOuTB2a61dgu53Mf/OkSZOSZaWsuPTlzczUKLNimllC3qzq9fXXX8c4Pe16d6Ivk9Ot+tL0W40aNaztxP5KSut9CQAAAADJhZFGacy4ceN04sQJdevWzW65fbp27Wpdy1wzLYpvX4aFhVlT/j7++GO7Je7Se1/Onz/f+vrAAw9YXxMjrfclAAAAACQXRhqlMffee68CAgKskRseHh52642uH2m0bt06TZw40bpvpv2Y0TE5cuSw7t+KeeqYosY7d+7UyZMn7dbbKzlHGsWlL69nApGnnnpKtWrVsu7HZ6TRnejL5HSrvjT/dlMY2xS7njFjhhW+rVq1ytp36dIlvfzyy3r22Wet+7eS1vsSaUGEjmxcqO9/PiafglVUv46/ssf4JxyHwsMdV37n+dj3AQAAgOTDSKM0xHwgP3PmjPXB+1Yhh1nVq379+tYHdVM42NwcDodVUPibb76xj4qduYa5lrmmuXZaEp++NMzxpv+uBUbxld770jwPr3nvvfesvvzxxx+t29ChQ/XKK6/o+eef14ULF+yjYhaXvuzdu7d1nPkKJCvHYc3pVEfPfrlbHtnOanaHsiodPEEHHPb+6zlPaOGr/sqeraDaL7poNwIAAADJh9AoDZk9e7a15LgJg27FhESdO3fWu+++q4cffti6me2GDRuqbdu2GjlypH1k7OrVq2dd01w7LYlPX5pwwhRxfv/99+2WhKEvpf3792vTpk3Wc/Ga0qVLW8HR+PHjNWzYMLs1drfqy/79+9/wFUgekdo1tK0GZeijuRPe1Uut26lu0Sj9OWuARm2OtI+5TthyTZgaoksOp1yevFwDAAAg+TE9LQ1p2bKlDh48qA0bNtgt0fvpp5905MiRaAthHz16VPny5bO2zTH33XeftR2b8uXLW1Pbpk6darfcPsk1PS2ufWn06tVLVatWdRtlFJ/padckRV8GBgbaW0nnWs2hhIhLX14/Askc9+STT9r3/nPtmJj23yy2vqxWrZo1/c18364f5QTcTs5jE9Wi/nq9sGyk6ma70hCxSp2K1dTwg3nUbuF+fV3nxhUXI1a8piJPjdDBuxpp/J+z1drP3pHSOA5r+ejJ2ngySol/Q+Ehz6z+atyxgYowIw8AAOCOIzRKQ8yH6ubNm2vatGl2S8KY+jOnTp2yRiOZ2jK30qJFC02fPj3Rq17FRXKFRnHty40bN1rHmNXSPG8aCZCQ0Cg5+zK5xKUvrw+NYvq3lypVSlu3blVwcLAmT55st8bsVn1pwicTLAHJw6EDQ59Ss9CPtGFAWZk8JGLNmwqoMUz7Mj+tUXsXqF3e63+HRGnH+2VV+oNt8qjyqfaueFMPp9TBRpHr1Lvqc5p8zKVbT+a9FQ953l1Lg1aOVKOUGpIBAACkI4x3T2MqVapkbyWcKSJs7Nixw/p6K0lxzZToVv8uUxfKTJcy4drNgVFCpde+vKZu3br2lrsCBQpYXxcsWGB9vZVbXZPACMkrXNtDsqll61JWYCRd1Nppc3QgylP31Gyhhrlv+h3iDNWadbsVJW8VrlhZ96fkV2ufiuq3Yb/+PHBABxJ92699vxIYXe/y5cvatm1bktz+97//2WcFAACIG0YapSFmtMbw4cPVsWNHuyVhmjVrppkzZ1rbcXl6jBgxQq+99lqiRsdMtFdwu5UvvvjCWknL1Ku5ldatW9tb8ReXvuzXr58ee+yxGKeDJWSkUVL0ZUoTl768NtLIFLA2q6dF5048L4Hb5vwCvVi4kcYdy66W00I0pek99g7buelq/kiwZvxzn9ov2qdRtW+cuoY7LVJr+9RQ28lHFJUEv2I8PH1V85NVGhXknpYdOnTImmqbFMzvYfP7GAAAIK4IjdKQuHw4nzNnjlXjxdSZadSokd16I0KjuAcdVapUkZeXl91yo71791p1obJmzaqyZcvardLy5cvtLXfpNTQyo35MrS1CI6QX5+c9r/9rPF7Hcz+n2SHfqsFd9g5bxPJXVbj2VzrkG6RJf36n4JsyJdxpDh1ZMUYTN5258kvObkoEExr5N26nZwq6F3Iyq0ma15Kk4OvrKz8/hnEBAIC4IzRKQ+Ly4TxjxoyKjIyUj4+PIiIi7NYbpeQP58lZ0+hWfXmrVc5GjRplLRlvCoub1dWuady4sb3lLr2GRteec4RGSB8uaGHbQmr4zTFlD56h/ZOD5GvvuSpKv75XRk98uF2e1YYpZNnrejAlT09zntOetWu094wjiQphP6JyNR5TLibQAwAA3HGERmmI+XAe14LDpqjw5s2bre2bmaXRFy5cqKJFi2r37t12a8zScyHs2NypQtgpbfW0uPTluHHj9OKLL+ruu+/WuXPn7NYbXQuNUuLzEoiXyA3q+lgVfRqSWQ3G/aW5z2W3d9ich/VFzULqvNKh4n1+1i8fPC5ve1eKFPGD2heop9FHHHZD4nj41tfY/fP1Qk67AQAAAHcMoVEaEpelzfPnz68xY8YoICBAOXNG/478WrDUvXt3ffLJJ9Z2bMzUovS85H5M7tSS+ylNXPryxIkTypUrl7XtdDr/fQ5e74knntAvv/ySIp+XQHw4Q79SnYc6aqmzlPr+ulG9i900xfXsVDV95Fl9F/aAXvkhRF/WTPn1jJwRF3XJceX1w76fcJ7y9PZRJh+GGQEAAKQEvCtLQ3LkyGEtSX748GG7xZ2ZrmNGacQUGP3888/21tVjb8UU6DTXNNdOS+LSl0ktPfeleT6WK1fO2p41a5b19XrHjh2zAiMjqZ6XiQkEgcRwnTmjc06XPDLcr4cedK+JFv7Lam0Kc8nTt6wql0kdBbA9M2ZR1ixZlCXRt0wERgAAACkI78zSEFMrxyzNG9uS5OYDt1n1a/Xq1XbLf8y0oJdeesnaHjp0qB544AFrOzZmGpu5Zmx1elKjuPRldMwy/GfPnrVuISEhVpvZNktJX2uPSXrvy9GjR1sFWj/88EO3KWr9+/e3vibV87JatWqqUKGC9RVIbl458yp3Rg9TnMv8/0bOQ5r+1VwdcXjIp2RlVbqx2BEAAACQrJielsbce++91tSzFStWRDvFx1i3bp21stgzzzyj3r17W21mZEbXrl2tOkeDBw/Wq6++arXHxjx1qlevrp07d+rkyZN26+2VXNPTjLj05c1MCLFq1Sr7XvSi+5G7E32ZnOLal+a5+dRTT6l06dL/FsQ2Iacpah3XaWlx6cvr/xv4FYhk5/xbk5o9rufmZtDzc37X2Pp2MuQ4pmW9g9Rs0E864/BWyfe2aNP7ASm7nhEAAADSNEYapTHdunWzQgsz0iImFStW1KZNm5Q9e3Y9+eSTyps3r7Uk/COPPGK1xyUwMszIEXMtc820KC59ebOVK1daIURst+jQl1dde256enpaz0tz27Vrl1WHKy6BkRGXvuzVq9cNX4Fk5ZlXwcMnqU/drJrbsYFe+/gzDX73ZQXVfkEzc1ZW6axXjvHKpyerFCIwAgAAwB3FSKM05vjx4/L391eRIkW0Zs0au/X2qFy5slXg2Xyov1bE+HZLzpFGab0vkxN9CUQnUqG/bdTm347qcp4APflEUWX5/jkVbDpJp/K8oDkh36i+CZCA6EQc0prJ4zRl8U/a878zisx0j/LkL6GKdZro2UallZvEEQAAJAFGGqUx5kNyx44drSK/cR2ZkRADBgywrmFqJKXVD+b0ZdKhL4FrwnRg4xptPnTxyraPcj9aWc80a6GGlR9V7kxntfi7H3XS6aUHGz6rGgRGiMH5X0cquGR5dZhzRgXqtFXXd9/WK4EBcv70lbo1L6dCAc306foTctrHAwAAJBQjjdKgiIgIBQcHa/78+dq2bZs1wiMpmREcJUqUUGBgoKZMmaKMGZNvdZ/kHGlkpOW+TG70JdI953HNf7mSmo35Q1H3t9fiP0aq1nVPU8fewapWqrvW+9TWiM0L9XJ+95XVgKh9oxVUc7B8+y3SN60Kysdut1z4VcOa1FHXH0Ll9C2lHvOXqn9VP/5CCAAAEozQKI0yK3eZYsBmBSlTZ6dYsWL2nsQxy/WbYs8ZMmSwihoXKlTI3pN20ZdJh75EunZhioLytNLs81KGwl20YsdgVbz2id/xl8Y0ekIdvvdS/VHrNattfhEZwY3ziMYFPakxpRdoRa/iii4adx4aowYlOmjhaZcyFHpNP2z+XNVZhQ8AACQQf3xKo8yHZrOsvre3t/VhesmSJfaehDPnMOcy5zTnTi8fzOnLpENfIl3zyia/bHlU7vkPNGXOB/8FRs5TWv1esLr94Klq/eZoPIERYuD4a5rGLcus3FFbtOGvCLv1Rp4PNteLT+e88gbPpcv7JmrE/NP2HgAAgPgjNErDChQoYI26KF++vLW8focOHRQWFmbvjTvzGPNYcw5zLnNOc+70hL5MOvQl0q1MNfV6lwBFHHfII/yszp0L1d61k/Ru4/JqMvVuvTLzJy3qWU7Z7MOBm0Vs3aydF0I05/2XVPupnloTbW6UVWXLPnp15T1nmDat/lnRx0sAAAC3xvS0dCA8PFz9+/fXqFGj5OPjo9q1a6t79+4qWLCgvLyi/3u2w+HQvn37NHDgQGskR2RkpPUB3SxRnlz1hFIi+jLp0JdIn8L159KxGjtno34/ckEZcxZUyRoN1bxReT3AUxi3cGF6c+VrOUPnrrxz88hcV6MOfq92Oe2d17k4tYlyPztL510eytxwgk7MaSXqqgMAgIQgNEpHDhw4oCFDhmjChAnWKI2SJUvKz8/PKhx8vXnz5uns2bPaunWrfH191aZNG3Xp0kX58+e3jwB9mXToSwCIo7CNGtTqOQ1c51DJ10dr6rvVlN1tzLhTx76srYc6LlOkPJWzzWwdGt9AZJIAACAhCI3SodDQUC1evFjLly/Xzp07tX37dnvPVcWLF1dAQIBq1KihunXrKnfu3PYe3Iy+TDr0JQAkhQta8OL/qeG4v+X0yKKnRvyhxa/cRz0CAACQIIRGAAAAacW5eXq+WJDGH3XI675Wmr5jooJy2PsAAADiiT88AQAApAkO7R07TLP/dsjD6z41HNBfjQiMAABAIhAaAQAApAGOg+PVfcAahekulewyUV8/+yBv9AAAQKLwXgIAACC1iwrR2E69tOhkFhV/dbLmfVw9miLZAAAA8cPbCQAAgFTtnNa+F6y3vg9XqbdmaPHngcrnZe8CAABIBAphAwAApFoR+n1UM9V6/RcVff87zehRXn78SRAAACQRQiMAAIBUyakjs9urRtu1Kj10rsY8X1SZ7D0AAABJgb9FAQAApDpOnVn9rhp32qKa367Q+GgCo6jdY/XmoHWKsO8DAADEF6ERAABAKhO+c4RatVuqCmMW6/MG+RRdCaN/Ni3ShrOZot0HAAAQF4RGAAAAqYjj4HS9/MJMPfblQg2umyeGN3MXtemn3cpXuKC87RYAAID4oqYRAABAKuE8tVw9ajfVd35NFPR4NnnY7f9xyRF5SWGn/tDa74+q4eKtGlDWx94HAAAQP4RGAAAAqcHFbfo08Cl1X35STrspNh5ZA/XN4Xl63s9uAAAAiCempwEAAKQCF+b20/sr4hYYGV4PFFbhrPYdAACABGCkEQAAAAAAANww0ggAAAAAAABuCI0AAAAAAADghtAIAAAAAAAAbgiNAAAAAAAA4IbQCAAAAAAAAG4IjQAAAAAAAOCG0AgAAAAAAABuCI0AAAAAAADghtAIAAAAAAAAbgiNAAAAAAAA4IbQCAAAAAAAAG48XFfY20gnQkNDtXjxYi1fvlw7d+7U9u3b7T1XFS9eXAEBAapRo4bq1q2r3Llz23twM/oy6dCXAAAAAJCyEBqlIwcOHNCQIUM0YcIEhYWFqWTJkvLz81NgYKB9xFXz5s3T2bNntXXrVvn6+qpNmzbq0qWL8ufPbx8B+jLp0JcAAAAAkDIRGqUD4eHh6t+/v0aNGiUfHx/Vrl1b3bt3V8GCBeXl5WUds3nzZrVr106jR49W6dKl5XA4tG/fPg0cOFBLlixRZGSkOnTooF69eilTpkzWY9Kj6PryxRdf1KJFizRlyhQdPHjQOq5y5cpq1aqV1af0ZfRu7ssiRYooQ4YMGjlypB566CH7qBvRlwAAAACQfAiN0ri9e/eqZ8+eWrBggdq2bavBgwdbozQMM6rjjz/+sIKiiRMn6sKFC/rll1+s0Oh65riuXbtq7Nixql+/vgYMGKDChQvbe9OP6PrSjHrp06ePGjVqZIVEhgmOunXrppUrV1p9uXTpUt1zzz3WPvryquj60kxLM/1onp8ZM2a0j4yZ0+lUkyZN0n1fArizIg6t0eRxU7T4pz3635lIZbonj/KXqKg6TZ5Vo9K55W0fB/oKAIDUiNAoDdu/f7814iUqKsqa+mNGxVzz6KOPWqM2Ll26pCeffFLTp0+32qMLja4xIzvMlCBvb2+tWbNGBQoUsPekfdH1pem7atWqWVOrypcvbx95lQmHzL4tW7aoQoUKVnCUOXNmey99Gd3z8qOPPrJGDMVVs2bNrOdteu5LAHfSef06sr2e7bdN+Zu8qIYViipvhjPau26WRo9eoD0X7lLhxn00ZsSbqpAzva87Ql8BAJBaERqlUSEhIapevbouX75sjXgpVqyYvecq8+Ha1I0xhYXN1LQyZcpY7bGFRsbu3butMMRMI1qxYoUKFSpk70m7YurLQYMGKVu2bGrfvr11/2ZmFFKpUqWsbTOdyow+uh59eePzsmXLljp9+vQtaxSZsG7mzJk6fPiwsmfPbrWlx74EcCdFad/oINUc7Kt+i75Rq4I+dvtVF34dpiZ1uuqHUKd8S/XQ/KX9VdUvvYYh9BUAAKmaCY2QtoSHh7saN27s8vb2du3cudNujdkvv/xigkPrZrZvxZzTnNtcw1wrOQUFBbkuXbpk37v9YuvLChUquObOnes6cuSI3eIuX758Vr+aY6NzJ/syud3qedmiRQtXRESEfS9mL730kmvBggX2vf+kp74EcGc5/veNq+ED5V39fo3pd43DdXB0PVd2zyuvrR4ZXIU6LXf9Y+9Jb+grAABSN/6UkwaZ2i5mpal+/frJ39/fbk065px9+/a1rvHJJ5/YrWlTbH25fv16NWzY0FoCPibXpq2ZY6NDX/7HTFfz9o69osUPP/xgjTSqV6+e3fKf9NSXAO4kh/6aNk7LMudW1JYN+ivCbr6Bpx5s/qKeNlOtXJe1b+IIzT9t70pX6CsAAFI7QqM05vjx4xoxYoQVVvTo0cNuTXqmiLG5xvDhw61rpkVx7cs9e/bYWwlDX16VL18+eXrG/CvJ1Iky0/zMimsxSQ99CeBOi9DWzTt1IWSO3n+ptp7queZKSzSyllXZR68G4c6wTVr9c7RHpXH0FQAAqR2hURozbtw4nThxwq1+zu1gVgEz1zLXTItu1ZdmxS9TF8p8vRWzpHxs0ntfGsOGDbO33Jmi7R9++KFV9yim5fivSet9CeBOc8nhtMtBuqL0v7179c/VezfyvEc5/HzkYbadp3XiZJTVnL7QVwAApHYUwk5j7r33Xqu4tSkG7OFhvf26pfgUwr6eeeqYosY7d+7UyZMn7dbbyyyxPmnSJGXKlMluuX0S0pc3M6Nnjh49qqZNm2rGjBl2q7s70ZfJKbF9aZbjHz9+vLXa2q2k9b5E2hAV+quWLFmvvSc9la9MXdWr9LCy2vt0/oDWLVmuzYeilPvxGnq6SiFl4088KUrYxkFq9dxArXOU1Oujp+rdatnd/wrnPKYvaz+kjssiJc+cajP7kMY3iP61Ky0/H5K6rwAAQPLibWgaYj6QnzlzxgooEhpyxIe5hrmWuaa5dlqSFH1pwjgTGBkdO3a0vsaEvozZhQsX9MYbb+jdd9+1W2IXl77s3bu3dZz5CiQr52n9NLSFKgUN0Ppzvrov+ynNfKmESjQdqe0XpYvbR6lNoy6adSiT7r/PofW9q6jYU4O1jdk6KYpvuW6at/eETu1boveiC0GMS79o829XR8x4ZCqhcmWiGXGaDp4PSdZXAADgzjAjjZA2dOzY0ZUxY0bXoUOH7Ja4ie/qadc7ePCgdU1z7eSQXKunJbQvr9egQQOrTytXrmy3xC65+zK5JLYvJ0+e7GratKl9L25u1ZfXnu/mBiSf866fP67leuL5aa4/L9tNV4R93871oHdWV9keQ10dKjR0fbXXrCIY5dr9eU1XDk8Pl7wLuF5fdeuVBZGynJ37nOs+L/N7xst1X6vvXCft9v/wfLjm1n0FAADuFKanpSGm3suVD8vasGGD3RI3CZ2edo0pPGzqzEydOtVuuX2Sa3paQvvymgULFigwMFCZM2fW33//rWzZstl7YpcUfWmum9Tmz59vb8VfYvoyMjJSZcuWtWohBQcH261xE1tfVqtWTatWrVLVqlW1cuVKuxW4vS7+9I5q9vLVyMVv67GMduMVjpBPVMm/p36K8lGp93/Rxj6PyduarvOwXlsWIY9stfT51sXqmN/LfkQK4zis5aMna+PJKCuJTRwPeWb1V+OODVQkNQ82cezVkJpl1HXVeXne11jjfpqh1g/eOMYmzT4f4isOfQUAAO4cQqM0xEy3ad68uaZNm2a3xE1iQ6MWLVpo+vTpVi2Z2y25QqOE9qVhAhITdJhizCY8evrpp+09t5acfZlcEtOXs2bNsh67fft2Pfroo3Zr3NyqL02IZYIlIFk4j2h0w6e04cX1GtfwHrvxqsg1nVWsxuc64FleA3auUfdCJgxw6tT6rzVo7mk91uwlNS+TSyk2Iohcp95Vn9PkY66rhYwTxUOed9fSoJUj1cjPbkp1HDr4TWOVaTdfJ7OUUtd5P2pA9ZumZaXl50O8xKGvAADAHcXrchpTqVIleyv53IlrJoeE/rveeecdeXl5afLkyfEKjAz68kZmRbVChQrFOzAybnVNAiMkq/At2uHVWm/UuzEgMGFA6K87ddgheReqomr/jh7xVI4KL2vAoHcUnNIDAp+K6rdhv/48cEAHEn3br32/pubASIoKGatOvRbpZJbienXyPH0cXQiSlp8P8RCnvgIAAHcUI43SEDOiY/jw4bcsunyzxI40GjFihF577bVEjY6ZOHGivRW7L774Qi+//LIyZMhgt8SsdevW9lb8JbQvO3fubIVFa9euVdGiRe3WuEuKvkxpEtqXf/75p4oXL677779fu3fvtlvjLi32JW6TyLXqU6OtJh9JoulVvjX1yapRCopT8HFe3wU/rOZTzypv2wXaN6auWDMqFTu3Vr1qPK1P9hfTm1Pm6pO6eeMZgiT98yFybR/VaDtZR6KS4Hehh6d8a36iVaOClOhcL9F9BQAAkgOhURpCaHSj5A6NZs+ereeee07Lli2zpqclBKHRf8aMGaN27dpZI4LWr19vt8YdoRHizHFEK8ZM1KYzV56vdlPCmdDIX43bPaOCcanJE7larxetoS/+zKqG3/6pOW2y2zuQ6kT8rlHNaun1X4rq/e9mqEd5v/iHILfh+eA4skJjJm7SmSR4dluhkX9jtXumoBJVciop+goAACQLQqM0JDWHRnGVnDWN4tOXISEhqlKliiZMmKBatWrZrf/p06ePPvzwQ/tezAiN/mOO//LLL/X+++/rvffes1vjjtAIqUHUb31VrkQfbfWopEF7VuqtR1LhxCPnOe1Zu0Z7zziSqBD2IypX4zHlSk0pgvOIZrevobZrS2vo3DF6vmjCXqPSxPPhVpKorwAAQPIgNEpDzIdzCmEnjfj05ZEjR6yRRZ999pmCgoLs1hs1a9ZMM2bMsO/FLCn6MqWtnpbQ56WZlmb6NqGhUVosKo60xqkjw59SwdeXK6poD63bNkBlU+OKYRE/qH2Behp9xGE3JI6Hb32N3T9fL+S0G1I65xmtfreOgr8voy8XfqYG+W4OeqK0e2w3LSo8QN0qXrdMmps08nyITZL1FQAASC6MBk5DzIfkQ4cO2feSj7mmuXZaEte+PHnypLV8+wcffBBjYBQfSdGXJuBJ6ltiJOR5efr0aYWHh9v3EiYtPi+R1vyj1au2KMLlqZzlKqq4W0BwStNa1VSfLVH2/RQqYx2N3P+Pzl+4oAuJvl3SxZNzU09gpHDtHNFK7ZZW0JjFn0cTghj/aNOiDTqb6VajhtLI8yFGSdlXAAAguRAapSE5cuTQ1q1bdfjwYbvl9jMfzM01zbXTkrj2Zf/+/RUZGWmt+tOrV69ob61atbKPjl1678vrmcLXp06dsu/FX1z60iy5DyQPp878Mlpdng1Wx6826qzdqrBV+mH9P3J5ZJB/6TJuNWIcf03T+L0lVcff225JuTwzZlHWLFmUJdG3TMrkk1remjh0cPrLemHmY/py4WDVzRPDf/fFTfppdz4VLnjt+5j2nw/uEtpXAADgTiM0SkMaN26sy5cva8GCBXZLzMwImWu3uXPn2q2ytq/fdysLFy60rmmunZbEpS/NcvDmdvDgQX300Ucx3sxqaoULF7YfFbP03JdJ7VZ9aUaHVahQwfoK3HaR6/Xhs69q2JSpGtlvjDZEmEanjs+fpCVXfs16eGRV7jzZbnxBdh7RrD6T5NflDZVjlk4K5NSp5T0V9Mpq+RW5rCWDeqhbt2433rp2UeeO7dSq4Zv6zruQCmexH5rung+J6CsAAHDnmZpGSDty5Mjhqlq1qsvpdNot0TPf+rjcYmOuYa5lrplcgoKCXJcuXbLv3V636svo+ium28yZM+1HRe9O9GVyiuvz8pq1a9f+23fvv/++3Ro3cenL6783wG33zyRXY18PlzzucgW88YPr1JWmqCOzXC+Uqu36aEQ7V/4MGVylPtjhunz16Cs7Q13LelRxPdlxgeuYw25DinJh62BXjXs9b/hdEvPNw5U1cJzrtP3Y9PZ8SFRfAQCAO46RRmmM+YvdqlWrrJEWsbnyvY/TLTZm5Ii5lrlmWnSrvoyuv2K6mQLesUnvfXkzf39/qyC7n5+f6tevb7fGTVz60kwbvP4rcFv5BuqtnjWU//+eVLW8f2jC+y+rXtDXyvfxePV4dYimDaqvsC9bqFnPwfp8cE8FVw/U8My99N1n9ZSbV+kU6ILm9ntfK0467fu34qUHChdWVvte+no+JLKvAADAHcfqaWnM8ePHrQ/cRYoU0Zo1a+zW26Ny5cras2ePdu3apVy5ctmtt1dyrZ5mpPW+TE70JSCFH92m1Rt266Tn/SpTo5IKZfsvAYg4tlM/bfpNx1y55V++gvxzpbVls3Azng8AACA18HrfrGeNNCNr1qy6ePGiVUcnY8aMqlixor0naQ0YMEDjx4+3RnM8/fTTduvtZ5atN3VqvL1vf5HMtN6XyYm+BCRv37wqWOwxPVb0YeXI5GG3XuV9V249XMRf/kUeUa6srByVHvB8AAAAqQEjjdKgiIgIBQcHW0ulb9u2zRrhkZTMCI4SJUooMDBQU6ZMsUKA5JKcI42MtNyXyY2+BAAAAIDUhdAojQoJCVH16tWtFaRWrlypYsWK2XsSxyyFblacypAhg1asWKFChQrZe9Iu+jLp0JcAAAAAkHpQYjONMh+aV69ebU3jMh+mlyxZYu9JOHMOcy5zTnPu9PLBnL5MOvQlAAAAAKQehEZpWIECBaxRF+XLl9czzzyjDh06KCwszN4bd+Yx5rHmHOZc5pzm3OkJfZl06EsAAAAASB2YnpYOhIeHq3///ho1apR8fHxUu3Ztde/eXQULFpSXV/QFNh0Ox/+3d+fxMd37H8ffWWptkNaupUGpndJKUa1ao/ZcS+27G5SilqJV67VLq5aIUFvUvm8XUUtQUeFa41pilwQRe6Yzk18ic2sZ+T0sWWbi9fTweJzzPccfyfh8zznv+X6/R6dOndLYsWMfjuQwGAwPH9DjXlGeXOsJ2SJ+l4mH3yUAAAAA2DZCo9fImTNnNHHiRM2dO/fhKI0PP/xQrq6uDxcOftyqVat08+ZNHThwQC4uLmrdurV69+6t/PnzW84Av8vEw+8SAAAAAGwTodFrKCwsTBs2bNDWrVt1+PBhHTp0yHIkXqlSpVSiRAlVrVpVHh4eypEjh+UInsbvMvHwuwQAAAAA20JoBAAAAAAAACsshA0AAAAAAAArhEYAAAAAAACwQmgEAAAAAAAAK4RGAAAAAAAAsEJoBAAAAAAAACuERgAAJJPo8zs0a+g/1bjW5/qkfAVVqdlIHQZM1JL9YTJazgEA2Kfo08vUt35DjdlnsLQAiBet08v6qn7DMaI87A+hEQAASe6ODk5vrg8rdNGKyAKq1eFbff+dl+qVMGvPtL5q6l5IJZpMUGCE2XI+AMBe3LuwW/6j2qqSe1NNWLtLRy/TlwPx7unCbn+NaltJ7k0naO2uo6I87A+hEQAAScqoU74t1GCSo777/ZDWePdVh8Z1VLtBK/Uav1JB2yeoZta7OrGkrzw8Bun3SO6mAMC2mRW2vI88qlRU2cK5lbtUG/nsOqaLkSbFWM4AXlvmMC3v46EqFcuqcO7cKtXGR7uOXVSkieqwV4RGAAAkIfOleeo7/Jo6LfZTy4JpLK2PZCzdQz4jPPSWY4xuH5igLkN+123LMQCALXKUS7E66tjze036LVCh4f/V1rF1lIcnKyC2PFxUrE5H9fx+kn4LDFX4f7dqbJ08BA92jM8OAIAkY1Lob7O1JX0OGf/crdBoS/MTHJW3aXvVzhZ7SY75S6fmTdHqG5ZDAACblKFwFXk2qKXKZdyUxdnSCCBWBhWu4qkGtSqrjFsWUR72j9AIAIAkE60D+w/r7skV+rFjTdUYsCO25Rkyllf5YvG3Vebbf2j7vmeeBQAAACQrQiMAAJJMjExmyxz+GKMuhoToVvzekxyz6G3XNHKI2zbfUMQ13qUGAACAlEdoBABAksmo2r0GqW6hrHqrQHX17+upty1HnmC+pcgoQ/wCqg5vKpOL08NmAAAAICURGgEAkIRc3PtqVUiErp/apCFV3nr2hfd+kPYfjR9d5JCujNw/sl4wGwAAAEhuhEYAAKSwqC3LtCk87lX7TsrVqLOa5ObyDAAAgJTHXSkAACnJFCI/7+W6YnKQU+4GGj2y4bOnsAEAAADJjNAIAIAUY9K5Of00esdt6c0P1XveDLXIy6UZAAAAtoE7UwAAUojxpJ++HrRO1zKUUtcFq/SvLxJY8wgAAABIAdybAgCQEqJ2akjzPlr/oKz6LN6gn+vlEe9MAwAAgC0hNAIAILlFH5dP6680/rK7hq/bqDEeubggAwAAwOZwjwoAQHIyX9Lybg014MTn8tm6Rt9VcOViDAAAAJvEfSoAAMnFHKnt3zfS139W068Bc9S2SDrLgf8x6phfL43bFW3ZBwAAAFIOoREAAMnigQ5PaalOmytq5oafVT/Ps1YwuqU/1u3WzXSsbgQAAICUR2gEAECSM+ncon+q3ZKSmrp2vDxyJnD5vfeH9hzLo8IFnS0NAAAAQMpxiIll2QYAAInOrOtb+6tm46Vy/YenSmd2sLQ/JsYkw/3buv7fnVp/uYE2HBit8mksxwAANs94cIg++niYDpqy6KvFV+Tv+fT0Y+B1ZdTBIR/p42EHZcrylRZf8RflYV8IjQAASEL3gieoXo1+2nrNbGn5/zgoY71ZurCqrVwtLQAAW2SWyRj3976iwk4rcGpXtRm/R7fMznq/pY9+HVJbxXK7Kn0aZzk5O4lJx3itmE0yxv29H6Ww04Ga2rWNxu+5JbPz+2rp86uG1C6m3K7plSa2NpydqA5bR2gEAECSuSt/z5xqufyOnu9i66wP+u7QobGfiIFGAGC7ogO6q1jd2Qp/I83Dh14nR0c5/G8gaezjVUyMWUaTUcboGFX+6bTWdcpmOQikdtEK6F5MdWeH64240DS2PhwdHfSoPGLrw2yUyWhUdExl/XR6nSgP20ZoBAAAAAAAACsshA0AAAAAAAArhEYAAAAAAACwQmgEAAAAAAAAK4RGAAAAAAAAsEJoBAAAAAAAACuERgAAAEj9DLcVERauyHsmSwOA5Ga4HaGw8EhRhoD9IDQCAAB4aUaFHVynuVMmauK0RdoZetfSHu/OmV1a5uutSdMWatvJKJkt7UgB5nNa2rmschWopdG7I1P3ZxF9SXuX+ernKXO0/siN//9nNT3QA4NlG0hi5nNL1blsLhWoNVq7I1+XHtGo8OBVmvmTt3zXHtXNp39sc5gCV2yz7AC2h9AIAADgJZhv7NGkZp/Kc3Sgolxy663rS9SxTBk1nn5I92L/HPJprYa9l+l8uneU2xSowZ8VVY3xwZZ/jWSXrri8Fm2WzxfnNax2VXVfelapMSsxXVihr2u10NRjDsp8c7m6lC+n5nPP6FkDO8wRa9W1+FvKXLCz1t2zNAJJKF1xLy3a7KMvzg9T7ardtfRsKk8szZe19ttKKvpRQ3X6ppc616+gav02Kfzv4Mikc/O/Vs8V1yz7gO1xiIll2QYAAMDzuBuk0Q27K6TDIvk2fU/ODxvvaEPnYqrnn0t9RpTWru2lNWvRP1XI6bgm1/pU32y9Lsf8PfTXqZ8eno0UYrqgNd96qvXUyyo3wFd+gzyUN43lmL0zHNH4Op11+bv1mlgli8zh01XrXS9tK9BPuw6OUfmnfs6o35rovRZLdDtXR6055SuPdJYDQBIzXVijbz1ba+rlchrg66dBHnmVWsrwEYP+M7a6Kn+3V07vFdX7b5sUdipE56LSq1zP2Zr/fWUZNg1Rx9H31G/jTDXKyXgO2CZCIwAA8PJiH8C3+i7Q3mtGvfoNhYMcMxZXo2719YFNPz3c056B1TTIZbo2fFdSaS2tcd8YnxzzqYoP2CNjmrL6MWivfijpLPPVqar5XndtiXZQ5uo/6+a/u1nOx/O6ud9fvpvOKjrRblujFbrBV3P2XJeru5cm+Y5Ui2IulmP2yqyr85qpbmA7bZnuocyxLdG/f62i1X7RuZydtPb0DNV69J81VrQCun+gGlPO6c2Gc3R2eSu5Wo48D9OFrfJdsFfXjInwmTg4KmPxRupW/4NUGBykFje1399Xm85GK/HKMFQbfOdoz3VXuXtNku/IFrL7MnyMOWyuGlfwkdvEORpav6AyxjUar+vo5uVavGqL9h/cpx0n31H/DRs0uPybD//NC3ktr79ICYRGAADg5Rl2afDnbbTgakzsLeerir1pzVRd47ZNV8MXeXpNZuZLvmpQY7faB85WgyyWxocM2tGzqKr+fEaOFUbr8I5+KuQU22y+rsAZ47TyRkk16dhUH2WPa8TzM+nUjK/UYMx+3Uv0u9YYGW9H6MrdrKrSdYTGDW6uUlns9Nt+0xlNqtFEYaN2a/TDIUXR2tGrhKp6n1L62j4KWdNJuR7/0Yz/0Y/ly2losIM+mxCigF7vvdC6FYZdg/V5mwW6GvPqlR8XGmWqPk7bpjd8oeAKych0SjO+aqAx++8lQkDxlBijbkdc0d2sVdR1xDgNbl5K9lqGjzOdWizvP4qrZ4uiltGoj7m5WyOaD9b17gs1oXaOl1sz5jW8/iJlEBoBAAC8gHurv1aLYx21ZECpJx8EzBf0c7WC+mZbjIp9F6jgUR9ZPyjA9hivatf0weozfK4OOZVT816DNbBrbRV8OCzAjtxdIa9WZ9R9cR8Vi/uPd2+LuhatpWkXMqnhryFa2irbEw+m5ku/qEbBHtpqKq5Bew5oRFn+tyLlGK/u0vTBfTR87iE5lWuuXoMHqmtty+icVMYcsU1DWw9XpNd8TaqXW3yNAFtHaAQAQBI4efKk+vTpY9l7OTNmzFCuXLkse7B5d5aq+XtNtfBmLnVYc0ozWSDGrpgigjRnyNfq67NPd3NVVNfJ/prY8F3LUftzZ017FW44W1ff+kq/nfRX4ydGxUlRi5rKrfli3crdWetO+ajmE1PX7IlBO3+oqg4LLilxZsq5qNqY3+XjaT3c4sqVK+rcubNl7+VMmDBBhQoVsuzhSSZFBM3RkK/7ymffXeWq2FWT/cer4bupYNiRhfHccvVqN10Z+8/VqJo5U9VbqdauXSsfHx/L3otzcXGRv7+/ZQ+2hNAIAIAkcPbsWY0aNcqy93JGjhyp7NmzW/Zg6wzbe6hI1ck6m7GBfj27Qq3fshyA7TNe0c7p36vfyHkKelBAdbr016DeLe14KuEdrWr7vhrNCVeONst18tf6enLFlGht7VpYNaedl4vnfJ1d2lxPZUp2xKRLATM174/IuBk2rywuNCreqJO+LGi9sEt4eLgGDRpk2Xs5AwcOlJubm2UPjzNe2anp3/fTyHlBelCgjrr0H6TeLT9SapnRe/vPX9Sh51aVnzBbfcrbb8UlJCAgQAsXLrTsvbiMGTPK29vbsgdbQmgEAABenjlKJ3buUEikKZEW4nSTe9WSym53X78adXS4u8r8cEAOn47TiW195Macg0RjuLxfAUEX9SAJ7lpNN49oxc+TtOiEiz73+lEj+7fSx/b+lHp3rToUaqBZV99S88WntcDzqdWFjQc15KOPNeyQo6p4n9SWHnlfeMSDOeqEdu4IUaQpUYb3KKObu6qWzJ6qRl6kLgZd3h+goIsPEn9NI5l088gK/TxpkU64fC6vH0eqf6uPU01YFFstitg2VC1/uKDWftPUolAiDevj+otkQmgEAABeXvRGdS5QR76XTJaGV+PgUld+p1erXTZLg70wX9IvNQqqx1ajivTfpeDR5XkLVKIx6sjwT1R2yH4ZkuKu1SGDCnzZW2PG9pdnkZd4g5ENMuz+ViU/m6CT6etrduhKtXlq1Jv5wmRVK9RT20yl9MO+IA0t/eLrGUVv7KwCdXyVOKXvIJe6fjq9up3srfRfG8YjGv5JWQ3Zb0iC0CiuDAvoy95jNLa/p1JJGVqYdGl1H7WZkk7f/jpKtZ5Yjf4Vcf1FMiE0AgAAr8QcfU/3Y+9ZX31miKMcndMoXRo7/Jrzpr/+4dZSy27lVPtVZ+RX56n1jK7/ppZNj6nXxmFiveGXYZYx2iCDyWzZfzWmixs1tGNXTT6cW63G+Wl8xzJ2PD3raWaFTaulfN02y1x2uA7uHayiT43YuLmwsdxaLNXtd7208eRUVXupgQ9mRd+7H/tInAhzwhwd5Zwmneyx9F8rZqOiDQYlThmadHHjUHXsOlmHc7fSOL/x6lgmtU3ZMuj0Qi+19y+kMfP7yz2zpfkx5jB/tWoVot7rh77UtYHrL5IDoREAAMDzMkcqyG+4vLdFq1KPkfJyj3/Iub2ytQp5zlPYG9U15dxGeeV4/MbbpNApddT43PfaNbaC7Ha94VTi7qFpatWglwKytNX0Rd5qVii1LVhu0olRFVRyUJDeaDBHYStaPbWe0QNt/mchefhckkvjBQpd3EzPeJYFktBdHZrWSg16BShL2+la5N1Mqa4M4/r9RZ3UfHZBTVw08JmBkcxhWtf1Cw3I4KP9EytxbYDNIkoEAAB4TobAYWrR1Vv+C6drxMzdio5rNIdr9fxNuiYHOWTMoZyZn7y9Ml9aph/mu6r3N+48FKQosyJ3/0v1a/VWULGR2hgwNRUGRnGclC1XDqV1kOK+G37622Hz+UWatvKSTA5p9GHlT/XUakdA0jJHave/6qtW7yAVG7lRAVNTY2AkRf4+UJ6dluhixEYNaFRXbQb8ohV7TivSGHfUrJvH12p008pqtrqI+vfiywTYNkIjAACA5xR9/ryummLk8GYxNWkcFwKZdHnlAE26841+6uAmp9vHdfi/D58KHjKFb9XAFt7KNGiSmubmtitFRQVp/pxg5Wg1U5uX9ZG7a+r9PFxrNVHNbA4y7N+u329bGmOZrm7RoK96aXW4WXIuqk8/y8HDAJJVVNB8zQnOoVYzN2tZH3elxjI0n18gr46rVHD0Zu3/Y4fW/dJYMSu+lWeF95XdNafyvZNVuYrX08A1Dmo2dbKav0sVwrYxPQ0AAOB53d6tUY1aaY5DHXWo56Z7RzZpU2g5DZszVNUz/qmf2rTUv04UU9t2nyvrtb1a8/t9fTF8igZXzy1epobkY9bVzcPVqfvPOpTnK3nVf0/3ju/RnnNZVbv0WQ0ds1l383XT5hO/qApDHIDEY76kec1qa1HlBVrWvfjfI4gMJ+eq3ZedtfBUtGLkoPTvVtU3U/00rE5escwdbB2hEQAAwAt5oMvB27X72DU5vvORqn5aSI9mpEXr6uE9+uPoVcXkKK4KFYsrO69RQ0oxhOno3v06evkv5SzxiT4ukkHr2xRU4/nXlbPdCp2cVVcZLacCSATmMO3ffkVun5XW208NIDJFHlXAvw8p6q0iqvBpGeVOjbNjkSoRGgEAkEweXAjUknmLtWnvYYWG3Vea7PmUv8AHKlu9iZp5FE2Vw/QBJLPbZ7Q3+IZylyunvBksbf9zY7GaF/lKC6/nU9dNRzSl6tMn4EXRrwMJeaALgUs0b/Em7T0cqrD7aZQ9X34V+KCsqjdpJo+irkyPtRN8TgAAJLko7ZvcVBW/HKq9adzVfsQsLV+/XNMH1FGOkDnqVbe0PqjQTQtDHi6rDAAvxRy+Wp3LFVWFz91Vqffm+IXa/2ZSyKxftDpCcq3eT30+JzB6NfTrQIKi9mly04r6cuhepXFvrxGzlmv98ukaUCeHQub0Ut3SH6hCt4WiPOwDI40AAEhSJoXObiLP1V9o9vxuKvn0XJDoYP1YqYKG7Y+Wc/42+i3QT41y8p0OgBd3199TOVsu1x29ocK9A/Sf8ZX0v9mRptCZavhxF613qiufwGXqkJ9Vtl4e/TqQIFOoZjfx1OovZmt+t5JWU2Cjg39UpQrDtD/aWfnb/KZAv0aiPGwbHw8AAEnJsE9TxqzRkW2j1a7TVB26Z2n/n7Ql1arxh3JWjP46u0DDpgTr0bu3AOD5OWV2Veac7mo71F8rhj4KjMzXt2tI877a6FhFI1bMITB6VfTrQIIM+6ZozJoj2ja6nTpNPSTr8milxh86SzF/6eyCYZoSTHXYOkIjAACS0u0jOhL6lwxRF3Vg8Tj57n16LLaTcuXLo3QOsZsxRoUcOKhb8QcA4IWkq9ZDvUtEK9zkoAc3oxQVFqKd879Xowr/0MJMXlqyZ50GuGe2nI2XRr8OJOj2kSMK/cugqIsHtHicr6zLI5fy5Umn+PII0YGDVIetIzQCACApuZRUmUJpH94cOWYpoTIF34hvf4zh/oO/v4V+I32Gv1/RCwAvJG1J9V61TN9kC5bvgPZq7TVUc/6TWU1nH9DRjaNU343eJVHQrwMJcilZRoXSPqwOZSlRRtblYdD9B39Xh9JnoDpsHWsaAQCQxEzhB7Vh2yllKuehygWent1v0B/9S6vS2OMyOmRQlUlHtLmnm5g8AgC2i34dSIhJ4Qc3aNupTCrnUVnW5fGH+peupLHHjXLIUEWTjmxWTzeqw5YRGgEAkJKMhzXMvax+/NMox3dba2nwLDV4m4HAAGC36NeBBBkPD5N72R/1p9FR77ZequBZDUR52DY+HgAAUoxZV1aO1cyDf0kZS6r7jLGqx50TANgx+nUgQeYrWjl2puLLo7tmjK1HYGQH+IgAAEgJpigdW9JXnl0WKjJ/A41cu0kTa2XnwgwA9op+HUiQKeqYlvT1VJeFkcrfYKTWbpqoWtmpDnvA9DQAAJKL6Zzme7XUxMArCr98QZejYpS9Ynd5+wxVs6IulpMAAHaDfh1IkOncfHm1nKjAK+G6fOGyomKyq2J3b/kMbSbKw34Q7QEAkFyc8qnljJ06cPSULkZcU+je+eqSZaXalS6gsq29tSvMZDkRAGAX6NeBBDnla6kZOw/o6KmLirgWqr3zuyjLynYqXaCsWnvvEuVhHxhpBABASjIcl7dHBfUJiFLaQq01a5Ofmr3HW0QAwG7RrwMJMhz3lkeFPgqISqtCrWdpk18zUR62jZFGAACkpDRF1Hlgc+VzitH9k/Pk1X6yjvPNGwDYL/p1IEFpinTWwOb55BRzXyfnean95OOiPGwboREAACkswyfVVck17pJs1s0dE+W95V78AQCAXaJfBxKSQZ9Ur6T48ripHRO9RXnYNkIjAACS1ANdCtqiLQevyGBpsZImv9zetYzNNl3R9i2H4rcBADaIfh1I0INLCtqyRQevJFgdseXhpkflsV1bDiV8LlIeoREAAEnFfFVLWheWW/nqqlGutBrNOP3sIdgOaZU+rWVbZkVdv27ZBgDYFPp1IEHmq0vUurCbylevoXKlG2nG6WdPPHNIm16PyiNK16+bLTuwRYRGAAAkFUOQ1m+6qL9ipBhThALW7dIdy6EnxNzSrb8POCnHO3ks2wAAm0K/DiTIELRemy7+pZjYP6aIAK3b9czqiC2PW4/qximH3snjbNmBLSI0AgAgqTjnUu4clvHXjq6qVN1db8bvPelOiE6cN8ZvO7upWq1i8dsAANtCvw4kyDlXbj0qj0qq7v7M6ogtjxN6VB7VVKsYoZEtIzQCACCpOJdWY8+SyvR+C03bdVBruheW5V7qCTf+vU6Bd2JitxyVtXZ/9XBPE38AAGBb6NeBBDmXbizPkpn0fotp2nVwjboXfmZ16N/rAhVfHllVu38PUR62jdAIAIAk46zS305Rv5zbNWXaeh2KsJ7bbw7fqCHDVijC7KAMRTvLb3pb5eXqDAA2in4dSJBzaX07pZ9ybp+iaesPybo8zArfOETDVkTI7JBBRTv7aXrbvIQSNs4hJpZlGwAAJIWoYPn19dKQddEqV7+halYuo4JZHXXt2FbNnjBVWy6nVzHPwZo2uZcqZePWCQBsHv06kKCoYD/19RqiddHlVL9hTVUuU1BZHa/p2NbZmjB1iy6nLybPwdM0uVclUR62j9AIAIBkcvfsdq1YtlE7g0N06cYDOblkU96in6hGo8aqXfLtZ05xAADYLvp1ICF3dXb7Ci3buFPBIZd044GTXLLlVdFPaqhR49oq+TbVYS8IjQAAAAAAAGCFwWAAAAAAAACwQmgEAAAAAAAAK4RGAAAAAAAAsEJoBAAAAAAAACuERgAAAAAAALBCaAQAAAAAAAArhEYAAAAAAACwQmgEAAAAAAAAK4RGAAAAAAAAsEJoBAAAAAAAACuERgAAAAAAALBCaAQAAAAAAAArhEYAAAAAAACwQmgEAAAAAAAAK4RGAAAAAAAAsEJoBAAAAAAAACuERgAAAAAAALBCaAQAAAAAAAArhEYAAAAAAACwQmgEAAAAAAAAK4RGAAAAAAAAsEJoBAAAAAAAACuERgAAAAAAALBCaAQAAAAAAAArhEYAAAAAAACwQmgEAAAAAAAAK4RGAAAAAAAAsEJoBAAAAAAAACuERgAAAAAAALBCaAQAAAAAAAArhEYAAAAAAACwQmgEAAAAAAAAK4RGAAAAAAAAsEJoBAAAAAAAgKdI/weuT+sPrEVU4gAAAABJRU5ErkJggg==
$$A: \R^2 \rightarrow \R^2, \quad A= \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$$
<$latex text="
\begin{aligned}
\|A\|_{1} &=& \sup\limits_{\|x\|=1} \|Ax\|_{1} \\
&=& 2+2\\
&=& 4.
\end{aligned}
" displayMode="true"></$latex>
<$details summary="Anwendung der 1-Norm" tiddler="Anwendung der 1-Norm">
{{Anwendung der 1-Norm}}
</$details>
Enthalte $$A$$ nur eine Zeile, d.h. $$A=a^{*}$$, wobei $$a$$ ein Spaltenvektor ist:
<$latex text="
\|Ax\|_{2} = |a^{*}x| \leq \|a\|_{2}\|x\|_{2}.
" displayMode="true"></$latex>
Für $x=a$ gilt:
<$latex text="
\|Aa\|_{2}=\|a\|_{2}^{2} \Rightarrow \|A\|_{2}= \sup_{x \neq 0}\left\{\frac{\|Ax\|_{2}}{\|x\|_{2}} \right\}=\|a\|_{2}.
" displayMode="true"></$latex>
Begrenzung von $$\|AB\|$$ in induzierter Matrixnorm:
<$latex text="
\|ABx\|_{l}\leq \|A\|_{(l,m)}\|Bx\|_{m} \leq \|A\|_{(l,m)}\|B\|_{(m,n)}\|x\|_n \\
\Rightarrow \|AB\|_{(l,n)} \leq \|A\|_{(l,m)} \|B\|_{(m,n)} \\
\quad \text{(wird im Allgemeinen nicht angenommen)}.
" displayMode="true"></$latex>
* Zufällige Wahl einer Richtung durch Drehung eines Glücksrades.
* In welche Richtung zeigt die Null?
* $$\textbf{Ergebnismenge}$$: $$\Omega=[0,2\pi)$$ (Drehwinkel)
* Aus Symmetriegründen wählt man als W-Raum: $$(\Omega,{\mathcal{B}}_\Omega^1,{\mathcal{U}}_\Omega)$$
* Wegen $$\lambda^1(\Omega)=2\pi$$ ist <$latex text="{\mathcal{U}}_\Omega(A)=\frac{\lambda^1(A)}{2\pi}" displayMode="true"></$latex>für jede Borel-Teilmenge $$A$$ von $$[0,2\pi)$$.
* $$n$$-maliger Wurf einer fairen Münze:\ $$\Omega=\{0,1\}^n$$, $$|\Omega|=2^n$$
* $$n$$-maliger Wurf eines fairen Würfels:\ $$\Omega=[1:6]^n$$, $$|\Omega|=6^n$$
* Zahlenlotto:\ $$\Omega=\{Z\mid Z\subset[1:49]\land |Z|=6\}$$, $$|\Omega|=\binom{49}{6} =\frac{49!}{43!\cdot 6!}$$
* Reihenfolge eines gut gemischten Skatblatts: $$\Omega=\{\pi\mid\pi \text{ ist Permutation von }$$[1:32]$$\}$$, $$|\Omega|=32!$$
''Beispiel: 1-zeilige Matrix:''
Sei $$f(x):= Ax+b$$, $$A$$ eine $$1-$$zeilige Matrix und $$b \in \mathbb{C}$$. Die durch $$Lh:= Ah$$
definierte lineare Abbildung erfüllt (8.1) ([[Definition: Differenzierbareit]]):
<$latex text="
\lim\limits_{h \rightarrow 0} \frac{A(x+h) + b - (Ax+b) - Ah}{\|h\|} = 0
\qquad \forall x \in \R^n.
" displayMode="true"></$latex>
$$f$$ ist also in jedem Punkt $$a$$ differenzierbar und es gilt
<$latex text="
\begin{aligned}
df_a h &= Ah \\ f'(a) &= A.
\end{aligned}
" displayMode="true"></$latex>
''Beispiel: symmetrische $$(n \times n)$$-Matrix:''
Sei $$f(x):= x^tAx$$, $$A = (a_{ik})$$ eine symmetrische $$(n \times n)$$-Matrix. Dann gilt:
<$latex text="
f(a+h)-f(a) = 2 a^t Ah + h^t Ah.
" displayMode="true"></$latex>
$$Lh:=2a^tAh$$ definiert eine lineare Abbildung mit $$R(h) = h^tAh$$.
Sei $$\sigma := \sum\limits_{i,k=1}^{n} |a_{ik}|$$.
Dann gilt $$|R(h)|=|h^tAh| \leq \sigma \|h\|_{\infty}^2$$ und damit
$$\lim\limits_{h \rightarrow 0} \dfrac{R(h)}{\|h\|_{\infty}} = 0$$.
$$f$$ ist also in jedem Punkt $$a$$ differenzierbar und es gilt
<$latex text="
df(a)h = 2a^tAh, \qquad f'(a)=2a^tA.
" displayMode="true"></$latex>
<<list-links "[tag[Beispiele für Stabilitäten]sort[scriptorder]]">>
Mit $$df(a)h = f'(a)h$$ und $$d^2f(a)h = h^tf''(a)h$$ ergibt sich:
<$latex text="
\begin{aligned}
T_2f(x;a) &= f(a) + f'(a)(x-a) + \frac{1}{2}(x-a)^tf''(a)(x-a) \\
&= f(a) + \sum\limits_{i=1}^{n} \partial_if(a)(x_i - a_i)
+ \frac{1}{2} \sum\limits_{i,j=1}^{n} \partial_{ij}f(a)(x_i - a_i)(x_j - a_j)
\end{aligned}
" displayMode="true"></$latex>
<$details summary="Beispiel (Rezept zur Berechung einer SVD)" tiddler="Beispiel (Rezept zur Berechung einer SVD)">
{{Beispiel (Rezept zur Berechung einer SVD)}}
</$details>
<$details summary="Beispiel Bildkompression" tiddler="Beispiel Bildkompressionl">
{{Beispiel Bildkompression}}
</$details>
<$details summary="Beispiel Bildkompression 2" tiddler="Beispiel Bildkompression 2">
{{Beispiel Bildkompression 2}}
</$details>
<$details summary="Beispiel Bildkompression 3" tiddler="Beispiel Bildkompression 3">
{{Beispiel Bildkompression 3}}
</$details>
* Sei $$\Omega=\R^n$$ und $${\mathcal{G}}:=\{\prod_{i=1}^n[a_i,b_i]:a_i,b_i\in\mathbb{Q}\land a_i<b_i\}$$ das System aller achsenparallelen kompakten Quader in $$\R^n$$ mit rationalen Endpunkten. Dann heißt <$latex text="{\mathcal{B}}^n:= \sigma({\mathcal{G}})"displayMode="true"></$latex> die ''Borelsche $$\sigma$$-Algebra'' auf $$\R^n$$ und jedes $$A\in{\mathcal{B}}^n$$ heißt eine ''Borel-Menge''.
* Jede offene Menge $$A\subset \mathbb{R}$$ und jede abgeschlossene Menge $$A\subset \mathbb{R}$$ ist Borelsch. (Bew. Üb.!)
* Die ''Borelsche $$\sigma$$-Algebra'' auf $$\R^n$$ wird außer von dem System $$\mathcal{G}$$ auch von den Systemen $$\mathcal{G}^\prime=\{]-\infty,c]: c\in \mathbb{R}\}$$ und $$\mathcal{G}^{\prime\prime}=\{[c,\infty[: c\in \mathbb{R}\}$$ erzeugt.
* ''Diskreter Fall'': Ist $$\mathcal{A}=\mathcal{P}(\Omega)$$, so ist $$\textcolor{blue}{jede}$$ Abbildung eine Zufallsvariable.
* ''Reellwertiger Fall'': Ist $$(\Omega',{\mathcal{A'}})=(\R,{\mathcal{B}})$$, so ist $$X:\Omega\to\R$$ bereits ZV, wenn alle Mengen $$\{X\le c\}$$ zu $${\mathcal{A}}$$ gehören. (Begründung: Sparversion!)
* $$\textbf{Stetiger Fall}$$: Stetige Funktionen $$X:\Omega\to\R$$, $$\Omega\subseteq\R^n$$, sind $$({\mathcal{B}}^n_\Omega,{\mathcal{B}})$$-messbar, also ZVs,denn für $$c\in\R$$ ist $$\{X\le c\}$$ als Urbild der abgeschlossenen Menge $$(-\infty,c]$$ selbst abgeschlossen in $$\Omega$$, gehört also zu $${\mathcal{B}}^n_\Omega$$.
** Hier haben wir folgende Charakterisierung der Stetigkeit benutzt: Eine Funktion ist genau dann stetig, wenn das Urbild jeder abgeschlossenen Menge wieder abgeschlossen ist.
Trotz der schönen Überlegungen dieses Kapitels, ist dies nicht wie in der Mathematik über Integrale nachgedacht wird.
Es gibt folgende Makel am sogenannten ''Riemann-Integral'':
* Integrale nur über Intervalle, nicht über (fast) beliebige Mengen
* Schwer / bis kaum Möglich Aussagen über die Vertauschbarkeit von Grenzwerten <$latex text="\lim\int\stackrel{?}{=}\int\lim" displayMode="true"></$latex> und dem Vertauschen von Integrationsreihenfolgen
* Viel zu starke Einschränkungen: Regelfunktionen sind eine zu starke Einschränkung für die Menge von integrierbaren Funktionen
Die heutige Mathematik befasst sich deshalb mit dem Lebesgue-Integral (und Verallgemeinerungen wie dem Lebesgue-Stieltjes-Integral), welches jedoch wesentlich schwerer zu Konstruieren ist. Da die Werte der Integrale übereinstimmen, solange beide existieren, reicht es hier jedoch als Einführung das Riemann-Integral zu betrachten. In Bereichen wie der Funktionalanalysis oder der Wahrscheinlichkeitstheorie, braucht man jedoch schnell die allgemeinere Theorie von Lebesgue-Integralen.
Bis jetzt wurden nur Integrale auf Intervallen der Form $$[a,b]$$ definiert.
Falls entweder nur $$a=-\infty$$ oder nur $$b=\infty$$, so betrachtet man einfach die Grenzwerte der entsprechenden Integrale.
Falls man über $$\R$$ integriert, so existiert das Integral nur, falls
<$latex text="\lim_{R\to\infty}\int_{-R}^0 f(t)dt" displayMode="true"></$latex>
und
<$latex text="\lim_{R\to\infty}\int_{0}^R f(t)dt" displayMode="true"></$latex>
existieren und endlich sind.
Analog definiert man
<$latex text="\int_{(a,b]}f(x)dx=\lim_{\epsilon\downarrow 0}\int_{a+\epsilon}^b f(x)dx." displayMode="true"></$latex>
Jede [[Verteilungsfunktion|Verteilungen]] $$p=p_X$$ ist monoton wachsend und rechtsstetig und hat das asymptotische Verhalten
<$latex text="\lim_{x\to -\infty}p_X(x)=0 \text{ und } \lim_{x\to \infty}p_X(x)=1." displayMode="true"></$latex>
Nicht jedes Wahrscheinlichkeitsmaß auf einer Borelmenge $$\Omega\subset{\mathbb{R}^n}$$ besitzt eine [[Dichtefunktion]];
andrerseits bestimmen zwei Wahrscheinlichkeitsdichten dasselbe Wahrscheinlichkeitsmaß, wenn sie sich nur auf einer Menge vom Lebesgue-Maß null unterscheiden.
So gilt z.B. $$\mathcal{U}_{]0,1[}=\mathcal{U}_{[0,1]}.$$
Im Fall $$n=2$$ hat man folgendes Kriterium:
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$ ist
| positiv definit | $$\Leftrightarrow$$ | det$$A$$ $$>0$$ und $$ a > 0$$ |
| negativ definit | $$\Leftrightarrow$$ | det$$A$$ $$>0$$ und $$ a < 0$$ |
| semidefinit | $$\Leftrightarrow$$ | det$$A \geq 0$$ |
| indefinit | $$\Leftrightarrow$$ | det$$A < 0$$ |
Sei $$f$$ wieder eine reelle $$\mathcal{C}^2$$-Funktion in einer Umgebung von $$a \in \R^n$$.
Ihr Graph heißt im Punkt $$(a,f(a))$$
| elliptisch | $$\Leftrightarrow$$ | $$f''(a)$$ ist (positiv oder negativ) definit |
| hyperbolisch | $$\Leftrightarrow$$ | $$f''(a)$$ ist nicht singulär und indefinit |
| parabolisch | $$\Leftrightarrow$$ | $$f''(a)$$ ist singulär und $$\neq 0$$ |
Ein hyperbolischer Punkt heißt auch //Sattelpunkt//.
$$T_1f(x;a)$$ ist die bereits in (8.7) ([[Tangentialhyperebene]]) eingeführte lineare Approximation.
Falls $$x$$ ein Eigenvektor ([[Eigenwert und Eigenvektor]]) ist, dann gilt
<$latex text="
r(x)= \frac{x^T A x}{x^T x} = \frac{\lambda x^T x}{x^T x} = \lambda
" displayMode="true"></$latex>
Die eindeutig bestimmte lineare Abbildung $$L$$ heißt //Differential// oder //Linearisierung// von $$f$$ im Punkt $$a$$ und wird mit $$df(a)$$ oder $$dfa$$ bezeichnet
(siehe Abbildung).
In alten Büchern wird das Differential auch als \textit{totales Differential} bezeichnet.
<$details summary="Abbildung" tiddler="Abbildung">
[img[diffbare_funktionen_differential.png]]
</$details>
Der Aufwand zur Berechnung einer Cholesky-Zerlegung ist um den Faktor 2 kleiner als der
Aufwand einer LU-Zerlegung. Die Cholesky-Zerlegung existiert jedoch nur für hermitesche
positiv-definite Matrizen, die LU-Zerlegung (mit Pivotisierung) existiert für jede
quadratische Matrix.
*Wir können $$m$$ auf den Bereich $$\beta ^{t-1} \leq m \leq \beta ^{t} -1$$ beschränken und damit die Wahl von $$m$$ eindeutig machen.
*Der Term $$\left ( \pm \frac{m}{\beta ^t} \right )$$ heißt //Mantisse//, $$e$$ heißt //Exponent//.
*Relative Genauigkeit bei //single precision//: $$ 2^{-24} \approx 5,96 \times 10^{-8}\\$$ Relative Genauigkeit bei //double precision//: $$2^{-53} \approx 1,11 \times 10^{-16}$$
Das charakteristische Polynom der $$m\times m$$ Matrix
<$latex text="
M =
\begin{pmatrix}
{\color{blue} 0} & \dots & 0 & -a_0\\
1 & {\color{blue} \ddots} &\vdots & \vdots\\
& \ddots & {\color{blue} 0} & -a_{m-2}\\
0 & & 1 & {\color{blue} -a_{m-1}}
\end{pmatrix}
" displayMode="true"></$latex>
ist
<$latex text="
p(z) = a_0 + a_1 z + ... + a_{m-1}z^{m-1} + z^m
" displayMode="true"></$latex>
Ist umgekehrt $$p$$ ein beliebiges monisches Polynom vom Grad $$m$$ mit den Koeffizienten $$a_0,\cdots, a_{m-1}$$, dann nennt man die Matrix $$M$$ die ''Frobenius Begleitmatrix'' von $$p$$.
Die Konditionszahlen beschreiben die Verstärkung des absoluten bzw. relativen Fehlers.
Ein Problem heißt //schlecht konditioniert//, falls eine der beiden Konditionszahlen deutlich größer als 1 ist.
Ansonsten heißt es //gut konditioniert//.
In diesem Beispiel ist $$f_{xy} = f_{yx}$$. Im Allgemeinen ist jedoch $$\partial_{ij}f \neq \partial_{ji}f$$.
Es kann sogar vorkommen, dass nur eine der partiellen Ableitungen $$\partial_{ij}f$$ oder $$\partial_{ji}f$$ existiert.
Dies ist jedoch nicht der Fall, wenn eine der partiellen Ableitungen $$\partial_{ij}f$$ oder $$\partial_{ji}f$$ stetig ist.
Der Algorithmus: Householder QR-Zerlegung berechnet die obere Dreiecksmatrix $$R$$
der Faktorisierung $$A=QR$$. $$Q$$ selbst wird nicht explizit berechnet.
Der Grund dafür ist, dass die Berechnung von $$Q$$ zusätzlichen Aufwand bedeuten würde,
der meist nicht unbedingt notwendig ist.
*Der Aufwand zur Berechnung der LU-Zerlegung mit $$\frac{2}{3}m^{3}$$ Operationen ist um den Faktor 2 kleiner als der Aufwand der QR-Zerlegung, die $$\frac{4}{3}m^{3}$$ Operationen benötigt. Aber die QR Zerlegung ist stabiler und daher bekannter.
*$$Ax=b$$ kann durch eine $$LU$$-Zerlegung gelöst werden. <$latex text="
\begin{aligned}
LUx & = b \\
Ly & = b \qquad \text{Forward Substitution } (\approx m^2 \text{Operationen})\\
Ux & = y \qquad \text{Back Substitution } (\approx m^2 \text{Operationen})
\end{aligned}
" displayMode="true"></$latex>
Falls $$\| \cdot \| _M$$ durch eine Vektornorm induziert wird, kann man Beispiele für $$b$$ und $$Ab$$ konstruieren,
für die in ([[Einleitung: Kondition einer Matrix]] (5.7)) Gleichheit herrscht.
Für eine Matrix $$A \in\mathbb{C}^{m \times n}$$, $$m \geq n$$, mit vollem Rang wird die Kondition mit
Hilfe der //Pseudoinversen// definiert:
<$latex text="
K(A) = \| A \| \| A^+ \|.
" displayMode="true"></$latex>
Für die $$\| \cdot \|_2$$ gilt in diesem Fall
<$latex text="
K(A) = \frac{\sigma_1}{\sigma_n}.
" displayMode="true"></$latex>
Falls $$\| \cdot \| _M = \| \cdot \| _2$$ und $$A$$ nicht singulär ist, gilt wegen
$$\| A \|_2 = \| U \Sigma V^* \|_2 = \| \Sigma \|_2$$ insbesondere $$\| A \| _2 = \sigma _1$$
und $$\| A^{-1} \| _2 = \frac{1}{\sigma _n}$$ und daher $$K(A) = \frac{\sigma_1}{\sigma_n}$$.
$${\small \epsilon=\frac{1}{K(A)}\sqrt{K(A)^2-1}}$$ kann als Exzentrizität der Ellipse, die das Bild der Einheitskugel unter $$A$$ ist, interpretiert werden.
Dieses Ergebnis ist allerdings mit Vorsicht zu genießen. Idealerweise
würde das Verfahren garantiert zu einem globalen Minimum von $$\|f(x)\|_{2}$$
konvergieren. Das ist aber nicht der Fall. Der obige Satz garantiert
noch nichtmal, dass die Folge $$x^{(k)}$$ überhaupt konvergiert. Wenn
sie konvergiert garantiert der Satz lediglich, dass der Grenzwert
ein kritischer Punkt ist. In vielen (aber nicht allen) Fällen wird
der Grenzwert ein lokales Minimum sein. Auch hier sollte man also
nach Möglichkeit eine Initialisierung $$x^{(0)}$$ wählen, die nahe
an dem gesuchten globalen Minimium liegt.
Darüber hinaus sagt der Satz nichts über die Konvergenzordnung des
Verfahrens aus. In der Praxis erweist sich das Levenberg-Marquardt-Verfahren
in dieser Hinischt aber als vergleichsweise gut.
Die Householder-Transformation ist unter der $$\| \cdot \|_2$$ invariant:
<$latex text="
\|Hx\|_2^2 = (Hx)^{*}Hx = x^{*}H^{*}Hx = x^{*}x = \|x\|_2^2
" displayMode="true"></$latex>
Das Heronverfahren $$(\nu = 2, \nu = 3)$$ ist für jede $$\nu$$-te Wurzel von $$a \in \mathbb{C}$$ lokal konvergent.
*Der genaue Wert von $$\varepsilon_{M}$$ ist rechnerabhängig. In der Regel ist $$\varepsilon_{M} = 2^{-d}$$ für ein $$d > 0$$.
*Die Gleichung (5.10) [[Modellierung der Rechenarithmetik]] wird falsch, wenn eine von Null verschiedene Zahl $$x$$ auf Null gerundet wird. Diese Situation nennt man //Underflow//. $$\\$$ Ähnlich spricht man von //Overflow//, wenn das Rechenergebnis größer als die darstellbaren Zahlen wird (also über den gegebenen Zahlenbereich hinausreicht).$$\\$$ Sofern weder Overflow noch Underflow auftreten, ist der relative Rundungsfehler nach diesem Modell beschränkt durch <$latex text="
\frac{| \Box x - x |}{| x |} \leq \varepsilon_{M}. \qquad (5.11)
" displayMode="true"></$latex>
*Es gilt: $$P_{i,j}^2 = I.\\$$ (Dies entspricht einem zweimaligen Vertauschen der gleichen Zeilen)$$\\$$
*Multiplikation einer Matrix $$A$$ mit einer Permutationsmatrix von links vertauscht Zeilen.$$\\$$
*Multiplikation einer Matrix $$A$$ mit einer Permutationsmatrix von rechts vertauscht Spalten.
Sei $$v \in \mathbb{C}^n, P \in \mathbb{C}^{n \times n}$$.
# Falls $$\nu \in Bild(P)$$, so gilt $$P\nu=\nu$$.
# Sei $$\nu \in \mathbb{C}^n$$. Dann liegt $$P\nu-\nu \in Kern(P)$$.Denn:$$\\ P(P\nu - \nu) = P^2\nu - P\nu = P\nu - P\nu = 0.$$
<$details summary="Beispiel einer
Projektion: " tiddler="Beispiel einer
Projektion">
[img[qr_projektion.png]]
</$details>
Eine (quadratische) Matrix $$A$$ heißt //idempotent//, wenn gilt: $$A^2 = A$$.
Ein Gleichungssystem kann wie folgt gelöst werden
<$latex text="
\begin{aligned}
\text{Gegeben: }& A \in \mathbb{C}^{m \times m}, A \text{ nicht singulär, und }b \in \mathbb{C}^{m} \\
\text{Gesucht: }& x \text{ mit } Ax=b\\
\text{Lösung: } & \text{QR-Faktorisierung}\\
& \text{(i) Berechne die QR-Faktorisierung } A=QR :\\
& \qquad Ax=QRx=b \Leftrightarrow Rx=Q^{*}b\\
& \text{(ii) } Rx=Q^{*}b \text{ wird einfach durch Rücksubstitution gelöst.}
\end{aligned}
" displayMode="true"></$latex>
$$T_pf(x;a)$$ stellt also ein Polynom eines Grades $$\leq p$$ dar, welches $$f$$ in der
Nähe von $$a$$ derart gut approximiert, dass der Fehler $$f(x) - T_pf(x;a)$$ für $$x \rightarrow a$$
schneller gegen Null geht als $$\|x-a\|^p$$.
Für die Ableitungen in Satz (8.1.2)([[Definition: Differenzierbareit]]) gelten also
dieselben Regeln wie im Fall $$n=1$$:
<$latex text="
\begin{aligned}
(f+g)'(a) =& f'(a) + g'(a) \\
(f \cdot g)'(a) =& f'(a) \cdot g(a) + g'(a) \cdot f(a) \\
\left( \frac{1}{f} \right)' (a) =& - \frac{f'(a)}{f^2(a)}
\end{aligned}
" displayMode="true"></$latex>
$$A$$ und $$T$$ besitzen dasselbe charakteristische Polynom, dieselben Eigenwerte $$\lambda$$
und die gleichen algebraischen und geometrischen Multiplizitäten:
<$latex text="
\begin{aligned}
p_A(z) &=\det(QTQ^*-zI) = \det(Q(T-zI)Q^*)\\
& = \det(Q)\det(T-zI)\det(Q^*) = \det(T-zI) = p_T(z)
\end{aligned}
" displayMode="true"></$latex>
Damit müssen die Eigenwerte von $$A$$ notwendigerweise auf der Diagonalen von $$T$$ erscheinen
($$\det(Q)\det(Q^*)=|\det(Q)|^2=1$$).
Die Schmiegequadrik hat im Punkt $$(a,f(a))$$ dieselbe Tangentialhyperebene wie der Graph
und auch dieselbe Krümmung, wie in der Differentialgeometrie gezeigt wird.
Im Fall $$n=2$$ kann man durch Koordinatentransformation jede Schmiegequadrik in eine
der folgenden Normalformen bringen:
<$latex text="
\begin{aligned}
(E) \ z =& \pm (x^2 + y^2) \qquad \text{elliptisches Paraboloid} \\
(H) \ z =& x^2 - y^2 \qquad \qquad \text {hyperbolisches Paraboloid} \\
(P) \ z =& \pm x^2 \qquad \qquad \text{ parabolischer Zylinder}
\end{aligned}
" displayMode="true"></$latex>
Eine Transformation in eine der Formen $$(E), (H), (P)$$ ist genau dann möglich,
wenn die Hesse-Matrix $$f''(a)$$ definit, indefinit bzw. singulär, aber $$\neq 0$$ ist.
Die meisten Algorithmen zur Eigenwertberechnung versuchen eine Schur-Faktorisierung zu bestimmen, indem eine Folge elementarer unitärer Ähnlichkeitstransformationen
<$latex text="
X \mapsto Q_j^* X Q_j
" displayMode="true"></$latex>
durchgeführt wird, s.d.
<$latex text="
Q_j^* ... Q_2^* Q_1^* A Q_1 Q_2 ... Q_j
" displayMode="true"></$latex>
gegen eine obere Dreiecksmatrix konvergiert.
Falls $$A$$ hermitesch
ist, dann ist $$...Q_j^* ... Q_2^* Q_1^* A Q_1 Q_2 ... Q_j...$$ ebenfalls hermitesch und daher diagonal.
Man kann also dieselben Algorithmen anwenden.
Statt $$x^{*}y$$ schreiben wir auch $$\langle x,y \rangle$$ oder $$\langle x|y \rangle$$.
In (8.1) ist es gleichgültig, welche Norm verwendet wird,
da alle Normen auf $$\R^n$$ zueinander äquivalent sind.
Wir können unter anderem folgende Beobachtungen machen:
*$$I-P$$ projiziert auf $$Kern(P)$$, d.h. $$Bild(I-P) = Kern(P)$$.
*Es gilt: $$Kern(I-P) = Bild(P)$$.
*Es ist $$Kern(I-P)\cap Kern(P) = \{0\}$$ (und damit auch $$Bild(I-P) \cap Bild(P) = \{0\}$$).
<$details summary="Beweis der Beobachtungen zu komplementären Matrizen" tiddler="Beweis der Beobachtungen zu komplementären Matrizen">
{{Beweis der Beobachtungen zu komplementären Matrizen}}
</$details>
<$details summary="Innere direkte Summe" tiddler="Innere direkte Summe">
Sei $$(U_i)_{i \in I}$$ eine Familie von Untervektorräumen eines Vektrorraums $$V$$.
$$V = \sum\limits_{i \in I} U_i$$ heißt //innere direkte Summe//, wenn $$\forall j \in I$$ gilt:
$$U_j \cap \sum\limits_{i \in I \backslash \{ j \} } U_i = \{ 0 \}$$.
Im Spezialfall $$U_1 \oplus U_2 = V$$ ennt man $$U_1$$ und $$U_2$$ ''zueinander komplementär'':
<$latex text="
\begin{aligned}
U_1 \oplus U_2 &= V \\
\Leftrightarrow \quad U_1 + U_2 &= V\\
\wedge \quad U_1 \cap U_2 &= \{ 0 \}.\\
\end{aligned}
" displayMode="true"></$latex>
</$details>
Wir haben also gezeigt, dass eine Projektion den $$\mathbb{C}^n$$ in zwei Teilräume teilt.
Sind umgekehrt $$S_{1},S_{2}$$ zwei Teilräume des $$\mathbb{C}^n$$ mit $$S_1 \cap S_2 = \{0\}$$ und
$$S_1 \oplus S_2 = \mathbb{C}^n$$. Dann gibt es eine Projektion $$P$$, sodass
<$latex text="
Bild(P) = S_1 \qquad und \qquad Kern(P) = S_2.
" displayMode="true"></$latex>
$$P$$ heißt dann Projektion auf $$S_1$$ entlang $$S_2$$.
Die SVD $$A = U \Sigma V^*$$ einer $$(m \times n)$$-Matrix $$A$$, $$m \geq n$$, lässt sich aus
einer Eigenwertzerlegung von $$A^*A$$ berechnen:
<$latex text="
A^*A = V \Sigma^* \Sigma V^* \qquad (7.6)
" displayMode="true"></$latex>
Man kann also die SVD einer Matrix wie folgt bestimmen:
#Berechne $$A^*A$$.
#Berechne die Eigenwertzerlegung von $$A^*A = V \Lambda V^*$$.
#Sei $$\Sigma$$ die $$(m \times n)$$ nicht-diagonale Wurzel von $$\Lambda$$.
#Löse das LGS $$U\Sigma = AV$$ für eine unitäre Matrix $$U$$ (z.B. durch eine QR-Faktorisierung).
__Problem__: Instabilität des Algorithmus:
#Falls $$A^*A$$ und $$\delta B$$ gestört werden, so sind Änderungen der Eigenwerte durch die 2-Norm von $$\delta B$$ beschränkt: <$latex text="
|\lambda_k (A^*A+\delta B) - \lambda_k (A^*A)| \leq \| \delta B \|_2.
" displayMode="true"></$latex>
#Ähnliches gilt für die Singulärwerte: <$latex text="
|\sigma_k (A+ \delta A) - \sigma_k A| \leq \| \delta A \|_2.
" displayMode="true"></$latex>
Ein rückwärts-stabiler Algorithmus zur Berechnung der Singulärwerte $$\tilde{\sigma}_k$$ erfüllt
<$latex text="
\begin{aligned}
\tilde{\sigma}_k &= \sigma_k (A+\delta A), \qquad \frac{\| \delta A\|}{\|A\|} = O(\varepsilon_M)\\
\Rightarrow \quad |\tilde{\sigma}_k - \sigma_k | &= O(\varepsilon_M \cdot \|A\|)
\end{aligned}
" displayMode="true"></$latex>
Es gilt für die Berechnung von $$\lambda_k (A^*A)$$:
<$latex text="
\begin{aligned}
|\tilde{\lambda}_k - \lambda_k| = & O(\varepsilon_M \cdot \|A^*A\|) &= O(\varepsilon_M \cdot \|A\|^2)\\
\Rightarrow \qquad |\tilde{\sigma}_k - \sigma_k| &=
O\left(\frac{|\tilde{\lambda}_k - \lambda_k|}{\sqrt{\lambda_k}} \right) = & O\left(\varepsilon_M \cdot \frac{\|A\|^2}{\sigma_k} \right)
\end{aligned}
" displayMode="true"></$latex>
Dies stellt kein Problem dar für dominante Singulärwerte mit $$\sigma_1 \approx \|A\|$$,
ist jedoch problematisch für $$\sigma_k \ll \|A\|$$.
Angenommen, $$A$$ ist quadratisch $$(m=n)$$. Betrachte die hermitesche Matrix
<$latex text="
H= \begin{pmatrix} 0 & A^* \\ A & 0 \end{pmatrix}.
" displayMode="true"></$latex>
Wegen $$A=U \Sigma V^* \quad \Leftrightarrow \quad AV = U \Sigma \quad \Leftrightarrow \quad A^*U = V \Sigma^* = V \Sigma$$
erhält man folgende Eigenwertzerlegung von $$H$$:
<$latex text="
\begin{pmatrix} 0 & A^* \\ A & 0 \end{pmatrix}
\begin{pmatrix} V & V \\ U & -U \end{pmatrix}
= \begin{pmatrix} V & V \\ U & -U \end{pmatrix}
\begin{pmatrix} \Sigma & 0 \\ 0 & -\Sigma \end{pmatrix}.
" displayMode="true"></$latex>
D.h. die Singulärwerte von $$A$$ sind die Absolutwerte der Eigenwerte von $$H$$ und
die Singulärvektoren von $$A$$ können aus den Eigenvektoren von $$H$$ entnommen werden.
Im Gegensatz zur Berechnung der \EWZ von $$A^*A$$ oder $$AA^*$$ ist dieser Ansatz rückwärts-stabil.
Die Standard-Algorithmen zur Berechnung der SVD basieren daher auf dieser Idee.
(Für Beispiele siehe Lloyd N. Trefethen and David Bau III. Numerical Linear Algebra. Society for Industrial and Applied
Mathematics, Philadelphia, 1997.
Kapitel 31.)
Hierbei handelt es sich um folgende gewichtete Version geordneter Stichproben mit Zurücklegen,\ das auf einen Spezialfall von Produktmaßen hinausläuft:
* Es gibt nur zwei Farben: $$F=\{0,1\}$$,\ wobei $$\textcolor{blue}{1}$$ als $$\textcolor{blue}{\text{Erfolg}}$$ und $$\textcolor{red}{0}$$ als $$\textcolor{red}{\text{Misserfolg}}$$ interpretiert wird.
* Die Erfolgswahrscheinlichkeit wird mit $$\textcolor{blue}{p}$$, die Misserfolgswahrscheinlichkeit mit $$\textcolor{red}{q=1-p}$$ bezeichnet.
* Die Wahrscheinlichkeit für die Stichprobenfolge
$$\omega=(\omega_1,\ldots,\omega_n)$$ ist <$latex text="\textcolor{blue}{p^k}\cdot \textcolor{red}{q^{n-k}}," displayMode="true"></$latex> wenn in $$\omega$$ genau $$\textcolor{blue}{k}$$-mal eine Eins vorkommt.
Diese Verteilung auf $$\{0,1\}^n$$ heißt ''Bernoulli-Verteilung'' für $$n$$ Alternativ-Versuche mit Erfolgswahrscheinlichkeit $$p$$.
Es sei $$r\in\N$$ und $$r\subset\R^r$$. Ein Punkt $$a\in\R^r$$ heißt ''Berührungspunkt'' von $$D$$, wenn es mindestens eine Folge $$(a_n)\in D^\N$$ gibt, derart, dass $$\lim_{n\to\infty} a_n = a$$ gilt.
Teil 3. zu [[Vertiefung: QR-Verfahrens]]:
<$details summary="Teil 3 " tiddler="1.">
Nach der vorangehenden Argumentation ist $$e_n$$ ein Näherungsvektor der letzten Spalte von $$A_k.\\$$
Bilden wir also den Rayleigh-Quotienten $$\mu_k = e_n^* A_k e_n$$ (rechtes unteres Element von $$A_k $$)
und führen einen Schritt der inversen Iteration bzgl. des linken Eigenvektors aus, so ergibt dies
<$latex text="
e_n^* \underbrace{(\underbrace{A_k - \mu_k I}_{Q_k R_k })^{-1}}_{R_k^{-1} \underbrace{Q_k^{-1}}_{Q_k^*}}
= e_n^* R_k^{-1} Q_k^* = \frac{1}{r_{nn}^{(k)}} e_n^* Q_k^* = \frac{1}{r_{nn}^{(k)}} q_n^{(k)*},
" displayMode="true"></$latex>
wobei $$r_{nn}^{(k)}$$ das rechte untere Element von $$R_k$$ und $$q_n^{(k)}$$ die hinterste Spalte von $$Q_k$$ bezeichnet.
(__Beachte__: $$R_k^{-1}$$ ist wieder eine Dreiecksmatrix, deren Diagonaleinträge die Kehrwerte
der entsprechenden Diagonaleinträge von $$R_k$$ sind.)
</$details>
__Mit anderen Worten__: Ein Schritt der Rayleigh-Quotienten-Iteration ergibt gerade die hinterste
Spalte von $$Q_k$$ als neue Näherung an den linken Eigenvektor von $$A_k$$ zu $$\lambda_n. \\$$
Darüber hinaus erkennt man aus Lemma [[Beweis: Lemma: QR-Verfahren]] Teil (1) sofort,
dass das rechte untere Element von $$A_{k+1}$$ der zugehöhrige Rayleigh-Quotient, also der nächste
//Shift// $$\mu_{k+1}$$ aus der Rayleigh-Quotienten-Iteration ist:
<$latex text="
\mu_{k+1} = q_n^{(k)*} A_k q_n^{(k)} = e_n^* \underbrace{Q_k^* A_k Q_k}_{A_{k+1}} e_n = e_n^* A_{k+1} e_n
" displayMode="true"></$latex>
Wählt man also als //Shift// $$\mu_k$$ in Gleichung (7.2) in [[Einleitung: QR-Verfahren]] das $$(n,n)$$-te Element von $$A_k$$,
dann darf man wie bei der Rayleigh-Quotienten-Iteration quadratische oder gar kubische Konvergenz dieser
Elemente gegen den kleinsten Eigenwert $$\lambda_n$$ von $$A$$ erwarten.
//Shifts// dienen also der Konvergenz-Beschleunigung des QR-Verfahrens.
!! Definition
Sei $$(a_n)\in\R^\N$$, dann heißt $$(a_n)$$
# ''nach oben beschränkt'', wenn es ein $$K\in\R$$ gibt, s.d. $$a_n\leq K$$ für alle $$n\in \N$$
# ''nach untenbeschränkt'', wenn es ein $$K\in\R$$ gibt, s.d. $$a_n\geq K$$ für alle $$n\in \N$$
#''beschränkt'', wenn es ein $$K\in\R$$ gibt, s.d. $$|a_n|\leq K$$ für alle $$n\in \N$$
Es sei $$D\in\R^r,f:D\to\R$$.
# $$f$$ heißt ''nach oben beschränkt'', wenn es ein $$M\in\R$$ gibt mit $$\forall x\in D:f(x)\leq M$$
# $$f$$ heißt ''nach unten beschränkt'', wenn es ein $$M\in\R$$ gibt mit $$\forall x\in D:f(x)\geq M$$
# $$f$$ heißt ''beschränkt'', wenn $$f$$ von oben und unten beschränkt ist
# Ein Punkt $$x_0\in D$$ heißt ''Maximalstelle'' von $$f$$, wenn $$\forall x\in D: f(x)\leq f(x_0)$$ gilt
# Ein Punkt $$x_0\in D$$ heißt ''Minimalstelle'' von $$f$$, wenn $$\forall x\in D: f(x)\geq f(x_0)$$ gilt
# Ein Punkt $$x_0\in D$$ heißt ''Extremstelle'' von $$f$$, wenn $$x_0$$ entweder eine Minimal- oder eine Maximalstelle ist. Man nennt $$f(x_0)$$ auch ein Extremum.
!! Definition
Sei $$(a_n)\in\R^\N$$.
# $$(a_n)$$ divergiert bestimmt gegen $$+\infty$$, wenn <$latex text="\forall M>0\exists n_0\in\N\forall n\geq n_0: a_n>M" displayMode="true"></$latex>
# $$(a_n)$$ divergiert bestimmt gegen $$-\infty$$, wenn <$latex text="\forall M<0\exists n_0\in\N\forall n\geq n_0: a_n<M" displayMode="true"></$latex>
Es sei $$f:[a,b]\to\R$$ eine [[Regelfunktion|Regelfunktionen]] und $$(\varphi_n)$$ eine Folge von [[Treppenfunktionen|Zerlegungen und Treppenfunktionen]], die gleichmäßig gegen $$f$$ konvergiert. Wir setzten
<$latex text="\int_a^bf(x)dx\coloneqq\lim_{n\to\infty}\int_a^b\varphi_n(x)dx" displayMode="true"></$latex>
und nennen dies das ''(bestimmte) Integral'' über $$f(x)$$ von $$a$$ nach $$b$$.
Wir setzen
<$latex text="\int_a^a f(x)dx=0" displayMode="true"></$latex>
und
<$latex text="\int_a^bf(x)dx=-\int_b^a f(x)dx." displayMode="true"></$latex>
Sei $$A\in M(n,K)$$ invertierbar und $$L_1\cdot L_r \cdot A=I_n$$ nach [[Invertierbare Matrizen als Produkt von Elementarmatrizen]] , also gilt
$$A^{-1}=L_1\cdot\dots\cdot L_r$$.
*Z.z.: $$Bild(I-P) = Kern(P)$$:
**Es gilt zum einen die Mengeninklusion $$Bild(I-P)\supseteq Kern(P)$$, denn:$$\\ \forall v \in Kern(P): \quad v = Iv - \underbrace{Pv}_{=0} = (I-P)v \quad \in Bild(I-P)$$.
**Zum anderen gilt aber auch die Inklusion $$Bild(I-P)\subseteq Kern(P)$$, denn:$$\\ \forall v \in Bild(I-P): \quad (I-P)v = v - Pv \quad \in Kern(P)$$.
*Z.z.: $$Kern(I-P) = Bild(P)$$: Da $$(I-P)$$ eine Projektionsmatrix ist ([[Komplementäre Projektionsmatrix]]), folgt:$$Kern(I-P) = Bild(I-(I-P)) = Bild(P)$$.
*Z.z. $$Kern(I-P)\cap Kern(P) = \{0\}$$: Es gilt $$\forall v \in Kern(I-P) \cap Kern(P)$$: $$0 = (I-P)v = v - \underbrace{Pv}_{=0} = v.$$
Für $$N=1$$ ist die Behauptung trivialerweise richtig. Sei also $$N\ge 2$$.
Wir betrachten für festes $$j\in[1:N]$$ die Folge der Minima und Maxima in den $$j$$-ten Spalten der Matrizen $$\Pi,\Pi^2,\Pi^3,\ldots$$.
Dazu sei $$\Pi^n=:(\pi_{ij}^{(n)})$$ und
<$latex text="\textcolor{blue}{m_j^{(n)}:=\min_i \pi_{ij}^{(n)}}\quad\text{sowie}\quad \textcolor{blue}{M_j^{(n)}:=\max_i \pi_{ij}^{(n)}}." displayMode="true"></$latex>
!! Schritt 1:
Bei festem $$j$$ ist die Folge $$(m_j^{(n)})_{n\ge 1}$$ monoton steigend und die Folge $$(M_j^{(n)})_{n\ge 1}$$ monoton fallend.
Zunächst gilt für $$(i,j)\in[1:N]^2$$ und alle $$a,b\in\N$$ die Formel
<$latex text="
\pi_{ij}^{(a+b)}=\sum_{\ell=1}^N\pi_{i\ell}^{(a)}\pi_{\ell j}^{(b)}." displayMode="true"></$latex>
[Benutze $$\Pi^{a+b}=\Pi^a\cdot \Pi^b$$ und die Definition $$\Pi^n=:(\pi_{ij}^{(n)})$$.]
Damit ergeben sich aus der Zeilenstochastizität von $$\Pi$$ folgende Monotoniebeziehungen:
<$latex text="m_j^{(n+1)}=\min_i \sum_{\ell=1}^N \pi_{i\ell}\pi_{\ell j}^{(n)}\ge\min_i\sum_{\ell=1}^N \pi_{i\ell}m_j^{(n)}=m_j^{(n)}" displayMode="true"></$latex>
und analog <$latex text="M_j^{(n+1)}=\max_i \sum_{\ell=1}^N \pi_{i\ell}\pi_{\ell j}^{(n)}\le\max_i \sum_\ell \pi_{i\ell}M_j^{(n)}=M_j^{(n)}." displayMode="true"></$latex>
Also ist die Minima-Folge $$(m_j^{(n)})_{n\ge 1}$$ monoton steigend, während umgekehrt die Maxima-Folge $$(M_j^{(n)})_{n\ge 1}$$ monoton fallend ist.
Im ''nächsten Schritt'' betrachten wir die Teilfolge $$(\Pi^{\lambda L})_{\lambda\ge 1}$$ und zeigen, dass für jeden Spaltenindex $$j$$ die Minima und Maxima in den $$j$$-ten Spalten gegen denselben Wert $$\rho_j$$ konvergieren: <$latex text="\textcolor{blue}{\lim_{\lambda\to\infty}m_j^{(\lambda L)}=\lim_{\lambda\to\infty}M_j^{(\lambda L)}}." displayMode="true"></$latex>
!! Schritt 2
Es gibt ein $$\delta\in(0,1)$$ mit $$M_j^{(\lambda L)}-m_j^{(\lambda L)}\le(1-\delta)^\lambda$$,\ für alle $$\lambda\in\Z_{\ge 1}$$.
[Daraus folgt dann $$\lim_{n\to\infty} m_j^{(n)}=\lim_{n\to\infty} M_j^{(n)}=:\rho_j$$, womit (1) bewiesen wäre.]
Es sei $$\textcolor{blue}{\delta:=\min_{(i,j)}\pi_{ij}^{(L)}}$$. Da alle $$\pi_{ij}^{(L)}$$ positiv sind und $$\Pi^L$$ wieder zeilenstochastisch ist (Übung!), gilt zusammen mit $$N\ge 2$$:
<$latex text=" \forall (i,j)\colon\quad 0<\delta\le \pi_{ij}^{(L)}<1." displayMode="true"></$latex>
Insbesondere gilt für alle $$j$$ stets $$m_j^{(L)}\ge\delta$$. Für Zeilenindizes $$h,i\in[1:N]$$ seien <$latex text="\textcolor{blue}{I^+(h,i):=\{k\mid \pi_{hk}^{(L)}\ge \pi_{ik}^{(L)}\}}\quad\text{und}\quad \textcolor{blue}{I^-(h,i):=[1:N]\setminus I^+(h,i)}." displayMode="true"></$latex>
Damit gilt (nach getrennter Zusammenfassung der positiven bzw. negativen Summanden und wegen $$[1:N]=I^+(h,i)\sqcup I^-(h,i)$$):
<$latex text=" \underbrace{\sum_{k\in I^+(h,i)}(\textcolor{blue}{\pi_{hk}^{(L)}}- \textcolor{red}{\pi_{ik}^{(L)}})}_{=:A}+\underbrace{\sum_{k\in I^-(h,i)}(\textcolor{blue}{\pi_{hk}^{(L)}}-
\textcolor{red}{\pi_{ik}^{(L)}})}_{=:B}
=\textcolor{blue}{1}-\textcolor{red}{1}=0." displayMode="true"></$latex>
Ist nun für festes $$n$$ und $$j$$ das Indexpaar $$(h,i)$$ so gewählt, dass
<$latex text="M_j^{(n+L)}=\pi_{hj}^{(n+L)}\quad\text{und}\quad m_j^{(n+L)}=\pi_{ij}^{(n+L)}," displayMode="true"></$latex>
so ist
<$latex text="\begin{aligned}
M_j^{(n+L)}-m_j^{(n+L)}&=&\pi_{hj}^{(n+L)}-\pi_{ij}^{(n+L)}=
\sum_k(\pi_{hk}^{(L)}-\pi_{ik}^{(L)})\pi_{kj}^{(n)}\\
&=&\sum_{k\in I^+(h,i)}(\underbrace{\pi_{hk}^{(L)}-\pi_{ik}^{(L)}}_{\ge 0})\pi_{kj}^{(n)}+\sum_{k\in I^-(h,i)}(\underbrace{\pi_{hk}^{(L)}-\pi_{ik}^{(L)}}_{< 0})\pi_{kj}^{(n)}\\
&\le& \sum_{k\in I^+(h,i)}(\pi_{hk}^{(L)}-\pi_{ik}^{(L)})M_j^{(n)}+
\sum_{k\in I^-(h,i)}(\pi_{hk}^{(L)}-\pi_{ik}^{(L)})m_j^{(n)}\\
&=& \sum_{k\in I^+(h,i)}(\pi_{hk}^{(L)}-\pi_{ik}^{(L)})(M_j^{(n)}-m_j^{(n)})\quad\\
&\le&(1-\delta)(M_j^{(n)}-m_j^{(n)}). \quad\mbox{(Begründung folgt!)}
\end{aligned}" displayMode="true"></$latex>
!!! Begründung
* Da $$\Pi^L$$ zeilenstochastisch ist, folgt $$\sum_{k\in I^+(h,i)}\pi_{hk}^{(L)}\le 1$$.
* Weiter ist $$I^+(h,i)\ne\emptyset$$:
** denn aus $$I^+(h,i)=\emptyset$$ würde $$I^-(h,i)=[1:N]$$ folgen, d.h. für alle $$k\in[1:N]$$ wäre $$\pi_{hk}^{(L)}< \pi_{ik}^{(L)}$$, was wegen der Zeilenstochastizität von $$\Pi^L$$ nicht geht!
* Also ist $$\sum_{k\in I^+(h,i)}\pi_{ik}^{(L)}\ge|I^+(h,i)|\cdot\delta\ge\delta$$, woraus insgesamt $$\sum_{k\in I^+(h,i)}(\pi_{hk}^{(L)}-\pi_{ik}^{(L)})\le 1-\delta$$ folgt.
Induktiv folgt für alle $$\lambda\ge 1$$ zusammen mit $$m_j^{(L)}\ge \delta$$:
<$latex text="M_j^{(\lambda L)}-m_j^{(\lambda L)}\le(1-\delta)^{\lambda-1}(M_j^{(L)}-m_j^{(L)})\le (1-\delta)^{\lambda}." displayMode="true"></$latex>
Wegen der Monotonie der Folgen $$(m_j^{(n)})_{n\ge 1}$$ und $$(M_j^{(n)})_{n\ge 1}$$ folgt damit die Konvergenz beider Folgen gegen ein und denselben Grenzwert, den wir mit $$\rho_j$$ bezeichnen.
!! Schritt 3: Exponentiell schnelle Konvergenz
$$\exists\eta\in(0,1)$$ $$\exists c>0$$ $$\forall j$$: <$latex text="\textcolor{blue}{M_j^{(n)}-m_j^{(n)}\le c\cdot\eta^n}." displayMode="true"></$latex>
Es sei $$n=\lambda L+\nu$$ mit $$0\le \nu<L$$. Damit gilt unter Verwendung von $$M_j^{(n+L)}-m_j^{(n+L)}\le (1-\delta)(M_j^{(n)}-m_j^{(n)})$$:
<$latex text="\begin{aligned}
M_j^{(n)}-m_j^{(n)}&=&M_j^{(\lambda L+\nu)}-m_j^{(\lambda L+\nu)}\\
&\le&(1-\delta)^\lambda(M_j^{(\nu)}-m_j^{(\nu)})\\
&=&(1-\delta)^{n/L}\cdot(1-\delta)^{-\nu/L}(M_j^{(\nu)}-m_j^{(\nu)})\\
&\le&\eta^n(1-\delta)^{-1},
\end{aligned}" displayMode="true"></$latex>
wobei wir $$\eta:=(1-\delta)^{1/L}$$ gesetzt und $$(1-\delta)^{-\nu/L}\le (1-\delta)^{-1}$$ sowie $$M_j^{(\nu)}-m_j^{(\nu)}\le 1$$ ausgenutzt haben.
Da $$\eta<1$$ ist, folgt die exponentiell schnelle Konvergenz sowohl der Maxima- und Minima- als auch damit aller Koeffizientenfolgen in den Potenzen von $$\Pi$$ gegen die jeweiligen Grenzwerte.
Durch Grenzübergang $$n\to\infty$$ folgt aus
$$\pi_{ik}^{(n+1)}=\sum_j\pi_{ij}^{(n)}\pi_{jk}$$ die Gleichung $$\rho=\rho \Pi$$.
* Als Grenzwert von W-Verteilungen im $$\R^N$$ ist auch $$\rho$$ eine W-Verteilung.
* Diese W-Verteilung $$\rho$$ ist eindeutig bestimmt:\ für jede W-Verteilung $$\rho'$$ mit $$\rho'=\rho'\Pi$$ folgt $$\rho'=\rho'\Pi^n$$. Durch Grenzübergang folgt $$\rho'=\rho'\Pi^\infty$$, woraus sich wegen <$latex text="\rho_k'=\sum_j\rho_j'\pi_{jk}^{(\infty)}= \sum_j\rho_j'\rho_k=\rho_k" displayMode="true"></$latex> sofort $$\rho=\rho'$$ ergibt.
Damit ist der Ergodensatz vollständig bewiesen.
!!! Bemerkung
Indem man im obigen Satz sämtliche Matrizen und Vektoren transponiert und die für das Transponieren von Matrizenprodukten gültige Formel $$(A\cdot B)^\top=B^\top\cdot A^\top$$ anwendet, erhält man ein entsprechendes Resultat für spaltenstochastische Matrizen.
! Vorbereitung
* Zunächst kann man ohne Einschränkung annehmen, dass die $$X_i$$ zentriert sind: $$\textbf{E}_P(X_i)=0$$. Sonst argumentiere man mit $$X_i':=X_i-\textbf{E}_P(X_i)$$.
* Beachte: auch die $$X_i'$$ sind unkorreliert mit beschränkten Varianzen.
* Setze $$Y_n:=\frac{1}{n}\sum_{i=1}^n X_i$$.
* Der Beweis geschieht nun in zwei Schritten:
* ''Schritt 1'': Für die Teilfolge $$(Y_{n^2})_{n\ge 1}$$ wird gezeigt, dass $$P$$-fast sicher $$Y_{n^2}\to 0$$ gilt.
* ''Schritt 2'': Mit Schritt 1 wird dann interpoliert und gezeigt, dass $$P$$-fast sicher $$Y_{n}\to 0$$ gilt.
!! Schritt 1
* Nach dem schwachen Gesetz gilt für alle $$\epsilon>0$$ <$latex text="P(|Y_{n^2}|\ge\epsilon)\le\frac{v}{n^2\epsilon^2}\,." displayMode="true"></$latex>
* Wegen <$latex text="\sum_{n\ge 1}P(|Y_{n^2}|\ge\epsilon)\le\frac{v}{\epsilon^2}\sum_{n\ge 1}n^{-2}
\le \frac{v}{\epsilon^2}\Big(1+\lim_{K\to\infty}\int_1^K x^{-2}dx\Big)
\le \frac{2v}{\epsilon^2} <\infty" displayMode="true"></$latex> folgt aus Aussage 1. des Borel-Cantelli Lemmas $$P(A_\epsilon)=0$$, wobei <$latex text="A_\epsilon:=\{|Y_{n^2}|\ge\epsilon\text{ für }\infty\text{ viele }n\}=
\{\omega\in\Omega\mid \forall N\exists n\ge N: |Y_{n^2}(\omega)|\ge\epsilon\}." displayMode="true"></$latex> Also hat für alle $$\epsilon>0$$ das Komplement <$latex text="\Omega\setminus A_\epsilon=\{\omega\in\Omega\mid\exists N \forall n\ge N: |Y_{n^2}(\omega)|<\epsilon\}" displayMode="true"></$latex> Wahrscheinlichkeit $$1$$. D.h. $$Y_{n^2}\to\ 0$$ $$P$$-fast sicher.
!! Schritt 2
* Für $$m\in\N$$ sei $$n=n(m)$$ so gewählt, dass $$n^2\le m<(n+1)^2$$.
* Wir vergleichen $$Y_m$$ mit $$Y_{n^2}$$ und setzen $$S_k:=k\cdot Y_k=\sum_{i=1}^k X_i$$.
* Aus der [[Tschebyscheff-Ungleichung]] folgt mit der Unkorreliertheit der $$X_i$$ dann für $$S_m-S_{n^2}=X_{n^2+1}+\ldots+ X_m$$: <$latex text="P(|S_m-S_{n^2}|\ge\epsilon\cdot n^2)
\le \frac{1}{\epsilon^{2}n^{4}}\mathbf{V}_P\Big(\sum_{n^2<i\le m}X_i\Big)
\le\frac{v(m-n^2)}{\epsilon^2 n^4}." displayMode="true"></$latex>
* Daraus ergibt sich weiter (beachte: $$(n+1)^2-1-n^2=2n$$): <$latex text="\begin{aligned}
\sum_{m\ge 1} P(|S_m-S_{n(m)^2}|\ge\epsilon\cdot n(m)^2)&\le&
\frac{v}{\epsilon^2}\sum_{n\ge 1}\sum_{m=n^2+1}^{(n+1)^2-1}\frac{m-n^2}{n^4}\\
&=& \frac{v}{\epsilon^2}\sum_{n\ge 1}\sum_{k=1}^{2n}\frac{k}{n^4}
=\frac{v}{\epsilon^2}\sum_{n\ge 1}\frac{(2n)(2n+1)}{2n^4} <\infty\,.
\end{aligned}" displayMode="true"></$latex>
* Wegen $$S_k/k=Y_k$$ folgt mit Borel-Cantelli wie in Schritt 1 <$latex text="P\Big(\Big|\frac{S_m}{n(m)^2}-Y_{n(m)^2}\Big|\xrightarrow{m\to\infty} 0\Big)=1."displayMode="true"></$latex>
* ''Hilfssatz''. Für $$A,B\in\mathcal{A}$$ gilt: $$P(A)=P(B)=1$$ impliziert $$P(A\cap B)=1$$. <$latex text=" \begin{aligned}\text{\textbf{Beweis}:}\quad 1&=&P(A\cup B)=P(A\setminus B)+P(B\setminus A)+P(A\cap B)\\
&\le&P(\Omega\setminus B)+P(\Omega\setminus A)+P(A\cap B)\\
&=&1-P(B)+1-P(A)+P(A\cap B)=P(A\cap B)\le 1.\quad\square
\end{aligned}" displayMode="true"></$latex>
* Auf $$A:=\{Y_{n^2}\xrightarrow{n\to\infty} 0 \}$$ (wegen Schritt 1) und $$B:=\{|\frac{S_m}{n(m)^2}-Y_{n(m)^2}|\xrightarrow{m\to\infty} 0\}$$ ist der Hilfssatz anwendbar und ergibt <$latex text="P\Big(\frac{S_m}{n(m)^2}\xrightarrow{m\to\infty} 0\Big)=1." displayMode="true"></$latex>
* Wegen $$|Y_m|=|S_m|/m\le|S_m|/n(m)^2$$ folgt $$P(Y_m\xrightarrow{m\to\infty} 0)=1$$.
Damit ist das starke Gesetz der großen Zahl bewiesen.
Da $$P$$ eine Projektionsmatrix ist, gilt zunächst $$P^2=P$$. Daher gilt für $$I-P$$:
<$latex text="
(I-P)^{2} = I - 2P + \underbrace{P^2}_{=P} = I-P.
" displayMode="true"></$latex>
Wir beweisen die Aussage in mehreren Schritten:
#$$\forall b \in \mathbb{C}^m: \; AA^{+}b - b \in Kern(A^{+}) \\ A^{+}AA^{+} = V\Sigma^{+}U^{*}U\Sigma V^{*}V\Sigma^{+}U^{*} = V\Sigma^{+}U^{*} = A^{+} \\$$ Nun gilt: $$A^+(AA^+b-b) = A^+AA^+b-A^+b = A^+b - A^+b = 0$$.
#$$ Kern(A^{+}) = Bild(A)^{\perp} = Kern(A^{*}) $$ Also erfüllt $$A^{+}b$$ die Normalengleichung $$A^{*}A(A^{+}b)=A^{*}b$$: <$latex text=" A^*A(A^+b) - A^*b = A^*(AA^+b-b) = 0 \text{, da } \\ AA^+b-b \in Kern(A^+) = Kern(A^*)" displayMode="true"></$latex>.
#Ist $$z$$ eine weitere Lösung der Normalengleichung, so gilt: $$ A^*Az = A^*A(A^+b) = A^*b $$ und somit $$w = A^+b - z \in Kern(A^\ast A)=Kern(A)$$ Andererseits ist $$A^+b \in Bild(A^+) = Kern(A)^{\perp}$$. Daher ist $$z = \underbrace{A^+b}_{Kern(A)^{\perp}}-\underbrace{w}_{Kern(A)}$$ eine orthogonale Zerlegung und nach Pythagoras gilt <$latex text=" \|z\|_2^2 = \|A^+b\|_2^2 + \|w\|_2^2 \geq \|A^+b\|_2^2 " displayMode="true"></$latex> mit Gleichheit genau dann, wenn $$\|w\|_2^2 = 0$$, d.h. für $$z = A^+b$$.
Setze für $$x \in \mathbb{C}^n$$
<$latex text="
\phi (x)= \frac{1}{2} \|b-Ax\|_{2}^{2} = \frac{1}{2}(b-Ax)^*(b-Ax).
" displayMode="true"></$latex>
Dann gilt für jedes $$\hat{x}$$ mit $$ A^*A\hat{x} = A^*b $$
<$latex text="
\phi (x)-\phi(\hat{x}) = \frac{1}{2}(x-\hat{x})^*A^*A(x-\hat{x}) \qquad
\text{(quadratische Ergänzung)}.
" displayMode="true"></$latex>
Da $$A^*A$$ positiv semi-definit [ [[Trivialer Nullraum]] ], ist folgt
<$latex text="
\phi (x)-\phi(\hat{x}) \geq 0 \quad \Leftrightarrow \quad
\phi (x) \geq \phi(\hat{x}) \quad \forall \hat{x}\text{ mit }A^{*}A\hat{x}=A^{*}b,
" displayMode="true"></$latex>
d.h. das Minimum von $$\phi$$ wird an den $$\hat{x}$$ mit $$A^*A\hat{x} = A^*b$$ angenommen.
Solche $$\hat{x}$$ existieren, da $$A^*b$$ zu $$Bild(A^*) = Bild(A^*A)$$ gehört.
Es bleibt zu zeigen, dass Gleichheit genau dann gilt, wenn eine Lösung $$x$$
des Ausgleichsproblems auch die Normalengleichung erfüllt.
Um zu zeigen, dass Gleichheit genau dann gilt, wenn eine Lösung $$x$$
des Ausgleichsproblems auch die Normalengleichung erfüllt, betrachten wir ein $$x$$,
welches $$\phi(x)$$ minimiert. Mit einem wie oben gewählten $$\hat{x}$$ gilt:
<$latex text="
\begin{aligned}
& \phi(x) - \phi(\hat{x}) &= 0 \\
\Leftrightarrow & \frac{1}{2} (x-\hat{x})^*A^*A(x-\hat{x}) &= 0 \\
\Leftrightarrow & \frac{1}{2} \| A(x-\hat{x}) \|_2^2 &= 0 \\
\Leftrightarrow & (x-\hat{x}) \in Kern(A). &
\end{aligned}
" displayMode="true"></$latex>
Unter Ausnutzung von $$(x-\hat{x}) \in Kern(A)$$ setzen wir in die Normalengleichung $$\hat{x}$$ ein:
<$latex text="
\begin{aligned}
A^*b &=& A^*A\hat{x} \\
&=& A^*(A\hat{x} + \underbrace{A(x-\hat{x})}_{0})) \\
&=& A^*A(\hat{x} + (x-\hat{x})) \\
&=& A^*Ax.
\end{aligned}
" displayMode="true"></$latex>
Somit erfüllt jede Lösung $$x$$ des linearen Ausgleichsproblems die Normalengleichung.
Falls $$A^*A$$ singulär ist, so hat die Gaußsche Normalengleichung mehrere Lösungen
und $$\phi$$ wird in allen Lösungen minimal.
Sei $$P=P^{*}$$, dann gilt für beliebige $$X,y \in \mathbb{C}^n$$:
<$latex text="
\underbrace{(Px)^*}_{\in \: Bild(P) = S_1} \overbrace{(I-P)y}^{\in \: Bild(I-P) = S_2}
= x^* P^*(I-P^2)y = 0.
" displayMode="true"></$latex>
D.h. $$Px$$ und $$(I-P)y$$ sind orthogonal zueinander.
Sei umgekehrt $$P$$ eine orthogonale Projektion auf $$S_1$$ entlang $$S_2$$, wobei $$S_1$$ und $$S_2$$
orthogonal sind und $$\dim S_1 = k$$.
Dann wählen wir eine Orthonormalbasis $$\{q_1,...,q_n\}$$ des $$\mathbb{C}^n$$, sodass $$\{q_1,...,q_k\}$$
eine Basis von $$S_1$$ und $$\{q_{k+1},...,q_n\}$$ eine Basis von $$S_2$$ ist (vgl. [[Komponenten eines Vektors]] Basisergänzungssatz).
Dann gilt
<$latex text="
\begin{aligned}
\forall j\leq k: & Pq_j = q_j & \text{ und}\\
\forall j>k: & Pq_j = 0.&
\end{aligned}
" displayMode="true"></$latex>
Sei nun $$Q$$ eine unitäre Matrix mit den Spalten $$q_j$$. Dann gilt
<$latex text="
PQ =
\left(\begin{array}{c|c|c|c|c}
& & & & \\
& & & & \\
q_1 & \dots & q_k & 0 & \dots \\
& & & & \\
& & & & \\
\end{array}\right)
" displayMode="true"></$latex>
und
<$latex text="
Q^{*}PQ =
\begin{pmatrix}
\textbf{1} &0& \dots& & & \dots& 0 \\
0 & \textbf{1} & & & & & \vdots \\
\vdots && \ddots & & & & \\
& && \textbf{1} && & \\
& & & & 0 & & \\
\vdots & & & & & \ddots& \vdots \\
0 & \dots&& & & \dots & 0
\end{pmatrix} =: \Sigma.
" displayMode="true"></$latex>
<$details summary="Bemerkung" tiddler="Bemerkung">
Die Orthogonalprojektionsmatrix hat demnach $$k$$ Eigenwerte $$=1$$ und $$n-k$$ Eigenwerte $$=0$$:
$$\lambda_1 =...= \lambda_k = 1$$
und $$\lambda_{k+1} =...= \lambda_n = 0$$.
</$details>
Die Matrix $$Q^{*}PQ$$ ist diagonal, wobei die ersten $$k$$ Einträge 1 sind.
Damit haben wir (wegen $$Q^*Q = I$$) mit $$P = Q\Sigma Q^*$$ eine SVD ([[Singulärwertzerlegung (SVD)]]) von $$P$$, für die gilt:
<$latex text="
P^* = (Q\Sigma Q^*)^* = Q\Sigma Q^* = P.
" displayMode="true"></$latex>
* $$(A^*A)^*=A^*(A^*)^*=A^*A$$
* $$x^*A^*Ax= \|Ax\|_2^2 \geq 0 \: \forall x \in \mathbb{C}^n$$, d.h. $$A^*A$$ ist positiv semidefinit.
*Sei nun $$x \in \text{Kern}(A^*A)$$. $$A^*Ax = 0 \Rightarrow x^*A^*Ax = 0 \Rightarrow \|Ax\|_2^2 = 0 \Rightarrow Ax = 0$$.
*D.h. $$\text{Kern}(A^{*}A) \subseteq \text{Kern}(A)$$ und wegen $$Ax=0 \Rightarrow A^*Ax=0$$ $$ \text{Kern}(A^{*}A)=\text{Kern}(A)$$.
*Wenn $$\text{Kern}(A)=\{0\}$$ ist $$\text{Kern}(A^{*}A)={0}$$ und somit für alle $$x\in\mathbb{C}^n\setminus\{0\}$$ $$x^*A^*Ax>0$$, d.h. $$A^*A$$ ist positiv definit.
*Weiter gilt $$\text{dim Bild}(A^{*}A) = n - \text{dim Kern}(A^{*}A) = n - \text{dim Kern}(A) = \text{Rang}(A) = \text{dim Bild}(A^*)$$.
*Damit ist $$\text{Bild}(A^*A) = \text{Bild}(A^*)$$.
<$details summary="Zur Erinnerung:Dimensionssatz " tiddler="Zur Erinnerung:''Dimensionssatz'' ">
//Zur Erinnerung: ''Dimensionssatz''
Sei $$f: V \longrightarrow W$$ eine lineare Abbildung zwischen zwei Vektorräumen $$V$$ und $$W$$. Dann gilt: $$\dim V = \text{dim Kern}(f) + \text{dim Bild}(f)$$. //
</$details>
*Zu $$\text{Bild}(A^*)=\text{Kern}(A)^\bot$$: Sei $$z \in \text{Bild}(A^*), x \in \text{Kern}(A)$$ beliebig. Dann existiert ein $$y \in \mathbb{C}^m$$ mit $$z=A^{*}y$$ und es gilt <$latex text="
x^*z = x^*A^*y = (Ax)^*y = 0 \cdot y = 0,
" displayMode="true"></$latex> d.h. $$\text{Kern}(A)$$ und $$\text{Bild}(A^*)$$ sind orthogonal und wegen $$\text{dim Kern}(A) + \text{dim Bild}(A^*)=n$$ folgt $$\text{Bild}(A^*) = \text{Kern}(A)^{\bot}$$.
Die Lösung des linearen Ausgleichsproblems $$\|b-Ax\|\rightarrow \min$$ ist laut
Normalengleichung gegeben durch $$(A^*A)^{-1}A^*b$$, aber auch durch $$A^+b$$. Da
dies für beliebiges $$b$$ gilt folgt die Behauptung.
<$details summary="Anmerkung" >
Anschaulich ist die Pseudoinverse $$A^+$$ also eine Matrix, die die Lösungen des
linearen Ausgleichsproblems zur Matrix $$A$$ für beliebiges $$b$$ beschreibt.
Entsprechend stellt $$AA^+$$ die orthogonale Projektion auf das Bild von $$A$$ dar.
</$details>
Beweis zu [[Gemeinsame Verteilung: Beispiel]]
$$\textbf{Fall 1}$$: $$(k,h)\in[1:n]^2$$
* Das $$X$$-Urbild von $$(k,h)$$ besteht dann aus denjenigen $$n$$-Tupeln, die mit $$h-1$$ Nullen beginnen,dann folgt eine Eins,
* von den restlichen $$n-h$$ Stellensind $$k-1$$ mit Einsen, die anderen mit Nullen belegt.Das beweist $$\textcolor{blue}{p_X(k,h)=\binom{n-h}{k-1}\cdot 2^{-n}}$$.
$$\textbf{Fall 2}$$: Für $$h,k\in[1:n]$$ ist $$\textcolor{blue}{p_X(0,h)=0}$$,$$\textcolor{blue}{p_X(k,n+1)=0}$$:klar!
$$\textbf{Fall 3}$$: $$k=0$$ \textbf{und} $$h=n+1$$
* Hier ist $$\omega=(0,\ldots,0)$$ einziges $$\omega$$ mit $$X(\omega)=(0,n+1)$$.
Also ist $$\textcolor{blue}{p_X(0,n+1)=2^{-n}}$$.
! Beweis
Sei $$D:=AB-C\ne 0$$. Dann existiert eine Matrixposition $$(i,j)$$ mit $$d_{ij}\ne 0$$, $$R_j:=\{x\in\{0,1\}^n\mid x_j=0\}$$ und $$e_j$$ der $$j$$-ter Einheitsvektor.
Dann ist $$|R_j|=2^{n-1}=|\{0,1\}^n|/2$$ und für $$x\in R_j$$ ist $$x+e_j\in \{0,1\}^n\setminus R_j$$. Dann gilt:
Für jedes $$x\in R_j$$ ist $$Dx\ne 0$$ oder $$D(x+e_j)\ne 0$$.
<$details summary="Beweis der Bemerkung" tiddler="Beweis der Bemerkung">
Im Fall <$latex text="Dx\ne 0"> </$latex> gilt die Behauptung.
<br>
Im Fall <$latex text="Dx=0"> </$latex> ist
<$latex text="D(x+e_j)=Dx+De_j =0+(d_{1j},\ldots,\textcolor{red}{d_{ij}},\ldots,d_{nj})^\top\ne 0." displayMode="true"> </$latex>
Also ist zu jedem <$latex text="x\in R_j"> </$latex> mindestens einer der beiden Vektoren <$latex text="x,x+e_j"> </$latex> ein <b>Zeuge</b> für <$latex text="AB\ne C"> </$latex>.
</$details>
Schließlich beachte man, dass $$\{0,1\}^n=R_j\sqcup (R_j+e_j)$$.
Das beweist den Satz von Freivalds.
Per Induktion sieht man:
<$latex text="
\|x^{(n+1)}-x^{(n)}\|\le q^{n}\cdot\|x^{(1)}-x^{(0)}\|
" displayMode="true"></$latex>
Es folgt für $$k,p\in\N$$:
<$latex text="
\begin{aligned}
\|x^{(k+p)}-x^{(k)}\| & \le\sum_{i=1}^{p}\|x^{(k+i)}-x^{(k+i-1)}\|\le q^{k}\cdot\sum_{i=1}^{p}q^{i-1}\cdot\|x^{(1)}-x^{(0)}\|\\
& \le\frac{q^{k}}{1-q}\cdot\|x^{(1)}-x^{(0)}\| \qquad (10.4)
\end{aligned}
" displayMode="true"></$latex>
Dies ist eine Nullfolge, d.h. $$x^{(k)}$$ ist eine Cauchy-Folge. Somit
existiert ein Grenzwert $$\hat{x}=\lim_{k\rightarrow\infty}x^{(k)}$$.
Dieser ist ein Fixpunkt, denn
<$latex text="
\Phi(\hat{x})=\Phi\left(\lim_{k\rightarrow\infty}x^{(k)}\right)=\lim_{k\rightarrow\infty}\Phi\left(x^{(k)}\right)=\lim_{k\rightarrow\infty}x^{(k+1)}=\hat{x}.
" displayMode="true"></$latex>
Für einen weiteren Fixpunkt $$\tilde{x}\in D$$ gilt
<$latex text="
\|\tilde{x}-\hat{x}\|=\|\Phi(\tilde{x})-\Phi(\hat{x})\|\le q\cdot\|\tilde{x}-\hat{x}\|,
" displayMode="true"></$latex>
d.h. es ist $$\|\tilde{x}-\hat{x}\|=0$$ und somit ist $$\hat{x}=\tilde{x}$$
der einzige Fixpunkt von $$\Phi$$.
Es bleibt die Abschätzungen zu zeigen:
<$latex text="
\begin{aligned}
\|x^{(k)}-\hat{x}\| & =\|\Phi(x^{(k-1)})-\Phi(\hat{x})\|\le q\cdot\|x^{(k-1)}-\hat{x}\|\\
\|x^{(k)}-\hat{x}\| & =\lim_{p\rightarrow\infty}\|x^{(k)}-x^{(k+p)}\|\overset{(10.4)}{\le}\frac{q^{k}}{1-q}\cdot\|x^{(1)}-x^{(0)}\|\\
(1-q)\cdot\|x^{(k)}-\hat{x}\| & \le\|x^{(k)}-\hat{x}\|-\|x^{(k+1)}-\hat{x}\|\\
& \le\|x^{(k+1)}-x^{(k)}\|\le q\cdot\|x^{(k)}-x^{(k-1)}\|
\end{aligned}
" displayMode="true"></$latex>
Zu zeigen: Der Satz über [[Bildmaße]].
!! Beweis
* $$P'(A'):=P(X^{-1}[A'])$$ macht Sinn,denn für $$A'\in {\mathcal{A'}}$$ liegt $$X^{-1}[A']$$ in $${\mathcal{A}}$$, weil $$X$$ ZV ist.
* $$P'$$ erfüllt (N):$$P'(\Omega')=P(X\in\Omega') =P(\Omega) =1$$.
* $$P'$$ erfüllt (A): Sind $$A_1',A_2',\ldots\in {\mathcal{A'}}$$ paarweise disjunkt, so sind auch die Urbilder $$X^{-1}[A_1'],X^{-1}[A_2'],\ldots$$ paarweise disjunkt. Folglich ist
<$latex text="\begin{alignedat} PP'(\sqcup_{i\ge 1}A_i') &=&P(X^{-1}[\sqcup_{i\ge 1}A_i']) =P(\sqcup_{i\ge 1}X^{-1}[A_i'])&=&\sum_{i\ge 1}P(X^{-1}[A_i']) =\sum_{i\ge 1}P'(A_i').
\end{alignedat}" displayMode="true"></$latex>
Also ist $$P'$$ W-Maß.
Wir dürfen $$f$$ als reell voraussetzen, da ein komplexes $$f$$ genau dann differenzierbar ist,
wenn Re$$f$$ und Im $$f$$ differenzierbar sind.
Wir zeigen dann, dass die Linearform $$L: \R^n \longrightarrow \R$$ mit
$$Lh = \sum\limits_{\nu =1}^{n} \partial_{\nu}f(a)h_{\nu}$$
die Bedingung (8.1) ([[Eindeutigkeit des Differentials]]) erfüllt.
Sei $$Q$$ ein offener achsenparalleler Quader in $$U$$ mit $$a \in Q$$.
Jeder Punkt $$a+h \in Q$$ kann mit $$a$$ durch stückweise achsenparallelen Streckung in $$Q$$ verbunden werden.
Man setze dazu $$a_0:=a$$, $$a_{\nu}=a_{\nu -1} + h_{\nu}e_{\nu}$$, $$\nu = 1,...,n$$.
Insbesondere ist dann $$a_n = a+h$$ und
<$latex text="
f(a+h) - f(a) = \sum\limits_{\nu =1}^{n} \left( f(a_{\nu})-f(a_{\nu -1}) \right).
" displayMode="true"></$latex>
Die Differenzen der Summe werden gemäß dem Mittelwertsatz der Differenzialrechnung umgeformt.
<$details summary="Bemerkung" tiddler="Bemerkung">
MWS: $$f: [a,b] \mapsto \mathbb{R}$$, $$a<b$$, stetig auf $$[a, b]$$
und diffbar in $$(a, b) \\ \Rightarrow \exists \xi \in (a,b)$$: \\
$$f^{'}(\xi) = \frac{f(b)-f(a)}{b-a}$$
</$details>
Betrachte dazu die Funktionen
$$\varphi_{\nu}: [0, h_{\nu}] \longrightarrow \R$$, $$\varphi_{\nu}(t):= f(a_{\nu -1} + te_{\nu})$$.
Mit diesen Funktionen gilt
<$latex text="
f(a_{\nu}) - f(a_{\nu -1}) = \varphi_{\nu}(h_{\nu}) - \varphi_{\nu}(0).
" displayMode="true"></$latex>
Da $$f$$ partiell differenzierbar ist, sind die $$\varphi_{\nu}$$ ebenfalls differenzierbar und es gilt
<$latex text="
\varphi_{\nu}'(t) = \partial_{\nu}f(a_{\nu -1} + te_{\nu}).
" displayMode="true"></$latex>
Nach dem Mittelwertsatz gibt es ein $$\tau_{\nu} \in [0,h_{\nu}]$$, sodass
$$\varphi_{\nu}(h_{\nu}) - \varphi_{\nu}(0) = h_{\nu} \varphi'(\tau_{\nu})$$.
Mit $$\xi_{\nu} := a_{\nu -1} + \tau_{\nu} e_{\nu}$$ folgt nun
$$f(a_{\nu}) - f(a_{\nu -1}) = h_{\nu} \partial_{\nu}f(\xi_{\nu})$$.
Damit ergibt sich
<$latex text="
f(a+h) - f(a) - Lh = \sum\limits_{\nu =1}^{n} (\partial_{\nu} f(\xi_{\nu}) - \partial_{\nu}f(a))h_{\nu}
" displayMode="true"></$latex>
und weiter
<$latex text="
\left| f(a+h) - f(a) - Lh \right| \leq \|h\|_{\infty} \sum\limits_{\nu =1}^{n} \left|
\partial_{\nu} f(\xi_{\nu}) - \partial_{\nu}f(a) \right|.
" displayMode="true"></$latex>
Für $$h \rightarrow 0$$ gilt $$\xi_{\nu} \rightarrow a$$, $$\nu = 1,...,n$$
und wegen der Stetigkeit der partiellen Ableitungen in $$a$$ erhält man also
<$latex text="
\lim\limits_{h \rightarrow 0} \frac{f(a+h) - f(a) - Lh}{\|h\|_{\infty}}
= \lim\limits_{h \rightarrow 0} \sum\limits_{\nu =1}^{n} \left|
\partial_{\nu} f(\xi_{\nu}) - \partial_{\nu}f(a) \right| = 0.
" displayMode="true"></$latex>
Ist $$L^*$$ eine weitere lineare Abbildung, so gilt für jeden Vektor $$v$$ mit $$\|v\| = 1$$
<$latex text="
\begin{aligned}
& \lim\limits_{t \searrow 0} \dfrac{f(a+tv) - f(a) - Ltv -f(a+tv) + f(a) + L^*tv}{\|tv\|} \\
& = \lim\limits_{t \searrow 0} \dfrac{(L^* -L)(tv)}{|t|} = (L^* -L)(v) = 0
\end{aligned}
" displayMode="true"></$latex>
Da die Menge der Einheitsvektoren den $$\R^n$$ aufspannt, folgt $$L=L^*$$.
Es genügt, die Behauptung für ein reelles $$f$$ zu zeigen. Seien $$a,b$$ beliebige Punkte in $$U$$.
Dazu wähle nun Punkte $$a_0:=a, a_1,...,a_k=b$$ derart, dass die Strecken $$[a_{i-1},a_i]$$ in $$U$$ liegen.
Anwendung des MWS bei jeder Strecke ergibt wegen $$f'=0$$: $$f(a)=f(a_1),...,f(a_{k-1})=f(b)$$.
<$latex text="
\begin{aligned}
u(x) &:= \varphi(x,b+k) - \varphi(x,b) \\
D_{Q\varphi} &= u(a+h) - u(a) = hu'(\xi) \\
&= h\left(\partial_1\varphi(\xi,b+k) - \partial_1\varphi(\xi,b)\right) = hk \partial_{21}\varphi(\xi,\eta)
\end{aligned}
" displayMode="true"></$latex>
Sei zunächst $$f''(a) > 0$$. Wegen $$f'(a) = 0$$ gilt nach der qualitativen Taylorformel
(Korollar ([[Qualitative Taylorformel]])) für hinreichend kleine Vektoren $$h$$
<$latex text="
f(a+h) = f(a) + \frac{1}{2}h^tf''(a)h + R(h),
" displayMode="true"></$latex>
wobei $$R(h) / \|h\|^2 \rightarrow 0$$ für $$h \rightarrow 0$$.
Die Funktion $$h \mapsto h^tf''(a)h$$ hat auf der Einheitssphäre $$\{x \; | \; \|x\|=1 \}$$ wegen $$f''(a) > 0$$
ein positives Minimum $$m$$. Da jeder Vektor $$h$$ das $$\|h\|$$-fache eines Einheitsvektors ist, folgt für alle $$h$$
<$latex text="
h^tf''(a)h \geq m \|h\|^2.
" displayMode="true"></$latex>
Wir wählen nun eine Kugel $$K_{\varepsilon}(a) \subset U$$ so klein, dass $$|R(h)| \leq 1/4 m \|h\|^2$$ für
$$\|h\| < \varepsilon$$ gilt. Für $$a+h \in K_{\varepsilon}(a)$$ erhalten wir dann
<$latex text="
f(a+h) \geq f(a) + \frac{m}{4} \|h\|^2.
" displayMode="true"></$latex>
Danach nimmt $$f$$ innerhalb $$K_{\varepsilon}(a)$$ genau im Punkt $$a$$ ein Minimum an.
Im Fall $$f''(a) > 0$$ ist die Behauptung damit bewiesen.
$$f''(a) < 0$$ wird durch den Übergang zu $$-f$$ analog behandelt.
Sei schließlich $$f''(a)$$ indefinit. Wir wählen Vektoren $$v$$ und $$w$$ mit $$v^tf''(a)v > 0$$
bzw. $$w^tf''(a)w < 0$$ und betrachten die Funktionen
<$latex text="
\begin{aligned}
F_v(t) &=& f(a+tv), \\
F_w(t) &=& f(a+tw),
\end{aligned}
" displayMode="true"></$latex>
die in geeigneten Intervallen um $$0 \in \R$$ definiert sind. Ihre ersten und zweiten Ableitungen in $$0$$ sind
| $$F_v'(0) = f'(a)v = 0$$ | $$F_v''(0) = v^tF''(a)v > 0$$, |
| $$F_w'(0) = f'(a)w = 0$$ | $$F_w''(0) = w^tF''(a)w < 0$$. |
Somit hat $$F_v$$ in $$0$$ ein isoliertes lokales Minimum und $$F_w$$ ein isoliertes lokales Maximum.
$$f$$ hat daher in $$a$$ kein lokales Extremum.
*$$H$$ ist nach Definition hermitesch. $$\checkmark \\$$
*$$H$$ ist unitär: <$latex text=" \begin{aligned}
H^{*}H \; = \; H^2
&= I - \frac{4}{v^{*}v}vv^{*} + \frac{4}{(v^{*}v)^{2}}v(v^{*}v)v^{*} \\
&= I - \frac{4}{v^{*}v}vv^{*} + \frac{4}{v^{*}v}vv^{*} \\
&= I. \end{aligned}
" displayMode="true"></$latex>
*Sei $$w \perp v$$. Dann gilt:<$latex text=" \begin{aligned}
Hw &= Iw-\frac{2}{v^{*}v}\underbrace{vv^{*}w}_{=0} = w , \\
Hv &= Iv-\frac{2}{v^{*}v}vv^{*}v = v - 2v = -v.
\end{aligned}
" displayMode="true"></$latex>
Für $$k \in \R$$, $$h \in \R^n$$ mit hinreichend kleinen Beträgen gilt nach Voraussetzung
<$latex text="
\begin{aligned}
\gamma (t_0 + k) = & \gamma(t_0) + \dot{\gamma}(t_0)k + r_1(k)|k|,
\qquad \lim\limits_{k \rightarrow 0} r_1(k)=0 \\
f(a+h) = & f(a) + df(a)h + r_2(h) \|h\|,
\qquad \lim\limits_{h \rightarrow 0} r_2(h)=0
\end{aligned}
" displayMode="true"></$latex>
Setzt man $$h:= \gamma(t_0+k) - \gamma(t_0)$$, so folgt
<$latex text="
f(\gamma(t_0+h)) = f(\gamma(t_0)) + df\gamma(t_0) \dot{\gamma}(t_0)k + R(k), \qquad (8.13)
" displayMode="true"></$latex>
wobei
<$latex text="
R(k):= df(a)r_1(k)|k| + r_2(\gamma(t_0+k)-\gamma(t_0)) \| \dot{\gamma}(t_0)k+r_1(k)|k| \|.
" displayMode="true"></$latex>
Offensichtlich gilt $$\lim\limits_{k \rightarrow 0} \dfrac{R(k)}{k}=0$$. Damit folgt die Behauptung aus
(8.13).
Wir betrachten hier denn Fall des modifizierten Gram-Schmidt-Verfahrens
(für CGS analog):
<$latex text="
\begin{aligned}
for \ i = 1 &\to n \ do \\
for \ j &= i+1 \to n \ do \qquad \ m \text{Multiplikationen} + (m-1) \text{ Additionen} \\
r_{ij} &= q_i^*v_j \qquad \qquad \qquad m \text{Multiplikationen} + m \text{Subtraktionen}\\
v_j &= v_j - r_{ij}q_i\\
end \ f&or \qquad \qquad \qquad \ \Rightarrow 4m-1 \text{Operationen}\\
end \ for \ &
\end{aligned}
" displayMode="true"></$latex>
Der Gesamtaufwand beträgt somit also:
<$latex text="
\begin{aligned}
\sum\limits_{i=1}^{n}\sum\limits_{j=i+1}^{n}(4m-1)
&= (4m-1) \sum\limits_{i=1}^{n}\sum\limits_{j=i+1}^{n} 1 \\
&= (4m-1) \sum\limits_{i=1}^{n} (n-i)
= (4m-1) \sum\limits_{i=0}^{n-1} i \\
&= (4m-1) \dfrac{n(n-1)}{2}
\approx 2mn^2
\end{aligned}
" displayMode="true"></$latex>
<$latex text="
\begin{aligned}
\frac{\lVert \Delta b \rVert}{\lVert b \rVert}
& = \frac{\lVert A \Delta x \rVert}{\lVert b \rVert} \\
&\leq \frac{\lVert A \rVert _M \lVert \Delta x \rVert}{\lVert b \rVert}
= \lVert A \rVert _M \frac{\lVert \Delta x \rVert}{\lVert x \rVert} \frac{\lVert A^{-1} b \rVert}{\lVert b \rVert} \\
&\leq \lVert A \rVert _M \lVert A^{-1} \rVert _M \frac{\lVert \Delta x \rVert}{\lVert x \rVert}
\end{aligned}
" displayMode="true"></$latex>
Da $$\|\Phi'(x)\|$$ stetig ist, existiert ein $$r>0$$ und ein $$q<1$$
so dass $$\|\Phi'(x)\|\le q$$ für alle $$x\in B_{r}(\hat{x})$$. Nach
dem Mittelwertsatz der Differentialrechnung im $$\mathbb{C}^{n}$$ wissen wir
für alle $$x,y\in B_{r}(\hat{x})$$:
<$latex text="
\begin{aligned}
\small
& \Phi(y)-\Phi(x)=\int\limits _{0}^{1}\Phi'(x+t\cdot(y-x))\cdot(y-x)dt\\
\Rightarrow\; & \|\Phi(x)-\Phi(y)\|\le\int\limits _{0}^{1}\|\Phi'(x+t\cdot(y-x))\|\cdot\|y-x\|dt\le q\cdot\|x-y\|
\end{aligned}
" displayMode="true"></$latex>
Insbesondere ist $$\|\Phi(x)-\hat{x}\|\le q\cdot\|x-\hat{x}\|\le r$$, d.h.
$$\Phi(x)\in B_{r}(\hat{x})$$.
#Für $$A_{k+1}$$ gilt:<$latex text="
\begin{aligned}
A_{k+1} & = R_k Q_k + \mu_k I\\
& = \underbrace{Q_k^{*}Q_k}_{id}R_k Q_k + \mu_k \underbrace{Q_k^*Q_k}_{id}\\
& = Q_k^*\underbrace{(Q_k R_k + \mu_k I)}_{A_k} Q_k\\
& = Q_k^* A_k Q_k
\end{aligned} " displayMode="true"></$latex>
#Folgt direkt aus 1) mittels vollständiger Induktion.$$\\$$
#Induktion über $$k \\ \underline{k=0}: \qquad \underbrace{A}_{A_0} -\mu I = Q_0 R_0 \\ \underline{k \rightarrow k+1}$$:<$latex text="
\begin{aligned}
Q_{k+1}R_{k+1} & = A_{k+1}-\mu_{k+1}I \\
& \stackrel{(b)}{=} (Q_0 \dots Q_k)^{*}A(Q_0 \dots Q_k)-\mu_{k+1}(Q_0 \dots Q_k)^{*}(Q_0 \dots Q_k)\\
& = (Q_0 \dots Q_k)^{*} (A-\mu_{k+1}I)(Q_0 \dots Q_k)
\end{aligned}"displayMode="true"></$latex>
$$ \\
\Rightarrow Q_0 \dots Q_k Q_{k+1} R_{k+1} = (A-\mu_{k+1}I)(Q_0 \dots Q_k) \\
\Rightarrow Q_0 \dots Q_k Q_{k+1} R_{k+1} R_k \dots R_0 = (A-\mu_{k+1}I)\underbrace{(Q_0 \dots Q_k)(R_k \dots R_0)}_{\text{Ind.-Ann.} \prod \limits_{j=0}^{k}(A-\mu_j I)} \\$$ $$\\
= \prod \limits_{j=0}^{k+1}(A-\mu_j I) $$
Nach Konstruktion gilt $$\Phi(\hat{x})=\hat{x}$$ und $$\Phi'(\hat{x})=0$$.
Die Behauptung folgt damit aus dem Satz über lokal superlineare Konvergenz.
Es gilt $$\|\Phi'(\hat{x})\|=0<1$$ und somit folgt die lokale Konvergenz
aus dem vorigen Satz. Nun entwickeln wir $$\Phi$$ um $$\hat{x}$$ in
ein Taylorpolynom:
<$latex text="
\begin{aligned}
\Phi(x) & =\Phi(\hat{x})+\sum\limits _{i=1}^{p}\frac{1}{i!}\cdot d^{(i)}\Phi(\hat{x})(x-\hat{x})^{i}+o(\|x-\hat{x}\|^{p})\\
& =\Phi(\hat{x})+\frac{1}{p!}\cdot d^{(p)}\Phi(\hat{x})(x-\hat{x})^{p}+o(\|x-\hat{x}\|^{p})
\end{aligned}
" displayMode="true"></$latex>
Dann existiert eine von $$d^{(p)}\Phi(\hat{x})$$ abhängige Konstante
$$c>0$$ so dass:
<$latex text="
\begin{aligned}
\|x^{(k+1)}-\hat{x}\| & =\|\Phi(x^{(k)})-\Phi(\hat{x})\|\\
& =\frac{1}{p!}\cdot\|d^{p}\Phi(\hat{x})(x^{(k)}-\hat{x})^{p}\|+o(\|x^{(k)}-\hat{x}\|^{p})\\
& \le\frac{1}{p!}\cdot c\cdot\|x^{(k)}-\hat{x}\|^{p}+o(\|x^{(k)}-\hat{x}\|^{p})
\end{aligned}
" displayMode="true"></$latex>
<$latex text="
P_iL_k = P_iL_kP_i^2 = (P_iL_kP_i)P_i
" displayMode="true"></$latex>
<$latex text="
\begin{aligned}
(P_iL_kP_i) &=
\begin{pmatrix}
\ddots & & & & & & & \\
& 1 & & & & & & \\
& -l_{k+1,k} & 1 & & & & & \\
& \vdots& & \ddots & & & & \\
& -l_{j_i,k} & && 0 && 1 & \\
& \vdots & & & & \ddots & & \\
& -l_{i_i,k} && & 1 & & 0 & \\
& \vdots& & & & & & dots\\
\end{pmatrix}
\cdot P_i \\
&=
\begin{pmatrix}
\ddots & & & & & & & \\
& 1 & & & & & & \\
& -l_{k+1,k} & 1 & & & & & \\
& \vdots & & \ddots && & & \\
& -l_{j_i,k} & & & 1 & & & \\
& \vdots & & & & \ddots && \\
& -l_{i_i,k} & && & & 1 & \\
& \vdots & & & & & & \ddots\\
\end{pmatrix}
= L_k'
\end{aligned}
" displayMode="true"></$latex>
Setzt man nun
<$latex text="
L_k' = P_{m-1} \dotsm P_{k+1}L_kP_{k+1} \dotsm P_{m-1},
" displayMode="true"></$latex>
so ist $$L_k'$$ eine linke, untere Dreiecksmatrix und es gilt
Setze $$\gamma(t):= a+t(b-a)$$, $$t \in [0,1]$$ und betrachte $$F:= F \circ \gamma: [0,1] \longrightarrow \R$$.
Dann gilt $$F(1)-F(0) = f(b)-f(a)$$. Nach der Kettenregel ist $$F$$ differenzierbar und nach dem
[[Mittelwertsatz der Differentialrechnung in einer Variablen|Mittelwertsatz der Differentialrechnung]] $$\exists \tau \in [0,1]$$, sodass
<$latex text="
F(1)-F(0) = F(\tau) = df(\gamma(\tau))(b-a).
" displayMode="true"></$latex>
Somit leistet der Punkt $$\xi := \gamma(\tau)$$ das Gewünschte.
(Hier skizzieren wir nur die Idee für den Beweis. Einen ausführlichen Beweis findet man
im Kapitel 3.6 in Konrad Königsberger. Analysis 2. Springer Verlag, 1997.
)
Wir zeigen (9.10) ([[Multiplikatorenregel von Lagrange]]) und dass jeder
Tangentialvektor $$v \in T_{x_0}M_0$$ auf grad$$f(x)$$ senkrecht steht.
Zu $$v \in T_{x_0}M$$ $$\exists$$ eine stetig differenzierbare Kurve $$\alpha: (-\varepsilon, \varepsilon) \longrightarrow M$$
mit $$\alpha(0) = x_0$$ und $$\dot{\alpha}(0) = v$$. Die durch $$F(t) = f(\alpha (t))$$ definierte Funktion
$$F: (-\varepsilon, \varepsilon) \longrightarrow \R$$ hat in $$t=0$$ ein lokales Extremum, d.h.
<$latex text="
0 = \dot{F}(0) = f'(\alpha(0)) \cdot \dot{\alpha}(0) = \langle \text{grad}f(x_0),v \rangle = 0.
" displayMode="true"></$latex>
Die durch $$F(t) = f(a+te_k)$$ in einem hinreichend kleinem Intervall um $$0 \in \R$$ erklärte Funktion
hat in $$t=0$$ ein lokales Extremum. Also ist $$F'(0)=0$$ und damit folgt $$\partial_kf(a) = F'(0) = 0$$.
Fall 1, für die optimale Lösung gilt $$\|h^{(k)}\|_{2}<\rho_{k}$$:
Dann ist $$h^{(k)}$$ lokales Minimum von (11.1)([[Optimierung in Trust-Region]])
und somit Lösung des linearen Ausgleichsproblems $$\|f(x^{(k)})+f'(x^{(k)})\cdot h^{(k)}\|_{2}^{2}\rightarrow\min$$.
Setzen wir $$\lambda=0$$, so wird (11.2)([[Optimierung in Trust-Region]])
zur Normalengleichung für (11.1)([[Optimierung in Trust-Region]])
und ist somit erfüllt:
<$latex text="
(f'(x^{(k)}))^{T}\cdot f'(x^{(k)})\cdot h^{(k)}=-(f'(x^{(k)}))^{T}\cdot f(x^{(k)})
" displayMode="true"></$latex>
Fall 2, für die optimale Lösung gilt $\|h^{(k)}\|_{2}=\rho_{k}$:\\
Wir verwenden die Multiplikatorenregel von Lagrange.
<$latex text="
\begin{aligned}
g:\,\R^{n} & \rightarrow\R & \varphi:\,\R^{n} & \rightarrow\R\\
h & \mapsto\|f(x^{(k)})+f'(x^{(k)})\cdot h\|_{2}^{2} & h & \mapsto\|h\|_{2}^{2}
\end{aligned}
" displayMode="true"></$latex>
$$h^{(k)}$$ minimiert $$g(h^{(k)})$$ unter der Nebenbedingung $$\varphi(h^{(k)})=\rho_{k}^{2}$$.
<$latex text="
\begin{aligned}
\partial_{i}\varphi(h) & =\partial_{i}\sum_{j=1}^{n}h_{j}^{2}=2\cdot h_{i}\\
\partial_{i}g(h) & =\sum_{j=1}^{n}\partial_{i}(f_{j}(x^{(k)})+f_{j}'(x^{(k)})\cdot h)^{2}\\
& =\sum_{j=1}^{n}\partial_{i}f_{j}(x^{(k)})\cdot2\cdot(f_{j}(x^{(k)})+f_{j}'(x^{(k)})\cdot h)\\
& =2\cdot(f'(x^{(k)})^{T}\cdot(f(x^{(k)})+f'(x^{(k)})\cdot h))_{i}
\end{aligned}
" displayMode="true"></$latex>
Nach der Multiplikatorenregel von Lagrange existiert dann ein $$\lambda\in\R$$
mit:
<$latex text="
\begin{aligned}
& \text{grad} g(h^{(k)})=-\lambda\cdot\text{grad}\varphi(h^{(k)})\\
\Leftrightarrow\; & f'(x^{(k)})^{T}\cdot(f(x^{(k)})+f'(x^{(k)})\cdot h^{(k)})=-\lambda\cdot h^{(k)}\\
\Leftrightarrow\; & (f'(x^{(k)})^{T}\cdot f'(x^{(k)})+\lambda\cdot I)\cdot h^{(k)}=-f'(x^{(k)})^{T}\cdot f(x^{(k)})
\end{aligned}
" displayMode="true"></$latex>
Um $$\lambda\ge0$$ zu zeigen betrachten wir die Eigenwertzerlegung
$$V\cdot\Lambda\cdot V^{T}$$ der symmetrischen, positiv semi-definiten
Matrix $$f'(x^{(k)})^{T}\cdot f'(x^{(k)})$$. Dabei ist $$\Lambda=\text{diag}(\lambda_{1},\ldots,\lambda_{n})$$
und $$V$$ orthogonal. Es gilt:
<$latex text="
\begin{aligned}
\|h^{(k)}\|_{2}^{2} & =\|-(f'(x^{(k)})^{T}\cdot f'(x^{(k)})+\lambda\cdot I)^{-1} \cdot f'(x^{(k)})^{T}\cdot f(x^{(k)})\|_{2}^{2}\\
& =\|V\cdot(\Lambda+\lambda\cdot I)^{-1}\cdot V^{T}\cdot f'(x^{(k)})^{T}\cdot f(x^{(k)})\|_{2}^{2}\\
& =\sum_{i=1}^{n}\frac{1}{(\lambda_{i}+\lambda)^{2}}\cdot(V^{T}\cdot f'(x^{(k)})^{T}\cdot f(x^{(k)}))_{i}^{2}
\end{aligned}
" displayMode="true"></$latex>
Da $$\lambda_{i}\ge0$$ ist dieser Ausdruck streng monoton fallend in
$$\lambda$$. Wenn die Gleichung also für $$\lambda<0$$ erfüllt wäre,
so würde eine Lösung mit $$\|h^{(k)}\|<\rho_{k}$$ existieren und Fall
1 greift.
Folgt aus der Konvergenz der Potenziteration indem man $$A$$ durch $$(A-\mu I)^{-1}$$ ersetzt.
Zu $$\varepsilon > 0$$ wähle man eine Kugel $$K_r(a) \subset U$$ so, dass für $$y \in K_r(a)$$
<$latex text="
\frac{1}{p!} \sum\limits_{i_1=1}^{n} ... \sum\limits_{i_p=1}^{n} \left|
\partial_{i_1} ... \partial_{i_p} f(y) - \partial_{i_1} ... \partial_{i_p} f(a) \right| < \varepsilon
" displayMode="true"></$latex>
gilt (Stetigkeit von $$d^pf$$). Für jeden Vektor $$h \in \R^n$$ erhält man dann wegen
$$|h_{i_1}\cdot...\cdot h_{i_p}| \leq \|h\|_{\infty}^p$$
<$latex text="
\left| \frac{1}{p!} \left( d^{(p)}f(y) - d^{(p)}f(a) \right) h^p \right|
\leq \varepsilon \|h\|_{\infty}^p.
" displayMode="true"></$latex>
Zu jedem $$x \in K_r(a)$$ wähle man nun weiter einen Punkt $$\xi \in [a,x[$$,
mit dem die Taylorformel mit Rest gilt:
<$latex text="
\begin{aligned}
f(x) &= T_{p-1}f(x;a) + \frac{1}{p!} d^pf(\xi)(x-a)^p \\
&= T_{p}f(x;a) + \frac{1}{p!} \left( d^pf(\xi) -d^pf(a) \right) (x-a)^p ,
\end{aligned}
" displayMode="true"></$latex>
d.h. $$\left|f(x) -T_pf(x;a) \right| = \left| \frac{1}{p!} \left( d^pf(\xi) -d^pf(a) \right) (x-a) \right|
\leq \varepsilon \|(x-a)\|_{\infty}^p$$.
(Quotientenregel) Zeige, dass die Linearform $$-df(a)/f^2(a)$$ die Bedingung
(8.1)([[Definition: Differenzierbareit]]) erfüllt, d.h.
<$latex text="
\lim\limits_{h \rightarrow 0} \frac{f(a+h) - f(a) - Lh}{\|h\|} = 0.
" displayMode="true"></$latex>
Für hinreichend kurze Vektoren $$h \in \R^n$$ ist auch $$f(a+h) \neq 0$$ und es gilt
<$latex text="
\begin{aligned}
& \frac{1}{\|h\|} \left( \frac{1}{f(a+h)} - \frac{1}{f(a)} + \frac{df(a)h}{f^2(a)} \right) \\
&= \frac{-1}{f(a) f(a+h)} \Big( \underbrace{ \frac{f(a+h) - f(a) - df(a)h}{\|h\|} }_
{ \xrightarrow{h \rightarrow 0} 0 \text{ Diffbarkeit von $$f$$ in $$a$$} } +
\underbrace{ \frac{f(a) - f(a+h)}{f(a)} \cdot \frac{df(a)h}{\|h\|} }_
{ \frac{df(a)h}{\|h\|} \text{ bleibt beschränkt für } \|h\| \rightarrow 0} \Big)
\end{aligned}
" displayMode="true"></$latex>
$$f_1,f_2$$ seien in $$a$$ differenzierbar. Dann gilt für $$i=1,2$$:
<$latex text="
f_i(a+h) = f_i(a) + df_i(a)h + R_i(h),
" displayMode="true"></$latex>
wobei $$R_i$$ die Bedingung (9.2) ([[Differenzierbarkeit]]) erfüllt.
Wir setzen $$Lh := (df_1(a)h,df_2(a)h)$$.
$$L$$ ist eine lineare Abbildung $$X \longrightarrow Y_1 \times Y_2$$ und mit ihr gilt
<$latex text="
f(a+h) = f(a) + L(h) + (R_1(h),R_2(h)).
" displayMode="true"></$latex>
$$R(h) := (R_1(h),R_2(h))$$ erfüllt die Bedingung (9.2) ([[Differenzierbarkeit]]).
Also ist $$f$$ differenzierbar und hat das Differential $$L$$. Analog zeigt man die Umkehrung.
Die Existenz ist mit der Herleitung von (8.9) ([[Einleitung]]) gezeigt.
Die Formeln sind wegen $$df(a)e_{\nu} = \partial_{\nu}f(a)$$ identisch mit
(8.4), (8.6) und (8.5) ([[Ableitung]]).
Berechnung der partiellen Ableitungen:
Die Definition $$\partial_{\nu}f(a) = \lim\limits_{t \rightarrow 0} \frac{f(a+te_{\nu}) - f(a)}{t}$$
mit $$a=(a_1,...,a_n)^t$$ läuft darauf hinaus, in $$f(x_1,...,x_n)$$ alle Variablen $$x_k$$ bis auf die
$$\nu$$-te konstant $$=a_k$$ zu setzen und die dann nur von $$x_{\nu}$$ abhängige Funktion
als Funktion //einer// Variablen zu differenzieren.
<$details summary="Beispiel" tiddler="Beispiel">
Die Richtungsableitungen der Funktion $$f(x,y) = x^2 + y^2$$ sind $$\partial f_x(a,b) = 2a$$ und $$\partial f_y(a,b) = 2b$$.
</$details>
Die Gleichungen (5.16) [[Rückwärtsstabilität der Rückwärtssubstitution]] und (5.18) [[Rückwärtsstabilität des Produkts Q*b]] implizieren:
<$latex text="
\begin{aligned}
b = (\tilde{Q} + \delta Q)(\tilde{R} + \delta R) \tilde{x}
& = [\underbrace{\tilde{Q} \tilde{R}}_{=
A + \delta A} + (\delta Q) \tilde{R} + \tilde{Q} \delta R + (\delta Q)(\delta R)] \tilde{x}\\
& = [A + \underbrace{\delta A + \delta Q \tilde{R} + \tilde{Q} \delta R + \delta Q \delta R}_{\Delta A}] \tilde{x}\\
& = [A + \Delta A] \tilde{x}.
\end{aligned}
" displayMode="true"></$latex>
Z.z.: Jeder Term von $$\Delta A$$ ist relativ zu $$A$$ klein.
Nach Theorem 5.3.1 gilt
<$latex text="
\tilde{Q} \tilde{R} = A + \delta A, \qquad \tilde{Q} \quad \text{unitär}, \qquad \frac{\| \delta A \|}{\| A \|} = O(\varepsilon_{M})
" displayMode="true"></$latex>
<$latex text="
\frac{\| \tilde{R} \|}{\| A \|}
\leq \| \tilde{Q}^* \| \frac{\| A + \delta A \|}{\| A \|}
= O(1), \qquad \text {falls } \varepsilon_{M} \rightarrow 0.
" displayMode="true"></$latex>
Daraus erhalten wir
<$latex text="
\frac{\| \delta Q \tilde{R} \|}{\| A \|} \leq \|\delta Q\| \frac{\| \tilde{R} \|}{\| A \|} = O(\varepsilon_{M})
" displayMode="true"></$latex>
und
<$latex text="
\frac{\| \tilde{Q} \delta R \|}{\| A \|}
\leq \| \tilde{Q} \| \frac{\| \delta R \|}{\| \tilde{R} \|} \frac{\| \tilde{R} \|}{\| A \|} = O(\varepsilon_{M}).
" displayMode="true"></$latex> Schließlich gilt noch
<$latex text="
\frac{\| (\delta Q)(\delta R) \|}{\| A \|}
\leq \| \delta Q \| \frac{\| \delta R \|}{\| A \|} = O(\varepsilon_{M}^{2}).
" displayMode="true"></$latex>
Wir beweisen die Aussage von Theorem [[Rückwärtsstabilität der Rückwärtssubstitution]] für $$m = 1, 2, 3$$.
<$details summary="m=1:" tiddler="m=1:">
<$latex text="
\tilde{x}_1 = b_1 \ {\tiny \boxed{ \div}} \ r_{11} = \frac{b_1}{r_{11}} (1 + \varepsilon_1)
\qquad \text{für } | \varepsilon_1 | \leq \varepsilon_{M}.
" displayMode="true"></$latex>
Setze $$\varepsilon_1' := \frac{- \varepsilon_1}{1 + \varepsilon_1}$$, dann folgt
<$latex text="
\tilde{x}_1 = \frac{b_1}{r_{11} (1 + \varepsilon_{1}')}
\qquad \text{für } | \varepsilon_{1}' | \leq \varepsilon_{M} + O( \varepsilon_{M}^{2}),
" displayMode="true"></$latex>
wobei die Abschätzung für $$| \varepsilon_1' |$$ aus der Taylor-Entwicklung folgt.
Damit gilt für $$(R + \delta R) \tilde{x} = b$$:
<$latex text="
(r_{11} + \underbrace{r_{11} \varepsilon_1'}_{\delta r_{11}}) \tilde{x}_1 = b_1
\qquad \text{für } \frac{| \delta r_{11} |}{| r_{11} |} \leq \varepsilon_{M} + O( \varepsilon_{M}^{2}).
" displayMode="true"></$latex>
</$details>
<$details summary="m=2" tiddler="m=2">
<$latex text="
\tilde{x}_2 = b_2 \ {\tiny \boxed{ \div}} \ r_{22} = \frac{b_2}{r_{22} (1+ \varepsilon_1)}
\qquad \text{für } | \varepsilon_1 | \leq \varepsilon_{M} + O(\ \varepsilon_{M}^{2}).
" displayMode="true"></$latex>
Im zweiten Schritt haben wir mehrere Floating Point Operationen zu berücksichtigen:
<$details summary="Bemerkung" tiddler="Bemerkung">
Dabei ist $$\varepsilon_{3,4}' = \frac{-\varepsilon_{3,4}}{1+\varepsilon_{3,4}}$$ zu verstehen als Kurzschreibweise für
<$latex text="
\begin{aligned}
\varepsilon_3' &= \frac{-\varepsilon_3}{1+\varepsilon_3} \text{ und}\\
\varepsilon_4' &= \frac{-\varepsilon_4}{1+\varepsilon_4}
\end{aligned}.
" displayMode="true"></$latex>
</$details>
<$latex text="
\begin{aligned}
\tilde{x}_1
& = (b_1 \boxminus (\tilde{x}_2 \boxtimes r_{12})) \ {\tiny \boxed{ \div}} \ r_{11} \\
& = (b_1 \boxminus (\tilde{x}_2 \cdot r_{12} (1 + \varepsilon_2))) \ \ {\tiny \boxed{ \div}} \ r_{11},
\qquad\qquad\qquad |\varepsilon_2 | \leq \varepsilon_{M} \\
& = \frac{(b_1 - \tilde{x}_2 \cdot r_{12} (1+ \varepsilon_2)) (1+ \varepsilon_3)}{r_{11}} \cdot (1+ \varepsilon_4),
\qquad |\varepsilon_3|, |\varepsilon_4| \leq \varepsilon_{M} \\
& \stackrel{\varepsilon_{3,4}' = \frac{-\varepsilon_{3,4}}{1+\varepsilon_{3,4}}}{=}
\frac{b_1 - \tilde{x}_2 r_{12} (1+ \varepsilon_2)}{r_{11} (1+ \varepsilon_{3}')(1+ \varepsilon_{4}')}
\qquad |\varepsilon_{3}'|, |\varepsilon_{4}'| \leq \varepsilon_{M} + O(\varepsilon_{M}^{2}) \\
& = \frac{b_1 - \tilde{x}_2 r_{12} (1+ \varepsilon_2)}{r_{11} (1+ 2 \varepsilon_5)}
\quad |\varepsilon_{5}| \leq \varepsilon_{M} + O(\varepsilon_{M}^{2}),
\end{aligned}
" displayMode="true"></$latex>
</$details>
Damit können wir die Rückwärtsanalyse nun als $$(R + \delta R) \tilde{x} = b$$ schreiben mit
<$latex text="
\frac{|\delta R|}{|R|} =
\begin{pmatrix}
\frac{|\delta r_{11}|}{|r_{11}|} & \frac{|\delta r_{12}|}{|r_{12}|}\\
0 & \frac{|\delta r_{22}|}{|r_{22}|}
\end{pmatrix}
=
\begin{pmatrix}
2 |\varepsilon_5| & |\varepsilon_2|\\
0 & |\varepsilon_1|
\end{pmatrix}
\leq
\begin{pmatrix} 2 & 1\\ 0 & 1 \end{pmatrix}
\varepsilon_{M} + O(\varepsilon_{M}^{2}),
" displayMode="true"></$latex>
wobei Betrag und Division in $$|\delta R|/|R|$$ komponentenweise
zu verstehen sind.
<$details summary="m=3" tiddler="m=3">
Die ersten zwei Schritte erfolgen wie oben. Dabei ist $$\varepsilon_5 = \varepsilon_3$$.
<$latex text="
\begin{aligned}
\tilde{x}_1
& = [ (b_1 \boxminus (\tilde{x}_2 \boxtimes r_{12})) \boxminus ( \tilde{x}_3 \boxtimes r_{13}) ] \ {\tiny \boxed{ \div}} \ r_{11}\\
& = \frac{[ ( b_1 - \tilde{x}_2 r_{12} (1+\varepsilon_4))(1+\varepsilon_6) - \tilde{x}_3 r_{13} (1+\varepsilon_5 ) ]
(1+\varepsilon_7)}{r_{11} (1+\varepsilon_{8}')}\\
& = \frac{[ ( b_1 - \tilde{x}_2 r_{12} (1+\varepsilon_4))(1+\varepsilon_6) - \tilde{x}_3 r_{13} (1+\varepsilon_5 ) ]}
{r_{11} (1+\varepsilon_{8}')(1+\varepsilon_{7}')}\\
& = \frac{(b_1 - \tilde{x}_2 r_{12} (1+\varepsilon_4)) - \tilde{x}_3 r_{13} (1+\varepsilon_5)(1+\varepsilon_{6}')}
{r_{11} (1+\varepsilon_{6}')(1+\varepsilon_{8}')(1+\varepsilon_{7}')}.
\end{aligned}
" displayMode="true"></$latex>
</$details>
Somit gilt für $$(R + \delta R) \tilde{x} = b$$:
<$latex text="
\frac{|\delta R|}{|R|} =
\begin{pmatrix}
\frac{|\delta r_{11}|}{|r_{11}|} & \frac{|\delta r_{12}|}{|r_{12}|} & \frac{|\delta r_{13}|}{|r_{13}|}\\
0 & \frac{|\delta r_{22}|}{|r_{22}|} & \frac{|\delta r_{23}|}{|r_{23}|}\\
0 & 0 & \frac{|\delta r_{33}|}{|r_{33}|}
\end{pmatrix}
\leq
\begin{pmatrix} 3 & 1 & 2\\ 0 & 2 & 1\\ 0 & 0 & 1 \end{pmatrix}
\varepsilon_{M} + O(\varepsilon_{M}^{2})
" displayMode="true"></$latex>
$$m \geq 3: \\$$
Die Analyse für größere $$m$$ funktioniert analog.
__Zur Erinnerung:__
<$latex text="
\begin{aligned}
\forall x \in \R, \exists \varepsilon, | \varepsilon | \leq \varepsilon_{M}, \text{ s.d.} \quad
& \Box (x) = x (1 + \varepsilon) & \quad (\text{siehe (5.10)}) \\
\forall x, y \in \R, \exists \varepsilon, | \varepsilon | \leq \varepsilon_{M}, \text{ s.d.} \quad
& x \bullet y = ( x \circ y ) (1 + \varepsilon ) & \quad (\text{siehe (5.12)})
\end{aligned}
" displayMode="true"></$latex>
__Beweis der Rückwärtsstabilität:__
<$latex text="
\begin{aligned}
(\Box x \boxminus \Box y)
& = & (x (1+ \varepsilon_1) - y(1 + \varepsilon_2)) (1 + \varepsilon_3) \\
& = & x (1 + \varepsilon_1 + \varepsilon_3 + \varepsilon_1 \varepsilon_3)
- y (1 + \varepsilon_2 + \varepsilon_3 + \varepsilon_2 \varepsilon_3)\\
& = & x (1+ \varepsilon_4) - y (1 + \varepsilon_5)
\end{aligned}
" displayMode="true"></$latex>
wobei $$| \varepsilon_4 | , | \varepsilon_5 | \leq 2 \varepsilon_{M} + O(\varepsilon_{M}^{2})$$,
d.h. $$(\Box x \boxminus \Box y) = \tilde{x} - \tilde{y}$$ mit
$$\frac{|\tilde{x} - x|}{|x|} = O(\varepsilon_{M}), \frac{|\tilde{y} - y|}{|y|} = O(\varepsilon_{M})$$.
Das heißt: $$(\Box x \boxminus \Box y)$$ ist rückwärts stabil.
Induktion über die Dimension $$m$$ von $$A$$.
$$\underline{m=1:}$$ trivial.
Sei daher $$\underline{m \geq 2}$$:
Sei $$x$$ ein Eigenvektor von $$A$$ mit EW $$\lambda$$. Es gilt:
<$latex text="
Ax = \lambda x \quad \Leftrightarrow \quad A \frac{x}{\|x\|} = \frac{\lambda x}{\|x\|}.
" displayMode="true"></$latex>
$$x$$ sei also normalisiert und bilde die erste Spalte einer unitären Matrix $$U$$:
<$latex text="
U = [x, y].
" displayMode="true"></$latex>
Dann sind $$x$$ und $$y$$ orthogonal und es ist $$x*\lambda x=\lambda\|x\|^2_2=\lambda$$. Es folgt:
<$latex text="
\begin{aligned}
U^*AU & = \begin{pmatrix}x, & y\end{pmatrix}^* A \begin{pmatrix}x, & y\end{pmatrix}\\
& = \begin{pmatrix}x,& y \end{pmatrix}^* \begin{pmatrix}\lambda x, & Ay\end{pmatrix}\\
& = \begin{pmatrix} \lambda & x^*Ay\\ 0 & y^* Ay \end{pmatrix}
= \begin{pmatrix} \lambda & B\\ 0 & C \end{pmatrix}
\end{aligned}
" displayMode="true"></$latex>
Nach Induktionsvoraussetzung existiert eine Schur-Faktorisierung $$VTV^*$$ von $$C$$. \\
Nun setzen wir $$Q = U \begin{pmatrix}1 & 0\\ 0 & V \end{pmatrix}$$. Dann gilt (Schur-Faktorisierung):
<$latex text="
\begin{aligned}
\begin{pmatrix}1 & 0\\ 0&V \end{pmatrix} ^* U^* A U \begin{pmatrix}1 & 0\\ 0 & V \end{pmatrix}
& = \begin{pmatrix}1 & 0\\ 0 & V \end{pmatrix} ^*
\underbrace{\begin{pmatrix} \lambda & B \\ 0 & C \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & V \end{pmatrix}}_{\begin{pmatrix} \lambda & BV \\ 0 & CV \end{pmatrix}}\\
& = \begin{pmatrix}1 & 0\\ 0 & V^* \end{pmatrix}
\begin{pmatrix} \lambda & BV \\ 0 & CV \end{pmatrix}\\
& = \begin{pmatrix} \lambda & BV \\ 0 & V^* CV \end{pmatrix}
\end{aligned}
" displayMode="true"></$latex>
Mit $$x,y \in K$$ liegt auch die Strecke $$[x,y]$$ in $$K$$. Folglich ist die Funktion
$$F:=f \circ \gamma: [0,1] \longrightarrow \mathbb{C}$$ mit $$\gamma(t)=x+t(y-x)$$ definiert.
Nach dem Schrankensatz für Funktionen \textit{einer} Veränderlichen gilt daher
<$latex text="
|f(x)-f(y)| = |F(1)-F(0)| \leq \| \dot{F} \|_{[0,1]}.
" displayMode="true"></$latex>
Die Kettenregel ergibt die Ableitung
<$latex text="
| \dot{F}(t) | \leq \sum\limits_{i=1}^{n} |\partial_if(\gamma(t))| \cdot |y_i-x_i|.
" displayMode="true"></$latex>
Damit folgt die Behauptung.
Setze $$Y_n:=\frac{1}{n}\sum_{i=1}^n(X_i-\textbf{E}_P(X_i))$$.
Dann ist $$Y_n\in {\mathscr{L}}^2(P)$$ und mit der Linearität der Erwartungswertbildung folgt $$\textbf{E}_P(Y_n)=0$$.
Aus $$\textbf{V}_P(aX+b)=a^2 \textbf{V}_P(X)$$\ und $$\textbf{V}_P(\sum_i X_i)=\sum_i \textbf{V}_P(X_i)$$ für unkorrelierte ZVs folgt: <$latex text="\textbf{V}_P(Y_n)=\frac{1}{n^2}\sum_{i=1}^n \textbf{V}_P(X_i) \le\frac{v}{n}." displayMode="true"></$latex>
Mit der [[Tschebyscheff-Ungleichung|Tschebyscheff-Ungleichung]] ergibt sich:
<$latex text="P\left(\left|Y_n-\underbrace{\textbf{E}_P(Y_n)}_{=0}\right|\ge\epsilon\right)\le \frac{\textbf{V}_P(Y_n)}{\epsilon^2}\le \frac{v}{n\epsilon^2}." displayMode="true"></$latex>
Damit ist das schwache Gesetz der großen Zahl bewiesen.
Für den Beweis des Satzes benötigen wir das folgende Lemma. (Wir verwenden im Beweis ein Analogon des MWS.)
Sei $$Q \subset \R^2$$ ein Rechteck mit den Ecken $$(a,b), (a+h,b+k)$$, $$h,k \neq 0$$,
$$\varphi : Q \longrightarrow \mathbb{R}$$. Für $$\varphi$$ sei
<$latex text="
D_{Q\varphi} := \varphi(a+h,b+k) - \varphi(a+h,b) - \varphi(a,b+k) + \varphi(a,b).
" displayMode="true"></$latex>
<$details summary="Hilfslemma für den Beweis des Satzes von Schwarz" tiddler="Hilfslemma für den Beweis des Satzes von Schwarz">
{{Hilfslemma für den Beweis des Satzes von Schwarz}}
</$details>
Es genügt, ein reelles $$f$$ zu betrachten. Man setze für $$(x,y)$$ aus einer Umgebung
$$V \subset \R^2$$ von $$(0,0)$$
<$latex text="
\varphi(x,y) := f(a+xe_i + ye_j).
" displayMode="true"></$latex>
Bei geeigneter Wahl von $$V$$ existieren die partiellen Ableitungen
$$\partial_1\varphi, \partial_2\varphi$$ und $$\partial_{21}\varphi$$.
Ferner ist $$\partial_{21}\varphi$$ im Punkt $$(0,0)$$ stetig.
Es ist zu zeigen: $$\partial_{12}\varphi$$ existiert in $$(0,0)$$ und
$$\partial_{12}\varphi(0,0) = \partial_{21}\varphi(0,0)$$ $$(*)$$.
Sei dazu $$\varepsilon > 0$$. Man wähle eine Umgebung $$V'\subset V$$ von $$(0,0)$$,
sodass für $$(x,y) \in V'$$ die Abschätzung $$|\partial_{21}\varphi(x,y) - \partial_{21}\varphi(0,0)| < \varepsilon$$
gilt und weiter wähle man ein achsenparalleles Rechteck $$Q \subset V'$$ mit den gegenüberliegenden
Ecken $$(0,0)$$ und $$(h,k)$$, $$(h,k) \neq 0$$.
Nach dem obigen Lemma ist dann
<$latex text="
\left| \frac{D_{Q\varphi}}{h\cdot k} - \partial_{21}\varphi(0,0) \right| < \varepsilon.
" displayMode="true"></$latex>
Wegen
<$latex text="
\frac{D_{Q\varphi}}{h\cdot k}
= \frac{1}{h} \left( \frac{\varphi(h,k) - \varphi(h,0)}{k} - \frac{\varphi(0,k) - \varphi(0,0)}{k} \right)
" displayMode="true"></$latex>
folgt mit $$k \rightarrow 0$$
<$latex text="
\left| \frac{\partial_2\varphi(h,0) - \partial_2\varphi(0,0)}{h} - \partial_{21}\varphi(0,0) \right| \leq \varepsilon
" displayMode="true"></$latex>
für alle hinreichend kleinen $$|h| \neq 0$$. Damit ist $$(*)$$ bewiesen.
Seien $$A,A'$$ [[Basen|Erzeugendensysteme und Basen]] von einem [[Vektorraum]] $$V$$ mit zugehörigen [[Koordinatensystemen|Koordinatensysteme]] $$\phi_A,\phi_{A'}$$ und [[Basiswechselmatrix |Basiswechsel]]
$$T_{A\to A'}$$, sowie Basen $$B,B'$$ von $$W$$ mit zugehörigen Koordinatensystemen $$\phi_B,\phi_{B'}$$ und Basiswechselmatrix $$T_{B\to B'}$$. Weiter sei $$L\in \text{Hom}_K(V,W)$$. Dann gilt
<$latex text="M_{A',B'}(L)=T_{B\to B'} \circ M_{A,B}(L)\circ T_{A\to A'}^{-1}." displayMode="true"></$latex>
!! Beweis:
Direktes Aufschreiben oder folgendes kommutatives Diagramm:
[img[la_abb2.png]]
!! Bemerkung
Falls $$V=W$$, d.h. $$L\in \text{End}_K(V)$$, setzt man $$M_A(L)\coloneqq M_{A,A}(L).$$ Es gilt
<$latex text="M_{A'}(L)=T_{A\to A'}\circ M_{A}(L)\circ T_{A\to A'}^{-1}." displayMode="true"></$latex>
Die Matrizen $$M_{A'}(L)$$ und $$M_A(L)$$ heißen ''zueinander ähnlich''.
Das Bild der Einheitskugel bezüglich der 2-Norm $$\| \cdot \|_{2}$$ unter einer beliebigen
$$(m \times n)$$-Matrix ist ein verallgemeinertes Ellipsoid.
<$details summary="Detail" tiddler="Detail">
Wenn die Vektoren $$v=\sum_{i=1}^na_iv_i$$ die Einheitssphäre des $$\R^n$$ durchlaufen, d.h. $$\sum_{i=1}^na_i^2=1$$, dann durchlaufen ihre Bilder $$Av=\sum_{i=1}^n\sigma_ia_iu_i$$ ein verallgemeinertes Ellipsoid, denn es gilt
<$latex text="
\sum_{i=1}^n\frac{1}{\sigma_i^2}\sigma_i^2a_i^2=\sum_{i=1}^n a_i^2=1.
" displayMode="true"></$latex>
Dies ist die Gleichung eines verallgemeinerten Ellipsoids mit Scheitelpunkten $$\pm \sigma_i e_i$$, wobei $$e_i$$ der $$i$$-te Basisvektor ist.
</$details>
Das Bild einer Matrix $$A\in \mathbb{C}^{m\times n}$$, geschrieben als
$$Bild(A)$$, ist die Menge der Vektoren $$v \in \mathbb{C}^m$$, für die es
ein $$x \in\mathbb{C}^n$$ gibt, so dass gilt $$v = Ax$$, d.h.
$$Bild(A)=\{Ax\mid x\in\mathbb{C}^n\}$$
Es sei $$X:(\Omega,{\mathcal{A}})\to(\Omega',{\mathcal{A}}')$$ ZV und $$P$$ W-Maß auf $$(\Omega,{\mathcal{A}})$$.
Dann wird durch
<$latex text="\textcolor{blue}{P'(A'):=P(X^{-1}[A']) =P(\{X\in A'\}) =:P(X\in A')\quad\text{für $A'\in {\mathcal{A'}}$}}" displayMode="true"></$latex> ein W-Maß $$P'$$ auf $$(\Omega',{\mathcal{A'}})$$ definiert, das $$\textbf{Bildmaß}$$ zu $$P$$ bzgl. $$X$$.
!! Beweis:
Siehe [[Beweis: Bildmaße]]
$$Bild(A)$$ [ [[Bild einer Matrix]] ] ist der lineare Vektorraum, der von den Spalten von $$A$$ aufgespannt wird.
<$details summary="Beweis" tiddler="Bildraum Beweis">
{{Bildraum Beweis}}
</$details>
Sei $$y=Ax$$. Dann ist $$y = \sum\limits_{1 \leq j \leq n}x_{j}a_{j}$$ Linearkombination von Spaltenvektoren,
d.h. $$y \in L\{a_{1},...,a_{n}\}$$.
Sei umgekehrt $$y$$ in der linearen Hülle der Spalten von $$A$$, so gilt
$$y= \sum\limits_{1 \leq j \leq n}x_{j}a_{j}$$ für Koeffizienten $$x_{j}, j=1,...,n$$.
Wählt man $$x=(x_{1},...,x_{n})^T$$, so ist $$y=Ax$$.
Sei $$V$$ ein [[Vektorraum]] über $$K$$. Eine Abbildung $$f:V\times V\to K$$ heißt ''Bilinearform'' auf $$V$$, falls $$f$$ in jedem Argument $$\R$$-linear ist. Das heißt:
<$latex text="\forall x\in V: f(x,\cdot):V\to K\text{ ist linear}"displayMode="true"></$latex>
<$latex text="\forall x\in V: f(\cdot,x):V\to K\text{ ist linear}." displayMode="true"></$latex>
Ein solches $$f$$ heißt ''symmetrisch'', falls
<$latex text="\forall x,y\in V: f(x,y)=f(y,x)." displayMode="true"></$latex>
und ''positiv semidefinit'', falls
<$latex text="\forall x\in V: f(x,x)\geq 0." displayMode="true"></$latex>
Sollte
<$latex text="f(x,x)=0\iff x=0" displayMode="true"></$latex>
zusätzlich gelten, so heißt $$f$$ positiv definit.
!! Zusammenhang zu $$M(n,\R)$$
Sei $$B=\{b_1,\dots,b_n\}$$ eine Basis von $$V$$. Dann ist die Zuordnung
<$latex text="M_B:f\mapsto (f(b_i,b_j))_{1\leq i,j\leq n}" displayMode="true"></$latex>
eine Bijektion von der Menge der Bilinearformen auf $$V$$ auf die Menge $$M(n,K)$$.
Die Abbildung ist offensichtlich linear, es bleibt also nur die Konstruktion der Inversen:
<$latex text="M(n,K)\ni A\mapsto f_A:(x,y)\mapsto x^tAy." displayMode="true"></$latex>
Hierbei handelt es sich um folgenden Spezialfall ungeordneter Stichproben mit Zurücklegen:
* Es gibt nur zwei Farben: $$F=\{0,1\}$$, wobei $$\textcolor{blue}{1}$$ als $$\textcolor{blue}{\text{Erfolg}}$$ und $$\textcolor{red}{0}$$ als $$\textcolor{red}{\text{Misserfolg}}$$ interpretiert wird.
* Die Erfolgswahrscheinlichkeit wird wieder mit $$\textcolor{blue}{p}$$, die Misserfolgswahrscheinlichkeit mit $$\textcolor{red}{q=1-p}$$ bezeichnet.
* Die Farbenhistogramme bei $$n$$ Stichproben bestehen jetzt aus zwei Balken, die zusammen die Höhe $$n$$ haben. Also reicht es, nur die Anzahl der Erfolge zu protokollieren. Das führt zum modifizierten Raum $$[0:n]$$.
* Die Wahrscheinlichkeit bei $$n$$ Stichproben $$k$$-mal Erfolg zu haben ist
<$latex text="\textcolor{blue}{B_{n,p}(k):=\binom{n}{k}p^k(1-p)^{n-k}}." displayMode="true"></$latex>
Diese Verteilung auf $$[0:n]$$ heißt die ''Binomialverteilung'' zur Erfolgswahrscheinlichkeit $$p$$.
iVBORw0KGgoAAAANSUhEUgAABikAAAEyCAYAAACPszNZAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAIliSURBVHhe7d0HeBTV2sDxN4oNgxoEFTSA1IBIhwsIAipNUJAiKArYwYuCfiLY9QpcBa4KWK+ggl4BKSIoTUCagPQOoURJMBEpQQhF2vnmzM6EzWZ3s0m25/97ntWZybK7M2fmzJnznhKjDAIAAAAAAAAAABBkF1j/BwAAAAAAAAAACCqCFAAAAAAAAAAAICQIUgAAAAAAAAAAgJAgSAEAAAAAAAAAAEKCIAUAAAAAAAAAAAgJghQAAAAAAAAAACAkCFIAAAAAAAAAAICQIEgBAAAAAAAAAABCgiAFAAAAAAAAAAAICYIUAAAAAAAAAAAgJAhSAAAAAAAAAACAkCBIAQAAAAAAAAAAQoIgBQAAAAAAAAAACAmCFAAAAAAAAAAAICQIUgAAAAAAAAAAgJAgSAEAAAAAAAAAAEKCIAUAAAAAAAAAAAgJghQAAAAAAAAAACAkCFIAAAAAAAAAAICQIEgBAAAAAAAAAABCgiAFAAAAAAAAAAAICYIUAAAAAAAAAAAgJAhSAAAAAAAAAACAkCBIAQAAAAAAAAAAQoIgBQAAAAAAAAAACAmCFAAAAAAAAAAAICQIUgAAAAAAAAAAgJAgSAEAAAAAAAAAAEKCIAUAAAAAAAAAAAgJghQAAAAAAAAAACAkCFIAAAAAAAAAAICQIEgBAAAAAAAAAABCgiAFAAAAAAAAAAAICYIUAAAAAAAAAAAgJAhSAAAAAAAAAACAkCBIAQAAAAAAAAAAQoIgBQAAAAAAAAAACAmCFAAAAAAAAAAAICQIUgAAAAAAAAAAgJAgSAEAAAAAAAAAAEKCIAUAAAAAAAAAAAgJghQAAAAAAAAAACAkCFIAAAAAAAAAAICQIEgBAAAAAAAAAABCgiAFAAAAAAAAAAAICYIUAAAAAAAAAAAgJAhSAAAAAAAAAACAkCBIAQAAAAAAAAAAQoIgBQAAAAAAAAAACAmCFAAAAAAAAAAAICQIUgAAAAAAAAAAgJAgSAEAAAAAAAAAAEKCIAUAAAAAAAAAAAgJghQAAAAAAAAAACAkCFIAAAAAAAAAAICQIEgBAAAAAAAAAABCgiAFAAAAAAAAAAAICYIUAAAAAAAAAAAgJAhSAAAAAAAAAACAkCBIAQAAAAAAAAAAQoIgBQAAAAAAAAAACAmCFAAAAAAAAAAAICQIUgAAAAAAAAAAgJAgSAEAAAAAAAAAAEKCIAUAAAAAAAAAAAgJghQAAAAAAAAAACAkYpTBWgYAAABQAOzYscNacm///v2yb98+ay1/rr32WilevLi15l7FihWtJQAAAAAFDUEKAAAAIEKcOHFCUlJSrDWR3377TTIyMqw1kRUrVlhLDjoY8d1331lrkaVdu3bZghf169e3lkRiY2OlTJky1ppIfHy8XHbZZdYaAAAAgEhBkAIAAAAIIefAg3PQwQ44pKeny+jRo81l+ObRRx+VuLg4c7lq1apmQMM5qFGsWDEpWrSouQwAAAAgtAhSAAAAAAFiByCOHz8uSUlJ5jY7+LBw4UJZtWqVuRxq/fv3t5aCY9iwYdZSaNWtW1eaNm1qLtu9NMqWLSuFCxcmkAEAAAAECUEKAAAAIB/s+R02b95s9oLQ/w9G7wfnwEKpUqWkZMmS1lr2oZC0SKh0P3TokBw4cMBac3CdHyM1NVWSk5OttcAHPOxhp+xjbAcxGF4KAAAA8A+CFAAAAEAO9u7da1ae694QdiW5v3tCOM/BYLfqdw426IrxG264wVyGezqddK8VLVhDZ+lg0VVXXSUJCQmZAQwmAgcAAAB8R5ACAAAAsOheEXbLfV2x7a+Jp+05Euz5Ea699lopXry4+TcqtEPDDmjY6W33gtH80TvDHkpKp/l1111nBpvofQEAAABkR5ACAAAABY5zzwh/BCPsXhB2EIIhgaJDIIbyche8IFAFAACAgowgBQAAAKKarmjWQ//o/2/YsCHPFcyugQj9f4ZgKrjs+TPsYaV0sCs/AQx9ftWrVy9z2Cg9BwYTdwMAAKAgIEgBAACAqHDixAlJSUkxW7tv375dVq5cmafeEXpophtvvJE5BpBn9lBS+ly05zDJyxBSdq8LPUcJgQsAAABEK4IUAAAAiEjOPSTmzZuX64CE3TPCrgAuVqwYvSIQUHbvCzt4kZeePQQuAAAAEG0IUgAAACDs6crdbdu2ye7du2XJkiW5rtjt37+/WZmrgxLMAYBwo3te7NmzJ3PC9oULF8qqVausv+bMeagoPQwZ5zcAAAAiCUEKAAAAhB27l8Tq1atl2rRpuaqw1QEJXVFbrlw5KV26NL0jEJGce13kZfgyPWxZ48aNpVq1avS2AAAAQFgjSAEAAICQ00EJXRmrW5HnZux+XRFbvXp1qVmzJgEJRD0970piYqIkJSXluseF7m1xxx13mL0sqlSpwrUCAACAsEGQAgAAAEGXl6AEQ9oA2TkPhaavKV+vJz23Rfv27aVOnToELQAAABBSBCkAAAAQcHkJStjD1ehhmypXrsxwNYCP8jJcGkELAAAAhApBCgAAAPidngh469atMm/ePJ+DEnouifr165u9JOLj4+Wyyy6z/gIgP+zeFuvWrTOvSV/mtrCDFk2aNCFICAAAgIAiSAEAAIB8sytBFy1a5HPLbeegBEM3AcHjPETUkiVLZPTo0dZfPLPntGjUqJFUqlSJICIAAAD8hiAFAAAA8kQPKaOHb/K1kpOgBBCe7Am5N27cKFOnTvWpp4Uejq1169bmPDEMDQUAAID8IEgBAAAAn+S2t4Q9p0S1atVoeQ1EkNwOD6WHhurevbvUrFlTatWqxbUOAACAXCFIAQAAAI/03BILFizwqbeEc0UlY9gD0cOeY8bXibjpZQEAAIDcIEgBAACALNavXy9Lly6VcePG5VgZqYdw0uPUV6lShcpIoIDIzVBvznNZ1KhRw9oKAAAAnEeQAgAAoIDT49GvXbvWHMbppZdesra6Z/eWYPJcAJrz0FC+BDYHDx4sTZo0YVgoAAAAZCJIAQAAUADpikU9dIseb37YsGHWVvcYugWAr3LTy0LnLZ07d5Y6deowPBwAAEABRpACAACggLADE5MmTcqx8tBu7czcEgDyys5z9CunXloEQwEAAAoughQAAABRzNfABMM4AQgkPaxcYmKiT/Pd6HksOnToILfddhsBCwAAgAKAIAUAAECUyUtgggltAQSTnqB/48aNMnXqVPnuu++srdkRsAAAAIh+BCkAAACigK+BCSr8AISbvXv3yoIFCwhYAAAAFFAEKQAAACKUHj5l7dq1smjRIq/jvVOxByBS2AGLnCbe1vnak08+yaTbAAAAUYAgBQAAQITRw6TMnDmTwASAqGb3EPvwww+99rDQk2537tyZgAUAAECEIkgBAAAQAXTr4mnTpnmdcJY5JgBEK1+HhBo0aJA0bdpUatWqJZdddpm1FQAAAOGMIAUAAECY0q2IFy5caAYmPFXKEZgAUND4GrAYNWoUeSMAAEAEIEgBAAAQRux5JnTF27Bhw6yt2Q0ePFiaNGlCa2EABZovvcwY/g4AACC8EaQAAAAIA75UtDHuOgB4pufrWbp0qTz11FPWluzsfLRx48YEeAEAAMIEQQoAAIAQ0b0mlixZ4nVSWD2cU58+fWgBDAA+yk2PtDvvvJPhoAAAAEKMIAUAAECQ+dLaV0/+2qZNGyrPACAffJnbxx4Oqm3btvRSAwAACAGCFAAAAEHgS0UZw5AAQODs2LFD5s6d63VYvf79+5tBi1tuucXaAgAAgEAjSAEAABBAdqWYp14Tejin7t27S/v27RnOCQCCwJfhoOyh9uhdAQAAEHgEKQAAAPzMl7kmdK+Jnj17Sq1ateg1AQAhonu5ff/99zJ16lSP+TW9KwAAAAKLIAUAAICf7N27V6ZNm+a11wQtcwEgPOn5gmbOnCkvvfSStSUr8nAAAIDAIEgBAACQTz///LN88cUXMnr0aGtLVvSaAIDI4cscQrp3xf333y81atSwtgAAACCvCFIAAADkgV2J9dZbb7mdgJW5JgAg8uXUu0IPA6Xz+tatWxOEBgAAyCOCFAAAALmQ00TYusLqySeflMaNG1NhBQBRwpfeFaNGjZIWLVpIxYoVrS0AAADwBUEKAAAAH+Q0pNOgQYOkc+fOVE4BQJTT9wMdqBg2bJi1JSt7iD8m2gYAAPANQQoAAAAPTpw4IbNmzfLYcpZJVAGg4NK9K77//nt5//33PQ77N3DgQGnatCn3CAAAAC8IUgAAALjQFU9ff/21GZxwV/Gkh3TSk6YyETYAQAe0165da/as8DYUFHMUAQAAuEeQAgAAwKLnm5g8ebLHCVIHDx4snTp1YkgnAIBbOd1HdID7/vvvlxo1alhbAAAAQJACAAAUeN7GF9fDdXTv3t2sVGK4DgCAL3IaCooeeQAAAOcRpAAAAAWWDk54Gp5DVyDp4ETr1q2pQAIA5ElOQ0ExbwUAAABBCgAAUMDYk2G/9dZbXlu33nLLLdYWAADyb/369eZ8R+567Wl63gp67QEAgIKIIAUAACgQ9NAbCxcu9Bic0IGJRx99lPkmAAABtXfvXpk2bZo89dRT1pasmP8IAAAUNAQpAABAVNPBCd1y1VNlkG652qJFCyqDAABBldO8FUyyDQAACgqCFAAAICrlFJwYOXKkdOvWjWE1AAAhZQ9DOG7cOI9zJDEMIQAAiGYEKQAAQFTxNoyGPUEpk2EDAMLRzz//7HGSbTtYUatWLe5hAAAgqhCkAAAAUWHHjh0yevRotxOSEpwAAEQSb5Nsc08DAADRhiAFAACIaN6CE7rV6ZNPPimNGzemIgcAEHEIwAMAgIKAIAUAAIhIOQUnGL8bABAtvM2zRLACAABEOoIUAAAgouQUnHjuueekUaNG1hYAAKJHTsGK7t27y/333y9Fixa1tgIAAIQ/ghQAAASRrmD3JD4+nhaQXtBzAggfeoL648ePW2tZFStWjApSIMDsYMW4ceNk1apV1tbzRo0aRbACAABEDIIUAAD4ma6827Nnj+zevVs2b95sVq5/99131l9zpivcK1asKFWrVpVy5cpJ6dKl5YYbbrD+WvAQnABC48SJE5KYmChJSUmyfft2+fXXX81r0Ve6VXfTpk2lVKlSZp5WpkwZ8/8A/Edfp7NmzZK33nqLYIWP7CDrb7/9JhkZGdZWz3R5rHDhwgW6LAYAQKARpAAAIJ90BcHatWtl3bp1Hls05peu7Gvfvr00adJEatWqVSB6XHgb0oLgBBAY69evl40bN8rUqVNzFVzNDX3t3nHHHVKnTh0qTgE/ySlYMXLkSOnWrVuBu+Z0WWLbtm1mGW3Dhg25CrS68+ijj0r16tXNgGuVKlUIXAAA4CcEKQAAyKOff/5ZFi1aJC+99JK1JXd0RZ273gG+GDx4sBmwiMZKeoITQHDp3kpz587Nc5BVV9rt378/T0EN/W87d+5MwALwE3pWOHpKLFiwQJYsWZLvoEROdLmkQ4cOUr9+fXqKAQCQDwQpAADIBV2BvnDhQo8P/zb90FqvXj1JSEiQsmXLmsME+PLwqisL9RAE9vAqK1eu9Frxp3tY9OnTR9q2bRvxFQ45BSeYEBvwLx1o1YHSnPIYPWSTroC79tprpXjx4j7Nn+M8nIrO13xpwawrT1u0aEFFH+AH3oIV+roeOHCgtG7dOmp6Zur91UGJSZMm+RSYsPM2TQ/nFBsbay47W7Fihfl/X4ft1GUVPXG5/lyCrgAA5A5BCgAAfGBXoD/99NPi6dZp926oXLmyXx9O7aEKdK+NadOmeQyORGrrSLsipWPHjtaW83QlwrvvvkvPCcCP9FBOuteEp0o3u3eDv4cy0de6nuMip+GkdG8p/RsIVgD5F+3BCl1G+v777+X999/3WD7S+6mHzNQ9tvTcOL4EWt3RwQo78Dpv3jyvgQvmAgEAIHcIUgAA4IW3h3vNDkwEc56InIaZmjJlSkgqHOxgiq9BmmivOAHCjbeeE7oF8JNPPhnUYZd0bwsdePU0zJQOVuh8gEo+IP+i7Z6r90f3mujRo4e1JSt7GKbbbrstYPNG6Dxs69atXntvEKwAAMA3BCkAAPBATyD7+uuvZ6vQ0w/zujt/qB86vbUe1L/xv//9r9SoUcPaEli6VWGlSpXM5bFjx5rHxxtdWfrMM88QnACCQFek6Ulz3c2BowOtnTp1CmmvBV3ZuHbtWo8BlMmTJ8udd95JngD4gS/BCl25H850TyxPjUdCNWxcTj06dNlI91AjHwMAwD2CFAAAuNAP8HqIIdeeCuFage6twkFXQOpgQKB/74ABA2To0KHmsh6m5dNPPzWXXXlryc0DPOB/ujLP3VBqOm/o1atX2LXu9ZRH6FbRuvIvUC2igYJGV6p7mwdK92QKt6EWdcD1jTfeyNZrwS6fhcNcEDkFgYLZgAQAgEhCkAIAACe6R8ADDzyQ7cEyErrr6wfjMWPGZKtw0A/FX331VcBaFc6dO1datWqVOVeHHm7KtRWmPq66UsFdS27dwrtbt24MhQD4kc4PXnvttWzXnA4i6srHcJ/vwVNLaXf5C4C8i5RghaeAa7g2cPAWrNBlykceeYRGGQAAOCFIAQCARVe2t2zZ0lpz0A/ouodAJE3gqgMCzz//fLaWyIGo3NOVGzpA4fwAnpKSktnaWf9dP6C7C04w3jwQGLq1sb7Wna9LHawcNGiQOQxKpND5x8cff5ytV1uweogBBYkdrHj66aczGx3Y9P06VJPZewq4RkoZwlMDEn089X7ROwwAAAeCFAAAGPQwIq4PkF988YXce++9EVkRph+K3U0oqVvv9enTx1rLPx0Mca440BWhK1eu9PhQroWysgOIdnq4pEaNGllrDvp6e/vttyM2IOhuDptI3ycgXHmbw0bfv3UQI1gV69EScNXcNSDR+6KHFw23YbUAAAgFghQAgALNXQs9/dAYLWMG68m/n3jiCTNwYNOVeyNGjJDChQtbW/LGXc8TXZGoK0jdDW+ge6U899xz2SpQAfiHu2vSl4nsI4Fu5a3nvnEei17n1XoIGFoiA/7nbZjGYAyB6an8ossXV199tbUlsugyp7s5z5YuXUqgAgBQ4BGkAAAUWPphUbcIdK70isbJWd1NNKkf9HVLybz2EnHXulErUaKEpKWlWWsOkdrqEYgkrr3B9HX3zjvvRFVQ0F0PLQIVQGDpYIEuQ0ybNs3acp4eRrJ169Z+73HqrkeYv3uChpLrXF5aNO0fAAB5QZACAFAguQtQ5LfiPpz5c3/dfZYngarAAHCeDlDoa9Iu1kd7xf24ceOkZ8+eBWZ/gXCgAwe6V4XrfFf6+tNzQ/hrzit3AYpo7Gmge6o88MADWRp76DKZu2EyAQAoCAhSAAAKJNe5FKI5QGFz1wpZ7/enn35qrflGD7miJxP3Rg/79PLLLzNePBBgrhV6BaXC3t1+66BofHy8tQWAv+lyxKxZswI2pGNBCVDY3PVK1fmYvwI+AABEkgtfN1jLAAAUCLrVsa5At+mKen/M0RDuLrroIqlXr55cfPHFsmDBAnPb2rVrpVixYuZ2X+hj98orr1hrnq1YsUISExPl1KlTZmvnM2fOyBVXXGH9FYA/FNQAhVaqVClp3ry5fPbZZ+Z6amqqHD161Nym8zoA/qevrcqVK5s9ACpWrJhlCCh9z//888/l+PHjUrp06VzPG6Er7B9++GHzWrYtWbIkX0GPcKfLRbq3qQ7E2Pv9zTffmPmYzuMAAChI6EkBAChQXMcBLgg9KFzplpB9+/bN0oPCl5Z7rmPe5xYTQwL+49oCt6AOeaT3uWPHjtaaSP/+/XPs6QXAP/SE9h9//HG2iaC1wYMHS69evXzqUak/R1fWO0+SXZDKDO56VOigjw4EAQBQUBCkAAAUGPoh0HkoED00wfjx4wvkfAnu5pXYvn27VKpUyVrLKr8BCk0f72+//VZiYmKsLQDyQl+/9913X5ax4b1dv9HONX8aO3asdO/e3VoDEGh6fgVdnnAeRtM2efJkufPOOz2WtdyVRwpiowZdRtUBVztQowPPs2fPZthMAECBcYH1fwAAopp+CO7Tp4+15nj40xVbBXVCZ73fr732mnkcbA8++KB5nFzplsr5DVDYx5sABZB/7777bpYAha7QK6gBCk3n7bpXnK1Hjx5mpSmA4NAt/nUPJp0X6QYJzjp16iRNmjQxe7K6M2nSpCwBCh1kLIi9LnUvuHfeecdaE7NXhZ77gzalAICCgp4UAIACYciQIVmGI2DoIYf169dLzZo1rTXH8AwvvviitebgOsm4TQcemjZtKlWrVpXY2Fjz/5qe26OgDTkDBIu+ZmvVqpVZcTVq1KgsAdiCSgdYdX7k3Ap50aJFBTYQDYSSbtzgaXJtHcywhzFyLYMwXJvIuHHjzECrTfdEcR7SDgCAaEWQAgAQ9XSLWudWxnoOivz2DIgmrg/E69atkxo1alhrjr/rXhBa+/btzRaRelJMAhFAcOmKeH392RV/BXnIOndcKzwJ4ACho/Mr3UuiZ8+e2XoD6GCEnhvrnnvuyTKvDoFFh8ceeyxL75KUlBTKXACAqEeQAgAQ1fRDsvPY7bpS7+uvvzZb+8PB9Ri5qyjQ76HiAAgt17kXmFg1O9ega0GeqwMIB3pSbN2rwrVHpp6nYubMmdYa16ozfcxatWqVGcChhwkAoCAgSAEAiGp6yAHnbvJU6rmne5skJCRktnacMmWKdOjQwVwGEHquPcKYHNo9194meq6KTz/91FwGEDo6D9PDRzrPp2Oj11N2eg6Pli1bWmsMUwoAiH5MnA0AiFq6surtt9+21hzzLRCgcE8fFz0Mlk0HdnRLPgDhwXnoD93bqXPnztYanOkeX3picZs+bj///LO1BiBUdDlj2rRpMmfOnCyTa+v87JFHHrHWYGvRooUZZLW5mxsMAIBoQpACABC1Zs2alWXSxl69ellLcOf+++83KwtselgsAKGnWyA7V1C98847DL/mhW5trIdHsVG5B4SPMmXKyPTp0601MYOK5Gfu6XwsJibGXNY9UHTvYAAAohXDPQEAopLrkB8MJeAb1+GxDhw4IFdffbW1BiAU9BApdkW7boH87bffZlZcwT3X4bEYKgUID675me5dEVJnMiQtKVG27dglvyXtksStu+SPE0cl+ec5snB3hvWmElK7TTO56eor5LqK5eXGUhWkYpUEqVyprJSILWS9JzCGDBkiL730krmsG5KsXLnSXAYAINoQpAAARCXXyvaDBw9K0aJFrbVQ+FvSFn8mb/9njIyZvkbsx97zjAfgzo/Ik8/2lu71S0pgH3k9cw3uTJ48OctxBBBce/fulfj4eGst0JXtGbJj6n/k5SGfyKQ1ada23KogTTv/Q8qUvFFuSqgklSomSEK1m6R8sUsl2GEV58pQ5qYAQi+4+Zk3p+XwjuUyZ/YPMmXcl/nK75o90UMeaHuHNG1US8pedZG13X/00JvOjUUIuAIAohVBCgBAVGrfvn3m5Iyh70Wh5PiG9+Wexn1l7tEcbrtxD8nYlaOke/nLrQ3BN27cOOnRo4e5TKs9ILTef/99eeqpp8zlgLc6PrJABiTcLkPzWl/nUYK06fekPPpAB2lV63q5NEjRCt2bIiEhQezHncTEROYlAkIoqPmZW6clfctsGTP8LXnji2VuGozkXewTMyTp47ZS3Fr3J+feFPSmAwBEK+akAABEnfXr12cGKDQdsAitQ7JmyjfyY04BCi19mnz87RY5bq2GQtu2ba0lMXtUMOksEBq6Z9OXX35prYk8+eST1lKAHDssf/g9QKFtlx/ee1ruqXOHdHl9muzIOGttDywdkNAVera5c+daSwCCTedndoBCC3h+5upMqiz/uK+0rH+39PdzgEKLu+ZKKWwt+1unTp2sJcfcFLpHCgAA0YYgBQAg6uiu8DY9xMcNN9xgrYXIkQ3y/eil4lvXxXRZPm6ebDweuo6Oelgs50lnFy1aZC0BCKa1a9dmmfy/cePG1lKk2i7T/3WP1H/0c9kcpEBF7969rSVHLzEAoaHzM2fBzM9Uxkb58qku0rL3R7LK39EJU7zUqlAiYEEK14BryOfxAAAgAAhSAACijnNFlD1sUeickyOr58mXuWmdvPlHmb/xL2slNJwfhvUQA7oFJIDg0gFCe6iiwYMHy2WXXWYuh0SJ7jL0mykyZYrn1+RxH8mwV/4pd9cuYf0j99InPiOdX/1R9p2zNgSQc0WoDvjonnYAgu+LL76wlkRGjhwZvPzsTLL88Eov6f7xUjlqbXIvVso1e0xe/fArmT5/mazekiSpqamOV9IWWb18vkwf954837mu8U5XN0i1MkUDOu+Oc88T5x52AABEC+akAABEFV0BVbNmTWtN5NixY1K4cKDatvlA/SFznr1TWr23ztrgi1ipOmiu/PJSg4C1ysuJDko4HzcmagSCKyTXYNpU6VGyo7jtb1BumKza9pzU8WVe2DNHJHn9bBnz5mvyr+nbrY2uWsnQVeOlf52rrPXAcR7PPfRzFAEFj2t+pntVOJfVAue47P6yj9Tt/rmkW1uyi5VybZ6S1wY8Inc1KCtXFcoh1KBOyoFtS2TSyH/JgE/swEc3GZc0Rh688RJzLRBcJ9Bmjh0AQLShJwUAIKo4D/WkhywKactjg9q/WqaNdRegiJdGTRtInLWWVYZs/mCGrDgShGbGHujjpltu29aty02QBUB+6QooZ7Vq1bKWIkChK6RUnXvl9f9NlDE9PVVEzpZ3J62RI9ZaIDVp0sRacvS0o40WEFzOQz3VrVtXatSoYa0FkpIzyd/LoL7eAhTx0uyVr2XuhDflwcblcg5QaDGXSrEqzaX3R9/L6ikvSjPdraJMFalQ8mLH3wNED8WphzC1rVixwloCACA6EKQAAESVefPmWUsid9xxh8TEBLLzfU7OyP6V82Si26fj+tL9qa5S19PvS5src1YfslZCQ1fs2cfP+bgCCLyNGzdaS+ERcM2LmNib5cEX+ki77GOjmNJ+3Cy/BmFqisqVK1tLjiGfmHQWCC7nhg7t27cPUtnsiGz45nP5wmOEIk7qDvivfPVKWykbe6G1LRdirpSKHV6XKUsny/BXmkuliwO/T61bt7aWRJYsWWItAQAQHQhSAACihh5O4LvvvrPWRKpUqWIthYjaJyt/mO++BV/DxlKvRWNp09B9XwqRNfLlnI1BaWXsiXPFnj6ueqgBAMHhXAFVv359aynSxMhF5RvK3Q1LuB+rfeduSTkU+CiFboHsPM/O1q1brSUAweDc0KFOnTrWUmCp1PnywZDZ1pobDQbKyBebS8mL8hNcuEjiqneU/3u4rsQFIe5StWpVa0lk9OjRzBcGAIgqBCkAAFHDeXgUPZzADTfcYK2FhkpZKl9/tdlacxYrVe+sIxViK0iTexta27JL+3S6LP7zjLUWfLpiTx9H27Zt26wlAIGmK6BszhVTEeeCy+Wq6zzMrpNxSk6dCc7QS7pnnW3Hjh3WEoBAC00DklOSsmSmTPLYi6KhDBjUU/5xRR56UISQ6xwUKSkp1hIAAJGPIAUAIGokJSVZSyJNmza1lkLFeEBePldmZFirWdSRrrdXlsJyuVRu0sJ4VPYgfb78sHKfhHL0dOfWx/v27bOWAASSayV6RE+Oqv6WY3+dslZcxF8nxYNUSeh8DJ2H0gIQWK4V6UFpQKJ+l+XTF4nbIpjWoIN0rl/cfQ+vMKeH/7Nt3uyuIQwAAJGJIAUAIGps377dWgqD4VH0A/J3Hh6Qq7aQ26tdaSzEyMU3N5dHWpRwbM9ms0z8YZ3sD2GUIiEhwVpikkbAnSFDhki9evXk+eef91sL/f3791tLkmWi1Eik9m+XZYtT3AZbYxslSOnCwakmLFOmjLWUtZcKAAc9pKPOx+z8zF9DPDpXpDtXsAdU+g5ZMXu3teIqThp2vV1uDlLe42+6Z509p0dqaqr5fwAAogFBCgBA1Pjrr7+sJZHYWA8ztQaJSlkp381w94AcK1W7NpVq9sPxBWWkUZdGjmU30ifOlKVpp6214Ctbtqy1ZPyWdI/jJgAF1ksvvWROxjxs2DCpVKmSjBo1Kt+Ve869luLiPM1bEwHUYdk4cZx85TbrSJDOHRtIfJDqCV17ozDHDpCVHuJR52N2fnb11VfL+++/n+9rJSPjfHONUqVKWUuBdebXTfJ9uqcWHglye81ScrG1Fmmuu+46a0kkOTnZWgIAIPIRpAAARA39UG1zbjUbfCdl57ypMt7rUE+2S6V8o1bSwlrLJn2uTF6yV85Zq8FWuPD5X0rrYyC7wYMHW0sOTz/9dL4r95xbx/7jH/+wliKM+kt2TBokjz09yW2Psrj7XpYX7yoVsuFWDhw4YC0BsLn23HrqqafM/Cw/wdctW7ZYSyIlS5a0lgLprKSnJYvnASqrSY3yV1jLkce5fLtw4UJrCQCAyEeQAgAQlZwr14Pu3G+y9Jul1oqLhh2kbS091NN5F5RvKF08Dvm0W2Z8t1JSQhSliI+Pt5YAuPPMM8+YFXiu7Mo9PRxUboeBiuTWserkftmxfIoMf/hOqd3lP7LK2u4sttmbMuk/naT8xcENUTgPNXP8+HFrCYBt5MiRbodkcg6+5mdYu2uvvdZaCqSTkpq00/N8FOXKS+nihayVyKZ7vQAAEC0IUgAAolJQJmb04NyuZfLN3DRrzVmcNOzSWCq7VszlMORTxoy5sjzlb2stuC677DJryWHv3r3WEgBNXyN9+vRxG6jQ9HBQehio9u3by7hx43J9DTkPuRZShxbKV+8Ol+HDPbwGD5Be9zaTCpddI5UadpL+XyxzU0lYXboMniFrpr8gt5e4xNoWGklJSdYSAJvOz4YOHZqth5hNB1/t/Gzu3Lk+9a5wDmoUL17cWgokJWdOndT/c6/qtVI0OPP1B4Tr0HUAAESLGGWwlgEAiFj6IVhP8mzf1kJ3e8uQDSO7Ss1+Pxi/wdqUqY2MWD9Bnq6efb6Mczs+k9aVHpG51npWJaTF6Pky65HKIWldYE/QqCUmJvKADLhx4sQJue++++S7776ztnjWrl076dChg1SrVs0co12PBe9MT1prD1+3fft2s1IwKNKmSo+SHWWcteovsbW7yJM97pX2bZpJ3bJxEqo2zM7HdcqUKWYaAMguN/mZHiKqcePGHvOzCy64ILNMFpwyRIpM7dFMOo3b7T5O0X2KpI7tYJSsIpfzMT148GC2Yw4AQCSiJwUAAP50apcsmrjMfQu+hi2kSeXLrZWsvA/5lCZzv1kmu0I1MYUTXVmqgxa8ePHK+tJDzPlSoafp9/Xo0UNq1qwprVq1yta7wnl+nYgX20y63dNEqlW4Vq64KHyaL3fs2NFtOvLixSt3+Zmer8o5P9MBDgQP8+sAAKIFQQoAAPxGyaltS2TisnQ3MYo4aXivm6GebBeUlTsebi3Z+1hY5s6RpbtOWisAooUeU3zatGnWWhTK+Ek+eflJeaB1I6laqo606P0fmbrmdznptolzYFWtWtVaAhAIOj8bM2aMtQYAAOA7ghQAAPjNEdn040xZZq1l1VDubVJeLrbWsrtY4hu0kLs8RinmyZjZ2+WUtQYgOtStW1ceeeQRay2MlRsmq04pc4gRt6/TR2V/6h5JXL9EZn31njzfua6boOtO+enj56RjnTuky7/nyp6Twe0etnnzZmsJQCDooZ8iIj8DAABhhyAFACAq6KEJQu74Vpk9dqm14qL5XXJHFY8RCFNMfD1pd1c5cd/XIl2WTVwi206FoPmxEz2etNsKSl68Cvjr+PHj5lwTvujfv7/MmTPHvJ5WrlyZbYJ6/feIUyhWipUoJRWrN5JW3frK2xMXS9L6aTK4S3XrDc62y/SXOkrzZ76V5DOhydP0nBTu0pEXL16O/EwHUH2hJ9nW+VlKSop8+umn2fKz4IuT0jfHW8tu/HUsJD25AiU+3su+AgAQQQhSAACiwg033GAthYrxUL9xoUzYnGGtOyshLbo2kQRPQz3ZYq6XBu2aSKynty2bI4u2HbNWQqNYsWLWEgCbHoP96aef9jqGuw48LF261Kz8Gzp0qLRo0cKnCWT1+yNSzKVSvHo7eWH0OBnTs6ab4GuG7Pz4OXl63DY5bW0BEHp2fqaHbvJEBybs/OzFF1808zNP5TBfg7f+EyOFLr5U/8+9zfvk0FlrOQK5zvkR+qAQAAD+QZACABCVduzYYS0Fy1+ycf5ccT+YSCPp0qiM5DxlrD3kk8cohUz4cZsEs8ry0KFD1pJD0aJFrSUAml2hpyePdaVbIo8aNUoOHjxoBiZuueWWXFcoJSUlWUuRKSa2mjw0+GV5qKi7fO03+W7YeFkSpBrD9PR0a4n5KQB3dH7Wt29fj/nZ2LFjzfxMByZ8zc+cg7H79++3lgLpErnmhtLWshv7kiUtPXKjFLrHCgAA0YggBQAgavg6NEFAHFkr336w0FpxUeIyObRxpkydOjXH17er/pAi13saFipdlo+dJxuPB2+cggMHDlhLANx57bXXslXo6bxIDye0aNEi6dOnT66De6VKlbKWokNMydvksWebWmsuts+Q6auCk8+4q3gFcN59991nDtnkzDk/6969e74aK+zbt89aCqRCUrx0eSlnrWWTsU427HbX6zXyBL+XCgAAgUOQAgAQNZo2PV8J9ttvv1lLwXBOjqyeJ1+mWauu0sZJ/84dpWNHH16d+skn249a/9CNzXNl/sa/rJXAc271qCfEBJDVsGHDrKWslXkdOnTI8zAcJUuWtJZEfvnlF2spkhWRinVqSZy1ltVuWZz4hwS6XbPrECkMXQdkpa8R5yHr/JWf/eMf/7CWRFJTU62lwCp0483SNs5Tr9QtMnt9SsDznEDZvPl8n11fhgwEACBSEKQAAEQN58kD//jjD2spGA7J6jlzxVOMwr9Wy4T5wRvyybnVY1yc+ypGoCDTw5/oAJ4e1mn27Nn5qsyzXXvttdZSKIauC4QL5Ypi14n79tcZcuDAETlprQWK6xApDF0HZKWDFDofs/Oz/AYnbLGx53uHJicnW0sBFldR6rfy1JciXZZ++ZNsPhWZs2c7B3qirdcdAKBgI0gBAIgazq2PnVuaBZr6c4VM+nSNtRZoGbL5gxmy4sg5az2wnFtx169f31oCYNPDn+jhUfIyrJMnpUufH09dt2x27QUQec5KelqKeBroJWXPfjliLQeKc+86PYk5gKx0/qXzMTs/y29wwlamTBlrKWvPs4CKuV4a3N1EPA2eKcsmyPil+yUSwxQbNmwQpRy/nJ4UAIBoQpACABA1nCdCDdqDsJyR/Svny8Tz87EGXtpcmbP6UFAerhcuPD/PRtmyZa0lAIF0ww03WEsOkT9R6glJTUoST6PAl7u5tBS3lgPFuUeKc687AIHler3t3bvXWgqkiyW+8Z3S2WMH0GXywYjJsjEj8gZ9cp5bxzkABABApCNIAQCIGiF5EFb7ZOXM+eI2RhH7sEzY87fZ4i23r3MHZ0u/EtbnZLNGvpyzUY4EOEqhj9+qVausNYYVAILJubV/MHuGBYI6skl+mLjMWnOVIHcklJBC1lqgzJs3z1oSqVmzprUEINB0jwznOa22bt1qLQWWnrD/8f/zMGG/IWP6W/LMsAWSejq/halzcjJ5oXz2wVz5Nd+f5Z3r8H/0pAAARBOCFACAqOH6ILxy5UprKXBU2i/y7UT3FYhxD9wjzeIvttZyJ6ZobbnrwdrWWnZpX86W5YfOWGuB4VyR0K5dO8ZwB4LIuWfYihUrrKUIdGavLPjPm/LWskPWBhexDaVZtcBOYn3o0KEsEwI7D6cFIPCqV69uLYmsXr3aWgq0K6XOg72lp8feFCny078ekQcGzZbkk3kcQlMdkaQ570jPO+6SR/pMlXUHAtszw/le4FzeBQAgGhCkAABElcaNG1tLIrNmzTJ7JQTOKUlZ8oNMSnf3HVWlS5uaUjzGWs21olKnZQvx2JkibZZ8t+yPgA75pCsS7ON3xx13mP8HEBzVqlWzlhzD10XcvBTquKStmSJDHmgrd/xrlhy1NmcVKwn/vF+a5zGY6yvnSlEdcHUdTgtAYDVq1MhaEnnppZfk+PHj1logxUihUm3l5REPicc4hRmouFdu6/Iv+WZ1smSc8bVUdVoO71ggY57pJNVb9ZeJO/Vgdofk8NHANh5ZsmSJtSTSunVrawkAgOgQowJbewMAQFCtX78+y1AeBw4ckKuvvtpa8zP1q0zs1lzuG787e7Agrq/M2D5c2l6Tj0FMjiyQAQm3y9A0a91FXK/psv3Du+SaPAdCPNMVooULF7bWRNatWyc1atSw1gAEQ7169TKHXFu6dKnccsst5nLApE2VHiU7yjhrNYsS3WXoiHZS7kJr3QN17E/5dedmWTJzqkxf4yHzsiUMkNmLBknL/OSTPnjssccyx3EfNWqUOSkwgOBxLVPoynbnwEVAnUmW7/t3lbveW25t8CRWyjW7T7p1biJ1KpWVktddJyXjLrX+ZjiZLqn7/pDUnZtk6Yz/yYeTVrnMs9NUhq2eIc/V9jhdd77oHmHO5Vk9VxEBVwBANCFIAQCIOs4Ve7Nnz5aWLVuay/6mkidKt5u6yng3s8H6J4BwUJa82l5ufXOpte7CH4EQD37++ecsFQi61aMeTgtA8AwZMsRsdawNHjxYXnzxRXM5YLwFKfytwmMyeupQebjqVRKAOGsm14o9Aq5AaDjnZ4MGDcpcDgaVsVE+f6qnPPrFugD2QK0ufWfPkXdbXhuQPG3q1KnSsWNHc1n3CJs2bZq5DABAtGC4JwBA1Onevbu1JDJ58mRryd9Oys55U9wGKMyhnu7Mz1BPtqJS+847jU/zIP17+fqnlIA8cH/xxRfWkqPlMQEKIPiaNGkiMTGOjERX6OkK98hXQuo+8bEsnv9uwAMU2sKFC60lkbp16xKgAEJE52e2l19+Oaj5WUxsNXn40xmycNgDUsHa5n9/y8nTgZuTYty48+Hje+65x1oCACB6EKQAAESdFi1aWEtiDvGxY8cOa82f9svmRWutZRd1u0n3piX9UPkWI4WrtZTHmsd7+KzdsnTLXvH3yM579+7NHBpFC9qQDACy0MM76Yp1m3OFe0BcfpVc53EinPyqIM16DZPxi5fKgo+ekMbxlwc8QKF9+eWX1lLWADaA4KpVq1Zw8zNXha6XW5/7TH7ZPF2G9Wwo/hyUKbZub/lw3nfyVqsSAcnX9FCmzpP/33bbbdYSAADRgyAFACDqVKxY0ewKb5s7d6615E/XSYMeT0jn2s41eroS7h2Z8VVvqV/ET7fYwtXl4fc/kqF924vrMMextR+Qp5tXkPOjPPuH8xAC+jjS8hgInX/+85/Wkshbb71lLQXIFfXkkfdfd8nX8qBcU+ncvac88fwgGTHmG5m9ZJP8emijzP/oOenauKzEBiM6YdDD1jlX7LVv395aAhBsukemc6Aw4PmZWxdJ3E13yXOf/Sg7NsyVsYOekGbl8hquKCG1O78oH3+/RnYsfl96315RrioUmMzt66+/tpZE+vfvz1wUAICoxJwUAICo5DqnwsGDB6Vo0aLWGjxxHb9dD5dlj4EMIPhcr8mgTKAdJZ5//nkZNmyYuawr9oYOHWouAwiNsMzPzmRIWlKibNuxS35L2iWJW3fJH8f2y5ZpP8iazCE9Y6Vc05ZyS6krJa70zVKtRjWpfvPNclP54nJpgIOuujdwpUqVrDXuAQCA6EWQAgAQlU6cOGGOf2xPoK3nVejTp4+5DM/ef/99eeqpp8xlPSyDHo6hcGF/99UAkBvOE87q3k3ffvtt5lwVcM+1Yi8xMdHsZQcgtFzzs/HjxzPvlRcDBgzIDLAyYTYAIJoRpAAARK2pU6dKp06dxL7VpaSk0EXeC9cWjlOmTJEOHTpYawBCxbXCnR5OOdNDO9lDPVGxB4QPnZ8lJCRkls0oa3jmeqzoRQEAiGbMSQEAiFqtW7fOMknjyJEjrSW48/bbb1tLjl4U+vgBCD3dA2Dw4MHWmuNa1b3F4J6eh8h5LgqGeQLCh87PnMtjem4K3UgC2ekh6+wAhQ62EqAAAEQzghQAgKilhw948803rTUxxybXc1Ugu/Xr12eO3a4NHDiQ4ReAMNKrVy9rScxh7N59911rDc508Obll1+21hxzUTDMExBe7r//fmvJkZ99/PHH1hpsujcwwVYAQEFCkAIAENVatGghjz76qLUm8swzz8jx48etNWi6Uu/xxx/P0lqPoReA8KIn/h87dqy1JuaY7jq4iKx08Maei0iz59gBED50fqaHebLp/GzdunXWGvbu3ZtlSD+CrQCAgoAgBQAg6umHOxstkLNzrdSjtR4Qnjp37mwGEW06uMiwT+fpnnL2hLyaDurEx8dbawDCiR5S0jk/e+KJJxj2yaDz9DfeeMNacwy/qXu3AgAQ7QhSAACinm595twCWQ8Foscsh/tKPVrrAeFJD8Gmg4gxMTHmug4uvvbaa+ZyQadbHj/77LPWmqNHmA7qAAhPdn5m0/nZgAEDrLWCa8yYMTJ69GhrTcxhS3XPEwAAoh1BCgBAgaArq5yHfWrZsqVZqVWQ6f1v1KiRtUalHhAJdBDxiy++sNYcc+3oscsLMrvl8cqVK60tIu+//z7z6gBhTudnzsM+6cp5fe0WVLrhiPMQdYMHDzbLqwAAFAQEKQAABYKurNItjnW3eZued6GgBip0pZ7rvBOjRo2iUg+IAN27d88SdNVjly9dutRaK3j0kHXOLY/nzJkjN9xwg7UGIJzpsojzsJy6kr4g9nbVcww1btzYWnM0HNHzqAEAUFAQpAAAFBi60kpXZjkPlaJb3xa0Md31/vbt2zfLPBS6gpOx24HI8fbbb2cJuurKrYIYdNWtrp2HrNPB1hYtWlhrACKBLou1b9/eWnP0dtW9CgoKnXfrOYaUUua6ztvpDQYAKGgIUgAACpRbbrlFJk+ebK05hhZ4+umn5fjx49aW6KYDFHp/P/30U2uLo1JPHxcAkUOPUe46zFNB6x2mK/Gch0bRvUseeeQRaw1ApNCV8bos4hx41cNRFoQeYjrP1nm3c8OR//73v/QGAwAUOAQpAAAFjn4Y1A/DNh2o0D0Lor1HhR2gcB4WRR+HPn36WGsAIomuxHKuxNOVXAUlUOEuQDFixAhaHgMRSudnOvDq2kMsmntU7NixI1uAQufpNWrUsNYAACg4CFIAAAokXTHvGqjQFfjRWrl36NChbAEKPQY0AQogsuleULpSy3kYO13pFc0VezpAofMzm67U1HMOFS5c2NoCIBK5C1ToHhXjxo2z1qKHzqMrVaqUJUCxZMkSerYCAAqsGGUPfAgAQAHk2hpXPxh/9dVXUrFiRWtL5HM3lMCgQYPk2WefpdUxECV0hZeuzHM2e/Zsc2z3aOGuN5jOs3WlJkOjANHDXbll8ODB5kTS0VBu0UGXnj17Zs5BoelgMwEKAEBBRk8KAECBZveocG6FrFu2zZ0711yPdHo/SpUqleVBX++vnmiWAAUQPeweFc5atWolQ4YMiYqh7HSl5X333ZclQKGHeNKBGAIUQHSxe1TUq1fP2iJmuUXnASkpKdaWyKN7tT7//PPSo0cPAhQAALggSAEAKPB0oMJ5Mm1Ntz7WrfYitXJP/25dOan3w/lBeOzYsQzxBEQpXcmVmJiYZagUu2JPj30eqXRlZXx8vHz33XfWFkeAYuTIkeYE4gCijw5UzJo1y7zWbToP0A0vdJ4QaXSjER04HjZsmLXF0RNMB10IUAAAQJACAACTHlZAt2Rzrtx7+eWXpUmTJhE3tvv69evN360rJ216v/T+de/e3doCIBrpoep0BZ5rxZ7uIaaHGImkwKvuPfHYY49Jx44drS0OujfYp59+Sm8wIMrpIKQORjrPIabpPEHnDZEQfLV7T+hGI869WnUevWjRInqCAQBgufB1g7UMAECBplvntW7dWo4ePSpr1641t6Wmpspnn30mx48fl8qVK8sVV1xhbg9H+kFYTx6rAxH6d9v0g/BHH30kVatWtbYAiGY6n2revLlcd911Zktk27Rp02Tz5s1mrwSd34UrHUgZP3683HrrrZl5saaDrd9884106tTJ2gIg2l100UXmsE86T9u0aVNm+UbnDXpesYsvvlhuuummsAta6nzsk08+kaZNm8qyZcusrQ5TpkyRAQMGmPsGAAAcmDgbAAA33E1qqOkWfd26dQurIUZ0cOLrr7/OMgG4TQ/v1LlzZ1ocAwWU7ln1+OOPZ2nBq/Xv398MYOqeF+FCV+rpoMpbb73l9vcOHDiQ4Z2AAkyXd3T+4Dxkkk33tmjfvn3Ieybo3/j999+bARTXfEznuboxCb0nAADIjiAFAAAe6KFG3njjjSwTtdr0fBW6NW8oK/j0MAd6jGN3wQn9IKwr9cKpAhJAaOjK/3fffTfLEHA2nVfogGwox0TXlXoLFy50G5zQvSfefPNNc6gUANB08FUPCOE8T41Nl33atWsX9DxN/6aZM2e6zWd1PjZo0CBp0aKFtQUAALgiSAEAQA70nBTPPPNMtsozTT8IP/nkk1KnTp2gtPDVlXmrV6+WSZMmuQ2e8CAMwBMd2NT5hrtWyDrv0JPq33bbbUFp5asDJ3q4Fj0mu7tKPU23jH7kkUfoCQbALT3/jrvgpqbzND38ZaNGjcw5eQKRj+jAhJ7vS/e+dfcbND20kx5KlHwMAADvCFIAAOADb8OQ2HSLZP0gqud+8GcPBl2xqMeR19/vLjCh6YdxPRQKD8IAcqIDrzpQ4a4VsqaDrx06dJBq1ar5tXJP907bunWrGWj1FJjQdHDi/vvvZ2gnADnS5bMlS5bIhx9+6DFP03QZrXHjxlKuXDkpXbp0roOxOv86cOCAJCUlyYoVK9wGe22UyQAAyD2CFAAA5ILd+tdbBZ9NDzmgJ6ctWbJk5qTVesJadw+s+nNTUlLMZR2QyMjIMP/v7SFY05WJ+ntq1arFgzCAXNEB0MmTJ3sNGGg6n9ET1yYkJEjZsmWlcOHCUqxYMY9BBP252m+//WbmZbpCTw/n5CnAq9k9Odq2bUtwAkCeeBtyyR2d7+iJrZ1dddVVcvjwYWvNkZ/lVN6z2cPnUSYDACD3CFIAAJBHulXdtGnTvHbzDwR7CAM9pBNzTgDIL3tOCJ2X+VoZ5y96fp8mTZqEdE4MANHFl+Hk/EU3FLnjjjuCNuwnAADRiiAFAAB+oFva6dbCesgBT0My5Yc9TEH9+vUJTAAIGHvem3nz5uXYkysvdK8MXaFXs2ZNWhsDCAp72Mzt27fLypUr8xyMtXte6LKY7lUWqLkuAAAoiAhSAAAQAPYDcWpqqiQnJ/s8XICuwNNBCOdhojwNEQUAgaZ7jO3Zs0d2795t5mnp6ek+BWLtyjw9dIo9TJTO12hpDCAc6Lzt+PHjsn//ftm3b5+1NavY2FgpU6aMuUwDEQAAAosgBQAAIaCDFjYefAFEKruiTyOgCgAAACAvCFIAAAAAAAAAAICQuMD6PwAAAAAAAAAAQFARpAAAAAAAAAAAACFBkAIAAAAAAAAAAIQEQQoAAAAAAAAAABASBCkAAAAAAAAAAEBIEKQAAAAAAAAAAAAhQZACAAAAAAAAAACEBEEKAAAAAAAAAAAQEgQpAAAAAAAAAABASBCkAAAAAAAAAAAAIUGQAgAAAAAAAAAAhARBCgAAAAAAAAAAEBIEKQAAAAAAAAAAQEgQpAAAAAAAAAAAACFBkAIAAAAAAAAAAIQEQQoAAAAAAAAAABASBCkAAAAAAAAAAEBIEKQAAAAAAAAAAAAhQZACAAAAAAAAAACEBEEKAAAAAAAAAAAQEgQpAAAAAAAAAABASBCkAAAAAAAAAAAAIUGQAgAAAAAAAAAAhARBCgAAAAAAAAAAEBIEKQAAAAAAAAAAQEgQpAAAAAAAAAAAACFBkAIAAAAAAAAAAIQEQQoAAAAAAAAAABASBCkAAAAAAAAAAEBIEKQAAAAAAAAAAAAhQZACAAAAAAAAAACEBEEKAAAAAAAAAAAQEgQpAAAAAAAAAABASBCkAAAAAAAAAAAAIUGQAkB4Un/Jlv89J7dXbChdhy+QtDPK+oOm5EzaAhnetaFUvO05+d+Wv4wtAAAAgAurTHmbD2XKrzYfpkwJAAAQAjHKYC0DQPg4NEf6lW8lI9L1Sjv5aMvX0qtKYfNPIsdl68f3y029vzPX4vrOlp3vtpSrY8xVAAAAwMEoUz5TobW8d0g/9uZUppwlu95rJUXNNQAAAAQLPSkAhKfYEpJQN17MuEOFSnJj8YvNzQ4XS/EbK0kFczle6iaUkFgCFAAAAHBllCkrGWVKU05lykpGmdJcBgAAQDDRkwJAmFJy5sA2WfLL71L45gZSr1SsI2BhUxmSvHK5bDp+vfyjcWUpVogoBQAAAFxRpgQAADCd+VM2TP+ffP7NcvnjiqvluhJ1pV3PTtL0xiuylo9ydFySprwivX5uLl8NbyXX+KEbRD6CFEpO7/hKetz/s7T75j3pUvZSazsAAEC4cyrHTBohXW68xNoOAAAAAECUOblVvuz9mHxe6mX54oWWUupSY1PKEvl0yAy5vNcL0r361VLIeqt3f0va/GHywD3j5NoPvpcvHqwozv1U8yofQYoM2TCyq9Tou1ZajJ4vsx6pnLuxo87+KnNGTZFNp4/I3q17JP3cGTm4JU4envGedCjh2yHJwt+f57MUmdqjmXQat9tpkrWmMmz1DHmudh46C59ZI8MT6kj/3da66QmZkvp+gPcDwXFGMg4ckKOn/dWBKUYuKlJMisVG4rnhuHY6jrtAmnb+h5S6LHsOcu7gFpn2wxq5dthq2f5cbZfM0v73josltnYbaX9TnPyd/ItMWrjT3CbdJ0vq2I5SImT5AxAtsl5vDvm414UFXY65zyjHrJEWYxbIrIcTcjkGpq/HJFyPneN3dTLy4CY+5MHbjDz4Imv7eda+Tb1K2rS/Sa52+gjz3179ouwY20FKWNsQLsL0nORejTyzz+lAlimnGGVKIz/jPEVUCtP7QtAY+9/zNuk4dpe1rjWVoaumS/86Raz1gsBxHvitbitf/PxbqGcDDEeM59+e0uijm2Ta0tfk9qvtc1/JmdQfpH+rUSL9B8uL99WW4t56lZ45KFu+e0ee6jlE1t/1pawa203KXeSnXqg6SJEnf69TIxrG6fxCSYvRKvGstd1XZ1PV6mlT1ORx76p+bRIcnyNPqCmpp6035JK/Py/TOXVi9xw1ckAf1XfwJLX+kOvnnVZH96ep1NTdav3EAaqu+b1N1bDVR62/59K5Eyo9LVWlJm9TC0d0U3F+2w/otDydvk1Nf6WNqj1ivTpjbQ2uZDWlezllXL7WOZr/V7lhq9Up69OzyuncDTX72jl/vheNsferqXp+4mqVpP9mvNLSTxh748r690mb1OLJw1TPuiUc/7bC/Wrw5MVqc9Jelbr/qPEuQ8DyB6CgyHqvq2deq/m414UDXY65pagjP2gxJvflGJ/v/34uJ/hN1jx40UePqgrmbzNesa3VK1NyyoM14zP+3KVWjvmnSrD+bWzdnurNMdPVks1J5/NghJkwPSe5VwdQuJcJ8ytrfnb+GcpxblOmBHISpveFoHG//0NXHbH+HirBzrtzex4E8vf5+ZwMu3q2aL8vRyO7PrFtHuoT9b9NVPPHDlF9e3ZX3bs7Xj37DlZjvl+jUk/4+iCav885t2eCur9IUdVwxDp10tp2Xoba8tGDqvMr/1YDej6lho7/Ua1O3KvS7c/U11BKolo9+wv1aq+H1AOtjTJQ3ENq7M4Mx9/9JI9BinPq7/UjVUPzwtavzmpM4gnrb7l3NnGMauHHTMKvn3cuSU24r5y1n7Gq6qBlRtJ5cHq1GlZOv88/N/RzyRNUFz8el4LprDqRnqqS1s9XE0Y8o9qUizXTUlfsh/qInjtxQCVO+b/Mih0p8Yz6du8x4+ryxMiQju5XyYmr1OwxAzL3pcTz89Vhd/8oN+duOEidonrExDh+b7lhanWuEsi4yRt5UjOpqfrNTvNyDP2f3wAFzsnlatCN+lqN5IdXRznmFjvPyWc5xuf7v5/LCX5l5MHdzWNhvMoNzV0ebP7b6qrLsNlq19HQNAFAHunruUz4nZPcq/0s0sqE+ZUlP6NMCeRKmN4XgsZp/0MepHCTdx+z/hRwvpRZg3Vv8fc5mXmPCGHerY/d/eXPH7s3fw5e2iIX/FGfeFKlLnpXdalQW3Uf+ZNKzgwkGJ+dukpNGNBaVbj7dfVt4mGvZQ5fP2fqdk+fc0IljumsYmIaqFcWH3T7Hl2u6TJslTp5+i+VvP4nNWXMCDXo+V6OYMgTz6tBI8aoKQs2qD3bJ6leFRLUfeMS1d/Wv/WX3I1skOmYbFs0X/aVi7fWl8qEBbvktLWWWxcUuUqus5b9wa+fp/6WYwePWysZcvDICTmjT8sgiCl0kTBCdl5lyJrhzSQm5kK5rE43ef3rtXIqoYbcdDbD+nvoxVx6tVRs0FDqWetSuITEX1vYy0Q1MVIotpjEV6wjLR8eIpMXTJABdeMk7Y/DxhXpRgjP3eCLkUtvaih3lqsnjasV8zrZj7/zG6DAudC4N11oLUcsqxxT9gZrPX/lmALtzF6Z//FUuXDMOBn9fy2lXGwknxy67PCqTE07Y60XAGF6PXOv9rMCVSbML8qUKOCiopyXD+G0/+7ybmstLATr3hKN56TrsTuaU9raZVSeVoLDUZ94Qb7rE89KxoYx0rvtO3Lo8Q9kZJ+mEn+pXQ1/gVxaoo50GfSBvFVyhtzTbrB8//tJ62+uHJ/Tq03On9Ox/WD5IfVv62/ODsmOlZuMc+8GKeOh3vGC0lXk5h3JcqjQFRJfval0ePhpeentj2Ts2LEy9uO35aWnH5YOjYvI6hFvy8Q6L8ubXSv4ZR4KZ3kLUpzaJYsmXS0DXu0hVc0NafLjlz/J1lNRWNq9oIJ0GDpEnqhbTmp3flP+26u+XOmttIowUVhuenSipKWfkHO7FsjYt5+TB2+7SYpHzc3NyIhKtZLn3/qnJPycJKnu7micuwDgnlWOeb4glGMCSQco3hwo/yv9vIx8qJrERvw95oik7QqfxgyA31AmBIDI4ybvvsL6U1jg3pJ3+ti9PTjz2H3yRIMc0tYqo/KoEiSO+sTU/NYnHt8gn/V/S6bHdpX/e7iO++ujUBm566nHpPn2j+T/Bs+VNHdprD/n+bdlehEfPifxY3l2kJvPObtfklbuNRaKylVFPMzDcsn1UvmCve7rF00nJXn6CHlh4s0y4s17/DcPhZM8BCmUHN80XybGt5CWHe+UrlWtSWuWzZFF29y2545wF8pV1XvKxyt3yepvXpa2Nxa2tiO8XSCXXnWNXHfVpV5bQEW2C6Voo47S+/r9cvCIu1yEcxcAsjtfjmnRoSCUYwLEDFC8EEUBCsPxPbLh5xPWChBNKBMCQOQJ97ybe0veZT12d5XN4dhRRg0yf9QnnpE/F4yT139MkesebCkNinqKcMTIRZVukQ6NLpJdH/1XJm10bTDl+Jw3fkyWEg+2yvFz7jE+Z+dHn2T/HHVGTh3JyEecS8mZ5Jny74FzpPa7A6RrucBc73kIUvwlG2f/JKXb1ZP4yyvL7V3rWIm2TCYu2iWnzGUAQXFxKanZ5KwcPn7O2gAA8M6pHBPrKMc4OMox7jrHwkVmD4rnoidAIefkyJq58tVmmqgBAAAgXJwvo1JKjSAqRX76+ntJlxJyc8WSYjWLc+/C66Riw7LGwiL59PtNWYdztz9HGZ9TKR+fE3OJxJaI8x50UWfl9MWXy2Xu3nTmN5n+1r/NYZ7+1bWiXGRt9rfcBymOb5P5k0pIuwbXGzt3pVS7vYVUNXcgXZZNXCLbGCoBCIBzcvLwIcnINshjESlz00WS8ifVagDgE6dyzAV2Ocb8g1WO+ZtyjFc6QDHobVnScJB88FD1KAlQGGXyjHUydvgXst1aBwAAAEKNMmqESt8hy2fvNhYKy3VXXZ5D5fulcmXxIsb/M2Tz7A3ym/NAKdbnKF8/p5iHz7mwuNxYu5Sx8If8me6he8HxFNl28Q1yXbbOGsdl9/g35TFrmKfyFwfuATCXQQolxzculElV7pAG8Xp6jBgpXK2pdKmqD4KBoRKAADkuW0a/J3P3n7XWbYWkaMmr5Y8D9qRLAADP3Jdjsg75xJwEnqiMjfLZ4wNlceMB8nLLMu5b2UQcJWf2r5avXnlBXpz+m7UNAAAACCXKqJHszK+b5Pt0vVRCKpTMaTaZi6TotdfrR1ORpetl+5/nJ0h3/pyKvn6O5vI5InFSuUFtiY35TbanHDXOLldKTu3aJL9WKS1XWVsclJze/a280neptAzgME+2XAYp/pKN85dJFT1Egv1gWriy3N4l61AJ+R7y6cwh2bFgnAx+5knp9fhD0uPBrnLv/f1k8GczZU3acTcHMwd5+jx7NvcYicl8NZPha/xVeWFkOId3y/KpH8tr/R6Ue+99QHr0eEx69X5ehk9YKr9muFZGu0qRqT3Ku/y+8tJjaorL/uTnffb+6t+6QxaMGyavPNNHHurRSW5r1l4eHzhKpq35XU76kCDq5O+yZtooGfj4/XJv1wflwXu7ykOvfiYLdhwSHdxTGUmydPaPsnjhQvl+ZD95eNTP8meuEzoQjAsyeba83r6KFKnXRz7bcMjluAXLSflrv7veEjFyeePnZHjLa611zddzN7BpHjH8ld+o45K2ZqZ8Nrif3G+c3w/2eFC63nu/ccxGysQlSZLh+kFn1sjwChc4HXvjVX64rNb3EXVEkub+V17t10t6tL1NWvQeJXOSjrj9Lf65ts7JybQ1Mm3US/J0r8eN9O4m7dp29DG9jfOoZ4Ws+2GcR8NWHzX+Fpq8Y3+Wz/1b9m8w0mX4EBkyYqSMGD5chg8ZLIMGvSWjpq2T1OQf5bV7P5QNHrLcPH+/X9I3H+miv7+803ebr14yNc341fqcX/yNjBz4lDzdr4/0aNdW2j0+UIZ/+aNszMs91g/pHDy6HPNz9nKM05BP34TL0JW5zVMCTAcoPn+qnyxp+Ya8cvsN4mG6NR+FR55z9teZ8ubTHaR+2brS/b0fjbun9ol0LHmRy+e7Kzc5yXVahfP9N7/fn5+09SJU92orrbKeDyFMq1z//jApE4ZZfhYwoSxTut7zyw+TNWZBJbBlyqxlLi2f+XsAr7eglSn1hxnOrBku5c19KCl12nYzzoe2UqeItV9mmfCMpE3tZaxXlGb3Pig9jHS+t1lFl/3WHNexub1IHWn7YA/rs1yv5QDlv3k59n45J/NXhnccj40y98vhMqBXN7O+5aGn+8nTvY0yb66uyVDkgU5pnvnynHe7f18g71F5rSsLozTxJG2q9DD3x7puexjXm3lt1jPKgsnWm5zkKW1vczpujmPnKMee56mM2un6i13+rVFGneLmd/nIkU8VkfLNOjn21Tmfsp8dM+k8q7fjb+Wbyb36/fc2M/69u7TXab1WfvhMp7VxPzSPo/HqlVNaG+d0AOsWgueM7N+zW3Q/Ct2w+JKLcppx+0K59HJ7IKdESUo9aS3763O0iyW+2T3yQFySzF+dJNmbOR+RTT/ulTua3pg1UHB6p0x45Q2Z3eq1gA7zlEnlxrFlalCNR9WEPX9bG7Rz6tjq4aqBPmP0q+oQtfzYOetvPkqdorqb//4xNX71T2rkEw+rVyeuUqknzlpvOKdOp29Ts4Z1UxVim6t+41apP097+Q6/fN5ZdSJ9n0pN3a3WTxyg6pqf11QZF4f1dzdOr1bDyvnwvnN/qd2zh6kuFcqopv3GqmV7/lKnrT+p04dV0qKPVa/7hqh5q76y9uMJNSU18x2W0+ro/jTz9637qp9KMN9XTnWfkmzsnbPz7zu/H76+z7Efp/bMVK8P+FDNSzyY+TvPHd2gxvSsabyntuo1Jen878/GONap89TguxOU1B2opmR+xil1aP0Y1TOhjXrl66/VmInr1CEzDQ6oxa80Mj63sxq9/bj5Tr/JTB9R5Yat9vKbne1X85+vrWLM42G8WoxRifZp5A+Z56rxKjdUrfbwo879tUi9WrWXm/PAHV/P3UCleR4Zx8IoEFjHYpjHY+GRmb7urhUX/s5vDOeO7lDfD+qoypXrqAbN2KbS7fefy1DJi99X3Y1rvdkrP6g9J5w+59wJlZ6WqlKTt6mFI7qpOGu/V506pNZ/8ooaPF1/zu9qdr+65vkX28o4985Y/9bkr2vrpEqdP1Td/8RINW/LPpX5E08fUJsnv6iaxcYbv32G2n00y5c7cX8eDV11xKfz6JS1Pbus+zd5u5v9+1/2/Ysx9m9M4gnznercYbV5zD9V+1e+U4npLt907phKXf6J6lkh1sP5Zn1/u8q5Pr7m9+c7fR3pcl8O6bLriId0sb8/dadaNrKbKhqj0+UJNTlxjRrXr7d6beIvas9Re6dPqfTEuWpE95oqplw7NWDiJnXU/j539LVWXl+rOr84rI5umagGPu8+nWMClV/klS7HVM+pHDM49+UYX+//Pr7PzlPKe81TZmbNU/LLy/3ITM+Hahl/i1UVek1Re+zfkyfhk+ecO5Gu0lL1dZKqUma/osqYn/WAGrM+xdx2/pWm9mdeL1n5lv/PVL8ddz5mYXT/zXJOer+eze+fvNvL93vPt24rklPaOgn0vXr61mxp1aOiu+sqH2nl9VjlXt7OtdCXCfNURsqvLPlZBJcpfT1P3ZY5dD7uWuaoZx6TnMqUeSpzmXwru+Q2f8//9ZZ1/7KV6Sq7KdO92tj4XNcyZR/Vzocy5Srrz457zB61ZdYQ1baIdT7GdVMjl+1UqWnpxvExftfRA0a6bVDTX2mtYs39LaPaDPpBbUn+Q6VnnkfGdXwoSa2a8IJxDPV7jHtx9/fU7PW/qkOZ78nvsXfij/tCfs9Jqwzv9XhXLOL5+jb2e/34/qppbIK6+9VJav2fJ4yzwHL6qErdMk+N7tdLvTYvJftvd9r/oavSc95/r88z+r15ufcEIe/O6R7ltcyal7oyR5o0K6LTZLJal8c0yX9ZxZCZd7vJ5/VvWfmx6lrUUS8RW7en+tfY2Wp1YnK2smDe7m/uj50uxzrzVEYdvS7Z3OZLGdUX9vckb/lBDWpTxtxnkVbqlRkbVHLqAXXU3ieTzrNSzTytjc6LjPta39Fz1PqkVKf8ymBff3Gt1IAJzvdE/X171WqdlxU17onj11t5rrOs53Q98xk253K+/czp7VrMt8zz0Jf6xJMqadwD1vHMnr7ZnTZOyydUjLm/DdQriw5Y27N+jtdrzKQ/p5f1fufPsR1Tu8Y9rOLinlDjf3OuEzqnTmz/Qj3ywjx1MEuSWO+v0FdN2eN8vw+cXAQpjIf45UNUjfsmqD2u59Hf69SIhnGZB27Q8nTrDz7KzCTiVbm6vdSYTennMyxn5/arZYPbGDdw4yb72k9qn9N1kIW/P89rBu3El/eZN9zHVAWJU3UHzFKp2S5Kzbj490xRvetWsDKjHArJGYvVK/H6fe6CD05OLleDyuTmfcbF9ONcNfL179xUSJxTf68fqRrq35fwulr8l4eDd2KD+uhundnVVP1mp7l85yn1+5TeRqHFOBav/qQOmX88rf5cPFL1HvCNSszykOUHucpUbOlq+aCmZiWi/nex7s7//HB+iCrzipqd4nzD0a8ktXnJt2pYd33D9eFhyZWv564/0zyvjGMR3CCFlT9sPuz+WnDJH/70lO4ntqhxZoGomXp18Z9uPuu02jd7gKocY3zO4CXWeZ7VueQJqou532+rn5Z9ol6wH/jPbFIfNYpznH8NR6r1fzv9Y79cW+fUqV1fqftbvKnm/X7S2uZM35QeMj4nh2NgczqP3p7r23m06LBveUfWdzn2r2iM3r+F2ffPLAhaFc9Vh6hlGZ5+uHWc3J1v1vfH5Hh8PX3/eblPX6d0Sc0pXRbknC6Z11Z11aznMDV7T4bL/jicO7pefdy1onnMe47Z4DlQoa81K0gxdNYPavjAr9TmbA+9jnS+RX9vIPKLPHGUY6oHohzja17ry/uc85RF+9yklSNPSdDp7yFPyRPn+5FTkMIs/D/UXNWuWcLxN+shIIec1oPwzXNOrx6mypn7l4t7rU4rM3jjPf8302rQYvdpFer7r9M5mdP17Pj+1zx8vy/5lvGQ42vaut6r81uWd7lXZ3+bD9dVrtPK07HKA3+ca77mU/48J/1QRsqTLPlZEMuUYXCeni9zvKUWLncpczQu6jgmOZQps36vL2UuzZEHdGvpS9nFyzGw+fN6c96/WakuaaT378kcynSOMmXDm701xjxfprSDFOftV/MH1HEc+y4TVLKbjzh3cJ4akBBrvKeVGrE+w9rq6qBa/EoDFXv3B2pdlkYqfj72frsvOOT+nDxfhvd+vI10c3d9O11vzYetUIezfcQZdWjVp6pXswpKYh9Q43a7HDOn/X97pi/77+15xg/3noDl3Tnco3z9Xl/e55wmQ5erv/KRJv44J8/n3e7z+XMHZ6t+JUupZgMmq82HPFR7W2kb4+P9LWvFr8V5v7xUYjuXUSf/Hqhq+DPq4PyXjXPR+J7Yh10adLlKVlO6N1A9J+x0XMvOTqeoea+2VkViO6uR6z3cE3V6LxvqCJ6+OsdDnahBn9M3Op45cyrn28+cHq9Ff8hML1/qE4+q1cOame/NKX0dnIMU5VT3yXus7Vk/x+u1aHIOUjh/jhMjjeYP7qzqdn9fLUo6rE7rwO+KseqZnu+oZQez31vuL5qfZ7/cy0WQQrcob6rum7DbzYl2VK0f0cY6ELGq6qBlytOt1a3MTCLBONF3GbccL46tVMMa6IqE2qr39D3uT3p/f57fMmjjYlz8piNamvCymp/lBHBlV4Lpz8uhkJz5vTkEH3L9vgqqdbtX1bd7PWRQmcERT/trF/qM98QbNwo3FYWZhZbYLi4tcQIgc79yE6QwfuOh9Wri4GdUrwGfqPl7jllb/cT5ISrHVy4qTmw5npMWv6V5PhjHIrhBCkf+4PXdzvnDjGQ3BcujavNHXY0Cl6i4XjPUPk8X1SmjEN6ipHGe32+c527OIfs3lblfPfHCWLXllP1Bp9X+1ePUq8//W41b/rvTb/XXtZVh5N2tHMe8Qm81Ybeb36ZbnlfVD02N1CuLD3jONzTX88hTIcrpPHJ/w3bK/7zsX1d9vnjcP8eDnHSfon739qP/mq+er+p6vvn2/T7nXblOX50urXOVLl5lXlsNjPcetDa6YxREEseodmYrPU8FboNOZzNIYaTz3c+4P6c1I51fLaXfF4D8Ik/sckySm/3KXo7JVW6f67zW0/t0ntIlM0/5w1M5W+cpzUt4zlPyIjNvNF5WkMIRoOimXp33mzq46l3V3Dw3jFeeW9OEa56jPyq3QQpHWhUxHiZyzP+NtIrxlFau+xDs+6/z9+dwPXv//qxpO36XmyeBXOZbzvfq/JXls15XOaWVx+sqD+ebf9LK3+ear/lUfs9JP5WR8iJLfha8MmVYnKf2b8pVmTK/ZS7NkQeYFSy+5O+L9lsbPfDb9ZZ1/xYdzX5jzblM5yhTxhhlylRri1t2mTLbT3U0kqiqvyOur5qxz915dVitHmYcP+M53X05RTuhEsf8Uw2Yv8/lmSSAxz5f9wVLrs/J82V4n453lsNpV/ob39fgbbX8L3f1Lb+rGb0qG79b/3ZHvUgWedh/92ULf997cpl35/celevv9fS+rGmy7LCHNHkiwdFwy11dlWuabPdQ25jbc9JNme/c0W1qyoD71UNj1rhp5W9zvr9N9+n+Ntrdb3Y6dqEPUhgy71MlVPOPNimPYQr9vg7vqtXZ7hcn1J4p/cwG2Q2G/pLDs5Sd59VUD03Y4f7+qY+P/cyZwzltP3PmHAzIh8z0ivAghaYDE6unqY9e7at6PjFADRv3k0pyDfydSlTj7ktQFXpNdhMc0qxeQWbPQGuTH/g+J8WRjTJnfFlpV/96cy6PrC6Xyk1aSkNzOUM2T1goG4/p45Jb18lN5a/1PsZV4crSvKv+pjXy0YtfyS/HvX2Pvz8vn46vlTED35VVEicNe3eURkW9jSd2kVxTuqwUtdZCY6esr9REmpXUk4u6cUlhucL8U4ps2pNuXq1ZHZJNS5aJOcdLs2pS/vLsZ05MifJSx8hxJWOZTP9lr5vPCL2YuOpy74vvyEdvPS63lQrgJDHlhopRyNKBw/Ov00flz90rZMKAVmLcBIMgv2keSRz5g9dx1Z3zhxeM/MElX1Opc+WdlyYauV5teaxzfbkm+ynucFEZadCmlnGez5LPFySJx6FTf/tJfi1XVxIusj+okBSr/aC88fZAebB+Saff6q9r6285cuAvx+LOuTJz/UHHsrPCFaTBnZWMhaXy5eKdxr/whT6PbpXbSnrIfZ3Oo83GeZSdsX+Lc96/2l7375js3/OnyIy5sjj5hLXNjdiSUqm8a17s/P03+3R8zzk2e+dz+hrpctC3dInJVbpcIlcU9nBtm2Lkogot5dEHjMdo+Un+NXCCbDzl7SrfKStK3iZtK3jIF410LuKUX4ScXY5p4GM5JpDlAQ90nvKfF53yFE+lNJ2ntD2fpziPFusv6uhG+fz5cSL/94G8fntpKVq7uwx5rZ3jXrRzjAz890zZY9yzcidc85zcs9PqqPIh/9dpdSyH/D/k99+cr2fn788ua9rO8lva5r8sn+26yimtcrpXW2nly/nmj7zP/+ear/J3Tvq9jBTWwvA81WWO8vV8K1Pmu8ylWXmA/qPf8/f8XG+u+5f9xppzmdm5TOk8vrcLt2VKLUYKV2sqXasad9D07+Xrn7zMcSS7ZfxnP8lOdwXL07tkwczS0r5+cZeJRQN37PN3X3Dh8zmZj+N9fJV8+twHsl3Xt3RtIbWucJceV0nFurUc5ZnYf0iTqlebW7PT+9/Mp/13V7bw/73HV7m7Zjyfi36i06T/h+fT5EoPaVLPSBN9jKw0cX+4HOdkmwqXW+su8rlv5vxrfQfJhuZvyycP15K4Qu5/RZb7Wyff7m9fRML9rXAVubO7ngslTX4cN8dDne45ObJmrixvfofc7HK/UId+lg9fHmOkUh25p1kl8V5zdoVUbXa7VI9ZJ5+/Pk6WHPJ2dPQ57b2cbz9z+qucH/ViCkuJ2u2k1xvvyecfvyXPPdhUbox1vjaPy+4Jb0vf1S3l3wPvlFJZrgUlZ9JWyNeffS9bTsTKdcUukPSda+SXnX/5JT/xMUhhnIir58n4Ri2kfvwl1jZnMXJx5cbSpWGcY3XzXJm/8bBj2e8ul4R6DaWMXtw8Vb5d4eYmnCv+/jxPjGO44lt5d/khYzlBbq9ZSszrKKyVkVtrlZUinjLdHJ2SY+k5TZ5kMzKUfX9F6INJABWKleJl/yFdXv2XvNbA95hi3uU3zaONc/4wRaatOGBudTgpO2dPkM/TdVZcTWpVuNKx2a3LJL5SJaNoli5Ll+8Qo9jtQTlpXKWEDxmzv66tK6V6x0flobrlpHaXPvJo4xLWdmeXypXFi5hLv+1IlUM+3XmM86imcR5Za7nnj/2Lk3K1E4yHwU/ksZ4vyZgFW+XASTdPfBfcKHe/20UqZSkvByrv8jV9jXTp8Eju0sVc8oOYa6V280aOB7dlU+X7tValo1vxcmvDBCkeEfnF+XJMg3h3d9/z5Rhzd8xyjLd9DwQ7T9HLjjzF86HVeUrC+TzFHyVCZ4e+lf7d/ivyz1fkoZus3xFTVGo//oK81jzeWMmQnR8Pkbem/5rLAEm45jm5lT2tPHNJK2trdqG+/+b3es6ato80LmltdxagfMtrWV6n1cTApJW1FliBONd8lZ9zMhBlpEgX7PO0nNwaijJlPR/z952+5gH5vd78WKY8/Ik82uPFnMuU7lpAFb5Z2j7WxFjYLTO+Wykprve241tl9tLLpVPdOJG5P8iC7cesP9iUnNq6SObVbyrVCrtelIE69v4u5/l6Tp4vw/t0vDPL8Lq+ZYZ8sFmnt7f6lsJS8aH/yo4t62XLjk/loYqeqlKN/W+Q1/0PxDXtq2Deo3LiSJMPN+tJj3NKk08lcbMPaaLPSb9Xi+hK1/ny7wc/lGO9hssrt9/gJeic9f5W09f724pIuL9dLpXvvFfu09Gi5dNk+ho3daMqTRaP3y/33lnRJS1PScqPX8uH2420jk2QhFIeAkmZYuSSUglSX3/X9vEy+sdk42zxxDing1rOL+iUnN79rbzab4N0eauv3F36Mmu7Zlwryd/K0y2/kktbtZbaJQpLTKErpETFGlLxyFL58dfs03Hnlo+X9yFZPWeRJNS/QQrtS5O0NDevg5dLpdtvtt6/WibO3+ZmtnB/iJGLil4nFc3lNTJl7Z58tiD09+d5ckJ+3bxO0szlG6TMtd7jiuHhQnP2+LyXSy6Tq667ylrOSRmpE3+18Y1wq/CNUqux52xZnfxLDmb448zNb5pHG2/5wyHZsXKTzqeN8lIpKVnU3ROJ7UK5oth1jp5RPydJqsekukkql87phq7569oyflf1h+Wzlbtk9YR+0ri46z4YN6GMQ3LgyClr3VfhkHdcLje1f1h6VYiVjIXvyqO33yTFi9eTto8PkCEf/09m/LRBUsxr5hIpVqako+VOpkDlXb6mb6DSxReF5JqE6lLDXN4gs9fv9XJPvFiuvPySCMkvjHLM3MWOcswfbsowbsoxEwJWjvHEylM0v+UpeVVOug4dfD5AYYm5oo48PuRZaW5GsdbIxy+MlOneWjlmE655Tm4FIq1Cff/N7/WcNW1vvSaY+VYO9+pVkZxWocwX8rOfgSgjRbpgn6ehKVOO+SWay5RF8lCmtJ3vsZkxforM2+l87zwnR9YslO0dX5U3et1hrP8kX87bKVmP1BHZ9ON2ubV5ZTetkwN17P1dzvP1nMxrGf647Fy7wqpvKSsVbvDyXboVcZXqUkVXsFmbssvP/gfimvZVqMsTznSaLJc0MyjnSBOPvyvgaeLJOTmZPEfe7PaQvDRto/x68KybPMBZdN/fYuIbyX1mr/ql8v745dkaQqmUpTJB7pBm2Rp9pcu25WskQ7//2lJSIs7bcbHElZBy1+qF3cZ1vUUOuHzXeeF0TvuqkBQpWtxazq1rpHRxO//y1+fkwsmt8uVLg2TVvS/IC3eXyRqwO5MkU157SX5of6+0zNKz5UKJq1VbYuYtllSP6egb34IUeoiEL5fJj30byQ0lS0pJt6+K0urNxdY/yJDN/5sra454joXlxwVFrpLrrOXdm/bIfms5r/z9ee4dkt1rdjoyMyObuqqIDxdtxIuTGi1aSYJe/Gmj7HLTXUzt3yNb9hkLca3l3sbuhuCAg2794q4Xk3ZW0he9L6PWHbHW4U9Z8ofNTvnD2f2StHKvYzn9e3m7V0/p0aOHx9cjIzfJLd27S8/2ZSUu3yd6IK4to4CWtlWWzvle5q7YIDt+/V3S0vbJYSkixRz9ZoPI2L+WrXPcv61e9y9GCpVqJ8O+/Vh617Na9GaskR8+HSov9X5A7r6thpQq0Ux6ffyzpJ1x/Xzn79/k0/H1e4OeTMFPlwvjrjEeI7R02XswI0CB+yAzyjFzrXLM9W7LMPrlKMc4Utsox3wVuHKMW/nIU4r6++ZZtJrUSXDXk8N42HIz7FNytmvIF+GU5+RSHtKq4YP+yv8jQfDT1mNZPqT3aj+I1HMt0o97gITneeqPMpercC5TZr+v51xmdpQph079SHrVtXop+FymtMXIxTc3l0da6H+/VCYs2OUUhDgkq384IG2bJEjCHR3lvth0WTZhvmxyHhJM97RYcbPcUSWnCqcIvrdmOl+G93q8P1rqcrzTZc/mFGs5Vi6/1LcmRAFBHmgx0mRTmKSJW6ckfcNY6d11vJyrU9P4hcvl3WdGydw/vTz9uKTt0N4PuU1T+3U+bctFRtrGlJBb7+to5pnpX02Tn1Kcg5vHZNvMxVL2vgbZh7g6+4ckLt5treRexsokSfVtaIIIUUiKXGWGp/LgEimSOUSzvz7HVxmy5Ys3pe9a98M8Hd8wTUZ8cYnc07CiZLsbxVwj/yiXIj9mCcLnng/1Ko4hEr5pN0P2nXMZL9/1dXabjDFvvIbt38v3q/3XkRuR6EIpeuvDMrhXbZGUH+WHX/ZblT+2k/LrvBkyOaOCdBn2pNzpaYw5GArLTY/2kxbF3d3Y/5Y/fv1bynlrLRIJrigupfUoItrZU3L6rKdCvgfH/5L9F1wnxd2OPRoA6oycOpLhOKev7SpvfD5Wxo7N+fX58A5SNt8/0Z/XlvEwk7JUPhvQUW59cakUqnabNK9fXSreeL2UKHGdFIsNxXWZff+yPlLa+1deugz/p5f9u1Bib+omHyxaKatn/08+fPWfcndtpy7wGUvlk973Sbc357k85Jz//picjq/X78+P8EiXAykH5EguL8XwY5Vj7p7uWzmmpRXU2j4juOUYK08x5TZPCWa7BzfDPv17+m+5CGaFY56TS1nSqkuQ8/9wFoZpm5/rKhzSKlLPtZCWkQwRWqY0hUGZMm9lLi38y5Qz3ZbpvvehTOcoU364eFWOZcpUT/M1XVBGGnVpZCykyY9f/iRb/3a8T/25QqZmNDNbJsfE15N2d5UTWf69zM4cdlL3tFgg6+681Wk+B1dRcG/Nwofj/eT9bsrwYSLS7z0FxufSb+jv0uHLkfKvfw2REV0qSMz2D+Sp16Z7nnfN5f72+mfu09L1FTlpe4FcUftOeaRBnHGdzZIxM3fIaesvOlg6c14FaVfbTaW583HJiyOnJBwv5bwz7j0l48Uc4lEPJZjjXBknJTUp0TiOevlGib/GbqCc9XNynv/H+hyT8+f4QsnJLV/Li/13yQPZhnnS/pKNs3+Q5VJCbrzObK7m4gIpUqGoJPo6X6cHOQcp9Jhjk1ZL+/Z1ch6PL/PGq62RL+dslEC07VYnjxmHR4uVmrXLyTXmct75+/Pci5PSN9ul5QKkUClp2rmjdGkj8sHzb8rnK/ZIhpH7qJO/y5qJ/5JHn9wgHUZ+Ju/0uEkutf4J3LlALr2qqMS6m7xJHZDt6wpLmWsipXWMB4VLS/XbKziWf9sle7y1YHDj7N4dsqxKObkh2zit+ZMlf6jllD9ceLXE1ynjaG11KkOOWw8aQeOXa+tvSVswXLo0ay3P7blTPhv1iNT32sU2iFz3b/lv2fbvnvfGyLvdq+SYd8Rcer3Ubnm/9H7jffludbIc/TNJ1s//Wob2bGikaor89K/XZcRil4dyH4+vL9+fe87p0ibo6XL2z73i6KAeKxWqxPu/lX6wWeWYdu1r+1aOuTfw5Ri3rDzFFIo8JRfsYZ9amIPVr5GPB47wcdinMM5zvEqRqb1Gyhr7KS1LWh0L67QKnqz51piRwU1bj2X5CLqu3IrUcy3UZSSjTFkj3MuU4XSe+qXM5cgDut4WmrKLV877N2BQ9jLdP9f7XKbzpUw5cvGfHirqLpUKZk8JY3HZTPlxkz4bzsj+lctEWtV0lFFi4qXZ/W0lTlbLVzPtMojuaXFIOt9R1kPlTRgf+3zytQzvON5XSMkKdiDjkBw+GsK+wJF+7/EbI00qhkmauFPiKRn75QtyV7krjXOtijw45E15qGKM93nXst3f8lMd6w9GGbW3UUb156EtXE069G4jRewJtM1eXTpYOldW3HGHm3lxDM7HJS/qxMs1URWgi5FLylWTlu7q8t06K6f/thKxehUpf40dWPbX5/jg5Cb54qVhsu2BF7MP86SpA7Jzte4tU1pu8BD8iClRRq7dd+B8YCsPcgxSqP3r5IfZdeSuBtf4cMI53XgNaV/Ok9V+HypByal9KbLBXK4kzateL/k7l/39eZ4Ulgq1GkgJ8yDukb1//m1ujXqnNslXnxeTV6fOlR2ftBb55TN5+bGe0rPfSJmTXlNeXzNPxjzVSEq6q3yHb47ukpWp18i1l0X4MYwpIfXb3mEUyrXtsuU3PcGWrzJk87z5UqxjfSnt18PgJX+IuUZublpd3zeMskGypB4KcqEr39eWnhBpsvxfpwEyfXcjeeG5zlI11tfczzG27WF3k9j5i8v+xaz8PPv+Pd1YSnjcv1T5/tlhsiTbPaiQxBa/Uarfdp/0/2ymrBjzmFSQZfLf6evEnP/MZn3/K1O8H1/P359XjnR5rvNAM11e7B/sdDklv2/fIDvN5TrSsV5p44hFtsxyTH1fyzEdAlyO8cDOU7RQ5Cm54hj2afCruRn2KczznNyIqLQKhqxpq/Otm4sEM21zuFc3ieC0itRzLdRlJF2mvCtrmdL3KkJdppwX/DJlKM/TfJe5zucB3+0KRdklBzmVmVfnVKazypR/uf5GD2XKGUaZ0nqHq8yeErJUxs3eKsdVivw08RLpcGsJq4xSSIrXu0O6xGXI9tGzzTKI7mkxeW89aZBtDHgtzI99nvhahn/8fBne/HusVKxTz7rukyRxr9WTIRQi/d7jNzpN/mENc+RIk7AK1xSOl9LX2pWtMXJR2Xby2r8fMc4rL/Ouhfr+FhSXyI233yOddcItnybfrTkkypowu3PrCu4nFXc+Lrt3yZ79PlRT798jm80RouKkUdObpGTgxk8OjWI3STMzv98nm/YeEu+jWR2R1B16Rp1Yqdr5Fql8qeOOYLI+J8bXz9np4XO80sM8DZHnt7aRt15wHebJcvYv2Zc5pJ5np3elyqF8XOg5nAY6sj9flj/YSupc4dsZY994zV1Kmytz/D5UwjHZvnKZ/KYXG3SVe+tfbW7NO39/nicXyBV1WsmjCXry4zRJ+iP4N83M8TaD6Nxva+WHC66WuIsvlxK175SH+74h7+nujh+/LS/26iy3Viwa8RVgoXVaUudNlm+qlJHrIj5Tv0hKtuopL+quhbJcRk9d5WPmZhSwk+fKJ99UlqfaeGphlFfO+cN90rl+MXOrw2VS4ba7pZ05W9t6WbH1YM6FLrVX5gyfIjv8MN5i/q+tY7L1h/EyXpfq4/8h/0i4wrE5G6dofKazsn/uezJ6S+CmFc7//p2VUwd/ll92eslrY66Umx56Qd68r5ykb/tdDjg9C9nff1XQ8y47XYyzKc/pcsxazwP1uyz/bpFRTDGKNu0elM61r3Rsj1jnyzG1fRy243wFgsEqxwTngcrOU/SyI0/JsdrAj3lKrpnDPg3MNuyT50eS8M5zcid7WgUz/w8/oU5bb2V5nVZ3RXBaReq5FtoykqNM+VDWMqVP9bCOMuXHE6sEuEwZXucpZUofy5S7vDSgcipTHt6WmqVMmUVmTwnHHJ6rtqyQeWWbZalribmmvnR+rLZRBpkhkxanyJ/GeXNB10YS77auKZrurTZfy/ADXcrwF0rRBndLnwR9ISXKzOU7Jcc9O7JCRv57gRywVv0n0u89/mKnia4DC3Wa+OJSKXX3M/JOvwYSs3OEPDpwiuzONuxT1vvbL1GatjElGsq93WsaS0vl/a+Xy75kx4TZTeM9DR/kfFw2yoZdOfVFV3Js10b5SR+92Nby0G1lA/RsHUIxN0jjTi3M/H7n+t3ZJiHP4thvsv6n3cbRaCQ9WlXJOt+D/Tkxxuesy/lzNhifI+4+x6Pzwzx1+/fTcncp/48TkRvey15qn6z8IVHubl5VPN3usom5Xhq0ayLmuZnroRLOyN+nvV+56sgm+WHCMmOpmbz6Vnep5bUbrr8/L5+uaCC9hj4qFWSDfDN7fQ4VsGflyIE/c87ENefuhB6dkf1rFst3QY6NqDOn5PjKdbLtUOTebVW6kV5DnpXeA/8rC5LDqxCnjqyWL4bPkgqVSjhas0a6wrXk8ZGvSnNjZ9JGfySf6ai99SdPVMYmGffaaFHP9pRbi/rackjLZf7wtpE/XO6cP8TIRRXay0tmS+J1MnbCYknJoRXx8bWT5b9SSm7Izc/0IP/XVrrsXrPdsXhxrBS+xMPt4NSvsnLmFmslePyTdyTK1J8Sjcc3L2KKS/la2YfiO//9rg90gWaliz6VzHTxcE/KU7r8IVt27TPOfE+M+84vk2TEeKNgE9tGXhhwt1TwOPax/wQ0j3Uux/i6K3Y5xlyxyjE5ZUR+4chTXjYnpbbyFE/j4ZrO5ynX+yFPyQtz2Kd/9ZEG5po17NOeE+ZaduGd51x4TbzUMZcOZR+O4Owh2SvXOXVDP59WRUKQ/4cf17T1Z76V37K8m+sqotIqUs+10JaRTNnKlDlXJJllytfHiPzfQ4EtU4bZeerfMuXlfs4D8s+fZUqvpRQPZcqs7J4SxuL2r+T1p76VMq2rudS1XC317+koVWWzTJz+lYwdf1Za1bvWOEvcCe9jn3d5PN5X1JNHB+uW8Bmy+T9fyuxUb625HY39NlUqbxxxf4v0e48fGWnyyCCnNPndeSJmV+fTJK9TBedboVLS5oVXpV/lIpI+/g15ZcJOp0nuNZf720Tf0vbTfKRt7sqofhJzrTTu0snIh4xc5qsx8tZ/ZjsmzPZYg+x8XDbJpJnrvNd3qv3yyw8/SoqKl+avPS2dKhS2/hBNdIOJR+X15vFy7Lv5sjzNU35knCOblsq3KSJxPXvKvdVda98dn/Na81KS8d08Hz5HGZ/zkJvP8cBpmKeBd9/oOVhU6Bope4tuyJchx056uJ8eOSD7K5SWYm5uRb4+83sJUpyVI2smycivDlvrvrpY4hu2kDbWbTTty9my3McCQWybm+XIgsWehws4s1cW/OdN+ffyMtJzzHvyXGPvQzf4+/Py7yIp0eZ5Gf1aazk6eoSMWLDXQ2WRkjNpP8lHH84Snwa8iSkmCQ1vMhYOya69B10yUQd1ZI38b2ER6d0hp2CGf114Q0Vp+Nd70uv/PpXFO5IlLS3N6fWHHMgIdgVgbh2WXz7sJ11felc+fvsJaTdwhiR7y2yDxjhH0tfK533/KS8tv1Iql4zzc2uvULlQrqjTW8ZOe9N4hPtO+t8/UD5bf8DDdXJOTqYtl/8+NUCWNH5Lht6Tu+h7bvOH/o2KZz/GMUWlTr935et+t8rpL96S18ZtkgwPH6eOrDSu6dPSt0dN8cctOP/XVlGp1KCGUYgw7F4qP29xjJKc1UlJnvmTFHrieWmhV/86JifN/TsrJ49dJEWLBK69g3/yjtOyfMj7MmG7l5zUKCDtWvuXtH+gsZR3KtzZ39/7uWDnXVa66JuRmS7uwvzn06W5fl+2dPE09uQx2fTJBzJ+h7totb7vLJD/vPSBLJea0nPEEHm6frEA3xO1QOax+S3HODjKMUG6V5l5ynti5ymvj9voU57iWyuZQDDy7H/cK327WGWLnWPkhTe+kyS3wZXwznNirq8lbdrr/Vgr89alOfViUXI6caWsqVFFSjjfBKy0+l+/Jr7l/x/5L/8PP65p6z3fyk3a+qUs73Jd6bQ66i2t/Hiv9otIPddCWEZyyFqmfL7bC/L5hoM5lykbDZFh93h5SHcj0s9T/5Ypf/ZrHuAPzvu3KB9lyhVDPpAJiV5a/FllynYPNJLyXh7M7J4SMbJbFv79D2lVzbXXaowUrtZUulaNlfRPX5b3bmght17j6fiE97HPO6sM78PxNsvwmcf7Uil1z0CzviU2/Ut5adgc+d1tmcQo96bOkeFTKkm/O+MDU96N9HuP3+g0GZCZJi8PnyOpbvPKrGkSlLqNs6fk9NnsvyXmmtvluUEPSpzslPFPviwfr083fp0Tp/vbmS/e9un+9nT3vKetcxl1vlFGPf9VjjLq2upVpKTfT2IjH6rVWh5rGCeSMU1GrL7JnDDb69dkHpda8vvbg2Xo3BQP99y/JW3uKBn49q9Sp/c78nHfer43Jos0havLg288Jc3OTJC3Ri2SP931sju5VSa897lsrtBbPny5rfuhlvTnvN5Hmp324XPK95aPXvHwOdlkHeaptNcGildLQn0dttojyfvczUWo5O9fd8iJG4sbJTBX+pn/GeniyzO/yuK0Oro/VSUnrlKzxwxQbcrF6n+mYpu9oMYv26aS09LViXPWW12dPqr2p6aq1ORtatmYf6rKMea1Y7ziVbNXJqv1SXtVqv77/qPGt7hInaK6Sws1ePkBdSr1J/XJJwvUnhNnrT9qxu/as0yN69dcxVbopobN3qmOevodml8+Tx+LNOM371W7F72j7o7V+1JG3T1sgdqVZT9yeF/qAXX0tMuHn/5DrR73f6ppXCs1YMIqler0286d2Ke2zPtEDRj4tVo/b4gqZx7DCqrLiPlqe7LxeR7S4NyfP6nXmsUrSXhGjd920PptmvH7kn5SIwe8q+al7lBTupcz0yWuy0j10/Y9xu/bp9LN73e3H7Eqoe8EtXGP3o/cvs/2l1o/or0yCk7m97p/VVBNuw9UIyYsUonpp6x/l1/njFPygPF79G8yXvq8HPesqmt/Z91n1Th9Ttt/d5dOpj/U7L7VlXGpOv5dizEq0Xn3cs0+fo7ftOijR1UF+7PjHlZj1v12/je7eyUnqvXL56oJI57JvD5F2qkPN2dYn6/lcE56PXf9keb+cEYdTZyhBnepriS2oeo59Gs1b3WilV57VdLmxWrKSOMY1O6oXv12m/f8wJW/8xvt9O9q2Ue9Vd3YBHX3qxPVyj1/WcfYuqbnj1bP9xqu5qeetLYazp1Q6Wl6f/aoTROeUQlmWtZUPT9coBL1tW7sa1r6CeNM9iT/19a5oxvUuF6NzM+Ibfaamp54Pu84d2KvWjHudTXg8w3q6JndasL9FYy06KiGLkxUv+9eoN55cbLaYx42T+fHeLXJ3I+cziPX99nyu3/JmfldbN0+avSiXSo9yzWu84jdatHIh1WDnl+ozUfPWNttju8vknkvc/fy8v35SF8zXXo39i1dulU002XYoh3n08V1V4xzvkdMjPH9TdXQeUvUmN791MhFu8/neeeOqdTV49UA4x4SW/dRNWL+r27uM1nTr10RvT+OfMBbOnt+ny0Qeaz7cszXP+euHONIM/3S5ZhJbsox7s5pR16728yr7PuKr+9zYuUp9Yo48pRVvuQpuWb/Lsc+Z7kfxbZWr0xZrZLM3+fpXNX//neVtH6ier5unHWs9KuEqvvEB2r2+t3Gv82a3uGd55xTJxK/Uj0rGOdMwv+pqb8dNbYY+cShNWrMPwep2fvsX+rCJf/3mFa/O6eVp98WrPuv58/17Rhmv55d0/a77TmnbZZ8y3U3An6vnuDjdeX/Y5VnfjvXglwmzEsZya/sMmUN47zLuUx5JKfzyFm4nKeeyhwf/RT0MmUR472+5O8xbvMAX68jX99n80+ZUpdVfClTbjriWhBzdVb9tfh1VTkmTjUcsU79bW3N6qjxm9sYv6uRemXRfmube2F57PN1Tua3DG84fUCtH99fNY11lEnmbdl3vvx3+qBKzHYdedqv/JYtDH679ziVHX3Iu31Nt5zzeKd7hg9l26z3FidWmjQrotPkQ/VjntMkj/clt+dkU/X8lPWO+0Hmbz6rTqSnqE3jeqsS5nuMV4WH1IjZ64xysUv65un+5uHYDZ3vkrbOspZRv92TYWxxKqP+kf1f+MdJtXvcA0beWUI1/3Cjyp7ze2Afl7jmqt/YxWp3Zp5q/Ob0RDV/9DOqaVwj9cRHS9Xvrs9ALsfn/LOk92vR8/vySucz/qhP1E6q1GUfqO4Vaqouw35wuscY51rqCrOMENe0v5qw5bDxrd749jnjN6fn8Dk247za/IlxDtZWvSbvdnPeuTqnTm35WDU3zocWo7ca3+oqXS0f/IKasMfdXc145u9nlMPs4+flmT9G/8d4kyVFpvZoJh3H6aEeakub9jfJ1X8ny8+TFoo5n0m5YbJq23NSx10jzbSp0qNkRxln/7vM0OcxSf55jizcbUXBu0+R1LEdxJ7j33R4jfxv2mlp0aO+FNd3/5MpsnbJFvnjyF5Zv2S5bE89KmdL3iSNGzST21s2kIpX5TBDuV8+z3EsOhnHwsiVpGnnf0ipy06c35fM/XB+Xwmp3aaZ3BT3l2yZ9oOsMXf5CZmS+r50KOHaQkG32Fkv82fNlh+XJEq6joRddqUUvbKk1GzZQe6+tYLEbviPJNTp7zj2NiMNVm9/Tmpna/Cg5MzhnbJ4xnSZY+zjln2XytVXXSpXxl0tcdVaSbcOjY39/ON8+mZqKsNWz5Dnaqdn34+r/3ZKu9y+zygGmk7L4cRv5fX2j8iI7dY54E2Fx2TMt8PkoZuuzGeLhjPGKdlHSnb8xDiV20j7m652H40/d9BKK0/ppOTkDuP3/99L8sG+22XEp/+Sh6rnEEH2yvl88ZO4/5NZO9+SVlfbvz0f565f0tyPzhyR5A1LZd5Pi2XFwnky/oc1kqHzmPtaSIvbW0krX/IDV/7ObzLZ1/QCWbxytWzZe06Kly0pV14YJwlN2kq7VjWlxKVOZ+GZNTK8cl3pv0ufCXY6Of5+7uAWmWbs67XDVsv252p7aM3np2tLZUjyyoUyb8lS4xgvkfVSRiqXvELirq4iTbt2kbbVrzG+X7eyXyZj3h4kw8YclFr9+sizT3aR+iX0mJTGedTzNuk4dpexnMN55NP7/JV3pMr3zwyTP3u+IB3ifpUFM2fL4l+SHHmt4YLLCkuRK8tJ3dtbS+vbqkixbC0NHN//xj2PynvbfOjT5vr9+U3ffKeLE+P+3PP6TjJWNXEc4+rHZcP3E2XCwq1yMD1DDh88IheUryVNbzWuq9vqSFkv90TH/cN9+g1dNV361zns4/v02LRaAPNYD+UY9/dQQ67LMW6Oidv7f5qP73P9UbnMU3LNPlbHpZaZTtm//0TyLzJp4U7jsK2Wbca5mvXMsK/9mCznd9bj5eb+ELZ5jqaP+TqZPXmKzJyzQnbFlpdqFevInT27SvOyV3g5L3ObVk7naU774NP7cnv/dXPuevn+nN9nfb8/861wuVcH6ljlWX7OtVCWCQOdn/kg2suUCXWkvz79vJQ5sufjtjAqUwbkesv9/o2eOlQernqVn8qUbhxfKyM7jJLYkR/IwxXdta9WcnrH53LvU8fkNeOZtkaWIWfdCLdjXz0xH+ekv463vo42y+J5c2X+zytlVeLfEn/zjRJ34TVS7Y5W0vr2Gk7XkbH/AStbaPm59+Scd/vvmnGTx3sp2+Z8b3GVyzRx/S2+/mZ373M+J909I2T+5gxZM/wuqdt/odPnFbLO2yLyWrb0zUPaZp5D7o7dZON3dPRw7PJSRs0flTZD/tlxodw5+d/StqS7yfs9cT4u6+TXQzFy2WUXilxWQm6ud6s0a91UapUo7OZ353wtZj5z+vQ++5kztxz1idd3+kQur5Wf+kSbkf/a9bULVsuvZy6Ry06fkBNXlJfGd3aUTj6Xg/z1OcYnHflF/tOpq/y33H/kx5H35NCLwqL2y5LXu0iTH9vIqnnPSu3MoSuNe9bu8fLkmGvl7cG3S9FsH2U98z9rPPP/mcMzvxmqAALh9F61aNgDqkKFh7K22nVmtlxNUpsXT1YjejVztHBJeFnNP5hTCxSgAIv2a8vcv2552r95B/zQksT5+xf69v269VrYHl+nnhTDVh+1NgIAgAIv1GWuQMvH/vE8CgCITrqH4T0qtkJfNWXPCWubb3TvvTEP3aKavTrL6j16Vp3YM0u99tBQtejP/JcLXHpSAP5yXHZ/2Ufq9fhd/m/ZeHmhvg8tY9Vh2fD+49Lo6bVy14Qf5asuN0bJPAuAP0X7taX37ymp232vPLc8D/s3fq78r2vZnP+NR47jW7f777n8/ieM719jHt//Gcc3798fAK49KfLdkhcAAES+UJe5Ai2vZbrHpXHftdJ2fBiW6QAAyK+zifJl14GytdeHMuT2Erm+z6mM3bJw6kT5ZuZGybjkcrm6Ukt58LF2Uru4S8/oPKAOGIFxNkl+/O80SW9+r3Sq50OBUIu5Sqq17yht9CRia3/1OLEUUKBF+7Wl9+9TY/9adMnb/q0z9s/anCf28c3193c4f3ytzQAAAGEr1GWuQMtzmU7vXxJlOgBAdLqwkjw46Vv5dx4CFFpMbDlp1v1F+WjCBPly7Bh578V7/RKg0AhSIDDU35KRli4q7nK5LBdnfUyhi8Q/pzYQpaL92rL2T0K1f6H+fgAAgGCI9jIPZToAACIKQQoERqEbpdFDzSXmhxny487j1sacnJTkxXNlhtSVLrdVliK5KEwCBUa0X1t6/3o2F/lhet72r5mxf9bWPLGOb+6//8fzx9faCgAAELZCXeYKtDyX6fT+1aFMBwBAkF34usFaBvzoMrm+WhUpkfy5PPu/A1KtcS2pEHeJ565E6pgkL3hfnurxPyn6/Ah5p2c1ueICohRAdtF+bVn7t+czefbr3O/ff3pWlysuzM/+Zf3+mxvVlIpFL83x+5/u+T+J6+84vkXC4fiqk3J4335JP/qnbJ81Xj6YvlIOGJsvLlVVatwYK2eOn5KYyy6Ti8lnAQAooEJd5gq0vO9fXP/3jDJd9fAo0wEAUEAwcTYCypxQ5ZtP5T9v/SzFH3tSHrittlSpVFZKxBYy/npGMvbvlT3b18iCqV/K2A0lpeszT8ojrW+SuEIUCAFvov3aCvX+RfzxPbNGhifUkf67K0jTzv+QUpdZHSfPHZQt036QNRlPyOTfR0nHkhc5tgMAgAKJMiXPowAAhAOCFAgCJWcy/pCkzRtl/dYdsue33bJ1T7qck8JyXcXycmOpClKpWk2pe9MNEkthEMiFaL+2Qr1/5F0AAKAgoExJmQ4AgNAiSAEAAAAAAAAAAEKCibMBAAAAAAAAAEBIEKQAAAAAAAAAAAAhQZACAAAAAAAAAACEBEEKAAAAAAAAAAAQEgQpAAAAAAAAAABASBCkAAAAAAAAAAAAIUGQAgAAAAAAAAAAhARBCgAAAAAAAAAAEBIEKQAAAAAAAAAAQEgQpAAAAAAAAAAAACFBkAIAAAAAAAAAAIQEQQoAAAAAAAAAABASBCkAAAAAAAAAAEBIEKQAAAAAAAAAAAAhQZACAAAAAAAAAACEBEEKAAAAAAAAAAAQAiL/D1NCU4irdk6bAAAAAElFTkSuQmCC
iVBORw0KGgoAAAANSUhEUgAAAlUAAAL1CAYAAADuGhFcAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAP+lSURBVHhe7N0HXFNX+wfwXywqYqAgogTFAgqCoqiIVeoAURy46mjVVsXRVvvWWVeXXVqr2Lraaq04qi1YaxWlFffijwsVEGXJEBCQsIQwZOT8b+CijABBApLwfD+fvJ6c8NKbyx3PPeM5AsYBIYQQQgipk2b8v4QQQgghpA4oqCKEEEIIUQIKqgghhBBClICCKkIIIYQQJaCgihBCCCFECSioIoQQQghRAgqqCCGEEEKUgIIqQgghhBAloKCKEEIIIUQJKKgihBBCCFECCqoIIYQQQpSAgipCCCGEECWgoIoQQgghRAkoqCKEEEIIUQIKqgghhBBClICCKkIIIYQQJaCgihBCCCFECSioIqQeMEkQ9swehAl77qOAryOENDIsGedXO2Hol2eQWMj4SkJeHAVVhChbYSz+/WIBFqfNwLrpVmjOVxNCGhlBOzguW4Fefy3A/B23IaG4itSRgHH4MiGkznIQdWg5Rr2XhqVXd2N+dyFfTwhpnAqRfOpzDJkcjBmn9+GTAW0h4D8hpLYoqCJEaYogCfwV7wx0AzYew6EFNtDkPyGENGIsAac+noyRJwfD59JajGinwX9ASO1Q9x8hSsIy/bFzxfc4P2AxPp9uTQEVIapCIILTkuWYX7QLC788jocF1NZAXgy1VBGiDCwN/j/MgeMKMf537ii+G9quwZ9YWN4j3PY5geNXY9HCQA8Qx0Ks0xvDR46AU58O0FTpPo0iSGL9cdrLC2ciNWDWAUhIaIU+b8/CtP5GUOt2BZaJaF8fnPj3CqJadEDHlul4EJ4JXVtHjB45DPYWbdT7+5fBJA9x/fRxHDsThRZm7bmDIAUt+0zGnGmvQ6RR1wM8B+F73oPt3DC8+/df2D7JrMnsV6JEsqCKEFIXUpYb/CsbJxQy89meLDJfytc3HGnadfbrut3sbFgqK+DrZNtVkB7Cjn/xNhu/7ixLKGj47VIKaQa757mSjZ/mxk6W/X5cffDeb9j6S4ncN1VTuRHsxKZt7JB/PMst+yUL4tjZNaOYEL3ZzK1XmVhtd0CpQpZ1z5MtGTebuZ0MYenPjmWuPvggW73+AktWxj7IvsW2DjdmAstVzOfx8zOJEEVRUEVIXeWHM8/ZvRmEE9jWgCd8ZQMqiGJHFvyPuYdl8xUV5N9j7uMHstme4Syfr1IZssDJ/T1mzt3kTiaV3fo8lnBuAxvfRciE0zzZQ7UMKrJZmPs7zNzBlX3h7lcpKJY+9GTThGCAHVvik6C+gWVx4LSPuZrbs6U+j1gRX1v80JBwlq0bZ8mde3OY58OnfH1d5LOEE0uZhcCYOa67wtLUd6eSekJjqgipk0Ikn3fHV3sjYD5jDqb01OHrGwpDQdQF/B7dBwO7aPF1FTQ3w8BxIhz2uo1ElersL4T4ys9YuPg2hrn9D87tyyanyMXDqydx/IGEf6+OchAfFoqIi/vw7dzNOBn1lK8vIdA1gLG2rHQTh86HIKu4Vv0w8RVsWvgV/m/YaqxwNirXrZ7/8AY8jofy75ShOURD38X/hgtwYf1POHRfnY8vUh8oqCKkLnKC4PmjB0KFw/DRB0MgavBxSwy58Q9w47o/gpOqSjPaDJqttVUvXxa3bz3W7sQFk0mYObRjhYvVq+g7ZyM8d7rD86uRMFbLOfC66DFhDlztesNl9Qw4mrbk60uwvBxk5slKejDt0EZNJ0ZkIshjK364YIJZMwdVOL8E0Orrir2HfsOvnivgYtyCr68jrR6YsnASzCX/4sefL6jYgwh52SioIuSFFSDx/EH8fCYWQqexGNmtuNmggQmgqS+CafoBrP5sH24ml2/NKMYeI+hSOOwGW8FQZYKPIqRdO4odZ+KgN7AHzFpV3HABNER2eOuDOXCxeFVN8wppwGDAh9h74za814+FafOy35KhIDEaQemysg1G9zOBkkKKRoWl3YTHjrOQ6NnAxkxOzjcNEfq+NQ/vu1hCqLSDoDkM7V0w0RKIOLAHh4My+XpCakZBFSEvKucuDm/7GxHMHv9bNAbm5W56DUWAFuZv4O3heojY9z762U/Hl/8EI/3ZkhtPucDvd+zOm4cf3+2uOjdeloqA0+cRChHs7LqgrXpGTXWQi5hb1xAEIcxnf4Bptq/y9eqkCOkBF+EVKgHsesKibcPNxRO0GYA5K8ZBKDmLn369RK1VRGEUVBHyQp63pDBrF0zob/DyWku0bDBn87dwNeee5CP/wTeTnDHivW04FR6DsBNb8e2V7ti47V10F77C/x9UQEECgq+EcAUj9DLRhzQ9GCc2rcLSNd9j07rVWLJ6O47deoS8JnqzY8mXsdPtOOC4Cr+sfRNmLyWgr2+5iAsO4AJrQNTLBIbSVNw7sQXLlq6B26a1WLXkM2w/dguJedKSH1cqLZiPnIQpehJEHNgPr/vZfD0hNSgZr04IqRVpFPOc1pm7pRsz518CmDLmHdWNbCaUL9vxwSDGhVayUIN7CVnn8T+xmxmF/M+oDunjE2y+nuw72LIVfx9j2z7ZzwLSns/+k2YFMndXZ/a22wXVTRVRa9zfOEvMYu+dZltnDmB2H/zK/BLy+M/UkDSenVjQo/hYFq34k53eto65B6SUT6nh/gEb8PZmdvFRPewHaQLzWWJXfB5ZrjrLUp5POySkStRSRUitMRREXIDHiUjuejsIbw3t0ji61Vrpw6RLX8z9ZhXelrVaQYJIr9WY+s4aHApMRWHJT6kElpGMqOLxQqm4/vNZtHadDBu950PtBcIemPqRM+JWLsOnHiEoHq+tzgqicGr7D9iycx8OHfWBX2pXjHujK/RbqfElnGUhOSq1uJh3/QCOtJ6AGTb6zxNyCl5F96lzMTF2I9777DDCld1sKWgHu7EjYMmdR6H//Au/pHz+A0KqwQdXhBCFZTB/t5HFT9CyHEkxL/0JtiQx4lLXL9mRsHQmlbVopN1lR9ZMZJ1lEaDsJRzFvlShJJlFYe7Mmd/2KvNQZfuxtT20GcxXMp/kppWoUZoVzk58MYoJzd9hGy/GlUn4qkaKQpj7CCP++K0qD1U6u7rWgQnqK1eX7BizFnLb0JlN84hUmfOHvDzUUkVIbeXch89+X67QGWPH94OxQmdRKq58ORgCgaBOL+353hDzv7EEQ164JxZOOgrTJUvwpoUuuJ+Ehp41Jn79J676/44lDp0AyUl8PW8j/k2sKu1C4yLQbA394sleQph07yR/oLqmHkRG2kDEfzh2/XFxBNZUCITmcFmwADPghZUOb2GFd6xKtUQqRNASrfX53GsmXfBaW3lJQTTRRmTA/exN7D92C2JlHwRaVnCa2pcrROKE5wVE0JqApAYUVBFSK7IB6v/hYLCEu98PwCi78skIq9YGAxa6w9/fvw6vO7i1dji4W8hzLB5nt2zFtfHv4Z2esoCqrJYwsJ2BH0+cgLtrby74OI4/L8erRPDxPLGlNoxEejXkYEpFVHJWkwqqZASGfTDayYT7m1/FlhW/4XJaEf+JmhBow8BYt6Rs1B5tali8Mj0qGRlKPwheRU8nZ1hzJcm58/CNzi2pJqQKFFQRUhvPpvpzMZWTI15XOOGgABptzWFra1uHVy9YtK2QAFIciH89c+Ew0BJ6VdxzBMKemL3uc8zWi8TF29GqkXlb2xR9HDpzhTxIJHk1tMJkISExXQ3HVRVCEheKoAix/FmOgldhbPWa7NACQn1xNVzdcqrroEtvGxQ3WEqykfssTUgVEh4jTenTQQVoZdEPLpbcVkj8cNw3BqrR1kteFgqqCKmNrFBc9AriCnroObQPTF72VPa8bDwpaAkdrZYVWqnKExh2w0A7E9XJvC0wgGV/S66QjuhHaTUETO3Ro4shWvHv1ANDTuAOTOxmBRuLEfjwrwg5N3MNtBKWLk2UhcwcdesAbA5DSxv0lBWjE5FaQ8Ak7GEGo0pJYutOoGeJgQ6yFsEYnDt+DdHUBUiqQUEVIQrjbnT3/w9HZckIG0kWa4FhV/TvmYGA8ARUOzcpLwtpWeYqlHm7NbqNnIjxQiAxIAZJ8lIRSRIQfjcRMB+H6YM7VhtUqp6niL/lizPFS89F4OaDFDlBVR7SEsWyw5JjiA766rZQjQAtujlh7ngT7iB4gBi5s+8kiA+L4vaBLWZMt6+f5Yq4AL+nQ7/ijO2Sc+eoC5BUi4IqQhSWjYgbfgiWFataNqOhtbDC5E8mIvbHPfCOrao9Jw+xPofg6/wp3n+dH6PS6AnQnAuWVn3iAqHfaZwPqbiwbRHS/C/geGIvuH4xD8NEKreyYQ1awuT1oXA2d8DbSzbi5zl9UGm57JwI+P4byMVUQpjPn4MJ3VvzH6iR5l3x5qoP4Si8Ca/z4ZVaLFlaIE4fj0IX1yVYMqy+AmtZi1kv9JT9dsl1nL3TtCZFkNqhoIoQReU/wKW//IqLwiG26NaAy2ZUrSWMXD7DkW9b4CfXz3Hg6kNIno09YSiUPMS1A1/jy5v22Lh8EAxUqTlH0Bb9F32HX959hE8XbobPw2z+ZlYESdRJbFl7Dj03/oDvplmp4WLCArTo7op9OyfCtEN7aBU8LTeujOXF4NSGL/H1VU3Yzd+Bo27j0UlDlf64inoFev3fx/ZfxiLx09VYfyoGufzhzSQR+HfLZnjZrMFv66bAooaB7C+O+1uY2sBJNq4KkfC5eE/5swyJ2hDI8irwZUJINVjsIbxrPQ1/ZunCfut5XFjUqxF1pXGBRqw/Tv/ng8vXo5Be3F3WDK1EfTByykSM7NMB9XbPqW+FyQj0PgSPo+cQnKsN/VYa6vG9FCJFXmIAzp08j8s37iEpV/aHzUVqanN0sR2EwaNGwfn115S4mHBj9RTiQB94ehzDqeBs6Ou3Alp1QN+RkzB5ZG+INOu5fYA9gvf/RmHsjruA5VfcOfYFBulQmwSpjIIqQhRSiGTv5bAatxVpzBrzT/jglzEd6qm7gRDSuEgQuG0aei325sou2BrgiUU2jaD7nzQ6FGoTohAJogIDkV78CGIFOwt9CqgIaTK0YGrdA6LiciiuhYppXBWRi4IqQhTB0vHwXlxJ2bo3unUsny+KEKLOmkG7iw0cihunHuMOdy1Qt6xgRDkoqCJEEVnRuH0xsvjptL7y4RBCGi9B207obiKLqiQIvf5AfpoP0uRRUEVIjRjyo+/BN7HknbaxAXQppiKkaSlda1LmZhDCU9RutUWiBBRUEVKjImTERSKkuCxCj65GJUtnEEKajmZtYdLLqKSc/gBRieq3MBKpOwqqCKlRHhKjHiC9uGyEXiZt6cQhpMkRomNXM778ECFxT0A9gKQiujcQUhP2BHEhD/k36rgcCCGkZhrQbWcEveLyIwRFiWlxZVIJBVWE1IRlITkqtaQsbI/2eqqxeh4hRJlegbBte3QoLvMLfVNeBVIBBVWE1ESSgDDZwr0y2u1hoNsYlqchhDQsATTbtAc/qqrqhb5Jk0ZBFSE1YBlixJUmpenRGR2FdNoQ0hQ1MzRBr5IMoEDCY6RRUxWpgO4OhFSLoSA9GQ8l/FtCSNOl0Qo6+vzc30ePkSKhtAqkPAqqCKkWQ15qIqL5d6JeJjCks4aQpqlsrqr0BCRnUFBFyqPbAyHVKkSG+DEtSUEIqUCMxDTKVUXKo6CKkGpJkZedhZLePxF6WFDiT0KarLIJQLlHrawcaqki5QkYhy8TQirJwLV1b2LA5xe5sgjOu8/h5Fyrl/o0wjKv44cp+2C8awvefo0Wdq6sCJJYf5z28sKZSA2YdQASElqhz9uzMK2/EVRu7ibLRLSvD078ewVRLTqgY8t0PAjPhK6tI0aPHAZ7izaq951q7SnEgT7w9LiEeG0RDJCCSLEuBox/CxMdOkPYYMtGpeD8qpFw2niLK3fGNI/T+GOqGWjVKvKMLKgihFRFzM6ttJU9eHCvzmyaRyST8p+8FNJUdtNtPBNiCtsdmsNXkmekGeye50o2bpobOxmWygr4all98N5v2PpLiS/371dbuRHsxKZt7JB/PMstu+EFcezsmlHccdCbzdx6lYlV6kvVkuxv5/4BG+DqzgLS8vlKrjr3ATu6xIE5rjnNHuU31A5IZ1fXOvDXAxFz3n2fFfGfECJD3X+EKEwXxgbaL/GptAjp19yx8msvvjuSlMOe4N7eFXjzKwE+3LIEI5+14DxF4oVf8enajVi38xLiVKZtPgfhf36FZd63ERwYi/SiMhuu0RFD587CWOEd/L54EdadTpTd5dWQ7JjfhYXLH2Pqksmw0WvO1wMCzc4Yv3IZLD0+wWce99Ewo5s00UZkwJfzIJHkgToASVkUVBFSHWkKYgIS+DcvF0u/hj1eKbDuW5oohzxXCPGVn7Fw8W04bfwQzu3Kdojl4uFVHxyPVLVQNAfxYaGIuLgP387djJNRT/n6EgJdAxgXT0S7iUPnQ9RzMkVBGI5u+AUXrIZiiBU/664MgWEfjHZ6iv3rPeGXVsTXNpR0RCekNVAwR1QFBVWEqAKWgmt7LsN43lvoRavkVJYTBI+1O3HBZBJmDDWu0Jr4KvrO2YBDO93h+dVIGKvMABhd9JgwB652veGyegYcTcuPn2N5OcgsvqPrwbRDG6jfipQM+ffPwd0rBqKB3WHaQs4fTqAPCzsrIOwYDvslqWlrHVElFFQRojBtaGu9jCHBsi6QwzjVeSommrXm68hzRUi7dhQ7zsRBb2APmLWqePMVQENkh7c+mAMXi1dVaFCxBgwGfIi9N27De/1YmDYvu+UMBYnRCEqXlW0wup8J1C/WLkBSaCCCqg0aSxc5joFvYCxy+dr60wyarbVpBjCpEgVVhFSnsGTcRAkDiNo0fHtAcbffqQ6YM8akCczyegEsFQGnzyMUItjZdUHbJnFVy0XMrWtcwCGE+ewPMM32Vb5enWTiwZ1ASLhwSijUrOLY54IcLS3uJyQIvhyC+Hpfi48L4gzac49XJbLixMig5jFSBgVVhFQnLw2PooubA14OloDTbmdgOmc4OmmoThtLgypIQPCVEK5ghF4m+pCmB+PEplVYuuZ7bFq3GktWb8exW4+gTsu0seTL2Ol2HHBchV/Wvgmzcq1YaoI9RU5m+XFk1ZJkI7ewYf/IktRstTquSN1RUEVIo1WI5NP7cLrvLIzt1IqvIxWxjHiEhJQEvizdjws2bqPT3LXY/M1qLP/se2z+fAjSfp4L1x8uIrGBb7rKxVAoSUHc/TPYvuIb+A75Aaf/WIFhRmqaq4xlITkqlX+jgOhEpFKEQ14yCqoIaaRY8jlsvWyLVW+a4vlEclIRy0hGVHFMlYrrP59F61mTyk+9F/bA1P8NR+yKZfjUI0Q1Z2sVROHU9h+wZec+HDrqA7/Urhj3Rlfot6JLOCGNCZ2RhDRGsm6/rXcweLET2lGvn4JicNtwIJzMKw7mF0DLyh4u1hHY9+1+XBKrYGah5mYYsXA5li/nXp/9AA/PT9ErYgNs+82G26V4ypVESCNBQRUh1XlFAIFQq6SsxUU3DTJ2Rdbt9zsuD55ZId+SqkvFlS8HQyDg9mkdXtrzvSHmf6OMQLM19IunYwlh0r2T/IHqmnoQGWkDEf/h2PXHKj/1XiA0h8uCBZgBL6x0eAsrvGPVL7ASaKOdmT7/RgGmIuhr1vf5KcArr8iOtBJaLRvokqBMBfexZ4Kp3HOrupfsvEum3tUaUVBFSHWKGJgkp6Scw11RCur7qsJQGOuNDZd6Y7GzkQpN/1dEGwxY6A5/f/86vO7g1trhKM1pLfM8CaY2jER6NeRrSkVUcpZa5DMqSXxpwh0jV7FlxW+43ODJL+uZoCW0dGoxXkzYGq3qfTIHQxG3m0vTyOY8bYBLglLxub/uvwE3nwhkSbnrG5O9pMi7ug4msh8Z/zuintUzSLNCcPADG2i/qgVaabRmFFQR0qg8RdTZv3Ep6HescJ2FWbMqvGZ/jgORstzZATj4xfsldXN34ZYs4Gv0BNBoaw5bW9s6vHrBom2FS7u2Kfo4dOYKiiwbkoWExHQVGVdVCElcKIIixPJnmAlehbHVa7LdCoT64mq4uuVUF6KjhRn3byLuhiVUsTRTPpJiHnA/AYh6mcCQ7mg1yEbIpcswWP0pFo/oUmYh6qd4eD8AMdDDwJG90alMbCoQdsFQZ3t0Nm2H1ur1lFcv6BAkpFHRhMWcg/D3/gP79++v/Nr+IfrlyG4vvfDut7tK6tzfh62sa7KpEhjAsr8lV0hH9KO0Gqa4t0ePLoZo/HMpGXICd2BiNyvYWIzAh39FoID/5DkNtCrtmuaCxcwcdesAbAkT24Gw50p5mTlV/F0LkVvckmyN8YO6PssfRaqQ/wCXjnXGggldy09+YckIvhLAFSzh2N0Ir5TU8oqQly1F945tKtQTeSioIoSouNboNnIixguBxIAYJMlLAClJQNjdRMB8HKYP7qgC3apPEX/LF2eKm2cicPNBipygKg9piWJZ/MUxRAd9dVuoRoAWVkMww9kY6UHRSJTXz8aeIC7kIdBlNCa83l4F/q4vF0sKR/Cg0RjQpkJ4lPUA109FAHr2eKN7xUSyhcjM0EE/iza0fxVAQRUhRMUJ0JwLllZ94gKh32mcD6nYDVaENP8LOJ7YG65fzMMwkSokqGgJk9eHwtncAW8v2Yif5/RBaZvUMzkR8P03kIuphDCfPwcTuqvhEkYtumHisumw9POEh6+4JH58hqEg4hR2H5Rg7NLpGGJA6w3URNDpLez6ejB0+PclGJ5G3MYpWR/qYBtY6FVsj2oNm4UbMcdC/VaXrA8UVBGiQpgkA+LiAUFZSMuqRbZpdSdoi/6LvsMv7z7C54u24FRsNn8DLoIk6iS2rDsHG7cf8d00qxoGsjcWArTo7op9OyfCtEN7aBU8LTdWjOXF4NSGL/H1VU3Yzd+Bo27j1TTjvgbaOX+Cv927w2vtLpxPfH7MM8ldHFjvjsxlu7BjXk8V+bs2RvlIuB+IQDnjqVQbQ6E4AMe2f4Ylq9Zi06a1WLVgGdb9fhHRkvqb1CFgsuH9hBD5Ms9jlaUTNsqe4jAFu0P3Y27Xhh6R8wS3dq7BtqsZ/PsKjKZg7XdjYExt80BhMgK9D8Hj6DkE52pDv5UGWon6YOSUiRjZpwPqfca90kmRlxiAcyfP4/KNe0jKlfVt5iI1tTm62A7C4FGj4Pz6a2UGHKurpxAH+sDT4ywiW3RAx5bpiBTrYsD4tzDRoXMDfn8pd0n4HJZO64sHx8N5N8JOzoWFSjdPPMappSMxcssrWHnOBxuGtuXrVRn3MHXvIBa+dxWDflmLmb3alqwdybIR6/UlxmzTxeY/VsBJpPz5jBRUEVKdRhFUEUIaBzUMqrKv4MtuQ/BN2gc4Er4dE0Wq343K0n2xftJ7uDjhDxxd1AflOsZZHLw/moxlOYvgvWM6LJT8pEXdf4QQQkgTVfTwHi7EcQV7O1i3V4dxaTmIOLoD6y90xpghFuUDKhmBCP1G2SNl3y/Y41dxnF7dUVBFCCGENElPEXvLF76ywejDe+I1dYgI8sPh434SElFPWJtWmt7B0UBbix6wgx92Hb4BsZKjKgqqCCGEkCYpC9HBoQDrihF9TNQiYzpLCsO1oPRqly0S6LaDmR6Q7nsXUbnKjaooqCKEEELUwlMkXvsdX7w1CP3GvIMZY95Av6nf4Vj4E/ndXDkRuPpfGPeZJaxN1SF1qhRZDwJxUZbfrZpliwSaWtCRTRcNvoP78cqdRU1BFSGEEKLqChNwdfsCDJl5BR1X/g0/7z9w4MS/+O2NAC64+gR/RZWuYRqIPR/OxqxZk+HY0xmfB8siEC98Peed4mWv5my7hsySn1RBUuTl5NRiGaocSHKVuxIBBVWEEEKIKmNPEOy+Gi5fFuDjfzbh/b7tS1IICHTRY8RI2EccwFf7/EuCJS0bzPllL/bv/xsXHmTxCydn4cGFv4uXvdqzqH+F5KAvigtwMpKRmJhYx1cSUiSKBj6FyEhOQDr/rmZJeJSq3JVAKagihBBCVFYR0n23Y+6Cs+j11TLMsn613HIyzbR1YQgJQvedR2B2A2ZQyg/Gvrf7wsjIqI4vc9h/cUbpA8rrCwVVhBBCyEsjQfiB+bAQaMNi9kGEV78ieGUFYTj6gztu6k7AR5OtK2WWl2ZlIElWiEuCOLP+MolX0qIn5p+K5VvC6vLKQvjmUTBosASvdUNBFSHVYXl43vKcjZwiFXlcIoTUC5Yveb5kUG426hymFIbh+Ne/IoILriL2ueP4vWz+A0Uw5NzywmavGLQe74QBlda1lEIS/wB3ZUU9IVq3VJHI5IVpQLedEfT4dzVT/kLkFFQRUi3uSYkvyS5QDficRwhpjMo+WDHZskF1pNEV4778AOayhbFd52JcrRbGfoKgc6cRDGM4OfaEYaWYKQfRwUEl2d/tusFUt+JiyeqmGTS1tGqxDqQWhK2Um/CUgipCqiNoBe1n55w2tF9R9yc9Qkh1BK20SwaBy2hpo+5hihAWM3YiXNbNtffd2i2bIk3C/cthXKEPRtgalRtLVUwaj1v/3uYKerB36QMTtb/jN4OwYxf0kBXvPkC8RH7QK02KQYAs0hR1gYlhi5JKJaGgihBCCFFB7PF9XPHjogPjXuj+WuU1SaUP/HDoNPe53iQsmmAF5YYPNcgPws4RnSAQCOr40obF0pMKD1RvZtIHLvZ6QF4OcvLkBVUMhbnZkCWS0BtvD2tt5YZBFFQRQgghKkeKrBB/nJJFB4490aV1xdv5E9w5/jdOwwTjvluI8Z0aOF96C2u4HvJHQkJCHV8R8Pt2uOID1VuYw2nGUAjTHyAqUV66hCJkxEUhBHaYNcFW6QPgKagihBBCVI4EEbf9S8ZLJYqRXlC2KacIksA/8O03vjCf/T02z+1Ri3FGytIMmrrtIBKJ6vgyRFthbcY9tUa3ifPwnqUfdnhcR2rFxqqCcHi7e6Fg3DzMG2JYucu0jiioIkTFsMzr2DRiAQ49VO7yCo1WYTICj23H6iWrsW6TG9atWogl637HhejMMpMISAmGQnEAjm3/FPPnr8I6tzVYsuBTbD8WAHGhKu+tpxAHemH76mVYtc4Nm9atwoIl6/H7hUhImupBIE1A4JlgrmCNUS3OwP10LD8rkQuo7v+NL5ZsQcI7v+Dotskwa67s0KFxE7Qbjm/+3oz+Xpux7Xzc89ma7AnuHdiCTU/m4NjOWehem/FrimKEkKo9OcdWiorv3dxrCtsdmsN/8JJIU9lNt/FM2Bi2pQFIswKZu+tI5up+i6UWSPnaIpb78ChbYu3C1pyJZQV8LSlkWcH7mKu5HfvgQDDL4ndXyT60Zeau+1hwVmFJpSqRZrBg9w/YAFd3FpCWz1dy1bkP2NElDsxxzWn2KL/02KhvRdwl4RMmKr4ecC/n3SysiP+ogUkTjjBXIbcNok/YuZSH7Ny66czBZTp718WOmTsuYG4nQp4dA02TlBUk32FHt33C5i/+gm10+5atnL+Urd1/gUXV43lAQRUh1WlUQVUhS/PbyBxlF9KmEFRJxcxvnQvTG76NBWRXvDvks4QTS5mFxQfs97Asvq4pk7L8SE8221yPmS84zh6Vu9Fzn4W5swna2sxy6Un2WKVutPwxrzeBbQ14wtc9J004zhaY2zLX/cEsl6+rX40lqHq+HULXIyyhSQdPjQt1/xGiIlj6NezxSoF1X+5SqvYYCiKOY8N6P1iNGQQrrYrN9M1h2G8onFL+xHd7riNNdotrygoe4J+1G7A3wgazZg6CUbkruwDNu9hjrL02Qn/7FZ5BKrRcrixb+IZfcMFqKIZYafOVzwkM+2C001PsX+8Jv7SmlEWudDyVCPaDuqF90+rda9QoqCJEFbAUXNtzGcbz3kKvBp0X/bJk477PP/CSmGGgdUe5U8EFbbugrx0XKOw6AT+xoguuqiOG/Ps+2Lb3DqBnAxszIV9fRrO2MOllxN2Lz+I373vI4asbN9n3Ogd3rxiIBnaHaQs5kYNAHxZ2VkDYMRz2SypuPmoSyoynGm5jRDfyRoT+FoQ0ekVIv3YYpzpPxUSz2mRbVmFMjNBroVyhmmUkBNpoZ6YPpAciMEo2r7ypKkBSaACCZEVNLWhpVndZlyD4P39E5KtC+CH7XoHc99KDaYc2VcxeK12WJAa+gbHI5WvVXsZDBN1MBER90cdcThBNXhoKqghp5Iq7/U51wJwxJs8zOau7rGjcvhjJFapZRkLQElo6stw7Ybh8PwlKWDBERUmRl51VnMxQISGRiMtQha6yTDy4E8h9L00IhZpVHPuly5JwweLlEMQ3iYOAIfveVfyTDghH9IWVkpNXkrqhvwYhjRlLwGm3MzCdMxydNJrOwAmWl4NMeXn75MqDRJL3fNp0k6PIIrL6GDhtJuxlxfQEJGeowN5iT5GTWYu0IZJs5Kp02ghFSZFfUABN4WC893Y/Oev9kZeJgipCGq1CJJ/eh9N9Z2Fsp8pLUKgzlpGMKO5JXDHpiH6UxoVWTdUr0LPoicHV9gIx5KUmIrq4HIWweBXoLmVZSI5K5d8oIDoRqXlNIaji/t5D1yE86xJ+HNlR6ckrSd1QUEVII8WSz2HrZVusetMUzfk6QioToLn5MMycYgkkPkBMUj5fX1Ym7l+9VpJ9mxBSbyioIqQxknX7bb2DwYud0I4eRUlNBMYY+/lXmG1+G8d9o1A+rGIojL2C8ykmcOBrCCH1g4IqQhodWbff77g8eCac2zWZoenlCHTbwaz6QUJlVDc7rLFJxZUvB0P+avyKv7Tne0PM/8YSAjQ3m4xtx9bB1GsPvB/y8+BYHlLu/4cdXkLMmvcGn5rCDF07qsCMsdLZnYoyFUG/PpYdIaQWKKgipDqvcPel1vx4plYM0npfQ0vWquCNDZd6Y7GzUZMdLyHQ1IKOwlFSdbPDGps2GLDQHf7+/nV43cGttcNhwP/G516BsNvb+PHQx+gSdQ6H9mzHpu1/4nKqOWYscIBBYU7JDEFRF5gYqkCys2ezOxUkbI1W9T6ZQ4BXBFKUJjZp1VyKJrasHqmBQJZWnS8TQirKPI9Vlk7YWDwYZQp2h+7H3K71OWg8D+F75mH6Pwzd9eWFCdmI/b9TuBgpgsOU19GpFfdcpPEGFm1/D7aVso6rMGko9owairmnjbDynA82DG3Lf1CG7GdGO2HuKVHVP0N4hUj2XgHLsVuA+ScQ+ssYFehWlp0Ls9B17l8QrTyH0A1DocN/8pzsZ2bCct5hGK6o6meUScpdEj6HpdP6kvFpzrsRdnIuLKh5gvDoUCCkUdGExZyD8Pf+A/v376/82v4h+uXI2ht64d1vd5XUub+vXgGVTLOOsHXpwxWeIjPnqfxM2YUlqRSgNxCDrHX5SiKfBFGBgUiHHWZNsIWBShwuLWFiO7A4DUReZg7kT+wrRK5Elh/eGuMHdUXlhWwIaVgUVBFCGqHWsHIaC2fhIwRFiVHA15bFMuIRGlIA81kj8bpB0xx79lwOok98AkeLCfjEO7LCQHVuX6XdwrE//CEcNw/zhhiqSLeyAC2shmCGszHSg6KRWCAnqmJPEBfyEOgyGhNeb99ku8tJ40FBFSGkEeJuqN3GYtl7lvDbcQS+lRbLzUGEtwcOFozGsnkDVaTlpR6xx7jhcRgXI7zw05/+SCyXWVyC+3/9hl8K38Xuze+iuyoN5m7RDROXTYelnyc8fMUVWixli26fwu6DEoxdOh1DmnxgTRoDCqoIqY5GK+joN56ZUkySAXFxlssspGXVItu0KhIYwfmbnXDvfx5rt55HwrOWiiJI7h3GercnWPqPG+Z1p7XPIGgPu/EjYTfuKxz4aiQ68Vd2lvcI1w98hYV/dcJvR7/DW2ZaJR+oDA20c/4Ef7t3h9faXTif+PyYZ5K7OLDeHZnLdmHHvJ4vZfannlk76FLzGCmDBqoTUp1nA6Zlw1Id8K3fP/h8gMJz/ZXkCW7tXINtVzP49xUYTcHa78bAWF0v7oXJCPQ+BI9TUWhhZoSWKbEQ69hh/PQJcDDVoS6fUiwT0ReP4U+vSwhPL+SO3afI1TDFoPGTMXlkb4iqXWi5sXsKcaAPPD3OIrJFB3RsmY5IsS4GjH8LEx06Q9hgB4FswP9yWI7dClnCf9HKswjd4FTPg+OJKqGgipDqlAuqbLHy7ElscKo8mZ0Q0hSUzDbsOvdw8TsKqkhF1P1HCCGEEKIEFFQRUp3aZnUmhDQRIvSwMAKN6CNlUVBFSHXKZXXOQJw4S37OJEJIE1CaF4sQ+SioIqRaGlxQVZpSMAep2VUkoiSENAF5SH2UxJe1oN+6JU2UIOVQUEVItTTRRkQD0wkhFenC2ECbgipSDgVVhFSrGTRba/PjJhJxNzyhZFFaQkjTw7IgjitNbaINbS1KOErKo6CKkGppQNegPa0pRgjhgqqnyE4tHVNlAFGbl5FylDRmFFQRUi0BNPVFMOXfZcWJkUGDqghpmvLSkZiQVVLWM0I7XWqpIuVRUEVItQRortcOr/HzpiWp2VWslk8IUXuFuchM5QcAdGiPtkIKqkh5FFQRUgOBrgGMS/v/7kYiXlJutVpCSBMhTYpBgGxxBRmj9mijSotTkwZBQRUhNREaoWsPUUk56zHEGYUlZUJIE8KQl/YYCfw7US8TGNIdlFRAhwQhNSmbVV3yGI/T80vKhJAmhKEwJwupxWU9mHZoA2qoIhVRUEVITQSvwtjqNf5NEh6l5vFlQkjTkY+kmAco6f3rgJ5mBmheXCbkOQqqCKmRJkRmXbhnU5kEBMSkgEZVEdLUSBAfFsWXX4OV8at0AyWVCBiHLxNC5GLID/wJjr0WwQ9CWK89jeufDYAW/2m9KkxGoPcheFx8BO2O+oA4FmIdO4yfPgEOpjpNI5tzU98HLBPRvj448e8VRLXogI4t0/EgPBO6to4YPXIY7C3agOagVcYkD3H99HEcOxOFFmbtueehFLTsMxlzpr0OkcYLHDUsGofeGY6pHpGA3mKcCN2EMe1oz5MKZEEVIaQGT86xlaLiZf+YcJoneyjl6+uRNCuQubuOZK7ut1hqQel/sIjlPjzKlli7sDVnYlkBX6uumvw+yI1gJzZtY4f841lu2WOuII6dXTOKCdGbzdx6lYkb4HhUHYUs654nWzJ+NnM7GcLSnx03XH3wQbZ6/QWW/CL7K9uPrbUWFl8D4OzOwor4ekLKoNZLQhQhNIb16ybFrSKSu1FIyK3nBl6WgmvbPsXyR6OxZGpvtHn2ZN0Mmp1csHK9BTz/tw4e4Wq8aE6T3wc5CP/zKyzzvo3gwFikF5U55jQ6YujcWRgrvIPfFy/CutOJxRE/KYLk3kEsnLANgvnf4uORltAtPm4YChMvYttn6/D9ugM4H1f7ySYsJRb3YmTHmhDWg63Qke6eRA46LAhRRDMDmPc1KSkH38H9+Kcl5XrBUBBxHBvW+8FqzCBYaVXsqmgOw35D4ZTyJ77bcx1pank3pX0gC6riw0IRcXEfvp27GSejyh9zz/On3cSh8yHg83w3aUx8BZsWfoX/G7Yay507lOsazn94A57HQ/h3tSVF1oNAXCyO39ujRxdDtCquJ6Q8CqoIUYgQZjY20Cu+SofgZnhqPbYMZOO+zz/wkphhoHVHtOBryxK07YK+dtoI3XUCfmJ1zJtF+wDQRY8Jc+Bq1xsuq2fA0bQlX1+C5eUgs3giKj+9v7i2KctEkMdW/HDBBLNmDoJRububAFp9XbHH8zf86rkCLsbyjqjq5CA6+C4/888S/S0NmsZ4RlJrFFQRohANtO1miyFC2aX0EYKixCgo+UD5mBih10K5giE66FdxqyzNnZUeiMAoNez+on3A0YDBgA+x98ZteK8fC9PmZW/jDAWJ0QhKl5VtMLqfidzAsylhaTfhseMsJHo2sDHj15UqS0OEvm/Nw/sulig+jWuDPUFc6MOSsvUb6GfeuqRMSAUUVBGioGYde8ChpyyxQjqCroUhqb6aqrKicftiJFfQgrBVFbOLBC2hpSNruQjD5ftJ6pfigfZBDXIRc+sagiCE+ewPMM32Vb6+qSpCesBFeIVywbVdT1i0VfKsvNxYBPrGFBf1BvaAWStqpyLyUVBFiKJamKDfKJviosTnKoLqqcvpebeOIvIgkeRB3Tq/aB9UjyVfxk6344DjKvyy9k2YlWvFaopyERd8B7K2zeLlY6SpuHdiC5YtXQO3TWuxasln2H7sFhLzXiT0ZsiP8MfJYFlrqDXedukNA4qpSBUoqCJEYdqwGPAGLGXFeuxyYhnJiCru1lFEOqIfpXFhhXqhfSAPQ6EkBXH3z2D7im/gO+QHnP5jBYYZlR9r1STJuudC+O459hjXd/yK651mYOPmb7Bi+efYsHklhqb9hsmu23A5sbaTTAqQFBqAINkoSmE/OPSk8VSkahRUEaKwV6DXywHjLWXjNQLx340Y0CqApEEUROHU9h+wZec+HDrqA7/Urhj3Rlfot6JLeDGWheSoklX58q4fwJHWE/Cujf7zpKiCV9F96ly8GeeGeZ/+jfC8WvTdMzGCLt6ARBZTDXOAXcemPnqNVIfOSEJqQaDXA87je3KldASdv42YgvqbA0jIM83NMGLhcixfzr0++wEenp+iV8QG2PabDbdL8U2q67Mm6bdFcBzWpfLAfS1zDBzdFRH7tmLHpSSFZ++y9FD4Xozhft4ETmNtYUx3TVINOjwIqQ2BPno5Dy3uApScu4DrL5BEsCYC3XYwK1loUAHqOZ2e9kH1BEJzuCxYgBnwwkqHt7DCO1aFAqtUXPlyMAQCQZ1e2vO9IeZ/o2zSQmt9fuEoky54ra28pY410UZkwP17E/uP3YJYoaiKITf8Bv6VDYAX2mPcQBNaRJlUi4IqQmqlTBeg5CpO3kxQ+qwzgaYWdBSOEDQhFGqq3dpvtA9qJjDsg9FOsiz/V7FlxW+4nFbEf9LYtcGAhe7w9/evw+sObq0dDlmIVEygDQNj3ZKyUXu00ax+1FN6VDIyFAqqniDo3GkEcyXh2LEYZt4gK34SFUZBFSG1JGhjiwnv9uVKkTjhdQNxyo6qhEbo2kPEFaIQFl/FYHhpCmICEriCEXqZtFW/E5n2AacQkrhQBEWIIXcIkOBVGFu9xv3LlUN9cTVcVXKqC6DR1hy2trZ1ePWCRduyA/R10KWPDYqzU0mykVtYQ8SU8BhpioyrygnBOU9/rmCJKZMGwJhGqJMaUFBFSK29ip5jJmK4rLHqxHGcjcjm65WkWUfYuvThCk+RmfNU/tiPwpI0AtAbiEHW/BO6Omny+4AhJ3AHJnazgo3FCHz4V4ScZLMaaCUsbTnJ4vZTUx5Z1RyGlr0gG+2I6ESk1hAwCXuYwajGXFNFSLv2Hw7KUilYTsY7DuWXvSFEHgqqCKk1AbS6OWGqkwkXVfnhhG+MkrOrt4aV01g4C6vO3M4y4hEaUgDzWSPxuoE6dnw19X3wFPG3fHGmuJEuAjcfpMjZB3lISxTL4i9ONZnnmwQBWnDn5Nzx3DmZ+AAxSfLGOkoQHx7F/WuLGdPta251YqkIOH0eobIFlN8djf76Ta2DmbwICqoIeRHNLTB2wVswRwy83E8iKEeBrgSFyW4QY7HsPUv47TgC30pjZXIQ4e2BgwWjsWzeQDVNRNjU90FLmLw+FM7mDnh7yUb8PKcPKo3myYmA77+BXEwlhPn8OZjQvYkvndK8K95c9SEchTfhdT4cuXx1KZYWiNPHo2DuuhRLhnWssdWJJfri4C4/QDgOS6fYcGE+IQpghJAXk32LbR1uzASwZ6vOPWZSvlpZpFmBzN3VnjmuOc0e5Zf+9kKWFbyPuVq6sDVnYlkBX6uumvY+yGMJ57ax1W5H2M2HT8p9T2luNPNZM4oJIWJ28w+w4KxC/pMmTprBgn9fyOz0RrE1J6NYLn/ISLPC2YkvXJjV25vZpYS8kspqZbMw9+nc/hUy8wXHWYKyT26itgSy/+HjK0JIrRQg0XsVHMZtRsJUT9z74210UnaLSWEyAr0PweNUFFqYGaFlSizEOnYYP30CHEx1anzaVgtNeh9IkZcYgHMnz+PyjXtIypXNishFampzdLEdhMGjRsH59ddqv0CwWnsKcaAPPD2O4VRwNvT1WwGtOqDvyEmYPLI3RJoKdNDk3MSmYSOw4u4QbPXdj0U2OvwHhFSPgipC6iLnNra9+SYW+/Whiy8haqHkYWnI2N+ABX/i0s9jIaKglSiIxlQRUhdaPTF12TRYSs7ip18vIZEeUQhRbTl3cXj7EUQIXbDsf44UUJFaoaCKkDrRQLuhc/HVbHNEHNiDw0GZfD0hRPUUIPH8Qfx8hsHxk4/wdrfizFeEKIyCKkLqqnkXjP94PsbhLH7aehJRtB4gISqJZd7GH9v+RnjX6Vg1rz/0qJWK1BIFVYTUmQCa3Sbjiy+dkLh3G3ZdESt96RpCSH3LQcTf2/D1mXaYv/Z9OLWjvFSk9iioIkQZBG1g+/4n+HJ4HH7+/k/ceqIq67ARQgCGwlgfbP7+JETzP8XqcaZNbi1Johw0+48QpSmCJPBXvDPwe+SuPYpji20rJ2wkhDQ+LAGnPp6MkScH4sS5bzHGqOy6goQojoIqQpQqB1GHlmPUe2lYenU35nenga6ENG6FSD71OYZMDsaM0/vwyYC2TSP/G6kXFFQRomyFsfBeMQ3Tot6B7x8fwEb4Cv8BIaSxYck++HjIR4j88BD++MiWEqmSOqExVYQom0YnuHy7A1vbeODLv8LkLgZMCGkEWDIu/OiGgLd2YOeCPhRQkTqjlipCCCGEECWglipCCCGEECWgoIoQQgghRAkoqCKEEEIIUQIKqgghhBBClICCKkIIIYQQJaCgihBCCCFECSioIoQQQghRAgqqCCGEEEKUgIIqQgghhBAloKCKEEIIIUQJKKgihBBCCFECCqoIqQdMEoQ9swdhwp77tKAyIXXFknF+9VAM/fIMEgpouVrSeFFQRYiyFcbi3y8WYHHaDKybboXmfDUh5AUJ2sFx2Ur0+msBFuy8BQnFVaSREjAOXyaE1FkOog4tx6j30rD06m7M7y7k6wkhdVOI5FOfw2FKMN49tQ+fDGgLAf8JIY0FBVWEKE0RJIG/4p2BbsDGYzi0wAaa/CeEECVgCTj18RSMPDkIPpfWYkQ7Df4DQhoH6v4jRElYpj92rvge5wcsxufTrSmgIkTZBCI4LfkY84t2YeGXxxFbSG0CpHGhlipClIGlwf+HOXBcIcb/zh3Fd0PbVf3EUpiMQO9D8Lj4CNod9QFxLMQ6dhg/fQIcTHVUtEuDoVAcCG/Pw7gY3wodDbivFZkGnQHjMH3iIJgKX+F/jhRjmYj29cGJf68gqkUHdGyZjgfhmdC1dcTokcNgb9EGqtwGwyQPcf30cRw7E4UWZu2BhBS07DMZc6a9DpFGXY/wHITveQ+2c8Pw7pHD2D7RVKX3FVEzsqCKEFIXUpYb/CsbJxQy89meLDJfytdXJs0KZO6uI5mr+y2WVlD6c0Us9+FRtsTaha05G8fy+VrVUciygvcx1wEfMPeAFFbA1zKphD08+jGzdvyWnU3I4ysJy41gJzZtY4f841lu2UOlII6dXTOKCdGbzdx2jSVXfRg1YtyxcM+TLRk3m7mdDGHpz45x2TFykK1ef0E53yv7Fts63JjBchXzefzsiCPkpaOgipC6yg9nnrN7MwgnsK0BT/hKOaRi5rfOhekN38YCsiveWfJZwomlzNz8A7Y/NJOvUw3StCts3VArNnzrLZbN1z0jjWUnFtgxc9eDLKxcBNFUZbMw93eZuYMr+8LdjyU8CzpKSB96smlCMMCOLTn5iAvXVQkfXJvbs6U+ZbddygoSzrJ14yy5c2QO83z4lK+vC/58gTFzXHeFpdKhRRoJGlNFSJ0UIvm8O77aGwHzGXMwpacOX18RQ0HEcWxY7werMYNgpVWxC6Q5DPsNhVPKH1i/9zrSVKZTPgcRR3fg+wtmGDPEAlp87TMCEfqNtkfKvl+wx08MKV/ddOUgPjwUERf34du5m3Ey6ilfX0KgawBjbVnpJg5dCEFWca1qYOIr2LToa/zfsNVY4WxUrhs7/+ENeBwP5d8pQ3OIhr6Lj4YDF9b/hEP3VGlPEXVGQRUhdZETBM8fPRAqHIaPPhgCUZXDRbJx3+covCRmGGjdES342rIEbbvAzk4bYbu84Scu5Gsbufxw+LifhMSwJ6xNK4VUHA20tegJO/hh1+EbEDf5qEoXPcbPhqtdb7isngFH05Z8fQmWl4PMPFlJD6ZGbVRoskMmgjy24scLr2HWzEEVzgMBtPq6Yu+h3/Cr5wq4GMs7+l+AVg9MWTQZ5pJ/sfmXC0ik0cGkEaCgipAXVoDE8wfx85lYCJ3GYmS34iYG+ZgYoddlT+qG6KBfxa1SoI12ZvpAeiACoyR8ZePGksJwLSgdzNQQ+pryI0qBbjuY6XFfy/cuonKb+p1PAwYDPsTeG7fhvX4sTJuX3WcMBYnR4HYnxwaj+pnIDb4bI5Z2Ex47ziJL1wY2ZnJys2mI0PeteXjfxRLCKh88aqs5DO1dMNESiDiwF4eDMvl6Ql4eCqoIeVE5d3F429+IYPb436IxMC93g6wgKxp3LkZyBS0IW1UxV0nQElo6spaLMFy+n6QCXWVSZD0IxEVZ/CdsjVZVzOoSaGpBRxZHBt/B/fjiZhgiVy5ibl1DEIQwnz0f02x1+frGrgjpARfhFcodCHY9YNG24ebiCdoMwJwV46CdfRY//XqJWqvIS0dBFSEvpAhp145ix5k4MGsXTOhvUG0qhOfdOorIg0SSh8bfAShFXk4Ot7WKyoEkV0W6NV8ClnwZO92OA46rsGPdBHRuobQmnXqWizguYJa1w4p6mcBQmop7J7Zg2dI1cNu0FquWfIbtx24hMa8+HhO0YD5yEqboZSPiwH543c/m6wl5OSioIuRFsFic2e3B3UiM4fyhC/pUGnheHstIRlRxt44i0hH9KK0WwcrLUoiM5ARuaxWVhIRUaqkqj6FQkoK4+2ewfcU38B3yA07/sQJOovJjrRo19gRxIQ/58mNc3/ErrneagY2bv8GK5Z9jw+aVGJr2Gya5bsPlxPID85VBIBqAt2baAZJT2HrgmgpN8iDqiIIqQmpNNpPvAjxORALCQXhraBeVGftCGpGCKJza/gO27NyHQ0d94JfaFePe6Ar9Vip2WWZZSI5KLS7mXT+II60nYIaN/vOEnIJX0X3qXEyM3Yh5n/6N8DwlRz2CdrAb6wxLSBD6z7/wSyrgPyCk4VFQRUitZSLo+GF4SbiYauw4DDNvzdcTUgvNzTBi4XIsX869PvsBHp6folfEBtj2m41Nlx+pQPdvZem3RXAc1gXN+ffPaJljoEtXROzbih2XlD1e8BW06T8a71oLgYjj+PNyvCzRFyEvBQVVhNRWzn347PflCp0xdnw/GCtwFpXOgFOMHkw7qMJ0eg3otjPitlZRhjCqauZjo5OKK2sGQSAQ1OmlPf8ExPxvrIlAaA6XBQswA15YMWQKVpx4qBqBlaAlWuvz6TRMOuO1tpVCKo4m2ogMuH9vYv+xW8pPraFlBaepfblCJE54XEBEAYVV5OWgoIqQWpENUP8PB4NlzVQDMMrOSKGT6NkMOIVoQijUVIH1zJpBU0urFsFfNTMfG502GLBoD/z9/evwuoNba50hCyUUJTDsg9FOJlzpKras3I3LaUUlHzRmAm0YGPMzFY3ao00VqTVKpUclI0PpMc+r6OnkDGuuJDl3Dr7RuSXVhDQwCqoIqQ2WioDT54tnOgmdHPG6ookMhUaw6CHiClEIi68iB5U0BTEBCVzBCL1M2qrAydkMwo5d0ENWvBuJeIn85gdpUgwCErmCqAtMDFVl9JkAGm3NYWtrW4dXL1i0rTjgvBCSuFAERYghd2iR4FUYW71WUg71xdVwVcgUroMufWxQnJ1Kko3cwhoipoTHSFP2uCru79XKoh9cLLmtkPjhuG8M8vlPCGlIFFQRUhtZobjoFcQV9NBzaB+YVJebqqxmHWE7ug9XeIrMnKfyx3wUlqRSgN5ADLJWjRxFzUz6wMVeD4K8HOTInTLPUJibDVkYqTfeHtbar5RUN0kMOYE7MKl7N9hYjMCHf0Wg8pBqDbQSlmamz+KOFVXoAGwOQ8te6CkrRichtYaASdjDDEatlJ8uQqBniYEOsla+GJw7fg3R+coO3AipGQVVhCiMuyne/z8clSU5hA1G1yrjdWtYOY2Bs/ARgqLEcm6m3G/PiEdISAG6zBqB1w1UpJushTmcZgyFMOMBohLlpUsoQkZcJEJgh1kTbGHQpK84TxF/6wrOSGQ3+wjcfJAi5zjIQ1pi6SisarLvNyoCtOjmhLnjTSBIfICYJHltRBLEh0Vx/9pixnR7hcYh1prAAD0d+hW3mJV0AeaU1BPSgCioIkRh2Yi44YdgWVGviuU4qiS78YzFsvcs4bfjCHwrjZXJQYS3Bw4WuGDp3IEwUJW8j1yw2G3iPMyzvIodHnIWgi4Ih/duLxSM435miGETv+C0hMnrTnA2d8DbSzbi5zl9Ki9AnRMB338DuYIQ5vNnY0J3FZlZ2rwr3lz1IRy1b8LrfHilHGssLRCnj0fB3HUplgzrWE/HQZkWM8l1nLvzmGYBkgZHQRUhisp/gEt/+RUXhUNs0a22y3EIjOD8zU649z+PtVvPI/HZ2JMiSO4dxnq3J1h2bBPmWVezhmAjJGg3HN8c/hH9vTZj6/n45zPW2BPcO7AFbplzcWznLHSvYQCz+uMC6+6u2LtjIkw7tIdWwdNys/tYXgxObfgSX1/VhN38nfhn4wR0qmLpn8bnFej1fx/bfh6HxE9XY/2pmGdjxpgkAv9u2QwvmzXY/d1kWNTbccDtX1MbOMnGVSESPpfuQUxRFWlgAsbhy4SQarDYQ3jXehr+zNKFPRcUXVjU68WSfhYmI9D7EDxORaGFmRFapsRCrGOH8dMnwMFUh7s1qCKGQnEgvD3/wqlIDZh1bIGUyDToDBiH6RMHwVTYlMdSVSRFXmIAzp08j8s37iEpVzYWLRepqc3RxXYQBo8aBefXX1PiwsMN6SnEgT7w9DiGU8HZ0NdvBbTqgL4jJ2HyyN4Qadbzczx7BO8PR2LszmDA8ktcvr4Gg3So7YA0HAqqCFFIIZK9l8Nq3FakMWvMP+GDX8Z0UNEAiBB1JUHgtqnotfhfruyCrQGeWGRTm256QuqGQnhCFCJBVGAg0osfQaxgZ6FPARUhjY4WTK17Qpa8BAjFtVAxjasiDYqCKkIUwdLx8F5cSdm6N7p1VKEFbwlpMppBu4sNHIobpx7jDnfOqkKmL6I+KKgiRBFZ0bh9MbL4qbe+8uwQQupO0LYTupsUJ1ZA6PUHSFL2kjiEVIOCKkJqxJAffQ++sqzgHG1jA+hSTEVI46SpB5GRdkn3/M0ghKeo4tLURFVRUEVIjUoTWMqI0KOrUcmSHISQxqdZW5j0Miopp1eVlJaQ+kFBFSE1ykNi1AOkF5dVZV0+QpoqITp2NZOlreI8REjcExqsThoM3RsIqQl7griQh/wbVVk6hJCmSgO67YygV1yuelkoQuoDBVWE1IRlITkqtaQsbI/2ei+U8pMQ0iBegbBte3QoLqcj+lFapWVzCKkvFFQRUhNJAsLulo5Sbw8DXRVZ7JiQJkkAzTbtYcRnkksMiKEZgKTBUFBFSA1YhhhxpcluenRGRyGdNoQ0Zs0MTdCrJAMokPAYaaULERJSz+juQEi1GArSk/FQwr8lhDR+Gq2grc/P0X30GCmSopIyIfWMgipCqsWQl5qIaP6dqJcJDOmsIaRx43NVFUtPQHIG5aoiDYNuD4RUqxAZ4se01AUhKkuMxDQaqk4aBgVVhFRLirzsLJT0/onQw4ISfxLS6JVNAMo9EmXmUEsVaRgCxuHLhJBKMnBt3ZsY8PlFriyC8+5zODnXqm5PI4XJCPQ+BI+Lj6DdUZ97kI6FWMcO46dPgIOpDj9nqQlgEsRePw2vYxcQ2aIDOkCMhJa2eHvOJPQXNf4Fq5kkCHsXfoPED3bjs/66fG1VnkIc6ANPDx/4J2YiNTYFWl1tMWjkJEwe2RsiTXV5vi39npcQry2CAVIQKdbFgPFvYaJDZwgb7OBOwfnVo+C0wZ8rd8Y0zzP4423TpnNukZdHFlQRQqoiZudW2soePLhXZzbNI5JJ+U9ehDQrkLm7jmSu7rdYWkHpbypiuQ+PsiXWLmzN2TiWz9eqM2nWXea5ZAqb5vYfC01//o1l+2fv6q3sUnIBX9PISHNZelwI8/vbjbnaibhjwpatPCfmP6yCNIMF7/2ELXX3Ywm5RSV1BRks6tJPbKa5kAkdP2V/h6bX6bhqFGTf030+G+DqzgLSyvxNcx+wo0scmOOa0yzh2TFf39LZ1bWO/HkrYs7uIdxZRkj9o+4/QhSmC2MDfqHWF8FScG3bp1j+aDSWTO0NPY3S39QMmp1csHK9BTwWrIVHmHqP4Cpp4XHFV4I52PLxKHTVbV7yQWE8Lmz7Bmu/34ad52Ib2dIi+Yjz/hqzFnyJn//xQ2LbLuheU+NUsTzEHl2HdVmT8M3sAc9bpDReheng9/H9j+9BdOE7uC74GVfEqtxFVYT0a7uwaEUSpi6ZDBs9/m/KEWh2xviVy2Dp8Qk+9QhpoEScmmgjMuDLeZBI8kAdgKQhUFBFSHWkKYgJSODf1AVDQcRxbFjvB6sxg2ClVTE0aw7DfkPhlPIH1u+9jrTGFVEoD0vClU2rsfj/BsNthRPald0N+XG46nEKkfzbxqUFjMd8if07N+CzRXMwcZAl2igSXefcwYGtmpj3Ti85XV/NIXKeiY/s9ZB94VesO3KfC91UVEEYjm74BRcsh2KIFT/rrgyBYR+MdnqKfd95wC+todMbUFZ10nAoqCKkQWTjvs9ReEnMMNC6I3eLrkzQtgvs7LQRtssbfirdalEVhpygw1j7wxWYzJqCoaLnrRnFtPpgzt592Pnrdnw15jW1GP8ijQ/B5cvfYvzIpThwT87Cvi1M0G+0DVeIw+mj/ohRyczfDPn3z8HdKwaGA7vBtIWcv5xAHxZ2VkDoMRz2SwIlOCfqioIqQhSmDW2tF1yihokRej2UK1SzILNAG+3M9LkH60AERqlhtlFuH1zzOIQzEhMMtOmEVnz1cy0h6jsJH7w/ChbCV/g6VcaQl/YYsnZOyc292HjsPnJLPiiD76aSxSF3HyBeoorhRgGSQgMQBD2YGrXhvpE8pYscx8A3MFbOflC2ZtBsrU0zdUmDa7pBFUvAqWVvoOc6P+TwVY1Kg2+fFJnXfsacWZPh2EUbAu4G38VxMmbNmvX8NWMM+mpbYOiCH/BPYHLDjFEoFOP+6d+xbtGb3H/bCH3HvINZbw1F36EfYpN3KCSsCJJ7+zF7zl+IrY/7UWHJeIwSBhC1qSIgqklWNO5clHVsaUHYqorATNASWjqyWW9huHxf/Z7mWfpdnD4exJWsYGeh3wRmYgnQytoFK+cPhJ7dbKyc0E1OIFmIXAl/hutrQ+vZODtVkokHtwMh4cIpoVCTC5/k4YIcLS3uJyQIvhyC+HrvAeSCOIN23GNQiaw4MTLUtUudNCpNNKgqRPLpbViy2Q9378YitdGdbC9j+5pBp///sGf/TnwxqSt3OxiA+Zv2YP/+/c9fB7xxM9EDbyb8hEkD38cW/7TK3RlK8xSJ1/ZgyfB+GLftPkRvbsLFzAT4e/+B/X+dh//pz/FG9Ba8u3g5Frz5CR706waj+jia89LwKDqdf/PiWF4OMhUe1KGOA2sZCuLuwzdUAoi6wMRQgPR7J7Bp2cdY4+aGdauWYfX2Y7iVmFOPx1TDEwh7YsaOK0i7sQ0zur9aOZCUtWBeC+X+FcLSpR8sWqlgUMWeIifzKf9GAZJs5BY27F9ZkpoNWv6PNIQmGVSx9P/Dz1/sgqwzBv5xSG5ky0LVbftycH/nJAzaGfxiN+WnMbh9KgxM1Bd9zCs3nstuEhOmO3JXKS98d/BmzQOqi4Kxc9Ak7LyXzVcogD3BvT0LMWTAT3gy1RN+x9ZjjmOFHDcaRhjw0aeYKfHBwQgTOHY3QmPuMGIZyYhSODZTx4G1RciIi0RIcchUiPTre+F2vQPmbtyEb1aswGcb3PD50Cf4adIH+OHyIzULKKsiG4t0GntORHIx1TAsmGan2OD3xoZlITkqlX+jgOhEpObRqCqinppeUMU9Gfpu2Q+scsNCPe59ZCQeNqZBwXXePilyJWlIlDx9oSd+lhAC30AJhCNsYaUt7/CQojC/ZI6SZsvmVTT1l8E9xUoS0yDJVfAiyjIQ+NN76D/3DKy2/Ybt77+OdlV1iQg6wOFtF+jp2eMNea0ApBEpREZyAhcucvJ88fMRLbjOKJtW4hUIu0/ARxNTsGLet/hTzdNKFGPxOP3zbzgt6Q3Xn9fifRsd/gNCiKpqYkFVEdJ9d2Ft1lv43/i+6GIi5G7EDxGfrEjTtRSZ5z+F0dRDiKu3ZuS6bJ8ycP/98EBchh569bMoP92dxzJvw2PHf4DwbayZ2Q+vKjWSkXV7fo+piw4D47+A2/w+NWRgfgU6bQ3RZrANLPTUYWBzE5GeDEPHQTBvXvGPqwOrgYNhHfEH1u70hVitu2ueIuHf7VixQwpX933YNqN7FQO8SZNVcB97JpiimUAAQS1e2vO9IeZ/BWl4TSqoYpk3sOO7bCxbPQztNNqgY4/2XG0iopIUmWmVjsCLV2Fq3xXtlRpIPFe37VOGJ7j3f37cN7WU053GUJjoi58W/g+fpUzAttM/Yl53Jc+tybmD37/5DaEYiKUfj4dFpZtuZc3a2eLTRUPwWj39TfAKd6ESapWUZbmlFNgmeQS67WAma3lUiB5MO1Q1i6ohpOLKmkFyL9i1eWnPP1Hm4l52NpYxur+mJ6dlUQDNNu1hBAki9p/CdbVMKyHDkBf+Nz5bdh79uYBq++ye0K6v47chlM5aVZSpCPr1viyPAK9wF7DSK5RWyxc+dV8SPk3F/Tew8WQ4sqRMtvoJ95Ii7+o6mMq+y/jfEfWsnkGaFYKDH9hA+1UtNP5FntRX0wmqWBpu7foN8e+9B6d2sk4rPbzWw5j7Nxkhj9JrmGnFUBDuhR92W+Hjyd3l5hiqszptn5IUJeDeheKRXHh41h2bNm3iX2uxapYTLI3m4EqPDYi6/RsWDjCqueuvVmSzD49i89U0wHo0Rtu24eur18zYEXOGdqq/A7mIu2CVzs7KYdzT44s1nwg0taCjcJRU3SyqhtAGAxbtgb+/fx1ed3BrrTNKc1qXzMZqz8/GUmAWZXoCkjPUMaiSPZycxfqP/kanHcfw25yeDbgeXj15NmtVQcLWaFXvsxwZiorAL4TOnbpPX/jUfUmyEXLpEgxWf4pFI83LHCNP8fB+AGK4+8PAkb3RqcxuFAi7YKizPTqbtkNrvo40vCYSVBUh89bvWHN/JFaPM+FvVi3RztiUOxITERIjrjZvCpPcxs6V+6C34SOMNqqQsFAp6rZ9ysJi78DHN517AlqAL79aieXLl/Ovz/H9z3tx0GMyUr77Ct/s8UWi0mfv5CDi9lUkcr9WNPp1dKuUcVzFCY1g0UPEFaIQFl9Fy+Oz7O1G6GXS9iWenAJotDWHra1tHV69YNG27I22GbS72MCh+O6QA0luTQGTGIlp6pcDW3Yt2bH8OF5z240vnDq+xMBZmYTo2NWM+zcRd8MTngUy5eUjKeYB9xPc+d3LBIZN53H+xeQ/wKWjXbBgQtfyD/EsGcFXArh/5fUmFCEvW4ruHds06kk76q5pHNo5gdj3RSimfeqCTs+ekDTQxqgTZG1BcdyFQO4sNpaJ6Au7sXTsIvg7rcN306zqp0vmRbdPqaTIig7BjdInoApHhkD4GvpPXY6vP2LYt3g+Pjsexz0LKlMmEh8kcf+K0KOrkUJJ+5gkErcj5GSpboyadYTt6D5c4SkyucdmudtcmhNLbyAGWSu0sJxKERh2xes9ZX2gSXiUWkPAJDRDFyO+21VNFK95uNIDrT/9FrNt9MsHVCwahxb9isB8lTiaK2gJE9tBsOdKeZk5VaQuKM3HZY3xg7qqdndnA2BJ4bg7eDQGtKkQHmU9wPVTEWD85JzyCpGZoYN+Foq18pP60QSCKgnu/f4Tjmln4+y3H5ZJZumKD7dfQnPZBUBe2gIWi3/mvg6zoe9h60U//L5oMIyaNys3ZkTxVxvYb7pZRRLPF9m+IqSdWo42cv9b2ui74iIiV/RFC7mfj8KmW0/431OWBBG3/bknSXlPQKW0YdLdkvs3FHu9/LlbY6nHOLWkV4X/Dv9q3hcrIi9ihZ2O/M/tf8AtWbcadCDqYsj9q4FWzTXkjLepqACJp3/Cd9eSVSOoQmtYOY2Bs/ARgqLE3NZXxjLiERJSgC6zRuB1A/VowyinhQVGzhnFBcwJCIhJkdOlLYUk/gHucj9hPmM8BhvXS0f7y1EYj/PbvdDsf19gdnfdysd3bhIi8/Sgp1oDf3gCtLAaghnOxsgIikaivH429gRxIQ8B89GY8Hr7ptJF8sIEnd7Cb18P5q6KZTE8jbiNU7LmvsE95UzOaQ2bhRsxx4KmPLxUTK1JWW7wLjZtwRH2sEDK15WR6sOWtBFwV4AP2JGEAr6yrDyWHHCUubk6suGrjrCwrEK+Xlnqun3yZDF/NwfW2c2f5fM1CikKYe7OIgbhQnYiuarvKWbnVtpy26PH7LfeYU/52moV+DO3zg7M7WYmX1GVIvbk8lfMSgAmWnmOPeFrqyJNu8jWOK9h51KV/Tep4Mk5tlJUHLdxrylsd2gO/8ELkD5iPksHMFh+Lme7s1mY+3QmFL7Nfrlb075SXdK0K2ydozETjvuVBedWOOalj9m5VfYM5h+w/aGNfB+Uni+wZSvPifnKKkgT2aWv5rAF+6+xhwkJLKHS6yELPfElG7XWjzsKVFUBe+yzijt/7dmqc4+5K1tZUpYf5s7GC03YuB2BLJevrV/c9eTcJ0xUfN5yL2d3FlbEf6Sy8ljU7+8UX38H/hLE6vnKR16Qej8w5N3FvnURmLx6dJlutTJe7YCu3WXdEVWlLWgJA5sJWP7bn/i67SGMX+GFWGWOJarz9ikPe3wfV/y4RyD7XrDQl9dOVQRJ8DHs+u0WYPk+1ky1VvKAfVlG9+n4cnYfJP52EF6RVS/OU9yNsnwftNcthmPF5vHGTGAE5292wr3/eazder7MuDTZUjuHsd7tCZYd24R51pVX+VcXAr0BWLR9Pd5N3ISF608htjQJJMtE1L+/YK2XKdx2f4HpXRv3PmCSdCRlybows5EsflJ1slJZItu9azDvqz3YMas/XjMyglGl12uwHLsLRSI9FU6roIF2zp/g8G5reK3dhfOJz69XTHIXB9a7I3PZLuyc14NSR7ywDITfCub+NYO9haEajZt6CnGgF7avXoZV69ywad0qLFiyHr9fiIREibfbhqK+QVVhPM6tX4Ojg2dibKcqTuNXXkU7M1n/cw1pCzQMMWDxl1iR+D2+UtZYImVuX51JkRXij1MSIWyG98RrFY8K2diy87/gf5OW4V+bFfA88gmci2coKllzc7y1dS/cxwfgw3lr8LtvTPmTqjAZgf9swtx5Hmi9bDM+7ttGgW7CxkWWkX7Ob0exuXcoti5cxi/RsgSfHxNg5n9/4iunjqiPqRCNhyzJ53Rs//cvLGp7CV9MfhNvybq7XVdhV3QvuJ3fhY8Hdyg/3qhRYMi5tQtz+e5514U7EWY+FjNn9oP0v2+e1c/6xLtMHjvu/3P9F0yd+xsi+JqqvezJCUogeBXd52zD5c09cH/rcixZ833xDfLDz/+Fxszfcfyr4RDV+6w/NZYdjv/7JxAQ2qGflZqMuSxePWMxxm9JxeBVG7DhsxVY/tkG/PL9W9A5Pg/jvjpTD5Oi6hnfYqU+pHHMZ80kZivkm307D2f/O/KAlW/5zWcJPt8x1ykOrLPsZ7iX0NaFvev6HfNJqKrTrIA9PrGY6b3tyWLl9NQprN62r1Rtuv9yWZjnKjZz5iTm0FnI/XeErLPDJO79zOevd124bRUx23EfsbX7L7Co2naBKtz9V0bBYxZwdBtbNdORdRbaMpd3Z7J3XeyZ3ZSVbNvROyxZXldpfVFm9x8hpIGoX/df4b0dbCD/XULVou+vkKX5bWSOehPY1oDKAz6kCcfZAnNb5vr7PaZKV101H1PVFL3gmKr68iJBVWNCQRUhKkjdgqrS8VRCZuN2s4HGpdWz/HvMfYIpg/02FvBUzoOyNJ6dmG9dPAb1bIqiY4pfPpqEoZIyEbjtTRgtOYU0vuY5ATRatIJOC9kMOn5pnWcz7F4CgQZa6LRCC2r2J4SQF5SF6GBZYuauGNHHRA0yppdkjN/jFQPRwO4wbSHn/iDQh4WdFRB6DH/7JRVHx6qAgioVxNJuwmNHNMYPs0bllU9aw2bRf7i9yAYassHffUdiXvo+/Oyj7LxSCnrFBotu/4dFvZS8pA0hhDQVORG4+l8YV7CEtam2yo0lrawASaEBCIJuNUtyaUC3nRF3j4uBb2BsgyTAVgYKqlROJoIO/oxdxnMxf6hRzSeXTl+8u6InDn//O3zTKybjIoQQ0vCeIvHa7/jirUHoN+YdzBjzBvpN/Q7HwsokM84JxJ4PZ2PWrMlw7OmMz4Nlk5W88PWcd4onRczZdo27G6iqTDy4HQgJq25JrmbQ1NLiAi4Jgq+EIL5B1mqrOwqqVEoRMv33YOXnGVj4xVT0VGgpFy1YTP0Y63T/wJc7rjZAZnZCCCFVKkzA1e0L4DDzCjqu/Bt+3n/gwIl/8dsbAZg59hP8FcWnk9GywZxf9mL//r9x4UEWv3ByFh5c+Jur2489i/pXSA6qQthT5GTWIk2QJBu5KjILkIIqlSFbiPUMvvvwG/g5jsaAVrG4fesWbinyCilA94kDEf/ZEnz6xz2VzP1BCCEqjz1BsPsquHxZgKVH3PB+3/YlrTQCXfQYMRL2Dw7iq33+DdsCxfKQkZSIxMS6vlIhUTTw4YLD5KhU/o0CopOQKn/9o8anZLw6adwKWVbYEbbK0Vh2VNXx1Zu5ugeyrAbMSqDSaPYfISqoMc7+K2Rpl79ldhAxx623K6cJSDjCZgkEDMZfssuShrpAS9nT4J1shLZs5Y7S69yLvuzYEp+ECtn0q8CvSCDg9oWze0iFlEKlyvwNRZ+wc09UY/omtVQ1doWPcevAKoy1/Qwhw/YioUDKNwO/yCsPCX7zIP1+DIYu2IHz0ZnFZwMhhJAa5N3Hgdl9IBD0wewD91HDkuCVFYTh6A/uuKk3AR9NtkYrvrqUNCujZD3VuCSIMxtq/KsALbp/AJ/MutxXSl83sHmESA0G0dcNBVWNVWECrh1Yi1n2veGwR4oZZ87hyKdOdcxI3BKiAQvg/n//YLHuKbzfcxje/uJ3XCuzpASpgAtEJc/WIMlGThGFoYSoApaf/Xz5oNxs1DVMKbz3H77ed4cr3cG+r//DvSrXJpJHlpHfC5u9YiAcPwwDRBXXTShdTJy7vugJ0bqlmocmAm20M9Pn3yjA1BD6mqqxTyioasokWcjJf4qcvFpdHZoY7gmML8kufDR/khAVUfYBiNV96phG99H40rU3V+oN1y9Ho3ut1lJ6gqBzpxEMYzgN7QnDSvFBDqKDg5AoK9p1g6mu+qzsJ5egJbR0apFtS9garVQk1yEFVY2VhhH6z/gc+/3u4OKcZjgw3AmTvjtXx3WQniLx6g7MfWMitmaMwK6o6zix4T0MNW3Nf04qEbSC9rOLpza0X1HzJ0hC1ISglfD5VH0t7bovQKzZDTP23gZjt7F3RrfaLQwtTcL9y7I8U30w0lZOKhxpPG79e5sL/vRg79IHJmp/ZxaiY1cz7o+UiLthCZC/sm0+kmIeFAeaol4mMFSRfUJBVWOn0R62MzbgxK11sDo7G0bNm0EgELzgSxNG9rvRbLU3zu9YwAVTOk2+/5sQQuobe3wfV/y48MC4F7q/VnE0FRdTPfDDodOJXEw1CYsmWKEFX1//GPLv/YqROnW5r5S++mHpKe478L+5ei1hYjsI9twdKC8zB/In9hUiVyJLL2GN8QO7co+0qkHAZCPMiAqQpVQ4hc/HT8fPok9x+AtHGCgcERUi4+ZuLFhwC2/s3ovtc2wgpGhKMZnnscrSCRuL2+WnYHfofsztWvmiSAhpTGRLdH0OS6f1JV1qzu4IOzkHFi+lGaHMtsw8goT9EyHiPynxBLc2TUXfFaEY98sxHFpgU7tWsLqSpVR4nI7cOkcCLaBt0AZCRbvp8oOwc9xYLMhajoALH8Gm4lI17BG8PxyJsedG46TvWoxsV3EcWiMlC6qIqihkWQE/s/HajmzN5WTFpq7KZN9iW4d3ZnZrLrJUFV+pvcFRSgVCVFBjSqnwhPm7OZdsx/Cd7F5+2St3yTV9nFDIzGd7sgfyFhZWWwXssc8qZgl7turc4wr3MynLD3Nn44UmbNyOwMrpJxox6v5TKa9AaPMuvl6ri+3feiJIoUWScxDu+QM+y3DFD0sGog39xRsllnkdm0YswKHYfL5G1TAUigNwbPtnWLJqLTZtWotVC5Zh3e8XES2h4f2Vle6vTzF//iqsc1uDJQs+xfZjARCrSOZo+Z5CHOiF7auXYdU6N2xatwoLlqzH7xcim27SYWkCAs8GcwVrjGpxBrtPxfGzEosguf83vliyBYnv7sTRbZPRWd7CwmpLA+2cP8Hf7t3htXYXzpeZhc4kd3FgvTsyl+3Cznk9KqWfaNT44IqoEGnqWbbK0obNPxFfc2vVk0vsC0trNvvIQ8VbtshzDdFSJU1lN93GMyH3+93DcvlKVcI9bQfvY64DPmDuASnc8ydPKmEPj37MrB2/ZWcT8vhK8mx/mduxDw7ee5aIV5oVyNxdbZm56z4WnFVYUqlKpBks2H0+G+DqzgLS8vlKrjr3ATu6xIE5rjnNEgoa6irUeFqqpAlH2GxZck1ZAsuUh+zcumnMwWU6e9fFjpk7LmBuJ0KaeDLmPJYccIxtW/URW/zFeua2diWbv/g7tv/8A5XcLxRUqSQJC94xiYkW+7BUvkY+/sJi/R27mk0h1Qup96CqkKX5bWSOwpLfr4pBlTTtCls31IoN33qLZfN1z0hj2YkF3M3D9SALy6VjkNshLD/Sk80212PmC46zhHK7pLTLQ8gsl55kSSrVVV9yHA9tM4FtDXjC1z0nTTjOFpjbMtff77GGOcIbS1BVsh1GAjCh65EKf2+ijqgzSCW1Rvf5fyNhywi04Wvkawadod8h4e4n6K/Q4sukobH0a9jjlQLrvuWHrqqOHEQc3YHvL5hhzBALaPG1zwhE6DfaHin7fsEePzFUZKH5+lPwAP+s24i9ETaYNXMQROVOSwGad7HHOHtthP72KzyDnvD1KkCWLXzDL7hgORRDrCrP0xIY9sFop6fY950H/NKaUnewBBG3/ZHIhXf2g7qhPV2G1R4FVYS8LCwF1/ZchvG8t9Cr4eZQK1d+OHzcT0Ji2BPWppVCKo4G2lr0hB38sOvwDYibdFTFkH/fB9v33gH0bGBjJuTry2jWFia9jLh78Vns9r7HhayqQPa9zsHdKwaGA7vBVN64IIE+LOysgNBjOOyX1HSCa9l4qjMl46mG2xjRDbcJoL8xIS9FEdKvHcapzlMx0Ux1k6+ypDBcC0oHq2YZCYFuO5jpAem+dxFV93nbKqwASaEBCJL1SGlqQUuzusuvBMEn/RGRrwr7q/R76cHUqE0V6QA0oNvOiPuJGPgGxiKXr1V7GQ8RdDMRTNQXfczlBNFE7VBQRchLUNztd6oD5riYPM/6rHKkyHoQiIuydMjVLCMh4AIIHdmdNvgO7sfXehlaNSJFXnZWFdmj5QiJQlyGKnSVZeLB7UDue2lCKNSs4nhuxsWRWtxPcMHi5RDEN4keQIbse1fxTzp3eoywhZU23W6bAvor10iKzGs/Y+6syXDsog2BQBtdHCdj1qxZz18zxqCvtgWGLvgB/wQmP1/Es8GUbOOcxraNhWLcP/071i16k/tvG6HvmHcw662h6Dv0Q2zyDoWEFUFybz9mz/kLcU2pAYMl4LTbGZjOcUan5qo8yIILEnJyarFafw4kuU15ncnS1prq6GPg9FmwlxXTE5CcoQL7iz1FTmYtFmWXZCNXpdNGKEqK/IICaAoH4723+slZ74+oIwqqatQMOv3/B/f9O/HFpK7c+wGYv2kP9u/f//x1wBs3Ez3wZsJPmDzwfWzxT5M18Degkm3co8g2Jv6MSfW+jU+ReG0Plgzvh3Hb7kP05iZczEyAv/cf2P/Xefif/hxvRG/Bu4uXY8Gbn+BBv24wajIXnEIkn96H031nYVynBs2bXA8KkZGcAO5BXEFJSEhtyi1Vr0DPoicGV7ucAUNeaiKii8tRCItXuF3r5WFZSI5K5d8oIDoRqXlNYVQV9/ceug7hWZfw4yhjWhKsiaCgSlFPY3D7VBhQRd+4QNgTE6Y7Atle+O7gzVrcaJRIkW2cxm2jRNFtzMH9nZMwaGcwFG6tZ09wb88iDBnwE55M9cTVY+sxx7Fz+WVxNIww4KNPMTP7FA5GmMCxu1HdFztVESz5HLZetsWqN01VuNuPvBgBmpsPw4wplkDiA8QkyUv0mon7V6+WLK1CCFE5FFQpiCWEwDdQAuGIvlX0jUtRmF9ykdRs2fyl3DCVv41S5ErSkCh5qlirFstA4E/vYcC807Da9hu2v/86DKpaB0rQAQ5vjYaenj3e6P4qX6nmZN1+W+9g8GIntKPH1qZJYIyxn32J2ea3cdw3CgV8dQmGwtgrOJ9iCge+hhCiWiioUkgR0sMDcRl66PW6hdwbIsu8DY8d/4G1fhtrZvaDDl9fWQrOrxqCqYeildz9puA27vwPENa0jS9C1q31PaYuOgw27nO4ze9Tw6LNr0CnrSHaDLaBhV5TaKeS7Z/fcXnwTDi3U5c2KkXGCJVlCCN9VenyTMWVNYMgfzV+xV/a809AzP/GEgI0N5uMbcfWwdRrD07E8t2hLA8p9//DDi8hZs17AyUZNszQtaMKzBgTaKOdmT7/RgGmIuhXO/ORENVFR7ZCnuCe31Wkw1JOVxX3dJnoi58W/g+fpUzA1lM/YF73ai6Emfdx8bgu7Lu2VXIfO7eN/+dX4zZ+Lh6Pbad/rH4bX0TOHfz+9S6EYiCWLhsPCwUGYDdrZ4tPFw3Ba8rdEcrF7UjWml95qhWD9IUGlstaILyx4VJvLHY2UqOxFaUzuhSlBWErVQko22DAoj3w9/evw+sObq11hgH/G597BcJub+PHQx+jS+RZHNqzHZu2/4nLqeaYscABBoU5JTMERV1gYqgCCcwELaGl05J/o4BqZooqjwCvCKQoTVbSqrkUKj0nhKgMgSytOl8mVSkKxk7HIVhwpStmfjEBPXRKY9E8iO+ex5Hf49HH7WdsmD8UpsLqWl1yEL7nPTj4TsLN3RPRQZkhrWwbHQZjga9ltdv4PbeNZtVuY1kS3No0Fm9jE0KX21bTXShF5vnPYem0HonW38Hv2moMaK0mV7DM81hl6YSNxYNcpmB36H7M7Vrb5T3zuL/7XLzzD9BNX95ezEbs/53CxUgRHKa8jk6tuL+dxhtYtP092DbyTPjS8D0Y1XUuTos+wbnQtRj67Lh7ruzPnA35Fk6vKnr8NUWFSPZeDsuxW4H5xxH6y1gV6CqWHd8z0XXuYYhWnkXoBic5reBlf+YcQr4filfr9XuVuSbJ3jq7I+zkHFgo85pLiDzFi9WQakmjfmcTBAKG8b+zqAprN0mzYthVj0+Yo549c916kT2qcsHQQpYV8DMbZ/kB+z0si69THtk2jpc1idS0jVsu1GJR0yzm7+bAOrv5P18kV66Sn5MdTtwFk2Wo0/pWDbGg8rP/hgqu/ff0Dttqr8cEeovZicfyjhIpexqwjdlz+09v/gkVW8/uZUhnV9fKziU7tuTkIxVZBL3s3/g4eyx3o7NYwFYX7ntZFy8EX/+HQeNZUJk0LRS310iKrOgQ3IAuBo7sjU4Vnq4EwtfQf+pyfP0Rw77F8/G5V2zxWVwWk0TigvsKjJ3qj2F71mCahbLHSZRuo16N27h/yQJ8djyu0jbWTSYSHyRx/4rQo6tRDWOpSsj2ye2IJ0reDtLgWpjDacZQCDMeICpRXrqEImTERSIEdpg1wRYGTf6Kk4PoE5/A0WICPvGOrDBQnTsv0m7h2EF/CMfNw9whIhXpKhaghdUQzHA2RkZQNBIL5JzV7AniQh4C5qMx4fX2NO6EqC06tmtUuiCmvLFKpbRh0t2S+zcUe4/7QxZelGIJ/2Dea+YYOm8zLobuxSL7DmguZ0CrYq9R2HRL3iKrsm28hUS546lK8dso4LbRq+w2FiHt1HK0kfvf00bfFRcRuaJvFds8Cm7+Gdzv0IGoiyH3rwZaNddQ4EZQgMTTP2H9tWQKqlRea3SbOA/zLK9ih8d1pFX8gxaEw3u3Fwq4IGHeEEO64LDHuOH5Ny5GeOGnP2XXFb6+mAT3//oNPxfNwO7N78K6lWqEVMVadMPEZdNhefUQPHzFFc5rhoKIU9h9UIJxy97BEAN1mahBSGUUVNWkdEFMYV/0s6xq6v8TLqgJ4v7Vg30fM5SdByMwmgj3x0kIOOIG1wHjsOpICLKkTNbt+gKvk1huK2cbZNt4VsFtZNw22pbdxlfQZsQm7mYo77+XBX83B3R280eB3M9PYkVfXe53aMH8dQcupIvDjeBYZNUQKbF0P/z6qw4WjDZt/AegRivo6NfvDCwmyYC4uJEnC2lZtchM3UgI2g3HN4d/RH+vzdh6Ph7PcoDLcpYd2AK3zLk4tnMWulexNmCTImgPu3EjuddXOPDVSBjzu4TlPcL1A19h4V+dsPvYerxlJm9x6sZMA+2cP8Hh3dbwWrsL5xOfH8dMchcH1rsjc9ku7JzXoxYTG5RHz6wddOnwIw2ABqrXgCX+gzkWk7DPfjfCTs6VM9CxCJLgvZg3+D0car8KJy9+i5Htm/OflcVQKP4/bJn3GSJn7cO2iaaQ91MvQraNc7tOxt4Bsm2UNxiz/Db6XFqLEQpN61d0oDqnIAKHPngbU4/1wv4b2zGzi/xFgpkkCHsXbUbahz/g475tGn/3hjQUe0YNxdzTsuGuDvjW7x98PkDxJAJVe4JbO7/AtqvyWh45RlOw9rsxz266jZ/s+A6Et+dfOBWpAbOOLZASmQYd7kFi+sRBNUzgaGJYJqIvHsOfXpcQns6FoNKnyNUwxaDxkzF5ZG+IVDrdwFOIA33g6XEWkS06oGPLdESKdTFg/FuY6FAhCXC9kg34XwHLsVuKkxzLBseHbhiq5DQyhMghC6pIVUoHOwqZzcYbLI+vfUb6hEWd28ZmmguZ0GEF87yXUcPAUinLD3Nn40UL2JH4p3xdXZVso5GA20a3mzVuo0dwei0Gvyo6UL2ENCuQubv2ZtoOH7P9V6JZVtn/UMFjFnDEjc1+e7UC+6kRKQph7s4i2YMH97JlK88m8x8QQhqvXBbm/hZ/3pZMoHnCf0JIfaKWKrnyEH7oK6z77wE/1R3o7DACb3Qq0/oiTcW9Y7eBoZPw5qRJij+Ns0fw/nAKDjr8AY+3TevQUlOP2/hMLVqqShUmI9D7EDyOHsXf/2TCckJ36KU/QJjWQMyYPg1Tx9hUnWW9MSrXUmWLlWdPYoNT5cxDhJDGRJbCYRa6zv2r+B21VJGGQkEVqcYLBFXqpjgIHomxO4O5NxRUEaIaygZVIji7n8fJOZY0iJjUOzrGSDUE0GjRCjotFJnRp6bKZYvOQJw4q7g/gRDSmBUiV5LDlwlpOBRUkWq0hs2i/3B7kU0VaRqaAg0uqNLmyzlIzVZwcWlCyEuUh9SE0sQxWtBv3bLpPhiSBkVBFSHV0kQbEXX3EaK6dGFsoE1BFWkQFFQRUq1m0GytjZJMVYm4G56A4sVuCSGNF8uCOE6WmFhGGzpalHCUNAwKqgiplgZ0Ddpzl2VCiMpgT5GdWjqmygCiNi8j5ShpiiioIqRaAmjqi2DKv8uKEyODBlUR0rjlpSMxIaukrGeEdrrUUkUaBgVVhFRLgOZ67fAav1KNJDUbeRRUEdK4FeYiK5XvqO/QHm0poz9pIBRUEVIDga4BjEv7/+5GIl4i5d8QQhojaVIMAmT5emWM2qMNrTtJGggFVYTURGiErj1EJeWsxxBnPFsymBDS6DDkpT1GAp/8RNTLBIZ0pyMNhA41Qmoi0EY7M/2SsuQxHqfnl5QJIY0QQ2FOFlKLy3ow7dAGNEydNBQKqgipieBVGFu9xr9JwqPUPL5MCGl88pEU8wAlvX8d0NPMAM2Ly4TUPwqqCKmRJkRmXbhnXpkEBMSkgEZVEdJYSRAfFiVrsOK8BivjVynxJ2kwtKAyITViyA/8CY69FsEPQlivPY3rnw2AFv9prRUmI9D7EDwuPoJ2R31AHAuxjh3GT58AB1MdFb0BMBSKA+HteRgX41uhowH3tSLToDNgHKZPHATTpjD7imUi2tcHJ/69gqgWHdCxZToehGdC19YRo0cOg71Fm6a5KHkNmOQhrp8+jmNnotDCrD333JKCln0mY8601yHSeIGzgUXj0DvDMc0jEkxvMU6EbsKYdrTnSQORBVWEkBo8OcdWioqffZlwmid7KOXra0maFcjcXUcyV/dbLK2g9JcUsdyHR9kSaxe25mwcy+drVUchywrex1wHfMDcA1JYAV/LpBL28OjHzNrxW3Y2IY+vVFO5EezEpm3skH88yy17bBTEsbNrRjEherOZ264x8QseN+qJO27uebIl42Yzt5MhLP3Z+SA7ng6y1esvsOQX2V/ZfmyttbD4XIWzOwsr4usJaQDU/UeIIoTGsH7dpLgVSXI3Cgm5L9DAy1JwbdunWP5oNJZM7Q29Z0/hzaDZyQUr11vAY8FaeITxSQtVBEu/im2LNuDR1Pcx1Ub/eWuMoDU6jV+M9ZbHseDTvxGutgm+chD+51f42Ps2ggNjkV5U5ntqdMTQubMwVngHvy9aiHWnE6nruFgRJPcOYuGEbRB8uBYfj7SEbvH5wFCYeBHbPl2L79cdwLnYpyU/XgssJRb3YmQ5qoSwHmyFjnSXIw2IDjdCFNHMAOZ9TUrKwXdwP762F3uGgojj2LDeD1ZjBsFKq2K3RnMY9hsKp5Q/sH7vdaSpTPyRg4ijO/D9BTOMGWJRuUtUIEK/0fZI2fcL9viJ1TSgyEF8WCgiLu7Dt3M342RU+WPjeZ6zmzh0PgRZ6hpb1gITX8GmhV/h/4atxgpno3Jd3vkPb8DjeCj/rrakyHoQiIvFeT/bo0cXQ7QqriekYVBQRYhChDCzsYFe8dU/BDfDU4v7AhWXjfs+R+ElMcNA645owdeWJWjbBXZ22gjb5Q0/sYrkwsoPh4/7SUgMe8LaVN4oMw20tegJO/hh1+EbEKtlVKWLHhPmYFa/3nBZPQOOpi35+hIsLweZxRNG+en9FePpJicTQR7b8MMFE8yaOQiicvtDAK2+rth76Df86rkCYzqV35c1y0F0cBA/888S/S0NaJA6aVAUVBGiEC446GaLIULZJfoRgqLEKCj5QDFMjNDrsqdvQ3TQryJrTmk+rPRABEbxS2w0ciwpDNeC0sFMDaFfRbQg0G0HMz3ua/neRdSLdJs2ehowGPAh9l6/De/1Y2HavOx+YChIjAa3izg2GN3PBLUNE9QNS7sJj51nIdGzgY0Zv/5TWRoi9H1rHt53sUTx6VYb7AniQh6WlK3t0c+8dUmZkAZCQRUhCmrWsQccesoSK6Qj6FoYkmoTH2RF487FSK6gBWGrKmYiCVpCS0d2yw3D5ftJKtBVVqarRdgaraqYqSXQ1IKOLI4s7jZtajm+chFz6xqCIIT57PmYZvsqX99UFSE94CKOh2YBdj1h0VbJs/JyYxHoG1Nc1BvYA2atahuVEVI3FFQRoqgWJug3yqa4KPG5iqBadNE97wJSRB4kkjw0/g5AKfJycritVVQOJLlNa4kflnwZO92OA46rsGPdBJiVa8VqinIRxwXXsjbb4uVjpKm4d2ILli1dA7dNa7FqyWfYfuwWEvNe5JGCIT/CH/8Fy6J8a7w9ujcMKKYiDYyCKkIUpg2LAW/AUlasZRcdy0hGVHEXkCLSEf0orRbBystSiIzkBG5rFZWEhCaRjZ6hUJKCuPtnsH3FN/Ad8gNO/7ECTqKm3vHHKe2ek7Xysse4vuNXXO80Axs3f4MVyz/Hhs0rMTTtN0xy3YbLibWdDFKApNAABMmKwn4Y0pPGU5GGR0EVIQp7BXq9HDDeUjYOJBD/3YgBrQJIyimIwqntP2DLzn04dNQHfqldMe6NrtBvRZfaYiwLyVElq/LlXT+AI60nYEa5NByvovvUuZgYuxHzPv0bYbUZg8fECLp4A8W90cMcYNeRgljS8OhMJ6QWBHo94Dy+J1dKR9D524gpUMeB1+SFNTfDiIXLsXw59/rsB3h4fopeERtg2282Nl1+pAJdug0n/bYIjsO6VF6XT8scA126ImLfVuy8lKjwLFuWHgrfi7LxVCZwGmsL4yaQxJ80PhRUEVIbAn30ch5a3AUoOXcB1+MUa6sqnQGnGFVZWV8Duu2M+DURFWEIo6pmPqopgdAcLgsWYAa8sGLIFKzwjq3drNGXKhVX1gyCQCCo00t7/gmI+d8om4zRWp9PvWHSBa+1lbfUsSbaiAy4f29iv9ctiBWKqhhyw2/g31AJILTHuIEmctOWEFLfKKgipFbKdAFKruLkzQSFZuk9mwGnEE0IhZrPu0QarWbQ1NKqRfBXzcxHNSYw7IPRTrLEsVexZcVvuJyqKu1VbTBg0R74+/vX4XUHt9Y6QxYiFRNow8BYt6Rs1B5takjalR6VjAyFgqonCDp3GsFcSTh2HIaZv/DKnITUCQVVhNSSoI0tJrzblytF4oTXDcQpElUJjWDRQ8QVohAWX8UAd2kKYgISuIIRepm0VYGTsxmEHbugh6x4NxLxEvk7QpoUgwBZNkZRF5gYqmP7QSEkcaEIihBD7ko8gldhbPVaSTnUF1fDVWUZIgE02prD1ta2Dq9esGhbdmyTDrr0sSnJPyXJRm5hDRFTwmOkKbK8UU4Iznn6cwVLTJk8AMY0Qp28JBRUEVJrr6LnmIkYLmusOnEcZyOy+fpqNOsI29F9uMJTZOY8lT9OpLAklQL0BmKQNf8038g1M+kDF3s9CPJykCN3GjxDYW528eBhvfH2sNZWt4EuDDmBOzCxmxVsLEbgw78i5HTvaaCVsLTlJAtZOU15ZFVzGFr2Qk/ZvLzoRKTWEDAJe5jBqMZcU0VIu/YfDspSKVhOxrsOHWjWH3lpKKgipNYE0OrmhKmyLh2JH074xigwTqY1rJzGwFlYdTZ2lhGPkJACdJk1Aq8bqEg3WQtzOM0YCmHGA0QlykuXUISMuEiEwA6zJtjCQO2uOE8Rf+sKzhQ3Pkbg5oMUOX/bPKQllo4qanrjysoToAV37swZz507iQ8QkyRvTKIE8WFR3L+2mDHNvuZWJ5aKgNMXECpbQPnd0ejfhkaok5eHgipCXkRzC4xd8BbMEQMv95MIyqmpi0J2MxmLZe9Zwm/HEfimFfH1pXIQ4e2BgwUuWDp3oAolLWyNbhPnYZ7lVezwkLMQdEE4vHd7oWAc9zNDDNXwgtMSJq87wdncAW8v2Yif5/SpvKh0TgR8/w3kCkKYz5+DCd3lLM3SlDTvijdXLoCj8Ca8zodXysfG0gJx+ngUzF2XYvEw4xpbnViiL/74zY/bveOwdIpN5f1PSENihJAXk32LbR1uzASwZ6vOPWZSvro60qxA5u5qzxzXnGYJBaX/j0KWFbyPuVq6sDVn41g+X6s6ym9/AV/LpBks2P09Zun4LTubkMdXqqM8lnBuG1vtdoTdfPjk+ffnSHOjmc+aUUwIEbObf5AFZxXynzRxsmPj94XMTm8UW+MTzXL5U0GaFc5OfOHCLN/ezC4pdMxkszD36UxbIGTmC46zBEVOQkLqkUD2P3x8RQiplQIkeq+Cw7jNSJjqiXt/vI1OirQwFSYj0PsQPE5FoYWZEVqmxEKsY4fx0yfAwVRHRceDMBSKA+Ht+RdORWrArGMLpESmQWfAOEyfOAimQnXvkpEiLzEA506ex+Ub95CUKxtflovU1OboYjsIg0eNgvPrr9V+gWC19hTiQB94ehzDqeBs6Ou3Alp1QN+RkzB5ZG+INBVo18y5iU3DRmDF3SHY6rsfi2x0+A8IeTkoqCKkLnJuY9ubb2KxXx+6qBPSoEoeaoaM/Q1Y8Acu/TwOIgpayUtGY6oIqQutnpi6bBosJWfx06+XkEiPKIQ0jJy7OLztb0QIXbD0Q0cKqEijQEEVIXWigXZD5+Kr2eaIOLAHh4My+XpCSP0pQOL5g/jpDOD4yUd4u7s2X0/Iy0VBFSF11bwLxn88H+NwFj9tPYkoWg+QkHrFMm/jD1krleV0rJrXH22olYo0EhRUEVJnAmh2m4wvvnRC4t5t2HVFrNDSNYSQF5GDiL+34esz7TB/3Qdwatf0lj4ijRcFVYQog6ANbN//BF8Oj8PP3/+JW08q5qEihNQdQ2GsDzZ/fxKi+Z/ik3EmKrBGJmlKaPYfIUpTBEngr3hn4PfIXXsUxxbbUiJCQpSJJeDUx1Mw8uQbOHHuW4wxKruuICEvHwVVhChVDqIOLceo99Kw9OpuzG/q2bMJUZpCJJ/6HA5TgvHuqX34ZEBbFc3pRtQZBVWEKFthLLxXTMO0qHfg+8cHsFH7xJeE1D+W7IOPh3yEyA898cdHfSmRKmmUaEwVIcqm0Qku3+7A1jYe+PKvMLmLJxNCaoEl48KPGxHw1g7smG9LARVptKilihBCCCFECailihBCCCFECSioIoQQQghRAgqqCCGEEEKUgIIqQgghhBAloKCKEEIIIUQJKKgihBBCCFECCqoIIYQQQpSAgipCCCGEECWgoIoQQgghRAkoqCKEEEIIUQIKqgghhBBClICCKkLqAZMEYc/sQZiw5z4tqEzIy8KScX71UAz98gwSC2mZW1L/KKgiRNkKY/HvFwuwOG0G1k23QnO+mhDSwATt4LhsJXr9tQDzd9xGFsVVpJ4JGIcvE0LqLAdRh5Zj1HtpWHp1N+Z3F/L1hJCXoxDJpz7HkMnBmHFqLz6xN4CA/4QQZaOgihClKYIk8Fe8M9AN2HgMhxbYQJP/hBDyErEEnPp4MkadHIyTl9ZiRDsN/gNClIu6/whREpbpj50rvsf5AYvx+XRrCqgIaSwEIjgtWY750t+w8MvjiKXxVaSeUEsVIcrA0uD/wxw4rhDjf+eO4ruh7ap+YilMRqD3IXhcfATtjvqAOBZiHTuMnz4BDqY6Kto1wVAoDoS352FcjG+Fjgbc14pMg86AcZg+cRBMha/wP0eKsUxE+/rgxL9XENWiAzq2TMeD8Ezo2jpi9MhhsLdoA3VtS2GSh7h++jiOnYlCC7P2QEIKWvaZjDnTXodIoz6P/hyE73kftnND8e6Rw9g+0VRt9zF5iWRBFSGkLqQsN/hXNk4oZOazPVlkvpSvr0yaFcjcXUcyV/dbLK2g9OeKWO7Do2yJtQtbczaO5fO1qqOQZQXvY64DPmDuASmsgK9lUgl7ePRjZu34LTubkMdXEpYbwU5s2sYO+cez3LKHSkEcO7tmFBOiN5u57RpLrvowUlHccXLPky0ZN5u5nQxh6c+Of9nxc5CtXn+h/r9z9i22dbgxg+Uq5vP42ZFKiNJQUEVIXeWHM8/ZvRmEE9jWgCd8pRxSMfNb58L0hm9jAdkV7x75LOHEUmZu/gHbH5rJ16kGadoVtm6oFRu+9RbL5uuekcayEwvsmLnrQRZWLoJoqrJZmPu7zNzBlX3h7scSngUWJaQPPdk0IRhgx5acfMSF6+qCD7zN7dlSn0fcY0QpKStIOMvWjbPkzp85zPPhU76+vvDnGYyZ47orLI0OSaJkNKaKkDopRPJ5d3y1NwLmM+ZgSk8dvr4ihoKI49iw3g9WYwbBSqtiN0dzGPYbCqeUP7B+73WkqUynfA4iju7A9xfMMGaIBbT42mcEIvQbbY+Ufb9gj58YUr666cpBfHgoIi7uw7dzN+Nk1FO+voRA1wDG2rLSTRy6EIKs4lrVx8RXsGnhV/i/YauxwtmoXNd4/sMb8Dgeyr+rb80hGvouPhoOXFj/Ew7dl/D1hCgHBVWE1EVOEDx/9ECocBg++mAIRFUOCcnGfZ+j8JKYYaB1R7Tga8sStO0COztthO3yhp+4kK9t5PLD4eN+EhLDnrA2rRRScTTQ1qIn7OCHXYdvQNzkoypd9Bg/G652veGyegYcTVvy9SVYXg4y82QlPZgatVGTyQ6ZCPLYih8umGDWzEEVzhEBtPq6Yu+h3/Cr5wq4GMs7M5RMqwemLJoMc8m/+PHnC0igSJ8oEQVVhLywAiSeP4ifz8RC6DQWI7sVNzHIx8QIvS57GjdEB/0qbpUCbbQz0wfSAxEYpRpP0CwpDNeC0sFMDaGvKT+iFOi2g5ke97V87yIqt6nPi9GAwYAPsffGbXivHwvT5mX3GUNBYjS43cmxwah+JnKDb1XD0m7CY8dZSPRsYGMmJ2+bhgh935qH910sIazyoUSZmsPQ3gUTLYGIA3twOOgJX09I3VFQRciLyrmLw9v+RgSzx/8WjYF5uRtkBVnRuHMxkitoQdiqijlHgpbQ0pG1XITh8v0kFegqkyLrQSAuyuI/YWu0qmLmlkBTCzqyODL4Du7HFzfDELlyEXPrGoIghPns+Zhmq8vXq7IipAdchFcod5DY9YRF28Yx307QZgDmrBgHoeQsft51CYk0B54oCQVVhLyQIqRdO4odZ+LArF0woX/1WZqfd+soIg8SSR4afwegFHk5OdzWKioHklwV6dZ8CVjyZex0Ow44rsKOdRPQuUWDNNvUs1zEBQdA1kYr6mUCQ2kq7p3YgmVL18Bt01qsWvIZth+7hcS8hn6E0IL5yEmYoidBxIHf4XU/m68npG4oqCLkRbBYnNntwd0sjOH8oQv6VBp4Xh7LSEZUcbeOItIR/SitFsHKy1KIjOQEbmsVlYSEVGqpKo+hUJKCuPtnsH3FN/Ad8gNO/7ECTqLyY61UFnuCuNCHfPkxru/4Fdc7zcDGzd9gxfLPsWHzSgxN+w2TXLfhUkL5Qfv1TSAagLdn2UEgOYWtB66p0OQQ0phRUEVIrclm8l2Ax4lIQDgIbw3tohZjX0gDK4jCqe0/YMvOfTh01Ad+qV0x7o2u0G+lRpdlloXkqNTiYt71AzjSegJm2Og/T7opeBXdp87FxNiNeO+zwwjPa8DIRtAOdmNHwFIgQeg//8IvqYD/gJAXR0EVIbWWiaDjh+El4WKqseMwzLw1X09ILTQ3w4iFy7F8Off67Ad4eH6KXhEbYNtvNjZdfqQC3b+1k35bBMdhXdCcf/+MljkGunTFg33bsONSkixJVwN5BW36j8Y71tpAxHH8eTm+Af/bRF1RUEVIbeXch89+X67QGWPH94OxAmdR6Qw4xejBtIMqTKfXgG47I25rFWUIo6pmPjY6qbiyZhAEAkGdXtrzT0DM/8aaCITmcFmwADPghRVDpmDFiYeqH1gJWqK1Pp9qw6QLXmtbKaTiaKKNyID72ZvYf+wWxA0Z2WhZwentvlwhEic8LiCigMIqUjcUVBFSK7IB6v/hYLCsmWoARtmVT2RYlWcz4BSiCaFQUwXWJWsGTS2tWgR/1cx8bHTaYMCiPfD396/D6w5urXUGFy4oTGDYB6OdTLjSVWxZuRuX04pKPlBVAm0YGPOzGI3ao00VaTdKpUclI6NB45pX0dNpOKy5kuTcOfhG55ZUE/KCKKgipDZYKgJOny+ezSR0csTriiYrFBrBooeIK0QhLL6KHFTSFMQEJHAFI/QyaasCJ2czCDt2QQ9Z8W4k4iXyZ3BJk2IQkMgVRF1gYqgqo88E0GhrDltb2zq8esGibcUB54WQxIUiKEIMucOHBK/C2Oq1knKoL66Gq3pOdR106W2D4uxUkmzkFtYQMSU8RlpDjqvi/s6tLPrBxZLbQokfjvvGgEZWkbqgoIqQ2sgKxUWvIK6gh55D+8CkutxUZTXrCNvRfbjCU2TmPJU/dqOwJJUC9AZikLVq5ChqZtIHLvZ6EOTlIEfutHiGwtxsyMJIvfH2sNZ+paS6SWLICdyBSd27wcZiBD78K0LODVwDrYSlmemzuGNF1TsAm8PQ0gY9ZcXoRKTWEDAJe5jBqFXDppIQ6FlioIOsdTAG545fQzR1AZI6oKCKEIVxN8X7/4ejskSGsMHoWmW8bg0rpzFwFj5CUJRY7tMwy4hHSEgBuswagdcNVKSbrIU5nGYMhTDjAaIS5aVLKEJGXCRCYIdZE2xh0KSvOE8Rf+sKzkhkN+0I3HyQIuc4yENaYukorGqy76sMAVp0c8Lc8VzQkvgAMUn5fH1ZEsSHRXEngC1mTLeHcUOn5xIYoKdDv+LWNOoCJHVFQRUhCstGxA0/BMuKVS25USXZzWUslr1nCb8dR+BbaaxMDiK8PXCwwAVL5w6EQUPfWF5Ya3SbOA/zLK9ih4echaALwuG92wsF47ifGWLYxC84LWHyuhOczR3w9pKN+HlOn8oLUOdEwPffQK4ghPn82ZjQXQ1mljbvijdXfQhH4U14nQ+vlH+NpQXi9PEodHFdgiXDOlabRLd+yFrTepW0pkmu4+ydx7TwN3lhFFQRoqj8B7j0l19xUTjEFt1qu+SGwAjO3+yEe//zWLv1PBKfjS8pguTeYax3e4JlxzZhnmyKtwoRtBuObw7/iP5em7H1fPzzGWvsCe4d2AK3zLk4tnMWutcwSFn9cYF1d1fs3TERph3aQ6vgabnZfSwvBqc2fImvr2rCbv5O/LNxAjpVsfSPankFev3fx/ZfxiLx09VYfyoGpUtAMkkE/t2yGV42a/DbuimweCnHCPd3MbWBk2xcFSLhc/EeLfxNXpiAcfgyIaQaLPYQ3rWehj+zdGHPBUUXFvV6saSfhckI9D4Ej1NRaGFmhJYpsRDr2GH89AlwMNV5CU/qysBQKA6Et+dfOBWpAbOOLZASmQadAeMwfeIgmAqb8liqiqTISwzAuZPncfnGPSTlyu7guUhNbY4utoMweNQoOL/+WgMtLtyQnkIc6ANPj2M4FZwNff1WQKsO6DtyEiaP7A2R5kt8xmeP4P3hSIzdGQxYfoVL177A4FepzYHUHgVVhCikEMney2E1bivSmDXmn/DBL2M6qGgARAgpT4LAbVPRa/G/XNkFW+54YHEv1WoxJo0DheKEKESCqMBApBc/gljBzkKfAipC1IYWTK17Qpb0BAjF9VCx/Bm6hNSAgipCFMHS8fBeXEnZuje6dVSTBW8JIZxm0O5iA4fiuSePced+HFQ9Qxh5OSioIkQRWdG4fTGy+On1ZeTSIYTUL0HbTuhuUpxYAaHXHyCJBquTF0BBFSE1YsiPvgdfWVZwjraxAXQppiJEvWjqQWTEj6O6eRfhKeq2pDVpCBRUEVKj0gSWMiL06GpUsuwGIUR9NGsLk15GJeX0qpLZElI9CqoIqVEeEqMeIL24rCrr8hFCakeIjl3N+PJDhMQ9ocHqpNbo3kBITdgTxIU85N+ow9IhhJDKNKDbzgh6xeWql5MipDoUVBFSE5aF5KjUkrKwPdrrvVDKT0JIo/YKhG3bo0NxOR3Rj9IqLalDSE0oqCKkJpIEhN0tHaXeHga6KrLYMSGkFgTQbNMe/KgqJAbE0AxAUmsUVBFSA5YhRlxp0poendFRSKcNIeqomaEJepVkAAUSHiMtj0ZVkdqhuwMh1WIoSE/GQwn/lhCivjRaQUefn9v76DFSJEUlZUIUREEVIdViyEtNRDT/TtTLBIZ01hCinvhcVcVp6NITkJxBuapI7dDtgZBqFSJD/JiWrCCkyREjMY2GqpPaoaCKkGpJkZedhZLePxF6WFDiT0LUVtkEoNyjVGYOtVSR2hEwDl8mhFSSgWvr3sSAzy9yZRGcd5/DyblWdXsaKUxGoPcheFx8BO2O+twDcSzEOnYYP30CHEx1SroemgImQez10/A6dgGRLTqgA8RIaGmLt+dMQn+RKi5Y/RTiQB94elxCvLYIBkhBpFgXA8a/hYkOnSFsCn/Y0mPb5zYSs9MQ+6gluvYbhJFTJmJknw7QrM0+YGnw/2EhNhuvxcG3TRvovEjB+VUjMWzjLTB0xjTPM/ijwf7bRC3IgipCSFXE7NxKW9mDB/fqzKZ5RDIp/8mLkGYFMnfXkczV/RZLKyj9TUUs9+FRtsTaha05G8fy+Vp1Js26yzyXTGHT3P5joenPv7Fs/+xdvZVdSi7ga1SENIMFu89nA1zdWUBame+T+4AdXeLAHNecZgnP/t7qqfhvt/QT5n41nuUWf1UpK8iKZJe2zWbmMGaOq46wsKzC4p+tWSF7cnMzc9YWMWf3EO4MaSjp7OpaB8YFUdz53tD/baIOqPuPEIXpwtiAH8T6IlgKrm37FMsfjcaSqb2hp1H6m5pBs5MLVq63gMeCtfAIU+8RXEwShL0LXfGVYA62fDwKXXWbl3xQGI8L277B2u+3Yee5WNldTUUUIf3aLixakYSpSybDRo//PhyBZmeMX7kMlh6f4FOPEPVNJlkYjaMrf0HWrBWY3b+0RUoADaEZBn/0NX5c0A4XNizB/E1XIFbgD8vSr+KnlT/idIOfCppoIzKQbTonDxJJHqgDkNQGBVWEVEeagpiABP5NXTAURBzHhvV+sBozCFZaFUOz5jDsNxROKX9g/d7rSFOdiKJ2WBKubFqNxf83GG4rnNCu7G7Ij8NVj1OI5N+qjIIwHN3wCy5YDsUQK22+8jmBYR+MdnqKfd/9P3v3AdbU1cYB/B9FRQwoOMEFKAiKYItY5cMFitaFtVpH3aPVDlcdtVY7XLXaobbVWnG3atUqaquoOCm4qIAoSxEBAUGGEMLO+e6FiyIECCFAEt/f89xyc0LxcknufXPec95zAD7J2jhFn0F66xA2GYzBhK6GpT90iNrA9f0pcEQ0Ln73E47eyxCeKAP/4WPnaaTZWAkNtYWqqpPKo6CKkBqRgXtnjsFDYg4nmzaQt9CNqFlHODjoI3T7KfgkauPnY+7mG3gYq7+7CtMpY+Bs/KJHp4De65i+aze2/boFXw5rryHjWBhy7nnB3SMSrZw6w6y+nKMWNYWlgzUQchyHfeKhfUW6sxFz7z9cWT8Jb364H3dL1XYSob5FdwyxEQMSHxy7Ho2yQ0u+1+9PnGw7FhO7NYFIM14EhDxHQRUhCtOHvp6SS9SwRIRcD+F2ylmQWaSPFuZNuQ/IAQiI0MJqo9w5uHbgEM5JTOFk1w4NheYXGsC4+9t4/703YSmuK7Spu1zEh/gjEIYwMzGC/L9s0UK9kfAOiEKm0Ko9spAcl8h9jcPNbe44HiQnZyfUf+K/505oLCRl9MSylGvY6dkGs0dZyv3gUf3qQLeRPs3wJUqjoKpcMqRd+xnTp4xG/4763KcmfXTsPxpTpkx5sU0ahu76lnCe8x3+Ckiohfx74THOUMdjzA3HoenOmH0qVrXjY1gsPBc6oesaX0iFpmqTVziuolBzGBuVERBVJP0hbl/iE1t6EDcsIzATNYCeAT/rLRRX7mlfjwZLuYOzJwK5PWs4WDbVkJ6oiqTh/n8BkHDhlFisy4VP8nA3aj097jskCLoSjBitywDqw2bkTMx26ACH2TMw0qZ0CvTF+0iMpgYN8Xw4YXEFaT9fdJjuina1trwmFwA3b8n9RoXSoxORqq2peFItKKgqVx0Y9PwQO/dsw4rRfH6/F2Zv3Ik9e/a82Padws24A3gr9ie87fQefriZpNoAokKFx+jOH+PbnbjH5R/jaO4Yf7yVXAPHKMWDg+swZxf3yTxHlXeRPCSc3YwFP/6LoDtRSKruXyQrGY8fpggPlMeypEhTeHCGNg6QZciNvgfvEAlg3BGmrURIuXsSGxd+gpUbNmDN0oX4dMtx+MVJa/j9U0UsG9K0bOGBAiQZyMzTtrt0XYi7vIutN+7jxtaJ6CKnl5HFh+JaIP8+ssXQXh3k9FLy7+vtOGL2Noa1U/KDSzWQJGWAlv8jlUFBlSKyI/GfZyh3M+iO1y1KdwyLxLYYOaE/9w70wLrfb6Lqt2AlKHqMGR5Yu1+xY8y/tw29e2/DvUrHRNwN9MFxrF57EblCi6qwlH/x84rtCOYvdLeikaAhn/pZagIiFH5haOMA2XykRj9AcEHIlIeU67uw4XprzPh2I75evBjL12/A587P8NPb7+O7K481J6Bk6UiISBIeKOBhHJKytG9UVfkycO+fwzjJxdPigeMwvmfzUjceluCFH892xrwRpmX09hGiGSioUgCLDca/ARKIB3WHtb68UyZDXk5OwZ5ug3q1clHgj9FbxcfIMiWIi5Mgs7Kf1HLDcXBtIAZ/MQkthSaVYInw/nEPsHQDPjYSAQ/u45FWDujWRnlITYgtDOazvPHzUT1MnVS8rATf2zESH416isUzV+EPLS8r8SphcRfw8/eekFi8j19+mga7kjNfWSzObrqNvkuHoZ3cvCAhmoOCqgrlIyUsAFfQBN3esHx5CriApf2HA1v/4T6GjcWKST1gILSXJkPahc9gMu4QolT6YbXoGA0rPEbWaCxWTi7vGKtKgrvuP8J36Ptws1Dlv8L9jt7bsTr9HXzo1h0dTfneuEeISahE6oWoh5QEtOrfGxb1Sr5QDWDt1Ac24b9j9TZvheoZETWXF4W/v/0GWzEe7sfWY6JlyV50Pu23F1f6TMbAFtRHpRK597BzpBlEIlGlNv3Zp8BPNyBVQ0FVhZ7h7r8+SGFW6N/FhPs8XRxDXpw3fvr4Qyx/OhKbz36PWfIGaT6XgoBLvjBz7ISWKj3z3DH6+HI/veJj3OT5HWZ2qa65LQxZdw9gbeAAfKribnyWdgNb12Zg4acD0ELHCG268n1gcYiIr+ZZcnW5C45Yr3Cf/4RdKhBQjKhJC5gbCg8qZAiz1mXNJKsJSbi6srfcC29lNv3ZJ4tdpIvPqmqLLu3l1DPiWnSNWsKEC8zD93jiuib0QhbN2FSUmTGa6r4ql10Jwg6sxSd/d+ECqg2Y1qVxqb85n/bbdOU1zHM1UZObkQh1uQto0RVSr4HSb/laIpT4uPc/bDgTjnQZ41dN4TYZsnzXwJT/Frc9iHjeziBLD8b+2d2g31gPmrg4lLqhoKoi+bG4e5GfCg88OrcDGzduFLbVWDrFBVYm03G163pE/PcbPu5lUk4gwZAb5oHvdljjk9FdVPvircQxznVsXX3pyaw72L0mHG8vfVO13fgsGX7bf0PMrFlwKfg0a4j2Nm25rwkIfpxSvbPk8rkLj0SYYyhl3KdA5bpPRLp6MFA4SipvJllNMEKvuTtx69atKmy34bfaFc2Fn/jyrCoFZlGmxCIhVROCqqIZmwoSN0LDVyLFlY04rx/x0b42+OXSFkyXE1AVVGFf74c+80oUga1VDPn5fDhYSJqt9Fu+lmQg+PJlNP/0M8wb1LHYepPZeHTPH5HctdNp0GtoV+x8i8Qd4TzQER3MWqCR0EaqgF+rhpRNFrGXufHvNLc9jIvuXyJLj2S+B5ax/oaObOqmS+Wu7SVLv8U2j3BiU/feZZlCm6rwxzhSJOKOcW+Fx/i4EuuP5d7awDp02MBuKbQMWzoL2vohW3jm8fO1sgr+f3Rgk49GVWG9vMI1wAZPO8QePT/2HBZ1cDp/qWNtV1xhEqG1WjzzYkuMub8//xrAGLYjRCo8UUn5wcx9kAn3M+zZEq9EobEE/ntcjZmovO/RYLJHB9kEfe51iqFsk3+60Pqy/FB35lpwrvux1b4pQqs6y2Sh7mMKXh/GS86zZ0Lry4p/jxdLVf7NoCHyWLr/L2z8tJfXQSyJ/1sPth/KJk6ezCaX2iayMf0suHMmZh36vS20fcy23koV/u/qks+95ZcxE5Hwnnd1Z6GatPhf9m22qd9SdiapxBqLskfs6FT+fPZiKy4/FRqLZLGIvbPZ+ycfC49JVVBPVblkSH8YjBtyonueSNwePcctwlcfMeyeNxvLT0SX7jVhaXh4cQcWDJ+LWwPWYe14axWndYqOsQmcBld8jJ97VMeaakLaL3wYlirUjZ+PFN8NcDFoB+e13kgp74CkAdi9MgQTlhcfxKoDI5O24PuqosNiNWNJlzptYD/kdW4nG2ncx1+5h1xUy8fQCb1tmgiN2kPUqhPesOVzoPF4nFTB3EaxOTqaCGlXtdYApva94cjtZaVJy5h+n4fMgt5OG7j17gT9Eu9R7ZIPyd3fseTXRli+ecpL6yDyWNRhzN3iz70LuLeE5XScvnUK+4qXf3m+/YDZPQwggj46TFqNXQVtmzHbvnHhDyJysfgw3OkzBL2MSpS1SL+P657h3LXFEY5dSp7DPKSl6qOHpZHwmFQFBVXlkiD8v1uIkztWqYg+TLvwNaxCsMvjFuKLX1RZFP6a8QY6OM/Cpks+2Du3N0zq1Xk+5qRymxEcN96UU+xSOEa5Y76KFDvGE9wxFjYWSvbEgqbyj6le98V48GAxutcr/VzR8fCreDHJf/htbTQmLx2gYDd+HlLuB+KmJBo3bz4sJ6iS4O7en+AhzsD5r+cUK2g6FR9suVxYcVljyio0grXLMLiKHyMwIlFuqQmWGoPg4Fx0nDIIbzSvveRftalvicHT34QYsfCPfConbSuDJOY+7nDfYTHJDX3a1k5N7coRob51X0xybYvUwIeIk5crYs8QHfwIsBiCkW+01OKLLj9+8yK27K+LD799V069KobM2ChktWiMEgsUERURtXsHv33Vp8REJIbs8P/gGcft9rGDpWHJa0sj2H38LaZbqk99ME1GQVV5ZLEIOBfEfWruDgersj4hPeOCGr5KtCEc7c3RtHhQIWqHUTv98cT/GDZM7Y+BS48iND3v+QDBym3J8FnkgFKf3YsdYw9FjvF17hgLGwsZDcIPSTI5/x5D7q0N6NBhA25xN4rSzxceD5+Dl8XeR5jOI/yxeEaxwGcSJizajgd4gn+3LMDUKdPw8aEw7nMsrwHMx3+Hq54X4L39HZjLfRUW9n6tCRyGnb/vLfEpltu2fYphfKeHxpRV4G6+nYdj4Swr+Gw9Cu9SC+tKEX7qAPbnDsWCGU5orpW9GXqweGs2lvXXgY/HFQSX7NZhT3Hr7GXEWbyLz+f1h7GmnIP6nTFq4QRY+R7CAe/EEr2Q/ELantixX4IRC99FX20MlgUs8TLWLDqN1m//D0bpCYiLi3t5i76LC//cRfv2hnTjqVE5iL3njwA+48JnM+jkVy/uBknKIIs9yqaKuauiqzsLKZGiLpTH0u/8xsYact9jtZSdeVLO4KPcOOazYQyzmn202NigqntxjDvKyP2/fIyn48se41BS5cZUlZTLYo++z91flBxTlRnAto5fzI4+KmMEWt4dttXJkPv5g9km/2ocVaWqMVUCWXoAc5/qyPqvPFtsDB73NwrazaZaDWUrz0czxf9Cmoj/Xfez2Q4W3Dk4zR5lCi9a2TP24OQXrL/Vu2zD5Rju1aNhZKksyP09ZtV/FTsfmyU0lvX31j6Fv+drjIuDhfdKWdsY5h6qwKhSfgzQNCvu5xmyXhtusAyhufpp+JgqueLZmXl23O9TOFZTe16FMpabcJsd2/wZm7dkFduwYRVbMnsBW73nIotIl3vDrhEUs5ZJhvTgW/CUiGE30BbtS/Vkp+HhhV/w4agF+NtuMQ4eXQbX8uqs6LRCr3lfYnHcN/hS3tgrpRQ7xgHcMZb8a8o5xkEtNaDjPS8GXutW4lifyRhe1pIVdRujhTk/BqAGyiqoEF/Zfvpvx/DDayHY9PFCYYmW+fj8uAiT//kDX7q00fLUCF/kcwK2/P0n5ja7jBWj38I7fM/m1KXY/rAbNlzYjk/6VOMM1eoiaowu0zfjyg9dcW/TIsxf+Q02rlmKDz7/GzqT9+LElwNhrLWz/lJxfdM8zNh9uyASKVfBEkVlpXUZpH7bMaPg9bACHvk9MGnycFjc+QlzCnq/v8Kp6MICxqQSMsLw718BgNgBb1g3KT0LUyPxY/f2YpbbNiT3WYiN6z/HokWfY/0vqzDJ4BRGjFgHr7haqmEoBFfkuUwWenApmzz5bdavg5i7RhSffSJsE4cye7Exsx/xUSWj4lz25OQ8Zjj2IHtUpU8/1XmMLyjXU1Xy2LgrZYd+bMzkqeyjg6Gs3KOQRbMzK0dzxy18SuwwkH149H6J/yeHxZ5Zy6aO6cc68N/DbWJ+BtHUtezM42ro41FxTxUhRJ1pX09V3t2tzElLfpcisuSrbI2zNRu4ya90L6Ysip2c48Aspu5noZk13y8n4v/DvXgIKSXPbyOsxgKHQhbBXnuHgpQv7QKWWrngW36QJ8ZgR8gezOhUejlYQog24Fe9+BzWA9Yhlr8zuroj9PR0WGpsTicbD/fNgPlkD9htuIjri7prQYFPKcJ2zkL3mc+w+vZBzLWTU6X/1CJYDb+J97yOYa1zixodw0fpP62UhoDNb6H1fE8kCy3yFS6b09rxO/jxhS1LEOnUh4FBfbwStQoJIUTrpONhEF8YuhMGvW6qHRXTc8Jwxv00JK1sYWMmr+yKDppZ2sIBPth++AYSq7U6dGkUVGkhlnwTB7Y+xAiXLih/ZZQ6MOg+GDNT9+DnM9EF/d3F1bWbi//+mws7+XUaCCGEqDNpOHz/CeV2rLgApLwl1DQHiw/FtcAUMLNWaKor/xN/0bJgKd53EJFZs8k4Cqq0ThoC9/+E7W1n4H3n1hUPSjTojncX2eLwN3vhnaIRBZ8IIeQVxdcC88XOFRPQo8cwTJo0jPs6EWuOh0BSFDtIA7Dzg2mYMmU0+tu64vMgfiKPB76a/m5BuZvpm69xdwlNJUP6/QBc4n+lcpZ8er4sWNBt3IupoNCwilFQpVXykXZrJxYvf4aPV4yDbSNF8nZ6sBy3EGua/I4vtvqWX92cEEJILclGnO9WzOj7Ma62mYu/fU5i3z4PXPjNETcmTcDcQ2GFRYX17DD9l13Ys+cILt5PF+oKpuP+xSMFNf52zu1ZojioJpEhSyqF4mGSFJLMmq1jSEGV1uA/wZzD2g++hq/zEPRqGIXbfn7wU2QLzkWXUU6IWT4fy/649+ITDyGEEDWQD0nQPiwY+iOyP3HH5vd6onlBL01diLs6w80xHru/OoBraTU5gIgLcFLlFHmt9BaPpxJFA588pCbEIkV4VLF4xFa0JJaq8bP/iKbLY+mhR9nS/m35cKiK22tsqnsAS9PeOoWVQyUVCHmFqGdJBVnyJbbSwZCh/2bmX6pMQBQ7OrkDE/GLJV9JEtpqQHYA2+raVoGCrxVtYmYx/zRLUOie82Jx8rILXnOeX7ft2ZLzCUJjzaCeKk2X9wR++5ZiePflCB6wC7G58pecUWzLQqzPTMi+GQaXOb/gwsO0glc9IYQQZUkQtm8OLEX6sJz2O8Lkr7pdDinCj23H9zdbYtpHbrAtOThbloHUeH5V2AQ8SuRXY60h9W0x2zMKXCwk515SmS0dYT8M1pqluSio0lR5sbi2bzWmOL6GfjtlmOjphaOfuVSxanMDGPeaA/d//8K8Jmfxnu0AjF2xF9dqqzKtOuACzRc90xmQ5lOYSYg2YzkSPH/LZ2YI65VWQV4oTnz9K8L5xe9378CJu5UMfKQBOPzDCUjE/TCsl0npyUeSWITeieM+AIth2EgTFiGvCh00aWFSwaz24lrBpGnNLhRNQRUpmyQd0pxsSLM0YcHi6sJ9khL2+DEEND+SEC1X/IMTU8EYJZ1OGLHyfVhwQY/F1JkY0YVfhl5RDNLASzjIz+BzccRrrUpWYWbIeXgX3gXFiS1ha1bWovraog509fSgeJikB3HDmq1cTUGVptIxQc9Jn2OPz21cml4H+we54O21XojLq0pPijC75H+jsCnVFdsjruPk+llwNqvMRUDLiBpC//l7Uh/6dbWkj5oQIpeoof6LtSf19FH1Mn1iWE7aijA+zbXrXViWUVtJvmzE3PNHEAzhNPg1tCv1v2Yj0u8qfPhdRyfYm2pFec9y1IG4TUd05XfvPECMRH7QK4uPhD8faJa71mT1oKBK0+m0hP2k9Th5aw2sz0+DSb06EIlESm66MHHcgTqfnoLX1g+4YMpASxbfJIQQDcQSEOTtz+1YoX8Xk9IBniwS3oe8uR0LTPh4KLrWr8Erdk4gtg1qhzpy7yWV2fRhueAMEhXsD6hj+jqGOhpClCWFNEteUMWQl5kBvpSVoZsjbPRrtno1rf2nNfiSCp743G0Cfjb+DIdX9K/EwL88pN7cgTlz/PA/993YMs0WYoqmCtHaf4S8QtRs7T/u+vOp9QCsj30PR2N/wijj4qksBqnf9xjQfRHujPgVvgdnwaZhTV64+ZIKT5GSWdVBESLU02+GZmJF03QZuLttCnp9kFXB2n8+mHLGA98NMq7Z3iM+qCLaIo+l+//MRoj7s5VXEpjCM4Ez/NimgR2Yw8pLLJlKKbyMSioQ8gpRp5IKMpZ1awPrVnAso9jWuxKhvZAs/RbbPMKUwWIOO/ggQ2h9NcienGYLrI2Y1dLzLKnkPSvnLnN3M2XiEb+yoFLlJ6ofpf+0Sl2I7Sbi6zWNsWXVQQRm8NeFikgRdvB7LE+diu/mO8GQeqhqBUu7jo2D5uBQVI7QomkY8hL9cXzLcsxfuhobN67G0jkLsWbvJTyUvCrD++kcKItJArFz+misuZYqtJRHhqw4PxzftgpLPy12nnf+A784aUE0pB2y8SjgBgL4Ae5vZuP0jouIFcbMMkkQ/lyxDF/EDcfeY+vwjrm8hYW1l6jFQHx9+Hv09PgBmy7EvJityZ7h7r4fsSFtBvf6mIIulRq/piJCcEW0iCzpPFtqZcdmn4jmPutU4NllttK6K5t29FHF3/sqqomeKlkSu7nBjYm5n+8emik0apI8lh60m03t9T5z93/KcoVWJpOwR8c+YTb9V7HzsVlCo7aic1BpskyWEh3MfI5sYFMdjLn3lz1b4pUoPFmWPJZ8czdbs+0cC03JEdp4OSwl1IOtGDGBrfGKfnH+K02Neqpkj9jRqRZMVHBeolms13rm1m8EmzhxKLO3cGWzN5xioel5wje/imQsN+E2O7Z5GZs9bwX7dsMqtmT2ArZ6z0UWUYvnhYIqrSRhQVvfZibzzrDy6+sKF5Cua5lvBoVUclV7UMXdJHy+Zf3FhT9fE4MqWfJVtsbZmg3c5MdKJSFkUezkHAdmMXU/C62FrviaQuegMrJZ1Mkv2eT3l7DVm9zZ0UvH2IaBigRV3E300VH2wbu7WGiOvPMoYzmh7szNqirpMDUKqoquPeLZ7Gis8mEiqVmU/tNKjdBl9hE8/nEQjIQW+erAwHktHgcuQ089yvvVBpZyDTs9nsKmu7HQomn4as9b8c1Fcwzra4lSSQiRMXoMccTT3b9gp08ianJlsppD56By6qPtsC+wZ9t6LJ87HaN6W8GIu/xUfAXKRMR5Dzx0fgMd68n7bhHqdXTEiHZX4XHziYafZ4bs8P/gyU+QcewOm5Y1W2uJKI+CKkJqC3uKazuvoO3Md9BNUwsh54ThjPtpSFrZwsZM3rgOHTSztIUDfLD98A0kamNEQeeghkgRE3oX172DEc/3I8kjaoBGTbWhVtOL8VR2A2zRnu7UGoP+VITUinykXDsMzw7jMMpcc4ursvhQXAtMATNrhaZlDAoVNWkBc0MgxfsOIjLLuhtqLjoHNUUXTVu3Qsru1Vi+/ToS5RQ6ZvFBuHzbHH1sWmj4ze0ZHgaGcV87YdDrptD2kp7ahIKqyshLxL2ze7Fm7lvorm+C7sPexZR3nNHd+QNsPBUCCcuH5O4eTJv+J6Jr47pZq8eXjcSA49j4wbsYN3clvl35Hlz7v4sVO1U884nFwnPh/2C7xof73Kq5CtJ+nq0xfajpi+rNGkeG9PsBuMRX2RM3QsMy1p0U6erBgF9XIug27sVkFTZqDToHNacRLPoOwkCxP3bPHoBeb3+Nv+4mvZj5lReDC9sOIWvx55jYWcNXgcgIw79/BXCvKQf0sG4iNBJNQEGVQrIRd20n5g/sgRGb78H4rY24lBaLW6d+x54/L+DW2c/xv4c/YuK8RZjz1jLc79EZJvKvrdWkto8vH2m3tuG9TYno99VOHNz8NZZ8/Sv+/tUFd+YNx6DFHniUq4ooLg8JZzdj/g8+uHMnCkma+oGfCwzPbjgHs+muaCd3bIimkCFLKoXiIYIUkkxtW0eSzkHNEUHPdjK+/3EWLCDBgxNf4u2eIzBrkyfCooNwcv0PuPra59isDcWLc3KQrdsWDrOGo1erekIj0QQUVFWEr3ux82P0c/wJz8YdhO/xdZjev8PLb1odE/T66DNMlpzB7+Gm8pcTqC5qcXxP4bt/F44f/gc+sdlCmwj1LPrgbRdDhG/7DccruzK7HCzlX/y8YjtC+Ae3opGgkaV/+MBwN852n4IR7Wp29XTVy0NqQixShEcVi0dskrb10tA5qFGixugyfTMu+/yK9x2MAYkPds8fjE7txsDdYBwWullpx2oQhi5YHxaFG98PgQndpTUK/bnKw1IR8NMs9JxxDlY/bseW995A8zK69yFqjX5jh8LQyBH/61JDK4WrzfE1RCtzM5RcLIAfoFtflw/fspBTpYWeOSwR3j/uAZZuwMeG3OMHD/AoUfM+8bMEL2y6Yo+lb5lpcNqPkNpUBw2btkXH7uPw9efjYVHQFgKPuZMxYdkhBKTkFrQQUhsoqCoT36PwDcbNPQy4rcC3s+0r+ARUFwbNWsGotx0sDcvqB+LXlfoMJuMOIarKM4Cq4/iUZQC7uceQnn4Mc+0MhDaONBp3fSK5T112sGpblV6ZfKR4b8fq9HfwoVt3dDQVQ4RHiEko6hXTEHzab9Nt9Jnnghba8GmakJrGnuHeoS+wYFcmRny7AStW7cH1oKNY6WbFPRmCv9ePg9PbG3BFAz9wEe1AQVVZpLex9ys+1eSEBZ+4wVKB1b/rtLDHsrl90b7Mb01BwCVfmDl2QsuqnvlqOT5Vykfy9bM4HG2KEWunY0BL5ccFsLQb2Lo2Aws/HYAWOkZo07Ul1xqHiHh+dLCm4IPgvbjSZzJcW2hLH5UOmrQwAd9xqJhWMGmq6SnPkrT5HCTh6sreEIlEVdr0Z59EovATq0aCsP1LMfqPNpi/nLvmifkPh/Vg2GUUvjpyCbf2foJ+Yu67Lq7DzC9OI5ZKV5BaQEGVXDKkXTuG731TAJshGGJvpEBhOu5ktu2P6c7tyjipDLlhHvhuhzU+Gd2lilNkq+P4VIdJohFw5Xes+vQkLNfswLaZXdFQeK7SWDL8tv+GmFmz4FIQjBiifde23NcEBD9O4c5ENeOu26yRcPQNGWRKDSxnyIs6hfWXX8M8VxOF/laaoQ509fSgeIigB3FDbUt6avM5MEKvuTtx69atKmy34bfaFc2Fn1gVLO4iflx1FyPmvg3bgoCqGJ2WsJ+0Hiev7cZUCyB833FciVamJ1uEuiIZiuYONqwng0bPJSE1joIquaQI/88XfDFb4yFvoLMKqo0zyX/YtngXDNd/hCEmVZ3NofrjU41sRF/Yge+2HcK5qwF43KgNTOqnIyFF2UWC85Hmtxcr7w3GpyOKSg80QIu2Zty1Lw7BkYnILGirRvncP5Uh/CuZItRRahZjNiLOH8aVwL1YPHUKpkwpsU37HPsepHPf5499n88qbJuxHX5SdZ/eWAfiNh3Rld+98wAxEvkhriw+Ev4FL9aOMG2lqVVOy6LN50AEnWYWsLe3r8LWDZbNVFFlKQ+Jfl44+NQe/7Mp60NkXYi7TMCabybBUBKA2/fThPbKYMhndVA0rSYztw5UMnGZvDIoqJIrDXH347mvxujayUTOAOzSmOQB/gt/xr0lS2BpeHhxBxYMn4tbA9Zh7XjrSnyqLYsKj0+lGqCt80wsWrQIi5Z/h0Mn16DbrSXo9r8FOPig2Ow/9hS+a4fBQH8Y1vo+LfuYpAHYvSIE4z8binbPB+DrwMikHfi+quiwWCRrxAVPF5bTf8dNvsTFnj2lty0foIeUT2V2w6TVvxW2ub8Hew1YOqiO6esY6mgIUZYU0ix5AQVDXmYG+N/O0M0RNvqqHs9X++gc1AQZsjLSkaurBz3d8m5b9dDKpjsc0AqttS7VTDQBBVVyGXAfKFtxX3XQsJ6OAumaXMSd/QlrryW8nI5iUfhrxhvo4DwLmy75YO/c3jCpV+el8QaKb0Zw3HhTKHipouPj5QdhW5+mcv698jYj/G+zPyrqfxKJu2L8e6NhHL4VH2y8gISiAIil4P7Nu5BI7uLm/ZQygioJ7u79Ccf1M3B+1QfFenam4oMtl1GP/580tqyCFqlvAZdJzhCn3kdEnLxSAflIjX6AYO42N2WkPZpr4xWHzkEN4IIlq26wTQ9DeHR5/dMMWekpSLf5HxwsFPm4SYhq0dtbLj1YvNEPVojGjaAo8ImZ8rAUH/z6qwE+GGr+cv0nUTuM2umPJ/7HsGFqfwxcehSh6XlgjCmxJcNnkYOwWKuKjo9X1wazryTJ+ffK25Lx79xuKEpiyKKOYoalESxnHC0xq7EO9BobFRxzyrkQRBcFQHU6Yvx2D3ie9cD28R3lvAi5C+PdA1gTOAy7/9hbumdn26cYzq/A+uC+RpZV0C6N0HnUTMy08sXWA9dL9xzmhuHUDg/kjuC+p28rLb3g0DmofiLU7+KGZTPj8MPPZxFVVomWvEiccfeH68/T8EYj9e/pJdqH3t9y1YFBzwn4ctpriPttPzwelL0gCpMEYtcnu6G/Zh76G8nr1m+A5nYjsei3P/BVs4NwW+xR9gVBYao8vqpiyHx0B+fCUxCXLMXLIU4ekuNikAwxrCb0gMXz8bki6DS3xcCBtvLramXdwe414Rj96ZBiab9iGrdGpy78fKsaKKug0xAGTav3Ey+TpCKxoIMjHcnpGlYmgiNqMRBfH/4ePT1+wKYLMS9eA3xh2n0/YkPaDBzfNgVdylgXTxvQOVAek6QgPj2Lu5JkICHxWYlrSDE67TB01a/4WncXpi7eh2tRacW+Nw+SKF/sW7IeNwcsx6LeqgleDc1boAn9yUgliBjf9UDkKghIPp6KeZHO+Onrj/C2k+mLWlB5CQg4sReb/kzCoJWf4p3OjStOw+Xew84xU+E9+Qh2jKr6LDyVH5+ysu5h35yVCHJbixVulsIxMOQl/osfZ07C4mA3HDm3Dm+3V2AOYF4MvFZ9hG+NV+PUbBvIH9Ifjb+mOuPtPY0w74wnfhzEl1ioJrIQ7HzTGTPO8qOM+2GVz1/4vJfiE+jL9gx+21Zgs+8z4XEJJmOweu0wtK22P5qq8X/vAJw6+Cc8H+jAvE19PH2QDINeIzBhVG+YlZytpZXoHCiGQer3Gz7e/G/ZARSPew+sWjMM7UpeKJkEUdfP45/Tl3A9smgGsB6Muw/CmNGueN1YrwrXujwknFoE6xGbCnocjZd4IWS9M4pV3yOkXBRUVYQPTk4dwoFjx3DkrzRYjewCw5T7CNVzwqQJ4zFumF3ZVcxLKXzDWu3vBf8/xpa+WChDpcenPH4g/KU/d2PrLyeRaN4V7Rqk4O7fCTD/8CMs/GAsehpXMAOIxcDzy/lY/v1R+PEjejsMxIffbsXmUR2KBZ+5iPPciM/cz+Lq4Ut4wLWI7YdiZNf/YeLaRRhkXNVZlXK8FFTZY8n501jvoooJ4oQQ9ZOFsJ2TYTXzMPg7IwVVpLIoqCKkPBRUEfIKoaCKVI0q+koI0V4ifbQwbyo8IIS8OhQvWUNIEQqqCCmPqAH0DIpSl6mITkwHde0Soq3ykCkpe+IPIRWhoIqQculwQZW+sC9FUkY2BVWEaK0sJD2O58fSc/TQtFGD6pvgQ7QSBVWElEsXRsY0hoqQV08TtG2uT0EVqRQKqggpVx3oNtIXxlXE4U5YbMFyI4QQLcTSkRidKjzQh4Geti0ATqobBVVVIkPatZ8xfcpo9O/IfaIRiaDffRgmPV9SZQomDesOff3ucJv/A/4KSCi/LkttYLHwXOiErmt8hSVwqpumnTMdNGnekru8EkK0HstGRlLRlbA5jI1o/UBSSXxJBVJVicxriT0DerEVl58KbS/I0sPZmQ3vMgvxm2zl+WiWK7TXvlz25MxSZi0Cw9iDLEomNNcI7pwt7V54zq4kCW0vvHTOzkXV4jmTsWz/zcyxcJQFE48/wB7V6HkihNSYDB+22kZc8F6H4Tx28on6XK2JZqCeKlXIjsR/nqGAoSMcuzQWGl8QiTti0Cdr8c2Yh/h6zEocKGdZmZrEUv7Fzyu2I5i/hCixOHH+vW3o02cb7imzqHGxc/a/Cs7Zqne+qMVzJkI9wxZoL8yrliRlIIs/X4QQ7ZOXibQkIcHfuiWaURV8UkkUVKmA7FEgzgVwb8Q+drA0LCMHL2qDARPfgnHKcWz7Owy1vsIbS4T3j3uApRvwsZKLE7NMCeLiJMhUIsjgz9n55+esjAtX0TlLLTxnOUJzTRM1aY62Rfm/Ow8QI3lp1WhCiJaQxUfCn6/zyzNpCSNaq5FUEgVVVZaHJ0E34QNDOA1+rZylZ+pAr7ER9JACH78IJJUZiMiQduEzmIw7hOhq6xHJR4r3dqxOfwcfunVHR1O+G6YGFid+ruicNSk8Z2Vet0qcM6G1xolN0KmrceF++hMkpqrdyDhCSJUxZCU/QazwyLibKVrRHZJUEr1kqiwN9/0DIIEV+ncxgUKdxXdiykm1pSDgki/MHDuhZTV9SGJpN7B1bQYWfjoALXSM0KYrvyBxHCLia2pem3DOmKrOWTUrXlVd8gRPUmqrz4wQUn0Y8qTpwoc3Q5i1NgINUyeVRUFVVeXH4u7FEEBsh24dDcqpaZKHxEf3CxYBRtc2aCE3kmDIDfPAdzus8cnoLqgvtKoUS4bf9t8QM2sWXFrwqUpDtLdpy31NQPDjohXfq1mJc1Y2Rc5ZDRA1Rlvr9sKDeDxOyhL2CSHaIwfxkfe5j5e81rA1b45qWKKdaDkKqqqIRd3GGe8UwNEBNi3Lq2mSiuDrt7ivhnDqZYkWcqIvJvkP2xbvguH6jzDEpDrezvlI89uLFfcG49MRpig82gZo0daM+xqH4MhEZBa0Va+ic8Ycuyt2zphwzoTWmqcLY/OO3F+OFwv/yKc1E3wSQmqQBDGhEcJ+e1i3bUyFP0mlUVBVJflICQvAFYhhN9AW7cs7m9Jw+P4TCoiH4j1XCyGgEbA0PLy4AwuGz8WtAeuwdrx19XQ7SwOwe2UIJiwfhnY6RZcLHRiZtAXfVxUdFovkap/ZVuycDVDsnDHhnNVWRxW4f7lJ2w6wLthPR2xcCqrUV5WXgIDjW/Dp/E+xZuMGrFn6Meav2YuLD9MK6jZoJoa8RH8c37Ic85euxsaNq7F0zkKs2XsJDyW1lbetaXQOypeNxAAPbPl0IZau2YCNa5Zizvx12HvxASTq8MIvXvjTsCPMjSn5R5QglFYgSkliV1b04i4H9myJV6LQJk8Oe3x0DjOEIXNYeYklF69zJHvEjk6z4i8pKtgMWa8NN1iG8KNfls6Ctk5jzmMmssmTJ7+8jenHOvD/f4cN7FbJsixJZ9g8w5L/jiJbWcdS7JydTxDa5Cl+zi6+fM5qwzMvtsS48HcTjz+odK0qWXoAc586mE1192PJuUU/JJ9lPjrG5tsMLahjliO0ao48lh60m03t9T5z93/6oqaYTMIeHfuE2fRfxc7HZgmN2orOQblkqSzI/X3Wa6o7809+8QqXZd5nx+b3Y/1XnmWPc2r5TV68RpXrDhaaL7QTUgkUVFVFfjBzdzXm3oTT2MGosm+FsuRLbKWDIRMP/IHdfJYntBaXxRL8j7ENU/uzgUuPstB0ed9TFTKWGbSdjZ9zlEXKu3A9D5zeZ0djFS92l3trA+vYUU4gVp5i5+zAo2yhsbTi5+xGqqrPhxLyw9jekaZMxF9wbdYy3wwlbgCyROazZigzHLiZ+Zf6/3NY7MkFzMLifbYnJE1o0wyy5KtsjbM1G7jJr3QQLYtiJ+c4MIup+1loZi3fNKsRnYPy5LFkn29Zf8ORbJP/M6HtBVnsCTbHwp5N3RPEMoW22iB7dJCNF/PXQTGzWfVvGR9OCSkfpf+qgD25h6s+cYBTD3QtYwwUkwRi1ycL8b14IY7vmYPuBvKSWA3Q3G4kFv32B75qdhBuiz0Qlcd/YFKRrDvYvSYcoz8dgvb15IwSaNwaVl34EUPVX1bh5XMmfyh+wTlbuOD5OXNoXHuJv+fqNIdFd9PC/aDbuBdT2fPEkBt+AuvX+cB6WG9Y65X8O9RDqx7OcHn6O9btul4DaVhVkSL82FZ8c9Ecw/paQk9ofU5kjB5DHPF09y/Y6ZOopWPR6ByUKzcUx9b/govWzuhrXXrBJ1Gr1zHEJRt71h2ET3JtpUllSL8fgEsFE6BbomvHVmhY0E5I5VBQpTTuTRh8C57cm7Bt/y5oX/K+z4+bObUZc5xHY1/jxbh+YhlcjBsIT5ZBpxV6zfsSi+O+wZcnovmPTFWXFwOvdStxrM9kDG9XxhiBuo3RwtyI26nusgqVOGdNlip2zmqMGOZ2djAsiIWCcTMsqZJ/nwzcO3MMHhJzONm0kTuzU9SsIxwc9BG6/RR8KlmItdbkhOGM+2lIWtnCxqxUOMHRQTNLWzjAB9sP30CiNkYUdA7KwZBzzwvuHpEwduoCs/pyPtSJmsLSwRoIPY7DPvGque5VmhQPgwKFmX9WeMOqOQ1SJ0qhoKrSuJvjviWYMuUduL23hXsTilH/6iZ8UHJBYKtx+P6GLob/5o1zP4xDZ0WXO6hniWEzHXH8T1/EVOXqwmLg+cUYdDdsiwFfe+DsxoVY8NcDvPw5MBdxnusw7Z3JWLKXL1wQAPflMzBp2jp4xuYWfotKyD9nH04t75yNVfyc1QjuxtjZHn3F/KX2MQIjErmzVwksESHXQ7idVmjdtIzgtqgeVkoAAiJqqmZY1bD4UFwLTAEza4WmZVSfFjVpAXND7tfyvoMIZcrvqzk6B+XJRXxIAALLrfukgyYtTLjviIR3QFSNzEAuhT1DdPCjwn2b/6GHhbAuFSGVJaQBCak0pcZUabLs22zT/4z4O2LlB6s/82JLTUTc/zuGuYeWNXKkcGFuEYyZq3swU/9xsvncr7WMGXPno9yBvc8H+Y9hO0KkQqO2oHNQvqKF08t7TReeQxN+YXdX99oZIF5skLrh7JMsXv3ffERNUU8VUZpIpz4MDOrjeXUGbVffFD3etCvYlZzxRWAlUnQsS4o0heswZEEiyYL6JwBlyJJKK1FeQgpJprYt8UPnoFwsG9K0Sow/lGQgU5XjSRXCkBN+C/8E8b3DNhg79DU0pzsjURK9dIjS6trNhZ/fXNipU5auWunDstf/YMXvVjJFx1ITEJEiPKhQCh4+Tq5aLawakYfUhFjuaBUVj1itq0ZP56BcLB0JEZVYtfNhHJKyajqo4lOU/gjkd8U90M+2Od0YidLotUOIwurCsFs/uFnx4y0C8M+NSNAqgIRoOJaIwEs3wH9EEg/oB4c21bJAGHlFUFBFSCWIDLvC1c2W20tB4IX/EJlb05+qCSGqxFJC4H0pktszhctwe7SluyKpAnr5EFIZoqbo5upckAKUeF3E9WjF+qqKZn8pRlNWyC+ataWoVjApa+ajxqJzUK6iGa2KMjMucwZl9WDIDLuBv0MkgNgRI5xMaRFlUiUUVBFSKcVSgBJfnL4ZC0XKDol09WCg8L1UF2KxLne7Vnd1oKunV4ngTw/ihur/W1UOnYNyiRpAz6AStebEjdCwRme+PEOg1zkEcXvi4SMwwEJenTFCFEdBFSGVJDKyx8iJ3bm9BzjpcQPRikRVYhNYdjXmdiIQGlPGAHfZU0T6x3I7Juhm2kwD3px1IG7TEV353TsPECORfyJk8ZHw56sqGneEaSttG69C56B8YrSxNOe+xuFOaGzBuKXSchAfeb+g8KZxN1O0qskXvjQYXoducTtWGDO6F9q+KjOZSbWhoIqQSmsM22GjMJDvrDp5AufDM4T2ctRpA/shr3M72UiTZvMFi0rLKyylAEMn9LZpIjSqtzqmr2OooyFEWVJIs+QFFAx5mRkFN1NDN0fY6GvfVFE6B+VpAFN7Jzhye1lpUsif2JeHTImU+2oDt96dUHohm+qSj+Rr/+D3oHQuphqNif1aUxV1UmUUVBFSaSLodXbBOBdTLqrywUnvSAWqqzeCtcswuIrLrsbOUmMQHJyLjlMG4Y3mGpIiqm8Bl0nOEKfeR0ScvFIB+UiNfoBgOGDKSHvtrP9D56AcItS37otJrm2REvgQcfImdhRVM+84BCPfaFlzgQ1Lgv/ZCwhhYthMHIKeRq9SsEuqCwVVhCijniWGz3kHFoiEh/tpBEormgXI3Vw6D8fCWVbw2XoU3qUWjpUi/NQB7M8digUznNBcYz4yN0LnUTMx08oXWw/IWQg6NwyndnggdwT3PX1baekFh85Buep3xqiFE2DlcxAHvBNL9NLyC417Ysd+CYYvmIC+NfhhgsV5Y/92HzDxCCwYY1d6IWxClCFUVieEVFaGH9s0sC0TwZEt9XrCFFm1RpYewNynOrL+K8+y2Nyi/yOPpQftZlOthrKV56NZjtCqOV4+/uerFslSWZD7LGbVfxU7H5slNGorOgflKuM8FH8/PM6pzLpPVZXBQt0nMDHEzGKOB4utyX+aaDUR/x8hviKEVEou4k4tRb8RPyB23EHc/X0s2inSw5SXgIBTh3DAMwL1zU3Q4GkUEg0c4DZhJPqZGWjouA6GvMQAnDr4Jzwf6MC8TX08fZAMg14jMGFUb5ip1eLY1YXOQfmykRhwBgcPnMeD+q3RpkEKHiQ2QS+3dzCqXwcUrFVeU6Q3sXHAICy+0xc/Xt2Ned0aC08QUjUUVBFSFdL/sPmttzDP53Vs8t6DuXYGwhOEEPVU+GGo7/DfgDl/4NJPw2FCA2GIitBLiZCq0LPFuIXjYSU5j59+vYw4+ohCiHqT3sHhzUcQLh6KhR/2p4CKqBS9nAipEh20cJ6BL6dZIHzfThwOTBPaCSHqJxdxF/bjp3NA/2UfYWxnfh1PQlSHgipCqqpeR7h9MhsjcB4/bTqNCFoPkBC1xNL+w+98L5XVBCyd2ROGmjmAkagxCqoIqTIRdDuPxoovXBC3azO2X01UaOkaQkhNkiL8yBZ8da4FZq95Hy4tXqHlgkiNoaCKEFUQGcH+vWX4YmA0fv7mD/g9K1mHihBSexjyos7gx/WnYTz7MywbYaoBa2sSTUSz/whRmXxIAn7Fu07fIHP1MRyfZ08FBQlRBywWnp+MxpunnXDCaxWGmVRikWdCKoGCKkJUSoqIQ4vw5qxkLPDdgdldaCAsIbUrDwmen6Pv6CBM8tyFZY7NNbQWHNEEFFQRomp5UTi1eDzGR7wL79/fh90rX/SRkNrDEs7gk74f4cEHh7D/I3voU0RFqhGNqSJE1XTaYeiqrdhkdABf/BmqwGLLhJBqwRJw8ftv4f/OVmyb8zoFVKTaUU8VIYQQQogKUE8VIYQQQogKUFBFCCGEEKICFFQRQgghhKgABVWEEEIIISpAQRUhhBBCiApQUEUIIYQQogIUVBFCCCGEqAAFVYQQQgghKkBBFSGEEEKIClBQRQghhBCiAhRUEUIIIYSoAAVVhFQDJgnEzmm9MXLnPVpQmag9luyFT7sOwxdeMfR6JaQKKKgiRNXyovD3ijmYlzwJayZYo57QTIi6Ehn1xcKNNvhz5EJs808BrbJPiHJEjCPsE0KqTIqIQ4vw5qxkLPDdgdldxEI7IWqOxcLzk9EY4/8WPI8uRC/DusIThBBFUVBFiMrkQxLwK9512gB8exyH5thBV3iGEE3AEs7gk37v4vTg33H5u8FoIRKeIIQohIIqQlSEpV3Hd6PH4CssxIXDH8OhcRmf9PMSEHDqEA5cegz9Nk2BxCgkGjjAbcJI9DMzgPrcxxjyEgNw6uBhXIppiDbNuUN9kAyDXiMwYVRvmInVsyeDH8+26+OvEff+Dizv2URofVUU/c3+xJlbj5GRFI3Hepbo0Xswxox2xevGehW8vrIQ9dcyDHj7KlyOHsaWUWbQEZ4hhCiAD6oIIVUkS2I3N7gxMRzZUq8nLF9oLkmWHsDcpw5mU939WHKuTGjNZ5mPjrH5NkPZyvPRLEdorV15LD1oN5vm+D5z93/KcoVWJpOwR8c+YTb9V7HzsVlCoxqQZbKU6GDmc2QDm+pgzH1QtGdLvBKFJ18V/N9sL1uwwJ35xmawwldXLkuPuMg2T36NicSD2dKjwSy96GVXlpy7zN3NlMFiHjv6KFNoJIQoggaqE1JlDFn3jmDVV14wnjYX7/VuLn8GCHuKa5s/w6LHQzB/3Gsw1CnqM6gD3XZDsWSdJQ7MWY0DoelCe+1hKb7Y/PE3iBk7C+Psmr7orRA1Qju3eVhndQJzPjuCsKza7ujOQfSprzBlzhf4+S8fxDXriC5NXsWcFUNelAeWrJFgytdT0PN5j5QOxGb98NE3X2GOyb9YP2UhNl6NL38gej1rjPtqIQbGuWP5j5eQQLkMQhRGQRUhVZV7Hx7fbcMJDMBH896EeT15N3WG3PATWL/OB9bDesNar+T31EOrHs5wefo71u26juRavZFJEX5sK9Zd7IChfSyhJ7Q+JzJGjyGOeLr7F+z0SSz/Bl3t6qPtsC+wZ9t6LJ87HaN6W8HolbyqPcOtfUdhMPNt2MpJy4qM++O9D/sCktP4bo0H7uWU91cTQc92JOZO6oSQ337CjmtPa/lvTIjmoKCKkCrJQ8IFd3y5KxwWk6ZjjK2B0F5SBu6dOQYPiTmcbNpwoUBpomYd4eCgj9Dtp+CTmCe01oKcMJxxPw2JsS1szEqFVBwdNLO0hQN8sP3wDSTSHbf2yeJx78pFrHd7Gx/sC0R6qb9JI1j0cIQNtyc564XrkdmFzWURtYHz+1MwEH9j3Td/4W4m/ZEJUQQFVYRUhTQQB78/gBDxAHz0fl8Yl5V5YokIuR7C7bRC66ZlzAkU6aOFeVMgJQABERKhseax+FBcC0wBzIzRVFf+JULUpAXMDblD9b6DCLrh1r6sFMTFpnMRkze2ffs3gqQl/yYi6Bq1hEnBfgRCYyp6fRX1VtlDcmI7fjkfTb1VhCiAgipClJaLuAv78fO5KIhdhmNwZ32hXY70h7h96QG3owdxwzLmU4kaQM+gAbcTiiv34iErbK1hMqTfD8Al/p4rboSGz8d9vUykqwcDPjYMuo17MRX0epDq17AzRi6ZBgdDJ8xeMhQ2pdLLDHmZGSgMpfRhoKfAnD6RCRxHvwkr+GHfluMILBWoEUJKoqCKEGVJ7+Dw5iMIZ474cO4wWMgdS1WIZUmRliU8qFAWJJIs1E4CUIYsqZQ7AkVJIcmsxVQlKSRqjC6TNuNG8lVsnWQL/VIvxVzEhwQgkN+1ckIvy3I+ADxXF0a9x2Oxmykyzu3FrxdiqLeKkApQUEWIUvKRfO0Ytp6LBrMZipE9m5db/4elJiAiRXhQoRQ8fJxcicBGlfKQmhDLHYGi4vE4KYtutuouJwT/7DoHCdpi4Jy30NNIwRpj9SwwePKbMBTxvVX/VDDAnRBCQRUhymBROLfjAEK4m5TrB0Pxeql0CyHqIhdxZ3fjh7PJsJi6Dj+991rpGZ1lqgfj3iMw2UIfkrN7sc+7tmd7EqLeKKgipNL48ggXceDkA0DcG+84d5Q7m4+Q2seQF+uJbxfvBpuyBce2jIOlbuU+AIiavY7hb9lye4H468h1xFNURUiZKKgipNLSEHjiMDwkXEw1fAQGWDQS2stWNFtOMYYwa21US+sG6qBJCxPuCBRVOJuR+ukUlYSrX/SBSCSq0qY/+xQShZ9YrqxgHFj+Jf7u+QP+2jwJXZRZWkjUHD1HDoUNJAjfdxxXonOEJwghJVFQRUhlSe/hzB5vbqcDhrv1QFsF3kXPZ8spRBdisW4trblWB7p6epUI6MqZzUjkMEKvj91x69atKmy34bd6IJoLP7FMeTHwWrcc+9qtw+XfJsNGX9m1GvnyCv0wzkYMSC7gwPn7yBWeIYS8jIIqQiqFH6D+D/YH8d1UvfCmg4libyKxCSy7GnM75dQIkj1FpH8st2OCbqbNaunNWQfiNh3Rld+9cx8xkvyC1pJk8ZHwj+N2jDvCtBUlPxUngk4zC9jb21dh6wbLZnzpjXKwVARs/Rq/t1+BQysGwLiM0hgK07OGy7ju3E4kvE5cw8NcygESIg8FVYRUBkuC/9kL4Mt4il364422CgYUddrAfsjr3E420qTZ8gf75hWWUoChE3rbNBEaa14d09cx1NEQyJJCmiWvWtaLmkeGbo6w0afLiFphz3B312r82ugjbJ72erE1Jnk5iDr0FbYElBHYl0kflr2cYMXtSby84P0ws7CZEPISuhoSUhnpIbjkwVf7MYSt8+swLac21csawdplGFzFjxEYkSg3fcJSYxAcnIuOUwbhjea1mFKrbwGXSc4Qp9xHRJy8wg75SI1+gGA4YMpIezSnAVVqJBtxF3Zhf53J+HaaLcSl/jZSxD7IRgvDyvYu1oWhzRvoxw+2k/jghHckF54RQkqioIoQhTFI7/2LYyH8p3w7DOlhWolZfyLU7zwcC2dZwWfrUXgnl0yrSRF+6gD25w7FghlOtRyoNELnUTMxy8oH2w7KWdw5Nwyndnggd8RMzOzbigapq408JF7ZhE+OGuHt/s2RHh+HuLiXt+jQq/jHuwnaN6sn/D+KEzXvgn6DO3B7QgqQalYRUgoFVYQoLAPhN3wQxO8a2sHOXFzQqjCRCVy/3gb3nhewetMFxOUV3ZTyIbl7GOs2PMPC4xsx00aRatfVS9RiIL4+8gN6nfgRmy7EvKjuzqeW9m3ChrQZOL5tCrpUcnp+dWOSFMSn871rGUhIfFZLVelrA/8a+h1LZq7Cga1T4GBqAhOT0ls7qxFYld8MRsr83UTNYdWTTwDyKcB/cTuO+qoIKUnEOMI+IaQ8Of7Y7OyCef8mQzxyLwKOToK5Mh9L8hIQcOoQDnhGoL65CRo8jUKigQPcJoxEPzMDNer5YchLDMCpg3/C84EOzNvUx9MHyTDoNQITRvWGmTLT81WOQer3Gz7e/G/5AZTJGKxeOwxttbVbTeqLNW+44nN+AkUFjJd4IWS9MwyEx4qTIe3qKrzR50uEwAazT5zGL8PbUE8lIcVQUEWIgljUIUy0GY8/0pvAcdMFXJzbjYp+klcKSziFD6yGY1uKGFYrTuH6132VCM4I0V6U/iNEIXlIDPTFGQn/GaQ1bM2bo/KjUgjRbKImbWBtXTBaHSFeATSuipASKKgiRCESRAQEIKXgHmINB8umlPYgr576bWDjZF64HxiAkHgqA0pIcRRUEaIIloJHd6ML921eQ+c2FRRfJEQrGaDj63YomKIhCcPdR+kFrYSQQhRUEaKI9If479KDgqKd4q7mMGlI/VTkVVQPzdp3hGnB/gNcD0+EvPKwhLyqKKgipEIMOQ/vwptfloWj37Y5mlBMRV5JIugatYRJwX4cbt68j6c0rIqQ5yioIqRCRRXEecbo2smkMP1ByCuoTitTdOOXseSkBD5EHK0DSMhzFFQRUqEsxEXcR0rBfm0udkyIGhCboFNX48KJGsEPEJ0qf9FtQl5FdG8gpCLsGaKDHwkPWqF1U11hn5BXkEgfLcybFu6XuT4kIa8mCqoIqQhLR0JEUuG+uCVaVnoxWkK0iKgRmrVpJjyIx+MkCqoIKUJBFSEVkcQi9E7RKPWWaN5Ep3CfkFeSLoyMm/Nj1jmx8I98SjMACRFQUEVIBVhqIqKLyvF07YA2YnrbkFdZfbQy7YjCserpiI1LAfVVEVKI7g6ElIshNyUBjypep5aQV4QIOnr6KBxVJcHjmCQUrN5ECKGgipDyMWQlxeGh8Mi4myla0buGvNKKalUVFmtLiUhAKgVVhBSg2wMh5cpDauIT0GIchJQh9gmSsyiqIoRHQRUh5ZIhKyMdhdk/Y3S1pMKfhBQvAIqkdEjzKKgihEdBFSHlykJyXKKwryJ5CQg4vgWfzv8UazZuwJqlH2P+mr24+DCtYG1BtcSe4e7O2ei9xhcZQpN6yUZigAe2fLoQS9dswMY1SzFn/jrsvfiAxvtwWNp1bBw8B4eicoQWFUp/gsTUPOEBIa82CqoIKVcepGlFyT89NG3UQBhJohwmCcTOWVPwY/L/sHTjOixftBjL12/CN5MMcGLEBHzpFYNc4XtrnwxZqY8R5nsUG6cPQc8Zv+JBWibUrlOiIOCbB7cfk9Bn6XqsX74Yi5avxy/fvAODEzMx4stziH2Vl1JhyfDbvg5feyYhI0tFxQ90GkK/qdBnK0lX3c8lRMNRUEWIwpqgbXN95YMq9hTXNn+GRY+HYP6412CoU/ST6kC33VAsWWeJA3NW40Bo7Y/gYtGnsGzKh/ji56PwjjOAVZfmQgpU3eQj5dp2fLzoCcbNHw07w3pCOyDS7QC3JQthdWAZlh+494pO++fPjzuWfOWh2nGBuoYwNtEXHkghyaSeKkJ4FFQRUh7ZU0T6xwoPqoIhN/wE1q/zgfWw3rDWKxma1UOrHs5wefo71u26juRa7lgRtR2GdXu2Yv3yuZg+qjcsjdS0inxuKI6t/wUXrZ3R17roJv+CqNXrGOKSjT3rDsIn+dVbo46lXMNOj6ew6V40AKo6UFV1QopQUEVIjcjAvTPH4CExh5NNG8gLUUTNOsLBQR+h20/BJ5E++VeMIeeeF9w9ImHs1AVm9eX0IYqawtLBGgg9jsM+8eo7Zq068D2jO6+g7cx30I17wVUlbU0IUQwFVYQoTB/6ekouUcMSEXI9hNspZ0HmooVqUwIQEEHVRiuWi/iQAATCEGatjSD/rOqgSQsT7jsi4R0QhUyhVfvxab/D8OwwDqPMGwltKiRqgEZN9YQHhJAiFFQRUp68LEgkRamN5jA2KiMgqkj6Q9y+9IDb0YO4YRmBGXej0jNowO2E4sq9eFpPrUJpuH87ABIunBKLdbnwSZ460NXT475DgqArwYh5RU5qQdrPszWmDzMt47xUEfcBoHnbJsKDVEQnpr9avYCElIGCKkLKk5WMxw9ThAfKY1lSpCk87KQwkKMEYAVYNqRp2cIDBUgykPkq1FNisTi74RzMprui3fPJENVJiqSMbAqqCOFQUEVIDWCpCYhQODZLwcPHybRIbUVYOhIikoQHCngYhyStr/ydh4Szu3G2+xSMaKdkryohRGkUVBFCiJZgCV7YdMUeS0eaVU/ajxBSLgqqCCFEG/Bpv0230WeeC1rQlb1iufewkws+64hEEFVi0599CipeY4FoEXrrEVKeutyFVCzMcuJrS9VTboyKqEkLmBsKDypU3mw28lzRbElFmRmjqW5tFxZIwtUv+si9WVdmK31j59N+e3Glz2S4tqiJPqo63FujrrCvgwaoq2ElG4RyHPf+h29PhyFdxsAYv8mQ5bsGZvwv47YXEc/bGWTpwdj/vh30G+txvy8h8lFQRUh58rkLqkRauC9l3Kdb5cbkiHT1YKBwlFTebDby3PPZkgoSN0LDGhm4XR4j9PrYHbdu3arCdht+qweiufAT+QAhL+oU1l9+DfNcTWoouJFxb42iYqp5yEa+hg1Uz0Dw5cto/ulnmDvYAuLnJy0bj+75I5L7YOM0+DW0K3YyReKOcHZ1RAezFqiGIhVES1BQRUhNEJvAsitf1ToCoTFl1KB6Xr3dBN1Mm9Gbs0JitLE0577G4U5obBnL6OQgPvI+9x2AcTdTtKr1kyqCTjML2NvbV2HrBstmxYPJbEScP4zLgXuxeOoUTJlSYpv2OfY94Ese+GPf57MK22Zshx//IeFVlXMfl491xJyRnV4uxMsSEHTVn/tqhf5dTFDUF1coH1kZMnRpY1SinZAX6LpNSE2o0wb2Q17ndrKRJi1j+nlRTSxDJ/S2KaoBRMrWAKb2TnDk9rLSpJA/sS8PmQU9jTZw690JpRey0Qa6sJz+O26d+h179uwpvW35AD2kfMjZDZNW/1bY5v4e7EstlfTqYPFhuNNnCHoZlQiP0u/jumc4mKEj/telsdBYJA9pqQboYWkkPCakNAqqCKkRjWDtMgyu4scIjEhErtBaHEuNQXBwLjpOGYQ3mlPyr2Ii1Lfui0mubZES+BBx8lKz7Bmigx8BHYdg5BstaakWUkDU7h389lUfGAiPCzFkh/8HT75bs48tLA1L9kc1gt3H32K6JY12JGWjoIqQGsEFAJ2HY+EsK/hsPQrvUov7ShF+6gD25w7FghlOaE53f8XU74xRCyfAyucgDngnlugB5Bex9sSO/RIMXzABfSlQJeXKQew9fwTw46kGvTyeihBFUVBFSE0RmcD1621w73kBqzddQNzz6t75kNw9jHUbnmHh8Y2YaaNmSSomRXL8s4LdrISnSFWrquQ6aOG6DEfcu8Bj9XZciHtRYZ1J7mDfOnekLdyOrTNtX9nZlEySisSCSrLpSE6vRAX6V04qwvyCuK/mcLRspUXjprKRGOCBLZ8uxNI1G7BxzVLMmb8Oey8+gESd3spaQsT4uaKEEPnSLmCplQu+5VMCGIMdIXswo1PDgqeUlpeAgFOHcMAzAvXNTdDgaRQSDRzgNmEk+pkZqEeKSuqHbR9vhm+5a+WYY8zqZRjW9qWhvrWEv3GcwcED5/Ggfmu0aZCCB4lN0MvtHYzq16HY7K5XxTP4bVuBzb6FwXApJmOweu0wtFX6vDzFhU/fhMv6W9y+MVzdL+D0dCvN/pSecRUrrftgVcpsHAndjLdN6glPaDD2DHd3LcWsqz2w9ftJsDMs/J1Y1gN4LJuJzQaf4fcVA2Bc67NitQcFVYSUpzqCKkI0nvYFVfn3tqFflznwdnVHyD/T0Unju6rykeL7Pd4e6oORF/dgrl2JEWRxJ/Fh36+QuWIvfpnUGXRVUw1K/xFCCHnFZSPKzxveEMNuoC3aa0PuLzcUx77diovWzuhrXXpIgajV6xjiko3daw/AJ4mWb1cVCqpILUlDwOZRMJnviWShRT4Z0i58BhPH717tujqEkGqUjodBIdzXThj0uqkWVEwvrBi/0yMSxk5dYFZfTnpP1BSWDtZAyHEc8YmXX+aFVBoFVaRWsOSbOLDtIdwG2KD81VvqwKD7YMxM2Y2fz0TTG58QonrScPj+E8rtWMHGTF8LSm/kIj7EH4FoUs6SVzpo0sKEu/5GwjsgCplCK6kaCqpILUhD4P6f8Fub6ZjtrMCyGgbdMXGxLQ5/sxfeKSVLERBCSAl5sbi2cwXe6fE/DJv0Lob16I1xazwQKil2/ZAGYOcH0zBlymj0t3XF50F8gVQPfDX93YKq89M3X+OuVJoqDff/C4CElbfkVR3o6ulxAZcEQVeDESMTmkmVUFBFalg+0m7txOLlz/DR52Nhq1BVZz1YjvsEa5r8ji+2+iKFuqsIIXIx5MV5Y8uMEZh8tR2W/H0Bp/b9jpMXfsT/bnyC4XMPI6KoSKyeHab/sgt79hzBxfvpwsLJ6bh/8UhB1fmdc3uWKA6qQVg2pGmVKJ8hyUCmWpVK0VwUVJEaxF/wzmHtB1/D13kIejaMxn9+fvBTZAvORZdRTohZPh/L/riHdHr/E0JKYJJAuC+Yji+yZ+Po5uno3rxwdJRI3AWD3F7H/d0/Y/e18kdxqhzLQmp8HOLiqrolQaJo4MMFhwkRScIDBTyMR5L8dZ5IZfElFQipfnksPfQoW9q/Lf/OreL2Gpu6w5+ly4QfXZ2eebElxkX/7hi2I0QqPEHIqyyReS3tLrwvjJmrezDLF56pNbIEdmVlf+543Ngm/2dCY5FcFnv0fSYSgbVdcYVJhNbqJ2PZQdvYIH2RcK6qsjmw+WdiuZ+ogPxg5u5qzETl/m3yucvbMmbM/2zjZczrWa3/BbUC9VSR6pf3BH77lmK4/XIED9iF2FyZ0NWuzJaFWJ+ZYN8Oh/OcrbjwMK3gikMI0WQMWWG/Y5qlPkSWs7EvjB/fVBn8kkQn8d33F2E4bTJG25ZM3OUhPbWwhyr6UWINjpUSoX6X93EmrSrXvKLtBn4YZKwFg+i1GwVVpPrwg0X3rcYUx9fQb6cMk8554ehnLlWs3tsAxr3mYIf3X5jXxBPv2Q7A2BV7ca3Y8iQqxQVxkuclXDIgzacQjmiCfEgeemHzlNch0u+Bd1b+Ab9EVb5HZMiRFKx9w8lDprSqdY4ycPeEO3aHc8FU+K/46kQo91Mr4xn8Du+Dh8QCbsO6w7jUJUaCmNCIgv4eQ8NGWlAyoQIifbQwbyo8UIBZKzTVpXBNFSioIppNkg5pTjakWdVVvI77hCjs8TcSmntI1F7eY1zZOBUOY/9AtssyHPxxOBqeWYR+YzfDV2WzZxny2Yt3Bsuv6tSxRugyYgamWogBi/fxxYhOZcxYK4M0GF4H+eruPeD8WsvSvTk5MQjy5oIqGMPBtj2aFLZqL1ED6BlUInQUN0JDWqpGJSioItVHxwQ9J32OPT63cWl6Hewb6IK313oVW0hYGdmI892KmU6jsCl1ELZHXMfJ9bPgbNZIeF7FRA2h//zqrg/9unThIWqMPYXvt+9jmHtr/HjqVyyePAZjZ3wO9yM/YkzAN1i07w5yhG+tmrpoqF+0sIkO9PSruv6jCLqW72JXWDpY2DZMsuSCq0qQxQTjCl8SwckJ9u1KBxOyyP/wt08KFwq+jqH2bV6BG58YbTqZc6c1DndCYyE/mZqD+Mj74FfgMu5milYUDagEnUZS/XRawn7Sepz0WwPr89NgUq8ORCKRkpsuTBx3QLTkJC5sncMFU2qyADEhtY5B+t8efLLcB3Zz38WAFkWfBkTQaeeMibPM4bPzPO5ka1sKOw9Pgm7Bh9tr27+LnCVmsnDf+wzOcnuGEyZiZNfKBWxVw5Bz91cMNqjKNa9o64EFnnHFes7L0wCm9r3hyP3ts9KkkD+xLw+ZEin31QZuTp24j4xEFSioIjWkLsSWb2H179ux1MEQ4hEb8M+NW7h1S9HtGs5vnQkLvIap7ruxebodxBRNEVJMJiJvXoUvjGDeojH3jiuuMSxeswUC/HEvVjV9VeojFcE3bkKCDujfzRSl+qyld3Bix3lAPBZrlg1Fuxq964lQv/MUHAx7jNjY2Cpup7HKpZWCHyK5f9e6Lya6tkVK4EPEFdXmKo49Q3TwI8BiCNzekJMyJUqhoIrUIO4Ts/FAfP7bajhf+AfXMtvidXt72CuyWdfD3b8uosnKH/D9NFvo0xWAkBJkyJQ8E/ZLkiEvhw+mHuNJcm5hk7bIjsR/nvwSM1LEJTzDS78dS0WA+wZ85WuKaTtWYYZNLfTHiHTRpJUxjI2rujWFuDLjnup3xqgF42HlcxAHvBNL9HDxsyU9sWO/BCMWvou+LeoJ7aSqKKgiNawuxHYT8fWaxvhp9SEEKrRIshRhB7/D8tSp+G6+Ewy1JqDKh+TuHkzr/Q2uqeVi0Qx5if44vmU55i9djY0bV2PpnIVYs/cSHhZf7kMtZCMxwANbPl2IpWs2YOOapZgzfx32XnwAiTqe2mrREGZd7WHIva6yc/NL3ESz8CTqEfc1G2lS7eqpkj0KxPkACWBhg/qn/4BnrDDLkT3DvT/XYv4XcZi4dzc2v2OBqo780iw6aOG6DEfcu8Bj9XZcKDZDmknuYN86d6Qt3I5tM7tyrxyiMoyQWiBLOs+WWndjs0/GVFzM7tlltsLKhk07+kixwneqVA3FP2WZySw61Icd2TCdOYi5n6uWhffyWHrQbjbN8X3m7v+U5QqtTCZhj459wmz6r2LnY7OExlomS2VB7u+zXlPdmX9yjtDIn+f77Nj8fqz/yrPscU6Nv3JqR4Yf2zSwLTOcdoQ9LvYry575sDWORtxrWMxe2+TP/XWrSl2Kf/JFPWczfRGY8ZLz7GnsebbGbSAbOnECG2pvx/rP/p6dDE2t+euGWsliCf7H2ealH7F5K9axDauXsNnz1rI9F+7XTAHlVwwFVaSWSFjQ1tHMeN4ZliS0yCdU/bVZy3wzauEKoMqgShbJTn46k72/ZDXb5H6MXTq5ng3kbgbqGFTJkq+yNf2t2MBNt1iG0PacLIqdnOPALKbuZ6GZtX1VzmPJPt+y/oYj5VTR5g419gSbY2HPpu4JYplCm3aTsczQI2x+f0c2detl9ig9gyXePc02zf6YrVg8VIUBkLoEVdxxLLFnIliwqbXxoYuQEij9R2pJI3SZfRixPw6CkdAiXx0YOK9F7J1l6KnQ4stqTNQew9b9hm3rl2Pu9JHobdmM++3U8XeSIvzYVqy72AFD+1hCT2h9TmSMHkMc8XT3L9jpU3KsRg3LDcWx9b/gorUz+lqXHi8javU6hrhkY8+6g/BJfhWqjPGlCd7G9yf+wGzTGPyz7VccuV0Hfb9ehYlW/BBuE3Qz5V93WkIYT8XQDb1tWtBga1LrKKgihLwsJwxn3E9DYmwLG7NSIRVHB80sbeEAH2w/fAOJtRZVMeTc84K7RySMnbrArL6cW6qoKSwdrIHQ4zjsE1+7AWANEonb443BEzB70QLMftcVds2z8PBOGGA1HMO6l/8xRpPw46nO8eOp7Bxg117r66QTDUBBFSHkJSw+FNcCUwAzYzTVlX+JEDVpAXNDIMX7DiIyaytUyUV8SAACYQiz1kbQFVpfpoMmLUy474iEd0AUMoVWrZUbjkPTHdFj4d+IK/ZnYbH/4s+9GRj/2Xj0NNCWy34+Uh/ew01uz3jQ67BoQP1UpPZRUEUIKUaG9PsBuMSXYC5n6QqRrh4M+Cgm6DbuxVTTuosVSsP92wGQcOGUWKxbxrImdaCrp8d9hwRBV4IRU9XVVNRdZhzu+t5B8N1oJBfUJuJncF7H9uXf4eFHP+G78RbQnsnzz3D3Xx+kwAKDenSk4pVELVBQRQgpRoYsqRRFS+VWTApJZnWtu1gBlg1pWiUCOkkGMqu0RJIGMHgDc35di9G5x/DVrKmY8o4Leo7dg/S33XHiS9cqLmaubvKQy/35xQ5v451exjSeiqgFCqoIIcXkITUhlvv0r6h4PE7Kqp2xSiwdCRFJwgMFPIxDkvz1OrRIAxj3+Ri7Lnjizz17sOfPC7h14RcsGmalhSsQtIDzeh+k31iHN01erQpURH1RUEUIIYQQogIUVBFCCCGEqAAFVYSQYopmyymqFVo31a2d8SwifbQwbyo8UEDBbMbayoEl4erK3hCJRFXa9GefRKLwE0uS9/3lbYQQ1aOgipDy1AVYI2FlrIYMsnrafjMqmi2nKD2IG8qfd1ftRA2gZ1CJ2kTlzGasfkboNXcnbt26VYXtNvxWu6K58BNLYoUrZCi8VQ0XmD2vHV0X9WR8CyGEgipCypPP3SwyhOpGmSLUKZimrs3qQNymI7ryu3fuI6aMhZNl8ZHwj+N2jDvCtFVtDRIWo42lOfc1DndCY8FXgSgtB/GR97nv4A61myla1doVTwSdZhawt7evwtYNls3UpcAlF5iJiupT5COXO6/a/s4gRBEUVBFCXlLH9HUMdTQEsqSQZskr7MSQl5lREMQYujnCRr+2LiMNYGrvBEduLytNCvkT+/KQKZFyX23g1rsT1TIihFQrCqoIIS+rbwGXSc4Qp9xHRJy8ilX5SI1+gGA4YMpIezSvtbyPCPWt+2KSa1ukBD5EnLxeRPYM0cGPgI5DMPKNlq9Gior7ncNO/YA5rs4YNnEYuuuboPs7K7DzWiwXYhJCqhMFVYSQEhqh86iZmGXlg20HryO5ZKySG4ZTOzyQO2ImZvZtVbuBSv3OGLVwAqx8DuKAd8nFnRlywz2xY78EwxdMQN/mtTT2q0ZJELZ/BVYGvoaV/3jh1P5TuBl3HktaX8HMgTOxyiuGAitCqhEFVYSUR6chDJqKhQeqlA9J8lOk82FAVjISU3OEdvUgajEQXx/5Ab1O/IhNF4rdiNkz3N23CRvSZuD4tinoUmuz6YrooIXrMhxx7wKP1dtxIe5FhXUmuYN969yRtnA7ts60rcTge83FYs/imz+6YOWivs+rp4vEnTFmxWeYZ3AGX3/0K64kyx8np7ymMG+hTwPVCeGIWNWngRCivWQh2PmmM2ac5Yc698Mqn7/weS/FCw687Bn8tq3AZt9nwmN5dGAyZgXWDjNVg5sUv25cAE4d/BOeD3Rg3qY+nj5IhkGvEZgwqjfMxHWF71MH2UgMOIODB87jQf3WaNMgBQ8Sm6CX2zsY1a+DFlYTlycfyZ5L0XHwn+j+4zEcn2cPPeEZ4CkufPomXNbXw4orp/B1byOhXUnsMU59+CaGb73DPbDHEq8zWO/crPA5Ql5hFFQRUp6Xgiru5nH+NNa7lDWpnZDaJEPa1VV4o89GYMUpXP+6LwyEZ/i0oN/GEei+OAqTj17EnlFthXYl8e+LIS6Y4RnLPaCgipAilP4jhBCtUAcGvT/F1bAAXF3Zp1hAxWGJuH87mtuxgn0HZXtaCSEVoaCKkPJUtmo3IbWqAZpZmKPZS0VO+QH7F3Hw5AMYjh+PoZ0bCe2qYo5Obapj3CEhmoeCKkLK81LV7lREJxYMLSdEc2Tdw76V38Cr+9c4/N1odFDFqgB5WZBI5JXbIOTVRkEVIeXS4YKqopKRUiRlZFNQRTRHXgy81i3FN5kzcWz/YrgYq6gie1YyYh+mFO6L9dFIl24lhPDonUBIuXRhZEwD04kG4gOqVbPxUdQYHPv9E7iYVNMSN/ot0bzJq1ADjJCKUVBFSLnqQLeRPgpHjMThTlhZa8wRokZYPK6s/hjrMQ8XfpuMLgXlL/KRcvVXbLmWXPg9VcBSExGdLjxoqg+9WluomhD1QkEVIeXSQZPmLWnNOKI5+AKtuzbioPGn+H3FgOdFQPk6aUHnfMAaVr3HimVlIKno04VJSxjVehFYQtQDBVWElEsE3abGMBMepUcnIpUGVRF1VRBQLcao+ZcQ5f0LFs2YiilTphRukyZjwQ8N0aZFVYMqhqzkJ4gVRhcamrdAE4qpCClAQRUh5RKhnmELtBdmjEuSMpBFQRVRS/lIufgt3prxG8LS/fD3/r3Yu7fYtv9v+LXsiPZVXgORIU+ajqSCfTFat2n6ilSsJ6RiFFQRUgFRk+ZoW5T/u/MAMRKZ8IAQdVIXhs5rEMYY+IUy5G73F8G+ymPKcxAfeR/8GgOAPkyMDV+JdRUJUQQFVYRURGyCTl2NC/fTnyAxldb5J6+yLCTHJfIdVhwTdDNtRjcSQgT0XiCkIsWrqkue4ElKTuE+Ia+kPEjTiqb+tULrptRPRUgRCqoIqYioMdpatxcexONxElWSJq8w2VNE+vMLKXMMO8LcmIIqQopQUEVIhXRhbN4RhcvQxsI/8iloVBV5ZUliEXonrjD7Z90BbZvwNbAIITwR40cvEkLKwZAT8BP6d5sLH4hhs/osri/vBT3h2UrLS0DAqUM4cOkx9Ns0BRKjkGjgALcJI9HPzADqM5GKIS8xAKcOHsalmIZo05w71AfJMOg1AhNG9YZZQUFJdZGNxIAzOHjgMmL0jdEcT/EgsQl6ub2DUf06aP7sNDV6zbCoQ3i3yzgckACGs08i5JdhaEGz/wgpxAdVhJAKPPNiS4wLPpwz8fiD7JFMaK8kWXoAc586mE1192PJuUU/JJ9lPjrG5tsMZSvPR7McobV25bH0oN1smuP7zN3/KcsVWplMwh4d+4TZ9F/FzsdmCY21TJbKgtzfZ72mujP/5BdnT5Z5nx2b34/1X3mWPc5R8g+mBoq/ZpLkvWbORb34+1Q7GcvwXcts+IgbxszVPZg7EkJIEUr/EaIIcVvYvGFa0CMguROB2EwlOnjZU1zb/BkWPR6C+eNeg+HzStd1oNtuKJass8SBOatxILRoEHDtYSm+2PzxN4gZOwvj7Jri+Sx8USO0c5uHdVYnMOezIwir9aJd+Ui5th0fL3qCcfNHw86wntDOHapuB7gtWQirA8uw/MA9aORIuBKvGSM5r5mDH67BgbCaWjwpF08f3UdkwX4n9OncisaQEFIMvR8IUUSd5rDoblq4H3Qb92KyC/cVxpAbfgLr1/nAelhvWOuVzJfUQ6seznB5+jvW7bqO5FqNVaQIP7YV6y52wNA+lqXTnCJj9BjiiKe7f8FOn8SC7rtakxuKY+t/wUVrZ/S1Lr2YkKjV6xjiko096w7CJzlfaNUUir5m/sDanTX1mknD/f8CCte/FJujo4nSSXBCtBIFVYQoRAxzOzsYFtzXgnEzLKmSwUQG7p05Bg+JOZxs2qC+0FqcqFlHODjoI3T7Kfgk1mItrJwwnHE/DYmxLWzM5N00ddDM0hYO8MH2wzeQWGtRFUPOPS+4e0TC2KkLzOqXDDo4oqawdLAGQo/jsE987QaAlca/Zv6q8DXTnXvNhGw/WTOvmZwYBHlHFO7b2sGq1YueQUIIBVWEKIgLJDrbo2/BiOfHCIxIRG7hE4phiQi5HsLtlFPXp6geVkoAAiJqKp1TGosPxbXAFMDMGE115V8iRE1awNyQO1TvO4hQJhWqErmIDwlAIAxh1tqojKreOmjSwoT7jkh4B0QhU2jVCPxr5pp6vWZYagyCg7nXBj9h483usJAXyBLyCqOgihAF1WnTFf1s+cIKKQi8For4ysQS6Q9x+9IDbkcP4oZlrBMiagA9A36x21BcuRdfS2UbZEi/H4BL/P1Z3AgNn4/heZlIVw8G/H1eqVSoqqTh/m0+FaULsVj3xbivl9SBrp4e9x0SBF0JRowm1cLgXjP/qdVrhiEz4g68+ZgKpnCya4eGBe2EkCIUVBGiqPqm6PGmXcGu5IwvAiuRbmFZUqQpPFI6CxJJFmonAShDllRaiUHdUkgyaylVybIhTatEQCfJQGae5iQA1e81k4HwG/8iiN81dMGQHi3VqPwHIeqBgipCFKYPy17/gxW/W8l0C0tNQETBJ3xFpODh4+Ramq2Wh9SEWO4IFFVYYb5WQhWWjoSIJOGBAh7GIanWZysqTu1eM8/TkYB4cC/YNqfxVISUREEVIQqrC8Nu/eBmJeb2A/DPjUjQKoDkVcES7+LSGT4daYoBb76ONnT3IKQUelsQUgkiw65wdbPl9lIQeOE/ROZqTs8HIcrLR0rQdVwqGKPuiOFvtOY+YhBCSqKgipDKEDVFN1fnghSgxOsirkcr1ldVNFtOMeXNZqtuRbPlFFU4M61WxtYUzXxTVMFsRs0ZBaRer5l0hPl6g0/+iV1c4GRGQ9QJkYeCKkIqpVgKUOKL0zdjFZpx9Xy2nELKm81W3YpmyymqnJlp1e35zDcFlTObUR2p1WtGGgyvg7e4nQ4YPr4/LOrREHVC5KGgipBKEhnZY+TE7tzeA5z0uIFoRaIqsQksuxpzOxEIjSljgLvsKSL9Y7kdE3QzbVZLb846ELfpiK787p37iJHIr0Iui4+Efxy3Y9wRpq3klaWsCWK0sTTnvsbhTmhsYZXvUnIQH3mf+w7uULuZopUmXfG410wntXjNMEgDL+FgEHcMhq4Y3bsNzfojpAwUVBFSaY1hO2wUBvKdVSdP4Hx4htBejjptYD/kdW4nG2nSbPmz5fIKp8XD0Am9bZoIjTWvjunrGOpoCGRJIc2SFzEy5GVmFAQxhm6OsNGvrctIA5jaO8GR28tKk0L+xL48ZEqk3FcbuPXuhNIL2agx/jUzVA1eMywR147/jSAuiLV67230M6ZZf4SUhYIqQipNBL3OLhjnYspFVT446R2pQHX1RrB2GQZXcdnV2AurVeei45RBeKN5LaXUePUt4DLJGeKU+4iIkzdJPx+p0Q8QDAdMGWmP5rXWbSFCfeu+mOTaFimBDxEnb9IAe4bo4EdAxyEY+Yam1VXiXzPDK3zNhHCvGYspg6vtNcNS7uDsiUBurzsmcn9vI+qmIqRMFFQRoox6lhg+5x1YIBIe7qcRKK1oFiAXAHQejoWzrOCz9Si8Sy3uK0X4qQPYnzsUC2Y41WKgwmuEzqNmYpaVD7YdlLNQb24YTu3wQO6ImZjZt1XtBir1O2PUwgmw8jmIA94lF3fmFyT2xI79EgxfMAF9azNQVYqir5khWDizul4zuYi7dBS/haRD7DYJY+wbC+2EELkYIUQ5GX5s08C2TARHttTrCZMJzeWRpQcw96mOrP/Ksyw2t+j/yGPpQbvZVKuhbOX5aJYjtNauwmOaZl14TLlCK5OlsiD395hV/1XsfGyW0FjLCo5pVqljKn6uH+co8tdRT/J/j2KvmXNRL/4+qpZzl7m7mXKvcXs252SUQq9xQl5lIv4/QnxFCKkU7lP8qaXoN+IHxI47iLu/j0U7RXoL8hIQcOoQDnhGoL65CRo8jUKigQPcJoxEPzMDNUpRMeQlBuDUwT/h+UAH5m3q4+mDZBj0GoEJo3rDTKxOlYqykRhwBgcPnMeD+q3RpkEKHiQ2QS+3dzCqXwcUrIOtyWrlNcMg9fseA7ovwp2Bm+B9/GPY6Wn6iSSkelFQRUhVSP/D5rfewjyf17HJew/m2hkITxCi4Vg0Tn34FoZvBeac+As/D2+nRgE/IeqJxlQRUhV6thi3cDysJOfx06+XEUcfUYhW4MsoHMfmfX4Qj3gPHwxoSwEVIQqgoIqQKtFBC+cZ+HKaBcL37cThwDShnRANxmJw4dc9OIehWPbpKHRpSCEVIYqgoIqQqqrXEW6fzMYInMdPm04jgtYDJBotH2l+R7F5XyisZn2EmT2bUS8VIQqioIqQKhNBt/NorPjCBXG7NmP71USFlq4hRC3lhuLI6k04ZzwDa+b3QwuKqAhRGAVVhKiCyAj27y3DFwOj8fM3f8DvmfzlXQhRb1mIOvkbvvFoitnfzMOIdrWzrDchmopm/xGiMvmQBPyKd52+QebqYzg+zx56wjOEaAKWcAaf9HsXpwftgdeGoTDRoAWoCVEHFFQRolJSRBxahDdnJWOB7w7M7iIW2glRcywWnp+Mxhj/t+B5dCF6GapTHTJCNAMFVYSoWl4UTi0ej/ER78L79/dhp1ZFMgmRJw8Jnp+j7+gIfHD1V3zUzZAGpxOiBBpTRYiq6bTD0FVbscnoAL74M1SBxZYJqV0s+TK+XxSEd45/j9kUUBGiNOqpIoQQQghRAeqpIoQQQghRAQqqCCGEEEJUgIIqQgghhBAVoKCKEEIIIUQFKKgihBBCCFEBCqoIIYQQQlSAgipCCCGEEBWgoIoQQgghRAUoqCKEEEIIUQEKqgghWodJwnB8aX+I9HvgnZV/wC8xW3iGEEKqDwVVhBAtko24Kz9ivMMMeDSbiiM7ZsH20c8YOHYzfFPyhe8hhJDqQUEVIURD5ENydw+mWU/EzjCp0FZcPlJ8N2PisD9h8uMh7Fw8BW+PnYXP3fdiq+kfWLTvDnKE73wJS8CFT53h/MU5xObSUqiEEOVRUEUI0QAMebGnsWL0KiTPW4IJlnpCezHS/+D+yTpcsJuEmQNMIBKaoWOGNye+iYc7z+NOtpygSdQC/RcuQbc/52DONj9IKK4ihCiJgipCiPrLvY+jK77ADsslWDu1K3SF5uLyI/3g4ZsCmLeAYV2hsUAd6FvYoU+AP+7Fyu2r4uKqAfj0x9EIX/4lNl97yoVwhBBSeRRUEULUG0tFwLblmHXYAhvWTkAX3ed9UC9hmRLECful5OUgC4/xJDlXaChJBy1c5+KHmSlYPn0jzibkCe2EEKI4CqoIIWosH2l+u7H4s2vouWI+JnQWC+2l6Zh1xTBDbic7F3kvdTUx5DyJRgAy8PRZZtm9UCJjuMz/BLPzt+PjL04g6uUfQgghFaKgihCitljaLWz/7HucazMFS6d3h4H8TqpCRr0w7cuR0D97BTfjivVIsRTcvnAFkbiJnzecRHiZkwBF0Gk3GAs+fRNx29Zi3YlIUH8VIaQyKKgihKgpCe798QO+OteMC5Ymo3dTHaG9LAawe+8b7JoSgeXL3XE1Kg25T+/Cc8sq7M2yxpvcd0hk3H/KC8ygB8txn2DNwARsW/4rvCgNSAipBAqqCCFqiCE34m989/3fwMBpmDe8I+oLz5RLtxPe/v4IPGe3R9Q/7th0JADouww/TOwKvoPKuJspWlV01dPrijFzR8Mi5A+s33ENyZQFJIQoSMQ4wj4hhKgHFgvPT0Zj8A85mHPyGH4e1rb8DqZy5SPZcyk6Dr6Oj64cx9e9mwrt5ZD+h80jR2KeryN+8f0Nc2z0hScIIaRs1FNFCFEzDNLAo/juN1+IB07B+85tFAyopIg49AE691iGMy+NqXqMS3/+A4yfjSk9jYTGChT1Vkn+xg+/XEQcffQkhCiAgipCiHphMbiwfS/OSUzhMs4FnfUU7aPKxOO7dxASHI7IZKEeVd4T3Nq+Cp8/nIDD341Gh3qK/qx6aOU4FKOsgPB9u3A4ME1oJ4SQslH6jxCiRhikAT/hrd7zcLb1cnj9+yWcjV6q5FkOhry4K/jls29wPKMZ2jbMRNTdDFiN+wgLZg+GpVjRn1NEirCds9B95gm0mv0HLv88HMbK5yAJIa8ACqoIIeqDX4dv2VsYsD4QXVafxfXlvSBnQZoaw2L/wsyuo7EzZxS2XtuD2V0aCc8QQkhplP4jhKgNFn0RO372ARMPwocjbWs1oOKJjHvhnckOgMQTm/bRTEBCSPkoqCKEqAkpws+fwEkJIHZ5E87yFk2uaaIWcBjuCitIEPLX3/CJL2uZG0IIoaCKEKIupHdxYsdpLnzpgOHj+sNC4UHl1akujHoOwUQbMRB+An9ciSl7mRtCyCuPgipCiBrgyyicxx7fFEDcFyN6ta5UXSqRSFSprVL0rOEyrju38wAnD1xEeC6FVYQQ+SioIoTUPpaIa8dPIYjbFQ/oB4c2DQrbFcTPt6nMVjmNYeviChtuT+LlBe+HmYXNhBBSAgVVhJBax1Lu4KxHILdnCpfh9mhb2eoH1UqEhpY9MNRKzEVVPjjhHQmhChYhhLyEgipCSC2TIf2uNzxCJNx+Fzjbt1NsnT+58iEJ+xsb5wxD/2HvYFh3E+h3n4AVO30Rl6d82k5kaAWnfqbcXiS8TlzDwxxKARJCSqOgihBSy9Jw78olhPC7Nv9DDwtla0ExZIUdxLyVweix8igunvoTp24Gw2+JCc7OHIt3V51XPrASNYdtvx4Qc7uFKUBpYTshhBRDQRUhpHblROLGPwEFu4ZOXWHeUMlZfywa/3xzFg4rZ6OPsTAmS9QYlmMW4et5zXHx6y+x6UqikrP36qGVVTfY8ruS6/C6/YRmARJCSqGgihBSixhygq/ikE8Kt2+Kvo6d0EzZSgopwbhyfC8Wz9+JADiseTYAACChSURBVGmxkEfUAr2GD4IxfPDHpVAo18ckQn0zO7jw46rwAGcu30UiRVWEkBIoqCKE1KJcxIcEgB+izo+n6m9rrPxFSachDFqKIYlORtpLab460GtsVFCdPfpRIpReGlm/A3oUjKvi4rdLfghNlxXsE0JIEQqqCCG1hyUi8PIN8EPUYdgR5sa6Bc1KMeiNlVcDEHZ1GXobFL+05SD2fgiewBCO9uZoKrRWmqgx2lq3L9wPuYXbNK6KEFICBVWEkCqQIuLoQvzPdQN8U/KFtkrIjEKAd2ThvoMtLJvpFO4rRQSdZuawaFaixlXufZw/eAESw5GYPdSyCjML9WBmYwvjgv0QXAtRZnxWPlJ8N8DVcRnOxNGSN4RoGwqqCCHKy43EpX3H4BuXB1GDyl9O2NMo3Ivk+6nEsOljjTYqvyJJELpvPRZ7WWHl4a8xvkNV1hOsA/2OdujHD6vCE9y+G430gvbKqIMGojzE+R7EttPhoLCKEO1CQRUhREkMuQ+v4YTXU3QZ2xe2epUdYS5D+v0AXJLw/T0t0bVjKzQsfEJFshHn9SPmfJOBT479ihUubVCVfjCeqFk7dDEtKKyAkOv3EV/pYVUi6Nn2wzibp4X1rmjJG0K0CgVVhBAlZeKhtxe8JN0x1sW6YCB45UjxMCgQcQX7TdC2uX6l1vsrHx9QbcC7H0Vh4jF3LHNpW+WAqoCuIYxNhOO8GYiwp3kFzZUirCVIS94Qon0oqCKEKCc3Et4nfCCxcYWLbROhsRLYM0QHP+I7vDjm6NSmIK+mAnlIvPIdpqwHll/YguldGhcGQSlX8d2Wa8rP/uPVaQbTbiaF+yn3ERGXVbhfKcJagsKSN5QCJER7UFBFCFHCi9Sfzbh+sG2kRB9TbiIiAh8X7ht3hGkr5YeQv5APyd0/8MXBFlj7+2K4FBUB5Y43I+gC/mINoWy99kJitOlkzmfxOI8QHP1MicHqlAIkRFtRUEUIUcKL1N84F2ulAhWWGoPg4JTCoMTMGE11q5r84wOq/Zg7agVuRF3ElkXvYcqUKcI2EWMXHEHHNkao2lrNOmjSwgSGBfuPERiRqFxPE6UACdFKFFQRQirvpdRfY6GxclhqAiL4QuoccfsWMKxXxaAq5RJWvfURdoVFwe/vP7B3795i2x/4268ZurYvDIeUVxfiZi3RumA/BQ8fJ0OZBGDJFGCO0EoI0WwUVBFCKqlE6q/Ss/54Mkhi7uOO8Ei/bXM0qWpHlaEL1oelgzFWxnYRi+yrOm5LBF2jljApzP8hzj9SiRmAvBIpwBxKARKiDSioIoRU0supP+UqP+UhNfGJUOfJGF07mUBVw9SrW51WpuhWWAEUiH2C5CwlA6KXUoBUnZ0QbUBBFSGkclSQ+uOXjkl58qRweRpNo9MQ+k2FEPDxEzyVKFFJvsCLFOBJmgVIiFagoIoQUgkMOfe84O5RldQfLwtJj+OFfRN0M22mORcjoVZVgZRYJKQqUauqQLEU4EmaBUiINqCgihBSCRkIvnwWPqhK6o/D0pEYnSo80GSJiEtWbqh6ASEFmOF1GhfCKAVIiKajoIoQoric+7j8pw9QpdQfh2UjI6koiFBl4c8aULwAKNKRJlW2p4onpAAzLmCfVzjNAiREw1FQRQhREENO8FX86ZNbxdQfJysFcbGVX45YOflIu/UjBr17CFEqz7ClIjoxXYkCoEX4FOAATO4lgs+hqwimWYCEaDQKqgghCuJTf57wQR/MGtZV+dQfLy8TaUnCMHWxPhrpVt+liKXdwvblP+Ds0wwoO1HvZTrQ0xfGVEGKpIzsKgRVHD1rDBzrCPh44nJwhtBICNFEFFQRQhTDp/4O+QC9XNHXumqLvbxEvyWaN1HJcselsae49tMqfH02SmhQBV0YGTcX9rMgkWShKglAoBGs+7rCkQtXD12+TylAQjQYBVWEEAUUpv4KYqp3esO6ftUqdcriI+EfJzyoNvlIufYnPNLawl5oUb2qVFUvIkJ9694o6KyiFCAhGo2CKkKIAopSf454p29HqGLp4+rGUq5h58mWmDmxOxqIqlquvZrV74i+lAIkRONRUEUIqVhR6s9xEPpaq3imXlMx9HRUHPTwab+dvugweyjMq9irVlod6DbSV3EFeD4FOIhSgIRoOAqqCCEVeJH6cxzbG9YNqhqkMORlZryopm7SEka6qgx8+LTfYXh2eBvD2ukKbaqkgybNW6BoqHp6dCJSq5yxoxQgIdqAgipCSAVepP7G9u2IBkKr8hiykuLwUHikaizhPDYcMcb0YaZc+FP9JEkqmlVIKUBCNB4FVYSQ8kmDce5gUepPhbP+qgOLxdkffdF93mC0U3VKsdq9nALMFloJIZqDgipCSDkYpIHnscdXSP2pfHySKuUh4exeXOn7Ht6qlrRfdSuWAjzohTsZlAIkRNNQUEWIonLvYedb5hCJRJXa9GefQqLwIzTPMwR6nUWQkPpT51l/LMELm668hnkDTbjwREMVpQB9T+FMoDasjUjIq4WCKkIUwpBzzws77zliw5lwpMsYGOM3GbJ818CU/xa3vYh43s4gSw/G/vftoN9YTwXjkGqJNBheB2+pOPUnQt26eD57To87OfWqPPY9Fmc33UafeS5oUe1XtWo4/ueKUoC3cMgrGLTEMiGahYIqQhTCD9a+jOZLl2HeoI4QP7+JZuPRvQBEwhBOg19Du2I3V5G4I5xdHdHBrAV3q9REfOrvEg4G1VNx6o8hPx/PZ/9Js4HcKmW6shB1bDsu95kM1xY1MTRd1cdfXFEKsB7uHrqMQCmlAAnRJBRUEaIIvk7TsY6Y7dYJ9YSmAiwBQd7+3I4V+ncxQd3CVkE+sjJk6NLGqES7puBTf+cQJHbGJBcL9U39ySJx/rdzCNy/DFOnTMGUEtu0z/fhPuOCkwf78Pm0wrYZ2/y4MFlN1beAyyRniO+ehVfgM6GREKIJKKgiRAEsPgx3+gxBT6MSPSHp93HDMxwwdMT/ujQWGovkIS3VAD0sjYTHGoZP/R26BbHLEDhbVmn55OpVxwrTT/+LU/v2YM+ektsubJndC5l8J1uHSVi9q7Ddfba9Gvce6sHSeQhcxH44SClAQjQKBVWEKEDU7h389lUfNH4pA8aQHf4fPOMY0McOloYl+6Mawe7jbzHdUhNnohWm/g4FNYXLiJ4wU92gIVIhEeqZ9cRwl2YIOniJUoCEaBAKqghRWg5i7/kjQM54Ks0nzPpr5IgRTqYvpzxJ9atnCqfhjhAHUQqQEE1CQRUhSktFmF8QwMzhaNlKQ8dNlUGY9dfIxRlOZg2FRk2UD0lqKrL43fQUpKuk9HlNaAgzJ2e4iG9RCpAQDUJBFSHKygjDv38FgIkd8IZ1E6FRGxTN+msGl+EamvqT+mHbDH5Q+kws88jAsEmTMdkiEJvnTOXaZmDZqUeQCd+qngpTgCMoBUiIRqGgihAl5T+6i4vR3I5jd9i0rImp/DVFSP2JHTFcU1N/evaY7V5y0HrR5o51w9qr/8WPTwGOoBQgIZqEgipClJKNKD9veEMMuwG2aF+j76R8SKKD4OfnV3oLjIakip0aLNkPx/fzs/5c4GSmxrP+tB6fAnQpSAHuP+6HZOqsIkTtUVBFakkaAjaPgsl8TyQLLfLJkHbhM5g4fgc/tUqBpONhUAj3tRMGvW5aAxXTs5EYcBwb57+F7vo60G/XFd27dy+92b2HnYFVqcCUjxT/S/AIaVY460+t1/rTdi9SgCEel+Cfki+0E0LUFQVVpFaw5Js4sO0h3AbYwFBok68ODLoPxsyU3fj5TDTUJqyShsP3n1BuxwpdzPQL26oJkwTh0IIRMO+2DJdE/bD4uC8CotIhE5bDeXk7jbl2VajAxJLgf/YCQsSFs/7Uea2/V0JRCjDkAs76J6n5ODBCCAVVpBakIXD/T/itzXTMdlZg8VuD7pi42BaHv9kL72r7tM6QF+eLnSsmoEePYZg0aRj3dSLWHA95kU6TBmDnh9MwZcpo9Ld1xedB/EIlHvh6xsSCKt3TN1/jfjPVYomX8NWI4VgR1x8HQq/h5A/zMNalJ2zbiis+b0pgKXdw1iNQSP1p8qw/bVGUAgyEx9k7SKGoihC1RkEVqWH5SLu1E4uXP8NHn4+FrZ4ioYEeLMd9gjVNfscXW32RovLuqmzE+W7FjL4f42qbefjb5yT27fPAhd8ccWPSBMz9Mxy5/Lfp2WH6z7uwZ88RXLyfLvQMpeP+xSMFA6B3zu0Jg4KfpyJ5D3Fs5RL80f5L/PXbYgyzbFwtgdQLJVJ/VPBTDZRMAeYJ7YQQdURBFalBfG/QOaz94Gv4Og9Bz4bR+E/eYGt5W3AuuoxyQszy+Vj2xz2kqyywyockaB8WDvsR2Z+4Y8t7b6C5Dh9M1IW4qzPcHOOx68s/cC2tprsI8pF8ZSeWH+qOb9ZMgI1+DVTBKpH6o4KfaqJYCvCcf5L6pMAJIaVxn7YJqQF5LD30KFvavy1/T6ji9hqbusOfpcuEH10FsuRLbKWDIUP/Tcw/s+QPjGJHJ3fg/r1ebMWVJKGthsgesaNTbVivDTdYhtBU3WRJ59lSKzETu7mz0BwVnNwy5bNnXsuYcdHf03UHC80XntIIJY+fO1/VevwylhPqztzEYma19BxLqs4/DSGkSqinilS/vCfw27cUw+2XI3jALsTmyoTUmTJbFmJ9ZoJ9OxzOc7biwsO0gjubcqQIP7Yd399siWkfusFWt0S6S5aB1Hi+lnUCHiVWZUadEqSP4O+ljwFvdEDNFDUoSv21xPDx/WFBqT81IkI9i/4YP7wlQj0u0yxAQtQYBVWk+uTF4tq+1Zji+Br67ZRh0jkvHP3MBcYF6TVlNYBxrznY4f0X5jXxxHu2AzB2xV5ci8sWnq8EaQAO/3ACEnE/DO0lZ8C8JBahd+K4HTEMG9XwPLi0RDyK9sWqPk0hEokqsb2JzQHKBIDpCPP9FyGwQk+r5tU8dgtgORI8Hx2UmcGFdJqF5WTU7PGLmsOqpxUQ6g3fsHShkRCibiioIppNkg5pTjakWZUdwFu0FIsEcHHEa61KjiBiyHl4F958TAVL2Jo1LmitMQ0awdDQDu+7X8StW7cU3wK2Y7qtMiUV9GHZ639cSBWCayGJVej9U1B+sX+BaeCUtpo+fpaIkGshQCcn9LKs3hIehBDlUVBFqo+OCXpO+hx7fG7j0vQ62DfQBW+v9UJcXlVu2YUz9WY6jcKm1EHYHnEdJ9fPgrNZZQOJbMTcu40gGMJp8GtoV+qdkI1IP2/48LuOvWFvWv3lPV/SpD1sHaSIr9cGr9vbw17RzbYtxEp1M9WFYbd+cLN6gpMeNxBdzVGVqKE+ni/so6evcYtRixqKa/T4WfQNeJx8gk5ufdHNUKuW7iZEq1BQRaqfTkvYT1qPk35rYH1+Gkzq1SmRsqrMpgsTxx0QLTmJC1vncMGUgXKpKpaAoKv+3I4V+ncxKX1TlEXC+09vbscCE+YORdearixepw3sh1rC6+gVhOdWe79RAZFhV7i62UJy8gTOh/NjyYh6kCL8/AmclNjCbWBXGNbwS5EQojgKqkgNqQux5VtY/ft2LHUwhHjEBvxzQ076qsztGs5vncmFOK9hqvtubJ5up2SPjCD9Pq57hnM7tujWsWRgxiC9/Tfcz8Zyx7kIn7mZ1cIbRQzbkZMw3GsHtl2Iq5lK2qKm6ObqDCuJD054RxbW5iK1L5cL8E/4QGLljIHdmlb7eDdCiPIoqCI1SAQd44H4/LfVcL7wD65ltlU8tWVdD3f/uogmK3/A99NsoV+lOwtDdvh/8CwYL5WIhJSXB7kzyX9w//on+Hacgx0/TESXkrMCa4io3VB8sckCuz/+EruCUqt/nNPzFOBTeJ24hoc11ENGysOQ+/AaTng9hZVbP3QzfJ50JISoIQqqSA2rC7HdRHy9pjF+Wn0IgQotkixF2MHvsDx1Kr6b76SC9Ec2HgXcQADEsHgzG6d3XMRjIYDg19n7c8UyfBE3HLv/Wot3zGumoIF8YnSavAaHx8dgwaiF+Mk39sWMs2ryPAXo5QXvh5lCqybhF572wJZP52DKlHcxrP8gvDP7M2w57oe4LE1c4yUTD7294MWn/ly7wpCu2ISoNXqLklpgANuJH2FWzE5suxBbcQ9M2i3s3xCIMZ9OhpMqBuk+H0/VCW8t2oZtw+7hI9eRBev9Obz+CS61nodrF37AZJsmtZ9q0WkDlxU74PkxsMWxOxynrMLOU1cREC2pnp6rEinAHKFZI7BnuLv7K6zza4HRX/6MPXt+x6lzf2L9hNa4tbQ/LIeswF9hz2qgx0+FiqX+XLs1pQs2IWqO3qOkVoiMemLS3I7wOB+EFKFNPhkXU53BDp0JeG9wW9UEOUXjqcQOeMO6FYydl+DYRQ/s23cKt8I8sXXRUFiK1WiGlY4Jen38G/6L+AOz2wXjl/F90K2dPurIHcivbJ2qIiVSgDmaEoJkIerYGqxJfxtfTesFY13h0qbTGGZ93sM3382E8cW1mDL7Z1xN1JT180qm/mjWHyHqjoIqUksaocvsw4j9cRCMhBb56sDAeS1i7yxDT4UWX65IsfFUjg6waakpY1TqQmzWD9NX/YFb6TLkJobJGczPbUrXqXpBZGSPkRO7CylADZkFKL2NfZt0MfPdbnLG29WDsetkfORoCMnFbVhz9J6G9MAVpf66Y+JIexjVercpIaQiFFSRVww/nupmwXgqu4G2aK+R7wARdJpZyB/Qr3SdquIaw9bFFTYSH5zUkFmAsphgXLmyCm6DF2CvvEH99U3RY4gdtxONs8duIVIThlcVpf5sXOFiW8PFZwkhSqGgirxinuHhnTDuaycMet0UNVzSU0OIoGfbD+NsnsLrpCbMAmTISn6CWG5PcnMXNhy/h9JD7HVhZNy8cPfOfcRI1D2qepH6sxnXD7Yq6aUlhFQ3CqrIqyUjDD5/BQjjqZoIjaQUPWu4jOuODK8LGjALUISGNkOxZLYTDB2mYfHIzmgoPPNCHjIlQiqzqT70qrT+ZE3gU38XClJ/41ysa2hRbUJIVVFQRV4tOTnI1m0Lh1nD0asV1fwpm5ACzNCMQqAisS0mbb2K5Bub5c/aLFo7D2JYDe0By4ZqHlTxqb+TlPojRNNQUEVeLYYu+Cb0EW58PwTGlFEpR2EKcKxNkhYUAmXIuXcWO08+4GKqAZgz3kHNB30Xpv5OUuqPEI1DQRUhRD4+BTi2aBagJhYCFbAYnP1lB85KXsPUX9bgPTsD4Ql1VTTrz55Sf4RoGAqqCCFl4FOAA2EjOQ33M2GaVQj0uWzE/r0FS7bmF6wZuWViZ+gKz6itnDCccT8NSRdK/RGiaSioIoSUoWgWYC58Dl1FsMYUAi3CkBV2BMsXXsAbO3ZhyzRbFZSbqG4MOcFXccgnF13G9qXUHyEahoIqQkjZhFmA8PHE5eCqVGovToS6IhmKSpQ2rCdDPZXHDgx5ceex7qMjaLf1OLZPt1NhQFWdx5+B4Mue8EF3jKXUHyEah4IqQkg5hFmA3G3+0OX7KkoBMuSzOlz4UCgztw5UPQ6eSf7D1k9OoP2GHVjh0gb1hHbVqMbjz7mPy4d8gIJZf1TygxBNQ0EVIaQcIui9/iZmOUJjUoBMEohdSw6g0fLVmGbXFC8VzmAPcWjurwhQy9/jReqvYNZfI0r9EaJpKKgihJSvfkf0HctHVapMAVaTvBhc2OKBOh+uwLQujbmQsITMeDzIMoSh6vONKlCU+uuLWcO6Pk8vEkI0BwVVhJAKNIJ130FwFFKA2UKr2mHxuLLmCxxt7QpnIyni4+IQ99IWhdALnvBu3xbN1DGmKkr9OQ5CX2sKqQjRRBRUEUIqIEJ9694o6KziU4DZVU2diaCjp4+mwiOVYM9wd9dKzPxyJ7ZO6Yn2JiYwKbW1h9Xw7cg3NlRpWQVD8xZoUuUgrSj1x8VUY3vDuj6l/gjRRBRUEUIq9lIKUCI0KksEXaOWMBEeIfYJkrOqEqgxSK//gnEzfkO40FI2E3QzbVbFC58MWdJMZAmPdA30oFvlGKgo9eeIsX07or7QSgjRLBRUEUIU8CIF+KfKZgEKkiSQ5lUlqBJBr+cy3GEMrMLtFtY7NxP+P2XlITUhFinCI5Wg1B8hWoGCKkKIAl6kAH3/1MRCoOqMUn+EaAsKqgghiilKAfqerfIsQFGTFjA3FB5oNGN07WQCsfBIOXzq7yyl/gjRAhRUEUIU9CIFePBcMKRCqzJEunowKBotnv4Eial5wgNNkIdMSVV++xKkwThHqT9CtAIFVYQQBRWmAN9xFMF3z3kESquQAtRpCIOmQv+OJB0ZWbLCfY2QhaTYeGFfD00bNeDOjLIYpIHnsdeXUeqPEC1AQRUhRHH1LeAy0RnioLPwCnwmNCpB1xDGJvrCA03WBG2b61chqHqGQK+zCGKU+iNEG1BQRQipBD1YOr8JF/EtHPSqQgpQ1ACNmhYtFxyB0JiqlmmoQSwdidGpwgN9GOi9tBBO5UiD4XXwFpijK6X+CNECFFQRQipBhHpmPTHCpRmCDl5SPgUo0kfzthq6YDDLRkZSUTjZHMZGypYS5VN/l3AwqBncprugM6X+CNF4FFQRQiqnnimcRjhWMQWoi6atWwn7qYhOTOdCDA2RlYK42PTCfUMTtGiibE+VkPoTO2K4kynqCa2EEM1FQRUhpJIawszJpYopwPowbNlSKEUgRVJGtuYEVXmZSE8S0pWtW6KZuG7hfmUJqT+xiwuczIpSoYQQTUZBFSGkklSRAtRBk+YtUThUPQ53QmOhKaOqZPGR8I8THpi0hJFSa9S8SP25jOgJM0r9EaIVKKgihFRelVOAdSBu0xFdhUfp0YlI1YiuKoas5CeIFfrVjLuZopVSV9EXqb8RTqY0648QLUFBFSFECS+nAJWpr168qrrkUQJScjUhqmLIk6YjqWDfEGatjaDUMPWXUn8NhUZCiKajoIoQooQSKcCMygdEoiZtYG1tWFjj6WEckrI0IajKQXzkfRRm/1rD1ry5EgPMS6T+6lHqjxBtQUEVIUQ5L6UAi+o2VUK95jC3bV24H3cfkfE5hftqTYKY0Ag+LuK0h3XbxkoU/nw59Uez/gjRHhRUEUKU9CIFeEiZWYCixmhr3Z7v9OIkIi45q6BZZdgz3N05G73X+CqVnpSreOFPw44wN1Yi+UepP0K0FgVVhBAlvUgB3j10WYlZgHows7GFccF+NO4+ShGGf1eFDFmpjxHmexQbpw9Bzxm/4kFaJvJUlVnMjMf9O08Kj9PBFpbNKlujilJ/hGgzCqoIIcqrZ4E3Z74Fq+Y6YNmVXRS5DsSm1nhDzAcWT3DnfjwyC59QCos+hWVTPsQXPx+Fd5wBrLo0V3mZBvY0Cncj+Z8qhk0fa7Sp9BVUhmymA+Neb2FSP0r9EaJtRIwj7BNCSM2S+mJNz0H4/E464OqO0NPTYamSj3pZCNs5GZ1mHIbxEi8Ef+OMxlXuFJIh7cLnsHJZhzh0wPiD5/D7WDMlxlQRQrQV9VQRQmpPw3awczIt3L8ZiLCneYX7akmKh0GBwsw/K/S0ak4BFSHkJRRUEUJqj6gZOvfqVrhcTcp9RMSpeLC6KrFniA5+VLhv44geFo0K9wkhREBBFSGkFtVHG1sH2Bbsh+BaSKIKBqtXk8woBHhHFuwaOnWFeUPqpyKEvIyCKkJILRKhvkV3DLHh+6oe4Mylu0hUy6iKISf8Fv4J4gep22DskNfQnGIqQkgJFFQRQmpXww7oNbSwryrF+w4iMtUxqspFfIg/AvldcQ/0taXxVISQ0iioIoTULlFTdHN1hhW/H/QvboSrrFSn6rBEBF66UVCiQTygHxzaNChsJ4SQYiioIoTUsrow7NYPblZ8CvAuLvhFQd0WrGEpIfC+xI+nMoXLcHu0rVvYTgghxVFQRQipdSLDrnB141OAkfA66Yfo/MJ29cCQGXYDf4dIAGG9vvrCM4QQUhwFVYSQ2lcsBSg5fwk3Y7IL29WCsAAytycePgIDLPQKmwkhpAQKqgghaqAujHoOwUR+FqDkMk74Plaf0grCAsh8wc8xo3uhLY1QJ4SUgYIqQoh60OuCYbMGQIwHOHnwIsJz1SGsykfytX+wny+lYDUaE/u1pll/hJAyUVBFCFET+ug8eDhc+M4qrwvwfliV5ZVVhCXB/+xFhPALKE8cgp5GNEKdEFI2CqoIIWpChHoWb2LOTAeIJKex48RdSIVnaguL88bvv/kA4hFYMMYONJqKEFIeCqoIIepD1Aq9p07CQP1U+LqfwLVkJacBMimS458V7GYlPEVqnjKpRCnCzxzF4ZRGsJg0Dm/SAHVCSAVEjCPsE0JI7WPROPXRKAz/JQXjD57D72PNFBvHJPXDto83wzdPeCyXOcasXoZhbRUoiiC9iY0DBmHxnb7Y5L0Hc+0MhCcIIUQ+CqoIIWqGQRrwE0Y6zYVvr83wPv4R7PRqenh4LuJOLUXf4b8Bc37H5Z9HwJhGqBNCKkDpP0KImhFBz/ZtfDKrFyTn9uDXCzE1X15BegeHNx9BuHgoFnzQnwIqQohCKKgihKgfkTGcP5qHaRah2Lf5OAKlNRlW5SLuwn78dA7ov+wjjO2iL7QTQkj5KKgihKghEeqZD8UnC4cC53Zh08n7NbYeIEv7D7/zvVRWE7B0Zk8YUS8VIURBFFQRQtSUGJ0nLMAXA59i15d7cTWp3BHoKiJF+JHN+OpcC8xe8z5cWugI7YQQUjEKqgghaktk0B3vrV2IgTF7sH7nLaRVaxaQIS/qDH745jSMZ3+GZSNMQSEVIaQyKKgihKixujCwn4oNa3vi2qr12B2YJrRXAxYHrx+/w7a6M/H9iqFop0N5P0JI5VBJBUKI+ssNx6HZ4zDz6fu4dmgWuuiqOuDJQ4Ln5+g3JggTPXdjWa9mtMYfIaTSKKgihGgAhrzYv7HYZT4iPjiE3z+yh1iFUQ9LOINP+n6EBx8c5H52d5X+bELIq4PSf4QQDSCCjsmbWHVkBYx++QF/hqtwVUCWgIv/b8eOqQCEoQAGfpVoQEsH1tpCEiLI1jsVeXnWvNeefbexBpzFqQIACDhVAAABUQUAEBBVAAABUQUAEBBVAAABUQUAEBBVAAABUQUAEBBVAAABUQUA8NvMB1zXD8kaq1+aAAAAAElFTkSuQmCC
iVBORw0KGgoAAAANSUhEUgAAAVkAAAEgCAYAAAAe3wDSAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAADI0SURBVHhe7Z0JmBXFuf6/McYojpE1BsKioCxmRLZBQQhgcIjXGBBEhRvQBDQmAom5EbhiYoyQv4I3RuBG/hFiQKNBGAQXtgCiwyZhE0cZJoIwEBBZVRZFnXPPW1Sd6ek5A7N0n67u8/6ep56u6nPmnO451W9//dVXX2XE4gghhBBfOEtvCSGE+ABFlhBCfIQiSwghPkKRJYQQH6HIEkKIj1BkCSHERyiyhBDiIxRZQgjxEYosIYT4CEWWEEJ8hCJLCCE+QpElhBAfocgSQoiPUGQJIcRHKLKEEOIjFFlCCPERiiwhhPgIRZYQQnyEIksIIT5CkSWEEB+hyBJCiI9QZAkhxEcosoQQ4iMUWUII8RGKLCGE+AhFlhBCfIQiSwghPkKRJYQQH6HIEkKIj1BkCSHERyiyhBDiIxRZQgjxEYosIYT4SEYsjq4TEllOnDghW7dule3bt0tBQYEcOXJEli9fLv/85z/1O0qTnZ0t3bt3l8aNG0uDBg0kKytLGjVqJOedd55+ByEVgyJLIsvu3btl2bJlkpeXJ1OnTtV7q8fQoUOlf//+0qFDB6ldu7beS0j5UGRJpIDFClH905/+JPPmzdN7S2Os1Jo1a0rLli313tKsWbNGbSdMmKC2yYDg3nHHHdKuXTtauKRcKLIkEhw6dEiee+45GT58uN5TQu/evaVv377SunVr9fhfWQsUFvHOnTtl48aNMmPGjDIuBoj26NGj5frrr6fYkjJQZEmogeW6YMECufnmm8XZlSF8w4YNk2uvvVYaNmyo93rDpk2bZMWKFWUEF985duxYycnJ0XsIiQORJSSMxC3LWNxKhbImCtpxAdTv8Jfjx4/HcnNzY3FxLXUMQ4cOje3atUu/i6Q7tGRJ6ID1+vjjj8uYMWP0nlMugfvuu0+uueYavSd1GGv6kUceKWXZxgVYuSlIekORJaEC/tGHHnqoVLQAxMwGf2gy8Yfw43jpq01fKLIkNMAXetdddyWsRYzuP/jgg577XKuL+zhhZU+aNEnF2ZL0gyJLQsHKlSulS5cuuiVKtIYMGWKthYhoh1GjRiUsbgyKzZkzx7obAvEfiiyxHrfAzp49W/r166dbdjN58uREWBmFNj2hyBKrcQssQqeCGNyqDhDaESNGqBAzCm36wQQxxFowyPXLX/5St8IpsADxuhMnTlR1+GkRcYBBMpIeUGSJlUCEIEZr165V7bAKrAFCCz8ygNAay5ZEH4ossRJEDZjReYhTmAXWAKFFRATAgBhmjJHoQ58ssY7FixdLr169VB2i9NRTT6l6FICF3q1bt8QNBOkXmzdvruokmtCSJVaB0KcHHnhA1TFIhFlUUQIhZ88++6xuiYwcOZL+2YhDkSVWMWXKlISVh2QrderUUfUoAct1+vTpkpGRodIxYkouiS50FxBrKCwslBYtWqg6pqOOHz9e1aMIrFfktMXAHiz2hQsXMgl4RKElS6xh2rRpunbKFxtl4Db4wx/+oOqw3JELl0QTWrLECmDFYpUCdEdEE2AkPh3o06dPYgWH48ePM5FMBKElS6wAU2XN/X7gwIFq6yuxj+TdF34rt3RooHyjznJBh4HymxfelqMpMD/gFjHQNxtRYMkSEiQHDx6EnKkSFx2910+KY8fWPRbrpL8zebkh9sSmT/T7/cUkHse2uLhY7yVRgZYsCZx169bpWoqsWPlINi98RVbrVnJel6deeVuO65afDB48WG3hNkCaRBItKLIkcGbNmqW2GGVv06aNqvvKx5tl/rMlwp6co5L/9+Wy+TiMTH9BlIEB04dJtKDIkkDB5AOTc3XQoEFq6y/F8vG6hTK14Khun4b8xbJ080e64R8I3TLRFEuXLlVbEh0osiRQtmzZomtSKqWhfxySdYsWy17dOkUj+d7gAdJJt0pYLv/74gb5WLf8BMvnALgMkH2MRAeKLAmUbdu26ZokJiL4SezDNTLrqfW6Zbha+v9iiNyQlanbJex9Zoms+7hYt/wjKytL10TeffddXSNRgCJLAiU/P19t8bjsf4zoF7J/7VKZeVg3DZ27SPtvt5Pv3tZB73Cw92WZ9cZeFXLgJ84kMYgZJtGBIksCZcKECWp75ZVXqhhVX4ntkRUvLpLSGltLOt/SVVqdU1NafzdHSuxJQ77MfHWj7Pd//Cvhly0qKlJbEg0osiQwMOhlaNCgga75R2zXasmdVaBbhs5yS7dL5RzJkBqte8rtnWrp/SUcnrlE1u7/Qrf845JLLlFbc+Mh0YAiSwLjwIEDuibStGlTXfOLk7Jr9WJ52T2Nq3Mv6dZK+2JrtJLrbut8qu7k8Cvy3Gu7xG/PLKYV+27Nk5RDkSVWUKNGDV3zieKd8vrfl7mmytaXnCHXyRVfM8J2vrTq1itu27rZJi/PWyu7/B//SsAIg+hAkSWBsWPHDl3zn+L38uTZuTtcA1hd5NYuF8tXdEskQ85p1VVu7VwrXivN0ZcXy+pdn+mWPzgjDJAshkQDiiwJjKNHSyYE+LsEy6fy3oqFsli3EuR8T7pceq5uaM65VLrdGrdly6jsAnl6yXbfXQYkelBkSfQ5WSALpy3RDUN9yYmL6aVlrgDjMnCr7F5Z/MIqeY8qSyoJRZZYgTPSwFticnJLnsxc5Q6OPeUqKHsBnHIZ3NK5bJSBLH5RFr5dgem4hDigyJLAuOiii3StdKSBt3wsb/9jvqzSLUPmgH7S8zKXq8BwTkv53o976oaTVTLz9ffkpG55zf79+3WNRAmKLAmMevXq6ZqPHH9XFk53Z7ZqJjf27iiNyo2WOlcu7dJLcnSrhMOyamaebDnpz8yEffv26ZpIo0aNdI2EHYossQJ/rLiYHN+8XP6e737Ery1f3/emvDhnjswpp8zdfEi+WV+/3cmqOfLKBn8yczkHArkMTYTQybsJCQR0QZTc3Fy9x0sOxN74dZfEd3hTMmNZY1fFjulv8BKsCoHvwAoJJDrQkiWBgkTdYM2aNYk1vjzj47fklaleJ8E+KvnPLpb1PmTmWr58udr6G85GUg1FlgSKWRXACIx3fCmHVi+UZ0onjvWGgpfllXXeRkMgugJLg4Orr75abUk0oMiSQDGCAoHxdCpp7ANZNW+hKzm3SK27X5J9xTFlNZ+5nJR/5/5UygZzrZdnFm32NJm3M3m5/3kcSCqhyJJA8StZdWz/Rpk/81Su2hLay503Xy3fKDeqwM1XpX6X/5Bbk4TM7n3qJXnjQ+8yc23cuFHXUpO8nKQOiiwJFPgfjV929uzZalt9Ppe9K+bLzMMuH2/LG+WGDnV0o2Jk1OsgfW5vq1sODi+VV9fu82ya7YwZM9Q2NcnLSSqhyJLAMUtiY0FFT2Z+xXZL3uzFUlpjMyXrhznS/sJKdvmMb0inG78nZaO58mXmnDdlrwcqi2XAjT/25ptvVlsSHSiyJHCcCyh6MQAW27VW5r28TcVcldBFbv/e5XK+blWcs+TrV98o9yRZ/+vwrH/Img8+162qM3/+fF0T6dAhyRI4JNRQZEngtGnTRnr37q3q5rG5WlzQWNpd21I34jZs+wHy65kT5O52F+o9laRGttz158fk5z9oH7eHDfWl/Q1XSpMLShIlVgVY7mPGjFH1cePGSZ06lXNnEPvJiGEYlZCAwSwrPCqjO65YsUKuueYa/Uq0mTx5sgwfPlzVMfiFGw6JFhRZYgUnTpxQMbNr165VVu3cuXP1K9EFVqyxXNPlnNMRuguIFWBEfdSoUao+b948ZdlGneeee07XRO677z5dI1GDliyxBliz3bp1UyPtCOtauHCh1K5dW78aLQoLC9XCibj8ELb11FNP6VdI1KAlS6wB1uzYsWNVHUI7ZcoUVY8auJmMHDlSCSygFRttKLLEKnJycpRlBzDqvmjRIlWPErNmzVIuETB9+nQmhIk4dBcQ60AOg759+ybcBvDPNmzYUL8ablauXJmIC8Zg1/PPP88ZXhGHIkusZPHixdKrVy9Vj4oYOW8eoKCggHkK0gC6C4iVwG0wadIkycjIUI/WI0aMUL7MsOIWWLhBKLDpAUWWWMuwYcMS/lnkNQir0EJg+/XrlxBY3DxwEyHpAUWWWM0TTzxRRmiPHz+u2mHAWLCYZAH69+8vQ4YMUXWSHlBkidXADztx4sRSQjtw4EAlXraDWFini6BTp04qsiDsrg9SOb7y2zi6ToiVfPWrX5XrrrtOLZm9YcMG2bp1q8pvcPnll0vjxo31u+wCERFdu3aVPXv2qDZuFK1bt5YFCxaoc8C59OzZU50biTiILiDEJrByLbomSkFBgd4bix0/fjw2adKkWEZGRuL1cePGqf22cPDgwcSqs6Y4V+LF8Zv99erViy1dulS/QqIKRZZYQ9w6VcthOwXKKbKGRYsWlXpPdnZ2LC8vT78aDBB6iCmOxXlcGzdu1O8o4Z577il1/Pfee28sbp3rV0nUoMiSQIE4QTTd4ooCi7C4uFi/szS7du2KDR06tNT70Q5CrJLdHHDssGqTgXNu3Lhxqfej4PjxWSRaUGRJIMDCcz46JysQ0jPhth5RIHgQKz/dCMZydYtrRa1qHJ/T7eH+DPxvKnL+xH4osiRlQFjgQ3WLYrICkakosBiTCbYRKwi6F4KL7zHnkOy7ILqV+Z4+ffqU+Rx3MedACze8cFotSQkYbUdAfkWJC1ql0xwiCTZytGIJGxM25QRhYBjxb9asmdSrV08aNWpU7lRdfNaBAwdkx44dKhTrrbfeUuFjbuIiKKNHj5brr7++0tN+nXkMKgKiKphMJoQoqSXEZ9yDVacrsBSrA6xJWH5un62XBcfohXWZzBedrMCiTTaIRuyHlixJGZhAgOVWYPHl5+fLLbfcIlu2bNGvluDlWlcI+kdcKj5zyZIliRSDlcVYwYh1bdGihWfJapyJcJwg/nfZsmXK6jbLpEc1gXnUociSlGPm8puppk7ilp3va13h8T9u7cr27dtV2yzgaMjNzVXbrKwstfXzEd25zpcbiPmqVasormEHIktIqsCIOR590fVQ3ANW06dP1+9MHe5R/lTjHEiDi6N///6JdlxoYwcOHNDvJGGEuQtIyjDJUpzZqJBpy8m1116ra+kD1jUz1KpVS1544QWVSAZgsAvLoxuXAQkfFFmSEtwCi7n8boHFSH1UVkCoDK1atdK1EtxC27lzZwptSKHIEt9JZsEOHz5c1Z0MGjRI19IL+FwxsOaGQhsRtNuAEF+AD7Zjx44JHyN8sG4QxH+6aah+E7RPFmA6MMK5kuVquOWWWxLHBh9tUP8nUjUYXUB8oyI+WBs466yzSkUX2HhJINwNuWgBog4wkaG8qARiF3QXEF8Ii8DiON3YmFCbg2HhhSJLPKcig1y2gIB/N5i8YCP00YYTiizxlIoOctnC5MmTy7gHMCvMVi8ahTaExDsTIZ5QkUEum0DuAXOs7lJUVKTfZScVGQzD+WFAjQQLRZZ4QrKZXLZzuuQsEydO1O+yl7hFmzhe98wwiK75PZgmMVgosqTahFFgT2fFmhKGUCm30JpjxtbsD8PvEWXokyXVIkyDXE4mTJiga+WD3LS2U56P1plUBvl1SYBosSWk0oTRggUVsWJNwTmGAbdF+95774XyPKIIJyNYBmI04xeEyreKNfuLiopUar7y8qBivn/37t2lZs2a0rJlS2natKmn+U7LAxasM11hXGBDYcGCjh07lop+GDFiRKloAue+cePGyf33369fsZtbb71VWbYA+WjRdwyp/H1MH3ZTo0aNtMxNQUvWAmBlYGqpl5n88VlIG+iHBYPPDKMFazADXua4k02rvfPOO1W9uqs0pBqnRess+L28BitQYLUGMy26oqs8oOD9+P9jxQw/+qhN0JINCNzt8/Ly1FTJZGtHGeKdUW2RQDozM1PVnaxZs0ZtT+djRCLswYMHK4u3ugmgk8XBhsWCNeAckLTbJONONq3WWGN169a1Omn2pk2bSvmODx8+XG5/WrFihZopVh3g7123bt0Z+21lQR/t2bOnWvPMq1UxbIEim2LQSV955RUVBG+EyoBHf4hh27ZtpUmTJpV+tMJn4xFx8+bNauHCZC4GiOLAgQOrJBzJBrlsnmhQUcKQu6A8+vTpU+EldXDDHj9+vG5VDiPm5d3MIZK4aV199dWqDbcV3ANO4AIDBQUF8v7775cr0sYoqMrilFYCkSX+g0crPFY5H7NR0MZjk1+P9XAZJHuMw3dWJkQp7C6C02FDFq6qgskGlXEzVXZyAgYJk/Uf02/xenVC3XA8p3OVVbaf2ghFNgXAb+UWV3RcdFCIbyrAd8EP5jwGHNPChQv1O8oHAhummVyVJcwia4AQ4Td2LmWTrNx7772x4uJi/VflU554jx071rdVc3EOEFy3qKOfYn+qrhWvocj6CDqFu9OjA+Xl5el3pJ5kFw/EtzxrIcoWrCEKIusEvyUGlJJZoChLlizR7ywL+ix+Y/ffpNqiTGZBo11ZS9wGKLI+AXFydxKb7sa4CJ3iibrbQkkHgQVRE1knycSqXr16SfshBMz93lSLqxscv7MPogSx2GZ1oMj6gLtjwHKEYNkGLh63CwE3AuAW2DDM5a8qURZZA/pkkyZNEueIPukUWtx0nf8DvG6L1YjjhLC6j+/YsWP6HXZDkfUYdGZnZ4A42WK9lgeE1XnMv/vd79LCgjWkg8gC9MN77rkncZ5GaPH7Ov8HEDQb+yxE39kvUbfReHFDkfUQt8CiHRbcg3OdOnVS26gLLEgXkTXgNzXn6py8gN/f9j4L8cfNwXnMtgstRdYj0DmdF2uYBNbgdhHA6kkH0k1kAYTW3EhRwmIVGpzWt+3HTpH1ALcF61eISypAZ3WGa4VtkKEqpKvImvOFSNmepDwZ7nOwVWgpstXEbf2F0YJ1E8VzOh3pJrJOH7ztVuCZcAotIiNsHAyjyFYD+IecIS9Bxr96DQYZzHmF1dKpKOkksnjKCstjdkVxCi2iZWyDIlsNnBMN8ENHDWdYDwYbokq6iCxC9pxPKGEM7E+GezDMhCHaAkW2isAiMD+qCYWJIs4biW2d1yvSRWSdMdFR+y3dNxCbLHSKbBWAoDoHh6LwyFUeOFdn5w1y9o9fpIPIOgdnbXyk9gKnK8SmJy+KbBWAFWB+zKhad06cnTeKF2jURdZ5o8TWuapt1HA+ecHdZQMU2UrifCzBoFdU3QRuRo4cmei8UfHlGaIusjAEzLlF3Shw31BsuD65Wm0lQcJtk7Q6btVFI6lwBRgyZIiuiacZ8Ym/YIWHRx55RNXjRoFKuh5lcD2OHj1a1XGdLliwQNUDRYstqQDOuySs2HTDOXASJT90lC1ZpxUb9Xhng9uaDTp2lpZsJcCaXMaK/dWvfqW21Sb2geQ9NkiyL8iQ+MVe8XJBB/n+oB/J3aPGycS/zJFl69+TA58W6w/1h6FDh+qayNy5c3WN2Myjjz6qtrBiq7u+VwLdZztUqs9eIJf2uFlu/9Ev5DdP/EXmvPaW7Dr6hf5Ab3Fbsxs2bFD1wNBiSyqAicXz9O744cuxn2SWWFHVKZntB8QemLY0tvXwSf3h3uPL/yBg4iJQ6v8YFWC5mnPzdBDIqz6b2Tl2x/h5sfxD3vdXpzUbdKQBRbaC4PHYdA5PJx7syY0NNp3Oo5KZ/dPYn1bujn2uv8JLnKFAUZnhFlWRdY60ezoA5HGfzcweHpuRfyR25kVxKodzJliQoYdcrbaCYPXXfv36qXpccCu9kmy57J0jtzfoJzN001B/8AR5ondT+YpulxCTz4/skaIdW2XF/Dny0vq9er+LzOvk3ueelEdvbCZf1bu8AAMpZhXSsWPHypgxY1Q9zIR5tdrycP5OcbGV+++/X9U9IWmfrS/dRz4kw6+qo9tO0Gd3yTubXpf5T8+V9Uf1bifZD8sbi/5butYq2+OrClbYxcrPIG7JS05OjqqnHIgsOTPOx2RPKccqaDZhXeyMD1HFJ2L731kSm/rz62KZST5DMm+IjVu133MLwQyAef6/CIgoWrLOGYmeD3gl7bPNYoNzz5Tfojj2+aG3Y7NHfS9Jf60fu+7Jt8/c5yuJcRkEGd/Nga8KAKvAhC1hPXhryDhX6l7+XRny+CxZn3u/9Ij33FIcfVXG/Ndf5M2Pv9Q7vKFnz55qi0GFwsJCVSd2sXnzZl0Tadeuna4FTYacXStL+o2dLFPvaKn3GfbKP15cK+97PHaL6xUDbxMmTNB7Ug9FtgLAPWAwjx9WkXGhNO/73/LkE4Ollt6VYPWT8ui87eJl37388st1TWTHjh26RmwCkTAAESHWxXKffYlcP+gmqa+bCVZtksKD3hoEzus1KIOAIlsB8vPzdU2kSZMmumYbmdJi0Ch5rPfFum3YIXOnLJS3T+KpyRuc/mhasnZinrxat26ttnZxltS4sLac8hg7OHpSTn7hXT8FzuvVeR2nEopsBdizZ4+ulRYY6/jqpdJzwLVxuXWxKk/W7/hMN7wBs91AUVGR2hJ7cN74mjdvrms2USzHPzokx3UrwZWXSpPa3g18Aef16ryOUwlFtgIYdwEevezmHGnY9hrprFsl/FMWb/zAU5dB48aNA/d1keQcP14iXxdf7H6ysYDYblny7ItSOi4mU1r+oKNc9rUM3faOoA0CimwFMJZBrVplPJ7Wcda3LpOrGulGgh3y5nsfyEnd8oIGDRroGrGN7du365pI3bp1dc0Svjgobz09VkY/XaB3aC4bIuOGdpSv66YfLF++XNdSC0W2AsybN09ts7Ky1NZqzv16/MLKFLc9sKNwjxzy1t2VYPfu3bpGbKN27dq6FiCxT+XI7kJZv/R5mXDnD6TLkKfkX/olkJk9XGa8+JDc1PhcvcdbrrrqKrU1U+JTDUW2EmRmlvF22sdXakvDKy7SDQfbP5TDHg7cOm84zsdTkq5skxn9TrmQypSzzpNajVpIh54DZeRfV0liLkKz3jJy2lJZv/h/ZNC3LyxjGEQFimy6sPeonPDJkiWkstS64b/kqT/eL0N/0Fkuq+nlnET7oMgSQnzkMune/4fywxval4p6Ofzq/8idN14lzeu1lRtH/UVee/9jNfUrilBkCSEe0EwG5xapvA+lS6G89sIz8swr6+STzz+Sok2LZNrI3vF3Gwrk1fFD5NrWt8lvl+4Wf5IfBgtFNmrEPpNjHyWJI7imqTQ4W9c9wDnTyyQiIeS0nP11aXRljvz4kb/JsoW/Kz0N/OgC+V2fYfLHdYciZ9FSZCtAdna22q5Zs0ZtrebLj2Rf/q4yHbX+N2vK+bruBUePlqRSsnqCRpqDvBvWkXG+NM75iTxwT+fSg11H58lD416V7d7OrJWCglPhYuY6TjUU2QrQvXt3XbOf2N73ZN023UhQX65o0UAyPRy+DWr2DDkzTZs21bXSeTesIqOeXNPnBrnY1SePzl0kK3d+qlve8NFHH6ltUNcxRbYCXHjhhWpr/+ymL2T/W6tlsW6VkCXXXdkgSW7aqoPZM/C52T8LLv1wum/279+va7aRIV9r0lK+UyZw69+y79Dnuu4N5rqtWbOm2qYaimwFaNmyJC3boUOHdM1CYntkxZxFclg3E2T1kC6tLtANbzCzZy655BK1JfbgzFewbVuZxxpriH3xuZTNqLFL8neW6cFVxnm9Oq/jVEKRrQDOxy97E6J8JntenSxj3NMVpb5cd8+N0r6Gd74CzPAys2eC6rjk9GDhRLBixQq1tY9i+eRfb8kbZUYPaso3a3qXmtF5vTqv41RCka0ALVq00LXSyZDt4TPZ+8ZEuWvABHFLrLQcIqNvaeXpEjQ7d+7UtZBMNU5DTGJ1pDy0cvDr0y0y+8+zZW+ZUIKW8u1LvHvqct5knNdxKqHIVgAkPTa+R6z1ZQ+fy5HtqyX39z+Wbt1Gyqtl1k7qLqP+eJd8x+P0ca+//rqu2ZpKjziTVW/dulXXbCDeZwv/IRN/MkiGzPxXGTs2s08vuaaJdzkMlixZkhg7CCp5ORdSrCAzZsyQ22+/XdWDXUhRJHbsQ3m/aLu8vWSuzFjuTLXhpK3cMe2vMulHrT2NKgAdO3ZU7gIupGgv8EXWqXNqUcNJkybJsGHDVN0TKr2QYpzYMfnw/X/Ju3nz5emX1pfkLyhFD/nNGzPlwa71PLH+4NZq1OhUSrrp06cHt3QURJacmbiw4spTJf6D6b0e4MOS4NKsX+zhl7fGPvF6BcU4ziXBFy5cqPeGm4yILgket97U+WAxQZuXBD9V2sbumPaWp30W16n5fFy/QUF3QQWB5WoGE+AyiP/vVL3anH2OnOdVcq/MznLHhBdl0+q/yQPfb+65BQtM2kfQtWtXXSM2cscdd6gsWHjq2LBhg97rAV722TiZ2T+VJ9+YK096/NQ1efJktcV1G+iEmVNaSypCbm5u4s6Yl5en91aT4r2xNyb8MNYh03lXr0i5LNa9/w9jd/z817EJT/4ttiDv7VjRJ5/rD/WHgwcPJr5/3Lhxem/4iaolC+u1Y8eO6pziQqP3eoDus+0r3WdNQd/9SWzkhKdjL6/eGtt/4kv9wd5h0xMXRbYSOEUmyHXcg2LSpEmJ89+6daveG36iKrIgqr/ZmcBNBecMV8mxY8f03mCgyFaSdO20zhuMp1aRBURZZJ2/G3y06YDTisX1GjT0yVaSgQMH6loYptl6x3PPPadrJQvTEfvB8jOILgCImV25cqWqRxXEBJvrEglhnNdrYGixJZUAd0dj/SxatEjvjS6w2M35RtEairIlC2DN4rEZ52bD47OfOMdNULcBimwVQKc1AwrotGhHGePfQomiiyTqIguc4jN27Fi9N1ogTMv8luiznoatVQOKbBWBBWs6bZQHwZyxhjb4t/wgHUQWmLhZFPgtowQE1WkMbNy4Ub8SPBTZagBxNT+qLY8mXoKOas4PFrstloHXpIvIOifU4PcMMkDfaxBSaM7NNmOAIlsNnL4ulA0bNuhXwg8uQOe5FRQU6FeiR7qILMATmI2P1NXB6QqBtW7bOVFkq4nb2ouCdeB+9Iqile4knUQWwNIz52qjKFUGZ7gWrr+ioiL9ij1QZD3AeScNu9DigrvzzjsT5xNVP6yTdBNZ/MZO/yzqYYw4cAosiq2DshRZj3CGdYVVaJNdfGG2cipKuoksCPtv7XR7oNg8kEeR9RDnYxiENkzhTrgpOF0E6SKwIB1FFriFFr9/GIwD53WGYnukBEXWY9wdIAzpAOFXxk3BHHM6CSxIJ5HFjd9583cLLfqBrRNsMNDsPtYwhKJRZH3AGVuKgvASW0XLfay4STiPFRckQtWiPPiVDiILC9UZcujGbRygz9o0yQbC7zQEULdxkCsZFFmfwB3W3SlsCpCGeDrdAyjJhNR5YeL9YXKBVJQoiyyE0i2g6IvJSNZng765mpu88/jRDtOTFkXWR2A9OB9vTAcJUqjKu+jKOyZn5IQpOAebbhjVJYoii9/HGaDvLLNnz9bvKkuyPouba6ofy3Ecyfqpra6M00GRTQHlCVUqxTaZuKJMnDjxjFaB+6IzBRcfzs2mx8qqEBWRhTDB/eN+QnEWvFZcfOY1XtyP5yjGsvXz94aYuy1XFORbCGs/o8imCHSQZJ0HAoaO5dfjT3mdFt9bUZHH+9xC5C74PFyYuNDDRphF1tw83YJYXqmMRYo+CVFN9tle/d74Dljd5Z1Dqo0RP6DIphh0mGSiZzpUdTsu/hYXUnmPilV99Bs5cmTSz0tWcB5hIswiW15fSlbw21cFI7blWcgQRxwH3oO+hT6OYixP/L3ZB0HF+yCq5T0hoaD/4v1RgEuCBwSWK547d65aahwL3SUj3nGlcePG0qBBA9XOyspSW0N+fr7a7tmzR4qKik6bRDzeaeXmm2+W5s2b6z2VY9OmTaXW8j8TcbEPdvG6ShDmJcGxqGe/fv1UPS525fYlEL+BS05Ojm5VDfSDuJCett9WlbjoSv/+/aVDhw4q2XhUoMgGDDK5YyXR119/XYmulx0XwtqtWzdp166dnHfeeXpv1enTp0+p1WoN9957r3Tp0kW3RJo2bSpt2rTRLfuAQGRmZkr37t3VxZxMZHETXLZsmTRr1kyuueYa/Yr9YIXW4cOH61Zp4halJ/3AUFhYqG70a9askeXLl1e678KIgOGA/7FXfdRGKLKWgY67Y8cOtT2TdeoEVsAll1wiLVu2VB23qhbr6Vi8eLH06tVLt0oD6yYsYtSxY0clCPifTZw4Uc4///xSIgsrHNbh2rVrlRCMHz9ev2I3ToHF748+ZIg/nsuwYcN0yz/Md0LQt2/fruoAN7WLL75Y1evWrRspS/WMQGSJ/cDXavxaplTHd1sV4GNDlzElbsGWalfF1xsETj9mMr+gcwAGo/VhAD5O41vG8cdvEIlzQIlSyF3YoMiSSuEUJcRbQlidF3NeXp5+p73gBuU85vIKxAqDNrYDgXUes7n5OveR4OBqtaRSYGDCCVwEcBUYunbtav2KqHiUxuPzmRg9erT1fkKniyAupmogDAOOhw4dUvsAfOkkOCiypFJcfvnlulaCW2gxCGa70J5pqWgI1vXXX69bduIW2Nzc3EREB3yiBgx+kgDRFi0hFcb4NN3L7cB14Iw5td1HW14sMcrppp7aQHkuAieIuUZMKgkWRheQKoEQp2RxsLBgneFcsHBtjTrASHiLFi10qzTHjh2TGjVq6JZdwIIdMWKEiohwugiIndBdQKpEeRd1MteBs20T8M327t1bt0qAv9ZmgYWLgAIbHiiyxHPCNBj2s5/9TDIyMnTrFE5L3CbKG+QidkN3AfGNMLgOMAqP4HjnZWDjJZFskKtRo0aqTeyGIkt8BUILS9Z0MxuF1vbcBbRgww3dBcRXIKh5eXm6FY7wLpswg1yAAhtOKLLEd8I0GGYTHOSKBhRZkhLCNBhmA3QRRAeKLEkZySxaCm1Zkg1yUWDDC0WWpBQjtCZsikJbmmQWLKMIwg2jC0ggQFhTHd6FWWo7d+6Uffv2SUFBgRw5ckQOHz4sU6dO1e84BXLIgpo1a6r8vEhCjhUq/M6Baga56IONFhRZEhhuoUUUgrNdXbxedQKzw3r27KmO0euVH+iDjS4UWRIofli0WIdq/vz5MmbMGL2nLBAyLD8DjMUKsJSK4XSrUuDvBw8erNIIVlcMKbARByJLSJDEhRU3+kRBuyrg78pbURWZw5CRCgm7K5OIG6tBYFUBrJCQbBUF89n43KrgzqZVVFSkXyFRgSJLrAACWdU0iRDBuEWZ+FtTxo4dqz7Hy9UNILpIIZhMcCsrthVJV0jCD0WWWAME0SlaZxJaCJ7JbWsKxApWp1nz308gik6hNOWvf/3rGYUdf+dck4sCG10ossQq3EJb3ppheB/EyfleiGsQa3JB0N0JwOG2KM+qpQWbXlBkiXWczqKFiLqtR1izqbBczwRE1e0Tdq9MQIFNPyiyxEqSCS0E1u0LhX/UJnCMsKidxwhhdd8cILAc5EoPKLLEWiCszsGwQYMGJeqwGG22AjEY53Rn3HjjjYk6Ldj0gnGyxGpMHG2rVq1ky5Ytal/cmpWJEydav1w3ZpgNGzZM5s2bp9qdO3eWzz77TE2MYBxs+sDcBcRq2rVrJ3ELNiGw8UfuUAgsgJA+//zz6qYAVq1apZZUp8CmFxRZYi2YFvvzn/9cnnnmGdWGwMIyDIPAGnCsuCnceeedqo1zwQwvkj7QXUCsxZkwJSwugvLADWPAgAEJ18GiRYskJydH1Um0ocgSK3HmNEBiFjx2h1VgDfDR9u3bN5GopqioiGkM0wC6C4h1YAXZe++9V9Wzs7OVRRt2gQXwxT7++OO6JSopDCxcEm0ossQ6HnnkkYS19/DDD0dqoAgZxuBbBnAdLFiwQNVJdKG7gFgF0hS2bdtW1e+77z559NFHE6soRAW3f/bgwYO+JwQnwUFLlljFb3/7W10TGT16dOQEFsD1gfM05zZlyhS1JdGEIkusAYNdxrqbPn16pK07rKwASx0guXhhYaGqk+hBdwGxhptuuknNhsJgF5aM8X2wK/apHHjvHdn89luSv2WrvFu4W3a/85q8un6vfoNIZvsbpM+3G0mDFq0l64pW0vqK1tKiSW051wMDG8LaokULVTcxwCSCQGQJCRrM9Td5CpBgxU+KT+yOrct9LHZ3j8vU91WuZMaa9fhJbNxLW2Mn9OdVB2c+XBsyiRHvobuAWAHW5Ir3R1X//ve/r7be85nsX/+M/PL6TtKh369kymv/0vsrw1HZ9tr/lzF/2yj7Tx1utRg4cKCuiSxfvlzXSJSgyJLAwWi7WfRw3Lhx/vhiYx/JuzN/Lbf2GCx/XL5L76w6F1/RRL7hgcsAvllMtgAzZsxI3GhIdKDIksDBst2Gbt266ZqXfCZ7l02SYUMnyGuf6F2lqC/Zg38n015+QzZt3Sl79uzRZbdsf2eNLPn7H+UXN5xazfYUzeQ7rb4lX9Ot6oJZYACDfpgVRiKGchoQEiDOpVu8Xz6mOPb5ztzY3ZdlJr7DWTJ7/Hfs+Y37Yp/rd5fL5wdjW5dMjA1Wn9M9NmHdJ/qF6oPcsuZ4Zs+erfeSqEBLlgQOIgoAQpo8jyiI7Zc3/vQ/MuVfR/WOEjJ7PCxz//ag3NbmG3K23lcuZ9eW5t8dJtNenyu//9EN0rGpd8eJGW2IqABvvvmm2pLowBAuEih4PDZJUuJWnPTr10/VvSJWNFP+89u3yfNuja01WKat/l/5cYtMvSNYfv/73yf80rwkowUtWRIoO3fu1DWRrKwsXfOKk7Jr9WJ5uYwRW0s63T9MbrNEYEHLliU+X/plowVFlgTKvn37dE28T/sX+0DWLcyTso6CHjL4Py6XGrplA84bzIEDB3SNRAGKLAmUgoICtYVP0nN/7CfvyZuLksTCdrlOvtPifN2wg7p16+qayPbt23WNRAGKLAmUI0eOqG337t3V1kuKP9ghm0pmyCao37m5NPyKblgCs3BFF4osiSzFnxySbbpeQqZ881t1xC479hQmwmDNmjVqS6IBRZYEyoQJE9S2Zs2aHqc1/FIO790lJR5fw0VyRcPaYpkhq/DDmifBQ5ElVuAcXfeGmHxx8mSSQS9CUgtFlhBCfIQiS6wAfkhvg/Az5OxzzhF7ImFJukKRJYFiVgfwnq9IrfqN5CLdKmGfvL37kHypWzZhUh3CP02iA0WWRJazLqgtzXS9hKPywb8PyjHdsgmzQq/3/mkSJBRZEijGajNRBl5y1jcvljb1dcPB3lWFstsyU/bQoUO6RqIGRZYEitNq81xoLrhUrup1mW44WLFM1mz7VDfswDmV1vscDiRIKLIkUJo2baprIkVFRbrmERkXSZtrr0oy+LVEpr70thzXLRvIz8/XtdJTbEn4ociSQGncuLGuiWzevFnXvOJrckm378uNZVT2sKz+/ZOSu80emTWzvDDri1NsowVFlgQKBMWscbVixQq19ZKMRj1k6D2ddcvB4aflZ7/8q7x1tLLO2S/l6Pb58tiwP8maj4v1vupjfNLmf0GiA0WWBE7Pnj3VdurUqd77ZTPqyXd+9l9y92VlnQZHX7pHuvzg1/L3TR/KF3rf6Yh9+m9Z/8LD8p85t8p9/7tZ9hzzRmQ3bdqkayIdOnTQNRIVKLIkcLp06aJrIuvWrdM1r8iQsxvfIL95cpT0SDIz4ehr/08GtG0jnW9/WP7ySp68VVgke/fudZT35d03l8qcaQ/LHd/Jlg63PiQvbcNk3Q/kw8MnT31INXFa8BTZCILlZwgJmuzsbLWQ4NChQ/Uejyk+Envn7/fFelxQeiHFqhdvFlPEwpHOcy8uLtavkKhAS5ZYweDBg1UWLrgMfFl+JeNCufzWh2XmazPkF92rvwJDZnaWNLyg+lnDsBy6mYTQv39/jzORERugyBIr6NOnj66VrF7rPV+Teu0HyR8WrJZ1uY/J3T2SxNCegcz2A+SBaUtl/eI/yG3Nq5+V1gx4Iaqga9euqk6iBVerJdYwatQoGT9+vKofPHjQ/1Cm2Kdy4L13ZPPbb0n+lq3ybuFu2f3Oa/LqesdyCpnt5YY+2fLtK7PlqvYdpFOnLKl/rje2ycqVKxP+6EmTJsmwYcNUnUQLiiyxhsLCQmnRooWqjxs3Tu6//35Vjyo33XRTwmpPyU2FBALdBcQamjdvnsjKNWbMGCW6UWXx4sUyb948VYcVS4GNLhRZYhVDhw7VNZGRI0fK8eM2TX71BsQCP/DAAyp/LnyxQ4YM0a+QKEKRJVYBa3b69OmqDktv1qxZqh4lHnnkkUREwdixY71fCp1YBX2yxDpOnDghAwYMSDxOb9y4Udq0aaPqYWfOnDnSr18/VYdrxAz0kehCkSVW4hwEwyM1xKlhw4aqHVYwfbZt27aqjnNasGCB1KlTR7VJdKG7gFgJ3Aa5ubkqOB+P1ghvgoUbVjDB4q677tItkT//+c8U2DSBIkuspW/fvjJx4kRVh+tgxIgRoRRaCCxcBMYPu2jRosi4P8iZocgSq8HIu4k4wJRbCG2YIg4gsLhZrF27VrURrpWTk6PqJD2gT5ZYD6xXiCtEFoTFRwsfLFwExoLlrK70hJYssR6EOMFtYCxaiBasQ0xLtRXcBDDIZQQWx0+BTU9oyZJQMXnyZGXVmm4L6xAuBVtiTTHRAHGwztV3MYCHmwJJTyiyJHRgSmqvXr1069SSLQ8++GAiPCoocFyYyWWsV7g1EEXAQa70hu4CEjowcLRr167EeliIPGjXrp2ahhtEvgO4LZCqEcJvBBYTDRYuXEiBJbRkSXjBgBgC+s0MKgMEbuDAgb4KHL4bCbfhFjAz0wCs14cffriUpU3SG4osCT3wg06ZMkVl7nICSxe+0GuvvdazSAREDGBNrhkzZiSsVoNt/mFiBxRZEhngKoBfdPjw4XpPCbAw8UjfsmVLycrKkrp1654xvSDE+8CBA5Kfny9r1qwpNZhlwOdi6RxYzkxXSJJBkSWRA+K4fPlyZW06H+WTAZHs3r27bp0imZi6QTgZ1uTCkjG0XMnpoMiSSIMZV++++64sWbKkQuJZHsYSxpLdKLRaSUWhyJK0AqILF8D27dtVG24ANzVr1lRuBVBR1wIh5UGRJYQQH2GcLCGE+AhFlhBCfIQiSwghPkKRJYQQH6HIEkKIj1BkCSHERyiyhBDiIxRZQgjxEYosIYT4CEWWEEJ8hCJLCCG+IfJ/ZNyFzcgIuncAAAAASUVORK5CYII=
iVBORw0KGgoAAAANSUhEUgAAAgYAAAD4CAYAAACXOC7gAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAADp5SURBVHhe7Z0LlFXVecc3ydIkWA0WLAYFtVERS3kJSAJGrMgjsQ4+U6lBXY5oVUh1KeKrgkGKmGoENFQkMKjBF4KPCLjQgkBKiAXxCVFQIbVRIVoE2ti1mN7fnrMvZ86c+5iZ+ziP/2+tu87zztxzzj57//f3ffvbbeozGCGEEEKIDF/xlkIIIYQQEgZCCCGE2I+EgRBCCCGySBgIIYQQIouEgRBCCCGySBgIIYQQIouEgRBCCCGySBgIIYQQIouEgRBCCCGySBgIIYQQIouEgRBCCCGySBgIIYQQIouEgRBCCCGySBgIIYQQIouEgRBCCCGySBgIIYQQIouEgRBCCCGySBgIIYQQIouEgRBCCCGySBgIIYQQIouEgRBCCCGySBgIIYQQIouEgRBCCCGySBgIIVLL008/bfr372/atGljlzNnzjT/8z//4x0VIp20qc/grQshRGpABIwdO9bb2k9tba257777TNu2bb09QqQLCQMhROr4/e9/bzp37uxtNWXp0qVm2LBh3pYQ6UKuBCFE6li3bp23Fs5LL73krQmRPiQMhBBCCJFFwkAIkTref/99by2cnj17emtCpA8JAyFEavjd735nRo4caa6//no7CiGMgw46yFx00UV2xIIQaUTCQAiReP74xz+aKVOmmK5du5qPPvrIrF692qxYscLMmDHDDlV03HDDDWbt2rV2ee6555rLL7/cBioKkSY0KkEIkWjo+U+dOtX89re/NfPmzTMXXHCB+cY3vuEdNTZvwfbt202HDh3Mn//5n3t7jXnxxRfNrbfear+3bNkyM3ToUO+IEMlGFgMhRCJxbgN6/oMHD7aN/8UXX9xIFADbxx9/fCNRAAgBRAV5DRi6OH78eGt5ECLpSBgIIYritddes73oQo0jjSnnOor9XqkIcxtMmzbNHHnkkd4ZxcN3Zs+ebRYuXGh++tOfmuHDh9triStYRxBMQuRDwkAIkRcak7PPPtv07t3b9pzbt29v1qxZ4x1tDP74+fPnm169etltetkTJ07Mfq/cjRKihMb7lltusW6DlStXmoEDB3pHW84555xjtm3bZkcrRNF6gPjivmMhYZmLJUuWZIUNz5XsjwRhcj1+MSfSjYSBECIv9957rznuuOPMhg0bTF1dnd139913m7DwJIL5CNwDxEP37t3NggUL7HehXL3tYt0GrcFvPeD6ESDEHkSBPXv2mFWrVplnnnnG9OjRw9vbGIQAsRYXXnih3ea57tq1y0yePNlaQxBwQlgIPhRCiFxkGllvrYGamhoUQf2+ffu8PQ1s3ry5PtM4e1uN4RjfyTSq3p7SsHPnzvo777zT/u1+/frVr1692jtSXrgntbW19v9mhJD9HdXG3YdccO8zws3bqm90r9x3o3AdovpIGAghmgUNIo1wUBjQQOZqmDmGoChlw0NDx++gQZs3b1793r17vSOVg9/gRMmGDRu8vdWhf//+toEPg3uT6/5zjO/yjIQAuRKEEEWDX/2hhx6y5mf/+H9M+Xy++93vensa9uE6wMTfpUsXs3jx4iaR/y2hEm6DYiH2gP/fqVMnG4NB0CMm+0rDPWFYZd++fb09jZkzZ44ZPXp0k/vP88SlkBENZtKkSd5ekXo8gSCEEAWpq6sL7ZXSG8Vd4GfZsmVZc3spetTVchsUA71u7k2prrW58L8zQi3UIsA+fpPfosK98z+bbdu2eUeEkCtBCFEkrjEJmuzZn88MjV+bBiiXmbsYouA2KAYXZ+Gut1K/k+eCOAuD+x8W24FgcM+GeyuEQ8JACFGQXKIAwqwFQWh8cjVc+eDv8j2+j/gIBkJGEe5RJa0HNPD8LwRTkDBrQRBnOSj0DEV6UIyBECIvDDskJ8D06dOb+PE5RtZAPoUYMmSIt1aYUiYpqjTcI/z5mYY2G3tw5513li324J133rHLsGGKd911l5kwYULe+IsRI0bYeJG2bdt6e0Tq8QSCEEI0wVkK9uzZY7ddb9it0xst1NOkl09Vw98qhri4DYrB3S/8/8VYVlqCi7tozvBRP7gT5EoQfmQxEEKEgjVg0KBBdp3kN2THO/XUU83hhx9u95FFj55x0FrAjISMGuD7ZEIk2j3T+BTMQBil0QalwlkP1q9fby0fWEDITFgq6wF/hyyPN3hJpfwweoTppf1giWGkiPv/LJcvX27uueceuy0ESBgIIZpAA0IWPRqcQw891NtrbIN9yimn2AYFM/WoUaO8I/shbTCNIKKCRvD8888311xzjXe0KXF2GxQLKaJJz4xLAbFD9kFcDa0BIcUwRPjss8/Mu+++a9eBY3z8w0eBqabJ2IjA49mw5Bk7ASgEaNplIUTVKDQlchJhToIxY8bYa66rq7PCqSXXTMPvhxgBJ6b4H2wHrTkIOgTJ1q1bTceOHU23bt1KkltCJAsJAyFExaFRwzXhrBLjxo1LlIWgEDTQJBbCDVBTU2MtJMUEcApRCeRKEEJUjDS4DYoBC8HNN99sJ5fyxx4IEQVkMRBCVIQ0ug2KwW89qK2tNbfffnvqhJKIFrIYCCHKCm6DpI02KCXOesAUzhs3bjSdO3e2IkqIaiFhIIQoC3IbNI+hQ4eapUuX2pgLRBTDPhnuKUSlkTAQQpQcerwMi8M8jtuAoXqF8hgIY0cIIJ781oOFCxd6R4WoDBIGQoiSIbdBafBbD8477zxZD0RFkTAQQrQauQ1KT5j1gKyFQpQbjUoQQrQKjTYoPwivG2+80aY5xorAxEhKTCTKhSwGQogWIbdB5UAEzJ4928Yb3H333TZ+Q9YDUS4kDIQQzUJug+pxzjnnWAHGfBTDhg2z2SN5HkKUErkShBBFI7dBdOBZYK3p16+fmTx5sg1YFKIUyGIghCiI3AbRQ9YDUS5kMRBC5ISGZtasWTYfAT1TUvcqH0H0wHrAsMa+ffuaBx980E7zLERLkcVACBGKkhTFB6wH27ZtM506dTK9e/e2MSDMwSBES5AwEEI0Qm6DeELw54IFC0xdXZ0Vc6eeeqqdvVGI5iJhIEQKCcuip9EG8QfxNnr0aLN582ZrPejTp0+o9WDNmjXemhBNkTAQImUsWbLEPPvss95WA3IbJIvjjz++ifXgtdde844aO6rkZz/7mbclRGMkDIRIES+//LL5/ve/b0466SS7LbdBcglaD/yxB1iFrr32WisShQiiUQlCpIT33nvPnHnmmXYdgYBlQKMN0gFi4Mknn7Sir6amxlx33XXm7//+781BBx1knn/+eXPsscd6ZwohYSBEKkAUnHHGGeaDDz4wf/VXf2Xatm2rJEUpBHfCFVdcYdatW2cnZcJC1K1bN7Nq1SrTvn177yyRduRKECLhEGg4ZMgQKwrgrbfeMkcddZR544035DZIEbiNtmzZYmNJEAOIAnjnnXesK0nDG4VDFgMhYgTR5AQGLl682Pb4/dTW1ppTTjnFugvczHuIArLivf3223bbT7t27UyXLl2sSZnvara+5IIomDt3rnnkkUdCR6TAZZddZmdvDIPvIyx3795ttzt27GjFpUasJBMJAyFiACbgiRMnmmeeecbGBBAweMIJJ3hHja2wMQe7in369Om2wT/ttNPM66+/bvc56C1iJeBvkF+/R48eshqkiN/85jfm8ccft+Xl1Vdf9fY2wJTODFEFhq/+8pe/NPPnz28iQh2UxWuuuaaRGBXxR8JAiIgzc+ZMM3bsWBs0dv3115tBgwZ5R5riKvNx48bZxn7v3r3mkEMOsT08Km/iDE4++WRV4sLiRMKyZcusVemAAw4wTzzxhNm1a5e55JJLDM3DnXfeaYc7+i0EWB0+/PBDK1SZBhqBMGHCBJuBUSQAhIEQIprMmDED4W6XmUbe25sfzhs6dGh9hw4d6jMVef26deu8I0LkZsWKFfWXXnppfbt27WyZmzx5cv3OnTu9o7nZvHlzfW1tbbacivgji4EQEcVNq5upbK25trnQq3M9OOIS5C4Q+SD4EEsT7qhHH33UjBo1yjtSHM6y1dLyKqKDhIEQEYRGncBAXAfO5+vgGC6CfHTo0MG6CwgaI5kN5uCbb77ZOypEU4glYJQKqbDJaUHZcTC0MZ+wdOcS3PiTn/zELF261Aa9ipiCMBBCRIsbbrihvl+/fqGmXF5bjnFOTU2N3Wbp316/fr13dn19XV2d3bdp0yZvjxCNwR1AGckISG9Pff2GDRuyLoKFCxd6e5viyhfn8ncuueSSnGVXxAMJAyEiBhUqFe28efO8Pftx/lwXb4BPt02bNvXbt2+32+ynUt63b5/dBvf3pk+f7u0RojEIAspNMI6F/fmEAeWR8sc5CAn/PgSDiCdKcCRExHBDyP7mb/7GLv28+eabdkiZM+ti/u3bt282Wpz9DEPMVMx2G3Ap4Ep4+OGHvT1C7IfYgltvvdXOqxB0F5AyGzZt2mSXfvjeRRddZEcuZESF6dWrl93PBE6UUWIORDyRMBAiYuCvpaINSx5DMCEVLxBrwPjyH/3oR3bbERZLgHhAcDCcUQg/mR6+XQaHwZI7A0EJn3/+uV36YX4NJt4CRIWf008/3ZZNyqiIHxIGQkSMbdu2ZSvcfJDvHpg1rxBHH320Xe7YscMuhXBs3brVLl2P30FiLPIXIFL9gYjw4osvWrHQvXt3a50KlkGVt3gjYSBETHFT5vbp08cuhSglixYtslkyEakkMnJgBcD1QEIjsifiSgiWQWfVcqJDxAsJAyFiCP5dxpszx4HyE4hSg8vJDXllTg23j3I3adIk8+CDD9p9lEF/zItIBhIGQkQM8heQZjYf69evt8sRI0Y0CjTMBUGLwHh0IQpBPAoTcoGbkwO3wJNPPml69uxp3Q7MygjEEwRxrgdScYv4IWEgRMRw/lqCv3JBJkPo37+/XRYCt8NZZ52lnp1ogmu8/XEEy5cvNwMGDPC2GiCuANcBszCCK4MnnniiXfr59NNP7ZL5FUT8UOZDISIG5tq2bdvaGRJJMRuGEwQuADEfmIDbt29v5s2bZzPbCeHHuQ0oH4wucOVv37591hqFYCB7JhAYi9XJncPEXsQiBK1WU6ZMsVODF1M+RfSQxUCIiEGvnnzzP/7xj0OHe9FzYygYJt1imDVrll0yu6IQQYgjcHkHaPBxFxC7EoQZGJ0rCssBuCBDPwgNlxdBxBNZDISIIFSuDBX74osvzLPPPmt69OhhK+05c+bYXpuDeAQmuwmbRhlRwTEq8bq6OlXUIifOKkBOjMMPP9zuI+jQ5cRANDAxEuWSab39ZZDzrr322qybavz48TZGZufOnaHlUsQAhIEQIjqQwph5D3g9+fhTIDeHRYsWZf/GggULvL1ChOPSH69evdrb03yWLVtm/8ZTTz3l7RFxRMJApAYaVzenQBTh95GT3jXmVK733HOPXUccNGdSGldBn3TSSfVjx46164iNlgiMOMC9ac79EU2hbFDOKCstEQeuzPE3/HN1iPghYSBiDZUZk7UwqyA9HiZwyQWNbq7JYKgI880gV26YgMbNjEgD7m/k+G3s58PESvkaQM51f8dvaeDa2rRpYyfKyXePogTXyfXwXPnd+a575MiRodfF9fP9KAvCKOEXB5Q1V37ywXNx1gZ/mRPxRcJAxBpmF6QhdT1tGsUwqLxoXMIqLdfwsqw0/C7nNuC3uxnqgtCw+d0LTghx3Qgj/zGuc+nSpd4390PDyTHOqaYIKhau2T1XGpxccA7lIAzXYKmxKh7ulbtvlBfKV1B0cQ5l1c3uybmaTTE5SBiIWONvzF3jGNazpAILawydKMj1vXJBxeoaPT64DYppvPiNfI9rdZYBPmxzjYXEDf/D3SeWe/bs8Y5EE66X35qr0eF6aLx27Njh7dkP98Ndp2g+iAFXVvJ9mM5bFplkIWEgEoFrIMJ6ljQuHAs2vFRmNK65vlcu8rkNKoUTJVx7lF0Lzm+d6zfmshawz5nE+Rui5VA+KbPcaz4uZuWBBx4oSsyK+CFhIGIPFRemz1yNbJi1wIkCGhwquUqYQfltrgfG/87lNqgUXHv//v3t7wnen6jAc0W8hOHEYPCZ8ywRBVwT1xZWJkTrcKJLloJkImEgYgsNq6ugaCDCKikaPxphP5znesrOlVDOCo4GzDVSfIp1G1QCfocTKyyj1gPEf404CIN7GhR0PE/KBNfB94LPXpQGxBbvEPc66u4o0XwkDESsoUF3vuSwniWNnd/v7io0t4/vhn2vVETBbVAMTrhwLzZt2uTtrS7cO4RBWNyEe45+IeMXBcB3FRBXPrjflBliDESykDAQicBZDvy+6KC1gAaD8/wNDY1LmI+6tdBwRcltUAzcL+4HvzkKrgUadRr3MDEVdA/xTPntzvLjREUc7nuc4Tm09j7zXZ51lIVz2pAwEInA9Xj9wiBoLaDy4ZywD+eWAsSH+y18ouQ2KAZ+qxM0LKv52xFUCLkgYdYC8hi4ex78+MuAKC08A+49z6MljTpCzr0vcvtEBwkDkQiCLgF6IcGKhgaCSsh9nJWBdb+gaCnuf/I34977cZU197QU96a5cO/4/yTZCRK0FoB7pu7Dd3m+rKsXWl5o3N39bgmIC75fDsudaBkSBiJ2UNHTCLseI0saZL8/me1CDRoVWSksBfwe18vm/7bGrBol/K6FSue+d417MN6B38RICr+1IIhrqFatWuXtEeXGDSvluTUXBDvfTcp7kwQkDETscI0GjRZigMbY39ugoinU4LseaWvGuNM4ud/iKsV8DVYc4Xqc6GFZ7uvj79NA+AWJv8fPbyjkGnDPJCzpkSgfrpw018LEu8v3kvbuxBlNuyxiB9MPr1+/3nz88cemY8eOplu3bo2md50/f74ZMGBA6FzxDqaPXbFihRk8eHCLpoZ97bXXzMSJE80zzzxj57KfMGFCoqeYffrpp825555rMg22eeSRR/Le29bA9L9vvvmmt9WAe0Y8s1mzZmWnAs7FmjVrzJ49e8zQoUO9PaIS8F4yVTjwbrVt29auF6J///72GU+bNs3bI6qOlQdCiKJIqtugGPyuhZaYjEXyoYxQPiZPnuztyY9z+yg7ZbT4SuahCCEKQG+IXnP79u3N3XffbTINo1mwYIHp1auXd0bywUqwcuVKayHBejB+/Hh7X4RwUEbq6urMbbfdZl588UVvb27WrVtnlyeeeKJdimggV4IQBUib26AYEEnnnXee6du3b1ldCyKejBkzxsyePdts377dHHnkkd7epnDeJ598YhYvXuztEVFAFgMhcoBPm15x79697faGDRusHzTtogDOOeccs2nTJrvetWtXKxSEcEydOtXGo0yaNCmnVYn9Dz30kBkyZIi3R0QFCQMhAshtUBxhroW9e/d6R0WaQTzfe++9tuGfM2eOt7cxq1atsstBgwbZpYgOEgZC+MBtcOGFF9qGjgZv586dtnf8jW98wztD+OG+YEVBPCGiiC5nZIEQAwcONDNmzDBjx46175Ufth944AGC360rQbEq0ULCQIgMchu0DsTT5s2bTZs2beRaEFkuu+wyU1NTY2MJENnw+9//3mzdutWMHj3aCsrdu3dnj4looOBDkWroqSxZssRaCICKasSIEbIQtBDu5+23326tB1hc8DHrXqYbhEDnzp1NbW2tDUgU0UcWA5Fa5DYoPUHXAglvsCSI9MKohGXLltlYA1mS4oGEgUgdchuUH+dagBNOOEENQsohC6ULUlUMSvSRK0GkBrkNKo9cC8JBWXApkxnNonIQXWQxEKlAboPqEOZaUI8xnVAWSIb129/+1opFEV0kDESikdsgGvhdC4xaQCiI9EHuCycSi0mZLKqDXAkikchtEE3kWhBw+eWX2+RH27ZtsyMWRLSQMBCJA7eB5jaINgQjItrKPY2ziCZY8oYPH246depks4pKHEYLuRJEYpDbID4EXQsatZAueCcffPBB8+yzz+ZMmSyqx1czPauJ3roQsQTz9HPPPWdOOukk8+tf/9q6DbASyEQZbZiL4qKLLjJffvml+fGPf2znWSBv/gEHHOCdIZLM4YcfbssAKZPPOOMM06VLF++IqDZyJYhYI7dBMsBioGmc0weifty4cWbjxo1m6dKlencjglwJIpbIbZAscC1oGuf0QWwBwagMYbzxxhu9vaLaSBiIWEEPg0ZDUyInD03jnE5cymRGKcyfP9/ba8yaNWu8NVFpJAxEbFCSouTDs/QnRAqbxhlrEQJRJAdSJt95553m4osvzgalIgwYciwqj4SBiBTMxBbWEMhtkC7cqIWwaZx37Nhhy4NIFtdee60dvvqjH/3ICr9///d/N0888YR3VFQSBR+KyPDee++Z0047zQYi0ehTOShJUbqhDIQlREIwPProo2bUqFHemSIJ0Clg0q3rr7/erF692nYKGGmkTkBlkTAQkQBLwQ9+8AO7jjDQaAPhB4uBS4j08MMPm7PPPtvs27fPPP/88+bYY4/1zhJxhef70Ucf2eGqBCKOGTPGWoqwGkkAVh65EkTVoVd4wQUXmNdff90MHDhQbgPRBH9CJHqUBx98sN0ePXq04g0SAJbAV155xb73xBocdthh2edNIiT1XyuLLAaiqlCpn3766daf6EduAxEEM/Nnn31mbr31VrN8+XJvrzHnn3++efzxx617QcSbn/3sZ+auu+4yf/jDH7w9DUKQCZeUsKxyyGIgqgaigMbfLwoYhlhTU2NHHGzfvt3bK9IMguC2226zpuUBAwY0EgXw5JNPmtmzZ3tbIs784z/+o1m8eHEj9xD5LebOnettiUogi4GoCogC/MSMX87FkCFDzD/8wz9YM7IQBKJhSaKRwB/94YcfekeMNT2/9NJL5q//+q+9PSLOEHNEumzyWkD37t3NG2+8YddF+ZEwEFWBQMMXXnjB22owFx544IE2LS5jmnv06CE3gsgJjQQCgUl4tmzZYvdhbcLKpHKTDOg8kA2R57x7927rTmBOBVF+JAxExbnuuuvMz3/+c9OuXTszbNgw88Mf/tCcfPLJCjAUzYbGY8WKFeamm24yW7dutVP5aux7spgxY4a55ZZbzCWXXGKmT5/u7RXlRMJAVBSGIdLDQwiQClWIUoGrgbS6jGzhI5IDOU7OOuss8x//8R+yCFUACQMhhBCRB+sQH1kWy4+EgSgJ9NbwB9Jjg9raWnP11VfbOAKijElawmgDAgkZe06uArLZkbCG5EUKMBSlAIvUL3/5S2+rAZLjaJKt5EBdM2vWLPP55597e4zp0qWLueaaa7wt0VokDERJcWPJGW7olP2UKVOsj5BkRa6CpgInuxkZz+RSEKWEskWiHIQoM2/K9JxMvvKVr9jERwScqg4pLcpjIEoO1gInClD3WAwAVe+4//77bUYzvdCi1HzyySd2yVBXiYJkQr0C1DWqQ0qPhIEoOYceeqi3ZszUqVO9NZMVCww7OuaYY2TeFWXh1Vdftcu+ffvapUge7hmT9VKUHgkDUTJISgLOMoAAYEhip06d7Dag9B944AE7xaoQ5QC3FW4EBaklF4QBbgSJv/IgYSBKxt69e+0SIeAXAG6GRMCCwKyJMvGKckB8ARDMqrkTkovEX3mRMBAlwwkDIGr4qquuaiQAnAVBLgRRLpihE8icKZKJE3+kVBflQcJAlAwyzwHpSxlKRGpjJsABBAEWhCuvvNJuC1EOGOUCEp/JReKv/EgYiJIzc+ZMm5vAD6Y/LAgy/YlyQYwLbivm8w9CYhwXyS7iTT7x5+KcROuQMBAlY+3atXY5efLkrAD44IMP7JIYAywIQpSLt99+2y5PPfVUu/TD1Mzbtm3ztkRcQdw58ReMIcHF8PLLL3tbojVIGIiSEhQAuBVcdkMhygmNPxx11FF26VizZo21Ysm9EH+ef/55u2Q2Vj9YCkiYdtppp3l7RGuQMBAtAtOsix9wsD1u3DhvqwGEgd+C4JBpV7QGyo8zG7PEvOzScc+fP99uk3Hz8ssvN4MGDbJpuB0qe/GDZ4ZFAIEH7hmzTXr1zp0729FQSnZUGpQSWTQbemAMQ2T+A3/qYyro4IsZtg+osGH27Nl2KUSxUKbIi//RRx+ZdevW2W3/iJgwOnTokC2nNCSfffaZncJXw2bjAUJux44d3lY4bdu2lTAoERIGomiogKlMmfyIMcTTpk0zxx9/vHe0eTB0cdiwYWbhwoWaQEkUDaL0uuuus8ltSKndEvcAfwMrAn7qm2++2dsrhHDIlVBmULqY2DGF5QOzmBufG4S/Uej75YT/jekOc92KFStsY878By0VBUAcAvEI5557rhUclYJe5hdffOFtNYXjK1eu9LYa8+WXXxbstSQZrp37UwjKRq57XMz3c0EZpEFnmBrvS0tjBgYOHGjq6ursSBkEajmgTOcr17xTuDpyvddBN50QFQWLgSgPmcoHa4z99OvXr37z5s3ekcbs3LnTHt+7d6+3Zz/bt2+3x1hWg9WrV9v/zzVkelj2t5YKd921tbXenvKxaNGi+okTJ9rP1q1bvb1NWbBgQf1//ud/elv7+dOf/lT/i1/8oj4jjLw96cFdu7t/M2fOtPvC2LBhQ/3SpUu9rcZwjO82F96LjIjMlsGw96QlUO74m5s2bfL2tJ6MaK6vqanJ/tZccN6MGTO8rcZQb/A3hKgWEgZlgkqQyozGj/V8FQUVBBVFECcK+FQa/rerjKmkcoma1rJs2TL7P8Kuv9TQ6NOw5WrU3n77bXtOEH/DGCYakg5iyAkiGn3uA/cqCPdp2rRp9bt27fL27Ifz+V4u0ZALyqFraEtdRhAY7v0qldgAV6YR1WG4/7tjxw5vz374Dt9FHIjioG4q5fMT9fVyJZQJzJz44Al4cpMKHXLIIXbpB5Ph8uXLm/jZMUOyjwA/f0R1uSmH2yAflXQpZBoZ07VrV3PggQd6exrDGOjvfe973tZ+/u3f/s2OgSe4yT8hVFogL4DLDeCfOjtIRgBbM//BBx/s7WngnXfeMU888YRdb045IhaAcoH7gb9d6lgUAg8feeQROyFPcDRNa/jDH/5gl926dbPLIEuWLLHvdPv27b09DXC9p5xyil1XVr/iwM3KOz1nzhxvjygFEgYVgAY200MITfDDECsaRj80zkRdjxw50m7jV60EVEw0ABdffLENzMr07ioSGEiOA+7PpEmTvD2lB/94plfRZPyzg8aLijrY8Gd6f3aJKDjuuOPseppBPBHhH2z0iL945ZVXzHe/+11vTwPvv/++HXtO5Q1HHHGEXRaCGIJSxBMUAqFCOec9RBCXgkWLFpna2tomQ3TBCe9Ro0Z5exrg3WOkD0N7QTkXioN7PGPGDDN27Fh7D0WJ8CwHosRg2nLuBHyZYb55TGBBXyLf43xMii5Godxmskq5DfJRbpfC2rVrrSn7008/9fY0Bt930E2A2RvXAt/JZT5PA7gGuHbuUa4YC+5v0E3AfeM7bhnmpglCWcflRlmgTO7Zs8c7Ul7c/+SdbQ28523atMnpCghzG/K+4VrgPcx0BvLGJoimuDozl3tGNB8JgzJBQ+d8oxTYsMaWis/vh3QF3FUcfJ9zygX/z4kPfmO5GuViceKECrLUECOQK/CNRo3gRD/s4zv4zZ2oyBWbkHRo8Ikd4B64e+IH4cC99e/3iwKO891CjS7PnfJPGai0j513gffNNdAthfceYRD2vrtgW/6Xg//F/2XJh+/yN0Tz4N5Rbig/ovVIGJQZeggU2GADH2YtoFC7SGUqEb5XrkqinKMNWoqrOEv9ctNg0TAFe7TAsWDAHL1jfwPIOp80w73gHoQ18NxXxJMDMcA9dRYWzud77M8F5/Tv398+/1xBe+WGxsWVv5ZaKniX+BthBK0F7v85EeFERRTexTji7p8CN1uPYgzKDLECQFIgP2RfIzjR4fybxCEQkOhygkMp07cS4Mf/xn+LPz1TKdkkL2H+0ErDb8DHir8Xv3Kp2LJli12GBb5lGqRGAXPOJz548ODsuH0CD7lXbKcVAjZJSAWbNm2ySyBfAdPg9u7d29tjzNy5c+09/eY3v2nvH+cTo0EcAp8gPGu+/61vfcuuk2egGpA1795777XlryXBbMQPkBshI/i9PfvhHeYdHzFihN3mXAIrXWAx7zxzPZx11lm2nHFcNA/qTuoPYqSUB6J1KPNhBQim/yVIhhnC/MIgo3S9tabQeLU2GImKhoqHlybTS7EBf1HNOIhwQUhlelQlSXGa6UnYmR9vuummRiMSaKTuu+8+c+WVV2aFASMwNm7caNeDDBgwINs4phFEwD333GMbPlceubft2rUzJ598st1GCORLc3377bd7aw1lkoaYxvSGG24wEydOtAKi2sycOdOOUli6dGlowHAuSFCGwFm1alWTgGGSGRH46t45NwIhrPrl/STVs2g+lCk3goZEZaVMeU2nigDlVKTRRhiI8oE/kdvsdwngQgjzQTrcd0plEoui2yAfpXYpYNYOC3wjkC7MveCH2INcsQlpw+UicC4B5zLwxxYEIZkU3wkmlcKMzvMtZTkvJRkxb38bv7NYnNsw6IbgXSeoMB+8o3y3lMmW0gr3m3tZivgs/hbPlTqbv+mPD0kyciWUGHob9A4wZbkeUaZgZXse9BQwaecbz415H1o7ljnKboN8lNKlwDDEzMtsjjnmGG9PA/R+6ZUFh9cFeffdd82xxx7rbaUHrCmPPfaYtQhwrzBvY3W54IIL7HBFIP/GGWeckTMvBDiTrv/+07PGjI5lJtMgVjRPR7FMnTrV9tzp4Rdj1uccXAV8J9ijpBxff/313lY4WAX5bnPyPIhwuIcLFy60VsfWprwmnwv1JxZerFppmXRLwqDE7Nq1y5pGu3btai688EJrCndxBlQejFXO9JTsdi6oLKGl7gNXSVUqSVE5QEjxIrYm8RENm4vVYIy9fw6EX//61zaZUTAZjx/iDRAVaa2sd+7cacUA7oPnnnvOulJc/gJcBhwvVEbfe+8907NnT28rOvEEhUCckvyIBGN+90cYXAfvOufyufHGG70jDcKITyEByvtK3pJ8LkVRPAg66llcf7gkWwpCwAnhIUOG2GUq8CwHosSEmesxQxVjmuSc5pgw/cTNbZCPUrsU/GAGz2cCB0YqkNug0HlJhmsPu37ujX8kRy64f5xH2ac8Ui4x8VYqP0FrYRQBv7mlQ3kpw8W8g5is4/yuRhFXf+AGaI0LwJWBltbJcUTCICFQaKlwKcCFYhjiBLEZramYRfWhbEY5nqAQ7r1av369t0fEBYbBMoTRDQNvCZRd6tQ0IWEQc1DCVLZUXKjjJDagrmJOk2JPClHIT9BaeMdoGLgG9erjhwsKbUn549nz3dYIizgiYRBjkuQ2yIczCZbDpSDKh7P20KjGXdTx++l5UgZbY5YWlYfnxXNribCjjqUMI3DThIRBDEmq2yAfcinEBypi10ujQo5LPEEhXCORtt5jEqDOdOWxObhynDYxKGEQIyicSXcb5GP8+PH22uVSiC70yKh8k9qAuoYirm6RNOM6F82Jc8ENRicsbUgYxIS0uA3yIZdCtMFyRUWa5IbTb5aWQI0fbmRMMYGkzn2EoEgbymMQceKapKgclGsuBdF6SCTTtWtXOhp23HhU8xO0Fsa1u7wG5CfJCAW7LuIBeWQyos5cccUVBRNXkfsFjj76aLtMFQ36QESNtLsN8qFRCtGBcprEeIJCEIzGNWeEqrdHxAUsW1gCcrkIqFdc3csHK0Pa6hoJgwgit0F+/C6Fffv2eXtFpUl6PEEhaDxoYCTa4wfPjHIb9uwo14gH/wcBnCYkDCIEqjRtow1aigskeuqpp7w9opJQNpMeT1AMLiBW72r8kOUxN5p2OQLg64rLlMhRotTTM4viIJ6AHPSUVWI90nzveXfdNL9M05zG2J+48sc//tEMHz7cxm4tWLAgNRMkFYWVB6JqyG3QcrhX9Fo1SqEypDWeoBD0ON09EfHCxYpQ94r9SBhUCbkNSoMSH1WGtMcTFKIlY+RFNHCBhqtWrfL2CAmDCqPRBqVHvsLyoniC4nBj5NXAxAvqZEQv9bHqkAYUY1BB1qxZY8fRMmd7phIxV155pXySJcD5Cpn3f/bs2d5eUQoUT1A8xBuMGzfObNy4UfcqZpAv5txzzzU9evRQHQJWHoiyIrdB+ZFLofQonqD58K67uJe0DXGLO3IH7UfCoIzIbVBZnPjatm2bt0e0BGda5V4iDtTANQ/cLdw7BbTFD+cOSttsikHkSigTchtUHrkUWo8zqa5bt85kelBm6NCh3hHRHObPn2+HH+sexgvcQRdeeKH56KOPzMqVK9M7hNHKA1Ey5DaoLpgDg9no1OMtDtfTxbqlctt6nNVFAW3xgrLPc6Me92dWTVM9ImFQIuQ2iA7B6Zlfeuml+rVr19p1EY4/nmDHjh3eXtEaGOJJXcDHxWjQ6FAeRbSh/uZ98GdWveuuu7y15CNh0AxyKUYlKYoWrkKmkYM77rij/tprr7XraQex9Oyzz3pbiicoN/7ep9seMmSIXRfRxll+XQeD9bTU7RIGRUKFSU/Uj9wG0cU/SmHkyJH13bp1846km1NPPbX+hRdesOuUX5efgPslygNlEPcWFkXEV7t27bKNjYguiADeD+r2d9991z63Bx980DuabL6SqRREAQhIOf30083//d//ZbcJLurcubNZsWKFybz4du7u448/3h4X1YNx97/73e9swFdGtNlAuoxgs/Pmsz/NTJs2zQZUffvb37bBsZTfTB1g748C5MoH855MnjzZBiMS3Pn555+b+++/3957EV0IFv/Xf/1X88wzz5h/+Zd/sc9t7ty5qXhuGpVQAETAD3/4Q/Pcc8+ZTE/LHHLIIRptEGGoeDMq3768Xbt2Ne+8844VBbt37zZ33HGHue2227wz08Ubb7xhRdKXX35pamtr7X1gOXXqVNO+fXvvLFFKEKJTpkyx9UOXLl3MokWLzGuvvWZ27dpl+vbta0Va27ZtvbNFVKDOv+yyy+zIhEMPPdQcfPDB5uGHH7bHjjrqKLNq1SorqhMNwkDkZtSoUdbUetxxx9WPHTvWrsttEG0w0+LH5Vn5P9/5zne8M9IFbjBcKdyDww47zC4VT1AZXn/99foePXo0Kofu86tf/co7S0SRCRMm1B9++OFNnlsa4pUkDPJAAfAXCCrXBQsWeEdFlKHRGz58eKPnd8QRR6TStztmzJhG9yHTe7W+0yOPPNIKX42gKS+UxSuuuKI+09ts9BwUhBh9iMfp2rVro+fWp08f72hy+erEDJmLFQFuuukm89Of/tTbamDHjh3mzTffNE899ZT1N5ELHdeCiB4HHHCAueiii8yf/vQn88EHH1jz7RdffGFNg27+/DSwZMkS88///M/WneL47//+b+s+OPPMM80//dM/mZNPPtk7IsoBZZF7/Rd/8RfmrbfeMjt37rT79+3bZ8477zzVIRHmuOOOs0nTXn31VeumhP/6r/8y3/ve98wxxxxjtxOJJxCED0YaZF7WRiqRDyZBoroZzypXQnwgkpiIYp4hvba0QFQ1VhJXfrEQ4E5hbLbcCNWB6PZevXpln8lVV13lHRFRhvfFuZX5nHXWWd6RZKLgwwDz5s0zl156qV3HIkCQyYABA2wAIjNvpTZFZsx5+eWXzd/93d9ZS8/WrVtTMfNdv379bE/nsMMOs72eq6++WtaBCEBwGxbJn//85+ab3/ym+fDDD1WvxIQHHnjAXHfddearX/2qtSAn9rlZeSAsJCrC/4oafPzxx5WoKGG88cYb9Z06dap/9NFHvT3JhTHzWAhIXqRyHE1mz55d36FDh2xeCREPSBDWsWPHRlkRk4YsBj7wIaWhJ5lmmGjpoYceMuPHj/f2JBPyFPTp00c90YhDnZPpkFhrlogP1CNPP/20HfKbRBIrDKgYP/74Y2+rgb/8y7+0ZmQ/3bt3t0uCCvORUYhN/h7j5TED+vePGDFClXGEYCzy9u3bva0GCPYiGNGPG5fsP5d9we9+7WtfM7169fK2Kg95GYK//cQTT7RjrR0EWb799tveVgNh18y1kOzIfy4BcokOqqoCYYm1wpKhFXueqA6IAdwHfshDEexMFntelEls5kMSUWzatMkmdSEyGwFAkhES3bCPxC4IBSr/Dh062EyGbh8NPt/hvLVr19pt/h6NDPs4l79HZDf72ebDdyUKogUNJlHES5cutf52njcvKI0i+/jQGHIeHxrJV155xTaklAuOufP4TrVfbuIF3PXwW7kefpcftv3Xx7Xwu7kWro194O4DsO9///d/7TWL0kKngxEyJNy6++67QzshNCbsP+GEE/KeJ6oHjT2ZVd0zYj0oAIB9jFzjHD60IWHnRZnECgMqPR4gnH/++VZ5k4GMAEIYOXKk7fnRkPOh0cc0xD6+S88fampq7Daf3r17232kOOXv8T2UIN/9xS9+UdWepAiHxh5hB4i5Tp062X08T+DFpYfMPhpJhvUxhKxbt27mwAMPzDaULHm+1W44/f9/8ODB9nr4nX7YdmWR87kWro/rdJn2KMsc41wCMvlbDOPkPFFaqC+OOOIIu37XXXfZ7SDUTewnYBSmT58eep6oHtT5LnU46davueaa0Dqf86hD2rRpY7Pjjh49OnZtQyrmSjj66KPtkmhgl7bBiQaYM2eOmTBhQraxABp7wCIAfJdUyPBnf/ZndglYGciDrrTI0eWTTz6xS3rMDlJcB9mwYYMVD35Tuhu7TArbqPDuu+/aBj6fyR93ArgGCX7zm99key5OTFDO33vvPfOd73zHbovSgzWAfPv4o/PVE5znUq3L8hhNyIkCdBjzgZUA4pozJdHCwDXurpf05JNPWlOsH/x6GzdubKLOt23bZpdOLNx77722dwa4DIC856AJaKINSY6AoWFAA+kS/rjGlQYTV0OwgXTlAF98FOB38tud5SsXThh861vfskt3fYBLzbFs2TJz9tlnN7E6iNJBXAhgucyHez5REqGiMcuXL7fzsGCFywfzKXAeAcBxJNHCwN+4IwB4WM5FQOOOFYDo9Ntvv93uywUCAHMrJiFAaDjrA5YGEW14dkDjR4NJBfz973/f7nNgQQhrIF9//XX7vKvtQnBs2bLFLv2NezG46wPXG0Ug8R44wSvKA5Ml0UgQJJoPyiXnSRhEE+p8Yj+Ksfww8gl3Q1wtP4kWBp999pm3ZqwA4EE5qOyxINDY+10IDlcAKAxjxoyxAoBgRqCRwIJw1VVXyYUQA1w54Ln96le/sqLA716ggSRVcrCBxOJUTO+8krgRBIUsGG40hbs+fywC15rLQiJKD1Oyu1ilfNxyyy32PNUp0WT9+vV2OWjQILvMhbMQMVV/XEm0MEC10bgTVIirgKAQ17h/+umn2f25oAJFPCAKeFldzxNLBOtyIcQLLD9f//rXG/nmicQnUj9oQQB8+dDc3nm5wNpB2eP3FGv6d9d32mmn2SmXoV27djktJKK0YKkkbqBQI+Hcks6qI6IHMUhAJtx8YCGCQhaiKJP44EMEAEMJnX/PNe5YBKZNm2bXg7iAsxUrVlj3gxMPrueJBWHcuHF2XUSfzZs3WwsRuS2cAGDIH5AqmQjisAbS5byISnyBK5dudEw+wq6PyZMAoYAFQS6E8uOC0Ar1MklyBFGyTonG0I4waoQOZj6KtRBFmcQKA1eJEg2MAHC+HpdExFkQwnCBaSh9f/wBFggIjmAQ0YdnOnDgwKwAoCcNRO2HRfe73jnDGYOiATM8QXuVBoEDYWWPyshZBCDs+vwJjrAgiPJDxwIoR0FoaBwEtdHohA1rw7IpqgvtCe0BrmeGIfrhGJ0OcBaiIUOGNDmPY84yFHUSKwxc4z5jxoxGAgChgJrLFyHsvrtw4cImlTCuiXzuBxEtaMSBitlf6RI7ghUhl4nXBfkFRQONL2b4Qr2GUsP/dcMUg4GQzqfpFzDu+sJcJLksJKK05AtCIzmOE2o0LNRL5FYJNiaIApKyieqC5Q3CrHWTJk3KuhvzWYiwUrsMq1En0cIABX7ZZZd5e/bjtyCEgQkZ8eBGMICzNBQawSCiBQ0qDeQPfvADb08DWAPOOOOM0IQ+fMf1AHA9EYT4/vvv2yC+Rx991IqNMCtDOSHokDLNtfB7+ND7wHLxxBNPNOmRcn1nnnlmIwHANfTs2bPivz2tPP/883ZJbgzX4CMCaOyHDRtmyx9g7QF/J4T6hvPItCrrTvVxVhs33B3hzTMiqB13Nc+OfTNnzrTHnXj3nwdxCSxN7FwJPEiGYvl7iTwgUlXefPPN3p5w+C4vs79XyHdJUSprQbygAWUEQtBE+9hjj4VOXOMEQD5oWCs5fTG/tRCUS78ICLs+GiAsCLIWlBcafzIX0kPMBR0PrJl33HFH1kUZBuctWrSoiSVBVAYsO0y1jEUnF3V1dTbpHa6hfOch4uMSsK7ZFYUQQgiRJfGjEoQQQghRPKkUBpj6MBERHCREUiD2gbgDlw5ZCBENaHP4xIXUCQMqTiJDCf5h2mRiB4SIO8RG3H///dbHOWvWLIkDISICAYm0OXyIR4gDqRMGL7zwgrfWgOY8Fw5GIxCs6IY4xgl/wCSjF1zqZBEP6KCok5I8sBKMHTvW2zLmkksu8daiTeqEQXCCEv8UyiK9IAoYijh79mzb845LIhIH6bv9HHLIId6aiDr0KBluyocpl0VyYHhxHEndqATGlc6ZMyebc548B3GdAUuUDiwFiAIH45Cvvvpqbyv6IGywhpHxkKmW4zoPfBoJDkXcuXOnJlJKEC4fBXl17rnnnoLpsaOAhisKkSEoDBCNl156qbclRPno37+/TaPrwBWkzoqoJhquKEQGJhQaPHiwXcda8Ld/+7d2XYhywxTu9Cb5MLeCRIGoNrIYCCGEEBWGwERGxkVRCKbGYkDOAnIXxGksqRCFYFgigZJxHEkhRBohzu3yyy+3wxeJBdqwYYN3JDqkQhggCoYPH25zF/Aw3AQ5QhTCDWFkGTX4XQQzkbuAkRTkMhDJgeGLSsKWPHAXufkxiC1ZsGCBXY8SqRAGK1asaBTck2+iCyEc9MLvu+8+G5TIMmq98u3bt3trDWzcuNFbE3HG9SgZvoipefXq1d4RkQQOOuggby26pEIYdOzY0VtrAKuBEIXYsmWLjRAHlm+99ZZdjwpf+9rXvLUGGKYo4g+Czz/jYlyy5Yni6NOnj7nhhhvsOgGn/gRIUSEVwmDgwIH25eJhkECktrbWOyJE8Xz961/31qIBU0kzkoKe5YABA0zv3r29IyJJBJNXiXhDsOG0adMMcf/r1q2LZEdVoxKEyAFxBSQn2bx5s218zznnHHPggQd6R4UoH8ztf/HFF5uamhozY8YMWTlFRZEwEEIIIaqIPyNv9+7dzejRo70j1UHCQAghhKgizkLkWLp0qR1FVy0SHWOACmOCkvHjx1uTsBCthZEJc+fONZMmTTIrV6709lYWXByLFy82jz32WKNZFUVyoS6bMmWKnVeB+swFxYpkEMyvs3v3bm+tOiTaYoAoGDdunA3yAIb9EIgoREuhQfYPC8Tkd8wxx3hblSH4GxjaRkpnkVxIzubvQc6bN69RD1PEG5KU+YOHN23aZOOaqkWiLQb4a/y65+OPP/bWhGgZzF7oJ7hdCYL/85NPPvHWRFIJ9iB37drlrYkkwAgjhqkuXLjQzq5ZTVEAiRYGo0aNajSlKUEdQrSGnj17emsNky19+9vf9rYqh99CwXzv1fgNorIwAyNj3oHl0KFD7bpIDkceeaQd+RSFKbcTH3xIWtE333zTjvfWHOeiFBBngJ8fYVCt4YukP8ZScOKJJ5qDDz7Y2yuSDOmRKXuUO9VlopxoVIIQQgghsqQi86EQQgghikPCQAghhBBZJAyEEEIIkUXCQAghhBBZJAyEEEIIkUXCQAghhBBZJAyEEEIIkUXCQAghhBBZJAyEEEIIkUXCQAghhBBZJAyEEEIIkUXCQAghhBBZJAyEEEIIkUXCQAghhBBZJAyEEEIIkUXCQAghhBBZJAyEEEII4WHM/wP/p7xS+T3SbAAAAABJRU5ErkJggg==
iVBORw0KGgoAAAANSUhEUgAAAq8AAAIKCAYAAAANsKbAAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAPMgSURBVHhe7N0JXFRl9wfwH7n1Gmrgkpg7ImrmrrlgoiXqa4VpZpqiZi71d8lKsNwTTMUyl3JJeoVMLcU0K3HfUExRUXEBExUUFAVUEEVgnv+cO/fiMAwwwAzMDOf7+Yzz3DvjMOu95z73POexEWpgjDHGGGPMAjwjXzPGGGOMMWb2OHhljDHGGGMWg4NXxhhjjDFmMTh4ZYwxxhhjFoODV8YYY4wxZjE4eGWMMcYYYxaDg1fGGGOMMWYxOHhljDHGGGMWg4NXxhhjjDFmMTh4ZYwxxhhjFoODV8YYY4wxZjE4eGWMMcYYYxaDg1fGGGOMMWYxOHhljDHGGGMWg4NXxhhjjDFmMTh4ZYwxxhhjFoODV8YYY4wxZjE4eGWMMcYYYxaDg1fGGGOMMWYxOHhljDHGGGMWg4NXxhhjjDFmMTh4ZYwxxhhjFoODV8YYY4wxZjE4eGWMMcYYYxaDg1fGGGOMMWYxOHhljDHGGGMWg4NXxhizOJlI2jcNzfr8hMhMeRUzYwIZKTdw4eRZXL77WL1kCPX/uRulvn+avMwYU3DwyhhjxpJxE4eWLcNf0aYOOAQe30vApcuJSDYsEjIRgdQzGzD/t3CklOjzMGdpiDu0FGOm/I7o9GRE/bEUXxvwfomUs/Cb8DHWnL0vr2GMKTh4ZYwV2o0bN3DkyBFs2bIFnp6e0sXGxkbvpV+/ftLt8+bNk+4fGRmJR48eyY9UnDIQ/+dk2Ot5jvouldoNwYxVuxGZkk8XZ8YN7PVegjOvDsN/61aQV1oQ8QBXD/+GpVOHo3ujSk/fg0od8O7M9Th5RxOQU1D10wcjsfJCqnrJBhVb9sfwKn9j5v/OcgCbg0D6lc34bOJdDPX5GL07dkGvD8ZjUNpqDJv9G07GperphU1H0vktmP3+UHxX8/8w6dXq8nrGmMJGqMltxhjLEwWbp06dwsGDB7F161acOHFCvqXwPvzwQ3Tt2hU9evRA7dq15bXFI+PkIjRpNwVX0Bffnd6ASa0qybdoiJQr2P+TD8ZN+h/ius/G1l++wGsO5eVbtYh7OLPcE0trTMHKQU4oJ682nQzEbRmPFz0b4cSlz9G2rLy6UNIQd2wjvvOej4WXnOE5ZRT69+mODnVt1aGpWsYdnA/yx9x5kei7+mOU/2YEBu/8L/Zc8kaPynL/h0hE6DdeWN9kBha+URdFejrFiD7fA78H4WxSBtKfpKtXPMSD9AboPrgfXBtU1rx+XRTkH9iKDfsioPrP86ggkpHw5AV07D8Qb7SsofPaE3B41tt4X/jg4ldd8Zy8FqnHsNg3Es2bPMKZmGSUt6+N2s+XQ/q9WMQkCjyXdhKL1zlg6YG56P2C6b9NjFkcCl4ZYywvERERwsfHhw50c724u7uLKVOmSPcLDAzMdvH395duo4u+/6tc6DHo/gkJCfJfNqUnInrjSM3fru8jjj5Syet1qK6LwBFO0v3sxm0XtzLl9VkyxP0Ti0XvIevEv09yeQyjSxexgWOFjaOvCE2XVxVG+g1x0Pd94YQ6wvWTAHEi/rF8gy71azy6QHS2lT8rj80iVr5FoUo8IGb2nCwCrz+S15gzlUiP3S3mTfXTec3q9fHHxMqR74uZe2LU77IOVZw4OKuf6Dlzh7iWqnwR1P8nMVSsGOQqRgSEi2yv/vEJ4duqgXAPuKy+l7ZbImjRZhElr1Q9ShJxsbdF0iP1Yz46I1a81V1MDropcnzVGGMSDl4ZY7kKDg6WAkoluNS+UCBKgSYFtgVFwenp06eloDa3x1+2bJmJg1h1ADGppebveQSKm7nGncki1NdVcz+HL8SeexnyetmT88Kv33+Fd0iSvKI4GCF4TY8Re2b2EbZwEoOWhoj49HwC76wg3kG4rbmgJ7BKE9c3fiiae+0RCcUVwxeW6rbY+8Vssf22/jdPdXu7+Kj1bHHovvarfCJit08WTg5TRFCCzndAHZo+Ob9SuFUaJFaEJ8vr1GIDxXAbR+ERGC2vUKi/U0v89Hx2ySJ8xWDRfPIOcbsE3sPU1FTp97xz507pt02/QeWgU7nQOrqN7kP3pf/DWHHj4JUxlgPtlPr165cVSCoX2nlRQGvsHVZMTEyugSytN8kO8nGI8K5Pf0MdjPldFLrhyFNaQS7Gis03n8jrSaa4f2i2aNplqQhLK85oo4jBa+YNsecLClwhHMb9Lm7kF7hKlJ5qV7HwxAN5XXYU9I1zGCL8Ih7Ka8zU/b3Cs4mPCMmtt11Ei0CPvsI3VCsQfXJOrOjpIOwmBQm9h1QZ6tu72guHT9S3Kw+bECQ+sW9kYPCqEo/CV4m3mnuJoFyCalOgg0gKSHM7iDTkQv+XHoMei7HiwAO2GGNZKKeVBlQ5OztLOa0K9Y4JCQkJWLhwIbp06YL//Oc/8i3GQbmuHh4e0t9UB8dSHqxi+PDh6NatmzQwzJgyr4Qh6Bq1HPFqMweUkdbqkRaDcweuaNourdCkhlYOoojDofXbYPeuC5qW15shaYYe4+omb4ybvwMpDv+H5dP/ixfLGvLcy6BK9ZpwcOiENk4V5XXZ2VRvjb7uF+EXFIkn8jqzlJaK+zf+xK+7o5Ehr8rmSQJuRNVCnepP85tVV4/j993JqN+wJqrI67IpUwU1Gtoj7teDCEtWadZVeRHOLz1BVPx9ZBvuJ+7iypNaqKuVICseHMfyyb+j2ZJJcKth2qxhGiy5fPlydOjQAa1bt8aECROwbds2+dbs6LeoPmiVLtq/S230f+kx6LHoMemx6W8wZjJyEMsYK+Wo16R9+/bZelSoN6V48k9zouej2xtE+bTG6YXV9FxKj2v3mZ7TwApNz2oT6e+/Krz2xmU/XZ4QJCbZdRIzDt6VVxSXwve8Sr2jdvR67ETnJadFmrw+fxnql/uZsMszxeKxiAp4X6BzcfdEF1BmpAjoV1/YoKUY5LNNhCdq96Y/Fje3ewqXbOkP8muHvhQABaWXdFe/r73FkrCUrHVhS96QcqW10wBU1wPFV79GPc2DVSWIE74DRKeZB0SiCd82+k3R2RPt35RyUQem0lkOug+dCckP3YfOwtD/of+r7zHpbxUmrYix/HDwyhiTdkDaOx3aGUVH57aTLl6UX6cdVFPbkJ1r3u6IvZ5tNY85aKOIzi1gSKN8Vkf1/VqLEX5nRHK2+6lEyqFZok6OVIK8PBbxob8Kbw8X4eQ6QHgMdBeDZv4uLt0MF3+u+kUcis1twJSuwgavFEz11bxu26Ei4Iqhf4/QIKcwcTji3tOgS4+MsCWiNd4XAVEFeeziliESjy4UPSrJ33mnIcLnj3MiMf2+uLLdW4yYvFGcT9Y+oJGDcoOCV/XBzKGnB3yq2zvE5OaDxNKwJM37ln5dbP/CV+zNOmDSDPhz6zxXHErMPXmlKCiA1Be00u+cAlBjHKDSY1AerL5Alv520X+zjD3FwStjpRj1YurubChYNDe0Y9R9nocPH5ZvLYT0UOHrqHkcR99QdSioK0MkR+0VP4x1EbaO/cXM3y/qBK7kkYjwGyigDiBPGBK7qu6JcL8xwsm2j5ixPVJ+vMfiRuAnorljHfVz0eTeGjbCvJDBK41+b2krvW7bEZtFbF5RaGHFBgoPtBWee+/kGeRmc/+gmNFE87wKfSlwME4HEr8Ir75N5MewFfUdm4uePof09H4qg/YMCV5176P+LoWvE+O69xeTvGeLSQNHiHmHYrPeG9X9Y8K3Zx8x8+Btw98vA9HvW/fAlC50RsWUwSQ9Nv0N3b9rsvx1Vupw8MpYKaUbuBqnR9O0dHfE1GtUGJkRfsJNegxb4Ug9oB4eWpcBwtXRTjh2Hyu8/feLqGw9cNruiRBvFwH3AHEl34gzRUQEfCga2zgIV99/1GGOlqyBY67ZBwjlqXDBa8b5FcJFet25VQwwgpRDYkad+mLQxqsFePx0kXwnTsTGxhb+Epckch1/pReVuDonts0aK0ZO+Uj0dVSC5ybirZm/i4hsn3tRglei/lvJMeJ86BkReefR0yBVShfoL6ULJGi9WarkK+LQxpXCd8la8WfYbT0HV/mj37Ju2o23t3expgHR39ItsUfbHO6FZUXFwStjpZBu4EptS+kRoYBVe2dY8ACWAr9x8v8fKPwiCluXlEakO+ZTZotkiuTQb4Ur/T27STnLM0k9lerbHL4Qe7OVZspLYYJXzf/RvO7cKwYUmdyrTT3ahiZTFD9Nb+jHg+eK7Vfuq4PJTPEo9phY5+UuHKX3x1Y4jVgrwrMC2KIGr/rI6QI9F4qjWukCqvj9Ypb7/wm/sLsiPT1BRGxfLhYFXS9QAEu/CRsbG/mz1lQDKMncU/rb2oE0HSgX6cwJK/W42gBjpQxVFJg4cSLWrFkjLasDVyxZssToFQRMhaodqHfO0tSlxMXFpYCVCB7i+sXzmqZjB7Rs+KymbSoiDgfW/IQD6qbD6DfxaraR5Co8uBiK3dTs2Q5NlRmrTM4ZDWvl/rozL6xEV2V62ByXflhx/qF8T8sk4v6G53v70PGryXijIc2k9QyedXgF78//FSFhv2HmW7Vxee1sTPstAunS/yiLSvaGTtNaA/WqZ82llSvxIBSrpx1Fz3mj0NFOrnUh4rH/mzk42nschrWsirJl7dG472B0ufA3Qh7IFQzyQVMv029CvX+XlqlSyIYNG9C4cWNpuSTQ36bnQM+F0Mx8NKsePVfGCoODV8ZKmUmTJmULXJcuXYqKFfWXPjJXFMDSNLWKAgWwmTEI26kJXh0GtIGTqecyvfUPNq0MVzda4t3uL6GyZq0sFZdPHUMcHODWrRlekNeahg0qPGcLO3kpL2WajcNh6cycCo9DfFBfWtsTvqH31eu24qOX8g/OzFcKzm5ag8PvfYj+jXRfRwVUbzkQs3/ZiJWDymHb/w7hslTjqhzsatSELTKRlp4pdR/mlIn0NCq8VQXVKlfQrMqNSMTJ1d9gd8/PMKatfdY0tCJmP9Z8D7i1r/90imEbe3ToWwVHQu7IK3JHJaoGDBggL0E6yBs/frxZHJjSc6DnQs9JQc+VnjNjBcXBK2OlCO0odANXS+lx1dWqVatsO8LJkycjJiZGXsqdiD2Pg8FJ6pYjer7ipBNMFkRl1GrsANx/iMf6oxlJRmwUNGF1G3RsZi+1sqhu4MyeCHXDGT1b1jbxBrkMnm/QDO2ldgSiYh9Lrbw9wpWwE5DK4dZ3hUvzStLaPKWl4sETR3RpqDvPf14ykHL3FuLi4gp/uXUvz8/hqSRcOXkTbZrWRm6HbDa2L2PwmHfgEJeCR9JjloF9w2ZopX4nQmMSstdszfIAsZfj1EdErdG8QV6/qUwkHfPDl7s7w2dMO1TOKrGrQvK/Z3AgJWev+DMv1kGZK7dy+bsa9NumWqukffv2uHTpknSQZ27oOZ0+fVqqB0voOQcEBEhtxgzFwStjpURYWJi0o6DTibRzs+TAVUE7wp07d0ptOhX51VdfSWkRuVMHDhdOYJfUd9YG3ZobeipYnwqwd1AHr+G3kZhXVKFwbIZGDk+L3hNx8wx271IHPPV7qgND0/dmPuPUCxPGNVe3zmDrkX/zn0hAFY1jW49LTYd3O6JZBQMmM3hwB9djnkfN5wvw3XpwFAu7OqFWrVqFvzhNwKarafID5qU8nrN7BrfuPVSHi7l5BhWr2MO2Qx1Ul8/ol2nUEQM72+H2+eu4oy9IzryP+KhE2Ll3RvNKue9aRVIwvvv8GNx8PNC2svbUGCo8vJcI9bchpwr/QYWMjFx6fCGdddAOXOl0PE00Yq7owDMwMFB6roQmIjH2JCTMunHwylgpkJiYiDFjxshLmrw4Sw9cFW5ubvDx8ZHa1Ku8adMmqa1fCiJD/0ESRQFFznetgBedmqHO7WjEJemdp0lStsHLeEPfuXpxH+f//lMKpO3c26KxIYFhUdnUQu+ZvvBSxwxHv1+Bdefv5xoQAWmI2/0LVu2KVbcN76XW9DQ3QfMGlbJOh+er8qv46mKydGBV6EvyzxjWMJ/T9ZJq6DDgLSSt+QPH7+dy1CESEbozAoM/6oE6yoso/xIGfjECDtv2ICROkwn7lEBq2E78HPYqZo97FTVye+HiDoK/W4CQt6dkSxfQKIPK1WuijryUTdojqCpW0Pt+0kxWlD9KlMCVZqwzd/QctXNeKfUnIoLOQjCWPw5eGSsFVq5cKfVMkqCgIIvYuRUEpQy4u7tLberFyXVqyidXcfxvY+W72uC5lzqhf7nTOHslRV6nh70LPl7yIZyubMf2kLuaYDEjFiHLJ6P/uHVIFPXh1snZoFzUorNBWYeemL4xADPq7MQo9+GY+tNuXLir3WOZhrsX9mOjzygMWF8F/7dwKJzwKv7bvqZ8e17SEHMhDFfUgUjbuoYEkiWhDOxcJuB/H8Vi9mQ/HItLzRbAi8fROLx8AX6rMwFTXKprBYzl4ND7U6yYEI1ZczfhUrIS+Apk3DmCH77aisbfzcYHLXIL8TORFLwKXmFvYOHY9lrpAgobVGzUAq/Z6qZ0CDz5NxKPG9ZUP/Ps6CzD0KFDpeCdLF682KJ+2/RctVN/hg0bls+ZE8Zk6i89Y8yK0XSP9FOnC810o1IZuxS6eaByPDZyeSAq/fUUzSr1lrCV34McF5cV4nxhJzZS3RDbx7UVbn751ExV3RPnf/1SvOHUXvQdOkB07/6h8P19nZjb2U79HNzFivMP5TsaqnB1XrNJvy3Cfl8qPAe2z/7e2LYVb02YJ/z3/auZSCE9VoT+HSpiDaniJb0frQs47WxJeSKSIg6KjUu+EjO8Fwpf3yVixYolwnfJL2JvRELupamofNVef+Ez/Usx12ehWOg9Q3jNXC5+z6ceqyrxgJjZaYhYEZ5HLV/VbbHXy1X0XHHuaZkxVYIIWeonQpJzfgDaNVSpBrKl0q7fTK+Jsfxw8MqYldOur2jtxcG1Z/UJLuQEBgWTIRL2ThdNe64U558U7KBAFb1RDKLnWt9bhDwu6AGFEYJXE1Dd3i7GORR0pqtSQBUvDs3sK95acUbkV1U4Z53XlWL5obgcs29pH5RmP1izTPQalNdDr42xvHDaAGNWjAZBbNu2TWpTjUVrSxfQNWrUqKxBIL6+vtK1aZWBfdfB+Py5IPx99oG8zhAZuHXiAP5St4ot39Xk0hEXHIQQjxHo28BcUwZKigrlnCfAd8TLyC/L2qa6K2atm4KXYv7EDz9sx+U6b2Ns15rZ8l3p1Prs2bPlJWDmzJlyy3LNmjVLqiNMtF8bY/pw8MqYFVu0aJF0TQEdBXbWjgahTZ06VWpT0F4sI5jLOeOdad2w9/udiM6gjiNFJh4cW4xejezR6P2NuKo9tP1JJHb8vBsptm749N320CmgZZFE0lGsWlkeMz/uAntriMWNyeYFdBzSC42fNeyNsbGth1feGI6JE4ejb8ucJcd27NiRdVBKo/br1NE7zMui0IH12rVrpTa9Np7AgOWFg1fGrBSVxlJ2cMVSqFw8xt3LJ7Fvy09Y6uOFccPfxxvtakm9KZpLJTTq/g6Gj/PCvJXrERQcjpiU3EfpF1afPn2y9b4KeTCL6ZRB5bYjML/1Psz/4xqevqJHuBz8B3ZdSULqs+WhKZJFg3tO49eZn2HSnsaYudUPXp2rSrdYNCq677cOyRM/wVt1TTxjWSlHva7z58+X2vQ9p++78aTjXmQwtvy0CF7j3kX3RpWyfr+V2r2BYeOmYtFPf+JYVJLme56RhKhjf+KnRVMx5o12qGTTGV57b0uPVBgDBw7M+u0qr5ExvTTZA4wxa6M9mCMhIUFea3yqRzdEaOAiMa67U9bfM/hi21l4zPXPe4BMIWjnvl66dElea2LpMWLP7C/FqnP35PzETJF8/jcxfWAn4eQ6QHh4eAiPga7C0dFNjPX2F/uiaE79wjKnnNfH4ub2r8T/+Z3RDPBiJkW53Mp3OzAwUF5bdKrki+L3mf2Fo/zYeV+aiLc8Z4kpfZvorLcVrb87LQo7/pHQa1Ier3jy1pkl4uCVMSuUmpqatQMw3ejdxyI+NEB84lo3628V/uIqvEOS5MctOgrWlcdeunSpvLYYpN8QB9V/78/rph6wpBJPov4S3/odF4klGjCqxMOw9eLrX89x4FpM+vXrJ32v27dvL/3OjeLReREwonXWb8bgi21v4blmgwhY8a1YOGOCGOSqPoAdtEFEF+G7QK+JXhs9Pg3istbqKKxoOHhlzApp986YpPeCSj9tnCJcbXV2ZoW+9BZLwlLkBzcOZfQy7QgZswZULcRGLgdnvNJYD0WE3xCdUnK2wmnEKnH0+n35jEi6SL5+WKzMEeDWF+5+57XKej0S9+49KsIZBQ3tMyfR0dHyWsae4pxXxqzQwYMH5ZZmClXjSkPcvmUY/6EvDuitze+A9h5fYU3gXoRGXEdsbKx8uYGo88ewZ+MSeA5sD/XO8ilbpxzzuRcV5c8Rmpwh10kLGLMg+/btk1tAjx495FYRZUZh3/92IPtPuQ+mfuGBTnUry4PFysK2rgtGfzEebtKy4hq2/e8QLivzNdg8iypVns1WGaEw+vXrJ7eyv2bGFBy8MmaFpk2bJl17e3tL18Yk4nZh7kcLsF9P4Grr+hkCjp3AobUzMKp/D7RtXBcODg7y5UU0aPYKXhs0EQt+3YOze3/A2PYOmv/o1Ah17HXnDyqaZs2ayS0gPDxcbjFmuWgEvhBCmk3OaGXv4iMREpwkL8jqt0SzejnLnT1TrxlerS8vKILDcCneuAMv6bUpM+YFa83AxZiCg1fGrIx2L2O7du3klpGIeOxfMh8rLueMXG27z8XW9T4Y9sqLyLcikE1lNOgxDsu3+WNm9zqw7dAQtYwbu2bbAR47dky6ZsxSJSYmZlUP6d+/v3RtDBmxUchRUK5MeZQro+dHXKYcKuT4nepOZ2scymtcs2YNTxnLcuDglTErc+3aNbmVvffRGERcMNatPiovabEdBN9ln+A1h4IUp6d59l/HjF+2YstHr6CavNaYOnToIF0Xz4QFjJlOdHS03AJatGght6yX9muMiIiQW4xpcPDKmJXR7nk17oxaTxBz+G9s0jnDCNih06zP4PFStixWA1EA2wY9W1Yvcp6cPk2aNJFqVBLquWKsJNBvkk75FyX3OioqSm4Bzs7OcqvoytZqiBxZ8ZlPkJ5J46V0ZKYjTclvzeJs9Hx1UrduXbmV/bUzRjh4ZczKKD00H374oXRtNOIWQnce1hnYQbrD47/NUFFeMifNmzeXW8Ddu3flFmPFi059DxgwQAo6PT09CxXEKqkvlApj1AlHajRGJxc7eUF27QwuXE+TFxQC6VfO4ODTEzsaLq3QpIbuHGBFZ29vnzVhAaf9MF0cvDJmZZQdo52dzg6pqJL/xfGdl+UFLZ27oVMjcwxdgYoVnz4v7XQKxoqTkntNKIWFgth58+YVKIhNStKc8mjcuLF0bTRlGqLHyD7Zq39gB+Z/HYCQ6AfyjHEZSLl6ECsXrMJuaVnhhCHj3dDEyPnqCldXV7nFWHYcvDJmZZRBHdTrqJwyNwaRcBMRcfKCFgeXl9CgvClO+heddtpESoreul6MmRyVq9MdNU8VQZSe2CNHjuQ7KIl6b0mdOnWka+OpCKd3JmJWT+3HTcHltWPRuV4VlJOmhy2HSg27Y2LAafl2YgunETMxy72ByQKJ559/XrrmnHWmi4NXxqyUrW1hclBzl5l4G+FS3XBttqhZqyqek5cYY/pRABsYGCgvPUWBmYuLC7p16yb1xlIgm1d+dq1ateSW8dhUbguPif1h+LmaJnhr5s/YvnQwGudbWqTwtHPWGdPGwStjzACZSIqLxm156akX8HJte5jorKFRUc4h7Qj5wpeSutB3MDc0mQb1xlIgW7VqVYwePVqq6VosnoRj49cBsPfehSuhQVj3w2xMGjEEfdvKdZjVB6mOrgPgMdYLvn7bEXLlKALn9INzJUv45TNrxMErY8wAAhlPnugZrMUYMwVKE7hx44a8ZFqqa6fw19EkJF5JxrNteuH9j2bhu//9gj9DY6UAWohk/Lt/M/xXzsfnH7yBjg3t5Jm3GCsZHLwyxhhjZmTKlClSjqzx81v1UyUn4or6Oul/3pi2OhjXU4w7YxZjxsbBK2PMADYoW768zohkQ2Xizp8TUfkZ/adSNZdKaOy1FzlKyBoR5RtqepH4wpeSueRWvo5KQi1btgynT59GamoqFi5cKOXIFhebsuVRWWqdxtpxXVG/Ujk9v1HlUgvt3ngfIz+ZiUUr1yPo2BXcyyim9AbGZBy8MmalYmNj5ZYxlIGdQ128IC89dRvnbiSqw9O8GJJykILLt+7D2JNM8rSSzBzQ95ByWJWKAQoqoUU9rAcPHsT48ePRqlWrXGu4KjVPL126JF0bUxmnThjSydDhWnE4+dd6rF0yF1M+eh99OjVCnZ5T8PPJ23JZLeOh+q4U9GuXGmOMcPDKmJVRendosgLa8BvLM5Xs4ZhjHqwU3IpNwEN5ydzExMTILeCFF3KG3owVBz8/v2yBqxK0bt26VephNWTSAaXm6f3796Vro6r4Mvp/5F7IMyvqrcCBb+DhOhbfhSbmqEdiDEavbcssHgevjFkZZXKCokxFqc8zNeujlTL4WEtc8HlcfZLXLssGz1ZvguHDPODhQRftUcymdefOHbkFVK9eXW4xVryUWe90g9aCMFnN04zbOPnzdIz6eG3RBmSmbMMcn78QlfdpmAJRXqv2VLGMEQ5eGbMyHTt2lK5psgKjnjav1AgdejnJC1qOHkTIv6nygj5lYNf1E/zP3x/+0mUV5rxnvLnZ83L79tPiXsU1+IUxXZTDSmcBNmzYUOhcVqp5qjBeFYJUXNnwJXp6fIMDRiglkrJ1Ow78a5xtjvZrNEVtW2bZOHhlzMponx7XPm1eZDY10a5XVz2nFvcj4O8L6t2g+dHOmTPqfPCMFRDN9laU7yDNmKe4fv263CqizCjs/nGr1kBJJwxacQy3H2VmDTLTf1EhPfk6Tmz8At2zbRDuIDHZOJmvFy5ckFvZXztjhINXxqxM06ZN5RYQHh4ut4yhPOp0/S8G5hjXkYSQOd8g4Lz5VYFVTjt26NBBumbMUmnnfdIAL6MQaUiJ067x4YK3+7ZBjWfzCw1sUNa2Ltq9+3/4dKh2YJmG5NQncrtoQkND5RbnvLKcOHhlzMrY29tnjc4NCgqSro3FplYPjPlMM3Akm5RfMWXCd9gblyavKHlhYWFyC2jXrp3cYsxyUf1XQjmzRlHGHnU6OMoL5BQOnLiJdHkpP+LhLVyN1T5orY16L1SU24VH6U402xjx9vaWrhnTxsErY1bo9ddfl65phHNe86QX3PN4ZbQXJjfJmTyQsn8G+g2Zhp//uYnHZlD28ezZs3KLg1dmHeh3TbVWaSpZ7YOzQrOpjVcHv4mnmexnsHL4+xizcAP2noxEzN2UHOWvxON7iLsajuA/V2Hqe0Mx8Y9r8i2ArXtvuDR4Vl4qvFOnTsktoFu3bnKLsac4eGXMCtH86Art02/GYFOjO6Ys99LJddOQSuZ0bI9XR8yF35Z9OBkZjbi4uKxLTOQZHNu3E/vP3ZX/h+ksX75cuqbSYdQbzZil0z4IW79+vdwqinJw6P0pVszs8zSXPeUo1noNwevtnFG3eiWU05mk4Jn/2KFWw5fR9c1xWPiXVs1Zp4+w5tv34Fxet5xewdFgU0WbNm3kFmNaBGPMKrVv3576P4W7u7u8xohU98T5jVOEq61U1tE4F49AESs/fFGdPn0663GDgoLktYxZPh8fn6zvdkJCgry2iNLvivA/fMWI9g5Zj234pYno6/WLCI1/LD9Y0cTExGQ99rJly+S1jGXHPa+MWSmasYd6SqgXw9g1X2FTBc0GzcVvBwLwiasxajDawqlmFRT9hKOGdq8Upwwwa/LOO+/ILWP1vqqVrYqX3vwcPx06g4iQIPzqtxgzJn0AD48BcHXUPsXigLZ9h8BjrCe8fVdg3Y5jiLhzGtvnD0Hb6hXk+xSNdj6vm5ub3GIsOxuKYOU2Y8yKUK5rtWrVpNI2NNCDak2agnh8E6f+3og1y1dh5f7L8lpDOaH7uDEYM/gt9O7shOfLFv2UIwXqzs6aOrJvvvmmVB+TBrAV51zxjJmSp6dnViWNhIQEq0mLodquSj1mU26zmOXj4JUxKzZv3rysUbsRERGmLTkjHuPuv+dx9twZhF+MwIXIG7hxfj/+Ohkn34F6bbrj5UaOeEkdUDZv3gJNXmqEenbP5ph0tii0d+zaKIClHSIHsczSaR+g0Xd6wYIF0lkWS+fl5ZUVsJp8e8UsGgevjFkx3Z2ctfdkaL/eyZMno2HDhpg4caLU+6ygIPbzzz/PNqiNMUujfZBGJfF69eoltS3Vrl270Lt3b5OfKWLWgYNXxqycdu8rzatuzT2PY8aMwY8//ii1lZ4bSp+g3MAJEyZI6xXcE8ssGX2vq1atKrXbt28vBbCWmj5Ar4UCVyoBZumvhRUPHrDFmJUbN26ctEMg1BuZmmqOE7kW3ZYtW6S6tmTZsmVZpxxpJ0iD1+h1BwYGZr0XNJCNel/79euHI0eOSOsYsxT0vd65c6fUpqCPTrlbIpqQgJ47vQZCkxJw4MryU2a2mtxmjFkhmk+demh+++03xMbGIj09HT179pRvtQ400KNjx45Sm4LTpUuXoly5ctKygpZp6tyhQ4dKtSOvXr0qvR/UQ/vTTz9JRd9psEjdusaonsCY6Tk6OkoHZUePHpUK+9MATUubCnnVqlXw8fGR2hS4jhw5UmozlhcOXhkrBShou3nzprSDox1dixYtpHXWgHpuRo0aJQWh5K+//soasawPB7HMmtDZg/Pnz+PSpUvYsWOHRQWwNJGIks5DaTyLFi3KcdDJmF6U88oYs35U0Ly9PHEBXaiQvzWYMmVK1mtaunSpvNZwqampIjAwMNt7Qxf1zlQcPnxYvhdj5osK+2t/fy2huD89R+X50nOn18CYoTh4ZawUoYDVxsbGanYY2jvADz/8UDx8+FC+peDyCmKtJdBn1ks3gC3MgVxxod+tNW2HWPHj4JWxUmbnzp1ZOzhL3nHo9txQ8GkMShCrPLZyoR7eiIgI+V6MmR/dAJa+s8b6XRgDPRc6yFSeHweurLA4eGWsFNIN/KKjo+VbLENx9NxQmoX2+6RcOIhl5kw3gKW2OXxf6eyF7vPiwJUVFgevjJVSuoFZcHCwfIv5op4b7RzX4tgB5hbE0jq6jTFzQ7+T0aNH5/i+lkQvLP1NHx+fbM+lqCk+jHHwylgpphuU+fv7y7eYHwpSKf9Uea7F3XNDgap24KxcSiooYCw/9HvW/q7Sb4ZSYorj+0p/Q18OOa1jrKg4eGWsFKDThkqu2ebNm+W1GtTjqpyCpwvdz9xO5+nmoJZkzw29l7pBbHEGBYwVhPZvX/v7SoGtKc4c0GPSY+sGrfQcON2GGQsHr4xZMX2nvNeuXSvf+hTtVHR3NhTklnQwpm/Hay49nZTDp90TTBdatoT0C2a96MBT34EUDdTU/Y3ThX5fdFtRDljp/9Jj6P5W6UJ/k0vOMWOzoX/UXzDGmBWJjIzErl27MHHiRDpAlddqREdH6y3iT8X+Fy9ejGnTpslrNLNV0aw3Xbt2lWbqKi401/nKlStzPJfVq1ejVatW8hrzQFPLfvrppzh+/Li8BlDvxDFlypSsKWoZKw7aRf9pQpLWrVtLbQX9xtWBJH744QdpemRd9BtzdXWVZqt74YUXUL16dfmW7K5du4aUlBQcO3YMBw4cyJraVZv6QE76DdBEIMW57WClBAWvjDHLR72s1Puh2xuofTEkp1VfjyL1nlBvjilOM2qjv607uIMuVLPSnE/J03Oj94feJ+3nTa/F1O8ZY/T90/3dqINX+Vb96LdGZzF0v7NFudBj0WNyegAzNe55ZcyC0Zz++/btk3pT1qxZI6/Vr23bttL9DOkFoR4ammpy/vz5OXpVaB7ybt26SVOs2tvby2sLT3kNW7ZsydEbRD031ItpKT2Y1GO8fv36rN4vhTqwRZ8+fbgHihkdnWXx8vLC1q1b5TWaXs/ff/8dNjY28pq80WOEh4fn2ZOqj3ZPbfPmzflMAys2HLwyZqEoUHJzc8PJkyflNXmjAKp///7ykmGUIDYgIEDvaUYKLFu2bCnttOrXry+lI+QVoFGgmpqaKu0oaS522uHq21FaWtCqi17n0qVL4evrK6/R7Oi//fZbaS56xoqKfpubNm3C8OHD5TVP+fv7w8PDQ14qHApo88KBKitJHLwyZqFo5zJkyBCDg9eEhIQi9ZSGhYXh77//zpaHmhcK1iiwza9HWEG9RRRcv/HGG0bp0TUH9J7Nnj07W+DP+bCsqCifffr06bn2kMbExKB27dryEmPWh4NXxiwY9b7Qjop6PG/evCkNHNq+fbt861PLli3D+PHj5aWiob8ZERGBs2fPGpSukBvllOPrr7+OZs2aWfXOllIidFMw6DMZNWoUpxIwg9HgQOrN13cWREG/K+3Bg4xZIw5eGbMCFFBOmjQJP/74o7RMo4Tv3Lkjtcnp06dNOkqfeoEpHSAqKkpajo2NlaoaKCgnTkG5cdWqVbOa3lVD6cuHpUBj7ty56NWrl7yGsZzou/PBBx/kGbQqKCf9yy+/lJcYs04cvDJm4ShwpZJYSg8onZamnkzqhSXcE2NeKNCn3jPtHmtOJWB5oZxzfbmt+uzcuVPKhWfMmj0jXzPGLJC+wJUGCtWrV09aJkUduMGMiwJU6iGnIIMOLAh9fs7OzlKdTvpMGdNGeeCUZkIDsegsCqXsvPbaa/Kt2dHAScasHQevjFmo3AJX3RxKHt1unqh37ODBg1JQoqCUAipDRoEtYwpKsaGcdToQpfQf+t7s3btXuu2dd96RrhX6JiBhzNpw8MqYBdIXuC5ZsiQrcKWcU4W5zUjFnqLPi4ISGgBHnyGhQV29e/eGp6enVHKLMW1UwULJm6YKHZ9//nm2eq48AJCVBhy8MmZhKHClwVm6Pa4VK1aUlkm/fv2kU9JUDYCZP32pBJQXS71oVKmAUwkYoe/B2LFj5SXNdLCvvPKKvKSpj8xYacDBK2MWROlxVaoK5JYqQGWnaJAWpwxYFkolCAoKkkaMKwYMGIDBgwdLvbOsdJs1a1bW4EuadIRrubLSioNXxiyEvlQBfYErs2yU30iljmhgDp0WJlQiqUmTJjygqxSjiQmUGduoh1V7tjzaDhDl+8KYteNSWYxZAA5cSyf63HWnAKW0gtWrV3MucylCuc/KQCz6/Kl3XrdOMt2He2JZacE9r4yZOX2Bq/bgLGa96DOmEea6A7pat26NefPmcS9sKTFnzhy5BaxatUrvBB8cuLLShINXxswYBSf5Dc5i1k8Z0EV5jopp06ZJZbXodDKzXjRBgfL7p1xoOnBhrLTjtAHGzBSnCjB96PQw9cQp3wtCOZBTp04tdVPuWjuajY0mryCUz7phwwb+/TOmxsErY2aIA1eWH+pxnT59upRGQCgXcvHixejSpYu0zCwbbQNcXV2zqgtQ6ghPH8yYBqcNMGZmOHBlhlDKaim1PSmIpdJodGqZvkPMstGBiHZZLA5cGXuKe16Z+cl4gJjIKCSWexHOjarj2aeTx+Qu4y4uXwUaOFVDWXmVJdIXuNLgLM5xZXnR1wvLFQksF32evXr1ktq0DVDqOjPGNLjnVSKQEXcQyxb+jWiVvMoUUs/g5/mBuJCSKa9g2dHncACLxszE79EP8ShqO7752oD3S9xHuN/n6L/mDJLlVZaIAlcenMUKg3phaSYu+s4QrkhguRITE6UDEUIHITQxAWNMB/W8WgzVDbF9XHPqKTbg4iDaDvxSrNwZIZJV8v/XSyXSY3eJWR+tEmHJGfK6/GSI5KjDYuOSqcLD1Unnb84U60JviXS6m+qeCPf7SPRZcU79P6QV6r8VJGZN9hfhBv+tUuRJhAgY3Ft47b2tfqeISjz59xcxst8s8WvoDfEox+eofj8Tz4nAmf2FY5MpYvvNx/J6y5OamirUgUfWd4natI6xggoMDNTaJkG4u7uLS5cuybcyc6e9HQgKCpLXMsa0WWjaQApOLnoT7aYcADovQdj+CWhZXvvcciZSrh7AT7OnYFLAXXT/wg/r5vZErTLyzVpEykksH7MONbx9MKhhfj1c1DN4DAHfLcC8hRFo4vkJxvXvDdcO9WAr/fk03D2/G2vnLsXpvl9jRvk1eHPwCfTfE4QFPapJj0DP7UHocoxc74hlC/uiVllDzombCxUexxzHH7/vxKm7ZVG1cgXYoAIcOrpjQJe6ek7v0+dwGFs27MUFVUVUq6DCg4QMVFff/703WqJ6tteuvu3wXLzyvsDqi7PQ9Tnltns4tvhHXG5eDw/PRCOlvD3q1H4e5dLv4UZMIvDcI5xcHISqS3/DN71fVD8fy8M5rszY9FUk8Pf3l2rGMvNFvec0HTCh3GWaaY0xpocUwloa1VWxcVB96ci0/tyjIrf+NlVsoBhhS0ewzcW4P2Lk3jwtqgRxwneIGBIQIZ7Iq3L3WMQeXCwGOdkKW9fPhP8JuXdVD9X9YOHT2UE+eh4rAmN17qmKF4dmDhLjAqNyfQyzo7onIgK/FD17fik2h999+rzTo0XQ1P8TS8LuyysU6SL+oI/6/l+JoGspT9/79Lvi9AoP8fKIdSIiW1fqfRHq6ybgHiCisn1QGSIhaJX4JUr+lFWPRFJcrIhLeqR+zGQRvmKwaD55h7iVqbnZ0nCPKzMV+h6pA9as75by/YqJiZHvwcxJRERE1ufUvn173g4wlgfLDF4TgsQkO/qROwqPzdfllXqkhwpfR83GwMFzjzo80qYSTyL8hHvLeSLkYY6wVoc6cN0zV3RXB8J2g74Xx+PzOz2dLmIDxwlb2hC5rRERegIr1fWNYnDz6WJvgiWkDzwWN7dPEU3sPITfpWR5HXkkIvwGqV+nrWi9JExOjdBQxf4hPnJqKz4JihM5Xv6Tc2KFW1Px1ooz6kdQRIvA4Y0EPAJFrLxGkR7qJ5aEav9dohKPwleJt5p7iaDbFnMIkI2+wPXhw4fyrYwZBwVFHTp0yPqeUWC0c+dO+VZmDmhb0K9fv6zPiD4zxljuLHDAlkBa5ElsS6J2G7zavLq0Vq8Hd3EjUdOMu3UPDzVNWSKO/bIOdz7ogzYV8zrZ/ARxe+fj/X4zsL/SBKz5ZhTaV68g35absqjZ3hV91S3H11uioZ532aaOC4a47MXSrRFIl9eZKxG3Cz6f/QK7L8fjPWd1SJ6lHKo364gebftiSIcXtUb/PcTFbWux4q4rerevnnNUYLmGePVtZ/zx1TocTFQGY5XHc3baj52Px+ew9suNcFw0EW41LK++AA/OYsWFSiwdOHBAOg1NaDAXjWTnklrmw8/PD9u2bZPalN7BZbEYy5sFBq+PcCXsOK5Rs34rNKv3rLQ2J3WQe/UcDkhBrh1cOjZGDWm9hogPwYblFTGoWyN12JQbgYyrv2PauG+wP6U5Plj+Gfq9mF/gqmFTpTrqObTFgDb19JdusnkBHfp2wCG/vbjwhA62zdV9nPrlB6yI7AiP/zZD9tCqDOw6foJtoRvxecdqT/NNVTE49nuI+vOpi5pV9CQaq99xuxo11UcU+7AvTPqA1CqhjnN9ICoeSdmKC6Qj7ko6GtbVyv8UiQhdPgcBzb7EF261LC7PVclxVcrfKIEr57gyU6HvFuVP7ty5UxrBTmhE++DBg6VZnFjJCQsLw4QJE+gsqLQtGDhwoHwLYyw3Fhi8JuBSSLjUsnNvi8YVcgtdEnFcfSR7hpptx2P2O03UoZYiE0mnD+BX23Zo3eg5eZ0eIhZBC72x9t9koPMYTHyjruFvWEY60h63wytNn5dX6CqL6i+1xatHd+Lgxex9wmYl9QKC/IMh6rdBK0cDewXvXcfZE3HAy7VRQ1/sSq+9niMcEYHd4TfVnwb5Dxp16oHO5y8hKiFDWiMRNxASUR0tqikPlIkHJwPw5ZbWWODZHdUtLHLlwVmsJOmW1KLePpp+lNax4kdlscaMGSMvQSqLxdsCxvJnecHrg8v4Z/cVdaM+3Do5w05v8CLwJGIbvl0eDDiNhp//Z+hRvZx8G7mP80eOIsm1BRpljWrXpX6Ms1vw9cpwdas++o3rjZezVTTIR+UWGPbHZ3Bz0P672dnUbYEerc9j39lbMGV52aLIvHYGQeEpQMs6eOGZRJzZ/hNWLvsOi+bNwGSv77Dl5E081uk4FvfjcU3pUM1TCu7efYDHUtsG5VsMwMwRZ/Hjr2eQIj1mGmL/2oiLXVxQR37rxYNQrJ62C50WjIWLnd7I2Gxx4MrMQe3ataVefzo9raAR7p6enkhNTZXXsOIwf/78rIklaLY0+mwYYwbQpL5ajvRQX+FIkSVchW+OQTxqqvsiau8PYmz7OsLxrdni94h7OasMZF4Ufm4OwtH3RB6j/Wn0e08peR6243JWDDCKaBHo4SgcPPeKe/mNGctyVxya4aJ5XoW+1Bf9AiJzDqTKIVPc3/uFcKD/47FG7Nm+WRyOVQaraerjzuzeWYzwO5Otlm7WZ6Rn8JUit/uoks+IgHF9xVuTZgvvSUPEoHkHRLzy2FJ1iP6i88wDItHg98s88OAsZo5Onz4tDeBSvpfU5sFCxUO7Hu+UKVOESmVhGzXGSpCFBa80un2g/IN3Eq4DhwoPD4+nl4Gu6oDISXQf6yP89/2b++QEj0OEd/06wt0/Mmdgq8g4J1a42Gn+Vi4VA4ouQR2IdhIYtFFcN/jx1UFj8l0RGxtbhMttkfTIkD9IVRPGat6Dlu+LFSfvyesVKvEwZJ5ojs5aEwsULXiVpN8X0edPi7DIeK2JCTLE/ROLRc9Oc8VB7QoNdLBy6Dexwnep8PszTMSnm98OgALX0aNHy99bLofFzEtCQkK2Ayu6UGDFTIfKlSnvNR0w0GfAGDOchQWvmp5K6Ufv5lf4gDI2UHjkV2ZLuo9m4+K4MK8e2qJIFqG+rgKOvuJE/oVmS4BW8Orygzivr6qXXLbMtl+AuCJ/HkUOXvVQ3T8mfN36C5+jd54ecKjixMFZ74uRfidFQnqaSIr4UyxatEvcNKMAVl+PKweuzBxRTVgbG5us76qPjw9/V01A92CWer8ZYwVjWTmvaTdx8RDluwKOPfWXoDI+R3RpWEN/xQCSGY6VXe2h3ujrudij64pz8oAkS1QG9rXqoj411e+B3hTTytVQ2x5I2boTR66nSaueqWSvftcMU6dedVSW27kSiTi5+hvs7umJ8VlVDTKRuP97jD3aFZ8Paw37suXxfOPeGN3lKjaEyPXRShjnuDJLQrNvnTp1KqsawbRp06RqBDExMdIyM45NmzZlbROWLVuGVq1aSW3GmOEsKnjNvBKGIKlGVh4lqIylwnOws5PbeSnTHOMOJ0plTsTjEHhLkZ4tWvqewGN10HX4o5e1qhxYGhuUs68JwyoOXkf0bc3Qq2fsaqABlWxNS0cG9S3kIJCZ/kQdftqiWrXKyK3YmYamusC03Z3hM6YdKitj5kQ0dq/ZgHS3dmhcTllZBpU7vIqqR06hpMNXDlyZJaJAigYO0feVUDWCunXr4siRI9IyKxoqizV8+HBpf+Hu7o5Ro0bJtzDGCsKCgtd0xJ47gWCpnVcJKgPY10Lj+k9w/2GadN5Gr+froUV7B3XjCo5ExUOreFOungbXrTDQxQn5V4R9gtQHaUCXhqhlcCQukJGSgLi4uCJc4nHvsWH1DZ550Qmv1FE3bt1Dcp7/xQmNXpRLadnXV+8E1ZF/aAzi9XY7ZyIxNgbX4IyezV/MM7gXSSFY/uVR9PTxQNvKWvdMvopTB+it0+kVf6YGHMvcREwJdnfrC1yXLFnCgSuzCPb29lI1AuoVVLi4uGD58uXyEisM2i5ol8VauHAhbxMYKyQLCl4TceHYKU3TrQOav1CEftdyz8OhcQbC4+/nfkr/mUZ4Y8K7oM7XK1uP4ny+Ewk8xpVj+zXBtUNXdGpWSVqbt4e4cz0eDjWfRx7VZnUkImRhP9SqVasIl1cwctMVw8pzPfcy/jvWFTbnruBGip7/Ic9iZtuvO9q/KJcFK1MfnQZ2Bm5fwfU7+sL+J0iKvwXYuaBr8zwOQsQdBH/3NQ64fYYxbe2zT0bw8B5uxcntbMqjYgVVLj2+pkc7KJ45i1mD8ePHIzg4GB06dJCWqZD+6NGjpe84K7jFixdnlcXavHkzz6LFWBFYTvCadhWh26QpB4qe7/pMDTi9Uh/x/8Yh93KkZVGj92fY4KUO3I6uxXfrzsm1R/URyIg7gJ9W7dEs9myHppUNeIIZ8Yg68gQdmtdFpWyRWV6qoutXhzVpCoW+XMXvw5wM/PCroO17H2Jw2kHsCr2r01OdicQTe/Fbel984dkHDbIe0BYtBo7FRw7B+DMkNmeQnHoef/8cjp6zPdAj16ldM5EUvApTQ3pinna6gKJyddSjHuEcniBV9Sz+Y/D7aTxKjyvPnMWsRZcuXRAYGCid4iZ0UNatWzfOgy2gXbt2STnEhLYL/fv3l9qMsUJSBzMWQCXSwpaKLtJI2LbCc+8deX1hZYiEoM+EfQMfEfI475HpquRIsX3Gf4Utmoi+nmvEzvPxWpUHVCL9znmxd4O3GNTpA7HY/2sx2MlRDNp49emI+DyoogKEO9zFivPmXu/zsYjdM1d07/Sl+PN6ivza5DqvPXuKcQHZ67xqyP+n+Xix7mLS0/cjPU4c9R0omo5YK8KT9ZUv0FAlHhAzOw0WS08n6n8vVddF4Agn4egbmr0SRNppsfzr/eK+vFhcuKoAs2b0XaZapMr3my7BwcHyrSwvVBZLqaXLZbEYMw4b+kf9ozJPaaex9PW+mBSs7/ywHVxWHML+cc0LNXBLxP+J/2sagHYhAfigcd5DhmimpztngrBx/Qb4//ArTqbIq+GAtm8NwNsDBmBI/65oYJuBuJMhiK3VGW0dysv3yU0G4v/8HE2+dsT+/ePRsiCzd5WIdCSd34V16w7jjn01VLZJw4NkO3R4dxB6v1Q1l88gHfcig/HH5n24oKqIahVUeJCQgeod3fHeGy1RvWwur1ncweHZI7HIYR42jmsB/f2WmUjcNxtd5tdG4F9j0EwatJWJB8f84Y9+mNDRXnO3YqAvx5V7XJk1CggIkAYcKSgvltILWO4oz1U5G0NpGNSbzRgrIimELY1Ut8Ver+6i54pzokRKrKpuiO3jOhk401VpkiESD80Vnd5aJcKfzlCgX446r3+JpcsPPZ2Rqxjo63HlmbOYNaMe1w4dOmT7zvNZBv1osgcbuXYu1c1ljBmHefe8mpRAeuT/MHBkEmbs/hRtKxZvz6eI3YJR/z2Noftmo4e95RbTMr4M3Dn2J47bv46+janeVj5ECqKPH8Cef64Cjq/izV4tcu/RNTJlcBbnuLLS5saNG1LepjIAiXJiqRe2Th29ieilUmRkJJydnaU21c49ePAgbxsYM5JSHLyqiUSEfjMRP9SZg9WDHE1bN1abdFp8Ata3/BrL+jcovr/LjIZTBVhpp/sboABt9erVXHRfjd4bmuCB6uSSiIgIri7AmBFZTrUBU7CxR9txk9F62yr8Ea0psG96VHR/Pb5LHooZb9XnwNUCceDKGKTvu3Y9WOqFbd26NU9ooEZlsZTAde3atRy4MmZkpbvnVUJlrvbAx/cmBnw1DM1tTXkKX/23Yv/GjHkJGDr/fbxk0r/FTIEDV8ZyolJQvXv3lkrxkdI8kIuCd5rUgdD2gXqjabpwxpjxcPAqoQD2EFb8/BDun/8XdU3VH516Bj8v/Rdtx/dDMw5cLY6+wJVmzuIJCBjTBG2TJ0/OyoP18fGRlkvTgV1iYqIUxCvvAdXDrV27ttRmjBkPB6+MGYACVx6cxVjedAdylbbfiZeXlzTtK9m5cyfc3NykNmPMuEp3zitjBlB6XDlwZSxv1MsYFBQk/UYInaWgGbkoqLV2W7Zsga+vr9SeMmUKB66MmRD3vDKWB85xZazg6Hcza9asrGCOKhFQcGetp9ApOFfKhHFZLMZMj3teGcsFB66MFQ79Ruj0uXYlAgrurLESAW0ntAen0QAt3kYwZlocvDKmh77AlQZn8U6JMcNRUBcYGCgvQRqFT1OkWpNNmzZlK4vFdW4ZMz1OG2BMBwWuPDiLMePRLh9F/P394eHhIS9ZrrCwMKm2LaFZxtavX8/VRxgrBtzzypgWpceVA1fGjKdLly5Sjyvlg5Lhw4dj+fLlUttS0bZizJgx8hKk18OBK2PFg4NXxmT6UgU4cGXMOCiApUFbHTp0kJYnTJhg0QHs7Nmzs0qCUWoE13NlrPhw2gBjahy4MlY89NWCtbTJPrRnFKOyWEptV8ZY8eDglZV6+gJXnjmLMdOhAHbOnDkWebCoWxaL6tra29tLy4yx4sFpA6xUo8CVBmfp7kQ5cGXMdOgUO/3O6PdG6PdHB5D0ezR3FHQrFi9ezIErYyWAg1dWaik9rjw4i7HiR78zSwtgAwICsg50vb29pTxexljx47QBVirpSxXgwJWx4qec/VAOIqnkFA3kMrcBUJGRkXB2dpbaXBaLsZLFwSsrdThwZcy80G/Sz89PqkBAKJeURvAruaUljZ5ft27dsgaZRUREoHHjxlKbMVb8OG2AlSr6AleeOYuxkkW/P5qNS3s62QEDBkiDo8wB5bZql8XiwJWxksU9r6zU0D09yT2ujJkfShnQ7oGl2rAlmUJAs4N17dpVKotF2wxl+8EYKzkcvLJSgVMFGLMcFMDS75V2TyUZwCYmJkr1XKnX1RwCacaYBqcNMKvHgStjloVSCOg3SihwpEkNSiKFwMvLKytdgKoLcODKmHng4JVZNQ5cGbNMujmwFMDGxMRIy8WBelmV7QYFrm5ublKbMVbyOG2AWa3cBmdxeRvGLEdJ5MDqzqJ14MAB3m4wZka455VZJWVwlm6PK++AGLMs+npgKRfVVGjbQX9TsXr1at5uMGZmOHhlVkfpceWqAoxZByWAtbGxkQJYykWl37kpUL3Zbdu2SW1/f3+0atVKajPGzAenDTCroi9VgANXxqyDdgqBKX7bYWFhaNOmTVZZLN52MGaeOHhlVoMDV8as37x58zBt2jSpTb9xY+Wxa5fFIjQ4jKsLMGaeOG2AWQV9gSvPnMWY9Zk8ebL0+yb0e6fcdmOkEMyfPz8rcKVZtDhwZcx8cc8rs3i04+KZsxgrPXQPVqdMmYKFCxdK7cLYtWsXevXqJbWL+liMMdPj4JVZNE4VYKx00v3t04Au7SoBhtIti7Vjxw5UrVpVWmaMmSdOG2AWiwNXxkov+p3T771fv37SMg3kogFdBUHbkDlz5shLmrJYHLgyZv44eGUWiQNXxhj93qnHlXpMCQWwNImBoTZt2pSt55bLYjFmGThtgFkcfYErz5zFWOlFp/5p8gJlwNXhw4fh4uIitXMTGRmJJk2aSGWx3N3dsWHDBj74ZcxCcPDKLAoFrjw4izGmSzt3lZw+fTrXnlTajnTr1i0r2I2IiEDjxo2lNmPM/HHaALMYSo8rB66MMV1U2io4OFheAsaMGSMFtPosXrw4W1ksDlwZsyzc88osAue4MsYMceTIEXTt2lVKB6Bc2KCgINjb28u3Zi+LRdsR5WCYMWY5uOeVmT0OXBljhurSpYu0fSDUu+rl5SVtQwj1xE6fPl1qU2BLExMwxiwPB6/MrOkLXHnmLMZYXqjeK1UPILTtoG0I9cRSWSwlXcDb25vLYjFmoThtgJktClx5cBZjrDD0HfgqbR8fH3z55ZdSmzFmeTh4ZWaJUwUYY0VF25HBgwdj27Zt8hpNusDBgwd5W8KYBeO0AWZ2OHBljBkDbTMWLVqE559/Xl4DfPrpp7wtYczCcfDKzAoHrowxY/rtt99w7949eQn49ttvcy2hxRizDJw2wMyGvsCVZ85ijBVWWFgYWrduLbXffPNNbN++XWpz6gBjlo17XplZoMCVBmfp9rhy4MoYK4zExERpogLF999/n1WBgCoO0IEy990wZpk4eGUlTulx5aoCjDFjoRquSlmsnTt3SlPHUgmtKVOmSOvoQHn58uVSmzFmWThtgJUoznFljBnbli1bMGDAAKlNwerChQulNqFtjnYFAppSliY2YIxZDg5eWYnhwJUxZmw0GKtu3bpZ08Pqy22l+/Tv3z+rZzYmJga1a9eW2owx88dpA6xE6AtceeYsxlhR0HaFZtFS+mRWr16td5tCgerixYthY2MjLVMgS/+XMWYZOHhlxY52Ejw4izFmbJs2bcrartDgrFatWkltfShVYO3atVJbGcDFGLMMnDbAihWnCjDGTEG7LJa7uzs2bNhg0HbF09MTvr6+Utvf3x8eHh5SmzFmvrjnlRUbDlwZY6ZA2xbtsljU62rodoXSDCjYJcOHD5cGcDF94rHPqzv6/HQJmfIaZs4EMlJu4MLJs7h897F6yRDq/3M3Sn3/NHnZfHHwyooFB66MMVOZNWtW1uCrwMBAqSyWoWgbpF0yi6aPtbgZuDJu4pA6YP8r2pRBRxru3YrB5cSHBgZCpvIAZ35eht8u3C/h52HO0hB3aCnGTPkd0enJiPpjKb7+LRwp+bxhIuUs/MZ/hDVn78trzBcHr8zk9AWuPDiLMWYMu3btyjrtT9sWGnxVUDSAS+lxpSCYemNpu2VU4ib+/OhlaZBY/pdaaPfuNKzaFZlvwIGMG9jrvQRnXh2G/9atIK+0DCIlCod/XYqpw3ugkdbrr9RuCGb+Eoo7GfTiM5Fy3h8j/7sKF6Qu38poObgfqvy2CP87zwFsTgLpVzbjs4l3MdTnY/Tu2AW9PhiPQWmrMGz2bzgZl6rnPUtH0vktmP3+UHznMAGTXq0urzdfnPPKTIp2ADQ4iycgYIwZG/WQUj3X48ePS2WxgoKCYG9vL99acNQDSwfatFuk1AOa1MD4UnBy0VtoN2U/0HkpwvaPR8vymqoHGupg7eoB/DR7Cj4JuAvXL/zwi3dPOOjrahL3cGa5J5bWmIKVg5xQTl5tGjHYMrw7PF/+FZc+b4uy8tpCyYjFsYCl8J63GpeajMaUcQPQx7Ut6tqWUd9Ip67PI2jtAsw73ROrppfHt2+Oxs4B23BpQQ916KohHvyDb0ZuQ5Nls/BGLUsJ2lV4HHMUm37egVO3biExKREJyS+ibe+eeMu9J9o4VIT2N0EhUq7gwJYt2HchFf+p9h/1a7+HJ9VfQf/3eqNldd3XnoDDM/vhfczDxa+64jl5LVKPYbFvJJo3eYQzMckob18btZ8vh/R7sYhJFHgu7SQWr3PAsoPe6FWjSJ9u8aDglTFTSE1NFepglQ6OpAu1aR1jjBmD9vYlODhYXlt4tH0aPXq0UR8zB9VVsfG9BtLj1/cOEY/l1bpUsYFiZCUb9f2ai3HbbwiVvP6pDHH/xGLRe8g6cTkt563GFy0CPRyFo2+oSJfXFJxKpMfuF76DWgrY9hSfBJwQ8em5PHfVXXHUp7eoJH0WjsIjMFq+QZEhEg95i57jAsX13B7DrKg/rzA/8anPHyIi6Ym8LlM8ij0qVo5oLeA0VCw9cTfH56yK3y9mufUTM4OuikdZNz4RiadXiUHNx4qAiGR5nezxCeHbsr5wD7is81i3RNCizSJKXql6lCTiYm+LpEeZQjw6I1a49xCTg27q+Z6ZJw5emUlw4MoYMyV/f/+s7YuPj4+8tuhiYmJE+/btpcela1o2qoQg8Yk9BaX6AjIt6aHCtxHdD8LBc6+4L6/O8uS88HPvI7xDkuQVplbU4JUC111iZvc6AnbviyX/xOX7OE8D+IHCL+KRvFaLKkpsHOwmvPbeVoeB5k2VsFfM/uJPcVNPoK1K2CO8mtiqA9jJ4o+bafJaNVW02P5RW1Hrkx0iIcd/SxHnV/QXtm+tEuFPo1oh1O+Zh97vVrIIXeInQnO86ckifMVg8fLkHeK2pUSuapzzyoyOB2cxxkwpMjJSqgxAqFLA5MmTpbYxKBMYECX/VX3gLS0XnUBa5ElsS6KYtA26Nc8jt/DBXdxM1DTjbt3DQ01TpsKDY5vge6cP3mhTRV5n3lRxezDz/VH4ar89xq3xxkcdauabemBTsw169a2vjvM7oGXDZ+W1WmzqoPuQpghY+icuP6H31FxlIunETuy8eRZHzidKR1zabOxbo+/Al4HLG7F8xxX1p0sE0i/+jaUrMjCwVyvY58gneA7Or/ZEqz9WYs3B208fs8JzsLOT2/kSeHx+Pb78vi58vV5DDX05C2aKg1dmVDw4izFmSrSNodqsigULFhh9+0ITGFDOK6FtGU1+YByPcCXsOK5Rs34rNKuXW66mOsi9eg4HpCDXDi6dGqOG5gYNEYdD67fBflBXNM2WL2umMv7Fpi+n4Ov9MXD4YCam96tvWH6ujS2q16sKhwFt4KQ30i2L6h1eh/uhLdh5IUVeZ44e4eq5EwgJ+BLvjt+EizlqjVVGo1Yt1NdxOHriXyRI69Jw9dhe7IYDGtS0ldboKmNXAw1xGr/uu4BkeR2qvIgmLz1BVPz97CXNxF1ceVILdbXeR/HgOJZP/h3NlkxCzxdMmzFtbBy8MqNRBmfp9rjyzFmMMWOhXtFt27ZJbZpUwNnZWWob26hRo7Lqv44YMUKaBKHoEnApJJxiU9i5t0XjCrkFnok4rn6NZyh2bTsec95pAhrKlCUpHHt+fRavta6L8vIq85WB+KDv8dHaM+p2X0yd6IYXDY48MpGe9h/0fMUpa6CWLpvqTdD51Uv49dC/eCKvMz8V4dz9XQxq74qRo11QP9uHmZv7uHo2Un1dD7Vr5HKQU70eXnZUh7y7w3FViVTL1EengS1w/sw1JGh18YqYU4io64xq8jJEIk6uXogtnabCs7uDxQWDHLwyo1B6XLmqAGPMVI4cOYJp06ZJbdrGmHI2LNp2add/pUkQaDtXJA8u45/dV9Sxa324dXKG/rO7Ak8ituHb5cEQTqPh5/8ZulfT7nYUeHg+BFuSWqBVo9xCOm1piDv2Ez7p3hjt3ngfw4cPw7vdm6Lx8B8QElcMxeifhGPj/AAkqZu2/QbhjZf19yLq9zxaDF2EaW615GU9bBzQoocTQvaF46ZWsGZenoFt23HYeHw/fvJorg5ldd3DxX9C1df18XpnZ1SlVSIZ8dfkvJH83E3Eg8fKi7dFi/fGY0TwOvx69h4dJ6mPH6Lx18oodHm9rlzNIBMPTgbgyy2tseATF9hZULqAgoNXVmT6UgU4cGWMGVNiYqI0gQChslg0MYGpUf4rTXpAtUcp/7WofzPj8ikExlGrPto1qpazLJJ4gKv7VmLisNk413U2tmz3xciXqujcLw03L19AjGMj1KueX9boE8TtnAP30TcxYNtFhP75i9RbvebrD1H/iBeG/RKOdPmepiGQdm4P/neUgjAnvDOsGxoUKOqoAIe2HdBYKqGVmwqoUbsecOIiriZrskXzp8KDw3PQVKu2bGEuld7+GVeMMN2YSDyJ7T+fBJoMxfi+DTWBWeZ93A6PkW7PV8wt3Hnw9InY1OiJrza+iQuTR2Gyzxx8MmQWzvUZiu72mvdRPAjF6i93odOCsXCxM6gb2Oxw8MqKhANXxlhx8PLykuq5Em9vbymwLA406cGUKVOkNk2GQJMiFM5jRJ05jitS+yb+WvCRNOgs6/JudzR6ph1G/ZaEzgv2I2zrLLztrBu4kjQkxqkj4OYvQI5FcpcZiW3eK3Gi1ot4ISsAVCH1bgwu33bB+x1qZ09HMLpHuHIiGJQwALRC1+Y19NYxLZoyqFy9JurEqQO4+4ZGks+gcqfPcDg2FrFFuFz+30A0LOobKBLxz8pv8V1yH8xa9X/oXjW/AxJDlIHtS0Ow7I8lGNP7bfzfDyswtWtNzXsvpQv4YksnL3ziUj3r89BMGLEKi5b6468z8ciQ15stueoAYwWmrxzWw4cP5VsZY8w4AgMDs7Yz6kBSXlt8EhISsspn0aVw5bM0paakx3BbIyIKXdtJfhyPQBErr8kVldtypOfcRPT9ZLFYt+OoiLiTW2XZ/BSmVJbm/6gDJAFHXz1lmowjPdRXNLJxFb6hOjVPzV66iD/oI7rb9REz98Rkf1+zPruxYvNNpS6sDq37BMYa8uZqagP36rlQHE3MkNcJTS3Zfv8n/MLuivT0BBGxfblYFHS9kCXRigf3vLJC4cFZjLHioMyiRShdgEpXFTeatWv16tXyEqTnoN5/yksGSruJi4c0/a6Or7dEw+LY+5ZtgrdmfQgnXMJf303G0D6d4VzdCd0n/4oLKUY4310QXRqiVq6diqm4sLIfnnlG/+l5m64r5alhrQlNe/sLPMceRddNqzHjtdrZS4c98xzsHR3khXzUqYnqlfPvApbSBaYdxes+H6Cjki4g4rH/mzk42msshrWsirJl7dG472B0ufA3Qh4YmoZR/Dh4ZQXGg7MYY8WBtjXaU7SuWrWqxLYzrVq1go+Pj9Smg/YtW7ZIbUNlXglDkFQjqy0GtKlXtOlVDfYcGg9dhD+3f4tx3Z3kdTE48N17cJmyA/EFjL8LrjyeszNkgFZFNBu3FSoVTZx0DyHeLprVLX1x4pEK4vA4NDNtfkMxE8iI3YEZY4+g489+OQNX8kxl1GhANXyfID0jlw8qMx1pFNRXs0flZ/NJyJDSBb7B7p6fYXS7qk/TBWL2Y833gFs7rfJlNvbo0LcKjoTckVeYHw5ezQxtrKkAN20Y582bJ9Uz7Nevn96j0Q4dOki304XuTyNxaVCDKXGOK2OsuPj5+WUri9W6dWupXVJoMgSlfNY777wj9QobJh2x544jWGq3Q4emz0utwqmMWo0dgPsPkTXAPC82VdD4jclYsS8SIv02wjbPxlt2QNLKPxF8y9SZjVXQoEVj9XNQN49EIdaQP5cZg7Cg81Kz/kAXNM8vKFMHgmmpKeoQzxkNa+mZyCA3GSm4GxeHuCJcbt17TOfsC0gduMbtgff0UHT9aSHGtHvhaeAq7uBM8GVoKtY+j4atqAzcVcTE51IVIjEWkeoDIoeezdEgz+A+E0nH/PDl7s7wGdMOVbLeUhWS/z2DAynOaKDz3j3zYh2UuXIre61Yc6LJHmAlifKnaKpD7fzRolzUG1exbNkycfr0afkvGAdP+coYKy60/TLHbU1ERETW86JtrWHP65YImtRS8//c/MSlp+mGhfBIRPgNzCeH9J4I9xstnNBSvL/xssj+5+6IvZ5tBew+E0EJBXkihZseVnV7u/hImg63r1gSln9OamaEn3CT3t+2wnPvHQPm2k8XsYFjhU2tL8Te+4YmEmeK+4dmiyby51jYi22/APFvAT9LVXKoWPrRArEnVk/uccoh4b1YeX9VIi1sqegMJzFi8zW970PG+RVCHd6Lcdtv5Pk+qRIPiJmd+gvfEwk699O8d3rzatNDxZIlhZ0K2PS457WEUA8p9ZZSr2qdOnWk0aZKb6Y2GuVKF+p1oJIt2hflNsoD00Y9FRMmTJB6Kah3lmoVGt5DoJ++HleeOYsxZgq0vRk7dqy8BKlElblsaxo3bixtj+nsF21rDZp9K+0qQrdpxtw79mxZxBHqFfCiUzPUuR2NuKRc+sUy/sWOr9fgMjLVUZZN1iliiSoJNyMTYDfIFa2LoUwSlW2asX4a2uMgln8XiPN55dpmxGD3Tz9DU8+hHV5p+nz2567XY8RGRQDtm6JBJUNDmmdQuessXBSUplD4S/Lvw+BYgLdQpJyFv89hNJsxCa856Ew8IB4j/vg/SKhbQ+6JtUH5Fv3wxUeV8cdfJxFH4XI29xH29zaE9RyDcT1q5f4+iTsI/m4BQvp7Ykxbe537yZUa5KVs0h5BVbGCAe9/CVF/AKwY0ahV6hWlt173Qkfx1ANLPQ50v4Kgo3/qEaBRubn14NIoXbpPQdFjjx49OutxuMeVMWZKtK1Stje0TTM3tP3r169f1nPMe7uq9KDRfQ3tTcxHQpCYZOcivEPuySt0ZP4rNr7fSjh9skPEa/+x9Fvi+NL3hUP32WJPbJq80lCF63mVqO6LK9tnie62tsKxr5fw2xku7qRrPbH0eHF+7y/Ce5Cb8Fi8WvgObikwaKOINuSNUl0WAe6OwmXFWZ0eZjOTHiUCx7XN+s7ov7iKhSceyP+BqER67C4xs8erYty6cJGc9X48FvFHF4u3mowWfuH38vg+ZYjEQ3NFp7e+F2HJ+t8dVWygGGHrKnx1/m5amJ/4Wv1dNVccvBYT2thRYKr7ZVUC1sKVXskdBb87d+7UG8jSjsHQv0fPW/sxOHBljJkSbbe0t1XmSjd9IIfHp8QSFwdNmagcFzt1sHWu8MGW6obYrg6E3PwuitxOlKuSw0Wg9wjR3slVDPTwEB5D+4q2Tm5inO+fIiKXQCZvRQheJepALP60+H2ppxjY1iHb+2Hbtp+Y4O0v9kXdV9+LArZQ8XdobK6vTRulJYyz6yuWnNYOvswNpXq8J2y1XrP+y0ix4bruQYX6/UiKEHv9F4rpXrOFj+8C4T3jCzFz6VYRFp932TMpXaDzELEiPI90DdVtsdfLVfRUB/9ZiQOqBBGy1E+EJBe6npvJcfBaDKgnVbtGIF1oYxccHCzfw7RoI0u9vTY2lHf09DlQj0ZegSgHroyx4kQH1cr2hraZBT0DVdy0OySKt4c4QyTsnS6a9Fwpzj8xpHvSGIoavJpCuri9fZJwKETuqdVTxYtDM/uKt1aEqUPnvOWs87pSLD8Upw6bzRcHryZEgZ6Pj0/Wxo0uFLQePnxYvkfxoh2D9uk4ulBAqq8XlgNXxlhx0t3mnDp1Sr7FfNFzpm268pyjo6PlW4rBk/PCz72f8A3NJXXA6MwweFVdF4Ej+wivvbcN6qUtVVS3RMgvQSLikWEhqCr5mji2fa1YsmSt+DPsthkdoOjHwauJUECovVGji7nkblFPsO5z0+4F1he48sxZjDFT0u7FpIN+S6GdPkDbyuKjmS2p98hfxbVi6X01t+CV8jm9Rc9xgeK6dv4sKxW42oAJUL1Vmg9bqU+o3qBBHcxK68wBFdvesGFDVsFt4uLiIlUloFG+PHMWY6w4UW1rqrhC1AfWUj1VS0HVB4oyeUHhlUHltiMwv/U+LNh+zfznojcymi3K77uHmDijL+qWNdsx8cxEbCiCldvMCChwpUBQQYEfBYDmWlJK9/kOHDgwq/SLErhyOSzGmKnQAbOrqyuOHz8uLUdEREgBoSWh19CtWzecOHFCKl0YFBQkTSlbLDJuYK/PClwZ4InRzauYsLRRDLYM7w7Pl3/Fpc/bFtMMYbnIiMafM35A/NAvMPIlU75mZq44eDUi3UAwODgYXbp0kZfMF9WApV5h2vCSTp064aWXXuLAlTFmcjST4LRp06R2YGCg2ZyhKija/nft2pVS8aT62wsXLpRvKQYZN3FoxRYku49B37o69UONJhVX//oZ+194ByO1phctfg9w5md/RLT1wMBmHLiWVhy8Gon2hotYSuCq0A1gv/32W4s6dccYszy7du1Cr169pDad6fnxxx+ltqXy8vLKClpPnz4tpWgxxoyPg1cjoMCPZslSWFrgqtANYC25F4QxZt5olsHevXuXzKl2E6HXVLVqValNr+ngwYN89ooxE+ABW0VEGyvtAM9SA1dSu3ZtabABTSlLBgwYgLCwMKnNGGPGRL2UyoHy3LlzLT5wJfQa6KCf0GszaOpYxliBcfBaRPPnz8/aAK9du9ZiA1cFBbCrVq2Sl4AxY8ZIATpjjBkLHSQrFU1opL6SOmANqDODKiYQqqBAlWYYY8bFwWsR0AbY19dXalOCvoeHh9S2dJSnpd17QAE6Z5cwxoyBymLRWR1Cp9atMbdee7DWsmXL5BZjzFg457WQSkNuk6enZ1Zwfvjw4WyVFBhjrKCopNSQIUOwdetWadkSy2IZSruKgiWnkzFmjrjntZAWLFggt4DFixdbZVL+1KlTpcCcfPrpp9KOhzHGCsvPzy9r8hZ/f3+rDVzJuHHjsraf1LvM20/GjIeD10Kg017a6QLWekRNgw8ogCWUPrBjxw6pzRhjBUWDPydMmCClIFFZLJoQxZop208bGxvefjJmZJw2UAjap9MpGZ8GOVmzfv36Sb0lXPqFMVYY2mWxSGnYbirefvvtrDSJhIQEq6iqwFhJ4+C1gKjX1dnZWWpTIv748eOltvGp8PjuvwgLDUXYqTMIuxiJGw8qourzz+BRwgOgegM0adUCrVq0VQeVL6GOrekm69OegIFrvzLGCkr7gJ/quVpTdYH8UI9z69atpXaxz7zFmLWi4JUZzsfHh4J96aI+ipbXGlOmeBR9WPhNHyza2jqI9iN8xeajl0Rscrp8O1HfJ/GqCNu5Rnj2bSLg6CbG+f4hwhOfyLcbX79+/aTX3L59e3kNK30yROLeL0WT3n4iIkNexcxP+n0Rff60CIuMF49U8rr8pN8RkZF3hPZWxljUB7xZ20x18CZUKkOflPWg1628BxEREfJaxlhhcc5rAVDCvTJ6lI6gjX76JyMBZzZORZ9mXTHquyS8/r+d2PnjZxjQyRkO2XpWn8GzdvXR0m0U5m/eiUOTXsTeKW+h+SsjsWjfNTymTaSRffTRR9I1nfajnlhmRmhe82XL8Fd0mrzCVAQe30vEpcuJSDbBdyxvAqlnNmD+b+FIKfa/bSkEMuIOYNGYmfg9+iEeRW3HN18H4kJKpnx7LsR9hPt9hv5rzuCBkd9bmrVPuyyWkgNa2kycOFFuQeqBVu975SXGWKFoYlhmiJ07d9IWR7ocPnxYXmsk6TFiz8w+wpYe37aPmLknRhjcj6q6J8L9Rgsn6bm1FiP8zogHRu7cSE1NzXrt1PvMCipd3N4+SdjJ72F+F9u2g8X0lbtERHI+XZz0vZk1RSwNSxKm789KF7GB4wQcfUWoMbroVPdF1D4/MX1gJ+HkOkB4eAwRfdu2FN3HLRVBV+4LVfIZ4TdihFhx/qH8Hx6L2KAFYrL6+51c+jrv8vckQgQM7i289t6Svwsq8eTfX8TIfrPEr6E39PTCqkR64jkROLO/cGwyRWy/+Vhebxy0zRg9enTWd/r06dPyLaXTsmXLst4Lo+8/GCtlOHgtgA8//FDa8NCpc6Oe+lLdEUd93tAErqgv3lpxRjySbzKY6qYImtxJ3ji2FiM3RBge/BpIO2WCdkyscNJDfYWj9D72FUvCkuW1T6mS/xV7l4yUDkZsu88Wu2+mybfoUCWJsKWjxQcbI43+WetnvOBVlXxObPzETTTxWCr2RqkDVXk9Bajxof8T49TB7FiPzgIOX4i99zPl29RUCeKE74di8vbrxfSajUkdLCZHi7Cdq8Wk7p+K7fH5HJhIwb2/8Jn+pZjrs1As9J4hvGYuF7+H3dZzej9T3D80WzSpM0scTNZ6v0SSCPl2oQjY9atY4esrfJf4iY2BgSJwo59Yol5e8sNXwsOps5gcdFPrMzAOf39/YWNjI20vKHAr7WibSfsOZR/C21DGCo+DVwNp9zwad0OcIRIPzRUdbDSPjU6LROjDwu1GVDcDxUg7+XHsRoqAf5UeK+MIDg7Oeg9Key9K4T0R0RtHat7H+t4i5HEun7Xquggc4STdz27cH+J2jrtliPsnFoveQ9aJf58YO+zIjZGC17SLImBIa+E0JEBc0vv6tXqpPQJFrLxWoUo8IGb2nCwCr1nIzv/OXuE9YoLwnD5L+PqtFDP61FF/rmNFYGweb6IqThyc1U/0nLlDXH+kBKPUUxoqVgxyFSMCzusc4N4Xob49BdwDxBXt2FX9PUkIWiV+iZJ7VVWPRFJcrIhLeqR+tGQRvmKwaD55h57vV9HQ9kHZVri7u3OgJtPO/6U2Y6xwOOfVQDQTjEIZOWoU6RH4/Rs/nKDNGRzQ06MXWlQsXE6YjUNnDBouP7ekTZj3YwgSpcc1jjZt2sgt4OzZs3KLFUwiLoSc0jRfbYJ6FXL5rG3sUe+lF6Vm0rYQhCerpHYW9fdms/cuuEzoC8dylpRD+BAR67wxaX0tjPd8G856X39Z1Gj7Kt5EfQz6bxvUlNcqbOw6YdSoZMxecdSo32+TqdYD0/63FAvmzsbnH/wXraqXl2/ITTri/lqID1c74bNJPVH3WWUzbYOydm0wauZ7uPnxV1h7PkVeT+7j+rkooMpzeDbbW1oGlauVxd3EdM2izbN4vqYDaj5fAWnn1+PL7+ti0dTXUcOIXyEaGzBmzBh5CVi+fDmX15P16dMH6mBeatO02zxxAWOFw8GrgbSDtaZNm8qtohJIPbkNi7ddkw7FgZZ4o1MDlJPahWBTHW1ec4GttJCCS9+vx+6YJ9KSMdAOiIqLE5ouVn3wI7VZAaRdRei2M+qGA9xebYYXNGv1eIi7N5I0zbhE3HuoHbyq8ODYJvje6YM32lSR11mIjEvYPu8XJDm6ostLmm+qXtXr4WXHlnB9uYY6ZNNVHnW6u8Pl55+w9XKqvM6KqA9Mti37FXfffQ3t7cvIKxU2KOfcBf1b7cJXa44gIetrUR7P2eXxfup6fA5rp/0Kx0UT4VbDuGX2aMZBpZ7r5s2bS009V0PQNpQG+yoTF9CMY4yxguPg1UDh4eHSNR01G6/KwCNcC/sHmkdWs3VCw1rPyguFUQb2dRrBSV5CykmEXJQDICNp2bKldL1mzRrpmhVM5pUwBF2jliO6NnPI/QeYFoNzB65o2i4t0UQ7wBBxOLThD9gP6oqm5S2p11XtznWco5eVeEMdk2do1ulD98vsgFaO+nvsbKq3xn/dL8EvKBLGOzwzD6qrx7F1dzLqN6wJvYcmZaqgRkN7xP16EGHJSiWBSqjTpD4QFY+kbMUF0hF3JR0N62q9jyIRocvn4OemX+ALt1p6Dg4Kb9euXVkVWehAl2tC50QzMiq9rzTjGE3gwBgrGA5eDXTgwAHp2rhzcd9DVNjTdAS8UBcOdro9LQVTpkZtvCy3gSs4FHEL+RTKKRDt108TNrCCyED8pTAEU9PuFbRrnFtPmQoPjv8FvzN0WvhVeM3uh6baX4ukcOz9tQJea10X+Z2ANjsVnoOdnfo6aQu+/TYQYXdyKe9V0w0LQibilVzTKqrhpU7NcPTXw7j4xJrOAGTi3tULOIEaeLm2vfpwVB871Hu5DhB3GuFXldPO/0GjTq+h8/lLiEqQUwSIuIGQiOpoUU15pEw8OBmAL7e0xtdTuqO6ESNXKos1ffp0qU1lsRYsWFAqy2IZgt4bxfr16+UWY8xQHLwaSDkN1rFjR+naODLx5JHWjsboUvDgSYackmAc9evXl1us4O7h4j+hmqZbezSzy+V07ZNL2Pztz7iE1hjhtwzTejho9Y4JPDwfgi1JLdCqUWV5XX7ScOfkb/AZ3hWNu7+D4e/2w3uztiIi9jz+Wr0eh+NMXR9Wi11zvD6ouboRg/0L3kPrGtXQqPtweC1aiz+DI3A3Q/622tiiZk3bPHoFK6Bui/ZoffQfnL1pTX2vGbgffwuGnS+5j4QHymdng/ItBmDmiLNY89sZuRZuGmL/2oiLXVxQR34jxYNQrP5yFzotGAuXHCkJRfPVV19lbScpdYCnQc0ddQJQ+gCh3lcK/BljhuPg1QDaPYy2tgXIK8vXc6her4bcVst8gvTMooWaIiNdvctS1EHzF6rk0ntTONWqVZNbT1MpmIEyruNU4Emp6diuERxy/PoykXJ1H1ZMHItJ51pi5u/rsWxkC1TKFsGl4eblC4hp2Aj1qhuQqyju4/xPE9DFdS3SBv6EU/s2w/+3X/FNy4N459U+eGPs5/DecdWovfN5snkRfX1/gd8IZdBjCq4cCMDCKSPxZtcmqN7kHcz6/aJBExFozjJcQvjVZHmNAR4cwsymlaQewUJfKg3Dz1GmCvjTkXj7Jh2jGCAe1+88lNtqNrXg9tV3eOfiHLw/eQ58PvkAn57rjI+7y3nDIhEnVy/Elk5e+MSlulE3/gEBAVmpRD4+PtKpcZY3ZfwAWbp0KY8hYKwAOHgtIOP2PD6H2k4N5bbatWjEJhYtjMiMj4Hct6dWGy3q2xs1p417UwpPFXUGu6U0VvUB0F9f48PhwzE86/IOujeqjlajfkNi57k4G/Yb5vRrAtscH14aEuPioD4qQf4dZw8RuW4K3h71J16cNRuebzjJj1cBL/YdhPcyY9RtZ/RsWduoBzj5sbFtgQ9+OoTrx7bDz9cTHq5ZWdrAlS34qv84eO+/lX/8Vrk66tVJUAdwKYafXajcGZ6HLyM2Nrbwl8vLMLBBBfkBzQu9t8OW/oLlY9zxxv99h7VTu8mpAU/TBRZ84gI75XslHuDq4U1YuWgZfvrrDO4oPd8FQAf39B2m4IvSBSZPnizfwvKi3ftKs25xGhZjhuPgtURVQN22LnCRl4DzuHhdqyelwNIR9+8FyMN8ALsO6OBs6KllZloZuB1+HLukdh98uWod/P39tS6bsf/fRPy7byWmebiigW1u4eQDxEaqg9cqFXVKIulSIeXkaowb/iMu272LzzzayFUoZImxiKSBYw6d0MapomZdcbKxRd1X3sAHny+A//5IqJKvI3THEng40bM8hAWrD+JGfnFUhYqoXP4aQmMSCtBzXBa21WrCwcGh8Jeaz+fz3pewspVRp1krtHSqnvU8pXSBaYfh+s04uCh59eIWDs35GHMvO2LQJ2PR3+kGApbsQWwBAlgq9eTp6SkvAevWreOyWAWgPW0sVx5gzHAcvJawMk4ueL+nktN4BYcuxKnDjsK6j8unnpb0chjeB50NObXMisFDXL94XtN07ICWDYtSVcIAIg4H1vyEA+o4xGH0W3g1WzkkFR5cDMVuavZsh6aVi2MzkIa712JzTQewsa2Ltr0/hu+3o2BPP4bQGMQXWy6DOSmLSvbV1W+IvJinGqhX/Tm5nQcpXeBb7O7pifEdq8kPnYnE/d9j7NGu+HxYa9iVLY/nG/fG6C5XsSHE8NHvlNu6bds2qb127VojD2i1flRGbNmyZVKbe18ZMxwHryWtnDPeGtdPPo0Xh6N7zuTf45Sb1MsI+VupXtAbnw7tqAkEWMnLjEFYkCZ4dRjQBk6mPqa49Q82rQyHQEu82+MlZO9/T1Uf5ISov20OcOuWV61ZI3pwBIv+uxbheVYGUCYnUH9pHWzxn1L53S0Huxo1YasOLtPSM3NJh8hEehqVGauCqpXzS1/QpAtM390JPmPaobLynopo7PbbiHS3dmicNclFGVTu8CqqHjkFQ8LXI0eOZCuL5eHhIbVZwQwZMkRucQlCxgzFwWuJK4davT/ErJ51paWU7QcQeiuP+pe5Ekg9ewAbwzWz7tiN/BBDLK2AvRUTsedxIJjGkDui5ytOOsFkQVRGrcYOwP1UPM4jDsyIjcIRqdUGnZrp5CmrbuDMbjrI0eS7FsdGIOPyKQSml0e5MnlHpJlJ8YhSh24t3dvBMb9E3LRUPHjiiC4Na6jDXkNlIOXuLcTFxRX+cutenu990ZSBfcNmaIXreaRDyKkjDq3RvEHep+hFUgiWf3kUr3sPQ9vKWm9o8lWcPoCc790zNdTv+03E5NPrTbVJldxWynOdNWuWNJiNFRyNI6DeV3r/uPeVMcNw8GoOKrbEUC8PNKF2SjB2n7xt+ACULPdxdu8uzYQHtkPg69UbtXhfYiYykXThhJzv2gbdmleXWoVTAfYO6uA1/DYMGtvn2BSNHLLP2SZunsGuXergp35PuDQ34LRzkT1G1JnjuPIwUR1z55UUk4CjG39BcMP38MWAl9WvNB8P7uB6zPOo+XwBciwfHMXCrk6oVatW4S9OE7DpqunKi5Vp1BHvdLbD7fPXcUffhiDzPuKjEmHn3hnNK+UR4Ys7CP5uHg64fYbR7apmz0R4eA+34vQ9eHlUrKBCfmmvVKdUKYvl7e3Ns2gVEfe+MlYwHLwaoGLFpwNarl2TpkcysjKw7/4RvpvcSd0Ox7r1wYgpaPSaehF7N1KdgTro6fMZ3nM2TVDC9QgLIwWRocc1tTuLnO9aAS86NUOd+GjEZZ9KKZuyDV7GGzQZgC4qnfX3X1IgbefeFo1zmwTAqO4g/OApIO5vbNoTDf3nFTLxIMQPUxeXhefy6RhgwGh+Te9yEzRvUEleY4DKr+Kri8nSyPhCX5J/xrCGJqw2UP4lDJw6HA7b9iAkTrcOtEBq2E4EhHXD7HGv4oVct+DqA6bgVfAKccO8Me1QRfdjlio16PvsnyBV9WyeKRtbtmyReggJjZZ3c3OT2qzwqPeVymUR7n1lLH8cvBpAu1chJUVzWt7obBzw2iefY5yTLVK270JITEEKr9Nc99vxPaUMdBqPr0a0hKn601JTn84l37w5FZtn+XpyFcd3GCvf1QbPvdQJ/cudxpkreXwX7V3w8ZIP0TjqT/wRkqDpyc+IRcjyyRjw0c/qQLo+3Do5Q198a3QPLuOf3U/gOmUAKq0cj8/9duPC3ac9lyLlCvb7TYF73wN4bcNqTOtV14A0gDTEXDiDKy4uaFvXPMtW6ZXxEPfu0W/7Ae4l5/YbLweH3p9ixYRozJq7CREpykGKQMadI/jhq61wXjIHH7TIPflEJAXjO68LGOw7Inu6gKJiPbR87RkciYrPfjDxJBpnH9dC7Vw6dOngdcCAAVIQT+kCc+bMkW9hRcW9r4wZjoNXA9GGmhw7dky6Nj4blK3bG5/PGAi7lB34aU9ULvlueoh4hGwPQhy6Y+aCkXhF387KSLR7nrV7pJmuFJxZ6o5KVNS+QmtMOqIZAhO38DVUoXVdV+J8YVKbiV1zvDbocT6VKZ5D46GL8PtGF5wc1QdvDnsHPdxm4Uid1zCsE+XAtoTry3LxehOjfNf93X2wYu50LNiyCD1T92B27wZSjh9dnnHwwNq4Vph5ciPmvOGkMylDLsRdnA+5gM4DO6KR6b7uxnF3H3ykWr7v442OPTDqD6qvuwGj2r6KN4bR+jHw2XdLc19F2dp4bUYAAgdmIHDBTHjP84WvzyxMX34Gjb4KxI8ftNBTA1gmpQv4IsxjKka3fF7/Z2zzIlyHvotyu0IRma6c5snEg1OnoHJtoTcnm8pijR8/Xl4CVq9ezWWxjEjJfSXc+8pYPtRH0MwAU6ZMoS28cHd3l9eYyJPzws+9vkDnpeL0Y5W8Mm+q29vFODtb0cRrj0gw7L8UmnrjKr0PdFGpTPzHWC4yRMLe6aJJz5Xi/JOCfQaq6I3iPRsbgfo+IsTA79dT6SI2cJyAo68ITZdXlRD6zn9Ua6gIuPJYXsM0MkTiobmi01urRPijfD5fVZw4OOt9MdLvpEhMTxNJEX+JpcsPifhc/pu/v3/Wb3/t2rXyWmZMERERWe+xj4+PvJYxpot7Xg3UsWNH6ZpqGtJIW6N4HIdLV+9pTukqyjXFezPGo9PRvTj279NT9LnLRNLpA/gVw+Az8VWd0lipiLt0Dfey/YGi2bNnj3StPbUhK25lYN91MKZUDMLfZx/I6wyRgVsnDuAv9Teu+PJdTSEdccFBCBk2An3NdKarkiOQUa45pvkOwUv5zaRgUxOvzlqJ2S/F4vcfVmHL5Rfx3lgXeUau7MLCwqRZtIj6AB4DBw6U2sy4tGfdojJkCQkJUpsxlh0HrwZq2PDpNK4XL16UW0WU+S/Wz9ypU9fVBhXbvI9Zn8Tj93+iDZiwIAlh+0PQ5MuR6F0r+6hypJ3FT7MPawYKGQEF7UpB8q5du0qnfFkJKeeMd6Z3w97vdyI629DwTDw4thi9Gtmj0fsbEaWde/IkEjt+3o2U59zw2aD2sNSJfkXSUaxaWR4zPurMdYxzKIvqHfuhb+Ns86nlTpnpbOIEfNC3JaqXzfmGUrrAmDFj5CVg+fLlnDJkQtodA+vXr5dbjDFtHLwayNnZWW4BBw8elFtFVLEOXhIXcTlZJ0S1eQFdhw5Ayh+huJ5frylNTLC7NT4f0gq6uxPV9Qs48bKT0UpmaQftLVq0kFusZJRB5bYjML/1Psz/45rWoJtHuBz8B3ZdSULqs+VRXlpHA31O49eZn2HSnsaY8fsaeEl5rxaIZovyW4fkiZ/gzXqcb1kcZs+enVUWKzAwkMtimZh27ytNH2u0M32MWREOXg1EAxN8fHykNp3O0R51X2g2NfCySzxCLuie+rVBxZdfw6AHkbiqG9jqUN24iKMdesNFp5Ynlby5cfocGrRrkH+9TANpB+2tWrWSW6zE2DyPlh9Nx4Bza/BT+H05/aQinP/7MaYP7ATbqPWY9sFwDH+3B5p0mor9lQbjj7MbMfv1OgUo6m9O0hD71/dYaz8BX/WtC91vPDO+Xbt2ZSuL1b9/f6nNTEu78sCff/4ptxhjChtKfJXbLB80HaKLi4vUPnz4cFa78FR4sG8GXl39H0x+vzOca1XR2iEn4cTS9Sg/7Qd80Di3uqD0/2fhrQOt4Ote/+mRiEjF3aiT+H3hcXRY/1Me/99wdPRftWpVqU1B/Jdffim1mRnIuIlDK7Yg2X0M+pq0bJRA+tUdWL6/OkaMbC9PaVxcBFLPbMTSiJcxfmDz3EfaM6Ohslh16tSR2lRtJSgoSBoRz4pHv379pDQteu+p44ArOzD2FAevBUC5X0quF/VCLFy4UGoXhbj6M95u6AFNJqkuV/iGbsfnbXPLX8tA3JbxePGdVdD7KdaZhUMXZ6Hrc0Xf01NhcqrvSE6fPs09r4xZudGjR2fVGw0ODkaXLl2kNise1FlCYwtoF03pGtzrzdhTnDZQAHTka+w6fDa1nNC+vryQw7Mor2cAxVM2KPdcZTjKSzl0bor6FYseuFLQTtNBEhppzIErY9YtICAgK3Cl6V85cC1+9J4r9cXp82CMPcU9rwWkfSrNWL2v5o7y3nr37s09AIyVAnRQrgxQpYNVGvHO1QVKhvYZL+79Zuwp7nktIBppq4wELQ2zoFCv6/Tp07Omg+zTp498C2PM2tDvfejQofISpINzDlxLDm1vld7XtWvXSteMMQ5eC4Xq8Ck1TpWRuNZqx44dWWVypk6dyoMGGLNiixcvzlYWi8o2sZJD21sPDw+pTWkcPGUsYxocvBYCbdCXLl0qtWmDQqfVrRGlSCinrOj0Ife6Mma9aIAQnWUhdIDO6UHmQbtslrXuaxgrKA5eC4k2KMrpHNrgU6BnbebMmSO3gFmzZnGvK2NWikrhTZ48OSs9iH7vzDxQeTIlVW3ChAk8ZSxjahy8FhJtUGgULqHTbBToGWXiAjOhPdqY6rq2bt1aajPGrI+Xl1dWugBt13gWLfOi3ft64MABucVY6cXBaxG4ubllzbpFgZ6fn5/UtnR0+nD48OFSm3phqEeGMWadaES7dlks2q4x80LlCSl1iyhlCxkrzbhUVhHR6NzBgwdLM6EQSy8lRekPdevWlU4fkoiICB60wZiV0i6LRQeq1KvH1QXME+W79urVS2pz2SxW2nHPaxFRHujy5cuz8l9pgBP1XFoiClwp8FYCV9pAcuDKmHWiA29PT095CVi9ejUHrmaMZttScNksVtpx8GoElB9GG36lfJaLi4vFBbBK4Krkvc2fP5+P7BmzYpTmpJwx8vf355nzzJwywyPtZyjNwxoHCTNmKA5ejYQ2/IcPH5aXNAGspUzpR4G2duDaqVMnKf2BN46MWaewsDBMnDhRalNZrIEDB0ptZt769esnt4CtW7fKLcZKHw5ejYh6KulUu4IGPdGALjo9Z65osAYF2krgSjuykJAQaZkCWg5gGbMuVBZrzJgxWelBXAbPctBZPtpGE+ocMed9C2OmxMGrkVEAGxMTk60GLA3oMreZUWgHRvluyiQEZOfOnfjxxx+lU1OEA1jGrA+lBCkHq/Sb57JYlkWpBEOf4alTp6Q2Y6UNB68mQDuDoKCgrCNkyiujEb3mcqRMo1Z79+6dNbUtBdqnT5/OKpEzfvz4HAEsBeSMMctGv33ld0+F77ksluVp06ZNVucID9xipRWXyjIhClQ3bdqUdaRMaKMzd+7crJInxYl6f2nHpdR0JLQDmzp1qjTpgi6qokAzuhB63pRiwL00jFkmOoNSp04dqU2/5x07dqBq1arSMrMs2ttm6ljg7TIrbbjn1YQoj8zDw0OqlaoUmKaeTOr1pMR76gUpjp5YGpBFKQLU+6sErrTzolOGCxcu1Bu4En09sJxCwJjloe2M9nTPVB2FA1fLpT1wa9++fXKLsdKDe16LEfVcauebEQoiKcClQVPGLFVDQSZt1OhvKuVwFBSQ0nSDuQWtuugon0Ym01eFe2AZszyUsqScAaLfPx2YMstGASxt22mb/M8//2SVamSsNODgtZhRDwidrtMNYglthGiD1K5dO9SvX79AEwRQsHr9+nUpd3XPnj05AlaydOlSvP/++wYHrdo4hYAxy0RlsShPkjb1dAZow4YNXF3ACmjPuEVlGqkDhLHSgoPXEkJBLI0UpYR77RxUXRQourq6yktAx44dcenSJdy7d09apjxWfYGqgnZW1LNLj1GYoFWbbgBLtWCVHDrGmPmh7Uy3bt2yDpR5umfrQZ+tMiOat7c3pk2bJrUZKw04eDUDVLYqNDRU6jFVRgIXBVU5oKkEe/ToYfTeUe6BZcxyzJs3LyuooYNNyltn1kP7801NTeUedVZqcPBqhpQUgNu3b+PYsWPyWmQLbClAtbOzk9rNmzdHzZo1pVQD6gk19QaMA1jGzJ/2aWXaXlANZ2ZdKCWkdevWUpsG4HLpM1ZacPDKCoUHcTFmvugAmHpZKV2Afp9cFst6dejQQfqc+QCFlSZcKosVCo1WpgFghDacXEaLMfNBZbGUPNfFixdz4GrFaEwDVRqgsRO8DWalBQevrNB4Ji7GzA+dBVEGgfr4+EhTVjPrxTVfWWnEwSsrEt0AdsCAAXz0z1gJoeoj77zzjtSmdIHJkydLbWa9KF1LmQSHDlwYKw04eGVFxjNxMVbyqHQSzaSnDGNYt24djz4vJd5++23pmsom8raXlQYcvDKjUAJYyr3iAJax4ke5rUrNZ39/f67nWopQWUQFpw6w0oCDV2Y0PIiLsZJBJZOUep806pwG8bDSg1IH6HMnVAmGMWvHwSszKh7ExVjxoklOxowZIy8BM2fOlFusNBk4cKB0TdtdOphhzJpx8MqMjgdxMVZ85s+fL/3OCBWq5ymbS6d27drJLSA4OFhuMWadOHhlJsGDuBgzPRpdrsy8N2XKFJ5hqRSzt7fPSh0ICAjIGrjHmDXiGbaYSfFMXIyZBh0M1q1bN+u3dfDgQa4uUMppTwl86tSprKljGbM23PPKTIoHcTFmfFQWi35bSt/D6tWrOXBlnDrASg0OXpnJ8SAuxoxr06ZNWWWx6LfVqlUrqc1KN+3Ugb1790rXjFkjThtgxYZSCCZMmCC1OYWAscKhkeTK6WCaWWnDhg3c68qyaKcOUCcBb2OZNeKeV1ZseBAXY0VD6QLaZbHo98SBK9PWrFkzucUTFjDrxcErK1ZKAMszcTFWcLNmzZJ+NyQwMJDLYrEcqKeVeuQJnd1izBpx8MqKHQ/iYqzg6HSwdlks+t0wpg99N6iDgPKiedvKrBEHr6xE8CAuxgxHAciMGTOkNuWLT506VWozpk+PHj3kFnDhwgW5xZj14OCVlRjdAJZn4mJMvzlz5uD48eNSe/HixdKocsZyQ6kDdJBDqDIFY9aGg1dWongQF2N5o9mS1qxZI7V9fHzQpUsXqc1YXoYNGyZd03eHBvoxZk04eGUljgdxMaZfZGQkhg8fLrVpEM7kyZOlNmP5cXFxkVua2bYYsyYcvDKzwIO4GMuOesuGDh0qLwELFizgsljMYM7OznIL0tTBjFkTDl6Z2eBBXIw9Rbmt9Dsg/v7+2YIRxvJDBzpUlYJs3bpVumbMWnDwyswKD+JiDDhy5AimTZsmtWm6Tw8PD6nNWEG8/vrr0jVtSykFhTFrwcErMzs8iIuVZomJifj000+lNo0Yp4kJGCsM7dm2jh07JrcYs3wcvDKzxIO4WGnl5eWVVRbL29ub56ZnhaY929bhw4chhJDajFk6Dl6Z2eJBXKy0oek8tctiubm5SW3GCktJHaDvFfXqM2YNOHhlZo0HcbHSgg7MKMebULoAl8VixqBdMuvixYtyizHLxsErM3s8iItZOyqLRd9zxapVq7gsFjMK7SoVp0+flluMWTYOXplF0NcDywEssxZ+fn7Ytm2b1KayWK1bt5bajBUVHQRRxQqyd+9e6ZoxS8fBK7MYSgDLg7iYNQkLC8OECROkNgUZAwcOlNqMGUufPn2kazpA4m0mswYcvDKLQgEsD+Ji1oLSBcaOHSsvQSqLxekCzNiaN28ut4ALFy7ILcYsFwevzOLoSyHgQVzMElGwqpTFCgwM5LJYzCQaN24st4DQ0FC5xZjl4uCVWSTdAJYHcTFLs2vXLvj6+kptmsaTDsIYMxWeKpZZExvBVYuZBVu+fHlWviCVF6I6mdx7xcwdHWjVqVNHatP3NigoCPb29tIyY6ZAB0u9e/eWJiqgM1W8nWSWjHtemUXjQVzM0lCe65w5c+QlTVksDlyZqWlPFct5r8zScfDKLB4P4mKWZNOmTdlm0eKyWKw4UE8r9fITzntllo6DV2YVeBAXswSRkZEYPny41KY553kWLVacXF1dpWvOe2WWjoNXZjV4EBczZ5QuMGzYMHkJWLhwIZfFYsXqlVdeka5p+8jbRmbJOHhlVkVfDyxvpJk5WLx4cbayWNrlixgrDlzvlVkLDl6Z1eFBXMzc0EjvadOmSW2aRYu+k4wVN673yqwFB6/MKvEgLmYuEhMTMX36dKlNA2YWLFggtRkrCUq9V+UsAGOWiINXZrV4EBczB15eXtL3j8ydO5fLYrES1bFjR+l627Zt0oEVY5aIg1dm1XgQFytJNGmGdlmsXr16SW3GSkrDhg3lFnDx4kW5xZhl4eCVWT0exMVKApXFooMlQukCXBaLmQNnZ2e5BVy5ckVuMWZZOHhlpQIP4mLFicpiUbqAYt26dVwWi5kF+h7SoEFy+PBhabpYxiwNB6+s1OBBXKy4UFkspRC8v78/l8ViZqVly5bStZLSwpil4eCVlSo8iIuZWlhYWLayWAMHDpTajJkL7YMpSm9hzNJw8MpKHR7ExUyFRm+PGTNGXgJmzZrF6QLM7DRr1kxuAdeuXZNbjFkODl5ZqcSDuJgpzJ8/X/o+kaCgINSuXVtqM2ZOtL+XPFkBs0QcvLJSiwdxMWOisli+vr5SmwrBu7m5SW3GzJEyWYFysMWYJbERPNSQlXLLly/HhAkTpDaVNKIghHvMWEHQQU+dOnWkNn2HDh48yOkCzKwFBARg+PDhUjs1NZW/r8yicM8rK/V4EBcrCiqL9dVXX8lLwOrVqzkQYGbP0dFRboG3d8zicPDKmBoP4mKFtWnTpqySQ/QdatWqldRmzJzVq1dPbgHh4eFyizHLwMErYzIexMUKispi0alXyr5yd3fHqFGj5FsYM2/aqVGXLl2SW4xZBg5eGdPCg7iYoShdQLssFuVOc7oAsyTKoK3jx49L14xZCg5eGdNBASzPxMXyQzVc6ftBNm/ezIP8mMVp3ry5dKC+bds26WCMMUvBwStjevAgLpaXXbt2ZZXFolm06PvBmKXhQVvMUnHwylgueBAX04e+A9OnT5faVBZrwYIFUu8VY5ZGe9AWz7TFLAkHr4zlgQdxMV1UFktJF1i8eDHs7e2lNmOWRjvVJTIyUm4xZv44eGUsHzyIiymosLtSFsvHxwddunSR2oxZKkp7IdHR0dI1Y5aAZ9hiZkggI+UmIiMSUa5eYzSq9izyPymr/j93r+IqXoRTtQryOuPimbhKN+qZcnZ2lto8ixazFtrbNQ4HmKXgnle90hB36Ecs/OsaVPIa43iAMz8vw28X7qtDLaYfvfdLMWbK74hOT0bUH0vx9W/hSMnnDRMpZ+E3/iOsOXtfXmN8PIir9KKR2J6envISsG7dOg5cmVWoVauW3NLkczNmCSw6eBXxf+Ljqs9Ip3PzvVTqgHdn/IhdkfkFjurgae8SzD3TBh//t37+b5B4gKv7f8KMdzujcfd3MHz4+3ijXSv0+GgZdkY9kIKqn0aOxMoLqeo7V0bLwf1Q5bdF+N95DmBzEki/shmfTbyLoT4fo3fHLuj1wXgMSluFYbN/w8m4VD3vWTqSzm/B7KFD8Z3DBEx6tbq83jR4EFfpRLmtVE6IrF27Fo0bN5bajFk6KpeluHv3rtxizLxZR9pAxkksatIOU67YofOSfdg3sRWynTiWAkx/zB73JQLiXPDF1jXwfu1FPYFpJlLOrMaYpfbwXvkuGpbL+2S1SAnHbzM+w+zEN/D97OHo3qCyfHo7DXdObsDMz/+EqBuHVbu7Ye8lb/SorPmL4sE/+GbkNjRZNgtv1DLNKe7ikYH4nTPwXsR72D2xJcrIa7Oh9/7AVmzYFwHVf55HBZGMhCcvoGP/gXijZQ2Ule+mkYDDM/vhfczDxa+64jl5LVKPYbFvJJo3eYQzMckob18btZ8vh/R7sYhJFHgu7SQWr3PAsoPe6FUj+yOaCqcQlB5HjhyBi4uL1Kb8wNWrV0sHxIxZg8TERFStWlVqBwYGctk3ZhkoeLV0quiNYpD6pQAuwjvknrxWV7qIDRwnbOl+dpPE9tvp8vqnVPePCd8+Y0XAvw/lNXlIuygChrQWTkMCRESaSl6pLV3c3j5J2Nuo/55HoIiV12pkiMRD3qLnuEBxPV3f/7UMqts7xOQmtsLRN1T9avVQxYmDs/qJnjN3iOuPMpWVIj0xVKx4z1WMCDgvHslrJY9PCN+W9YV7wGX1vbTdEkGLNosoeaXqUZKIi70tkugxH50RK97qLiYH3dD5P6a3bNkyoQ5i6OBPqANYERMTI9/CrEVCQoL02fJnzKwZfb/p4uPjI69hzLxZQc5rJpIunMAuqf0SmtbL6q/TURbV6zniBWomBeNw+D2dU9CpuLx5GX7pMhwDHCvK63LzEBHrfDBpfS2M93wbjcvr64UpixptX8WbqI9B/22DmvJajTKwcxmCUfdX4YdDd3Seh4UQsdg1fy4WX0qRV+hKR9xfC/Hhaid8OvF11H1W+arZoKxdG4ya8R5ufvwV1p7X+v+J0Th3pgyqPFdBZ4DWc6hW7j4SMzVLNs8+j5oONfD8s6k4v3Y+vnf0hFfPFw0Y1GVclELAM3FZN6rhqpTF8vb25t51ZpWUaWKvXr0qXTNm7qwgeE1BZOg/SKKmWwc0fyG308aZeHD3FhKl9j3cuqczFd6DUKzzTcbIvs2RX+iKjEvY/vUvSHJ0RZeXbOWVelSvh+aOLeH6co2cgZVNHXQf0hQBS//E5XRLC18fI3rbBkR2eR9D5TU5pEdg29KNuPvua2hvr/uZ2KCccxf0b7ULX605gkTl5Vd4DnZ2cjtfAo/Pr8eX39fFoqmv44US+ibzIC7rRakgyixatHN3c3OT2oxZm7p160rXShk4xsyd5QevmTEICzovNeu/2gz1cn1FD3H13FlNkIvm6NSkqlZAmYH4Q1uw3P51vNo0j2BUcec6wq+orxNvIC4xQ7NOH7pfZge0ctQ3Krksqnd4He7qvxt04aG8zhIIZETvwv9iumJ455q5foFUV4/j993JqN+wJqro6xItUwU1Gtoj7teDCEuWazpUeRFNXnqCqPj76kMNLeIurjyphbpaMbB4cBzLJ/+OZksmwa2Y8lxzw4O4rA99fvQ5CiGknOY5c+bItzBmfbjiALM0lh+8xkciJJhC0pZwb9cg+0AtbQ/CsM0vRN2wQ1uv8XinqXb/agJO7zkA29daoZHeFAAdSg9h0hZ8+20gztxJ06zXVdMN849OxCsV9D+mTfUm6PzqJfx68F/k8gjmJ+Ma/vxfPPoOb4vK8qqcMnHv6gWcwAt4uba9/oFc6s+h3st1gLjTCL8q94KXqY9OA1vg/JlrSNDqjBYxpxBR1xnV5GWIRJxcvRBbOk2FZ3eHYk8X0EdfDyzvBCwTlcWiz1NBA7S4LBazZtoVB1JTqTIOY+bNwoNXFR5cDMVuqd0GnZrlNk3jQ0Rs/hHLLwFOIxbDf3p3VNOOeB5G4siWFHRvVR/PGRIJ2TXHa4Poxx6D/QveQ6sa1dCo+3B4LVqLP4MjcDdDjrxsbFGzpm3uwZWNA1r0cMLRfedw07gFZU3kMaL/3I74fu+gbWX9IalGBu7H35J7ufNzH3cfKKG7LVq8Nx4jgtfh17NyTnJGNP5aGYUur9eV38dMPDgZgC+3tMaCT1xgZw6Rq0wJYGkkOgewlsvPzy9bWaxWrVpJbcasVbVqWV0DCA8Pl1uMmS8LD15TcfnUMcRR07EZGjmUk9ZqEylXsG/FFAz7JBRdZ/6MP5cNxUu22QMv1c3L+CemDl6uZ2dYL57Ni+i7cB38RrSWV6TgyoEALJwyEm92bYLqTd7BrK2X8i2sD1RAjdr1gOMXcTU524nyvD04hJlNK2nq1xb2UmkYfo4qSH8v1WDdhpXxrvBo+Xw+71M6Em/flNv5icf1O0/TJmxq9MRXG9/EhcmjMNlnDj4ZMgvn+gxFd3vNZyYehGL1tF3otGAsXOzyCqBLBgWwPIjLcoWFhWWVQHN3d8fAgQOlNmPWzN7+acdPbGys3GLMfFl28Kq6gTN7IuSFv7Bg1HAMH65chuHd7o3xTKuP8VtiRyw48w+2zumHxjqBqxSUJd5CJF7EC/Y5g9/c2Ni2wAc/HcL1Y9vh5+sJD1cn+Ra1K1vw1dtj4b3/Vj4zdJVB5eo1USfuFu7cL0DwWrkzPA9fljYyhb5cXoaBDQpQYzb9Mn7ze4z3PV7Gs/Iq0ygD25eGYNkfSzCm99v4vx9WYGrXmppgWU4X+L2jFz5xqZ4VQIuUKBz+dRUWLfXHX2fikUcWcrHQl0LAg7jMH6ULjBkzRl7S1PKtWDHf4ZuMWQWqYUyio6N5mlhm/qSCWZYqNlAMl+psOgg3v4tCqSRaMFT/daz6McaKwFi91UoNpkq+LkJ3LBEeTrb0yxcYtFFcz+dJpYf6Cke4Ct8TD+Q15uih+PeXReJ/l5LlZZn6/fdQv86cdV6TRaivq/o9cBQegdG51F/Nfp/8ZYj7JxYLt54LxZGEDHmd+j2P3y9muf+f8Dt9R6SnJ4iI7cvFoqDr+uvOFjN1AKv5HqgvXCPU/Hl6emZ9XoGBgfJaxkoHqvGqbKtUKsutP85KBwvueRVIu34Jh6R9jTN6tqxdDN3Iabh7LTbXdAAb27po2/tj+H47ClLFp9AYxBegQ9U8UUmqTfATb+J9ZwMqMUjKopK9odO01kC96rnV5n1Kky5wFD3njUInOYUAIh77v5mDo73HYWiraihb1h6N+w5Glwt/I+RByScR8yAuy7Fr165sZbHos2KsNGnSpIl0TdsqxsydBQevj3Al7DiuUdOhE9o4FcPpvQdH4NtnLcKf5BK9SpTJCdQcbPEfMxpQVCiPzyHgl2cxaqATDE+qKAe7GjVhi0ykpWdKhxc5ZSI9jU7wV0G1yvmkL0jpAt9gd8/PMKat/dN0gZj9WPM94Na+PsrL62Bjjw59q+BIyB15RcniQVzmjz6PXr16ZZXFmjp1qnwLY6XHCy9IU/hIIiMj5RZj5slyg1cRj3MHzqiv1e2e7dC0cmFfShnY16qL+kjBw8d5d5NmXD6FwPTyKFcm74g0MykeUerQraV7OzjmWYJUIC01BU/gjAa1CpJJmoGUu7cQFxdX+Mute3icVwwuy4w6g9Cbf+Or0SO08ok1l2Gj52GL+j63N87CSGndZ/j5PA2+Ur+nDZuhlfrQIjQmIXvN1iwPEBsZpw7wW6N5g7zKEGUi6ZgfvtzdGT5j2qFy1luvQvK/Z3AgxRkNdd67Z16sgzJXbuXyd4sfD+Iyb9o1XKkslvbgFcZKi+rVn54t43JZzOxpsgcsUEKQmGRHoWtR8l01MiP8hBvlnYbq5HRm80hE+A0UcPhC7L2f11+7Kw7NcBFwHC02Rj2W1+VGzrdVP+aee0/zOPN1/6CY0UTOqy3sxXaoCLiS3/PLmyZfV1/Oq1raabGks52wHREobup7uzLOiRUudsJu3HZxO4/0KlXiATGzU3/heyJBJ3c2j1zl9FCxZIme51TCdHNgo6MNyfVlpuTv75/1mXh7e8trGSt91AFr1m9h8+bN8lrGzJOF9rwKpEWexDapkGjR812fedEJr9S5hX/jHki/XP3uIPzgKSDub2zaE410eW12mXgQ4oepi8vC6/sZGJDvaP7HiI2KADo0RYNKBSj7VPlVfHUxWTrNWehL8s8Y1rAA1QYKqvxLGPjFCDhs24OQuCfySoVAathOBIR1w+xxr6JGbh3Z4g6Cv1uIkP6e2dIFNORKDfJSNmmPoKpYIZ9yXsVPNweWZ+IqWXRqlM4gECqLNXnyZKnNWGmkPREHVaRhzJxZaPD6EJeOHzVevutzjdGlfwXsPBOd+0xXDy7jn91P0H3KAFRaOR5T/Hbjwt2n96Z6svv9psC97wG8tmE1prvVQb6TlopbuBAcA5ferVHX4j4JJeUBePIgVc/7Vg4OvT/FignRmOO9GREpykl8gYw7R/DD3G1wXjIHH7TIbZ6uTCQFr8LUsL7wHaedLqCwQcVGLfCabQSiYh/L64jAk38j8bhhTXV4a354EJd5oLJYQ4cOlZeAhQsXclksVuop5bK4tB8ze8JiqMTjsKXCxVbqHNVzcRcrzj+U71tQ6eL29knCzs1PXMrl7D2dIm8/JEBEpKmEKvmi+HOppxjY1uHp37ftLDy+8hf7ou7nUhoqJ9Xt7WKcXV+xJCyvdAVzEyf2eo8WHh4DhKujkrrgJFwHDlWvWyj2xuu8gVS+aq+/8Jn+pZjrs1As9J4hvGYuF7+H3c7ztL4mXWCIWHEujxJiqttir5er6LninEiTVwlVgghZ6idCkouSSGJ6lEJgI5V54zJaJUEpC0QXLovFmMaUKVOytkmMmTMb+kf9ZS31ROJefNFlBepvXotxLxlaEqooMhD/5+do5dcWwYHD0NBC+8BNQtzB4dkjschhHjaOa4G8hnOJOwcwZ/Rm1J09Gx7Nn0FU0CbsruKOj5WJDcwYFcFXZnOiUe5btmxB7dq1pWVmOlQWq3fv3lL6DPU0/fjjj/ItjJVutA2idCbCoQEzZxwyyWzsO+GDKf/Buh0XUSzjLEUsgrdEwmNCLzTgT0GHCuWcJ8B3xMt5Bq7EprorZq2bgpdu/IUfftiOy3XexlgLCFyJvhQCPl1nWomJiZg+fbq0Y6YDhlmzZsm3MMa0cToTM2fc86pFPPgH37y3DnVW+mJQXVNOgpqJpMPzMWh9U6xZ9jbqlrWEUIuZCvfAFp/Ro0djzZo1Unvnzp1wc3OT2owxzSBGZ2dnqR0REYHGjRtLbcbMDff5abGp3A7jvm6GbfP/RnSG6WJ6mi3K77uHmDijLweujAdxFRM6KFACV29vbw5cGcvDtWvSkGjGzBIHr9mUgW3LD/DNgCh899PZXKeBLZKMaPz19e+w/8oLfWuZsFQVsyhKAMszcZkG9SgpuXzUu81lsRjLSbunNSUlRW4xZn44eM2hAhxem4ApTY7jh7+vwbgz5D/AmQ3bkDrsC4x8qYpF5GWy4kMBLM/EZXxUFsvT01NeAtatW8dlsRjLB9d6ZeaMg1e91AHsq6Ph2be+kd+gymg5bALebcaBK9OPB3EZn5+fH7Zt2ya1/f39OY+PsTxMmTJFuo6OjpauGTNHHLwyZmZ0A1ieiavwwsLCMHHiRKlNZbEGDhwotRljeUtKkqawZMwscbUBxswUVyEoGiqLRfVc6QCAUA82v3+M5S0gIAAjRozQTCPO4QEzU9zzypiZ4kFcRTN//vyswJXKYnHgylj+bG2LY5IexoqGg1fGzBgP4iocmkXL19dXalMOH5fFYswwL7zwgtzSVOlgzBxx8MqYmeNBXAVDwX2vXr2kNqVbeHl5SW3GWP6qV68ut56iih2UTkCpTIyZAw5eGbMAPIjLMLSTnTNnjrwErF69GlWrVpWXGGO6KJe+X79+UnCq686dO9L14sWLMXz4cCkHn3LJGStpHLwyZiH09cByAJvdpk2bsmbRoveqVatWUpsxph/Vc6VSchScUs9qnTp15FuA27dvS+umTZsmLbu7u8Pe3l5qM1aSuNoAYxaGdiZU/ol+ulyF4Ckqi9WmTRvpfaGd7IYNG/Cf//xHvpUxpg8dAGsHrPTbUeoiDxkyBOvXr5faJDg4GF26dJGXGCs5HLwyZoG4jFZ2lC7QrVu3rOoCERERPBkBYwai7YcyfXJuaDtz8OBBPiBkZoHTBhizQIYO4qIgl0beWzvKyVMC18DAQA5cGSuAPn36SD2ueRk2bBgHrsxscM8rYxYsrx5Y7dPo1twTScG5Ul2AZtH68ccfpTZjzHBUFsvZ2Vleyommi9VOL2CsJHHPK2MWLK9BXBUrVpSuybFjx+SWdaHXOn36dKlNwTtNTMAYKzg6uKWayPpQryzn1TNzwsErYxZOCWDzmonr8OHDcsu6UFksJV2AUge4LBZjhUdnLvShbQptXxgzFxy8MmYFKIDVnYnr6tWr0jKh8lHWVp+RUiSUslg+Pj48CpqxIsqt97Vjx45yizHzwDmvjFkR7RzYevXq4fr161Kb0EAmCmqtAeXnNWnSJKtcGI+CZsw4tH9bCg4TmLnh4JUxK0Onzz/99FN56SnKW9u6dau8ZBxUooqqHISHh0vFzmlQB/H19ZWuFfS3lQFj1ItD86dTcF2YPDr6m4MHD86qRcllsRgzrrfffjtrW0E9sQsXLpTajJkLDl4Zs2AUyFGwqsyAkx9jBHqUT7tv3z4pj1Y5bV9Y1GtKU1NSjVaqjGBI7+m8efOyXq+/vz88PDykNmPMOGiqWJpxi/BvjJkjDl4Zs2C6vZD5oV6UBQsWFHjwBf0dClZ/+OGHPP+Wki/3/PPPS6ceSUpKitQzS+iUZF7/n3JX33nnnVwD7CNHjsDFxUVqc1ksxkxDe9atnTt3ws3NTWozZi44eGXMwtGOhk7xUW+JMvI+L5cuXcqznqM2GuRF00MqebTaKBXg9ddfR+vWrdG0adMCzXlOQey1a9cQGhqqt9eYHpsCYe1BWPRcevfunfUaue4kY6ZDdaLPnj3Lva7MLHHwypgVUU7p00j83Ho4Dclho57WHTt2SHVTtQNiOs1PlQ169OhhtLqP9LdOnTolPV/dXFnqXaXnSz2xnp6eWbdzbxBjjJVeHLwyZqWo54R6TXUDQnL69Gm0atVKXsqOekUpUNQOfvX1hJpCbj29NBGBt7e31DYk+GaMMWa9OHhlzMpRQLhy5cpsp+epB/X48ePy0lPaAzVIcQWtuvQFsR06dJB6af/55x8ui8WYCdDvi6qHUEoP5arnNjMfVQyxtbVF/fr1udIHKxEcvDJWSlCPKvXCUoUA3d5L2mlNnDgxW/WAtWvX4t133y3RQFFfL3BwcDBPSMCYkdCBIuWeb9q0qdDVQ2h7Qvnv7dq1K1DuO2OFxcErY6UMBYQ00EkJSilPdsCAAVk9sdQru27dOrPpUaHAmnas2j3CNB0u5d4yxgonr7QihXZ9ZgVtP/KqGEKBLOWqc48sMyUOXhkrxShwpVm3lEFZtNOhaWbN8bQ8lcmaPHly1nOl56mvCgJjLHf6zmYQOmilygJUPcSQCURo20Ez+FH+vL5KJxzEMlPi4JWxUko3cLWE3kxLfM6MmQM6g6FvQhM6COzatWuuAzgNRT25f//9d47Hp9rNdNDJeerMmDh4ZawU0q2Zakm9mBzAMlYwFFiOGTMmW+8o/W6GDBli9BxVfYMtqVd39erVRQ6QGVNw8MpYKaM7OMsSgz8KYLXzdHkQF2P66VYQodP59Ps3Vp3m3NBvdM6cOdkGgQUGBkoHnowVFQevjJUyy5cvz+oV0a06YElo56g9wxaV+DH1DpkxS6L9WyebN2+WDvqKE02YQlM+K6EGnylhxvCMfM0YKwVo0BP1uhAaTEE9I5aKAlXqcVXQDjE1NVVeYqx00w5c6bR9REREsQeuhHpaaUpqeg6EnhM9N8aKosxsNbnNGLNilC7w3nvv4ebNm9IyjTauWrWq1LZUdevWRbVq1aSpbGnnTCObOa+OlXYUHCoHqRQ0Uu9ngwYNpOWSQNuZPn36SAebsbGx0u+V1r3yyivyPRgrGE4bYKyU0O6JsabcMwrKBw8enFX6h9MHWGm2a9cu9OrVS2orgau5/B50B1vu3LkTbm5uUpuxguDglbFSgGo7Ojs7S21KF/jxxx+ltrXQfn2WnMfLWFFo54GbW+Cq0A1g+WCTFQbnvDJWCmiP+P3888/llvWgdAEKWgnNGETBLGOlCZ2B0B4ItWrVKrMMCuk5Ub1ZGxsbaZkHb7HC4OCVMStHgZwyBSQFeCaZ8UY8xt3IY/jzp+8w85MP8G73xtLOSXOphEbd38HwcV6Yt3I9go5F4u5jlfwfjWfq1KlZO8TCztHOmKWiPFIldcbf31+aKctcUVk7qi1N6DlTDzFjBcFpA4xZOe1cV2VQk/FkIiVqL/zmzsH0tUeRIq/Nj23bwfjk4w8xrH9XNH6+nLy26LRfK5+OZKUFTQygDL50d3fHhg0bzH5GK+op7tatm5Q+QCkOQUFBRp8wgVkv7nllzIrRDkIJ5ozf65qJpNBVGN3nHXxSgMCVpJzcAO9Rr6Ht4ABEZsorjUB78MfWrVvlFmPWjWa0UtDv3BKmYqXnSOkDhAJY7dfAWH44eGXMih0+fFhuaXpkjEcgI3obvhzihY2RyfK6gkup8hz+Y8StEAXnNCCN0MxCjFk76nVVymLRb9ySZpqj56psl+ggm+s0M0Nx8MqYFdu7d690TafljLtTu4/Qn5dh5WXd/tYm6PvJYqzbcQgnQkMRKl3+waGg3+DnOwl9HW3l+2nUb14PNTRpqkYzcOBA6Zp6c2hOd8as2YEDB+SWpte16NJxL/IQfl0xB58MfwPtKim56zao1O4NDBs3FYt+2oL9Z+Pw2AhJh9rPWftgm7E8Uc4rY8z6pKamCvUOh3YvYtmyZfJaI7m/V3g6QHrsrIvtAOF7NE6ky3fRR/Xouji04iPR3pb+T30xaEOUUMm3GUtCQkLWc/L395fXMmad3N3dpe86XRdZ+k1xdOlI0dhG63ed68VWOL41VwRdfyT/58JTH1xLj2mU18BKBe55ZcxK0eAshbFHHmdeDcfuOHlBVmfyJHzUqSbKysv62DxbF13HLca2Xd/Dw6kuXq5nByN3vEqDPpTUAerJUW/npDZj1oZqpioVBoo+6UgqogK9MXzi/xBp0E8mBVf+2ItzdzLk5cJTymXRa6HXxFh+OHhlzEpFRUXJLaBp06ZyyxgykRjzLy7LSxqO6N6qPp6Tl/JWAQ6dxuL7vWvxQesq8jrj6tq1q3RNJbNo0Bpj1uj48eNyC+jRo4fcKqTUM9jg/fPT33WT/4Pf8etITldJB4BC9QiJV8/h0GZfjGjvIN+pAerUqCC3C69jx45yC7hw4YLcYix3HLwyZqWOHTsm7XRoQIRxS9AIZDx5olNdIBVx8feRLi/lrwxs6zSAw7PG7nfVcHR0lFuaklmMmRsaaFXUyTToN04op72oZeEyL59AYLjyq64D9y8/wcj2dWFbVv6N2jwLu/rN0XXA5/hp3z4EevVGpfqNUK9GXudaDEMDLek1EMqTZyw/HLwyZqWUgRzGn5TABhWes4WdvKQRh90//Yp9cWnycsmqV6+e3AKuXbsmtxgzD3Q2gOqy0pTG/fr1K3QQq/zGlRH7hZeB+CsXcFpeyo+NbRP09/4J+zcOQasKxjkAdXV1la65xB0zBAevjFkpZe5w7VNyxlEGzzdoBk0/iZYT3nhnyDT8/M9No4xCLgrtXqiUlIJUoGXM9KjGqdLTSHmeFMR6enoWKIilAFj5jTdp0kS6Np4Y7P3fOvwZmagOa3NR1gFtX6mPZ+XFoqLtFFU0UF4TY3nh4JUxK0SnJE3pmUZdMbRffXnpqZQD38CjYxM07zEcXov88NvOIzh/NR4pGcUfzSrBwT///CNdM2ZOaEpUZWAhoSmcKYgdPXo0jhw5km+utnY6TMOGDeVWYZWBfb1GaCkvkZT9c/CWc0e4jZuNFT//gX3/nMe1pMdSqQFTeOGFF+SWZkprxvLCwStjVuju3btyC2jevLncMqJnGqLvhKHQ39+TgisHArBwyocY1NsFzRu+gEp2r+Bdz0X4eddZxD1WyfczLeU0JGPmiM4O0Pz+ykGWggYZuri4SFOn0nTHVKs4v0C2YsWKcquwbFChaRcMbJ69DjNwGftXzcHHHu54rWNzNLBviPbvzsBP+yJxz8gHpNWrV5dbjBmA6mUxxqxLREQE7VmkC7VNQhUnDs7qIyrJf8fQi237j8SKQ9fFI2MXeNUxZcoUvX+fL3yxxMuHH36Y7bes/Ru/dOmSvLYonojY7ZOFk9bfzP1SR7h+slGEP8iQ/2/R0etR6lKbbJvFrAb3vDLGCsemJl6dvvr/2zsT+JiuL47/hljKWEKijYoiCUGsQSWWJpaUWqJqryW0iv5ra5VaqmotoUUV1UYtpZQoEhVLYknsQUKQBEkkkZBd9nXu/92ZN8nMZCZ7NOF8P59J3tz35r377rvn3nPvO+dc/LP0A2jO1xRE8o1tmNF7GGb8cQdJvKsiCKJQ+Izs+PHjyzFucTUYDVqE3asGQRiQFkIYzm/8FCOW/ouI/8AkiCBIeSUIouToNUHfZftx00U19mNRuI1dnzhg1t57SBdTCILQDTcv+Omnn+ROTeWGxABWC/fBu0jynAz/jT9g88Vo+XQsQbxMSHklCKJ0SOqh5eB52HnxJnzdD2Lr0v9hqGVRFFlBgf3fauwPTBW/lw987XQ+W0Uf+lS0T2pqqprTliZ836lTp+TOWXxBgh49eoh7ypFcefZFoLc7nJ0cMX/qUFhqfb1yGb/s9cIz0l6JlwwprwTxCqLqwOHn5ydulS+SmkZo32cUZny/BcduBCE+LADe7sewZ+t3mGZrJh6lQfJ+LNnmibhy6PzIY5moyHAnrFmzZsnNAVThM6y7d+9GbGwsfvvtN9jZ2RW6AAFXgssaSU1DmFn2wfAp87B2xzF4x7/AkxuHsWq0akwCQYRPeeNBUumdMKOjo8UtgigcUl4J4hWktKvtlBpJTdRv0hKWfYZiwoxl2O7ug4iruzHHxlg8II/I3WdwIz5H/FZ2KNd8f/fdd+X/CaIioam48oUGvLy8cOHCBUycOLHQVfEMDAzELfWloEtMVhiunQ9Esq6BpF5dNO3yERZu3YAF5irTsJFxSEgpvfL6/PlzcQswNs7fThCEKqS8EsQrijIEj7+/v/z/f4qkFozenYB1v6/BWPWluYD4a/AOLNuFBMo7zi1BlAY+66pUXLmcOjs7y1eW4mYBfAGDoqCq3JaFjLPw81hjOwYzC3GklDRoiW7d8mKyQl+K2mWwyha/B25KwcujqGVAvL6Q8koQryjKOKfcVq5iIEE1k0GY9ZVm/NVIBEYkittlQ2hoqLhVTnFuCaKUBAQEyO1Z+Uzr8OHDxdTiwe25OaVflUqGpOAHuC46Un7x83mE6YjHzBKD4Xsrb5YUbU1hXK+q+KXkKJeFpfjMRFEg5ZUgXlG40sY9k/nr88KCnBcbloHkFJ0LRxaAFO+0biVulx937twRt9RfrxJERYDPLLZs2VJuz1qaWUbl0s9cxsPDw+XbJSMTz0IeCcNIzm3smW2LNr0/wcqdLvD0DURYZCQiI0MRePNfbJ+/GD/6Kd+U6MN6ZHeYllJ35Xkvv+WsiVcRUl4J4hXFxMRE3FLM8pQlsof7MHLIdzgS+KKYYXKykZSg+Uq/Ed4xrC1ulw2enp7y/9yOsDDbQYKorKi+Vbh//764VRJykJacJG4rSL6xC99+MhS9O7ZC08aN0bjxO2jVZRA+/9ULuUY+5p9h6RgLVBe/lhQPDw9xC+jWrZu4RRC6IeWVIF5ROnfuLG5B7ghSduQgIfg+rp1bjY8+mIJlzncRX9RA5VlB8Dqu+YqzCZq9WdrlLfNQtSfs16+ffPaZIF5F+Oyt0rZ969at8v8lozbaT9kCD6clGFmkMHeAtOtM7D70Dewa6YkpJefIkSPy/3yw+Z87mxKVAlJeCeIVhb+OVMaQ3LNnj/x/2ZCBZ8GPEM83Hx/B8hHW6DpsIXae9kVYsm5TApYeAnfHbzHvWIiYImLdC5bNaohfSs+tW7fELcjXiH/liXfHgtbjsDOQlnuosGQnIuy+D3wfRiO9qK8qsmPw8GEMCjPO+eKLL3LNg0oTHk4iNYHtlBU46OWLgCv/4s9tqzF/2kSMtFGGuTOC5aCPMW2+I5xcbyLw4kZMtKiP0g4NfXx8ciODfPjhh/L/BFEYEsbd+wiCeCU5ffo03n//ffn27du30bFjR/l26YiA6/S+GPKrNg9nM9hMHIZ+luYwbVIf1eRpmUgI8obbgf04dFNhVZdHM9g7ncChKW3EY0vP/Pnz4ejoKN/m8S//O89lhuzIi9i2NwX28z5A0/KaKog8gkmNf0Y7bxfM0x5JvpxgSPU9gM0B7fDFSAtIaYJbC7wOXMDGxUdRfdRIdJMEwP1mPXw4axjaSAswFGUv4LdjFsYFTcSFtX2hGaBDFR5Zg9t1866cO3CtW7dO3FM5UJXXmJgYNGzYUL5NEAXClVeCIF5NYmNj+eBU/lm1apWYWkqy77JtPfVzz1uaj7T/j+zGi2zxxKVH9X5//vlnMbVgZM9d2HT9/HnT+pF2ZSOX7GCnAhKYTPy9dmQsK+I0+27Gr8wnqezuTysRzmwibJijd5KYUBqyWVLQOea0ZCyzNLNhIydOZOMHdWVmtv9jm9wesiRZAvNzms4+2HZXOJKTziLc1rK5Tr4sseACeT3JDGB7xg1kC9yfi/VFxjIf7WNThn3HDnqHs7R8ZSbUm7i7zHnpcGZi/jU7Hp4mphcMl21lHQ0ICBBTKz48r8p8F1VeCYJDM68E8YqzevVqLF68WL7NV+0pvQNTDpID3bB9zWp8v+tynvNGMZF2nY0de1dgbKs6Ykrp2bJlC2bOnCnf5k5q3CawyGTfxHrzLvj6sT6sN3ng3KyO6o4oLBHB53Zj2YzF2BPRAwuP/o6Vfd/WanvFkm9iy7Q/0WjFKoxuUXb2vFopq5lX9gL3/16F/y2LwYe/LMYUWxNxNpUhO9obe5Z+j39ZPYT+GgDbsyextq+h/GdgcfDesAD7zZdg3eB3UHoLyJcES0XkLTfsP3YTaTXrowZLQixa4P1xw2HTvK6O1+FC3Q/2xJG/3HFfVgsGNWRIjM2GYXd7jBncAYZ6qr8S9nmuQPfxDL/e/w69aiv3JeDqT7/hocU7SPENRXL1BjDmbymyEhAeFgfUTsPNn9zQ8OdDWP9+4yLZ9nFvfWVgf24qxFfmqgwMGzYs12SgbNom4rVBrsISBPHKUm6zG7IUFuHtyrbzWTqp4vxF+5izQQv2Me+odPFEZQOfdZVIJPJr2Nvbi6lFRxZ6gI2W568nW3klQUzVJItFOM9ggorIoD+buTzPEtNVkMWyG47j2Lg9/ixTTCpXymTmNZkF7PmUtTT7lO0JSBbT1MmboZ7GDj9VvzNZ3Hm21G4uc35StJnC/xzZc3Zj8xRm7bCL+eXOjOewtCf/sDk9pjEnP20z61ks6sIq1r//cub2JDlvf1YMu71tIrNw+JP5p6r+6gXzduzPJPZ7WJDaybJZrNuvbF+QWP9laSw+MoJFxqcJ50xiftvGMou5J9nz/BkoEC7bShlzdnYWUysuPI/K/O7evVtMJYiiQcorQbwGcGVO2VHExMSIqWWFjGUlhTE/zxPsz22O7NvZU9j4QZYKBU/+MWM2IyeyafMdmZPzOeYT+kJQA8oe3nkrlVcvLy8xtahwheIrpi/P7zTmHKE7h1nejsxEfpwlm+8eLaYqkbHMACdm32E1u5xcTO2jpJRaeZWxDH8nNkxfn1lvvMUyxNT8hDLniSYMow+wJzliUi4Z7MmBqcxiwVkW+5Juu+RksgiXucxMOo45+Wsq6pnsqfPnzKj/ZuaTon4jsojjbIaZJZvjFpmnuCrJvMu29TdnQ7f5sDz1XVFekomHWYSYoiTL24ltyve8ZCzN71c21GIBc9M2KCqE1NRU1rVrV1HmwEJDQ8U9FQ8+oFbKKs8zzztBFAeKNkAQrwGqThxr164Vt8oKCfSkTdC25wf4ePo8LN/ohL2u3hC6ZrkTCWOBOPf3bmxfOw9Thtugg3HdMn+1zF+bcnMBfj0ebocvs1k8khHofV0RQcGuGyze1JXDHCTGPIMiUm0CniVoLv4Qh6t/7kX0lIHonPuauKKTgrsue3E0vgOG9TAtIGanPt5p1wI9bdqicb6eozqMbYei556dOPowVUyroKT6YN/qXXjYsRfeNdGML1wNRp26o9uZHdjuESHXAhWk4MGxXdgWY4MBXQ3zmxRUa4Hew1vBZfk+XIjLEROro7Z+Mcw40u9i16IDMFk/q0Thp7hj4o4dO8RvwEcffVT2i5OUAdzBbPz48XJZ5fA8/3dOlURlhZRXgngN4LafyqUkuWcvD0/zKvH999+LW+qKepHJCYPPqXvyzWa92+AdnS1jCoLv3lUoubCAlbm6ZzSLuoL9W2pj9HumKLvgX+VNPJ7cDRP+xyAosqBFJ/hxVTGgo7HWwYfEsBMG2T+Ak1sgMsW0ikjOQ+EZXRGeYItG0Nfi8C9pbIauzfxw8MRtRCsLQxaGq/9cESpHU7yldSnU6tBv9BbwzAMePoraAdSBsXkzICga8Up9Vk4WIh9noUVTFYWN2w1vWY49bRZhoV3jEoef4tFEdu/eLd/mK1bNmjWrQimwPC8LFizIXU2L57VsIqAQrxukvBLEa8I333wjbgGfffaZfAbkVYAHOFcuSrBy5criOWkpiQrEVS+udHSAfZfmuhXPRB8c3ykoMdCH5YIvMKK1qjNWDuJvn8dBaRd0Mi3bFcPKF+UMoR/+/Gkr/vaN0hFbtDHs1u7G7Hfrid81kBigrXUbXD7oiQeZulXg/5ZsRD2+j9viN61UrYYagn4a73YHQcr7SHiCOzcigXZN0EhrhCs9GL5jChME4IzfU6EmcN6AqVVfWN/3R1CsSomycFwJMER7A+WJcpB4cw8W/9MRa+fbwrCUE/YTJ07MHahyuagoCizPA8+LqqzyvBJESSDllSBeE7gnr7OzszygOZ/54DMglR0elJ2/HuXwlYbmzp0r3y4eMiQ+8MYZ+ZxjZ1i10eXxnIKAwzuwxZ/BzOEn7F5iCwM1ReMF7l26jHjb9jAtislAdgSu7vwStg26YPCESZg0aQRsTbtg0s9eiCjqimVlQkN06mcjjyWafG4NxnR8E9VM+2DSgvXY6XoJgTEZisNQFdK3GhUQz7UGmrbvhk6Xr+HO04o69yqBXvXqKPBlfk4WMrj2GRKKCNEEgL2IQohyQrVAkhETkwjFchESVG//Eb6ddBe/HfRFsvyRZiDixAE86NETxmI5skRv7Fh0Gt3XfIae2qaCSwB/EzF16lT5tlKB5aY1/xX82mPHjs1VXHlEhJLJKkGIcMNXgiBeH+bPn8+7UfmnMsdWDAsLU3NQuX37trinuCQxb0cbJugSDCaOzFtbAIGkR8x96wzWVWrOhi49wgK0xW7NecCc7IyYiaN34Q5pOWHM7UsbZrH0AkvIdX6KZVcchzET7nx1I1FMKwJlEW1AHr91KmspUZSl+off8z/a71kTeV60ObIVRAy7uLSXlusW59OMDdsTyPL5kWkhJ8CJ2fHf2O9hj7X8QBa0h9nLzzmAbfJROHTlOulNdM7nfKWEH2PKy0/jGFmSL9szfRAbOnsZWzl7HBu9+nxeJAF5ZIrhzGrpeRZblMwXA+4EJSiJuWXEZeXWrVvi3pcHl8tu3brl5oPniRy0iNJCyitBvGZoeiWfOnVK3FN54PcwderU3HsoVagdUelUKK+KwPwTcz/j2UgbMyHdjk1buZt5BL3I72muJP0KW9nMmNnveaj7GJHse9tYTxgxO6cHYrB/TjhzmdaBSW1WsvNRxfA2L7NFCrJZ0pNrzMXJkc2faCtGVFB+9JnlgjMsurAbS77IvjVuxkYfCC60DPLg0SpiWERERCk+z1l8WhG1v8x7zMm+GYPRQnY2QVMhz2LPXeaIUSfyyrQ0yqucrBcs9N5t5hMYpbIwQTZ7ceMn1t9qBbsYp5IP2QsWdPFvts1xM3Ny9WFRWUUvSU24nKiG0OIfvqDBy1Ae+TVUF0/gH56Xl3Ft4tWHlFeCeA3RnLX09PQU91R8eOenOqNU6pXD5MofP5dCmSzxBJj8PCZsonPhIYpylSGToWzOpn3spKc/iy6pklJmyqsGsiQW6n2CbZrYSSzryexAaCGRa7O8maMJijb7/J8hKo1Sczb5cIi6kp3my35dOJV9bMzv155tu5ciTy618qoF2YurzNFuOFt1OTovD7JIduG7j9lkp5ssLiuDxQe4svXrT7OnpVBgOaoxVfmHyz5PKw9Fkp+Tn1u1feGfyjhIJiouZPNKEK8hTZo0UQur06tXL7njU0WHO5mpOn2U3naOIeOJPy7Kt1uhf4cmL8URQK/dYHw3rgPw+Dg2zv4YA3uZw1D/fcw96CfaRr4MGLJjQhGerOYKn4dECmPLDzDTcTmmyxfXD0ZYlNL+tTJTFXW7zMDuY5MRt3YVdlx9inQmQ3qMH1y3nIaBw8foyOOFSZuiiaHCda9KnQYQlNciYfyOIeqK2zphcbi5YwPO9J+PL7obiNEFchB37hdMu9wL8yZ0gr5eddRvOQBTewTjryulc64cPnw4hAGrXF443Oad24q/9957crkvC+dNfg5+Ln5Ofm5lRAF+zdDQUNjZ2cm/E0RZQMorQbym8BA1Xl5e4jdFXEi+vGpFhTt9DBgwQE1x3bx5cyljRKbhsc91hPBNIyt0NivnpVyVVDfH+F8PwMVxBmxNRPeh5DPYOGYsvj7xFDJFSjkTi4uOc7Hbr+AFfiWNOqD/EK661YP0jVely6gBoz5f4/DpeWgTcQo7NmzCLvc4tPx0Noa/lYNoHqq2Yxu0aKBwoKqi3wjN+WPKyIJ2XzqGnKxMQf2UwsCgLmqKqdoRowucscaqz7qgrtIBjoXizO9/IcuuC1pWUyYKina33mh46ZYYW7jk8AErXzb21KlTcudGjlKJbdiwodzBiyuf3AmyqPBj+W/4b/k5VJVWfg1+LX5N5dK1BFFWkPJKEK8xPJj/7du30a1bN/l3Huifd0QVLYzW6dOn5R2gsmPkoYA2bdpU+uDmLAp3z/sqtvtbonXdUjSJDRqjZbNMvEjJkL8nLQyJ1ByD522Fx6NEZEXdxuGlw6APP2w/dA3PXsbsa/YT3HKOQ41qhXi457xAVJBQHzr0RFeTQso7IxWJmSbo0aJRMRaiYMhOjkVkZGQpPlFISC+uyi+BXv2W6DV8CmbNm4vpo3ujZf1qkD0LgU+kPqxHdoepsmgaNBMGe/qAdxiitE5U5yAuIlQYBLVCf4u3BZVTNyz+CrYsvoz+qybCsq7KkUnBuHVekEnNsqvSCCZVnyJMxwR5ceEzoBcuXJBHHuELeijhg0KufLZq1UoekYS3A/Pnz8fq1avlCir/8G2exvfxY/ix/DfKASWHn5MrrfwaNNtKlBui+QBBEK8x3AZWdQlZbq/m5uYm7v3viI2NZYKimpsv/inTCAmxbmy2fL1+I2b3+/2S27tyihJtIMmXOXEbUrNp7MDjvIVE5bxwZ/ONwPRnu7GY4pg4ltDmVeF1X1hkgBz24uIyZg4LNu7Ao8LLR56Xih1tgCNLi2APHkSoOE8p4cvcfsKk+jOY81NV+94k5rNpEIN0uo6lg1PYvW32TKI/m7kUtLSrLEq414Gsv+MV9kLz2jptppOY9yYnrVEwygIeDYDLlKaNanE+/Lf8HCWP+EEQxYNmXgmCkL9S/Ouvv3KDm/MZTv6Kns+yFOc1YlnBA5rzmR6eB74iGIe/huRmDl988YX8e+lhyAi8iWPy+J2t0K+09q5VGsHs3WZ4/ihSXIErP9kBp7F6z21AJgMkylfDCmQxTxGYZIHR/Sygr76rHMjGc78bOI2b2HvIC091xJVliVewZeFu1FngiPUftSi0fLIjgnAJgqrbvI6YUhQaotf3F+XLhZb8E4x/JpgV8fnFwmv1KLRuPQqrPWPENJFUX/y9+S5GbPoCHzSuJiZypGg/chpmGHnB9YrqsrEiqffw7x4/9Fs2AX10Lu2ag3ivX7Hgih1WTe2aZy6gpK4h3tH6dj0TqbKaeKOc6gQ3H+Iydf36dbldLJ815Stf8bZA2R6ookznx/Bj+W/4b/k5aLUs4qUhCD5BEEQuQoeUbxZG6KxYQECAeET5wT2V+fVVZ4GV1+ezsGWLOJvGr6E1bFJxyWaxbl8x/War2JV07VOnOUF/sXEmVmyOW4SKl7uMZUVdYZtHd2K2C0+ziOJO/5Zo5jWauS/owqS2c9nar+2Z7ewd7NS9qLwZYx6uyeM3NtvGnNl+e5w9LkqMV5bOgvZ8zNBzG7tX2qIsVxKYt+MAJu06lx16pIjjKn8G8Q/Y8W8/Zg6br+oICZbOIs6uYLYWX7A//RPynl9WJLvsOJKZO+xidxN137gs7jxbajWWbfaJV3n2KsieMGcHs/wz9xm32ZY159gL8StBEIxJ+B+h8SYIgsiF27xu374dixcvFlMUcCcpBwcHdO7cufT2pipwZywPDw+5w5jSrpXDZ1t/+uknuW1u2cCQ4bsF/XvNhmeStqbPHtvu7cf0NiVz3GJRrvjcfA+6Xt2DKS21ue3kIPm+Czat3YDdoW/CqmltyGIf4FpqF3z25SxMH2RewApWOog8gkmNf0Y7bxfMsyxw7ag8sm9ifY/teHPvRkwwy0bgv3/CafdubD10Awr3LSN0nfg5vnAYi+E2JkXLE3sK18+HYE3rnTg3qyO4w35FhSUH4dK5awiOTkZ83AtkIgsZaAKroYPQu2WDAux1s5AQ6IXjhz1wX1YLBjVkSIzNhmF3e4wZ3AGGejoKikXDc9lkrDdajYPT2+tw6MpBnMcy9PihCZxPfIY2cqetHCRe3Y3dGIaZ3XWt/EYQrx+kvBIEoRNuMsCdMZSv7lVZtWoVunTpgjZt2sjNDooDNwsICAjAnTt35OYBx44dE/co4ErrN998g4EDB5apklzusCh4LByNH5r9DNfpFi9HgSuJ8loOyBX3jgdh7fU7JrRQhJgiODmI91yDQesb4beDU9G2ZgEjAfYMF7+fh11Nv8SGiRaQBJ3F3jN1MObzXjAs7qCGIF5hSHklCKJQ+Mzo0aNH5TFWdTUZ3A6ufv36MDc3F1PUSU5Ohp+fn1wh1lRWlXBP5c8//1wed7ZSKa25MGQF/oGRk+Ox5PSX6FL7JWgcFUJ5zULEkS/xwfVh8FjTFw1I0VIhG9FXXXG9QT8MalmE58OSEXr9PM5eCwZMemPI++11z+gSxGsKKa8EQRQZPmN669YteRgcTZOCksIVVh5EvU+fPsWewa2QsDh4b5iFrcbLsGO0aTFCRpWQCqC8svgLWDbmGDr8thrDmxYc5ZQgCKK0kPJKEESJ4bOoISEh8v98FZ3z58+r2axqwm1m9fX10b17d7z55pto3bo1GjR49Wz5WPJNbJl2EG+vWV7+ytx/rbzKlfUF2G++BOsGv1P+yjpBEK89pLwSBEGUOQzZkWexyvEpPlo+ARbSQhYCKA3/qfKagQjXdVgdZY81k9ujDr3dJgjiJUBxXgmCIMocCfSM+mHx181xbusphJbneq8GHTDqx09h0+Jl2wgzpPoewZ7UD/EDKa4EQbxEaOaVIAiCIAiCqDTQzCtBEARBEARRaSDllSAIgiAIgqg0kPJKEARBEARBVBpIeSUIgiAIgiAqDaS8EgRBEARBEJUGUl4JgiAIgiCISgMprwRBEARBEESlgZRXgiAIgiAIotJAyitBEARBEARRaSDllSAIgiAIgqg0kPJKEARBEARBVBpIeSUIgiAIgiAqDaS8EgRBEARBEJUGUl4JgiAIgiCISgMprwRBEARBEESlgZRXgiAIgiAIotJAyitBEARBEARRaSDllSAIgiAIgqg0kPJKEARBEARBVBpIeSUIgiAIgiAqDaS8EgRBEARBEJUGUl4JgiAIgiCISgMprwRBEARBEESlgZRXgiAIgiAIotJAyitBEARBEARRaSDllSAIgiAIgqg0kPJKEARBEARBVBpIeSUIgiAIgiAqDaS8EgRBEARBEJUGUl4JgiAIgiCISgMprwRBEARBEESlgZRXgiAIgiAIotJAyitBEARBEARRaSDllSAIgiAIgqg0kPJKEARBEARBVBpIeSUIgiAIgiAqDaS8EgRBEARBEJUGUl4JgiAIgiCISgMprwRBEARBEESlgZRXgiAIgiAIotJAyitBEARBEARRaSDllSAIgiAIgqg0SJiAuF12pN7C5g/XAWt/xayO9cTEAmAR8PxtF1xvPcSztEzE3gOG7/sdU1q9IR5QMCzSE7/tdMWtwGdIk8XiXsxw7D8xBS3LRDVnSL35G2au/QsXDp3HYyHFaL47HvzQB/UkiiMK5gVubl+CtQdP4dD5h8J3S8w/exJr+xoqdhPlCC/7b7H5SqxQp87hxM1IMd0MNiPfRdM3VCpIWiiuBNWGVU9rvNd/AAb27QijmhV9bJeJ0IMz0HbMTqFaDcKwtg3VR6N6PTBr81RY1hYqaupNbJ+5ER5BjxFtaKJ+79BD45HfYvXgZlBUaV7nt2D4mMU4xSwxskdTvMHl6sQzGK/cjn2fd0Et+XFE6Slt+6KNwtocLfvd3bC2j4Fid2WGBePgx/0x9q9UdB5ki7YN9cQdCvSsZuHn6ZZC/VWU+6zNp/H4XhwM2xpDvbdpgZErF2KwcXXxu1Bmmz/B6NmnAJv30aNpbciEjurEs9ZY9esWzLAsQj9HlBPisxRk6LyKDPmv7YO6igOIVxGuvJYt2SzWfQkzh5RZrLjEUsTUgsliSdERLNT/BFvZ31hQpkey3/1TxX1FICuJRUc8Yf4nV7H+UqEm2/3OAnLEfUUmnUW4r2X2phZs6OrzLEomJueSzV5cWcushCITBIMl5NtfCLJYdmWVnXBvlmz+2Sgx8XUlmyX57WIOPdewKynFLcgSInvCnCebM0EfkD+/F2KyKrK0KBZw+RBbNboDk3adwbZdfirUzAqOLIVFeB+W55mLM//oO+xjj9J0CEBWOHOb30M81pJNPxjA0nQ8AllaMHNbOpBJYcxsl55kT3SdkygDStm+aKOwNkd1v3u0mFjZkbGsuJvMyaGzWMf5x5w5/OnPUrWWqXD8czc231yqONZsJjvwKElI1UYOS3tyki21Ffoo6UC29GSQTtkh/gvUZUhbG0+8OpT91BKLhc9pD/gjGX4Hz+NOKm8TCkMPUgMjGLfqBqtOjcS0YqAnhYFRU7Sy7o5OdcS04iILxsm1G3H8kR+OL/oFLg/TxR1KqkLawAAlPT0ktdDgrdd7dM7S4xEeeAXO6z9Dn+4O2PU4EanZRakfZYBQ/vUNa4tftCOpaYiWViOw6E9XHB34BF/bOWC+y2NkifsrJMJ9GVl+hIU/LsWUBuJUXc26qFNDh2jrNUavDwfBQv6lBbp2bIqaOmb4JDWbwW72V/hfTwcsmd0fTSv8THRlppTtizYKa3NeyTZJAj39zpi8ajEm64tJQv9Ss54UNbTWc+H4Ru/iw/FdFF+bd0THZlLxDYQmVVCzaX/MXuKAnv/7CrPsmuuUHeK/oBxkiKiwlHlvxOLv4vSxO4ovfidw9Gq0fPhb4aliiiFLvsRQUwsMXTUNA1vUEHcQpYY9gevCqZjx3VYc8XoOA/NWqJ8i7quI6DVB34Vr4NjnIX4aNxOrLj6r8HVYYiR0wKMVKmn8+Wvwi8+Rb+dHglrtbTDGQipsP0VgeGKB9yaRGsBkzCB0b1BVTCGIig+Xh+GiPAAhOO/lj3iZ+DUf9dC+r51iQBcajPCEbHmqdqpA2rAVxgyzRMPS9p4yf+wcvBQeiTozlkdxjiWI14AyVl6zEX35JO585og11nzYewfHTt9FfKXQXvVg2Gsejj68i2OL+sJIj4bUZYbkHQxe8xu2r12MWVOGoVdLA6HiVfDyrdkOE5d+Aavkk/h+2i84F6dLGawgSN6C9Qh7mPNtfw+c9onVrZTqvYE6dasJG4XJJ0NWSDCqdWlFNq5E5YLLw8hhCnlAMvyPnYdPvG6lVO8NqcI+UpCdMwXJDtIQ8rAOenUu/Yw1i3mEG/cKUpTzKM6xBPE6ULbKK3uO6/8mY8Sg4Rg42hoSibLRqOAdP0HkQ4Ja7fpiDB+E+f+JzUcDkCnuqZhUhX5HG9ib8xnVgpRShswHnnB9Xg/S3E5dl3ymIdg7Ha3bkTMKUdlQlQeBApXSVDy8ckGQGo4gO2cKGNBlheOBninMq5d28J2K4HP/wj1D/FogxTmWIF4PylR5ZdG38e/zbujZ3BCt33sfgvoqNBqn4HIjqoCRLEFUUKo3Q7cPOggbITjm5I77GRW7Fkv028HOvr2wVZBSmoIHF3zRfqYD+vJ+3f88zt9L0C6fWaHwzjRBu1r0FoKofOTJA6cApTQzAjE1OyrkQS47XriXpO31PENWcCiqtWkGZQyCEsFSEOb5B77/di94rIcCKc6xBPEaUYahsnjYnjmYnfIF/p7SBtUy72D70CGYcSoU+tNd4L91MBoV2gfGwGPBAPRd1wK/+/+GjyQ3cWTfGYRIG6JuZjQehdVEpyHDMfz99jDU9lo/0QMLzPtiXbvfEeDyIeB1FPtOPYHUUIrM6GCE1eiIIR8Nw/sdGiEvgIoYqmbjcfgePYGbybrDbMgCd2Jgq09wt6BQNtlR8D3lCtczt5Fo2BSG1VORmGUKuwkD0OjMDLT6JEhL2JpvsdH1Mo6euCk0nUawc/LAySnmipEFtxddtBTbz5wRQz1phrVR/H7tQTcx7M1IOAXswZQWifA9vh9/XU+GQcM0PLoZhUZ2H2PyqF5oLtVmv8iQHe0L1wN/49RjPbR4G3gaVAXtP56Ccd1r47H7edxHLaR5HMGDXt9g+WAT8BfPJYGX4wfmn+LUW9/A3X8l+tTVPYZi0ZewZf4S/CXc14Z1n8HKUD30TdFR1K1+627irSKHUUlH4M6JwjM7BEjHY7fPb5hoUlPcx8lBcrAn/v7DBQE13oJBxlM8SHwTtiM+loeX0uXMwZIf4/yR47gcVRemLfShlxKF4Pg6sGiZguOuDfDNzyPQtET6Yg7iPJahR9+V8BeGjgvc/8HqPo3UR6iZPtj84T+w2DMe0TMHYsxfz2Gx8jSuLraCujub0FEHHsGOp73wuW0jDSMPjbrSpDpiHsehrtVQjBuuo35xuXA9iL9OBaF6izeFyhUBtB+FqeO6Qvr4Is7cz0aDNE/sfGCFld8PRovcma2iXktH+KfeMi1yMEm4rjWMa1YBSw/Fpf174BKiB8MaUbh7l6HdqEmYNLSD9jaGwxIR7OUGlxNX8bSOkSDjSQgPkqD14ALaplwyEO3rDhfXs7iR2AAmQn1OSqwKU7vRGN7oLIYX2L4Ut9yV9VezzVGisr8kobK4HebAPvjkdBJMbMdi3MCWqJub52y8uOuCjXsuI9liNa5c+wbdayWWsq0rLqryIGC+BO6XlqGPmv02Q6b/NfgYNkSwXB54oCUbrLzyDxZ3r684JJdUBArt+hv9esA437Phz9UNB/46i8fV30aTGvF4HF0fVvajMNzGBFL58dmI9tiI+bvvQsZDz/H+RrjHQcPa5tnP8vB2P0+FZa2cYhyrmZmi5EW48zBXLFq0HWdU+70fuiDm9F7sOPcU6UGByOg1E0tndEe22w/49lCQUFqcbMTe84R/nfcxz9ER07vwclKE1/twtCNizXuhrZDJjLTaeG/BWpUwYry9vIITLidx5ekbaCLU/cRwoR1oPQAfDe+LDoYqfiYadSEvb7vx89Ew1KmbhqQmIzB/Rm81Ez/VPtp/bQ9k+J7E7r+uI8OgLtIf+SG8UR9MnDwCNs3r6jBcK+uyU+ZP0Vcccb6CqAbN0aK+HlKiwhFf2wwtM8/Btc7/8POo5mp5kvcTf/+JYwFV0cQgE+EPkmBo+xEmjlS0XbpRv4e38RxB6IiPp45Ad2kI3M8I0tAgGR47g9Fr1XwMbq40CitpWztS0Nd24xOTpGLqHKVEHnOgLJAFsQPjpjCnAGVwrBQW4PQxEwazDPqzmcvzogQdimbu8y0F+RjIlvy0kn3jdJPFZSljkShDoFgyM4ddzC8pW0xX4YU7m28kXM92Adu4cjlz8olRCXWUyeJ8nJiDmSVzcPJlSflCnCjCbFhLdIfZyAlwYnbC/fD9+UPZCPmL8GSbJ1ozmzkH2D2V/MlDDq1ewOZM7Sncm66wNc+Z+wJrYb8Rs3N6wPIFJcq8x5zsmzGJrrA2uWFvRjInv0Dm4bSPXQxNFkO+CHl7cpBNblCHmc89yZ5ryXvm48NsRlcz1t/xau69yZK82eahVmzg2LXs1DOhJGXhzGW6BZOOPcCe5DtH0eHl+L5EwmC0kLm/KCj8UppQh0bx9lJ3uRQZRd0SGodihFHJEarUQmYkv77mc8tiURfWscnfqYaQUoQAm9xSVx0TijDOk60atpC5PE0XU0SyItiFlYNYHTunEoR5y0MWe5YtkIf9kTLzBWdZjNq5ZCzDZzMbvPKyIJ0Z7MmBKQr5tFjNLidrZlbY/88+5hGrKWdimDPzQWypW3BeqKCs5+yy4zBmrk02Mx+ywzN6sgb9f2I3Xoj7ZPHMZ/No1nqgA1t16imvoey5y2ymL53C/gpRlo3KtVTDEonXaq3tWqrhn056M/fNO9ipJ+py4KBvzGy/82DPX/iyfesPMJ+4TPnevFA7zdjQbb5C7cuPLCmQuXw7jPXXDB2WFcN8nKYxK4cd7EaUxrNVkvWUXd48mZnbfM0O3EsQ8yQgS2ZP3H5k8+c4sK4625cSlLtcfkZqqbtKVPaXJFRWzgPmZGelva6n+bJtQ3l7ZcXmuvHnq0Jp27pikCcPXIat2QL35+p5YcnsgXeAujzwMI9yGdFAFso8PUM1fi8gS2B+TlOZue1ydjJEpa7FejHH/tZC+fjkLx9lX1VoGyhQnGOLnReh7RfaY3spr3eu7J7rT2zN2TCWlXKZrbTg5WbDVl6JF49NY0+cZzMzoYy09wHKfqaTcB3VvltA9oI9dvmO9e+/nLnlyiNH7JetprLtN57lD03I68Kw5oq8uSxkw5aeZhFZcezKSlshb1ZsjssTtd/k9dGu7IH7b2zzKVVZecQOOJgzifkC5qZNH1Epu7w8qpadL0tUu2dF2Q2rI8lfdu3qqJRdNou77Mg+nOvCnqqWCT931Dm20tYsnxzIhPRlk1erlZUsybdg/UdOCnt8eC7rqm/PHG/Eir8V2g6fX9hQczs2dtVpef8ve+7CpuubsLEHgvKOKW77oqJz/H43QKvO4aAv9ENadY7SU2bKq+zJATZumNDxZipzmScUgGohFYRSeTVm/dddYS+0/ED2/CSba64vPMA/WUBuCYsohVyq+uBUETpItwXMHIJw7bnHNCPJKpWqkiivshdXmaNdUyZV7aBVERvkwjsSXUqaUvnS1aArf9+fzVywiv2ZO4gQ4YrnjHZC2UxhB55kiIkiyrzpz2DOT5UdOUdUKITO3P53P6GZESpk0nMWkaB6TPEpuvIqXC/iLFs11IKZDF3L3CN0KAVForTKq/Bcfr+f91xSbrJNdvZswYGbLEqtQRIHbdKB7LsLkRp1MJ093jOeGeu4vuypM5vyQemUV8bihYbdRsivkGfzJexsjGojzfP2JVsldkZcZsfK5dOGrbgcJ0/LRRbM/tlxgcWq3QBvkJzZdDN9uWKsvk/YK1cUFPvylGZ+zXGCUmDOJh8OUSsP3oDOaCBhUnux3ch6wSIiEsTOSP1a6kq4eK3WDbTkQykH5uwjh6Xa5UAYgEmENmLmfEfmGqFRlzNus03W+nKFPl8M4qwnzGWOFaujzK8mgnLjMsOSSYf+wny0NPQ3HO1ZHZ1tk7KctLUvirKY0VLb/YplIZa79rIoJ+WVd9I22mI1JzG/baOFe1EMEvLHzC5tW1ccVORBHNCplVFmGLv3MEm+mScPwkfL85eF+bCbUZpKj1KhUyjG6veiiHneWqJFaS4X5bV0eTH6eBr74isXFsF3yiLZxdUjmeVQR3ZR5Z5zBwNC2+Keb2ArINSJVRP+0JCPdPbU5WtmLh2nMrmlSiaLcJnLzKQj2ebbcRqyIdSFBV2EvE1lU6y/ZC5yec1iURcd2VDLkWz1RfU2VtlH6w8cx2ZvvyUMTVRR9GcNJNr0EfWyU9+njF0v7Dv7LF/ZLWgs6Az5ym5UXtnlBLI9w3oLdVmbDGayp84z2UA1OXjBfDaNZv0XCANrtYGwUqficnWOPc9XFfJ0Lv3JzuypakbFdg+5zyCLJUU8Ywnyvqu07UsBOof8mlp0jjKgoLnnYpCKh2fPAGNsYVZNOfEtQbXm3TG0bzNh+zFcjl1HGG8WikQjdOpsovIKKg9Jo56YNMMaD3f9hI1nw6E1cEidNujcsr6W1wJ6aGQ7BjOsQ7Brxe84G1FWLjiJuLPrByw/Uw1DPrGHZV0tU+TVWqDn0K7il/LkDP580R79TDX8wyU1UKtuDSA5CI8iUsVEBbKwm3BxDwG6doHFW6rGAHowaNkeXbnN50533BeKS0/aCEb1SmowUFwk0DPqi0XH7uLRsfnoY1RxwpfJwn1w4vQxrB3zFXZ4vxBTObVg1m8IhuAkNmy/oFHnkxDi9wDx/o8Qlp5fGCQGLdDBsLQiqRL2R9NJJSsEXueM0Ed0wJIYd4P9EBNhyxsH3R8IUpwHC7uPaFNz6KsKEYvGxa0/YvtDa8wY+y6UYWWVSBpYYtj4DvDf4YLL0WJ0XNlTXHO5jGS0Qw8LdfMDiYEpunQ1QvKxI3C7nyJUrrowMqqnMOmRX2tD7rU0wxLJr/Wx8lravLD94VGzK/qb6ZIDd5yr2wO2Rhp1Wa8mpNKaQMgjPIlRjfCbhUi3jfhyYxQGj7FRaedUkDRBn4kfodnxH/D1Tl/kRYNjSL2zD4u+PwY2ZAxGWTbQ0jbVgmnPvrAWv6mhLItAqyKU+0v0SM/mr26bo/EbqhnKQaL375j79UHAdiZWzuoNQy1F9fJQkYd8tuAMWU+TUb2xwmBGKQ/y7PqdhvsdVbnOwvPE2mhuoG62xOIuYetiJzy0HoOxPQ01nEiqokH3D/CxxV3sOHQd0UXu/0pGafOSdDUcTUf0hBEvAMlb6LXwb3gfm4deKqZairrWRRCvozh0+ZlG/5uDuKvuCB70npp8sMjTWPXVdoQPGYp+mvIopxqM+ozEpGYnsWj+Xq2x4ZOunseDD0YIfQCXV0VkoGPef2Nhr7e0yBIQ71kTVgPbaphCVUHNWrVQE89x99EzpImpHM2yUz+nouzGW9zBjsNFLbuDeWWXHAa/a6HwD4iAZvR4eR9rYg41gx5ZBG6euIgzaz/F+B23VNplQacys8XYIdVxbsNeeIRpevBlIuzaebgnG6FrzzZ4S/UmJA3RsmtrIS8n4eQWiAzhulKjN1GPmzSUun3hOke7Atra/DpHWVA2yivvFF2rY6jV2+oPvVozQWGzBreDT3Y5jSthZaEs1kJzi/Ywwk3s/f0MHmYWs0Wo3gQWPVsAD/+B08mHZRKAnsXdwF/bziKJdUa/TkZahYnbl8VFRovb5YlQcbuawkDnk01CYqpqBWRIjwrHo2Txqy6CnyFWi8L1+tAQLRrVyX22VZpaY/L03jAbOhBW76gvLCmpbwjjOkKdvxuEiDTVMqsL084dgOPLMHnGBjh7+iE4Ohm5T6O6BaZsHIkWpZJK1Tiuqk4q3NnkOs617oF2fLlYjqBs9RphB32hU1dfUERoBG8lwLRDQ7W6zMLOwWnrZaGKtYdFrp2UKrXQ2LQFpPFe8PJLUCSlxyD0UYxiWyfP8DRWvVnn1/r9l6Jdy1N5LTVEOdAujAKt8IGVmXAWHSQnISVdpWtm4bi4/zgewhzvmmt2bkokeKNFO/TUD8OZ307hTopYnkLncPWvAzgjdCrWfTugic48aUdZFqyIZfHSpFSvHkx6q5cxS/TGjkU/Ct3ZICxcNRlW/3l8YFV5EFALI5eGp6k10VhpM6qUB/lXbxxQHdCxeMRVaYD6as9OkJMz+/GLfzKMerZFc20RCN54C6bt3kT8scvw0+oEVlaUPi/Jqe1h2aYwT4B66DxsDOykfvhzvxfCVE/DFyg6mwN7W2MV+RDydfEo9j7UQ/vurdQVKlXeaIoOPZsh5cw/cFUbNChIflwXvQqSV02se6BTE11udcmITUzLa3flZfdXkcou4diV4pddnebobFMVLvM/x4z1h+F5LwTRycqrS1C97SRsGmWap4xVaYKek0ehq9n7GGtlrO4cKKkDQ+P6wgW1KYRpiAoNF+6uIOIR/DQOql156dsXoa3tUlBbq6lzlA1loLzyTvEqXN94D1a560Ar4bNQQzFErr164K+zj4RqUlqqQNrEFO2EreSLdxBYQOw+7UjRpJWgvCIEF72DCohxWVSE+w+7D0+h4kO/MRrV1+FQxFIQE15YJ/5foOxwhc3kFKTpWPFKatMepnXKZqxTechGQvRzQfQ478DcuF5eo1zTHGO2XUCg6oxwdjJiIiMRFhoJefMbm6Sxglh1NLX/Clsd3sKNXV9jRO92gkJsBHPbcZizag88AhNRs35txcxjaajVGn3H8BWD+EzTBXGmKQ3BXnfRuk9rldmIakJj/QFG82fvdyZvpolF4FZ0E3TQV1U8ZEh65IvzycL9tDNFE6m2uqCH+oZvog4i4BMSo5iVETsl/nYmOU2HrEo7oLOpasOvvJawWeC1Gqlfqxxh0fdw3o0789SC9A3dT0hSsxbqcp8+v0u4/lDsRrIi4Of5QNhQHwAVDdWyMCl6ub8Malli6lTLPIWCxeDqlhX4/gzQ/7tv8UV3g2LeazkhyoMiLyph5LLikFrdQEUhUsoDP1IY0B3IG9Cx5wmo8qaK/MtJxKNbvsKRRmjXqrF8kiYfSmUj8hFCnpVnsL0yyItOWVNFULZa9sLovs2Q7HIcZx+qvF+IvoET6Alr1dlpYeB25/x1JDPFGw2dkqOcpYMv/r0eokVPaIFWTbTeVRkglN3tciw7STPYL/seDo3vYtfXI9Hbojka1WkD2zFzsGrPOQQmV0d9qWrJSNFyzEZcDzyMRX2aiGWWjeSYZ4gMC8XTF7wdTUJSPoVQihYdOkAf6UhOTldRzlUxgU3n5qiTW5ErcPtSCIXV1CKQikCPs0KBHse3DpMwaZL6x+Hb40hsZSQcFwL341cRXNyZ0oKIj0BUgauhFEx8UBQSSp0dhvTYSATzTaHjqqXLC5AlISooVvxSsZAYdsfEeYMgvXMVN0NUX6ak4pGXOy5LB+GbL/pq8bB91clE/PPnQqMmYNED3cw0mzUZ0iPv4PSejVi/wwVXg5JQ0/AtGDc1gs7IqDXbYMJvbvBx/RXfTrQVmpJkPD7/FzYtmYS+luOx4myYjkanONRD+wGDYcU3xVBY8rcjV80wSCO4usSwEwaNthC6pLyZJq0mA0JZPAt5BO4DjmA3OG1Yj/XrNT8/YsetBvjScQEmdhRNBCRvocfEibCV3sO5m6EqbzqEQd+jy3C5XBW2CyfDTm3gW8xrddA1E1p2sIQoBMWLX4rEM0QoZ5PT4/A0mP+4BurWqlHMvKqWxakilUUZNOolIAfxV//A4jUnBM31S6z+rItWs6//BlEe5PnhAzoeCitHzWRACZeHD5Qrc+WaDqTiSZww8FQbzAnIYhDiEyFsJAnVdCc25Hsu/LMLtwxGw9FxODoYlqO51cvMSzVT9BvbB9JkT/ztoZyQykTYuUtoONQSDVQrYLH7PXFmUPz2Uihq2RmOwboSlZ0ENVuOww4vT7hu/xYTbcyEtIc4f3ATlkzqA8vha+EemT+IL0uPxJ3Te4RrO8H16mMk1TSAkXFTvF1P1xBAD4Y9PsI8WynueNxCSJaKcpMVBK/jNyC1nYaZdk1V2ojK0r5oQbR9LTncwWHAN8ztuS4nHqXTj9BbScex3/3VTajVUTps6XIwUKA0yuZRDI4/U7lukQzblUbGYPrTj6t5wZXMYUvhwW3N81PQdXO9Nwtzniitw5bi9/lN6RWG77qcM3Ie72OTu3Zg5g5O7MbzNCaTpbCIK78yB/OBbIHzAw0vy9JRdIetskRZfornVySHLbmhPXeyM2b9N91UN/6XJbB7B75mtuZTmZOfiuc4pxjOGLK0WBbsc4o5zbdnJrwO6XRqKCai45FE9JxOEp7vtM23WX6zeaUTg3BtuZNKJnt++jA7l88ZQ+GNLYzYGYobEUEoxz8n92adeFl5R7I0WQ5Li7jMtjtYM9sFziwgn+esiud3saMvlFKO5B70RsLvRwrPIS/eQJ4zz0ihDdN09VRB+ewxiG28nahIUzqBFbFdU29fVMvi9xKWRWFtjq42pehw7+jv+jQV6u9IttknXkUeUliQ22F2Uc0xrrRtXQngz6BHA+Ga/NlwL/CnLPhesJA7Tbg8zFH0V6LspKg4danBI+yMNSngPgqgGG1EkY4ti7wUQ9ZkUSfZHDOhP7NYpXBs406/n25m3prOe2K+JIXmS/nM9Zn1JtV2StlvqcujLnJ1A633onDAbawZUUgeKcm0xGXHHbaK104J7V9cMPM59TubP8hcuC7ynFblZLOkewfYHBtFhAP16BCKctIt0+ns8Z8zWNdOPArIdRaVliP0MeHsyvZPmbntIuYcoNFXlUn7IpSbqjNzLip5LSs5VqGUSrRitR63Dv3QxUDXaEQYDbw7AJP4rJXaSK2kyJAc/gh3hS1p7/Zoqa/zRYQOkhEeECT8b4beXVpozC6VBAmqGbdBL76SS3oqUlXt5FRgybEIF0b6FZMUPDjzBAMOn4fH3BYIdf0NGzY44WRES8z1OIw1w81VXjO8LjCk3nXD3rMhgNkIzBrZTuV1ezpC//kOw8YcQt15szGhrebrRA1YOl68SBfO+AI3f90GDxWjd0nNBmjWwQ5T1h7ERZev0TrlGs7efi4cW0qqm+K90cKQSsJff/6LI+4BaNvbVEtwdUE+u/VTvCrlM02+AfCNfhPtNWeZUA0G75gKUiMQ8RxxRbZ/VrQRvgN2wtPjCzR/8i92bBBG8icj0XLuYfy7Zjha5osBWNJrlR8So3boJ3c+jUZknO55IZYQjTBuZ2LeCRbGoi10tcaw6NVa2MhAYmpGMZ9txSuLfLAInF6zCMs9qmCo4xJM7aDqLJuK4AsPkVX7P7Z95fIwSukO540DLu6IUjMZUMLloa/ClEboK/wOnMONwMR8M7RyJPp4p62xsJGEiMj4MpktlAXuxvSd/kV6Nat2bDnkpSAkBp0xZHh7SPxO4OjVKGQEXoWPVV+014w5K3kTnfq9C6mkkHyxJESHcdv11uhl0Vio9S8RXnZtyrHsUm/i13UeKo5eVVBTvxk62H2CtUdPwWWOFZLdL+F2JH8vxZAdegxfD/sUv9f7BAsntMuNLasdGdJfJObZsGYG4IxvXxz2csbc5mFw2fEjNuw4hYiWM+Hx7woMb6nZV1WC9kUHpVReE3H3zC20t2sH/QLOpKzoQBhO/3kBD0plOiA0hn53EAlLTPi0P8yKu0xfZjj8vATl1exDfDLQrEyERLmSiyT+EYIitVf94r921CBXuMsBFiWUSSYM6teFUXsbDJ8yE/PmzcSU4TZob1SrYMXsVSU7BG7bd+NMsiWm/zATA1S90jP9cXTDHjxEVwzp2SJfHWLCICZRtRokXca6tZeFpjELL4JO4/TdOC0KTA00thuH6dYyxKYUV8HRRu28Ve78dmP54Ubo3VpLBywgMeyGEVN5x+6Lf52PI7JxSy2DOglqdR6Ez+2aAiF+uB+ual6iCreBP4v9QoemuIcsPPO7hyoG9VDLqD1sh0/BrHnzMGvKcNi2N9KxkIPiWv+zEzqUYl2rHMl1Pg3BzYfROpQLGZKe+ON2shTm9jboqBxYSxqio10fmOMp7gRFF9NJNK8sJCH3KkZZqJGBiBMbMeenuzB1WAFHh3ZQXcZD/kr2TjE9jculrePyYCdGcxCU0nNRqKpNIRXg8jDyM1HR9TuJg35VYKR1lTml81IyQm48QLjqa1o1hD7r1FFcjSm9QZBuXnJeJIboPmwwLCR3cMTlFFyPPkKPfqZa+tM30LxnX/SVpiDE+xGe6dLKk8Jwjw/azfvArqO6o2j5w8tudPmVXfYLBAmDoLtxWn6nZww7h7GwznUQTcG9o39g+8M6sBbaG1PNqCYsA6mJqiYGcbi8disui05k7NkDeFXRR/1aRmhvOxxTZs3DvFlTMNy2PYy0mjRW9PZFN6VSXlmcNw7tbwy7LgYFn0hZ0fn25dO48CDPyFs7umcoWJQXdm+7DPM5y7BkQBPt19U5A5qNqHMHsO2yOeb8OAcDGuvyRiwmkkaw/WoVlvYJhYeaXZ+SHCSEByNU/Kad6nirmSm4dbA2WORtnHJ7XH4VJ8cDew/7IF6Hw9Z/gzAKjXTHavt2MLVfBw8tdkHlQnYErmxbgW+2y+DgtBOOHzaH2vw+DxGUyJ+yNiekHMTfuw3felLxuyZPceTwNTzTWcxm6N3mrdKOKgUkqN66F0ZZyz3x8OagHmita6AnV65sBeUqHpd3RqFBG22hnASqt8X4DcvhYHQZfx6+pd3ZkUXDc/cl1GysuoJNIo7tPQ7fuGKobfxaP67IvVZcka9VXtRCy3GLsdVBH+5//otbiVqW3s1+grP7XRBuuxC/fvUe8sJ7VUUD2//h1++6w//cbXVbtFyyERMcqL2NUJZF4+KWe3nDZ4lOYMWX2+BvNgHLl3yIlmqjEYVd8/GcZhqOIP9FW6eQh9FyedCH9Zi+upc9zh1sCEhb4j2rFhohl5QI52wzBj9umgoj9yM47K0Slk4FFncVu08DjeurzD7LPdBNNPoqhvS4DLTSlP8iHVuKvJQI5WC2AR7+/h2WhHdDr3wO2xwJqrUchbW/TIPRWWccuaVt4J6O0LNHcCC8F77b/jlsX3qEipdQds9O4vDlCK3nlWPRCW2acIe1dMRGPJP/1+Z0xRKCcScgfzQGVXKOHcBh39ii+078V+1Ldjg8Vo+AmekIrPYIL7avRwn7SKHRSvCH68YN+OXhQ/gFxhV6Yb03pOJynBewbf8lROlUkqrAfMEyfJzlhfNqygpfuuwadixYAR/733FsxUA01roMozUW7BqCzH8vIVLtGhmI9v4DC+bcgb3zTqwY1FRjlCicPy1F6OaFapOYqhZKQkHB+yWGvfHNH+vQ4fgW7Lz6VD0URbIP9h2WYPqSgcK3FEQnpGqpxFVQp9MH+MK2BoK9H+K56u/TH+PY7kB0+N9AoeKkICr6hZbyzkZaMp/h0OFpmDti0zIwkDSF3czBeDLbEg2qVYFEIsn7mNpi1OQ5+G7bIVwswnMunBwkx8UgiecgPU4oi4KMSDIQdHIHFh/3w+PjG7H2ZHCRXqdphaUiIbqQQVN2IkK9j2D91JEYtLcqvhAasm2T2+d/bfNGGwybO1ZQMy9g++7ziMitZ8K9BbnjaEw/bJj/PqRJTxDyLA1Zz2JQr4cZ6siPkeHhtjVYeygASWoPIQORnidwrv00TOii092reFRviQFTBkIq7YMJfc20mAwoqQr9jjawN5dCf3Q/dNO5BG9VSNuOwbr9i/DOrjn4csc1RKvIGEt/iqt/7MTt3p9gaFPl/Ft1GNtNwoQny9CpYXX1uiVpCdtRUzDnu604eDEQCWryqn6tr3ZcLcK1OKWQA0624ndaByY122D8z7vwi+lJLFp/AoEJecq4PD9Oa/BDxCgc2/cVemuWIY/9+M1W7O9wDj/svIpItcE1b5uOwjUQcoUuPToBPKhDHoqyWLuvOOXOUZaFrsmAwvYXQnYIjq9Zje0PzTB5xVwMN1FV8XgfcR9HtjnBXb+2xgx7adu6EsLl4ZNiysPIQTqUMhFJPbSduAL71xth16SF2HHjmUp+uUPnFfyx+QF6zxuIpqr9lcQYfaZPga3Qz53wEp00BQXh2iWgeytFS5GLxrHyWqft2BLmJfdNUVI8korz2ri6KfqM6gVpcmPYj7RWxDjVihQtx/+Af7Y2xZFFm4V6rtKPCO1y5NU9+O6HCDgc24El72mEmsyV1yTEJRU2eZHXR2uPnCOUQarQdwtb+fpwzbLzfl7GZXcT2+ZvxKHHiepylv0Unkeuo8P3Y9BFPpiSwrRbT6FvicflbftxOiLvnllyEC7da4DR83nfE4uAkChkZcUgsn4HtBYjAUmM+2LmhAjM7miAamptbR2Y2o7A5DnfY9vBi2ptV+nbl5K1tbKg01i72BmPHjtj8drTCCpm5y7hhq/idpHga/ou/HwZdkS+hUFtG6KKfN3lW0C/Jfh13wyNdZYzEea6BksOcRtTFYTfPAgAWrVugR6zVmB67trHibh/5CjCOo3A+82rItr3Is75x4OlPEdoSBCCMpvDZtBgDOrZQrsdSKrQWO4KR6ep/dFcEg1fd0/4v8hEyrMwhASFIbNFLwwaMgA91dY15msy/4aZm8/ieSzQsOEbQNozhKYaoMXgL/Hz9M5CvdPYL0tEbGItNGwzFitXD1bzwlesW/83jl1JgKGJIWpkJCPDqDdGDu8CHPlUsU6+UPVsRvZE94nfYfXgd9TywtcWPr57L1we6cHUlP8+DjE1rDDhk/dQ7Z9PYf7pITBmBMtB/dF/+nLh9/Vxa/tSbPbwl+e5aUM9oXjD8LTW22jeZw5+nmYAj0XLcfBusDyNm+GlhT1F6tvN0W70UqwSrl+FNyA3neG48hT0unZAoxoqOUoMx31/X3geOo/H0oFYenQHvu2rDN9RVPhayN9i85WCRox6aDzyW+F+mqmXR+RFbF20DAcwEhvWfQYrnYqVNpTXjUXsvXPieukcXv7voukbKmM3sU62trbGe/0HYGDfjjpes4jwMrt1GocP/QvPSCk6tBPUDkFQG/Ycg/H9TVE7xQ+H1q3Gerc0WE+YI1+Du7HeC1xdvwH3+01Gz3gvHDrui4zGRqgrSUd0eBqa2IzEmMEFrKlfbBiyAv/AqAXA2r8no6W2wPpKWBQ8Fs6Ai+0W/Pi+rljFSrhi8hAXXY7j1CVBto2bwyAjFnEGXWD/4UC8a1xb5fe84ffGIccfcULPAl0aqTR+LBHh9+/D1/MUzj/Wh+1SJ+z7tp/aWuVFv5b4rD0CSiQHq/vE4NdZG+ERxNOM0bBKNmJDY1CraSv0UWujBLLjEHj5LNz+9URQ7vrn9dC1SPUmEcHnj2L/sRtINGwKwxqZQrV5W6iPQ9ETRzGk1Sc4LXRgJjbvo0d3B432pbhl8UTo4uqioVDPZQmxSKz7Jtrwe5W3Gbr2a8qgLrIRfWoxegxYh4dSW0xbMBCmuRoqQ0a0H846HxGea7Ji3fe1fcTJCyUlaetU28qSUF7ywMlCQqAXXI6fwqVHDMam+kIZpMLA8gN8OLSbjrXohQHrVWfsPHAR0XWNUU9SF10/nohB+ewSOcU5tmh5ka/Pv+Qv3JXX87cgWmgLaGuLtcMiXTBzRgA+/mMurPLZyWvC83UFp9zccD5IZe38rv0wYKANOquaqLEncFWTV5XyazwSK1YNRtPcJEUfPmuzoACFZuHtpvUFvSQBoU+roWlzO8z6eRIaefyAJQdvKdIEOVH28U3bafbhZVF2Yr8qpiD1KtYv8Ee/ed0Rf+EfHL+dhsZvCzpIRgzCkwTZHzsagzs0UulThcGsrxsO/OWKU9fiYNqvu9DGVEOD9oMxSuhbpIJ83z/0E5atP4MM6/H4asEU9BbDNXJF8+ahzVh5IhtduxhBDOIokI3E8ED4+wr9zvmHkNoux9F989FXbeGfl9HWqtQrQXG/uHUZFh4AxmxYiS+s3iy0vqlSbOWVeNVIRuDeebA/3BZ7d01HF31tVsBcAbmG3Yv+h+mXbOByYS0Ga65MRBD5YEgP3I8Z9i7otHcLPu9ioHXQwxvca7uXYeL02+jn8g+2DDYu6SshgiCI15P0+9j7+XQc7uiIXZ93g762SRA+6XLtTyya9A0u9d2NC78MKWDGvGJDfcRrDos6j59mX4LN1OGw1Kq4cqqgppEVPvt+AcZGXoTng4JtbghCDovA2Z9+wDGb8RhjqV1x5Uhqvo3uny3CirEJOOr5UMOcgiAIgiiYbESd3YE5xzpj6hhL7YorR1ILRt0d8P3y4Yg8egUPynXVt/KFlNfXHEUUhCIGT69ZG/WqJSAsWm6xShAFIwYor1m3lo6oAqpUR+16byApLLoMFg4hCIJ4nchGQlQE4msUsFBSLlWErrwOqiU9R3QpFnn6ryHl9TWnSvNemDIZOO7qjagClYZ0hHmdhbvBUIzr3aRYtinEa0qVprCZMgzS46dxJaqgRpIhO+waTri/gQnjrGFMrRJBEEQxqIHmNh9hcp0LcL3yrODJpewweP17GQYThqF3Qc6IFZyqywTEbeJ1pGoDmFt3gvTMKiz3qoY2bVvAqE41FeVUUCySQ3H94A+YuUMPX+/5Fh+2eE1jvxLFpBr0zbvASuqOb5ZfhrS1OUyN6kLtjRaP8HD9byyf+Sf0vv4Zaz40g4q/IEEQBFEoElTVN4O1lR7OfLMBXlIztDV9C3XUG1skh17DweULsUNvOvassUeLGpV3poActggFcu95T3hcugDP26lo1KYJ6kq4h2IIEuu1h9V7PdHb2qJgT2qC0Ap3+PPFBY+LOOfph/RGJmhSV08eyeJBoj66WvVCj97d0e51XRCDIAiijOAOsLcuXMClc564nW6INk3qCopeIsIfJKJeV2u816MXrNvpWiCm8kDKK0EQBEEQBFFpoGk0giAIgiAIotJAyitBEARBEARRaSDllSAIgiAIgqg0kPJKEARBEARBVBpIeSUIgiAIgiAqDaS8EgRBEARBEJUGUl4JgiAIgiCISgMprwRBEARBEESlgZRXgiAIgiAIopIA/B/Dkyn8yHfriQAAAABJRU5ErkJggg==
iVBORw0KGgoAAAANSUhEUgAAAMgAAAClCAAAAAA8We3GAAAm2ElEQVR4nL297Y7sOrIltlYEVfuc7msbGMDwM/j9H8owbBiYmTt9qlKMWP4R/FJW7b49HsDC3llKSiIpMj5WfJDJ/535X/Lvf+P9j/xb+/f7anb1V7aWNyXILsuvZv3X/QLAX5b846P9Z/7P/7j//C/X3/p/JaP7Ryj458edvz7t/vu/vwT+knmQf+X/ZHFd9vH/3Gh/vFr83d3xy73x+rf//Nk+evsv+fc/1P7v/N9u+/z8X1//19d/+/fgfbds1im2myTudnno9ctev+wVf3r7X+z/+NtnS/76Py+HMg2QAAGAIECQMAqgWVqF9bduk1TnmqWPy+tjPD1rrkckKaVUKiUpM6tEmZJGb0ad81jVjRpmI/W/pQmzgtR5oP6vlkdl0nhEUEqcF9fjuR/afdY8SyaVZCIj0zIzlanMzGR9m+2Ka6Rw9CpXK6OFBKR29PrtDyRxF83pkZQ6KuZodReN99JRfAxRWiLJ6vV8C6UUiSo5B1GUKBC7VpwtYRY0guA66hQgQQIAQdT3+jNuWR91S53ucqiqBd6fqfrNjOT8TDPVVzPaulGzzWq92pqNjd4Ko7tsZrCkWVRNNJpZ0kQCFM2y2qp6DDTz0ap5GinSJNKM5tUbkCYjSUsjza2+mMncDe7e2FrrrcGdrak5m6z7JXc3VUctZ6fB0QiNZjKbLdFIg8jnjGCfigTE48BxlcbnAZJWNRkJPeZ5FM4TUw2Zm9HMaTSZwcYxp/ogkfFHZ7uGKhn32hIQUyy9C4wttaYwmaWLRIfUOjnnkINbao0730n8WaTd9uL01TNot/OUqG3Q8qK3yQ0AAKq4ZDHJuFaMwM0m1JoBkIRIFX9pEvV4fM+UHTOLQTScXcCsYDQ42HX2dU7EuCCgOUWa0wxmZBF+mskoiWaWY8oFwgx0b0b38MkjZialmRmePDI4Tu7mZjI3l1szNPfGdrXWmi63dqm1vGStfag1p9GK5wAjDQaamdKsKjTzZuZuotNsvAgM7nSD+2Bhg3saJWEytocJMDeYuzubu5sfL+I0T5i5u5lAkzlolu5yt2YGd3e5N0Nr3vjx6yPaB68rrw+1Kz7k0S81dweNlmaCBteYmYlRXC5zb25uLjYzA4A2ePRg3nU6hOfit8XtNv8dxIQaRBvMTsJMOG6fzG40mJlPEecGNzlrDNwWfU3RPsl4yyLMDljWzSJaPWRTVJ+SZkit9TgeV0evjpfZg6GzG/PaqUdYNFIHltQaNR5qR4tHOGXU+3hXD9tbOY4bIBNpOS5OYWxHFfvet6/nS4zhG1XbkLSclGxwlxvczM33lOjb+BxvYeM22lCXxvm6s92l0qdQWGU8SOvs8Va+GAr9iRBGe7N0DTyn3hh0YjVRPHT5apnr2yLyc+xAm5K2Ds4/3MX8dvk8my/+rOf94PpcspyPDp+4A2P0Hh16Vkc+i4hm1B6g8Tl4KAGYDdKyg9fH6E20RHKAJU3VjGJ2molzqPccyNzNirXdDTZIy0sobZblwgpkEfmihuKxIleAbG/Ydarrb6pagKg3xTyh5wDKT908AOwCq9inA7grhymS2zpJHSbPRLursh/RrwCpJVOZYVk2SVkGw76RkIlZCsiktMxQRt0VSZOUibIocloUSIFJlJURiFQ9FDCog6T3HuzdQr2LEXfPHnePyEwb70tJabL58nsQApkZYoy3aXqHP8t24OMCxoxISqXlvHUaVuecbltsDd9pkBBlRUXkHBDF7FtmPulDEncr6zN5zIikxokGtmijZXFGAtxXThaZIOLkkRI9p/Qz7Co3rQ8YzmKUdJN5FrYf6PwhFHfPLHcXi+mmQpyacMqpBQi3+OUSNQdonKjxTeBN8XsqkUOJbmS/ZYuNt5+WhdFsisxTAWCfD7k3NOdSDIYtArdUe4i32aN9+k1hrDc+2nvIXq6unHO7lc8UUFtnLSC+zUyMux/f5mOG7Yg4jBLh5+Pn8m0a/HjLYd4cZs5uQ8sNcxhGu+TRI337Mo4271+8uUQmT8fPYPb1bTLvdvIsX9Bk9t3HbT5BaUmU/6Ik73DfpDI5hcK0n07n1JbKwOmiGcLKVgtrQGbHdy/nCK4G3hxMu8MPh9bq0RJlWErhIZXejz0twKoUODswuojVvj2J4GFnnqWr4iVT397xoA+917lq1FndMpSXSftm3B5Ds1/qB7KXALXlWMrMkLazaQzNUogCgIRKDY67Mq2k+lKIkSklcihEKZnhiKHGIkAgCNLu3tE7e/ZbOBRiZNp290lAMrdXElVR6VeLoXbaeCmeDohzAPY3lQBZtLTJ6OGseIzZHvKzusVU2FN9EsrxCABxMclJ1I+uCs0MJnO6yXxaO2kGlqlrhqn5AE7ARz/9WkYbNvs072WmAo2YNnu5t8zdHd7ahXZdvV1obq3patnS73bl8GsNHZqleUGjKwdeTXMvawbmRgNOT+NWEFM5jJeeGPTp5Xo7tqIky0mIqbpONTXE/gG2h6dxKsTt1xqGFc6OHe2ZLSuFEGk4pNaiDG3+ngRxSq09oYfUOiji5M+Ddx/8up78QYC9q50tCbbYnH6tSaRPqfWvHD/oxJ/V5H98/AsW2b/cQjNqzugAPh6G8mslNXiENIOW7TQdzmaLR1gWU5Vn+UVFK4+UT4t2Gene2Jq7e2uerWVztPDmLdxt+n5pb6BxOC3SrIz78msRMNkclGWVP83Yc/BOA3Vhrfcbn4M961w0/uakWMbfk+HW4wdo3BARGKw30SU5IMpW9AfJLhiAyUYAv1P0EMmHun7aJqULJqKZymFGdcoeiTPQs2NWW9CKD2aClj0yleay2Y0m82UKG42TtHKUlrvNJlWdNru9kxbKUbjMeN/uWDNXOStb89bUXK2lO1q4/0Raa9YqRLFJy4ebl6DKLbRsDzy9F+sKjvk9nCCTHCfZHZdPqtj3Ygvz+eed1s5KN0U/SHT7n5ZsBmyDJ02ANyZ1AzKtSX4nrXnnps9DUG9ktVwKDymbh89h0V2e8ndhslXROk/tEgmwDWeP/s/uTwjxUBW7+B0yvEO6ScKz7gNjfINA6+UXql0dOjs4z/Xep/bURTg+qTeNtc6PYOjZgXzWdUiA5PYo5HA+KDIL+OVwQiQLuK5hHzUQ4juvr6+z0XY0+NaRpblXFcuLIkxX1O4sZxW5aXBOy3vVy4sSGZGZUYAWQ4rt5x9v9ayi2rP5Zu1gsu9xwYezd3HtdBicT4CFKLmct7va5EJQy5FizoqwVGxU7vAqePjI3328R63DL7Od2EvoTGo7vSjfDz7u5vMC3r/yuwBab/78s9Tlm2vmWcFv2mQxO945+Yf+4+2GJ5z7V44lHpaswab3bdY8LI3fnn8v2jOyj5+G+Qk5+DYj36fup5Ll58HxPPfkTYXx8zQ/PWmHahsvcj5yopwfDj7u4O9a/OnB9/a5X+hwZp0esEfFP43nrEpDIS5Tc9oJD9VxiG8s+YtT6s7H3/q+1cDCS3iTO0+J+Pj20D1alu5hD+nUJhJgnBO+pMQCD3PkuMdviq13nuXp9DuQw/nUuGvg/wHwtifZ1oU589wz92bF/nA0p4ZRDfMZiX6z2auFaY+4u1mzEaXhijOaOYYXOiu+WdF7V1kPmvK2bHZeH9fVLl1XXldeLT+y3e0jW3OTscAqxktiYkUzc0uzEZ6uIkgVo16ztynjG53/Xj7pN1/33PO4wuPGBwia2OGnav5ZJ8bzdhDBYqBJMphyYVPaUAWT7Tcdbmpad+BNVHGx7njokb9RitRs37lI67DjJqEtgD1ZozWjo10WLdrl3lq75GxNnaLgzdKbZ+sOwJqFXdfV+HHF1dolNyK8SbJ2RVyt+dU8YU3upDlb43X51ULt6k1X+3D8utoH//jbH3H9ab9+5a8/8+NX/EnP/id+3ZfDujndknQ3o9G9uay35s1drV2/vF3tSrvMGxTY8ZEfRCiP4sOc2OXvUnKJz2/HnuwxkKverdifKmo/+V2lc3VulVbE6ohLTZsvScAOO2gJN7N9u40ntk03SISWI8JUt1gJrDpfEatys8FH3KoSBn7MBeMKWM1KbDjuxvC1GUCePpFh6hpshqc1OwKs7DVWlMzLZTLygYa0GaBxCFetVA1Vnpm7wVtrbFfz1uJyelNzXL211pq7WT5yoAoZjs5N8V19gBnNIKXhQQ2/gyr4gWb0vMpvt35HP+8li/d/29aPhMp9j2adbURamHoYnBVhVrniZ/iFUiZSeUR1Mf4mRk2Z25GOMhmUHNfK6Y8MC0ZEWESPjFDP7IFhnsxcWAlJTbfMsISTWm7/Eccue8QSpeAPcpxaeqv80zo5aReLRXlwioiV18PJgitfx8RFybajs9M7sw2aiTC2xF4fR7CZhB6gUWsa/0Vw/vtpP+r63a1zAGbXvomhf6GteQhAm7cJXP3/jQj9uQHiITF1wNjvsvS9+d9eOEDvnBWcxU8GBbEgyoPh9NaBb+j5W/kuOpo4YOzWQwv//4a/uTv6A0yZKuzbWP/3euN1YKfdyL9Ai9uk1I/365/UoffTH6poh6tjWgLLUbcRXKF/zpsP84HLRhg+Oqz6cDr/pkNkWyaPJQVv6wt2v6uNw/CZHq2jVUhoT9k0QeGUPSdMPI2TZ2YmSWFfxGFLcNe36t2hiek8rqDVcCtPEQkQM41x8uEhPg3cVMbfkJZONP2Yx9MyO+zG57SvJ99pYrpWl633vGM9MhH++fAihtWts1e/eZHvRva68uAyHv+/1/GTUT9x/U/mxj/ntKnOfxAUINHM3DTTgocFRrrBCOWJbg4L0SfW8nmxIJhG4ig0I1akeQ4LcTziTa1dF6/ramUbXk1XK6z10dvI5jYdCnNAwBnVcDNv5jN5GElr2/jfbkksz9PmUQnQEejBBiEPNtX22W7n1em5TSWmo3dmGeg4z+1NRpHy8PwuITTEw24agOxNIC8z7p0mvs3lNkneMCIPFf20JU60scDG+Z9Lx/xEwCe9b6Q52jr9Wu9dPh/+kTa/PfCdJ95v+w5rv3Hjb8HAP8UbTQclPShiepOkQ0a8kdHSE89rS3+caZGPOxZpHRmhk7JmV5YY1EqwWrLum9JR69Yj4rY7oluP6PDeM3p2KkV1UwR6jwCg7qF+o9ur9979vruxh0VHqPcevTPuiAS6pEiL7Ohm+Youv7v3OxH4ikziH5+fYV/6yk/PeMVfn/759Y/Pr6+7hyIiQ8FEhChmBCMjWL2kvaL3zrQ7OqCI1hmRvd6BEd3gPbIzg0rBuym6ovd6EYXVi9z97n73SEZGD0X2u8fd2e8ekkJC536RHuq9W381OPyKIP7x+ZX2pU99muIz/vpsn19/fX7dPaIyaxVM9JSJEYGu6OjdIjrs5f3uTLYMIjNMTzTJ/0icb+30DtW/wa4fvVBb1RWxvT+/0chygx3mxWDVSdVHr9syVDBSTjf60AAnE2LoQCd2JMNOt9VMmh1JNXwc8/sIhM/VCl46SCvPfMeECLJWNmE5Sifu4VhkllN8sh3xpbemtyB8duU0z5YUnfUPO1DPSkcWLKeX5bl+JM001sLMLNjzXaZD7ujWDpbZdF5PL4rXAqmVhW8wWPl+ZSsdt749MvSNmqkCEyIYhz7X8E1XRA1m5jk0e2t2Xa1dLa+W7VJrvHq7rqu3ZnMNI8mc+Qs2vNDz8DYSBsr3W7koBS61bLMHYvsNjvrOHceV759F4UUF06hcyner159r/669zv/VdusWGXFbj+wWGUaLyGBBACiUEYiIhKhQZu/svHu/I3oPMYKRCkXv2TuiR6bUBQSV0dXddPdQ3N36nXC0jDT89fmV9tIrPz3zKz8//evrr8/X644YKZYJIUIkM8rHwuiK6OSd/Q6KPTKgiBaKVIQiyxWTEZEZllFx9igXUL0IE2HRGazQcu8pRkWWEVEtRWQlZyKoVCAj1CMVESVFdUsgv+5b/sKd9yvV4+vlr/v1unsMn1MimQglTZnJqAUPyMywOyOCYigIZbbIeoUeGT0zDBGhsFwzogxlRApkKNQ7gnePHtEjaONF1HtED0aPEBgSgooMdDO7IxQ9etyJxCtTxOfXK+3WS1+mfOXXl79eX19372NGEgkhwyhkBkIZyFBkB++M3plzRtJOO2mKaDyCq0PeLySzpbgWYlgx2neewY6WHTAHD4Tx9v1EJ4ey2RjnwZoTz7SLNLTL0tkuz3b5hcjWNDR7s3R3XRmaYYWP6+Kvr7ha+0AjqXZRYPtQfNytXa1L5jOscDmvD/togeuKCx9+OX61dtmvv/9D1x/t45f+/FPXH/E3a4q/2a/4bGTrFVaoqBgZ3hzpzVvzwBlW8OYQo3YYGOt2coK5HJnqQlHYWNGD4U6NZMRYV0QbVGAaKSUxgeFMYNZc0ZNjRQ+CtPS7oFNkdDGiByL6WNGT5RxFUsUj2j7TzFQGMocD16BUG/lrJSZSE5XGnMVEFn9JgCUSEUxWpyPKC5yJkR8zjKTH0qSYmdiRMZcmAbT77ri7dd1Xoud9593vWps0R4/KTBOorDVUVCKVYV0ZYdV7SNnK1zKtsh111uFB3U6Yjd4XgU98zcOifBDxtOv2rcts0LnZxF6tgNWRemqB+NkBrDs4G7CH1+NdE/0PHN88KP/hA/8jjQF2DjieAmyP7w8YdZxrlx0umi3j1uUlCNeVN3vrIRbfBN23jms1NttoZ0+0On+K4OUDALgcESdpLYF9TD53k1M6P03I5IzHLCdjBTvy9F0RgFhLEM5WTwVQvWg8keaBMTXB74a4AH6AyAeMP/Dp6ZVcdx0r6xY+5YbxCxBzx100kdno07eqjGVgbNI6iWLhxmOu/yPS2rM9p0nPOg91efL8QVp7xr6T1oOFl5j5HWnNy0uAHb1apHWInJO0liDR8BYsyprad1IQoSKtGaobcmvnJJ+kpUVaOFrdTDVG0FZXf2Kq94nYs6VVtlG/frp/z9APNa45W0P7kB7/rE9vQkiV5L/TdWa+DkeWyrQIjSZMw8qMbjSjx/CtJ430mDmNwIgnGmfi9Ha3+8jE9tq8wl0Vnm45M7F3LLoMzrItLTHj6yxvLT1Z4WlT24yKzaQ6bJ4Zazg8iQ9OrlK9M/s29TmTOx/S4cg5wMguGiM2Kz2Y/enA3jXNsBx3OPe9nRWyPbv3JoeeBx7n774H27JneqJtbpVQHvFlxp4VjocejodBJfa4rdazLxmyGH3pkUNXnXpuc/wS6cd6dh1+53FvHtWpmH2uZx9odbB8aRWuSiEIXHLoEDRTKhQ72SSeZUkPgjqcs6c3ZRHb/JiUsJ/dJ7uCSSzH/b+ZyhlAWXb8nN433TS7NGx32hrWU7ToIYOWONkzMD+mgD0k/nGyBcyhXpaoWtrrMb2rOS0i0JJRx4xsqVan7aQb7bnPRXIjEIEJGGZlgwa5enhMtx63TT2xzio+EsttPeMjHKbEQTIoMuXUZJhgbSidnPquTWW3urF4gkvLjUuP3o5e7bKTR4S5/v8JsPbbrOU7R4TnsXVbPcrFCL85mKOHrbZVSK5FQ5aPJa47ywaoJa7aTaZqzwclNHZgG4GBtQpaSSlRVkfNBBDM8lIwooeyi9MTHpGpuefDHMHzRUZ2/2gRc2eFU8JvFsSDlbcox4NPJ9dtPuQqWaermiX/1/YKAzRyYsi1A8LCjIvJMdUFlmTfYrr0yEGL+AFoPKHGe4kWzv/25ANs6oQbmnx8Ut8DMB51PuSGHjVoiyStFT2r0a1PDq7BkmNrnifzbcmh3SNMjp83b0x58OB6agugAxY+H9YxEE95Oi+c60ceun0ikn3oQT9vT71BAByEd94IDgNkklF5449Exanbx1pdHL75BUjOlmzomzYcQdzbFswFXCUxEoNXhztox5ZHLLnWGSktp6dGkmytZ1cONwyUUgYCCID0yezZQ4yMrh49ImIImyxnkJKGgfsnp48qU4yhH1q3iIzbeqgjwiD2SGL4fmXKTkWPFIhumbep89X7HXbf3ZAZEQp1v9Mr3CgoVGvy1S0Isx7i3RF3KECPQLbPr64eX/qE2iv+etnn11/l/GVmqBw9DIOQYapoXLfIAF7W7440i0DtZfqmpxddLhZcbDm18qbbh+6btHxq16mTt2Y4NeTevFSLFGae5OapA/EdrLvhRH1rYbW3QZzqVcnJtkVaU48op4MuRoYkOaQ6plKLtaOBhJoWQ6RUrkBQCADsd+/yzsh+Qz17V4/7jsidULHknbSWp2XWVGckB2lBahVK6IzMYGQGGJmEghq79gQVkQGAwVQ3dfYePePuSWTAAsHOrh6IyFBtnRrMUChJsofowX6bTHQLpn+9HD1f2aD2ys/bvl6f912h4qBCQVkESWaYKvzRLSOA26J3iVaUly2YqQhGKJgZACMUKPQBSynDMiLrRaToCo4QQgSZyUglw0IWyGKn4pGidcB6BjIC2U0GS0umv16uyDtvKu786vZ6fd137yGmUlRSYJJEMpTKqA2T6kUiIPaakGyV8VsQZaX8bqofKb6pqfuSqZx0lI+llXNDj0HhiWTBE6vAT2ZaJggkADIi4cFQhJAZocr7XYhwchUOzhh5xExUfvBMlWilIaaAnqIaAGr50grvVT7t1DIbg0zXE7Y1UXDzXTed5ste4zK1FskydeeDyybhRCw76ri0yNA1ENofzFf++tNemX+0bq3Z1U3e9FpbSaNZ/3UTWFtJd/6d95/9+tvdx1bS6Pz1ceuDbn8L7q2kU39Ytss+vgztD2/xN282t5Jun+2jX5b/9kst8z/d9vn5n17xyZ4kxlbSViob7fIQP5y/zOIPb/9m//4nW9rHf62tpFtlCqz8Qhu61nJuATo3OCCA2vpgelEK62GG+M0jZyQbtQUojFi72srMLN3M4d6c7fLmTV5J/i2arHnLkWFWqQUTINbyqLTtYCkjfyb5A5NHVoYOx8r/odkxUHhMGB+WKz4SUVlkLPE7gokRQ7MjgYrIRK0wzrAMEXJJtFeJ365+Sz3u23q/74jIYVtYefGArFhUwQNIGexWMaVUVjD0tojsN++uWxGEEF2QhmYnFbCIXrLfMm9m5+uOHrx7Jw/xm9YVd4SgjvRgRkYmQPYO3oG4LQ007wz7/PLs8SWX/Cs/b/v6+uv+ei3xm0v8IsMUiu7RrWcXXhb3EL8CMtuhb5finMhewpFztXBvLVnO7e/QqX6XbkcKENKltEfSIJJpylj5gAHWdkCKOKobi785DM4Nnhc2GMvAcdjsG4jv7hxGw4bZWKmMD8T+6Ogqe5YrTYktPkdcUZlgTuLJVQOGuT2CYUdVWCmNq5k28OTD4h47iU+YNDs/wE3pEQ3AC1S+ZSnz6Z0q/hjqZJq6ha0QKj0SEQHLSGVg6JGo9SPCHqWcr3J4MIor1zoTQGrGnDk2G+bb2Nwbw99pyblzptHoa+XUkFdj58ycT0MwlUoYG2jakEM090q5hY/FlaZaIueyKKl16Ii5mqTk2PxYq01qw06IbJ0Z6gXjFRkQIiazA2QqmCODjp2iITtfPXrH3QPMAFOJzi52H5kPHWlJZnZLyNA7cHflHW6CmTP4eVuEf8lS/pV/dXu9/tFfr7uLMxFwMzszEd2zM7KbXtbvLoFBA1LtLpuB0eXZU2Jml0wBQaBMASYjaoJEKjped2eXRWeZHkp2dKlnv3vURtiWRORtmcnsAaFnqYk0M3r+dXsP/xJu2Kf+EbzvK75edwiREJhQKggiAEoZ2cmeZvlit54iggkom5OW5oSpEq7MYTIbnGpOmXFuzmOWdHdHC7m5w8iUeQo0c3laupGA154r3dzozuaCu5yNbmhuxvZxw5v5reuSN310Iz56y7ASjTSBI1NMZpYqRW0YOWPhgpuZMGKINGNWnKMIDzQlyh9jIk2WpdmXrT2T+iZniWbKcWVsagOMHWHXGqta4Ac3N3rzdEcbGz6ogWlN5mbJZO3CNTaGZy7gVsnmpdk5EhcFDhjfGZNHiEyVPYL6UYOkwiIhosJCGegRPdAjiExEIhnsYqjwKw1UgqFQQmSk0APZKQIWjuTr9ox4ySS78zN435/9HqYuBSZAJkFMA04ZjOyum9FDIjMEZO1lKhqTmKJF2ymOtXbdUhOnHiJo5C5a7YY2thY9vSi1/3XNiNnIDkTl9zVPc7inuczoYEbTipAczv/poptuuQn/qnoCROMKNm2IPYgKZ2wYOIH4Phmeo43wp+QcCFuzgRVUsLWD6+oUYcTAhKsLIMsemJ3QCeE5AlrTwBiBnkJpw8Gdw1It7VoGfB6GVe1xOMxnQIVZMJSyJmhQVnZQLagclpcSLIUIRpQDQGFPwwqHQlzLoZZGtVSCWTQ/d6rJ1piefhGuVnvVOyX3AbfMTemGVraS03g1f/Ejeb3aZS+SMCfAdjFbmq47IbrMkuxsFs3tcqE1eFzmhsvNcf0ZL7/Cu359yL/0RzfDH/0T4aRkcAKgiwTT3Si5ZWNmM/9ga+nC5W6Q2P7BfCWC8ULaV3Yzy5CZsrpuVDeqZwfAgHg3+0S+4v6ynl+gwnoima/QfVvkV0BMGQXeItON7a+U32EZZkSjGfzX520t/FMfDfbfFMF+3/Hf+uslRLiMCdACBCOcUiR7MDLNkn/1buLrFQSU7Qu4cSezI+1OM1IpmrJi/gaEMT2z7BEgbntRPfNlmR2QGEIyPdXDQncKTJACQqCM9Fei97RMknCStL9eYSbe+nLwS5mM6PkV/RYzE2RSS2oFpUxGMlNk8hVhgt9BQGoOmayBCbeAGS2hUkIAaICMc52JUXSno4nubJmgkiYQ7oCB8IAAFylCKo3qHbAWxgYj3EjaB4KeBl0Opj7Cuv0qPxAhk5XYwFCIFGqTP9CMjeawUogQ1C4qdH0gpMsyzcxjk1Y970yPAMBG4Wom/mJc6R+RoMI8kbxayDvjQ11gQ/2egC7KnC1M3szyg040o8N/ebcWbvhoMOrfut3976FOJQNzRb1H6WWnxEY0Rl5mf/D1cZvYvhoBpR1OkeX5Hr6UFbEZonA6V3bEBYfo3d+X+MT6MyX6lsMH1p7N2dDm248y/TcrQHzK+Pm3ylunYmh2UySUPnyoAAQCCk3QyCi93Nl79kDPIJQGIdmVQih6JMQAU2AqUjIqAmJUCEGiGVxfwZ7+AkL20mcw7s8oB135CEr+D09YgcYgQzS7rbObWJclm15mLCt3Wl4rPAMckaHpD55G2yw+vdlnKGb7sp9GnoYzd+9BN9cobe/0ETCaamx3NbcZO4TSv3Doecbf3vj+kL4X87x+lrznGfzw7D85RlR3JvhqbE5w2M3AUPkAUKm4cyNhScM5kTgeHBu6cWZmSQPymVSb5ychICIBIWWUUj059qI73AHLXSBhE0LahCFro7xlsw8Pb9oILhWMgEClIZlCbfetgUNzpPJLQgrlguIMTyOBlFg4AkT9agEULGOIFCPS0wIBWagLEb1AClVkv2z2tIGikhwuhcyECGXxyBZGh2gApuSZsHNP+hZjfN73I6HMG9ZNy5974NT9bQcvHwTM3YHVGyx5WJD8fIRP6ifwO3b4sZjn+x4dx+NN/mk1p9jGY1AmJv/WrfG1kTKZcfyMjQ2nhInAXKplwEh0NpQXFuPn2aaVIAFGk5WFOgw7zTEeW0uN7TcIp5HWumrnKnfQ1ZJQC58mrgwAYctGkAb0h9UPVmWZNwSAtgho6DwCFSmYv3M2R2iEFaaafLj2sYILdUmcG1HvZWMAyAk5agyG/wgklsl82ESgFkQ55ou7B3MGRZzMXokmVrEZJYZCRBqSSpRx8GT2ZD0ypBYrSo2RSQRMZmdt3Q8lTACVVO8hpAIGWaoXaIy5ucwQnamRGz/0XDJlaUFlmqgZQzw4d4GDMQ618BALDIyX57l122G8HWw7aEo8SzVmpH6YzzBX15loMsJB2VsiHIRjpp8y4pAPqP1+TTSKY5s21k5oEkWIBiSZpkUb7kZ6FO40MGkGZGV7jqV3QNmzMBllDh+b/5bvxY0Gv4Js4R2tgU2NRlzRkB2sl0sQNBQQs6RoaVSu+EgxHfSTZv8muH74/oOE/PmZn26cFsJPD/4OCXxv6E3CwnBktAA4UdVESEfpjDeML/PygUa0I/lYSGi3oOH5X99mW0ubv/VgN79Q3KPqWfswrJyI6WncpAWBDhQBl/gt0upwh7s5HUyYJwB3yNPgJpEuWpIhs3Sjm2Aup5tNe+QjaJ7edTVZ02VGfoTLTZSsNHv5C4enUWYyejq90T1dqF/fk9pNhTqRIWaXjKZhWEEABURSiIIsFJV283UnujE7qIoT485UhgV7qqSCiLKTjNlThsjyGHajwftX0NNeSod9yZPRGV9xhwr8UBAVJJDyELJbgCFYkjd6ihkVwdg8okmRP9Hj97N/cmzV9M+un99ORf3bJvhj3+bRGuRqjZHyCssaIbMRLDKjZJZedTmTrVngUrSwlgEK5kSyeajB0EIAvLK8Jbd0Y7spb7RsZiyB57/QrYVLHw0W+iOs2x/RqUwCJbUArzExZwJmciKb2Qe/Gkx0dwLKVoLXIdMIIfvBI6Sx9ifR4BHUhoPuKG88mGYGgOaQOdNNGrCG5TGpH9OgmQxeNrsZ/eqwZtZ0NXnTZQZd1uQGSoTBoPop11ILqHHW/D3FNNFJg2DDHoml2WvN0MhCBebeaRUOY1LI0Eg848gEW+lgYppKsye4YTwZ0rAPCBtZsN5DDA91QKGeGdFH7G3ADVRIFRiGRmUNK4GwjISq3xvGT5zFE2oP1PlA0PvmBygfmnc+Pwn6DbJu0H1AtYmeDq/H1lcbMz+g9VTvE30BaMa0LPS7SCtpJhUQtBnokQAO8TtIy7w6UWtNzEtIeqngCvRU/qJzxNvq51HVzAzt6rAW3tUu+Ss/ugFX/dYYlUOzT/HLoRZsxUcGaZ0L8///Ov6ZzPuNhf92x++PNjOaIxXlP6+16FOPEEgwMxNlvbPCkhEWqBS1Ye8GQ6hsDwFRDJtlNJOZgIUU6YkRir1vU2aXQdH1Cvb77j0iRwycCRDlMgVZMYBkKlTr74ViW0gtqKyYaa2CBWvLRmRp9vEikYl6ikEGe4wfEyQqDaByAFl72qNwb+3sWNA/E4hElmdsvEg3pXcZZB13sPe7skyLsyd4obAiH7V+F+gMS4gxEjHsNzP+bpk+bMvF0j+pvbP4Z6zHzf5THX4TLD92ib/tUZm62x7hkkgYVsYw98pi3GJoWXzTUJjhuvqY5smWUlMkadgp5NxXpIyRFdckzw4fFuK0erDMkmmPAPzv3xXwHPSfy/976/n//PTz+H8BDMM0Ne8Oku8AAAAASUVORK5CYII=
iVBORw0KGgoAAAANSUhEUgAAAMgAAAClCAAAAAA8We3GAAA5xElEQVR4nLW9ebBlx3kf9vu+7nO3t2+zDzADEAABYuMCUgR3cRFJKbIoa7FUkunILjmR7LjkcimVKFS5Sk4qsqNYi5VYEaPYjqx9JU0RCkWKoriBBEASIAfbAAPMAJj97e8u53R/v/zRfc69982AsuzkoPDuvX36nN6+5fct3YOKX8CR3cifxVz18yhExDl13hdF4Z1zqs6pU3XqnPPOqzp1ol7hVH3hVJ13vvDOOedUoXNYOw7nNBeoeq+4AR880HqFvN1/68IDH/36V/+XBz52+itlqOyhjfJcfOSrp/cu9M89fLbsV2f7o4pbq74lWl8iIpLeI80FAURUUxsiIkoUmOkalnDMz0IAURGtqzTPqoqo1L+hIgoR1Vxbpb63jO5d44cgoqIiAPzs8gogJMPMTSWMZvBmq6NX39ALNNIsmsWIMHtDd4XjLud3iYqIIF2Cuqt1FQUIGjCPHiLqSyTVrp9KH4L8Jkl1BOMH6i+Ezchk8fiOt/ob8x+CAOHSZyoBte07+bGpNia6tq9jALS+t40BtamSmtr/Dqby611NuUB2OVk8/hGnnpA8GxAYIIRAQAGEVSxfppm6a1ONEgC8QBFMsYPz4vLEkIDVcwZQCBIUUHOppVqa3kqp55gs4Z9tBkwQ6XUAdZ1UCtT3LxVwCoiKXjhyed3ND7VQUadeFX7vedtt+jueCk4OQUBJN/KUK7CJ7V1nF7F3/vncmYmrnoH8baJooqT5DfCiXDwnmWxyZSIAUr5ol7mu0CHiRdXtodO46aRyD151Inaxr6LcdApsjgZ7wrrzdfuTtFB/J1MPAHhgAEaEiwhnr07QwTXPcYINMJ7wZr0FpAAmAwon7wGoAOEQgUNAomMgqigSByrE3qxAuAuBYFMgqIIBxH7u4L4fnKqgISxjvjdyd+PQ6+/CWExkiYVaakxfOlln4gvkEI/ezbGgTPzahVnrxu6aHrBYdUPreAjzrVGpy8MwN3rHcVaBx9plqOxoFUJ14EB3gSqo20b6phNcLgLknmaB4DtYgOsBMyikIwKIMzqFJmEGOlANzgQCaoBQIhzMQZxGEyhFjRRhBNQJ5sSRAkDMoJ4RKh0nKFra0oXRbGturb9oXQALS1hor3X7MzITy7luvz2rbUXRhWZVARgogEJ1n+gQQGVMdPJrxZd/sftPZss/+Bp/9JEvC+Gmhctf7xICreoa0ebDa5/ot0Ynzxy9+l/NtOa+cnhmcfuVK8Pl33zttz9y5Ffb/4XtrT0wuO/YLae+9j0bX+0/+8+muiBN950gSXCr26rfj32EeOiSAa+9ZMedWwrlMJDnr97KrSPncfjKkgOA51oiC2fcbefOvun5hcXWFWHPAzN7/cF8pzqtF9eGtofirn65VDopti6PDtw0Oj27N1pvj+B0Zs8P4CKKCoCXpUv+u0/ZKbz1qd2V5zFz8O0P7L338qcAAO3ZQa81nG/F8xwAcqg6ModLT++bnuOz7fZgY4fDPUAKMMAL4qsex/Gv/eMPt37kf39huddU/ph7L0bt4WCpbAEATu8sHu781pV/8NDf+fqvvO2ViK6uGB3w2UPv+xfxpn/6kb/9b8utNVMM/ecOtG/C777xxerbf/znTl553U/+xcqHRhrdUAEhzTMCTsJc95InkzrxQhx77le+9/TRrdYxlS/pM1/Fxs/tHQHKn71YfKJ085daL/TVbj13z2cK4PzObOfsr+/SByCpqgWE9twCwjs524tJDEn04VVkO3Y6sYgAoDc9f7Bja2avOGpxZMEbCMAUGhHnTizN2Mn3f+SEyVoUQ8dmb78QrSPdZXeHrFzpveLhFYu+3R6AoMJH7USp4J2I0XkXrGUV6AvcunQf2guOcnfvWxa3ziwsGNn6EB7/+PZ8vLpkAJauzvtKZOCOYPneeMXnCSW+YhhiD/Zb31PCBTgQDjq6fELgABUHmrPBZreneyXWN1QUogAo0UHhoMX2E3M7l/8PPKsaHYCthQ7EuY2iraPnwjYEQ4cQW6WQEAPAaAAiQYGRxkBQQokNbM6XwQt2OqOvvySAMuJjL6w/icuu2iWIjX6UAigUwANf/KpvZMGe4Py/+QTkT176w/4/9jA47BXh7Md/qnrprZ/Z+a6/uK+jLox+vffE5R96bEM/+zgvXFF94MjMymLwwMVyZr78jZWd3znffgRPXXzq0ltemK8WLv387PvfOXzy+JdfGH4iPo+zv/TUEyNgBGHCC6ARAC0AqDUxDBfwi18cnBysvnZz9sPPXL5o/q5P/vd3+j/8L8sCYokIcDl89QsnrLvx5c+dGXxjd4LZsxBQvu/pp9/13sM/GE9/9A+Wh4+uL7ntG5+Yue/UwvyBhfP/9Y91Vk+tnV/4wEevvuOry+/63v/rD+PaHduv/5sf+VO7WR4706oIqLWXsDtfztihx3fR+5lHPn++itrb3S/KMsDKqo8QCKkvh+b8++74l6VwWlotFjr7wgiAqm8KCaCoQNK6y5eu/CvuXVr0vjdc6OjcYvv2y921Y7H34EJH5+fX29q7ujyzUH723AE7cnwQ/3Sn15eZuV7vSndkBh7Ql1bLHm8637fZpwe20B8GAUR9lfEhGwRNAFANeWhNN4Uyv9udqdYBAEW4wW0uXG7AVZrzzsKScvGyAWbw3gGigq7iyMb3Au/hqc0x1vrN3yR3ubvOKv1+/qHnNvhvfoGP3MFffowcNBWN5J99tfjY//3nt+EDHF2kRVbln379KfJXz3zhz9s/Ia9cec+f/cT/OivS6alz6r33yfxyWDwkTp133jnnvZND+IXzD519+Mn+iJ/63O///e/7gatnSO7+zz/+Iw6iUEBwovP6IcnzTzz9+IM/+3ffOiYtH9n9m585iyPffrWYn4fr2PZWG6dwg/oSYakaYcb3V58uF604O3j96S9+36OrJzrbA8hCNdPbHKoblOd7H39HmP3s1rG366BNRHWXe+GmwakDg/JTtzw5P1y+/fzCg9MU0y4JaDZUOkO0YwDQHdx38+7cbmuGPG97Vyu9f9SeLda/vhfPEkIhgNnB0vsjsYfI8sV+Kd+z9NwnpH3j1SvXJ83/r66iAtAd9PrvXdk4fmapF3jDKzcWPnznjz186BdHP7ozXPu9zW8/+YpHHv6R/mfPPfT5/4QGfPGqtU8ohwFCwEdCvIkgg30YFJQxFDUBxOjMfFQRZk5NJpEhOiBCHDIDExCYElATLl84vHHTTd949e7tq9utu1/71Mr/88q72jd98sKbd/yxc1959+16ONyN2x56HmqqFOZ3EHAUAW0KUkMcJLVhyRbdJycEFBFxDBMgLbOnGGrJIYSoERCqD4S8jLwpzMYvEaAzUw06IbbivLVeXPrub/CR8tvOXF25sHvk2Ns/svm9L35i9/pgT8SuWz7udqo18WMagAmgUkPNVDdb4lL/yJdOCvPs6xDxDtca3v8x1xjDJ3/BNQbKvhpNaZpp5T1Xzx17x+L9o/jpB1bj6Yw3OxhiaW7r7/xv8cYzgL/3Ien1ec/f+NRngZnBa77zi1/RlRfWs2YgGggtGr/v6xevAurLvPJNiwKYeIPRG9WookbHCAINaSevAunijXd8PAOimk7qFyoITOsRF0He/8iLr//Ayn0e8xePjDa3e63YvSpvfapaPDn//Hf9Dg69tHx14U1Pb33LV+fe+/1nHitm7t56z3fMVnt33PCVi+09Fwm4Y9xc3psZHjt7Kc69ZfYLsjOyoqQk63/coIABIKKIZcs4NtY+RKVjrU0DgKJaev27Pj2YXhDOzVvwuzsxrU795sWd2P2lXzolxz/1h/3/RkCFWOV/9dl/OLzw1s/tvPdzb9IY3NYfzduVH/7wlZ/5nR+//LNvvZ//4bbFJadRube+vFD97OL/8PdebP3Z5bd85KHtN59Z3Tm099MLf+sN4Z+9/9MXfu1Nn561V77tTO+3A6S2J8RECYLz7ctKgRodDdRu//5Xzh4frd63vfwLp0Yb5E//h39+qPjjD0m4CnHG3ejLtf7sx28edJ9+6LNPyuaIEM3m7K8t4z5+8VX3lyRpFmM0ks8MOX1VRv7lRzn4AH/9OYZcGNNHyb/3mc/xK/hwU/sxktVX1x8evuPfHX776vec+92/WDt0YO4gsodSXKsoVHXxEJy4ou1du+Uclt418+BEk09tfblWufzzBz76xCc/cs/cHXjLvX+fJJ9/PlXyDdX9/Ca27N99Az/zT3fmaxeGuYd37gKE5gCAgr3Thw7iylVcvMitLdAyMZsQEr9+4pPfx6f/JR78kUAPyG6vX148Ls+s6rNf+s71KzbqPz4Y7BW62/jNSEvYEQRNUm9l58zeufs2upcX5qjn5/DJjSuvhpL60JXhPxjMLJ5evBJOYfeJOUZRixHyyLPP1jwiPHK6r3pktbMqVpObiCz2lEJVZvnbXupBtIVuV5xrpF2WzQvaLUadOSwKCgAopPCzFAV7S+JaWmi7re0p/+OEuBRJ8lnou+0Z6RZtr5Ruq3VQC6WAsob+XSrtReXO3EW54UCSjM70RPWiTxaxsPjFv/H4UfzU+9w9YYnMqkzs3WD2ZwKg0N+I4Jd66N6IQ/PZtyXJ1QA5KT88u3L8H/7yO7Ps6MQDuhTkdb7/6rcfvevIYJ53rcxp1e/tZslNUcCgKiIQdYAzIhx+w7E3oyMHQXAJ+ABAoYEnTuBtAMBf+tIPvW/mw1vZcwisrr7RZ7FrvuiiB7u3MjFhI1xY/yfZC2mSbP8uZmqHIskkeEPREXDbVVlARlkkqWrATHtt+USEmRg5fzGLmZ6ZQCgiKhTRmNSCzS4DTBYLgOTgRN0pavWa4b3FzO3bjVcNzO5eAYAIAaUYO4AbiT2JniV9d919+inddoRoHKvgVl2rpaY9ZvppZ3qytp8G5pnm6B0xJj9o07ioqhOZW1zUdjGbZhEAxCmyUSBFAcBijScmfZSCydcCorBqn4+7YRbI/ExTGjISQsCiU8J8AUjFTnKeRwqEzmPfxWksQGtYyszMzC8NfBWMALxPrXvV8kjnWRfnjy7AoQBoopa8tgoUNAgT8CNgIkZ0FlEswgG1HqBogo9rTsA3fUviHFC7RpP5PcN8eNeVoOXckc7s7s7qk6uXR6pgpzKKLbf7zlHUFUQRIyAn5mZsDPQUEoVGSV0C2q96FQ7MttuRDEfEQJDeKFdVIrY+dxabePTPej+qyc0IiFCvzvns8pdUFEUx3LjbXsBmhGoqJhSEjIrTR9toP/zFd0ITLD53DA7rXT968r7fW3jm1tbW2U1neoFXKxiBTYqJ7PTbMSgNZbDKDBh8+ZkfvtnUNL14ffa5WyhKFeAZrXov2acu3Hhx818vfZ+JXuRhQgBPYgQxGfzK87iIP/7p1m3vGHQVNQD/2m1HKRBohvLV1YUuBuvYew6XR1BNeoQCCLi+9sB91c5Dlz75TpgCCO7FY/2ZeOaO9vqjVz/+mqcOuxfDrqldxq4IhToUbyIjtKKBkYwMZsDWF06fvrlye502ZFi4L7snbqWSsrGNnxsOb3kOvzMENv/Ra7+fKv0IyNb6phehiGmc/e++8ciN+LEPcib6pJaogviGwsCMkkChLnpznUPo3IljHZhIJi0RAkv+21ZanRtv/a4G892LTnA3xOHqt6782Ohgz1ZvOLQugyNbK7tBROJKVaqMeh7eiXnxYoVVsNUPnH89nXSdgV54f/VaipHotfCTdAz+JzeOv3rtGTEl2gKiu7roVatjxbMudm8/+kgHKytApTSDJYKcYYQQiAoSYr5Nc4uK9iI6iihKmNBUSUhLT6oWy7feCYoBEHaiVljbi8Wyf/VLaJeLa63V4eDAE7PD6AQsECHDXruvjqquILxFwB/ycxQpSEAFc0AUI6XdRiNHjvSOIRJxWQ1steABttsANBKGygFTGDViX2DCAHiBBdhEOSmEGFogQhxklysRQbDTByorpeiFdhFaJXoZqUt6jJSaA2vpbqbj8F/6n8wWBSg0h2jBAXSSOuUJjNL9ITK2l0krJXvSRHJcRQiUfiySE6qou1ACkCrJVjBJCOkzwdIBfTQJhp0U6sqIoYl60WoVm5BsHlvqwwSuEYjKUFUTgE52tYJ1lLLxR++7rjXvksaVayoIyhTMqO3O1Gr2WY0IqSotrZnmejmvaaCqrHnxVIB53GLW21KFdE8BVGkg4Zr+vlxo2MbW2dRICBOA+23uFJaDqyoB6Osgx/7BsNHCnKQJ7qu5790+z79XVx1dPqugW0vt0SBmNMARjXSNIAmJAgJLAdUqIi2IgiZmCfsRazC0bwuImhSiEtFWLhpmZ1+cvxX9mV6cjXJQVV0K6xYmqkVw3uBdy9CKAZjpzdHy2BQUgGSkjodjbjnChGKFRAEFCsFyMTU/48BuE7lt7taGCtka03ntswFgBPz8vii9EWi1orZMzIQJJaaVTFkRmVJEU3ASvfZC8/y43SbCO1Vulj5VDN8fJogD3BehviZiXQPiSU61HCWeXwywiKmn07DMpcQHEYnzS7GOoKYwak4n0ZQkkils3BjHVDc9jLoiQA/BX0wB3hQohdRsRsnmjmQTAo1YE6nhS3L9EIO+QxNoHb8PgGTkR1IHuz2ShJFmgmbEZjQjYBYxKaMmXlO/dOJv+lQKLox9L5OSSKbrysTH9DUxtFBN+8Qm6rOJi0tZCmpbraYCYoKCr+sIe1nnmAAp5NS/7mOTw73Os41onJKOBBrJuL8LVu6zb5uLE58EUIbBvnb/ag+fgpAS2U9bN5OdhLUMz32VifWSUV7s8VIJAOcI68vkIqWnzMSyfgOdsyxH8lJwgptJ6FRT4zanBs/pTqkIPtiFYh6d/C4zxhhDDNFiJM3M0t8YLSY/h0U7ALMYLWdZpbtErxfhC6MxWUCkxUgjJHaXQJKiypk5pMhI2xXeixRevYr6lnct7xSutdIIDKv/JvdUMwq/AKZm0vC9Kt72GBzaWIKAICPEIiMAIRJ6BKKQBokGEyOj3ARajCZkFAuAGCBwQiwtRIswIQghopgRKq7lA0kVVV+Iqjrg4EuoVMU7542+aJXWghLa6lTekPVIIjqzaNLwEDE7m3xJoikW4AUqCRmO08KaFU8OAGGWydnjboVPijFNVy2x81Tlyqi5N7nEQMbO0BKSY6YJAbLcTZLOiagKQNOWZfJJcbo6BwisYWUnxU9TrwT0Kn5+jBONydQNCADU4GkQE0QlDYwGatWV0sHMYoxKixKjiERII0nNJApgImCEmRFEnGEEc7KiU+cg6gpLK1JUdL7lY4vOINbp7LnUfwEFYmoxmgICG0uWnGLAJH6B68QdsuiveXhabIjxOkDu+q+Y5FZmDFXP7fjvWI/v+/yPv/yU7AEImjLxiDrS1ADTlDwJNcLE2hI8jWaRRppaVMJSZKqRRkaYkEnPG+q0RSfSdiKi6giID5ryWtXUedUi5twoy1OcYoaZ4dEQLADAyGyFQ3yNeppxNPhCSJOpRDmYEaSphFxoSC0Ya/OCpMBMmyzAKYDEogf0fI4Dqair01chKTPXad3XFIQnMo/aBIKTurO5SMCXUV4YK7oposqqeqykE0CpYUpdvVFF068EpOpLznbII+PYEGykzERPZOJ9zbf9+EcA+Pq1SRyIUERFlI6imoxQpUCUAFRFTPyuFCn1V1WgpuZUMU5oyzm7mkN2Ko0BKQKj7ASYkRFGBgMZzSJpFqKFSGahljFynYanqg3PyXgUeQKlifs1PNKYMs3KZcE6NkmnXMMNPp0GbPsR9wT3OsnYRjIikGbi93kYsa+daWw/1YxOPFR3YlocTYOF1LruK53+yv03vvk12cPpayzzahqdnnVgLFT9ta9olNUEWTK5ETJuNxb5juTqE3NZA7Px66aHRASrxQcaW6OWDbaPR8bwe99q7etxLX4BaUyl5M+wJN2SY45TRJXNS8ByHrPVHUk0ILQJFW8yycGAwGseOrNJlVLsRVXFqcZxZjKRfTgUWupOnoz0QaDGHjq9IJPjHyuYjH+bm2bjtcKUFMlrUS9oI2OmJjM2/WjsTzTCGpzqxnhJr7Mg0uSiQrRmF47heIPMJwkkv1IgkBh1H7lOiso8bbKvPxNXY5+O+bnR8JP8kslbxq1cyyN1X3X86n1jbUR3vSATnZOm1tTrJtvYLwQmsQMmBpA1yHhJxsOYYpIJvXTNJTL2c71MjW9yb/wWmSK8/Y9c9/Fr0BbH0uvlYJZc59v40lR+7cNTirouanhFpmfoGj6QccXpZieYtQExtWLatyBTT022NCa1id75FBCo85rGUisCShMTAqYJtUEiQcYEGkGLJGmSQaNmoSo0Eya7p5FajQNJ0XaS0o9E1LsEGlVNXeHUR6XsYyIgu1jGiDGDxtpoAcQ3odMGojRTkCFUba2IMM2HltIaqxvKWDClx3KJoMEZk0qGqJLxNzbgaprK0nycHdb4sa+36tPL0wRMOXm7cVVNjBCZoADhfiulgXbjstrBcp0u2NiYROP/a4Y2TU/T8uY6kmRSaskY5tcoqhHFzRgnuYi8Pj83GrqpT4xpNv0eiymMNS9qrwcyAQkakDcB5MbOh8RSE/NBn4IqyJRQeLDllY4OKDxRiELMEZ4kVQtQnEqH4n3RrtqONInqPYxOpWh551pFC+oEMOfIlrYKr75wro8ieNAMNIsiiGZlpcYQYiCDq0KsKiOkKK0tAAxwebGdxpZruFwFIgWsVhQQX2n48Ysosb5zDuV2bKMaqq8qITDyhhYMgCCo0KghIGrxkhXlp28f9nf3giOCRKoDRVFc6sTt04/2d0pHAKaOGGm1u7ezsbFeXnLD3Z1QVdzYXkl+pReiBBerMsYYjWEQ4zBUhu1LT7/F5RQ2pQgkCEOsVOhBqLHsviT9UVo8BZTwAfKHwAiXfuAv8ei/PvN1e8Otw7KYnzlMPXtJ9VyvIxq8tThCW8PNpwfzIzxXvvbK7/pHjh49tnMR6MTZA+t71tsZDXt/8Docf/y3qtdp8tTYxurwxObzna0v//7zf7585QY5N39RKZ8NG0Gdr4rL7UUTbDsf/IBeqQq1Ci/+yubgYNTSq0kocNHt3YjYWb5goXxq5Nt9e25j+bGr75l7RwS2sAyJZeUT8wK2PsLo0Ne+0brj3V/v378ijrhnQ/mnm+/C2Xu+Vrzu8UPtjivboZgtj/wmfuAT5Q9uv+7+zqO3x9Xl2EV5dnCoNfjE0tZi2d5CeO/25kGon3v2c/7Ot25+5PB52+tuz4wwIzYKGgblMHNV6BMSL/XaG8IrEGKbAthgc7S0uVjsHZytHncXN/3mG8s7bux8/oG+XIRr7fL5rfMWv3Hy5OG5+bNnAjZOkz7t8RK2vufcC4fvmz/u3nyYPK4k0F0I8f7B7bJ2HN2DdkgAlN9SEMv3uOX7XnHktleu2s29sKCAidpMD+Xca+7lra1Pvef27XIB6lu99uLqyvzdy70bPvbqx+c6R1/bPfjRKpYLF9qBIoSImpSFtjsqVHXRCguIM6868P4Tw3Z3tzc7OILhFuxmO9HDvXNxdBllF4MvXbjllw58cOGuxcVOZ3bGhvcZPZKbBvKaWazdvjpXvqFz0sWUQyJSHJt1OB5OIhy2CMDdMGwpjg958AjnC4aDgAUhsAILcmv72C3+jis83F52BFgdKdZicMeWq3tWDvUWLi3dOTrWCs5JLZk04XRO6gABegeq1xxMe2twAtguZQUMOHrUwpkIb6Hfu8+WvtVeicjh6o0AwrZXrU62nyjK+ftveWKmmn9njCVCUqsqYM8iICMgCgiJqpW1FhaJQ+yAwZSAGCUIRWK4q4LN3//GWAUAkNHsSEyObvXDEfcdGwsLG7PL3Zn++m3nVzdKp7T5UFGquXbpC5p3hcR2LAl3x6H5ESVHNaXbkRGVjCK4maDgptHsbTPv6A8FuoYRRTnrncjInLq4tadW7L7gTmTqhTggpWLsv1qV9oK6rnZq8JykYgujXqdore8cmooQV3MLRejscBQX19sSgJC4UpBSuYUQE8k2GkSt3HStCbUlZbv+vqkoBrIVN/b8mc5hAJZzi/wIeAmIWP9bn7PPf+RTv6ff/cPnwp1FMYdquOn4RXtN2Dv5jJ48d6hFAI96H274o9Hc1z/ydz85uKP9LN3MLF27XK+686PPLv6ri/0b/uzhD/2324NDpUN34zNHDt45+oPbzj30R4PfWtu49aZTi2cC8Xl7KQWRL0ENWEc7VgCghmAErvz680t3j2arYhmtp8LoLMK3bt5ySJ7+/EBPoegMqi/tLL/It938U4vaefECB/bSoJL3H3vxT1pv9OHxi3LXlZfy6wrxMwijEggQoqhQVF4A8f1UoVWiqKRo7xJOIZ2qjN5ZlWatM9SUee4DgNkwhHD1Corq0IWlje+c2zrw3CHnW6sHdmc+fvLN51b+cu9+qRY/v3nf6szmU6+Pz+yc/pMxABxfhVy7E1mhdTBciOdOvuZh4Dd++HUP/p8/2i7hcuJ73tcrhJgimZC5jFAa5odBkyNQkIoVwR07e/zOB2Sc3mlCxBuf/4nfu3LP2Td++t6v/HbrBv75dzz46s07ADx+shMd9gYLe7Mbl29uV8VeywvwtkfnXywMALPXgyLZuk5prSRca6BCIdJOdvhBK6Brg+6MLaM0I2Ir0iscEKMgUEFvcCYioKtEqFF8oC8Ci8oESlUzKsyEiLHqQpMLU8wEBYPCvCv8XIVgO0sMg/5gsLML+r2tgbK3N7Rh3Onb5qjT3vAd661oJ+ZkQEkBd2fiJEQhc6oCnZKqQNqmRXjvruJ86OhzeDwlsrAiKdCEUkkDIpAc8IgGQAww2mVxZsmWERIx+U9K8ExE3n1EAiXMIi7uDjfP3XKV1tnaKavzbfjC0WtrZjCzM0SPnV29ula0Li55p9XXRpeTh0LGBoiYWGPWABgO8+6FjCwVKND1hmUc0gQeVUQ1nZMwPusgu2tc3m+sAvVOal/OOGKONtwNkuM3dRBHBC2JvWVXOFjhXbEcTGBGZWxXy3OtYKZ0FqOPgaF9pLWQ/Ti1F1ZyCGifC60+QQEQTyxiTsviIBYRIQJxoFMoYEl3CIXZzZmiMEo4Glf7Q4+atIQKA6AAvapQKIm0vAGKpfnY6slBc2FppuMW0dkwQiyWarTKxxC5VI5kacc7YlVayU8ldfBGKU7G1gHAdmc7RbeS256+Nlo6GeYmATD2oKRkgbFlM472utoQrBMMsrmWkwbr+ulNodsrUzDcaKqtXkx0YsgOPkYzQzQDYKhZARPbdKasQ7bnturOpvgIARxMMc9UOy+jAqTAapNWRARUEbH0U1FnXlA1MVWTYyJiSoFYTSGAZh2ZIrQptmJkBEEzRpmJjFGjGnHI9puVAtWp/ex2aP4FzQKLguxpHEyNeMKpwv1TUWefTd6evr6p8ygvXOPBQzIgBYAU44ersYNpsm3IRHQkjhOPkyOhfl3tcJ2I3dfmZGNxcmx3Npk1jdO3Cbs2t2t7djxgpt7Utn/tV4JAbWscYrHGUTRtIjcBMBKjgHEBiSZrb9/UTQqHZjZl8lczFxPdmrrZWP7XucZjrCdGOhOzc71r33t8se83AXTQ+GBqN07+izobaOycq0VBPX1ouH/cbwGbHMixNyZJAo6XNrtQQNJ01hrH/ixTi1nQIHVjwukqgm4nFdSwQtMd4Dq5MNe6T65f4z/7IpASCP8ar9N9KZgTvW9SEffPbv1lktom5G29iFNrP5lXcz3n89jDk7svfuxCjc1LrvORidi5cdcEEC8A9qCNQIGktZbGR16zkynrXF+SsByLznEmTi5gJnQDG1LK3a8PN9IcPXFqKfpqW2vmVJ2qYa/e4ILa45ZD4RPuso26Sm7ZE0B3zGJSc3DNx412qyNwUzwynqPJqAqQNTsnFjSvzTgITRAwrT9nDdllil7NI4A0PCL7eKS1j0fGEmZaeUwY0ryWeDn18dcg7qnkj3rWAAhtctATkne61Wn7fuKOJ5IDmKjlWcZmtUAdT75MdQG5Wlb7U7aQTPDINPM0gCnLq+zoJ6E5FQwNHspdqd8s44ETaM9NSmThRFR3ik5Exk9OKIua5WtHdzNsGeuepnVpBjSJBxpF28REQNKkk9JXSKDYJxwm4Vx9FbPNAk6YVwAEvVqXTD6xDyZcqxP3N7n/+3WicmMjIw1sXJavzj7Guu7F6e74+gexg9pxXkeQamQgaf+CNPOXJVsdwKm/EqYNSGmwSiOBLM9Fo18VqM9TkvFXYjeigXXNwo1VPgGg3GlC5yAmkmr2jZvX+/ay8OHa4slp/maSoKFnjsZU6LSRsi/biNl0iacRXRDAWiItUVIdXFr0fGge1EQUdAKFijiFiqhzFHFUH0hHkJ0smnMmTk5a73lAwJ5CAJrBzGiWv9NitIhWiGU7VjBirdfIkTxSNVGnjalBweJhiColHTmV7ZEWiIwfGwilgEapE7DRLD9qUaCSohRj2SBic0PWbI88JgVaDoBwQQE4V2sSwkDzRhjNJEUJozOgPV+OsVaW2BO4goBgtmi0FwWAFwD9KRRRN1IrVal3kiaNP8btsAn6TSVDqzmYlCz4DbsLACB9AxBCPS0ChTjJjGLJMeBUAA5dY0DUMdEa1tdjGUZk11RqUEWAlORf5WE0g2l4eIKnJ1Br85FSYUhS93KyODkpApIIkR1rprZextqzUdulycWwt6mTPMFa80xinb0hxp0hx0dsEYNJqSVTwh5sRISgWZEGazVSqmlTJppHg9CyzKxJuKGNemT5/EgM0sAnYNvEGPIV+4nG6nJPMGuQWdQ7D0TSSZSa1YAmu05B1RR71uTxUTURpWg6wU3YyzZ+kq9KESjRcRPMLpanwCBkVLOUZQSzYBaVxHyXDbZIA1LLY2wg4cxCjT+Y8n4tEvMwEA4pn9iBzotPVSJVqISjiIK+gsBFcSpOnffRVBydB+gQMbrpvKlAHOBMoDRRJ9XigWcpwnkVsfleBUaLMUaYxQAzK1tld349lsOOGzIA7YUy5bZpDp5Q4byrLMFOAIL5GagmdyZIiCdZkxTq0Ypo4sF96z+GL7mkBuP12XfiNduKDQaDUqSj420nMrboCcaceC8t0iItHaJSC0JkX0JDfcxYS7C0jLxEQkGKOqO2lBMFOTOnooIoCjUF1MRFUYU5gVLr5G91oqJKVRdFk+qQvN1emcagStGMeUVEcnTazKIYLUQjQ7QQLcYqFJVL3uos4uvpVatdVJJhfG8Wkk4KtLFCnFyNNM9OnNDlcy1MJefmIssXUUFKDBcRpTpTKtQmVlBNEmU7St5WKNkeSXLODEKrWrHJMo0hWuVNautrjLcpIupqxS+1dG2UFSWtyMSVWsyn4Eqe46zfJQfq0/C4WMZaH0jtm2iampCwIgK4dh3dyBqHKdsm7+lIzB5JMwp6uYPZ/8VGAmUN2XBAhuYUXsfj0Nga4+9NH6dQqY7R537QPIWRBRA4P2lS7QOANYyrtU5x7Wsmpnm8IpOd9epk4tAfUhjNUoJ6MKaEi2gSo5BiwVJKZjTy4siqaIJISIyIiM2BIDEfeGkmCNFoHO1pSvdMlKlOHQXq2oWqFj4WzrmiU2in7QQ7NNanCiQNYiaxwYkEAe+y4yVvjPWtwvAYO9jAC3AIEbpnZi574xkZxNQQokDBUQWxKmK3igM/CqMQk+/XIhQW8UQ4GGIMAzElRBIfhAtFGTb7N760uG0cYTk41TDTI3zRW1C2WyvdYW+rvzjT7ZWHfBd4+PJMHGXdmRbPqJVWDeClyce6MtLMcyDgRYg9CBTJBymWtoUyIWWDAUZEE4kADGIwiYSFaNES+KIlL6fsOpKOJjSKqRGMxsGQRejr0CIR4QgTOgWdaAEAzjkNZUdbrhWdIzcqN7a3CFAsOW0aUjRcLNJ+2rrQAyOQgh0MqRmK1KCxQWhZPksN3EhSBjWIbEgcFDFINYkxQUIEMYxoHArVosUhqyzE1JRMp22XXZHKCQSBcRLmcAK4NpxlVbM8AAhPLGFFQ+sIViRCRcSbeAdHWAQCFFSDjxAlHCHmAgoQB3eGrWpMWgIzMfVAx7mMvTUKCgtUdBZ72nOHqGGuHYtVmbkcCVoYOOugdNXIWt3RULpb3lnrxKM+8a3kLSTQfGBIA1Hi4bknvQpSMIUCL9jDBh020Uc6CC3SImE1aSVYGEzE0oYxRpNg5jaCVTGRmppBkCgKhNV+LSMRaGYot66uDW39hLmyCnHX+oUKC3VtoWhRxEJDWbAYtb0TXEixk8QjTKQksImDOUwub0is7xOAF1QwCHZRot72MklaNdoBx2ZJwhfBOCatmsBIoJqoV5OjxUrIkOFqhKVNFKKQfHh7hDo1p6IYmE2TFq4hLakqTVg81/CGOSxLxBrmYVCB+givojk8DQGEcFFEQJ+j7p4mS/1RAYEo1UWjwgReFTKOIYpBUgyxWGij51aoYcaLm9eZqwGExaGPXZYulNZy5VDau17ZOvaY209a1GTI16Rlh2afcW6C2z1QYhgFEaP6fCDUliABZnrLYMzGrI1RqO2RvI2PhKBCkgJ5RWrfb0WtRuwLtQohbDpmfKDBlxVVRH3lVSpVEdtFGOvM2gTk1J42qk75HOkFgoEIhogYqyCT5rj1WpAB4+HXpqFNWFgEKdEJ6JpeEISRArjR5qG0r9U7iA+lS0jISYJsyoFXpzAnlL7p2LCq/zazAwCU9V1pboGAj+ZxUqpiCQcZoALxUbwTBaJItq4ERZggrYCC5rpEC1FE6VyMVFjkjHlBW10dDI0iLWPLwc31uOrmMpruSmcUDDFW0ZcdKX014gKHfWn1C2X7rscVdeZDBAi4adKihNsWPuNU0Xi8fEsVG9JThz3tgASimQEupTkk88AkphSOJKWIaLQyJIUIghYBmMmeE4qjiYGAGinR0CdcNVhe50jptTVScdJuGbTVksJ8uyhiEQeFxFbR8m3Khb0emu3vINKhkBxLLVJe2haTOKHZr7RfwMbjRXgUl752BgYgh48b8ZsFV4KiBqGZRILDyoJZvbkuLb3JCOXFZMgCZiaMZjbAhWHY2tkdDOxqqX7nhb0rm1db0rs0szYszm3NxmAv7c7OFMNLi7oR4pXR3j7xS6aM9THYjFW9uzDRsfeFx5KLrsBCkcI9LorTGvwmM76RWk3mg0ELgzOFKDXljxlssczmZZJagECFc11xLsqCekWr41QK5IPnhUznaGhn5Eg6E0ddmAHUstTKJqI6jQ0apmBx9oWU+UCklKrdEdBaGvTW0Dow17jixPUYy7I2LlmbmkWo7RIR56wtIxGBdErSgSIQB+2lx3IqfStEehReiui9iJiPJpQQh3FgoyuOXd0clQYXyv6sXPFt67Zc0ZgG9Rks2dRNOFJS6A054koh/Cl/Cl/7+MLgj+Wrv/YlDQapyEpaniHG7OZHFq2QIlJohjJa3CYtHYcqnZiOY8Km25XdxyPS4fkx81z/Ep69sjfa6G1uhGdbZ2ae//xW3HGzVXFqcHB79hlb7obuE6NbFmz73FEZlpuf3uio1eiXTLrRJE64e+W0Sqi3imd1vIUPknwMP8TfQss5dQrXarXanUKd02wOeRF1TgtJWycLURzsaVsAcVq0vIhzIlgsjuPEB132PjgAKJx2TuKf3nPvW974g0fftfD5b2xf/vfVJ6tvkORzZT+W5OX++mB3ndWGcWtA8kM33j6hMlS9A+BaUOe89957V+C+9yT7K2E65+Tn5p77n9b+ieNffmzhH31t8/ELWHhdfyZZriTknByGSAydMj22O+p09MLw5NVTbz63OJ9FgGSRfrnz4D2d+HwxfI0Newaj33Iyb+eWO5dnrz574sK9WyuX393uuaePx6VwpBN7Dx4/sT7/ZP9kh/7M5isWitHF49yotv7HCkeP7LUr1wU2dzeqUevVu3Mq4VQImzWTSGc4fx8gw2i9ZweV+XfPP4butwkvf3TmHYN/uwsMnghO64FgV7YAkC6mtSnNqQzicFCeGm56HSeeUcChs7NrV1oHTp1C8AAhpaDNvaur59/5om+5uadWNu7WVbXXv/CK7duL6HjTwl7vps3O7Ghm7fLJRXPnDzi1nV++1Dm/UzkTD4zCiKF6omqJxG0ba3cboP84gEi63WD0d4riDfcE3//nb3jL0+fbinDZQsvBATEIIrYzjE8KsYREF2VU2fkDu6NWmWC8jwEKM87v9q7c8MpHL4BKiEQTaVtwcxs3P7Xcac+00D+0eEP50uvj3U8dM7ibjspyPLG92Rt1u4ePVnuzRzaKGZz4wG/MP7nLnCwJBcJ5iNcSkk9qooQ7lz/DlzQ5LhUCDxRYg0CxAAIG9Sbei0u+bUIBIbxABWwZVVXoI733sUURODovAmXU8shlBQCfQaOLQGFxpQt4z0XvFd12ENLErFITDhkho6Jyfr6s+m3fb88Kji4EFJakXsr/KyjeWcQ4G+v42meknfAkSNB/2Z3GJz+lxSdmH/z003NFCzpbhlkVoZjBythG1e1rd1SIACgcrdhxC4OtNevNuQHREoiwNO9soM+1ZQ5Pd+eDOYi4YSlFL7b6vfkz21uHnnejUe/x7kG+8OCFh9fne4PO17aPbPSe3lsq4+h0/45C1jcW46nSfvtib7YgfFCHKqPfbiH9xqMUrP2X3Vl1vqVhlCCKvKb1wgvQTlW9/bNh/i3ckKWFflgSuG4YkXFU9aS/uOlmBx0BRLa9xc7z/uT2w9/61OoS+8ouhHO7w9Bu2aZ/fLVaWf/CfbcNYwsixc52p7M6vCg7S185/HSxd+RYbG/7naVtXRzq2tH1lY+fePeza/9evl1d8fH+m9ZWX3js3eWpS09ePLpzXxvSGrmCJSU6CBc8dkogQBXhxf7qlxZva821Z9zOXmEQAMYv4BUvXbjw0zh56kP4z78WMP+aawqX8bdXO7csvEvvm/noA1987Bce/ujpLw4Z+bl17vL80y8N1qsnPneVMZ4OJC/d0l76K9vRfR45X7YO4/Dh6N73M7ffflI7JaQdrRjb7HSgRsnM7kqIuUraVVms7Y1apUGTzU4VC1L51Z3lV37d55MxokHaFuLK5uHjmG0tn1josnd81Dv50tLluAPfq64U64c2N7dGodvqrA9njl/yPay9dn1tq51cpylnV5TqpWwUooGzc+e9arKmQcBTIpY4mOmzsmE2i/cFeupwVG3kZIu2jmSxjrwZhYwWS9ZxoWwWM1pFV4bACLORWQmLBlowiQylkcblCmYjEuRijFYHjhJ8FdIcxqBR4rHlF5veJfdEdqF7tMZpgRPRg3w1QcYmr6NJj6h9qWO3b1068VPE5WoEIfXZnMn3SJLiSTIdMNQc5TrRuuwras3UbvF0w6sQV+Gwl2KIyR7JXpSYjosjDMEgkh0kMAnGGGIMMW2XMDMS1sDqZAumM7WCmRl0sH6MLEF1DkAYFKr0oi2lalHE1vDKWtUuXMc54kXhFIxPZGBT9sjTL0jUCceHAulUmlEdVGlM1xx8zJ7lOjQz4SyJ+wzd7H9pHC016QGAlJsKlkjji1ZqHQyVOtKdMLVKTjzL9mAzjuleoRrVRJ366IkWVmFYQUBOGADUIfvYLCfsOyQHXYSoGpyZdEN0xuSgE0BgOUALyQccCilw6SzRhZVKdAZC0rToLJ43ItIqRzKEGCxaqAqt2DIsM5Nr7XqHUlQnT7i05cUnUrOWgL4nDMmpu1ATZB1Za8JlTQmkieHlLbmJD7S2oxqazgOpOQnpMKR6pdJhUmDakgySJrORZsmd0cltZldU7tUEk1AwW4fechqUB4E2CKAAG84U0ZymxDo8IpLy1JoYYgr9igi1jjaOY3/ZryV15HHcmzE9wIiohhREmDNG0iKJZTY8XH+gnrV6puYXGgGUMx+kzoW+knnESBPJTiySYJPMWJ99lw/et8wlJtkbj4m/mZ2Qj65CzaXNpXTJihGn6jBconfivQCXG9aqGbPmDWmS5vcu1mcVpQb92AFV5582snd8dkMjU/eFqCYWhxMrj5os6jjXxFTWPJxlgVn270lh6VRAMAeeJMdHmlM6x1xDwHfGnSHkeqG3v8Ylf3WVb3Zx8mt96iX3VZLrVZ8g13zpdN1vdsn0j2t01l/n8et1jy9T9fpXjbXy2qWBVJDp2clvHf9pBPm4zrhWDVim34DpKbSqZlsAyf2W3b9ZBpb1vz1Yp/e8/EABoIzTpV4h2IAiNt02MgHj2JxqaTDW0c1UkE7VimZiAhOzXIe1Ss16JAEFg5aj2RyeU4qzkENv3qmoc85z/RALp4VX4EotLQR1MKw56iv1nji/k/a21BV8NMOtCChwAIQopIihcOKAEASECjWiSBZikR10hVmhrmgDokrnokARoy1GiEB92lGqESItG655WHe+WnMi8FqZVVKUwRAtVAV7cailcHUYdqW9V3ji7kdZhxUkggAd1TtrFoBir175/ez7NYCgJ4kZWOY2AURNVcUBppLEgTKjCKpAqRCtz9fSlPlApYKMK5vQpNlTCoeJOMjMrBKmHRHhTCdIOvQtgrSgRkaLaJcxVjFWasBMZyiiifBT4q2k7UMNdQm63YRvaGkzpLdoiBkbEioQRzovBUAKHDX7SEVUzCuUzsGrOFVfBBN1dB6kA1Et7kFTLkrKDkrZILZSUCGEilhKaYwxBojFkUazslXp3Eudctjzo7RXsD6YrFZMSnVOTfKGSijWDiKtSOZRX58D1bjwRCVly8DFtCKqllIxqU7ziihUlE5FVemcpQROZZ3wQdGUVJPge410IGTKOTCLIrQQozGYxRRkSLkotfJJhlVS2KopNQZIQ+l0a6CQuu9VNe9VSOiXOfMBwhgFRgNTWAFAynyIRDTGlAWT7ItoBNKBnEbQYJJlgwQzGcXk1SZY71l0Lh+nqaqFDxrVW7tw7SL5dPM/qyHI4UyTiIlgKLHTyf+MS95m6Z1T7EGhyCEOC8ECxRKzR0SQERKhAkpIx0xXkSHGSkM0JY0xkIhRn42dyOYsdo0mUpltukrpsLdkJju6EtUXhfMKdd4V9NppkVsdLzPtold4wgaaDvxUIm22iAaxaLU7iMD5HPhtAj2qgufgMcQlCEhqiBZMYgqGGig0Ilhy8BvEaKiMwWKQYDClJtRlJlsFSFhIrkczE1TGrUXIcHTwyhGSEAf1sSyco1fvnam2C+uEjcXQa/mu98Q31tdg+eTSlLYamTwAtdQyPHkBUWv9xZwuaxD45nj5SegHUFj/cwTShAalNsfz1wl7qn5JhqLJWWiA69S8KACcr6MOtRlrpdaorc53bTTe2BAcK8fRAE0JAfjgiZtRdVzSIyJSxFgkT2MlQPaiFJJyGg0aHdEyK5xrtSApEzsGOkSJhwYpwg2mf98tiLTMFubECmdLqoJCq2gVpaoMIVZlwZk40NK3VwZhV7jbKog7v0g4STvAUm6xo3qX/tErgBCxew8+71UgmUfgLcYJPeIU6kFfpORMpZkDHcRTVGFFBYWP4l1VqGMrQsTTFRXpAYQbzkGV6mFKgUZCi6hzB5+iEHNOFL1OCYshhBAhFkZdizYsRr3581W519aB9QTt+YGm5MysFejMFa5S5H24dNXJQ1CnAFNyZsqIrTlonFwwtrivg3O473tjygPNv3PXWNzZJAFSJ5gjRhN+mOzPr4NiAjQh9RrLvUwXJjXHy8P4/ySILi/74//vy0/D58ZWmTCXJjZTN06tse2K8X/NW9BUkPEjSEYS6pUa74irHXxjF8n+VxHXnaO6VwTk/wVvcAHfY/7HQgAAAABJRU5ErkJggg==
iVBORw0KGgoAAAANSUhEUgAAAMgAAAClCAAAAAA8We3GAABELklEQVR4nLW9ebwlV3Ue+q21d1Wd+c49z5paA0JICCEM2AIsB4IBGzyA/cDhmRfbyXMGx3ZsJ56xE0h4jufgEByCwQYzyzajhISERjSruyX13H1v953PfE5V7b3W+6Oqzjm3JZLf++PV79577qlxD2v41rSLdtpSpxmVAz/oReWkTcHwd04eiX/hJ//2R0pkyME5qsSC7QtHyxD+0A+2zn8fHrz1sevq7zcfefy6ZdsBh4M3XXXjPcc/vPun9n/fl/f/5D86dv8Vd6z81Jq5655/8Zlf+bm3f2G5KRde9dWzXL/y8Zc/FNzUG6xuW7nuqudv+OU3r6eHTv3Q16t/NXum/Mazj5y+7De/+W3+gY1gyMOnW8cPf+zfHOu+5h9ePfflt6WmGVTB9omv/uKfTb0LfzL7zl/a/d4Lszok6hyMNbCGWUUUqiKqKgoABCgAAKqa/6tQVdV8PwGkAEuLBNleAij7A1UigIjy3QSoiALZ5ZpfoaD8K8BMUNtrs4K2PgcgIiIq/kfxQWnTgplNdgIYL7bRd9+15RAXHc4/X/Rm/39tWxvJIiLZhKAYCYISAC0mRKHcbbGqKtJVaUIVUEDhs8u23p+SNJuI8ZNUiitGtwSIi7khItbsmQQVVVXJW0KErbMxHlFiZmKmbO6LGXmROdiyGZOdZiNyL3LZ5OVqzCW3+y4zRZRfuJUsXmTXJZte8gkALOIFKl4UKqoF6QLZlCgyykkTqKqubC45BqNF2RB7UVVVsxqno8tMr4e+EhGJy5uqks1ucb+MMQZdliGgtKmGASZSJVJRJb9uQeMJoTGjiI66ypzzCAhgZMRRMOB3GwDvoKoYJl0REPq09YQYZvxVUjAIUA7GUuOFt+YkJhglQIgoG8BcHEATGl1AW+aXaWI/jUQK2NjAMBtrGcRMoIIDkNFgdq1WG8rMvHvqmrACT9uFAQYZJiJm2RnxaL6lUtOIpGi7KoitYSICExfDC7j6rOeAlHQWzjE5VWJVZsMwM44KSSk518iYvQBA1HvnXaoiogCrTvJ53lVsYXYA5B0AaE9aArAOqGBdAArqOZmYESEPAJSxLOUnTlyRDVQaszoA1FeijNlHj/UFg39XZi8E8xZmz3s68ZTJKxRQYwFVBByRhxa8SJkaUA1Ix3xPpJcQqV5KtVnTOB8Hnjwx2/iS73jBKUW/8u9MxKNuEW29ZjwGagIQEVWqUwwoykqFtiMQacWa0TM1KsGSAjoaxHzUtm4ShEoWIC3RiJyzk9XU/Iu0/ZIOZWSXUxNnOj3T6iM9Upw5Yj7Ta5GoatpakUF+LJdCCgUNJyiLB31S8Av0yGSzskYXE6VEnE2CZqRFvm0wZvMt7D4588w00iO5SiEmUC4RitEZCwXytSlhJjLVbTwDZDKGQMzZCIaTjY5KCsiIvBRKTAWKyRqV8WBOA6QiQiTIbkxE4LIAo3HSCbqfYHZVEfW5RNyieC6Zwi36xmTf2cD/L0/EpITcMoTjIXrhlSN8V5w8ahdNEPjW29LWC8a9nrxrJtPHmJGHfQagxB3tIieLbMiykd3SbqLRTfL26oiKxh2gQnEoUz7HxbnFly2NneDYoiuXSi16waBeOgSFgE5jpxEIfqJRACidlIpJAiYQjZj9uwAgERADIHcppCFNRlSOrY0rCHOiaRmpeJ86Ee+9V/GiOoYouRKCioIGPRIRvbj+fJqAsc4CKOC8iIrwSrdTDAm438Gm42Fi427Ow+JENNNrmisKhe23zWCNILQGaxSGSSW3K/zaGKIQ5SxNIKBbiDNDhq01ATMzAcxsDRGbMZIcYwPikWURlsBENF/fHxgIZpUBAhlmIiadLpVGlKOlCiqsgZGgXMgNw5NkQAQiuErdh3UF6xycEEQVJEpMBG74ghR1tAEKlAruERXxXlyG3MHGGCY2zAziQj3SFqnFIKnWhZipUt/ODShZJYBUsr6z1IICVkGlXNaQhFnIFCxkiAudMwK9SpZMBABWxROJKLEqMRNMPZdaExyciS07JkwvXrwbSa3xIGGSLguKzBlNhAiAF4cCEENNXXMMITKhzFUKLJL9qjEZt4z1IwCCKKAZulMAEkbFDkAmWrLF5BmNF5dkRKWqsFRo0xdw0RZNzybXAnYS515qeOSdH4O7LXhiq7yc3LIhZ6O52vrfWUcAQDyShYrCHhHxXhQiRUMIAFSl0OBI48xcoYH2kYtHkiZ8Tr5jaUuZzc4F8xOR915z4ih+AaXMhICCmFnVDvssmT2SAwGi8c+lvSM/sGyMsZM2u042f+vgjmZypFAxgUZedEZQTMoI6ryQZLdsuvVRL3q773LZ+CnMbDiXWjmy0wJSjrAkgKiUYQetUq14qnIduTSa0KeawXctdKxCQWbM6VTwiMoIc4oIyIeRsioxjbBSYfMVeneyG1x2IiIuJwnLzExErAQi3tL5gmuyhhIVqD2jGIVSlKm9sd4b4aeRuCRlmhlqBrbG6C9j6Fy6Z1jLVepCqsXYjZ1HmdzS0b7MuglnHEkGuQCAJTO9Mu/WVjtiJHeyPzomvly6SI+2GGWaObEK2Z3Tq3JvmFtWI0Cd8WfRWGJiVdvvsBKNRiAXEAVunRBGRAAlmxY0gX6LLujIsXMJRBp36xIrEqQxZKJxW46ORZT6xG0doElzQVWQ4W5OE9KCnsYnbGHzif9kaIiJOe8lszGcmecFaU5AqElJwaCR6UdQUqiZUnMJQWpOYCO6JpBWoonxpNFtpUD2GY+4al14rApGMHPCLzJBWhLOpurF+/wMLihLRjQyOSMTfRKoqiELAEqkBPJtytgaPGFRKzHlIpMJCuVePOGjGQ84U4YhlJkIagY9LvQ5aDSrkyqusGYI4LRliZk5P8bee685XhzZcYUeUSloe9gnUdXuYFV6oMxbo3AiKiqKXpqMWT5OMFRmIilcjupFoWOqyWSepJAhoEjIGFUjAiUSEYUMuJi9Ygrz+7vR2HrDho3NICLYucSpOOe8ivOqOiLJ3LOdo98uvHjZaD+XDMFYJwGE1DlR8cLNbtPkE0Lc79F6yr1BMGgagAH1qR+j39y2VjNo2dZ5A6E1CqzCMqlnFvGivmVA4Fxg0wj9KjaKnlhjTRDYiJiJADZsDFEmhJmxFf0W0h+ZfGAymLcERQUEsMKYjLW0uuDG/EXYGWqllFbmXC6fTO7PKlQJiEiDkq8f8EQ6Rz5Hv6zKxMQo3BEFIMhlLmE+yFsnIuILPQLwFleTjvXwqFVbNkKiAKFodUEpLMkW9RsrqVLunRrLqbE3Q5GByxgKDJRydDEBnooHboklAOl4nMdGFgFW4EVlxCNbxWRG1zmBCYS89iIFkEJBscBDMz9Dt1WQFgBgQ9AJbH/TAKQK9YPcbZNbDwpV8kmwiTKU+mCTSQZlyiMDBaQYgjJRQlkPN6YBAENiMs4QGWJlEDEba4jZmBcnrYJATUDMTFPRNqNQ1JUAS8hdplqrTY2sXw1CzFqtVdLSVO6oIBvwyHWWoxSSqOam93iQTsN7gqgSi2ae2qrkkNhOQpQxaVkV9eKddyoiUOXxvL0QxU/MnAgBoMQkyshkh4Y8EgxitkwlPGCZM8jGBEKpQKY0tgJENPPreZ0g6kxgStGaSMf0ONHAqPAVaa5z2HvnVbwTUfWC3GYnFBGXYhMREUkGA1UQElJwx5H3qirC/dZgZLPDeQw8tXsY9hkgrxC3mVtBkKTQlyyJXVsyUMRsrMIQVIiyyFOS6Qeidi6wCifTZia1NsmQYWtMUFip3ntRFe8F4xgiHBxG8RHJsZYqkmVH6xl4VG7FlLMWdzdHqIKgilTg0OkooGYQs/h15Kow3cgMIgLBUTIgKBwzKwxlmjbjEUAFJNgcyc4MxrlsZtpgMsYYawacARzOSJdH4aN8DnmkRwtoQUTgBmm1mF4zhnJ0qVOOQFouKYGkFAqRAUAMUjMlORBSUOYOAm3B6ZPASDEOV+i4RQpGNq2iFcktRM1iiIVmVxDgm1jM46sjo0JVBRo7xIWElExgXWIoZNOyAXDqSKFmmHAWsZI2FLo5sgVIVTMQwZyNm2boN/MmJF1DHT/S6kRAZzDmlUwOMTUNEaCc26mTgpeg6WhuxpsqoEOlHjByDE64wSbPhEZAFhQFDxLKHqKelHyXCnRMOQLLQyNZDFZHYpNIyW9tQmAmGpU5PjTO5HJOWWOQRgBEq6hDR9/H9hWIwRBoHisbE+QlWxlFVEGNyamFq0pAZXy+5NdKDm39aEIBqI1ULY3GEABCuwXTQgHJmJ9GYQXNNFvWYd/Gc7k9OIkUVIE+AI+JCHZOCZPym8DLI1InEagIFMkZVqU1KeJXlDs2RZhIswEaJwzwcNNQL3MQcO6tavZARRszByRjmD2Hfe5FEUHhnOJB/CUwMqZAruElv38HgjbswDM3++wLNyif7Jq8JwpgwwBmPenkEyY+VpBrsqq6wabJbhW0Ex4kpMN2wAywNkkKqQVwu2OVCQQ7aNHFIQ2aUODCOjBsQj0TM3OQLBoQ6EQGNnNmz3QMUYonsY6RzagA9zdYVBTm3nMXYkJzA2zivsnEL4C1Zh6f5rSPJoaEfse7U4QLfaNAulYIDJAb5mjDJJ57sUmXhdkoDDyUMwmAnlmNjyXrQwOSWFLc3cPzz0KBQYLk/hQrT3EmgDEkIsW3OQ+08giWQmHkKlSLr5mxFFYzF6BcMTMTKEpVqNpICm2F2kKU0bEEZZRQVoQl4m2KmUgIZMo5/iOoLeV+OGHWKBBTIxUhCAi584FQlrpdMLVAoByYEIdD7NgNAgILe6CMxg5FNv4GCuAQ51YujdzdgDId1nJGhwVfBRXN3D67GhUmlMukEgXChTwozYW5v4sIFZQEQWDtLkXJKAA7V3AoaVjNNYlYlnokdho5kLQgzYUKS8Xu5LJRKGAjXFvXhR0goBKAr6igsjuLWgusqpJexpO+kxxrs3PrE5BochMhZR8DqRJSP9ZWSASiKsh8Wo6hiL3LkMX4EQqlNI9tg1KFVyD3K0NjhY7TjZxXhaiAkljTRCURrzIYekHiqYBuMiSoozRLqoH4nEkAmNiG5y9eKFwr2TgO2yyqWq4/1nzWzCIWINDUFa4422l6xyaoUakSI6YlhziumtUA53teQpuczWz9PMTJ4ICMQY97QwxXBc4oAi5ZKZUzvnSDrj1r20k1bLCvRHRXyM8tciPg0Bu+NzLnngusJcNsSjAmWvuf1pF4dRAV9apQwfLGCs68+wk45A5Fr0quawSI72l/ff7p9SU8vIkzO9MPNOEEcHKxd+aZqf/w7ucqd8dnPnKe7tn/5Vf3FhfPnf3cAu572+Yy+v12CQL1iwrqNKOmNk9stLxucLyx1mqvuu6sR/9Mt8lPJE68ePxF0Kseufu+8/u+Xb/t9H3Lr/n1wVu+dOznP7ty/NHTd5//Unn4SPPY45eLUegTrx34b332r20CwGoCMJMoQKRmpaxfy+EWJFfjGRB4urm4+FBwwFwYcKtCf5EIGYC5s7w+pE/fsnER9fPrG7rcbWnVH918NvweWi+nm62OQ0JgwZpRiEkG9Y043awZBbvYSVqamQeXOs8OsdlN4VnNZ0rBtvjJ4erisfBVg9WnX3Lm8e9dvuP/OD5sPr7z4n2tT3yxuzFolgFg+ngUnb3347AHTXVxDdum/LkUISWU4ol1csqiKIJcHvD5l/Wuf6RzZMl/tSKP1tXJnvUBABwfCgb+v59P+PJlHwQPzqw/89FvP+f6S48ovnZyeTC1f6mVwsM5YLgWA/20S8/8txgeONrBfaXl2Q35xAPnk/SOoE02ASRWj79zG19YfuyDZ86e6NPdvRPdPzziftutfHiRBgOs/9WpRmoUvcf/pHTiy6x050ztma/tvXGm+9jXbr76+d/Q6bQHGA8zu3BTtfZc+NjJ2rvvOv2Df/O6a6rV7oWPKwDY9/7Pwe2Pzd36l7f87vnHnTn06N81TvLshuzQ9uzC49de9sVsAMKoc931f9+sLLif/cGvPPltvuHZXf2F5ZU91Va0qmuu5w+8nO654q4fPvsggHdufnnbxrsu/3X8yhX6cG3pEwQtD0pDRPGLCZ1x7lCYZJ/21pLuf70xYfyK95RL57+avnfzN4LoprvS+Q/Z1yNdafzuidt//+en//jud74zsXTxcz3DTvf+9p0nf/mP7I999H2v778dqJ5tT5/c88o7hm/vPnCTPrPttXeEw0Ys6WXVR2/9lfMPHbiWvu/gFTe84sb6F26+7434g++bTQbt/tPV08du+eFd5VuP/PzDx9ts31F6dH/wjtf/J/75ef92e/SvlXDoucPHkoOLfZByyizK1b3HVI00eAMIxYJAaizECyz1fFSTtG+iiriZX9y2s//B/fHl96QLr+dZL43g1m/trR+S+cvCakRmodKNog2YuapcXpES9oBqUL9957zdcdVX+9tmHgyHsu9GcfVaP6jqjNX9h5+6abaNfnLdtoPNXVc/NTt3ZWlbaSNqXU0t2l7dtW/b7sbBEFqdr1nDUVjRwEqD5oOYNEIAmb/oOQdn5EuzngHZqRuGoCQMDROBgGBTcWx8Kl7hXfgWANENpf2Cqe1wSkHwkjdYnZnW6waasGqA6rYNTBuDEnsgUpdCfTBXm5spM2xIgNxyBXRu+3JY59CCp0sHgiDxSa3WWImqlUq4zUf1ga1Nr22nsoZzZreJrKmU5mZ1diNNqxo7pyHZuDRkUsIUme3LzEQsQLmBKgaoKMJ6k61YaEgGECjnaQaauxicSAnbBPCaG7t1Ie8L55qCGGDyCHM3R4ZQHKkHygICAp+5GAQKgkMiFgoJlUQaZedJRMVoaKGRK7NlARoIAwlMDuGJFKhayTASByPoHgYwRmEJNiq8PDkAybEWc+YKTAxzMnjWjdIIKVkmEGFY+Bz9EIiFkfDIeUYQjj0DMaBAV6A6LCwAUtYBM1NMIO50LEAEjv0gUXjb1pZjxZp2u2boqIAopGimnKljGYz8gIMBkpjgFa6P3B+SOzWs5kg9A6QWgC/neX2qAGwIZOcVLirAZv7SMaoBLGsxrSWAYDGyTpTKkluB3pRznBUyManTMpVZCYFGJbE84fREpZdbZlSE1gnMCCiBB3QiLpjZI0WcNYNDFoANF4rsAoWaDO4FRYoNW8CQINSRiaPgzJQLCABKBqBgZGkRQBBFGQCC0YBoZEAsFgErUKEwUMsZ0s48cUFBTxSMwGsYIn+OLSlG6ZFE+Uhv3cwWQ7kw3y/xkkC2WvSZKw6jiZw8P0v58wCIfTa8Ofi2Ge7dcpP8/hi3Yrxbs7TBLe4dHc/I5HlQhBpO3FpLo9y2Le0OixjKxF675cEEzjGqAkAJUCrlFAiV0ChFaokBQojAFN6I/BbBCFqP/QZBAFVCaGGKlJFisngUwx9dFnBEYw8XZ77WUTweW67Pbfl8Z2nyGOUZfsVohYByVDSUiUEUqSnEDud2A13qXhpRWD4LDJQsbFjETvITeJRWQEVTE+0aGl87BAKCGZlY+afLW1tE5wEg0byR+YmGsrlUEGEIkA7zsCgpRKAJpSqAIkWaB3BG0e5UtlKzQuFc5m0k+HRiNwCM/PCGQAYDkHZaJxOBqBARKFkiDBxalOU3Q1PAKeuANfMOETGcpkJA20OBjVgQ91QcJd6DJHUDZtYOQLruOCVV4njY6UG61MfAs0pXW13up8zOFaGpJPO2JCr93BGpiGMkMdDqYdAi8eK9d3l8kFVEAFFRQKgEUKm0iwCmTBiaWQEZhIVLkUwWxQxzDwtUFcyGFIgsCKgxEJaIbeZO4tAEqkIVAKhHGiqTio2iMihABSErUYVqZY2MqrWau4ZLBkRACApz0UcIQxhLmdTKg+wmpwnO47l5OjZBUS4tBBnBqqoGCwEiQjkfk0yLQqlEmSuv0HrEhAoAwIYGZEDQgEMAypEIUAVUw0AAZcBQLQCxRFRiJdSoFKmhYuShwChJncKR+g5DGANEEWyWh8y57xpg51In3jknKk5IFVFpdvssCCoi8PO33YIDe7GQBe0ImbkF4jn1mEq8inglaHWhjDIIYK1XQGSYZbo8g2DWlaZT58VAxEx7X66kc9Rgv1CibdNUKVW9UmCtoTwVUHz2ICIwCMS8QMRgIoIxYCbMbUepRmxtYG1InEWbaJzmUoi5whkAAhB3YhBBMD4h40mZ9C2C4hQ5ZkMBFqDwAGVanQrXvfck8EKiUEg6BhYT8pSo0L9AXhQzEsyaa83c61ZcyOLdOIaYOyitDQrKQnTwEMolTBG0qLPJxE4AgS08jaAwYAA0o5SnKxOBKQSFYONFci+FirUSUi3SwGDGojoVSJ6vZTKJLSIqOhn/Dcbo0CCqCUAILBGzYbZ55mWuoLbGt7QIHAAI6gxR8CW671INKZFVABSMriQAEIzvm32otQJAoKqRQTUUFBD6BTd94abgHBoojVRLNvpbo9MEBYgNj07SsIZgS/5fvhnkyDF3QzEB0HSckkUgytieixZmYadMaTGTKrwUijDLoqIX6UxxBgCG+DyHpkiKyNtpLatltkSG2LJjUhm2XBcCsBDx8pHB4eUVXNwLNsyahXcARRsGvdARwZCqdpoJVLVD6uMU3nvvKXYduBbixFpLSkTq1XSNbWnLoRvr+cPl5XDAUJemCu+VjRc2wkxFyhlEtZnRpALqkKRA4pAkQs4xJBFPIqoclSoh2zAqWTYRzjO75VNfONWCKIwxxBf//BieXcIRhjXWKJIm0PZG2z216IWhYRtK13X6nRjLqTrFM+f7tLEuLuFWvwW3EffOlEshLoIJRzajvjMdJM2V0+d1bS242D2vxiXn0qVl2hyYsNMNg8CQEawl7FXQlPS4iFcRL2g10d4kLF3E5hn4YTocxl1xqZccTI4DGx4gcS3HYOIsBMIhbDjOZfFJhh68wTgVXzkVQ3BGQZoSYOKM7giGA/YgsADEEC6BrbJYYRgxnpwQKGGfcuJJDRchqzSj2CCr7sl+vCDLa4JPaCJRjCbqEEVVheYUrNsPZkUPUAXqez1CYCoDloSgDlSNIr+PKFS4ZKq2yB/DgQq0MqV5ApKYiMsiQgYKX6lkZRIS1bhMUJRRZiWqURhJLRQJQhUBlFDOBrJEPKUFJzAjjDLDqQJiZsMmF2hWxBmoFzVQb6ZVuT59MOdzAWn1ijZCYEZyMrVVoMIe1ayaSxQqQYRyIECtB4LuqjKiBhEjsARAzbR3ojOAYr7sARW4mlINKLsa1Y0wT7v5aV8PRax6EYUSqqkSARam1sowCFCpooImGg6VmXNsYKCWGEqk7As9UuQhoU616TooMxvFXnsNdu3AFPIZyTUQhVMQ1FPRzAsOXyuhAQI4LpVUhZlkqjQFO+XDqvOiJahyg5RIGhSom4/QaHgblFSJS8ZmDE6jWHLAhSeiUaQVIQwBMGbmEJZzPRLkesRqTloZ/CMF2ERRlElkJS3PO5QCRCPDo+AoAwWPlW4YFIW/Gthc/DJFIKsmyFQcFAwJAilTuaclQ5bJ2kABKhIRlbQwGgu2JWRBookSE+vBDGJlVS6eZWxgia21TMwsIMRJZ2UTCmJicO+bD+HsOWwQmCfEL/w6DJph0QJJNwfoQwGl/hAqosKduI1k3Q42Qms4BrEOiJPYrviW0masm0O4QdeQ+tR79aLEIlkFxEiXqupFLaIm3gNQtDaRDFWcd84lefZfZo8w59UKzIRm8vTQIU+bYNexGDI6yOFyNlys3UAJeU5ndjGwnoGCNAGLKKif9sBkELNhagGkK7ExxMQ25qUhdCPsoOdYdRXtDnktkgAydxCpKljV5/aIoNtFmirWmhh0KSu78FkyAtiawBAba5goSL5zqp/Ezx4ZMAZ+wEyKY3cDvQ4WDZiZcj3iAJerWiI2rjVoxqkHdQDlh5fAa2uU9jh1Fulwsd80xqZNsMStNpZtnCY0XJENVRt30gtQ8f3h6rppDtl2uzbvSCykUGyqXx/FnJzDoEdwHmkTkleGZj3hUWYegUg6kUkx7McEKIjUI71g4BWjBDkZArFXCIpJA7s+Ja4AMbTZA/ViiNPM+SDOEWVgmWNPCqgh39EeQAIO8ioNQiLEcVIk3+YP7KkmI+hHgAhABD9ELo1y6GyzvC0REqOudHgHoupsB0DZGgFZ7NgHTDdQkQKUMUBsYDHSI2qihjXGAHUFyc5Z6JRB0JCABUG0j5sqvhRCTalR4h2uFDFQlzrgq5arasEolQ0T4Cs5IeV9ITRypwLGqR2wAmICK0NNdmicfEwA2DsUhcuSe0QpZaRFrsUoYJ1LqPxqlTRVi8x3BVewaeaFUZdZEAYAeYUjKfxLRBlNAFAduS4LczAHDZjYaOQxuRRXg42xOY+ATPrZDy+u9Y4PoGgOzhjyAzx4LMXiRZy3YKY0gY8BuCG6BMIAzMRGkhW4lQS6Qqp85iyo6TFcCdtx4C+2H2wKc7hxAma41IuTo1F3bU10HS0dYjNNTnGfHNqbHVHAdnuWmJD63NOEdpHwrgKkMQBFJxOLRSpglnqxpcOeptjCKQMun2A3CMFxziPMeSpfDhly+iImIGQgAY2cjOrIKxvhJAWI1AI6ZEiPUrVEgRKscaJCpIB3wVh7THifJluXObXGCGtsHgKwquMZUt336pKlGisQBDOqlrEjqiCsYUoAwFowAxJEqAqAzHmnKgw7bXMPXT0CqYICiYxHPVowBJVgDj5c8DBTElTiIQQCQ4aCeaooURDVqGiJoqj0zYEEFT00AQBCJWN8UhrjVuvVsRUvREZ99dVz0Pr+bgDMBA2BKA6/poX5NnY6ZFk3XAJKKvAEhcArVGxtrsROQdsA8gf3QuYrWq6n1dChFhwOlsSndQG4Vo+Cw3G90gOmdIqQzoZcd54M6o2Ey1bTmjoRMoVDgDBzmsoJWIp0WYBgBCYSNmQVljhn9olNs6Jf7zUbGAWglsEKP5KJipFoHAkKSyZPZgSgJnMsEURpXAsOACqKTD3AwoKUkNX1TPgaLiEoRlELNb6PKGjk1s8PsGRZpt6LimAGgNn7qlpeNSBA7aoErFiQvHYmnAYaRhB5CLKdniNXCzyyyAGujIDavDJgjYdCzXwOGiEzdQeFwNVnwjohSBvcsEI8h7l5Nx2JhGGGQQkNq0RAicycFqCxVEF9ShCFiBrIskxt7gjK0mVVvBdVLwTBVGl/vVS4XKR63U406qhrvtxMVnmuVI5IEbksFZJAHFlMZ66ocgg2TKy1sAYuadBw3us0VHibFWYpgwNaKCOc8VWukBDXuVaB4VGJqwIlo7nGrRcpz4giGENYmEV5StkYY7PE6mxGvGq+nEg+vaZSKSNHu1K75gCm6pgewfhiK29xB2lQsSBQAJJSiCxB3HANHIktZeV7gBJJEPgaRdCapQaoWokUxJZVOE/OlMyiy5wZIFBtnKAJsM2jigwmw2wKd1CaJqn6NM3LLqAwzNUaCKpeFKVXvAlzs9jJ8F5kRKpMVXhUYy8iXkii+XoABi8ICyyBjGEYY2AaYgKfOGGIgsSXy87aHXNqDR2o6Ny2slMObABYIvXM3nvvM2ZnREaZI84q4QhmGpVZgQkwUwdbGwRBiY0hIrJFBh3pOMl/nEKqIlrJGTF30GV4IXMUjmvMSuVs4Q1CDgoml0rIbJ7cZFKFD8qDwswWhWYOOiaCEmUgMHuK1BMZJzArqFFosCCrFYEYELGQcq5VMrKatGjyrmz5OvmFChmjL5Q2NJL8mb9v61Ed+cIm7zWSQpPnToq8LceyJRUmjk6K34kb0wt2/X/bxrLxxW8yGoXxjhd91P/6+TrR0qwMswj15venYjGlLI0xvyNlgfziHpqfkZPTRKu2zoECeT3daHRIXOamGQXpsrhVpsLHA60Uu8lHZm1RAHl9k2juU87XfJg8des/l/T/u2//m6G75NpRx0aAfexb0/HZpJa/y1OLkMnowsw5XcTZcx5RUwSatRj3HIuN2lvEHPWFrUSx1khx5kTabX48m6diz2j9I3oRbsPEIyc+dZwEm5sgk2sHFZZLpgkKJjZSCkGKF0xdDrQBQHly2ZyRb3lEIyNomkkW4rGfMsvayJL8s8x4HcOgPIeg6A+ZgikMZUm+44hVYSltoY1J4aRpVhf5otQzGiUvk13c+l/GXpPXqPhLztXJw+NHFaxXfIwW4vHFwBQDbA2yGitm4oyiVE1nAICIlQg+DbsD+Cyqm49/VuLKmdojJpD40ZOIM9yiBRERsc1iP5y7gDUVQL0SKZRIvffEmTtIs0HOmkiDNFs4LKcZdXAuY3YvWb1/UQZeVCrSiKIBjKQJCEiHIIKfXETgRWYlXwsCjiZodDyYE7dXJahzACgVcumY10azN75YiqqZfHOZSzvLF9YCNCsAWzixaYy1Rk1QVVC1BgDlFDrKsBjJlxGza1DO9pYL5L6FR/OgnqqqMquaSg8AItYoUgDEnOcZECbEKGlgtgwgVWAjBQiRBRGxcrH6Rk5aRpnBzEXWY55TBiJtblwOoBMVAj4HAplxZrK1k5R7mxlZ9kizAL2MDBoAbPPceyL2nkw8bCogqdIwpoy0QF5BVJBWNh+mE7PKeOhlFWm2mFTLQEUy0spmZAuBjEZCCuMZEg/gPSxdck6um4pdJi++oWKuRvpOJ4EOkYpAkFoQkEJVZZKaL20JANBECDbzaBJgJuoFc2YnMcQGbIgskxIk7Wofisxf33l+4yXNJta3Ia+5zqdMBzDoho7AhkB+s+Mg0BapqleoF4XzCVzLOG8tsxgiStXEgR1qO0bq9cKwuhr1CeoTL5IzO3Pm0vQFg0svq14RwMcYxoREMRwqnHeqiXoSVbWhUMAmMGTIKIMIK4MnLm9mGkdh+ncFOLuM89tgmLmIbbO2emowDBMGlAHxvRjLqinEtrus6r2Yjf4GfJfjXhhaXtlJLOdeMuu87chwaJ5rYXNl5/L0qhjvlqY3oKJkRNkKEyvWHWcaTjaFsqpItDYQK7CoaAOSChQknkRGGX2TTO7DPBkpg6h57H08vTllXYJnSPP0AJgJZJuRW6QjFVAItTDISJGJs/UR+AVx49EDJnStwgQTy5lMiDhLRcnZ6GJO04lzfeZ2GMUQNS+/vcRrkQM3IA/+ucmjjooL/LieOpMaLoucCFS3AM+Ry+GSe41spTw4OOpuVnA0wikCRVW2F84VhfpSnu1f+DlyAR7JyK4Yie3M+eApWwKTtKjSJBFFFVDM1jM1oCT1AFxxs6ZqlbBA1VE1r6pCCTNB4YDRUeZftQICUAoQhMhr7IvsIBR4UQElA1JU63YshMszCiKURpI0BOwETlYFyMLmuYYAahYwEajwEDMFI2XHAoIaUhOQhSqJGiiREBsNjRbLiYxnhEFRjqIAURgLGAKHWgj0rLdsbGCZrbGG2OoqhHrn7mtn5RZsDC1/i5F4XORcaiWbQEsshgzOkoDISBfNxAA9DwU9u6nUXVPvkIoH+aFbs4FBF8S62jMJQ8R2Njubiphbuu6tlzW/smY3BsbEiTGGwIp2SqpAT92aFgutDgbotgm9GL0LLM671KVZ+BNsbWCITWAZZJOP/d7pU/1HTvSBZucCc9qRO+8ZYGUZx0Iwc5ogbQPDOEYTSkhgmNmm7Va/ezGGX4UqP/g0aL1Jw/WgPQzTC61HmgNjw84p4f7F/jB53nY31/zwbLohiWkPB0epo6l01i9qPyXb7Vo2DJECW2+qdrNCblG4GGmi2OjCDUScT7PQmyrUenVkxQvDqpjvm5/vR4crAVALZlQ4wstfVkJ1GnsdBMIGtrqJKDBoCCtMlq9kyqVSNBPANkCk1xyE1mqrQcnVI2enq5eVvXdptBMazlTLvCstV2dWS3Oos0FULl+FiEy5ND+NilUfqRchgBANlYhQJ6oMcxLSIEKoHlOCIEzYioEGlFWqWqNkySiTSSw3P1z+4X73yfKcYONk+0bEvan7H7zWr5yKn/lxWGYXY5iSxnGCFnlBG5aV0Vn3w40LKbrrIoqjR0HNkiaDna0Ya2f7T16fWButLJV041yri5OHuu3eoP1cY12acfP8zuPJWuJ7brnvh4lSD5YZiB0NxYkoNkT7VMi03hoSZWwy0iSQLLEzU4hZxvjiXBlY+qNfmjn2YXyuOejTp1Ocf/vsv7y5fZSfxOd/bunhz55pp6mhxS4NwRqfauGbZ6sX8fW38Xq3unD/0/twvBPjDuc2jaZHAayq6uaKLn/8O+4U+WFU/dqX8d6HePPMnWsn04f3Px2foDU98tLmQ2g+8Y0NlmRxffNAa3mpXx1Al2rHU1ac9pseJ4d5pRcU1D5GAsE5gsLraMEJVcA+qcHw6K454eXa/fvP1FSiTracx9Su8/3GcR6gcapVWqLjX0FteIqUoUgfdjjZ4ufQeiw9m0SXn0nXQTWGsWvL02gt5+I9LqPJZYWT5+rPJVV/cXj2whPDzvlBcqrL5DVxi5v9Ni869tDFTWpi8Sn4h/alp+rHSAGDVFF38UiLFj9UQH8FitwVm2qt0+82vOk3O2txlG7vbRBX+hJEG+3qSmI83ErKHTPowrlESRmqA3BiRTGUbiupLDZBsIlaOMODzAS1KXGYQJupamo4pCQttwY+idO4Xe+XnDoiE6dxMHTdvmE1rTRQjgdW2h034C6QGbYmVqsAp2y9txQlHkaYPGAQuICUVTXwAjukJewtDZFE9TmD2Eu3hGECwE/v3NEbmgg0H+mCTu91MB7K1sHsjIKZkjWox7wvCcqzQQRllIMw2D4gkur0YnhZd73c52mLPS6AWx4goIVSrTzfrs40WrWmWp6+KrEVhPWGrR/ypZnW4dp6uTYXLQTYHTShgAYlQ2wqcZREm1QZ+tKAyx0OYyEABy5e6RsW/uHdtNYE6G0NWtpI5/e0L8a+0joKlv2DFRYQ13erT83FDl19sXnV0b2zAnLHKZ5vB7XtG1IyYffstldsDIxzSdOvazXZ1a/397fPm4a/6r5trz3/fLgYHu6cfOVxl1521bPtVm/valnqvf6ci0kpNY1b/75ilqdCu777lm7pkY1bz5/cZ7x1juH9UYbBNhlMrZYPrE9t7rlv9sDq4oGV0o5ngh29dRgf3Hb6lSYEDb72KnP+6Absm9SjVQvFDpcXKsufoj36HNV3HpfaG8uX22Al/MZDV7/ni6d/9A9uvdVat/6H6mvtxp4f+kzzTSfq83/6uu+VnrMz579mvzV96Pn6leXF7TuGtWvvi035fDuccp1DV3ymtVDvfd/eGXOxOvfMgcXLkkeuKvddXzq217zqusoDBx6//fSZ5V7t9YNz9Zkf2PFx966aa5cvPGsQRbXZ01OGKm0tRWg0Nu0cKlNk521CAwmGZj2pEA3DVYlmNmF/is3mA3uvYjl/dMfhE+eqN7h/OjN11SmZ+tHu7nDq+dqZ71zx2sf9LdN7bwwb7QvDfmk5uaA3/en5lz/l3/on1/9k+0hSuu7xexsyv/+Zp1/WvFCvn3rDa/76HFaeI+xrnMc/evBb123vvuG2O4ITV6/otf6a2TO7F0y/2VkuPXvnm19d7l759Ru23fkYgv8w/893rh/6nl/mW690j02d4oSSHccOrSwdXDoO4FmcPg08XN17H/cfxS5qU/8eHAUA409n6Of7w+ryuWBvKV5vYlfnDFeTnfHzlY4GO8Ewjpqt+rY1t/3sTDmFwaLSrnWql4zpzdUvnNl+zVrLoNSV/npY6Vy9Ott8+epTYaN820cP/8z93wmPBS9fXHr7/e3OFftOJc2S74e9mulVkiixYYJdP/7BCjZLs4PhNf+41fjD5H3fOrKD9piTNlxGel7JmIOuM7tauXZ57/FrP7XjxpPHrj+2b+e3or0bbUoRvPvoOylQbv/ZT1fv+XqT6Du+2j+zUEuD4Wp1+9lPzh1Mf7Nurrsr3fXv0gMmWqp+5jOv+1f/7ewv/sKb/3EUxss/04l4gG1//vPnP/xx/qF/8e/fnlxMw90n/rT2pUPXfb3/o50nrg6+euvtvxGm00NxeyrPvel9f/DQoT3DH3/pA+W1XYMnrvvODY1PH56jXqu7GZ04/5rX1O667KO/tPRnA47+ben9c8u/+vI3m09sT5Yap3/OsVx2cv95t395yCbNClG0sf15FmAnLpCW0rIwwO3I9AHYu0pzK0/vrofxxl3fu/D8X/uGL/c7qyku/mrl5m2lZ4Nn0rsOHH32v555thrVuks9ikE6vGOT/uZsdB/dsTM90aofeujpBk6vDOkeHSYdXLyzMn8u3Le5Fl/Ayh8/Mr+4nlzJx48d0cuWj3dbZ5eX9ixObSabrLsf8/LEqebfnePLnbmvO8Pdhy6WynctDM/OPO9IcBZrYi9ImWbXKhvEnFKnTwLCBUBpoXNQCGqe3Fc92Sa1x6cunrl/2xU7ukefxPZFjzZ6QAqWZvPRbX7NLml892L6HZyBKm0KK4iG3xrS821lOvXE6slW7ciZzSGkS7SC8BhRk9DRlR0YSGIunO5Md3vps43nji2ig65sLPlOZ2WqjQ5Xp58N4qV+emRVF4SfGO5t+6PnydzfSJamV4iAlGOII6G1JCFSxxDHmbOfRRurAeYNKk9zv2sUdEGcX61Ow7YHXFv97+m1nd+b5pd8w+98f3Sl0Y3Kpz9/7e/90fH/+K6f/HEwlt44tHaI3Z9764XP/RH9xHs/+M5+P+HGyu9XP33ohs/JTw2/eT195a23/zOElaaRXQuP/+Cv/dtv37hr8E+u/9bc+fn63Tc/9D2lvzq0y7c6vYu8+PQP3L73U1f/l/ef+GDflP8A/+rgud//nlvMVxdcq3zibQAOnTx4Wg8/P7FeebjnJADMywaRZKvhcl7La09CbDRoKWHY6LepPDPYX2uF0Y5aGHsZijeEQSremH5Kxu/08fSgMueuqA23Bf3LogtJyUrTzdR3VirXJZX6VZcNruLeofnF6es7WqX9e5qNG+ambHK+3XBVr7AuDqyaaqc063bWZRB7tzOyV1Rdg9wrq0HYucHEG94kelnqqHJ4lyvtKg2S6YFdq4UDCoO5cNlu81Ldfq5yoLPTs5Ke2hWuiWvhhdsH3nvZzMH197zIEeA37n3fp+7Ur+KONj7wpzhezne/+U2/dv3LzurbfuFbv/zH/Wtwv/7ab+rJsx943Sc+gH/04I+89rareWfmQLsGwA5gHi99142/kCIE8C/rpc/rSr+CtU98+vVYvJA5Ib7x0Ee/dHjz83/c/b1lvUM39H9c0CNP6t2/qu95v+p7/4t+//+tx1RVde0rqqqt/0FPQINIB0JYOsAX/2LmAP7cDl/y5T32l/w1M66Hj3z8jb/9waN/9K6f+ZGUef09dGFPc+f0f/qVxfd/MXj5b/+r230I5aUPNz656+bHwlf4xd366PRtH5t/bmGqSzPD8+94y39anN8u79jz6PTytqlv3fTwK5PPvLoSy3q6iXPp3OvnP3/Np//d058P4spPVj8ytfRvDv8s/qTiDD//zzkOTX3XkdmSl82Gqxw5WFlNdkpleDS6PFmbcs+Xr+5OeQa5jXlhWV2zfdGlR+qvDs3jz1cPn/4s7ehfgFlNT5q/mHtGG8v6QPLU3zx59pOL31qnyrB1DGjifPSXdw3+6t7Z9NQdO9dOEc2fuSfc7A1Oos0n9lWfuO7RY8AKgHJ95et4fKm6wDc0Vp46ypcdPbF4YXCsU03jmE+GrbWrQ/tA+8nPn34YwI70rvnWV0/dR586FD1hL54EMP3cieaJmc1s0jcBnEKQAhdBCgy/XVDJs5lC/PXpysP/MPPmne2v3rv7lcv3FkdZADtrujL0mO0Pw2SqpoR4nT3AOr+KSr+257ngZ54+KuHMiW6UZGtHhun8+o65p0akOGPXBYF/4+vvffwkSi5E2LQlO6j0zVCA8t7WRtSdTboAGtoBDkw/jssPlR7ibpcUWxxYCrCQgqCkxH4cWwRApHa4Ziq3RH7Fb6vctC0Bke6JV0iVmC7bp63k7Ca95PkLVz596JCCWl/3WOjFtRuO+Hmal2d30r6GC6PgvD1PRrY163Rdt2OC7S+9c+dNK4v2jLmq137p6dhHyyiFeqA129t+kmfLy1MDM4xLt315uu7r87Orl93YqhwZXr7xzOGqt1c0+GY69xgp0z5p15vhZZuVwWVfrty0eHLXxcbcSVMfxOpBrz1/SzLFNLj3OsR3Jy+MeFj302fus53pwfDFmP3wngd/+NFb3F++b89v/JNt//HGR/PdL1unC7U9P/uHV0w1euWPDn/+vW+57Xe/fubcl6/a87Hy739qKV7P1zNAeYCwtmE42D7Vf+l/vDoG8IN/J//53UcPXtt+9GPLR574SPtfKwBcD2088IGnz731b258198dXnzLy977vo998xc+7f+v98399Kk/u27fFw7+yRM/PYyU2v/lF336kc8ct1UyzpEh9UlgfAygUZp38o67nzPEJPCC0PsgtRZQfuUNqwf8O49//JrDZmbW/tDJmB1gkqmphqu95+Yde25+9MDNf7d4dWVvSRtXDXa9LOAd5dpCsHAWZp1Zgv3HvZ1Oba0ze+D0dGpCuLC+0Oa+61S7Mj/XfP5Aun3DehPfHq3NP/uyfvDSIz/QmL5iNrzx9tr221/aevyql8zdduMXXvOW+/fv6cRJqrZzBcS+w/yl7Y2HOwYAwp4lH/i7ztNIESVACucAoHbTf9v3nddtc/t2+9n9rtfPRzpk36us3jg79/KT+29L/eVX6La9Le08NTUtw20zbupCEyHUIR44eCQGapi2H5AEGDbiwZ596WWJHL63Uu8f6rSTBADCHXOd65c7t/7V/quPX3nu4NnvmZuOrx2eugLVlw6WG/tX6y/xuwGgPL8XOPihi/YGeDYCIF48iN5xCO67cDEaHgdKOytpohsdXLW6eeDU3gVVHnz99MmvPP4vouu+ct/uY+v7/nJqlxolba2lZzv0yfnTcbt9/ol04a9Wzj72+SdbS0+u3LRt/Zunukulawfttt/drPPla6a6Ow6rTdd56Cv1WbteOr5Dvjl35sS+4PNPXwyu/2Tz2piVup+p0FT8n1dPfeh+f/tdz6zccuEDr7z3wYN3rHz6gTN/cWL40Xv0yMee2ehNWV66o+z5mX8QOqFTrY1K2dujv/FfZ+7+J1yICpbt733N4Fj6xUfxkU/e+Wu/80vv0FL67E9kB//+rem//uv6T//iW/9w2FKe/dSHDj2IKEajS9fZ79x8/UdGku+Wl3yiX274D9z27W98qfvrX71249Yvtl5de+SKR7vd7gW88rboM1f/7a/cfyeA31r6r3vP/eYtb8Rde/yyPv8+AKRbRNOW7dIjTGVMtfscEhJPUerB8qqLq+iW+wBg/JaTBYd3P3j9uVdvfOW2+U+/fOHLNzxR8QOgNNyldjm48qa/37ZnvTL7D73br/3oZd9/rrN5Ymft7vD7n+lb77sYAKBqF7baNWE6W2vt+8HfTUF6zfP+ja9enfud4a88Mlg78e7hZ1NOgJeIsY//xMnNlz961a7ndncOfOhtB7/de+WpzVd8ofy9nb+5Zf+ndv/EyZu6jZBb336Z6Po3TyCMosDYIAotG2tBIf7zu6+7bNen3wBrrTGGAUMwHNnAmtLv3vvmT3xA78fXNvH/fIIe2I7AGBPQD7/9X7/kVY/oT/yH7/zWx+Jr8YC+/df1uef//C2f+BO88ps/dvtbX12Z3QU2iG4mqlw9PX/lzOv+2W2/pZXImtq/3DPzeV30e9D95Od/LFhd3YnAlOizX/yzz1ze++wHhx9q6ed1U39uQ7/6NX3o/freX1V99Sf0ivfoM6qq2rxTVfXu17INygE4CAIDDhgABpFzjXdcA84zrYmJ1IYgJkoHe/j6wSbiGNwy22wQELGhiBszle0+6DV77W4JPX9Z6gbSSqmP7YmhWKvzWVkLA/CkgjTR3gqmwDWOomHSW1JcdEnCzbYaS9DGdg4aHVNtS6cz7KXudS23a961hk4Clxxu+uuqvWHSabUGy13XHcY3/zh7l3oV75xAvAAKjsmefGAJeYlP5gdPOhBRNek9za8nJQwGoMCd7KvL3xPXasqyITZskxacubNn+81ANwiPttoDg94pKhKqoWkWruFIV5Cmkmz0rJaAiBlijXqvitWTK8myb/UsrG8bbz8F+8gxy2z9svX3sTl7lG0YlUpR2djQRg//XPHWJB5nDYgjrZQsxmWRIEKWBSLhDrq25EEBoDRbyhfYBNhotr6ARjUQXlJBGAkZwmX1cqgIZxWjHKDiGkEDIO8qde+AIvibRTwalVpqIAJIUHce+xU75kEAz8DuVQy2UVbi5gFAZn5kclXuImGorGquqYy+j44RsiVxR3KjWrySgIgYjbFIQYPzzFxExrJmCy5sSZ0gABQSEJXImHK2Qsj4kNmGqqFymZihQYRZQiMzGkJQWbCQV+Xk4Gv/wfGqgFLkJ/hNcO9/Hh+TVpZuqirq/XBZvxkb6BB9o0/28pcWDdygmz4pTgGOO3ByXw+DZqBecXSzPWQdrgBQVVf4b9ULWNeUkm6/3/LdQGHSNFvbUBRYerS3NvCbq27g3CBu61cVj5+AKvwyhkcid6SVJsTGsHFgMZ/7AF+SbaYABbE3T13YKqmJVUGySRXvRZC2kCq6RUg4jVu99oV+7AA4j1gaAUzgaaiItGw0pagPKNDPu0E6iEXUAkMpooDa7TENWllVWYu0n7goTVc3wqjXcZoiioEB2kA/jTcR+CEAkNsESPv7bMhBLDYwkqq13hOBG7PtX/itmd8MhUjglawTVBorASSYD//p3jdMl7H9Rq7Fcz/274eBgqyf8i+j1ttqlUDhZnaf3mN/7DzmKvXyq+/BD+wvlbU0c8VzQFjpTTNMdduGIVOrcDxbPjVXq07tPuDKPYN4brsz5aq1AQxeVTm26wfqh3ywf56rOxfs51jeC9gqrjuEbb88tfCmm8J6mnik4SucN/Kz/yeLTKSU54HIobs/XUeRqwRRIO1TlntzZHMpjRFvKEx/g/JFaUXaK4M0SzlLB+ijZZAMh+kS4UKPFeJaCsiQRBVJN1/m0/Yc9WNyq21LRmF8hwT5YvydtNk9J92YnEqadPFIn04ehypabfjnh9g8R8JsTOCWDZHKI5wvWZy92FEABXEqDwT9kbiEQinpZkm+5shmxzn0e2rMoGddkYndvTjMrHLyDgMMgTQdpIuElYGFwjUB+EFWZdvLqdYknvuxkbW+ZVYwEuSLewNDasdn/cAzsU98jGd6dPIkvKI9gD/eQ/cMkWHDRtoEBh8Zrbk9+gN1jKlWggk5Q2CbHZfZchgAQRle2ab5kk6CiJEhYQ1KIAwFQUAUAfOVZPTCmlyUj0qVKQXBSxTl9YVE0Dx1pOoiKRkVQG1FFBFhZgpEYIUpMaRaxPcNoNQfjpeSVmTrGUAHsOtfv5iTVi61JIGKiImf7t3bN0i68CzHh5qtQO0xdHwuA2SDTQAPdtFcCjVVPLnZHbIOVnhyhrNEA6PLiiRJB21NrMKoqmbL3QJLT3W6vaQ5AHi4SSm+QXj8LBTQZSQnA5y7KEzMbAzAYr71i3mNFRtD+TrI4AbShR+6Evmr7bJlpsO6EjNLeNu211Udag1Yz4fLZJiIKcRsgIMAAKnMAXhlHTN7YqoQbp6rl4XKC5JH94swPwBPO0lL5ag8zZWU4YmIIdk6MrteOlefqsw0QFKaRoR3CF51EATQNkRXDnHDQSMq3nsHCLs3/HnO7CJjHpE2aPjXT+UL4+YQxcdQUd+LjzcfigmDdQxYjsd5ALwfn+sNj6YxAB60kPqTA/RbrIniVHsQk6btFKqqA80XUoOPyUhHaNgfJj3pBwKbxNAkj20uPd/fbKWDlbiVSJIM/DeAExehMbSL3vHAPbOeDIiNMWYAUv7a39qIw6HY0EiiJvSeGChV6Z//SPseViZP8GSdUNRYtxBbnXvrzu8t11A7aMN498uDksmKqYLDzd7lQaQKX57GnPmeIRrBzpmrH8RLp+alZ6eueYpQ3nOywuZQtLBpmEwovfnozHzF1rbvirlv0A93aMBqwkAN9lbkwO2604YLhsNGiX51Wt4ANBrYcxC1H52yN9+AKI49Yr418aDX3VxkPljLyLNMARvuDXYgz8mjLIHTEDOTqU/xAoWAJbiFhtqsaEDL09YUCz4xCEEV5ahWNkCgpVBNuIcBOwMms40ssiyYpGwqFQJHYSopwVGpePkpgyyqs0I1nlcFsTZIghClAFEEqhJ2BaLOO5diZyqqwVyxQEae5pOLE41RrJZ0ySYOxXtqKCsWhALwRbVfIZAEeZ17npobA1AHTCYtkajJkrWywvVRdm+GY7wDfNYOzZaxhyhcVr2dFjmXSLPsT85VYVHRk28GjLyeRPP8oUzz9ZgGyJJB7fqAM4Uopt/ME4ooKzsnwjCNYwayNbH9xRwAqe9mxVqkMOBmj6FKbDhbekUo07EggJnIYmW0GjGyOsisgSvEWbayQV7BnUvECdlIIGmjhSJruMgrVQWky+hMvGJViuOTXkEANADZQcwKNd0h52NioeT6ozfjEfL6h0KXcf6OpyzvLu0ybY7zjYmAOC1KU4oV6JhalOfGZ+g3W5YqH1WXXNCLOdEUmVaU92RgUsRgUYKXsW7gydIWgnSRvcAYyokj9R5K6QVSRXv0chBOvSoIEhtigHRI2SrlUEDtoGOoKxnh5CnHgwQuyUchy4w3fs0A0CE7l45ebeMzbGW7/b+l0/k6iMjK/gab5EVEoweWBmih0/PGbg5M6vNXEK8/28lNDjZoo60gszY4SvAwDEmWAUrOGFW0emucPSdaS+x616aL3dBYQSBrJETivQjINltP+aY3Cgp7LXpwk08dQ+qxuAEcXcfaswbGWBvFJyyz8mOcL1kheXoUFHBkL8Rbkj8UfkiqCps+23+uHyDpw7DfTJGlEDJ5b7L3T/OwBcGJBL2W0T5wpJkmQNoiKEhJ1WhRjcVoQUil2yNlgIxVtTmtdzqb6Lqh5yCImwHjGcXJRShBunCngPgMLBMzGQMCd/6CvXfF2/fyYjG/Tux+7c78xXoFpCFRQdqN191dnmA2sUZ4uKuiKqLrg6W15hN+EyBOeuj6h/vorVnEglOb3Zh1uA5AVXsoEsrcgFhbwq12Px34bqAIuj1CN8vqx3MPDM/2sLk0WB5oMmj6LxGePwMosIbW4/X0cUraYMPGepDwX36Uc8k3WRYRQG30Iq4xInWm5EsANM2pKBtbUlH1aZ53CdXZAGwAr4goNAoTZdJg/CpbFVIEUHC2Kg4AVaLRW8trDKWQNEmMdaqRIgwAASJoSdRwlpmqmgKk0b7/F6z22w4EBT27AAAAAElFTkSuQmCC
iVBORw0KGgoAAAANSUhEUgAAAMgAAAClCAAAAAA8We3GAABLtElEQVR4nNW9d5wl11Un/j333qp6uft17unJUTOjnK1kK9mSA07YGC82GFhYzJIMy3phvWDiYgyswRgHwDIGnI2zLduSk2RlzYykkSaHnuncr/vl96rq3nN+f1S91z2S2d3f779ffWb6vQqv6oaT7jnfc4q8+BWLj3nsXjfxAbz1+rf7sfzGp2e0MAHKXT3xFc8CQgQiAcBGAJCARLTq/tiWv8nGQsREAHT3nc3Zy5781I1PbPzF3Tf+zaX5F1c/vat29+hC0Aj+uvXXBVz/63OnP/bqqcfGv/BTrehNK3t/+XPHXnVZ4e/yd+/cdvAfc489/u4f1t6+5Z1Tdx+99PxKcOtz//quK6O/vnhhSbtdX3nHp3Jh8L73n/jWY78jJxtXWHD78Ts1w8R/+ID5Qui/RxECDwCMD2gDEGDQ3/TaV1n3t7cF+Qt2QfACFxDgeSrnGVKqnVWkVO/y2Hexy2sNMlBGASAQiIwIEUCGSFQeMATF0UqlQMkD47xWAFUEAw6UyQKAl01uWsgvmbynjaNDbWLGwwXFqzNg4L4qGBCAcbYOFgACEkBIRCAgERCEmQ6eJsuAiBAAwQPd/PRDHxCsPPrEt46Z0Uo83wivHg3ZNwqIo1M/CL66/MxyRXXnZy89MLeLWGLXUd1WNddGrHS4ROeC+LMWCx24Z6ufOayWcTIGY/YPn6tlvRP/pNsfffpX7a9c906QOf4gIHD43OzS73UzXzQi8w4imIZGowMSLLR74yvc7k1B2tLkHwECEcEpDU6uSC6bWd1mK8tFgGbPzd2gu9l4nn1YZBQAJ0duLD8DQ1wNm3XlVwGjSGnySMNqDRXPbau19YxCJ0K0Yqf5ANAFREWnOyG0mt7l35/LNb8QA1CVlEIOZBrP6M9AaVy3R5RSV9zmUNgAEG4YAAEgIpS3QgEESja17i8RGbn6bjHpEUVK45rbR6Y2v9Ehu/GaN928bTCni1v2BZIrRFYArXdcufPuzOCLhjdnB7a1N11hRKDJZ5MpZjOiWTJbMFEwLyYMZhBszV0+fNMeFDyQDP/sxjzi7Xez+ekXeYP/8S0A7N7dAJHGz142+Vd//74rFGFsGIpyuy8Fyj5IsCsLIhCBUB4GUdorIiKCUoqUUkop0hpTu6CJ0kOksH97Se64qIHc6J2/uiXnD0QDV2xT1nEcM8PP7bk4+wsbplqZ0cmRsW5+UwTrCGwjCkcnOs6abL4zNh7uB4olhe2jb7/19tfhohEYufx1mwbi2L5j2L7+Sht/+KXWuWignHDllPeKzeZXf9sIGg2INBcNgBxAssCAJDRUH4SklIR1pJXsMiHuQJJLSSCCua4qPd4qoNU4YKwf6BGczBkv73V9z4e11bPmkzPz+11nMYpy3CioYo60VyhRvjJfzmQ5yhTqq6MtDe6wmlv5p2/pOZxqwuGJH1YMGfrwojl81OAjV15l4AMgAHDmPuROf8GwejQmBg4eUXikqkG4v6KhhEhIzTeUaECUJEwCcgAJK0DIOvXIIYQETrpGor7OZvWZ/zSvu/dVPxafz5xYOlQ4M7F/emDIVivK2if/MffN+Jnw7Jnao42rP7k01X70dLPafJSr5yuVp/y5+e63Js+7f36qok93KDocf3X137pYgRav+l9Pvnvvi+77pvrA+7FB3n3Dbyzu3fiNr2olBHx6dfpNUx9uEv4vN2MBAFuy0anhDce9AuZurh9v46rOsxifOF4umjgzs/zCn2nnBVEwQAtR/1A2CvKrKgKyHdKXnF+1uOb0Mhkt1qkCt/nfa0G2s36vVO9/JQGI7vf+cvOb7O99x3vJ76ovff/3Ot/4iPqrXV3z2eJLnts8dOyHL8dg5dipnxrQngX06sNv5aiRH6ywr+pT7c6fZf+gtUyFfN0veDZuxL/33fEAZ972ugN/E1dFl2p6+9KKBkB6eOvovgPBF7fV/kM4N1m7OHos+0wU//gH93/2L+yX5r7ygae8xsrWXW94b/gb6k/mb/m5txVo++NKvKkZNdz5qyf3ffAQabCK4VsYxEpBxMSveXMYnPyz0hnSZMXcii/tvR4vf8RddAvmz9yNkY/InXuBXPHaJ/dlvutekRnsPnD6dWnf24U91gB2GwDEHFyZ2xruB1jBCZHojTtGc5VTP3nbni/OVoVKdRmJKhnP6mwmd8PkLme+kG3cslDftrSnc3r77Grx2o8PTpbzg7PDW8946IxM3fix6pZS3l35H36mnP2Vt4kMXFPxizvfOnnn/Qc80UEIiEAEUKJ97l79OmD+m9FpxSCYZjZsubiQXw4dWpETgjRcJ5tzYa3u19u1qFCpse0aFihda7i2JhaCkI6d1wa3rXJQDCG4QtuAwiDnapYTaeAkEd7wC2GjOW6cIxd3o04n7ljhFrgbh4LYZkMQx3Un6DA6TXDsA/ACh3DSVW0IIBGlJKBEIQBtGwbxvicAgkCRJqVJmyK0VqRNmaC00SM741xRKaWUUf4WkwpZSqyKRBqLKKWUKAIoYTVdEADa6L6qISKllfbUcCCKfAUSIgIpUgpKKQJBQWgUSimlNMY1QWkAekDgZwRktTIEkFJE6agQkVIKZLSRyXIivFQijISjlO1biUlSn/OjMOUlXukNR/InbWZiQimstRkWAIRAgIgIkg9mh2qkAJHeMCCR8AJKLNAqRATEWJV0qLhDcDGlMhaAJMIxaZ6ISGKnLbYSZWCSjkB6UqWbfDTYcxYEAkhq/Y70m5x0C+h1LzH/IgDEFujZLQIwCztuRMELBKRAhBJDbtVnFoGgUeydjACbSEpCOiI9OwmSdAsAraTD3TNM+x1PDygjRD1DS/ee22vAC5u07iay7jyl/0j9b+U8qR51qrVjfYp9fhMv2NHpF5V2rH9R2gqSXt/Tw9IjhvRPSjrpQZG1K7V34UOJSJFn8Pwnrb8mn+wTrXWkd61KfkhEoHW/et7AQxFA0PXWujsQCBUhIqHec4kUKSKCSplEKZXyCClSiSQgQIRVd7VHykkHmZ21dsWRXo2J2lG/ObxGWh2IiJCwkPQGUtCpadGrSVuFORk8SYbRpQPXSEc1mXK13O11ZAkUA2hbIhcrSAxQo88i6fj2GQNY1zmCbnY7mhch8do8sWN2MTViokigGqECiBJ2ZSiCgOCQ8EjaC4gsMMF2ifW8VenMr5l6Ij0eaR+7kEfWJjxIZlK5ddPHF1DZC7Z1J4QUoC+8lgigREoD4un1p3q/esEthZGwjng/mrt6R3unFQMCu2XApifKgAfBeJZZew7kAVKGCLMwM4SZHTMzi3NATyglB2HL2VwcbIMKEoInUtBaGT/AeMBuyBMeyrpkSUmkoMgJFAQGWisS0imxadqigNyQVfFO7QCAlFZEKllfKKV0MgWFyzNIdQIAIOReD0OAAYgDRAjigESqItGra7O3Nov9byq0ligE3PMH2KS0D8s/aoSD3oXpALM0kTAZdVI5Ij+SIuJa+qhkxs1yozfjHZACYZmU4lgl7Y/6nKFI9TidlAIBSlF/rQWKXGy6c8nEi7AIwzl2NrYLVulKTLrWVT2VyGBRBAZRC+xYSMRCQATomIFOzRMzwya9G/eYPSELAEB0DgnPJAoRFadSNliB1CGYbyczEocccw2KlBCIHBSREgKIFMNi3b4QvNmMJaygWU1kC4lAHMMqatUVevoMAIkIg0UBDNRJWAQkTCRYjXTY/bIohKdanmnYVo2Qsjcns7TG7N1ls16z44jjZaArwArQAeHe/RDpqnPUVuHsGaRC3J0VTSRCECKlMV+CUiBSIom3K4ytB47mZ0ZEhESExMGJBWwrRCKhCNLwHCC0HBKBBKgB7FgUmIgxEysbngJgV2LQytnqodMQMAl661ERdoQOCNJNZZpJyF8gDqhGwAqgAKl4ArtiTtcHf3A+txylhBe1U5GbahjdRqqT+/8VAInYgXgZIhUShjALR/WFAoQqDEJjbLXIgE3FLxI/E9kmAYJIqIsuREjDrXa+U3/oTOKQSqRb4sARYIWt6bKXzLICqA1wYodYoAEAHnWb1Oqyt9im+x8snl5UQkSAqbq+NgERwjo0QFB9e0tiB99nqQHSJqCd2ABMLc2hg6hIlGIitISEKIoS+5cAEbKdZJx86UTLAIQgqnusdiiifut7/0XgqYzimPqkVS2hMwO0gGC6ox4BTPd8kZ558GjZ904eKz3Y2X/0oTckA86nncepRUqksDBdHWACxZoIUFjB+VHgmdM/dJaESFLaJifmWdnzzC7AtvKd9kyxrNoNEkG7Y+IuItfNsghgfSKB/lKX4joEEgHsHubnOhDqWYsESYnsyP3HLjuYCi0xkC6jVQMaQmap0Tqj2Fs8OemWDtQrG2xUC5fUOXuWwRpA1CSwIhCEAIXufGMQALVzCYl2EEUxTp04hETaik3oQdg1llqrLYIsqc581HZotAqwIkJRiK7rGJeYbcSM8HGhZA0QAh1Me+11Or3n0BHB+c/OrcyY1OJTikoKg2PAKCHeMbbteka08dqLadObNm7NePlN+W2FS82lCkaEkC860pLYPCSM/PYRAcADRgBhjCKXLeOWF/0YpU4Xr7+42rqvsG2DQG8qDm4dHPZRLoM8RZBcEUV/wDeJGSRKI/PmVOmoApDHtRePJFKS0tVEYl4aXPeed7/9lTY13cwcneTo2BmSpytDZ4997On7Fbf+aaG5XPvpxtHbao3j7oD/MfvXu4L2dgm9pVOmc/oiEEBhWNA8e35+q1ilTnij4Ly2z6IFpr8vfZpJICRYSkgLPNdoZJ5WcHy0tPJUY7Ysp5cG3VxsrevWUV9ZzYUi4UIsqtXCzG+mNotbhVRwn9RJ+vIqlVpgxn0/MbtnWloJ25iN2LrR3zd1FHuHsWPjT8vj38fQa6bzXyv+5qGXeGPByGV7mj/xjbdtA4AsJrdpsy8hykwGwERxggyAXak23fCEjMjZV7zmyBOSCLbRUyDFpGjTzPZLB4vQamdmdd+hoZLe0hQ15ZmsZ3IoDi1mQ1K5TR6pYn5p45t/kEyJKnVooL0vfNomd5OEpoUIpOD2/tHj1z3834pzIEDM/eZI6+j8eZIjTw4cOfqhkw+RHHl6Lpxf/FPM7o67R+zB/D/ing0UlKUWnD8x062XM2QlaNcnxJ5deGZbszOkjxYG4Qo2nAZVLH0+++mEHyHzAhYI6NzqsyOVWeq6A6XZenQm0zqzNOies93z9dYKpheXBrvSXn4uDFaXmzj1lykj8CpkBU+rGIAkfsBkRhhgwYG3LO2qq0Y6I59rnFh89HhL89lv7LiX/+cZJXj4kdzMangeh18Z0sKRav2U+upuXbpMTufr50+fP7drqLiig8qROzC/sHI+mJ7dl//uxMY4Hut25kAN0JkHGkDin5xVLBBiWqTKE1FDOva881vFxqnmQhRFR2zrzGKji6VqtxFKNPu9MJxttDBrkVqzERBSxxmXqPNUQKXKBI3jthplU4ee+U0j21/fuf+H6o5fzhz/yifwhx/FK/5HJ/jPU29/4qKhs9NvDd66bO/9k83wc9QIKos3hVYbL1bibiri4tuzLw/2dHPe5qJyBJu95bMTOTr+Wz/3xT8IqqBcm/afaHiKldGTY2M3fHPg7EDtVe7EtuVdgyv7n+hmX3low62P0hPTV17E/mo0uOunHop2Zz42fcO7Xm7cyAyJNzanJlfffS7zL+cUlHKOFEOJkBLSCF//jvrE4V8PzhIAmO3w87mgKU4GUI62YREY3nhuYrGU8wd16Uxzyzcb1xzDGCAYQqNpgwzYasAPrAs62lkvYDvMUIlm6eYJmVK9yxDqApkuhIVZcrWB3GoemkwemXZjjJ2QMiKx0grslCYRP9815CkIxHIViZmGzsHOzFIvyJQyfbLKigvzQ574iYIxXb9UFD15iAqCcIPg+q+ibTaZYNee+QE1s3tz8LIZufKKmEAQzdu9SAFgwJGwbJzIRRCBEwjgvCLGcgabxq/38iHBxGBjSQkpE+4bNxf5EBWI709OaBSyIUFyeesZGPKEFAlnYnGAvMgXDLdISIGMfnGnc2au59BK1GziHZvatw/bPJf4fhUQNcWGUCKSbTq3CJCtd0fOrVTblqhdazRd9WxqRatGDE7McxEWaSyFLCLMiYnNMWqdNhqtec9CyBMgkxK2Wu2ouoDYwLoaO8MxxDfdtnIMJ66n5ESA7EykOLHAAOWb87Vi6jlI/6Yrmrh2olqX1NAwGYhTqgbXVbANgxkga0xwcj93YlN6YmXz74e/cKC6PfmpnvPQ3wzQEu8CtwcjdozYzbYA4qaCqhIgBOdVhqKFAETNnDJcH4mrodJW2AsIlNGiCco3rXyQVYiaaOqlNAgTNT9eOHYKrNA3UpLVnaBSP5+rxfmUtI6Z1eKpKAJ1T9KcPdwOQWcONTzbOnDCz9a980XCae+5EouBqIXGcYr9xFFG7PzQHfVAAsdGoJxXIxcpmjneSh7qqC5IPH8rfnuuXUWXl4LGbG3Za0cRt2Y7rePzpimnqqFtRNWlU2173m+jcQxEGoBYIAI6xjiItQAckQPBwsUKrekl73QcEgjEZGBhnAAwSF0sqh+i6K1PoSEKgDhNvG4OLEgnM0EkBFis33SuUwrmLisvjezKf32x2rM7mAReXGjhqmdGO6vZeCxsihfu8MLqwsTUAaXCFzwdADA0fjLSOoLPFnnkNk5XLniYYd7bOK+IN+aP4obr/9Jjd8WxlgKTEvDYyGElQiAHsgCIGJRYNxBFbmvpKXGJqxaActdCrr7n/R96rHh7K7dw5+C17lMmfseWc7kgyK98yNjiW0r3zF9/2bHCN++s794199ZfuufET1yWfT+9Yc/As58JDjzxux8pv3Tz/zz8oXND9cgM1265f7TeUkxE+OWvf3B/8fzt9N1fi/4ufuVrf83li4fu/R+GRdm7zh/+u/L7HzEm3rY4ox02Dx/D9ktAgl2zLRIIQ2Fg4rCygPSBA6wFOvFBCGnePvWUBxAxgQSa96Kxa/hlHxezA3ueuqx0sXrIy2/wJvwGgqJot+3y3FX3TuxZnMxOFnMXjw4F27petrAhnymVc+N6sBDs6QyVd2/6OA9HkT/W2f/wZaeOZSILLt3+8K2E3XuPb3/FM9vxxtumAFxTFWEQrrILb85s/XUiMeJIAIJMlp9VDD/uT6lnOr35pUSlkse9GcnGVhF4nVdK8i5fPLN7eUWPhy7aGWwKT3v1Fw3XdVYe6z6t2Jv0zrjRTDdYHG9uddUbv3fX6teH3e3x/QOZ1btMde4HLyt+vnTFufmmcQLNE/N9/9hQ686RwrFv5V/2nfAu+6WNL45Gs8+dOUwCwJd4ROrWgGzqe1YytPFZAJ5bc+bQ+k/qO9ABEGImThaIa4Qqhcmz424FxSCMt4zevGyKJ398/+nsiHrfytOKaWNwivKtUmF56/nLq7NvOv6mM/eOubd0Hx8bO/c2ffrgD+4c++zIrd+uNxOn4pbluMcsQXTznn2f/+bAq76rXhZ+cfztlfGxL3zjWRIAEbCMC1oBGB0CUGseJKIXhCb7LnpkY/v8k0qU38naGL6As7rYDLLzV5Tr2U38YGOehDLoICBnrBdPNKIrntpZP1OM94XnCPHVEi6c2l96KCi2ooRCJN9eIw2XL+88vKjLK1Lm1czGKH/5oVNh4t0WpEHnpGmpEwAXCosLBceFHQmsW9tZdzL5TXIqkKiUbWav2P65Ss85TcqRckASKCYBoAyiRFhqliTy87zHJ4I0seN7R3tSUMQkfsT/9xv9iK8/wn9IW7HrNvzOZ//gHyq1t9y4DmlEyOM6o/5y7Bdux9TQ2++e3LJp6t1/94d34vW/B39NugcXKNtLPpLpxxD2jNz8yB3roUuA0W53a0azTGVP4OKLPqtZ9k63kn6TDA2cVoxevEaQaJNkLESR2zx00HC6qhUod6mOrvjsr/3b0cz1od+9IfuKw/dvGnvdlddlJdyYf1C7qVvpwdOX7Dtb/varj1/zisWXfuUdpx7anHunfuXWwrm3m8PZ7/5i/i+3/+rjn18YaYR+qfaS+zYtt0gA6Nf+8HduuWTXT+Kj/6vyW+7P7njvahm/veGfFRPxS86d/e/ZI583gEsBPiSF8hpcAwCg149JP5LTn3DpBex6Pg7Pei3tE7SPbDvyjmq/qmrHj06MFqvLEGKbE2Vs1FJneSZYPVE5foqi+LvZzipVD8Vnz8hzY9RaDXRyS7JQQcs4JhCpwbMzLS+MjGTYVL7aKQw3J1gDgFUq9hoZ43ASxMAMlJxZhBMc70URBJUVcL8PvT+99Q2DpkFuLeTg8HRUrLXuaaP9JEftsNScXxo9eHNmBuMqqoNl8WE6TWeOFAK3vDD6/aXbw2Pnw2Y0EzWM7c6gsWqPUT330MEGKoK4ItN0GogBgf1a/Lndl395eugL96pPuicW9i5v3P31bxNDBA8AfwzAELRwOsblDadIkGunnEPimVaPdVPHNEESLyeBIIo4sapTCZ71Bjed2nV2WU20Q7V77I3P3Te6afdV+XwGowKC3m5O00hUzC3ucFs3z1w8fvPpDxTNq+N/HZugG8yxCNdMYfTltUbDWIFyY2d7PCUjqy++eW/8iYE3fpFe3f30jv/UzaoTp84kZAc3iCqMtjdUDhvma4e+gT1X36fBNz22rJLgr2yYeEhbUILTS3vU/6pUdPPkp3wrPbtaR3e6xlVnf//XULwuv+PQZYXyZWdL4xs4l+sQe9C87yWevm/r5QfHjpQvja7fZuLychDkbSE3UhQTOM7siDbmxn7l17F1vpHbdvbSZ+5YeKIYRiTFd/3tS8bat9/23P7/cuB6eddeZouXBfcpgrb/6ckz30Ltd4y2+6cPa9mwaQIYHIdydP2pZcUAieLySBKIT9xJAhENEYUUnInhDdCc7APQ2CONgRtv0shv3n/XH+wobewObS9s1yUPsfb8zNDUfzi+/dTGkclNY+Nhd/tOowcHjO8P5X2z1QRlfyI/WC0P7NykMeA6bsL+3NKWTU/sOzfrRVe+/oHLEHu//8cbf6GyBb+eyUGiXYuJa33zqbv2A39iCIEPomxRAxID4k+lkFJah82klLiop+ITpwxzclxSR3ZueBrj4qAomw+ZbNcFvrZWgtBZpTIYoomyDskbYWHOWMSWRGJL1i+GNvZM7BT8wCEbkJiRjbttGeVVFCuD2SwiZ/aNcLlsMYSYJA5SXR3p3Rz5VyjAMQAbpJhPMZnnaXOtL9zv94Z6geP+GVOIlQcA4kSBlQGzgKDF1yJOQsuKlcBLbf5ktgXEMa0pOILySckQhIxWChk4diCirqK4TSRJ0CsNjEhelKbYUBJyJ9OLwlAmNaZ6+iHvmml4hNIlFaWcjrLphRiSGdEFowbSzjJxQM5kmYW1K64UM0LeMHsASEOAYopYpQEBdBqNIvE8RsEaM7GtNNgoZHIGBkQGIm5oa+x7lihZEucTsok3bgGhlITelNuaH+rpPS/oxXWSA77XQ6DAH1oDNZJSyCnoXihOKQWdsd7FLvnxkNuZNdYUYnYuDn03UswVbM7zBKR8jIEHBAwM+M4nCJgZSpjIyTDyWmPo+myO91/FPjywtxXMnJmM0yiFMCPIgAgYmNoFiJiUBbLk9ylHX2hvSJ9LhLy+qAVRn7SS6Uj0CWVTfePJIBhQifOGxbeBzz36kSAV5/D6eqmnZimAEojykaFs2QIGoNJ6FZY8ILEy4BsDrCEgWmu2u7gfFVIXiIC7a7dbF2Vd05cgxOlnhK6kEiLtdOxIEv3K1Dec436Uly64HSRCLFFNJyFi+3xrrm+CcGQBSrEoQh3L6U3IvcA670eLXKvvJ0MPf5qc62NTUEt/01AzCfcoIlIAq3anh4CBxCnCilpxKmUISPQVHAiium041Z0zghCgihASBE0SLyNC6taIozYAMslgq+V4pT8UiZOJesPDySiSCInTSKE1gAg6OayHVgAgu6TTTqtVC+XaSoiUFl31XaQ66YhTBdQEiOD6/p1EnABSRxsCOx93aGFFCQhwVRCRq6nezBHBOQKAqqmgZ80C8Mm7cPJeMOG9G6ThFoAAQz3d0offqGDd0leEPEkNt4wP1YuGAwbou8jWUWaymoYnAAJlkDW9iFHyt2/XifQeaEwAJDxCIC6afuLBhVCjdd0gpADz/h+15vvrTSBlE10KxWUjIJ2SnXgqCBJ7lQDJQwwgkiIWsJ7nfGgheANaSzb1VNIASeq77G9pEkRWB+savX4l+CM4PX38CxaMKbavd/Z55xSpPoxLgVmptXvr9XOw7tGpAFQAO1k7Tcn1fXqXtZ6bRIAoJAZ723X7t1uz3AFIuiiRHm5pHfgMJvVHQFJGIXCL0jCyakhfC5MiR90u9YwE6oAYCdyJVN9AIAggLbACEZOodpjMoV0GCMmVlBoT6ai2k/aZ3o1tO208u7VpFgAIee174kZJsV+Cbq7veU6GIFRutUeZFEexjuvGklK6q+oZONV1DIhYtEGtnpETJf1IJ5XQQT12qn28E/FSI44BkG2BSHVmDZDYHETJSgWIahWgBwWUtfskBmM6TwCE2t0UMrqGX+t9rNievFqblDXhrcKW5piIiHQT9aYGKtz3JqGZ9ldaiaMbSVweILi249qpqMFhx1F/GHW4bJj7hl6Y3Mpbmk21oyIAyvZG1dnnG4l9InvB9vwrXdtb89eRQg+VqQjQimB8tpBUaern8UCv+wQoAnOTiSOwhe1hHUkSTLACCOjhTBNFpATVECLdaqKRhcIjHfA62B2sS7F3koZCmDk1d6wgAaRxsl9/dqZ72gEgG+mwA0sujLQydYopjOvxdPX8shEXVokJdQ1FAiEnZCtaaetIsZlfNKjUOe4+M3fSNt1SEyvoxFWnSQ4epbkfKnRbiki5TkIjtHqULX9XgWpNEqyyocSQ4EbfWFmjt3S3p0J6OsWsx+kRCLUVtDVBtAqzUVuBomYbotpM5KSrZuv1Nnlsu0oLmmBJ+gFl68RoxIpJNSIN22JFndqCT+hEiFBF24qj81UsPAyKqxKnUAwAgV5UWX3UxLK8Kk7a87EgCiEksxGEIQBLPQ8WEBKXu4DESrKoAtgZWclK7PorRJaZNtszxzW6tSOmEkvg20bovKxfNH4AK7WZ7sFGtdaqtuLVwW4tb/I5S66cibnTHcgXTEjFemdgjhF1GSutQ9PjFSy1Acx/f8UFxv2A6fApoi+PTxn41dWE3s82zxyJ7TOUkZg8CQFkkDGrKk70p4US0mSJYijWhliB4KxvuLfu8i13kU08g6nIjSUzODtoQ1fsWmwdvPXBaNMP33Hd2eGt/p+c+46JTdnM6UHl+XPb525cXP2tv3vL3Ie2yNub/1DMV94VNp7+6K9s/i8bLn2oFSZicNvZtSWeuuKan/pfnx248Rt0c/zghv9cvXrXe+9dlZ50EIC+1P7j8b9+/K1K8l/Y/Ev33fHEqnZ/8d3OytGO+Ht+fvX3ftV9JGgi+5Fi5zpZNTO//M32gRuVAtCqbbXhrefv38HNvH6oNMWurO2t5wDFeOsXelkqAzWARGX9Gg/uf3Dfsxvi3V4nLk1NPHa0Nuou+/rGz/1T6x7843tP5Zvh7k0v/dPB32/8GhebfbmS5Ljwur21DyiRbGeQ6yQgmFfh0xfvnRyoYe/teMMPPrBwZ4Sb7nhq4tfCV7ubLqr+/sQt38y+6EO/8GYA2IqR3TuwK7PGFtvc3gkAKOcT5bHlHA2HzWte/sMGIAqKdj0BRUAY7jkz8dJDZTVY2TF1YLhavvTErmNFvuY74/s3N4ZXN08ulfVqdssdf1fcGGya3jV4f+rf9EPkW0WzQgKtRBxpCwOrNARwQ7vOX1Y7GdRBEJiPdU91vr7gSOY/N/BtfLALwVexZJfk6cbKySaeW6k2DtLBjyk1iljmzz8Q1QoZr6NVu7a33Zq1T45VOJ87MRh4nLHtJaDNWHgwFgBMDnOJslS0aquPxytc686vNL3q8pOLjbAuh+PKg0daXT5VCzsR1098vY1HpSEV1VNhCZbXAgAzJTA/B7CASCRqykqjGSYy3ISu2x1tNJVUI9uKzj/Q1S7zYCvstr/vdXe2JVerFx+Xx1+X2bgzemrUq22pd8qbSktcXj69kyvtytTFp05enp3ObFXRRG25DUSMs6eWe9NfT5UlKra7GkWgoF6QxZIZzJxBJqy4YPNYzWFU4i6L8jwKtlW6WD3XMyNioI2u+hEqTCBoH4kXo4GoJzMBXIEDikEQEhKg0BypRyAICs3JSpQ06o6ofnAiCn8s9A5dO3U42nP20M/XT3yOfnn824/+Uuk7G/Kqu+nks8/a9TS89gTqW3imEJbZZFSt6jIdZ/M/8XT4FH7+W2ez0tWZgWr22oUnX2ibXsAh67kH6POP0QKpGwiQyybLMCgdEyDQGUE9UYs5rixzqe0p11Sunmmh5qIZVyF0Vmdy87rVdn7UjVLrRHz7/PgQCUg5Y8HWOVaRjSKJnLZkbQPoRAoMQuzQjBT/O/b3j5qWtYOGSaRBAGDD1Py0EjFAgEsMAwhZWSKKPNd9Rse14+dqqtLsPtupAAdNZJ85s9wVz043U1lFLBc+DanVLWAJuevagbXgWBjhs/Nd4LmOWIHEsWudiXp+jP/DltrB/UuNCBCGvWFjAIg5coDAEYHjZHnuVjJCHNuqiqJV06FWVJuxTcEStbiy3O4o5ZY5zcDpp0QApK2nxCuMnegkqQIScYch1lkSEXClwcBirB1gXFdcy8n/TTfWOtN/0jtbXyn//rnfsFz6/eG/e+zF1aec/Mp5aTzKI3biRfGH39r9sp+b2/wztG08PJNfuOcLc01/+/AZNbLwxMu9c69ufH/bo9N3et/csCWyg/W5XzxHntj87Q8kwXxCsSGKQMroVvGiJzadnoj3wvpU3vzofL0UXvTdrf/68dYnw0+851ix09i08aZ7Bn6z+keNwcx82jrF8OIAIQBKss/T4BtAIrmB7kCrrRokAMyRepNPLTkgOjK2KOciBhbOllZCarvl8540ViwrNI/Z7ED3yMhy7bGlsNgJ2rx44tzpZjuMf7gYnT1sjlXmXbhBL4YAC9xiL2FLIkAgxNaXaIFDRK4ZQxnJNMLYuQbaT85ZixNt55x0a0tRON1lhG7dkLs0YSBdBa2fhqhhYW0P9/u3+Pntv3TmfS1s/dOcefdfnP81Jz8dn9bvtS8yl11f+cz+i49ld3zz9vcYGpG7/aOH3syVUUMMuq1bEvmfZ+7aGd8ZqB0DA+R84Q8sSj5uT77pPY3Ej6c2H4ciIUVjc+N33bNhbri6Y+hEubX1kmrmdDZz08GR1y01vtu4/FvzJe6MXvKT38pdj39ubQ6eSmMYJoaJfK9GAiLitRkRIkiuXNnWqptzyYxsQMb3VQREQ9DSOBQbLj633OrwkdKWDCEwkZmhudzQokYJg+yhugFQgO+DSHUFngdoa0graAuKHK1wH07iUpcHNVg61hOjLaThmWzQEiXMIOURpIOIyRgDCqxDd6U3ITEQ9yK2L8yWCathfamYzpB5d/PA8a8cjbQ7/+eTn8G7z4HxmR9mzq24FTnXquPYgdoq4+E/LI1cZM9lz80eWTx/ZsvGY0Guduhu/8R0O6o+tnxV8Rsb9yDOzTfngQ6o+o0woQuSuWTZzKjx8gN2Hivx4nQQZZaeXq3adnyQG7NLKx10oq4f8+qpL3b9E/U2Fuw6+hF0LnAYpQcFgtjKbLsn6QkAcn4PupNqHY8dERiAFwMkJBhZBoDc5WQe3XXZ9zMl/fhddPAc/VzjU7hy+NktA6XO6uGwte4efXHSJ3cAUEE8wspEUQPCQPau5xZXcOfhWS0MD6QmGpV/TyFeuCWYgv+rS///tdHb6P7BO5v/GGLsTZkHHnmDfN7K67N18x3ZHU8MuU/dOPI92vjUtVchl0VdRV99s40zWgGIooLwR5tvHeZ2jlbySqAVPnYOGY42XPJYQuWEkaUEh0gDteLOQyOz5XBbpppvDwyfDFczvPvxobc8Hh0I3/zDhVynMzp8xVf8O9SXG6PFUymzaws/ChJHK60jrkT8FobbI+G8SdWwyE/8scgm4DaRf5wU2Qw8Lk8sXHvDF//8kWPPeu8/cv0NH8a/Js5CWX2DXLC95JrWBfuvBiZH8KaHXw0ARErdQDCe8TKZ60tX/f347bRv5L/+xRve9fJf//hr37hl796/yFwZveePpvDoq7ZevkFf/h+f23bJ/Y9ux8v+KvVqmAnQRmyYAgGkjErcDgRSShuDa/72F7721yN7khW56Rq/bVsa0BYNU9HD06hUVTVy7Thc7VJn1YtW0YwZRKJWbdu3CikUkD2DusdKEHkEgE0MrTzkM6Xe8EW9IFc3yK/AiVVxPQyN1+06stQQt9S0jJWIIybbXWVbjSx66WEQC1gMu0VLz5dZQoAEpVqVkpw4MdqIMp4BYACTESHRirJcyBAZD57uuAHkPKsIonzSJnHjAMRsOAgMK0n9fGw0FCn4nkkeRCBOmV2U9jwPIFBAikGsiTRglGeQSbJilRLSmkA56osiYaQJlWte9cTMIuQmFyZn+9avIF9EdvwEfMBN5ejKg3DFqVJmz81hOZi/aHfm1dXSJTdw8nO1Sbs1aDdjaKxklQg8BgBnBjFc0DM7pi5WmTYoiEjn2qSEtMLOicL+cRCNIcgPDhozcr6lNLIZ5wcIdKA1kehsEiK50yMprJCoALpQ/bHq/q83+8nakvrMFWHXS3ftClJfCikgmwVlQRnAlAg7AEslv1Aanhgsd3dPurfc1dizkSnJGdmguefigjCKk9oBPRSwwMdAJoNCbrOXAygHQj7J7zN2asjbPgBCFqwGh8krGpAm32MInAOISExBIAQeMhkzBCKJQV5wx/5XjUs//7yXVE+EvNnKfsYlPJJitsbIKwI5BQwAGThcs00EWia0lxsrj6WRAaiNSPx0SdMxTOAempkTOD8DXVUeJiLyCOQnaZyGVCZDCiSGIJxjo0EoeImzkwYEpBRBkQhhjJxf2AhADxqPBrcWLp/q+Sx7bjUirZATq4BsQm9KAAVs0joLBAaYABVAuPYyMjrjJrPZ0Y3BBs8lQ05D5Po5rs6h4MH1nI/MDDeUywBZPTbmAZQhIp+0UdrzpTRsMgYEHwIKxAsIyBoFgQINgpRSgEciChuzLj96FyCZHYUsFXaOXTwGRSqJu1E/rxMZUjD+QCq1EhJjEkYvaT0E0GlAAFgrEkkvkAtYUB+fTpR47xLIeoJIsQxAIW4zAO75u0UEbGXN0JD1EQ5Jwp3Sd4dbobhdAyAsIiqyHGOdyz8RJOmtlElLNqUxAK/vCVWgHACTTxzDpkiExAGUCIt+MHQtMb8fDoUbyvqCLHShHyNIh/AFcbA07NV3XIJ6nyCIl91EkrjBfUWqH+EDesGRdC8o5i7oSNhfZKdRB2cBtipZM4a9R//obV2YMXaWEF+YIJzO8/OMol44A1izrdIbsUC4LoDEwhQKywt/2dPy3Ub60zQ6GfeTFS1kGYLlNkAEFTU3JwSV0ieUApSCpOEj9LL0hSDw5vI5jTYaC71VuoCJyVnVrBohCNb5xdMKAwx0SYQZJELEqMemtfI5EKLptk8WURu9XF3p5er2HLcSLqbxsWTfSm+u0si87tVvE/QMZQHSUmh9o2fdmWRzIoCFl1k/xARAtPe8KVl3OokC9oAU8JXoXBkABYrICli94Kd9o7pHSqpvvqfrSw9QIAQDSUuJoMT1w1c9V00ac17z+qQ801Pjrh//SoMRksnateYkv6Pekpb8PngNADzNJrcdJGY08ISc8eO15tPa4PR7ROjHeE+4sJKs5xaS4NnnHoFAsMASLi2cFUVKKYJaYNND0JBSWBCo9aCapINedG6eRMSJiBXn2MURNVcoDdMS0CVhEVoJiUAMWSRhZiEWIsZzbdNZehBC3ecabbNyYuXRJQiYBUkWTpI9LbCgZDAF0mN2CxGgyUA3kRsdBZKmXor88xXd7uFF4vZ6jidQ3BuQ54WmGYB0kZSQS2bLdroRhLoCSIeiKDm69jsBceK0UIBLIS3gyJ5rzSzjhfwuaCIFm6U/AgAN0klye5BcWBAIZXjAizaPcEH3CNBbf0dJwV/ruSa5TCsAFAAIEm1MRMpkPJD4BEAnClFf6IoTFQgAaIJRQTJUyjNT2bHC8wYqGToDwPTroiQfESROSDftYcMBElIdFFvbr9CVzMDa7Zys3XbdxglqPu1gEpln5jWNqMgxkNR66h1b+7QCEQsADsKuLa3wR87IBb7VlNknySsBOSWuDAgL3zTBQMFtNS43XtoAToxCNUFpnZXEaCwbsEAkTRZL9ZQ1g0UhIh8gH0opZbT4hcA3yXAL5dnTICn7kph6OUlMqcTWmjRizDgAPeR5GNyTv3Z7UmsJPbBAUnUjz30pTEhqZcIKu4TAWgCpQDUC5fnsNyO/Mp+tQpNxIKguk+fW5GbECZglyWoiKHEEZI0jFpGIQFEaETaxNW0PABT57MiRAlRi44CsIogQXBKZzoh1VQDccUq358JjnQvcKkjYG0YFlOcEQwkDd8qTue+TOx76Zx99/MTfkND3poNv6O78tfvCj+645Gdw+T9P/DdEZbBUP/GTenYyXTUZLU/c/9MTTIpWXEmJR3waZ8pMn538wCoJ3DxJbQ6xEriwdt+27KcugcOj5drJObW/8fBCwMe6zYbfqaNZWc11nZOV2ZIO2zj6G1EkT4Jhlzk8t/oanouStEcBJwTlAAG+qI9f9lw7dT+aAJkcZVigA4y2N3SqJIXxhfGAKVcsSRzlurlcTEVECgqeGDXYVwdCKmTSAEwQEKAQwSkndVdJ2aGPA5DcQpizjpTEhkIWTdYGZACtCUBSssoUFJQiePOSUrwDIjSp05+LC0RNffrk8JyXoqXMt9vzdmaGFS8eHP2B+qjTgiNPt48tZ6bnPWqq8Il26xydvM+UdtBMMFtbWWluzComtVrfIlHVNrvxyrA+URxkLknUBHWFwlPSg23XAIiQUB3Nw64rHQmPd63rLHRCiFuV1lI9DhE244yIWz7G0lEO1bELhRmr5xtqCXFHLa8d9wQRTcQN/R+XPqEYd2/5aAiA5LqDG+a6APyr+JFbzkwDJFfjkl3hY2V89o8rlbFR37n8qdNvrM3/j+hdW5efvtn75lS5zZtk6b0tEpCMLT3/wSSgQmOgltPlsBSVc8HMnB1olafLv3V/+ADe8flz+TAcC3Y/Wvjx+ici/J+3Nb9cL1xu7qL7irsGFFDYUdx38Oa5EyQ7SA0/F+eC0c38yFBx0ZjqyKVm71hYmVwuj44s6/FC3Za5UFL+wOrWyaA9ri8aGBUuhZRvwXfO39lsA9Bi4oFumAus1ggjs+F4rpF1xdHY17kt1ZEVNTa6OjwxGg3Go8Wsn2uXhrY8Vyp5Jiqm8t44AUgMxQDglRr9LpZaJdXqGi8qdDXa/SnCJXxYMYr5NCxRbAw0GAAGg4XN8xFAknGX5sKni5n5VzSi5obxRVeeP3VLuPxt/FRw7NkX+4dHSyo2UeWJGMYqTmyVQI0tx4XaZCk0mhaiOuCJ6IwbUMaNzJA1g0sF77Kz3ZAve2LVHw/9bhgM5uzp5Z6yznbXT+zY2FzFy1eRQTfY6TTNrmD9ZnbzXJCLSBBsKrilDe0qyXgBuWX2lF8G3MiCkaiwyWnyd3ndGmehud7SDV1WQGA7MW3uqqLvMgIOTAwo1kOrFoBV9VC3udZxihDFXr7mdzwxWe2QZd2N/FpQzfs2rMWOrFoJvczgolPcES/Rhj0rRSVKuokObAeIAV5SjA6UcoYpmS+YV0VfHvqx+Wcscq8tfLl2Se0xxrXNdtigMTexKzq9t/BtM3hm4i7SQ4jV0udf3KkXAz9UulvfIOEz1YuHm5zNHi8UCNkoPnmelKjiVY+tABBXo1IVzsYm7ze7+e1PDZ8rtTf5jcAOjoY6VLTtscLe1XAm3HzY6FZcGLrka7jMHUcpM0MCwIl28CMiBokJrYMkjY4rziin/FJnsNtSKdB4kJoYtKsAispSSwAddLUVAJTj0E/KBOY844Rgo81dCgt+XWVsfVi15tzuYIZHsvNZXyTfaNRY5+qljgoDVnZAjbTbXn17saN9Oh0taWeyXs0zWnnd4Wo+irdPb7DdGEMIV128S+L2zObcrPKXw3QqBuv9ZULWjpSHZk9lNp5WG/hc7vJmkWYqdaTrOYLAdGEpKYRqkQnaxGCbhNtBcZpnB7gkKMp22UEismhKVIFlLJiQl1UYElB1McHzoXRMQegkV9x3qjBw/Lo9S4WhwscXlwnkGbFZUSa2dqrSvqFyy9K9o9H1ne+XMvXbXOfs2YtGjw5O1uJUJhUbfQ6IMLzj5q+d8ibP2HF3Lti0evXIN8JG35oDYLrwuQXA0x2MjM8roNBKB4IjEyQRD/RDUNU19goZvq4BWKv6OiC5ocquswu63FXdnfm95RPF9t5LTg+NeKPmKQFtzqzYbDbOVQajwYGlS759Ub467u3GtwcHo31yvh3tGm0V9nZPhsYJjCvNprKVZLR+w/Ztlz8QXH+8e2P09NbbKjv8ffU5EiEp2s5kdjY0JEQZCUHwVdSEAM7E2gkAMj48dgDgiTaIFHXzzEqRAGIDYUtZLdYgNhAoYoiNqBoqRGxdl7vz3VIztM66BNLlhVHAjlkoI6oNqy0XNemwQDGFnic+6Xyu3rJpUrlQunwQity50qUNRLM2nrYmtnFn1LXSkiWOuFtaMaAQBRciQtFLgnftAEYcAArQzEdpR7wsmkZ3C9YarQRwYR5uKRr2pJOlZqAcDEnFxYFbEeWanRgrw4VuhzvIBSpjAoAQ1aTlo1EUFYhnRXkxZQwXI0MIAn/AM5Q1pWxVEANi0eQe0FNWdLtoGlHeVCSK263sVCGzMp2cawILAAxkf2MahB2Fg3jx5e/TTq57WroACNIc2/xs4q9po5PEUxbWSKsB7Bl8BEC9jxi9hcPLv/IHf/NU8XY1dPLF5Vfd+MXxzW/efFkeanvpXtLjP4EfHNi9+1R5ZqO39fa5Oz75tmf/YnfwavnYzvGjb/QPur9/dYH1Gy9+/7nxWtcbr9z5b1ONM/koJhR+4Sv/9erRrScq71Ln/4j1tT8TBcjs/APlSLmXn5n/I/30/abQqYdDcRP1uGSWngIDS9lIWweIzphqlkMAUhBjIGRbG0OKM9maR1wd82ptbA8WuRgsFTwR3cRShOeiHywH7qyuLzwazHSenW59YrRicuaxNiknT6tVfyFTtbm52jNz9U8ufHBlS6v9IclNzy99IDNzuvRvXjn+cq2FiMEdfq7TjMAMiD3SePhIYXql/i/T85+z1UN/EfqjRw8m/qT5unuUViPKhQrZuANDge4iBOCbKFnAUYZCz8UAkBPyBXCdshNoHRNxd8iFTSrqUDzV9pVAWbQhmXa2o60v2mbNhkVVPnv1hoWh4cz91fPaZhXF8DwO2sX6SBxdfXBbZ8a4HZi1El1t48qpfUOPZHOLHadEYHi4Si7Ja6bAlsc3HZ9WU3N2lGvZve1y8dmzkQAg30mWvQ5pd2flSQ16ycgn8eNXv9Oz8jNfX0i8l8R7J76jGZAfFT4lUXz71D9ph54Np93PtasXP/z3bzow/lMbr/qXy3Ivqn9xQ3zn6EK27X2w+fdZXPGz1VOfvmPL06P3vrKLu6qX/eY9J37yktxf5l6/a/Oz78sceOZPv9L5lU2/XXrbyT3LK95VJ//sry9vfXrHyqp22z/yhx8qWfO/vvCD7z7xG3JIXSFOOk+8UTO0fceBxifQuYdIshxBkFEdTI48pUQGW6kgJ8mY5lpmKACISpy1KQQho1t9dIgQpMze0MlLp5fNpOPOtswOe9Rr3DzW8PPFr1Wf1Oxt94+Hwxn2z29tbvCa191718pXxuQ14RcLxZXXZhanv/v6zCeHbjh5uuk5JmO3TnscJXX6plZfPR6c/rL/+i/Lq+PPb75VUD717CEISIbC9pbcbMv4bkd7WsVmsnBErr72sIlwyeEaCYOgZLx0WFtAVFpIQKwHSWo8QIjsVOlp49BLeyV7eaz3df/bn68UblWjj7xu8Bb7sULrHeWVwNOt2gHfTfy0+vKhqzbMD377RUv7ds799Mn3HPneHvNH9uCWLc/9af6xJx/+lYF7d/zm4feeHGp01ETt9Z8s2BOlTqhk9G1ffu8kZitzfxusvL/bvPa3GGb667+kHSl79bnmL6vHj/W9H0oEgxufAZBvrdFPro0Ltxyji6EVkIkLpkp6vLMCaJfJi6wCGZUpnNt/roapiNo7zTidVO0rB5p+dvKrzaMA9uhnMTDUziyV48Ggvv+BOxoHgu4tfMCj1Zd4laWDN+W+mXnR3NlOUvNhwxz3SGO0eXvBrN6befm37V32i+M3MwWLiweSFklnkmZBPyXfK11X+0qE4qu9x565PX44wktRw5FoU1SeDO+7YuBhMzCz8yrjMiCsPnS3dPIJw3A2ki+3XlkQJeiQT6KAryxDkx245JmeATDQDb2szXgjlYXc5mODlQCbTTUbDQydUAumOHW4dPvJ6Hj80qeXsq47XNz6iH857ufB0nRiIsGL4EfpemT9AAdhjlrI5DuT0VK6EDblUGc3LzCJtzk4qYstSxiKGEo5rzhiMTCgPQ9qUlQZkc77F+sGTKFJxJWdrZZH1yC0HjXyOeMaijIEL9aUTSsOE5lYoYOIlvPa5BGoUtsUlHHD5UrLLyCL7LXNhqIdp1eUI5Wf1P5GFBu6v4BiIHFhEzRFxpJJ6sazF5MRcVFste6KAsNc3P7h4E+c+JcWsreOPZTbsDC4Klef3VJ9ojBZG7vSfuYGeZRGz49fQxOXyNPlxe+/pbqwYbDQIK8yfS2qH6fXTTVOXKQfGxmzLqvDT85olWkNXT69SgIHwDCSGBbMwHhubNan7RLmo8nNtcV2qbvpoeBVC+0n7cseDXL1qDB+3b35u8J/Y2/TAogYQsaJjgfQjjmtGx6TxFDMAEjG9q1MzDe0EEOzudF8dTMKRqQwYi56/OYTj1RlaHB2Iu/vXN45voJ4W06NYMuOoL2ACYXsnA7DOdYCjB8XLxue72JoloK6KGkzeaJzIY1uLSkGjFJqYFly2hmd9evFMd/oTDMYOEmWPc4GrlAo5OdCN8hzKkMFCfKB7y+rfL000fP+xwJCQcchKKOU7ahMGznpIA9SUZwZ1xOtQEFADgTsrs8D2BocxYuv/XMA1zzVt3XLE8/hf7ftGHzigv1r48wln3jvBw/kXhGXzt00+iL5h5z72U2zgSv+VePDoImfxGenr9t/qvSNl9V2Xnzux/7LR0++9orcB4JXXVQ+9lH/qSf/4PPZ121+75G/md6w0jVjq6/40ub6YmAdyPzit/5tIqq+PH70t+bu4bfe8g7HOPmd3wUA3LFw/H3FLzxiJu3mqpVVHhyq0MRAzsU8umkGLgbB9yeKOb9GYDOgWAOwjQmJiPwISpynOlOj816bACbfuEjZzbY76u/y8jovO/zRkh8OZVQ+l8+ErJTKNycHC9sXBjctjQ+O+EFhYqhYHNw9EQTBpoHAlLxieXwy2jLh7fAo43W9gXrObTsMFpDo7QHbAgbn5VJneN8uGw7RxBgZp+Au6mauMROn6Cfj72VfM/cZEv2G3HdOb1qISG47o1eqInpof/zAi+yT2rJ/ZyY/Fja9xR/8kp0fyBUanG3Ud3VaH2y8s7BanVCnMuM60ty+p04Q0MXHuwCIGJkuEYSILDLluZHlcndCOfEHStOVdhbDp4Z/9uHoMfe2b88HNhwa2vJg4bbWN6y/rlROfyO5wLtlnEAp54eBTS6+0F2/VpDq//O2Vnko7192WE099fJ9leyG0qcWn0Pv3R/Gb48v7p/D3ffdVLm/LHeH3yxmo7vRPvXQS4c/kS+f791quLYu2Ta3/2WfOBmMT6NEtcKPhSMbP3ew19oE02hkNKzDoRhU+cq9/6xYJldT3DxRPruUVPnuuUlZ98wRCJEbzCwkWPQkvd5touyOr7314WP+lVVrbxt+1eonhzf+0SUzwaBarDznRwM3Zb7R2r+hNfDda8/crud+e/rPTjy8D+/pnNg0cvpPgiMPPvrrI5/f+t+/9L3ZQsepINzxaL6TrhCvOflP147e9JqRz72tdQ+96jV/Fg9nr73nU9oRZN/q3GuLPzxpyF638LAH9+INH8b+F39ci7zuS+eSGtvKbd30NeUI0osjS9L/1Bmv45u3vs+P0MvhV/FrO6tX1//hZim/bPKGT1+W3x89O3bNOGs1HXQJnr76Z7rDn7ri2u+NP75jY/MNK8TFfOAVZSwzMj4HqseZzatbx3f96V2zO86tBNcf+cXlVy1+Ylulrnj8I+98qdd+2c997eq/+t4t+OzIOLhzS/4TmmDin3nw1OcRv9MkbzAQdBoAdyBAzQJJOVrEUfIt2Xp1gyHJu6wEkUVSszR19rZi51bnGVFz9XzU1e0oapElwDMKEGdr0ojaHevibtdrt0nYiThY5m4MKAiTjcOKgwioGU03qhW0YgDhXLM2pNyi5XrD0XKWrTLttOJZq9WJJJpTBC8AyBgfYAIBfgpKAEGrC7moh2dIqnKse0dA+jXwhQdyAm0yRSalSWVyCiABC0hxyWwMfHiZotIwnvTSfkmyeSYxCiClAoIocpomxyhAoEEYm8xliPTWnMqXNY2VSZH03PCaRknHG4zCJoaWqe1ZwCMozt/5AyhOmpnPQDlKCiaSpHECSapis1EIDAyLSiuemXDHpoe8V5RjZPN7bvx8cdCI2ZAZDl231PQ48IulWx+76NFSnBvaGahWZltEjg2RYx2PcScbD+RsXMhObLYYpro/sfNtM9jz5StPPzUxc9G+7YWI8bvLfNuNDrc5B47yk0kbafilXjT0JyqNJ2olaXBZZdbi4SIgyQb94V/3rgUAdMG7KYgAGvB1hgnCsTCJX7AWJBDDg0orBe0pLyZShgXSz6H0ACaBKALEeSRQQ74XbCbFkg0MvNTDKP4we4VknSegTKL97VABxL56XkAWwIUiWIgvQOasP/U8wAAAJ70sYyKQs0leCISazJLAfah3lz4KgHsE2n+CtGKgzRZOuA8uATgm4bVL0zG1MUDSey9Ip5+V10NF9DhAsj76ODxeh8whhWGvH2dPa9q7fl+tRF7WeSUnIsI5Lg9EguHkCQKGjBAAYlYDfYehpECGgm+ksMsr0KAmgCHGB8CZSZsmCgqk185waCOo/9oOvq5YTCWr+MWkGHxCOgSjQQm6gbwB0loprbXWSit4BK2V0kprpbWGFAa9qRRdMJrd4JHT+dg5F4faDWWGi3GuKIAERS5Dcg5OUPSdIgicc6KEFTEKaoi0y+9TO4PJq7MOA2B/Stg5PRYn0W4nzoEGRCkgf+OlSYFuACCe8ovpPIhOa8n3IS/JJBAA8noBYqQJseuEGAAY35Q54Z6MKitOi5g4x2JQzDoyQgRlpNQDfvleQnwJ+EcIQEF5DPEKyKnMhJfUMMmRiCDoFZwQsFDywpbiQEEgUAIInPnq6jIgBIbqVNF7aQn3svTTVON4WSyzs84566wDC5J9ts45BtWWus8ZgYBxrnnUGW1rvme8TFZ7y9F0JQirWkR1VvUcVNNAK1RaHhhExmgSpVkUKvZ8wLpzyB3snLy3YWQZFJ2ANlrOe0hf46I94mViFqx86zElRL189mgtVeJCZBcQJy8P6km1PuuLYNWuVRwQEYCJ273qC8pZq1xbE5FSTq/UyNKKS4FSIagi6XR3e9IhzVjtoM0irSNhnZdDMABybQA6XOrVESBQT9K45QVI7/VPii/O90nLL6BHKwSk2bBJeRNvEEqR0slrBBXyGrr3tgutFcTLe1tSiNOImSLL3mDsnIsijscKgyVbyjqCeDkehIwkJXcyFgoCxwxiViQo02gI9nabXd7Oi4VRgnibwOxoyCYjxswOKIIIyF26T5JKRiAomfQHUq4Q5fVgEknPAh891K3KQK1/j1VOpXIgfbUNAm0mUmSEkfGM53TOMrOzxpVzuawtBFqIlMEgpCAQIZ1CJoVFSIRIkEfOMxi62h/Sk9u0hgcxYxDmYDxJMYOIMLwE5ZXfvkWoB3MS1Pril1yUGlQ9sIT0oikpq61hRBl9yFkiO+OoVyEUzgoLCSd9FnISs7JxEgnoc9+akkjhqgIILASuiUbs2hEhBCSBKUfUK8xCBA5JIJClOklfaqFgejzBfm49kLMPWCMCkb+m36mv5FO4CwHSG18AhR7sgSHMEEArod7zehvnTN+yFkiKSFSAqAAlT+cJKABQa+iuZJAFqpAo1+GB9CcJs6+VFZB/JzVzrdZOsivrjvd+a9OcU3Gw7sJBQCJlARLSa7yaxkB6JVKTqU5qQiBkxFZg+7r/wqpG6V47BnovUlGyN5PMMYGVD5UU0O4PPxFUUiYsBZmmNegAaFIKoogEClwa1hCC+EPIDloRETh2iCJmxQOeDQImSJBnUUVmsCg16kBkM17MQsKKBHkzOMNQeUyeiSdpATkUSMCOMeJEOMnEZEEWBIJ78bAlSKLDNQZ2CEAChYHtnCSbEK1V2OkpbzJaa2O0NkYlda2MVtpobYwxGqByUnmKAijNzo5CbBxH3ZYTEEPYKSISkDJFdrBsKGtZu8w+jp1o55SKaasb3XNr1jko0duuzAIokwjHjKwTYYZY5+KomBVSBMrFwty3X32FdOXEmvDvbOuCC+sIaz2BqbBfVomIKJnwdPECldSaERClL51LHBMA2ZpCn+kZIM1KQxN8n5FanheybK+CH+B5IIJhiMDSU9XkKKN9MgYzhIUT2cICdkkFehtbMLNikLhYAUBshciqxJijcCkfKQFcHc22JW9xK3nGQ65oSKgVmZaDAHGnZN1K0cAoFy57ypFMu4JRbIxzRk6q+ZNPxdzAcmwfyTXRwbI4MqJRNUQ6eaWV77WqYBDk8W2jTGQYAJiezJeRGlb1GhKZLmtSNy0n5NriWCAMkqRIERyLI5b0FVf1SqZNALkWaq0uiImMGPiBIlGLG724o0RUZ3VDKBFpaJJmaMBQMYwiVppFUcc1bKijOZxuy9ENjGVEiKG0QlODFECaoMkuk0DA34nGmfqafSrfq0EnudKFOHr0Mk8IuiSkkqwHlYrf9O3H6esriSix1BVKMqIEAAuLswJINuAkC4w08iAwGFLKJAEWEUm0jogHIiVeHhnkt4AwCJKkSBEldlICsNQDQgCyg0OA9CpkYZfmVGqJDtBbj6/ZwKk+F9V/Q136hsr0tXykSBG4PGFsqiwzg1EKNWbnnAi5Yd9mhhyRy5XdOr2RGnAsvfKJrAKB6FHsLIb5gqUcAE4qPkqvihGzIC8gQnzjdl4z41FaK97Th4ZTb0J6uUD9b70ZwvNetZnAeQkcjMHLcNrYBDdNMEooqeBnRFROBAJSE6kZnzSQSJD1BhyBPAQ6Hp7weiANEUw4AnrpRT33zngmdfgDALo/wku5phZ7ANm1B/ZP90yYJAcrPUGuk7zwM5VepGjN1kmu4E6qIp8H7hagIzGld1ZRK+yNKRGitOTBeiQ9GkxrHXlBKbN/53t/ovpq/nnn+j6wC/1IzwMl9tft6z7XOFLWHXMXeBDc2qXP1xFpR8SsvdST6MLLnv99zcS74DgBgHPJ27VIQ/U0Sv/6tWavQ2CrtfwO9M9pAUiBhQIj/XZLLwUypYf0+UlXk4UV08Mtl44GRU0kvov+Mj+xm0XEdSV9/6FznPjMHQsnu8xQK/NxjQQUr2JppQNFJNpo7QWKrJ5red0VLaLaqzoCIRG/CwYMIq01iVIsCi5aNkLdWZxsuYNzgdQBdKG0xoJBkuaklCapJ8lbP3hWC/D/AF2SzjLSqOpiAAAAAElFTkSuQmCC
iVBORw0KGgoAAAANSUhEUgAAAMgAAAClCAAAAAA8We3GAABXCklEQVR4nJW9d7QlR3Uu/u2q6u6T401z8525k6NGGuWAsgCBJBAiC4QNNmBjE0xweDZg+zkHTDDwABFEBgMSIAQoZ2kkzYw0Od2c78nndKravz/63DuDzXtr/WqtmXvO6e6Ku3b8djUC/q/4S4a/AHz1yc9uhFR2HDu5ZozmmePBW69Zj9T1Q+K54j+wq7/17nP/7gMv/7mZ5K8fGeenj7A/tgU2/qD5oa9nrr+sgHQnLFw7i75rtg8oJRWGPwZlKWFh4KrzICCEgP2qazK/mxsZSNmJj757bc+m995905dve3KucfKRRuXbL9z33dvjXR8k7NiC6//t4mEUX/izb2NNxwchFD7Cn8e3H76BFy4557v8uu8cvnPXKKQU50sCAAEEhbUaAJBKGwBEAFIAA6S7EwZkmCi6YRBIxnpJwzgJQCAqHHc4+kQAmFCIGxBASObaPyL6DgBkAYiLAgicUDBxGxlmGJtoMJY0BJkEHAFjpRJI5qQFIBlVn6BU3oboUYyMysRXG6VoIGzHNAAE3b3Bys8GDDBMlwRMgbIxAzBMUTAzAwDz6n/UoVdHASBGKz0mCI4qJNVukwhgEDGJaHKI8w4XDBisqVMzwHaOAQnJSoGiNkxU/8CmRAiwo4BimClqOtMqBEBuQwKArFYkALQHCgBUDQkgGAMAMAsgYwIQYPSZm/DfS2AoqihcuUvwf7uFfTAoZJZeQPWIOLjMGoB2ARIQMggRhnTWk57vEgMtIgTC1b/RsAAgopsp8FcvEQgsCQEAqqGpFQMQ0gCC2tO9OoTWb3QzPOvL6kfTvvXMcjIDIAbzmakwRABxSGDTvhWswEJEldUXpBAgCKBGYf2sZkkJBtsJBgCd79ArXWRmmIzSnYphuimbSxqA0SFYkAIDJICIzLSzzhNnakTRgiUAIhAs1Z6SXJsMiEAgIhIxImIlTaybkGDDgEYeksEqzXAKyMWFBaXYgC0n2mI7dzEBbK+X6Nbp3uDMkjALwAjNYABhsPqzAUCeJt8A7EP7XpuiwaI9pytTSbp1NjXCRNMQTb1p/9VnZo8Nt1vQxEzaBev2XghgDCANYEK4PhuwhgTpAAyA3YBBrMNywCFCX55pVggBcI/0tQXB8QSBlG0LRYpDHSQcNx0D7AxRKuuHgZu6MFQ6O8KhdkRA4NAPScC+JKYgBAAiQbA1KUuSUlIJISAsKaQYtgUBQhBJkbFIOZZjycJ6aQs7BlJBEBjyAsvIjODOPMh2UMhLIkrpbgSpbhBgaOv5ZjBLmYt39VBOyo1ZJiHiRSOA9HuVQObkfddhGgbjRzXCsAVUzNFNEkBl09gEIE+2vKmlokpj7pd+RS987iOdssTZOsOyQt+g+TNaWOc2JBCQCbCU4qV4y7QAoFZD4APAkY4GEwcA3Gqr4VZ92WrBm5is9bQqLs935tL1mQ4c6LKSvnfqGfCihVMntMuNh8JFxMqPggmZxTsfeNn3xjD768r1jUc6mnfOBxxyUIEBmg/RBT6/gPfUf2h2tGa9zmPZC7vE3hd/94GhrUz2Uxd8F86JhKvV8PFXXarlXfsvXk67B14+6v1wy/q9mezw4MR/ddYmdCK/4ZHO+Jiv5M5DgbzjJ+NqWPaGfrxcSh9O7anMZ8TzhXNfmlaDYUtn1h7ZJJpSLOUcM2XFljrPOZp46o+Vc3Ds1vGfn1M3qUcrsyrVIhfxTMWpi8HM88kGAOKd3mHsfo6uOjqBq0rPd57380RYrK7tfThAuLpBAXR8HMBaKhxm/quzKP7mcwhntrL1Ohnvt8+6jHPvuCAPrN8xsLaLhJ35yOAAcI7I3jR8aN/3H/3kVsSKx75+2T99wk7deSVib7v54oFbPnP5d3/30/d+49M/ff4NF//VT27fFXvDyGoDaeAv7riSVFFG33MrWyD6I0Uk+wQgANFpbyq8Zq5LKACCJKAJUjMIYOJsR/+JSUBRyCCGikYrTLsqDUBpgJgMpIYwAEFJ36y0yQxA6oxqWq0QwGY+mXBdZOsakhA6m6fjfa2EGXhh7cILA8MHTI04asMJDIh73XKb8RIicWraokSQBgDJBoo1tTlMuhWeWQ3EWwCIsSJ98k0P6RQvp6rtVSPuyTTis3VJgjykqSpjjSya50zMrFRItDKUfJlBQgMAJesrvVi5CuKzvgD2zn3SvT7eOiBve/yZnlq8WYl6xe176TdYouOt9jEWhtEd7dJT6Cb1g7cogcs6YgoQSin89Jxz//c9zz35pvsuUjaSNpDAp/yS9wrafNn123DlLz8fe/Vdu17/R1/le9MkkMj2X47CoA2ACPmfx0HFQSGEoPyrIKQgIVDcAgEiIhpIr7nQVpZUYkcvKbrgOxf90eipqdo3/4wfvulfPvsfbyYFIJWHoJ4YlL3nGshoxrf2AjfK2K1pwsX9KHykAAJItIWJ2N69i8Oem+JAd5h2ADbMSKuRq4dyHYmunLLgEKy1kFbKloyMErh4uCc51F+whs9HXjFgC1oHJNr6VKwIMAtmBttJEEez26Z6sFQ6ZhmgrblJjjuyslwuoCYdlYut0pVBzoKy012RykhYvwNkUdCXB67ajFi/H9XXXhLx2Z+8Dzecc+uVBud/7OVrIEgIjsVf/u97Bp3s9VtMxyBk0bY+JAI2Zs8IZbvj4o/Sl73mTZv+9NVbNpmuLAQ2/87O86lnIAYpITDcFyQ7UyAiguVEIp6dVLs9doYyYaeKFwzsc7Yl9Zr1TjzXrzPJzAZsuXhbRydsrBdIJNF1S3cWdOnABShSDBC46E3EF2/ofd/fKLz8r8UbzxHxIggYijiBcNUMEZdcIEi77R1hIKnmaxZGM8MwTBlMIBY6EFIuua5fbfq6VCPPABCeqEG4OpqdwGdhryhKBtF6iNVtQaxJsyCAWBAZrUPBAAchALQiDQJSgCzfgNlzEUTab31ZAoLDGtH0LKmQIr0l1q44beWBv7sChKFIFxZC4qvru27+3Hfvu+XbO6FgA+TgH9nlqzG07YqtWHfnJ7Hpoz2veMMH+bOKCEByM1RGRrs08S0HsHuJiJC+GoIIJJBZG/FQwpr4mnMkBATWJQDs+equN3ccOjj5hT9u3bfnkx/+5FshAKgYgB4HhOFRWNGDfUngamAjgLUx4DWyTYNRUQ+0nvnzT95+x198Ab+fnPjOuCAh/L6r4uuHQfV3XngPlU/Ht4y1Pv3HAuBr7dnL3aOX/VHCKl8/dMN037n66sGTKrzptrsv/OgW53DJsRoq3HVh2N3ZCgRAYWHbr0nAkCn0C0TGj7WhenrjSQdNz7pu7vFWekP30O56vSe1Jxdue+9wq3zUjl9+Dw/i5LZzj1oT2Q+PbXp/sb7nARL6thu//MNX73zgawf+uvXxtX983U2ZX+pZAYycZgYgzr10ffcHCl3XAsNvuyEGElJxb//rduVyWWtPYv0mC+Hmgnpl0met99wqh3uLf72J11y+q+OKXSPJIJ4EiT1v2t4T67MEYmkW6Err/q0JIwUJZIdAQpBA5xq7rfyKjsEwJ9aku4XdMbgml+/oSHZu8mwrv5FyV/VnSKjcDYw1eWy4vtiB/If614NSrwYR4ld9KH/exzZse+NFGxIXX3fFzvf25EBEvZGUVIf0zMJX3uI9QTx374semA1oof7U2qHAEgcvHj8ZQI3VgkcaCYrT/od4yi//7fvjjWe7hw6c6hmIoQXwiz89XPAWpYEPGCyGasoEyoANahNtZX85DYCJAVOqqgbPo8lhbXbGRbXk1U/afuiOrW0+1RdI1rWHiOcFxp4ol1H94sIkuPFrMBA+/8XK4XtPTB94uu6/+EBs4K4FDQaW2pp2d7oPeO+1IAxIqQCABP5spP/Wj/zzl67+m/VQcACRxQdffOjpi7Bm/TnrsPHD77c2/u6aG970zsV/tAWB4KyDyqpIjsT/PgY4HQCA5MUQkZWW7I2omdCTKK6PttNwBsD2L2y8vnj4xPjfv7/1s10f+r2P3gIBQFoA8hYIfetgRw8OdwDnAlviwPYinBvk2VsksijEGbsVksEQ0IBQWp+RnFaM4RoDImr/aoXcWfEjTnSWhIUKCQwFMoZVCEmhNExSMwQzhBXKUCghPSafpBbrj8Kcn56ekZecOpCuZbhGq1J99f82z1tViRjCtLUnO1jRLAAGCW1vPsCccOUnX4N//ZzUImJ52FBaIKz2ky581iQaYCbiqLauTL3k89rYnK9dkNh4IjOnMsv24OQ7Rh8vvHh4Wah/PfXj7cG95t33HVXneK3ZkWsfOn++0B1YHR13HTlv98OHxs5ZHGvPgpKBecvE2Gly2qqbMGepKO1PghmCmcCOdoI1b/x8hXT0c+SmyL5OMXYh/cr16zshYAyRgMDGQUEiGqsQEEMyNyQMiA2YiBX1XrUpCVjJeE8eJpF4ZZcNZzPi64beecmtb7h2gOyuGzb3nHseJXeOQmzq712zvjdxaXbz7h3JkbWp3k2D2WJuS0qlpRLkCFUEbRgahui0IprJnJHcq58MA4bBQEaMpK59u200AVCAkAGIVUyCsmbPyaS1FBmWxDBoKJNSZbSVOJVKOiL6wogqLBYchvLChJrvDOyiYAR9Kd/vOKCmIBJsZ047a2a77K55n/LNLBXSS8F4DTUpqsrVzYWE69d8wBCTMSSYm7EAMae9gTuqZ6mX/6MkKslC4dnENn6JGEqYzPZHJEzfBz9zij5U+2q3G1sH0XanycLFXRtiD5dt2Uo1icLkDQdSHcdCIkPEBJC64m9/VZnB5uCNR4v57H9d8icHe75Qev/z469NvNUQBz1P3HbzVbhKt+7cfc3IS+tev/nI2uT9qTfZr5lct29X7P8MbBnoNM0rG6cTTUH5qra7JrEh5p/a0TXt95Wb/NZ33bKYrZk2PbVJnMBOcpkgw43Ddwxc1fzF/+Zrj5JRBtVnoAnLe+fBdz3/1h86KK+6YszS6UO/gocgQJOZ0Nx7MmP06oKA9OFv7TsNnIh/u/vIcTJj1x5+tuLcORN/afG1pWpx/89x3/EL9n33CjX/zMTP5/ULjy8sbR7xDx8+kHvusNMl6uXU/mPV40sy1OBlMsYDKsdaC8/0MxZCxk9OVVAzQOSh4xVSgB+AYTA994uTb/r9x68zJ5mhiO2BYyRMal2uQRf/7KZ4YNmg9opQKtc/T4ddKYJ4kwh2fyFfkNG8EBOBei7WD51AEZtb+T77pY2bh+Sp8OIfVwqdiTCW37jtx+svK2x4+Rqd7s9tT+SG0mOFwqzd3dnjDy13JzjZmejoGutJGEUkkq4QFnFyYNpZM3gcFgLecd3zgeMCDGn4LD4mnQZA6Ag2jV5rBq6hz08QC0LxeihO9eb6IS//xHuFQTESwiSg8h1bP//XccRzahNLCbu7EO9KgARBwBIkxMahdR1AV/KvNvV9+c7tVxff9cejuGUwfvGVptDNa66k6+6ggZsv6M33JHZcMnL+K3fceB5t6t+0rZnvKXaFYnTj0EgqVejohlIZSxEKMOu6N1+cM7Q7Bdz+viI6BDOwzon8rYJABDsLIomOv3vjezc3t/zZn76HJYTAmh4o3dvPEvDfGQSGNykmQSSEoNDp2pTeAjApEgLw0Z9kCIIQ6JEkZQ97itARNo1bkRtK7PSMhs7WC0fXwQ9gp2Pr4i030J4JvfyeG7naqjRM0Xdbxmt5HgPJuCSd3JwXihBTRCMwZvfodXkSN/iEZHUn0ty1LobRJNpkkiMRKdWE8GXrY8wmCIfBJIBQgyNvJYQhAlsSKz5RYgQ6bPPwyMG46rEXAKAJVuREFASLiEkDxjcMIggQmARFXkciCBIEJqIVf3ZEMasGPxkApEHEIQHSSsCCkIQzzGtVnjOcZqgIIBUCEIxqDYxgMTRgI7QGTniRhmSYDTWqZiJyLDIDHJxuCTAzMwfMrOdDrhlUwdDExynkuUXh1xeItdFhsNg82YIx2rCRpyt7m6y1ARnwijZAzFrTYmA0c6jZEIyolE9MGjoKRhDux6KYPequeosZS+0pBVCzveUwhA7nQawAOwkCbKVAeeMASJ4JachENptORrMLAmXsVKKt3lAAgPIqHwMcOxNLZkQ8rZIZSSlS8UQccJCnXD4OIC+drKFEvpDr0A7lnWwibWeTwknGE45KW0qCIIhI+UikpYqlCA4BsaIDiwUx61WxGOlUAIC4TJLqijlIAFAGY3fBo6kn//4Iwj/fd9mOnjUPwEQ+Ww6W7/71X/MRtPzgIIVA/Qen1XwVGgyNRSDgb5eO7geeoPdO0ZvUgX3lXySeN+99oPkhviJRkZUX+c6HX+0dS9Zm9XdO3Zd2M3OppPV45rTbPF4/1eeOf33opRfnfnr0dBwelvyQZuaw95n9h8dFoH/kMv7+56cwbxjA427E8ZlhAL8MRogXXzFqj6QfeE/8h9D/M7jRtSux79TZQYnfKI73W3+2EPz3n+z0khUAwKg7KS0XheX2he3TMoucnZ3MLR7PdU42QoGzxXdvrfZ/afu3l3gr+kvCZLc/qph2/eyiE+L7X/6zXZb8j/fZQeRbUsU3dx1x7pmwVStfJgrz//gf6c5fNAVWJDve9fFfffZRvFq/7LlEf/LuCz70yfyX5n/yB7Mfj7+VAzR+9IHfvfwWbzy1/PpNHz3+if539x9fax/48b//4obJoUNb07/PNw+cePzh33ngiey0pHzVTw4eCT4X++Wj2+P3uL3lFr/jtW9fSDcMgHTDnC3ZU0sEGV6Rf2XX+eIPP+z98bNkFGD3g8C5zgTEus3nqWY8Mq4JYIo5nTuXfgor4XWWJCDziXjRbhK3bQtCsXMkD8T9a+fk66znR7t39v1kfmMqHImnBUxulIYvSiZz4nQiFevrSw6tb67TB3LF3PB0wkmndLwnmUjbKWHFIciWJGwVWMWudCoh0OM3sf08hWwTIE647VUjJoawARBy5+5a01PNbY1d+ow0AkAcgAWOQTC7BmdH5gz5qWwLBBEFgwITWLIdFzQMYsm+BsIwlqp1drNneotSpUl69UBrvyFEq8Y+c8BhGMYozm7LMxkTekabUDNnM37ImmyHAQZBKwQyAAVAkwHTku2exKg9t1GJKN/OcdmEuq5zAIRAzwhU2FckG2z/dUozCmAiIiFI6FzPOeuGQRBOm1com0AECO6UEKKTiICisSWsbMqI7lynya3buWsnMSiZQrEYRJKM5bZNIAhwFwBjtDEM0ZFPEHf05SCJbAkaAttb1p8PyAsDQmdsDQhCAesT7QU5MxwB7/Zz0oKdohwCIBi1CWixXEUDxv1lSxAaUWzPMLNoNJ460AJDV6kdoqoHbY7uMkxbwWyp+bJ98pjPOHBiyczMz04vEgBTMZ4rpeuDIcJT03VfgGjBAEIIIQQvzAQhU32hRIYRGtAiZHNxfgLM8wQsBWUYsAEmzjCZFT5koH9xnEFhiw+CIRilUzCitMQNmMa/LktCM5KHbGBEc/neF0oIvHCeTKSC1oLoKmqaDc/CC4CadWLReeHROWDvwVk+dXr86AkCU1Dl5rKQTT8IifQLkw1XAvKYRiiFFIKwONPyGPXpJdJsAs2YhWwemTghyOwFMOOX0WQ2jCMtrMT7mFcUYfOV531Iv9l6CoAgdF8AFQ4MUBdU8ce9IaMIFiSEECR1fs1fvCUL23FGjRQAC9OThBBEAh2KFEYRc4CMe8mG2q13DAi87dUb1YU7dlx+kSHBzhrK94V+MWVbbKzbdnRlA3B4mQUVhKHWhrZsz6aIi5vXGkuImCLeCq/z0s0X+CxfwcC2RBdSBAhcmYv2SKQ3thECzpdvSSCM5xNvjSK9zQkYubzMVZjWf5QF0ABFSggb0aw9+gxDh+ESRXqRqPnteWkaGCohCAGjTi3Ej+yrGTy9f1JPlmZOjBMBusytupBeqA0ofGaq5kqQGDNgIQQJwtKM64Gas4tCM4eGaQaqPrZwWsEcA7AU1OEDYJx0V+lqxfZlhN/aF0IEjeDRiLRcH0wukwCJGUGE4CwnS+hJVQJJirXtGqNE275pMmAAKYCWycZ1NgmJVJykalRqVQYQSPIDCSkEAdJvxlRkQ0cFQIx8A3hGmDbltACr1awRcUUxQg4Q+fjds/w8Z8lCE4CMJ1ORzpoZggwHOpCEUH+SDYEiTLSMRGEhO7qdQSQSEARisCPbFyWBEItYmMnE/a5Rydg80kuF+JaNfWDApJDMhFoQCMznbZbSMJthMmyMMYYR780nmDt68yyIlCDugLZTA5sDFttCAWV3tKNuAysYkDOigeC959wEjJPHpohrNaeg1VQVdbD6lK+AchT2Zma2y82Fkwog0wIzIEgEEU6FGQwmD5IAIS22Rd1yML08p5v62KlFCAGrCaOlkiSJyHnpkG1bjhJL0rYhpFQALVc8QaWpZWEYIbNYhgxa8ydsMicsg4Qqtbs9Z86wLI4EAcP+2vMSFLbEIgDFqO6HoWAuqEIf/f4rXwZUV0xymJo3/7G8guuFx4QmaN+PVT0wmBiaYDDTWqwCTf25ififx45mvO/FTmH/knsw8/K6SdRPmBdS73ZPxZfrAc/uXXu4tjzm8KHq5PE4eV5N8tFCo+SyW1XQwgs10IAsLY5nBoD9RphfF2qYNQBjuk17UcfCBgCD0uf1yVdby8+5XyQNQcj0QZh0kWMg+y1pw0iBI8ICsZO+fFMWypEFFgIw7MRFm30kBQTlYUsgbnpSPLJ1gHh0yxA6OtaMDrKQRmRUsddoKS1ptLNlbVLqpjbdRsS1CY1hxDssSUisyUGSsQShA4b6+tZaRFsFI6/SSJGKE3rtFXqyV6hLAK/ZHjes2NoDghKm96qfW0H3WrsAWns9+cbsyjbbu1Glkpuv2vfCgaT0+2cUAmUnenMWBAyJsDBnJEbjyU5helu3VJfe0jWfiV2z7rFj23fMnp/Utgjzu5zrLvNjm+DHY7zh5YWB3uUtHtale7pPhLaV1NSzZqE7QZlhnLQ4JTTRwGJY2H7i9Y8w3XTM5xuuvPyu/nJnaq6280nPipyCqQpplSiDCL3v7hFY6HgZyj8SJAARABGiijQFODsCC82GNXG44ophlqu2JkUOPs0AGw9hCNGCIAJIMq+YsSGbQDMbI0VcBkErZGWCEDBGA0JoY8AxiTaASABsKxDBYcBrCgij4obNqkQXqzSGUKDOpANjRQKREwBExBaYGOykV/kvRZ1PrPSbkTrDN9qmvCIQK4eYY3GwILCMr+CZhNW+i5gsx0CqaPcxG0YUmmtD0Vbjs8yciUdoKkvkIUWS4jJvw1EgAiSt8q6shkWAEFkwBEBxEOwUJMDEbLTVC6zyeiFAuRQIRAKWimVWRCwJIpEAmAjgWDEGsixAWoRUQRAbZlAsxsYwO4BxcoLCTEIDDMOhI3WkbgggpoRIkpIgEWMQClkmyYyEyZCRKadf9SWRVAwQxaIJJIAKJCQzgLRgEoBugeG3YADUQUStajs8wwwONYJWCwxmhjZBHStKj2Zm3wDM0BQ2fOKAAROC67UgICJihC0WBAoBCis+RMsTMACRCA0h0iBgPM2sWRtwGABBWPXBLgFN1JlNK6iaZRdBpOoFK1wY3PS0BsGwy4AwaM7CUHkSGsARIYV16AQxMxvNhkx12Sy5FYYxRoMpOOQSDDMbbhnWfgtWTaMl/SqUfrGBcHJO6Lln6lWhJOl67aRnKUsCcKYOPxk6IVvCk1JJW0qbQFobjWCmGQYtbgXMdSPkwuIvDzNeBODSg1jkowfHwqM1lF1iZp6NsGDMwPTCUomIJD3D0ijG0mFosTSv6+DK9wtDAiUto+3OxtTnflmdN6EyJRhAh2GzqRHVVWIYM6M9Dyjh2LI+EJse1IeT0zh18vQxudUAtSl9eqzfLcfdMET5hXQ52SgJMRF6rgXNoUANy3XDlbkCawp8zTzNsnZ8fG+KzHMEHN4yBR8BgOMNRGAZGMFgDYDhfu/6dEE1jsf3gqEY3hQM4AcNmMUXpocBfWb1Wmg+ZhloTy+DCSYM4AZgRLYuDMra9YHAf6qKXyRrs8GBRJmnm7H5uGixY6Z5/OglwYytw5Cri/E5qs6nUW6VFpQJw6bgJWVaPotWAwzfGFAA4XqtagKoesCBLRotBoDqbwhE4wFgNF/apLbK+rg+IBiCkN4IyalCLAPR8+otEWOKBCIJK975+mstqJjshCBI21YpKxKWkESCCnbSAWLWJZ2xm27p7XbOv7SfNxXT60Y5loAzQqO72BnqTdmO7Ng60DuQ781zfyLXGSilUoY6u3JpJeK5DAnhKEmchc4U1mxQoFEL2LEjjySRIHRbKzxGEiLoMCF227nbkjq7ZfdlTFCAOw0javVWA9x85MY00IhkBoGZWstTgYbR3AIDrI1u6vbVEGBuBoEGAl6q01i8Enqn8ktmuro8ndQw7C1wc4m5rnxjtDtVdb2gmsKiG/jQYEOmnGw0WbcqCoxQG0YZ1Fxenk6DJ4mxWK4jYGZgLmjzGGhaVbnwYLrT195iZjbStbw5MLi2FIDHjxzrshFGPWWAvUbl4SQh1FwmQzAtX7fMirwBMarLC01Aew+WxC9zi2OLR1M1mvN4PNUK65nlaRzpuax2LOG3fL08ve60v6g6Tb22PM6h9jTCetWt+57WPhvymTk00I1qZdFhzHvEx15wUWfgLAxupAJGXrTGzObTI9w46T1FBgrwZ8AwtVNl8POTP9xMzhJWwp+mUVk+TRUYMi4D8I4teWplnAQmM/34wWVgVh0VPCtrOHTC1OWjZVkaLzVb1fEjPL5vevyh9UF9fHpfY+bU1OLza5ON8eW52KmpWFFWZ6xTi62ZcthkNq3QGF+jWm22JjRDM+PYr1vRhoW3at8CDO2CYVBafLHe9bJTX5ILzFAM3QQTghkNLNYWj1N8vk07YARVHs8YsIFPYOiabp2ZHAJzabbeAqrWzBp/LMVLc62mkSXNc62TVT87tYTl6cnZJXJCf2oh0PO6KpZr3vT8WEHNxcsNtzK9UBPVJuJeIHShzhqivNTwq0WgBWBmTLddmGd5Pnl1RdzS3GLpeHVaNwlQAFkuAO0LoGklEjEneeYpYYXSWnGHEgspqXUmzEogi5sAHGl7lE7WnZZJEARYkEqwYkVKk+KYIhmPE9nCdRKKE44klU6mFRknZhkl4AcM2QrsEAxpKBbFLjiVlb/NMoQQIQAE0HHPSvQEAKAUx/uPKATZ7ek6Lnrhpg6RyKHNI7RM5TMbOsbLUnpxDQri6wqpnDICOgqfSO69mPdP0BpvUzndl9u35fye7Gl3108XB50e300mT9635YL+HmWF6f7eHXd3rR2aLOSPiN7+Tc1BNejIVL64bmaiu+O4JMXpKltpiWLXTHqg+ygSgTE7b3w2tAPdDroJMiyZJRuZqBtSYRF7steatXfU9s8TqxD1WeMDi/9nzuDe0leu6o6dRNsxDF16wV4oL8OE0U/VB8di6RW6BYDg+c9PTjIfwWLd9q2K98WxeMPcXQqeREbOdU/vNcfcocUX1vjVQ7+c8CYef6FsZ1G9/wDLF6vHUjO1bOnoseYzp3wkPE/0zlWkxgvN09Xxqo8wAI7+3DXumS0OQAMhEFQA9jHuP8FjXUc+hyYT6DrM7b+0t3XsEHakKy8xkBStxOvmdDKTMGMdjy41AnTWvQuevWpXKfXMxHJ/2OgcSKj9nalQSuei/Xd5wPD6E9nns6btRe965VesdMvXxIC1/bkIY2Gl1EJ77MNudeBkPKBAra8siXDomh+tO/V7hdah+u37fzxQdib32r2nkeZ6sWOxGqgLlpJ7He49TeD1oxNHLnJPXVjb723qOlAYmH8p9AGk2+2ePPnl2J3s/SnJz/zoE6NkSWlhVD8yx8yNZ/ltF4xS7tIe9V+5zzLzZ27c82fvv/6jCyX+u6cnx+5/lnlhk3TozY+843OJSy8rimReWnRlRXWeu2WtkkrR8AfJllIp6r5oDwkSUkrn6j35d+Q6emxlf+CO7vTIux563Zdef6jG47/U9W89/+DdvxPPv1nQ6AZc9MELh0T26x/4Krqzr4FQ+NjhP1Tf+PsLl57ctu47Jy7790N/MtovlCV22JIAUimT5nLLCli3EjaxFkKE3uziVu0FzVozcInZhFIEjdCXQeCVVOtZqttGtqRfCcMaa4LfCILQd4zRoSFWdWO8MAQxMVfZCDYCQZOYmBhGIoQmQxKSBAWEli5xOWPK1WpIzUbTo6BOxii0jCRjploeVDgDBizvpZg+akSy0UpaC1Z4ogYDQGjDICmK3ZS73FbdQKavO0qK4ER+d17EYvE+K1ck6EJM9CdYSVk8RxadzC05SnSl4v35gpRSAnLL5nzaShFB2kxI2CbdYUXRE6ujbZAVU2LFiohnjYWcFQc5iXhSOUlKZ6CU1alivSmHJKeHDZJxdKyxbMTOSxZhYjtAgBm5uaNwTTrXNTiKjtFC4cp8HESUAAiUEpqFzBskALLiJmrNtizDrIyl044BKQlbMAAnRTaptWBWQgrE2ngkK6mkkFEIXIIB1UYhQkQfCMKK/FMU5deASRGRFJZgIaRgYouNEZAWsZ0BFCNhSQFVkASWFgBoqzuBnAMupEKnQ1PebqMoATgFAdKxboYElBM3QJQVVAQAS5m0w0BKWHGHwYh3C0vKPmkglRJkRwat7Ew4RALtIKUCYrF2yotaCY8n5aprTVoAxUSMIC1bsYgLEWPDbAFpYQGQaUY8JlJxpaDS0gGrTgBgZ7TH6nNgdxUd6pDxIRGJABAgMoIh6/skyoBXXxIAGw3XnSMyhitqviLAlUBXKwSi8uGgHrgPhIIrbtDyahAwMMHEXMsLPWZoDQ2PqV7WZJgZwTJgDDNKTdO2Ok3gQnMjbBhGq9U03Az8ijSAR2JBBzDGnSXUfbPouR68E34N8McBA1l66ERjf9XUjh4PvVNe7XDLB2B8MNBYUASrb4cfzwDcXw1BSqlWLtZhGLB7WztnxpEfPV4vXmygzfbexzNh9lKlzWg+Ec91GN8oJFPX98UsSzkWUhblFvokJzNlKBgRqGGCxSHROXIWMtUk1ulEwrJET9XyqDObMNLOWSrfihtjNVUnYgN2qmeQxcaF5A1d3fOwR2Q3OWILRKxpF15vOrsfFj2vzgzHLk9kL/+CD0Js8BnJ5uq3KW3FcolKnEDxzGgA5cTsco6ENoY5uzCQInT3dU3RG6fhY+dEOr842ImwtTkR06lc0PJ7XxztHLW4K4mMhQGeLiwUDNJdY9ImLX0MSYobD8710y3Q4CR7upBSCeUMTHoNLrh2SohAQNa46ZrZrNUya2LZgQRt3FxJXze7cwzK1l3ZwdM7iYddC7031jecE1h3hBrnL1PRlqRMbqNx3I6vrRGIDEegrb1HMjQy9DUCBkK2TIQYZA8EGYCgYKA1ARZI+GAZ5UgINtAMWs1+akO7BSnAKPIJxhgGNAPtaL6JgucUGeIhGwtIBjCRg8VAS7CAsR0NbmgYZtEMYSgMAQZLCeJYQbeT8QCwBw2AjVmxD9u+f9JNqWuibRfCECCqTCQIgnywpgifhzbYhdpIcmawiOIs2lQ1ZMM1K0lkbIxpZ5UJJgghQEqAiEA1wyXBVA9aPphAmmFYVudU5PoiagmCZkEMMHk1MlQ5Kc9k68AgaA8kMnUFUTTPYYvYI4gIRBICIJ8jXyO1YDRAEcRCRygTsG7DVQDAGIYJfAP4mjgKThrDZsXfFMHYSZAUUS6py2gQEISNAACRMRRCeGUBgNgQmgBM22uA0AeL5thZaUdgRMjdyJbks1CRhiKfZRTWBbCiNjIcSJvAdnRJRRx2VXygXaFIao7i2e3QdgQQwllma3vc0W0KgG73lZViBUQQTCbBSDBgreYDGgJruz2QNn35tBJQaJPR6hDPsmwiUwHt5xrQGoBZyd09Q2KreEJmbjuPeaWmNtQoagptt8KqyxSRYW68AACImcKzaiNqEuAbWq0KxA2IdvICAAGPwEa3U4hJUJu2IlKDEJ7QHs+JKNpNJEhQDc1FA7nkCmbUysQAwasINoaZmZgNM3nHV4JDYIZhNlprDWYdLbOUksiSIBJgAAsMBhkDJlaVqrUIwREC3m1KPm0IJU9SexgwEvvbK9Ke4IjZ0Nk/rQzDM4gSaFcSodu3KJAksBKMKB0NWIUhrTwMJgf/o5yd7cv/7ZrlGYqikwALAb1yKxMBMiSos/ODGQ7E6nJDI8kgKWV77Y1hZhAgFLNNMBw3KoYesxKXYzamiESRYHIOEyGZZQEwnIwRQghBxERCCDjDIKwwHUT6vBBEQhA0AB1qw54Gs4EAkHcEWCYdEFOYSfu9MEQMQMcSGustg6xlONpsIGFoW4QnWyEtl1b2HEVBqTYEMML7RVPIDcIZQB41wJoBbQhAhKTFWVwrCksQexJt7GC0N9pMuH1LtCXbw2QZeT5ke48IrYW7mrRtDNAgoKHbe4QEg0SpfV2AAIEAYB0GqHKEzRQCzKgFzNZLHgSVpVcSywQhDZGoGaFEA4tTgFx0iQ2m54WBR2guC2OM0RAVA60NNw9rA2htGGzYGO36QRAwjGYoECxbCRG3IEiwCYHZ5RCG/RAMUa1M2KfByxoA7PKUopeaEp6WBMCY0LAh/cTZ7HeF4BhmhY0BAJQAaEGDUCfdElgJtERZSVhF6XH0sT110cIGTAyAdRsYulLMGea+wqRXuqIZQGslAR4UQJCLFXCaDgDXPbu/OqKbszY7t+WgQIoMryw8ISaYgp0xMArGzkVynMGcECbC2azy4pTFBBXxVCGIoPPCiAhotEqMRETkSLECNTVgsDHMoQGYSQmAO9RKpbqIlOmAiKJobGfAmcwKMLsd7gcyZ6/ImflSv/GTaE8wrxJ3dEn8jweVWF2R9iKtCqbVB5l/45HfUhg4C1nIBFCwcmoEC4VIyfvv5TdIi9qoWJdpVTADvgHL2QDEDRlUo/MoJEAe/4bUBODpM31gZkB4TGAwS0WAaCswzByuhGt4RdKDhACIWACgmm6zIBYeQlEFXAAgMj6o4cvVJjk6TsJnQau6BxmPIsOqDLGiNLLBQiCZnmGQbPocUYiokqAlTwgCIvQxQxuUXAqwECmDxrCBKDEZw8xLCy5MDczwQximeY/bOx+CI/gWLAGCEGVNQAAdhE0BQFaxqAlBCSHgUm0KsMqttnoDhq4QM8ZJRDIGDJButtkvrawWaQaECQSqBBLzeiVw3dAeU4SNCxmGAAoYRBycIRtGdG4CAJTmXeg6AQgNgVkbZo4ybAQAERBICkHSNxVDQIvcMWqJaPHbBK6ZJ9ywCagJHx5TlKdtqsSMWVcwarUWGQGoSlmCjdHtTGjSS/J4S8BdaiAEMbA45gsTBgxRq5aJqkwwqC+cdJmZKiHAKCM00GAYwwamBBjDhl0ZsS5DVb/hM/va01hYDkMyASOUNRashMvBCVcFIXg6qD/l1gyMNmHbckCdFu9b0gE3Xnx2hg/7QRUAsw7ABkf+RVik5mbjIoCQi8sWiJjJNzWpLCtsJuebEnrBBM26Q7FY6xkViMZLFFctOIZIxmIkVPOplmcZIwWxIZBrC68VaWqCw0ghxKQvItFOgioQCI0HUZszIYKGJN+JOZJs5SnjSrk0Q+Q2qDSnmXRFVWA3xsCA4z/yrDpap9azLzZpDOGTdRCEqQow6t9Q91WP1b97g7MP5sjcdFWEIYDKoQPZEYnWwR2nx6uCTteDx1qNOV/tf255rLlwfzE2+0yspzq5huOnKsaj5wqHC/6MCDgwxuOpo6Zk1wIXAKrjCAIAKCuXhQkBNKd1c7ZhwsDF+NKC501Pz42fqk/bE6c3zT46HLhLbvU5xgLx8WS1xq1fTB9B6B0mZkz96r7xvUtT909NVMfufSmTfWI55BCYCSHYb0UELQ3Htj0L9Mz2XLZV/eKReAtkg1zH6zRLEaTDijHVsOOwJauIBRoqhJBxL95fW2iiw1q2ZVmR3H5ANOMdk9zFF9oTPdOnyhR/bXl/3n7aufj46VhP3Kuu6Ty4vdSZUEamnpob6Tk1RYXqbIfxg3DtUilXo0sr07MyVY24dareZqa/tSSaBd0z8rhEiRiQousmqUTyZf5mYT3yoRkO+DNQUhKIhOz5i8/8+78OUSIvh0GEjm/vufz2HIGEIGkJIvGR8FfXknzdq37w/vfe/chNH/f/9SvrxIFt+a9/M9CuX74T73uIg9mFYxtveuI7e66598h3nnnxc3dMfXrmocl75+qveePP93/790b+9ZWdI1B2j0RuZxJf+MEfbrn1DQnanhH4k2d6RKcESPTbIJKShISUFCsKISzxir/59aNB6Y5TU28lSYJM725tc1efVTDo+ruewOW1lgCkZVlk28mRP7y+n8mWvcJxwKyKHYptxaRMl5KOHJF2GrrI5+f4iku3FKxLr94gN23esecCYyyTXW/t2eqa7g4tZdBz5cu6czIrg0ErmfZ0GJiQO7rShSTl1g3ImHQKCZKjCNO7N1+fBl0H4Lx120wHp7vJbEhEhgyZOJiFY5iFib33qp1Kx4d7X87EQkAVQZwaZAYC4YfaX7tn1ffAYQz1wpqiIS1JIKky55JpqxmWIJV32E9KxLXpzpXMuiS3MlkOh3cZpcNAs9M1FAahH6QZbt/oejQ6Ep7hIHBD1xIew/e1Fgj74kp1UtwicvImSKmXnce0Fox062rKyq3bzomdm0d/2hARdYh2WiTT7go7rE3Im0gLAXAcBKGo7SdhY3JtnSgyioRORpF3AUvKBLCi+RMoYSJdn+1ETAgtiJgJTp4YDJCxIp3JAWDsEJELFgC03XYZkQAsSWRFuB+LwdoRjBCAAxtGSM6Igo2ktaIRrmgdmfbJVuQQt+0RgIhV2+eg7YyhFY9QZHXlZaSOsJVYxYhGt6xYd+1MJoAhiJOrkjW/ijmWzopWwsysU1Izt2FObZCxAIHAZHJO20xhgIhjMai2Ok5nbM22l4QBJOz2sVTRTSsBNfoNvQ8AhDYryvbKCVErV87cI1ZWijkCfxGwcsTXqotD0IoOZ7B6D59l9EbpA6vtCwBCg2QE1GproP+9cYqceeyDwZraajwJb4lWjdmoN6WVHKug5q5owZGtS22fFocMcAAEYIQLWCHM+qpXyLRCIsNtqpWukdReQrAxxrA2UT+Zqs0oPcygBrDrNblp0Ea3+qvj4OaKarvsExRAkX244m8By8QZJ000oU57KUk4FrcZeztV8eyTw0hGRrCMr3irhIV2bgCTRWi7B5nZKNKrVkEk8QVFajU44awYb3EwLAUogiQQIzoAInrKXvE2JISmCDTEkeMz8oTIYMasZL1Fcz/bBGCMQaWxVBYrbh1m1jNoZ1JDz1E7sZnJOw4iQQLUqpIQRPOA0K5ma8GVBCGkcJZaduR8MCwXmkY32NfMpkwEsdwghAAMNaE5bDS4blAJiAEE7S3PzO7KirgGUIic2MZboVBQy6cVHBOIWehY0B66rSx9BicJhsVtDdfoONCSIB0SwhW+ok0TRKAEQL5nIlU3qtlWvPpZmhXSjbwV5Ubky9TUgIYfgvXqUW7BGXdhU7JWANBEZMYocHunc4sBxM0ZmKkhaOlb7X5ro61V45gRjTfy8XEAxBWMpZh8hJFrUWlFiAibLY4TwCvJkWHkTWQGGcORQxfQPsGQZQsmAAEJttiWhlu8cozdWW413zURJDsOJsXAAhheiQ2AUBLJ8vFoQ5MxoFDDlGExGwMExh8vti0NNoZ1yEy+gRH1CQ9cbzI3A+ZKmZmIwNqtt01Vls15YVSpFiU2CWm4zcE0wzNaG/a1MhwQDJ+ajGa5ijF4eio17h2uYkEQgzmIFoQJOA0dWsSGj7M0gsAZEFScBKDStmXJeGHV2UTCshzE0tF+hFAqEy0AIkEiBCmbIJHqUhaJHDlxIjupHMuyLFtIIZVlWdImIa0sKZlOSymUVEIKpUgoJYWQQkiK5IgQkEpyOgdYYKStAqTIijVWbwLJ6NQBsyKMgT7blmRJm9aQgWL4y2CE5YUAvDRHYZCer7cd48y6sTy75HpulNAKU/aWMibyuUEzmJcWl+uMpj8301hS5WBxKdniuUp90ZEEYy/qxXlPkFgIvVKwkF0Qc4Ww0VyoL9VqbskPWkuJajOo+k3BmnVoTMColJe9hTmDChPPLcwg4IqzFC62EETbRDOvnNF3ujbvJhbdRTHGgolYWi6B7K7pkPKhvfbcvnsflSt+Cipow80QwigNMrJ/RqqGWeUFxNm0W/WQJeGxDU8Uaqqii8syFwzKulOrLyWtC/0TSX1CrCsty7zwdHLDyTVxx4qlx4b2H9u45gV/MddsiYCMEBqW1rubC1WFFjs+Ix6vhtHJGysoIWICRxYssRO3wmThhAW/CYgIxsUm814DXlfN/MOH37YTKy5PNruGK3UABiGzAV2i4n2rORnMhvtfdV4GKA7GBrsrDdjvyNmB2C7Urr5//MQH//EdA2ySf/G6da99LaXescnDJbs3F/dc1PGW4stee1Xfm1/bs+GS6y7M0WVdrI1mHRiVD/nKc7f5Xl7BY6BlhdCAWY3HtB1S7bOVuhoDySs/m2oETQCUQOirfFBDvoGQNW/L4fRkZ92KsUQjVo55PgDYfjYBlL1cTRkvFeeK43gKKuctsNZSOLGyMh6AQs1QcTmwko0NVEkvVmSLd5XG1+g5jE54yBrdTAzOFlk6hqVVLdvpZX/DBJUutWdL7o2H96U9JzMf1hgSmiRCQCqr3sbqx42HZIszvssp3XISFWIZii1HIlmvktCqkvGbXX/3FyVxy3+97eWB9f2vpvxkwghwsnmD9b1OniXHd9Ismur2e5Pxp5MJNBNxKTgZk1fc8sJ9U9Y2a75ojWfmuz/4D3Qsfes3g+u83y+Z9PzP7s+t/+PS88XE3468Zf83+65MLOez7n3ve3R9KnZqRPzE21BYPNp8zYv7ednI5FQjN3iaXrt08OmOrkMBCTsc3P1z2E69TeaO8eB4JtVyRcZtxZKVtfMXu7eO/MVFMz8kA7UAkfEmPdDSbAstuZTfqh7HQrMCm5RfC2tBRtSY6mgapoaiqlfkOccETWLFcx3l7IKrPc/3k37LYuGXyPHnGjpo+dx/JF9v1HNy2NIxhVYyFK4NM5vIdziJnqQdjhR+6nZsetqf3NxsHKkpnyquduZkqia154WhpZsU1E3g11boqgygFmIKwDRQqULbOpwbDA6LZCNKNfChpdYxQWB/KpFSFgIm0giZYcFHCENouiAtfF+JCOpO0JAlI23WxCZWifGiNPHQCzmshkpVsjLtmFC7XjI0lg6bduAHOvBD3wnjZGJCS6EsCxoNK6QlF1LUkPDZZ0MckAwME7caK4pdpHbwisdaGiahyQvrVldzRtdpRUcQzPbaowYdi4mtOTp22tEB2ZZq6bBDlwAQI5Nq2DW/d0HFSkZKH8IkqDm6YHrqSx5SwrN1C1IOTrKbiC+JXLCefae6EDSTO2qLcXnSWj+7KLqNDuP56cFSImXchJj0c07ZH5xvVK5SlWN09fiznfOJkcV6mZLNaFucnXVODOAsjKNl7Fba7evcZzQDUCrc9PJ/tb2BC//3a/epO7OJhOc8/7FZFsIEQWh1vGHL7iOfeT5h6iMvKd8rfuiudYkflgUTCc4vy5L6o9c9881fmJsmP3b//Fs67ky9/ZH+v378sU/W32OPMEE+++5Pbe/SkHO/O/J256HU+bnjQ97ehbf+6uUv9Z/cEvtI/K1dB5/f9/YXFpL7QclTs/Hu7NitXZWfvealr3rv+nqT/2nnZ3604USvXVm+4dn5RBAAoEydTSy1SCT0zW/u9fP1v/uw9fh7BKu2W7Tpr7MJm2Z2Q8t9k4oJMGCKdXV31ustlazBMDMN2Y0iERgEqgeoILmx7DBixQ2PdW1Lh0PrDhV8DJcne5KbAKapurW9CCAVL2xsLlWHRoMd/kxly+ndzc1ySyYb7x2oT9TXHDtcP2Wp+H4/g1qjZ3CfXAoIJaeJzkv+BIZmZGDGG2gIYZhRByAcAth4yb5kstZ9Hu6DCFWIiYfhYmkmmOLw+X/7pwsJ03plAVvV5YN32Utw/fCo8QC/Wg1tlwNAAxUAOFidXmBM8zdPJf/F2Sda/5U7Ejx9fOEJa1sYquW9+qnE7e6RfLXeCI4/3HWsOs45Prw0OWF5laZif8LMT9Tr02MpBEHFM743AZ598UVdYPOgy/hJagxTIULgSIi2qaUBhCUm46P08Vt6rk1N3Rv/FhnQNX71YOfLmw/WrlwuN7qf2nTxTvmT+998sDgcCnNy9NcpcyCnSnrDscvODdX9p66akd74RR3mobVrJjk55JSfHFo8Fs/muh7vTB5lTu95TIY37zsi18m1dilVmgumcq+sn7QTD/Zc/vSLqQ2iRenR57fFQ8teyOXH5pPpRVMIxHNXC2epvKFycqgWbN07vhjkGqYWz4VBcaJfFZ6Me8kaiM9JvFTeM125avwQX+HuHVn/qFXq1ZuTT1v+JDHUYjnmL827tXCutGQIJ7fOUi1cmm1aDsRcrqWZ6qypYYKqlrXm9KKF5aVYtVRJz9hBLL9UnW4F2nNtr+oGrjKzOkRtqulUdbdXpVJFNmRtZj7je/NLJWqW2HMznW6lZFJe3fNK8x08J5INavpwq8uhu5zwaXnerxuhmfylTKNlFrPLMKYBANV6lSqLembGR8VzFzrqUjequZF5TwoDqL41VZlNp7PLdja36Ige96ioCis/nAkSppBhS8Kxq6Z70klUnawDK9YIc9zRkaMBwYkOP2HVYfeSIxOWLY3lSGPJQlnEXfaltixSVAoNQkr6ihxJxkqHQSBcI+silMlaYFuFOsX6nDCUQ4mJ4qJoiDCuhZawim7CXo7LdAQvBNLxYyhMyL7EHFJp05tkxZwk3QkzTQwV43B7FmGPvPw5rfeM9HWFVvW0vcbW5AZJv2dEDMnTTc7HaAkVNbJhwupJWaFMSZNyhVkIhrdNPR3rs+JX+u5m9dyay1KYNhe11B496JuYO/HSzr6N3vpEc6JvvSBrV2YhYQt/Rz3RTM4UndOJbLwa8JBZbi7HQzXezCbr9Y7NC55bX9JdojB7btcDI24Mxu6u1zSCgU1TatO0nekUtt1lx9fT+pTptCqbgycPyoS6CMePXT7q1F763qX5qWeP9Kbj8nT8woWOWGhopqcyU6vGEpa54Omey0IpSye7vdq285pJb2smnEn36+XvjHulq9YdXfPrrF5ulPUPPC5c9IVAvhDsV67dSg48uzitm05LuQdPzIJU07IHm08M7JfSO0Uby4fJGxnZ25/I9NqFyobwVDrvzj1HIwdEBnMbhvTieLBtfPgxx/Q/Y4j7L8i560Tt/KUx3t4x2XeO8+x+L6aUekjMQXRRurUm++KAmhn56CeP04fHdm+zre//R+90qiuAmO4tX522w2+3nPTi9rqgU/oD91idDxbT/mwmsRxXKdvd/YrDPz2M83K7DvJW9Yv+mx9O/kj93qcq79FXWq2wvvcrl++6rDlbWPzE4DuO/UrekjmVTZWev/2F8yYKk+tTn2ld3X3s2Nx5R/dtm6UmBhdnR8r13w0OPbHJf96MjBnr2p2frfTU61aAzlKIrK7D8ZCrhxiZb1B+ecf2QR7s+fsbkvc8DNDfWyd/9tac/ctfbt00OPPciZ5+qY7WPtaIOyG4GXu2PDWZ7j8YfODfr70yFAebpzr95pb1lfQzm+N6PlOIlb4uq/VXDuwfuKdbTTbCdHGaB1/3RS+ZbXZwiLrsfzg75FUTYSMxuG9O9Fktzm6c496JBNVgbymN2a2Byx/sPXhTkU975y8dyVbE3KPOul+LTj2zu/+Q5zbffHjkPzM470HAXP+yxad2qPvvaDzWvLjrV/nd4/eFvsp2LCw7U83ixWreKqdP9auF1IWLs3Ob5/b0suU9N1MtiJCpli2nRinphTynvVkt5r21ZZkcT7Qai9PJYKHim2rX6PTBaY5h1BJZ/1jveXt1bWH3U+5GHtXaqZVm1wxsMaVY64nU2qAU25ZYzNqp5a2mgPhi0vbUetWMnegIa8dOOvXgESxjPujZWKoWbDcUlURzOPPIRHMRhhdVCDQnJhfndH22PBcse7Nm8mRCDyb74vt28INNf0qYeihlCEmWCZCySElJJKkJEAIN0okIq6cAsIQgldRktNHaCBIEKVgiFA6RElJKFhIshGMpy5G2FFbMhlDKQmSMKsMQJB0BIhlYQjAkCZZEBMVCEIMcQSTIIhZCCltKMNmRT8Y2sMiQZQkQC8e24wklEArAsDroUePxTfa4NfhsrbVFdA4H9qHWi9Mdac16qXt8fco3E6441CwdYnGsetOpmPX0LpITxg6asSVqxEdw6IXevJNbVJmEnRp6ITF9tK/hOmooZFVvTvV0DzeyyWopne2UVk/K5G2vtWa+Zznb6I+N6QFl3IXC9GJDW3OeKo9tOmHWdtQm7fR8YM3X6yNr3BfsOox/jBlY2newnFoqH2y8hG4c9c3BXlPMDFtP5eMxtA7SE/Tc5z/eo374qY637z7yw3KoSS1n7irnBXNQy3zn1EwpMfpU9Wvvfssbfflg+ZHd/uxlly4Xf7HTyh2zR4PFjy97wR9c9MORLw/oxXo9G2qz+33vtLtVYwEgs2bLTzJMhFZHRh7yKWZ7ltzCpy98ypJ1X706eDywz7viB+fuu7GQXF4a5RPZZu2p+zsv/3ZjkKb2nHc/L/h/89C2DxTFdT/yjX7H7+z7xuvVt/+59unaG7b9y/bzD92ZmhEI1k6b5cXsywCINwKgG7x+4P5vnzAef/mM7hz76Od+/NUiHFAXAOBLa3e9EWeXj1R/dhVw7Z6fvfvN9z796v/V+vL31uHwjt4f/TQMvObyN/DnDwetmcq+gWvv/94rb/31S9948tl/etvEP0z/+vQ9k+Wrrvv5wa/dnvvEZcU+RL71LuCff/iR0ffdJnAlgD/duxY2CMDGGP5nufquvU+Vq7cdO/4eEOhvxZFvvXc4/PU98lUbZ35YR1ZRufiXi7YdEzTb+eOxmQp2jrXe98VrbvXl/TMvbfEXt5xjMg+tS6mykx+e+MtFqJs2P9j/7WEegxDGYPN7/jDTUW1J1tTKXno30rop0ZG0D0eJ8mJPZWHrC3njt+iayguhtf21X9t0+A8GrL3zN84+0Ltg77s3s+Mh9ImJbaNHxhuJt7+49s40bX8Mwlx99dEHrhaP3dH8sX/p2h8P7Dr5kzkA+dQEADVIV7EVVLvVCfO/vrro/c4jr4wFzq+++bJyPKFB5ezijozyHjgiL3n0ghToNN/yrIyfKhprrNPWrspot/dVL91T7RhK9x+JreWf7bjqnsLDXdd9qfIONSpIm6PfPP/8NQjF3OdGXjH5X5mXr5no48kDr5seHus93R+/h9ZnSqX50dmnNpViWgnt9s7VXtk8saDCl8Iu36rcsvuvOyGec1Bo1TWPDs6NjYaT57cOW9vDg9m+6Y6164vF6t2vdT71mIwDyP0OAPFK3goc+0tm5jvPrF7fJ7/59L29SCbFBgDI3nP+1e/6jVX+G953M/D6V534+MemFt7yFf7BY9uxuDN+z33MzPxr/PMMM/Piltv2PXLVDYe9Xy/NfemN7rf4qfpjHt/0xicnfvT+dZ97RWEEQBchtlXhzgc+tP2d74zjvDzwaXcIPVE/rLMbtXMAgFs/fbTC/B7mT0BBAa0jAMzsUgXY/+jT201s8cwj9SX7fhvwA0wAQDBTo/nfONxsfOHIMlDxf3jE+ZozeXDxofQknirrfckLTGhXD+HIr251J9Nz9dLc/NGe/aUJS1UXJk4fqk8vzcaDxonm7EJzqVJlAC2G3wxRGZudnUgbTDSAfQ+1EB2UVv6NND4dJbMt/jzecSHP7TU/hQa9wl86cO65i88fs7bHm4dbKMSpzO86FhY6bXNi+P6FRhW9y8EFz151ZSDvnfILsuRs7PcfG+6elYnsrqP/p8W8sWum44lsbC5KEOx+/afsVEiEIFZ3Nj6DTq8aByWzYwEky8BZtyw6T6eNYb22MSV48OYf9R7+aGdz39IbDt8zVI9PPGznxylD5Y58Y9G3z6nmH4/r7gkQbxmYmThnefKS0vHW9tT+/LbjBxuASnMZgMipd2Jv863DIjk/esWmk/kDXUlYZK7albWJzaae0txyyeo6ENx+dP15vqpWDq81y5svqmfsc5JyMjkoco+itnzdpqeGvJ7WcLWSzFT18OX3u+mMZwDjZdad7M6EgXIpm9dLeogaKrah2tyaIbuk7QvcY0GwbcPWDXY62WWW4puosNi0JuLbfyI6EWzc+uyaeummA5sfd8Q5cxp6x01HfnyJvPuO0rearx64c/PFL3iqKlLCmXLqU84oAdh4BMD2H+1Zxuc+/+FXpfDpP1xdROetxadTTy7I9qHL8tP/kFvzs7NX+Q0ff/TzT+Nl3jlTIht/duPHP5r6dutLf1b6g+T7zHx+8Tt/e/N5fzJ/KOe+bvQvDv3tmj8snOpKn/7Jv/3gFW7Xod2Z2/mNa156+IH33vtssg5YATA0hv+kX/10Z9fP/WwFuPbGv6i2++H/FhjHHvNa+xWJO95k/uk4QymW85JIz/1YS/7l4e/oDfkj5IQcwdfUyYkn8iG0MLCYtPOMu8xOSDAEYhDxye8cnpZYEvfL1FOq3vrBXvKcnzfEQX+k1cjPPi1PVkbrz3V5rbmHDyyI+5Ilu5Bd+OXsM7Gx8sKAnHty4PCMfLFqCSHIFmGMJR9pjJvJKqgCpY/e40sjNCA8AEKwETCSWVg+Q5rFufviyyNT9+AYQagQ3NBEJtarNTmhO5xLEodhFAQz2nHDpgEZIAQZo3xbab0KjRdGWLbSIAS5RiMtq12Oz0iycPRotTQYsp6Tw6fL/XFjuoRA0lKLuVgy3bDyWE4r4WRylhfEY0zMxiMD23Dc5L1KWjBxiMVUoEmjHcs2ZiUzNPJkGUckZsV6cyogwLQTYRg6FQDT5uT5G3q7VkFwxEXJLRcrAV+dMi6tuvXAYDsMAoDSQpC73AoSBFZLnt3R3Lln80DKkFfe2NHoy/ruOjJuh3bLYX9sbbKzT5iBoXi82J+JqXyEDzdgYka3jMFvRQEQv2H+B9r8rOLTcql1hXt6sh04bpdcGYAwb30PPve1Mw69dP3smmjTod+oitgKAOJesRSwBpBpJqpSQyUrF2+9t+9glRh/OPvTUbVPv/LRCvo8v5q76bmueIfjFmnt91/afe6DR5cLYZV0G2VJ5sbZY5X/e99/swgDXPxCFH1UgHBaBO684zMNuuKRSy9qWav4ZSZsN8/GqEbtWLm9bS6RObr6ti8ibLn20N45ZNmkzbzNzhu+a9fE9Q/qbfq1siNz/pNPZwbPmded9uHiFvf+wp6wKbrS4vzDPYXcVFdC9g3INXX3okNVu0UkWdu5efQm9fOJgVM+QJxa9+JvTQNvT2L/4s75V4yO9YcniaGieCwQTBigYUrPH1PH0QaOArygOGxDlJmgZwLfPQOjYHBlquIxquzaoRfa3lTgwZSNWbKfl414qQztPlWZKcWM99Iy/GkTsDe1dGCCEsmJTprUJ6YWl8PZWhSgB3PIONmqwXhRJMev/b/O9kZg6q2JkusyEEE4QjCj/KMW8TP8Uuo1r1q3AvMGwz2k3ZWkcEY4UZs/edYkEea/9WiJECaD05Nuo7T47dkmi8ddru2noWrthaNoHO8UT1nz7nzXONcWp0/vP74hm+wJk6WRzq39Fb0bIS8Z4xFYM/lLAmphCe7pKMnMP/n/2CGMOf+l2Z8MuEvLYEABVn6eyAx+7TXLdNvdd/xlFk/eJTQQnXp9XfitHOaJI/R38m1fcXL7gjPv5RHXv/axXx3HZo5neTo/XfybT6i94oNfCm+c/lTj5uKxL32rZ+0HTvXuVr879KbMZ4ZvTc3a/ZmDf/Tdi3qDudHc87uv2pp44LmbHysny4LibpjsPoXr60/9orPzkA8QD+34hf/bxiBkAAizefqK+ut+58HLJr4jDBQxOSBAxiygU6wnzwqxuiQUN5Qwq0EKmYrFkm0wUTQrVn9XgmH7lmPFO8uZnEpQmHdcSho7YZwUVBen+41tp5EVSacQdBTKBsZ4CWUHISNIWBSPclokQIoBCYplIpCT3SvPQO/bG2MFCgTAoaw90khtOINFAhBJVgDX/Fv8E19VK6+4Qqb6G3MxMPEbX4lVCBDnrfLK1EktDGSssal7TEx5AF5ff6KIE+biZ31kRcuNvfnpzKDJhr1HLvnlY3vOvWehbAcuBDPs0EDqm6ZeauH/R9nzbJs6gOjEVoAY0kjaUjwyJaIkCSZuB4SjG5kcD+DfCCIJMgzLGCa0TxiJ3n5gogR2gU5Z1hxAaUOQDDFQojVa2vkjvYsThdyUkU0YafmM4aUqAZ1h2aySrvi/My0gAqAYIVgjgnZEsD3HBTSF5+zp8KZWuBYj2TqTlAEgs8DiLPAXQ8EAcOyWz8zMMT/WBJhirdGOidSUGzJf7D7WHUzz+skqciJs5LcczhdUyu5JD7+4OLj56aXljN/UGsApgIE1Fb++0gD/P8cBAhNtmHBXVwToWjQUjwRL1uFWffNsyRrMZI8Vj0fpoiDevaWcfGQ6Eyp7EYPqJAqVAb30np8dVtowBNqv/4q7wJ4XfEE2SV8FpjCPnGko2bRSVQ1Lk6E1Vcf2bUU+iWVpNQt7HnaWf4+CZ/mWQ/+1ca4oD+mgveRnCHy15Murk5h2QwaU02iPSplk9/Gs747+87vm+YM/fftVOes//65YM5YlZCOO61MH5dE55TQ6iVCyP/itZPpJxE3DslsOodA6/237f/wiXSa6Z9NKHlz/jn8p3K/e/bnG2+lNqpqY+/ld559ze+lAV/jhgfcc+mLxTfnpRL72k489fkE9Nbkp/TfBhYOn949d+9yTm6uyFEtXmmuPiT+tvPDkmtyzfr7pyvMv/0w91/RXOA0bxDzYgbGS9VAkGlv1Felze/78OvXF02D6GE5/Z/MHm587lrtcTsydzKcsa6H6v5/c1WcYz53/b0vqdDa+ZG788R2v8OXXn+nJJcYP/1VRfv2CwdMsd/SNfcL3akPDlY3f70+OuaxSNdP3wY9XnA5jGOSpdY8munVNmUp3z7GKTMmQkxtOpNYdQqJKcvfEFNG6a349/Myf5tQzizfP3b2pFo491EwsWo5aygw0y56/MTP0rVwl0YAwNxbvCt/yYOMjx+8M32c+98rdn/bAOmehrFsGIMtkNj7lwNt691Xj+PoX/9daN/Glv0q6QrLg0Mre0n1aPzRuWc18C+RlP/GldPZXgUQgpBGERPCav3z0C4/jOrr4+e68eOjC9/5J313VL3904S+TNwLav/vP3nbtJWbGWXjX5t+f+Pjg7wyPD4t99/zTw9eeHD68PvURuqJnfu8zb3josd4ShXm3pUYOiH+gRx7fnP25219umNtf/9ZSuhkdb89QCGGFbBltZ5dYWN6lfPPITvfP38fvOiGMCll1cwAuDttaXvDLlwHoha91QABTonPt2upjsGOtdEmQUcOJZIflGnCUSevJ/rXlIqMYvqqWuJVPbRm+cOjHixfm5tYW1gLAMbP98j4MYy6dH8n1xi/Y9MyOcLJny8mdjbX1LQmV2NIdmxA9CeFXpELVz4gQheKxbG+MONes4ZyXxZcjeHyipRECCIAAUMqQBhf7zzs35a+5EpecICig8jiIceI/Zsn81S/e+Na02ruC6dU8u3fvi9YSWh7PK5Cp330qseiSgCZhCCTNQ/94/ADwkvX+urqb5o/WvmHPOP9rXH5b17mcmnyI7nzk3fPP9Tam/HtfPJ79orMoOuWJbzy9RMdmxuONmfuGDhxdfmw8bFlklqUMlgT2VY6NNXMhjobEn31sGZEnpMGRxhSdUu6VwER48dlJnLvtkZvEQ4jwWgsIAXVukymY3/d1hXvht9ltGHbOjyEOY6IcJ1NoOnnBGhGiExoylzZAM3N0uPoiOma3hBVPylYmtnzjbKXjifv4mLz80cWdnS1/45GW1XO8vpgbyax/orChMT9YyKr1XUeCWk8o69FMW2QwcqyrOVGU8AAc0y20X0135h8DWgMcgha8F665+fdeBMCgeCh83lKeTVy8txqOnC6+aq249+Fdx6k7ZpupnoliMGmxT0Kv62I6VLvkqCPGCn2Nk7nOqaRKDy5NDdbGXXRnZlJ62VjqgudMY4t3TA3gAlosTp+q19Ovm3uxVz6UftmLx+xNXssvDhzZWcqnxHI+dqDUmz3ppe368csCOd06d+JEf1XsObJ8UmbrRoNtky1RUpTbXCutmygsU6ESotBqWf2TMbertn7j3S0KGcCW/k1Cff8DCeD63pWXKuCe86/80i9feP72X1wKIbM25BD+vTFbvxFrXnbNBtz26Beyt3/7krf/yff4V3EA6UL3NUgPRUoYuu8FkOgGAKRuXuH6uY6VFwkmHWyPPm0pAjjvm9veM3rw2Pz3/pQfvvkf//M/roluKpCQQylYqUtfjfYZkxduBb1a2W/tJrx6N7r+MrcKxT6DXVUhVP9pwPbVK0fosaeTrkZckUvemmojSoSJpVy7HgxPCVVHTAdChLbRPWWRrTU1CtacRT6AgQmpU6irbP2q+HhqejIIcNv8vkF90Lr48Ayt0abWM3Bs43IsTzoRe2m+u/90ieLN+SJRg7efKqVrYvdMuQw75LNVxTPlLBmpDGkVdu9+uLEymtw1EIourm+EvOc1+5j5s1BtOLvo+vDf/8PHexHLyn4AyH/9nEvevHIIKIiA95d+fCVw06vu+v13fuM7L//T8l99bq18bNT5zH8ye97MF/HOn7B7bOGltS9/8q6tF9/97J2/eur/3Db12ZnHZ+9b8G+77e69X7lj6J+vzPQBsghkttn40rfeNXDtbXGMZIDf/2URHQIAMrKNsI/eCJMHkcQrbr/rniX3tvufu5UkBEAOJBAmFTgTrjHVMIQUgFSKlCWKU40EWHMglQUZcxKSISWTgCBhWU4uYQEO1YNESQeJbKMakKMYsbChKZcQMalVxoCSHG8kvURufd4rCbhBiKDmU3MplohZNtvSsRIpJWwi7RhKJ4FmKJDske1zPMwKRJ0jkwOAgKg73YVG+rKhGUSnKzTA4DDwwF6lXFASaCe0goXxGj4DzC4D4EAbV69goRmGmoGvAS1cL9cImcNlaphSSH7MkEbQMDEw+7GAQx22KhzquqEgALFhKGIXISNkrwUjjGZmD+SFaL/WFXr1Xa3uihq5mt4IhteoyQDBEpejcxqjA1sTlgIV033SofYRRgSGTqT7tYCwkKwKgNKWlWq/UDHKi09ZBQdwWt15aziZiqu+Dhu9Nmcytg3E0xAFhU502E4qn7Q7i9MFbSVzTjaedpKOsHOpmqSUJRwhISSRAmLppJIxQrzJSOQoemMdLHP2nonOlEDCKcasrFMwAwcJyqD8GDTh5HdmYP7h5+99Z686ChOdes3hzN7nfpKx0WphmjSh8evTTtmN5oUZFOKxz+4/CBw1H+pWn825h9d8m2ftT02oH/udjXLPqe/jKw/9++x93YVpfuTZk8Gd6SUxJKZ/8FCjY2Z8IesvPdF/5Knxx8b1TBBgJoQ/DxyrHz5V7dc4DcJnHl9CdFBaC2fLEdcDQ+Pg6XLl9s1Pvr78gPgtL1JBmlsrx1eY9tSf9eeskuTmkD/zW5nLmXsa/7N+z7c1yG7Z7Evp49JHreDta2YexBuf+VVXNeeV8H9p778V26xyMGGA/w/XcOiOzhwXqgAAAABJRU5ErkJggg==
!! Lemma
Jede [[Cauchy-Folge]] ist beschränkt.
!! Beweis
Sei $$(a_n)\in\R^\N$$ Cauchy. Dann existiert ein $$n_0$$, s.d. für alle $$l,k>n_0$$:
<$latex text="|a_l-a_k|<1" displayMode="true"></$latex>
gilt. Dann gilt für alle $$n>n_0$$:
<$latex text="\begin{aligned}
|a_n|&=|a_n-a_{n_0}+a_{n_0}|\\
&\leq|a_n-a_{n_0}|+|a_{n_0}|\\
&< 1 + |a_{n_0}|.
\end{aligned}" displayMode="true"></$latex>
Dann ist $$M\coloneqq\max(\{|a_1|,\dots, |a_{n_0}|,1+|a_{n_0}|\})$$ eine obere Schanke für $$(|a_n|)$$.
!! Satz
Jede konvergente Folge ist eine Cauchy-Folge.
!! Beweis
Sei also $$(a_n)\in\R^\N$$ mit [[Grenzwert|Grenzwerte von Folgen]] $$a$$ und $$\epsilon>0$$ beliebig, aber fest.
Es existiert $$n_0\in\N$$ s.d. $$\forall n\geq n_0$$
<$latex text="|a_n-a|<\epsilon" displayMode="true"></$latex>
gilt.
Für $$n,m>n_0$$ gilt:
<$latex text="\begin{aligned}
|a_n-a_m|&=|a_n-a+a-a_m|
\\&=|a_n-a|+|a-a_m|\\
&<\epsilon+\epsilon=2\epsilon.
\end{aligned}" displayMode="true"></$latex>
!! Satz
Jede Cauchy-Folge in $$\R$$ besitzt einen Grenzwert in $$\R$$.
!! Bemerkung / Ausblick
Wenn in einem metrischen Raum jede Cauchy-Folge konvergiert, so nennt ,man diesen ''vollständig''. Ein Beispiel für einen nicht vollständigen Raum ist $$\mathbb{Q}$$.
!! Beweis des zweiten Satzes
Sei also $$(a_n)\in\R^\N$$ Cauchy. Dann ist diese Folge nach dem Lemma beschränkt hat
nach dem [[Satz von Bolzano-Weierstraß]] eine konvergente [[Teilfolge]] mit Grenzwert $$a$$.
Sei $$\epsilon>0$$ beliebig, fest. Es existiert $$N_1\in\N$$ s.d. $$\forall n_k>N_1: |a_{n_k}-a|<\epsilon$$ gilt.
Aufgrund der Cauchy-Eigenschaft existiert $$N_2\in\N$$ mit $$n,m\geq N_2\implies |a_n-a_m|<\epsilon$$.
Sei nun $$N_0=\max(\{N_1,N_2\})$$, $$n_k\geq N_0$$ fix und $$n\geq N_0$$. Dann gilt
<$latex text="|a_n-a|=|a_n-a_{n_k}+a_{n_k}-a|\leq |a_n-a_{n_k}|+|a_{n_k}-a|\leq 2 \epsilon." displayMode="true"></$latex>
!! Definition
Eine Folge $$(a_n)\in\R^\N$$ heißt ''Cauchy-Folge'', wenn es zu jedem $$\epsilon>0$$ ein $$n_0\in\N$$ gibt, so dass $$\forall m,n>n_0:|a_n-a_m|<\epsilon$$ gilt.
Eine Folge von reelen Zahlen $$(a_n)_{n\in\N}$$ heißt ''Cauchy-Folge'', wenn <$latex text="\forall \varepsilon >0 \, \exists N \in \mathbb{N}_0: \left|a_n-a_m\right| < \varepsilon \quad \forall n, m > N" displayMode="true"></$latex>
gilt.
! Intuition:
Wenn man spät genug in der Folge ist, liegen beliebige Folgenglieder beliebig nah aneinander.
Insbesondere sind Cauchy-Folgen, genau die Folgen, welche einen Grenzwert haben sollten.
!! Ausblick:
Räume mit einem Abstandsmaß / einer Metrik $$d$$ in denen alle Cauchyfolgen $$(a_n)_{n\in\N}$$ <$latex text="\forall \varepsilon >0 \, \exists N \in \mathbb{N}_0: d(a_n,a_m) < \varepsilon \quad \forall n, m > N" displayMode="true"></$latex>
konvergieren, nennt man deshalb ''vollständig''. $$\R$$ ist vollständig, $$\mathbb{Q}$$ aber nicht!
!! Numerik-Version
Es gilt für alle Vektoren $$x,y \in \mathbb{C}^n$$:
<$latex text="
|x^{*}y| \leq \|x\|_2 \|y\|_2.
" displayMode="true"></$latex>
!! Stochastik-Version
Für $$X,Y\in{\mathscr{L}}^2(P)$$ gilt: <$latex text="\textcolor{blue}{\textbf{E}_P(XY)^2\le \textbf{E}_P(X^2)\cdot \textbf{E}_P(Y^2)}." displayMode="true"></$latex>
<$details summary="Beispiel(1-Norm)" tiddler="Beispiel(1-Norm)">
{{Beispiel(1-Norm)}}
</$details>
Sei $$V$$ ein $$\R$$-[[Vektorraum]] und $$f:V\times V\to \R$$ eine [[symmetrische, positiv semidefinite Bilinearform|Bilinearformen und Eigenschaften dieser]]. Dann gilt
<$latex text="\forall x,y\in V: |f(x,y)|^2\leq f(x,x)\cdot f(y,y)." displayMode="true"></$latex>
Ist $$f$$ außerdem positiv definit, so tritt Gleichheit genau dann ein, wenn $$x,y$$ [[linear abhängig|Lineare Unabhängigkeit]] sind.
Diese Aussage ist etwas allgemeiner als [[Cauchy-Schwarz-Ungleichung]].
Sei $$T\in \text{Hom}_K(V,W)$$. Dann ist $$T$$ injektiv genau dann, wenn $$\ker(T)=\{0\}$$.
!! Beweis
"$$\implies$$": Sei $$T$$ injektiv und $$x\in V: T(x)=0=T(0)$$ gegeben, dann folgt aus der Injektivität direkt $$x=0$$.
"$$\impliedby$$": Sei $$\ker(T)=\{0\}$$. Seien $$x_1,x_2\in V$$ mit $$T(x_1)=T(x_2)$$. Dann folgt:
<$latex text="T(x_1)-T(x_2)=0\stackrel{T\text{ linear}}{\implies} T(x_1-x_2)=0." displayMode="true"></$latex>
Also ist $$x_1-x_2\in \ker(T)=\{0\}$$ und damit insb. $$x_1=x_2$$.
Sei $$K$$ ein [[Körper]], $$m\in\Z,a\in K$$.
<$latex text="m\cdot a\begin{cases}\underbrace{a+\dots+a}_{m\text{ Mal}} & m>0\\0 & m=0\\-\underbrace{(a+\dots+a)}_{|m|\text{ Mal}}\end{cases}" displayMode="true"></$latex>
Zwei Fälle:
# Falls $$m\neq 0\implies m\cdot 1_K\neq 0$$ gilt definiert man char$$(K)=0$$
# Falls $$\exists m>0:m\cdot 1_K=0$$ gilt definiert man char$$(K)=\min\{m>0|m\cdot 1_K=0\}.$$
!! Satz
Die Charakteristik eines Körpers ist $$0$$ oder eine Primzahl.
!!! Beweis
Sei $$p=\text{char}(K)>0.$$ Angenommen $$p_1p_2=p$$ für $$p_1,p_2\in\N\setminus\{0,1\}$$. Dann gilt
<$latex text="0=p1_K=(p_1p_2)1_K=(p_11_K)\cdot (p_21_K)." displayMode="true"></$latex>
Aus der [[Nullteilerfreiheit |Nullteiler]] von $$K$$ folgt dann $$p_11_K=0$$ oder $$p_21_K=0$$. Aber per Definition der Charakteristik ist $$p$$ minimal, also muss $$p$$ schon eine Primzahl gewesen sein.
Bevor wir auf die Lösung des Ziegenproblems eingehen, wollen wir Charakteristika mehrstufiger Experimente hervorheben:
* Das Gesamtexperiment besteht aus $$n$$ nacheinander ausgeführten Teilexperimenten (Ziegenproblem: $$n=3$$).
* Auf dem noch zu spezifizierenden W-Raum $$(\Omega,{\mathcal{A}},P)$$ für das Gesamtexperiment hat man ZVs $$X_1,\ldots,X_n$$, die die Ergebnisse der Teilexperimente beschreiben.
* Während das erste Teilexperiment $$X_1$$ vorab eindeutig beschrieben ist (Ziegenproblem: Wahl einer Tür gemäß Gleichverteilung), kann die Verteilung des Teilexperiments $$X_k$$ vom Ausgang der bisher durchgeführten Teilexperimente $$X_1,\ldots,X_{k-1}$$ abhängen.
Wir veranschaulichen das am Beispiel des [[Ziegenproblems|Das Ziegenproblem]].
Das Polynom
<$latex text="\chi_T(X)\coloneqq\det(X\cdot I_n-A)" displayMode="true"></$latex> heißt ''charakteristisches Polynom'' von $$T$$ für $$A\coloneqq M_B(T)$$.
!! Wohldefiniertheit
# $$\chi_T(X)$$ ist tatsächlich ein Polynom (d.h. $$\in K[X]$$) vom Grad $$n=\dim_{K}(V).$$
# Außerdem ist $$\chi_T(X)$$ unabhängig von der gewählten Basis.
!! Beweis
Sei $$A=(a_{ij})_{1\leq i,j\leq n}$$. Dann gilt
<$latex text="\chi_T(X)=\det(X\cdot I_n-A)=\sum_{\sigma\in S_n}\text{sgn}(\sigma)\cdot(X\cdot \delta_{1,\sigma(1)}-a_{1,\sigma(1)})\cdot\dots\cdot(X\cdot \delta_{n,\sigma(n)}-a_{n,\sigma(n)})" displayMode="true"></$latex>
Insbesondere ist jeder Summand ein Polynom in $$K[X]$$ vom Grad $$\leq n$$. Genau für $$\sigma=\text{id}$$ hat der Summand Grad $$n$$. Es folgt:
<$latex text="\begin{aligned}&=(X-a_{11})\cdot \dots\cdot(X-a_{nn})+\sum_{\sigma\in S_n,\sigma\neq \text{id}}\text{sgn}(\sigma)\cdot\underbrace{(X\cdot \delta_{1,\sigma(1)}-a_{1,\sigma(1)})\cdot\dots\cdot(X\cdot \delta_{n,\sigma(n)}-a_{n,\sigma(n)})}_{\text{Grad }\leq n-2}\\&=X^n-\underbrace{\left(\sum_{j=1}^n a_{jj}\right)}_{\eqqcolon \text{tr}(A)}X^{n-1}p(X).\end{aligned}" displayMode="true"></$latex>
Für $$p(X)\in K[X]$$ mit $$\deg(p)\leq n-2$$.
Sei nun $$B'$$ eine weitere Basis, so existiert ein invertierbarer Endomorphismus $$S\in\text{GL}(n,K)$$, so dass
<$latex text="A'\coloneqq M_{B'}(T)=SM_B(T)S^{-1} = SAS^{-1}" displayMode="true"></$latex>
Dann folgt:
<$latex text="\begin{aligned}
\det(X\cdot I_n - SAS^{-1}) & = \det(S \cdot (X\cdot I_n-A)\cdot S^{-1})\\
&=\det(S)\cdot \det(X\cdot I_n -A)\cdot \det(S^{-1})\\
&=\det(X\cdot I_n-A).
\end{aligned}" displayMode="true"></$latex>
Also ist $$\chi_T(X)$$ unabhängig von der Wahl der Basis.
<<list-links "[tag[Cholesky-Faktorisierung]sort[scriptorder]]">>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/aNEHyot-H6k?rel=0&start=5100" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
Im Folgenden wollen wir eine solche Zerlegung herleiten.
Sei dazu $$A \in \mathbb{C}^{m \times m}$$ hermitesch (im rellen Fall symmetrisch) und positiv definit, d.h.
$$\forall x \neq 0: x^*Ax > 0$$.
Sei dazu $$A \in \mathbb{C}^{m \times m}$$ hermitesch (im rellen Fall symmetrisch) und positiv definit, d.h.
$$\forall x \neq 0: x^*Ax > 0$$.
__Idee:__ symmetrische Gauß-Elimination
Sei $$A$$ von der Form
<$latex text="
A = \begin{pmatrix} 1 & \omega^* \\ \omega & K \end{pmatrix},
" displayMode="true"></$latex>
wobei $$\omega$$ ein $$(m-1)$$-dimensionaler $$\mathbb{C}$$-Vektor und $$K$$ eine hermitesche $$(m-1) \times (m-1)$$-Matrix ist.
Nun zerlegen wir $$A$$ wie bei der LU-Zerlegung, d.h. wir erhalten
<$latex text="
\begin{pmatrix} 1 & \omega^* \\ \omega & K \end{pmatrix}
= \begin{pmatrix} 1 & 0 \\ \omega & I \end{pmatrix}
\begin{pmatrix} 1 & \omega^* \\ 0 & K-\omega\omega^* \end{pmatrix}
" displayMode="true"></$latex>
(Vielfache der ersten Zeile werden von den anderen Zeilen subtrahiert).
Anstatt mit der normalen Gauß-Elimination weiter zu machen, wird bei der Cholesky-Faktorisierung
die Matrix symmetrisch gehalten, indem Nullen in der ersten Zeile eingeführt werden:
<$latex text="
\begin{pmatrix} 1 & \omega^* \\ 0 & K-\omega\omega^* \end{pmatrix}
= \begin{pmatrix} 1 & 0 \\ 0 & K-\omega\omega^* \end{pmatrix}
\underbrace{\begin{pmatrix} 1 & \omega^* \\ 0 & I \end{pmatrix}}
_{\text{Adjungierte von } \begin{pmatrix} 1 & 0 \\ \omega & I \end{pmatrix}},
" displayMode="true"></$latex>
d.h.
<$latex text="
\begin{pmatrix} 1 & \omega^* \\ \omega & K \end{pmatrix}
= \begin{pmatrix} 1 & 0 \\ \omega & I \end{pmatrix}
\begin{pmatrix} 1 & 0 \\ 0 & K-\omega \omega^* \end{pmatrix}
\begin{pmatrix} 1 & \omega^* \\ 0 & I \end{pmatrix}.
" displayMode="true"></$latex>
Nun verallgemeineren wir: Sei $$A$$ von der Form (ähnlich wie oben)
<$latex text="
A = \begin{pmatrix} a_{11} & \omega^* \\ \omega & K \end{pmatrix}.
" displayMode="true"></$latex>
Da $$A$$ positiv definit ist, muss $$a_{11}$$ größer 0 sein.
Wir setzen nun $$\alpha=\sqrt{a_{11}}$$ und erhalten
<$latex text="
A = \begin{pmatrix} \alpha & 0 \\ \frac{\omega}{\alpha} & I \end{pmatrix}
\begin{pmatrix} 1 & 0 \\ 0 & K-\frac{\omega\omega^*}{a_{11}} \end{pmatrix}
\begin{pmatrix} \alpha & \frac{\omega^*}{\alpha} \\ 0 & I \end{pmatrix}
=: R^*_1 A_1 R_1.
" displayMode="true"></$latex>
Rekursive Anwendung auf die (wieder hermitesche und positiv definite) Untermatrix
$$K-\frac{\omega\omega^*}{a_{11}}$$ liefert schließlich
<$latex text="
A = \underbrace{R_1^* R_2^*...R_m^*}_{R^*}\underbrace{R_m...R_2R_1}_{R} = R^*R, \quad r_{jj}>0,
" displayMode="true"></$latex>
wobei $$R$$ eine obere Dreiecksmatrix ist.
Diese Überlegungen führen zu folgendem Algorithmus ([[Algorithmus: Cholesky-Zerlegung]]).
Eine Zerlegung einer Matrix $$A \in \mathbb{C}^{m \times m}$$ der Form
<$latex text="
A = R^*R,
" displayMode="true"></$latex>
wobei $$R$$ eine rechte obere Dreiecksmatrix ist, nennt man //Cholesky-Zerlegung//.
iVBORw0KGgoAAAANSUhEUgAAB4AAAAY4CAMAAABIkiBYAAADAFBMVEUAAAABAQECAgIDAwMEBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////isF19AAAgAElEQVR42ly8SWxr75rudXTOf+8kblff952X+z6dkzi24z62Y8dx+mZ3/2afOqfq1C3EEUVzhQQDYIZgwJAZQmIEDO69jJAQYoBAQmICAwY04g5AV0hFzXi+5b1P1WXtOHGy3Syv9X7v73ne7/3WrzrD6XQ6u1rOr5ZXy/Xt7Xrz+Hj3/Pb48PDy8Xl9fX8/ujgMfVsPfdexDN3I2E4m9MNyudFqd7r9wWR8eX09u1w8vGzmt28PC7zaZDIa9LvD6bjfPiiXilnP9XzPzwaO5we5XLHa3D84PGyfnJ532t3RuHcxX1UyQc7PZi3TNUxRtm3LtnXbcWzX9wqVaiFfPzo+wnuNx4PRcLy8ml7fDBfXjx9eH54///j84cvr66c3i+dZWlJt3bRMy7EtzzZ1RZEEXeRkXZVljuMk3TR005FFx9IyhqLZhigZtGxqgqBarh8GgR9kPS8gG/YmDHA/a4bZIJsLvELgetl8YNuG5uaKoWNij03DNES8byrNcjlDcip5QynYtienU8k0L7KMpCqK6uRzOsd6Bc+venIuyLi6Zqgsp7E8z2VCi9cFSpV4xRNoQbfiilvM5EteKVusVMvlWqNKtlpjv9E82G/iyFVb+0WjlDMdUTdoKTCtQHJVWWREptAISkeV7H6hYsqyyNMUwzCSnqNzJ5N6TU036qW6TjuNHKvLGvaaEVglqDBOY9jwVJvy2xe5/YuCqzJq8WTfdjWONqWEJBq0f1zJqfU6zdVyvO4H9Uqxcjzs9efD2ZWFt+VEVdNN03EyXqaUL5Vr+0cnJ6envUG3M14sri7Pp5vb9fXTzepmeX2/Xs9v7jq98fphff/w8nD7eH2N/725mV8ghF7urx9Hd4945Hww3lzdvKxvP60f718vwvgO48qmV+eSpTbL7Rfk0zAhu8dB0TK1VPahF++PFkfLRNKtHG7ePDYwXY3ekcNm63JQKKk65402J5RnM/WL1cvCM2rHow/DDy/ZtFsu1uuHZ4Prn/54LhiylXE9N9s4bJ50z8fj1d2HT0+ff6LidGIvQcV33mN7F234+cMP8fTuaSyeohiWZXFjOIHHT16SBJ7jJVlC7EmazGiSqIq2qIiyxklxpVEuFzN+BsFVzJh+xg9J1HmOn3M9z3MMWeANTXVsVTNVRTc0BceW0ZQVxymShNMsSKIgsIys8gLDCDjtlIAzzUqyoEqsISpasXFwmK+GYbaSmdwM//1/+sf//Z/9w89HtX422zwf9Eoy61fxMqrTOKsYpqCGZ619PzCqR6WT68Ht7fXNze1ifX21mi+WV1eL+Xw2m09GZETPhtPL0WA0Ho1Gw0H/4uKic94+7/QuLs7Oz07ap63Tk5OTFraT1snpyfHRcev0FN9PWwetXqlYMLlmVvTMnLNf/cPvfvv1p59++vTTl0+fPn/++Pb28vzy+vp0//b68vKM7eHh4fHpCenn4f52c3t7s7m5WV+vlkvsz3K1upovsJH9uiTbdDwak2wzGI7H09FgTL5GvTOSWcit0+22u/it28Ev551zssvd9lm7fXJyhv0/Oztrkz/h3in+eN7pnJM75+f4cdLGf5/iEad4SLuDp+MHvnW6F/1+r4sNn72H7WIwHAzIQcGxGQzGs4vRZbtcOyg2iq7hl6ulwmm705qMh4Nev9M8Goz6PWTNYb9HdnpwcdHHM4ej8RgPmFyOxxPk0/EEOXQ8neCj4C6ecTo4QLrQTNdFarM8U9XYGEXznqmk0jsp/JfKMon03g5DJ0VZ4vSy4/u241mKpCCepHSCVkNPYdOySL3XNSZtBHKaY9msxGlynKK0g5NqvZYvlnK+rSGwdEPkOEqgdt7FgiAjiJKUfpcOE/HdnYSkKXt+waTkFEW9f59kUimWV2VqNy6Ykq+mBE2SRQm/JuLxBMsJmm05vqpZuoTglURR4EUkPpamKCqVZpLMbiLGJNMyxacS1F5yT5BS+BwSZ5umkKBkPRPalqKIimMjPcpRok2mKYbjGE7SOMU0pSSlZ5wMwzg8h6SqyVwyTiX29hLJZIJKizpGkYG07AfFSqPgMWyajTEMzYiaaVoSDxIIiizzLC9gwGLfdt9TtGw4FE2Lzk48FovF47HdRIJKqth1TgclODpNM8kkTSeTaYbD56DTMZGncGB5TuAYanc3HUum0pLIl44CSbFc1ytns+WSn6kUCoWKFWYcjHLbth1XUxWV8OhXw8nl9BIRvV7fIN7v7m+v1q/A7+PtDcbE3eb+cTJs5fMZF0cFTwOdLDvI+EG+XGmekvgbDieg92y5eni8e3i8WS4WM4yLYZ8EZP/8AKMv6xMAB7kAPM0U8qVaBOBTBGa3h6gbDBfLciaT9QMPb2E5muG5lmXqNvY+k8vmypViab/VOugO+xe9/uV4sryaLBYX06v754fN449fMHyfP/34aHIIFcOwDNuxLAfwNnFwJYEVBBEnkeNFSVZ13TAU1xQ0B6+vqgqyJFiIm+FkvwM4CEKwNwy2W5jDn33cybsBgOzirgvYBNksDgZ+sfEqmsLijNCumZLKFZvJ5l1PpvRUIoUwZmRN1ewwtGXWDe1MI89bmayjG7okMBrHSJyV1TSeUwRRsGSepg19Nxv6pUIxyBXKFQC4XqnW6vV6o1lv7jcbjeZ+4/iwahWKviWpKgLF9HK6I0tsQmAy+0FpvxrWq/t5S0OCplmOk40c5zV7zapJ5arlup5yqyUJgSnJNMUzsluR5cplK9AwTJrdsDkqBxIlhsdHGReBaakpSTNp4bSU11sNhTk+EBRBy9VPWofn7f5iulyajMLh0AoiyQ7ZTLacL5br+4f7h8dn50hTo9l0NOpMr66ur2831zfL1e1qtb5dd/qdEUmsz4+3TxB8N6vr9WLYmS8X97eXVzdIuw+b2RivvtmsHza3d0/dXOI9WyhWsoc5NpXnlHH9XXkuJUu9TL5Km7R29lHUEcITNu5kj+6ebT6rmToXE/OHnel5tigrjDdYHTOBxdU6q7tlwz1oXH7uf/xYYpwccuRxb7z66a+7gq5YgZvxwur+YXvQG8/uHl+eH378HZfmaQy35M679zsA73cA/3o3sdeOJTCeWRxnJAccBg5Jh7CX52VVgAiSAWBdxndXMSRoQJHym+VKCQcql80UcpB3YQZhFXiOB7HnOoC1qBGF50LRaAhXDFINsaFMBUGWRLyiiEQhsLSocDxDgf1UmhMR3JLEq4poIZuYTqbcqOfOWqOz0WP3P/g//vr//Gf/+qfTw0GYP+gMO0WZNeuuzGleudu0TF7yjo6brqOXD0tHV4PN3Xqz2cyvCYAJ6CLMXc2ml9PRkICOgGJA+EsAjNPbAbEAJzDq9Pg7f0+OweDjo+8YPj5sHRWLGM9lR9ezXqU2/4s/A4B//vnzz98A/PHD29uHt9fnt5cnkPjl+RG5B7f7u/u7zc0WwCDw9fV3AGPPIv7Oom06BoUjZg3GgwsQbdDudgHV06Nu5/Tw8OQM+uAM9MUNzCSo7Z23O+Rv51vAEiSTT7Gl63l7C+D26Ql+60SQ/gbgTrThNQh4I/5Gh+HiYoDjMYTjGGIbTS6H42n/oIaRWisEQRbJq97C21xMhv3x4HD/vLd9Zv9iDCtBIDwiTwOAoR0mw+hrQj4P+ViTyRQiA/pidizIruO6SGma6dm6Ru8lU7ynS2k6luIEXWPZFBWPCTwtqzKjltzAt8BfnsRgCjGSVkJALMWkU7uWSqd1H/c5JhBEEwCmjYOT+n49XyiEnqWpKsKMQ9ZkqPheguQ6jUvt/pAwd/d2dmK8ziVKGZnj99IcGEfF4jSvKcxenNMUi41xsmimmcQOyEUoxZsQlb6uW7qsQDjy8EAcm6YJt2gqTSfSO/EEn+aNNNAFJMdojmKZNE8ZhiGmU4IaZGxLFTnRNGXFUkSeA/DxXJahGAhaRdOkdEryMj7NGAKSmoyBkU6nErFEikonkykJyDI1QzS9oFSqVnwQU0ji2YygwKVBqNiKCDHKRSNYZHkltUenOVVMcZJi7lE4bGmypzRH63hv1pIlGc/dpTC4ufhunIJ/wh4pKVaiRZMne8bEd5PxOPSw5p5aQppVLYLMbNY13EI+WyIBASbDXpLxjhPqQ3r/Cid8OlvMJos5ct/N5v5+uXx8e3p4ur3evHx4vL19vByfFIr5LFFf5KmGrHkQ2EX4oJOLi243AvDV8mZ9e/9wf7NaksFBhgRCajjoHoH8sI/AvpfxCLjK+QKoApCcYBx0LhCug8F8XspkM6EL72p6jo40aFlAqeO4mVwuWwSGjs7OWr0LDIAehtpigcAc9Ke3Lw83jz99/vjlw+PnX55V2E3Ds0ybSAwAWIdmggPmWSAQ4okHZnUNVk1DntNspANdhaTRNUfidYRJzvMj6GajLfxOYMA4QJ70/JKPB5G/5BCmhh3kSiHUCB7lGAZMNp2MM7pnslrTlYOq7/oSnUxxICqvgPN2LrR5eGC/VDNVvxDacM6wvSIvJIWyrwuSwhKNp7BJxYuzhTCo5YIcWFauVKqVagPgbTTqjWhrHh4cHzhBOQ+jBItlOHZI4pNPCKx5mC1VagXom7pn4r1J8MDjqFqhdVj2GaNcrVlxu7pv4aNzEsPwjGiUDDY3aPmSJqjVQbE2Ked0VnDqhxlDUUVDS1KyZyYPbDupH51KhV5gqRAijYNae9ibjldzmVIBBpEXdSi7XCZXzuWrzaPD5v5pr31xcX4xnfZH/fnlFOoO8bRcba6uLlfz4bp3Nn24vXm6X9/f3GzWK7B52h6vL28eJ+vlcg0C30xGN6v1/Wq1ub57OC+n3/Futugd9uoGL/hH7k6iXGBrrVrpVKZ8Tp+P0/nF4nqXMrOt9a3KF6C6+QRXOppMT8ISclI4Xh4KWVOonN3cDEvy4cHq9eLDpzJlZpxC+XQ8W/74r54zqmIHfgGfYB+euDe+gg+7v/v5Kx1n0kgo6d0f3u3svPvNlr/vQOLYXgeZBwMVopyHDRVEUZRVVlQVUFgTkAvhQDgcSFW2FUM34Ub4SqNSKRdyuXwuzOZJaQUaM48IC6DmXEPkJcXxTN1B4rM0bEQlQz8oQwx+AmBJlKB3eJqXCXfTaSQ0Woh8MQfvgYfiF0nJmsr0+np69nT2H/6v/9r/9X//y7dHrYugBAXbLiiM3MgrjB5kB6eOxQvOfmvftfTSYbk5HV7fEeLNVqvFcjbfuszpdH4J1l0iSUxAjMm4PxxEAO7DBve658Retk/bJ0d/AjCo2zo+Pjk9xffjo8PjVjWfUyB0NEcrhUet3/3+69evP//yy5efvnzG9unDp48fgGBsL09PrwDxc+R+YX/vbhEbmxuwd0U2eODlakkATHYNO4Wv+Ww6QbYhmJoOJzChw4sBENkmeD0+rJWKlWYT+xIhNHKvXUJfYmbPIv97FnlgcPZ8628JcNsRgImJ7vbIS51tzfOfAHze7X0zwP3oOFwM+pEL7veJk50QbE56jcpRvVbNu05YqRYOWr1m53IA5LYaRzheF9HhI/Ad4klIk8MRNkgbfMHSTy4nyKlzkkEJjJEfJ/NjTTVha01FNTXbNlUaPkvK6CLFxeMMEEjTKcRnMhkHUWi56Aae4SC9SZLAAQs0tKgDjQZCvWN1ljJDlYKAc3nZEmMpxmgeYUTnsyHyLt4HQSzwspJIxGJJz7Is2L5UIp789e77vRhrpeimxal8SkglkukkBKigqUwC3tc06TjHUmqKTsABJ9I0SwDsWC5wijCOYhQuMc2AnwSTyXQivRuLMwneSFDgMp9K09CWEstTYJRIpQTFz9gORo1im6KgkVTOpAm2GVholuRVVaGSnFtykeUkHfkeApiG3Eil8PK7yaRoIuHLlmR6YblUqnvw3mIaz4ZUVgwbKhSClwCYYTmejBspvptmRY+N0xhMFENTeCGKSaYYSoe25i2RE6B50yzHMFSSSlACJAWTFqC+OVL+wpFmkzt7yVgqkRC9Q6RFFUDTdMd3TMsLbCPr54Oi63vQBRZGuUHsoKb8qo9hdQnbOp9cXm+u13d3d9fLW5hKsPfl9X5zez8dH+cKhWzWt/FyClKK7OXyhUqjWDkFfxH0kzmS5u3D3d39w+N6si0MjYiwG1y0D6o55Bmoe9sLfcuBAy5V6sQBH510eu2zbv+i3+ldXuZhgIlOcMxAU0wfHtYgdWTbR5oqlkqNVrvd7Z2dDiaj0eXlfEFuneH69Xnz8Pn149cfH99++ojA003XNCA5XBc5BXEkK0h+nKJLPMlORvSRTZgL11ANS9dUWcURQNZywoznet+I++1HGIR/Z4PzgZ+H//VhXAJyc23bqRTInSCfsQxNJqKRTgqup8n50LKLJdeUFJGi4IHx/opiwVrTYsZ1yxXDzuQCUzdFmVI0WqCDrC2pCrK3wGuawIvOe6PsZIvZfB6fHNm6WtuSdwvgZvMIijpwCgXTViEwVNfwoTU0MYnoPsyX8vVapVlpeBaRsJCanOLbotc4LeU4sVKvZlJK4chXTJUXIUkZQc6ZlN1qVwJfV0vDar5XKHqybBQOS7aqQWOm47xo7+XdnEzZM23v8ECXod72T4/a5/3RYDGGioCXl2TFcDyYx0wxh8A4PDw8gsntX7Q7l8vJdLS4nKxgra43q+vb5XJyPR2/Ts96yPWPt9d317C51zeb6/mku7pd3t1er6+uV4vN43K0Wt3eLsHth4fzJvtegPiXs2eddl62WCqfZHRW0ffDXE7QkmxhYyWn4+fErpU5vr5X2YIq6xhH5cPZZTuo6BKdn14dKQVNLp8/vk5y0mH38dPF22submTDQrE1WSw//yuttKy6YVAqFGv7+6eDwXSBcH64/wkAxjDDtveNvO+2lej37/Zi3d0YBuMWwBjW8KcQUaIKZSTKkqYrErCpS6ok4Vgis/GUfFCvVColEBjCLpcHfZ0gl/Nc6LiMb6kSDI7jWoZl66qN9IEco0I+cvIEbhrwJWIHdldkeAlJRKIpZDWKk6AvBQ7eGENekSWOldPps7fl5f5t5z/6X/7h//NP/2pQP+n45YNuv5XXWL5S1Hg9E3TPHVPgncbpYWCaxcNabThaYrhvtgCO+BsBeDaNAAdRDUgQzwbU9CP29Ho9AKrTOycAbkX8bW0x3GqdEgCftjDMDys5DxlD090gVz/c/PF3P/8CAH/98cfPn7CBvh8+vL68vJIKNH68vr5sAfxwe3cXAXiLXkh8wt8lXPmWv1OyW6TWRpzilOwdYdfoYoD9ihgL4R9mSKKqH8CCnneBVRC1fXp+viUu0Ntub6vQ2+LydwBHNCbc7UQl6TZ5NO6cRxthcC9ysd8cMBBKAEzqAgMiUJBMx9Npq7xfq9UqgeVXavlaq3twOoI/H3WOjnG84JmxEfgOvgEYBB5+AzDuTCMKb30xjjgeMj3LWqKZCR3dsAUkLZlO0Sk1q7Ipdm+P5lQpTaWY+A5NJ2VNpOSi4zmmgajTJYZGZqJ2pLILm8yk6R0RALayOg1ouHgpLplktGqz1ijnM/BjtqEZgmzqCLR0cmcngZynKQRRiV//OrabSnBOQqkrnMIIAjG5ySTFAY1MktVMw2KTIp8WWD4Vi8fiaYZjeRO7oSOCJUXlBUXhOVGgOZ4F2WAUkzDte3upOKPCRnMUE0NkqxQp8IRZh0/Qohpk8UEk0QhcPI2ICdCViqVAQKgKTdd0uHnRremk8A7+wmVzxFqT/YrvMrSIvKzCOruwfaVy3cFHZtOkdIyxY9oar7kGRDI0LMtj6EiKENtJi6pNnKyMA4cXiscTqXiCppDjOMliaZln0wmaBYgTCQYGmIHFSYlciqJ5CwcetN7Zi++lY0knXy5Xq6VcYOuwfbDgQI7qwqKEjmfrMqnGEmqAptKvekDa5WKJ7Le8hR952DzcXN0+P7++PD6+Pm1uHu+m40MY0RDGz0JS0HVZC/K5XHG/2mj3znvT0WgyWwDAmwdA+/V+SOpCIxJZGA7d43oVuYYA2Ary8JG+nyVUAVSaLYzcsw48dLt3Ocv7GXhQGBA7I0kGMengrxs54GKpWGocn533emftCXL5nIzC+XIznqyen25u314fP/74+vrxReZ0U4cBhvkFDGBKhWgCBJSSOA6II/PXhmkarma4SIqmKoi6CQardhBksoET/P8BvCWw7+WykAFB6IaFnOcEBeKKQ0gE18uWijAuGdh23UTyFGK/4QKX14p5wwpzBddR6SRNQyIqmqqaXglRJHn5QsYwwpyt6oaWFjVeYfiMD6cjMMjgkm4ItCvvFMrqQYbYJHjgUr3WqNVI6ZnQF9tB5fi0YAY501UFTZY804dmUfkElGOjWAjrjVKtVM/Y0JwcAoRXbU+wKp1KUeCqzWpZoLSKzeHkQx+AB3LWl7zjQc0DpLx2w2qGlYyiKN5hs4BxJ+pw6Iqb8urNqhE78HYKXZc1gvz+SavbGY8uZgOJg3ZgJHwALUBo+fAc5Wrj4PD4FIKp3+1crqaz4XwGwt2uV5vVzcN6vXmddh4Xg85gefuw2TyT8iKh8/x6NH64XT1CBN6uZ9ePm/Fw8bBaPgPA9+cH/HvegrGUvaAYJpViY16RKIFWG441sOXMnnAyStYW90e/0cLm7QeLLmiixMaZSnM8vXDLmpjOTeYtBVa41P/4PMub5fPbz/23l2zcKhQqpaPRfPnxjwcpVfdCLxeE1YP9kxGS/Orm6fXxx5/TMRYWIJGMkcLzu50ftlPB73d+2Nnr7e7RpLLGw2vIxJ/C48IEQ60LvAL1jb8riqAAxyJ0K8ekjIN6tVqtFDGc8qCDn8l7QTYDoenbga3Kiu6QGSLLtHTJsnTSQKBqBqfIK0CYEJjMowlgLC9BPfHpFCwFjRtJIWS+BfkEP5E+heDp5upkPviP/6d/+Lf/21+cHXRO/XKz29/PWpyYzcFIhcFJ1zYE1qq0Wnndzh00KqToDuDdzKIS9OI7ghdzMtEKmT0hk62k1koMHL6RCVBS7SUA/nslaDIZTPDbOm6dnsB+lisZzQpcxcxkwv2TP/z5b3/6+evPX3/7I9zvp49b97sF8NuH1+enF9zILPDj4/3D/eZmc7Ner4kFJgTG9yviFP45AMMvkjlT2HPs3WjQvWh3+/3OEeAXjeIwm8mV683D1ilxr3DsJ1EtmtjkLWm3xG1/s8Dbe9EvBL9RaXoL4Pbf428P8B30otpzP5rJhYkBgYkDHg1Hl+Px/KJe3m82GwXPL5SLRciQo1NSQBgjYZJ5tNF4CP1KZo6jp0QAHoGzI3xB5pAp4Gj+l3zKETnw49OsbAVk9tdEXlN5mK2EFEhUgt6JMYKuwPgl92KikIYUo5TytgKombrAMCpPp3a1qqWqCGNmV4Jr1EONYinaETVAOcVolUalXowATIpjgmoDOKzI7O0kYUxcQ0rtUfS7H+IJKi0YiSAv8UxcStBpUqSlWVmXknFWt2SDTSgG0oqQ2t3b3Uun4ApNpGIkJ0WCmodl5RiBFHwZUthNJ5IgXCyJfVLTIs9gJ5EAlTTGEh0EFpdgJTUDALsMq/muxBFoQQnA3kYvAAcMtMlpSnVKQkwQ+WhoEKWciJPGDCoFHWpomoEcH4SZQrFat2VSFCSFbhFWzSIA1mFDsC9AMsdCxlCJNAZVAjS21OjTpeCBaYZnYOFYwZaQb3kmzVCMwCZiZOKJAJhLMEzSrmcFNkWxqd3YXlqV/XarWCzmHOJXFYE3PIxt0zE8B3KCfAqaHBsN4xnj+1f9yWIxX6zWN8vl5u72FrJzeft2vyaD4e1xvXm+nU2Pgmw2k3Hhm13HsTSk4GweAXYEWdmfTWdz0rx1v3n8cHd58zCHeJuOSWBh6PaP6zU4Rh/Ps+xMBiDLFQvFUrlSrTePyWQNDHS/258vSn6QwckG7gIZyABHDX1bgi6USlAvBydn5wNS7en2Zjc3VxiH683yBgC+//T57uHzlx8/P2iSbeuW5Ts2hIKtcIKMWMJ3UpkgqhGGAs4CztqFTbYMVWRAbAnMC/M+aSsL/m4Lw2/uF6gNgmLWdrHjZHrY9/wAIgJ/D4BgOygUs/Auru+6NmwPLzAxvmCKmYqh5IpFj/QEQC8xrATZYtjljCjIVqlka24WhtMTZYbXGS5u+7ahyAgDiRN05PAwzlcA+wjApXJp24TVPCB16CZGdbNydFQznaxFWggEwdbNDMSgQDFislgJg2olW6k0So6BDw+lyCmGL2nFbqOgstBMdSvOFwJEs4z8TdOqnC+pwem0orI847Raei4o5ZC+lXI9Z4mkhyjF+jalNDPVnKjlNLezbyr5ar3a6PbHw4tJVxIVGSLbgMQIXQ96v9Ko1fcPj5CP22eDcX+6gE1eXl1ere6ul/DAjzc36w+Xnfvrq25ntn683TyS/prrm5vVfLXpLZ6g5CAFN1eL6+vr8fzx6uoF3vm2cyDGeM0yFMVk2BwTc43i5XEyvsNRO/RZNnuiJvxFnu2tn8Tk/v7tJ5su26rBx/hK83zUd3E26OxkeSKW4YAnn2+7llHqrp8GH14LlFvMVcsH/dnq7R8cMKbpha7vh7XD5tFgNp9eXT99ePnpU2IXyW13F6L6/Q+/ebf3JwP86/d7F/EYwwtkQ+KRog3+l1SOcQyjthHIP17D31RdNmSWDqOzCWkcZotRWQl3ciHp+3MdHZbFdgFgBKhlKaZFKncqKaar8o3AELUMnQ6jKyFQZDHNwg8wLJnojwDM87KoqyoykS7rCje7XfU7F//J//hv/r//8+9P24MDu9rs9upZl1f8rKVJYXg8RFrgreLRSUmz/UazfD4Z35IJ1wjAUadTxODF/HKynZEEDODGBn8yfhe9LnGGpAR9Csv7zfx+B/AR/tQ6OT4Mi46YzViGnfdLzas//kgA/MvXr98A/PHD9wr0K34+Pz0j74C+T2Qm+J7szTUAHJngCMB/2i1SFycovpwSFpM5L5jHCMDdTufsoFdI6cEAACAASURBVEQGsAfd72fsAEkHduQAopDAN2qqOo+ccITUaBIYXP3nAQy73CXg7XS3AO4gWxGER/Ql7ndwMSA1PvKFI7LFaDQLTJz4bHpSJS2T5dB1C9VCs35+fDAis8DDHum/uhgCwENSsh4Q9A6i7+MhvPOEAHibQbe9WNPJEB/tYjoqqGAGFJop8LJKJlITgifDAccAFE0lzQC779KpGCdKADBp84HhQEriBIYGR6yyzkNQ8/x7VqNTRlanmETaFgyNQeJQK81yvVwIg4ynK4ooqroAm8pQ8TiTQzrVVSYuaOl3cTBV4qkcQMQkNFhwYC6ZZmGZ43sMAtzh4rKl6oqQiiWIbQTHYIc8Q4VTVTUyH4hELAoMacKiqRT+xZMxVmZ5DbY5naaSnCiKnCJItOPaEsOKSgZJDr5VsU1BNKJOHiadxNNTybSgyrAwfDxteIEUJ8/SyBQwTbMw10kyz5yiJMtE1tcBYD9XqDYsTaDTXDpGEwOMZMKqLukIo0gFWoTgMEUqlgCAcZg4w4ynowI0lALF0kjLHAtcC1QywXEpwD2ZTKQYUmXEQ1Jc2CzaPGm9TO3sMnoY1NtFYpaTyejFJMMQeVk2kd3lBEUaRkQFLAKAodX1Xw0miGTS3nCFRLheztfrxc2H+yuMgZcPT+v1w2Z+eYwYzmS9CMC2bcB+hYVarXl83u0Nppfg7+rmDqL17XZ4uZ5eDLdtiYPRbDE+bdZhngEoxzJ9z/YyYYH0FDX2j1pHJ+e9zvnFeNS7mF+Vs2FI4O4GnqK5BMCmhoPvhbk8bCAM4GHrbACVeHF2NtzcXl3Np/M1dMLr7eNPXx6fPn7++suzpWDXHMfH2QMPgBhkL4WkRFgG3TBt3CzSfgY9ZXkOKVjImqbpthcGrgu4ht99bzQH/H0GGHdyZH4uyOEHdidwYYr9CNG+bbrZQiGPx+G46KapStCGvGZITtURyMyep+P0Uog4gQSgXy5YtJCv5B2DEBgplmU1hkvKZmCKkKe0wrGKZHCmF1PrdrFAatDlUhlqhVSh978BmHRjNQ5dO+9YpIMPQkoJNMg5jpYTQd0LypVsqVopkyYDmihFWfdUJdc5yru0e1CrEbrXNYGRITWhjoVMVdCbV8c5JxSDo0kQ5MtlWGO5WEZcI+KFRFoUU+m8WTn0JVOXS/s5MVtvHR+ctfqj0eU5bBdGq6pj+GVc1woqlXqteXh0CAt8dtyfDSeL0Wy+Wc5uNsQBX8MBX88eZ4PNYg3XMHt8uIaMWiF8bsDhm/FguZheza5WN+vZdHl/NUU43uH/b/uHGi0jWxiGRZteOsEl6GpGTsRkntPrR0plYCRz51Q4e+qmGwebN5WqWYor7orV49Zw5Fdtg81O1idsxZBLsw9vXdfc7z+8Xrw85Si3EFYqx/3L1dufH/Cu4eZ8L8zWjpqH3eFivt48vrz89jMkMWn+SMd33v3ww7vdH7atWLi937lIJHB6RSQ2SUW+ISGnYlCpMiExqRgjxkhvlKnphmVqrLyP8MfprBB9VSwUijkyo4EtQ3r2YW8cL3BMz8UdjTwBLIfokCVlKdIKXkkAfiG6RE6AxSY9IAS9HGkBA4AZSTAkVdYEVpZFqoWDeNr+z/67f/tv/oevx71BxWwc9Pu1rC8ofsGSuVx2f5LxLNEuHLVruuPUD4qn08Hm9mazvlytFlsHHKFucknyw9VsCiKM4doG33uPSC8wqdmShmPSCH16QiZ/yQ3yq3V8hAg4Pj2s5DOWnPdtyyvkSu2vf/lL5IB/+frl85cvURH604cPHz5++vD24W1bgX5+eiJN0Pf3D3ebNQmM7zXoFWJkQfZr24T1DcRk92ZRzwnkwRBqvnt6VCsEYYE0klim5UHTeEEOlqHUOEDOuWidkcaqs9b5974r0lgVAXhbfe58s7qR3cV2Rv5CvAIetgUw2bYOmFSSvzVhkV5m0g4NhBLrOmzVME5rRd/IV6vlauv06Gw06OBZBMBb8xy1bxGCRwCGfsBTJ7PJtvAcFbOjDXwfdQbjHIkrzTR1iVN0DO1UmndUIcXEYyCoyrJpLrEDICqmRkklD+FkmyriReDiTCpBmXndkNPpJLWnWxxt5w3kJdoSbA1+jpIq+6V6rZTLho7E8bRk4uVELp5MJOnQ92XJIrM9SVhtcDgpBprESKwiJnbjVGovJRIAx1hVdhw2pRuipvCpJPAHgAoCYthwsNdQDrJKOgjhJOE2o1apVIKOp3Zpwqc4TCY4xyoy/AJgCtsNTy8q2TysPMiNkcNpiH84WIoYYECRJ9OHChenLEdXk7QuKMiwHFmLQGaYaRoUTgkGqVKbqhf4+WJ1X1fxLkIyBbEKAOsyAwADvpwoRM1qksnFd2OyrBl4BdGOUcl4PEWcOoy/CvfN2jIn8TTpsRJkLrYbS1A4WGkqpSS4VoMVScuHmNiJw54GWZ+OQx3DmCgKKW+T7kwKGFAEmrT9AqS+nyGtSpCIv7pA0MzB37v7+9ub5bhzfb+YPjyvb56eXj8+r5dQxJdHsK4Z+DQL/LWQaGFWg1K5cdxGOA0RNLPF9c3m9f7jl9vl9Jg0EfRJH/9Zbzw8rZcBYM8BgIOcbxi6bkHy58lE8HGr3T0/PR+Out3pVbWQz5L5fitwJJW0oMBfeqQ0nM8F+Uqj2dw/OulcTK6vJxft69vF1WI8GYzWH982919eXj69PX757UdbJi36cBCk/izKGul5J8uQWMJEVTXI7JqNV8WJtHNaWoLJVvB+YdZ3yfgMt0Vn0oVFiuaBl93+Dvb6Yc5zQGjyZ2gPQmXy11zOIdX9Si4MbMd38bqSSCcZWrEVvVIWLDhrUxXSMU5Ox1mSi71iRpf4Uj2v6YWCybsqJJ2OEFByDgcmpiAVFF6X5ZDdcSthPo8EXSpVin+aBSatldFX5SRwyr5FapwSDlpOt2VoSiVpN92w1CgUKrmSaokwRzQtaJqtiZnTk3yYVg7r5WKKr5+6AmOypBYip62SrhanraJlC15jWcrjXaBdrEYzdDGoGA4haGq051SPw7wi2JlypVDO1Q5OYAKmi2UXH9rCCJFFAwcBAC5jf2sHB43mcfv8sHs5nFwvRou7+WRzuwJIr9d3y+XN8+xi2rseDdu9x1fEzf3NCt83m/XketBeLseL5eL6bjG5uZp3J7fr9e1meTdquYpp2mRRT7Jx/B4HmWcsanfXONjPBrX3zUFmR/M98XyzCKTm45tMVWVkl3dCtX08nvgVW2eC0XUrXbEA4Kcvw4pZrly/dR42XsIphMXqyeDy+sPv9wVPd4o4mUH54PC4O5ivCASef/8a2+PoVJqh4+9JB/QOuLtDAPx+Z3enm4glaZ40JysGfC9RfCJYDGFAOClrOjKArriKhf9SBSFtnOebAHC9ViyWM8V8vpIjtZdMLutBXZik5OMHju46suZZmmVtAawjJ00khkwGk64aFUobWpsnHdOQ1wTD0dokXZRZmRZlW2ZcXeDDzeNt9+wf/9f/1t/+9z8d9AZl5+Bo0K9mA0nOVE2eyWfLA2Rp3soedfct36kfFVvTi83t5vZ6ulxGc8BbAzwbTUnH8aQ/gykjynow2AK4fxGVcrtnpBGLMHgL4GOor6OoEfrs7OjwZD9fdU09a7tmkG1k5//S7/7w25/IHPAvn7/8+GPUhvUR3hcUfvn48vj04dPbM1mLRLrfSBMWAfB2W68B4OurRbQKKSJwtF1OxqQQPSE9J+M+7G+7u9+oVnJ+AIEK/xWt3IC+zuUymTxRsgcn7W4PuO2cbdceRQ54W2D+DuDO9jv+c9sF/SdGR4aYIBif+qLf6W6tMFgMAA+3ndD98eVsMIZomQ+KtWazWc878CqZcu201RwMzy+G/REp3ne6EXxJ4XkcTR5j/2ekzXwyvxxF/mWyXWaFbT4eLgbDy6KkkVk5QxRZxRRYLpliTJnbi79PMKyG803tvNtBhPGcRfHFIOMg8GRBVIR0QkzHUlpoSQItcMx70eYZO6en0gJvCY4aS6YSQqlZrNYrJAXzaToueyYEJZ+gUsmEY/uabOs0y/56d4+Lydau4elyQuMo6N8Um9pJKKohJpKioRoqxbkmr4lsIgn3nEwzacbAufdU1dQQqippHRSpOOhICJmOxdgk9T4W4zR7j1ZVLsbQqpyWlZQsg038HidquSLEkyCotgFroukKR1FUOkbxAumbIiYWStxSGSUeV2gZGlTgSQsWWSFEJ2McK5LBozmaF2TI4khFYgDgPQZqVSbVBEb3NRZKFojgJEWi8PLJpCrqRgqa2t3l07HdRAoygWYpDcJX0Bk+U/Bl/JpIknI88dmpJMVTcbXscXBDAkvF4pwbZpBMY1AQerHicklBYFM48gmalXgXA9vF7mQC382Qrl7fdX5FzGp/COl1+3q3vLuf42SvH+5Ws/ndy+vb43q9mY+bfiYTZhzL8y1QTHdKJccOm9X66UWvezGFAL28vnu4fX25ffq8PqycjSbt8/Fp7/TguHtxmMvlQ1OFFHJJM5hh5fMZZJxCuXHSbp+cIY4H3dFyXsy4fjF0ock9RQaFTRhg08aeZknBGqaqdYLR0Z2s1ssVcvXNZtY5n23evmxufv/y9vb288efXmzV9skiOZwX4m1lEaGg6HAOyGJIhPhmuVGXgR3YMk4q7mnEkmNwhmSFUeh70ZwRscD4uLkwA/6DtSGZAc4W89/r09nwe3d0tpBzSTmgGmYtHFKTxAjPplI8UqddUs1MtWCAsfGUoqRSis6KGXhgjgn3DQHpwNItW8L/MULSKcuCRkrYkqLqhi7kkiLsr1vym5lKoUImDauN/RpBb63WOKwfNg7Lej4wydSxqLtCwTFUWYkLNA0xkD8qZ0uVPCKfJ/3+vK4GLls4PqlkOfawXCml+PJBAG/LkBI19i5nSYXTXjGwJbkxPbIvemc2I6jNYQEvTyI+JSuKUvaypxmHp227aGUdhFjppD8d3zyd84aqw3opiuGSdcBhtVyrELlA+l7aAySUxVV/drOarTar9cP87ur2aTV/G7UvZ1eLUf9svrm6u7tbbW5uNsv1cr64v7xYz64up8v17HJzvZj3Lm8Xd0/Xm8ElUaxa4PNx3oWkZHZEztp9z6dK5yVbStC+nWRLWsFdDifO/sszrxRE2UvsceWD1miYKeumFPQ3LT6v65WrD/dDz26cTOGA7zO0k8sWyu3J5frLX7YEVQ98Lxvkm62T3uV8sb6/f7lb//7TTgIyF2OTzAG/f/cbsgSYkPg3O+/S57EUzdOwnPAIInS0SqpKpPUKx0xXRR4ihwWXcU4RkxzLFNqVQoOs7q6XwkKpXCoVSiUCC8SRIRkBVK4LlWpHBSONNGmQ8h3iWZqT15NIw6Ug4weDXIb3xUaLdLSKkU9JpDNLMUF6CVJbpJbPN/3yP/pv/o2//W+fDluDknu0PzxpF7IyZxUtVtCzufN92+bs3FG3jLcrH9SPlsOrzfX6+nK9Xi4vp1unCQBEaxpGpBIaLZjZzgD3tvTdTo+ekbLz2cnREak/HxMXjN+P2vtHcNeVjGUGgaEhaI4qf/lXf/7nX79+/e1vv/780+cvP5E+rM9fiPv9iBupuN09Pt9/erh/fXx8fr6+uVtv7tdg74qY3yuygb2rBRz5donUFFZzvriMirUTsjy3c3ZYr4WmhSMJNeX7XsbHkTTdMJeB5ciXG/sNyMPWOZkBbp22t6Xo7QJg0mdF+rLOTnqDHpn4JcjtkaVW21ng7WeN6tDbGfDoMECOkAngQW84u9hydNs7NZnO9ovlZr2SMwO/VMkUWufn9dn4Yt4Z4vERcy+2lnnYH5PZYRxjePlJfzD91nM+Iy1vZEHS5bA/7A7HVV63yKyEbqicogBgJLkxVOJ9Ms6ZGqxYinqfSu1JqsrIRS9wVB15T4b74OCA95SSrYAPIrdLwxo7oZam0qwBh7bH0JRUbNaaUC2uCmjBApgKz0G7p6jdpBv6JhISzTJ775LvGF1NWFbIKRRncYldmknCihqWAApJcqhRQuDKuiixsT3Ql2IY2fMsO9AVIiQlRifykBdoDkSKJ6lEIkVTyTSniWqSExDTpFmHZRhNUryQKAE+cH03qzC05umcoPEm3pajMQK4dIpTyXyUlk7wmmI6qaQGqooQvnQaljVOsbCvaVY2TQhgW/f9oFTMV/ExKDa+RycpTjQ8T6J1WyPXh3AlRmB5jZOFFJm3hipNULKUZulELJFOQzAwEuwRL0p2/bjiexYAz/N7KYbmVJmmZTGdItBiJHZvD85AtQOD4TTTFigto8EtcxwF/uJ4w3aTaUs/LJZznhcGjuMHruP9qk+6CHoX0FzX18ubh9ur9cPT0931fPPw8PBMliMtJvsBYJRxbM93YHNUMxu6QaVarB53e/3x7OpqdnkFJj6/PT+/3M6O9o97rf3z09Gw3z07atTzhawF94n8HBDjXYIFqJPVNEcQze0uRGS7P5vA7vn5wAYgfVkygElDtS0HQMyVQGBS1Tw+OWv3RtNh52Jx9/BwvxoP54vbT893n798JN7794+majmG5cFl46gqIJoCWyIJOAWGaUaNUrZN5kbwi6GpOjKVZrpkNjeyvjC0Icwvfidag3zcb+uRMjk8gMz/kkVIYTQX/HdzxTiADvlRKubcDN7d0pF5qQQ5/n5Z181s1bMVJp5gRSZFKpJ6rhymhcK+owH3pAGbYWUhKYpGVpMFOknDzGgSB0GbVmvw26VCuUCWImGrNb774MP6fvOwCn/tQlaIguIogYv8LlI8SyOdF48qeTzNIw0YHMfwsuoHYubgrJpXKKT+Cstm93OaqvCKKJDiaTZQ86eDSmjrUnHS9ru980CUpVK3bKmyxEEz4k1ixQKtJj1HZm34i0ymWK4f7J/3rh77siarAq+osu6apu+GtWqjeXTSQpJDUu4Oh9PFbLhYzS8XN/dXt8/zDTLp/KnXuVkvhpNpD273/ubumiw3WW3WV1erYedyPrpaXa1Wi6vlZrnoLm+vVjfLzryoOSYjhQ6yTQpSNcUEHZmV4nYYnsPni/Lujqdo1dHNQ6N49yzKeVWzqKRQPT6djMK67UiZ4X1LAIDLiw9PI8eon16+jd+eMpSXLRSK+53Lzee/OuBk2Ggn42drR8edyWR5vdm8PD78gx93yXJbKkUnd95FheeoAP3+/W/e/ZBs7yXSHCPxssaSmrOMYyoZejQLrAqaRZYAW6SVmQx0QxCl/VajXK9CUdbKeGPwt0CmMDI5AFg3EEm+bVpkEbtt6RCgOnkZ5CdQ/RInWiGzygJP3kZgWInUtBgmhRTLA70CrQL7Iun7B/mhBOiLl9Vl7R//l//O3/xXD/XDi6x3cjY56eQ8mTHLHiIuXx6ceB5n5A56VdeySvvlxmy4fLi7jUrQy9l8trhaRFOtpBMIjBhtt6hkSlzwFsCd7Xra02gKGOg9OW19247bR83OYbHqkTX2mhX6hcP5v/AXf/aVbADwj1++/Ehq0MQBfwPwM0zw88v9h4eHl3vknfu3FzAY8L0mtz8BmKB3RkrjZFL6crYgZWjS+9QZjDqH9Tri0w1c1cxZfrSakMx/BSEEdST7oWQhYvePTzv9aI1RxOB2VGzufmu0ap33yMR2lxSqyR+jfqztmqSofWu7CJhMgV9EXpgQd4D02f+2pne7BnM0utivNpu1UiH0CtVCWGuf7p/j2PVGEYCJ6xlGD4Oyia4mQqr7k/FwdElarkgH1jf+jqfDwfhiOCqJSGI2HIyksAzgGGdlQC0d30nEOQOASMcS7yg2hVCjpYLjWXK0BodjeWLTYmoJvkRkRHaXzmcMOzTg41hDMfQ4R+PxDRjgfEgmGEmaxMgXeQZO4n3cyfqGCnQLXGwn8Z5VuLib9yD1OY1L7TFkKlrUdDaWhnj1lDRnm4rFsam93QT0AEOLtmvYjiKT2pDAaxIL3PEpik7DvvOp6A6rCZyaJlMr0JREvkJnql7GYJMcY5I8rPOc5hkCtIKtcqKAgcjA/8LtKrKupPYoUTfNNKPyUZMWz0AU4N1Tidhuko6uu2TZuue4xWKpqosszSViHM2IEvyCkAaAQQdO5yChMYhg+hMUw1s63KoqY3SlEikMMIom3pXhqNphvlRxzYyGE8CnOFlWDVNXkYQVjFZbTTKgNyfZBY63vWoxLbNUKsnyFEXmrOMpCdbaIJeWIl0fWZg9OGAyd+n+ajCakgtXDc7bk7sHmJGru5en+/uH+9t7jIan+1sA+IBMkGZcANh1XHhTHJgCArl5ct65GE+v1term/vHx6eXt5f727vVuD/rn12cIcTO90ulai6XsUhyscLQ8+Fo67XGwSFZnnDS6bZPO6N+Zzgbw/D55EIdeA9ZNL8BmOCxUC6SdUsH4HW704dPvzga3kTLBNfX48njx+fnjx8/P73++IeNZtgmLK0hk9ldpCqVZCSOtzRCYKQ1y7ZMw0B4abJigMGSCv5mvnVfhd+ASvqrwu8IDmGCA3JljoBcpON7Z9YWxEHUiEUmgyEaMvlaAS/kIX/DuUBo0bAiesNUsPu+pUXKikkwoKRTKNiSVM3yPo4KsqvCMzpn0FQhwxgiSxpsDGRc0eT2CtmCX85UslsAQ7NEV+OACd6PliJ5fgkWmKwEhqTIIAIQfDydrWdLB9U83FVokT5wYplUJ6tZtfN6wUnCoDZUym5UEDekWYijWc7Pqv7RoBHYHm8PB+FR77ygqaLX2jdFhqwkTnKmvVM45TReSFs8o5ZOqqV6s9XttbqXtyPke0WUdE3SAA3fCYqI0f3WycHBaff8rDMYTmdwl0skksXTZPJhtd6sb1cPp62r5WIyW44uBov79S0AvN6sblfz5Wx4cXE5JlWO1dVyuVrf9buPs6vH1dnyTPZcRfNdhdqVWE4te+VmObAhqplCTJW0or7H8JRfQkw0rp9luYDzy6aE2kl7MgzqjiVkRnfHYlFTS1cf3yaO3mjPXicvL346zFZylYPO4ubjv9hgIgAHYa5+fNIZjSALbh4fH//wcQdjEP6XTe1GK5B23kc/3v/w7teJ9l48QUM6yworKRiR0CwyNkUjF3whDVQEhuAmNlVOs/pZs7VfI4sAapVodr9cLiNDh7kAUUoKU6QFmnTxI1QRqGQdkor0pcjKDAAm6x6jXk9JFWnsrAjck7IiWYUoSTzpAyVT8qRsrWoSXXlZXR/8k3/07/7NP7kvH1wE4fl4fjYoOQZtVkJFMorlyXkm4JTC/uDQN53yQaV+Ob562KzXl8vlfLm4mi3IxC8M8LcrTpFFrqTXd/yNwNtabGe7aBb8PT4hK39P2lE7NLHBZ63GRSUsW1qQtzTI6+rJ7/7qt7/9+Stpwfrlpy/bAvSnT2+vr1Ej9Kfnl4+vzy/P969IPLfQ/muotc3degn4Egh/B3BUeYYwINcviOZ/8UWW9Fx0Tw8a9UqxgESlK3YhhCS0/Xwl9MklT8gKEHLRk0KlUSEYhvyPeNvpRr73PAJwdOmNs2jRb7d7vjW8EYC738wwWYH0HcDRLC7uR0uiownhqAlrQPBJHPllu1ppNiqNnJep1oJs6+TkoD857w2/A7i/5fUwuooW+TEcRpdkIEd69H0RMPkBGdsfDQpI4BrchcUTu0uTpktN4ZKxWCLBA8AcvRv7gREpVdUZqYgsLZMmepmH/0rDxqlFU1dEmqPe09WsboYGWSFp6aae5OEU841KtYzg85GiDddAvImQ7hS1RwX5wEFuYTl6J7b7XpBTyVzFS6ocJfDJXRhYmhIUidpLSbrtyinW0DVXZpPYpySMIy1aDvy2RBZJyBzpj1YkMgXMpFNpBp4Q0iAl+Syr0SJZSUe6nEUF0W4Au2xSYpR8JuOZEqe6hgg9oUsCPgIFAws3KrC6YmhULMUh+aRYPBjilKyKZ8ghSSbi8NeiBgAj33u2nS9XK7A2LJ9M0CmaF/BcibHI1ag0XqIZnhPSnCImYYEEU2WTrKESbiaSNJOK0wxHljFbnbpgFzzPM02BkyUNtk7TDFWImfm8rvoWI5PLK4lkaa8ZOHySp2JxxZRI0TzO8tEqWMPGAM9CD8DQ+oAM+OE5BMAQuZez6Xl7OJ7dPKyfXmBLHp/uH14/PN/f3mwW08NMBOCoCQtq2csVC6VKVMrp9sej+c1mc/v48un16eX5DqNmOV+M+sPDTq9z3KgUM/l8COftejZ0vpvJkmsVNkmf7GHrvNNqtoa9znA+IT3w2UzU46XIpu/AsFrkulkRgKuN6NKV2LrDy3lvfLXe3D08Pj1c9pYfPr09PH/96cPnP1+ptkcWAWucqJJmGHBcJZ105OpXEX+h7gwjWvosRdf40y2PHIc/2Vlve12NIJshgCX6JJMhXc+QDQFp0sqT6UHCXOKDCYxJ9yq+uaEbWDlYW/IkfFK4DzadpjlLauZ5L8xkPVOm4hS5aIul8qpbL1BSyVJzGZdcyJKPi5ZAp7WiZCoCzwuibBgphGBMIm47l80VCH6rtXqDEBgArhEGH+9n7WJgkIws6L4YwnxLYpJL2w3SgVVAmik4hkTmB1lGMvKunG8387mk3aw0HUqtNSxEhqQYHFl3ntOt5rAVmj4rd0e5SrddNqAADs5snqyZY5JpO4jZh1w8Dckr+9lcrVSplfd70/Ph5WqI0YKgg9TWHLDLQ6orlhtHraOj026/OyDLGceXN4vRZDB9HbSvXmYPdzerh/bJbIoUfz3rdcbrW7B3fX2zuptPV/PF7HyE+Fmu57PNzWh9d328vF7d3Z0sR2SlTsY3dTGWohOiy/Asm2IxyndjcVEOehceFU8UxNr66nz1LCvQ+waT5KsAMOmCVtnM8OZIKgPAq8/PU99qnF0+D++fvFQ2W80dnA+v169/3eA0Y9uoX2+ddkdjsgz54fH5D6/v4snEXjxGJwmAd3a/O+D3APB5HKKZJ33JfLRMl6wakiRJJrPBSnQ93jii/AAAIABJREFULJEmVBQQh3wqnTmrtY6r5NJmtWqtRJQVCFxEYDk6kiKZ8yCXxiGb62AIGHrkgQnK5xjZetTFghdiBZ5iZIVc6pRLM9GMmChLFPaARD0BPsKf0+7urs/+i//03/vb//yudDzwS+eX49ak4bmsXs5pAr4NOpkML5aao3ZouqXDah00u11HAF5gDH+7FNZse6GL6bY5iMxaDrfLgKNepG4Eru30L5n4bZ2cfQfwSevs6LiUy+hWLlRwK+xP//i7r3/2Z7/9+ssvv8AAby9FGa1EIhfCevry8vLh5fn58fEFYv726WU5uJhdX0OwAcDLv+eAp7Oo9zmCcNR+RS4RAhZ2WvVytV4Og4wlqmExkyW2yXYCCMNSKQPBi+PrYYiXS5A+pXK1uX8UXWzj9BT64ay9XWmEbxdbq9vpfesx+w5gAlvykf+uBL3dOtsJ3f43AJPVUEMcsMl0sF9qNqu1nO+VmoWw2To/bI9gmPuDb8uAv/VfRV/YLrfXoCT+l/z81oKFYz4gAB4WMNIUDSmfAVUZRob0UjU+QVgnYsDy9F78HSukZNVk5ZLnWaqlK9vZCiqdiikFA6mCYtM7bCXU7ZyRSskCuRxgiotzamG/Ui7C/9iIPsMielJkWZZiklw2j78YMstQu8l3O4qa4irZ0MhwcQoAptIJmgZU0zFKNhxPTPEGGGMg0CkyLFhGtFxyQUyFXHKBI1dmlUnphidridJpCgROU2pG5FQAmKcQtORKHSJpzPF1npIEreQFNnyrAgBLpJ4kydG0GigJGWopMPtxSlQMNsaKjEQalbntHHAyen0WkNQ0YBJDqlCpVzSoCi6VpqE4FNO1RcbxNVmCh6EBbjHFqFIyyfAiATBnqmmWSkJGUKk9vJ1hylw5yzFhJVfKQN6p5MoPskQuwUHJfuiISi6EG4In56WU54lcbIdcCMmq+DDLSFS6peFsQEFbNpkWNz0yCxxmPC/j27/qDUYQXvOr5QDxN1qunj58hJG9Wb0+vb3dXD8838ynh3B7QcaJlubaru2ERQRx4+Ckc9EfTQfTJUbH9eb1w9vz4/16MbjoTwf96flpf3B2fFzz83kgCJtXzDluFkeCLGfdJ5eJPTs/rB70zk+743Ep5xFJAH1hazK5fgq58KXr+dlCVIGGAT7CuD5oHJyPr6+QoDc368eXzXT+/OXH18fPnz9++t214vqkukwWQxKvIIuGQhrADfubqcCLklVIcL7ALzbvW4sVueRGZH99b9tmBepmCHsJhjNkzS/gHBD6brufv7VIh2Cy6xBznAsymkeuoJQnl8vGW4gMw6b3LFfM5VkLitzCKU2mNJaTRVYyC2WbL1QkmVwRxdBFKqnBMLNeQTcgxRCinB6TpZwej64CFubyZdIHXQN8QeBGg9R4AeDDslkMbVJk4hWf9hzNEKQ4T6uNQqkIAv9/ZL1Zj2RptiWUXZkZ7m7jmed5sGPnHJtncxvcbZ7Nzd189vCYIzMrK4eqvvfWpS8SQkjNC4inFi8tJIQEqCWEoCWekEC8gBpaQkggfgLPvNC3eWLvYx5Vt2lThkekR7gN53zfXmvtb++1CwDAhkRT+BBFP8M6p80gTyjNci1DC8WGI4F2ZGSaEDQvMPXacpQzLZ7vLEvZ4TnAs6BUzn0FkzUilRIVSuuWSSaZ/CZOG5kwX2/XW2fD0QIBWNJNgREVWTUtI+OFpUK12YRb2z7tj8eL1Wy+Xs2vtvPVfP1uPDu7ubsB7Xt3Nrq9WG8uLnbz8+Hq4ebyBuLs5e1ufXVxfTOa3FxudjeX2/318urmZjrYX25edy5XVSurm1lbBOzhT2iKhL10wssxgifT8bTeWvdUiljnkw+X/esnXilqmkXGmVL3bDFxCyAE/MVtEwBYKV1/vp5lzGp39Tx6eMoQ6OjW6k72N2//pspqOixB38uWQQHPlrP1w+vnNx//+OEVEmqgVKnYwYYDa6EBgb/55jfxc/grggdE5DHZgvRJFNE+A+k4gCKoU1FGZs9F5YBMs1NvtiuHNGg9hzhQwDR04GoQdGBLul7GRgf0aMHinolqFzTY6mue1xGA4aGyeOoLL0lzFMgUEiuxaGxNAmaJ5xcYGuCGiNTi7W703/3Tf/T//lfXxf7IKXdn/fq8bZmckg8URipmz4aBx3H5ymSY1eygmS+td4tbkJxrzD9strstHrVuVvBfZIm4jBKmAMN/AuAoBTv4cgbcjfyvul8y0J1uq3/mFwuqDgJYdPJWqff+L3/45edf/jUAhgcaYH3AFqTnN0/A/58e7t8+taf7e1gu2Id0dXkFkvwFgNeYhF6vXxLRq4MsHw/69WajFAZBYGUs2czngIJZ2Ywhw91Qs7nAz0Wk2QOamImsBUrlUrUFfGEI4IsIHHUg4YeZjAZ/euDfDM7w/PdfB+DIDStqSpocbKARgeHybJaogBez1aaXr7RqlTCwvVoVlHe33zqfDdBI7JCBnn9pA46ozXKNaf4l/NwiagBeHpqQEICni/F8XlRMDb1J1TQF2JagGJI9AHA8ie2pNBDQVzQdE1SN5Auua6oAwGgbTtJkOnks5FB4UADTbCGrWdiGBArQVOUkfcyq+VY5jxX5mILW0e4SsIqlUkSMyPg2vKSERbzp35woCiEWMznfJ4H6puI0AW9DVAQyQUuy7rAp3jBURSXjyXQiQX4BYAcUENwETmLRq5WKuqLSWE2VTKHjhaWAruYENi3AFokaB7CeBBuYBaNgZEyFpSRH4zjR1rEMGjs7CAKtq0AVi+k4KQsOG+MkToia/lgimUzAI5VOEcwBgFUFIjdQs7LEUsApyGSCEiTdMsiUgel1WWBJ9LMiSZlPxAiaNRQmxWBFGfCEJAB5AriIpHCkmyKLvSaIR09UTdBYWAgGhEHKZwFVVZPnWPTvYHhGtFS4N6yu8Og4xmFAkDlGSpMcR4lAjHTDfAFgF37ZX01wASw3uy0S3d3FfHfz9PbN4+3+Zv/m/f7i/nG/Wbb9ALAIUzq2qbu6BkhVqDRa3bMBoPd4ttldbHfX+3ffvXu4v7tZdDur2fn68nS2Hp22ygiqWJBoO6CEHT8PEq5Rb6BRw/lgdNbujGbD8Wyaz/lAB7KgeS1QwPjvddV0XDfI5bAGCwD4FPC6324BAK+Xu1tk6o9P9zfPn7//9f3j3dvPv96KlqUCFeSAJkYm5GhCCXjrGFE8M03sYbZMWIca1l/p9p9bfg8Z5TBKN7twbRB2/WwEw/jH6Aw4qtNyXoqwsBX4yx9A1Gc8x7PNMJfzAbdt21Q4pJ2kbEphyAVWEOoMQyVAr5AELwu6UbL1skNjuxT6HMFKozg6XbYtmSJZWGKqLAtakJQzmVKm4OfhAdGiXDrYYVXK1UYNLkdNK+QyEKBB6bis6coqJ6WAGAL45qs1EFahY8pYNEjTIueErF5t5/K8AIE/x3FeLZAxyyQDzVSAbiqF0bxomqpQm7ez58OODRou7BRtKequgSUkCGcPF7edAgsE2i5CWOkMJsPBdHMzkRTVEigeK9xMDWhKISwDRWi1G024XVMg7+vNcn+5Ws4WN2f7/tlvr7f3+8tq7+5yOd8ud5vx2ejmBpbO9c1u/3C5u7jcr2bL/f7i+v5qtbu93C8fe8uby3dnt+vzjBM5oeKBU5yLAcOxYinl6ChxRBynJaNcUcpu9zVVuO1fPfBqQdEyRIKt9M6WU78IqjRcvW7wRUWtXH/cjB2tfLp+c/76PkvBomxUyr3d3Ye/LgN/R1rlZSud7tl8O9s8v39++/mvPrxKorU7Wh0cffvN119jDRZK4K+/+U3sDBUwVrqg6QsgIcdjaTIXtQTzkfUe/J+IfV0yLEil3zytn9bK5Xq9Wm0UMP8MX8LQMzXNDSO6BwBsYwYaHhGXiyoYgE1uBCES1QD2EFbh2VhQEgLgO7xE5ATCwyJCtz8WBbAEt0UhqwDA/8N/+R/+y/9ikz/v2sXOpF2b9xxTkIJApcVi2JliZ3q2dD7wNdOBt7W6mtxc3+7XV3sAYNjUAMIQFb4A8Gr55zT0l0poRGA0k4qGFgAAYyYaa7AiR6xmr28V8rwTepIahG598xe//Pbv/+5FAX//3fcvVljv3n+I7KCfH1+/ef3m3fPrN09P90/v9v37d7fXD7c77I3cwdr4AsCHAqwNpsZRC2P30Xh4dtqoVEoAslhbCiQKZZtdKGZNJ3fo/7csAGA/DFw72rnZXKleRkvcVq/TO/9THdYwmtoQNR596Q8eDKMCrJcz4L+Tgj58/tFoGpVUTaOmpMgx+0sKenNeBAlcKeZRApeCsH7WaE/Hs4Np5SzSywfrjulLzxFI3/UqAuNVJOwjBF6uZpP5aLYoKViBBfSKZkiBxTojTpHZFE4LYCG+0+l06luKPhF1Jc3mQQGD9FAErG0CIEkci7koBc0SR2QxI6kZieCYhGoqUpo6FvVcqxTmI4c/Q4sKlySOxtPLoyTsDx3+l6YAxn+TVoS05oMo1lIU4FicSZ+gz59IplgAYBuoumEogpCKJVKJNBYoAAAbFk6sUSSJF1keNwR8G1AUvmCCl4SfV1ghgTUMkdM55qIFrP8HJGWsHMI3S6sZLMsGjOUIhEVUwEB2VSC9RJzW2Sx7wolRx4sA/yIF8BtPpIlkikIAhteWIYDjoY+IjtMJMhEnOEHWZCoCYFA8PLydJHxARUzESIbVVS7NqAownFQKNHAqRaZJCQcGCMVxB3C8YDEAt5hOB6IiqbYgG77FcSSLqS8OtqWqGb6vi4HNxNO8Ykb2hgxBJ5I8T4qOBrISTS8y+AvT0F+h8Qq6Qd9uYRlc3Oxni90DWkBfbF5/ut3dYPhsB8gfsTsXQMNFoeD6NfR87Q2wD2kN++Pq9ur5M0Dh3c36tD4enM42/fFs3KmCtEX81U0sb4HXDip5EAD1zsGFYwpsczZbLidhPgQUyxiWZ0qiigBsqCbAXpgL8cSm0cLTpfFsMpptVrPZFr2nb67vnp7fff7u1x/f3bz5/POtZOqyKqDnlYhKJLJ2tDQZtmLU/2uCfIcFJ6vA8TR4O3jg62aiQ2DsKXo5BXbcg8bFamj4poc9SFgFDfo49KN8tfvnamishM7Abvcc33N1kM9YuOWhVQlLMUI8aYS806ZVv+ijN1E6BTGchfsj+YHm5U14Eya61YiULDBkXLfQqQaUsqjaBi9YGqG6uWw+CPO5HNL14ksWulpp1pvNdkvzQ08HaKEUS9IDjNIULZFBJZur4KbPhabKEWngihKr5yUl3y2HCpWrlMsiZ5SKGq/oLKgkAAg7K7mdZTmjumI4HWVPB4MMoIjbgu9gfT6LXDMWzt+9vh0SXzOy6Llhud7HBoztzRmvqTqHbtsKYKPtZsMs8IVSvVZpgHYYQWgBrbK/3sxmi9XZfn76+hFDarF1swWlMLu8mA97Swix+9u7i93D1Xa33l4vx5fXu/3d9cXl3dV+9bAa7J9fDx62g6KZsXnGtMhjqtLEUx+VSigMVkclaBHrj4an4ut6bDBf3olyqBoZIslXu/3FNCyphpBZvGvwBVmt7N/uZ5ZUON286zxfZmm96FXz5cHF7ac/AgCrsAT9rF/tdntzkFxv3j48ffjl3SukwWmcyHAUQe/fUcD9GACwRJKwHSFCYDcS+pKQVFTODuAIUSeNpVm8rPAk7Xbq3UarWSnXGwDAhwR0qexnLN3MBLnoXAMWnG3jQUwEwOg7B6tXxRR0BMCYU+QlGSQuD9GEThMQcKIuYJYTkAbAb5EBK6xzmZNv7s7/p//8H/+LfzLNDapmrj1oNmdnviPwXs5khUK+Pq95Iu8Uu4McbJBqszK/Gt/ur/6cggb4BaCLirAQEA79qYuoDOtLChYB+FCEhannKPn8RQG32+2aH7hiNgcCOMgW+5/++NPv/oAV0L9FBAYI/vzxw/sPH6MKLPjy+gnl79vnxzfPr++fn6e7N0+Xt6/vLvfXe/Sh/BMAAzHYHNywIl2OhU3n3VatXIqGTHkWbltTkg0n6zu6FVbQ5tMwdAXnAuB2D6IxZ5mwlMdxY5VG8/SQZY4mJUVJ5/5ggMMaUPRim1FkAH3+rxdhfXnAG8CGpNnBCmuBXwF9t+v56LRSqaHJI7bBZN1ap9fqLiLjrEP2GZ8CK7gmBxkchWGU9Afhe5DAK5xBtQCUL4gaaFEFKydpjgF8I3hFZIjE0XGSB6TlaZ78lmITgqKmmDzGXDVKmQDgkZiCLgA0sgRDvEqVbE52pSTJJXRHBV0WQx+0QlCITtB0+KmDciYYEgDECYOMLgN0Ucnkt5xMp9EKQRPiLJU8ibOpYyxHFtIJBpOroCF1TQOYxxQwBZKSFvHAEmSRoaAg4iWBYCWs4qdBn4BUTZPpeAo4JEoHCCJ4Yh25WaimpbHwHEaYNW2FZVQX4FCgSZZJ01wSQFgQWE5UeEWj45TOeFRCpEkeWwBByABoJuJIEFK0qAJ50FUZgnulUi7AfiSJeBrdAVVgBgJpOKoMLFkkKT6ZZkhNTsYgIGoAwLQCuA8YjlCeSoEgNlRNLfSaYS7v8qrqGiziCDAV3dCBCFmS4JcdB4+paZa0JbmoJ3RfTMYZE0uACBxXBaKf5wglawKoYHLVxRNgpItfoffocrnerkaT1RqgDeLgzdXm8unh8vXHm6uHu91y0c7lAthLJsKoZutOIWe61Waz2eqOlxsgypewX68e0Ubu/mq7OmsDewQlMwKZ1IQ1HmYMiQeq4KFedAv5cr1Wa2GZJEbo89PO+WI1zgLOwFtSdAfYkm6boANUy/P8XD6M2pCabSDV5xM0kYlmdg1nl0+7i/u3H7/77sPvf3l+/+mHPaAtuj5rItq/gIjkQZOZti4j/tq248i6pcHqVeGfSSDWDjVUaL11ELaRKW/GDUrO4TzYBdEfdfw6Frp0BFEddDZqET5koQG4UTkH2UzOzto4sgHAOgx9TwMGoYt0mkzRrqPkHM3M5S1J4hIET8VpYONSULCCEl4RW8HRObTCJKWEzZEcTzFIymxWpYsxMmuW3KJfyGMncBkLoUEA12qVVr0JhEQDQqOKciQ/pQAWAixCOeVU7LBUAwAuVkDRkmmCYWVWLSqK32sERsotlxsiJ+erJqdrpCCCXhLtnGw2V41QzgrOeJmt94YB7FunWcroOLCBoVKqSPuZ5c1+pL/i5Jzu1bvt3mi4mV9ct2nTkDlWVkQZQpyVCYv5GpZBN2utQxHWcr2YbS4309VuM1leTdpP9+vdRXP8tJ2v1gDAq+np+d1uf313f3FxvVvvV6vH9WS9u7reXT3erq+v7lfPZ9N3u/7dZb8ZZkw+keYl8qhYt4jkq2ONIU/icS6BOSWaMho9pb6VpIvhnSx4uu0QSbHa6c4mfkE1WH2MACwpld3T2wtbyHUv3teeVhlargJj6G13V5/+uszpAMAgQr3Kaas9BfR5eLh+/PDz2yMSt3OSIbAR+CiGAPzq1dERQDBWQSdJhWQETiSxR5dHF0p0Zhbw2ioSHtoCIxREVcFBDK16p15tV8v1Zq1aR/xFTzjfBv2bw9FILmZWPAvnEka1HpFbuyHj2K41jlsTI9dtTgFihFqX5ihaRFdcFMGciLMIOV6C6BTlgHg1uX7b+1/+k//4//knw/y4aAbVbr01PQszPJspuIKYz5VmjYwkGqXOsGBbRq2RH+7Gj3fX1yuAOAgD693+crPc7FZRY8wiEncH+YsZ2OH5FwBGf8co89zr49HDn1LQzdNGWHNVEL+KHPpue/4P/v7vfvfzjz//hAAMv7777ruP7999+IRuWG/fvHv/5s27t4+Pz493GEbePHY3N3cPj7v1Q3QG/NKFhAB8uY2k7yZS5ospvoN+q1ouuxihLDTNNXhOs6xyaIqSYSpGUCrk8BgMbTnsbB4gGKfDwMbOlmtYX9HogH4/H764QvdBA48GPXTNGo0GB+WLADz4/7chHcYxTFHTjlEGR+73qGgjmgKhdDJfdqu1aqtY8K1MLptpt6edyhonNo0jBRwVX4FYnqEHJRphgfpdoRslOlwvDkXe6MW9mC9H00koYgWWJvLJyGEJ9KkAcoNKvDpJi1EmVWdf0UKK4wERihk0sAIdKcIyQUvFhFI0ZZ4heSZGVRxez+mJhEI4vi6BcDbNbC3vl3BmDvA+S1GEyG48mebSlANAgbP4ONDarxSZIIJcBgJokiGpWEIgjlPAWvlEDCi4Y1K0hsPoBGAFiSRBUTQtOS5OjlABgAWGh/dLcBrsEjqdwPbjFEUljuI03CySphkaOzNAmkocGuebXIKOa2FB0yX4G1skKAEwRKB59ogkKBbikgxxTKOOU5KYpQmVSGMPPktFGehYDAA4QbKShg4gmmS7HgBwTuQ4hoilkpEC1jWBUGw8jGRUmlGoFJuWxTgoeqxoS1OKBlcrTWC1WCpNiKbK0EIZuFw5y6e8UtVKoXe0wIiWKQIV8AqNYb+clQC8GVJiGEWKxWQ7dqLlciYB21I3RbgcBEsn5ayecW3T8X03Y6EBrW5+NcMBHuvNercBLrbYXu2vsFh1t3rz/sNbUCwXt+tlE7RN1kaLWqzNVFTHzxWrrU67VutNMAG93t7s189P90/v39zsV4sZsGJYkpuLWb9ZLYRhgDk23YqEZVAuBLlaq3V6ft5FGTyeLseDwXmYCwIHJKqqWoqomrpu4Uhgy87kS4V8rlBtAk53zqcj2Bbz9fp6NdoMl7ub+9cfP324/O7Xn99999Maww4evkHskSDekZJiwAc0HeOQgbaw/FkAYgzXww6KgRXJX3i8GGxkTViAAcjd7CEDjYBru2jREflu+AcBjCOToqNgxNsXu0oslYanMh3Q60BU7AyjmIHB8UwyTimqWM5opp/LWgIBUo0hYMXwagBXJaScQLPRszkaSMkweQtCK0gcllNtgfN1UvUrlpvFSVRBEUs3gU+DCm6Vmu3y6aml5womelNgOULGVmSWjVEpsRFmS2e1nFupOjpPEiRNUoLlZbhCrV6z0nql1PBIvdTQZV6TcY4sT5tABqubtq+5snp+4RTHnZquKOZpzbNBuUF4hx0St4PT2/uuFuMUNxPmW73edDGZ7a57vKGoAi+rlhu5HQBbQoOWXg+iMYTo2Xiy2uzmV4vhxe7ydHe7mKxBAV91TvfTJYQdVFnz9uL+9vr6bnm92YyudtO7q11/uru43K2294DJy/3FcP14fnU1rvtZ1/gaNjcT84oCRSRSukBQyQQRJxIkp6RNvcQpw2Gyvd5nT0oZ2mDiXK032Mz8EhCv3OpDS6pIRun++XZhu5Wz+evB9aVLWEGm2Risn64//LGkWbIdhqabb5ye9sagRu5fP+zv//D56ISKJxMkwSS++fb4VZR+BgV8fHT0TWx0lDwCWQH3T+ZxXAvcO4BfhZMZWGpYjo8mbKrMMAIaNfcasPCb9W6lVOg2mqVqtYytwKame2EQFAIv6oELLMfBbI2F08CwZ46XTUWdipaoChAWsJaUwwwcx1GoelFQSJhxYeg0JWscQcoieo8rKk92bqb/6z/+z/72PxrWznJ6tdo9bU5GoSkJdtFjBb9S3NSyCulU64MqhKJavdLfLa6vrm+213u4/vtDz8/FYb73YvGnoqCD3+JsMppOI2g6KOBu97x7ir3ArdahGKvTHtb9wFDyFVmzM26j8fOvf/jDrz/97scf4BFp4E+fv/v48dO7Tx+iMug379AD6/nN2/s3z3f3z3fLm8fHG5wVfXu9h5i0Q5aPTUfr7WEi8Ga9Xc9Ahw4G7XqjXszlC6IOKq7gYmsINlB4pqpZ2FENNL5UhPAiKrIGe9j1whxWRudhx+YqtRL8cPG02x2Pz89G48H5GOcIY34OzaJB33cP0wdHOAAZZPLwBXqj/PN4NBjND4ORptP5BB2hQdCiF9Z6jc6Yq7NiGVs4gOIWChAy+8PCEOdFrJej0fLgXTlfREOUsLptuQTwXUd1WFjfHQ2YmK/Q/2QKT1qJagsUHiRWnEq/SlAEq/FE6hgQhXY9DTY0k2KIYwBBUsllFQXN11B40gxFnpykA1fDk4rUMV0IAZuFNKg+I2OK8XRK1v1ysVSIOmMwxAPKo4MWTng7Us0MVtszNMD+K1lPCr7vVDxg9mQSjTpIEI8GmyJhmTtqitdg5Wli6jiJVhsMK0Yj3VUAQBFLCFmgRZooYrCjGRKYK52Ox9M0o4kEK/JAIAEhBVbiFVBfCmx0UsEp8qaQliGU0VF7KUsAfBIxAtY/yammQiUpQValBKcSSE5ZiiZTsVgMwJel8YNJoqjL2dApNwu1PNbbkCl4zRQjKprBEKaPjYLYKQIoS5OqlDxJ0ZznUElBlVPpdCwBTCFNwOaCwJwSsoZWm2dkQaBEBX5GYwlWNUSGN6n2sArwLgYFCJcpXmQTPPEq0+aOWJ1OoykeoDzBpm0pAXJf9ExTtQJbzztW1pUF5av58jBOBPnuApTw9e3dw8Pd9dXl/ftPzzc3TxezeduD6IetEXg25dk2cMh8qds9BRgFmrfe7q5vrq9un57fvHmAUDqPpoMsQOMsRr1GGYtMcLRCBoAYYgzQ/lK91Wx1AICjPM9qPp+eZ+EvkbbBjpFFDYexaRooTwDvoIqjpBqtZr8zmIGoXlxdrHe7zXYyvbi5vXv++Hn/+NNPv/30042k4BQtHG4kiXgCp2to5odrALchKDVVoEXH5lndg4/gHlDTixLx+PDdqBrr5Qz4gKoZbEeCb9nRFInM30lV//nhey8AHHiRO3TZsTmInoojo28TKVum57tu6FuKzGAHdzotyiKE3EJoaY4HK9JQ+MisLJXJSppCigDFkinQWo6J5dCkIYTNkS8dHKExA10r1Jq1TienBQVTZ/H+WjLatIsCCRS3Coq5Vijmyn7GlGgs+qdFeAdCWOuUbForFZoFSsg1bAVb72j0ZtU9Vyyu+zkta3CNfdGb9GuHvMXgAAAgAElEQVSGKCq106zB0BIn0wyjEUZQ3t2cSke0YAEjaEJ0Bfa/ueqLhgwhQZR125JBdQCrcYvVRqNW75wPBrPlZLxc7+abzWp/tWou95v54uLu8np4fj2Duz6Zb7ab+Vl/A6Lrerff7iH6LK+XV7Ppfgai5+Lmcvm4u3gYLe+GV+tRr+Ob/BFFpakTAWg2MHhdSCdZ5piM6qBYjshx6caVRS23a9PRFJtL8JXO+XoaFg2FyS4+NIWSrBXv7+9WGbc6WDwO768zacUrVkrtwf76819XRUUBhqX6YbnV7Y8gEN4+Ptw8/eX7V3EmmYRdyyZfvTp+9e3LLAb48nVsfIIjASHWsBD/2CgVzPOsyMoc8HMIlzheQZCwKh/Wpt5r1RudZrNXq7crLWwpK5dKwMwM2wM6lvM9TElhLaBj4+xXdHCyDJzLaan6AuS0zKsqjk97AWCa5KQIeCEGQbjkRBpnb6VJ6TBkRTLS1u38n/3j//Rf/KNebRAatVq33ZhM8rYi6PmsKDjl4qrtG5SVr5zXDUer1ovd3Wx3tb/d7q8uLgGCowPX7UUECDiI4QAThxLe+XQyAhmMA+9fEBjHL0QjCPH4F/4Aa6QcAqcruIwd+Lnq6I9/8etPP/38yy+/+/HH3/7w/ffffffh0+cPHz6+/Ywa+MP792/fRgD85u7p6e7+6XZ9fX9/vb+9fZnEcLHdoQ3WDgH4YIN1NZvvt/3esl2vNesFjB5e1vZ9UVbNKJrALscCfbi8QIwLxaKLfZCwMHTT9UFNWJkg5xmGX80Fnl+q1U+7kVX0IBqRdDYc9PE4eDQ67w2iMUpRwfcIPvFhFDCg8GSEVwBI5vhQAA1fFvPpbPkFgDer6aQVlsuwZXMmyPBiWDoFZjKbTWar5XS2enGOnk9fAHgeAfBqEeEvit/IkAObhJdTkMcVUBcCwAXFsgRNxkG5ssCwyXgilmAyGUUHgEuzdJzVzBQTZiycJq1hKSoODDiJU75l4ni0VFzM+bruKCTJJQ1X50+SpKL5FXh30RXDEXQqD9pRohiaJmLoXSQCmZTTqVRM11JKmLXyBuhfUBfYEUQzgkInQVIqFpoLKiC0uNRJEht9KUbAEWlWBkBZ1XRcwKrEsjj3LZqjm0il4nGQ8ZwuYSm1bAg4P1tQBDnqZUmlGDPwHFsTGdUAMov1EBILah7QHX6cx2dH4aoCK41xKoV9wNiSh4fTSYKhSZaQZEECYuBknXw1XymA4MDEAUFQ6FGnswRcBkWQIjdXkuYpiQO4pXnLIBK8ikVYqSSRjBEnaYK3NDopZWEBWSwPkYYkU1QKODX2YHI215sUdJqKcYYhkhTOBAC2TOcDg0kkCIaLiVyMMoQjKmsmU2lSF2TAEx+UnG17rirrX02R2x5q+jewwtHX+eHuBjNRT5/eXt+8uV6tOkGIXXVRO49uG6YHUqfahQ13PkL9DJh9tbu6eXx6fg3hdQVLEsAXGd583K0C9fMdw7CwRQUAzCsUD11FrTaA8NlgNFmutquh5wewLSJRLgq6YwB7M9CXLxvk8qVatVQo17rd0Xw0XFxcQDy/vN7u9g+vn15//t3Pd+vf/viHD9/fM9h8geXPaABDC4C+URLPsBGAbaB1Mm5HjdVsTPW59gtuZtEQ7O+UY0UADH+RfXGCPshedMp6af/9V/E3qg+PfiJy5XA8v+CyNkh+x9ZFhkzDG/GAa4PmzjhSKkHhMHWgRIZbCmuiFNqwZiVYN5g8YUJL0mjsZhN1WP+BfqRkQz/M5sslTFVCtC7XalX4HX1J2g3NKzkaKC2WNyXT0ZHKAfGr5IKwViqEpULWllkaA7SouqFk1aYFX5LzQa3Okk4jUBkBGALaCMt+IHmzUdGwdSa3retnZzVLEOTyoGCihbgBGlrnhDAz35/yx4zs2n5YawMAL2brqzMFZ8BzEtb+otUnNlYXQaeXyo1ef7C6gH9zMVturxaTi119srtcTxf7i+vz/uVyNdmMRuvtajHpjy5eb3aXl1NM3m0vlpcXg9nFE3rwP93e3u92QA2Ht9v5qJe1+UQicQI4w8vMccIEORCnhAR9AsQ2ITF63khxszlZ2V90BcdQuCRfrJ/Ohn5O07js7H2TKWtq6fHq7sLP1Cbrh8XDQiYNJ8Qc5Pbq3e9avGjmXMso5Mung9FsDa97d3/79BdvX6U4nIbEM3Hs/n1B38gU62RwRKaTDIWcCeQ4i9jIo3yQsC9JxHIEHs0FYF1yNBv2Oo36WaPaOC2gmUqzUSmXiwGQFi8b5vMBTkiCIBiNZnDhu9iTh4fBABmKvuR4VeA0RdSxThSHLiEAiyyNI9E4Ge05MKGBrpQSH1VAiBlWm6//t//gv/7bf7/dnIROo9Zt1EeTigOSOgwUXisVR33fpfSgOuw4rlFu5k4vZ6vr/d326hK9oC8PALyNTiSxFmgeFQxNohoi+HKApOHBxBE18CnibqeLarjfP631y8WiIblFk4GtUWp/+Ju//PnHn3755Wc8BP4B8PczAPDHjwDAnz/hWfCHd2/fPD+/fn5+gMfjIxZf3QAbQKfwQ/45OgS+vFi/1GBtgQQMh+N+rVUtwAbTTcfAqmdFVa1ctRKYKuw/NLsHpmkHoHo9z8WWIHQHVgzM8sN193BYQ8YEQVEAdtvudQF1O+jPMRiPzsbRzMHB2QiBGO0jB8PJdAQQHR0AjwaRHfZ4PIvkLx7oQiBFcH0B4MVmOx83i3U8PcJ8W6mYzdVq4/p5VIL1ZXADAvDL74vDdZ4fDn8PTc7o9YUKeD5dlMVoyAdOoyTS2M2a5AyOoBLxk6QQ+ECAEYDZFKfYaapg2IYiKdgILLAkRcdTfKCpDJFKJ2NCkFE0TyfTImlldDGWohU1CwCMZbYuOiZh8SBF0TjoJ3kCcdsESinwcZDahpgyciAmZAIoJzpPxxIUw0tkkuABgKWUAEtV1ZlkDMA6hZgG6sfE8a+Gohg65smxLCI6PkHHZiKVSFKwXTSBgBeQTFESYEtLwFltV2NSCcbJA1FSaEoDEgufBp6BIQnyhMDhhbDIdVMiUxxABRPjFKxDEQDYQeImMQFOEjShmBrAiCwB9GDRo0QRoEOTyUSakVQDXYVgNSgaB5sIYhxNc5EqFwCAU7yikCydiER+LEVKrkIQtYriaDSgiMym4wREIErkIPIwrntVAuDnSR40t0Di6L1sVlBzdlYB3pNl0qCvOZmJM6CA0/CGBRkroC3HAlmHR+RfjXDuxnq7Qfu0C2y42+MQMFj3u+vnd483N4/bVRvCgottEYC/mqEaXpgvN0/bXSCGs81qgwVR+/3rx9uHN4+wQ7BuHhfTdL6adavFfC4b5dSwzxcEYwmLsBrtzmkTABhWOvyr3Wbk+b6HWW4L+7axVQo7qHXDzoBSLGAHTqXSbp9PUFXNV5eL9cX0+vHx/u7p8w/fPS+/++HXz28uKRzAigUocCcYTgJkM3C0DBazYO2YpEgqwC9v4fk3TqCJlKsXOeXgsa+bdYMwExSi6rRo4FHUboSlMVHj75cZhdHDdf4MxO4LADtY0+aYeiFUrTDIGLYGC45KJhXFCT3VKuVdDW4dCXKFkgxVD4KWydrZDK5vHHNJEEdOUVZVClvSVQUYXlY98sp4ypx/qcOK+ldKcDVqp43qqeFUPYMTZQYopOLoQOW4JJPO5TJBrVYIy9WsKWHZHwGAb4ayXJrmCjKXy1XaUtqsFw0GnepwpwleIOrn06IL3C07PdVPh+0AtkJhUHJAt8HSSVO6nA7N2d2Aj7GqZ3h+pdkejpZzVMAaUFg26nuxollXRZxG2MbZie3ubAvk7GK6WV7M+tt9c7K92Mymy6ub0zbEz8lmOJjjoJfpcPz6ZrNYb+eri918vF3fLYcXs9H03WazK4yeL/ebRff+ejvoFH0lkTg+ZjiZJ1IpSmNliQAwTh0zsZM0r5lAxlOlx3x6s5gEhi4JaT5frg+7Xqhbkj9732BqplJ5vb2/Cp3K9OJx+jhlCMf1K43+4Obh3YcmENc82o/mq+3+ZL7YrPe393ePv755hU5yqaRAn3z77Tdfv4oKsdCN49tv4sNvYLszgIK0JNDRQECOB52CneiYUOOwDBWtOdC1WWz0z5qVAVyaYVDolGBNA0LlPcPB+qtCwS/kfXx1nA7sYUumHc3tNk1Yt5K+xGEqcKNFEyeHRwAMi5xDBw4O7QMZHo9eomEQ6MiFXiApifYW//zf/W/+9t+ptWee06h2643JtOlAhA1CjZPKxe7Qy1KKXx/1PUcvdIqnV4v57fUtFmHtL7aoOl/6gJcHUybMQM9wGsN0hkXQUWXSoH/+RQK/dCHhUIZev9Ps5ot5Sc2Fuuy7QXH1D/7iD7/8/MvP6IQVlWB9/93Hz99/+vz5/YePnz6iGda7L4MYHh9ePz+iDcr1FVZAIxXDUUigDQCAd9sIjPGdTUfTSa/ZAACO5qR4pmI6Ap8Ji41mEbgjTmbULU3gSAAHFe2xCoAyQPOBM2qgigPHAC7pGo5qwXcxzDTb3bOz3uhQcXV+aHQenKPnVzR4EWD4IPrx7Hc0jEZCwS8E4ENlMw4ZnC1nX5Tsdr0cdHqVQqVUrmTNoBCExcp583Qyx2T1dDidvTiLvXiMvVzixd/pBo608HyKQybmJQFbWrEVXCRSsWOSSgsWlyLjx/GUkAtNuK10kmEJTjIovioZgE5ROISPTzMJQgwVCdk2cUwFrqJmNABgygEAThCkpGQrsBIx0BmKZiqGIaO1C0URsSNQwKZmyjyXTB+lFTLlhHZQQACm468iZc3yOHSVlzRHSApYpq3SqVgyctrgsN9EV2XZsAzNwDshY4vmoX4BAZhIw/OQjMImKRZEByokgYbVqzquypIx2s5hujZF6JYKShUUlcQQJBUD0AcAFjjFkAhgIZpOxoB9ijgNCUR7kkAFDPSBIVQ8dgT2nSkWm6etisJSJAP6OJ6i4Z05MugkNIbg0CwBgJ1hUnECwqFtkmlekkDmxo+TAMBJkpRtidanBdCu+RA+qWuylMTEeQ0dlmitWQbeaygyF0/KMh4+8zaXsH3Z0gWrGpAKLsX4MUOp2AEjijhsJeMDutkZB7XhV2O0RAO2dfCd26wBS29ub/eRv9Xj88P+ZjGtO76fwfQz4K/q2tgcVGo022fjEY4jxFa9h4fb56fb+zdPN/tDJT2upc1uddZq5EIEYOx9ckEgIQCjoTHs1R5WPQwGExAbExxQjrJU10wAYCzGw+jjZiAelYsFIKedZr0OewOo6GKzX8zn3cU16JP7t8Ci9x9/+OHn1wvAAI7hFIi8IMmALsFasnHEdBTIdFnQQAyrrBKAqg7Qjto7dBllg5fJv1knGzjZ/J8AOBPJ32yQOTQg+S/we6jcAgCOhhJGAwoPCAzyBVQLPOBf5j3Y5yYscAY2SkoMiq5mBvCjOkOgPRVAh2S4xbIi57I6+gbCMhQokMC+ooJ+AvkC4EgZpRhb8DNwZYJohGNkSFkp1Vq1WqdW6tp6BWIJcEYePp1jKvBEMTLmhDk/j31IhcCUImSnWM7wDSHsBCWZytUqLYM0KhUI5HjuDHtSdLOyfDovZ2VdyUwmZnvZL8OOc7sVRxNohmMJRldjnjV6nHExSnbsIKw0Gmf92Wxz2eU0UQUJJqmmaWXQNQSoZrONGchquz3AYpTlxXa4vFhcbLrLLYST6ejittdbby9Ws8H5aLyYn09H9elyBlGv0zkbdhrTweXjbV50/E427IfOE8ifeQs0We+s4yvHAp63atJxXOUFVaeAphrpY/okYaa1pk0onDhZUtmb5YbSHJEUc+X6oJ0rWgDAiw9VuoEAvLq9Cq3iZPf69O1eTBjZcrE1nD1//PHHEiuqGSfr67l6ozWYjler/S1osZ9ff0sxdDKdFJkYYO5XURE0SuFvvv0mNTsmyQT67dKRzQCmh3kBw54gSAc0lsTIGJpnOeu8e96unNWbndNWrVnA0RqlnJ+xvHzBR/TN5bJRB3qA3eXAG9HF2DgoYElfKQYwNQRgtJzHVDeORGJJTD0jFgMQY8crUoCDG5eiCj5rr//Hf++f/u2/UT6d2nal3K2fTmZdOwJglZOqhcbIzdKiVx/0PVsNuqXWxWoaFWFd7q7xGP4AwJHV45+aY+aAMKDZJoczUQCosy9nwP1TINT9Dk6iRBTu1YKcy5oFSzSDsFl98w9++eXXX3/56Xd/AuDvP333/adPn9+/x1akt2/foxsWAPDTm8fH168fbm/vbiGu3EAcuoEviL6Xl1tEX8zS4WwmUMDn7Xq1gpcMj4fswGAk3co1G42yKzACp5roxqg4oqoBy8xmVDcL/7JQzkZNkU4h9IDwu54BW9Ew0CeoWGs12/3zw3CGYeQziZVXgMZn/fPRYRBw1IY0+tKCNAZljGN9MTWA831xDGtUhIUQCtJkOZ+1sqCBG3lDD0GK1Kr9xhiE8my5mHwB4BeLz8UXxI0U8BJ3DqaEIgU8mQMAYzmBHE2DpjniKM0TosUTVPwknmCzgWGqHAIwCfBF0gXRxCFEarQeIgXM+oqB2p+NU3nf0AGAKZawHEWIp9OCnK0Av/dBZViaZroGlttzOO42nXAggKo6rC8AYIKNEdnQzRVVnOebOGGYRJIBXU4lIADoGT4t6ejCxgIAEyTyfsWwMfjKkoGVqRrwUtOUcRwSCmAimUwRALcMr7Ip2EGSzCsCGkLSnOoCOrIJxg5c09QowvAsVTQ0U+fxhQkem5YEgZENmUTvD4NIYLe9xFGY7yPT8ZMkCcJCokEAKQDmcqFZaZ3WaxpaTafSWMQlgzjjSDOD04oAtbFgjMFJwIDvvIUALAhw2VKxRCKRTlCkaPNsrsaqZrHrkn6lXnNoKs3KCkjmdELOxFgTZ+4RDIRLHrk68U2y4Md5N6vRaYpXRCKJBwVOLgyzmcDUbBwiD0vOczA3+9XkYB6+vAQExvq7m/3V/vb26mJ7BWL4/vUTwB06YVmH5ghdQwAOw2Kt2RkAH5ysNtEk4Zvt/u7uAYjrw/pwiLFGVT09LRdDHwcvAaXP4lg/Lx/5OtXbvcOYL6zgny/GYej7tuU6uuEA17c1AOBIuUJQB95YLpbbg3qjjx3vU3jqxWpxPljcvn1+eP7ud5/ffPrhuz98XAgyGjNKCsfSgo41LGa00UwLHSgVCeK1KkiYeI7yTlEvFvZ9eFEJ1ssDIP9PKWjLPXQqodi1rEzwBYD/hMIRADvOn4q5DkWsWVtX3Go2BN1vWZaGxc+s4uWzuuXnsrYhpI95KZ0CtaQ7LV/yLBnnfIJOUtNaTKqbgGgMB3JJU1UidL42IGKEQa74YkiJjypoqNN6pZuVi0D6gfixqiU6hqpwAtA1s5wLi81CCJrKVSUeRz8zvOVlRLddqRikUynUPVbO1SwetxWivWx5llRdNR09I2rDC7O0PGuqAm91Gx4sWdiKODc5oXvF3ZiKU5JlBblKoz04n063Vz3RVBUAYFGGS50Jgny5Vm+1mqf9s3530EebXFACm+lyB2vibLWZL9bz0Wg/GC9B7c6wxnQy7nZGxXK+1S3WW4Vs3neyhfLokTlRxOQJGa6lzc3F/VV3M78YnXU9JWbQrAZk9ziuU8mwwZxQjC/GCIKtsHRjyJP8sXHTj43ubn2QB2k+V2kNm7WmozLZ5cc809TlysPqauub+eH2ufP6WkmAMCk2h+OH9z/9HiSGgnMmrFLn9HSI8+Gu759ev/nD4zcUScfTCZFLgOz95lX0iFqRvknPj0ABoxszg3qXw8N8QEQsReYjMxhJ0w0IhKrMpJLB6PSsXe3UC21nOshV67Vms4xLLyyWfD+HAIyV9OicFpVhmdgTjDsOKL6kLiXdkHgNODSPbpTwRWRojqNxehzEDppFzYsDmGCdY5cSoL6RUqX2//Fv/7d/+5fV/tzOVIvdZncyOXccQfBzGidXc/Wx53GCW+8Pcq6ZbZYqk/X49mq/ury6vEa5efEyc2h9EGQHJ6z5GgF4DGoQk7HDF/2LwxhO2x2sg251eh3MRgOn0GQ/pyiB458Of/9XB/z96ZcvKegfAH1B/b77+BFT0DgU+G0kgEEBPz6AAL4HBEYPDhTAWA2GAIydyZh+Xi9nk8EENPZpBaifGdV4gFCTLDffreU9R+U4VVJVSdI0OaNbriIDHYYd57gWuo0FOd/SMljYgodTmL0GoeTYXh64fqvbHwCtGEwip2scR4j56LPhNKqABgCOFDFq4BHqAaxFiw6AJy/tRLMvZAXrsFabi1HUR1m0pEypkKuFZ83e6FBw9UX6Ll7wF9uH8TDwJQO92G1Xh2ak+RLLsMqRf5/AiwAyMnucoEnelGgKG1UBgE0ThBZOGBVEJRWzDA8ECHx+WCssAE4MkNPKmLoscym2lLeMjEazLGHbigCYI0hZtGXD+GVi3T0IUY5BozmWSnuOrnFMmmQTxyep1BEPwTzIyTjwLxFHWgqkVSLiBCdqLgeKU9EOAEwyIDaBMZh4Y4BM+o6ERdy4I2QW4Y7Es1jQjzzWxQoky/OayEH85hkZoNOy4FNSghtmLFNlCd3VJcnR4Y9pQHYCT3oJjgUFLNNpVlWMdBLPXSHURpntNNpAk9i3pGhACExLLTSr3V6zAq9MEinsgGIlEGMMAQAsA5Cz6C2Nmp8GSkDxtkXDJZFBiXPpBKjpJFxUk05nzBhgRciwuUrWEuMJAGgiBlQjJaZPFAlrahKMRFJcInGSIFJWVT0hrYIRTygkmz6KU0TcCQAIddWUtQCIDoCcC4rUskxUwFh9t8K6wh2g8BW68O7RFQHEx+Xd8x2OI8y4h1nAEQZbWT8ABYwnuPNVNEt4f3252mHbwN3+bruKJkovYTlNB62iF/pRcRXWD2MTfFgqlmq1arPXw3oGbKIbz+dDrER2IgMCS5SjDaEC9VJNL1e0C42anyme1hp9oJ+zCfqdQwAfn2/uH+6f3n367sP33/3w008bCgIongNgixhaXqF4AAqGFpRYQCgqusJrIbYMGQ72nB+yzN4BTw+KF/HX/VKE5RycNrACOiqDPvhx/DkX7Wb+Tlcw5s+dyEc64xucXC6U/HxG0+yMgV3YadaFLZ8Ns56rkicsl07j6jQKBV1UcIEq2N3J6Gki8CFsgChFS2iTkHMxCs0DwkIxD7EhOgYuVco4bKjROC1KBc+ClSlRksMj0WR5oIdaNcyVOrlstlTANnPYByzFm3YgG6fdWoYVC7lqgeXsmiM4ChtZsMqaF4j+sudaHi+e7jLWuNfWQGp1u6EhcioPxFK2KC6QxudEmoVLG+Sqrc5ktJitdz3RkGUaBD2wXccLcOx1rYY9Y73z4XQ4mo6n681sewFBabLpzyPXouVw1xmDfLlYDfv9Vr1e7Q3PBqrRMFv9XKGRkUhVs9phWvMyOsGeO5un6zf3k8vRdtHtFrU4k+BtgTOZY5aJOz0rTlBuJkWJQrGQPimohpwkGo8yD+wRLkeKLzT7s3al5cikv3wXiqeaVnu4WC08K99fPU/vt3razPrl1nC4f/zh9zVAy4wLOqDU7vcH8P6294+v33z4q4dvWIg/ZILnk2iDhSfAEfweffv3krOjeCxBEcCeRbT9jC4oL7IyKwsK2hbJGgRCGcISCIryoNZpNeqNoOB0zoG/wk0sYs65VCoGmHkOc1g5lI1qCVA5oCuliSX8qirqKxxtCAtciGy2ogcsLJZiWIKNJq7w6E4PN1ORZMx7wzfijBJ3/89f/9m/+LV2vnRy9WKv1Qe+m8kInJc3Bbns12c5TwYA7g2LrmkVy7nOdgIAvMZjKIgEkQDeRv48kQvHy6Sf5WQ8m41GOA54PELDihcJfHo4A+7hSCTA4Xq+5Ehu0UUTrHzjzd/8/V9/+fmnn3763e++FGH99vPnT+8/fHr3KbKEjuYBIwA/Pz5GowhBAd/e4hykm33kwnFxcQnB6TADeDWfjkfrZqHVK0NAwf5A17U1SctVw3w3b4qIAziBSjKzLuhgywOpJxisDCwVy2/cfCnve65lefmcLSPjdiEwovNtZNDR7OAAwslhHtJwdD7E89/xFGcCn4Pkj5qDMQU/GQ0AfUcHXzCQEQio2FcUcZUlXLP5erW6WjUL+XK16FtOWMjn4S03+5OoCenLKfAXg7GDgRZG4kMd9HZ9KDuHQDpFBYwDZFRRAMVGcHQMxxnoMrbVpNJ8EGArA08wdJrjZSImex4AqYZjtDicOJ84SYbFjGlIEk8I5ZyhZw2a5ijHlvgEwYs8sLN86EUsBifGaqrAcDLIyHQy4+g6Sm6ZSMTjR0daznZDAGAQuDgmNwGiT+NTCUqUNQA01cZaMAoVMIWBR8CR7paJjk+aZMFWwFHWIk+lSfowyB6LuCjFEAiW43UFDX9EoK4MZ+BcJlpwMEehkJQB1Eo2QafQaUD2JKhVUL6crGGfJSNLZpqQgXrqiijgQEH8tADTNEUaLs5QU9RcpXY+6tckisTxS4lYkuYV3RFo2zei3ieaJGkyRUlcEj+QYzMUL8gAQyo8XSJNiQRt0DE9q1VNRYYA6HMxEl4GJwWnSFagUzwjAGuWqDTF0Knj2LGoazkvnUoLrm/rJhE/jgPwM44GOxUEkaoHWVMVraimFyD1q/PxdLaIagu3u/0ePdj3WPi/v7vcXl1udvc3q3kNu9rRZjGqZ7IcH4J8vQ6Ed7pDn47t3evHu9v7+7vXOEB4t5xM0J5mCstxMmxhDRZK2aydiVxowjz8bKPa6MHrwhbGiunl/BwikJNxVBlNUxQblB3sINVwAXqKPkjgSjFrFyun3War1xsvl5fT8+1svNrfv/nw7vHzxx8//fjh9zs2ssOX8KQBrQvgxy3LydiaZaEtuSTr+IRR/1AQAhXIYXo5OBg/YzFz6IQZE/4YfGlDCkNsF8yG7he8RQAOcgFOKAwOvtAOdgZHetiLsPfgkBVarBvWA34lkUAAACAASURBVJzyalomMDsKOJeZ82w7zLmqLJAJRoZ1p1paYCelvGvrMuAgq1IixeQ9zoIwKoj4CSjNiSFPgJ2b9fP5Elr4l2rRLKlms9VQiiCygVnScla0DXgWiSWSdFAJMu1qLZfLWbLIkbBkCYDnUFEa3VIos8VKtcQSWs3lZQ47jIAJSF6eNefnBcuVlfKmrI17HVVglVYvNARaTHMkIToCGTDDMQ1KS3ILxVrrdDRYTmbrU06icIK3Imguzm/OYtd2rX3abvfOR2h0P1iipf/54mq27YwW6/V0drneVc5W29Vu02u18pbtLYb7j2qqAOKOqa6qrsJkdfYizvSuprZot9az18/X89shSueO8uo3MVcRaFd/ldBFIsjpKkEVSc6gzTkrOE6FV0R6PzjqXt40cBBlrT+/OPdrrkKFq9eh3jPM5uP1dJKx893F8/rhJkgLmWK5PZ3dPf34l01BtkIPj/sL7XbrbL3b43yRj3/98K3AiCk6wfLJb7559c3XX0dOWEcnR9/8veTiBLY0AjAnvlxLNBRgZF4HPRoFQJ7FLmDDdP1av9QG0duoBl2v2is0KrVKDtZdrlwuBJ7nh9kgG81HyeLRkAPxCjvnABUcTVWcS+CWGi9rAvyHw39ZXCQ8jVkvmqB5FmISI8kc9m+i1xBodsb7h92w+8//+n/+v39b7s+sQr141uoDrmR9gc0UbFEqes1FOWsIVqXZz5uSmKv49d3s7nq/ubneXQEARyFhu8UxeZsDAuPw79VihAY6I7SfmIzOz75o4F6z3et32t1Bp9vt9XuNUlBQ+FxR5czAOe38zb/5I8rfn3/64dOXNqSfvv8OFPDnD6B/QQO/fwsA/Prp9fObh6fHu/vHx/sbPAgDLXAbnQBjKLpCY5B1VGUCmIe5loJpZhXNdLMeiC8PZx+Ebl5jVQ/Ip4qd/Dh3xtLQ31hRSF5Gcx7QwtkgzJcrgWk4rqN7hdDzLdXV3ciMNgt42UZrSnTdwJm/h5FPqIQRgIdnh6aj8XAyHQ9Gs9l4duiMnkAUXc4gmH0BYBCyu83ycjsqhLVqsZi33XwhUysPm30IeOPJ/Esb0vIFgFcLUMwAwpuXFGJUl4WDnqZziJTTAlYRK2g7LqCPMpOmaUWi4t/GEinB9yDKAQBTRALYME/LgS0BJdciawrY5gCJpTZEYaCElFjMKmrWpNIMaZsCE0uqMufCdctggML4boo0J/JMpPBOQHcApLM0l07Fjn9zZIWqWSrKWKIVT6ZTKZqTDDaV4lRNt8kUKGBdFaKBvARJSbKiW3CBgR1oGUezcSKYBCEKEBrREZ4ABSeRlFQmRdGMimlcQSJJleOMjA5Bk8UqaFNOsS4+r6obMrxpFjgGBxgOZDTKK9GiaKZJJZrSiYZTBMUmYykQ13g6ZeOkIs0sFKuD0XlXp4GvptMUAagJb01iHR/n4hFRty/EaFlMxQhWtC0AY4qlZdvgSBDpFB9L6AJh15ptSdAM1mo4aObK42nyyXGSSgPdLahiQArw9pIncA9sR7bF5EmSkrySL52gMXUyBegejx3HGM0EUW67dhjtdsswv5pOcBTher6+QtJ7cQuUF9vcgXre7LeT+c3Dxbzmwd0B5WjYDkR67Jrwc6UWMN3+ZHN1Bfz0+u7+/vbh6fn59cMN7NrlZL6cLJbjTrtTzwWha2LXMU47hfBWLJXKsHVaWLHRxwzOeLzYtmGzZG1N0bBYjtcytqoZsom98rl8rljMlSrVZqVYPW2V6oPBbLWYjOfr0WK7f3j75vHNRxDAn3+6YFmMfTwn40AtXVM9VbJcE+6bDXxGNhhZszD1bBeygJoeCnP01LCzLwe+IUoPYAjoeBWJYnSG+XPZ1UuVdPRXNopjrMM62HJg/T4OcvVw5ij8jA9q18hWi5ExHpAWiSbTad4u+rblhYELPC1FwBrSRVnPZcVswTMiGw0ZqBjjhjpvE4TEgByTRdZTXvl5t+B7ReAtxXK5jEVY6EiJZWyilnNNAG+K9CQjVCVNSqeleFhwc61KNoceZCra9cNWVfBU0ZtVQ5aFyNPWObdZoYHjYC0PI4sZR/E707yjOWQ47hvN815OEuRCrwCkDeGEoHUtXpC8cztJulo2G5SaveEUJPC+pkisRFO8hJWLyFmy5Ual0Wh0ur3BaN7rbDbTq91+e7a72E6rg/V6Pltt5uNGfz0ZzruzbHNqcZRn+D+8pUWB5chEc64aCpMRfOs4X5xueP5MLfcmF9urq3E3dzaRbPY3jpI1TEFMMuqJoRO+yhdreuhlKiU1cMuykBYKT1Zye79xaEZqNWdXPb/mW1S4+5SX2rqSe/g47Ph2ub99e/546aaDUqXRGS231x//okILJggjJwzLzVb3/Hx9dfP649sPf3V9RPJ8Kh2jpcS3xzgNCdD36Jtvjl59/fXRzfFRLB5nYLOLFDrxRBOd0Y8PiwE54PUarJcq0M1WydetUrfXbpQ6zdNaYZlpt4p1B/RvoVwu5QJ45MIgInFoCGg6puIgcpiWnpEt1n6gORPLSHG2tYhVzthwzIDaBsHAHsazcRJDceoxI1iyera5LP7xX/715vV///v//f966w1HUr1Zm1SGs96i6Bq8VXAV1q6Vx82szlvl82FOs8RS0a9txujJvb+6vEG1ebHFgburqBYXsxcH96YXLw6sgx5gERbAE+AVIPBZF1PQ3R4AfafWyJYsQ6qHrJazqpX9v/XzH3/+5dff//oz6F88/wUQ/u77H77/9PHT5+cP6EkJAPwWa6Af73Acw9Pt7SPgL5qEoxHlFZ7+gjbYHtLi49li1AM2UysgkdZVO+frqlWqtLtFTXYFXjJM3cyGeUsyXcd3bN+2gbvYumYovKjwPKf4uTBfLRZ8HaK4ExbzQZjLqRjdbLS8K1fguaLBSMPZGIuyDm4co8PR7/jQkDQZRt+I6rAiU6thhKmLKLmMXpTb5Wyx3a1nl20QwKVKaGpBLR9WG6PK2Xi8mv554NHLQfCh/RftsNZRT8oiKuXCsqzpHF6uKkRzzWWeJ0F6JokUwSsCkUimjpJM4FrA+HgQnmmWFVLpYojFNKAIBTzKBTBMpRvtop+ReZGhCh5WQRNpnnBdFUCUMGW/lfdBN/iuBZdMVoA5IpJRBKCzqxoy5m9A8CZPYnpo6MWsSqQE7vgYu2cJbO5M8byYNVIS4IMpcenjRJJLMZzCYUmWniu6oH1lEJA8L0deGCyTJjiOoLEoOx4HmJJACfCufHDxlygB7VP4FC3CvTM1WOeKreJcDQ3bjyGgAcNkaEbRNR70My2LJkFKPFpBSiA4UunEyXECnT1YVgEKIOu6lStWZq3JOZ9OkydxIk3DNdINlaK8ADtQaDw4JmmWVBl4P6Jk6YKmcEG/RCVEMZVA+yTB1Kl+qWNQupdhi4VsseXhpIb4SYIkE0mBDnxFzohR29Lx10c0S9hUjImB1lZrIUjieCJFJF4dkWwqTgGVMNEAy/WwtxXH03+FB6vrzXI6mK+3l2g0gycXF5c3d/e3+814ur/bzqoechEHDwQsRKkQ1m+ldno+msASu73eX98/3O7fvn64e3h8uAYYX2E7HNrVDTrVEA1qHCw1zgJIuZkcDqWt1lvd4bDXOR+Ol+fnk1XL8VzfMTTYOZooGh4odxPkKmbofK+Qx6H06CFda3Zb5VJrhP12i91qttg/o3fsu88//fDLjka9wUmcgtoBB7qBAjZ009VVWjIUjbGdl45feA/AJxzE3kzGPqCq42bcw2wGJ3OY0JBFyzD30OT7r4JwNDYpG+W9XCzHiuqg8RmwkRNIhq1j8YGBk+ZAYbuepUl0iuTdQt7SvdCzpEgysSlJI7NNVclGs59EJi1zQC0L3mGWMTqzKZzjJvgcml0GoIDRjKMSDVOGR6PZd9RC1lRkiLu2pgcWhGUiLSbdiudXqzhsNnQ0PAMmYYkbniN5vWpOopxipWUQRrUpofUbxHCKVbJZ2WjPi65qU954YtRGvSJEMadbge0EqlxMk7qW8B2vK54wshEE+UoL8XU12VXQs5sH5ScqOEolCLxyvd5ut7u93nC8Gg6vdvOr5cV6sLi4XA5BME0Wi9lw3u8Nzgb93WhemOchIlqa/T5Dcp6QTvq9QGXlWJjUjxi3eHNKdkq67rSWT4/zgLI6uXHTpAQnp7FxVmepBJui/z+23qzHrTTbEstSSooIjmee54ln4jyTwXkMkjEPCoXGlJTzXPdW4fbFRXfDaPSDn+wnw28GDPjZ8A8y4Iv2Y8N/wXsfhrLKt80qZUqKDAZ5eL5vrbW/vdeCd2BGoSAKBZmpeIAreXa5YcrbiwF5pFdby7Nh2CgYVHj2PhLbml55+WY3j+3q6PTl7PWlk3LCqNaZ7i7vv/1rQIhWCLdBENY6XaCG26u711+9/QgATPF8NnfEymkE4GfPvnx28PxPXx48e/Y0dZVJAYkXWJGTaMTepA0K5AOa8Nh2iJ9VqVQBCSBzDAj1qDkcNFq9dr21alU6tTh2KkEZPyk8C9kDMPqbusiQQT3AfQHLwBRMzrrnMZkwSTjUZXi32OmMZRPYP3hUKyxoO4rEoJnW5uZk+u2HP/e//y8nH3789//L//mvb5zxUml22uvWdJkAMCnHrkg5tcqkHZiiHncHJctT4nLcOl+eX1+d3lwjAO+LvdsEfBFWNokFx3KR2HAs923QIAqHo/EIB3+PMY1wcNztH2MXVrtSLDqSVzREx7a6g7/89fcff4YHZiHhEXASx/At5gF/+vTuI8YCf3gHD5DA2AL95uH+BTxub25ucLwCAfgctyYAYPgd/OyzdbvZaoFqw+ZIS7dcTXHjVr8DG6pA85Jm4aKMLZbFXgZFdkxXMSzdMJIQFgX4kV5AvhOHlmGDujKcuFIKsH8SE2HgE4grQJlaw+VyOhqN5zgQPAGpP/0cv7C33vj8mCd+WPBrvdmssBFrvfcMS1Kktpv1xbweA6SXHdWulMNSa3R8DKp5k+QnIXI/NmGt9/3PWHPGkj/syHsA3p4kALxssCIm4MkcdiLlUH6yksjA7zKMWAqS2L4UgTOOICKLvmXqrqHiPAhNg8RL55pNYKnwzRRd9CSlYJA5Lud4GgFqWuecZgluQsuDG07QsHcax9ZFgDuKB9Ii4Jwk+kamUlpouXGggp6gDjIcAYgvyVQuzXJSQSdR+ZgA3VkyyxBYxtVlxS0UdVV30SJBFUQZKAHmGWEOUi4HAjifPjxkeArdrDF1E2PDQJ+wjiswDIlnwPBdFKXARiYi90AAZjJAN3kMekD0BKEt6fk88lBdERh0wsplUpk8vK8cyAZZQYNip1CfNQdjiaV4EN9ZQGeMG1A5p2CZMotyHq4CldHFdJoV86EekORgVMW4KeboIJ0Hvc5boOfajlCuWnqz4IUK/JAs5h6SFMGl+LqhNWuwfZHEURq2y0PQwimRzKbgAhIk+lIfHaSyBzkSdLCqKlh3sZMkvuRQ94vJ4iSJ1BzPVrvE6zwZB766vbm9vjpbbe5vz9Z1p/B4AmxZNp6pw/5eq/cm89UGrdHPr18+3F6+ef0AEvgFtnJtluvdBg93l/1KXAg9y4GfCM9h2jbwS5xUaXUHIDImaKE6Hi1O+4XASY6K4bqwItwJhmUmnbU4oxujaWu13qy3uu1aa9jtDabTyXxzuZ5MT67u8dzoqx+//+WcUiWeFTQB/UIQgE23YKINO9xMuiWhycIeQ0OMYgStGqIC/pwyiLOX+1wkJ+mwQlPnZCoz9P8bAP78+/3ZsbdvvcIz42SuGOMM9zaXMToyA9zDlZOwJmgXA2wgd3VJoLKEkKdFUax2SXidwFcVMSsoKpm1Q1dQ4IYmZYHXOSUSjgox1icj2MjLpXKtXtsDcLPVL3FRaIiizILCVbyCyMkcweeVVuiW65UYdnYPOCKRp0hGMiOXC1u9ikOpjVqrkFFLPV2QJAzXYSgdZLfUXtQ91WLMyZldWQ4baGRy3HNgx88xQo7QtKzWaoyoQ551/Ai9ribT9WZ+VgPUVUFIC7JmaJblBz58tFiAxhCZ5XRxc7W93lxdbuYXV5tjPD1bbk4Xy8FgsTyZDE6bcbllpSzBTHcdVqiOmrJ0PKHksu7Sz2lalk/OyVKFEOOGHW7fWKm0qMzKDrzbjqMcKB4oc1EgjvKyUnEZ7ZDVM96ilzZIRnlfyJ6enurPnXL/5HRUahY0Kjp9W1Z6ht16dX++CozK8Oxm9f7GTdkByPnp6fXLb/9S4WTDh08/iJr94wkIlKv71+/eff379SGdADAnp54ePt9PIT0DAH6eeprb5o+AxvOczGNkEZeEIsBeYfmlcqlSLBV9x0RMBkjmsCPTqo6G9WqvWRtOVkGrCsuo4WN0FVDMEG3PAYDho04oXlJqMhMXc9nmjWsOdjNVgy1VhR0RPjbczDCFAbZcQF2Sgw+MZSXYnfqvHl7NPnz/j8ebX6dvfvzr//b//N+/Vo9ndn/Q3fany9G67JgpuugLtF0rDbqhLRlx+7jiOFJYjpun693N9dntzdXt5X7cFpOAH3XYvlSaGB6v8QwWJ3PGoBKx4Q7NN/4A4Pa41+/6lcAWGxajwQpr7/7Tr3/5+VccQgIQTpwokz6sT0kc0lcAwB8+fvjqzbv3714/PLx+ePvmxe39y9v726vrWzwFvkAn6HMcQQIEPl3PNothq9ZtVdE2AGtPCnZaNVujou0ZFAUETlVMP3AEAQSwIpoSCBoL+KGg6QC+OERp41cKBb8Yu24YOoai2FG5VAySJvRkPWPbY6M1mGKTNzZd7fux9gnB00fpO3+Mo9jDMFpS4mnuyRbxdwtsBZtQcar39KwbVOqlemhoYTUKm915b7qe7z67dyw+HwM/tkGfrBMdvE3AFz0KsQY9WywbAFG6aUi0kMekPNjVGQnwNZdKEaCAbWDiAoH9HrxE06GDCkDBQUMMICIyR/lmLXA9lRdoBgE4sGkCABhwGJ7M5O0GRr64mMUgqoChDI92BSALaV43JR4BOEeQIPrUwAmDSM1TbOYgx+ayJIPnXnlYAI5Eww1q6CJ7cJg5zOYpgpYtQY6A5CRZdACGIiYyiAwOrYOIZTOgC4n0wfOcxCfp9jgwwGI3IcvYLvZDiwWc3BTSedXTeQEIqEgTsI2iUwKNw1NojJUjYevJZzH7RAclAqqdyGdAVcMjz+AYvWaroh/3BvXeMQIwDjcTFCOAVldY0wPCwHIsCwqYAsXDZTIUo9l09ijehhLP5NMUi+NSVE5VScKfFNlSzagdK1ZEpVgSpHYa3icjH6gVq7ipc3TqiLRBDGcZH4+4M4KQep7KpfLpNEHnU0cI1qyq44lJMkVTeHR4+mI0X++PeZCAnSXz7pc4+X55dXEOC/Lh7mLbcLBfS9c0y7aS8k6xhN4xg9FkdXYJbO3yxcvbi/uXr2EJvbzabbYneK4Li3Q+6dVLPog+PDhOANjxMNun0W53eq3hZAq37XI6Xp4Po8j1MGzYMjRaxFxB+MTQTy4ADVlMjj+b9Wp72Imr4/loMBoOxqsTZJuby4e3795++P6bH3e0AvuSbMrwFNgBreJQkw40SQT2q4k6ImXiuYGYiKeV0R6A47/h6d/9BvOPMb87/FuPNDpp7q03gmT4KHycE04AGB6JuZafSGEffaJ1L4qL5dDGiWu4qek8qZXKnh2GQOuwDUvmci4nTE3ZwTgcVZayBkeKOauoKjy25Uu8xdOBmxFj2JsLJdinUQHvAbiJGrhJuUVLxPk+zpMM3+BViWRIplUqRCCB/VJcAFZM5GkgjFpUYIPapBywQrParOTloG8Liam/wHK6Grlyc9gqqBYv96/9aD3uwfaudIehrMgELxKEqhH0cDUhDwXedoJysz+CPWg9v2gY6KzNY4EIu+vh04KX1+10jo+PJ8PFbHV9ub1aX1xdL24ul02AXUDg7WzQ35xury5ONr7btlusQ5omq1DMcHi/eR58Yr70XVFNZUDuFZeqZxFwA9lm7cZ2yybIcDGUuGbsHGi+gZPiTobJCzXriM4WHeNJeBoRopIdb4jG+VmHUKvjzW5Ua3kaWzp/U7OGht1+BbdzCEB4cb16f+ulnKhUBQC+evHp9w7IeIzWiMvtwfFktd5c3r9+//GbH66OOBGYc0qQjxIAfmzDOvjT8z8RKx6EQQb2p7wgJtlkOlqHlkulENtHQKGgxx4nqRythKIk6NXx5Lha71RHnV2lFNeCdgP+20oVEBhEcBRFaD+OdBB4rgMS2MZBJENzRH3HoA2OjkmkaCDPYfpaEoMESgHUBHaTCkmBj1Lf33+/PPt3P5+Vq6v3P//j//p//et/nrWH4ajb2w4ms/FJ1bRTRDmWOaNS6g9iR1Kj9rDhWTKgQxlU3P3N6c3N5fU5mk4lZkyYeLDZ7UeRkjJ0ooBxGActKhCARwN03/hcgu73hv1+wyu7it2UGSDr1c43//T7n//826+//oIq+Hs8Agb4/Q6NKL/+9DmT8Ks3bwGAX716/fD61d3t/f2L+9vra5wFxvmjxIkDtPl2t57OVv1aqQL61zVtuFqOLsqG0xjUQ1eD35k6mxgvaVJOj0JcqJaq8ir2hquYi6QBALt4KU1YwbA4w7gYw/IzvBieEHOUHMPBqQe/WC1XusPxdLGH3P1EEhajJ9PHHIrHB0hZ1MCr+WKVnNruK8snIHLxom1PNxezcrGKScUaSOCoVpv0+3McLFrvky0eB5f+UMDrxzDCpB16sz1dJwC8aogyWv8LpAgfNxpA5HlVFensITDkItq0yiLJgWrjBJoGNY+HU8j80FSSTB+R7Wroeroks2zsibLvMKAAXN8kcnnaEr1WMfRj2CBhNSumiCVekshRTC6nuLosKDzDZHJUPpPRAicKYiDl9NFRhs5kGVZVMZta1G2BgjsTdASfRcrPSQDIJi+FoRth2iboVwHNkwUx6VHAJmjUwNnU0eGRKibJgYnDG81wjMAjycxzSlC0JIE/yusFjRNkRZNZgkisceHVMRpSzlyOFhWFyAlJHGGyGohcOp2lkwFL3XA8XReVZmfWbU36MkfilwF/WQkAmGG8UMeORRaWEEmRLCXR2XTKkLkU5zthu2DmDgVL5hkhdRgzz/XxSYt3Sv60RnBFS7UFxNRcjmB42g1ai60t8Pkcaemg4MOClOPTZConcKkjis8cAvAfHZAs7pOahKM5eIhpWvvUgS8mc7iFTs4uboHunpxdnZ2eY8vD+enN9cXZdnFyd3u+bWJigaLblor/MKygVKm1Wr3j5Az45vLiGlbL5cuHVy8fHl49XJ/tNrA6J8uT1XjQb8Q4fYPfhHPHjuuXoqhUazZbne5odIxF7PFovusDY7WTHHJDQ7thQF+MbUJ+6wawOwHwtMrNHjwaxXZnuFhOYNkPxwvA7+0boNDfffj+lOZp+JRMDQE46V/Bf8HvFd1SJd35A2CBCWBkQsG3UPfaSRiS94ey/ePYF/ufEwus/0b9+nsAdv+/llgFHG7CeCnf0tHsA909/LhS9kMXyIfOkWyGsCuRbRUjD+CWSvFGXtRy1rFkep4N/FDPSqCTjnjfVnRYS5TE2RppRUIKXm9YKHlxKfGirGIqcBMQuHnMmRVP0QS4Zz1V9R0eliDJELVaUKjW4bIDAGMDGLbkCIUCZ1Xnsc8z5Wq9RQnecVFIKpkcwxty5Evl426oASusXZTc2WiAkcCV45IKGMILBAHLI9u47BOHjGZYfqXZAwBebFZXddgDcOpVBm5uoHiM6jVgV20sQc/WKxyluByvdtebF1fz4fFgPJ30u93e8uZscz47ue1zVjTQRZszVOvLTKk+vguoxUzg/ec8ccCqpt4tNv10VZX8QnEhxWdblWsopi2WG96RGIOikLlAYXEe8snzfEnHNqhTnWIU9qF/ML/eOUR1vN4Mq01H4yrnryvmQNVqDy/PT+NCc3h1s3gHCtiJK43udHd1/+n3EispWG4pVToAwMvl2cXdmw/ffPv1ZUpAm6uMoOwBGMD3+cHBwfNnqT9RUzadSqc4XqStoBAAT6yWi75nqwIHsgHTGGDX0AVZJkh/UC5FlcFoMOvEw3q/MR/bfrvYbteichXDAkLfD1ECJ2wOBA2QUDORwBbINlHdcCYGxcmCqCR17qRaxycTwXlMKIfPkgIyJctc+v7bn19N/uX7l8322be//uP/8V//9X9c1SbFfqN7Atd/vG7pbo4qFxVeKpd705IjMQFI1sAxvWpcmm5WL28wjvAKXR/3Az97AN4+AjCgQRKot1hM5+hKMRkPAIAHw78BcGfQHWB6iyVVQkkuFMLi2X/8/S8//vjLL4C/PyZDwAjAX3/3zadPX3/z9ad9KOFXX72Fx5s3r1+9vseGkhcPdziFdH1zg/iLXpSnFxen2+16Nm5X+m3PK2GbRuAamqAVorhe9xRVkTBHByuhsJuLwH9NUXXsgmmKuqQKuoosEePBDds1lCTwUdHcQhCXYg+YDug/7NEo2EkfugeIVGs1m6PNcLRXv7OkFD17HEJKMHixLyMn/0IkTUIGtyePiLoPFNytt7thsdQol0umElaKcbkzao9PZsnIMBYU9jNI+yLD9nMO4f8PAAP3UjSAXDGfIQB4+ByvazyRTR/lCLgK6HqXobALmoWbzXYcwzVVNHFmWQRgqlOLMK5HYZjAEUTXovNCzvFNLDMbnNOCOxAoo2uDDkCzD0zUzNNMLitZIDRVgaEBgLOpjBGhDbGYZegUoG82zzCqTqQITnIciZA14Ou8kE2lyHw2x/CiJii+5yaRA4bM8oKMAEyDOM7g2WkOPavSR4c5JZ9iRJnBJips2qY4tNjgM7wWBCpsLmnK8BSGl2WQGvk8QR6C0OcoGn6UJORzPAYL5kWJ4nAwgAZ8zaVTGQyggNemqLqsi3qzt+gPN3Mcd0KJTLG8armOyPkBtuditRrzm7KMeHDA8JbMJE5UlQAAIABJREFUOAXCmRZojkjlMwcZUTg89GlxOuz24kK9NdZSWQe2Vi59iD4dOZJly635dgwXXghVKmcElkUzGYbJH2YkOZ9hFToHT3NEYVoLih7MN8PmSpwMwsbzL7B6Ml9tTy9PTi+259enm7NLDCA5u74E+gsADH/TdEH97Y04UJuawPIrzWYP+OFqd46mWXewZO4eXj/g0c31DiMsF9PxajUZ9OuFqOgnwhk+XgBgLMwWK9V6u9+DtTtBpB7Nt10XzTrQttnQZVgUBnZjoRs9GmgV4xABv9nuHWOXZb03PdmspqP56Hg0g4Vw9/bTt9999f05xTGSpmDymG6gA4eGWUgSzoGpQKb24QlJJLfzaMFhIcg+AnDSfYqY6yaDSf7fwgld//HxqH4D97GSnfhnobnmY9kKu7AQgIPC51K3ZcG7rRTRedpROT6fIo1S7JhhyUXndCKvkDSX7wAtQRcf4KuEoJAka4eqJhEiw7GmzcsFJyu6xSAouSFcNgRgjERqAgI3h4ZY8pKgLw6okW9xGODB5sNa6JQapTguBiZwTgBgGp60oCiNWSlUaKDgHY60Bz1RkhMAZjUt9tnCaFQGuUWHm5bZHx57Eq+Fx3VDEeGFkHlRNbLeaZ0+ZBzDDCr19mAyWZ+eXFUSPABUgLvKKngB7IRJeeN4OJyNpvM1bOHXs9Xm8uLufNHv9XsdHF6bnd5e3p+pzk1Nk4ptVm2oeVU6yuiK936bjxaNTC2XJ0lC0sxafXX8BMiJLZpFSoy2fbLv8rJUGhYJErQLIzGydWDqFPX8kHLS3qJATAKZFnPtN4x6ddOlSqPNZlyu2ypXPXuo6H0A4DcfphPDqveu7tZf3YECLlYb3dnZ7evv/mKzDkiAsFwuYwl6tbo4vXn74Zsfvr1Iw4XKUxleTj09wDPgfRzw0+dHT6gRkclKrGE7SlBJ4gMF9BYDRsQKSQytJMOOxCoyITaWq+VoPO81x5PSqNtttk+coNYp9SpALqulIgCWj87nQNzQfxzuiQJmkeApsKbBHrJidZwQwZEmUBNYjuMFLF8wNI0GlFj5hm1JUBk+1/zl/Q/jD9/sJtF8vfv6f/iv/+V/Wpcncaffmx+DYF31TY+io0hluHK1s0AADtuT4wAWaLVUnp5OX9xuL68uLk/3U0jYgLXP5klKpCjZ8AAYNd8egKeTYxwDHgz+KEG3+q3jRlgF7dHUFVgN5eqP/+H3X3/+4VdQwL/sz4C/f3SDhsfXn77+8NVHnEJ6lyDw61dvXtw+APq+Spqwrm5uLy6vEICxAet0s5yO2q1aqwQy1UH81WVZqxy3igVLVznR9VTFASEsirJb7QW6jO2XluHoBdsBcSaZAKwluJ/MgqnCX2iaqFhOWMDZBowzUQz4XYy9mHhK5wUlzAvuD0bovYEAvHfBepxC2vtw7I9/EYaTDjUE1e0+Nnmz72WG67a62NSKjVKlUsBMBj+ujjvHJ7Pdah9JuDx5tMH6WxPWHn93CQhjGNK+BI3OwzLGShOJMzmX5uAt4ywtJ8TJETCdpekcy4EsDODl60BF0ByZ/1yCjmx45xJFh76qFByOErK2b4HwE23WqMVFnMbwPCzTJ7lCrCCQBEnQEjoowB8xuugoY4ZWIfY4UMCAoVyeYBhZpVIMrxRAEco62nDAbpETQFNiDU3UgoKPdlhIHNAanUe7DB44I88TqQwAX/rwGWlSWZKAVSIKEuxXNE8Rus2SeQpepSRrUp61XPTZEARssQJoZdBxkpJ0AOBMjhcMiSFEmeTwoAfzVxMAJjFq2AD8ll3DLrYWy+0NaFSQNTjCzMANEIawqTiGhSsW9DjOVYGCU4K45ig1lenFT9HNgwAyAaAtykJ5VHZag1Jr2CAzWd4yOeLw8CiTyWRzbLa+7PeqpCILIezGpbZ3lCGZjJzHS09TBJc9yuYzOYZE336citLQUdKyMfwR1rT+xRx7K4Dbbufby+3F3dnuHOd6gQRfwOJbbl/enJ40kmw+U9HdgilZpu1HUbmJfvuz1Q6L1pc3dy8f7l6+fvPqAfB3PsdSynI4nU+G3WoYweoAQmaYrgO8wwkqJYDTRrvfAT4+Byk7n622bcd3zSS1CPuXrQI2L+u6hREI6NEXA/Q0O43uuFcb3IyW6Ie3XpydbZaL9e707P79N9999d1ZVoStCdYV/CQz8XqFmxA+dA1osGzHjzIXADhIVhhmc8MffMd39w7PTiI+AID3U717J+i9Q+bfAXASAfzZA/oRpxGAHVDAWIiG5zGdgmfpNogZeNuw4OMAD50dU8Y4JDOMNS8KQJry9IHMZnhGb7i6F7uGLhlZQQUGqwU2gConsbykq6JR0HN6JQwj2J/xwtWqaAeNCNw8jqjIUzgJeKPsaQVTYEkmx+assq8Xm6WoVIksWWSA4rI0YwA+NwetskH69WpXy+ntIezj6GoITFUpeLwxXLUs1aHc+dhqjvplWZDcQdMy4BmALLCSm7GGJfaQB1JTKFUaAMCL3eaqLKq6BnsCbIOWWXAAgevlRAEfDya9wXS9251d4cZyfX66qzZ73WqlD9v4xc3VhztBiHRr7ZZoLYrzDEFms56xu+NyIfclUyEtNiNLZqG+HB9QlFBVCeC9ZOdErhR9gnXrDVNQowYtCgzzRFNY/uCAqytiY2Y3BzyfFenT03Trah0VhqerSalua3z17GXD6Btm/d03wy6j1jqXd5uPLwCAYZPtzi/u337/F0+A282C/bFc7x5P18ur7dXbd59++f08A7oyS6TwDBg9OL5ECw6sQh8e8jNacUMVgJtLGlcAd2UdJxQ1XGtoucerwLENldJb/T6o/1G3OVm0O8NuN560w+ogbtXKJezQKRejJCsM7hpkgEkbFmZyJm6UmmKuWQXJr6HB8+m6kphMAwAnXqMM2snz6MUjKHmR1H/6+PP5xXfrvqUUwsbN//y///fnlaHfHh5PjyfT0XLsuBTtxzbLVuqtRdFVhLg5HAS6oldL8fhsfA8AfH1xCcs6iRzCfqAdHgCv0AXr0TsREXiOYhAkYQLAg+HfABgQuBfFFV0pFmUNKFlr+S+//8MPv/2KJWh8/PRjkoX0LchfbMP69Omr99gE/e7tu/fv3rx69fr1w/3Lly9fvEgUMDwurnAO6eL06my3XQ463dqg4ZluqMMlcjHwqDgeVwuaYAiWo6ieq9gKz6l+vVcyVA1kE6cqhuIAXsOlU4ElxroGQGvrmD1vKKqph7BigfsUscXFxiIOOkTD1YeFHdVatVK7P8bshc+nv7PPZ7/7hqx9C1aig+fYh7XdnTzaSm72jpIn283Z2bhWrtUqkakXin5QBiY6XW/W+wDh9ck+DHj3WQEnU9ebHQYDJ7WHz01YPOhL7DMAEMmm8jSRZlWVp3KZNEEDbQP6IWBgLuwauQxaH+l45iqJIhowAtjV66HjGRJHssXYMnyHpyUAYJMgWcXl9Coef3ia52EcLOIv6EQ+nyNITtUTAIbvAwWc1QsWXCiGpOnsIcNl87BNKUJOEJTAYEhZU3WFIY5Sh2SKyHMSKGctCgIHmACe7yqigmVjgaRI7GsiUln0ZT56TnoiTRzBIkmasGD10IRqYq1Y8QxBMwVKsD2FF+GrgMqAlDzCO0ErBstzqQzPWSCMBZkAMcHiITD1WIJmKRZWjG2HVhR3ptvL+1N4UqwYwDvT0cvR5E3XMGWcpscHeSgH3X4ZVmFcplmLkMgU0O2Do+dZglLyFIhVIRpUa30vDxAuGnL2IJVOpTLZrKDU2nHZoE2Hl/MyzRWEJxlKhP+EoSQpe0RkDp7nWHjpDHbc4Bi6se+lApaNx0rYhIW3zWZ1kjgGvri8wPzNm5vLFzdnu818fXt3DgCMTb9JSosBNCkolkq1brs/HE2W2zOAawDs2xdvYeU8wPLZoGHz9mQ+Go7Gg2alHMXYBW0aNvYp4WBtVMIyanMwHfbGyB/nq03TRP95OwFgXdJdE8/zDXSRtMOgXCljrnW1hedLnfZ0e7ZenGyW89OLebc7321u3nz67v2325QGDE/z9CR5EK0vHY2XXQc0iA0v2S6F4R5IXT/GCnTBR6wtJLrN9yMc58VAYC+JI8SG6H87hhTszaEfz37/rgKNisXx/ORcveDZBctwI0Rdx4/h1QSwufpYS3eAqmWzarFoKoVKpLOUkKIkkiWHngT8AF6vRgNtpETKijXDzANZpDhVUP3SIV9Cfw8clcDD8EYNARhnfer5KLAECW482tOBwgu0kKUyKmyqcbMUlKuxrYgMHlMwjOLY+WqrVzNybr16XMhq5S5QXR5N4RSGs4AUd097tuJR9uTErU8HLUVkzeO6acksI/LAst0jpxqyh4JgKW5UrA5m8+F6c11BAOYoTpKBKADhKIS1SuIS0uuNxjOMQdpiyOXk8uT0tl5rtjvd8Xq6vHvYvnjbzCtqqn5tPU/xHq8JRylYY+NmKke7madIyo9MEHqNblN8QpFSXs/kWb0+UPSwBO9GABy2K1UmzYpHbFPNZQEPZTYlFfW63yQ5jgm+Vpnd+dw8Pp2OKg1PRwDuIABXX388mwlWu3t5u/rq1jm040qtvbh8+fbb30NaFC03ChtVBODV4urk6s3rr3775/OMIjGZ3AErp58+f/b84Mmzo+dPnx4cwSbtrVK8TTzP8rAZsOg/mXhUIQwjHqNvBvxOESQ6Y4/Gw/WkOzpujxfD8qh77DS3QavXKHVqQQmNQ+MgDjD/OkhOL3ByHg3ULTyL0STF2SL+apgUxwO8y8nZPfw4NKdH49s8xeEBMCMzeo56+O7Nxehh2ANFWB1137/48b7RDxr1wfh4OhsuZp5FUH4lEtlaozGPXY0HRBjEpmE2Yr9/Nn59t7uEDeAMi9Dn2I17eobBu5v1Z++mJEtgAZoQfSjHWIIej+D/f4whTevTrlOKJKVrK0ZQrDRe/cdf/unnn3/79eeff/zx519+/TGZQ/r2mw+fvv02OQJ+DwD8/u3b1+8/vH/98tVbjHS5f/XyOjkDvru5wv0IAHi3W85X006j02jFQRi4TFKQM7xia1o3YGmZjo4uTrLKSZoT10vAxB2VUUwWCCopaQU3DF2ZB0EnwsbiAeE1YZWp8BFhtybcukGlHBdMwynEpXKMPSIgh4OwXK3GtS4WoYFrTBN7yr3txuwPA459uAIq2f1x7n4IabNeJj1UW7h+29NdK2i1KiVfhQvjletAwLbLpJM8Me5AAQTr5LEJC8/d0Zx/swfg7ecxJHQSQsaFJlUpgkrnWAV0ZebgKEfDluSoHJtnGAIYYD4d+th+lDQNKFg/prOZWiMsgOhjKDGMLA3djDXK9Y1cjmZNxsTIHN+TbUd1DJFHRymKyWKkghFYiqTBLU1iim9Wda1iUaXhkf2SYY5yqOiYFMOIAMCMpCqmRqUzVJ5OYQ+WonEyyBwTWSM+cIYdp+dIgqLhF/ZAp0DM8w5JsnnQSYkBF9qo41SFkMuqBV3QDJoSHOBXkqQpGK9KEiBv0XlGQlPWVE4S4E1leZnADmuBB2JAZTM57LQWGFHzK35BKVWHw/Xu9sKgYL/NpCgWmD0AsMQHJdsQWewkz+WyGbY7rFoiSCOJYrBD1jdkOkfSB2n6ydHz51mFIo1+u9JS6HQ2z/qFzGEai9D5rHJcV70OzwPcFhUxw2Seg6pnVBZ2DZLls08yaWzMzuEBGaaVCkmkER6EPLpqfNHtD4aTJWDwGXrnX91eoAa+uTw9v7y9O5uvL6/PNvVCpRQEmN5g2dg6FlfKpVqr2RnNl5uLu/u7i8v7hzuc4Xtx/+Lm8mK7mM5PtuigOuhW8FjFwmxBNEp2/DAOi8VKq93uJbFf49lyOlnuOi62I1vouu3j/IWG7kGGqVt+iIwEf1oHs74HsBTWs+kco0eWG2TEQ6CIL374+uOHNSvLEh5Fwv8dR5JcTVAVi1d03QMya4af+6vcuBjuZ42wwzlxv0LrAy/8fBCM1pP4Y0MEaN+NvH02oYuLFGA1kb5JXrD/d6fD3j6rEBu30PMZz4jRpBK+waqU4rgUuXrB5FWayovdgomjwrKJjsb0kSrHgekHliVJMk/JBi0xgSfiKTAoGlnV1IJ44MWgfqNiMY6KlSZ2YWET1qjdZ/yiJQPhJzWbBwILBJImCK5edPxepRIXI1eTWJIUuDypOqZgtYalgJHKlaqfl6Ouw5hJFCahsF5sS+5F3xdCWWmty/5u0DJoXul3LdjwGU3NHYkmQ0w65HNJ1uxCVGmN5ovJ5vSuxGuKxvMSxylW0gyOvqG1RnfQ7U4wDfj8arfenfcnZ9fTTT2qVo+HxU5j/v7+9v717Eg3RH3z9MtMllZSejbNsZZjumq+IuQOZEE99Aqc5I7LCwVYigj8m7TaLikYWjbr0hlTL1bbBVcneN6jycNnz9UCI1C0apGD4lM7z03WbPlqPekst6NqxdTYyvW7htZ1lOqrDzdD16kfz3aX3+48ohxVm4vJ+OrtD3+1CckqBX5gV/EEe7labN4+vHr31X++y8N1JUCCK5mnh88PUgcH2Ar9/JDJPVVWQHZTJKUakswRsiwoAiAhBregjlDQBleUdEGVaXc0GkzHaJU8GE3b41m95F1WgakU651KqVIrFmEDBBGSHHEEvm176KSAPm4aHvlIwZqDbcwwMOZV1jgNnhN2MpC/Sf0ZoZdGMxBMmxHY6lfn74dn6z4t2+XG8v3D+Ul1XGhVjud9kHGjie/yObWri0yhU1lXvQLrlAfDImjJSrnQPp0+3O9u8Fjp9OICvZiSPqzkjHK53a0Tt+PFfLleLTCZft+YNEpMsIbHSQ4SCP1Osx75jhSVFcUKvGH9X/78+y8//eNP//DbLz+D/v3hR0RgLD7jIPA3nz5+/f6rj+/efvXhLWDww6s379EJ+gWI4Dt43IIIPj29uL65PDtdn+76ceO4GSpGwdAtSbYc0ah1hsdFQZN0CbiJaDoSbzBmuVG2VVOTOMPgFQMrm7CSREsD4VMAfEaHLFXEmABJ1U1LAqSCfS20SrVKsWAYWqFcwWQqH+1xi8Uwjsqt/mC6fuyFns4nk8VyPkVXviWaUY5m62T86HPKEarevbtvYumMI56nF5NKudloV3SjCNyx0hj3pjgInORanGBBDwA7cRmDXXjz+XGCoUrbk+36ZLmcLMqKDgISOx4pBAyCIkhV4rOJhVNUsTRsiZbhzxKTy8euokeBrmAXPVyWPJEWms0SRgtxrFCNFLng0CmVsjwlL7BKQeLrUSEAfQWgoMtoHwMgSQtMjs6BYgMKI/MczedBR6uhb1hOPs/hkekhIK9g6JkjkMGeSWU1RQLafgRoAzyAF1lYkmIjTtwokTyCIJdVVWLRepnM53MAk/Dv1NMczRCUqMq6lNzStEgxvMKlKNC4ODkAfzR8A8eTZJFIpXIAwjkKiIQCTyeC1JZEmcyKsNJ4QeTpPEHhIBJG/vKcXqoVnKhQ7h7PF8uX1w4NgoPIwasA6uX6MusGaG9JZjnA7CP5bNiyJTGdJ5lneaE2aU2mkyqL0Q6AoAeHigNfqdTqAYnNPHmlyqXTz3E6qzwtVsJ2i6BYpDU5gj2gnjylaI6TcFaKSR+m81Q+lSKBjgNLJwRJh/vN9S0x8XFyTO0LWFNT9B6HlXZ6eXN9DoRztz45vTo9v749X+/u7i62TUAV2zUMy7QAWgyjAIBQA6XT7M3hjrmGlXJ/e/ni5auHl/DvLQD5GlfpAhhyv44ha9hDjWNMloNWSdVqrd1udXvHwzFAKeDp+rTj+AXL1jG+ypJA/CqKZsEfDKsQFELsKgXNV292uv3j4RAXQBKHtji5uNmMRhga8eLjxxmloaeUgkfbtmNosABFkA+y7MVe6DvhvgDth2FydBvF4b6K7Nl48ub9fSeWvw8eTAA4cMMEgPdfwXFNH82fE/OOf5sMvO+G9vzH3GBnb6HlmEG1Cigee6jL8aSuFEhuDOAhUnkKPv581OQ10M6arokMLwsSq4Y23PPYVYsRZHaBPwT2U/KCIlpCA8DVH7ugu7xTLlgC8F7JlODyCRyD1Z1KbFrtWiUqxgVdYvIsbM+Aj55stCZln+XK5VqJ5t1uzFuYogOUmlBch7N240gCqlk/qXqrYdfmZKXb97ENUWDzWR6QuNKtp0jTNjwA4OFkutjtrmPgeZg6Cs9v4bvFNIZuq9EeHnd6Y6D1l5eb1fZ8Ph6ebebNRqm7CW1ZL0y/eXP5Nn6eE2i34z89PCRoRuEZiuMdfzlQW5p8yOpCumDxst4pBWpRJGFzyTNmyWDg3WKqi2FzXBTDTypLRkhyz3PPA4fKijzOgPd0miSlm65wcraYrU7GtQSAr97UtY6tVB/eX4xNqTJcnp//euqKcdR6+eFjc/rtx79arGpEQehF9U5vMFuvdmdvHl6/ff0vF3kQWBSV4q3804OnXz59DCOEX3/i50+yZIYkZU2EPUpBNyxORbMMBYQWj7lc8AfWUkiuPe2PpqPBaNA7Hk0GrV65Vhlvglan1C7ViuVquVgqJQDsR0FSbfIcDV1ysIkQKI7gr2hJlTVT19DegFNUXgXWQ+QJhk+aodFLHv2fOYriae3F9ev5ZN1mFLvcOfnw4WJS6jm12nDWHo8ms1XkcFmpZclcoVtb1VyX0aPuccVz5HItaK6H1y8AgK+vrnAa4izJZ8G+oL2/E7oVg9BLDj4/RxWMkiSGY4Tf4RCr0f1By6+4ul4PJTcKqp2r//Dnf/j1p99/+S2xwvrx+2QM+Ltvv/76m/0k8NfvPwAAv8ciNALw2z0AY1MJ4u/11eVVsiFtt6tGfd73SwVdt4EKgyDivGarPXJdXVIKjo7xK4Yhs8VmPxYlS1Q0UbUtg7VhXdEMyCtBRRtdT9NBBKuKk9jlGaAoTAAOBTZ51/WrtbhQsAwnApJuRlXgY1h3qoJe6CdNWCAYFoC6C6w3/60VCy7GfLXZD2kt5skwElyx/UEwwC/QmPOTTohFPFtxipUobsO1Wuznqlc4OJyg8L5uvT1NRpC2+4J0gsOA7cvpugoCU4JfPHYagcijGEaX2FQufUSwUdHVFZEjeDZNAW5mcZ4yBj0DJEODDQXULFurlhxFdwzmqFQEjuFyhEQ6oZ5nKdWkqBrKDEfHZgYKz78YAGCGTGWPJMOyBEViWRrutqO0ikMheprgM5k8j4cfiq3k05youAZJO4D3qpBJpVN0hqJYRTfzfLNoYtUUs3xBoAIGcxS6w2HUME3lUqlMJg2LBhBdEgCABYEhSJGBT0oC5OOxDUhhWc7wVAa4rchTWXjb2MjMkBS2kHJEOs+rCpUTVViA8DfwRaAJuXwSQSNYlWrgRhEAMAjMV3cuDT83n0+OJUFlCWxQskyFEY44jCjcrYuRf3jAH6WyB87mfHhcLkUmIP5R7tnR0RO5ARycsgs+KH0qQ5GCzx+kM6knarsfKKYd6k8PaV53TD7z7Gn22SFFcawowF3HZjPoy5VOkzyD6SkU7Ohwo2IgJpCjhJp8sTvbLcfDwXFlfHl3c3V7fwGLb3NyenkKcHy+OXtxvV01C6APHV0zDTzFhZ9XjEr1WqcZV2enmzMgqDc3dy+u71+/fvXyFlbuGY6/AW1LzoAjdFLG6jX6PNug/UqVSq3T7Q76w0lynjKdrjZ1I6lv65pt8cBKMU3awB5mC+AsLpVLScg7tvYMALTH0xVWeOBbt9dngMRXt7d3777accCJQ2y4dk0N3p4MBMqSDFnzk5vLg69hriDcq16Cw5+jfR3f/wy9fwfAAKGJUxb8I+myCh7TgLGUvM9o+Nu58B+xhPuCNNaj8a+dx78wbT+ugAyGV6XYHJtNqaBM7ThyBIlP09LRodKJRfhBOrAFnmI0kSWDWFQV3FUFSVbk0PtSLhXKgG6lchmTgWuJBG52+7pS9EyZl3jJdUA+KgKme+WjWFfrjUpYLAamzORYAuM2VV+Ra7NaIJKlSr0hUnqnLmgqB7JRYDm1UJL98TyWTZ0srlvueDwIRFmu9oq2xCs0AaxP1TPlzsJiONPyS7X2cDQ6OdtehKyKdnckARcaZ8uDqFRptBqtwRAk0XKzuzhPqpfz3vZ62z+ulJe+RTO+Vjv/eEGDZmHl4CJ1SLJHsmQyjGtE1mqlDA2f402C901gzaWuQ1b5vCZyOclzOXXuZHMKL+mwIeTyqhU3onZLYrPcgaseqDbT9+Tscd2gdaKy5aOLs+l2M65VLYOvAgDrHUutvnh7O1WNbm98dfX7VmRhL6rPf72L3/3071zJ0mC/dcvVeqM3X6/Pz1+9/vDx/T+fpC0DS/uCmX1yiDHAz/Z5DE+fIwBnssCHAQxFIEvArljYR5L4QXS9ResMSeVMkrIH3ePReDAYj4BCLmbNYqXcqt7Wy71yG/vlqtViXIadHhRwFO89xm20RTDwMEUHfR1tWLjCsm4YKugRQdOApsFmRaEBXxLuRrN4wsQxQL2p7MnDw1Vn0aQVq9Tdfvzm4rg1CEq10bQJAm62rbpClq97Gud264umZ3PoxFHzLC6qF5ub6c3d9ub8Ch0vsOsJTZn2gHCC+neTyLvlYu8ANUP8HaHz5BAjCBMEHgxa04pbckWvaXBhyW93/vIvv/35t19++f33X3EM+Kcfv/v2u+9//AEA+Otvkh7or7/6+AkA+N17tKJ89frNqzcAwHgEjIfA19iAdXmO6eLTRqdfqZUl7B0tFAuy5Nq18XEn0mTNcLCtVFBslrDag7YpWgrBKB46uwc4jKiJQF/QnVbRC+XAg90auZqaFGk1Fbs2ZV4WTcD1GNiQCxIbuRBgLxYmgriMnRft/QwwWmAlplhwAWZzJCJ4JD5frDf7XN99wsJn8EwAdLs9Ob2eh7VKpRqpil8veq32sDvZJPFJ6B69xrPgVcJyEheO/SVf4+E7EI+TxWqxmq0rPL4DXca53jwABs2wsPSzVO6Ioovx0r+KAAAgAElEQVSBrwF7zzKAfDxPZLyoXI58y7R1RZUojmYJptEI0F1Bo4+KZcfwbJ4WCMuXUxQhCymyWcSdyzXhKolJKZiiGLR7Thmea0gaqFD4X/YgJePBuJqixAwgCvwVrTkClecFxdVIPml25nA6lk2TFK/rSkbqFHEYNwnxwYxMWYQXg8apHJWh8bQ2T5I0R2dznCIbIovHuzQL/4EsZzMM6Gn4oGiS1j2VFXVYVegMCRAKypkRMLyQo3Ikb2pUXpA4mU1WAoBdJpuncA5J8WuVYhiV4k7/eHUBAEzBc9E0sADVhP2bZYMYRDvDwjI6oCaLQCX4bEpK5bPW6LTCyhyo5TzAZ+556uip0yHzOZYzTVkVsnDRCY5MkdnDw2rXkmUzKNDPjvK85Rpc9vD5wTMCXjiPAMzT2SwQgmwmQ9B5gRc5RlE4SVVBJ5hq4lZhOV/MT053uKZW0+PjxdXLhzucATw/3V6cX16fn+xuL5azZhCHsNWb2BeCDhfFUhSDjG2W6jM8pTiDNXLz8u7l61cPDy9fwKa7XJzsToEYTgadalwOncRQw05spL0A0xhane5gMJrsE7+mq5MqCFc0gwYKy2rAmTRFRVssEwC4AOKgXGv3ejVAnG4b2MwYrUM2J4DeS7hTL4ebi4e3r19fsaKoGhh7AredaamSaAF50/S9zZXnWY/gGmJ5+bGleZ/z+4im/waGEYDh646PniWofV2AcaeAmcb+YxPWvvT8CMC+i/Vn9PjAQeBHQE6e2jLcSqMShIEPG4XGCjm94ihOUFRVNUeIQDTNuayFjoZhXiShg+DUI0uT8MyAhyUnaL566FcL5WIURuiHVUEJ3Gy0j/sFLnJVkYW72vAkH6df8LzHLVpKqQ0AXAosmc3TuRwDt3RBYeNZK9IJv9ZoyYTSbAuCxoGeFCgRdmrBaa1KumplC4u+25uOS3DvR/26JQoKLD6S0ezDSnPkiZwEux8A8HicADAoYwUTHVQLm2IKPvzQSgvLG/3xcI5Bk1ssh8AesjsH5Wc22golh/QT/33zwFwO63ntVsno0qEiO3nCMX2te6JXvbrOWpSAGVqsMTvO2hTv8GzKCCzeOg8k0HgMK0qU6TEsRop1Y4KVCJwDFDKGXDmsz/ynJpk76RL9F73d5bBaNg2+fvW6ZrYNtXr78H6ulJfFYH73473KeJZVrJ382Hr982+BbBs4d16s1JoD0DHnly/ffP3Np39eHhkicwQArKf+dHR0ePAYh/Ts+dEzcfEkA+srA3sIDlFgIxQO5OK/kO6DAsaEXi0vhpN253g0HE5Gx8PufNbzu8VefXHpd+vVRqsclevFuILHcMAPy8ntalmuvT8lgvvCVqKtoLsaOh2YKifIlimxsHUxggyKAhtz0IsSEwpxkoM6ar56eNPrdmnJKjVPvvn2qtPrhVFjOGrO55PJSctR8nw1NFizVZv2PZtRit1x01J5v1aqbRaXL3a3Z5fnl1dnZ2fJPCqO0mBK2gXGq6xWJ4kNR4LASQF63N8DMNahUQj328MAtnM+KslSFMTN0//uH3/57dfffvkzoDB6Yf0I+PsD5hECAiczSBiJBAD8dp9GCAD8+hUaYd2+eJHEkmMl/PR8N++X+t1S5BqGiWvQUYQo8mZz0yzYomYUJN0BfsIRwahXklSbpU3X9KJWA1agDarBMnXJkDhO0gy7GAIkq5KECbOYVyuiHtJYhtMM3bQKlXqEFoGWh33pcTKgHZeQ9rZ6Y8xfQCWcdEMn2jdpvVruB7MwEPjk5I+m5sfJrZPdZrc9fXFWB9JVrbuKV469cu243388Ul8tkhjh9d6W8mT7CMCbfSM0VqXXsHwmi1iUcQhcZABjctjYQTHAuPNMPsszlUKAxd0szeQAmchsWKkWA/Qf0FVdpViWJZlmG64XxiERxYqr2waTF/OGKxyCkM49o9tFFCKOyguaiQgMUpHJ0gSRdXxTEQ2RZICD5w5zCoiLkgL7SR40bhZ0pmrxFMELuifnBdh3NYFJH6YyXD4xx1PyZj/U0WEaG6GBjSpI1+ENJA8a3dvofCpHkdm8gL3+8EJpVspTLEFz6bQgiSyHqpfUfZ3h0daLxHGhfJ6F55dYILo8laMEUyEIUWBVHKtEe3Qyl2QkCKRZqldBxhYDAI/1zcOVTTFo2crykmrAGpPZQgGP/fIMxWWcjSFQbOhhcfx5fegeHR5lMweHRCZFHqBfJm8K2ZyUA1mkMuk8gS/jT+knKaNm8rJreWoalLJgWSKRTj05ECNfYXMSps0R6UwaVH4aWAEhiRLHJO2TCs7nAL1OvNe+WGzOzs+A7p5dX62Oh5ublzcY/rVbX19d315sTm+v1/NGIUzsNNAhQEdjedgpQOm02/3JcjWa4+T++eXtS1DArx5eYAwIMjsMnR5268VqhACMnYXYmeyF5aSJqNnrHQ9Hk+l8OQe0ruuO6xu2ByJbF7D2DK8OHSWdQhAUQfcBAHebrW6/10kyEMcz4I6z5Wp7dYGbw3z38u2rjazK8J2WDy8RW/B1BTYuXU+sJz0//Pt53kcgxhO3zx3OrvsH/n6uLf9bAMYDXS8MC/4f9efP37B/2n0eQyHYjxK7fwDw/quleqnie2bBVDC+CAi8FQVoFclwSuaoGjBeAcOjTZYA5sVSRsng0UYOdwyZt0qHVNFCY0sE4HJ570bZ7LSKXByhAhYItcAVLAln/rJZvVzQ416igC2FJ+kkkVDzdNobH8cOYcK3yqRW7WucIbASx5OwMEJWqazrnuoT7mjiN2aTMojvcNB18IiZZ7KUYpFW65ijHNF0w3JzOJ2uz0+vYkHjNY4V0OzEdgB/43K11e3CHQ94M53OEwfDs5Pl+Wo46y5Bh7XyKRV+ItdWvswsry4KfCcidJaURY3BMUKrtCvLQVsndD4P3EKnqMZcYvJBwLApFzfO40LZzNEcISo0qwICcUE16ghZWQeKAVSWV5opflLM6QRdvNG5m8XydlAqahpXvXyo2i1Vq129+HSiN5a6UD4++1A4ckzFHG5/ff36w3+IJBxJCYpxtXM8nmOv9ss3H99/+OvyyJLEDJPW7MyfAH6fwS8MQ3r2xfMvhfkTILe5dALA+GkJLCYCJhnACs5tgmiRQRMr/npR7U1g6x70hu3jSat23BgOW1flWqvabNZiUMFhAsBYIEKXcQyoRSMOtG2XNEssrIFOaqjgbJPnQbNJaGHEY/IRkyhfrEELUtL2SuXNi5fvF+GIEp1ydfnD9zfNVt3zG9NpazoZjk66pkFzpVil5Xp1NAxsigtb466lq4VqHC+nq/vTu/OLvevy53CeHZ4DozH0yWK5XT0iMHYGY0jBvgI9GHSxSaPf7w1KUdXR7Qh+BV6z/du//+X3X3/582+/JUbQgLzf/fAT6N9vf/gMwJ8+fPr49u37N4C/8Hj7FveQF/cv0IvjDgH4/Pz0ZDXr13qNKIoNxceSlaWohXhUCRzVA/h1Fdt2VYmWnOKgZ/CWSMPdCBKwdPHdV9tKER1wEVMVQYadRcXRRhdAHDSUghrYNFTVxP0CRIvpOoU4iuMC2hr7JYCloFKMfDz8waPgwT5Bdd8GDVvXco4V6YSMzGYJ+AISfy5BJ7ZYAKZnJ7uz0+vLaREkcKtk6KCy3Up33J0i8i4x7BcPgXHOa1+CfoRfHL1OrCxP1yfL1WQWahreT9gPlcUaK/AvQ2IzRConcmUvUBWRy9FMnhOEXK7aLIUhCgFQMSo27JH5erMaWZKiC7li2VZti8nKiQLmRPLwCVWHXSuyeFYCiYex1nhQm2fJXNp0gdXrElBwgPojQkdvA4kgKRCH1FGaYhRDyBKCaBXEnGgpms4zmdRRiiU4kKOKQjhdz8CUO4yDlZGRAkZKNEERaQL+QpFY4uhphqTypIApXjzOcUhpgslkyXQyXyUrHCC14coUtniJVAbALJfneeAfedh1uHyGFHWZwPYLwzBUDN6mqWw6Q3I8Tzq1erVWCYNCq9ff3b28sGC7wM2MlxOPJ03wfQx4JHLcER9KvkG2VzrQaS5bLhBpKo/+12TmgDhIp9IHWVUBsXSEQaPwMwmkP8/Sz/K8mFeKDc+gj/LPsyBkJOroWQb2ciFH4pk8wxMof1NHQNwPSUBemhQl0EkCxvXpe8dG/YskcQwY78XF9d397fr4ZHd5fX2x29zAH6935/dXJ/OaGySJwGgijUVo4EFxDXTOaDIaTxebi+ub6+urqxev3r598+Ly+nKHY0IrpMg4hoQ9T45j6mivZ7kByNlardnqJBUr+HYM8to2DHhK3bA1YLIAwCaGX2AXtIu5JRjf0GjBvn48Go/wPl/NZ8uTDbqE3N7tltur3fr87buZaHvA1mTTRMsCGXZTWRF9PAD2AGsj749hokdEjB+Lyp+zjfy/AfD+RDixqsQxpb8rQeNYUvQ4ovRvHv4+XRjxGZ/BSZ7Dfaxxm1bcjMqF0AxgQah0Wq5GvF4t6qpAZBklQw5VbMU00UoVpIyc5Uo2jq1T6BCjyoqtHVrwDsK4WEI6gjVoPANu1Xi/bGPYIqMGUgHnLxjgpWI5MoNexY/iwNZEUEdAOVnVdjnzeFx0SblRbRq0Eg0DHkQBmlGKilzgxfKsFSo+Y3RXUXk2rku87A0GriJTnMhkCEnLyb1eIc+bflSuNvuD4QpumJhXGImiYOkooIDh8sTl2qBba4+HPQDg+Wq3ns5n12fTm4tJv7wKqyWHEjlFcIENPM8H/ZNbVQ0EJmvqdFYwVUM0jc2FqZU8hSPZpq0W2JRSNlNEKeA5OqjbjDQdVMIMY/AsjleIJKvKRbtXeia4eupLklTdoJxn/FkMWMSu14ej+8ntsAqbnlC/fl1xmrJeO7/9eOmVe5Jg9S//uqZ8V3Xd/vqrH3/9rSiC6vGCalzrjUbT2fL6/uHdp/ff/PP0wFH0PHugu7knqH+PDp4mAPz0+ZciAHA2Bx8hzwqw4hmRZXgEYJTDOASS2OcLLK9VZstWb7ZaTPud/rg9Kg5r3f683RiX261yvVkuNiphJY4jTL0MQyydmqYDLN3GeQVRs3h3LWFwtKkCQVV4bPikkMnjsJOcGHLQJImTGui+zwjM+OHdjTukJa9aW/309U233YmDaD5vDo8Ho3VfsxgmLCo0X60czzAcJKj2u0BbnUpcACV3f3p7fgmcHBAYy1t4JrlLiqE4DLw8OV09OmHNZ3uDRiw/owoG8EUB3B+a9dgTaq5iFdxCb/Gf/vrrX379/fc/gwz+5Se04fjhp59++Obrb7//XIIGDfzx7bv3rxGAcRT4AZ2g0YoDFDAmEW4vzpeDfq87iKJItWIcF4SVUhouegbWy2zLxL4UVQRNPGvpouHRPBrL8qWrn//pH37+/aezYS3GrksbT9Yxf07U4Vt8zLoAsMGDdUmC/RAuuaYammqidUgpRu/7MPYdN8DowqgYOoWw3OgMp8vxbJG8+TEAcNKJhab389WjscZqmXhwPJpKYhMVzvJuQcO3mpVKo+oodlRzSs3p8SBp3sLq0GOGw9+dAe+DgdGgcLveLkEgTxdhYucICpKn82gdkcvRsHzzdCbLc6FXgNsC/kDnWB4UWqNdCnD0wsMsaYkXKCrXaEe+BQKUycUlS3ULQl7ImqGehv0m84wqB1FgKDyvGJrAAbDRFEkANGcOddcUGFUGDU1mEYZQZbAk1mZzfAbQXjXFFCnC1svlJAPUAkdn8pkMR/LopqHkrCYeGKCng6pgOCfGKUo0ydCkYPM8S2BC0EEOx41VGXtOeSJHZkkEYEA5PMaVOIogZVOgBUOSRRqUP5HKsjxFglqWFD6fpWVQpRQAKVo1SgLmv2XSmEdMUW4DARg+PACb87v7Kxc0Dc59CPtALIn3I0NX0Mw1mxXNDm80pOcUkWHdQuLfSzNEPgcYnD9Ip59wdTFP0YccXGiKwgFh2FJTKfp5jhGHg0AjUtTBEYHRKCBFBJ4kWE6Hl8JJTA5gPAXwe3hIA/RzpITABlu24cJVMeCek77A8tLm9Gx3dnV7c3V1e7da73AK6ez65v7hent2DwKm7sWBV7AQe719mL0fV1qtHqjR6QJ7FK/u7m5uAYDfvX1x8eJ6t5gDo8O0lGG37GLOODbYoR+l5UbVYrVWa3V6e4fz0XgynSw3DcPGsV1AG9VQDctACyHs2UpAp9Ko1QCAW41Wf9AfTE/OLk43u7Pzm7PZ9Oz6bDs9v706ffluqncX/Rin7jEZBEgtFufxANp3Y0BTx/88hhTugTcJMnrEY/ha+AcAA4gmNevISwA4+LsmrETZJubRvh/8WwTG3AYcCf4sfT3X/cN7C39CtVYu4e5qCgKZtSq6GBQ9W6VyKUM8qlc0PUQ7OUWiAVxY0iiYwENB1YiSrgliTLMVUEfFOI6LnwG41+h3RKxmS+hAZwu2A2IYk3HoODYduPA+7OimnCymHClagai0FiWPFarFnk8LXr/KawogB3BdnrdlpjzsxorLS43TUjwddwxWNrtDH23oBJ4AipoVe5WRmLYKUamKiYOzs7PLAJuBeHR8Mozk48ImrEa1O+p1J6PZcrNdzlaz3dni5no7qMxc16KpiHNNLdbyaU3Q/l+23qu5sXTLErs3HUnY47335+DgwHtHAAQI0NtkkuldVd3y9lZPm+nomZ7WzEgRetWTQqGXkUb/QG/6CfoBCr3pRQ9SREePRhOhCO19wKy+rRCzKpNJIoHDg+/ba6/97b1W4wuL9tUiGxnkFiNKpixzo/dtPnY8Mav09XBIZwhNyohRpDNi0tVzzHDfa9kF3tFlRqR5gjPkqFrt0wVTfbz9gJC33CO1JHdjEtiMd+Mop8uLabNmGgDAzxOnIRqNk8s3Z36tKSpabfV0j5VFshy3Aqn9848lFWVKy9WkkSoQrm9f3r35/P2Xfzl66EhmgdtS7fzvYR/tpAT4yePH29uP5OWDXDFP5FmBFSBeMdjUxnE4XM0APEI4SN0TSEqZTrD3ebFcTPqDebfZ2E1avekoOKg3epVKtx43alFl050fBDjB5qZZrpX6iUBqI4THsi7LBtojaSqLqTUtC0hVBAm7VNCIHLc/B5+SnEwkt8+fl5qU4lQ6R1+8u+jWBs16NJq1x6Pp7nKiuRwV1FSWq1X7q3KgSaXqYGCZslGrePsHq2dHVyeoQnucmjFsatCHh+v9jdTxwTpVo9xffOLAk/EYhaCH6MaQkuG204g0s6XLtm/VB2//5ocffv7u529+RB2Ob75KPxCGP//8UxNWCsBv3r548xoB+OULZL43t7cAv9eXaEC4OlztArj33F4smD7sR1QUqEzmg47FSLatQiQLTIHVze6sKmA7rebWyrI1+8NP3+PY8ZvvX1+sR7XIsV0IYSiIKKoqr5iqh3AsoUWepHuOphme70Lw1NEpvVStlhLPwrlEp1xJShAsTM9HF5IJ+hFOd1N7pL2NKAcOFC1Wh3uLVCV79VsJOi1DrxboynB0fHw2b8G+qZcsLaiUwspg2p8s12kfFsphwWf/WII+vO/DwswH3gBYNqv5ooTKCPimM7Ch84AxBdqUcQ/A6vMD11JYDkAjz3BkgWy0qzGkDb4LLEvkKIZgCu0epBQaD3BWSuCe+RLJZ1RfzZCkVNxmq6WShbk+imVwopgSYEEkIDYFnsYqAO4Uk8ls7Yh+FIUEEO18huQBIQXT5nYoyGZtpijpkmayZIYo5HlkwJohZu2249sm9v0aaWetCvkptgziOSikENmdXKG4lSeKtKwpDElBIMvnKYouAAYTKEyJOl6FIiSfnGIBdDPoDrhToFiWYnVBUQWK5OBZOUrRFFNJ3ZKF9BQYcLrIeg0A4ErglpuN4cn50ytfBALOsjwPLA/YEs8EJVURaJon2Sfcfkg4wmPGJLPblpAtsoyInhfZAlksbOdyj/QOU+SKRaXbtwQ+zwk72XzuwWNqmzO9QayJ+Z3CVgaumBHsBJ6RDWI2z1NFVmaKVC4LBDiTy8N3sfipC3CbNFm1MGKiU+7vlpConV2cHtxcnh6fP316+eZib3ZwiSI0z27PV4fXp8eH7SAJzMixbGA5HvJSlLBotAe7CxQbv7q5vr65OHh+l/YwXh6kWmz7aFm0B7zHKYcocoWSyBbkmaVatdmst1qd0WiymxpeAwAftk3XNlyVNxzDSJuwFAOVofFQMS7XWvBwiPjt7ngy6I/mR7Avzy4uDg4X8/XxyTns0MuTq2ejAkEau4cVwC5LVGzblFW97AU2ZL/lwCu5KPb3CUOx/ow9pwjCUWlDbs1PZWXUg0X4jO8B2L8fQ4pQP9pL7VI8x/4kUrmpcKf9WenhnWv/Br5pWRsBOa1J27Vy4oUmfMkQRCHP91XVSzxZkLOcWMj3VA2QH9a6gZJsGkVGkYB6cJBT2TqruOaWHZchQnvRbwy4WxsNJKkeajoPWaura7atsDSeO4Qlw+hWzKAch5bC8cCOCEJwA1Gor6qhxJfDcYWirVaDlRWBEWWxKGslX66j470rCfWzSjCdDFxIh3uzxOAEhgcUFzU13/F6DiTUqgskcTAYHRyeBLwhp+6hkiZhE1aUNNrNVm/Ujat7kwWE7MX++dH04PBsfTDuzLocmXmgq4W6w9OZAsXL1dcKFYt5M9SFPJlOSRSUxUjtkkpAUB2xdZTPotVnCMEwLzZrMmzLsl9Z2YxMy5ygoFOYyI2sVrKjc5mdjMyS9WcDXSESlPYgVqcPmxeni0YFMKty+rRsN3ijdXzxamW327SgOh23Ksoqax+59kPxy58DPXJQ7KTR7k3mq+OLd++fv/nszWe/DB+6gpaX8how4K2trZ3H6Aa89RgtkeTFgxyTKwADhl8CwWnwJ82iUREkJSibICJH1STmYLW31xhMF+u98bjbtmbDTn0yGNVXvXK7U+4340Y9StISNB65pDgMiwkYGvbAQPASSqeSaGILlm6bEgUAjJr2HJ9OG7M4zA3vMLpoQfBE5xr9+uldLSIUI+6fvP/iPFGr7UmrMe5OZ4vd3T3dF+igafJ8tdo7SAKRKzV3p64j6o2qNVvOb2A7AfM8giT3BJufUnvaA2wSWi9Xh+u9g/s5JGzDmiH+btqgB5/GkMqQSpCVqmq5gTsZ/sWfffvD99/+8csff/garZC+/PKrr/7wxR++/vqL95/GkN692wDwvRTWc2S+N3d3N1dXl5gHHK0W495g2PQCCzgOgLojG27QX/QiNFGwFVuydB0okLs3CRnB0hjVimK3dv3Lzz999fWXH7788t3zlx/eXK93I6wkwy0GhAb0sXRRc3y4xwq8SZrnACfBFmlTUuAJND2sVFoodukCk0yQA+MxGiBwtdGaLhZTYMGLjSnh3nw0BYo639vMIAEUb0x+D49W+6vNQMj5KXKGs2N4m1uNeknxoqob1vd6SIHX+wu0TYf7uXeQTi1tzAjxY5XC7+HxATw9AHAErEKT4D0vkDSVyxQB5GxgjHSW4BWv5MDe52kOGTBF0tVGPYnQbUc3TEmgWILJNppVi4NkmcrBq2uOKxBKVnakbZLm8ttcreSypo6Tc/ASaGrNothGoZg34R7wECY4GuXQd8QoKcdFWqJyOxwarbG2S+8wEm9YFKmi0S1P5jLZHJ2lIJ9WmKzfcwPfSWvDsA0g1ACzxItgFT6zhUpYuQx6BxIkD3QDHXRhHXPAL1kum08PcrGtisLuDw5LS0w+R1AFeGGglQpWuSgIPpLGE4Iiq4Kadg6JAlxcJk+QnFev12qJ75SBcRweXqYAnFp5cgrOxQh8GKElHF3M5Kl4JJgUM1mo+SwlFfCIqwjYmd/OFrceAUsvKFaRkAne3B1DsN2W9W2C2Spsw+UznaYmyBRkE7lsgRJkEU+IpCCCJIPI0yKVzWMBGq6H4hhClglOVjiKxcIL2l9i19vvjg+PLtaL04PTq2cXx5fXR5dvX5ycXlw+e/n04ub29PD66fGyZvvYlWnYOAhsGG4cR3GjWuvuzmeLg9Pzy0s8sIGcFXU4bk5OcWQ+tU3Z3xs2cMoHtfUAUYHT+uVGKa60ut1efzxFIZnZZDpdrhuGrWPBDT50uKNpymRhy7UdNRBtGo1WB5Wgh+PRYIFamaenzy5O13ur06P52e7y7Pz0trPFcHmh1XNQD0szVEG2AiwVp+gHHDTlrWg145ZiZLtuKqgRhOlZiYeyGQHmu6lXsB8hzQ3TynMYbyaLSpsm6GAjRRl6doTSWUFUsu/bne1U9NrDJ/TwIBg+TSHZ8TZTwnbSrEIqDZvaEEhS0Pq2bFQDWysSOxxtjuBy4SbrkkTQgsiyRlmTVIoWKIgXhigFxsPQif3YAxKMQmLNWrXRra0suh7aOkRhSbX5yFQ1DnsnrNiXG61quRwHrgKMmKEJWsQOyNqsmUiMV2vWxAzvlVBmXWKUIssBpsrusF81FJusnvTd0e40FFSj0q87kAJghxRvalv9zsDOEKJpmW4paQxOzo8iVYWck5NkTVc0B96tar1Vb/cG435nOJ4uUmWBBXADwOJG+6zlcpmHT4RHMiTKW1nSzJdvJdi4BTfUxRwd63nN4x9B5ukZlEUKXbp1rhUeVmJJCSOVVmsjSysylqJLoiAbmKsQtEQKhhy2O2GeyWQdvuD646mwtdOp6xJfjA/qzN7FulGRdaZ79r6mVX2jfXX6xX7QLmmKW/HsbKEcqOHcl0nvm5/iwPTKDTfp49JcnD67ffrs7WfvPnw/2MLDaGFbc3IPsk9+v4X9V1vbTx492X4oTx9ssVkuT3MC2iGJqbi2lFoF8pLAirqmm6qjL5+NZ4e7s+F0b7q315tZ49l6Vh329+qd00a91Yh7tbBRiStVyBWD0IsDnCB3bdQUd1BZ1bDk5IA1HJnXbF23pGKWBt6miqnCfSqItbFFolkhNVKXOHLx4WZkIBT1Fu8/vxpooT3c7XT68wUeAke2wBodFxKbWu+06emCnxSBZusAACAASURBVOz2YsD3UiNsH+7eHF+cnl8fXRyj0Rkg8NE9LhyiJCUyNcQZlJCdz3d3Z8Dth93JuNOOe71FYzDqDcNKIjkNWzVLdqf3/F/+8Ycf4eOH775L7Qi/+vrrjRXS51988fHzLz58/PzDu/epEBYqYb1BMZ8X6EmIbVhPz0/PTuA1h51BL3Yc0wkcCFpotRIPemUX6/sQUUINaKFuJ6uxLoUGLZpAMIP5t38FL4mEGyD/9gag/e2ro3krQp+jEECXlxSMxoYP+xhlmuB26oZmW7LuoPSTKCp+s1xvN2JIuMulKEaRlHSTl2qtPgpjwZIe7+1D+NvHLqy9vf107CgVwUplNTb3bCMpifauZ2cnp+sW/OtKTdXC2PHqnVljulie4AHv5mO1OkDhyrTogOIn6/viwx6kO/DIEI+aZABUsbhdZPIZeofW5FTPguEitKQQJZaj8kDwtol2o1JOSmU8gtINhcee4FYbW3FMhae9iqd5Ib8jMmYALDZPCqrYVgUHpcJEWVd5Pm1lomiCyO24nubQpsnicRixJRiKH3g5iqF3smQhRzKsYTE7sAAttEwwDZmlinkSjedzFCUqNOlUSp5p6Crql8syMGABXdshj2aIHEsWSSK7k82KxQwrQQJdJHM7KG5BcQRa+BVFiof/WJy3ghxTg8uiCKKwA0s97TlkVUvI5HjJMGhWkzRfxCMagGmmCLGAZ3XVqNaTBN12GtX+8friOFIBWiSUvFRszzEFPiiZGlods2zetW2BSSY+QRBZIpcVVJ7gsdkN0vrtzM721s72Y4bOEOF+yxSorCltUdniA/rBjpCUmzonUQ8fEnDJeQ5or2pAMODyPEOQgkABMO/kc9t5IPIULwC3hzvJoRyWohlISXX9dyfr/dPjk5vzq4vTo9PbO4BcQNLrk7PL2+d310dHT6+PljUncB3fNtK2ENd2AJKSTr3Z291brGB5nV/jdrm7vr579fLu2en5yQoB+Gh/tjvuQ2SJfNTgwDFgxCdsBmz3B6PJaBe7+efT2Wy5asC9c+1UbVqDG2mk1i+GjTCJFkBN9J+H/HqAjVvzxfLg/Orm9fXFKSzsw73Gcn15dfq2ntmRfUku1UReskwJTUDvW6Q2J7/R/WefvlhyEX2DP/VZSE1+A6z+YZ0dYRfSNxw8Sv0bNx1bgK/3ALzpo0bFrHTQCqivnzowfOq82tCYTTUR/wi9sFaPsXSN9SKioFUpfH1V4fJsnqmFohW4ODCHhWeGFOwQmxRQQYCXRF5TC3zDrwReOQIArkFuV6136ouQhnCtwvd52RYiS1N5FvJJoxqqlWaUEnwNzaYpyL8Uz2HjaTvRWLtaazkFLa4ZgsCJtELAnrDKhtGf9DzVKvh7fas9GYeQziW7bQsyRgEV61Q9V2uOS3nJLDfb3U693huvzwJJY+EiYUnDOwa3IEyqjRow4MmgO5zO9zGCHB0c7x8cHZ+N6wc9X9h6XHzwRDGKuUKG4PnGRdIbtUp2U9eLWYgGi5mYhZ1tVDyToxvK8MwtOcmeSsc1Z0drhLqlMLBZGBU2oyxpAZnFAWdF77kzjSowRibvWCEwgSdcx0Xf7foVWXpxMjYcjmqf3tWcpqz3Xl19sU46VUiSajb7hKi1AsWHJwvf/jSo2EngV+sViLHD3TXsh+tXb1+/+3K+7ZoGweUNN/f77SePswDAyIAfPdp6bK4eP8plCPxROF6WeA6VbhiKBgQGmiWbtiKbprBz9j/+14vd1WI4XMyni1F7sJ7O9quNTm93fNYrd9DhOS43AICrOIcUljFvQylEFFM101kFKV6zRnpmZBgmMAS4YEllsNYNcYjj8WCLZUkKLcl5tsAXqdqbm4FLiWY82P/w4bypRU6tkg4QjEbT/ZIlskY3gABU75y0A5134smgYmlaUAvbR9Oro3NIwI+wC/oEm68+ATBkU6lDLU7PIOzM9ua7E3jG8RAFvvr1Trc/2B31q+WKp0RVU3PKzmD061/8WYq/3wMAf/vtN8CCfwPgzz989vk9AL978/r1m5epEsezp7fw8ezm+urs+urk+ORg0ev1OolrwT4CnqoaBtoZDMqGhQAaWJojK7pnVpcNqRKyvKq7gd58/8//+M0P33777XfffvXFx6/ubl6+eAnv5OtnZ4suIDnEBRWdwFAaX/cTuMkqpHQaZO0QtB3LxONKQXXCKIYI7hnYtgKbvlQqoaB8uY7jkKgChs3QEMCW2Iu1t7xXCNtHO+DVQdq19gmAj46OUdbz/KBXhtQ3gZQMMuNKfzbuHi0OlyuUkMZMdX8jinWwkc/6rfh/cLha7g13Z54sAb/TZKBWDFnM5jlaMjWGAiCgOWC7lsJxBCwCjuNzZKPdqibAPRyU4JdZAnhlreFHkEzrci6KDTUIRYIlVF+kmAJn2XwNMm9bQ801bTNPC5jNM4CSECZDXtcYbMvKbTOwcGKNFItAT3MAJhyvaVQGoN/kMpSpYfchsQ0omsMaLsMXinYt9uH+osC0pCIGo9ykQOaBPENQKmAReoeUiRxVzDzBo9tilpTYQp5mi5lsnikCdZAhvRVcmUezQ4nMovoycMlikRYE1RRyRUFSVJKBrEFLR+Z5lNpii0UOeKhVq5crpdC16/XROQBcDG+zQBNwCbBIXFMVPF/TBJZkKSHvtWTa8YgHDzPbkFjQZqQVWIoki/kcJgU7mezOE54vCvG6Y0gsHWjbVHGLeLBdA84FxJsjisUcnhlzOP8gFbcLkL1ANsIKbH4LMHwHvkDCDQFyDhcsKNhujz1O2Ill/O706ODi4uzm/OLy6uTg8sUd9kPfPbu+O764ubter66ujpb1VAva0ZHFGlh/db2k0+oOxlhEuTi/fAbs9/b51eXzt6+e351dnq8XuCD318tJp1YtRy6aKqDHKXLDOMYzxDYEaZyrQwCeAz3SLd2B90lFgWKgU0iBNd2FNR9Vao3U+6edTvtPFrhUD87PT+Gaz6+uzw6W9cnq/Ob89ZpQzKTriiU8+zWBj90P54YbeA2iTz1YkZtaLCQpAIf/xOkoLU/7LjZJIsj6sFXx5MjfSGtsDno3mXBq7pD6ItmfWqLTAeBw8430mTay0Y6HsIyHzpZVbtXLkIgatg1ImZNbMiCW6QHC5fN2RzJLkaFBtGVogFFKSnRR40iRk1hREwXN3oZMHMIA5LaVag0/2o1JnYHUCBI7Hhap6NnYiQH5oVSP9KCJog5+YMP2o7ChQQxC1h13E5tR41InIcyk7fEMALBAcJRgxI7cm++WVJM0h7tudT6ucqIUL0eOJnOcCvtFNCi32olI04wbneHu7mLUmJ45gsXCzgccT+2r7CCuNIABj2cQlGdokLpGJ7v1ycnp5XpwOApsSdJyT7ZZKgN5akEvt53OJBrXagQj7MQZ5myqaklJN+uxbjFtK2rySSOalDJ66Oe5lhPBGmeyeVoHYJNYvqQSJFpWyH7YaZS4ognJJ8Nu7ZjMVq0d8lJeP29lju6eVWyOHrx+G7lNymhd7R93o1JsWqKjUbRsWqysaZHn7r0+aJXq3UoQV5vD6XS+Prs8u3n98uW7D4st2C2wowxgwFuPHm5tKPCTx48e/17df/yoSJIZQuREVkKDQIjp6biFqgKVwJEHnmSeuN/8m7PJfD1p7y0ni5E6ne9Oj/vtYX06mS6DbqOdtGthC206qyUPRdLQONNGqxDISfHsxhDiA9Y00qlBQ6S5VOFDwbFK9GVAHGZphsVZYOzDIrkcJz296VZozioPVu/fnSUaRGjDLXfQPXCylxgio3VLqujV2ke9yOTM0nhcszTZqUbto9nFyfnpCUovp2fA994AgAbpGfDB4TqtsgIAw6/p7u4YfRgm/fYIyG91tjvoe5WybMICNLxS1Dn71z/+9AmAUzek/x8ARiukN69RiOP165fPUYNjA8B3x6cXq9Wy3ey0E9dEFdsoMoDlVMa7Vcg6WUXXVVVSHMBhb7Y0zbaiuGbcMr2zP/7VH3/6CTg3vOZXn3/86sXN3fMXAPFvP7x/cTrtJJ5t40ka2ivD1lNx6AtN6EUdtSw1Awt1OmS9sG3DKvZv+aVS4IaVUikKgyipQYLWGwMALyejKUSvfezFmqOjTaoJnQJw2jv+GwAf4508Prk8mjbLgAmeIkfVIGiP563lem+1Yb9rPLhbIwPeDCAhAN8Lchyu95fj+SJE3wkJXSglNl+kySLNqzIDsJgnmdD3IKLQaCfA0QDPSadT2ZhKWIB9HEkS+aRWDQwV1aMrJV0LfYkRSCNSGCZPGzoRobyDhoOQGlaLhdRmCyUvvZLvcrLKo/RpLlckC5SvZVmG3MkDe80zoqHRqCFrcjnWhSdQheLW9laOKFA8R9HZgluPgZXca1HKsC8g75GYTAagl9nOobNC5gkhEoXi9nYGXRLIHCkrxQwJYJ8pEgWiyJtclpJclaUg5ZTIXIEgAYBZkmDh77pQIIHUagQNV63auoztj7AHGYpkFMUEohFX4tCxa43RydHlZYQWJjj8JOoQvy2Zsx1Vl0W4f0y+NgK+LDwsyNR2YYvgor5DMHA1uRwQ4Cx+7DwRAID9RVcWIOFRtwgy++Bhqx84muaaZIbmiG2CxRo75Ur5nTzLEDpsfVkmnmxnd7Yh4+BknhfZAinpKjZTGrDWsBEaAHj/6OT64vjy/OL69vLg5PbF3dXxMXz+6uro6PbF0fL86njVwHptmCqlWLpl4TloqdbpD4a7++vF+fHx1dPL6+fPLy9evHv9/A6ow8FiuV7jmPq0V4ni0LXQeslHw1+vVK0CAetiR3OaQ0IQmgEAmwBkuFhST7H7Hm3TjQBzKs1Wp92o1xsjFOHYWx3u78/3Ds8ungG1un56stofJn3bK7ltwWHIxsiiYQdJgFdoc5QqwtybMESbcSMvKm2ar1D8HiG49CduwPg7sNIwtWDwIixBu1iPDrwNUiORdT89Mkg9kDz33hUJq92OH6FYZeqi5Nx3YNlpAXxzVuzGrUapErqeLcM7lKklbOzXPFHmyQLXjGCnOzgwBxkZtgb4AQRZ9LrmZVPl1TCfr9lh2a2hYR4icL3V7PYFPfYhZREowRcs15R4Fnv0KpFhtcpxDFdv8wx2QdOc6Eas2u8lHsNDZGwW9VIrFoCrwVYWWAk4ktyeTUuyLemdVSlejtuGzLuziWvCwpEgIeAtRq44KmOFgP/N3mixHOyubckWFZzWEzVTsRwnjCstTK52+73dOfqjpgY6ByeH65OjztHYleAO8dtPigyDDmdOXPWqc6O76JiEnq/kKydNJZMMfDd2NU8Y+LSQlx27My5wjqEznbBOiZTHFjmn5MEdoSxXy5IQQCJOdSpDgQ1Z4MFcNiN4smCWeFYqlu9Y/fXLA1JkOs+vSmFL9aI6bD3b9DWXL9A7QAjqw6gyAAY6ePah26g1myEkhzgft7e6Or998+LF23ezLd1SSY60ncLjzKPfb2rQqIX16PfK4sHDfDEDEScvMCKOaUJmYOqwhtHcNJ/JZPK5J48zaxwqnh7uNXeXu/N2bX+Eyv6d3VZv3rutNtutSqtegkQ1Llcw3P9jg72bKsgBAEvJEW85sG1dD7IGSUOrdTxtEvCP1NSZAvgFMpw6TPKkUFzdddssUNvu8t3769jwfcvU7FJrPJ+N5zVDpuV2ogt2rXkwCBxOKw2mLcuU7WrUOpydQQYNjO0ytWLY9AKlQhw4KYNVVlQwxiboBXYCow7WaDDuNCeTvU5l1uu3vUrE+y1gplHQan//Nz98+9NPGwD+7tvNHPA/AeDPvvi4IcBv3715g2YMt8+epxXo6+ur6/3F6ag87tVDCDmwkdzQVQ1IQEddHZiXoLiWyCuSwPjVvZbqCIwgW6WyZ7z/5a9++e6nn7/78ftvvvoSnZde3dy+eIEKW6/fYbH7oF+GPYpDsQpEQoHV0DsN0g/e0BR47xwXp1ZlrGFgQadaiYE/wOOTMNWCLcVRudrsTmazJVpR7M7354vFfIaTSCkA76fjvRt/wXtXwaPUVur04uRwGMW1UtnBTMdOgEi3jieHS9QWS0eIN44MqQvhphFrM5C0AmY8Xy58IBYayquhtDjBFLMEI0uw2QvZIgWhzkTBcppH4xUmn3SrUQlV+3xTYnQRJ5eSRtPX0XuAShLbCDwBNoVVkkmUgWTzQeS7FkACpHSSJKerF71389t2YOu8AqGApbi03Z801W2Go7ayAKPZomjrRJ7lFYsvYkOCwOR3tjKZIlWkMPvMEUETVrSpKQoOpii6ZcgcKzA5ANsCYDlVLBK5rQxPFouZHE1CmKFYHOgjczvAoukiRRVkBzJ1xZJpVuckiSEIIg/ENF3roqKLhaIgmzpB65phaZhFIQfnCYoiNaBxSSUqY9yut8aHBydXIfxk8PTARBUIyjbLer4KKRhQ+HyxFyf79rbQ8PPZwk6GqO0aHLx6Jk/kn2Sz6RjRFs9nGXPSB7rLBeKTAp15UD+2FdtzHY3JwrtBAKXHMFllITshKUZmSEGViMxWIZeD65U1AVYrxcAaMw1ZVtEVCQmw8bvJ3vzo/PT66c3l1dXF1c3V7c3V6fHZxdnd9cWzF5eHp6kbUog+foaOAKxb2IQVJf3hCAAY9uN0cQJs9Obu8hIA+A4A+Pxgub9eHc4Hw8mw6mHlJm2AdmBluyhv3uj0sKI82Z3s4ighArDuWIFrYkaA/r2peyEOKaOyEjDgdrvTG8x28cRlvrdeTYfT9eXrw9Xx06dHy/3peElsc6zvU5mtYnMXIqAp0pKLY0YR2ix4nyaQ7gF4cxocpKO9Qdr/vPnWPUMON2aFqLCRNj+HqfpziOOHwScC/Jtl8G+ODC5qdKRIC8w3gEQjHURKz/KwCG0DT3bC0HHLaP4axz6+G5l8s6rqrUDDSlLe6nqqA8tdNQQGJVMYuW4JKqwzVIRWBVF3HqMbooOWDKiGVW/Ax8iQq4EqKsBjfckIXAXF2CjYT6beqpYg83EgSHF0WrExAkFqj6oRzyVJpwlpZbOu0BC6i4RIi0rgifXJrCy7mlQ9qLizYccWaXWw66qoIScUScGi+QZPqrZTqrb6w+FsfbhYoACPRAP5kzRcHF4pTnBCuddvtadpXQ0C0HLv6GS1XB22jveSgmB2M4xLZVWe5Wk36iQBvFijkQjcjqdUmzb/wG4odiW0TbtW5TC+arOJQgWqrgzhh2+p/eQJHdYCWIO2bLoZVmal804uKXXDZi2/s80bDJkPuxxjRwUzI6z289O714ZuNoYtywiAxFg+JIOqJtp82FRV01vdNEb7lWRx8vHbw/6gUulWOt1uH7jN3vnZzcsXz998nOyYkNiIhGsXtjLbTx6mloSpGMdD5/DBwx0mT2lsUUWZBLhclNcmi7lMZnsnW8w9yRDkjnR+/mxvcnKw7vbn893qyWownY0u29VKo989n1Q72OVfjxv1MkR4rNeEv52HoPo6eoQptRPBdnTYGZrACqqWauSilxXwbQEhGNIZNGnDcjQnMTxfaN0OurTol1rL9+9vK5COOuXE0dzm7mwy75g6zdcrOqvXm6uR7/NqqT1v257q1kqN9fT4/OICAsD5aUqAj44QDzZnmhsAxuYOBOB0DGkynozGo3G7PhrPq81Za1RLyq5crika3Oz++u9++eV7AOAfvgcATnU4/hSAP37+xcfPvvgMvQhfvX77Ht2AAX9vAIWfoRHS8epgPWj2Jw0ADmy+CBxd0mujQRJAoi4qnmbIkmFKbL2xqsm2gi10sC7W//Lvfv32h19/+e4blL7EQ+DPXz979vLl3XOU+Xj55v1nb59f7lWA8AWmommKhAZxphe4FqS5ElCMSuTh2KqkMKIZlJMkTtIzec+voCgHbv8INmBruDtdLGcT+G0639uo06d9L8tPjlGrTwC8xhPd45Ozs7OLvXKYxNXYNJNqENV7+5Xlcr1c3/8zHEk6TF0J77ug7wEYW1qn811DkzRbw+N+UaCLmSwN9FOlCmhOQEPqjxMEBYYtsrACs/Wu55ajKAw9gE5T4ng6X2mVYleWDT7jVUPT84U8U9QCvghJG1MgSyXXtjVVEUREMWwV5mj0Fs+gu7kKwE+m8pc5PZQ0riAVs1kyn4FlzjvKDkGzqi2QPMNwHFPMFXPZFIAhhuXJqAX8x0oBWBNRfkLkeAYunxUZQuTJ7a0MUEy48HyGQEtNVtA1PCUu5vKFPF1gaEKzGZqDBJgWLVkRALFz2wDXJE2hYLQh5XO8qgMAm6lliYpN7SICME1psqQm1VI5QIOYzuTw9OKyhFPCBZpmOcn0A4eX4hCPbFiCJuSK3J4LGTtmtoksuV0YjNA7kJdMR4ZrS6eItlmlwLvTsckRSqzt5Irb9WNfAIhCVk8CAtMYehklbEmZHMkICjyvopB5eDagvSKnqAKvqSwtALZhnxMeeaS2Qb+bz7u7J+fXTy/Pr59dXj69uboCQnzx9OLm3Vv4/OwIGbAT+L6NB1KObeAcuxvE1cFoPJnhcdDy6Or6/OTk5vrp89ev7m7OLk5RtH2FzQnjThVXrZvqfKcW9VGcJKllbK8/mmy0sOb7+1XF0F1b19IS9D0DxoNXP0bZiVan2x9Dsr27KfYcrmbz5fHTs5OL22fHy732cqZnHuQFPU8wWa5SKxmSbAKRiO4FJz+VmD+VoNP+5biUdlBtznA3jDb6pwAcYDuz77sbhStvU1n2N6Xo9HHORnDD3pgzYPEaftBUBRoj5707w0YZ2rM3XdOAiGETmyMcuIkqkyMmoexXI59nuBzTDBWjFBjYKAFxlCHJsi+qIiSMEg5OCHxE5iq+V04F8iobAK4NQ6kS6bIsMoKNlVRV5qginTPKptasR/CzOrbOcSihyrGqp0j1SSuWmVKt2RBpq94yGIGCpSzmWTEos8lo2dAclY/229Zo2HdZVu0sY1xfvEwQgsUxTSkPWZQfow7H/v7Z4aqsiaxE0bIC+aaN0+FxqdZqNnv9Zmcv5QEHR8d706NTPEEczUYVhhZbglwW8kKeZ0VHL3vStO9LAqVKRS0iKNj95ZZu9Ztlp+82Td40BHVQDR9KtiwMG7pacybtHG2nONVQRJeUOOn4izeGVKmP5k36cQ7CVEGLKla51NEog7afxsTNx1MvSvQAJwJ1hVLQYajcvzg/fZpIZu3ytt4bR+3r59//m/9y3BlWu0mn2+kMZsv9s4ur529fvvluklEUhmMzupJ5/OTx1r0Q5ZMnW48fuUePt2TPjIY6p4ioEYiic1s4dZ9B9kuRBRb2oHz89Tq8PoAw2hnvDVurCTZDXduy7IhRMgMC3K402iFkIfDWYu9fhGUUL7WFdzwHx7u02rGA2rFYf1YheRYFAGANi9AARTL2h0IcoZAF88CACYGmzLNRk5SCsLX+8Pa2LtmaW6+YktudzcbToW3TTKWqM3KtuT/1Q0GN63tdJ4DHRLX9+foMnUjPjj8BMCIB4i+2QafdRSizgwXoGdavJugwMe7UB71eebDbGyRV33CqgWyFQbP7h7/9/pdffv5pQ4ABEL/+5puv/vD/AeCPH+4ZcArAQH5fvbhFAY7z8/litz6chq5phiXfLzmK7DTmuxVs7EffUR22hSYa9fFUU0qwaQyrVmu9/1d//PHP/vzn7779/nt4NeDcX37x2dtnN69ePrt9/uIlSvXdvQMMPhvXsB4HkCunrcWqjfmyLgqiUaqWA1Tig4guSCaEkLBUqUS25eJhWhjGZXQPjirtfm+2P5vMFgsE4DmOCq1SKrufdqptnBU2AIyGFtjQdnZ52CmVknLi6l418ZP+otc93lstN8QZzZQO8IYfbIaPNuPX+PtquZjMZ46pqrqEasICyzFAqiig7GjXU6RZHG6UJbYA5JdVmOJWo6k76C2Nfa8GQBpPZZM25OOGrnF5K/F1NxBzHAEAXGAhW9tmSxHkesB9BPQcSp22OBKQisr7IWwXAPUizWxlt7N2BCCZF4jcTiEPSJgVHTlDEIxh8yQPxIETmXw2l4WsALIEnslRUTP2I9fAA0VVBhSWAeFJSPpFjS8gq9za3t56Av8on6dYhSqyEOpkDmKNzAKxz9AkpUFuSwFzpnhFU9h8DhAYXYiJHCnxsiHns5ymGTRn6RIvqTp2w7B4eE3DvpPUSq1cifwgTur9vaOz80gGIp8excL7GnqCXIL/VSUvbsmR7XWHPk/msvniDp8VZk1aLZXiWrfl83hODTt6h/VoKdkbmhTt1szczrayrBBmXNZUQ2ELBaIIqCupomC0S9x2hlNkkuQ1meEAqwlWFDn8nqLyFKnjQYCooTemlQLwcjWeHR2eXkKefnt2fP3i8uj04uz65Yunb9+/eHpxen5xtKrbaBYAD7ewGRGpX1hp9HrD6XyxOjw5v7rBEabrm9u7Fy9vr09PjyCxO9jf3T8+mDSrtXIJEckycEzFD0vlRr3Z6Q/G08F4F0fpZvO91aoqG2jQqaKKPdxqnNzW8Mw4KpdLqfBiBzZ5dzTdHe8dj5ar5fro/Ob84vru2clsNFnuNY3HO9tFnhWkQt6uu4qJHsQpqw3v7X7/UWvyT0QnUR3Sc4J/PAROu6ww2U4TbgRgdD/yUxPgT6QXH4+91ff2SvB3104dvT9JW6a0GHPme1T+TakDodnykna75kI2YisOk+VHkA0nZQv783XYGGHJ8XVdZhnYAKQaovIowwDV0WF/mdo2cLgqhukES9CNWqPRrfBRbAHxwjKQEroSPL7IFYE8a9Umdmw5jsWwVAH2DyHbhhSNe2WDdhr1lguv14UskIa7JuYZwUu4eLDfNWyZducju787LrGiXF03DQj3jE4RnKbmk4jU5XotqfWQAa+PzkqixKoUJaHNNCwPt1yOgc+lALyxJz84OpkMVkdnN0f71SBRVEkxY56WLLkgZuRAMS1ltOzIAi2WbC3OMdgA02nbw2a7vowbiYYtz5C7ZwjVMM3LQAAAIABJREFUlVsTnxOM+tDVbYhiod0MJR0yg+q3Lz7OttyoPSkbGV6HPMW1CbPt+92MT/Oj00Lr+edN3RJKsqgram2yfHlQa45OXtwdT5ltpfnij5N2szJ7+cd/9z//L//sqNNqd5N6s9Eazvevnl3evr+7+3n6BKtvxW2c13j8cOPDsAHgh9b6CVmJ3NKcAXaQyyLqZrPYgwLxhEHFW8lxVbnebpLcsz3YFN3etLtYLUf7i8lMkFiF870REMd6pdUsV6up1miAWhxp+zwsNcx1LRNyteSAd3TLFGlaTBtacL4YYw1SXoWlRVQBB1aAlkgcQ3IMR4+H9aIYBO2DN2+eNvhQs2Odlyq7893dya7tMlRSM2m+WttfRiGvxJXFwPcUpx5WIJ+GzPb8+PwAaNvRn0hBI6BgLxY2Cq3SMWAspENWPB4NJr1mr1Wrj0ajelJ2pHJN1WAr9Cd/8+v3P/78888bAMam5K+//vKLPy1Bv//w2fsNAL/BKaSXKKUHGPz0Cvj3/kW7tD/SbUymQ5zRU6LhfFjWWFXhZMtQIN4qilGZtTk90BTNhp0x//nv/vLXX7/77pefv/7qB6Db33779R8+/+z9zdVLPAd+9Q5f6dXrF28+fnh1uSiHad0qNBTUkTEs33EhzZONVMDGMHTPEFlOAepRqjZrEST0YQknEKpRXAqDuFKt93aRPezNsBgP/+/fM98UiDFbuQdgxFA8BUYM3qtHVVi7hlmu+lF7OGsuF+v7FugVyo5hyoOjwAf3EqDp3V8tlruLPXSawREhFhCKQoFGNPyji2g8j01YpgKgxTI5WqQLW426FePoMvIl+DrNEjvlTsWzPUdiWC/SJccXiyqlRzKAGVfMCkFgu9iuLCu6gkIcQF8JiqSKWc+HWEwyIiTwO8XHBVejaH2HpouPd4gnuZ2cbLD5QoF3LJoUNZakmfyTB/kMnniKLAJwWI+wdygF4NSlBFYuGhpzfDHz4MGTTHb78eMnDFEgCzTQSKDvaPVL0IIskLkiqlFBspUvqoZFsYKicADAaAkMP0+exo5tGV1iTJtlDcR3rAyJqAHCU7QI6KwBAFfjyIXEuwYx6LikyrwA25IXZRPCOy8GjqihzMCOn0S9eqWhbWe5wtYOm/Mnoe41k1K5WjKE/A72Zj/ZUpuCVJ12zQITVZXczo5vMZDYlzjbUchsEd4GqoA7zwgi4dEWATxblCUAeLOQI3icGEydWSS2qOChkYxSU2Zqm/u7Ebzlx4vD6+cXZ5fnF09vLpaHN9eXN09f3r348P7y5PnZ4X7dAi6omACjENBtwJ8wrjZarf7ufL5/fHx6doqm2Ze3LwCBby9PTtaL5cHB8mQx7A/7jVIlxlQMojNWYuGSqxVI+Huj6acxpPlifVDXHAt1B3BcW0Ix6NQd2wnLSSlI7Qda/XGnNxz3OlPIzw92d4EBn5xd394cT9r1+rQUhHJGUCTRcqWsEpRdE/Wq0uGhUiqc8cl9AWeJKukQkhuUNnNImwNi2FsenhkHCLzAexEs0zEkN4w2UBqmypV+isQpAKcCIy4Kdtj4IDN1P4r8VO4rdJxUO9q0PqGxg4V7dHFxStVaKSiFFu6GLD+1LL8c6QJHZWo11fFNXzVVlpYkWiBLsWxqFCNxjG6qhmrxmbAMv6INANewNt9g/bKjYNMEb0ueJaqQrAKctS0tbnlepWQbOmABAXlfQTRMwRn0Yo+x2q1+jVZKXUdSOJ0RpQIverGc9JYAwErRGk3szmy3yoqcB5CsCixpMgSg5pbbYViykpTqo93J3sn04NphdMmAzYcz9rDNULSgXi5XWp1ac47mqAdHp+eD5mx1+ep0IWkd2vOqukJsKfWSLmachsFKYnxZU5uDHaR6NKSIhOgt9GYyGg7GrXETgg7bPSpVtJ1GuTKqR5KonaB0crWcxJUOQI/A3nx79flVIITlqa0+FlS2xxUL2349Kk/pIjz7s1b2+qtLzXIablBTzNnL59+chrXB6dXpUY0QAqf3/mZcax58/t/+wz/8/f/639TG/bDaHQ16k9XJzfPz63dX5z/sPcjQ+UIxn+M4OvNw69Gjx5/UoB8HR4+LZYhzk2wmX3yyky0UiWKxSFEQIQUOXb2AWZk7u//ql/z26dFiftzvjNtXJ8et5WJv2fcttztZjE5L/aTaqcHP12hU4jKspo2QWmAh+Fpo7eUqpX0WPlEpUlaltE9CRG8c7OOFsMPBfeMpgmUYBmeCIcQIfKbSbxCSH3TXz99cNfiaYTkSK1VH4/HeeGb7DFmu2wxbqS7X5YCV42Q5Dh3RrAEAr/YvTq+uTi7Xx8f3CLwphK6xsxcHgpcLtP+ZzRez6Xw2Hk0mo/7uqN1r1AaD3iioBDbfqPJW7NV2j/+Ln374+edf/ikAf/4JgD97/xFloN992EwhvXmZKtnebpyQLiCLr/b2265jej7kHr6jmG7vcOLLwHwAexXFVkxZjHeHZfQc9Lyo5tVe/9v/7Jeffvnhpx+//fbHH79Nx5DgtT7/cHPx/PnT589TmY8XL9+9ev365dvPP3t92Ez7MgwgifCMlqGXar5hqryOxQcI6TbsJxbIkh/VOu1aBbZ1XI4DL7o/wkqq3TlOBAP7TQvy9+NE2A0Nyef68E/GkPAUGN1eT096Ua1VLXtGVIvcpDXtd9LRrjVqix2u0zmkVL8S0Ts9Csa7v9pfTadD4CYaSnUxJM/TRDYHuZaiMIV8dsOALUXlCiyLfyN22u24l4TYuWZLpEiTLLEdd4MogAxUJJJA5B1HIKSCFGosR6kip7r4WCBkQCdlnAMWJJ7Aeu+O6xuuTfEqTWay1GM2FBlNIoTcdgYI7M5WQeYh4yzInkkSwC55hS8ChYT0k+Z5UuQBqmoh3EoFbaqA/gJHVXha5otFYOlbbDGb2Xm8tZNlChSbJ8QczQH2U9tbrEwVOC4P1B5gmRAoSjdsVkQnTjoPaS6VR7gDiJVxDEsAokYWRAmdwlDsUqBYlAhRZVvR4gr8inVYQpXB8eVJWYf0gywAO5cNyFgkOXRlmc1SrJiEnZFn9mL4ShGePZN0jaTmygyNE0+Z7e1cduvR43Am85VJx82z5ZgrFCluWx7DAyUZLYXhwiiiyMo8zWtwbyENRjFZqihKDJUjeZpTRNy2mi7RaTc4jtNhq7EGALyc7R+v9w9Pn11dP716CgnoxcXp6hyQ9PL62YvnT89hNZQ9NGJSZdXyPRt+njgMa93OqNuF5XZ0cnW4ujhdX149vX717sXtBSDwanW0v14uF9N+s5ZgCRrB997yL05qjWZ30KkORpiNzxaz5eFprAPbdGUIWRYsNBdHt7HenVonwbqv97rtHirdjSeTCZ6yLOar0+OTs4uri/W02Z7yghMJ23nJYVxjh9YrA1hsrg8wCbDpRCmf9V08wPHT3ZM2P4dhetbmuveCHMEnVuz66QZzN5qS+N9GYCPV7nC88r3GZPRJDfqTLeFmnDidd0pHi3H+yL2nyW464YQPAlIT1yuhF8aYGDJ5vcfHAP6aRuTFoWHGXtUxdF0kKYFl6KHKGTIpyByvwvJ13R0lCstxXC6XwlLSrADQDTSlmuiapcpswEMabLIkrD8SxzaSZikMbdcpQjYL+FsEAOajRq9q02Kn3K7TcqkZwkpQ0E+W483I0YCfuXl5R223w/qoH+ss6e8NDU1jCZPISbLO6T2SZP1GUJlP+qPF8fLUVwRNEAVRlUV0+hSdKHSqtTYkWeO96d7JYnF6cDyrdeOrN2fHAABZKa7D62fIoB2IebrpqRxDlH2y13PigE9cLRFZWnZCD/hUbW84bllCmCen9Uq3lFSC7qitZoMzK55V/bjmtQZeTmXDP7y6effiRLW8mVWUWJby6YfFB2ScIXYDm1ak8TPO/O7STVZvSm5VdFoXzz4c+JXp/u3NsgrkX67PZrPO4PDf/v1//E//8H/8b8kI8j3A9uYQFubpq9uLZ+9/Xj3OS0J2ixR3ivqTx9uPUA/6EapR7vzeP3y0lQCPODYeFzLogcYwVBHCgKqqpm/KkohF6a3hf//fsVvJ9fxoOZl5x6eXi/EUaNPhXnvQG0yGh20g3M0qEKMkqVTKEWR2QVgN7SiVnTNN19FcM9iXbJdjeQP1tWRFFFKfQ5pmZSAswHEYLEQDe+CxW4BVJI43mj2AqnC49/rjXZVpQSpAFGN3uB7OZuPIkGmrZ/FCtT45qQWS4Fd6I9+25Eq1NF/Prk/PnwJa4PwqijjdO9sepIbzkKuj5/wCBwh3AXwmoxFuylG/1+sMevMobpqW0TA1N/Kbg19/+bOv/vrHH9ND4O/QjhC1OP6AQlhYh37z/sOHj1988eGzt+8/e/v6zesXKQA/u7l6+vTs4nRv1Rn0WzWIOpLqBb4uhsHkYJzoOKOrqLYOhIKRq4u2ZKq6qEeNRnT883/+1z/++hc/p33Xadv1N18j1H/27vb67vmz2xcvAX9fvnrzCtg2Gj989vH5qoVT/YGrG6ZuCrLpw07UdZ5RgAHYJk5l6DLnGUbc7nU6CTYelFBhKipBgu1XkkqtM5rhbPd0uoc5FfaHr5YHGz+G1dEBWhGeHJ5sPo6Pzs4ur6aooxOXTQPiYqnVXdYOjhd72K24v4/D8vvL1dHRMcpvHK3vU5/10WpvCZmOl1pDCzTNMDhyCjDBKIZS3M7lCwzcbR9rX5S4TUoiuVPrwRqGUK2rmiIRHE0xO34PUiPT0gVSCUwjBKJCMlaiElxeV8RixTFNWGw4gAWpIy/xRUIgChliK3QtPNZiBB5edQe46TZNFMls9kFhe2ebyHFqdpvhJdtj8pgPcYV8sQBIzTOAwApZ0ErlxIWX1WRV4QUNm8vRsISjihSdK2CjxJMn29sFhqWAZOc4QWeA5KKMHCQBNJHLkZwgCBnIiAxOFG1DTAVnsIOLIFH+VpMLWV6HH5gQdd0UgWOrqsKhqzAloNVk1Ky0XVVxorg0Hs33Atg3PEEIgsiLOtB9KVaAowLOFyu93h5HWIFruGSBlfPdJlcmVNSTLua38tv5fHb7wZbXNyhnPvRzTFBVtjJC8UFpNrEZTSUZji5kuBxRIIAImRD5FUZ2XB1bruBdIVCnSOIUXqUUT2JJGrNmwzSxbQYSE/13c1g98/lssHd7c3Lz7Pz66fHx+cn5zfXV1dNnd3c31+fHRxUfJ3csVGmzTc/y4iCotvq9/mA4XR0cnJ+dHo1nL2HjvP7w6uXT08Oj5fJguT/dWy13OzU81krHgNNOJA/oS61SrnQm89FkOsVT4MXq4CSGBNRx8Kge3iwJPTo1O0yFLgCva0m13W71umgHjB6Gc6x+7Z/CYj2+vDxdd+uLaiB6bWBHluq7DFngq6Hvl/HoFovH2IyQzvBixTn9LCwhAKcqHBHqhKAChxf8phZ97wcc/OYMvCk+pw9DQY7UkPBew/J+sPi+yOzdOyFtNLDuD43TL9+fIeM37KCM7ZQhWqjJJGvX+FK95LEqSdgDVS+7nqmpAs3rkMr6rqJIJCdyPB78yS6/HUYBeiIl6ClYqzbbQ1svlxRJ4XneVSxPNUQ+T1JU7Kt6rRmFse9aFENhSz0pWyZt1watgOVbSbPGiEE70bCxkgPQZo2SJbf3dhPBE7X2KAn606opcu586kEMItXCNiGakjKAxBkr7rbd2luuzm8dVuIgA2QFnsPpMQtTDjnYm7arU+BH+3v769XpuN7MS+tv15oqE6QNKEsQklcyaUKowTIks4+KD3K1cqvLu81y1eFztXrDGbQrg85g2vOkaqngTg4Sd1EPh+W6JXMDxx3362EcVfslq1UefvnqzYun77qk16yESkbmMg+JJ7zUM2jTDxiZ4g6H+aPX7vj5G99tcdL04/nHw6A62b+5PB9KjGYEFd3cvbj+H/7T//Mf/sP/+b836pU4ScqVJtq/zg5unp6/+XX8oKBqqNy1ldN2trb+8Qh4+/f+8dZOAqAwjgr4JvHpYJCWutISxVwml8sVyHx+9e/+Pb+VOz+ZrRaN7unh2Qpbdvb2FuN2f9gfTVZAgZs1WBLwruJxDVrhlQNr46hlOb5leJq3kk2d5QWDlzUeZ1ixDVpC+wBN42UcXBNYgkE/CFESGaBIeKZA8F5jNL66ehfqXTnRHlsVNZrvdyfT0FRIu2cysPCGZ21PFrzacFZ2bAUAeLaeXpycX5+dHR8DAJ+g/AYCATZBr1ef5lw3QpQoJjvZWBAOB/1+dzAaxeWKadYqhhm6yfDub7/79c+/+rNffvrhu2+/++HH7zZN0F9+mToy/OEPHz5+ePf+s4/v3718/e7Vi1cvniMC397evjy7u4aIVG+NWrbuRaHBh7FiRcFifxhCeqGZgmnSsk3Ixvy4rkK2o9lRpxw//9d/+9d/+ee/Av7+tOm7xtdC/P3sPQDw3c2zm1t4hZev3wAIA9y/enX36v3HNxfDyCmXbL8cAFHSVBPLVDpsNllz/MBF/VwLktQI9lurWikBFgcQ0DbCHHhgUGn1R7MFdqakveEpAG+0KHFacn24Wh+llQTU9Tw8Oz+7OOhGrWacOFrSSILaYDIYH+xj/xaQZmxzW++n+tEpAH9qwjo6QMOHXd/EuRVYZfkCkM58nsrxMgcgRRBFxg8UmSsWsjm+wMFC2EmA+JQh5qYGBQzgJ73tt2oo1KMJtJNYqm2KRYYxSjLBFTVZYCu+A7mehkViQYJEj4OIwDEFcgt9oXQRO7WKJF1kJS1LEAQFWSWVmv7pFlNAAHaZAo4rCmQuu5MtkGjNhRM5WlBOPEMFbqqbG6FLhSui3SBkqsBlYTdtP3mcycOPUCgSBQB+gi6SPDYySGgTmIclzfMFHlmCYqYqkwWsMJEEWcizomxqRJbFbzKapYg4VasqAv4TBi4UlkXSCMoAJFFSKY+H03kAXB92Cc7qqZDbqmKiFopAvwW13Z9GO5QYduVH9qQuhlOLcVhWN9hCLpehMpAp7Dza8oYO64zbdp71K8pOhsk8aB32bNUApKeArueALXMiL5ixowqSW44gfRMUk95hFPS6ZEVaoiRbhl0L2Z5uWqaWeg6Z+u+WOEh+sBovrq6OTs8vb69X64ury+un6X64ubm5PDmshMDr4OHw72zLM4H9hdXmuDdb9Kenx8cXpyeni9nJ09tnbz+8fH59fHC42Fsv9gEnd3v1JA43OhyWa+M8bFzDOaR6e7QH7BfV3FBL9bCkGbLlwAJTLCS/lu2gOLoBbLGG3red0aDVHqCFYX+0hwLwk93F4Xw0mKL226A3tkw9LFVsTfV834QMzvarkYG6fqVwc4QbpG1VJSDBfnhvpYAV5SjtFPTuJ3ZTdPb+BHY358KfrIDDjf5zGAICheE/Nnb9hr730Ot6f9Io7X2yZnDMtFcaLsICAKvUktAHtDJ4iiy7RrnhGzpPFHYjNrZ9G/XgBJUXCSbx5JShoruOzBmlbbbmlyEAYLSuo6nFqGSWY02RKYbXDSXGU3RYyUxQUvR6MwyTkq9LNAkpMIurlLdr/VrCs7VqvSLQXrdhQjBnGBSQgCWpNpeLOuAr09jr6p39jiPxan/mYR+1jL5ckEy3pEd0JzYo2kr6xxAWQtgXCk9RsOolCF5wN1EirVevNOfD3noxPzw9O1336k+2/M+OGMiuC7yXewTX45ZsmyDLthdkdx4L+YfWcNCJzYqlOjKRHVUqo71lpzEcthteueJo4d7N7qzeaVkGyWbknhU32qVS7E/nr759ffvZizfPz7+4EyW/OixRhvgwl9824mQwVq2QYpVs57WsPw0Xn90FTleUjn65/HAQVMbrZ2eXr7qMWg5FUVi8ePvv/+P/9fd//3//V04MCFxOKo3eeLZYH5ycPf38x+GDoqwJhTyxlZHJrUfbj9MeaEDind97B48fWxYv+6HpGVaq+KNokKBns9nMdr4IDBVywtzh//RXDrE9vBmt9sOT09XZ8f5sb7XYXSyavWF30rwAAtyCbArdnmNMFssl+M91sSzj2m5gmZ7q7QuawEpwHQowtU01ErXtOU7VRFlGF0IOZ6JRDEuicYqE0Xoc5DnN6d3di0iC1cZy7cg2kv3paBk5at5qO4zg1DvnfVfm4N2cVhxLKVeC8eH09Oz8CgD4BAdYj9IzzE3n1To948Q5m2U6h4RmhBOkv2jGgCI5u/VKEpr6wJbtyGrvnu2//fWPP/3Zzz9iC/QPP36TKnGkVeEvPk8/Pr5///Hjh7cvX7999fL1y7sX2AV9C1B5vj6eJNNOy1ecJDJl29JhE6/3eq6QSqPjbVZFyjo74IWKSYt62Ipnf/7P/8WvP/2zP//ppz//6R6B01dD1en3d0/xWa83CPzq7vmLVyi89f7Nq7cfP9yd9h0l6QUQfgx4Xswh/RDPgk0THWRMB3JFWXPDuFKuNquBaboxpGgxdrMA7YwAgScp+uIkUjohvbwXtTo82MdD82M0+E0h+ODs4vj0ehFU60m9rNhJ1S8N/l+63mtJrizLEquCinDtfrXW+rr7dS3CVbgO4aG1ABBAJpCqUiGzslKX6O6x7hkKa9JmjI984s/QjB9AMxrnE/hG4/CFe98IZPU80BNAIgLh4R73nnPWWufsvVZ71phvL+/tpNFQOj44Xq3i+Km4+C3exV7OJ4upa2BysQi3lwQFmM0QCU7jCgBdRIELbApYNpFNY08/Q6VLnXrRwPJ5w1AEgaZ5KhnWqz72nrIFJ9JFw5BIlpRcLktnZY6V0RvQRmtsUQRdia1ssCRQhdwTAAoLcxwZAvMHs7zNyYiV6fVCai2dJFWZStKsaJpUQeVBJxewDAIgmqUphSFhUSmVXR29/UFYCXhGy6LFJSoCJgcSGARwMl3AkF4sa+YZKpMnAP0xKlLieBp+Npbnk7RkawyGIaHPViaD6eQM+r3xukrkWMlRGUa3JA6NOJS405ehKJDDAMBl3dZMM6zUqtPxEgBYoKkCS4GslizX1mjH0UxHctVwczTOJtfzeltPTfuc1G/nCNcJbSaVyeUZKoUA/Ohp0JULzrRfSnOlhppKFtaT86OyosvAgXMZzCXLF+JQGryKiutppgBkQyHWSUHgAYNZkqdFoCEqLObAGjWM243NOH63Baxtvnd6vDfcOZnOz89Otxero5PzSwwmOT+7vMFiV98PPRj5qo5GWKrle2G10evNt8bzg8PjiwN4+v7y6Ozs+cury2PgzrPp9mJrPp8MmmVsR7NjJ6i4qwIUcKXS6HaarY3RGNOtl9uT+XJV1EzVsFVdUwy4jlh9oqEbPW75RPVWGx12+uNud7TZH6JaRyP0xbxbb8GsH40mlWdpzcpQoueGvF4V/FrJshzLhxcreq4f13CgFnUf3LBiXYxb0EHgPwQD+/fVWb7/PuX34Y/YHf/h8Vt/pmU675/wb9II/0335nvkjU2w3tduGQ8A7N/vQteiMMCTJo4k2o5crhRlScjofVnHHBZNgcEmCUTWL8XubSzeWZmjSurjYhCFflgMgyCqNWqNflWrwNKp0RQtWlRZFSURbcDVsmZWQAEDACsWTeKuTj4nWbIBABzxJLCgspzXm00LgB33e1hWNHylPF1UBdVOlZcTuTIcOBxFRZuOxWJZBpUmVD3dsh9nnXElRdtGPWpbaqAwIofTSVRV7BorV2u1XrsRjSe9YnXUmRzs7u0NOrWMqU2PCM1QJWXAPq5YWbckKcSaW7Srml0vBRW5VypN61WDkZ0Kq9UC86K00R5WLGB61YpT4K6P5ovxqMXBD1foGmFUBwpidJtXb17cPr+5vDu6/sO0YLobg5JGFDKP1gmFDFcNs2VmeZa+3M9WS7OPr3y1LmhbX91+sAQA3r093P36UBQcnWKU8dFH//L//L//5b/856N2v+wB/Nab3dFsb3W8vfv87bebz9IFgsyk6VSS5RKP1uPT3ydPnqwlfm8vnz5iZEkPLBGwEBbGOPkT/syxeElBUbiByh7/5zPVWKcOl/NB43p76+hoezhabm3OZp12d2PYnK+cQaPWaqAVVgm3OEvodhbEI8rGMizdVoM5KcEQwF4L0GcKBqqAmOExzQfWKkxH4mMXSly7RIrDYDcxzOQkuz5YXR+XJb/IJaxeUDSD8XK4U3TUpFxzaV5rVPd7rsqqYXtQNnUpKHu9ven+8fHRwf4ulg3tgwreuu9q3V7eN3Vv3ZvMzqczzELaHI2GcQxDvzfoT8JKyTDdloAzcXRsm1/+/OX3775+9+6bdyCCP/v8yy/RiCNWwB99FCcxvIH/v3756vXLF3fPr27RR+/y6mz3YKu30RvWXNWuVWxVY0RJb03mZYujQUZpAqCQIijRYUm3Ta4gFa1KZf/Xv/3jdz//5dfvv/3u+3jP+93XX8d70J/hGfDN+dXV+eX55fXNDRZ53QAK4zkwOn+8fv3qxX67GLougKqpSrwg6H4UWuq9HwEGjDRcRTIcmHOlKtwkjbeCcgkEI5J31y1Wm53+JjYioZSYzWNygiVYu6sdELM7q/24khwl8OrgeLW6PKiW65VKpClBVPQatVl7ENuKwQWFhW2BJ7/o4gFP2HmPwFu7W7PxchYDsIYZ9QJNoONjio6jfDJZgrdVgiJoupDjMmiUlSm3Suj3jKU3gA80I5CpqBGBhIKFIuOUddl15IJAia6QY3KwAOBuI7YyIQDzgJMMzWFrOZF7BsuwKnGx02kum1jnXUXPFnK51Hp2LZFPcCD2UgwjWjpFagpNsfn1VHYd5ClDERpN8oIRoe2JaymqoWMdM3ZRsTRMFEZkiTQI4GSGAECPH4C4+XQOtDHNA7hKWA6dKQB0pWnZ1WmWh0WRgTeRzQMogrqWGV5TiTynOipJyjoALup3zAkDACY5LAv1XQ39jzAAdzrZWngiLGMFtOKA1Q7WTMmtNCPX0dTmcLOzlkoSJCDOIKlstM30E77YkgmeTifSyWfoWP0k4UZEIVwMiutu+r1GAAAgAElEQVRMqSqsr2ce60cLQzaUosLkMrkcW0gXKEoAZsPrAGZA58jMWhYVP497VdjBLSqaLIkkbpQBL8C3K4Ok/d10stgaT/bOD8cHN/uH18fnxzvz7YPTCxivl6enl88PdxZFACusLsL+XNvQbB+ELKiv4XC+2Do+ujlfTvfOLnaPjm+fX8JTDvcno2UMrPNBvegiAFuYBwzPxzjgdr3WbDXb/REmay6WW9Ot1WEZTb8dFXDXkCXVtzVNxee4XjGqdjdajVZrY7rZbvTHo9F8HmdfL+fLXh0NPcbDcfBsLUvn1lK80TAk01PVoOZa6HwRhK59r3xxA9pFkw30h/LR1CaMgRcUB25E42x6OAj+e/DRgzXlA8Z6v6lj+z6c8P8XgB8+iRvu8Smw/Rss358Kw4Vwyo1mqeSbQILEpN5StXZoKxKTbNbYIHAMoEdMFkg+IQSGiBE7PMcrnEzI4ToRlENs5SpHpSoAcKehRBVT11ClekTRkGCMJ+kCWwbiVy+GpcBVHYZiKYLKUIqliNGgWxYIp1EpG3m52rTjNgwayw1tV7D7s4aqFLPBdK750SSApwWTks3RLMmxmYJspxvlRJJsFAk9Ms0kvM+yTuJOFbw7tC8wLL9cawaDQetwq9PZHDa2T+ery0a3l3VUtcoqGmvaZ7VnZYtQbI2T1vSQnywmG2534VXVSmvYbnuMM6qZ5dTjYXODK5adoGSHjUZX0K2NSW0yMJsBTzByr1sNy2F5WD+8ubl7dX16d3j28UeWoFcHIz1BPXq2JgKfDm2i2VQJLV99FZDm9tvnplqkrdGrl28WXmW4enGwfLNtKVRBFkqz3Zdv/7f/6//+P7+qNivAatCpvD9e7PeP9g9vLn/cfJZMrKcSCT6znueTj9bi+qsnTx4/ffZ7ZzvxrNAq62P9WQJjP5PpbCaFxwVA+DGgUZIcV5DP/4+bZG891T2dVFdX052Dw+3hcLEcLyaTVnOw0aufFpu1StTE2M1SEYSRDyO0VLzPDTENw4FpF03SWHylYoOqEnfwK+gQju7AiL08IK7AUXn04pE4CpuRCd6haSUYHlwcnAZexWAeMe26qY0Wvf5OxdVSXNVnOa0RrUa+LQAAD6ugUdzIb+/Pdk9PDg73V+8BOLYz24mbgOOMvWXctDqfTPEx2UT4HWIk4ag3cCJfdZoer5fs7nz0ZPLTj9998UfcE36HTbkAwNiJ9Fm8M/zR27dv3sQg/Pru9WsAxJurm+e31xfn54ernW591HHRWjzyrEAQJD7YnliGynHYHKEwilowhuPQMIFraKWa7bz9b//2lz/++uefv/vu55++jZ238ND58/v84Y8+vD2/Avi9wE6k25trUMH3sYcvX2P/8etXb1/udkO3uFH1TAUdEgyM/EFjRtC/blBUbfhINf0S8NlqFFi4P4eZLbB6YFB4CHpihNXQ77ehYwWMJePLbSxv3X0PwAd7cFFPjzdrrVqx6OhBse6FlcGkjbYmmMiwh0+In7W3eu+EhQC82FlON0EBw+Kt6SKaj+ZzgHEFssDyhRyRXyc4iSGwaCqTY9dJKZ9JVNq+G7ix85EqySTJ5hLlRgWb61UmV6oZAE18QmKUUClwBGhN03MtR4n3iBWJlyW6QDFULk/n1zWAagnjCdFYMpdRbZbMUblCKp1bSxdSgiMyKZZRbIViNI2l2RzMgCSRTdEUqbMEz+m1EgxfB6SVY8K3AQzm8jyaBfGqSD99tEYUsnFXbz4bhxWkM+iaSQCXZQCwOCINAMwRrGDKJAdjncMSKsDgHEVn0gBopppPUSArKAqIWbyDLmI5KsfdK2ABfl6gTXaxUi1vjmY7HqZ1FmgMS5Et0JGddjkQs9wTptcdhqlHBTJnVvtNeTK0RepxpjtQRD2b5EXXCZTc2qO07JFssR9p6N3JpNOptfZ+XdJ1p8hkMrn0OpErMASheSKngLIG6ZBKZmHNpTIMvB7MURoT/lRNZBhsWJZie2wBe4EBgLdX495kd//qZOf09ur86vnp9tbq6PLm+Yub85Pz6+PVVhlQCuSaZpi64ZgGKMmwWmmPBz2YiWdnF9cXe4vtw6OLq1cvr67OTg73N/vz+RKzqvuNCLegMQdJNXUdMAkoIwBwZ2OAWd4ogefznb2DUMYDYoyHMCRW9oH2qrCia6YXtXsbG616vVrvdWrVznC0iadPi5291dZi1GlhUGGtY2SyaYIECkK4OkNahQRTr3nGfXovSN/7g1+v5GG3kB8HD8aAfH847N/vL4Oo9+9x9LdfD9aUzr91q4y/3McWu/eQ/L7N6EEh29Zv1hz3gUj+fQnWQy20aaK5tG741RZAqAuMBmDXaWhmtWSwYk4YyHLomapmSHDDWK6ge6rAUAzWrTOGVNDcxyaaw2MlFro+1hsd1SuqvMAJjOAxWPHPMSmKpiNfd2plrBjRDRY3eGDo8obJB+12SaHUWlTxCbHU8EQRWD8Fg4fXfVlvT9q2VKb07jQIo0EEjNGbt12FYWHWZLOMk/YrXNLWBcUoNeSC4Rb9opkmM7QsKJam2UC13KgdDjcq2+Pe7vYeMvfzq35YB1qbZxkgf5a5G2QyCaCGvsZnRDsz2anlzUUQtcJauVMedk2zElVKYvLJsEvIThh1XLXRvD2skowTuUE7aLSodbpVK0cV22q2D17enB9dXd3svXz56YoAndcv5pJPM0/MKgHSMK36bQGI+eSAyy5vz3U7Iq3xy9vPFk59tPN8f/FqrmuSYDY25quT21/+51/edvuDoBRWG61OdzCeL4cXx8cvLr7qreGecjLNpNZS9PrTtfc10M8AgLeST9ebDXuXT+VyDEVzohT7cQC5BSWhapLs+pJy+7+/edYXU8rRpH57MsPEV0Sv8XKy1W0MWoP6cuq1Gw6Mh6iMJisBFvnA/5zYqdw2PNPUKtMUrL6KJmmiENsayJIMF12Du4592hLqbQq3IQucylICS5F59hkXVLvnf/1f7vYqbKmYfqxUa4Kxs9zoLeuOkSdrvkBr1Wh37jiCFLQHDVMRnGqxsT9ZnJ3sYQ4gYgbaEu/d5yHFj+2HXejFbDK5B+B+rx+r4N5mr+mFlhZuSJJddjZ3XOH5l999/8d33317bwv5h8+/iI+BHzah336EgcAfvLr74PUHr1+8vENpen15Di+81W3OB5oBy4wbOMAtvSgadkHwyzLWlcN45eVwOiszppgVdaVTr/3hv/nHf/jl1x+//frb73/4/rv3+IsQHGP9h7cYL4whw9e3WAb98Hh19/z6BiTw5fXLNy/n1agegmTUVBVQSHdhhmMJk2Z5RdQbJpoAmhZuyFUtVVS8cmjHKwlM6LBU6wxG0wWsZWj+N/8tj3ALe3r3d99vQR8ioTk8OqhWG5VKRde8RmhXmsv2aLaEJ20vd7cW2/Fe/yquPv9tC3qxvZhtzqaeJklYXEDm85l0Lp3MknlepQF2kzTPkxSfJXLAhNcovZBJVFt+UAMFApIHYImmmEKi1K4XTUWVWCqqaaLjSmmelEI5xxDoCBF6tq1oGtozSdjvg75q2SyVWZfiWjSeJijsEEqrOk1myHR+HX4lU0lWYzIJnlVtieJ0CVvQU6kE+iADyhlcXuC0WhFD4ixVN2OnaEwLIUmAZ06gkmsphstn0YADQ3/RsB5dMggsoaYYAXQiVpXxhQzJOwaFpm8slU1nQQODTM7lOFYEAE4ymqUwnKqISnw0AUsWAjDBSrIu2poNEsSLavXqbLaz8vDl8xRJc4IKa5W77Ho6k8yThc50kF9fTxKU2VxEsBAXpXSSHO7VHBkESG+jUbcKzx5lpVAUraKDSkNTQCFRk7EtmbIt57NZkiVgxgkAwCarGY5rOwa3lsjnKCGfQGcwkhMZDu2s0YMYg9IEuGqyiJ0j6u8AAXfn08Vidb3qbZ8dH58+vznZ315d37x4eXtxcnJ2tNoGAA5cHADAKVzDDEIA4Gp7sDkGLNy9OD5/fn24NT6+unl9d3l5dniAAIzIOuk3o7gL2MA3HRdh+aVqqdbCcqo+ZhGifdsWTPJA0jXD1kxD0WVaxL4DNS7CwnzZVrvZ6jar9WajtTEYjtEBYLq1v7e9mI97NRCRZkCsAy1KCUDvEmspLpmheNQPcREWyFrvwdkKKGGx6LlxJRUq2GJ4X8jsxF6RHjp2xSiKvtGB977GKo4Pvnd/jjeu8dAYvysWiN0D8HuEfnCrfA/AcRgDfhU2G2I9mXkfyoCByiBrilEN6DQapaq5TCVgo0qoykI2iljQ3LqqqzwnA/TSMGsE9PjnBVHXCL6cJUPU654flkvVarXSs5RAj/0HKVsybFUV+UKBLYSRZtcwEsU3dJnMEHShkKL0EJbYRmSzfCWqV2jeb4Qy1m8xWL0jRpZWH3c9PmCF+rQaNqqRKjHqoOvoLJPjySzBlggtKhZ02wxZpuWKrixTgblG53idlyxFhyvg+tVuqbHRXfa7o/HqrO8Njg7atChiq7Bsq0ZY3lB0NkEkHrN0jqaNNa9sPlZ2tKDVjjbblX69GroTpbW9maTny5LlOb0WXKXDt296XGXi6j3PX5Z0IXCL1Yrl1zvj5y+ubi6vr/dAybyJeM1phHxy7dlTZpBmdBh0VMWnZUI/3kjWr05Ctym6y4+uv5rZzc2d54ezj3ZENaq43dbG7uHzDz+t2N1KA/uAq8gPJ/Ml9gXcvf1Dd43hQHEQRDKTzD1bX3toQ0IAthfJR4/E4uASbg9Ma1FAL3YJc4Al1QIkFiXbUZyr//XOEqvP0htbs4uj1Rasrjuz4WZchtXtdDZ6va1it11sVCtRuVQslYBolINSLYr7XeKMS5MvLvMK3FxN0GESSqKMPjoqMGqe4SXQLZhmLmATUiFHyxSJYUwFmm3Px93OyQ9vFrN1o/U4F/m+WgPIHMw6lkGlKyWV1MvR1o5p87zf6jdggrvNqLY/nZ2frgAHd+M4wt399/j7W7/MMi6DxiYkINGjfm+4CX/0B5u9YtlVjErEq45XHp9Mzz5/98NXf/70fRsSOlHiuewnn3z6yScggD95iwD8+vXrVwDAd69Am15eXpwe7O6WO7N22cc+waDkyULZm26HAi9SsqqauI5ramlrKxRtWvdMNwwP//2//vWX7374888//Qwg/O7bbx6qruGPGIHf3gMwBizFEvj25gbrvZ5fYzHW3fOrV29uz+4+ebHqlICsgwKAVwAsinNsgeeoVugaaMgNcKzbtuuX/LjxP3Dj0k7XBkIdVJrd4WwShyQtZu8V8Gr7vgr6fRHWwcHewdHB4UWnWGs0arrolCKvXN8cbEx3YuOi+0wlwO1V7AG685sV5fZiMZlsBhp2sYgMReAZcGo9nS1gygiVBiEMuhg3nwsFLkmJDJku10GY++jkAvgLqMMyqaBTL1rokUr7kSrargqCRfSFNE0qus6VXTwYwzI07NRFHckw+SydXONhIVaBTdIkyedz61hXlKXSuWeZ3Fo+TYiGkM4KrOYIJK8BESQzmWyiUCgAfgs6lxF5tYJev+jepPOcovJEnmTyBYos0EzuGZZWEBRPEPcGNtkcU2ABySjc/2Z5mpXQdkbIJQpC6MEbkgQGsw4zWfR5JDAIzdILWcFxFBpdRBUBuZMiYSR3oUBLgJFFCzcrvXK1Vl0sD3Zc0KFMnsHKLsX23aju1nyRMyqFzm75yVP4cWhCNtPpTNBi1lJZY9qreJXxqMiTNPCd9bwZqZodWK7jl4tuWNS1dqirpqQbPIvZg3gCXADCwOoaYoKQxGYrgs8nHj9O5tF5hCMUiYfRxQpK3G+LhtBwwWVQwNPpbO9w6+z05ODg/PJ4++z66mS2uD48hWF7enq2t70s+y4srvBylq5bmoEAXGuUK8NFrzfqnBwdn5zdXO7O945ubs+vzmGsjYcLTEuZjztl10CWaAILcuPCp2JUbnaamOiO+LvAPOHV7n5Jsw0F0F0HkseIgEpA1jCAs1ipNbqtSm2j1+m2e6PRYDhZbM3Hm/PVarnc3Z12irogS0/X848epTgNjbWT68TjdX0a6diGBChb9LDMOZ4qtlcKbcsrIXoF6AF9HycI/6FpZQy6GEjo4Z71Qy30/dfd12I5/v3XAVzHX3B/lOz47zefvf9qI/q94rWcewC2bDNu6XQ9Ez8Nr9yulzGo0dbYTKHoc81GWRVoYSQrTtHRgKoWFD7DpwPbUDkQNxSpxuc/9mNQ9OgIUKsUo0o1Gvls6KugeZIZbDsFGihTqULCqqoIwJVyaJgWkyZgplKcEXJ2Y1ALeBpuQoPh3EZZ4XgJZxcpqGVbqWwOSoIvcPVZ3a47JVUiyGpdVUkiw+bSWTLI5c1KJu3JtiGUaKqlUWlLALSXTEGyMV8a9zda9cpwMmwMRtvjy/1ydXFT0zmDJpicGvCO36ppetsALZrIZOWM+jgjt6hsr20Z5eq4NuhyIEJ6FXfnxWFr9mo0XFT6g/GguXN4dtAAeWGYU7o863nVqFLEDcFG8/rl1d3F2YuD4zfPP3ouCkjuC4/SFOmqCTfvVTJiRzE5enjJ6ne3bb3hBsvPrr4eW63xzsvT+euFgsWolW5/72Dv2w/LHbdaH1WjqAZED4bZ/tHW1Yurdz911jiMYaHyaSqbeZIAAL4/A3769PfOdn7tUcG8+tbk8wyN22WYJckBGweVpgFg6J6vye3/dLezNqSf2gfne0en85M9GLgbo93RfDgZNfsdQOEuAD/cEUTgUrEC49QPKmVkdBYmbIUW6e4yqu7AXNdVPKRRMKPQRns7SeQkjkMfFwZuI83SsLLlYEWWSHq+3XBd2eqPd09Iw0wItm4Fs9kEqMXANJi1Ys0q6EF5vrJ9UQza/WZgKF6nWt2bzy9Pd48Qe/f2V9u7+/chezs7scvi9vbOAkN78NBzMh4MAHv7o/Fwowt/bjg1S7TqsCb5dnd6d3z63a/ff/39H7969w1o4C/+8NUDAGMFNAjgN5++/fAt4PDHL17cvQCyf3V7dXFxfrK3VdqcV4C2lkPXL4eYKTeduAKsX5qtiZoNF0Bo7A0sVQOp5pT8/lf/wz//9ee//MMvP33/w5+++eZPf/r2W4BgBGD4/fln8EpvHgD45ury8ur6CvgaaG2E4Lu724ur569ePb96+eGLm1eX8ypmr7iWphkKJ8Ec9X1TFBRFt+IuDlMRMcLVLjbaJV11ig8c3DUNK4hq3U0E4Ol7AI6LsLAKenf7fRvS3tHe3snRweVehK1ICN2VMGy2pu0pqNzl1nInziPc2d1eHcR+HO/bkDCGGbhOaEiCrIqgMol8rpBJZrKUIScz8CFFSwJFY5ZQhslgjXHKi4rlEnAES4cnUPAcLmm3otCOa0uciqXYlkTwlByKGY6TDJ2IHBMTejCtQXyowaIYgksnJNc0ZaCSbCHH5vJpTaQ4ks8Rz7L5tUKSEjQxURBZ3eFJAeQzn0tkCVDiBapAiiqbAVlackuYI2+6jqQpAiw0QBEpmsjTWDlCIWznaCAOgMG5VJYrAJ3IgUQFwU3nGRnQ3lSJHMW7JqAyPDedWE/nCCZ266ALvGsTGd72pTwBUlIXAeRZkc1QHEsQLCg5tQb3ElCgVC6Fo82tpYstu3kOwJ9XAYCLnDAvptiGme9PuVzqGZnKJ7JPHq0RUz1BJ5J0a1h1ijaZp1LZfCG/tmZVNK8WAcA77SYwY1PXaF23ddugceepIBIcrHIUKZkG1huZuA6wgkokAbtZVlJohQWtDiKLYgUsB5dUbEYCWve7uHIPeNru0fklcNCzxc7eIdbtX08PXp8f35zu7c4xGKSIpgBY2K7rXtEvNZrNjY3p1nJ3sTi+OD4C0rxYnNzdHB6cHB9vTxfbs/Foc7zZa5QAkjTVhmGKrlR2gHm21VqjMxiP5ssZWllOV2fHJU33rDihSdNhqdHRlgUIpxeWYDlsdzvtVrvTa7X6m8NhrJtn4+livnWwN4wMFvhHIpvOPpYoRqR0Lp/KJnJ+9T666MGAygeks7HdKMQWJMRR/CzWYKFzFepJxym+L4P+LaEwgLcEgvWhcgv7guMyMjP+m+PHSI070g+uz781I2ELp2/EBdFxIRnob9xLBLhGHoLG8jY61JQarQjEt66bAiECLteDosHmi2UVvjFayGHMH0MITliw+IwsyAop6YxsEemyG8bOIaWo2mhUyqJb0TkRy/skM5R1TqZzImGXTa26ETgl13Y0KkeSeRjZii0pjY16USGDSieSC36xxXM6wzEkUaA5zyYa01GF02U6GresVrOscxJdbjgykSXZ3Fo6I5N5zW8IgqsUFFvgixUqJ/ppLi9gAaJtqWaAur670Rv0W/Xu7GjnZGtzfFLmxCCfh+mT4TVpvIys6lYp6lrPaErmpZRQEvjqTPcHPb8Oq4bSMvSwOjo9n7aOdidj7DebN3aOVqft3e1Jr12y/NZkAu+uXrJcvx+dPb+5vL263rt+dffik1HGKDaT3uNnCiGz6Enpq3wbxjqhnE7E+tuDUlEP9j67/WbLbc6OXh3vvxlYvFHyo053e+fwszcwUkq1ersWVlvd3mS+2N69fH5799mf+yk2lyUy+XVRSCfWHj0B9fvk8ZMnj5+tPXG2k4+epZkv/3sS5zb2Nwiign4/kmGoAnZ7eL5runeX17JWX0tOXu9dHuzvHix3jjcbi0V/vDUZjnrjnt7rlRq1qBY1StViuVwFbRRWwxD3L2CouRafLG6xrmTKhiYY6GQHzFniVXStATHMKUZGE7MyRrYyhcTjtScSEB6uuBjTaZFN1AfTqwqr81WRU7rz3nA2GExsncp79bDAVqvdg5Irs35js+35sGSVy3tbw6vd46PTvYcsBgSROKEnritabu3OUa0tUPA9ZDEMBsNBb6M3qtYcUynBADLCYDm63D8/vPvxh2++/SMWRP3h82++wHjeP/zhs48+/hjtMd5gCdYnH726eXH3+tWLW+xDen55eDgvDfp+pFvlklQsBrJYqe6OQtxegFVYNz2dEYTesmS7kspbZc+a//Sf/vbXv/z5l59B//70048//vj9n77747eogb/88qsv8cT5o7cfvrw6OTy534LGtKVrtLy8eY6vie1IeCL88gXc6g9v5xXX9XWr5IHaNESrVHZkQeJEKwQupKpwS4EE62axUS/5rluGr/XCqOxpYc0tdarj2WKGu/KggpGnbK/iZqKdvXtHz/1D+G93d//w4KhfLDfrpVD2onIYdQb9zmoy396ewVXFLEJsBMZNhziCGS/6NiyR49mwzLGSKjAsQ+B5UjqTI9c5Uc7nKILjFZEg85lsnhEojDbLF5uVUhC6yBvQfJVg+XS1HcEqDhqF9Os6G7hEQWW0kpDhSN3IcEXbxGo/CVCSEwX01yrQJJHNrqsgoFQhrvvKZtc4T6bpbCa5nkhnkmlgACB5EqqgGwytqCzHUblUKkuQoAVpRWLQtgMopad6lmYCG6XTyXQmTxIskcphrGiOFkSWjvG2QOTT8NRsJp9dT+UYCS3fKAaTyOVUgrA8AUY2LxJEOgFfkyUYliKZHO9Z+SRrBXKSgEkn64qK/cbw8zO5Ai9zulvGfE/sqi9F2C5b5GiGRIDnJcEMdItVxjAFilSyHDlrqfTjXIqgEuuPnA0+Q60nc3xvGOm8XrLSmfSTDIdHPrKiUoTnW4Et2dgxqwairRkChZsPZG59nRRFEcYJ9uuaMl0oMBywDQ7uEUMxMoMtXprKCRzMY160Yt9lGQB4tbscb8529tBU8gwA+PjoYO8A/vLi4OrDy5PL09XOHPBKkzGYD6uKDANADAC4MxjMd3aO9vcOj49Ozs9Pjpar6xcXR3u7q/nmfHu5GI/Hw04lgGeBoDU1HaucvCIIDHhgvu9ssYAVdhuG5vFBFTAKABgLyVXFsXU8bNZN10fbRfjiNgLwCOT25nA0RRMeNH/b2T8/HhVl0P6JR+vriWRO0PicZzJk7knCqsR2ku4DqLpxxQR6N2MbEqBtiGG5wf2eM6Jo4N0XNv/X4YTxXu/77AYHHeju/znebAYZGvf2xsoZxfNvCGz6QDQs7+EMON4CxyroeP/ZtfX4mwE5dcNKrYzIrCp0zq6pYSkMNYFs+yLocF1XGYIUBJriIh3mFwHMFv0HFU1JKmUfDQHepyKpXs1Gy0aal0X0weaJFJNVQ0MpNjwXExl0tkCReeCMoi2xUTMqKgWn3KzqOTNoSyyW91MUQdKWT5bGs5asG1Q46BqNxdChqHw0KenYV0+lCVYmyErFlTbHDG3TnBbWOzaL+Xc8lk5aWKgSRvVardPt9rqdAcik0/2j1WbZcUQpky5k1u1Q2xwPHaJdlGqRSamWAsNJN1R6WbM7w46jaTUtHHjlen9rq1eZzzaxzWxnsXn6/PJmenS6mk6W842o3pptVcpBzSq2arMX51ewcO9fvXjx4s2HwBGbRZVJ8VSOMQzdyjYzpTZp8XztyGKvX8xbgr31+dVny6A12X15dvS2r7JmVKy2Wsvd408/0CzDj2odAMFmuzvYnOzsnD9/9dGXf6k9A4ZL5lkgIUlgwgDAT2M3rCdPfm/v5NcSeebdjzmZUjgOd+8kGfNE0PlHNGRDhRHnlP9wc7tITvJJ58Xp7flqa3935xDQF/3cJhudjY1JdbPbaLTw8BvzGGBJD7B8ruR6xcAyA5DTmcou7ykwIwxF13XDMGGOS3acqSKADDYJnqM4AZZmiswmCwnR4ChaW871NKxU1ebR1Z5M655s+MPtxRzwcurbTMGpBSQbVTrHJUdh7GjQ8j1JrVeKW/P+xc7B/tFunOGzF2cCY1XuCs2ZMJlnuY2JhHHnTQzA9zVYg2GvFPmyVfc4XbfC7mp/udy8/P77d+hE+fWXn39xXxYVdwZ98umnH7/54O2bN2/evnkVtwShC9bZi/Ojs1m91wWlAdNLc+uaoOut0w0fhjYeUIImhsusrbY0xcq4PhMAACAASURBVOSAp5Ut68X/+B/++pe/wK8///rrLz/9+MP3gL9/+i4G4K++wMfnn338yQfXp6fneLYGAuMCHlfX11dXVzc3WA6NLwwADHr4xTWo8KN53YT1tVgKVYW1iw7QaEXgZbdYiVy4+qBfOEGyStUqbpHDhDbMoFSKeyeKlVYvtiiI+ypjG/St7RX2Id2fAe/vrw7QO+jo4GzZrLRalbLshGFQbmyMWtPd8WJ7vrUA5IYrfJ9GiHvQ9wC8s701n86HZYFDAMYs3Fwuk0rnyBzIJ4BJkucVgUDlmUb1CWI46dXLRQz2sGBNFSmZZOhEqdkse7oosBknMgQ/4CksIJfyPCkL62wJNKpmuwbauVBopwyLT76QTj6VbdXV0Gs+n8+mk4onMxRRyCWT2VwykSF0mUvnJF7TsAwKVgIKI37RrIqkNC2ft1k6Kvqh4QF11O1sKoUtvPk4FZckcvk8EWvHXD6XycC3X0usP1tbT6ytZ7ASmsYoT5KUFSJHA3yjt43CUvlkLgtPZrDgn5ACh8iKbmDkKUANkOAK0CWZpeKtYFlS7FIlbhcr1svRaLl9UJF4rOcGnSoJGohjKdjUCyxPpjhPE9LZDKjyZ88ya8OllAAakJUa435oNTsu0IK8ZOhCOpmTDJaAv4I2K1sqTEBd1SVDU3WFWgdCnhVEhlXkOORIFQHusZ9KxvcqYj6aKAsYosJQvCozrMwJMJk1WfzdbAk3GPg+PPaOLy7Pry9PDg5PLy5f3rx8dXV6dgYLHyg4Q2Y4WQfhF1hWUIaB0+wMB9P54uDg9Ojo7Ory7OR0a/fmg7urk72Drc3pYrHsbvR73Wa17Pq4yMqaj0eEZczRqzfaG4MhHhPPZlv7WK1ftHQT46MV4A8C9oQbBiAWAnAYgs5rdzqd7mgwGm8ON+fT8WSBNQ7bO/t707ZDrzOK5KYeJxSKURiJATDgBC+wg/uCZBcTF7z7ImgX4TZAqAxDBGA8ZMYjXexXiiuj31dhBXFuEv4Pkfl9TJL/vj7ai4u3zPtz3/dmz795PtumG2cuPYhiL84wjIVvbMxh3uMyJowXW60I3X8tsSCFgRI0fcXO2jUBFl4DmAhDMAJLM2EVRl+GJkhdpGGcudlsxUcvgFKpDKt1ranbAIqKKBKCQvkurYhUmszKoaM4wEKqRV/XBZIm80SB4z2NLLXKVYOwo1rbyQpuR2MEiSrg1iVvlHlrsOxaqkdYnZFRnc0iniNLO5FEk8kclUzxqpArlSy+vGr7HSfj6nKvAvKSI3mWloDzYc1opVGtdQFV+r0BrNTHk53jsayGkkyzOrNmetJGd1kFWvtYaQhOGX6IRhQxCW5xnGIqi+EUqIsxmHVrjf5iOTw/W003e/VqMyoXnai6OZiMB5vL+XB3ND3aXUaeWaxH/avTq8vL272L2+cvbz8+YTlzU8gwhVQm+VgyLVNgwhbIloI22s51b8+Hgrf4/OTTpdcY7z4/Pf9kg6PcagTDcbk6+fi14VpeqdauFctVdEpdbC2Prj787Ku/Vp8WiFwmy2WB3mfWn649efrkvhX4KQAw9WSNS/3Tr2siOr0CICqyFHf3aaBPgZHooe9bxc9OT2/TYfFZfuvu5cnRfBd7Q2e91QJEZK/V7w4a5W63VqpVakHFBxgOMcPLwxa6AKicx0ki0VhxLiZxGybuEcGlVmXJVOH1ZAFmuQorFUeKSLepQoZIEBK6BneXA1OU/Y3ph6cv1Ke+Z4bNybAzmfUHk6It5NWaT3IAG6dVR2P14kY7dCSlXi9O5oNzkG54drm6D5Pf3doCGAE8iW2gd+6jGObzfwPA8Hu02QQmyxVbquhYXn3w6cnl2f4HP3337rt333zz1RcgR+NIYPSCxsfHbz/ECugPXr969Qq1L+YgnZ4cTIG7tUMd2GtoB6puyd1T0L8FGvSNW7I8VWSl1RxegLHsoOg3v/7Xf/kPfwEABgT+9ddff/7xewDgP30PEvjbeBP6i6+++Ozjjz748O7y+Ojo8OD47Pz84hLgF/AXm5FuAHVBAF9jD/L17UvQxy9ev9gflv2o2aoA2jqepsJConOM5JRhvMGSJPICfGQCUauEMIORwbvwT45vaKVKe4SW0JOHbIVtJCs727tYx7YfB1vsHRwegbo5ORqWa80oMvAkq1zrTNqdQzQtwlZgtJHevgfg1X0I1S66Uy5ms345bkHjWKqQL6ACBuGhyyJLYg+CLJAU4Fi2QOcLgsIl/Ga5VAuxCAvIOyODAFsPGrCGw+Xjkn5ky44XHx2VdEogRfYZNk0Ejo0dv7zMYHWuQNM0B6LOCE0DhJuAMcPpnOWKPELz+noun0wWCENjErQgmAYNCljg6EI+k0KjKooiZTGXt1iuil7QoWeYqpKB94x25apQSOdpMouV1QDngMnZdLZAEsns2iO0t1lLAlLTLEkJKvbY0llGVGC8qyA12UJcfoZ5YyQwh8AqAAA7FkUCOeVUtPHiRZa6L2lRJLtcKXkuXORaVJ3srPYrcWAK/CCMIKq268jFuZXH8u6k6lULSSoj8Im1DDOb8AngCWnGbPZ9q1WzM6k8Y4JmBQBmZVYgJF52opopmpaq2izIXFFkiQIGImHUExqWGYBkEssIKlbVY1E2J3EFhkfjLRT9vIpheBJ8IeZe/m48x7GyiwRttQ9SFs3QYaBe3jy/ubw4Pzs/2dlEk2RHRt8sRZKA9QG/qtXag8F4vLm9e3x4BKB9uL2/ffzqg5c3l4cnu2PggvPpdDzoVEN0V9ZNTdZi+Vmq1IqVJizQowng6M7OYmtvsnNyVDYNACpYVzTdpmEltLCNHHsASkU87myCBm53e6PJ5nC8gG88h7G9d7G/tZj0nHRecNunM/UxsB6uYMgyj83znoUBirFcdfGcF20oYx2MnupxvO99Yy/8gTIW0LcUB27HgHwPuAEC9P0hb/yx9VuDrx13DqvY1ezHG8228/dgQtyejp2kHz7jxelR9kO+nB33RJumZemO5YPeKvsOkCktV2jacsszLDkXeZoXWrJqAW7yPEPLDUUxCYahDYlRJdYSU0apCCs0WjaFpWrLMqNAFrH/TWPMkqDIbJ4siOiBWin65cBWNAELZOk8S/s2WepUGjapV6JOmOfcrg2TiwAaCOTFrElqf952hKCg1GdWcTBraBJtL7sqz6YLfGadEOw8kKImFU6rrYEFtMEr6hywShhTMnoGwcWu1qNGv9/qbm6OFjsHR5uT0xMtL+kJjmPVBK0IjUpTazLyk7Ui5XSqZaNWrgXrhcJUXBesaOTbzeLGshl1Zifn28NRKwx9xxYVAdYdnhft0HUqvfHmdPdgebB9EHrd8njv5Or05AK06suXdy8/r/FKs56XOIJMPFZZ9do21PKEhemm3kS51d1c12efHb7btauLoxcnl58PaLpYq9aqzeXq9M0rFYCjFLXwELjTG0xBeOyfffDZV/+wAatN6tl6IZHJphPPnqIRJZ4BP008e+Rss48eKWtff5wSDCmuTsZMWQXJiA73GvuHUMy+vTi/3ExuplPWB6/2rra3YFHd3+nNtqabs1GnPxlumoNeq9KAqRGF8OpBBILKDr0SaOAoUDhFZ9srxjY13zIcWUcTd9yHFgDtRUFSOFEWsTslrjKlc8lcMg/8nxe0+mC20R9PX/7h6Lr8VA3butydD0cboIAjS8oKDZ9k/XrjuOsYnB71N0q2IkWNcATC9XAfICMGjZ3t7b1d9CeGy7F9HzKAChi5M8zvTXTBAgHc7/WHo1LRsaR6JKiBU+1e/eOn77798k+/fPPuT19/+82XX3z99YMg/eTtRx99hKfAWIL14eu7V69fvbyNg4pujvanjY1NEG8Vx9FLnqRZYW810SQBCKhklRsGrfLRSUNwBcZwStVw8S//8a9/+/mvAL9//vWXn3/+5eef4PHD9z/Em9DvvnqHAUwf40733ek++tUfnZzF61p8FgyQi7L3JYpffPHnL69vrq9u4OODTjnqdIpexcPOOlgGVJ4TsfQFbqsgahIH+GSXG60yjBeg7ZiiVixaANeVznCMntAPCPwQx/kegPdiAAYecHA+L0e1CJ5uBaVypQnjfGs53brPI9yJt54f4pDuARhYz2I67WGLoSoJPAWil8Ct3nxBlTmmkMuxrCjQTD6fy2GtpeDJqWK7FFZ9bByFkcKKFMOCKFawdE8TM37JUUxHSIu0XLIYjlDkFFfCWjJNxKoFE0SdIAkMRzJE+qnq6ybqSgFgJJ3TVUagM0Tu2VqBSGZoytAKz1hecgyK0VSBZ4AYpBIESaD5Il0gTVqo44ajD1dSorLwjgskw+tYigWrThJgliGyaZrEgAWCIOjEk1TyaZy+m6XRzQpkpCzTSUbSXY0VNYysSecyoJBB9rMyrQZmPiu58CYIGWPTJPS75EksmCEIVgaUrJZAZpWCaqUx393dKmJudr6QRy9Iww3CYrRZFGiWyaXo9oB/kksLPJFNCLNGIUVjY4gYNEt2ObBIioOXEsVsjpIkVqYEIs2HAdwNTROtTIanchmQMBxXyFEcL2GSPQYH6iByLUtmKKBsDFy9DItIja69nKAid1bjVgZZ+R0Mlelkvrt/cHS42tk7PrsAlohbNVe354dnF+cXu4txELixszEeAquKhmZM5VJ7tDmfT+Niv4PTyyOYl2ev7q7PT/bx8G4SH9QO2pUAboAGYKMZGBDtF/GkqzfobQw2AYB3d5Zb+9Pdk6PIttD7VodBYghu6MYeNLaLDa/xoXG90Wi0e+Pp5mATbfwmo+F052x/ezHtB2RWrDZ3rlcc55RcwRQVjiJETF2Im4/gWzhu3DBwD5EuvIngPk0BtWtcR1UM4W94RIzOHP5D+VXwUGh1b8HxEJZ072npxDmEDpb3Ofe2lPcxhw/b1zZCtfX3YizDfl+UZeMZsO7FWQ8OVnY4lWbFARTT7ey63VLsSsPUCaPPW56j6AIHw4klsoVSoOgitiJhXa0guGS2VPJDJyxHZfQp8fVypKPNac5QpLIOHBA4Mu2VFL1aBbJhq7qIbUhUjiJtm/batbpDiFFYj2je7fh4asKJbL4gmZGm9KbtIuWTfHURuNOtJkgrbTrSaCZD8NksQXuUW/RHSrI+c72ezPFGIKvAYkWOAeixsCS1Ui1VNzYaG8C/5luL/dO90yvn6dP0I5hlEuhypVQU2R0ttB5lNWHW97lhXbMCJaHO4M6TwqAxHc2mnY3JZLNpisD3ge3BpZJh5bFUlqY4BUG+t3e6nPeXg6hbGyz2r8+PT7cu7+5evHr5yUtdlDaNJFV4ss7xorhx5ovAqnATeniQLX94FeVHnx18uWuWAYAvLr+aMWxsy7ax3Dn54BUtq26p3Kw1mq1uDxTwav/o7PWnX/1zP5Ul82sJNMxLp3OpR3EH0pMn8Pv37o766JmerxcllTdUZOm6Khn3ExDPagy95ofF8t3d5c6rdNFOZA9en16cbm2DvFyNu/PJxuZko9UbLau1dqVbqZYrQTkE6RJ5XtkuAgB7QeSykmHx7T3GsXXMmZZ0EVNUYJZjrRdgviGZilp0SOzb4Fi6kKJYTK/kYGlRDp5/cDT6/IPL4z0u5Vd5YbA7HdWHo3nDVPJcM6Rou1XdH9sAwJVBv2IbYlAPh9uTq5MYrw4P9n4Lho/7gO89FrFlBufgdPIAwKNhr9vb6HhVXXEahmh6dqf3x3/64bs/Axp+88d3X33zzZdfvsNwovt0ohiAP/7o7Qdv3r55fXf36u4u3oK+PT4Z1QfDauSVgRJotmLplcmkafOUCKrfCqKAlvT+QSRaumB4YS24/Nd//ae//eVffv3bX/EI+Jdff/rp519+ARV8fwz87mt45a+++OTD15/fLjbGe0f7x0fHIC9Oj0FUABBfXFzf3Lcewy804UJBfH0Fn7w72elXwrDVKDpoxGjHSQegCXVF1wXV1rCUWDBL9U4UuIYVFD3FrQKL10UzrHc3FxhWEW9C35dUxYEKuAONeUgAxPDrar9VqdeqAXBwv1istLd6G/voA73EKMOd7YcAhxiHEcG3Y9+xXsmUgGkJIKfQiXE9kaEKkoq9BA8AnKVAg2XShOqKibAVOPcWwADAIrBrPmOVimjHb0iEDewe5lxeYgUfo9IUm+AC18UaM8s1VVnXRRaENhYkZ56pvhFaILwElmUySRhesCDBbFgniFSOIXUl+xi0nK0WaGyqEalsOp0u5HMMyyhCntQKfM31yi68CU1jHq9nCXT1Q+cfEIPwbrMkDQBM5HPoRQmyee1ZIb+WJtLrKQDkOFWQFCQ+weluCAIXAFggM1isVSApVpB5s2QV8opnKTlSxpw1SVV4nitQeEiep0TFjaJiWCzWUCzOFtN5gEnHRCHDipxoun5jp1vyPR5YQarQHCvraV7J5dLP1FWYShcyOSKtWFHd1U2JEUXFUSXqyRpp2aCI+Nwz2rcEC1gwK6wXyNR6XvM0igHKIMEbkGWsztBMWVQsU8TLRYkykwOgpgRkzPFGNBZvxL55mvE7YLPTGSjgvaNjWBiOz2B8np2dnl3eIABfXVwc7kyxUceTZM1EGalqXiksVirtzQlw4oMDjEk5vr4+2d06uL17fnF4cLIPQ3A67Q/6G23gsz5AgGvrJtpCBiDZKq3hZDSaYKgK/N45gMG2VXLjomXMIFFEEI2aBvgLnyqWgA9HlWqj1WpvjND7fTTFBLDRcL63szrcm282rJw4HJbcmu7qOlAeVqIKjP4eM+Ht+nEzMCBvfALswQeY0eCjRo37gB8Od+17Y473pcxxLlxciOU8tBH7986V3kO6kmNhHJJ/f3b897jCOMUBBzqeD//9TBnhH4Q5Vlkb7nsABpkfNBrFKgC6JvOZoCL69Sow7KGsOZ5mSUBDYQwSebOiS3I+LxAshk5TrvzULIbYo4F9o+VqSQ6rJt7VvGrxoU2jv3ihYJdUCcAZ3p1py2SByAMEM4bN6/VWLWDZSlitCrzdLKsyDxKRyRGS7ptiZzaoUDb886xibE7bFsvIm5sGReXyMLcYycnrVd+TE6VtwAQjk5csRufpgsCzMPodkCXA6MuNfqfe2ZyMd3Ymi5Ot/QsnSzxaT2YdWYU5b4aCd1rT2/J60RlVLWWzruVqvWZtNd6YhNbhxmA62Rr3Gw7GMGIzBLYFMoIeWJZgc3n42UDh83p/Z3+0teo3OpWd5cX12dn29es7rKJ5M8lyfs8weUpxBIfNX7ZFMteX8qKgLXr5vU93uOmXey9menG4uLo5ebfL8XWsZNucb1188JIRVVCgIIgbbRhrs+UKFuxXbz/751Yqx3PZfDaXJzJricTvAXzX0ET+6ZNH3rb5aM3lRcWWRBV3nQEZFQPPaOEDSwEa3PBCP3r5+nznvJneSCfD2zf7L/d3D/dWe1ud2Xwwmg2bjUF3GkzCWqUB+rMaliqlcuAXcQvaL4ZwY3Xb5lt7nAf0zcAtaODOGGOmGdi551iG5plKo0tyDMeSBMYCyxhUwIosmV9+/OnZ4NPb53svvGeuY5Rno41xZzBadoHn8fUyR2mdaHdp6KwS9fsN2xbcZtjfHp+d7B3uHdyHIe3tbT8A8L0NVgzAcRHWZDK+r8EaDTY2eu2qV1GkapnXPC/c2P4bCNGfv/v2u+9/+Oxr7Mt99xXi75dffvHZJ7EV9EdvPnj94ds3H9xhDtLdy+fXlxerUWtj1Ar9RrWucLDu+cHeUSBqAh6VWZ5rwuq3OHJ5jdV8s1kJPvqf/unf/fUf/t2P/4IC+Nc//+WvP/74088///TDnwD2AYG/effHb77+4vNP7i6v50XN7cxXR0fHp2enGPV0egoQfH55c315dXt7Ca999fzF82uA36ubm8vzy+dvLkZlNwKC67ueJam6F5iKLGDriILW3DqGz2pWVG3XLcnwfMkOVT1QRc0JKt1xvD2PBeP3ALzCPq4Vunoe3LcjHe6fnYzrMAsjz7C8Iojh5bi2t7XcfngaKmc8c997D8BYfj6f9SuawKPlGWizHJFLpgrYB0yRabrAcwJPUymykM0VsoRicutBK3TRfwEPrXm00uMyWtgJgBcqAu1EtuSV5LzEC54JgCh6DIvx53CRfQsksKyK8EI0w3JUIaGBODFAOaPfO5nMA8YQ6P2xns2uFRjalAsJiVcdpcBoMANkKp1KpxkyCzira3lKy4MChqUdHYxtdi0J749iWTb2dWbSZB6ri3O5bCabJ7CXNr+eoGiMaVhH88dsNpEkQNaySQa0mypbMCQECg+P8YiYEwTBKhr5vGx5eoHCkGzsEud5nsCKFoJgEIDLIdaqBvVmF8/mA44XWLhKgoi+ueHisGrbai7HS2na35TSFCaIPk1uDDHiGOV5ENZaFrYU6jzD5fNrj9KcacKSDCRXKRkSWodL1FpmLUUKhq1jJLpEpkElY8wR6EdAYAkke4rKpCm2kCnwNMnjnhWCcGwmCw/s+vrd5mS+3MH0jcOj/dXe4dHJ8QkA8Dm6toEMvro82Rm7lmkHOjqzAcPXDa8YYBHWaIxe+wdHcXnD1fXJ6gC+/PxodbgCzjbFNsF+K/Isz9YMx1DNEgxnQLRyqYL+qVu7QPfmk/n27tnJ4aoSeHEMOYwQhdVNtMhEJywnKJXLjRoAMJr2gQDuD8bzTWwFnm3tHx7sLwbdimrwfqTjuQFToNxR2RIkJwqs+y1gAHE3iJ2gsXkn9B46fBGAff+hP8n2cUvaK8YfIGpjNAP2Izm/Hf769zB8j89h8JCjFNv23oOv5/ybLWjfhMXO/3tdNO51w0fWPaDjToKJ9RtYI+2U660m0GDDtvJEyVPNtquzxUiz8eTYkqk8xfE0H3qSROcEksG0Elqz8nm37JT8Yrw7UGlIbsWAqSkyrC64NoxMJk/mzJIthVVsuDJtlY7zRgq8bGlSpV2pKESlXGuIjFat6QKDCdwEJaiey9eWi7pgyEw07uidfq8Moru7LEmwmFN0uiBaWboW1QhCA27UrRbyjs6AAs7DAiBKuqeZpVKpUt8Yduvt/mAIVH4+6+2fRmaUT66vyTbM9qxk68asLfXacj2CW+e0Q0/nuxubexdHu6Pedrc7G/ZaYbw5UKlVqzX4KUG/EiKv264C84dgFE9jZXil2dag1Y0OlnuXp+fbV7CGv7z76OVHjsZXOj7L69mcIlsbXi5rDxsJjePDY8m6edGdfXF4PtFLo9np1d67Q55rhJVGZzJd3r65VVQjqjjFSlBrtTZmsPIdHR29evPRP7QLJM9kiAyRI/NPn6yvPXn8ZG3tabwVHWxZj54FquNbKEy1ON9TU404TVPDomWzDXOl/vHV4cXBZbZopwrbb49en+5hn8n2CNbq6WLW743aO9WjjagBj0qlHJWisFT0i34pCOFnFwwYyVxzxTimjdv8dpwhagAWxx4zsRWEK5X3FJAMLIEW+hjjIpCcwIh05YO7m/nFyxfHZ1ZS9URzsDmc1pu95cA0Sa4cKZTYLe/sGiYnFDeGbcsWvG7Y3hodHa8O42ja39Tvb5nA8FhsoXsxNgLfF0EPAYB7/Wax7ElGy2at0Ku3P/mHP373/Y/f/em7777/w9dfffUO8xjw8eXnn3362aeAv28//OBDeLzGIMKXL17cgkif1jqbtWK13C77Mo1wsNyvWlIBa85sSxM51TvZVvSiRnhWMex+9x//u3/627//5cd/+enPf7l//Ipb0D/+8P3PP94D8Dfffv3Zxx+ezlpF0LFOpTdZrg4P8RQWl7fT84vz66vzi5ubc9yRvrkFNXyJJ8Sggc9BEV/0A69UCV3XUkXRAMZsKpKuYsgTDE1HEwW0rGy1XZAwcFt0xUQAs92g1u1P0Y5judxagJpFW0ksY0NABQA+AAV8dHBwtmpV2zC2bcNDQ7vBpDPZ3VqiJwKGXSyW9wC8ugfgnV20iZ72a4AuaHvGkLkcWUgBfhGCkqfS+RyezzBMOlcgGLYARFpIBq1yGMWrKehfheMYNmPUW9hJLIuk17CFoMynRVH2HZj8oscJrglKBf25QCVICoIEwC+RyT4TYBXTANt4hqXZdIZXJIxiSiTSqTWKZi2RysmS5soFDjfIRQIEcJKj8gDrqkRwZkGqu0XJMDzXsulcAUgsWrWxukHmGZCiqVQ6lcAOFoIEVU9kkiCJsVA5m0ysrSeePUkLALow8TTfUlRTN0HL50gyh9712HFghlo2I2iuTRGS+v8x9Z7rkZ1X1piGYjeAQsWTc86pckahIgqhkAoZ6BzYIkWKOYgSNRLFLGk09vN8tj/7hx/7GnwhvgD/8hX4Frz3qe6ZKaLZABqh6pz33Wuv/e69loEO9zJQa+yzKhHwe2Svgrrukek0u93JbHfPR9MYcuWjpLndRYM3xewGq0glyh8oWT5XsGBxHXj5HF0Ckq03YGfaKm84ngiXd/P+JkCfykA6Q5NOWYENLysqSRC0bErAclnIv/ncRp4WVE2GrE0zFJErZdY3iUyGxN4rHu4TSnDIwH3hyabDwLLAkL9a7M9n85X5WHrkcHJyfnN7ffvo9vYR/HlwtzceeAG2sKuaYaE2nmY5dlBv9cej+d7u8dH15fWD2+XJ+cOriwusrW3PpiOcMBqNhoNOHVi+Y5iWIpkRygqgjZ8XlNtDWKSLQ1TL2jk8PT8KNM1ZeTbARbTwDBhSMWDBfgJxuJwAynS626PRVncw3UcBafQfWUw6WLqTJF3b3FgjWCAplGBbncAwAcqBUKd9VX6AvDuAdBDAF/mw8/oM2ImwSAMsOHj9MToUIctFBWkv9KwwCtJOaPwaL+3IWnVfrerS2IicVpdTGPdSfcoV48UOaNcI7Df2hKbzpmptaVpah8bUAlu1AJStpFeuJJGnyWaOaBlyVPEFfgipMY4k6hzkoRRPmokmKiTPsryClty+9raZ6AlOA0dRubqlAgALHMsIBUEGRgR7tEBltSiSJ1cHqgAAIABJREFU/DLKGuo2rBqUId9kYemzcT2qabk4qTYkUkyaBiuKqJxEEGqQMPHBYQ3iO51sbxtbg2GFJLnGTlmBn5in+PWswdP16j4t0UQctvpBbd/hJIovchLKbASqHsVRtd3d6jS6gyEQpNPj+eTmKOZ8fV3KrrsSxxQkTmbb4/5E5e24EVdas07CZoYddXlyezoZDRfz+Xa1mtQG7TBsAhVq1qqdXgKZKofS65qlcaVChoe00WC0fn272V0eDc+XF3tXqO378Pble0uSs7t1a1MuAN3mhLfyvrQ11QSJVsYH69tPloPfXD/edaoHR9dXe5+c8Ww9qDa70/Hes1e3sqgkZSOoh81eqzdf7B2enZ2/8+6rb0cix+Tv5TM2YnC+sPH2r399//6//Av2YgW7zltrjqfDspMtAGBDVTQdtinQU9glsmXY/SDx4t9Mx1enSz8/y6y3Htw9uzkBNNufT/rjvdlsd9rqDsfV2bzcqDaTalhJgoqfJF7ZC6o1V2QV1HzgWgcUIK5s2IaPHQW4AiGDC3yEFkuNBf9hUiyxsJsBf2mdokXY7oRQop89e3cxfvHkyYEI/P2+sDPrDLeS1s62YRK0VzFptpscHlmuwAedUduwhGAQ1va2T84Wy4OjkxQ5Dg9Pjw4OEDoOVwgMXC1twpq9AWAcQhpsN/26KnttVYD8tlf/4S9ff/75V1/98bMPv/jk048++uxz7EnGIjQ2YaVWDO+8XLVgPX3y9BHA39XRTmO8XUvCZOCoti9Zor3Ta5ssQIauu6HJUkL1fOp6pmgoScMe/fV/+fHbn378y48//PHPyH4Rff/6lz/9AR/fIAX+4vNPP/3i49+8eLhXMVWz0owtPWlPgZWeXBydnp8jCi8vL8/Ob67PUtiFx83dowdXZxe3lzdP7m6f3F6XwzB2NT0wRFE1/cDmNFkJy6nNqaUpkqCplqPikZ9jAA1zHAVSBVjUnVRgFx4zJLOLo0U6AwxXMmU3JydnZ4fXl90axK7E0cwoiRr18aR1uJfq6+LAdSricbiqXacKKDPsp+nXVEEEgBF5Ehnw+kaxwKpqkctns4ArPMcXCALucZ5QNXHTb8RRORWgh1RQ4QSWLXjDZuzIoqYUzZpOxxUIFgDANkUyis+rgQ6pBVYMA0dVYLtzLGJVgdgQ3SBxDVOXOC7PZjKiIWwCZ83m8rkMSdAGXSzykm4JeVbnYeWThWIeqGue4RiJIQSrJCSaI1mmaygOt54tkawocaZkyJlNQaYBuxg0OMrmSjjaDOgN4A6wLrCFzWwus34vw6n4M0t6ZCvo3Mej2GFpEyIhxQiyYMd6IS9AVkrledNLRdI4yBDQ/Y1gMb2oV8uVcqw6vUFna7R7GKYSHwTgJ2/q8e5AyYmZdYqnN4nNesfPlEgxcJrHHadIkDnOtBi7P4pUi5M1jSLpzHo2DyTDkzkRLo4b8rCs+CJTRJshCXVLKApdlLHLWoZsUZIFWBlSCTWj14p6vRtg/xUQFXiTUVIWqBQae8PHv9pPx4BhkZyeogHK0fLs4vr67OT4dn/35tnt5YPT3QnyMVOTVEATDTDSCsOk0RpgFXn/9OLm6vTu5hHw5ovbhxezfm+r1ejPdmfj+WhnOmik/cg4PGxGtun7tlcF0leNk864P93bPTg93tk5vjxNLNOxJIBNXjNEwzF1A5XETTfCKxgm1XKt04WkezhKba8X8MPnhzv7O3XDcHSh2splNzIlhisSvGyImFraga+Hr4U13JTGusC/V+KTtosJmRemtBgf7oqk4swREmV0FExtGVLlaB+ZMprSQMjzHTd0UyGt0H/jhOSlsh7ufxlDstPeatixOHWEP9zUdDx0RiFO+MAIV71dtmpYJtqbdWthEAWWqpBeXfSjmssao007geitymwB8q0iFWqSxKNkGy+JjFHwSSoqw9NF/5xy0tGVsmUKeEZqCyawR5ooFikpcTW1k6AAiawybIHMlgq0oGu80SxXvLxRbTTCkhLUHFEWBJEukhLvVFV9+7KsSiYR9Hf0arnfYhk2OGjIGrPJEVnspqejuD8m7sES1vzW1kQSSVoqcCINbM9yDTeudBqHg6RRhxvVH++09w8Ob2Pftu67sfRrnePkgsvS5fa0rImQmNYq3XEw4HLDHaN+dHm4FXbOD+tlSIQg/UEOKYnoje5X2r1eu+IzPM2hMu1mDrshNFVwy7329XxneHGzc/P4+uGT8yd3zz4Kinq1uW2LKsVns6W1jZ7HHjcIlqKNy5C4Ppu8evF8adQnR88f3Xx+zEjNRq3WHx0sbt6/Qul4z643w1a32Rvv7C1Ozq4fP//gjz2eNUkSslgjs7m2vnl/7f7aenoGvP4v7ti9tx4YrqhBRMacUYfkN23CgmRBxr3ZSny3+qpff7i8PNzoaFni0fO7l5d7p0c7+4vtyWJnvDNvDMftca0xqFTK1WoIaUm1kiSBGzvNWOA1C1aXJbX3ROwWhITL04NUYTytosCuNLRQhUtxVs+V0CsoA9zCJHXIVlhOYsjR+y/ueg8fvVj4bikjbE2Gg/a01dua2jZN2m2G4Gq10V5k6nytvzPQTM1uV6q7w8Pl5dneyetZ1CMso6IZ0gHaC+zvHuyi4QCQ950xpNj93qA36Y/6O3bVVoykKgFkNfoPf0Ty+9VXX6II1sefrOx5V/j73rtpDfq9dwGB33n+BM15L+9ur0+6rWm3UY4aLU/3LMWJ6+M4hpUsoUVEWaMNvn7TrgYabJ12Ypz8b//HX/76w/fff//dt99+95dv/4rHwH/8Mzz+9U9//OMXXwAD/voPn37y0fMXH5x6qt1oWvVy6JWD2nAXXsTxyfL48OzyZFWIvr4+h7fz29vVB1eXFykNvnvw4NFOpKs6HiepECwNV9VljUPvEM/QbVelZFjxkG1XNNMJY3jYKMbq1wa1rdkOOiPtApaiujPEVEhfjtJ38HG+PF4eNf1WvRwZUlAPKo3JpDM7mU/n+A2v4RdynePF/gJHmeCzO9u7/ZbDCxLPwtbGvuHNbIEgBZmj0AIADSrJXIley0sbOGZaMtvV0AAsFSRVwVNjhlnTR83EVFVFZHVPV4JYIXSGDy0SGHCQE4AUVWPkA5asK5jlyyKdJwQyI8Z2ZKvoooADUBtCJOcoenOtUNjIFCjdZrIE5O+WVBI0LMgK2VyOzFFFQFqdyil6TkxMywwDE49mqHWIICzBa5xMrQNRLGUyQOVz2bcy+bV7GwVsjM5kCbLI8WRmA4vAGyzqjxGbgug4vAopLc8SRXjFDIWyH4LiBipFSaZvZVFb3lAFXZQZkSwwZL6ILTN+OY5hI2lhq9NsT44ujAIjMASEOlpU/f6WkaOYEpkniiKZd1sWRWda46NOp88WNWWjZgrrhAVwYYuUoCpsfv3+W7SJGpSu4ZmCYiiA/EyWAky0FCEtTUg8SQD3FihWVGReUERdpHgms36fj/st148cUdI4mmdJVkC9ABFuJ9qosL/Cs1jUg1yenx1jrWS5PL9CN+Czk4Pd4+vr5XIPARjom6LZCI2aZCVhUOt3tmfzvcPTs9Oz5YPru4vLq8ubh5e724NJt9boj2fz/fnesFN3bQAtnOs1PdMKALmb7e3JsNef7k9mi/MzSO/mhyf7HpBdSwcOrNmWChiH0QXrxyEw4G4lqTX7w/4Mh3938fhpf7YDb4dHe4OKIzO8d1B7u5TJKjytaxSnak6QDuiitRu20aYwCzzXTQ2BPQ8diXA87A0AY4XaT+vUKwffN4e9qVkSYKzhpj7C2Hfs+RGWqlPZaO+Na1IqCQuA/qbgnPY82xYmxQ4e967MgU0tLVvb9n9xC7ZMlLtut+twPS1N5TNWg68HoaLUfdVxDCDMIgUkWMpZEaPiZBwNAAz3TTM2vLoXo5ZmGKPnNGTqeNRDmQIwb4WkSgWC82NTrkHC40NI5PkSwDhkmZLC6I1KJSzqlWozIuWg4UscnhzCluGdiq62z1pwAxinO7fLza22QFHWTlszpCJs/QKtaJRfLwx7vybReDpqTmGvSkKJh02vyJA3BUm525tvN7r17dF4enAwmO/tXVtquZlTQiu/EXj5gqd6bq1W9RzZLZe9bqtmx3S8X2mc787OjrebMQA5agBCdgLrE2IHmgqpmh1V6/WKXOQ03dR4ApJsCoUYRf/BzWB0dNd/dP3w0YMXjx49eOdS05xen67zQi5LQ8xw40gbWoJXKNQu6NrV9d7xJzvGsH/44vLZ7894oVKvNzu9vYOr9x9zohb5ZlxJ2t3uYLKzDzB08/DJ+990OAGHyynD2sjcX4e3+/dSBH577V/8qff2emwYlJgK6UqKIokSZFWmoajoBWfbdUjOknda9dvlxaWmxGv55qsnjx/s7i13jw/Go9kM6NKs2d2a1MuXrbCK0JuENYBhbHOMdE4w/HIUOEpnX4T9YaOvWFqShdWhoMGJ44exrUZC+exApplSSSoxBcUhDV5VeHSV9l88fTI4e/LBaeRQuep0OBhPt7cG2zuuC1lFmyfoOG7MPFVny/3dMaQNVqtSnvcPzpan+4fYg5WKUCIAoyHD4X4KwKkf0k5qRzgeDba2t7a2BsOOn6iKXbdFM3C6/S/++vUf//Dll1988cVnnyIAoyrGJ6k0Mzw++OB94MAvn6EK5fNnTx9fPrt9cljZnja3ykGvbZuRRxph9yxRRZZTbVuHpEvQhNFNuZJoelzeahkv/s+f//BvPwEA/4AA/C0CcHoOnCLwn/70h6+/+uzLr7/88MV77++7ZlJul+UI1QeSpFwbAMmc7x8dAr9fLs+ANFxcnl5eX17dXF9cXZ6f41na5QUaF6Je1mED9isEXRXYlaxAoNAkXjWTEHDXNnXYiaq1KtxaUa0KeSbemahZ7QzRqw1HNdJBpNUU9WJxcnJ6uoQHfHR2NoirjXJsKw7w7GYdkrDFPLVEgpC6u7+q/R8vDlIAnu/OZ9vzdsNiWJYTyBIL2zuXQd8gSaaLyB9pPJvJk0Q+x2YKAkFlnX4FNRNNHc18cQSV2bAmtcSWgZyRlqeyli+TIir2MgIvxQTvx0k5cdzUEMcAAsejvGKRzK3J1dC3XgNwMZvhbTZHUpm1PAIwoZjUJkpJ22JJAniUWHYTNiY6InKiQZKmUZDKEGKBwGi6yufXMvliscAzBZbYKFBM6sKA9r4kugwWiqViDn4oiRPCFAkv8N4aa+uyQBQlLbA51Ahh6EIWohhNkiLOJfmhTpEy0PwcrVoy4L8hSozIFCkcc+JEJapCKu/7rJP4QWcy7XjwjsZtcjwr6149EXmVXs+Xshww+2DgkKrbGobBOMoTCiMmMsHnN4Wo4gCsA7PNr6/lNZ3hbEezAICBbyimmNsgZN1UZJEt5iiZYSlsHGM5Pq2Fi6LK0zydzXGNXtW061ULQJljBR516hCBVy6zgvAr1G3ZRRWOs+XRIk3SltgJfffgye3R8umz69P5EBWdUKfKwPZORw8akR33u8PZyr7jaIlum7c3V9cPrhbT6cFsNNze6nVH04Nxv+NrOpBnA+VUTRuVklqNrckIJSUPxsP9i/PF9Oj07AD7EfDUU8EF74apiAWy0SCuVNuNZrNS73aHY8Df/d3ZfLo7PziZT44P5+N+JJCEvnUj/XpTLALLCW0xR6lB7Nle5L9uxEqNSwBSV77AWBUOwnTC9z9sBr2UGydwu1KfvxR7vfSsFw99cVwv8B0zdHA+08WK86pD67VkR5g2eflvrA1T62G4YObrgrRtWKginfZFpyPB+usOaZzOQnXKpNGshEiQOYqpuVqt5on6SFEhd0RFaJ5khBxTVzXsH6Dg5sm0wgYZKvEirKEHcblWlsJIhSSMJjRR82yBRCcTyrIksVaB1+AapoQzBbD4CcOkpGqlFpNiXGlXWDlqlzWFYwR02RGsxBKT421XdnmlvuuHw2Ffpxh9NtBEocBKZKakmkWrm9FndChRcT3pHmoUwdMEx4sKrEnHCuOo1Wv1mu1qr9sb7i/meyeLO4sIytms6hhv5wJ+zdM0d7svUnYSl+N6v9zRA5eqDJLpzun5PESPTGwe1i0vApgx8Uw1HT0UVN1u1jVshDZ1oZTN5vMELxTJg3f397sHp8cPX149fHz39PbRh6OS5NWKgVLMrFNFQyPcmRZYHCEX5b16fvRwUb06a2x1Lx49efHVhSSUG/VKrXu8vHn/Ma9qQYSHHq1OH5ba/unV7YNHTz/8ts5KGk+SpGOvrd1f37i3du/X91cnwW+FMwRgXS3xiq6rCvZFve6ANi0XnrxtV/3YDd+pNq7OltfTbF1YY568++idk92LvcPF3ng4m89mh7XW9rCdPJh5zXq1WvUSPHKBmBFropHKtfmO0t4VXNtwHE23LAdnHOA3YY8uZLamZYV8ePYoISA2QRQoqlZBFWCzioJAkpfPX+1PXvz2zglEaWc+HI33tobDwcyzRUZtSSUyCOKpr+hC2N7bcQ3FAFTY7e9fnZyuhoBXcogrKrwPW/0AMHgFwFOcQsI26OGwPeiPw7IvK35d1owk7s/+/vVX33yN47ipDvQnn3z8u999/NnHH34A8Pv+B++9h53Qr148f/oEfZDunt1d7I8G3a1eEDQbsHF10ascLCOSp2gF3REMRabU3lXTAxoKOUp368v//s/vf/jh+/8EYHz85S9/Tg+D/wxc+F//8ocvPv3w5bvvHZlS0qq3Qhn1B6Ik8eyk29nub+/sQgqPwHiMg0FnQB7gcXN1gWW8q4uLiyuUrHzw5NndbtWQdR2NdmRNsxLIClXBsv3QURUDZ+NE1Y4aoa7acaWchLauQPYfVztYHJxMU537/d03ZgwYWRGEEYAvd5tJE26yZvhJUCvvbLUP97AndTqd7yEZSh2UEID3Dw7RgHm0227YPIfyDcCqiEIWALhISRIeum4W6LS5iMiRWSaXVajShrddRejBOSRV4Hm6UFy3R9WKK8umVLJ8jbdDjaEJIbTRxCWmGb+aBDGyAlczdUAPnkV1+eLmht6IUKUSqDfLFbI5QaNKFLW5Xixt5kslUSczpKroDltQLF1WGCaT24TnRTC8pBRYSyuoFYiorucCADClTKGYzxdVtgR4VizmcxinsJqVz6K7UyGfz2XwFDibLbFMfjO/tilYmiSyeUoNTUGTFImicplSjuQYGviloDiBRhR4iK8FRjHhpammLNAiR9BErgTYJodVDM0uZE6mXe00O91KvdHt8iVUwHDigOdkm8+RBbZ0fy3Ydti4B4l7bSpsiHopQKvl9TWhEqumxTOKRq6vKY5Cip4j6Y7GAilWDCKT501Lk4GXYzJB4v2hS0WOk1SUDYaIzHJkgdQCqUhaZV1jWUiFOFYSRDxiR4dCFgCY/xUWPRaAgifL5Qn8OT3AWaSrm7vHaI/94MHt6c42vEhLx0QQ+w0gR62HdtwZYJnu6HB/fnB6c4PjdReXt9fHsGJg+eyOt3rtzrDXaYeOYaN6gKKnQ7lJrdHcmkwnU2zBGnR3rq5Pjs8ujmPslnINW4KcR7ZQs9FxVzrNQIErzUa52oKwOBjt7M4ns9HOzuLsYPfocNLvJjIFzO3yJPNrkmMhd3FslhScJHKc2FtZB3oouJwaM6Q0F6HytQuD96btajWAFKejS47lp/JWvhfh6XHaEA0/AX4WADB84Pivv231rfgO6kIGvvOmKp06P7iv/ZBetzxjkVs3U1cklLd04IJiNcFMxS3DaqMauph9lKQ+W2kkCtv1hApkozhcVxSLXM6pKbJAoYw45FUMYxhv67EboBIHhOsmII4qCBxVkiTVdSSawyYCTROESgufmGnIDElTmWKJtGxaqlQbMcMGlUZF4PxWVZM5hkM9aEEPPTHYn8SiJQqVvbIzGw48ljdGM0eQcgRPZoqiUVQ7PDsgREMpRU7nWAfoJUmWhcxahxcURF6lWRn0eu0JxGXIsfbPF1cJ7zt8jjY94W3K2VQgpOpb2MdVrQTDbuzX3J6WDBt758u2JkiAW5K+mrjGKa+oHKaeagJdyovA/VxXJmjIRIvYMklbzGb87oPJ/njy8OHJu4eDu0cPHz1/rItONSwnpdyakNeCTa0cWmF1Q2Ko3ulm+en5Xn1WqdWXZ0+ffLJUpUqzGiSNvaPr9x8KhuIktluGFdobj6f7Z5CEPn7+0bdVVpaFIl30LBTqydzD8jN2YN1HAHbf3ghUlZIRf5VU2lXHsgYaj8iSqOkVSNbC31Q6l2cnpzesuXW/tPvuwxd3x8vF7tHJtD/bn81mg06/s12ZXLjNZqNW9yEbqzQjO3REBTsULNO1xcaMtWwDUzKcBEwNCeGXpJVoSIwpSjh5NsqTLA0koahZmxJkVBok2Xxh+M6z2/aLp0+lstPYGY3nw+EEaOtOaEiUVFcJEtLOvTJELq8x3wt1SatVwt3e7t3R6Smw3nQSZjWUenB4tLfYQwBeYAkap4AnWILeBgTuQrptN+G5lUPJd7xm/8m/f/HFHz//6ovPPvv8808//vBj+AMA/FGqRfn+B795FxWgf/MSO6CfPnlw8+Dyslcft1qNoNr2dNfVKtHoABJrSZKxrKBIElvf2wtjdJkJG73xn/7nf37z49+/SwH4+7/+9fvv/grwm0Lw6vHHr//8/TefvP/q1QfHtl5tNeqdZrnVbUMS3yxbsETr9Xq73+1uD7ZTQ9Sdg9Tx6fTiHIt4l9gijUNKV1cPbh6+fLJol3EaGFGGlGHzW5bCS3YSQMKragpPkEqU2ooaHgSqCJge7OegAgg8m60Kiwd7K/SFlGbVDQ0h9vjk/HgbVl45shQLmGe9P68eHMzxuuI4EjLgtO6wkgDF5vPJbrflyhJDSxx6ixZzmzk8ZpJRoGqzyIgizuwUS3kUpuLoDbtXgdjgYwOZKJJ0KZPbsLfqFU/VTJWWPQvIoclQhBiYDE9KAUNHtdgLsfPTxVIumhawQCWJwqaa4FkgEFFeYAAzeY3GSLJeLGbyBCHpVIZQJMMiC6qpGhrLZAA4i/DMeFnIMqZY1CpwdXTXV02HEwgani5lyowqk6VcZqNAFgG3SnmAXWC/mbQfGvhwJl9Aw4VcgeAVWZKETFb0UFYOATi/SeRpARiDhMPYnlrKshBj4UoYkJPCi+PgHykO/R4omvcrEP0gSkZ4QlBptiadrfHixOEhi4uDWj1UxVDL5teJQiYXbblWqz7oGPN6KWfZjE2wxFuZolbz9MSQBN3gigXPVhQLkhFZhyWAqxKuteGknWFFgshnCgxEWYYqkRSvoBAWQ2MjRpHWGEglTJuXWRqyGo5R0DyFhqAionYex/wKBVgOT5Znp2fn5+cX50tgw6dYjHkESeDd5eXN+d4Yq7XYmqxic4mk+bEfNdrbAMDH8A2LxeklDtBdn5/fXJ8enRykk3AHp8NGNQLeGbtYm4GnncpcxNVGewDJIUD33unJdHvv4u7w5HQRIQCbiqdaiiKZHvqQO6aLfDRKmpEf1beHrXZ3a3u6uzubDKeT3dNjyCRnnUbZoBi50X3+pLCmS6yus6JOM5KTzhQFqdZk+F8AGC203fA/uOoKRdMKNbwXYmEaskZkwCkT9lK1aCTD8P1hlFafU4UidGsIgnQUKO3AQr0QBOAVtNupD4O3EoJGIFlRYfRlSNUvrdQReEWDLRwlMaNOtxyEZkQzXBiLUeQqZlOEZ6vDfRSKCiWSVN1gAEUphsEZT5GpZegKDmnBI4k6mt3QcES/xKsysCSOIyEfEyNd8OrwsgCAVZqiqCJRygkqqyb1eiwQXqVcFgmjWlVw3hjWTZFXvFj0dmZVSZOF6qJjjre2PJZTu3uJYZJFSD8JViOlmitZxYKgC5bTWygiemyzjKRJlu8ZfhRUqpVBu9XZGY22Z7uL+en80NcT3aMzohbbOUPIVzylOAnkyG5Ug2o1YOtxcziqbV/v1zRBx6Nf+ElwsUMvdgzLj7CfLoxcjadlGn4/3CFGMSQGdnBhUxAK/PWz/f1l5fnF7a1ReXUHHPi9Y7j93f1YymwELOVlZYFruF0jpzPa7qiw+/xuGmvd5uLi4dPPTkS5Xq8Aeelsn/3uMacKRmjacb2JDf7Tg+XZ2dWjF7/7U01UNCFH53zr/sZmLnt/5YZ079799beimfP2ZqBptGroKtJRLXXMk2QcL+BRHKsC6yJ+v9G7Ojs+vhnlR0TWfvjw9snVYgm7bNYdzafjwX6r0xx0gtug3GzWmtUkCZN64tiwESB5DWzdtoT6jEWZOB2NvgGIcLhMS8cYYANzDEDv9NEZT0BOD9zBCXOiIDIiyjbQ7ouHT3uXTx/rfnUHyOp81t0Zj7f3aqZKiVWDIJxKfFCXDNVtTPex1a9cC6e98e3B0cnKDACFONJhmMPDNwCcGnKjECXw38Fgawt+7HY1aquS29aUwLf7oz9/9/sv//T571ES8rNPPvrdx59++vFHH32S2iF98P5v33//vVfvvPPiGVJgSPLvzi8GvW6jH9qDLuwrzIm2D6KimirVS4osUpx1umWXE8m12zvx5H/87999+7efvvvpZ+DAP37/1+9+QARGNay//nUFwt9+86c/f/XR+++9e+DbjVatEdYAciGz6bcBxFS3UmnVkkar2Wm9fnT7I2DzU6xMn6BWx+nF9fUFylbeXJzdPntwVPZ0SAkNnTUBfyPXUsRUH8vQTVOhS5xhhUkI8OMmFcgWbctQzaDS7I/nqbIGkFgE0sOjkxNsgU4pMPx9dj6vN6qVxFO0pKI267P2cD9tgt5N69aL//BCSsW45/PRTqdtyTJDsDRJlEolFH6maEnhaCKfK7KABrDB2c2CuEbQNL2htcqRH9iKwOKIocCWyKzbb0ao76uIomdrUVUHIBUDgxEYwxf4aj0KU3FND7JcGdYuTXMobrnB+6aTjjOJYqlYyACalGhyY72YW8uSlGLQWVIUTZMoacDPZODGRVTjItBZPqgMAAAgAElEQVSlocSaHGHhAQpsWlV3JZVCK0VCEwlJAtjNrWcym0Xg2TmSIgiqmCkB7iIxzmc31jaLxWyRoHkF1nApL9siL4uSSFGFLFUoMSybzhzZvkHmWNdCAEbxfM00MJTRApDoIsmpYRkjdFKt1DttQJ3mpNvrDE9bnePl4Xw4GlqGKDMlMY/OD5WhGzST3mAw1OB5w0sh+FyGIATIjiLU7ecF1Yb0VwGyIku6rmB/CpEXHEOBxJ5hSXzqm6VSnkI9DooT4dOoLMIzqCFME4JAsDyaLPJow4DmKYBaLMOwAMD0r9BGenGyTDv0sQy9vw8fLc8uYHNcX989fHi2O8bzURytMDC1V80wDmudJgQpgNnz89Oj5fnD2we32EF4szw5A048HY/3jg/6qQEHoq+iabqLQ0BRUmu3+0M8YQPcvbg43j+5OTs72UXXZkOSTAgxmmL7mOxbpoMYFyXtMgSxZr/V2xqOprt7e7uz3enucnk5n+8MWs2AKsh+a/GH5qag6EnZFAmBE0zsn3LeSF39Rwl6daj7etY38LzXn/Bea1X6PiJpmKpxpF1YqMXhxwDgATZdofoUAnASeGkNO1x98ZufEaTfn3Z++emg8Upx0jJT+utjAXF1BIzDmyZuZgsBGH0n3HqnGga2L6hKoa4YdiXkWqYeJA4EdImkZUIsGAmv8jQFEC0AUJQCLWfh+DJif9yyjLoh8wDArCHZrgF5FySWXKjzTjtACU7TYNh0Ng5WJc+H9VqiFtykXNNLeqWpo7oHx7JAg52K5E3ndbTYKe9te3C9A5EW23uJIpdogQUM1jkhaYW5vMAy5aA2OYCvJESaw5KM5fmmF5ebtep2s9aabA339o8W8+PFiQX03eHWNTPytbCYr0IGNxwLtXq3XeWSSPTC1mxQHYzKqpXOa1mmF8XleiqTjePnUYBVBFND71uhmBdtWCQGn81x1DopUrnhqwfbp7OLl0/ktdHHT68fP33ysgmJ9zxmNzKeRDi5nFKI5CCkZDlTeU7xH0DsC2tbB9ePnv1xyUg1yEMaja3x1UcPOUl0QngJ1Va7MwAGfHp2dv3knd/9oaEpjpQDBmzcg5iRuZfyXwTh9beTHeftbGJoBIpjQATQVQnn7Dm03BZVE550I3L96ged7s3y9OL0adGK1/KHLx88fbC3XBye7m9vz2bj8aLR6XSGwXk7AJxodrxaxYtrvsRAMqXbLvY5i41dzoLXDUvGBW6N50F4skcRJYIgJcFWnNbFg0qJpgVByLrlHC8qGKM4lmfuXjw6mPz2QSzV9wbTwXB/OBkOAfINraSUTbKkl6N5S9QVuzbZr+mSEtXD8WD7dnF8fPCfNejVHNIKgHcP3gDweDIabA22+oPxcBBUKyKXdETd9MP+6T+/+ObLP36ZzgJ98vHHHwEAf/oxGhICB8Yq9G/fRRHoF3gA/AQAeDmq9Qa1OG5XA8cDYOuPltuWRCu2qQiyJjOa8jgsVIFc2vV2+zf/6799/8svP/zw448//gD//+G7735IERjwF/5K//7hL9/+5fcfvftsX1U7zUqzUmtUa5CrAuupNEPNqTUG7XKz2+510eOl2agHta3REAU1h6PReLYHgens/Oz8+sHtzeXF9cNHD8+2fUytBDu0HBX2f6ALwHyCBBVHFZ5mNCdMIuAMflQuAz6bimb5cb2PZ8Dz+ZsqwjECLz5OTw8gvJ5dHnZrtXI5NtSwalXavZ3mXtqLAw/s3kLIft0KfQDxdBcAuGsKIrI7BhhmqZjPF1ClAkI/EEZagoyULFD38tI6wxTITbNbDW2gTCpmaaKq8ELR7dZdJMDw3BNP9cs6yVBSZLGyaNgiW60FgJQBxC1gWNiVCQGBLpKFdT4OsX8Ux5lKpcIGBACCozczZGEjT3K6RuYpTrIMgtbxnJwkNnLZIsQJmtdFUnRY2k1CxzNdD8BR0ahUkR5ouyTi8y9srq1l8tn1LMWgpUSWyG/mCvlshtpYK9KFbCFLMqINSQRNqCbksxClVgBMAMhJkqQrhmPQOcZRzSIt26qEjb4cDxkKU1zPEIJmh6ELxKla7gx6na1Bf9Ar1zvj0+H44vTk8mK5EHnF4ouCKEACUBmbGnLkmcrDfiINiIj31ykWgpOFbXiwEK2AU7l8tlAkRTSpxDIBXDkZOK3IkZAEQVKErTeQuDDIa+lihihSHIpa5wRZKAGaF8kSwfA8iorxHMUA/8UjYJb6FQqnHaxWCKphHaMOHeDvzd3t5fLs5uHD5XyE4k2aoeLZFtZOk2pcbjS3x5MpIPfJ8vjy8vHN3fXVxfWDm+Xx2dHhYm82HE0WWFyrmCijwkuS6vm2E5eTantrBKscftnF4d7J1dXZ6cX5ya4HYcVAewlYIoqFlBnY48qLoVpv1CMzbLYAt8fj2Xz3aH+xuw9Mez6YzLrthOA8fdy/6W9oJqyteiJAHLRRRPo/tahWTVgrAcm07XkFyO6qzSr9P3wqne7wU+BG6ESNDViUfjn0fWC/sDadANv0Axzuhi+KAYoBnGHhpiLSPpah05EmPwpTIY/VgTBOHb2xKbRTY8bUpAE+ZyALttLWQ69cLwPhTRwxr8S6Xq3oFrwB+zMUlc1KBZ4mYleW0iN+llUZVvELVBykSuNhueariSmyAMCMjQAsSTRBwvsyZ29F+NoMC/6xSBXgjgPzcavVsp13okrbI/Rq10YXW+zwYkSnJjrTg7ouCow3nMTN6TzRKb6xE4tsgZdw0MESmKg3VjKkSrF+c7ynqZIiFCG7UyFlgvgZVbuN7k6v3Z8O5sPxycHe4uQ8slueZ5GQk9BmfbPoCUXBmqiq2WxGDFzZoDbe7oy6wHVrZXSP9CEl8aIK8g486bQh4XEQfw2V5WWWzL8Nm8ESsdkjw0hsxnv24HK8f/Qw3MzUbl7dPHh69+yBKLvVPp8pQKpsbd6jZc5ruE6OV5TJKTl7cnRX0bb3Ls8vvrmglXpUqbX7i9OHH95BFhFHFtzdVrezNZ7sLC+uHj5/9eEfm7oQomlaaAHpvX//Df7ee3vt7eqe81amrKtFRlDQD1UUBR7WuiQjZYKN69itcuxW3+vVb3Do5Xmr2CI2kpevHj46WRwfnRzvDMbo2tnv9Vrj+uFJjIpvbb9ajpKyLfEmyqcaCnZdNg9EtOFCnQQF6Amar6BYr6jZ2O9Qt8rdvbthgcX21axTyZIQADXY4QxPjn/74Kbz6lmNacy2JqPedD7c3u7vdTSjpMQWQypJNN3SDFmvT/abhix59WA4GdyiakTKe49OTleyiDjTihNI81SxCWvQqxasbcDgYTeo2pzQCETX8jpbH/7y+Z8+/+LrL7788vNPsAUadTg+/eQjVGcGAoxTwO+8evfdV89RA+vh5el2Y9Yv++Zgosu+plZ605uqbZK6jnFfFBSj9aiptjTHDrvh+Ov/4Z9//7dvf/rHX7/9GTAYAfh7BOLv8YFI/B2Wpf/y568/fH6x4wnwHWEdnQRtSYcFqnuhIQFONhK/VkuaQH6b+HBrW9iYNtiGC9Pp9CEnQl2E07OL5dXju9PT25dXszqmQXEITBBYQYzdxZoTyJKsGQrPwPtxtYJ9K0E5xtqdphp2WO9huQ69kw9f63C8tiU8XiyWZycXy2kFALjqKE41jtqdvfZkHxjzfwFgQN6jxeIIAXh3b7zT7tgsztszNBoa5Dez+QKBDK6wWUDtBwj1uWImD4miRJQ2nK2yh9IaJpbYRMBgqWh3y64B10Bk7WqourFOcpRUdmhBVCyFSGoYxACAPR0wO5VrYnikpWKlHHgm0GaOoou5DKPSlMBks3Rps0QKulSAPaaaCgphAXLT5Hp2s8jkYWWqLCE5FO3FkROkysKaokGMgacua4wi5jKZHJnfSHcSgHIuWyjkiFxmM4suT5kMzRU3CzlWUDxXlQhCRUFNZQXAZIEWcBiLV2XVMJgcbatGgVI9TQSiZ3Kw6AtkIUvLgFN4ghkl9UZ/u9fpdVvdpDzYO56F7cP5/Oru5qKiOrGwvlaSSCoXjVUp7gxGVYqnRJbEk7/79wlU0ln5yeqyAuw6v5GnSEJRWBrPdzXblIHWCgqbg88TWRrCM+TEDMfDBiUKm1SJZoqUABmaxENqTBYYgGSaRilTLE9zIg6Tcyzzq52VCunh+RmA78XVJWDi6fL85uHdBZoj3T4GBozFXE2TZMvWNcvQfMgmAUiHk9nu0dnF6fH19dPr26vrq9tHt6fHZyhYN9+ZQ7K8t93rJm7gQsxgOd01nHI1Shq4MiH8HJwez8cHV9fH+4vDvRg7kb1I1c1QFw0XrRnsVDs6qkBMalYr7a12d3sy2h6OJ8doSXq4Mz3tj/e69SBLMFZ3/2FrDYh2pVuvl00nHdsN39gLOitvI9+0nTejvACiWIxO3Y7gK1ci0G8YrY09U5Dhwp84sL0KUEgfvgIQO0QaDCsqhqAXVm0vBgAOE3hLAKSDcpTOPaF7g2X56bAR+k/YqPUBRNc3rHQg2ExboAGLPURhWJqWaxtBq51UgKzyYsm39SROin1Pwf4pReNzLEcIWamG+S7JcpQqUJpmMTl86kkF7kQSyaHFUzxdYlwAYF3VYamW2FhnlBY2jAGPYoVSgc0Ui4Rps1alWg0Ktp+0g6Ja7tq6zKNYKUNLXo2zp8cNV5UZqz+P4uleYhFsNGk4KiRzfKZYsnki7NViU7F0r7Y9nSscKTAZYMcaZGiR73rldqM2hDs2aE3LjaPd+fTg0GcqFc8jKTM0Mo6e9QRIl7tB0XAjyRSdRn3Qbw23y1G51q1FFU/3bWDAlUYFm9SwWu+E6fS27amKqXMcm/01H1iyQK3DZmSlAnP84nqxqFlFiVpPXjy6vXp+9XKHkdyWsc7hZtjYLIalYDuqyQy74V0bysMHh663d/xyb/TlBWO2wiqQoaOzuw8eUrRWCU0IQg0AYGBDJxe3j56/eP8PdY2O+QLN1AP0a4H/1u79+h52Yd2/Vz9w39qINLWIVlW6ipOgBhBWA+flIXvQHa8exk71VTe5Ob05ubt8RFSStczV+1ePbnZPF4uTvd7WbDQdzXu9znbn4GW9Xu3Ua5XQrzUdSQ8TWwMAtiDR55sLCTspcCgS5eOBGWIi/LpR37E1fz68HuUVi6aknFffLNAqhz6FIltyfvPoce/2/VhojHv93W5rb3s82trvGw4lBzbPqJXybOraolKd7rdtWXBqwda0e3V0jPp2q+arQ/z/Ao8m91MAPjgAqAAAHo7H24PhaLDd2m5EicJaXV5K4nAy/uXbb/78xSfffPbFl59//NEnn3/5WTqJ9PFnn360OgTGEjQw4BdPHz9+fHM0a203a0nQSKzIUa2gjTdTZkQUvrUNljC7N00lgP1U7nizH//bD3/79od///nbn//24y//CcA/rh4/ICf+6ecf//Wzl5eLQeTGNeCBKmfafq/Zb7VqsacShKjLuiR7hgSJqR/GSaXqN/qdVn80BkIx3u73t/rtZmd7Mp3MTy7OlpdXF+cPn551vahd8X3dElUVOLCJpwxouSELskFJFiRMlSrgfBwaqhGYkmS4Sb09nO+ubBlWFQSsP+M8ElCOs8Pl1WEZABhyZzsph0l/tNU5PsSwiXqUKKGFXecIwEcHezuz3dG00XAoCoI2UUTt5OxGJosuQSs8phRdZBiGZEtCISexxftW17PcAEgn0FlgjqKolFzIxVGQQSbUxFecSClyhFRxCJqVXLMYNcsBRCr0RJJNU0ED4AIaD2eE2A88XeTQyX5zPcNAFs4Q6+tEfgPwX2ezBZbVDCFHSiIwJ5raKBQZ+E6WV+mSYBbJVE7VhegHbFwGckgUiyowYD6ztp4r5rOba/c2CJUtAfHN5kv5zU00NMgACBcLuUxRlCTTFKUShYoVRUGWgP3nUgaMpzuo+GoJRcYxrTwh+5Zqm4rJAnvPAtE0IB+ywqTaajVa3UZrq99sdAbVVrc3bFhb58f7F5eX1x3DYIGBkyLN5/yRYZTLe10Fgit6mnHFTK5EibJkxHWIh7oGgG9S64RhiJKlQaDleaDYMoWToRRN5jZz+VyJhPvD0gLD0sUCMiCCJvO0zCgqj2ZlFC3zJEOTAipCMwyLpAfb2sVf7U0nuwf7i5ODs9Px9vJueXF+dgZgfHJ2fb08Wt4+Otlvw1p1bSUlwHgxvSiIGu0+imnsn1ycnl1eXD17DvB7eX2DdZYFbM8JgPPOZNguh2EZ1ivHCJpvwiUp13uVRnd2fLQ4OTq/XIz3r25ul8spqsh4rpX6FqBjgSZpaI9l2VG53KhVq5VKvbOFj8FoMjtY7M4PFnvz3cO9fjumWbXZHt75G76tVgbN9hbEam81FeTjuFD0Wt/ZT4eJ4F03BKTwfRudllaqViknBgrmpu4PjocnwNg9j0Vq+GJsNvbwhyGDBizGXukoQpvnAP45XjVRh6GNJWpswoIvwT4uI+2/dk1E25T1AhJip1JqS7iqR+McUmqdYyX1Wi1KQl2VSnXDCSpm1JJsdAtWdT7PizTFNw3YfSSkfLzFqbRU+7UWIzOvBOVWhXF8XS6JOUY1NVTvp8gcx7mmLLbKrqtDXFMIhqKKuRytG7TQgoSGJ1GinGGijqcwkkwxXI4SjEiVto8Sn7JJoz2p2LNB3xEJYzi0uRwsdTrDUWExqZRFPZDtxmC6e6CVZIEtUAzko7JhenCza5XmsFEZDluDg15/cQIoo/ByuU7m14ukKfEy/DJe0hZuyVRb/bA83GqXh7NhGHa9ZrPbjKrNsNHoDQfdWmDBLaxUw9DTYeU5rqfIimtwkphZM2ODy5O5bJaU5VzvvcfnAVnQaaE4f/5sef3y9uKpx6o1e91imRxzv0QHlORvBWXIS/OLw0z30UG3vHzy+dnBZwdFo+HGsDePT29++5igONd3qhWv1h5PZ8cny5Pb26cvnn3TNbVIJ1iiFr99b/3t9TVsgAYWfP/+r9+qTby3MpEms7zP2xpWNEwAYBSixMMaRzf8Lqya2jvDq2na5HPdy+9mNoPfPnl0db27ODhajGt7s/Fkd9rqDDrdZxOvCfem4VvNyJBtP9ax+y9yDK3Q2smRWRJl5EXVhuwPFpvrxAGwC931LC20bjrHW8HL/+t/JwuU08pyqWYDBU+MzV8/f7bYe6cSjrDEOhqPp4CZs23dpqQwFCmzUusdGCanJoN5VzdJ2K2tRXd5sVievOnAOlqsfBhSGMFJVYDfyRh+0mh7gFty0p94jUBXk7KgBE518OrP33311Tdff/XF558B9f0cdZnRDenTjz9K3Qh/+8G777x8/uTp8xcvHj59sJh1x71GHHZaatWLLXtwuORsleDQUEYSZVLfXSZCLNm16pZx/rf/6du//OMfP//048+//PLzjz//tKpEf/dd+tf3P3730y8//eNv3/z2vYthv9ts1wLfYsWoOcF+seFgMNmZdmuOXvGxBwOTJZVhDdMIE1hug16zOeh3u31A4fZ81qz3t7fQ1xeY8PLy7PrB5UEvqlTLHjBeVkVrUoNH0X1NVk1dguAMez6JbFXVDdt3LV7iLLdabQ2m853pBK0sjk+OFnj2iwC8XJ4uz84vrwZx0mxUPNGr+2F7OG1OT8Z70/2jHRy5XiU+6MS8N8dT9+ms3gOyDcwP9jGKQW+u50ha1nlgWoUShz1SbBbN7mlK5MmMWnadcoKnXpYuiprsyAVU74xjQ1M4p50oftVkdZmrGDg2rPKsj1ON2C4KER7SNkAGhqY4IpPR23GoAU0r5QvF7MbbvJUvcQTwVOCstGTJxRwjS4FUYiTLUhQ6lyuWyCLF0ZLBkopa4sqJ76MRnKWpKgAbg/8mFglp7d7aevZegSmtr3EGT6LJWJYpZbMFYPRrG9kixRC5PClqBlzwPCtrmsBBWKPzpVKeLHA0GpDLBqQXxDrpWUqetTXZkHRb4yATLmkQdVVW0uKk0YjK9ajZiJqJXjUcO+r3641xp7NYnD6YWqJMkFmg8kBcg5GmheNxBL9H4BndIjKF3EZJgFXi12TLkCVJNmXB8BS46F6W1iWGgIvKsZwoEPDs19fxSZMML6siWSjATyzm88SGQxQY1lM5dC5mSTzmIwmKBzjG4pWIZ8Fwqflf7c5mB4eLw5Pl8fH+dP/iZnm6mle7evDg6uLm0ZPjvTaWoE1Z0XAGER5B7If1DtoZAQG+uEbqfPHg7u7h2cXl8cnp4X46qo+KsZNuBc2H0GhQM3xTx8ORbqPTG+7M54dHy6uLk4u7m7uLs4mOCo62IsqGoSu6bRvY8ugFESAdhHRgwc02+rxv4wM79SF67QxHu7OtXkVkpVq/uRtuQLZXHrTrNaCpSbAyOcKOqNcQCwC7Guu18UTXxQp0OgfsOisA9rDfB0+M3RUnRgBe0WNU3VidA+N0UgrAqEEVRzi2tHo/fXghSkisjoVfzz/9R+0ZITfw3kDxCnxRqQY+tHXL1Ey/2mwAhYblz6hdxUsSvRGKgW+jvgvN8gxJW2UZeyMgjVRRfirazJfD2C4HSZTURDvUeEYiGNmSPFvCgTmGtC1ZbJSR6BuWRNCpiwpr2KLc71arYgnArcXRYSeUGEGkOb5IQo6kCZ3jXoWzKbU2qnu7k1EgkXpv4Mk5hhBpWFlG3q4GPOvqdjTc2VtAysmIKSzIclourjcq3WG7OZwMJnvDwXyxf3AW0XS9n7+/sZbJ6zl2PTAYXQ9rYobl4261OWy1D7c8AO4e6l6Va616AlFD1mEJWKpoQc7iuiEEE1nwVNZwDaVYyMihzRdLxexmkRM3g5dTlea1kk+Vz5/fvXh4/vju/JLgDZeRyCKO7WY4rqjGdg0FaKNHZfbqbrg1P/nk8sGrXUjwYG31hsfLB7+7g4TU9qw4jOoNCNYnpydXV49ePn31+5ahxgZEo8B7ay1zbw1eyL179++hFuXb9UnwVi6RqZKg4301cfTXwTGqVA/a0nWz7np29+7sg/758uju9vI8mygbhfP37x4+Hp0cHS6n3fFiMp5PO51Bt/r4Kqp0ml7Zr9VlI4mrVcXUJBpuG7PZmOWodK7YxjWF/W6ObXg4OY/FbtU37ramve2f/9//7yVNJr1NgqRFQAGJF5RC+/2HD3aeVnsoVzUcT2bz8WQ0nzouw1u+UFTL5c6BbQlq0p9vmTYbV6LmfvfkfHF6tH+w0p88WukxoQpWWorGbt3ZFMeAh+hDOBhsd9y2zRvNQHJCt7f91b/+6++/+vr3v1/JQQINXs0CYyt0qsTxm5cvAICfPHtx/ezy5LjZbg0rTqdvc3D9ksrBAw2IO6eHjigBudT292IrImwPEsWbn/7b9z//86fvf/n5p59/BhT+Cd7gnZ//7W9AheHjH//+7//48c8f3j64GLfGu6Otpsbr8fZ81K9HsCPjelguV3stoA71arXZaVW7nWpSiwy73GzWO4PBsN7qbm31u+32eLvZGU1wwgpVevcPF8vr68vT/W6z1Wu4msabjp94KP+vQmTWLYAWVotjLNVIohNHvqcaIizbpNpeVaFXBoMox/G6DQsHkM8vdmoAEJVAMcpRUB9O+wMIaxDbZiszYbQkTMUJ9/dTAK71DVSCl0UBh2dL2Y08xSgGfJDPFxGAeQZVIFiiCCQsJ5cDP6q4Ns5DaprHcxJrNTrwuVDReSv27XJFZyBtrFjAxwSBKcUdVBhaOZhrqiRKIqqvwg6Ty6YqAYHLF4B9Zu5xJmTbxc1sPp8v0KImFYuspHhcgVMtXZLIzU1sDkvVNlhalnJspQqhcCUigZ5KXBGIAGT7Ckq5rr2Vhd+QU0QqlwXmy6LGZqmU28htFhDAijQnKZoicNhggUaKoswW87lsnhBoHt0dVNM1qU3YFh6dk1CCF1vRONmIgfqjMUrSxLM2AGMFsMuwzKDVRGufuqlancX5jqujtkgWfmCxSAQzSw6bdYBJkqYUFRCylC0puiAYGlmUbRe9tw1ZVYhNQpZLsgy/JzAxIRKZXA51M9fXMyUeO7LIEtBfhoYXtiHC3WA7zYLG00EMX4wtPDj6iy03PN4xCqUdmF/NJtP9xcHB4eH5xXz74PIMwXcJwHp5e3d1cX1zfbjb9mwXoAGHHyCzN6yo7Pn17mg4nh8uz8/PTy9uLs5vHz9+cnFxdbI8WyXJ2DC5O+1XAL2Q2FqG7lu66Sa1em8ym+0dHBwfH51fXV7dXF5fXk40+CoPcgwFayYW4A5cX9fxy2V0fUjKtUaj0Wp1B0Pc8zhfd3C8mPd6271q1SM35d6BRjiGq1ImfM3AxlNYrCmvzH1XPVJvqtErhau0t/nNZ990QkerCV/vdVXaS5EUe6ywFzsEoAvSRqv/AF08oY5W3dDpIyXO0Wo6F78/tWB6jcArWyTISE0znXdG7H0Nxx72m+lmCGEAyLejSaXQl8oVJ+7yXuwauqDyJZoD3G3orEQXOZYWYSnylvy2W3XtxAHYbmpGYgiCwDKCK3ihKrEcSRd1WxEqFYCvyLYkiqYIAvIvxVLYdjuqqCUrbnRF0u8kssit5KAFBZL35GRU4Q1GrsJdn423PZHSmoPYgH0nEsVNRqGMduIwflzt9LanM42Xaa6EStC6qatWhGlEt9Ost/v93ng2mh7s7y59hrAazMa9tbcyFM9mzLJh60Q35o1cNm7XRtuTRRfodH2r36uHWPqQtaDR6nYb/e1+u12xZCzowsOH1a6rqmfSuZLliXS+mNnM0RqpDOUsY9iFrsR75+9cnT1+eH3+rJGhXI+nNzPrhZym8nkyimcNQiGl3au8dzk+uHz+1dO9lzOqFI5arfH+2cXjj29YnncCJwrjenO0s3t0sH99+ujV4/c/r2tKotMcmYT3Njbv3X8b0t37995+++31+283RsFbeVcp1gLNMlBsBVJUNEFKH5ZrGXYjTOz+3fKD4cnJ+d3N8mVIb61t1N959fRscXK4v5yNOofT0XS21VaJTwgAACAASURBVO332vvnW81KrT3tOgJgeKXqF4oFsljkRZ0Zn0kOiiDaTlkxbdOxNduChF+xnPQYwzUe7baH5W/+7//ni1KmtrVJlEjswpYFUaeE9x692D9qzLopAx6NJ5PJaGfHt1lO85WCXC13DgNXVuLO7shx+KAc1nd7R+cHx4dvJJkOX3vzrKwYIK3eRcGIlFamUtD9URx0VNpvKkLkhMO9n/+EjoBffYVjSF/gMPCnnwAQf/a6C/q377569eo3L58+fXb7YrncbY8ag9BrtkNd8wU73r0u86KsGn69Ajk7qy8PJV01bb3a1D/693//5y8//f0f3//tl19S7AUEBvj95W/f/fSPf/v7L7/87W9/+9OHv3330dmDxxezrXa9SaOhazfRYA95UZQ0klriu4aazh8ElTKs1WZn0GsB1vYhv282Omjp1G53tvrVsNrtb71h+NujGbYyXM47UVyv2ug5iTVAR+WAiKmGIZmmwKqYy/uBrTmVMHI9RZF0yBubgylO8WIV+vAYu2ywvQb+Bvw9OzvtlmvNWmTqUSOMe4NBf3y8OgXeXQHwIV50AOCDFIAbWxoyU4jYgFr5VDeZUQ2OIEq5Iq+IPFZC8yRXzCOtE4Gtx4lr2SaK+9q86Bp+v5NAjJNdHsh6rRZCtl4SfYUtciVOIeJa8v9T9V6xkmVZdlh3VuUz8cJe7/29cW/ciHvDe+9fRDxv86Ut02XaVVWXr+qZnq7u8tXVZobDmcFApD4EfQvQBwVBgkSAJCQIEMQPSRQJSSD0ow+KlKChOABFaO/7MptUVGfm68xnI845a6199l6r4EUpbgjAaDnPUgBFZFoqWApANEvAp04ltzk9I1LJGAJwmhFkPk1wop6lUqJhKSooYJDGaCZJ8ApNaWKChy+UxXZUC0vhsiak01RGYlg5AuC78WQikZLY1M7OXiIDInsvFovt7FDpDEvHY5kMJcDnBPAXZFUX0XuSpZJpMkOLcBYB+VGcnE7ACaDlmBjve9FMrWRgxVvBxE7JCdAFUDdgGXlBo5xvDVvwzQQ1PVvpzGY+aQtAE5KxJFoK5Ea2BCpTZzHMkMuQYvJOPMlwFDxxsAGj+VvLEhkykaAYeN450L85+BGRE2zvbG/v7m5vb8fJKBwyTSSBQKSSmR0tQYv+UNtTyZTnJFMCRdBAEgQ4x3ge82vEKKCQRwDGGKzN+vJ6OTy8Ojg7vzUrv7i+d3l+cXa0mtfRjBwz0NCJA04WP/RylVarPwWYPTo7Ory4ubq8uf/4hcurK2B36FuHzuKz2XTYKhUil0XMmUS/Cr9UzFf748kS3un04Ojs5PgMb5pHspvDrEMdFI8k2DlT1TTJMLIgM8NyuVSulEuVeqPdHWCj4mg6my1Wq+V0NGqFgUsJGWIKjJ4y6a2kU+6NorYrxw0iuyrvKdI+BWAsRUfhCu7tlNFtF7P3dBQJ74Gj+V/AUgTQqEbtPgNgvAf2sevpGQAjAvvRe3nP7pKjNupb5HZ/H4H4zKASbdxN037ahxVNJmGzmQmkRlftoNII3byn60KibJphaNUdxXcdg5PkFLy0QtL3eElIMTTLirLEi84eVTYCB6DQrltymFV5hOmc6OVUEaQyQ8hZTciXcLbKNiWsQKfS6Yyoy1S5nitahOFX2xrh1kuazlMscL60CKtKcDbjPK8IYrjq+YN+x4OzpTIILJJhuUwiRim0XAnLjO4Vm43OZCxzMk8m8QIUKCao4rBSDTu1aqVYa1Vb8AIdbGZr+FtTvHPnbnx75w6rU2zOFaUUEPSSvWuOGsP1qtcOqxP44X1D88LGYjiYrparzXKBrSiLfqsS+raOwKZJGBLNcMkdyVOlDOydvbTGUzXFdhSCMImMVHnx8P6Di8vLsydswikaynZqm6YMj7TFplec8izHK8etvdVFL2huHr7443JMDWvV+mhzfv3wx1e0JGULubAYVmu90WS9Orp38eDlJ6+9VdGlQKFYqhzc3d55HnTv9vbTUaTvVnvenaRuJq/KqoTFDMuIbKCBJ+AEoyrJGEeYrb5eOz6ZHR+d3JxdnW23xJh08aNHB/c2kbFyfTYFWTpst9rt48tJvlzNGZWC6JfCWj2kWcG0HSCiwvhUy2dtwI9cF0eBs0A3beywQTPErGNZysPL2qD68//2H/5MYoJ2nMF0YErRVVgpxOnrNxeN5rABW2c4gB00Hg6ni7zJslLOSErlYvsodGXRry2nWVOw8l5l2ludrQ/Xt27E0QzNBmdlN9FEKl5rggKGT/Usi6HfyZVLnFTKc0po1Acvf/3xBx+//94H7+AU0nvvvfMTUMBvv/vu22++gXkMAMCvvvbaqy89efzk/vXVrNVuDit6vheqpmsF2d5JRRBZkJhG1jdlTT1diS4vBG654P7h3/iTX37+7aeffvMlPD4HyfsVquDPoj8Bhb/++quP3n3p6uZytTg9nHYa5azihvWqq2pwWjWG8+X+er7oV3SSs9TI5tbBgX1g0/lCe9DvDscY6dRuVMo1wOBqo9eulJrNVhvQdzzEhu/Z/uHZfll3mlXLBtlremEpK7Gi6liAKybsIAk7ORplXY7Sx3VFMa1sAZT1dBmlKEc+lFETNAIwSODTk6tRsVitBp7mNgvZemvY6x3P18vZ8vba+BaAsea/RgCeVHuWGqkmkswAACd34wStaEBD0/EUAjBHkkQizWbSMknEpEo5yOfRBRf0kqmIhsGZTb9ZrdfyoZTNN1qBwWcYGovwoGxJOROA0MG2UURsTOwRseZGJhO7ZNa0ZJYTORwcSmzTSloi4zvxVDKO2peFryiYDpmR4asYGgMCNZFOw2klqSRhglQsFf1oHBMD6kVFFwFVM2jot333+Z3du3u7u/EEw4GihpOJpAgc5iEoOIpYJgVQTkiWjf7PrKDoEiepHAc/Lp0BGcJKgorx42o6xsArSWcUEwS4hr4LDghT1QQND/wLCIhi2K6lZbt13Z/VLSVbrDWrvcXJatT1YJ/meDoFkpXmcxUdi9oGHBFEmmdSqdj2HuBzzlcSzyVIOfpMMpFIkAKbIFmQ4KBpeJJR+EwMDgUQwMDJQQ+kMkQmSWFPdCrDxoDBCE03pfAJLtD2KBa4AzoZYpM0Wo1FvtTwun1ngdPf683h6dHp6QFmEp4AAoM0vb5//969m+uz/VndRdNZA6eQsA3a9AK/UG20B/P95eoQqNzJ8RGI4HsPLq7unWCo8Gp/Pp3OJ5MRMHoQjlmcWTRwxsQtlMthoz8YrQ5X8/PD4/Pjw7PLw8v7E9GKGq/gpdJVznQN1QI5YeMNWBiWQP+Wy/BReHqMJrPBeDIajuf7s9Gg5hd8IFvPZdS0E1pCnA/rnW4uRCUZjd/aUU351vHZzaMvih2FG0XmV+5TB6yc9zQFKRvNBTuFfwvAkcKFD0S49m+xNvq7308g4d8U8vn877G3EOTdW+cO/C1yonwGwJj4gHnAUSe0FeURWhgwB9TGtjTdDhrVIPTgdEhrTcELrHyDtd2cJcgG9ijze2LJEDUKczI5QeYIXduxnKLleUW7CpI5pwsUsGBPyrpw7LKY2OXqvAMM1LazJrx/GmcACMlQxVIbTg9CzpVbNmFX6qYhYDMBk+blbCCri1WoSQoH8tfvjgaBxInlcd7Avj1mL5VUSLJSbhlOkIener02eLzYgSUFpBNeMLwwqA6brWalNWg1JoPBweF8CU+JrCZ2Mmkmtn1HJ5RKyQoL4WhcmxTqi/Zk06gMu422p+pBfXSwXh41ysUAr9TycHyYtusExXK5WLBVwQ0ClVUVibxLg6qhk3FiN8aye80KkIokKGe72Ht09uD08t7RxcuTtJTLZ7f27iRJIrttwvHIjzopg6LKL4rW/cMwbweHrwxpwa+3Gt19EKevn6dl2cm7hVKxUqo2e5vTB4+e3H/xlRffbNhyCHueKXh37u7c3d29s7WDALwNAFzv5u6ks/buzMILKGSnmiID9IrRAwNWa7D+Sm+7/fujg4OzR9dHL4p8eys+e/XRg/P18mB8dNjvzyYjnBdoVcbDoxqs8yuXhte9US5XTc8PMSrT43orzjEd39IKK1txLNc1s9g1YcGWwXIbz50+GZi9j/6rf/KHGTbfjPMcADADWk3kNbLy1sXDVr3TigZtAOzH48l0v2iKJO9ZSTYsto7LWVnwq4tF1hDVMCiPBstzjA6I2p83B6sNQi9IuNtQwuUzAI4q0N1eb1zONyzSrVigOczZ+BeffPTxT9/74MO33n0nAt630I/jvXd/8uNoEOlH338NY4AfP3r0+OZ43Wt2aw21XgPZAgjcnU2KmkJKWqHkoI2Md78t5ERb9spG952/9c0vfvvVJ199/csvo/ozAu/nn3362edfffPrr7/85ttP337p5nSxujiaLUbDTkG3KoN+1RZEI+w0uoP+YLY5wknmpuoEeGdT9P1i4XZo37LCSq3d63SawO+77XanWStV2wDC8EAI7nUnwzb+mIujRdEJ6yVXUQFss0Ee5w0skzFkSUP3KE73S+UAXp6s77uGbmJzdKUxWqwWszk8h6vDg83h8elJNI6EEHy9rIXVahG2XDnIVjvTUXs1Xu/PFs8AODLuwArECk14y30c4cXYFJpIgALeicH5r1GJJEAhj1VikmDSSRCtgkDu6UBncygLEIMdTjElo9ybHM9GJc+1pEKnaogcwSkuQ4isIKXSe9ViDgNYgUGalqYIKCZZlkzGtzO2aSmg1Jg0ytO7pBAXqPhuMhWPZ3hV5/YSjGDYFKmC0NSVqJacShEcK6sUZYikjmPAdhQjr2CshkQQdIZmKRpnCLaBzG7HsQmKoDmWjgZn0UKLw6wFJr1DgHJ1NZYmeEk1VVE1QAzvxZIxVuJkTdSwhmgxe3Q279KkLAGtAq4LSCNasAMpWqCFfDH0URjAx+Zttb3xCNaB86nfHd/bbww8yXJANuPgsGK5uqCxgiZTjJCWCYaPPU+YxayVMzO7CYmVNMNxAH/jaVrk4ixPs6qlcTTFSwQg787TR3wPq9mJPTKFtpoEvb0rkHGXl+R4wrDpJEUC+8CQR1S/GMzA4g/NM5nvLBfYbbA5WB8cH66Pzw6Xm5PTk9OLe5c3NwjC1yssQcOPC9w+6pFCAM4H1XofS9BHh/iBh8dX18cXN+f37p+fnmDBajnDecFxuww69LbXyIwSlXLFWn04GgxXQLAPN6eXJ0fnV0fXD6eiDjBkmmi7qou2Z2oIwI5rmoiTmLsX1vuTyXgM+LsYT2fjwXC+ngx7JSAEsIh2n0slsES6TeN1uR4UHOxlvr2D9bxnkQuRE+XTeV300riFz9uAhtvmaB8r1w46Yt2aVfoRtAIWAM7nbluukDLfAnAkeJ/eB0cADG/kAI1zWUDvrOPeVqc9J/tMA0f613Wj8rOFdWfz9s4FmxRwXMAp1SpFH2sNqSAQi6E1kDQnb6MRLk2xApHKZyWNS2V49DnlCTGXyMAew5btYqDlc4rEcQxpy7pnwPLPZGgyZ/BGGViHnbMUETZnJpMhJVMX7EYp9BghV6y7pF5sW/D5aVj1GUZyAHtHB5WsaHLWcOg2ppOqSDMhALBAkxSXJFLA9UvlWr0zbZfDcL62BRr2JieKGIarmDk/APVQb7Zq3XGvNxn09w9WayvwGQ82OCt7TpJK2TVN9kvV4+FsMx70R/udSq8Lz7BbHS0PNstOwcv5IfJ3t4TKHQWRqFp+uVYNs6JmOjlVF2JpwzEEHFiIk0JG7yUpgperbV29fHzv5PrB6dHFxX03o+QDKrZDCwkvRshEUQsObIZltbObVO10sVn1CquNGitMa53u/unD6++fxyVR9yzb90qVbn90cHJz8+TqyQ9e+knLUyvw3PJB7vmdPQTf7V0EYIDg77Z6hTtETk/ykpSXMeRTiKI+cRAJjiRLN7x23jOrb9TGV/uLs5Nu8+jhOtak71ovvPbweL1/MDw8mLenIIHnw2azEgb7zULvnX/0MyFbL1XLboih0niv7EmDfcYxXd80/NOigLCroWs6+oWrmQwoh3j3yVF5+P5//Y8+4NNBK85QIBsknhdkQSHVVx49PCh3MDcwYrBDILD7JU0mJN/KMIVy9bDuqny+Ol26sP/KpWJ/NDs/OLx14XhqyIRF0eVy8f8rQQ+eAnDfL1VEulhUDSCt+ye/+uCjP/jo/Q8/AABGJ6y333rnnXfeffedt3785ptvRAr4ZfTAevL40fGm2h2Ua2apXpAl0PGj6dJmFNqy3UozgHUWXrdFx1ANI69NP/nLX3751ZcAt19+9sXnX3wOjy8RgD//8ptfffvVr3716TtPDjDZYrmZdnoVz6uONuuhyiTpHFD3sFTM50ut/nh1cN6Ss2E1KFTq1WJYKdUatUajWGw2IqPoVrsDj96w26pUGvV6t9NuNRGEy91mpdNrD5qjxaRdCvIl14SFqeZyYdERZZWTDIzeUGmWlbPFUh4OLZCTWUuTdDhtguYA7a1WwGEwlBCdL08QgbEN63hQKlVLJUPxQ3y/WW8yXa8Wtwp4f715ZoSy3p/Mp+NSV0bjYBx1wTgkUKE0pxksGjimBVUSOJLiySTNkCyb3jXbRazY4SCso1nAPrWg1VodHe13fSOnVnuBxFKZtGIm0iDJ0JSyUs4FbgSVloP3rgDAQMlBU9NZNKIErZZKJfbi26yUEJj4biodT5KCbrC7CRaObpJS0ZpNAskcjxMEyTKiQnMKSxgFjHbN4qwHfIuSKmJ5mpNo4u7O81t7uId2tvYAyRiGSINCYKM7blbAsCNyO0VKtiVzPIUB2BIvawJDYb2Y5EFg8yBXDdeXkzRwKColAVd10SNF1gyNgw/XTNWs1ssegDGZcfKG3Tg6ynGam/WLzebsZux4wI5dgwRYpBnDMSlelxSZTlNcWkoSxN1tNa9rEktSSjbAKWjLVRNpIAkkKHCRkQxJUdKUxKH+BQW8tRNLJLZ3E+lkbBdTMkgSlHAsniJTgLSphKCRsUScJCm88kXs5XgsYgrYn87R34k6plbr1fjgdDk9vTpYH52eHAGcXlxfn+M08MF+K4eYgXmnemRf7Id5UMDdHqDg4cF6NV+B6ri5vH5wdfPg7PQYmfNittgsltNuJfCzOPxqAnb7GKAWVFodIOOz+Wy52Zycn2Cr9eXNTAYdiPYCiqYqiu2aqgpvYo4RhvhiW3JYrsPemEynsxmszsV0usDJiJZj6pSRL8a390jZ5BKSScHLmPcNN+/czuIiC4wAGMQoQnAuH0TukU8BOB/1QUcXwU/h1vPyESxH8vgWXDF1t+CHoJXx//07ABz9aw5bop9eA6MnJU4EY9sWgDb8z83elr6BCkSdOcAKIvzFMvRtTkMW+9psBxaMh/7seUe3Kaau5MpuLVSsnG0IaBzD83xGcg1RINMCz8sKWjfLMd0NnZwT+EX4gUF7wWIFqpk3JY0k0nQ6b3FKBXO585aqEmmKgGXBGSbHliq+x3F+oZIntXzPUdEqGngoJZq+IXcOKz5rcWZ/5pTGk4bEkN646EkkTbJEOqMYDDytvf5q2m/47bEpEDSdYtCcXANWmisAp0fv7lpn2B9Pp1P0KhWGG0PzCm2FqlRcQTB7oCAavcnB8aZf6y7G5UnP17T87Hw2bPhmrlpvVst4W5UP3HzJd2xYEQLNaiB/fcdVWBX2RWZPdHU1mc7EMoQiEkOFT0qk3eS0m5MnF5c3R2eb83sLkdNLxRhhGFs5js5SeVHrTiiOU/PHnnr9+Phi/WjYsqRqrdAbbA4f3PzoOCFxSs6ysnZQ6Q6Hy8Xh5eX5k9dee7PhaQ0FSGutuB3DLKTnMap0awvDGDq98A5p8+Keqtp4PIJ0gJ2JzbDwUHVFtaqeazZ/1Omfns0Pxzy7Pr8nSuWt3dUP750fHaKt8grgbjRczDrNyulLeaUyef+//7sV0i6YcjbQTB3Wjaa70mDJeoUw9AuF+0se27s0WM6GlQU+srO9C2I8++DBsPbRP/wfP1C2ww4AcBrd+iRGFSWWXr96/6baBPgdRkWk/nA6WBQVjQBdQNNutXTQzhlcLhzue7oul4pBZzw+AwC+TQFerW4TGfb38Xby9yXoyWT6LIyw6dYcSSn5ipU1m7O3fvn+Tz/+4MMP3oUHQO/bb2MnFuIw4O+PfvjDH7z+6iuvvPzCkxce3VvWB81a3cwPbN3i1UpzfymQclotm9mcZ3CSf16X4dV39aI1+82fffPZl7/76Se//uyTr0ABf/75F/D7l198/tWvvv36i88+eechgNfhanWw6teKfmd0em9ZVvYYhlZLtbBY9HOlWq09aSwPT6pKEBbr8GVbzSr816rWqt54Pu4NRoN+s14pAblsNNrd8XLcrFWrtXqz3e3XB41yf9wHRjla7E8aRfgQwzLgLIclaWOkKxzkmmkqKkXq+Xyh7MCLVsrlYM/BwyrU0DFwicNbmAx8eHx2HDW5np6eXK+qxXKpnNfMct6t1Wfj3v46Iji3XVhRExw+9cvxfDoqdvFQlEUem7DSRCKWYjjN5Ik0zgNHPngknUqxVJrNpPaMdjUo5nF4NGsrpuXbph1svvfaB9fXk8DJdVpZhc/E45Kc5jlNFjVdgKOg9AyAFZnHCimdIjKpXdJWIwAmM6lMIhGX9RRP7+2kMskkoKBKx9KCpGmwC2VAOi6dSCZSDDB1QFKa1xnCCn0fVQbGImInsUAxoLxlMnl39+526u7W1s72nS2MAk7HE6SsaPC8KiL68gFOx3YwE1DmBEqEHQWgK8ERRabTTJqh0GfGUK2cJ6Vpw7Ao2s4XPA1DqzTTwMtxv+DaXjVwVI6HLV8JDL81WZdy5QAAuNQ8Ols17SLoQZFKwfOQURRgo6quciDB4VuRuTt3NCcZ5+AzKrJgyHAKOybJ0CJQB4qkJEaxRUEC8k9u3d3d3d7d3doCAL67vZcmklg6p9JpmkpmEttpJsPGScUSUkkiQ5Ig9G8DGHj8ha5KLDZhRQWPA2x6PzpeH1zenF1cnh0dX97HeMzzq5ub400HL2jxSVRlvN62CqW8X2k1+nPYo4cn58vF0fHJ9cP7j6+ur482K7wsmk1mq/n+HPZDPutjSgjgDWCiHxSKjUarO1kt55vT49NTNLE8Obuc6VkQiFFUripwKvZ9y5JuuMVKqdwAslrCInRY7YxnQL032N41R5uZeQt4ZlrU5+bO83HTFGm3wCUzQjFQ7TxITRer0NH9Ltahbeyp9rIRFuMMYMH9vamzdxu/EEUPRiNG+duLY8TYQsGJboy9wr8DwLkCADBAbBDAewZPH5Ezc5B3EdQRjOEDkIJGU8Z4GY3exo5uYGE1ugVGs0psMNIsbJeF89oMq2EYgu5XSK1EBiV3JGMUuCprwKRIVsx4OU6WCIZngfDC0vLS6ULg+V4dtVJoKxojYCxIwRQ0iiKYJACwhHnMdsHSLQ5dPIC+GVkAwkbO5SjfL4aU7Pd9TREzlJChYCM7ptw8qYWUQavNAy8cjNuGQttw6qjAOxl6J0UoyULJGjcm+wentdbAlNIkD2pL0CTRENVcUCwVG81mo9kbDCcT1L8Ha7c9cQt+tqPsZnyj4doNwKd+ldqfgQKYz0utQHUG7dm9TqlUgy3SKoH8dQ3bzweOD2dnwc3mcrrAYASKUwtkkRV5cptyNQOU304myQupcsAkXSMTZnpvXByd3D9+eLS5fnDR5KniZJuwlR0/vcNkgLbm14UEHAKTy+fqT0AOvHI2JMhy2G0P14vLez/czyisEuSyHiB/oVQbjg8enF69+OL3X6tklaYKHKAePn93+/nY7nPbO1EL9He3vtvpBHcIk9HRPUdFoo55OBoaiGDDhKlrdq1QzDbfrITn18v5NKud3BzO4l1yy/ne9y4vL1fns/nhoj8b9ZfLXit48bc5udF773/7u46UNTRH83U0JrfzXqiNNnIpzOcKJff+hRTRNpB1pukFZWN7C76dO/zVS93a+3/vf/6YoQrthMiRcHBxFocNrenqaw/vtcv9Tve2DXo4Xoz2y5qdUn2TJo1K6agf2Izj9QGADR6WeHM0PMP2W0xmgT8OIyvK/eXtGNL+78eQ0Am61+8PqrmmBFvV1UzbWIx/89OP//CD9z5+/ycfvvfeeyCC33nnrZ8A/v7krbfeRBsODAN+BRTwo+vjRq87LGlBx8nB3vTL84VGMbzhFNwgp3Jc+aZpOo5o5MvZ2Z/8+RdffvvpL379NdpefYVd0DiGBG98/e2vPvujt1+9XKHn43TcL+jlzdnV4arv6mj5atjlolfo5pxavzM6Lo4Xp4vBupUb7ncr7WGvVwfpW6t5w0m/O1lMRtii1m/XyvWy79c6mFnRBkgOw2a/nGt0ak3glK3OdNLON4tOMbQMWzZLoIb1rCYbLga5qQKrhyXP13UVOHHeRUFm5EI4J/cX8/3NbH2MU3kXT6+ATw4fnjZAnZdDRSyH2UZ1OGmsMZEBAXi5f2uDghEO+4vxfDYqdkx0PwOYxQtG0Jokzapw5GWS6VsAhrd2UxxsCJLJGA3Y98WCj+OWumbCagnXf+uf/IP/5OxoCIynXlANORUnTV325KzNGzKT6+SjKQ1LN2wFS90cQ2K2dIz1AQRpgqZSO+m9vT3FSNBMBMAZTlIkIk5hvHwio0iiwBB7u4lEiiUoAGWFpF2edIqFvK6iFQr28EoyT3E8QQvJ2N3Y1k78zvPbuzvP78biaTKT4TS0dwOCEXULY6LqbkpyPYVlaFnTNTjwMPuJSsVpgmMUjVcdwEWDTtC6n+WMct5A9xDV0AUiITl+2TescsOTeQZ7WAIp1+3Ox+VKp1ooFluNRXO9FkueBIolwxB391iKo00JC+QivZdUmV3SUfb24AeUFYA7hTeyQA1YXZB0VWDSGZFSczKTjpF8+u42TmTHUQLvpmJ7pMimYwmK2I3BUUzsJHfjMSLF6mwsRRA8l2wcEQAAIABJREFUEA2QwBgbDKQAjmOO4UDu8+p3lrPZ+ujo4GB+eHY0n6wv7l1e3ty7vLj36MmT+9fX925ONi3Hwk4P7BgCqFCy+ZwXAokcLRb7x2en2F2/Obh4eHPv6vLy4vR4f3+2WC8n09V6PmgWrGzORn8r1fFgS3j5cqPeGuA0/wZY9unpxb17pxePZ+h7gyl0pq2LalbnJSsaC3aLtXJQabTbrc5w1iuG/f3FZHqw6PdmwBVWh4fdkstxhlEvbu+mDU1PhaUCl0ryxbrjYJgO4mbWeRa4cBtdBIrVgVPdA7GFLVQIqgCloHAjX0oPBS8ewgXPvq1Qoxa7faABB4YKh0EegLbgFwOQxgWcRrqVy0Gkh/0ARHaAKB6BO3wRJ5cHuZLFBgHUvEYU1WDB8RA1tJkaXq1jI7SuWcVmLQzgJ6flclar5ptN0/BtjZc1OkPjXF5RyagAojwfzQno5o7tAUSV/JpnFA1kiSJfFmDVKipQ4Yzm0Vwe84q9bNbk4hkC+CkhegLjNvIlicFIYJXM130N1gHNUHskqbkGVVoPLUUVueKyaMymA4NP6QAOepIE9gaLTybMWqMzGU3314t+kzdgo6ZZhpMVWxFVB56zIpxgxcZgCO8xHAE/O7Dtka41taZviYRVtIrFrF5oVKXifDrtjNsVS6+szlftSrVSrYaY7BiZkzgWoJmJkcw2jpIHFu5MDsSGQksiGSfovMHGYMXvkGpcDzTKFO8W/d7p45N7924u0FH19EzltPreHTGbiW3vCETApn1/rafklHY5pEAsHV//cEGwpQr8NNPVzcuv7WckBu26w3yYr4Owq09XR1cvvvrq98uu0TBpgWkE2wDAz999bms3ygPe2bnTaeXvZFxdI9GE0tbhW4Y1DKeNHRUlQU+aLS9n1d5ulpYnV4uBZh8/PL7PZf1E7OR7j28uJ+fL6dF+r72YzQbjqmsHjtDufvDP/rOCEdmSR1NxXsErFNXJgdzI1wqOTR+/WDaysJU6hbIN/1z3gAs8l9nZGb3Sa33w9/+XjyQ6qNOgGihQGqooKiAhxFdeuKxWO1gt7vdxEng4nXVkh+Q8nyOtavG4Y/mcGQ43ZdURglLYXFYOjlcHT6MI8Q4YpPrmOAptASEX+WBFCDzuzVutSa4YChq2MdtmYfzkjz/+g48+/BDboFECgwB+5623cRL4jTff+vH3X3v99VdefumVlx48enRQG1daRb3azgH+2pXx4DDL8YaqeKBYNYGuPayYmELk1pXLv/zLT7+6Fb6fff7FV19/9emvv/j0288/+/Q3v/v8Zz99+9UHx09emK8m40rW659enp11e4NSd9Ablh3RDkvG5EgVZ+dnVXbTrk4b934wtdbH+4vZerY6uH98+Mbl6tElHFagcGfY3jnqdcfVYrVerYSNDtbse+1KMR80+m0Qx812pz+et5u1CgA7qgqvWC0YgoKtd5YbmLLAmQW3WsxasPGLbs5WdDhqctXhbDZbLFebo2jA5GkqIaYwzcNCvRbaUrYa+J3esjfezJeRF8cS2E8USogvwuhgMp9ipUrE20OR4tNxKrVLpTlZy1BJ2AsgESVM4kmm8WqXpWNSN4DTCX5hEJHk6dn8/O/+q3/9V3/1d45ndd+iUzIr0UlXkQF6aczIJbOV6F4O7xdNg2Pg61BJNDHeZeAclSgKABFjFgghSTNMMpXajZMUb0iJBCPJhppIcuh6CmISHymaYiQmzbppCVur4Vx3DGArMuh3lgF5myFh52zd2UvubGHxZoe/k6RSnOJaAiNqiiAwMgVigEwTlJHPyixFC7Km8ayqyRz66RIUNg/zouXYWZCWhGxl/awqq7ysKgJFMqxowXGsmpVJWYefg6GDTqHQbLXLNbt6uB52G0HbCR60eVuSVIUlUzvbFC+oIq9LeBFHU6xOCXk7vsPyIpuhVF2KTGY1FUiFpnA0RVAxzZVVJhZLJrfubMfhE+zsxbbubj2fZFiSyKRTiXQMaAJB7exldmIghVNJzI6EJxEkMNAHmsfoG9ARrCjDq8ZEJej1yenh4vDseDmdTGdn988PDs8vHz64f3Nz7/zweN0GJoWhVKqBIKy7GC5Rb3cmsCVPz89OoooKKOYbjLM+PTk8WC725+PpeD7p1QvZAghbUHWa89QLutbA1sCoJnN0eXFxdXl0eG/u6KYVDQvD0cXActIxjBBdkMJSuVtvDAatzmw6Hbbb4+Wqvzqcj+eLKdDEUTfkWduvurAetJwuVzqWFQicV83Z2HwUeWDZtz4ceJZF97oe4Cv2Jzi5p11UWOcu5DE5NzLQ8vDK2Y8qyJEADguFCGgLUeo29lnhL/jtthkLVW+A/xJVpgG+i/B7cHsvfNuz5UZXy7cphQjAkUU0HPW3s0gYNBVdrAP/0PxKrRLmNEOj1YJpB8U+5v8o6KoA4oClKcciZRL7/KMRE8NO8SGgq+8FrhJasIhEli6qBV/BsEk6I+VExi0EgGGWqQocgcN1pJRXRL8VhCJllUplJWmXAl3EPGlY1rTiWFxlM/Mw/aSyqNuj8TjLkmqzFdrYmkjF45zCCuWg1h1MpheLZoW3eDIWY0TVVM0cSIFspewGrW6r2ajV+/PpcrU4PFbs6l68knUBX13ftWrlfAhUqWz35vvDdt7L9Tans3opLJjo9gKvVBgGhbAY+jijDctBBmIS+W/rBkPT8O3zOpPcoTxHyySS6Z0EZ8WK6XjoU+lisXr5cHNzdXZ8jEmv/bSpZkle2ANlYFL5EaeQbZ/lFaH/gCnODzZnr84JDthdo7fY3H/ptTUwW9CvXjEoFVvD4bR/cHz+4MUnL79R882GyYhsI9jC+V/0oows9O6CAkYA9nSF1IE0YPyqBioYr211NKvVdQkUv2dX32jXZ5t7655qHT04uWrHe/Ht6qsvv/B4sz6arI+GnfEUCE3HMD2Tb44++qv/MnSLoHbzUV9fUASSKE/WGVWQiEQi3fje2My6Zq4KpMRxs/X8XeTfuzvOi4PKO//gf/0Zu1esE9hcQzPA4CUFlD9x+Oa9YrXdjcbosQ1rOJv3dYfi3AKX0Uvh8cjKMkYwPazIOu0GYWNdPzmJZo8iAN7HPOAlxuLdGnE8A+D+oN8Zt/p9r5zj1KajqDl9NPvo85/+wUcffPjBe+9G+hfw9+2fYCjhm1iBBv37WtSB9fh6v99p1ktOsVd0fF0Jer2zssbwdtbO13KglLrXggckxvH97A/+9Ldffvmbrz/56nO0vvriy69+9fkvvvrmi69//cc///Cn7zy+enj/5vSFo1HbrC7vP75YduvjWmtzuTxa6Iak9Eyid1BQW4cXVmUi87yQe6mWLZVmV0fL8cHR1dWDjz787Jd//O0HP3z9hauDaafZ6o7m0053Mu63q81mrVxpjaa1ajFfALLabjWqlUZvvD9pY9Csj+MLuWLBNbDYARsbVqvGCWa2UA5sAIVS3o22NbxPczCNXCmjsNeoBQs18MX59WEjrNaKrqQHQa7SGgza6zkaTy5vAxlu8xjW6/FmPJsGQ0cVeI5lhUzkB7VHk6JmknQqmSJ5FTPxCDKRZEjATWJHGVdLObwcgwPNKilOQ/+L/+Nf/5t/8y//xeedUl2Cs4FMw24nQGbSdCJBsnyuDocWBo+BWJVFVeNplgUAJve4wLI0WEQpBN0kKRMsQ8ZTmViSZVlH2d0VVQD+nQy8B80S8b34HihBAGCRpWQ7KcAhiMINjQBlSZBEwK9Mkiae29pObm3DusWdtJXYThAUHPhA+nnFUAVWJDBxEBBYzTkAusAvDEviVVmMcv9SBPpdCLwOq8Midyg30BUL3VBMiSXTpKxqmMukllv1nCrqrqOVBtUgbwMm28CpT4+GFdcbt1VWZhU4J1UuuRNHL09JJjIERaZSJC3bemorbaZJkkDbIDm6elUlU0EvLpZgaAs+P70dJ4nYc1ux+O72Tiy2s70LGEtmSIqGT5EESpFI78ZB8mTi+KOkMwR8MobjaEZmBUlgAIvTSYrHIJvv9KeL+eby6nhzegHC4XA5PH5wdXh4fn1z/8GDBzfnBwfrDqKWCboKAdg0UAoWys32aL5EBXx+enYJQvk+KOCLM2B26/VitpxN92f7i0Hdd0MbEUeTMB/XD0qVeqvVHeMiO1gfnx2fXN8/O7xe5U3UgzqOWMDTaemmJito3Qjyrtar1QcAvRjwPhrsH59M0S51NR9MkdFXJIFzqyXLUUCa01oI6lOnpIIP2in7tP0pdzsA7GO0QjR9hI5XueytQL1NXshFw7u3ChjtnQGF/choIw9QEKEuIG1QuAVehGPMbM3fAnSUSITQjBVoPDTxEQT53z+ieSc3exurhKzCtqK7FgNtxUxDw0EkDJLVZEn3K7DbPd2TyFwg5YKOj9PmuiSKdIYRM5ySl2WOpAiaEyXAYENMFkFeg0YvSKGLs+5kugAiTpVlmkhmWM9gnGq1nHezOkdxaTKVTNNqYMCSrBVVxiiXak5GL5YsCQfTWI7N8JpGupNpwRQ4Jpy2nc5oHnCcWO2WXBHd01JxThP5Zr45nK3giBv1OJnlsdwpqSB/YYVmq9V8udlsj2eDTm82P1jPD45FO5cgO01H9OuDjp9vhIGn0vDMF/f3m7ZV6K8PpmXgOzlQekWc+K7U6rV6o16Ft4oYhqTj1Y7hl/1AYPYypSxtCtTzpOlaTBwH8xkp5WfZ6ooWwrJTfHB5fHl6FAHwuUMp+SKdgXWuG7QYSuQd3dMAZvWjRrp5Oj9+aZ/kqq1eo7d/9OCl1zYpnsI5hnyhXGoPxsvZ4dHZzYPrJ283ClbdYCSuGW7d3UYT6CiJYWv7uee/22kX7hAFQ84oBvBjzTCAJ9uqJKLxMM41CFrd9bPVH7R7s9n1aV81jx6cnp4nStnn2AevvfzyxfR8NjuZ9TqoSWewEFS+Onv/X/yneb8W5kslbE2zDROOoERntpvJcJKle+69U8vI6uVyNYczdfXq3djd3TuxWPx6VX3/7/9PPxeZoAbnl0xneGDsCqgOMVN65ypstTrPurAmAMAj22ZYNxQSSjF/tHQsRgtGm6qkMl4xXzmsnx0dRjeQCAL70RVwNM6K+ne+jO6AAYBH3U6/M6nmyiZn1g1B95z9s28+RgBGF45334+MOLATK0oFfhNngF995XsIwDerRqXdyudKnbLuGkJuenBhCBQnKNlcvqjrcvee52Dwk1cxf/Af/OUvv/3ms28//xRrz58DAP/yd198/fUvfv3rn7390r3rm5vr4++9+Kid664fPTjuFcvdcf/w8v7l+Q/mOmPl5wLbaTS59uPHgstLSfYoPzvq1Ey3uzq/nPd7ly+/8v3PPv/06z/79/74m9/9+pfvvnK9mQz6OBo8ngyrTYDcWqXU6bbrlWqtVijWGo16A4TxsN8qFzwP7Zc82PRZVTGAOjhoHStKjl4su0DkCuhEBTLL9Lyg1p/OJrezSEfHqIAxeO7i9PJ8GIaVaqBJbpjPtdvT6mIW4e9y8dQPGvuwNpPVaDopjXEMCRQTl6IzKTK1R5GSbpNUKhXPcKquMNEAKkPAKiZ35UEpcEv5XBZUugLap+79g3/1f//V//sv/88P63VPoDI7VJrlkijLeDa5S0mSXw8CNEyyHcsQBFVlCJoGzMigAjZUReIyiT0EYJXi6NRukkALSjGrxBKKQrHEDqOLNEUnd3exVToJeEMm4pyR4EGSuKBT0QFBUURZ5ul0bAtbsPaIne29PTSQ2n7++fheWvF8UwTSyGsSybJJkidRAssuZjHQgmJlsQwIRx8CMMlGxuuams0b6V0m5wqcpuPdKNoyc/C9krLGZltFXjbCwaJphHX40TQzq5UHk83Vcb/p5MZyRpRpQ2UNT6PJDIVZqjqmEzEMRcYElUoQHBNPEgzHMtEVtG5okqMIPPwFwQo4mJXYTjFMauvuzm5sdye2txdPckRkBAa8hkmnmUyGSsYSGLCI3hwAwBTB8jzPMArNCXjeggKWNAn++E53PJvMDk5Pjs9P1weX16cHhxePHlyc37+8d//m+vr6arOKANjSsA0a7fFtLyi4hXoTkHv/8AQ0MID1zc39y6srOPsOj5b7M5xBWu6vF4NG4IUuyF9N0qKeZCD05Q4A8HK1v48zwIdH1w/vnd0scujYAjQDf6F0ACrmYqgI5t2WAbLb/UEPxDmapJ9fzNr9+XzYHcH2aJYUWIb1bsEQGFHY5fUWHO+i6OLh9G8ngN1nob+3UAiLws85fvapLXT+NtQg6r3yUeh6Thb0r/d0ovd24shH68nbwaTCreoFDMY/C5EtJb5viFIYzaF/D8D4u+8Hnovml88AGGkmPI2Gbd2OARtRRoMRzSNp2Uqr6dcdO8cJZUuvBB1VyzpZWZCZFCWnGT7nygpPk5hrxUq8bO/pQIb8Yr4sBz5sFJ5IubaTtw0A3BRJZB3WaeMdum/zmVQ8GY8TnJZTleKoXdQZIQiqPikFFVuRUQEDIRYNI8m1J4EjiJQ7bFt1zEai2NKwZErA4Hgqxcg8Wc+2hyO819qsZQnTN0lGNHSboQUra8FRUnC92hDOZ/QrW50caBJLq+1JkbPdStFrdaqeWQwCt1pbNh2zM1qPKl4O+9wAeBvNTqfd6PS6nW4UT9PrtNudWugaMmzCXNEUMykrzwCwxVKSY3K7qVg6TogS02PYsS03a1z+3tH1FXqZo535mjC0qkLtxNQsY6mwOeig2RaTYsq7VOXj3umTQ4orNzuN7vLwwYuvbhIcnfVcy86Xy+3eYLm/OT67vDp/+CMA4JrOSGwbAThKIsRA4O3t5+9+t90q3KFCQyY0QxZl2Bk69kioUU4g9kOLegMAuP56c7waHl0PNOPk4dnReTOx3I71XnnpydXiZDXZLEfNyWA+W1suaI3q8u1//p+X8uW840gSnLcUQQAApwaHDCyYbMEJw/3HNcU1S+UKthh49f7d7ef37uzE7vYvmu/+vf/hlyJda4IuImPbggzfh6qInKC+eK/Sb3S6EQAPJ+PBdD71LI5xynJCLPqrddYSlHx/3dI0PlfNlw7rJ+uD5frpI2qBBuWLVlg4CIyNWLPJaDScwQvUm7jFgsoHBUXwtPrwh19//Acff/A+AvB7H7z7k7cQgN+JroDffPMHP/j+a6+8/PLLj158sO61Wo26We4XAaSyucr4Ji8ylKmLTujpnNc5y5lZSzSbNfOP/sPPf/7Jn3zzs2++/eRrLENj79Vvv/zmd1/97I1HDx49hrPjtR9fTfqrFy6ebDphsdGbHTx+/OR7LxwstZiZTdXqnjjcpP1+RTMZQx+8uBkM9pftfLY4uzhYtVYPzq++9/7Pf/nZ7/78T7799te/+e1vvv7sk49fOZ33esPh/nLabTaazXIxKNU7nVa9WgoKxSp2cLWb1VKp4BmybGRz1cDWsGM0C4s/sERNRHd2OENcTbUtWXHgNCk10b8Pc4cPo6WJTlinZ4dnQJoKlUbNEc1yKdtszhrDxWwW4W/knoV3wADBs+VoMioNDSVSwByaQZOJWDotaDYBoLuHvFmiM2kikQJZKxJ0XGrhNJ2PAXMyx2Rtr/a3/59/9Vf/11//08f1Sk7kyV2GBuFKKq7BEJkML7LZepDP3qaOKXLk90HspdKZ1DaV0wxYQQqf3AI4IRTQf8mdRGYvQZGaIWRIXpQMNsHKFMngVU8snkzjXRWbTslGSoJdnbNdCztfcDBe4hkiGSOYRCoOKB5PxHcAsbe+m95OWZ6HY740r4hwoCRpPpkE/amAfgUtDUia1USM4QUFnCZAKfASL6KpvkrBgSbjvLtqqDKjOCBRCSojmEauIKumW15ezPOeKek4Y5qvD5ZHm0mvWrZtQdQtylR4eIshUwxSZvhCQBzYzG6CptKMym3txTMsSHZWlARBMQ3ZljgWBGsGvkldTm4lMvBUbEeNZNu7sb14IrULchiAmKLYVIqhWAqtNeMJKpNOZbByTnIcfD4yykASJaDGPJagGeo7s9lk2O0vT45OD0aDxWb/9PD04eOr86trgNPTq3v3Nqu257gYh2REk44uZtX4xXZrgKlGZ+fHx6fn5+dXAMCYn3R4sEZT8WFvPJ+POs0wV8i6GCUMR0cuakUK2q1OBMCr9dkVgPDF9eXNQLccFSOVEX+FCIAtD/Uv4KAX1Dsgmvv9xQyboPcPTo72R7Abyn347MVQV7TtpGPKXlZndy23UZphBCvWniMAjvqbI2/I2wBgVLyB5/ieDSIZa8PYK3V7V4sDSih+QXZ5hbCQu+1xdt1nYIr4Cho4fFZdBgC+rT4DFmPZFK+So4sXRBP47Sk854CJFkIf72JxJDcq88CzqFugkiLRZGDQIxY5DDi+vUozqBR038hYFbWUHfiCB+peVAVYCATFagVBkZgIgHmFF3NUHLiCG3oVOVeAzc4xgDl2Thc4kswQGcNhrF49KueafDqR3ItjOUfkc722r2XYMJd3knQutFQF1jRPkrSZ8ymmvyp5gsHYg45enoxrepoMJ2WZS6eB6wKCM0Qp25r0h5ujxf4SuCZFJClO1gSBoCTbEESn2Kj4frk778ORPVmeb/JqktSqs3ohzPquX9UCNdfzquPGtGf7g8t5M8xmg1KxVO8C7A7Gw253MOp3AYBx+LLbG4x6/X67ZMu86XqiQKVCDUlAjIGvFUvsJHf35FS8az7Hlygp1ErYvX9yhKMex8fnVVI1AynFalrG03aScTXMtwqykpHmB3vN/tH9M4YrNUAaTjf3X3x1neJp282aZqFSBbEIAHxxdX55/eh7FQBglRKpVnD33wHgHZwDbjULd+i8KlMGRuDgZZGExSxFwklKGTaZ3XRzdvP7tfHJaHoz0rWLh+fH63t7ded58d4PXrg+XR4tF6tpezKaTw4sOPzMxvqdf/5fBKoC5wJB0qwgqRoArzg7kcMiUDHVGldeODBzTq4KCxTWdWWxs30XrXS3+U3jzb//jz9nYkFxL5MWeJxxgH2uKLTBbF6udUABP7XCGg6m03neFEmrqieEYmGycS1dBg05sgECS0HpsLFeHew/A2C8AV4BDK/XkRfW6vcKeNIf9QZ9NIxRGqqoeMJ4+MmnP/vDj95/7/0P0Arr3Z/85G0sQkcA/MaPX3/99VcxhPDRQ1Ah/V7NDXol3cubQWNwFSqipOe8bDHQRK15ZZlZkI6tsv3zf//XX3zxFYjfz371xbPH19/87rOP3nj44NHrL2wOX3rpaDyYP3znna4bBvXF+c2jl15+7eVpRePprQa/u5hQ6mv7Ka9gleFF9M+X3N7RxWY9L2lOd//JQX+2uv/w+x998keffP71t7+Fxx//6d/8s7/43W9+9Uc/OO3Wu6PZfDbud+qlYrlaq3Y7ALuw0yulcr1Rxdn0rK4omlEolnIaHNGWpWdDRwDW5ZbrBQP/DdQf/LUbwEcMV8touPfwKKo/w+P8+OzmrIv5rAVZL1XdYrU/6BxMEX2jS+B11IR1sFnh5GU/7GoYdMlzXAanXJJ7yRSn2mQGAJjAwEFM9N6Ns3Qa+PCu0C3XKr6hwBmviI5uZcMn//Sv//qv/+rPGzlQ6nmVTqaTAsOaOSm+myCpTCbbKLhYL1YEjlPQIpGj9gA10jt0TjeBTCpCems3nkgLKYaNbycIwBVCVgWCZEXD4UEOpxgOFTC8CwGwJcg0Y6sZLciHvoWzcmiNEWWeshxPCRSdSMUysUQiFovHtp5L3klgjDJLkKC9MUST4IVkmqMozXNUEdtPNVD/WGZPJxIpgkPjPl7KOo7OM7wk67ohs4LMw39yJp4hAFttWxPVfFhqrc7Gns3TIjazesX24mh/OM4XNUZXbTstK7IlJIjkTpKTdA1tEpBz7Ek8TVFkKg6Sn6RBW4igeHjDlFUsyrMsQSmyIib3WHgRYjtbW889D5svcoOOHLF24iQAcJwAjpQmaDoRSxEZgqaiDiyG5jmawVb2p23QaArNfmc4mi3nk8XR0dnxfDRdLDYnVyB8L88fXaz3T29ugCm2XQBgB7i9Fim2rF8M8yBk+5Pl+vDkLHJWO7u8fwUy+Pr8+HC9XswXk8FkfznqtooAPFF6NU4G2Y4fFEvNJqZVzxf7i/Xx4RHmUtx0JStnRh66pi6LGOWmqzraNOcKxbBWaw+69daouzzA7282vby37PYauXKtmssFllmK3UkQCZEyUjEqVwqbiLw4gpT7vfCNeqmeAvDtdC7oYO9ZqRm7mcMAb3RRAecxIgVdJwtRgRn+ugjoChBbzEetz/kgf3sVHFWggwiFw+gBUhhh97Y3K3iKzrCqA3zH3NPZYiyH2zgeb6ECRmfPp/7apinrhoJF6HqumjM8mamgNmiLQK0NTRVZBp3LGF9Bx1OaxTYshneA5gN19b2K4ZZsCdYhq8iqa0gC3mZkVJPSe+WwBNTHUSiSSiZx0k4RnHbXswi1V/bdFJUPTVDArCjSJK17ocjPTqugGFljODSLk17dJJjcuKnyFAW8NpYRRKKQL076/aPzzWaU4uCUh2VKsxlCwgSCyObPN3TLKzZGy9VgcnaQzdKUGjTNRrlYhH/bi1Nq1S/1+/0gPz2YFW0rqNcqIBGACI6Gw16rWq9XikVg8JVKGR6Vcr3da9dgJ1s5QWR3cgUKtvJ22tBEIhXHngee8vrxbNFKBAVv+ODk9PDgKDK8PzjlBL1gChVH5MV4mthmHEHL5dM8b53bxGT/7Ixmi03Q2NP1zZNXj2iJ0LGzI18GAO7OZ4vTi9PLhy8AANs1lZbIZuHu3Z3o8hcAeGsbmO932838HRpeElJXBRHOCk4QFR1IjqLotoOJ7V4rm7OaPyz3z+f9i7Eh33sIwueqHB9v7w5+9OqD+/Ojw+X+cjCaTMdrlaIoo75453//OybNCxg9hk7mhbzl5KXhgshaKlBH8yJ3cD/I5lygtn4WyOThHs5AbO1mdsqc1BQkAAAgAElEQVTtd/+bf/yprtaHVqnSabbhLJPQPZZVMu3X65XOMwWMc0jjRdGS01rNTnBB2N3kbEvwqouJY8hOOaxsOvPN4SaqP0e/bk2g8SYYQeTZHXCn2xt2hlWnrilunZNNVRqef/HJTz8GAP7gg/ff/yAaQrrF4LfffuvHP3z9dRDALz55/OLpuNMow57q1gzX1/3B6FHL4WgpqxnFssbp3dNCDnSYW8+XfvmnX3/z2y9/84tvfvPp11999vlXX3/zzTdf/+qbrx6Ojs+vH13dvPx4PZqevvHDN6777dH44Orh9378o5fPRnZMzrHP82Wld2o8191ITKtervke2ylpmrc4nB8d7w+LXgh6aNFaX9979NqHn/z887/5u999+9VX3/72d3/5p3/653/xZ7/5xesvnE77gxEQwOGgXSnC89IejBCNg2Kj1ajVqqWCawHd0nLVSg51mA1nii7D5pO9ck7F2wjX9x2g2nAE5OtTbMOKatDHtwh8cXZ6dTkp5qu1oiHny15Qac6a+5PFMwB+VoNezueTWTdsqcqthSHmYZEZ2N6cmqXJZHqPAFLOg5QiYnGGTBAUscX1q4FuK9goooFcM7L5+k//o//un/ztQVgqOK2qTO3EdwlK1MVkLL6zF4ul/XbBDXxHxc5cLmqUQmmcSW6THg4YSixmB+7GEnya4+PbSfiqoKF1KZ7gQTcxhCQwgEpMOp5IpjMEw4oKTZlSxgyAJFpZE85/R4VzBxGMA/FKUGkSyPNeZD0JEvK7e5ap6CJFCfAjihSd4YQUyZOMnrNlgSUAgIEEqLrCESlENQBxkeMNw9YZSrJMj8d8JAF7qhiQ1jTvV4q+qoZA9sdHR12s7uiq5eS8yhBnqnueaWq26utJDjgzFSNSO7uMU7CoBMWz6SQhcESGJvf20Gs+kYwnCSAECUI2VBA1oPM5islqIPFFPpOIRoDvRk4cu7s7ifhebGc7lkoRbGoPvpEMKBYqmUjhxR9NpAmCoWkRVLSMVAS+YTQYg9+l77T6s/3NZrU4Ors4OQBAXcEbV1dXlw9An14+AABedzwMX0G1BoihmzaaSgU1jBVcrdHc5RTeH6vQ9+5dnZ8cLheTCajVxWo1G7RCBDoHu0OxF84NgEo2Wz04bKezo/3l5uD0+vrk/P5A1YErYp4bgBKlGbiYc5Zlu7mwUm/WW71Oo9mr9WcY8bBYnpxt1ofzZq0cWHbW8Bw5djeTlkQlsZewChKLOaoeZkA8LUDflqK92yYsrCp7+QCA143ueLFf+fYeFyVrVGfG6190nfSj2nKhED59RMIXARUkJcArHIARcgdPr4FB+uJUkh8BL94Soyou3DZvRXYfUZU7n3NAyLjIjIEToJsRXglHTlkatkSrTtgIq6Hp5XgjMHOFri8CWbBhYVIcJ9KE48oSS8MC4CWOEEWTY9GY2y9nbYAZmZE4WId5PwsLl9qjdZ2U25glVcgaEkOzZArAQbMlpzkoBJI065SKLBvUs5IApJWjM4RsBoo4Oqu5lM2ovYWbH/Q6Bs+IzY4lYfWLxGm9tOlx7X5n/+jgdLST4QUao7h4EW3SshgZU64WC1V4derV/sFycbzkLIFWHD0xLNbySr4o73IZOOVLs2J+uG7DoZWvAgYOpvPecNSplkBZlEFnlCrlVrNerVbKII5LFVg0rZIf6sAB+CLsb25vl1MViQC2ScVzSrqt9aqlSt6uDRcXJ4ebQxy1PN1c9DnVyrFNW1QyMWCherMEpyGwWKq8TBUn6zOCKbW6nd7i4PrR968YkQDJ4rh+uYL2R+PpwcnJxc3jV+qhU9M5hW0WtrZjO3ef//0t8G0TFhFoMgmHC4gTeFFg5Zq2pWMpx4AN4zazebP2w0rzZD05nBjCg/tHV8BXE3X1rvrg9Sf3j/cP95erWW86mqydRCalN8bv/LP/2NAL+bCWz3voom4adk7sz0kH3rAd7X6v9mio5fx6xc+Znpe/IHaf24rtpqhdZQAA/AvYMV294Fg8iyP1GJvHCxnnqlNtd6LgBDSwGs9H+xVbTUq1bILyS43DQtZivHAydXQlW82XQSYcHR7cZsk/08H7zx6r+TwSwINeq99vD7xioErlvKBltWD0xhd/+NGHP/3wgw8+fP/99zEI6e23fgIYDCD81o++//3XXsEYpAdX806nYhv5ds2zQ1PqXLxQ0jlSyZqs5Jmc0VqXg/+PqTdtcuNMs8W6KbKqsCMTuSD3HZlAAkjsW2EvAIUqFAqofeFOSqSordXaSUpqbd3aSErcJHVPz9w7M/5ww752+LN97XDEOPzB/gH+5giHr69nvITtf+DnQbFnXFRRRVaxUEi8+Zxz3vd5zrHNuFtxm4/+1bMfH3315fePHn777YOvv/72waNHD779+tvfXu4Vxiez08sXt2rVnbduvTrbGffW+rvX3njr9WujjBGK2EWWINhCed0lw0mRiducU2ilNCs+Wl+9srY23zm5Pc9l0s2do1Z3c3rl5rXX799//7sfnjx58vTxw4ffP/75T3/zN7/83Z8efvzW1e1uudrsdZur7TKoXtACa60y3Nr5er9WygEhAnTSUoVi1pJVI5XU1ERSV3g5sRggM2037RjawjA0W1sbnh0Cv7Ci3IVyu3s0KSXzxZIjWrl0Nl8a1DvDs2Hr9bOprwUAQzGFW7WuKhh6BPIsQtAUSYRpXnHgjlyYQkoCA6gcDANQ0izjY+uZBGcpiiqKqsqpsuU62aOT3YRc1Plkx6HCgUgkBDAQCxOEz+8LMtkarDZLEXhBkgEXmFCYokAQBi+QAMC6wgHgh3wry0GR4piwLxILRxiK1zgAYFWT6ZikKAlQiNFwKAwKVBIVlaHNOGl5STeFZ8BGAhiKJuGRCg3QEyEjMX9gZcUfDKB0PH8+oNqSJrCgK+L4JWGGj1EMyZrpBDxlIi4blswpcL9jRlKEwhZUlpFkU4/H9YSqRMOsAD+BYGsMTYaZmFkqpZxM3jLTLSC3taQGzwwEcKow2Fpfa2Zt3XR0AIoIq+kiFSVCAT9tJgQyHKWosC/KhYIES4d8ATIc8MNzXiZpEPxxVQW5CpeeZYWUQsdlncI4Y9wIwxYsXyDoD4CiX/EFMScqHGLgqlMMD0+GCPlDMUxUIVkWARjTGATchOZpFj0pmV/1+u1Ge329O8W53Pn+0Xw02r90uH+Mo8AArCfTSRO4tp3AKWlZXZAJUFQpr92FFYUAPN85ODk9Prp4gk3Q8+lk3OtgW2d/2G9Vs07adtDYCqeQTCeby+Uaze4QbuHB7tb2/tHJyf727KQPa1Y1FJ7DBiwllRAE3U6adgoQEEpxvVGuNJuVdiHXHA7Xt3c3N2Y708n2RjNnqrKYTHQTSySpJTWayjrGEsWbTjLtWH8J/sV9Zjx9XvhlYLdVMoGYlXW8tJMEXYszqiY8p+ziazOugxDs5TKLM2A8+n0B0Olcxk17uSzK3kWfbvZfQBa3mz2EXeyChg9xEzq3UM7wJel8wcMvtxeml/bCsR8bi3h+sZeCfRUcx7HwxvFsjFFyTQ94Y8qI5EwzU26StuE4OFhExKRQRMmJEsewNLy4Mq3GFGNZy6UsN+coeVuQaCEuyCAl+DhFk37e0mNio5TJ5IquwnExloqQnGI5ol7qeGUz3G4USzyT6qVxhoGNsTFKsfK6XJ1Xs2ySlWuTtN3q9Eye8DuAYXCHs3SUFgXK9EL19d7mZGO2FuZYXyxMxtCc1VKtXD6ZKuUbrWan1+2vuvn54XzekxxVMBMy08n161oybeaTjJEor3WKxfWGKZXL7VKxPeistkrN3moBZEAd/YjWRnjQuLbW77barUYVRXGnXHFJWlhxedmOEy+FdN0gqQgdCZGZWD5DOZXVTLGyMZ/uzqbbi+i37f1LRshMJVZtjlwhgqppFWpOZrUQUgl5mop01/dIOgeP1p3Mji69cYXgSDOZSliZUrXT6wzXprv7B6CBb9YLTlnjNb6WvbAc8C0tsPfCohv6181G+lzU02UaOxcUFXvaNUPF8HFLlxVRUqyqkzHyb5SKUwDaNT1+5XTrdPvksMB2lnzDW9ePL61tjseTjcagM5xUKShZq/0P/9//XHEqrpVO2ADkZ5lZdGuDSTnYmG8eTtI3dwW0psmkdBAYF+Pk8vJSgAwGuc7t/+7ff6PThTqvCxKoIpFfzJfxfIxt9pu11UWcJ7pxDNZ7G+WEGuRKdpB08uV5LqHHUsX1cUKVzGIiN1prz7deAPBZJADwcwwJwGYsEGTDBQCvrXYBg/VKQuUaqmw6bmfj8+/uffKXMaQPfvvehx+8+/ZvMZPw3XfffuPV11595eWXb1y52K3X6p5m5MsYXmDlRrdrRhzTpDRBUWhpdRdgS4tny87a7//09Ltvvn/47POH33/1/bfffP3t9w+++8Pnn76yufXyMLV57cpodev6K9evHk0muydvXHn59dvX9jopmWNieit1nokrzXxO52J0vgdyptnJVrxONW3137myOept3rx5qZdKeFt781ZrY//yy3fe+/KTP/zw9PlPjx88efL8+ePHTx49e/7zn/7887cfX5r10YK+31kt53OFchVNo0sZr9wo5720bQI5llO1BqwCyTBEPQ2vicbJtlfLO5pu4xiiplmOk863uoP1hcEVLE9MQ9o73pmf7jcz+WItK2peznG9bquxNRmfuZ3gwfsZAI8HAMBAqzQFFFOciuOWJkkEGF6x47FAEE2pFIkORwjsgo5yFBfhS07KthTNUBTTTJlKUs70m0D3PV01ygWRI8kwzylhfwyVbTSKjSBuIaFjxrEYx2bfcDQWJYhoaIlKJxK6wDAcEw35lkMqGyei/kgsGIwRpkwRgES2Qkd4SUtwfAwkYxSQk6U4kYoZbMzJY2CqqRma6ci8hFF/LBopE2QwvBL2rfjD+NvK+ZWAlJJVCkQ8CGqQ+VFGxOS+eMKzYRVHOc22FV4RRZElgv4VFjuYGFoUdU3UXIsmKFjnqsorGRVTEOJxPmmLySKwbm9jd71WyluZhGTpqmbUtwb1clLNAGp46XiIUSWKJIMRENQ6BrKiVwao1RAr8xEQ5wGMOALGHaTooC8m6sAFqGCIYlWTEzRF8vuXMYcBVDCqeOAS5zATKeBfDobge6rpukELlipxAZogaOzMIjmOwS4sQVJxbpvjaA4PxuO/WptM1gbT2Wa/Nzk6Pjo8OABpg8OUewcXLx6dXDqZrNegLGmKsejZBcqByOhVVlvt3ni+t7s9293bP76II0sHJweznY3t9U6zDQR5OOh3KpmEnTYBXHEEGMduXTzp6K6NJ5vrO9P53mx2CI900AWNbALF4QVV19RFmrlhIFy5uXINNHC1WAQa2mp11/prw+50Mtyab463Nnt5leF1p1gGAiJZhkjlvRwV8alpTKHPvNiBdtwzp2frhSJ2cih+k8ks+lUhmi5EawbTFuCDzIsN5tSinTm1mElKn8X/ZjNnwhYw2MUj4Rz6XOPx7hn4LnquMrlCzlvActqFCokTuKaIhmN43q7GWZGlQLQxIhdlQTPFQZWCbEJ/Z5qMRGOwAuAmShfK+Qwa6dBlTffajuikLSnBqBG492gST8eUkBiTGEoF4pdYZnMp23U9qeDpcZ5n4pqkKsCtopE4qaR5Jt8oVHNuwtDii5ONMJ9wRLU6KDWSkdxqpaLHErWyyoJgwEAG0XTTfGF3Na/KElkeNuRGre6SLJOp2gqGR9PBCKdElCrf3WxtTdZ2N0IcA3cTA8wJvVlTSa/gVUFmYadtu9eudCdHVwZ+2zBFNkT2APwYruCmC/lqodBttFbzCadUL5fa9epqs9MsF0u1WqUBla7X764Ne8PxEGdmYKmM12A5rdZq2Yoci4X4cigtBylfTEnIUX+UCzOaTJWW87labby+vT3c2ZtOdne2dgCEb7Qjmua2HWPZdyEgKXRatVPNVSYeVlLbgtPeqobytWart3ZwePn2HJ4LDoglc0D52q32aLJzODk8uHhSLdgVdLJtuBd8KxdQAZ8dBC+dP98sp89RaVmmZDxIgDWsYl63gt2KaEFriHbVcZXa7VJjfWe2XjG44+PprZ3jna1QO76kn948Ojpsz7pb22vN/nisiwardZq//X/+rZospDDLWkcnWz2RcLXGUE5mrGQiHt4/ym2fFqxiOpdO5g0vPU0xL60s08EVSq6+9w//4fcqnWozCofu/CTppxhO5mUnVWhWKziG1Om029gf1xu0VY3nc1mCtMqFjYpjMZY7mCSAXgOH6o7rR9PZ1uZke7qJQ0iLho3pYghpvD4GYjSA9257tdXvl9y8xRo51QJq1b/49It79z756N79+/fufbTwwcJA4HcxDwkB+MYrr1y5djosdZpJLZWxsmpazla7N9bMuGSZkqUKsko25mZaUSQ3k+r8+ecfcb/5wYOHD779/ocHv//uh8ePfvfF7aO93YPDSWGw0ZpfevOV2fbG9vTVN99/+Mq1K5Na01BshnQG6SipJJVWuW7zhZ3TTEhUAYxbo6FTXnv99VvXj7aGG3uXDzcKutPd3d+qdXdeHb/+zZcff/Hsjz88ePr02bMnP/745PlPz3/6+eef//jnPz758o29XqPR7eJWdLGar5Tqay0PKHaxXMhYiqRIgtNo5m1F1gByoajYABaJciVrKBaUl6ShoAOtWuyirJ0sjKD39rALa7Z7eLCZ9aplzxaNajadr67XWlsbk43R+mQyOjsE3prg4PV6M9fU4nF0bqagTLAUvRyNCKrFxAIAvKwsA3oEuaifiQXjcTLIlVOmJBtJlBawgmyRLYxrHtRwUXVSehyQkkAPCB+rCJFwJM7ybiltKbqhYuMgsHGeRbOPCEi5aMIFUIYKhfm858JClGVCqA1JmpGFWITmRE2HmiYYgJxkCH4IQmA4VlVjnE3EMbYWHUpAumkAkDwGyTC0wLCLhjHfciAS8IGMPL8UxJA9ETueoIIByQC1AM+RNXMZgyPjkgBFDySjCCIgEg7HFs6VDFxsi9cUhVSiIIkpnoWlqxJEMAZAxxkpU2XkyuHWsOrlClYanrol8N3WsFbO2KZCKOkUEdQtoAQUQTKSQNNoMRkHXkFHoqxAB/0hAsAVU46WfAJ54QIhS4JloWk+KSs8r8lR7MLEPejzvuDKhRWMSA4EwtFwwBfxB0nRtaMhHJjiqHCMZnDHEvQWPAQHTEES4ng4gMcJnChLvxpvrvcG8+Pjo2Eh3Ty+trd1crq5Nj083N8/Pjk8PtmfbTZSCXsRxoC5ebaeSAIAlxq19nBjjD1RO7u78KXHp0cHp0c7O+vj9WGv0x1uYhdhMWPbSdy1No3FVG7Szeag2CIAj0Ft700me0fHB0ddS7ccQGlN1VURWT+uG9txs14+X8DBpVq91QUIhjt/fbS2uTkab4wG4+FgUJcJnnOK0RghmZbKFzyP51lBd9yE6S7Cj9yUcxabAPfFizfAxuRZiO+ZmeRfQhfQ8jn7wlrjLzG/Cwl81miVxZGkXG5xtrvYZU44mRy+uah24ees1ys5HBxZ9J6i/oA3PA40dSjrjq2ZNvIdSWUEDu5ZTRIXsSOw4FlO1hc2lRZGUuh6YbXipZOmqloZ3a0U8RxTUzGQhIqFQmJJJKRQLBaDGyBOSwnWj+whnZO8rAbMMA5VX4EP4D6NEKLFcMVavpTNJA34BixFAizrSUHIdwp1h8zWShWL0ht1uFmpBXPlceu7tNUuGrwSU3otsdHvuDzDFHuuzEZiAh8JsxLNVZXaZGNje7zb9wNnIEMsArBpJdyUV8zV63V4gYfD4RiIWGdytOtXHZNjabWVTJSJgCYVC3apU2puV91kqVYst+tt4FalQtorYxx6vz/q97rNDtS6arFQqlQaq61uDz0tW2vlohOJBeg8pyaiYT+VdJGqxgMR4P91WepeubzTn+1uTGbbm1Ogj7uz3eOtfCBhNROELxiK8B6wTyu5ktMUitPbJX9vc0t3SrVGe7hzfOX1eZinTUzIsVO5Wre3NtneO9oGAL5cyttVReLFTmY5FFr6l7cLL51vVrLn2JQoUwqOsYOIkyTMxtFUjHRTVddIAwCbjdfy9fbu3npJM65f3zo93Dk9SJD5QGhw58bp/trh2ub2Rq872lZY+NXqffh//yeK5S3SNNFJBiNdLa7RA30ejkRD0fLlYuPyyMwXc4k0zorPMrrPt0KFAxRXeee//sdHdqhQDofDFM07jfmr77yjK+lCowKyrY570DgJDCAMANzRNJbxPCJqFKE4Oxatu4Np2lINoJj9SeNwOp1iHC163aG3LOaLLvQv+mANBkiu251Wt+MWXFXKJHGYvdp/58HvPv74/gd3FxL4PTTieOedd9/DDei3fwMAfPPipatHo9XFtljOS3EpPuV277STiiorti7HQCR5W5qtqqxT9Nb++tnjh98/ePjo0bffff/ddw8ePXz6w7fvv3Zl/9J8enB9J5VavXTrtVu73cnF22988cXdjw93BqnVUkLIkm6/dUEsQsHpOp4fhGqKDltGqTve7pSKu5ffvH7z5tWTnel0e+dwr+Pa5dHhcHo87X509/7nX37+zfNfnoH6BQx+9uyn58+fP3v67Kef//jX//pP3/7mUqdR746G7XqpXCxWKqsDHAvOeekUmrBIdqlta4JkoPlANpNQBMUtZhOqZqcwfS2RsFU2W+utb46GE4wkxB3o3b353uHhdiVTLOZSoEwzbq7SX13dWgQYbm6MNjdeOJ+MRoNR01vVsWQL6A4Ri0WZlVCEURQxFgUApgWRJaMhJuRj6AgXBxWYs3TFxJ5+oATYCq3XBmUXe4V1GfQqxYUsiYqKtCyQvhDJMXw6l1DQi1+SBA5bGTiaBgIXJYIUKBdNjDMxAij6Ms1H47TfR4B2phldiuHmt6oByxMNVWFBJEfQJYPnVJnkLZpLJi2ouzYmwJmGzIoKT5EsehoQUcIfosLBwDI8DQRgbP4BYYupFgw8GMNR8CxZI22DVqQEIWFznAyqM05GECPj+Gmel034chEdR+PxCEXKdk4m0C+SYQxXE620M95v1XvZXDlvq9lEprax1+kN6nYCfljLtqJBBb2DRFbAWF+BCYG+xtzXKEMR4XAkhNvPS0vLvoCPCoFWZ1hRX8RSsJhNrDDw2fPLflB+K77ACgjgYAhngf0+nx+eTdGToyvkygqa5Woxikb/K5ZlY3BtJSjPEuCuIOJ+ALby/AoPHbbm8+3N44trbn6wdXV3++hoe/vocP/w8OD4dH++WV+kIcnoywVCXkO3Y1jYAMCwUrb3Zjuwlg5PTq5cPDw5mM/WRiMMSxhuDke9Ws7L4EmWaek6HnWmcPu23mhjAPF4PNk7AJmysbd31NHRxw5Dgw0NAXgRUWBjZF0+n8uXqnWsHdVOv93qw60P8L0+XOuMN4ajgRMT4smWaSp6QhaFQjajWgmGS3mJBOZwJNw0jv++MIc8a6pyU5k02rgmEWAz6bPPuC8yFxCAz4AZcRiPhP957Ah0LqCtt/g0iOZcAapIHv9cKRc8nFeN4+CJoir24u0sChHfMObJMBRY7RQdDbJckMSTkpgvEo2EguFw0OcLRgmCpAga3d9ABDuNOtoxqhadsfR00xBdw5JkkfHHuViEzFmkRBFMSDA5heKV1LKa9uyUJ7lFNJFj4govGZIg0lQkylkC5zXyhUwuYwLxYrEzmtPSquC1S40Mk6wUy0lGKVcszRQ5jmFjvO6kuFy/X7T4BEuvroqNYTenEER57IlxkuLYgJ/VOKYiMt4YTQprKxE8doKlJCvAsFIpL+/Vy9XVTn843tyeTZrV1ugwQKUVMsrarUKipsa9dLFQKBW6261MKltrNZvdNVhJlVy11OitdbuDtVajkHaAh9GqzAkg3EnLyZbq7cG4O+m3mjgfmEzGc0I0Es64khpbptiwLBKavZw8ujQf7h/tbmzNJuPZ8QnGas7nhKg30v4AIXGE61ti5Vo0YRoRmkkNWKM9XDOa9e5gunPpylvbUT6mW3huAYjV6/XHs73DnaP902sAdVVV5oVe+kIovPz/Q+Dz54EpnY9nFJmScPtGM2WAXx0DRQwMn1Q03iw4Gal0p9pv7+3NWwl7e6vcLTSG877Zj6w4165f3O/D7be1PWr2ZxoDYrXev/d//VstBQs56yZhFRmaHAOZs9peCi2vnFtaicUuTtMHx8lMzcl6biaZn6bd0MoyQC7JFN/5h3/6UgtDwWnMX373D49++PmPf/qjYKYKjYKHA6y4uX8mg3u9Ydc0GCpXpCIqAHA7ZTFaur8Fmk11vVx3s45tFluTRR7SYiMUEHjzbAxpPB4NBgMQwO21VqeeqJhxq6wByTR6m99/8fHvMIjh3t2P7n74/gsrSgwE/s1bb752++WXT46vbDeavazl5tO2LcQzhnerk4xztoESWOLirW3VcAXbKnirf/v0wYPvvwf5+/DB998hBn/z1f3XJpdvHq7v3brazbe64zcvTtenB5fe+uJ3n7x7/WTQLa6nEqoSs6c9vy56ef03bw1VpZZOpu10wzZGu0XHmbz22qvXr9985eUrh7PJ1v6l0/W8kxpc3PmNd+31u/c/+/KLL7998suzpz8+PkNflMKPn/7x559++uWXn55/8/6l0Wq9M9xsliuVUrnUbVbLpWIhVwTpK0lOOZvRBB1edCubcy2RV7x81tZ1J42BMhagmOpWehvro3/phN7fgQq734NSUsgaRrbgpPKtYR1zXM8iDBeO0Jsbm8PBGgBwQ1O4ONB1LsrEIkHGH4gCY1FiZBBgA516iCjtX2GYKGjhMJNN4A6e64D2MUyJV5xMGig4q1omH1oGbCCyOh1WBY0n/VGCpqRsztJwNgOn1hZdWEDgSHgYH+NoDuhiHuBQFllDhJtkeQnQiYwxpkxGeUXR1CingRyV43QkFKXR6InXRFIwGR4IgLj20swAACAASURBVJtK4jCyviiAOo/Rf3jYRcaCIQJAa2UFfRx9YYxNlHiWFWQJChHJgNqgSdZwsZEMFGkyyXFwacU4SogIQVEERi7xoonXRAC9jUO2gpMVCYA2hWUT8FIkEtnZtFsfVUq5kmk2koXjo9F02ivV01SEEESDDXKmKqgKI9MMulSHRTJMc4tgiFAgFAkurawsXwD8DcUYMi4ycVFcxE6yosrC7R4+jwCME8DLeJodDAbCAMArWMuX47pM+ZeWVojo8kshJo6+kyCBWZKheIB7+Ak5hHzpL57QvxoMN2a72+v9nfn+0c5mv9bZ2D/c353Pj/YP9ncOTg63N2u4gDRRkoHZK4pqJgF/KqurjdXe5nxnZ3v34ODw5PT0aH97d2//aLoxWgMh04Mi3Ct7QBHTCRy0MVN4EOsVCgUA4OEGkOmN9c3Z7sHOaHN21NUXQ8aaJC+SRc6sKmwnhSfApVK51mg24dE6II36mNzW2xoPerXepFttebwApT2bQpsuzWzUym4uw7Audlm5i6kjtGFetB+7TvJsV3nRBZ3JpF70VKUWUIunuGcA/OItkzlrpcq4Lz4G0r74bAZYAejgjPfCASuL2zYYgJM4y3NIL+Q2CBdZ1VTUuBIeuPOUn6MoPuoHLsRTGEsVpRgqRsKKwpTAGElSISISgZsnusy65XI+4xo6rWeURLMsG7Yt6QYVZIGxhqSCIiokS4iSoMdZOhuLGHkQbVqqnML8jrgI61Ll4DZkQqRrUVYHxGUxZ8KPQpMESfKGa4q5ZrlRiJuVcjnNCrmSpWLqdpyjAYBdIbm67pmsTciVilhu1ypqOFxYLwFVpONs0E8pFN0u6m4PAHanwYisSSIALxKrk042l62U6k14mdY3t2a7g16/OSNDWSnkj+mlkp5T1Xo13egWsuubples1lvdbqtXKtTyZdC9o/GwU8uaGQOnaOEJEGHgtVG4Mjygu+vVOqP1DS0khoWC6CXjpM9wDZXykzyQAplatWtHezvzg529nclstr51dLxzcnRpdNANi7mCEIiavK6dC2l0JplL5wk2Ktc7/lRnVqg0B+Pd2eUr7+5EeRL93ZPZXLHeaq72t+bYqXp0tZJPVKAwiV1v2R9c5DBcOH/+/IULvgvnV8vZc4ynqbQMNVhQQQboaJquLhSwITAxowBrrHmz2QYJWspqWsYWXW7tFB3Up6Xs4fGV6zuDLbhSm93eZoJXZbnc++j//M/MZD7lACeioqGA33fBt3yu1ToHpeDChRViaXwtP7xe0mppz5BS6cwsmwaq7QsQlJW/89/8+08mv9m4+e33z3/85sH3Xzz68ttvQYbkqjmvXqtXqjUUwZ0zAO47dpwq1DhCLhSGPcdg5ExnlFEkxU1nVzfqu9vT7RdeWItkngncr9gEvUgEHuDZfLvd7/S9dEFj00XFMBLu4Nqze598fv/eR/fu37t776MPEIBxHxqjCF8H/L328rWTnX4NeJiVzWqSYcrZymBmxMW47Symp6XGISieFG8UnNHfP32ELc8AwI8ePvzu2+8ffPnRe9euAKM6eePSenlw4+31zv5kfvDqe+989fGbxzuba+3VtZQtGTH1Wm2ZM8tl6+1nn9+SE9mUlq/2R57SazhO/urrL1+7ff3Gy6/cvHp6tL05Pbl20M4Yrfnw+J1LN37zwedff/Hp189/eQ4I/PT5T09BCMM7qODHjx49/fPf/f3fPP/928ej5lq91a8VSsVaFdZvs1ZezSZsS1HtTDWj6gpwRmD4cI8JCa+cS2hoyZcAJDJs+Ivq2qKzanrWhrW3c3BwcLyFEqNg61Yhlc6XhtX+GAF4NBz/RQFPRmcALKscC0DBkjToQNoXJoHSi/Ah3CU8IGQ0Rof8VCzCRqNBOusWihjMZgIThJIqqTwQ/CiHTjFM1L8cUGw1RsqgIjkgtBSj5bIWGgNhw3Nc5FiWJrElJBr2M0kzgQAMqljl5SQXFYiVpWgkSFKsLhIRTtVMNSRiB5osREMxOkrycQGAPSbpMd51bVQmOOqh6TglFAc4ouIxdLSOREP+UAQkpH9laSWEACzzdIyFG59jYiiTAfLNjC3zcSIuuq4g6OgnQBLRcBhPp0FJKxxlaBooDl1ksclX8/IKAyob5//wWVu96WBcL1QaxZJtevnNi1cm08l4WJHigpy2FDbKGqYgKyRoXonHoT+CxC4ZMUoSIH99K4i+wVAwQILCkDFAULN0nmIEjqIlOfTSysJJE36HZ+AHMR8JBrCtOxwTDHbp3EoQ6Isf/hzBkBYOA4AjQGrw6tJAbzgRNbAowDv/KxCSk9n2dLoz3TmEEra92lvf2sXd56Pjva3ZIQBww3VsXTtLQ8KUoiSgULmxWq22N+bz6eb2Hgjl05OLJ1D85jtrizny4RrU4LWal01ZOIWk64k0RvLmShVA7u4IN7N2gNoNtw/3JzunPSxbOAMsGzpoWczKxUkddKIslasYSdJuNpqrHZC+o41OpQnfv1+v9Kr5VQ+gRiykEpoKrwed8jw7XcZR5YS7GDPC6Z/EWdAC4jEmBiYzePSL7VaAxSh/s2cAnD0DYJwlWojfjPdinCj9z05Xiy/zEm6uVEIMhkdV4BpirxfuTuOWt2VoUEWx+1TgRYx2kiTglAu+E2EpVqECFKysYCwWpRkCsDdCREJkyB8EmCGDkXCIiKKRKJ+tl+EnMRXZTarFlsGlbU014FvQ8RhD5JIxhSKZOA0PzsVMw8cX3XTednPwRejCxHOmHmfgvgpFHIdU241yppi3TCBuMZy6N01L9GqFSjGu1OplLx7PV5OqxsdZjqc41XYFozHLaLTuN6t1KdOsljSSyvTrCS1GxBUmTMTjZLZSq3Wwl2RVAdkWRQDWcIsDwStbKVYRgEfj9Y351u5Od8wHXY2KMqpVchIRKl911+resGtlqqVap1OrrgL+dlprs/5Gt5pP6bKsxeOKYaccFWenQoSEs38xKi6ZTrHQqIeZaCRrG1k56o+nMzIIfToQ5mxytT2/vjvfnm8fnEy2dre29o/mhxevrO3cUEihUAn6hYBJnGNdmdLaqx2bJGl9qDODjS2r3l6bTU6vfHgCACwZqZQNL3GpXm/016dAKHd3L64WrSIGDHaLfp8/6P/1wogSAHjl/Dm4tOfojKIyaFGjwzVQJUlBY3o8WpAlWcsUgezlWkkLKJmCBja2k0uu35qBTt+/2NkeTQ93R1vY7Aqs1RBESS11P/w//lOJF6loIOhbWcLQwwt+3697q+dWfEHMHg2lL/XK1zaEYqXo2HY6sQeUCR0NCN7J3v6Hf/z4zn+888aPn37+1Ve/f/iHH3745hs94eVKXqFRKVcBMFZb7W6r0+l3hwPXiZNeVSD5fK63ZmmMkF4dFBRZSXm5+ubq7s5skQcMEmxxDgmwu3kGwBhFCPy6iyYca3bV0fhcErivXRve//6jzz//8P7d+wDAaEb5Ig7pvXfffuPOnVs3X75+dQ9eb0/T7FwGBx1S7VnTTBOGlLAURRTpziUbGEwsmba2//bZ0x8eLt5++PH7Rw+/+f0XH7x29eji0eTq6ai7fvrO7ZG+un38xgdf/e7WnUt7wOGHa42Cy6RJ9vWGX7Cqq9l3vv/0w493xf0ro16vu1pvXAORMX755etXbt+4fv36jRvXrx3tTrcPLx1tp7yqefeDV08u3Xnvo/tffv31k6dPnz4B8H38+AlI4KfP4Q/PfvnjT0+fPv/T3/7rp/dfXas01sfDbqVYwAG5diufz3uOpiXEQsW1cewWak0uYypCIl9wVNXEcDQbzXayntcYb44mkzMA3tmdH+zvnezVPK9cyliamy0WkvVqf3M0Go8XoW8LAN6YwBUfNXNNURV4hY/RdCxChMlluJVFFRt0faEYB4UgTFJQS6JRjK2nsulcNukkFinuoi4C5w9ToSgoRomPS6rIJ6x4OCpEeUmIYXKlmXVwSAUBWOaBi+MoLEtTZCxEpVxdlznsD6WDrBGL8FCuKDJEUnFVAMkoqgk1JCVkzVTikTCF4hK0qMrGVC0mpF0bimTCwANMNH3iOdzyRXFL0gQFN3IEACty4dySH+SXgj5TooImujGGpwnc5HYdlWdicd5xJUFRBAZNpcIUgJkgaRi+o4sCJfKqnq14hu1Vcio8AGhloAqWqWcHeNKSbzV6q0nFWHv5yrWjGazoBJPxErUUQwGFsIA4E2EfIcZJAF8avz3FhUH6+1dWVi6sBNDG2R8mAlHQ9YJk2mqcYWgqjlmEy0u+FR98mW/JH/D5I6FAJBAIBv2+ICHQoRDpX6EiyCzIuMwt4JfjYhwr8KwoMCB8FYxPxjEFqBa/WkR1bG/PMUdwenC4fWW93p8fHp1evnzleHt2eLQ1rqccnEUFRYfnHWoCkC1bqNRX8Sx3e4ZC9ujk+ODKlZOj3a1xtQMlZTQYT9fwpsg6pgXgAZJ20Q+VKZSrzWZ3fWN9fWM22docrO+e7hyeNlXTwTEnbGPhdMBM03RSsrawgi7g1hmsc2CelXav3dvcgvIB8nmttQpqOsVr/oAgsKJq8ZGIVa4DXBczSZyUsha+ksl08oXnM5TCxYhv1kGDZGxyTi40cebsyBcdNhYWz2fdVmeqF38/89nwPCjM+WI+5+XR/xWkLceLGlwKWOoA5QlT5zheVkAJAqtBDyIJ6ilOYkqogEEGE2j8Rix2fKI0FcIzFpR3RIiO+EMgTQmCIglYAhTpj1jVeiHjJQ1dzktmy+U910Hyg+YrfMDIEiJDxFlKokSJ45wwAT8pXOd8EtAf637cNFj4dChGagnOaLZqXjGPcQw0TRERWtUTQrZaLJUEvr5aLvK0V3M1Fe4NjiMZ0XIlsb5XSCpWzGhuJBJrvYJBs4nV1YROhSiJjcYEiVJT+fzqDjCvmsxHopEwx3PGolko5RW9WrHcaPeHmKm2Nd0/GLSEgGKizwKdytkrhNcpNKrlftWqgc5srdYrxVKjt7G5vbvW8gxZ5ESdI4g4sBcJGY/NRwnQgXAfhAiKFUkZJDATMvNq2owGIomcwrBhmg4FDNZ0G0d70/X53t7x1uZ8Z753NJ9fPpnsXR4z0fRaPEABgoVJRfezXqVSC7MRNr8W0beOSpXWYHt2dPn9y1GBlA03Zefy+XKj0RyMplvznYPd41YZAVhSOkW43wAMV1Ze7EP/+tf1ineOSctyTET3KwyB4eIShgJjlKZkYtN7Iq1jc3QWmwGTCU0y4V62Nkbj+enx7HAGLGWIXuwbk0FD4GMxrdL78J/+TQw7LM8tww0OFNp3wR/8da92LrCC3rnnSHJ/LzW/DsvYSIJmsk9kw4gGl5Yiiuq98d/+73evPR7f/Pb+p19//u43f/j00Wc/uqlcKuuVG8VCrQY3UhMBuAt30DCbYCNOQSDoYrG/5ZiC5NQGq5ah2F6+Mm5sz15sQOP8L25XARps4Gs6xh7oPkYHteqDlt2AmzunWrrlDnYe/O7ul7/78OO7III//PAD3Hs+yyFEE+g7t1955XA+qtarBk4cpG1dMVuXK4ApgqZbkqiKSnM3a6uCquW0+Z9/evrNA0BfdKf68ftvvvrdB6/fvHp9svvKdLO/dvLaa/u9ZqH+2t1PP7z72nRjCxTlrL1aTNg6o12t+YVMrV258/Pdj+9++enuV5+9+/orR1tHN+69euv25TsAvbduIAJfu3rl0uWj7cn88GR3rvc2bv32/ds3brxx97PPP/vqu8fPEXXxLBi7sUAG//jox6c//fT0hx+e//Xf/u3j9/Y7lcbaqLNaXkBwpZzPurahkE65lNUEzQS2ny+6FqelvLSpakY2nwQlqNh5zy3119c3J1vbZ4NI88P9nZPDXj5dLOdTWhoqlVNrVfEIeH04OnM9gUs/WV8fDFdzLewsARAC5h4mI+RyLBrnVJIKRv1RNGtiiCgmE4IC5Zgw5WW81CJcYWGRysZ4jpVl0UgmVI5U6hkr7sTx0NPUeYKGUqS5tp40DLT7lwUBChs8TJzEk1rCdnUMn4+zZDwY1ymCi4V8BFSsCKMKRJCIy5ZEyIZsGnKMikUjJAX/UtIYSldoKe2YaLKv40w89neBYAAEE5g48GmKZaAghgNB/8r5JR+UTQ1HN3gVvScpVmDgdmcUuGHgzzxvpRQgtqBqJEkQBGC7Bg6tioLGEjFVMjNNqPnVSsEQWEYWNQPbIFUrW25tNLrNWqZdd1L5zdl8Y9gb9JtKu58WG7k4FQPtjO69oaUAx6MlBl5YeJ4xEMCBIMY0AaKCrA3FgmGakeA7GgLDMgQhqLJIrby0fGHFt7wMNQGeQiiMPVjw7gtEIpFQGDvMlkIhH6lpFDY8AwIIPF5aVsT8RgXPZHE2FwBD+tUAlwRQ8E53Y7Y929+fne61ahu7k9OLVy7u7x8DANdSNlxCeCVxV/UMgDO5UrU1GG9MtndhPe0cXTw93D3YPdjbPxh3R5ONtf543l/rtyrZlGMqkmoaiyYsN+0Vy6BkMfNjY3M8O5iDfD48OW2AvDG1RR+pEldALKPhtG46adyCrtWxf6TdHjQrQOLb69PJaLQ52ZiMO0XPM2XTd24lsBLltLjfJ+cBfJM5z0W/jUUwb+rFAfDCOSPlouMGgiyC7llvVeafu7G8zBkA/2Wud/EBDkItmq5yOQ9/ZVI2ql7FAgqCJ8Ig7zF5DgOnZdxQEEQZ8PbMBBAXC1x3CZYNz8cjMZDCDEIuMNhIIIpR2qFwNOwPB1ag0Pp8/hDwp4A/RAb8bLpey3lOQudSDlcumdjLoEgSDsoxITYrg1jFNKs40ADKFP2Wm0onpRL2+sHdo8UNk4lzQFhJxRHUehMAuJBKmXBTUSRJiQkXFHatWtXj1UapKsZSlYypCQIwNYLizbQar+ysFk1LVWs7ntQd1awYZTZaCZONkBwZpDSedUrFcnuyN91rqiJGdfMAwLqGyYsAwPVypdroDNY3NqZbs/l8qyGGqYQJq4fk3GSQTdTquV7TLdZL5XavXm6slkab462t0bChaUYilVA4nYsLSBaAOGopE2gjFQoGAfoiBL0SWa0TcYIDPuEwwbCUTgBVRnN6PamkM7uXjjd39yYYJLCzv38wn58ebR3sXc2xWinJir5zEZMUxBWK1xMFLR6LyV17uTudN1oj7LV6+3JUokGuuE6xXAZq0Bpu7GzNZieHJ62KXYbCpPRyy4CG58//8xnwS79uVHPn6Cy2nCC7x/kCWApnc+e2BezftnVr4WXqOLC4eRa0vOELinyBoRO52uZkdzaZTkejwWA0bOZ5OejXqt0P/5f/KLq8AksahwwR6uHjc93aS+EQ3OtL50K+weVi+5We6aZMNZHMXLF4O+JfWoraRvHV/+I/3H/12fbtzz+6982DL758+N2jbx6rWjGVq7Y7tQa2MqIfdAtHagYjL8ETVk6mqVJleOAlFcWpDLoJU7a8XGFU25zizvPmWRISBpZuLdpxNzbWhwvDlE670270CllPE92sYthWaXzn0SeffPbx/fv3P74PAPz+u2cHwO/+9q3fvIkhDDcvz/qrsKx1uOeSWA+K19YEnhbhntd4KCz1S3oKWLRR0Yc/PX7yx+8eP0L4/eHBd9++efnmrYsHp3uvvH1cq80/eOXiZP3g8o2TN7/77NbJ1uRoNt0d9Qq5rE7T6iu9AJfNdUofPv7id5+/f++Dzz5+6933P3jnzXd+c/v09OWbd25cffnWmf69euXKlcsnu9PZ/is746NK89Lbd1+78erb73zw8ceff/vj02eAvwDAj3949OOjpz8/f/zD018ePf/TL8+fPX/+y7/+0xcvb8IC6bdraFzeqqBLjwFKLJnHLRw1kUhki55rACvx0nBFEzh0ATdgNg/cprOJSUeLTujdneP9+fHhtJLJlwppxU5qWrIwzPdHCzOs0cL2BIOYAYAH9Vwbm3CAJdNoPxmKreBxqsDEIpEwDfjLoTFTiIgRsTjAGl3IF+FBbcwXlEAAQzUQgdAnk6bCEXI9qTJJgY8IXNJiQ3QwRokp13Yt/GKQDBzL4nejo0Q4uEzYlqGhhQZF6JSgMTGaCCyHA0vLgZjCBX1RTrFZCpDB1kRmMckBEjGuGDQF+lSC1zmzGEMy4LbAhilJAHAVWTxpxWiYGBMN+JZDQDTx6AZbtBhRFlkat6BjFM3qaRskOwvQl9QNbKbGDHUb/ShAPYoiK0hCFKdO3YpXrnVyFsVJrKqZ2G1kaMlMZa3ruhlVy1STpVrVqzVdszrOmZcGpeZxT4nQvITuH6RvKRSPwxOkMcYX2AtLgHQN+s5jsIRvBfeYV0JR0Pq6tDjDI4I0aFpi+QIA8MqFJcBguBz+KDprhkI4iEWBhFoJx8KRIKHoPMuhLZ6Aacgazv8qUH5MECtovYRXRBR+1cf+xq3JeNZdm08HkxMQEQDEk+Hu3vHJ4dHx/myz7jrJhIUTQhpcJ2xvx5CESqO7DgJ4trsz3z25fPn06GRvZ7Z7PJ1sjoeD4XgyHg061axt2zInKKqBPZ1pnDZvNtpD4HSb8+H44Gh3Nju6eLmlJRwFN/BAmgu86Tq6YjgL9MxXsBguLAlBV631+4PR2ub6cHM8AJCvpU1dYuUwEfVTsm3ESLPoCkRYSSQ917TOupuTDspgbMaC/5KLjeZsFvMHHZwoynnp5AsfjswLAHbPhK+XS6Y9NMhy/+KrkcumsJFfSC0coxOaImELoIb7AmgQpmgyup1yIlp94hvmQ8sYoi0BJ1MlNiLDKwFwFViEY9DYaRdG6zMgWuEwvHJB+C0cCoT9wJ6UymrBs1z4nnUA4xRjmC7gr0TF+BgbyaZYgQ2xFGkosGq01LKSSntZseBacAUFEYqYgakd0VhITcWYWr0GNCbjGiJazNEMn8rAt2zWqgmmXC02lFgKBxS4OGBIjOKtrM6Vt9tFhVOU7DRPFToth6ASnb6bpCK0FPNFRYOWUsnm1sZ0uFNFs/JoFMoCMJCFAi54tUa1UmtCFRlMt/fnOydDoKlAsCU5GXc9TpOtRmmwmswWaqNmrVnLVwZ7+1vbm+WUjtUCmIZhyQritRrHGPAwa/MRP3YXBoNhJhLS1ySSCKU8LSlGiLhTMCgOrmaUc6hMcrx3vDHbm2wezsfzw73d2eH+pf7u0cUNgxUKWoJ9aUWLVyxKEjgj0YuLZNTbZJTubrfc2zjeO33zKgF3r4Vz4DncE2+PpgfT7dnl00stNHvSFHXoLUfD58/78PwXB4FXzp9v1nIvxTIqKGAoXAYOnblpe+G9lrKxF8crZ6HmCQIRDRJsjJDlXOu0Jg8u9w5W85ELfFgrtNaGUyjJ691KTk4EzquV9rv/098TK37QwAsXgBU/SJwQAPBSKOpH7b0Ssq9OqkcDq/3RRE2nMhczTBJLGFXUcrf/3T9+dOvJ6NaXX3381Xdf3Xvw8+dPHynpopOrtRqFKgDw2V5Stw8APMwlFSaR1zk2Xxqe5FKy6JZ7bUOXQAEX1uubs8kYAXh6lsUAMDD+CwCDBO51MAil1U6WTZPLZXTFNVfXP/32s999cu+zex9/glYcZwr4/fdBAb/91mu3b928erDdLNczsp7Jpk2Bt4uHpwbHKVk7qQuiIdqncMkkRqslVn/+89Mfv3364McfQP4+/PqLzyfe+tXTw2uv7nXbt185uLS/tXHwm7c/unH53dPR1tZ8Nh9Pm81SztMY5fooGHeLw+I7P3z54Ucff/DFh3d/+85v3333N3feuHPtzo2Xr1y/ce3la9cQgG/cfPna1es3Tmd7V693P3nrpF2f/faj31679PoH7336uy++efTkDICf/PjD4+ePH/7wDDD4yZMfHj35+ZdnT//qT3/6m+9fmTTaa2udeqlQAo1QdEzb5HinUAJegyOUUFlcQ7XRfxc0Qj4tGTUrUyx5ySK2OG+hGcfB3s7Jwfzo4LiZyQNyi5SDkw/j1Ra6UW6MB4ssqkUD+njQr3odU5RlhuWpcCwa9NP+CBQDGlcWIEmcpmIkAxV/sYlGE/FioZhN4QySCSKPYWU6JDVLmaSBKUeaa0quw0agkmg67SdJluZxWzDhJLSFTEXLYtCyJLo7s65mgIIAbKRUguHRkCMIiHNhOUDJtG+ZkIwkzSAkqLxEhAC1SY6NqwDAOkeIUFw9dMIyATzthCWwiqGKMkexJEkGQmiqEfCHw1FY7IpmmIoIzBsFMBmGmzRGknB7pxSeYS07lbKSKRu9fHWMDBBoAE8RxDuro72OqmWdWr3kCBE1KVsO0FIMfE8p1ZYq8RpASRtogOZNS7H0epftH1c7F6/XlRgHbNmUSOr8coyLRWIMsAcKRHyUJX0XcKYXj3QBYi8s+X1EzB+TTdrvB8lELgciZCy0vBTwBwO4Eb0cCV7wRSOBUAA3rEIE7/PhyXyQhCfDqbrEQ5HEZitB4QRJ1kULhJWdtB0T+A5AMverbn+4iQtitolBHJPZeLaLqDqtnt4+PTjan0+mpYyVMmROVBYHnJIOeixXLeVKzeF0PpvMt2aT2cnlWxcPD492tmfba0iZh+iu18M4woSpgi5UDDTvSGe9MjZv9TdHnc5wc+9oNhzvwD8rK8AITFmSJVWXBdNNAkdIJZyc43mVEpaNdrfbXW12h8PBaGsRFwL0fH1YLGHmtVVjz/lZEyQal64lYythNp22sq62cIDGBMQz6+bkWTqgl08tTDIyqHizHkBtchGakPXQFuvMZAMgG7Xc4o9ZeM8Xcq6lLUiMnc0n00lV0TQRMzI0WdFEDCMDBWgJFEhSBnvNVUPBz5+9YfO4JiNZE3CUm4hg0lY0HAkTRBjeo4EQoEvAB68n4nAwtBLyL4Vt4GuFVCYhOim2uRo3HNsABCYpQeJCSpaRxBiDmUgyrFqb9QPLKAjZvIoOxLwZ501OoNi43x/PiKFaJ5+uePmkztOYpsmKSVswW81cwyBSq1AmYlqjYBvYvMDSWNPSFgAAIABJREFUNKdZNututeuYr+Jt9JOeN0iKYaXTz9lMhODZYFSGZWUk8iMofltNtJ+OxWg8tZXNlGPnirlFt21nsLG1DRV8fjDbCQMXbmWiyYzNZZL1YqfaXc0XytV2s9gupisHe/s7k27ubOw7icEZOLko8SIQWYVlQqGMTEW5EBHyh0OcEiSGqYi0Ylf1nB6PRM1Cgo7RQSpMAPvJli9vbe1ND7Y2T09aB1fn2/OD3e3jS9v7PYLP5HXypagQSGQiaTresay8zEfMqhdNbezWG7v7F2++eSvIwSKCJVNKFzq9dn8039+f7Z5eOm5WMhVZl9R+3gevzNLSr33nV17y+S68tHRuVE9foJOLWY9EOpHUbcdwE2k3nyjl0zk3JcsiFY+FeVdOJXtTXc8VylsnFflyL/3L373a2tB4YVmqMWqh3BlPCk3LDvqMau+9//nvY0uR8HlYC2R4JRClYz7/uXo16gtEfKELS8shYve0tN3ybv5v/0NW8dyjkq1xkQtBet0oXP+v/umjVx6t3/nm7qe///brr37/4PuvfxTMfDJXabRXa/VKudbqdppoqNjtrRctidIqLst5he7FWlIU3UJt3TIUJ5fLTBrr29vAC6aT0frWIpR2A7ug0R8CbSHwBLgNErCUqqQFq2TxjuFs7j747LMv7t/79N7H9+9++P77H3z07vvw9sF7v339rTdu33715sl2Y7VRwVTSjJAS7OLkepaULMtJpWRToYuX8lKK0aRcovuv/urZo0ePf3jw8MfH33/15f03Lh4283uvvnVYGV19860pvMInr3302ZfvHO/M0YVve7I3zXVyCU+LqZdnITZRaKy++/jLzz65+8FHd+9+8M7bb7/z5htvvPbGa4uTX5C+125ch9+uXr5448qVG9cuXrpRO3n//ru3puXRld+9d+3mK29+eufdP3z5h2fPnz0ByP3++0fPf3z449Onj39ceEU/++nnZ89/+uWPf/qrv3rntLfa6bVWK5VqreRlPNNSWL1cgtWw2CLM59Map3r5dMZUDFMzUw3brWSTpQZ6BG5Od/bnB4f7e/v7u5c20slE1pBV3Uuodn5c3NicDDfXMHgZdMZwY7I+6m9USm2Nl0WNYUA8Rsjo0hIB9USEj1f8cUxGY0H9hv3xKAHy1R8rY1VL2W5KYrBDFMQpVy45dkJimbCeT0iyK1GheJgXiRUyQNKSAxojkcVkcF5gMakHe0ioEB0IA4PkGUFk44oUiqsEyYPUW14B7SDoRJiigG0wYkKHm1aMU9EIZiVwjK6RnCWRwA/tJMY2WqBJVZoRNRAtAs/iTBOJWYhApaNkKAoaMm4lTfgUz8liLMRwLKcAtWCMjC3wGJxjAvKatmqZKk8wDCORtKOQNJQIWRToCKcZ6OcZp+MaRliaibSVgLLtZBJxmlMStlvLWFpzqyRQrbFptUrrnVzNJSVgFXw8HFxZ8kcIkmIYgiXoWJgm0KHLv7wShDq8DJQX9BBBXViiODIcQKfryLIvBJXbt3zuwvJyAAMofMsXfJFIkPL7iQio4HAIt+IJVlBlSVMEHhtzJFXGbBTDVmnKSgChSGIgrYWZaeKvBsP1zelsZ+8QcHR/fz7d3d/fOzw93p12pxf39i/uTreKtgESGHfYcMRR1oAtpcuVerM72trZmc2293b3jg5Orh4dHsyms1kfG7DW+mgY2ypnHMcG9AEAtrEJK5srN6qt/nBjNJwMxrP93e354f7hSVVzEgkZvghkOSeDDMIZSMvJup6HZ1foI99pr/X6g2G/v4ZetMP1ja3hsLbqKiwteow/yknAEORiNcNTDO95iYVVs5tCL6ys+5dkXvy7jPdixHcBt2eWzQvLqizAbNpB441soZT30ugBnSsU4C9TJnq0iTbouzywRxlTmzC6SMU9ARyvwo/PdvQxgRVkpqyrhroIckYAliXsyeICuDxDoagPqFIw6A+GImE0QwUBjAAMH/h8OHoGr2pg2c9lW3VgCLZm5Tm7ZqvJlGkYMotD6ATnWKCzYzhZxosicLyIkHNKajKrxePwaUsQzDhHMXQwSrtyONMvuoVkxjGlONBkkhGNlKrVmqVGmk20gXnTar3oGLIS53iG5nQ7FbPGnaqlmWx2uObk08W0FApn+wUd3f3YKClwImOaziZW5QYPdzSFoQEakNzF2ZdXbqKz5Bpa+Uw3t4/3diJ+WstlKMKuF7KJWrlSa1W9QqO52shX8qtbV/e3+1AuDN08y75IWFrKYmOiJumyKFlCCMoHg9OOQEcpIRprVViZ4BuObQmRkOLZQP7DsUhU1dh6YmNndjjbm23PL4/nV/cw3mt6cDI9mLiEVcrYYSEeUhQqa1BBw21qULVqVUmcTLe62/tXbr15NcrRGMeWLGaK7V5/fWMyPzo9PTnab5VTRVETpEHBFw4sLS2Hw8sXLpxfWTrvO7fR9IQMulemnYSt2yasqUK2mErrFk/FI2GfP4ZWQc39SqO1saUbuXx1cFJgJrX0v/rktUf/ZfX1rwvZfU+KhwhatvOa6V/RKt33/9d/E18mWF8kygvnowadXKHOn18bLcEX+cPAx4Ph5qVRs1W8+j/+9zUzYx82XJsNBpdCA6dy/d/9092bT4a3vv7o/hdf/+Gzz7/77sHPRqaULtYarWqxApd+FXRrs9tv9nrjsiHG1HKKpnPl3sW6LXCpUnOSMkUtn8tsNAZbk/HG2dnvxosYpLOUgNFgYYMF+NvpAY9N8smiIqWN0vi1B59/9vm9ex9/dPfevbvoBb2YQHrvnd+8/vqdW7devjhbA7XoGAk3l7JpNzu9aPNxuFs0YCmaYh43ZJd01XS18je/PPzuxycPH/z4+OE333x+5+KrV/fG1Z2DXuuVW/Bhp7d75+1PvvjwzunkLIl8vr3e3YB6K0aV04MV0cuuF95/+vt7H9797EOMJUYrkLfeeuPO63cAda+dtV9dx/9fvQK/bly7dOna9Pq7H3343u2jjer8nXt3Tl6+8+pHX3/1hwffAgD/+PC7h/A7xiQB/mJn1rPnz588efb8559/+eXPf/X7S53W2mhQzZcrHjB2F0h3IpN3AG2B93uOm9SAzhRTlqpaKdQTabdczFbaQwDgbTRPAPw93N85neYTTh6KjAo6zfaG5d52H93G1s/sKLfXB2vdcbnUUjmJV2ggnDEiFvOvEBFKFCmCCK2wsoiOZ7FoyMdGogxN+aga4H7OtpKWKEL1leIsxZXzGVAlihBkPfhBE6IQjYclUyT4CCdryaybAgmjaRIvnc3NUDgqRAVCqcTiG8SEJBFgxEiUDqzgIacvasjhIM1IVoIRDAXKhQSPH8Y4Pi6uK9G4xdOa69jYeQPkQwNwhEqJJ7oEGcNmUAoVJwn/IBALLofiugEQBQ8rCnhMFkeYJhnTcyTJhk9BNZVUhcMTU5ZXeTGuOBypWwlFTqhhkgNphAe/CkgA0EG2W0wnHDsNaMdysmpo2KGzutZiNLdetVQru1aQXZsDokHF/OeCdJwmF3G9VJygGYIOI42IBEAWBdBnYyVEgu5diXLRaHBlBfusVhZdWsvL55cBpf3LvqUVXyAMLwPhD0TQ+jlG4BAXC3ApcqCQULghdEoKej0s+owxaBeD4C0T/tN/hQbrAMC7+/PtHSBkO7OjS6f7e8f/H1Nv/iTXmWWH9bABVFXuy8u37/vLfLnv+1KVmZVVlbXvQBUKC0GAJEiQBAFi50422VzAnd3N7pnRdEuWbC22RuPtByv8i+2RLClCtizb4bCtGMmyHJYj7D/A975ij51BFpYCEpkv3/edc+537zlHm4crC7vnN3emkxL8waQlSV5ioCjKpq3bpRqswPnxyup0bRWYHCidk8OD/c219dXJ0mgAJHk0Hs63Syl0A8WcGA+A09l8qdbqdvpLq9jet7q+AY+9g6OGYmo6z0qYT0DJBuog09SxsJrPIwA3sOA1mu+jA88AvVExmXAwbHVzMghBi6VYSXIkxWhXC6pRdPKldMr2ABebr35vuPHjiFHq993Mvxe4pw/XtV3vV1nAXvQLKWB3o2sqAicohu3miq6tShgwA0wGha2AGb4obyWv11nRcBYU46AFAQ3VBBa73yjv3DWKnynwRV+ECBM4TktQFElzHEPDcmLwzwBoJ6LRcMgDYowI8cn1Xibv2paUsblSXTTTtqbKXCKaAI0tFFhejOBsN8NzDJek/HmjpDkFG7OkCF3idVhxwDOpaFKJqvO1bCmZdmyZxTY/gpVSmphrVGplXunmCzbFVyoOvBWSZGmCVJIuIY/mSxnZplO9sVXPW1mFDsuVtMlg3HQkkiAVBj5TL6euznpje7EEqxqKBletVCoAANcbHeBKw6X1xeX97TVdFuKpGq8a8M1aM5/plAvlWrPdqObz5Y3jo0kLT3QxERIJEzoeq2hhq9u2yvOGFIzCtY1SESLqn43TiYjdkSk6UC+rrhTx0bYj0TjdHBTMeFUZ7Czvb6xubw4vbk+Pdrfhnp5u7K6tb45iTDpfiovYeM7V6SSTdCtGmE+opUw8Pz2YX94+f/L8YYIl0Zk7W8gWm53B4iIo6POHOzv73YoLCpgTR4VZv+/c2Zk/+IOfzhF+kuK5wHINtB98MKrhuHnLdVxb4uLRc6Fg1B8i0Gkum1fyTus8hsgu8Hom12keF4j33pe/P7n1/a+UK3//lrP2+oXRaN4hiBle9c/Klf7d//13lD+R8FNyanaWsmr0mbBfbY5+eobjAxh/5vcL5w9LlcbBn/95F1blTiNXBBYSjhqZ9sl/8i/vnXy78NyH9x+89cGH77z94fs//1rJFJJw2dvVEuAvNmF1O71+q99brOoSqVRckkgVOwftpMQli51lF95nvpAet3vLk/HyEurfEZ4A48M7klwczi8MsAO63enVU3Vb53NpWnHV9vjtD958/PjBg4f3791/+PD+G3fvIPq++uqtmzefv37j+sWNYbWSSYsYzp1hrGLj2RZBy6Zh6Qyn0uJBX1d4IJv5xq//6Kuff/T0y08+/uyLDx69cOHZa2uT4x0n2dh75dkLe2vTvb0Xn9x57eXjten6zs7m6urG+kq313ItPc6fbPt5uzFJvvr9e3ff8fww72Ek8SuvvPzyzRs3rl8+wcely1cunRahT46OTy6dHB+BFL5+EyD41cu92vT5ezevbF58/d1333r3o88AcT/9+NMvPkP8/fRzbIZGZ44vUAd//c033/zwy1//8N4Rkpl+t5orNqo5W2ZYPZ9zgH6bSVCURVcWDODxtmzkc6acz9rFajZd7cGFXF1f9wIZ9rY39jYbipPL2JKI1Z9Ur9XY6kxGS4NFrDsACZqAklmslLoy2jhgGHgiGo6EArCfCDzW0sJEgsY5mgTAAh2J0bG4L1EruOkCmhB6VToMGCJhO8u7qi6HKdcUxaSQAH0rJnVaokwQqq6lqrKEnsvCaasUScXjwXggbKoaRiTBThNJSBKFgSzhAIb9yHwwCErVNAlWk01ZZWPhYJRIJEj0AgqzeoJSU5bloouxrbEMnkGqIIBJbG8mIqFIPBTCzF8c/pjx84ZqyKxnlkySoRDNJQgultBztiiZAKEyIDcvkNjNSlA0rCxDIzGCmxdNPYGt2zwvyqqVzqZtw3CTWbiOqmVaWJyE71lKNjmqmnqmWnBkwam0JTZty5xIBeGaJaIsAesVdkaSiuKb9pPAanCECKON4EuUCPrmfLQYiUdAKc35fLNhIu6fAfk75/Vf+c7N+oFHAEaD+p2dC/jCgMOgpWGDwKYxHl4afJFA6+JslKIYoDINB5SG5xWga8pPQExOV1enKxtbW5iPsLWyfXS0vbp9dHByeX20fX46Gdd0R7VkxeuDxrQ1M2lahXoddMJwsjzBZr6t3c2dg73D8zsbgL8riwuAk+jH0Sqkkukk1mcVFTMC07lCCVuZ26PpEspuLHwvb+8fNRXDmwJGE3tWMtA6xjRMN5l3S3l0EMA5pLYHu6B+cRARz4IHg2Y7rzBETDdYUM/AKNRmoWymSjRjuJnUqaNGyhtI//8BcMr2/Jsz2VzaA2APe90f+6zwp8ksgG+pADBsyBwnm+lkJpdJKjwnIZXhcCANW9E4Hq+HJMoKUBtM+FUNzeuDpTAyEjbEEA4c4QNvZrQio6UwLRICQYsCwwM5AqSWeJpVEKkTFE1yNKAw4HUIeNTMDOU08oVMyuYl0LY9RUgmDQUd5xICE03kNVaGNQACWGBJypRndTuvKWkTWxNIWeENDgCYiDIRR0uI3WapmslYlsqhhWyclpMa79Yq5apId/Ilk+IKtZSsyvEYA2tXdFxWWpgUC5xFWp0lq9NJ5+H1acCkvBpTMBwLM4ybz2FC3WKVEYBJRiMErRg4Hp4tlkre59XuAVearE+Wt9dWtJQTTzUFwyqU3UalWFzI5rodwIJ8rtg+3BuVAH6B/aRyQJa9rCgF+Cz8LwMQs5IYjTJorUIQiaAvRnJhopMnOJ/bV1N63BdTUpaQiIWJYMKijNzm3uhwa+1wZ+Fgd2N/f3d1bRO26c2VrR03IaYyQZJjA/5ohnH1eKrQgk8h4LT1yORgtLq3v//8hThPoV13rpgv1Rv98Wh9c2d/f2/voFXK1GWFk8b5c765M2fPzZ7zqS6O1cmBScVwdc9/FJCXJYNzs8CxuIi3RmxZS2mVfDTp5jdLlVptwlmZ7Kh4kve//7r+2xcvf/7W8eTLC7ELX99cf/X23ni1z6nBObkyuPdvfxMPxeZ8Vi5ydkbuubNn55hGrfRTv6TApjAzAwRt9Wo/2dn5r/9hV3IzW8VBSQ6feyaoVTsX/+O/uH/0/cK1nz148OT9jz5472fvfPKFlC4msZGiVvGaoNteIlKr1x7VTJWWSlk2YRWauwNX4+xcc+yqkpIvZobznekStj1PQAj/PpUHW6KXJyPPhMNLdcik6qaolw0O+Hx365O3Hj14+PDRY/j66OG9O3j+exvR70Xsgb66O2plMklbSbumJifTneMaK/Ay2l0LSlxer+tpXoAFWPjudx99+vTpp589/eT9t2/vbVy7trd3slPori08//x0vLp39dGNW/ee3dtaXdnY3d7emK6urywslBoNkDMbWzNctlpr3vzu50/efnTn0YN7SALgFdx6+dZLN65fv3zxIipf7ID2pPDJhYsnKIMvXDh/dOXGS6/efuOFzXLn2uvPHZ08+/rbTx7/7KNPnn715eeffoIC+OlnT0EQf+kNKH3h4e+333793a/++K/+6vFJZ3446HWqQPHyOobj5TIO7Ky2a6ZLBZMTjGKtaKrJTMqxczk7W7KLtT5c1inGhWxt78DWeTDWUpmspYg6bDlWbb68NlgaTxbGGCu3OBktL44GoIB7AMAUDwBMJEJzgRCsQ1TAsVgYrSlFJhqBdeCjo3E2BtBayaXSRTNVAFosqgJPkZFYppTLgkiR47Sr86IrxMKJgJQyGElI59E+U1VUWdUFGvZS9nQnIiLxcFRVRTyb5aloWNA42FSCgdCcj0gQIh8Ks5xkaDFG12xFpgBVowm0nBA0JiLoIGBdAGDXBlItSnYKT4IxkxAgGp4lHMahS5CdiWgoOhuQbYAYdMfnRYaNRmiOpKRoXMtakqKppi7J2DzM8gyZCEZCsRilcFSST3DI2kwZ51E4QZUt3OZtLQ1KRbdVYMaKZDkayEaxBOIkNV8p6LBzF+eLCXfgCAwIcDLqi+KJehhnc+E9AQCHfUgPPFur2Rl/2OcnAiCI5uJMPA6wjA07M4FIeO7cKQD7ffCfH8OAwyFs6pnxhYNx7EVH12EB0EFkWayYgj7TZTsJQsMwdTS4sw3MwwNclMWf9IbLq2vr08WNnZ218XCytrW+ef5ob2v7/MGlS+uj6c54VLdS2ikAY04gJ9iu4xRqVTRGmE6XNjf2doDJ7W1t7e1vrU9HfXRuWUDLql4DAdjCCq2k6D8CcLUyP+p3+6PpwgQU8Nbm+srGfk1BLowlXElmBT3pYCObnbJzqUKhVi5X65iktoCPoRdYDU/f7/e69WZR4WKUU5dNUZVENua61WS6RhFaKp1Mp3+sQntWzqehvviDk07/pejNnMYlpDEjIpfPuUkX9tICtl7ZmE2saqbtZgTEW6AwHO/VmXmQvPA9DT1/AXh1vKA2gCNiL44SBQB7E1QCu2JP26GxboBWJJIWYWRKImOAxSy6vrBols/KLM0xBMWiMEYlTMAaC2PCSb5RzKUsg0zbfCNJ607GkEFfxdA7WsuwAo3HLZyAxnFWLJ5xDcG1ZAFvYJUzJQYWQpiM2iYlN5ol0B66qbJEHG4NUjVEPlWtVipCtFkq2yyTabiyhtnWdDzGW2lFGkxLZQBgo71sNSetSjxIWP2axrNkxO+PJHz+hJzvLuBmXKF5hmVAATOKLhuGnUrnyyWQt612dwjEfRm2meWpbuQ4Kps0zPZAM1P1ejdf6bXKlVKh1FrYGeTS2VypWnBdL7wCSxNqKqkopkJxvEhLJkdETYMH4h33zYUSEhFsLbB8nOmbikMHw2wyrdKxIBUMKHKiubu1fGF963h3aW39cOfgYG1je3VtewN/kAjLiscVIUw8E5K4rJTlnLTCRoRON5LdXto4OH/+5rGfJVUTPvpirtxozU/G053zF45PLuyU89mWJNDSEgAwlqBnzv0BblYpW4ku5wRLkuiID0cWfCFa1DS4D3gbO7L0fDpv1ErxUr68U2l2WxPezRdWcse5mVvntb/58rNf/PxvDS/fjW39+sXRqzc3Ng4v8lrIJ5f7b/zbPyL8c2cCKerM2blib/YsQSYbffVsTjYxvxz7PLI3Nuza7j/+xz3Oya/n6oXC7o3UWbfXOvmzv3hw8Rf9qx/cu/fw7Q8+eP+jtz//Uis2gBaVG+VSo17DsdVWr9tr91ujpqGSTDbDJ6xyc3uUUindbY6ysNdli5nBYmN1CZg3jiAh9k4xFcnz5cAu6Pl+twP423fyJYtxC6Lu6oX5Fz99BKrz0ePHjx96h8C3b98B+Lt166UXnr/+3JX9SaucMQzZsNOGbpYLe8tEXFAN2JIFlZRXFgVdotxSKfvVH3365YefffH5pz9/++7xyt71C2ubm4X5ndeuDC6tr6xfufXgo+tXLu2hi9T26sbm+tr6GppTVYpGZLIWEoxKJf/aD+/c/eD91x++eeeNO57+vQUA/PKN689dOr6Iwvfi8aUTgGLA3iOcRLp4ESTw+YuXrj7/yu37r+w2m9PtO69evXL7/r03P/jZJ0+//PKzn2MjlpeT9BTPgRGFPQH8zR/+6usvf/Hb3/3hz467vWGr2qnUSq5piKSdybuarOGJWyFnyVKyXM+pouHmTDdv6Nl8Plsdr4wX0Qp/Gz0Edy5swD6UswxZsS3ZyC2U+pPxeH68sLg0XlyZLi+Nhv1RsdBVWATgBBElcAooFI4SAItEdC4QB2QKBQEhA7NkOEpHyRBRzLi5vJHKAgBjVDdFhuP5EjBcJOhE1pU5RxFACwB9pAGAc0CBU5aE49gihw39WJSLY4JAOCZpNOyt+LuEpgMARsMzkWgY4N7gQ1EejVcJVldtRcG4BtC0cYKSVDIu67GEkbGMVNpJ8RwAhm1rhgpMIJHAAnQMdiIijAAMYEz4g7KpgF6F3UyAF0DCbgiLPxbVchaoKkkVaYZjQbPA242BWGXjCZHlLIHRUgaQOHhHDGgZFbNEbddWsFvYTKIhLMebDig7mgG5m11o5RyWU6VUOy0MVgyajJFxgNs4FQuHYsA3MC/B4xcJzALG/iucWwz443MzuOxCKHCxz8qPdWggwphHOoMAjAYcgMCxQDAS9oUSBIjfWIzmNFlHUzzVc8FQcQrX9UwYTQAVE+d9PFAA5faT5mAyXd9cW1paWcWwytX1pdXD4531zYPj88eXV3o7i4tVQJikibijG4bOSQ5c1WK53B0vLq2uLq1Md+Gxurazvbe7ubmx4rVKLfTnF/qdRjGTTFm6V4IGBZxMZwvlWq0/3x/Mj1eHEzwI2dqebuxVZVM3NMkr51KC7ljonwyv03Wy+WoJABhDXNq9PkhujMpcHAO497rNSrWkMKGwhD1chkiHZ2W3WSwOkxYoR9tzmcRJ4B+RN/P7r+k05glm/rL8nMt5KOyFKuA5sKMroqAgAchk0zgWg4VdrOKLDEXxCoZGiHBdDUX2/HtEz78csDMG/CkSJdHnU1ElXcNKNWKvZw0tcJwihWIsJbBRmvYs5QTU014ulcDBLYTY6z2iiVgoylAxq1UpuA7gf5LN1TTNyduyJJBxAutJOZER4wT29MMzE5bic2FxZZOKwEscqTGWxlIJKhQhtCSt1Fuws2XNJABwLBaJJiRV4Jxao1qVo9V6NcvTdj0rayJJYhQYZ6Z1rrnaqMg6qzaWUsWl+aZKxOX+WKESmIAZBpJIkalBdzJdXqyxmDkaj4Oc11VLt5LJXLVcb2KZc2Fx0F1cXttYWROyaYo2nbyWKtvJVKVUqrVrxXIl2+qPhouFVL6SS6eTugxEFog3QZLAebGcbcPSizNJnYlopkEy0ThIv7jIhrMjjeFCtbySFIhw3MwZXDyYiPooI5buLGweLG8e7a0vL1/cPzi/ub2zurqxsj5dPi7QsAQELjgrPjOri5227p/TDEKKJvup0MJkun18cnPXz1GyCSohkyrU2/OLk7UD2KCvXDmqFHJtmafkleJMIATL7szsHzhqSrJ4Lr6s+oPRQCgSpzgmoXAciSFpvOiwopO1kmZKr+Zjeau2nav2+10mmS1vlC+WI+9dkD/95O0Pb7978tHT8O6d5xcvH013L9zkQQFLxd6df/1b6qdnonHqzBlSc9gzZ1tyu1yVjHkpE5jz+QKzPjJy+TCb3vuH/2TE2ZnlrNFZ+fX/9ctoZrl66e/+xf2r3w+eff/evQdvvf/++x8/+eIzudSAu7pUr1Tq1QpQo2Zp8LoWAAAgAElEQVSj3+315tvjjmVQVDovkWqptrmcNmkl2ZmUdZF18+nOSnkVgxJXpktLa9iKi9C7gp1Y4x+jkEBGd1NVV2dzDmM5enP57Q8fvfkAAPjBQzwCvnPnLvx/GzugX7hx/erhSrdazGqGYOoZW09nLyxKQkxybFmWOUrYXGMzfNzOFtzP/9rHn33z2aeff/HR/eefPdpZ2rq81e7tX3rjsFiaLjx36/Gje3cvHGxu7+8BAE8xcnJ90quV5lN6cbLDUwBt5UdfvfvkjbfuP3zvLoYhvvrqq/gSXn4JLSg9AD45PgIQhsfx8cWjCxeOjo+PT3Ag6fjarVuvvXH/pFutXLt39+rJjdtvvvPu+x9+8vSLz78C+QvKFwD4888/f/rlV6cnwV9//e3Tr371yy+//ZPf/sl7m43BsNGv5XNZQ6BEK58B0aGlbStXLZii5DaA4aopF4NpNL2Rc7L9yWi8trK2tbO5vrW/sbfVcFNZx9EBLxQrOWhWp6PFwWSIptBe1R8AuFQaaJwHwIkQ0migwjF0NkyEz/niwOCB9EfCwTkqEqUiiUCsmM8WsoZhAetXBRoANULVcsCPFQzByyZlpejIjMbYrkpKWjZnY9qdaJko2TwPe4amqDggUTDKGbquYlmaolUFTSrjvlg0BLuQzgQivKjoCg3syZA1gY4CKYgTJC3LZEJVo5QFAOxmbFUy3CRWtjQAYNS/sXAkFo+GMH0oFsfZJR9wJyxBswKW9DznZCAN8ahesA1HBa0Rp3leIBMsDneQHBciYO8VecmyDUOlBZrksAcHEAO0kCExMshgXZQw+g+ksyiTTJgSavMFE7ZrVqrmCuVJT2USFDwt7Nxh0OCRKAgTzLiIRoPoRgiE2jc35/eHoqCOAzPn5rD05M0FI9jidPDczNmzAMA+QOfZuQCeikcjOI0TiERjUTIaBUkiaHAT6AZocQzbS2E0sg7K14TXCZigO2gf7wFwd7i0NN3cmA4nK6sbO7vbk+EyqIfp7snByaXtvb3e4lIpqYN4xiNgHB8W0S7ILRaK7YXBYLw0nizv7u3uLC/v7h7sb8HCmCwvDkfz/eFw0G1Vsljd0PHc2bI9a8lys9tp9ibw11aX0YF6dQObsIABKdrpeSol6ZZ5GpELpMHNV3CutA0rvtVuo4n0xPPZOj14yeZlPvyMLxGJq7xIBn1CrgU033JcL67NM39OebGCXsZR2vO4wt5nL7Aon/USgE+zi3DOqFDKpUyZExTL9QIbsAQNyt0bJsJOKhEJjaZLnt2F6AWwo2lqNBqJROIkw4qaDje8o2rAxliAVQH/kiDAzSLhjyIbjWHsIChNkvKK0miRQhE0aN9QDA0lSGSH8DkCvY3HfKBMK0APbMk2jXoexBksJwHWEpmIEbbFyGjKQuILoXkrKKUyTMoWSBJuUpMClkQnEpEgKWQpvtxC+3grpXOogKMEb2icXm0V63os3yyXJIDoPFx8XHM0xaiuwZSm3SLyi/Kokh4POlmepYtTGyh2yD/jj5PAoi2QuCtLizVGBNSJxBlWUFVHt91kvl5ptVqd3mBh2OsBiO2uTX+as8SizZhimM9XC8VsqdEoFYvFymiy1KyaZtIQMGA7kcARCJalMZkJdhQJwNqOhjSDj4pJ22udDPtijEhIjRzFha227Sh8NCDDlkcimw4rjGAW1/bWV/YP19dXji/t76NMWttAL4m9aYoxMllu5hk5SqfFZCZCM3DB+CiZ7ZHGYLJ8/ujGZlykVDuXSSbNTKPbHy6u7x9dODy6cq1dyjRlkZKnhXMIwDN/MHNGpBj/zNzczKIanaMsTWB43bJkXpMVQ9IF2YR7WJdtK51pF4i00VzPVbuTBcbKljeb52uJ55L1N3/zs2/O//EHH74TH208unF4cHjp8i1eC84p5f7d/+1PiDNEVjo7418u+nxn9D2xa1jpaUVqJPyzM8G5udjc5HIxuf0P/vEin8z0zWy//d6//s+y073Clb/1L+89//3w2vv37yMAf/DJ488/ZAtVN1coNWs17NbFifp+p9cftsc922bpTFFJiMXy2lo2ycpOb7luSFwqn26tFVYny97J78qqFwe8NJl4iQwYEjnwALhbzVZMUS0onG44vYOfvf3o7YdvPH6CAIxGHHffeP31115+6aUXn3/h+vFqv1HO2aYDPNkx0s7yvqKQvKgKjCRQzHiqp3jeytelj//ah99//PTrz3729t3nLuydbO0dLlQmV+4c7PWyhf333nnn8c1nDzbWtnf2d9Y2dnBWcn3SqTfbVja59IZBGvlB8d6vPnz3zXffevDg9VeeeFEQOAV186WXXnjh+skxwC6I34tXUALj4/whgvAx/Or4woVLz9185bXHd69stYaXXnv56snz99549NY773/yBU4Ef/HF51iC/uK0Cu0B8FdfffaLH775+odfffXD97/5zZPVRm/QLGYzsGmwCtr7GErastLlchpgtVAtuZYFC1hLwdt3bbc6j8GE043trY2tPdAgE1AarmuymmOkjOZCcQkuNAZPYfbj4mQ8GozL5QUAYJKLk4kQmvYE5gIYwwfwNRNEX0Y2FolHIwE2GqVixGykUsmm0zbsuxI66AEbD5H1tOMmJYFPsBldtJopjlFpK6VSsp3LpRwM2zFAlMm84Nn4wW6A/1QgyibThsCJXCJMAvOPEnh0G/Al0G4gEPYAmOJ1xVRUDiMWQP8yjCwmKEWMck7asLL4j2VTsJWDXJE4zPsFmIMNMxyiIhECBDMWdqNwD+kyA9sACN04jgDTFEFE9KJtpRRR4SlBlQSWRA9lUOZEkNNlhWVEbGSSImjjS9GcYDpY2FVkxgBSLuFEDXzhGF5mxTAjlWAdaEmDtBcr9W4nLTLELCXKVBBeRDjoATARIWNxMhwLhoLoMunzBbH4PAuYO3PO5zt31u8/RV9v3hcA+ByWoOfOYitWBMR/lAhH4mivScaBrAi8SisAvJiDYGBtMGl5qViG4vVfqaBHDfgmdjX/ZHFlZXEJJPB0a3djur5zsNofbF/YWd/ePzm/eXi8OR4uFV0FG6lUPAHmeMUAdeIWs8V2D+j0aLi6dnCwf7CxubG1v7+9tT5eWh4NFhaGy+P5XruWcwwH/h0Qt7rtpEB7VloApphktLyxtLiyurICmH9QUxz9dAxJklnsDjOxC0v1atBl70wRFvz8oNsdLi8tjEaIv4P5HvACV5LJSGA24rcFmwpHxFy1Vunj4W/ONTFHATRs8rTpKn3adwVQ/GMTtFvIeskL2VOjq3zJTtkKfIwp2wEFjna+eLIPXz3HMDzp93qvMIBbZiiGinpMLkaQaBMqeFmwqmmILMNLgEaC4rV0oxklfoH3r7FkghT4aIRXBEwBZjAyjvXMXWnKH6GCMa/27Peh/6jfNzMTEFvVfMFxTT3H5qqikgGZyCMAx2O0lGalhNeEJWBnhhmPpvJsxlU5VmQpi9R0Dgf2gyRdSJCZWqFSLRtYyCXi0WicSyU5qdLKtM14ulkoS4xULSignTEBhSKlpEnnVvo5G6RcftRzAUftKM9n11IiAD8Q76gP1pFZnZ8HGlRM0EBoA1G4/2XFAuLiZGulZr3W7C3MD3rDlcXVg42Jz7XcSsox2bCQccvtYrNarDayucFwcZQxeQwSYyRsY5K90CxZ4mABR+Fd8skiGxBUPk4Bd4gyQJpnIgmNo4ptlolT3ZStybE5PmPACw+QCR+v0Up6sn9haftoZXf98Mbe5trW1urG1tJ4ujF9thNT1Y4TnwF+LFCp/JxPqbfSIT6qjtu+1spkd/+5PUaIqxZalZrZzqC/MB6tH185PrhwtV+yKzzsASu5M/7gWTwEPhMG1n7GP3N2JW0GOIwpUU0LOA8CMCepmsXZtmElDdMpJxNuprNSrFUma5JbqK01NwtMezT55fbDP7n6nz969xVu8eCNe5snL55sLAt60K/V5u/9n7+JBDJLqTO+7kHFf5ZZncoFf3J4kJPmpdDMGf+sfyaSeSGXWf9H/2gsZHN1Ol9Z/Oqf/L3OixezV//dv7h365cLV9554979x++8+8Gnj7/4mQDXulDE1Mdipd6oN3AQqdtfaI26JtCadEGMypXK2nrWJrVkd7FmanK6mG5vFrAdZGVx7EUyYCqwJ4I9J8p+v9frdjqdbK6g0cki0E6jMH/tozfvv/Xg7pO3HgIEez1Yd27ffvWlmzdfvHHj2b35WqXgsqabkQyFSy2fVxSWMgRcGoTYvmBhbkU6l7r7dz7+/JNfffrJx49vADLu7F2cFjpXX7uxsz7ZOFl/9u0Hr17ePNg43D+/u7sLoLU5XVmd9kvlbiErr95vytnCKPPKr99/750H79y7f//uo1def+210yTEmzdfevHFG2i9cYQq+Mrlk4vYj3V8cHhy+eg8/B4OJZ2/cOmlV++//tKtk3Zv97X7148uvXgXRPBHT78C1fvl5598/tVpRtKXX3x1KoC//u6rL7/97tvvf/3dL374K3/9h1vDxqCdSZVKtiBpyXw5peiwyeYrpbykWuliKQU7L6jBTIZ2kqlce2llPAUJvL21tXu4d7CbdQuFtE0rjpPRS4v5wXB+Mr84Gi+vTJbWlsaj/rBQ7GksQ3LYgoW7xMxMOEKwALth30wEcAkDwAGAmUiYIBOzkXo9Y7oA+tiHJLEcFZ2LVWCv02lBSsQzSUUrWRyrUmba5DQ9BXsjSFRLVwxLZgUMZAAlEEvQdCgQ4zMK6C6JSZA8VqhAMc7GowHAfAMVsCBrUoy1jJQmkcDPQdmSLCfzCVriwnIypduFjJTUnZyLsyKqBMhO4gASzoMQsQC2yRAxMhxOMICkKkvDVoCDjRSP587xsFawrJSsASmUdZnTeI7i+IgvEkvYJi2C9LBcELKxAEBwnBQUA6SWARs0qG6BBmUpIvxJkmGIAsjmTK7YwnCMSm9cr2UAzcMkBzswycQTkQhJwfvFRk+CjRKBUAgA2Of3hwOzOIZ0NhwCsAX560fzSW9sJeDHcRVQyf7Zs2dnZv3hELyXeDBCYUIynuVxoONkEP0KbAaYDOAkTRUkjZM1cYTIxENL4EYYYKBrP+n3x9PVldXttY21yXi6e2FjMpru7u9u7x9dPNjZ3dlc6pf0dNKSMeUF7UK9N2bnq9UWhhqNF4bDzUvHu1vbq1vbG+ubq0DasIl+YTg/P2gXknba0T38BSQx07lcCXOEMVVwuLSxAStpG2jgXoXTTy3sZUViWdm0TEwkxCxBx83g9ITXO7IwGo4mk+ESbAGDQX/QbOQdjWd47lw8xJC2wbOUme/VC/2clcpnvKNfPOPNOl7Mr3tqbAUAnM9ls57xRgbQN5fLJbMY4WuC6NLtdDapssAyVF3xjnplDKBAmw24lAjCAFQ09g1EQv4g8C5OlFV0AcZJN8020a0MsVYReQmAG6emsWaAzdI84G04RrDBcJjlSTYh0WQUwygJAFGGBGZJeLbqfjQW9aHloW9u1u8OsuU0rJqCLs7rIh4CaxITSXBMgC/HZR6wn+VoGcHBPGMXlFxKoimeifEso5ASTQRDkURGoY16BRu6dXiHCSIO911S06hkt9RMRuxBqmAScqWqShpDwxMRtJ422dy0XbEVUcssNQtLg35eYtj8qJoUaSo66ycigmjkc8N8d7FSEIVZLnGOYCOMKspAsdxcqVRtNho9PGXoLk3WNvcmQMGcTE4mAGCT5UqhDHygnC7OL03aLh8nWEU9tRhHmx8eC2CY0YXV+QCfzPmItMhHpBRPMbBM44GYxAXttkGwoXRZckTON2OlJSEWYeL+hAivffHy0eHG4d7q1jHssguLm6Pd9eloa2W8cTHn57MVmxAB0YU4MzOXYBlbFhJ8elslR8tb8y8t8XpcFdOpnJOqtiqt8WRrdevS5f39y/OFQoMWWGlaOIPZJ2eDZ88+E6HP+RKJ0LyrBBQgArxqqZZAmfD5SBy8H1ZXLRs2nnQlyZTStb1Ot9mb13idFSOwvsVsfylz7cqlhw9+d8XY3Th5b/3qfmc01RWfX6v0Xvs//grJdEe8f7yxVzs7M11aNhI/rW6t+Y2qIdjd0DM+X4TYr+V3/vyfDrlsph0pt4ef/LP/sPHK1dTF/+B/unv7d807j26/dfedN9977+N7n3xuFxupbKbSLlQKCMA4o93r9/GMIKnzoBqlCFOpLG6mbUYp1MdtVWbNXK4+bY83PC9iPABePk0hxF/jLPBgvt4btAcNvZHixZLDWUmrM3r04cMnjx48ePjowf379x7cf/3uvTt3Xrn+2q2rN288e1DrNJw8p2SypklZcvqipSkSCGeM7KQK59NiiuPSBevJ735476tffPSzR68e7x3vb188329uXn/h4vr6+vH9J1cOXznY3wPo3ds/3Nve3NraWFtZ2ulW251CSt553FCqg2bu2g/v3vvs/qNHD3EOyouCwDPgmzdfxkHkqxc92L106erJafszdkAfHR17P3i2WM+CWL519+GlcWfjhYevH53cefPhmx998tHX33z9xdMvn372hWfO8fTpjzr4q28Bg7/79ttf/OK773/4oz/+1XcXuvUOlpo02aSdWtkBaZlNZ/KlnKFlS5lUDh2xkni65oA+6C4CtKIf9NbWzt7q+YFSyIIk4pWco2e7g/z20niIdpTofTJaGo3H2VpTphkQaRSN8S1wH8ZCYZIlwuGgLxBjGALj1II+JhrGGRmik3VMBwQtBvHScZ6LBRIZkBqGIAsxOp9khJIukiqrW5ogKYVkEl4aqkdUWPCpUCRmoUTQ2sOnu4YGUkQA8ItIsQhNngsywWgsQcmg+ETW1PggL8HzSEyYiNIRkmA4EMUxgwnyaDWRgk1fVjOuplk4wcrCloVVPngCQGISt6gAoDnBGaYiCGyCYEQJcBh+yrAxQspngRZYIBdlkkWvaoVLRCOJIK8TCdPGsDDTYH1BtKI3RMqwsNna0FOZHE1YTspKp3Qzk7VFOh4HucOUUott4BtOOafLKhkE3qBiylMi4g95VTeSiFKgiKN0aAYe/uiMz4tXmJ2bPXcWWPcc7Mi+YMjTxGfO+Hxnz+CQEvzWmXMhHxFJhPFIG6OaYhTPJQgBI6Al1XYz8JnDw05iQzCWdm3EXxDHCKcasNefeNlXmG2zs7uJ3RYH0/Ha4YW9zcOj83sAxBuT+ZoOl8FG+YcALOmY85cvFdvD4WgFPdtX17fOH+9vApyur6+MMC9lCN8CndoupXT992fASaCA+QLmu3Y9q+Dx2ircfnvre7uHdcE0QXR60QWUoIL4hXvBTGUybiYH9L1Sa7TaHVS+wyXgChOMehhO+u2iI5MJzqZAmukphWJE2N3LjWER3q5pe2NGmZRzOnKUOR33Rdw9heK0m005mVI5a+dgifCSCUrZViQgi1gqkWVBANogo6G+N8oL7AMw1csziCUIkpdErySAGGsa2AMNdwfOq+EAsKogCEs06FyGE3iKgp+xHK/ECZ5MJMIETbGMhNbBAgf/88jDgMOyQMg4kmLgFgt7Lmhhv5FuljJZQ9XSUqkommlMW2BjMZaKJkBwiVQizvCkyHCUaESJgmylVIYTeQAZRoyxgA+hCOEqlFIqYIFdN4AmE0SEYdG3Ot8u1LMJs5er2oRUrusyCHQS727ZNpnMpFdJKaLoLnTyS+NBlmfYzKiTkulExOcLh+KG2mhmO/1520HvdGI2logwkqBoFlzQKnzATdigO+PF+ZXFlenGIJlxi7lUWnFAiZXL1V6jUi3mWktL3Qz8HZWnNaQ6QHokHs+eOBkuA0MmAIZp0034RJOJ8GidBPd43B/h+TA/qAtURG8qusRFfUbOkLF4FIhyhpRtXTza3Ht2Y/7g0vnnri11xgtb6ytoezDdXGZ4J2/wJTUcq1NnQ7wAH6uTEOJmsxesDvud5TqlJxS1AsohU6yWa93B8ubewYUrVy8PS/kuKzPKWulc0H929px/LjBDKuFgjAwNMqqPt1QJOCNsAbQuKjJsOrrO6mbKcrLpZKvIFDPZqgy0iE5EE3Hdmkwtmu5IEVprpXcfPpfcG1y+31/ZW9nakJRgUC12Xv03v1SMbk+pHa5sO7HKwaac8J+pH3R/6jYLw8//xQdnZs4FQ6A/t/78ny3wmUI9lK0Pn/73f6/7xrXc+X//f77z8m/br791+8m9t958/4OP7n/+dbrcyJXy5VahXChXa9UKNmJ1e512byGl8QmzZFBUoToCCcbRyfJizzTwHBwAeGF96UcAXj6N5Vn2BPBoYbAw3xoMuvPVdDnDGRUZADg13Hn//SePTnug7z8AAL7zxr3bt26+/tzlW9evPttfqmRLHPYmyWLOrF8uGhleE5KqTqq0tZPhdE4oNLVX/uznH/3i0w8/un+4evHZrf2TSWP9hVeOV6fr+y88evvOyc7+3t7uDuDvgRdmv746XdtvdWv9ckafPOklK/391tGXT997/947CMCAv5gF8dqriMAvvXTzxgvPXz3+EYCv/AjA2IZ18ejo9DwY9PHh0cmVG6/cvv342lJ3+dq9e89fevnNR+989vMPvvr+6adfff2Z1wH9xakORg0MAAwK+Ltf/OqX3//ih9/84W/+nfcPmxjRYqiUJmvNCgBHKouxNY5sZEuFTFI33JQqA0uz3Fy1v4xjIJuocLY2jpbdtAuQyUsp0HyNcXWIAx8/AvB4aTga51o9JUGDDk0AEwXUDURIgAqeikXDc74oKzAkFQv7Z6lIOE7HfeFmzk3mbA0EBLD7MNBuXxS3PEOQuHjctVm5YkqkwsDeDACcB30GWgfwV1MFhsbuUAGQPBEJzoUihqFhAgANCpiUo3GG8ofZcJxgBIMkWY3C8QlJ0mxNomMY4EDRHK1IREyjgnLSsvQMAI9uuuiuo+imCn8IXgCI4DgBiBUn4hSAbjQYFVJJ2Ntw+EjG+GJRYEF+h7WcgwPAhhQLcxo6cmmORofQAWw2bKTsJFwzi52LxqK8o1C8iQ6ViBuawfApQ3U13m7UARdiviApSJrT6Lo8R0uKIQkqE4kKppSIBUMECHci4gvAi48xNPCX2NyZcwiss36vFDnrm0U/2DngPEG/Z9Lh1aLRKRZV0uys34+TWbBrY10dzbBjMd5M2jqK33Q6lUynHM8UOYvnmqbpeVyYOmYko+WQqv1kMJmuTDe3Vte393a31pbH2xsApTt758+fP9jdO9jbnCzUDcuwvTgAHLiR0dYZoDTVWOjPT7fWp+tbq+OVnb2d/QNYIVuryJKxYXk83+tUM7qEQSDe8LGTAj5YrXV6fZwiWhytrqxtbO5t7O2eBwCGP6VilVdkTueAMdAoi1YYxUoFU1y6vV5/Ac+lluHZ+616Z6HbrBXNRCiismEmgpgtaq1WJdfslwBvUrY3fZT5sf8ZIdib+nWx3RYtNrDrOYuWVxlF4iU74wC+onEnAAECMA5EgfRFvxI01JA4Mo4xlJE4CfyMF+AN6SpeDKwzKx6/sHXbVESGQkdo4FugRUWRF3+04sDStUSE+RDHhKJY9AiFg4lYBGfSY+FoNBSMYAEa4DESC+HnGAAIjvribK2azaccNu3IA01xkqCveTJMU2SIKrM8Q4RpnuBploKN/0xKk1yDlQQhIcksH0VLjmAkDnemWS/Du09rSQmH3MMJBjv3q02g5rTSKjddgi/ULUVjBTyIZTTHpFPzw0pGVrlkdz49WlrIcqAWB6OMwcQjwUAgEUiKRreeWxqieZ1DxP3RSIQVJRwvT5eq1UatMeiXa0vLo9Wl1Y2doeo65aQMT+iWKpVCrlKvlIu18fLAAbkosIImo4k2OqzJ8Hxw1zqmJgPXidMhXlT8YY2NMsm0DCSVjPuDNJcIN+b1eIKqpjVdYHxcylXIaCwWCtFOLF/cP1jb216dTM9fvXxju94ebmwsLU/GK6uL56sxvmCJNcUXzyWCmqPncsmMyTIxeSpHh8uZtMtrhJGspY1cuVRtw7022drb2r187dKolO5xKqWPUmdD/rPnZs6cnX0mIvhno3Sgk9V9qg7bnOFaaZk1BIGD96HrDIhfI606qqgkiLkoGaF1Ic+Y6cq4fXS+vpyurfdzeZy+1psbrc1Lqxeff+76oqgThF7o3vm/n4qpdjHeOzlMzeU2N1ugddTRlHxGyhYGH/w/f2oAAAflXnH7v/znQ96t1CLp2sIX//xPx2+clHf/5r+4c+N3/dc+uP3o4eM33/3g3Tc++zZbrBdq+WIzVwT8xQS9ZgvIbKvVG2Z0PqFXHJZIVQfn81mBcsqTAUgZM5OuTjvdtf8PgJeWVqbTKaYhYffFfK/dBwzPlTMukynRsmnll258/OTxg4cPHz9+DPCLFeB7b7zy2vOvPv/czatX1trtSsrS3FRGTUm53I0VEuiWQ5lAIUlzJ2NIIH8ywsW/+/n333/yzoMXLhyerG3e2KqMrj13aX1+enz57pvv3b1yuL+FAIwIvL7p4e/qxrBfmq8UucmTRaPYWVs5+fazdz94873Hjx55XdivYRIEAvCrN2+++MLNF66cAvDJpcsXPQA+Btw9ARw+PlXAR0cXzh9euHrzlVtPHr6wORidPHh0/dLzr7/7s7c++ghe2ZdffHMaknSKvwjA3wAAfwsADA9A4D/6k1//7T98baWYBMGrslQu2ShqvFPIpHO1vCFqsIxTmmIDLgCg6elsprYIF3Vta3d3a3Nj+8JWzXEd2xF5dMzPjVqV+dFojOe/i+PJ4vLCwjDbHqhxSmDJOBOLRdDGJxiO0AIVjaDzEgfCAehzcI7xMuV9gVo+76YMkWUpAvaYeCQejOYAkw1R4BJx1+GUssqRCq1bBqyxjJXy6qSGNykEHB72QYqAp476AwEjaYN05QlaJRkpRNJxf4AMgAiQDCoWE1jLEBiQHpYmkrCJheIxdNMTE4RORXEMWM9gFmwyaWBPBCxr4AOJ0+lMzC9XIdUAACAASURBVPQFyUjSMToejomOCXskD5umrPDYtAovNBrNFE3L66XCRlU0oFSSWiIQJmJzPg70vGOAaiYBIMNGViA0SxaNJICrxEmS7qhqkovwuSQgrxAN84DL0rgs0RL8C7ZpWMAR4BuxkD8A8pjCHCmW9AA4GgvOnEUb2Lk59Ab2FPDMOTwTnsET4Zm5gH/GCzH+sSkLrbLgnQdip71AsBMlSNFKu7YJktPLHEgnMf0HAAmhF8HXxpQMbDMGzFNU9SedMRo6b21hOQRLO7Bp7m9v7GF//t7ewf728sArQXvFVByokTVsEM4VnEp/YTxdX5subx+sDhfXAYD3drY31zC8DHslxwt9PAPG4v/vAdjNApy2uoP5wfxocWl1ZWN9GfvwD2v8KQCjxBY52Xt15u8BGLMY2t0+iKr55elkNAYuPurDL1pA6J1EKEjEQiYjKakkz5Q7rXyplbGz5YKLBtCer0b2FIDd388iZU7nkrIZEAU436s5IJRNEe5gksIUHl7mWVCwOraQ6xLGC6FjBoAk3C041IV1Hf20IK1q2BauqzLaVCYQeGlsVKQ5Ed4AKjkGW/pJ0rPjoBPBcIijgb3GQmSMip1OoodiaG8WAljGbKRwOBLAkAbA39lQcIY0msVC1lHUItnJ85priDJPRxI0EN2yDnw4RIHexek5wZphknzWZkSGpwSFlTD5igBYN1UKaGAhl81ojiQk4rFQnJUchanVS9kMzdXLjWyCydaTisqJoJBjhGAkGbMzqeRlk3Gai6nOZFhWWNrojMquSAA/8JM/pRStvAhKt+SqQkmFtxCK4jA0ttllS2UA4H4PAHgyWlte3zm/xGp2UedLJTmVLzebpWKlUGiMpoOCwyd4tNLmBLjQbr5UBGrWqgFBqxYrzVpK5CgmLDEBTqLialbH7v643xdj2bDezcSFaLJq2JLkixoZhY6F4/Ewo0Sz5f3d7d3lzZ2V/euXnr3Uqy2s7SwvbozGG+PtHS6RSps1ORE4S8BdzOr5VDbH63GuPggmp3k9YwghK4dHZ4VMrtnrjZZXNmC7v3h9XLJanEYa4+RMNDI3M3funA+eIRJLsL56SvVplipzoH81gU0CUbUsN51EVkElfPFohGdAbcyX2gvtTSbllvq57a3qK6X6d2+/OPqTvZNVTZ6fVVVgspvPj0WDTAAAv/FvvrXTWiCwdj0/6yvurfvP8kp3sfHMjFNpLb39v/5Z/dxsKBIu1Hb+i386YTOVVhz25o//mz+bXttobP+N/+X+tb+68OrHt+8BGAJ2vPHZL0DOFhvFSqdYrFS9PKS2563e7A3zhkDIRZuMGpXOhWIOXn5pMjAV3s661emgveG1YAH+TnEECSMJPTcs9Lfr9lrdTqqaVNmyy+q23lx59OH9h/cfAAQ/RAV8//4b9+6+9Mqt5269dPXafnPeLSXZom3pKams7lwXGY3Tk44qKDF+v6wZgsq2U2t//ZtvvvjkzZuXL1+5snVyqdO48PK1o7XB6PL9xx/evn5pd/fC+X0EYHxsb2D/1cZ8s9svp9X5N4dGrTVdPPr6058/fvQBCuAH9+4A9t5+zcPfV269+OKLoICveMYbKIE9APYasjwAPrpw4QJg8AVvLvjS9ZdefvDk9Yvzvd07797ce/7ea7c/eff9r3/93RdfffljA9aXPz6+/sqbB/7u62+//+WvfoDHb/7q3/nllSJIm4xmJKOtRkbX4RbLF8s5TdDcHOhLzcmlDVsz4BbJdyfoCA0b7i7cZnsLdtpxTIlXQSHp7UFhCXtdPNPdxcnywvy82+ioCZoHPUsRiSga184gAJORkD8civMyCASKiAbYKKwEIhhuFnMWNoxQoEg50Ml0NJIvAALgeRXhOrxckBhSpkAzgEZwUU3atmue2vkBglHoShuJxoFu2zns4RE4xQkLUoglQ7O+uC8SYiSVhN0MlCbNgJqzFAF2yHiIAonMaEKCNBJxLQXLIZtMIwCDHFRsVRAlgY6jbzVIYFgcsGhhF4zGCIrXNAlHQrAiiKNImF8T9CVtVudZNkolkyylxOOMxEcx/jgYEAHhYP8gAcuDkVkSZIaUFGhaMVUO44gtXVIzGS0hZixeTZvRAM0yamWvbRvY3AOApFO+sMiz8SiIFAK4fSBEgPqI0VQ4FgPIDWDwCZAcP0pcLxFlZhaDGeYwvCk4N4MxKejUjo6Gs2dn0Bor5nmHAbmIJQQnkzKAuHjZe14uPdZycfZIMwzsLcZKtOdf60WY/gSgcGk4v7Szu41DQfBYW9ve39vbB1p4uAeP6aAoJ23TO6hDbiJqSYynLxer3UWMAlsfr+wf7mys7eztoYBeWDqNLgMGN98qZVNJPFvALmjsUktli+VSvTu/MJpga8f2an9xc2/nsC6ZloGGJqAYecnzRFNV2wXwzBcBgOsN7Kud7w9ANsM/iQEh8/1+p1zMqYlEgmLYpCmbjhrzaeVeOdeyaN75S4sreKV4EJzzEgW9Lz/CcraUxACTbC6d0nmSpL25XfQilzSRgzeqmNhEiMGYMXQ2YViEXNXrKwSsseBFej1WvJc46HXwwi/gDhNNz3ENPggSbuNTp0ZseKaAfflYjqYAA6MCxQHvIrDXD6Sql8UBSA2QCvcU+lWF4AYAmUxTpU4+l0yKWcXuikLKljWeicVZkoqYeXhSIG9xvF0ZWmPmXCHnsCIFFFamFbSzwRY/VWf4UjkPal+XWTZBkFGSk12dLlabuRzLVoulPEWm6mkVozrwMJq30rzaXK4WZJM26yupyuKgabKU2Vmo51W0kgr4aYszsjlb0qtSiCjk4BYORwS4KnYq6aQLlUar3Rt0epPhwuridHN/LOmFgibbWSefz5Qa9UYhU5jfmBQ1FbgPNuSLTgnHfpbGw14TPupGs1qqd9qlZCZvUJzk43Q+wmUsHGAggnNAOdh4vcuJhFy1TEULh7WMzhHhOFYDRKN8uL+7sbW8tL27f+Xk+ZVSa3F3fWkNs7NWLg4BgSsdhQ0/U84qOZbOmhXTAKqvjDO+0tApyFRAT1taOlNwM/V2sz+ZrB8ebB3fWqy7NVanjbU0RhQ989OfPjMzRwn+GMEEGrbsEw1F5vUkEHAeaLco8UDt/YlgMBjiyGjaTtSc3ma+3So3uYyb7WZ3z7cup7rfPXl2/tdHz95bdIaKQJcMViuYkhaNKPnO3X/1O52b/Sm/v3zmTKB3bJ05K5fHbfsZla9V+h//6z9NnfH5YwG6tv1f/aMNMVfoJHK9wfv/7X+62p/vb//1//HRtd8NX/3k9TuAhe999tbDp78upkEBl5sLlTI+sJ2i2+2CAu4OC4ZMigWHiGvl1oVKTqTN7HjBMWQ7ny6vjFvby0unAhgbsDwd7E0hARh0YO31GulKipZqiuw41mjz03cePX6Ax7/3Hzz0APiN129ef/XG9WvPXh40q2Vb8ZxldSW3drHCMsDJhYJKafHVJd5iZbqjLv3p9599+/7Lx8c3rh/uXtuujZ5/5epgtH7hxr23n7xyfgu2o0M8AQbw3d7e3/YMfKaNbq2e1hpPtrVq+WBz8ptv3vro4ydvYiX8/hsIwK+99mMF+uZLN69fv3H1wo8ADOL35BKALyjhi/DfJcxFwjL04fGli4cHF6+9ePvugwfPLrY37z66ef3o/K3H733wwec//OLTU+j19O/vMdibCP76m+9++etf//K7H37zx7/57d/+oKsXKhmb1p1SLa+IqVw6ky+k4f4vaLDpWvk8bIiG5aSypc5weTpd29ze29zfOVhLgwbFHD0TPoHquDhZHo6wExqrDksLw4V0vaXQwKkp2Bzi4UAArbBisNqjIf/cXJiVMEMI1iYTDkQw7L6RczURo8hpQRMQgCPhbCFl4bE7mgOwUkEREYAdAGAppaccgEkThz5EQUhwPMfCkibCgblIPOkqOhr1q0LMUMIcGfEFiWA8zKlKlGA01lDoBOAvCFXiRwBmWI2NU1o0pgMAW1k35+oWYjtgoqmxRIIliVgEB5FCUZKMxqkEyEaSB3jgWRo2YV7gcO/CLuyALiY00LiSJvGyKiUoQSB8flCsUcpxBI6LUyIdpWSD4KQwm7U4ELvotmWAIFc5o5pkE6lGSlBzWnguLjmVjc1OOskbaA1mmLHZmJwgIxEiGCRIIhKOollSHJRNPHZu1jMJDnhoewq/5wByvWozSt5gEDSwD7aCs2fOohH0HCizWDgYIeORSJyiWUFUnUw6lUxmCmjkoCe9XiRgDAaIUFTATsrAll0RJRxI2p/MDycro94Iw8e3scizvbm9v7+9vXd0dHwBnYCmw6qkyEBy0PFYliUBjzbcXLVVb82PhmM8A15d2zvc3trZ292cYhTS/AJyt/HisJVPObZ3iKAaDkhv28kUKpVGdx7uLjQ63Z62F1Z3tg88Bey5bEkCg55ZeE4NOhskcy6PsxPtTq/f6faHaAePOcvD+U6rms1nZIaJS3Dn6KpDspE5Id2qFFoWEDCE3tNzXzd7+jjFX4Bi4KTFPFwOQTGzpbyjcETIS/TCDm9RVnUZZ78VWQWxiaqYJimGR7MrjOJQDUP1FLAuqxh65M3MMfDR47UxFNDPdAJU7I+t0TzGJYGY9g7eDclSI5hViJaOLJUII+jTBEkjh8CUIiZBYxIYiS3S2JyfIIQEZQ0L+WzSUHNU12adpGbyXAJTUAiqrHMCA4SLgTVDkbw1o4tpRxAYgWUAgEUant0fiSgWz+bLhUIOdj+OJwkyQnBK0qZT1V4ZlG2lkM+zhF2H7/Io1xOEmMwqUnOlUVQ0Sq2uZPNL3bbN0GZ7VMvrGDoaCYZqrqFG4ppkhf1SwQrGBCLIwJWz3VQqW65XQGH15+eH3f50vLy+P9bcWkYVacUuV7NwT1bSmfLCcl1lOUnXRU62c+3J8mRxON+qF7MYtowfkWdWVsnmDMHH6HI8YaVlhiQTkbm5OKy2/BgPoApZw9RiAcZJqmQkhmVwh0qu767tr4/Gq1uH1y7e2C4WOxvbq3CLdVbWd8+7QblUE+nZcwVeSs7EdCeTNFg6QZcacrFZyiWoiGBblpkvZAuNTn+4sLy9t7V5/lqnXauIINpWM8B3/bMhlpI01wongrFQP2nEZEtTeM2SdC7ORrE9Lx5NUJqgOmbWdZqpWEGrLjmt+UGHcDK5+fzKRvvabuqj56/c/ds/Hx5tt3pXGvXN/nzLKElqOKQU+vf/1b9Hzfz0rFSInJkJLbfPnLXU3qRJB/tMq9b5+b/8j+pnwwEiHizv/oM/33fT2WYiPRh8+D/8/VV5MNz4G//do2d/O7z987t37r314J3Pnzx6+puCVXGLpdYAFDDiL7IjnKlv9RaKpsbwhTRF6cXmQSOrMFpqNHJN4Evp7MKosr68/JcVaA+AV5YWsa8DyVWn2ynmCynSKYOWNd2li188fvIExO+9N+4hAD+4f/fO7RdvXnv52qUry+3/l6r3cJLrXrPD3vIBmJme6dw35xz7dt/OYbon9XRPnp4ckcFMECRIgiASAZBgftqXSILpPb6o3dXTSg4r2/KuSlI9SQ6qcpBs7brsKlmyvOWy/wh/3x1wy25iAgeDme4bvnPO7/d959T9siIVLCtw9UbthVmJAUrlaGgHNzc0AoLha978l1998Yc3Lx0+//K53QuX51rHb1zsz27tPf3GrbeuXT7Y2z84ODpC7I0E8NZwfWNruDAz06pa7uTrx1bQ2Vo8ePzjd39w74MPbr17B4gAenCc4O8rr7xy7eVXXgYAfvro7PnIBevEhyMC4HMghi99B8A4Fgxv556+dv31+w9eGM4tPP/u9b3D51+7++i9j37yxZef4ezRdy3Q8PgxDgd/+tmnXz7+/Iuvv/n6y1/8+Ovf/uxXv/vVfiUs2EqRdpotS7QCP8z7gSOLaiFagvRKtqWrOlSl1tzy6sraxtb25sHO0X4NigTIRBHe65WlRncQzQEvYPzUIlTLQqurMBxoNJzhAWGaiMfTaQYUcHx8LJZikfGnUsk4i3vAdDJRdW1cdRRpgpE5msySyXRQcKBAAWxlbJMRC5JAyLSBACz4puuGeVsWcP0PagADJQmUIaDkeDxh51WgS6Iq5AhbiVMor3MJIsnrIgCowllKLge4YklsJhGZVJGUYDA5Tk8TaJ8IABzmNcMzoa4qmomTkLgaCD86ncHw3TRgHp+LZ9CFUwEZBIxbBRxmcQAFbylGAY1iuDyN/JZHKgESAMSKRKZonlPkTFwomCTN0l6ZQ6cJG2hMYHGSJNhFNk6UyqJYLEipWErvrA67tUJolot5U/X93Bilp7MT41nA1HgcDhpDZXKpXC6RTp4amYADHE+NjY9HfhsAvqNoQXkahPE4qOPRiYkxgOfTsWgZemx0PJ0GGZ5IkumJ8RQjY9KgUwgRb4IoERLD89AUGSgOVBc4zQBvhmHoKOgwqud7nbmV4fryyto6tmHt7O6vbR+d3VndODyCx+H+/v5qv4GoZDyZA1ZEBfRlENab0XDQbH9+aX25t7C5tb4JNHV7a6s/N4VQOZhfGExVAzvKKlBUHUE1HwTlFgDp7Nzc7Oz84tJwbX5peXf7oM5puBr+pAtawh1W4DLoxQEXaq0e9WB165NowzE/M+gBvs/PThe9YqBw9BhQmSQvWhk6HVfyzUplsmBYPjxDxw9Oco8QeXHeqBCl+xbhYFg6kAKvEPoKjW1JaIHKKbqC1pKKzsNtgPuSaRAxWZIRRMUANoB2mvANuqFruoTbJDQKW3S60jEDkKNzKZKIJrsBsTkMcJdwAPikxzeKZdANS6RYGbkqC0RDiHp9eWy+iharORauO4bF/WMW54vTOYJKU1KnUQ1dT8qLfpO3PNMGRkjgFk3GDQHMUWfTokRRtJamFc9R4BczjMYoIi4+AQDLrsxX6pVSsWA4qowpnBlG1jzOaMxU2iZRhr8ScmazqOPGDUFm07QWGGxnuVMBbitWFsrB6kzHYBil2a8WdDoNdx39FDHZICdEx5ZTZL4hpRlXmiBEQbdcLwirtUp7cnJ6ZnquMztcWh7uLUi1um/ytFDoTNer9UroNzrdBtwkFjACo1gKpnqDuU6rEkSxj3nXiPxCbdcHnVApiJm4qDIZ0bPgyJLZ8dEkK6SVbjnLkE5d9zUyllTyNp3NJHMxWiHl+urGpd3t4czM7rOXLhy06q3+cLm/stlb3F3ZXeQpq6iCaNBIT3uKiht8yfd0g1XzzZmg1CLIBKHImmTotgeX6WRnYWNrc+fovFqbq8CVoc/kGQHqDlzOjuGb8SRwkTlDIxVNZNPZzFgsN0GmaU4UcffCxNkTJR+GrugUu6vF2sxUh/dK4WJ363zj9depH7355g//9JXFnYty99lefuf4mWuHN0Q1nVLLvXv/259qI6doOXcqli9a46eyu1a/VuH9Pl8pz/343/1n4enMRIZK+4f/zX91NGOGdSI/N/vh//qPh/Ti/MLv/vL25d/O3/z41ptvvn/n3g/v3vvDn4V61Qmr7U5QbjTqJ2aUT5qwqlCImbDIUVrQ3OrkVU5z+ouBzmn1gt/tl9dXngBwJIBXlhZXl7H7cWZ6utttzbb9uqOyRZ8HndNaee2Tu3fv4vrzWwjAt+7ceuON166+evHFF85vTk4WHEU37NALpPbU+TlbYCxTrBaAN9a3rTIri2618fjv/+jW889cfOXF7QsvDGubr15dn1vdeu7Ge+9cO7+/tXfu7MHR8cFetPq8HWWlbmwsz7Z6ZWA0rz5t+oPB9sHHnz/86N33bz745K2HURbEjTdOVqBfuXbtlZevgQJ+7tL/D4DPRWZY8HbhEu7/Yhf0xbNHJ86UV669fvPtu68dTS8+f+2lq89du/bW+x8++sNvHz/+HOTup59G7wCMf/zTn/74J599/ukXjx9jOtLX3377m19+8fUf/e6P16xa0+B1OWjVPMP2QtfyPI2l8vm8Z6h2GPn8OfmgPrWwvLK6tr65tbe1dzynG5jcxxq2Zrq96dr88okRBwJwr98HAFYpYOZQrzKJBKDuWCyRojjsgp5I5HiRBmQC0s6k0hRNJpLo7woXKsgBEmg3IGoqF+QdADGRz+RcEIt5ns3KjGEbvMRho1Q1BP0N1YxjGZbNJgAgqTjo5tiIXrAMCb0eyaQuJYgUAYIvQSQ4jQPAFQRfzzKaolsKC8ob9DnNSpLJ5CQrA0IKSh7yD1D8UDQVbGOWWSKTi8IY0ulUBh0yySyfS2LrJ04SUzRIHYGmRUVSHUejshyXHM/xKrZiYdMrMBQaN+5IEPmcLPGZcdIKeNAjfmgw6J5ogNrxjRwUYEMlCbukcMU5i0zHY2x9dqHb7fYGM52qB5ooOUqoSSodJxPpWGwC23tAlAN/iKfiIHZj4/FkMgJgVMAjEf7GzmAT1gi6T45hD9ZptO2Hbxk9k0xm4lFEVSKZ4zTbcnDAJihVgPEYluv7bgS+2LqMI0gWbgGjGI6gASDvezMLK8urG5trWxub29iAtTbcOdzb3Nw93N87AATeW+vVdN/WASmEqBdYVix0ba2XJ+dmcKSh151bXe7D/bm+s4990OuLwJEBI+cWFudaJRcIFK5267j4XQwLlcnpqalpQOC5maUl3HxeOtg/avLGyRiSgo7QmmVGSZYIwEFYCrENutlsRlV9YWlhsT/f789NT5XzeQtE2+hTmViG4x0lOx7TS5OV6uxktVwMCqWTlMHAyxdwBRbFVTTvW/YtXdbsQkUWqGwmh31X2AIk4SQM0gADzixLZ+JxhmblyBAEnWB40L0GDm8BR+RoigW0VCM2wrNUFi4l+AIOhMoqRlBJqoobyLjhAEfZNKIdcNOUbT/OmhxAqEhzOQZEN8XLPClG7c9I4/jICQZgmcb8nwnqdCIjFadbBd81pSI9L5me6QgSRebEdDYnNGmaz2QpKivJNM2wUkp3XR1OEkWbvCbTHMWOp1OKr7BhJQzDEiCaTGTQr0sU8qLamCp07Eyx3ajIObNVMjQJW/9pglV9k+4uTVdthePK/aq3NuioQA/Cfjmvs+l4liOZmNA2+Hg6b0m00XEZqWpN5CQW+J0TlEuFars7DacHmNLOyuLyxgw3Ww+Lsmm1pptBqQksdH6h7YuiL5uuX5qcBkXWCoNiwXVwLABeOzAI0XAM2VN4xZXkU4wmpQnbQYd4Ij46QXFUtjLLioRQl4o6lAEucDE9jY5TFFw/g+PNKwezoeDsX9k7mp9udRZnNgb9rf728ublAmm0ythfkrKYp0aSgPWTqskKdGDVusaKkD4VZzAtSjYd3SmH9c7C9sHxxedi7iAUoABYOGHkKqZueKqbh5pEZKawHS4eG49lWYKVSEWA080LwOF01bQ93TIKvuAbtaVWOD27nFOL/lytuzh47Vz+8U/uHnUPLl56uj555UC7+Malq8fPsjKcruLcvf/7T4Tvs0v11Bnhuan06dMzB+5iUg63G0SpMfv+//5PwtPp8XiOVY/++T8/3FCrFbI4N/PBX/3DbX59duZ3f3X7yp/M3/7o7s0bn9y5++O37//o27Je96qtTjuoNeqYFAn3UScC4PmGa9FEvsCRilNf69gqLdmDlZLJ2tON4vRyfetk6XlleX1tdRXVL44joRHWzMxUq9dxuxIplOAK9+3F9fc/ePtO1AN959YJAAP6Xb1y9dmnt2enCyVDMizDC4xmZfdCOUNZAl90eZ21dgqeyktB3f/8tx+9c27/xevHuy9f7LafefHiam/14mtv3b378tH+0f7h8f7B+YONnYP9vZ2tjeE6Plb6U61ZPdQuvWEWu0uHm+9/+eBH733wzrtv3333zq23oiGkG4jAgL8vv/LSiy88+9wz5w6PvwPgk2VoXH6+dOHCpRNEvnAeDbKO9/ePL+5dvP7a6/cevXFhpn105+1Xn33h+q3773z0oy+//OLx5xEGP1mE/vTTn3z6+Ref/eSzL1AEf/Xltz/78pe/+cUv/+wXnTyQG5FRSjMNXcKOUs/HjsNCLa8DFmPYi2G4Bb/S6S2urq1s72yvDY/XbN23PI3SbMPkWoMa6F7Mn4pCCXu9nt9oa1kSSHoWyk0Sg7YSqTQNFQyo30ROlFhgp+nEKDGRwD6PTN1yfD0KKAdRS3IA1ATIEeDnqpRJmgYnBaKQkRnT1nmZLbiu16jYDiby4vABA2Uil0Vj3GRiAm0c4KoWGGpMljAw6AwAMJngdSZBcBpjaIygi4qtsclUNk0lKZIXdDonmikW8wOtYlDxUPKbpgCc1BRpksUO6FwWAC9NwC+iiYmJNAd/b8CvwPACQeUYSWY4TZYmUroKmoHEZBtB03GgxRUS6JQFhZsBFB7L+GVNtkiyaKSV0DZ9T5EMVcXMOJmh5IJNGJM1nWTZCbpYmR4An9ksWq2AJ6hknBcTAkvwWRLrtUQmsY2KyKXg6GI6HbxyBGAcNDodIfAYphOewYXo9NjIxMTImfiTNujTTyVTRJJNj6EhHi6VGnY+LAbFcqmIkQOFfCkPx9c1FE23HIymd9GZQ9FsJZpgVbXvYav76nBjuLKxsbETxbOuHx9vru/sAPweHh3srS81Xdu1LVUCpAD8UUUf8K1QaU33egvLc/XJ7sL66spwc2dzcfNwY3V5Ae2a5/uLg167UvJMS+QlXeFluA7hCqvWGo2pudm5yOR0dXOIRhz7+2VOFlRHZyRN4HK8jYbtCvxKuEhtrxSEtWaj2pquocfl9DQ2YaEfz3Q90OB80blYKkbkLABjLm20WqpiSQUnzHshLj8HAPm4nlkIC34h7/phxQVB67gYciTTWZIiKABMEciUgA6IkXEGgO94ApSlpuPGNPpfKQDDuD/DYp80wUfpCyqgEkNmMH+L5jgOlweA4yimrYonyYQg+zWMtzOAS+DWu6Govk3zBq+ytCDQrBK5vqFbNMedvGHaFsOrPDyDdBptWJITKVprTebzRROkdCsU+NQvDgAAIABJREFUikYJkI7NkQKZyHo6fE6nszLHihzJqqxsVhQW859VhlJ4ms6MJXOZQOP9Sb/gNF1L42lQ33FaMFxZa3Vq1TyhT1abVlqtNQydR7dVguAVz6f9mV4pUBQqWOiaK/PdQKL50uq0LYgpuMPFTFpvz9Fn3CneUkyvJeQ9Eu4hTdVMuPLCUqM9Ve1M9rFnZwhaZYrXArjh1XzQyQetYj6cnJv3BduSDKfUmQftWw48W2VSE2NxOJhUZLozAS9c5rAfLiQmUjZDZWRT5nPpXGp0nCS5rDcvMzmqEiq6komzhqtQcE9nshxP5aeev3DUZngi2d7Z317s9qrzWzNrawvDtfXVzW2arIbOWDbNMyOnn0rJstAsq5QgcZXlfrg0mZhIjpEcZWFkba1UbrVmlzePLl9mEr0yQQqsYGqmpam6LtASyUJ1GjkzRacmgK8JnACAK9JwW+Gonqbypm6Zvu84FZsrGJ1hod6c6xNONWjKXr1//bDy967a/u6fXd886y+fWygtXnxxe/u8wGWBy0zf/g+/I1JzW3rMPLzQSp2u724q5VP+xprPNmpzf+vf/nnp1EQ8lkp7u//tPz06bPhtojzbe/ev/nFv5mpx8e/99w8u/mnv9kfvvHnrzQ8efXTv/Q9/XVJDP6hNLsrFWq3earfbk200hJ7sznQ8h+edCpvSS9W1rmszuje7W9ZVvQ4kdqG5NlxbWVpeftILvbq6urC8PMDx/umZfme2Wg5d0q6zTFHxZp775N7dt3EC+Pbt27fewnc3Xrl69ZkXLp3rt9qeo9g6HFEp396+XFQIEEZWAHccfbFj2jxv9svv/uZvvXJ84cUrBxeeXW+tXX9+d3Fh66V7t++8dA5X4c7uHwL0Avjub2/t7G4Nh4u7e4uzg+qUF1oX3vDd5uLyzgdfPnzvgw8ePXj7/v17d27fvPHmWzdvXMchYIxiePkqIPBzz1y5eHwWsPcyRgLj7i8aYOH80Ykx5dmzxxfPnz3Gliz49PwLN9668fDt49npPQDip595/faDRw8//erLz7/4/KcogT/79Keffvbjn0YfP//08RefAQZ/8fXPfv7zn/38F7/61Z//LTiaocjYajhbkAUFQ48djWP1PNQzQy/4humqcjEfNOaXFle2hrvDva2dw4pdcCwTeLvtSvmFSnf4ZBRpCfdnBl6nrVI0wzEJ1Kb0aAYjARhVJJLjo0mCkziSJtKpM9hkSaQnYiFUeijYgKisAPiTozIpxw9k7HjMpEBncyWHpgRaMw1GEXG7p+GpoMBpUlYxIZLMUTTNgghIJe3AkGSNJ6FwKPwYl43F4DZJZwVdHonLAuuYJNBkT0MJjn6AFEkqapaw2IRsqYbj+GHZBTmFGsSAYiiScJcy2K+UToGUp+k0ybDZLCuZjqXJDNB/TeQkUmJ1Q6T4nKKyWu6pHAH6wlAKlmRXLDLSO5EJUi7GB5abbzoZmsxYAHEGpuhJGkgUjuNVrjhtaGUTWIfNsTJXmt9fXT+/JLQ3PLTfGOWEcSmn2VlBNjSTZkCKpaHqgy5HE2gUvzG03RiJNnpH0fYuQuGx8QQ2XmFfNM4njcTGTo+NJTPJZDabSmUYjIIuOHYBsLdUKmOU7UkQbnBifYyOYzKnO5h8odqKrJmqrH4P7S1W1ofD1aX+Esje/c3V9f3DreH21u7e7t7B/s7qQt0yLRPUH0fhYqkmAYkLgrDVnerMLi5MLyytD9c2Nld2d1a2j3c315cX+mhZ11/od6oIwJoo6ZqkmL7jW0650kaz/qm5fn+mt7qzBzfU/tFhVdJRfdJAXxRexCwp4IGW7RcLfr7UqlUqaCDcme5O9eZne/OYz7I0mG1VXKA5FJ2ciCWzug2iUwhbJSKeSJlm4Dq44wsAHHhuoQwcD0R7s1VQOEnPOypH4eAtOq4IOA8qaypaVck8TeYyyVyOZHjpZL9bxvllK5o4UlkeGBoPFRi+kcom46kMSTO8bEiRFYcO/wFMG/BylQh0TUV9YqiJ6KspMnoDE6wu6XSaRqjD64pBK8rIhRkUMLYeEPC7BZ6Mj8WSuRSGFwn1Luh5W4cLrMPYjqHBXxMERyXTbkDQuYnIIRU7FyQgAGUVrSwohaVVnpKoiXg6XfRYo1MIg1bZUDiKgPsIiKsjSZXJeiMgjclqy87IlZqhCgKHJuyM5HhMYX6hGsg6681Pmb356VBm+OJSBzA6lQGKDQdJnc8nyXq5xKt+UCmquWSaBNmvu3lgPK1Wt2mHs0DeF4Be7c55Gkhbt6DVGl655Rfa/VbFwZ7pYnVyutsMPRNNdFIEm83hlFN8nMZxY7gJ4NYE4JaIccORMqJrcRR8w/hEMsuT4kyFFTNG1bbl3HhSK7lMIpkh0ajS662uG6NZ2wAxubK3WZvuV+ZXlnHicnO4djBIcEElNZ7MJs6cjudMijBcN08Soj+3WR8spkdGs2kFCBQIlHxQxq3s5d3zV5SY2y0ohg3IEU0ox86MJWNAg2NnYl2bJeCaFbBxEK0AZFz5gEuHgbPuwMmyygDAdmul1KpPz2etqtlrra417z0b7k8+c/XR7e1XryoHK2f32wvrl1+6LvA5TipP3f63fydwexusuX/hIMyqexvTEn8qPGzHuUZ15gf/7i/Ko2OJkQRl7fzX/3L1bD/fJMLpuUd/+fv+5tX84u/+h/sX/u7srR/dv3Xj5nsPP3r4/oe/CO1aoVhrzWleu1mrVuuTU61JwF9A4UnXEQSvIWWVQml5yrNYzeluAQCrcL9ND5or6yuLiyurK9+FIa0MlpBb92Z7U72puWKtrNNeyIh5tTZ7850HD9CC4/adu/D+zu233nj16ktXX758ZbUx4wW86nlOYNuN3pWGkzMVu8jbrMRuLwVlSsy38jf+6MPzB4dXzp597vJ858rNiytLG+ev3bl17fLZg+OzhwfHewcHUIgw/GgD1MHa2nZvc3661XNde/NeIHe2lrff/dG7P/j4nffeuf/2229jCtLNN3EJOtoABvwFAH7pxeefefoKNlzBnxMnyguRBXS0+BztAEeS+FxkCw0gfOGF1956cPPVy+u9rZc/fPXpF1957a37HwACf/H4s8//ZiEaP8VPHn/x+ecAwI+//Pqbn337q9/++o//o7tWyZEUgbbLebx1DWw3gMJmFUse1DbPdQCHrXy+PDVYWlnf2F7f3dw66qh+6KqCknd03Z3p1FfmodKhFSXmTy3kp7pCDgoElYKykCDGkmPxTAbIOgi2WIrkJJYgs5nsaC6dIOAthkMg2OCIAEzzLNpkeV7R1ASSyaQtneVCmwYkhNpG8WrBcYOKytFoc28YMi9KHHa/UDh2OWEGDqAF0PpMVhUnmExsBNePMxjml5ZE0dFyggT3hkgliAwiMM3IWo4wuaTk6KZje8Wig6MBIKORmopUJpPNJHHOYyJLZBgGI3iTSUpzXEdEAxBR4kGTa4pjsVlN1nRFy01I8Jz5gu9INMtn4ylQTekoSymXlAte2C5SVJbUjGLZBURzXRWXNGVZVLVWi+TqgWzqsigZer53tDU8XnGX1gK09RkFBawQipERGVDAJInWXBmCwLasiWhfGL0YYmj5fHoMLbBGz4yfKOJoX/hU1JeFs8DoxZFKJbJQnKB2Guj2GGB8nl9C/2Mf+58RguHN8bERyzA1y7VwWVUXeRndoL/XH2DQ59Li5kp/aXt3e+8Q3va31jEpYWPn6GhvZVA7cabSZAHzbhXezPvFsDo51W11F1bQLnZldWdncX1jcRX+GSif+fnB0hL81Jk6lFfLViQNbmvTM13HK1UBtjvTvajHb2W4sb62trmzU4rcvIGriSxLKgYCsK6Busoj0Ner1eZku9XsTHW68wuDpek57M+fn5lslS0mnSHJiVySAtDmGb5Sq6rMRM4NSpgqmAfhWw5xDToKWQgMjlM8dDBEU0gK/b1xm1YQJXRBlSQW5CHGdNCcHDlroKTFB8h3FkOqc7xoGAKXyWRyBMAlp6g4OKVgc7kG9A4w1gDa4DhiFFkBLNeNhutw8xsHvjBRC65SiedyyQzcSQS2b7G4Wwx/8E3CXeFoGZjMxcYSGUC1xNipMb3drgQuVHSma8iOEYJSpnMsk03TJUVRJtgkg+khTC5pWHoItxDP0SLH6BLDYpNfyrU5abJQ8ApFQxMQgJM5RnVlttCpNgJCb4aNPCmXmrYhw2GBF0kJlsfke0v1gNN5c3rW6QxmK3DHBv0pQ2Hg3kmM50Q6WWwUSKlc4aSiVQIATmfSOVlWHRz0rjempjijNjmPM4zDnRnP0Qzdb4Wdklure9X+UmgosuGW21NTzdAHVBNUbMFQgf6zRCYxPp4mcBwrAbenKNqONMaGaoaxXI6lc5lUIgaSP1XuMUKGqhYdlUqO8MWCmE4RZDLDZ7V+QDOqRUs01dnf2O9PLlZrmwv99dXt7b3VrfNOwmiAHidHYzGWcRJARvNlQaoW29ut6QXmD8aZjAAAahl2WG60Bwtzc/3Npwvo65NNJ8j0BM4fnDl1eiKbEVJjqXimFYpZ0YYrVzEtAGBdUqL4DYU1NNw/AQB2+NCuL5Y7tck5wivl+4Pdo8Wzw+q9hz/843MXF248xx7tXt4vr2xvnHtBFEkBAPjOX//CcSdX+e0LF4a8NL29nRSJWP18cEpqV2Y/BgAejyVGJhh95/f/anJ3O6jmip2Z9/7n3/efftlf/tv/+sH5P5166/Hbd1976+H9j9794KNviv5ktdaYnMlbOIUUZWt3pqYwT3Cm4EuCVRFyQKgHs77NKVZrWNFVuVIudwbNJWDSiytrq0sof3EruL8YdWFNz01OTXftekESig4PymV28ePb77x76+6d27fv3r9/F2QwAPDLV68+f+GgOm0XZNEH4RcIwdr2mpIVbKDKFPDE3rAYwq1XbVz59f3nLjx9bv3c09vTw9deWl9c2Hv+zbdvPn/u4ODo/Nn9vYPd/f3dnd2dLWwS3d4YDpcOZ6Ym54JQW/rAd+ulnZ33Pv3DD9//5ME7DwB/QQDfAAB+4/XXMQkCFPC1l08k8LPPXMG+q/MXzp04QV84eZzI4Ohx7kQJoww+Pjj7/Bt3Xrx566Wtzurr926/9MyL19+894NPP//q68effXECu5/hgnT0KfphffHF4y++wlmkb3/525/9J3//Zd8r1UwNim+oyVBdNNezFFbI14ogMZyCZ/kFy/OC+uzi8vLm5urO5ubxkqPnoX5Ijiu7Vm0Qzg9OfKD7C0B6BvlOkyMxJzAN1Bvz4tGJT1AYAMNYiuBkDoAsQ44TcJnimDAAsG0q6FPLiAyCZzLl2R4UcIYj0zYUwr8BYABvz/AqFZ4GXm7hxBE+oKZg7EsuGdMDV8eAbjYFpStFE8mJbDabISSFSKahfjpiDp2ZVJlOQPVM5yiGlTWCMIS06BkIwAXU9QDAuM6oGTKTy+FgCD6SwPYptGDOpEjLi8IKo+hcVqQEwVDTGdcTBYkCWZokZdORiAzBEOksmSYRJol0JpNSi/liQ8sB+9AtzBo0oSzxKVYWIxOHijlBVwNKt7OSWQnstbPD1ePVYG6trAr0xKhEJ2VKUUkVqowMxzUdA26fTqRItN/AwIUx9CMEwB2N4TTSyOlIAo+dWBWiH+VIlIw2MvbUaDqXJckEhSHmOPoL+tdxCtUgaj3K53HsFXuwomACELK2FTESzMQRAX/U76EvOK40bQxX14crK9vbm1u7R8cH6Lg63D4+2gUFbEcKWMcOYMNQAYDzpXJjem5uGvePl+Aigvq2vLK5vLq1sbnWB3QcgEQdLPVA31i4FKJqkROWnw/CsD3ZbE3PzfYWTkLOlhZAnBQEAzdOWR4BWEK7ak01oUh7PkBnrdbszEzDv5rpzfVm55ZwOh3e+pPddkFITSTouEaLOqCloDUrVVcynbBSKQZB1HwVRkvQQankG5wMmGgKFEVFfhuscuI2KeFWOIYcoMcVzUkoe7FpCheDTEMRuagLGl0pJRCqGdCqFMNFIIuT1AC0kvIkbgozYk3H06IFZ9PCPWLAdwGuKx7dOGRJ02SgIZEzZqEEuhYTicMS1LsKphMUo6Qm31cBQgmGy2VGT50ai52JB816AWioJnotYKsFVZR5eArA+goWLSSFyBw6m4uPKKZW0IFAcgwjsCaqfLgukjrwn6lqmHcrroXMI5vEbV6N8aeq9YBQ6oVagZaKbc9EtxsG84ZtnzQ6C80CA0Juaj4/udCr6izrz/dti8lNJOJjOVMfB1qgjTlVAHLPqAZkkmJIeJXw2oqVemuyyglebRok0+Jwa5L34an7wXQzyFfCsDvfcVXJrAEOdGqeCUctsiq3HS/IeyZuNuU4kUylQRTzvCbJgZGIeypJqDa2lBC5VCytCClt3qT5jF/VLZ6OUaav07gGnaAZbtYRTJWnW96Z/pW1jX0o1eWFwQCfyM7mxu4WT5Ratk1+fySZk7UROTQ9x6msdKsz1XLTeiqXpkhRBBpulUqV6mAJit/isUOOpkfS42kujrfdeGI0BjXEICZImqjlxXHBUk769ETakGRRRvYWAbDjWk7VFRGAS53GZJdw7TD0i73BdqXx+/sLv12+ufTylfDss6ubs4fLu8c7ogxcvNS9+//8opCvFhObF3ep8c7Wrn+apyoL06dHtU5l7uN//+fl8SSQFMLa+6f/Y2v+qFaOAPhf/ZO5qy9VNn77l4/O/a5z+/HDezdv3n348aMPfvBF3u8C7E52qkap2oRHo9HpTmMjVXc+DBReDwWSdwu9QR7b4urrdV0DXlVuD9qD9dXlyABrFR9wpz6ZAp6Znmr3Kl7N5rSyIgVWoX/0o7vvvnMboO/OvQf377715s2bb1y/9tLzZy+1ZyqBLnthAc6w3L20bkmZvOQoKZljm/tuyKlytb789Z3Xzl45XDm3M987fu3ZtcX1Kzfu3bp+afcQF4MPd0EP7EX9V1uRA9bmJoaWt6aagdl/p6U2OjtTb337yYc/evDonQf3793DXegbN560YL16PdoFfuVatAb97MWz56It3+/w9+LFS5ei9eiTx4Uj0L7HR0fw59z5o4Nzz730/I1791/fmu29+PDO9Reev37rXTicP//y068eR+L38y8ffx5p4M8/xy6sSAB/8/XXqIG//rv/YCffDgB4NK/io5WtpttQgCgtrAaWZhXyZj60LMcrtvvLS8P11Z2tzeOdsuo7bl5UXc3RvUGlg5OcCwDAS9h4mp+sSSwQaypNJpPZ8fjIRDyV4SQawHgskWUVgSDSaSJ2AsCJ8XIBx4p4njkB4GwumXQrRUMS2Fw845gRANMCDaSXljjHLDbLDA0izVJFnpMFjqOyOTabxXRcPcAeGJplUgQAObp9IACTqpKNJ1hRNTlClQ0AYCaVymRxrZgGbCY0MQcAbDhOPgwdE0FDEjXQMzKdy2HkDDzS4zhYmKWJDJXOOb6qm9hpBfVL1UCFKDqRNB0iS4zFEqdH1bxK5jhGVghcfSYoFMpUJhGXfM80RI1lCcp3FbcKOJHP5ESFB8lneD7HBo2iJJiE7K807bX99eFhz5tabxoiPT4BgC5zhkQByCuRshiLTUSezjHMQhqP9C7gLgIw4u/ICMYu4N9ES9HYHH36DMDymdiZkQTm2KVE3QL8BcVbLNi6UyyXS2ExsjsuRCFAfhFPL0gpoDnRAYHXir240vfmF1bWhxsbm4DDa8PlpQ1A3v2jw93h2ePd9c2DveHaYsO2bMsUVLS00jVTcQP4qZXu3ABAdmlhbWl1Y324OVxYX1oerg1X5xfRyHTQ6y/NN4GJubqCq7mag93ufpCv1evtmdnpucW5xfXhcH1pfntvpyhZkiBJNCcCBPMGdmkbGK6D48Z1jFBrtSc7k71BvzfVnkIf6fn+/OxkdzJUcolENuEBwHOKwRqdaj0v1ouG6RVB84WgfuGAFEuhZ2ggU53AgeuUEXFw6MTYGX2e0YmJRH9VmmYFxF4NF0t0HF6WOYZlWTxBsgDkE/eMKexdwxax6Bv0SOdE7p5w+Rq4eY0xhdippuqYnYTfgIZcxRAfcE6QGpTK0eY0NpdVyyXcT49sMoshnLFisWQ6Okuy5Fh27NQpQs7FlUojDPOmYbJdlQt8BZActCpHZ1UXs4+IVDYLvDCXoDW1YEk4/ESInKmyIksms0k95JlGpeBbFc9WAIBzaeDLvsm4U816yMq1ciOgWL/twa1HUyyVyklmQCvNQROEIgUAHEwuztd0uD17A9dkiFhiYoJQ5Al/OghiTk1J+wWlYMZH0khSNMxaLtZbZVUT7OYsZlVubHdVJ684oTVZzJcCf7LXzqtmvjY71a6UHEX1fGzXVGXF8DCEQ1dFjlVVdCsZm0CXLM636Zhu8lnBs3kCN4CSE8jQO11OzkpVxRWFJKH6NpMExZwEOtuYlHWWSFkF21jdWd7sNec7jcXV/sLSxtrO9vByPWuEINxGYlxaIZ/iyozjM/mpmVa711bt0fQ4y0mKqEGNLFark82prd21TYPgfM7KhUUiy1LZOJGI02TWIlMpMtN09BiSNDjTQNFZI6JZQNZYy3ThtDtu1RVCs7VcaLW6bT4fFMp20K3fXm/eXb69PrM/f+fFYO/4mfX584WNrTVRYWQp7Nz7P/6orgkjubOXxJHR6acnY6cVbb7vfX9E6pTnP/oPf1EbI2OJsaR78Pt/uVjfn6nRpc7Mo3/1F4MXzs7u/OavHh3/cefuT96/d//GrXc+fvT+Dz+1vG4NFPBkBQC4VinX253IWL0z2Z7J+wDAZY1ivXB2OW/ygl3bmDQ0qVSttBa6fYBdJNdRHjBy5Uj/zs7OdvrdQb5e1Tg75JSCUe9f//jRg/tvA/bduff2vdtvvvnmG6A7X3j6cKndLlZIkAR52fca589WOcqyJJOVWV0+nw90m2jNz//gzWuHT++unF2ZXHj9+sbS8t7rb71984WLu9vnz0YuBAfHu5EHJSrgDRwA3liZmq1NFZXO20tsu7O5+ObXH33ywbvvP3gI8heew+1bT7KIX71+/f8LwM8/d/H4HMDt5Yvfyd9zJ71X0ZI0quCj4xMAPnd0BP9zdO7g2pt33r772uHU4ODme9evXHvt1r13f/j4y6++Agn82ecAudGHzz97jHZYKIfRj+Pnv/z1t3/nZ9/8x78aBIUwL/JW2HBV1Qtcy3NVmjYqtaKlu3kLk3+Bc1anF5bhOAO9ODhs2pXQcXnVBjWod7v1KHt5gNlvvelBYaoJ+oRmGGx2zsWSI/HxRIqRWNzwTSIA57K5dHoESCjIy1S8Vs67hhwN1Io4osFk0gAAJsYBZ9KOyXOhw/ISrZgmXHOeWyrnGa7oRdYGMvwzKIg5JpeBm23cCEBICCTNZAmWANiMjebgPSHyE3FQwJqGFdGwFJFJJ9M5XBhkJRHH8Cgpb+ErhOJr6xhLI+MioQA/mMBJKlxDpgCK4ZZKkcm0lTcsU+Ik1NoKThzSUjbGK6AtRpMTZxIiF58QZE7g0tkomN3AEIBciuDREckyKZAOnq749WalZOVkwHlMYy56nNZq+qpqiqy50/LnNncPdmqVnc2uwcMtBMpFkiyBpgEGmVxifCyVjMcn4onUk9hBDEMaGzl16kwsssKKYHcUPxvDlWmcDT51agR3gSfOxICS0KLpgtKNmo48XXVwzxcnKqNxpBNHCs8F7RX4AKVwJDAgHuPyRAmNOED6rq8Dbi4AIC5ELQ9bqwuHh9urGwcHG98pYEGBAwmizpDhevKDcnMKd2MXgaGB8B3u7C0PFxcXgFvPzPV684PFxR4CcOC6WoRImFWgqXahhFbQvZkOfNsK3FAb64D4AMAu7rFiELNAfbcEbdqogCuNcqPdwvkJkM3zywszXfwF8/ATJifrgQJULZOybRB8MpciC8Vm1at6BKMEIYpn7HouAfjASXA8TyayDEAsphvJOMkbDT7xHIZDp3IUg5VTVUTeUNFxU8SmZI5DZw0MCsqkklk48RiHgLNIaK8drU+bqN8cJAwGWoThWjSmL4Aetz0fd0QBbYOTyVYQ49gVVwiLESl4YhPi53EsGd8cP4+nyBddk86m42MpmgdWQPJyqV0L4Q521GJJ0ou4lgM3BM+kyLwG8BPPEDhFDNigqgVX4eCvczKjKwxH0ykiKRYFtlwtOEbRMeF+JYhMluUtk7NanXKZZ8uNasgwTseP2AZHwq2lFgSjtdgOFJk2JucLjYX5usFQzuySr6MXejKZptW01vCnVdPgiCCwDTaNXwRWY8FrLuQrBaVs27Xe4vJyf3V71qdcjQvxkqn6wfxcQZdLs72pasl34Dzn85aiWZ5nA3HRTZycYEleYnOpeGyUwE4KIy/ERUdM0Z4j5AhsvhhneCPnLgBtIkPb5vlYUgw8NpFI0pmsxhoLMpWhKLFctQpbG6tL3e4g7G8sLvbXtzfWtvf3nIxTK9pkTsPNXC7ImGG+1Z3vNabzsVwuQQE9s6zAh8rRbHXaM5t7Wzum3qzzPlWs5Cg4PqOpTIIjszbDxDOZKc8Zsy0NZwNUS+bMqJkeLisOXWc83z5pwmqv5BvtKQDgurMws7u/8GGr/u7KN4OLq8uvv+keXb41uX48Mzi/Lim0KIbde//2b3ux7z9lHudPjSR626nvZ7XG8pQYV9l2afDBX/+jZpwci4/mnP1/9vvd6qBfJ8sAwP/mzzfOzg53fvVvHh3+pnPnR5/cf+eNWw8/fPTeT36o2DONRqs7W3D8Ur1Wa7ZbGOs51Z1sz+bzKq+UTJrxSt3VvCnwdnVj2tTFUr3aWJrpnbhvrKx9l4a0POjNYQzZ5AA3JvICFG5Gz1udlfcefnj/7sN7d+7evXfvzq2bd2+9/vLVl5+/NKy3jCqnYxOGFRQ3XuwCnfKQtgJcXK4UdV4sdecevPXM5efXt64sdHZvnV9d2nj2zTfefOXy8fHh/tHRwR4CUvg9AAAgAElEQVROAO9/p4C3t4DnbwxXZ5bRWzV/e8Oqtnfnn/7mxz949Oi9d95BAL4bDQG/8drrN95EAH711euv4hTwSy8iAD8NWHvu3N/g74kOvoh/zp+L5pDORUvQ5y6fOzzGfeCtZ5+7fvPWu29eWWjt3nn3jRdeuP7WvUcf/fSXX3xxgrYRAIP6hY/4P+gKHQngX377t3/96//ik3alWlJFzQyruuBUAHYdWyJ5v1ZzFM0LPGwN94KwObcEumdrZ2v3aDEolouBzJsF3dAqCxXcZ+v1o3WH6flgqilTdI7mszgIO5EaQwBmZYHOxOIpAGA+kyKfNGFlMsnxahnqvMKzDBUBMMNmUr5pWiLNkGzKtni+5PKgjXXHonjRsoAQRBl3oBtVieOB4IKkA0mdSE4YecyhoSmGzHDwtexoIptMZUE3puNAxHWNICVQwMDe0YURJDAvQpXhVJbSCnATgAIuBGhEqalaFCxMESRNIYSn4FlTFJFDY/tkGtsuNNBgKihldCWicQoKu1mpeGoCSP9oLI47bVDSJMsVGEXjaZakZDYnO37AMmnagV/hFl1MkjBcB82mzFJBlUoNW7R0JcsC21ze2jnYa/cv784ZTHY0xWdITnF5ATQ7m8uOY/Avuk8m4qNRHt2JzzOGDsZwFOn0SCxSvWh/hRENoIQRnHFPePR0nGEoQcMlL9tHCw5LB5yDMo/1vxgF/6AGdoIicBIb3k78tUUMyQPM+R5Gfa6sgJIdLvVXhiuL66vr20A4t3f2tlaGR8c73wEwykIMEVYlBOACbiwBAmNe9MpwiN5ZR1tb6zNT072pyW5vsLQ8DwBcLriWFokCTec5RfWhFrSnZqe7k61Gf7i1urS+OVzf2Q54F36wBnRNFEk9mplSFJwCBgFf88vNdhsweBpk8/LKoB8lOSzOQ12peALQPjJFGYYO2jkZ11wQe40SK6mFyonfMwCdB6XdK+YNkuRkqO8sK8qRgMXnxeYyuWSGpNB7MvKWBEhWT9KLSIKP4hiYVIagcbHFtDUclEd9jrhrgNi1bcfGiGUVW18V1UT/6sj4A3C3EnlOA8iWS/jAISjcki+Ug2gauVDAYamgWKnlMZwJ3uD7A1wyFx2FEakUS8gmMRaL85TdapfgVeglY9KQfUdjeZGmOYqGIxX5txAkhn0AAEt5X+clXk6roIY5Mken6RTj2U6tWy8WK56jsEQul0mzjGaJVm0qKMvZ4mS5LtBmt2AaQHxZMgsHKZTN5lI31A0QyP1Sab7XtDnS7CwXVDFDpFLxJGkTjO92agqvKsVC6EocIDPuQYkaXPpuEbSu75Sn5vpL/aWteT0pMBN6SS3lK8XGoO0a+dl+t553Xce0gG84jmU5uEWCwxoGBknJskglgWVmeUIXpbJEZE01RyieilndQMqzrEbycxbNEVYImjMRI9yigpbuRJoTiZ6dEXSObrqhh51Xc61+vbMyXOyv7qwv7g4vLGelfMmVGZ5Jjo5yOqV4klufWV8e9lKjRFrCXFHVhmdkF1vT/YXB0uYRr1fzGUN2SzmOzZHx9MQIlU3oOYZMEd3AGNEdDR2/sUXLBPzVFbgYeVwJOWnC4ot2ayloNLrTGbtgT3XXtvpvd5qfvvyDqXc3au0jbX13r3Nub33/3qosU7wAAPzv/0gfGc2axqmx0/KSOnJqqHZWphPsFNEMFz74679oC5l4LGbp+//sHx/OVnr1bLkz/fCv/uHhon68/Yv/6b3DX3Xe+ukn791/8+7d99977ycfiU63Vp+cWnRCo4g2Y81qBMCAwL1CoPNyaLOMHzZWcTPeCtdnLVMI69X60uzc2srSEvpQrnwXyNAHZj0zDXf4XMVvGZwFGGr7+d7hj+49un/vAQAw4O/tW7fu3nrt5atXL+91O0ZBpkAW+E5Ymj67Zkm6K5tQczRqfcXzBcHvd557/cUrT6+9fOAtvvDS1vrS/usP77zxwvmDw6Pjo72jo8MDHD3a2d1Ff75NUMDDza21wXxztmSVrz0t+wsrC5e/+PjhZ3cffXLnPRTh+OtvYwwDDiG9/tr1qAkaAfgFAOBnAWzPnn0ifNF18sSYMsLfs2efdGKdx+Hgc8dn4ePh4eGVazfffnD3hfXZnZsPX3vp5VdvPXj4YTRx9PjzL7+JcBi7rz6LAPizL7/6+uuvvvrm57/6+td//Ce/+rPbdc12sNm1ZEkqbgEbDugtOV8vWqIaFCwNynW+UJ7sL62sD4FdHByUAazLNmPkoWYGK5XZwWI/AuCFfnfW6zYlAGBGjCJFE+kExrEJCjDC2Hgiw6piNgVycjSHK8SZRKwMAGyrPB8BMMAwnUx4BdtisrnYeBxOMV/yRYqnDdfCXTfdAxxzTQtzamUOMJSnQZzmAOpTE7qnQ21Ec8o4muwSo0QWY5gkiY5TsmiYRE5GjwiBiqfTgNokJ6gMKakkoQeY4OMDALlRE0zUpirSGHoe9VDFszQBWMyQ8IRzvGmhnz5KZYnLoZeHSMiWYukMk5oAnTmay1IChg+ThGQLNMgNiqUZNZswigWL4ijWVIxqBa7lHJUzgc47luk1ynm1MheYeQeKou/WtraHW0eLO+fOrrpcZiQtJmhOcRj0W2JT6VgCfSfHAHqx+Rk/jZ0+jUvQQHZHRzAPaWTkSSbSmegRdYOcGh0HHB7N0hQbxQEAYuUd23Eiw0fcBoWS7kVhQADLDtwIevRdRtQXJkgnVhzfw3WmtfXVpdWdjcFgbWt3b2tzZ3sdxO/R3trw4HBzbbHh4hI0YhQ6SBsa1FzXr0yCip1fWllZWBmur+3uD/cOgWEswP/NNdszIILnl3qNMtq/ANaDpFQ43rRL3VajNT3XW1henJtc3t5Yhztq5+igyBmIelkS85h50zM1WXVs0y0W/KBWbzar1UarOd2bmwYCvjA7OzsNZaBTqpQ9LjU2SiVGBFkXiMzYmF6aaoSzs17BC8v5ErqRBJYkW/DBVdDwQkBPTFlGD0lcKMQdjQTBSNHKOr68KGyCe2JKyoo8mQXFSLGICfDvTMNx4C6yI58uhF4cqAbFo+EEDhz0sFIqVGohID/G/4HiRQQuFPOREsbF5WKhVAzKxbBSCRwPI4qKOKH8NwBc8Nw8KEVRyaRVapyzBCKeziXSI1S5Ww0LBt9QWkCdQoMB7koz2XhKqPI5BsOkCcBfIqdwrm9wAiUmAYCBkVB0nEhxJcUqTNaKlWqYN3gKHadZWnFUC67Nmp4JZ6stkVDbBdMUBfS6oCilJCmVxZm6BkS5uFgt9Hotjye1xkpRFBPE+MQoRauEEZByA64z1a06jgCIEE8BAwEkBZ1byRcUGxTkVH9teXV7YNg6n1MbpVY+rE4Pyq7bWZ8qgCQo+BgS4gdhgOvxQd7xfUuReB5TQ6kM3BOEmDZlrm4IMdWWacJzZCpHE/FYgpIEfrZBAWA1SF2XEhNa2aGS6Qk2m9PirbkYYXDplpwMt+c3dget6emwv7vQX17Y3N4arl9wBbVSdHTWJiZOp7Mcq0ju9OTiYG46TCdyFM0GviwbQTWfrzZn5mcHm3uq7DdlTg2CnEAm6FRyYgSw18hySoKsB3JMw1UHVdMtEQBYVk1smOdwYgkKmlVxhdBrLBSb1U6PLHktx1abs58uTP/nH15f328AMbCGR+trC09X5venJBmqVzh1769/Kz014udTp0eXG8LoqfJ5c1IL7PkaOVlZfv///IcNP5kZSbSUg3/xTw+33NlWptKdfvt/+QfHzezlzW//9YfHv+ncePzxx7ffuv/Wow/e/8l7rN8oho3Oslq1w3qt2oT7D2AY3aBn/LwhavUCz3iFyrIHh9osrM7ZtlCsV2tLc7Nbq9iEtdSPlp8xFWB+bn4e4Lc/OfDLdUUMyooceKWlZz+9d+8Bth/fRQS8fffGG69evfr8fr9VrDq0oge+J9Vqmxd8hbHzaGnIyTN7UoEJnX7n8rXnrm5uPz2s7r5+YbO/9tyde/duXDi3e3B2/+Dc8V7UfLW/v32y/7uB87+bm0vTrYHrFS7eYGvVpcHw8eNP/vDuB5/cf/jo3oP7oL8BgN+I9oBff+PGG0+cOF4G/I0A+PwFnESKdG8EtN9BLu42Yyjw8TFGJB1evHzhLLZq7Z0/e/nVV+/cv399vbn11gc3rj5/492H9z/47IuvvwIA/tmXX32J7c9fffnZZ19+DSj86edox/HzX/ziN7/4+S9++81/eRZql6Hqupt3ZEG1LNXOGwxlVDshT5kebp+DBC7UZ5ZXodhub+wfNR3MLVN1p4gAXO3Og7jpDwYYPzXjz3QVlqdYkSKzoB5B5U5MZEWZziRjo+MpRpMBx3LUOJGayGFCd61W9BwEYBI0Dc8CACcDlyNTpJQan0AALucliidVy8gBAFsF2QsMFTSWqMiYJ0LnCOyJyWVSMdUxRVHhKSIzIWayZOqpNJlIUgzLkuMEzxoOmYm6UBVmAoQMTdE0jUOQajZneMBFcSTWtyMvBYzyUXmQ1WiaicEFyWwaKAWVSyYzlODAtWjlbVUGDZvJ8janMIbLqzJn5CZOjcfGc4yPXloaRXuWjuZeFM0Q3EQiH5q0xOtcVjccVWRyjKy7Qd61DbtUdhy1Np/3q+VCpeLUFvvDzY39lePjKztFMTOSU9KSpBopURRoJp4ajU/AcwIUHnnqCf5OYMMVQH8Mk39HT506FYvWnUfOnOwAj8VGQAKPJiZGYqns+AipW7rjOn5YcDFbvgKFvph34fz6drQQnQe5oYiy6ZgaLmai66iIi7FQyb43WFxdW0UnrLXh1iY2JW8PN/Z2NzY2js7tDHf2dxeXahZcRmgmreIKkmbkQ9cpVjpdQNLBysbywvLCys7m5u72/vmjld48/IdZC4NGr98MPNfEtlAJ2C+chqDanmx1ZwBGZ+aHoLM316Eo7hysF3VbM2TQpnA4WM3ABnrdAToRFAqlSrVabzXqk73pxUF3GjNC0MSjN9MoOnBd5JLj6QQ9JmmuzYzm3LAcVnWdD8t+A2A3LOic5IQFtN4AUYu2I5KoGugpqYgMkcFMazwMAK/Y9YwPEZQvIyq4MUxMAFSxQFR0x0OsVUwHNBvO1eObEaUto7kJNlmXK9UaPNNKWAyjvXf4UMEvl1CHI8rCk8EdAATnIAQkBoSulOH7gCWUyyF8LBVdr1SGai2Z9gQtJniJpLmJ0Uz8qe/H3JlGoRQAx1M9QggMkYUnl2MzmYTvkUo6TVAEyQrYTGCGqirxEmFRugzamIEriyipYnGqViwVipg8weRS6DVR5LXCbKttEV6nWrUIud2EW4QDWZjNsbqrcrWNubIryXxlpuXP9GcChuc7CxVVzZDZ+BmG1niuaEo9vySpDoBMeoSm2RwQVAfDlsvlSrPdLNre9MJwa321X1T9vEICByo3W4O2UupONkp5x/XCfFgCKlLMm44L+KXwcJVxpiKwPAm3dhojTxha4B3fTGbyEptW8sA70sDv0xMan2osKAwvOnohnyNjbNFXMgmCyuY4VZuGe1w5o4nFhf5wZXN9empQ6GwPZzfWF3fWtre2V3nB6QBbV5nk2FNZOL9WbbIzN71SK0hPESRHCJomKvlqGDSbvdXlpeGOYLTanGiEIccLIC7Gx5I8KSmEbFLZhqOOa7LOM5ppuBxvy6qEzYRQPHTbNW3LLttCKHdn/UazM0c7gdMuzM3N/mB67s/eudbtzy5srMr7r66uLLUnl7y2rrK0lO88+L++Usamjsrx0+uX8uSIsLtveKfrnV2XrFb67/4//6jWouCuH2qb/+L3GxdK7Smm3um9/d/9pxcK9IWtx3/5wdFvm7d/8tEPH7353q33P373Jz+W/XI+X2tO5+2SMVdrTNUb7clOe7LbmQReZQKFqQg5oVRab9kKZxfXepYpl8vt6vygvb26uAwHYG1tZWVtbWlpZXkh2gKemZ+adzs+z1YCVgnU3uC9h+88vHv3/tt33377DmDw7bfeePG1q88sQN1rWZWiXLSKvjd4ZlJnPBluao2TC8d5Xze1qbW9l166srl3aXHq7KsXhsOtF+6/e/O5cwcHuBcL8vMQxO8e5pLvoUXQ1jpQ9Y213mB22q0rT7+q5mtLW8sfffvejx89evTuOw8f3H/nAeL/7du33jxBXwxDOsHfV69ef/aF5y9ePAfIeuHSpYtPHujIcfHCuYsXLl66fOnc0cl4EvzuCJPPnTs6PD57dPzsjVvvvPPWWnf5lQ/feOHazUcfPfjox6B6Qe1+8/WXX34FYvgz3A1+/MUX+LWvv/nmZz/79le//uXPf/0nf7pdLDsWgEahZAiKZdmOAQqOK9VrKiH7luYEil8BHTO/vLY63N3bOVhwqrVqHo6Tq1vh1Fy4MLM4N78wmB9AvfPbbQVTgTg6Q7DjZHwimYilOFBvmbHReI7j0aUGsDidngBRnE2E7Y5nWJG5jkDSmIGWBvjSFV7k0hkbREMpEEnQOsDJBUHxbKahcbZrSdgGJYsCzxI5ApQqNZGwdVUSMNklzbApQOWRFBtPZljg1GNZXgKopjScvWQAq2M5KkNiCyMtCFlGg1vcNnxg1rZu6CBRDE2SFC6HLh+ZbDKeTmB2PYHe+OmcEvpGyQUaK7MUFHVZ5jWVtjVWouLE6FiGkGXCEXkZFD/NarqEmUpZIpWYkGqBBC9M5AVsjRUYLW+oruf7ADtmQZMKs92iV52Z7fYW51qt4c7mEdCrSxsFPh3LCoksZ9tZnRZYMocTkOls7PR47EykfMcBg0+B5j2F1ht/MBb/gz8YOTN66g9Oj3z/D8ZQ+I7hcvTIyNjEyJnxkYkzZ55yPBMzf/O48WsZru8GtbyXLwL2+IoD6gpd/hTF9lzXdmRW1NDdRFVkjMkDBbyysbu9trCyur6xvrI23NteXtrY3t7fPDzaGW7tbC0v1VzLcnFvEwAYY/icwMuXq83Jqbn5weLy+lK/M7cFpW1r/9zh6nyvj2mEGN/dDMIyKHDP0gSGVV2MN6riEOL03GBpMFhf29jb6bfndjaPtwJeR3qEDUQcA79CR+soA3vKCiW4KGuNZgt+Gf7U+bnF+flBb2pmrlvPqzxDpSdGR4g0nGqZzxnlZlOLsznG8vxSULd52S2UyoZx0lvAwotFcypVEiWeSCXTILhBOkf74XgwNDmydmYtDSOcCQqqP1pY6dE4EsZaWo5lPjEywb1wjFvCtWZc6H7yQNEb4S1+Cd9Hi8rhyZfzJ4HEAZ4WBOAwWpbGdWfcLCgG/y9Xb/7k2JWlh3UXqyozsa9v33e8Bzw87DsSQGJHArnvmZW1kd1ciluxSVaRtbE2rk2yp3u6uRSLbLJbGnlCki2FrQnFzGjaYzusfSRZ4R8ctkP2hMbSP+FzXxZbYYOMTORSCeDh3vOd755zvi/pHkI7rKWEWSlKMRwamAvNnXrqFFVrFWzUZaAm2VjCUgSJQ72A4bCUwvkYsvOArclgBKdkFOCQLKZSokAiHyZ/KJI0OKsKpBSSM+CRaNAKZ2WbEdLtYtHE9Eq+aMTZctnQeIqgqViMVCyVzk07OQiSdKbb1DujTpqiiPygoMruZEI8rtDxpNIYlHPA/lhSFQMULrIML6oJGwg9JIClSjmfrxbr4631umbxciZjZTJ6sbtUsOr5TMqyYD0W02lIzmiaIFmRo4koRWIUBRdbkASKJqMhnx+jGJ5X0wbjtRUpREFKT8diEX/MzwjxZMcisKBaMNMs5YuZEEn8MXh1jEg1FY+yhAX14YWd9nB1dVJZzCyOVyZIV2J5vLG/Vw0auXxMjs7HPKcIyYyquVqz11ltkniAoqJxjhRlSNJMp1xfbA9WNrcYqZTXlEg6B9ElDHEPHUtEhDikcHRNl0OwNngKwqwBoQg1EfKKqrKGqkOephuIARuLHbtcqPUJ08wNBts7i28Mmn/0+n53ttTdOTKPrg6nm6n+an5AIb01u37zf//MkEeHcqh3cND0eHa2lonA6eJkxtOV4vj+f/gTu5ygPN5z6urv/oeV7alZj1Rbndv/5k/2ncS57Uf/24ebX5auf/rgowdv3nvr7vsPfvZz1crbqUIJ4rGtVgr5KmSz9RpQ4HptsZI0aRqoECkW8+stS6Y1e7mX0Nl0tpzr9KsAwMvTycQF4Ol4NEFewIC/7dZixa5ZtJRP0KqV7G5+eO/uvTu3bt+8dfvW22/feOuNn1x58cfPbbSS2UUlnacFQ5T17vOLOp4UxaRmCHxiL5+GvKS+OXr+J0fLF883B8++sLc23Xjt7Ttv/mh/D0DPtQY8AeCdbSDAmxsbm+uzta2Vnc6gsZisJHeumE5xvL706ZcPPnoH8BcA+PZtVwrk+rVr154A8BMvhpdfvvLK81eefubylQtbFw8uPn9wYkp4MoXkorALvEeH6Cza9Sg8PnYtkw4PjiARuPDC9Teu339tp9N55eHt51++dvuj+w8/ffzrLxEDRnPBn33xCySEhQD4c8DkLx999c3X3/z61998+7f//qNGRU9orGikTIkT0eiJqlK4ahUdyDf1hKAnZANiRme8MlvZ3NnZnznZcimbkCzH0q1Ct9Drj5AhYX8IAJyq1xVk+EKScSwWjKBJtGCY4hki6vP4IViQOB4P+z2RWJCOhwOeQqNiSMitj6ZYnIhCtAiimUqJ5ehIJCGyXMbmY3SUTSmQ7oppUywJmG4CAVVUiUNjkRSJzgdjcwuajnCCIWJRggrGY+E5ePBwnFUIfwDYtS7E4iwP3JSIhIJAjGMYS/IsJvAxxjBVzTKBZiR1FR4ZfkcSFZWNhCNYPBINB8MhHB6CoMg4MAgl75gJmZc0hWdieIgGhqNLTCwUjkAiAPkw72U0YPMscHmMZ0la0vhY5KxPyGYFimQgdpERQGBRTiRV1XHlToDFAdepLJW1dKVeX2yUi53l8WBla+dod6fCh30Y6Y0LphRSOAyPQj7jO+vzz532eOZP5K9Obkj6aiEw90PA4bnTZxc8QIFP/xC5A6OuaHcG6ezp+TOeU2dCWV1xm23TKUtSdAuZL2dQ/E+iY2kbAnzSSBvAzeEnIhAdwVUpPpG2+sHabHm2Dgt8PFtbnc5W17Y2Vla3tzZ3N3Z2gddurI9GBTORSKDWItSuKmtAdKykkylVF5dQiQICW2NxZWtvbXPvcHdl0B2i0XFgwOujelqXBA7NYLOsZKiG5eTLtWa93R3OpstrayvrW9PFanNyuOOwqIUJCRHSCIBVVHJ2Z6rSmUKlWCqVKo1Grdvt9Mf97mgwGPZanXY561hCHN7OqC/qVxRZZshEvlyVvZGgkoO33WZpwXRSqClZcMu7QG+RxocswzKJhyJolggpVgksJ0BCAmuZgHgPvw0YjCglw8qqghz2TMOdOFLhGsAa1jV4b4EHm2YGQBZNEGVObk4h6/Y5o9Kzc2I3jI4e0i4lRr+AfmCjgnzaST9BafgaqK3ruojerrTtFHQxRUUYDsdpnueAAcfi3lNzar1k26aimY4dVm1gigKaTQ9GcZthcNRAhnwhcEJUsxpHQQ4Dr0ZkWAJZL8SsNK8Wskl0yK0LZDyGxXBOSfFirp0vpCixWChZGFUom7oE3JOMRuKyZTDpcSevKxqeGvX0xWE7A3/T6eQVKY4jJdqwzsazZmcy0I2UzEhp00viKg25im6hF1IoZmBxVOpFy26sb1eNBK8nF/NmTqmNKrnKYjYJqZidNGVeiMz7fEhXkRNdRYEgISFfC6SCg2P+YChIcJzIm6aywCfVAJaAFwfhxxv2RERWahR5yqf0jaxChQKirQr+EBb2k2zYzi0YEy2Uz9RX+2sbm8vFSrHXXV6bLm8MN0eru5trGp0sCgz/FB8LCpJDavkGsLqV1lwwSjARiidRmRIJl/cm7c5k85DBKyVBDBQbcUKMRSILBAuUQifVOCktymJQ0VWWgnzRpBidl12NV5nRZVVFYjI5g3bMRjtbzVe68bRdKGQavfp7z6e/u7c5G7XbW3vC3rWd6bnudLUxw2nIcDP1t//mCzU92NNbL6xcUIOdvXM8TgndzcICXy2O3/s//sy2m+LZyIv29J/8s/7gglAMVZbqt/7qT2d52Eef/6+fbH1dfftn9z/84PaDGzfffffTXyatQjqVL9QTUsp0KsiuGQ0UNBabjWbVtlgqbVGkVMisLVkapVjjQVJnU/lqdnFYX18ejVEX1nQZyXGMxm4PdLvVanTShZJBpbISkzSq3ec+vXfn/r3bN9+6devG2zduvHn16pWXnznfK1mVptCwo7CPpeThlkKIWb7AWRQnbHQykmBlO0s/urazcW4/s/Pa5a3V6Y/efPjmj88fHRwg9D1w678nALy17nogra9srGwuDautSk1avFZ3UsPJ6N0vP33/5sN791wCfOuGy3/fun7tDVQD/slrr57cUBvW81d+/Nyzly/vXb5weCIDfeFEkfIJDCMFaHQGfSLEceEcMi48d4A+nds/vPjcK9feeufaYbX78r0brz33ykd333n3F189/gKxYHQU/ejnqCb82eef/+rzkzGkX3/9+Otvv/n2u7/3jz5SCq4Ej2pbSOlPlVSDxRi1UHUAiyEfSStKwbFrvekMsovt/e1GqlwppWQpk0no9qjURH4MyJRwqdNKNRoaEsoDAIp6w/6FyFw4GsI5NDjv80dIliZwJEUZigUIIu6fr7XLBjBFhgNSQ5MYg8cDmgV0nGGpSNiUGMZJizEW420Z9rzmSGJGYlVDl2HvychbFbXAxLFIbH5OSaBxENZtgQpHIxF4CH8kTstUJAjgbgrhONqwAhEOLHhdc78wT8QkIcYmU7JsWRZQPzT2KolIQ07VuFg4jANHj4bCyAEwhlqywnFMyqaTmvvoPINBYmCj6AD46w9DEBMSaTxsJfAYYDukBjQQBdUUI755Kp1V6QRLSrohxmIYpthpUzYRy9R1NKcDzC1v6flKrd5sduKM27oAACAASURBVFeQEiUkOnuHx83YGR/LR2g5wYVFKhD2z531zJ/yes+iqu+C60GIir0eNIS0ADz3zKkzZ07PnTk7d+qHQJBR+Reh74JvAQlkLZz1z81xGdU0rVTasU1DNpGJLjBvZAKbBCqIYrsDnBWekmEkLY5DPcY8C3GCh+wBGPB0ZYogeLK+tbYC1HcDtT2srUDqub0NQLzZH+RQMo8GdBQRIqIKAGxaTgawFBkqjPvjtWFntHqwurl3sLs27iOzwCU0Rr48LCPNLQbJLXKSpmoJO1dC3r7N9nB5trG+vgZ7a1zvbm7kYJcKPAk8jmUoJMaGBpYtVL7OFKsFWJUAwJX2YKneHg17QIH7w+VePptN8WGvLxiKcrgru0wYpXLBksJxrZg3RVSASMoU0H35BIAVVOIAfkhFQ1Gc5DXUiIUAWHbPWCCz4t3eK1hfyHlQ0XmgwmpCR/PkCctKoEY0Be7qqKSbzeULeTTplXGx1r3lc6j1Kptxu78c138JANh20AkzYrvfN6U7J81hCJ+RZmgWfZHNA5HOOal0CcAqHKNwHBdojvacglUdmXsqnqkVYFdKpt2MS+mELIps3M+GolFLJZmI2/0P7J2UlazBUSxJcRDvOBYHAMawVEZUC4WUnc/CxkNtVrE4pyYVpbJULacpoVwopkgqV7E0hQM2Go/hYsJgAHiLuqjEE/2etjjp5ASWtheLmojhQX9gIaILWMm011dIvFBWnEJigYjJBPLWUi142cWy45SqpUalUMi21zru8FsFqGqut5SrtnMp86T5KoYLsXk/Ml2kWFXAcO/ZIK5Cig7vCI9RdMgfWogxpEAKKT3oyykhQrdEeEnxWMDjoXk6V00oOLvkpBNUPMhlFM4PAcAbJsJ0laIsTS4sUbX10fLedr1eGo2QrvHu8s50vLu6voxzqUzQ9PACKWKiqgIAd5uz1lw4GCdJBpIwjtcSqqz1V4GDzPYS/lJf1sRsnWch3Y6HwlgoHtHDQoTQhxrnFzVY4ZAzJmhaRQxYYHmeVCQEwAoCYFsqd/LVUrURh/c6LTvVyhvb6X/92dJgNh1sbHJHtw5WLj+7NF4qMawuojGk//hzqzHqsnsXj4pBZ2+vPm9VRpN98ZRcc7rv/Yffpehl+an4ldLkd/+unjmXysRLveqNf/nn3fbxxvYf/ptPt75r3Pz5/Q8/efju7esPP/jkM8coOqlcoZEQrbTZLJcq9RMAXmy0m3aCIdIOgQm55Kyf0EnZGI7SKp8q1bL1cWN1eTxZ/t6RcDQcPgHgZqtvNnIKlU9zgCCd0e2f3rl57+7NG2/dvIHUoN+8+vJrV56dNh1YUvmmyCcUxxqucgxvK6mEzXJEc9M2REWvtn90bX16aTV/4a3t7dnKi2/eeuPy1s45pE91uL9/AsAQf1wA3kEmDGubG8N+q1Mp2sm3p0ylud67/tv3Ht5/+PAJ/t58G8lRv/3WdVcI2p0Evuoi8Esvv/zClSsvPHt5+/jgmUuXn0HwiqD33PmLF10UBrqLasDnn5gynHf7oY8O3Amlw8Nzu89de+nG3ZtPN5rn33v/J1deuv/ug/sff/X1L7/48tEXnwHq/uKzL7/47HMA4S+++goB8NePHz/+5ptvvvvt3/nTC1oaAIyT01lTFFAzKHJ9UTKVQkpVzRSfSBmWlc40x64t4e7ByCpWKmmRyGQh2e/VSpOl4bAH0a7dXkw2mjqSycWwaDQQhhzYFwkHMY4IBUN+FLAg2w5HgnPBOPBSIrDQbBcSqiqwAuAV/IjBIz49lVB5iibDflNl2VwWNiwp2jLDM6aDTHM1CPIyhHhZZIEGEZBqYlE84JEN0T2TxmMEG41Fox4g07E4BfTUx7GshnsIAYgKF/d7PIFINBIjCCEWlYUwk0oBAzYMK4EAWAMA1uDPI8ejMAEAHIuE/EhxGsk6B6MxLpVMIdEiBR6co3BVZ4kwsN+QLxSPCYpDRQyVisVYgHBFwCHY8RAwFqJWxpTFNB3BGJ6OknRMyWV0OSUoiZP5E0tNOQoj6qX+bG0ZsHdt+2BnfTrY3G+QvggTJ0hWAr4eDvkX3J6qSHABfXLlNhY8voDXMweAPHfmqTnv/CnAX+/p02d+eOr0mTOoJ2t+/qwPgBvQ2nPWR5O6oVvugW06lcwVTpQdilngqelcMZdDZCttwxdJIKEAI8iUQXIZMMsK8g8W+9OVlRXUL7O9vorQd3d7fdofbbtDALD2u/08wKGpCajbiOMlXgAATkJe0WgCkk5nQC8mw+Foc21rb393YwqQPFjq9Pr9WXexXU2quiqyFEmLyAgiBf+qXGvU6t3R8tpsAwB/Y+9gsDxMKypSbiPdkR9Js0xNRlgHSYWdLebKVaQkUF3sd+rt4aDb7/Z6o9XlRqdkMHh04ZSH0DkZDXszyQoAsJLMGtmsYicdU2YIjKAV4O2ovUpQIL3CkQ0WhrSuXCcKICoqR2Nx4JtA08l4FMCMZoEZA3wLmshqFqxLM5kE7qvL8IxQZ1XBhV503pxFFDj3PQN+ctTs2CcAjNQ/Tyiuc9JtlTr5gct9UX90xkZOE07m5LtOKpUDuM7SphaiGAyP8bGzczE2dDbiDXpDiWbDyViCpLQ4JmPJvCSSAWCrmOyQfBySP9QVQcZFIW3BbqEoWsXRNF0MC0aiZkY1KpVUspAHtkrhSKuOUeDdrCy162mMr+fzNk1l4Y1C8tHoMJtXNdoYjcppWSW05qLSWesWBJI0WvWkShDBYMATV7hoTtT3ZmJAK+cSKSVAhzkkkgZrP5VK5ou5Qr1RbDQ63Vx2MFBKZaVQMLJOd1DJ16u6iOTK4dJghCGHQ+GQD/azKmLxkDfgY3iVF1hRgBQoBgAchbSIpuwcOW9bFCZCuoHFo/RCMBDhCL7iyHw8X9PSLB6ibIWNLARifm+UCjdsDwUJ6ThurHbH63tLrexoY9waTzdhnQ/P7y5v2UGnKPJ+XIpS0aDCZ+vtQXez4yODVIzGMVZx3cL0ZLPdXp6NVx0PledlOs7HgwuB0LxvzrMQj2sBHsPMDZv3SwmkYwq7iaVlErlpuEpYioFKYAk0ByxWe5BGNsuYZucnrY3NxddXiv/s3cFwdWcw21LOX93avvB8q7NSEShD5rO123/9ab6Uw/yHz4wXvEtbM2+s1Ri1jqVTetNefO+v/5HmX7U9oY3C5C//bZvYWMwRpX795r/4J93tc4PdX/3bT9ce1a5/+s7Dj999eO/6ux9+8nlOL2VS2ULTFDVbrpZRcaBSBU5Qr7UWU7CBUnmK5AvJ6cQyCMnojbOykChVM+VRdXWG5n+ns+UnTVjDfnep04bseclspgS2lOC0lNzb/PjhzVv37ty4CQT4xs2bb73+6ouv/viokU+XLauVElVNT7d29QiVQM3hWZorbDtJQdXt8sXrW1vnK92nX9k5WNq7/sa1188fIUPegwvnDvf29vf3d5EBMLptbiMA3tzYXF/qdlqOnbi6L2Xbs+WXvn3v/ffefffu3Xv33rl9MoIEtxMhSgTAr6EiMGrDuvryledfePqw07+2uX98bh/pPyMFDheA4e7x+YsXjs89mUFCAOyWh5Fm1kkxeO/whVduXHvn3o9a1cvvf/zG/vV77z98/xePvnr8Fep6/uKLX37ufgIAfuQCMPz/GDjwb3796//6vx1oWaCUYiKbTUA+j+glbE+gwBldN9OwXU3eSJolRIFX1zf31+xsqZLR6WwmYanFVmnSR7PAnaXFxSYCYA6pxcaDBAGbZt7nCQRJAfcDf/NHaJHDAK/CnggewmGPLtTq2YSui5wISTUTD+ER/4KeNmQOADjmMXVeKBUVWiKFpMwIhOUIWtrUU4DQEjxH2HHAnJEmTzAehuWtAE8jiVgIADgOABzzeTGALswbAHSXovMkxQgcEfbO+yJAmnGalWJRjQ+xtgZsT7Mgrrk1YCQFLXEchWERPB5GM07hGI6f1HKjcQBgR9fdcSWBDWAJ2h/2zMdDc0HgC6SkRLgsGw3HBTT6KaKDShk4tzdupiGFhJDA8WScSikYALCpQbhL2mi4wkgbilN1BLs9RT3Gk82tw4vn9nY216c2vDIaZdI8w/FhOjjvWTgzF6axkHfu7Py8K3mFRpE8SHlj7rT3h2cXTs37T506dWZh/szp06fPzp0+M7cw7wkAGwayfOa0AfQ9qSDbX4ju2Wo+k8s62TLwKSvp5ApJVAAGdpxK2ZYBaYmNxBoESVRc9z9J+kGn2+0DHA5ma+vIaXNjc2d3d33QX93ZP9zf291a7w+LhqYmTSQ3AIRWFYCIJSyAUsiimwDeMyCk09UJcOid/Z216fJw2G0ttpeWNiadWiGt0MjHADFg0zBShWqtXG+3Oyjnm07XN6f92dH6ypIpKjxKz3iepTD0m7IgaToapUxnC1lIC5GNWrvT6U/67V53OGrXOoN2t+7IHB2Z9zMGOhxXUeO6UwPozQGvJw0J6W0wDEWgcSs0BsWLFCo9YAQDAVORkAwY0reikOWgAA/s2ipwkqv4hZrKEWe3LAP5RyEJsEQKFXwLBZTcZE9kNdDNxWB3ygiuvQvD6d8DsOM2YjvOyXdc/E27I8GuSFnWTmXyLmS7h9VJG77I2UKKinAcEfdH474go5Ee2hsOLOCFViGTlFm2nKLS6QTQexbWb5Sk8u6QMqQNSHVd5mwbpasEoVIij/QzA6GgnjVTlZqdQH3GIhmLwD+j4OJSudZS3YnT1UzOYXCnZisKh1qp4xijGLTSn9RygspotbbZWO0UBILUmk1bJXF/yOPFJCmWV7MbsyIRVhuFFBFkcJqRZElGJz+ZQrFYbtbyzebSqJ5ttjQllygBTFfGi8VK3tYl95fyBSamGXGvBxZyBNYIEfb7/PO4bCBxUA55uASD/nAc40VSb3JhOiNGcSPBobmxs4FwFO4USzwTNfpmRoj7wwKEiaA/HvMERX+m6JEhoOi0NFhbW1obNJOD3eXGcLKyvrIxPrc1no1Z2qoqUc6A9D3MCfnF9mSy3ZinY2KEQYJyCrLrUDPVemu8PNs1cV8kGFyIE2Hf3Pz8U3PBUDBOqFERiyS2AIBlnWNEEW0nTuckZMChyrSmoGGERCJnMBmj2bedaqeC6dn8pLa+1X57q/MPbvxos3u8trYlnXv+ysW93bXK4ZtSVJXFbPXW3/xhjg4/Rfx423t6fnCOPIUvVga1Y+Ws3k73Pv5Pf78Y6rZoT8Wa/ff/fDbXHdai+VbzrX/6592nzw0OgQFvfFl74+N37n8E5PDt9z769POMXs7a2UIrKSopJVfOFcsuADcatWojZfJYIsORTCE5mSUThKS1xwVFTlRq2eKkitSvxidGDPB5NHBrwO3W4mLJLuusUpREeIm9H/3snVvv3Lt96x3EQm/deOPVl1987lK/kioUpVaJsSU9Uzsox5EKoc2oBKcctkzA31R1/cXVi7vlteeehyDw7Gtv3n3l+PDw+OJ51PkEYQduu79H4J2TMaTZoFfqQkJ7+SUu1V8fPv/5hx89ePfT23fdCjCi3yeGiIC/b7ha0ADBbhn4pasvvfTCS+dXh69/1Dj//P6zxyes9wn5vXARATIaRXIB+Nj1Z3AB2TUIRp/3Di6+8sbN2++83C2ev/P21eeu3vv4w4effvP4K9Rx9eUXnwP6fvnoSyDBSIryq68+fwwADAT429/+rX/wG8dAfuhSMpcCFoCchWQ+RDrNopWwzKSY0HhLNrKLo9nK6tr69lbZLpRzFms7ZspKd0pdNIPUbXeaiw2r3tBZ2BU0HozjgWD4TGAhEGZEIhSK+PxRWmAxJM3ojWIBjIKFWqnmkzpEUZFHzSGheNDvNR0DzfhS8QXLEKRaRaYlgrMkimWSliCk05ZrGS8hs1WgmCRBROOeYMArJTUB2aOG/QQdxmPh+VjAF8doCffFgc3LuJ+KkyyN3Ns8kUgYzSEpcczgwoJtJNOWnIC/ayBrO1njZIlH+xdgPBKPhiIR4KAEUusLRTEeABh5vqIUhfZGlNhcYN5DhgKqSYTn6QiX4lERWkL91KLEUECAcX8wIpsqFQjjhKyIgpJPMgYa7ER8M5UEsEnkHbMybOilVrNUaba7i53u0lJvvDosY3MLQZIORnmDYRhCiXqCvlNzcWDekbk5r/eMK/A87/H7FubmPXOnF3741NypU755b9R/as7nQTrQZwGAFxZ8yCjp7ILvKSlpGDndNZxPZ7PFNLIizJRRXE/ZkAmY8BHNtyRT6ERe0RUeeK/EKhLCJYH7wXDQafVmqxN0EA231dWN3aPDlcHyxt7h3s7eztpoVDR0YNiobiwjPTEtmTatbKHW6bZbvcl0ZTLuTTZXJpvrm7vbs8kMSKoLwO1JP2s5FuNKR8G/MwwzXahUq83eYIjgd3W6sr0xGixvbw5MEfglAmCOowk0KQVvGFK4SKWdfCmP+r3qqOe6N1rut/utwXgxX1msVWoFhYxjcU9UgoQRw2ILEdaslJ1iSUCd1DyJJJZ5Waco5KLIsQTkgUB+JQ1lHkjnW+DQyXOME0SRw4NekoHnCU+WfaIBjcbYFFk3WF7WTKdQyZfKBRdyEfq6Z9AIiR3nBIYzqNabcfXHnmDqSWX39yXh7EnhF5UDUujs2c6kUpksup856YZ2culMydCMcIymyOiCh1EkLB6YC5Mhz0Iw0ajlEobAJeucmrIVXhGwMMJLwEQkW4M6ngVC41I27FIBxyROgGyZoEKhgJKz7UozZ9l2ygKMxQgqSsELIjPNVrVAkeVcPsdiqZqtqkjzGjYErdks3xrXIS9mlHo/XZh1yjJJa/XFtEQAGM3Px0QjmneSvc084wnqBSsQRCLeyAFZSZgGujDFaqXYWGz2lmr1UiaayCXTyVS7X87nrKSFWr7hAhbsGG8xEb836AvRii7GfAGPN6ogMXgWycHTEX8wGKM4jZJbBh50VCKiJDg6Gg96FzwxhohbrQRNMu2iLcMbG1UUgfBHyICXi1F1mi8WDSWT7W6MuuuTamq8udLvLq9sbq6ubMzG0416gK1kxULWE+dxXiy329PVncI8HucgjxAhzVRSjqnl6p2l7njznKEl+HA8mMqQNBcNBgLBGBaIyxiLRc1VjQmKGuQeoqxrLK0waCAcSVGiMSTdTBgZhXSsejftlDs1LAUrWcy3Ks8W+v/TveP1xR8dH+6JF69eu3S0tVHf/iQZFmU+V33n//ws5V84rY+Zp85Ee9VTXrZaXenui2fMtjP+6X/+4yPNmiihqr7xF/9i9anEqB3IFJtv/tM/7T5/MD782V/9bPuL5hufPnj40Qfv37v1/od/8IWTqOTsTL5lCWoyYZULJaQqh0yBG+WGbYlxzZEwvGANV5IWKUr1UVlXtUotV5xWx2j4d4SkOGaT8WQ0APxttdqtVitVdmQmmWMUU60M3v7ozp37d2/duXv7zq3bt64D2L309HYpnymls11DtJV0a2sVw9UUL+kJnuB6Yyup8oVG6ycHl2btteuXV/dWr1x968YLh8vHB3sHxxeOdg8PXRvyEwDegv9RDXhrfdYdlWqpdHbnpVSpMxlf/NUv7n/84L07P7199527d1ABGElxvf32NSSF6foBIwaMbleuvvTKi6/ud/duX1Y2f7x16fc60Ij+AhV+MpfkmjGc9EGfqEIjMY4j9+729tHVt67fev/FXnP6widXX3zt/ocPP/jDL7786ivAYLcb+tHjR79yO7C+gq8fP0aN0N9+/fe//u53byWcJACfkoRkh1d1QdZlPKZBlAK6aSeQaq2kp4rt8QwAeG23lyqWChYt2xBfs51qbdLrjTqdbqvVtKo1lWHQno5CNugNzQf8wSjNEbFY2OsLkyyDo0NdXzTqxdh4OFiuV20zqYnIP8eVugj6zYyO+DAV9yZ1TqxXJVok+JRMkEJKkwg7ayG3eGQrA5yEIlAFGPOFgh7ehowYaGY0TJIQcYJzWDQYjeASGYgB9ZWJKAcfIazEIkE01QthSMEIgw5LwPqSlqIn4WmgnFTWGNT6yyA/YEDcSAAgGCORMRIeisT5pGkbpo5OmGkSC+JUBP4cRcr5LBsEyp9Q/f4gasrREgk5weIUFfF6w2Eg934P/AUGOR3aJp8qpLMQk9NWAsnwAwc2nZSRSOVKtVYtY+fLSaRnyIhswB+GwIhRhgMvlZOinoD31NkoQzKEBxAWABgJPyO5jfl51PN85vRZSL1j1aYI7PeHT53MAM/7PN45pM7hC5xlNM3Knags2aiS6OTzQNVOxJaSQOJSbinShjumZSqi69EjUk+ak/gfLI0m/R5Q0tXJaBl1PK6vru4crE9WlrcPtrf39zbGozykE6YsI+cBGS6CkrCBrhXrvXF/CQluzDZ63bWVEZpe2loerywvD7tLvcFgNOyUnaTKJhQ0dYvGitB8crna6PW7w/Fosrq5vbGOuis2x5aQUGQBYjjHczQa7TF0eIoq5FBOrljKZsoQL5rNEerK73cR+621O5VSIUmFAn5P1BtkDAW4zOmYBYG93KnqmJSSGFR7FgSGQgKTAkvEPf4QBpmHKtGwFAQRgJnEMZJXGBx4MSmo6DhAkjRXD0aFJ2FKqkrgrsMPYG+pCKQt62TzxXzuyfHzSQ9WAaExfM67J8j5jH1yEo0Ur/5Ljddxsjl0QHEiDQLMNwuADL/uWJbLliFxAoacSBVFTQgio4a4zxMHBisSflYN+nFSh6CombIo9kQy4WicJDFhkg6HtWQcybuhs2MqItFJh2E4KQ4UVQCIgrUd8kn5dKrUrqTTpYypyjwRoaOUYqSpXKNRqQpYGV4QG7OqjgaQDVeMJikjJ9DVYSOjmIxUhZiw3m+oBCXVO45KkUHMOx/mE75khqwc8qH5U6fCNDw/nhZhcSCf8SRyA8mhmkG73up3moWyqGZTttjsdArwDHJ21m1Ky+bL4bjGhn2+2Lwnzmoq7MW5+QVe0WlREBWakFCzSZhlDUatFAlvyhAjgkwRUSJGLTwViYfiTL/EcNF82zI4OhgykhIXDNBhINGefnIh19Uoo7K82VrZWC1nV2ZrK6311ZXV3trKxnS0MZRpK231S16fNyYx+ebibGsvF0Hu5QTLEYppAT3JVGrNVhdyRI7q1OU0myz7SCPkjXgXcC5AJhWJpOwpT4eEJMfKvKCpHKOyyPoa1hGjq6gqZJkZhXKMQiubK7brZDpVLFiFdvUPJ5m/+3JvfenS5taedOGl/b0XDprjzoVKFEJdtvrgP34jnzoTUKmn5gk56T8TqS4WJv1dZc7p2OOH//dvrzcjE40eJ7b/4t8N5gOjTiCbbV37l38+eHG5t/+zf/8Hm580X//03Ycfvv/B3TvvffjzL9JWJQ8AvGjxummppUK5Vq7WaoDA9VorjQA4p+LxYnK4ZtuEIJSHVUOWCuVMfrk8nc2WJ+gUegUB8HgA+Lvo+n8bbVtiMg6hJYTu+L2Hd+7ev3Pjnbtv37xx8+a1V1965crlXjZRzRkDR7RFvTL8kYpTlilykkayvWWjICipRvXZzcvLrd23zm9urL9y7d71y/uHzxyfP0aU8+gAEHh3ZwcBMNKg3N4A+ru1tTru9xeddGJ2N2fUl5f3f/HxTz96+PG9B/fu3gXyfeuG2351DVkBuwD8k5+gNuirCIVf/MlLr7xwZaVQP/fqS4dHP/5e+xn5EV64dOnihUvuHJJrUoj6s46B/h7D1+59+HB8/tzu+f3LV27dvvfh601j86MP33z26rs//+S9X37x+PEjZID06LPPHn396FdAhr+E73zx9ddfPfrmN999/e0f/a2/+0f/8CIgsCIIipVFSgO0ZGkJnE6Xi2kFwEnULEbRE+lqbzKD1HBvJVkslVI0A6Qxm+81y6u9/hRYW7u9aFUqEk0zOIbHMS+2EPR7gqEIgZRoA15fCAcmgcfDgSAW8xFsKBAo1hoQtkwRYgPyXwn7/F49AzscQl7Eb2u00AAAlkgpAxGOMlWLyjhu14IOgY9B7SQExQTJUDziYVMEI/AMBBiKDLNUaJ6APROjZGzej0uQNscVJZGQKAD9AGTvwJ0lKUZoVFhJ2hqgr+VkTVXRdUVWeU0DDkyi5wmBye8CMABinAxHMTFl2SrqsdFEMs77/KrK0BrJJCyFDkc9kgbYjlxSRMlICAkOxwJzXjISRHbuoWCUAHxPpMoq7xTsXCGDLId0XRWRXoNE887SUn91e1wrZWspmox6A6GoLxgDAo7jisMylECFPL6FM/NhuMv6EKQiAax5b/CJ4uTpucAPFwx2gZyNVF9o7ofoF5ARoR9+PO+dn/Of9kqpdNpCxUZXc8ntywUIRorDSTTdYgLnQJrQwIEsw0B1bFeEkuWRrLEo/wCZ+03X1teXIUohWee9NSSEvrm9un/+ELVhLfcdI2maMlLhgEUElxIBfbrc7AwmSKV9NNxaXputbW5sHhxuosP25fFwOBoCPHfqeUt1LRwURUtoWiqTKZSLzT4S2JltobrH2sra1trayDIB/hATRUfBmq4iFsG7zsboOLOQL9YWW61upzcedTv9XrvRnY0aFTsl00TY6/fHfBFIJFi/N6Lka5VSu51VwixH8sB1GVEFKCLxaADeLUhUgN7CuwJvJI9yRgahdMwXxhlXTFBEs+Kqe+aM7CBoAY0fAWkvogHfzO/PmzPuIXQunz0xUch+D8Unh9EALQCl2VwmfXKzbTTu66RSJ5wYHUWfKFPamZMD6SdTwplMKldIpwST9nIMHVuALA3wkKdwmQ6HOCKU6OSFlAmpQRPnyypwejqKwe4iMjKFBSALBOIXASRI6QJkymFOMDIqYAkkl3TB0fKtvFMsOklJ5ONwMQhWy/HpymIeUpWcUymKhFbICmgQm6ZiQU7LaWp5u5FW4XoURvn0eFxL4KRYHaVTFBcKB30RSQ+pBbG3RZyaO3v61PwCFud5gF/ggYk0ZBSZWK8v8wAAIABJREFUfLFSqRarddS43iznIS0xUouTEiqJZNFJvovBNWNeVULBs9H5OZxgTcwfmgt4fFbColnIgwWeCgVD8M6qGlUoK14AskhIFTAxTlNY0E/JLN4ZAxPX+2ZSprEQnYe02x+N+mMakc4EMl0zYPVGk8lgfdSypxsrK+3J9srabGO6vT6erC5GpZw9qizEsJCgQ3oyG68thskIQ6NRRSFhyMm8Xe6h2vDGOYEsFHiDMKthTGH8MQgdRDCuhRVPzFgRxLChQlRRBEWhiAQtE665JS6rlmUohl7QWFutdJKFUqUTsi1n1jrcKH87Lbx2aXs0XDp65px6/NyPnntto7/eqikko1L59s3/5zPyNDYtxc6IO43waW+vU8wtTw/lM5lObvThf/r61S42tlLnrM2//OfTp8K5SaCWqV37Z/94ZyjvrP38rz5b+2XtzY9uPfzpex/dv/veB7/60lQhubOr1YQsm2m9UKxVyrV6tVypViutnCkRUlYjyVy6sZOFfaFVVvO6nMwAfxo10cHz2O3QHCOztGF7sdnvtbrNWqqmC3xJoqxkYrD3yd0779wFBLx58+3bt6699upLz18cdmwA/GZWMaVErvhyLwJZVcLQRZJntnIFSs3UmlvnLnbbz1w9v7p6/Mr9N5+/dHx0zhXHODpCKpR7B/s72ztPKPDWznR9b31trT/qNLLZxu1yora0OXnw1cP333t4796DB/dv30YilOgI+sZb19Dx87U3X3/9jTd+8vrVV169+trVV1558ZXXXnz28lFmfPnZ43MXj4+evnR0/uLx4UX3duH8k5ng4+MTZY7jw6MTo8Jjt0n6+Ojg3MXzezsXXrp746dvHG8uTu9+cufHVz/6+MH7H//q8a8BbB9/8dmXiPiiEvAXiAM/+uobIMDffP3H3/3Rd//wv2patk4xklqxBE7RZcVSVZKvLOYcSzZSmmoompXIDKaTzfWD9c1CIlPKyWgBWsV6pzTo9oHGtFtLDaNW12jIjhmgmuFQAHnlBYOYRscD4VgwhBEUEYad6UFH0Ew0Esp0GmlHZymOJWMMzuJhr8eyNBHyS9IfNnWabzdURmHZlBJnmYwgxkoWvEOoxKrrwJpx5MkGQBkJ+BhZFyAO0fEQ4B6yDgyEfRGg4lggRrLAYoLoVFTh4qHgQjBMkzFBpyK8EaMkx0gZaUNGM4fAdhSJQQKCyI8QXgGw4CDQ6whBYpEwGQzimp3IAQfTgbPzEWxBclIyHwnTCYESsVCMoHCcUxiOQxNSfBwjsIjfH/D6Y0QsCvf8NJ8w8xldSQGr0S1k4+5qDIu6lcrWliAKrG8tOZlCKeGDF8CGwhgei0e9uJRIAwDzuM9zKnj2bJznKD56xuvxzXsD82cXfP75M2fmzs6d9Zw5NehhvvxaiisuRk7KwMiHwQNI7RaBF+QMGi9F55hAqvLlwgk/c4CwoZifRDOnqSSSPkgmTSQfIQkcIDDJixzHs/gPev1eb7CMOuE3V5anK6ub60gCHXki7ezsH2xNZsMMmoBF9nyooUCVVIQemWqjtYQsKyez6dpsurm+t7q2e7Q9HfVgwyIV8dG4367lkxIjC66BgWFqppMt1cqFxtIIkurlVeTgMBn013YmogAZC49QlGGQlonr5JdEQiLpTAFZGJQbS/1RH5ksLdUXe0ud8XKnYhtMLBb2BwORhYhhJRSSUADfs6qf1G2RoTkZqaqg9uqY1xuE1aILNCtrPIlkqTkMo2SGY2OxeIhlgXgjv1dEvSGZ0lV0EC3JFoKKPOA/slDIIebr3vLZJwDs0l74+KQJOvP9JDDiuyeo6px8EwEwUiV7cjCdfnIWfQK+T9ql4ddTmZxjKgkswlEAwCGASYZi0aCYwAgMpuUaVsrUEskmx+UMuFhULErGMTxpUmw0CskxQ2OcpDgaz5MsJqtaUud5Do9hDPAcp5F3SuWcrYhcFLYjwagZWqs0EQAjTwgBV/M5QRUZkiIBS+W0wGRXOxldFLncsGT1ho0UTQu5JcdimQhs86BgxLR8tL4rnvV5vac9PgIHAJY0JN/tJNHrLzUaxfIi0kMblCH5LwMNXGplkpCcoHGsrJunFDMR1qQC/qBvPuhK/OD+wMICvAZJEYAXoG71UCAM7yBjVK1QNG2HFgR4N935iDCtqVRp1eIItpGzkgzpJRyTBbyOBWMyybRIypLV8vrqaH2lN2ikJmurW7PhbDxbXp+uru8tT2cJf9LsdxaCnlhSr7aawICHQTLKngzyGppsZZ3SUqM97K8faXy1xClRLReLE0zIFwzE8GBUDsBqSk4pJoyESElFVIC0G6zOqxonoRqwphhqQsspTMqsdNLlcnUJT2Qq7Xpl0r/TWLr6zI+XLh0t7x3QT7/w4qUrR1fOV6ZOhFS4XOve3/yKo+vnE/PUwb4TPKMfNCvF5fGBeCrTzAw//JvHr3ej1Wz/lrP8F381mvNz3VAlV7v+P//pdpne3vzkX3+5/ovS6x/defej+w8fvnPv4a++TMjpbMau1C1NSiSNbKEMT6VWqdRq1SoAsAwAbNKE4zT3CpZMi/mVSlJNObVqqldB+IumkFZmywC/gL3tVq+z2AM6X9IYMwfLRHVGr3x89/ZtNIMLAHj7xk9efvnF53Y6VmasZBd1PCU71fVzCm2pSVjZPMdPczUpmbNLW5cutAfPP3u4uvXMtQfXnzs8uHDpeP8IWQHC7WBvb39ve2vnhAFvba3tbG7uTTujQSdt19+sW7Xe/uT2Fw9++u67D+7evX//7p0nThCoBRoI8JtvXnc/vv76a6+6AHz15VdffemlF59d3zq+dASPAph64fK5w8sHh+eQAscJ/qIj6CczSa5FsGsQjBjw0cEFxMkPj45fvXP9J3ffmNV33v7w2guv333v3Y9+9oePvv31o18/+hwA+At0Iv3ll48efwX/ffPttwDNf/zdb3/z9/7kQz1jKLwgWQ5SW3SNw0k8Wa+WZM0yDTOBjNJTzdF4Ntva2KongMOpjGwmTKfaKw17o+5gqdPqNMxaVSZoEqfi0ShsQWSZF46SCiBRyOcJEgzqGoadGYl5o0ANg4WlUhI1NMNyBhZMxSJ+j54xVZ5iyKDfgJSrVhIoiebSapwSEpIUzyWQd6orGSkAzpME0rgNRn0LlITEZTgyGqZiMSwcCPiC/gjN0HF/jOYlBQurMrLCcQ1JIwQRFxNMDMIDKdq6pac1wUklTV7S4a8oMlIJImIYTsThlwnIJGJI7wPpy8IuMU3kOi+LQpyNqToyLIrxhmrYYigUikEaoCH9K4omiRAFryGGBcLIkzAY9AV8JGelinkV0kuLJ0UBwjmDxYlkplgG+lZbWmoPJk00FMwFAnSciIUxGoMkBk0vxQlais0Bp5+bx0iWFLmABx03e86eXvAFvWjc9+zcD+cWd3PzHttQ88OZtXDq7BkkAo3KwwsLAMBzC/Nc0i0kusr+7omniwNIcMmGV4+Eh90ob6FjcQ3pGAuQSfGu8yMnSD9AnleD5dXVjf2t2epseWO6urO5fbS1ijohDg/XBwiANeCxrnWQJCMATgFY1KuL6Jx5trG2Ol0dAV/eXN063JmN3dG1brs7HvQ7tYIj4cjbQBJV09QMJ1eu5PLN3mh52BvOlpdXVqdwZ20sq6aGvHl5pEcMiYvpFmFlpL+cLuYQ3JWa3WZrsdlbHqPj5+541G4UbTYSjYYip6NxzhBZRmFQ+VHzxyMkz2OsziEbYlnAgC9F0TE0J6JTdIiMLIHhJK8gwfEYLStI+APdJGSiDksQHQug+jMqZVYqJXSYAEBbKP1/ABidPefdWwGNA7uH0u7ZM8Lc70UoTxQ63Dowkt54Mpx00gntCj9n3S4tdx4JVQmcrJrQgzRDMNGFMI06wiGFjYdQaz6QiEbetoyEXUgwyRTsaMh5kf6NksGZmAejI+jYSBXTMiPTdBRwIKVQNEeEI7htiXYtly1V8hnIcmIYi2GsURC1SqPQsIh0LluUCLVQTiBHZYIgSBzXaSw9WsrBxqTTg5rR6S9mOYpJLxYMNHAf8vg5g5QyZGWLg4TRe8YXpim42KLuCkHbkHE4+Vq9VFnqduGNypNWoWYnWoOcZRdRORLVgN0zgyrQR97rn/N65jCeFkk85PEgqyVREXg9AblhCJL6uGyIVKVI+q0S7mUsi0Ktk5EwbHRSmdZxAS8uWjmR9URNW476wtFwlFEiS1Iss7Q12Zo2x7MWbL7p2sr6CrC42fLmxsr0YHWyOYywUrEyHw9zCbPV7oz29oYBMsYxLMXwuuG2H+Sa1eagP9uT2GqZU+MJhyCDDLUQDmNUOK4EBIK011guKkLQoDRZN0TGYFVeklhBojRYTgiCswDARrGVLpbKi7FE2rF1vbH0sLT06evnWuf2O9NN8vwzhxfuvXBhtvb3Wn5aEjLNB3/9mSD1L6v85tal/BnjcDVXLY+HB8LZTD01/OivH73VUW21fK+0/Gf/frSw4G1EC8XK9f/xz7YUbGP3g3/1ePXnldc/vPPuB+88+PD+3fufPTJkVN0o1y0D4g3EKQhJlUq5Wq//HoCTNGZnmntlQ6TV8lo9oSbT1UqyU3RdwseT5ScA3F3sdjrNxUHLrDkqWUwxuiOWR/ffu38HEBCR0Ju3rr985eXnLy3VEk5dbSVVw9FLlacdTLRMR+YVkW+08zqXLgyHL11udJ99dX+yc+XWnbcuH+8fILw7RPO/+/uo9XPPFaHccQkwBKLt9c1Ra1TNOPrrT4v56uH49a8/+Pjhw4cAwPfu3n4HITAkAG+5LVhvXvv/AzB8eun5F1969uVzu/AgF54GXL146ejw6aMT/D2R40Da0OhMGpWEn5SBj076oI8uHu4dHJ/b37n4/I9vvn/vrbXa7PVPbj/z8vs/ff+DP/j80dffffv4i0fuYTT68NVj1IL19a8Bf3/9x99997d/+w9/d17JA6wRCTtloP4CTjf4OJdpNFCTXhJ1CAP0ZdtwpVe3dwbJZCZvC4JpGelSv9wdTtp9yHraDbNakXG0xRF/dH17fKE4KUbCAdg0QVLgySiyGsWpME5EA8FyMwUxG8n7QeyIYZFoyCPnEQWmiMi8plFkvapQIsU7ahTXBV3AM/BU0BwQGhhBx5DIAD0ejvkWGBXYGot6pyhIQKPAgEPhOBCDmCfOiqoYjSUQZiP9gDgWxQlM1Ni4oEUAgI2E7qhMOm0lOMUA8HCFBhmkcklg0SiGysrIlRAAGQ9zEDMSbvSVuDiNCYzMhiIqXBjLJPyhMKGkMylUwUZzTASGNKRjWCgYjgSCSK+a4BNJJylkazIFe5GMRgmSRN5ItVqlVCrV6/Uu4m2VRQ6PQ2ZBReJUzB+M4oKiQUqtEfMB/9wpTxzSb5HzLwSDC0hm0hcK+72e+bNAgo31AmTdpFwGwrgYOHvijYTcGBYWkBTHwhyddPJAdu2khTh4Kv19zw8K9ykTKT8gaID3WgHwRea8SD0E9cfBy6GFH8A+G42nq6uz3Y3pxmy0sTyFVOwAdsDB8dHe9sbKuO9AZgLklxdkVAOWVNuCZdKotIazFWQVury6Pt1c2Tnc2NzfXl2ZLbWWRuNed9gddGuFjIZiM3KsNzXVyuQKuWSlOxkPlvorK9NlNP+0AlTZsjRXERIpdjCariPSjAgpwt9asQhQV24uVZuLjcbScLTUaIymrXKzU1Yx1JGAY/MhwzY1JqZXi4U0JIA4pRIUT0tWgsVjAZQ/IQFo14BQFkWawFFVg4R8kiQ5VeORma+myJrbg6BALDXtbAEiFdDeQiGXeQK0Ltt9Yt2LPhcKT3AYNWSh3qts9kQHK5N9MuTrziU94bzp/9Ka9aRLy5XDQj3Tme/HgtPpvGwrXpHE6PBCCFY9Mi0WomcoLC5C6pOvZFKWkTSzrOrAgqbpMEvHo1Re5hl/mInRJEXonCOzKkdHGVVNSmSMwXyhSC6jpWuF3AkACzhFxTFez2tGpVlqpqlkIVfVMAhrKc0FYByLxHQOz/SaOVNSSbu3aC31W3keJ9KLNU2OxVBBidFozmkMd7mzEVi8AYxmIMUXDN20LFT1zucz2XKz2m4t9SeTslgsl1P2oJdK5orZDDoxQPlKNueUbb8ohfzz88GFCPxrEgvO+4JhSaYoCZlrc1Q4FPWHIAsjMi3Zx5YUglBskqbIWMjvp0yOaExZCUv27JwhhAJiLkkEwuFIkLTCTqa4fm6tMdhYW5v0Z4t55IQ0no2WV5Y3d9dma8CGN/MBxrTnI6QkWo12s7ex1wnRGM+wNCxAw7AtPeVUyvV+f7LDkOUSpxF2FueDhAAPgVNRXAtJkWhqFfJ1DpCFVAGA4crTIsMAheZxRUZDFYaSUThbL7aRn0iVKNjWkjOo1v+gPPzvbowna93x2rK4e+n4+K2j0dqlf9uHqyE5tfv/+RtN7x8lxpcPJyS9sd9RquVh/5zgzdaTw4//ry9u1doJjLzamf7Z/zJZWPBVsHyleu0v/2KbVtd33/2XX09/3nzjg9sP37/3wU/ff3D/l7+UlVzBSRfqwOo11TaL+RLyBAYArtQAgBVIpEwSs7LVnRqEZ6O83tJlK10pJZZqg9HENQRGnkgIgVv9pXaj3a+aDZPngASraWNx5cN7D98BBEQgfPPG6y+++NKlrZpTzLLVGiUUpax9bgzJlK5rFC3QhXU+j6vFWf3NC+XlZ1/dmu5dfefuVeQA6B74nkP6V8jT5WQCaecJ/m5tr+9s9AbLnXwl+8wVodDqLr74xU/fff/9Bw8f3Lt3751bLv7fvHnDHUJCQljfH0G7VWDkyPDqi8+98PzF85PuZGVj//jw6afPoULvyTDS+fPfU+CL5+HbF5E05bFr2HCEoBi+4TozAAU+2jm8eevWz65vl0c3f3bz5Zfvf/Dppz/77JvffPv4y0dff/P4q69Q8Rfg9wkAP/7tb7/7zd/5zW//8R83LMfSSFVJ2ZqoKJxhKAyuVjo1W0w4EpNEHSdmZTSdznZ319JJeLMsQU8Y+eJSo7Y86gwGnSYC4LKG4gGNYyHAX+SXF4hiXCQWCgb8QVzgCDwcDnhieADQKRQolhTV0pHlHRVjgbhGwx7J0ZHTAoHN6ybLLDZMSiABgGOETcMKgOQeWbspyMqN55CPIY7HI3G/lzdF1Hsdi+FMHCMB2wF/cYpjop44J+pimEB2vyKAHgb/ERTOC3ScV8K0YgOLzymUk7EMAGCWk91ZUJ6M4/E4BN54CNkCh4M+r2/eExRSyYKZNJFNAUfiwVhEpudwC8k7SpEAwUk6KlIKkBcbAsXEYjwfDWGhADKGAQTwEajHTXE0l1vKwRDGq1auichRsVJr1Jvd6dryeLY5Xex1aVGio3DV/KFIlJYMkpUStC80d8rPcVHURBpdgFzF419YCEbCPlf1+Sw+0LxzChepTyEZHcTmvzcnRDMRZ+eRSRKXzuXTJlI4dPK5VNYB1uvkCkj3MJ11Uhl3DNWxkTyXoUkcybl6GjzLcCJQYfIH/RGyOoHNtrW+sjUbrK5ON7e2dzb21nePDnbg3rCXQSpqEs8hzx9ZFdVUIpHJ11ENeHnYrreXNja211a3zm1t7W2vTieDdns8HfV6nUG/lrVVlqQBPkTF0DQL9SI5tSWgyIPx2mxlFfB7trK+2nO9/FhkLwm0Twesdz0jUmnDcAq5YrFUqbeQtEev16rVW5OlFvCaYq3bTFIRuFS5nKSkLYnThEKvmIagYiYZkZITsigQ/gAwPhYNHQmaoUIOBRBDcyJPRKI4cruSEM673kaurxHCXwMABMFvwZ33Rc3OBReCc98D8JNPJ9PAcO/kyCGdPumPzqJT1szv1TnQwG/6963Q39eB/8s3kEfD978N1FBJC14JI8jAAhBhkuNoAGAfg5Ma8HK7Xs6kEqZZEoVMUhYZNkqjxBQVZqMLOA2vCzeETEJ2j/ENQAA2zpH+WCyXM5x6MVeolLJAnAmGImCXWJJQa1YWc1yiWGxoYTyZ1xMKi46WwiSfVOnyqJ41RYNILbWTnV6rwGNYutXU1BjywQ5QMktnOt0d/mzE55sPwENzkDwZupW0kNtErphL51vNZq3TH44bVqWYdSr9GhrpdgpFNMzlFkmcdBEnFC4YBBT3MJLEU1HkSUIrRFxUGc4SmFg46g+i9FltpaJBOwWvOA9vKh4Jh/1xI0GbW2kmxnZyti3SXtLJsMANYgFCwpjO3tH6bLE12d0aTqeN3GR9a3UKADwZTrfXdle314fLyxhu5uJnwpyh59vlweygE+Zw1IEtMIqip0zdzlTqjf5oss/TiAHDFQqLsTCHfICpCKYGBZJIjTg2xssCh4m8DJFDoAXBdTghNEWH9W6qjsKllHIv6TRaJTyTtNe7G/Xym/by37rYm15ujS+tiQc/unjhwvLK8fS/qYYSgpBr3P+Pn6m5pTq5/fQxM1/YX9bYennQO2b9uaY1+tl/+Oyd7DDBYxeGo9/965W5IFshs7XKm7/7y221s77z4F89nvxi8fX377z7/r2PPvjwvXs/+ymtZfN2Ot9AsU1JGznUBl0pQz5QAgZsqZSY1knSyhe2W7ZGSs50kFKTTrWgd1v98XQydoeA0W046PQ7rdbSUiZbVelEWhITyUzn4if3HrwDAHjnzq2bb1+7+vIrL+x161Yuq5QV3pCT2uSIoSFfVxhFJ5T1hhlX7f7K7rnq7NUrG6vH1+6/9cqPdy8e7e6fv3T+wAXgvd0dxH9P4NfF382t9a1ZZzguZ7XnrqasxfWV8Td/8P67734EAHwfAPgmOgFHBPz/Jes9mCQ5jyxBHCGqKit1ZkSGzBAZOiIjUmutZVVladFdLSAJEJIAiBYQLdCNbiiCAAGSQxKyG6CYmRuzWbOxEXc2HO7amZ3dzNntD5jdPe7Zmd2fOP+iGuTYbKBRnSW6MjMiPn/+/HN/7+IJAF/8EwCfaHE8Bxz4e08+ejioQ6gar29sH59B27one73HZ1EN+jxC4IfPHrtOSOfP3dsPds2Cz509debc2dOnjs8dH+0+/uqVazev7dfGL3z01rnvvvnRu7d/8vkvvvgcEPfzz37x6eeAwp9+9hlA8aeff/H5Z19+evfrb3779a/+4V2plJYlIm46yonRuJygmFS35QgaMpQyE5Kspjrra3N4ywXTSRaSvGIY6Xyjm14bDMbDbqMFAFzUaSQDhceCQT8AsNfrCyFsDaz6/H5cYPEYQBEAsA9oaMiXziQMSdMlhgCyipFoQilhy2g0kcS9psUxtapK8wQqQbMOrfjDhYzrrYpEe1EFmqZiEQDgqNcTNyQ+zrJkLMYC6wx4fEE/MGGeCa1GWU4XQzTy6ZEYLIIBAANHR3rNnBiMK7apmzmRyji6ygIAswLyi0MNOUCACIqIIhtz4NNeNHvr41N2DonzaLrC8RS8WhZfkm2F51kqhEF2jzySaEE1FKCMOAkcOIYFIyG0AQzJiCdmptJorcm6ykCuwWgQalDBMlco11uddm++uTZb39rbOf3sKSB40SCkKsHgKsYICsL2mD/wkKc8SoVoTrGZB5YAWL0ry15/cHV52bOy/BCT9Ppph2Yq/Vx/UQ+jtpcHUCe0b2lp6cFl3+qDSwJEM8eyAQrsdDaNDIhMtyRt6pbjWCds7KQCbRqKizEqQLAkIVFKhrpvhCTXp7PZeLG52J4NZjsbu/t72xsHbkFof2dzOsxoSFaFR9odgigLig0AnK10u73heNRtlstr89352ub+9t4hAHhr3mt2R8NupzvsVx0Nzhga70nIOvDZpJWpVJrNRns67Xf7E0SCZ5PJ5kSUDFWgkWhVnKYhUEg62q1GVREnZboA3Gg2e83WcNyulFvddmc8btdbdZuO+D0rXsku5JSEZnB6EQirYtUbqWJOIYQYECWMoTVAf7ccA6BFEqyI9NuQmiklIKkW1ByGrBZkBU6MbiZTmWIhd9JVlS/ks9lCGTVd5YAP504Yr9sGfQ+HT5qy0MeTEST3+JM21snnSAAL7cN/24T1LRn+UxOWbZ8YKKWTmsUE+SiJe3zhGM0gv2Y6THIEBDNBNCo1xzQ0J6+xyaSCdENw1ISg2DiFPxSMYySLS4JtJWiWImhdtowEAEqQiCZTil0tZiFO5yQgZxQgsBDXZK7eKLdKvFSodI1gREsndFe6DgtSCVVnS1vjnMkbuNXpGq1uqwAM2Go1NJmgMFj7sQRP5pTkQrjft+T1+AmKZ3lO1JAGatoup518MVeodZrVTr8/qivZtFkeNtKZfDGTKhSTmRMAzubMshzmBK//O77gUlTkRCYSCnq8UZ6jGTQ0KXKxSMgXRMIsbLHArSo5IYLlFYgpGE4E/HGDI2e9OEkUqnpKFnwRJSviIR8eClMiXt7eXRxtj1qzzfHaol3oT3aRN/B8OJpsrh/sbGzuDef5KOfoqxFWtbLdynhy1A7FIa7E46huJwGZTzuFWq07mpxKsJUyrxJWISzSQQJyHoKJxgCAY7Tdl7gIp0lCDNWV4jRkkXICbWGwOoQyTU/KjsiYUqFvJqvtAipBQ3bWzV8sNN4GIv50r/TsMXH60d0nz62dOTP+Ry1q8FyueeO//1B21NXA448JD/nz5zv3s+3ioH8c82Za1ujD//rxtUy9XMC7zfXf/x/zZcKoEOlC5cI//cfNytHa9o1//uX8k8rzb117+9aV2++8//abH75LGXbWSmcbsmRA5qwic7GK24NVAgBOqrSQ1GjaLGT3hpZGyc5sktTsdLWg9tr96doUCVG688BIhaPfare7LbOSFaiMxqlJJdd95f3rryECfPXq669eeOn55589NyllC6ZcNihVF+Xso3aQtDQzyUs8NR2oVsSGhP2Z7ParZ7bXH7v09utPIG+Es6ePTh2fPjo6qUAfIhek3b39E/jd2d5eP1gfTAeFjDW+mjUGw+3dn/341ofXAPlvnDDg1134dQE815npAAAgAElEQVQYSUFf/GMJGiHwCy+88NLzLzz32Omd2XAwGqHNr7W19V14tkdOu01fZ77twjp73mW+JwB8Ful0nEOaWEgjGv3Y8dG5o+PDRy68ev3dN46r3effvfnIM2+8+8P3Pvyzz7/88nMgvz8H2vvpLwGJP/3lL36J1KA///Sbrz79zZ/f+ct/OCOmZZ0WDVvj+YTKC7LKkxLkw4ZiJWUuCRRSNYqjtdnm5m5Tt9M5lZGTppmtDFKT/mgyAACuauWSjkRmiSgEL8R6AXpCGI9jvpWlVV9MjocxMhYNEFQQ+Rh5rYwOLElJcAzDkhgFC2tVctQER1FkZBUuB1OrqWQcZ5MJXDBYzhPKpxNo9AQxYDQIAYiLxQAjV5dppCiNaG2IwwCAV3xhTzAUE+mAPwJJshDiNAPCZzwWiSAlaJKSFJYUxCCnWoZmZlgqa2rAgHUuziU4hOw0sHjUM+12Z3u9gVBoNRha5cp5G3mS6moCqCEZ8cQiUUOLMwwDMTsK0ZqnMLRrypAQvpAVA5DoUDASDQSCAMBRw0zKYsKycB+JhWQbQnK5lHVtR+r1Wqs9ng1Gi53t43Pfq2L+wKo/gtwgHqLZuBgFzMH9Xg97eFwKEgmJD92/4nkQAbDHE1hd9nhXV5bDD0KQLVKYXisOWoznoeUTN8Jl/zIA8IoLwKiLFvUCWbqVySOWlHSSZjaN7JBs03bDO3Kj1VF3L2Q5aA5JgigDNAbSo/tgkcFCW18MxvON9TGEqM3Dg73dxS66707tb67NR2lNV1W0B5xAElGimjIBgEsdAODpfD5v1wbjtflkfbG1f7C9MW5MB+1OfwgLuN+twUJlkH50QlIMRVIsJ1+rNluN9njUqrUHU7fDY7CYKrqNkBoZ0dAM0G3IEVBHj5VCAOduWkHOXirVewDszWy1Wm72WvVqyaCi0YCXkhhWjpNkOBiTMo2ana4oMaVs0pAq4rQgsmpC0nWg1jyJkYIs0KFgEP6WEwJQXmDFCrL1RdVn1HQNBKGUu4cPWReA88UUPMwVi/lvARhQ/mQbOPunsjQ67jVhpV1ZZ9eK4WQ3/p75gv3HJqwTzax/w4pP8DflZFVTwTAuykSWIgQAMEUBIIYZOsYjrzApW0taSRH+HQOpiZhguBCOxzA2IzDxcJincQrjE7rJwWrBMUVOqVKMZ0NEwEhpqXolny6VCzIPQMqQmMBZltisl5uVBJ+t9G2MckoqkoFjYG1AOu1wzt5OOckZUbPVUxvdTonHCb1VN2XkkuD3RIUEnpG0LWUl6gvD+icElodVhuzVsk4ZchVEs1qdZqc7GFeVdE5rbeRtZBf1bcEgg0yukqVMlGb8vqWH/EB0+QQbioWXQwFW5mkRUgWJZzCfLxQWBMjR22qQzstM2NJYSDQwMrRKSIloaVPmKKVj2ZYQ8jM5lQ55yXCA1ojEYOdgDnflYg/t9zb7va3FBuBIb20KYW5vc3GwPpoYYd5hMYp3sq3WcLLb8qO9J7hNIEICGUhmktlaqdEfHQtUschrpJUheQYPxugIvABSC0Hyb7U0ISTqkkAmeFkReEBdGe51gWd0SCJV3ZKSAMCJdCdp5htlIpVHGVY3f7td/+TRg/3DUe7sIXXw2LlHn9h78pFzf0NTwKVzjRv/3ycK43+AfaT04EOexqnw/fwgPxgchz1OKzn80X/58dWKOqkGc6Xdf/qXcUDSytFkunLh97+fbDw23Lnxv3+6+KTy7I1rt2+8duv9H7715s8+5u1Uwc7nmgKXjEOaqxfuUeBKudzM2TrDWxZNKIXM/lRTaC01ncNLdGpVs9/qTeaTEZpXAARGQ0jdXrPdbtWtms1xeY0zTbU8u3Hr6mUA4KuAg5d/8MLzzz++qMMNoMh5PSGzTuyozcVVS9bsBIvn95NSXM+uVTY6R6+eWdt+6vL1V586e3zm/KlzDx8f7B+dPrx37LoAvLd9D3+3txaD/qRqZUa3a3a7sb1z+e7t2299cO2Ga4J07errqACNRDi+ZcD/DoC//8rTTzxysDYZQDox7g9GvdmoP93a3DpCSlhnXCNgt/fqninDmTPnXeJ75vRZl/gen0KPj88eH5w9ePjU1qMXrly5feVct//0z1576qmr7926/cnPP7/jIvDnqO58D4A/QwB8B75+9zdf//avf1U2DFdJD5atAPeFgmbWTIg0pmInUWkOApTTgGi42J2Ydj5rCpKV1FKVQak9Ho77nWaropQrGkFRRCyCnwCwFygaJgLW+j1+X0xhg3g0jErQ3hCNR7xGwTGTqsCLaM80SoYAgEVHl+IAX8FVw+LZek2LUlHGEnBAHdIXTduyCvibAIoVZxm06xtDAOzz0AkBPmfJaJjDgEp7/FF/OETK5GogwvJJzi8lTVVOcGQ0glF4jKBlhSFFMSQYlqFbKZrOAejwki5yNIdMBElk5RuL+P1hPBoJrq4GIOf2ex4kCoAxmm5ZmoCkIKLeiJdiKZLj1bQSXvVE45DVxhnkEsswyDWPjuLxgD+M3BqCQW8gwUuCaDJEZNWDORBl0rlqo16pNhr1WrXarA+QXd/uwfHZ7TgAfiCAxUKBoJ9mGT5Koba0VT892aixBM/Ggg96gQH7PCtoDNj1JVz1PESElDoV1kutgrjyIIDzkqtX6V9eBpz2wmcCctOBsJ+E+JzKIccddLj+Oo6NZDHdqRdkgI6a3IAJJiRkexsXE2KcxO4bjIa97nC23mmP5pPhZDpdnNoHLru9dwCLYmdzsTZ0VEM3XSlKYDqyqGcsBMD1NqRn09naxqg3HS1GG+tbB3tb24shOiazca/faTUKlsDKAlL8kCFOKXamVM5VWp1Ov9sdosr3bLGY722PgZKLMs+6DDgOr5IXkJSfpKVzjpXJFqvVUrneKbcH3XZv0M/mASWBS5VyEo4B52EVhuEInPQB/bOL5UyqadBxmwpGIhQvIu6bUBSeILkwIyfQtiJO0HGWTei8IvJyImEhJyU+oVm5k6Iz2vlF287uNi/6K5XNAwAX/th0VSpk/9iH5Ypx3BtDOsHbVCp3AsD2txXoEwBOJTNuazT61EXqf9OElXIptGNnE7YQIuMYF3woxhIUHcGAAEdYmoQrpYmc3YQf5GwrzyqWIUp0wheNUQRhayRL+GIxnCJ4VU2yjMgxMYUHDIA7Kkx4krlkrl0vQHKRV0WBIFkyzHFWkm9Vi41aIp7Od2yCKzbtODwRrLooJbNlSd7aq6fielhv9pVGf1DmIrjeqdsyg/nx0EpEkMLJrLnGL2HeoNcXwwWGjyuGajqpfCpbq+ezlUalhsxzxrOKma9o3e1Uuminy/lUOuduk6PExsmVIbemQpGlAOaL8aoQpsMPhJbZBDLwoBhN4FAlwCcyDksObXw1ZSpB0dJiVNCHhwNMQif0PY0mmL6jZzjMS+bNeMhDhIBVE8xkf77fnW9DYjlfH0PU3d5cjCej1mI2GW0cnN6eHQz64wih0stRQU8Wu935TtdDYDxygVbjCRPOo2Pn6qV6f3ROpAo5Vo4qaIyfXPbH/RgVJbVwghC0nMgEVJFjMVFQNGT1IUhIJY8lIH0ECDLEZCKeVJ1m1s42muGUlZzVR3bySWt059Rsb7roDwby1gtPHV787uNHj1wkeF6IZytv/uFD8qHlB0X7Ia/XV7IfiIrD3GB0JrhqtazBj/7rR9eaoVkm3G9s/u4/d3ErXgwbFgDw77qnH+vs3/zfPt/5uPHcm2/cvP76Oz9858qVX/48kcxW0qVcg6VtRlZUuZArlN0adLXUzDkGyxsOFRXy6f2ZpZGSOdrMK5pZa6ZGze5kPhpMEAMGAB6hi9nsNGt1p5xkpbzJJzWze/DutWvXgIC+cfWNS6+8/MLzz57p5zMVXSyJliKntdG2FJVUwUoKTILfKhuCLg2H++Otl09NN594/dbrj+2feQTB3vGp02dO7bkODPuAvgcHSP1q6x7+bp9uNyd1J51/dU1oN3a2r919470Prr799lvXr18D6L/yutsEjYyQ/n0J+uWXXQB+8dHThxvj6Xx/DSLOBI029xs9IB27h8B+Xf8jV23jHhCfO+82Y507PoXUoRENPnXukXOuOPTDp049evrs5VdvvXftfGv2yo+vPPXd1z788PbHv/zqy8+/+PILYMKfIRHozxAAw1+ff/3Z3b/45ptf//bu392U0ipgkJJJqxyvWRLcxbzarpbTiuHoLLAAwzRLkxnkhltJp5DPaILiJO1qv12e9yD1abbKSqWqESSs9mgsFHSboFdX/biEBXxYBAviEhMkwkGfB6dDOB+L+vRSWkbG1DwwYCISC4ZCHt5SRQagy++zkhxTLSaCsShj8pjEJ2JRyjYNBA5opIhy9QNRF3QQC/rjiiYiwSIIR+EoALA3DNSYVYllf4QTbdarZpCLAuBINAg/Q1GiQBKiGJaStmnaKZotqpohyKYsIKcdpHFHEUjwF5kCR0J+n9+7HPIsLcXzGeCLViZjShDYIkCQvxOGFNYA4hbweIIkC7DAElECgJaJiTJL0GQoGo66DDjsXWUZSTZ1IhLwhdlCOgXY1KihYfdard7q9tqTzY2tPcCxgxbrxSMYvAP/SpAiKEaiWAJnQl6vx6iNsrEIpeq+7/iWl70IgJdWAIsfXPKuiDEhU4Y14mTJiO+B+5eXHnzwwaWlJT+A84oH6XaIqIfWhDeczqWRpEMaNUnlNQP5IwEDRthsmSYSV1YgNiNJY5mPs2KcSyS4uHDfdD5uNfqT6TqEoQ1YbeP1w9N7ewe7e/sHh0dHe4tZJ6OiHmYeomWcE4WEljKsUjFf66Im6I35fNCbbu9ub21u7B7ubi7mG7PReDwejcaTbt5JaYy7s4q0lAHkgKFnOpBbT0dIDGu2hQxbtw87gsApSJcKeamKbj0YDU2hUrrtFNOFXLqA3Ai7yBykXa/kAMYzplZKcVR4xecLIOdmnI4FxIqTLlZLmVkq5OUjAQp5awkJIMCQf0cwUkZSlBgVF4H8isiqBul9qKpGsyJwXxdf88VCNo3IGULhb4EY9YChr6RzBfSFDCDZCUBnkOsvgDESwULAcq+Zquj6/Ga+rUFnk6gB2kYZUQq1ICXte+6DJxCccveOEVCnCjrvRAOQ52FeT4Sm+TiGMTHAXxZOiZiQtUSp4iQ1uNIGozkMx9HxcCxGeqQiwVIBjCLZmJyQc5BNUHEsoQMrhJ+JRTANXk+9WSwVimiwiI3RFCwgVeHLvWq9LdPZ/KDE86myw3NUyOuL4DFez9L2bKfvxHVKqk+twrDSVAOMUutpKhuOhr3BYFwL2EnuDL8UCOIrUYqGhcVLpqFY2QJqPgR6VS4BYwIGPCwkKtn0ekf+1rMxl4JcBU0i5bNWKUUwiYjH64n6cJrjyUjEs+QP88AlZY5TNYYJYoEgIK1Gl8qsX0uLYcIyIRi4c91skiM7A5oOl3paWZA9QSWtUpEoHYYEK1Q+tTmeri32xu3t+WZrvbu1OxpPp6PBaL4Yzje3txej1iwX5P2rfIzXksXWeK3lwwOaAOkZx0sG0hV1gCrmO6NjkanmODNqZYk4EgqLkWQsGE0EZYxONuNkREabJ2iMjUF3L9oEFhRcl9DItqo4PG+odslJOZUanrfN/rxeM8+mJr842tje6OZap9hHjo8PX3v4ye3FNsXEJT7duPXffkre75Vlv2elkvR5H7BqxUa7dy66nK+l+u/93x/dHgQ2C4mD9NY//ecpJakV0pHKl//u99O9J9sHV//TFxsfdp+4deXWm9fefe/NW29/9DNg4RnIGZsqYQm8aet2Da5NxT2aec2O84bBkFzd2tiwNVw2BxtZ3TazDbPVba7PgTPOpzNUgkYMuDFoDAZaOa/heoZmbLPQfu7Hl65duXbljSsAwC8/98Jzz9W7Tj2TSCP9H1HNPuVEBRUiB0RMpj1Ni3G+sT0a7z19tj//7sWrLz92ePrRx86fBYLpDh8duR/39040OHa2Nw93dw63N07Nh7N6Pl16bl8rwaV75ZP337l969att25cvXrt2tUr8PGNV1977fLFi69euPTqhQuXLiAsvnjhBy9feOX55196+cXvnj6z3esu9jbW243J+mgwm83r/WFz2p9u7mzunjl/fHzuPJLBRPKTSBX6tFuXPnd8dPakS+uMa5kE3zpCYpWnTh9fvHztvTeP252X/+zWo0/c+OnNT37y6TfffPHZl5998fkvP/3iCwS+QIaBAt/5+u6du1/f/ebXf/U3Z00xF48JSlZnOUVLSJbKSZlqIyuLRiahWglV49Kd2drO1m7ZLJTyCqshV7FGJwnZ46DbbAIA1y248aJkNBBGMtCrHl/AH+MYDGivNxTkGQrDot4lnPJFWSwSyeaQ/zCaqmVJOsYHMf8qmzMTcZIiI96kxIuFkuinMVxXaZPWYxhvq5A/I9MiEY3wkGQkGEbg5l9iDR0AmMQpgYniuMcTjgSjMZYnQ0GKVmw6qllA7lU8SIWoGGQIvMjGYkoM42wT9ZPRTNpKJnhVZiguHgf8oCgaA3AnsEAgtOqNYKEQDiC8RGVs3TGQNqCiIYWkqM8HGWPKMLhgEPWluI7HWEzg47LICIrMkcC2YydeDr7QgwFJN0UcXwVkTZTK2XKnVa9Xi5WCA+e4gvY6NzcXi+HmfptBFeiHvA96ErxIw8slgUCHVrwBj7S5vcb49EzcuwScFslgwYPVByEJXvIaCu2kBZmmSXi+4MrKAw96/csPPOBFktAef2g5bNjppJyxEMsCzHUVsJD0P3LYQZ3RSQj5piIiaS5Xagx5Iwu8yLC8myPdB2y026j1FvP+cGOB/tvc2dncOXIV0Y+O9rcmzZQsGQaS9hZ5URYVJWlZ6XSx3h0ORoDXa8MOEnKBiLK1u7k2Bb7fHwxH0/lk1K3nkyICYJRZKVJCs51cMVftTceQTA/W15BH62K6c9hX1YQuoZk1tEsBT8Qrpi7blmHn0DhzpVystbvubPF41Gu3m+1OUeVlU3EtO8KMFgPywIQe8ApsslDOlW3HwD040BEgtqjkzmAxTqAjwO+A/PISA29CVZE3GGC8xMcNy0bsMI/wMe+irbvh+z8AcAbZWqTTzrcl53skGaEJ0j7JusQOyXCjrrd7FoQnvVUu83Xnj1y10G+p8r89UOU6Z8npMM7RNI6sPuM0QzECGaUpAGAFTqDIp2t5W9dSTpoxknBPxwWAVwZnUjRBoWF8EuMkMSsxcVYgREmGPFoUaBwX4VnrrRKwnpwuihxJklEOUjOl3KtXmzKVTvcqApuq5iUpHotECRLntSxvjfbaNqdTifo854y6JY3GxVLX0LgoHvEFgqzmU7PUgvOFg7g3HKM4Lp6QdE0F2o8c7xqNar3b7nV6cMkqQNzL6wh2UZEekf4cSmKymULWKWRYko9BAhr24xQr0NGo3+P30qIgSRwlKywdQEq3nKCyVk0OMRmZwHSTp5FnVTACNDNUnvI8Jk+sgiaG/WJGw/1+vy9AKUxmMR/Pt/b3Rm3I8Wqj9ubO1G00HM82pvP1zZ3taWvepn0+L8OIupUtt7r5IB1KwNmk4nBroW37XLnWrA3GZxAA8yaWzBMsHkWiaRQNDDii+KNalaUwTReRg5KkoPXktvWJckwXVTQDJyY5Vlbsop1yymVSgZxLtnv5w/L+R4v1SbMzO94kXnj44MUzj53e+f42yXIil23e/O8/xR6S1gs+T/HIyr6k9GqFand0NrKaq6QG7//ho1vdSLeU+V5x8Y//14RMKGXCEqsX/vbvNx+bDfau/MffzD/uPvHWG29dB4544713f/QzR3LQ8G9bowyJ0wxVgywSpUelUrFWtFIMa1gczVSM9S1bi0l6fz2nWFq2bjX6DaTAAQA8n45HSIey0+y1ugDAjhpPOnEgcaX+q+8DAKImrDdefeXFF55++vQoX6goaUe3dVNN7ncoiofVL5RCVHbHVnmxtj48OHzqcG33uRuvPwHk9/y5U0do1BaRXzfdPzrY++P40f7O4cHm/tFk3J7mU9nHHs0WSttrT//0vXfevvXWW2/dvIFEoNFTX3sdAfClS69fvPzapUuXLyEhaGRI+MILl19+8cVHz++Puxun9udj1P5dH0yGo3F9sjGadyB4LbZ3D06dOf8wqjqfSEG7Clknxek/OQaffAmpc6AM4dEfXHnz3bfOVzpPfPn2ueevffCjDz/55Vd3v/oCqU/+8tPPPv3i2+PO3Tt3vv766zu/ufsf7qYzhi1w8ZSji5Kp8IrKx6Vcu2JrVgruFDWe4I3icG1z46BjlmslnRXtlGpXOlmk/ncCwDUdUj8cAJgIB4JBnxfwkUT9SgFfIIpJcRqLxCLeKOZ1tTpSrnihKnAs6nsm4V+sxB01wTM0EVxJ6nBJylKIiFApjdYZMRyiTDQPpUE4ZHBXVQ94aiAYDoaWWR35lBIxYIsRDPN4QiFvKErSUV+AYSQdCykWGiAmw2QEnociuQQfI9UYLgDzA/pE0SnLVkWkAu1KP8UpArVBR2PAiKLBQCQS8IcQADO5jJ22MsmkAzhBswweDKG8hKQYDoCPjkF2gdqsZZlNSBwKh5AToB6uQMC3ikH+IasmE0Txgy1224AXxUo1j/p2IHdtdoezjc2tzcXmYncji/uCvniCiMvILyASCvm9XiAAfj/XWUw4P8WEILNB9QWvz79y/4OAwg8uBwo1K+2wJBYMAN7HHdl/P1KCXlpFnoVoHzg3sjgrabqtzhD67Uw25RrhpfO5FEClacH/hqEnUa0VANg1hkIu4qikDBHjPoC0Xrc93JxP1rcWG1ub6+vbezsHR3uHcLMdHOxtzdoAwKoiQtIgITdgJZFEHLtUbQ8Gw8lkOB/1+6PJfP1ge3d/ewPy1VGv2+2NZlO4cQoyXCakMCVIWkJQksidKd0Y9lrtbndjY7a+tr4zX+x0NJ1XXM8iuEIk3AU88mMwTFQWTqdK9Vql0Wr3+q47dQ9goz2oGmpKl/EAhOGgmInF2TgZDOCK6GRtJRhgjKHNIR9iSXXVJQByOSKER2MMgmSgiYoGJwA54DKi5cIrwtd7G7tZtwXaHfPNo2/kvgXgUrno7gvn/804Eqo9p1LZfM5FFheAgdSmUKPvH92RTrQmU+lv/X/TJyaG6ROvhhTyA0ZV6axjw5rxkAAvkUCYpEmCYeI8iTMki16zBNfOqAAFlm0jy2m6LbE8G0PS66Rj0HwshCaISFnMAndk4oRkOUmJpSg8EuKAbtfaiPfkDVgJFM3EBBeAB81qQ6dSTrsuUlalrEpxEpLCGCaoaVlpHbYdXsLI7CCfHPUqFodz+Z6tcxgeWFkNxI2QlKJGaOeJCEaAvbKslJBlHd58rlquteu5XLXd76Ibo5ap2d2xWkq52+QoS8m5m+ioZp/NKzE+HvZ5gkEMZ0QuhkX8Pm8sIcZFOa5C6h2G5elneCPB1bMxf0oXMNFUaQbHCV8Q4/WAsW4LZHCYTec4xsfmMmwUD5PhuBYnHAfAdncL8sHpTq3bgfRwOpmurU0ma2vz2dr27rw1nurfCUUITtDMdLHVz0e5aJykeRaxWQuuS75Qajd6/VMcVc6wWsTMxahIGEhBGKeilB5RSNZusHD7oduIE2UlzouuyrjACTElLgoqLC9HjEuqXUimnGKeUlDfXckpn2O2P9jozFpn9s5vM89895Unzh/sbjyzjbO8wGYb1//wQzrR3yWXnDOd/PDOolotlPvT40ggU3ZGH/zho7c7QrJU+35l8r/8nwiAS5jBNS/8r3/78Bv6dO/K7/5i9KP2EzdfuwkA/NZbP/7h+3+W4SGvLJXbGi3rnKKaMtytkIwVi8VCpZLKMJThiDRdMOZ7jkYIWmc9z2uSU9aL3RrqfwYAXpuNh4N+r9tC3Y8tq6QKkq0JmqrUFu/evHH1GmDwG69eePH5F555ZNDLFFNyHgJO0pQG5xkM8pKEkhRk4qBl8UZy3t947Jmz052X3rzx8uHp4/OPnjs6QjaArv4GQuDD/d2dg72dra3t3b2jrb2D7b3t9mhm1/XRa2W5NTw8+9OfvHfr9u1bN2+8+eY1RIABgK+eAPBlxIAvXrx88WXkhgQI/P3L33/lhbOnxvnBzv72Wjvn9Bf9QqFS73WL3flsC/hBfz4fzSDOIS9gpAWN6tCuKCVQX3ccCaAXoBjpUaJvuPVqYCRPvHLpxsc3znU73/vpzcefe+O9Dz786BdffwP4i9Q3PvsSDrQD/PlXd7768s4333z953e//Kt/eDmV1DUpbiTTALUaJwMIkmajnU9agDl8Mi7oUrI9X58dzcxCtQoB1ymqVqFVbY57fwRgAmggcl4J+gP+VViEIRrufYAgfxSXWDTXEfZEoqsxyE79ZtbQDReAqRiORyPeyDJvKyIQ5Vhw2bIEvlxK4LEwWzRoJU4GglHDSECSLyK/XRK5uTBkOAy5dniJkiSeZSiCEckwjns9oQAS1GeigQjDyjoW1izNUiU6HMNwJJMBYQCntRgpOaZppkyczCRNTYT8FO0kcwIHL4eicTSzDJgaDoWCfp8/4F2iEYWxkaCUrCgQreHZFQHNxkCMI1g+HkNpRhQDDELcMSHDr4NIFYmiTq6ol7AERggJeUcQs71BvZxLZ2qNfBmJntfq9c4YORwsANx2Th2O+ptnnx8zJC2kY8EVjz8Y8H/H47nfIxVaIzlCkljIs+r3eTy+YGDJnfONF1vtnK5xkOzAeYE8xHT0ROQ7S8Gl1RWPz7+6vBSqNXQFSB/aXrSSNhD/TAqJbzjAyxAAuwVQOwVXREnwcY5Xkc2QpmqKiubzZOm+wbDfGaytA4Ru76yvbaxN1nYPD44AgA9RM8TO5rzlyAjJkJIFMgmSpVTWsZLlSgv4zXQyAmYxm8M7PNo/Or23tbk2H7Zbnd5wPOs2qukE6l1DE7hIyBgAOAPBF/jscDbuwlNtzNf3FmuLBjOUE/QAACAASURBVNA5EYlGIjFKAa6crgBAyrpmZguAeZVKpdFsdnqD0RCiQCtnZxoVU8+mTTLgDeARLovGlzgsxBecfDGVWA17HtBUSRWRtDeSH+cVEQ2R0yQN/F2ULU1DqYjC8JKq2/mKC6YADYWi216Fxo7QDFL+ZPoon/8WgAEzEGTk8vcmgRGIAM91XYBzmXtWSMBs0XcAf50/Gh3d47j3nAizaAQ4iS7QiXNS+l7PdKqQlrOin2OoqM8bhtuLggNSXh7SNUWSAN00KV9JpVVZyuqyavOSGIv5KTwclZ1YHPdF6RiF64mchnr18biGei4ZhiYxPpe1yi3gPNWCIfAsIHwMvmuKmU6n3rZpJ9NsiZhWKKAeDYqhsKiopAyhcNBJcRyG2e1kpt/opQmaz/VTOgsAvLwSYM0I7xjrvJ8gY2GMYIFXow0kE05kqQDXt1UpVVHTTnc4qdrZ1LSml6zcPQTOZO+dPyebKqZITqKCHh8kw3QiQcfw0CogKwcpAsqQeCwMSW4soatkrsEva45CUmaSYSJRyhfEmSTFDLscs5SrWBWBXw0ZOS4cDWNejGUDgrqY9hbri/kQuPxgOF9srk2n62vjodt7v9ietXqTzHfCNI425TLl3qiMsRiHHCWQFLhmA5EvlFAb2XGcLKVpNWymo0QoHIEVGyXChBqWcdpq8iyOWAMCYDXOcUjJjREgG1Q4IWHA8oJwq2oIgFPFDJV0ko3RQHzoverguNc723li48xW/Lvfe6b35KlTx2cnOCcKbL559f99l8vMt8jSE/slp/pXDa1QKndnZ7BAtmSPfvSHj99rFZhS7dH29O//ZUJJKgLgziu/+w/fe4eZ7l/5x9+M3289/ublGzeuv/PmWz/54P1fZBi40YrllsbyJi8pKTVVLKIWrBIQwirkLaSRTlBUwZ4epDRYKY2NAqsk7KKe7laQDAcC4DkyI+z3Wo1+vVdIFxKECBFcl4zWwx9dvYEaoa5dufTy888+9+xOMdOwNcfS0yqE3fONqCyZeiptxoTB3Mpq6XZ7/bknz092vn/r9acfPn4E1XVdtUck/HgaNWEdHOzvIfMjF4D39jZ2Tq+3x/NGNtm5XNeanTO7n3z89ru3br99C572+htX3AlkVwbzNaSD9crFVy9euHTxB6+4FeiXXn/x4uOH+91Rf7y5OynlKgcQaRaTTqNQLfWmk7Xh2mg4HTZ764vF1sEx8mM4h7aEz30LwGdO1CnPnUezSgDAJ1QYsoXdvcdevnT9vfcfHdcu/eIHT3zv5o8+/vDjL765e+dzAN/Pv/jaBWBUgb7z5Rd3vvnV13/x5a9//ed/O7WNpEqLalaACCzItq3TSr5RtjQzpSdMQ0hKRnm8Nt3bdDLVVjllpFupdL7ZLkxGJwBcrpoUG4flhvm8vmDQu7ISCFI8ASzQ54tEYeUABHqXMMIbwfHIqppBvFQ+cTrHsLA/vCJkNDFOxmLhZTPJc5UCD9SYLVicJEQB26wkAC0XR9aCNEvHYlQsBPDmAjBSlmIBkgn4zT5vyO8PRmkW84dwWjFJ3DSVJOpsjWBEDDFgScRYHaNU29DhnUXInKMlOFge4r0SNPxqF4DDritDEDLsYHD1IRJNJdrAT0yAJFGMM1hEUSURXgsDOXKcjwExhffO8LLBIo0IIGoQ7SBHiIa8QGltEYtFK41SvtFpN0sQsouNVqlRb7QalWqzM0GtTfP5fG//4Pxjjz/z/GvtcDCa0AKrHn8Ei0A6s+JNrw0HczlI8AKxuuT1rniCwAqW778/mptsNLOaYQicyjERL26kLC3bL/m/410OeD2rXu+ql0iKctpERkcWKjbblu3YlmXbOYQISfTIRpVpW0FmlBAXdN0AhEO7uro7fnPfYAxZ1nQ2mq/v7K7P19FAEWSep48OkSDc7s7muGoBwzc03gVgWYRVbOlOplJrD1BVbzycogxja/dg/9TpHWQs3K01uiNYu4NONaOLKGeBc4a6oDWkLJmvlyu9GWpFBLSfTrYX29tNVQW+6qqwyJIMb8PQIPwq8AB+vJQpFCutdmfYH476rVq11iqWWgiASw4d8XuJOGsyuCxquJcvGKlimvMveaKiqjKqxFMExSVkjohEYjQwEx6QLCEhnSMNsglOTRXudTS7G8Bo5BeNjp2obLjAm71Xhj4pQZ9oYmXvaXK4W8VAXF1/wm+ryq4c1kn3VfLb8V+X4CK7QgdNiZ1IZcGJcDd+066N4Um3VtFmsxgGABzy+HAAApqkKAxjBBpSQVlWZFUXnEo+h8A3x2s2qtUwACDhCJemmJgvwhAMZshpg6Zg1XGamrESCBLIeC6tZRvlQqlWskSOQWUsYEO2otV79XaaShYaHSmq5fJJVYQ1wsSivOxYdGq3n4UEmsmPHKfT6qfgTKZ6aY2FhDroCVJalChnZ1KUoLBAlIzHYwTcGaKeShrZXKUJl6tZ7raKlfZoWnVS9Vkyn0ctZy4C35vWymRTuVQhH2c0PupbDQQDtCBxBBH1egM0izOapuoaHwvD+ggAi2Lklr5KZzU+oqZEJoLRkUiU0LRIYZejPVRVr2g87pcKUiAQCvtCRIJQtI3N0c7aYmM02B4gprO+MZ/Np4PeYG1zMV/fnLaH/awnGMe5RNLJVbqDbAiLCJCwwF0OyY6TywOT77c6/Yd5upplNcx2oiSQgnAwQjKRmBqRMFKvxemoghgCB9jGIsk+CFZAg1ldVnRV0VSH53Q1VUqm0gDAlmZUk5WS9riWXxzOxtXZ6Ikx+8zjZ3dPPTY791SF4ID555pX//Ceku3N4rsv7DfSnb8qUk6t0pqeJVbzAMA//G8f/6jQZWrF+XTn7/5lxqpqKZYUWy/97q+evMGP96/9/u7uh83H37x0460b77556+P3f/hzh4WbrVRp6ULcgDTOMZK1chGpURZqpbKVEXAlJRJEITs8SJs0K1c2SoKhpCuO3S+NAYAheLlEeNhrt+vD8jBZzEiRuM5CgpQbXPjgypWbyI/3jYsvPvfs82cHWbujWCnDsGRDm+zSRFLVk0VLouTDqm1k05P+K6+cm+y/eP31F84dnX/0zOERoJwrQHl0eHR02pXh2NtzW692dna39ra298ataRty3hceZcqz7YPrn9166+3bb79z+8Y1oN2o/H0VgPj1114HAH7t9YuXX7986dXLf/RjuHD+aNbc3NzdmrYKxeH+UbfQnEPS3+512o16fzidzmbDbn8yn863D0+fOX98xp07Qt3Qbls0enTOBWXEgI/PnT6xBz4+v7X/1Iuv3nr35iOT/ss/f/Xxl2598smPf/HV3a+/+OzLu199hQAYjq/g+OKLr77+1ddffP3br//yHz7Opi2FZOSsjKSj3IachFmrOwpEY1nIC3rCyDan88VOKd3ot0t2qlnI5BuD/HiKuqDLcrniIGdBWH5hpB8V8PtDgVgczSQAJY0mYFkTuG8Jp/zwIxEPLH7LnerlWJaOEH6AEy6tikj3AfNaKUGoZzkg1FTGkgUxECQwOynFUaEwzhJop46ED26H8XLccH8HhlOxMI55fSGPx+OP0aEVT4RSdBwDXpeUAICjOIUTFM0luCinRmjN1lF1PUwVHE1gAX9ZVuDigPAkiVyFYzEsFowAAEfCJwCczaZsiIFJtE0qxGmOikiGCGSAjuPBCMHEAv6QxETZhGLwqBgIvydGoB7ocGA1SChJJRbTm7VKo9+t1RvlKrLKg1vcHbgZ9ifuZZ4O9g52jh97+NyTz9UExUyh1nA0h+zB73/APP/4+nzMLQdJZDfh83r80fDq/XBezcGs1eg1jVgosBzxLMGL0iD6rm8kllZ8Yd8Kaob2rMJLVgFWT8ZM7STSfQZ6ZRccA3kxJN0xJCdpuk3QcOETwPvgsSgj3TGO4+/rDyazQau3Pp0sdjfXNzbWtk6dQoUgWBMH+/u729OapRoA2SdTjook68lEIlOsttxG5tFoPJ2NR7Otvf29o6Ot2Wwy7zdb/dFo1IGzkXMkRpeQ/rSkIgC27GyxUW8NR73BfG19bXM2WmwcHLRVXdRcpRQZWLqpSpIOJFhPwptx0kVkIV6v1+HZxoN2vVprVuvtgmoUqyk2FlyN8ZyZ8BC0EA1xjmhXC1IMD/h4y0TbiJDQCTyq2lA8qr0LEvJZQHrPoqhaqOEK+Qbk83/kuwiNXUhGn/57BlwolYoIsb/tjj4hzm4vNBJ2yuTu1aC/nQI+AeATlot61NOWlcre079yVSpPmrBOJKNR97TGWH6KY9iINxBzOxFZFicYlpOB9AIAc7Kolyp5Uze1IitbVlwQuAiGExiTkhk6GoUkFVPlZBKPEhjJJe2MwbMsFcOIlCM4jXKmWK86ABYkQWNUQnc0rtCrNLOkXqwNDcwoVhxL5uNxlsRYyM8pZ3NWlvkEVxw3hMaokeQjtNXJGTyksCFPkNSIWEXJiJAZk94oCZyPVpCfhSLEZSsHYN9olFrVTKE1nlWz2VEnUUN75EjSM4OSEDQJnClkcm4NWk7gweWAP0AxCYGCKLLiJQSWETXdsEQWiwZ9XqCRClvP4SHbUEMJR6UxLIaUauPJiLxn0tGVjJ1J84yfySWBCJAMyZmSotQW08P5+mJ9OO9vbkBGiHxt0TjrZLG9sbE17673UsEARfByOl9uDIfZ1UCYh5SHRa5nVjrjAE61663uGQDgDKNhjo0xSA03EGO5CC6HEhRjVplYUIC8BWnIAACj/V8J7nYurmqqO19uc5yupEqWkyplo5au5Zh0sREhurP5znQ2b+zP+Icf+e6ZU08udp8uUnD/s7nm9X9918lnBM/uczW7Mfn1xoNmq9qcnSWXSyV7/MF/+eijbCtZtwrDrb/753lcVcuElai99E9//eybynTj9d9/efqnAMAXb7x1850btz94+4c/sfSck4as1VTjsiElNFOtlNAscClfLZZVW4zwjhgj8vneUc7iaLm4qCZMKVVJGwDAAFEAwKihcthvNzuNXnmolG0pwsm0ZBn1tdvvXH3t5lUkhvHKC88+8/Swkq1mtaKaNiTTzD5mUmTCEG1H4KjtXt3WMo3uMy8eLo5eeuuN754/dfjoiekfkH9XgeMQAPgA6O/evou+u0iB4/TecLLWyuesp8+J9d5s79m7N96//fbbb99+681rV69cQzVoOFwZjsuXX3/90uXXLl28fOnyhZde/MGFC688f7g9nOwtjibDklnePr3VrhYKxVp3PFtfGzSqjXZ7iEQIJqPZeLwOjPvg6PQJy/32QC3Q7hdcZD52+fqxa9d0cPDwhRvXPr72SK1z5c+uPHnxnR9/8rNPv/z6zpdo1/fOtwD8JXp095u7X9298+tf/8//9JguphU2bqXthAix0HD0hFJql21DThpcDmKSZuW689lez6z3OvVMqpFP5ZrjcnfidkHLpbJDkqjTCothIa/H4wuEAjhLRoGRrgYjIo0GlEIrEcxH0bGIV88lbUQ2ROBcTAiWqGeZAQqmisBug1ZWTtTTCaRUC3wuzq2GCDypAVqjplwgnWgjisBxLBoJ+JcYDe0B42GMxkPRiMcbXIEMmWRCHi/Fa2oEA2ZmKQkyHMNpAGBGSDDAfoK0aWt6MiUH6TwyRZRkjqSAjseBGlBRHGIVHokGI9FwOBJYRSVoBmKonXFSSVlDqs8kR/hYRYTfyBAhPEZCBkAxFhmWNF5SIYZLHMMwQPqBAYcDAVpThRhTrbd6NQCHJvpYKVQaFYCNZrM7Apo47PXG8+kCaOXDjz35zLM1PqGq/mBgdXlpeWV5NRifPHFuZ1KmAzhFkWFEa/3hsBeLKwrEyWy5ko6HAgitAxivylyuv9ujVkN+NKuEGPASjbYHddNClMtOJjO2hcx4UllTMVH0h69nclnHRAiMnPaEBKpnCgBNaIueYe/rdvrjYWewPupNtrc2NjZmi8PTkIpuHqCc9GB3a6Npa4Yui66ehfvHkrUC0NAOwOxwiHwcxoPx+uIA7uGdjflobdxHx7DdaVVyToLSExzKWoCBQ1pkZsqVRrfTbA7WN6bjrcV0c3Fw2JZ0yGziLgCLcR2xVABgwzSS8IZytVq5VCmVmoMR5OGtRgMJftlSwsracSLsxwkppa944zF/gNBFu1TJetPOMgW/DMFvgofkCWPR5JUMxEaUId2UEfG3ssVCLntvmuikplw8aW12pSfzqPT9P5Sg3S4ix/06YPCJnlPWbSpC5khoftg1RHJ3OrO5P5aeXSC2k+mklUJd6s69wew/zQG74pWpgmZpEVgvTNgbJgg8RsUYFiMYUtQMBSU+nKom0o1c0jLVQoIzbDYu0liYIAMh2YyRmA+Zhki6kbKkBI4TilIwAQ8YksIBgFOtUjJbrTiyEKeoeIwCrqrRuUG5nif1QnVmAwA3nKTGIy9ujJIdh85urNV1LkFlhiM222ulRYzWOkVbpCIh/0qY1JlYDrJdjiDZAI4kqyEoo06kBOCRBolTvt5qVLOl1nhaSafmebXk5O/hbyoH96ZbOgAsdnLpGC9RkSWfPxwj+ATEkdCqDxeB3OtwuiQRPveGSd5MMplGwi86RpQ1baRoSwV8QEEpZtCm4yti2Sgngst+2YrD8o7jApykVHox2JlvbAACt7a3OuNRd7I2hRu2154uNjZ31ntrg5QHwoagZivN/nxW8IRwYN4kLyLH60w2WczlIO3r7MWpcppSoo4ZZaMQNnxhig1jSjgRjWlVPk6aaA6J42WD4dxmQ4mD8JCAJFKVVWCXvJ6wi4bllHNRQ5fyqQ7PVrRGZ+PJ/uFuvb+m7D981Hn0+e+ee7xEwzKJp+tv/j+3JYFa8T1++gG72fzr2f9ktirdjTOxlVLJmX7wrx9+VHO6Bd6sLf72n+eMqlYIXa6+/I9/8/ybyTOzy7/7au/T1hM3Ll6/+eatm++8e/P9H1mQBGfq9ZZlxuMOsIuUnHMH64v5cqmumGI4npSoWDrTPM7bAi3nN+sQ5ZLFtNIDAJ4BO0T150G/CwDcqTc6WtniCEUkNSfZ3f3w9pU3rl+9fu2NSy89/+zTR/V0oS5kSmpKM+zMYh5hOVYBcsJTpaOW7SSLg/VLG+NTF69d/t7x4dHxw0gD417nEyq3Aaztuwz4BIABgvdObfan00IutfWMpY7X9s5/9s7bt394A+0AX0cAfN21InQbsV67BAB88fJrFy9cvHD5lZd/cPGVF54CyJ3t7+2MJ47cODw17/Tb1UqzU89Vextbi1kL4lfP9YyZjUZztD2xvbOPRK/O/smt8E+2weeOkUzl+XPo9e6cOb299/gr127+6PpTtdb1n198+cJbH/3kZ7/4EtjunTt3v0bcFwD4yy/uwF93vr776ztf/Pbzv/y7X7USJZOj+UwKorWi2FlDVexau2TJlg3xCMKTYRan44Op0eg2AX1rZSdX7ddr4z8CMEHQsVgU4aJnaXnVFwoSLAFU2OcJRBOQaEew4HIoskqyeNBrZi0HhbkEDxcBOe76lui0rhlAc8mgkVfFsq3FYzSRNVWa9QRxzEShV0S+R24VLEYgu3HINh+iFC3BMUQkSsWAunqAAQdDGMsEvVE6YWrR2Amzw0MURuAUAxGXjUpagLEd3bBTiQCVRa0QCYjDlIAsgGjI2OkYEvkIBUORKASTVa/fu8zmcykzbaVsGW09STSPe2jHpPyRGIZRyFYW0EeL07ohqKquSgIHB3JSCqOh6KgqRqNSt9UdVSqtagcuc6VYqtXq1WqtgVz0ugMAjsF8dwEk8dT5Rx57oS9CNCWxCKxlMh7nm2tnz55/qm/zLDAWBrj96qo3gJE5jYsjUpF3gHyGVvxIoT9sZO1Cs8Kv+iIedBEAlINeDwXUVgFilEyaZhL5vKdcawBTt1GzlKyZtm2hHVUkBM1BGJd4AU4I8iiCnIS/D3h6vTef9QfN/ubW2hxi1tb25t7R/u4h0mbd2VxvJDUDaPY9AEZ25clMtZCtNzv9wWA4WtvcXJtMptODrR348Y0RJMyjQX8IvL9eztkKJ8NNIKH9Zsj6TDNfr3U61VK9N5z32kBENhf7AMCGbsaRGrSoyIJL0BXdAsJg51JOHp3OarXe7w+GQwgErWo2lc1aSH2XxqI4FTYdcTmUI5aijCPLQMI4LRc20k0JY0QBGWgy/EkXtmJooqyrPJGAjKSQTyM26paU7+1JotbnAqAw/EF90Jl/D8CuGhZQ4CIC43wRuSS5ZWg7k0donXG5L5qzca0I723sIqlJ1BsHmUTGnQZOFVFJAo0fOSdNWOl7Upa2zWdofwjpv61GGYakGQLSMZwmFNNSRAjnimWxVjObtkyzlGT1pBLnYzTOxgLBRJ5iGX+IJMmEhVaXwsRZQ8kqnACZMU1k0olMu6g7xTIw4DiFw1oRrXyKyQ/L9RJl5KobqYiabziOKVIkEwfwdlJMcWNSM7gEmZuORa04KUISqnUrKQHpLXsjpEpFcqYFOSrFYBRJxkVBpNA0VzpVqFTKGU1OFpqNUq09HBUtez0NZ6yQcTeBU6k8Slmy6HTZOTtXIZkEgz3k80fwKAsATELaHWYTBG4kLVuUCNy/ggfipknKfdNLZg2SMLOcwIZYf4AkRZHKLRjej7WVhu73BMSUBmFDiHCKIqZqB531+dbadL9X297pzsa10fpsPJv0K4PZfHNvozscph8SYyyvI2PN+SS7itN0VOAU1Kxo5gqZWqnU7s1He3G6mmZULK2GAYCReg/ORGIGrpGMWeMYTJGQVFDCcCDpQzq6HKLEggI0BzVhJTiFtwqwBEt5Am7wfH07Fvo83Vhsf7c7aY3We4lHHj2ze/rJxROP5Zk4l4g71Tf/8A7j8ftCI/Yhs9n7zdoDyVZ5uHM66imVUvMP//WDD/vCwibt6t7f/vOMlbUKaZm1l/7+r5+6XL6w8drvv1n/sv3dGxeu3bh24+a7b19/711rlgUArjWSFkukIe4UVCdfrVeLxVKx0tVNKcxaMhOzndq5YjJBy7mthmxwZjEnD9BgKgLg6WTY73U77c6g2K1aRQPeNxcznGTv8Me337gOOHj11VdefO6Zpwcdq5SNVVO2KheNynMsFtMF1jYESt7rleWkPao/e2a2++qlm4/uHp99+JFTZ4+Pjo5dD2DEffcPdtDg4/6ey33R491Tm5PFpJyXFy8W0o359qmf/uTWzfduXbl18/q1kxlgVP2+fuPqPQC+cvm11y+hJqyXfnDp1Zce2x9Pdw735q1mqrN3aq3VmRXL1XqlVOtUK43WZHtzfdipA1fqz+Adrq+PR0D317YPTp94Aru7v/cMgs/dA2C3Po1yhaOD02f2zly4euOjNx/uza99dPGpC+/9+Mc/+cXXv/3VV3d+9WtgwYC+X6JN4K++/Oru3S9/dfe3f3n3L//TqwUHAhwhZ4ECiKKZNJOqlOo0LUVPJrGULMiWao9GB7N0r9+o5+x8J5MrNptFlwGX5GIpDckuTeF4CGk4+v3+YIjicL8/EPBGCJUB+Iv5ljDSh7ER36qZ1pKmpijIeZYBvAuFH2KBbOsizdBeLa9xOdPkwzGyaMoEuxqMYgan0ZBBswyFE3EmEqWpYDQaDYVW4ibqY2exCISNWNQbjPogRtExjwfHOEOLkUkVOedEA3QYw5k4A0k5pmh+1kmZViolBqiUGJeQzoIA34Q7nEG90vCCIMz5kRpW2O9FAMxk06Zs646tOYagJWiB9CdMiw5AOIAADjxRAOjSLNtMpiQ1gfq5OA61q0SiOB4N6bIPS406tUa13a8N6rVqEUAjXYWj0WwCE+hMxt3edG1t99TRw48dnX1lwnBUVNOUhGxX6tX+xnBn6+gJ+M1xAuf54PKK1+8Ls7ogAmnjaJI2HU0g8ThLEqyiJ9gy8eCDAd/ykm/loWXPqte3usRJNKCigbqdTSeL1DiQIy0aRErpsgJfyqWTqCkOUFQ8Mf4TFFXihARq2hTva7WBVnbHs+FgvLG9mE/XNnaPDnf2jrYPzx3vH+7NNoa2pGq66LYpJyCwqMCxi8V6sw1rcrY2W2yszdfhw/bu0dHO1lp/MugNR2i2qd0opzXkUudWoE3FlbbKlxq1RqMMAFxq1Sebmzvj6cFAhbMqorEh9Jp0uKLAuGVDTuYcp1AqtOrFWr016TcH42a13YbgkbcNLUElCEikYl7C4b1+M+73ViUqG42ymJH1y04my0s8FiIYRoREUNYhb9JTjCTQuuVkEX3NZABksyk7fa+gjBA4W0DS04UTeQ3UKHpyfKvKkXc3hOGf/f9UvYeTJNd9JsiDCGCmu8tXVqX3PrMys7z3vqqrTbW34wEQ3ns3HoOBJ0jRiFpSEoHBgCBFcU8ipdVxdREXsbc+7mLjTncRF7exexH7Z9zvZQ8gbmHaDaa7qzLfe9/3vff7fZ9fiOXvN2cRJPvKN4Nss3JpN/1N+9HJYa9vcuW42YKDqqVRWuFJHG7aPanQgn+Qz7rpnJcBAMYoLHH61BKGUqHYpADghvOoYhu9CZYupqqVTAbucwFTU4bIoG0hGsOSWYmiYzEqhgspo6TzLIOTgpJzJJh9OIVZWUdvVwD2ylm49wRDRCJiyvVkCzRBWVIy5UkpJmcbrqUJOMHxCVJ20rK+NupleS7pTVdFwM0qTySdYTujYCB4FwOMSGNZJ2sRTIwIwTVGTJFjTXT8UcvVyoVqyUsrqWajOh7XUv2KWwAU8GvVTrYKPFSh76T9vq4MwZlkMLwQwnBGlphkIrwQDRsqxWVszaZoZCQfJWVdYTuZWFDPCHEuLcOrCiYCsYhk4cpGmg9T3ZKbY8JhvqoTWDhJUjCZxdXV7t7y8nBtfpSdrs0m3U5vsLY+m7U7neW1yfpmb9p3F+I0I2qFan002SgvLYXiBApTUGTNg8WgPKh2xoPmIU/m0rQYT+mkiAWwpWg0zpJJNagkJLXMYzGVBx0u2kqGRX3ADGCvwJO6f8anlRDzRgAAIABJREFUyBZMNcHOmcA1SoREUnba5FN369XHp3vVUX5zVhX2X/rO9OLx7sX9Is3HRSZXu/7/fphcWgwy4aXTbrP3m9H/4LWKrfmFxIOlgjP90f/9wccHoY10pFfZ+ev/uC5qdjni2dVn//63T72Ve2vttb/7YvXHo0s337j+zvX33//g9o0PrlOFtN2oFhp5V6QMldU1067kM6VysZApt1RbxkjXIDHLKx7VVDWp5Fe7qsUYlZxabwyno7UhcJbRYDTqtpqtWqeVquTMiCTTvKO0ai9++uZ7b964evPmsy8/++hzmxPXqaq5omClbMW9VMXjKZHX7SQb769UAXN6hYOH+gdvvXTjop89dHz2+CR2F4X97aN+i+1d3wR6dx05cWxuARp3YU3y0sXXR1J7cDT7wacf3Eb7zzevX7tx/fLlqyB9r1xF6HuSxfTma2++9fqrr73x5otvXn75Owcrg5W9o51ZO5+e7R9PG5Nptjxdn/Z90G03a/XedG1l0qmUGsPRaLKyPBrPRt3uZG1j/9w54ARnz589Ojx77gwqij6Dtp6P/IKxk5jCgz0/KO61yzc/ee9ir3/907eefumdH37vez+7e/fzO3fufPbZz5EE/vOf+5/8/HP0d198+ctf/83YMnWWUdy0Kpqmoqdt2dbr9QyqsNFMA0SKpNVBiBdL3V6vpGWLxUyx3stNu/1GtagWgXQTLBUPByIg3QCBo6EIQUeXIonTi0FCYHAqEg0vxPAwAHHofrWQ0g0FtX6yiWQyEQKdzOZsXRVAAQeMksl7JYsicdpKCzwWxJZO27rGSn6RLjqmJVBgQiKGSqxxCzldUSBE43gC1WosnIrGCT52KsYyKTmIa6ppSRKiBQSGMvYEApOpMGfrMqy77CnWYNDGNkczKkoAYhNxAplwgPiOhmORCBaPAqIvnKaKZgrFv6ZdQzYR4tN40hRigWgcoxLcwmlJYQRTyTiWYsu6KAB6cfDzEqjyK0YQOBkhK71Gu92uVyq1E5uZMuBMpVIBEK73Rv3eeGVteX17//j8xQuXHu2TgYTuOihsvlipj1vbs83HekQkuZjgWYkMnQo8GNVB+AMWsTRFJzlJNUSSjPM4ywYJLYFFTiVDSwunH1hcuv90eOmBGE1wLAXi3fE9sJAnB8iqE/sHJL08v9klDfgrI8CVkTUkgJ2E4v84XvhWvQ1giRIZRqgPaQUQeHNvf3d3f//gcGdzb291uWfJJijpExmJGmJM3Ub5RJ1+vw/EccW3dF5Z2wLc3tyYw3zt9Qf9TqvfbZVdhecQACNzSVk1PYRhtXK1Vm32+83hYG1rY29rutXRFFMzZGQ0rUi8bqqKpipGynTRKp0vwPirNdrjdq3Va7a6LQDwGihghuPhKiwQCSzN3feARtz3gCXEtUQcXp2xVNI4WSKAI4LqACKjoiZooHIabbh51PTrn8X6MgygAMFq3veYRDaT974CPP66Ftr/MvfNUfFJMxKAib/bjOIJ/TIsFwniXPqbMixf2Z6UOoPmhS+QXygSyc69uCrvJL0Q7lUuBwCcUXgHcDceO7UQhjtNgxjkcZyjedv0twR00TJExSk2MinLKvIK0DKUewkMEUs6QF/jESKOc7pSsAAKSQqFRsLFp0AkW7mU2qyCjC9nNQG1GiWSkmmlOLPbblZFsVDslzDZK6ZThkQSLBtN8JYryLNRJyvwRGZ51czWSzkpGeBLeVOMBeLJU4uoZchNZVI4HsSCSYpmQL1RguumPCdjw+UoNzqjlus2+v1uxWjkQP9lS35olO8ZhsxOEH9BRWy5AkUodDAYiIfjpIiSMuMLwYiikrybtjKyQKDMsQSvSZzbFEJcmsFpR6dxPJIIh+K0TFCTOs7Gal27IlAxIZfhCZjdJG+ZQmMyma/MN1aOV9ezk7Vhr9vvTWGgNjuN/nS6Op+sDNPIUF42S3UUO5gNhGAFoUEFiLzsebaXaxQa/UFnV2SLGVqIpzScA/YRTgRJNhC1cTUmaSW4nAovS6QtKwZqQxJ4VKYoUoqAsk1V0WAEtNtoeG7W44wkqaOAmucz3sGktnyp0loZ8vvPnt85Prt9frNBKpRMZ+rv/pf3og9iOT1yigPJ9puVbwMAdzbORB6oldzxH//jRz/aDq9VrMPa7Nf/YS7pfE5IO9Vn/+63T76Re3v9tf/p7vqfdB6++sq16zc+eP/9d6+9dxX3vFStXG6lbY0RBZwUDaNcLqJFqlBpqCktQTgWjZnpwmFHV3A1s9yVLN4u57V6Y7A8Wh0BAKMa6HarA3y7a1YsAZMFXLStRufaxwCA169efvH1J167+PCwrrC2ZcPgtg29tcPhkoEqHZWksd5wTLOeW3tkfPaV564+DLD2tQOVX/2MuoD3dneR/RUKYNjZ3dzYRnGERyvD5U6hnHlyS6wAjfr4+5+8j/D31js3rt+4cfXKtWsIgC9fvgzY6/tBo0TCN9589fnX3nzpoS1YjvY35iPPGZ892m/WNjpO59zhynBtc9ZvN2EV6TWr3d54bX1UzfQ6Hb+adNAbLK+urm8fHqHD3zMAwqgU+sQnGhVlfQ3AR0izw9vxK1ff+f6Vrfr89qcvP/Pa7T/+3g9/+vlXXwEGIwmMHj//DDUifYYQ+Iu7X/3q7z5KWaqCC4ZryTIscJ5rqmKxkQNlYoA80kVZkrO92Xql2IF5aeqVUjpX7eYHfQBgUMAVlwVmicAxGQ1Fw4tLsRBGE/FoaGEphACYjMUji3GAERx5QZcsBS2oLCdwAMDB4NIClTE1AGCGCGk5VciWDRaQy3AIUMdsIgBoDYsv/HuQzOgcCk8gaYlScx0UqpQMxoRIEgssRsJLCzGMErAloN0pOUyZpqYLYgKPY2SSZDhVJnGViYiOoSumLSywFiy/oihxnMYmEwxPYSCu8QTyuYzGwmEsDlwitLhAlmxHRyeONuhEgClYt5IhEPzwNCgued9SylVVVkjpuoRSNXVNQ8fAgkRFw1GMIrB4MJFt1htArGq1eqVaB91bAV3kpQsANa3BZIx8KdY2tnb2j44Pzz7UIWNsygUoKGQzuXK/t7+7f6m2lIwyBMlidGjxvoQs6khrCn4OBYqWj0co1yTicANiwfjpSChyOrCwGIoElhYeDJIyrNtJ0XbclOmXQFv2Ce4CAMNKb6P9Z9XQbRsQGDBU849kJVg2ABgFQfhWs4OCE2BtmkyRkJ2tbKAoks31o32YCnt7a7O+g0qmURCShorUVBhBKRQp2h2PBwNA7fX5yngE/GJnf3d9fWNtDBMWJHC722lVPU1WkB0VytvVVNVy4JJUgXU0usPeaDbbWJvMtzf32ppmKDowAhE1eKGcakPz99SReX25BBez1uoMW7VGqwWjsQUMNm/LFEkuBAOnk0khTaJOsNOnVSNKU2JGWWTErJotx+OUqtA08r5GClIVRTZlA7z657To+BZ5hmazxcy9aIUTAAZEuIe834QQ3ivH+roqq4DegEicFGFlUOdS3j//RQe/GWSM9fXjXs6Rm0qhFmD/ltxLIzw5Bz4B4IybAdzO5WRDS6Ig7AcXY8gHlcB5NpwQBQV5eKM+JJQTL6nZbtpStJzFWrYMfJWMR3AsobgMkQgnEzitSTlb5DialmA86yJyiMatYkqt1wteppSFScmiSgNRt9N0qtvu1gQum+/Wcc4peilTYSiWSRKi7fL8YNrNCwLpLa9mMoO6K8cCVDanKwkY8g+eSnJswgPSwBIRCgAYEJiTWc1TAbkyMDIq+VILENjL14fL6VQ145Wy6cK983HUCZ7xq9f8fYh8USYEPrIUxEKRJK9IDIUFTkdYBTA0b3qmQMeBiMc5RZHZYSqCZQWKMF2OSgBDDxKEyCeby0l9yZ2lGqIYo9SCQiQTMDT0lGCVh7PVla3p/sZGo3w8XO4NuoPR8kqzWa0PUMLA2iS7FGd5Rc1VaoPeNL0QwSmSYERYsyQXifRqudUbD9dFrpylxERGS5BYOB7GQwk8QutRNS65NRbHYQFSKENSbJoXUSgS2u8hRQ4VHaoSALCuOq4Et97kizzBkzDID4q1edu+tN/tHq8mD54F1Dk6d+niSlwTZMarvftf3o3HnD3xfqFfr9T/av0Bt1Xqbx8ufrtW9SY/+D8//ukuWcnVHmuP//pfb8Aa1whlspVn/va3T7yWfWv9ld/fnf+4+dTlF69dufkhqlX64B0WrnW91GibqkQkOCIqWHK2ChBcqBSLFeC9WCLlMJieKR0ONDEp2cOuaAhAmIx6szsbrQAAT2H96jRbvXq70TWqKvAlJmE4+cbap+/dePP6tatvPf/q808/vFL1bIHUYc56upY9yOMUJ2myKtLJyUg2da/TeWR24bm3r54DBDs+hySlD8CHh4d7frUnqn5GO8/b2/tbCIB39ub9xjhfNM884ljNM+OrP/n4w/fevX371js3r1+/cR3tPiMHrsuXr3wdxvDKG2+94ftRPnthPlrePt7fqHjN6fz8bDztZGrbZ7Y3V2Yb88lgfTZs1WEtKVUaMCCmK6VaCz6OBshWaDoar8y3D/1N6PMnpdDnL8AX50EEn0NeWUAcQJkg85DDvb0X3n3vk8tbpa3bnz7/1Nvv/fD7P/zzX/zll5/f+RyVYiEQRofAAMOf3/nii7tffvU//v4Mk7FUTjQzJg/XRnc8UXArGZjWMPV1B8SRpKFMhlKj36jlnWolk631yt1hv14vK8W6TWEEyivDE8GlSOj0g9EgxtLJ6FIgFCUljqDiWNQHYAoLndKypi4BovKoM46hAJuDfB4UME/jsajqSXyuolNLiw9QFi0FMJGKwK1SNUVkWRQHRlIMmYjHYoC/i7jDqyKKSGN8AEbhB9E4ycWWCJp15BgLzMEQhASOJfEkQTCqksRVOiKkDF21XXGRBtmDkINnJBb3ARgj8SSOJ+IYilKIxUKhCOgovOQgtZh2dN02ZdS7gcVOx8hkNIpzKrsY4iRFjoMGtnRTs+Af8ArqreFIVCqGo4AKItuq1pH1cx2AuNmowQDPgwgt1upVlNo3nSyvzzc2QQKfOTr3SIdMipYqWcgRKF/tDTZ2989NaDUcS0guHXlw4bRgKzo6T+JQ1RiTiCaTYbo4VeMJKhkMhInFZCQQip8KoiSmQDwtcxQn87Jup2zLP1z0y6C9E9sHz7NsE+QTvDcNDalYVWRYQfbdMQDiOfZbAG7IN2OGDkHWQMyuoKPcrY3VXbQltLczAwDW/CJoUVY1+BGiamsGAFS1M16ejMbTzc3NtfFwur6zs7+zCkveFBUXLk8GnU6r4ukgZtF3wi8G0qfbKGKm2gTFPerDr5vPBtPN4yMAYE1S4RUDAPOUatt2ylQNFdQ8IBOqJ0dzBIhqu9Ue9Or1aq2SsVUukViIRRewOJ+KhXlbh1HnJEIBWGCCcQ9esZfiCAFVfmnIdwOoBq3pfLOaOimSQrvIgAQnO8eZE2zI53wA/oOq6H8C4HsJwCjiKn8PgO9FMfihSUjJnZRk/RMAf5MP7Mtgv8reOzGAvpf+e28LOgMqP4MAOC1iyVgidioACAKDFOTd6RDFn3RFSxIKjgAMdhpZR1a8HCFndI7hmEQYj8fprEAAA04SjK3kbBAeDAucydYEngZMN6uuWm0WgA/mTLjxADNJTndLLHD/fpWnjMywTyTshmsZCsPwqF4x5Qlcd61bFAXCGm5mvXEzI0QxsVTVlWQ0hi0sYBwXT6V0k8HDySBOAwDzKqc5soSyHPP1RrEC82G5kc92NnPpipcuIX+Ye6ftxUwamXDk7mVI5dI0K+OBQDgSxUigylQiejqMqRyvF3TLQknjkVCMknWdbGSxiGszCSWr8AmAYEBCRSXcDUMMSdNcxRQjETZrEDhGEgnFU0Srug4iarJ61N8pbs/Wh5Neb7S21a81Gp3l2WgAALwQY3lZyVUaw+40sxiBa0XQiC1qDlLx5WqrM1lbp6miR0pEwQBNEA4H4jEsEZOUiEZQZpPHE8DcWVE0NY9CXRwSKhDhCYmTdeCeks0Lqmw5QspNm1hTT5C0ypordO143j67MckOu+zjz6xvPHLmTGsrG9GAc2frN//rrViqd0QtrF+oVLq/Xr3faZWGewenvl0ue8s/+ccPf3boiG7t0eH4n//bTVZWGvFMufzM3/7uiVfSr6+++Psv5j9sv3rtxetv3/rw3Vu3bn78gZItlZvlblcVODwiCVHOUBxkFZSv5PJloHZYPJXm4lKucjySmTivdnuSLtiFvAVsd2WM9C/KAu62Wh3QFdVUUSVYhcJdp954+EfXb1wGJHzj5edeeeR8r5JN26yNwrwVfm1OcsgFJ8lIsfrMY12pWd/ZPXzhyuuP7x/5/T0+ACNnqYOD3b0DlP6yvb2J9p13AHqRAcHufr8ztLLW7AnPae3Onv7ZrQ/eu/0u8uC4fg0eV69cvXbl7cuAwVeRFReSv6++/sZrr77+1lsP7y9PNg4Pd1byhfHG8UF/vDIoNaYbewfnH374eNbuLq/O15dBB5cq8Ipa/eUOIFyx1oPFbIJkw2iyPN89ODqDzn1RKPCFE2/os37J2DcAfHhweG58/sbVdz65spU+/Pi9F5967fs/+PFPP/vyyy/u3Pn8888++6YY6+d/8ZkPwF/e/f3nNsx2jlNyWYnTNE7PAbP2HBsADMSph4LJeau9PHdz03Y27RZL2Uyt12iM+41GRSrUDTIJExtmeyywFIksLgRDwOdi4WAgFCGQwV0sHj4dTYYSVDzwoOIZliiqGrKFx7B4IBRYoO4BcDSuechz3KAjDO5kcHIphsdCSKLdA2AOeTTi6HwVuUsnU5LKhOMyTHwiGVwMhhbD0STLRZcSrORKcU7XbFvk44mY37tEq0qcVqioaOsApQ4bIDRkCCerPMVRJNqCxkjAdphJGFLsoWgkGEEAjJVgnXSctGug8ltAJTIWROo2nmRlWScXTyc1Pq5YigUIbPEkapbiSHhlCTyJRRMwIeNWBZlu1OogJ9uNSiGHinQyuVK1Wq7WOzCGlzdW1jZ2ji5cPH/+iR4AsCqAAgbJVaq3e8P57rnDfIIheYbWyAdCINlNtEPMMjRJ4HQ8FIlF+GoxHsGA+IByX1yM/NHiqVPBxQdPBQgvi0cwmmFVUTvB3YxrAQ1F6sq1rZTvgZiCZT9t6H7YhSjzsMrCInNy4MrS38rXOv0hKp2aLK+srgKmru+iGOBtdKYLH1bHbVtLIVsVIDLoIQEAmwBL1eZgeWVlNtveWFuZjpfnwF331mcry6g3GL31Os2SA3Jbk1DrNKxMiumB7inWGn3knTWYjGbr6ytre4f7DUUDwIVXDDRMpC0b0SBVNzy0cecUK6VSsdxoNzuDfrsDP7RYKJcztsaz5EI4dCpBEnliibHdUw+kcnLoj3iQGUG5nI3RroI8jXQV7VgogiDqlpPwKimgRr5rJCBFxstm03lkcIVQF+RwppDPfAO83wDxSUdwNn9iEY2Kp0G75QonitgHYgQkhUz2xGnx60c2c+Kxca/l1/P3o/0/nt+R8wcA7AtnFoQdjcUXFiMESt6mWTG2EIySjm36KVa6qYiqrljVUlbXnTLNZywJKFoylIxHsbRGARRjOJPWc46IiilELZVS4f/DrFBrnlpuZvL5ct4QOBqH2QVgmRdynU6vqlB6ZjCmMbuetnUJneYCnhtpWezP20VQwGrvKO0NWw0Rw+VKU+KjwTgWCCVFOZHJSDJHR+NhgqFZTtRwLpVKZZALdqVRaXQq9V5jUMuPW04ulSmmM4Wvr2sBsQ14+7pkvMjjEhcJLADlTrAiT8eTC4GgovJK1jYdUWCioQCK2NY5uyaE+IIYp9OWiNORSDiQUBWKWO4lklSt4eUVLCi4Hqi8JI6JnslpuZ0xjOn1rcnmpLiyMpn2e8P1vWmt2673gSCuTXMLMcAJu9xsj7qTbCSWhKsOgAxs1ckD74NxVu1v7uHJXCopEjk9GYcJGIyEaHqRUClRZO2GwMR4WaJRsS/AsMLzssyJHEeqErBNSVVd1N6e8mTbds1A3iBoTheEiVzfHFY7vbXauGu+8MJo8ti5NtmiEjpNyoXmO//tZrA+nFqDh84WS73fzO+z26XBweGp+8tlZ/qn//j+X+y2qEr1zHjwm/+wShesfDLTLD79u9898bL36urz//KLjT9uv/nOi1ffvv3R+7ffv/XRhwhuG+VeX+UlOibLUWBXdrlcqhSq2ULdMy08aRf4GFOon13ROYyTOwNVY6xswam166tjYNJjwN9+H1a1XnOQyaSUpChRjGfVGm9+euXarStXL7/8/AtPPbkyqFRFPZejOJERtYsKzijAPxIsbmzlYCgaw8H6xluvvfb03sVj3+Pi6MhvAEYBhDu7+/uo9mp7CwHw7vYWLDvbwOUH622V77xWMwrTw52ffPjx7RP8RRmEfgfSNWTD8fZl3xAL5SFdef2lVy9ffu7C6mg4P3N23su0l/fPL7fmy6XS+sGkt/ncM0888ejx5tbm6vLa1ua006tX6iAS6r3pyqTfaZSHQ9Rs1YaVaTjb2Dk4cxaUOgJgny8cnzkpyvo6t+Ho6Bg08KNXrl757uWNxv4HHz7+zJWPf/KnP/3s7hd3v/gCIPjzO/5GNGpL+vmdL+4iAP7N//KcZKdEgXdLBisZnJx2PEGzi2lVtC3dTfGSKUmlyWq2uDrIula6mPPKrVZhPGgCAOfLJkNJMpOMRJB/I0q0DRM8BSC5EAglYB0ARRlZAADGEvFowMqZhoF8pFiAsngsGFw6TbrIHZVniLiZEWmvbJFxRSimSTKMAB3t6qq+YyTHkCBQEbTBjwwt4q5BxQkWVHEUx0NLodBiFKMVIRpKcorDxzlVdQCAURowBWjFGEpc0JiEihpnLJMIJlHcnKwaIsUwFCOwySTN4kAJIqDVsRhqxY1HAoGFaDHrWZqeclOoploURBYLRhaTmg7AwYjJhVOEJVGmAQyVRmVRAhuF70MuGqE4SfEU8BCtWq/XG41mG93ScqFQqvraqFgstVvdEaDN2vLa5t7x+fNnzjzeI2nFMHLwP33n+k5/6+DccY4AGkHzSiTBODKnoBB5joGFmEBOYrFgIL50OrbwQDS0GAcJQgdji4FwIEiwcobEOBZWIFm1UsiI0vYsVUdlWGkUwZByUn6rC/KENlUfP1HmMtqEBqYPn/Pct5B0b/bG0/4YAfBsMl7b3tmCqbC9s78HU2Jj0rF12zA01L4kKwpAgQMLFABpvTtdW19d2UCad7qysbW5f7gFEhrm6wD+jPqdetFRBF6RfCtKTVQMeILZYrXeH/f7w8HKaGVtvjmH6deUNbj68FwEBMCODVitaSbcDg/EUqkEl7FQbdVaAMCoGyJfqNbzKZUR2WAsskixXIEiLSmdWMjktNgD6VwgEkgUU6pASgDlIIEBgWEZ1HRXd3SiUMzfO4kE+et5oGEL9wA4h2AQkLXwhwCMSrB8AM7lvpG+J44dvmOW/zcnkQyot8avKfL+AID9E2F0AI/yF/z/m/YB+L87A0ZxDPCPbcmmOZZKhhciBIwxmgUoTBAx1vO3oFUVhVUrEm9UKiXbsvISBWxQAlkTAg4YNVMsRyzFMCqjpbMyLzAk8FNXZTnEE8Wao+abTi5XyqOuehRoDXhmi+kmQJHD2LnOWMDtXN4xJIpi6GQCAFiV+uuNoiDSSv9Czh10xiqOK/WBIsZCkehSIC6oiXLT1CQhiYUJ0L+CpFKMCS/VK1RQGkO9We02G8v9cqeeyjjZPOq3Rh4m6F3GzyX0260REhdUjJUTwdOoL4EGCYwRwYVFzuY5zbNdXaBQLUicQoEqHTcUzFt4QndEkg5HsKWYIDGh2jbO4nbPqet0mDdyKsxseIGWQ+n5nf76fGVrsrGyXhxsLS/3UTPCcr3fr9VGs9HqNL+I8YJsFmvNYWe5GI8nSRZVDOiO58K0HTZb5XJ9bY8gcjbGY46CIwe9WCSYoNEdomNkvsXpSjYvc5Sp2bqooBxNWHAEjtIVAGCYKh7KoTYcUVMMNYnsVGA0kivby92yXXL7w42ecnBupzeZm/oyrMnhRT7XuPXfrse6tUrz8m4dfv1v9u4zO6XuwfGpB6pVe/Tj/3T77k5XrTrj0eRv/vVmkuNqi+le/ikEwOlX15/9hy83vtd49f0X37r63kfvAQZ/8qmVLueq5U7fFBQmRqFDYE/Lw3zKVzK5Wlaz8YRRFqJEsXa0k1ZIWRuMdeBk2bJX7FTWxyPU4z8c9Pr9dq1f7dlFVaVljpQcs9T/8N3r1967fOWN519++ukzrXwhTRnVjKILljQYxQlGFRhYYmJrQ5fl9Uptb++5y1fOn33sAJU1IUOLs8h+8sDP/z2pfd4GDEZtSDu7m/Odw43u2tTz7Be25Gp/bfX7f3z7k68PgK/fQD5Y166gJIbLb11Gx8CoDAvtQ7/x6pN7g9na9sHOtJ7vzR+5uDyctnKjlc0zm5vPPf34pUvfefjiIxcON2bIhGA2aNXrze6w3h6vb8/75WoNGd6O0GHwcHllvgMYC8h75hyKRTpC2+b3ANjPazg4PN69tD9/7Oqt9z99a1468+mHzz15+bs/+smf37kDUAsq+I6/Ew1K+DOkgBEA/+UX/+Kvhpyri7Sc8wTe0DTbA6Lr1Au2YpiGmZZlGERedw2eSjmTtpxyGRnu5/qDVqOs5PImKDQe5GMIVG9waSEIhJvlSEDPUCQpCASowOgSRoQTiWR8QQPyqviuqBwBohb+KsyndRlGI0dFjYxAOqVUMkomHQWgmwyESMfUQKuKqIqfAdBJYkkykYgB3CRTMsfybBJnwwksFIhFA9EopfHRMFAsm4Z1QLMsgY0l4jhJkCSrSpigUgmk0UzLSERwUA2w+uoCSQkkzgo0jiMR7+f5omKycBiLBIILkWLeS1mm7bqWio5GZZGMBBdZV/clKIEtLnGZqiuoAAAgAElEQVQAcAqPwxzEaQ7VP0cSsUjUNzhksUgwoLUaAL/NVqtdrlSAYQJddWGdKZZrfq/ZdGW+trV/iLxEzz014ECNeX74Thlu+mC8uX9+P5VMMAlWJxlVY3WDARXM0SS6ElG/Z2rh1MJCZGkhvPRgIMYVSu28xRAY7zoSQxsenRBlCfXMOmmU6gQ/HNRW5l77i42EMRALeGmqig6mVB8R4c23gkZtSPVKpTWc9lHbAUjgldX1LbQd5OeC7exuzLqObmuaiiz6fEcIQTdtz8nXYeSurq6szGfTGfzZ2NncO9xGYrjb7nVBVAw6taJnINWNDsZkXUP+knYW1ucOkMzxYG0Cv2tzFb6rLcmmIkkcxUqKyNiw1Cqa7gDQA6qVAR9L5UKtC1Ol1xm06z1YlhqFlAJYEcWTYZrk9IiaDWlywEzR4QWvzpwOEjzu8KbE8LqD+n4VhpJNS9fNMqvWkEj1IRSdvIIa9k8iURVVvphDDUXFrzef/wmA/c9QInC+WCog5EX104Wvm4PvGUx4qLoX9J/3B1vQ6a9DF9CGc9bztbC/Ke2dNCr5AIx2oN1sRrM1UkBjaylOUThB4CwRIVhSB2EKFw5to1tAJETVKZecFPBlQjEtmBsURuCxiJDmaXoJeKsruzmFF1kAYCdt8BwIXlyo2kqulUJ0w4K7kQBRzEqqJaXQWVOO0nOtEQBwOu9aCoPy+EjOTAPabdRLosTK/XNVa9SbeElSaaxYFhGNx5YWQ6yKeV0HLixQcJyiUeIzL5iWnfbKOZgAtWa71+uCcJoMM04eqImby57YlmRREAPayL+31YASgglKI8OBUDgaRwCMJ0MLS5gJ/DNvgWBggCiHYyQsTmytmAg4rhDj0wJLAwGOhwiVx8wdi8GFTqacEmKYkjFpDBYDSnR4Kb8Dw3K2tr62NVupz1dng0FvsDpudkftUmsymE1yC6hkT8uWav3Oaj0ShakNAKxpMO4q3cZkNBsOauNNiszbCT5uiHg8mYRFKB6iSIbUs2Tc7UiZ8s5OWWNMCwgUsnlBq40o0hpSwIDGJiuAlDcEDYS1yumGYSgG39kdr653O81KOl+wGsUL7XzHqc/gZp26n0/Xb/1/V/ii7PU+2YoXGuVf791n9AqN/bOnvl2qeZMf/8dbv9ovVj0u25v/5b/aEV2mmPCG2Sd/+7c+AD/zP3+58Unjhe++/NqN9z549/Z3P/r0B5l8NV2tNPuOoNDxOMuToivkivlqrpLPldKSlYwpFSmWLJS2dzMa0JzJDF6onq95Xqc0nwyXl8fD0bCL9vW6pWaqANNZISnDciu73796G+To2y+9+OpjT/TLfEVX7KyRyYj51pRnaEF1UQGLs1ezWT7THl188eqrj50799AlALAzSEGeOfAzGBAA+/jrN/+id/vbyFR+uT9L57xHz2vZxu7eS3/+0Yfv+A4cgL/Xb/oADOgL8vutt6/66IvOgN96+4XzG9PR3uHBRrdcH+49cmZ5ebVXWd88szd/8q2Hnn7mye88cuEM/PfQhYONldl0dWN9WK+1eo1qAwXmgHKq1ruoIno4Ro6lGzv7B4e+CdZJX/DZEwAG9X54dLi/f3h0fLyx8cy7Nz98//V57ckfX3nmhbc//pOf/flnX/3iSySC73zx+WeffY72o+98AY+7d3/12a///iMjZ8kM5+RNXtUNxfFM3qihlDJQII6h6KZqlicTW0ANLXqx4mTK42Kj166X1JwHAMz5RnQxpBlPLcZCGMsSsaVgJIZLEo1HARwTZDiBU9gDfDqFGjVNVRZImqGxRCzEFW0VNZqQIdXl8FTJBo4vFFl8MckAANvImwmZmfsATJFJwOxoKBhYTFicpiMDeTIMSjqciC9hEVJhQmGcViwiLukgDzgAYAxPoipoWUiwIg4ArJpmysKiCcALkRUUniAFIsnwVDKJozAGisRj8XAwGg1Ho4HwUriEYtfTAFW2rxBliQadT/KJOIkRHJVYOk0oukRzcYLiQE+RyNhQSgZCSQrHTgcfeHBhSa434dFqNhvI6LwEb2i1KfopAiizADSif7Jw9uzFp4cSEJ60m4aFvFRtjCfLa9sXthQ5thTPF5KUqjIAwDIP2hfmOzxBZHcZi0axyEIUWzi19MCi1ugfjJppiVN1mY4paTuOibzguMjxOZc1LMff4kufOEA4FswWVAcEChhUlCJ8XWyMjJfR41uleqcLur05RFmZSNKOJ3N0FLO7tYM2iFbHLUtHhEaQkJMjYKXsHzWXkc318jJg6Nrq2my8vLG3tbu/uTIZzgAne43WeNKrFVwNmdvLPglSVDPlONlSudQawjeOZuPV8XRrfWfroI0SQkSFh/unyjwqwjINwzUNLwcjMF/KV+ul5rA7mvT7406tB9OkmrFUFsMD0UiIwikrprunZCGm5yQ8LHoFOgTobQFkWQ6qMJR1GU8IhsGl1JwTq/hKFrAylS9ks4ADfv5CsZhDgfUIjYuFb86ATyDY/1iApw1gXa4U4HuQH1au4DtnAcQWfVcJ1Aicdd0/qME6McZKu/AHWT/dA2B0T3xQ/qYNKZUppJ1cWtIYQmWF+EKU5DkKCC0RORUjKOBQ6DwFtafrqqjbCgPE2DOcIi0B9SRpliHJeITM8jQfBnpsC6mMxAF54xU7k5IAoAlarNlKvuumPWDRooDOgBO0ZGZlqzGsVQsJIdsd0zE7n3UsDdUfUjAGXVlobzcrKHqke9hWJr1+IUaI1VXbIUM0EV4KMjpmDosW2q4KJwkaRpXISK7j5rx0vtWs1CulRr8z6vXWRlkUd5H2ijm/8g3lHqMghmIhXcidHL7nKyyl09FwMBzHaEEATA8tBpc0SaEqluXpcjwWDoSTIsxzr8RiumvEqZwgchgWoRbChsBzq02CpFFKpUIsKZ7N4XGCTtCOxRUOd/pra5PD1e3VebU5Xx2Nup3JoN2eLVerveZknDkd4zjBKdWag+5aKxglOQHIt4kUcLVTqveAhbYH6zSVt3ER0znCB+BFPMGGMXvj8NgyO4atjx+buW6q6JmiqOh+CwXIck3UDGQ8pAI9lBVDtmTNdHhbEVKyKDVn3dl4HYXTtprVaqpp5Rr1aosR+NOn9ELz3f/6lsqftrsfX/wjr1f7avM+vZ+r7p49dV+mll/9039/81f7+rpNW63NX/270fwfnhCT7jjz5G//7slXvJfXnvyHL+YfdZ7/0Wuv3Hz39u33vvfRx99z3FamUa/3PF7nqRirJEiHL1QKtUK9Vih6YgqPilUlnsjn1jYcGZdTs1WDx/Ri07O6hTmwlOXxYDzqNlvtdr9a97IiLcoY5Vj51qN/fPmjd9+8+ebzrzz57G7L5fu2rng6KCn3ERM0kmBYAi8Qh00rIaQ7taceuXn50pnHzh895Lf0nD0+PLqHv/vo3Be1/m4C+G6iQpmd/eOd8XC1VEytve5plf7s1b/44MP3b7/33nsIgK9du3H9yuWrV95CjcBXUBQxygN+HZlQPndudbK6dby/1ilU5o9eWp+sdIutzf39tb3nX3z8+cefePjiww+dO/vwpYuXHr54vDscTVfXAG1r9XanWeutHMx7sNTAMjOersCAXwbhvLV7fA4h7vG58+fOfAPAx0dnjg/h+R8fH+5uP3Lj6nc/faXXfPnTK889e/NHP/npZ7/0EfjOnbuAvYC8SP7Cl/DZr7782385sXVYEo1SBjWTgGhyWaFaLtm85hoGQKZp6N5g2VLrWdPjvBzolUmp3G3XSnresXhO4pFDFaBpOLAYQN1HZCQUXAyFE4JIJkLRCCjgUBxj6EWt4KiunQK+rYggTONYLMQXLRnok8QGJJvGnZKF45FkGqeDYfzBByOCYvgxBzzLsiQKhMFQXG8wGMCRPx7PokilBALg2AKF0SodjJCsBgAs6iYC4GgC5gbyG5QlkhVw3HCNlJFysEgM1n3UFi/SDAXgSWMY8viDFQMHARxYiqKu/0AkGEGLWi5tGo5r6KrAiSIVCwXiWITVaYqPnI5wliEmo3SM05yqX9ZkpAEBIqGlpcBS5HQwiVvtpv+o19r1cgEQuFQp5tB5Z7MGt7febFSaw9WtvbMPfefiEz3ZSQFVzJdLuWy+NJmurW6eG2E4H9VKeBigyhVpIUEkEgnkdB8KofUH9MES9uDpyFIkGlgqlse702bDFqlQCKdk1+E5hrD8APi0Y0qm56syZEfpIn2Vsl0/p9DQDctUYIUlOUAlDm4GLDeS/C1QzOVKqTvoomIxIH4zkOtbB4c7W3tbG3sHW+vjuqWZmu4XdoIyVXlkX2p48Ip6/QH8+9XNrfX1zc21rZ29va21ldXpZNhu9YaggBtZR2MkRfB1BeruBQTKFeGidMZT+A+G//L65sZ8q6HCj5cBTCS0bwWUyjSBRsB6hsIbinA1QVHBlW112t1+u1TP1ro5XaUDYSy6GEXe+XpV+DadirkpkjCyGghCJec4aSB1SEzLNAO3E+McXVfknEnWi5lSqoAQF1kTA/beq3LO5kolkMBFhKfwKSg0vwOpUCj5Zc+Fryuh0WcnPljImuPkWBjtqPoBSqB/8yhw4V48oa9+s5l7eb8novieP1YOoMqPbEBUyc25JdZLMiLFJk8FGYriKVCVbDgSpwCg4XLoOmqjRg9VzLXTKc+EO6nbLskBHNJULKZnkwK2hMU0GySzgsIpTDPjnwYnKLaW5zOdhp9ZrHB8kkywmK24gtXqlloVws3VO1JYT9dSiiwAYlNRSrJ1vjof1RVFlDp7A7XXHeaSuFga5nWdxOPRBZxTaLubtziYjWGSpHiO1YAd2DaQv0KjWa50urCutYHTTUoe2mzInpwBo01odPCOgpHhAqPkCq/gOQlRSsYXYQXBYH3nCTwYWyINVlMzcAdFPhbFwphk2rJct2PJvMrFLIeBvyVgYQGuHOmsUUIoN3TgxcUw22Nj0RgToSw7Vu4fzUfztcP2+u5Kp7S+1x8td5d7nWlno92udpaXs8E4q4puqjnojzcLASIpokgY2QSaUAHR15ytrW5PJ3E660S0hCJSRCQaXYwlkwQvG7nWo93wGC5jb+dgM28X845oOI4KoMMKNIVorqpqqL3E0FDyCaqdEFE4pmqok/XptN/tjfswnnu9XqNetBTT5Gj6wQflTO32/3Mbi57CvR9efDDXaH05vz/VKXTOPHT/t0tVa/VP/rfrf7UTmZvRSmd+99+M5v/Xz9MJfSX/6G//7omXcy+sPvU3v978qPXCJ1df+vD6O+/euHX749uaW6mn66NpnuMkIsaINKU4Zj0PGFwFRimYUkjImzEinVk/B3KdSQ3mlkKpXtnI9Asr0xFM0zHqQeq2GvWRl/E0TmVpHIjR4MZH12/dfOfys2+89PizjbZSzTGWrRQcy5lu4zFYtHUhrsiFqSNTOmjpV57/8Nz5CxcvnD977Mf7HR18vQO9t+uj7/bu1u7u9u7+zvrO5u6F7mC15lnlyy0O9Pfq5z+49f57779z69Y7AL/Xb1y9ev3alcvXrtzzonz79bcuv/ri61fffHR3ZXXv7OHBpFrq7l48O9ie12srB4frx0+99NKzTz352BOPgQI+99CFC+fPX7j00CPnDreQ8f3Wcrtca7dr5dF4sDzv5BuoGHo8W+51x7PZ2q4fxYAow9G9dELfMPos0sEHR8cHe8cPX3v3kw+f6fce+bM3nn3uxj/76U//7O4v737x1Veff45qsUD/AgrfhQ93f/HVnb/8/aeuZeSSklvweEnRZKCVvFmuWoJmynLK45SMlmpPGlazmXOEtGdZbrWdHdcbRd3L2jxOMTTgFx4NLC4FQ6AdJSIOCLwUjvLJWDhGhk8tMVGMpemYkNZhAdR1TWIJjowCcVwgC5ZhqjxLxihHob28QhBJwqISYT4Zuf9+05LR9qYiwWINmoZGVssxRIopzZI5AEEOZREHg0xoAUvwMhmJJjnTJhKiajqqBHgdJjGSxXmdTghKhLQ8zbQdCQ8mkRsI6r2jCY5IUsgJiz6xukxisUgMHVgHUalXpo66ReyUbaimDUxAYEKBJOGXfYt4NCkDcsUTPNpArWd0w5Rk4AtCcikcD5+OB+F3Yznk0dTrtaqVar3TyCN3wkoZbUdmyvVGDbRAOV/rDQfjjaMzj001w7NRo2kx6+VqDdB2K7t7mdRpq7VwyobfzdMkSXM4S2B4ZCkeikRQOVh4IRhcCgZD2GI8096bVsdNmQlHkzHbs9MyRvKSnslaKlxDWNOzrq7ojp3OohNgEMY2cpYyUcIByHgk8UEDaxLi6kgBowAlL9sdIMeb/hAl+66OR5sH21u7CIC316fNlGkbJkC26t8i1UL7I6my3z88XNlAhRMb6xs7MHv2t9dmy93eoN/rDcfDXqeYNlF/Oaqf1k14l/KyhXK50WgNhsPJELnsrM3X1jeqoK05EPG8rHC0APrXQoijpNJeulDIlMsFYDLNVqff7w3GvWqp0Gh5skgHYMWOJihSVOyKtJDgpU5bibFpy8EDWlFTXM+E16uApKF5U8ESsinaKc02uVrOqWbsvHfSxXsCvugj2j7IFkpFYEbwGwulr6uwkEVl/p4hx72zYITNmXu5wPmT/ewTlwkEcqCKET7n3JNqqyw6mkda+L8DYM/7xrEDfQHfK1oJWmQ4fJGk47TGoXIkSuRVuIe6v32unpRiIQAGemG5Kcq2TUGiReCUcUzNEwwRS8RlQyuYDC3yrKy4FnBX0IJMIcUUBzWE+C5IWibBRRjB9hS91q3Ui6SeaYzQJkIphaokGZqJ03JKZ3LzSQPwhK1vD/XBcFqhKLHQLxlqMhGLnsYYiZYaWYNjkmQIWcDyjMjpfrJTJlutZr18rd7sdgbD8aQCfNAH4BM7k29CLVAqA+JA2ULGBb1OYmHkvcOoKktFw0uBpEnyAnIyV4RkLBaO0Gi5KmTwkCoTYT0rc3gCjy8FcNnA83MNMGGYAtaAYXZewfEYjRGKh+n5w93l2bypVg53Z9XyxnIbkG/cXBltdQet7nySChC0ZLq5aq0/nJUjJCZIqGDETnupQrPdbq1OV2D4O0nPgIVAFwgqEYuFYtEEzYtapvrod4SKDQzCAjCzq5m0qhvIgNKEnyEDRXU1WCgsZH+jozJADdDYv4NKMN9uDQbj6Wg4GAx67Wa7Oxp2mh7L8QsPCtnGe/94nQwtWa0Pz96XrTburt/vdnL1g/P3f7tSd9d/9O+v/uVFbC/NzWobX/yvo/n/8WdeVJ8Un/zdv3ji1dwL60//7tdbHzVf+O6N19+9+c4HN2998O5N0alUC43e0JUljUkwQA5ATJSAVhZLhXxBTikRkEYxPJtfP59iOdodbwFpVtIVMzMsIgCewNPsdtpwNZpDO29qtMpTUtatTj++ff2d6zeuvfjaiy9u9yyvCXMtbXiWYZ0pJHjeVGk5KYhbOYPR3dbgyWu3Lpw7D4+Tk9SzqIr44ACFMHx9/Lu1c1IBvbe7u7+3trpcrmStqzOr0d5fee+Ht25/+N0b795rAT45Ab7iV2Khcui3bl5+7frNt9947AyIgDPHG/1KfvqdR7bX1xvl/vz4aOXRp1944Zknn3jq0ccffeThc2cuoqdx4eKlhx59+PzB9nxtdba6Nq7ny91GsTqdr/SBDzVRSswy3JxOf7a1i5qOjs74qUj+GTBS78fHRwfwt4d72zv7T779/vc/frTffvvPXnn01gff/eGf/tmdL3/xi7t3vvDroT9HMhjE8J27v7zzy9/81d9s2FlNo7ycbUsKara0QBU0ChYaIilHli3dyo/6brWczwi2a+lOoZPtN2plNZ1JiTTHszRLJpEd29KSD8AgUxdOh6IiIGY0GVoIMdGkSNNhOuOkAepNEFo0AYCKRU+zWdNMGbLARGhPJZ2cxnA0Z9CxsBhf/Pa3FVP1V3eR5wEgURUWEtoLp4NsSmJBEXBMPAoEdCEZjETiHABwDOcMi0jIKqhRkUhioSSepEmQUYSqR0jDNV0EwOGkgSwQJYlnSJogUNihv72NY/F4CEUCh+N4KBxcwpxqNo0EY9qxdJPnALBDi9E4lkxglMQxwFNEKin7x7YlFUBfQyDGJ0MAjBE8EmWwZBZuVr9VzBbq9TIqrspZdsbR7UyhBFKwP16dDWbbh3vz1dXVw0fXJcVLu6gUJZ1KlzrD9nTn/IGXCMipQMxC4cU0jsViDJuI47FAdAn5QIfDQQDfYABBMNVYvbjT65c5MhbHwlbJsxicZRgASc3QTVBgpl8za6OFxEvblp1yUradUv0NWf8EmEeIiNIJ4E36lgF3ynCb3eEE7TcNR5O1+Xiwebi9tbO1uXOwsz5tpSwEwEDZ0C3yLbeQF1a12e31h8trKMNkPpsfIQUMn4y73f5w0OmNB71uJWsDAKM4SMU/xrQdNwvf12x2QACMpsvLK/ONtflGVQTkFeEuSSiSw4LVy9QAb9IZ286VsqVSMZevNFrdXrfTH/bqlVq9ktYFOrQQjAE3iTFKLkcvBGJ6rt7KaTIgraS4aUfM6oA/VDIGGCHJFM6ospmSTCfm1Yxa1sqk81m/GSnrV2Xl8kVUou0L4HwJeW0Ufd1bOMlFAhguFYuFP9ib/ub7CtmvDSb8Iiu/zgppXmS8gT7NeV8nA38DwP4hsHOyNZ1GjcHpbF7XAHEkho4uUBqLwxJPMUmYFW7GcuB6/AEAy0697KXMdCZhowN2QiIwMhZjc3QSj0aThqWVUxwNilRRHMu/ACSTMYjcsJIDye7KgsJhQoBnU64mF7vVWoFWvMbUw1Q359gmTzIshzGya1Hu+nJLh+lYno+M/mS5yRNculdzDECh6Kk4KdBC3RVJBotGgNBygqiyquMnS5SrlUK+DLd40EVt4rV/AuCTjulc/sQQK+vvSGfzQE0USmES8XAci1AakPRQ7HQwolI0KDF4mjDOI+FgXFA00arwAdqkwnzWomlUSxlOCCYtTEs4z3XTdk7Bw2LOpkHD07jkirK7v7N9MLFpZba9PXJHe5PBDCBvbbzWn3Yr04l5CqcFw6lUytPJpIYRUUGSJR3NG7fc7bfa8/5svj3tM7oBlNiC60JFY0AGYLZRQio/umAVJW/ULJdz7XzbSmXTcAEBZV0HYFeRTEXTTRQ55mePScgUgYJlLbIUyXgwEzKlWr3VGwDCdWrVWqVadFg1fErMtW7/5yvJBwL28kfH96WrjS/W7k+18rXDc9++r1T11n/072781UG4X8g8XN/48t9MNv7Tz9yw3Ss/87u//85rmefmT//21/MPmy988s6VK+/e+vjWu59ce1fOlAsVYK+mrRk8ARqXIi0TKGaxVswXSpqjRJiSHYl7pZVLOY5OprorjkoJXtlKD4uz6Wg0PqEJrXYHfkZBVSmNIay829z4wc1rN0GAvvzSC490OnI5x1ma7aQsc7iXxGTWkUiKpDrLGqw13fzD16+/eHAeZQ+eO3cewdkxAPA+AuA9FH4E4Avvdv1qrJ29nfPbvZVRrmgevyqlB/vrz9+58f6Ht97zK6D9BwAw6kJC766DFr72ymuvv3L5ze8cra0enD+eVfPNne+cXZ3N653x3vFs/tKLLzz/9BOPPfHUdx77zsMPnT1CzhqAwBcuPvLIIw+dP9rdXAERMGo3O+1CrdMYbW+OmrXmYHUVeQl1+qPltd2jc6gI68Q1BCD4HCqBPj7c90+CgUHsPnnjg+9+94ly58O/ePmxl67/7Mc/+flXv/ry7i++vOsfBd+5cw+Av/z8q1/e/VfvZz3dpTRAGwBgVGhq8XalnkU2RSkb0NjU7e4I1rxyThAcQ0t5nXyrVa0r6XRKEWQZZjSqCwoFlhbDsZhMxiPBQCCWUDgKj8aRg2IEB5yO04VcGlZ1S5d4FqdIOhFbYLMWiGJNFoJ0RifsnEkytCTRQG3DgXAI6JMOxNE/JEY5MMlEHHB+4dQSZaMQI5pnsSiZDC8kApFwjFfwUBQAWE8kZAOZEoKeDWNIAssyAetsmNJTBpBnBMCmpqAeVJGFKcSgFgx4pkmcSKDZGwqjVGCUSYSZ5QIKzc0AAGsmoCvLxmMJgoFFTeRQf4/OxKlMrZRz7TRIZNuSGFZgE+FoPA46GWNxItuv1aoo9LxcraHjqIybLaSdvN+W1GwPl1dWt44vXTx7fLC7f3YVRGTOLRbRLnWx0Rl2ZvsPX6ossTpHShY6syaRHwNPx6PJeDAUiKDcxHAoshCKLAVCpwNMfbyxNp26LIODavAKnkbgPMOnNFkHWVVOu4CPrimJkpFClWgnGYWmKhu2LopIFIroNFdD0S0opOBbtV6jnLE8YPKdQa83nU/XN1fGG4f7qCZie393bdxA7c/IiEOSFQ2VkSC/m3QxV+mOxqPx8vbm5sbq8vqu38S3sTJZGfYGvVZ71O+0i56B6qoE9K0qKAK0RQnLQbPRbndGk+l0urqxub61XUdPR+Z4TkT+JpZl2aauGYrtpRzkD1msoKuKbDhgIek0G81S2rMEKhyIYoHTUYoyS2b4wVMAxQnQYA4py6yOStGy6MATJUATOEYIAsl6kuwBIaOb6XQhk0FJhEi3Zk8SCQFwfZTNpUuoGhqd8vp16n79VeHeO+RdVrqHwlm//Td7YsjhHySn71ldnSAs2l1GW8x++h7Mt9Q/Kd6TD6ggCyE1Cs7IFDhDQQegeHApaQEvTQAHjCFH47SFoq3/AIAVOV8vpEzHI1RDhbHCkBEiHsHSQENDi7iVkvKuwrMEY5hAQgSewgkmbeNWu5pDvcqKqBJJkiAVNaVK+XatWeZktzLyYpKbd92UhIqvMUp0HcaezTq2IDOVtYneGo3aQoLz+m3X5BPx6OkILjBSy2UJDo8EYjjNAsfiYWC4uWK5WsgW681Grddv9wZIAef9Aqxi9uvG6ZOj8zRqR0KF6HAhLELiksh4LpRElqTx+NJSgJFZgnYNR+cZLAQLNI0AACAASURBVBIPRdEuHdewo0RGTWCmw3BAohMgmQ02UR8kqYibt+sWFSC8DINHSC4J413OH84mayavqOXlzbVCceugPVyvtlYGk+F8XKpM3fsxwAe7UG+tra3V44kQDzipK2Y6m62C6Gut91eXt6fTrG4TYtwWMZ6LROORBYxMYrxbNl2pyaU2N6qF4qTbz1ZblayLNpuACJspXfNsC2WyqipNEXgCtDMQ/miCoRJsu18uepZqWjAb8tVGs9Zo1wqeSWmJRanQvPmfr7F02p18cO6+TKN9d/0Bo15unb8AAFx01370b2788oLClcpPDdZ+8W9nW//7P3OD6W7xyb8GAE4/u/XkX/9m/kHrhY9uXn/tvXffB9349vfMXDkDlLejpg0grazAc7hppWugimEgF1VLDJJlOxp2yuNLZZ6KWw20aUw7RTs9zE9B/g4H8KfXaXe6nUoqp4q8QRBuJle+9IN3rt24+gZyXp50LCcPci4tOa6Rfzgfw3lFT0pMwjhwFEawu4Obt58+etgH4LOoBfgQ9CNSwAf7e8jyCqlf34Nj73AfOP/u8WTab5SMyTUpXZ3vnf/xpzd+eOvWzfdRB/D1G8iH8kT8XvdR+Mrbb117480bz5+9sLu6+8jxoFScnnn8cLQ8q/VmZ442Hnr12eeefeapJ594/PFHfQA+9MMV0OPs+UsPP3zp/Nm9+WxlPp/2i8h5udbvb8CKV+n2axOgj0NQGCubB6hs++BE/yIbLz8r6WjnAF7F8fH+7t4LN2/++Htnq8sf/eCJZ25890c/+Ysvvvzyy6/u3vUPf5EN1l30/s5Xd+/8+p//fksu2FIiVTAkSTeNlOvIolMpW4oOa7WncrZhVLvZUqWeEUlg2KbZLlU7lYbs/f9cvWeQZFd6HTgBDqe7q9K7l/m89/neS++9rTRVleVt22oLoOEHdgB0ox0a3owBODMcyxn4IUiRDIlaBUmR4i5D+rmhlTZiY/9rI7SKlVmuNmK/+7J6yNicqUIX0FWV+fK+75xz7/edA/IJOdmTNCynaNDvBVyISIQbmB2NSTQeDYW9/gjhwyiMT9DlPCw+DY3UshQRjScSHioDQIBmPb14SsGNjBbBgPZSQSwGmi6u6qomIX8mho0j1h7HIkC0g4sLqL0I5QMyMQBZj5fwLARjvBz3BjFWlSMAwElAlHgsEY4mYiQAME6JXJAzkqAAk1zMj2nIggENvFIk1BYKuDrAu7sFjYW8gVgiFgQK4YtqxYLrl+AYimJIksCwCZRrRsYwjhV1y1KJAAfXxDEB47KOAQAMZCQeiYQiJIbBXUVl+71WuVABKKtXy2nVzJUqjWq52QHZ1mh0gUdtrW8fnr946cq17dWBYgoomD5bKIBS6AAt3zh3ZRBOpiUR7VahBBsCufiGQrGw3xcIw68J+n3+E0gNh06coMrVQm04VlkOLnoibySVeJwBlq4qyVzWyQLPAdTS4WIkTYFXNSiroChlHpnT8pKIusIF1A0934Hm+W+MZ5PlUaXSyqE+o0K9u7qyujJa2T3c3tzZ2dzdWR7WAH5llUchfoKsGZykag6yrSi3kRXW0mxzc4ZSDIG/bq6vLY9Wh6B8Op1Bv1XPJBVKmJ9/SSgi1bScfLVUbyAb6eESoPd0tr62td2QVc3NUxVlluJAAZuIvfGK7W5WZkArwP8qDSDhtXqzXapkDYUjcT8AMMAVEMW8FPYu+HEnicc1bUEQcB44B5AGN5RV5kSeIHgOj2UkPq0oOTJZAdDNF+ZIgLaOUzl3lznnNjk77uF9CfU8zwEYMLcw34RG+AsA7HpVHm9AH2cJI2gpuA6LaKhojrmuFaVrQenGLfzDgPCxGn7w39PomDhLGwROUxTmi5KcZDBhzqZjQMbSqSQQKlOF2wMFKSL+xFq1sgVYJzFmSmRFgggl8FDANGkithhkVBaoMguqXzLStoj2sWm42zi9UQG8K2YUTsCwKBVVeUtRi81Kp0rydmmUi7JWEUiCxDAMF8NpAGBtadq2WIksrK6o5WGvwye4VK+lC1Q8FgEA5hmiU9VIhsC9vhjqBCMSOMhJ4B0FIDfI4qDdrncG46XcAwBGk0iZVMadqUY7BQ8A2IIvKI7Fg95gGE1WCHQiHDnlieh8PKpKdlLksAgWDNJKUsEreSxkp7ggn+KJRCQU8vvimoQ7K0xoIZbSaw4TwMwCFw0nyJioGnhqqyRLTJy0SivLy5VU62DU3qiVJ6PxYLY2SA8zCziQPk2HhTzdrgQiAMAcIysoRAyWaas+XVrvb6x0lwsiJoZ0KkAkPL6A34PRJCGmykaMrifTzZVMbml3Z9JcagAtAmZq27qkJTXFFFH4sjtNGY5hcbhHQQTzqsIxS2vj6ajfzGWcpAZvbMopVEtpSyfU2CkuW7/3v76Gc9Xk8P7RQ5lm+9PV31WrpcbRhW891Cg4Kx/97Y2f3t9dbOQurEw+/R+nG//mh5YnPcxe++M/v/Z8+smd6//kT2bvtZ9+6/atF964f+fe/Tvf+ZFpVzO1drMF1UAVaJLh2Jik66VytlzKZREAB/CKFQuYld65CmgKuzlzJCJhZgx7mB2NURIhinDsdNqtTiqb1GhVI7m008i/8sHrAIcvPv3sMw+324mCqRaTGUCQ5MYGTtK8KcRFPj5piSwrtkovvPHSweWzaAMadTCdPoAHMrpF/lfIexKdAW9u7exuIwDe2ttb7a7BtSy+NKIr05W99z++9/77N9955/a9O7eOAfg2wl90EIy8oF9+9YW79x873F/bO7iw30o3ty5f3ljd7eaXt89s7z/78tNPPfM0guCHr1x75Orly+5QkauAL7j70BePjq6c31tfXZ3NOoNGqdkslfr91fVONledLKHj7+6o158ABJ87d9wNfeY4L+n07umzyBV66/Ts3Mv33vngrXPZ5R9/7/orN7/741/87Oe//uJz1PmMRPAncyX8ySdff/L5n/zq7z5MOroWldOGjPagDdtWaT7fyLinE45CGbKcaQG7r2elmK4LqlqpFlrlGmobkmRj3o8cjwR8PpCPYQDgoG/BEwoLNI4MOgLhxGI0EWETTCkjIwKIGqsoGktgCT+TSxoai8P9mrBlKAkyaDyVoEKJWGAxGuRMSxN5UWBoNkK4g0KhCACP91SQEXgmHiHICIahI2HPQggAOOEPJXhVikRBS6qqgCEAxhI0ycsEIbMhxYJbwTDYqA9TFbfXyG2vphgad/U1ihuOBRAjRT3G3oXFmAGVF9Fyx1QkRQAAZhIRkqFpEmoK4IGpUiGlUoZCmUxbaah+IqdpIpEg4rgYxzGaYTLdZrNeKVXrjXIKnlK6XCzW4MtavTXodkEoTtZ2N3fPXzp/8eGt5b5qicgMN4MSSRqDSW88Ozwa8MmsJbKCIvMU2gGAJxeOIeRFG9DBgOeU71seoAzhEyeEai1TatfhYkbjtJQBYZsgGELg4XmmM3bSdi2gDRAATlKWDSSCVQ0d2rrjLDIKaUexu8g5nkWPb3SWeivby6v7WyuDTrtZznXaQ8Dgrd2tjd29zZ3dCShgDTVhKaLrp6EAqBsOLJFytdXvtXujGRrcW19Z2jvY25itTodL3c4AqPNw2KmnTZmWUAwxz4ka6kq2nJwLwO1OZwiP0XR1fWNjqw4ALKDsHlnlKBY9ZR0IlK4aoCgAD0turEW9Beq3Wqk1s6Wyw8K7HfR4Q4FAFDMygEVxWEWFoqqlk9GQlbWdXA40tGEmk8A/QHcbEscFeE0RlaSaTJTgiZWQekW7oLlcKjUXvEjOZlHvOtqCzpfmAJzPoY46dPxbLLgb0giG867mPc4FnhtUAgCjkIaM2+SLNlddmEU709bxGXB6Ln6PfbAcVxy7B/YWrKuUpCdouD0iCwngOYZIKfCuSoKScsxjAD5WwKqk6OWKrcOrxvWcyupAcCN0yMM5FM4ET4U1OWdyLJRaXrEM5AZL85iYTzqdMvyufEZhWTKKReKc5OhmtQUATPBWaVpLUEbRNtFcE8XFCcqyKXm40rZIKW7PNrQCcCopylidlsJQRDy6EIoLTKg7yFFYFNfjIYAZiqcZVtQMmVXNFDCY9qTTbfZH01EeAXAukyk4mXx+vuvvmlBmHmxBW6D/FQCGIDyAR7MsjofipxYDkhwP85KdUlgMastiWNBMKlWlPFxOj1K2kUCOOiFflNMYZSWFBUJWslDgw2G2YERjsThGqyYuVcU43ZL9WmtzedLoFld2u6NBfjJb6XYm00LNCFKJhKSK+Vq9t1XyxUIoIEzUdCuJspya9aXpen9zI7s2JDESk+kowxLo8MZ0UHicypKiXS4lVzZmZx5+6vJav+QeNpiaLjM0R8bQLp4LvfMTH1mSkR2MwJHMcLk7GC0vg7xq10u5jCZJMi8oGqOGT1Cp5hv/7iUhIVnTN44eyjbbv55+06yWyufPnniokXFWPv5XN374vac8PWe2Ovj0b5e3/vUPHU9yM3/xazSG9PjWtT/8k9n7nSffvHXzxr17d998+5VXf1+z6qVav9sS4Q2XOJxkGZwz1GIlX4QFXlKTYhiv2GTYqHbO1XgumqysOxIZlnVJH+XHkzEKA+512giA20ZJVSlLpZW006+//+brgIUvPP384+Olslw14Z4Tc0q6dV2OsaKsMGIcy+wrcMFqub3vPX/+7OXz5849AGDX/BnKxQ46/t3e3lgHBN7eO9jdgcf+mY2l6VImmXpym2r1NkbvfPzG2++8/tYb795yN6DvIgRGXhy3biI/jhuvvvLKi/dePNrfWN07OrNWTffOXLvaX95r1PfOnN155Maz15965pmnnnjssccefeThR65euXL+YJ50hPagj47g4yLI4KPTu1vrK6ubg2qnVe2VKv3pUq/TqNS7S8NetwdVcbC6c3j2eAf6tw+A8kOUyrB5bvvg5Tff+PjVjdLFj+4/+fxbv/fzn/zk11995dpffYaMORAKf/LrT774/Msvv/yzv94X0qhjPgcSWFG0pOWwbLqWEWmel5Nw3UQ22SnbVq0gx5Uk3OyZerZRLUnIHFDSZDqBg3oMoi4sXzAk4pGAd9EXiQAAh6NRL8CiJ0ZhdIyr5C3HgpIvCmKCYahIxC+WbE1m4Nu9CQcAOC1ScVmOo7nhyGLYz9mGCkVaZCg2CrAGKxeQMRT2nAwDGtLRYIIIgcQN+zGPPxxlpUQwQgiaFImIoHEENhqNh2KxBENyAIo6HQSKZ1iGToV9cVVGBh/IVZmjSIZBB8FA1YkEFocfHwoGANu8oLONIkgXN8NAk0CMSSxHxFmBRyHF6ETSTKqsli+k0XARipdLymjqHsQFRcsJhoDbymnl86V6vZLPcLJTLJVLaWTaXyjXuu12t9/vDqbbG7tHly9cuLJ7OJV0M2MXczm0Yd3odmvDzQuXewoUW5aUNBpgH4dLHPDH8GgYJZD6AiFgCf5FX8gf8J/wGIVyrtGp5vhAWLZ01TEkuK3icT5pmWjkBUq/hU59s1BPDceWEPhqIKM09y2UZRKFh0u86xwPFIP+Rnfc6q8vT9fXZ6sbO9uro2ajuzRZQ27Quwebu3uTUR2KCiAkCiyS4A1VkqZmuy5fzV6v3Z9O17Z3NmfL4+39/c3VVVi7vX4fHf4tdRtpWFEKvEEsh2wsQR9YdrZca9Zr7W5v1BuMpiurs/XZetXtgoZnJCkcxSVRRwL87aQJfzAyNbhKcJlazWYDZHClWisVG2UxTtBhv9/vDWKYCVgrRkJeuWjraZXA/IxRbzhW2kB77xbyA7PSDhBLLCiZjGwyKVYp5ax86tiaOFtIO7mCuxPttkXnUeM1wGpxPgWMRC96gFw4PgOe5xLOcSTrAvB8WxXtaeSybjKSgw530/PxI9cRCwHuAwB+0IX1Wz0MFzOtJyVCFBJ44CQpqTLPKhYZ5TkeTaa7AKw96IJWJZ0v1DNJI1ugJCdJS7BSPUzYE7WZCBs7FUiquaTAC+gMOKmLKN+ETshF0+qU0radzagABzEyTNKybWiVXr1ZZngzO24ScwAWkBcdRtJWipaGqwDASsycbmq5cWdJDRNKq2OyLJWILkQSIhOuNzM8hcXHgi8Sp1Qn6aBoqLSt2vmMmSy0OoPecGk8Kj0A4HnXGuqIzqKT9syDJqxkOp1LkawUigW8UeDUHJnAMO9CIKEmYpRkpk0aiwUXFxdoIcnwDcUbTZtEQknRRBxLIANpnWbbDQaL6o5TE+PhqJNPJCKAmILFs4ZAStM2r7WX1ybN1XZ3a3W8XB4urwzq/WGzLHpjUULRrXKt1V0pB8g4ckcXZdVM2pVeD2jk6spwe5PvrVokB/eRBkQqm0I79TqQZCLMyVqrW926/vgLd99649KkXi1kbF2gsXg0ChUGBVSgTld4x1AatggEhUNu6jox3l2bTYftJTe3E0p+Po+M3SK0HDzJpuuv/9unN2tkeQIKON1s/2rykNWolC+cOfFQJZVa/eHf3PrROw8zDbHen3z6t6s7//rHWZ90sXr09Z888Vz6sa3LX/7p2ve7T7x5+8Ybt2+9+c57L975WMhU6vXRsKVyGV0RcBIoGWUq+Rrw2myuoieFEFa02YhabR+1eD6kZDcdiQrwsqRPAIBHg36/1+t2Wq1Wu6lWVJ4Bsqumsv31H9y+e+/WjW8/+/xhpZEp5KyCYAnwRu5vhxO8LnKEGMHX62KC0/vlN169eHh0cO23afeo+3l7exf5T266o0fr8HkbNURvw+fd6XhSNJ2DJ+h06/TkuU/uv/HO/dc/uHP3jVu37969i+TvHbQXfevGTdDAN1599ebd567tru5dPHN6WimNzl89HJwfWeMrF84evvjq40++8Mz1Jx+//uij169fv/bwlcsAwC54nj134cg9CgYARt3Zl472VwfT1eVhs9qo1WqV1ioQqmqzOxwNu5N+uzuEIneAQhjgMd+ABj2M5oEPDs+sHW2PLt184/3vv7iSeeTnt65/560f/vSnv/zi608/+/xzdBD82TEAf/r5F598/oef/Kvv5x1b47iSI/MuAKdE1szCFyBwTV2keFZu1GyjlFWB4Cly0mikK/WcqtuOKsoiTVAgzoKehUWvNxhCW9A+jz8WFVkiHIn6vEEyiINIjki1YhHRfEBgeA84Nhbz88WkIrEURSwSWQ3X0jIT1QXUukWSvmBAyULtZSWJIVnAaByLALkNBMPeU1FUv7EYTYewBKB9bCEYiTIiAmBRk6KYrKCTjUgUC4GqpWiew3AND8Ci15NzANaU+SY01B3AS4bAcZQwhFQwBgU8FEFd0P7FsF5wLZQdJwlQIyqqINARjGBFBqeB1WuGDaDruIeCWSjOGQsZaIsgOUAv4AJyHXcaDQCkqi2wgt3sN8oFlHmaRakDzU5/0OuNgGDtnz26eOnS+WtTQYGCDHw5C2qq3GyW+psXro0k3VZJVlUIN7YYWWHH6TgGbCEaisTCoIMRDvs9p6LlSjVXA1A3Y1Ixqwq2IhFxBo8ppplMuTmE8wAexwThaicFA2q4nrQMFYAYdYSTlNtNhXrDURwS843WpNVeW1tenq6ura+tb25vTDqV6nRvd21l93Br72C6VJsrYBHRdEUUJUMVVDtTzBUag2FvsNwfgbqfjldn2/tba2urk+F41Kk3++NhpwEXCiBPZJDHpCzIOjyrfK3VqlXbvf640RlOlqeAwWsVCf14dAYssbRguf5VooK6oO0M0p+lUq3ZrDerpUq92ai3C9W6TlHoBN6/GBENOSfJ1Cl/iKzknVKSJLwRH5Gp5pHURyUPdW1rGmCL7KVtkCeqmIsptWIqj2aG0N5oKe0ggHAHfrPuBBKgb7mY/y38ooPf4gM/jnwh5ZpS5goP+qePDSZSbksWUna53NxSC3AYsDiZRSfAttug5QKwPY8NPgbolLubnxYdJiHxcSJ4ipdFQRUkS4zpHGfbAJtzAFZdANZUSSazbWCzTl0UjDQJCEyf4rCA3zHCFOaJWKyTlAQmQemqnQSeRTFRyioJYrOcO3biYBIkQfECyN3CoNWA/2Q4/RqIXrgFTIFiuHiEZJ0sKw9nbYcx4uZwXc2OOyM1waitgcVQNB5ZiOBwawDhQRvh66InIShJRzGRzVmj1R1NOiV4Xc1+r9/t9ovOvGGtgPqe84BR6B9ICj8YQzLhEuTjtBxKwO0eCoqKmCCjwVOhkEbgpKzYaZYgI8GgF6cNJtpKR0O2RoaZnMgmwv7FU/64idOpOuH3cZbakFksrNYoPBznQ7Qh8qkMFTZWBtlWa2NYGY6bw93NWb3VWZ4tjQaDpnTCnwA+Weu0l5eWqhGeQns8Inot6UqrPlidzkajnfVYdbYiApOyDEvXZQIleUcxnJFoltH7a1vrz334yZ/+6mdP7k7aOYUhaZbkWJJhWVFRVEWRJRE5sKNZDCCVqgIIzCzvr6+vra2sTtzz1V4XeciXHCgkQY+cq97+3659G80evQ8A3AIA/qbdbDSunjvxUC2TW/u9v7rx8cdXS6lwsrz9q79Z2f67H2Z99GOtoz/++qnn80/tX/v6n27/qPP4m3dvfnDz5ltvvfPsvffIYq5Rm4w7SS6tKCJBQQ3HdDFTrWRL2XxVNxhPKGNyUbnSvNTmhbBaOJ1SuDBIhNQktwTwA+q31+806q1uXS3rJJ/kWS1b7l3+6LXbb9x68cnnnlka6FZeNjNiMq2281dVIq45NI9TZPkswTBqxbz28dH+9b2jQ3d+58y58wDACGp3dlDmC0Dw2tr6Fmq+2tpDO7obk8m0ZOWadzW7tDW6/MsP337//nuv33v79v0bt+64PtAIgG/fAex97fbtm6/evPXc0drGuQt7O8NCeePK1b3RTr25c+bw7LnvPPfcs08+8e3nn3rycXQG/PDVa5ddAHaTjM6eP0LP5cKF8+eOLl06Orp08fzZ1dW10WjabdWQBVp/bX3SLFb7oyGo4P5wOFmbwy+yxJp7Yp3f397d39s7OLu+c/bgkVt3fvDRc/3yc798/tGX3vv9n/z+H/zm8y+++PKLzz/9BDVjoU3oz77+6hd/9PmX/+Rf7KolhZXSOUXQVN20LIGVgIMXVCNlWnqcF7liLWuXTJ0VHU2y5LpTamYNPZUzUC8TxcWwWMi3iDIYIgodjwS/eTIQ5DkqFkYhDUyUxmNYSKllSsh9z1ZFnmRRGqCfSKs8z1AU7qELRkJNa2zQ5GkcDaqfOnFSLcoyy8oIgMlEHE+Apg34Q9HAQkQSeBbHeSZAYounPPGFRSwGNSIQjou6HEugRn+OiGJYmCKiOCvSEUrFwyZytTINAOCEDlBJA/fkeZokj7egEzjago5g8YjPH6M9ILQDag4JW5RHaCoK6rfkyUQsIWkMDhI4ic7K7awD9blQLhWglsKPVxQF3WcUHYfrZyjpVqVcq6ZkqzFo1QCbihkoxvl6vVypt7uter3dXzs4s7cPb/u1R/qimtTy2VQqB9Ku3h00+tO9SytiyqbioptXRsbRHlo4AVyGRekXcSwSjnoDgUA4sOhhVlaXSqXmeKOslnspd0uYCcNSh/vbTBuSkklqJvLEknXblDVTVtEUMAAwfAUlnIvjUCN44OQuKQFt+o3WeHm81B+ubG5sTGbbs831te3NlplfXQEBvH16f7lfS2qKZOgo0Qh5WcpJGpfUVKHZ7Xb6/QEQxOHaxtryYHl9d397Np1OJ2ieCVhHs1jImxyXlFlGUHVdkVTTSheqDbhAld6whwyjx9Pl5bXNgqihrEQWFSuSzSiKARikqsjMK1uuVzK5ag1uilbPjZRrlauVnM7iZMSzEAksUJZtKUb01EII14t5p+OQQYqMEnZRJJSkAppaEXUGQz2pEu+nLI5VeEfFslbdziHwy8wniNB+soM2ogFVS4XjYV+0GZ3LFdBo0vEgkpsQjGw7cm5eMOqjzpecfDED4i/tngy77dBzDyzXidKNBHZNr+wHI0cpNx/Jdtxfj/aqzWyqwKdZkifI8CLOA40EmmARCZXXMsCeksmkaaBWWkWBi6gAEGvVquXIuSSrltByoYIhKh5TNJJLLOKGaDlovwcXJctSBCoO7FXKcly6nsrmS0UDOA6KGsNFI6Xq3W6zzvCp9KCOEUYpldRlimR5OqyIKVFcXu4UGIV0upspa3XYMYi42iiZBslQUc8igHTMriqYzQTaejSSELIpA3C01mi0G93p8nRjuZCrNUA5TPKpfB6FPTm543GveSvW/Dql3TipdKqoR7VEHDh3IEQpMotS1jwnVDYaU5WUI6NT4FgQ46VUTK7SHtYWg4TFxUIej9+zGBKoGJdL08GE6lRtPpQgGzweieEhKpEJw00pnbK2ab6zNAUAHhdnp4fFfr2/ujQZrfY4T5TljUyuVu9N1nMROsbyQDCNpGNm66Vyp9Gdra50ztnC1laKURieiie8oBgwDE8YuqGRgtQ7e7F67vVf/vv//F//zXcvLjcKaPSIV2W35V9DPY7ohuElNI9kJi1N5BgikQjhWr41XJ6tr68sDSfjXrfbbjWrjsLRQQ+bq93+92efXXuosfTuxW9m2+1fjh4yO4XGxTMnvlXLpDd+/Jc3f/DBw3kb55ubf/A/TXb+7vecgHK5evmPvn7yef2pvUe/+uNr51Ov/uGLN9658eob9z+8/t27ZCXXajeGI4koKrIgJRi47WldRZQS2FCKo73hZIbxCc3qxSHNB2V7H7QR0LGsOqwOhsOl3hhuO9T62HXytkYzJkmllEb7tXduvf7ay8+/+PjVSpPM6WZGSaaMZOnskArDJY2LAsHt1ZWwbJc77z9xeP7o7DxVCFTjwen9HXfYaO5/tYWiB5HwRRZYm4c7k9GsY2u5G3m1Ml3Z/b0P337rrTfffOP+66+/7h4A37pz79atu3deu3Pvtdfu3PrOC7fuPHG0uXFw5nBWL9QPnzhc2VqutDYunt+9evv555/99tNPPfHEU08+x1WV8gAAIABJREFU8cTjjz368KPXAGjPn95HQ0QIfM+540hHSAkDBl+6eOni4WwynY56g065WK1Xhmvb02quPhq4+xTtztL6Hjz50/vzJMXTp3dRI/fhwc4halfdvnbn5kc/eKWWv/nxC4+89oN3f/Hzn/7xb7744rNff/KF68vx6WeffQGC+Av46i8/yugpi1YzJlBtA9QRrQpirQ78SEe9OpxEZSugpAqWwDnAapNQf8o5VXHSCisIFE6GElHQYt5TYW8MOcFivgWPj6MBM8K+hSDrT+Bkwi/VKyjcABi+ybICQ8XxoJBNqjKXiFOeeM5g5LTORFSJJXhYxkHPt6QCKyFjRFkicfRIYJFoNBzynwpJIsWScRILRyLRk7GI1xdNcHzYG2W4JBMjON2UOdA8/mgctDmhMhFcC0UMW0Odugm/L26iNENBkgW0qYyjdAN0EpyIJ4hgOBwKhSNhv/ekx5+q5XNJJZm2NSWpITdKmiASDBqg4QTTgpsnVUjlcsVKAfkrZDMm6vBBxFYUdQkgWuaMeqWe5tVav4FsKGFlp9CmJTKIrg2WOo1Gb7axvY+myc6fv9ICIWll8066UCzXq8Nuqz3dfWQqWQZNSUKcYHAsEQoxESKB0WQU4+KehWgsGMC8wQX/gvdbxsb66moxv7TVUcpFmQVRxOOxKEbxMsI4WU8lLSS4kvAPGyXRwlsqIgWvAX1HuUQIflG0LzoWR5mH32gPBq4nxspsbdifrOye3Z30xuujUneytgGra22ppmuaoku8K5wlhZRpnBWccqM3GIyghIx6fZRguLqyAQC8tjxF8WVQVXqjXiXnSG4umyDKmqEgs23UBN2s11pQAMeT6QTo7nRjqyCggV2WFnl4/9EZsCKIuiEnbUs3nWypUc1kUYprD+h4G0U+ltMyGYud9PuDvjBDZDOqFlrwBAhSbNR1wfBFZCtJJNM8nqDJCMYTFMPQom7ycJ14UNqWnqeVbMGZezUfxxyhcSJX1+YzxXlHFoIJBLhF5GsGOFyab0mjpqwSwmgkht3Z1jQUsrmllosnqcw8lOG3WUgPkpEetGHZc2tKZBJquV4pKElYSFIMT+DhhTij63DJVD0Ki8EuAC9AAIwQGC05CRQUJ4m5atrRMhlGy2ksx3PRCBkNcTZLYCdDJm+lgLPyOC8lAYBZisRovcTx+SY891LJkmQGMVxSNi3BbnfqVT5uppb6ZFwqgFBXQTGzdEI0MjLenfayuBBX+5tpc7o0SOEJudnJmnD/xODGYqVYpirY8oJUtQIoej6jWnYaHaqU68MVWA+z1aV8eTTpFVL5HALg1LxZHPXVPXgcd6Ol0nYuifMC7lkIY+EgL3AkFg36TtJyAmcVA1YeFfH7vWEQCpRcUSMxx2RCghwHVhr1e72hWJColXEszgHFEOJhMq/EsSAOFcKmLCuzbP9ONuqtjTZqw82lem17pdLttwdLvaVpT/KEaV5P5xqtwfJWKUDFGEbkBd3OWABaw3pvvAYacL8qFva7EVpGXWbBRChCkAyhIGInGu29x3auvfmv/+//87//P3/xAvz0HNQ8E83boQArdw4YbkNdh0IHsiIc8AdDAX/A4/V4A3FGTNcGk5WVJRTbWa9XM0kUjc5la3f+/bnnNh6qD94+eijT6vzB+CGjXWheOnviW81cBgD41kcfXqmbWLk++sVfzXb/4gdOWAYA/hoAOPvCzplP/vyMbr35z5965Xtvv3z3zQ8f+/B1up5t1eB2dKhcEsgzzslw3xtyrgSrt5jLSnwgaGe5kFirXBwzfER19goaQ7BOTh1U+0sAwKMm8IN2uzO0ikmNFVWCAwAevfnm3Vs3nwOI22im0jnVSBu6lUzPziZFxtQlnMXZ8q4RU6xy5rkXjvYBfM/CByAXkp97u6B1jw2g3QBC1IG1s7WL/v3GdLlXSdsPn1dy/a3x2x9++NbbbyH8vXfXPQK+ffvuvfu3b71247Xbr9698Z2X37518dGdzb0zO6N6bvDoE8sr+/3WyqWru2defO3p559DAOyi72OAv9cuA/5eOHeIpp/ggVD0t/1YFy+hbqxLR4c7W7PxaDpqV2v1er07ma2OWtVub75R0RvPNrb2UIAE+uaDXTSGtH+IwpzgJ+6cefyt2z96+3Kvf/cnzz71ne+++/OfffbFl19+/ulnnwPwfoYe8Plz0MRf/NE/3U8ZaV7KOIDASUc10OFesVPRVdVMgmIFPClkzVTO5NCsoOUUa/lazrBRlqgkkAk0VOT1ehc9sWACnc4G0EQwT+IYcm4OMAECRG5YqlfzQIjSSFCirUuG8uEZXRLZRIL2UwUxIWfERMKAbwNkxTzek2KKEKGUsBwZimAE/LQoSgMO+hYiisqJLMkR8G9ip6LIBz7OC7EgLvIGGSZ5FBJAh+LBSBSeGY18wpVgVLc0TdPNeCAYN+YRQCzlxiG54Ygo6y2GxdFo7XzCxxsIpUp2ytBMlNyaVJF7MEcQJC/zULo5RU+i/cZUsVyuZO0UrNu8pSO3dR41BgN0gGBmzHo3JdmNfhN0cKVaRnaF+WwOmXA0mrVaZ2m8Mp5t7x2cPn/x4tWWrJt2uoI0VqHe6JSr/dH00kzTJIYVOYqOJcInQqQ/jly7gj4sHo+4PVjRRb835PvWt9KDyfK0nk71+kmZUQ0OR4lTkQRPsqKCJhuSyPAKXgYq8VC7LVGS0S607JryoLZYRpCBj9DIexv1nX+j12vNnakmG8tjdBa8vbUyWV2dDserW3u7m7OlipsYzbNoIw2l4pkcI6mZcqnVHy0jH+hBtz/Z2V9b29zd3VqbjkYjNz+l121XUFsZvH8ycBVFd13u03ngHNVGZ7DkCmCEwhubOc61S6HRIQS8DCsJv0YzDVcjIm//fLZcrg0REUdtWMVCJinScWwhGPT7CJ1NpUQh4A+HoyxtOBhtaosRuy+pKknSRDzkD8SCjEpSZgq4QzhmyaKumBaWR07Q6blb5ByAXcSF9zadf2BCmUVOV3mAX3Tkmy9kfxuOhE6DXShGnpQofy+TLbpxt8eTNr9Vdsd5P+5wsJ0+boWGNwbhsgXvjuUAR7Xh75iygqaAEyFvgoVyzcuGDEKeMdOwLNEUGTwMba6sVF7h7XoReFaRkSwb+BQXjxGRAJGRMGLB5/BmWpY4Hn6OZaGMZSaOKwWcLjSQu0jJkSUqgcIeJMMi841OrarhttMdCgktC9RA5UgKTexpKTVSXe5n43xC6Gzk9el4nIvH6VK/oAFNIoK+GC1EU7lw2foW2zAfoiRNdQzHycLSr5br3en6bOP09v5Ks9RZyqXcLXk0Czy3npwTElf4HreDZ5xMho8LbHjBFw4FEjRLwZr3eaIqncCAYBoSjQW8fi/O6zKdceKLtiX7YjIXi0QDKJKEiCV6Q4bDiHSyrvJ+wnTwhC+Gx0i4dy28sU5Kxe5sY6m+tDbqlVd3QMp0O9MuLD7TG2QkIw1o259sFhdwjOdQoqDu6FYu3ywvrWxNltdWy2VsY1v3G1C7mAgWDMUSRBgkAcUQVrmxsnb+o//49//l//2v/+EH01GrUi5ksm4GmaGohuYe+XCJGEiJgNfjR20zQSg3noWFBY/Xd8ofiTN2te2G0dYzKsPFg1ymfv/fnX9h66F6/81LD6Va3V9PAICL7StnT5xoFTIbP/qrWx+/+0iuVt5s7/7ifzh36Z99nIoAAF8CAH4u+e0z5z/9l4/o9nv/8tFXfvDdGzff+vD6B28yjUqxMam17KiTQxtMPFQMWhfTZWQxl8urUtCXyvOYWCwfLTN8VLG3KxpN8OmC2q91x8Ol7rDj+nC021pRFVmFjqm2Ut/73r3X79x44dlnHq5UrG7aRjNXupW9NsMlPZ8jjDirzZpiXCu2Rvcv7B9eOI+QDoUYIAOOXaQdd3Z2tjfdAEKkH9FX+zv7p7dWptNayll70bQa272XfvXWO++7Avje3Tu37yEIBhy+j5ywbt++efeV77z58vXHVtb2zu0PMuXZo49M1k+3mpuXTp959PkXX3rluTkAow3o648+cu0qqNzLF10FjGKI5wCMzoEvok6si0cXzl+6cvHC2b11FC2z1GtUoHQPZ+uTXqkG1Wo4QC5Fk9nmPmrGQl6abigwejXbSFLv7hx85+7733/vdG7zw4+eeuLe+x/9+BefffWbr76YPxAGPwDgT/7yh46VlolkKqWAgORlRZZYs1lzUIKuAYJT4TKlJNwwEmnYkm6lGnYtozr5lCa5ABxPRPw+rzcYDsZZCplyeMNRHtQaLC5vkA4APYzHxGq1VEDGsKqsiBJAMOvFbKCMDAjQIF9iolqOjbAWwGIs5PWdWDwhgHpkGXRYSwgCmwghje3z+jwnQ7JIMXgcfhGovIVIYNEfxQU+4o8zspEIAwCpikgFY8EQ6sIiE+EoLYYxFXUN6UY8FErosjjPHGBokkRGXhQay4snEmiXyxeKRfxwZwdC6XIKCRLLtLIGMAFJ5uCv8gKIRReAszk7aQOa1kpZtE2JLAvcjFlJ5KH0oIrpNMq20+zXCtVqpVIpQYFGjbH5SrVULZfqgymIvdk20L7TR5evNNFgk+MOmxbKRVjRvenyuSVL5gQmHoou+L0oJY3yLgQTWDhOo5Nf34InEvWiru2HEhPklNZxxI2WQPnDMS8OiiUWwVBvs+a2Hem6Ce8aEr/IfwO5Auhm0q3gqioLHDoXlXiGmocUscw3esNBf9jrLk1Ha+vrm8sT+Lw6naysr28gY5qNlWFJ4BRFF9xWToBzXY4nBCOTKjZ7w+l4OF4eD3vDjZ0VdJKzMRsPxmMA4P5wqd6o5GyRERkepXCIoGpVO50BAK5UUBc0ssgeDpfGy7NZmkWnYwLDIgBmFBvZokmGbDq2lQJILKRyrUpxadBpd9u1aiOftTUBJUt7PRF/RNUsm2egloV9ikGpWFwwgmGrJifTyIOLxELeaIDUeFJGpCwWljSZVziHF0Faup3J7i7wfCJ47irpjhW57s/5OdwW87/NJsz/gxUHIljIyLLgKmeA6syDBIffAvBxzvB849lOPhhFQh1ZgDrwFiEfynQ2mc9k4PLiyOkVTdugy2BYQlBi5VwWNUm7+Ot2QptuJ7vBa7WqbZplmU1mQOwyWIwAHmspUT7ozXBGWhFZAGDdcnRkbEPFOCeEFyoFtNzSUIPjCRxdphReqffrNZtMOc2xFlPRxBMinhwVjbGWjFdW+iVapuXaWtVYnowz8QTmdHMoZp4MeFCwjpIiKiUfU2d+J0ZC+UWNec12s93o9cez6XR/5+DSfqm05IYPojPx7PG89Bx///EWdC6VLpkhTsSRu0AkSvJMAgA46BNlLKonjZTJ07FAxIOxSjKh54hFzZSiAVHFItgicFI/kQjmhjIZjptaOan4o2qJAfpORAhakQrReD/FlNYn6+32tDMZDnrLg9UdlASyNFrNBoKclkxlW83OYCXjJTCGQn1TdhGoc77eHvam49nhMjcQk2dGQYnGWTIYDoQSBBWhSJ4j6VI773SvfPwf/v6//Of/6z/+dLTUKJRyTtbdsJAFnqJQKwcac0THdehPfkQZ/YtQb1DQWzjsP3VyAcRMlDOyxZzD8ESYyzTedAG41n/r8kNOs/vp9CETAfCZEyeb+fTGj//lrY/efj5eL8nMzi/+/Onn/vRHqaB0pXrxD79+8lnr+tnLv/yTa+nsO395/db77993AfhdBoh+bdxqsIpSEjW4GZNiglZFp4IG37N5TYYlk+fjfLZ8fkYxEcnaqKokzmeLerfeQiMNvWGv00Ie91pJZDgtHkvqVvnxj+++fuf5l596cjWXqzT0Uk4VDcOsPJwhGauQZExCbI0V4Iv9+vXHTx+ev3j+HEDwaYA+pBZ33fzBbeQAjUqMC787ICR3Dg9WJ+N2KVm9kVdL07WzP/vwvbvvvjMXwHfu3Lt7G+Hv7Ts3br1+xxXBbz7z8NX1vYOLu+1KZ/Phh1unD/PdgwunT1998caLz7303LMIgEECuwj88LWrV68i541jBXw474YGAHaboZE4hg/407ntldF0tjJodpByGq9tdRvlWm8ynQw7rf54ZevQDSQ8jdIJ3Vezv32wv3d4uLN3cOv+Wx/dOcjs/uKDp55+590f//xXn/3ma0DgL7/86ivkDw0g7G5Bf/5HfzMzsholOlmNETVONDSDF0qlnC4aIIolSuaSFWTaqpG6o2hJrWrU0xJoKEmQ0IhqBBE6rycUCMQZCo+BjgxHkBNWBO6ZMBvAkXUjB6hTgMJmIutCQFCK8pOgt0WWiONhrsAmzAIfFi1eZAL+hcVTnpNSWlEA95AdYTSKnLYCIE39Ps+JgCjRLJmgE9EoAmD/YvA4jRBIdzzMKDqwh4jH60UuOlEA7gguRhIq2sU0dCwcSRiqILoe1AJKt0/EcYJGh8A4gLAbZxTy+QDdAk4tj3bMAa0sFGMuALKini1WVhgChJ+BOmkrtWqthM770mkEwJoq8ArQCxWIrqRna2ap36+kstVCsQQ8OJ1F7cgZuKyFcnuI8jVmGzt7u7uHF44utnjVMmzUoZPKZCzP73iE/PDy1FRkmfCc9AQSGCHRUToQjEV8USIU9p84AWUpHvDhcV9oof3wufOHu5N0ZqYEkEmIDrCdwKIxAoQtmr0yoIzaKFVC05GjRdJCJ4hm0klbBrI6keY7Avy8BYt1AXg0XV0b94ZrS7PZysYMZO/meGl1Nt7Z29nY2t+djapADQTN3X9GSlVlw3HeLOZrHbg5UX83/N3Rxu7q6sbWBmrvHI9AAA9Gk363lrMlikYECG1fC+LcCxrWdQtNFrq9DYPRyupqinXbe1lXATOGoYi6yBvIE99yMrl0LWuW27V6D0C7Ua60aqWUBq855P/WIuZdZHkrBcsoEvHElGa2bUVNEYvk0qpZtIHMiQSIwwhUOI5UkybPxmOojcmQK5gFknXuZZVyteqxEkaTSG6D87H1JPKCdrug3Sng/HwY2DXnKD4AYCebdw83XXRJp9PHEjjzwPPK/UBc4vgMOIMCGZAidvOB7ZRZSKflJEvTPB/zRRgD+XaaBhrVtUsAwBl3s/ofAbCi83yhmtTNkkNYWR04YixGEtGQqke50CmbU1MK0EacV3UHXjGHszEmFaMLhXShVK6kVQl1IsbiYjKDl2qDZt2O6HZz2QpTmYxhcTxBimyYph1ZbK52aqLCyOVZSwG5mAF+6/RzoMB5PLAYZmRczubb1USt7glwrGqkgdAUAIBbzaXReGNzfe/sxs7VvXoxmz5uVTumLtnjOel/AGB4i1OlVIjlsIXFSCSA0UD0URbLAmERlGqrCIDjwagXY6UUKZfVAGWrnE9SEjgVCUUWAxgTEftFLIQJwDmUsFcsil6A60hYlOIyH0nErHx3uLzaW20tjUe1anttNlmaztpLa4VgkEfRJY1me7CajTGReJSUbc0pl+ud5nAyqDVbw8MNf34aHi9rChmHZxEIBOMJIsLyiszJhVo503/42//73//3v/9v/+nJ9ZW6Y6mCxkG5Qxt2XhTZCiUmDN8UCPg8AcBalJ7u84L89bufA4DIi36/d3HRF/BzIhHiMs23/pfzL2w+VB28e/WbAMCfLT+U7BTbl06fWKhlUhs/+eub33/rqROC9ySx85M/e/GVrz5O+cQrtaPffP3kM/krO0ef/NkjTv7tv7h++6233739xntPvPMekzXr2WamW+H4vAL3DWPIOApxLYH+zWUAgMOL6TwHS6R8boumw3xyvaoQhJAt251mfXkw7Ha6zVa70W4X7JJISWacdMR89fZ379555Znnn7tYrxc6plJJmSAqUhurjMSlU7iCi/qWw1NyaWn61JkLAHFnz104ffbQ9Z7cP9zdPjbeQPkL2zvoYwf+v7d3sDWZ9HPp/PVdvDpaWfuDd+/94N799964f//11+/dQyL4ttsAffP23Zuv3njlzptPXb+wcnh0Zr+dmV67ejA+36+tbl84vPzMq6++/PKLT/8DAF9/9NFHHr527crlixfO7CPDrd1deBrHvhpn0HzUBXcu+NzZcxcvX7l2Zn0VKuFyt9tpNlqD6c64VmouLS9P+6gfbbS6c4CMvA7d82ykpncP93YO4N+sHd2+98bv35yUH/vZrWeeeONnv/jJz7/4+otPv/jyq9/85qsvP3fPgJES/vKrv/jYTBsKkyxYLAcIAlVOYTPFYlLUkoai0KAcCmU7Y6mElALg0WtWLTsHYJGnkHoE5Fo86QuHcI7Go74grCmeJjAMhHFMCuFi1BdnG5UiauBUFU1mOBwIt48yZBBeVByLUFmB1DJCVFBFlV/0nlgIRH1KkhdAwjFw1/gBSBMxgNJwKOg7FQJG4AJwJBaJIQAOhUmZDUdonhLC/jjNsRTuP7Xg9UVjoRiViFGiECEM1CNhquFgGNM1hBkIa1gWOUETFPLZQtPx8BEMoC0h/6LHmywjCwWUfQ6MW3O7F0mc5iVdwSMJnFRQf2ezWizl0ymgx1kAM0FRAIBR5ifqubYzuUyjD+KsgBC3WoLabKVcq41spdof9zpLo7W1zb2Dw7NHZy90eZBjdj6VVFUnawc83hBduTDRdY2PnFoIcYSSJCMxuGeB0cRJPxZAABwMnzwZCXnC4ZWLj1y/dDQy2zOLECmexEgiEopBLYKXriiq6YCKd72TRHne+iFDVUJGTGgsGxlpyO7WM2Ilgrs38I2lfqs3nQyWhr3NnZXZ+sb61u7mdGl2AJR0tr67NZ22kDeYipKEJUUVOZUnOV6FYg43JojY6XC6tjLZ3F2frm2uw8KdHwH3l8aTYS1ja5zr/CHJiiIpwDpsJ12rVhvtHkoEht/ZX1pdm6U55FYvcjwriSQL+KvooIANB8p2oVzJ5ZJmudXq9brdVrVYrtcraQUqcsBz0hc6ETBV0xa5UCy6eCqSNsr2omDHvcVSmhdUMorLKh0JR/yYLpOC7QgqFxYNFaAprZFFF28RDLjIiQQaGgPOFufWk/nC/Ey4WMjl5wD8oAlrvkV97IuVQzFHeUAQtzXaBZc5AGcy//8z4AfhDNn0fA4YATBSw8lc2pYNigP+EVyM0XApEBvBWY6zM0g4O8cAjPqg0RY0LDouVUsl9XQ2oaaSnMTEMZyM+aQMQYdO6oqcUniKxXlJtpMcJ+AkxmYZMZdNpuHVOBLPwW0QwQQjjadqvUbDislWbZKOs9mcYXMiSTN0SGQzstSeteqSQDCVWZftLY0LGEHmR3kJngId8oQYJQBUotpSOuOTJxlNN3OpbKbQaFZrrdHy8sbe7tbO6dnBI6u5460BRG1cB5PsMU9JPdiCRqbcTi6Lx1nCe8qLMgkFgUpEwwunIrYsCaZiGchnIOSJJDiHF/K5qN82Ja9kgpQPBcN+b4ilqPaExHDaVvM6foq0FD/mCWEnCTERy/An+FTpTL+/2ZpMerN+r15bnqyMJ5vN4WouEOR1M5NrtPqTrXKAjJIEp5h6MpMpNRvI5W0w6K6tBbl1h+02K/EIDeUpHA7FsBAjKIKsiAZcwY1H3v9P/+3v/8tPloedEiz3BIZ8ZKGshOZzjsEQUhJez8JJt9b4AmEAX5/P7/eF/ADBPg8AsOckUsKCEA+w2dZb//YcAuDhB9d+N9XqfrbykNUudi4d/O6paia1+dO/ufm971464f+dzHT/x3/6wiuffJQPIgD+6usnn05d3T//5V8+m0t/8FeP3njvnffu333v2ftvM5bdSDeJW/90gbFthecpePtAyBo5KGaFbF7XMK+dFyJkunTmgGPCnLVe0yiCA0bUbldW+sNOG5Rwp9ltp3MZCdfUOGuLtcEH79x97aUXn3pprVgtNUQ7ZxcsK92+bDOSkdMpjmbb6zyXkIfl60dnLp4/f+70uQuu/eTB3u7eARr/RZvPW/MxYNSIhWKA94Hsj0dN27rwGFdsbA9e/vXrb7337tv3Ef7CY54EjPqwXrv12qu37t1+/dHHz66ePXc4KeXWHntkb+1crb56dGn76s1XXn7lO889+8I/bEED/CIBfBkU7jn47QD2CIDPHD+QP5eLwOhxdPES6OQz27Pl5clo0G03apXhysZyu9ocLI+Hg16n21/eODh7Bp0i77u72af3Th/snT6Nnv2Vt15//QevTrPP//Lm5ee//7Pf/9nnf/jVF7/56rcA/Nln7lzSV1//9TaTMxklnRZBNinJpK2wZrGa0RRN1xSGlPhk0UyZJs2BjtLsaiafEVNQS0WRByWK4xGvZ3ExEPRjHEdiwRDQOZ4msRjIYkyJkmLMR9CtWhFw3ZRA19IsgUejp+KmAgBMg1jDUxIpJnkMVJjAnlzwBxMxj2ZJCs9SMYBFioYSgLsZBAHfQlgRSQbHyFgIJPZCNOAJRRmZDoZpLs6EfLE4QURjXu9iwBuKYwmKxoE9R8gkCpAxJGQihYJI5lYcDBpEolgObUGjGfloLBoKRaJRj2fR57fKmVIG+dIgxyEdtCLqwmJR13AoHscoq1Qu1du1IghaoOvZTFJXJUEWOFlFyKJoaOS0Wm/US7lSPZsvVxDtTyFfh0Kh2Ck3B53+dLK+trEHSxC44FBUHMXNJzJLjSIOwgfTt1bspJzwnPTjBC9TIQANz8mFQCRBxL2+RY/f6wl6TvhR16c9Pbp87vwwNdZwjAgCL0lgfj9GkjRGibKkJDNo5kjXTQ3lHyAARp9QE4+sGbosiKgjCnWQ8MgWGh1RfWPcq9W7nVa/UlrdWwP83Vmebu/O1g/397aBpa4MJg1dlngFATZ8I7xuluBZ3rFKtXqjOxyv9Qbj8Xh9Z2Nlc2djdRUAeIT8YwfD0bCeSxmCGwgM3whUT0eaFnkFl+tdkM4IgHtLs7XVNHAxXuAYHuVAcjpcUFFUVRnwOp0vVUq2katVm0v9XrtWrdWqhbwts8gg2BMInIgXHc0C0hXH/AHaNopVUtKJkAMxULI/AAAgAElEQVQSiSMBajhTRLnPYVYWOcUxVQHHBaB0Dp3FTddK0gWC+RZ0Dg0Qgaadu04WihnXGwsdOSDIzRceNGEVcnPjjQdNWJnjYOBjfDk+BT6eMs4gc0rHjeH7x0aUjrsLPbettNJAh1VcFGjS46E4GaSVqnExVVKReWQyC+wJnbAZcyMVWddUnTdrOUu1sjSdtnnRHRzAfFRBoKILYlJK6xIoYE6WrCTLSQC3TFqQcyUTfmU+JYEmjsejGKdYtNHu1Fo2LTvVfpYRMnnDYSWCJqgYK2VUqrrZa4o8gRdXB3R3aVIE9lpYysuCrvMRT4AS/U5eErJ5q009hGu6jZRuodmq1bqIU23vrM+ODrYvnJ+mjy9JZt5bnvlHj3mfuIXMKFN5JcIBAT3hjXljDCL04YUFH2/JNFq/Cgp98oTCtKpSZpn0qrYSJh0hFkSThAveMB5JTUUSJxytmCQXgzxK3gtSfkwzsbqBlUViTS6s1fqj/nJ3eVLrr64uLa8PlpbTgZCgmdlsvdFf3qmexFAYgySnMsV8uV4bdkfbK+uTpRGeSK8k7P6IibHxBIajG5RU4AazVCmjFNudgws//PO//r39bjGNBDAJhSocAvSNxKDKoLg0ECjh8Bx9fWh+8xTIXfRnry+I+mZOnvR40KnwgsBHvGy+/eb/fPbFbVDA71/73Uyr++nyN81WsXdl/5snGtnUBgLg7z1x8tRCd2f5R//s2RuffFwKAABf+BIA2L5+7vSv/vR6yvr+Xzz28gdvvv/WrQ9eufM6k0wVCj3q6/8jyMhFmRcpVoHaZmhOqYRmKg2T9JoFuJq54v4ZgY8y5qym0wSpZ+12p7jaG3Rb/Xq72+g0jIIux00hzplKc+/7b96+8dJ3nn5kmE+Vs1ouaeecbO70OilJaYdTSEXZbPAsl+v2nj177vzpM2dPn0HTR/uHIBZ39rY358G/xw8AYpTBsH2wO5uM2/nU+LmMXV9Zu/Kze9999/47799F+Av69y6aA0aNWDdfu3Xz5uuvv3z1qZ3Z+TPrw1p59bHHtsfLrZXNS5f2H7358o3vPP3MSy99+7dNWA8A+BLg67m9jR2kgHfdZuj5LjQypzyG36ML58+fvfzwlfMH65ON1TGySikXumsbEyg9PbS3Bxi8NFnbOUBZSHt7h/NYwsMDJIIPd2bP3nnl+99/utr/4L3vPPrS9370i19/9ps/+hrh71doCxo1YoEM/uSLL/7F97WsKbBG1mBYGSDW1jkuUy/akqgYGs/wnIi6Q3Iii4Yf7FzRzop2KqXzPAiPMIaHYRUBhfOEebRV5Pf4gxyJY1jY54mIYYKNBim8WS/moGzIIptg2UQ8GjsZtTSUdkbi4bgjkIIlEhJHYNTCKSxOhU5oaVNiqQQGRRNlbkZjcdwf8LsArLECTTB4LBEJn4oFFkNQOkhvgKRxNhxE/dKRmNcP8BTC8ATJYDFBCONWUlYNQ/CBLkLu9SjnUISVxzEMGtqgjkVwLBKKYPGYxwv62a4USnnHQA27PDqABMqNxymeo/AwkOIk8LxipVVH/c0FZBxo6rqClJ2koIxdQDYtma7WXABuQgkvorbPQiYNlbtYa+Zrg85gdRkp4L2t7YML55cENS0ojJpKIdWsmWzAH1s6k1EIZC7PcEnaGwqdXIzGwsFIJOD/1qkFj8/jDftOhbzeUycCmc2zF6/t9NqJcIyIJIIMKOBwggQJzALWSYYDDD6pG6B4DVS1k5aNRpt103IzhmQReWkAaxB5JILR2fg3BqPJdNQoNcpOazJe31pf2d7dWF3fmO1ubh2e2V5e6pdlgG0FdVDL8HpllSEkFdZOFc3kdvvTQW8wRAC8vnewubI8QRnBYwTBw6V2KaNRyCcYjWMovKAkUS59uVYpVrqDTrfdheU8Wp+tpDjkskWDCBQEkodirjMCSh1GZlWFYrFULhbqzVK/26zWO+1aNmuJDJ0IhRcCmAezJTutyNFYBISQkKkUoT5ivgSvWpIEZIqiOAl5xMQkiyX1NEOzgURSF1SeM7Bibt4d5cybsdKFDDJLdO2eC8j/KocMsPK51Lyfrlh50IQFzyY/N+aYjyG5aYXIbjH7oM93rqofjCEhN5DUvDE6Pe+CdrWfa1gGChg5QquqiIkSiZ3yAzmCV27ZfFSVzZyTK+qoXwvWG7IHc1MZVE02eamUNXQnp+KFtMKy6O5IhAJZhUp4maSUSSosl2B0xU7SgKiwMhxBLrVBcqdLed0dZUgAihis2m/XuhlCzDQHOYJI5XSbkXE0LZ9QczaR3xm3RYlJZKYjdjCe5Ml4PDco6HBZAYCDtEKKrYwv0lCYclCQRDSmh7agG41ef7Y129zbOrN9eOHg4YsG2kg45ikoROr4smQeWGhnrJydzTrFNMnT0aDPG1gIUwJP40C2F0IOT+pJw9YYivAFoiFaNkmprEfZlMFEbRmPxYFchaJBPKpMHSqKmVrOiAcWCC0FFB4jMEH1FVXdrseS8fxeo1sdtntLK9X6xnJvZToZL6eCMUlPZjOVaneyWVrAQgQlKLqVqVZqjepgabLd39hYGjChRL8QGvYNRojhOMdzuiOaOlQ3zh6zcqXdXD+9c3mzM6nausqJ0v/H1Hs/x3VmWYI1FEUAifTmvXwm83nv0ntvYRM+4QmCoJX3IkVRpCg6kfIqVauqurxKXqpWV1XMRMd0T+zudM/uDxsbG72xP++fsvd7oLoGDEHwQL783j33XHNOMhYNhyOhUMSLcBbA1+MFsuJzkTgYgFfwglxV4JPwLiTXXt/0qROPn5oQuZCHKXbe+fcz17dP1AYfPHEq1+l9NTqpt8rDJ3ZPPA7YtP7bf3vr7+7ceWwqKg13f/7Pr9z+5udFzzEAP/9i7qmdvW/+y/M1++P/+sIbH9z95L1bP7t36y7nZIE4SG9c9XJsQ+aVBCUJibilmGVkGZM37KRPKxtRulAYH0hCLKEv1g1gPLxldHqF5R4AcK/W6bd6Tb0iaVSaIwXdbF3+2cPbN195+ZX1ubxZ162sCie4VHzRIWQtK9OinuyMcpys9dpPH168cLAH6Hv6zMEuANY+av5ubGy5GpRjtw+8AR/aBhjb3tuYm52t2PkbXb7eH2/+9tOfPnzv/XtIhsNtAd+5fReVoe/dRwD81r3rl88vrx8dbXSK7bNXL61srNXK46fO7F+9d+Pa1Ws3rr/6yms/riG98DwqQT/15KVzKBlYn3fpNqpD7yAQPjhAlWdXmvLQ1Yg+unDh6PDCk0fjlZWVpQUgwf1SujneXywVWzOzs/NzwwHSptxxAfi0y+qBAUNgPzi9u7V45Rd3fvbBpfzKLz94+fK9n3/2u8++/4uLv65H8Ndfu03g777/4s//sqFkDFYpZgRWNpRsLqWQZrOelTjFNJAzHCOVnVRZYQxUunRqdkmEYKEwAGFEGNio1+v3nIr6ogIfD4e8kJlCUo3FsZA3xAQIKhpOxICn5BRR18UkKXIAqHEPntIldxYqGE/zhJxRaE3EfZRvKhhjIhPAgCHBTrLwxRTyTIhheCQaiQS9mCYhBkxhIcoFYE8IAwAORDmgSpFwIkEROA5JZdAbiSTohEDimhAibEuUTcR9CBwJ0SCT4QRNsWjGK0nSSdQMJkikaA0IDQQJ8k+jUoIwm9ZFhjI1tOuKlJ4B80MYgakl5HBULbaaJWS0m8+XCpaqKbyqiKgeqGvIatep1hr1crlecYdkkcxkJYtsYIrtUra92OuNFudH67s7452z5w5neCXDcUq6lLErvbbAo12uwjiVCMUSDK+akFIAA/b6GdofIWOBac/EhM/vj0xMYoHAZNAXKG888dzRTCKK3NGEGEnTOKrZxykKaVxppm1A4qPZdtoVFYF3DQviPDyN8C4qrWvIHEFEBV+3As39pDOcW1zfXGw251fmenPr2+O1hZWN9c31zY21jZ3t5cFcUddEHrXnORENnQGAmxmEUoCKnU5vc31tdWU0PzeP1CtXlhZn52f6g9m5Ya81081bCse5YtwoqQEATmfylVy5XO30u71uv9vqzK2sLW8VWE1iFZpGPpAkb8GfCTRPNR2EWvlSvlIstRrVTqffbzfQekDWVvi4NzoZDkVDUdO2Myrjx6O+AA0EuExwFhZkkPikafOampClWAQ+iUsKIxoplRNivCUKopripbpWzJacbD7joFGvjCtw5bLcUqVcKJTdBgJABRICQTKU1Uq5XKmUf1ToKDxaDS6nXdMGtxrt2u25SzeOcwzC7thvNou2fo/1ODLZR75Ix0LQSIsylZINBm66ZMQb4ySJ4Q0tE+GEpAU/LJ3KIkEb0zFV00TKwZohmKqlZ7uSqeVycTOjCEmBi0SJQMTQonE/mwPcRQMPCUO3kLAGQ1IMvJFqoYdZzFs8R8UwDEuqTlKv90rtfERO12dzccqBX6ZpFMsm/XTCytCdlbmGneSF3OKc3J2bqREEnpqra6JiKfRkiIZbpVdSp1MdpcBjlqBnc/DctrrtRm92fnG8vbmJ/FLPXX6yaBWQuFg+Vzj2kCo/agXnUF3ABWUkEuZkymKYZQJIAC9GizwZiwSCpzBTFpIp3czwFO+NBnysYMlsxYxP50wmyjvJGIaOgB8j4nSnzsL5d8yUQgWjtp7gYl5/hJW8WYorNYW8OFiuz8z1esO5pYVCfWlhfnl+bjEfppOCmS01uzNzY3gnmISjjfxCytV6d6Y/M16c21wdAZ/gFpKJ+ZrCxFgexQ4sRhKRCE2kZuKKmc62loeD+WajkRETDMvQNIlFI9EY5vNHQ1O+iG/K75kKh73+6QDmj/jDvjDQCm/I55uc8k1FvdOnTp0KTT/++Imompic4PP19/+f0zfXT/T7H1485bR6X66cUDvl4emdx73dVHH98/9x/ee3r2QkjBmM//6vV974/Dclv3DYPvj+zy++mLuwe/j196+UnE//5eXXH77z8KN3P7576zaTyRYb5VbDF5LZqgjZGiQZFA00tl6EtLFo2GxALWmxaKW2faSyIV4bzhoMQUJW1BxUFnuoBN3vtRqzuUxZ4BUDo1Q7U7v9i9s3X3/5pRfby0YuJ5XUlG4V7Is7BKmlgACzkr7Vlli90Vl9aecJJBt1cHi4BxRxe3Nna30DmZeuAwxvbe7sjsfbwIi3drY3tvb35md6NSt18YjJz62NPvz7Dz744P333n3nHYS+9+6//fbDe3fuP0BM+MbNe+9eP3+0dnB2Z6WRH1y8dmZuf5Df3N/ff+b27WvXr7/++jVA3ytXr7zyEvBfeHnmycuXL1+8ePn80V7XSTfnNsZr6zsH24Cbp/d39g7OHAtynD1ERPjwzIVzR+cvnD86e2a8uLi6vjRTa7aa7dm1nX6j2p5dmJ/vDeYWF0ZbRztIz+Nwf2t3d3xUyLY3Drf3x4c33n746Tuny7s///TJ59/59Ze//ew/uzXo711Fyq/ddaQvv/v62399oGdSEpFzBJbT82kF6CJbK6chWkqqRAPzUzPpQi7NimgKK18yK4pjWCrPANoRDEsCcgVOBcMYz+J40DcdjjF4PJYIT0945TgaGyKoWhlih22oIlJXZal41E8AvxSAf1IBKitjRpbVeQYA2zNJ0BGfP5UC+IWogf6j0BowkBbkNeyJaSL8cAI1+eCe9HtCQTyhxIJBoLJMOErGKZKKImPYGB5DY6QxXOKDvCMptm0JsUgYSWWxNCug6jMHKMIzJHLbjWN4nMRi0WAo7MdCkxMxs1SpZExIPQzko+hq7sbjaFAxTDqZUrVaqVRa1XolBTy3DoEkk7bQOC1asddQBVpV0vVatVLMlavFWtbJuttKKNjUatVcfTAzQMb1q+vbaHHs6PIAeXNrkH9mc7Uaj4dDeMTL9c04KSYSAodGxYGGcCRNxZHvFPyVPn8o5Jv0RqI+wOIgUVi5+GxqmiYwDKlaE2ESx+IBLEnEkwIgC1JtAPQ1TV0DxqvZqRTaY7ZNW1dVRUIlc7cLLMF/rlTATxZGowXg50tzy0iVZgNSw9WNjTVIEDeRTcnKbK9sCcAM4JnkXSVK1KR0AIFrzX6n22/Pb6/D9y+trIzGOwDAo4W52eFwCMnicNAsZnXAegHZLykqqq/YyKy+BIDaQ2PQ/W5/YWVtYT3P6RIiwZKoygxkhKjSLctoawklMpV6udJpFgp1ZMYALwVbJqgkFveiAXbCyaTSMhMi8RBOCPlGiVDESJCWNNPRALKkBGMy8RgkUryRYAXbEHgKZ1RRtNN6PFfP2Xk7lXsEnAiAjxuVBVTpKLujzu7GUbGEoPfR7PMjaUoA5/wxYrsM2bUlzLoixwVkvYfcDo89B3JoOslxt45Rx9cF4B/r0GgnCYippegUKyAhBlyUZVEyDCMmqKyTRyqWaReAbQBgQ4MXw9BsWZPsjgWJVYU0UrqQ4NholAj5xRTPxmhTdGyBZROUCmkMSzMcQTJOSs50ikioK6VDCMaQgYii00ZrttrKxLVsY66Ak3baMoGG8ywbJOKKTZYWZ6sKLSRzC/NKd2EWqT3a/aqcUCwtORUi+QTeTOtRriQ3DVrUHFSmh8Rq0BsuLCyuA6vZ3j04OHvxyapVyKeRfpxrpZzN5n98eVQryEBikMumMkU9xCZDkekA3OKsQCNZjgkki8VZppmWaS4Y9ftIVheIUp4LpFJshMnwGIa4pi9KEES9l4hjdFovOGw0KBs8B+AcYPkgm0uO6pzu1Leaw9nhDEoOG/Xh4sLc3PxiNkAykpMtNbqz8xu5IOmleUHXrXSx1mh2eqP51bn5zeVhLELFKgWsOZ9SGWoyEADC4fcHMS4eljsxOGhasVsqNbKpksWhHcxY3FVyj4T8yGnciwqEwFH8k0CEkXUrxM4I2lqPhj0TJz2hwOSpx7zBU5MnfILAhvxyqfPJv+/eWD3RHXx0/nG72f1y9YTSdgF4upsprv/uX+9+eOdaWwywnf1f/vXqG3/8VcnPuwD88ovZC7tnvvrulbL5s3954drb77z/3sMP3nrzFmXB4ys2mv6AwhY1RRRoBmno6nK1iKSCdDPhl8sGHs2X1s8aXIRTh4smRyXT5VRjUF5AANxGboSDTDHD8YZB0hqXX3j3w1u3bl555bBfyxQto+DIjpnrPFmjFUgSRUghO0tdRTGbM8/sX9w9f/bMaXd1dncPIHdrY7yxtrK8tjGGFH+8uTHe2nBnovb2dmeHs81Mfv0aXM+V5o1ffXqMvw8fvu0C8P37D+4iKY67b9+88+D+MxeeXNk5t7/ds+dfeGJnfafZ3XjiaPvZ+29eu/UW4C8CYLcC/QIg8FMvPP/ExSeevHDu4OJ+QTINxa7OjXc3V+GP2d7f3zuNHJpQHfrc0VmEvOcvHgPw0eXz+xtLENia3V673urP7czBqejOLAHBGM7OL60fAfiOd04f7J/e3ss7lS4Q/Z2ty9c/fPjze0vVl39568k3PvrVHz77/D//+YfvgfZ+8x8A/O1X33/7j39twm3N6rmUwRmOrlg6myzVy7aCatAMnaClbKGUz/JSWteNXMkuSY5tIHduRLMSRNgf8E0CfRSOATiK83SCiITCPi8bxclQlEg0qoWiA6GEJ6OxCBYO+iajWUvmaCIanMYdIaKlGY1lw6zo84YiwVBAtzkgZWwCiCoJvyFBIQKMRgSjKstQVDwZgqTdHwwHg5MkqxHhCBrjjcZoQCki4k4ThpAbA4RlORkSHUm1DJOPhBEAS677D9AEGQkZ8AkmQQO0wV0SAYzH8GgwEgCYL5VcuSgrk0KKjSj8U3gghAWjEsBoFUkQV8qVUq5Qa5YQd3FM5GfA8GheBvlIaZkaGvzOFSuFspvpQ8SB2JmHyN3szQx7g8WN0dIa4Nrm3sWn+kjUMYVsdYqNasIDF+fUJK6JFBmbjilakmGSrMAQTBJdLb8fjyA74CDc+NOoV+Sdnk7Uzl3icVRFh0CKExhabI7GKQyD+CHrtmVohg1sCc2fGY5joYVTx7ZMTVHRI0MedjTKRtzpZFH6SaMPid76eAtlCNsbaDFgfWNtaWt3bwfI7dryQjtviQwn8a6rICA2qoJaGQCocqPc6HeGo9X15fn51e3R5v7Wymi06PaAgVXPd0tZRyBoiWcZtEMsCBLq6uZzkHo3AYCRZPTMaGV1ZjknAC1XuASLGDBnQFYDf6shQq6dKyD4LVa7rZxdRh53AMC1gh6nRDKC5v+8Cc1M23wyGI/Cc53JlquMIGMRkoTIqvFAg1lcVlkMDhMJkYE1UhJLRyKGwqdsh1Q62VTWOl5AQkw17wJwHolvlF333xwyiCqUS2gOulT6EYBL7vvHI1noY6gcjTaI0wi9kfEtkrV0PRpch+Acsn4GjMkcbyClc8dK0I5zzIAhx0hruobzEBoDXhItBUqmw8clWcqV3FlqBMCGaSBzWbcSbVqSKmj1nJnWWqzq2DLaBMZpPEKlBCJK2VwqJbB8Mg7HQGMTnECSyVRGTTcKaOUWDi4yGwOskg3W6Mw12wVKyzUXK3FKTdkpVaaABeI0bRS46vr6wGR1Ojs3r7UXZ9tCNGp2GkZSsQ3eG8QZnq6bmazkmFWZTRpmBs58BXCrP7s0Wlzd2NzZ2Dk4fXD0ZMPK59NZZAGccSUoU4+2tVwW7NbpU8cJSw5neRKbAo4YogWWorDAlIfSREEG/q9xSQwLhGKcqhBKWQlIOQUnsxpqI4WCgShJxwsLOhkh00rWEQkfbWksTsXDyUQi3A1nmkkqOVhpQco3jxxu59qthcXh/GiU8ZGcms6VGr35hY1skEAArOlWKg9HrdVaXFiZm11bnjUBgJPlRKKeT5PsSW/Y4/f7w2FgBD6uHoFIIaTyqp7VBUPjEyRqAAP9jaE1KgiNaMDE55v2hbxTXl/UH5iKBX1T076TQT+Ohyb9GB2aPvEYRU5MnRCyTMI3QWdaH/777ptrJ9qDj49O2o3uFysn5HZ55mD38elOKj/+zX978MntV6sWUx/u/uKvV29+8atyiD/bPv3dn19+IXtx/8xX31+pm5/8t2dfv/f2+++++9Ht2/doM1tpFuvt0LTIImV4heYkhqQVCWWYWdQD9nBli4xm8ktHDh9j5f4IEgk2W05VB/lZSLBbzQGw4HaqrjNcSkkmNKq897O3b99648pzCwOjlBezGUtOm7kzZ5KibQCE8Iqy2iuqeqN2+Ozp87tHeweHZ/bR8PPuFvBdQF5X8HYTAs46UoQeb2zBx0/vrK4g68ra9RrXXBscffbhB+9/4GpwuCIcaAgaMeHbt27fu3X37vPPHM1sXlgbV+3x088Cjy70d587OLx+//rVmzeuAP5ee+21q3/T4XjmiUtPPnXp7KULSynZTqdt3SgMlldX14FgbG9v7br6kqgbfObgACjwOReAz507f+HSpXO7qwtzCwuzrXK53h5srDVyzRl3GAuteYx39nd3UGKxv7/dKffaq2cPd8cbT917591fXG/1b/7+xaff+vj3X/3mm7/++U9ff/sP37veSAiDv/vqu6++/D+f01J5gcnkDBZZxDimwJr1RtoQBc1AFFFII0lcUUrZlpIu2DnBsk3kIMsmUQcVQxZ+gRAuChQV9XoiGALgmB+YqBgNU2GCYFq1nKVwDMdRUSJOxcK+qWjalIAAYyFf3BYxI8erFBVQGK8/EAjFw6IOrATwFxgwxyVwDJhdJBwKBT1RJenWjcPxKB4OB6ZDIYKV48EwfB0TxWiggPGw1wcAHAZynmQIWiMjii3pQBhYuBNIJCwpC5Iq0m7/EsDH3QcG9hgLR/FYHJhTcGqCcPK6aWby6RTaKEerHrLEYEEM88ZsCKcQbys1JOzcqpcquRTQSzQFLSDtYlVTIXxqRqZcLZcLqGCaKZbQykUGTdQiKazeYKbfHYzGkDOtLy+NDy4+2QceagBbyuSLtXwM0mKffyokkZOT4XCMk5Now5BHmp6QI6DdfT8alvSj9QU0uBE4CWnF7AHtRSaPcKPHQlgsjoexOIVjNCeqCHtl1AbWHUuWEasBDEYgbAAkw0MDAuwOX7GuSSCyI0yXB8h6AVAXbowNyFC31sZro/HW7u72xurK0kLXki01yYgsx/HuQJWsmk6+UitV6pXO/OLW/PrO5tLc7PzyzpmdZdQARntIg5m5xWE15wAFFTnIKHhRBgJtOKg3XsjmG91Ws9cfzCwsr64NRzlBEUVVgK8UWFLSULdaM1OqlUYN2TJcqWq3U07D9a9V641Gu55hGCEyhU/Hgn4g5WlbSPoh/YvotUK5mOAkLMZChmNYSFBKoylVoqKxYJjVLF5JGRJHxhSAMN12WDNfTjvF/5gJcklZPo+aY24X2EXcfN6tOsNfUnb3keDjxUe2SMcD0ccjWPnjUjSivTnX1CHjQo5ri4QAOHXsgfs3AEbrSOiT6Ww2LVsyUF+B9PkSqiLxkplPJATeKFUAslAFGtlqIEvgYwDWNNmU5WLRzmgNg3PSSPOQIiBzjZpCOEpl2HSKZwQmbgNtFpIcD3ePk5YddHDRNLwCAEzEMUq0Oanaa7RrlJSpj1oUbeTtrCGjezAcI5R0PLWwNDQpCUsPFsz6wqAjB6N6vWmzGppBDsQYhswIRjPF6MlQAjXu4bhX6q12Z2a0BBndeGd9e39v//ByzXZVsDLoukCKgxTBjkfO/6MPnHHHyDMlnpKkmM8X9fkhaYMkOeCfjKDJT8M0bYmmo4FoMCnbLF1zgkTOSUQdm8QwNKsZjCdwY65KYTHUcBFpX8x2OBKjcYLQiGxCbOmGvTGPBGdm5ueXR6N+owtZ4vJy1kcJWipXrPcWRuN0mPSzoqibqChRrLdaw9F4aTA/WqzQEcor14NKuRcTph/3+lG2H/L5Ij6uGRHgpnBsXrQ1LiEoPB5EmgQuAkciWNAX9E7CP5/XM+Xx+8Jez0QEMga4qVmaTnpOUozkAe5rC97HvbUsz/gmksXWO3kF/QwAACAASURBVP++e3v9RLP/0VkA4M7nyyfkVnn2zO6p6Y6d3fjsn9/4+zuvSHl7Y7T16V9fu/nFr8th7mzn9Ld/fuXF9MX9g8+/u9pI/ex/fe7a23cfvv/hT2/dfcg4mWqzXO9ikwInZyXThBtSoNC0VBUOcdlOMRN00aKxVGHpQobBGbGzYEIAcgrpymxuto9kMvut9rCeqioMl+aSCUVoXPjFnfs3Xn3laNhM1WytaIop2+6+0MIt00jZHCd1lqqSYa/MPHf60uHZ0zun4dXuNqo1j7fGa+P11VVkHb61vbEJHzvWpdzdW59fWnHq6gvnyMpoYe2Xv3rwzgfvuxpYbz9AO0hu9/ft+3ffun33/s2nnj27fri5P3JKy0+9troxLi8cPrX9zPV7N19789qL11z8dTvArhHh8y88cfGpJ8+dPX9u1WQK/VarW83YqcrsGBjw5s729iOLhf19ZFd8eBYJYh2dQ7pYh2fPX758Zm1mY315ptNC8n2L4/lSsQ9nYmHYHczPruwAakNesXuwu9qZbc2egSxj/eDJ99766FfPVFZ/+nfPPHv/53/43e9/+PMP33z7w5+QJrT78u23X37+/T99m02XxYSeRqM4AMCOLjGlRs4SGFXlGZribICRlCLaKUuxs05GsKwU8tIRIJcE+hgL+EPeQEwQ6ATmm47E4DxhpH9qMiDFInQ4gSXqBYsTBI5lmWQcJyLB6YmwoyGxSQoLxS0RN/KyQeEeCKPIg4wIMIoKOEtDuGAZhgiHCZqMoPl9BMAMS1NUBNVaA57JKBlP8pgvkkhwyQjcYgC7YY/HH8GQuiTDErSO45olGaamM6EoRsHDQauvIkdL7jYwl4RHRyO3hzjy2Y2iXaTJCSKTk5CgAuQbGuAXUk2XeSwcxwJEKpVxq4zlIpo5qqM9owKaghY14NbI60TRNFUx0oWqq5hUzKUQCGeQOCFaSGogGejhYGZxdRkyrpXVnaPDS30Nwmg6i7hWtRCfPnHCF56aTkye8DCKwJAMMDWKInEmjnQy/UHPtGfSg0oOvnAYlbT+UzgQV+VpMobkosOhyHQkAGEIWSNiJGQEikt8UV0zDWTeSVlOKmUhXz40do3IvaIAw1RRnipBCpFkftKot2aWVpZGy+vrK6tbO+Pt3fEOYPD6zi5Q4NWl+Z7BabrAS2iSDXkLItpv5mtwJLvdwez83t725tbueFhc3Dy9tTg7B9QXuYgOeq1OxTE1dwsbvlVGE9ia5SADwFyh0WnUu8hkZGVtY24xy6ENJ4GFpyhJoqlyTRJVpCZyPFGcK9dbnWap2UJuhM1GJW/zbMI7GZ2IhPyyITq2xPrCEUimrGLbwXUpGubgJwi6xYmGpeEJmUO2zyRvCRwECAWyRuBwulUSyUI1nS0i+osWkFwrBYDT4xlod+jZHW5GQ0TwAbcPjCD3RwDO/09mwG7jP19w28Au6sIJcB4pfGTQ4rjj2v+i2av/uQeccf0QHcUWSElmMG+AU+EayFYayCCfKpfgk4DdSIoD9RM0zUVgJOmpyZlKJmUWCiTAMJxpILUU5jdtoP4On05xCZ4ldN22JbR+R5JWSnLqRfg74QnhWZS2YqRgcky+BdeT4pzKUo+k7KLhqCLHMnQwQslWkG10+qm4SKS7i6nKYq+jRTA5X1FowzEVvy/KMnH4YZqdIB7zEJIKD7xQabS73e5wtLy8gcLbzv7e6bOXypDCut4UBbi6BVct+/iaoauA/o90TgCXUzkrIurhiCfiC5CimKSIYHgygJaekCiaTrORIFoFtpRkrYCHjDQXBjDG8UgoimRBCLY+IImgVFLSHGTeVo5ncAJuEdVIOO1qrr6x2B/O9tvd/sxobW62U+6OBqPlrJ8SVOsRAGeiVICTRB1NTKQKdSB+S+PVmeHibJYNxn3UvB5MLEtJ/yRkCPAbPQEy6JNbQYqieFOhWF1l4gwkd9EoUm6PRmPxeBjiXsg7MTURjHkfe2xiChj5yckgK5MEUHaRDJ8KyRo1NTFlFKjpx8yFBJ0IeYRS8+3/e+v2+sk6AmCn2fpsdAzAe6e8rWxx6Zv//cVf3rseKBkry3uf/uW1N7/4TTnMHnX3v/nzqy8653f3/vDNq9X0J//9pZfevXv/vQ/ff/3Ou4yTrjVrzR41kRTYvGZZDMUpiYQoWwDAcP4zvIcomhRuF1eeyFN4UmjNmRJD6blsbSmPzBi6nW69OSwBzWd5m6QSgt1/4Rdv3X39yssbs6lGSS2ndcWxC0fnJcYxIN0XWGOrZzOp8uLZi4dnLp4+fXiA3H9397Z2tzYgoKyvLq+sj1F3awz0F47J6e2t/YMdZEru2MtXxFL9YPj2rx/+4t333jvWgP4RgO+/fVyMvvXsM+PVS4f784Xm1pUnB7uj8tLh8/sv3HzntWu3Xr/+1uuP8PfqK8cA/NwTTz/71Pkzh+eGilxrAh9q1CtZO92YX9lYX9/a3jmNFpKQRKbrsHAAX4jUKc8eXbh4dObo0uWjvS3UtF7s1brV9trWfKPe6M0tzM3Mzs8vrW5s7+1untk9vbfTbBX7BztAQXa2r7z70acfn65tfvbgiRcf/PT3X339w5//9N2fvv8aWRMid+Bvv/7jNz/88f/YM0qayGVllZV15Nqu0Jl6OS2j1VagwEkdANhRODVjGRbcKbJjZi1VUcUEkUSiVEG0Uh7l2DgZgXsxBiEgHguG/N5klEyE2BBRspEDCELgJJpSDAWmsZSOfBWAr0Y0LqrmDTNJ+riAL+YPBoJTSaBAwJQYNklicTJOoEGGcCDg80RVBoE7GQUePTnl9UaicZbF/RjLimyUYNAwVXh6OoAqsESCTcTiKk4apgQnAY1qYaTi+rJLPIR4VELlObTiQMVj0SiJzHbDWNQXi/pjWi6D9hXRUoipuDVrRSRxik7I6XSuVEHjN7V2rVQv56vVUrkAlASoL+KSEqrIKooOAIzagiiaAEVCLS20hlQqVyoAwK7xLep4rG+eRgAMbNvKFKrwoxoNadI7dcrjm/aciAGam1KEBPJDhCIUkkUKB3y+yYB/YjIYnDo56fNOnpqYOjV1IhxCArihQAAxfz8eIeJR4MtYjKAZAQk2ywDvaddyFkkNI0M+ZM8Ar3VZ4HWRZThRhgsucK4d4Uy/NzMCpju7AnfH7u76/v7W3u7GeGUbDtP2eHmuneKTvGag4WlglIBsyNgoXWu3Gv2ZueFgfHp3a+v0wfpguLq9Pj8zO7eAABhYf6VVNhSJYxEAu3vHsqJZqVw2VyqVW12gSq32YGF5bWNxIQPJmiwlKY5jiZigoJUlDjWM067oRancaNbb3Vq3267X6o16NWPyLOUP4dOhgIdPKZrO05AEYiwpGq0sKaoxAGAliXM6WrKzGZxX4MdGcUKXWclMSTIbkW3eAILIpnLwPLku8YUfeWveBVVUhM65vd1C+RHdLR7rQBfyP5ag3So0vOlKZOVdoYnc32Z70eDVsdZE9hEA/6gF/QiAs64iFrydNzQzyYkSGfFFRVUUVbTCzgkKpAYO+ipUg7bQYhl6AQDWgAvLko2kY6xaXM8YYpJlcIyO+cUM3BCmmHa4JJckZMVJq8h0kgCUltOdglsONyAXjRPxGAkHgSn3Oo0mw9rFUR/D1ayStiSW5OkwoThFius2ByVapJ3WKFcatTt6FOPyNZmFs6QHfWFOijt50ZNUoo9RHK+UUKLU6Pb7veEI5XFbO4haHJ6/BEwdZaM5NBTx6OoeK31m3CqBK5qOet2pTAEXTAxHrX2MRZIDkbDXl5TQVICWshk+HsPgttD1pFNO+rm8GqNMFR5ImIj6IiRHp+ZFOkTXlSzPx8N6XuaYiD8WT+TjRme+kB+NWvX+oN3p9Wc250YLleZodn45FyB5Wc+6ALyZi1J+ThIU03TSuUq70+zNzS8tjlZnDJUNxQirGT2xMMN5ojE01BzwekN+n9LyxqKxhJKMIyPUJNpyTMYjNAHsN4rcXmIQwaZOTQSIMALgJEV7fVM4E4l4JicS2MmgY1qTvkmmqwM/HvYmAYCn6FTjo/9r/c3lx2uDj88+7rT+BsATvmqxNPOH/3HtN7dvePKp5bVtBMBf/qYcYgCAv/7zlZdSF/f3//j91Zr14X+/cu79t++989G7V+6+z9npaqPZ6rKeuEhnbNPhSNZIJgRVR4vwFSfDB6iyRWF6YeWZCkEkhPa8LbOkkilUVjLDYbvdRh3QXg51K0UNh+ibWXzrkxs3rt54aqYjtEylpepZOdt/tcdqhu0ImpSorJQYMd8ZPHXu/Omj/YPDfXf8edNtAK8tr62trI4319eBBO/ubW7u7sCr/f3x0uJyLtN8s8L0F+cuf/X+uz9DDWDEf1EN+m2EvQ/u33nr9r17d558dnnz2fPj2Vxv9+oTy+v91vj8ExvX333jjRs3X79289ajAvTVKy+/fAzATz331NlzTx0uaEa+XinVOxDOi3BbV0v1ZguysqXRyhiI+Okz7lLvweFZtBZ89sxZYMFHR+cuXHri7OmttdXl+X6j3y531jeG7VazC0cIojpaSNrZ2tuGb56d6c6fOQA6vbu1e++9d399Z1R+9rP756989LvfffbtP/7D999/9w3yZPgSEPjbP37xp68//18+tNMphco4MqtaMqfDRddLtZwmSbrGk3FKQTBjsBKQPU1PmaKpZkxAGiFBJFDzNBzwYxghcnEi7PWEwizLU4CkwRAbjrERKUhUbB5JNQoyT0ByHsOiftxBAAy0zh/R+Khazok0HU0CyZv2e72TgolEEhNATzEGSVUB/MaA/nmnIvArk7EEjcWxyHQgMB2KxuFrpuMcJyTDBEuRBI6UQCDnxEiIOjFCi1GGqRqmIxL+aAyXVB0oG7A3Da2xouknEQg1gcUwSFbDQbQ/Ggn7YwoSm0whcmIg0xK0twrsnheNbM7JlqtoADZfa7Q79XIlj/xrgGa6mMJzEOuBL6sp+EQeAbBr2A4ZVjGLonilWh2ggSTIltbQ9vnW/pnzT/Y1NGmZA0qVrTb1WDQw7fNMTEZZACsU/CA58E2GIOH3ev1wCTyh4MSEz3dqcmLi1IRn8vHJUyfioSiDlJBDESxO4BQBYYjAcAxH0iHA9kXU+jWR1q4pq0iREhFgQF9EfDlWZhMJVoBcCF6QFtZPerOLi8uQ4y2Mllc2drY3tnc2dnY2tta3t9A9szzTyspJRlGSLJrZkkSWUzVZywADbg9nR8uLWxvbgMD7+7vDlc01NNviikEPkY5BG8gdJ4ioTId2nmSgbsi3D4CrBiGh02jAQV7ZGM2n0WoyLyQgL2AJEQ1rSyI8cVbazWBKpXqj0u7XO512o16vlus5i+cSoQgRDAQmqLwqy0kc2VUkOEsoFxhaikWBFeuK27QWNZ1iJFSExmKiKnGiBVAfJ+H5M6SMzafyBcddHTomZq4ipWtMiNxiHjV6XcAFBCkVjzeUfhzCQm+6vPhYSfrRdFE2k/sPrYljt4cMUGEEwLljyvs3L2AkRQm8OC+bGqFyPBYOAf1HKtgWG5MErVhIQ7pyPKhlG8jg+hiBDcBgWdIrZcvWKgkhYyssL8RjCSJM2slY3BJTjsiyNCEBAGvIwSxOprIAwPljM0QFoA0dGF6X2Opw0GxzjJ0fDWMxs6hk0yqHM1gAV40SKy/W6yWKxY3qYj6/2GjpsVii3JGBI9pWBACYjTqGOek1OI+U5hQkrZ2vtHrdznBxaWVzG0LrHrCfc5cKdsaVgnbxN49qRI+KBugVmkw7XuFKp7IVMamyUb8XNaV4kSEwyNtjsszzqJIDt0Y8ioVoSU8mS0owVrTosJ6i4/FoPBqM4AotzZWZeLRsplSJCklFQ2BjwWiUyEIOvdWCDGI23+k3O4N+b21heaVb64/mVgpBkletdKHRm1/cKiIAhkNqIFWdSqfX6QL9XVzcmFdUJxnCQ+VyoLqdmwx44G71RYKTj4cCcgPwOE6LZJymWZKhCIpliEgcB1SOxaIEFvH5IoHHTk3i9PRjU35PkIj7Tj7uxYByTEaJyXBRjT3mCWfb4ZN+ZUl6TOMCHjZbe///Hb+5+Hh15qeHJ1OtDgCw0irPIACuFJ3etQ+vfHnjjYSVnlnd+vTPV29++dtygDnq7yEAzlza3//8h9eq6vv/22ujh/fvPfzpe1ce/FRwstVaq9mRQhGVtPOKzVOsw9CcpiJx85KV5kNU1UngamHhuRZFkmJ/BJhASJl8adXpD+pwkzbb3Va6bFuMIsXjElPc+vjd69dfvb7byWplQc/rZtoob18wJMtwIDXnhPmyRiu13vjC5bNHu0dI/vn0GQCx8fbm+sYqEJG1tU14a3t7c2d3e2d/F8lQjlcW5sqG8fyuWZ/fW/7klx9+dO+4AP3gwcO3H+lw3L935/a9O9eevzi78/T57UF5ceW5i/Pjjeb2uafPX33z3vU3b1y5ef/lp29fc2ewrvwHAL/w9LkzFy4sZYx2LVXr1BrVZr1UqlWyegqtK+QrjTbA8MIKcPKdvf2Ds+f2IWc4c3Dm7MHZ8241Gg1jrQIED5q1WrU2t7sIHLq/uDBodfrDxXUkYr1z+mh7d3u8ewa4/M7u+NKNd3/68atLjXt//+pTdz/92e8//xYJcXyLrAm/BAT++o9ffPP51//wlw0zoyaFrCbKOiSZlqryqXrOUFjVEAEBhTzwYZsVCrYiaymF1ZQMMGCZo+JUHMNikWCABnoI8BrzeoKBJBpb9E37wkIoyIa1AN3MubrDgsLHE3gsHAlNBmykwcRSeBgzhJBQyCficVde0hfwB6dFU+EYmmJ4hlQY4HKhUCwKv8M7GQbCwuMshWFApKO+iRARhwxzEk+yHBWMuwAc9sONFo3GSZpl4rQVJnQIV1qKJwJYLCZqwKZQ81IE/JXhTZFL0jSJY1gcvieCEXg0MDUd14CwWGmIApbsaAKHVoHhjlIUK5synDzS4wfA7A471WImDVxSRk4MSEqZB+QQBEUSzGopi2KLK56EOlpZtL1SqTWaAzQSvLC8urIx3tjY3j994cmBbtqpPGJeTqmhR71TvsDERJin4kk+HsKQzd60Nxyf8EH+4fWjl2mPxzPl83mn/UHf5OP/SVwtYqEkYC9JAOelSRqL4eFgPE7QrOCqTqkQreVUNq3zrKQjDSXLUnnANeQNLkgCKyoySyFxMMBf/if90doiMPTl8fLCynh7Z3djc317Z3N/D5WLtraW+u00ADdDw/WlKeRvQMuWkyoCFW22G4OlxTW4fdbG+/ubc+vbG6OFhfnh7NzsYLiwvDBslDJIVcJNe2RNkFWgwGghyrYzxWq706i1ZxaW10ezaSDkKnAIhofzwikSmoJWdHgUyImrkk2XKuXOTKPZbjcbtXI+5+gMkwQO5vcGJ6mqoWoJbJrAfBHC1isWiQSEOfQrbVZC6VdaoEWFCkfCPkI2ON5WFJ2PiE5SNp0CnkbO8JA1AUgi5MykAQrg6UYKGPkKWgMGZlxwp6BLxzVoV4DjkSalK0CJzOYzx8PT7owWWj5DRW00VYQkr1AtAgAYng1UTc7mXDOkH3vAWZcy85aMWUkmEgozaL1cNVMJSuXVajGdKebS6DuAuJoOmk44LkNbqM2Qr9imWuATLgDzeBgOdTwt4XFDdBzUysBFeJ5keI5pnEpnRLtRzaVSDnBcMYkSXILXRKrY7dXbXNLKjWZjsVZPsXVJ4WQqQshiltE2m+UyJ5Nyfj6Xma82bCJKlDtsUjWdVMwfYlkizzWYQNqZStZlI4XAtdTodFpoCnoDTdAD7zk4eyFvo2UylH+giwo3yd/ckI4Z8LFSFnxB0cZ5adrnDQW9IQYJrAaCUz44Chwa6+c5MubHgwlOkcl6OhYo2oJfLTBxIhYOAGIrFN3p0YkgXFBHpgNcyRQIKh4JJCGGZZqDRtkaVYbDRmvQa84tLIxmSqXFhbVSkBKNDALgucXtMkYHeAkA2EilU/n2YDBcXlye6S7N0oSVmYrFrAHHLMxHfJOT3ukp4KwBLKw0vMAZ0e40Q7EJioYbhIyjwjdJUUScwUPTXgJ/bOoUJmITk4HH/IQc8UzFmUmcCU+g1Q/95ONBez59cpLsznknROzUlJq3X/j/du+MAIA/OXPSaXU+X0JT0DMHexP+Rk5ozg/Pfn39To1n7LmDn//lyo0vflv2Mef6e18BADvndnY++9OrBemDf7vWuHPnzv2P37vyzs8Eu1CttuptDQvqhFGWTDHBpZMUqyvFfLFQMlN8mKimGFItDZ/vJ8i4OLPsCIm4BPnQRmo422i1Oo1ev56q21YSTgyhMY3DX9x+481XXlrqaJW8mFUdW6zVnhgKcG/btKHTzo7BKMKw8wwA2MGZo90zp3dQMW1rfWu8vrEGYXB1dbyxsrqJNpK2dvcgeT+9uQrRIpUfv8SXWuPZe79/8NG77xxPYD14+A4iwA+QENbdew8evvXM7vzhE+dXK9W5555aWTvsVQ6euHTp9Qd3X7v+1o03b15949ZVdwj6ypVXX3oEwM9fvvTU2bm81cxWBr12p1lqd2tV5LBWLhcKyPC0gnZQq00A4tn50eoGyhcOUO6IpqLPnzt79vzFc6d3NlYWZrqNcqk1u7U6aDThkPfhp3Xn1rZ2jvZ34d/Owfre9tbB1s6ZlVc+ePPjXzzRXvrg00uXHvzm93/48vt/OAbgL79ECPzNH//w9R+/+uc7ZsaUw5kM8kzlJNtKMWYzb+pJ0QAsJJlUq5ZN82LJ0TQrr7CGkbVVRUwSGIbjaEHITxKkwOJkLBSIhBheTODBgM9DBuO0X/FSrYKhGBpQOgYYcyyCx3wR4CQChPEoZGKJSdwwAIoj3lj8JDC5iJeReQjyQIGEBBkNE0Q0Ekc9YP9kSOATHJbEQiEiMun1TYdi8APDE1iC4Wm0CkHTwKkDYTjzOI5RNMnYQUx3TF1xJNQ3jokmIGSSEQUG1V35RIJLUK7bErBypG6JrIYCQVzIViHUFSFmGsjAkAeCmMSTQG5NXbddblOoV9vNTCrj5BzXMR5tFbM80BWJSUp8UqsW0u7cVS5fqxeyxWLanaItVgE3epBgLS4tj3fQ1PqZo8szJrBSJ4+WTOtd0xP0ewJxmokkJcjdcZrCIhidiExORYnQ1JTXG/b6wqHp6dBUCMcioQBQ4dYzZ2fiUYAroDlUMkkkYzEyGMTjqAuepAHMdMsxZMky0UixY1nAf3UujvalEAhbCqoIszQHKYTLgGeHw/nR0tJoZW15bn5j/2DsTkggIF4bLa8vD+poLQv1cnkhGcNZkZaQqVG1Xm72BrOjtfHe/s7G5v7u2tHO+tpo0J+bn+n3h0CDgVyVCkDI3QuFDIgl3XVrYpVCwc61ms1+p9bszy2NZi0OzaoDVug8oLCpofK4bKhqCnWp6ikHbpleH0J7vdZoN6vNqiVwifB0cMobDHAp3TL4OMLXMJkvNh2CZbBo0kjpkGaooqowuirFFQsPR/0hUlZ5EfilSkV1S0rxpRRdBpys5OxcLpUFNorKF2WEo4j1ZnPHsHpcO3XFJ1HFuXxcdC4W3bnpYrFw3BLOPVKbKBR/XEvKuHwa7SMdy1A+IsQ5VwbLHYgGaM1mUyk2Q1F8Uox6goImibJt2HRS451CFpn4oRa+aTumlTJdU0J3HEtTJdmql1UnVaa0nEjzAonhFBbO2yRlCtmUIAgJSjdUEy4oT5KEnRfNXgX+PhsdBZqAHJrkNSPRqjdrLYmxc4MeQ+XqWY2nSAzjcJKRi4I6M9sqJ0TSLC2X9cVOPUUHiGJdSgBhV4nJEG9Op+oNdjrlyFYmrWt5uDalWrvTGSyMlsZbGxsrB7sHZ09fRBPgcNJT9qPWL6Cw2ybP5B9pU6JrBsictnMWHVVwd/XOQ3FA1PGgLxi3JE6xIP2gIbmPhcJJ0SbUMjdtQbJBp2Q8HgrCx8OkhmdXJDIotvWKwEVixRJHQZqNB2Uh2a6NZvr5UnO43J9ZaM0NR8src71MY7hU88UkxazmC+3Ryl4tSsUYRkbWJYZVQJtJM6OZ0eJyVzfVouKNJ5wmVWuLgL2nvF7P1GQoFpQK6K5LAuwSFM3G4YVOQKKKIQG7OEXFEwFPTAXS4KU44qRn4kRAZx4nmcen6Xj4lAenMydPinhuSIUDiUXzsYTKTkxJWZX5/PKtpan84JP9k7ni4OuZU3anUD9/cCrQVIbr2Xr391c/2Awz9MzB3/3w2q3f/aEc5s6Ptj7/4eqVzLmj9d98/3pRev9f71Z3Pnnr7fcfvvz3v2SdXLbea7VEzm9G+BpQE5bOJYWkJBj1dBEyI8MbzhQp0qoOnh3CFVO6mylRImQ5VdvMQc5b6/br7ZlyuuRItE6GJVHqv/Tz62++eOf0AD4o1NKsoabztachGbTLtCqK3FrViMu57PrlC4eot7q7vX9wsLM5hiOxtoZq0GgGGrkvbKyPt7fHwIv3zqwM1kdwlu9XzcHC8ss/++XDdz9+7513Hz58+M47D96+/fCde/cePkRGDG9fe/rszP6lCwvV5trzLy6s7VQHTz9z+OyNO29ef+PNmzeuv37t9etvvH71teuvvfTqGy9fBQh+8cqLT13YWe5mrAJk0eV6I6/b6CSWCmYWMSW31IVIUyFbsbIL/YX5WeTUPAZyjhwXjp0azl+8eDhe3Fie7Xb6vXZ9YXu9U26PhkNkEzxcGB8cAvs9vbd/em9nexfo8Ob46nv3P/70TGn3d/eevfrgm1/+/Ku//MN3PyAZym++++bLz7/40rUH/q6jOBBVi5YmiIoop9SEVG5kVZ7RWVUIC06tlDdSip23swrklLpYshDbowkkIYXAkSQpjo5EA56pYBTiRYJATh90gKT5pIeoFCGZ5tE4EZ6gyHDA78EyCssxFB7CIxHK4wN6h0WDQc/jHn9gKhhiOVkEesUx8eSxSlUkFAwHfX5/lENT0FQ4zij57AAAIABJREFUTON+T8R/yhf2YWHv5DTJSHiYTMZxKhqMTnuweIwgkhCGkBS0raumZKiRcBSPiprEoxokD5xV4KkEL+CJBBYKx2JRLBkLTMew6XDAG+DKRbuYz+QdwCdV5nmI8DSSojRsywZcRsKppU4xVSmY+ZSlI1s+XgBgh4yZASpJ01yqW8iVykhtIFcp5ZFTTglQWM0N0rX+7Mz8/OIqpEqb61sH544urlq2lYavyZRLzfl8OBCcPIlzwRgj8HySIHGCkxKxwCSquU9O+73+gCcaIsNIXhYZTk1NxDYuP3dZD0F2gVM0gcUgSCG35GggRsFVYWhGQJKimoxWRlXDct3R4E+GeCyaNmTAmiELSMLL7RGI/E+Asc4vLI5GGyvLK6O5RTQesTne2oXzt7uxtDhabgAiypqEurlI1zPJor2QfLXe6g5m5lFLZwOxne31hb3z+0uzM7Nzg06nN5wZ9oFzOaKkCQJ7DMAi4ra6nka2BNV2pQMHuN8fzC3NOQL8BpFlWZXnXSlKQGNBVWUb4nKpWqs367VOvzPsNmqtXqdRKVlw1UO+0JQv4GcdTVZkyockyclCqWGSPB/CFc12BJET4FlnVYOnCJYjsEgkziuypKZ0mSNotOmkAeKU3fqoK+GcTh9PMLtSz8Vi/lGFuXxciS4eC1OiIehjAC4++mj2eAardAzY7lZxLnPs8OC+hQAIteTTqWMN6Jzb/EWAnHHtiG0pk+Q1ViSCmKS4WzdKPKmoaGXHFZRGzWJgwPaP+Ot6A6uqUSnrpllMKDkVCYhh0XgsoNskaTHpNCQ9JKaYhqOzPAs3lJEV1GYFHib8JB0JuuM4LYhqstVq1etCwsoNhhxllrKmwtAYLeJkUs5yfG++W2UFMpFZKXPwdVYiQubLIqPapsV4ggwXSPXbwmQSi0sFy5H0QqnS6A4G/Rk4M1s74/XN3a1tYA9pM3VMcTOPXmVyriZl5tgC8ngLGyUpRjYn4QLkSQF/zBtnBYYi4EnFLJmXDMMxWTEeDgfCtGixUlkM8BmNw1NWHBkfBaOhuELYq9k4GW9bJV3AQ6mKRlFwTYKiEa2mBvPDUq6y2G13G8PBcHFxaW5Q6AyX7EAiCcyi0BjOz23VYlTUBWATnqpKsz0Yzm/MzQxWltSknpWCnhDT0qRubsIzPTE1OemZ9OMBPucnSBLhL0HSCIcpOpFMkJDfxCl4D6cgtRaIx70nfRzn86I2E0FqUydOCUb4sUQxGg1HumTT9pBWYtHjLfK4b6pVKToLsw8WTpSGHxw+nuv0/tA7JWZEaX/HM91Mvv5f7m5lAZBmwxw7f/GTH6699VsAYObcaPOLH65ezRwejn/9/Y2S9Hf/drM79979B+/fe/rvfi3AFS7BAxeEsEzGK6qpSWwGEnC4ERsAQ4W0FYzmyzRuVIbPLyRJXGnu5zk2xsup6jjf7HTq3S5ci3ymYEF+TOK6YvZe/+jmjVdeXu9buZRdRBsLTXJ+XVZMW0+qLJubzySTaqN/8QhpPAIE7yLj3M2Nte3N9XW0BQwA7BogjdeRPQ2k+odjyMKdovHSHtPsnVn79NMP3v3wnbsAv8B/Hz64/86D+/eBB9+5d+vuy8/s9w6fPDcodzeefnbz7EJ5/ZlLZ167eefOm2/cePMNoL5Ig+PmlZeuXL/2yksvX3nhlasvv3Bhc7YzaFtGo5czUCOoUa01G+WCwwtG2kG9OSTLni9VaoVUdTQ7O4McFwZzENc2tvYPj84e7J09PHv+0sWz+6Pl1ZXFQaPSrg/GG71qc74H1GowmBmu7h2gMvux19Pu9u7OzsGbHz/43VuL1dd+e/3smx/87Nd/+OpPf3Ldgb/+9uvPv3Znsb76+p+eF7Nygs9kNF7WJTnjiMilXOUSYlKWST5XLZVsR7RLdhru44QpVQGugeolCQJYYyAIfAxnExgR8/tjWFJh0D6PP0D540SS9tK1ej6lo7VbdCyB0wY9UV1AGxF4OOCJxOBg+qdj0WDYOzE9jcFtpmkMSwKdpXE4v65WczgWx0KAucDWuCSNAZsNeGPBCV8oRmNBbzAJ92OEgCSZxINRvx8txMYpLh7juTBpGZqlWnwoHI3jiqmILIdIMMsKMlAx+IeEZiNRHFJYDG66UCzgDcvVkpMHZDBlA8k9CRL8UooRJRVYROpYkKHWKqZyaSONLJOQ02dCZGPwGxIMqldLTqNeKldcyWC0jYQIUbZYy1Z66RZg0dzCaHUd9YAh2wMAhmCaAmIFob2UcZW1vVjsFMQTgk0iYSuUmUQjHlR69vq8SLg9DNAbxfCIHx6+P5pdevES5w1FMBJZzcejcSoaCIWxSIwgkyxNs8CBFe1Rx9AAvDMNXZZchX/LkW00X4ZEJTlU6IWH+ROU6w9mZmcWF5bXV5E9L1Jm3d49fQCEfX9rZbEByC0gsAbCL0oyJwJ0G9lKrdNDvnNrq3OLK25KOzuztLM5P1hYWRj0BmgMulnMagIHmA0AjBrmcHxYNBZl2Jliu1upNBrNTqs1GM2igQH4U1hW4bkEryI6zAEASzYkMsVKrgZErT9oLs1BKOi0qoWcziXjoUDI4/P7AIANXefCMSI8jeULFRXnBW/cVrSUZCYFNE+tW6qBRSUGCaLSqCNh2oLKRmRH1oVsgSyg4mcBeeblj93ic8e7RS6TRYy3cLwFjHq9rvLGo2mswiN/pHzuWCH6R6Ngt6ice9RWdrU4rEyhmEs/GoJGZgyIAh8b4maRiYOsWrRsJJMx1AIWVdNIc3FeMtEeoOuXiHrHzrEdg6vEoSFfSbg6xTrkgkVezJmSgETaE1SYydCkRSF7KJYIKcCvTZZDCq9GTlRrZaD4DlLJppDYK8mLKtPu9VoNiTJzw1meVPNZx5Q44HLReFLLS1xvsVNmOJrKrTWkdqtr0WEqD8RSs4yUOO2lZCxpKuFJyu+bisWaBdVO5SuNVqM+uzC/ON5cnl8aH+7DcS/ZqeNdLTTghh5OGmmO5Y9Nko5tMBAgZ9KFUtWGO4CATDPqjSUhXY5HAt4gJFACyiMh18WCgTDO6zJTMOJYylADappkgRWHowFMpNmFboz1VHK2IzF+tewkEpCiB5g0ljUGiwvtSmm+1+k05/q9mZn5mWGp3ximgwleMc1cZ25hdrOOkeEEI2malUrnas1mt7ewsTAzWF6niHQSVyLBWKZEFVoRj3di4vEJ79Q05kumfHEAYBLVnmg6QcYhdlEsQVMYnkhSyUQiMDWBCxH/46c4i8ciJ09Mh3AjNumhVH9ioIYmyHw/mQ97Snmp8Bjdo6KTE7PNTrM3/OnSicbw5/snjMHw64UTbCnDLfamgjX66r9+/cUH9659tIbj2sLeT394/Q4w4EjyaHHzi3+8diWzd2brl9/dKgmf/Osb9cbz79z/8N7lj38n5AqlTLvVowSSE/0FwzE00dIFXklL1Vy+lDPNKFasJnGt3HtmiaNxpXq6mKAislUqbxQakO92O51ON5XPGoyi45QuWwsPH966fu3cYlWtCPm8mDLMcvqSzZh2RlAMVhn11YSS72w+dYDsds8gnUZUgd5YHW+sr62trcMrZIK0ubU9Xkerjlv7+2vdUSVvbL4uFtq7S3c/+/jB+x89vI9cGACA377/3tv3Hz68f+fuOw9ffGZv8eITm/1mc+W5p5d3Vtrtnadfunrn9u1bt968deuN60B/33j9NbcC/eqrr772+ssvPX1mY9Ba3l5t2mZJz7cH/V63W23AqW9VHMnKOCiVRWr+qm6ny7lqo1rttWfnZuCgtBqD4dwyxOvDi0dnzpy7ePny2fFoZWN1pt1utWdXV/uF+hAC3ezcsDNY3gUE3t/dP42chrfhraVLd+/97NMb/dpbv7n5xNWffvab33z3l+9dAP7mmy/RMPSXX37x5T/93nZMKmGWDF61NS2XUhQ7m7PFJMPwppDIlyvVtC1aVcsydZMyxZItISxkCAKPBn0BoF044wJwAI8npQTAZdDvp/wYjcSuipWsoYhI94JC5mdY1BvW4dsBjuM+D/A1D+BwOBIEhPUAyQuHITYzNEuTNJHEcYTAOB4GgPZORWVJZlGdORrxTsdCngiWFMlwMMoyAhmNI2OFqMfvC+B4HM4+FwcGHKIMQE3NZEPRKE7qEJ0YBv7jmCTiFyIrJgiadBeQKMhBiVgk5vOEZVR4TCHBv2PpJjRdBdAqKroGcQXt+FbrVQijyOYACfOqSB6ZCEYphhNRY0516p1arZKHq1ZAnqBojjbn5PKVbrkBYDS/OFrdXF8bb23tnjl/ad127AxawivWaoIPbQ0CWY+ZXNgbhzwmjGzMonHM8/8z9Z5tclZXu6BPI6lj5aqnnpxzrJxzTl2dc6uVQAgTbF7bGJMRQiAhCQQY5wDGwIuN00lzzjXnneua9GF+wnyZXzDX/IVZu7qF36IT6uruqqf2Xve691rrvpGbWRhVwmO+qD8WRYIccLdoyLfkPHuV85M0EnnkeWSuGIvGwlgcwxlIjwgGuQ2qlq3LqunYQIbR4zNtHdkbuApCU9SPpsMHVBtHTVjjfhcdp4w31qabO1tAZ5Fv2NHxzub+5ZOtAQJgQeY5UZRFilF0BdDSylYqzXa7O9rY3dvcmI0V7J4M25sH09Hm2qjb7nSa9UY9lzdUVkDTTgiAOfhjggL82wT8KdYbtRqSdu5MVwfoCFpBLfOywEFIRONdsCUU3UOuvFk3V651h93GeAwbo1kr5VI6B2HaH172AwAndFtG5X7c58OzWQBggV+JWqZiaA7OqLouy6bh0JipIf9JjANEVm34kTgPId2004qM2rDyyWQ2dUrFsmfIipSuTkd9Z83P+TPYPfs+ukPmVLhyxoURZhdOB4fz34pMzBAYUHfmjITqnadt0JkzmyTUk4VEKHhTJRWNJPwhRkPjV3qaZnTZheVxeqidOqXOHmLAMyUsy1B1YPGZRs4zcxqfdDWBh5SEYqJYVgAGnMhovMTjquulLEh6eaA3Oc0oFlPwS5KuIlJIqCnOazpXaXfaDZ2yMv2xghvZpGNrCk/R0ThnZRSpPakmISvG3V5OrFbLCdJP5JB9takl1JXluEJwnudfikUZRZyn9VwyU6g2G/X6eHU03t4awnq6fuXw8uViIvOowzyXRdchmzk7gs6kH7lA5pBEViaRdXCKJ0OotT9ESTIZjwQWl3gHFWZtxxbgZQ6FopxuUHZOCJoJM8AkADKikWg0EBUErLaO8Yt2VU1qsp/PJASBCFO+uEdziXEX4mahsd5tj1uddr83Gg7L/UKl5Y/btOukqt3J9KiKk2Fk/m3aCIBrtVZntDpem06ni+EEHk9SfiKed7mc7ls6f2HuAgBw1Men/XHgviSELApiF44h7ssxLE0QNEPD5owunfcZ/PL8Y8u8G7MiiwEf2egvzBEbYXKcWFoQJxWSOU+tp/jI+UKL5ueDo0Gz1ak9WLtQq3505YJbb/x675yyOvRa+flYnb71f/3i51//9vvvrgcj7R0A4Fdvf/bZPwE4fXh5/+d/ulVU7v2v73jljQfvfHj/uQ//yDmpoteodjCF5Uy/C6RVV7SEKCppEbLFYtqw49F0WcCNYv3GlKNiWuFimaFwM10pbOer3RbkyN123S0lTd7VY6ytZw4/efuVV17cHzmJMpfLaJZe0q9fjhuu6yB5/+RaSVC8Xv9x1E18GeHvTHZ5f29nE4Ev+gBEGCHw0cHeAQLgS2vrvWY22Xy7aDZ316//64fvf/Dw/v33TwF41gN99+47b9++++6Pnlob3njueFjpXvyXGxsn/ebeU5du3Lz75ptv3nzr5ptvvAY3pEP5wkuvvPTiT1559UcvfPfy1qDXGGxMGpWCIzUGvVIq5QILgYVYLCaLtQbSMqiWS/l0wrGBezXavUa3Wqo2gVp0u4Netzdc3dgEWD25+sT1689f2tjchyje7jXLzfWdabnZg3sMBqNOe7J3EbkzoHsCCz7aO9q9cf/2bz5+Lrf18R+ff/7e737zm6/+8Y9vZgz4mz8j+P0K3v/0X3elpEQrxaSmeR6yZNGtVDmrSowsJcy4WyiXM57mVjwUtUlbBkarqsh1AYsgj2kfcE4A4DhkhBgCYDIWCvkDjB8DFhemkvnEzMBdRE1beBSLLgWTJsAxw5LBEIEh0FxGulaB5fnFxaVokAOYZQWKZCkmjp8qUYbgzywtRlQJyAvAUjiyshQBIg2Bg4H9xrM8GcMohiJii8s+oLIYRTECgatyiLEM2EYG5PGxOIE8+CiCF0VNBGYI1FZiCBy1SJBYjI5G/PFoKAoArBTS+axnIwEpRUVYAOBGMbJiOBC0shXkIV9CWguuraAoqKNDaDYapGTkHafAjyQa9WKhAIhbyhezaH41X8joTq5QrZQgS1qdrm2hGR9Ij65ef2rbSwAAwyLI1FqiPxANB8MxRqNFbCHA08GV5UA0Fo8ig5SFmY57IBoEeMWigWU/oLB/2b8grHcEHo1Boc5xIDgYRuKBKEnA5seRKxsvSKqBzAd1yBYEEfkE244FQdu0gb6iHjNJ1lSkUAV0/zu94XAwmox6vdU1VABZRzbZSBru8uUjeMwbo4ZrQrqBHKV0AyisAM9YtQu1SqPd7fanu4dHe8CZdzamh3ubk26zPUBSlMNBv9NsFUuWiU65EQNWFAoQGF1QB1U1E7las16ptRqtETBgyUC9NhxcdJoRTaRZCSxPtCA+F0uJSrlQAzrdrnWGM2/wUkpGy2gltBLw+8QkJFsythKO+cJUAR1BS0w4IKc0XncwEiAW+WuwHK97VDweCZOqpatG0laFOONoNmA8bpeTqWwC3ryzwdRHeJs7U53MnqLyqTcS8gH+523GjM/GgPOPABhh7z8pcGomZZV4NH707edTJyTUnyR4sOVkCvfHZNgiiqIncc6UU7PTbfQbznq2ZqaEsyNopIrl6IJdLyX0lEkmEobAChwRIcKBtEZaRjpr8JJMy5bhmKLIcGTMyBp6toTOstOupDIoF8EFU6cz1Vq7YQED7k70mAoE2EQMmI4TvOWJQn0CoAs5sdtMc8VyPkEHiWSSwjVddtSAL87FpHx5ZSm4EnSy8fNLOmSUdSBL3ena6nR3d9LLVw5OLj15FZ3AI/6fRDN6qUTqtPc5OTtpOPVEOj0zADqSyarMjNFCYIgLcEkg455Hlt6K5XhJTkTYHCQNk+NrepDN2STuuBQVj2KRQJTV8OS+QkaYjpHW5BDhpSSejNCBiKFHmsf9UWtUKK/228N6oz8eAazWx+1K1RfX446TKjV6o8MaRUcE2QC+4SXS5Xqz2xsPxptbq9OlsJPNJOgwsaj3SMWKL5xbQAx4JexXCiGcIBnEgEmKYEmUrRCcxNE0wDHH8GxkZXFB8AKRxTmfGzMNNrwATH1uTnqTYtrOAl6bVEL+88mJ55sL7+Xj4nx01CvnR8NfTedK9Y8vzpk2t1+eMzbb2XZzKViRX/jm0999+eW7b1XO47vbMwb82R+KYeba6sEXf3/px1kEwF/fKmv3/5eP8snJe3cffvjD979gDTvv1ctdXOZYNcKXbVuHpFMR5YScKWbLWcujwm5ZJtRs9Yk1lghr2YstnqbMZD63mS/1msAFO92SV00YvKdERC/VfuLjmy+88sy0oReSRs5VNLOZ+kkCz9sphRNpsdvRWa083PvuyRWAX4Cjw73D46P93d1dJACN9H5mt10kgoW4MST6g+E4X+BfvUrVOztbv//5/Q9++uF79+6/iyrA6Bj67Tt3bt26c+ftF549GF99bqtfHl5+7fLak43C1e9dfeaNmTnDrZtvAP8F+vuTF18GDvyTl15/48XnLp9sDLuQ31fq1WLGSTUKBie5mUIlm4U9m02ZAixkiI0W7O5itVGvZrLVbC5Tr9Xq9Xq1DFwYSdqPBv3h6uYB0qt8/Orjjx9vbuyvdmvVSnP9ykYl0xz12v3RoN0e7x5fnB1BAwIf7+9f2zl48+79D39xqfjEp/d/8Mq9X3362Vd//ctf//Knr//05z/NAPirL7/8w397ICQSvJTJ2ZKZTjmllAlwW9QVRtOSHqYUysV8wnJLWSepWLSteSZQdYAvLBpEfh7LQNM4DifCiwDAnMbRUchbg1wIFzkixiTLCUXRVHR/Oo6FopGlYMqQgMoSoTAew/y+eSB44VAwHJi/EI6HF2RPlTgeSB1FQQAgYqFgECh1wLcYEpA4MhkLx7DAcsi/EI5RMh32x0SRhY2HZu8oxBRjkQhJ0RyOq2JIMFGAsrgoAD8OMKWwCJJkgZcVIPc8QbOA1QwdXQ4sA0deAXwLRBVgwAmkoozquwhrFE0kaUk1EynXy1SqpVKtnMwWIUibrmPPtLJoHtiaoiLnXUmWvWYF2Brg7sypHXnlpDNWqlYq5qs9VBdd3Zqu7Vw83ju8OqsB24l0MV9KlRssBLBzcwGG5wkeXwrztJ+MRULBkO/C4uLCwsLiCtB7XzQE2Y0vCIQ9FIlFed50RNnW0Ny0wLJIHD6MxVaCBIlDesTRDPBNFa7+qX8vJBSGjfp2IMMzdAsSBhl1J0noNBlQTxS/g+qwEDRHG6uTtelosrWzsbq6uX98cvnK8fb23nqn5pjwSkL+IkiaqkoUkFjdKzWq9Xa30xmsbW5ubO4dHe2sr69vrHfh+XaQVOpkdXU8bJZQx5eEVKQlRYEESFU0w3CQ6EIGjVcXy0CYOpM+MGC47AIH96NY0UaCqKYqqV4WGdUkypVSc9goNGvd8Qgy8lo1JQGoBJYDK0EEwICnLg2kCZKYQqEOAMxifiFvs7ZD4LzhGQaviYZA2DZJwHXk0UBzCjgwialJVGYWpDxqwUXy3YiyzkaRznqaz9SuHs37PmrC+hZ982eV4bP7PTqC/nYs6cxwHolvoI7ome0Skj4+PY32Zg5JcCGUBIOEoDEfrlnwYum2hXGaUqwAVTw1L0zNDIRt99sqMPBgW5f1WjVpJBM0KuuyPItjLBZ0TFzRLVsGQIhKJrzwqspxdEzPmQYE25m1g6Qx8TgWjouOycK17bZsAOD2xIgpyC1C4yCZi+OcnVDpynqrqPASlRuVeYBqm8EoU4uziiZZWiSEyVHaS60sYYF5f1zkQgGA2FK11oTFNF3f399cS5Z2Lx1ffQINW80ksR9VgoFgnho85s7Mgc8MgwupbAHiERVBDXW+KCdDOhnxLURRG71ue2lIiSELDcZUUyYriWgk64gxPUUzSCMvGCEMVt7Kx4hwOZ2wpVjEyKkMFaHDEdEJd65uTJvjWqcx7NZHzcHqeLq62pjuDRQfQ3Kmna3W683tShwPwwo3bUgQ0xVIJPtrw9F0Y7ITAnDKOhoF2XrPZBlu5QJszKV5X8Qn5QJxnEDi9SQF5IGmWRRaZI7mGZIEQsGGfaFz/mxMEh97TMKVtEefm5sPL87JH9uysxhtTlpyeFEYVeILj+XXKYI+H1rtDFuD2vubc5XRL5+cz3XLvfS8vlEvtjvL/q5r3Pk/f/b5L1960Joj9w92fvq3l9767PNiiEUA/LefvJC5eGn/l1+/VVc+/G8P1/mN2w/uf/Tj25/zVqKYq1daBMUzbCxcUXVTl3OGpNiaU8oWs67LhpyKEhdTjevbHBnUk3ttyCDMZC67kc93G61mq9lLpyuOIjpcRLAzw+8/uPnSK5f7uURGKeRk0cxltp8l+KTt8arMF7YLkPf3O9cfP0HyFsgy9/D45Gh3a2t7Y2t3d2dra+vUiXBvD00hHRxdvLg2GXXS+v6rWrK717/71d2fPnzw/sP7d+4CCM/6oAF7b757/+0fPXV189nnV9vFxjO3tvcvJ7qH379x/db9m7ffeustgN/X3nj1tdcBgF95/ebrr770wtMn26ur3V6/0yqkc/n6ZFRyrBQyUK1XW+3+oNutpSTITzXdQPHQTqNiV2M0GneaNbStC8VaB+7cQhCMvFVH6/sXL1658fTj+xubO+ujdrXSGm6vdWuNwajfGo57nfHOrNR9iDwOj072j/Yvvnvnw89ujasv/OtrP3jpky8+/fTrv/39b0CBv/5XNA785Rd//OKPf/0veSMlCk7O4+VkQi+mDFEv1jIqpetemhGy5WIp6TrFnJNQdd7U044GzIkDAIY8NATxLxjheDwe8PnjCICpaBgAmI+QioBjpFcB1qVJIqqkUkQUQ13QQL1YBluK0chIbh5N+4VCceCvETy+ILiaJgAFkoHQAZBgEYinYb/fvxQSRJlnqUiICK8sAOxjBC4QwQChySwEEZqh6dhywB+MY8gWCKiyJoRkyzbtpE0HYtEYBqRNEVhREiUGzfTTLB1nIFYRwHyR6GwgsuKLBHwhKZ9KO7YDu09HDxs53yoUALDuQKDMVarlSq2WTsNqzaRcB+lJAelFw8UmmpvWdE22a7VisVKE8AwADB8z8DmRhZ8rt3otwKrBdLp5cOni4cXHrz255cxqwIVStlyTl4LL8/MBmiM1JhSmWTyG2rpXggFgv5BZ+Hz+QNgfD2LwRTCCEYwgm4ZhyhK8cbDnIQmI4iwZCscxXxQnIHQyLMuiMjaHrBckSVZmhB0SBV0AkDNUWdc043QcCfV68wDA7d5kOh6tbkwmG1vrG7s72xvwYPePjw92Dy5d2miV4RmqmsAhaVHIOHjVdg0HALjWggUOC7Q3nEy3j472DqerB/vDJqzKZrMO9Hg06BYTssAAH5eQI7CKzCHgpkFILuZTkHZWys1Opz/smJwykwVRRJXiJEj0TFOTJdvNIOHllFuqNQeNUnc4mQw6jVq5kpZYBvevrCwhBpxQaFsnCDwwY8AVg5DZSEjJ2opt06Ewp3AycoiSMC4l0EjIQbEl3gQoUzAmaaGWV9HO5pDFZDJ9OsQ7I2TZs3NkhK3F2cBv4bQJCx7Rt/z3tI03czolnEk/asLKZ0+7jJD13tm0zQxokmcmwYlZ+xVAKxryzaXiWDnjAAAgAElEQVQBJqOSLAjhZUI3ZN2zPSkOV6tcSWWzKdSsBXcH/HUt9/QM2kDZFGpMV6q1lJnIi7ppwI+zBCWREdWJo1lWhYKNyZu2ZyMAJgGALTNbyAAFTnuySmHxWCgu2ZaUrlX7HQTAjYkNAAFkWxfQ2D7GOCmHLm92qrasxbPDMm3lii4TwTUF4wRNMrR4JCwRTDEjLEUIgYjSBqcVcwWIb61Bd7K2vru3s1MfHl3ZPbgx08E+Q9/TeaN/AjC6bKlH2tB5uBwewbHxWHgpuhKiRV4gYuHFAGPC0rWdpCVQZMQXijK6RqVKdNBxxYjgiiQRwVCtRhfIbp8gImbOTstcgM+6DBuBfU4pcau/OaoA+tZGvca0P5hAUB3W1/fX5UWCUE0nCyu2vZkNx4K8iLRck8lMpQEMeA1W9tpgOwZ5PK1YYgwPuSkR4/DF+YXFhbnl+Art+ZAJGTVjDQyLelgYmuJm5mto1l4Ih5Xlx+S4kgo8thix8vlEcE580ZwTPi+dn1+gdgbGfCRY35Iu+GLb7nmFv6BsD1ZH48YHJ49ZwnB9LrW7OU3M2TujciO35O+1gqPP//Z/nAw/bs8xq88cffLXF9/89PNikHtibf+Lv734o/TJpd1f/+lmR/rwf7p1WWu+9/Ddj1957VPRypeB33XpgAppQaCkaZYhp21Rg2S8BC9A0mZCbk2JCdn6E3sCHTS97R5HUXqmmFnLZzq1VrNT67sFoI+KyeCSnhu/+t6bb/5gu+GVLK2cEBW3nH52QOlWmiEggveHEFfS47WnAH1PAIAPj46B5B7sbm1ubgL4oo+7qAULyPDh0SEaQzocrA0KXv6dhlzZ2Xr+D588/OnDO+999ODd9xEA352NAL/zzrtv/ej6ldGN767WipMfvrGzf1havfb048/f++Sdl1H7M+Dv62++Dp/Q7eUXvnfjaLXfR0YStTykTrVRt1GyWLczbcK1KOQLtXZv1C1mqmiuolyslPLZlGuosMYyxXqz3203asDHiq16pVyGpTHoIcWC8cbB/v7JtWvHOwdHe5MO8K3u/vGo1hn12/0JIPBo8/AYee2cHJ9cOtk+OVx75oN37v721VL7lz996fk7v//s919887e/fTNzY5gB8BdffPn5vz1lJHTeyCYEyXGQ25kkZ+plg4bXJq0xqUqllrDMQtZGE7yalnFViJIMhnROwwHfSjgU5VkM8wUCMYxR0bBR2Ofnw4QiYDHcq8qQfUPOxdKAE8itNQI5u4CODgk6tOwLLPlWlvyBIEn5AGTJFdYyNF5GUpXAYmcmA7FgwBfwL4YVWWQ5JhQgfcsLoZCfIBkR8wdpleNjIRwSTdq34F/2A/YQsOYJSuOjwAB0w9NpXziKRRRTUESghMhOT1VZikcyjwSBBiFJkcCCeCwYXl7wCxk3DdRCA+B2dVlBivg6wwCBtL1EtliqIBe8bDqLRjot20IqHIrOY4RiCAxyYzBkp1FHAFwsFQsQoYsZwJcSUsIC3tYpFxqAVNtAKi+eXHniyad30BE0cORCsVzPYuHlIGQPAifjQYwlIujczbcSozBUAYavAIAjsXA4EIhEYrQECZsrS6hACnQRNjpSAEY6YTESgTDqASEgCHC8IPAa8h6UZRl17KiK4eioF1xXJd20dIR3ioACBi9/Z9Qfb6wPBtPRdH26vruztrN/sLs+3dw92j84Otxem5ZRP5eJhDsURRABQV3PsIuNWrMzgFC7OuwDMR1s7u8f7O9sbG1P0Yk2ZIj1VqXaymeBMc/yAVHRIZ1BHoMIBEwvkWlX6qV0vlprjLoWryloDkkDcEAiXUiyS9Fs1c4i4WSv2UJKAlvr02G33W7WSkmFZWI+39KC37cieiJpSbRlYb4gXS6WdUhkfBEjAVhVNIkwrwuawUmKo+O6zuPhCCGZkDSlLMWIYVIK9QrIQraALImABc/6oJOzDrrcTO5q1n41mwc+5bqzJqx/4m92NiA8O7TO5fOPxpBmR8+ZdHLWcjRrdU4CfU1mT0+eESE89R9OZtPIyFx2jYAGay4YZEwNkMZIsJShGUU0y4ayAbTmTkvAZ11YNlxF1OgvFMsJ3S2hrjhVlXgqxsaCXIKUdclK6iIXx1XLNUSRJuNhJaPpwEGTrpt0JY2O43iUVDVDzjQqPcSA0/VVj9TT8DfQwQ9AMGkmXKY4rRV0SSNy/TJrA6Onl8OGGSdZpIWGh/0cEc0p5rx/hSQsVWJGpXyxWi1V293pxiZQnP2jw4NL+0fPnDVBz06eZ31Yj46gz3RLkmcpSiaZThfKDMfhAMCx5SAJySEC4OW4YfCKZSeSPEVHfOFIRNE4vSVHlYQQY0wLx0PAiyNhTY5VtnmCEdNyQVP8mJfl+UiciMV0HU8drHVa6+XesDvsjkfT0bA7aG4P1wuP+WUDHl+pMVzd9sJYGPJV03UAgMs1WN7jen9tsz2yohESVlGCI8OEa5KkuHJ+fnF+bpEPkLafFgSEvgC/vMDTFI38ajgeuIDAiaIQJUvkBZzSG9r8XCzmVLr8Y8L79QvqT4tzj50PdPrL5/3CsDu/7MtOiXM8+x/Kk7pl5tqfHM7Vy+3MXGqnv+rNZfan+aaztDTMFBfOZa6Q49/mz/Pp67s/++sLb3z6x0KAv75+8MVff/zDJAT+3/75Zl9+8D9eulJXf/7hrZ/ffOW3vJrL1ertiRbwIB6Hi7bpmLJn8bqSkMt5WLgOGXAbSkQsVa7uiUzQ8g5XRYpU08X0NJfqVNvNXrlvlLIKqeosp3v17dvvvnzziVHRrCluVtcsNz38IRVxstkYLSjSdo0T8Ubv2hNXr1w8uXTxaFb+Bcjd3d7a2wH8RfwXFYXhHy+dHO7tHx1sT8bVtPX841R5uDf99S8++OTeJ+/fef/eOzMABvB9963b9+7f+pfHT9a/9/R2rbD9vZe2Dzdr2zeeOHnxwXuvv3H77VuoA+vN1155/ZWXXn7t9ZdffP4SeoE7/Vq7nDLs1uqoW047suy26+U8GnVIIP+rbrtQaA5Qe+yk1+91Wo1GM5FL1ar1LAT7ZqcFASyTLSAnwlqp3u33WvVabzTdPr527crxzs7BZrPaaXS3jtbKxe6k15uM263+/uHxETqG3r+0d+na8cnmC3fe/cVHj5d3vrz17Esf/e7TP3z9zV+/+fM3f/kLOn6G21df/O6//CKVBiKeSSoy8FXR8ABHCjmHU3Q15dKJar3pmVoh43iebuoQ04BHyRDnY3FkUrsS8IdYjqCAroUjlEzFAICXV9gQLnDRKJntGmjMBYI2gyPB9MD8iq1JNA5MjyRCc77FxcWFC4srfooNXFiORBaNrChSgghRhGFRVyEWCUbgFlgIKQpPsUxwBQ8FfNGwLwZsIbocpMW4GAuRDI7TQV/Y58MhbQdsjhMyjcFzUSVTYCBZjoVEQzckChJTRlF1maZlXUEnxxLHq4LKA+VisdjSvE/MOAlALFFPwvJEw/jwYyyrmRYk5Uh7EDhwOZct5DzkmOTOnHXh6VCiqrnIol6TEl3UAp3NFyEiI0msZC6RzZUKxVq+36nUJpvT4f7h4cHRpatXr3932/OQz0ARvl9r8sT5BZxiJTYCxCMeDtMcHpifj6uqwFIkFo7iyEUlvBwKRWh4AhCUONE2JRZXWQ41uMIFiMLzhJcED0M+wrAYSTHwLZRDnGpa68ivWFUNVzJ0oM8AxbaKdEkEjhdRf/J3ZsfF49Xp2sb2ztpggOrVB/vbW7vo0OjoaGNUtORZyZtHLFaZXR3LTZUH9fZ0fbyxuzbqjgeddm/74OTizvraxnqnM1iFPH5tXHZNDYmFssDWgTQJMiwjM1HMFvLoXL9QqxUB6/KNtZ4hiehAXZaRTAoQVk02FcmBh2xbyVwyVWrUy5XudALY3uhWy6mUHEd+rKFAbGFe8gQNGBib40JhClBS5WwxGjMdi+BTAsRyyANtQCzH5AlPJzEiGlUsWO5olJsK25Zg22nenZ07z9qd0nnAvczMmDCHXkeUTJ05EH4LyTOHhlwRlRxQuf9UqvK0jyiLAPrMXmmmb5kA+pebDQKn0h5SRJ6dKCfPlDicTDaVEXI8pI0EE/ajHmhFT6ZwQtHS1RRy9UBF5GxqJpnlJlxYlLPRMht1t6tqruF5hmsJRkIVVYj+AhEiMyLv6CnAY1miNTMJ2MWKJMWXXCVfPG3m0hUej8XCMVE1WK9VbfdShFvprGdJMZ8xXZ7HkME0YzgaU9psF1zSJNxWj08lDIeLRFSTZDng6yq5TMDydN2073xwDjMlg+9uFLLNRqvfHo7Wdg6AAe/sH6M5Dts7GwBGFeBkanYWjYaAEe6eehJmTlvWCtliJueRvBjDgqGYHxMlgY6hdhNdkzlbt3MGR2IBf5CiTFkoZkLRkk3FTFdkURd0ME4YwcRUZ3E6oyQ8PRizMwpPxuJxUrIVd3cfzaw3G821fqffnXbb68XJ6oHjg3zM8nKtautopxjCwkABNMtJZYvVdn+40drY3dyaTEUyyjOaKDgYgVO2GMGxhbn58wvzZERyYiQjAGmHXUhjSMEPSAASuxV5mudlT4hGsung+RWlVmBX4nPzlTa/IP5ssmR9VF/glPl14hyGZdbUCxi9UbtwQSP/Q/H8/Ny55PawuTjZ3cnOVTZHx/pcmgnPrxZX/KvG4Efa4vz8u5+0z7Py5Us//cePb372aclPX17f/+Nff/hi5uja7q///MqacPd/3Ly4Jr334MHHb978hLHK9VKhPXbiqigQy2YOqZFqeY41TRFeEqAKfEwvc1E617x8ojAx2dubygLJZ3LptUK2UwNk6rTVZkoBjiTTttU7fO/tV360N+STSbKhpjy2UnpmNSalqwZQf6G2ozKiM+k+c3TxdPwIeQ0C2KIG6M3TBmiA4L0jSM4OkYbtyeF0PJ7kxY13xGR/bePlL9+fmRDC7d578IZUoN958+N3X3nm8c397z+x0Uqv//jF3cvTysFz3738zju3b711861br7/55uuvAgWG/175yY+efeLqljcYtXvFUjZZGm2N60lYOsVi3k3lEqlUUZNT1UIaMv983Ss1u/1mrzue9LvDfiM1GLV6HaAFqOBU6XS7zUoBcspGo9UoF0r1VqNebw/XD68+fgzBcWfSanRWd3ZXm8VebzAeoXYsNI50cHz54uXLx8CGD9ZefHjnk/tbuee/euWZt3726ee/++xv//jL1198gwjwjAH/7pv/ODbSgENegheSpuy6ipIu5VKcYBhakVYg83c9zUkruqbYplhy0DgQGoYJATKuLEeii5zER0M+fzgMKR8ZjPgWfDwWkwF/8VLZ8kQRsZ8IRpMhLLaCaabG0wxDBZd4Nc6ziwuhlSCzEonML4aCAX52QE2huRoSaRoTyOYH0tolP09FaRzzYfjKUiAWDkZjAo/5IzTH8+EoS8YpMu6PLiP187jASTFOJjDgrRogYxQCdJxCjMHgaFFiRZagkY2AiaZcWODiNMfyqOOZhRRaTdrA9m3gGaZjIMVjCzY2C2zRTSW8bL1RrrSRvMJsmMSd1YAVVSTjmsEajgUgp3m1SqVSzKayJQAYdBRdzBSKuQwgd6c9HK9NJweHR7tbe8fXnrnx7J4DwILOKTP5TgFbDq5EVSGK42QMggtgaiQ4HyI0XQHWCCyVE8hoYHHBT+AsmjdWVEOZCViJCk3B8ydJgNxwNEjiBI7FYnGcpEnIcWhBExHjVBTFQeIOAMSWMzPaVRF7R2rXiB0rgMPfGYzGM3fU6RpSqFnf3Do42NzYP9rb2lrfRABcQzkGUh5BMtOShNRy7WS23K7WupNVANy14WQESeT04OLx9mTQ76yuTeH/+/3VdjnnyZAU0CxNsIB6yO9Rt5MuxGCkQpEHkpdO5VvbYwsSIVnkUNuewCmmBbRdETTTSdi6C3QUaUHX2gPYVZ1Ko1TMpxWSxpFTR2TFp6c0yVkJhKhkCg3JVCze4CMxK+FRgieZXID3LB2et+UojKpLZCwcpZCBhglRiMcl+A4sCLYAfMxDDAy4TxaNI83EKGdsF33+tifrVGxyVulFTHemefZPAD6FkjNLpQw6cj6bR8qcOgUnz9qgZwTw1I0BiHJC9GjOECjMF9HheauQ6OKcqmUrM1ktdIcsLEE0iHQ6i4Ra/G3UiaWrXjGZMb0MbeZNTuT4KEUEo67EOmbOhBRLoFQzZdkyZLYUV06oeaSE5bqOKkNeEgvFJMCuRKNUb6ZJq9SepjEhl7U8SSSAAEcZO51kiuutvMs6uNfpy/m854qRAC9EUXrHcJQvRKOSsx72LywsR1lLqHaSmUat3u0MR9MdJLSwe3B8fOnqtcTZEXTqrBk6eXbmnDkzBM58e0vnUvk0J0ix0PJy0BeFPc6gicclzlBFeMYpdJXCwQBNaaaQzJGLiQQdkRMymqoKBWO0QmjDDEkRrmV7IhFUcjZsnXDEL1hiqrEz6A8nnUaj34H8cLPX3ixDipgJ46qWcDO1Wu9oK7ccDsN20SG7TOcrzd5gffNwrbexuxGgMJEgVdklsQhpsf5oZOX8hfPnF5iYZEVwmo8Rs+M3imcRDRZFVoDIQgqipAlxv9PSzpPn090Ch6/MBYbeee7XrQvuL0qL/Zd87GMrGaraDV9Q+TH9mKZziw4WjgSzqzV1fnWnX5xrHE9T8UV2ZeHCOLUQLBilz3/9Q9x//35pjtePjz4GAP7003KAvrxxAAD84/Th1e1ff/PapnLrf/vJxl714/c/+Pitmx+Sdr6Rb9SKPKMaGhtUC0nP1oy8xOmWnMln8kmXjWhVCaML1eNjiYqK7tYEIrGcTaVXC5lOvdGsN8t6xeUZV5Eo2x5funfzpR+MhmJZUYu6a1qF1gt6xDKTqIwkbPd13ml095+YlX+Pjw8P0Ep4BMA72zt7ezsHszPow4v7CKG3V6frebf2WsOorq1e/91Pf/rw4cMPHsDt/r0Hd965e+/O7dtv33n1+1ePDp96Yq2V3H3h+b39aePgxjPfvX3/vXcR+X0LNWC99vqrL7/+2ms/eerg4NrBcas0Rg5brY3NlqeqmXa3v1qS1SIHz7YuYam6nqvmvHRPovV8yQEuUEVGWb32dG11fdJHbKIOgRzpkQ4GzUIyXaw3gQhXeo1yudYeTrePgLrvbY573UZ9erLbyrZGw8G4X+uMtw8OZ7aLx7NmrP3rr9+79/Hr3cqdX7/wo9t//NVvv/jT3/7jF3/5+hEAf/Hpn//rD+2kJkhWUuIcU7JdVbazubTEyZqW42VI/wGTrYyMxAslMaMzNKx1AkcAHPT5YphfkBl0SBqJiPCdQDS4vMJEo0I0RmCFkuXB1qcB9lBjbii04gdIEXiAu2hYtyVLJ0J0eDm8hGGLS5GQj0sYoiiwDAermIgTZDwaxkL+YGAxrKqcwpBhkgyuBJFCJc6xUR/wRIEJx6g4wcRDi8GlMOQFOJq3oFQ8jhp9VMPAosgiGLUNCTMNLJpD5tvJpAnpBTA/ZEovoUYknqdjcS3lAa2wXRdC3WzMyLBVYMqG5SQgHJeqlUoN1e88L5FOug4aBNYMXSBkjQVWhxqenEqlgPp1kFBSMYe094A4Z7MliEiTSa29vb27A7ngyaXLT1x/esf1PKRGUMgV6mnswkJY1PAQhceDy5hIryB7xBXE11UIB7I8O0agYhgNu4IGnOIY1GQFcMVD2k2QNOMn8aAU8+HhcARdBYKCrIdDVsXKrASMrI1VNIsE9FWW4VGj7mhJ1lAhe6Zm/Z3hBOlgTdfW1zf3IFvd3zrYW1/bO9zf3d0AAF4fVh10mfSZG9LskiFimi9WWs3WZHtzY293ur62tjac7hwe7ayO+p3eZDrsj8eDybBdTpkSRxNEHGORbyMkOG4yky+VS8VSqQRflRuVfHHaNzVZleAZ8QDArGoasqSrkmp7aU+30+j615qwibq9ZqNQLhSLaYXlZkLQAZ+Pl4l2nsPjHMZikLVXLVYWIlHTS3Cqy5pqIKYAY9RkwzUV5ICLWgtQH5bmuUglxnBgqXuslUsB/HppRNFmoDDreD6r+eYzudMGrNyZ/9GZDSGCEPRvhW8BGLkAoxPos5pm6lR78bTzCjHsR+NHpwVgdOYKZBn2HSFBahpYJuF5W4btioAKeqFYKKIT6Gw6gWyFPQeZC9q2g/rpgAWbM13KRKZgumVaL9icyHMhjIz4VYWyjLytCTzDGXbaNIGQQe5WTii56hkAoz4OAGBZcwS3Wqi30qRebK/lMCGTsxKKTONkPEabqRSTX2vmXN7FAIC1YiPN4T6/KIRhh/IkxYSWscCihaSb46zPJxpCseBm6pVyu9Prjze2d/cOD45Pjo4vX0u6SAMMoS+S3kBT12cAjGrl6Fo/skeCi5HIF1ROo2KBQCQYowR4pNHAykLcUBVUG7cV4ObREEYpFqNXpWWrIATJhEJROBYNhlmWIytNio4pSc3mJD+XSPHwTIhl2hYz1ua4P+gPWu1md9DurQ17a6XJsJvHYqqUcrxidbi3kV4MhmcLHEmg5sv1Vn803VodTkdRcpHgVTuI1OUjADKhQHgemOoSi0lmCKcF+uzGc+ypnzlk+jQlyoYsM4t4t7bgn59rVi1icW7OU847v99aTPymfGHy3oXHFpQ+WeIW42Wus7LSFiPnyHarLHnjvh6dXt535pWl80vsOTFbpLvuSthNqaXR05WDf3mzvaJkrx0/BAD+/aeVIHN5/fDzv/zgBQTAv/nLG9vam//7K4X99QcPH358+637BPCHfC99sE6pni3E2byL5ihzhqCaarKQzSdcPqLUdYwoVg9OVAoT3J1NmabUjJ0aFVIdxP/a2WTBZcQURBXDW7/x4NVXb3RbbpPJQ3KrlrJ71/x0MuWKts57R1mBz642njq5eukiwBBSoESyPjMAXkfHz/t7O/u7AMP7h8COjy/vT1enHct55oaY7q/tP/jso4efvA8AfP8+egMAvvvOO3fvvPbc0cHRE09tVlM7339p+2jQPLnx3NPv3LvzLjDgtxADvvnma6/dvP3ai0/u7Fy+vDM62CxWU6XxdjcL4FobTLbXJn2TdmG/yOkcvkQOgEeVK92iC2wdmWO6br7RbrW21tc2NlYn66uT6aQNeUcBHYNV2v1uq5z2MuV6tVxtdVvV4uoOElQ6Wlvr1Zu9ydZBvVLrjYfdTqM92tg7BOw97YU+Pjm4cfudD3/1dGHjd/eeff3hg1/96df/+S9f//UrQOAvvkIM+A9f/qc/5EyIkGpaZw1LMhxDUrxczmBZVU+pQrpQcC1ZzwNfguUlpWClMyROYZFgKBTw+wIRP48akpd90ZjEkNhKJOz3MVGMjeJkNF9xdEWSAfYYBtirLxBYNoC6IZ/wCG4CPkoEJuLL/kUKX1jE4gEhgeIvx0LqCLQOJ+LRCIbckBbCmsyK8WgAC4d9wUgwiBE8G/EBAxYANkmM5mLRlTAw4BgWpyVgfzrEDiRWYOtR2MMYZeoaqsYAbImGaaUyCQc+GbIAXEPkRYHjZaCTJKlnUo4FDM1NpIHfIp8j3RRowbAdN4F6O8sZ9wyAk0jbEaKfJimwnBUeiUPJqmKXqoVMrgT8LFOoliCcWCgIF6rNdn00qbbWB43JxubO8eWrN248ve0AAEOQR1rRKebC3LKkYLgKtD+CMdjSku/8wpIErFXVZuhJoclYNIULNFKSOJJBZ8EST3Nx5AHLIrtHDA+GwoFgBC5CHLIXhkO1ceQdCamUwvIiIr4Kgk8FuL2M5P5PtURENBH8nfF0c3tr1iKxvYuE0Q/2kXnJ0aWjw+3to8Npr2zL6HGIaJZIRiocHrCxQgkpfE12d7aO9je2t7Z31re3DpBy1niYKbe6/cGgN+hW4aKaKkuSOMbotizrLjrdq1YBRSu1KsBwa3VYydVKsq7pInr1ZZWB6Gqgv2LYppNOOW7SRXqeAMC9TrdZLQB05x2RY/FQEPPHQkDJgkQU5728b57SM+miTElSFNOBA9lZVtDpYNQ0gOealmlToqtBAhmOK5YiGTYkUKRg24ZhpohCJpmf+SYgqchTvnraAI1OnTM5NGCUfUSDc6cYPCsK5/4dNc7Bfslk0PsjhJndkmc134SXTs3mjmZ9VeirTCKbSGcV1SFVIKm+CGcCA7ZclyQM1SrnEQCfSoPAw/Kc2RwwYsD67AY5oqU72aJlFwU5aYmaRMcxJu4XDMLQAYB5Dng1kEaDY4Q4RpcSSqYEy9dNuLqEcCkYlWSTs4q5RjdDqcXuepniUwUroUks7PIYoSWSbHbaznmiE3HbXS3XyshsKGToOPwlkaPZWIDEIyneH5q3XYzSBTWfSeRq5XKz0++P1ja3944OL105Prp01XvEgJMzr6lvATibPT3qzzySqARKnMgWTYon0JzF8hLBywI1U9pTNVVM2G7C4gk8hoQdVVxsmhE+pwTDnkUBLEOKTxMC5g4VOsZnDEWwgoRdkCiK4PwxR/E0oDajzqjTKbXag+54OuhlVgfNZDzCy17CzVVXdzbTvlgEkl1BgDw8lZ1ZG9fWt0er3TARpRXXCvpYGbYgJ4aXI/PnFuZW6JhohglWEGiKoYnZ0RNBkQROQwxjKdhlqsounk+OTGz5vNQv0kZobm7xMe03exeMX1Xm+2+ce4zOj2l3KVDuksqy3aXwxQsZU1Gzk04mTOLz/AIkQzHuP7CZRLSdCyyUDWcywZsvrf1gEHS6T2998I8X3/zd7xEAbx5+/s2//Ch9eGXr1395fUe79W93xc76yx8+/Oi9t+/gyXy11LG//s+0lLAFPJx1TMuxM54k6bqdzxXTGTUq161YrFjdvWIyuOht7xs0bea9zKDkIQBudxKlrMNqCYbWhczmD++8+Op2P13LyQ3TVsx64Xv5mO01bANI1WhskEJ5OnrmCCHQEZoz2tuZ4S8AMCwKYMC720g3DylgHe9dPNlaXe1njOsgVV8AACAASURBVMkrTrq+MXn90wefPPzowQcP7s1u7917752337l7/9VnLm+cPPHkViW78cYP+8/0O5dvfO/Jew8AfG+9/fatm2/ceu3lN26/9eL3ru4fXr++N904WusVnfF0DDlzuTneOb5xvF6ROcNxpIjdwaJqoqYJ6V6KU4s1k5PtZK2StlP1Zmk03r167dL+xtrq2tpoNBn22tVCLl+qtFo11Fqbb1VyQAXa/eF4NNw4Ot7dWh2Pm4Xu8U6vXO0MhuN6szsGBD6+dHR0cgl1nx0c/vD2uw8/vpR/4rObP3j53i8++9Wfvvn6r18CAH+JAPirzz/98r9PZVtlxYzHq5aqmZYqWbm8w9OoUMh7xVLCkNUyQAwbj6sphaRoYKfRMGwPv9+3EgowIhEJLPsiUZml4r5w0B/g4iQdI/BooZawkP8vhQFFi8SCoUDQNFWe42nMjxuSLhHhEHwZXKSwwAoAsJhgZwAM/Jch43Ecx2JIqS2wEBBETgY8hvuvBMIBPwRbJuKL0rzIROM0ATAU9cF/yOyGkeH36xHBgZALaA80PYoxAKcAHQwtaF4mAeHN0pEaoormYIEjsAQJW44jCC2TTAHLAAacQuVdTQUWjUSZLNv10sVK3jVNdPA4myVBLak2KmnyUVKRUGcaMGC7WC9mgZ0hk6NSCe6bQIG5WKlW86VWq9vO5ceT4XDj4Mp3v/vcjmXZqBM0XyyV854RCPJMjGBYCo9GoiH/4vKFxbB26ggB/Bw5F9PMTGqW5lDNW5zdIKugGSCXAMExggj5o8EIXAN0owgcj8G1EWWR5RVDYzh0dAzop8+cgCEs6ECmtFnVdWbGMFrdmLUnbs82CiLBh8dHe7BJDne2D/dXe1UXrgckYaygIMyWtSSQhnyl2ZyMB2vAgHeQxsjO5v7+8dHmGIC3VuuMx93OoNvMA4ii3juRwykkLak7SQTAlRIAcLUC2WR9MOh0qgUJHpko8BwAME3KNhBiQbEThgFwkUi66CpWKvVWp90swcUtZgyepZAf10p0ZUVWg0rKtxCAEIzb+UxRpHU+RpiGLVgVkxNN0icDZlk2EF2B00wWJ8JRYOOKbCYtgYuJad1US6xRTOWTmUfwm0YkNps5Q+EsAHBh5rFROB08mg0KF2bmDPl8Abk6n55NAwCn0fvZcM2p+lMy9WjMNTmDdyTJcQrAyVQiC6RbNnVCgYflw0UIvrrh2RitqYnq6Z9GFrqps8wPHUE7nmMbZxBs2U4WSEhG5hxbAlikYzQZYhxIQAuOJog8qRhJ05JEAT8D4KQLYOhp8gyAI4LmcEYeADjHqaXuWpXiEkXL03gmTsQjhJbKsun1Xj4hmlG30dYTrXRGi/pFGeNUWlYFJobRPO2S/sicYrCCyCC5jVypXGl0xjPZt4Pj/ZOrFy9eueY9qgGfcuDMo4EkdAKdL2T/3bey6WQm79E8g5QG/EsheuZJ6PP5JVXlUd3DEUgiFvDhtE5TxQwWtCwypHsci5TjA7DiWXmUpQjSc1nViEXcuolmHgJBy9QSq7BWO6NeJ18tDIHhdLuwH3t6LEYZdjaVr61t7ubCRIRnBVVPJFL5YrHSaIzqzeF0bxoGXNZSYmSOkOhwCOdiS4Fz5xbnVsgYYsAA/5EIxKv4rPLD8OgImoUPsOcMifadj/aajI8I2ZuxETNPtR/jfr85b/8yNz99e+GxEF+k8fP8RjEytzKqUfTCuWS2/i/fG8fYAMkT8XmlkrKwuZAo8WNnIUjnvMdvFe5de+3e8IJZe3rjwT9+8ubvPq2EqMubBzMAPgIA/ua1be3m//yhIG+88OGHDx/cvUMmC/VyI/H//H9ZPunwmC+Z1HXHSWZkCG4aahctGHGp6mDRUmXjmsMQvDPZtyjKrpVzkHp3GrVms2VVPYM2bI5MMdWNN15/6dlRy22pqZJqKMlC7RlGSKSKoqlL8sWiyOqN0aXHT/YOIIgcwG0XifTMABgxYCRFuYuUfg4gXBwe703XxmW79ONtqTLcvfr5zx88+OTBB+8jAL5//96de3fffvf+ndev7R6dPH1lu5rdfe17u9+tDq8/9+y1D+7ffReVgN968/VXX795+9ZPbhzvH129uDrc3F5tjS7tV4c5rdBZ29q7dO1as5HCAmrOrHLxZJ7JFXNRzilb8YgLiX3JgAysXM95yVyu2hxvHz1x49qTl4/2NtanaJRy0m8UcwXUg9ts1CApq9fLxWK91e11B5vHewfbQwjtvZ3DabEwnHYazXZvuLZ7eLC7f/HkGJkEH1z6ydu3f/fShnv38+d+8P7PPvzDL//x5d+/+tPXqAn6j3/84vPf//a//0i1LJ6DMKACKmm2pZqZrCvSoqE5slMsp3VFLiESGYvqSYkgKVhoqPsFDQKHYhFKjId9K75wROIYIoyEEgWcJKPxWLjYSqZdRZQ4SuBIDO66FNEtQ0LCeCtxW0noFCBGMBRdhOwyhoUCSlpEQzEczwLYzMSgkVdROLAY4FmAeeB4AQDgSMAfjjFEYCXKiAobirIU0Eb/YnApGsUIDB22yWpEAMyFGCXAI8Uw2kSyzbxozsKdZriOjco8EOJl4FySyACpFJg4aWSBAjlIdcPTkeEq0GSFQ1KGdiKdSKd1Vpv5zkEMTc6UiRxDMzQxSqgIJ2X42ilViqfsqJVFfnuoH7oIPwNhOVuutxuV8cbGeDjd3L14/Zk9xzI8JFqZyRfL1QJDiMDPGS604IuGVpaWFpaXGc2eoSbwX18kjMa+wpFQBKfwSJyb2dsDNAO8Iln9aACuPBNdwFDKEgMOzCK7KoxCDoAiUEtZVJB1sW4Aa0cS0bo7kyiTeFXiaDQ9MQPgzY0NZNe0DSi8v3N0uLm+swtfbm8f7K0Oyg78NJBwFulpsyyneK5pp0qtxmgyGK1twLY6RkafwJuPNkaDQX/a709Gzeao1yomXNeSNVnTeEG3LcN0E5lCtVyt1eqNegUJ97ebnelqa1ZRR+JjssrRCrBmmeZN20btY4lMyssA1pXqnVa9li1kC5mCo/CQoAUXFoLzi7Lqj7p0MC7FApFEqVAVeYfGaMeGjL2YU0lDDePwa1xHBQ4jCLpMYdEYIdmGqGdcUY3EPVU33TQOrxMgXWImj5g6rUzOPAJyp9O/j/qgZ+KTM1tCJCRanBUdMt8CMLKcz2ZTZz1F6HwZDRZnUQPWqS7WbAwpkTlTxELjRdmkAnFNYvGYLy4ZKiw8V49BjpMrnR1rpzIFBMCIMc9qwI4904K2TNOGK5TNZ+ykxrgpSRBFOhInYzjqtcvbqiAKjGalZzVgdASdVHPllAe/xlEUiO1YKMKpAMDFUmdQENVSZ1wlGbdiujr3CIAzXHpjkE/KGu7WO6bZTCckPCrbLNAgRVeZcJwRaCboC58LSypDCjkbrl4eebtNVte3IZE72rl45eTSE9cT3wLwWf0X7SEEwHBt8ui6Z84kKlOo5SyXk2DRx8NBLOyjFIkloit+PyWrvOZYni1RAMixCA4XSa/yK0pWiTEWmszAwsEIw8tMtU7GMSXJ2ipAc9XjqDgRDqgGD6g7WG2PkIdcqbI67bdWe+vrq0o4TltOOlMsTyZ7OT8WohnJdOABQw5dbTW6zVa7MdolAgrNy4F5ArKO5RWKw5aXzp2fBwDGZDMYJ5ANDAE7iUMZpCAqqJNQkTlF0VyFCK+cs6dxWzt3rk1P5Md6H0fU328spH+Vnl976TFSD3L0wkJnTAQfk/YTIvPYOStXevdWaZmLSXqSnMdEbVOY8+XblXVtARey1pUPRs8aL749CLcTjx/e+/tLb/7200qYngHw86cM+M+vblqv/tsH9srqzYcPP3j4/n3GyzYAaP7v//eakHTFWMDKa5LlODlZMj05nysk83qcL7lErFxbezLJkpwzOHAoSq/U852q0W1Um/WmXrdVztIEpiAOtt99+dX9VQhvQtlTFb2QbI1Y0a3qvC1ztZ0EoyTqwxtHV/cuAglE/Vc7MwleJEKJMnx0BH24h2rAB8fHFw83JtNOUnv8BSnZnu7d+8PHP31472cP3n/w4MH77z+4f/fO7dv333/1+u7Wle9/d1Sq7r/53MaTnc6V55/5l4fvvHfr3bu3b76BSsBv3br54hO7uyeXtjd2t4fd8fbx5bzjlSa7h5evP3WxBSEwsEipeqHgpmiuWvWIxVzTXaYaTiVfqBVSnmDkm7VsMpUvV+vD/cefev7pG9evXLlyvLM56Xd7g1Ef1YHLgLTNMjJPKpaBFLdb/fVLx3vr416rMdg7HCHHxgbEs1YPucMdn5xcvHjp0t7J7uO37r5//3vl0WcPn3rrwQc///0f/v71NwDAXyEA/sMfPv/0778q6p7MuDkLecHLQBSMRNqRGUoRbd0sVHK6JuVNXRWiYT2F3BKAcgEwIgOSAMAbpRBYwOcLhSXUjwtfhvgYDncIBcotDynWQtim4zQGe2YhYjomAA1DBXBXTWlkgEQAucxC4kjG4laCB7zgWXRyBmwaQwXcaNDvXw6LeJSIxEKRlZAPADgQiVPYyhIAsMoFIxwdJ4nAYhgYMIaTEsWEZTXGIpKrG2IEC8cwWDYiz0t2LuvanqmaDjo8Nl0Xze8qMjJogHf4LVY+lfNM2wPEAKTSUM0TNWFpupXwLDdtsnotexZYkYaCAxzakLloXJZ5GZnezQAYSBHqmkslK1U0EIxGWeBDrdlr9cajnbXNza09VFa9vpdwLQDgYiaZyZWaGslIjKCLsZWlcGR5YWX5gi8gq5bsmTKSu1wBAA6GQmgmKYQsFzkJTZ0osgQXiyfweDQC0BOFHCQGdwxH4ziNtClJuEBIakNFss/Iwc5yNHSwCyz4kTEj0ExUsSK+M1nbRAx4ax1y1d293a3jq5f2do5PDtd3gQbvTUdlG1XVdYmDayWwHK/aQDATuXq3O5pMZrpZJxeBLe8BA96ajCeTfgtWY7nWGXSqWVgFqH0LdqrtohpwKluqZ4tlNNZVyVabnU6zNd4foLN2EVIZUQRWrjqGKVO8rsIKtJHLHfytYqnSaDcr5WQ+nfUKrsZGIlggsAJsSJRDhMov497SMlUoZ4osY/FxwrRdQc1mkxyrMjESWVoZuuWpnGIJOB7HaN2QVTepG1RMNnRbzbM6wtzkrA0rPRPkmDnXItmNQvbMETj/CGjRWBI6QJ0RY8i5HolxPJodPjtfnSlRogUzE+D4dwbBpw1YKaD2XgKg0qZYkSPDflzRZJQriDFLtMqZ0zlj1BB2OjWcSCIpLFQD9tBRNAJgSy8Wc2YiyVhZlRdlJoLR8ZBpahr8Vg6SWdPNWEDzBQDgkivnSsjXMOXKChvH8GiMkyzOqlS63YKsljujBsPYFdMxGJaiiSipeR6fWh/kkoqG2+W2JTdyrsjRRjGN+h9UQwhEZJnFonHM59dsUjRSupvOoWJBbzQBAN7a2d87uXLx8vUnvX83B3z6xBMzccpZ/RfR4BSSKUFyWUChU+mSyUhENLAUCfhoVUYAvOKPyKooJizHUngyApsd122CqzpRuWhQmK4zBAB2OIIxAuk2uUiYzxppnQlzubTAEDEiQqlSqrU26rdHm71Bv5btDgbdyWB3Y830x0Ut4WXLpVF/N+PDwpBdQhBwYcEVyo16sT4aFbIbWNTiIxfmFlETCRlBzabz5+fPn1umcdUMkTSNgJfnkVA6OpkCGqAIssSpaIHhmHtuZVUujs6fx9Rx6lzpoxD1i9XH3F9mVzZ+eKF8CQ9SC/Juaj6w3J3gOL28rLvJj15yUvI8lf3/yXqvJrmudEusLwigXPo8mcd7789J7215X5XlsixQQFk4AnQNeg8PAgRN05Mgu5ts9p07UoxRhEaK0KsiFHpQKPQD9KAHRUgxupqr0Zv2zgJvz4SSYMElsk6ePOdba+39fWtd8c/gpdUP1VP9+Yo/7QcHZMdaf2fqOG902+611LnlO/9w8+1vfqgjBADgH/964xW/e27pq7++Pm+99u8eG32pDx8+fvjxp08EG9SkVu1//N/vcJ6vIgmppLKabeQlWfV4cFk7aRXnCi6JFOqzxxmWZM3JTYciAV8DsKQCAG7VW3oD0DYHMIust7jx4I0XZyYzLcsqqarsVPwRl5L9Mq+arLBUNwS13Fjd7e50d7Z7C9BwUW3pNwCGe8BrqxswbA3Q9c3t1dmZ8aLVfHVYqi7Nv/j0k8+ffHrrq/sQfx/BNODbt+/eeQO2VR0cLJaqG+/tre03WxevX7n2+NMP37j/zofvvf32u++//94H13e2dne3N5a6y+OtqeXuzvJUpjm1snHx/MZ8ScSwihIlXJGv2ryjyh7r0Uo2xYftmjQ3V8rkG0DdG5lqrZj1ys3xhYX57s7O3tHB4aWjC+c2VxdmJmEvS7VSKeUqVVCDSmm3nIOWb83GUmdtc3msNdYenV+dq5fqjWaz0WiNTqxs7GwDdrF9rru1vvbC7Q8+f+c4feXp759/5/HdH//wDz//ix4A/xEA8E9P//jn/3JdTWmklvMNyYJ9qrJiZ22gHkXOtlSg1lVdyBqKwCVielqmaJYmqRgE2Eg4GIkncJXEAQDHEICzQHVFwhEqluRQJBypDtuSbJqyqpKxJB6NxANB1zM4ksQB9zY4m0f7GRpAcECiozSFUKBQiCcKmGRYCjsB4HAoHIxxeDSJ4OC/WCAYCYYQjMWCgQSgpGw8CSQcNMtJhoFcTlICQyQFLc7aJoBPQ4zCJizeMYCecFJp13YdFcp8GZQuxwKSEO6LylALwvZoM59OOQZ0+QMcRBN5oD9FIL2BZgS1zi1kTSv7m8s+9AQEuppXWBpBuF4rsarLVhEurBbLtVYlm69Ve6vVoCDli7Xm2Mz49MLU3Mzi0iq0Kdu42LFtOBxZBqCfL9RdnmWSCQKPJcHJPNsXGjw7hCng4KBnq8IlgkgMtlfFYzC0KckIPJymVQD8AmLBYDhFsLEoPhAEBQgaiwEiAnvYAB+XdJEDAC4rcF0TAi/P0DxMRMA5WQefDK9IIg/7Rn43PQvUL1TAsHNmY3l2fa27vr7a3V7sbqxvrs5NtXxwNCIcQ1JgGx2c0rVT6Xx9ogFUxOLa6nwHGqEuLZ0A8NTk2PjE+OjIyNjESDVrqyqQsyQPJ5hgSzlgHDW4ogyu5eF6rVxtj4xMrIwqSs+G5cQBVLZUTWZEQ9RUy7cBAKeyxQp8NEtFL5/K2L4mJAeDMI4wHhmiqCCVTkQYnSO0VsnxEFRRcaAfXNHI+0WbEBQyLNmAXgLgMjjJ0SgKRbCe33Ta0mScAp+6oaVRr+DCFWIfaHQX/JTqBQH3kgXTMGav2FtvPlHApfwzq6t8PpOGzUTPALgAxTH0k+jlAvdmXIGgSzm/jdmkeo5WfsbtIbLv2yXbLwBiQMk8i4fjBGAqCtAmdNIHisLLF4tAU+dPAhlOzKBdxwV0sAfAMA0JsMBSJat6VRr6joCbJ4nT+JAKiE7R1cDpBAo4ZZgwVxMl8yafybs2EKmuItGJBJ5McrLNWeVirZyTlero9IhAAQB2DJjthSOk5nq8NzuW9VU9qeZbFgcuaQEPRY20abqGaCjhoMgSkQQeDcZ1g/Bd07PyQBvUGqNTM4srK0sr3Y3zu5s7+/tWbxM889tWrw8tOE8SGTK9PIqsf5KBAVuyir5bskmJImIBgMEowDEaiw4EQ5KusL4NtzPoRHQQJWlNYoseymaA+rV0miIiIQQJ0yyptbVElCmk8xYXJ9NFmSWiJBrnVbXamR4F4qg50gIUuTU/WS8uzU27gwmFS7vFZnV6rJtFGFKVdENLuak8IND1Vm10dHq0OCUCUcEEhvqA4FCJCBaMhM/09f3dmUGa0CyElSQWNl9xHA9+iHDiXZTgjL6qOqaBYjPBM2VJn3dP9/UVnDOlJ0L0++WB9FdO38KrZ90LyJmBM+1xsi+KzGX7ROLUKauYefi8e6M5xFQfVp8jrJn3mVPBYjk7qQ0ico4/ul39ZKR2dcp4yb249CEE4KfNJL5zAsDuyrkOHEOy3vg3n9MDkTcfPLr/5PPPJbPqNoYr/8t/+IJ1UwaCc2WFAtw2Lyqiy4Kr2vJVUix6ZDRVmzpK0zilja/bNAsbhes1ZaRZa9eaZt0SVUfkdL+6ev7hmxcn65k6n85Iupqu58fMuFMwOYOl7O2U5MijY5c2NtdWu0vd9Y1eANIJ/MKZik5nCUadQvW73l3f3F6enWv71vWjZHNuvfP0648ffXL3M7gD/ACo4Pt379158ODNPfC86xfnCo3Vd4+3z43Wdl/afeGze28+uHvzwXvvvvv+B++9eRNUqe31RSA8J1vTW7tr0+MT3f2Z7sXt1YlqiksqbSWB8JqTzeERe4TnDIvM0gyLOnL+ysvnx4EgaJZMVs416oBylNr14c31neOrh3sHe4fHly4dnFvrzEzDdT0gf3Ol1mi7WkzD1LtCtV6aAkp+vTPaaI7NdaabhSZ4tFrt9lRnvQvD5LYAC1lff/X2/U/ens++//T4tVsPH//0h3/186+//vJnCMB//Om7n77/ty/oKYOQshmLB4pQ1wRRL7iWhIiCZyvZEwC2ZI5NxE24BE3hSTQci8Mt4MEoksRVHOkHoJhUADONQ/9IMppUCCQcbY7armnLuOTrOCqQoXjkjO+qHMPSeDgkU6ZADSRpKhEclPA4h/bHRMPsYSHcrqUpDMWScYDz4DuFsWQgEsUSFBkdGgoOBhBMZWNhlAKqAQOCnOPR0GBvDxgjOJlkeD3EeQ40ewK3DZJAWQvIilQpazmFnK8qcDsQFBBbl1UTTlcBDSyyPE9Seibt2aapw4kiA0CXCLQjTfJwzTYDrTiyvtczJ4Sjor4Hp0glQxQwuOwlApGpymahUgCSF7ZulHK+acN1TPj8Qr3ZGB6emh2f6ywvdta3ts6f359TdcPP+pVStlQqVMsyisTiBA3eETgf/WcG+/oBD5c0WVRMlY4M4kmobOPRUDgQiFGiLMHRKfBQJYHBCJaOEVGMSPSjEKPhPjDMRiMpQdc5iofpsnDnF7wYzxAEKAwcLxu2Cf4AEB5QLsA5/914Z2V+dnllAajf5WXATeeX1rfWV1Y311cWNrc7s2NlE3b8yDILLa3AP9Jtx4HmJMNtIOzHF8+vgsfGVheaYc3PzM1MTgw3WmPj7epYPZ92Ddj8LsqCpMHWNgO6wZVL5Qps7Iet/2Ot9vjyqK6DtyXCOA6ZpUXIFqDNNfgZkG6YLJlvtcrFSi1TyvvZtGdQeGIwjMX6w8lAzFQTvBYLEkZigDOq2byAaBTDmbbD2rlUvoDSEoUhqu1pjiaYelJMs7CNAYMJDrar6WxCh3NKrgXkElwq9qEpdLbXyFx8tgOc/lv6Ua/5OVeCXlg9EIYpopl8b6PhJCTpZAwJ+nX01O9J1l76xHcj/Vv6j39iSum7ZStTYn2JUASeGIqBG1A1VccnGFNJVTKFUgGmYIILDy6GpwExsF0YxGXZMOPqxJBSrJaynpqTRc+TBV4kEnQ0rFum6LiSwAuUavqeDsotFuHylgQOT/cyfg6gGoElI4hoOJwCGONwSbCLw506z9oF1zRY2ISFEJrns6np2UKaNymjPmwa5bTDwwFBJSPJeUsk+xMcFY/iVCIiULgse66d8gu1WnNkeHJiah6U3cXu1rnd3eOdjAUQNn8Csz505Uyd7LCne4Yn8FzBJfqeCVlvAqwsUCIRiw6Ew0O4wuJ4PJwIgoKh6IA+OEQMCyeGQiSlkWqRTLhpJSxYJEcmEuBZKBVnawWWTJbAC/FETGtLDBUHAMyabLOxMDc8NdEcm2i2Gq3hxUZtfGlZ70/wvJ8tlMrTM50RgsEVUdVNGFkBV2marfHh2emJKoMGkcHAEMZVErQaHUSGAqGzZ86cCghJzYgLPC6z4IpjGQbSR9jWKAi6akmaapo+mhj1aTVYGF5kTp099dxz1S8S+qO5odQ32b65l84WLw0G+5CF5nP9Z6vdxGkd6z9lpYsfHSofNc7i1dv5s6g7+R53Klws5Eas/iTjOxfeadw5d/TOTOGydXHj3f/m+JXvvx6JY2vd1e9+eemV9DJcgv79ovrev3qtVly488n9Ww8++0ZRC+l2u/gv/8O/Rr0cH0lGso4IHeA4QM5pu1B1MxZNVopENF9qXMqzFO2OdX2aVNO1XCtjtBvV9mjeK9qU6LGKlpqYvXbn1fm5VDlNVlmJ1dzsSJbUbV9lVY4fnzV4Oj28vdmbQIIpSL0R4F4IUmdxobMEQ9NWl1fhtGx3eX1ncXS77VnL7+jp2tronR8ef/L40ZNHAH0f3r8H1PvtO/fuvgWwfO/afmuktP77Sxsb1erx9f3XP31w69btDz649cbb73/wxvO73ZWl9dW5lbXRkbntc53JifHNw8PXVibWRyumzSWtWT3OWFkuY3klmSvwloT5BpJmZbX9++ePLx1tDKeL9XZeEtxCrQh4trw0v7KyASTwwfH+8ZXLx8eXLl/YXASiYnJqtF3JFertVinfWxzL5rLNlZ21xaWx0RaA4NmxXGO0Xas1Gu2p5c1t+Fhd295YO3rn/c+fXM7O/+Hhlbfe/fCbL//4D3/5+Zdff/7x6Z9+/Omn777/y1dZR9Nw33IVVVclUVXFlG7xCK8LAEWKvuVQeU/SRDziegqRJCgslohFwqFgEC5B8wKWCAeGEFjmcETABoMUQismFok2MgpnaiwgvEyAwFEGDUQcXYKj9VgomhNZDQskUKS/L4GHUC7YTzO+AuQVDQOBORKDrr2xcDyMBoMhXgTyD49iyVh/IBQIhxM8FgzhNCORCQFQTQaLxiKhGEEkE6xAo7wcEhUdyFwlicQTSVxQRLg15VgZI2MCdWvYcGkIdrM4tgHboYGiZEmC0kBBtCxB13wXrppKKpDKKCYrgg7qXqpSs7VivtAbMkrDLlZLBycK9r0AnASIqBmyUSrnSuVsvloq1n4T+gAAIABJREFUKYZveuWTcZVCqQLnMiYmJyYmF+AA+ubuweEc4AHZol8B/6BYTQUiskLjUVpKRkKD/f2AXccFuGWrWIqjA2ZBxsJIIhrDBvsiSUbhFE9heBV6cQGuQhAwgyWO4pFgIpHoLU3EoZMgxgkkgF/oNgn3FXUVCCTYW9abLdbA7WfAPWxooSmIv6tOr3Tm5hfmlns9WGurS+sbq+vntlfOby2trc3PTVZMaA4pyxwsMALP67ZlpuAY0sj0Umd2erazCgf6YMsFjA+eBRfr+Nhwuz3cA2AAEwLDcjSnqACC7Uy50apWq/Vmq9kYhc1pjZHZpRZg47IAja2BkGBBqdUFAuc0kRdgz7UMxF4ql/WdCrhF0r4NFA8WHwpEh3DAAoPJeBQx2CTr88mAVM7mQD0UEgjgWJyfsdKprCjJJEZ6lqUYqm1Jom5QSSD/BEsXDMfVeYIwXNm0dMnM9vZo4RJpthemUHgGwJmTTudePnDvlz1nSuiABa2hM9nC35yxnu109uTxM92bSv+zIeUJ/KZSvVZoz884BTudZV2WBqwDCybAKZBN3bFQUL+zAIBhTngvkhBi90lykusAFWjZNvwK94GlQjXj2VmZc3047osl2WSI113ZT6kix5IKAGBNoZhkmMu6WqlYtF3LyLkST5F4PCEqFqdBxVoWjFxrsUbRVh4AMFxWQaOY4nqUOzlTzIpuUqmNWkre6+VlsqIrYeAo+WASx2Mxmov1JZJsWuUoxXXzlWoDzgHPLPTa6Te3z+0cbvkuNBNJ+700qJ4t9smJ8SEIQ0KT+e3EwPfpZwrgiMFNHQKUE5dFmogHAoGIximQ99kczoCbIQqINsPX5SSf1ZJMRqTQWGRoaDDBYAm3yHFEHmC6QCJyy2YpQN5jpMLWxmbmFqZnx5oz06XJ0sjUVH5mYdkewmUpZQPyND42UcVoXOZl1YDe3flSpVptjDUnJmcnhGAw0JcMorwNLQn6Bvv6hvr6oBNW0jAiLEuwFAV7VygZdjFAz1VZFRQOvI7hk/HGqH42Hl5erJ5+jl0JGF9EyI/ng/5X2f7Fl/tT+3jDEWeE5yLaYv10QOaGnpMzhUf70v3GWaxyp3CW8Gc+EE/3ZUqFUXMApTPWhTebDy/UqvmR6/rh2sd/nHrxTz9WKAyg2nd/eeHF9PJuD4DNt/7N229+9PEnT+7ffvD5j45S9szxsa3/7UXC8IU4kUj5HNAdhiQDcWUWCpYr01QhQ0a9Uuv5Kk8SdmPFJ0ktWyu0smarVm6OpjI5g5EtWlTSM4uv3706MpOqpLkS9PlJN5d0QvNNSTQ4ea9Gc6mx+u45oG+76//swAEjkOCXpRMAXoEpDBtr3fPb88uLXi735ojcnuqe//PnH3/yGO7/PoYjwB89uA8EPMDfjf3rF6abraMXrqys12avHB68/ejundu3bwEA/vDdd14/Wu0e7I1P720Ptztri3NT4ws7+1evHR/Nz0/YvquEM/NaRCgXna235YSJUwY4ZCbO2Ew0M/XK0f7+pSsHm0v1fGW04aqKO15r8XVAHjtL67vHlw73jwAMHx0dH+zvXdhemRmbmpoarRVKtWqjUc74QDyVSvX5c9udhQmgsaY7q6PVYq0N2F2lNbUMw2y2Nrd31pe6e289/Pj9xeKVpy9fe/fO+3/8HArgn//8x59++uGHH7///i8/zriORZgOzPxSZUVXRVv3pASrCJbhlFK2y9kpUWITEVD4QSWj8QS4oAHkhcIYhlB0IhkPDMUStEhiEToRCDMJxgjHzYm0SlMCy2VtIRom0RgaD8RTtioKHNDQeFakpHgUDUWwJIJRrAwEDJcCogeOr9I4TUKnyEQijkBrjwBDR5MojdJEYigWj8QRUiIjUZJlJQyBAEwlg5FoOIYSKC7IoOboCABPTXN0Enpz4JKlQXciz0lbcM5I76XRebYBpe0zT2SJoUlS8Ty4SZzysikAzJqk6OCCIwRR0H3D9XIFQ4GrjzBrzrcd1zEheukiQQCABy+hQgAugapcbRQA2PnFfKWWPvG3LVUarZHxCfCYW1xc2tjeuXB8acm3NBi4AhcqqwWCFzksnsSBlA8MDAycPduflBQJXCmAjrOxJIXFoaNXNNHXlyAYWXIFitM1ljMgAJMEDuhNPIHHgoCiILA9LppMQIN4GuNZhhVhLJQCsU1StZ4xlqqfADCcMu7lEkq/G5meB8C50OnAm2VlbXVhY7u7AkTw1s7G9vrCLGCSAKhVaEMJG+UEHhAYJ1OsNlvD4zMLiwtzCyubm2tLy2ur0MFyfm4akMXxEYC/Y418ClR0Q2Q5luY1XQDi2c1VGvV6vTk8MtxqN+rNWmV4bqXBgvMtcYwk0DDz0FB5mmQk2IHu9dRS2nP9tGfZbtpxXDPtKhQSCQYG+mI4qMwagxnoEO4xwYiWUmWMVZlI0rEdJVOt5p2yiAkcgWg2oP3gXHgC7QnQZ40wbFE2sobCRgRXNoBcEXpoCfudoIckwIdcT5/BpeVnnpSZHIDdE9/nXkt0Op3NQ5DM9ZqigfB9tgn8zIfjPwXgkw3gk3hgH+6JQgC2M+ANCR7JShSRAGAjCSp4xxqqynqpnCnkenPGmQz074GzS27Kg12CzgkAg0vZMWW35ruexSRVgyIoBCANHiYtX02ldZljCNVOearC0FiU9iwlk8s5Gc/M2CI4vQSS4CQTAnB9tCoomcZCnSRNAMAmz+IEFidUP005E9PFrOyhSnPcFHMplQP3k8A5XJJnOIMIoCyDIOCVJFFOyzwj6VauUmmOtEfGp+eXVtc3tnZ2zgMFDLvOPPDGc70sqBRUuT24hTwndWIedmLeeQLGsA+aIhNINBILJcEdDsRwX2hQERQFUC9bYTk0Eg3RoiaSVRdP5C06AUQNisajAwMhnIzKwwZDOBknq8lxqpgXWATHE6TM+ZPDM2vtmaXm6Ehxdri4MFaenVx0g0C7O16lWpmbnGiiAIAh/XNcLw3DWMuN8dbY+MKiF0IG+0SMQRNCDJdDZ8Ederbv7Kl+FrXtKM2xQPzCAQ5OhbmbgKSyNEuylGKmdY8LOautwegAvr2RO+V/TVk/oswniyH/D6mBhRf7yofB2VKCPhVwuVXsNCcogbNCufTRReEeAODqvdwZ3J1+Vzj9nFspj2kDGFXQL77W+nRvenJi5Ka93Xnz9erW9z9VCAjAP/z1xrX0ym7nq19/vyi8/t+9/Matj+588uDOg09/yUh+uZydbadIyfDlBI2qWRocNKheIuDixazrSRybzzAxu9h+YZjHUb3RzVGkmi0X6gW9CQB4xKp4Cq9pnKRl5xbef3tvsl0saTb0Q3Ayq4s4ZxcljpfI+kWZlIrthQvnNqH9RheqXYC7C4twwuJZCCHMYOiurG2urW7tznRWgMY+vELWR8/Pf/3dx48+/uSTjz96AID3waOHd+589ODdq9tb+5cO52pj2+89v7I80jm4cuXNxx/fuf3B+x/eBl9eP+6ubq/Pz2ysNusr51ZmJ6Y7G4c3XryyvbUxPZq2PTWSn1FRtlSzV99+vYappEDxKM8lyLzfeeX63oUL+0ACHx5vTFZr7XZeFm1ArSdGx2cBX+he2L9weHiwt3cIEPjS5cvHezsb81NT83OjtYpfaE2M1dOWC0pCbXFzbXtxHBSz6bWNiWK+PtyqlWojsysAfjcA/9zsrq6+9u6Hj99sDd/98tLN1+79/PUXv/7lz3/805//+MMPPzz94buf/3JVdy1c8Bwdbi7qpsproC5hFC/YTrqSsW3GqOqagKKSLdMERRNor9CHgqF4AmHYZDwUDgAAliksiiPhGIdyrqQ6xaLGUILi1gwyEgaEOh4JxHRFhFYOisCZDMEOhOL9IYaOJxiCi8URwZc1WYBuqjCoCINyLhYFcNIfFZPhJMHgQHoHkEQknqAFIhKDAJxEBJh/hQxG4tFYksCTNI8neT4KOCwoTgYVhwCs+F6pCgPNfQfoXYCljgvdiGGgUS91VpZhYy9NgXoDFI6fS6cdy7Q0QGMlg6XBTzYk8Jm0IrjZXt5NL00d5vOJps5jUGHDCR8dAHC1mCtW0pqsedlcoVbt1ZlMrgSE4sT09PTM7FJnbmHj3PkLR5e6GUd3vFIxBep7rVEuqwIeJhKJcCg8CAC4L0BpgERrtqQJsXAch83NSCQcDUQomKao4xL47nC5goMtbThAYCSOJUMBGGARi4ThPnASxbGk0FO/Sm+hGWZOQx8saCUM7Qwty1AFCTZfS+Lv5memZoAC7sV1QgDuQEeNuaWd1Z3tnY3O3AhUwLIuyb01a0kSVVj8oVlQq9WagDHbsONxZWW9u762OL+wMDs5PgrHgNsAgAGrMU2YhsRKhtHrNy7UWgCAYSM/uFRrzUa1NbXaAPJYh5EZAkw4BtyH50VVN0wv7RkmwNFmowDXb3M5uBnN27qQCIYCgwM6T4YjlFYuVqkglaKHonrKtVCGYuK4yqkMoVVhkh+rSCSKunAaWNU9mdJNDk3G47ylSpLv6QJGwhklxeHMZ724AB/T/olAO0kEzud/s6DsTSLlfwPaLFx2BgBchIo4n/Zy/2wY3csR9P8GwM8QJ/VsP/cEgFM2oBeG5gMSRxOxEAVuD9VwXQ4zRKtahrh+EumQh93SXjrluFD9AhV4gr+a5pqKWnU021UI0wfaiySiCB5EAAB7KV0FXFd3MxCAOTpBWoacKqaUVD6VVQWWQNFYnAZXuFIsVdplWUlVZ1ocacIlaKCcKSJJqn6GdSdmihnBIbTWmMpk8xqPJIHI81iMioYVYSjJC4kIrUmpYj4jaRLLyameVUF7fGZ+cWV9c2NjY3P7cMt1wXsG7zzv9U4A7Ar3nwVe9H7b2y33e8r4hHBkOJojEuDWD8YogcOjSH9okFEFHnxOlsYyWBgJArIto06ejGc8PkgIBMWgaDgyFKMRccYjMCnn5h0tmXBrEo9idAIXeGmqPbLUnl4ppUr56ZnCdKMxMTbnhlBZtpxKpTwzNlpL0oTC8jJQ2h7cWChXmpPDE+OLS3YoduYUwPhgn0IJOgHh9/SZ06cGmKQFARiALyA0FCfi4KZLYjjJcaqkS7afsjwlHF3cwwOJ/tSM/pz+PZr+EpUfzAW9z7yB+Wunqpefmyti8ilzmGqdwou8NPic3Co+2uXvt/qw+sP0KdScfIM79XcWAGB5IImX1P2XRz4/vzs/XXrR2ui+8u71re9+Ggmgq2urT//+xuUMAOAv//LKQur1//qFtz+88/CzB3fvPvq1xDmASoyskJSppBWg8ukSS9GYaEuMoEgFcObBpVIq8HG71Lg+xuGI3NwoU6SSL+dLJb1Vr7WHtZbBiQbPyEZhdv7Oy92FVN1lipbnGZnc5VzM9Ko8bETbmGAFLV883u4ZUK5DD2iIv/MwLg3uBJ/EEK51N1fWN1bWd7oTK+PZTOO9jDGxPvn2L08effz4CcDf+3ceP4QpDHfvv3Nta+v4+d259sj6vWuT+/Xpq1cuvvPZg9t3br3/wd17b984WF1c31xa2lyeaC+cW5+dGp87d/3lFy/trC525to5IyMiuWUVEYab+d1bb7x79dLq0vpo22/NtZcO9q/uXt3b3z843Luwd3T1wkK90BiuupypLszOtUdnOgCBd3YPj48P9+GXg4PDo0tXrhysz0xMzUxPVivlar1eLXk+uHzL00B9dGZHGq2JjbXJYmF4FC5Cj88ub2xvbW328iiOX3330RdHlcWvbr/08ud/+PM3f/rllz/96ec/fv/T06c/fv3Tr/dNxyEpULoE2N2jSQxvFB2SYATbz1aLvkNLNSB+4ghvyTDnEkfhZiMQIIFwHOF4GCUQiMYhACdwJIYIpCDYeK6keSxleoWSjCfORDESFFZFh97QDM1gsWSCkYKJWDgBnbXioWQQicgAgEXoBU3QOOC/MHgeCD8A0ogUHIzCtiI0NJRAQtEETSKBMMEwYjIBxKtAJUIxBEFQAlz4MokLVFTVoKBRoQJOYkomW2qkLNd0PNU2rVwuXTjpKLV0qWcvIUtwHJjW8+V6pQCFDyhvjiGIqiKCy0k3PRcU2kJBE1Nw2R+mh0A9YumypMkMBpegJbiYI5vFYrPkWIaRShcyXqGcL/QkT65UbbRGx8bGp2Z+A+CDo3XYkg2X2/LFXKk+kmPxWN/QEFC5kcGBof5QjDV0oFItyeUC8XjkZG05NJiAEeoyA4isLsiOLcIDZ2kCI8h4FMOjQ8FgOBaPRmMR6MuZSKBAkgCVzPG8bIDarYPi1bP2kGFEISAjqiCLFCVI3O8mJmY7nfnZ2R4Ar3bX1pcWAEtd6W6eWweadn6iDP2HDalHn+BsMjgtQFtlS6DYDo/NzM/MznQ2trqrm93N9c78/PxMrwFrYqQ12si70LMEHgM4GGhK7fi5cq1WrTbao+BZjebo2HB7bKnOKZLE8zRFi7ABn1cMTZLNlG7ZmqSkysVavQTxr1L0AWViNZGODkXjCCqzcMo8jrZGdFbPsEhUARovTnNMJMIypkArnpfzchon80RYMaGBqGWYEuUYgOxEMRlQEC1rylqCTyuaais8+ERcGMjQU2x/A+D8fxZ+BLG2cBKNBLveYeNVqTcLnPF/A+B8L+j2/w/A8Hp4NoH0zA86nZJNC5M0joqGGOhTpjoWQRqiVy3B0aee5SWghel0LznJceEStA0NsXqxDOANSSVPMz2HsXOKpqh8PIqHh4S06roqYLMQgF1ZAoQ2RliOVWzmJDvt5zSJw4BYjoMLiZFyhcpwUdMy5akxmbSKHtwDJggMwUTL5wEAl9K8jcuNEZnwcgodx4BscnUMTwSTJMyojiZUiyK8RtOUaQyjrVK9NdwcmQZkDirg7a2d85fOpVzYVJ72syce2ZmM/wyAT9bs/wbA6ZN26HRBoVgqEe4DhBQFehyJDw4GEYOlVMt0TZ6BtjNJwNBwvsIl9IwQioPKQcWTcSyMsklyIk8SLCBsjsQltIbCoAgRjfMiOTldmZ0ZbShsLTM+Nl5o1ccm5/xIUtYsr1QBb3+8hjKkAhSw4fqAOBcrtVZ7oj0xvrQqIWjg1AAyONDPixLPDpw53Xf27OlTQxyiGSGSBLWJwJIYxTA9yxvdVGRbtyTDBgVaR07nX11D0aHTwb7nnK/i+ScJ5dPZoP95enD+8qn8wcB6ip0/JZAyc0rtMEzoOWXE/WiHudfuQ2sfZU8R1vRr/OnTWqk4KgVQtKAeXJ/6dP2SVxm5oZ5bu3nv05e+/Xk8ikIF/C+uH58A8Etzzkt/f+Ote2/f//zevTt3/9pgS9lCpVq0YzLvSyhFYiWZZeK0ozCSKmR9zzFZslRgQmatdmWSo5Jyfb1CEFKhWszXAAA3hpt6W6Elk8RlqzK3dv/a1IjbkM2M45pWZuIyhjpWRlQEIb1b1hS7Nnvc7a511zdOABh2d3ZOFDD0weoB8MbaRnd1Z2d2faFiWK+uSO2RjZW/fvHpk88h+t7/6P5HH92/ff/xg/dvnO/uXr44VxvZePuF7n5x+trulVuPHwD9e+fevdtvXd5Y2t5eWuyuzU5sXNyYG5tY2D964aVL51Zn57cWa3nPZOOZxVzAaeXSux/ePH7txd///vXXrh2dO3jllWsHx5fPHRzu7+3t713cOzzc2z83ni+1WzXdbXagm+7k7EKne/7i0ZVLh4dHx3v74MsRUMJXjreXF2dg9kwlm62NNnNwga4+u9DdWp0dazfGl1cnao3hkZHhdrM90VnfBRURxkEtX791/7Nby9kXv73x4v1vvv/62z/9ChD4x+9/fPrDj19+9+fvW57PE7alw8waSRGBcij5LEGJmuPDvBpBbgA5GI3LribQFInD1KNYJARDCBM0jcTD4aFwjJLIJGDV0bjEKiay9et/fy1lCY4i8ngsEiEEaOYvw7A8ONMKqgQhUIMIYI00SRORSDISC6hpQxZYngMCGMEwJJbE0CSCRuJnwzS8/ZI0Q4SDGABblMPjQxESADCGSiLF08lINBYHWhclWIWiRCwGV5ZVXSF6/tAAgAv1tG3rdtqFjVTQ8hc2kwINq/S6oCVBgJlCerFWzPeGfGG3KQBgTRNFzdR0mB/jlhuOXgHVFq4v+j1jXtvQFYkhWQUKaQBpEICHc5xSqJZBpcm1apn8bwA8PAIEIfhIF5cWO3AJeu9gM205bi4HfaMz6VJTxhJI8EwoODg02DcUjWIYB9e3FUW08UECD/dGoqOhARg2ArQhYwuc4SgCzM8F3BsGICGA4iDB/sFwLAoEcARwFzSZpCmGY0gaoLAO5K9uWHB8RIYaGh6wDo5bVVhGFJnfjUx3luem5lZ6Xlir3W53o7sCu6o2t9Y21hdmh8vQehMAMFyCFgBrkUzb8nPFOgDg9jBQ9zPj06tb6wC5N7qd2dnZqebIxMQYAOHRZsGzbVOHrc0AgGE2hOGmsnnIIJvgOh1tNscnR4EwqfNwcwJINkpWKQK2RMsiTKUxoWTujd0Wa3DbxbHBmWZFlUHCEQQjMCxwCrXIIcsluVSZCcflYlYO4yIZidGJJO6Og3qedxxW0Ck0CZQ4IGCypSVUl8WweIw2TVlMW5qXwFzN1A2btVNpOLOahm12ADlPfCfhrsMz/P0tAKmXlJQ7SWmAiq3Qc4b+zSk6k8n+JwbHPQBO/5Y7/2wMxz/RwGk/4wqmgMoKS0YivAwXKTwLFXU1Wy4Bapbv+X/04oPgP4ZDUp7dW4CGe8AW+EANJQveoOGRii/KnMwm4lQySGd0z5VEjqM0O+XIQBhj4aRl6blKxQUvkAYMCgf8FiFFCMDF2ljR1DLF8SmdtEq+qbMMUHIIyhkea4/NVrKCg8nNKZNyUhKB86qkmKbAooODYRgIHo5IDnsmLNWyJssgCaEAN/eHpyAAd9d2zp+/cPHy+YwHz0kKwlr2mUPJyYnI/fP0Vua3ia1e53jBITAyER8KRSMJGF4WDfdHQqbEcHCSQeKpZCwUZkSTpyoaRmc0Mm5ZLBaDo8BA2cWrLZbAs4V0WhJjfNnmSDhAwYh4Y7zSbGYNiijlG1MztTrgjlNOBBFUO1dptmam5psYQ6q8pJq9Iy1W6iOtkfro+MoGS0t0ZDB69mwoydCEhJz6u7P9A2dPDSqobsZAQYTOczCHENrawDYsCehfhdUsy0+J+OnE/g2O7B88veobXyeKX2Li1zOR3JfZYOdqf/Wob8ki5k/Fn4ucHWwuUDTynNBR768Rd9pnE+UH2VOkOf17/sxpsZQfEaIkmtUOLnUeL7/QqI++Yq0uvPra27c/+6XGJdfWlr//+xsnAPzLizPmu//u5ssP3vrk8zsP7t/6dViwvVp1dQwQdj7DJQg0kjdFLo5ZGgFuOg+u6DFYvsiE1Gbt8pzA4XpzvYYTdKpQyTb1RrXeqrhViZJNjDLcxvzFWxdG042a1FLAZ5HN7i2FBQMubXJiYz0j2vX23ha031jvrsGR304PgE/2gDtLyysr0AULDiFtnN+Y7o5l9bnfq/7EwszX3336yZMn9x89efjoyf0HH9279eDj2y9vbl68vDvTaGy89cri1bGpK8eX3//03q37t+4+fPDeS0fnNi50l9aAQFg+vzbZHF07vPLS85fPd+aWVjZXmumcKSfLCwLmZQuF4wdv3Hz1+otXn79x+fkrVw+uHG8d7e1fPXfpYO/iPlS3e3uXr+x2WulGPdUultvzy5Pt8Zm5heWtC0dHAICPwI8j+Lzdqy9eu3S4Pjk1PTM5AjRBpVYrwybMyZWdzZWFiWZtfHV9ulJqj48NN2qtqcWdjfXtnY3ueufCzQ8ffHKzNfbg4xuv3L37yRc//PKXP//x6Q/ff/fd0y+/ffrrtuXJmGwacI5N1nUZVwq+SBOi6nqlZjUjqC1T03DESJkiAxRwEgJwNByK4OB+BAo4EA7EEFqCLq2RcARUeO3eP/7Tf/ynx7TpJmDW7iDAWeieFYojEFWTyQRuKWJoAAFFkgDQEyWZRDAoe6bEMywDNTaBJ+Jx+E1i4fDZIGwySiIMjYVDGBIEAEwlw1DmCBgGpA1HJSLhcBQgcBIlRZyWksle16+hUEgcqiRww1cynm2Akgdvbt/1ewBswVlhFeYfshLg/LiSq6bTju/nANw6JwAsC7KmaF7as6xiwzdgPeylwwEABkoEoJrMs7DPSYIO7rJVGM+JcrYC23LSxeEqzNSBVj/l+hjQv5Mz84sLgP5tbO1c3D84nzYdO5uHww65dKUlkEBS9EUH+wCxDmG4AFuwNV3WAe0ZIMgIhkRjSDQcJsDBUoQMiQFAIhEAMMezFKDfQItAg9CBoVAkHAxFoigorjgKwwYBn1dVmD4hq4YFbbBUCRyqoii6CfP+esHH7O+m5jvz01PzS3CzBhbO1Q3AULsAgdeWd84vzzQrQGqputhrvRaAAuZVVbFT+Wq73Wq2x2cXl6ZnN3e3uhur6xCAZ6ZGgf4Fb3pirF1OOQ4MuQTcSjFV0zDdTLFcqVVK5VpreHi02QAKeHh8qcYBqsYCMU6LCscAGBJhmTcsePpBSS7lctAOrpRxfEsWWUbGY6H+wWgoOjSI+k5kkBFDiFXlg0GmXsuKJIKhKDbw3Gm+CQA15xd8XhPZGDinDrQiUTnGVBgCjWEyICEAqnQO5cA30x1VcmEndBq6E8NV6MwzgfZbGNKzn/L59DNXynwPHnvZv72V6t+asOAW8m9OlOln3lp/Ax4oZ1M9M5eMn7JEhwJVH0+GEQUm4akpK6FrTrlQKKUrvSUXGMgAe4TBgcHGacf+GwDDM+TWMq5V5JSUYgCsIhCCiNIp3fdkgeOBZIS+VxSZDKCWytmZWqGYdtKSKhIJmJ8t6KycL1RGipbs5UenNNwEAAyXoAk8iQtWmjZH52o5wSGV+ozHOKBKMBa4EFRZZWMDA4F+BKjgEOsqA6cDuu2oWjJEZuq1erMxPju/uAq96AU1AAAgAElEQVSzGIAG3uvaHux4TrnPtsB7I9YQcH/bM08/61hLw1by3sZ7nkrQKBIJxGMIw9J8PDEUDogmR7kAgTWRQIPRACUZBpVLJQnfluOWSxHgrYeDVJKJeRMymXDLflnjw2Q2J7FJgOYYz6RKMEwU8DelVpsZmys1R+bGjCjCKVY2XW2Pj88VMBpXeFmDChjcuJUGuDybY6OLa2RSweOBs6eeQxMJlBPJwdOnzw72nRoEJ8xNwjU9vsdNGeWkqUJUVVszJCdtO2mgG85kr0/74uCZtxrEF7HCpzHlo9lo4ct0cOX6qeblvoWcMIN5gTNnpFWf46NnxVe1W8vYneG+ePF+5hSpT73Inn5OqBaGmSiN+frF/c2Hncudcvllr7N0+/WXHz3+S4ECALz07V9vXEqvXOh89csLU/qr/3D5pSdvP/789qNHH/y5yYBbYGy4qvGckqNQMjGU9mQuiep6UqBZCzCVtIBni2JMblSvLoscYTZW66BkO7my39LqlVoTXOYAgA2Ms53G4o03VprOWN4a0RxHLbSez8Z13cBEntMmxjQhMzdzYQO2Y8L2q2cCePE3BdxZhi3Rq93VtdX17Y3O/ARA9leG1fr86vVf//DRHz56dO/jT+/ee3zvwcP7d+/femF76dzlg/n62PobV7svlnaO37hw79MPPnx47869D167uruxtTu1sr4wvbJzfm5+cXbx0qs3Lu5srMwtrm+tgE86LUn+io6wE2XrysNLN27evHnttevXLl2/+vzRwbXzR1u7V7bOAQm8fwDXoQ8P9o6u7jQrZnNuIp0bWZiZGIdds6sb5y4eXrp0eHwEn3l0+fKl/QuH158/2lmZmZyeGq5m68PNcjHr1yaWNzdXZsfbzcnVldFKdRzGG7ZHJ5a6W9s753Y2d1Z33/rw8eMLmfN/vXWw9/aXf/jmp19+/vHpj99//+3Tr7795td3TFfDWRuoC2hSaBuEknYVDudl3y80yj7PVExWpINCCo7xkjDJLBoJh0ChT2CihMUGQ4F4khZhJEk8ElYEpv1//tP/+3/8+//J02wkMBQLAx4Lk32jIaAaAWYxVCDsKHIAYxLhWCISCEdpkQmimq2K4O/g/i/AeCQWGhoKhoZCg31BXuJQLM6SsXAwGR2MJBkSVCt4XyZQmYdZ9MFQGGhgFGdYheQNgoNyD2gDGISC4GrKd8Dt5FgZgJp+b5ELRsx6JvTaAGW/B8BARqq5ci5r+07OcyzLMSRo38RyqmYAneJZfilleFk49gnnJ1LgpUxFhEMyAtwThQCsWoURQ8pVfKe3NFnKp3uZ49lCpdFqNtqwDXp5bXV1E4YxHFzMGLaeyvrFQq6QLlcUIOIDfX1D/X1n+6JAxItAv2uGainJYBjBozAVKhqOYqLOsRStKUCpgb80RDj2z5AU+IEiGJbEwDkLBMHnEk4iCZZMsBQjaABnAQZDB6yeESU0aQAwrEGHCxUees8LenpmZnZ+fqIxD++WlbW17cXZ1W04CLwy291ZXZioWDpA65MNYBmGOgJNbWfKrbGR4ZGxiamZydbI8lYXEF6YHjw3NzM3MTwyOTM5Oj5czbhw5AuGOskmgH/NyZQqlUa1VKo22u3xdmt0tD0+t1AiRZgdADOqeFAmYNySoVm9/WPHz+SKvZzZUi3r5NI6kKgKhiIDYSw+gGIxNc0gSTHcnzCpGMGWivW6SyNoDMEFXGFS2Zydc11BsFksqQhABXq65pGyIQKOl+BlXeEyed4i4gCaddunrUIOysxMLt3bBn4GwBB4ey6U0DoUNmHlCqUS3Asu9fZ+C+CPeivS2d/GkPInMT+p3wD4xJKjp/96ZpfQGQruBANNayopSlDpWCyMGTIrW5JnRHQ1VQPfwq/CqWLwf+pkDMnNQDdox3NPANg0daCGda2Rsc0qL/mKScssi8STYdxVUynY3k5rVhpcKuCGCZK+zpmFZi4DSDUQLCSgwgjGAwAGb6ZRtHg7OzolY0bRtwCOEzieJAQ7w5hj87Usb7FyZdxmXE/DRV+VHYDf4URyMEzjCVCnFYuIxRCWkmQVDyb9Wrnaqo/PLixvbKxunb9w4fzBhuvA3MFMKvcshSL1zKkz22tThEsNvZ3gTC8NsueHUuGSPA6oO6DhFMPICBoYHMQsmuz1SfIJIY6HaVE2SKeUIF1XSVpplpNiaCJKROWk3Pb5hFm2KooYIVNlkYnF4Ly+4qQE3W54rEXVRutT03W3vjhuJHBBc3N+bXR8fD6N0YDSgzuvNw9VrLVLtcmxyeGZBTYiR+PRU2f6RCqehK4f/UADAwAWk6aH8oLIwG1zUJEY8BAkcPMqrmEKupV28pRcOBO9MRIJnO5/tyF+h1YfRMt3ZmOFP/iBlRunSgehjk8uxCv9wTPDXU6XBvrUH7z3lrG7o/1IESpgfeoF5vRpqVluE2GacIzdC7sPl14ay8++ZHRX3rj5+w8e/ssRNNFdW/r61xeuAABe+uqXG5P6zX/70lsfvfro81tPnrz7Qxk1QY2pDoscpeRJQiBDXkricFTVCIVitYLrpmXcyypxoVK51hUYzMzPVxmBBnTNbsq1Sr3l51yJUQyM1tVa581XF7N2yU7DmHgvs3SFxwzdT2qinl5OiZnU3Ln17S3A31eA2F05EcD/3ITVgVFIy3CJbXXzXGdqaSxtrr2gZ2dXN75+8vlnn3366b37H7702v2HcBD47s2dqa3Do+VKZeO1V1aP28uX3z589+HdO4/vfPDpm9f3z2+vd9d3V2cXN8+tTHQ6548OrlzudqHTNCAjdavlKrLboTCzXCpf/eClmy+9/PzVVy89f+35a0eHx5f29/d2j84fX9y/eOHixYt7B/u7e4d7+5cuT2TmFmcWKoXqxMLs+PjExPJKd+fw2pWjfaiC9w8OIAYfHV2+dnl/awmGKI7XsvnGCNAn2bH18xtLi+P1ytjK6mSlDbTF6Ei7Mdfd7nbPnd8439l46+33vnh9tvL6t1devvvkiy+/+9PPPz396Yen3/349bef//n7TM6lSM/rJciCEk0oKUcXcJZ1vHy9lJLJaoqR1CjvqTSK4UmoxkLBoQAo9RGSTiaiA/2ROM4k4wSBxcIKj83+z//x3/9f/8//UMRUHItEQgmOpkkUQyOmJsElUywZtTmpPwl9nZChQCyKC3JccR1oiEGQDJlIRELRKPgG0dhg5Gz/EC+wCTQmUPFIKBkZjKJMMhqIUgzFxpMAgGkMwHQ0FothDE2JCUpGGEM1TE0VAIrHEoSW8gzLzQDBaXlWKuuli73i5+rQDgpoSEFgRYYmKaNQLuZNxwS6VdNsE2KGyXE6DEayUxb057SzPV+rQhG2dLkwsxAUOV6UAV4AgQkAWHUrZccrFswcNKXM+L2iXIRzGSMTcDy2u74KatLu/sX9vazpaECSV8HzLL/oIeHQULS//8yZM31Ib2JHE2VdV5iBEBpHE/FwBIkMIYKqYLRiOLwO/fh7/dtwtpcCoIwn0WSSxML9/cFINBpAYgmOiBEYIymSqAAB2psA0jQofHVFgkZGmqFBGw5BBAXjdxOzc9MzCwA2J+aXofLd2FjrbiwvbZ5b6yyvrwEANgF029CDQ5ag04+swyiJcnNkfBJep+MT02Ptme76ysZmd3FuYWFubmJkbGx0cmGkWsw4jmMwJCPwgqKcKOBKtV0plCpwFLg9Nj1Rq00v+SRO0aLK8SRKglIKW8wVxfLSpp7O2nCFsFEDCrhW9EwbsDjL4pUQEpdiZxGVCkSkAFyqpzUaFb16vlKvMAmCReScnuslG4HS7oKqyeIJ1zMtU9YtKWk4BEGGQoKhi5rvihZCOprmKhm8kMl5RceG8T3QIQIiXy6b7gUCA4B4Nu2bfpaJlC9mU+ne+vPJVnE+k4cDgvls6iSSMHcCNKkT/8V0z34i7bselL9wEMlxijlNNWACBRFEBBlcSo7hUxhQxcVMNV/MwyknGFgAoRy8FSfjOp5vWwCBHQduAhuarSn5IriuTdqxwPXA4lQMQ5Mp2chKssCTqmv5uoqyGMKamp7xykUA4mlT5EmMRGNJXmLlarZQLTqKmx8dEVkln7YcCScJLI7yls8rI9PtgixTQm0kTbsp8MmYLmd7FgI5L8LEkyhL8dLZfsz1XCCnEQCHpXKr1piahzxufXNr/cLubtdy/BMTyl5EMpDCcNu358DxbFgaLuTDvzpZok+n7ZKM41wETjoGMZ6U0EQsEAjqIiWlwEsBloYEI0latghh2AyaGT4k5yWCSyaSkRioE7FWEU9wVb9qCnRSK7ssiVCJICvIYyQgWprilUvjjZGpqUJ2ZMkfTEi8ma4VmtMjywWMIhVZk2wX7t5XG6VmujU1PD63KA1RchLcXAim9PM4Cchy/9n+s6dCKpo24jRF0qBsAfjthbmJ4JbTwX0GSJBtZxyVmUHPlpeHIh36vUblY2L0FpJ+PBce/laLbF09Nb4fWsnhM7EmKQ9tFs+YfHxA+JPxwQJ+tzkwlH6QPkWIUzewv/s7rpSbwofYhONc2Dl6a+X6ht54Se4svvbW3sNPnrbw+Oq59W9+vXat0AEK+C/Pz1k3/6vLD385/+TJR599fOfHPGWUK1O51igmcSk+SbF9cLuPwLAUyzCakM5nPB51sgTCVYu75wUBd4qrw4bBpUtZt2zWK5UxpeFJnKtHgeQob39wPCPrHl/0Mq6Rt47mQrw5olCAZC80TMma7pzf6MDO37W1lV7+7zycb1yE2LsCx5BW4AxSZ3txuzu1Pl9SC+/ljPb66MM/PX78+ePHj2+/9Xv59lcPHt/69ParF4e3rh3NZ5sX33h5c2tq/vkXrn348Z0PP/jg/t2buxcv7S0v75wbXrpwYWl8snNw5drh7vb68mpnAdSrmfYwEBxseZFGvXqxdeX2yzdfefGFF1588cXr1y4DFQug9AR5L+7t7YPH3h741cXdC3uHBxdWp2dXFoaL+dbcwszU2NzcwurWxeNrR0AkH1w6vnD1cO/w8vHh/tGl4/1z3cWp2anRej5bHRvOOrX1g+35hcmR+kh3cyLXnmhDz6zW9Mp6t7uxvbO1eu7mh7c/erFZ+uLJ0TuPvv3suy//+vO3Pz99+v13337zzTd/mtEdOemYlqRovGybLGJlNIkmRD2bbRRzJl+yZB1Lir5IQgUcTaDxUHCwbzAWQ2kaul/1JxDwFwADoqGgKCqpl//Xf/zH//sHKq0qlhrrH4yybC++FbBCuEOCx2KOyvehFBFDA32BQYxlWI4FVVdmKZZG4wiQ2OFoIhGNokg0MhAWeSRMESIdT/bjsf4A+D6RSAwFsDlIiXiCxINIdCiO4xRKyDTOq3HKcCTNUhVwOAhOm1nbsP0TFyInXwa1DAbiuYYqshLMpGd7s8Q0pZcKoEJ4Hux1scFtCsSeKvCKaRlq2gc4mjPdEzekYtkBz3BMqCQFBu6oApgGz9JTaqaSdyzHBWW5UIRpklk/lSuWK42RsfEpOAXcWVhc3drd3z3YryqOkykX8gDJrXzLpyORaHiof+BsYIBmKRWQe0VSFTcI8BdQi0QEJ4NxxRTBWTA0RQV8ADAEUYbzDjSkNAQKPgqSQsDpDwQDg6FoPI5gBAFz0zlRVXvWgTBOUIYJE0Crg6rfm2MWIAXhYRrS3Oz80jLcqFmG0WEwDmljaWHlHATi1bnxqmXouiGAGgYDEmVRs4GOK1Qb9ZFpaB89PzY9OTrdWVnb3N7ozAIFPDo+MT42PjE5M1yF79CENAV8JIaiWW46X662a+WeHXS52hgdrbcWOjke8DLw4TMUrGK8qsJBMsPxTTOV8TOVYr1Rb9XzABwh8tiezEoITrADpwNk9OwgG2QNPMBpWAjPjeQqpbRAJLGYaCRY3KvlTDuT8yVK4egYgDcT4JBl0oItEUQ8DK4UWQYKSqFI2baBBpakspftRRKmT2KIUnCZNNPb8AXqtpd+BH5z0oJ10p2Vf6Z9e8+AKA3+ffaZGeXJqzyLvIXtz+kT5Zt55sdoZVOSqXHglGKBGKcAWgQUHslYRrZSrJ60Vve6oDMnAOxCAPYAAFvPOrHAEWtKpuTrbpqxLZjGStIxNIl4il1UFXAmAeXxVI0isRilaWYVUMdi2vLBfUmhJBpFeZnhK4XacNHktMzopEsqpaxpKQyJYwlS8bOsMjbTyIrwWW0PV02EVXVfknnA+wb7klg0GQziWJLjBgZwwAp0LRQS7Vy91mpMzs4tgcvo3Ln1czvn1l2vN9+berbUDEOQT8a0sidhyf/Z2FbvfBV9kubRaCiMRFCeVQDpDwyFRQ1lXMfxBJrFohGEFHWezHkxNuXG+JRKsWgSiyNxjkZbTXBHZDO5LE/iZjXFkwiaCJIUXjFTpmjMm+hoZ2Fmcaycrkx5EVzkdS2Xbc2OzPsYTcmSLlmQVgF+WR8ujk0D7jzrROICFR0aDMT4ICgKVN+pU8/19Z2JaETOioOLFjBZjqEICrYpQvNXA8aOCOl0sZxh8bX6EKKeQa+LdyqXPtauvMlc+7AdHHuYTqxffW78amTJp4cHy3G7f4c87Urh08yH3ofz6K1GIJR9qJ/CxYnn8TN/xwAAxoJ80rUvbh2/tnK167ZuxFprLxwc3Hn8X+SCydWNpa///vmr+Q5swro+57zyry89+uvu488effbx7R/yXKlYqFc++m85hs0JSYwZYnOGRhO4T5OkzPsZz+XwdJlLUJXC7jmOTajF1VHT4NOlfLpmVquVtlnXWcLRUUFTR86/vzOquaYEmJph5lsvpKOcVWQYk/OWMwJvj68AIAQCGMjc1Z775Dx49DaBV1aWllbW4O7wxtra5s7C7NJwyj7c0suzC1c+f/rJZ188+eT+ly8v5renz7/0yYObezNLR0cr7dGlmy+vbE/MXXnlxtt/uA9Not+5fP5wf2dpaXNtHK44Ty3sXn/p+f1NGOC2Ar8r0KHFlKUXp1jKBwXm2qM3bvz+5RdfuHHjxvVrVwH+Hh8dQgDuad/e4+Kzx/7BpaMLm8uLi52xWrk52Vkc//+oeq/nRq5s3VNdUhVZJOGR3ltkIhOZ8N6RAEGABvTe+/JGKkklqZ1sy5fKyJvuVpvTx3Tfc8+N+zh/0DxMxETM28zLrJ1g9Z1BqCCShQKBROb6rW/vtb41N9uHl3xw49r5jRtn126cgRYG9l47v37z5vXz06O9xX6v056oV+rtRqYwt3+yujg9Xu+t78w0qxNTrVq50u6vQRa6s7mztnn3N7978v5i5f6ff3n3/a++/ebbP/3rH//yHMD/ddNOiaTiOCCVJCUeV3EzbYAsVIxsbrxWSnAFS4sRmJJW0dBLKhKKBH0B31ggEiF5ngyHAlfCIVYQGJIiIkGQXHpi/y//9hslnDGtlO6/4vczHAjnUNh0zJgmSWQgElc5H6AcbSdHGRaLYlFccZMaT5AkhtM40q7RcCCMhYLhsaCok76wn2Wx8Agd9gVAQQcCUZKXuCDDk7TEjPmCoIdCBEEoDCnqER40jmEBgKPBKM3bWduwvEs+n3TzJVAgOopiIABFD8AgAuGls2ysOMjDAdMJzy/aMFQZWUKYcStVRIvYoEdKqDUki1YBXdsAhIkc2hLV0fTgWCyRKVfR/MlCKpUtlfP5ciaVzhXLtfHmZKc7Ozs7KHHaPjgGANf1RBw4nnLTuUxdDfnJ8KVfDEeHhgIYIaioXScGCtjw+fFwNBLBo3g0QCgih6QxsCllx1SRFxVJ4lmWB/6CYAnjFEWGx4aHR8bGRoIYhpMUHWUkZJMpoj1fBF8vOgDcgOFxtKaMvDxULRZ/YXpmtr+wBPSFDGF1fQPNQdre21jZ3N3Z2dle608V0Kp1XJElBGAdgoubSmZrE2j2x9zSGqS2ayvz8wtr+9sIwADz7my3UW3N9GcnKjmImAn0KhQ0kDdmJ7PFSq3dGq83JyaalWptot1oL83ldYEB6cuxrKxLnIKK2nTdsNKO44JiK5XHJ1pT7VoFDYK0DBtOTjYU5rixKyN4aGRECIsWFVAtYnTMyRm1OpI8OK4oEV6IwwEuFxK5FKVpHEYDf71WtBhj2DyckUHJ0mQ75UoGQztJ3TJdugDx6J87tp5yHYjbf1LWawguDqw5cgWUkuWfm0RnBzuYz5Vy7mL4wnOqZLxFbRDC3tN6A5HyKTEJmFQU3BeV4EMy4q6BaUaiVK6Uytlc6bnFRwZSQwTgJDp1E942sAfguGPqyVo2ZtZ4K6EDchkuQmMR23QrJnwn6Ak3rSg0L0RJSMEazRQ8OJFNaTodAQCjAVtUJludqMU5I93qJXG1nDVMTWThGmPUREo0ev1mVjFEsTyRwDmBsBzTiZmaHvGNBCmAo88XpkQyHPVhApuQdZ8Pft9EpTU+PddfXl3bOjzaOdw/3HaeG5F4Vc+Z5xZhzymcy6YyAw/t53vluXSJZXg6ODYC+ScraagDcSREJSjGSdmuIbBUNBCi4Tph7BKDZ7I0bTkSS6LmMh/FUsVpTYwkSnZFJCNSNi0zYT8eoAWikHOKOFbMWunZNeRM1x6fArTysp2r5iudyfVxXOBVxdLjkHJV4aRrt+vTM5Mzc7NlPsArWGj00pXAKEcFg6OXX/rFlZcujWlENh6GkMgLEEcUZGIUQ35uEsfyPIT/bCld1PHx/fTlEUn9pfh2+8Gnifdfl759u+q8+n6C2rvz4uy1seW4MxUtCGZk8srVdCwwxB2V35/B3qsFfflPtUuc0rtLj/6CAQDjPgV3rbOtG69u3NovVd9UG+N3nL3Pvvj3CYlaW1v8/h/3bheWDhcBwAvu6/9188k/jh598/jLxx/+lFMzjfHZ5Lv/Z4ziSyIeYn14OR7nSczgSFISHWT1QGXrKs5UCgf7Ih9RS+s925Iz5WK+aRVr1ZpTVXgiGaMkw1o4/e1yxUwrCbgyLTu9cYvk9FSCkeN8a0kT9Vx3F3lMIrONtRVkfoX4C6FlaREAvLqEKjw3NjZ2lw63p5fmCtrUO5bbWlv66odvnn711ZMnn3/61s7O3vLp5x//5vX1lQc3Fmq1xV++tXHSWb7x4NUPnn784adfvHvv7r2T462ds91O93B/eWbx4PYrD24cba6DZNhZ3thanZ9u1ep5OTPPSZmJTPXNz+8/+OXrrwJ/79+7c/v27Vuomvn89PhoAGC4Q18Ajs/Oz89vwJ/9pYW1jf5EqTy9utxuoSbLjYPTa3dunwOeQf1eB35fP4f7G7fv3D7cWZ7u9ibrhVqrmS/MHO5tLQK7p3Z2pwrVSYhXhUp7HoLo1tb+5sr+rTc+/vJBu/nkq1tvfvLjVz/88G9//TMqw0IA/vvHbpLl6UxaU2KqAuIRl2yIiKyoOulGHQCccxHO1JRMMzRFhKNY0B/0j/pAdnkA9g/5/SAnRQpS7agqaTG1lDOZkCgmCyY2cvVqCACMzBbtdMJUOIHyMYaIYSxk2f5g0EcGRgEYpJ60VWQnjVMsBgSORMJBuJz80WCQoyIBPCzy0bExKgC/k4qOjCCBR0VoNI8eGxnxj4W9cQwyQ4laVDItzbBMlQiHorRop6046rf0Vv1yuWTKUV0XbfnFFFQTjAYQSxzFCTGPv5k0ivHAX6QYZVlF5cMJO1UAkmbLaPm5mAesZpFbFoIRz0hobjDQDABsVxtVZFtcBu4W8iB+3VSuWCyioSqdKQDwwtIKpGjb+0fH187qMTtm2gl4RcVcAxseDo0N+0JjL40EOIxXbCNuaZply/5gNIxFggQR9oV5ieYkxF/LBe0KGQ3LI7dfDi2fo2YuyF2oqG94eHgUAAzfURSFhoNzSgz1NHsr0CoymIbXq+km5B+qroosh9wlX5ieBg2MtoGREN5ANlgA4O2t/S10W+t3MrF4HJ4GGWSjMQ4A4GQiXZuoI3+RmcV1uKZW5me6c1vr25tL8DTzczMT+VS5t9xrguCyEoYM2kwwgBAAYBDAtdZkq9lstxoT4+PtznirP53TRTToQYHjqXKcYRooY4ijYnPkiZAvN2rVZrNa8T4ZzbCtGBH0cXRwZIwEjghR1aZ8qk2OXhZNMVdxQOxArsITCijKDER3oGOMtXg2KicSoMNjtkPLtsZGoj4KPkR4jGKxER3IYqdVDVXCI7E6aFn1yqs8Q2hU5zxomUHFVrlBx9GgLbjwvwic88yyPJfKPGqtGbQePd8D9sqA04MGYU8JF1why/IxScCCDGRKkMllFCyuJEqFSr6a9Swv4TdkUVkfADiZRfX3DvKB8YqwrHjcjRt2LR/XxnnDNXVBoLkoS0Rj8UTJVNBuuptOCXCOyxhhG2q1WSpVIHPSFYONMnhIkED65wuNdtkU7HyrY2NyCQCsigwoSEo0k0JsaraRUXSBL7csLIwT6bSuSqqiXLoUpCJj6NTEZWXkRVJOcVjGVIJ4MpudqDY7c/MLIB12dw73IL5tW5mL8RNeRfeAv8+nNXq7wOnnniUXt2yiLEYZKjAyHIoECFkVqJBvOBRwRM7OuklbYFnC78OlmC4aNRVLJxVMTscYSN7DwdEITcY6GZbQa2ZNx/2YmdUZLEAFqBiXKoWnmkxIEFOrG9PN1nxncsIMhXnFSlVr493JlXFM4BU0g6aQKTZqlWa7Ue91J+fn5xouRgokNnRlaDTEEHB39cpLAOCrcSafIGTQv4qMLNxYVAkN6TDD8chIr1jIJKoWzh7sBy4fKy9z9/pzj2IPfsm+935l4fvfsumHZ8OLR6OrrjZHV2Qzwr8YS0rhMXK2+vZk5J1K+GrmQ/2yqHRvk6O/IKuF6bBfxV3jfOPG3e3jk65zShfb76al1s//UiogAP/wj/sA4IOFb//1/qLz2n/dfPqPoy++fvz0iw+/T2mlemWu3n4T3l1dJEJcMFixLYkmdJkkOAHS3JRIuBWVZKvZnV1ZxvXC+lzCVjPVYnHczNQrBScvymxaIuR4buH66/0MMna0IOdg/d4AACAASURBVBtOZa73o6abjcuQzq92GNkZnznc3NjyRiABfJcXIS9fXJhfuhh1uuSNGwf9u765OLfUchP3N+TazOL9v377GFlwfPHDe88+/fTT777+7vWbByu3XlvplHpv/HJxr9e79fD+r58+fvebd9987daNk6XNG/vTC4f7q7PzW7cevnbzcHt1eXN3a31tbWO1P9VuVovJalfQ3alM65fvv/zK/bceIAGM9C8AGJU1IwAjAp+dnQ6kMNydgy4+Ozy6fm1ncX5tfXWqUO7Od6e6c8gff//k9t3rN27dAPmM+HvjmteSdOfOrZvHq3Nzs91mqTLZrtSn93ZX52fqld7WSqdcbrWq5WKls7S5tbl3tLO+vXPz3cdPD/N7v//g/ltff/Pjdz//28/PAfyHH6qOImOZHCpvRW54JGPGBDRPx0xWm0VbzGXjGhZRkgIJ/PW6/wDAI2OhEMZyeNAfGPb7IR2VaJahMZUThVRXF2hiRDQNOuAPjPESfAcXh5sB5UvzdEgzOR9FRTk+5AuEcF+IhOxVsRQJeIpMsKIYhgqYQQZ7AGYDIUygNDE87MNH4Oc04w/QaGqhn+RZEo+GfL7hIBbBgxQyb1ajCqKFbSkkqsGSEkhGpbyJ5ulcPgMRwk2ibl3EWA0NI4CslyMFyYCwCboOYlwK/Z2qINWmAIYtJ+246UoNhcFiuVzKZ1MegHXIdjka5KUR01U9bpputVZBLaI5b3crNdh/zOXLzUanO9XrTfdX1ja3tnYOT0+vgwK2Y/FMBmJrMVNNYKN+kPFXr0YEXpNlCcS1oajxOI32tgnIPjC/n1IkTkPq1bLjFFwOaPq3gAowkQkAC5KFIEgMlZp7S9BoNBRF0Awvq5oiKppXd+XVpukgeYG/aESRbqCuM1USX5iZ6S8u9vtepgoaGNKEtZX19c2D3W24mjbmJwtoyVvlBRkVQquQG7iu7ZaqhfFuf35+aX1gODc3u7q2ub4wOzffn25Xc2662Z9pVfOQ66DKLQRgeAmmW6yhso6JZrPVarTboKEn27MLRV2UQaFDQiPKDMjTOEKwnQT6Aj6LxfpEs9aoFQvo52hzQFRplhDDowEfTjNBOiTH8THVJq6OSnlUpcRJsibyTDQKgjKbcV20GslqukiCgtMt24g5Iqs4SpAkSNEwFd21bZlgzYQJ+o3JoQwr6aJl00zW6+jN5S/+//8B8EAKe1YZhX+2CecH25mFokffzEX18/PmX1T9fGEHnXpehJUxxSyj2gobDIqmymuWlZNoR0lVi9VCPY8MPuCMyyNPTKQSk2gDOek4DlqkcQYAtuJ6LZ9S66KWQiZRDACYiigJq2Ci4Z66nbBo1WC4MJVJmuVysVROl5uQgIkkjYUF0LZSpdRs5XTBLnV6LqWXclYC+V0BgkW7IKgTvXpWgY+l0rFJfxhP55JxFa7p4TARDowEgldJSYpcib4YsoNBUw5HBacE3Kr34FSCaLi3dbAHUW7XTg8afwc+Y16B+IXSHSzVXzQnDYYwe7OU3YIV5oC6I0EsiKmaRIX9V/1XDYWR4INJgryk/aNBRtJEsWpHrKSFMWkLtAGFhf0RlqbKE5B519L1JB0M6hVXYEnWH1J5cXzE6FtxIjp7PL880e5MNatalEam6qlioVqdqQOAZTlh2sVUbnyi3mhW61PtDmSlpbKMVuqu+EbGMIG5GvQPXX7pypVLfotKGRGRh0gJvxQuQoKBhFZGPkAJN2MXM9liQ8F8c6+mXnrA3mdv9lLfqRsfMhsf1bsfvUVvPV3Fbm/Rp0lplpjEC5eGRrs2E/T724V3GgBg7ErqffUKL3RuRoZewmuFni+gY7Zxvnn95sHJ3kzmhHa6n62QzX/516qAr22v/IiWoBcPFr5BAH71v249+/vhk2ePn3z+4XcJuVwbn1gsRgjdqgkkLkQD+YxjSlLCYEiaN7IpYKtTidFMLbO5o+mEnltdcOxYpl4qjltus55LZSQVcixCtZrTt2723XROzsZs08w3X47TZipn2jJb2M4xWq7b319d3di46D9aWuj35yGth6+8UeNoCKHXIXy4MLfRy8Y3X1fK7ZXVH/7w1bMvn3751ePPP3z00ePPnzx94+F+//SV7YnK0tkv94/bk6/ce/ndp599+PTDt07P723Nnewvzx/cWGn3t05fee32AYiFzfWtbTTEfGNxerJZzpqt47SUnHRb7/7u9Vcfvn3vZbi98vI9BOCb187QFvARapA7OT+7WH++APDp8fH5jbPd1f7i5ka3XCxCBtFtTy8C3c9v3bxz5/pNIPA1NKHh1i3vz/U7d68d7q7OLPZq+dJ4qzm/AaGwV2v01jc65TqcQcV8rbu4vr27t7O3t3H67jvffLBUePvnBzc++Orbb7/615//+EePwD/84d+3EraAJ3JozqcimxZHma7G04ISS1XGSwk+mbNlPCKnALE0gYOWDfpQXXM4hDEcHhgLjgYDhqOLyBeRUFnW7hUNjhmJFYnLASIUYg2FA0BExpJpZDHIEVHHpIcpPMwCWdAdKzBhH4Pm+zBemzGO+BuO4qGwPxDxB3gMw5moxEeGA9gwcJmjfT5a5Gjah3McTdGk3z8SIXEa42IQwJWIEodIH7cktHJLKG4mnXBQcWUq6RZKKJzmk4mBE6MoeubGEuhJHgBc9ACcSmaM+MAlS5cEGfStnTbtXL2UyCAFjHz3HRBmyQTqt+dpER6nqLoJ0EwPSmMzaNwc8urO59MQxvOVZq07jYw4FtEWyNbu0fnp+UkZXqRdgJAOsqpeonwkMTo07FfthCpRLIjjGEBTD44FQ2EKRHDIF+UlUbYMkHSORkV5maNYjmYYhmYhgaBomsKjGBHxHLN8aN0uQjIURtGsN2FKQtLXswtBfVdaDM2Sjcd11UJ+l5osvjA1DSCFXBWumDmA8cLWDiqYWNtGRmrbWwvtXBxRVEQ7uR6AIa7byVKtPDE1M91F1qmrm3sHWyi/QACGp5goZRJOdbbTKOdQwxYcTFBjNqr9SuQhTWlMtNuTncnW+MREZ3a6O7eU8wSwCDpC0VhG8/rI4Ji6yBIQ0FedaLU6rUrRBeaYBhwigRJ5Hj51P+RvfiIkxqmg4eJDmFpKOU4auVnqMZ0L6y4E+WLGThXyccaWeSC1bjqWnogJgmNGaRajdFvXnaxtSqSctC07LRtldK4MZsgP6paRcht0AD9fgh5MJ8zninlkpHhxKwxcM7zxetm8ZypxMZ3wwnwDjVgaWHI8t+HIZ2KqS8OHw4z5xHhMkWJGkhMcNVcrlwpowaWAzrh8uuD1Auc8M2g0EskB/eugkVxxx0rItVxOzetyytXgTOYiDBEUUXmMoimc5rgJCjI0JsLms3ahnEpVS+VmVhIoDMNIOOi8Wi/VJkpxychOzbi0hoqwdJ6kGIrk4nlZb0+PFzVIxitTFj0WlVKZgqUSV4ZHkZNlYGxkCCRwcCSIYzrOawpJKna1Md4b7/UXl9dWV3d2DncODk733WRqMI7x+fsflGANqsTROnQ+e+HSeTG+Ao5UBo0V9/l94WBIUlUGC42OjHIqQ8eTqbTGsiRcG4xsCngmExLyKQpzHFQLAZo8zHCRzCJkEMlyMc8RYa2ZhmQdyMbLdJMKUloxX905ra8vzDRnei3VhwsMpydSTrY4PU7wrCxbplNIZiHnazaa41OtzvxsP1dNUUFO9kXGRoJ09PLYyOXLSAEH4oSj+hkyghNoSqiMihRRxo7a1y3XyLrZQlUmrpjvtF68rr4Zut1O/MBNPRInPumlzz8Qtz6eVv7SyP6SW1gSZsT65UvxOYcPjVxuFn9Xjb5TYa5k3pMvs2znVuTqS5FGsTcSiuHx+MnO+bXja3sz8fV4svnxSu7tb//UC0bWdtZ//I97d/MIwH+7N++++t9vPv2Pw6ePnzz+9OMfHTU1OzPZOrqNKWaKjhCQmTo1JyHLps0xtKDBwVeodM1kyHpue0+P4VJ2Zdm1jVS9XGwmnPF6tujKkpbgGM3o9G7v95yMbaVNy0ykF64TaixX1G2W664YklWZW91eW99aHSxAryzO9+cQgRcXllbXkc08um0AgE/6CzsVo/TrjtJc7L/2b8+efvX102dfPnn01ZPPHj/++IO7t1fOXwWG9W6+N3tnqXP/rVd+++TJo0/feW3z5Ob86vWdmfWDw/WZ6dU3Htw+29vc3Nnegufc3NrZWpqZauaTbusoly1m090P3vzNwzfeuvX6fbi9fP/eXbQCfQ3VXZ0cHhwenZwOCrAQf4/RN2dA4ZPjs/PT3cWFtZXpenZifm2+05mZW17bP7t+596NW0hAA39v3EIzGm5cg//fvnfnaHW5P9WslCu1yeXdvc35yYna7OZ6twoILmcLjamlbRDB+wdru6+/8+k3d/L9339y+7XPvvz+6V/++hzAP/37QycBca+QUGMJNI9LImOZuERwspYsNPMJ2sxaEgUAFimWxjEsHA35/WOj/kgYY3kCYOwP+eNJledYhiE1Vkg5uhodoccz+EtDI8MRwxQZxO3RRNLQFIGLko6OXaXwCDYWDUTYEE6xTDTE6KosUASB4xio2mgE+XVEg4GwLyDARUiFOCY8FiaG4WTnyZERnINnxEi03EOGRkIhEo9A9qlztCCFpDjq4rHYKEZGcTWZySZAAqdTju0UK+USaGDPnQn1jnvWxpIgspC6xorFTBJFNdtG25wqQBUCD6eCeExY2Uo1E0dbfl7JayqT9BRwTBcYEbgma4Zl6UamUhrYyuchkhRKEJwTcSdbro8DgDvAOOAUEHj38PT49KgoGIZbyhfSqOeimlJYPDgWCKqqyRJBGQS8N4gwGIiGInggGPUHaVRfGdd1yzWpMUaSGYLmOARgThQRgGkiilMRuCEJDEI4hNMUhnqEOUlHrusxXRv4Ueox00Yr7IapK7rM8QKk7C+0p2enp/uLCwv9mW53dmHZm4W0trqxs7+3s70530ZGUVoM3uhg1hooqISbrTSQ50ur3Z2dm5lf3tjdWl3d3vK8oGfmuo18KtsEIVzwzJt1NOZXA/Ea86qg683xdrfX7fZarYlOfw7oD9hBA4oFAf4ncN5Gs6bq8WzSzSAf6EypWpsYr8Bnl0D1LQpNhSiJ8QexwOhoNEBG1QQbNl1iGNMybj7lyBIqJdThE06W8sh7OJXLFAQ5JmK0Gjcty7CMmKjZItpNEVDLeBoEPs3Fk3EIniJg0TPJ8LTqoHN10AyMpiINirAGi84Ir2hX83/tDReyHnmzzxdX/zmGPn1BoAGIU0j9ortiRjVipC4q1FhQipsmvLo4rZl6sVbLgfr1ir8Q1vPoaXPIShlJc+QCgwCM0pGE5YLUy+muK6ABSKrAhQHAjKPnXUh6WCVuWTQb5RhcQBurk/lktV5sjKt4KBTAIdtRJWuy2pwqOaqR7s7apJxLx20NpbUEyeppxZyaGy/ocREUcIweozQQdoTfNxwcCmKQIuMB/+jYWAh7UaVojocTjuWT5XqrM9WbX1rdWFne3D7cBQDvoRUor//Kq3zOZVJercVgiWDgM3Jhw+HpZHSsck5OiXL4WOiqL+RnZZ0jseBwMBRDgSmVS/A0EQkGaSWmEXaBJDM5IawnJZ7G4QLw4yIWX3JoWqonyzIX4moZmSQJMkQYQjYuh0yrXFm42ZqfnyyPLy9oQyEGNLBVrEy2O1lGYEF/xJL5dA5O0onxzmR3sjc/s1DOlYwIxVNscGwED1waGb585fLlFy/5bDZvR9H0EEmSRB6uJG+JSFFtC96yCedRsqxzV0duz7x4237Nd6sT/47sPOMqn6xqi0/00v0l5edK4U3q+po5ZRRHRuZrlo6NvFSqfVgK/bIoXc2/y1/hmM7t6NhLwUaxOxyOk6ZzdHBydnp0sswmeXfq85WJt778a5OKrG6v/PAf9+4gAH/7t7v9zKv/uPHs70dPv3j25ONP/5QzinP1buGt/6NNyhoxBrk6JbUTLqQLNoeWnNKpjEonKwZDlQvHZ6aOAYDX0NDLaiVfc6xGNV00VM40WV5TJ5furNbdjJSFtNpKp3dmcTNZTusqa621RS3dXNwBlbsJUnd1aWFxeR4APNdfWIKv0ZyX1dU1j8CbO+tLS33XPrwmVlpbmz9+/+TZl18+ffzF488+//zRJ49+9/Ktta1Xj+u1yZc/2Lzbmbz1+t33nn3xuw/eOju7vb1643RuemdvrTdzePfa69d3tvYOIPJsbHkInu9NThSddOOglkkvVCtvf/Lmy7+8f/utO/fvodud2xcVWKcA4P0DAPA/t4GPBwg+Pj8/PjgGxO5609G7lfGZ5eW5bndhcXP/+OY9tIV87drNWzdQJRbqTLpz89r1u/duXdtYWlyerRdKze7a7sZSv9ds9lZX2uVyqwq5eq23urG9tb2/vnbyzvtfvLeSe/nbt+/95um3X//wlwGAf/jh2788KSZ4icsn0QhLzTAVXM3YchQ+HDdTzyYYPQvRKiykRNBVoLJCWMTvuzoM2WmE4cmQP+APjJquIjAsxxEyKzdfeikQHM1PqJoYvOrjYiBqGCyK+RNJiPoCFxESUtBPYRHM7w+GIxEqQrAsLRq6xENiTpDI6hIoHwxGsCAo4KDgGw1wBE8B58mRMEGxbCBAiyJHESxHUQw+OhoOExhkvsiJUlTCihUDHNosPHOU0JPpAYCTCStXLpXKSdurf0kAFJARlqaIHI+eJlYup0DWAm91NO9eVfS4IaItVNOMJ8vlSjFZyOTLqPEErUUmXdQpHBNZr8wJzRdSY5lq2ZNEyJkwi7otUolEqlCuVMa7UxOT0wA2NCJ1D3Kvs9OyaMYzpUIxjS7S3nKF8IGeCCiawLGcbaAO5ZhMBELRcDQ6FoSgIrCCogAq7BgbCUmKxMBh4JGFNTKj5FiQBBjBIPOSAGRGwRDq8EJTgQUNzZpAll+6NmhFMuNWwkDL76hQU/OcrfQXOrOzU505SPsWZ0Cor22sbUHStgEXzPb+7vbG/GQeFYWB0Efbf/BHBWEPyUi1XmtOTi+uLKLx6ytb29u7W5urCwvLS3NTszMtVGU116pkLcuKGWipWwPRbUIoLtTGa7XxqV4HNTFNdgHAcwspEMDeMGjQELJkoqGQ8HhU9QsQymbLjXptfKIOlxWyP4npVGiM0BlfIBqAVCxMRw2X9qsWftVnlVJFAyUqcVeK8PGsJlilcsbJpjPVRNTlWFxyTB3UfyyhsLaFMhZSMjQp4SAjRSljq7G0LJScHBo9lEF2lAgYqAbZG3uUet6GhCwkkCRO50pF+NHzXWC0Bl3wrDOy3uM8y8XBCvRA+eW8QYTJpOeFCjDNumJcouMii/miqmWiHl+Tscx4udbM1UuVYqlwYfORzef/CWA0lAEI7KAmaUimklwlmY1Zed5yFEnhuTBLhXFbzSVVhYfkjJZZVYCYKyTzlfGlyXy5Wmx20nQ45CcEUpJYo1UotVKWauTmFhxCLmTitg4CGfgr23nRmJqppZWYzFU6Kj3G6W6lEXzRFw34wiOXhiKiEBkJX73CEFGCcnSRwkQ6Vyq36zPT88sgg5Y2Ng/2j4/Odkw3DccKpCtKTuCdJL3d8YuNYK83GvlQDgY4en3B2UIy7wZl0h+96sMCjAIXIhm9Eh0xNVKDy8rV4fwP+aOs5IqxooobeS0ogwCgQRHgoxGFobs1SmTayYYhB/BSzohGo0LIpwuuAWo5k1Tj5/MTnXZ7YnbRGMZFPpZwi6XJqU6KFxhFjmnw+orVSqPdnu72OrMLM8sNu5TCghjH+odfCo1cGr4ysKIMqkQuHoYQIHG8DJeFgXJcuMLilp3JJPW0Uy3UIRe8XFm+9EC+Tt6eUn9PTn8TSX+4wTQfxbWzQ+p4UztyW9NSjchc0vdc1SKvXnab7+R8r2XVscJv6csM1b4eGrvsBwU8FLFpI7l/dAjM2FnJTSeN0kfzv/noi3+ZDkaXN5e/HyxBL377tzv9/Kv/cf3Zfx598cWXTz9+9LeyXWpM9ou7/9f/DAsiMcLiIF2mEjmICXFGZEQx6RQ0Ip5TGTZfvHE7oeF6dnUDktFEpZypJIxa0SmoGufEWFaTmtt35kHZMyXDUrRE5SzLmJWibAhiebfAarnxhb0+cnxeW1+Zn51F9Zhzs3MLSyuLC8tIAK+iMUibm5u7U8vzNaPwcdGoby299ffPv/3my2fPHn325PNnn338+OOHR2t7b53OtBo33t86mumdPbz/qy8effbR6fKdu+t7N1cmVm5tzc4f3nnt5WM09R7k7/be3tbKysbmWq813swmGlvlVH21s/yrT1578/VXHr5+7yGI3zt3gL+3EDevnQNpDzwAe5VYHn5PjkERn59eFEYfnZxszs2vrc5US9Nri71Of2Fta/f83r3bQNxr8CyolwkwfeM2WtO+cevlW+ebs3NL0+VyoQOsXe9PVcq91YVGtt2olnK5Zn99f2frYH9r98F773/7sNx8+uzu/UdPv3v8h+cA/u7P/9JNK0ok5SiKZaJhNLicTcYwRlJS2UbOFc2iI9FBNi3THI3h5Ggo6BsbGQsHfCEKBKjfB0kxmtZMMjyP8WxMFsP+EadVQR5SEEhVFVgBKAm6aVMRWA6P2fxYmIwG/XAVD1/GGAwHBcfHLNQjDKIWstsQDilvAMcC/kggKODBkEDCL/IFyBHQyxQ+OhJl4JUEOYUjGSYaDI5FcIwmRI2mFR2LOYZjxB0WC5JRIpZKgghLooly2VoVAqRjFZF0SRnIVUIFDmkqJzIUbdaq6bRrmrZtGt4WacyKK7ygxuK2AewtNXIpN4c25LL5NFJICSC1VwWNJuqCvNOMbKVSrRSz+XK5XPJGw2ZSGQTjzGSvXZ/odrsrkArtHezvH9+4XlesBOprQf0OjUY3GQ76hvxDcsxPsnDJet5afOjqCBwIIkiGA7TEqpZiWq7FBSOCJKMFeI+9NMPSBMuwLBHBmHAUg9To6jAgOxLBAb9osjIrxZDfJqosRrXdaBwSIMhr+EZKE42NfaHenpluNSbn1pdne/Ob2964sPXVzb3t9a3D3YWpTtaw4qj41TtksixZSdtIVcdbUyB25hYhwV1Zg8sLLq3dlenZ+el2b2Z6qjsz051t5Z0E8gxDPV0xTY0ZAwU80Wp30Hyo2ZlOtz81ubRUUEXIExRWEXl4qI3mAEM8swppy0pl8/VGZ6pWmpzMuw5au4hp4XCYUfCRQOTqkJ+gCNx11HAsE/X53XQir+G2LQmWHsbTeUw2QaQCsvKplKRqCu/X4uitxHIaY8Y0jMZDjOOIRspNmCTuuIDmnJBOxsvpVDJnpZFCQyBNZ73pvxekRR7NaARDAc0r8sYzpIvlQjZfKl94G18Ycnj+G94M3OebwTm07Ql88dwoQBaXYkqJ0m1ZCYQ53VTh3EvJvKHblWq14k2+LA5Mpz26Z1Mu6h9OOsjGzUKFhLbrWlZcs2upjJiV4m4c0MmRFBnhE1rOkXhRiCmGE49JLPw0mU915urlaqPUqTsWR4gCzbI6a0wW65P5hCBnZ/puRC/nYpZF0cA7VtGLgjbXr5TjikLmp21qRLfNgnw1EAoDF4fDwy9Fg8NXrg4PRWNjQ1HbpEVBF62piWZjsgMEhjC8snN4uLt9tuukvJFWg+1dZLnxz9GM3nozXAWeEs6kCnCogM9uFlKbIitAlIAMPBASeJbCQXyOyIbG5EFaqqyIjfn9rKizTDUdjOXjUSJpkiyFKkIirIJPTZCqUCmnsywX0mtxCCtUMCzLeo4br7oi659aac1MzM70pgsBQtZNyAqq3fZCPcpRqE4ikc0Umu3xxninBQCZ2Z3P59PJ4mhYhNA3OvSLqyMvXRm6DAAOabhrMZog6JoiCxwvwXkO1xd8jEkAcDJTyidLOjM57EuN3kzdiT6YML6W6t+asQ92hPYHtrV+IzK/JjXjkCyWKOlKZ9Fvxumrl83622bwYY4ZProjDDFc70ygLg3N56ZHWI0X03snm7un5yezlVfSauvd1seffPLn6Qg2e7D009/v3q12D5af/fn2fOb+/7jx+O9HX3720bNPPvh7Sco1Kv3yG//P/85iEA7UaJSOTKUScU1xDFoTJSOVkQinpFNEOX9wNy1jSm57KeuYVrFeLNiJSgEALSlxk5YMcX1/u5fIGnYJ1WNaE6eE7CJ/BZFdWBUZbaJ9tLGytLK0udrvIe/dPtzm4eb1I6E/m+ubB5srh3Ora52C+mCHLy3N7P/9q2+++urLp0+fPXny6PFnnz55/Wx3683z9mTl/MODu+utk1cf/PqrZ7977eTw2sn2je320o2T+Zn185cf3Drc3IWkHyTC1t7C9vbm3mJnutPI29VrBXd8anbhtd+98fCNN15/gLZ/73sAvo26gAHA1wDABxCHD84Au3AwD0+OT9C+8BFSw2dnp8fww+PtlaXl9fmJSmtxbXmyO7++vXt842VQu2jd+ebF7foNVNZ188bdl28fQOjstiv55vLe1tJCu1qe3FjMVkCjFHOl8blVNK11Z3Prt+999uTQ3vvqg9O3n37z3bO//fGnP/7xh+9++vHZ/zywdZ6IZ0AsGWzMNSk6VTJomtfStXopo0mVuC5EhZRAQeYZwQPoFgyGQAyTChrGO+T3KbYBdAYWSJhgUhGMrE3kM27CcdAwWCAEGfT5EkmD5ziGi+nklVEG90OCe2nkEs7zoRBBixrykRFYIhol8ZAvCAiOjIwFgyNjmggRISzRkG5To6EwwZK+MBJ/UR9cmAzLhMJhSMEpmuVlgdJFv2bGQHRZHOS9EdqEax0AnK83a8VmKZNB83xdF+KgrfAKatzQVY5WeVY0IIAizyvLm5OkyBD/VYmBHESN224qW8qjiimQ0KgcJ+2CpnYMXeQkNG+XUXXZ1IV0AxW5IPVbriC/pAxqFM1lS/VWc7wzA5ngCqoP3D48u3l2Oq6bTndONgAAIABJREFUZtpJlzLlRrY+69BYIBAaC/ASwaCx97KqxTTaH4j6QqGx0MgYw1CKqqb0RJyJ0rIiCmgMIQkHToD/BMhpeI4hCTyEEQQW9g1fGSFIksXJKMULsq4r3vYqXEKOBWreUAQefkHctVU0HRKoKr4wiZaRe7OA0tnWeHd+AdVewUvdPNnfXNvcnGvkkIdlTEb617sZruPkahOdqW4P1O/q6sw8qtna2dvaW5+bX+pP91rt2X5varYzjqbrxNQYGgkBqYwcT2VS2epkrTHhjUhGg2P77Yn5qbQKx8NQRZC/uiwa3pq5YbsgFVP5XL5WLjXaE+O1HGrQNhOOjRwKFdyHj/qDwWAYw+QqMeQ6vvBVKe5kdAE+WsAHiD8txLvZJDI/dAuOI8s2RTEuaEfDMW2Vs02GwYOQDpoK6iqDY5yIx+ysKlZyaME4nUMz4r1C6CyqRR5MJsxfjGPI5UulvNcNjMrukEOLt+s/MFf0BhZ6RUaZAYAHXlhpbyqDtwY9uOUVNUWqoB/8EUGPozeclKW4mYFErnzhsDVoOc4OWOWtW6MlaNtGUwkdJIFtw6llU1JGiEH6oMoizdAYZwOAZVGmNc1KWqbKcQSTztnN2XKh0ii0664NUk+kONUW4u1MvmLLjOo2Wg6h5XLwSaPdDZxVY0Up1utPVAxNo3JTcdwXz5S14UtjJItdDYeYwEtXrowMXfYRrGhexQyV9/Oa5k7W0YSs2UU0/GYZ2c4cXduK/3O9+aLv9/n7vwDwhZ0n2gtGK9SZHGr+LsiM4AsH/OFgWJBEjgHZPcYbMSaVjedsUSTD4SBDWQruZnE85RBRx+EklowEfAHOipYmGJHP1Zy0KIaUakqmSchQRdvKR1IFSUlrrc2pyVZ3erabDZKCbMRThfH5meUqLeKSrBluNpWptic73cnO0sz07NYmZFaprBSJ4hQy4BgduXx5AOAEn7NxQVR5Dm0AIyt9GdUv2HbC0lW0JVWo6OwMPxIYetW8g9/sqz9Tla/4/EcnQvtjl1t4NVBtEa2ImSJySnposz7kmMzIS0bj7UTolZwePrvNDzN480gXLw0t5zujtMbIlY3D9cOzk8O54oO6Un3U+PXH3/zUwKOLmys//sft8+rM0dpXf727nLrzn9cf/ePo8XeffPHpF38t5YqTxen6N//3OyQuciQepDBfM2/bupYwKEVUzExOoxJlgyLz6d37BTRjGRS2bZiFRqWUSFSLbgYuX1ujpJi9sL4zlcgrDoRJ2cqdL2GxbMrKQYhfnaS5+OTsztriImRey4vzc7NIAnsEXkBV0MsrK6ubaBrw1s5mb22h5HTfdtLjO/Of/+npl8Dep8+ePX386aNPvnzlwc31+9fn853T3x7cXm5de/3lV77/5oNXDq/fPTi6uTB9cm+ju3B6+8H9s72d/b1t1GW7vb1xuLOytzk1NwkXS/ZmJTXRXZl5+N6v3nj4cNABPOhA8vh74/q1a+fnp0eHh3BqHqNiaLgDAJ+dHR8NFqJPT46vgTY+PthYXFtbnKrVZ7eWet2FtbWto/Pb9+7cvOk9kXe7ect72pveuMKjpfbMZKUwsbK9Af+sUple7mcb4zknWy62+hvbcNvavv7e+988bNUePrt39+Mn3375+5//9Ieffvr973/46t8f2BaPa0VH0xKqETdoyilYHM7ITqlWSulSBfgc5dIqTeA4EcG9aluQodEIIcN3AR9FWymTo0iQIwLOa4DocLGRQaNgTYCbxLMM8tQwk3FR4MmoGWMgjQ7SNDV2JRTkmUiQYEgxbsgCA3KGZCgyGgpFI8GgHw0k9EH4oDlMIgMgm0dReRGBAMxzWAiEIDewAkED+Ei4AgmF9ammgRp5AMAkSQqalU2mssVqrVxw0kVkBWSj3hbXBMYqIsOKsgJCmhVixXIZWQOaBmqVRTXCcVWiaVFR4miAQDHjpHKFUh4F3kEsdFErMfBZN+AxYkyTi9Wi16eULaGVaggr5Rzy+y032612d3pmbmEReVFuHZ6dnZyM63ELFFEpVajlGlUpHAkFxy7jqgovWOA8/ojY6Fh4JBDy46EQK3Dwe1zTkGlO84YmwxGl0XsHhQtaGBl4ApApNLUBiwRH/ASG0wRNMhxEBlS4LAreyEQDLbBLLC2bqJ0HuCgjAEsvdNodIGF/vjfXn4Ev5hbW9w+2VtZ3d/Z2d7bWputFPYam+mpI/3pL2olkGnnV93oz/SUA8M7SbH95bXMXDQVZWJqf601MTM/1urMAzbybQAgWIUwZlhxPppxksVkfb7dbE+3JBrIZ6rWnmwkFbU/LyNHdkFhdVNEsQidpozXJTK5WK9Y77WrWMgCUiaStwPmgq+GrgSAW8QX5RL6dEMJOwTccQdZfouo6mqia8USaDxH5ktd+CxI4p/MOxUe1RDxpJ5SExeiuxOKhKBtzFAudDxwdd3XLTRHFmgmUtEvJ7GANOjegcPbCXsMbxTC4875DlEQOaYXcoBvJy7u8hxe88t70xWorqi0Csifd1MCGI5nOARNYHfI4f1QyEIAzFq/GzSLwt1QqeS1ORa/bKT/YUU5mIPVLoU45rxQLOGw7CcMqQI6clTXU5CchG0mMtfScA6khjUaJxFQBrhEmkzdL0/lMuZ6daCYdiVNFklFs0erkijVboo1so+XSahoOssahacGUqALUJ3qdMnzgAOAEHkiUusylUYwh8eEIKeNXL10au3IpQgVHYsRLusbSmBrPtSrtyXHvrADZs7G9f3p2Y9N8Pg85k3ne7Ju+6M8aIDk/2DG/KMHKQsRPpXMWLuB4KABnNCfJIhv1Xx2K6jqj56xUWmZJLOTDCUPHY3lxzC0IIcMVeDS4M+Aj45Q5qdG83bRTmhRii0WNijJ0kEwyjRhvx5OGU1yfHu9MzfQnUyGaE0yn1Oiur27WSJGQZVmCuCCZjuumKs211Z2tpfVaOuc6WXwYZ0cuDY+MDl2+7LUhhU3S1SI8r8jIkRaSU8uAwAFnMSsiQ2gnC/m4wc9Oci8y99xr4vGi+kWy8qljHV3jCr8uy6WJSDVLzEmxMF+za1f28RfTMdb/otZ42wzcyyawo9vhIZGeODSJy8NbpVaANUm1u7S/BLDYWy4+XFRL7/e+evDJv1Uxcml56env775RmT5GAF7J3Plvtz/976ePP/vk648+/ywxkcvVZ2beeSfAUAIdCQao6Fi+HndicClQElxx6YJJWxWLpvKZnQdVk1FSm6sZU48VapWSbZTziYygyCmR1WLl6fmdZiInlbRkUkxXX01gdiVtOwznbKVIKT+1tgoAXl4D3i4u9GdnBgBe8Bxul1fX1rdXNrdWdg/6c2vlovPKrlSfm7/+92++/OrLx4+efvn00aNH7//hlTs3dm681muWtz46Otlon7zy2hvfPHp4c+fO7Z3jvdba6e5M/+D2Gw9unx7s7R/sedVX2zsghTcWZ+fapUS1fHcykZ2Zn/vtu7958/WHr7/26qsPPAHsgfIWaiK6dn7qARjh9/jkBPUjeUvPAF9vSRr+XANRfO3awcbS6uZar1rrrq3OTc5ubS/tn4P4vXP7+nMA37643bl1484r945XF/tT9VJjfndlc3my1pxemRkH3ZcvTpTai+ub8Dp3N3713tOn5+78Dx+dvvnpD8+e/fGvv//+Dz//9MP3Pz/OuQrBlosxJRmP6aZAmQVHxFjIcuol1xDLriZE2GyMjmI0jQyqkBflVZCejEZRuD/ACnFHY1HvKWpDUlBldGk849hxMyaD4BIAD1Q0mEjqDMPRZNykAlhgJMrDtRvEhHAY4zlCtHQZlB2NRzG0koq6kHyByBgkwSRHUSwm4f6xCDYaidIUPhZG1UN4WKQJeEIiHAxGCYIgVQhlhoh5k8oti0VuUIyoO0UIwF75chIiIdo+Q4HL1BQ0hxDoJRlIQ9IqSGNvcQ/VGsfjyBYb2diDGLV1J1MoZ5PZQctJqZwtoG5g1wZtgTYtVUuXOIEmXVDAqAkpiZqF0RpjKeMmkrkKagOenp6eXVha29za3Dk8Ozw+beq2k4bIncqWC40U7QtHQ6OXGUjwSZYTkHWkRPjg+Pp88KbDGCNBYm7ausJzsu5NTwQAM8wFeEm4R18QkLiEIxga24CFwiSBHoASDFmUOB7NIbTQzQTQ6ZYDKbqmeU1FivTChCfR0czi+aWNnY3F3uL23tbqBlqCPtpf7E4V4D3aFiqZRgzW9LjjZivVWgveFAB3ZeVord+fm13a2dhZQ8ZzIIE7rc7sbBeOU9Ljr4paiGNoxrGdLpQrjdbUVGu81WmPj8+uLk1PTaaQtka2ZPBpiIyhqMi2GqRqGvXdZGuNZmuiUc9rOjKBck0+BG+ZDPlDcJJEaYGj0tOOWc+KflyCBEHUy2lVhs/ErmuED8mQZC6dcyDzEnWFJaJxzU5qkKNplGMIqHtLtGJouLgpEzKEHbOqqBUH+JjIOBfIGJg2ZQfDAzwF7DUnoXVoz3nDM6xC58aFP4eHYW8p+sLq6Z/DGJCwRsvPGdTIlsxmxYwqmbrMBklFNzQrkdFZ3TQrNTSLAblOX9wuVHAqlcs6iVTKTni10Og/x7FjZraSMTO6nHYNWRQoksRpS88CgGUOshg3psLZgjG5Yrw4k0tX6unx8bQrCypPMIIpJqYrjXbVFu1qb8oi9WzGMuEqQq2ArOQwTqM5WYGUi8p2U1jELVail0hFiBLDQVKiopevhoauENEXXxyJhRw6aiq6nWsDgFvTc4ve7Nf93Z3j0+tbiYsKtPRzR7CLfCT93KAk9/wIDbCcS6JKi0yUl+iQP4JhGBqSFvGPDI+pOsPmgYUqTWH+sRCj6oKWs4JGJRaUHJmmo1Ei4sN1WexmaF4eT2dMKYynKjoVwelgyFYSGSVlu2qs0O+2O+3ebCcVpAC2iXypPre4WcMFAk5CVjBNO4lmT7lGvrK4MXvSSGUTibx2NcwFLg1dvXL5ygWAbdIx2JgiarIgo+BFEBQrQE6umClvVb1UKNpkcb93RZ202uSkVdgSYwe2vdjh62e2WnbxbjEoB+wFbkIsDM2+FMxpTOiSPP4O7buXsUbX7/hGNL5zmBi9PLRdaYQ4m9H6C0fTAIjNjdIb21L13frb7t3/rUMFVo477//xzlGpe7j87M93ljN3//PeO//t9MmzL5785qev7XQxCdnyoRbQWAyUSiSC+xMd01EVx2VFUdacok2bVYdj8tmtV2sxTnXWN7KQrVdr1QK8zBwAWJUzjGBZ47NzW9m0KdUNONfy0zcjYhzyW5Hjp9dU2pjs7iysoe6jleUFVH013/fuFzw76BWvNHprFwTwzNJC1p17GC+1N7pf/vzkmy+/fvLF02ePPnv08fdvvHK2fvbKWq2y+rvzk/3m0Stv3fn6ycs3j+4dbJ6tTu8cHS7Onb/16r1rB7v7h4do9Rl05dbO1ub61szkbCE7nj5txWvrM9O/+vDtN159C/TvAwAw2gL2AHzz+tnZNTQB+Phwb//waMBbZMKBqHt8fHqEOAw/PTzyPCrPtleXNzb6jVx3eX2u219a2AdU33j57vntCxGMnhZRGP2Cu/DN3kp/tl0Z7y9urc/3mvXedjM33sqkGjnUjARifXvjxvtvf/3ObObtH+/fevu7x1/88Kff//D7P3z/448//a2TsDksWzEk29I0W6OVTFLEOMXMNiquJZYyuhhh8zEaw0g4mSGLCvjHRnyhiBQH/gX8OCWb8qAf1TE1kQj5w7V21nUScbgYJJ5nSJLBxiwLCEIzsm4Eh0nKPxQMhHyjUS5EUhyFK5aI2lrREnQogvqQItFAIDg8CpBHJjdRCQ/7opERLMqSUQAwJ4hEBKgHiMExQDiCvywzjMrgcdNAi3N0mMAxLp4a2AoimVLLO1YCedlDXgCJqopyA6BZTOFZgZCKWdeCOJzwjBrRpAItpjKMdAHgUjYF8bZU8xaXAbMIwLalw7+UeIkiGXiefKNa9P4GbQuiB6Be4HyxUp+cmp7pQVBa29ja2d45OD08vTZhuMkU2j3MFEs1hxoLBH2jqFyNY3lBAdrqQmQU0Ov3j8Ff4aQgS7odh2tFQ6KbBfnPQKBl0RcsRXKAWh6VhePo+gqP+cZCvgBBgDaG9ESUVV7khVhMRd5aMT0WT0COZSErysHsFkl8YbI92Z3uTc+sLvWRs9XKWn96AWWV55uL6yBqZ/KqGoubEsh8VLalaAnHTlcbjTb8E0D2yuri4trmYre/u727vrC4NN9HwwinAMClQhqNDYBkWkdaG1mXJIrNifHqRLc31enNzU62Z5aW5qfnCjFkiSkLAiPoAmuhhme0BJ3OJtHyf7lWn2hNtGqOZSMzLUtT4wYViFI4BgKJjIwN+yRXyi8Yl/wxXdSJoO3KesYSY1mLHYkh85VcJu8UMhmTTwhMGHSKi8Y3W4TkqGgln4vZmuG6psyQcGrouTwHtAZKJNLJ9MCtaQDeC6jmB52/zw06coPeX7RTe2GQVSg8f2RuwO5c+mL8fG7gb+lZOyMAO1Kakw1FIAK05gE4q0KUS9RrkMl52xgXtwGoks5zAHsOJTYax4pSSTtXTsUScQ5t90gSg64EAHACPljeiNlJOGYCE6FzlUSlX8zVGumJVj6lihpPCmJcdGaqzcl2XrdKM1NaxCqlLduQRIohCF516fxEZaJuyhqVmkxFqGyOGroUiYkEPhomBYoeibK+IZwaHY1ook7H9Xginu7Ux1tT3Zn5ZdTzebS3c3RyfdtJpdL/P0vOwURGSK0u/Dee6+LBgnQmmSlk07kixSrE2EgAi/oZQWSwSCg0IsclOpdxsmhkYjAY4RRIObK5CJO3I2wyzqtkKBLykbpBTdRYjq2WMraEReyaAYKZJkJ6iq+JTq1ia91uuzsx3pnuZX0YXCAmqO7ewu4kwYVZVoCcHTnolBuTM+VyebxsTLeyWTdtFegxIjo8NPTSFaSAhy5fCiW5lElIkAcjK3MOVWKh3rl0OpdHZgDZQrVQTEbIjfvRsaxZVMe166tSbZYsdW29uyiYM/UAz+P9tNmnponksPRiJqOy4Uty892g765rX5m9Ew4q5PheYewXlxZLlSBviNrs0o3x46NrK6vFB1t08+32B/Of/Zgm8fZJplGr/bbcPVh+8vPNhfSdf9x75V+Onnz5+LNf/umRbBcmyvXyos7E+EiIoHE/HtWmLVeR7bRXum0XHFqvp3k2k9162FBp0d3cy8dtszFeL7h6NZdMQgaUImXXbQFJ4wUunrEdRSud7YRtI55IQc6x32YFp9/fm10E4C6tLs3PInO95wD2VqBX19YAZzsH6/3FpfFa/NUFdXJx5eV/PHn87eOvnz55+sVnnz959tH1Wzt797arlflfPbi2N7V59/V73717+8bZvfXDs8n5e2fL83v3f/36EbBzf3tr9xD4i4y3tjdOlhbWJiv5VO1o1s5tLs69/eGvfvvgt6+9/iqygH75PgAS8fHWrevn59eunQFzD3Z3D44Oj48GS9ADAAOHTwcmlftHyBv6/ObNg+WF9a3FVrUxv9Mv1tc29o9Pb778yvP17FvecyIC373/8r07d+/fP1xeXAD1Pru2sbbUqrQW+pOlfLmULiFny82d3c3dtdff/N2TV7K9x5/duvvJ02ff/vTHP/7+h++//+Gnv+/GkiqWKMUVLR5TbIPh7AQXZSCINetpWygWdTnKFTWKxCMY7ingsZFhfzgkmwIWCPvCuJxQkTEiQ+dSMS4a9Efq7bTjJAxFRBMGURVEeFiCU10jcNBcV0c5JjQ0NDQ2NkpzEZJm8bBsKzKHBAmN/LCiaK4tEHjMHwzwkkDghIyFfVhoBI/wZHgsgoxnCExkWYnn4MGhCA7ZpySigYQUiDyQXToZorEIE3cTbh5VQ1Wr5aJnZu+gUQYGmtamCKKicAJaAxQIIZ9JO8k0qHZ9YFiBTBwpkhdl00IMT1ipXKFcr5XypVLBG+cAclLnPRd2jJaAb8ViFqR2sVSswK1cQDVY8NhStTEBArgHMQkVYW1v7x2fXLs5GU8nU0gqZfOVkoqNjI4NjeASZNIiJOCqasR4EHjBMb/f7/OFQcej0cQxUY3bhqzEPPMNksCpwSI0w6BuLMhh4BgQBB4au3o14AtSJEtRDCcIssJJogjojlnISAoiRMoyQOejsXIegeUXekDSXmeqhzyhZ2cXVnaXe7351c3tvd1N0DFz7YJn4iFyaGke/oGGlkuLjcZ4pzewsFzqL6ytLSxtbm8v9xcX52a73h5wd65VL8CBcuCX6qKgwb2ZSOXKjYl6qzfd7U7Pzc/MAaz787N5E01yEyV4/5oo2MjSTzecwRT3Qq7QKDemOuPljIu6kAyFUyyL8UcJH3JkC4UIMUm/ODSmjLNBSxNMOpJNq7GkC/mPI4V4A6JpJp/MuYVUmjdVhsUShgUPsHWNSCCTwzAlOoZmp+EHUd5Ox9WyKReBEHkrl0znBvONLgwjBhgdeHAgk6rc//KoRM1CpecKGPUmoYcN1C8qOvI47O1vIghfTAX6f7l6r/bGrixLMIuKIBkkQXhzcS9wvcP18N4RIBwJ0IPeBRkkwzKcIuRTylRmSiUppJCX0iurqrure6rnbf7EvM4vmPd+6a/n+7rmYfa5YKirBoqgEBEkzMU5e+21z95rJSXBwBmJiXhmCQHemGZYDK3GzNIrAB7VnzOvmpTir0rQBlKE1oH92rWcWLyQFMVERLEAOukwkkRTpZQO+zEqcpIKFwwAGEsXzXK/kCmVE3P1bEJgRSrMRKWo2ilW5/NJScn0+qZbR/aRIsAC7FhKNIP5Rq4E9FgOaxXDhWesies3PMht2RPE6WBoKkQ7X5uJ4AFG9BFRyBziMbNdrdY6890+kjTd2t/fPz69vR0z/x0AX1Fdy7KSV+fCyVcqYnaXedJAd1JZFva8Y8rhD8ziNCpduJ03cIXFjIQR1yHR8Hg9GKcwISPvx+JJPKQaJItsjt0BKhay5oAPJItxlcE9QskgcT+Ge6Px6BybGq7ltOV6vduc63R6GYc3StFaKlteWNpruUJu2O+sLCuqpieKjblyrdXMKL1mKmEk2JLimPUjDY5JNAU8OT7mUiJJHtZhlIlGSBoSUxG1SsDaRX3umm4hQ42Ef6ry29pr20LRZ80WsmytpnX7WmJrjSWSrFvKzeyYYse3GLYmXpvq6XwUGHD5fbfzQkvemL/jdjOh+m5lZmyskS+5WJGWmmt3Mqc3L9bXc5db2Ny7a++sv9XAqUDvlBcKxc1y92j15U93FuP3/+Xxxd9ufvn5Z5988MNTXyZZr7br5fAswYS8Xj/sG5xqmxZk1UkKABjevoGx5USUiKe2322JRMTcOkiJCl+YK1qmUIhbOjB8PcxbRmdlvSGn8LxomDyfe5b16YYmxhjaPNCCXHpxuLPYAaYIKITmjwB80ZeBjb8jL+Dd4XBvuTscGNba01iyPVz6x7+9fPndF1+9fPn5Zy8+/+KL248GJ4/W6oXO03f37hZXHr/57LdvPTm6OB7e26zcfLjfXrv9/OndW0dHhwf7e/uHAMC7+3sAwLvbS4PFSiaR392MlTZbS29/8ME7lx9ePn8d6O/jxz8D8J17dy6QEOWt09Ojvb2jm0fHaBz45vEhKj8jAEa8F2ljAUM+unl6enp+frS+AmDaLJT7q+25dmv18NbZ7QeP7Y4uwN5RX9e9+5f37t5HjdaPH51vLg261XJvc3+zU67ODbca6WIlW8gX5xZWN3d2D5ZvvvfWNx+vynf/8N6t5998/833f/2HP//+Dz/8+Pt/el2Ky5iYVnlKijGSRAQ5GXf7cC5RraRVPFUUWB+Z45Ckszfo9bidjpmZGY9vluSjfo97xhXm4wLgZzgcTsV50u9y+Up1SJM0EXUMIbQIBl2TNM1JjNcvi/iNAD49fWN2cuLGLBmYDcLCmA0D5iEjUtsw2Acc2+V1T0N8nbkRjkZDGMF7nDMB10zQQ4VcM37EXf0AwLD2cZ/H7fb5A6Ewx4QoPkxqMQBgQHoPPBDOyQZqXYbLUMobELtUBRFACXX8kBwVQQwYgJYgAgRECR22NkQ0YSTZKPJAbaM0C5QRUnhdSwCaFvLpTCGbRjFQj8VkHugvy0LOiCaHjZRlIN2mLPI4QgwpiQaHbSnKTrvdW0KC5LBgDm/durjTUi0DaSTm06lCMuy5Me2YmAZ8YyiKCGKCILEhp8PpmnEBAE95orC50RMAi0TzQMBCbe13JD+JI3VupH6HfJpDoaDPB3Fq8gZcfwJD6jwk8giP0CSJDqUUTYcLg4yGdd0u8yIzJ47jftGcRxNBrW6jM1hZHiytDjfWlnq91d3V3cO9jUG7nlGRUwFPosvCI/FrRZITxVK52enbZz2rC5BewLvb3hz0lpZ73U6j0e02W4O5clpXFJFjBY5COouSCqlMulCtNIABw5P2e0uD5nx/0E2ix+WoKLwg+E7lCoAtE+AvC2BUK5UrqJQMOY+m0P7Z6Vmfe9rjn3F6fH4PJGqmHvSJRCBPyDxnKeZinmWQhrRuUlgwhpzwUmbGTMfTMsPRlItUYpaEyiQEw7OY2+0Pq4BScUtRwiHR1BkjRUPKhaaEXvUHjeZUEyMea7dhZfO5dCpr62BlM+lcCrVJX5kEj2wZbFi+Er762WfAfhigRvYUElwKTlMITuYibicZg1cEa4pkYlISckVYavlcNpe9MiG+Utz6uQkL6fAaBhpbQj3mWiknciVKTso0TYfRJJ8Wy5gCwAKa92ZZWFQ+PF0wSgsFwPVEo5a2BE4iMQTASqdYa2cNwSgtrxf8ejaRMJhw2B3Gg7Rs+rNI0FaJSphWMWfwpHxj3ItT4RlICSMCsEEv5hhz0HzEY0TCPr+VT6tGq1qtoqH3FVv2aBd4xu0d2RzVoH9uwnp1Jp660oWO22fsALs2AietFPIKTho+OuRzAtlBEF/pAAAgAElEQVT2hCguEkQ1aI/CIqs202QowuufCVCSiAm5aEjPMR7eogjMNmvDNIKel3FcLsctiXJFs7kI7g8Q3nAat6zV9eVBulFqdHqQBXazLn+EErVkttyZX6k4gj5Iu2kONZonsuigpFTJWGqlmUxAKMskIpMuNwDwjWtAgm9MjDl1Mq0GSEaCxWu7ncAulRUkk4K6PFO2UrhBThNv9sbuiYfhI5Oa85MiwZm0ubsYnBR4V297coUTa46KP35t3BpCkut8jcm/63Sex7JTtdtTboFqbVUmJsbypbpL5oG+r56Zd26d72xm7+1Eak+WHy1+uKRHPZlWO6mqnfrC0eqXP93uJO7/b89u/dPpl7//4le//suvcKDiQPdXLiSvQAdd7tC0nyEb6Tjk32kOwgOpJKwQXUlGsFRy7e2OwpDGxkGcV5jsXEbWuaxmynyE16KCoaz3NhK6KpRZU2PEucdeSrUshWOo9hIZlOvd3bXVdndpdcme/0VNWPB1BMA2Ax5u7mxvri/1V+Ziqbe6QnVp/el//vqbl99+9dVXn3/64uWLjx4/WTu8dVQrLFy+fXqnvHL3jWcfPrp58mj/+PbC0v3T1aU795+992Rn4+TkYGcX8HN/d3d3f3d7e2+31R8U08XS5rERG6wvP3/x+vO33r37/sMnT58i+LXx98H9u3dGUpJoEPh4d+/45pFNf4EEvwLgkUPSyc1bNw+P0EHx8dntm1ura8O1hVK2vbNRn+uu7R/dvEBDxQ9QX7WNw/D10b3bd+DO5YMnT27vrS0NSo2Vve3ldrUwv7JcT6Ugn85Xm73V7b3Dzc3X3/rk8+f55qef373z8dcvv/nTT3/+459//MP3f/0saakRNq7wEUGiODEaZCXC7QmyiXI5K4fiJZ4DABbDwLsCPqcLAbADwt8UydFBH/BUnE8IPBEkoiHT4IF8uv2FekrVVAi+gFEEEDOf24FklwDpNDl0I+y/7nJCOjk5S3n9GEGHnZgo2MLMIc8sIKrX43L7ZqdmAYSmCRwAOCq4ZqdCLkfQTWNOR5ACFugNUDjShPJ4vT5A7XCUjnqjtA8XbQDmgj5vIBTl5XgNwlmhXMomIS9VkcIhOuVWgJsDAMMTUiwDIQcj1HgcIhrS+LM3kyTyEkfgNCdoCppjiluIjRRyqXQBeCvyI0QDMQjChIgfQrkcs7KJkc9LPpV4dWIITAnhTWu+tYA8QYb7RwfHZ6e3zlqqoSfi6XQxncgbhPfGtHPSgczxWIbA4PJzuGdmesaDJr1mpwIkT1OyjKb8kTYmR7NAdJB1o98PJBhHklio9IDEEwJw2bzeqSmkURbCQsEwapKmo5DYQJ6A3CbtNmZG1hUeEnaJQ15QHPOLWr3ZthnpQncRXiWkqxsbK4PB6vHO1sH+ardrxYCUGsDAUVmAY7mYZerJYqnU7C6tLHUb1XxrfXPQHuzsbg4WV1dtp8xaudHrN2t5yGhkAa4iw0iA/Yoez5RqjUKlMQ+3dr/VW2x1B71+WkB61VyIZWmGpmIIgNFJs5lOJzL5fLFcr1haNq8ZIifyuMdJBbzuG8j12O+envaG/Kmkw6UrbFRFYltRSp+X1EZRFqR4FHPr8BIyENJzBuRDFKVBwmcYYiLGxVUxLKrIxC7I6xJtxBWFwRnBUJmUxCQzSSU9Mo5PpG19lZG7s4242WQyk88i0Q0AjVw+m4FPEU0lJV/x4SuVjpQtOxG3DehtzEGGhEhq2rwyxaUsMcJKHO71cEhl00gZlKDE8hW7BwvdRjZMkPJdOeZejSFpkEciAJaQV4Ui64W8SNUoPqWhkT9UCNGUXFzmyDCyfoKPnYwEiHRezXcKmWwu0ajGdWA/kWCUUxmtU6jMNy3Waq6vZjA1mcoakUBgNoSHGCXuz7SalZRK8SF9Ljkd0mnXmIeMcgEfFcalkG/SOXXDBRddxgXphtvUzJxhNsvVar3TG4xqjju7O3sXu8poHnrEeF+NIaEuaDQPjLYJKvXbgiWplIUsG1EHRcrKuEkMQ/qzHhfOkOGAxzHlVLkog/6VpeFVTgWClE6TyZiXS/OzdIqP4JjP6QxELBZr6zhOVxNplXMEE3WgAAHCFza0GL+8vDooJ4udVr9Q6bUzPjzKmmYqV+221pv+SABJaqBxOTNbLBeLjUJzrp7UW+m0EUuYGW1y2jV+fXzimt0APjZrEqYalSFxtLcRy3MipLfIdNoWH42nMsWMxM6M7y5OndB3p55o6Tdnkv1ZLEaG9agj2l+6ttC7sSJILTzvjb/m63RFjZ19jcm8PeU6VzLXS3envDIzv1oevzEWLzdcCk0k8is3lcuLk/1h8mI3Wni7/3bl3aM4FYw3vnurIRfnFg+Xv/zpfD5+55+fnfyH088/e/m7X33/64ipt+YK5ff/lXfLPOb2YlNBiYKdCYslJ1IUSUgJC6MqSTyYtbqPGjGONoeHCdHgC/Np0RRyqsmwmCCTvCIezq2LKS5h0SZLGqsX0xlNVjQA4L16OKz3OzuLWwuDtZXu0mCh1+0tosYQBMCrIwAeDreG+7tLK2st09x+wqYW1jb/61fffvXFV19//fXnn7z46pN3763vPjitVObOPrx9u7ly9t4b797cuvNg72izufPsbHHt8vk79/cOTw/3Do5PjvfQ+O/e7t7O1s7Bcm+hUc6khztyant1+Y2Pn77/zrNn7z19EwD4ycPLy4c2Wt67c/vi9u3zMzToCwAMCH5wfHp+6+bxyRkivacnJ3AfiO+t05uHtkrWrVt3zs8vAIFXtze7mdzC5rDf7qwdnJzdtUH9CoMRtt++e/nowZ27l08v7rz5/GhpsNLuov6tdgGo8FIxXU5n8uVqo7+5dbg/PHjvnc8+3dUffPX05OlnL7768U9/+tNf/vCXb//yx6plRFhTZAmBJxmRxDiF9CEALhYyUsAocQiAZTwQxDEXavSZnrwxPeuZYkQuBNA6izNxCdYVzYZ0Q1KAVnizlZSsxOBDZqJ8BAGw14cQhoYcn/VP+r1uPuRyTU+7mLAS8odCAUYVaALDwhjicV6f1znrdDrcsy6PX4yQiMq6XQDAs0EXAuAQHaWiboyJkCxiwF4/5AVAQ5kgwwVIAFcAYCHk8wcxWpa0LMBvpZSNa0kLCehKfEzgZTXGI/UaCnU9AoRGSNrIpE3DVGIKYkcyYrc2APMAwJpmoBO4OKBHKY2GdzMJJMeLFDNYkuJ4nKJpno+lAYARA0ai0bm0HXLR4BISB2q2FgDQVjb2DvYOTuAzn1c1LQkMuJSy8ioTmJiYmZhhZJRKk4zKCCya2ppxTjpnZ71uKsKTkZgMmxzIKzq0ZagoPB2NSvXBMBGJot+IBvsxDChwwD897XF5MWRpEQQKTHEQf4MU4KaO3jMnq7ICTBHyHQUel2Jo8hf1Wr1W6wwW0Ozeyurm/tra+vrqMjDaw6PdrWG/ZsWAZymoYo/0s1FKohiZUrXaaNTqi5vr3e5cc2l1oT/c3ewDJPcXFtvtZjFfm2/XgAHDO41G8AiLJqAkPY4EtStz7V4HaFK/115YW1kcDDQWQTtiwRxDUCotigotSKZlGBYiR3krXa/nUnEFSYSx+GyYJGdcs5BswBqc9hC4ooXwVJb3uFwYPjPpmA0qPF8tcZRkBWdj1RjqlEoj696kEVGoEIZZnKnzuqqREVMOBrwhXFJ5VjUkGQuaGh1jC6SSLRhpeHJIklKJtO1Zi04ekvb5Lzr2zWWTaPgInejaJ8F2N/RVf1biFRVO/HwbaUGjSqw9CByPG/GEZjEJhpR5MejEZcgBVCPFRgTZgFwRtUDn87b5JXIlzOSQFlY8hZRSDRM1piHTLtXuxNIhESwUY2yaZ+I6j6Q3sAgWE9NpEaMxkRV1yDQZwocZKa3YLFfqtUqlmNUnb7AcSVAmy/dL87W5tJqZH6w0aV6HXMHgIJGOELRi4fFusVqyWDWcLjQ0NUU6JoOwnoJOKTgbJVzTNyZnZyIxthwX/LNhFdZzyqrPNcqd9kJ/YbCxNRzuHhwdnm7GrpSg46+UrkZNV8iYImGXGDKpURkaICtjt7ehkedEig4w4dkZl9fhxhkKD7omHY6IGaaNtKrrFO3zun0YMLRgwnJFUmYQN3U2HPT6/U5MYLBChaLxrJmRFcwbyyqk1815MDVB6PPHS+u9eKXZGLQrrX7C4wWmnyyUmoAciy7EtVmWUxRdjtfL2UKxMD/f7GZKRXTonjBj4Ylx142/uzZxfeLa2LUxtxBNCkGk6COhgT6eQVrtkizLioHETAGBc0VO1CcifccOeTZ1KShvTy7en4pfxB1G3uk+Xx3rD8bWo7HKTImMvabtW8A6w69Fqw/HQod041rhfNIjcpWtyrXrN7h80y2ptJUb7skX57ePlpIP9oPly+1H5Y/PLdKTLv31by9+dV7uHB58+/3dpfj9//r6zX86++LFy3d/9/1v2GSq3F6YO/vzNCXEBTcemfFKWK5gqAJl6rSIoz42gk0nqZCebF1A5kJay8clwTQzpRRn0ZmYSXMYq0ZZTV1tLeoGlzWEOCdqlw2vEbOYGIFLW/mgUFpd31xfW4V0er3f7y90O71FNFnRBwaM/ICRGvTy4fr2YGUF8qJnHbm+3f3ND3/48suvv/r260++//uP/vz6g9292xeDYu3Or0/31+fO3nr2y/PzZyf7d5faF0/2lm8+ffb2g2OkY3Tz5ODgcP/gYHtzF00Cby31NpqVudzqsVHuLA0fffreO2+98cabbz4fdUBfPnz4yBbiuItEJM9P0UHvnc7u1sb5EWq4gt+n6CTY7n+255JG/sCAyWdnt5Be9O7ScH2lU8y1doBlzA+O79w6e/Lk8vEloC6AMDw8Anh0Bz3Ng8ePbx9sdBr94eZwq1svtLd6qXSlkCuUau3B7t7+cHj/1x9+9Ua99vcv9+/+9ptvPv0H4L/w39d/W4e1HNYTckSio6xAEoSFjHuxbLWcFAmtxGI+0tTDQHfDIaRWFfC5HKgNkScxgEXYCQbL0H6CJJIqxLEpypMppCVVQb3ELKBA2O/zekRVogXIloUZB9Azf8jnHLuBM4rmDUbjnqjMcjTq4wq64XtRI7QbHTI7JlwsFcRh2QRm3CGnM4SHPU4fJlA468eA3zERv8/n9oXDiO1SflrGcT6GJIMp4IMBL6EoGrz3ag4FFuALGhKBUmwzAg75R6DDGxYdvOKMmgBeocCPIoldDTVJi/B2KJFRBOR+q8n5VK6UhwARz6eAiKgxFTJlDpk5iIDDwO6TEHABf3P5QqmAqmlxOx5nCpUa8L3OYKm/gmTKd44vDg5vtmVR1VM5ZE6cM4kbkzPXpkhZ5YH/IM8/VCmanZ31uabdU5PA9Ula1AwFSKgZg+eJAhcmCZoOk5jPhyEJeCICuT/KXNxw7dy+2VknkH80lu0PEpAb4N4AFmVoQEAJTTnLdis0j5IHdIQcZX7RanV7vX6vutxf6DTnWgsLnaXdvfW1nZ219f3dwXwrLqkAwECauVEJWlNVW1Cj3W3Pd5fX14bAY5fREc/26hKqXfeBT9frrU6tmLaAp6HjXRJdIWDAViJTrNabnV57vrM4WOwtbaytbAAAC8BtJZQMMREaLizLk4Jij80mM4UyhMJqOZfS46jpSBWwIM2gZu8Zr9PhglQjbFoYFs/wnsmJKce0E6OJsdeCTLZmJGgiRMVzNmKmbDtanolFgyFBj0loopinmBgXgjyFgZxMtRIc4acVQZQBhZOphG4i8WXEy1BZw8aGq0kkpL/xbwnv1fDRyKjwahb439rrje5dOf8AhR1pUZoKG49SgsAFXJEYrwpwTemoKFmVYr5YuCpB2waYacTBM/Z0LACwZaEeaDQLjGRTkRyWlMvK0azImRpPkhEsGPIIQlyXGCGqiLIusnQU82Jmxqw0i6W5uVqtkkr4vZDARTiT4ReL8/W5uJyq9lbnSF6Hq2RwJE1B6qnE8eRirV4ELo3lys14sqD4pjxBUsL8it8RDgenZ8e9Uw7flGgyXheBZsYMo1qdq8wD+UEeHVu7+/uHh2eb8qgJzdaCHgHxyBfJsstE9hH7lTfh1bVKx0347NOCn8SdMy5IsAkWHTVNO6ZCWoSMZUxTj0QDAfe0h5aFcCIbCsRNwm/EIWEO+H2zGMuFknXgw0Y2ZYphF5c1IYWnAyHKYvTCantloZmqthoLjfkFy+WleEnLFOcX+0stjzcYoWmW142knigX8pXa3EK72SuWSglTFeGiR2+MOx3Xxq+9Nn7t+vUxJyqWhAWaJFAhDTJIWY7FVM2IoyELPob8vvMcVZuZISdP2bPxB1zs2Wud2xPmHX52bjc0vb881u2NrYX5ciiPRV9b3vGJOoFfi6QeT8xuxRavJ4/G3IZQ2qhfG7+uNRshCASp5MY29+D8/HgldW8fqzxeeT14ez+DUWr967//+p+/N3vHKx//6W43ef+/PLn5j6cvXnzx3kfffSTAe5nvNt/6PwqCrCGnm2BAwuJFXRciqkYJYVLMGZSQTTGwRjp3ugYRTQwOSryi5qoZLs5mULsWIcYoWKDLvaosRZNASWgl/UBhVCvFxiisvGlSsbmV4RpQ3X6nt7ywAAy421tYtHU4lpEV0vr6cGtza21vdWOzlo7t3BeTveHBT3/+7qtvvv7y5ctPXn78zXuPttdOnnS78bsf7l0Mi7efv/3k6cOHG6f35lbvHK6t33rjg/fPgZui4aHjg6Ojvb0DVIDe3Dkctof1WjrePcjkm2uLdz956+1333r+DI0AIxckxFUfXtpCWLcRAqMC9K2N7GCjv3d4bAPwsQ3A6Db63/ExAmP4egp0+Ozizvnx6tLG3kop1xwuA2UY7BweA94+eXT3/v1Ra9ddBL82I4b/PXry8O7NjW5vbXtzfaVdLnXWu4kkknQHHra2tbu5cfLmrz9+sZM5/uado2eff/7yu3/8wx9//4cfv//HY8kUwnpGo1UJMAkIlcmFfX6iMFfPKlGlKET8kZQUCBJojYfCmN/jQo22nECFfEgBTrAkoM1kFIf0KIY5cX+ylIjFRCS2TMEn7kFNW7wCQSEiSuyMKxzyAOpMAwALhsZRtOaNKqyAWjgB311uW9PJ7fJ4PO4ZN+XxUaFo2D016591Atr4Z1x+JhqmvWFE76JBv9vlBQoNGEMGaBGLAIQqSoyGvwr4SOCzAIgIOE0FCTKoSIVRsJuQkLEOa6u3whaKsFoCaC2SWlIBmgHtlFiMoSKUKKpKwjTzyRjE4nQ+Y6H6UiIVVwVkZcDR9MiODOAlDkQLqSTlbK6USpoJ4ESZQqlYnW83m93B0toQleSO0RJY0CDeZ7PJtKGneO/U1AyyOwJ6K6BZXVjsrmmPZ3ra5ZiaDrKEBEgJuy/KcqPBIZGKIvENgolgyBQphM6BcTyMjQDY45t1OJxuj9fv9QVxpJYV9IVCpGQLYdnsHpky8Eg1j4VXTzPcL9qt7sLioJXLVBch15urLc7PL+/sbG3vLA12dhebnTg6erYHl5CkJfKn0M1Etlxvdhd7863+OqS+iwtr29s7w5WV5dZcr99GTVa97nw5CVcUrQKaYtD1liA6IQBu2F3Q/U67Od/tdFf7AMC8KEg0BTSfpGI8ADAtqXELKUEn8rVauVotFbOGLqGjeTYUABrs9TlnXbAIPZ4AnkhgATMnuJyO8fFZPxWXp6KGw5tOZSk2hLOAnIlRM3MiYxImD8s3DWgFeYTEhxUDC3rduAAhU9J5LhyEr4aYIqVUWoWP2jSQtvdo4gio8MjANo3GwV9ZIiGxqtT/8mPI/KzG8fNZ5/8C4NH0q4XE2eKmleEEM8yxIuXzUKqgSKoZj9IxMVHLl8olVITO5K8AGA0UIwAeMWlLty0ZVLsFC7kCS4WshuclNmaiiiIeDBC6kUYD7VEVZRk0TYaBAaf10nw+35ivV8tWmiOFSIjgtKi0WGrNzxlSuthdr0ckdPJt0gJP42FGS2JGt5TXuSjlFIxKMpMUva4o4JXTp4RwOkyMTY/5Pe6APynhTg+pQHqgGNXK3Nxcr7sApGdj6/AQCMv5ljQaQUok/xcQ/1sATqReKWGlUH0eNS/CXcvK6IFI1Dvj8Aa8OGzRSNDluOGROJLNWpYOSUXQOeODhAVX8tysmuRn1TRHRDGfxxGISgGpoeM4W0tkBXI2ksnQOEbigbAZU7L9zqDfT+fn6635+Z7h8sEG1nPlFtC1pj9gO2iLMSUB6UaxXmt2lzrNTrFYSVsxTreSjGPcMTs5eW3s+vXx8bEZKWrxAYFCnmMc2hoisldDDi9okl82Upl4RowMhZkpx0n4ZOIhqT4e616Mmw+Zme5d99j28lirObYSiBaCGTL82p3GNU0Ph69R+fvXZnb4ynRpf9xjUZnV1rWJMcFM0KLKl9Mb6+zTO7dOVzO3D6Ply+GL0MpmLhDW5M/++uKjr7S5m3uf/HRRyN/7T09O/uHmp5+/eP/jbz/T5HR1YaH68v/5Pw8oQwyEhQlCCstl3ZIIWaO5UETImRSHGLCV795bNKOR5OLhXEyOFetZxmSSMYWFrEegZLm8tZGDPZiXdZo2Fu+HTD6d5CQmutHD+dTa9haSu1rqdgeAvpDR90YUGAB4dW1tDcjHcHd9a35jrWjm3u7w5Y3+7/7T9198/fWXX375xcuPv/3kweHazacb/dTqr18/P8xdPHv0+uPLB2uX5/WjBzc3dx799tePTg4PATAP9g8OD46Pd3f29/Z3d3Z3N5c6AwjwzUulML/au/fxO++88fabz15/9swGYESBLxEBvmeXoO/cuTi7det2r7RxNtw5sS2RAGlHzdAIfxH1PT6yD4Lh/s1b52e3zi8uTtaXtveXa7lKf3ul2Vkb7t26ff/pE3jMBw8fAgLfu494MBL7eABI//Dxk8vzrYWFtc3hdr9ZKKxu1+xDqWxprr2yvT3cuv3+b7550pj71dcXtz988dUXP/3l97///Q+//w/P5KSAIc1JOQbREiK7joaOiHy9lrWoWEGigpGsQER4NHAfss9aXAQWpng66PT5AkHeiklkhCHChTgvhSDiJ+sJTUKjEBFUgPa6Zm+M87oM3FoUBZfL55wev359YtzNKKYcE2Q1gAPukUi/OBR0ogFPj9uFvE18LjdgS9RLhL2uGR8AcJgIOGb98Li0bwTAAb8TEgCkjUxHgwwbiGgIgFUa6J8/wGqCXKoVARcThob0fA2kBoUyVbufCMkjI7FMmqR4zZ4N0VHBGX4hViuLEYJkY7KA3Fl0JZFJpkqFpJVC3oY2t5cldPLDUxTHSRJvIfPWLMp2bM3gpBnPZhPJUrWYrbXmYSuvAd3b2tm/eX5x66yrqkjQMpFN5kvc1KxjfCLAoSl+AV6ZpAv+ifGpmYnXbsze8FK43+H0hsI4FgSk8Hi9ITIp0iwyrwfaGwYAxlAjNPwBOU6h0wH/DAA6XLmgz25Ng++LMgQFEAq/kMi0xKFuTaQNzdHIjIL5RbM+12h226VqNl1f3VrpDFYWm93N/e2treFwuLbQSEBSwMV4buSpJEiqNgLgSnNx0J1v9xeHO2v95eH2zsbS8vpCtdRtAcNtd1vtSkKHqykCzNOsGItxomYCoy1Vaw2IfpCSDOB75rtrfZsBcwJKZXgyIogxgHs1BnQ5FTfMTGmuUq0V0vGYJktIkRoLSwzu8Lt8M55Zh9fro+JW0GvmZRdBTI27/dGM4KaSPM7xhsU7cZxE3ekp29oonaFlGbJHQxZNCZ5BikgmGYSVwqgKEB9FZAOUKSqyoUaTaYDKBGLAyWxqxKETr6gu8unNZF8JU2ZHzVhoFviq/eoV9ib/f7oTtiUDOgNNaQAwRVLVQyIthT1+Xo/JihE3CE4R07XcCICz6REDTmcQ8mdSNjahBmod2SUiNRkd3TRFyWUTeF7lURs0TUdC/qgsW3SUCIWQeTIHaU3YHzZSWqlTyDfbjWrZTEosT/jDrIyr/Uqn3TCUXLG3VaP1tKUlTJKHnRjm9FQk3quVTZ5UvJxRjJeLhtdBRGg5OEN6aMZHT0yMTbtc034u4nX4WRUSTiVerzba9R5qxUEWWQcHh0dnm+JI+uuqD2skC2b/8QqAR93lSdslyUZo4L+wFzOpcBidN7mD7hCSXQ1BDHGwMZLK6KYlUXjA4QjgXAyHP8/QedXJZAScwLweSO+VYKSRxXB8LpVTOU8gWWQhP6V8hKFIhZWlhX6rla/0KrVmz3T7GU5IlCqNdq8/7wlEBVlguRhw9mSu0Gi2ltYW2pC2lLNJTTTjFuuemJyanBi/Nj6O3rxMpaSQwKFZAgbJ00WiJJp3lwTFGlVc4qkYNmjTN9z7rqPrDwnt3ljv/LrxiJmon09e3+2NNWtjK75wwRtnI5O3iGtpOeK/Rlf2xh1rgjWRWb8+a1L59e61sXFGKEoxiQHEi4fv3zu/WM1enHKFs5O/VhZbVthvxV+8+O33H832LjY+/ethq3LvPzw5/dvxJy8/++CjL7/KitVcc3Xhp3/9H3vRlEi4iDDJE3TNiEtR0eKYAMZmDIpNJqigWezc71s0YSwct3Q1lm/kGB0JQ7AhWqGpGNfYXtQN2kzFYmHRuLXrteikxDO0tpPzstmVvc01ZGHQ6wEAd7qIBNsUeMnuKlkFAN7YOBq01+aK6untWGmxv/+ffnzx8vuXL776Cjjwl0/P146fnDYyq5fvHN239p698dbD5wfDy7Xm7ds3N87f+uDNe8e7qFXqEKjv4f7REaK/O8Pd4+3O/CBXTHQucsb8cvfubz54+41333z++usIgR8/tmvQD2wAvgv0947txnB22m6vnW5uHh4doXmjn6eRjtHpMMLe0RTw2dmts/NbJyent+6fbCwND4adeGVlc9BdHAwPbt19+PjhIxt4EfTaBPj+PeT4cBch8OPbW73e2s726qCZn1vfrmRS+VKp0qz21nd2Vrh6DGcAACAASURBVPee//rvPzou7n///tmTz1589c1PP/74w3d/+KdP9JSC8xmT5mSeZAGAVQm4Lp6tVNIJSs6LAMBJQeJ5NhgNAgNG/AO+ieIZzO1x+sKSzglMhMHxvMXzYV84mG2kdJFFpSPUpwsQ7JiUEzGOhd1NAz9zzM7MjF2bJAAHI2FSUfGwwlKELW3sB/7rA27j9LodLq/Thck0NkNEfM6ZgNMZCOF+12yApmjai5NRkokAVPuDwRBBklw0xFC+CNKpVzXa7w1BXqAJsXqvnEBWcKlcPp821RiqUNvGuBwv2Xc4liajTCxh6YAsmqoDBVVlWZF4GY3RaqKoQ7DQVHtmqJSB+InwF35Y1WJonJhjaB7Qk9WzOeQWjDpkM3ZDZwqBcK5cSZZb7VZvsDTfW17f3D2+dX562lYUK1FMZfKpfDI45Zq6Po1xCBWRVLMcx6cAk51BIkhyCu+NUoIWN2Ms8oDxePxhUsCDSAoaR36EeDgcptAgMKDwFQDDhZqe9UKWhPrJAyF4CwxPUgJNxyS7vRsSByWG7J6QGxRk7PQv5pvzjXqr2yzU56up1PxWd3N3ubsCDPhwf7ixOajaACyyjIhaTQCBUSNQIlso1Rq95eXF3gIa/RsON4Y7O2tLa6udGvB9YMadVg3SFVMTyJEQh2wz52S2WCkjP8JGa2FlZQmVrNeWdMF2W4JsgBMoUogpAMBaTLN7c1LZQj1fqOaAykliTKRIMhyW6PCM3x2Y9cxOA+lnLDPgj+dFRzgyM+H1EXnWFYyXszovFEWXH/eNbAVRtI9ntQjk8wFCVWRNlHSJjUhKKEQEMXh1SkrnZSQTw2psipaygJFJG4AzCBSSaNAoPWK4SAMLVZtfdSmjP6EK9RX+pl6B7isAfqUElU6NrAkBgNOWlScSKhajhaA7IGojHSxcVGKFar4wKkFn7HIKYPwrAE7FR1JaccO+mYj/InVsM5vG06Zo6OjqRIIeLEICbOKYh2UlxIAjGAJgHQA4N9dq1EoJQ6A5CiKvhJv9eqdZ0/Viub9do818HACY4tgIhrFqkjTbtWYBnY2buTRTmo8HZmmKYIKu4ITfNyWEp6duuAITYdinDoxH6mhqeq4+16kvdBdW1tc2drb2Do4OTjYkRPqvADjx7wF4ZN+YuipC23qUcMeA95ow0rmIn4pCJAi6fBhJk5jHNTUV0ehoAo0LRsMB57THT0k0kYq7A2U9EE4qODADv9MRjOHBUgX2RjmfAlrh0ksC/APjC8cULtsbzC/OL9dzvVax3rU8PmCWZrFcn+/2590+goOslIYsJJnKZau9ztrm6nI7ny+mU5Zq6hBUpsbHJ8cnr49fuw4MWKbTgg+CEI6gNxoFJizaIxPoPVpGIgMRQA2oa41Jx67/aOweppyNdU7GlPvYtfqtyen90rVm5dqKL1jANAx3dK6F0lLEo8rpvUepgqSNacdj06aY79VueLAo38eJKEWEgp7g6eWde8uZszux9OnZj2uodXpWXf3g60/+/AneG+5+d6EdV+//xycnPx1/+tVnv/7o0x/mhEK6tdb96b//t0dEgidQSsoS+JxpSiSXAHAFADZpNplkMK0wf69vcoTcParLqpqdL3GmYKgCG+TVKKNyna1SzKSzisKRycSjnF/lDZwnotVljeQyje3VteWlpcVOZxG1YNnitlcADAQYScUPNw8WhoOkXngvo8xvtl78x++++v6Hz198+cUXL75/fj48un84nyvc+3j3Tn3/6dM333i2v3uxsn55trlx9uaHb5zsHV8cHR0dAmoeHe3tH8Cv7a3tvd3V+bn5Yq56OxdbW1w+/d2HT997//mbbzx/BhD89BUAX00BXylRnp+frG/01ta2Dw8Pj09OkCbliAAf29ZItknhKWDvOXIuPAO8Pju5c7EHy3mnnckvbSy2O6uAwBd3Hz5BDsMPRo9vF6Ef271ZlwiB7+wMFlfWdjYX5/KN/flsojRXLlSKzf72/trwzi9/9e2b85XffXVx65effvnij3/6ww/f/f6nH9OmEaVTkBIpYgQAGBP4SCiAZ8rVPDDgPB8JROKSItBRL6JaQb/L6QpgUU5E6ioODyHHGFkgogSR0XmWcJPuXDmOUIqLIpAIBfzemfFYKsaStMD5pgOwT9yOibGJCB0KuabcBBuhNJrEwzZWA254XQDSTqfD5Z51R1gSd7Hk7IQNwBge8DiCZJSOuCOo/ZDwOD2BUDCER0kxEmRIP6UYloH2ihfghwNeMN/N6wCh6SJwUxuAY7IIiCIII38+IN5RMoLhfNyAcKYBANs6FTEAYClC87whJVQ1XYwDq0iiyaKUBaHGRCebqiqj2VWaoRiK5xkNzRojPYZC3rYtBKRG2lu5SmkO8b1ep7+0BiB1cHJxdstmwPk4hJ+s6kYiezJqMkZ1Wo7XpICLgBeno6p3gnUDHiHNLWDjVCQYjJDwjl3eICNQeCSKnMDDNBLbRo5IIR+SCfUH3LMurz+I+YA4RFFowFBmTvKotwyVoUXI0REikgyPSujcLzq9fq/Z6rUqkKZVSsVSu7u8jXobdvb2drdWu/WkBJdMpCkkdosOglGWkipU68359sISct3urwyHsCo39zcXF5eXB3NNNIXU68yVkqahiiyFjrF5SdQAMMxUoVKt1pEUZauzMFjdWOr1l01RRkohDJLrgEQByV7SMcXuFc7kCoViIlPN6yJP0RwdhgUQ4pmwx+fxuL1uJywJJmGFsGSWmwlgU5P+QLSo+7m8qadVIa7gkLqhzi+bWaXNdAYXZRZzAi4ZMd6S+CBtRuGC+SgJsgtd1LgQp3Jq1FDDaNgbgV3cnoqJJ6/6gxCIpkZnwmlUH74S5EAEOHk1Bvxvj4H/HRe25axMNMqrof5fIi3iCsv63UFgN7xuxIVITNYqgL6oDXpk6YEAOPeqBJ2KXxkJG5otRWkzYMg2zWIuqlt0TJfR1F/IG2HYbFLhOATAhgTZTySE63E5W8+kitVaOZdS4LNnQ2E+RsR7c916ydTz1f5mjTQKKT0R52BLAGGUzYjRhMBh8WxAz6fIfMEkvIIUwb0U7cKDszx9wzk57r7uG5+a9kSQPGnGyNUatVa9a0thbWxt7Owf7t8EAB4VAH4uxb8qQad+BmD7hCCDEi507mCmYeMYyRwHWxyD/MTtxUiWxn2e6amgylBKGrIPwCL/rNtHSiJhpcPurE76jThkon7gBn6B8yfqNI4na/GMxMzyeZXAPEwgIJisVew0FxYXF4rVtXKlbbq9FCzLQnW+N1jt+FAJmmV5S7OS2XJprt9aHa4Ne+VcAV4mJOYqGXRNXJ8cv37t+mvXro/N8tEk64miTUYyqDKkqHYGryLXK1XWkmY6qYdc3ZvcjY3g8diFM3ZzrHM4Jt9xXmsdXJ/YTV+bL11b8gcAgPHoRPT6nAYZxIOa9fr//VThlElp5YZfoWlZ8FIRr9B3ehgKI3E/s7t3+0E/fXJpxk9PPt18ndQIQhqkf/PH338izO9tPjvtmcUH//zk5t9ufvbNZ7/7+KM/LgrpQr9b+ad//Z9/icblMMFORVg8VE/oMZJMyByOcUmDpuMJFosV5u4sGgKudA/KgqYXmgDAUkxh+LCskLwmrm2kEqZSkmK0VK0/BW6iKSGBoBfaLC02Fvf761cADAjc6/3MgNEQ8BryQh8eLXbWaqZ26xabW1i4+Jfvfvz+25cvXn75yaff/Pru7ua9u42ydefj4yedwbN33r735PDocm7/w8PFO/d/9eblxc2D47ODA8Bf4MBHu3v7CIC3D3b63YW6VajfLSarmytHH33wy/ef//L1t956wxaBflWCBnB8cA8pZthWDACop2fD9R3AX3i0m7Yo5aj/6mQ0lHQKfwYEBvQ9PT27OL91egZf95ZXd/c62Wx7e7Mz6G/sHZzev3x0ef8eaoMePcXDRw8fjPD40cPHTx8eLbeXD7YHC9VCZ6WBuikLlVJlfnV3c3jw/vMXn56Yhz88Pr3z6adffPsPf/nDD7//49+aihENm6bMxjiMhbgOiXPQF4wXqkWDiuVY3BfJ6jJs5mAAR9Vdt9PtC1NAo2DJO92YqAimEokSeFoDAJ6lHMm0hrpa2SgiaQiAHRNiSmKjvCy4Z4IBl8/r9N6YQj3VMzduTCIKTXKQd4eDwXAACLDb4ws4nC632+FjI8B22eisYwqVoHF4VY4wFWVwdxTNt0a8aBo0gCiwEA6wZJDTFDTuSrjdXm+AifFqo5JQDOClpSRA42iASJIlHtg5GoKFrzRJQRIrII8FVNHTTA24BC8gR3OG52My7MdsSqZpMw28JZ1CVnUGGqiVRJ4mEQDDz/MibwEA22rQhRxSwoonE4aVyViJwlyzUW/2+guDZViGu4covVpQFSuZUE0rnRP9UxMuMZ1UBaDkQMh5CcNpGQmGxGKaSOF4DGUJiHkSFIlhZDSI2q2CFIP50BQSDriMzBngTijk99kA7JxxeACAA/aYcBR+CuIDS6PjZXQOLKPHgzAjRBnAYXjgX8zN99qAh3PVWr1WgmDUrVb6e3srnfXhNppnayQgtCAlLIpF8pUsHwMqG89VGnOtDrJwWOoOhtvrSxtHWzvrSIF9qWMbDXabnWpaR+UGJFlNC5D2oC6sVDaPALhRh2uysLC6vT5YHuhIfxsYMAeviqQUGQGwFAOibUJYzhVyqVwVyLQOGEkB2wiGOR4LwgJCJ8AzToxKW0E8nWVdeGjqRiBE5wwHnhT4uBjjDW4mJKpW0nbpBUqSgHgsC6SXVCVVFyCxieA8i47OcU6kMCRISQInFlnRJGJpy4RACmTNPr5FE0VXJeYk0iJFTVmZnyd//z0Av/rbEeEbCWD93IRkH+Ma8LgKnaEImSP9nnAMnWCYCZpURaueK0HOkcsjMZcrBvyqCQvNEAP7jZuaOhKDRmNIuqYl6zlKTkcEUxUYkgj5MElIxGMkE+KRwTcqQ2GEbkqZOTQHXCmlkjERMqIgLii41WouzhUTeqY2GDYieiFjxC2eExgCIyWTTXcrzXpKFMNatmC20xbvDVKUIBopxbIkjWUUacoz7RqfcoUgPqMZ52K5VW02Wt3Fwcr6cGML2cUBAFtXJYBUcnQa/DMA/3xxRofrox6tRMJM6xZgcMbyhMlw2AnBIBBlGSLom552I13ToqEkKAILer0+Uojhco7zyBbnlzI0GfGi2MKoQbEu4bjajMdlxkWmUzTho0N+LsWayXarvdBdahQg4WybHj8jyEal0V5cGfYDQYJBB1OxmBXP1ufai43l1dXt5VYWAbBmqGbE750aRwA8fu3atTGnQqckXLbH91kOzepLMSTflkbpGtr8RiJuEBOxu/WJZe/29Ts3pKOx+d2x2O2Zseba3/3dTvq1+fzYgj+Q92us8Np19kiQMO79xcTz/+t3AisGCAIybMzjcwMRwhI1wkdECJoL82uNkwcLqcOHSevmnd9sfGTFg47EkRCY/92PQrh7+vjyV2rmwX95cvjT6YtvX3z62W/+uspUM81O97/8v//tUzkRjYRdEYINBcppVaMJAOAIxgAAU1acwWLF2sWCLuJqe6+maGq+WmB1gZOjHKHIpKjG1ub0jJBK8hJrFPvnIR1IdISNaMslgkkMhrsDYMDLg24HHf+iU+CFVwCMrDnWh5ubB53ufNpsvJWLN1aXfvyHL7/97svPvvjyi88/+/T+yeb90+1Wcv/TW292O0Ain7++/vC0dffNtc7Fm7/8zeX+zsHRzVvAVQEzD3YOdvcPAIN3dvfWO61OSUndrKrNQef4V+9++Ob7H9x97/kbCIAfPXzVhPXg0j6hvY+8kIDXnu6dHB9u7+5sIR2O48Mj25RwZEs4IsNXPPjm+enJLaSS9eDk6OxsD1X4+tn00v7aUntxY/v4zsXlo8eP4MEfP7y62YIcSBHr8uGTZw+PV1ch6VjrVvJLy62MmS5XKoVqd3Vre/3Jsw++fL9R/O3HDy9+9+nnX/wVqUH/+J+3FIsKxDSVFpgADzGdpCjM59PSpYIelREAE7mUAHBDBpAEhM/p9PrDJMPQOMClP8ibWhx2ZDiUNSGiOaNuI6lyIpAfZBuAw0/4nFNsSuJIWea8rpDnhtM9G/J4Cb83ND3jGHN5JMixoug7EQB7PR6vz+90u92uGR/H86QTCK/P4Z91YpFo0O8g6CgT9iKJRTbqcwETCoaCOM2HMSHq5w3UbsSF4K/9GAuJaC2HfIcKhYKVAYRMJiCSKzGbltlDSDQD75YiaTmZsI/WVEMQgQXHdE2ORmBjsYpspE2GFDVgY0ibAc0pKrKCWryRgCKHJJxoUQYAzmVTyA24lE6gyQokOZiKG4l8Za7RaPdhaS6ubGzvH50enZwtKrIez6fSiazlmZqcIi0DoAkuPmAki4VICSgvvDRJYkMotYEbS0cJmkWeK9FwFAsFPD4f8qNCGEtG0BQShkcCQQBgryfgc0zPeAIYkj8JBMNRhkGzFQKLmC+ympAR+xcA7ikGXjnL0r/IIoWvcr0y3+60asVKs92C+2u7ewvrOzubq+gMWDXUGHz0tGBDN0r1FS2Zr7T7vd7y6vJCf3W4tbmxsb+11F9d6rQGvU6r0Zqv1EsZuNYIWSmKQ0bLkpbIAq8rV2qN5lxjfqHT7KwsLy4tKKxgD1IKvMAREUlURIWTACJNpMiQLZSKFaBtCQWIGx7AQp4oLwRCXp9zetLlnXaGyYwRiGSzfIAMTEz4MCYjuCFG05KmMgbl9fAIgOM2AKcTyQwJq5IIqYZsyZShSwG/EA3D+iRVQ1HyQNf9lMHLvCqHi5ZlNwohr1oEEwkz90r0OV9EVoHo/s9iGaPj4ZEE1ith41etz6Pqa/zVFJIFCGSmkoKYxiN2BSmixRQplUhFaZVPNtLlfLGYh9+F//8YUhJhnGGgdWoia+CrErRs1VKUVGEUNFlCYAGPX5NNMxalozLHqzxDhUN+3Ejo5V6zVi6hJmg5RoUJH87FwkajvTJfzOip+tJGO6oVcrADAIA5AqNicTLZKdbraZmOmIBAKwWa9wd4wP5ktVhqzJU0Rktfm3ZNzTj8EYpT4QqlyuVurdlqLw4GK5tbG/t7W9s7J0Mku2oP/toV+PgIiK8qz2hQOmklrnqg4/Y9K57RzIxppoq+MHw2DofL7Y+wDB7wQahgeTFS0eSswIT9zpnZMKWEmaLijySEAJ9jUJjwu31UPETVdRyXWilVZjzhZIEngzQWIC3aTHZbzfpg0Kukluod0xfiOCFVbyDHuYHHT3BIHk5WklaqWp8fNIG97W+upPPwMnXY0LjHOzMxOT5+/QaA8JhDo0w2KMBlFpF9iiCjOhE6Z9EUBRJPMxu3TC18feqwMrbhXx67O8vtjdU3XpPOb4zVV29c206MNbNjbZ8/G4yx8rXrjWOexJjjmrb5Lx9SVChIh0ncC6m1E9JeCWIwclQh6LB42D2430vtPUgnTp7/cun9WjwMRHk9OTWVJIn5g+e3P20iJax9AODvPv/iiw9/2iBrifZa5/t//e/fchnZH/HMEHzAV8gqBkekYmwkEE3HOSaR5DC5VLUBWKptz1sKl6wUBUNiIZOLKEJElpW1tFGk67BPZMscrLi0hMHzNJ3rq4Q61+7015Yg+e63m5CWdzvtDlCOVwx4uDlEbgTLGyvNrLl9QdVWB/f/5YsfXn7/zZdff/7Z119e3l88fmM4lx++c3lvv3H6zhvv3t17sLv04P7e1u03P/jlEZrLPb0JUHm8v3d483hv9+Bwe2d/b28Dnq6USpy2jPLy2vDXf//+W798440PHj9++uwZKkC/GkMatUjdf3Dn9sXFhW11tHG0DQ9wdHiIxLBu2i7Atiq03YRlt8menZ3evHVycgsw+DYQ4dv3Lg7W17cPlpJa63il2V7bvnn79Pbl608u7z98/dEjVOu+fPAQkeH7l0/uP3p47+HzJ+cbC8OT7cX5Qml1s57Il1LVXHGut7W3vPX+ex///bl166/vPvnl1x9//v1f/vD7H37438+NrBCUdYPhGL+EapO0SIb8arIIACxm+YgPj6e5KIHRQSwYDHkdzkDIVh4nQzPeUIBPW5om8cFAIcGwXnc4qOUgjsWYKGrCCgX9XrfjBpdSJDomUrOuSHDG6Zjw+jDCH8QnpnyTvhmGp5EmcxQNOfm9yFve7fa4Xc5pD6sI4SmWcs64g04XFon4PFN4FKeCbhzN0AAD9ro8oXCIAIoYlQkPq6MKsoD7Au5QRDBUo1JCkssQ01SAYSQPaGgxYMCwmpGbILxPiMARkpEspMIB8ceMKYYhQxqsRyCzFWhdi5s0JuYKtuW6mczAd2mqKrGAZqhn0pZi50VWQ0LQiWwhW06ZyXwuZaWzacDVTKk41+kuDPrdxaX1rd39w6PDk4sBJAbAZiCma1NTDqeQMdS4LhoKzaj0NE2JKhfABFpAM6JU9EoxkmIoEulvYGGPFwthUQo+hlAwhOHhCOS1GB4NXgEw5nHMegPAgFFnGokKZHyURNIW6Bcy/kPdXhwV4dFUtsBTvygUc+lcuZgqIV/gUqlabq2sLy2u7W1vD9dWl9sVi0fmx8hPl+SB9os65AQaZA+1ufZCH7jO9tIShNv1DUju7BS4UG0tLPa6nVYZNb2JMbvEzyI3Jg2gx0yWK+VytdFqdea6q6vrK80BJG2MAJhAUDxDkKg9Toih9l5NNy0jXsqW6nPltBFTJTrs9wTClCoFPQG/Z8oB0d/rZ3JSKJosxDAfMTEdIum47sdzhqxmAX+iQToxl0QdAJASZU0zm1UZRiAxTJeUuBBTRDrKxnA86KAleFdxC/kCq7LMkzVMLtoqGvEEkDGk7Iu6oEaiiUjiDKlkjMSfU7Zd4UgceuTRgI6uATaTKctMIrEJRJwR/FopRI7iOmr/NZOUqkYYYJdTARaNvmm6QiqsXCjmS1dnwKiUgkaCRz3XiCuOlDxsBIZHAypsoDMT1WyUtHAhyidUyNtoLBiQpYQpR8kwTwIAs2w47I/AamzPN9v15kItl7QoXoSsg5Eps9caLpQyarWysD7HWMmkqZsKJEOQkQpKwGzW5nspVsA0I51cXNR9s/CDpgpvfK5SbBXMJOkgHJMTnlCU5mImvKdCvdGY73ZbC6vLy8PtzeHO/vHpHhZPIo/fK0UwlJAkRqXmNCrEA0tM2HLZV/V6O42x6wTxPDPLcy7flNvrDJFRKuyHdCugi7SZ0lSB5nz+WReGulCKpjucj3nxLM/jgbDb54wosWghQ+NclZYVCfdbBR4LB6JOSiclo7LUWqout1esynJX9wdZnk3PDzqL3bWeO+JVVBoQWU3miqVicTRktzYslitJy9JSJuN3O6fHr01O/t3E+MS1GSWaEXwQt3h0NMNAro5cvOBmmXFLgeth6TmOiV4vtcaWZlevnY2py+P1hde042vj5aWJ8VVlrJEYX/CE0x4eY64rp11JnI3IwWgkmVMJWJPhoK2zEyFteYSozsVYQcDV46X5h6vWzp2qfOvyg5WPWibuUwL15wclh7veHbx7+y1z5vE/v3n0l7Mv//Hl715+9JdNolyqL/V3/uf/+D6SpR2hSJDQI+5MWTGAvWo8HQjmMhyVSHN4rFi+t6qyhFLfa8YNNletUwLPyCyHmag7I7GpFxrMAg9oHC8s6riZ0iOyGO7NkZTWHNRX1xeXlmDbz9e6SNt2ZO4yWAIA3lhZ3d5ZHx70VxbbYvG3KbO8v/DdP7z8w/eff/vy5VefffPswereO5uNevf1Zxe3ioe/+uDJ/duPd/pvXOzuPf7VO5cXt2y/wJPjk6ODQ6CsuzunB1sHe1vHw0GrW6lYN7eE5Op6/zcfv/X2O2+/9eYbNv+F29Onj+zC8OVIsurevdt37gADPjs5hEfa2dzc3tzd398/ABoMf3Hz8PjMHgpGfsCoDQs1Y52OiPH5OQLus7ON4cHJSiZZHy41m8s7x+endwHjnzx+/ASw9xGgMJLIsqnwo8ePHz15/dnt7eXNw52Faml+ZVBKZgqVeiVfW9oc7u18+NHXH67mPvz6/t3ffvL1Z3/8EwDwf/ydVdAI2lJpnsVoGscZU8GIsJIuFZOwROWwn4rHKWQ3SqBZMrdzdspHYCTk1xgaQdWyEApknvAlUyyNB0I+PS3rkBFy0QhNIplin9tJmRARdQaf9Ptdfs/k9XDAFfz/yHqvJrmubE2smwZAufTmeO/PyTxpTnrvfWW5LF8oFIAqWIIEYUmAtsnuy2Y32fRstr3tZu6dUehKD4rQv9C86ElP+gNSKCZCGt37oLVPFtkaKYNFFAqV7uTe61vf2mt9XyRMXvKsLK8s4nEJDSzhGBEJwS/7V5Y8iMMCTnMK8mrAAgC0S4AubMQfRHO7VBDgmuFJ32IIGQJHcZoLRWUsaKQMZADABPwERcC3ei6fTBQb1VK5guyRIcFGVbuY6brEazKH7IJoAoJ6JqbHE07WVd1QJNQIJOEYBBzLEDktnc+mClkUAe14xolbMV1SREXmOVHVJFpCRV276GSAYufLWbtYd+IQg23TSuVKlUKhlHdK3eF0++Bg7/DqjWtnt2YA9Cik5p24b5mUaTMHeC/rkkYbYT+wUoPysyQd5cVwmBdYVjN4XkYjowIaekIVaAzn1HMzJIyiMBL4AUcBAIcjIV/Qt7zs9YeiYRLoMnxgcPlpnmPcir2iuULXSFZLkmheESBt+VEGeFahWoPUAVCx2+s3mt3V7d2N8c7O7u7WuN9PoQRfFQTUBQ33ZS1N1pKlRrvVarV7o7XZ1vrG+nhte29vf2u6vr66OkBuDO12p1tJ23FT04FpU4xiwXfxFGpnqiDhj/ZgNOqONjY2p61BXBJdIWxO1NBsrg4EHQDYdOu/SaeSLcKLc+KGAulHNAQphqyQ0agPCaVdWgoESUgROSfFRcL4BU8E5xuGV6ikE2LSUjUxjrpwqAAAIABJREFUSphlFx2zTgrx4GxCpmk6HBLjum6hN0MrKRXDwxQXt4Q4ZEEUJliqJGQlHgEe4ICDBoFQT2sy8/280fnEUT4/b4V29Sndr/kpcdqFYldGC6Al6WpOuCVWt6kM1V4RsLMJjRFVGV+Kihpqgo5rnCnHqpUSAHAZ6WDl5g8/h3YXgN124oTtHgPbcaREiQbndKteihNFVkhYaLKMBABWUwmd5TBZUGKKIJB4kLITiXqn2e1v7raSBQc+T4pkCgZT22+MJvmUXquNtztELFfMJBJI4M2dPceS3VZ/klfEqBXPpifTXNirGFrSKRSLtUKuVe6MpOWA5+JyiOAlJDOaypSbyOWqPNgYD3dPDvb2j3a3Dy9LqCfYSSWQEVRy7nfklhSyro7J/IjcrVB8f2g+z3JSqYIZYEVfwBMKB0mOBQD2L/vCcYMxswCHMucLrXhCpCgQRoaKZNJkJI1qG0QkshSRDNJOkb4o5MtpFQ/aFZMiolyQ0mU53twYTxvdyW6lPlxPeKIir6nt9f4UcDbEBBTkhWkkMk6u1qz3uoPp5mx7u1mtZSETdBJCyLuycOGli5devPjShQsBg8spgkYxDCe4AxUaarIwdMhWAbfUZCaWyHJqfWGp4B96xi9fvaTPXijtXCCuL75QmLxwcca/UEpdaC7jyks6G1levyWyArzPgJAqFw2UanPo3AmNakSXl0Uiqqoi7FhCOtrt3Z2mj27V9KuvPl/7WTuOe8yEJIzvNaKDK+OfPbrKmU/+6dm1b67+6h8//wgA+JBKtGqVtcm//uefKWmJxqkgl+QCdk02NMaKSzwWzudlJpVTSK3SfHU9qeFG67iTtCW4BJKuiBpc4TjHK1r2wC6X1Q5wErVRHnC8ZccgDRJ3y7SQHs7aG9tAeMejUa8xOAfg0di1Ytja3t4GAry3O5w26+mTG3Jpun3/v/nqT998/btPf/X1x998cO94/9HZarn+6luvvV4+e/7s6e3LTze237+xd/P5B8/uAgx+T1BPjo8BgI+Od4+u7B1f31tbXbfL6aubTm7cHXz487eew+3Zm2+++QQR4PkBsFsZvu/6Id29c/PO3Vuozfm1Gwdr47Xdy8cIflFb15UrV8+tgK+6f/y/b+i5T89cDL5xtHt0vFl32rv7A0DgY+DFrwEEv+56Ptx/7f4PtwcP3R89PNvfu3ywMWyUO2vDch5NN5Rr/c392eGbH/70k1vFoy8/vPvuJ7/61a9//4fffPfXr2r9AkvqKqtIOENjBG/HaIbQAXnikuzIZJhy0ixH0WgGOAikM7DixyM0sNZQIBTBraxpyqLEhJ2sLGAhEovnE7ahSDzNIqkDZC64oMAjWbocDfsueVlq+YI3FAYWR3oWl5c8fgZSTzaIMRTm8QT8Hs/yks/rXVy+tLQgizSJiVG/Fwsu+8OEgK94SYoSCQ8gCifQgWWfH7Uc0ZyEETqNGQk0J2mx8JxRHIlO5B0kK1csFCol2LguJUkkYoYisjzQV0j1OZbCcdZMp2OJuJ2AuBwzNaQHLQk0DZmtaulGErizU8y5YyCAITHT0pAVmiKgo02RVVAvV7JRhAiMxnsLsH+zKSRNiZ4IeByElly54BRRWWv/5OTG7S3LjGXtbDpfjHtDNCvGY1rMikmkSksBguUFgwnROI1xQijMi8i6GF4pDS+WImkIRHgU8g1WgiDJUgTkPwRGcCRkzkQkjAQqQgGPxx+M4mheGyeRcVKU4l0OzaO+M10U3alFUYW4IUgq96N8pVoqVWqQo9SanV6vN+k3qt31bWSysLsz6Q/SsqormsADAkMiIDKaKFtpQOtyrdXtw1Zbn+1tjdb3D/f21keT6WR1Muq3m812t11O23ZMQ9VumtMsAxksIDvdMmA3APB41Bsi96Re1wQAltALFDWFR5pZaNjYNJArIMThXL6EANg2DcFt0YvSuoKHQt7FSDSy6CNJPpuicKckrkTJS95QlK9aK1o57VBmDF7v8ot+OeFavztOEk245CyG04gIYcssZAamKcmWjRFkOKzHeTOVMgSSsBSIeilGPfcORHdOprPnisyuP++57e8ch3NzlUpXoMOF4XQOcjVULkaN8HDPc3bndhohuEmgXgKbdQTIqYSoB5MhZseScYUztWStUiqVAYWLxWJ+rkaZy/8AwAiCE66QZRKSSJRIxu24pZm1SpIuK2LcNmCpcFgUAbDB8VHIEWOqwOBhHw1LtzVpNxurO91sIQE5JU0oaVsq7a/tDMoZq9kABkzZ2SywNxPyEobi9Tjp9Nv91YImk7adTQwm1YBHjynxYqneaJYKrepoT1pY9F0MBgGAVQPZDxTrjXqjM1zdXB9O1qc7EK9Orm6taKjYc552oNozGqhy1TjmhstZ9FdXA9pF3vRcIRp+I5vFokLQ6/fA3kcTh7h/2eMzbErNQVqjUMGQZ8UXEWSaL6qBWI6PJG1FoIHqrgRpk5CygMZmxcnqvEcpJ9B0FhaRTM7sbfTXJ63Rene1tplawiXOcrprg1Fvcxwg/YIASZHpFJxso1Pv9AaTjZ2drXa2mIUrnbK5wMrywoULFxZfuvjjF1/yJTiToERWA86sKOh8CJ1pwY1FRqFSPJmy0ooyxV5a9tQDqy/tvRjrv9QcX8CP/C+Uxi9c3KBfqFsvdIN+dUESSF+5tGyw3iDP8bFGQeUMHYDOfTRRFjwLsbCPhx8C4ZGOL4+uDQvHN+r61ftPtn7WTmAeIV2tKM7Y7F3d+fnVk1blwd+e3vz21ie//vTjzz/683W+mu/0Wzf+0//aZNOQwQoe0mL9Uk+1TMZMQG4cyBQ0OlnQSanQvr+aNIJ666RjJ5R0taWYKrLrIlETtFk+TlaSTlmW+WS33gzD/pRMmrOOkqRcmO51J7Mxar4a9Zq9ft9FYGSWtra+OZvt7c12L++vr01z+eI/5GO9/bU//uXb333z9Xeff/bxdx88Ol279+qoXz795PbtwfTWR0+OT99dv/7GlaNbb3301s3jq2dXgZZeRQpYAMDIhfDq3tGVg8uXVycb6WZi68xOT7d7b//sozfeAgKMAPjR4ydPnzx6gIioi8Gvu47Ad+/ce+X22emNm2eH660S0icEFnz55MrlY4TA12+coSknV4wSkWCExC4on53duHaOwK9c2929cmWctceXd4bd1cPT0xt30UEzYtuoAu2SX3R7+OjxQ3jSB09fO9w6OFgfFUrT2RB4RKlSLddGu1uHNz949/OfDAsffPvK65989MkXv/3TH3/7h79ulHNMWFZpUcJZBid5K8FzhJHOZpDlqMxiZCbNcAwH6XQg6PfC6g8SUUZiyKDXFyH0pKogsht1MrIUCdBEHMgdUC2eYaUI0sQIey+qhbiSEGVfBPctAPQueMNhMUzgwGQWliOCBeGXpvAAQLXfh3z4/D7f0vLCyorGA7SIEb+XjHoDwSgVWPaQkJ+TKzwSkqCDvhV/OBIF2AK2ozOEgQSvLA22ZzCCQ2RT87lqs16plAtlQMQUqiIjKyM0dCooEO+Bd7EMCQzYSceTlmUj6mXFkUcsUHmMIBg1kQAeWyrk4f4oamTTSAYLQEjQDAkp0EmcgtwLIXHNQ3jJ5bPVpOYUMsVM0nLNhXOFRrc3HLTgUaqN/nRj79rtGTxCNp5L5crpsKhxcceMGZCCYCLFByCj5nUeIwFBaT4MPB8eHc3rijKa/gUARogKCYfAcWjMmiIJJPWIR5AoVhgNcKEZLn8Ic8WxSBZFA4ZDfggYwbgZtWs1IQmcJqDjYVX8URHWBayNSqNeqzdane5k0m+2p1ubAI1rOxv9Zko14Xqg/FuEGIPIqpLIpDPFfKXVGwwHvdXNg8Pt3cOj/X0A4MloPBj0e0jsuVVK24m47ta7eR1pXcSSqDZbqjUbdbhrr90ZrG5urvVMeH+QvgkcqogLGpLkRGIpsWQqUypk3MnhihPTTJHEIPsL84YUCYYhS/P7IZWTY+k4ThTKgjdKLXgjjJKL++V8MosKyvEE7ZUr6IGQxEMCVX6LjqHEZCIKz6TKppM1eTrOQFYZFuOaZmeSGhuRdE3jMjLjOHPKmZrjRPbcjvD7cd8fbq7wSgZJMc4B2DWMdvuJzu1uz+eRcm5nHgRy4FN5k8vRgiozIT+p6LpmO7bI6Xq6AshbqcLngSwZiqViPgf53PcA7Djz898UskWykRxqDBa7blZqDlOKi1bSgGUiAgArSQBgISLzoqlwJBbyMJlUuj8btcutab/hAKQSFG4qaS01u3JrWM3G263xVktGc9d2Ci4/TxGcHqezw3ZvlFMkJmHnk73Vst8LS17Pllu9TqPRqvYOjYsrwUvBCAUZomZaadRkXas3W83+ZLwG8Lt/cHDl6saChHRH4LM8Z7eZuTK025qVOufAqUzOSfwwJPy9f3CF8kOiHVjwuKfMLBlYWVrgkiyXzdpxmaLDfq8vLGiCVDT9siNQakJGsm/excUVPhDOxTRebieycdXDFnNcOESQQS5GmOPpYHOt2xv39qurSS8hckamOV3fAlT2osEtjpcNp4iSjGp3MFrd3NtZb9lOBq2hGONbXlq4dOnlhZcu/fjFH69YbCJOo4ZygaVJ16CbQvuTk0RFN9Aws5U2qdVk5IK/sjz88bWXjPbLndIL1P7FF9PVF19qUi/X5IslJqiROMEGgiseeG4SSSA1czJvwoUWJXREJipqZKUU9cPjy5zG8cez9f1W+fhGS7/24P7Oz5o2fkm31h6nig/w3sHsF6+86ZTu/tOD23949NGvPv7485//9a7cWZ32a83BZ321JWFhfhHT2AC5atgxSktAgPamSzplF01SyrQfr8Y0n9G+2jZtJYkAGHaJyDAmJdpW+zhVMRpZTVPzpWmRhDyQEXk2t6EQRm11v9PZGI8Ad4fdZrfXdznw0GXAm7Ptvd3t/cu7q5uNSmr3Taqxtvnqf/ziT5/89pvPvvn0028eXd+78upGp7z9we07s/aDn94/u/dG6/qzs917P//w8enxNQBfpJeBmpVPUB/08dHR9cO9a0fTyTRXya3eSKZWt1bf/Py9Z++885ZLgM8B+HXERB+iKrSrUoVq0Hdu3rx96+p+t1FB4a7U645mh0eXrx5fPTk+Ob1+ZS6Mdf0HAEb09+zGjRvuVDBySrp5drS9PVuH5HPveLW7sXd47far9x88eoBA95z8om8fuC4Q8KNnz+7sbc52NxvFztp6G+hWpVIstVd39reff/gPv7ydP/nyzRsf/uzjT3/9j3/6w2/+5Wq2pOBmSrN4nOcZTjBsno1okPnbqpxWIXynUwz8nCaR+ONKILgcJjFeZcmg34fRagz4Is6weDrJyViQAgaciqFiDEsxOE0BYvgvyhXdiAviMkaGLi6EQ4sE7uf8THhxJXDpUoiP6ZzMEIHlYDiILG783oA/5A96AyvI5xATsaDP61n0wV6PeHyw5lXSK0qQc5JAl0PIm49mmDChUbiVjMdNXcYDkRBOIS6VR/q3jXopM++XcVIxCF0m0pRAUlYs3M8FYBMVyWJWwoobZgz+XYd3RERwktUhc89AGCxWCm6lzEnaloFK0Aoivmh0hnWFcBLp/LwJK14opJxkDMkFmmYcleUGq6vrm6vTrb2Dg73Z2sbh2bZtWal0DtCoIGkUk0nrpkBzPMvjQjjCMbwioGGvMCMSwGRhC7A8TcrA9yWJZ5ERUhTHKX4OxzSBoQ8FwBZwGRlJBQMBn8cXwggKNjaNTO5Rc5PCYWF4JFUSJcT+3bNvpNsjyNKPUC9RuVartpBQYas/2Vrr1VrTrY2t1V5vNOnXbRW5JANUz017ASW1JGqVAWJabw1Gw0Fnsru3uwfhdjZdXwcIhh/1e512CzHguC6qCgC9GQMWHUvAespVqrVqvdXttpu1xnBtczZBWtBoLBkAWGKRJvZcbsuMx2xk6lesNJqVtC7I8D4jXm+AlHgMwwIrIQz3RfVUvaBjUiXDwAW4GAiTWtUI0/l0PldBApPEklK3nWwWCTGjuI8krURJpXBMsaw4Os6XKD3OhHCCMBKKls7ERAKHxIm3U3QCSCwavHXRD6jn92ZImfNxpO+botHQ2Zwguz/IztuLXNaHuHfqeyukHGrxtW0nkbGTeVV0CFmTKV+IAfzVgRJzgm5kIE8ECux+FXP58wPg/y8AuzfIIxENTsTjeqGSInJp3kiq8PGIkaguJxADxiSGNwCAqfAKARDY3Rr16v3NYT2jChhOE5aVkHL7+6druYTWaI5nXQU18CYTSGgcNoQeY/OjTm9c0BjKtsvZ8XYhEFI0VUuVmp1avdOsTq44F8PBZS+JbDpUwzRiqRw65W6Mp41Cd2M62z85vnxlN6il0kg8MzH3RJo7/7pMOOUS3eT3APxfSXfCFUxWeZ/EQzoe9IVIWqCjkGxfDNsckcjFLYVRIkG/P8xrMp9NBpmcTkUUlsQ8AY93cUXEwqUCQ3M9J5eSAni+puIRjAqxOq5ORpsbncFwrbU77sVCEYaXY9Vufbi21/diIYEXeDWWLEAKVKl1R6trW7uzaQe4uRWHN8H5l5cXL1168cKLwINfWjbZdMmHVHDhRlAsj86BZVVDOpSxWCodj9s5PTjoW97l6qX2C1de4FdfyFdejK4vLOl2wOvwER0iG8VEKAh5EcoXAdpMUiyZbuQU3tBEHc0coLE/3rc4UXy+Fdh+Oiafbcw2qqX9045y7fGtvZ9UYtELkrr5oPD+VxdHVzZ+eedUrdz+p0d3vnvw4acf//LLj//8utRrr66tN/7T//kOW42TGB2mTT4UHBumRYlxjuY8yZLpArCabj3bNJWg1braUmNqstZCOleqRAs6Jafi06NUUe/ZumaUCrdsOVZIwGLjRh2KSnWHe936+hgd/vbbzQ4C4AHqgkYVaECg7e39o/2t6ShVKb5fVzvr63/+3be///w3X3355Se/ffRw8/DJrNOrP3lyeqV29pMPr7/2qHP/yd7s/Q8+enz9+Oz2jZOraFTo+rWTq1eO4Xb5aOfkcP9kfzIpVuul66XYxmb/4a+e/+zdZ++85eLvG4/REDBqwJq7Ad9354BfuXv39Parr948mnba7Var3e31yuV6f3Vz/ypkiceXT64eo7FgVx/6/IbmgdHt5s05CF+9/eqN3fXda3uNVPv4eAqB8vjW3bv3nzx5iJ7qwQ8IjCgx4sFPX3v47N7WZG82aRQa6+NcplAqFKrN9sbe2s0Pnv/i/Unlvc9uP/6HX3z69e/+9Kdf//evlusGribjNk9AbOdly+JJn5x08mmJS6hMGE87nEBDqgdR3r/iDyyFsDAr01gg5MMZ2UT2ubB6UkZUoqJ4JFlO2aZhoDkakqUjoZD3otxUU5rMLHErF73+hQuLeCTAehn/oie4eCnIxiyRCQQikagfiwb8kWgwiFRgfcFleFI8LJARfzgEuELyYW8AmJiABwRkNhz1+X1hRAkpho4yOhGNZZBOrkqGCATAEMoL/Xq5Ws1DnCwU85kkRKxEEhBY11F+6VaLGIbEWROp/sZjCXjNFkCUommSyKJzVzWdQLCRzSEATqeTdjIBoduQVYWDfwaOAVkpL+lqHJ4gmysW0pWMYwu8YSA/4HyuWGu2B8PecDIcrW3vH+5Oe+u7l9fi8Xgyl8kXkmWLvEQmNEmiLYrheQgSGOrMFukoQREsklwkZIkkJS5K0AwiiDRNE0D4YafKLE5yPBUJYTSFw28jiW7UvxYIBoAZ4CREBeSTREmuuZBAQnDQ4YlkTXH3tYQkRERRlH6E7KIqAMDNdqdVq7eH62v9SqG1tre/v9mrN9odSzZNYPqo5dH90mRZh9QiVQBm2h1PhgiuNza293f3tuDP1cnqeNBDt2bFAYgwgHULnKibaAopkc4V8vU6AHAbGHKrUumOp1trcQTAAlKilAWK093DNCueiNuGZgMElqrNVi1j8DLq/w7TqqQLWCSCksDApQU/ppaMCJbtxr1s6ELYv8K3FIwtutzKVuPkglRMuMeNjnsem7JTOZVVOdovpyzEHmMaJzpcACP8nK3JFhKpCCOlEjUjqfG5gaB7iIt8epy55LPjOg866fz3XVhoLPhcktIFYHSeic49AbVTqKs35bb8Ivs9JD6RTaJKjAyvTVUVwhMRDEO3UlmThrhdqEDsRzPA8OV2YKES9/+vBI1UOBAS2yiDsG2jUHMIp8CaaVRykvCoJiVsg2VJkRYspOse8eBA4Qcb3XplvDeqFOISLHo2loyx2b3Z5UkeAfBo1tWzjm0n07BORIrkNJPOjTr9aSXOsQm7mhvO8rAWtZjpVNvtfKXfbm8cZy6h5g7cHYWFTSnF0YF5Pl1uV5L58e7W/tWTa2f7fimRhodN/XBL/x1p5yfl5yXo8yml89K04yQKWoSXwp5F/4ovSqHw4PcvrehcWMvCHuclHEnlUbKC2WU8UsqQXklmIdfHMT9u6WypzXFUteTkJDyQbBhkNMRGaQgZvcH6encymtR29/pGwIdzilFowBWfrAXxCMsIYjyZzFTKhUqnO5isbW3PNjqZbBo5sqTEkAeVoF+68OOLL73848WYkMovYhxFI8NQpCLjirWibgkkmJ6I2bF8zB9b3Q+9nPWUX5y8KNYvOdkg75CMKGuUxBA8xvtZFsNYBigMHZUYKkxLTLxW0HhdE1VR4CBD5jht5cJWauHCskCybEC4srOz3ihvXOnx15+dXn63GMMvctr2ffmXt33D441f36+nGjf/+uT253d//sUvPvny498/4MvjtdX90f/1n99aKdsRhiFYgwv7AUlNhkV5vydRMGi7YADI1t+cGULEqp90FENJ1lu8wjOaxMoqraRjhzuJTKyrK7JeHj4RLa2AlHjlK+WoVJ20Z/3a+ghgd9BptVAfNALgCeD++sbWbG9rdnS0NV3vlI2Dh2J1NLn/L7/97jfffPn1V7/65qf3L+8+uN6tt155fvtOb+fJWzee3Oo+f3J09M5bv3jt7Mr1G6enN6+dXDm5fgr/BwAGAnx4tHflZGt92nDa1dOaubHevfv5+++888Gbbz938Xd+BIzKz64Qx/35EfCd27dvv/ra6WwA+Avg2+32h4Neu15rT7Z2j9yR4Ovw5XZBI/qLuq9c9AUUPufAcLt1+/rB7sHe/iDb2D/eHq3uXrtx896jN1HT1+OH5/VnQN6HD1H9++GTB68/eXrvaG17ewzLa7PjDlA0mrXB3mz76fOPf3Hm3Pjt81d+8tlnX/36T3/57X/7bq6ITB9jmkiyVBTZP4q0D5LXXEZiExobJpysABsTwyKBAER4/0ooGmRkGg+EV6KsbOmqiFMcEZeDAB5YOF11UpYGhAapxFDRYMBzSWrraV4MLxJePxFevLS04sV5P+HzLPlXPGHOUnB4KBwjgM/6ffAIEUB230rQK4kMHhKoqI8mvCveCGzDsChxPBHhkf5byOP3BcIYFqU4Cuf0aMB0kE6BDgAM5BENB5Sb1Vqj7OTq5XK5AKl42kbcwdRUgAUezSKxHHBJHh1ap2KxJBLltQ1gYLouMxzAhoGwspBLJ8t5FERsK50EZmYqqimwssyJlsryHACwhRpW86WCk1NkmdZy7pBKNlOotjqjUa/X78JuPrhysre+vb3TN+yEk8sUS6mitAJxmFUVSuExWiBDXgYZ/gpshOJpCJ0rXgBkhmXxMI5apziK4pg5ANOaAH/hyDCGhqPR2C+OY8AJ4PrAhYsQVAQjGSDJwHFFXgTsRU7HAHQoKUFdIryEnHplUfkRXJhKuVSuACvt1CuVWrkzHiKdycPDvbVWudqKSxqaduTR1BVSs0QVYtNOOblquzfZWB9NBuPpeHX7YGd3Y7I2HY9HgL8oB4arbpkxUxMlSJgU3VUqSOaLhUazUa02u/1Ot17rj8ebyA1JlHgRMgyZIzkTWcqgMoQDFz1XKhQL5Xqzlo8pGhMJh6O8FY+LUdQHiIdDS8teH1PUI16pnV1iIxfDoahSkiNKKREX+JjBW/SKWY4nkQ4xmg9CCRTEeVHS2RBr6lYMEiFdZhMyGY54CDWuSWgB4Jxq65Ke5Ax3ZhUSMCSZAplo+pwBn6tt5M+7sM5NgnNzYgzROvP9hCt6NlcC2tU6RsOwLjKj5l/RgkUiK8RSBLmHWElHIyTNrlQLtQoyYwDwzc1tCfM/nAHPp3iSCTSEBC884Tbtw/+MXDNHpiu0kRRlgZTJiCrZtg6rhyMkW6YpLOzBkrlcf9qulgY7w0reUSWBkux4gk/tHp50Skmt2Rxuda18JmbYjoEaDoD1GJQLwLWkLCXjtWxnmvPj8BJjhWpvkK+Oe6PNg+RyGAt6gMW5npiSmW10ur1ht96bNFKZ2tHB/vbB6WGQMFxJmszfzaHm1WfUZT63Yvi+CSud/N45CdWoE5kEgBThubSy6AGg5UNhv8+3oMiEhNIhkaWD/mAgymu42hB9To4PmilZ5KIM5BuSwSRathxNNe2SSq/odYvF/RKGM1a4NBysro5XB43t9ZG+EqBYXXE6436q0gngGEtLIlB1SI1LzQE6IUGmYI1C3jYsPZYUgi4AX1h48cKPX3o5JKmFrKqorIKmCwSOYdzjLIaBoKOqdibpmJlE2Fc5s6JmKO4rU5IWNjlGpwWWpLRomCAknOYERmIAs5G2LOQSRDRMp6p5jdcMyJRRyUniGGXl5Vl14YXFiC8S8EaawCgnrfHRgLn+3vWTdwoJ5mUz2Xtk/mYaKAxHnz5rS+Vbf3nj9td3P/n6F/Dfbx/xg9Z0vfnuv/0fD0OjZICmg5RChvzNnGmJsAJpxpPI63Q8o1Fsuvpwy+Axs3IyUHUlUW/yishpIqvKjJa2b07jiWwTsuN46fgUS8ZTkHFw6es2YQ42KtNhdWOA9GfbLWQvDlwYSUGvbWwiY+jZ7tH+dLxWL2eeVK3uxs5v//Efv/7tl1989flnX7xyf/2bRvDcAAAgAElEQVTWg2GzsfvTW9fbs3d+cvfBvenjV/b23v7pT18BNnp27cr1O+dWCW4BGgD44OrhlcvTYTfbcq6um4PZ8Ojb9372/L2n5y5ITx49eTwH4Idubfj173uw7rxyY3/UbHYHvW6n1YQ0YW06qJUb7fba+uzgMmqNdom2y7evnfdfubcz9383btw+vX7zztnh1uTalXauvXN1a3V15+TszqsPn77x5NGjhwh40dO6/Vfu0z95/Orjt1/b3dnZ6lXgM4CNlylWavXO2v7G6Xs//fidUe+nX7z25NOvvvr6T3/543/4slDMWJbjaCIjMBgjxRWB8sHWcRKqlFR5nHQyHO9Wk73+cMDj9QBLZVUWCPFShAMAlnmc5jFDjEA0w8J2KQ3hTJl77qLhRM+SUI3bDO9fBMDAvV7/4soyxQRxv2d5xROI8BYTITE8EsSByYUCYYikwbDPuxLyySJDRYABe32+xZUALRPhMBAlkYoKsD4BgCEb8AP8EAKJcToWNlNIqEmNeiNhHABYM6u1erNZLVbbJbghMwW3d9RA4odoiBeBObwt3i4i+htz4oYNyQQa17EU2BK6HrPsTLHgJJMlyLtR+8scgGUVqWGh0QORFXlBU+NlIMCFfNIg+JiTLRaReCEE3GKjAVEJ+f+sTjd2j6/sTbe3t7s6JAJOAWlzYUHT5HhV4jAhSvFMyEOggSyeCUC2TpHhxYUQjnN81I9xqL5IRnHA3ChGEAQpC7DbaYpgIgSLR/AoEtIO+gCAI3DhwgSJ48hWjkUKUxJch7jrwOBmFpqKdOMlXeIBiLUfpV1X22Kt0uj25qOiiAx3+3uwd6b1QikF1Fk3BFaUBFbQNJETtXi21mzW4ZfGs93ZxvbBbDja3D442FqdTtEUPqBvH9h0KW0ZsZgpwbOImqG5zb65YqHealXLtc6gO2y3JtPJ1sgE4BB4BcllCZRoo/KDhrqwIBgXUA9zrlSpZOOqRESwiHfZy8ssQeD+5bDP548SuFIRCRJjUAfsYojNVbJyIF5OOBSfTsg25zVyrul7cj5/ivAvJ9MxliTFBHyOyNSAsywtgoUhAMU53bFjLCakTYko0bqTRgXfDDrHTTl5BA6omvz3Jqx5GxaQvpwrYzwH4Fwym3fnatIA+S7yoLNPWDXIzQh9pdEQkWhzrC4p5GJEQeLliZQSFRS7Vsuj86lqCQlhFfOuv9IPXdCOi9ypRCKdSQPwpoyYW4WOK06zQCbLmGxSPBvh8YgqAgBTJEFjclJCOjjeCKzaSr/Ta482e5V0RoVsWU3mUmIBok0nY4nV+nA2kPNlB3BdUg2FZSVdo7LDdndSsUUpEasDAGeXQoISMyvF/qRcn3TH20eJSIjyLrEiyuc4VjQytVYTQlt7srO73ki01yFenmx7Q7oDLxpI8PnNvR4oR0lBbotSk/MxpJxb6E99T4zRJyaGadq7HFjxhgGASXxlyXdRMUUBfi2rUHzYH/CHOIvnapZHTVthKw+ovBKJejBG5+L9FB+0JrGqJi4qjYREBVQsQmVW0uPhcNLcWeuPmhNjARcYyynV65PhqOiBIMIpvGmi2kat0282OqPV9d2TaqUIOb2RiLOBlZWlS5dcAF4MGaIaxzQIlq4YOwNQyqCMHqkHwPYybCNrp1XSq5fjkAMbLMvTKheJCATD05DZ47Qp0wKwC4VDhV6aFDlaojH4J6OSV2kk4g18nmJZKrxy8eLuKHThhWCYCFNRe3/vcG802h8xJ+9cufo8a3MXiNTqm9Jfj32kvXGQbTed+//09PYf7/3D1x/94utPfvNUKoxHncG3//u/PotWjAhJYpQMEbZc1GMqrao05UnmNCbuKDSVa7y2ZcukWbwy1jXZrjUFTRF01GbGmmn7tYFlVRpIozJ/Z+jPF+C6S1z9kGMT063cCAC4B8jba7V6PXQsNRhOxgiAZzt7O7sHR9uT0TQjnjzls83Vu//d77/53bdfffurz79459HmrVe3JrnJB68fro9P3nvvrdPew9eOb73/s/fuXgUIROO4gIZn169euXIVjQydHB8eHFzb39gaFgvJ0w0T2P32r9798N1HP3n3zedvAgC/8fjhvAT9+usuKQUO7EpF3rt372SjXqj3e41+M59K5mqdDnzfGvQb7WZ3fXf/8PiaOxTsIvB5N/Qcf9FMEvr+1q2bt+7cuX4IcL0/yFVnx9PO6tHZrdt3Hr75FCEuelrUfY2asNAh8NP7rz154+H917c3NtfqudZmt5iGPV1stJo7s5333v7pF2fxG//4xt1/+ObrL//0lz//+z+3So4uxtIqx0BexImwg6MrWtKyIclLiDxBpJMUy7BEFPf6osGVZVjoAUYFdhtZjPCSqXB0lBEg+SY03I+FNMBtUYLUDpkGEETUv7IsFh1LEENezb/g8/k8FwkvGQ3hvku+5eVAWIgTIofcbJGAExYKBQJRPwLg4ArHswBOeMgDkBzBWT4Q9DMAKWQIqc8AYAWRSRIRxngKBxSnEg4AsK2GloMkRWqqblU7AAXVWhlJ9paK6biFANgGBEaABIEDtgONR2krB1HAtJyYpnMUagOHXcSLpqkasWQu79iofQcgGpEYBMAGYJmhCSIaJeVVkZfVRAUANRfnQly+kskVMgVkfVvIF6uter3Zmc42trZ2Lp+eHkw3Z7tDy47F09VkquYExCDOamRYouD1cxzl80i8BADso5BKF71yyR/1hpAvBs0CpIYDIUqkMZxAk4EckjmhWcofRRSeC0UxLOwPhlGtfiWI4RSOkwRO8bIom5BTGIrsFtdF2FuoGRo4nsgihawffR/oi/VyqdUqVxr1BjokGW4d7Gztb7VKGrweXZPm1hMCL+qxdLHahGiOVOcmGzuz2Wxrtr21PtvZnG5sTIaT1clw0O82OwDAumkgmi1pSNpTR9JW+UK33+826u3+oNXoIiHpgSECxMsyiuESTaMjYFE24oB9yAIB8K5ULaGWPgoysWAo6CdlwNqQ34vh4SVfOCKXJYK39VA4vOIlzXg5Zwa1npg2sbRpGtSCkU25JrwQ3dMpO5nJJHM2oxpyIJKQXE3opELaMouFg5xsx7RUzuBYwozzquoQmWTGchLuuKrrHT9vwJoLjeZc2TNUc0bmG8iwAaDdyRQyebdjK+vqZrjyG/PSM/yaCyuJRDKdLMRkR4Cn4KIBTDMV07YKQkQTC7VCtVQpl8su+Z3LfHzf2ZU6F7JIu4N0SIQyicaAYzErYXcznJaOqkldhNVM+BQlaUkkG+EoyZJgdfuXo46ZKgx69cFsNspmbAOoFatnYlzh8Npr7bQulLr9zZ6cRzZfDmwLiWU41cCdTrM7beoyZyfq2e56NrRkSJpTrgPLAQrZ37meXrzkv+RnedQeL7CSlS41uv1BZ9rd2jgedVbLwxtHR3t0VLDdd22nnLkNsDuLlZp7ILl4m0V/Zn7QigYUhouZyKRrug+o4gU/vhxgaZ0Lh4MXL2ISI2nFuG0x4WDQ64nKloYlCyEibxFk0SK4YJAOBEjZYpsFwMORk02IAaxcEtAhK0lapNnfHI23N3f7Gxut3ALBUGap3OmNJ7u9MB1lNR5g1U5lS/V2rznoj8eT/eM+pNUpPWaafGhpYQEJcVy68PKFJS6CcUGDIRgkBQs7lnK7ImEJS7qhqDFI9a2UEcYljIS9y0LohBuPGqsU2VXhE+eFa57neAqgFsgmz0QhsY43ixrL0TgXRNMjfq9n5dLFrQ3yhUsMcIWwEOvuHO5Om4dj/OTZlb3HTkJ+QTQ37xn/dDlKxzdu6LFU48Y/v3HjN69/8PmnH/720989UevNfmH9m//pvzwN1i2CChGYgvk8Tk3URAo2He03yiJv5U2czxVu7ca1iF4+XotJglEZQmRTRIFAfRIx/X4rzq4mxLhZyT1J4fkEJGYqsz3FzNT60NiZFNa6TYCzZnPg9mCNAX+n65sQGHZ293eOp+NBrxr/SVeub65987dvv/7NN9999fVnHz69vPXmYT/ffvPt/ZPe4fv3n50Nnr26c/r84/dfuXJy/ezsGqCwq9GMCtAAwleOdvcuHx/O1ge5WvZ0HKuszlZ//tMP33/7rbfffv782RtPHj95+oarA41aoR7cfx21Yb2KhoFfOT3slCr1anvYKafy460u0LF6rTHoNvu9dqPWGs0Or149OTo8vnoNqUMjO0L07PP+K6QMfePs9PatG7dunCF3xCuHnXxx7/LuePUywPKdh8/efPQQWTA9cmUoHz565GqBQA7w9Mkbz67v7O60y43G1iCfRlP+uV53Nrv9zru/em/c/uSLh699+utvv/x3f/jLP0/iBUVNqpZgxGWcVmSdi4RJSOEtk4/LdBTPpzlGZMhIJOD3efyQlWIYr3BkMBAkJD6hCByPc6QkYgruYwLxjBmLiQQPHzJNUVggGFjiiib81iKN+S+8/PLSyguRCBWKYIvLy4vAjkmdRlZqqLYawPCgPxQOeJciQa8vIEskTYhYaIn0ekK4IAC0cpIqRQGuKJqOrHgu+QiaAPbNh2XLLyVtXbfiCgGUEONl3YzXWvVavQp8og4g7M4iwpeN9KAFAenecJzIsZTgOIkc7JgUYCsLVDJEIrUKCeniAGVOIHejcj5uJZEhawZosgGAoaGpHEWEFBaNCVnFYi5rRaI2OrhDI47FjJPPpZxisw0Lc7K+s7a5c/n66cEqbOqBZadiiAMUNSEcQA5mghCmMJIhIkFPREY2TCyfz2sMF7yEpIaCwGLIUJiIQsRhBIKioyRHuhqUFAW8wIdScAIDYhxe8UBKAuAUxEicQgk0A7tcRsO/MtA9Q9N1BSlhAf7qqKULQgb9I1TwBI5ZQT0CtWa91m41W41arTne2JrtbvVrpiGrhiQoSIYS8g5dMxOZUqMHRMLNcPcPdzfXt3Z3Z7PttfHa+gQYRq/ThSy4V83aFhBgZPkI91IsV1oSUKXaHY0Gvc78uGh1axRDMpQSJGwSfCi8Ca9W04Ddxew0JAbFip2p1Iq2iGaeI6EwLEoZqHAAWH40tOKPAADLpOQkiTDuWVgI4E6J94dbg2ImEtc0k1mOFWzUs3TeFYUkJXMpIC8iERAThuJCMA+EO0JECM4wpFjGligIc4YqpCQjk4878/6r9PciHC7fdQ99kQeDW3o+743OOagLz8mm52oSrmj0HGXS82/mAAqs2s6pahIJnTLBAG3Cp2LHMyyuKcVa8b8GYLdxEJVS3LufC1TMD4KBUtqudIxtWu2MGCtxKpogguzBKyvJGOTQ6AzYEEjI2paFjB3LtsvZwd72tJmJyyTJslY6qZT3D28UgUYDpq73RMg3UjFHlWUgkpxmkflBp7/WMmU5lW5n2xvpsFcTzQyqYLRHq8PB5nHspYtBT4hXLGShxvFqooCWxXSjuzGZ9YYHs521kxs7GSS/ggzqAVbT85pz+odpI8Rzz6Uo/+7fmHRtCYEfF82gyuELntDiMk5pPB4OLi5EJYFX8vGELbBExL8cYASTsisklktwZC4OaUeYCvlpKUaVmjJHNXPZnBQMZkoyGeCoIJ0gxcl4bW17d6u5N2wUlnCOgw+52RuvHq4H8DAhsoqNvL7K9Van0euOV1d3djrZTNIxYobOhn0rixdeevmlixde/vEL3hWMjaoyQXFIcZ13N7Ho3lRVRBUfGUJDmFJYV2lPkNBGlFHvJ4vmlZC0HboJioo0JmkCWAbP4oDmVrsk+Px+j88XRAMkoSAXiQKbefllSRMZ2hrErg729vrrE+3slWtHD1OG9LJoz14x/8MuRzhr9yEuda7/7dnt7x589NnnH373+e8eyZXhsDv5yf/8b4+DNZMgwzgBb2TJbkJOTcsqALBZ1QQzH2f5XPHWvq1jVuXyqikrifKAR4K8PB0TKCNm3WvGjNW4HI/lBm9JdDHHs6yqXq7hbG2zK21OihvdVhs4ZXPQRQAMWfg5/u5tHxzOpqNhPbb9hlLsb97+6x+/+/rXv/7VJ19/+vhk5/nZpFq78e7N1xqzR8/e3Rs/v7l/572fP7txcnrj2imS4DidH8wCAB9dPrl2cvnw8HBvOki3E1tHTrm/1/7o0w8/eP+dt995+xkwYBeAH7lGDA8eIh6MBpDuof9O16vtXr9Z67esxHh/0hpPu+Vcwmn0h5NGf3XcqjZ669uHl5E45fGJO5F09QxpQp+e3TidI/DNUwDh2wC3t67tbh1eHiYLs9Od3urxrVfv3X/8xptPn8yf9+Hj+wh94bnhL4+fwgt6dGVrd9YstibTTjadLdYgSx3uHb7x3se/OC6/8pu37//sm6+++eOf//ovB+myodlqXLRsBMCawUcBgJOOprIxBQA4YXOMQFPzM2C/f9mPRRiZoyOREMbSpsBQDM6SqkwruJ8NJQsJPYaKiizJ0UBpw4FLTMYwZHqRIIChvfTCyxfwKBEIhheWli+tLLKwKBAAY0DtwkD0Qq6vXijkXfEKIgAwj4WWox5vhAAA9kZ4UebDEUUCeIl6/Z5ABI3l8FxYMv1yKhkzY5YUgcUb5VXDsKrdWrFcrVRqrlEgcmax0XCMghq3BWTEAOknCckjxMAEOv6FYAKMPUgbikDCApXUmGEkIOgCfQZ0jsdTiXQqZpi6fN6RpIoMEotT7UwhLeKUWSnYdtbRlIR77pjJV9qD0XhtdTSZbOyd3DjdHa1OVge6bicgNBQrKhdASiMYJbIEpMo4Fvb4aN5NCtIpmeFClzwLHn8YDy0vhkIQgHweGrm+YgRLuCdONIVT/gCBkxxDImksvy8QjEbh8wlHITWHsEBzkoxMw2RdQVZLSGBK19wecBQtJFmRXQaMELgGkb/c7DQbSBS6Vmt0Bhu7s41RE4kMqByNrAjdexiW7RTq3SFSwdrdPzi6dnK0M9s9ONzeXoWfTVbHo14bFnuvW8kAOJhuv5dbZ0UADJ9CEThUbzAa9VqNZqc/XuvFgPJKoswJoqILrA7ZARKiRJIoqPkNdQMXszZwY4BgoMAYpRLhKOqTRz4g0ahSBAaczdKBqM+z5A0my7zfIw+Lec5UVYvxxgsJV/8QNWIl58LDTpYXBTkQzBgyOtyDDFOPR4hwhFQM2XByBoXTZkqXYgk2XUymMkk0SDz3jEeHlueFZlR6Rrd8Ie0qYcESAQB2cmmXH3/fXZSeV63R+bPb8+u6/SQSBSFmk5B1UJ6AHNd0NZayKVa3yjWAXyTE4dox5N02LPTY8wEe57wJa27vl7ATLgAnbM1qZUWrriipmKbwHBHUtLStAidTOckUiAgduUBbqWy/U06UhpNxo+jE4bMUY3ZSqewf3KhDZgZws95iE7GEbaVgncA2RwBcHLR6qw1T0BxnkG/N0tGQJtv5AqB1ezSdTGZXnYUox1GCnogJLAIeGwB4MASWvTs72Ly8v38wWD8bxHOZJJBKyHBT7vVD/WjuhHTq/FR73vTs/GDf6DavIck6O5eIsBIQ+IB3OUxBKAn7PUtBQeWELDygxpMRvyfI8Ban1aSAk1GIZIpDyslhL81auD00GTJfSZdULGBVLCaCCcGIJvH1+vp08/rV7nqvWfREGE7KZJu9YX9vy0tiFE+wKlJ0Rq+jVG8MJquzrW4+m0xpMctA3kwLFy5cAgZ84cUXlkOiGCE0jkfUlgX4RbjqStahvYVAWJYYRo0hXQENKWRJSBwf7W0ksIEqzuhvcEeeZxWJFwg0v0AwpNGsSv4gHo0Cr2YYCAkixDmfGn5BRMbg0hVhun2wC/jG3bp+7ehxWlcvsqnZTfs/Thm/vfW0qFm90788v/vtg59/8sWHX335u/tCadQYte/9L//l9UDVxMlIlLcU8pLcAg7BiDoAsFrSGCVr8bSTPzuIqVGjfDSxFDVR7CGPckis4hxlWak7FS03UGBjZg8eYXquQIqUaF82JX6w0eDWx7k1BMBdBMCD4XC0OkUEGJLyXQDg4/HqoJex3hsr9YPJl3/7+rfffP3dJ59/9vzu9p0H03Zp68O7d7sbZz95Z3P6DOD2o4/fOj08vXUNzf+6leBrCH7RDdAXtWGtrpeGzuxaodTbH7/z2c9/8pP3XAB+NgfgpwgI3dlcgMBXX7n32t37r9/an7Rro3Z/mDcyvcONVj5b7k0nvXYNldfWBq1Wt9eq1HprO0dXTo5Prl5326FPXSnK05tzd6Rbt85unZ3dvn3j9p07x+t7N49adnP/ZLO7euXunbuvPnr2pluBfgRP/vpjZMf08HWAYODEjx49f2V782i1VGutT4pJJw9oVGvN1u+8/5MvnjX63/7ywbMvvvru27/87X+4mS4ZEGIt3oyLUVzUTAloJEQuVeXiCuBsLCHyIk2T0QBQLL9vKYSHKFngMCwYodmYKgGQsQSglkoEuFCqmIIMW1MVWJ6whiJY8KKcTShydDGMefHgxZdegIQUD4RCiyueZUAVMibxqLxNYmHXbABpKnoCId+Kl2VRP3AksBzx+DGC50MBDPY6GwqrMsdQYY/fHwxFAIBZOiRoXglSajsOABzCiCinmbpeaZeywH4r5XQG+QWmU6iBJaZDcIbVhQAYIhVDsCkn6SQhABmmipptg5QucAiAZcM2jFQOtdwUHVT7c5LphGVauiTr6DhUURQe+dRLsXKcxfl0tZSJ29lMLIZKh3nUP9QfD/vDfm+0urF35ez63nQVINjS4k7ecQplRaAoHlgsRuE4DiyWwpYXAG/R4C9kAgwfvrS06FleQmUovy/k83qWcUAiCiMg60YVL4aKRgLhKEZxFJLxJACYAuFI0BeIEkjRA6lNyirk4pJqoKNfSC8USXVdkFU0bouOhX9UrbhjL+VuvVEvN7q1mjvLicrQG/ubq6MGjw7LWVaGO0oQXGTTtfWtNZDpzc7+0fG1m7dPdme7hzvnAAz0tgv0tt4uOXET3gUKPIoZtzXdspNOrtAEiK+3BqvTXr3eGQ77DU3RINORGB5eK89qbpcYADb6ZXTA2qgWc6k4JOwUTsKSIVmdCmMhWIOhwJI/GtUKYpR2crQ3BMkHRjhlNcj6jEJSARZrkd5YIX1uRTSXhkxnk05B5WQT85imZlkx3YrxksXhEUjvdE1P5OI8j2rahpbitXzOduYOAvOhmfQcXF2OO6e9AMBzKpxzkkhsOp2bWyHNbQhT8zNPt8b6fftvIpnMs2mT0ASJXArpMc1QYxmdlPVUtVauVH4AYAS+qM8r5WpdIqP69Pfs151BiqNBYIBgPd7M8UpVlpIWEmfDw7qWjisUQ2uiZstkmIku8Mm4VegOa6X26mo5HdNomuOsXFatXzm8ObQsrdAabtXoubClrKtIgkYzyVK/0Vutxxk1lRwWWvvZUFhX4tlyvdPpAIvcWDvOLEKIjsCzoPNAWTUSRTSDMlkb7e5f2btytHl0XDue8m7HNir/nxfyM+fZzPeI67hdan8H4PkMNSpJ53IUpuDRlWAUYgxky2Gvb2mF0lk+nYilDQYL+T0hZJTHV2Meq2BGtaxCUxEc81CERaqjJEMnmolinPGL1QxHeqRoWLLIZHpjf21rZzTuNzLeIM1LaafW6Ta3tvxUFGdwWoQX65pFpAvFZm802x6Wi2lbhuSbCfg8Fy8sLFy4+PLLL1/E+LSDh2GL0SyPRPlQ0zIAMI+K0LDdIOtVBVJAFijznSao6A9UfgZMQ+VnhpeQJjvEXJplKBZbAdJLclyyUtRIEZ0TwWPRsNlD2ArjxcUXdcgaBfqsLp1uzfa2Z/HTm7Ppg6RhvBRNbJ5k/7mDebTDV9t2qXPrr8/vfPPww48+/+ATBMD1fmU8fPt/+7/vBSsGMlzndYle4Dq6AQQJYDcg5hRKyhoslc5fP7aUqJw/mtqqZJV6EuIYtGzzfNws3s5LjbpgWXbpdD+aTSQ4jedqO6whD0Y1fm2UGkBe1us02oP+cDQaT6erq2sbbgV6d+9gvNovxdefiZXO/vG/fPfF77/77Kuvvv7glZNrb8wa5enzR69v1e588O7u6K2bl+/97BdPrl0+vX1jrgiJNLBQ/xU6/z052t0/Pj5YW6s3ioPLPWu6PXn99x+8+9577wIAv+UCMNyePnJvbiPU/XuvIInmm9uden9j2Ks7Vma4N+o3i8gtttueTJuVerVQ647Gw16nVO8MVreRWjCyPbzqejIA/76JXoWLwLcRAz67ASB8vLd7eDLMlvavr3enB9du33v9KVDgx4C+wH0fPnnjKSLD89fx+PHTN842tvdGlfJwVC/m08l8I9fqrx289dYvP9vLPfvurdd//u13X/3hr//jPdNRYDFpjBETMIzVYioViSYSadMQbIUKhxMpmeOR7WwgFAn6vYthPEjJIo8T/igtxA2FgsUSlVkcAJgJ2PlkIpc2dcjI0YxqBAstaE5aUEKeEHEpEvF6FyiBjgIxBmxZDgRJMq4KLgBHA8htKRoOBgMQT/2+IBGNEBQd9i5h/hCOMUwgiCMADkcRfFLBFZ83EEHO9AwR4iWPZCNNZ0vGwgQZ5Q3gVuVKPldtVDJJ11smg9pBkIAf5H+ChLxVEL4DA05CiLQhplmmzBA06lQgeVFSJCWOToZzKcDgXBqdS2YdAOBYTJeAOckAGYqCNBqBUBToiJ6vlRNOtuD62JRQKK01ISR14Gsw3d7Zv3zt+snRam84TZqxZCbplMoiTwUJEtURAvAu4f0RCxcvXlzGkbO3DHl1ZOHSxcWLLy8sLy0vL60sLC5dCvDIhJCE5JgXIHugosACsShJRlkcSXmG4JKFQwHgiTjL8+jESUeHwLalIH8lA/AXWQ8hYwZDRVFBkH7U7fa6nXar2W+2W+V6q9ysAwA3Gs1mc+1gczxoyBLqFadFVkSZhqJoJgAwkLPeeH1rtnt09fLprbPjvdnG7vbaZH06mqCH6/Z67VYRiXaaIqIFkhaL66ZrCFystQeDTrs3WocUtNMf9FuaIEvIacudzIFDpoMAACAASURBVJbc+XHNgqCdyiI9KMCjaiUbA0pBRAk8GIGowUYBLoPBsH/RG4kaFQVjMwXWj3kXl8NkpqSGdF4oJgXbkgzMFysk583MyOU97ToKZTIpDtLKcMSwNbgqaFxdi1NUNEopFqpNqFKEMFVTiZt0upxwwTeVcEmZc6694bZBo6+5H3AGIeT8DDjvnE8mzfHF/WVnngK4PVyoGgsPxTgiqUsSsRQ1DC2m21mJNmH1QC5URdkQADDSwjrX2XLr3alzT4dU0jUDtpEU1hyBjVi1IAoVVUpZaHKUDChyIiaTFIGs4VUqFF6+hDnxVL7QQYfu45Klw2fCEUIqRmT31/drpqVl64NZQ0JGnnYCsiGepkVVI8r9xnC9kWCUpN3Ptw4KK8Ct9VSt3ul2R9O1zY0rqSXYQEEF3gDSKTdNNCLcHUw2p7ODa/s7V9cu32pN96hYAqUNMRPetgvAc/h1zpUnkTrJ3Kbi737BiAWnkBdVQcJMjvL58WAAUgYO8/sWFyMaz9tpKwE5UxgdhNGmRpUyHqlg4Ww2ztJRgvTjmMVL/QLkII1kIS0GqFJJYANMlFT1cLI52d5c37+2P2rFvcCwLTtRbrYb2zMv5gtQlAQEOJ1Do2DpQr5SbUy3uuVqNgm/ZjN+78rFC7AdL7z04kuXSDY3kGhSRCNYkMPzrlunJKMcFSUjsH01gYJVpKpz/OXQ2AUkmqjzETmPKOhAGInZUZjf7/EElyCPDuEknShlJEYGeBZg01FoSDK6zGFRJayhKhGzuy+MZ5ubhVrn+Rd749dhab4Qjm/s1f5WIoPxvbNco1O5/e+e3fr1k3d/+tlPf/n1Hx7LpWp1MPjVv/7bnVDFgIsTZUSa8vBDC5Y9Y/NUQMxqlFo2GDZXPjuLq7icP1yzNcks9xVZ5XhSsQXZVlqvZOV+Tk7GUuWbJSwTQy2o/GxECFKvV+cnw0QPyZB22p3/h6z3YJLrvLIEJTYBlEuf+fJ579/LfOm9z6os730VqlAWqIIjLOEBgl4URYmSSJESJbXv3u5ZMxE7sbMTPRH7oyZ2Z7Y7OvbeTEDTu/sAiQRYVened88533fvOdMzAxfKPx0BX95YWZmf8PIvp43pjZmv/+HbH3747de//P4nT67t3jtarjUevr59rXP9/Z9c2X52euXmT7+8d3pwDdT9+Wm/B+sIt5/7ALyzf3BwdLS7srTcbhauj6emVpeOvv/wU0DgD16+fPni6VPAQLz6qAcI/ATNoLEDem+mi+7001UvP7u5OtspQxEqlhqVXHUKiGSvUq030YCo2+20ujPL69u7e32LaHTCOjk+ObsGCNzfhb6OCvjq2c2z67cOllaPDieyre3D9cnpnRt37z548mzw6PDIjx4DFCMcYyLEoyePXj45WN7dnSi1p2anqql0tllpdhbW7rx6/c2TxvL3X733/PvffPfd3/zTEzNjSpxi8q6n8YxgJy0uRuC0A54BAxan0zLDQQUkobrHAICjZJTTFTFOB+NA9FSeJBkqZoqsRoW4kFcGqQGKVxV4HI8BpB1WEileiYSj/ChNR6N+iaMjMQLtJodw/NfVAIBJmgEgIiLRWDQa88E3hSKxSChGiywR8AEAkwTLR0KogMU4I2A2UNQX8oVx45oT6bishrRk2rFsRyEiBEPKCMDYTtpqlTNeudhvxsQRSnTLcvR+uddEADGO4kC9JAGfHNcBKOhLPQEXkqLhrnS+mMlWCsW0m4LCUcqhhrZU3YJKJes2vGeabpophTLrtXQ2V6jUy9g202w1MVauUm2jQf3M4ubm9h46nW1OT84BqCfyuUqzxkXH4hwswTARY3h4A3h66MK7P74YE1UTQ4REYnTo4ujoaMA/PDRyaejC0MjFMRXqI8swsOyxw40lhkHyxhmKYCkiHidQGBKxcBhYS98bTzFxe8tK2irCL+5CJ2yAUQP0LB68Asf40Tge2kxNTsLviXZ3vIXbz4C+3XZrdnNjvtd28EyajrOsIKNLsGI6mRK26k4vrG2sb105vXJwBBC8Pbe5vrS4sjg7Nz013ulOzsy0y5kESG4ZQx/RmyDpYUdSqVLtzs1PAwtZWFmd703MLEyDfhI1VRSwgCkKngGjZwfU62K5hDn3pWo1Z0FpYzGIOsJILtx0KPyJ0IifIJ2GTomFIh9h4GaKs7mSFhHLiVKRS7qyTUS8KuJnfzQoMzC1KhQzRd2QVGFETVtJx0m4CVnJCAxJUorr6HbeleOMaVmGnebd2iADATdP++O8/Z4opB/FwuAEeOABjRK1XKjAcx34c7w56BxseA8gBVNuQVh5CSBxrpJjRdBI8QBrY6N9OifICbPWrP9bAK6W+vNOuVJxsAmdfTNLi7vP/VBgvJMBhy2zXLeUtqdlE3i0wIZ1QEz0gjYNK6nzVMQ3FPScQrXTqUOFnJ2damQEkiS1hEsXgT1NO16yXOus9sxUNplIJXVTFVlW1nWyOtGYW22nZD2d7hXHt+o+wk7Y6Q7oxd7M/MLK5bN0UAOctuyEJXAibzkZQDIQwOvLK7vHe5v7G1dP9nuz4WQ6m8ZnPABgtATFDQHMiOyPHKXfvk//LwDG0+FUtpSgDJ2PjALyUbwssbHgyFgIpKGFkSgaS8cDAVKwXS5fjbFlj4tnsqJIxWngZoB/3Y7ISPVyOa9FiHxNFSMcG+Esxl6d39hdmlienFtMBeO85KYz9c54Z3VhOBqhYEFoluNl8qUiMEU05Z6YaZZgQZuu4/CRoH/o4sVBJvA7YTa/mpBjoIClfqoa3OWDQ2A8ctHgT4KlSrh/hmQX00sx/VM34cnDypN5lmKhXgb9aOgWiIZDRAAUTJym6US9oAmaQEv4YwWOoRSCFHguSuFcEmPM77at46Wqklv/5f92vnYgGfoFKrG2OvfHPBkuLdy239vKnf/di+u/ff7hJz//4uff/dUrp1SfnOp89V/+z5tkw4mTQlzQWCbMTYIwF5i0CACct1mjhQBcv3o9YdBW5fJC0jS82pSlmbxEGylJ97S5WxljKmGm7GzlTGeSKVXmZHGrQEu56V5HmJpJT3Xa7Qm0wBsA8MI8CGCA3+2d/eX5temGu/Bar6xs7v6vv/3+z3/162+//fbJg60bt+db7Suvz291dh9/cG3ji8t79z/97PHRybXzayegPFEBH6EPx0E/Cnh37+Do+GB7eaPTqFydrXe2p/a/+fSDDz/+4INXL14gAD95/PgNBAL8Pbj/6N57d+7fu3Vte64zubI6WcnmmpuHS/VaMZGZXp6o1Kp53M2ZmVnrFdKFeqMOwgHl0tTy+u7B0eA6AQDuTwH3m7HOEIDPrl8/Pb1582hrbf/KTLq+f7LUXTm6cevOw8ePMQcRj38fgwh/v78V/uD+wyegzF/d31nfXqg1J1eW6plSttwtdHvLB6+e/ezL9eLrHx7d+8U3v//ur//zTxMF15ATCT6RhBXIwa3DRQkg2pbJOwoTp1IpieVZJkqGYxQRDoxGqBivyzxBjBG0ghO/FKCnxdNKPMiFM/VypZzSDV2WaYYBihe4BNgoiOFQKOJjab8vKAMMM4x/xD80FKUjhKtLUAKBnwHKRsPYAOhDNAnGAkGCUXAKiQiECFgvRDAOt7hEsjQviGxkLBjANEKKVyha1SKml0k4oLpi8CRpEKmGXqyUq40a6NdKIZ1EDMBM9KSXtD3H0kRMYVJEmRUy5bxrO5aTdF2MQ7I1zYb7VFJ1Byod2udBzU27aVDQJQwVBsUPFRo7uHS4EVVYVy4LdTCXKtXy2UK9msth01cZzwOh8HUnp6aX5xfXdvb3D47OtpYW06AFK1C0U9HQKCkwUCND/jiDhiD08MULP74QQwUM0lEg/KPB4OjIKLDukUuohC8Oi5htwIJqBgBmOCbmi0Rww5lG8yx0gw6GorFIGKgKDhDzArxAHLNSVUPH6SMoL4aiAADL/VxgAMcfoQP0FO4bLczA8hmf6LaAEHa74+12b2VzrtV0dGDpcYIRWBxQo0QnkSnVO72pBTzj2do/Oj46PL1xfX9lfXVhYWVxZn5mBsgkAHCnlHZM25I0DR7QdfEIGAGl2OhOTfV6c8vzK2tLSJWnkvDZqyKQPlFSRAmdoAGAMfGnUMzDe10GQEsZGlRiMhb2h+K8LcTIWDQAL3MkGKecikRKhSzcmMFAiGbzFSUkFOFTEhKu5BAxr5Lt218gTPblVrpYyORShqhrQQpzFm34tC0poTAkRQqurVmZjCGwEtpv2raSK2YGx7fZ/CBVvo/A2J+MCvitEu53R5cL8EyL2cEe9Rv3K5RyhTddRgMFi7NsZd3KxEAD8eGwBIzP8dIp1kjozWatXm3WKtUqekFX+wAMj4NNX7jp/SaN4Q0Ce6hWcSPac/RcKym1MyBpgfGqDGGZuYwjSnFT03CoulArN6ZrhVzGxvSHZLrRnQcQTqasNG2ubh82QUpXa62lCTuVS7gpR7UUnqJlTSOq3frCWtNT1Wx+sjK1XvUxtpcEBTw5PTU7v7C6fWqE4ctYO5GyeUaUDDtTb3en4A6YX9re3dq6vHd+duvyeDSJTxaQt+/GkR0chOey2TctaQOnsdybOeH++9Z3EMukCoDUWVowOQpQ10fyishTgRF/QHIVuZxM5nWRp4N+SjISgldjY7mcEXELoshGqXiAkEy6PK2xUrkBjCwe82qGGKLlESIp0xNzK5OpqMi0tgp+gmfNbK7eGu8ujQ+TlGCAJgWNki8Bda6167CEgYsWyqWSm7AsIeIDPnxh+AKA8MV3Rpn8elUleJEVBqbNwhsvaKWPv4rKAcyqiLYaWkUrar/1QlFkmoJ1CpTC7w8EwzGaA4UCUldG43mQ+VyyVLRBJSumAjgNMoXiwz5Cjb0Tgp+iUPL87pq2tl3N1rd/8U+fPTt2ktl3WHtjaeu32Ui4OHVf/+1x9vxvXt38zcvPP/nyZ7/49V98kmhNLSxNfvFf/vk20wIAluKsCZo70vYMjSezUELlnMsoDUtk87WTm67OmOXdec82U+UJS7U4iTYTjJ5SVm4k3EnNstR864SXvZQi8bKxqvPq9PR4hxmfz4xDwRifmprozMwOAHh5ZX0AwAtLC+O5wnub1uTe6hf/07e//d2vvv7++8/uggDe6+W2nt+5ujR94/Gjy88Ortz+ySdPj04A666dXet7QZ4cHhwPzn8PDw+v7F/Z21pZnMqmNi4n2+vra1/8+tUnr1++fv3y+bMXOIT0uI9/eOEZ7L33br935/qV9XGsNeO1srt4sD7TymcqM0u9Vm9uBp0hS8XGTGd6Ya6LkrgzPgFXd3oOeMI+piRdQRV8tW8Ijdf1s2vnZ1fPrwEU37p9srV1fHm83Nu8vLS4unf23p277z9GDf74MWAvdkQ/uv8IZ6IeP37++PmLm1vLa7Od1uxypwhY1C02OzNrD15+/PWD2s7vfnrnw2//8Ps//tMP2YprAouWPEeSWM5FACYznmsYvAvig0xmdJCcHEGFo3Q8HPRFaYJXBY4gRkgaJJUC+jgastk4ADAfybbqtUraMg1VR+/EUDhwUfNSMhcJBYcDVGx4KMozHCEKfn94ZIzggjHcxWIxeCsejcdBJwP2EmEiPBqJhChGJiK+cNQH1VaUYoE43MRCjKZYHhYg4BMqQIoVCFpVYxbmlfebsOJxBodezXyzVq1XS6VaKT8w18+kPRfncVxLlxhBFjhQoASVyBddKMcJz064Sc/FXG6NwTJkJvvdm1kougDAhYyXRz/AhG16roltxKou4IYSSGFsx6nXy+l0sdUsl1vVEnoC50rNiXHcmFuenlvd3bu8d3jz5GA766SwKyhphKOhMA6KjGI4Bc1QPO27CBAc5iXZwDUMC5UIDl0avvDu2OjQ0IXRwMVLFLxRIsdIDAY4wrf6gT7jd2IfNFCRqB+7kyJxnEzieZAynCQyGN1s9i2lZQ1h1zRx0seSJU0VftQZn8TAxOW55Zlub7w9MTc5Pt7tzyJ1F7ZmqzVDRQVMSwLNKRLNmfD+5Mot3L1ZXl7d3N07wqVytL+ztjw7t7w4t4T9V1OzszMTtWwShIOqKZKkoaqFtw/Dghqd/ib11OIiyKiN1bm2axuKKtB9S2FdtTEy0cG4+XQ/1CJTRhGJ0UUsEQFpz7AWH41Fw3BHhMfCFOMUREorZehYLOAbC8fzTc6XSjgtS3ATiksQiWJ/6gWVFholApeCWp8sGoBFbNDMW5Zl2mISGIIYjUcpuI8tM+toDNxJhinkObeU6cf8YpBgBtuxEAhxCzqfRfzFFqni28zADPynYuYNnuDB7588ogvow5F7k4frpUqCnfAbikb7olrSM6xUJkHaCa39/wfgUqWMRh+DxIdsv4EwlcGdYrgGeQyJZMrMdTyu7gkpFyq8HI/bZsYzGJa0NMVO5EpeDZAVeJCsMLxqmDwnGG6uMb46v51PLm4flj3HKDW7i61Epugls45uaWyckjSdbkw0V7baKUXMlWfqcxu5ERY72UudmTm02V/bPNUpzdI5M5F1eUbWEYBbrd7iwtL67uHu5uXt1c3T3ftTcnLAFby3APwmiSEzOAuGj6Tf550rvFW/eTTMxvQGL5st4WkuNxqIh0gWihI1Nhzw8Z7GVT2vako85RsOs5ojmHUpmColw2ZJlDiC4UOMkqS8OXjRxY5XMWjCrdkiGRLDUkKiikUxbLlO0NkojEYl3kp45Rookk6IxyMuzU4gU6zUm+VGrd1pdJpzlUK2lPRMVwoPXRyCxfjjH//44sUfD8dzW0tJNhJlcTNKFkVeRkcO1MDAINF2zgEMtW3dRM4LjBqKGxH0B0LBQCAYiTP9bxsko8gKB9RbFDiKYyKSnbUF1VQ19Pbg+2mif0ZmAyMcF40xYyMTa1eK9nEnJeV2f/rqkw3Dyb3D6hvzV77LxejMzC35r7eLZ3/94a1fvvjyo5989fOv//CZW5voLs589n/96x2+7ZKkQoRVOur3dSqaysdzAMBK3qOlmqmyhfrpnaQpKPkdUAiGW+wassVKtOWQWkrbOHczM4qrK6WZK6xb9GRNNIpbhizNTLY79PiCV5votMcBjZv9M+AFuA3QBxoQeG9ufbLltj9PZRb2tv+H3//2999//8vf/Prhe2uPDpbKMw8fXz+d2Xv49Oz9W1t3Pv38g0PsPD4/Ozm9jmkIxweHJ33whetg/+B4f2Wy23A3r2eqy5uLn//845988MEnAMDPnj3/7wCMvwGA7z64d/fO9b2ZeqO3MN/KFRr7+0vdVjlfW5pZOjzdnBqfmuk2mkWo1t2ZpZW5NijTZreHu4Cd8Smo1VcO9/exH/oUwxj6+Itm0qfHV6/fvn2OgcF7cJvPevWj45XptWv37tx8+Bh9uJ48ffi4L4Qf3nv87DEC8dMXT1++OFna3JnINxdnaqUKCO98t7107aNXv/hivvLL399/9O3v//L7//hXxQqs2IypZVxJ5oVU0mJjdC4NCljydC4Wg/tCllg68gaA/TEmzskcS9B+mlawypJMOJwUaZVEBdysFgoJRRZB2rBULBILXWQMEzM9oz48EB4BRcURkjDmj4yMxtjRiGuhrzEmX0JNha+P+MNhXzx6KUKHgSAGA6OhqC9E0qIYCsRVRWJB4gmCQIfGIv5gfw86HiZlOWp5CK+WSESpGGMYlm1lW7VKrVoslAbHb0Dh00nbsg2Z53ic/KEYhuYoNl3J2w52V+lQ+D1T1hwc2dNk2bDcVCabL1fzpQwgSA7TTXEH2/IcPAbRLZVFnydFz9ZL2UqjlE9VWg30UsilgNtn8rX6JJSruem5pZXtK8Dnzk6uXj/Mm4mckylmE7HwUARKhn80MDQEGpjmmOCQ79K7PhAUJqxOJhINB0eHA5Gx4cjY0NDFseDFi6wmCTJPi6SoCDiH5QuHgM2AQGXIOEXHIyFUwMEwRfDwn7HFCxaxbGq8IfH9Bsz+u6KDnNB0UTRN6UdozDzRncAIhYlxuKamJwdHwN3plbX58aYFnzINfKZ/IoVQmsyVG52pWVDAqxtAFQ8OT+H2PFidn5uFV7q4OI1HwFMz8+OVUgLNidDlykHSA/SnUG+3K92Jbg/7JOdmF1Y31pa7hiai2ET1gHv6Oqp0J+UlUnnszq5WSrVGMakLGgfC1xfnVUcgwoFwMOYL+IC1ODUgfZkMHwljNwFVr0gRLedWk5LjKloslvMGSe9ZLz1w0shnc+VsqYBjkLF41gXklRRVllQbm9hYzdL0tKeyBJs0PCntiHWcQULmlhl0DBWK2QEiovTtQ2uhH5FUquBscGmwJZ0baOLB7NHAXSKDiRAYZZROZDJqyiA12aJHIjImRHoph3LcRKdeadeqjVKlVq+V8xnk59gF/hbRM4UCUkjPhRsUgyW8vqUMwLCe65lC1ROzWdMwJDEuqoWMJQB71EGxmoadVjwgTZat65qoJyxXMxVe0QH2S83e7Oxs2zEbzdpkT00V4GcnVEsTGFbUdKo2XV7ZaBdN08nMV2av1ANxK2HnS1ClZpdwlOfIFB3bFI1ESmN4AHs71ZyoNxeWVtdXtrbXjzcXtrau3tpii2YqZxfQwKtvgdXvgUYvbVS6uT5ByQ7Mwt72er+5isliMivRrkYHfT5flFM0kYoGRgI0iEovm8y5tEgFIhFCT7hMKxOSa6bEVIE7MWQ0QrCqo81lONrpeRWd9eu1qhKH+hQXdM7hqKBaoAnZrI+KqqEngJvVx7cnQywNkhU+lnQ+nS1Xi612rdya6HaqU00MqbBMFZ7I0Lsofy9efOdCSEyOT06IwqhkMA7cQDjkC7xdNzBNzcCRISLCGYqoc2Q0HAn7R0HxhmCFUjysQ1Xt+9PhLhQoSXRYhwUJfJtiEgvHScaAj04GpqyIDMNR4VCcY4iYPxYNRcf4veV9crGjxggp7x6cy4nMO0FjZ+bk61wkkl27Lf/7o+LpX76+9evnv/jZRz//8ue/+Mypo6n1T//rPz9Wxk2eiROCKsQCwWrF1GTC0cm43EwIejklCsXy2U07QZrVnfWsqeSb066k0RSTtjglqe3uidU2lMdMei8ddwsu8vjZmTCfKVbG55j2nNvsdiYmAIG7U1PTSNCWgFyv7WysHy7Pbrbz3u1TYXxl+cO/+80Pf/jFD7/+5tXjjetPx5utnVfX73ZXXj67e+/a/v1PPnp4/fTk+jUA4OOjk779FQhRHM1FC469/YOdy5vVsj1xr1Zc21/4yWeffPzxx598/MGrl5iD9AwBGC/QoQ8fAgDfevjgZBWHPucmysXG4sHGfKeQa89MNHfuv/jg+TWoU72ZmW61BFS3Pj63ONcuZ4uN7vj43GSn3enNreyDBoaHP7x6dn52enL17OTa+fnVq2c3Ts9u3ERnyyNYATudcuf0bHF55fDWzVsPX3zw8unjxy+e9fH3IfZk44b0swcPX766t7e8tdypTy31ypVmpjGRLc9sfvDx5z+/UT75249v/+yPf/zu3/+Hdt5UjLzj5lyLZlkzk6CjhJdO2LZgy6qPdtImrDMSqiBF9u2gWZLXBTJM+GMk57oatvJGJJmSuRgd8bo5UBAAcwKvsEQsFvL7CE0wh8NcbDQUHBu+5KPiLMmxvhFfcDjKj4UTpsxTBM1SYZA50TjOv0F5hRs3DA9HUcFRkMrBCCUxRJCRVI0n4wpDMUQIvigUjsYIgqBIW2CUdCbpuA4XiRI0pTquaZRaxUKtks03dDudRykFNNVA+wxOVkAPiiSoO5LkvUI66TgOFDfsxLJ0TZN17JuQ3QQ2/RYw9CaTTKFDLe4Fphy0xVVB/2oGI6KpstUqgf6Fcl+GugzlJIWdlLlyHbPnpxdWl2Ym0XX0+OToyumNoyKodK+YrWbpSCjCchEfruyxoSBPR4MjQ8HwcEQFxSLJNLpu+wKx0KVLvtGhS77gyKUAJiIAsjJxWacZJhAciUajLAAwjgJTDE1EY0FAYJLALAacUOwv9360KFQJCQoOpmurGE6IAliSf4Q9yeN9h9TJKVg802iUgX6u3c7kwvJctwFoLXNxguY43GtT0FUrW+1MgmheWdvYuXx5//jG9dPT0yvNZqs3v7K6PNPDnzY9Dze0bXvo6CkIpmtZfQ+GYqXcm5vpNJrj8zOz8/PziyvrE5oimwomLYE6BwA2DBc+w74CzhXKlXLayxUzri5xdBhupDiJk5MyG/fTPDEaixPpIhNXvETcF/L7gxGmnOTDWj5ZcwXbMeyovzxl2jjfmiqmBo6QqUy+mCmULMlQiLietnVVkAyMqob7lGQ11waZZ0k076ZAHCfFfi9z34pj0Nf83yMZsPkZD4MH0PEmnhCQ5U8APPCd6H8Ddv/1t8Jx/ziXFTMypckGNUYaDsZdQo3z3BQAcAsAuNK3oCyXsJevWCxV3yrpTP8Uu7+HjUzSxYPgVCqZ9PR8zxRrWTGdMTRNFEjVKHqmCEvY1hPZhGImVJS1Ck65IR9WVU7VzXzGNg3TtL3sRC6RyU2s1pREztMdV1RknmEBHMTaVHV1uZIxdDe3VJ+93AqRtmtkC91ebxp41vrmkcPppiHaSXj6nCRqTrrSqtcn5xZXV7Z2N092tg73bjxaHzYzObNsogpODwD4bc9V7u14VSb91mWsP701+Kp0NpnPlmxa1lkglaEYQ0syMO4RX9RWDbvoZXOiSPpDQUK1k1y5HGGqoMPLnsxyuAZo2RZ6bYlRO/lqRiHkXJ4N4xRBVIi1+Yo4xraG6ZlGYFSWgOulM7WJ3ekgQyqwWGQXJ8kq5RyIX3Qq7JV7oJMcRzWEaCg0/O6l0ZGL7757KWZzmiB0mvS7vMaonAh6F890JHhS8VjADw8VDPr90Yjf5/djhYrF8HhYx7NgrX+psto3hdXUftK3xHO6wsmald0poiulyGDsaDQUDAVBMgMRDwSikbGAn2pv7BVTs05ItMrJ3VM+mXonqG9P3fg0H4ikcu8WdwAAIABJREFUVq6p/+NS4+pffHj7V8+//ubjL7/89W9+YlsAiQvf/cv//Uws2TzBScDgyVCoVDU0OWYZZFRsJAQNAbhQPD23XNIsbm7n+415rmywDOfqlGzLhztSuwIvMpe/mpHTBQMKgbE+K5ilWqYyzXWXko3eeA/ujOkOrv3FxYX55bW1je3NzcsLS/OFUu1lPbG0dfSHv/j9d7//8ttff/78yvGDlZnG2vPzG7Prt549eO/WtesfffXs9PD8xhkmEJ1ApTwZ5ADj+e/R0eGVo72bmzNLlUzzZKI4sz9z/+df/uTTjz/EDqwXL54/f/HiCV6IwO/fu3P3wf27z97bX11eWZqfmch747uXV3q5XGticWP+2qNXj+/eu3/nzuHyNJ5ZNwuFZqNYnVqeBRWcq02A/p1u1zqzcys7IIGPD46OUWBgkuH5+bWrgMJnZ+eAv9evHW+v7+7P5VpXj6fndq/funX3ycvnjx8/7/eC4Tb0gwegxh89ffj8+fuPnt3c2Nyaq1Wn5nvlWqHSLNUm525//tEvPpiY/e4P73/w/R///G//00IirRtZVfVsg2Z5N+2QkSjULltnXY0LUpanSZTASJjFQ8aCvgBNcLpIRaggYJhjqwjAUUWlJDZKRVITxYTlJC2ZJQAzYxHfpQvwxWYA7iNs5b1wKcTEaVLgg4HQ2EhcDoYdPASkGJYMY6peDHugQyHA30gsFifReDAQHQvHGYmOBhgZg4pIniThDzijEyYolhcZ2hFYNQ3K3bVhsYGcVG1HV/OVRrNRr5fSsPBTjmNDlQdlCyISljPLACME/UvG2WQ+4Tg4hpGAX9ggjA4bPEhcxAIofYVKAQdCoQbWsqlsyjSTjoYbuKKhM/BPgOs8FONCvlRFg4Z8oYQ7k+Vqs90GgTk5vzQ/ObW0ub175fBo//TGQda03UwpVyuAlgvG475Lw6PD7475YhwdDwZGgoFLIVlhKYZnY9F4YHQsFLh0KeAP+ILRUJhm+wMPAk/iADEVDAej0RhF938RBBmHpR6KxcJknGY4DkC436Qp4NQStmiiB5be78mUcI9LhSrwo1YL5e741DgKV7gAewdtzJ0u3IqdOg4AS6CJMOiUFzXLddxUqd2bmlteh1e0d/ng5Pza8cnVw43ZRrk+MTOH28tTvUnQ0VkAUwNziwWEVaw9uu04uUa326q1ZjvdyaWt7ZW5cVnRLPgqXtL7bW0IwC7+hoqN/ajYtZN2DNlKsP7hILwek/EPj2BZCg2PUJxcESg949FheugSwdL1DhMCAEIA1jQnNORNNnMgfhPAsDCXCAEYN5FLGda04JYFtatznOFoWkLBvR3RTMJnm9JZXs6AiHIMFc9+UUGn3toYv4k96s8CF/EweKB537QsZ7P9LeuBEO7DS79Zut8KjZwMhGvBY7MCa4hydIyxgeAlcmmV98xcFzega40qDiCVy5X+8TIo6z8BcKbfCZ1O9RuhE84glgHoIihgm6sWRFBpGiyjGNDohIXmpqqWLphxAVgYI3MyZonqlirwjmgqhEKrhpdLm4AYplPsTM72jGQ5p7kpuDeoYIhVVKYCALzZKRhaorTWWdhqDgC42J2YmALmtL5xnGBVywCKmnJFVpQMr1jvjk9MT80sLW9sbxxubB/vXrm5FibTdiaRs3OIwOk+AA8GsjKDZqw/HZkPMBn7vPu22ehAli/mWEpjcSYiEqdFiSOD/qjPUE25lPJKqkiH/f6YpHtSskVFSlmezWVEeLEgEEjZpcsLiiDWS5ks7ffLaZEk4lSIMoWaanfZsaIpHneCQ0BTkvlcutrbmwpScQWIhAqADjS6lKl3O81Od3wyC59IMeEYDhsIRkfevYQ+HBcuBOUIS/i8eeXCEKO4Kg4gx6JQs0IhgsSFSDOyxoaiHM/SPPYhajhO32+JHnRrYau00c87wnUJXyDCJxQn4WeGBTIU9w9F/T7croYFTsRCwKnDwVB4xBeOiOubq0o9G1SStfTqMZ1GAN6YfP/9oj/mbRwl/r44ee3PP3zv62df/+Gzz3/y7e++SiRm56bmfv3P/+2J3UqyrBxhoI5HQpk6lLiYZtMBod4HYIkvlK/eTiY4I7tyOevY6SYCMMcKhkxomnC2LE2lgXzna+e2nc0JnKJbew3Da02US7NiezlZngSy0puabE5MzoAAXgRZuLG1ubOzPrvezWUO74j1rfXn/+6H33/z7dfffP3q2u69K9WJ8YePbl4ev/nqyb3zk1sff/z0HIN5ryLaAfReeWMMiTHA/SjCw+21lXwjcT6X6K2unP/qi88/+ehDBGDEXwBgTGJAAL778NF9QOD337s8Oz2/sLDUSOeWr25PdPP15tzuyubjV6+e3nvv7v179x7cP9+ahRI3B8+v0a60JxcWepVspt3udDutdrczvbK1d3h4AE/h+NrZtatnb66bqIOvXz+/futoZffGfivXPtufnTk+uX373jM8jUYe0E+FeP/RkyePHj15+Orlg4evHp1sXt7s5JqLy5VSBYCh3upuf/Lqq+/2Su//u+d3v/7h7/7m/9gSkryU07SUC7yHdzSVokkrkbEVLmXGSFoBwUcLFE/B3U2GfaMxnpJcjBv1xwXJMjWOoRGASZ4KEcHkeCmFPvyKxLIk4CkIPFpTjUhsOEJHo8FLYxh4S4pcMBgaHWXUPgCLHMNyVBThHYRvBGkj6EMC4JUBAA5FfVGKV5hYiFU1kQiTHMVwsUAggPjLcKJCUxbH6JkEtlGxERxN0mxbU/L1drNcaVRSmVTSAcYp4245Jo6LPAuAwnEkzinTiQICcBLDgJPwxEG9a7rAYcwgADCUukIdd5/RRq9ezmehSIPml/uBSQYtKooGRa9ay2YqzXo5k4faWSrh0WCl0WpNjE/MLi3Nzcyv4RHwwdHOwdW9lJHAfNhyQY7D2iJCI0MjY0MhKJU0Gx4bCfgv+QAvBRCcHElG/IFIcHg0EiIwtowSWdnQJFjWNKOLQJFjRCSKDmKw4jGvPo4KGDAYaDjJAgDD68TBQ4HvHzjhiRMy9cEgBAKwov+o0hwfB64/DcWmh/NIEzhCND4x3ut2xicnmhU0vFbRP4CHx+Rl0zItYA+1Rmdybmlte2/vKk7MnZ1uH24vTgKyljqtVqsJyr/TTScTmJGngjoCcYCfEkqALPbJpWrzc732+Pz65kYL90qhIgnocIaTGprt2tgNhyf2OM9VLJUyrqnJnZls+FKU1j0hFKGJd8dI34V4LFQsC1ExnaTj4ZHhsUCskGLDZsmrJ0RPliximLfhVkQvxMzABjJfzOY83NCQNUPlQkZatyTJtBTFdIRwKEaKjqMl8rbAkpat2nJGHKiyQi791qwp/6dZpFJf5+YHyhfNWvqgWxi0ShcGQ0i4xYqHnoVS//uxBTDvMjlatmQxOMbDTWe7uQQvpfRytw7oi5mhVcDgYqGMDqGFgRH0oKer7xCV7p+n9q/BFrSrZcZNpliUExnXAPgkVB0AWOFJyS0UXaiUFBA1mcVRa9VM510vb3lJSWM4GkP0NHgybqJZKYyrdiknGp6kaDLNwBKJFGcrK3uzRUtLVDZ6y5v1AAJwvgIAPDk3v7ixepTmNFjjrp10JdBuspPGliXgb0tLqxsr21uru7vbh8uKQOJxQi6Fbdt/ClsYxBH2/+3NhsLb8aM3XwLoW/CymaJCahwAEJBxuJWBnwcjl0RDE3NZOwdqn0YrDjWpSz0p6FVkxi0rHMuQRDQuJ4XEiqpJxVK6wkRG5YonEHEuRFhirhSeqI6xmjrXGI1E+USqmM/UZw7mwlRM5ljZNODuzNdqhVq71eyOj0/lStlSNZ10UlLQFx5798KPL1y8eOGdd0d9hBqJN8vD7/hiaNnnD0PRwlMMRlA1DcDWclWaN92EjulaKvxNP4lbG+xGAcPX+jlhktqPJoM/8RyoAd3iOTU6Egn7oLaFkHjEgpEwcG94C3yhQCgeDnRXt8tshuDcanbxhMql3wmoq70Pr5ZH497OfuUv+MWTP7y++9Wzr3/49LNPf/m7X+Ya66trSy//5b/elRo2IQghWhfISNBpaZZKyAnWx9eTklFJy2yufHo3lxTM7MpxxjATtUlH0llWNMWopcrvdZQFz3W8Qu+IdzM5HsRJ+sBQczPLk+UFubaULvXanXEoGI3ZfhLhytrq8ubOxu7OwtwaaMyPGubc5sb3f/nD99999btvPn64fO9Wr1m/8uGda73LT14/unlw9smXDw4Oz89Pj0+uXTvBGOArB/0RpIMTxMAr+wfH60sr9aaxvW9VNuf3vvnq448+fP0hXG+2oJ/C76d4+grY++jx+3fOl6cml1Ymm41Ub/vK1mSlVF3YXV25+frF0/fvP3h47+a1u3fuP3n63uW57tT8TD2TrVahBs5PdxqJXGuy1262WuNTs0ube1dO8SD62tkZdkKf37hx/cY5DiWdn127deNwd//wYMqcu7Hfm9k9O7/54MWHr57A04Cn8vjR86fPnj97/AhPhp/Cn9+/vLOzVC9PrnQK9WptvFpuzN394NM/PGos/+2Xd37ym7/+x/+8zjsAwLbuJQ1AJZOXKZK0E0lb45N6RGZo04BFGyP5WIiIB0dHw1SUMwEhYiNxSQVpKfAME1EUgo8HYwG3W0a8g9IqYlB8xD/0LmEmpHDsEiUCobswQkThpwuUL+Dz+VlpNJwwRQl+AEMTMcxkiMYpuPcioWAYAZgmg2ORGAKwyhIxXgVOFqE4hhcwoiFMAPQwPChzg2bMjJuCp8wCUtGMZjmaXu7UQVFADTR1qOu2BVwUuKfM4vQRuinDS6XpOJ0oZT1Mx/H6Ph22BeJZF3gQcFDmcIQih/IW95bLmWo17eWzFkCwLEJVM2lOlHTdabdKqVyjWSqnc5UCFFx0/ciVG62Zyam5+Wn4LDcu7+M8287l472s7YFMyhZLFhkIAOUIj474gnEex7+CQ2ME4QsxPPrecGRgBN6hwOiFC2OglIFWUAwtGZrAUHGGVMUoEY/jfDTIeIJhWWDecRJWbCwajBOxOKYh8TIUVFz0uqkDpIuDBhET22X7ACxrP6o3O+PtegPbriZwHrjdBe0LInaq1+1OdBslnJjGVA2O5TCBSsBhCtfL5HOlemdqeWsX94quXT/d2t5aX56fAqaZTqby5eZEu5tLe3ZKkwCA4cEUWbOSeBBaz1sqrO9ic2Jmdnp2daemmZqJI2FSP/IQc5Ns000lvUwfyNDdEfuplWKhszVB+kje4KKRKEUkxi6MErxglMWYXExTBDkyEheESkaI2qVkLSmnAW+oEC+oiVw2le7n66C9dKmQSZby6WpKFhw5RqWSOHtmwnuU1DDzkjYt2cknVI7gUqqjpnW7byyazw+8E3Nv9k0Hw0j9LIZMDnuVQem+aYd+49+cf+tIOfDDwpjCQRtzqmCIKQI+BDHgl7HrwM7YrJF2651arV5t1N4AcLGvg4uFIj7lbDr7xkA5PRilw8PgtwBspscdOleSrVTSUBWJ0fRC0uApysznTJKx07JKMzjWQmsmaxXNrKebuUo227dhgjuJy3lmvlU1VauUFfWUwvNkIEjLKlOYbq5sTmRtJVFa7a1tlP2U4xqFarc3MQkKeGNpLyPqCU0BBmGJnAqI41U6zSZICkyBXd24srlzcHR9njBZNZmy8w52YqXSgzYsfEP6J799e7L8wDjsLQADhennJ5VS2WTRolUhjr1LYQodHEnfyCXSVeRk2crYksiFAhFWdU26mwwrDYeWajYLL4mMxsSEpC67Gu/V0w1NioDE0+MEF44qtF0P87lY2hfXC5fCUTntAalpzB0vxeiYxHKq62I6VSGfqtSqdaCkM7VSMotyImNEhv2BoXcvDqEd5bsjPkoPBa1u8J3RqM8fY9BaElShm0Cta9vAJUHeGn3Ri3Yb/VRuHYfwcesZG5yV/r/olgV8WITPIjA66vNFGYaKQDUIAKRjtigo6mjQFwIpHAoMhQiCCvu1zY3VuEExViW3dEIDAI/JyxNf7JWGCO/yVu+byPrRHz68/9WrX33x+suf/Pz7b8r1lY3tjUf/+i+fyXWP4iIyb/HxaFjvGY5BCSnBJzQ8AOCMwmWzuzezlmAWVq7nDCtV7TmSwTCSLcRsw7ztWYuptONl5tapZC4vKZbaPqTlysr2dHpBLa8WqxMAWfB+tTGIcAEAeG1la2djZ2tmZbbqXX7M17fW7v7j9z98993Xv/3qzvH2s/Xx1sLLh08n528+e37z8PrrXz88Pz6/ee30/Pjq1WMA4EPMQDrEbCLcf967cnywst5MZ+Zv6JXp+Z2ffv36888++egjgN9Xr14i/v4JgN+/+979p+8fzo/3FreWm9ns0v7eTLnQnJvbWdl68fHjVw8ePnp8/9atu/fuwNe9eHTnfGO8Mz3dzDfL+cr47MLiZDWTq3e7UBIbjc7s6uZhP5oB265O0QbrvA++166dn5zdunW4efl8o5mdO9+vrmye3Lrz8NWrJ/hMAHnff/Hs2YvnTx49fv7o0cuXjx6/PNte35krVeeWarVKrVsuVyY2Pvrwm59u1X/1N0+ef/27v/8PK14O1rIt2a6KAZWyRvj9lpfQDU7jozpFWI7J8iSt4fxuyOePUBHOkpk4MULKRjLp8gJFR1QtLtNhMuSO16A6uIYuESwTD/tHLr7DprxYgByOxOHmuhRiogxJisRo0Dfq54SRsGeJwG/jJBmPknQsHIlT0RDI20AoGiUpDMGJkoFonJEZIs5IpsmSwBcFIebz98PnaVZUScqiGTsD7N4zaUBwBgAYZGy5jjbHUMBN9Lx3TFkHNmqpQHXhnufpOEmxIB8pFwA40Yda20UJjNtFogicI5Hq++jlclgSi/lyo9ioJKykSctuoj9moFPAeE3D7TbQ6bNaKQJI51PZQgPHgasN7E3odXHCe3VrH1sJDq8cH5Zd18MdxmoaM9UoKjIyNBqjeRVIhT9AykI8xogCxzAcEwE9HAr7Ll4ExhMOkaBpCQ496ZDnS0wIEDkeiNAkzcLrpSnM64vFwwQAcJzjeLHfNyViYyaITFMRcePZUBQDbUjkwRmw8qOpTmt8erJVqTX6DljYf9VstoH6Y1dWt14EMSUraDWAZvJYKlQz4aXz/RDh7uzy2ubu8enJ6fHu5vrKwuzc0uoisMhyxjHq6AVtO6oIoKCbsKLhe8oAZrUKgirQpOLU6trK8nJdtxRDNyRdlnVNkk0HATiRTrkeOleCrswWih5QJi2d66xv1kKiJgmhIaH1+OHU6AVC9EoiZdRS0Uhk9NJYjKt6YszqA7CjWnqMMBJGKocG3gkchcFCX8iA5kmXqxrn6kzYTtlJD82KJMfiCDJGQjk0vJQj0yQwSEdPiZiglMkOsvIyb02L8wiM6ERZLAycsHBgub8NXfz/AHBuANCZdB/D8SqqthM1JZ3zhVR4CDuVNTmQ/M0Wyt9mdbAFXa2hQ2i5VCy/BeB8doC/2ImFPcVvtqC9lJXueUyuJmlJTweKRElKMWVIsldIq4JqeQYr0CxJkGxcVaOsFtIcQGCNMco5V1N0hSdiZjFZHlcUp5SWzRTwNCoalxI502u0NlbbBagIhcWJ9fWyn0kkjFylvwW9AAC8nRaBVCsp+FuOU7REMtOAIjw9P7m8vra9vbN/cHJ8cHshKOb8bspJp3ALut/Mls2+jf3FF5XKDWy2s3/ags7jaU8mn4L1lM57tKqwYT/IQAZdGyn/yEgwAQuu7uYyisCGQvCJmQmqWqToaoZhKhkOiDwVDTOmJC1UZVrtpMuWEGZzWYMMcwQBbLAdIEWfYxJWefgSI3s4YFaf3JshmJjESQZoCcv2crl0tVoCsjG10CiayQKI+KQeGxoLjV0cHr7w7kX4PSLa4XC0IL0TAO5h9w3xtEHOiYGwaujAbm1dMZw+5bUsqS91NUPEcFDM9MTgYFGU4enGY6Ce0cQOmHhwbCjCxcJEBDhHEFE4DhydiARD/qEQSVKRiH95YztNE6Jdza0fUan0O8PiUu9nm7mRWHpvdfWn8e2jv/jw/s8+/PXTF7/82Vfff1sqLq3OrL761//23Gp5rBQVZJcn4zFp1nJNjkvLIaGZko1ySlazqZVrGV1UC3PnRctMVycd2WBY2ebiluFdl9ITyaRmuwsdJpFLS4qhLm2RamtlZ9JaBMwuFHqt9sR4b6qHo+DLS4tL62ub21ubq7NrjXzysyl9cnfrm3/43W9+8/UPP399tPPgarvWeu/D97an7zx6cnv/2uc/f3zl6g0c8Tk+xv1n9ILEHqwrfW/IA1TDSxudcrHypGYuLHRff/PhF599ihr41WAHGq63+Hv/4cO7168sT0wvr8+Ws+2Vk9VmpdHorV9ePf/sk/cfPn2E6b13bt2+fv/Jw9u3H7168PzeendybqpRrWAo6/jeTDGVr7VQA2Ns6uTa9pWTq1dPjs6uDYTv6dn164DA56en6Au9u7m7X0/PvrfRmzm4e//uwxcfAAA/B0n+5BkIX0xIhH/Ak3v+/MnRytZms9DbmqwVK/VKvdydfPHZl795VHzvHz+5++V3f/yPO5Vi0vIs1UlqMsWpsk6FQ7qhiBrIK1IkGdc1OEXEIKJIJOj3xdm4nNQFJj5GcLJja2glFDEMCgCYCjndWiHl4FoOwhePDQNpFNOaLyyGx3xDI2NjcQ5+kWLMHw0O+XlxNOoBJ+QobGcmGCYG9C8cC/nh6qf9IgBHaPQ3FqkIaHDLFVnQZADAOEuH282soDB8ggUA1gHbTDIUibKsasIiLLQ6jSwWVNd0ko5totOerMu8iHasDDYZMiRwAbuQdBPpXCbp2hhSZxmGZsqSqatOwk3m0MSjUECD/HK9kLLQNCQmK3jgBiKJUW3LVA10DsxnSq1iNl/O9y0/67Vao4EfKUjJqQW4H/eB0h0c7R8d172EVwCiXy0KMRCtscDIiI8UJZnnhBgrqQJFsSLf3zamAz5/OBoYHgkMgRKmQLLHeUXB3FGa5qMBkmZiwTCJ81sMTTP9U2AqRsaCcRKwFxgGwjCavitqP8cX/g9jgE1dEgZNWKL8o8l2ozM91anVG81Wu9Vsjo93GgDGrcmZ2ZmpiWZZEwX0tBQNiWXRXQvKipctVmoTAM/j2G+xdvng8Phwe2VleWlhbmYa4HtiZqpTh2prA4FLQJlRTddBa41CIeN5tWY1D3cgcMBaZ2Zlc6ulGcCIMJFQNVVOgtsMBEQy5TnJ/s4tWlFU0gYPREOd2Zlr5CwhQNCBMJM6/HwjHHbzaSGuFix/xBrv8H6pa3ARu5ysuCIAhx6OuVBHM16mkHXfNmFhK1SukKt7UAg5QkaDMAcksKS5Cs0Q8LnqupVOGSKhJQ1XzgpJHB7O9E2o+tujb6yZC/2J3+LbLIZiKT/Yi36jgN+AcDZXyCBAo4jOvUlDyglZNebyYnw0Ytrw1uQymuCoqVajAvK3WUYAxjHU0mALuvQnYw80A8GO6sEYcOotAKet1HiazTUUNZnWMFKHk0opTUuVczqnJ109FpcNmxE5EefReHJELBRcKRzkKNkwnJTF2qTgyXIhKdhZV7GSRsLLlUvZVErXkumlnZmiLbrFhYnNjbyP8ZIAwO1xPANeWFvfSkt2QtDgOWgsJwMYp4pQtHpzE0vr65f39i8fnJxcvrlEcqZEps08vvL+HPMgDzjbtyrppzy9OVN/24T1Jouw37WWy+RZWZMIIOIRGjsfqHA4MKqbql7x0kVdZGGhR3Q9LWSaQiRTFOPZoizzNBULkaoqdqdkhm2XihkhQuc6IhEgYyFBF+ejpjE6kknN1kZHJJD3+XSu0d2YjDCEJKCru4dpDPVqpwP1tzu5XCsnUoV0OuUosVF/YHT43UsX37347o//bJTOW9ER1fizgK3qKu4zqQpOIaEfpaTiIRbPw1+ZZj93DZ1cAZUxhszE2w1ueIbo29770YPS5/OP+P1hMjgWFYIggCPhEeziCoRjRMDnC4ZDvpGgL0oAAEeHU1sbnVhQcuuZrT0iUXh3SFic/Ol60h/L7s5f/kjdOvqr13e++PAXT17/6vOf/u77cmVpubP45H/5T4sYTqnJpOyyJB1nZ23XFBlPjgAAS1oxKWjZ9Nrtii6K+c5J2VJTlZ4jQ+2XLJbTjfw1oVYyNdlNbSeB2iV4WTPWu5TZWzmYM5ZMbz6XmWx3oSBMTbd788vAq5fXN9Y3d9YXF+eKqcUPjNri+u2//+Nvv/31199/dOfy2d2Zam3ng4dXG9c/fnX36Oz1V88ODq6enZycX71yChB8cnR4BNiLFlggWQ6Byx1sLoxnW+U7U9b8/OrJtx9/9tVHuP/8Gl04+vjWn0PCtuN7jx5eXZuZXVxcngb8XT+a7FWLk1vbq3svf/YBDik9uXf77sP7149u37lz9wFg9cP77z++vT07OT3RqkKtqVV6y0udfKHebKMtfrs5Nbd6GZ7RIZADnEbqu1LidXZ27ezWzcO1y6fb9czGjaWZrbM7d+8++fAFXC9BlD8fiPLnT56/ePrk+ctnL+9tr+7OltsLS+0SYH290uqefP7p73461fv2+8ef/PaP/3QjXzG0lKY7SUUlWVFUBQkAjxIUkidFQISkrYuWIvNUJBQK+kcj8TDvgAImxyJxzjYFFm2JDQOgOkQGrXa1bKO5UAxuIv/I0PClC3xSCsc5cvTChQvvDkeiQREAODwaCw0HOH4k6ikqLByaRUsnlgiFwqFIOBzGOzCKXV+hsRAVjKFZOihiwXE5CpPXeCIQCOIUMM3yEsknGQoA2HIAgMNRAGBYTKJUmGplLTPhgpgxE7Zpoc2Dqom8IqJBhQC6GwCYpmz04UgBADsJ7DAdALAI6yrhOF5/HhUbeEHApWRBBGQHnQbyEfirDlXOhB8l50u1WiFTbIC8A3FUq4OGqfaT7jv9MdulzfVNAKqj0ys7BwBi2ybwAAAgAElEQVTASainhVy1IuPsbtg/NjYaU2RBEHC7l6c5nmWxh4rjiZGLl0Z9Qxcu+WDtj4bjJDrG9x1yQA37/PCOxSJoEUZwLPw7S8GPowkyGiQIIs6g0zWoXowjwhKBjSDYBIIGnIKoaG8UcKkEOr3R7HS6XRDAreY45jdiiPEMwGmvVdHgG2WO5kB3C/DI8BMVy8sVig2A6+7U/OLKyubl47Pj9e1l4MC92YVutVCdmJ2frxdLIG0BsjWoQrbluE4StxjzqXqrAmymOTEx0en0lja7imq4oAw4qH4SJbi4BW27SSedfQM1XqGStSXaL7Lx5MKC0yuzgXA4NMqWbj2akqRy2RSscpLSWotXNl1fssFEHABgm/Nk24hErVrCA+DysAlv0P4DijSRraYrZRfIPcfprmEk0y6QtaTBMjGcKzX0dNaUo6KV0IyUDi+2P0T0Ng7wbThCX5+W+imD6XS2UHo7r/tvARhnhvuyDs+e+z4cSTeZoktSPC2wsTEykdBMNeVKUlItteplBGBMq6jVKqVitR+rhXQumy3AjYcb2RkAhzSwN7j+tAWdMpPdDJdr6Foqq4Og4mStmhTkHMiqOBPxhQk11+o42SSvEX7ZpMJKlhMMAURpyhXgH5bhskIK2LKZr+VT+WIu7egKF4vRjKgwnYPlpC0lK4uTO5vpEdrzrEK91R2fnJ+bX728m1FcT8C5cI0VZN6Eb27jEGh3YW11d3//6s72+dm9+ZhG58RI2U4NjgHSg0QnBNh+Wzc2Nub+bU5wtjiYA4bXm0nlU2VcE2QQykGIBcpLh0PBYcEVtIJnFy1ZjEbDQVPPqYmuHHZLWjxR1iWWoohwXHGEwqIukVBUq0o85tZNkeSoAGOEuwpf94To9JXCJVa1Uvl0Mt+e2J0PMvF+N0Ai2XfCys/OTLRbje5Su50vlHD0X4wGgqOXRn588eK7Fy4O+YihUjsSYJh3fK6mSbIFLBf0r2nKuoUWeyBweUG3cOe5b/5q2K5jYxIZEqEYoGpkdGjED+AaDISIWBizjUdHoqGRyHAoEujvQGMLdQCUbwRQOh4ZA+kRgQ806vdtbTVjfjZZT27txBK1i5cAgH+ybvvD6Y3JvRfuxsFfvbz12Qdfvv70lx988sMfapXF1ZmNq5NXtkqeLTEaLVpUnCbjUwDAEpWUY3zTk9S8y/FeevtRW+flYv2o7ipeadwWVYoRLbihjMo1eTKtKXq+eq7a6YoDa9XZSlPu7PqNRXVRs2aLRTwDbrcnZzr9kNG1zbWNtY3La/Or7UL66WV1fHv583/4/tvf//L7L54dbT1brzRWXjy/tbD9/qunp0cf/ebR3vXzs/6Y7Y2rR0enp4cHx6B6j/s2WMeHe4enl+fWSvXk6Z5VXVzb+NWXn37x6tNPPv74o49eD46A33RgoQ/H03tHKzMz84urvVx27ni30yiVp1aW9x7+/PmjJw8evwSUfnDvvZvXz2/dvn3z1v33H94D1H7+wd292anJqV6zlKuWqr3F+XYxXwYZ0p0YxyJ1+eTqST8a+BrAL2Dw9RvXz6/fxGmks5Ota2cr9fTO7cW59Wt3795/+nqwK/70FSpzAGD837Onz14+e3W8dHmjUWmuT9ab5VqlUu1MfvT6u19e817/z5+/+P1f/++PUuOmnmJ52eDlOCsYmqgz8RClaJQqGAAPSdNQXQnzisJhULVRMoo5hRQdiMW5pCvxPEUEdS0qkmE67HTrSQH4GkBBlIgAAl/4MZsyWDIUGx4auXjBT0RDMknyweGwzxdiqUsRD9QkTVJ0PBql2ThQPQKULRH2AxUE4ctExgIxX6x/BkzQSsKKRwRsCYr4/L5YjKBAmSlhyqHiVhag0TPpWJxgWLSaUCu9jOGmQVVZmuVhK49suY4J0pWVVYFFQclRHMs4ec+xExgyg2NIJiwbAGAeKK2H2QPo4ZEr1yvFnKs6UCHSWezNcgTB0FlHVGWaJIVqvV6rlLHjtVzMFGq1cqVcLMFfAtJMzi4uTK+trG5sbe+fHl4+Oq7adiafLedrDZUJx2JANEYvBRQJABd4gkJTgFs0UCCQwJRv1BcIjA6NhePRsUuwYokQwYmyLLBxkRrysTS8IcEgEYn20wQYePsIKgaIHokCXeEZkuLgrVEA4ixtMOij48w2z/Dqn5qwZifGu6B96+V6q9memJxoognWxHir3pmf7DXbBZyHwrNfGVgYkHsQzXoyh1E9pXKjOzW3ODezsLR4+XhnZ3Fmuteb6mHzFk4Ud2q5pGtIXAzohGJbVgbem0oxnXbSmPaGWD8+M9nqrXZ0SdUsDafCVFXS4A1AiQ51PZlPQnGk/EI6l7domeUAOlRP1cfbkQuMzBnGZPfU9OU6tpjt5CRBrkysLDIZl2JSWauegPtNNKJUsozuZ14y9ab1NoXPPQeIlq0kFUcWSQYw0TJNyzXlpBQhYzHFMZRE2jEZeDDAxwyZz6YyqeJgUgYNIt5cxTcXNgeUCsVKNo9jwNgCj0PCfa+O/jcUcoPkvUKu30afz1l8LS6ZuhzwSQkoyrrn8LKTKNbfXE1sWiiXy7UqbqoUi1WMEEEgx0FieBZv4xg8BOK+CHaLadEdN+mMZ+kKH0sJZYcqVtTIcDAeCYYYPWm7vVLZklmnniLDTrWSVQjgMUkzGLOqmf52abYsgmoWGeDRcOfpjsrLpuQZRGklA4iS2lpc3S2PcYmEla60piYWl2Y31teupRRX13Unjb3UgEBero6W4qur/w9X79kkR5ZlifVOVxWAzAztER7hWofLcPfQWqfWWkAkEgkkNFDQWqOqUKhqNV3V3dNqdmd2ppdLDpfCSK4ZbceM/EQayeWSX/kH+J002tgIGu/1QNXO0g2JRCJVhMd799xz373n7JzcPXVq6/DimXO37k+mdYr1k6Lj2X6+oucLuQ8uyZXvGq/g72BOC8vRPj7N0WF7wQ9MrPIWaUjpzLEkGSNknaWpieMhIq8qpbpdyIs0E4+FOcV3xa4e1epW0mrqNEVDepoRXD67lueoQrNYNagxtWEJaZKLsCbtlpJqv01XeuVxUmRMP1codwarkyGeZwTVlBRI4UvVMjB9CMjD4dSw2cS2aMPkyfHY8bGJE//ko+MffXT8EyJEcqkoScVP+BofyKRju2IWFjJWnAFqcardMHQ74L0aJAYUlU5EYiiBFYnE4nihKkckGsFCHrzHnmciEY9GgeFEY6F4kggmQbA2nYyFoylYnGQqRoy5B10jxWfbhYP1lFf+o4/o+bkfLeihWHFn/sptc+fsP3938/2bHz3+8WfvX/38V83B5Orq4L/4P//mD3bDZiSKYw2eJCl21tUNkbLsENcrKlLeljOut/Wyo3KSN3m26lhGdViALcdzOmTGSm9PnvF0Va9NbkchTFqKIdYOJdlbmbu3pC6YylzVBaSanJqanpmdmV1aW1/f2FrfPXtyenOx6U5/7rQWd878J7/+7S9+8k+/eXRh7d7NRqt3/entk7M33ry6eOndrx6eu4TiFkdHKH/1wX/w4BBLz2f3j06ePLe/P7/V7Jd3rpstyNh/8u1nX795/dnbNwEFfjVCuof30Q7hwcOH106iws/aYs+qnz2/NJzK99Y2Ny48/xr4KBo2PLpz+9bt259eu3T5+s2bN+DP3Vu37z+49/jVnf254cLqXM/1q+3h4vLUoIpyhu3+fL87vbCyd4SjUReB9p4fuRMCB75y7erly1f3T586t10qn7kEHPj89Tu33rx69frF4ycvXzx5hCwYj4KfPwMEfvzq/un1kxvt1sL2VKHeA6CfbF5598XvXs2u/NXvn7/7q//ssNEwVMXheYPT+JRk6VkpGctwFSGs5izO0LJuVlSFTDoFWWcYTWop1VY5gpiAUG8ZPGSdScLMphg2kYza7bzKpikmTcQzZGQCXUSUnChmyESCIcYjESYaNTKMFBlPj0VjInUsk9eB1wHyJtNkioqT2HqfgDVHENEEQaYToYkIgEpKEdk4QYmuSXGyyLAsAbwwCr+CzvBcRjZJwQYEtXM6jcPKnAbprAoPxHQh/ZQ0G5tvbQVIYNbQFRGbgzmOZUQamCNnVvIOKk2aquXlXYALHVCaDZSwsN/I82uVVrti6/kOAGsBHQaABQM0CZxIQ5YoG7n6sFetVwpoIYdecqVSYGFYbQz6g+FgMLOysLYGaeGpCwcHh4eTFrzK9Voe6EYS6GsmFBqLwuNBWqppFIsNk4LACjLPZOI4ZxX65AQRSSUjY8c++vhYkhU1IcOxybFjE5DKUkQklkylKRx+YOhUChuzCIJIJtN0YAIOj1EERMNKmARPHl1JJcBQHUVr8e0HvXa7g+fkzW6/24V40+4Puv2p6WG7Ozc10+/mEYBlZL4QnOGeyZyg2flyrd5D2ozGgtMLy/Mre7un1+ZncApl2MUT5MmpZtm1UeRKUrk0o6KFQ7FUK/s+AH0PDQ+H/enlxcn+VBNlMnXsRJEUyAks2dAl2bJ136u48GKKx4+diChll4uKvtyul6uU2QV4jUvzC+3ScFZ2KkZYmGuzUihjTl3ruBWacitmKStYhmKEE7lWAMAu5EwjLapCoP6AFNVXRYMnUkbOMU3DRLlsFeU8WcNUdN/VBVqwHU1zFcDwvJtzRgXo7/wYgsLp6MgXx35L5dpIGLpS/c45uFIeMbrvSqtopIRq5L4mFAnD1JRoRMFhq1zZ4WFx1tqjq9VEHawAg0eGhEF9FjugRz6E/wiAP/RC27maL+YGNnZTKTxkv2o5Z/rZeJRguHSKSnvwdLoN0SfCdkeOGhD7Wkomm3VNVqnVdEB1oGyMVqEiKYqHBAtZG6QHUiZBZU3VHSqyU1yZ3tovjjG2lfXrvZnp5ZWFzc2VA0fFlNby3Cy64aoOBKzucHllZRN1KHdOnds/uPJghhAFJ+1HpXJeL5nA2XOjCeDSh4PfYqCxPao/A+aODsoLI5DGIaWiR+kaRY1BApoUFZ6jIxPhuKsKdhkAXWLoWITgBMdkOsWU1PTScs0SGJpOJ4h0TlBWKiyda/o1mwsLlYJEE3SUVEW3kmRrJdrKO2NpiTOyhp+vddYX4gKk4kJWVk0rV8SBwvZgcnpuYbVVqecct573pdRxrA4f/+FHxz7+6JPjmUicRJkCLp3X0JoMTcZgn2mB6Lomw77jRTWroXtZJpWIhCMT40FvFfa2BONKSQJriQi3kUg8DoEuAf/GbqsAgOMhiID4SfggkYhFwgRJJkmaIpIT9N5kNsE5DX9zGC1W/+gjamH1R4tqmHA2B1cviVuX/+zxrZ8+/fbJV1/87O2Pv2nVdtenp3/09//Xf+TUbVaiYA+nKIZIzhQtS87oZojtFgCAcwrre1uv+oao5qcOqqau17s5iuZoUadoWZlaUbrAS6za4krU9GBzyOzMgZItrc3dWVXmXH2uXur3sItzamZuZi4A4L3NjVNba6tTrdyV8+ZwY/PVv/zFn/z657/57NPtG/dna639J4+Pps8+fn3j4qufvbkWoNrFixdGZ784fHR25Ep0sH/q7KnDC6s7rWFxeNerzO0svvv23YtXX+IB8Ct0QsJT4GfPnjy6//TR7btPH17dmp5a39uYqhU2zu8sDBul+bW19Wt//Md3HuMF/PfR3U9v3Lh+6fylazeuXb1+686dT2/du3f7zsPXT28drC0sri42irDz+otrk5Vyo9tponvq9Mzy9v7B+fOHhzgOfCVg6wDAVxGALx7snjy90GhcOLeydP7K1ccPXr59+fzly6cB8j6Fd0+fPRtR4KfXt/dOTden1hfqtXa92am1Vj778rffnOv95F+9+fp3/82NasOGMKlItmxwqPeoq0lCMmtiBDgBZwuQ7gqqxCcTkJRFIWcjU6KJtaqxRJI2dY4F2knoWkrlYsmkW8uipwpLo7FgOJyIjR0nbYVLpqOfpGPjYxGe4LIkzYfGU2MTEZ6CT4qiAOltGi4iBYgDSw5gPgwADJgcAHAoRJICRREkK3sWtvoLQnAGnMykqAzJ0EAqUryFA5I2AjCV4VTgVUo1b5g2QK6s44iva8GWAJCD5yEpMp6zsnxwgJot+Q6gYk5Xbc/PGThUD5xc1rKWDQw47+VrpUbFMku1YrWSt1DCAw9SUSqOYyU0H1Mbwzb6MKCEAvbkFCr1KvwpVRqNdhfi0vzixtbW7t5pfA0vTFsA6+VquV3Lo/ImGQqFKdivUmAZyohZQEaGodGDiJw4fjwUHf/4WHQsBvdjYix8LMYAC6UZAu5pGMg7k4rjeBJDphGAycDKIhaNJdLpDCOIPMsHA8AKWhlhgq4oqEyroB0DTiUp8g/qVXQBaFVbaMMwmAT07eHhV6/bmZlemOp5Kp4gw0OBHwZkn5cBvS23WG30et3+5Mz8wvLc0ur87PrJ3aXpfgulZFBLGhC4UcpZppFVJHSAAYQDBAMW6PnB/YBvnupPLq8tDIG8qjqenGEJT+QRgFEWw4O4Xsw5dtFPUApLVjZXOnou77fcrAPwXNAjocLCTCe3BOgnx/l6Vw/HUxK7uFlRE6RXz5U1xbLsHJHKVV1vNIDkIe0F6jVyFgTQbHhcXs2k+ZxrorKZDd8iw10kFUeV3SJqKmWdrGpmxZJXKDhe0EVdGE0ZBfARtEJXRqfA6D2JnC5Qux4VoQMjo0COBZC3mB9JW+dybjGr23FbFYVQVHUg+ucqOmt5fhfBFy9UoWw2quXqCH8rox5h3xsdQv9jAB6RYNvy6p7o92ym4JrAgPmsWdeTY+NU5HiU4YkxIieLRq2UPh6naccnkwWzWOUFl0rzcaW3UdF6fSNb1sW8kqIgVeMFiqcJkoJ0WuR5yAQrLqfVtyY3z3gnWMcyy93e5OTCwtzq+vIpR/Vyumy7jgqLTFTsfA0SsuXl5Y3trZNn9vb2L5y/8GA2RLuUqAA/zedyRhE2qPehGW5kWFEqeaP+stKoUl/8cFDgu981ZMGSYDKRcCqVQc8/OgE4ppsCHgIXNI6NR6IZ1nPZaj2TrpQFtlYMmCaRzNgKv9Bh6WzHh/wkkfLqMhsjk3ExqzdkShIRKMNpSdDNXLlU76wOCZ6m0XXTdGy3DHu32e4NpmYX15qVhmdnYb0oxDHcgkEF+qOPJ5hYJBaUxjOmbQPltW0IN6oiMTh/nwLwDIfjSTKZgAQaAmYslkkGTc2JZDzouIoS+BdcoTj81Hg8FI2j9AGkTfE4QSSAxeDHEAfRFi46EYpCXp0g6XQ8HZroLMpJxqqU14bxYuGPPkov7n69wJFcdrtz/yy7cuHP3q397P7nL796/8v3X33bd1fWNqaf/M3f/eelpiuqaHTFkBkm06ralpJR9RjV9kWx4GliPrfxamDJ2cL0uSpEyVbHSmdoWnM53rC25vy6BcGxutNPOnkAYIFdWmZgYczfXecn88Zktfg9AM/OLa+tb2zu7mztLu3MdkrVL1q5xb2T//zPv/3219/8/OHB9sP9amP+/osrS9MP394///Db91cuXDwf6G8EyhsfrjOoP3nuYP/syQtHm8uzw0rj1ozb21u+8S8+e/PFyy8+B/IL14vnwYUU8+Hdu0+eXFpfXtvemBvU7MXLe/3penFje/7Um5+8fvYmwN8H9+4+uHPj+s3rlw6BAV+7cvXmLQTg+3du37314NkTgODZ7ux80y23qt2ljemSV+u3e702nsut7507On/u8AgAOMDfK4DAVy5dvnbj8pndc+cX3Lmj/Zn1C9fu3HyEicGLJ4C8L0Yn1IFQ19MXd188PbOzv9Jqz69O1hrdVq/SaN/5+pu/eF679N/+6P03/+ZZse5kfT+r5HSDImWF121eBHZARURDYTTVcFVe5jgyEUNdlnAkleBMhaMyoQTB2CbPMclUXNUyIpuk44qnYZkUJ2Ng9USJ6PFPSFvlCTLycTw08UmYDiuw3+mxCWJsIsqSJyhXk3iKYlgKB1iJdAK+KUmEw8l0kiQzFBGaiEYi6YxEUwmSlVwjg8J0PJuAlBIBmKIEPiXoSd50UUVJy8TJTAbQAgifXywADlgmImkONZwhT8Wxd27EgDmWBQBOp9WiD0wiZ2MF23PQO1fJBs5ieg5L0MDd6kUnEDMGDLHRWU83sMaEI8AKHq1mG70mMIBmMIqCUaRUKRXLBWC6jU5/MJieX1jf3jtz5gysrKOjGWt0ztRtFOHhx1ITkSQO+ijw2GRB1HRFkWia4XmGJceOjQUnT5EQJsiRcHQ8SgEeCjTkzRNRbLVKw24l0kwqPWLAScissXsyQ0JAlbgMKmEFbi3YJaKpaEeo4mEwCkOj3OYPGvV2DxCx1Qy6/ob9Xr/banZ6nUF3dmZpZlBQAgDmcAZJRIoqA5t1fFTL7Q1nFpYWV5ZX15fmV3dPri3OYe/01ADxdzAAAMZmcpkGuM95tgXwmUcjBFh2HQTgQac7gwPSJbQBFoBDSGj0pNg6PkyRF23DdkzLBSKTN5PGZPH8etGVdVoGvIYXLhZX8tM9M2flcoxQqDVyEYL0MmmvUxGyjZZbUXlF5pUo5Vc8fzQCHAg/jJQgStgXXW5VNMeQ6LTp2fDCO64h5CDkJJOsZUgGrBo2Ldkm5FmUXsqX8Ax55IXwPQAXR4IbmHBVgoboD/gbJGAfpDjg6+D3BoZI8B3AxL1iWc3pCUeU6Ym47qi6nytLAIzFQasJVyO4mgjAgSBWFcChWgr8IPKjB+D/e/o7AuCcDQmHmO9alJcDABaAjdZzJAAWEY1EoxPHxjlXEHw+lWHFJM0en1D5rCOYDZ1nUiTTm88VfJIueKqu04AbmWRKVCVB1RWZ9EtMMps3fdns7M7tbXgTUs40Su0P7l7rqyc9PWerkuPaCiC3lIXHMT0/M7u2trm9uXfm5Mb6hctHjxbCGVh8rCUl5KpS8C10kkBrYz84+8UblB95M5S+s2IYMWAA4FGfdEXibSFNjJFxSCg1KZMKjZ0QcqLcKvolS+JTsTBBe57gddmw19DIUkNmaZoiM2xWp4YzAisOSrWSQoa0psxGU3SU1+S6xSqc5touQWK64pTKneFSM8bQoiapKiwGt1yrNXs4EDA5swAAXHCVXKmkEscSkYljHx/76CP4E6EIZKoTJ2KCqBoIupk0gWP5cZyfBMaKhWWE3gQBm5JAUYMojjPjPxBnw9ERvY1NjAB4IhKLx4LRSyxRwxsOIaH3ehKFLMfg9QQwh3gYyYRDzEw2TenV2uoanSv90cfE3P7ncynBEE+2PzvFbZ//06dTv3r57M1XX//i3Ve/ma4s7K7O/nd/97d/3en6SlZkJEskUzxTqpiGkpaNVKbtC2IRANi3V18OTFHLT5+vamq21beTKZY3bIrLZk926hVDVd3agUc5haDkcXrA6O2N7qUtcVjI9ms+bPlJlNCbm51fAQDe2tg72Jpd69b1ncd6e2vv9n/6qz/55hc//eLKyvUrnW7n/LMHW4Mrr19evf3HP/r0zOXLh9cuXLgwcgD+cJ1BI6RzB2cOTl3cXlnuDgtX9rMze3NHv/zZiy/ev3v7GeDvCwTgAIKfPn70+M69Z48OV2Y3ljfWWt7g9NHGZL06u72+cOvHXz599fYhtkQ9uo8K0Tdv3rx64eD8JRzqvXb11o2bd+7du3vv3p3bD54+unF+AYLaoFap1HuziwDkXrPdaXf7/e7k4s5ZiN7nR9LQSIOxE+vytWvXLp45c3Rmrjy/v7ewdXR069aD1589f4ICXXgY/Oxp0JH19Onze89fXz15cmuq0VlZbtd7rXqv1tn86v1f/GRu7q9+//aXf/11vmYJeU+THSObTAM8OUVNzRkZIkqpWGjK51UxcINPwioLj8fScdZWOTYTTqS4nMWnM0QyIuucwKS4OJ8zBQn4KhoxJKIRnKMRTBFNFXCM4Fg8c0KTCCo9Fo5PECmWOE77tgwJKANfDz+eSBEErsvxcSJNZiANS4YmYgREWE2kwyQj5Yw0KwV2wOFYLJlB0SdFQgYs2C4a3KjpOJHKiJqoZaVcseJBkLbMHFBZ1zZwSADwTeCCViaclMUB2oxaChiFbdmWAzCNGv2Ggv27WS/nlWuApfUgJJTbQfCF+GCMxgt0HYU9VMOuNarVRqteDno3Pb+IDsPFgpdvdgZTM7MLKwjAZ8+ePX94cHg4ZeZ8YDhAqssMScaJiSStiByvIeYL6KCSlSmgrgwlMJHjkHuMj8H2xGJCNBSOxxjAfCkdRq2SDMthjhONkzR65OIYNXoSAgATJFIGnsHmamD6khpMHaojrzRAOAB6KdCC/0Eba8+9Ya+N40fIfLvdThdHgntzM4tTw0oAwCLLoqAWAKWsaKadywOM9odTM/Nz0wsoe7O8srazurw8Pzs3ja4oU4Dj9QKkM/BceIFlVMvxAPZK9XqlVodfBOsZrfeGc4uL83X0JJcR3uHXMKIF98C0DWwXlSERkkg+xepCeWuKKa7tb7lFeOEMlSEyxe1Wu1HSFU5meK+mRENMXHPZZLGnatVupa7blbwmjiW9ip8f+diPWn3yPvY0lfx8CRDRZTWNSWo2ZG265dmC7QB3QgqsKDk/J6Qh+qChCFt3C3lv1DyEwDEqQH9/FlwdGfci6AY0OOh+DlxvR67ApZH9XjloOcoXPdZVKUe0UqG04xuWX6iIrOMU8YYE+ItF6MaoBB0AMLyhbUF55EU4AuDAjGEEwJ6Xcys5we3mKNfOQtabUpm8I8tpoF+wFqInfhg3ZQXuj8DwNEWMJSlRFFkxl6upAjU2VmzXXcnQeRkFonkOSz+Q/AABMlm3bAAB8lW/1d9Y2F9wQ4qjKX51MJydX1ha2VrbLRomFitcWxUkRc46fm04Ozu/sbENAHx2f7Z36vKlJ0tEJu5IIlOUSMfyHdfCc2x/pCg2KkEHpgzf3bKRTMcIe4Me6XxJZ2wVcnUykmIkTcxgBS2Tk9hy1Su5qghbPUlqtmRP61G9bXMFPZsAACAASURBVCWA/Ys0BcloRrGo2rLGMb16qapmxqSGyidSfIRRpKLB2gKR1XNEkqYVQXXz9e5SN07TUlaCHW8adgH2cqfdRhW7uWoBskbNypezyWNxdAQ+/jECcJhE3fVYaCIphKLERDQ+HgqFgkOzGEJwPI6zRUQSsuNEALtEZHTUGw5oLwq5wSYFqhuPINvAdwQqaQEhjgVF6SgeEOP/k/A2PhalkmSaRKf0DBE74RZJWm8U5k7pWv3jY7Gp88+nw6qTOdn68aa4c+GL+blfvHr1+t1XP3n95T+bq8zuLS/8l3/zt//DTC8vK0JGUxgukyJKFUOXSNkk0y1fEIqeKnoBAPOyO3Whrmp2fdKNxTnZsChRV880B3ldNUq9Q5EzPQPyce2gyNpzO42jHXWqkB12PRSgnRxOzc7NLaysr29ub+2eX1laaPjOk6Xs/M6pn//lz373y1+8v7229uhkpbX68PGFxd0vnt958P5nd/cPr14+unz+/AiAUQMai9D7o0r06e1Lu1N7g8ni3jW7DLD+85+//cnnr7949+YDA34xanl69PD+gycPD+dnt1ZX55vV+YOLy8NGb3F1fRf48rtXAII4qPQQAfj27ZtXjw6wx+v8pWvXr964dvXGrTt37j56cPf27XuPn93ZX1mYnRq024XCYH2l45dqneGwN5ju9qdXdgGCzwUIfCmQpLx08fJV4MIXTp48d35Qnr18MLd0DmeRXkNegN1hz54jAL94+gSIMHz08snR1t56pzqzPt3sNEvDZq/96v2vf3Oz9vZfv/vZf/1toenwRQBdx9JSfFYQc77EG0Y6nSIEHQMopJ2GIHNUKpWKh8ZimSgVDG6MxVOco6NZazIs6YLBRKlUNhBAommA6wiw5Vj4xBidZbkUESOOn4iOpTNRlyfo5BisNzLDRI+l0TCEozOwxFLxibGxCIASmuCGEwk6nWFSoYk4EY4RikBNpEclaNRsYAlYoEmAngwtch8A2MqZupLG3mlRR2GHnF9AlmQaCLAQZ03TgOgijwSiOJ4DjGJZCgDYyXm+B6EYvQotwzB1jWNVtFRFU4BiIMXh52utGsbeIjaNGmZQzOZFFf9t4ohSo4z26/AGYRqodwHCcq3dGwTibKtb2+jGcP7o3LnDSd3JV2q1YrVY1QhIXKIM6iyjqSPQDyCnisYRNAeAJ/PRExPh0IkTE8CAMTGJRkmCVSVJSJ6AFDpOCSLOWSMAZwB8UY2STCXj0UgskSQzkFowtICZhqBkA98VBTBOxI4ZkUMda3RH+kETuGyzjW6eU32cAYbEv4sXMuD5Qb+KwnkSlrKxRMcxIjDgHBLg7nB6Zn55aX52eXlxbW15ZX1hfmFuZnrQabX7KOjRruQMTE80tC3XIeUo5gsAULVaG/ute+16K2hzGdQkHG2C0MCLssCIhqwbqu46qgDfJhtcVEgl2HjcMSWx9/Ck6pKeyLACkxTXpzqDZl5hIMeQGY4JRSEzULhSgSLtYbdIZUu1shNKuZVCoObsudh+G0T7ETYCGS/XGNUEhDdcx4IFkgNqL2ZSJMGZ8CA8T2UY1bZhCVAlr1BErAuGkb5jvt/RYDxPhmwqkMQKyO8H7jtSV/wgh/W9/LHn5lhX5k1Bi4Vox7Mgl8lzkuM0ep0O1qCbzU4LD4FrqPIRnAMH2tOl0WhO/nv8zeWc0REwALBZzItmL8+4OQPyONrTK3KIIFgynqBg63wciVDZDBX9YZxOxGQ9FWawv1nycgIlyh/BzRpMDbxcQeAyAsfKPGOqoqyJklXOW35FSGiGkx+emt2d18ZEK2tVO/3e3PzCysrO2mYJthN8Gm4cloIkp1Bu9mbXNta3gP2cOzff2T268Gg6ITKkxoiiy2TqulvMlkZak8XvE5RK0CuO0It0OB9IVX64W9iWVXB502C5UHIiTimKQKejJ8Zihsq5dbfoqxKViBKk5Jhyz42zLYeU61keck8imRYc1l51ebraytWzbEhoOAKZZKMZlc+VaSKeYmQDyHNG1iyE+8lOiqNgv8myaph2oYxH8q02WnVWCwW3qCpm2cwcgwR4/DiaMfzwIyAHCSwbExHy2EQUMBjbloHtkgG6hkOhoMEKUDcanggBDSaSgVRlFED4w4UjVFiFDt7i0VhAeeNRYB/wldh8hds4Hibi0YmxUCITJFQQH1N0fCJWj3FKxZk/bMjFT46HB5ceDE+YHnGq/fNldenik73Wjx+8fvvlT3/6+t0fVszZjY2Vc//P3/67lWFZkWVazaJjVMarO4aYUqxkqpVHAJalvLP2amiJsjN1saFqbnnoRaO8krUZ3dYPepO2ruWqM2dIxcwpEDbdU1nBXd/1zu4qg4LSH3iD/nBy2B/OzM0D7K1v7pza3ZvfnKtbc6/M/OrG9T/87o9/+yffvNibvH5ptlO79+xoefn+m/u3f/rH9w7PXb14dOnwKKC/SDEPAwXKs0En1tnTZ46WNqcahbXr1dzyxtz7X37+5Y/efvnis1cIwHgGjH7Ajx8+fPjk4fXTa6sAcAvd2vzR2V6lPVja2Tj39sfvP3v29O2bhzib+wBo7u3bt25cOTpEs99zF64A+l6/fv0moPKN2/fv371169ajhzdPLq3MNzsQqdqN/tJcp1Lv9gcAwp3+wvb+IfolwhU0Yl26eOnqlctXrx7unb64PVVfu7ze27x89+HdR599/vz1qxdAe58/e/Li5dMnmAC8evzo9a2d7b3ZWndlqdto1pr9WuXqj3/25z9v7/317z77j39Z7nhSsaKoQCEzAFSQJgPX0VmOIyFjitmexSkGr9BIUWOh8QQdpXMySRHjiYyQM1iKIsmIpPM6EyXjsguxHgI2nSHjqGIaBgqn8QyQXjTCnMgkyBwTZ4iJRDgcS1GxcdrUAA5xKg6tCxMoekzEIxNj4+EoMwJg9CckRYbCjePbeAYsS2wCOxawZ5oW2bSgEbzlGE5Wk8gEEGc+i6VMv+TngCjYgXa9Y1mWEQzmSUC3UBFZEIABw2NXC44TOCnlUCwQtSjRBlcCzugCA0YARnPfWqNWCYK5jXqMFjxHSeClrI4zNrVKq1cLWklK1UoBABhiNcTlZqs7GEwB09vc2d45c/bsIWZ60xDU8uV6pVpqOiSThAyHQfMaYCBSNuvoEvD5CEkDzEpMZCIUiUycGI+Gk8Buk7FommQAUan4BGTT8TQW0SkiTqRpikoSGYAP2KIJZMBEhkUdDpwdwgFFFILO4uEyuilL+KMVVeIgRfpBDYl7s4vnv/3eoN8Z9Pu9TqNW7bdnZhaGvTIWqgUgwDxH0TzPChLAY6FabwCzn5pf31yfX15c3lxd2tpbWVhcWFiYBioHT3k42av7QGQVEaKmZEKodoEAoodQqd5B0bpBqz81NT071asIgiwEndaijOTLsBSKpMgwPAU6owmpcOgYK4bGPwqnw2uXWmmdFbMynzlxgi03GyWTZ7mELIyZq/0Jq2Cl2EaVYa2SyR2L0pptxehiI9DPgBctOFosBvO7iMHFerHeMFUI7qTqoRGu61qyabJUMplRbEPLeZZI8aaTxdMIYMs+Kjn5+f8fAGM1pFwpfVd/rozOgINurJG1z0jreCT1NJoDdkSXk0whEwoxJqxL27OZrOP0+t3vEHhkxlALqtmAwCP3oA8AnP9QgcY88Xs9SrVYE5VekfVcU5UERtEK3ERcZQWBigJqhSNjSYNTKIKIRD+JOUwoldFzYraWTsYtHyiyVev3GlNDNg8vbFbGJmi4pxRJN0zJb3pc0tSl6pnZzTnpmGAZbhsSLKC5q0vb66slW3ey5qgJC5YUAHBrML2wAWtiZXv/7N7SucPDR/2wLiQymkiLRto2855V+DANXPiuBD0ivwEYB5pjH4yCg7lnrFQXJMXi2BAEEVKGlZ+OHA+NQ96kt5xCAQemAAlFN8+WC6lkwxO4himmU1j+YXKSuF4VGLdvtAw+zjaKApXIJDIKb7S5qJS3C/YJgmeNQr5Wr+U7lRRPs5ALioppu8VqDV6OTrePzYTVUq6oippr8KHYOMSkTwItrGORVBSIAuAmPIJEfHwCABjQNRJNIq0NuquAC8ci4TT6mgMgwz4Ox2CvYwN0FGE3NvoiwNloDLUs4cMYMuUPJWgMgeiGBp8cDyVIzKyTKQTgDEGM6TFBLzjLZ1Z954cnQoMbd4afuPnE6d7P54y1628+W/7R/c/fffUnv3339g9bxs7a2sb7v/u//7f16ZqhZjnV1jIJRTSbni2SupMgmgDAJU+S887qy8lcVnGmLrdUzS/3vUSCl7NaSjOypzo1CxiwM1hJ5nKezPBK/aSie1srmcV9pVNUml0Xj4CHg8nZuXnswdrcPX1yaXFjuuZdP5PtbWx8/Ze//NWvfvHu6uLJe0uNwdrbeysL5149uPfmm6cH5y5fPX/h0vkPAAzAeD7owwIADpqwLm8u7fiNyqczzszeyr1ff/nui1eff/3yxetXHwAYCDAqPj66e3lneePUztJcobZ3YX3Yb/X29hbv/ebLp6+/ePX42aunz548fnDv7p3bnwLlvXx4cmNv/xB7qi5evX7j5s1Pb90Ccnzn3oP79+7fevj8xjZA8HSvWa10Ztfn2uVqq9OeBATuTq+d3D934eLounTlMr5dv3r1+oVT+wenu+X1w/Xpzav3bt569fnzl69eYhH6KQDws6fwGB+/ePIQKPDG7ka/MbsyCSG30i+V1z//8T/7i9OD3/9XX/zTb8otT3F8QQIiRlpZUyQot+TaKsfTYvj4cUAiUVEpKUOi63solGBjjC8nM8lQkhJyFtDddDomQ67LxMmw4GazEoOHSkkE4OjE8bEQJF5EJhVORENxJszomRgbh7Q2HE1lYiHeMQSg1olEKh0nSS5NE8lMPBwJj09EGVQon5ggEjGSlFiGSAIAWxQOw8JvCgM+AS7hkGpGDADYyhlZBOA0y8mKkZULbc8t5GzfBwaUsxzHVLVsoAQnoXWJKPB49EzTaiFgyOgAkHNQDNpwDHjeiqz6rocygrV23mt1K0XUxs+78IV2AMAo8qSriuHkqvVOM1+sQIB1SziolC/6LsR5BKrh9Pziwur62saps8CAD85fnDVzhUK5Wq6V255IxylKoGBJawInalnDNSSZiUczNNovA9BOoBb0iUginUqkkrEYSePQJdyqRDSM0lgcRxGoUUlliESGSmewBB3DcYZ0oB6Js0xBv7OOUgA404swjMfgkPGgh/APKpVGu9HqdaqBGuUAW5QHvVa9OmjPzK1M90tAeRWeYiWeo1lZ5AQFALgIVK8NQD21vLG2uDi3srkwt3dyCd1Q5qYmu20UsZ9qVVzbsnRNEFjRtE3HL/h5LAnUml0MbMPe5PTUzML8dBUIP7ByCR8blp8VLsPwwNnHgdiP03Qqw8d4aWxsjEwntLWWCg8EWF46zqn1SrZkSEwO8rwJcvrmpiB0tGRWAwAixlJhqlC0tRBTKI/kD9FQAVWZIchXq3g44FcKlUJRlHSJEPO5XNFxfFfIejyXIEnecbKWm1MytI4D5D4baDMFdrz+9wD83ftqvQ5QWYbnVg2q0FhPRRmsoK5axFYAtEoqoqOSl8v5pSxvpZWclgjFOPSedfIma5l6t9npBPCL4784hVStVysferwCbCoHecQ/AuAPbdA5wxbzHUXsV3jXyfIoQgHhXErTCmAinyYIIixwOZPKpDMEM56skOHxqKqneVdIJBtijI3pXrHRaFSkIpVBiTglCq8ycKSEeIIuGnaJTeYNbW5+f0obkwzNrjY6LeA46yu7mysl2/K0rOl6WZ4TxKzjVacWJtubGxuri+snT144dfXw/IupCMULtKiptKuECx4kuiPa7gXmFoGgSTHwewwEO4teHg/qg0Sn5Af/Vy5LvMFkxseIiRTqN5KpMDEuWxLfzRVLhiqkI+lU2iyx5YYQr3sKWYakDOIOkaJyGr3WElhzSu9afCJTq/A0BBeG0ZS82ticmpsvH08qku8bXnO6N1mKcayQ1bKCZNg59PFuttq9SeBz9Vo5V9I1W9OkBDF2/OPQx5+MffzRsY+Px0PHYYWeICLHwqHERBhThHAUy8+jawI/COza8Ew4TqSwFRrVrRLJ0QYNmC8QY+zYiEaTwIfhv3EKCVu7sOKHA0jBoVMoRtGEyJDJTBqebCxNxiJJsVK2F1ZOD/MfnQgNb386/MT34ye7Px0au1defvr88zufv3v/+7/4+vmfbZsLS5fW/se/+/v/eXWybmk6F2gmCYzd9B0xbXnJeCMviGVfknxr+fnQsxR35kpLUb1qz0unOdk20mYutz+EICoJbHWYKHi+yIhaZyYl505t0huXs51attJyezh9OAk7emEZAHhrd3d/dn2pV6m9rhTnt3f+8rc//923P324vfDsoN8c3r17df7Us9ePH337+tTBxUsAvUdXsQSNJ8AfeqAD8EUVrIOltUandmlLG+4Pj/7Zu6+/ePX+y8dfvnoTVKBxDPj5s8cPHjx8vL+9sXNyY37KGZw9Wu00mrP7G3vvfvb8sy+fP3/z6jnWgbEADUz36uVLF3anKv3lU4HSJdahr9+4cePTW3fu3rlz9/79O3cfPHp88/TC2tpMs1yp1Re3ZsqFRq89mOxUKv2FvdPfITAC8MXLhzevXPj0+pm9S/tzpe7R5dnp0/CjHr16/fzVqxcvX798+vjlKwTgx0+evXj67O3dzY1T87Xh6ky9OWy0q8XBgx//5l+86Nz/77/5k58WarYoaZABs+mEIZIiL9iWUcrzFC1HCYl1PGCUlEJBiAcADkfpCOWLsVRiHEK9bUrpNAkArFJZSLFTTkm1FeDOwIrHIJuLhsYmSJXhEbhjkQlKjas6GWVjodR4GDAkMkbrGkcHRoQZik6kwqkUQ4ZOhMMnTnwHwEkyHIlLIhMhOa2QQ1liAGAiCnSZoTI0I7GsrCfxDNi3DJmETFJgBNk2leLAdQqm7vu5Qt5BaeugG0kSIGcHTsdzaKMEOJUtlGHf5zAgWiY8bcM2dREwMWuNpCjLrVItKA1WgaXUCsCRDUsPdNSzpqkpWcMoNzpFu1SzspAY4uRouZJHH9hqtTWAVbkwNzM/v7J39uDC/qlzl+btAMIK1XLbN6gIy3IZkVFUjtMMTbGyAp8KRQVOgGhKp8eOh4jYsU/GIdVJYIsVybGcwsK+BQAmWCA8TDoRRwGsdCKWhm8gUJsApcSAAwCd4QL5ZllRTQRgTQ46obH9KpCGFtjMD1rBySPQLuC+w5np/vTkoNefBKIzmF5emJ6syoFtCzB9kYKoxkhAlKycXyy1UeNrCq0Wl9a2VxfXtpcWFufn51CMDkU9+u0qjnOpAuQRgmEbluvDLepUvUanH4h+wC9YXBz2pytiFo0CUHBaUbDJmudVE+5thoyHSJagExRFcel4mhAhChZtmmcyohyPCO6wXXCclESluczxCbO/5JnNnfM9bMyLpql41JyWlRBbL9oQ3ms1oFN+3i2U/BpmPpD+1POAl2VLzspcStM9K+dqZZuzLCFJkRkjp8pmMSdEdT/ryq6glao24kb+HzPg8qjZ+YM7MA62jgDzu0r06KD4e65cBcwBGC9omhdSNYYZT6EGp+eXJMEyS9PtRrPVQvU0fDlwEAm2PlpfBi1cwe8t+EECEIxVoVqEA3/lHNczs40hn62VeNPnUrAExllIu9iQwMqOnibVzEcZQ/e0pMxYrOR5aQYStjRJWexHWo+lE2xWMVrFvNco+TSpOSpFqbAHYyQVjodh23QdVmQVs35tRh7nstlcqwp0eXlpfulg65StWjlbcAwVFWlkNVfqzM5NTq5vb6xubm/vru2fvXXz0XSS1ASSl3lJyvHRshEkMkFDOaYSiLn+aEIbKfCozQ3/6bu5Een33ZKfUkWA3Wg0zMsmR5MEgJ4vc6Wa1ygIUiIeDolqwRC7uXCunSWtqqTwEDKSlFZItRclTulDyqyHY16L5wgxnaEtKucBO5uZzEfCAbP1q93BvJ+kUxBGeCGrO3nPKfUazd70ZHdyuVGC224aflZJRGOoh3MCa9AfffTR8YnwxAR8HIKMJwT/Ck2EIqgehOIZkaDjCuU1AJEJbIdLIrCidH0wfDRqtwIwxk/it8ViWHYmEhGgGvFEUJieGA9jnyUVGYuQGZqLs0wslsnEyDSdHIuo1fUrneXZ2Rk9IjOapw1+6NaIjelvm8rujcfXXj578O7rz//sT3/16k9XrNnp/dO//Pu//Z+Wp6u2oQmGIVLYNTNpeFqGM4hIsQJ8F0DYKGzenyoogtm+2FGzVmngJkheMGQBgur+Ws5R+FL+VJnKlWyDkbjFAa3V15vcwkG21RArTW/Y7U9NTi8sLMwvrq6tbe7ubc4vztft0zfEye311//yF7//8jdPr0xfuj1dnzz/7tzuzPXPnj3/9ZcHB9h1deEoQN8LSH5xChgPgQ+xYeb0/tHS5nS5vXbab6/s7P3i519+/v7dSILj9bPnb988ffrm2bMnDx89vXVyYwUY79K0PX/lcGGmXtnY2rn2/o/fPHkVHBa/ePYEYPrOLfQhPLpwcausmU6+vXTq8ODU4YXL165dvXH701uf3kCXpDt37927e/fuvUvbCzPDXrvaqnWXlntoTdYc9Bv19mBtfzQRfPnK5aOjy9cuX714/cqVW2fOnD2caixcOje3snf5zt1Hn795/fLlG4D+p89Hk1KvgA4/fv7k+ubO9lRtanWmUK41O5XWwU9/8offdHf/zZ/9/mWt6Rs4Qg6sKmsk4WXKZDKCo/MMLWiSCqxANAVFANJEEpFQOJaJM7aYiGdiEZJxNZFlkukwr6c5NkESXtuRAH8zSTKJGycUGjsW0iSOAJpGoLl2IqvFGJIMxcYiBEGljqV9FJLIYJqObsNpCtJcIjIRDicYLsnyyUgkHQunMgqbiTGcVrJIVgmEYUOQKWbSFEkpXNKUYrzv4gyeQERIKs5pwKyE6hS2rxZc2PWBz4IVKDIioKAShYRqWAzQR6VQykHeC3TXgj+aZpjZrMjhiSmQ4qALuoTSVoG2Va2Mige2bQDHAM6QNYEvW06lX/MqFa/kmRYOrVQD2lOsNBqtDk7rLM5DXrizDytr+/y1voq9PIVKo1KsmelUlGZY1MBCq16loPBCOpbkBElC/WU6cmI8Hjt+PAIbNwVJTpKOTwg6EUlG4jgCKaLREcAT3EQ0USZSmXAadnSUjMSTaYBfHn8KalxogooDikY2AF9NkXiaEYFMYhMWiqBC3O8OBpNzc9NASnsow9YbDmenh5M1pMuA4qwgMEBmGE5UsrZXqNSa7U5nODeH3rDrWyvL26fWl5cX5uenZ6cnh9gG3ay4up6VGIrOsLqDY7SuW6g1IIXBweh+r93oTE/3+zMlAZ46iiBIHCRYEi8j5QauI6JTFReP02ScFASKDFN6sewqXFqAlAL+T2kNC1WfZTXI8sIhIiUUvIR0eGs2RE4QaTrvJm1XPZGu4bFtuWhZKGbmFyt+BWUzcMLUR57qZlWDz3Do+uzYnqtotkRCMiNbhmZBpk/SpmVYWZOrFpwRAf4gCB1oXf0HAFyuBc3QI//fwKDwAwB/d1Zcwc48gBxG9SlHZ4ixpGZqhucVRcE0y1OtNtzPzqgDK7AERiXKkdhW+Ts3JHQz8D9Un3Oj8xK4bLM5FIx6nZO1ZDwTiKkpGSEeTWboTHQsrNB0Wi+LlCK75bKeUxhZMUueSJMRq6Ux4QwhpL3+UHf7/bqpmk7BkGOhjGTnuGRENykjX7dFwzDnVtQxyIMymuR61dpgY+fU8krDMvKyYxtZWGO8KOVQDK47s7x98tTZs6f3d0/vnb/ycj6t0LyI2vIS3NRwG02RkMf7HywZgPCODJVHSmX5QLIz0Mb6IMhRLOVJWc6kAKbCrGiKfCY2MRazVb7Y8Eq+pGTIRJzVfFtsFVOKz6T8qiTQSRqAVnaShXmdE5plL28QhFMTqQSdJChLdHKLU7D2/EhU5tUCMOlWd9aPsjSvyAoPoRlWQ7nVaXenZqZn5ptlSHOyWfgZKZKKToyfCA6BP/7on3w8FkKtyGgkNA5BLhLMZqKYRiSeiIyENbDKHMexXvQ2RwD+8B45LxFH8MUyVhwwOBzFcYhAnyMY/gUSHAPQDhSygH3QFIkGoyQ2YhFpCA+akY4o7lSlDOmRmGHI1FzMr0/srH/R0BYvvDp8/v7Bmx9/+fs//+X7P9+2l1bPrP2rf/h//9f12RqQBjarCxkE4A5kW4zsUSlI3US3oApOfvXppKFxZucSAnB56CUpUXKysmW6hxslTWP9xmlDyFVdh5fl9RZvddYHmfYpvdsQau3vARjy8NWNze29/a3pjXbVv7fo9Pd2f/UXv/r2Nz95tHX605P96vDt7d3OuTefPfvJz66duXDp4tFRoMDx4cID4HPfvR3sn17brHRaVxv+2trKT9//6P27LwGAPxvJQL98/frN2ycPnrx8fP3M6sbuzvpsub51aXepV5/fWdp48s37J88//2I0Kvzk8eMHd+/dv3Pt4rlLh/OeXhrWq7XW1OpJYNoXcKb3+s1bt27euHnj+q079+7fv3vn9v2bZ+cHC0u9ZrXWn5sddkvAH9r1Zq8zubBx5ugiJA3YiHXxCL77xvmzN65s7l49P8wvXjmYWrl648bjFyhVDRj8/NmL0azUs2fPnz558fz+3u7OQqu/tNwqtOrNRmH9y2//8g/X6v/iX7///SDv1EwdAr+mKGIojvuYYiuSp1IZ1jQgneYNCJLYYZiIhEJxmmAtkYgDEjBCPitQdDIdEYyMIqXSCaskaxAnSTy1DEot4fFEVhJJJkMkJkLpdFJXY1QyGY6NR1LpDDGWtlmGZgM/hlSANEQ4Fp0YgxwwySYZlghPJGOhZFpmMlGKy5YMkgN8F2hc9SkavfhULpUVCdHWsXtKu+hNpwAAIABJREFUSMaBCAiyBOwmP4kCRHnXczw84rVRQlJBFUlJ00ROhP3MobOB7BdzOd93cOzXdy0LJ/skhlewxcQtVqr1puOjGDSqOwMvcR3U0wpkHdWsriqaYVV7VbdU9st5XXECaflAwLBcg5RpampqZm4V54BP7585v3vhxoyZR33DMgTbfh5SDpEFpESHXkUHsinziRgDdBjdGFgmE4+RSQg50QSe7xI4k88LE2E6Dpl0CiCLZyCriSVZhqHTSey2JKJEPBQnSAhBDHBrwE4RxXmQ94tKIEgZeIJLHINqYhwAcB0AuN0uw3JoDyaHSytLMwDFk4MhkuFBGbumUVWAB8iWZY6RNdMroWzWYNCbXl2dn1tcWVudW9w9u7W2sjA3PzM7MzkcTk5OtqqeZRoKh6ANAOzZQN1KVWB1Tfglw16n3exMTfUH0yVRV7CjjkfsZWVZULSsJMi6iEPOALzp8U/G4sB7xXy95OZgMQo8nY7Hkkazr7s6ZItATFAPm67PWKS3OM/EJtKpZNYS1IY2RtYqXqVe8osF4JrlQrGCQ0F4ojpSfygUbMGWacIyvLyNvrWSrWfQSEq1dNMuaFJCBAqsuYJf8JGVBYY+yNFKWGIujUrM5ZENUul76jtyZAgEOkbuhCOdCb9QxMIrZxisJYvJE6RuG0C8feAedm0AOVDr38tw1LCrqwirpxq0dH2wcQhYY0CEPcdygQEjY8zZVr0nGtW2oBoZklM4lWG4GEVAHE8n/+iHIcn2UgmRVRsu79TcZtUqVuqDQclIJ8ZJWYwRCS0rhmlOckqTvmh4raoUG087npVVrM5UQWTrQ4dWTGtOH0uJulOv9gfzk7VKd+vUWlnTfdlxHVsVIV9Uc5BRtnpz02vbu6dOnTx9BGzm6NUUqacZmWEgpLDZXEKq5GAdQC4T8N5iufz9wFbRD45+EYA/tMuVRkPBpTIQACaZmIhFM5ypCRmgmyFVF5wmfL2m0FQyRcq2I9RLyUROpPSOrdAEgFmaN1lnsShS+QpwvXTMqpkAVKkErwpKaXlhONv1Y4QsZF3Ytu3hQjEh8Xj0kZF1Q1Eh3SpX650pFDWv5XO2mvVdMZqkoyc+OXbs+HEA4I//ySfHx8bGEFHR0i0aw9nMcCBsFQBweDRnFI/Dp+JBPzOSXvT3/f6K4zHSGDLlyEQkEcwkIfqOdDqwbJ2EhxudmIikGViU2I2aiSeoGEVHCMNlxjLqoGtwKTpNsrHkriU3x5b2ng2k3cufr197e+cnX73/5T/92fs/3XEW1/eW/+0//MO/3ZirO5YuZoFa0QyntIxclpN9iqwXOcEt6ZzvzT0b8nIAwJCJlvoukREkR5SMXP7SXE6xeH/qFKXbBcsCvrDli/7s1hpVP2X0G0K96w06vckhAPDy4uLK5vbO3v7ywkbZnX5mt2a2b/7ht7/8xW/eHC3euTpT61x9c35u9sHr51/99P6Z/auXP0wA48kv8N8L50bzv2fPHR7sH5w/vbY+aLhXl3LdnYUnv37/9duv333x+eeff/YmKPG+evv62eNHz59e3V1b2ltany8MDi/sbDTLi9vb51+9+/L1m/dfPAsI8HNsgb539/aNi+duHswWS71+fdCpFUudxe3TZw4vXr587ebRlRs3P711+/b1m7exFn3nzoMnNzdn5hYne/VKczg7O90qFpuDIeoWTa6eRsOmo4uXLx2dv375EvzYa5fP7566drJdX/50bXbv6Ob9B5glYJn8+WhY+cWTly8eYyv04e7War8+ubZQ6tcbPbf//Be/+N2P6s/++q++ydtFHztk9bytKklIjdOmIjadpsyLtJXNOgpvAjjQEN2wkwo+z9oy5J8AwGIBsioa2BenUyJPpBNmQdBFgQMATmGpBZbjBJUFZkcDgoxH2HjGUOLpRCISGw8lGTIaonQge8hHMwDvaKqXisfjoTEU3OJTAQAT8TACMBVP8WbJAPIGgZ0KAJiimDStsIwhZRRDMQxVYdGymBIVCXh5YbKIQTPn2RBBHdt2DB3HcWTAJAATTvgOgPOlfKFUcFAK2oeQYhkopo6yz4bh1to1W/KKAFDAghF/PfgK186qgMASngGrup2rtsu5QilfcfRsrgxfU0YxvSI2/aJG+fT84urmzukDWGO7h9fn4bsr6FZYrfVKBEkLLACpKEsihGQemH0sA5DEBfgpimkik5oYi4YJMomF51joOMlFoynsqsRZZ0VgMnAjcUYhlUzClk1GCCKMJsFBGzTksPCaqrouBYrwaNyaDZQ4dBmyD5pifxCY72DQbyAAT03BQ52fnZkGbOzPzgy6XlCyR5kQgaFF1I/Wbb/SREn+memFjY2VheWV1aXpue0zW2urAMDTM8CAJyHnaCMAW6gziQhj2hYgYR0BpYktWKijBfx5ajDMi4YGtxAeGS8LaPaMWl2SaikpKp1EVcFoDIidLBearULO1tDZJwPPUap2OrouYnQnY+Nj0aTm5rMEXW40jsPNSY3RouholIS8tGDmlzbavlsu+KXR+AuCYg2nXio+mzW4uGy4+RwAcEHRHJ4k00kB1cN9x0jR+CT0nICwEBxeuh+OLr8D4HIgPVkuVwpoi1QLDm5Hk8EfAPg7D8NivlhAKWfF4disoBAhRrcg08NBZyPX7DUwDQoOgUcE+IOuR3nUy5Ufze4gdAWWuSiuOTpLxayy1gUArjGqy0P2GiZjYTIeS6MieOb4R5m8VRQJ07PyRoa2iwWz2u40W/AStAsEoUhkCBLYcEh1worT05Oqmi1Q8bGoaalptT01VfcGU+t9X3FzpXIsJeer7dqgv7q3Pd8e7u4YhqPpmufmDAlWr+G41clZSOA2NjZ2T53cX1s/ODx43IU8OMNkAddUllMK40Yt540eeeAFXBo1Yo28JoIxsfwHT2D876Axo1DlmSyfJCJxSDgNDQux0RBva1qrWqzaMpWMJkOUbDJ+iQkXcgJTshSOYQGxOMtUp2vw4hZEX2fGzVqBYyE2QZ4vNBbXZuY7fiQlCobhVeuTM4ulJJ9JkSmKxqFFpzAycq4MZ6fqtaJryorjack0m4qcOHb8xIljH3/88SfHjh/76OOPT5wIJxLYrIINV2HsW44iAGN9OVCbTETwSDcaTQSykvB+NIQUdFphQ3QEvjkMEAx/B33QAOSjfmj0IIwnCdTzSKFPHAJwOholEyl4ymlJrdbLXk20YmmakWju3JTYjg0ObrfZpdOPN+5/eePzr7/6k9/8+M1vd5yZxZMn/49/+Nv/ZWOxkXMM2bAxQ+OVZs7VedHLxMtFUS2Udd4rTN+flnnOCgDYKvVyEGBEh5OzXvlaN2vZamVxK2GjVwBNmxuaUFrd3KXaF4xWXay1/e8AeHFxaWV9c2d3a2p7umRcOVBn1td+/mfffvv7d/eXD+5vD6qbX32627/w8vaL3zzcvXh0GcAXi8/owHAOj2QPzn4QwTo8B+93FubL1Y0LXmt79tKfv/3pV2/fI/4iAL94jWaET+4/f/nk0vrK1tbezqA4e+FwbTBoLJzf2P3JN589/+zdq2ffl6AfPrx/+9rlS5d3p8qVTrfV6PdaFezEWVhc2zkFIHzp2s2bN4ACfwrXzU8BhG/ceXL/aGtubm6yVat3hhuz9UK1h8dr/W5/fufg0kV42BcvXbp64dylK5cvH129vH+0v9Wun72y1j356c27z1+9hUf5+m2gFvLs+Ytnb188fv788dM7ZzY25+qtxY1mp97oF8vnvv39H361tPq//7vTsu5JDspG+aaocuFImC9YjFIq8LpFZLK2r8kG0Cn098VcL0QlWcg1MdMmaV+XaJZMTzA6UJV4Km4WgcFwLAkrh0DtNUj0aI3mSDKZio/HxTBrSkQqDsxlfCLJwn5ncAoJgZBm0OIWS60AJCH4NYSU4flUNAQbEACYY5MxzizorCypEp8aH4f1ikuTkmnGlEgxK+uaJFCJRCpB8FlZYtgGArDrO24OvWRc9PpFQwIZG29ZCiCOBRTKZJRKCZtzIKyhaXrONoEAqfA5UcmVakUj6zUq9VYHZXrRGQkB2M/pgckBuutmzZxbaeCwSqGs2oWA9ATTFRCKkVx2h3Mrs5CInj1/dPHw5PnrC3bOrlaKpSoshTI8gTStyZwIiGg42SxPxlNylldw8gf2CUvEUsTYsVA8RSbgLRUa+yTOEPE4gG2SxvEdkWfTsUgsifqT8PlEBscK01FMYxig0Ty2F2tZlcOpZkXieQnTDwlVpwSeZYUf4LgLIEYJjx6b3cGwO5icQhXc/nAAANzxBCkoQTM4iyQIsgUM2C3WO/3p6Zl52Gsb6+tr62sLi7snN9bWlhYWALtRD2d2tlPN6VldQddH0bQN0y8CKNVb7VowB9zrtjr9KQRrh1ElyAhQhxgouYS9Q2iPKmgUz8JyARrHCmmSThuiWqxZPEPG45DVsXql2WrkDZLH3haIXSSXzdnRE5UzbfiAENNqtpirlW3X1TmpOH3q/F7VK6Egc/E7o6Ia4mO9rHCORKYx8YI1UrBEL8sAqeKcnOw4eZNPKTnNVIsprxKY8PojAA5A43sG/MEGGHWxcArtO6nK/wCAA9Un9FLIiRaVtWR+LMxnDdvOFS1BM/1ut4UEOKDAozPgD1PA5ZG/YRGlK4ImaPQ/ChAq6MVy8c2u9yWr2uCyRY0GnEpm4owwliFS4RMJjuMdBZ6Sabum6Quco+GIa6vRhpR+oVV1eCXtARl3K7m4YtWZqAUROho5NiaZNp22Ks1cdrbn+Ms5vVUqJNKi4xb8weRsbxo4bm/BznuqpjuOnQUGLBuWXZ6cG3RW15eXt0+dPLWxdu7y4d0al/3/mHqvGLnSLE2sd6aK6cLHjRvXm7g2rg3vIzJcZqT3nkwmmUkyact1+SKLnuW7u9rWdPe43ZnZmZGEEaDdlYR9kh6EhQABuy/SgwABgt71JmB3tbPQOTeSmrkFViaZkRmRN/7/fOc7/znfZ4uMptCciptJiwPQ5uBXyPvj495AF7o8HgcOUDg/nu0q4gRSQIULVZXWRDKFWCVlIYokkvEI7WX1VqNY8bATMz5F8Cav1/1UvqSy8KIEjqVTBGNYVLFERtO5TLWgReRKhRfi6TghOlKhtrSy2snNpETIDSGzXlhcLkeJeJpNi4bnenmsPbT77bzfhi9USn5Wlk3fFyEzi09NTE0DAL/xxhsBBk9NT8zE4mO+G42EETKR9UYDVatA2wq+dEFso8H0L37A4jR+ghVnIhrCWnOgjBUHrCXiqHQUx7oh8uUwiuKnUS2IZpg0zjnFk8BPYpHNw9OiXChomawkZDLXDsvLZvfeeYlpbF9u3/3pR0+///7Pf/jl4z89zi8sn5wDA/53h5sdzzElyzPQ5iVT9T1DkgtcrFxWAICNjFubf7Dqc5I9PgOuDf00J2V8zTCs8oO2m9et9voS7fiuADu1uJWRGjvru2T//Wy5linXixcAvLq8hn7QB0driwctv/a8kV/du/I3v/v5b3/z5Pr6x7eGzYV3H96eX3nn+cPvvrxxcOfeGZoPYuUZPl6/FnDfkwsVSuDAhxtLvdLqu7XCwdbeH33/9bevvn356uVLAOAXz148f/788aefPHz64fn+2s7R7mK3Orp5a3Nu2Nk72Xzv10CUXz4P2qCwTevhp5989CEQ4NtnV5vlarfX6q4MAUhblZxTwkHfhdXNgyvXTm/cvn8fO6LfgT/vvvveux9+/sHJJvCRQaPW7C8u9aulRndutDDs9pZ3Tm9g7xjg7527N07P771z/8dnx1fvbTVmz0/nVq/d/eCjh88xT3iOAPwIAPjx888/e/r440+e390/2Bm2hhtztXqz3cqPvvjV3/ztg9ZffCS4vm7lpIIp6DonKQLBWxrDSjlDdzOT01a2ZOm6yAdrG0ltXKAESwGSEk+kmZwhcwDA05wlKGKSjOl5JSsLHJnCinLQSR+iNFHlqFQ6MU3KEdmSYM1FE5A5kkJ0AgDYQP9bQEIOSRwJXI8kItOhUDilAgBDTg9hlsAuaATgvAY8W8sIZHgmHgOqx9CcwtJWJsGbgcokhXpvKUELAHgeARhPnoLxB99G+M3IMoQMFDdmYSmyLE2pQTj2bdsDePVQI9+2ZBZCo1u3eSnXbkN8rbc7bZSirKCkkQsP0mUgL8gojayVhUgclDWzxUatNJYSCI6BIZi2evPAKtd2Ll87PTu7ee38warjFSBu11qN5qApiEQ0bUBCoMiSaSkOE09y2IwpcKLIcxIZjRDJqYkQSsGSVCpxKRRKkpE48F8izauaKqGWCFA+HKImUSeUClo94pgzQ/hFyS9JxtEjNcMxvKJLwQCWCCgDG5ph+R/hwXan3UTS1Wi2ZwOfhP78aH441x/N9XolZKQoRSlixxovmppu+2UE4PmF1bXV9d2dna3tnbW1wyOA4vVVNCQEaEZTnFbeMgwFvknMQFy3ID0pVRqzveZsYPPVw3Pn2eH8PCR5kArIkO0wAgCwoiqwyliImwkeyH00SsJai0FcE1ne8B0eUi4yNp3iATPzrYJNa5xAReGeCE2gkslJTqOIcCLFe0bcElQxEk7ORCg131tZ60MGUKxcDAmhHDQiaKOe521NSupA0O28nc/LjiUxFMEA6rp20dRSpGeZTk7O1i86h/zxKfDFMXBwBhx4L9TGQpSBL/D4+ocz4NccOOfl81YmSzlZjZuIZnTd9XJ1XbTs4qAzG8Bvs1FrjU+BG+hiWEYz4Isa9HgOGJ2AC3nPdQMRLBdtgV270Zez1VleyVuqDKva4DPZN+ORWDI6HRUd1bBlhYlYjlxxZVeZbeBRbWcwaPQXR2UdJ+GqphZhGFL2aML2bDpBxOIUJwmEaLeamgo5XL9rOHU2zMm23+g15rbXV7a2dud7ftbLSzZsFhQuU00vV+7AyllbX10/Orl8dPva6d1b75WiOSuboWSNonRNE4GjA/WFPKQQzGUXg97n8Y18XWgfW1hgC3QgnVLKV2w6A+w0GgrHJN2U2KAqq6pasWhlISKlE8kwIVm6Vs8njbpB5MoalYyEp6JxXo4ZDY6mq26rno0wpaosJCCLFW3BK4xWNnrlMBBJ2wcWtLCw3IomE4ImKLZpWm6uUGm3Flb6rW6/gwLmjqZYhidB3puYmZoGAMYmrDf+8M1Lk5NTMxMT03HsYIZ9F47EiQCAY6g+GZDYoNYcDxqwxgD8+ooGk7+xcDRgzXGsaCUDzI5G4oFoZdCoFZ6Ok2PsRXldKpDbIlJJIjbhHu31opbFyG6G0dTj49nzXvH+zTZVPd2hy5998tOf/ORPf/HLR396kl9ev3b3X/+/f/9vD7dmPc+STc/kaJYVq2Vfk4Q8S9TKciZX1mWjOry9nmdlu32raxjZ+sCnODHjy2rWaD6oOT4g805btHMOy4lqfVkQuztrB/zKYytXkQuVwgASajSqXNnY2QECfLiys1jPHnxqdDZ2Pvnr3/7y98+erp99tNWuHL98sDM4e/Tw++9OTh9cfyvQvkIKHAAwst+AAQf/P72ytThXXrg/qAz21r7+7Yuff/0KcRWvF8+/fPH06eefff7io6sbu4f7m4vV8uqtq+uLg9HZ4fajX6Fd8NOnL798ORbEePjpxw8/fOftB9dXWnXsAu12WmjIXquVcEdDOBsu9OcWVzb3jy6fnN15C0vR77z/8QdvvffJJw+ubiyPuq12cXZpda5Vq/X7ELQGg+HO5VO0R7pz6/7bt+/dv3p0897Nk5N7p5uFxRvXF5fOfvzex09f4WtAwWosQQMHfvTsyWcfv3j/ZP9gbba1vNZsAA8vlx99/+t/9bOVtpIsF8SGQjkGJTmZjFtgeI2MS4B2lkFHogrtmoaKk6kcQyZxlbAkZxsCSyRJls8bAsel0jOCKysoOKnkNRsQBHAhOQbgyBRhaE5GSJPxEM3GUY80lYwkQzOhNB+ZiLKmIQqAN3Q6TQNmkwQKKkbwiIXMpHkBADgVm4kTEksTadUr6TTKMgk0/mAAJo4VNJZxlKSEUpOaTAMtJngkUSJTGCGjzQWKQV4u75voiasEAJzBQRye4SGpoJRqtV7L25ppW8EjNB0oomwAXSYkrwJsNQ+hu95qlHNBcbHgB/bCqqwYmpE1s1lTH3fFloroghM4zxZLgTwDitrNLy6OllcBgCGpu3n91r0Vy8Hzrzq8nd2KyEfClI5SyEoGgFclE4ykGLos8CiUKRKRKEmgJAmBXRjxmUnIiVGdLoXGjCjmLLDwjhAkJC/pFOx0NC4jQujPQDMsy6EfMApvSIEJEnY6iSLcPCbNBRfP/6gTKEPOdrqzwbj5PCyv4WBuYbE3HIyG3W5JQZ9xSA4gQ+IB7XU96+arrT7Q5EWc+NvZBQjeXlnZv7K7tbm8DBtwaWG0AAy43yq6tqWivEbGdkzLyZWrDUCXdg8QvgcMGEAfj4N90ZRlSPgEAGCRVwCAIZxL5Mz0VCyZJqMUQ0xPRrHannM5yVNx3jI0QXDJrO74tsppBAO/bjpTaK0OPCJlpt5MhhJEXBNmBINMhCEbTMUmpuhcfwEFvcsXjBVP6SE7gs+ammIYFJ81gQDjRI1qqQwkgZyetZy8o8PzeJaX9dRiedyFnPcDSehAHiMA3vLF8W+geVX9R9fYLbj6ugkLLt9FzUeLdmSVmUmohu77fl3mHbs0bPVa4xng2gUBrl+oXVZeN2C9PgRGJz8PMkQXoNf1fL/g6I2BpJWbadbRBJZmOE3VspPhxDSlRN/kG2Wd4/LZiMjOiDnbTfPVaqtZac/35wejuX6p0y2Z3Q4XFdKsotAUS6VommC4ZCQ0lYL1WK87ZKFSX/UIPT4jiFm30lrpDxc2drf2Dpdd2SopWR/SicBwOleutbvz65s7W7snZyfHV67sn978sDWl6Z5O8zqXwl0n5ZOaVwD6W8hd2CsXLpqwAltH/EvuQnBzbJaEWlgFFpI/Kh6KRDjRUCE3mwpNssBdfROtsXmApKRkWJlKLsW17RhtihQwxXgknJYoYx7yqWa50TATyWJdF1IQXniNccuj5fVBPcyoBuQN+crSaLFDspRkyKruFgqulau2K4OV5cVRF7Z9Ne+Zup3N6xydopPTU5MTE3gIDBB8aeLSm1MTb0wEXVhoHxMGHh2FDCaGgDwe9MXac9ATHbRBx7F3IxaYIAX8NxoOpo6Cc1+UqYyGULgomEiCNDoFqSW8G5BLM1gZBBym0wTsiAgJadLmypEulRha1SVFPzma+3E/e3+9Qzt3z2Xj4f3vvv3uNz/72ZPfXcmt7lx/+3/6T3//vwAA+znIxzyTBQAWag2gTXyeI6plWfZLuqiVBm9vZEXFat7sZQ2z2vPScJdzrORq/XsFw1K81klBzjo2x8lGa8jIC1ub1/T1J06+JObK+SEA8Pzi2hoQ4J2DK4e7qwfNWv6DHWe0ffU3f/LDH33/8f3N964PGqMPHp92Dz988eSbH+/cfPfszt1bt173P6P54LWTMfQGSlhXdtcB8m7seoP95R//01c/+/rbr559gz3QiMAvXzwBZP30w2ub6wcH6/Pdwc0bO1v92vL5+vVvfv7i+asXL1599fLx0y9eA/Cn755fO1ptOLlmt4b8ybayKFGs+Q5EJiC2Q6DE/f5sY2Nr//j6zTv33r9z9/0PgAs/fO/G/tri3BBtCteWe6hVN4Sd0x+t7Z+coXbXjfObD85HrbUrP377ePfG/YX6+t3D0e7tBz9++PwlFqGfYcPY4yefP/w8eMGPHt7d39+dqy/sLGDjZcu6/Re/+bu/uCfqTiFLVyzHcNKcn+F8n0qbBkexOcPMMgRHxrK6rhgZmeVY7KQPh+gk42RljoDYz+RMUeBTVER2BJ5NUtFM3rQAQSigbCR2HsRCE+msamQkOhWdYZKEkkmniVSEmJ4JpdLh6Shno6OZxMPDBRSTSAFTJmKhmekIJaVYjgQADkM8Fhkqwel+2aAzGqo4o8QHQVMcJyg0b8m0kbNM29SYRIpJS6IoGSLtL5ZRftbNBcW6nGfrRtDopIhS4PEjAgDDHlYg7lUAndHnVzcNVEaEr2YUHInJlZvtRrGK9YJ6pYgO8UWIgIbl2gaKW5gAwLadRRs6LDg2ysGoKIbooCcHnW8Xl5cWF5e3Ll8/u3F+4/rZ7VXb8kuQgNUrlU6eTUdIwB0ZUdfQJCZJoraWASjJ8ZIsAx0hExMTMQL7vWPT01FiZiZJpsJwjxgZuCkgNbCAZDIoPycSSQAdIjkdx4SZoSiGCxx80RQ48Gdh0xyPHkko7Yx1AEn8EU6+dFAEAsd3IbPrzC2OhsPRQqs3xH7ofNAFDY/UJJbPSLKlZ518pYXxezS/sre3eXB0eLCzvLx3dXdjdTRaXoaoNYdXq5rHnjfUGhNMO2vniuUK3OV6uzccAgLPzmIVejiczctWRlH0jMCngcvLQcuYafLJ2PTEH0xMTTIEpF8QxBi9VFIVz0yRMzORmVRG8e2K52GnOB8N0VwyTlmVeTfKMigMBrldRjYXpHSanGJJ5Mxsfcn10Fq3VCiOO5NLjSo6M3R83rTENI44WRZQSt61BDSZ0j3VyxVMjZJtR9cKsglEyMPyL1LQ0oXpArofjRuiq/VAARqPDitjqcpqUJIOvAkvMLjgOcWcomf5vKSlwykzq/ueUxE4oNqDZm88htRujZuwcA547OgQAH3pH5qwAt6LB9KFvOu4rltx9da8rFf6gloymehkhBKyWStF0NOUyXO5hkfQoqbzhhJL6vi8ZnnQztfnusBY+qvNBsTNkpa2fdtQkkkWlg1NTiYEwK/JmTRkTjabZOdG83kK1hUruqV6tbmwvTi/vbu3feTbruVAfqLhRFtGdYv1/vzy1trm+vre0dHR5Ttnd+8/mpuI6a6uiayeIbGWopRpPR+ImhQCWejChcvjuPkKtZ/zF53mSE3GMtEVHo05k5FYmEqO35SdAAAgAElEQVSrhizC8kYA1go+KrtzZJQIs5JGVtpSqu4xiaymqCwNvJhW5eyCxZK1SqVhM7FC1eTSDJ2ULF6ze6uLs9VpOqPK8ELqq3O9Ci3RrCyrqlspaYKeLzVne735laV+uVp0LV21bF/lqVgsMg34CwiMAHxpEsAYF+kbfzgVCQHURiLxVDSSJOM42Tt2HAxUN6IowxFGd99EaixDGY8HwljwZSoRTQAvCacAhdGGAbLoZCrQ78UJYIhvPLZusxSbDvxGkwxq7VBUYsLbPsylslkhYymcdvPywX3H+cDMStbJudf84f7Pvv/Fr371/Ze/Oy6sH9z89P/6z//h317ZmfW9rGT4WY6G0FKseZoiVdVoqSxr+ZIm2aX5RzsK/KaNm33LNGp9nxZktahqvty9XYCAl2/ccSXTciVRtWa7jLq+tnFmjD73SwU2V/aH3cEIAHgdrq3Dq4cbK9vlcu9ZobK299Zf/vD9nzx5tHzy7mqrcv3Lu0tzDz7/6OcfHt25cXr/eNyANZ49GpsgIf7C5yc3Tvc21gbF7euV7vbWjT/55qffffn1l6++evXy+XNE4CfPnz589Oidk6Wty/uLg0H35PRg2J7burz13k++e/7lNy+++PLl02cvn6MV0WdYgH5wfmWt36w3qnnLgJheBQJQzZsSCzglG26pMdvtAqvoNVdXgUZs7l8+vvXO2/fe/eCdtz5++PbJ9vLcsFZsAi9ZrkIE6/fmlvtzK7tXb9w6v3vrzq07J6PlzbXzt84v3zq72a1debC1cPXO2x89efHq1avnL168CI6hP3v6/NNPHn36wYsPDveOVtvD7c1Wa7bSLld/8qu//Zcf5ON62YY3J2MW0oSenJaKGUpzuTij6GaJnRaSRN4GCOVJBhlwMhZKCCnGNjg01SJSbjYjSRQbk7OAhikmKnmaIaLCFIf2hdhQNcllATF5OhWeYYHWigSVSkeISRyiC4VigmcB3iEBZkQaSyzJVCQeC89MQRZLsHw6ESUBgAmJoeK0bBVUUgYw50nIFaMElQaiJ5OcyjGWq+mOrTFxgqE4VJXjqMJSpYBnwFg6BAT2vcCNQMkEMUMSsLDKQWKrAvcoQqDNOqiXj7VTHchPipZMz7XsQgPeqwoWalsQIJHi4rxTFoiykUWCaNiO3YBIWSxW0f2mWg7qhUEfSbmC5Y2V9U20MAcCfOv89Oz2pm95EFyqQAHnypDBYwuWJChZiCeZdCKdyTpZgF4BfQ4zZDxOhN94M5JOQEoyORkJUYlQKEIQKP2cQTVJUVJVHigwui+jeDsJWXU4lSQZXmAZHqglh6aECO0Uy0MqJeKJq2kHtFgSuB9hY3cTz7dne4NBv9vBRHAwNz/fHa0uLg+GnqJlzQw8icgDYYYYCjBVrHYGHbQiXFnf2t3b39vfXV3dv3y4t7mG886LC4sLw16vU8tDmmkCR5d53TftPDrPVZvtWrMTaAzNYiY5GjQsHDkCsp/G6VWURpHgjYEMIZ0KX3pjCnjFVBRCUQTe3FItp4vcDPaOckD+IBGqqPAewQ3BSUkLiIAFiyCRSCUIPa+ZdbPAJsQ0wYanwrLqosphtZbDLCk4q61AhhSApASsl0rnXavkeF5JMwCOeYbM5EzNLRc1mnI8zXWKVMvLeSUHgSGPwh6BvDMC8FgFulJtYE0rYNXjY1ukv8iMxxogwalErpirsa7CGIqSjKUsx3H9ok9bptpF6A2Of1vtix4snEAKmrrGWpZ5HCLGY9ECjqsHWtBwBf3QeafZl+1KV1J8XwlHyalLZIzOJZJJmpp0E7k6S/Jpk02ZuiF7Roa2K+VMrNtv1R3CGvYLy825KqlUO3l1eoZMZHw2ndMpeuZSMnWJwpFzUolrEJvcxPR0hrcrpWZvfml5FaPsJnAH24blgGNIuqLmCs3W4gKA7+zsjZPF/ePjyzduf9RMJDjZ9DWGNyUOfR5kM+kVS75fwkrChTNSwHSLF13QxYtKNCphlfKFCtxymVWFZDwZnUmwqiuRqXg4Rhq64ud001RZJhkKpzOGbHV1xm8ylJlXWDYFuTxhc8x8i2OdOW/WZxJaPSfT8WSMtHjHL24tzeXDpKB4RUiwR8sbNVpMS7yi67br65rr55r15uxgbnFVK9WKqs5jMQcYQiIeCU1PTU9ewjPgN/7JG5Ph8UnwdAjF2WPRyAwe7sYT0Sl4kbHpSDIUCyrTiRgRRfHY2HQsMDsiUoElEjLiwL0sEZ+OjoU4UkCKE3Fs90hyiVg4zaSSWBakKIqmaQq5CX6g6Hhsd212Rjd1VndJ7/j6cju39t1bpbh5dlY8+urOH33361///s9/8ter1dWtuw//j//8H/+3/YMF06vIRlFjBLgqTc9WFVeK1VoZJe+pqlxY+3DdkVW7ensIxKLaLSYpxcmyiiUtvZXVTLfQvi3rim5LtKGOikJud3n7mj14UvYrYqFW7PcGo0XgGRubqwe7R+uru92WeeNcH+zuP/7nP/3jbx+ebn5ypVsbPv/4cuf0s0ffP0EVqnED1s0Af6+dnFxDF+BjhGBsgb67t7bbHnbeL9QPlrd/+6uf/eSbL7949cUXX718/urVy5dffPr80eMv31pd2z5cGwxawxt3VtY75e2b+4+/+cmrF998i7PCz54/f/ro2ZPPP3/86f1rO4utXqfRsTS4CQvDhVar32jOtttVC9Jwx8oadh6S2Vp9MNfrDtDWeG1t+8rZ+f13H7z7wfvv3TtaXJjvNhq9heXtQak2QBmhQXd++wRo+607d26dXT16f/bgrbfu710/uzpbu3x7Z+Xq/UcfPv7myZcv8bD62ZPHeAyM3gwPP35ye/Py7nxzcWdUrMzWZp17f/SX//1vFEJ1TD0LW1qeIVIThJ7TiETWciSU4hM5hpEdV0X1QjqFquEJIiKwYtZQeIKIUYxjK7AqyLjg8iqdoMNqxdDVjECSANZUMkIkASkhdnNMNBaKTkVYVQHAiIZDkDymyOlQnPM1Gbgcjd6DNEMjlUslQm/OxKYJKU1LiVQkHYrEKIEGbitaRYNT0JgphQSYxKUJn4ummDRU23RMoNmpNAXJG7rn+fPVXM7Jl+y6YxeBkuEvAVRe4kWc/OF5iWFokSGyrXbJVAzPc0oQ5zwU4rB0mjN0LFTkKvVqsV6uNFv1ervaqhXgBwHtNdFUFxi1gZYMZq2FLTkN7OEqVau57HjYBYWQGu3Oyu7q1sLS4enJ9XvXz67c3LF11/OLtVql3nXptJQCdgpRWfU0SopTEk42yarA8gJQewo16iYvRQmaCbbw2MM7QVJJhsuq8EBdE2BDJiNpCiXgU7EI5NGQdafJFCpKCQKXpgVIeakkgTM+EifhHJJhKoH3YSbzo0IV0LeLI26dHlLguSHQ4HmAxtHy4nK/72H3NHyfjACM0yYmCtO3B/25oAS9s7e3s7W9vbq6d+Vwd2N5YREgeHFldXlxEaUoscQD1FvQXcify0Aa4V50et1Op9tt95H/zg06WVkEwJVEhkPhLgn5OnaHcePWlXiMjoYmw/EQLbuFZj9PJVLJ0HQ4bRQrrUqpZqJoWjI8HY5F9awiiCJFknBzON1kY5p8CR5MEVJnPhZr1SEvsvxG0RtrRpaxO6qCao+lnGhpXCrr21iY8i3D1SDSkaxpQqJcyEqE7AAj90W3mfMLnlcYC1IWCpWL093XABy4ItVqtbFZA54FB03S1bHJD7YHYCtgmc0DL1MzoZDgWpabL7mCkzUGXXSEDDQ4XjdhoRBWcKY8NndAgMIz6GCe3b3wQkJBLM8zzf6ylG13LT1rCLFpTnzzD6YTukoScSYi0RGKkekQCdmZUKjOFrMMr2TdmJzzm1XN741yVqfOyeV2ry5PhSD1rpgsKXpyhHYzcbPRyOfo5IRdTJoDh4zIglMsdfCsbGN7a31/Nw/bxc5mPVMRBQ1YVBkoY2+0c3l368rhxs7W3tHZrfcbhDzNFExZp/AUA9JKMWMyJfgliljOR2Gx8UDw/+/CcGGHhIYnyPOBn5ZLBq0ICexxijOao1BkdGYmJmdELw8ALAscEQ6TkibqNTvp1gUGAJjjyRRQdggp822WM/teoyAklXpJ5QgyQWYFzS+tLs6VYiQvWZ5Xac4vrNeZDKsAv8vmbFORda/SamGb4PKqb5ZzDi/olgZJMo4jh6cnJycvvflGUISemAYwxr6sKeASQdcV0OBAAAu7xqZjaSIWNETH4e/xJE4cBe5IqRSJFWckwdOJdGJmJp6OoMkclqzxdBg2eSJOJGOQWXIUhfIJFJ1OkTSdJohAbpZMJyKVa1VIrUUItBnu1u6O1n/723/5opndvXbzrz755Oe/+OUvfvknv/qvtkprh2fn/+d/+k//8+WDoQ+ZvVUxeQwL5bpjqRkA4GpLzuQ8NZMprn285Yi80313lNHs2W6BFoGA8JotrzwwVMctdK6Kmpw1ZdFz10pycXNj55rbeVSGRe2V88M+us4sr21vr+8dHmxsbbUa+Y/m/f7h0R//xa9+ePH+9oP7i9363advLS+89eiz7+6c3Xg9/Ys90CjIAWCG7Bfg9/rJyenN0+W9hWbtfLs+v7398Z9/9d2333z95RdwvXj+6stXL15+8fmzp7e3dw5P5ufb7ub7JzvbvcHW0d4X3333DeD0l6+evXz2+ZPPP/3k88ePPrh9sNid7XX7RU2n7cZgtp11nVLB0k0XdlOh1EZBglq7XqmVCvURNjqjz9syrPO9k9s37jx498OPHpy2FzeXO/XZhdHafK3SnO3PdZq9hY2jG6fAqu6eX9k4H16+d+9tSB1ubrfmTk7XNx+8/9nnj775cqwa8vRJMI+Mxk2PPn//ysHl1dpwe71VadS6zsYvfvfvvoxLkmmKermoZ7ATXrZ9i4kyLCy6DHBNhqI5yzeCdlgW1YYTyQhHs4YmMxD7GdZ1VJ6j0wnR5SDJTIUyRQPnVmiaSREkIDZwlLQi8kQ6QYYjk1FWUdIEGQ5HpsNhKj0dTnA5E/t8WFhkQAixDBYnyeR0JDZDZoAHJpIhAnCFFug4wcpOSYetcgHAKZLiAEIlktGFtAW4YmZVmkjTKQg0GV3mvFETiFguZ3uO6zo5eB4ElGDkT1ZQBQtet8iktDJ6ILl41ObZtm2gwYIBGYZumQ4WwuCtKdXbrWq1WQEyXCzCowGaAYCzaF1omJZdamLAbFXzgRsSBOpgzAJdXdv9hfX1+c31raOrV0/vnN28envXMXzUMKyWyk2fongKq+GyapgZyD1YNA1UMgq6OfJChoCtS0y+GYoRKdj88bGVWTQOu5BGPwUcMGJpjksncE4fdjCbQukxAnZrmuYEVOEAvqsAdAqiiqf4InaNaZqOXkgIwj8qN3vD4bA/i9q33V4fjRQAfxcWRvOLi6u9nqcp2DctYpuUIMmKbqpmvtJAIwXYbZubW/vb6xtba2v7Vw52NpbmFtdXlpYCAB60Co4VmD9CkuDqtl8EeGo0m51er92dm+v2O90+7gpTDABYQucIAGB421BDURTG0rdphiDjeObGAmbk2h5JEdHJEEHQbrXue0UdDXyT4XAyndZQkFzkqBRQjHiC4SJSKQ18MDGZ0Zavlwz0hSx5lQAYkamWL3x8q8WGaBgizXkuxGLXyhmexZNpKiVbjmkXfJ1iXMcwnKzYxQNY1NUKZoELFbSSDxSwxgD8DyXpsVHwxRFuFZ+wgGURBGC/ILoCmv1NR03fzHrFcjbjZh24/a32mAM3xk1YSIAvmsUC14JCvlQcn43mc69dGAIW7OQ9p7sgq+UsnySSJBMn1MilSChBTERgpciWQvDU1B/8QYSMklrGLDeMWIwr8UkHMonSXDdPh6yWMzfqd0tOOs2SWr0sE4RTN+1VaiJiunpdZ6dLi6bRbfNxUYJg1RnMLaxuH+xtHu7lfRwXAABWJVGVFLc0gLRteXH96PL+tds3jg92rt1/2AyJZEL0LdRjk2gGOHDGYaWSj9g6BuB8MPU7LrJfODSMW8bHalnwb0WfzkjAHcOxMG1YGpOOTU+HWYm1IZ46osglwxGgsrKSz8XMuspm8yorppOAX4otdEaMkOnkSjUtwZdKupBKJVNqhs/VV+bnirE0Lxq2V2vNzW+00hlWFs2srmcwTdBzNXgb2kNIJM18ucDzmgGbUkB6GkEAxhp0cF2KTE9MTE5PTUxiOzTO+0YiRHwmjLqTwNpT40p0Mh4lUHBjrHeFFklEIjluu4rgaHAilYIvx3EwKR4IWcYBxdNhiH8My7AcAzGRhZBJYwcsGp7hrGYofVpzOZLl41PJmcObC+7ax7/+797/urS9evzP3B//6tvvf/+LX/78b/dyS9vX7/6v//7/eb50uekV/SwCsHQBwJriivFqQ5ZyvppR8ws/3rAF3pl9d0lRnXY3Rwqi4XKam9m4r2tZ3etuSpZWdnTNL6xaSmVpf+9qrvawnqszXqUIefv8wtLq5s725tbxzvruWi23/Em2ubz99n/5ww/fPjza/my/1lh+8uhy6/SzT35+fobnp+PxX8BggNxx39X105tXj8/Orl69ebq3sdItrb1V625u3PjLb775+hv48xVg64sXr754+ezpZ4+ePljfOT2aW6lXj+9f3l7IbV85PH7xs++/evnlVy9ffPHk1ZOHz188efH5+2cbg9nBwqhbclWtXB22TLXW6PXX5kfDTlVN8ZBpO65XGY7merON5rDWCLpEhyMgGMsr69v7l6/dfOvDD9+7frC2ONfvtIbLq0v9aqULJGJ2dm7jMDAJPr9+dGXj2p3bb98/u37zfLW8fOvq6Oq9Tz/9JNDteo4nwS9QOgQB+PFnj+/unew2O6s789VKo14rfv83/8NizGQEOS26wCEZgpJ0UckK06FoRkEGLHHACaxcVlUg7+SCZp94lKNYXRWZNJmgGcfKCBD64rxNC2w0EdUKWRG1C4G1EUn0p41MRVmWT7NJIhqeSPCywtJMJBKdCoVZejoCAGxjPZhlaAgC8QRJp5NJMjUNCJ3OMLyYSISS0TjBiHSC4BS/pDJq5jUAE/CMlCQRjM7TwEvVjG1Q8IoIhlM0Q6Cc0Wze9nzHDg6APd8MhpBkHAFW4PeCH45RO6X4huWgHYPn28D7sZdLV1kpqwJw4JFupZ4rNTqNUrFarpeCUWELEFjPKLqNCJy13WITp0aa2OMz9p0bn26Vyq0uxKWFldWt/cOjK9dh0Z3e37NNH5X2q5V626dgg0mAkqLuKDwdJSERUgDogAUy8OrE1AUARwKp2STkxalEOBwj0yxrZLIKvFCBZgQuRTA8m05Gw/AniuOIBEkxiOAa2gyJgMMacHVk1sE8sIrTPhl0SPoRrLT5ubkBtkZ1ZwGB/38AHo6W1/tdTI2D8SUFjRgUuCGaVa41usMFYLprG+vrB7uAwmsbRxBwt9YWxgAMNHghAOCsjhPXGdPWbA+9KQCA24PBbG8B13Jv2AXSrQsIwHgSAC9XlOUMKmHJIstjmzbNCiEqPjH5xqRsA4DZIsnGo6Eok4obQGitkkngqOR0KEWnzbwDaZUkJFASISEYSrnWJiNsJN3s+O16r160651ysVQPVKrgalTHglXFusV5GZG0ClnPyZlFeDM1GnCdtzzDzOcNmbR80zQ9oVDOeSW3NIaFYqFSzBfKYw2OizmkQFPiAocRiAPNyqAeHfj9lHD0xstYFDYtTRGOZ1gAwLrsZHO92XYAwO1mox7IgtZeDxOPESmwQSy+9iP0X18BE7ZztmqiiGF8OpZIctEkm5h6cyI6MRkXw1FLKXla6FLiUiyd5DSGqzXpcISQRcqwc05ruWWLBOfY9Ry8rWICshi9PdRF3mqUS5s+nTJEolap263da7MZmUqIUq5YrqOy6vbBwd7+jo8M2LQ9AxiwKqlWobcwGm3tbOzub1+9fXr7ZO/a/c9boaRFTtsFSecgdSdF3TYlLZnNeeOe8nzh9dRv0OeNpYLAnGHc8Z2/6IiuMLJCJqciiTBlmjpHx0OhCCNzZsnUfFgpSaCbQsbI+KWk3PRYvWiwApVMpJmMzxQWYSPVK4WWmaSw0ygFkCdqTLG7NurnwilR0h230hyMtnqExIi8bsha1i0VIGWvNBrVxmA0t1Jz63k9ZWJ3IE+hX+/MFEpxjCH4jTfCM4DHU5MTAMGh8HQoiWNEkCInZ/BEN5WMjNWhE8BsExfjwGOinAymfvHhMZw0wgfh3FEyhk3OZCoO+Wc4mmAh9LIcR6UBeyEbxRG59PhiI+HR0BWj0ekkFSG8WyumW9t4cfLH1tHalX+a++DPvvnZX/7mV7/+643c2ubJ9Zf/9a8eLp60Ld9WzKLG8IKIJWiAUk9KVpqKlCtoGSPXvbtoiJls/taypWVLg2KE1hybUz1l965i6pI9P1QcvePphldekLT20vHR1XLls06hzXi18gAYMKbk21tbGycbqztLlexbl43hzsov/vxnPzx+d/7e/flq6/5nb88vf/rZq2+2bt86v32OIlhn6D8I4Hv15AS1n09Pj4+vn127fnNnZ3u2Nry/0Fjc3v/Fb19+/zVcXyEFfhXoYD178vzt7c3jo9X5Wm3n/snCoLl9cPX4Z796+c3L519++eLZi8dfPgcMfv/Hx2u9wcraXLOQNSrzCw1dzpdn12Chztdnh8trTas0W7EKFTebtb18ubmwv7446DTqnUGrO7+0BI9b2QCaff32vSf399fXlvrNXnduc3euWq8Ml4a9+cX5I4jpZzfO7xwf37x78947N64d3z3t1HbvbIyuvfXjzx+9+OJVoIn1HGU5UJLy0aefPHvv8uXDudZga7VZaTdmzWf/8q8HGU9Rs6blqI6USqu+K6ZVMRSKm64De0wRWIaBMIQKCXxwrAvLmE9zpiZx6VScou2sLOJnCMBCLJl2y+hUIKZJOpWG7G8mkpiZSTMiC9ExFppMyZLMsLCAIhOhGE9PhRNszgFCKlKQ56UC+2qSgjA6FYrM0CKKW8YjRCSRYkU6SfB6vpShVQVngmOJSCqZhiWaEeOCwdCWbRoZU6OSFEsJgmoYbMqe7+bMXM5yi45bcE0n5wAmyJIEkKRD4MBiDPxYQvEdD2c7fMRgD92TAIAZMavo8PcC6jeVq+3ZZhkCaaOMUS9rmg5a16rAg4EAO2653agWcjhZCnG5cjFlgS0k7e5weWF+fXP38sm167fu37514+1d03DxJLJab3dtSuRkDgUiLVsBYGGUrIGdSKLE0zQv8DQqEEy+GQ4GGVClHdh9ZDqWInnJAKTSg2QCghDcHnhsPIToG6i8k4C/8BW0FeZR6VKHFB7S+2AIWgHAV4IP8o+WV5ZG8/PDAIBRUB0bseZwDGkwWtkcdD2cGYZ0QFJ4zBMU3dKdaqPZHWK6u7G1ubW3t721sbxxfGV/e3sL1aCBGa+urKz2GgUgSLqCmZhuqRYKiqF+ZXe00J/FZ2v3R4Nuf6DxoirjdBsL0YWVNFSuRhcByPEZSO/IGTpyaWYqni3kqjVTZHGWY4ZIJ61WzfHbeTqRppKROM2knAIAMGQcEMhIYK+2XVMyNJGIX3JurHrZalWj870q0MgL59lybdy3XoX/uGyWJzMFx7WLdsHWTVsiIQdUbQNWjqEQctbIZmxLrOfckg+wC/kVvLONauBEWHwNwM1a4AccsOuxXHQAyNV6ddzjGyBKwcy4jKtJ7GTatrOeVyhmRNuuzLZanX8MwLWxqdKFwtYYkPIX12v8fX0GnC1mE2SciBA0C0ufuBSliZnJqfBUNEylw25G89TpKRGoVZxSNK3aUChVDqcyEvyyJV+1ym5mhtKyZIRPRiCr4+yCyNQ6hlVrdevN+SJZmS3Viv7lQx/uagabsMp9CLPrOweHBwjArqW7viZBnocDtd2FXn/1cGd9c+/g8snp6dXT0/dauIgTMaMAGTraYyqWKcsymXfy43p6MIlUGJ8Bj+0mAueo/DjhCJqwcn5N5FQqHYoR0TSkkQKbCEeilCKbpayWAw6QikWTjGxLflmgG0Umk7dYYIosRXBF1egaIldqlzrZdNKuWFI6kU7wBu13Flbm/GlClDXPKVYgpvYCBqzrsl4qwXZvlprd2WZ7OBou9h0nZyWyWP5D95JwOIRy0G9OvhkcA78xMTWDlHgyNDExPTMVGhOOZCJKpILhIhwZCSCYGFsQxgKCmwj0oINho1AyjaZwYw8lpMyIyfDNJBkJh2mawtlMjgUExotheeoCgCkyoszZOpmOiyaZEbbWJFJxTO1b9eranb97cO2r3/78z374s3/+d/P51eXLd/6Lv/8P/3pta5i3DMUqqdiDJVeaOVdXXClVaWtSoayLVrF7Zw4ybcO6uuTqRmlUinDADQW4x4e3RFNX/PWaZupNO6O7rUXJWdg4OblaLX3YLfQYp17uoXnyCoaE3e2r66ubg1z9caOwuHP4tz/8+hcfHO0/3Om0Np98tDt7/8njn1y9fXZrfAR8C+kvUt+zmzfGDkjYCQ0fN/bnWs3zw/zoaPTdH3/90598+80F/n7x6vnTp89fPruzvnp0eXNlUNt562g06h5cOT79zU+/+gq1KvH899kXzz778NYa8PLlJSC/rtfdWK6Ziql0l1eH1XKtB3Sg3Sm71SGgbK/RbNdrZdcqdgajtb399Tk040A7jtFoeWVxtLxz5fzBu3cPl+YXG7Od/vr2XLXUQimiYW+4dXobVbFu3Dq/d+vmO3fOr57e2W91j24sbFy99/GHj1598QX2QiMJfoqKXE/e/+zzj27vH651mqs7w1qzV/cv//O/+0VOsl2v6GWLHpVgMtmszmlSnKD8Cp51AlDxImTsGpBhERE4TRIEzgHrsgB0mGZdW5GAiCYlDzhbnORKdcvUVJEkKSIdDwB4OsWTwJWTqXhoEkKAADg7E4pMRkiOnAzHKdeRFQTgNJNCxePA1jaGPpuMQEkcAZSR3ckAACAASURBVDssnEyzIkOkeKNYkgGAMzwCcBSFo2lWFaO8nmYsG7mdTBEpdNPNqDpH+YPZnFUoennPtDzbypXzrhGM/EiqaaoSz7M8J6QJrYgCPblg/LCYQxt2y9KDEjQAcL6KAorwhrSqpUK5UQEundUBQx0V8kIsQGct2y63ayXPKaEJUh6P+4KWmRLE5Ha7v7LQm1teWj88vnLt9vmNmz/eMw27Wq+XS7VmU6cyogJ0XbQtVUnHWFHVVaCBGUEMAJhDx4n4xJshHHPATQrJRToWgg3LKBlNQlcjSCckjorHKJ4iEjM4DxGo2I0JsMQCtusauvgaGRl+NjpBBTQzM54H/tHC8gpcC9iF3wsOgfEIZG5urj9YXNkY9jz4Vk0GFM1wNECpDDzALJTQOmmwgCJY29s7WxurC+vHl/c21zfWV7AJa2l5aXGpGwAwehcriuVAnMYh3GZntjMcDTqtTrdT78wPZzttAGBFgkUFL5ihKUHH16XwKQRabF5JhiQmMvEHMbOgeWXbs8mZqfBEjEpkmjU31ylQwBFgJVFyJlfxMyjrDfEsRgMf01grPJ2IRcIzGc2hJmxaWtgo5Sq5sS9v4AYf5EDwX1b0GYp3PNcueF7ONByTSlApyTTtXN5XmLSadTLZElMp4CBbDjUiSuVCoBV5UX5GqtoI5o7QbKl60Qc9vtBRAYE6mOQtqZrFuZpMRcSsmc37haKYcbw2AHD3H5WgAynKCxuHgFkHM0yB7lVQef7HFNjz81kSKxyw4G2dIWbiOjOTCr9BEFPTyhRTlFUjNZ0IzYTTUULlWCkr+OobExLnKiow/bhWdwnPy2spjk4zgkSTTDTZ7Lm5YsUtD1ebhFZ1zCxZ31uVE6wmZPOtGgDw0urW/sHl/bzno0msp4kAwBnNLHUWO7Pz69ubeydXLsM6v37j2lsNRo1z4nTKUzMCrFaBk0xdznJSORjMD+wYxk1X+de093UTFqQs2HTml/L5mpFWGBqPFkggqBKXCIWmk7AsC76GozR0MhIlBUewykaiWOEE3xNZhCmCdw1p1uc5v19q2UxMr9gyFedTnM6q5c7KQjFMQF7p2LlCq7fWomVGwWE9s4R5Tbsy2x90u4NBd9ArZwoaY8H+EXAMKDQG4DcujcU4AIFnZiYDRY5LU1NTM7E4CWs3lZyJAwAnk0E/NJr7ArKiZGoSJTqC+aNQNIn6G4FFIZJiEgvTSInJFHxXikiTM7GIQKVYWNMc1p8p9MGhA7Ve9FtM8JFEybMyvMwJvNSsbKmMbsPizl6ee+s333Q//rNf/u6HP/urfzFfWNq+8eB///t//29W1udyTk5zawaDzRbFRs5VZUciyx1TKlZ11qqO3hvxLGn6VxdsPVubKyTkjOrJZlG9fI2B1L2wn7dMp+6out+bl/3V7Z3rxwXv/UFhjvVbFbhZEEpWN7a3Dg4PNzdWm87hO35zZeOjv/r9b5+djz64P6j37376QXv3s8ff3Nu/fx2wN7D/vYkAjAIcZ2cnJwjAZ8B/T68eHC7PVo7OK7M7G/f+6quf/vSL10fAL7EN+vnTz28tL+5C5GnP3nzraLnb2zi48uD3P//m1devvv7q+bMvv3r1/NO3bx4DUK7Md0q23VjaH1UMu+BX2sNG2avU/EIdYnmtO2pXmksrc6PNxbml1WF3YWNxMNudW1rbAnDtYl/qcLQw1xssba4d3bp788r26vyg1RwuLq20ypXh4qC/2FvYunx2fo6a1vfObz548M7tq6fnW+327csLO9dvf/bxi5dAgQGAxwPBjz57+uGjTz/94PLB9qA+2l9rVeqtev23f/evGoRXsO2MVNUTJNBHHcKQkKQIu+K4TmB3IrseljCBOsJWJZMxgk8DAIs88N4AgAWepeKCJ4hCgmKKDRO932mKShKB+1b4UjQNARX4aiI8mVYzPCzT6ZnQpTDFpSYiyTTQbBXFIQCCk4D7dCpGkdFLU+FpUqAVlohEYjMAwAJDEADARQBgGQAYzZBISBE5XhETjErwti2JmiogAEuSIIiQLuDMhVeE8OflC46ZA3rq4ZiCBuvJNBSsrfO8QBJG2Q3mIuys43o2imVBDsLwhm47fjBRVG9iW0wp5+ZKebglupI1fU/RIOXUEIDxDLiSdx3sdC2XsXiGnauA6KX6bKeSzzcX5/vzm/t7Bydnx6cfHNi2U67XS8V6s55hACEhxouewUupGKIPnrvLcJ8Z5LBUAm7V5B/OYP2ZwI5zmqHQMzTFGJks0H0NKTBAbSoKuQxBzCD5xRJYmmJYFoehVURAGQlwMOKTCfwbsNFJyqC41Y9GS6tra6sLAfL2uhhzkAIDHM8vL64MBl7gICzCj2FoEVIXNZMxHK/cmW31Rsu44TY24NsX148P9tZH80sri6sAvjgKDAzYsS1N0TKKYnu66+QgHWm02u3Z/rDfmR10Ko3hoNOsGbyAvwGL4tUAwCr8Rti/B5Qt9OalaCoZRQ+sN2NMTmZ5ya+4JHCNMBVjIdRkC3oiTos8ILKgeq0aRGmGwiUWmkn7WbKlToaS4dTExKWJxMQfxpjl/YKDcBhMnkLgR6mLag077EQTsFsCNHN8O+8YWVeIp0lWsbJZr6zrZMb1FMNTrVLBK/keilCNTXxKqP78GoDHzVI4/F0Lxs8uxDgCQ+AxhALioPA1Azclkcw4uomowwGC9bvtZud1E1ZrXIOuYYP1hWhXoKMVnJleAPBrFAYS7DmQLqBZlZiG7cOmU4LFARhMZFQqKsRnMqJlMLFIciaZIZOmGH4jlMnEJt5I0ahKalrTEb9YGBQhkTTTZFrMyowUZ4uO3ao2yp2FuUYy6VZYU3B6i2KY1hTIFVpYaFzf3t25vJfzPNi2jqvCgtJghZUaC93h4s7e/uWTq5ev3Lh5en7zvQZpsGmBiabwNEKBBcfhks2mvAsAHstdIQ0OGG8AxMULNQ5IZWHfwr9UcoQm0ghmBKcCAMenQ9NxwZD9guZmZYFNRUKEkJXkukPYdZVz8hADSKCQkmows2XIo3ulWo4PZcquwsQFgoX1lWv05qoxguFkM5sr1NtLDUakNJS2c0p2Lue2gRJ1e7AhOv1Wx7YyGTM7NhZJhcYE+M0/RPhFAH5zcnICAHgCafDk1FQoTqDGHyR/iXg6OTOD5SicCk4GroOJ2Jj7YrUZlWUTiXQqmUwzZIxMJgPzBTI1lsOnkpFEGlgNFVBf7Omg6KAVmiLHrt9sPCa4jpZQackUDox6Ia32Kv5mZn/p+cvv5774s9/88Ls/+f2/GFaWtm6883//5//4r3eP+lnX45yqyUFsFHP1vKdKrpIqdbJSsaYxZmnpkyWWIpz84cDSAY6LCXjDXNkoKsfHaVO0y1dczyzXcqaeH3YFb3lreON63n53mF/kC7PVfn8IALy+ubN9eGVta2uxXHxvs9DfPPjFH//ptw/2tj5eb9f2Pn7vuP/uw8ePd+5cuxX0Xp2ejS/A4ONr146vnt1AIegbN04Od7Zn23O3h9XN/d2/+Or7L3/6xVd4AQQ/f/7s+Yun75/D8+zNd7uNW/dOBuXh/vHqi9999e03P3/y4gs8JX726bvXjw6293aGw5ziDTc3Vnw3Xx6tNBpyodGvdOtcY6gZRXd2ccVk9HJv2Bj1ljaXFjb3t1YXR2j9u7AEgWx5hNoIQ/jdgN2vbZ/curKyswxxstHbWepUmt3eEHWHVg9v3L51++btO7dv37n/1lunx7durNbXr+9t7V3/+OPHz16+evH8xcsAgJ88/vyzzx9+9PDTW3sHy43O9k6/Uux17Od//TcbXK7kAIHM0VGOJXXY1zrkeyEZleMAbjIZ0c1ZWUsH3GMhzsfDBJcWbQ2loYEBO1Yg0BFmbF6CQJC063pGzgiQsBFxWGVEfGZyMhlPJqhkKhmeSCqqEKXI6ZmZSyEA4MkESTuujXMuLE0Cf0mkaTKRSsUvTUxNpHhKZVKRaGyGoFnIdRO8WSjKjCZluAsABlzmRSHNaUnBdkVRVUWKoDkOm3YBzCqDeuA96pZrtbxTAvbqQi6LlsCaocNjWUbgBZo0Cna+jC6DJupAW46pqLpGs5rmBACMzTQQFFEBy817WdsGgDZynqS6pqbr2IPlFBuVop8DWlSplQtAICBs5hyvUGn3Zgu6P7+7ublzdPXk2tnB1tGPDzwgHdVqsdSabSosK0s8oZpWhmVIGmVCcEIK/o0NhLrIeAxylUuhJLqmJAi4pQxDJsLTBIfTwqaBA7Qsw7BMjORJkkLZ9xS6VaE9JM1BZFS5FDBpPFRGGyHgsqg5huNX8I8ZSfgRwOXi4gKQ0vZsF4VOsQl6DluhF1dHC/2BjyXrjJRRNZ6RgT7r2SxE/Wqv151D0eil1fW15dX1lc3j/b3VbnsOMHlxEfVg1wetgm1lNbjHomTaStbJYxrTbnc7vdF8d3Y4qDfn5nutmsnzkHpxPEpIcKyIGQKqaybDycT0dDIVIRkSJx1nXJUMEZlcNR8PXZoiCTlXsHRbiBJCrmaQKYbX2y0lxXBpIhElWJIDjpuvcJEQlUrMxKZFMTbxh/p8KVcLTvQr1XIxMDCqALaV60WDy4nptJvPG57p+Ybmq6l0Ki3piqCX9Bwpuw4kK3mxUvZreTcA4KJfei0gcQHAxSpKoFWar8eQxvO7+PMrwbMU8p7nFnhTFSCUz8RYT9OxzspkfXfQbdcb/zCGFBwBV+vwCfb1Baej2FIQdPflXgOw9/oM2CvmOch1CToBCRiHcv+yMDMRZVQqMu1zk7ySmE5SzBshk41rppJIVaRJapqEdz45GfGZyZhT6iz4pm4xVCytiJQgi01lJj9fnV9cGw4ydMmcYSm3OxIvJRQr7zU7w/mFlc3d7fX9bTdIzm0X8lxRk3QbKEF3YW17dWPn4PT69vbJ+YObbzcFS6EFNR42c47C8aoqaTj0LROli5ayAk4DBxpygSthsXBx6B3oXhcq5YLvF4s1wtDSQCyJJK2ZyIDD03HKELyyljUhapAAwJIus7NeWm/bbBal6VMUEUavgXKNlrUO/CAprFR9XUgxUVrJ8sVOsV1F+1NRy5bK9cZCnRPSOux6y8xZ1SokapVqq48D6/16u8llMgqQD5blaCIcnp4E3L30T/7Jm4ErEvzvUgC+0wDN01OXJmcAgdGClYhHiWQYC89odxTBDzjGgFUsApA3TaLqc5qOEmk0UYG/JSH4ITYn06lEiknFknGegZAHHAPAF9GXRtE+SLPSCMM0QSWSpisJJi3zzO121uX0YqmwlD1aen738ejZ3/z257//yz/9FzV7cfvGvX/zH//D/7i33ckXfM0oGTiYKPiNYk6TfCNZAAAuVBVO80efLbNp2nPWO5CEFlfr8YwDIVXNZ06OKUcp1E+ynlYp5kyzNN+W/KXt5r27Ff9B31vg8p3ScIAgtbGzs7V/ZX5ze77Q/aRRWdi7/c/+5HefXV95+7zbab392YezB4+fPbl65/qdwAIJoPfG6dnNmzfPrp1cv3nj5ARY8PUrJ+fnV/d2u4PC7R1nbWfhF7/96Xfffv39qy+++vobQODnT588e/no1ub64dbqSqt//73d2f7a3uHhT3746rvvnr349tUXX3z56tHbZ4fL28eHx/utQntle6Hq+Z0R8J9VyJ/L+YrVqUbzPd7q+745qJYdKTdsedlSv794eHp0dPlod31ltdnpDpc3N5YHaJPe67RmV+D5tvd3N3YhtDWa3d3NQbk6t9ibmxut7F49PT2/cff8/C4Q4Xu3T67dvraY33uwtXb+1sOHT168egk0ONCkfvL02fsvP/3w4Sfv7B5vtyrLu6NGp9kyT/6b//a2YgIty3mqqbgynZVnsmpGkaeFqu1YqEuhcm7RtbO6yguBp0gUAdjRRZZlCJb3cXNx6TBtCxmJ40NaHYABW6YoMpaGgJgIRZICw5IMQRKRN2OyJsE6nJwJTcQ5AGCCZhwPkEdiYIkFStDAahMkMTU9M0UzhEKT0UQilAIApuIxVs8VMqwmyBcAnE5xElLnTDbJZz2gjoaSJjiBFASOVXS11C/lfMfP6RVIpAv5UiGYXTQBSYBqmVlNYEWI/7ThZfMVYDf5cq3suznfEGVdZzndQM37YqVeylVbs+0aSvKW87YTKG55jiA7uqEDAluOV2rifHC93KygD3Cx4GCHil+bXYT3rrt1vLsLtODq6dn19YXtt/e9nJev1Yrl9mxD50kgEISSNzJCilJ0TYdMRJCB4bM8HzjhRhKJ6ck4gwJhcWKcBBPhySgjGkCn8BBYhg1IcQDAaYpPUVjWiqYYzJkp+BEZhUtzeITAcTKqffCCyDNwK9HsAeU4f9SfbXfnRsNuvxPMIQ3byIEBgUfzC2sLvTYeQIgycmhRzCADlnS3UKnj9yzMD+eXNna3N5aG8xuXD3fXAxms5bWVxeWN1bkhYA5kOugZZThZRXMKEOjqzX6nAzg/20Fnr+HcwrBhSLBiJIZN0NiOhu1eEuAJmcYOlniKSlKClIgq8htkVk1Eo4TCxSfDkURYzPkSJ9JkRPE9lEeSZG1epdgonwT2j56JwGWzqSRPEySTTrCqPhWRXLvc9INRl3IpsL1DjKxVCzU746gModsmYFrOK4imhq6YnOaqQimnqaTlma7mMxZ25+THAhKBmQ/Kno2tGAJBDpxCqr0G4CI6BJcqaKoAjwTGXM1V/CrnZyzNzMTSlq2beb8kca7eGLRmgwo0el3WghJ07eIMGNC3+lqKMpByy+eKhUBSJu8GtoSObVTdWj4D/DVBAUtSw8DM0hDw5QwRfkNU0zNJbSLBJlICrWmQuNaykLcoTq30/1H1Xs2RZFmaWIvKBBAILV1r93APl6F1BEJABGQEENBaJlKVTK0qK6sqM6uyKqu7qrp7p3umR3TvzsxuGzlLo7I1csnhcG1I4/KFTzTjA/8C+UDjTs888FxHZq8xrCAKCQQQ7vee73znnvN9Dj8Gu0nwjgI3bVZzLYzEEyEiMRKSCNb0MN18uT/f7tqELHkpP63nuPEwK+m2U69Pzc3Mr633NzZ1zdINyFhlhpVEWjadUrc90Vte6S+s7O5uzJ5dOT3/sMZIqhDHRWJMU00VSdbREnBgicMzGTNjoArzG42RC3tCNIbk9kVfjCPBI205mQJN84lIBHUIixLPJFBFjKallGMptsARdNAfZByJKVkEUbNotqZxsBewYFxOAzQIHFmv2xU1EskUZTYRCMe5FOEg5bHxCE5pKT1XaRYmahSBWvj4pGQpZqFYhUS62Wq0uq3pWiVtk4IlixRO4aGA5zLqgR699KNLXv/o5cvvjKAm6PHRSyOI/iIcHh/3BwK+8VA44AVa63FLUoC0SNkqEgjGUYKM9FQRK466ihsIiJGJGSo9R2OJqHuEhHs9flJgIQPH4L6SJEZEcAbgFxJwLIHTZCJOE8EIrwoCwyssM9gJywZbqOlDbaPz89q9pU9/95Of/tWf//I/aZTnZ/eO/vf/8Pu/XVltW3ZaShU1nBYE0kRSsYKhhjNVhUvnRUHMzDzs0xSmpwcTSUMvduohBjaELOWk4zVW4ezicjInV9KqoNlzLbZztJc5/rCW/HBgNwW1mWtDZoY8VwfrOysrc0s1Y/ih2FlafP7nv37+3nDvznKtvHH71uHE9S8eXds7PD8/OjkFAD46PDxGms8QGk8O9pETw9He+dHR2WB7qmYfnZn14eInr79//dW3P3nxCjFgJET59PnzBwdLG1sbg15m+ujDlU57YXPj8MvvX3/56tXLzz59/uLls/e2V7e25xZ2dwezvYX+tGOVGksb6weHi0m8DEvMkqyMWsoxzmKLcArVyRZs7sJUM+tU55aX5q7ubGyt7q0sLc52G/X2zKDfawIYN7oTk7Nzg6XW/PLyLAByZaK/2s3mJnqtmV63u7R7enCG7IHh7frN493jKweF8vGVuf7Jncd3P/7i808/e/r5pxeDSA8fPH507/Gt3a3NqUJ3e3WiUmpmO3/1n13j8pgi2ZlcRpQ0Ouy7lMobfDwgVPVUSkXS/YxhA50RZQbgMRpGPQYYY5qMmIBtyxpJkWBwPCBaQLUgsuslVWFxkqHiYdeCK+Qbi4s0TUUgOfRdivFigsfD/oB/PIizQWDAjJkSBYZEyIuUPhJIDDqMbMdCGEczTNQfjPjCuHv6jCuWgzQaGYINj0USEWTfilT8ORGjddeiVwHk4YEC8zzLq1a36GQcNZWDMOhauaXhBQHYs0A5kzIktQxkDgQpZ5FAnlMsA+PIZGxNQgDNk4KqZHTVBOAoN8vAZCCKWiagp44skAxT5uUkADoy2k05tbxVLGeR12zGVBXVKRfrlWyjWS+252cHw+mNrf3Dw7OrJ7uHh1d7KdEq1VCfa72sYvEYxZC6qcD2wngN8I5C7cYXlWUgxd7RCDY+EorHwyEcCwcSJFyHcHD0UpgVhGQSTQIDtuJxLJag6UQMc6cI/SGMRi1NDIsUPhkCeDMGbJgiGY5kOQruDIMO82mW438wMz0905uZ6iDZgXZrcn6yVW9Mzs20u92phel2U2dcMWigpa5MhqBIqp3Jl2BJdpDi5Fx/ZWWwMD3d39pcRbXoud5EZ3J6bmmuC0hjpVKIzzNiSkP6WZlcuVJGPA8JHzfLlYlOd6oNMZGDTADHE7BuSAg5AjoABwAmIM8IRqJ+TywKcSZ+eYxNwt8cC0X8o56xkI80DRonY2EPoYpSxhJNKVJ3xkJkNOTzhEmeY3VJN3CksB/0+cI0lwj7TCVtZ63cm3JxIe/KOecqhXzFFiSFjImmiQZrdEMUUyQOt0WGZZnPGxImIDMDyeCQqprrwYu6dzMut80Ui297n13g/YMWdNatHhdKri80knnKO1knS5sMLB1qPKYZqpp2MhztaJVWBdbJGysGVwXrTROWC71vO7CcizFg9PstBMWW5VaiLcNOVqpEPBiNMxwgLOl558djnhEPy8WTHEHR4+MqyeGEQEF6qvJmxcrqgpDKVauOUaBxcWw0oqjtOkYl8VgooDfkuEr4YWM4hbJS3VhsVmw6TsaxVDYFd0ayC7n6xPTc7NL61trqhgkhIQWhWqZJjmcVO1vttibmBsPV1a2D3fXVsys3r12xOUmCzciR0YRuyApHyZTAU5KdjLEVR8tb9oXJxAUAXzRdXSBw5mLcCz6Di50XCMgj42hyVpB4Ou73+cdxWk46tqzLAsmGgyE2leIch8FLDk1XdJ4G1hgI8xal1xWWKjfMshoPW2WVp/2hBKXRWqtby49hPCNnc+Xa9FQvjxPIt4STBF0xkVVHCTUsdLqNbqeWq6lSRkSdMKERRHfHxr3jo/7LI0ALLr/zAyRJOQYAPAKEwQsseHzchxoYkPlgCHLmSOTC+TcKXMH9NBaPoZ4snz8I/CTkc9uv0GQSKkijqrTbHB1LjPtjGCorui0xgLpELIHE8jGKwGIx3JXmiEZJMcnSyKX98KAYIlNOPtend2f+pNpb+uJXf/ztb//oz/7TSmd6Zf/a3//jP/7dcK0Na0ZIl1OQeEui3czoCp9SItl6ksvkJUbITN9bZBjMzK1MKCmt2GmGaMU0OKUoHA55ic9UBqmcDGFOThmzNb59cpLePi+o1xbsrqLVnVYbeb71l9dWD5b6g6li+vq6Prmy/bM//cVnp4sfHvUaU1fuvNcb3vv81unR6RVkwfBmDhhY8DE6+UUOhADIVwCaB1vT04XeTaO9sLP+s5999/qrr169fPUlAuAXzx8+fXHvaH24u7k+W+9euz4/15vZ2Tz+2a++/vr1Vy8+ffH69cfna8PtnY3h6nBucmnvuGtYjcH+/sHmsJ1hyZRerPXqdYIvzArJfHvCylmF0kSvomqFznTFtOszc/2jk8OrpweDpf7qxnCu0213Zpb6U0i0o9GcnJoYDFeWFua6tUZzdjhXytZ77dbMTLe3enJ2cnR2/fqVa9duXjs6Oj2dL3Tf22tvX3t479Hzly9foL6wiyL0w0f37zy8e2V9Y7FaW17v1quwC779b55LKbZoZsoZBWnjEqFQqmhLCR9ftk1D5QVZEJycmZR4gSdxPB5FykskndIhYcJCJG9rIrAR3MtoOMaS0ahaEJMcSdFENASMLBwOjo9EdQnWDZUIhMaiXJKgyLDP5/UAAw6MhhMAwIqM/O4INGUMCzTo+sqPe3wRWHlkxB8K+yBbxSEWk6rtwLokGDT/FgpDqohwhIozfILSkacBAuA4gyMNClZQramKDdEqV3IBOA3sFukjIit0HU2piiw6EqUoBRiRa1WXKSCRDVlB2hoCySVlSPJdJ2DAZgBwG5A1ramGzsuyrktCEqiwqqEmLKsAsb2Yy5Uypp4yMqVCrdysFZoTzeZ8f3p20Buube/un5yfnl299v6coabTpWIZvqmiQCpMcowJKUwszigpnuNESeRomaMoZAmMh8ZDEc9IKAEpdATBEoXTNODOJU+UBfKNjoxZVIQGgoCjXsmoq3wXjCVcLWgcJ2jkegSpM0AuAmDGPR0Hku1O/tDsD2Zm5xcW5mZ7sNB68ElvMNeZ6M5MTXQnpxdmui0DHRXzvKi49kxIUku10nnkDdWemoGf7fcHy0uzvf7m9voKOg+eX5ifX4Tscaqk6XoKUhFR4CQdSVHmcsV6o1qrl4slQJlKpYoAuJUXacixOCwRhTtNEMDRkccxyvKQ3low4veEx2NpZXTES+uGaYrRADJFjwYo2+LgQoR8ASKCZbKqw/xYqYd8VNwfCJFJkwtJpV6JjFOxSJTktXytFPE5UsY2kX+v66FwcUybz5ZzxWo+Sas0RqhGytJUSKhYiyOxGMGlzKSdzyLmaJsmV2L0vP12DDhzYQucy7z1dyhc6Htk33rcoiFh1y2pWETCpEh8wkobnE4lFTkxFgf2iFq8WD5tVCeQPskFA65USheP4psppPxbJmijNqX0ogZ9hgAAIABJREFUG/ENpOl2MQzsZFSpOU0pFDAnTIYEi4qE42QkoYpR5AAoQHKpFlUBHRWns6ZhpHM5JHhe62azFTujXoZLHIHUgiZ9USIcQ/qktiqSvKon4s2VcmNaEaiIIbA4rElRsovFlltoXN3YGK5DKqpqimWpLImawEwEwJ3+PPLdPDra3zk9uX7jqsUlRXhSWHlBMZXSeVLlaFZGg+gJo6jmkS/SG6NF1AX95iz4bbaRfiNLmckZCchPE+FINEjLEpLD8HnDtCQ4GTmVlEgask5KtAU1J8dzOZYo2DwNyBUMMSYv102azUyYRYUMqRWT50IhEtdEbqJdz/swmlH1fLXQ6g1bCZwTeZpi0ZwdGkKqIu+uThsuQT3bcXjIxfBoaPTS6Jh/fGzcPzYafudyLD5+6Z0fXrr0w3fGPBfADAg85vF4AIIvepwBUeGjH1l0R7FEOBRDPquRyBt3BsgvLzAXSXKgN/d/4miQCZh2nMJwho6RmHv8i/SJMJrE8ARSw8JwDMkNRcPExdhy5GB3MRDRnUy+rwxm/jQpDW88/fNv/+IXf/k3pWZn+2jv//z9P/zdcNgyLJt38grNUKKWnsiaqqCrkZwLwCIlZqfuLHICZhXXWgDAuXYTLrFh0mpZOF7hRaFYn9PTcsOxFMdeLEpz187t9fOicTpnTStaLd1td2cXF/vDjZXD+cW1utN4XCzNrt38zR+/+Hht83G/Wd+8dX+3fuPzx1f3Tq4BBh+jQ2B3BBjpTh64UpRHAMOnh8dHc7vNavrutNbZ73/9x999/c3rL7/8+kvUg/X8+fNnTx8fzg13doaT5amb7/bz1YXTzQ/+5NsXX3/x4uUXLz7//Or2xuHRxuo24ORg73RYKXS2T8+vbcxa2a4WM7I6nZmWBWum0CtOKHR2KqlfP6/UF9qwudv9qYxVmJxbXLn27vmT9043h6trywvLcxAZJ2cXJrqdVqtRLvb6q8PlwdI8cODF4VwtW29PuWOcO4enp1eu37h24+z6++eHx+ennfTeB/357Q/uPniCBDSRIBYC4acPHz64e//+B5tr61P56c35ciVTUm79d7/kRD3ZqOg52ZClFA2gmrVlLChWIWYlWVYSST1tQDQVWSS9EUYzIiSpmjSG9PI5yK0RifFSyQSpACk2a0mFB2qJx8JEAlATADihyRwNeaA36o3QKhEnw95xjyfKUP6xKMZYJnBOlsQJAkhNHI+HAuGAF03WhTEEwMFwGBgwcpwPE6ptI1sQQJ2QP+SLBOIA9AiAuTitJ5HOBABwlExwqMQqala3bBnZcqVULkLwypZKKc00FUVTJST7z1GuBSJJa8goJwf8384jeQEVIDqlAQCrCjIRcCdHy0WIuJZoZDOaahnAClVg7arxtgvazuaz8BwZAwC7WG22as1qs1FptVtT/aWp2X5vsLq1d3z15o3rV29+OJ1K2XapXC3lqxUpHggQgmDzbCKMSe4IkoK0/VQGR7Vx4LzjXt/IZS8qUIUiOEuxBE3Fot6RS2M4ErlAB7QMjZQ4AlH3ZCiI7M9iRDyOuZJ1GEG50IvQk4LPacb1SCJcEU547T+YRK6C87O9hZmpheFwqTcc9mfarS6yFFycmWqbLsRzaIIJabIIiqxZaaQE0wX8RQC82B8AAA8AgJf7fcgNp7vdmfmFxaWZcs4yzCRcSkE2DM1MI6GwarnWqgP2lovFeh1+yXS78AaAsXAijuM4kgSHPxQ+CwYCXk8g4o+FvHSaHvF7I5wOwZ5C8cwbDXKZtCyJ8ZDf6xsPC6mkEv2xp2xEvVgwEmPMvOiJZWdyiRgGHNg/5iH0TIqitPp0ofRWieNCZRk+z0AqlGXVJA+JoeLoyOBANJIMMA5CslTVyasaLtiqLqc1rIxo5wVnu9BrQkIZb8iqW4F2ubDbBH1hMpAv5FCdGhAYFV+ySUmlNU2OeUgTMjs7Y7AQzeoT1Ua9UXN7sCpvpKAvWDB6tgtdCgDwDBKktB0XfBEEuzAM75N8q044Bo6NjKLeX99YKCbCDg16xnwEAbReUXLw1+uWbNumlbSyjXxZw9KNaqHa6OZ874zHck6MECNsOIpaLyg9024JpJHDqEq/lc4WKnm6mJYSbASXFYDv9vR0b2FpCZjOOqx0yFVtS+NpVhR5I13utNoQg5eHG/vHVw5OD09u3M4SelJRJZpkyDCfSSFnDpZXFU40hUgBlaBt5z8CsPvJxUjw22v8VpQypnA4Eo8K4EqSx6MBX2CcElmnqKZUBMDBAM6mJammh9MlgXCyEk0l8HCQSClsPUeyRscG8hviKw5LR8JUPJlM1CcauRAk70mj2CjU2wu1BMGidUfBzndy6Xx9olwoViaaheZUo1CzBSWtxEOhcQhf4dGRS+OXRryXPPHwyOXRH14e+TGqOYyMuD1YY0gVC1Da7bIKByBS4lgkCvs4HAkHUJnZ7/ZkBYOQMKH2LHcmCfVNIiEO1JgF5CaMDL/GMQi1qNCHxxI4smOggFcwGOmKzkLYpTEA4EAUNcDgmG9ypycQQrGgr1qz/T+b2Nw4vPWbn//2z/7iX2SbC7vvrf8f//T7v11ebhqWI2sZGUK3lLIbWUsTDCOYrStctiAwcm7y7rIkJpzKRkvSAKAbYUowbEYtitf6rKTUJjq6LQOIJwvZvqUsXTnLbX9UTp7N6ZO8Ws1Ptifn+0uDtdXh9vzSsGys31I7y8Onf/n9nff7H97slVo3792aXnry4r3jvbNrJ4dnJ27/81v5Z3gcH+2jDujdq3vrqwt1c/vEmlxZvPmvvv3q1Tc/efXl10CCXSPCV+8fLc/v7i9PpeY/uN6bqgMWP/jV91+++url589fPLv3/uHp3vLKztZCf+twdzCzuLO0dXK000mmCj1WaJianc85CmOWcnVVylqsSR1+9eJg0Ov2OybvTC90ytlWfvWD0+sfPXp0/4Pzo52NtQHEtM7k3GAwWWvUq+2pTntmFWldt0rV2eHChFPrtttTk43p1ePzK2fnV6+fnr93/eT49Np2o3jl/d7g6O7j+5+8QP5NSBX600+ePHz05NGDe3eP17YG+cbGRrVSaOnD/+rPzwm73Ibwo2kcy+NhgrBtBQtJNccyk7C/hHjSBsooX+gehpAFA4mrNgsrwR+nrSQEdZwABkxSEhePKnkRjfjQANYIf5GrVhygggv6QuMRT4iUsTiOANgXZUi/J0GyNgAQpHcIbaNhnMJgBUKiCQAcIUmaigSCgXH4MqpNY0k7TRIAwCwZDIdGIyGkhEW7DBhopIDqpbFYFM0BIx0pzW7krTTSnAJK4qTzpZIk66YiSzxquAB2JmPoQShontOtFLoKeFYKTV9xOKuqOiBHBnhGtZAvl9KmhUzCgSZpCIAlUdURVUZt0E62VIQENKNbuXq320LC0UBrUCEX2OVg2Btu7R5euQr35+Tqe92UnsrXqvVKsVaSMJ+PlJIWT8UTbDIJF4kXIKDJGhJHToTDI+OesfHRy6OhUDyBWqABgEkCVWYvXQ6SvJiU4LUwJHwtFgpDehwJ+31B1yADi8eRTBi6VqjpAs3eI1EdBMAMUGYW+S8DAv8AAur8IjDW2fnFQX9paXlpeTDb6UzPTs4gTO5YqGVcFlha5Fi3m1oFLltpdqfgxxYWF5eWF5f6C73e8tbGyuL8PDKQ6aJuyPnFVjlvGSnkcsyK8HotEzXVZPPVbrvV6bQajWbjAoDflqAxEqdIzO3QZt8snOB4IOSDlA3QNYB7xgk77+jJuG806A/5pbSjaMm43+sZjdKkbAqhsR8l84I3GIXVwpr8eASTdS4EycuIx48slWWVs3JWrpi5GEBy2aV7zJovZSpVWTbUOKtpsEjMLPwWg6eiiThn6pqR002cNVTVTDrRTNr8AwBnLzQns29MkFwAhqd1/SrdOacLKY5c4S0AZ4yclJRZLSWHxznLhHQip9G66TQn6s1aw+XAtTc6WKg9+01p+8Km/kIoGZ0+u9NIFlJ3c3HYUAypKvsZJiGFLo+Nh0iPn6B0jiJGPV5PhMaEVCatWDlDgVQiaZQdu9Qu1U3MKBbLjdpELxcYjdQaVCiOU16fgCSqmWQpI2uFoi6q1al6vtJaSEtKSiGjJEpGncbU1MzC0sL84ta6mkqnNNlMyRzcNFa106VOq9mDCLy6vrWHDF5Pb95xCE1LqUmRIWR/NGUosLxlnmBNndVjbNF227rRjvv/AXD2zUnwxdxzOpfOlDBRpBLBaCKIyapAxAPjwXFK5uySoRoqy0YiwQRjSFzTDBg1ldAKCsvE4xF/VFSJeoWklE6mrMpBspzhqEiIiIhapNysqT6Coyg15eSnZubyCVh+OEELgpYu1cu5+vRErVJuNEuT7VY9A1DFwa5DRkxj3hHP5XF05OuPBHzesR+PjKBh4FEPAC86A/bBhh0d86H5okQ8HImFElgEmG8ESWMB1MYCkXgcQS+aDkbzCsizMOSCczwSDEVRh2sYI8IeXwy2A0ZSHJEA9ouTBB2PMQyOJu1gb8diDKI2sNODqDXEz+9MWgxdLasb4tzwp/tfKZvPfvPL3/7Ln/9Rpju7/O7u7/7p93+3stzULUdSiymSZJOqUc9aKqsb/mwjyReKIi9nOvfWkzyWrm22AYCzE80IMqDkJUd8v0cqWqNdTxlqy3aS+ey8pMzuH5WX7+TIq/PaJKtWipC0zyEGPNxc6Q9mStbtDWtmbf37f/7Fzc29R4NOef3Bg53WjZePj4+OTl30PXH9Bw8RAUb0Fw2O7x0dH+xf3+z3S4XOY6uwO9z65c++/uYn36AZ4K9evfj8+cvnz+4tz6/tHiy304P3Ttcqkztr23d/+d2nr7/+4tWXn95/78rxztrm/ubc/Mbh6szc5sGNJ+ezMzMOIc8t6lomX52YS2e5ZCNFNlqpzLQplYdfP3v86cfHM63lhWpSKU3PtZzs5sbahwfv3n/27OGtm1cP1werGytz07XJmYXVuWqx2mh1puZXNrZm67VmZ261VSo2OxOtqfrMmuuOdO30yo0b188PD66vmZPv7S8tf/Dk7qPPXyJJSoS/Hz9+/Ojx4wd3H723vrFRLw325mqlul3+F7/7+TollcuFpAx3GklIUtlMEg8JZcu0NA6ZyRo5RwfeyFPAtoBjJkiK0BwOMrNQgrZVCJs4GWBTQGYAPjlHknkG9UGR0QthNW9QFWMACFF/YCRM8XEyEfL7fP4onRgfw0jGtCWBRsuMTEQiGOb2CAJqj/liBMkQIR/wnDAwPywWx9VMlqGQA0PCF/CPhgBpEzHI9FkuDgDMc7IsQhYJxBYFBQTAaatQzqVzDrKfQ6ezkppSgJUBcuo6UGGOBlxP8LY7bwlRL2sbhmnaaVWRGYxJKqZhZVAKXi0WilnDzCErOF1VVBnAV5GSb/BX151suQggk67VKrVGs4Y4NxpkmOxOz84uDNeW1nb2Dk72N7ZunF19b8oytXK9jPhgUSL9AVrRUjwWQ8PuPDIeokjBSFIJyDw8nhGvB+nNeoP+GIXqzyxPUhgapx67PBqERBYAWEA6KWQiGsXhqkaDAaS4E3UBOJqg3agCAEwB6qJmYzSBRFMMj4YaIXmmftDtTs/3B4todHcR1ZOXl3oArjOTHYhKU1Nd60I6DJW5UReXCABs5cqwCCd7i8tDCLaDQX9+emZ5e3O4OAfAC5lif2lxvjfdLGfg0rASkv+FGKzbQOCy+RJyPZya7na6E42Jduc/AjCB+tkBgCH9Q9qniUjcBeCgN+jlLDIQS4QCgBq5TIH1Xw4EwgElbcmalvB5RsdYQ9RzSmj8ckwpGMFQOBCgdCEQZ1K2EvOHY6GgP0CqWkzUdTMMaJt1NSRzbwEYkrJMqWYKqOkOacPahmOnRVMlITwSyO8nYwF5TpqaKRmMUNTflqDf4G/BdSZ8K5qRQ36ULgBf/OuFKHQOdRchFeesqAq8qgkBr2gaumUWFMrWMxNwTaoXJ8DuA3U/5/8gsvVWC+vCDNh540psWxfvDVPL6jkCgj6hhkc9gVA8ECfiqFaBB8O+MTUtQHKpOjkDNUJkSlmz2m3lyjktX05bdi7fnrbiHE9LVJDwRRJsfMQT9SvJsXCq0HR4Rs222unqTE0QOS5K06Js5jL1LgSifr+/vLOe1GxNU0xNQpPonGI5pcnJ7uLqcG1rZ2fv+HDv5Pp77+ucigBYE0kB92GWzis0DytYUQXF9JklzcrYb6rNb0vQmTeM/y0BdoCPpgs8LVNxfzgRiPFJnsACkIQRSTGVt1UjxbGohYmRJLZqhcS6RYollWPxeCwQZkwi3+BJvp4r60ogUSgoTDyMx3kdK6fLkieUSGACL+ul8mQFjReQnAxhIZstVsqd2cn2BGzg6nSj2TIMg3cFqkJjo8FQkPX5L1/yeCB+RYLvXBoZu3x5BJJkZJIEFHh8HOGwx+v1I63JcMgXRkWpcAjWIYBwANAyHntTgQ6i+V9kBBxDLdFxLBaJxNEESDQR83tiGEmTCVQGQye/6I+DOIdM0y96oqk348JIMjoUi/oWBjLOF8vOutje/nL3JXPtp7/+oz/73fffVacrqzcO/tf/9/d/vzZspnRLSFUsiuQU0ZooZzXGcHzZhiaWygorpVt3N1SWzCAATiYLbQBgVrM5wRA+ascVrdQqJlWtYpmSmZ8VrdWD/VLxvbxwvqD1eL2cb3WmkQ7WcH1ncXWpnm88q1fnVq/89tcPryx8cL1Z7d56/FF7BQjw/skZJGdIAAtZMByfuPZHx0cH+4eHrhLW6f5w0Co03hsas3tL3/3y66++/fbVy69ef/XlFy8+f/nFs3s7ncXj40G9PLh1FX5j/2D11q9ff/qzLz//8vPHH10/3dtY3lztzW4ebM8srx18dOfGtdXJhWLcWJiXU+X5wsYvb2Zsg28BG5OkqVRw/c6rpw8effzk2UeDzvzKXE6x24uV7uzkyv7RlRvvf3D74eMHD94/3dveWB0uzXXa09NTvUp7ul2pTq3014bT5WJnaaNXKdbbSEN/enn//OqVa1fOr11//92j3Rtnc+nF21u9o49uAwX+8kKS8unHT58+vPfg/t0nd3bXNnul7tZqo1wr2V/+6//+71OJal1hVIpXOY4JU9lskogoFQtNCEmKQJs5O4WEBWmKRoPAOEVTmkUDZIbiJMJoAGAvpZICIDQh5/Qk6r6hABlRj0EAknGFJ4g4rDP/SBzAko+FkGZxjIiNjSZwMmWqEoOaoEk08BaFdYoEzT2eAKSALBEKwDdHkA9TOMTA/mAgBaDwhM8b9ARQdSdKUDjDRGnIgTlZEACAGYZARriCnm5l7ULJsQvZfM5xK3epVEpNIRFb5GWGdBI5hiAVdw4CGdzk0DGbAd/jArAsw+tHioPlcqOeBjacTqVtRdY1HgDYSMpJ1a1AG8CM86V82smUms1apVqrAHMpV2oTjS46GFkcDNcGm5s7xzsr69euXnt/FlKZUiUPT1rNC7Q/xCU1iY7FJUPheHc2iJU0JNYJZG/E5x8DYuOFXCOIeD/BizSNRRNR7zh8PconBUFAOlIkXNooTuMh1GEZDYdd+oswGSeRqSHqWkMIjOrPLAs5FuqcRsyY/gHqnQDcnJ2fnppfHg4WVxcmO72lucnp2bn5qamOkUQDxKwgM5A3oyYsRTMBsJoT8A3odW2sra4szswMtrZWF5AK9ML0zHRncnZ+rlsHIgUBV5ZRCVrVc8gVrtbounPATUDf5gTs2W5JghDjlqCR6RrOi5wosuhI2+sFcPUFPcF4So/6o75w2JfQnHTJwMd8gWhQyJqCqsW9Hh8mG5ZjJyMQ+fBaEx8PhuO8IUf9ainNQbjzBaMhb5hmIISbVadbzCCv5guzBNcsEB0HF4s5WVQ4jLcMy7ZTmQxkbhxE3Dj85bqVT0k0j84lVJUsWH9owspelJjzf1DdyL+FXdemofD2M1fwEgGwnU0LSaTIzfkDCqRxtlESCNssoHJA+aIDCx5vAfgN+ubfIHD24lzUeXPy++adZRhJFe4P4fcwHLAvoFwRjgxHBYERvSNjP8JlNRRyFEVV0N9fbqSMTreG/uhSrZ5LVRqZUs6czoQhoYagHI0TAX+AowSI6fJMKR63bKtYr5TrubxCxElSEM1cbsJtdl1ZW99a13RLSWqmJkN6hnz8nPLk5ORguT/cOdg/OD3YOTp/75ZKILdsDb6H4OJBSDFVZAcCHNjg0hiNBvXcInT6PzZhpS+KzmmEwW5HlpV1slkdSzIxL6QXETbJk0RgJOiPQmqYyei6xrLRmD/EshqTz+BEI8fQxRTP0oh5EmnKmADGl8kUM0YolqnYAhFNEIxG5rS67huPUbymm8lUspBFwjWsrCgp3U7Z5co0koTrTHYqk43yhGMIFMkzSIAIIhaVjgRGLnl9Qe94MHAJwNYzcmlkHAmWo3NgdygYIHjM6wOyCywcASw83LNfV8vOFadErdGQSMYSbpdVAp75zZbFURHa7/WjahWSAiCBCLuQi1xagRyhFiySQEq+qGAdCeOxRBSLjZvLPCmli7lhqnX63fGzd3/x7T/72a9+86uvS72J3feO/q9/+Mf/eWO1CYFKMBADpkXRateKKdoqeLPNJF8siZScbd/dTHFMtrbZEmSp2KoDU9IdSraFD+uYmsy0C2pSz6iypNbm5dzxyW4zdaeWvLaQnBOsSgG5ZC2urq3srC+tzZWzmx+arZW1Z3/9+oPtndvL1dr603u7rXdf3D05Oj09PrlyhiaAjxAA7+3v7+0jAuyWo4/OToZLi9XK3jWjvbd09y9+8v3XP/nmyy9f/+T1y5fPn7989uHh8uLu0bBV7z/YmF9obVzfffnrL7787vnXXz+5fQ5sent5d7C4feVoqbl4cv36R1dXetOdetIcTDPGfLt586fffXHcnCmprBUM4Dmz8/SzJw9uPXh898Fnn17td+aXJ/OOPTecW12eWj+4cvODex8/fXj/8eM7754d7GytDPpzMxAkO0ggrV2fXN0dQAxrrgxnK8WJ7kSv25pZPbxyfn52fu3au+9eOT2+elYvn13vLx9+9ODRJy9euIqUnzx9/Mmjuw9QG9ZVCJn1Un9rojTRcK7867/5a8gRFN2ElN9KiWSEyDgyEU1WTS2lSbLCESnHUJMQTQlkjhUPAVjSKR0WBxGK4GYKUm6M8JIKCdCXiEvZZBKJ96O25UQsGvJ7RnERoCXiD4UCIwmOi3Goy9kXjBOR0THI7lRD4lFxhaRgPcZhnYbHPZ6xkbEQDsGZCCOv6zBqwgoFBcNxKEBfliQDnnDIPx6JQcDlcJaOUDoAMM8LsXgEnXmyHC8bmVrOyRczTjaftVOalStlHWQliEwG9RSCYDR3SrN62Q0BEECRQ3jaQKYfSY7g1CSw4RzC33K9ngFi7OgZIMeGgQSOU4qspZIuATZNoFYOEOhmGRUTG7VSIVur1ZqVlitQ3u+vLm1sbJ8dbBwcnF9/b85W9XwZqFe+lGYYX1hIqjQex6UU0jnheJZPqjJNEvHA2Oi4zzc2FgBW670cpDCcI3jJBeC4fxzp7kQZ/mKyl4jEopE4hYeQ/h1k0xSECiweirr6Rm77FYt6x+GB9jWQYto9/aaZH0z15mYnW83mzFx/ub+wuNyf7XZml1eWFoDITk+1U4yYTIocBFjUhMXwEKGsfHWi3Z6ZmpycWVzd2txY6/dm+lsby7NT8GJnF+Ynq9Xu3FytDMlKGggtz8mWbaAG+2ylVgPaO9ltlkuVyVar3e1NVXgKPXEiBsuKpnFOcMk5icchsI2OePxjfkYXIpGYL4T5A2oe4FPwejwxH5HVGVmJekZJXZXSjpyM+/w/SmSyNMBzkEgqVIC1c1o8BKlJLEEqmpAg7YqTn2hf4GY++1boEVKuaiFTgRRBiVBG0nJyciEjSdkUiRayYal61TRZwrCTcLcpJ/N2DOmNWe2F9OQboMwXS+VsLv+mDyv/RswKlbyRt4BZsAWFTmoKGwhphg4bqswlbLvUrtcbZdjKFwy4dqFF+dYI+A9d0EgmFfig6Y4fARYbKJ009RQZDI3LGkWQxMi4JxChvQzmGyXjfi7sxbw/GimxVFMhbIsK6ikz41SbkPjl4elKlXa2M5xsFJ1unvCHaDxKBgglHooR/hTjD7KcTEQIKWVl00bWyhT4BMbCE9jp1uRMr7cw3NxaXzcsU1QgVZVYgmAV1clXWo3m/NpgZXt/d+8EOM7+zcfKCDJM0iBVxTgp6hWzosxzvCAJkGdmI3TRTSXeArA7huQe/6bfOj85TsZC9atszBAwXxgLRZmkQNPB0ZA3ICXFdNE2dEFIJIIhjrXZdEmINYocWUwJLB1LRAKxNCVNODShO/m6E4k51YxIRiM4JmCp3JQZikrw16uWXS5P2Gg0QJBRidwx0rVCo9VAuUanNNktNUoWlgjRTAzpaZAhIheEzDgQJWLImnpsdMxz+Yc/HPG4qOtxrRmQVscYak4ggLK7FeZg0BsGzgGwG4X3CZRhRhMX53OIlYQjrhIWRsTRCEM84gviqCURcgJkd56IxgGnAaFDCdermmVxZHYYwbAYZBPBWCgeCoc6qoim5Jf5xcPPr954/frbP/r5r/7oTz9RJ+YXTvf+zT/+/n/aAAZs2pKVkymalrRkvZxPkmbRk65LbL7AEkqhe2/LEPl8bWNCEIV8oxKiRTuPpwrCB3VS1zJTVUO3bVlS9O6C4Bzt7yzlXzbxm4vyLG/VKo2p3sw8EI29/mB1upp9b1Nt7az/4i8/vr5468Zko3P+8IPJ/sdfne6dnx4dn8E7twK9f3C4D+8PT04Ojg8Pj48Pjs/3VxYmm4UH5VJ/Zf/nP//29U++ef3118iKEIlAPzyeX909Xe80+rf3Nhtzh0d7n//JV9989eLLp7fPzo52Njc3Vhf2zjZ70yt753c/Oj9ebnUW63JmtUlkO93wKY1oAAAgAElEQVT6nT99/vFnr7742ZO55cPp8q0Pb3715OHtx/fuPXp0/8Hjz+7tTs2uz+fppeVBv7O4uH18fn791oOHt+7cvf/k47s3Djd3dpZ6vcnW9Pxsuz4xNTe1sLUxXWt2ZhZ7Fbs0MzHR6vYGu2dnJ1eunV+9cf369tnZcrV9e292eOvJ/cefv3QB+Nkn9z95cv/Jw49u37l1uLXbzvSOpvIT5fTgv/zLv/1vDSXjKHrG1AwhhtNZR0yExbyZTMq8KDGMCf+gKkkRjyElFiTJRKdSNItRQEBtUxFYjPRRKs2JdDymFiQgtGiQ1ZWtDAMAx1UmmgC26g+MJlguSsXfAHDU44EcL2XySI2BYTnkC4LUYtBQ+8iIP07Brwj4Q36fewYcjYq6aaBKDIeRgZFwxBPESJyWuDjHRoABw7bmhDgGW4xD07SKjTpXgHs5uolaoCF0ZbKlggGMQIQ39AGVV0laKzjpbAEBbQadrOkAzQpsdMnQkZiG67iOwNkw4EmQ/ICqyoKiynLK0NADKWHl9VSlVm43Wq0Gcg0u5SYa9WaxMdOZmBmuLPbX9rZ3rxxuHq+fXX933ladHPKGzuQskvaGAeJgv9Gw/VkSAJUSTUNCJ73jo+MBjxd1gkfj/tGERFE8xUEuHg/FYyGPxz9+aSQiuABMYGi6EL4xjLqg/b4Q0OdoLBqM0nGcRAVqGsEvQC7JkBSLRD6A/sJPEfQP5hfm5xYWZ1pTS4OFpbXhXH9pbqo73V8frq4NZ6YnVV4BiiWIogK/naXFpKro2VK5MdmZWVhcmAcutLq2NlgY7u9trQ4W56a7MzMLS3OzczOtkqUiVylAfxFoim2YuWK+hGyv0RFwOV+utRGKV2SJhzvFUVgsTDEYKwosT9F8PORPXHonhMRFOFWMeQOwirDRhMM75aIwHqLGgRdpIhkKM6rg5E3HoRPwan+MtRlP6FJY1q1QVM5pDBOPEAl41aliloiQdllJt+2sXbFzhTIShiyWXIMk5HZVVgDIY4oh5ww9W7A1zSITcQaHr6bSVkZLyI5iSqYklnTHMhwkB/2mVJpFzr9ocbwB3jcyHKWMayuQRwbByAw4n3eyaUkyGDWZTHgwwzBSTjZDqo5ebwL7nYB0reYeAZfLpXK5Ui4XLwaBESVERkj5C9yFVWzBMgbYSuuWo+uWmiBRd2wMjcb6fzQaJMIBT3D0R0GvHPOGPfiYDL8+jebiFMg4DadUL1VqkHDYVh6yofbcbEtvpSMxAoNMmsZlOSawnssBHRUUqCBNJGlPzJGUZNoSGVZQ0EBAG+47Kn3sDmFvoBYILcmRNOSQhpWt1uvtlcH88v7J7vb2ycnR0cN0LGCboqXzhoxRfDSazAp6HB0yKDJvJYNZLV/T7IKRrRoXA9bZ/IWHycURMLrGVtbKZzKlmKTF8bEAFaAkCbLLwGggyIuKUZd0k5DpMBq8gz2dVsKFnBBxbIXHUUMELqSEeo4lrbIzpWABoaww0UB4nJASqaVE1AwQmSSkz45dnG5HXWsWSZBTppmFjAhZZyLN8gm4O7k4T0mcSGGQ51CjXiM+MuJNeBPk5R+NXbrkWiP9+IdjoeDopbGxH494xj2jlyF7HPd6kEcwyojDwTCKmBA3MTx60XKViPjDsOSjCHdRUdofgnwBPkajwRjn8/oxCgnzQoqMxSECYmQCg4iLxzAmTuNEIBEKxNB8MLAVpJwPLzXEWaRiF60hP3Pjs4Nrv/j5q++//fNv/+yG3V7YeHf1y3/4/f8yXJ6A66OoRY1gOUnONPNpllNSvmwVQDcn8lJ27uHQUVl7Yn9WTPK5iWKYk7M5QsumbtRJyEOHNQcCoGpr5ck51j46XN207jWpoyW1JwKfgGx6sT9YWdueW1yp5dpPG/nFzfPfffH+3uFHw0Zt9aP7g8krXz3ZP3Nbr46OXfdBdPZ7gFAYvnSwceVk//zkZG15pm2f7thTe8uvfvv6m59+/e0Xr79+8frLV59/8dnjs5mls721Tm757t5Sd3Jr7+CLX79+9dVPvrx35eBge2NzdX5weH17fnbt7L0Pz6/sb/XnOp1cKjeoxBrtcvneL549++w+EtJ6/vLlyxfPHt27d//+g/v37929c+fu3dufPd6fX5xrIloxHPbn59cPT8/fvXXn4Z27jx7ff/D0wYfn+9sbq8udzuTM7HSjWOwMNtYHMxP12vTq8kSxWm9O9brtPvImPAEOfPPdw90bN+bL0/d7g+Nrj54++uJzJAj9ycePnj65f+/Bg3u3b1/rz7UyM7vDbLVWy3/wr/6Hv4kpOT2LAEaXKIwrWDLhF2EnmLrAykwsCVffAFAiUUN8NBZjSUKzJQKWE00bZoqlKSKEqxgjMjihZFSZIdHcLhLfwEMxz4hfkhkCw4L+4EiYknESH/H7gsCjvT5flE7oMu8e5bpTbtFYAsMSkeDICGSccZGPeccjgbE4jc6AE6xkJ0Nh1FBEBILRQCSO+hNUKqGwESYlspQgM3EAepxkWZHX5FwN9V9lDDVlZUzFzOeBRjhulzOqKKKEAk29UIqjOWgEGGIAOuNFo72qwjNoXMlGHoW5TLlaQWqADuSAcB00UdGQm5cEH0xdNyA1TPG1CadRb6FwWkXHwPXWRKVUnZpozQ4GS/21nf29XcjxVnePry9Iqp2rNKp5R1dpyGCBAFNxSlQQLxBFnk/qYpwhvOF3xuPjYX8M9mw0PBLjaDyWQIELrlE8EkI73Of5URDTOEoicKTlHsMTSIE2CFsetRSj6xAlLhJpmoZLRrqdaYw7fsQBMLEMzf5genZ+fgGQszeHjoGRtuTSgispt7a+OjPVUeVkUkKy0RJFizwnaaZhF8plZAiMpF+R9NxwtT+/vLM2HCyiZ5rtzS/Ozs73gFuZehISMYaRLOCXtp0tFioTE42JTrfdKOWq9c701HSnKAqoC5oBGIE7DDSJYSUaw8PhRPiST5CpqKRIVBhSNdTPEmbhPjpWYoQm1KyuySRrlaSUjXqDZTZ0GRZXpnHZ5/EoaYMKsxmTS0Qh8WCoqFyoSLiVzzpTNauQKaULbrEYTelmi3m3gbmcUlMixaPpHgtuc0qyBLhCOK+bSYDsJMuauor0tG0nY5tpVxI66z5J1uXAF9Vi9P5CjAMlbBetWBnkCQ0P03Cysppi4HLGPFhKN3QnaxOqZQH3nQC+Bfhbv9ChdAG49NaHAZ1YZyE9TF+IYNmo9wp9NFypF9X1buSYxNjYmNcbxMbeCQbDTPSdMU+EiI+O6gRWcZQUfCd8u5EEKFU1M12sNZtNWIAoj5+tTmdhu0VQb0+M4yJMkuGoUj3JamkmxKcZzrRifLpkcrBWJBOSVCS5v7Q8XN5ZuRCkgVwUjaLKcGPykD7U5wfLy2vrm/tre7DaH+UoLmKbvMHzGiSXbAQzUipPq5RMaYKQ1DwNU8vnICu2s6bjOiO9nUpy3s4BOzk7n81WSFZLxMf8eICWk2wi6h8JBhjgYtWkZrISCxwyQcFiS+sRp6AkdEcBtESUkk/x5TJL6kWnqkQ8mCkTRCQeIFRWz/giEia4shv1cm26kWDRrLwoCUkDVnjWrLU7tUK5u1ivdvKCLxTn5FDAYX7EBH8cTSdjl94JB3Fi9J0xdyh4bPTyj98ZGx+5BG8eDxpEGhtD1WiP626EDIzDBFLAirkOhGj4COJWJE7E4EtY3D2k80Vi4UAIiEYinIj7vBg66EOThDTp0mACS0DuHIOfYTE/ksYfJ9EXozHU9Y8APUbZCi07mSWuevPxu2d/8ctnv37166//+Za2NL92dPC//cPv//3WYtXIGIpW1jCckvR0vWBzEOHGchMKZadFIWU07q3DQkmXzhYpViy0yxFetC02mRKut9ikUlqsZ3Qnl0wpuU5HKN8eZoeZp1XytK/Oyka+1J3qLSwtr26szvZ7ZWvjo0x9be35bz89mTn/cHKi8f6n7/cG9z7/YM8d/D06unBAetsCjYrPe6d7R4d7p6sL29Xcym15dnv50S9/8dOffPvdV9++evn9p989e/Xywcny6sFwbba6/GBnc2L26ODk59+//ub1F08/urK3vb61Ntndu7LSW9w4vnbz+tWTk/3BRrdc5HP9vDbdyHVf//LxJ8+fPn/2FD2QIsadj27dvn333l143Lt37/GdB89urzYqx+tT9e7y+nBqerB3fHztzoMnD2/devD4wdNnwLI3V9c2Vxe79frkQq9Zaq3ur05NTzR7ywuwnSamus3mzPLeKeqFvnrj3evHh2eHs8XDdweD9+4+ePDs8xdoEunpU8DgBwj2b58vD1fq1Y31aqFSzl35L/7zf3u1krYzGkppBRoYsC6TQaWkQ5Ir8qqQMAqOoSE5mEQCKaYFsQShGlwC1jlBGoYKwIyFiBQlSmQ0JmU0CQ1707Cz42FABZ8HT0nAnck48mVgFYrDx0K+YBjHA2Neig8ldY7FcUBYwGjX6yMe9Hg93michUVAhuCHgjECqT/HWVoWE7RMsSwVDMYCkWgCI4kUBGQuQquQxPIIgAF/IcsWOVUpVGD3uqw2nbVUAwDUNJFTkwQoC4ReFpHxAU0lEV9Jm6ZlOhYyWUVuR6rIKpqkWkjCt1Co1itpw3S7YIABK4KsGilFkhQVoFpNAQA72XqzXAXcbbYmahWgGcBqiqXGVGdyYbC0tLy5AUHp9Hjv8HD3rK8nhVK5BHhvmwwOV00F9s+rSFODc317kfItBtvYH/TQUYIKhfGwD+cZIp5ABgsUiUUD0fHRUY8/MDYWQLO+kIWgrAjSlkTUbezAUeEhivwNSGC/HIcU21GFwZ3/pdF7Cik/YtgPOjPzC/CY7/X6m+uLCyv9pcXFBSC3Kxuba7NTbfcaCag5m6QlEV62ppq5cqXRnZycAqhd6qOm1+WFlZ3NjdWl3szs/Oz0zOxMb3Ya9reZklGpkUs6lmY4CICrLSTs1u1M1KsTjfb01GSrzHOoQYzCwxgSY+J4lhFpnIJXGgomODpMWCod9SNtg2iICgYsNa0bUhDD00VdIsZDgiI7tp62U6YUuzwe8xCzvM/nlbI6FWHTBmQZvKqlbEbNNfI43Mf5m1M6OlItZbOuQEbxwvYeDRA5sspzCS2jp9PIOIvTDQ5CIKnZil40k0lcyyZ1xVCUHJKDdsw/APCbJug/yD+7n7rdWUiFMpfJ5F07hQygZl6E1DaZFCJeEnI2I51JwRZymo06QGHdJcDVN0NI5ZL7hG4TVxYBsHOhxfH2ABg+GJAqIkO5rMrjCYYN+yLxdyCpTYyPjtPkKDqd8Y94+ETcVgS4PpqKskQTOGU571hIsDxf687Oz83OTvUyJEnEYSkkYpxAyjhvUfmqkMrqqaBQICknK0h2Vkd64IoFqdfU9Mwc3PT+1ophmBoEC0VEo+vIuLPYnpxeGGztbm2ubR5u7h2cHN9LU4Y3aaMTdBUWuYSHeSulsgKt4oLBi2mMyWtAx/NOqmC/AeA3xk/OhQBnJuNkrKyTKXG4ToQ9/ngowSs8EQuNB7047L6SpegyxwFvjONwZdOZuFTQSMGGPyoRjkRirM7kmpCh5p16ng4RRhqyuXgonhSlgoeUA3ZOpbViq9aYaWBoNA+SVZIVBFlPcnoGHbS0Go1G2WJ9cSKohy6lmB9xhBdnpcTIaDBBJryjnnEAYM/oyDs/Rp3QqA8LjSx4vWOXxzzuDvWjIzikIuuOEUZdP1FXmIMA4hoNoRFgpLyBLIPdfwslwpjXH2RR9RDHEAcGroE6KSMEkGGcSCA1IyzguYy2CBEOY4Dhbg07GCY427AXUq2P7r979Fc/f/WXX/z29e+mMrX53bWD//uffv/v1hZKlmGLasWAoCBbRrGQ4jBZ9RQ7CmNnRNq26vc3VUnM5I6WhKRY6lZjHA/pUjLJnDXZlN6YnyioGYilTn66JlTfX8sN1c9a9OlSclZFnsrTPVQP21xaWG2X7du7+sz25m++u7+29OFWpb345PH+1JVXD08P3dlfxH4vgPdg/+3H/fOdg9PDg/5apVW5O51f3t791R9/8823r3/2+t7T1z/99PGzVw9vri8dHSx1iiuPdleb7b3jg59+95Ovvnx5/3hje3dzZWl288be4trK3o0PbqIer6v9/uKCkcy9l5GnW4XBq188fvbds8euLe/jRw/uP7h766NbiPneuYuY8P0Ht+59+tlHe8PNzZVeq72wvjo/u7K5c3zjBuLATx7ffnj39n34cONwF8LdTKfZbTfrnYX17blutdYbLkDsn0Aa993B7smVa1fPr994//re4c2dYvPO4fTe+/cfPvz05XPkIvEMwP/R/XsAwDe2tw962YXNmVytUtr9r//63/2bpp5D0KMlJSCFGUMmQ8mKaaqqwEhMXM9ZqiQgvSoMQy1S8QRjGKh7NZAgkBoO5GhBQqdlGQ/HxLSa5JGXHkZAYofa5McxND0QS7iDSIxAcHFf3OePkrCUgiwbVE2Go2nU5hBLoHUXi0U8Pu/4uBfDYScF/bEALBpRwoBtEyJPCBojCUwoGAtGEQBTOkvJdIjSgKLxMjJhwilBZHlGVUtlZEGHZCjhP4iaNpAXXRGRry3AKFLicFuUkmhOBLgdKoOhozVNkZOaxIhJUbPSAM7lcqNZdlK6ZQP/MXRF4EVVTyUloIeoWq0BGSi3a42JEgLgdrNSKABGNaulWqfdnp5fmFsYbK6vbh6enezvnxxdWTKNJErwc6VKiYmFGEPGMFZKaUjVnkdaF1QcC8Z8QS4Wwdk4RQcjuC/G8DSRiEHe7Oqxh2JeyL2DQe/IuDdGxAkMvuaeKmFoNgH2NgbbHjkiJQgKjfwC9aUpNBGMHu4kMEA90t7+wQWMDgbLwNKHC0vrsJBn55YG/ZXtrdW5qQntTZLCcwSDAFhRVCMHiUa3B9+2sNiHWLy2MVxa2d5Yg3U5OTU9OwUAPDs72SrZwBlFuISsBAzMcpAdEjBgJK/bRr6HzSZcnHaDRyNS8NKCrgYpR6ssTTICFqVCQPNDIcVKUtGgfxwysAAZ8elGIQ8UKhEo5S0uFsY4UXM1kXWNp0Ke8LjHmcUuR+i0FY8rGZmVWVLktSZwqQo/phqF2bM28lfPlbOoNJzNuPNIF967JSBQQpQx9UxGN5Bmbkai4ngMIpWay6R0XMiljGRK5/NZy8rYxkUjNOK4b1yA3zgwFC8UsHKo6f7Cn8HV3Mqlczknxxg8p2l8OMQBdkJKCDzQyDYR9DZRCRrhb/lCC6tYKL/BcYS/CIveUkKkf4Xa9J20rlmqkhZI2JQSNeqL+C7FvWOjTMgTx8Yve0l0FhmMCMDoIYcGuLYhu4T4CakH/I5SPm1nawCYs7OzWYbmKFdlTpB4ldEqTr2WK6VJORHWqKBUr9moegSplGLly5Xpmd78YHU42FyxTIBV1IaP3EME2Bu5WrPdmxssr2zAYt/fA7Zz28AVCZMs1XJkS8FJFosoGVXAJZ4nNFWUi6NGxTaySPD5osk787b72e2DdhU403B708VkwuBCvkAsFmZkgYyHfcHxqCTLuQxkFqwYjwPRlFOcVSKogsUwaSANSHg+zJik1eZJKpOuNvhwQilrVCAWCssK3Q7zmRDvKJyWKRdqM01UrKMTCZyXJDGJRqYt0yo0WrBeIX9MCCQuREZINsBGo3hMCI9dDhAJiFCAuoC7F5rQYx4kSDk+6h7/jowj0ejRcV8sGg5GsJgPAS3gZNQdSYohoI0mIpFEAvkDI5uJSCASC8UJxJPHQxhPUJAMAABTyP+IZTAK+QCTLBmJhPAYBqwbi8WBzUcQG4oRiZA3GtamhpNmQ6y/f+f06t98993PXv7Fy9/Y1an1rf7g7/6f//A/zgzrmmIIyYoF6besp3JFoFWqFsjXeDaX40nDqZ0PdJGx8gebsOvKkwDAnJpkNYM7LpEpc2KyWVJh8esZZyrPpE83p3bEJ5PUlUFqXjWKjc7U7EJ/uLY2NxhOlGuftbMrmzf++tnN5Rsfwoa/8vDd2eXHr97dPzo7Rfobx27LlSvBcXgxBbx/fHiyd3alv9xrp0/OUtN7yy9/Bez3+9fffbpz9OnLb1998/BoZ/vgeLFdW7p7PCgtHu+e/vqb1z97+fTDo62N1dW12cWT86Xe+vYHH75/7Xj/8ORouDI1KBcze2mlN1XZ+P4Xzz7++pOHLz9GAAgI/BAVge8A870FJBjw9/69h3c+uPc5kODhxs5KZ2Jqc3t9YXZl/+zs+kcPHj28f+/O/UfwU48/vnX9YGtt0OvUZxYny5W57cWFyWptpt9vFsuTvXajPbm8c3z12vm1q9fevXp0djzIrny00T668+DBk8+ef/bJJ58+e/L4ycO7dx98dPv2lZ2dfrm7uZavlYq9v/qX//bfl/Sme8aZkhiSzZsKEZRKtp0CLBXIRNJEZEhENrU4cu3AcME2eToeCeKUrqJDvHgAGLAk4jFcdpQkh9yzMCKRiAJf9ntiEo+qy95AYCxIMwky6sd94zE64fFFaTKGrIAgDDBYDAmuoTG3sDcIpCdKUSIdDfhjwUgkDmE5DHtYV/4/qt4rSq4suxJrdqGQNrx5Ec97Hy+89xEZ6W2kd0iHNLAFk/AehTLdZbqqutjsbpJDckbDxVkS50cSl6gRJVFLS/oZfUj60ZekD0k/+tUaLQ2Hs3TOS6A5E1UAEkBmIOPFu2fvfe85e0dYWPaSC8BoCkPRoIBVNshYaDIrAQATcVB9DEfrerlexjJWqmBFhFoIdTCTtEzTMuGFgZqD4oGblGoKe1vSmNqaQgUMRFDRREpQJSuZdk1/6w0AYBsqBJ4B64qq6Ji4qBrvAdiym51Ks1FC66tmFY3+q41Ws96eaLXHZ+Zm5/trmztXDq6enF45OTmbSyRtzU7nAaMbbNDPm3w0xsuaIrDYg6RoQgxHCAnBCkUkNL2JwtVgeI7CUDLgu1HcXo54Rj1ev3dowDsUikWpAOajhCIEbmjhaAIRD4dj7i4Via3PlNt1hcIX4RdboSlOcN2mfzIBimYBiubyytrm+vLcNMDo5Ozich8gtT8z3nS7xTEHWGBcH30VZFSh4lZakMnzSysr/RWA3sXN2enJySl4zEzOgIKenehU0ha6fco8Jdi2AQiQLeTLDdxqbbWb7bGpdrPTbjUrIn5PdDwajKMFuMhYAguaPRyIjXgGBsK0YyssgUgcjgaCEdQwrbwMt1WykOfDkq6AuHbSAIcSGyNHh/1D4cn0R55IyokSWlZmFZ6KjUby2ZRTcKJQpvnJvVSqCGQsXUznQJ5m8xeJf4CR1YRkK3RMTaLVI+CcmNH4WDwI9VlzSkmDI62ErokJBq0wYJW4bUI4MlN4P250AcDFovuceKz8Ps0IowjdHAWATtaBt9lg/WHZdiwnkxO4RKLUAf3baDUuALiMAOzGKRXdDiy3FdidzUm9f+AmNG7EJC3FSIhy0YjF/MNxmhiOjEaUIe8QGwiSccAnMhDwwKpzkuUqaHa3bQHePUUwgSymchUgi0ghKt2pmSLPyMCkQVzxmAPCqtmyk2WyBsd5FY0yGl1YPkmF5SXVTOZLePIwv7S8vNEHEQ90TFBUEae3zWS6UG+2J8anpmZXNrf2DnZ3jk8f24SQphhbEFTdsHiCYbxRjNCTKIOhVU1UjFA2mby4lm5zWzabvrCCzn1owspm4R3JFFJRUwn5fBEixKoyHfYO+Ub8wJiSBctJCQpFBEKEbPFmhY8XUgKTTaCfeCzsox1S7ShU3MkVWkIwJFYtBpZKWNapDBcryMNBPQHsPFefaoQivlCMAGIvK6qZwt2LTMJMVrv1tJ7N8/5AKj7sF8UwFeBigfhwwAMC4tIIhgAD7F66PHAZDSkRcYeHh0dHPZ5R4D/4oWc4GIug5xXaTfr9cBej2yQe9qIfdBjz4nDB+gMYBOwNRrz+qM/jx+0qCuM5gUHTQEtZtH+Ox6lYyBcIRIa9I+FQJEa61pRE0BuAAuEFYpwvTRZnk7nze9eO/vLb717/+o+++MdOa2ZqfOfgv/37f/0vWxstzUwIRtlmBFHR7ELZUumEM5oqMGQqDSRbs+vlHNzeuZ19SkuUupUgJ1gmpTnSSSWuKvlKsWAVEIDtmaZdvrc0vmc97MavrzoLip6tt3rTc0jM5lematmFp+nG6vrPf/vw6sbjg9bkxNMnh+3rXz09Oti/CEFyz37x6PdCAQP+7h2Bor16ZWKh2Rl7kiuubt78ix9+8atvfvz9xyfnn3zz7aeff3G4srp7dame336xtdSaOzjd/81vf/zq83tnpwcb65srs9s3dsbnr1x7dOvs6tHJ6dWD5dmJ1VKju5gXxmaK+//oF5++/eazZ2/efgr698VzwF8A4PMHD+GHK4EfP3r25NHDR0/gj49XVnc2p6vd5d2ViYm1q9dv3oHPeQLY++Lpo4ePAYwf3jrY2tiYne51Or1ed3mtP16tji9OtmuNbm+s3Zxa2jq5ce36jdPbd67uXT0eL5zcnZg5e/Dy6YvPvnjz+rM3L56/fP748dPz84ef7Kz2x+rLu9VyJpX97j/5q/+6memWHVifBuCtUEyqpFcqYNmRBJXndEM1AXl4oMqxSMAXJuN8wuKxWZehDZUTAID9lMWIgB4xKakAnrJQVwm8Q9BYLa5wACTwsXfAK4oU7feQI8NRLjYyHGapSFLGUFggelGcOgcBjHfhiCcajkYuMumHvSECaEA4wqkpLUzbuiQyuCsZBYCiQQGTlhTlTLQslljMwmUYjhE4XS+2qhhkVC5nM3mUJBcnaal0JplOmqCAZYXDDiXFdgE4m06kEpZpWYYmyTIT4zXFSiSzGJ9TqZeBikNtSDrplG1Yqm6CkFZNEEXYhGU63VKlXYIK1G63aqVSpVZrututCMALOB63ubN/dAzE6Mbx6YJjSU6uUqtCxQU5JCg0QQGbx7gDhQaoo7B5PKSpnDcaCwywCnkAACAASURBVMJ6p6MeIKN0nCKA8KJOxC0CL6xyn2/4sn/EH4nRHlisgL1Qc2A5+/0B/AC3dDF3wfW8uuiBdk043F/wkClGscxPWo16uzc5PTu72O8vryxMTk/0JmcXFmb7W/2ZyV7dAo2PDp+qzIuKJGuaYacKlXrLdX6dX1xeXwXkXp5f2uwvzE5PT02MTU3MzM/OzIzjFrSlufGHOANjOEm0ZazVi6V6t9tsdiY63V63XctILgDHiADcNxQt0iLcCXBT0b7h0csfBQQbW/J98BKJaBhTPaR0vl6JxZVkLk0GZU1OptRk3smXZCkUDw75vB51MjwQMpVIWMpZDEkqzKhfNMxMISkndYO1tyaSBTyUyKfz7zXq+8jdYlqyVJlgUy4gZPOSY+A5Iq1mDKOYNVRSThm66IgaSEnA6Ivu3UzWzb1CyH0/Clx8/5wFHCp3T5lxGxppH0g5IUHxshL3RFULvdNyNJ+yqx1gJPVm7f0I8D8A8Psg4DQO5WRdYPp3o4CTlqY7oP0KXJAMe0LewHBoOBK7TOrewbhEEXDj+IOBET6Th9s1kXB0QZJEEVawmcUefyi2uVKzU8um882xosTrCh2HhcwzAp/ghdp4pUPJbbOQLgBy55qFas604N7UrGSu3J2cmZmZX15dX4R1osoyNunhWhf0VLnd6UzO9peXltd2zqCmnp49toK8pMM/TNMaLeoMxZNe1pETAqWoIMNMOkPFsgUrnXUJDSpePNBPffCHxrPgi67zbC4maxG/JxQNUJLERKE4jHrg5rKLluUIIgskP8YnJLmkhlNplnTgVVAAbj7SoLmGTcX0Yq6jEyGhkuTCRCzMG6yleFUpxlF2Olcud2cbgGkxmoRLwAOtTjh2Kufaq6QTfKmUNT4KmAoR1sTRMJNQidBoOOYPDV/yhrwjIyODH398eXDw0keXMKbhwg5rGKHZ9eYYHPCgKWUId5thYYawN9K1ngRdjCODGBUcxlPgoBuEFAYlP+L1syTay+K0Eax6kmTpaITGHDqfGyc8GiLiQdAiJKzwaBS/NBClsmbUc5lXdlcTL04e7P2nv/380//wl7/4Z836xHh7ef1//fv/979sLtUU22adih6H91JJFPOWzCWcwWSRj+mOogDFZwXLhvusOQmVM98uBRg+YUNB4q+3KFHO1XNZJ5/IOUl7bjw38Wxlekd/OE2cLJpzil5ot8Zn5vury/PrK+1S7vQw0+vv/+mXt65cvT/TbW5+dm+6/+bbG/sn++/3nw8Or8Bjb3/vCu4+IwLvHG4dHy8vzbZyDxet/u7Gb//su199880vfvNw/+rpu8+/+mxvfnt/d7lW3Xh+2C/OH2+f/fY3X3/66cHx2Vp/d2t26fhkdu7w5vmj21f3rhxdv36wPjfXL9bmdptyczV3/Juv33z78u3rz7588go3oFH/AgDfP39wDkL04cXj0dMXgIqPXj67ub68vd1vd2bW8Ehu9/T2J/eePH/y5MG9hy9ePX/46PnrN8/uXN0FFdwbn+y1FpdXlyaarfG5/mQh352oN3uTC7vHp9duXb958xToxnalcfd6b/P89ZOnn3756dvP3rx6+eoF4P+T+3fvHq6tThUndicquULq0b/4q38xk8zmE8CQDZGOCQVHJX1yycRBQ8mQZNPU7IQui2wclmrQH6EpzjQFhiYjZFw3QGoQ0QDjQPWMBEPoTYlm/3gwHCWCkWBwNCTyNBmN+kMjA6OgXjm/Jz4ySvCE/7JPYv0goVURcAE7vLBxOhLxwQ0+BHdslKOiAS/cc3EG+6siQN3kqOjIIs/AXwIAEwDANs8YQoSzcDNMocNRNIwSeEkw1EK7WixVqyVYSsUS1MaMu6CdBLphKSooAp3HcD7ZhD+zEim02TBcb2fAQ4rgddUwcQ4Yx5AqGQdP4kAEpx08KcepaNXUoabBw8h0srV2sdtutrpj7Tp2tl54GzVavam5xf7yxuraztHJyfG12zduL9q2Wag2qoDTVSkcFQWSEgxNwQ5uGUQdUF6MNE4KAZIPk0rMR4ZHWIGLExQoY4z5xURgwgur2xv0D/j9/gjDo4MOPAgKd6ADvgBGi4YxD4mIX3RAY/wgS+MveIzM4puD4Mz8pOY2/TTHlhcnW62p/vrUxMT03NzM5ML6zNhYp2qhb697ygfiiJc0TdGhCjdw8nwKhPLq2vrKyvrKQn9rd3NlfgrjHMYAw8cnx6o5xzJAM8uiqIPgN9GQLI9H6eUaUJR6dwxTh3uNlMjgeX485o9EQIXxDMtIAk3FBP8oCIqgomtCzO/xhwlsTgn7R4iEliyzjJU32DinoQFoOpfPlYAoMmx8xBP0eCrZKKUpvohWchiSUtkw3MxGrZDWDSNhG5uHyUyuAMCTvfDQyH8wj8zkbUVTyBgSMfTsMuAe4OFyyzoIoXzC4HjHARWnC04W9WfyAwC7LdAfzn8/xAC788EfJoHxMBitoHO6aJJwIYnRuGEaVgpAhUuZ1Xa11sIUQteI0u2/cgG45JpR5vO4Z+PaQLv4i3kRbguWBZzPARxLs4HI6MDQIBMd+mg0Eo/Q4ghnkSG/LxYYDnu0Qi6tkHFOteGLE5adAojLV+vVXEKnpUSpXisVitWCCTxSiMfDUIJ1Gf6D23g6I/by9VZeExi7nSsk1IQgqYaTKVbhbZ+ZWVjd2HABGPdGNMwjxKikXLlYrE0uLi8tzve31nf2T44f6D6WAqWrqpwYZw2do0XCq1sJiaMVCQOJuWTYyuKKugBgzD66aL1KvZ8DdrfcgTUXaM6IB0bCUS8BNYYM43iAyAtW0dI1kROAbcRpW+OzdiCRo+MaAnAU7bEFkSpnaEqtJ+tOzEelkzzaCFEa8KswxSaTUd7MVmq9+eZwnGI5ioor8O0lAf3z2VSu2qrmZL1azdoDJJ0wSIEc9BBKyYjTI4Ca3tEwgQg8dPnjy/D/x5c+HsRN6IGLfCTPMA4IX/4Yp9mx1xmIccg9HXJtn/E0OBIJoDdWwB/E7WXE4mgsCv+P+pEMsbSrcElsvIYPgJ2SOFCMtrxQ8jC1NeJmA+MYcSgUY9K2HI9QsZUt4eX2k5v/+S9f//jn737/T3u5yemx+Sv/y7/5V190pyomUNBk1aQEkBeJomOwrG6OOiWFlg1ZRCd+mhX5jMGbhYyYaRQCDGfpjCgzpw1SNKszBSeRNLOKYk3UzYmnq9MHwuM56mhamtbtyhhQr7mltZX5zfl2sfVsvDy/cv9Pnh5s3z1qN3p33u51brz79Pjg2sHxoev6vL9/5cruLs4AA/66ALx9tHt0ZXmlmz04dXpn02///Idf/sHX3373i2s7y8++/fqrs+mVg4Pldmft5dZmZ3r3+PaPf/jD20927mytgGyeunq2Uls7u3t+Y//w9Pjo6tW9tYWZ5XZ1/GA2PVnKPfjjz7786t1nP3v79O27Zy4AP3/65AmeAaMEhgeC8P2HIIOfPHv2yYs3n2yv7Rys9RozW1tLM3Mbx7fvw+c9fPb6xaPzh89ePXvy7OWL81sH+5vz42MTU9Nz/ZUlIBm9fr9drLUb3fHe+NLO0bWbt65du3F2uH91Mb3yeGvp9uMnz169+/yzt6/xDPrFs8ePHnxy79rO5mypvr1SLzcL6//xX/9NT7dA3VmWDuuDzzsK6VcqoIBBbWoCZzrwF7IssejJEgqEWZYzbYmhQLqQtq2CAiaCLACwQITDXAKegiRwlC0aJgAnQ6M+XhRYNKcZHhiROZoNeGIeWEuEfyCo0l7Q0vAMLOZtxdHpNBIe9cLtSZBinI+HPSNolxrjhag3rKpwoykOgAEDvC9IuAoYAFjl4F/VAFUVOhSFfxcBmDeAmdUualoFQDSXA0abAUVg4MAP3HW6qqmiKPKcYidx7x3Wvm27x+AmaGA6LhiKadoZnE+q1CvpBEofLIYpC5YpXA1R1hTD0DX49FyjUqtXxzotDNur1THtrAJf1Kq1MbNgbmGlv7K1f3h09eDazXt9K4WHxK5OFiKkxMQYCfd58aTVUllM3I7SihkPaQIhcLFI2BcQJC5GUPEIjgdSNB2PEH4XgANDo0F/mOV43KaFpQkAHAn7QTEGUQpjOzkOVzO4IeC2YPEXLVjoIIuGlBQq4Fo5nyu31zZ3dtaX+33MU5hfnJ+ZXxlvtNtlw1DQsxNb1eDrBVXVoQpX4G8AZOf6q6vLa/3l1f7c4vra6tJMrzs2Pt6bnBrrTY63S47p0hRZkE1dsZxMpVaA4l8HwC8Vqt1uB8/HuwU06gcAJv1RgoErLsnwrVLxYIQZ/ekwIaVllY9hXBtQsjgPGthPGzQatyT1CJ/U7YJTbFRy5VIqWXIMxjMaGBwkehnVyHriqbrFSDztD8khzurmFLT4LTo7504iV8pfBCng+WzxvXTNVouiCZALTCHlzvnowPKidFzhgT7kM6ZI6WnFUU3ayadSmZRrCo3B8QjAgJbF3HtP6IsQwaw7UZ6/kMfwfyaZTmQFyRJMUSFGKWBsIPuyETapN7r1RqfRwParfw+A348BuwkhOBn73gD6g/4F4pfUIoRqeQajId/IT8ksy8e9QkgpjUZ19GsXOWAjhXaajdF2JmFndCCNdrpYbtYquIHRbac5WsOTlUopYynIl8M0Tekyb+btXGV8ut7J6XycDhH2GNyt8BmCpDnZYnlyZm52rr8BGsGyHUPBrgBAYawPqXytOTbXnFxYXl+eX5hc3jk6PDdDlEIoGu2AUhYlWyIobYjMC5YY4wEG0HhKj1v1lJ1L5lxLDnypcFHTvwtjgF+zaVhxZYG22NBoFMqNIIlk0Dvk9QicYBQdU1MELRgLkGRCB0QNORUeeIkikIhysI7IfJGhlVaqVeQDVConUbBC4popOayY0oMabeRrNVDAAY6M4gmwickq6XwxW6xUa8Ch9U62mldpUuUESQhfHglH8tyoNMhFsSZFAyOjnhE8BL70MUjgIZ93aHjIPQT2+IYGhkaGB4dGh0eAHYTJWAQbRiOhWAjbsNCBAyhPhAjFMHsBXevISBBKaISA3yqYBEIj1Y7HmBjFxkh4F6mQN8yiz4yfDISCtNcbJJkYQZPuCH0oyNs5IdutnS5J7/bu3v/DrW/+8s/e/tlvJsvT9crG1bNrB3NT0400ps2isbUii8mSZVCcoocSGZlTZeDiYUKUWHiraEocT8vJeiHAsprCqAazX4gqZn05D6RUz4hifr5hzL+ZyN/QH3W4s1lxCtZhfWzKBeCFfrdTnPksVV3bfPfLe+ubT+a79Z3nj2dXnz69f7h/cnC8t4+RC/sAvKiAcfMZfgFAvrp/Y2dpvZcrPO5U+5uHf/rj9z/+8Kvv/uDTLz558MvPvzma3jzdXuqUtl5sHXRmT65c++Pffvby+srW+ta12cnjTzZn+lev379//eTs9PD47PjK2tL8XCM/d33CGV9OXf/DL7998/mbnz3/9MuXb9+C+Hz67Nmzpw/v371zD6D3PjwAiB89P7/3+Mn5+ZNnDx69eny0sry/MtaYXN/ZXFrYvH779PrjV08fPXoMX/vkuYvgLx5d21xYWJxqTS0s95fme7XqxMrKWKEMkNzrTK3sIfpev3N65fDssFu6fnd2//aj509ffvH5i1dvXj9/+vzp+d0n9x/c2ttZbFa3dirFRq78T/76b/JGoZRNmIYqsIxQRABWy2g1IYECjhkAO7KkCaCp4ji2BorKSEgUR4YZIWUJEs6icjYtSjRJirAUXK0VC0XDMX/UHxgmVMA8vOdGhz0SGWfC3pjPH8MtaFKKBjIGKwsALLEInlvCzRr0eiLBkSEPHYGqHBr1e4hwTFIiPkrSUhohmKwosoEgqKIYDtmYHG1KoIs1SVAUKhQFIktj4p6hl1qNarXsBh8Ui5lMoYDry1RFTgX2nDIVVZbh9fEqZs3gmROGvDmmqqi2oXIUvG7HdjDgBipVJQUVx0m6e40pNIm2ALxlRcOnMM1sqVMrtrro8lTDbt9yFdRFuTVRH5sGQTg9P9/f2Nne2js7Oty7sQrlHct1uVopsmFKoqI4/iCIsiwwBhMO4xCVYTLhmOqPSFGSD/koUebjMRoBOAaalhf4mN/rHfX4RkcGQB/GSUWmYVX7g64QRsXoj8LKjISDnCt2Uf0iADNotIy5DKw7lATX+ifTnVqjO1YvVKdW0VZyfm1+cnapvwBFdrIx0yqqCs48o/olaZ7lVV3DTpxqs4sphjNzSyvLa+vra4tLO/3Fxf7C1NR8b2xisjcx0W5kLcMyJFYEUmSaqo7qC6RzowOIX63UGrWxbrvZHcsKaBqOdD8e8oUYuAoCj30GZDzqG4lYWUOT414/EQvCiw/hgFqYB7qnKLzm2FaumC3UCkl3DkxPZxQMYwx7nWbVcAxZMjNWqihHA1FKKmYjVBreRSO5eqKkEdFK+femVaWLZqd8tlxRgUtFYwUjkU7qVlG0bFWMUWENGFkyb6uU6NhAtWShnEokUnYCynQ660ZoYUt1vnwxs3sxkJR3ncVdde3OIAGQJtIZ4LEgvKzAqAS0zsoUnJCcTjXf5xDiTziFhMLXbcv+3SEwKMD3iYTYoW9lknbK1m0rZTNSaHgkQvgC0vBQTNUH6RiZT1mRQb9IeSIDuk7S2bZBsIlsvWbiznq+Um82a013i6Y1MT1RFCm73WrmyoamiWESFGFMMlKVTqOQr41NNdtVK9lo1XpjwNAsgZdFFW7++szExOzc7OL65rKe0OEF8Y7FixwtqxiGVxxbnp2eXtzY3lien97ePblLjypEjOflRJKVRMUx6TjDDfMZWWdZWaQYXRcSPGsD+Gbhv0w2lXf9rvF6AdfI5HOpBNINoB3pBKmREa/PF/ECXPDh6LA3EIEFU0pqMtLpaDDK8hbv5ONU0yH4jCVibIzfT9mxZI2lxWauUeOC4WxZCkYj0YisE7morBUERUhk4UUtlf0kE6cA2nXdxLjlXLlSK9Y69XYy2U7XirAoE7k8QQ970RkyrgSICKhd34h3yEXZ4cu/99HvXb70e4M+EMGDuBM9Cn8+MDCMZ8Gej71eDEXC6N+A52LPGTjlRQYSEGd/0O2DDvjQkQz3M1gp7prRECRDRdB2A35i4RmiUGK9MZxOikdD0YifokNUOB4K4ehSKOCNhmbur1+d0t9uPnj1zt/5iz/6R3/4T8crM5XZs73v//f/859356qwDmWrbNIcCIdkyjY50PujKU2QWZmOCazk8BElUZTiTrFLm90UwcQsFXSKulcRZL2ygTRXd0yz2U6mmoelzJ3k/Tn2bF6esoR8tz0xs7C0MbG6OF7JXbuVbi/v//Dp2fyD41699cmrw4njz19fPbx2cLDnjh+BCHb1L/Y/7+7Cj72rh1cP11YX64WTzfTc1vLP/+S773//x198993Pv/n23c9//snO+vGVxanyyuvD7c7stSs3fvPrL+7sHx9ubm9P7V27sji/d/74/s2z09PTk7ODveONxZVetzR71k4tbs09/tV3b9/97PO37969ffP2zasL+H3y+MGD87t37z84v3fvHmLw/bv3sCf64cO7jx/df/rm7kZ/dWdrqjF3sj8ztbZzdOP6i1cvHz949PgxfPEzwN8XX7y6c7i1vrzQ7M0tr60uTFVrE/2ZWqnd605PNad3dk6u37h2/ebp3sGNtebY+Y3W1tmD549+9umbd6/gq58/Bsi/e+f8bHOzU5vemyp2cplf/e1/0XTSNRubfHkqymRtAGCpkLVMQxJlkU+mdcPWBYA7Oh6NREAbUHZG41j0b7HlJFT2mIdLEbJKCpKaUVR0aMeBU0xQ8Ht9IezfigBZHx30SSwDCs4/GIjx4SFPXAyHNaDR8AksGYjEKArwN+B3s2DDIs0xYU8oMhoKRDmRJuKY5kGwgFUc6fUHRwORKBXnFZpOMnHJsnVRl0lMDyFphuZ4yyh3AHlLlUqhUCk6dqZYSKuCqsmqreMMEfocy0A1Od3BDmi3Ac0w3O5mIPccI5sq1NoCAHil3qknzWQmWSlnTBVUHWM6KrBlWcFWaiNlW/lSudGsNxvlRs4erzU77Vyy2m40W+MTnc7U3Mzqysr61u7uzvHR4cmGk8mlK1hka3k6TgtsnNEYuCiaxOkSESGjYUY1lQjJ8kEZSikxzHIaXMYYMuI4EaM5QbWioeHBkRFPaHg04PdEeFEFZh+MxOLhEOYxBKI4Y4T5j/T7g18SNTB8KLjGvbCoGYQ5iv5JvdbojPea5TQOEixtXVldRovn5eWlzfn6eKuI286GDpdJRJtvRoJLl8PL0cS5P7SOXl5dWV1dWNxaX1mYmZme6E5OTE1PTE2NtYq4ZSLQgigpJvYPoB1WvtoAWYFpDO1ur9WEq5SUGCLG8iSeg0XiwBEMtEyL+UPRQChGqwlToiJuAjU2i+KAcyzspRI6pyR0PZNPJOspTGjO5PIpWUpooREQSXStltISMc3g/QFnzADxncgZw4FkNlNUcnev2XoKBGrRNV4q4Myu24dVzJWKjmppVAwYGGrcrKHYBge0QDYs084mVJG2HdlSFTqfTgCcJq1ECiAii0fJ2FFdRhsX+PHemvJ3Ts7uQS4CcCYDACHZiuodlXW4jOm8gXK71cAo4Fr1Ig3pfRKDu5198ZV4MgrUMHNhPek4WeCBSYDxlBNhtZgVZGIDATo47DdNLxFm8yktRo0QaoBN0jGorDkpaLTK2aRecpv5a/VGGwjSeLfTzdXGZ8aLCm1m85Wkbkg0HSBlyTBAgJcbY+O9Xmes151dmlxY7OazuaTBw3pJAt+Znp5Fc9W1xXkjnbAEQdNVhiA5WlQtTAIrTc8srF/Z392YARlw/TH3UVDi4pLIGQ6vpTVVJ0k+GIavUdANlVF0RZDDRiHj5GBtZTLJnOu4+cF584MjFp4BO6TORUZ9gaCPlzg+Ehgc9oRERSzmTHRqo8LeECVavJ6iyGoyCneIwMVjhM8bN2JOjYtzVWA0bDiezCfw3DSqWmJe5M2kZSrJXLnamy74CSpOciCeVcMBYlUGelyqdxtj+UxuvE1EfZyHzrJEcIDArk0Bvo/hkY8GRiOejy9fvjw4PPB7l396+fLvDXiGhgY+dvegB4eHB3EWeGjIM+AZCXhd30hYnJh1HnX3oN0gYBwbxI9cXMbgwVFvEKgxG6YZPAEGuYO9iQxDBwgq5veEKHewH/s9Aj4iRpAhTHwIuaOhAb95uL3Xy79Z/uTTT7qdyvEf/vqf9XPtSv/23f/x7//138ytNG1TFhMVm2ahXMCNZHNxWQ5bUP8IFopBMMyShBjLlJLZdI4y9DiTBj1DK3ZiOSWYer1ba0itpOUkGxOpVH3esR8V7s+zp8vKhCaXxsYm5xdX1mfWFtu54ou+M7V18t3T/d3Hq+P1pccvV+bvffFwbw/k79GHM99deOA58AEA8CEeBd9c7++2mmP3K+3Vtbt/8tsfv//h+2+/+/6bT7//8usHi1uHuxsriZV32we9uZMrd377w6c3ru5t7F2Zmr1xtja5fufpoxvXMOLh5OTq3rXlubVer7B0s1Jc25h+9uV3X332+Wdv3l4YMb98io8njx99AGAQwfh4eA4g/ODRk2d3Hz19/Pj50wdX1ndO96daE5uHyxMbRwen1+8/e/bk8ePHTwB/nz1/8eruqy/ffLK/ub41VpkA8bEx1Sj3lvvtdH16oj0+PrVxeHbj+o1bN473rp30yls3l+Zv33v44vmXrz69GIN6+vDRvXvn17Y3J4udq+ulcsl88d/8Z61EJpdMmHA/s5RYTGqUT8ymTV2XJVgvCViltsphrjuB7I2hmERG50gqzMmpVEJiKNLPJDldp3lJSYoKOjRhGEM4GiOCo4NhWQSaSkQCnqGAwjDRKNzBYRB3gz5GCgZVEJMqGjHGsJkIvWF8/kBgdDQioJ20zx/yBQOEIBDBEKekNRoQBJ4NzdGjEYImRY3lLJKQEklLU0XMkYNKLvCiYFm1VgkPcEu5fLmUTWUL+RRgAXAKy530dRWzyNKcYrrby7Z10YGlKLAMTTHO6CbuNBbQYKBRTjo5UHXIUCwd7kqVJAQ8CNbQocEy8pUqwO1YJ1ur18ZAblcL2Vqz1phs1zvT87PTy/3lte0r+/tAAK+uJ1KZfBWKbLldAyEK+gH0Py1oEsWqVAyNrbGzNMwo0biAw/ZxStFoREtAYcRhhpMNlhgeHPV4A6Mj/qAvyAiGLsYwHTkSIYhwIISW2pgZyeAONO16ULo7z9T7TizcfwZMpmM/qbZ60zNT42ONbq/Tme6vbWxtb6wsr64vX1lpdJsVQQHyxfEXW9AUjQCcLeGBZaszMddfXlpYWQEQXljcWFtbmgKiMTY5PgkKeLJTzSWAEGG4E5RmBGA8vcxXsEEN3cKqvW690+u1Hfj2MDgiGg36QwTFSTRQCaAgtBHxM7qdMLgYZm0EQx6/GzIR9fnUnMwrJK+kCrg56WYCYjeyLbACFx4ZivmdTklzUsV0UhgMwHtWaxSyim8kkS82ZP3oXtdEbync1nBV6sWwT7GEwYEyMLgYjyl5wJCyINs4noyIqpOwsxndiKopxZY02s46OTOXwr69NNpPuj1XueJFGtL76d3876DXtagEHZvIZugkK1iy6A0YtgZwleLptJ5pN2u401n98PgAwBcxDPk86kBsPPjQfJW3LbhPQfILhhgYJICrXvIPDw8MxcV4+PIIzUfScX8wIIUVuIGDlMVS2U4+lXbwJVawR7CFThpzGFvVAbaeV0k9V84rsLAFuPgifGcpYKmwUjBFZLw3Pjk32wZFntR4WdGTANZjU3Nzs9jVsGgAFVANFbNK5aSKJzWFUqWaL1Ta08sb28tzS2dXrwtAojmB4WUpo1hZVbVFLkaHooZtCALufQiKqMkxlL0AwECBs6kL5L2YBUb3TTcqCd7lDKmp0WHA3yAHbzTh9Xh8AMBCqmgpCgAwAFgcwr0eHQAAIABJREFUAFhJC7FCnopbhsBAJfF743LMrCkEXazmqlIkrhUSVNgXCIi6mJRpVnMsYELVWmey5I+QODLPaOj1ks6W6sAVm51Gz3KKjTExzPL+kJlnw14PVAcuNOSPDHkGPx6JBz6+PDAw4h2+NHDp8sDHl10brAFswxoe9aBb7MDI0OjwKCxVDFsIBEIIvkg2QxfnwDiKhMh74RcdBu0w6qUYiiMjLDrp4/EvWk/GIjHcFvSH8IgOxyIAc/3AWBkyGo0HY37QyLBIiNDS8bVp9WcbD7+5MXmj3Nn/7C/XxXRt5ez2//P3f/ffLa+1nIQmmWWLZgRVTuQzBk0qoiefFpkYxzAxvxeenh5K9mqOYKt8JChVLCijiioYwWhKbzXTBX7MtFOZykI2P35/0rqfvjEvnKypkyCPu2O9hfnV5bnluWa6/bN8bnHv3i9urd14MN5pXXt7r7f19s3plX2Qukd45rt3ZXdn/+IDF4CP9q/snRyurcx0smd7ztzuym/+9Mdffffd999+++1XP//y6/OtlfXj/lJ+5eHZbq97dHr/V78639q+une4PL69t7mxff35s0+unZwcXz2Cx+n1+fnF7kRt4bRZWdhaevyrb7/4/MsvPnsH6vfli5cvX7zHXxeA79w/P3/fgfXoyWNsiUYR/PjJo/PHrx/ePrpyeNSvj68d7c7N7Z6d3H74FCH4GU4jPX324uWzZ68/f3tnd319vj3W31jpTzUb0yuz9WK71Zoca8+u7Z2cXbt589rx8b2NRv3q7Zn9m/fePXrzORCBV8+fPXvx6BFg/40rW4uV2t5BM1e1d/+rv2rbxWwG7TYAEpRKWqd9UhYgRwcFLNF2yjABgLFTChEyBJXcgmUZ4iK8bKUVqJp8NKqwhk6ygpIUVBFjdygqTqBpom80oojod0z4RwaDMomepyFPmGIDg0FeDvgUTZB0FU2L0FACqaAfhN2IN8bTBEbRY+9fXJGIQIiR0xojgLxmacD2YDQaY2hZ53ibjiuwii1TZdDyjUblJdhOuw2KC6QFnuJWSlDTUm6Mqm24KQq6jM2hgC+SnsA5STQITGAWoaHKuiUBAOO4UrLQbhaxCStdyCVSbttrKpFyNI5iAY4sQ2ZgpVjlJsiLzkQt1Wy2W1CQqwja9Vav2ZqeBWm5urq2tXd0jD0IJ5tQV4o1KLPFZgXxkQJNK9CaxVCyEMbkT81WYlSUVz08FQVhK8U0EVYjA8sNXhtaa4i6RI0Mjnq9Ae+wD2pwnAcKwIUDEWT30RAAMC5o9AyNuvyZwUlPQeLQ/pnBnCgeO6NBFMd+0u5NTU9NTk4tLC1Oj8Ojv76zu7Ozvb68s9oZa9ZArCGPwidgWJIFvW9ny6jWWu3eTH9lGV7Y0mJ/cWm9D6tvaho0cG8cxVOrkLJM4HKAvxLu55uYKgWqolrFUIZ6tVivVXtT4+0kxQl4+haLIQCTnMpqiiSRUVEJ+QUnnVAw6jgQhR9uuEw4GhmOqYxSzKt2qZjKF61apZDB91NOWmSUp/3oB9VoJA0rYaatOJ6S5gqWzEe9SipfUqjkwWIqh/iKW70IkuWSe1BbKGbyFXQtjkcTttvjnNONpMTRUVZykmY6l7BjbBIkhKmI+TT8QQooGypgdxi4ULwAXiAC7+MIc9mLPej3dtC5DMhqOktLpsR5Ik7atkHDUkJeLXUQgJvvAbhS+d0W9Puvwy7o7AUAOxcTSHYqqepJR4nZAkUQQtA7GPL4gqMDfjqGHhBBQ/QAPES0rELj0Z5WKKfz5VzGxd/O2HirOz49v7Q4t7A0NzE13c6Ksp2tyrIQEzCg00DfmUy+lEva2ebcfKsMgrlTq5USMi/Dv5rJlesTczP4BP15xZQVUeV5I2Gni+lMGV5Da2ys1e60293xqSurs2cnt4xAcCgsMQysp2QCYBduhQDDDNMZS8WWa4pRVDMXpoqAttlkJu2i8Ic+aOx0S2VS7jQSLBhatuOj2CxM41B6wAfsk1MEo2jJuD0DFSPCqpKSl8OJshCzkiJPxYiAnxBIuZwk2XQ117XDEa6e4gi4OnJCSGkmAc8vSnq50Z2shAkKT2t4XTcTSVjldbhJW53GpFG0tUnxp3w0HhGzXCjACB4qqYYGYwMj/oGh0Cjg72XXFfbSpcuXPx4YxhhztMIaGfWMYhs0SOGR0cEhjzeMG3tBTPkKhdzGZxS+YdSvrgSOXvxFKOJhBZaJ8ngsgw2UaB1LBkNxNur1Ak4SAMAE4nc8BKSDjQM0ozlAmAhEAuHB1ObtZfkXi4++2Q5fe3Wy/uo/umaU5vZu3P5Xf/f//cu1tabjaKKSNzAoXUsWklKM1oUBOynFvYEoS1FEIEoGhxLZUoLNGFEGuREGQLBCnMhu2+mJfFKs6XAf5vrp8srrReVe+U5fvL4uTytWqTM2tjC3Nr+w2Gum158a3aX9118erN097pRnn73e6t346t7uVYDM3b0r7mNn+/300d4+YPABCJNrKzvLlerkeam5tfngz3/84cdffP/jLwB+v/r+fG9p83Z/srTw4n5/bvx4+/SPf31lZedo+2h+8dbBfH//7oun1/ZPL+aLj45uLU7PTrVqczeLpbXN3ps/+PbLz774/N27L9++ff3i+YuLFuh/B4Dvf5DAaIf16Pze3afn9x49eXD+8OXLu7vbJ8cb483Va5tTS9snp9c/eYibz8/dx7NXz58+e/3p6ydnh7vrC5MzKysrs81qb3G1nqn0gOO2p1cPTs5u3Lxxc//a9ZXc7JOtsb3bL5/d//lbjASGx6OH5+fntw6213rVxf2ZUi3f/ud/XbcKhUzaARlARaRySqcDSuECgBUZ5C7O/blZrVF0VGNpxAkRRAfvFGCBKnZGpuA9A7bJq2lZwnNGhopHgIb6gp5LYUViSIIkfCPDIRlInC+AR35sYDjES34fKD6o9AAJOIGDbX2YKjc8HKR4IIBxuEN9Xh8AcCwck/SUFBcBNQUW+KM/EouzrKwxrE3HlIRj6ZbOgComGAqglTPsTrfRbNfriMHwUzFfSOO6TiVUQRBlVZNFJOIcOiwm8IAtkcD5YPgNOvyIIIw13cGTy3K6UG8U0tl8tlwCDE9YFoC1BUpe4Ew5EGCBidc7dRAYvXJ5ulqpNmuVOtSjWrPbafVmZ3qTy+tr6xcAfPXq6RZ2llQAxir1IqwwgmBFiZYtiVZ0EqguyeomF6IZkfXzIGPDBM+oOPx1cXUAfxGAFcoDi90T9A35qag/KsimJcfRCwsH/3GiEY8JYFET8GXY9SzQtCiD1mfQhUPgQe6ILhz/pAU6tNftdueX+osgjKYr7Ym51Z2t/urGyuREvaqxnICG2djBxZK8YWl2rtJoNpugjmaW1tbh0V9c7vfhl4X5WUDfqYnJibHxiU45kzANRWChPBqOoWJraQHxF7C3WOu0auVqbazXbiQVHuqBSIUioQhUQFaAS6AkGU9wYDhuOZbC4w6IL4hjlMApcEDcezmeoYheJ5spplOFUiGNetBQApSekIi4GPooMGJ0CjJnOlKATCp6pl5xFE0PUpoB93E02UjmEumC20DltreXLg5tS6lSKS0bBhdVMokitmE5imVRTCRGWwnQd1lDII2chibR+ZyRTKTgBaXRujiTcZG2VHRjB/Mfto4vToA/ACkOPtlcipYNKT4cxVHzZKpAq0WjgQrYTY9+b4T1AYBdSHdtsN53JLlDSHCTOilbgaJJqzQFOtdkRy8PhyL00OBHQYYlhgcibGRkCGgtm5AjFOX1K6UamlFXQJ3WGoC+gLoz84vz073FjY311cliRWONiiQocZYX7bSpmaahm8lMJp9Jl8cn282Z2bFqKWuDAlZNBODaxMLc3PLaysqSlbY0uJfgleTSCUzaKGRLze74bH95YWqsO7O+ffP0lhWgiGGfyGEvW0q3gHbYFMGH/WpS5yheAOorwpr1prOFdM61CUm5hl+46ZxG/Yty+GL+ucJzCTYAXNwXleBGjo4MDnspVTbKCU1TZTYaGg2SoixktbBQVqJSUkfr24A3JHBsJkfRSiFZd8JhqpYS4n4izJucaSZilp0QWSFX74yX4nGKQ7RTFB1EXqFSzpcrzXZzVrYucdPejzg6HDegVIRFapDIWkIsMODxD/iCPx0YGPj446HBjy/99Pc+vnzpEjZh4ePyEMYDu+lIg6Mjg4Oe0QBK3KAf1iRyYwLtKFFrwI2N7ZOBiOtR6RuNBmGdsqRE0zgJzPIk+iJEY/FAyJ2uJIENx3FvKxpkQt44QUWjJKBvKBSjI9FgvHe3O/vdxtlvl+n2bLF5+hf3qamt/TuP/u+//7v/eXu9YQOPUvImI2i2mS4mFVowWCoeZMXBS2SclhhfMDLsSdCZtFSVg0aGBVD3BglODoYS8wWpNZVj8umUqef6ieLmsyn+rHS2INxfEyY1rdibmFhcXJ9bXmiX0udbxszqyZfnq1fvLrWLB5/e760/+/Lq7rWjrSPQvnj4Cwr4wxa0O4y0d3i8t7Y5VS48XEwvX9n7J7/+4fd/+d0Pv/zm519//fXDO/2FG9uT5aUnN3dXO/unZ7/5bOH4/sby0dTqJ7sLvZsvX1w7PD1xDabRZGtzfG6q2plfbVb7O9Nvvv/+8y9/9sW7N2/eIgC/ePnehOPJYzwDvnPn3v375+cXfdB376MYBuS9f+/8yTOE4KcPT7d2TnfnqlOnR3PTi2tXTm8/eP76+ZMnz16/ef3i4QsA0uev3715cLa3vjAz01+a69UbUytzlWKjOTnbHsM4hxu3bt082rx23M4f3BpfOjl7/PD1u3dvgAhgF/T5+b1bxztbM9WJg7VqrZr87m9rFhQmnN4U4kF3C9qvFFOGpkuyprKJLOCOwksMBmhFAkDRKNXSFF4s1MpJ2aTNTJaPi7yqxOD9zWkcOi9h1C68wcGo/+OgLGOva8Tv8xEaxdB+bBni+dBoiOEDQU1RJBWIMgtfgJYAAU8w6Bv1hGk+SjKxQDg05PEQEh8O0VAFeAIWmizzQX84CPqYZhWN5kwgqKamyKqMeWM0FH5VZjSj2ak3mgCETTQ6KOezOVjTgJ4mNhy7wCIJyBQkM2Ff5Mzg+Zpu2xp274KsVJxUrlTMpVLleg0nV7LlHPy9YaMhtCWSlMzZoi+kJKxcC/6ldmes0wYArnRbgMK1Kqb2dTvjs/OzU7gFvbN/dPXg6jEo4JSTLJaa7UarwnIU9l6KrCmTos6hLb4oKwKBjnthnPHyk0JMlzChnsRUBRxDAgBWZNo3ODTijXiHgjzpj/KCZmksUGMMWAn4Q1ECj5rgk9GnBE04QMAKAsPK7zeg0YiDxS23nzQ7vcmJcSiYc/NzMzNzC81GKddc3FhdX1uenqiWcfpIAhDF0Fc2zhmWnsxX6o1WZ3JiYnphdXNrfXNlCejfxvbCxMwCIPDUxNTU+ORUt5K5UMCSKJlJQ7HgJadzxYobFtUea0Kpbo+1Go0U5w5HxYL4AkGASEBIooyu856QYCdMiWSi4XjU78dmlQCGp3oiRKJFX2bKGdApJcAGwMJ8IWXTYUI1eYqLD8Intqpm2sk6nkFBY+xcSmVZIRY1HVrPMH4zmQPwS15E+hZ+ZyBZzFZAIWumEKPTiQLU/mROt9ICD5RHBwBOFXQjJhQ0W01TuAMNAJzKpDO5VM4N0XP9r7JZgOELD+gP+tVNInTDBTI5VbFZzVBjw/GEaSdyuSKjZ+xGq4nTaugE7eYRln93BuzGLGUzhWzKzQvKXACwnUlampky4J4hB33DAZHzDg16h2KjIx/5KYnwDvmJnw6O/JRQGN6IXfZFPHypXs6n8tVyFWfiQP7OYoRGf35ueRVuyPXJpUyES1JhisC+RJXjWSPjyCwv58v5RHZsqjM9060U0pbJK7qFJyeNyfn5hZWN9c1lI6ECAKuZlJNz9Ey+Uivmiq2JUmt6cWlpZW1mZuX41olICaRnKAQ3myRnUqKRllQrEpf9QcdRYQVCEYF7P6MF8im4lNkLAHYPfTPwtKlMNu2k3xtDl1XKEnEX1usT4S6OBUa8vpiqqkU3MJMM+UbCtGTzToKmik6MAi7Ok1HfsIfiI0oG8C6lpxIxgkw5MumL+GIyJyRlHjfdZbXY7IzlMLEEs8JQAcPrrGCuWbtZn2V9A2yJInA2Dq4PJQIuxtm4IA76w94BOv7TUZ9nCAeOfvrxRx9dvvSR2/qMbViYjTSIxliDl0cGcR/aG8Qu6ABuTSGZDKOHZCQU8ocvIrzRqTIaCXgCpMZTooBAS+P5lECFceMZCuXF6S8DgIz7WqEwFfWF4yxI1CDhDQVYLhyMeq0r+uF3LyZ/PZ5KGVZu/rcvioubq3de/G//9u/+p83Vhu0YMih6DvSG6eTTUAXVGEOGWTkwSMdpkQ5GiFF/TkhKRDHhVy05GAGlFOIUTq4udAqpmk6X01lTry45+dWXs9Z+ZmdafrQqdnW+PDUxMbvcn+nPtBKld01nZvfOZ7sY2VvrPni93/3ks+d7h2dXNvYO9nd2di4QeMcFYOyB3t/bP7y6urHYTe/dTk7uLH/+T3/87le//P6Hb3/29XffvDxb2r66vVidfnJ7fW5y9+btn784uHZ1+XCre3ZnbvbK7duP7h0dnh7vg/4FDXxwZWZ1rNFYPKqnVlYnv/qDL3/2M8Dfd599+srdgn4FAPwSAfjJkwcP7iMA3zv/IIHP79+7f/7g0fmjh/fuPXr6+Pz80bNHN3ZXj/bn6tP7ByuduZ3T6zfvg/IF2H394umrF0+fvfn05ePXn7+6sb+3Njk5vbA0WW/0Vpfq2eZYe6I9sbR9eHb9xrVbGwdnm8X2J6dzVzY++fL+u8/evnz56gVacJ3fuX3tyu5srXd1t1qpm+f//VgCDfNsUweUlUpJNe6TC1nbNGRREhg7nbANWVB4NNcIewmeo3VQgobaatWSSk5Kp/WwlyQ1DbSVmtV5wDWM6WEYwucnIl6/rOCOdNgXDMUUiiG9AY/HK7BAUSkmEDFkBdAQ6DRoPHSiDCI++/wRig+TTMQXCg4EAqTMBUOspDt8TBRpUWR8vkgYcIZiVY3hzXhUtjQgw2I8TFAUpjLInJ4Yg3ejWau3WvVqKX8xTGnrUAUFU5Ox7YuTBdyMFXQbRQl2uSRtVdE1dHmWgCAaSQeuSTpXBuGWhZrklLLuHjYAcCKhMKxq2EKMk2Qr23K7icd6oO/a9Xa7Uqi2QHxjE1ZvYnZucmVldXPv+Nr1qydnZ5uplJMvFyqVYqWEPJcRBVpTSUpj/LAe0H+VDDGaSvsFAB8/VBCTwflokkTLZ/iZZARRYv2w1L1R31BQYMNRhlNNjcdGYljX2FiJ09S4XY0Zj/hwR5AYXuXeP9CIkgVI/UmnNzU9OYFOHLOgW3qTK/3xYnl2excAeKJbq/GKLLDYtQHlkiFYwzSSuVK52uyi6+R8HyTw1voyAPAmhhJOYxsWoO/45GSnnNI001DRHRQUsGLhEBe2AVXqGAZczVS7eOjcThEUz8WBLUBdiRCMpMYFKTCiN/M6Lxq2JcWYaISK+wNkKBjw+f1BdJ9XymU9pmcyTrFdcQDiKtWCLao8EWbg3Wei/tCw2SwmBCktjhKymsk7+GbzET2vqpmEoKZyWSeXdPExi9HAF+NDWcC9qi07Ck2aCROj/7IJ0Hg8Q8bUhJ5IFm2LopK2pSQUgJIs6FAHTZWTrp0WQC/8nMFu6A/6N+s+MhlEUUz5yGVFS+YsXYuOcknTdvLZNK052TruJtQvjChdJ+h/OAO+GENCI0r3WDTluG0KGUfTHEtk9AD5kY/3hnGnw/ORL+gbBhEE8BT42PPTAd8laYykVbikkVihXCgXqxjX0my2e5OTCMBrG6sLy+vbx6e7Cxv1KK2TnlCI1eIhilLhLWq1qkkljhDcQC7VqVaylsZrAMDZQr07OTs7319dXZ9jeKB1nG47SVhX8JJxnrw13puCO2lhdftwdnzi1m2JkmOx8FBUZUXGSsuKo6oGH+UpL+c4Os8JXEzgNa0wqgI7S7oK2D0ATr03xvpdF1YqlU+Qhkxgx7CPFVlMIAz6wlCYcpauyzwV8nkIRkzzVlYmCnkqagNFJcIAwFE5yGWicV8ikcpxsbiWtaCmBEi4MzOaIQqybSaqQEILbjonrAqgjfCK0oVuvdlq1yszkk+TdDlAC6Y1TAp+ySBjI4SmeAYjkcAwG7vsD0f8o6Ojw5eGLn90Gf4fHBnFhMIh9yc0yhoZGL7sBV087A2ECSLiNj8HAoEorlQAYl84AoQ5hI6U8PugN8xLPC0oMTwiomlWEOJu2lEQT4FJhowwVCzq7m1FiVjQF8dWyyDO6fkCw6Mj3mi+euPPfnv9TxvlaiGRWv7ubXJubf3hy//j3/6b/2F1uZ5I2bpZNBjZsKACmipNstGAwAUi0VEvpqUxAu2L5x2HCCuKR1STNMGQwUCcZFlVrXZ1QSrCfW+Ztcl0afFhw1hM786oN/uJsQRbHYc1vzo3tTBRtRaep6tzR+cvVjYerTUqG68fzvVfvbuxe3Kwu4uJNDvbO4i8FwIYz4H3UJdcWVuarrSftStbOyf/wY+/+v6XP3z/3Vdffv3V69tLG/tHq9X5+2e7CxMbt+89f3hyY3/jYKz/4Mr03iePX50cHx4e7R/euHZ6cnp6uNmHMlSaPepVlpbmPv+Db77+/OeIv5+9e4sNWC9fuQoY8ffJg4f/PgA/fvjAReCHuBF9H37/9MG9p6/vrO/sn61Vx/f2+v21K8fXbt15BU/yClT0qze4lYxY+uaLl9d3d2bnltcWxxrNmbWZSrXemOh0xhe2js6u3bhz9crx6Xxp7Xx9dfP05w9effru1YuXL548ffDwwSd3bu3v9Dv17eNuoebs/e1ssprNpRK2qbCE7AKwVMgByMoC1GATQwgU2c3tJUL+CBRxKAYJp7iwOA1vS6aaU6N+mpNVkuGktAboJvAiT4djOFLiv+xXAIBpOuKFm0eIUxE0uvJKrNcXphk/ALAsyhLDcmhqTCAxDCItDMV4wI+oPxgcCYcZnQ8CldYcPi6LJM+THl80HCEiFKeqFJcgY1oCN9CUeBhu1TjJA7yaqYnxVqvdaLQalWoxnXQNsNA4Q1csA9FaEkQOD575CwB2bCuV0IFWa5qoWTLJ6JadcIVWo1ypFACJ7QIUTxDJqm0lHFMSFVGh46qhJdPtsXq93R1r55xqo9Vq1gq1dq3eaVd7MxPdidn5tdW17YPTG7fObty4tgWVplLNFwvZYkHiSJIBMmNxlCCGAzTHawb6AvIGgzYa4SAZJ1gJrgIQdOzKoNyuDLi0tG9odBTq5qCP5+ORCCwqlYtH0f8Wu4VDRCxOYMK3S5spNwSJxYjkC/RFevS+Cas7PjHWak/MTU5NTXSgQk8tLXTqE0tLq2vLnWazhfsEIlRKGb6KjrKGBQBcKJTq6IQ1v7T8DwC8uNofrzfHAYAB0KemuvWMpgAdYlmG0x1dsUEB58vlchVbuBrtRiFRbo71xjs2ziezUCsjcZKANw04WSg04BM5kZUThgDlBvOh/WEsOQGvNwA3Q4DLZpM1hLxGCS2mS9WiTfmjss5EUBdSUA+9zZpqAy0yUvlcJQ81VeG1IJm0eLtW1xNO1r6wr3Kh101PyGXTjVyllhVTlkgpSQ4jABIJkMAkG4/Itm7bhbTJEkoK2FuKdgoAhu4dA5CBo0f5QjmHR8rFgnsGjMDrbkKjl5KbaJRO5jNsiucTuhwaFVJmIplLW7Cmai0M76hXq/XK+8eHLeiLcCX4vtDFw8FbFwEYd150yxFoM0rqjH84PDjk9VDegY8GYsEQAbw05AkEPD7PQKCatMgwMTI8kqvl8+UOkD1sgR6fnllYmJtfXQcA3tg9PNzu97tAP6UwifAdUbR0soAMqdtLi0YukR5bWFsaq1Zy9nsALjaQqs2js8yibJkJRTFEOwt/niyXKk2gnN3puYX5mZmF5YWrNyv9U1uUNIGMjPg1igUipohpk3LogBr3KrbJw8pl4pIsS8lA7cKnPZNMXriOXDjmwG9w4PrCBpvSFcIXCgHPEgQtGhz2DPtYgc/Zlq0rAonu9HSKMzNqMFOkQzZNA2r5PT7CiollWiSsfLklgfhO6lyA8MUNSdJ0USZgrTuVemu8jDt2vCwy2H+Jo4fVfKnWqlXnwhHezARGRSc/5xnheUYlqIFILu0ZDXjRgcw3HAj7hzGR0Dt0aeDyRx9/PDTingIPXBoYGbp86fKob2DoY98QJiV5fGE8FCJck3N3/hfqF/xZMBB1UwmBYvq8nEgLDKlyUC3RJFeIBKMsCfKDhmUeJak42rbCU0RisWAsMATqGBipJxKOAVYKdEZPGRNvz/7oTxL1Yi2Zax7+slSb237y6P8CAF5brpq2Lus5hRR1Q4pCsfV544SsAYmIe0dFJkZrBj0Klc0Ujf+frTdrbuzMtsSqS6UkCWIezjzPBzjAwTyDAAiA8zzPTCaTZDKZ86xUSspJSkmlKklVt4Zbt+9td5fvdfeNtjvsdvjBdkRHR7gj/OIH/wDbD7ZfHHaE3RE9VE/hvQ9TZXfYkJKZopggeHC+vdb6vr3Xin4QtOwyH4qNDPtpyXW0eCavifUduQggUKrn6nPvqoRBzA/0g8XKVE5odiZnJ7fhfZ8sZc9uOVNrJ/efbl1/0Gs3zl/f6R69/exw93Tv6snu7jYA8C7uP+/Cb/g4Ojw4Oj27urW1OEjevppbOdz69V/89rs/+9m33333zdffvL69snnj5larc/P5/vzsxsOXz25f3NjdXZs5vrc8f/Tkzcfnh2dnx6c3vHDDk9Oj9dlxwN/rE+WFhfl3f/Pd5998/tXnb9+9/ezTN59+5gHwJ4CdH3307BKA795/+MdNaABd7MB6/Ozxo6fPP3r86P4T+DL4OuAH13fbjbXzjcn5w1t3bj3+CGH3R8jVAAAgAElEQVT81VsPzF++fPHy9es3X3319PBwY2FpfXVqrDW1OV+uTYxP9sZnNq/duLhz49bhtdNr7fL1w/nD4+cvPnr19rOPX7x4/gIB+P7da9u709mFWwvFem7pH845vYKLo4YqGVCrGYMJ61XHxOB5Q+OSOczJNWVJQAoGUCGIoCMytd/9H//773ulipu3ZCLKq4JMspwEKw3lJSgsjiFi8XhoCAAY52CIMM2SMsPGkKvHbDkcIng+FEeHD+x+ZYk4IAcFABwJhmLxCCFKADjRSBxuWc6SIlFRs9IipesCKGCQeaB/aUEyNJoDANZTuqZbMhmlQTCKoKl5M9kZIPq2mlD5K1m3WHSxmAHQJmHh4Vi5jvOwPEhdJ51yMumUlU0ZBu5CGVZS4yQ7lc4XssVmq5ytjzeywI2rbjKTzzl2JoU+x5puZJWEkjKNXG+q3UCDg/Fys9TuNNqVRrNYguI63uuDAp5ZAUjbQTPKi5uogNPVOgi32lgrCzSUl6EacIpBx3hJhooWi/C6bMcjSoSJhyw67PA0zzBoGMV67mKYNKEyo8P+wGgwMRzg0S6bVvDQC8QxFQuHIgQXihEYzXApf3kRu9Z4JEQcdzkWzAjvx5BwB7oPaDo5OdEbH+8BHs9g0O/0wtLCoDWGOaEYhKOA1vAybww9U8LTRIDquZWN7Z297Z3ttaWVrb3VteVZoMHTsxO9CVD8vUYWAFjXDFnUnLRlZ7G9xws/qNYq1UarWe+0x4GnJDGAAl4KESFwE1CSDSEWo2MJW2Z4TREwA5qkcfTcH/SHqegoTjpb9YxRr+SrDcBQR0wWqkUds9Jp3LgzQBGMhEfYDsvS1aaOns+ua+dTssOxesoptupZeEdTqXrRSxHExt1iPV8tlrMlbGF2tZTG0zhyW3YKJcvJKSJFcEYKhH/d1FnDxT9pZukymMizosy72VK1XPA2jX84t70UwZcmHCiyPUQRsoJm63IgKmcyZtYpy6Tr1DG9o9Nu1WstnEKqV8vNWtmzkS54Dl2Abe8bgtPpXB4gGPhfMquLViIhy3JoODpM0YkIHfyAEqO+IcWUAoHIcCB0ZSgqyXQiQMMdUmnUgSN0q+0x7JEazCytrq5tbW2sbuzsXzveXd6YpQnF1gRRosKsZaRdeFtazW59xmGy6dTs7NRSr1wvWbYEOOS61Tbuc6yuLa7tzuFhMZBceG+L+YzTqFVb/clBF0M6FldWFhe3D1e3trUkdnAyoUBUVEQj5+gukCGLY/RYrGRYBmloLGcYsqUFulax6GRdvEvyOLCGJwQ5J4VpoGg/V3RLgmWK8VgokojIPEfQwQ+jo4wuuK5kJSUQC/FRVkpZcs5i0g05kbIUk4mQkQDPilorLyfcWr6lRRJSQRdj0XiQlQndBUrHsHqm2p6YyFM4LQBMWDaTVqpQdBuVsWav1u4JPkMTr0Rozq5II4LD2aTl86lChApeIcihEB0PhuP+oaGhkZEPf/wTgN8Ph9ADGrMIvRYsv3/00ppyeHR0ZDQCSIn9VlFv/ghdY0M4UZQA/AUxESJjQ4yuc6ymsIIgCxTFgQJlmHAwAYueY2m01REwNSyeYGIRhh4ZiibgBQSjiUSMWrm47mxvWxHSsfb+Q6uStWxt/s/+1Jmc2v340f/w7/7w3y6sN9KptI5RjbzoGmScjYTIcNxwOOKDeIBP+VkzibnOlXZqOBAg4pRFcSIFdI6yw5xrlGIiO7ECVV1zNKK7sPSsaPK0O2E2uoNBhmj1gHevzixO9qr2y5l873jn2Y2lWweD3OrTL1Zmnnz3cPva4b5nfrUDyLuzd3iEW9EoggF/ATz3VlcHjdmn1fb+2pO//N2vf/Hd9z/7+dfffv/qztryxdnOZOXi2f5Gd+/Jvbv79w+ubi0u3jyd2rr/+tM710/OTrH/+eTs8OLGzavLq3P9Wv9mpzyzMvvFn37502/eAv6+ef3q5WefvgTh+tmnaAKJbdBPH3908fze2cN7D9/PAT/64fHk/VgSOmM9wbmk67tnp4utxvbV/cWZrYvHF/efv/4cExVev3rx/LOXL+C5X75++/kXRwfbS/Orq1Ot5vTqZLnU6vXHewtbQA9u3Do9uHa0XJl7uNK7fv7ZJ/c+f/XyxccvMIf40b2Ls6P9pVr/ZK9ZqnVfT1WLFce2nZRCRrVGzmL9fCmdsW2B0U3BKjppE3ijytMsQGJUZflS2XX+8R/+5b/859+WKhIRJUJRPoxJDXElm8twvCEJCosxZ7FoaCieNHEyj4grIsMJPDHsGw2RsugLkCBZ40ZS11URqm2M4wCDiXAkEQv4Q2FCARpIBMNRuHVpHbAcoDIjsjoIJJXFJkJAW1EwLdE0EiTcHIokc5FokEyQSdvgZS0zO6h2pmr5RnusXq3XivkiSC/DxCAjwGrL0E0JRBZAgIknwGk3o+uZrCFrNkYtCLA206lcsZAH6VYst6uYelfArUB09UPHLAAYzVLimp3UCq0xQKXOeLfTKJWbrVozB3+x0QNN0J+enZmZW11fX98+Oju/cX795lomUywCQNcqtVaH43ReMkxBViWG5A3bUskwo4gaycDlooKUFaNSXJyTsFmLpgkOs45xvjoRHBkaChJAZEhd4eKEhCwpQQC/CQej2CaJu120IFAEZoryUFsYXlXwlFURGE6+PBlmmR/1J2em+rB8AID7GGbc709M4ajn9Nz8ZK9XVVVdVyRF04BRgZzVgXpks4X6+MQYmlyvrK0DAG+sra1vgu4ZdMehwM9MT83Oz07U8hn0ggb4BgD2MhwK3sxQuVavY8dRq4vBFa0UziXLPI2vnKFZQRItHe0+UinZO6WmOQpuqQSq31CcioailMSotbJTLiTTmPWXD5uNIu3zJ/xhQHCK5pIiKIwRfykN96LpFguAwAWxWGFdmW01XadbxwleLxQIx4cA6SqFKgIwKuJK1dWSlkjb2HoLAJxMukmZJVnVsq1sLW3yIkZF27ZcyKLBshcegO4bl6NQXu/zpTc0NmJdumAV8CPmy+czYkbQbV0KJLBbMJevqnzOaXTf+3Ag+jaaTbxLq9Ua5jiUsakLB60uARgn1fHoI5kpyiDDohjwHBryjVCjsViAICPhOBONMVKUpNDvgQHGBcuJiwYS8GTFWqVZbbVa44OJ6en55bUNfOzs7l+9urO6Nwt/Aa49yZAR3jbdSrszMTUxPZgsa9l0ZnpqYXVQa1WSuiYbGSdTaeN40tLG6vrBlOEkZV5zUimQ54Vyuthstzvw9i8sLiwuryxv7u4t7+1JYtJQBJ6OjJKgWw03o2QdzdAZVgqxtbSo8zpAnq4lk4LYcABlnWIe265cTB1L5zw7aO+/s4VMUVJNwetaimhQhcjQcCLImqrjypYtm0w0PkoDG5Arybg2ZicUB3A+TkcD+PSNosym2tm2Fg5QDlSIcDTIaoJlByNxxSg0xlrtXpnhBfSpERTNM40p1IvVdg+EnTACiiAQj/LKmGkQpqLH6aGAJYZBVMS5RCIU8oeiwVAkODw0NDw89JMf/+TKyKgPd5y9ZqyhodFRxGEfNkP7RsNwJ8eiXgd0LBLFnWQSewsxkRBWbCweCnCKzKJHmAj1kMcmGoLHQTzBW65AsFkcSSLjBEN4TtIxAh0T0HRzqHl+rZ1bt8Jq1Wn+Ll+vCmPP/vz3n6enx7fvP/4f/92/+SfTS7UUXKlUThdpIa3yBMUJbDjIpAi0+FF0jldVIpkiKlMRf4T8gKFhBSZCUX8YFgCd6gjUhNpLSpZuyKrR2V04zsV1LWUbjtyvJ6Vmb2JqdmlmdqLttt6WS0vHO5/sHtxc65YPv3o42Pri7dnO0cE+bj+j7t3d2dk7+OMc8LWr1072Vjcme/WPposL1w5+97f+5Ltff/Prb3/25c++fHht5fbZ1kT55qM7hxNrp3cfnpwsHu339u7uLB89+PTZ7Rs3QNCcn984Ob52ePv20fz8Zr85ebNfmVyYfPnrX779+qdv3yEAv3zpgS88LvEXAPjJ/UfPppzFG/cf/nvw6+1HX354DHIY44KfXWxtXdudaC0fX12aXj+5fechauBXL9+8RlT/AYA///LOzub6yvJCr9VfWpocq7T6vXZvdvP6jfNbN68dHu4P2geniytnzwB7375CL8pnT588unfrxsm11ebY/rXxcr120ihXq4VMKg2VhpTrWQTgYtoBmouOZFbJcTRTkSWO4WhcBrrqFjKbf/jn/+c//cPfzzhcNBgOEJZoGQJNK1BgQDoJAp6gUWQ0Gh6JmSrPU0Q0gg6nHBsP4e6QxA6HCSEajumWAm8sgjWDhsfw7KHQ6GggRKgEI9DRKOYB0xoFhUW20sAHNEWUGezfJ+DeFA2NUY04qZmArIZMkDGe5TXThpWUmZpsdXvVxqDXLOcKtRqU2YwF2tcydRy6AADWdcxNFLRkCjewHVh7GUsHEuyZbiq2mYQiXG2VMwCphQzIjzQeAWddJ+XNC6uKmcSRS8eqtOql2linV6k36oAttQqGvrU6UFzb44PJ2cWZpc3dw+vA1s5P7+4W3HwJVWBzrJOL0zItmklNZgj0u0qKRIzWNNrbbyYJWqIpQWWjFI7/0RzvxQvyeF4VD/iGh0ZhFQcJUIokKemmCdhDk3HPXRb+xeUJl5pGy2cQwQInwJvnRRFy3GUqAwIwrJzJHsjgXq/fA/rQGeBB8PzK2hR8utsrS7KqiAKIX1lWZIFXLHgDsuj3VG10JudX1jd3dnY2EYG3NhanJyanJidgFQ6mp/tV0GspHaBbwg0v4DRQTzG8vggSuN4A8Y/enWOttIqN6AIVxzFnihUlBn2DLaCBClqD05Q3PB6NBgO+EI5OxhNigq3W3epss1IrpDNZQq9kon5KjHmWBVRcs/i4LzzCu6pA2f1OpZobmwaxCu9R1HLSdBgnhlOlbLqA6rRSBegtAASX0R+zVKvnTTstU6Kby2Uy+SLuQcsCTYkm4h72vloZy1EzXNpLOMi8t4PGaODLPe1S8T3uIgCX/x8AxkNNR/J6sJgR0rKdNFADScqmGl2Qv+jC4WFws4mubZed2ZVKyfOA/gGAXQ+A4e7NZFhJjzECGsb5Pxxl/RHfaLqq0LHw6Af+mB/Ya5QQ3UwSKrjMM4lEo1EpNmr1aqMxBu/xzNTUwvrm2trG7j6OYe5u7kyJbCKWiIYJClArVeh227PL84tz6z3NLHeXJhaXB/VW2VI1CXhDHt70mZnJ2eX1td0JI2UromnbKTwFrjilNijn3szM4vLSIqjs7a3NxaPrMm3bBlAsKhCKSaqQKsgZx9CSYkxN+PNZ2WJkgGcZN339pVymknGLOc9k20NgNOXOeFNJ8A2yFUNMiXAzREMBWdPEWHA4jre+mYV1rNqAhaMJEbhRKRPnxrIJOWOYPMjDAG0klUpFEdXJ7HgyNppwbQ0VAaOrSTMYY0zOylVr7Yk6y3uDeZKuqHCfZEv1YqEL62HaikpG9AMflRBMTC2H+sZykk1FRyiWCvujwWg4HArE6XgsEE2EwsGhn1wZBgQGAEZEHhm+MuopYWyJHh72+YMRtMFCCL7044gToIU9M45wJEoEfQnByyvTNMHLESMSCYBJgbm008GawAgshcOddCThD7AkboJHsSs2NsJtHWwkB8mY5uY7/3lXdJ/9o3/4s2++KU0t7N5/9N/9qz/8NxPztbRuKmZeYxk1p3McJegqdcWnDIdUAGOK9oE4KiUl1SFyUaTDtsqBEg76jbBoF/URfWEsz1OuEbEFcdCcXlrvmcPOeMJJ12V4VzsTE/OzMxP9ur39sdXevnryfPne8WSte/+bvf6t7x4d7F/Fxued7e0dkMDwa+/gfQv0teODo5Othc2Jyuqzcuto/dVf/+b7X/zJ97/82S/effvoeGvv4tpCfvvTs93u2oP7Dx5dPzvY7V9/sr5089NPHt88u3nz5Ozs7Pzm+enx8Y2DzdW5QXVwu11YWe598ptffv3lz75+/QYNsF6+xANgBOAXzy8hGMXtRra/Mn3j34dfxN4f3KEfe0FJjz77+HT74Nr+1Pjc0bXFqaXzW3cffPzm7afek7789BME4FfwXX765tnpBtrij7cGCytTtWZnrDU+tbh1cuPWnRu7O6cblf6Dq/2rd569fvgW/u6LjwCBHz+4c3F2Y7NXXT6fKzeLU4VSo5gDLWqqLCHVsrYQEEuplOkYiqVyFtQt1ZAFeKd4CoAvKirFWm7nf/2nf/jD//Z1Mps32TjQS4AsDgDYtRxLlTGGFqoigQEecfR6ZggopQwHd1AsFBj1kzLjixEgWQldF3VLxeQA4HherE8sHoGaGxYY+Fp/JB6KkoxKxsIAwCmOgpsTANgbo6MZQTIVUknRtAkgmkrp6CpPs6Jm64bpTHRBjRab3XI6WyxVK3l08Uthwo+hKrifqqOVOywpxXGgZNluJptJWjiJIeKYjgy1wk46gNyVVq2azeSA7V/OYtpo5WEAKhm2HFWMpFmslQv1Tne82R4fH++1yqUxAN/2WGdiMJiYmp5fWYaKd3B8fuvayfHtHYyULVXRa7adIgWFlkxLVgWSNaBqJoIJydJo0RAIJh4R1YBocGyC5jEyCNsvGKwT6PsZhOsTiMTJIAEQxrEy/LiY4gcEOxYKk1FvCxogiedoPDD3LKCBU196QrMsmkIDjjM/ghfcGx/vT+LL7o33BoP+OI6SrC3NDVqNdlFCD29e9E4UVCQ+rJouAIy6jfbEzPzyxg6sqU3Mv9lYnul7JkvT0+PdyYlOI5+ybahmuiRpeLF1bGwCxPP8l+GCNmrwX41GGru0EIBJL/YFuT+ABq2kNB6jyBkvry0K90NwJAi/c0yCDlJF16g3StlMKpnJ1QqldGw0OAIXB68NSRpq1Bf3+WTHEVjdErOV2qBTsVwpT9CZTkUSUvWck3MzBfSCxm1e/AdFZxVIBUC6nlE40snmMHE3b5sFRaQJDlDPSpczRkLP2UnNlfWCe9mx57qX5sWX9lfvR45QDBdKfwRg+BSeYSZlGwBYTwwxKSPpOnmH1Vyn2WuPeS1YwEWwCxrkKiCw1wVdLaOl9B8BOJvJZuEmTaUysFRoViIIWEfEh8FwxPfjxFhTlylfJBAZGopEwjHSrmfTukjyMSoRbHXr+WqtCaRnbLzdmZocTKN/9zZOg1w92NnYACCVGSocpTkGFGq1M96dX1vdXF+eylYW15fG5+bHa9U8yB7JyGQL1dr84uLKysrm2saMbRiOqRtWyuOk5RrQyW4POw4XFlfW13eBkV07URnRQG95ngkFaF0G/aVZrm7ZFCdHEumsInuGWKppZ3iqDrhbfJ9y4bolPPROO6kszj9jQEbVYZICkYhFAHgkiScj8PNGJUnFfG+AdDIxGhMAbFN5jq5lE7praTxAmz9hJvlcXZG4qeJYmQgR+bwjAAIzimI6ZIJUVBu3oCfLAHJQfHjRMg302S6Ui9lWc3ysLw75hFjEF+RMWs7YBCmqJMWn4lfigL+hWNyXQCvo4YAv4fOHR+ANwGgkzwQLc5E87PVCkYZH0RRreMQfxx3BeBzzQ4kY+v3hia6XYRYi/T5JViRFYmWNEa2kAsQIj4nQksOLUEEbTAZ9suhEzA/ygwz7QqCiQUNDlR0Zu7rddzJhy832/tHzW//Bf/TXv3730181xnaW7975J//2X/3j8Zl6WjcUvaTTrO4KKuGTkywZDWrB0SQZ5wR+JCTKSV5PEQGXCfg43hRpXzAeG7YYu2CNjKipsmhnVixSsYxOrtGf3V+xpR4nl2y9bZfLE/35qdler+w8PLDmNvefnG8+XQcofP10cePFT08Pjg5wy3kXisUWoO/eDyNIuAV99fhgY3mp1XgwP7Z+ff+v/vSX3//2299+/dNvvn92e/7o7GC5N/vpnfXp5esPHt07PrxztXN8r7/16KvP7p2eXaD9BoiaMxDBN48XV/fGi9PXBpXB1tTHf/bzd++++frt67eeAH758hUe2X7mzSBdAvDdx5sTV5da9/8/APz+N4BoxN+PHn702Yvbe9uHJ/PtmYPjzdml4/sPn34GqP7JJy8BfD97+R6An3/17Scne9vLW7PdVnducQpURncw3lvYvX5+59b+1sm1fuXoYm7l+NGnD15gKCLOQj15eO/2jYu9+fLE7U3co6qVatmcY5mmKtBKPWeLIaWaTFmOIZsqZxYdR8cjYNwFiZERmZQazVLx/v/yf/3z32vZdNagoyNkCio1QdBqwRSBwCky3DEkBcQw7IvqCMBkLBZgAGmYqM836iPFRCBOyYAShuoBMM64Qh3GeU/g4+HRK6MUsL6ILxwPxxkOmGuEkUwAYJCnksJiOz/B0rySVCk9SVImqFLT0kgqylKMpJmg2VJTfWD0rU7DMfKtesFNp6CIuRlsD1IVAF8Mb5AB2jjddTJp2wGujZ4RNohJ7AdSTJxfhbLTamNenZtPpbz5CIzXS2HararqphSVNctIlWq19ni3O5gY9LqYgTjerjaBA6EpweTk9NzyxtbG2vYR0LXrd3bLeRwhrQAE1y1OVTnN1DGnSDZMlQjHOElRJN2SoHwQMh2SDeC7XIJBvPR2DwiS56loKBgO+kMJgg7FRZCZgqJqppSI4JB+FNOQ0LKD9nqgsX8DWxwlWXgfyoBtZ4jCILJ/VGu2MTZxMAAY7oKE78NLxqjBrdW57li3rMgqMClZ01VZ1gxNkUAf5Gsd1FKLCzNTc8ur65vb60srW0uzg25vGkjw7DTqrE4rZ9tpIBSGoqDlfhIUMHonl7yj13qj1qi4OQDApCIJIgCwl2/KSapqKhwRZ/QUqGZQ/5j8RFAEwzFRfygWTggsyUYIS2az6WIpm6+1mkXMIiTpeNjvj9J4uM0bLOkfHiHSphDwKYbTLGRK/UrGcCTG0dPZGA93ARCgXLGUz2M/2WUfVtXbNwZQVkC2E6DyC8VMtuTorimzBPABQI1KNknJLg6hpcR85tIYwxtbxQ2By8xAbL7C9F704fj3ABgktaEZoNC06IiYMZ1cpmizdsZtj1+mZjWb+KGO4tfzpkZaUEELrT8CMPpR2DZAnSkmpbjExhlYONRQwBeMjKqDMkHrEZ8/MhKLwVvOp6sGXLgI4QuPBuqdeqFagXoAVKvdmZ7qDRbXltZAjOxAVdxc3pnUbFmQSFqQeDOTqVe7/bmVjYPdlaVub3FuenFxvt8oZy14/w1YOvl8pz2+vDy3vrQxY+lmxlSSIICzcD8Dd2h0BhMT07Ozc0vrm+v7B7vLh1cllpGSaUsSNbhjWV2U87aaS+tJYITiqJQHgsQD3kiGYRaiqQrQUs8T9vKEHU1GMQsJrjOI4UwpTaocRm0GgIbDHR0fDYQjsFQyaR0YsELFR8O8llLNkpYoFhNKLqUCdSICcc1m02O6SHdrxTYZi9vZpEBG45QmS1klHqJl3So0ehMV9H2E1SWZaFzu4qlztlrutrvxIb9MihEAJJbp2jqf0ImReEX7sRf9CQuMGB0J+kHrxoaGfVd8kZEraE05PAwfRrzD3/cwPBz0+fA4GKMEE3ECG2M8b0rMS8fG6BgVCVKhCN71qsIKCiPa8DpZYMzYtMGyuGxhyTI0AYWAAuSOhhJkKBCJYK9lHPskhtT9zRXViqQLyf5f/+Y/+eYv/+7Pv/zV33Yn9pdPj//7f/uv/6vWoJwCOmxUdZIR1RAjRsKkYFBRiQ0kuTAnCwQBxMZiHF9grJqUbMW0Nd9oJBEWzWrKF4+KQBM5OWkN62y67TTbtakbB0auUSykXFHu5gf9+YnpXjdf+qKdX9k4+WT9xr1Bs3zy1bWZm+8+Ozi4ur+7CwC8s7O1vePNAF8+AIG3r19fW1sbdw5ulQdXd372d7/99S9+/Yvvvvrpty/ubEPB3G5OvrhzdXn2/M79p1f37yxsP1ldvP7pm8cgHS/Oj09unV+cnxyf3Dg/2VtfHDQmrs1ld+cn7//5T3/+5Vdfvnr5xZdvXr/yxKoHwJ+9B+CPQHzev7mzvLJ3zzsD/v9TwLgT7RljPf/o+ePrq4en253uzslef+X0/oMHH797/eknAL6Xz/36zZs3bz/74pvXd/ZX1pbnB83uwmqzVu92y9Wp5YPTm3dOdg+u7zXb58dTOw8ef/zwzecvPn3xMb6Iu7dPb17brI7dPGrU681uqVwA0mkbisAo9awlhJR60kk6Cq9rnFFwXNvG+VtRBL0SMCW5VM1azeWttipoWQytGaWSvGZRNKeVTU5TRUURcGg8HgqFRvywzli4V6I+BsAk7vf5wkGaD/jjtEZTtKHLgITYISRSNJMgMWU6HBi5MkrHSZDN8ZgvwfJqIooA7HA04K+scrgjSXAMAjCpanGomum0aciwMAS0G7dlWXVmJrqd8U4jZ5UBQwE+S46dyjgozKDUJ214IgmHYnnTTaKVLUhbw3IypmFCuVR5UKZpxy03W+VcsVgruLl09rIupFNWMpW0dFCdtkbhnjZ8gzEMAMZtq/YY6I1uo9Rs4x50dwD4uzS3Blpx9+r1ayfXbm4V3EyxghERjZrCAqcxDEWmSTllC4kwHgDzCqhZnonRshgQQL5G8ZrhMmS8tGSKo6P+QDDoG/InSDocA+RWJU3VbZ2jEiQRCUVieDwUw5QzhqIBcEXFA2DR64WGHxkbLHHOn+V+1Gh14BXDCx8b63Ra7f6g3+uBaJ9ZXVudHfSrcBG9lGUNVDDwKdGwnXSuNj4x0Z9ZmBt0+1NLqzv7exvr2xsrsxOA23PTM1ODqfnpTiVjOW5KxS09w7LhNsoAMIHGrFVLODhUH6thuGMBc3hEWcRZCxwDgYuhKBShWGIRyjaUJZrymrAYAifIQ1EiHiZjYYpidDVfSOerhWQlX20Xddof8gcTcIHYBGUydCQw7OMILjJiFUuN9phTgztA0bkc1FoZvY5coFr5omehUS1Xi5VipYxvCDX87N4AACAASURBVOpO3bR0WrLdYjHjlrNm0tF5muS0tGWWCymBM9Nm2s6LcKfgIXAuX8DsQsDuwg8Ztt5p8PsGLO/XewDOaoYuJU0lNCo7JtxHRZMFOthpgfZt/3AIXAOY9IxB0Jv60g36j2fAAAmuZWUckzHFuCSAhFQSkYjPF7gSp/lahYyY1E9G4gE/C2tJSTpMiGFlJUYEolUQ1M1yqdJojo13e7PTg4mFlaX1/d2tnavXj7ZWdmZ0TG2mBFnhDSdVK/cmZ2fnNza2Vian5gfjCytzE+1qPg101kjabq3ZqBR6g6m9zZ0JzbYNUcFTcUwoQYRvtXuY1DC/srm1sbO3t7J/ANAOsiqly0BnA6OCymtFNVO0NF2JKWxMB2CHn0MQdEsrWJEStl45WW/syk1nc246g+e/lwrYLWZZQYQfMDwaoVRJ5WLDw+EQ3F6OayiGrdOJQJCTkqpdNiLZOs0UMhp6x0fiUlKwupbMNLvZPk9EjVySJ0LRiKnxWT3qS8Q5ycqUOjXvpAZbJOyUaeeLbhZoYg3ub26UrapEiOXiQa4gO7mEZMlCWmUiMZEjYjEhMhxgSKDCICmCo6FY6MqHH6I75TAC8JUPh0c8AAYEHgUwHh1F91g8+SXJhHf469ljRdCXkggEiShpSjh3LwoyfBQonAeWec8rj+ehEOCipTkuEY4Az/IHo6NhHOBD8zsClr1/4nC7mqBsN7nw22//4uu/8/vvPn/7l4PB3M7xyf/0b//1f1HvFVO6IepVlYSnD8Q0dmhESAmjCT6i8BFCBWjnTM3NZIbYCT7K5VW9VABVziXEvFuIBUOJKvzwqcpoPEHXo/P9dL0zn7P0WLPZcoKi2wTWPTHRG3P7X7n1lf0nDxYfH7Zagydvtxee/PT+NqjenR08/d2FfwGA93Z+aMK6undytLi0WO08ni9ubJ799S9+97vvv/3TN9/9/Ouz063zw43xzt1P9hbnj8+fv9g9uTl3/mRj7cabn908Pr24ODu7uDg9v7h5cnx283xjZn2qMH+4lNuYnbv/u6++/uarLz9/9fmXb1+/RgS+PAJGAYxRvB89e/zw8f2bx8cXdy7u3rt3/8H/Swb/sQnrfUzSs2dPnnz86aPTnbMbq+3uxo2riwvX7t+7/9Frb2f7NcprFMBv3r189e7Lt09Pl5bWlscb/fnlXqnSGauPTa8fnty6dbx3dHMuvX13duX2rc8evHzzAvH30YN7ty9Oz04PWvWr5/0qENhiqeY4KROgkJSqrskH5Sru6sqsprE6AnBS1Qy4I0h413mNcces8mS/kFTNHAhjggizjqQlaYbX6zYsMQE1Fw38LBwODfkVheMoiooFeJYSogDAkTAv+cMJWiWiCd2LNOHhTpMImgFyGQ6EQwHfUJBDohmOg1JmeTkaDdMiKmA0wlIY9C8ncJrVVAhRT9B22rlUwDGOZmFNqrqWmui36s1G3km3mpU8SK6chRvMIF2xYTppaSq6WooMZ2TtZNpx0knQshk0o0xZpsryuplOu4ViIZut1VpwATIlqIVwRZKA06mkoQEAJ3XGMkHsNTrtdrvTa2MjdLtZb7cbze74WGsAWnFiemF1bm17e3v/+vnW1avnG7mUWaw1arVGs6aCAhBQwPJS0pGBocc4eE2aaTEMHWMVIuwoHA/y3wvNJeNREkeLAH+DoUhkdMgXI5hIBBSEiqfZlgJCkvaasLykb1ybDEmJoH/hSQQ8XAIJLCvowYtyGqeTAIDbHbSCaAABA4U0mLrcNJ+dXd5YmuqVRAnHkGQFWbnMUJKFqez407V7U9MTmN+wtLq9s7mxs7E6N+hPTE5Mo0PH3GS3mLZTKUMG8NYsLz4Zw4MqmAdcKVfRBKyGpmQ5AxWwItFxIF4Miw3RvEAlRJVKJ00+EgL6hS0m8WgQEDiAR8GhQCAUiVKKBujZaWckIkFJjqsEY5SgqKrIROJiIsbER4YDQTo+EuWq1bHJXNotF1NZWncNDrA3BQCcQdmG+8TVUq1QK1QxnMrb/02D+BYpE22ZsqVCys6ZIkeSopO08iXHosWM7Rh5VSmgbRoeAmMrtDdQ/L4J6wcA9o6FPXeOUikPcO+qliandDEQlOFuAUmns66VH8d8BK8Lq+4lIdUQgCt4IJ0veoPK/w8AO9io71gco9EgBVlF4ZloIBrw/dgfDtCyAKWSAPr6IedYMiwngnOtrMkrFAXPVcQms0ar0e72pmanphdXltd2dnf2rp1c3V5fW8S7WSRFWeaNTKpW708vzk4ureG08PZid3x2vNWsFtOqqALpKHYnJye7s7Mrp6vrE2bK0kTNgGXk5EpotAVUYrw/Mzc3v7SxtbW+tb10eATcHNDEsuEGlROjEV4SMradzQBlJXklSsKKlXlZ4WRYdnlCd4u5oieAMQa4UMCBhTS6gmIyElBgjTGZUCA0HCI0SaFjo8PhUc7Qkq6hWqbBEOEgy1mKUUhGUm0xUXA1jSewMS2tyt2UxpQHub5FhK2yI1GhaEDReNdMhEnFSuXyxVqWIGgByTgUjqSDm+H5eqtd7y2IQ7GszQHD50YVltIUNpq2eIbU5DhBsszoyJUfX4mERn3+0OgosKFg8Cf4wHgGrwVreNjbg/bGguGBA8P+KGgSL5nQS2OIXMYExyO+GEkIwJEBehVOMIA9MPCCONELUYGKxotewBzHU5FwgkwkQoFwOEZS6OdB4n42PaRtX10Mx4ySO/Gzv/ir3/zdv/39z7/6q1qutXX95J/8m3/9n1bGs7izJxckSjP1hBBNUDF/PBWhePg+SsJWGF3UFLo0nXAbIpst2HrGTTCswCopsl4OhaQaFCtSCER0ocFNLdc6i0vZsfxPxGY7mXTMsfEJuDN6tdTus1R74/qra7uPF9ut3ZdP5ne+eLe3tbe9twMovA2/dt4jMRpyYCDStcOt1fle7exabfxo75vf//zPf/MnP/vlV999ce98+d7OYbt17fXh1szOwxcPVh5uj724vbh3+tGL4xv3bt06O7l57+Lo5MbZydnNs6PFdn98cn+tNrswfetvffPt15+/e/fFF19+4XlgYRc0ngCjCQe6cDx78ujBrUc3T28eHty9ffvOXYTgPwIwHv7CB/zMw4cAwE+ePv/oydNPbh/uH2/1+hu3d+eXr929f+f5yzcofV/Bk796CwD82dvPP3v5028+PdlYWZtpNse3Fhr51mSv2Z9eOzy9uHm0f3232jvbm98/ffLko5evPv74I3gR9+7cvnFyftStrN1dqpdrjSJogVzati2ZFiquJQTFEmCSo/K6ShnlTBo0lmqpDA2oStM8kWsbuUpSFeRchg6O+CIhJmPKSQAIuW7biiSywHgZ9F+LhYfCugpKk6GiUfSPioYCI8GApPujJKsSccLAOCQe9AsrANhE43QE7kxA4BAPEjroi+DGLC8BV6RFI8mSaOAsY29WgmJBzBkayds0a6eAvCY1kowwBCVrpqLryf5EvzMGP1ej5qWyZlKWA9CasjUATxN3oLEHSKQZAzDaRU/DpJ2CQgcfTVNjeSOZBGXspIuNer1dBOVbAN2UxcRgL45Q1Q0D0F8DwZpttsfa3W5/vNcf9Nog8MrlZhNqX7Neb2LD8OzSytLi6s4h0NE7O2VAnkqjWgFugBJRlFGxQy1KxAiaElVZxXQaEvfXw6ylMDxDc5f7yQxFxnEDPxjC2fvw6CgQGLwouqKZBtDbWACoNYYGIb/2iDbtGfzwAotDTDysNQRgQfB2GxCUf4QOSSjAWs32YNAe604CZRgAhE6vbK1MjRclRceddrzgqgEXDV3Ais3x8XZ7fGJ6dm5ubmVmYnZpeXVzdXlucgKq7zSA99zsZL+SdZKGqmBHFVwvw0ijrS/ITDRcbHXazVrZzbuZnIkb3IrEAACDrhUVJS2wPMnIMsOJTBAAOBFLUPFoeJRi4xGaBFT1jVLx0bhmg4hsF8grw0HfMGGKoYiEeQ8pRYhEBILyR+IR3jREWs9VNPiVLKStoiRWHcvOVl0868feXcwPqJXrxUap7mUaeZpTTztKwsiB+IKa7yIAAyMQgNuli06a5tAr3TXZMp5Q4iN7GdhbeD94VPS2oHEz+nIbupT/AYCVpKY4hhCMqUkn6+SzOp9PVqbRAavlWWEBKamUQUhW0TG7WsYGLEyo/+MZsG076UxKFpOMqFMMByRZoSNMZCQcCUSGh1T6A5/fHzEE2gGVY+pcZsxJM4TE0oCfQBJa+UazWh/r9HCHeGVldXNra/fq1d2N9ZVVxzB1kcONkaSbqbd60+urs+sHC0vry/Cle2OFbLFUSLKiDuBYaI13Fpa219a3c7PTrq0lTV2x3AxcBPhxy83e1OSgPzU7t7C2vbe1tbV09ZpESrLEyXbShOWfGImompg17DyGaTM0GZNzaZMRNYaFAmDlY6kC+lEC2SiBEMYsYKhGXhOW63l9WESSD8ZiQ0FCB9KciPhjI4yh2xlTtQyTpWLoAySLbiZmjKlMDgAY4/oiRMbgxxydyIwXO24sYJRSAN5kiFLFrMWSLCy2crvbzmB2MEhMXtPMtAvcqpiuNMcyjTlaLqdirCYnQoSQlIshO24GQoYhq4xEJ2LDo8MfDvmGfcFwLDo6jN6wAL8f/I0PRwJDH344hK3QOJTknQQH/CO+YBCEcCiRwMH2GOrYWAx7mNFVI+IHpauJiqBA3WIZW2KAYzEMOvXx6JiD6xibL2kaBDBFYkArwZNRFqAYY7/JCB0LdY5WuKhcLLS++f2v//z3v/ziq7d/r11b3rm69uUf/tnfL42lDdPk1IJAaIZKRGgt6ovHGUok2QSdAlKjlhXeJNv7VFcnI2OFUpITSCWR0PhEwO01WLNaFMzIKBkkJFgrrXYpb7QXWwln3BVNuVoenxxMtXol895xqrd/483W+d1Bv3nz7cXY2a9eTW8d7ezvbG1vb8Jtt7m5vYtuHHuXeYQHp1tL27O1zpPx4t7Ko7/3N//iu1/89pdf/O6r2zdWrx8cTJQPXp9uTO09v3v9xsPp7Vc7c7cfvnlwcX7vxs3Ts1sXJyfnZzdOT26cH66s9Sudo61yb6t/4299+93rr7/85mtsgEYEfvP65aefoAfW5RwSRiE9vP/R3cMVwNPdi1uAwPcfPPgBgJ++T2d4+Pjp08ePnjyD354+/eijJy9ONw9O96bqSyfHM5PXnz1+8PGrzz59/RYdtt68/fzt23cvXwIOv/vyi+OFlcXxVru/tlgtjE1MjHdmtw/Pbp/tbl6fK27fmpk7uvH8wYt3H794Dk//4P69i+sX1/qluQfbY9V6FcAFc9d0Q4jzlVxKDovFtAOMXzLkhFF1U7IJhNMA0ckzAZXl8gVLwXw4utg0eBBnYdJS1DS6Q5Y1NMQCAGYYzPkgosNRTYKKSsfDMYXi9HAw7vP7BG04wPAmB8QVpKTOQwXm2DjLheMMEEOQOqMRgQW5F4hERhIg3QBxQezZdAL0KwAwQBDF0RyOIcGnE5QJKiujS8AOBV6EJwQhkJlu97qgfXP1ZqVUcJPpfDKT0rF9E4MINVWD+i/j+KiVT7uubaaAkiPkJi0TrSwlO2MrcrJUr9XKlVbZhSfIIAIDJU9l3LSFc7GGFJNB5KWrrbHewDtB7bZbzVYt5RQySYzKK7XGB9Pzixu7u5vrqysbhwenK3jIVQGtA6DNsoBAIq8nk6ZIxkJwPUDGKck0yUYDLB+LobUTCRJYxPFrAFeWBEwKBGKRUDgWC/oDMToSpgRNFuFnSapklAa6Ew3HaPS9QzMsihcYRoBfEp6ochToYFkWMBqY95w5flRpwQsGCdbrjrXa3f5gEiR7f3pmMInxvotFGeBXFjjcAIMLpZo2ypRyb3J8ZjCzurq0uLA4M7e4uAoSeH68O4D6258Y9CZmp7q1jJVO6ypuNliWbqGJBKiaWqsx1qrCtQJ2kofnyuqSbqiClyrOsZQgs8DGRSoUoQB2A6EEy0gRjg+NhiQ8o8QO70A8EYkklHyrUqyO2T5/2D8a8A+P+IeFlESwwBTYOEh/+DLL4pJFlWWyLT1V06yybFtMyTEa+UJTskvYZ4OImfeCFIoldLJCI41iIynngHqh7soWMqaZypg8S1CGqxvlom3QZjbt6gXBLSJjyxVTGe8YGN2wcp6FRBltJ70W6/cPPFzO50s5KcOnLJ0Z5WzspM9nFDWXanWaf7ShHGvVAHnhtvAcpEu1Ssk7U/amjXMuyE83aWSSCUdIwJXiVZzZi5LxkaFoOCxwQFjJYNR/hVbCZouk4z8hs+OpDLbeJSpj1XKt2cBea3h/J6ZmF1fXVpeXV7bWD453Npa3ZtNpCy0oOUFO5tza2OTU4tLUwvraOry7yysrixOtZs1iGE5PZwvV5lhnaWF5bnUnVxszrUwKblXg63Yub7vldmOs150ZLK+szUOh3d3bXNk7FhgFbVx027FhpZH+qKZrON1rpAyBUYlQMq9YrGqQQkrniwpXyuSyxSxOPDueJXQO27G8t8JNFfM2oxHYThKKabLMUoFA0AelQM87ehIwKxELRETFFMoOwTSshFWGL4qDQIwbGTZXkHl9PN/OsCGpnNEYKDB0jrdTqSgrGOlMbWyiGIlheBjHKbJipvEsAelivT0gfMkCSRs5v8j5DCmjghAgSZ7WBIFG/eqFL4yGQoHR6GjIPxSNDA3/5G/8+CcffBgcHvZhPzRmI6EntH94OBgc/smwbzQYIemY79IBOoIRhRFM2fSHWIWXVBYgMgmURfLCy3D2CGipIIkcJYqsCHwqHMYWLv8IjjiQsQTNY58rZjIQVIw8WjISWiXb+pO//tUv/v67X/zy7T8Yzywvnh3+g3/zL/4q1UoC6zHsghxhWC5DMSrUAz8l+oyEzYiMyqqW7rjyylW7ciVh6fAqrFBYIXAKcKTWbOudkjviC1PUKJNdzubKY4lExtmaiHanwmFaL9Ynpjtz461S6ZPJzOrc/cfzj4/HmquPXq3PvPz+dGl7ewPHf/GxvbmxtXewv7ONmS+Hh/tHV9e3B+3i6fXU5uHB3/zL3/7qt7/75pff/+zj+1uHx5tLta1Pz3d6Ox/fOLt/Y3nv6dX5W29eAP7evLi4OD05v3l2en5x7daN2wfLC73+2OpOpbPXv/frP/3m3Vc//eqrr7548/oN2kBfCmAM8f0E44yeP0EXyHsb3an+5Hh/aef09u1bt+8+xIngR6B9n8L/fvbsKe4/e6fA8BnUzE9f3NvdOTuYbK4e78zObB0/ufPxV29efw4I/+krPALGs2aU21+/O59fWJ5ot6aXJsrl9nivOz67fXpxcbx2dN5u3jieWT5/8Ozhy9efPH/2FL1ATo9vX9toVu6djdW7BaCdadzHVZmoWoPCExKKaNoDZM8WnRpAl6VmLJnDZKwoZ2jpoilLRIznMnnX1EhQrilRTVKhsFTSLc0zWRZIKkZEgflFNIUh4okwLUQEwOHR4GggKnKhOCvyiRijmoiFsMpxIBH0TmBkGO6xkM/HE1D8YkzEHyd5kQhFWVmyJELWBEUjA6ABoxQ8gSJTmhmlNAvRUyGxn5NhREuRzdzk1HjNtfMAiBVvFqTgWl6CrwZgYuAYEY/zrSyjYZFL49YzfACRjC3OAiUamqonc1UohpgpnEtncqB04HlcuBRJUO1wmzoiIdl2KjMO+NPtdtCGrA2AJsuSoLm11lhnYn5pYWFlbWtnd//49Oz0+sLUYjGHgd/lUqVaYSVNlY10wZI4jgyH4hxIEdlKalQ8TKlshNIxVxylL8sAP2FgrRGRcDTki0RJKuwP+hNxMh5jdd3QNF2XgOBQUVDG8Qj63cVpNBYDiiKLHM7UwjoWFFHAtirp/Rkw/6NmB/AXW7c7aBHZ60/0B4Cg04PJheWFiZkcphnBXwe0xmFgFbizU6xjpvtgYnF1pjc1P7+0vjI5tba/Oj/R67Th01OTgOL9VsOF66h5FpaapuhJ78zUzRerjTqQmXarUCqmQOkjwUcv6DAoezqB2+/YFE0zPJCFWJyFVwn0I0DQ8DQiHY8lyLBn5cc6AHq1pnJlJBQMRcLBYCjoCyZio4E4w1PYBD4cgLsCU1/psFtzSnnNNJU0ZRkErVetvJVOpjJeTxjo12oVt57L8BtuA9ddNa0LLGAKjsIknVTWhupH63BfFEoZoHpZyzEcRS24acdxc47nx5H3VK9nL30JwD/IYbSBBinsZotpOc0n0Qmaw1k2t5RRjJwD1/yyC7pe87534/0RcBn7rwpeLK7nQ4lTSFnAOY3WJcxDoTlMQiKiMSIeIsOjFBUYhTUWGv5xkA27dSZKjwQyYylHwEmu2lilVG7U0f0EBPDk/NzC6vrqGsiRre393fWtzTk3Y+mSjJudppuptiYmFlYX1zZX19eWF0ErL892W/W0xHN6JpsvN8ZmVhdXFzcO6t0BrDZTUA075bjlWiFTajXag97s9MLM0uLu5ube9tb+tV1KtrG3Q4Qv00DQhYNRybSAxqb1lCpxVILPGrosGwqnZmypmBCqmG+BlpuX2RPZ963mKIKLRYfVeSISiAaCogJ/CvmDgZhsaznXsA1ToBKBCCfqfN4hEuVkTK+Yipxg4JbRXalYtSRlvDCW5yJ8MQtgTUW5lKKkhKioWplMpdYvgbYkE7SkqhqwBfh+6FJabYxPkj5FaUCBCUmEwnGCJfGpBFuU4IeJhoLBwCiGDvpG/aPwYgK+4UB4+MMf/3joyhX/6NCQ50TpbULDBwxkgLI2Al86GgZJ4vlRYqIqymCCiPsToiwoqiBZuiBpQoLzjozQf46XMCaO50hK5IiEP84QAV8YXiwBy5v0nHvRJg7USCQy2NHjTKHQfvCXf+fv/Obn33/+7T8c1PvL61P/7N/9y/8yWS5ytKvaZYvkmDjHGFJY4n6S0MIGwcZE1ZEJVk6VM5MTNe0DS9EkW+WHgwpjxvh4UOuN851qlcDUixA31qBBroy4aPHH3lyNq3ayACWh0+uM5bpvi5XNg4vre49WW63dN48n9r74/GBxc29vZxsfW1ugghF7d7AVa+/g8Oq1q0ubvW77Ua24vvLkP/6zP/vVb7/51Td/gg1YF/Pz7fkXF9vd1fMbt+9eWzx+uLP16NVHj27fPMfZ3/Mb8Dg7OXywf/dwZ32qX9vfd6Y2++c//bNvXn/z7dt37774HIHx/Rnwp5e70C8+xv3nhw8ujmdnZpYHU1PzoCP2rt+8++DWnQfYgPXQ68J68hiPf70+aK8XGod2nz9/cH3v4PpSa/rm9U7v5OGDOx99/ebjL9+++gwA+LX3fV6C2n739df3lheWumP9haV+udyBujpYvnrj4mL36u3l3Mz91YWD2y8ePfj8k+dPnzx+dP/urRsX1zfaheP7k9UmSJtaKZ9JGqrIKNW0zgUEUHHpjMYrNpusZrAL2gCxxaIhAqMpybwhaRwlc0nXkfkYGaUygmGTsbhUSuneEBInUJiV5feP+GUV1Cwbp2USoCYxHBoNxCQ+FGNELh5nVRNUpAwIQwK2YyhIIExGAuERH0MwCTKUCIfwhIb0ANjk45IOZJEIkTQUbU6C/6IUNcqalmMnJZlFwzYKSr6KANxvFZ1UqeFNh2CdzDoWAqeODcwAWiqPGzwgQ3FHMZPGNMIU6NZkGhBYYgGANStTQO+ICggSqIY4l4l+RI6Vwh1WTU+mZUq2dN3qTXQBvtrVsfF22cXw+Vyh0my3u+NTC0uLi8ury6vb1wB+j28e7a4AkOerWHRrJdCUhp60dQBJIkowtApIB1SUIwlG5kMhQb7MQeIZnP1jWRC1ALvxWBBULlyVoN+z1OFAz6uAjyId8wDYn0BSDYuTBg1M0Lzk5Q8KaEAJlVRUQHN7YVVA+H/UglukM97vdzvwW68Hf5ocdOEXnhROTmWhbMoAwGj9AUVHVnXFyrdwZGm8P7/Yb41PLa1srM/Pr22sLs1ODXqDKcxiGAzGm80sgJfuAbCuKZptO1BbsQkLALja6rRzlVYh6QDL44AGCFSEoDk6zmJ/uygrnmMmR5EMQ4QpkeFkUPCqJqC3MRGLAMjqmFRfrikj0dFgGLREOBgKBCLeYRpFhsNEbIQ3WKaQonLVMFfU9UImXdNynJiTfOF8LekmgWlhOgTGCXqzSDiK5HXF1YqGZSmUnCsgCmRytpuSWJISkq7llvMpicnaGOrDusDCHDften6JxTxmxmNXV7n0Qxf05ZEw/K+8d6Jpqg5nJ42Ej4fr4mQrjgD3WQ9jQvAMuFFrevCLO9CX5pjes+CWVM71IMg1kjmL5XWOpQhG5LGLJxZjZS5GBYdidDQQGsbUz+FAxM3phELFM03MTlFYvtEGgQ93Gl70MXi/5uaXV9c29zD4+WBndWNzIZ9NGYqqiLJs59x6a6I/u76+ubaysbGyuLiyurLQb9bzlsbpgErF+tjE3MLWxtZuo9PDkwXZgoXguIUSMKtWvd1vDyanJ5eWdrZ3Dw82Vg5OZSgT2HgvKSlbV2UuOpLQlWQ6mdNtwyB5LqilDYOVkwwHjD2bCZWAr+RcnBLzOqERfzNet3kWM5eAaicAwwOjtKTLcaBb4aCYVjI5NK9TGDIYZnlNcFw2UsgRcjmlSBRH+EOCLbhlSxa7pUZNiFPZvMVjcJBi8elYmJd1x8nnx8rBBMORmCBGw50uyYpuu8VKbaxHC268pPH6FZ41QkCOk4LK8iq8AAYlKMn4/aPeLnMIz+P9/kh4+MdXfB984PcBAHvq97IN2jsLhq+Fx8iIH70n0ew+SpCggPFAOOznvd4riXdU1rDpKA4e4SGRjOdFLIdlgJepUJQi43Czx0maSFAM7YWeeSMPCZKNBfU9MyGUnfbRX/29v/j9u1/+6qv/bKYzt7W99l//z//iZrphS4zDK0WbZPlEwlRpUud8nDFKkSTNAS2ntbQNPC+9Ef1ghE8mk1rEF+eCkwaqZAAAIABJREFU1DAbjWtTLaPerKcqKZGNR8bSdicdpkyuPLeSOhsPWoaZG5sY7zc7bWfzudzbPD9dO78/GB+c//y0f//rhxvLq/v7W7j5vIl70NtohuWNIu3vHx4fbW3OTNROjpLzW5t/+y9/86e//f6773/5+b2DlZO1tdbkx3eOurv3zh/fXVl/fnvu4ONPX9y5Bfh7cX7j9OIW6N8bxydHd/e3d/ud9uJRszO1fvwnv/7FV1989fWXX3z+9g2ezb55fdkG/Yn3ePECgPXhnetbC5PTM0tTy0uLM1NTkzMrB2fePjR2Yz32zoARf9//4ekz3JZ+8fTZxw+O9q5eLLQXrx2uzu3cvn/vsy9ef44SG74JfBt4ABC/e/Ptt/e3Vua7zc7CUquAMyadqY3jG2dn164ftSvnxzMrt54+8wAYoP7B3bsXp2ebE9m1j1eh/lRqjWo+jXnArFJ1AIDFIohB4KqawSQbuYxpKTiUwlHxaJTV5GTOkOGmFSgzk2IBMkJUBi2pEqSQT8NzIIMDbEvQdBiqg6zhZhRByrwsiORwNBQhFBEUMJRdAGBDFFWJphiCxXNQIhaN0/EQADB8KkH4I3jDAQAHIgzQZSYqaBonkREoQiCaJcVSSVGKCraVspK6RkcIluNVPaXJptufaBXS2Xoje2mNj4w6ZeiAwA6AJoYRiiIL6lDQkWmj172bS6cQgJ2krXBAN3Q7A5WwUm9UixhJg5rJi0P3ppngW1uODEtZVYvtVneyNz7WHe/U826hCugLgrLTarX7M/MLi8vzc0s7R0dXj/Zv3Lm1ncm+B+B6Jem6QN8VhhP5eJQGZg/rTbMUAn46hYuSKo8sF2cUAYAxmYyMw0qnqCiJkd6JqD8CZB5dBVQEYImJhxPRSCgQi4ThslPwYBmaxp5nLCqy5MUAoxD29rdAHzE/qo71+oM+gPAl/nZ74wCf/cn+9MLKyuSEa1sGvJU8y0veFLFiGE6+3kHfm+n51eWFhdnZ+fXtzY21hfXFmZm5+Usr6MnJfrfmwkU0VF3F42lVT6IVB1pH4XhNpdXpQHUDAMa0BenScIMTWIJVZE8Do1cI52VPEKpExSiadYCpaKCZMEgVU6IJRXWa07nRkdEQ1KNYJDCM2WlA9rD5LI5u2EyE6RSJVDYxalWsZCNb1ZNS1LWDw0ZTyxlpkKFpF4eGvOiicrl8acJcKtdsNWWQbBpbxEAIGek0kEyC1LKmVSymFXhGK51yeQCrlAt/cD0/LABKD29BABc8/M1fZj3k87jNncvmi7LpcFZSi/pFx0k62bJJp5OZQa3dao2hF2Wz3ag3Gx4NAD0OL+R9pAOitwfAjpVNs5yG8cgxVhFJiogGCdMkYmRoKIwD9sMhYCJDfj9DSUSCDLuNjGkIKnMJwDVQ92PdDgAw+owurm1treysbu0AeVpfKGRtAGAdMNjOZRvt/5uq92qSI82yxNrapgtAZob2EK61iHAPD611REZkRqoQqRUyE0ACSAmgoAuiGlUFWbqqp9X0CO5wOLvkiqEwkkajkU80GvnKFz7yB9DIB+7a7BqHZrzXs3rWNroaMhMR4eHfPed8373nzLRnl4FTjdbWVwZLI5DB03CbJqK0CpcDR907c+vLK5vTjXosHtUlDRadjtsApUqj2uo1O7WZpe21zbXtpas3rl6/xQWd+XN46GYU1CXrmaJFyzLg7RgasEF3IG4ZJKnyNK9YbJFlcsBoLo5+L5S//Y8KOJ7Ni7zkd2N7ZojlZSI0MemfoC3eBHIDtxgd9ngpTuW1nOS1ijydsUWgrSGPn4vJ8ZIt07VCvi4GCSsbY/E24eKCHfFFGDEWTyVqJWyZCIYZQVaRm9m2pOLpQqGmGekwJWuxSwGJCUsWKTFXeJWMqSxaTaP6veK0N0/6poKuSc8Vb9D1i4+u/OLnE5OXriAGYzzhFccNC5AXz4Avw1e7vOjZjh5WQScbKUISrikRlr4AOCgJmiVFWOxJRMs7bNugAY3DOI0EJYID3hFmoACEMEQ7ROBPIVDDJMOEvP4ZMyDko/XVr//z3/31Z7/569f/alAaLV47nK7Pp6NNVhUlSkwbASjC4VLIr0thhhcueemAIFrtOYzkbK/0F9vRP3FHFE2Wp7whlvKD3BdKeSUpZ2Qr7gNJ4Etri2sl92yWSxzMM1tNJiclqq35Vr/aKhnne9LS+s0b6/dutNuDp2/Wln/57sbq2mhr/R8fmz8ZcezsXN3d2buxtbrWrfeeF5vXlr/4Vz/+9ne//uZPv/n23uHm9bXlbuP5k+3p4dnHT477G/cPt64/efXoGB4np6cnx7dPT2/fBAl8dPPG1k6nW1w6LjWXh+t/9mfff/jyqw/v3r8B7P3i9Reffe50K7969exiB/rxo8f3j3aXlxZHw/m5SqvbXxwudmu1mdHB4dHZHSedAQ2wcB/aGUjCY2DUzA+ePrz/6OmDG2vH9zbz7fN7w9m1swd3n394BTiP+PvawV94yrevX3344fHqYKFR6IxmS4VKa7rVXti6fuv02vbZenrubDx/6/D+sycvnz8FhP/4zvnJteONpfTcy/1qoVbKo/E75gGHlVLcAeCoAUiEdq5mJYVGKrKMxr2hcICWBSOpCoTXS4Z0S6dFiZwgTEnV4G7gMwDAAjr/ixQCsD8w5VahkgssQVA4ghpy4e6xzLkJIPSBICOpoIAluM8ibCREUkE/4Q/6Pe4rU3AbEiGQe8FQhOWDU56IpBiUD8NsZSoQJnwRjDLQRYIRAhyAYTRqK4QngnpNNBRZj7fmqpj6WsAiiS6SqG1VGQRjFLAVwEHiBSCZLKvi8EMibpmpVBxgQY+asZjMSjqsRhslTq5czDuhcwjAUQBg27ITUVGKqlGBVGKalmz3pqv5RqdRTNrpfD5bKJbRWrBarrV6s3PzC7PzKztbqxv7V6+f3r2aTpvZYimXLVYqgOS6CFRXpnAgn9FEzBrUxVDQR3LhECgY0umkohxHKxr3B3z+IBXGs+Aw8HhYI6B+IpKAiYGqBGsQ0ceLHmFhbM4gMe2P5XCKEBMY4CPBPmgEU8chmqV+Vqpj73Kn0Wq1Op1Oq9lBHJ6Z7XTnBoPpaVtHoS9gjANOL2HTayJfaszM93udWQxsmK/NrG6tLi/DfQwAvDA7PTPbB07Z7WRMPWbpwNdEWTdUzVT1aAxkMG7iZ/KVeqNVLSRNK8Zi7ykCMBRLPNCnMaAZ98cxxAMnp1gFXjZJSnDNFYzzINmQ2xsIM1QwrDfz/kmv3+ty+/3uKbhHfJNTvoDXi04kxGQ4zFVyfCrOXaKrcbmctm3d9krREKFF4J9KQ5HFF+OcAV+MApcR+XLZUlyyDJpUE04eQDpqJU2JIYNCwjDSuaQWFnJwU1iqjLvCAMCA4pk09nNdmFHibfYfAjCsqRS8ad6KcUZU9HhlGwA4kVWoRDTtADCeWdQqDgDnc8WLGEJ01LrgjD/lAFta1oJqSTIkUE7sp6Owa0iRwl7Cc2Uq4HdfvhQMgBjDSS5FDov+ZMVSFVqM0OU6vLtyoY7hmI12vz8c9hfW1gere72lYW9nazSfihuw/KA4i9FkotSabc+MV1cWR+tba0ME4OF0qZhPRBk9kUplq+2Z9sygP7i6MeyacV0TBBXYp53JFErleq270Os38mahtbq1f7C1sX98SNM8fxGAyeoWjvaRPg+rx20jCQzYEEjaJcQNgeIMgY/LDJt0WxjDAACc+Gnr3UYgxiuQSmSLKq3ito/XG+IYJRSZnPRfiRhCNBeXdXivAMAkb4hiKeqSCkookZB4hor4CRDXej4hk/lyuqkFA1EA4HAg5BFsOaqFwoxkJfLpZgk4WzBMcRJQkWgcSgFUi7hpZsoZhouICq+EL1OUpsSBKPhVU00GpjweBNMraLAx5Zqa8Ez6Jq+4L7vQDOsy3IeTly4DAAPaYiwSgi92KrjdTiu0y4U5DLhIMT8U12nA5ZFU3JdSdEaKyySrYHcp8GaeJlmBxTFgkcJIYHbK5QOtzjLB8MX+FrrtRBwABjT2qvEwm81MD278V//83Yff/u67vxuby+Nrq1//8q+e0aUolEpWz5lEUOTDFc4vkT4+xHkpZSKo9OcHOdPSy2vXzqvRy1Mhio+lI95LXplIrliFXjRuUrGQXv6Fh7N4jVyYW7JWazPJ/RF7NEr3lGyj2a/O1BsJ+8V0crh/cO3Go1G9tPX+49mDr19trW0ON1f+AwDe3EYvSrThOFjZmJnOn23by5ub/8VvfvvbP/v2x29/fHR74+ru8lz+5OWNzZlbpy8fzK0/Plm48dVn52eAu/g4OUEhDAh8dnR77WCu0Rrc6HXmN7a+//2Hb79+++7brz4HBfzF69efOy3QaJfx6tMXz56B6vzk3rXVxcXlzZVuebo9Uy91Zufne9O9/sxg8/rt0/O79x48vH8fQPjfAzCi8YOH9x49efTk2YPj7dOzcW32+sPt2eXTO+fPvnjz5g2g/Os3CL9foOT+7s3L7368szTq12v9pelSpjrdaXXHu3ePru2dXysVDm73x5vHT85fvnz+5NGj+3dOTq+fbY8Lrcen7UytCKQbbnwLKL9ctBTaxWXMKDJXVaKiRVgpCvZK0iECSj/IEMUSaQaQImTE0K0/MhGKiqpJh8Jy0ZZxvIdjuQgFmsXjmwpEY7oCKg++EaSsD2SaPyKSU4SAPQScrCrwHICbJBWJkLDI/MDmva4JD0VR/qCH8PouABhWmGpQBMMInEQBDgVZmqSB9RKsFGBUPLw1+GCEo6A0ycDqjWSvm02VSrhBmHH8dC3dNHVVh5fCiyo2DjNYHyKkBDo3ZUVjpm1HNWwaMoyozIo66B+oBU6uaxH7ZEvJdBoKNyhlwGBTkQ01ypOyGY1m2+16udZIlnPpfLWSNkq4o+kE0EzjVE9/fml1Z3N5/eDG4cndvZRtgBKEqlUuJ3S4SiQjgnAnoLZKHAX1UxZIULXMVEAUQf9G0E2DoRGgggGfQ5oDQIDDAMZ+lzsIABzGaV0F4yfwo3FSVnBjCpcofBcnOAet2Hbl6EvMVUDM5/F092dNzFDs9UD84r4yAnCrM93vtzsIwL2EHjM0BRiY6hwBy4om2flyY2Z2ulrrLQ2Gw4X29PxgtDKenVkcDeZn4Z2C/gX8bSXgIpqaBM8nG3BJLzwVkpm8YxkF12a6VgDZmFTQ3odhI34qFKFpjqMuxqScjk/MKxZ0WwRZr5hw0U0NNDAl8r4Jl5C1OY9bNUmSwOBor9fjCWL2XsiLPaZuH7A3n98vxpR4lnNDSYolaumcng4z8LElwrRpRPHAIZ50BDBGKOThAy44U8qltGwZIs1ZaWdOCs9gVIA7Bu6OVC5vMnTGcGbzEHvj2BuFHTtpPPtNX4wNoTMWNkH/tAXtNEGn0mwCoMLgPQEV/ZwTKYlLxordqjMCVquWi5VyCY2wyoUisgB4VVmn/Tl1If+Q8ak8TqNQFK8qTJDwTxKyzAj65cnJy5dx8/kKUBEfaZrxKC/TqifdsHFAgSaLtUKhVClUi0UA+s787HA8v7S+Or+82xssz2ytLS+mE9GoIjkKOJkot2an++PltRUA4PXRYLS8Mu6Wi1lT5RCAcyByG7OD/nB3e2/eBFKFHfuSnMhkKsVSrdLpd7rz44VW1CoPrm2v79y6wQjIFrCzLqKA1tVVgZ4iqFjWiKcs1eJJjfBrUUtiTJESeDloqaFcPo2xSD/Brh3/IwBnk8m0GlSoEGCVhxCBgEdck16ADtnIpjVDVamw1xvhYoZQsb101ghZSVWE8gNkTVa4jC1Tdj3ZtomAlovxlD/i5qMCb0HtUexkPlvPXLniodBtWdd0K5PH5jz4HNKZvMWLU6rKy+SUP8QlbYbhgDyR3suBSMTvI3nePTWBChjw1T016ZoAXL78iytuf3jyo48uXbo0ebH7jHvUUwjCrosvRlNo9NmJhAOgvGFB+90RCfUA/MDpRgQWNI4owDLA1isRE9tYPgxyPeSb8ERw3J0NksAuIheNlpEgEQ7TYSoS8kfDTMysbM1/9s9/9eGHP//2v1zJDxf31/+vv/+//y6Qz1CizmnZeCQkyxE9GQqQIY4QaDUOF7Qz369ly/n8zO7p7MTUZZoRMjmDv/KLgC821lo23eQMjVDHbprTWNKfzW72xlYzv7OpPRzas0oWtGS1266Z7VfpysLx7tbpvW6lfPLd9ZmzHx+urq+Nttf+PQBvOQrY2YA+2NteH3Zy40fJ3s78+3/53R/+/Fff/ur7N2dXtw8Gw/z+62tbC4cPX94Z73+yt/b87dMH57fOzs4Qfo+Pz27fOjm+efv81sbVYbPbvTVdm1tZ/eHPvvrwFerfd6/fvH6NKYSvcP8ZcxhevXjy+BNA4Jtbg4XBeDRsVWorGzuj+elmvTWzOBzOzA3G61dvnt29//A+ngb/cQvaOQwGEH4C2vnx46fP4fnu7Fbat+5dnR2d3L376Wev377+/Is3bz9D18vX2A79zfvX3304Xpibadb7S91UDt2Y5lav3zraOzhZr7TvDVq7J/cef/Ly5ScIwGfnh2f7q9XiyaO5ZCmfLxVTdjwqcYyQN2VqisskQKJpsqbRsaKp8aBBQDyR6B4eEVglLjF4W4SjMV5jacLFGIxsMqGQVLBQAWNXPwaq+13eCcJwlFSIBH3K+6dwj5SRSVdEZoG7IRYqqggFF/ReBK1RAVsAXSa8ZIT0+V1BrytE8s4ZMKNoZJhnJV6MEGSYYNDlGABYlAj4GxsnE+GmJKhoIqaJopFdqCUS5VIyCXIiBas5bqF/hhE1gLpLIMwkEc9HuXBETGZyGTTcMU0N0FfHL5IYESNtYzb69udBIEFlAPWWT2IknGXiHBIIQlOIyDEjWsIIqkI+gcPAjWohAxBTrVUqlVoL2NXiYDgajLcc6/GbJ/f2E3YqAVoHcChf1iNhWGoiQxI+SpFpjgXmwFIhHycG3KxCBR2DCl5AAKac+cFIGIfvceA3EEQ/vkjQExIVp0NKYogg8BV3wEcQoTBmqYRwfhBtJ3GE0HGUlDBYAR148WBOFH+G3pPtbs/5qdVqNtutTnd6tt/pAKB2+ynHMRu+TRFlVVXxOaKZant6utOdGSyPV9aWRwtzi+PN5U5legE08Pz8Qr+HirqVietGTIenExXDUBRD1Q0cYUpfOEIXcAorl04nNJZBt72InwyRuNENr1Hi0SzTafvGP5NFCfSobFjJlA1aNMzrOjXpohMW74eSHQ75XVCRPd7LfsLtpSkA4jCByeaX/sTlmqSNOD0ZUCvTKbNctBWLJbVCKZ3wwcvBkTN8OanMRTBh5h+3oYtwq+ocFXXSo1NZPWrrPB2icUA8U7Il2kgk4LNXjTgeAuNAcepiFDj9RzMspyHrj01Y8AsnT4ABPDB1zkdo+G0JW5ASZrXdxCasCxPKMvpwlEvOEDC8npxzePwT+iTiZpoXlQgJjBcZFRdyuVyUJnNybAITaN1ed8Q3ATQ0ninmLQU+p3CqBRJQFFiqVM0XSlW4fSvNZq290EcvydXx/HhteWNndTRcHWTghtZlHI230slyuz+zOB6sbY8BgMfD0Xh11K2WM1FVNBLJVK5Sn67PLy+tbo53e4YJipYTzaiRSsRLpVK11JiuNXv92ZWN/UG7Nrx269YeLHbs5cUuIkGLRTVV5sMeHxePRxPxKFBcAQRYLKnwMhPxoeVLPhjN5ZM/eXGgA8c/KuBE0k7FAiJNEC4Qq4IgcmG0syXEqJbIor87S3o9IcZIMIVEiMrYISOhSlyQJMKkGuPzWYUx2nYzF/ArOUtk/BEXFZX4GJQV4Ni5XC0eDgUpiuawzxA9Y9Lof1cFGi3rmaBHNWWWpgO+lMkE/PEM5w9wmow+HIGAC8jPlcsO/rqmJj1TPg96cLhJ3+WPLn106colxwYaNDBi8OTUFGhmxGAvxhISBJQqfxjTfn0eWJc6PLnMSioXZkSnAQtbryQWFgUr8JhGyoS9UzgvT0bQYgezvskQgG8ECkM4zED1jPhpn5COxfcWZh7/5rtf/82X/+1Gfrx60Phn/+7//KtIyeYlTlBTFhlSDD6UCAa5iIoN/mnaM1FYnm0nM9VCf/++fdmr0IJZ02Wd9gVIraiWfBO2UJcmYh2C4rignzCKu0tjoze9txa+N2/2jUq932q2p0vW1qNYZ3iyuX5vv10c/PKLtfHLb26sbI5GO07+x8UhMJ4B7+xsX726s3djb3V9rpW/v5Lc3Dz8F7//w2/+AAL46/PjrYOtYWnt1fm13sbdz+7Obj/aHz979/m9o+MTUIy4AX2Mx8BH2Ie1vTdozrX3x6m5teGHv/zq6+8/vPvqyy8+f/f5hf797GIM+NOXL54+fPT00fnNxbmF0crSdL24sHvQ76/cWJ5vVetdxOSluf7Sxt6N4zsXU8E/NWE5ltCAvc8f3X/4+NGjJ0+vb98+35lp7J/uzm8c33v0ySscOH775tVn+IyvX7/99N13b15//fXu4vxMqbG0UM3lG20gvuMbpwdbZ2fdzN5Bf+f47NmDZwDADx/cOz+7dXprq5PefbWRLefylWIiFtME4Hk5U2G9Yj4ZM+OaqEYZsxzXBYBVWFCgPAN+UCJGShOpINxLMVuRI3TIw6icYlDhMAfVF7t3OEwBIIKEz3eZADmkiEIk4mIoLuAKAFsFVuliRLgDGAnWj6oKwOuoMBkhUMjApxyYugLoQhPeK0GfKxThxIgvwNGKGiZFVpZE0NKEL8zSnKTxQZkneE3DGV854g4wRi4VA81mZBaKqXQxD0QWqqKTKWPHdN2A/0Bxow00g+oQ4yMuPHwz2bhtaDEziqHBEi3ouoYpqFCboTTmUmh5Wywk4Wngj9EyTIHVigCsG2ZhZiEt5nr1er1SyBUrxWKl0YAfy41Od3ZpeXnopBFeO9i/eevOYSaeTeaw46aUb+dVmhFlIRyG9aApJJpwiBTuE4SnIlEVsJZE5OSBm0dCASKCI/e48xQI0WQwQvonvfADwV0AsMwGQj5ictLvAQyKoLkeiUQadwBFjP2T8DBBVhz7ZTxmxTlgwNJWe7rTnuniBBUAcBvkcHd2urUwWujMJgQVve5Rx+KJuYhNr5lmt9OdgxsZlO/K4toGBgKPZ+1spdmbm51e6mM2d2+6lDKjMTxAFiUgBgw+vYi9LSCZEphE0Wh128VswiBZHhtMwjT8gmZFUcLQJZ4JQ70JB0OsykfCuhA0gO8kQAcaiiEKMS0UUMyk6g1QQYEKeLGjlPC6fOGgy0f7vQTDQDENRzL2lN/MUVPeYLpp2MlmPJGxGCFZyBpmgM1EY7GomXCO9XH/uYQt6Tj/UypUzKiCuQtpxxKiHDWSBtQ/UowmzCQCMJ1KqpZqaFYc7g0z4RwlYyZSBgeRcj8BcfqPY0ggpXAvO0EnZcnSOQIAOGanknGgryZchGqzUQdl2qiXa9ViAW4IFOQ4unShoNNOBzQ8h2XE+AgsPSEsyBRmJwcYReQUJRKEqg/6f4pnfLQo5yrFOM2TwQmP2TCTPCanlDAPuArY3uy2Ks2F+dm50cpoaXFreXdjZ29heXkReI2lCMBzpFjSLoIUGgznV3YRgJdHo9HKYLpezZmGHAUMzJaqi+2F0dL61mi1pccVwEMubtvZRLxaKNXKrZnm9PTiwuLMyur6SjU/PLlNcyKeWtEhv0BRIt58rIwWzmkktoYpB8RIIGqJfJiUSUYWddMIxwsZHEnA9/0T9Do/W6lUIRsWaZfPQ/jcLMOLIa8LpCZryWbWUA2Lp3xugjLskG2SZCoRgs9IYgKk1x8QDSqbUQW5azfLfp+Ujyu8L+yKJKJGLITpLla+1Lb9QVriwsjzVSMWT6YqRSRktY7B5Qo/V0wyoxl0SOBEzZBVVswqbNCL7Y5w9X3uSx9N+i67Lk1NXfJMeCd+8dHljyYZynPl8qVLH/0cwPfKpUtXJnEmCZuwsBfL7fIQaOrmQ5ehEEUGvB63zkmGLCkco7BhQeIUXKywaDBQDqAVVpHE04FJVwRPhQFzWWTiJE0SoIZIoKqRIKxmwhec4HMby6Xd/X791n/yT3774/+wm5tfOV/87b/5+78RC6bA82o0bUXgishhPqByvhjzc6+WYtzehfHMXNIsZec3H5tXghOENNiNOnlqYZVNFiJusboev1Q1gKNIbDAoz12bzfK72eUD5tZSZl6tVLq1TqOVsW7djC7s3F7ffTJs565/dae//c3rteWdpfHW8urqHyHYMYPe2dq7ur1/c284GGZHj3K9jcH3//Hv/+zXP/z4/TePb25c2xx2e08fXZsbPHt7v3fj5frWs3evzm/fv3dy9/jk9Awl8K3j41u3T24fbG31S61bK8X5ldGnf/3jux++/ParL958/eHVKyeG4RXuDH/22S8/ffn86ZOnj0/WZ2YXV9YHnWr16v7qTKrc6u5sr803sHQtDgfz/bmFlZ2bJ+d379374xjSs6eON9aD84dPHj98/OTRg5f3d6/dv1Zr73x8rTc6f3D/xZv37969fQ0A/NoB4A+fv/rw9vUPn28OBpVSvz9XytSmG/Xu6s71s8NrN+eL3Qc7w/1b53eevPzkIbZBo5nX1X5y5d1hrZ7PFnPxmGkINM3lLF0IqOWkHo2rQLTJaMnSeVUWeRpd1AhPROCMlC5RYSISjCZ0FrQsKDE5qpMgZFNJKNoioAaFVonBgO8jIoqx2UIkMMWToJqJSVeIFYKTNBeGO19UNVPXBIrhadyAJii4A3yBwOQVH7Z4eS8TAS8RZgUEYE5TQ6TISLIYCkAVommKl3UAYIaQopoVNXQl5KLtXAZdJhU90cvj3FAmd5Fag8Q6BqCJplGirOuq0+GLw+1CIQOyNJ1MZDJ4BhzFtEEZADiqWyncpCyVCk6LTSGZzUK9si3VTFg6jhIbPAkArJvtXkrKzZWxpRU7WauVWrPd9AQVAAAgAElEQVRRLhRrrU57enZhfn55G7dcrh0eXT89zhsWOmEVy9XydK8sk4IikQTBo3mYJDgJ5l5aoT2kwoUAgNGyygkmC/iCjN/nA37i96ACJsIhl8dH0n4fJcG7UVSVI2gi7HYFfREC22QjNItuVzyoV8BQSVFlQUYRzPMCvHdsUhd+1mhjD1an06y3e502/K/Vme7MzHW7s3PTvemkLqJdpySxMn4nCA946fV2u9NbnAcFPF4Zr69vbq6tL8/2qrlirV6rY0c1nmcWoMQCLRA0VRFF0FbYy1ZqVDI26EkxXqo1mp2ZaiajYbgihRmLFAlSmJfRrEsATJbQg54IqHpM9HlFbIvBpGrgTuj7iSyLY0H2cRHSN+kBAeEGEezYf3m9/pBkmoocSwpuV0jXaBmPnc1EtWCLSTepd3IBOTkpplQlGrXTFjZNYRtW0WmrLmRLuWJJEeM8w2CCUS6eyauJqMoHgpSVMmK5vK4GzKyW1BKslTJBzEYtG2gd3GIZhN3MT7o3l0s4w0nZPABwMp5Jq6LFmFHTN8GkUmrCztgUELgWBjMCY3O6BSoXbpS4AY3Tw7itnUmmsulYImMa8ThtcBQmDNIST+LGe5CHq6vTV/xBz+VJVroSijIcKyeqSlDgAfG8iXIqqitimKsA+pbyjVKlVq/WOnP92QVA1c3NjfHK+u7WeHt7KZlOWCo84FNK5uqzvYXR4sLK1tWlSm9lOF5ZHQM3SAMAA99I5Mu1Tm/e8TXfrcHqiLKCgQwVe6Br1frFrdNpL60Ml69tNsStk8ukP0IDUXZN+AkirKbRkJPyuINqwYglTOCaXjnkUuKSwggyI8DazAXgi1JpGxOkkLfELUcDAw+JJdJpkpUIjB/ykQrDRtwTLvcEAKJZiKsJVWDCPh9r2rJoSd5M1s+nFI0JB8N+QrTFTM4QmFaqljd8dD6tM1P8FKmZfCLAKjELPvhaNkgHOEA0BmfdMd8pkUjliuVaixNjmaBgEHAxXUKGFGxNwIENBN/JiStuwjd5xeOZmPRdwpPgyckpz6WfT330J78IctTkzz+amrgEQvgKZjMAHDsI7JqcmHS5XO5gKBKJBH1uWKckOTUF8h/zxdGwl+GAhIqaCKUNGA5aUbLwR5wiBKYCkTDcA7gVFsSsbyi+UAQJ/E0kFAaBTNBGKqzYi/t7o9XBxm//s9//9zvFjcXbS//T3//rv+UrGZaWaLVgUiRvJjmSNsWQQPw8YqbE0JWlUXehaNit3uJ5xuudkrjZfdYdvuLnxHhlmCMDTPywIVTDbIjS0Z5g+2CJp9djB0PpeCG7YNQbvXp7upqOvlpMdW8cjI7utBv1j7/amf34x3uDle3FrZXN1fHa1sb65vrmxgaI4O2d/b21q1u3B9uL7fT5Umq4vfMv//Cnv//1r776/ee39nd395ute49And787M7CjccrV99/eHLn9Pwcz4CPj45OAIGPTm7dOjq7vr4506jt7Zu97emHf/v92998/eWXX7578/rNW+yNwgcaVf3y6dMXTz55cudgdTjEWlXOz906XOtWy6VKsz67uru73C210K1hcW5mMBjv3Lpz9+zex/fufPzo0f0nF6lIjx/9FM5w9umnt3cOTw7btc2Hh0trRy8+efH2q7dfOAfBrz//4u0X8Nzv3r59+9Wnw9FcudQfzRaz9Xq50V69enRt9eBmL7t/Pli5ffrs5Jcvnt2HZzk7Pbu9N2v33pzVi/lyJZOMxxCXpIItkISYjhtxW1ViUTFWjOoqVFMeFG4o4CFoOmLH4Q6nCB8bjaqKILABv80pKTpISrC8FBC/HM/D8qNCPs/PA2ZclUDVBP0ixxFewhsMCCrhIynaHxFBXMDfyiIDeBwAWAkTLn8g6JuY8rrRpy0AvyEjiuDHxmn4ieFkQxSpQBhAiWSBu0cIMuRjorh5rAqEX8YREvT1T2R6DYyNy2eTarqUthLZNE5vxlQAEwwg5iUg5ByrwBtF2ztc73bcxCZn7O0UscFEMTAZBd380CIwB2s1h2fAURxbQhmtaJxfjZlqvp5I1+udVqlSrxcBasq4yZpC44nmbL/d6S8sb+1sbe3d2N0/unM9Z6WTRfRfqDZquWSC1aQQtnODSmUVOSrykQlaElyEzDJwKShZoiiBizix3bBYMU4FVhpO5ITxT/w04eJFIBWKpvHBkD/on/SE/L5A8KJ7GueKUbpK6DKr6jjnaBi6ip3g8PLVnzXbXbR/nm7XW9PtVrvZbgEgz/SnO/1Bv99NgK7GmWl8p4ozuxWzMrXO9Mz8cGFhob8wHm9tbW9BQV6c78G/UY7LcqrWqJazdhIKm62DmhUUIwqSwszgNHW1WspmcZdULk33ewA7CMAXjWZo9EXjmBTQAoGlRcATjiIEVaZ9XlK7cCQ0DU3XDSOetC306wiQQC6g7Pq8rikc6sCj7wDcEjKe8GqKqRH+SIg2C+lkOh4rVpNGgWHg0zQ8aizM2zHFtjS0WMYJokwhDzQLgBCNqEzFkmk6BoQsm8xkzShIplCYxL3jbC4Vpc1sPBM3JTVlJKNx07EYwUkkQFwEzQtTyhyOAiMQgxROxgF4VIs1jVjAzdgJDeRclIrHrel6o/lHAK6U8VEqVpwspHzOseGw7SRu3OC9xoskw6Mlqcg6+MuBJFKigp/kJz/yUJKPtPlQRI0lKCpl6aJIW5VsTGJBApfR9DRfvQhh7swtzS2BsF1ZWVvdWl8ZDq/vLqSyCTuKk+RaPJGpzHW6i8Pl1fHBcn1mfW28tLrWqTWycK+bcTuVLbVm+jjGtDy+2lBMM8ZLICPtZCpTRCdoAOBub6HfH65A/b+2069scyGaIlyTPopDv2NSARQ3ZDrgilhoOBeN6SwXcdNxE+myAIJe1K2pvJ208JI5uZ+wfB0Ll2QSVGmO49QgALDXG1FA3ftdHq9bUkUja8l2VKJCfj+j24qc0HzJPAUqWxNgmfj8YkJKFXWBqecLBckTshMxwcMALltc1LHWS6bzzaI/4uNIBlsU1YuAxQwwsWKprLCWpOLkfIiZ+DlpllRRNSXgPE7cwuUrU0G/PwBi17HBQgB2T/x88vIvPgoLnB+ELyDvJQeAL2G3tMvtwhPjKXjdfsf+igTQBCEbdnlwjFBzSDFWTQFDyPCQiMctaCZC4WhwwO0iAI/RmDISBroagUIZBuBFJA5hrgOsI0ZLcH5F3bu2tjpubvzVP/tv9kr9g2vr//u/+df/lCulGEbmosUYzaqJlEaZlSRIoEkuW7d418JSo5ePJztzo7N0mA6o0uw1gaBdhKAkpnfKdIhOjtuWyYQILp1KkIH1W11p6npyYy9ytJicN6rt6Va7XimVP8tXBrevj+4cNEvD579cXH/1zfZoZW1+Y211fXltc21ldXlr0xlE2tneuLZ9tL+91s33nhVn1ta+/ae//sOff//rX3127+bWwUa/evXFnYXF208+Xj8/3zr47N3H905Ozk5Pz0/OTo6Pjo+Pbh8d3zy6e3Nze6Fa39nJzq3OPP7db7755qt3H7784ADwT/j72evPPn3+4uWLTz57dHNzuDDaWJuv5zvXj0fT8836aHWmNV2vTo+2d3dmWpUqhskszM3MDraP7t29/wCNOR48QScsB36dbenHLx4+evHw+sHZwXxt5c7B0trp58/uvf7miy/evH4NOvg1bke/fQePb7651+stlaYH87V0qdOqtHobN2/u7R3vlObvXlu9efv+48evP3mGg0hnJ0eHo2LhxbPFCpSKBMaoS2xYLtgSE5ILyZgNRdjQebOeNDUUwLgL6ncTIG4tS2WRjTGxuE4B0vqDaVFMseEgnYsrNBuNcQzgdYiPuKYuAQBrMsczfg9H04CrHiIoq34flNsAKQq6FdVkiSUplgxFyFAQVpkv4JvyBAMBhnJPBQiX1y+JhM9Py4YccEZZBTJAYGgSzYKuJkgywMYMHMiXKb+fS0GxTUQVIz1XjcYzF3mi8TgUM/gNClfMH0YbDgUHVXmFCspph2XbTsqrDUr6oglLA34MNTCPgxzlXK6QgyKAAGwZ0WgsBmgGqMf75KhppPLJdAlKXaVWKaDxEFoLVtBbvz6NCXCL49F4fXf/6vZ49/TeYSlupktF9FrI24lyE4qJiFG4Ag+UQNV4mvByXHAqIlHBAKhCJziBDGHLRoQiQr5wmCBh2QadwYlQyA+kBqAVABi+1fFNxr0x7M4IQ8lmOTRyloBTY/eVosYAfBF7dXTukEXuZ+id0e12ez2ggIDDrZ8AuNOZG/ZnOzaadTpeRhecBQ+9E04q+8L8YLS4NBqMV7c2V9fXh7OgnwGBU2q+WS0B97BN9MmWcAfbCcwxM8VcOldtFrKFVqecjAOYtVvlvEzhgJVjJ0+iOTWLZ5wggVkeAFjgAiEZrbskq5h2rEQdF1AomdlcAvMuGUETIj6f33fha+AnQmGHeXCxbL6SzejA20IfeZLlpJ2189NZK6dGxEJGmQhrbMC09HhUSycQPuCjyJec/V8QwMVqWjMMUAsgYNPYlCsndbjtg6xpgtjLqLRoxtEgjkuYKezEwp1qbPJDAE5l/vjIXfhpIBgDmiQkWA1wdwZ8TDxhpKykylrxVLfRaFbrGN1RdZKQStiFBRIYz0MK2ISVAAzKJGJWQuN1NiwwQZrDfOIIIA2IJUEzJNLFTk26faArdYGXNKnOxdpZQxSoeCWji4zAhuEfLpTRfhsTD6fn+tNzy8vj1fXxyvbG8mB0Y38uVUgkbEXR8VQ7VZxptufHaytLm1sgfwej8Wi9V6tnQSJHrSS8qvbsHOLz+vpuUwUE5WQzhoFhwE8r9SbcQjMzS4MlQOiN9a3Dq4tV3oUTqwEvyMRAMOANaRls6aNcLgpnuLBpkoz4vGpCUSlBAGBQ+EKIK5n5aPInAL6YQsITYIDhgsIYEZ/b7/eEFKBqBPqvcIqsZRKqbSl4JsuoMVFKxYhoUWRTtiqKwMx9AMBWAf6+VMs0FL9fB7z3h8Mu1ma1ECkYViqVreUDpF/AhhBZM52cZwzNBO7SYGidSGTkJHfJq7Eg3ZWoGpqcmMJD3UlMIpzyYrPKlQnAXweAp9w/B8D9iBHgo8GgwiuXMIYQXaEvI/SC9vW4p+AHioqEULUGMW/EE44qoqSp8NlyTssGL3K4OceyQKF4LszIghCY9IQjrEQzgsBESAbubGfNUHh+E8ZIpDBFQ4Gg4u1RbuXW+sxMvfH13/zXx4XR1o21v/5//v5v+JLNcJps5tUwp9vxFGsnMbnTxxd6Sck3M2h088lUs7d2kogIQVXu7Ilh0U+pstU7KADgJ1pzhSDro4xkISOJqzdyVP7I3NnkTpethVi52+q0q+Xc8LnSXjvaG3+8VCtfe32vc/j1F92NtZX5je3lldEKwvAq5pc6ALx9a/f22vZMI3myld7YPP27P//VH3731a++f3CycX28ml19cX6wMHryfPfo7Oq1L97fPzs7Ojk/OT4/Pz05OsLD35PDs5vH6yv9Vmn1MN8dL539/s8//PDju68/fHgPAPz6DTYlA/6++vSzV588ffny2dnNtf7C+uaoXSsPjnZnZru1/tbaYLTc7+Be3GB9c2W+USh3B3NLo+HScG338PTj+x+jLcejC/x97HhUPn789OHjl8/vHB7eOeyWNs52+xuPXzz49P1bx3n6/VtA37cIwPAafvx+f7jcLgEhLWYa3UqrNNi9eWv79mmncPveyta1kxf3P//0xYtHDz4+B02/00ndf7cK3AZDgWK6yoekjCWzhFSyDSsO7N3krGbKVESepeARIXy+cCRoWVCYgsFgRLdViqTDXiLF6nY4RPNpTdJjZlQVaIEl2bDbe8kXs0ByQkX18TTj9wVdvpCu+QICzQQoUdBAHBgyA4oNuR38ddDt9qK3UTDIUq4Jf2DKS6hy0B+gJF0OcCymxIf98MAWYZ4HQcgEWWyc0mIszYuxbCYZBcFu5WZLiplLWbFkCedOEINhsQoiUArcaAY1JWsCh00+js3GBQDHEX+1qAUcQlWBqCezJQz7LWNjTdLOZOIIwMDgTQeADdEvG3FA5EwOvg5zbrM5EMHlaqVYrtVKuUav15sbjkdLg9Wr1/a2dm+eHe+VcFQJxVUOvqE7SnGgZVmMhRB5KSazYS9gr4vgJdqPMQygC1knPAX0Ph0K4/B+0I8O7EHcxiK8gMLYJYXemhwsSr+XILwYE4phwAL2QCPwIsHBHS5F4p1AJF2R1GhU5X8Gwhde4czsbKs1DQLmYgu615/u9edB0troVqIIeAiFkUgAwLphZasd+Ia50fIQ/ptd2tje2NpaHix0G83pVgWUbasE7CJli4zIUrKhgmi24k4rTbpYrRSquFdZzWbj8VKtWtYZmnJKSThyYXfL0D/lRji2uCgTWMM2rVS2UCnnAQ9NhGArEc9gT60oG3zI4/H5QyRB+FADEy4/xdMBXwCkbiONWQ4Bt1eb7qUzyTZQJy0g95sxMkIlSUa3NAOqPAIwgGW2UCpkUulcppQrFXTVVDgmncknMBpeTtiCSAUpzYrZmaIhckYmkTTSrNONFXe2SP89AP/RFCv7UwM0ArCdtkVT4Q1FBh4ZT8bS8aQiWGa2U6vUEIBRAANdwzBCeBVoSA33GvZOw8MEQWubAqPQpEQRQGFpoGLBCE5Lq4Ym0i7SF3ZNKJIihcOieIVRM9M2UF1/ugSgCtyUrJaLuUqhUKs1HCOObqO3vLqyvjUcrm/tbi3vXuunS/FEQsZ2BxtIZLM5szhYXhkMdnc2lxfGq0trvUolG9fUmGlnc/lKf3Z2frS2vr5VV82oxkimZaGjST5fbjSbrenZPgDwYHl9a295fftuEU8GPG7AG9+EOwCfBW9hb4YUmppSbNswDVnlIpQnZEV1khEYWlKFWP4KvAqtkHZ2nv/oxoGpDLaVN0idAQAOuAk8oSAACKciQD1TjusaC7yEBggXkvGgVNRIOyWKYoiCimNJeimhU8lWYtaMECrQDVDjk4zNx2RGjMZTyUw1R5BQmYABazHHozRXdvrxap2ILIX0ghC1UgIPFF+KKcSlS76gJ+DFZAWA2Ek3zhVNToK8nYQfJ/2/uDw1eUlgZT4wBX975RJuP/8UyoBf4PV6puB1o/k5XBCCIKmg18dYiihrEmjdi5EFWAF46IsT/CQvMpLO+Vw+oFMk48SyoAhyjHbgTo6gFwesdawOkSDh1W4eLiUO93Ld3d2nf/U/30zvLd4efP5v/+1/JJTiLK/KsawcZFQrlpZUPiwyXi+dn7FFX3dpejZrp+qdjbM4wQQ1uXlVppUACZWyd5AORDizvZy6EiIUy8glVG1mqPC7u8aNZeXednzJKs1UO+1mSbt5rM9uHm9s3+3Uu6ev92fPv31Q3l1ZXlrduQDg9c0NxxAL54Bv7N3YWltrpGcfp1rXV/70b3/zhz/91Tffvrq7e2N9vTz38dP9xdHHTw5O72xee/vNg5t37pyc3UERfIz4e4wHwLfvDXYHhdLcnXJzZbj5F7/99qvvvvv6q/fv373FDujPLuwhf/n85YvnL54/urMyHi5vrM/XKzPXj0Yz3XwDhPjD54cbK8OF2Uax0plb3tkZ97BxeXl1eTgcre7eOrsLCHzRBf3oEbph4ePuJ88fPnr28cHh6eFMafPO/njz6Yfnn7z78PbNxd7zO9x/fvf+/edf/fr9rc5SrTIznsnkYGmUpscHhztXj9fK4ztbi7u3nnzy8PPnnwKk3z++fXbQT97+YQ8obimRsHRVFUkpHZMYP1eEVRJXtXhciJURcEQnRZYMAgcFAI5HRQZURwgYLFTMiJdIUjEbKqaQUmIpDClRSFJkQLORlzzRmAIKmA0FZZYl/CG3N2So3oBAUn5SEg1AtJjEOpsrJKwjhBGf+8qkH03afF4f/ExqYsAf5ERN9HOcpIpsyA9SjyYdCwuCY4MMJiRosQhrp7IJThV4mlYynbJmgQKxUiAo0phqFoO/tKzoxYELmlEIILTgK/PoMAmKI4UuV0YUA38VmlM107QS2XK5mCiWUolcHh0CsIk1ilYcUdC/qqmGFABgXS0VUyCAs0XQG3X4qZBHIVyqtBCrBqP+4vLG9tWD68dHt27sgJxLAeIXytVmsdBdzsgAQqIM6x9gLsaTfjcnExOcwuGsAVwT3GIK45oLwsWJBMIhXwCuOg4fBCNhnztAUDIU4AsADoR9roB/yuMjnPgGuDycCGo/Gjdk9Hh0Eg2Bncs6xheCQv1ZE8C01+3NdOv1Vqs9jXES7Va33wUt0+yAAtZUTZc5TsZmKhDNURBChUZvdmYONPDs4vJoYby9s7G9uzE312u3O7VcsdXvtwpJuE66orNQZkjBRL2bS1rxTLlSTJcb8Ez1YmeugRv34sUGdNhp7qR4wenWxukLTtJxN0AExq9aCdtM58vlPAhLG8dobUzJwRN/oFy0F6o8mmD5PUA9/JTf5Q0J8SI6L1SDASLABT9yJxultJJP26pBNmpz5RBNqQrF6nrURvxwJHDKOQkulDIVgOKYbutCxErl4yk7nYpF06JKRygoW1a2aGismo0no2mZS2MzvOWEIqWdLqz0xRQS2mfgL3LZdDKP3qUZW7CAW6mix6/F7VjSSkmSGSu0agC99Qb+WKlfpAEXSo4fSB6/NYEOHxZwhKTBK+EILZKkIkTokDdIYXqWYmCUlBr2sT6f5lcKaSokesOU3YjqhhhMFzGbkwtxzUohV8Ge/AZ6jnb6ndnxynhldTTa2DnYX926NpcpA+uUolEE4Gyl0Z5dWFpZGw53NtfW4csGa91yJZeMKSBXU8VCer7b7i6MRosbAMC6QosXlmJp+Hjq+M/PzPYXBqPVtdXh2njzdHWCDAfcE1dcBHmRJRmgAHfhPvVPBvS4bgAA65QScSm2iY2BNC1IYoH21oH0XmQt2/GEk3phYyChmbEiGh9AAPbzLMeG3KAp/YoqxxN6TFcEyu8hMd47maDYkhE0sqIoAJh4aWA+lbhKxdrmrEURUtJWoCa5OIuLx2lexzPgZikQdlOgRklRieHcf75aKaMjdz0WE3hVZADWZSlmF5MyiImId8KFBli46Tzlnro86XY5O9ATOPFLXLo86ZqQaFkifVc+wt3nn1ywLh6Xpzz4Te4JDxROIoAuHMgnTFWGy0JRAoocbJzEWovdEDzFSoLEBaYCjCAykQgGMjA07vlFnIefiKCYJtAZi6bJiM8/d33bXL9mLx1cXfz6fztOjjcPVv/H/+/f/aVctTj4162CTrJqPG7KclyXVX9AKPVMkZidmZlPWdl2b/lOKkBHokLrwOB1KLh6bPawECRFa3lIunwRhZer1Xx5vBqdraymD3ap+7v2wCr3yp16qyi/GCaXrp6sHB22W4OHnw3XX3yzX9lZHALZG28sr22srqytbGxceGHtHm7eXtsa1607W/nxjb3/9He/+8tvf/vr1/e2tq6v9KtHz067SyePHx6drx69//Lj03tH905Oz09PTxF7HS+OW7dO9raXFyu1k0ZzNN764Xff//D9+y+//QIB8A0OIF0cAH/62bMnL14+uL6+OhhtjurF1s71zaX5anVtYen8h99+8/nDg631jbXFDvDT3vLuzqBdbswM19bGS4Px5v6t07v3nXGkBw8vMhoePnz4GID46bMn92/sHx/2alsP90c3Pn3++NUX7987u8+IwfDzu3cf3n/53Yu5RXiBi+NGutBotGv9jb3rm9dv94vXj+fWDu99evflq2efPHr84PTo/PqCvf7r+5l0Pp9JwQKR+YiStWTayxaylo1nwIaoZzUgyXiMG8F2IF8Et6B1nsXjWS0Jv2DDvlCaU1MsGQxDPYPyCSpLIQU66A9Tly8AmGOCIUAbnzfg9QR1yRNgKMpPSaIW1U1DgMobQQOGYJgCZUf4YHURgSDh96NbTFhmvL4gpxqCj2EArZggADDBUSwvMV6/yCEAA24aDGhISWWAgAbdocxC3bQTVgqbqzB9PS4FRRBjKVuPqY7roYDj7gDVArxxDGJB610bq2rU2YI2NFj8CUDTbKpUziRwSjqTjJmgfDQjhhk/hmJqYUWPxRJWvZzCOZJyrVFHS4dMtlyF33Sa7f4CFKX+0urm9tXrt25c3b99WE6k01BjS5VKLVubn1fQjFGWGIqXJU6lCLdX5NweRSCoMIUjSHQoFHFcsACGgyFfKEyEg4EQ/BauShhlH44uAQCrChsMRPxoFeQHrMZvCHKYL6pFzSgoOvSixFFDUP/w/tCIUxR+hruGXdC+0/UGTiB1um10tZ6FMtvv9KZtZ+dZEXGAWJRBZxtR4CNNBOD5xQUgFvNIbEcr68s9TFHqQrWvzy72G8U8XMZ4XMP5KQF7yhNOSxJQjly2BDDf6bcHC0XVTGExQSuBsOO1yYuOQSbuQjsZi1HFTCdjqgF6ECQwkCgcFosBnbAtK5kwo1bcNFmvy+V2e4GUeH04HO2ecntdE5cKil/SgLhFQp5Jd9BoJQWQzYLKLGTbxaAQgrpNUkD6QJwnHAB2Wuzw9LWaLVZA2Rp8UEyAJkgBfqopTYaryceiRjJnoh+0acZTFpuNJjC7A2NrUwDA2ewF7mYdJHYUcCaNW8nprC0kGDWuCx4CIwVtM8nDmqq0m/UmAjAeVwAMA/4WL0xBHCuO9EUXEuBbXOI1gsE5FJkOAwCHMBrDwV9R1IgQB7CmGqWcRPCcMRVroYsblSilTIVhabEJQFIpVsqVerNRq7cWZuaGON27urG3s7O1tr+/kC3ZsMYdAE5lq9PTvdnF9Y3Fpe2t9bXlteXhShtoZcKU45aaKBUSs53m9NLK8mCrAQCs0qLmnJgmE/kSWop0ZrrdhfHK+uri2vzKyu09jzcENJGAjygM/MgLWliK2/C6ydBlEmgh7mZQMu8hTVsTeVGgOUNVCu4E9lU7g+NxC3elgOTVwLMAACAASURBVOPgPkM8laZVMeTx+d0+WhR5yg//nkvRRSsVg/UMgsEVViSZt1MCVbQiekFR+BAV9IRlTSgnNMHomB2L8nEJW6Z8IQ9ncFErJKNHar6e90e8NBFG53Tg06lcsQQLuVapNfMcy6VCsUQy5FNYvlLwT0yFIq5Ll6fwlgv4Qd5PXEKTjcs46IuezwGQu/A2GRmqqPujS842NALzlGNE6QDwhAvA2uXz47AgPKfXRWqGpiqwVnhZFR3bOg6qE8uJAocuHALtnQoyEodzDfgATRxmMAcpjFtipIPFlGPYA6raq97a77d3C6X06OCv/tf9/Mzm4d7/8f/+w59rdYuHZWyVYjSnQQWTtFZJVsO0WW9HJWJudn4haWVa/cWzNMFSBl3bM6RYKCJo1txRMxIS0nvzl8MBEARioQk3SHfhY/Egf7DB3dlILJq16UqnXM3n35dy48Mba3fHzeb6p0+7N799O5jemh8OMdtjBDfTMkDwT4NIuwd7B1ujmfzMo1r36to3f/tnv//Tb37//YMbizdHo9TeswfLc4fPHj043Tp/99WDm6f3zs5vH50hAOMUkqOBT64Pbk5XF/bnU53t0bf/5Nsfvvnymy/ffkD8e/PmogULu59/+fLls/Ot0XBlc7Vbqi9tX1udr2Z6G8Ptt7/+6tuvX3/47rOz7TG8tn6rVOmNNzbneuhBNBwuj0arWwe37yD2ogz+41HwUxwIfvrsxcdH146ud6rbZ4erO09fffLy/Zdfvr+Qvxe70B/ev//ihwe9UbfUGCxW84XaTG16sHl75+rpSnxwvrKwd/bJkwfvnrzEBuuTOzfH6dlvPy0m8jYoHCsqc6SYsUTSw+QyUF40zTR4NWNA6cDpFRKnkAiKiVimSlMBYGBQWgA+wj4ixesp0u+n6424yosqDgMDpsJfuLwxU1V4ng2GFSridfu83rDGeYIkyGFGFhVYxgYWX+D34UgoAhjsBx03FQh5aMoN/3e5AhIL5ZQVFdbDsJLCMkEfKGUe7k6Z9folPsTFjGjc0nBsTjI0PSZSYam1XMGt5hRo4HQ+lzSFACVZGOJqZWx4Y1BGcewFjYXwxA23EFFd2aahYhMWK0dVPL/MFIuYZ16AyprK5dOggG24FvF4FFlrVAlKKhTmVLmYLZUrGLBezuZKmWQWmGKhUS9W+8MFHDMbr+9eu3795tX9k5vFeDpVKOGgcK3RnWuzJBWCuoG8QsI0Hx8lRzwRhfYh/rKCQAWCOJ4VcmRw2B8mAYCJELqwB8NhLxHwsxK2QCuaBnQogsn16AQdxi1oHkETr64mcaApofpbltNRrBu6c6wLCrjb605Pd7uIvh2A0VZnut2b6TS689OdhiVjdANeJDxDliRF0+Fy1Kcx83c0Hq8uzy4NV1eGK2uj8QII6Q6U+O7c/NzsdDNrGTFNBc4my4ahWVlHVhSAkdRqLXiOPppNt7MpGQkdinsSARhuF5TAFM3xDFASVZNAnthGNIVtyqUSYBNosJgG96geBxoF4jVtc94pj9fjdeOGSBi5CZR5L0Aw+vyFoWQIkSnQQFlbMSyDE8lms2rzGhQsnQ+r2FrkpCkAsF+E96YLFSBGGVsz5Qhp4x4wEAcDFCtDEaRh6rFyLi6ICcDFRFLAn0zTAaCkc/6LX+34YWF8bc5xhM7jLFM2zqdJLa6x7hB8Q9SOJhgjptdbrUYLALherVUrgL9Fx4fSacFyENzJwwXVHZPgqtASTbIcAx+sP8DgQJeB/lWiEA6wZICJVdOyGzRQwOWJd+JAZql0ORVT8By9WsAzYJTa6DbaWwDmtLS6sby+fbCzubF2bXeQLwHMm7quOlvQaAo0u7w+HO1ura8OV1aHo0a5lokbimVHk4ViHrhaH+rUxk4TAFhjJC0GFwBWVK5QBowHBdxbHI9WVxdvzI6X7265L3umptwenITwYpCzz0/KUUOVOGnSTaPdnAnqUqA8NNB+mlV5NqqxOS2c/cn/Cw8IbOeWjafiAMU5FnSl1+vz+MIyADDhcbmuKFExnsORBJEBKQnwyceScjCXpJWCrrNUOOQleJ1MZ0AR1O1mhvWSCVvhvEEXpQmSHoQ1kUrnKikfGRQB4FhgNrqZRO9ODBjtzJkEGczyZsGgpGSiUnJf9hLuSeC4QInJELCLqQnE3qmpK5Mux5PD5Z+48pHLL9KiJInBK2gI7QAwWlCiHccE0MNJj2vCDTyCwIOkCJRD3lQwf5wSJFHBdkl4OKmhPIcnwGEW9C9GZYP4pSgK+yp5yhFCQFtpxyCdBG3sTAeHmFCgv7lZHMr29O7h9//dnfzi4Ozgf/mHf/iLWNMSJFWOwTvhdGAzSrKR1ZUIn2lUDJXoL/VnQII0But3EgRPaXRxWxNj4YgoRzuHbZIQ7d3hhBAJ8bqeLM8OxvFrD6zD7PWBdL6SXYg2W9VWpZAa/tKqL59tXL3bajRuvLk18/Fv7nVn1xdGi8O19fHSaHV5ZX19dW19c2tnZ3dv78bGWq+cO1svDfYP/8Vf/uG33/z43S9vbW5dHZWW7j3fqd1/eO/V8er5r17fOb57fOv+2dHpndOTsxP0ocQWrJPzxd3uXGnvaqUzGHz4ix9+9cPbtz9+/eZ73ApGcyrnABjHj54/Od5YHKwujeeq7c3rVxfbtbmV+dVHv//2w4fXn3/+yy+++u7d0+PNheFgcQZu7aUb2wvNSnPeCQwbr2xfPzr7+MH9jz++/+TJk6cAvo8fPn16/8Enzx4/++Ro/+jaXGP3/GB8+/HDZ6/effUVnj//9Hj75u37d7/6YX9xvlGaHvZLmWqr1ZpZ3r++e327Vtm7ubByeP/5/c8+ffnk0YO753dubVRrr76oWKWoLMeSFuhcJm1yIS+XSxoWFEDbZNUcWjQ6bsIYWOQDrWqZCo19uAzcPQZLRny+OG8kCE9IbZcAnAGBJUpiwhzlIzwOAAOxC0ZUAGCP3+OjNcqNUVvw7aIKNTUGy49lIti0EQr5AsCXJyf9QR9DTbkocsodVPgAAbxPoD2cICs0A0w4EHY69HmCwL02IJGmqVH+sJqylXhc4PVEvWaxqhWDZRxPgOwFvYCznqgwkjHjog0Tw1BZnsk453epZDTqNEGrZlQXGQn4uG4lAFhR2pZQJWfzWdtOJwzs1YoB3dYMyS9qZszKpnOlUq1arFTLOMNpJQuVYiZfzeVr/eFoOFgbD1d3r9+4dnrz8PbVjJ1PFCqVer3WrNWbNcA3VhUAfzEYiWMChCp5SZknwyFcawIdDEYoELxBTEMiqSAZCYSw04hERRzyRvyeCCNrGqhTg/UBNMO1JfzOETAHyhiPh7WYFdVVFd5Kyo7jhFUsKmMcsmpEf1ZtAAL3ZvsAwL12a7rTak73pnu9ZqM336wUY/BdqiAAlVIRyQHKDTtbqHZm+0uLS4uD9Y1Bf7Cxs7N3dQ3wd35hpt2uzizM9mZb+SLIXhA1rCjAZ2EAACfwOpaLhUqt1u7PtgCmF2c7Zbib8AiY8EcoMkRiIw7GNNGg2/9/pt6zR5IsyxJrcKcrIyPCtbkpNzdt5mbmylxrLSI8pEd4eGiZOlJnVmqtVaQo3V3dPdOjememZzADAiSw5JIEhiTAzwT4hb+BnwgCxO7scMF7Patn1qsyKysyI8PD/b17znnv3nNEVdbR7D+eRpvIUmUUW1+uFNJxvGMwE+hTFUvmU7LXidIKBIXbg6Zro6hyn4/wsyRBEgwXINyucW8YczVUQaSNasaggkLQwxsCrdkGWmxhFzMq7Ew6k8sUMoUiKNZEKOiPYTJ8NJUIGyWo9346bJtGLhsOBPSwDmxPHH06wgMOrXx2W0NPjswIgEcm0ADrdtxOpiJ8itRguzhIENeReNhmw5FQrVar1MojK45yqVQczSHnRzI4m06C3ItjS2QsHNFhGfgF2U+CRCRIjxPYmqRJuqFilDUTFN1UEM+eeJ3mTZFJ1IywJdKFYgRePpHl8rAuC+liHYNB2tPziwsLs3Mra/21jd3N7Z31/a2lbD5tR+JqSDeAi2TrvcXpxuzq6tbOYAUgGMRuo9rMAgDDk0lm8pVOtze/NFxb36mpsHmCkgUcJIJ0A5vIq+3pxZmF/tzy2vLmbn/38MSY24U+Keg+MT7p9NIcx0taOBriRXrCb0VwbCHMSobDHYuGuYAu0bwo6bY/Yo860KLwBsSjo1P+qA1bzswKssriHJLXL/GYADw+/oUcEsMAwAYISMLpDWiWoEdVr50OyhnD4IIUA4RF9Zk5TeDS0WpR8dJ2IiS5/JOUofIKDbvGTuUqSQdNKjhxrwNrtGDNISHKFZozAh2Y1ExSsSVWSuQsZhK+HaeblqFmYF8k43I6nZM4X+T0eFyOSYfTMz7xcweB8ZmqzjmOjX8+gp74fAjtdB6bdEw6fZ5JAPGRqw7IV7dLiUmmKdGsrPGqhvEVIHwlZeS5wAZB0HgdMg4DqiLsfg6YOu4a9GpF7QvMFXeQBy+l4GO0y2deOFvOztoxv/XmH08kltfO7/1v//wf/jTasAQoE+GszohWMqGHKjnTVjxioZKzLHJ6oVlNZDPNjcNbcWAiIbG4o0shj5cV9eJ2nfUb2toGJbO+sBzJNgcHN1bWDyLr2b0N6uqwMG82q0DvctG9y+b04Eb/7NVys3X99bB/99uNZnd5bnGqD7CLrj2D1eEQU0B2dnb39k+uLnazzQe58snNb/7y17/45be/fvblycGp1anahZcHzcHh/efnlq+9f3713JWrF8+D/L16/eL5i5cAe8+fOwf4O9jtNyonzySWTneu/9Wnr4++/urtmw/vsQHr5QiAXzwfGXA8vbHfX1rfHA4rmfkzpwed6hQ8kcNXv3j39dGrj189v/fw+avXR0cPLmDHw1S71eotb23225Xy/OJguDS/tLZz8sIopQEbsEAC37wD+vfe7Zu3Hty9fvLErctT1RM3TizvXrt76+m7zy5cb97C482bd69efPfyq7eLs9Pl8txCNVUuduqNheHZvZ2TQ3vm9nB259rd+7fe3nt499b1K5fPblbSd45akYJihiLJcBBKfSoq0IRaSJrRmBGKGADABro5Y58qS3pdkwRNR6NQpEjCL+oh0whQtM8TV4Q4R1JKLZsOSSGd5/UgzwZoinU5DRPnT4MEpTIUbCCHl9cpJyo8f1AHXRWyLJ0DycZQGOvg9xBuj9cxCThCEy4XAWqX1kDo+gGlgh6cTw+gJTCsOZ5lJYkkAKU4XZaMkB5wOOW4CYVBwdEGlncFoUJEMwWTVyKJYrtaxOu1ZNo2jGjMgice0rUgYPgo+hzDGqLmqKgCRkkBASAqHLfTQPzzGFuXwkCYlJ3MJMOaboRxdsO0JI8YisWjRTtTyRULqVIV0Dob15OlIpo9Z0ERzi/OTYECHm7tnz5z4vS50+uJeM7GQ8FiEaeUWhzJclqQ5jVdkVSadRFmcEw0aJojAIlUwe8FfsuiYyN82yTppRmcAfZ/vuP1uRjPuI/EozvVNHk35fYSLh/poNG+cmTCAVimW+gBZoasMLwWmHcciWA7FQ4i/axUa/dmZwARMRGpCug7NQ2PTrPb7bXq5bCkYlSzIonYOq0q8H/hZKECn7OApv7D1ZXV1aW5xbWtjf40aKOpVqHc7HY63UYpGw2ZFujbIK+HsWsqYqcy+XK1ir4TmNEIsrvbmm4ro8wFeOA3EwBhx4AMCAJAqroBDzyQSHy2ymi0AayqxUoxDW9AOpkFPpSMpyopyTnpmRz3epx+NAl2+X0eL0n5HP5JB0kRtMC6fYTzuEuH6mPoFJWItTsMrBqJdSthKhDVdd22InnbziIzy2Yy8D4Ws8WsZJgaqcez8Ug0mYrLKT0oECBUDJ2LSRJLJm1YIBadCYc/w0TCTiU/y2W0ncROLDxCTuIZtJ2zs3nJ0plQKOQZDyatSMJM6VxESzda9VKtUqygTXO58NNjFE+cxBCHFEC6HYmkTdoSgHlypKrAgvCSBKtxtCHFNQrWN6kEnH6BYRV8rUxVUsh0FegJTyVzcUMRFVaFb6pYrNZKhVy+BC99bxablIfDpcH2wc7mxupeH0R6Im4buqzFE8lsqTk/25rbxPHutfXVhc7SareKCjgUiwIuZUud6eX5teHW+n5ZhL3DBXFtxdGotVDMF2pA3qZn5+cXVza295eXD/eOjTknQQU6R6oV4VfmeSUcNTWV92AXVCSqhUQypEwG8kFFYlWR1kQtIXqLRiwB37pt/GTEga2R4TgsBkYNOL2E2+vTgzLnc4z5x9iwGsokDGAbPO32BoEqyknLE81zvjg2XPsc7nEX4+WyIogA1bAFr1+LmQJQPqes03GGlyNWplRN+EmW9XtJDuOrdcPOF8qleL6Sm4m4jznha3hTVSGXzVkTk94xgqFCARQhk8fGvT6fe3zC6TwO3+fYKHnB5QLUpSlaHgVrTo4dmxj/+aRnDIWy0+U4jq3S4w6nexJeEh9NekndNeELYb8MH8AoCB3n7kHtCrAZmIAsM6TP5w+IQK6AcoDeQMdWluUE7H9m/T5QxAC6DOA0C7USk9MYz8Tu5l58/LjnxC/+/L85Gxvs7e79n//0n/5CmTVNUC56Ug1IRjRsxwFvo6CJMqWcqXrnFxenI6lcZ3jyYdbLEjJX39NllXazulk722YDWnhnmZQY1ghZicrS8MHh3JnwQeagL17bqLWtZgU2Zs68vq0vbl9fub1Wry0/edg+ePJNerHb7y32p5dWFvujZbc6GAHw9ta5/a0Tc/X4xZ3M/PbB73/942++//7DtTPrF7bm81uPzy/PXP7yydXh+Y8fL168BI/Lly9cvHT50sUL56/uX75y6tz5qxtb/VpjeLowc2b15t+/+/bbTx/eH70/evfmBeDvyJz5ybMXj+4/fnZxC5TP5vJCvj48vT3T6s4ur+7d/+UvXnw4evfu3Ztnj/Cu+NmLN++fXtlcXlmeKnem5la2NuYbxebs0nJ/YWFxY//khRs3LmNIw40bt0cqeHQf/PjRtcOLl89PV888WOudunT38aNv37x5j0FML9+8PwJQf/3i6Nt3d/vz1XJ3YQHP1bqV4nDrxPb2iULm0oX5jXM3nt999vThnXt3r165dNCyr36oprJ46xIxJBCa+ajMOqVcHEqApkVNTklGQyE8IsTDDtLjDQTpUBo2oN/D+rVoBFYH7yYiQdCmbiKUL6c0XRbkIHw0yFKUz+UFtNMEOeBjWJ52oL8zqwsuShZ8pCgJWjwS0lUpAKqOYTAQGEDX6z42RtIehvIQFMZdCoLbQbEi7yXxWpP1k37Y0qwQ4GXWTRuERwiZ2Evt9YXiEQ0nGriAJHMmIcQSKUBkNV7pAPyWoVREY2k7Gk6mVQEEHUY9SbwQTWXxzC8B8BQGjIJNGFLxED0K6BFD20hA1RRmqxdytqmLDB2UNbwUV02OUMOhcCgNwjeVLuTKVRy7TACDzpXqzXZjqtebm5/rL6+sbe3t7+7s726eOVuwk9k8aOpypdwot2oga0SFYRRd4DUp6PLKARepSKgLeRGnrejR8TOLdhyg52DP+dyk109jCMqoNcvj8XPyZy9oP7xWXnS3g11J+Px0IIhXwJhqi+6JoODCn7uG4iDygT0YoZ9Vy/XefA80Kx491xudWrPT6bTh0Zpu1isR5bMPFpBvfCAcm8lirTm90JudnV0YrACnXZpdWN8/WJ2fmpqem65AEQYkrpdSIBJhIQWDvIYvYTyVK5arn2MP4d9WF75mpzHd1TkU8vBd4BFaQBQFSVRwQFsWJS2SStvw0iZyRTRKrjdAw9XL5XwyGgdRly9kUulkqhA1iC++QDN8h8/p9dAYMuMh/D6XyztxHJZRQKRZv/O4Q7Y1SRVIz1K33laIgCIxDMFbQSYeCqGXVTSVTI96nzLFRKaYKeR1IyrTQRtVbCYRh3cYTwpZWBRaKh5TOADeeMTi4Me/KOCfjqvtz/HAyZ9sOYDqZWLpDPDBgGVqzgkpblgJKx3iw1oavqNitVpCAK7+dAGc/eyEBY/EKA8IeIsJ1RjDF1h+tJUIghF5HITXFBWwixGcTl4MqLBvTSBxrEikyralC1yqYJuKKNF6qZgrpJPxIrxi5VqjgfFc/eH6xsrswsbm+tb+7mImjzatEUsLIb+cbvaWllZ3tne2Vpf6/bnu0rBbwzlgLRqLpXKFSrMzO7s83FjfKfCGEeIFK/o5RyxTLJeK1WarDoRzfmFpZfPk2uLevsfNMKQfSDWL2lcKBlivy68nE2GD4d1OPa7EjLAeEBTSaVrA7kWQmYompP3BYjiGKY5JvACO4pU/PEMbfkmrnMvrc3rcGi8HCPeYe4yx1FDaxvLBs/DlVDUkxWKkVlaIsCYG/diGTfMUXdBBviVjdcXj0RLhgJv0uICtRBhJj5qZfDVLEj6flwyIsmaYZjiRz5bKqWIp2TCZCZ/73xQVMiHVyhF6wkn4ggGKJ32gd8e+GJv0uHGqyDHhAH3rQL9nF3ZkYZ+6ICmK7D/+xfHJsQkXpiaNDqnRNxRzRPGT3ITfTwQmHEGcIRxN+MqYKypJaCLIw/suSkE8Xw6A8GdwKBhNawLolC7Ash6Zw+NQCvrY4EUwOboFVpjxzM5erfL8b//uT375N1vlpf6Fg//ln//5d2ovz9G6qObi8PdGUtg2l4vIASFZLEUU33CpP19IF1r99ZspX5AxpCoAsMYSomLWzzZJWo1sLtMyF1QlLZabnrm2W92PnC4dboRubVS64WqxXikV4o8WEsunLm/cWmzVd19e7Fz5+p62MNWf7S/NLK0sDwYr+BiubqAR9N7+ztridLF+dyq72X/9+1//+rvvfrx1aWd/e664/OB2f+rUzUeX1s+/e3Pl0k+PCwjEAMBnvzxx7vK5y1unFmY785fK7a3B1t99+ub7o08fP7wHAH6LI0Avnz558vLpo0dPXtw5ubayNNhY6ySmTh6u9tqd+ZW1yx9/+f7N10c4M/TqxdPHT+APP3v55sO7J1d2B0uDdrPRnlne3J1pVeuwExaG83NrJ85duX392rUvR34cKITv3Llz785djCY+f7LX2r+0Ort37d79l2/f4+Po3dGHd69effj47u3Hj29Pzy3WCgszs7lktV2pzQz297f2e6nhlyuLZ64/vPf4xZN79+9/ee3K6bno7qd2Omtb6OALSCghADvETNgywpoC6hQKj2nA0pCDFGCfzxMIUnpCYTmQYKQeDUtCUAQAFiSV8xJqtjACYIX/nOoaIMZdETNkyJrg54IiDStxwhtQaBcT5PwsqLQQtrTqCtQZWFcMhoW5vLCOJ6FKsqTbR/mA8gZ51yTJjAAY6jNH+jFQiUUrSsblV/1e0UAAlhk1G8eLS8XnlTmvUCADsRjeQWYK1QaOimcLBeDTALB2QpdCRkjFSAI+aCXSAMDxFGrgMDwXywjJnKih9YiO5uwokEqlbMKI2WEdwxxk2PDYjR1RWANeNS1TyoJsKVSweTKdLeSrpQyAdqXUnsYrfVh5qxu7BydOnNjbOHkia2cwPqZUweu/Vlsk0GQQ2C6AFR9wUQbnUWUB0VUQpACFzY2wtQKj61HGN2oRJ1xeBF92NJBAeP1QtxRdUzjCTRAuDMb1Yec4xeEZOWijsBWP4qxGImKPOluiMR0NsRVR+Fm9UO4tTDU7LUxDajZb5XobDTnaU92Zdr0SlVUFw3lldZRnCKRDMxMFTLWbAVoxNw/UAnYussStpZnebH+uUWx0O61mrZSMmJYhCYoiQYnVwxGQrMVyvdnstFsd+ANN9Ixu9hCASQwUH52fcWgfDqWaZnmB5WTgSLDmzDCCd6VeH7lsF0qlPLxJ0XClnM8Xc5l83vSOTWJG3aTP5fPQfp/XjU7ibmeQmKQIF2ewtM/ldAUNUbQM+eftxUpBomlgkoKLiIg+CxhWLG7ZGZCrIwAuwBNN5/NRLSoHyQg6eABGqLIlsJSf0SKWaSdjCh9Kwe+Ysg5CODxCCJRpI+T9AwB/7sJKA3ynI4mEFBaCEUuedOi2adrRlCZYeha+pVIVVgAAcKVULuGZJ94AjwA4OzKQjsViaYkz/ZwkMoxKEUEMoRRVRoL3TxJUmfJL9IRfk3XQsDiTT3kc3kQ5DgxRSOVtnC2lQqVcEh3M4dVrYlTVEiiR1fX11f3F/sHJrc3dnX62mEnGQNCrITuVys+259aX51Z2T+6uAQAvzi0NO9V6JqqrkbidyRcq9VZ7Zn51fWOnCK9nSBB1MxLFZ5rIYc9/rdnowpJYQput9eHONjZ5YBQXj76p2Dbo8TknCdWOGUGVGSeymmUasGxFyUUmLUUMKEJADwCAHs+k0AEsnonERz3QkVEASjgaY4GdejzwdgO950jfxOQYGVLVZDyka7LIAQDLqiWF4wGhHCI0Qw4yBOmYpHieyUZkn1qITIW9DjUV49x+j1tQqEiQUqKRUr5U9uERLkt6BCUEAGyn0yDpKpVMXXYytH/SoI4pYqsmTjoIRlJYEL9ur3tibAygFe+4AU/H0GFychw+4HSOjREEjY3Msi65jh3DXmlMLBx1QY+jDYdzcsLjGo3PwQ6e9JsK9jyjx7eIgQyjvpSgLAYlTHslocLJIqhfAa0FOUxiAKTmAWoDfIAOjBAYT5AwrwWKBMUCCR9snv7v//5/+v3HX/275eTK6uHB//yf/8NfG7U0KUVlqxAVRA092fPlXFgkRbtYjYqe9ZWFxVai0FrYvJPxBVlTqR5Yisb6FSXSPt8kmVBsbSkg80CLrWRpduHGfucwdTK11w9eHeR6dqXYqmQzxZf58uDCyROXu63mpdfrC3f/eJfr9/oLS8tz/ZUR/g6Hw7XVdSB3uyf3Ntc6teips6npzd3f/+7Xv/j0q9cXtk6dWKxWv3yx2128+uTi5uHb9zfP/CsAj0ygD89dOXfi6rXdre2pZu/ydHFnOPiLX3797ddfBnfPRAAAIABJREFUffjw4T3A79uXr16/fvn82dNnT548fnDr1Oz88s5uL1Ndu7izMlXorK2cefnjt++//oRhDXhK/fjRk6dPnz578erhyw8fnl7ZXVmfb9bbU3NLexsLnWZ3EcPOV7c29g6vXL1+YzQSPILf27fv3rrz4MGNi4cPD+u1wxsbs6dvPL7z7rv3bz8cHX389P7tm1dHH4/evP349bPV5U6u2R3WE9V6rV2b2TqxsbtbKN442du/cuv+w5fPHzy4f/Pa5XPD+PxXTQsIN5B5QDG/XBgBMEqQmKlYlhDKJMIWLITREBpNudggpcZlJuB1YhyhidrF7Q2LYkjw++VMNqXrsqgIIhvk0Tra5YqAqhRlzhfgeMrh8ToIQQHVCsSNBxELX8MwAfeB02FXAeaD+ByOCRfHELTP6aO8jklnIOhxo1sUAjA2nwAA+xiGYwGA3X6FIqQRABuhWEwIqAbsToZxMsV2gA4ZejjTbdYqRYycy+SycUAGXY9CnYLdrykYOsLF8OYuHsGZByiymGwYklheQ/gy4+lMCgQrAKuN7RnpGMidaNyGgqFaIVv1sSpIkEwpnUhChcoWKkWoY+liPoGCodJBk9GF5cHyYLi5d+LkudO7Z05l4yko8wDPUH5b3cUI6HoAH9h0GLLo5kMUYQmcj+Y4iecwKZdFaoujObDHKDTA8lPukS5GoUuhZSvJiQDA8E07Cb97wuElvG6Pn2EFXQLsi+AsB3zJMI60xLCixW1ARwXjBX9Wr9SnZzuNZqeJErjRaLY63XZjlMjQQgAWgY6DBAZdOgpy0I1IEqpwZ2ZuYXF+dmZmtgcyeHVzZ3d7qTc9uziHd8c9+AvK6ZhpmbKoqSoAsIY5hOlsvlKrT7XbU70p1Nid6c5MR8EUtVGmGiyF4CiJEN5jSYPPio9ChpJ4uQoAPNK/gFOpHMZSpZKVarlcRTqljB/DuudxAiFzkT6/D5QMSF+nzzkOSoOO0l6v1+VgommNoOIuuloI+QTKx8lCwE9KCp2IimY8DBLxJwDOp3N5oE5pyQR9qUApjibCIIHjJtRASorFzVAyqshKNp7ENL5kDI/1MTFr1MuF9tGfhTBe/6ZGChjWSiIuR3gxYojjHjMZseADkhC2io066FE8Vy+VKsVRIMNPI0ijESb0AMHraQHWAyfzHA9rnPV5KFDvnB7TTIETWT8V9FGyamZTKkvTgq4F/USiZIdNKZjIxkwNhJOSzyVzxXoTVHYN3tXu3NzC8trW9vbG7PzuAVTC3X6uhAAMdAwAOFPstuZW+525rYPdzbXV1cHS8rBVqWVjoIBt+O1cCRbK3NzG+vZ+RY4YOug03YqgEZgNkrFYbk61p+cQ4lF47J8aOigM7KEYinC4cRzJjYdfx31mTNUFiRgL2bAF5YjKSsyEBiw+oAAJ5yy2RPqrERO4YgJ9sLEXC2+F4uFYAggaIJfD62ZFHLpzTYx5NVWOx0Im1Jug18PIcki1whxbjgLc6AJPsePjRECiYkmRENKRZtLvkIBCMYTHI2hsVBPiWTuvI0UgnG4/TQYlDduzo4lsNl0olzqaXxT9qs75FbWZIia9LKsIhHv8uIukPDj865oYd3lAACMA42DwhNPhOj4GaB4MKopoGNzkF+OO8XHHTz4dTidKZfgfn8fj83p8bBAUjK1oisjBFhYFRF80nxN4FRCc85FsUMQIWAzhADxGe3d0uAMhHKDpIMew6LeDAEzSIyXMMn5GcpcGt/79m9//t3/x4+/nKmu7myf+j//0T39u1kw6HAtF8qaghvF4JV/JRBRKBgUcFlxLq7PzU5FCp7//IOdhSE2sn4qqCk3IaqR9oU2xZmy4xAlBRVJDsfzc0q295tnYemhjSTnXz8wmK8VqORObfxpqrl5ev7TfrPfuPZnbevjjtDDoLfaXlufRfW15MGqB/gzAp3cH61OpzNNydqv/7h9+86tvvvvh6qmNc3vd6s6Lq1MLh/dur5/96ujK4VX0n7x08acQwvOHhxfPXDl/8dzwJND3syvlwebgl3/+zXfvfnl0BNLzzavXb/Dyd9QA/ejFs4ur8MX3dtq5qf3Ly4u12mB96/JXP/zwEVTya4xOePHkwZ2HjwGAnz5/+ezp8zcf3j78cntjdbFVai4O1jaWu7V6Z7C2tjQ7v7Z36uKXN7+8duOnXqxbN2/eu3/33oNb569c3qy0zl0dLJ16fvvp0ft3H9+9+/jp6O27j/ADntSHH64uzHfyrf4cjqR26u3l3c2tw5598GV/eP763adP3jx99PDu9csXVjPtDxUlFstnsylLDlBKMaoEXFIG0Mo2BNMWjQywfUVisUmGoUgHA9wxJrGc10FToTBQblDAPiwzSMtzOQBgdJeTKEHiMDfPjbeqoOeIYCDgh8XrJiTN4xapAMWJQS4UD5lWSERbZlxGKIj82KnP+J1+rxODf52eoEgQgvoHAIYd5PMQePYiKAEfrQFlAOKqG8l4hCcESzZpVZ9wFQZtgZHNbKXaBPEEyrSUz2UTYbxdNMJRCyBCCWkCFxSCdiaLABwbXZACAoeNkMgENUwN1sOJZCJfqWYjZhRxMw0lIWpF4xE1GBShdHhoDArKFLBDKwNKu1wEHZXIZxOpfLnRmJqdW5id7SMAb+yeOHnm1N75w2IcRF0BFBxU3qmptZwU4hlRkXhJFlgXpfEEB8LQxwDq8STJgOylqBHrBQDmPu841k0w7Oe+aJL0ez1eqNGqJgdpD8UAdfECntEMtjIJegS9IhKxGNr62fbowBR2n2FiX7Rq/qzR7fWmuu1mB+NM2s3mVKeD/9uq1Tr1WiWm4jka9mUqOLUkKVoklirWmt3Zmdl5ePQHs0trn83V+9NTvfmZGojj2d50u5YOa3pIBtYu6FbIiCfxJr0E6hrYcXdmpjfdarWn272WyNIEpif6cQw4KMsC+sWDPNftEYjly/lStTFC3mqj2ajWWqAaM8lMsTKy8syl84koe3zMMXHM4yA8XqffB3hOeLAP/NiY8/i4jwwRPtIzPiGSUu2gr5BaPCE6ghRBg4Ckx4Nhv2YpoIJTUcD6zwAM/8nkCgVVtQSGNa1UIhVNJEQjLHKMh7GAtWXTEZ2zAIB1i4thJ30UR5niI9sMO/7TSXQqiZ1YaEQOH0tHlQgvW7ow7gf0tQBVBNmKlBu1RrX6BwDGMKQR/v4LANujMCBJlAJCIMhIKsdRXopgVCmgmugWi3eCtMsv6WK6JCOJjeqSpLKpHPYvcKkcgKaiMnyxUqqh3SUAcB0b7dpT8yub2zsnN4br61u7ewfLueLIoRWPoBOJTKfVXVofDjd3tjbW1oaDpcGwWapCFQjBAkqmc2V4Axfm1td3TtS0qKkDZbSAsgJ7gbeqWq52Ztvd6Zm5/urG0vzSibPDMcf4aDhn7BgA8Nixcadj3EN4KQWzTpSgyxU1jbgeseiA4PREk7IAu8BtaAEzM2Gn47FUMpaMRkat+9gaGbMARWHpO5wOn9snahJwK8e4S1HFCABwSOZZj4eFJaeFVVaoJAJCTA0GPNS4k+EEwsoFAmo8WYn6PWoipvKwWng9AAUglghFAn6803V7GYwfgi2PeWjIN/KVpi55gh5vJgFUDAQwCW8CR7vdgKZUkIQvju1UbgTg0QMnjSYdnonjJAPoqMi8YVn0KJTQhdA78fn82eUEEe/Gn5wuP+F0MjEthGfOsgayXlKx2ULGLmhJ9jsZtLEbpXhzKIhBB2MwOE6kAXNFHw6MKx11X436o1mg6zLnEWfO/+Mvvvvu3/13fzHVaA9Pnvvf/7//+DfCdIxBq8BcVFYNO5lKFKvJiBGQ0oWcqXhmhjMLM+FCd27rXtZN+zW+djqmyDQhKWbjsI2DLsNl+OvhU0Nmen7t3l71jL1tbQ20C+v5XrxYzJXz1qnr2tT2xcGtpXZt9dmt7uGrT0VxpYdjwPOzmOsBJRCtOICt7+ydWltYblunrkVm1rb//re/+sX3v3h0avvC+rC89ODuWm/n/pO9S6/eXT9z6cp/AcCYQnh47uLhzXPDvWGzem43u7oz/+b3b37z6cO3L0YAPBrDffn0ybNnT14+uHNlo7e4tT+fLwwvnul3s+311f1nv/zx6NWHj69evBsJ4Cf379y9//DRI5DBL0AyP3355ujl5bXl4fJUtdnqYWhwoTGzvLK8vLKysXfuEqrgzwIYAPjuvTt3Hty7eXBw+US1fupOf+HLu/fuvf726/dHHz++e/v+6/dv33/6+P79D0dnluerle5KL50FPG/Mre5snNvJN26fmDt17ebLe+9eP3/y8NaVS8NS6Uk9jteYGVy2HAJw0KPkUlErrlJyWDZA0ph4PyEE0Xl0BMBxORAEACZ1C2o/w3vICCfb8K4JhX8B4GCQhcVBTLoQgHkpSPB8gHBi4CCvuic4SvCRCuhH27DCo0WIfXwogEns758kvROg6HyYbUsrit+L2ZgAwDwUGgBgrx+WHgsATNAqS8ogorWQbWqSaEWltKirPmtxuclzkWytVsoVYJGkcbogj4G+yWjUMjAhXgkB7gOgRxKpVDoRTyA8xSOGpgN6sDx2h4XMWKZQyJTKmWgkXcTeGiDlgCmmpUEFZNEQARZlKJWJJzKZFFTRZCJbrqYKOTTIrdc7UI9mZldWV9c3dw9OnjjY3Thzvozp4oVCoVQulTvtYU7WaU6WeUFTGNYpWQRtCCzjDUi8GMATKB7zP9EhChvgaNS7NOPwoB0s87mF2O12e2lBUgCAcRLHCZSF5oM0K2NeHXawIPxGIiOUsHG8Ej0isadOVX7Wml2c6U5PtZt1vP1td7rNZncK/9vptWrliIxjESIGKWF7Jl6QRex8tTk1Nzc3v9hfXEKJtLYOBX2jP9sDAK43pmbg0a1nInoIzT8AgMOGGR+dDpQbnS4o4Ok5gG5A/W5zqgWknsSbMCLA4lupwNfSDF3XpWjYiqXzOXjdq/VGY3SA2qyWK7Wpbj2fRF9KRJRCtphJmbxvfMztGIcC6gKxhTlabreP+IJQSTfp9k2SrOe4O5wUmPL2ds8fMVTa71eoAJpbUbzkl61YWA9bGAyMj88YmCvFZFNgyYgdiUUsy1bFsAyciNLiUT2RwJ7EZCJuRnl9NIaEp9B/MG76fBeMY+dpDEfK2Mm4nQkr4aBqKNxxGsDeStpRPmREKnX4p/KvADwy4sh/HgLO5NARBl1RWUWl8HRZlAiWdFAkpwkBw4AVq4kMyzMeVhClQtInZrKpEIeH+OkUXoNyuWLcgDeMEktVdEbF+99mszU10+3N9Qcrw9VTB7tbG6CBTwxyhRRo7fAIgJPZ5qgJZWNvf3sD8Hd5sLzSKlWAfGsIwJlCrdnuzs8Phlv7VS1mhrCnGQMTkhmc8S6VG9PwDk/P9odr/eFw/eTm+HFAGYQd1+gC1OFy+9xEkKOVjBaTOWksEJVtWCiSILJjalJTOEFkZPgOU4ovWQBcx/ManPgb/YihHVWAw+EjnwP0q8p6fa7JSUkNWvGQoUlB2unGAOJQWKBD2SgXjKki58duvIDAWzYpR2OlguCjrGRYYvwef1BjVANeWEYLJYsut58TeJoSsJkC7dbiceDk5bLhpljRFbLUeCFDenSLZygc9Js8TgQox/FJH8ZRu5wO4BeTn0XuxKTPcZwMMBisEtQNW/McOz4CYPhTePHrdKNrqgd/4YHSRvoIOYw5pLDHYIeJAMCjCX0FXpOgzxdE+B0d+eHFLw8ymWNZ7AUJBGkCx3/xVOynG2ConRQJi9TPOvMX//3v/vTrv/r7P6lVu6tnZv/6n/+f/yHQtAkhLodzYVGHVZi2C8WIaTAAwFkrRMwNZldm7FKns/mg5OdojS+fiMoyVFU13DzfZQNaZH0lwLNiKAFVsL/9+ETjYvlidmcucGU7140UqsVczvpyMzx9cGbjztRU88zrC1NffvcwJSxPz/QXFhZmVgbL8ICFhyZYe/sH+4PBTC79plbcnHv2X3/3x9//6vXh+ulz883mpTd7tfXb90+c+fjh0vlrly/9KwBfGD3On7t8aXdjtdYdnC/PDlcf/NXHH998+83RVx8+YAvWGxDBL58+ffHiyYsvD1YWV7fWZ0vNg8sb7UZ5c33uPHyhNx/fv3z54ejZ25dPHz95/PDe7bv3HzwAGXz3AXzW82fP3757dXNvcWZ2plWfXt1Z7zdqrf4qhtkN1w8u3bhxfTQSDBB87+bN+/dv3Xly9dylm/vVqavXFlcuPbz/5Ojbrz99+gDS99279x8/HL3/9Oabo43puVylv5RPF4vdxtTizsbB4XTs7LXFnUtfvrj/6u2Lx4/uXD6/3Uxf7OQzdiKdAubPsGohogS9ai5qWXEZlqpspGIYb6NLgZENsRMAWLUVLuhz0n7d0lWeCXqpMCsmRJLgS/9yBM3h3DBFODwRQ5f9oGsDPAeQ6iD8vOKd5FjB7VUkRrJDpoluWkG8KcK0Jb8P1qqH9Tuoz57PCMCEh+VF3uvnAYAB5n1eYtQ5KzIev8iQkmlADYkEWFUz7QR24Grl+X6XkyqtMlB3QLtCOp0FvpdKx6FoxAzVMGHborkIrP0YaBY8grYi8Xg8YuqaFoJNoWqoQhK5IuakZ/CGbzQvnIiFoY6GDUXWAIkjpiyHjEQSjYtSuVIhlSqUCslc2gadVm+CIJiZ6g0ApHb2Dw72zp3cPH22COwaxyYrtVq12V60eZESFCnAa5KfdMualw8zACTovU/5KRY4DMthQH0QxxIwhJQgGSfO7SDxxTtgt4dw+9FMOkCOrj+dHj8IZCqgqLweSWB7rp1MRCIpPDjH4cqwJur40BTpZ+3p3nS32x3dAWMoQ6ve6HZBnc725jr1konOHWh7CMxcG01d6UYsW2lOzc7PzS8N+guLgMCD1Y2dvY3lhbmZ+Rmo8b3ezEy7kolZYbREkSUjaoSwROfyIJ1b3XanNzsLGD09Nd2aaorM5yYsKsCQFLrx6yrQdHgn47F4ulguZPBkFkQwfNZ0q45Ryz+NA2fgo03AlnxYMYSx/8ox/gWwEBeDqa1QFF3ecacUFb3OYxMTJOlyeuTlU2dPzYGUk1VYwoQWoHmOl0hCZTgzFjFD0VGmL6awAwQWstlyTtV0lgzZ0RQor4wtAz8E9iPGorBSLVNWUnHAZkWKR0ZtbZHR3Q0eLfwBgBMjWw5A4XTMToVki9MNmR1jEa5TdpgDRVmrl/8LAMY0JAThzwCczcUTAMCJiIy9N0BjpSDj9XrcJAvvhmJogqAqLBmgCfg9RYkZ/kjG1ngR3h4hnUaD8kChFA8pkkxp1UomV6xVc0U0ymhPV1u9BbwFnpvvD9b2Tu6cGClg4GSmZtipdKEytbi6MVg5cWJnc2NtMBgurrSrtUw8rMZGR9CVWmN6dnF+sL5bVqLw1eRRdAFadqVzwCdrHYDfeQxR6m8OBye3Qf9OHD/2BQ7B4vGry8dwFMPRRDCmgwpVvS7d0IDuWpogOf2wUESO0ygNYCjj1HCbxqOfjSgxCmsEwLBLSPekk3D5REUPenwOFwBwwLDxLklknB6OV0U1HGDi8VCQj2m6GCRc4x4K/oTiVxJ2pUD7uEjc4L2kh+J1RjIB8QBdCkWF9JCAZCDpVcXAcb2knU8ny8WIz5ZCEoBpqSAHFIAqykt5Jz3Hj7tp2n18wjNCYJS1k2PoRonzRj7nGGCYgDYamhqNCziE5RyNL6FxiNPl9ni9Po8HViUjygIvpuIKT2MEEuyWoDjKRldB1gsBkkZPDhGHgmVRGF0SBwSOGR05MzyHh84YZYJn/DgdDarG46VBVXOO4KX/9Tfff//1b39brC5tnV79u//8T2/knOlXbCmeCwVDUP3SsXwBJAsjJgqFqE4sLc4Om6lSt7n3pOIP0CG+eADkG5iSFute6jKBUGR7JaDyvGZHjPjMxqOD0qncxcLeonhpPTkdz1bKqVT87lRq5uzO6avN1vS1t9vLD7/fy2kLvV4fqHpvOEJgkMDrWzvbeyegXAyb9vp1a3Zt/y/+8odf/vDN5Z21S8NOZf/xzfnWxadXd159uH3m+nU8gsYb4M8AjD9fPn1ld3WrXV8+X57ZWLvwt9/8+uuPX338+psPOIX79vWrp6Br4cdD7Kha2Vydya5dO+w32729hYNPf/qLD3hH++71ixcA0w8fPnp4+9rN23fv3X/w6Mmzxw+fvHzz5vXjN+9f3b92emsJyl+jN9jaWmyWqlPLm0v9pbWDC1evIwLfAgS+f+PG/Qe3bj+6e/P0maub9fbtw/mN288ePP701VcfP3z88P7NETyjow+fXn381ZWFpXqxvTSdzxZrrWZvbX3n/Fpq+tb26pkvHz5/8u7VoycPrhyenE5vTxdi0Ww2ZcJ7TAEAy5xHxgG7iMKqhhRKxsNhFdgmhaEAjJvlSNWWGM7nov1axArB0vH6LVZICjQpVNJ/aMKiBVBxPlhuoEw5lw8wl2cJD+lyBySB8ApBxu2XeFqxoXQAxwti7PwIgEnfpIegBb+bxUx6ivT5Rdnn5WAZevyjaFnaT3gJzLwVBNrjFxi/ZBiGqlmwsQJmtqhauhTKdActXq01cnYaD/iySVAkOVCfcRVkjyGbFhTTUfskL9mZlA1cHHQtcm3LGClgTlGxKTqaSCXzKKBB+mCJRbdONJ7GxGFdhq0imTEDs93jdn6UqFME3ZNLJXIYztftzc5N9VZWEYD393YuHB4cns2D1Mh9vgOGN3nWAIErqyLgvej30EGWAXpBgebhKdrPjFJ9Rw44aM8eDJLozklyeMP70xG03+v2UfBacGhGBuLPBUgE5Bi0uaQoVgy9ITCpNhZLx/RRxxBex8cjOpRnVftZuwHg1mp2utj43KhjGMNUp9GaaTWnGtWSJXGCPLqSQoENlQDnsnLV1vTc1NTM8nDQX1xZXh5u7uwdrC/352fnZppTvRn4p5lPADIZkhQSAYBNMxZHI41SHa+ZW91uu9lsd1CNNXkC+QQFT5f2k0EFAFiSFUk34cug70kiWR4lHIKump3pTs3NdiqlXDKRyecBo0rNOrwrUUU1gxNfjCEAO+lAkPB4PY5Jl1eOWCLhcPq9frfTO36cyrY2vvzqoOHWVdH0USLLBBUJXl+Lxaj5EE7wwvLIFXL5bK6YTZeKuhxnKMGKZYyoEk+wliEBuJM6unoBLtLoEWlb/CheCznb53mZz2wHAdhOfU6YTqaj8YQqGWzIlKgv2Eg4Gk3bJvx1drNRQXPIz01YOJM2EsCjIWAgA0D1ANhAoLGUBG+txpNQWhlK0lkpomFwFgd8xTfBq0JEFjURvcUtE5QbmyoAn+CZfDGK9t+M1miVAeZL+TKwvcbUXGd2eRWPYzaXFxb661trB8u5UgY9P6KGaSeT2Uqt2d9dX9nf3drc3BguD+YG3Xo9g9FRaBWXgjU9M7M8M1jbKcsRXQvKhmVF7LQdSaTy1Ua9NdVFfB9AuVpfWj23cczjw/MIzCL0uj0eHysTQRGEOkeHdfTR8jB5wEYN9prMjAXTYRUWbYCyJSEmsGY2jplI0dEDvdejZiyl0EHS7XBTXlIUdcHjmXBPiAjAwL11hfN4BdaS5DDLphIhWY6poSAH77+X9Cp5hlHS6XIB39NwKOCGncabnBwRJFMKhZOhEOWiBNhpPHBNIwGUJBVLxaKVkmTH+ONENBZZyPtkW6G+cE0wfgc5PuHyM8TkBI6ej0/CtkODZ4/XNTEC4GNEgMaGfkGTQxnL8xmAAXlBu3ux+8pHsQROWYpmGJhtLaUGWF5RBfjjARGPoDUQAJj2JRiCIGKcGU4g8AFOEkBYBzA2LEDy/Ogq2I/5jB4CiDrIYpbjAxJQDuLY6v/4lz/82d/8/Y+ZqbnFjf3riz3VKpsBWVeNfFSUNODDdqkCK5cX47lSVHQN5nvL+USx1959mJv0EaZSOhFBo25ZiU1fbhFUKLK7wlkyp4L4iM9sPjtXOxE7iK3OyhdW7AVkm6lk9kGttHhp9crZemXu5tvFvZcf2nV7ttdbAq43szYSwMO1DZDAG9sHO8uLC6Xko25xef75P/zxbz79+GJv+cxBPzf36OnKzOlH1069/vHOmcvXDs9duvy5BwsB+OJoJOn67tZGpzN7ab6wuXPir37xi6Pvv//w3bs3RxiIgO1XL188efzk/o3h7NLuTr9T2z1/brnWXNpcu/Ptj9999enrd0fvPxy9evHy8cMHjx7fvXTy2peIp/cfAQyDDn727PGL16/fvr59amm5P9Nu9fqrexudcndxAY/Sl9bPXLsxCkW6dfsWWlI+uHfr7oMrQBRWiytP9uZPP3z47DUI3w9ffXr/6dP7d++/+ur9N++/PjpYWC4XF9armUqhU2kvrW2f22/ZN84t79+88f7Jx3dPXz6/eemgV1ifzUWwEwmEHc+ohbAUcImpbAwUgxCJC3oKWKEqaqBRMYbSG+AI1RZJxuuiCQ1nICTJ6zNZISWyrFxL/TSGFARNSzEsMT6pSWLQx3K0KtFuF+kZD0ogXAWOABbI0mrCAADmBWB5QQz+IUAJjrn8bNDtxa4CNN8iJYX4VwCWBZDhHh8oQDy08tEy7ReNEABwKOCZIBO1VBqQQjDbc2VJz2bzxWoxl0oChc+Wi/FI2sY2FqDeUTMSDsFS5zghipFJYR1j72J4B6zrBo7hgRyLAnqXy5lyrZjE29NEOpuKWmh7GTNE2UK9hmGAegxqbjhWrBfz5XI2mSyWc5hFWCw1unOLswub6xvbuwcn9nf3T564dFiA6opaCxRPvT43jaNYKpQPXhEprxYkVI0OMKBxBJImRR5pCYhhPOtWRY73eyna5+ecXvSFZgMk6fe5QA4DiDHBgN/l96DtkN8P7EELAf7ZmJOHih2/e0vSAfptjNCLRMKmpijKzzAEuDs91cEmrGa9Dj+3AIFboIqnm62qJauKImKgMFQABaONQIUEue7fAAAgAElEQVQUARG72KzV7S0OF5eHK6vbO1tLKwOo6DP11sx8rw1/Uy5sgqARoXQAZhkmvD6ZdK7aABSot6e6rRag7zz8LbwPhITDSzO+gBCUQiEJT04kA7tesa0HvUww5K5Z7cETmgJuXW21Sja8J3auOwtaulGxNSMaxPnK8XE3kBLW65g4PulxUiDyBZ/D7SI8PgqE8OQxp3s8dXqbc4ZjgkTSqo8UMItL0ahQaBQXkUL8LaRHh9D5IlQlEAa8FjMiNqArSBk1AE9Sj4dgjVhWQE+HM0Y4YKaQX9jhSCKaTMHTio4MnJHpoTcl/JTOxtIpLqEyoJp9Y7Id1exkVAtakUK9Xi0Vyo3qSPsWcjgPnIe1ms3mMnjMEokkEzapBvy8xAZVkWJZwsdKMoc51gqIK1ghHh/UbNEQFFNMFdKwmuOWxOZyEUNXQAFHQ4YisWK9juPX5Xy1XquW6rPtObzgXVkdrgxXV1a2Tp1cy8PWiNtRTP7StBRw9dXtzZ2D7f3tpbWtxf7i2lyrDH8gFLdjiUwmO9XqLi5OdWY2U0YYjziwmSIcjYMIzpVqjUZ9ujm7NBwuDGbmV4Ynh8AZSI/bR1MERtc6J1DWUUGeYXgjacmG4nOpKSlh6gmVlp3H4jnBoFQBWIYYLHoi8ZSZiY/OoHG1RnAYKRoPSJx3nHYRhCJrPEGMOY75gZDEQrIRwvCSoKTLckKn4mmJi5qcEPBjSpaf5lISR9m5fEFyUKCOYct5AprGiwnKG1RT4agFC4dlPCwNtUVBjx7bTgPjzrWCgkwc/6NjdrnMBhIq6XWNTToZl8c9PuHFM2gX43fjqTIxUrgOh+M4dkNPuClWgL2qKqKRTujk8clxx4TLOeEjnR4PCfzB4fYDABN6VFFka64rwu6GeqkqAo77YVKbrAkgyQWoCLIuokm8wEhBShTZAF78sgwVDMpQST1uJym68VTR6xp3jY8xJOsKhhL59b/+69/99rd/9o9H0c781uL5vf6VE3RTIYyoYOQiOOEHvKZQjEYtho+W6jHFt7w1l7fs9Mz86v26j2JCSvZClNd4ijPNzvWqD0ju5mpQCohWRDebcxsvD0sno/vVrR57asGeS6QzeTtSfWiW5k4Obm/Ui7vP7k+f+82FzLTSm5te7i3MLSwB/A4GoEPWD3bWD06srww6qfn7qfrW4K/+7a++/5MXdxf3DgaFzrWHZ+s7t26evvvj9c/tV/8yhoRDwBcvXzy8ubO51WjMnB2UNlYHv/7zb3/4/ttvvv708f27D0cvXx29e/7m+eOnLx8drqwsre8vZRtXbm9PNzprJ9a++uH7D++//e7DO8Tfp0+fP79968nNlVKusXr2yo1bdx7effDo0SMA4CcvXj5//vrdu+unN9aG85367GDvYLlabMzP95fmZoYnL2NCw63b2IiFDdF379y9f+XUlcurxf7jk9P7z5/ef/n+48dPnz5+fH/0/iM8r4/vPn3/dHlxutDa7CTz2W6vNLO2tH9+mJ27e7B16eazdw++evUMJXC3uDBTLGYiiXRUAwAW80mZcgYzSSMUUqHAsGoygdO+GgAvLfpckzRHyhExSHE+HxmOx2CVMITXZIQ4AxhaqsZMQ0Mto4CYA3A4flxSApzIu9AbGiDiCy+tyA6a4vxEkGG9clwyQ9oocTxIBckAQbpdsHEo1scy6IJM0x5SlAgXyQMAkxiWCfQQNpaXwINXeZIKsaRkqlZc0zi/X0xlLEOQDUmINyJcPA/EI5dJZ7O2nbQLWXs00mDgdo6EBMBPWPaCDvgLSteOjgzwomEDKKjABLVQVLXgU4v5fKluR7OJYiIHFTUE9Vi3LA3Hc0J41A4gnkqbkUKlmC9gqGs2g+emNQDgend+cbG/vLKwtrO1ffLsqZNnzh+eLZuJDFT5YqVcrNQXSiJNKSbvD+gS4Q5YPtZi/NjVDDuQGuVzC3yABm6LfRlBzk8yfoJinC6SpWiO8wcZwu92gRjGtCRgwyTpclEsPUoy002oyTZaSeDJaEyX9ARArw4VM5yI4k2rYfxsut3E8+apNiBqBwOBEYBB/na6vVazYmEOsIRnYKMeaEwyNBLYhIWGhosLgL5zC4v91d29rZV+rz0112v2et329Eynko1YUUNGE2n0CbMTEdBPwGIqzXqt0e5Oz8725hc7nYZAMpQHo+pIYPBiyJDVUeRhJKIbkdEAcKVWx8ji1kwHlDM+v3qt2W6kQ5zV7CUZRi0lNJy2PO50OccnCJZn3Q6CcB//wssbKnF83DlOuY/7acfYJMkFnMd8Fv9zMqwqfJDjOby9IAiTYVIqDrkAbGbz+cxnAC4UbcnUKU6OA9MKxxMmLFCB8REg+/R41LSCajICIlgx0uF42Iib4XgkkYwmMp97oW0bjTnQFRq0VDid4JMiF7c0whGKxUKJdFwXI0a+0WjUKjU0+KpUYCWUfjLDymayoxTESCySliUozZjvJfBIS2leguIJ1VkCFclzJMkE4fW1gBkFM0V4olFdVvliIWoZGp8vhmFVSgED/v56Pl8r1Udv7vzM/NL80upgY7kPHH9xZfvMIA0IHLOBQ1sx00pVWtMzi8NNoFSbS4P1peWVQQPIZEIHAAZ+kckWSu3FpZkpBOCIofKiicYuwJbwCLoG7K3bmoVV0V9ZXlha2hsS8ByhMHhczjH3F8fdY+NeCtasj3D+PKDbMVMH4qzDgrQsExDmGGXrsKcEjpM1MaL7UjFgNSDNoz91YUUsCwFY8LugHPgVIIU07XQec2uiEI8pGDTs9aKFuJLQ/UZODkTCAMC01+kCos6mVI60s5mK7CRj8RDv83tZVQ1KcdaKxUF2pgIEusuR6IIqqYZl4o03vHtljVUI03AEC7akmAo15jg+5vISHpCdoIDHxyYpv8fpgI/gYC+sQSeO+zoc8PxY0jMWDFkhOx7lxmF9TjhcANTwIF1e0kmQGB7Ca0GOlqcHYUpVDEUE0QI6RVLRck6mfbQAu46XFYFHK/YACHxG0kg2GKBpDoSN+/hxgiO9nmNup5c0w73dMzdXaQfPmzNJ+9Tf/umv3//Z73731u4uzVyd+/7//b9+T6XilBANRksxSdHRYqxQgpVLiXa1HhE9S8PZWiaf6fWXbzUCAqdxpfNhMcRRshFpX2v4JQDgNV4GJigZyc7M4OG5wmFyI7+zIJzt5xaiqXwhZfavmdXl3a0bC836yVfn5i7/sG1PKZ3pTr+3uLC0MkJgUMDreztbJ09urPa69vW1xEr/yt/96Q/f/Hh7d+X0bq++9eDW7OrZhzevf3pw5RLI3YuXrvzh8vfc4eG5Q/j1yRO7nUZxZ785tbv+4c+++w7wFw99j45wBhgU8JNnr1/d2gOo31nvpof3T61Ml1curJ74i29++O7jh6+/Ovrm6MXzly8e37v++uVuOVdv50vV2f1LV68BlN66dfchgvDjx89ePP/6ycW9zeHiXKOxcOLMaqtUnltd7q8M5ndOX/ny+rUbdwF776Ir9IM7D+5dPHfx0lJp895e79btx28/fvXNx6MPH9+/RwD+8OHrt1/9cKUzbJfR1DVXa1Rb88O9U/vF8qXz/cNbD98///juxYvHlwfFeL0OBaOQiZuGIfiknC0xbj5th0BXmjFTDCVjpinLwMYID+n2OegAqUQFjmI9PgaKvCIEKJ/XYoOJAM1wpYINRUCEasph4jTLucYFCT2PvLQQwHb/4wSjiJM0w1NemhYYNSwbuirgFFvAzxIMrFK8y/TTXjxawQ5F7H0GsS0GAy6Cx7g6yuvBbiSMb5ccjOan5DAmGEW8DjlmQtWXJIki9XxaTBRz1VIlnc4VcCwkl4iYMTseHlkih42QGlJlmec1HCSBCqqj4w6a1YKmxTGkkBG3zWi1bhfKpRR8cjIO2jURy0YxMRjqm8zJgGMYrmunE6ksbPByaRQoVy7gYTSojtbULF63DdY2NnZOnj1z5vS5c4eNcNJO4e+X8vWpmThLM4rOUTjBRYg8qYaYAMWh3xI9yufj8GSeDQoiADDHEQSF1pTITkiMuw1QHq9zksAbcb/f54adP5oDRtsOUTXCaUsxM4VU2DJNvL7NWKAoEkl0OESRr+s/m+40R3NBDYwlbAEmYKh6s97p4HBSMYTXUQDAUBWw71bVDMXKVEGIAuyOOO1gY22w2F9ZmllZ6DbqUIBnZ7qdmfnpWjoWiRoadmFplonztKAMc3hIiUPGnd7oCnmm19FZjoUizWCDHRcA/SsJko5+oGFsrc2XKiCqAO9xKrnZne406u1Wo9lpl5K88+c/d1JqppCQKa9j3AOEbfy4i1U5wuUa+zd/5IyaocDEBB5/eseP0zI/7lfsiNdprOZ87mgUqqMcJAQ1yLsFgQrrALIxgE7swxp5leYLpZyuh8WggImD4XgyKigxOUC5xbBlxIGrKQK8hLGEKScicRNDleJAMuKAraM74ASU7+TnaaR0PJyOSmmODeuBSQfGN8VTUVUMh3KNJoYxVEYem6P06FEeYT6bRqu2VCwOSzRg8gGVg+rMcOi+AoIo+Hnd8RwtUW5O5ODX2BoZzFeTUTsW0kJ8IQ/8UQvmihbeGTAW6OxaoVAr1Wrw2rfnWr3+wmBteX1tsLS0OL84POwnsC/RHiVmJFKF/BQs14XZpROb22srq/3F4VI1Xykm5BDex4LSSZe6i/2F+cXNJACwGJAN2ApAXxKYtFFtdrrd7vzs/KC/vAaiZ2uAhqiMxwEa0UVNOoFqEQysXto7OT7ui6Q0RaMmA1k5GpMjGqu5jhmpMOYSMuhql5oIJexwYjQYGEFznNGxU1yUdcrng3c1yIMkhMU+5hQFLhJTTUPlvG5aBOps6365ogeicUnkA95JB8GydMoI+O1Moqm6/WHb4H2Ej5aVoBxV09m0qKmW4KH8jAgMX9ZDSFvjMaAbqUwhTRtcdCqWKolWXnWNfeF0fOEYJwDU0ZV74vg47DyUwIRj1GLmcmHwkdPp8Xm84z//o4AVNe1kxvBMogOWC14IEkSDx+dzoZWd10kGGQ8hllfrQkg3QP6OUk9kNGk3OY9HCClyCC/IRAm2II1jwgwpcxTwa/f4Fw5WMwzRF9s5f+f2s69+/Iff/+Xvfn3B9pq+nwfmT+/+yW//6s//+E/+8r1aba2eaz34j//3b2nbCsDLHC5ERCUUszPRbNm2NEq186Ww7JlfmptqVpPtxenDAqfwGte4YEkhxq+FYq3LHZIHAF4XFTYgcmY8X5m+up+6nF9J7i7K55Ybw3C6mM2Ezu+EW1trZ8/Xm9OX3qys3v923u4ZrR4wgEWUjziGNFzf3NjZAfhZW2nl2o8z5f2FH3//y1999/7Mws7ZpdLCncebndP37j74+PTC5YsXUQH/yw3wufPnD89fvHRxZ22+VVndLnc3Vx7/5Y/fgPz9Cj04jt6/ffPuDcDvsxfPbu7O97f2B8344u1Tg5nmcPf/J+q9muQ4syzB2hIEUoSWrrWHe4SHh9ZaqwyRWicyE1qDhE6QUFQACA2QLJJV1VXdPa17p2fM1qzHbGwe5mVtHnZ/wT7srrVZP6zZPs3u9rztvYFqmwQLCRYBZGT4991zzvfde87Ww3/z/bv3b1+BMn3x7JsXz588vH3twZVJNtsdtnv1bK61dPLmleu37x59+um920f3Pv3s4eNHnz978ejKiY21pUG9NtjYXm80OqPl5cl4tHHy4pVr12+hKdbtqS3l0ac3zl+8ca2XOfNwvHjj3udffP3mDXZgPX/xCl/Z66+e//hivDzO1FZ62FzSrNZXd09cGMS2bk8Ob9+Bl/Pq66dfXN7oZUq1TLaYTxoBPSh6hVSYJ11cIhLQgrIWDgh6EkStKLEU47Y5bW6L1++WIzxNUU43HcWBO9pjdxo0k+b8hFDJAIyrwN8EvKkgCMpqFSSe9vp9lMD6bHa/ze2XWYufZD0OkhYpORQACszQAkP4nV63DzidzTI75/K7PdMxWIzfY2mHjRQZ2u6BFQnrcRrJR1J+hqfnKcHLKAYKV5kSTKiOPPYQegijmOaioKJy+WQS/5dO5zMJrI84PoKNJ6YKICEwrGKgmW/cBF0bhM2uqQCwIoFWWpqhR1KpeLkQBuyKRtD1NmrGQ4YOwCtjm7GGsQZCwIwn04l4tlzMY6B6Kp3KFivlEiJODy2jVlfXtvYOT508d/r0mfP1UDQBf2c8UygXeg2J4PmAQJBqgHTTios2eJIjeYF0ACaRoH5xvIAmsVNMBIridnlBBJNuJwKw3wcC0uW2YXKye+qPMjNntTm8lEBTrCTLARPQAagBWuoGNYwkgu9aFRhOxSgnjGD5WafTbqH31XT0F+RpuYFOkuVmpz/q1NKAvtMmrD9eQ4mKpobT2ErVH45Q/66urK5itV1fXloc9ar5UqPRQ4uNZi0BhRPeGaBKKlCacBjqUDoP8nrq8dFsdrqD0dJo1NGxtRsoBomuzYwEJRm9HQKhqakycpRKpVLDwahuC3lCs9Fu1Svlaq3aSVN0bWe1XUzyluMzFo/V7pgDAFYIF1Q6j1bMxmPi3Lx71j5nlHnCMGZnKZlwcsnR4U4pTGOnG+3yA68gbZLiNgKg1yN4vZDKZD985EuGZARoGqMP0UNb5EyFYx2cbujhiBlR6GACHUhpEGZoHx6ZBsdjJx6GA09vr+PTfI+kaWaCcpISQyox6wSgCEQSBicYeg7fbAxHrqANVq6YRx/o3AcbLABvAPcIzcksA4JQ5gnK63BQosSzAK4iz8J6YNxuHoimAqJJEgRY12EchOfZbDZiBCQ6UzAkkWW8arOeyleqxUKpVGk2mv1Gb2l5bWNx7cTG8tJkOFo6O0nk8Q5YD+khQNFiqT1Y2erXJruru3sb65PBZLldrWRAmgIjiADIlpoDgN/lja2oahoSqyphDbSshm2FhUoDe7Am3e5kNF4dbWydWHI6/B47BgfZgDK6LQ7K5bPMuX22efucXUpEdAWQMKaForKmguqaIeKRIEkKNMGjw40jFTLxvUYANhCAg6FwRORDoGrdTjcD7wawz7lZuyDTgaAcBD2OJAW2ZUTzcWWNDEaBgZBOi9VDkb64QXkiSbOpOV1aLMjiduElVgbdH9MiwZDCAaBSHMEBbVVVHWeP0c47V1Y9iQybAbosxuOuj465AfwcNp/LYXf7vC7b/KzDDZ8sdjfUq3mbw26dm8EtCEh87Oe/nGF0vFjPRlnX8VnbvAWYshfP7YAWkvD1XVYXgT4qRns5pWC4FbZa4bEhGrh77B4xIIIoxiENlqZFRmR9Xr8IW8UOsM9FA6quKOnuzt/8p9+8/Op373989eDfPBmsVtSlo6O/+Z//6vd/8fIP73/608epQa+zs/7P//T/PWPLukfUKS0V5GSgTAktVojpsp+L5PIa71xcXug2q5HKcOF0HERSgK9eNniV8EiKWbvU9lESArBM0QJvxAv9lUur5qXCcmRnIJ1f7Gwa2Vw0oX3WCfdOLn+8na+P7z3u7z99004MgtVeZ6k/XhgMF9EKCwB4e2fv8HBraVzTL+9Gl9ZO/8Pv3/7+1Y2tjbO79cqZL6+Utz45OvrmzekrVy9fuXr1yn8fQ0IVfOnyhTM7g1J9fKGdWh9d/vP3777/FvH3AwB//dUXjx8/fvLo0up4c39vsZA7eX5jozQ8uXfym9+9R6B+8+bVqzfwGx9/evTp/Y+XcoV2p9Xu9Pr9Vqm5tnfqwtXrd46OHjx89Ojhg8/uHd1//NWTh5c2NtfHrUprZX97odboDha3RuPlnXPXrl//5OaHkOAbR3du3r1z5czNC53ijVuD7UuA38/fAqq+ePHiFby2V89evnj261uD5WpuMCyl44VOo7ywdXDpIFX/9PTqJ7e+fPvs3ZPnX328v5aLF9IZUIoxI6AIDA8ATLn4ZBSqixowFCYAvwyAFCJ9uHQcc26PU4lLDM24fWzMkDmQbnanybFpjqDleg6qgQYMnKAZkvZ7PDNWSRYYP+mlRJ6wWtywYmXG5idJIIAgVeWIonE8z8iC34sZIU6rHRjlnNPvJnC2zef3AztlYBcLLINjSIAFpBubdwjSywnELM27fSQrCRguqAYVvC3lAMyFZDVGRSqlEl7sFfIYUYNhvkFVgy0dBkwKmsEQSGCGkaBwhsNxbDQLYeIsJg2KmE8bDge0ZDZXL+XVUDJeyGOPaiQcVoOgRAIyJg1NU4Vk3YxEE8lsZZoiCvgbx56USrHQqDX6ULAApzb3DuDj7KmTp85WtHAqm45FEoVKpldk2YAaYH1MQPT4eMElaATBMlCZrG6GozD74gMA89gFRbFuJ9QOAGC7B94Xchph6ncDJ/f6fB5sg7RanR6vn8U8XVVUI0EzlY4GzXQiEcEj9lA4aoBE0KJGcNoHrf6s1e0DtoHAbDUb9TrITRDA7VoFAHjcraWQk/8RgKcWPYqqBuOFaq3eGA4XFiZrG2uLq+ur67sH+2sriwutSqUBBbzbANUV/wDA8Ad1EzuPpi4OAMAVvAKu16FUtxfG46aMDd7oZ0v7vSTwMAbjQAzdiIUNM5ErAT6V0HypCfK80+20GvAiUas3KoNJUQmVapVqRrLNWWwutGewOEiRcM85wpVqNZ0tyL/4hdtPy+31ghjMSvPHZj2yWaa1s9dLTIJhSUAnPzA5Bx3wiirCKrpOp6YH0PCRLkYEXSP8ajg6DUUIckaAF+yEAgTVjJgyrWf0SCQuKtimiAFZ2AaNY0hTAI5PW99wHhg0cU6RY1RAlck5lx6UQvF0kBYj4RJOVeGPMvr+5wp5DLME8pZMZdLxCN4c6F5Y0IKPUUASUg6nHy/UlYAM8EsRhOByshxatQHIwM/5dBxeRzQksLkCtnGwqYKJvXMetVVPIgDDG1ltt1t9kKeLyyuTjRPri0Dnx8snxplcLJUyTV0NJyKRQqPbmWwv9rfWRiCB1xYXJiudSiEZC8mYwYxhDL0hSNyV7Z2oYpoBISBOGydU0wTyiUYfvYVJpz0ejSaTnf1TS1aX2+N2uRzzx2Z+cezYL385ewyH+p0e+4zd6kDPOoV3MDHNDEq6yojO40IkKFNQ6P2qzGWcUnxqIWMiAIc+WH5GZTbE0x6/10WI0/yj4/M2XuPlkKIHZA52Ba+qYtigmJLmV6Myx/jcdtgqpDcaYbwhAOCw1yHHQ5zP7ffwMqeFRF4VNTGc9PkdftJD0xToUAzsBAGcTCTytbBi0LPHlYKZSHqOuQjAfI/FaQdUd/qgVllmrS6/1wEKGMeQAHet1tmpBJ6b+/kvj1m98G1FoslEiD4247TO2hxWF2hjl8vqJHwej8vm8PngbZDiq4OwomoBDENjJYkVFJFweRhRAD2u4L6nCVJiBJ5jPDR8ITcHxTUDZc7tUvJL3//1q0dXn7x4980nf/71wvf/pfrr3/zhtw9f/vl/+d1fv/v93z6WG+P97Y1/+ad/+XNfPm7nUoyeMUSMvomr0WIiqJBkrFZRKNf62kK7UY+3VravZCmG0PjsJZOVab+gRuqXO7CL9M01oIN8AOpnvLlx/SB6rrhmbnaVq4ut1WA+GzHjD1OJ0ZmV28NKY+WLa4Pzr5+00n2t1GqMe+PhaHpeBgC8ubOzf/LE2rifznyeLu0NX/3tr7/98d7Bxqlz7eLug1srrUv3P3nx/OMzAL4AwJcvXf7j/O80BPjKpVNbi71y7fy4ur4y/rPfvf/p9Q//CsBPn339+PHXXz++d2l9uH643c/Ur3+y2G2v7mzd/ulP3r1+9+7N67dvEYCffP7gwf1bl0uVGk5eAp+vtdu5RL7eAHa6un/6yrWb9+4/fPT48f27R58/fXTzzN72Zj9fmWzvbXSq7fHi2uJwsnX60tUbN2/euHV0787NT+/euPfo1tkz1y7Xa3c/aa1de/Dgqxd4C/zi5evXr1++++bdm6/ffrc7Gpdrk14xlau1ypXl02evNMNXHk3O3br/+pt3T188ubO3lgplM5lSKp2OaSJDsamISDq5FAKwrOgSKYMYVjmOIQD1fB6HxfMBgCnQmVzchNrEE05XRKBjpJ+Ra/lYUFM4msD95/c43bOzssyQFGn3sYxv/rjtuN0teOc9NOn2QV33ShEhICkiiGUSr7p8Hrvb6bBZ3D6nn8ZBYpJ0EgLrcgIPpJ1eDMwEAHa6PFPvU8k/QwtuD0K0zyc5LH5ewnRTmaeVWDqKAIwZ6/AjGo3HBVEFhRuKaOGIEQSpGwyqksSxMkYUhhPpFEaAhzVZlhRNwi5oNFEuN1JBQaW1WDiBV8DJaDyKzVfBgDjNCIJtEwgG4nEjkivXcJYETf1zIIFxzqjZaAHOLK7AyjtxYu/g1MmDk6fOlIGBpvJTJ45SN0lxqsRjTyvhIkU/JbF+ilV4r8PLCtyHeFxqOm8MtBgA2INeTwDANidJADHxghrGx2FxoEOlw+2en7XD/03xnBSQWSkcQW8IqMjYV2KA5o/ilXA0qH6YdQYArja7oCs7C12cBW4AvKFFVbPWanWG3Xo6EEADLMxHw85MEf2vg7E8tkUNRwu9IfbybG6vrW5sb++uLnR7vU4DO7q6nWomAQUTHoIoi4FQQI8AEqVzRdDOAJn1eh3zDNuDxUkVW9+ndtB+CgchAUokJQQMyAjD48iXS/lquVQu44hyu9Nu1KrVMu6ZerNdHS22S8Vat5IJYGQyjVdxoChAK7rpTDMbKRRLps8ryHK9U20kjepiLcRGQk5B87RODriALvk4lQLBQwoOIuRWw5oxpVBJNIOcpgLmU0ogSBGMgbPhYTMqoNWDw8kbWsCMmgolJQAdkgEhCnRB0w0jFjGwkS/+4QQ6kpj6QU+tKVOCHKJUQaLm3RIvh6NJnZLDkUqzVKxUa9MLYPgA9C0Ucnj+nMqkYlDllCgmrzO8h9MoL03iAbTAQUGX0BOYYhirV6RZBW95GC0UymQM1QTurDLZfGcJqGAAACAASURBVNyQBTaeN/HWwG808Ag5XyoUi5UW2pt1F5dW1xa3dtagIi6tbGwPs7lIJh8xFEChSLRcBOa1vbu+vrW6tb68OhmvLlfSmWQsKEfQvj9Xrrf6w8FgaXMnJoWAkkgirKMoXpQnsDev1er2Rp3u4ngyGK9vnlq0+AiKcs9+9NGxXxyf/eXMzC8wutnl84EGnP+VMxJVggGXJaKFIkrIIHl6xhvVAjQpU25QtbGANR9EKoIB3WG8a8Z2aI3TRb/baXPBs4XnYZ2zzpK6oERV2Mgc1A0OMyxNhiqYlBrTBA7w3wH7xWdEeEJNmtUEaRcSJk86SY+gcCGd5oVIIBTKugk7Sbk4TGtSsSnPxL7yaLoUSqbpGh0uh5K60yuQPqfVOeuYtc1ZHT6KcM6hSsCoY7cTJIPVZrPOz2Huk2XmVz8/DkgsRFQ8G0jq9nmHbRZboHE0HXiCj/J68Dja45knRK05qWkAi7KgBOAps5zEuDy0yKN9toL5DDRFU6wKjxq+BBWAfaWbpVw8qITi0ck37949ffzw2Y93PvnrB41v/vO3z774brmxufPw+3/8zdvfvJRLC41LW//4n/+f3xOpoFtKBYNZQ1QCmpIMpnBWn5TixaKhekarg1azUxht71zJswwV5GLnw4zMkqIeaV3r+HlF31xlZA7JsRnJL9++mjosbhmb/cCtpepQy6dTWvNWKL98autGu9ne/WJ38fbbu73cQC8jAI8WsAtr2oO1tbN7eHJ7edgMnbgW62+f+Pvf/vTbJ2f29w/XU917j9Zbp27e+vrdjTNXr13F4+cPk0dT9Xv+wsXLVy6cWBlUaweb+cnmytu/evPjDy9+/a8A/NXTrx99/uTzOwery7sHq41c986lSb0wOXH20Y8/vnn33WvQwG/fvHz+4vnLl08fXl2rQTkq1RrVYgOvFqNmqlwB9bCwutkfru6dvnj96Ojh5w8//ezzJ5/eOj1ud3vNxvL+zrDR6K4uT4bDlRNnP76BAHx0+w5eBh8d3blw6ePz2cHds43dO48efPnqPb6s1/Di3sDnt09/eDhebhUXFmv5dLpey3QPDq9th9denji4dfTs+esXr5492t/Mx8vFbD4BfFOXaQ+bioqkg01GNPSsAUhWYiEFioiPmOb7uu1+v1uJiTRscZKNhmQo0pTbGRbZOElwSi2XNhTWDxvN4wUAdnits4rKkAxt9TK03zpjn3G7efusm2P8Pp6XCFHHI2jC4fNSXp+b9HlxTs5u8wKAkygBCZ/NK7AeDysxrAswnBc4v9Ph8hKUH331ZynJ5yGBTZNexjU37wsmIvGQKgmqGY1SZg4wM58DXRHF2UxDj+VyySgaAOtoPhAQ0SxCCQOq4qVPBLZeGDNs9ZBCUUCyA5FMNizwsXQsgQ5J6WgyaibCuqjoQRW3B+wP2CMBMZkOR4tlnCwqFxF902kQNYUiXrBi/sz6xiYUtYMzB/snz5yvG/EwZvMVypVqWSY5DBcnBd4F1MItC36aEwIOiwOTGVgaBCL9oRILooRd0Lhv/ZTb4vD7PW436fH5YBs7Zu1unMvy2meOO0gWjZtlKNVKOBINhyJJU5Ixdw+ebTga1hSGEvGTMgXgerOJqNntdacuzaAxW/0OqNQuAjAIrg8BpfzUCUsEbQBrtQH6GAC4219cXkKTr9XtvV2QTO1Ov1vvddudwbCVTwaDYV2WYGGg/Q6e58EbUqrWWnVA4Ea7158MRiuL1WljGYk2wVPCL+t4cB4M6Rg3mMoXi4U69ioVyw3kBngfXGx0GqVSa6HTbPe63W67ktZkHZ6jQNjn5ux+3k1TcrFVrmbxCiATZOVaI99uZ1JmvR8NBdzCZj0e3ioQIShqmKnFkbzHFSTZYCAYDuM8K55fTIORclCXQjzjD0aCwMmiMXgHJdrr9BtBIG+RkCBgjmFCp2IAwCqIYABgIHHonzkNs/0QTQi/hnUFUpoOqUHawoWlgBmKBCg5EKm0QJMCoZjCbxFNrgvYK4iZiOhIHtEUgicplpw6EBI+N8ULAjA9BRQvTVCc08ugIJYFlROMcCRuABTqIifQmaypwgJIFk1sniNCtVIWu/Hh74c3sd4pNSarmxtL2zsbG1uba2ub+wuZQiSVMQDZQ4lEspyrDVZ2djeWtnb21lbXx4ury9VMNhXTArDw42n0dmsvLAwWtzfj2IbIC3ieEsZh+Wm7ervT6y50B0uj8WBxcenM0izF8qT12LFZ+4zTa/MRNnLmF7+Yt8/Z4Buy2oVILKzTdskMhQxNU2jO7wB0AZbJEKTMiXGXak6PFRCAg2icAx8mH1A9buusn1A1TfX75+3HPbooxbTQFICdDOjZUJTz5mKcEjMUHmqJzQl1Qjclik9GC1nWziVAKDhIl4CtXpwkxyLJkAFAjcbyHMOJEjZhhTFyK57KChwzk9YiGVOnWQnWmA2gH3acz2bz0JTTYpm1e30um83utGMYoc0+Ozs7Awp45ue/nPtoxqaaeiyazmfiggPNKB14C2x1uGweh9/tIz0ghgmbg5ej3XFSknQFAFjCekT73ZSA1ngSTiFgGyRLKpp3fs4RjAVFTtRM9J3P5cuZwIlXr79+8u6rb/7w2cW//HL49t+9ff1NhSrnYvHcybvv/v1Pwf7Cyvb29X/7Ly/VskIKimxkMZVQUxLhfD0dDhBaIldKxoj+4qDb6RUHS8tnMxRBGmzqvMEplA8Qt/1J3QuSZmMFAFgMKEqxO9y9ezG6Wd43Twz524vlfjAfL8ibZ/T62onDM83a4MKDxY0vX50e5IbBOjZhDfv9wQSNsNYBf/dO7S8PO/nE7YX6ytaTv//1Tz/c2Lt4eqVVPfPg3GBy8/an3x+dvoYAPEXe/z6EdPnqlQsnN8b94vK50sLG8tE/vv32u9foAg34++KbZ1Nz5/tX99dXtk6sNBqTG9tLzeriiSsvf/vjy5dvXr97++4t9mo9ffn10YUTa51stVSuV2FXwD4v5QxFj6FgKlfK6Mjb6i5tX7pw+db9h/duf/rl0YnVvY1mqTbe2xl1Bv2F0cJguLx58tL169dvH909+uT2Z7dv3vvszpVTR1u5pYfLo4Pb9x69eI2nz2/eAPy+fv789Tevvj2zNKjURu1aOl5u5UvLhxevlkuP7m1e+eyLV8/fv/vmyYn1UiqfxINKTdcV2iOkIyLlZGNRWPWiHFL5QDys6RKoQg/pt3lcdj/hUWIyJ4tePwuLQgBW7rGHBD7D+Vmtjo2eOCjupQAiPcD6ZmWVp0jKzQgs5Zh3zbvdkmPeK3JeryDBwggEZAKA2k9SPsJNAqDYgU3avKTHReFwHuFFAHa5GZHl3H4OwIj/IwD7GNBQVkp22giJJfxuDw7pxUqJOA74atFUlImmIslkDgA4hyfD+XgkmUuamCKHsUfaHwFYNmKJeDQRN0GtmaCAAV4NhSB4Ma7rIYEOVeApmWY8mkqb8HtiOmAXmjnCawc2qYqizMfTZqxQzE4BGA+qUxnMWM/V0PppgNn1a8urO4eHpw5Onr3cNmPTMaQCiMGIj1XgTSEYhXHQkodSKUpgRWbe5kdz6GkCGXZCfwBggaG8sP2dfsZjcRCkF94ej8/vdHkddjvUBa/L6XU63Bjvxwky8IJgFLRnzAxPj/EisQ9n5wB5WsYMqR8UcLsFkhc/UAgDALda9dagh/Yho149JcuiNDXikLipIYBmGNFcpVZvDxYm48HC0srScLK0vL53YmdxfXUAKFnrdNutTr9VSgWhlmKnKj814gjjaE4WILgLOhu+YLu3OByvTCoSPLWp/zfnd3l5EO1qQJZUvPuLwe8HPgNfq9MoFsq1SrlcQ5uQarnS6DSrjSp8lW6v2sigDBPVIOecnbH4JZLwyLVWHrhQDFSoYQCEl1LNPlCihiq2Mj5pvBVsGBZN1wgXRYCsdAiEJ+qUVT0E7CQem9pQAQCnUmVT0nnGHQCANc2EqQYiCkX77Og4Dq9PF/U4QGzIG9G1sKoDr4N1ETOwlS8+xV7M8sGfkqYpmRqryarzmJAATqhHdFZRTADgIqAvtspj43weW/IA/EEEJ9BY2oh40XqUdyuiH+970ZNB0PCSl0F7FnqWl2lJVTQ6IEp4/QyMEhMnJTaXC8s0L+cqJkcDpEnNajxXq2YL5XIVHnWvh8i4vLi7s72zt726vHp+mCrBS1ZNM4h7INMqt0EgL61ONrdXNneXViar3VopFQvqiVQMbxHasDyGg+X9tYQeCoAA1wGAg+g0iifQyDa7C/0FHP1cX1q+sjFLszSsV4/fbz/mcc760JTHenwGFCBwLsu8FJd1lfanQmpcFeMkrRx3ZnRFpETFHxBYQ5/J6lNnulAYRxOCgNOGySsGwXicTgfPi6LHZ3Ec9xgSj7HJIuO2OShBk0NRxpGM0nwE7ct8jnkHSROBsMpQyVguz9vYZFTkbKSLBwCWRSWsAEfVvfNuLyURvAIbO4QzEVFsGUmnNUrTgpV0KBzwep1W79zxWQvlctn8NouTpl1Wx3Er3phZbaAXLHgVMoMAbLPN/vxXsz+3UGEVnks6n0qanhm0JrdbZj3zFrvNZcFN7HMAkvsdtChXlxtBKaSCNg1wvMx5XAR6z+EIAhrAwsZnZWr+I6+mBDkRXqEJ+JFOTq+6Nu+/evj+9VfPX/7p2R/ftJ//27tvfgyq4UYpUbt38d5//CneHa+eWPk///m/vvTlY7QckcMAwHIQCmC4UE+bGsEkW614kFqbLCz0u5lqfels2uf2hZjieUNQvC5J1/44hrS5ysospyTkdLW5de+KulQ7Ezs18n4yqQ6jBbMgnt3SOxs7ZzcbhdGNe6PdF09XuumB3mjVR53hYGE8miwur6L36f7p3YV2Jdq6nRjtnPjr3//w/puzex8fdspbX9ycLJ++eePHr09cvnrj0ocu6CvXLv7rx9WPL53cHPfq3ZvF8sHkyt+9/vGH7968R4WJJlho7vz1Fx9vdvcO9yel0uad7Ulh4czOhd/96Xdvv30PWA1o+PLFy+dPb5wcticbg2wkDTUF7YZGw367gLUGqnWxVJpOBVaHW2urm4fnr9y6/9njrx9f3V7bXug0elund4dVWP+TxdFg+fDKx9du3r336Y2jB3fuPbh15+qFmx+vJA/uTkaXjx4/+/INAvDbN69evXz76stvX/76y8VxK9Nb6OUTxV4t1Tp56s7QuPhy8fDRozfPfvj+xfOD9Uo6k8hgMlk4KDOElA4LtJs1Y7DqZS0S4rVUPGyIgsDYfJTbZ7V4CbeaUEWOsrm5VDTAE37SY4PyUBDcRKBmSAzDsTxHEoTX77SCQoMSTrj8fqjIlH3eMefwBHwuQqJtXsBeLxckCA8DhN8HP1yEw23zulx2O3BEP8sRHj9J2P0ibQdtR9NOLw1EVaLdTqfbT/pAIPMuSvbYKBn+hWIsM04xlopGVFkRlUg2IqRyMVCjOdBf8FMUVWwqYkBZDIWBVaMFriCwjBhJJKJh9GsMBIwQNnFJquCnZOAcrJ+KFOLJdB52UjiawtvJJCb9TI2kplMziHR8JGFEs0U8R8Rxkiz6XmJCOWbPV/tLK6OV9fXd06dPnDt58uyVjhGKZwrY+ZpvBj2aga3ivEY5BNWmqF5BJAS7i0ILOkFC1zkS0Be0Go/7kPDA++kkWA/sf5bwef0eivF6pjG4Lp/XNjM/b3N6AX7RXlNQwzigCg8ukkHOEY+GzajGCSAnDGyChu9A+VkVwxdATQ66rWargym9rWq922tDmW3VM7KsqLLAMLwscRSF1clMgAiqtkfjBRD2i4vLYyAXazt7uxvDlUG2UIM/2uv2+s1iPBQIBARexjlgdMJKpZKJNIjSbrs76DaaPfiKk8VJnSNIhsW8Dh9JkKIi8vAFMb0JO96SmWyxXqvWmq1mvQbyrVptNmvNSq2SAVBtNSqlWm/Q6xZ4SdACsmrylo+sULkdFn+s3czW8omoETSiqWQlV2hXm/mI6fK1+0na1TzlmXW4YgEkNxS62ru9mubQ1LChpgxgTlNHyjQ204lACLxcIqyFA0YiJpoyWnWLIROUmx4UqXQkHDMkydQNLaIhfgNuxv/VDyuZwOToJJpDR6gEx5hBzmbhAOXMWIqVwnqy2irlyrXSNIQBxEzmjy1YyUwmAfXfCEs87aYkvKFhMKGTEDDXIqiyCo7K81aKYgQV5JHIsnoiGgyroWgEXoMiZEthWNA03gDAcrFLLUB2TP0o1OutbrPd7i0sbaytbh/sHx5sb6wvnlpMZZPZJO6GUCyRzJcqreHi4mgEC3a8tLG8urnWKZXTuoatznEA4NYHr+etjYgcgkLBY1xVKATbJ11rlWu9bmexNxytLiyPllbX98Z+HPd3+CnnMdfMz3/+q18etwHwzf1qBpCYIlxOn5LSg5LbHQ2aph5QBNY7G0jIIQb2sgp7MOr15oAVBUGhTv3GcCApGlCCjBWQ1olhB6xnfn7eqatMFF5hgPfY7SSn6mI84AtnA5SBIs7vtdt8tFdIaSQBGr4kuIhUJMA7CZ9gKLCpZNUIRAI05fNRsMNkQw+E8KQMXfPi6VzKcFNarJgJS37bvN0OKDvroHx2h2vG6vaBurbOHbeDknWAorDM2hwOzzRqAf+Z/ehXNl4DNoDDEZmsbrHNHrfPwF9CHD/utlnwVy6H1+KlvfOsrIwnaU1TJLSglBTK6p5i7/TuR5E5VhRZp5WKJ3k/C3s2GMvAesHcylwmuvfw3Vdv77948M27C2+et7/+j8//4i/aoh5ZKJQufX7hL/5K73eXd1b/2z/918/JTNDPhCQtpUiibiSzeqqeNjQfl8gNYoav3xsu9AaxfG/3ZAyKsMhnL8VZ1QsqINw63/RTSmh1A49cNM1IFnvb968HlnMHqYMxd3OrPgomY0np00qifnrzYrdd3L5x1D/9w/XmanlZq/bL4x4emUxGo8XVjc2t/Z3T6+XFknFrK7e8fu/vvvvt+8uHF0+tVjpXPt3r7d68/ePjK5euXrp4FVuw0Hvj7DlQwRcvXrp+4ujMaKvXbJ1Zy6xtbf/lTz98/+3792/fvHn76tmzFy+eff3k2eOLq8sn9raXM6WL13ebrZX9/aPf/Pbt+3fvvv32/ZtXz799/er+jYPhaNBsNIsRtdLplyvYLBlJpTvFHJ7eVZuNchn2YaY0XF9bW11eXts5OHvr0/ufH53d2wF90RztnG7Xa+3BaLI0Wtw88/Gdu7fv3Tu6c/vO0Wc3Pr+6f+NKL3XpxtL6+U+ef/n09RtUwN++nh6Rv3jxm4uDYbHeXy6lcsV6Ibt94ZMLme6rK1tHj7559+L7F9+dXOvGo5FiDSMXggIlSMmwwjqpWFw3IgFZU1g5mQkqmsqQnNfHuh12L+PSY7rEkQ6faJoE7XX57PYYxWZ4L2GaIWHavAP0F0N7QDAflxSOIVheYWTS4bU5PXzIaeN9jJWVAhJsGj+JI00MQbsIr49yeLwum8NttxNOlp96rdk8PGNziQqnex0czSg8iZ6qCO+iTDi8rNMGUpkmaMY9Y/GhaST6uYUS0UgABzyj2UICVm0ipOVxa2GLTBJqI/DckIIZBpwCv8lEw3f1w7xhFNg95XCjlJTVQDybjCYLcRCTaTOZSaABvyxD2cXJwOkksKTJ4UQiWaiUi5VqCcA3Gkukc9lsoVLsdiq1weLKxtrm3v6J/ZPnTu6eu7QQiZlF0GSpQqNCSEGJs7toQfSQkpcXWQA73jNHs9P3j5UoAm84JVoAMJNYhnC7vdiE5Z+x+twewA63F60O3G7MP3J73I55i9MHYE3T8MZiSHssFk2lAAw0CQdNzGAkEUVWboQDsMcl9WdoQIlHwu1GtVKtVkBeAgb3OrVad6HVyMpoQMmzOIYEfEBUNS0cz9fq9e540O/1FhB9V1ZX1rZ2tjeXNse1br8OcNnugQKOYzQVpvoqIVPTQiGgmPlCpd7otVoA9r2FTq83noxreMhOormenyIInILEGcigEQQREs8WiuV6tVKpNQCGy5gFXMU9Uq8USpVSo1bKFxu9wUJZRP9KUdRZ24ydoY/7SYfQXmxi7EbcjOBFbAFPrhOFNn+MjpRTDtvStsU6L0cFHaerCU5k0VFXAFYCsBhKJD8onyyI0qCqS15/OBKKhMLxmARUlPd6WS0sGZEgADAw0khIEyKhoGaoIXSjmOZcfMhDwjQGBGAMwuCSoqCptMXChzU9HE0wUOZz1QYsFvhWAIFRA//RCCuTAzGZCJsJUean2VeYTIeJjRiRI0M9F1jWQ3AOD9BbadqjrgbMBL5CI4K+MhKXKUYApulULAxQTXuCfdDYhUKuAI+tja7fC+OVzfXV7cOtrRMHB9sr+6NkGqiZBt98KBpPlXDEbHG80F/a3IMHOxqPR81KowgiFL6xdKFUA4LVH4yW1zajclCX0Qg9hLCYzOTr7Tp2/C9hw83C0sJgvH5i6KJZx6yTpS2/mLPN/+p/+NVHv5r3Om1zFpfV6qVov5NGJ2iGCoQD8C4GJJ60eWJRVWRVjuZUQo0ej8XgDQyaaKCKpp+hkBmQDc7jdztdGP3L++dnZ52qzptGEADcZ7cSvB4SYiFCywVI06AExu+y2hmJISMqRYKqLUsOfwwEg8vvpkA/TCfbA3GNw5Ah2HtiQFWDSJowmhmIiSKychDId2iayGZzuGxQX7xOh33eioGgLtvsMTsmK1ncPhtKXI9ldnZ+fnbOapn56JhbBnpi4nLK5tOM/fhxi8U5M+u2ufk5C0GCbJ53zjqwM5VVCoNOEuSvJGLPBeUmASWBDQDDAA3PyaxrjghEdAEedgDoSDYTj+SmoSGp8LV7nz7/7vHDh2/+auvpr0df/e3BKFWOG4lINpi+vPuHfxccLS6c2Pyf/rf/65EvrfvZkGzkdUXUjEQhnO8W4mFGSJV7iZCvPe42ugvxwmjvVMRNkjKXuRBlVK+PU8L1822akdXlDU7i+YBqxDP19c9upE6Wz8ZO9dnbK4W+nksaoaNMtnty80qvWTn54OLCJz/sFifZcbA+qEz6w0FvtDiZLK1tbm3vnttcaXeyjYfp2qml3/3hp989OHPi47WF5sbjO93V6zeePLlz6fK1qQX0lStT98mLFy7Az5cvfnz+YH/Qre6cSY9Pr7z/0x9//d379+/eThuNXz1/8sXTL++dW1/aONgah8d3z42LrZXt3S/+8qf3L959993b12/f//DumwcXdiedcbXcbpYKpV4jkcnVy81urlyMp0R44CU8bqvVmo18ttmt9IaTpcXJ4tLmztbh7Qf37l7bG3ab1d7G1uawUu5NxkuLy7sXrt+8cefO3aOju3du3z86+uT8J2dr1Vu3euufPXr69PXbt+/evH7/5vWrKQJ/93RzsFDoLvbSqWIpn2+duXaxlv30/ubVrz7/9vW3795dPlzMZnPlTCweDuoSw4oJQ2adTCIZDIVVJajJaiIdxGNkgvOTwDRtPs4XiqoM47W4uWCYkfxulrQYgpRWnIIWw/NZNBqaxmZ5vW7njChztJ+G9aT4LfZZC+wTp50jGDuv6JKfBs7OsQQeQHsx28Pjd6ClscVOeHiJJkm/3+kTObuTExnZ4+Z5XhYZtFz0enyATx6rm7JZCI5iaY702mfJQiFlBgM8F4inE4pmJhNmMgfgmc8mkyk8I4zFElFQvHishZYbIsvLIH4BnqJRA/NczVA0pAdYL8HzETOsByKAYOlCzIiYUFjRZcEA/YjpEaImYXOSJAf0WDqRyhdzGZDAxekoEpTwXL5YanfbvdEylLy17f2Dk2fOgQg+19GNaD6VKWaLtSytBCifzcurjJtn3Oh1JYs+l48FNo4EmJkacWBzJtr/wr9hTgW6sM9a/VAyXADAJOHxkE435vA5rE47JphBcRYEGQcag9FYNBk3TQ30cFAHXYkRFOGIAVpKwhapn9Wx9bnW6rYxBRjhrtHGc8R6pT1oNQGA0fYBj6FloFSYzhg006VqvdXvLiz0+6PRcGGMcYR7J9YnS+1yv1tsdfu9fr9RiGOPG/4hIRgJ6YCEWVD8lXqz12r2hsPhuNtpL4yGFQpWCdptsnjaPg2CkUT0ikcnInQvLk3bnpEYVMs5UIxVgORSuVKuVrHHvNrqDsuyIigSL2m03eJivDa3Y9YiFRcWeq1SIhgIRJJGMhYqNZuFpOuXVsJYHQRXHgYIl5ePS5yDAjRjBdbjV/FKMaalNWxchtqWzeRzhSirCrRHTximoUeismiqPOkl1aCGB7Zo9BAygmHaBFTVtakAjmBS5TQMKZGIJT4o4GjckBKSJKuM1REA5RyORmlZ15HtVCql6fcIIjj/r2GEUFvjccAbTmUpwW/1iixJeJ0eUpWh/KqAeDTlpBgrNZ3Kxs50hAt0LsYgazMMCjghBQKskI2HBD9JurXe1OmjUCo26s1uA50i17Y31rY2V7ZOHuzt7e+P09kItscDrYxEgazU4bksdDuj9f3N9fXxZDSoFYtpQ9ci0Vi2VGn04AObGrZish6QgZLhDbkRS+VK1Wan1R4BKZusDPrjcX+4eWoMRcFh8/qddufcrM1pOz7rBNIIMCXJPmzv8PmkWCAo8pQZAPobVGTeP6PnZQW0FskZBJuzM8lIMKka0RAa1GkYvqyxBjASl9vtkoUQ73fOz9t5XVRhw6PJnsUnGYYQMyk5HyRjUYrnfI55OxcQ/OEgx8RSyapu9xtJAGCvhwBuqenYwZEC8ezxkxRm/wH/QyqFzzBXSXE+PR7JJHjJ53E6bFa7xzEz5/Z6nFaH1eImCbd97rjV54WN5/DbZx22eZ8DcRpY8NyxXx73SlogFAEABvZZNt1WhwNnh202Nupgw7p1dnbGNjvnIiiXS9Iqyw01EBIVURZpPymg2RkwZAG79SVizhUEpiLIQSMQxiA1XCqwSlPphLF79PrLr7769tLT//HscJXXtwAAIABJREFUZ6+Ge6uCFm4m6umQlk7XVw4flIfLjaudb//b//vYl9Z8bIg3S/AXqXo0Gy4OSskIK6QazXSQao4ruc4glhvvn406CUYTshciTMDv5zSjcrbLsbK6siWoIi8LRgbA7cap9Nn8GeNcj723Uhqo2aScvWOWRgc7V9qt7tmvNpbv/1TPLaeHBihgAOCF3hBPy4Co7+6eX1oY1mJnL2uLZ07++x9/8/KTrQuHq6XRrQd7wyufPfj+kysXL1+7dhUh+DJ2X125dOHC1JLj2s7O+iC1dq5RPFy5//eIv9MZYEA3wN+vnjy9e7i0vLO/0zc2Ptlfara3985+9xdv3r378ft37969ff3i6dH+egtU+KCULTZGC3kulGwv7+2fPRhubwwH4XIJGyDTyXimXCuUJxsjvE0ZoIHDytLKiTOX7xxd2FkfN2qdxd29YbnSRUKxvH3m2i0A4Hv37t29c+/q0dGpizdPFJY+O9M//9nnXz9/9fa7t68Ag6ev8eWLH6/3loul0WoxDpWlGt+98vFW4sTLw8Mn9799//aHt3fPrJQqhWIikowFdZVnxCSGMbDJlK6HZAWnRmNJHTsuASRJ3utwEIJPD8s06533cGpYVlgvy1h0SY5rFl1MYjgJ1FSWoyjSgwGts6IEcpikeEanLcAVaUF1OTig8rwSVLADlqIYULpujx8Q2O0nrJg0Ng9ymBcpjNxz+UXegXKYdng5jgfhZLOCQvUTJMN4HD7WOk8AaWZ4wmGbFTLpIE72ARHIZ0UlCss0ns9kiuVCNpcB+QvIi+6CYezpCEIV4TlejBohnJRJR9HAyNSwDUiiWdgSOJUUS0RS6RyAM9or4MSnoejwW1TQdziGJE97g5OJZC6LucF5tI3Opqaehtlyo90fLYzWN9dwDunkqdOnDi5c6GHGfDxXyRWrOcBwoBd+QfN5JcKnMYyo0ja3xAmSjJevNMvSDM/RNLxIDG5i0YLTDdA7O4c94G7ST1CEx41WlB4P1AW7zY32HRzUFlFS9HAIXSMMtIoIYx5DLCCq8PI1QdFA/sqC9LPp6BFm3LSw0bjVbOA/vX633hm0mxlZAZk8TUQThGlQi2JEU+h41GouTEZDkErt/hh21vbe1srasDvqlPrDIYhjAOBpxrsIFQQTg+BtTefyhXKtAUV6ALg9GnRbC+NRhQKpziJTY9GHX8dzfbwCNkMYn4QzXVV8eVVU58Aby9VKAQRwpQTlHuhCvd5o9PLAxkAvqKrPYnHTbutxC+E6ZpGjUTMo86Cpw9FsMgJkt5oX7BYrH93dGtQDDslpSfAq4RWwvUkiPfA5qIZjIRPqLjw5WCi5XCFFqhLvUtLhoKlFYgHalBnS7wNKp5jxoECDUjdCJgH/0cAp2vDUDvqPccCYpRhHAI7HkpocEURZZy2eUBzwNx6mgBrV8VsqF4vFDwCcQ/yFSp2KpFKA4iEOpwZon4fjSQ+qPVgLwKCADwici6EcsB6wZ1wUFQ5DnsMRTC8EBWyofC7GqgolxcMa7/N5LGoHCGEZAwlrlWqz3u6Nl1a3t9Y3V5e2Th1s750+nKRzcfTdwsn4aDRVruCg72AwmALw4srqsJqOR3RNMQygsYUKrJLuYLy0shFTPgBwCHsLYulCpdwYdNqLg/7y4mpnMFkejdZPLftZp8uLkd7Al51u27GP5o7B4vX4sLPXjYN0TDimi5xXn4ZKqQGVnyXglWP8D+hTVozOGTEVNl5YM9CKA4+hQ5RBUw671+tQGJ3yu+YtNgagGxQwwLfD6lVDhhCNkHzRIOMJTuT8jnkLKfFE2BS4aDpWjziJQNaQXR4/rSqspsLuNXISZXcCABOsJCr6hwCIaCyWa+Q4d7iSNANAEQmPyw4lxz1n8fjcTpsH5CtJeaHczLtxEGnWY58FPQwwfHxu7tisbf7YR7NuYFpB88MRdL7AsQqrSH5Qz3KJiuQSM8dnZh0Wi89DOOc51RyN4uj0Kkisz8uhS6yIbZQ0LVJztkBUhxIDXEEz48kkzkclC3hUmkkau/efP3/66Rd3n7y78/DH7W6sXijVnVQwHs0HskXZWqgurF9o/a//6X9/5I1JPj4shIoIwFo4ESz0i3GD5BOtai7ItzqlXKcRTi8cXEx5CEYXcgDAOklyWrCEABwIbuyJ6JIjmLnqYPvGbux0bi98fsDeXWstyem02r+plxcPDs7X24vnvurvffFey+1kR2axVxp2h8OFCTZhrW3t7u5vLzdHxcyDan1n49lf/e7tzYunLk7G1b2nF3pnPrv/+gs8cZ4ePwPoXrwwHf6d9kNfP7W91Gs2L44Tu8uHf/ebb7//FtuaUf++ePrlV0+/uXW4vH54sFTPnrp5ppMf7+1c+d0fvvvh9a8BBN+8e/X1w6XRYNxqlrKNwuhwFFEC5mB7bdgpZ8vJcqnWTaYWh71OEydWk+lUur6ESZzDfm8wXFxeWV0aLm6fv3D+9P56v1webB+sNsr13nh5Mlw++TEGM9y5c3QPZPDRzQtXH51KLD8+GFy4/eWTZ6+++/bN2zdv3nw4hX73Zn3QS/dW2ol0rtRKjC7cuFGqPr29df/zl79+89P3D0+Py5VkJmfCXgwFeFZKmxLl4tNJXTcQgCU1kQmqMoNdDRRPedwk51JCCog2i4eTYcvIpM9n13nelKwhLoX2FgLGqxMELFzgjrOiyNB+imQpUCoui4sSZLeLJiUXL+sqKmAfQRNen8/ts3t9dr/b4XFbjtt8fp8gkj4vQItX4F0uFm+1fIAvJEla520uyuf1UZTHRfJ2G40KmGFmbe6gJlI4MgVyyoTynEjHwol8vlSrTbtBM9OkVfQ30jGEGIdLQGMCPmUxZgdqUSRmgL4NoMezpouSHjYTqVgqk4+h/b6Jp4ogfXQ9GFQwQAwpNBQOLRJPpEB5F6DSZTOpRB6qKfx1uVK53h91e2trKysbe4cnDw9OHl64MAjH4slYrpgpVkqazFI8php7KZ6UVEaQaJeTUqbej9MkFNpPsJi2zIu6LjKcz+22gwJmLDN2L0FigAvpc7kwlNDpdLsd1nmHl8amZQEAWMWSGgKRgirFjEc0qHuymTLQbUqD4okKeNpaXC5P8/7aaMqBcQmdXq87GLabaTnA8XiTgH3ViOiKbMYzpVqr0633h4OFxeUJDhhMJkurK+P19aVhtYDxwp1OoxgHSaJOswwBnvRIDB2mijjj1AH8HQwWJgtd0Eo1DhU+h2GLLElKeDGNPVggd+DtTGMvVHoa4lCvg47DTHmQxNVCOZ/MwK+qeDncTjOyhK2iksdi85B4NOhxzc/MABEhKU6BJ2yEktV0NFLuZETHjM1Fwlua9NjcHm9U1j04v+4XWY+PJeSgHpWjGGWUmh7vZfM5MRRmbCyIsIQJQpYxMafEw6tRKZgIiSwfxCRgSsFL4BCGAn24/43+0QwLhCwsllg0KWkGTsYRs55gGEA+EWSCmglwWJuGIU1dsAB+p1fAyUQ0hXnTAUoHUuL18WjJ73D7hSA8sqCGaY1+n+S1Y2iBLAOBUlX0VDWj6WQsFlaVgEwX88GIRrIR4Iew9+a1TqFQAAVcyJYKxXqj1x1NVra2NjZPLK/snz65v3c4jMGij2h4+wKfY6VKc2FxaXFxsnWwvrwyWtoc1bNxYDMKACTsgkIdO62gLK2jCbYqKlMANmPpPNSxQa+3POiurKz2FlcXJ6PJ7rLfB+sRA1YcFoqan/X5ZmbdXoKgJBxfor0uD81mdRnlLhDgEMZQEnNMBnaWLNOkxnsyLsBj4CxaBA1y8CMcoUMs67ADD1WpAEWBArbSIV2DRS6zIEW9qmqI0YifLZpkJCnJDOWzzkHxIIMmS4ZSkXrc45GykQAIYFJWaFhxQCwqnM/mxGwD4D0B48MdfjoVT1fSHBFu5TgsXYC1yPldFrvX43bZ4Tuy+xm/wzF73E74bLPHHHaL0zrrRt0wf3zOYZs5bnG4+bBuJqfWaul6KJoKxk2ry+8KlMVoOXfs+Nw8ADnngVrmV+XyUjskBAxRoDyEFED4VSR+avnnVaOg3vUorBoTAD05nRlPwQoLhQLc3jd3nz29f+nxq/uXb/2hlV+arG1/kneUk4mYVuvPduBx9y4O/pf/4/8+coQ5rxiVtLwRgJUeioVK/UIs5OdjrXIhKLYa9Uo7FcgO9y7l/H5CFfIXTBp4Byfr5bMdnHTb3OPRFV41k/nh6cfnYueqW4lzQ/L2cnMlkM1qO5eC5aX9M7v1+vLlx/Vzr77wZfZT43hhoQwcfWFhaYxOlADAh6uT1iC+dEvb2Nn7qz/5/RcXDm9vjYtrN+9vrF5/8OzJyQtXr12+eOnKBwAG+L1w+eqliyiH9zc63fLljeTK9vKf//nb7777AMCvX7x89tXT51/c2V7eOH24UCycvHOy159s7X3y179/8+vvf3j1+u27lw+unD7Zb3br5WyjvbLYSaiJSr7abaYxeyWRiGWqtVY1VeovThYWJv1WvVyodtqj8SIOyo8WOv3J0ng0XN05PHX6cK3fqXc3D9fb+VpvcTIYrOxeunbz9s2bt4/uPrp98+H1s3fuLWQP7m0vnH381dfPv/3+7es3f0Tgt9/89k53XKv2Jvl4rlAvVw+vPZiErrzav/L8q5/e//AnD8+vVIrJbGFqmiAznJKNSpSTT8f1kKlKeoBT0jlDUXjYLEC+GY/dz7pU4FLALz2MAGtfImBt6gIbZTw6nwBwQ8N4Cp4l6feiU7goskDpacYvk3a31eEXJY+DYGSfIGmAPRJLQAX2Auf3Wdw+hw8XueW4g/SQskzhtKvLwyMA80BVCR54Lc/YZmfnHRYMZHA6/bTdwfBoZsi6OC7IU1QAo0VdLjnPqelkJIIpRViFytP+1mQiPs08AhQNaFMAhuWdKxfSSbTZiMRAAevwH3hehdKq6cF4PpdMF+KGGQTpmkpgXoOObViSPAVgWdVUPZpK5arVfL5SK+emHXVYT3MlUB+dYbe/vri4vHlw5sypg1OH5891g0Y8mcjnUuVqWkNneoqCN0ckGQPeeM5upUEACx/Gb3kap6Dhe2NZXtNAAXth87tB9lqP2zFByO3BQCQv4Xa7HA6X0+6w2r0sKFYFLUI0dAjECVcTNq8exrEglP4SLQS1INptytrPqlW8+QUZVmm0u70uQjB87vWGozEsUSkAUhyeI8uL2IwJUj8cyxSq7f5gMBy024PxGMB3eWk8WZr0Fhb6zUIV1DP8HdV8zNQVlM8CAnAI5CxUoUINZHZvOAZq2R8PAICHFagwqH+BOcGbIOsYUgyKBN7hKAiHDOjCTKGYy6HyBfKEnhWFKmBWIZvNpzCnAYR7ilYQgEUJ+9MIiwPWmtVPej0Uj8pdNAM6JWSS6UimlA5yHqtljhAoOeAj2I+CIUH00DxD0ICrJO8JaQE0XkIjjVQKHl42F1LDooeIRvQ4el3xWgjwEJakqSjRsMSTuhmKRBQe+Ng0RgsniWPRP35MATgGa8VIsKEgD9jomfEHg6oRTWhsNJhEXV8plSsf8BddODCRIZnIRsPxKDqk+igWvhTeqdg9tKTKWkjDewXGJnJ2kuclORAAANbMmInIn8ql0rEA5laVymY4wPDxcAC2KulQW7mpLTlUlSK8dy2oyEsbAMAH6+v7Jw8BgAeRNAKwpil6IhlLlD8A8NLS9v7q4tJwaX3YrqQTsZBm4k1vOo9mG4DAk/VkyIRXJCO5i+CUWS5fAn096nWQla2sLYFA2Fz0gCSlcX8RHpZ2uljWRRJODysHFR4bxlif2xUNhhSRUIB1AO9VuJDdnglrIq/IfszFNS1qMhQ1xCR2QIeCeAXCagLjcrpdToUL8BzUFgsFkKIEQwEEYI8sGIoZJchshNJiqgiy1mHxSTKtR1kykI1Vk6SDT0YDFOhYUA26ZqA9IO1zeBiOpTk5EAxHMVcUOFgyVUoKQriRcPs4CpS0ddrsbHF4XU4Aerfd6mFIkBbH5n0ey/yMzWGzzs5a0fcaOAEC8Pz8PGUE4dHg08220tlMpJA47vBZWXiFldJHM/MWp52UKEb2OwnR7C/llEAInjjBobuPokoc7Aqfm0/GWDaiB5AghQPACyLohhbAJi1ZJAtXvvj81qdfXHz+4+NHf9G++A8//c3vfnpRMhNhX706d/o/pOrwnPe+/g//fMseE9xsiNPzhhaIhEORULmfjwZ9QqxRKeh8q91vtwy9srR9PuvzuEUhdz5MyF4/JwbK51sErWvrOyxIKlEx4pnh+S9Om+eb66lzI/LTlcqikYuLl7fNyureuUmzuHz9Vu3qj0dU6VR0FM9NqgtQEvqT0dLKMo4r7m13Bg3j2lpyZf3R3/3Z+9sXT11ZbVfPfHmqd+bu05fnT1/9+OMrFwFxUfhOA5CuXjl/7tLVq3sb407pxMl888TCN/8A8DsNYQAF/PzZk6evvrm+tbp5cGKh2Dt5caeT3zrcfPnXv/nNu+9/ePbrN1/fu3Zqc3V9s1XJtjpra91sanjqYNzMJVOZWqHaT5eqCwvZZiOgR3L1TqveHwyHKwf7k/5gYTheWlkdD4ZjvGtbHC1u7+/unFgdtlqTna1FIKoDzGPdPfPxnTu3b9+5fffWzU8ffHL69tVx+syD1aU7Xzx99vb7d6/fvH077YV+8+Ld+43+OFtdaiVT6UKjtHXp0zPhxR8/3v/m8x9++PbPHl7brpZyhaSpQxGSSFrOxSTSyaeAGpsShtWKyazGC2gCzoq03zrr4Xy6KQM/s3ignoO+9VDe4wDUKZrT+RiwWR6jkCioifA8HdZZSeZYvJwkFQBgWMSS6HaC7qNkRRNcBMhAlvF5SJzzQLNjh9/lsh6zE05CkkBa4/kqxzkdNCsAW5R4UVV5IKTzdpvDQ5FOh4+y2hkedDTt5cIiRiSAWpdpJ5MpCHomFo5NExLQCgLPoOOJOI5s6FM3Ri2gCEDsQqliIZ1IQgVEAA4CSwQNzcqBMFDOSDKXMaK5KFScaZdNPD7NLdTgSygSAPU0JCiWSmbLlTxgRRHRHuVbOpkplqq1ZrfdguW3vn0AigOK3vkLC6YJG7yYSdfKwQBH+oj/n6z3/pHszLLEGqPpJisrM8NHPO99vHjhvbeZGRkuvTeV5SvLswyLvovs8t6TzW4223Cmx2N2sfpFELA/C4IA7X8hLLA/CQIELKB7o3pGApQgiyZdxHvfu+ec77v3HFbmKUEO8RYhScSkV9FpgDuB59CZnuYxi5vmcQtaZMcA7CWIEJBtFm3tQU8Q2AwNOBwKeKe8Lk8IuxU1gF9dt5xIzImANrKjNrx229BSth0xQBObAMAAkObPUP6iAK7UO3MY0tt5j79o9tztZERt3IyJc0hjL2gjjBEJlXa3B/V1vtvr9weD0dLK8vLa6qg/Mzdbb3cAmedm6vmYgzNeaAathQ0rmc1ggxF6FQId7vXmu4Pu3Gg0X0ZxT8Nt5wSR4zRQMpqqGWHHiY6FQ65QKNVqJQwKKsG/wqtET4kygFU24dhwX6otBGDMUFc0Bq5AaOrIlDcItC/kpzC9SZUYLaLBS4glQDNbgmkJsqaaik2xhDsYZo0AAeSG4GTez4VEVQe55eAAFEYSFnLZFKtbXMCMhaOa5cR0OaqIsJwV25CcqCoFjSju8dMmVkcUaICE/w7ACVgmTjwBFz1JRQzRUFTfUT4StiLxlMolrEy9VikDBKPTFw4+jBORYMUkc46djCmShTHrcNMZTJsMcjwtmUB34caGSNEfQNtgDU2hoSjHQSE6ThYKSiKM/YCFYlhTRRlqtciwtNfoAABXa5VqpVWr1qut7mg0WttcW9vZ2Nzd2z/YP+jF8zgBYIUN9P/MlivNefiShYWN3eWFldHKMnD+TBwEcMxB9pmvYnJluztYwQghXVHh5o4vWSJdKBSaXeBw/cXucGVlZXlxcXvgAsHHcTTJSQrHcIzf4/OThAiXi1U1RbVNliAYKxZWWT4aAd6gAwAzU2rSVGgdwFWx6RThw7gLLYHwO7afiwggXAO+oNsrKqrIBoOeo7TE2lrY1kUy4PaJfFQLx3kilWClqMmD+nZPkarGW2meVPOxWkaY5mNxhfUFvbxOGuFEBdYzRXkDrCCwIg4hjROtAIJz+XJa0RJF1eUGOkcDurtcnumjnmAgEPT5Qv5JD0O7jk5+OBnE527S7T4ygX9OH/lw4uiE58MPp6cniUgknsZoj2KhUQSCX4p+OO0/SoaMSLnyVxPT08BJBAXWKTElqLn+fBItj0Ic2surqgzPPggWqLKSbWNGZ1ilBRsqYYiRNBONfmVN49XG4dObN+7eePjmq/Pnc5f+4dW9Lx/8p0tyJBfZCZ76334baa0tnF6++n/835e8JTtAm5xdtDQNbnckXO3mAYAFp1IvWNzM3HxnLhprLW+dTAT8XkHKnYuERF9IkPXKuRmKNo31HR5PolRQ4INzXx83DutrsXM95pPl8mI0Y6uftOPN7a1T7Wp1+8pW+/qrQ6V1LrqQyLwH4LnBAKrEyvbe3vrGbDdd/7gws7bz408/fHX+7IWtxdrutVujxcvfPP5k76OLFy9eunj+/b7zOH/w0oVzh5cunF5fmG3NXClVdkaX/8PL796+fv3qvQv0w3v3H965tr+0c7DdbQxPfjSoNA4299/94Tcvnn339Nn3v7p5cnVle3//2KDZWVgftdLl5YNzFzcKESvaHK6UC61EqdvvFaqVYjYezVSrhUyuNrdy6sLp43sbAK/9/tLS+mKr2Z3rzc0vrq1vH9/eGLab/c2DXrvWGq4sDUcbJ6/cvHXz+mcff/bpRzduXb1081Krce3G6OCTe/ceYVTEi5fjuKYnjx99d3PQr5a7w1Isna8XB+ev3WqXHt3d/eLuqx9e/OH+2X6xDOgTj4YjMYMhpFxcJj18Om7H4zIL+CrF07oowYoI0GwgcHQiKISsiMSE/NM+Wo3IEkUIgSO2xqVZKcyOOxmxe4hFF0mvxzWJc8AsNmFxBu2C9RpUBa8X1AetaKbgITWWYTF8gOBA+oYIfyDg8rk/mCJ8hCiC/g2G/F6adbtpqNZTIU3gDI11+/zY3kFwjM9LcVNuTmAknvUyiiBEYdmHDU0Qk+2SZGUidiIH5S0DoFgo5eJ2BF2vTG2strDgyzyvRLLlbHJs1vEegE0FFjeLW0FmPIXuYE4OZyVSNnr2xxGAMckBKLqim/CwYLNPPJkv5kCkFfB0Bo+A4Rfmy+02KMvO7GhpdR3Wwc6xE8fOnh8l4gn4VK7QyEIxoWla0Dla4BgcSA5O+3lVwrWOuCuwHOgHDOMG+MOxnvEWtDcYJNxHvUA3QgECKjU8lEEC3Sx8rmkMceQ4UceICM10LOwniYdNwGHbhPfrmIhuEfiUIo27oPEcslyt10vVVmcGg4EbdRzU7QAAz89kBAyrwMMEYTwOLAMdSxeKAMD90WAIj9TS0qA3WFpdWVkbgVwaDSv5aqfX7823yn9JdZTgdxiK7sTTedB5leZMF9Rvbzjojfq95cVeFVgGtpjRzBiA8QwYFDDWwEgK7lgWzdkq8H2g4DA5qg5qvVQtp1JpPAaIYgZtKwm1WtdNRaV8brdv8miI9k17MVcZigXcJNlWNImNAhSmSmFOkWQ7LFomb/Ne3kvFeTTNpgOsTBOEHgAtq4P2TqRReqdLhXyVNW3eJSfQazGWiogJXaYonwr10Ilris+IGGE9FTBiuNGNTbr2/weAYZnAjwKBmqYcTVAlyTOl4MOVzChsXE8166VitVHNVXFvvYgqOJfBBOGxJbkuSaRA+ASJ4QMhHAplfYwWRgCmPBHCxcs6bv4aqmLFojgybTs5pA6w5kU+XYxbpsxh1BDLElPRefjx5RLI+WarNQvMaXFhDMB7Kwtr+6dPbOz3kgW0Dolg+EMkln+vgBeXljZ3lxdXRksLM61aOhEHUoRWl8lcqQYrujU3XIwbFvArICMGIlYCDwVyrcFsrz9YnllaW11bWlzd7U5MhlxeRmQJYIVAGUx4Zmxgt1I4rGkyri1TnrISEVWhHTviWGETmP6EN2dbvC5qJDA+KTYRi6QSsRiqX2zCsmK6agLsktNeTlME0uWbmmAkLoXxoDITmHILfMIwEgqRykhi1IayAvKUBEoSzvCEmLbqOXVacJIK7SWCShiUd7pRKDcJxu1nBImXDfwtDiYfJzLFcjkumLkUMTnxYYgI+v1ej9fvOuoJERQV8JChyWmadh2ZnnQFvS7Se8Tl/mDCPx0k/NNTbvdUcPKoz+9hYCEkU1h4MCcc1pX18yPBgORWtXzlr464XP6gwjmGktYmGMFortcUUwz4BRN4vSZzDHrQYmgoTzE8xdL+IMv4RJyQVCWg7CxDMUxAWsw8/fTF2bcbuhnRi9d+8+TZnW9ef/vDRyHFfem//PGt1R0uHV/6T//1v5301FM0CGmnaEgKUHEnUu8VExGKDRcaBZufn+00B9lMa7R73PH5vaJcOIwSgg9JaeWwyzCGtX0Mm8IEG6ph78KTj8JXa1vW+TnmwqiyHE87qa/SiZmDjRPVzNyZs7XuJ3eW5eaF+EoyM6j0OvO97mC4vLa8unNsf3mw0DZ2L8d7p878/R+fXT1+4uJms3v1V7uty589/ur45cNzZw8vX0H9iybQ8A88Er567dzOzlorf3khu7Sz9Pd/ePn23dvXL9+nMDy4//D+tY3l/d39UaV/eLhUam4ev/Htj+9ev3n36sWjGyePra9s7mwsjo5vDfvF+vzW+YvHVjpywErmO62ZZCweTtTj+Vqrmm7OVlLZxlwxXWh3eruXTp06iRg86AMdnR8MG9WZXm+4trlyYmtlca4+u3JiDdRGb3F5tr924vL161c/+fjja/sLB1+ev379TKH79YnB5Tvf3H325g0C8PilPnj+6sVOc1ipL7eisLQyzcMLtzei114fu/L42e+f/+7VZjYGFZeEAAAgAElEQVRdNvVYKhNzEo4Q4DMxifDwqUIqnzMkw1K0ZNY2LVmSAiTpDbmnCd6vWSIb8E66CCUisgC3nqk4RycYIUImEyB9BJGnAjRNBrxe9/SECoQ8RLMsrZNHp476CERQTggRCvwUD2nyLEsRLE+yftIfIL2wiv2+DybJIClJVIggKbeboN1uVmIFN2kJjKmQk17/dIByh1hMLRCnPTwAMMcQXo8UqUTtTBhjjEGQylYqHE6kkhncwQR0TIU1K5GKJ9BCH7ggIKwms7xq5yq5dCE/TrNJOmjihACsoMjA5qxENF1OmOFw3Erk80n0PcDvBnEoSaplKiCXAYAR5uvVcrFcqxbzoPfG+9Dt2fb84miIvUprewcHp04fnDk3wDH/XClfbsQU3h/CjDl41AhZDpjK1BHWEhlVGg8hCSLJMQEQQCQlgCBQeE4gAn63JxDg/Efd2DTi8hMkamC/3+/zBfyeCReFAY2agahkOCk8oEsmHaBR8ailmzbcQ1OzoxYIEAl7h3/WbNTGsTzo9jjbBZaJY0itahfTL+cy0vsBJIYXBWwKA6JhwTppNvqDpUG3j2EMy2tri4tra8sAwd1+v11pz/YGg/lGPuOETeD2Mu7jGxZ6OORLlXoLT5fn5vvDYb8/HC0MC+hzBkWSooE/0VrElNE/JAyyKprJJlPFCg6xYv9zuVEtI0+oIVDlso7q2KpopSudjiNIoJxwJpYPHD3q9XldLp83wPhYVjZABJsG6ARp7AOWjeOhvRpTJVPS+ABNTosxXvVwyhSIZzLIsmRUt6KW5bzPgcjlyvmIHOZoNmo7YWBfMUVJiHwoJMQcXo+aGheMmrhJzUdkS0UhOP6IRBPoJIkOoOhoBZxNigqspetTU4aD6fUOr0b0/HjnAVvLcAsa54SwsxWDCGG5MZblR3MSWO5+f8AbBP4ri7zEcipPCkEPCe9IDSsScD87ERu7djjjzgaMQRIKmYiji1wiDmtIYF2xVr7YKlVKuWat2p2tzwC6DvrLW3sru7trqxu7J071s7loJm45kbANPyqTr7fnRkuLy0tbUGlGw4VRr9pMxaN/GVOCO9LstDvzo4WVqB4JqwIa0pimE4/nK5VCeW40HIIC7vUxjnVmeXM45fIExpPeLCvIsgSrbmzApqCpOM7PG7AQJT0ZlQTKttS4EVXZMPWhnpcNSsEpcoWJ0cFERrOBcOGeFdzNaJiL6YT/aMDDCmGFQHsMGjOabTsuy6GJKVqGnxIPh2JFWwzbKlQEWBAsAH9eIEOZeKYuB8hY0uG9rEfUGMkqtCr5EkcH/ejpI4L01LFhIpmEBzjfikpWMer98Oi0jyIx68QXmDo67cetFj8RnJz0oxv0BxOBEBrnBoIYt+AHDjDhPjqJh0FAK2PjpuV8AbvtiqVkIfrXH/jIKO83y5lf/NwFVQ1qDzxTcdIny9GFUULD8TIZypLBh4I0L8mcgDt7AY5heUlgWBGjSxj/9DQDeMzRvqCvXF771eNL95c2r9/5dmbvT88e3Pv0xYsf//fEz7/9z3/423uZ+eHGmRP/5b/911PBsk3qlhzOW5Jiq6YTrc9X0hGaNnONokYOWtWZuV4231k7E+VpDy0Vz8b8PBkS9XDn1DywJ2NzHyoAx8vhZKF36sHN8GFjRzk7y3w8yu9bCbv2abQ6PHVis1oZnr6YWP3mm5lo8VKmnUn36/Oz3XZ3YbSwtLy5dnp5cThbSn/RzmytPv3bX39xce+j48PG6S+vDzc/unfn1IUreN47Tv79txzgw/OXL1y+tL9zvFY/2I13Tw/f/N13716/eDU+W33y+MnDO0+vLqzvn1zvVrvXLoxavZ3Nqz/93Yt3714+e/Dp+WMbm2sHm4PhyoXTg1x77eDipc1Ko8GQmUSkoBfTola08hUjtaqnT8yVZmdSdhq7TeqdhYMzly6fP3uws7c5WB52Fla2uu3mLJ5jb53e3l5vNWf6O2vNSmt+GaNJdq98/NH1Tz65uX1w/vqN85c/WSnsf3qw/snD2w9evnv+6tXzF6+ePXz88vmjt1/2F1uZ+YUCiItKavnWZ+ey7d/eOvb44bvv3n27vthIJYE95xKw0PmglovKrF/IFFLJmGmEoX6kCmF03oEChJp2GkigHuU5CmQoI+g8QwQJwmMqbJrTdAIkpoybigxHAnPE/v0JFuo3QwKmqCG3+yjp1jhviGR4AsBLCtGyzIZC46M4MkRyNMGQHp/niIf2capMBnEL+oiXC3hphua9JCg3VQxMT05MByk/AL93kuQ/BAXMiQwr+aZCsXIinlEUgxUSlaym2yDGoiBpSo1qsZTLJNEtPzlOCLCBZ1qg61mSi2GTdCqWSTi4b2jbtqoqPDwKpmWEU9lUKp6Lm0CXALszqRh8Gk2kJQkUsB62NFUPq9F0PJYulqvFcqOezxSy+VwmWyhkKyWkTvPDmYXR6vbm3sHp4/v7JxeA0GfL+WyxXIiy/gAtGXoInjOeNKTpI36gKsL4VFOAjzFAIRADQmHbMs+EPG4/SRPeI9MM5Sd86AWN/l++UCgQ9E+5pscmdiIAjQ7aBH2EMGkR7RJstLPXgUWY8AlThTetaDIqYGQmlQoK35lOs9eoNQYL3eHK6rA7m1EkaizGZWx0An0OTCyZrrSbM83ZmZn5haUF+LrlxeXNzdWF5WG332sUOzMzs3NzzXI2ZqPZlgI1GpSZk8JtuHKt2el04EEfILz3B8N+jhlXFJpmGYFlVAAQDf6yQSUlcoVspjBOd4RvLeE5NeJVrVorpTCizkJLyESm3BoDsA7lWg6rfg+BSXXuAOkhRF7goBhzkuZETRXEO9Q/kzMwUlGTVU0UYMkyWoSWQ5RASWyI9NEsbetAzABOUllAw0w+7wi2RJFWdOxOHZMlR5QJX0C1RCMKDC8YtsNGROPDJrxFtK/GvAAA6pgTfb/KYtEYCucYyxmydHTaBI0XS0QAvcMlHPnCo/e/bD8XCn8B4FQiY8BTRjIkPB0csFEf3FCeV4EKsqLgJ7kA9shKOoCYiO3i+MtidiSTTcUQfyW1nDZNiWOtqCGzJOmJt7KZSq5cydcqlZmZ1ly925vproytJnEofe/UfDobhSXtREwbhHAmhwC8OFpc3NwEAIYb1a+10nHHMHDaN5EqVFtwg7E3NKZHLOA9QG3C4WgqlSuUyrXO/HA0v7C6hJPG862l4+WJENxagcNwapwxU3VsdDcQegGH1XG+tCJpUUcTWc0x4a6aCqceDeV0g0IPF0UVheikEw2HI5FxG7Rl6Y7BR6VAkA76WBVKDAV8lFekRAJAU5GJKRejWVE14fitQlQMx+EihPxuH6MC8khkKJVMNYwAEU05nIfyiAavWPkmADBLkQQLj6AwBmDHiaaTGQDOZoRPFszpD4+6fBRF+D2eIOWZmvZT8NU+gvRM4S7c5AcfohO0Z9Ltm3Z5MULVN+GdmnT7p12MAmsPByNgAecL5UIpVYx9cMQbiqlUuJ478gvX9BSQa00FUitOEqxeHbW1oAD3FRYoTwVJ3BqiCIrEaXX0a/V7fYTH7fb7PS4XEIIQQxMkLa4mvn566as//nTvd2/mD75/8uDe1y8evfufPjrxn7/9w7++TMy0li/M/6///f+6TJVyfi7KmgVTEG3gU069V83YJB8t1bMq2V+oV9tz6Wxn44xDkz6GL59xAhIdIGk+v90IMZK+vC2orKCJkVSue+bRTe1s7SByOE99tFjc0dLW7FW7sXLq9FKpPDx7prD7zcfNaOFCrpPOLNVnZ4ZAtjGMcHP72Opmt5MffJTt75357o+Pbp44d7jTGV75/Njc+c+/uXHhHO45j7H33wH44uHli+fP7mwNZweHndpW/6vf/+71t2/R2Xm8AX3/7pOzy1vHTm23WoOvDhfa/dM7n/zxb968eP3k2Zfnz53a3thbWVncObezPFxYOnnlzGJWzzUsrZqi0HLOtJ3ZeKkzSBcrh3/+arHcnK2lEo2ZSgEuxcLpa7d++fX1Uyd3jy+1er3+1upCb647WlvY3dg5tjqcaQ03thdq5dml7kx/bf/8zcs3b14/OHn6/KeXD29c61XP3Fheu3b3l09fvwH8ffny2ZNHL54+fH3v2Khd7C9V47FcPde+8MmtmcTDJ/t3nrz+/u13xzZq6Uo5ncnFw2FLpKW0gwCcTccTMdytFZRUIaID6DAhjEabnggGPYrDsZR/yksBK+XpQCDg0jg2JetKKBKzgK/DooH1A3Qx6PdNSaZI+YMiJ+tBt98VIkzWEyIpKgQ0XvTTqsgBXUT3SjIYJHHQxuVxfeAifaQkALAEgoQbJLcXox+m/dibJBE+77SbYLy0IAWnQpTbzwN/5SRx4oNQxBa0sEaT8KdTloAcO/FcrYqG9IVKPoNhuACAaLeB01WmyMqSqEdSIFgTsWwCB0ls+IyiKhxgD2jGSBL0cyyXtDHIIJfLJqNh0xyXDpBr0nhQR1bEZDEejheK2WqzWq6W0uVqFbQNIHF7OJzvznR6sAKWl/fPXD5/+tSZRQDFbDEPT2bOYUM0D0IRd85FVWOmJ/4dgEVhHE7OsBzL0BxSF11madLvQgsAwn9kigYAJvz+EEUG/EDgCaApwM+DNG4XA/bpUOrQUA8tidHIIIISIoJCwsLx5/F+m/qzcQweNqhV0PGi1ZwFBTzX7cAD059tp1QNXwo6S2O2pKiappzKVTozs80ZwFEo0yPQOsOljY3lxZXFwajfLGEi7EynUUoBw8EtAl3QAP9j+RzCaBUnnOZ7ffR36A2Go36ekzh6fNxJQ5lWcAtaHwNweJwGl8kV8+Pj+4SDGxhV7ByuVwDbTdReoIuSpaYDZVpFqBd5kff+DxNH/ITHT4Wo8f6FyuiKKGrRVMaQAOFyPIh+xgoLpi5qmDsdSqhyMCB5KIIjg5Tgt+EShR30z8+mc7lMMSVYBhmU42jC5CQNyTYkMhBQIqoaAXoRlGLw5WFaxbZ4azwmE405YwxO4rA5JjFE4zYfpyVd4ic86N8RT4V5I+pUmo067j6Xin+x4UD7tGw6iXufTEQKQG2lRJEKBNADCzQQxsXSIIhFIgRlXZQsRVdlI5YY/7YoAHA+HY9YuizKxRTcJEGwY4bCU5Qv1cnnKrlKHS9eE0eIVtZGS7tbg4WlpY39Y/sHp2cT2SjOxENRTgCHzNU73YXF4XBhc2tlaWEwWBzUWqmorWkYR4hnwE0gWH2423HDhJeA8/C4Z5DCFrtmc3bQhyK1srq+sjozNzztTMKCxUBvgsZRgfGxyPipGTfUY9a0jHEmRiQsCVwUlolqm5ROTJoJ470Jo6wwCYbIjD2wxpnA4bCtCQ7nC1FeP2nyusR6ptGsJJmNOmlVIkAZqFZUTyVDSiEpGpmwLtAhv49WFLOg00Qy51TDAX84ZYuAZbwhyUa2UckXaMIfguLBAh9XdRudrRNp4F8Niy1nxOmjk1O43eSbmvIRAfd0gBEY0k/QIfeUJxD0TnwI4hfzZtwejxekcsg/6XZNeUIeF4+ObonsuAkLVn+hmEQA9vgilmRXsx/+YmrqqJ8TEYBzYTJEqPHOohMAfmIZkkb5gGYH/UHCA8o7FMSQmvEmF0j+EP6NIdohCiTN5NA5/eyTK68ffvXqdfnU3969f+/x6/uv/+5fn/zDXVCCzWptfm32f/nv/+dIyhcCbFKI1G0AYExDr/frWZsQUo120eYGw0p1di5dAr1s4+yJmD8dDUqkj+Kk/FbZH+L10Q5nEIKl2+nmytlHX1qH+d3wwYC9ulrblrLq2gm7vXXi3GyhtnJhq372/pVmIndYnImnR9VOuw+Me2l1dXXjAARpo5W4sJnc3f78z2+/Ord3+Xi/evrzK4sbX3z96emPzp7F8MHx7vO/fVw+d+XSmRObK9XhufXKxtrxn356++rbN29evXrz6smjx48fPry4sH1yf282s3TvTK8y2D148Offv/zu+8f3Dk9fPr29uTpaPHG4N+ztXfvqzOZuIxwuLoTVGSfzrJ+EEt1kGa2drUW1pT/d//W7K7PFxnw8mpvt1Yu15ZPnz1769Jv7Ny+e3d44sdVrz6/sbC7MNjtLiyvb25tL3frczrGldnV2MOzOrxw/d/njmzcuXjx7/uat64e3LjTbN6/On/zq3t2X3yIAv3j+/Omrx49evPh0eaFWm+uV7XiplNu/8c2+ee5Ppz9++uI3b94drFeztXw0m8JwF4EVMjGNDyqFBOARoI3OaRmMGBRhORNkwD01ESR8WlzkOcLtI3jHHjc0ujSajVuGSJjwzTQCB0vCSgmF/J4pUedJn5+lZcU77Xd5BZNyh2gmGFJNi/dS+vvgH5oAeY0x8yTtD3gn3GSAkERYmngCQ7NeUMAkhwpY0fgQALArQHopTgy5CHgcQQHztCh4/bwpkYqo0UGJ9xF1Vko6ThYqd6VSK+VLRcBPHPGLA+U3whENwJqWRJqPwuOWTyVyCfgk6EULJJXK81AfgHtHHWDMmRRiWDwP328bOnJ4czwrgPUEZ66ShWg4Vcw359r5dKGQQnBFFZWG5Z2F8teeb7VazdH29vHDSxeXAOXhK3D0JMX6KAmxHl4DH6Hd05MEqDMRqw9GIPCYxICBSHB9BCjCuKPvdmEQsv/IBEnBpYKnEwGYQuNtuGQfukkMVJPMcZeYgYgQxRAZjDXHAoa0I+JEgEIA0Omq9LNWawwFlWIFQwZbrXZrFjC00R8CADcTiqGraA4iKmgujfuGejqfr3a68wOMOFlcho+lhcXV1eXVtcXeYL5RaQE6z3YqmTgUTLTWUyUjaltorAswX200cQN6AAA8wr8BgAX2PQAzPMuCPFJBKKm2E47EoolcsViqlmr1UjYZ0dO5Esj0WqNRLeQyMRWHowXVSlTqERENq2VBAUYR1kjC6w2RsMR0hWEZXgUANSQpbBgxIwGwiumKnBGGEqfoQF9cLjXvZ+iAa9onB2UK1hKmztrYgp1D//ByXlJsOsTF7LhjRdO2bNoiUEQpBlAcNkyCjgP+RhnB1jUL6c3YsgmngUH+4jwwALATs/gEBRqdnwxE8H0lDU4LR/E0e9z+VhobYeXzxXGIVjIeSWhMmCM4gmAlgQlBZQfKwINoZEClMbTkI0SkGyYOn2N+5nsF7GTz6UTUNoGF5DO2rYp8MiaL2BMRa5dKDRygLtVwwHuu2RsNVvb2VlahNi1v7u6dnknk40hKx2NI8XQeAHhxeTRaRAAe9XoL/WoDKKeqxmKRKCzaSqMzO9dbWF5IGDq2vsEaGwNwJo9e0HODLm6erCwNl0bLvQPbw3AUjZngGKSljned/9KzjvY1yF013EaKxBSR0ZN6TA9bKqu6vAUrrGAMvQCSPjEVT2mYE/peAocNweaDwSlvkAT6zNDuqYAi8/FC3MnqEuGf8iuGoydyjFDKiWrOAilJ+H2Uoholh6dilXDZCXj0tK0RIR+OGmtpPOGgCC/AqiQopq6j9Xcik0jBQq+bTCXKjkeLCIrwuT14/jbt52SeCkEd9E26oBi6jkwESF9oasLtBXkKSO2fco2T3Lyw7uDSZApIsYrFcj4fz0V+/qF7GtZ5pAQA7HJNh1hJ18LpbDxOu5VwetDQVQPtcTnSC0rX7QmFAN0B5gNj410y6MN01iCIHY+XpLwhDta7OCh//sXGt4++f/a6sf/j7Qd3X7785sUPbx//8cXLv/91IlkfLGye78cEJx+jxKgcbtiiZGNsZr1Xy0ZIKdfqVOL87Fy13inHa2s7F5xgICSJyVPxIOv3i0akfqJBkoKxdJzR/aCAY9lc/8q3t+0LuR1rYyjc2GjtKBnp3Gpkdm/vbLXY3L7Sa1999lEnnT1TnnVSs5VuZ6bdW1xaW1vdOLW8M1erZD+vtnbXX/zTrz7dO3G4U+1++dnawo1vPr988vLYBOv8+fenv39RwOeuXjhxsDrfOHGmvLyx99s//ebVt+9evH374s3rJw8fPX5wZe3Eqa3t+fzW7WPt+vLpEy//9IfXr198cf7E+a3R3vG15WOnjw16Bze+uHNl0CrIqe2+mBma/b/7D1lAF94ilVi2mL516fXTJ988+e399VK1W0vFy/354uL67snDCzfufHX3/ifnz5zc313uzY9Aw3eH/fn+4s7xlWa5s3SwM1eeHQ26/eX1w5s3rn984/K16x9/eeHsF2eK858eH53/4vN743btFy8AhZ88BRV8fKWdry7MAaqW8qtXv7qV6fz0xelHz3/z9vX2cqOYB2kch8dJYxkhE9e4gFpG/0VT0S1Oz+QsTWdlZjwFh2kkfiMFtZkAAGANBYpF0Ite0BHb4CjDMSQc72Q5HOIN+l0TE2hTBahKYayvZ9otqn4XyXN+UtVN3kMCdWdBLFM0AXDLsqwIj01g2kOESFmmgeqFgA+G3D5QzIwnhI8vH3C7p6Z9gQAFqtjN8C4PK4k8ydJqBJ5ZKM2aIAoet1SjxXg4VkAjpUq9XKwCAAMi2RED5aagkDRLkIrECokc6qx4BspZ3AHkUtB+EwBYwemSiJNy4BlBEYTZ5VB7dVNVLVMWFYBijGOQdSceTVVqeSh0xUKx1qqU8ynMkS1WS6n8TB8PxgaD2YWN4fL2yfNrGLKWLuSz+WpF8oREVWElnO6yPEempmkVwe4vAhh3EUiK5UU8RFNxZpgKesdjSMGJCQIAOBAk4UoF4LKRZDDom/jQBxcdJAbgL845R6LvW4KizlhC4PwyaH+MXRmLEUn82dw8upE36+Pu1kaj2Wk028Plbm9hZaHXSSjqmAqIcMHRiAnw10zlU1k0axjgQlxeXFxdX8Wg7bXVfrvdrJTbuAMNAIx5wFChZUm1LFULmyCe0Oq8Uq61Zuf7o8UBwPBgPkNhszwHLIOHKq2BZlZ1TXdi6M1kp3DvrgwPbDJTKGQK6JNeqrQr2VTC0XB/mZH0aKESxtgJWdZEzTFYMW6FaSoak1XOdCzCh/3wSTscxX3lRAxEqyoJ8OYjum5pPAP1zJvkRMHH+GHlyKxPoAVsjweUTGUSuVyymNe5sEhRdiRha3bCVtWoxoTcBHALtI5gSMAFjH13QMUgAmOnuTO+3tH3AByNR2OaGCUN1WSOkhHMDU7qvKrHmu9bz/Fj7MORGxtxpBIxJ04bCi3TQQY9woBmkopMy7aikjLnIVmfjwHlaIJ0kxTLiURi4zPgSDSfgnXtWJokFrO2JTJ00oHHj6a9kWahWM+Xq7lsud0G4rS8gs2d3c7icG5+ZWNz7/RsqpRMRsIIwMkkoAUA8NLq0uLy1tby4mh+fhEAGFayYSTidjQNN6HRmev2RsujOO7ky9rYQiOeTmfhRtVmer3uYHFlY3XUW4Q/tsNeliUpWMSiMY6a1DV5bEGOG72ogLF9Ee0mrLgu8XQcqI8WDtMGOeEkdI4CSi3oEmNRTFbBUyFcwBb6bFgS43cRAfRrDwbdU25Rk5wC1C5dIgPTXhDUeqwgsaWiKubCKkuEAnARDbWUEuloM1xMEB4555h0MEDApVWT1XI+h/Z7DI+ebyYSMCeOyRP5fM0SKhbu8k0chUeMIBmWpnzTXloWKRpj3qbduDE98aGX8IS8026fx+1xk1zQPY2WHZ4grGXg7MA8iyXQv6V8PpaL/NUH3ilONaKl7JEPPB4PRcu6ZgNdy0pTpGI2lsqSGFF4zgciB3S0K+A+4g14MGfFHwgSRMAznjoMBqH8geoIslAQj/YKq5dmfvqbH54+Xf3o775+dOf5g88ffPvo7T+/+eK7HxPtmdbidjGkWOlCJCQ6glbVRMVOwm+szRZTNmVAySpEmcagVS2GI5XR/pU4LDqOy56KeCm/X1Ij9bMdgVPN9VMBHv7TlI3C6NTzx+ph5URsvU/fXGvu6nHl0/n43N72iVK1tv9Rc+7W06vdTPJkeT6enq31Z+dm+kuggNe3Ti1t1zvJ7SuJlc0Tf/7tpxePnd0f1s7cOdM++PrLK2cvnb18eWx/hQNI/y6BL1w5vbczaK5fbbb2Fp7867dvXn//9uW3r188f/r4yaNfXt9YP3Ww2izt/+rYTHvtzImX//Drt69/de3s/rnl9eNL/d3DvcH8iU8/+/jGwlwtE25sNJ1MK3/4T7///ubmzkImNbz8daX2w49vHz189OTu18/ffTxfq3Xq8fjs5srCwv7lKxcuf337y9t3bt+6dOzEyb3l/sLGzny9PYS3srnUq5WG+9v9SnW4PNtZ2Dp75aPPPr728a0rt744vPrZWmr9s5XdM7d/9ejNd6+fv3r9/MWzp6/uP3736WC+WZmfSaSiucr8hRt3B87Td3tfv/j1d8+ObXfKhUQql7CduA4APM4DloopqOCGrNu0kkzh2RRu6KDv8ESI8CpxicUlQfN4HsqT3ilD5cNh+G4rbOvy+/NL3IP2uycnKPiZTCDIcETAOzXtR3SkRc5FKYrOewhNFt8PDVOwpCiKoIFh+l1uf4iQJBrkr8+Hv9QfCgRpTwiD4ZUgRoDBSqQZLuCiebeXg/9N8wTmhUQMLaupBhW0GxVWcaxUuQirLIfImI5HodSAsgWUAmEH0pFkFJ4SYplsKhWLgVp2YgDAFrwsheVkUYfykkgk0tFUFgt5YtyniraViqzrkog0fhxsb4edVKler+JBZ7WQSY8Lhm1HUTH0FhdHmztr23vr28dObgyXjq8mwhEoZiCyGnUHgFYQeRWKgcm7piYxhZAXZQRgEQeRcEiHE0Q8CAa5zQMAe/CyMKGJIyEqCNSEpEkoJT5vkAgSIfdkSOB4AGAZiI2uGWhWPI5BwiQkPP218OwaQB1KDYKr+rNsqdFuNZuterPdrqFZZL3V6g1n5udHUKVTqj7eLJQEHl0lJWDn4WQply8X23PzPSjDS8Pe4tr6ysrm7vrKfKtZK1VmZmdmZjr1YtyO2BqIHU4Jm5odiySxDhVwlqjZme32MQx+OOxlqK9iaI4AACAASURBVLHXJgCwwAGPs0EXaYoGtwAA2IplMqlUOof9bOVqCUUcCIlSqVRIjtO3KBZn94qmiHVc0QRO4gI+Qso6vFNIJgNatmjJEUPHSCPDSDrRcMxRVV4WdFaIKKoNupmiySNkXuZY+GlBhZKBHoawpwjtw9PJLIrgGKvrbEiPxW0NrqEhAwDTfsIKowGFIZIYhBTWGNP4CwDbUcvBWeBoJIEAjNaUKUULk7qkhyaoiGXHIylNNI1kq1pF/C2XqpiTgJshKIARgCMUUAjZP04hCfhdIU4ReD0sCUFF9NLUBIkJsZjJIOvReAR/TdSJRWJF/M6IBfwin9QUjuWiDsi0AEnEWoAjhWojm6+0Oo3GTLvdXcBQmo1OYWZ9Y/346bl0MZFyrAgslGQymYflMLeIbe3bm0voTLA0qDVTeDcwazFdqNabsDZ6IHBjuo62oaZhmDZerUq1WJntzc2OFpfWVwa95bXRxp42JVAhgmYYHuFXw01rlMHvAVh9/+jg/hEeJysEvIaYBqxNAUaeDQsUj0tZYEDIm2l73N+GuyrhiGjInA/4uA6ymfN5piY5Uw3nEom8oVABn1c1Hd3OS3SxaEp5x+TRypOQLamYU9hwx84lCDedsjXaH/IrKq3GywjAUKZoTlYUxUS7LQfwCQA4V7O1osqwwamjriCUMpajAzSgbkgUcQQQUNBL0n6/60MXCOiQ1+XzAgaHeJQOgMGuELy/ZCSWAuZZAvQt5vLxQvSvPoByJZnxYubIB67paTxQ0Gx0ak2wblLL9AdhyRRoGjT05PT05OSUZ9If9AW9f9l/xk4bnDpEY0x8+Gk02+cXywejf/znV89+zZ3+6fbDOw/v3b7/w99++8Pj10/eNuoLi6dH2yfv74TzKa+Y4e0mPGBW3EnGK620Y5LhbCGfiYnzvWa1bCcqre3zTsjvE+TKKcPFEH5GtCrn2iKvWVvH4ZprVkKPDY+f/uaX4snarrPRZ64t1TaBsnxTy8zv72yXG9VjVxoLX319cpSKHpSGuVy3OjczGIyGi8urmzv7K6u1dvTLhczq1i//9Zsbe+dPrVYWbt9aXf7ymxvnzlw/denSubH7xvn/F4AvXTzc3VjsdC+vFLaXr/zTb3/97etv37397vnrJw+ePL97ZXf92OZap3L884O5zvq5/Tf//PbdvY8Oz505s703Ghxe3+12T9388ssbB63GXDbWHNWk7Hz24//45vnL3//+H//47MGPP7279vT5w89f3r599+HD+w+evtyu1RfqkerOsZ2lwcbJC1dP3/zi7v3b9589urG/tb+/MjeYX1+bqXV3jx3bX27Wh5v78+XWwuJgfm7t7OVPbt68fu3jG7+8dXjj6kL13Bfrxz95cPfFt29evXr1/Nmjpy8fPHz9dGMwU5vp5p10plo9fvXuycjZP52+8ezdD3fPnWoVKplkCh5qR6UpKROVaa+YT0ejUV1Sw7yaSME/OeCBOFnkmSAINwAwTQfdAVKMWKBgSe+EpvIRU2dIx9CVcesFS+J68XvcE5zMUcEgB3o16J+YDki8x0sLzASnvgdgnHRhaZC/DIg6ABTge5hvS4TGAOzzeLwgeF2uaUoIMiCTLCXkcrt98KOBt+IWtMfHMIzEiVwoxEUzESdtGAarlds1SbadfAXtIXPFbDwZ1jTTxFlTFUNkdUA1UZCoIO9gYkEinkZXA8cwLB00LieCsoWqmkwl0/F4Ohm2orEk/EfcsQwVO7AAkYCFI403w5EUgkSrUiulYo7OqqoZQ9O4bKnd6831ltbWFzZ213cOzp/e3z0YIMync5lkDiCvGBdI9L8yFNU/7ZryS5rISeiDJaIG/ssUEo0gLCkSx9KhsQJmiYkjQezTACIO6OEbnwEHA1NuAr4JvZtlHI8ybEsRtXDEBrGEYTJhM2wZMs+NTSXRyVD5mZNA08Vaq9kC/VosN+vtuVarXZud63dnWklVe7/DzrMqArBsgDgolev1fKPbm58fLi/25gbLa6sr69sba6Nut12rz8zCx0y9EA3bYQWIBI8hEE4qkUhl8Bi42Gh1OhjJMxwuLC70M6A8qfdjSDzNGxa2n6gatqGmcdMaABf+USwXs5lqrV5HV+MslLNMWOCg8LCq7hQKpgAqSsSuJT8h8gHWgJILVExUzLCoZ6OJcMaxY0Y8pkrhVFxmFGk8Rq4b45xzyn0kbooKvAhCoGWGkEgOD3QjMdB0mSxGMkiSxQXE5DjvLxaWHI3lCELDEL64qjFiDF6zScumii26oAYdAGD0w3JwnCgB7yOWBnrKGLLmn+CjUKmiKUly7Ezjvf9JCcMYxnlImGCJQYS2Iok0R3lZjsG8Z58oCbj1AaSJISnG5+V5UcGubxWDJnH+Nu7A5YqXUgk0NldlJhNTJJYVYlEVg7zIVKdQbIIwyVeqzdl6udPqdEfr2+uLp7ZGC5tbG7snuylswrLssOmkME+k1ZoZrSwDAG8sjEbD0fKwWk/EYriCIol0ttJAAO72F0aOaqqigLN8mp1As89CodKe6TSBWK0s9UDy9LZOyC5lPEcHzA2uOJ6KKHDtZRn7r8ZdFApG7sFif++s7mCrtaYD2fDFkjpmYHICvHtBkXLWe/y1sJtQ0ngWKoRHMeBLgM5PcpZqZlLpgqExfr9bMaKmlVPpXC4q5WKWCDXKQyhhPldQWa2TyCUpdygelmkf6ZU0SokBOOYoxh+kWBztwi5FHKuKJTOFbC3mpAVapLDHeeyzR3qpkMflB7KPbdNBtycgBgPeDydDfi/hnfIFoE75OYqccsN/ePyybkQjsWQOHWSAeubyiXz0578IeGjBiOXTH/5ianIygFPs8Ggmi8V00CMbxaW6LaGGnpyannK5XEcB5/0BPx42B/ygNtA/xOMNBLx+TAUPhVjaL012mvsbv/vNq9f/8a+3/+X2w2/uPnpy/6cf3n33/B///Maurm6ead36w/98iSmn/UqaT7RwjMmxU4laKxnWKStbLOViymK7Wm9HUvXe3qFDoQN//qTt4wgvLYXLZ+sCo5lbBywvaBGjPNvd+/LtJfVEc93eH7AfrTRWLbP4dbo4OH58pVqfO3VY37h7bXEr4xzLL1Ry7TIA8HBhuLS4CgoEfdVmP0/Prp/44XfXz+9f3plvHP7yYHjp4ecXzp27eP7CIQYvnEcDjn8D4KsXjm+szbZPnc4v7B/73Z/e/OY3r9+8e/PuxYunjx99ffX4zsaJ9Wbl7N2dmfmlExd//PG3724f7F44u7neWzh+bmdtZ/fO7WtXTq+uLvYKZms5odU7sV/986uXT9+8ePT80bNnr27fuf/468cPn929//D+r+4+enjnNzeXKrWV1fJoY3tteXnn3OVPP/rk3r17t+/cu/flxYPjZ3c7s/2F1V5nbffgYKPbnt/cWay3lpYA4HdPXb1669rlLz75+LOrF26ca7Z/eerYsS/vP3z+9t3LFy/xtz158uT19ZWZenPQBhypZkZXv/qiPPvj52cevPrDN+dO1XMlPFKyLVMGCp6NqXxQymagmpiyCn+lcpYkcyS2VQGlPEqSHi2l0AIJACxFLYUNkYGjqsrFDYvyxXW0oYQbJgSDoQDAp2eCUzhg9DzBB4PeCY9f4bx+imMmeEA63kWY2PGLrdRBbIcgSSZAkCTh85N+TqAI9F71uACdjoIg8JMgdTUu4PG63IEgoLgccpGMK8CSFIhuYdol5QuRFKhYTdZStbYihBOYDptLpnJpxwGNZVqgDAHNFAV9GvAokWdNJwPkIwWFBC2P0NjONBVe1vGRtIAOAy9JJMOgoeIJzEzGLcBxQL0sqWh4YVrwA8rVcqVeSKFdVtSuFDDoOZ2soVlTZ7CxvLq0vb++fXD83OXL5wbj4LpUJlso5+qdvIIePLIqE5NTR6cJzRB5HLKXsfsYd/HxwlAcFl54uRzzXgGz5NEjQTpI0PCA0jROJVLjLWhfiEUjXQleuKlhXdNUAzdF8eh3nP5kYcUMg97RxtkrP6tU4WVmSnXUrY1aZ9if6zTmBu2ZxeXBbCsujA25MLMNZ/DhZ4GWzZXbnUJz0J9rz42GgKTL6+tr65tra0uj0Vyj0UFpPFNOoQJW0ZBLMaOWFnbQXyqTL2GnF+jt2fl+f7Qwmk8FRaRpDLxogRN1UzM13IJ2IgD0ScxDL1azqXwFSiQC8PgDU6sjqgDCn+E5I1c0BEUVmGCA4UmPh1KECY8smRZBcYrk8akc5eYZMawmHFq3YklBV9EDgrcsFZOFKIr9YCpuqSwlsG6J5mgS1rzjWJYTj8Mjkk4ki4YYZgNsxo4aOGjLGTZLeqYFKywbSdnk6XgkpkYYwQZ8QS0YtrENKwISGFMYsJ3eSVIRBTDYCEwpKQuD+zgp5mSqlbEEfj+ChE1YIH9TCMBhLkKIqj8k0qDK/AHKVGjRNnhAqZAbbjorUAw8jbIp2dhjjdPGESBY8VIec8wMTWFzKQPeD5VygP1wjD/aKpTbpWI+U6k0ep3GqDtYWFjbGtXam3trmwfHtk52k0lgJugzBQCcLtVbzfZgeXllY3sd7TgWl/vlShQuCZKLVAo+3+h0u7Pd4chWTFVAzgQ0KJWOZVMpkMeNVq0/HKwsDxZGi8P1M2pABf1LMyLwFdOAS6RL8hiANTQS0caRP7CyQLebUSPMRBzNVm1RFTyMGkcAFnH4TlYCMRl7+PH9aRENyAxFhrwBijVFjQbcmxIsxUqls0XL5H3uCVGNWuGcxmSzCSkdM3mSBADWwmw6r7JSq1jOCT4ihUa7lFvQCCVahNUFuoBgGBDciqqP/VTGAJypwMPO0CofcB1xETzHixxNhXwuHyMrBE6DuF0+OeD3/OJDv9cd8kx4AZw9HrhxR0ECg44UTfTVSmaxwRG44/sz4J/7PBSvOcXsxIdul4vkgOLCo5IuZmrCNM/HhospivL8fAIU9NFJr2/a6/N7gsEpFLsUugoSuBsNi9/vnfazQQ8jUiGCGu0uvP7u2cM//vXsb3714JuvH7+4/eNP33/3w+/+4U2s1V08WDj/9A97xEyc0kzWLgZZGdZ4OtWcSYUNJpyvN4sW3Z1tNJuCWt+7eD3BM36KipxIUrzXJwpm/lRVYHRj66RtG1okEU229j7+/qFxqr+fOT8grm/OLFlG6wunPDp1ZqFWXT08Vdt5dH7uZM45ll2opqvlwXy/t7iyvLi6s7+4Ndtwzp+xtg4u/vOda3vnL6zVV7+6Npz/5JdXzlw4f/La4Zn/3xjStXPba2vNuduz9d3Vh//y7nfvvn/15u3zV28ePnl+7+L65tkzvVr78Kv9ufaxw+u//enbu1c2Tl7d2z/ZP33pzNrqqY+/vnz9zMljG2udsN1fs+35Uu33//js1YsnL97cf/no6YOHDx7c++rp3W8efH3nzr37d76+8+jhy2fnZpZOblZnVk4cLA53z9y6dOWLr+/dvnvn3oO7n108tdlfHc0uLCxVFvcOji21292t3V6l3m406ksbp85/AhB868YnN09fu7hU2366u33r8a/uv/v+5ZNXL5+9ePD8xZ0Xd7cH7cLMaMZOVVOVq7ee9zJvnu3fefGneyf3m8UshsAB/CgcJ6RjuhgSU/loLBXB6SMxkY/gcQ3WOlgDqIBVAGA2OO1nZMdUSC9JTOs6mzJtYjoB5FZExsgGcWjJ5fZ8QHAMRwVChEKH/NOhoMTAE8RzkzzULH6adCQBg+fxABi+CAA4BKKI9ruDU/CvwDE9bp/fH3C5ggQfoGSQd1TAj91IhBegyT/NKdMhmeMMkSEn3VIqacaiFsAGHR7NKrSZyecaMyVbs+PpYjY2nh/SeOwUNkECS6CHOEJ0Mmn0743FoYJGw2OPDh6wndMsywYpg4OScUDWSAxT5iK2LeMkDwpNbIZBch9J5GqteqEatdKFZCJfTEXjqXQq3QBUbs0vLC+urx+cWN/cP3v6zPmr61EDalo8WyqX8rV6GqQATdiy7Jqc+sBNm5YkAPzijDEC8LgNGu4HxwqaoTAM6ZuacPuBbkwdCdBBuDYh4Cc+IMkhkiAJ+AxitYCn07rMQ+EDsgLYi/uTIO3RGNka90BDFUTmoP+s2almMlmgGO3hbKPTqYHCafeGndneaNhtpnRcCgCjEu6Ko5OCZibimUa1iKd9eHw8D1pocWNzfXN1ddgbdOul+d5Md6ZSymAnuSqJWGhNXVahxiQqrXoZ3Sdq9WajXOuNRvPzNgNAw+AZMI09WMrY7AgtHaM4izkeQKqUi6VarZyDf4PyjrH1ibAicAzDSzxnZtKapKlcyBfig57Jo35KZv1BKNsGCSisUSEcoSZ9NOh3Q44W4yawG1FV0MlREBnDJBRuMpQWNS8H8hL79kk6lDB1NPxKYBd2JhsmojwTtKIWtrJFDNnURMLHhB1FdxRT9oHQNCIG7ajhsU8iKN44Wrkk4lnMgMQxJAd+gBTW5Am3GQX6korS8A3VNm6pwzsrj4+AC4V8MZkvwzpzFAMEMOEHOkHSAVcQpC9nhCXsgfeHWC8Behh4I/yX5sTHQG/H8EgkVsGOA2Q8cjWNIwlk3NEFXhKZxEwlh2K7UGjBtev2OpiWMdeutdePbSxv7e+cqOfSUQxj0LRYKpGpNlszsFxXVla31kfoM7oyX8pHks54kDoOYq7SmO12Wr31RUvXADl1W1dNPLNPjcM2avXGzBymXS0OB4ubx3Ufg40Mkmaa4y5o9A7Rxrm34/EBXOUa3j/RMB1LBliKWiAARIXB3TVDpERWkATO8piObdoRWLmWZtmaFuWB2FM+MgxLAJ4HV0izpGwuWU4KCu2a5GUrqmYdX6weYVMJXWSoEKCroydLmijVyqmK6qXjjkETlIeO8FYMJHCCooJ+IIGSoJk4bxYDAI4mc+Viqqh4RYUgPFPTnMrRPBciOP+EmxI0oGo+5iiIUto/Oen2gkwF+esDreEOcrR72j9BBjyEGgmnrHg6C0u3lAa2lcmF//rIpJsU1Eg+9sEHky6Pl2QVWDbxTLrSLgR9HEpg0zUxcXTKO31kcnpqwhUkQWj7sPeOpDlPADPQcY8w6HIHCYpwsaRfnajVR7/77etnfxhef3P33udP3r159MP33//2pz//jw+k2ZXFndGdX/94JZC2ArIhJOIs4HDYzqUb/VyMCSWL7U5GZ2dalVpLSHSOH54zZclPCckVjRNpryhb5ZMdkdf07ctAONHIrdLduvH9A/Hc3Hb6ZJ//cqe2YchrV43m4onDVr24dfFE5fD1sdKFknKy1Crm8t35bn+4srywubO9urleKec/bhb3N1/9CQTwtd35xvm7a3Pnv7569vy/fYy7oC9dunDx0sXDw0sfXdjaW+t3rq7lt9av/suv//Dqu2+/RYPHV4+e3b24s3PsYLHdPntjuzdz7Oynf/s3926fu3Lm+ImdhY0rZxeGZz77/OaVM/uXTnY3VsvWfFdNNtNLf/7x7YsXr16+wICix48ePbr7q2/u3L1z5y7+eff+g3sP7z559dXe+smDfmftzPHl+a1j565+/Nlt+LJf/vLOw0cPzpw82F3tzXZ3+53l48dX5+ud5b21VqkxD8t+5eTV6zdvXr/x6RfXz5y7tJq+8GD54Prrrx/8/uXz71+9ePbs+fPHD15dnOsXmkvdaDxTbJ259vh04uJP5y6+ePv96b12MpOJJ5xENKyRpJQMa+IUUcxEofaotkXypYqFh5AMA6TTG3ARHKkkdFb0TwZIMR4RQ1MB/4SuqzFNZqZiyMVliadxhMjj9kx98CElcHTAz3I6Nz3tCzKs4A1C0fMCuxdDfgmQHa08xtaVmEo4TQY4wUsdOeLzebH13hsKegM+L+EjeVdI5XF3bdoT8IEWJ3k+FKQot18QOI4WGf8HpAHKG14pz0hhvmIEjXylmbAM3ca0oxTohDA82ryk4LAsuk0BvAFpjuMBHBQzzEgyVNxjlBgWhGQkrDsAuZFIPIk7ZPFkOhV3oNjiBJMqaWN8wwwBK98o5YsZVkg0K5mEnYgm0o4eBU2AzhQgJdZ2drc2906cPbhw+aNN0E2ZXDZXLucrMx3HlCRGFMPUpGfSzfIy1CN+7PqGe9Dv7XA4YDMMTkWyHAPSH50WGc+RIHCVgNcbBG6MPj0ggD3ASXiBhtoFMkkRAGNZ2cRNdRszjOGtRcbDHIaujl39QFz8rD1bz2Uy+VqhPtNpjvOFOs3ZXruLgXK1GHp/wCVC0z8EYNPQoplcuQMVuD3eSO53u4voxbG2tb7UHyzMVmszIIxnatUczuriXr+shW0DajQ669ZrtWZjPKfUbpa7wEoWo+PARRYbsQgvBz+ej4CkMqLpPIZjpOJpDPIBdCrmx3ERzVqhVMglIwpLMiQjiKKZzhiyodCoCtzT05O+ICvy7glSCkyRksJMTwVD8L/keNbRTNmI2yolY8yqJKuWrNkAwgGSBGBEryE8a+fokMziiSS2FqcQf3NJ1uSZkBoNgyiPRU3RNiUqwBiOrscMQ/ZZMR0QhRofro+B28ZQwlgcx5GwFysad+goJ4V16YjbcizHTkdZI2JWod6hGWW5+j6MEBA4nc3Ek3ElLMPtJkPoQUr4fLQhioplyoBD8AqDQVpEjSazvGbGEkAHsQMLfokdKxVTGMinaEwxacsCzSejOg8sk0m1a4VyqZTNZav5UrHTrFZqzXarXpld2V5d2j5+/Hg1nYKfYUcA1/4frt6zOc4szRLr0UwVSQDp7evy9Ta99xaZSAskvAcIEiAIkAC9KZJFD9D7YlWxTHd1dbWZ6Z3R7LbGhvbL6rv+hUIhhb5sbOyuIvRJz5Os2R0po8lGEUCa9733nnPufZ5z4rEUkBzgXrPzCwjA8JiZ7ZVyoY8AHMJFo1QdazVGO3MAwLqgCKqhwsSKAl3J5LK5UnVwBtHtdienJ2eWNzUXuuEhAON5zwCA5Z/bgNEnFPv3MExSYmH+GBIrGAHNr8K4ZexUSNMx+okGBqKwdDAIAIytXhhCJodxZ410EgFe4CinBQDYL6az8UKME0j7CCUYYSUddQVrUS6eUEUf7QXuYoiRgsZzxUqyrDrISCzAkqSdDPi0SLiQSxCk00aQPkk0YFoHBhcVExbz6SJj8YkAstYRL89gpSBBuc1WLwuUiHDQZqudYrzo/exxuGAqAgA7HG6edlmcw2hpL/uDySAwuXxxNBcv5AqZfPAvjpnsJCsHC9GjR02gTFgB+/Uj8Wyl3eQdHiHY7sWdI7ahYcvw0RH0OnB67FYrLKMy56VZhgV14sGaLMJutTu9hNPFOimKH13542/uPf/uu6/ePHt5++Xbp89+9ZvffPnd+3/3PNAdmz6/uHrwHy57UpqD13zhpMRqgRiMtlo9ERFof7LWzOj8ZL1RryjV/ur+huFjLDyVWjIEmbH51EBpuwliRVi8IhloaBPJt5evfPOYPV2Zjpwed11drS+p8sntQGNue7dRK62eXy3vv52NnCtr28VePQkA3O2Nz0zPzKxvzK91i7neZ+nG1u5PLy+cvrazVJu9fX16/cbdczv/onj3/mX3eVAKff7CytbCanr9YrqzufjTT9/+8M37b7/94t2HL59/8fTy+tr2ydlG9vL9udrY0onDv/nl/as7l7e2NhcXzl5cnzr1+d1rl85t7t1YntooVTtLlVC+llj6ww/fvh9YeAzw9/nzZ4Csh48AgB89efL48ZPHh4ePnrx48+TS+ond1Vrj+O7q3Pzx/ctXbtx/cAg/+Pjpk9f3LuycOr4wWZlf63eXT66Od8YXVyZruep0pzI+t3r5yrWrV27cuXnpzLWzo90bV2bOPj18/NVXX717P8hFevn83d2pXrPcmyxEUoXs0o2nD4rTf7ix9/TdN59tpBOZeCERioX8KknCBDZEG1PLJiLxgKQrPrFQ1GVVYRCAARTNbsotRBUGhoDdKYYYIEsul1kXRVhqKLNfBUT1MaTb4cZyAQwCJVCR2h2s6rNaMV5NgEkBmlmESUXbSNBKaK1GeCnCYXN6sMyA8NjN2OqOzqsuJ+kagcGI2XEmjyJoGkta7XYQxE6CY11Oymd1YtMCI5Gij5NooJWKh9EcI96mSsQyoXgYm+uj8UQC5AKwaUzd5Fh+ELgw6HaQQtFkMhaNJlQdlhNQEngayfhAiQYMAGAsdMlmMScKYDocNPA4C5YTicdKEhUtKZV4Mlf201o0VRkbrRQSmVQ6n01karV6s90BBF5eWVlaWN48s3d6//yllZAaiGcymUIBlsVywJBFWlAFq2nkmAvEK4ag8Ii/6P7ID4qUWN7LYZ8rzzgYxmr20l6CNn1q9Xpok91LYYP+oC/QjTthgNk8SLxBVp2Gihcz3LCSG1ZZf8D4OdQNrThxbfpFudEoJf2BZBUYcL1SHRsdbVTqzXqvMznZKYdAKOIKCqoL3o0kg5j1R1O5cn0MDaObrU6nPT4zN7u4tLg8N94a74/my83OWKc9Ws0GkaNg148SCBmKPzrIg8TMWPitbrvVrnYmpif7AXKQduzDkB8np8qqhDU9H7140Qw6lUIAxsNjDG2qjlby+Vw6HlJ8bpog4SoZiRSMBsGNvUdWC+iUEYuVch+xc84hO8mxpBcuQiAcSpUK8bhfFkTNJ8l4IXHrU4nqcoT1sjYvkE3CR2GyJeXxSaagGjJAT6IjdCpdVCSZJfkYQGsoFtV8QV0AligENSkS1GUvH/HDZaHkAHoY4hY0Lt+oe+GBWhgA2BdmBAMA2B6E2x5MBVg9ECjXfgbggRHlIMEyk4xEE34aKwIYkuZJmrBZ3JxMiwZ6UIqsTWCsFFBFePA+wQjG4hEEeqCMQRiduXQSFDG8I7aYCss8ySTCCgxrgU6PlrLpDAzIZDaVyeQT1SKaSdZHu9MLC4vrm6e2iolUBNnSAICBJGFaxvT84sLKYAt6ZrpXLgwAGGaQP5ws1EbH2s1Gd2bS+OhiNoof2wAAIABJREFUpaPfWiIeT+ULcJNGqzUYGN0OAHB/cn5DcXFAJGD0aAY6vyqDqA1t0LqH8wbrEJCigQhWNL8OfAr9VUAas4RNCgMvFXlSlGkuaAXOAhxycM5uqHJI4L0gDImAKPKUy2JyyQE5kY3n4rwIetTDB4JyJuHSakk+nNQklkESpgvBYoj35evJst/lCqejAkHYSY2RwpFiOkPQwO29DLrNyQP7mlAYqwYLhbxjiOBpymkettPY1sGQgNVmF8xIinTQhN1B+iin6djwoAbDbkcMdnCkF1cu0uZUYe2AqxrPF+qFeC6TzxaCf3bM7KA4JVSMHjlqMpuBccPVCcRSqVx7LuBysFyyN0YesRw7Zh45NmIaGbY5nVaz1QXwz/kpK/URf72grl0Oq9VDe2y8xy1Yoxv/9oc77776+pvDV6/vPnty+/EPr99984ff/vXraGVmbXXx8od/3DbHFQdniHrK4NVQOh+NVPNA0ig9UR1LS1R/dKxRVEan1y+vh2jGpJPFNZ1hvFZO0XMnxwQgSYu3AAZkvz+cby2cf39POFefi+7NeC6uNxck6cJCeGz+1MlatbJxaXrs2tuWdr6qnSpMdcK57jhuiEwvThw/Pr9WrST2tuLzawc/3Tu7eWOx19g7XOteun/17Nl/BcCDBzpCn7t4bvfEiflm9/Zsbn3h0d/+8P03v/z2qy8/fPji7Rcvrh5f2dycredu3Vqu1k8ev/c/fnPpzMXLyxtLM5uXNvrLt29/funUqf0Ll6aWN/Kj9RMn1HQvsv0Pv/n6y/c/ezMD/j57+vTJ4cMDQF0EYIThgwP4lxfvn149ub2z3hub3VlbXDh+5tLVayCC4Zsgkl88v39558Ta4nhzYm5hdWtpvA5cdrqRnejB0J/cuQAIfP3W7VvnLl8/npp/dGL90uNnz7767tUXX3z0rn799mR3ujg62wIAjjVvPnjVjf34dvv602+urhSqhWAsBSuGX6VpNhXT2WFPDlYSYNQazJd8HoShjGaSaG5lcYNYiGkscEOPh1F9nM/rctp0nlM00DIaQBxmzHlhrHgArq3DZqxh8Dq9Pom2wTAlBNbupAjnEIy+IDPk1AAGfRTmCbg8wCltFoZnvOQwYTHBvMAWdMJltlosbquLsREKpygcZbXZTC6v3csxdhvFW12iAG+NFyNBVtKkcDTKK7LZEhiVqEhUVIFiJmKxZDIejsWjQR3mPocjH92VOTRd5oIgeOIxWAENWECxrVMZVEFLAugaAOBIIpFOGGowhGHCwYCu4TYuAjD6K0sCD+oql1LkRKU01qiO1sv5IsYwVOHLMfRe7PXnFpaWVzdO7Z49ffbs5Y2IYkTT6TSmsVeLsMCKtBxwH7MMm1kOz5VZDPIBkAAlLPooBt4hT4kCSUoK52Voh9Xpsro8I59anRbrMRsB+pek3YN+JKfd7GVgleb4QUwxvMmwDguKoRtocQx31v/R0Q9QGD0UJB/5i0wZ0DIUztcKhWq9Ntqs1eADNEZBzoICBgD++F4QsQYArIdiuWKp0WkAiiIKtyanJyYWVpfmZyZAD4/mS92JznivUctiHjDGVbAKHh0FYInGHfdCuVkf6+B2TbPb6fXG/STcd5LiOAZYFofdtHjMDLfIH4+A3MpnkvlCMZ/NYrFwsVipVQq5dCxkyAwBIMUJvD+ZkgWNs1sdHq/ZYh8ZOjY84nYNWeEquQkRNGgaT10jcHfjyViAoQacCTegBSnh18OarPoIyqKkFBZXVtzud7JuLNMLAdwmMZ+3HOT9AkXFAjpSM43xazwFNNDQuFDUD3w0HJJlP8eFFSRlGB496AKOhmOx2KAzKBpkQ5QITG/IHQnDZ0vqHGB0pVocnAsWBiVYAwDOwtiMqlyYoxngFixBuk1WWuBoJTBIIaScjNfBYIe4BPRKDUfQXQVPmgcAHM0n0KAtbAhCJRtVeS8ZD8kcKFQyW4IrlqpkysVyuVwbLbZAv+Id6PWxC3jjxKliIhvDQmpNRQUMANwZn5icXVhYWZicnJ6emepWiuEYOmFF4LOlig0Y0a2x7vQEfFoZo92x1RUQGD27C8DcGt3x3nivNz090Z87Lrs4H0EIqqL60Rp1UPP8sfbqYwk0ArAmAdcFZRwISDzwxXBU9yssa/ZEdUEWJZoF+hNyAu/BUkK4xLquSSGZJ1wejwcGMU+6LCMOOahEstF0QlYYh8nFB/xyKumWa2lOzxgShwcUjF/2F2M8kx1LlEMueyAXl0AaeCWaD8eLyYKXIJwEQQPKfSSAoIBhxudKpYR52I0X3zRi8bCggTkK2K/Z4WNlinZSrM1C+gAEjx1zOj2EG6SGy+60sTCkzNYR2maTZQw2jMbz+Xo1k0/nMjn9z45anDSvRoqRTz4dGh6xwotKuDxFE43FIGUnfGJpjvrzY6ZjZtOwyTI84nI5LGabl/ZJpFdWsYHBCw+30+lyO6weyu3C2GjCPfHPP977/tW9Dwfvnh48enj74Kcv7n/7h//wx2+jrfGZneMn7/xp4UhUcrIBXkrqoL8z+YBeLuZCstdIlEbTvLNVqVTzcrK9dW03Qvnsiq+4btC018ZLSnqjgaZrq/cERZeC4VihOXPm1U3m/NhqaKtPXt9ozArSrVa8ubS9Uq7UNy+Njd97M6pdqIonc/2OlutN9PvjM7PL08cXF+fqldxBubw5+/2rm9tndqbL8zc/H5+5e3Pnv3cdDWqgUQCf3987f2lvc3O+nbi8nlreOP033//w3bfffvfVl19/+erVF1c2Vne3+/XOxXurycnjG8//+tGlE2fOr5yZXbl4fnL6xpevPts9s3/+3O7K7MLYWOPUfLHTj174n7/7+ov3798PvJkHPtIgew8ePDwAbXvw6BHA8OPDx0+eHB48ev7q/ubSmf25sd7xzY3FldMXL1+9fQAAfPjoPoDwk4dXTp3ArIb+Evx/t9paOL5aLbb6Y82p2d2L169f++zW55/tnr/Wzu0/OL5+7+3j19+gI/S7ge7+6tbEVLXY7yXj2XTx0uevT2kPf7t7+fVv1yqpLGBQJoKGOgjAUYU6aotgFw7QJk2SslmYJQIoFuzLtVs8tFeOawxrN3k8pK77sBTXisXBCuF06mGJ96EDLEg1r9OBnew0DyTTLTCcx+Kw22kfYXUytHME8EZ1H3H6sQaLoUABe2Bm2S12O0V5CbP16IiDIFyIwDaTw25zmdysnZR9sAaRJqvd6iVsHhYAmGStbln0sYzAirxHS+qxuCYFBC7dzPGkArJNHzhCpZKYNBcLIhEHsqsIAHcAcnieGIAJF4uCogAZgYaIOgIwAwJQ134G4EQE+CysdthmYii6XwMFwGMoOSbWS0K4GPUFCpHyaCFdqgw6XkvV0dGB+XGz1e3PzC2ubmxtnz6zs3P6ymZUCcTTqSSAX72WUw1R9MmK6ZhphJLgqdA/eQDAIlADEBDMoBAa43L9MsHazU6PbQSE3tFPLQ6zCS6T0+GwWT0DAHY7hzyElxMG3ALrOTWJE4yQgfoFZVnAH/oYw6jrH/PO6F8MarWjmTHQYQUM2K1WG6ONxujE9FSvVY2Igo8TBnlIPO4WwvoXiecHAAw/U0VPhu5krz21uLQ0Pz810W9Xy91+d2K8OZoB0YQrrcwpflA/oDji6KRRrjQbY91euzPe7oLSmopwIkd7AYCBQlgZUOhiQB+4+2PE7CBOKpNDhViqFoHSlAGAs4mgCrAEtMPHs4yayOqS6rNZnXb7sRHbiMnk5MihIQ+D3/YDo8pEBEZLxAdRvXGZgo+DPVrAPRjFLweDnC6SPpcrGsCKaIqifKLHpdsiMiYbxRIYjpCJsAGRcGA/lx6OgHrQRKy3Vg3OHwMw9vrDqhoQKYznwPpZbLwOf1SmUaxpDkb8XIBA5jpMAIzBk8q8EUiMVuFaYBDSv4QRZrPpWCweVAEvONrNwEJLgsqRZIoH8YgkxeODOcEMciaB7xkYCRKCm4q95qFwIFrMpoI8B9oRFHBUk2lfNKiKssYT6UIuk0hX4SoWSsV6u9kc79Uq7fF2p92bW11bO36qmAToD4VDuh6OJ9LF6hjcv4mp2YWVeYxEnZ4cADByKBj30UypjoaljVa/pyIAczJW90UGCriYL9bh7mJ/9/jE7Mzk1MIJUMC0lxSB8BofAfhjFxJGZcqDhySKiiADGRQ4zcAzEwyqDYgMb7MBzZJ5iSF50StxbgOrsBCANZgumLTodHlcqiIKhMsyZBVDeiQP/FpVfMDKhYAmxdOUOJoTlIKhAAdwepiAoeQTAp1oxksRt1XLJhSXw+6WfFw4nUsAANutbo8P3kjQbwAJiEYiCcysqSjYdCSxhNUCslekKd7npQmzjeF1n8/jYS1DHhqGw8gQMGKv22Z1kU6300f7HBb7EOUwC1IknkyGk8VctZoppDLprPYXw1YXzSuhUvgvPjk2bHaSjKBg7UA81ZhXGYfVxwQn3UeO2U02q9lmGTHDqmqxOimeomdvz5B2GXgiSXgwrwa+4yI9MOtFB2s2fnh28fW9n7678+XDFwcPDh7+9A+v37z6u7/6Q7ywsrg6fevl71aOJjgHrTNqUvUp4Uw2qpXr1ZBEq7FsOSu7WrVKOaNEK0uXrwW9PjcjptZjuiEAKdazJwCAZWP5LtwdMRCM5RvTO68/5y7Vt2InevTN9cqcbNwrZrvru/OVamf7XGnm0eOycanOnSj0Wioo4P7kxAwIkI2Z5dZYZu62v3/y5G/unD19eaNf27211d97dHHz7H87A0YABvQ9j2ZYFy7srC/Nlpauxjqnjv/qx++///Ddh/fff3jx8suXNzeOb8Pr9XafLlR7x/dufXt9+9z60s7i5JUrq9MXDu98dvbM2XMXruytLp+oN8a2lzKjO50b//Ddu/cYTgTw+/r1/w+AHx4+Ojx8/OjwycHDxwDBj18cXjy+sbPemlrd2pif37xw6cbdh4cogg8PDp+9enL3wpnNlX57EibQxsRoe2FjvlzpjI31WmunL12/fv2zG7fP7Vw9V6vevba4/+zZ8/cfAPfhdV+/fvnyzVKnVaj3ypFIMX/y8zePo/P/5ub1VzcrupFOphIZLIMGAPahE5aVwNaIVEDUdUHM5g0V97YY0ku4bWYX5ZVjEjBHh9XKx1QWxqXDrAREUSXdLj0ksB8tnDwDAHZYPiFlgXY6YdF0mh02u8/ndXgFwW3z+Hw+2xGPjk5YPuwBxmg9GHdmF7qzHgO6SAAsu+xW09ERk8XrcKETFqeoIjlicaI6JjgOXbLMLknkQd6QLlLIFtVAUmZAgGUqJY6UAXUMrE2NphIRNDvAPE0JVmGJZXhlEHrNigFYfQa29lgrrPDcINucFrCgVv/YUpJKA/oaGPkaDWkiWgAZMvexoUKSVT2lM7FqJlgqplLlYqYM0gZrUkq1xkcAXl5cWFrf3N45t39m++rJkBhMZjPJVK6cy8QkuLic6Dk2fHQE4BKDuPlBlK0IUngQ1QcYzDEeL69JriHb0U+tbqxqM336yTBuezktR48cPXoU5yQWZo64vQjAMta9AJSpwF3DUdAVg65kNPQDbMO/g7jHzvl8v8gWcql40A/4mE1lq/VqrTrWABXfm51sN6sRHu/LoC0ZeyTlQUdRtlBtYM30aHV0rNlozczCcrtyYn5xdmKiUys3uq3ueLuRifgH5pAirwX8mj8Gej+TK1ZRPnUwLqnX6XWnZqbDrMANypkp+IQiLLASLPWyFowCHYrjGWz2Y1BuvoSMBnRjJhtHnyeASwLJiRzLgujz2qw2wn1s2DpitthIl5UCJeNgtHBIhaVG93gEzZ/IRAMRvyDxInpx+GjSPSL5tXgAyA+QGiamcjQAMOmTaC9rZ8OqBgAcj8cxFEcwVMohR8OYdRTCN8jSbq8akPVIQONdckBXdcUrax/3oA08Akb+gC3AUSy10zmDUBXJOUxHA2o4muAFI5AetAEPGoEHNhzZbCYXjyWjmhaiWI7w8iKQKYeLkQUKnhRYmY9w8ya7AIwQzZNFLfDRXAUAGBU3ngEnYkEJRiPLl1IRXfFxcbgBqsYRiWK+kM8W0Wg6HcU65U67XKh3ms3R0S5o4BNbxWQ6CkMiZBjheDJTrIz1+hMTk9MLy7O9cSzD6pQLoVhAwUTHWCJbAgXcajba/e5HAFYQGXFbKZnNY5VcvY743QMA7k/NH5edIIAZBVATeKw6aFkaCGBsBIa/EYAlDZigpAo4YDGdQQaCKHMcXHFNlVg8GBBJ0nBLAdy90bGWOiAEdABgp9cuq6JEeKzHzELYCBdjsaQu0zarg9Xhvmd5vlbS5GJI5bD4kzICUgoAONiMl+OkVUunNLfD7pFE1p+NRLIer8XixgZHLTSwQYXLC7iZrZTcwzaHD9SEy2Z2sAJF8SxJEXYbwaOPi5N1j7jQ7Q8YMRpEgkKgnE63l2FAZQwTLhMtR0DWGMlKrlxKF5IZUMBHTDYXw8v+cviTT0AAe0ms0ghHY/FMYxZ9Bj0MGxu2mM0Whw07P6wOG/zxMhL/7P/6T78f1zxegqIIt4f0Op12sw3gl3SAJGKsJ+ZuPn/+757dfP/wLcDH0x///jffvPn+d3+Z7C6Mn1x+9OHvTo4kGTsZ4ENplTWimUzGyNeLQZHT0jA+DC8ws1oilC3Wz98OeTmCVNInkv6AQsq6P39yFJS/MHNNDqggxQLp2tTZLx5oV0unM9sT1OXF4qKWuJvMdzfO9EuV8bN7pdUXN0vBCx3+ZG18TCt0uhNTEzOzs+sbM4vVavzKWmJx/eEXt06eu7BUnf7sRnvh7t297b3TZ//b4yMAn0cRfHZzZaHWvtkZOzF/50+/+u6H79/+6puv373+4t2d0+tnzsyNdnfurvZap/bvfHPjytVzu73mxTtL4xt3Hz+8eWYf9O/u1ubG6sRY4fx8pL8y8eqfP7z6/t1H/Qvs5NXL5wjAjx7ef3jwENQtKOCDw8OHAMQAx4f37759e21jY3trenx2a3tlafP85c9uP3gEP/34+ZOHB09evLl1ZntzoTvWXz21Pt7oTG0v1stjjVp7cmn7wlWA4Fu3z5++eyI2e7C5fOXJszdfDXa+4YVfPvqw15moFMbbUSOfnbr16Iux1I/Pd7ZTSV2q5KKJZDDkBwAm2ExMFdxsLp9NpYOSYfBivhjUVRFUAhbCWy3uAQDDqHO4nUxQ4TwMrHyiX1QVxmvHrHDQlbBMAgBjeLZ1hAZJDEipsHaL02JheK/by/MOh51maNuwVwQhBF95MezSRzlGRii00FGOHrO5CHger9NuM8FwdFoIDgCYlWSJMlmdePJJCgLhYXwWN7a34pN5g4WkPxGJAGnzis1RhtBCfhmzF2CdiEZy6XgsFsG+fwmgVwAODfDrYwX0k4f1Em0b0ahDQk9imuYxjQHAOxJLxBJxbLREU2Wk4ryEdoAsOnEM/KHiBq9kQRWCEsmDTMNVL5PJF8sVkMCtNvoeTy+ugwLe3z9z+vpmSA8kcvl0PJFKJRN6AMQ/bx2xHLGrvoFlHw/KHAEYJN6gSozxcSxJYArz8KdDphGzw+V0WoZA8TkdR4bNx44cNVlcLrcbGwSxNJLlOOBBATyqNnQM1wVOb6C/MgCwZsDtldGaSsETWukXrX6/U8+ChkqlscmkOjY6NkhDmp3stHALGlCU5bHlGX179UAgmsmV2+3W5HgPobRV68zNw0dbPT4zPd7r1YulWrvZGe+MZWLhoF8FZsLhMTQAajadxOW9Wm92ur2J8W5vvAvM2ECPTfyAvI/ndE3EjYXBehTLx0PRTD6XBn0IXAbNhIqlSjmHjToqDBaK9FKsj1biCZWDcQVqiBkasoACHh4yeYA+cVZKNvySGEgmeJsDlG0s6fcboLzg9WjC5XAwFgolK4CAzwcLclABqCAJiqV8Tt4ekDTQriBJ44l4SVGCnJfHzRHcRODDAc7ncYsBRQZVLHoE7L7VCR7hV8G8vNAAgNG/FDcyIzGN0wggIzYTj6mQkQQHv5Gtl35GYDwEzmVhPczAGPMrmgxMBE0oKafNQXI8z2sK5kDS2HhCoQMNlhBj2ROeMsNrDJA+EgpnsCIaZKyk1DJhNHHLAg6rKk/GMKMa9G+1nCvEixWAyFq5WB5tNKrV5tTS8ZOb5XQKngAmiRGOJTBtsIfdRzMLyzMduE/jU+1CDgEYN+BjyVxpbKzVacKC09UGW9CqHgiGIrF4BEY7GnXXax3cgp6Ym+33Z1YFpw/eNdZOqejxiHUTg4NfBc9/cRNawg5HmEG6KEtaENstRD2kG6pP8nhEuM8kSbk5jtBYBhuhBsUXcDf8fpYE9m2VdFGlKceQCQDYyIfDSb/MuBzYyacZeYEqlgNCNqLxPsrtJpSQkEzJtNZKVJO0Q02kdbfd7uJln5QS9KgXVimP08MLqICDeHUj2Vg6U8qNHLWZCBgzbrvZTnMUxSEn8NicrCBQjMPns9p9POl2mI55PAThsjs8NhuBJfUWp8ntNbm1UDLl52K1QiWfKqbSCMAwfTFnvBT+5KjJZPWQtKiHE6ksAPAcDVPNQbmcQyOWYZC/FisGBlssdqeX5kf/j//6H//PHRswMwyscYNktzutVhfhoUC5u1lrtHjvV7/96e6DZ09egqr78OPvf/vHv/zpx98mO/NL2zOX3v3DxkgKfiwOjEAV/JFkOhPKjiZDPKsXy/ksAPBEsxyLpjO1s1djXtbNK/nNuCQJlK4YhZNVysv4JveVMNAlxZ+uTe68uSNcyWxETo5795ZK80LuVrTQOXGmUyz393eqW6/3SuHNvni8PlGXq70u2pLOLayuzPUb2drdWnPt5Ie7l7cvnuyXT98/3dx5fGEXQwj/FQDjFvSFvf2L506trfQzm+uxjdkTf/jx91//+pdvvvv+zcsv397a2dreXRrt7l7d7bROnfv82ZXz+yvLM1u3TvbWPgP43du5eG3/3OUzawuz/WplfyY7sbL4/i8/fPjw5qvBWSwCIZ4AP3n8+PABAjD87/DwAAH4/uMnD+4dgBS+d/jy8MLW9qmZ7uL2qbXFzZ39yzfvHxzid58+Obj36O3zK7tn15u98fmN4zPtsbWTi83BiePE0vbFa9eufXb31unLVzr5MxcW124evnjx9Zf4um9evXz67sFifyw3Pp4NJVLVi3febAQfvpgsxCtJBcC2ENaxShYAOJdQWIcPZFo8FZT9BgcAHNBgZgMlJbCuykt55LhCUTYrRRC6n3PDMuhkfRKQU9eIocgCls9SpMvrsdscANg+UDouF6v6bDaPxcxIXrcLYNNJsgztMBG42wpACysg5QVi5yZpn8NM+Y79ucXhBWXiQV8Oj91kG2ZEu1fyAV5TFrvD6vY4CZ7zAKW0urFI0eOhh0yqn1WCPo3jJY/STHhpze9X/BhIH/SDfEvGQMJGQmjezwmDihxQwAwLAJyM/+zZCEQdKzYVZgDAmDsbSSRjsZCqouQIY3NnCH9Cl/mfvaBV3S/EqqlYOpZL5zDjBnTlIP6nXBnFnPtur9GeXNzY2t4+c3Z35+bJUCQQS2dTMO+q5ULQT5MMaUG3MFDCuOHLoub8OZAQ7RdgysMf27EjIy5MWwFS4vbY7XbgycN2j8c6NDQ8ZMFijaFhiwPYMgPPgjbQxscIpI8elMHB2/aDLEanLUFTpIGD1y9K7V670x4bSwAAx9OlerveGK3Xiq3Z6YlONSRphoINI7xvAMD+oF+PxbJj9epEt9PpTU33GhPTE9359ZW5KVC+3XKmNNppdSe6zUwILreCzssKvng4HI/Bn3QmVaiNNdsTE91etwkgHBIAewVAPRAUHgHrtvBtoiBIY18skJliPl8qF4CtoJV0KRMdOFizFMkAWHKCnoirPEOyAqvTnx4xm2DFsjmGjskRJ0nRvAHQGCnGODUC4yMQBu3qY9E2zAs0z+E6SoRUI6qxfrdgdScCnMdDEl6SpEEmu0NoahXFKNd4VeXCAkENKo7DkbAvEgCx7mT9CppcK6TkD+lCgMJsCEyfivhxiOACjqbQ2AascxoZBAC2yXFDj4WTPhBzuXph4EJZKuQ/AjDo01AsBk9BcQLp4XmSdFhdnMDywHkHpfAEa/aJrCxgxYHsjyYSP1dZY91+CCMnY8AuQb1pGgCwrnJiKR8HvOPpRDUVz+cKo3DtiilMY6igVVu+Vh+td2dX1tc3a9l0JBbWgoYOAJzOVzDkFB4LS9PtTq/bm2rnMwDAMraRR5O5Yr3ebI2NtiZ7mj8owzWAqRWJJuKRAn6rUm0AAI+P9/rzi9OTMyuim3fQMgCwrgCzGtRNaAPkVQcVWCrqYBUtbTRe5mWYVVhXHYL34pXIEUYR0Z7bSUs0rxJhPEdBeqaEeARgt4O0ioYEt9Q9bOLDupTxBxIBlfW6hu0gGOQ878qUw1wCmLEPz7XEsJTK6pzSSo6mWJeaSBpum83BST4+7hL9AMCAnQCm6HwXiSeioXA+mU3ns0eHAEk5H+sBIUr6EIA5iqTsZkoJMLzNy4xYOYlyAQAPfHTt2KrB2ATCB8DpJEw2IxANw2iqlUZz6XIqnc7qnxwdtrNqIFoIfnIMxquT5UAdxEAc59uLXg+tEKT9iO2IaQSG8ojFZHYAyjrcHoLe/r//03/53/oOzPAisCzGY7F7XVa7iyQYuxcuEj0698MPf3j04N7LJ8+e3v39T//0w1/99T/96nfxWm9uZf3p3/xPq8fSPCXEuEhC4nUs+ornG4mE6JOK1WzaIHpT1WwsbMQntk/HXbRN43ObCUURCFkyilujNMUL0zti2Kfoaihbn9h8cpW7Vd0KnJwVzq5VpsjCZ5FSb2u/Xa5MnzlRPf3qRCE4Pyku1yaq7Fh/fGpuZn5+bXl+vtFLzX+WmTxx9tsr22f2VjpTNx621+682N7d2/7vbUi4Cw0PAOBL504srzTm7xR6CxNf/uOvvv4afW0tAAAgAElEQVTxw9e/fvP27btXn2+vnTi71qievH9+tHX60vXPLp4/vb61eOHKzOq5xw9uX9nfv3hh9+Ll08dPrrQqnd35bGd99v2/+fD+w9tvcPsZT2KfP/+Iv48OfgbgewMd/Ai7jQ5xX/rxwcGTZw8vbV3YWej0j2+uzK9unrn0+UP458dPDxCcHz5+fnBl9/RKt7W2tzVZb86fWc5Wx3Ot9uT63pWrV65fuXd58/KZau3axuTe3ScHH778OUDx9bM32+PtQrcHEzWR3n787kpw63Ez2QX5PJrJoljU/ToQ7mxSpu1sAQE4JBsaJ+QKOq59DLZDYHO41yFEFYyEd9nZmMG6aWyIsUqG12E5GsJ0EzRYIJ0ejx0D4v6CUkXa7uRk2uYkbRafSnpdlM/mxY1eh4lUBjDI+FgL4Ajavnh9piHF5/10GCSdx+Oyu11Wy9CQ20WyFrfMq/DrVofd7KGseAZspUSTAxtlWZobGfFrHpYWBYaFxdTMuURFS6DohbVR9icRgLFC9aOPlcjIIhr5M4w/nMQw1qg/iKsRJoLpio8B1IGVGBA7GY6mkgEDVtY4Vrug/60B2CSp2sdmRl1PpJLpWCiTShVLuUotXcykckUM0ENnim63MzMzM79y4vSZ/XNnz9487ocFGp4oVRhtN0oBxUuJVpPlUxPLiJgwzAIoSVgCDZeEcpgsTpjfJpfHOmxyuDmsuMJiIbfDZrK63ITXDj9gGxq2ulzWY0eHHRaPD9Yr8eMRmzxAYNw5BRYBq3UIhbAqKwaofHjTQEJ+0WnWyuUaMLdibrSWStWmJpqojtpTs/1uESAUE+FEjpNoQQbYDuiRRK5UqVZr3YnJfmu00W6NT/ZnV1YXJ7rjnVYtU+10YQiOVzJREL4iSmeMjZW0cALNkROJZLZQqdeqY+O96f74+GSIRhtInqUFWMXYQECFpVpD68xIIp4r59JAYmBpKuQLlWy5iB5Y2OAms8gCPTQwFT2TlEivm5V5YujPh50OpxcD7J02O+kWfL5AWA+EEhnd7faMDLszcY+b8sDrOB0Wk2XYZhmS40JQ11SKoa1imJfdFG/iPLzTFbCAUAuGDX8iFUvlIqLq95mBxsQMIBEqHxFxXxWgDiBdZjzJIFbi0QAuAU0OGP8SxoCO0CGQ0XFOlwVR5SwjelAL++MRBtRgebQCQwMPgUuDI+AMDp54WAzTFOd2cTLj9jicJG6YA+RwrMK4WKuH4Qa9szBijWQiACN60LBqhNFwOgAUMREJGoqo5eJBifeKFZDbuip5UtUsFmBVAFpT6To+atVaqdwEGB1fXpw/fqKSSsWi2KmGR5/xVKnRmZic6M8vz020mt2JiYl6Ng+vIg92vaPpwmiz2Ww3W5PjfkkHFoen3tEYmrXmqvUGPHurN4GaZ35hdmJ2lXUyhBAI4M6xjkmTgyrowSmwqHxUwSB/1cGmNM9yOFIEjQdSpBkMaRsigipBMaSbIRndJSbVsB9VcEDzCxqwJQqgLsgKFDfiGiHDEo38SDV4j83hVI2AUPC7iuWwL55QeZ5yu5x8WEgWFZ5rpDIFzkUnkxHyGD3CKZyh2gzFStuP2m0WggIuoAeAhUdC0WwpWokODZlGnAJPsMMWk50TaODrtI922JH98SRBui2gAAibyTQCyyLlsqIxu4eANclhM3ttJkEU3OYjhVq+AMMYLnRO+7MjIw5G1CIl/cgQKF2aYZRAKJZOZ8Zay4LNbvgwUmUEubTNNGyCh9Vuo1ys59p//X/+8/9e4jkaLghwbOx8wDURT51tXq+btOTaj/7pxcPDl4+fPnrz5P2Pv/vp3f/yw69/SORnJjb7v/vd92fNYYokA3q0wPj0SCwVSZQqqZDCqIVSNaz4uu16KaQma9Pb11MwiSSltJkUVJ/bpwazKw1V4AJT2woawktqvFCfv31Rv9GcDx/v+y4ujp50jd80Rie2dsrV4uy59daZZ1vt4PQcM9vpprXy+PT45Nz8/MrizPJYLX1+NbO2fvjwytq5rany2afHu+deAxhvnT+zewYeu7s7O3vnz509s3/hwt61va3tuX7lRr+43b/6z1//7puvP3z/6sO7N89vnls8tbc2Nrrz8EyndfriuesXT1/YaZy6sz+5evv5vYv7ly+dO39x//O1re3mZHns6kJ8dnXuw2++ef/1N1++ffMvBVgvnj/FE+BHT+4cPLz55NW1hw8ePDgAND44wKroQwTkR0+fHd7ePnX21ER7be/E7OzutcuXbz19jKVaIJUPHj158fzu5eMnlybmTm0vNhpzp1YqhS7mA6+eu3rxs6u3Pr94bn8rN3trbvbSrWdPvnr1+u3Ldy+ev3r64m6/V62O9wBaM0ufffWi1P5lJdlJh1NZ7HQNh2VJgRU+iwqYzaUTiWxoYEmTLvg1Y+DQit6kNg9AbjxIEKSJYLiYCtLC7va5PwFB7HCD6JSANTIgKEAWg1azWY9QMswpABbObRqyE6zoHXFzhNMuKiLjsnt1DSSwy44axIkb0ByMZQeAy4iVINwE6bTYMIXeCssoZaICsqby1IjFaXHRJg/HO50iayYVTQDRowP7p0VDC2AOPHHEYlBiQNQTQUwACgGzRXeMAYDCOiCIEq8JPg61cyiVTAE2K1hY+rFCWFVYhhsUSIRjyXQxHon69RAeCyaw/BR4v4EUXlWkQWCBEkWqkkpkK41aPpUpVuGvwqDFs9oZ73QmpqfnltePn9g6e+Hc/oXteMiIZTLwY7XRajUMyyVhNg39D8OCzCpAcTD/V/QJCm05dmQY5phj6IiNxmk+bPXxmIMG15XwwqLidHk8XmwTtNm9bvgPp/nYkI0E3OYGRVgozAdNRwG/PkiqDWJ8bQS30IHJDhLR+V80YEGulkuFWqXWHKuUquX6WKtVq7YXZrudoiHxmJwLVIDnJAyAChqxdLFaG220msArmo1mrzs5PTW3sgQ6eLzdrmdLvfF2s9epFcOBYFDBamMtENCw+jcez5SrhVQ1nylU4TV605P98Qk88vTRPiBPboeDg6V6UAw0yDIIxbPpVCaTg7UJaE2mVs0k8qUkeoyzNOFFzzR4di2WUSjah1QPxiRcGh/lI50Om4N0sKokh0OgqoM67XFbZSGV8DowSdVqs1psDtxBIOEFI6Igkx7KZhg85aXtDENSDKW5NAzFiWIFRDaJe+NWKWREg6AyDSEkckAA8NwfJBvlDgIAyxqtgBZUZD8GrYb+NQDHWMwIVDiLyQiBZE4EKEXVSxVMNwbwzWOtAB4Bp/EEOKgxPEsQHE/CrHFRPM8JmjbINaYoOwErPmhHAf1AATHh2XHDJhiM4C50KI7RD6GArgSKybDMe/hmIhKFV/Zka7lcpVCu5QrlZBqjrzAtslLttMaak8vLCysnq5k0xo+E/AY8YSxVHG00O93+8vJMt91qdvqT9VQmEvfLgQho7Him2Oy0W/C7/fGACngvGTru2EajkVRukChdxxP+iem5ubnZ/twa72RoCQEY5C+qX037l+ajQVswlkPDR8KAJAmYrBIIKKyEUaKyBGpy2IW1nTRJsTQLXByDNA1N12Hs8jom1TocdJAVGdZiH3H5BRrbEzSdI212m6j5xUzQlalEmHhSEwT08uHDcjSvCdxYNlvkXVQsEaaGaBMtMaps1TQ3az5iHhnxUgAwAMBBfwSYWz5WixwdMQ/bWIHmHHaTzSfQNMuQJGE1u0QZwyIJxoyHwBiXRJEu0mUlgN+5vD6f02S3wgTlOevRT4+lqpVmPltIpxN5/ZNhixMAOFzWPz02NGwmEYADkVQ61+yt+j0OViSAbw8PHxs2W80jZrPZClBOOEnnnf/8H//Lv+dptxdmvocinNiNBFzT4XC7XcTAc7+w889PDl88ffr08eu33/z40x9++Oc3v/ltutbvrZ989ft3V47EuSE+xkRSvKpHkzCEctWMIfikXLEWlr21eqORCmbbq6euJm0ep6QUNlOCLtK8HMgd72CH2MSWrAAF1EP5Uq51cUu93lpObE4xl5ZHNzwznxmN6dMAwKX5zxaL15+ujkUm5rnp1nhWro9PdCfnFxZWVlbn27na7dHS5unDz09tnzvebN+4Mzv7+cHZ7b3ts7u7PyPwmT1sRdo/f2HvwvappYXMqXPVueOb//anH7/71V999+aXL+6/ObxycuXE1sToiYP9se6p81ceXjt/cWXy8rWTy9efPbx38eKFs7sXr+xfPH58udOtTlxtFuaWNn76yx++/uKrr9+/eTPYCH798jmWYAEEP3702WcHD2/cef3wwf0HD1EOgxrGxyF+/ejRw9vnT+xdnqstnF6ZW9m5cOXqtYdPQR4/efjk8P69Ry9ePL507uTs1NLGiYVGfXlrtlbEmLj+6tmrV699jlL83ETp0pXu7pWDw1dfvEZD6Fcvn7x5tNJr5lqTxUQ62759/5tzmYYUK5cUt1HMxsLRuGEYLMPn4grnYjMAWemwpCkcn4XlWJLQ7cKDqha4rS+kwfixEjQT4DFVDo/WRoYcQ2aXbIAA9mHOOowTl9MOY4kWYVRyIusDaLW5Gckz4uUJh0uUOK/N7NbwtMfjJgjKY3O7nR6zwzpisgHCkBT+m9Vqh1/yOK1mmjV5FA4mrQ+AyWT32u2U6DYznJWBpcrHCSGVU6MBHfsmFJ5SanXOI0p61AgZihKMR0BdDc56QyGk77Ii8oMWG47VE9ijFNFwx1ZDfi4pMgPoYBh4xhWF65JOaYI/IQcTiTDuTkbQlYEVOEHGaiZGj2XxdDmWB3GTA+zNp5PpXAF9FmqtTrP9MwCfPHX2/Nndvc1oIJDI5zPZfLlcbcdgmHtNZtuIHSuNeSx5ZSSVJT14xEOD2vOaj1lpjiUc6NPhRe9nEiAIa8NhBcDeI/wKVmwsHx8Bbs76eGwYguXOCHysuAoOSrBQ+QfCsLqgjwgCsCIJv2hiPVW9WqqNNSrFyijWuNarxdGptblOu4yJvgp8Rh6ttQRQwIYeSuQKhSJG2zXbrbGx1livP7Wwtjw90eu1Oq1crj810ek2K8UIvKKMvUsKLpuhSDoRS6CWhU9cLZdHm53JyX6vZ1DoLYJZSF4vKQB+BBGtw2Fg6IFwIpnOprBJJxXxG/FCuVQpJqMKP/DGxm4MmhUUv5HMhGVU6DzncTMiz0qMw2p3ES6PrHL+uBqPprIJuFcRSlLcMI7MVqtp2OomvXDVzGxCDRtigIP1V4iIHB6tsR6Wc4SsANxGBM0wk5k8B6rcycTwKCISCkq6xNOEm1cwxcbPekRY9kU/JRiqpgB2fATgjyFUCMBhVuXQec1kD4S1UDDpZ3R/GAMgB07QCMAYlZzNhlJBIc4z8qC4zONwAP7ika+iUCwPksoNnw3LlhQfp4TRMQZb06PRUCCE3UGhSBa9mzAOKVjOhFXRyzcSoYDg83kBgPPlbKFWKpVT2TGgW63ueLfemBhv9RZW11aX1kupdDysaUFjcN3ThRqwo3Z/eX2mN95tdmemanFQSwE5gB8pni23ELobzf5ESAsFAIDRtwIPdTDtGVfxbq83PjU/Pzc7Ozm/xrtYQQ1+BGB06oRJh/mWKHsHvUiKhrGKA0MOFQaLETZgOuLkYym302TlDQmAhWEYjtccUgyGM4wlTQYAlhgMvicDgsT4HKYRiypQg5kLfNppNbHwI/GINzGWYOIpQxZor8fJR9RQVpfYeiFbElxkOB5iTLSJlEhJsUoaJYwcGzlqIkAhDAAYNzLi+VQ9PGS2DJspmABu25CZljhmEANiN9sZRaJgJWStToKh3ZahEYL0EC6r2253OD0+1jOMhNDlsQ99csQeLFU6pXwBRnNR/9QES6eoRz8CsMnrY9WAP5TOFMf6K3Ha5QA94rAPHzkKAIylWBYTMHCvi3Gn//Z//aHqFhUv2lGS2LWMrUhOm93hIbEwixwJt969efrs8csnj5998f7rP3335R8f//TrTK02ubm69eEfL3zq95u8EV8oymlyOKXFw9nRHKxgUjYPCtgDs7IaMxK12ROXYla3Q5KymykWxBEn6blTfR2USPekpPAwm/35SqH/+a52dWwptjlNX14dXfOsXTYac2dPV6rVlau9iRvPsv14e0GcGuvnxPZ4tzs1v7C0vLzUbkXnb0Zae2cOTi/tnZprbDzc7u49u7q5vbezvYMA/PMJ8B6acFw4v3tis99u3GnVzix++acfvvnVh3fffvU5ff7RudW5rYXR3NmnZ0YndvdvH57YuzRx/PaF5bVbj29dvHgRu4f3L17eX11ema73z9Vr/dkTf/jp/bdffvHll1+8eYv4++bNqxd4Boyb0Bf317cfHNy4d/8+AvDDwYb0A/gKAPju3YeHh0/vXto5fWat2T91fmvl1JVb12/ef/Lk4PApaOAHj549e/L0/tUdwOZTpybLzZWTk/lGe2KiM752/vK1z27euLB3cTc3fWd9Yffzw6cf3r17//jNmxeP3r061+9la9Nj2Gq+f+/DZ0DN2KO6xqTrKTzPCYX8wFvzcVVw+9LZBACwrKukL1vCFnmGI12gax0WG0XxhghAYPVSXAgtZICVea3mYeuRIasSYAcWvzTrRptEl8M6RAoMZaFFlqYIPN6S3WZS8Fg9ssx6LCaPwRIkQ6P8IGHQWvGE0zo4/GBAAFP2YQsoF6fHaRnx8fA7LEhOCrih2U043T7ZY0UAVmRQfoLCeNRsFNNreFHk4r0mT+iGilUxhj+CRzvhOJY7hyKGroGIkVhFhXWOJWRYaiMBWF/xCHwQ1gAATLIgAFEJxWApTsUN1fBr8Ww2mc4XooFQLCJLuqJqWNOkqZFsPhVPZrC7M5tG66Z0Bht9a6NjnfZYZ2pxafXE1qndvb0Le2f2TyUiEfjJYqFYbNRaQV70jowcM1ncIHh03idJNEHjYbjTgx4cNBDuYRvhY7wOs4Vg8XqASCMH/pOugRElArDdZnO6sT/bgVaUmBz4c0bEoG0KlSUiMCYyBAw03te1gQSWfgF6BiC4UYe3WQNcrU+MA3rm67NL891Wwa9ioC9aU0toy4XmnWH0vC5WGvVGB+2gRxvtXn/h+OpMHw91O7l0d3JivN8p56LwIuhEKSoGQFMoGod1PhRKFov1bq9ZrdYb4zBQ2xrFU4ASFA8q2CcDAOuaLPvDkUQmEYmngMNkgcRUiqlwwIDXreTjEVUUeR8e5FJo8a/rWIUcDbEeWpKBEgqcT6ItZrvT7cQiKz0S84dicbgAiggLHwhf9+Aww4GRmhb7ERM2rPg1lfDQHj0oUk7SQ9LYv84SuNsJ8jIVz+UVWTUIbzIYgg9ghGRNBq3sFDVVUGMRiaLDfjwEZuF9AIwpmKXzrwE4wBm0KCq+YW8orAdDKZ0NhJJjgMDlwQ50aSCAQQGH4qBCKY53ECx8PKfDw8Elh2EosDzrJWknyaLrqSxQQiAeBwBOAokL4kuE0HwrXkriqA5qor+YiaiSVxpNhoNwj/lcLV+sZAp1uGlJBOCx7nh/otWcnOrNrC4try2tIQBHEbxUfJ5cqdEGhJ5YWJufnOh1xqfHK/F0JBlUDGxkSxZqDRwrY+2pfhjPMcSP8cnReBK4RKUBA6kzCF9fmJ+bn1lcY128avx/AFjTBtCLo3NQDP2xHQn+Ba1x5GBAweZfVfIxGOoMN8FHuGiC4SjDy8S1oB+eBmYhAjCwTbtbFyWGdA6ZR2SF0tBmRhU5p3mYgmXAiBOhZpoKpQMIwF4nCxI/E1DocjENWoMKxcOshbR4ZVIOOHwSI1ptI0et2OaFW16Dbod4NlkLj1jMQyZCEH1eG6ClIHKKBKrcbbU5YZqyhJO1Oggf68W9OQKD0u0Ou9PlpjnK7IblCfs5hgDlS+VGtYAAXPqogGV/vKx9cmzYZPay6D4SSudKo5NLCYawkNhhZTk6NDxisVowjcEyYnV7aDdtpAyb6PUMFDABa8MgLc5hsdu8tMtFuj1utrL65vDRoxcHT5++f/Pl33/z6796/qffpsu9xfn5x3/1dytDmuodCXLBJCsqkVQ4ESvUc36R1bLZckij691GFTC5MbtyLmL1uBCAkxTHkrSk53emVJ8kto6LMoeFccFMcf7e6cCV2oyxPum9tDa65Nne9dcX9k9Wao2T59urdx8YS5GxOXGmOZGVsCZvZm5+ZW1xvNSIXjyeXriwd392c2+jMXb94fzMvac7m6d3z2ye3tnZ/RjEsIcmWOfOXbi4vb7aLl/azCwfv/T33/743e+/fv/d+XbqwY3lla2NTuHkg0ut7uaF6zdOX93tnX+8srr35Pm1C5d3r+2du3rp7N755cW1Tnnmchv07+ZPv/7+66/ff/H+/bu3gxJoeLz6GX8P58/ubt96dO/uvXsAwPC49+Dg4X346x781wNA4kdPH51b27+0ODpz6szG4vrZm9duPHzy6PDpg8PHT58+Pnjw5vmjuxdPrKxtbc5UmmvHJyvVVn+i018+f/Xylc8/2z97fS61fm9m/eK9w7dvv3z//N3rVwDC9+fHq6WJXiKWSy0dvHg66YWBF4tGS/loOoIZZxpBAgBrgovJFJLRVFgxNJLNl3RZVRmedNOEw2OxE4TgFxgYY25Kjup6ULA7BWbIYbUNDZmVAJ4BY2ul0wZjFeTZUVL2uY96JJg58E8eWXHZQAVbKEli3RaT25BYlvdhsyvpdtts+AoEtoVglJKHdJqtDoRjp/kYLdhpXYSFiDBZrRYvYaVl0eUWKDutaOjQB5wtnM3EQOr5ZIUOZKs8HQjooXggmoijvRxOLNDACMCDLWhWRuNHmpCj8UTYHxlkBaMbogECx4dFWJLmD8di8QzuXMOVSWdihubXBI7hFPSUlkFFcrzqlwLpfCqayFVwRcX6KwDgTCZXrI+1uy0A4Ln5pbWNk9tnzl7Y37twOhWLAQBjFc5otaXTgnXYfPTYsEsURA2EJu2yO4a8mIVEe+GCUKTTCgDsIz12m4ejMKUCCz4AgNESFi4QTHlE4I847CAAtQUF9cUAgAfKN+jHKnDchNYxTgb3pAcArMi/+HgsWC5Wm+MYxNDqwNsdq9a6Mwv9ZkaTGVbk6IELlsjzkh4wgokiRitjO2hvottqjU9OTc2vLk32u91Wr51Nj7WbrfFuJYsJ6rIIS6seCqpqKBmMZzOJWDIH4rfXHx+rAA5PdNsGQi9LUBwofFoKwttTFQACPChIpDPJTLGYx4P0SrmUT0cioBNloAQgEF1eKYjOWtkEjzFNJKGgLYcPORxPgWaw2qwOj5IIalEs5UqGdD8DisIEa6MFsNnpGDlyzDJkOvrnFIjXkCRzTt5GpWAkUV4PyGvOpBEsKDcjACI4m4mwfp11RcKBBF5ITTZ4QEgamJscCQmsNxDSJJ2mgjrwgQAAMB7jfERgQMeowQdIVVKYISYc9gfDKYkxAslG6b89sgP8TcHoVCI8xZMOEmu8HA4vBxccXoMFuGcIu5PlMGJS9FFaLIY5SxhbBgAc+ehxFiulUzEgWaqgIQCLXrEUA2w0FDZXKxQrAKuFXC6eqY+Ogq4d73fbk/2JxdWZmcUFPAOOhgdnMkAc4OZiUtXE5OLCwnSnBV+1yslcFC4kOlHG0qV6Y2x0tNnqzvTDWlCTRD8WGQSBMIECrjXbY6OtcUxwWFhYXJpfXmPdIlK+QUzFwMcKvSgHgCuqwFwxkFr5mEkoSUBoBD2goyDWZJYlGY/JqQZgMoAG5kmF9xhaSMUtb80PbJ/DqGSbIgJZdR6zmMQAb+DRiij47OYhihUpLkqqY1lKAwDGvAIHZQSUbFilCuV02e+m/MmwADzfrdJihCBhGXCTlmMOBkgO9jXDbQ7FoolowTCbR4ZMLk6kGbfNbKOxfpEGrWs1OwSOIF12n8XuYRiXZfioFSam22oGTuxyURzjgBWLJG3OkRHA1Dpc+FIxnQEF/Mmw2cFIHwHYDD/CCwa8GnpsTy6GSMZlBvXscZlNwyPw3UFV4QiIarfd5zRxrIfgvXj25BpUEsLKCgrY7AEAJrw0aU+P3Tw8fPT0wYuXX3/14zc//OOP9//9H4PZif7K5pO//dPqUIpy2HTKXxW5UDySjCbKtWxYpvVcthwGAJ5oVuOhfGd9/mzEQXokMb+VBCpIMgoAcB9rZZprosIKql+J5iuzN7cCl2qz+vqU5/xqfdGzvxYcWzm/VqmOnbrUnXx/KbMQGpsRF9rdtNqamJycmZlfW19ulcuFw9GxzVM3ri9d2VnJTz64Mrv75NbJnd2tM1s7p38G4LP7588BBF+4eH5rdbqyeCPXP73ymz/+9sO3v/7+12+nI1cfn5rbPp2vnHy2327vXDp/a/vm8fm7V6fW7rw6uHgFEPjCpcv7sMgen1+p1Xv79eLK9OYff//9V7/88j3WP7/94ou3r16+AgQeuGA9Pny4tb1//e6dO/fvAgAD3j68C38QgO/cOzh8CKr48PGDgwc7K3tbnfr6+VML81tXPr9++/nLB48ePYbH0+dPnr149uDaqeXVnVOTjYmVjXa13BzvNpsnLly+dOvzS3vnL1SLN/eWT1x7cPgaU4FfvH32/MXLrV6r0JouhNOp1v1H329YR9TRsBzJpxKZeDgSDKoEzWcTOm9n8rlEOBnRQgFWKhZkXhI5PKJ0WbxWN4gA4P+gxNykEtZ0xm4naI/dYjEPDw1JmsCDdCMJLM232kDODlGSjzTRksY40NGK460AwISF5XgYcyNObInBoqn/l6r3fK77yrLFejRqCeHm/Ms535xzxL0ALnLOkQAJMABglkSRYiYBgqRSt1pSS93q6Z6e9ILL88WvPK/8yq6y633yF1f5z3DVs8v1vnnvS83MMxQIJuCGc/Za65y910IS6ScZFnGEEyRgg4g2QbcL0zDxTpgSvZQOm1WhQADbgQWSkhzw88AKdBC9gin45XQkHNdVk1eloJop8z5WB7FqxVLJsNO5otcAACAASURBVGGibRDOmCZiCMAiTsJyAiC/ZCYSqUQEjSoxEEqVMJWHY/AI0LAwYC6WyqctA2qyBb8sSQw6ZXA8D2xSR78nRYngFXo8W6+AosG2mkw6X641WoA3o8PtkYn5hZWNrZ39y4dH164e7yfCiWyxhJ2wxfp4kmVtXgz+DGBavC76BgZcPjsn0zjoiqqeJXyuEC+wNJARhuqN+5IM4fdhMgoS4t7/em4lPjSlJBnMG0BPPTMcSUTRoTieMnp3dfFYz+YC74L1ni2C8gs8Sh5uljKlytD4+Ogo6NLx8cnh1sjc8ky3iAAs8xTLs5wCGkUxMFMB/bvqrVKpAmqoOzE1h0FjKzNTONrbyRe73aFGp1VMA1THDCBKkhENq2ok00ufQLePZnu0OzY22u6OgcIyGR60LzxTRhI5ORxGuwZ4pNhInMrl0nl0iypkc+VGq1xIJfMZC5OPSIrTY5l8ESP80nErNOiVZYpjeEnm8Po85HKBIPHzFKFHQflrshWThBhQOrcDVpHTaR+w2Qf7kSp6+j16nI8agskTbnfMMEiKQMNdmmQEHw/PFRdDLpNjw4bkV2LhTAJQyJSiOKUblEzNSERFMWQk0Xg1YAEMa9rPPd//CsCaGCVMWSUHBDx/iKVF1jCzQ70UwgrmAeOgcyGXTmQsPUUxAix+jvRByaUFUZAMTaAVNsQEHAEMg1RUkeYj6QTmLCXeOV6i3IYFGytlMwjAhtwDYD4oVFJoNsqFMo1ioVKsNKqlSq7UwbPj7vjUeHd6cm5jY356fmmjnEohNTBVNRaPpavNNqzWqdm1+aWFsdHJ6fGReq6cBACO9CI0S/XO8NDQyOj43GQUarEs9TKK9EgSXqVSA36vPgwAPAMSeG1jZX2DI1S8/bCMd/jbuwTuWWHhXPm7Lqx3bVkAxRpwTy0Swz4tTHLhOMrt4k2QngRB8wxnhAQrCsRYQd8TS0MO5HUCkANXH3A4ubgajgMAczztcQ5SnMzwKVoaKnJKPqoJZCjkDclhqRjXqGIrV48GCDUTkzxAxSyWi3OMIOkU7xzwk4Kq4vsXDYPaT2WSZQMq14DDQ4s0sCInSGGBFhiCCrntbl7m2YA76PYEAIAd9j4HYiJs4iARABKF0VyuIOH22e1eVh8ZHuo0arCgEYCdXjyCrmu/HAD5SgLriIRj+VKtObWmB1lmkOTg4fpcgyCBMRPY7h4EMhlw+0nKE6ADftzqXkBg9IP2eIGEOAAvAwSF3dHN7befvjh9dvb6y2/++vvf/cPre//094nWTOfC6shX/+OdX9ZlJyVwWkdmE0k9EU3XGvmYQuqlUiOuEbWx4aGUFmuuL15J+hhClSt7WVYWWUk1SxfHRUbRujuaKchmOFZuj8zePdFPOhuJC0vk1bX2CnFjJjG6dbJcawzvH9UXvrsSnc0OzUrLo92cOTI9Ow2EbGN5eaSVm36QHd9fe3zp8u2tbuPk2cr8p+dXdq4c7h5cvHTxZwS+gkEM146vHx/sLI02Pp6urG48+/e///0P33/zzTdvP+msbq3urHfja8/ujAPGffLg+vHa6sOLw7eevvnkyvGta1du3zg5Ob529eLKRrcz+bBeWJ2+9OeffuwZYH31JX588fnr89dv3rw5QwDGHuhr1+49ePDg4wefPeqdQj989OQx/oj/PX74CP7Aoxenn16+cG13dmLt6pWtxUt3Pv706dkpBjg8f/7y/OnLs7NXLz65urF5YXe+M7q0Pt2qd8bHhqf3rt+88/FHd/ZvXaxNPdxeuPn86Zuv33z16uzL85enb29PdavN+dFEMlu++fzbw5xIsl4yUSqko1ls7gC9y+dThuBmyqWeAg5bnFQqSAjAPEMTeEZMhHxqUgTM9ftCesxk0ZAD1tygw2539CsYR9jzbEHbSjRItRN0iAsBn6cRgL1Bf5+L4Ak7JnxBYfSDrhHYEEkTwYDb6yP4QIiCKsizQR9AfMDndLrdAMBkwMXIHr/I67oUcnpsDtLv9zEW62aUAG2k47JosINEVAxyoixSokLTUBh9jAJsNpXAgQ1Dt3qBNel01DQNBSMGeFYUOQ5jtkBW4M0untgqKG1VlkHjPw0dCBKJeAaqEGC2CRo5ns5G4lH05xR7PB6qiRLFsaJcqYYzq+Ui9g6V6o1mEwF4ZHh0fHF5fXvnwuHRFeB3J3sxI9W7IQYRXG/lNfoD2y9tQMdlUCGyr28wSHq8ioLdQCziCghhl5fBcUaPt5evDC8UQ4L6xXDuYO/HAH4A+Q56vQECAFjqXasZVhh9n0H7xnsHowC8KISjYXjy7+ZBlF+gL8ZYu5Iv94ZDR8bnZiZAmoJkn+mO10xV4UGBsTyHEcV4ZGih2CkUSpVMDl0d2qOd8RkA4NW5aey+aWaq4xMjzVY1Ew8D/Ks45qUYGCKXyiWj8XytXi20RoZbQ93JzujIWHfUwGdI8ywIbYmXoDyrGlIFtFhMZDKpfLVUreRBi4BKywFQJU1Tgj+uRdOFZAQdkhVDjlgELKUQmn7gADVUYLsLqmaApgKMAdBicIyqKWG30+9yoFPHQF9fv80TcgdAF4U8dFQ2LS1sEFCioxbHIt9jGNEnBmkFxGUEh1/zomEqBJmwEqlIIhkRYhpHBwKSha4bukjIacWgJR9od1CRWg+A47HIPwOwJMaCliwH+2U8jIinZME08+1SrYI98tVSAX2+8tlUPKGHdZqnvBJP+YFvEjiHplsqL3AUSaCm6qUXiKyFi7Q3lIzTdMgN4Y21YuUMdkGDgAQARitKsVmOm2FTZDKtUhZNsOrVRrk6DIxpYnxienxsdmxpa3N1fnZxtZBMJWJ46qPFYuFECdM4JqdnlwGApyampqcmmrlSKhNWDDQHS+XLzZ7d8/jceFhDBYzWpppqwu7Ilhqgjhsj45OTU7MLC+tbaxsbHAXIbiACh42fAVh/Z0CpwJuHEKwrvXlgpHd4XRFOmjIUD1GG5U57bSFV7U2c0WJIZ+gYNsnLCMCmwvm9gaALp9Qp16DNTSThMcBLz4JidtsoDjZqimOrBUXCQWAQAr4AZ3IAwFyuna3HQ4SchJ0WCHhNiYpKPLBVTnYOBgKcppumBVQpnsyn8/mG6QM67HSFAHgDXqeNVCRSEGia8jrspKIKhNft93gxEm5gwIYtK147ALDfHeJ5EL8OF+lzuewBOTPcbI8MNQu5VNl8f8DpY2UE4Pf7nR5XSOBVK5zIF2rNiW3ZRzA+H4HxTe7BgUG70253Drr6Yen6YcEyAQ/lFWH7+6Hq9UDY73b7MBYdtj8TIGlHYuLFvadnZ4+fn37zV3/+8YcXp//zPxRq82OXjt7+4/+y31eOOXleNhoyF05E4rFEpVWMyrRRLjdiClGfHevkwonq3Opx2g8ArJYv5ERDZmXZquyPSayqjW4jAFuCkW50J45uasej28m9Fery2sgGfXs4O7p9Ml9vjR3uFw++2hcWq40FbWl4vGh252YnZpZW1+dn27XM0W52YffSR1snlxarc6d3O9vPH+3uHBzsAfxevHjQuwXG8+dj+Li0uzbd2jrOLS0d/ps//fT1H//0q1/95rvPjw6nd/cm6qsPH6y21u/fvHbz0sTx4+3ley/Obxx/fPfKzU8u3756dPPa7upipzt9sz6yvn7l73764Zuvv/0d+mB82XOBfv36TS+GARXw08cPHzx68NGnT5+8A+BHCL6Pe1L40aMeAH/26PmDj1+fH25euzw3vLB/uLW+f/fTj+6/wnjC02fPXrw8fXn66s3Zs+sXti7uTrfhO84NNbrTU+Pzeyc3b3/88eHlu0v5qyeLh5+dnmMX1qsvXr98+erZ0ki7MjmTjeVKy8++/WiII3nNjBfyyVQGQ180ghPzSUPyMuVqPp2LiLrOioW8jJczHEsGGYHxAbiaETJI+nzuoJmIwi5x9ONNpsfl9Q7qJgA1ESTRr8XvA6bm6wvRfjokkBzlhxUDCNPnDbHkIMmLHOB5yFJEABgWABeYrcsviyTgPKxEbPkN+gYHXA63zw9S2EOJbi8Hy4H3Odw2FxskvVSYc/MRD2uBcAU2TdOazrBmmKdFQ3Q5fX5aw7qXSaWy2VTPaMOyook04IMJ21/GaDqB5/hIIpYEVgjSOI5t0DK2awIzxj4YC6AACj6UXhDeAAM5qJapnl9Hz7eZJoGhi3I8X8iX681KqQjqButquVbHAJ/2yOjo6Nj4zBwsws29y1dPjo9vXEpHM4B4ON/abJXLhvcv3T5PwBPCFgeqv59QGIdTQX9tguWAhtAM5bGTPEPCbuuZsYcoFjcpuk/CXvQC7voCgMToD+vzBkhsou4l/qD3kAX6yDB67npYBBEF8OdYCZE3/GJ0tNsdGaqVG/BA8TN4uOPTk9PLM+3KSENTLAFVl4TGmNjtDfDYq7i6iYIH6m2zPjI5Pb+yND09CsKqlq4PwRcZrufSoFZgsciqhJAKsF2p1KC2N+qN1hDaYQ2BWhoZ6aghUBS0yFM8DVof3pDekXkik8ulkimQvAAelXIOEzBymXg8nTB1AGApHLWA86loGp1IKPFmigqhiXYvRZkL2AZcUJNtA4Qm67FwOKe7ibBO2QfcLvvABwN9/Q6oXkHW7+MCft47yCUUPY5D4aEPkroghPyAxArjo0WGx2iAFHDSHLwMCutPWbFUOJ6J8glL4YNBQVNkMxblCS4lWoTqg+UU1RQ02o7+CwDDUxGEmD8sSb4+BYgQ4DkAsAEADGujVm/USvkqLJZ8JgVfM0wJfMBrCCGPyx3icFobG/vVEHplcjwHRAZn1JK9KeMomiXCaxWHhQgvmBWvY9BXGANzSwDAEqEU82F4w1i6OFLLVxuNSq3SKOMQLyDw1PTY+Pzw4sbGxgLo4Go2l4zhTB0AsBUtwPvTnZ2dnJmbnZmeHBufmm3nigDAkm6EUQHXAMtrndHx+a6lR01VDqOxi2qgiRYsoc5Qqzs2PjE1Nz+3trW+scHTsYiBAGyF9Z/x1+hJXFXHSGAc4Ou1ZKmKhPN8oqhaEXjWnKjSAk35B72yTjMEFwjKHiDjMVWFLa7rYVHjSY8rQHhg9wqsy97v8cdlNWqEI7wMyGyneEMT42Qwm1H4YsIUkMIEWYMtxDQh3crUEyFKjYUVUJFuQydMDIQAHHTagz7WUE14AwESE9lkvtwy3UEAYIdfkHnC7xgMSVxIwC4sLwhbhgXu6ws4HQHSP/jhgM2FXVdOoMM+V5Dn/fagwyEwXlufTys1y8PdzlAJADj8HkhlTg2negCMcRucaoYTuVylPrYnuH0E6/YDBfN7BvoxjdDucngHPHZ0xfL1c34njadcftC9bq8XpLbbHXB5bM6g1423fSJbvXT64OX5J49e/PZPr37z4/NX/+mPeqs7c3nr65nRsJrX+yWTjNdBNaQKuWS83KmEJc6qFKsRlR2dGSrDfiuPbN3I+GkA4OJ2VrZEghOs6sUxhdfE1oqg0LAKo4nazPTBkXE8vGFtL1GHa91t9k6zMLx5NNNoTx3tDV3+ciW9Vq0umQvtyaoxMT/TnVpZX1+cbBSKp2OlCxceHuxdW59vb5/utu+dHW7v7CL6XtzvSeDLl0G+Xju5fnK0tb00VnsyWtvceft3f/rNn7/95rffvf31o6Ot/e2xdvfek8XuhfufHF66MPXRyeL+k/PnhzfuHF+7df0q/HPzys7W0kh9+tZQc33p4j9899P3v/rtd2/QAOuLr758+xoPoF+/On2Fd8AAwPfvHF2///jBvQcPHz162DuG7t0FP3708NGzZ/D5o2ePHj1/8vj1rUsHJ9tD3UuXN1f3rt/56NNzAN7Tl2dv4Iu8fHn6+quzO3s7F3dmh8bWt8ZrnemZ2eG5yzdu37159+LRxUb7/tbclRdPT3/9+ddv4JufvXi7OTJW7MwUEoV898HZl7saX6iE9Wo5UUpgU4XiJ5VCwlD8bKmYTeUikmlJarkIgobnRImiYnkTkJGL6t4Q5fc5/UY8Ivpdfm//h053wBvwDxgmKOBQIEQE0SLV47Q7fknLoaCHpWg66HIFeJlw0qzA2UhOYIJuZwjAjGNpjgEBBwxQ1GkfyVAkSwdYKkT4+voDbn/v4tMb4N0BkYMNCytvwMF4gz5SJjxy1CXGoFxaihEXmWhYjKVBfymsMwRArGEqTTiWzqXj8SwIBgCfSEJXdLTVUTiQTJwsMuE4KItIGiMJ41ETeDBsRIEF+JU1vD6Gf3MZTYpXm6VMzyIYQ1/DPK8yLC/hWZqWzGczRaim6LkLwiZXgKpXawz10vdGu2Oz88vrG1v7Vw+Prl27ebmQSWbR4xh+GB7qiL/sj+XEgJeSRcXvdgZZ1u+w44UL8CKVFyWG43x2EPN0wO0hSOyCBG0MRKVnAI8KGFuiQQDjYT98QnFosA1vltLL1g2DijISVhSeuBmJWwAQuqpHcC4TMfoX8P0nJ9v1Jsa8ttqjY8NjYzj9OTcz1WqWTYGTcQQNM6N4eKIoD3LZdCkTTmPeXrrSGmqPdceW1pZXpmanx0cblUa7Va8Pder5CDbE4A0DF0uAbswVS8VKexi+TafdHmo2m53RyW63rgJ0cqEgqHyAQBl7s6EG9xJuY+l0DN6zTDyTy2SL+XQ0lUnAS65wjMjyAIyJXCpfSBcq5WzYylYsFyNJaB+mySAfB/rtg65BB8hBtRf/7CYihMPR7+yz9SP789ABkiK8Dsdg34DbncRLf0ahaCIQj/D2IIvByqKHC7BRw0hp8WiyEpNiCumNoxklkDdd0PyUBzPeRTUe00OErlAU8Ej4KTYbWWHMQopFe1NCsZggS7Qmqy43rKmwmYlzUkSvtxqN3gUwyOBSuZgDuhGh0wapCl5WBaHj8VEyzwiGztECzwTZgFtieUUDTAaJiI4b8VgUf4xYkXg40RtarZSTBfgc+E4tF9ckmg8Lgi5Tfk+mUgC5XS3jUFxtqNOa6C3Gke7Y8sbmztLE9Goul40nwyY2YUUjyWKrhff64wuLC7OTE1NTkxOtXDGesDTgD2YyUxjKw2NudsbmRjEaUNQA/0GSWpEMHqXXOiPtsamx0an5hcWt7bXtDUEyokB5gZsYSPsMeINRCeOhUe/gWe0FJMk9TywAQdhIVlJV0PqF4Zge7YQ3PERyNMFxAsGmVEtDf1U0OSV9sOBphRdkt93RT1qmhE3QssZTbruH1S09yXviaZNMJ+B1w+FGTiPjGYuyhhONQtAjRmIq5Ql5FYMxJB3zEplQkAyF0CzNxLGuZCKdy7fDXsJhczl8GMkdsg94OC1Ii5zP43PafKxAocmf3Q6iwePq/8ARRCc6KFwhm4ujAi6Xa4B0hT78wKFFG+3myGirlY4V1ff67D5WjeSa4nsDgw63X5I1Cx1qqtWpHRoAlXfaAqFAkMRJYOCR6MprszkdNjwC9MHKQO9BL9BuH/wCSpsAtl/6vW6QOwypzD798ctvv3n+8vPfvH1y9uzN//RVtN6d37zVGKA5q8z1UzHabEqqkoymw1axU01qlFVMt5M8OzTcbrWS1bGZlVsJoPaqUdrPCFDVobiV9hd4StJHlnVNYKSIZWRHRy8dJ29OrBvbi/TB6vwu8bhaGT44btaGZm9uVY7fbmSXq51Fdb09l7HGZpfHlza255a6Q6n5h/mR3YMHm8cny83Je4/by48/39re29s7uHhhb//g8NLBlSuHR4eH165fubt1sNmt3byQXd09+Xd/+v6Pv//x+19/8/n5pdWNS/O1kfv3d7tz9+9eOVrdfLyzcfLmy08Adm+cvDOQvne0Pr88UZm4NFxfmr/yD7//8bffffubX/U6sODjy7coQ1+cvnn18smjZy+ffnq8NL966ebtZ48+u3//M8Dfzx49fYbdV+/0cK8vC72in51/cnDxysX51t7R4fLa9U/vPHr5CvD31cuz1+enp+evXr558+ne5sWtycb4xmKjOdZeGuuuHh7f+vTjk82bW7m1J6s7N589/uL1V5+/enP+8vXZx4sTxfp8J1moFD958s2nyXwhy6u1ciafyxqioZE+NpsK8yG6Vk5mcjo2GXG1hGZieowkmbGI4PMx2WgwYPMGKJIUDZUVBUUafC/QF6JcLrtg0AoXxJgOTIv3eEB7uHmGC1K0FPLYvCQhkjaCV3weFn0B3fZgROIYKNY9G4UgxxIkiFsnxYUCXMDl9WNnodcPuo+0ewmoURTBqly/2zcQ8nv8YoTxK5rTH47D1g5bsE2z0QiIVJBEHFMpil5JjxtqOp9NF4qpeCQRRxdGy7QsVQlHJFS/AsdLcjwTi2Zy+P94zEAvO1XlaImTQJOhS1Yulk9a+Vq+kk9nc9lUb/4joooCBtzriqLJcQDUSrmQKVcLxXqtUKk16nWQfG2A4fbI0Pjk4vr65oWDw2uXj6+cbGbgVS1W6rVsrFRqDwUHmic13uOixKBzwM2yQZ7t88kSS4M0JASFZ1iGdHpFnmFQAVM98TswYPdh/5Ud9qkfvcICXgdwdY/L6SU40OWaJMgoOvB0EYRSOoIhExhF2JsLxlYW7NOSxF+MDw+PdZv1VnN0YqQ1NDo5OT3eRSvgpYXR4ZolAaIB9KJlGE4U6aYVKRRLQ7VcZaiRM5VwrjZUHVkAbrGE/gvjnXpzYrRVrTUqOUPXFBTOohiLmbFEPlsslJqtRmsEj0HHR+FPdtqjTZ0hGJYEoQ+Iw0l4no/XhWEQVMlsBjgROhjnsllQiLGeglcFYOUDfT4unMwnswVQyplSVg/nszoJ7DysS/BwHX1uV5/d+aHNKeoxLRoxeOege7B/YMDlJQMuTqNIv7/f+WGfzeu2DdoHvWEFV4RAMh4uLzNkkAgGWNpPSQF4uomefWlcMgCArURv+ixlKSaFYUvAYsLJuE6SZlQRVJnE0XLLsDCPsAfA77yaeWB3miw7PD0v7kyUUyyz3mxguEQvBylfKheywPuEuMCKgRDL0UEPRhjzPEheNOgExuUnaEHEe1IAPJy5faeusbkO7aniyQgrVUvJXDwch+9URRd3UswnwqogMu5ivVCslIAY1uqVCmjukeGx8dnZoaHplY2t7fnx2ZVsD4CtHgCHE/lGa7QLEnlueWEavaAnxpv5Il6kq1GgD6XacKFab3Swzw5XvqCY6G4KZAMb/0sA8EOd7khnHOjmxub67hYqWsB20+gdQYfhE7UXyvDOCLoHwLgI8XJDgs/gN3CvKr1pPFZkvA4/VB6SYGAncEyINjQdSSUAMAYsBECw6sBZvU7nAGEZohXR8UQLzeZZWVNioj+RMYho2kTj0kEnrZFWymDNkXS9QHj5MHIqwisDAKu6DIVDoHz+UACvWfCYCAOBs/lOxBdyDNoGnYQAb4RzwEGICMBQjID9BxgKsBCA0EcSPufghw5AeVDEDBdyuGna77G77CE/NTDoFpVyuz083GimYwX5/X6HD1ZqpiW9Zxt0eAKwq8xoCvh6bXrTb/NxjMvu56A8erENy+5w2dGQEkfXXWgo6MJ4dC/azmLvpRd+y+mwOwGKfVA43W6muvH0+rWDl2+++au/P33z+bP/9Tt5aGJ292gksTTGJWQXFSOthqhoaaCv8dJQOaHTSjbWzGtkcaRebaVL7an1YytEBnAOOMkYIqHqVm1vlqUUbRgBmJYiyWxjav7kinHUWtbWl+i9xcl16kE2P3TpGN786aP56snrvdTMRGNTXxydySenZ+enl1bXF+bb9czh5djyxp2Ptq5fmBxefXKte+HVJ1s7e7u7Fy/uXdo/OAAAvnr52tEhSNmL+wfjIxP3WpMXNn//px9++vF3P/zmq29eXV/d2Jofqtx7vje7cPfOR7fmDs7m1j/7+hn8hbs3bty4fnJy/cbtS1vrO43G2uFYbWn54r/74ccfAH+xBfqrL3sI/MX56avXr16+xCbmlw9v7M1D4Vq6dHD00b3PHj188ODBk8cPP/vs4eMn/4zA7w6knz59dPb4yoUrFxdGF69cXV0/+eTOs7evXrw8Oz1DKX3+6uz5my+eXVtd2ZnpTO2u1kpjE/OzE6vXPzr+6Hj/6sHo6PHllUsfvXoB6vv87ZvT8/NHi1NDjamJfKqaP3j0xaN6TYfNDGhrJtOmZKhkkMsmTSZAVmqpdNaUDUvkaindNBSaB0ZqerggrWcjpM8JIgpEDh8KUnjR4hddFOlwu7SYyOFsZ4AmsWUo6PcNBDVRJIHHBnxOV4AQCVuIkYCWCgIUHEcwDFuK5xky5MVOXy4UIgiPFxQfS3i9oaAbA6ndTuCUTp4PilFZ0BKKzeP50OXyBcUw5ZW1IBFOhC0omYSQK6A+jTJmWKIjGc4rAdBmcpUK1KFsOp7CSAWMH4kaClpcixzHwQbXU/kU7LhMJpnMJA1Fgq+lMKQIKy8CWJvJF+KlEgiybBEEcC6byfQ8oVVJMnqHapohxQq90Dy8IC0U85lqo4kn0LVWvYmCcGRqYXVtY2f/4tGV48tHa8lYMluqgFLOd1qtvJDYvVsRQNYG+94PSTIL1NrnxikqgqaCIM9FSWRtbooKBZAIwwe8DrD37INAoZ0DH/a7fCACHE6gyXYb+kGTgqIIEsg/INcG2itEcJo50nOkfOdLiUeVve4x4Rdjw1AyG9VGvTPaKhVrQ9MzE+Mzs7OLK6uT3ZopgZSW0Jq6F8eAAGymc+XhoUq9XG/VioCNtXhtfn5pdWxsYnxyerhcqJZy+AolNRz6lESRE3spfLlcuVJtDbWGx7uj4zPzs5Od9nB7pK4QPEeTGKAICwAv1DG6QQfGk0+lUzHL6t0d9M4lsMMIkzOAw2FwezKZT6QKmQzAYymmR/NlhQ5J8Sgebgb67fZ+x+Cg10mKMT0d16mg80OHDxQEHQz5ZdNvs/n6HFi77P19g54P0b1Cl7Dhz5sKq6ybCgT4EBUwgmRYiybjiWg2LUs6G5CBNiVTyUzUiIhcIEQokXA0ETMoUkPrH6xJ5gAAIABJREFUNIMEzqZgq1EY10a8F8oA+AgAzGuy6HD1hrHTBqeZEVgbPRusUqmIDXu5bBq9uimVcwk82r55Q4zA4o04DoWHaLdfILFZSRR7kUR4P55IIgADH4hYafTbsGqFZCYeiRuyUs2ldZbSahlTZAXWW2kW8iVY+vlKrVwG5G+2RkenJqrluaX1nc3psfllAOBYD4D1GDCeYqPZHZueGZtdXZgaAwAe7zYLpbAh8mosauYAnWttdBIdn+xaYdMSoDJELFTj+WIZeFd7uDM0Av9OzCytbaxf2JawlRy4rmHinQd+or/LRFLeeXD03KBxZQEA99xfRTkS0RGTgX+qnN/j4qMGR9I0xYsUyXBhvBnSdIzxCrp9AS8NO1DxOx2DQcMQw7DMZUUXAi4fKytiRCVSBYuIpkyeIkMDTlpnjKQlaZ1crUR5aQRgD+ERDBYzqM2IKVBuH0XJvTVomnHA4AwCMOEZHLTbA5i94BkYDIgExXPoPQ7AStCEz+PFrFSGcDv7HaBNfSAZ+KDb7acDgUEkw6TD6yND6XZndLTZyqXLCo4hsYqZbMq/dNicoDYEWQsns/lyfXbD1e+ToV76/BznC3lt/QN2WKOw2V1oZeQE8AUABuaHjdAeAtMfvDhRh+0fBI1h1ny0WEsDgf3s9bd//uPv/u7rN//pVB2dm5g/vPPy724RCd1NJkizyktGKgFaI48T47RQyjVSYrDRKuSa6Vytu3tN8ZEBxSrtJBldJCQ1XN+dYBlNGFrSYQOa4Uy1PbFy90A9Kq3oq2vM4erUuvooU+ocHg13OrPX5qY+eXqYHaq2N7S14fFqZnpmemFxdXllrF0u3ptO7e0+uLpze7kxdu3x7Nzdz3e3d/Z2tvf29y/vX+oB8JVr6FR0e/Vgc7x4azNxYfXe//Djb3/6/vtvv/nqzd3Zlb3ldvXam6vTnRv3n+1P3rg5d3j/2ZPbJ3fuHF3vIfD168dr63tjo50bExMzcwf/8Offgf795te/+gpDkACAP3/75euzV+cgXl+cv3l57/Ly+PjCzur09Mzq7sGNT/AauIe+T/9VA/+LEn55+tmNy4dXFruzV4/XVk8+/ujhq7dnL7CXC77eq/OXZ1989fTK1tb+RGNud7bZ7kzPTsxsXz25c+Nk/3inMv/x9srV0yfnn7959ebN6dn52fbcRK0934wV84vPPz+dyPgoS8tVSvEE1hedocVC2mKDVK2RSmbDKmw1vp7FsBrNcu38+//jb3mK4QAQnAEyBOuB4Qgae3QZRfIE/Ta31wgLJMVRfih4HuyVd7n7qLDCwdoV/LCyvIwctBMk5/dzEoCNc9BvgADiMZMVYMTHMiBs2ZAnGPSG3A4vRTgd/kDI43D29/tVxiOlLTNZtDzYyOUhaT1O+xSDCOqxaMzQZcIsp2IpKNchVeUFvSW7ODmaLObKxUw2AwiajeIYLM6KmAAovCiBMhcFxoRqnkhmshYOHUXDYYx3FSieBMESBRTIVsKJdCKTzed7LdQx9IxGIyBg2ijbNEOJ5fO5YrVWKeTLFezbrTeqKHBqtaFmp1MbnllYAQDe2zu+enL1ZBN4QL5SLkHNyhdG2vWlSxeanMfrHvjACdTEL3Aej5PjRPjuogCVCEeCHW77YH8/cH3ADKc3EKCCXkffh332gb4PPuzr7/uw3+YOYBOmA/Qw+jYrAigoQwOO0XOA7qW5AfziMb1hwkMHMYl+3fQvhtvDYwDAtQ4mKzTaoyBPJ+cwS25leqyisHwvlQk+eAGTAEArRuK5ZrNcadRr9Uar1eyUh2bm11bHRicmZ2ba2QTOowC05HvTXCCBSS4et2LxTLFSqbU7ndHxbqfTnYbvMDnZ7dZkgmcohkeE51hR1bH86WgHmgKhFzNVE/2U46g7sZDrEsexvK6okUgqnovH0+kM3g2UUnq4WDBIGgeCNFGhP/xL2yC8IKyP5bV0THSTRJ+f8pEkbQtI8YLy3oDdjUZ/NrvTS1IuJSklNJUzfIyPTEmCLwQLmmSDvOCPoK1GPJwqGED6SDabykQTqUwMNghOtggG5gBZXJAP6zxthYSwLCAfQ8/td3PA2MzNySBeJXbQHQ3rRiStclDcGw0A4F4aYalULaRSuYwlxkRWJXwKh501flrgWbQaxzh7KgSLgsbpYzzQRf2LEQ+p3hdHD8mEIUhqvJVLpuPYoq1XMqj5jKrJw7KmiHIjnyuXquVcuVapNIZalRqwoOFiYXpmZWd9fGypB8AJdGvWYFWniqiAAYDnVhanx8enpia6zWIlqvO8nIibmRr8VaBac/OzCx0dlpas9qy/UlAksI93aHi02+kOoyP94vLa2oVtYAyYLoQpRhYOmBlW+J9DCd8B8Dsoxp9LKH9VUTLiFgZy6gqtsETIHgqHMQCGoGSSZoNRJI6wRiSOQgD2kLLAS0Ggoj4MKYyFLUXReb/LzymqGAnTqUqMAlIm8wG/001rnJoMS0I1W6vRLiISV0kvCb9Ki6IC+yMiEm4/RcO+13TLtOIWunu2I14SodbuweZ73+CAT6LJ3jRCEKN8GRLKG4BhkGd9iM4hj5fwMywaD5EkiG6nkwi6cTg/3u50u612MVeV3+8BsJVsSO8jAIc4QdIjoIAL9flNZ59HCNBswEWKHBH0DGK7PhBr9G7DEHU/foQwHY0MBUDwUDjnybKY5sYLsIuUeLlaaDYa2Udf//b3v/nbf3r7q396EG5OLSwfffbpH4+9OXGQiFF6EfhrPBLLxzKVHACwWi2UTNbXgUrULlSbo5vHBkEHNauwkxFNMUQLRnVrguMUob1iwvsYiyRLzc7Cx5eNG7l1c22DubrSnQ/fjxXHrx42m+3Fk4mJew8P8qPdsSX1UmN0KNmdmlxe2FxZaY1lx+5VO3s3b+9cvLlQnntwPLxz/nRpb/cdAB/27oCvXL16fPXW5duHmzvTwzOflMZ3tv7+jz/94fvf/fqbb778eGtsf7dT3/3msDOxf/rgYOnjuwvHbx9/dPPO3Rsn7/TvybXLuxc2pkZHbk3WVjZ2/vzn779D/fvrf+mAxhzCt+enL85evz59cLK7urS0szC3trU6j15de8f3nrx48LBnx/Hwyc8I3LsZBgR++dmj8xc3D4+ON9sz1w/nN66dfPT0FQDv+enp6/PTs9dvAIy/fH0bvtZ4Y+rierkyNDU33l2/cfvux3tH10ebJ7cXt+8+e/rFW/hLL1+cnd9YmiqXF7qpTHH44enbzQhPhU2okdkUHmQZDC0XEYDpRj2VegfAYj1vqYYk2C793//lv/6/nxChwIcDXlso5PP6QQJERF5kAoJGuNxuu8+PQQY8DczQg225fpfD/SELJQwUsAz0yuYXFJ+TItiAnxF4wmMHAMabRpYmAi6nDeolKDqGCYTIoM896AiGXHYQBT5v0DZAq5RTzFhWtqD7CcLhC7GcmaB9qhUKqNFIVDdIjxanSHQUDgoUJUpxysUryXQul4sDFCVyxVwY/XeiqhExAIAB4EDAyxITThdz8WgSDwNjIH4xJVzlKJGFsmEkspkkrFcME85nU1D00PoAj3Shihg4zwhf0YwDOBeKhXK5BFq7WC6Wy4DV2Xyh1IKiVR+Zg4q0tbu3f/nw+OjWbh5ed8wrLFfKmc7I0Oz6fonGVo4PHBzjJ2TO2ecQRIFn8GI86LID9tpdH8CH22kbGHD4KQ7KQcjnstkcgLyDAL8g+fwUSwY8A84AjXCmCqyoAwBbP7dBv4tkCEfQ6QJgBRi/KvI8x/2iOzo6Now+lCNd+BifwgI7Ozs9u7A8M16RGZZmGJblZQ0Pk2XdRKfcTLVeKQNvKBdK9fboxEhndnN1emxqanK8DnCYyxfy6d4tKHbWiTQbjZtRkLTFQmmo0xoaHu6ACJucnp6anehWgJRh+gFoFJFlBMzKAeX+LhAd0/zC0WTU1FFOxrGI40MGYsGyih6PZGK9kIx8PFkuRXWrnNMZAS0OBVN3/fLDD/r6+oJ+0O7pXCzEMLYQ7XV/ODAgJkuLU6R90D3ocnmCBHyEyJBpRK2YqJBccDCsipSXDPlZig0oNGOaZjQRSZQiQkJnQolUygIEhlVmiVwwBBCpR3IxOUgalsAZJAXPF685wxgnEfsZgGMAwBijPRBKhPEgwOAiehrIC3ZBw1oplcr5TCaTtBQjJPMehieogNtDCsB3dEvBFOgQ6/aynChraMjda8jvRTBgHyvOAceyGm+FKWUkA5QlGrFEo5TAtiO1YkmA+zRZqucLlXKlWKo3atVmq1muNsr1VqkyMrKwvdwdX1nO5XPROB7uYtd3It8ChTw5M7G4tDg3OT4xNTXWLNViuiDKqWQ4Va61R9Hre35xbUg1zYiihdUwKuB4CjRcozXU7oyMjbSHRyaXVxCAQT9FrXcAHDYBgHXz3fxbbxzpHQD/3BStAJUFlS8paiwCaCzoBiuAprM79KhOEyRJiQRNe030rdQwp5AOefwhHwWbVCQcNptHNSVY5ADAGud3+jhFk8JxKlpNcLGopvBBqB6ExIlxg6NT6WqbtQcjSQ3eaVdIY3lJiUJFkYLA+H0SHoubBijgWDKdaoU9hG9gwO1wMvBiBgY/dKLDPBXwBkKDNneIJgM+VxAUN89ht7QHu1n8BO3zeQYJmoLdOYjO0D6vJ9npjIy22oVciXtvEPiBHk3XhfdsNqcvxAuyEU0Da63Prtv7XGQQnieBXa4hvxMBuDdD4vVgpzNBEgQVIkiKRuN8PBHg0KYdtzvPwNeJZCv1GvCs7OVv//zTH37827NX//kza7q7sHz11v7/tmbPsA5CZ7WCIOG8fTGZrxXiGhXOp8tJI1BOJTOVRKlWn7ue4lhCVQvbOUkXSQDgyvaMyIn6+CZeW5mRaL41PPvRcfhGeiu8ucHdWe3OpT+N1aaP92vNztrN2dGHTy5E2lPNNXOnMddODk3PLC9sr8y3u9HL19KrF+7v7h9dmqrvv1ievvGrayt7eAS9v3/h4v7+xd4c0vGVk+vHW/sLrfqjsebF5df/4cu//qtvf/vtt188219b3Zsqz73+qNPdPb+7ufrZ8dJnX53fvHPn5o2bN6/fPL52fOPkcHd7bWKkeXW5tDu5/2///MOvQACDAn43g/QFtkCfv3599vLl2aunt3eX8RZmpNUYm5lZ2lxYXFxcuXDyyaMnTx8/uP/gXwD48c8KGHD56cvTe4eXT7a7UxcubU4d3Pv00+eA5mevXp+/PH396s356effnN1Z3dicaCxdmCw1upPdkfm96/fuXz24daE5/cnewuHjB6++ePPq7AwQ+NHaRKM0O5VNlvKX731+O63zaqxZxvu2iBnTyaCQSxh0gK5Xk70j6LAkVwphCcn23H/5f/7r//V/ehk16PUNBnkiEKLUaJgLsWxIVP0+l8vh6wlakQ1QoHG9Xr/P6XB9KESkAMkD8hJBYPSyz8XSXNCPvrdeIIoWDpAwIOs8HrszRHiB8/kAgv0c6bJ5gh47/M/rp1x2Tme9atYwshkFE7l8UFv1KOFRLYo0EjiEIQdlK0hYBq8zICAoZ589YGhxgIWUhQYPSPeRRUcAhSxVNWRJFWm0eYznq4VENJlLpxIRo1chZIkiZFlXJdgtoJuzrQrIXpxmAgWceHcErSMAYz+xZuKpaamUS4P+LebzxWK+mE8lUvliNt8ABVwfnptfWtva2dvf27t67faFXCKTLxVxXGmoMNyud5euVqCi+1wDTpmgBKDa7zllmQn5vQMD/f39Aw4HbP0BF7wUNq/HDbymF6nnD3jdLpv9HUXuswMhCfhBKfuDJCtpUFWgfqsxDUQTKHp0dUINCcoeIM4wAUkxFl1VfzE1MdbtAHdtt4Y6w512uws/xzGUhZWZiarGizzAuj/IiL3qqJtqJJrMV+r1SqHe6VTzxUZ7ZrQ+ub4yNzs73mnkYokaoEoBABi+l6lIAAISvE5WNA11vjjUbtSHRsaG0eR/amp2cqQosSJ6ptGYR8iIqI40VX/Xst3TkckUPPhINGyg9u4VG4IBvhMOJ6MpgJ8IvKFoMl1MKKiBgbFgRpWiON97//0+T7+Himh6tmTgHO1f2gOAuP4+cXa14PD6vCQGLQPDQ9PKqByOWbRKBp1MVBE8RMDNBOUArdoto+c/WUiIUZPzW6k4OqnBAoqIYjBICEDUclEtGFAtUVB5Al5THZ4rAnC0J4Kx556VOcCT0ACTMNRIIqdzUTXf/DkKGDE4WygVkqDypaBOeVUmRHkdXkoQONWwYAGjE6OL4GnAHdghes+TrYfA8V6rF3AUTVEiekBoZ9Jx9NPgzUoCNCSrVLIxleNZf6VZKFZLpWwZABgHdSu1RrHSqjZardmNuZGptaUsAHBM0+AlBlaZyDdbIyOTM5NLC4u9S+CZ8WapHjeAe6XT0UypOgQAPDw5v7z9swI2cfA5nown05lCtV6rVDujw53RsZn11fW1vV0V9LGhm8j90BYETebwDlf/bwD4nS2HJCqaLCqKBMAZM1T4NAzkj6c8A3IsTONoO4dppZKs97IMZYENunwAwJrBS6zL7nArJjpKmbKk80G3lwYCaiRCejnB68moTFMAkATAVMLgyGi80BEd/nDSoL2EM2jwvKKlY9EM70VDdezMVgxdh5cinUy1oz7K77CjEb0k8UF7vzMkkui/4Q8NDjr8JBn0e4igy8uysPP6nUGPmwx5qYA/YAsxQeeAwxbwhQJBls13hoe77XYxX2bfG3QHBCuRaYnvDYIYDjKcqOFcY7UxuQi7HKoaw/gDnOQNBtwOl8sZDOCAAxRZksBOMBZdJym2B8DIjXmaxtl3lpHUWKkB1L9SK5a2vv/D57/65vzll//7enRmbG3p8MbI32y5UjpBsoxWkJUEvFKFZKGejyohtJ8cynL1JGiCcL5aW7mdBNagaoWtHNBAVlSt2t68xPD6+Aa2beq6le1MTN84jp9kdmIXt9SH65NL5U/TQ1NHu/XOyOb1qblX93YTaSG5lJgYXmhmW1MLS4sbixPj9djTldSFS3dXblxfak998mD8wuOz1Y3t7b0LgL67exf3Lx5ePrx89erJ4d3dza1uaftmYm390j/+6Yc/ff/9r3749aPrWxcvztbH7z0e7155/snayoODlftfPT+5e/vk6OZHN69cPwIAPtpbX2hOD+0u1+eWdv74Nz99+9vvv8UWrK+/+hr17+c4gnSOZ8bPP7uyvby2szHVqi/trI21JmZG5re2l+eXt45v33+M4Pv4/3cJ/PjJ/RcvHj59c/rxlYs3D4Znjq/OLu5/9Nn9p29fAaK/wjNlEMPnbz7/8t7O6upwc/FgslruzoyNLx3c+eT2wfGt2dLFu4uXPv7sGZ6Bn5+9OH25MzUG0F9MlHOrH50/KlSGovFWKVUq5CJmXCdDfBYAOMg0KgjAkhGR5UIuLJq8IEgz3/3H/9xxCzE1MGijKb8PK5HMhyiGENUgARLW4TYUCWCNgmWDrQMel9P5IafzHpIRRF/A5yY5wefiWD7gIziecDtdhIGtUFAPPdjdRzAkAZvK6w9SPB90uX1eex/AE57wSDLj1XLhSDkLvBgDCHhgk5RPM0kynI6aajTFyxHFTEWiEQF0qddOkaSu4URLPBxJpWLJZCaFjrmwxcIR3TAkUQYEgN0dL1TzceDxEQx5g/Ip62jsLtAoyOKpfDWWzEbCqWgsmUimE7FYEptsIjgJjL3GmhE2IqlitVLI5MvVAujeQrGYS6VyALElqGijre7M7OIaOnFc3EcAzsZTmTzslVKuWO4Mj8ytbie9/UCNgzwfYHiPwz3oF0P2/j5bXz9s0gBs8wG3G8iM3wWwG8K5XIEK9iZ/vY4BG/xy/wD8MRz36kU5vkszRO/mmGHg3C/aJfUAGDRSzxLQeNeCKku/GBkd6w73LKBBAneG2mMgZCen5tYWlydHy5qkgn6ggkH0fVRE2Qzr0WimXGs2cYC5Vas0RmA3jk9vbC2OjTYrpaRh4JFxPKxBKTUNvKHT5GhYC0dTOagNvRDa7vhod3puBv6Z6hZ5UhYZIkQLUFKBNoAKAnoEEjgeQ3NEAx51ouddrXCSimewIicIKsfIGvCgcCptRRIJvMIs5cNKppINSzxUM1Awoff/4v1+PDs0IixU4OCA3eb32/o+dDjt7lQz4yZZEqoaiA20naQDGii5MKeiYRJQTSLgBZYokH7Vy0cNeMujmbRiAX+U07FkPJpOhdU4LxPBIKeLUjJqkX7FEERRCah4Cay+A2Dsv+o5f1ISo4pCcFCIa2hELrMJpQSvXvVnCC7nC8V8AjCMo2WS0hgy5HKGOHh/cUwMZ4Apnw/ebkUXBUGxMHfo5y4svACOJ6Mao6kcTRnNTDaejBkWazayCVPl1VoxqUJtJgCAC9UyADB8RxC37VKtWaw0K/Vmc2ZlvD2zsZBBADaMSC8EI1WqN0Hhzk0hAM9MTc/MjDcKtbghyFYiFs1XKq3uxPjY9PzK9jAAqiUqBpAhK55KpXPZQr1Zr5SH0KR0fHZjbW3lwgVMCzY0E09fDAOUsIk3Nv/NMPDPd8GIwLBQJIxaFI14BMeETYMUJIJyBMMxgaAYHBanOVI2ezkOighlwxf0hBQdVo7L5nCIYREAGHO3JNLjpWSd11JBuRTnpGRc40AJeAlZ4+KmQMRS8abu8xhJi/GRzpApcJpRSCfjnA8kLaXCOtfwqDXcA+BEiAFeDKzWS/N8yGV3eVUKDyn8BIgCLwW/6Q6AAuYwV2bAHiL8INpJKFV2H2iPfofD4wv6qIhVbA0Pj48Ml/Jl7j27NyQBHx1R3hsYdHn9JM2rViSeKNcmlmwfgqymONLppgU8/UMPQTSeJEKwUkkS7Vo5QGEaqSMa7bMY4YqozMH6MzPVai6ZKlTytf3f/fTliy+fv/zb/5jKzc+sTl44vfrfXwpmUiGCp7S8oiTRuyyWr+UiCuiWyQvtjDQ63KwPpcudyYO7FhRhzcxv5QUcz9es+qUFrINj64ooSqYczXemZ45Pkteyu7Frm+bDubGF0u14dfJoqz7S3blRnjm9fpCOSOlUerRTaebaY/OLq4vzk+O5+mmreuHq5c27h5O13Wd7U9df31za2tq+sLt7cf/C/qUeAB9evXLj6tH29kyre7fV3F38+r/79q9/9+13v/7m2bWd/UurQ7NHT5a6B4+fru+dz1z56u2Tkxu3b966c/3K0d2Tk5PrRxfX5mrzjcvrpYWt2X/7p99+9/0ffg0A/M2vvurdAGMK0muEy5dPbh8sr25sLE0Md64c7+/tby+3OlOrW5srC3Mrmwe3Hjx58q9t0I/fjQY/ffz42bMnz88eHhx9fGFqcftofvrKg08+ffkSIP3s7Pwcp3vPz15//ev7uyD3R3Z3Rort6fHu9PrhrXvXD08OO927lzaO7j95+cXnZ69fvTg9uzY/22ottlKF0tT9p08bK4/GC41ysljIx8JxjeF4bMIKMs1aEu+ArbAipdOWGJFEQWvKxi9tAYJmnR/4JdIPS0i2LHizCCCoftrtdticuiwwBEn6fJSPoGAJBTx9tMh7ARrYAJQ3ihIDLpYV/H4GAdjuCCjooECSRAAWrBd4GuN22fttAdKDt8gej7M/GITPvKSqsj41F09UsxYmkhEBGTYsG9DNQNBMx8N6zCI5qNpRsxAGUaJ79cmoXzBSUZzCSWSSOBCcjCcivXOmsIEZTOhoBYAVKVQysVQO5EA6EbV0hVfNqELzpKLgCXQ6HYaiEc0ALU4lAcstTCwDZYcnYr22EEuPoEdyqdTLji/iiFEuDeKmVAHlMTLWmZydW1pfX9/au3zp6pWbF3JABAqlar1SKtfK1fb05hb3/vsBjgrwAho9A78lKHtfX58LWAfF4Ui1z+NzuQM47guwAWxFYCl49oFQ0G2zu922D1D5ohuW3UNweHit8xQH4sTstV5hJkMkjKYcsSj2wsCTxxooiyz1i1JjZHwMlGm90QEkHhkbmYK6OzWzvLAw2srJIEoNQ8NRTRr4sGyhSW6+3mx3GmNDjaHhoWqpWZ+cH19Yn8jlgHxkDNXQrFQmpsm8DCgPqCGL4agZA+gp4u0jlPeRTmt4en52fnp2erIm0wEK3m282gUA1kEFwSuKtoeI4rJsmirOmeqGTKPeVHWZDlEKeiTHMkkrk4OXPZrOpxOpbN5KZEvlmEAbSizKhtx/0f/Lv7D90uZlw/DOMPaAbbC/P+Qc6AtpSlII+EVfL84h6HcLIZ6nk0pUsxiOJDxUShIDHioAQiPA6a6sZFqJSCqnWwmNFDLhTDyaycW0BA8PKChENBG0KBdEAGZ1r2Cqgq5Y74KXe66m4WiMFChVADalJvVwOp1CAAb8640glUvFQqGWB3YY0XVKgKcoMlTI7ePVdy7QPTMb1kZiAoAhCKKGl62JxM8InMBEJI02NXhJKH0o00v1BR3fyMVUiVNamajJBlm1XM/l4XsVsCkQ865ylWax3CiWh4ZmFkdQBadyuWgctKkM7240Va7Bcp2Zn1paXJibmZmbnZqAvxHTedGK6lYRGNfo5OTkzNzixrDeA2ATATiR6bl2D410mo3WUBMAeGZtdXVpexcvLCy95z2Ohlm9EaReF9XPqYTvPt59hkfQMsCpmohj5oRqQTkhZP+AmlQZGpY6RxGiW9B7McLYGBgMkd6grImy5BwYHGCj8MJHIvDFJaAstGLxWiYkVxKcAlRIBgxzBGSdjhgSkcwYlQjhUhMW4yWB+vOsZpSz6aRCekI8KwNDMCOWGQdVmkgNp2k6FHT12f1uWpRIt93WD8SfDrpB/LrtPoYnPE6v1+UXZM7rG7STDFD2/lDIE7C5ZT/Z70BXci+TTRXrnXZ3uFPIFpj3HH5CjmXy49p7AzYX1EJG1JH1Z8rTa46+ARs8LSJIE3aZ8gI8g5j24uRRiEJbBAYkL8XifmGBOoKa4WjMWPsbAAAgAElEQVS6p1wYQY1nSwVMYasB4br4zY8/ffv4/NU//k2yODG9tbN7//IfN3yZjC1kckpOkRLw5JLRXC0fM4WY3lgqRrnW9FCtlcg0Z67e0kMcIUnZzZLMUTSrGLVL8yylW1Ob2BOoa9ny0MzC9ZvJg/SWdXVZfzI3uVq7naxNH69XOt292/WZF3cvk+Ly0EBqrs4NpTud2YWN2bnZTnrhUXJi99ruwa2NicbJ84nF21/tbGxtb+3u7Ozv7106uAgAfAAAfP3u5sXNTu1wKz+9deU//OEPP373w9c/vr61s351ozN0/XS/vvj45cbe04WrX3z94PrRx9ev37gB/948vnHr+uXN2e5U7fJuY3p9+m//4cfvf/r2h+++/fbbb0D+fvkVJgED/D4/f3v64GRnfn5tY7pSXb93Zanc3d6/uLw2MzK2tL29vjQ7vXTx9oNH/y3+4ifPHz18+uSzR6enjy9fvrtaqH98ZW3l4N7jz56/fvvqFKMdXvXaod+c/e7x2vp8Y2R7faxQnZkfnts8vn/v0t5HK9mDO939208+e/vF2auz52fnd5fmauX1iXwm1/z0/vlC5dV0tlxPYZOSFVEYiU3HddpP1ZpJbMsKW7IQT1piTGHMiB9oqjsIotRj4xQOJ315wyIY2g9o6GaAsnnchsworC9EhggP2kH7PLYBRpSDHMPToZA3SJFy0MkAAAcEUaK9TmdAxlR2nLAB7eFHdkfb+pzOwf6+fm/I63S5bC437DcvI0Md1POJRCmps14fSxOKoMeYgKYRISONgb8gqTKZaCSWVLCp0t+Zs1yCEdHMGKbRxqCUZqIWRt5BpcdLRR6FIgMsNFqq4eR9sZBFeMXsNFVlSFW2ZClayBoMpeZLQBjTKfgyqZ4DEShKtWcmryEy6PFirVou1yrpZLFWKlYBgLEoZfNZqHVdAOCF1c2N9a39w72Di8fbuRSeVWMoXamab42MLK8nHQMk53PxPGlzqgZ6qzuCBDxpxFvYd5zXGXC5gg4PwC7eAuFWZEg/5hECiDhsNrfHHyJCOKEAAhltC3muF6VoWCDae2YI2IMVjasCr4Iw1U2c9oAS/4taoz3SaVSr7Wa5UGmjmT52SKEV0kSniv1DMtqfiYoKeIp33dFkAb2Za+2hoXarWixUm93JicmxRrFSLWdjMh3JV7LJdFwj+J66kTixlzRbLJZBdNVbwyChRuu1kdn52dnx0bJA0LQg8WhuwDK8DjoPKjro2kgM+7UNVMSA5JIAKAbQjDnQXk6TQB+Goz0MCsvZcLYSj+VzOV1JltPhCKOamki7P/yLD/r6bP02SmBjmZz8l/1uF1AbwsWYMYsj8EwPXkVs++JkiRUMU4lHeJ0nxAEpKhMkOoxRNC97Vc2MxABfInKao/lkIhePW8mkboUZmQzy2ACQ0WiCAiHGqhRt6ZKqGz036LieDAPviOlC2G8JpNsmRM1oKp1iDc2oDxWb2AVdxiPoQi5b1KUYpcsEiGVf0OvwsPCCKFqU43kfwfqCFF5tA5eRwsD9QJn1Eq3DYYDtnBmKylCDqaDYKhRSphGGb1fPx/8/pt77ua1zyxa89epdSyKJHA5OzgnpIOcMECQIMOdMkWJQoCgqy0E52cqWs2zLvqnD6+merr5vumuqpmd+fz/M/DhV88/M3pBvzaBsJYoQgPOdvdb6vr3XMuCndsnSRNBG/Va/MjZANyrVsdFculSHRVev11qzU63hibUFq5RCvzAcQ4qEE+g1OTo5O7c0tzQ7MzU5P9urFUppFSlPOJirVqqdHhqvrK50zHg0KHJ6qD8kkMkVCqiOx9rDo2OdDiz3xfnp7VUcEca5smDfwhljQIy/PfBEQzX6TtB9JzkVQ7UVSdZ4gEbMaogqnCn5OTsVD0u8jyRpgWR5H3xTUDFMCdR9ACoPF5QEnhoYsInBiByLhHT4oBCAtZCqx3mhkBaFZCyoAoB7XGqQtiKKYOWsfMrtUtKm4vO7HYpKhdR0MpQVofBwjKrJahAJdiwRSeWqMZEjSJfd47QHMM1twDnAwnWiXESAAcVLwlfdUJgIVhFAttp8Ii3STn/AF/DZJdbnsLlP0tSg0kiXiqOdseZwKjvM/Be7C6pYPDsm/P6Eze700CKssWgskq90Fvrb2JzodPJ+v18NDPh9dh7t72ge7S8DmFUDq1DkWWAkKHwxGBzkMCsoRjCdzefyxVKxUkzkL3z95qefn9/69v2/Fouzs3NbZ6/v/OfUqaTpFTWKywW1WNiKhyKZUg6Wp55qTyYj0nBhuBqP51rTB0dhFxNQteR6JgASitMjpd1ZllGN7rqgKVjoss2p+es3rfORteTOJne/NzffOhuvTBwuNoZ7O0eji19dP2PIOV5sTunMQrDWnl5YWF4cbyZuncnMXdw+ffHiYmXy2fHImc8fLaztbJw+fXp75ww2x3wIA76ye7h1vtdsfpJqrc396Z/e/fTrN9//+O21nbVL++32xbuXxuevP9g5+Hj+ytuvbh7dvHF8dPXa8fHVq8fnbx0eHCzOjNTP7qVntuZ+/ac/vPvpPeLvd9/g9vObL1+/efXF5y9evPz8wfWd5cW5/a1uZe769a2R4eH2SHdu7WB3c77bmd2Y3VjqzW7sXrh19/HDO5/duf/g3t3bn92+c6/fGI1JhZ/fv7GyfL4zvHFzb/r0zYefPUFHj8+fv3oJKvjFi+cv33772erycm1iY61WGhufqk3vXbt1/dKF88PFexuL5+/eu/PF688fP334+MHO7HCuN4+J40fXXp9LHB2MFWOpdDoRNEMqEPF4VGEdXDULaAMcNqLz2TxUxYiMTrUIoQx1yqYYqui1e/1yTNBI35Ck0C6Py+UgmRCoShZzWkk/SaI3ltPOmjysXIXxBOxeimedXolVnQwhCqTHYSdAMQGiBGCx0/3WLD5w4qNTJ+zu33t9LON0eh3+AOVyen1yXGOCuVQqmwTIJUkCbkszK7l1PcBoMcCZUIABERuJWOEEo5oSq3RjFCtH9Eg8kUylk1ETWH4EE1y0vgGPppkyj+3XbLCYSWTz5UouHY9h34gq62GZEVTWzGQMXtZLmWwmisNLIIczFmbcBnGQSYO71UBwisTyWOYwh6EAaJBLF/PJRCpbzmJvSqPZnpxZWMFB4L2zB3uH5wqRVDqHY8PZaL403Ogt7E0NDKk8xfKCd8CryXD/CQpH4OEPWpVQrETiyKHP7fQSGLYgiJIiwi0JkOtDBw774MlT8BERPj/hdgcYBlg1zUF1w4bhWARuNwtdmcKAxqDRMJkRu2EUWZUBgKvVWgWK9GirlEyBiAFA7vTGp+YWZnvDZQACDGvk+uaWiqKBIg1H4xj92uxgjGEDU/Xq7bGZmQ6U9UJ/nyCWzaRSls6J/d5WAQqhBRo4lkxmy7VGa2SkM9Yd6/YmJ2ZX5sbyEs9RNA0qH1u9JFOXlZAGgj0W7u/g4tSKRPMqlGUZJLUiqLLfx6syiEEzkkhAkbQ0KxWO1fPhbCVuhNO5dCJtSDLvOnnqv546dXIIBAXLysGE7iaoAItWLvFQLMR4PT6a43EfQZZFWeLQZcqMSrJEQmlN8HIAbTj8ID8F2sQDzDhuqakcY8UToOgSSVhFIk8GeBUBGDgfYwQFRgUdakjY4Wci0wml0NE/qnEqGVV4u10KymoklgAkC5VrpUb5NwAu5pLpuBwC/OGBBtJwiV0k7jaboO2kvociBa9TVUVFNWOof9GlJIbDv8FIWQokgYNCBWaC7Xw2HYtETCnWyEdlISDXcpapyZKMxjC4MwMAXK52RvPJYq1WKlXgUkz1GsOTG/ORQtLqj1hr4UgkWSq12qOTMzNz88sAwBNz01PNYikDxMKMhsJ5VMDd8fGp+eWVthY1NBboTh+AofoXq83RLs6QT01iHNLK/PjGigEyGfeeg+i9hmGCob/hr6n9pn0/OEMDAMsyDlrJmqhFo0EDzcfkoEqzTn8EPj+CptERjqcFRdCB6KgKy/i9Pj8bBC1MDwwM8cGIAhRBV0EBe9yMFtaMpMBkUzKXiOoKHfB63QDA0YjCR7JWPuN3S+mg5PG7bYJCBvVcxrJYPGhh8ZYJYSw6YGIqU02oNEF7Buw2OwFL1TfgGCBVmqQwpg0ULyHwpA+qkpeWBcbpGHSzBMZcQoX02kUh4BpwnnAFbGYjm8ujF+VoLtck/6vDzSEAd8WPTmLADCcHoSbFk+V6b9ZvG7B5Scbhhbud0Fibx+cggCii9x32PMN9DawbvVsxJRlXMIAwlAwcT4unMulkIo0pMPHiwbt373988eD5X/6+lB9bWZnf+PzSf8w7ckEv1BExo8qxWL4WixWblYQpa+nRGSDO7WoqkUun6tO7V1J+1i/JsdUMEB6CN6KlnWme10Pjm1gMFCMayzXHDo8LR+Hz2dOrsZu9paXRg2h94fJivdU7c7G18fXZjbShZSupgNkJhzO1iTkQwGPV/O2J4sqF/b1zZ3rF008WZq68Pp5b397c3Nw6vQ0A/MEI68LRhesrZ5bHKufXs0urN//6yx/++O0Pb3+4cbB2bqVTX7r/2djk3Yd79z6dvfHdsxuHV25ev3L1ypXLx0cXj45url/YHlnI7h5a4xvT7//7n3758cd3iL/9Hug3r1+8fvHqq2ePXz29dbA6u7i5NV1v7908mB5pz22tTQyPTgEZ2Nua6wxPLa+vzE/Prly4dP32o6eP+/PA97Er+gMAP3r45PGTcysX91uN7Sur45vHn9578vzlyxeIvjiN9PLZiy9f3lifmalPbs7U6iNTvfGlc9evXzhzbjW7enPpzKX7d5+8eoE5xPfPz40VR+eriWzh7Kcvb2T2rk0V8vlMKg71T+dYJhXXeQdbKudS8QimvPD5YiQaBIoJfNtPBOyUykmWRiq0x0/JUUliOVLBygVKGNQoFDOBxbYJ0GUYl+e0cyGJYSmJ95J2DyVwTq/AKXY6wHMBt9NBmn0AJgnKS7ME+k/6Tnx08oQdFrkP1j0OMjm9TqfbpwFZC6UTmWLGYDA4DtafGqOdepBmDaC6hkZR0VAUo12CpAIga8zFMP5aBhmThIqNbVphDDuCmq70LeDRVAeTE0EHJEvFbLxv1QhsXefQG1Hrj7JKZjJXzhdyFjDVRDqdSgKiWOEQxqGqhqkKnGSE1EihlIpncnmMQKpWK9lSIZPN5YqZXHVkdHh0sje1uL65ub0H6+zC8dl8Mp3FKIYSlMLORK69tpcf9EYUitM1lmBV1u2xU7JAkQECZ2RByGA3jh/9b5we+ERphsf7kGUonLH2uJy2QYfdge6wAZ/LQ3IscGJBwjgGoAkRXTUjQDusOEBxJIbmSUYkZgZ19AGUftdqNOqYL9hsD9dRDTeboGG6U/Pz091WWRBwTBNEBsCUiPMShmSYkThCab1WbzXhG5sghidXViZL6UTSAp0k6iBdDVkE2AA5qAqKZMB/ZiwVxwzbcLhQbnUmpmdnx6aW57t5kRNoBGAcQuNkU5VNQzE1bGXqF2aQ6EDbeGxvlgRYUzLvIVicSVb1cCIZjcJqVVPhUK1qpfJZywgl0nFYBSBHXKdO2QZODA4NOTzA+uIGSwBZ83kJqdirh2kaWAWSGBmbV+ClYsiLDGpA5XyUD9Z4wM56MQTApwYkgA09koopUZMLRFIYs5VMQclUKRKYHaBtKorIG2I5mQEhLAOiYK8vFPBUFIOYJUEUwrJk82CSQNiKcGrQKlYqzWIfgEvFQjaRD+kJ0hBpWugHXnkFjRVDQGEVQJyAh+BB+xoaB5UPYwjhQ45gj5qVCOZUKixhMeZ5JtjIJeHLUVM0C3GQ4z4xGw/iTq34IXK4gFcMALhTTBdqTUDgWqvVa9eGJ7fmwvmkFQ+bsJbD6G1WaLQ7k9NT0/NL6EU5Nz3TKpUyJnCvSDBarMDFQ6/nuZX1loK1gDfDcDPgAXC2VGsOj41PzM7PA3ivrmws9laXAXxx2xmtxxF98aim737VPwXW/rb73J9I0n/7SVOUUDJm9gfVQzpQEqdq6QJFU0DoUQXrgklbQbzrCB9BcCFFEtnBwUHWBAAOAgAbwPHdtB7VjZRCpZIaEwcAZgJen0cJ0WEAYDMVKxRpj5S3RA/hsylBJqSnYqYE9IwTOABgNCSBjyJhpdLVpAHy1j8wOIDnvLwffVtUlqAJr4/xDg54WLxicN/RosB6HIPOgBduUhfjt3nsAZZ0D7pPOnyOaLWQyhWao8OdfK5J/d7p4ZVYPNuTTgy4oHbyMh4TwS1V6U7STpcD9IydcpOgakS3y+dx+gJUwIfTvwxDArVGEkmScM8QFIub0SzDAzU24pk08t58rVkYLrWvfvP2z198+fb5j1/GqhOLK2uLtzf+bc5fMP2MxGk5XUv0G9eL7WpMFdRUZzafUNqZWKYQT49Mnb5eIEivJKY2MgQr0pIGADwriareWRdUuKX1WLbWnTi8GL2SOk6cmTOOu/OzE+eiwytX5mqt3v6F1t73O6sFgy1sCMR0V08lKlMLMzPTY9nuvXx7e2/30qUzY+27T8c2Hr1aWdjc2tjY2EQJvLu7389iOLx0YXt7ZHT0fqW+t/YP//Tzr7+++/rXz84undmdKU999unq+M3bH9/ZX/v8hxc3Lly9ceXKtevHl65evXR8/ebmua3RqeL++fLSZu/b//mPP71//+N33/3ww7ffIAC/fvXNFy/ePHv5+v7xzvIKoGG9tn7r2lyhNr+9u3t6c31hstebXt3e3lyfHh5ZgN9PLWwf3/r44zsP0RAabTl+8+N49OjhvVePjy+duTBe2Pp0Y+osiOSHT998+fTFq9cvnz979eUXX7z49s3R/MpIfXF7olwZnxkZWT2+dWnv4GKr+On+/Jnb9x4+e/3s8dNH964vTNfqc91ELrfy2f271bm7c5liMWFFoGgrDMVnU/0whnoxk4waRlgRSuVI1IQSKXLYOzpEQm2NKQGKcnookJi4jytpgQDH0B6vx8DUVhaWCeUNkOiY6rTzYYVlaUnwU3YvLXJOD8fLdgqKRx+AoWiiy3SA9gQAakh41hMnTn5k87lsJJotB7CxweuyO+R4TDWtKNofMSTFYF6uatEuMxyg1LgV1OQAE9d4WgEKTQPCCFyYtInBqBGJJ4EhWugeBPRZNYL94X9VkSRV5hlYxpFiOlVIR1TM/4WSG4Rbn/ThOAi8LTPZ9zLIR7GjGFSQBXoygUGsWl/v6PhDMFFtFLKlaiwajuUAyQGAC5VqqdSot0BbVjs9oFjr65s7e7v7Fy/v5TLpXBlbYav1Um/CKK5vWh6fLhABVYIbinac/C8fefBAEHg/zYqKhFSXAQDx+t0+jASlOTw2xT9CF0rMtnU5HBhEGvC63CSPX9XQpQ9KXQj0bggFcKTvnhQD9WbgwSp6cUAZ/N0w7hm26vVyozPWGWm3x8ZA4kzMLC7MdFsVQehvDqIHB9rlAzCKmmmloRAXy5VG3wt6uNHqzq+v9KZ77Wo6qBkf5IxmosKUVbjhgQepwJoLwEYwgD6UqQ+32uNznc7UZK/AB3hgGPBXsQtaMWQprAMAa/A8ptE3SQL9DV9Ec83+K2HcBCOpuFMZiX/oSBeNVDKcrSWsXCEGRDEST8c1QeQCDjsAsG1o0MZ4+VhQx/HJgOvUEDdaUEhBk4DToJM3sEA8hBBUHPkFlIey6ckorMdL+jg3JsEHjEjYCKewu0z0B7OYW5BMhUHJwbWBlREyEnGDooyIIEhQrQzVxCZd1DRWst+DJUCJ0zl+IGBZIeAMJgUrpVKr1j/4UJaK+WSqqMeibpEPsDJDki43oWiMFDZUWmF8LOGi0YYMiIxkwhuO4pA6LkJ46pJEWzqUZY6Reb9Wy/X71QxOjGOzakCEtYyHyBzq7GK+UKnV65XaWLdaKpYbjQoQrlanWW9PbM2FcrCmQzj/FbaiQEKbI2MfAmympxCAx5vlMirgUCRoAZS3h8cQgFe3GkoIExWCoJ6jqXQqmy8DIxsbx72T+fnltY3Tq5Nri7qJ7mvov4YAjA6v/x8AG2iIpfaTxPrJwB8ksa5pkpZOmQZivq7KAcpGR0IyR2IkA0FIHkMJ8qGwaQi4XxZgg+iZZbcP0npEieLTmyrrcZJ6zNTjaiCdMpiEZYBogLtECjNBCxEnXqiIHrmUkaHQ2INxEQiQIZE+0NgSr+oKvtVgOJ4BUCsnTdbHEHa7ze1mRAEnjm2K4Gcoj5fx2wddwA19Hh9BUrwkEc4hJ+YkBGwsbfO73HTAM+Cx2X2OUL6SLmSaI812JttiP3J5OdmK5bryyUGX209JfTvPeK5cHh/nAXwHHG47b2MJH82THp/fhV7v/oDfQ6KnUQAFDT4oIK1QMEETA3k0g5F+v2c6Fkumw1FK//Srr//l5TePnv78s54ca3XP7Hx+9n/0PAnFz6gCHxfVZDiaSMfyrXJY4uXk6Fw+LjUz5UYxGqnNblzPu7xeVSttp9wER0lytLI7J/OCPromaZJi6slyZ37p+vXYrdJRam9OvzE10505jLSXjiaqrfEL5wGAd9eSsmwu+0O76YqVbUwvzs1Nd6y968nZg9Mb5w+XGzNfXOuce/vJ5OrmxuoGKmAA4H2MYjg8vHC8crhaL104nV/YuP3v73/9+cfvf3lxtLxzsNCduPZkdeTi/Tv3D/cef/UMpPLtG1euXrpy6RKo4Ks3Lm7vj49VT18sDu8tvP33f/jh3S9/+PH7H9798PXXX6MN9Ktn37148ApQe6m7eGG31566fHl3stWZW7n0/P1XN85sbW/O93qzq9v7B5PDne7s2sbizPTa4cd9S6w7t+/c6yMwCOBHD57cfvTqi4+3zh2305sfX1jYv/bwwZ3P33zx6vXrV89fvPry+fNnb775/ML8UqOzvjFWHJ4eG54+uHnj6ODi6cryrZmtq/cePXr+/PHTx/fvLM8Nl2ZmEtlM95Prjyfr9xesTMYKhQzdlKmAkEsaopuvVHLA+g0jIouVSiRi6CJOCwUADEneTwdVzkM6HAExaIikm5WDXlfAi2E0RgjwgaEAIYlAX7mhApZZqBWgMew+zGzFvDU73c9icNgDBgIwzoT6/BToOn9g6MSpUycG3G6/yBE0zysqfLN/cECMxTU9Gk3n00BNAzROxGkJ1m0EPX45FtENg+PjGuOX42GNMxUlYD8xYFNAwKA/RCGbwlxfYPvBSBwYP3or6hLOFPI8pRdy6RTc16C+ohFQwIquCz4fKE0+1I9xyOTLoFQiCSsYS0TjaUy6sTDpT+97XISCoWiuvwWdxISpaimXBaxBM+g6YnC5OYWDtUvL69t7Z86cvbibTaYyfaFcKWabTSm7sDSXFQCtSNVgKe/JjwYH/otLkHkaqQECsNCfO8C4BeJDHDALvAF3GChsTsMWrcFBB0CzH7OnAvBJ8jy8L8AXXesfaMWxl7g/HAMvOx7FntT+8Zuu4RlwZ2ykCToYT3brjdbwaA8q7NLSbG+4ij1qgE8iWlF+sNCXNTOWKVWKeSQPtVp9eLg1OjG3ujgGMN4EDdSKhVSR9vn8vIAtIiA/FYwHCkf7/pKZQjWWb9SL+dpoZ6Q3Plbgoa6y8PY4RmAZWZdEkEhBQDAdR1Z0hH4MXO5nQeChvhxw+WgF4cgAHEqnYrFUmLFyarSRj2XLxZQVBX1vpRNKgHAODgzYPR67aBFAxXTsFeSIkyc9Mmppice+UblvxgkkQ+IBSjWo86pABgY0U2LcrAdKnBiQSYCYUDieiJppjVCSONybSEVNIwi8MABCVbXiQcqngtIVFJo3VAONIkKYPRWLROGNcwqtqyx7ioFVB9pZZ6JGsg4AWK988KLMJbJpOcWDriE4kfQTLoKBSwuC3GBV1g83B0ujqwTgezCBU1BoBN2fkk6rjBUlEYBplXcqw6WQCZI7yJhpkJuan8lbCo+77DXcaCkUK3Ctao3ueLNZylcamOg8PNpojvQ2ZxGAY0H4mLWoFU0USq0RUMDTOAc+NTk+M9Gu16oAwHooEoqVSqV2ZbgHMndloyYHEYBNXFEpdEMBWtHq9jq96fm5mfnVzdNbC5vzCuZZAF2JhM2/AXA/FQnb8PUPACz/BsD9rA8cjTMkJZEKAp5CHZIlgne6tYghBli4FcmA7OVUVRbCSpCjcL+HhN8InBN3hsMAwMA2TY3zOANKFH6rE9msSSdjsF4Yn9srRFgzposKvNia4VEqJRVktUOJQ/VK6oLXBzRP5oEuaiHcAgMil06WEqbkIwmn0+ZykRJaFgwN8hKQOa8HQNjmpAQBw8gALTWZcdmdHoLwBQbhWQmXB17gKadjyOcQE7V8JVsdbrQzmSb7exdAeSSSHZNODjid3oCqoL1oKldvTE9IPu/JIZfbwQ9BjfVRLOHxoaRGE3wCyBlNYUcIyhrsiMYwVLi+6JyJQ/cfWrIYWqD8npWr7//7q6+efP73PxnZRr2xuPHu3v/ZtIV4DynTSkoQouFkIZ/MN4shWZKTY/P5mFBtNMrllBhd2Liec/kIQyufToEYIkQ1Wj4zK7BCsLup6PDPGfFsY2rx1meli7GN+NJ4/NrMQnf2wBxeuthrtCcvHTR23m6tZ/RQsOmVWrmUWGtNzMzMjjfin63mVs9vb509O1bdf7o+++n3W1Prq5urWx/wd/fg3Lmz548uXdxd35ittj7NdrfX//nv/vzjL+9++Op4Y/NgeaJ97tGZ7pk7z+4f7L796frhtcs3bl29dv3w+PLx0dHxpQunz/em2kuXqp2t0df/+cuvf/zpl19+/OHHd99+9RW6QL96+ezp29cfX9rtTW7uz5eH925fnq6Mb+xc+OzXX3764d03Dy4e7q4vzc/OzG6fOX96tDo2tTE/Prm0c/H6Z3fRnPJuP57wISjgO88e3n70xZPbW4cXpsorNw5mdz5+/ODuF1/hiDHuQ7969vLFi6+fbK2MtzqbG/kNU+cAACAASURBVK1Kb2pycuXw+tXzO8czuSsHi/t3n957/PzzJ4/vP9yc7xTGZ9LpbOP65S+2MzeWrAQOEwK5VhlayiU03sVjZ3siqutRWaqUw2FdheXOklDp7VAcuJDKEByALhQejvQruuEYYr1Om9tlhPB0AifVYNGgRHPZGOCsPKuQbtLhYzm/zUPDjUOroFVcAMBmH4AZmiURT1x2+yk0mDhls/Ma52PRJZYVRNrhNBNxQAA0vQixqIBB6ikW61Q1L6HHQiD1giwq+GAyrnG6GqQcmuBSgtFErpjPAQKn04lkKplAKYjnSCDUgPHyPLAAFdA5ARgVwn7pcDiqByM6x8HfCCXTsWQ2nciUsyHDSlpwZ8Lv+0lwsSAUW0xzgb9shLMYa5MslEBr1EogOcolqLHNerHUbLdGJqfR3HF188zB/s72uYN8FD72IjbHwKsqRMoTC8fzBmjAgKICqnpcHttHLh4AmMU+RDyE5ftslwIB3I/jJtGsH968IAb6B8U+72/e0B6/x+1nBQHFp2yIjGb2A9PREb8/YAVvMArcIQzwK0m4vfw7UET1Vqs1PDZcQ1FWqdRwl3FmcXluvF1TQNd9mPT/sKWNnvlGJIENZM1aqZDLV1qj7dHezMrK9PTseL3SbFVnJjqNHDqLSrKA51SioOt6yAjHEulsJoO4jZuvlerI6NRUJytAVUPsRWcBRtRlUVdkA2d5jX5EnQg1BvQcTkCB7lUNwWP3UUrIEETQugBd8VgiK4rxeCheLWYzhUoxnQC4TObiMuG1Afz6KT8f9hPwnSBwGInDBidFADonw7NKfYNNjuNxP1qBRROFd+inaHtSwYhzl+gF/iNTCuYNWTE5oVEsgB+6csVNTIonfLxhyKFYmPaIYU1gNJo2MJgDABjDcyP4Wcc5jjQMkcYx4BB8BipvaSlgZfl6+YMAzmbzETVGwf2DbYwujwt70tSQCa9J5ija5+ZpAZ4AZHQk2Zf8CXS/iiWSYSoWDLABTpAomRpUmuVIKGpGImyiFLfCOsEVLLmv8kFrVyslzOZq1Jvd8dZwJVeo1qsYaYR5zpszoXyy382gaP0whg8APDWztDIzNdGdHBtGADZhiQPQFkqlVmW429+CbmpRPMgB6mla6VQyh1PAzW633Z2anZ6cWV7f2F7dWZBNC23XQtEIADBwe/TDwg/I0PuW0MgBEYCR3cmqjrvSMrYIRhIRPQo6GS4QzRE2JhxWSZy8oUiW9EqSSkfkKKYxkL6AilayLucpvxLRosFQSDd13uvwy5GIFA4R+VyITsRxks7r9vFRVk8GZTGdStXCPrFUhg+dsQsJMWgmZc7jh7Umg57sK2ADLl00gQBsBvx+t+PUIGbA0AGHfZBUGIrzewKk12bzs1D33B6fK2AInNtut6N535AXBLLDQQUCpxxum99JxOqlaiFXa3Ty2Sb5e6ebEcKRbEc6MeBweAJAMUMYt1kBki5SvgFQKw5yiKBYH8GSHo8PRDKmT5NMIMByFAXlF2fnGDx6YFmoC+jaiwwceCzcJ3DTBEJMYvb9u2cvvnv2z4/N4fbM9NL04wf/V8NpqR6/4ldzmhQNx9O5ZK6SDSqSkuouFOJCtVTEWY/M9MaNIkFTulzcyoMkIBUzWtyZomk1OLYJ959kKNFMY2rhxq3EQbBnLI5p28PzY1PbRnv1eGJkdOL4THP/9eLmSDaRH/em0hlCGx3tTU5Nd4rVR7X6xvm9c8c79e6De9M7L19MzK8tbK33BfDu7t7+2bMH5y9dPtrcnG9XjxfK68sP/vrHP333/pfvb+zOHa6PtHfvne+s3X/84PTuj19d/uTSx1evXLtyfPnyRfjv6Pji3tbyWHvxcmlke/rh//HT++9//fnnn3744Yfvvv7qq7cogF89e/P5Z0fzYyu7OzPVqZu3tyqj81t7V1/93a8/fvXqy+++e3vn1vG508vz892F3bM7q1NNkMOr02Mzmxev9YeSUAEjAD+89/jRg4cPHn5x/+DC4XRl9s7ZjfXLj+/ff9OfMQYQfv35my+fvvn6s/nl8fLU7lyt1puemN66dOPS1uHpwvy96bUbj+49eP4CAPjx+fmJYnuums7k9w4fHOf3lpKpQjGZAnqtc6ySj6ucgynWc6mkpakRRSoXgmF05mf7kDrk5Sg+KNN+Goq+GFI4ChaA4OM4j93h9wWjuHOIW6hMP7XH4xqiNFCarOJ3BRywbD02P8OTTlphaZ/T5qDDcn8al+bQO5rwupwDQzbb0MDJU6ImUrymSSoL9NTriyZjshmzQJCGWLSI5UDGRhmXESRILaJJWlhjIvFUOJbLR9FUh6M6MYcSDieLWbQ/TeG54YcH4NKH7TBNFuCZST0RCiVwi/pvQ5zBvvGEakKlj6TyqUS2ko+EEmkLBBBaMGEaUsz8YEUJMjhixKuNfAojCcugatOpSq2cz2cxALc2MjbaHpmYXtrY2trZO3f2zOlz54uRNM4BV0AyV3OF4nBn6WBGhHJAGTzykIDj9yddLFpUcCTN40YizsTzApBqjLbADl4OBwDhLhTYACByIOCxD9nxNIrwuX0McGMAMt0Q+A++Q8GIFbLiqVQqFsI3jh1YqCuRO/yuXCxAca41Rtvt0ZEWqGAA4C4AMCjgdl1BH0oRm6plTlT6CtgMReIgZBsjw61mvdYc7bRHujPrmwtTU72R0S52wfZ6nWYxLeu6DOgAHxCQnIiVRsWazZfxwLnSaLWaI+3xybGswEsUjQAsQjkR0YoQABtesWJ8MN2XRBCEAlR6TdZlWWOdNoKEyipJpmGlM+l0PJyNSVraMjPVfCpTKOUB5cOSmkhHeR/B06AXBvwDTjWWjsqGpFKnXLylUwEJXS3E/v8ij2IYflZCesSUAGTlwSCQOzvlogmSIxWCM9HHJM5HDJ60UoDwkUQCBJpE+4EZwsW3LMHHBw2BMWgK/g189X0ADgEbjMaBNRmmTNiFVAg3HxTRMnK1ajVfK/ePgHPZQgbEHmOCvgPB43B6KVVgzbCqChg76/X6RBHIiNhvs0n0k5CSiYiViAXphAKETGMELUD5bMFqOZaIKSGLT1ZSoGcpPReVcSOEa1SwC7qQBwBuNDpj9eFGuVhpNKqVkbFGe6SzNRksIADr/TPgSKJYAv41Mzs1vbQ8PTnRneiMANFKhRTFsKLRXKnUaI6OgwJeWh0NWTi2i7naVjoZS6fLsBo6Y+3u+MQ4APTaytb67qJqRhGA4YlNgOBIMBgx+8CrqaqJK1PrA/CHbAa83rAs4UuKEU+YgNYmrE+R5Gwe4LccSVAYQyK4RVXhInoMSJKf9MMnDjeM23nSA/o3ht4vuib6HV4+GBYjli+bs+hUAhWw1+3nLE4FAObTqXgtFuDzZV0gKAefkoPBOEd6/DyGn0hQaoJQGuDSRVMAwEaE8hNu+ymbywsEmXU6bG5VDMBf9wb8tiEvDdfAiYArCaLHMTRABDykx0n43e5Bv48ZtHmH4JdJYFuVVLk2mss2yN+7PAjAuY50ctDp9FG8rAX7JvPN3hTDka6A3zfksLsYDnebMfXB0+fcRP/kCeopjT8FSHRB6PdniaIsomEpZq8HAn4PZ/f5jalvv/3li5dP//pYr4wuLu+v3Hr6/1SdmZjPHwwQSU2KxTMZuGT5hCFzcmJsoQAKOAE1M1bodjeuFQHsNaWwUTIjCmUY4dL+NElr6sg6ALASEiO59tzS9evWtcy0uT/Ob5Yn21PbwcbGlYnRkd6VneELb2bXe5V8bZNYaMc96d7Y+OTk5HBm9na8e+b87uVz09W15+d7R6+OxpdX57fW1zc2T+8A/u6fO3dw/ujo3MbSXHHudnp+Y+8f//B3P3//0/v7F5bOrc01Fx98MjV36/Ht1YOffvj4xuWbl65cvXr10tG1o0uAwkdnd5bHJ9vXhhvrc9f+t/f/8NOffv3px3fvvv/mm2/7HVgAwK/vXT+Yn1nf2m8Utz69slCZWDtz7v4vf/72xdvvvnn1xRfPv3395LPL+9vbcxPt3taF/c0uUJe1tcXZte3z1z/rHwIj/j548OjO/SdPH9659/zOOVDQI+s3Lyys3Lr/2cOXr15/eDx//eXzF199ebS5ONJY3pgqNoGwLuxdu3KwvzdZvbk9t//J3Xufv3jy6MGjjxfnqpXZbiqTWjj67OPmwnwmWy6ho2xUg2KYjWu8k8kDqqQQgFWpmDXCIFHQGcnr8Ti8NKx+GR2M3R4ppnABnhVJQqUcQy7SH4opIi/yODKDKbU+j2uQ1ARWYCSfixjycbxniOI4oHoCTXrtQw46InFMH4BRXeO6GrTbbA7byZNQx0VOM0WVl2XW7Q5mYpIRDcZzaYMmKbQxlBSL94UjAUI0QKXJFJ/PpiKxZDKqinKIYHJhuxSMZtIg7PHwFod4TSiQ/SmX/jgiSiGBIdV4KJoGALYi2EATDluKiC7xWPmi0VQ2nsxXC9FIMhNLpUD9WslEPzUJffHCFpr9qJF8KZXIl0pQVgv5fKFWyWWyqVQhma20xiZgCc4ub54+vbN/dn937+K5QiyZwXHhQrlYLTbqI921/VlR4eCdiozj5JDbaT/poOCjxm5HTuA5AU9DP+z+++DWp7ADnMatCLRS7h8KEa7BQYfHhz1ZflbkWVVSNZB6Zl+fh61YGPEXrm0qhi+/bzaEtU7/XRVdM4v5POijEQDhTqXaHMWOsYXpbruhyn0ZikCFYYShkCYayJ6LlXq5Njw60my02o3W2OzG+szs5Ph4r10t4BzLSKuUtuJRHe1FQSShjVUUlWMmmy9iDG4DLQvrrbFekSP4AC1yNM43AgAbMnzqIZxWCfV9QoDGSSFDAiwHSMZEBIeNDED5UmVDTsDKLKS0WCEum0nLKFVKGbTbgmuTAbUZD7KiKQQo+PxsA0wwESclRiROEEEdqImmoLM1yHr5A7+QFUXik1ooLqsi7ff7UrLg9pE2kSVZNsCqEZCySckKq0Q4hVPi8VRQi0oMQbAS3BJWQg0woNYYoIQYZqdpOrbaWwjAkTiNOwCi1ylFVFTAsmKFy9VKE42Z+wCcyVpiiuTFAKPyfq/TSZIqS4dCoipqRIB2Eqyg4kQwfB/aY6MvWDJpxZMhKiqyNMfRJqkAJfOm6rl4JiHqFh+vpi2VJ0N5C6QkLOxaGXdaCtkaAvDISHW43YRL3GpUO90GXIXtnllIhbEJWsZB2mSp1O5NLczPTM8vTk5MjE93x6rZdMKUBD0WDWdKpVq70x3rTs4tjoWicHnVKIaFpWF5xUpNjLQcGeuMdiYX19YXN1Z3l3VA3EjEDPYVMI6iR34z5TAweRIHBbV+GnC//epDV6AGGliNZcIY3ogM2SPb7XokKJN+hhY4n+HlQYcFjYjKeLyElzQloKxuxwkgWcE4PD2eKhEON6+HxSiU/6zFZlIhwBmfl+RinJI0RSadsmrJAJ8tm7KfcjIJCag3DwDMkXDLAZwBxzQ0I54CUlFJaFGKIL2OIbfbDTwYoN5u1xSCpbw4CWz3c3zA5yJl0k1LoC2GTvoDXppyegNO7xBB8IMDjhM+rzNbKxWr6XKllUq1mI9cHk4IW/kx6dSQy02A1AmFrUw+X2p3pwiedPs9noEBl41jKK8bANXrdzs9JEN4PAS6+mLYq48ggHvgKB0JvNuDNj0OD2G3DQ058U94khGKT//HP3756ut/ui80RmYnNjZvPfjPzGA25fZGKaUS4o0Qeomns3FTZoX46FzO4qsFvTadTE2Or1/J+givauZXs5rJeeHOq1xcpkjV6GyoOstrSiRVHZ+78UnxZnxR226qV1uTrZmDcGH9uDcyPIYA/HZuqZarVpel2U6Jz4wBAI9364mtq7HZcxe2Lu+MjF56uTZz+/HMzCoskpXVtY2tnd39g4MLF86eOzy3s7TULl5dqCwvPfvXP/38p+9/eXNlef9grjZx+5PtyYMXj3YOf3575fjKtRuXP7l2eO3WlaOrly5dvby/sTLRHb4+Ud2a+ex/+ae/+/FP73/86d27H7//+usf+gD86tWrT29u92b39pZLk8f39tvtxfN717/9y7vXb148f/EGkwqfv3j95ovbx+dXN+YnZubXLxzMD4/MLOHW3tKZy7dxHrgPwPcf3IEfnzx+/OjRx73tp2sj6x9fXDz45JPbX7xAp8vXb15/+eL5l69fff3d9spieXRrs15vT05Nrl64cnxwdr2w9unk8qW7dx89ewLP9mBpsZGfnExkMnOfPPq0151KZ8ugEa1oRGU5NhUzJA9XqGbhT1Q1oon5tAYAjCYPeO0x74M2FdHn8XjdYkxggaoHA0NOyunwkl4jKnGsgHENfsyL93tcA8BVeYEW/ADAXl7wDTE847IFWGD5tkEbGRJZhuPxQAsQGTuLAH1tLsfAgGZGNEaLAjAJHGGzyaUU7jPHSykd5A3uyrJyQvYHTSrAo6rjKRGUUDIishJoctlG0EGCZiOFUATKnxWOou9uLBpBg4pgfxIJz51EhmKUTDaXtywA7nDUigTxBNVQeEmVQkBAUgDqhRoAcCKZKkHdj8dLaJUYMbV+yrgiKoAZyTzoO5AXhXyhCDW2gB77yVyh2mwOj01Ozc0vra6tn97bP3Pm/PEe6HEoZmhdUSpXx+rt6e0ri7zMME7HR4MnTvhon+cjW4AHUsLgMTfGAQJY4FQnTxNe7Gtzez0ECAJGCKBLEMCy3zEw5PSRNB4TcxJOC2oSwRhmf8gwisntIN1imDMRi0fDUMN4kLSyrP4OT3772TzwY6VSrbdbzdbI+Ozi6vxIu6JzvKqKDK9reBKNLeMi5gFYsUy5PTLcqNXh7w63OrPLC5MzU+PdbqeeK4C2bY9UEmhErQACYH1VjXC4PweWK9dK/R3vdrcLUnksSUvkh+MsQWFpUe9n5Zj9PnTcy/1w7IzoKPUTi0TKOUjAagN1JOrBWDqXy6SC+bQox5OmVq+lMulYvpCMAGFKWlrIlCLKAMWqqn9wyO0DbFV8A7QU5by0qqPHKG5B44wz/OsAcLQSFqygqPB2yamGVZ874PZ7AWU1Dx/VtHhM0xMiwWetRBBt1dSwwtEBggWtHkspPp9iAU9SKNSEiqz+ZkcJK0ljFNZUdM+QjKO2mRjLmyFsHK80SqVKpZTPZrNmNErzqlsSAyB/vH5DBCIS1gRBGxJpF4utaUAX1CC6csbjiXginMjkjUACmyEpWSaFgMtJUpl2Nh8LgQaWMsVUTBO84YIVFFiO4rA1sH8kApDf6g4XaiPj9Vp3bHSkgQk9va0xK49jxSqIeSCfmXKt0ZmanZ6eW5yfngAx22vXyxkrbIhw01jZAijgxuTk3NTqWrvvh4GmpvCCYpFkLl1pVepjY2PdkV53fmF5Y3nr3IwSwggozGGMfHDC6jdF63hZf8sjNP4WS/ihI1IzJNyD1sNhQYuHwzodRAOqQC6sB0SeYkiC44fCIq/pYRwE9vr8siYDexl0DIG4jUYBl+E6+4ZcrBYCFhQI5ZO0lQ2HBIEgvHRQESJRjcxmo81MgE4VQoKXddDRsJKIBVgPSkqga9jgh/0R0Xgklc5HgpYWoL0DriG7i5TgXhwYdPr1QID2EzThGHAQtALQzQa8AZXDtgMXCazAjkMiroFAwHXKdRJogl6olSq1fKmWjI8QJ6C6yeFYblQ4NWR3kjQvAfFL5zLFyswEJtgQLsJ/cgDIHeF2+Vyy247pHE6Xz+3zuez9TAav1+1y+1we1DXwC7cNXpsHgNs+aPd57X436XPIG3/65ds77//XF8xwb3r6zOrbv/x7bzAd4/wxUUuKwCUTyXS6UEiEdV7NjCxGTWEmpse6+WR9cvFiOUBQmlTYLqg6QyimWTxYxBn97oqkUZJqRK3ixMzhUfY4v6iu15WdZjc7vyXmN4677ezCra2xi+/Gplqtcn45sN6rZrKdqZnO/GjDur+Y3zy7s3u0VJ+692R6//tPp+fWFtbXl1Y2Tu/snNk/e7hz4ezh4dHyUmdk8tN8Z2f33/7y9+/ev3/78dnTe0ujzWtPdjp7L+7unf/l+c3L125cv3rl6pXjo+PLV47PXTvaPb84Otq7OFfYXD763//x/R9+/fn9Lz/99NO7b96+/fqbV6/fvHrz+ZWjjemVg61eY+X2xzPl7vbB4cu/vPvi1dcvvvz+5ac3P334+s03j5+8fv3s5oX93ZXuxGzv9Olzs6Xhue2txbmFha2rDzEl+OGTR3f78cAPHz2+/fLlx5euHW8Pr946N33m9oNnD59/9er1N69eYtwD/PjDs9W15drczkq9PjHamtk8Ojx/8biTv3lu5uL1p9eef37/xd1HZ2e7hfHlairdfvzZ7cnqXLGUKQA+WbBQeSaZNkUfWy9nE/GwqoYkKZnQTXTH8zMewhPw+AU/FZZZinR7CDlmwrUxIx4X4T3hpDw83Mp44ouNp37CBcrMc4rG0zaW8VKE3R/gnYMCTxFOP8szhHPopM+AUh3wE4wElBJb7IHqOewOl8cTsqJ4DBeCSsmTAzYtmQjpqVAylw/zWLpBVbNxyS+GWFIQDNXkyVjc4fNhnpzoJuwOJim5uaAZCqKpL8jfaDqGDlZGEIo4NtrC7Y9xpCKrpHP5zAcDfexUCmMuj8jJYVEPR2OpXL4cTxaTZiSfy6ZxWDoa7hv7GFoojN6Oho5NWCDsAMqw1bdcLuRBOCSLrWKpOdYZHgEEXl5ZXtnc2dpd2758oWTBzV3KJVCX1DHefON43lB8MmUbPHXihFcWvIOnvIrC4i4CL/GsJGOqncgxcGFI1MA0hYZhDE5msAzLEk7K63S4vPCHfoeHlwVJMkRO0MKKiREMuozvoh/vFwxFIgY8Ffrasbyi/65ew9ziVgt0aQ1EWbXRhMfo5PzCfGekqLACdgpjx5KExs4AYiaU4QJOtbTaw61mozYOomdmuT+z0puYHB8dHh1tDzdLyUhIR9XOQWHXtGDUQrv+HHATVMDVSn240xoeGU1SLHrL40NiKAGLsYChS9io86FHR0NrIky70OH5ZMZ5yucR4AJCDTeioKgz6WgyG9PCaBZZGSmmM+lSIW1hko0VMpRw2mSxF1ugUDYJst8umHGRYLDzCpU9Rj31x1DhwSvAp6KGJKMZlaVikhcwHcIOOAfCH0BNiyskl4wBAMZjcQOzvQJ+FqA8EtdJn2iB2FeYD9upuFXQz8CIWgaIVENRnDYtbIbCKYsFeVVqAPTWSzgFXMjlskZMJUF3KyJJePwBRhM5LQhcQwR4d/vhnlE0tMKPpBP9mOFYKmEkDD6lCTQjyhwrES43pTCJShzecVTnhWw1nzBVKlaImECCA1yzmK82KhjLVak0R4YrtfZEe3i8M9Kst0dBy66NRvNxC0BI0TUrGkoX6s2xqZnp6dnFhRmQwBPjo9VSIQ4sKAQiNl0oN+qt3sTszNJ6SwYAlrAFMQpiMZrJpMot+FpvfHy01wEAX1vaPpzXIn0LNkTgYB+Jw6H+4S/OAf//HioSl98eErZ2aZG4oseBCAtBkaRd7nQkxOK0PkOzvAsNWcywweIwkB87vQViwD6oAADHjAiaWRJwC5hAiS3KyMcZBGBRCPjdVFAFADaoTC7ayFJkohQFKetirIgQjQZokJtA1TkRELw/rRyNAy4WIsGoSVGEzWV3OANQ7XibzenVaAJkAkW7B2w+mgs4fTSUQ1lk/fYBJ+nz+exun8PvHiAC7pP2kw6vh01V4MYql8uJSNXzew9JGbFUcZQ5MehwkSww22AU4DBfmp7UeJqh/QFiaNBLMH63z+nDwRACtIjNbXO6QOPabHanwwGQ6+xHJLncXpfdZne43S48s3P6/C6/N+BjQol8uxJe/Nd3YrPTm91Yf3n3P0YHGxEfmWH0rKbGgA6nUnkAYI2XYvWJkEyPtRLKSDneGls5LAYCAVUt7pUkhaVUPdK4uEjRemRiXcEszaAVry+vHZ9PXi9P86dH2L3aVK82E8lNnq63yqNnz9Zvfds7PZUrl9fpzclWudYeH+9OjebzD0fqW+c3zh5OtjZeXpm4+OPh1MLa4trayvom+nDsHRwc7l04d2lnc3mk+vF0aXPh5T//+sef3/345Hj9aLk7fHDv4uza/Qe7x798cefalavXrl69ihEMl4+Pjw+PjjY2TndqB6dzK4sX/6d/+eMvf/7Dzz/9+P6nH779+quvv/365evXT+5/fOHMzgEI6cmju4fj9a0LO3f+/O7bb99++fbLh7udsaXV1dNHjz9/cvezZ6+efXZ0ZnV9pdub39uYnR1tji3vrE7Nb6xfvv308Z3bD55iMzTK4c/v3P380dXDa1vjm7cur298fOfxiy/fvnrx6s0b3PF++fLLt7eXl2dKS6cnyrXexMTM2WsX96+tV9ZvLG9cuffxF08efnH74fHSRKk5V48mSjev316qTRXyqXTKCodNYPdsMm3wbqpSzSexjVDX9GzaMFRJEiio/S7PgJ1y0zFd9vsdLp8QVmQKqCuOwNhtXhdhRGScj2AYv48AAucFdsbKHPpMePxIEAXvEOhj0kuLAg0MzhYIMthWAHKP4UnQxjxN+d0Ou21oMJKIK7RkqpoIgs/mMtMJU09HU7lMkCX7x6AskxAINcLSEqCTxggWNzhkozmfy+8gbKe8jHsAVpMZwoideBRoPPYEQyXD6o61AOQVCCCW1EEbp0EcJvGLUewnNYOaKOmAHVErkcokQlYmHk5WsqkU+v+n4mg0GNTlD+3EIPfCOQCyVh3Qq4a+ByAWivlCuV6vNQCnRsbHxmcW107vnT17uHX66KiRxB6sYq7YLFbrw93xmbX9aVWjKDfpcQ0NkZrks52w82K/z5kT+2ZR8gcAFnmW9PsJ3KXHSUD80OAXwHT8zsEhpxvbMEkMcZeM/rmaKGGXZNDAHmgLjyVjQT0IdAb7J3EPVvvdSLvVwEelCjK4Um9WSfxHeQAAIABJREFU6816tTE2PbcwMVZSePx4AIJFXUIFDACsR9FWuN4A0G63QQSPjbbHZpeXZqcmOu12B8hGC9E8n4jCP8JyoLNx2CloxeAzzOIDCEcDZ7M67ZH2aI5j6X7cEsvyNC2i1wf2yKKADOp9/MWRsX7ghY6TqqzjhNvHBmOmaoKyT6QzmUwCYCEoWXlLteq1fL4AagL0rxUvJiKGkq0K6CqliGqEFwXR71Yi2RCeS8tyf19dxPmqfuAifL7BKBcLw6dM0KdMU/B5A07KT3lpwy9HtYQV1GMmx1mwPhJRzM81BIrwMwDAphVi/UIU3q3CSarZV+3Yeh7G7m9DYEAByzaHic3oyTAHbw7At1zEelwuFnLZmG7xtOxmFIZweVy0JHNSEJN8BZtCDDGigIAkqOF4Gt2f4/Fk1MqGWCMKtwON1l2C3UnJGmVVCqlwKGrwQrqajxk6EysAYREYgm8UcpV6uYBzx312Bdd2eLjXGWu3Op1ut7vSjuTRXwsBOGqFU9lGqw/AM/MLc1MIwJ1ysZLC3ruwaSRgtVZHOxMzc3NbTUzOVbDfGz4OKwZMotputjpjExOdie7M9Nz87OaFeXS3jH4QwX0FjG7QZn/XKKT/FgzcHwiGu1Dpm1NKIoKxKIdTpmbFI2H4fP28fzBkRUSsEHgi4GNAJcNzYUOE3y/yHADwkH1ATQcj8WAEnTgCdietBs1wnNVycSGMACySPgBgXQKRTKXzVj3P+K1yXKdYVyAW4wGAfe4ASXJA/oAt9llDPBmKpQrRYDgCHLGfRe6XeYp12+xulfNTjIti/YMDHtQYHqBOXvhe0n7S5g94CafN63YTNj+NxMBGeryxRhWt5sqpcMHzkY/hQvFkvst8NOR0Ejiyb0YwZ60wMQl4SOK5nXvI4Se9noCNIASW9Q7Aw3FqaGhoYGBwEHAXT+dA87pcDofLbQedgnlJPganD0VelRXJatQKuXyo+dc/cnA3Lmyu/8O//N+rQ/kwQadYMaXp8UgihRHOiZDKKqnxlboldSdLQqsYqg/P7hcZlpSl/F4B1BEtq5HqxWXKbwR763pI1INmNDW8tHb5XO44u6RujMibxan1EBAMYO+52sK11dHDt9313mitvE6ujQ/XWiOTvbnxbmLyfmZi99zahb3OyNE3G/N3vlqZWlpdWl1Z29zaRheO/d3jvXOHh2s708Xph4mpvbP/9vfvf3r//ZeXz26fncltP/p0cv7Tz89f+fZnwN5rV69cuXr10qUr146P4HG8tbO8WN08U5hd3flv//GH93/8868///zu53fYgAWPF8+f3bm8t7Z9Zq3bOX3j1tJYd//M2e/+4Q/v3nzx/M3d06cnp/cubs9Pjy6fv//07sMnnz9/+fB4b3NhYmpmfufixly7PbG0sjjbXTl/+/Gj+/fu3QX8xcfTe/eePv3s6pU7a42l20dTW1eePHn49tvXb9B1682bV6+ef/fu7Op6ubex0syNzXS788fHZ65dmuh8ujd57uadx4+fPL794JP1mWphqgMM9vzVT3Yb3WImk0T5EIJ1wCaSGuemyrV8MpUw0bswn0GrXmTVhMsFjJB0UZYqIAD7xbAscyDYnF600jgxJEQ0nsEkO+CVBKC13z00wBsSAKbo8bodAYL32TiOoQhOUmgHEEE62G+aJgMBSRVAkCoCC3eM0zZwIhyP6xzO/Asky7ndWjahq9lYJpfU6QAuOShwKdpnhLwBgeG1mG5GfYTTqQq8z+tmnCfsXsdAQAbGjJEKaKGbTCHEBrXfmjFRYmHqORVMJxKpeML6GwCHNRBdEi+owQgq4FzKSmasUDyXjsdBAMfxIBhYvSLic6iYXBPK1wG/QNs1sdyVStUaBhMW0ZejMdqbnJtbWFpd39jcObt1+uJRAyhEEQ35G/VmrdYem9m4MC8SgydPMjzlspO6EvCeHGQxoADNXmmKE3gZD9VZgA2Bo9HFmAr0LeoCNIeuOMBdfEMDNrcXZ4Fpwu0FhYcTlbIGdS8aMqMhqCTYzYs7c2FANERfnPD93eiHbipsgAZx2hyugBKu1EYmpvsALOkIT3gALMLnhPoEm6CL8C5HWn0EHq7XG53Z5cXpye4wWnPU2q12b6JdygIAwwLgMaalH6+ABibJVCYHf7+JR8ejnbGRkbyACS+4Ay2wNIfOKX09hAep/Y1KbA0yVMB/CZgElBbaftLlJ9V0FIPg4VqmM7lMLF5IqUosm9TCjXqmChiVK+biITwo0CIVkxNFXkBHTBC5Hq8cjutowCHAEyr9kWUJvoxzToqgBaWwoYlABdxkGMDaZfOCAiWMAImhSFHcFqWDWUwCtFKWERZpkEwKLKOopfppNK+ReQ5nczQdUDYUCYdg6Rjw2kOqPOQOonlLKsyZwUgFARhn0ND4NKmaJi9LHl4k/Havk9NgFYcMkeVol+5ycEgQgCsY2HQQS6cR/VMZUbNonlaZgCIDTaVUhffEWtUoKwZ1jkxW8hFVZ628gWcrhFjOpArlQg4QHxZlud6uV5uV6sjIeG+sNzrW6y63w7m41QdgNWKFk6k6+qTMzMzMLsxPjaMCrpSrKQPuk7Chxkq1ernbhrUxvT2sh0Kmip3e0WgsCgCM8VjDcFV7Y7PTiwvL0xNr5+cVTKNGptrfew7+9jD7XlgfAFj5zRNa62dzwdXAPWlJMOJhJRSDb5R1imMGqERIo0g89PZRpBvWIlBKLoBGrHA/8BJpcwxgRloiHA3CFQ04nJQSDoaTolxMSUYuGpREqg/ActQymWQhVi0K/nA5YTKM1xtLCYkYCShKAQMEpWFGcB8sls5ZiUQe7puY6Kc8Qw6XwyNJFEvYhpyq7A8AcjMB+4ALbj+fhwTeTAsSZTs55KFcpHvAS7hIh5cjAR2HGJ8rOlwv5TvD5byV857wM3wwlshPcb+3uZ0Am/Bm0KI+n+9OWGGZEjk8gBuEKuYHbe2EG8hzqg/Ag0MogG1OD8hdjz/QDwf2+QmcXhZlGY09eZDTEkfr2NNVKTbzw39+z7Y7E/ObG198/U3LaUVJKkzxSVWLReANxhGAFUZJT8xVTbo52YjUY2KiPHdYY2komcUzOU6gSVkLZS+siwFd6awHo3h7WtlGb/rSUfEovRXe7OkbzeEpQYqEGN5kh8eLpe3Dr0cWy1ON4hq50gW6153uLo/14gfXrZXzZ7YvrIz2Pns2c/DV7cnZpaWVtdWN06e3z+ztH+yfO39h7/Lu5vpI6eZyYWflm7/+6dcff/r6zva5cwujYw8ebI5efnL1+k8/A+xev3Ht8uUrxxcvXrly8fDS4ZWd3eXl8tLl4sT66t//9c9//MOf/vjzL3/4+UMIw5tXr19+fvvimdNbe0vdib2712d7i+f3H/zzX3755sXrL+/uLy9cOH988fT2hYuro63V/5er936S40yyBNvmphtgoSq1Cq0zIlJEpNZay8osrQUKKJQCUAWAAElQACAECYqmls2mbLJ7xNru3sytze7dmJ3d33A/39r9J+eeRe6dXdIIFEplZsT3+XvPP/fnp/deff3h4+d/fP+tlw8v7wza89f2b2z3agO0Xl1Zv3rn8fMnr006gx8/efro+fNHb7796PZrN9baay+frmy+/PjN9774/OMPP/zoI5w9/P5nX797uL7eHGwsVsqdwWzz8q2Tm7e3m4e35zfuPHzz6TtPHz56tLPQSM0uRGORnXsvnbY6pUw+nY6ZZhgCABWN+TknXUZjX9MvgjLJplS0jaIYD2l3O12gLSlDpEG1uXyyCcFeVUhgpBe9zr+zq4YoCyJgI2nzuJ12l8dp+QMHvxUCsgdw1eeiXFZAZ6+b5RTKBosbIEekPB6Kx2FkQFRBTkB4czssU7oR0XgFAFhgRMFu4dNxDQA4nUWLGornGIlm4h67H6SaLol6gPH6nKrX5+cVlnCzxJTN57jkFUUsu4qghz3OMsJpvnjMCJAUUDQ8Y5RFVk+BtI1NSpSQsQf9WNQPsRn2oxFNZXLZbCEfAREDogurUaOTTDUOgMVc9WQaUqZaKmKDDYBZHr4bD4FzhWw2X6p1x3Oj8fzy+vbetcPrR1vbB0f1RBwkcgnnwqINc39p72Tgu/T3U25R4x2X3LJCElOXaFnEXj9BIAmWY7AeCeAKAw5DU6Tb67Hb3AThQ3N2QGSWIfEw3enCU3er1cPywIh4LYhazAho2KkMCGyYIBxNoB8hLK2SQWz8rl5vNJsNNLbCCuhKtYrT4oEyzM53W7nz9h+eV9CEDhQwKCHdTGQL5Vqj0wQQbbfa8M3tudWVhflhu9HutnAgaatTTseNsD5RmTQmFwGAU0nE32yuPGnTyuVq7V6zlkAvM3ywLEmyIF5E7J3BrmNscwZkZkgAfmxnI2kAYc596QWrx82nk+jRjCPw0tls1oyXY4IWz4eUbDVXqGSwSD4R8RvhdDKczbO8IKm6SMqSQtvdImikSeUVNoFjFTjW4EmYOFZ4WTA0ydBpmaUsfhnCq90KgZYQeZdiShGc2Mf55LQBejGaiCiGBAsYAFhTgnHNS/iDOE+CFCa0QcPEbBhB2A+YrMnitFuHZRdOBBk1aFZqxVIBm4NgmaSikgkCl6IF1uO1++D+E3JIB+iknDQ7TdACgJLAiroZjUdjcUCkSCJNcXD3KA5EOkVYraSsARTF6sUg7wfFyCbKWcOvsdE0JncYn1hMRFPZdKZYxqIv4IKNSq1QbIBU7Q27/dnBcjucxjNgFZPpeDZYqXeGc4uLC3NLS6PBcLbfqpQKMR27Y88BuDQ4B+CWBltICYU19N004fZiS1q73QcMXl7eWNuaH66fLCtBnMh4nnvGR2iCxYHf8HdCtn71pJz4YP06nEHilbDhV4EGhyVFJHnLdCIYYihslPAStBWngqhhxofV/1jBLpMzlik5KUtwfYLArking1ZDmh4V+WLGr2TwTI3yOicAbASZaD5aKIpksBTTMQZFkmwsQjvcwGIlP2Y0jAiWm6dLQLTTRkiLKG6ve2rabrNxEvCemakZQfP6aKcHqMC0zUezXqePdNmAKBO2aYuDsPpcUy7SCSyAImxTMxd9LnugVkqa7VaxEElaf2/30gCRxTH7B4vT5qGxzNMEil/IdftmRAeWTQIAz7jdM6ClHTNeoIAA41bMgTvsmHh2oi+Wz4fYCyKHxTMoGm0pucm8JE7iwtlc0swmk0b7i5+1ZmsRkKN96fc2Kh6xeVWPktH8QMP9kWg6GwvItJaolUM+e23UyGdgo2ZX79S9Drcil6+kZRA5qh7O3tpUKE3pbWphEZZ2JFvtjG6fpu/ltrX9RfbqKJ7LhmCzX09mVCeXevT6w9JWvd0ubFObw0apMhx3lxvt5Mvb8Su3ts6Oxs2lt+/OvvTna7Ory0sbm1vbaER5cHh0eLp/4/j6lb25ytpryfnNg3/95fvvfvjqGXxlu11/4/HxcO/Jqy/9+dt7B3fv3QMFfPv26c2z27dunN45PdxZX6os3WoPry599u+//OWvf/nLj9/+8OOfv/j66y+w/urtt187wfaTleb8/WfXx52D/cNv/vXb777/+uM/Ptqb3bh149a9W1f3ry4fr3QrzfXDwyvXjs7uv/HqS2evHF2eG412jg53Z+sDUOqri5s3Xnv89OHjJw8f4NDgp289e+v520+uH755o7r54Obszmvvvv3OJ59gDhpU8Mcf/PHDH57sXumW53dGmeJw1Bsf3Dm6cTLovXhldPbqgyfvvvXk0Zt7871EeyVpGPMv37kzbJfSxUwKtF3ID1orFvPzbqaST8XjoG91Wc0kQaBwLJBA2uGFRQAhIoLmVg4X6Y/pEL9UiiAdL1y88AfQAjpaYVEUiTX0TofT6QAA1kWG5txuUMAu0m6nGdrtYhietM9YcRoSSCBGMaJGNBhSBYkDOUz4gN8HwqbGgZKDmCSxMzNSKhFQU0YqH9cot5cDYUiRptuu8IoOIB1SXFMvsAkGgjbN+Ow+zuUm7BcdvN+MpRITzAxFomYgYAAnBroo+iEu49kqIJuGxpGJFArgCQBPMmPoOQxBw8D6oXSpFDfMSKYIkiKTQTesiBnSQSZjihQQOJSauCpX8FHMJtOZeNhIF7KAycUKiOJqsz+aX97cPdjfu3H7pBZNAgCXq+V8DOLWYLy8c6vssFtcLKvyrhmPLJPeqSkfO3HUEPG0j2ewF4mjsSR68iC8Xg92raAaJnGCEhB41wsXrRAsnA6rg+J4VlEAgCUsytVVtEGYQDBOhwPlIiKYowY8B+BmrVqeoG8Nj4BrtSaOBO40chjEFQlrH2mIhOLExMhEE00s1mr1+u1ms9dptmeXlhcWxn0I6o1i1ISdnYzFgsHAxGSKw2Jr3QAFDHI1ly+czzEs5CvNXqMSoShukkanKJ8PngJZgYyVxIoUQIIUDuryJFcpCyTcbMp28YUZj4tKZIMqFpfFEulsqmCGS1lFjCTTISleK1XyiQjcboBhv5GKpPsplZX8ogBA6ydthITTedB0yT9x4YDHJOxj8BdkNqaKEY2mWY8VTR7thIvyQHjzezkA4GhQM0VCyBoxAyvhJUPhaS8h6LoSTIQIjxRCM03f5BgbLhJ6lYL6CykcKYKsu0SEIroejuu0PxSp1oqVUgmdwLM5zKoAj3TJAgEbxQffTOkRTfbLlENyWniKwwQAIGs0gqQvbMaSYUEM8QSmpnnKfWmGhhfuI4loNhI0EtFwUE2Vs8AVmGgGCzZYUiymgOtlcuUK+q7Vmu12q1OptOuNWqvf6Y/6c51w2gz/DwCOJwCABwC+AMALw/7sbL9dKeaiIU3QQhqmoGvV3iQFfbmphkK6qIcUdI2KAoIUy7V2o9qqN9tLS+urW0vD5UNQwOHfzoAx/RyYNOqeO3H8dv47afiemHHAapEVP/4Bi043dSlohA1F9BOcdwrYroATSGiCBFnAKyE1DAzb4/MK+M3EzMwLXIznIwDvoJ8ph8XDB2TZlMhSLihmI7rMURB0ICgB9WbMQjRXAkgpRnXYNT4zTkQMzucBOJNw7LLfiMJ2T2Sr2UwCFbCpe9zeS1M22wwpAseyXpqmdYKA4IXtX1aPh/Y5vDQoXpr2WEGiegE7Lzl9Hq/DCs95aeaiw+VWstmQv9auVZKpSxfsbgLEfb5HAwC7SE6SNCMSTRUqhW4X1pbCs7TPPmNzOWZcNsZpsTIc6bTbLGiyBeLF6QTS4Xb7CA+JZzdAxbHVjAHSikEBM0m8HDHhHRQK2cTyJz8a9bne2vKdTT7PCbGYwyVxaj6oRYCTR2OZbDQgUUo8Xwzznv4A1o0/Eam39/Met0/my7tJv066/X6jfHeOo/x6f11UWTRhSNeHKy8dF19M7mrbc/T1RX90VDQl4ac5TrpG5Mcrr9+73m0289v05qBZKo1mu3P1SvVhq3LtbPP+Xq+x/97luUefLs+vwzLZ2AEAvnL12uHR0Y3Do1u71zY6lTtL+a3Fr/71h2/+9P2Ht7Zubw6LVz48HW8+uv/ml1/eP3nppXsv3rp1586ts1u3b53BH9f2l7v97iuD4rWV9//9+3/6yy8//fTT9z9898VXf/rq048+/uiDh3evbF3bX+rWDh6/ulrsn1598K//+U+/fP/J01euzc9uHV69ur4wN7+ytjS7tFpKzm/0uwsryyurWwcnp/v3jrdnZ1d2j68u9Pq91bX1ja39u48fPX3r8cM3sR/p2dMnT996/uD07stXhiuvHa/uP3zy7KNPPwHUx7rrD9//8Ns/v7K20Oiur1WL3c5cc/HGyendreLBrbnj2689ef7OW48fHy2MMpXVYijSeenW7ZVOIZFNJ9FQVmQZIRlXeTddLKRT8aCkGIoKskMWGB72AOF0u20O2kmZEk0TNjuhRFSB4jWCIm326UsXeEoK+DmOB0D2en1el91qd07xQQkWioBVAx4XbXfSHOty8RxHOe12O6GT6N2PrqjoNz1RPdiQ5LSB0AlKsu4HCcyTl2x6OhnwJ41kLhGgseGVAw1uUISOHQwQQWS32x5OUgxHeIE42lmXm3X+wcbpuKPivw1yM0I4iEBgaF7mvAj82F/oRxvnBJagnWegw8EAbFtBQ5vJUDQejyYKxYQRiWcK+WQyn09GzvEXtJM/AIpFDQUS2OeB57/FcjmfzubSsVgqDU8bw9G/+Wqz2wV9MFpYWj+8flA2zi2ji3lAs3pvdmHrTnrK4nKhewXhJBWZ9MzMuDDzjOfcJCuJcLlYzCkgAJ+nbLFp0OpwOVw+uAkEQ1A8hUOjXOhX6fBxohgIQEDB5nxdVYJ+PYCuXToO11UlQUADA/ia/LtGHU+Aq5VisVytN+BfzTZmkecXlgfNnIpeC4iKEifKAsoxzR9OguosYqq5123U2/1utzdamBsOhoNep10vpTG3DtiiTg4ssHhLVfxBlEiT+RPFSgXbnRr1erPbqscpZtLNDBKY9JE4R1H8zQP6XAupOPQOwSyAApi2vzA17fX4Qtko3JVINJpIZpOZVCSSNLGwNCZrQCGzWP+WSORTETz3r3RiHMvRvCYKGmkHiqfKk6Yq4bz0CvSv7D9XwaIiaHCZVJaiQYwaOuv2kSRBc4TMEBo8W1iPyRSbjsSDkWQ8pgSx6sbNqbocSBiUTwjyEssRonxe2xsysdLeBAD2yX6Je4E0w/C5hE4HgtHarwBczGYy8UBE5SRYfowbp23w8MJCoMMBRCjO5hU4dGY6N8GKxoCcplJR3hcPEhwF948mnVav7AfFRLpDWV2PgFDVpHQxZaoyGc0C4YXdJVRymUIxl0MDFLhprXqvN6hWB912o93D0oRx28iAAg6iGXMYz4CrjQ46gcP9X+j3x+N+v5jNxXUgRCE9lMyXAF+Hs/Nzazt1AGBNDAAAa4FoPJbIAYNr1YqwhBrz86ur22uD+avzkv6r8kUAnlRAY+PA5BBY/bX+6lf8nZwDo9cL/I/V6SIOaDaC2JrNkZyFjYUVCqugKYLzORkZAJgjPW6Ph4MfVEmLdYqK8kIyEsD2fco2ZSP9ghDxe8t5Q8hFdYmlfE6f5pcjkRATKkTTJYWQirEgB0AaiPriYZ70UBQjw3pnQQXEYePmKplMumj6g4ZBQry6ZLXNePEUyGW95A5QNOdxeWCTWjxelkTLRoeTIN3TUy9c9E67vTaQx16PDTSEBdSrm2D0AENmGs1GIT91we7yiWow3aAuzNhdFCvLqhkFvV0t97tGPBrgWZ6YnnE5rPYpK0s6Z0B0uxw2ix3bSeANez2TLmDKw9ITlwWCgEVK/FrJyDAc749Xc/FEPJ1Ixeb++MdgqzfYvnqyo4+GbsP0uUVZyht6JJyIx+OZTESXaMaIVaK6u9WupBKRbG5QXzW9LCXxhd0EUFa3pASKL7Yh7kwAGChKOBSv9JbvHdRvhi5ry7Pc2bJRqoToac+792au/d8X7r4SzM3fvHq9lt4g1nqNUmk8O5xt58ePcuOjk8svrzSHrzxZ2vrg0WBpfXF1bfXy1s7e1YkNBwjgk+3Lc9WFm/nRxo3/+rcf//TNJw+u7h+MWrPPX1lbfPHpgy++een4/st37945OwMBfOvOrdOzO2fHW4f1Uf32TmZ35eH/+refv//5L9//8NN3f/5mIoA/+uj5g1sHG9sHm4P+/SdH7eHu0e3P/u0fv/unrx/cPOhma+PV1UUQEJ3hcLw6Ho6zsbnV7mh+dry2PBisDcpHZ7d2l8eDlYNr6+NBf259Z2tz7+TlR8+ePH769PGbb7/16MGTp48+fnpw7fW92rXXrm1cu//8jx98/hk2PoEK/ujTT7/7+Gh72BquLdTLrWG3tXn95r2zwfj27u7R/TefvPPs2dMXl+dL+dVeOFF+8dbN3UE+kcLDzrAucbSYjPvPATgRC8lKCIuwdE0GSCBJULFum5N104ZIUwSsIr8p8wQfAEJqdTncL3BsQJVpWmB8QDC9HpfN6nBPcyqPdbdA7abdbsZmJ3ne6YJQy7jsDgcVEANGAISkGjJxX8s8NpqjsSJEvhAE8ACOY6em7Xo+qQEAJ9LRAONwemmaY7whgcMxtLxEiqSdI1XFYWdnCNZjs1FWB++5aOfUaDQcBdliRmKTcmhAz1gME8ohvzQxTPQ6/fFEKh1PmCCTTXMCwLoG0g9LWnUDz4ATuUIsZEK4BzGcSadNiLAabn5ZgcsiA06k6jU818vnILTmAM2TaFwETwVRq9qe7Q7GC4srG9vrq3PD2fVmNpvO4jhgQL1yudmd27pStfzeR0kmJtAIWQb9DupWUliWZhmKB+YDMAIXi504UwEKC5OTa69nxuokIC55qYlvtA+IkcPpdtjdIPl0UAMcSHRVUyRN0YPo/qcCFoYVTtSxDgk14O/QQLME0Av6F7RvBaRtr9NoDpfnV4bNNCagBUHGSTUQe1hMSGvhWDyeLNS7zUarUW30Gs3ucG6+36h1BoMePGqIy8V0TAtgD/LkkE/BSrYMCtNMsVKv1ZvNehUBvNVMAPchIXiwvICjbwUBpM+kOxvHEEOM1kMGxH7sR9JBvgice3p6yufzKOlkGDPQsVgimUtXc6qZ00QTyJHOxfH95NMm6MFaQo/oWjWp8eimLYkB0gExXcGpEqh7pYnWkgRZxaFB8D5lP2ngfNQAzZLT/ijrtmINP+flRA8Hnw2oUYkgorG4ZiajcS2IGXEno2oIwAwBAAybA6jTZMCeFsb5QvCHwhF6UGEvUJGgbsaTOh+ZAHC1VAIQzqVTpmKQokoyCuEmnW6XImIqBwQ7SyiEQ+D9eOwuKOFkMhIHapxIm7wY4wkRnURAeeFoRgnw1zvlrwB7xClNcq4EzEMiYvlIUGA5iqsV8pVKPltA/+5Ku1nqD/ql8mg8Gg57pWqvv9AyslHDCKARFSj2RKbWnADw3OLyfL8/N9efzSVhz0ky6F0jnS/WO83x7MJocwsAOBxQQia6S0aTiVRWANglAAAgAElEQVQ8lyu2m1VYFrXx3Mra3vZo4coCKOCJ7J14sU2yz0Gcz4CjGH4rwprMYPBr2vlHk2MONAdl9RAlhGHRKorqkVy2uBkAIkp4OB9DzVBSUDHQiszlYjRV0WibY5qKif58HD1aBMppcXEyL8SCRLVgCvmYigDs8Kp+ORoNMcFCNFX2e4RiLMQTjE2J0hmD9bpJkkYApmQjmkhnUrlyMp2tArELxxgn57FY7DMunhc4wj5l11lOcLl8lHsafWFYF8FTDgfJ+iwvXLzos2D9lJtxeWZ8PhJo9LSTgG+dsYSKDcCjqd9bHD5ZC2dq9IVpq9NHIQDHY+lytTLsGYl4WGQl8oUZLzzb39kYwTdDQIRzOx0eu9Xi9Hh8NJbmEwzlAX3iA3IOdHGihCGIAQyzSihqJoCYJjKFgtn97Hlk2LkyOHppMfDm7P+U051emZZK8WA4EE/Bt0wA2B83i2F9ptTs5GvpSLq7eTnkZn2SVriS5mXaJ2pq5nZLkih9uBsw8LDZH8mVBncOi7fDq/zmKncwV9lI+iUXf//hwvzg0j+8rRrZN3dOaqkNYrXbrNZGg1G/l157I7t5/drB7WF1/a1X5o6+fbG9tLa0sbq8t7m7t7+PVdA7p7e29lf7pdON6vLKR//y7Y/f/PjkbO/O3Gz97MPD+unrL3/z7RtnWH919+7ts1tnN85un56cvnhj92C4WLx+Nb+xceO//fO3//j9zz9/990P33z9zTdffvX5p59+8PrJzv7h/nJ98cGrR4Px9bPXfv63v3794cNrq/uz40EpN1hfWT84Prp+befytdG4WegO+/XR/NxCvz1ebaavHZ/dvLGzMje3dnB8ud8ZrOzsrK+c3Hvw6NGTJ4+evPnmE5TAj95/enL93m5v/+7Rxo0nbz1F62l8wN8ffvrte1fm242V3Xam11lqjQ4Prr90uXT95sqV+48evvP0+dtvrC5WUyvjUCp7euvkYJxPgXpJg0JUId7HowrvYcvFJLYhyZqspFIIjTznoRwenDjNebgYCF/S5eP0iCzSUhgovMV1wWb3+/wBBZYz5/VRsEkcdiB9UzTEDJ6mbB7nJZeHsVq8HO9w+WWJts9YrB4lHI8FcNRVPBmNgNphAVQ8Xq/HHQybAYAAtEpQeKtFKqb8UspMJEydcdrcOBvXLgNd4Gl4HXZYhBAWYcFGXB6fDUB+xkU4LtpZv2nq0VQihGcciSge4EZwmCBOKIUdDshCuNWYGU3GYnhOigoYK4c1meMk7J44bzjNFmLBaK4Yj2ZwbkMEAVib9DHqOMFMD+VatXwuB/GnnM+kkkYQmX4YfmsOwK0xnB3NL61t7Vy+fHhldX6nYWST6WI5ly2CAq51hwtb+0fRaUEkeb9E2l2CIhAum4NSVRqtbmkB/arPAXgynwCdK0Ar85JAOwFwHQ4P7aEIFyHyXiBHDiDLXixmUyQ/j53OqiSCBkaCg1EPdTAGQczzCtzvGuVCsVTI5bLl8wqyTqfX73VAqs91O3lFwMkHvCCJvAZQhZLFMONxM1Gud1rtXq/dbIGsn1teHnVnAX77vW6rVa002rVMRAOljSbWaOUhglqKpjLJFKDABOjrjVa13W5UwkDjGYbwkThWhhBgOcDl9Bsa3Cl0YVDhVernLUl+lhd5EARTUy6nlUnlgSZFUADns+VmIZLKGSB48kkz7I/lSvlsMZfS4N+VMgjhSoIXgG5oIsuapVw+IrNwQSR9ciEnIniSgwbRie0tISlg0hznZS0pgbS7GVi5nF3gnWhlrIVCDBlMgAROmNGAZlKc28PImhiMRWC1a0CW/BQBwhjZGMj2QAj0GyuQQUX0TPEGaGIzwYhhBdG3XM1X84V8rBgKGqRGk7zs9U47rbRO8BF/SOYlr4dzuIGPwEUQOH8kEYelmYhETE5JCD6AelaRPRY3D5gFAguwIFPDWSOmEVSSZXQ7FyIFdM1hSKlWzlWLlWyuCE8K6rTWHHWLteF4MFxaqHcKhWY5jWxFRzdIXTfzmSZIZIDn0dzyeHbQH3V7hWwlpCu8DvsgB7evgc5nC8vbVWDMQVz+wZAeSSSSqXSh3m7U6r1uvzXY2N7ZWVi7MsB0qBlStXAYj3IC6MIBi0/FDj7lPP183gGMQxkmKQ+4D/LkX7JoSlIAZzv7FZKnrP6YJnh4H80QLso3rWlSlAcp7HV6/KrMk7apaSIe0tIZiCLA+y3TXl6XpFzQmyqFlFQ0JMAnbT4lxBsxP61VQ+l6kBbSOY31eu1Kgo6lCMLjJVk0EpVBA2DFfq6US+Vy2DcfDPhwHIPdZqVkgSMdFqeikYLgc1Kc45KTFUmaJHjHjIshMQXtYBys1+nlSBAjAjk9bX3BRdOEddrtDPebxY7tD3Y3oQQjuZb9D1YcdSRJqhmLJAr56lwbD7ZA8ROkx0F6pi9aSI72zbhY0jrj8tjdsLd9HidFYPLb50LIJWHfoAUWbCKWoxkIDP5IOpmEpZBIZ/OJ7tf/HJhfWN+4cq+ffXf+Qs5w0RHSnzYUHQ+EMrlMIizRSrxZMkxHd9TvtKLBcmfndhfAXQxUr8Q5AGDZH8xfW2QY2d/Y4HmCk6Vwqthdvb1evZ8+DJ6s0EeryTXgZ9PhufudsO3Cs39ZFVKvrd1oV7fFk9lBpTbqr3RKpTvbic3rWy/td1onH19Ze/LtcHZpeWV1fXMyimFv78q1o5PT6zvbo3L/tXp37ejf/vrdt3999vrlW2vLlStvvdHf/OPrX/350cnduzfuTlqPzm7dun3n9MbNe3M3YZFunDRa+7v/8b/8+E9//fGXH3784ftvv/3uu68++eCbd27f3t64sj9qnb51Nt9fO3jtw//8jx88O9tY3Vkfbg7amfLO3np1sZNtNgrNVn5hfnZ2bnZheXl+0IUoWMxu7W3t3Do53BiNlzauHHTLg+Wt7ZWF1f2XHz/FuYRvPnr45tO3nzx5/uDm6dmV2ZNXDtavP33v7S8/+ehPn3/w1Rcghb/48qO3Frfyg8ur1VJ72OlsnNw4u9kZvLUyd/+Vh2+/+9bbz9cXq9n2YsGMXz49OlpIlWJ5E3NFfp4Sk4Yq2Ok82iqGREETtHxaD6gSSTAc7UGTcIqQorrA8T4fIwVVTlFJWE/Wmd9bZUXUQoAYPo7kKPekXdzlfcEjB1kfbXXapi0ET1jslOJxuyS/SDgtsCQD8UjUVDXk+TFTw0pUyuchGMIOmByUBUkJKCzP2m1SLsVrWRM0iOQj3FY74XaTsib5bATWSHKUolGC7KOYqSmKmLHYbA6n/YJd1OGXgyDgtFg6gbUskYgRQNKt6Tj+DN3duXAins1gj1I8FonhANuQFpBJTsD6oVgiHk8l0+m4GU0nCpVSHj30I+gm7feDrITrhRWh2W4tFi+U03FMihrwq6IYloBMF0FZdvpwZ1fWNne2r1y9sr1ZxPpddKDCiUml1mBh6/hUt8s0Lwh+zuuiVZpyOzw4eA8PeDgcbCCgHwXO/oRLLqFHH07q9hDwacrusF3wuhxe+E6R8REOm8PmZAlaUUE8TTptIOJJ/knt6cQCHzHYVLEbBwC4XikWEYGzBVDvxUq1Vm91Ot3ZxaX5XifnFyVMD8OTCKDE5MmIuFASXnWj0ez0ep0WqNhWd7S0PD87BPTtTkqqQeFW0hE87kPwxmkKgP5mPJFMZidH5LVJ9XSt1WhUQz7fJI5MkhAeHg9qJb8c9AckGa04sFP7fN4UhlkaUNr6+ymb0+4LV3v5WKJWz2VriVytAcyhlAmZqXQ6GdJCyVIxm62UklHNrGLataDyk7wm/cIFp5BMBWXMq6vnGWj8PHZjoT8WrAM1oAVMWeZ9pFUO814bTrrgPILklQE7tGCQ8SrJSCwICyGomZwAi07QJC1iKiQZDNKcRHuwexkuE1pABWENMQIJQOidFmFJhc0kqxj+YhXnWOQLZeBgCXiblEwywJy8Vreb8zOKaaq8IngY0gFkUtQ0WBFAeaLRYCYQTSmYa5rMkpDcbrudDSpuwuv1clK+eO4wo4npSsLQ/Xy0BKAqsoRQLmbKhQqstWKpggf8rdGg3hrPjUcra8NxOQmsJRPFPAOIv1AwmM7U2u3u7HhuaWllhKaS7XYhXQhpEg8XwDwH4FZ7dn55u6IBe4Xl78fCCljp8WS+0YXb3+8O2/3l9e3dpY2rfdEIow80OmH9BsD6bylobEOAK8VPWJDiV35Vw+egDPQorIqTVnDVD6hroZOmQnEkhZ4XnhmggwbHeBxet8+vKiLtuGTxxsPBHFBjnWcIm5WQDF0tGkSiaCrJuAHU1WdziwHOTAV5fyWcqmoeKpYNiAxj5aOUGfXiaBdWVFRNwdqCyWLFWg9T04xAgCLtjks2q5WURI5yzNgEFbSnz0Uyrhkn1r4TXs7rcBC02zIzPYMjNDxegvBa7TQxM2W/5KJYYgYCVLjdKrZsFxxuNFjO1K1/PzNjhw0sqUY0Es/lK+M2BMGIposURXo9HsvFGR9HQahlKLvF6ba7JmXPTpzM4PaB8JjMZJiIX3KS/qI5RQ/FsrlMBieS5/LFyO67rzKt0cb2lZfW8s/7F/MGwZteJmFIOja1xbP5lCHTslHKB1TbaDxqwmoottePSg6WFsXyXoL3MwQw1+zBKrbzN7dkkWRFLZIuD9bPlhovRq+pu3PsYa+2zEl2ilU6UduMsf3W1+1YfP29dntPPpntFYr94UKnVn4wV9w7vHJnq9m9/d7qzqfPSgtLS8sTAMZhwFf30YXy8vHCbH5/q7C1+OF/+e7Hnz575eTm8WJr9Y3Hs4uPX/rkl4cHZ/dv37yL8HsGAHx6dvvkpfWru8vNuTuN3tW5v/0vP3/3t5//8uNP3/0Za6C/+Oy9n57eeHF9bX+33br9zs1+Ze7FD776+tOTaxvLm7sb426/Ox4v9GKxwfrVaxv3zk7mlubiRrFchdDUHi6urVdLrY2lleWdo1unuwuD2eXdo/1etr+5Mh4vXr7z4NGDh48mp8CPn6Epx83jFzdGR69f27778Nnzz/70yUdffPrZF198/sWXn398Y26hMLs3Vyr3B63RzrWr91bqt07Xbrz8xtN3nj9/58pyK9tayuvh5bPDo3GmmMjHo7ChNJEW40GZtxOpXNwIygwfEAGAAwFNFhmQmR6X2+WlfWI05KdYL9CigOzXVe8LMx6fe8oFSkILCQxPcj7STRLeiX+xjfFrpJtxOZ02q08gLQ5G8qJO49z2aavDF0KbAZxSmYIXoMO+4Bg0pvHYdSMaxkZbVWIF1maVCnndzATVsEI4HZilFUhKkmmPl2EgWGl8kBc07pJL8Foowmb3uDxO+0UrIwaDk+76SCYfA9lkGpOJwX4JSz6wC0XgOD0Rxzxf1IgiZ9fRC3HCKlgloAcBSmOJdCoWNhL5SrWQhXAWBQkcQniAWBtQtZA/kKlmExDrkpFI1AhoiVgMvYpTuXw2V21253qz80srqxvbu9cODq9criRSvwJwIpOrgdzcOLoZdPo5UZZUHtityvocM3YCe1d5kL4CMHiEXhzHKaOFFU8yXrsdbdplPaxQNIOG2y6n3UOzjMRThJdX0OCJFVR2goCiEJxMYTyXvhD5cK4kZmGl33Ux49xp1coV9Ces1Dvo5dzHumYAYFmUSBoBWOIkTEVjx3MQWEajXS+3QSh3QfK2u8P5xcX5QR+nGSKwthvVchrYFDzFeY8PAnAY4lk6XyyBBi2U8ay8Wik16gZBsCy6K4AKBsXnFwQVJLuGiX1QvcAb0J1fm3QEk0AmvJYZ60Wrx+shdLjaYUnwh4xUiIOVopeLEWBKqSTcWiORzRabzXIpqihGpdmqRXkaaIhA4vkxEfCfq170n/x1JiUCgIIJeXhKUN8hTSC9TmdcIqwutMCnOJmh8cQzEOK9XCIaDUXNaFgzRewBYAJ+vxlRKW/AwKHGbuxrAmoTNOHbJwBM6IrgmhawETuS4EDdY69aqVrI1TPxsqEaPM97RJnweBweGm5w0EhKrEp7ZA8IXV5QFEYMRHBNxmPRlMTFFRIrAASBnnbAwufQLpqgeCZVTKUQgVUhW4kGgVHGCyHdL3EEXy6mitlSFt1hsH270Zodtnujufnx4sbCcq9sJGK5RNgIqLosGUF/NFGs1ZqD0fzKyspwMBqN6hCWs4bGCUGA0myxWK40m83B/NJ6GQA4BKzOb5qhSCwGGyRXa7fq1W570B2AQt5e3NjvC+GQHobNhgMZ/l8ADqB3jfpbDnoygkH6tRQOaznkyZAqvxlV1SACs8qRsJejEQVZOU1gLZJH94d52mMHoIPAI3Mei9UZNYL5EnBfVWQcFi8fCQIAe4x0RIwlDEViKIeT1WgjExKUspmsagQZSQfhDrrEOGeE3IzbS8E6V3VJ0dG1PBMH5ZHNAgADLeFot3tqZgYCl8jRzplLlJ+lsRaG9tpASEicD0DSa/NwlA0AmCZYzN6RhN3io+xTdovDx3unYE8nGu1KAwSxl/Lr4XTN+vfTUxYXwfKyDtwmWSjPtnBOjBmamOY73aDq3Qxpx14Hh9XltVodsPDdEBRJn3dy8Ev+j6NfrAqRgGIDE0qhDy5OndFUauPjZ1SxM1y/fns28U9LlrTipoMMn4jg84Vj6UIxHRYpv5nP66J9cdyq1LO5wXDlWt7Fkyyb34lx2OmmBIrXtxR4kZ1d1Q9XKBBJlYebL262b4auSMtD4WansuaU+UszjVluejoVX0rr2oXlD+Kdq/LxuJ8vNof9Rrn6ON8/vnp6utRefOPZ3PHP19Mri78C8O7kDPjo+ovHG9f77dZLxc7l/f/5P/z5p+/fPNi/e7lXf+ndk87t197/+emNmy+f3X759Ozs9PQUq69u3L21d7i51G/fm6ttb3347//hx3/4y7c/f//jn7/57tuvPvvsq09evne4uH+wUF94/club+He3YdP15tLW2s72wv90fLalaV2PBDrHj+6devGzvWj48ObV6r50Vyn0ahVCvlStVraOD042t6Z37p6eHx53B5sX98b9YedjdW50crRq08fvgnIi+5YTx+99d5Lh/dubo6PX7+88trjxx999fEnX37y2ZdAAj7/8qsPNzdLha3tZq496jQXdrfvHTZWHlzbvv/wyTvvPn/v5mInWV0pBY3xrcPjAdy4XDIOyKKLtJQMKaKTTMTDsL4pDthoDgBYV2QWeJfP7bLjrEgQpwwHAKyEYauwHqfLYbdccCt+3q9yNM/wFAVMHof1OKwWVtVoD2lzYhW0QFlcHE84GQBgLNFykImYaYTD8YSRiuEZNAs/6/YQPo9bCxlBDMVYBsRarVI8ruhhjpHx3HMyF9dL6zpDsKLX5Q/FOM4rBEUPy8/YSNgcLrvN6bhgITlNj2VyKRxZnkzl8wkcaROCiKppoCcmRcWMCvELtGsCXTqQCqDxjwq8j8NBpvDD2AscC4dj+XI5l87mc1gEDQELHUoAgPWQP5guorUzDnzAPqVkAjA2mUoDtS3W251BZzCedAJfvnZwdHhQm3TQoAdzNAUAPDu3evU45ASRD7tIIF2kKtBuq82Hs4gEnuFEgcGZ9BCmVIIHJIFrNmNx0Jig000IL35dDvAeu93hxDmAlNvu4CbTypjznh7UE8idJBV7piatHyrCogTs+3etXqdeb7dA2fRne/VKfTAcj4f98fI5AAuTcYSiJDDCZHof9ueGINQ2a9XusNsdDNrtTm92bmHhNwBugIKqVSoZA719cZoRixIcom8qnsgV4AoByazVG/VquQC/JYKDmzigWyzFenyyJnDoxn8+KHFyTHhuxoHpYo4BXuG0Xro47cYh6B4rLA8ubCgM7fWSPjELFzyZAM4Dt1UHTNGTyepwWE1nc/l6QWFlHPBgt4FKYFByYdJDQp2FQH9uhQXaW4JVBsQBZCTn81mDKixc0u0lGFLgPbIeVDXDTzHRaCRsRmIRJagItM9LBzTFiAV4rxwiedYPWCpiN2kIADgYCE8A2M87ZmTsBotGWTUcwFR/sVLIlTOZasCM0ArrVWWX2+n0CjzlN8IRuGkOH+sg8cQdO3KCWJcQS4fyQV8wTPM8TfMS47R5lbDf5+HsToBkKllJY52/oUm5WjQoi1wircN140m+VkqBhoUlWyiCBq43W4MeDpycX5hb7M8OhiXTzKVMMwg7W9L9YiicAaHcHcL9BwCenZ1ttGqpbCTAySEA4HShUCo0mq3h/MJyRcMUtK4jAMNmiKYzhWoDqFe73huMl5Y31+c39geiYQIAA1KHQ/9/Bfxb9nlSmOX/DXgnR/PoECqKakwRdTRhVUWS8s6opiL6aC/OQvV4rQHNlBmP3eXzAkFWJMJmc0TDeq4ENC+gCG6Lh4ewUTCcejLKhiGUSQztcjIaFcpqglSLJ2pBikIAJn0ePiGGAz7ZBliIACzygorezAkA4FwOwSoclCgcNzZtcaPJq8sy5VFEWNYczZIOGyn7OZ+L4LxOn8C4LVN2gqAIlwuipHPGxXinLTM2j+C+4CJS1XqzVrdMewhOBy5Tt/1+ZsriIWlOhghixPPFfhMiBs56BtIlgrywTAP/m7FfsrpsM3YMk16fG2iCz+WmWMqFTvgIwECQcVo2JnEmo8xhUUtobs8yRPq9fxGazfr8yUk3+39uzZic060I/hgEWn8gBko5kwyJtBYvFAKSfbSQLfWiZqe+cFjy0HZWzG5FGJH0glivnW2LrKy3txU/B/HJSBbaS3ev9U4Cu+LymD9brC9b+FBi64F8ifN4iJ21kNvjf3m2dlk4XBiX6/35fqew/CC+eGPnleNR78rbd+de/WWluLzwqzHCZBLD4cmNO1cv7/bLlw8yl5c+/Ncffv7u/TtbNw7mmtvv3hnffOO1X94/On395Wun968j/uLj7tH93b39lXbv9mZtbfGd/+OXn/7hn3/8/ufvvv3++z99/tkXX3385uHq5eOdhfL+Ow9XWhu377320lGxvrY+Nx7OXz3baQArLZaXr+0ujUblbrQ+rg12Zgfz+1ubu/sHl9fmhmWlurywvX1y49rG1vWz/Y3Z7sLh2d6guLCytjReOnwF/bAegQp+/Nbjp398+97J7VcXW3fubV579e133/vi688+B+z94tNPPv/y+wfjUal7ea1U6gwavfW967cX23deXHrl2VvvvP/O+y+P+snyejMS6d86POrkUhkUoOGgnyfFlKmKDiKOsxkAZwKCkkEFrOAUWob0OC1egYFoxQq8y0mKYT0o+LwT07QLboYFWgpqgONZhgS57EYJPEVwHOEhrHY3hA4AYI8I7A60Au9ywIPMJoH6hRPJcCICexTkm0ihAHY6tVA4ACAHUVIQmWmrkgRZo/IccDEEBp7FHh2RFYO8bZoTdI8b4ixOCHE5CJzB7bC57BcstBScTLwGvAOCWCxls3lA2sl8eohSIs9B/NfSaYje6VgkbqJ3shEK6wGFFuSJE1YiW4wk8zl4jfF0oYwHpmms1sLVft6GpAW1YKpSLmUj6LkIagAnJiUAgDMReL5Gq9VpYfPGyvrm1t7etcOjZjQWT4EqyaGYrnT647XdQ9MpsbQIEYB2+fySSDmAUgPuCDzLASCwEgAaj6eTIu2YsdiwQQWiM6cFIyEFeDsAtmUyq9Dls1ucHs5LCzhYicE6X9ydk3pknDZ0fvSJWX10HEIA7p4DcLM76FQrzfpkns3cytJ8r5uTOA6bv0UJXod03qmpK3o0U23Vu8NhrweQ3Wz3R/OLWAbd73YAgeutZrVaBdGEgRFHHaAhF9pwmcl8Pp0pFipo9FGr1sv5WtNkJXiDNIkegCTl10R+MqNdOZ9poE2KxrBhRRbgG0mvy2G5dHHG4fZCeAuHYkCDgEQYiXTaCKYz2IANAFEvRDQjW0ibUV1QIpmEEa/WTcRcTfF44bWL/vNsMybU0Qz8XAVP5i3hPOJQQA3AlYHwSZsE63QRPjfrZUSvpAIAR0AL4TTecDQWA0QWaI+H1TTRiAUVLxMCBRzwsecm1moQx++FdYang5rosAcN9PAzGDUQQgAulIv5ZKaQluM6yF0KFIgLWChIPN0I+RnBYyGdNoLjsfdW1s1YPJ5IGEmDCkQJAFWWFyiXDfCZY3nSJoAAVuV8KZVETqkCACcMVeSSGYBUWaAEAOB8Oo8ADBK4iie4nVqzN5wDIl8u1wbtsAHXyAwGBFXxC4qhZ8q1Zn8wmFtaGY9mZ8fddh1dpoEGAISiJWupXm/0xwurVd3QdRkB2AAANiMlHLIBzKrb6I2WN1bWV+e3DoZi2AxD/NABgeHnsRFuYgeNhyG/OkBPpiH9dhIsTyYC/3YoHw/IOtbJqUCy6BkOVDrJ+ICGgbq0yGrYz/ocTkAIoAEyZbe74qaWLRUyUbi9PriW4ZBajLmDuSilp3RZpAmngw2xoSLI7WY6VjUJTygVlhna6jN5XaO0GTvcZrR+AeEQiifjqUwceHd0AsB+0u2aeeGSxUHBhvCAqoX9IyoizVBOUBMKi44Gbi+DdXGXnE6CohxW0utzTdsY2jI1bfPwngsud3EA7LSGAMwHQ2a+Yf/DzJTVQ7GiXw+GzUS+0Guks2ksdw/ykuxzgGhxEa4pwm5z2aZmLB7Y2R6Hw014XR6So7ENaVIHTU+66FmWIAgfQdMECfTMHwgGOJa2dd7nGt3eaPtoufN/bVzQJMLJ8WLcgI0VhWeKJVPAYqREPh9SnY1+rjRbjDQWFk/yTsImB/LbUVogvH4NAHidJkStuSnLcIXUSA5Y+tlh7ziwKW4u09e3Z9tOUfr+TvfDP5D2S8KzzkVHdvTxbhkAeGm+0h6MWu3E9ePk+sn2q3vt4c0/ri18+HmzvjS/sDQB4L2rB0dHxzdOT65eXWp17rYHB9v/8vN3f/vi/vHeybg0//Tx4sKjB395fvTyi7du3Ty5cQYK+ObkcW/v6uXBuHvjKL+1cPt//6r1IgEAACAASURBVOe//vWXH3/+20/f//mnH77+4usvP3z1cG33aLNXv/HRq93h8StPntw5enm10lzZvby32csVe6O1uXp9MB7kZnf396uXr3HF5VI72V3Y21rf3NnZ2etmd06vXV5cnFvZ2Du9e/vW0fZotHu0O260x+vrC4ubd+8/OnfkePr8rWfvv30HBPl8/+7DpaM3nr/zyVdffYmPzz/99LOvv15bGRaWjwfZ4qBTn98/uHPYXHq4ev3J22+///6HT0Zz+cJ6L25Ubx4ddrKJDAhR2CPA6ehkVOUs3lgU8QgQhpfSGfiCjEPxgIS6ZjwcwRsax9F2q5tVJc3PeN3T016flfC4HJqJg7JpGocLepx2m8OFdX02D+W2OuxWL09avCJD2IHectiFZCOxRjYUiCbR0TagSTwrMkDunBZL0IigLzMIN0mip61q1oD4LHKyKMs4xt1HTyarSxLjYSSX28HogEUQnlmLi/Q5bHa71/EHC+ufgCj6U+UL6XQmBWrYwMYSnMuio2UxR2mpdL6QiEEkMYJwDQA//AGFwfStasSi8WwkVcCW6GSuXC3lAchxxH1A8yuT4eKqpquBTDUXM0M48gd/TdiMpVIgykA05Eq11qDbH47nF5eW17a2Lu+ftCYAjAq4UCyUWv25jb3jlEfmKQBgmfN4ZRlh1k6JIsMLHC8wXqxCY2HDyazb7iIZGo++4BJxONVXgEtjJ0XObbViDfS0laYgKvMUmiufTxOUFbxKfk0RpMlYJeE8AQvA+rvecNBtdye+Vs1qpdEDAB7Pzy+tLc51O1mINxDF0Q5REif5Qb+ka2am1Ow0O91udzg326k3u6PF5cX52UGv28NDQFC3tWrWxCpowPrzMcIg4tBAK5NIpLPok50v5EEt1atBkgP1S3oJPN+lsVoMvfBFWfBP0uRonmSGcFQeT/OiQNohmv3e6nW7INJMvKIlNZwvJjVAvkwBRGWxmMkmDL/IcEbRzOWzmCyOpWv1uISTdEjHuSeaX8RUvqScK2D5V42N1T8K6K5wQEHXF9LtjCuCzc4RLoYgJYbXwrpqhnkyHDWjoVgsoeqGwPm8PMj2YDSgeWkD6JHmI5VzAMaBTsGwRrFMUOOtDgPQKhIN0ZpuVKpldKIsx7JFQzEhkIOGYrCSTlA5IWQYcLccDtbm43leg50gByIJWEnRWIJWEiIjCbyscrDn0GaDJHweWYD7w6VL6WQ0HA5rSraSiOgSlyrBx4pIiaVCMp8p5Qp5HDtZazQ7w3alORzNrSyO4ZX0ZuNosWoGVR4vjBYP5eud3uywP1pcW5wfzy7MtispYFO8FIDdApyyUKuVK63+/GZVD+NqCGqwW6LxiJkvYWa90Rq0h+PV7dWVtcXd41khFDJx9Al63qD4DYIYPncWRZ4yMcSaoC6e9f5/U9AS2uCg94lfxSZ7nmJtnmAEfTMIEgDYa6flgJ8hHE76HIBph82dNPVMqZiNwdsm7D4pFPaXkkSonKT1HK4fj93ORQWjpmlCI2NWEIDThsyyDjImKHAPbHgEgMuBpfhgPAnhIhnL5aNwH8NBnSa89ouXLFYfRDWfZ2YGbf9AZtJAhFycAmLTzrp8HE8Q7ukZK01zEB59Pq/VSnPOqWmHlyUsXlcG9kalarnkBAAOGrkGKOBLVjfIbpwfHYlnc91GJpdNmol0BC4F63LaLHaX7SLtcrnR9dntdIGS8aDrB+H1QXAE7MUOAgRhgGAGN7U4Ide8zzHzwgWX1XJxphsv9Wfn9k4Hrf9+PBVUSSd8vZSWpRD2XCbg7ckUn8oVIwFvrdEqdgaJ3M7O3ZKTcutqeS/JSyShqqHq2QZNysHONigf2DXRcm8wd/u4exRaF7c3vDd2qk0iXf6ezN+kXeUrLxfeTVxI398ulK7KxytzxVZ3UGnEX5kvXbl+9dX15sKr7zd3f3q12Fybmz8HYJCxB4dHJzf2DnfG1Z3r6d3tp//1u5++fefO4fWtZv3sk73hjTe+/+rw5ksvXj99+ezozm8AfOPO6ul8u7Z3kl1ZPfnX//TzP//Dzz/87Zdvfv7uh2+//uZP7758PLt7uFJrP3j/qD1+8c3XXjm8ce1gY25hbX3c7s5vH9y4/uJsupJMDFYbvdNBYnYYX13Ob5fTlfHc4uJ4tHp1tHD3pVsv3r11cLC9uLi6c3B2dnk8Wtk5uDyqteeXl5a2D+89evb0zQdPH779/PU333v2ytVX7nWXXn9p9+DpJ88++P7zr7744quvvvj8i89/eLy+XGrublRzvUFjuHt8emtcff3a5ivPnr374ccfrc2WUgujVDh/dHIwyCQyaARlhDWBJLGcweaLR2DDaIB5vJjOQmzCCX0k9oRb3KSTMkISQwPl42TaD/uBsl60WWc4n8emYdkDTi+BteLFsQqOaY9lykFSLgv8g+B8IKA5j0NQJM6N8wypdNwIhQIGIFY0pCs43xKoHOl12AMAwGgYqakAsjM2NYrdggrLSgBKkymZFMMgzqicLnvdFHzICei44CE4xmEDbe2+YAUANgF+87lMKlVMxgBPIUbJ2q9lzGi/xFNqHAQaImfUCE/m1mMKmhGxfyUUjURTUdDOqVQK2wXymUw6gfMIA/Dz56eq8EE4X4r4ITKnJmMYIgg16Tg8E2jccqncHgxnR+PxaLS0sbG7f70DX5i4RachpuVBM6ztneS8kuAT/LpfwnY9nnHNWAhRwQostL4K+Hlgt+gk5nT5WH4yClhGlsOw2LVBSnoIWbPb6/FaHZRjCmvlELQw1TwpRpZwpoLA/Trnnp+0wGIVdA9rqZr1GsTdVq0O+qjTGyE7XZnvtjI41QGbc7FWCcIizgM2I5lytdlpYRnWEN5Rs9mZXQS9PIKf7Pc7jQkCF1NRLTDpuOUQ8mVQf5FkNptOpZJwAYvlWiWXr9Xq5QDJQuwgCYqG/xjsS4ZX5Rf8/MQodOIKHcapDixNSaTD6fNZ//B7i9vtdHtcPjkMYtWMRA2VcRLhUjqfjGZg/XJappQMGLliJlpuluulPOB8IaKC4lIICJJRvzzJcZ6PAMBzX/U8xz1hF4pfDIbkYICXKJddjoACJgkHzfgEkfQbumKEBSIYMeOheDQZUE1BoNyUGOCDkUAAAFghWYUkJpJf0eFVB/SgAswCqOmUzQzrejQWYoKBSBUAOFcqgTDNoeeMyvtCAhrb2FU/q6GVk8K6KNLOg0jXFJqRgyC347FIXBVMhVRZbKIiIOyrAg+MxAskURMoIlmGNRmNRAIyAHA0IHHpqqkhRssAwIVcOV/MZ3EyV6PeGnYq7fmF8dLKcn+uM7tWiCeMgKHLAh7a66kE0MHheHYwRgAeAQB3i6l8UBVFHW6EGYnnq6VCtd2Z3ahqQfj9ekgzwqFYMmqi4WW2UG102oP+/MbqyurS3vURAvC5EVboNwD+TQGfe8H6/chi8fr/VoR13p+NjqtSCPQZrwfkgESynhkloQvAONCv1u11i5pKEw4b5RIDQUWinDZ73NTTxVwqoasKYXXjzMpiyheqFPhwxS9xtNvp4BOy0QxpZDljViMUaebQ3MPHpYEAUAJoBZIDRsqynBKKp2HbpkAbRjR4g8Ew6G43KOBpD2wIAnigV/AzAkczpMNuo/0cR1pY0kfzlM9tnbKLBEvYHYCNmKbwXpr2+EgQrD4tUWuXy9ZpJyEEA2EA4L+fmba5vRSn+LWgGc3kus1MPpeOZHIJU4Md7bZOW22XLvpcLpfd6XE5XU4HOmDZvZhU9JGT6cB4HIgFWegkB3/B/6zd5Zx54YWpSzOXXrBfMId4nLB/r1L/76czYcXtDchaJRtQtHg2A9oga4i0nM5Von5Pa9DKlbNKqLx1v+6m3CG1sp+VVdqnaMHK7V2BErX2TiAk+9VApDhYXL1zrX9kbEhbW8TZRnHJ2VqfZfn2k0rplSH3v20Gb6wWGvl9/8naXKEzXKx3Gm80u0fH1+8tdrbeebV1/5fVamt1/CsA7wAAHxweX9+9ttFu3Rk19w//4Z9+/PGDV8+Or83XDp/dG159+s6PN07eOAYwfPHO6QR+8RD4bPt4ZdxYPKi3L1/523/78T/9/Jd//OUvP/3pL99989VXnz67dXnpZGWuMfv08dXe6v0Hr97dOzm8dv/RUqXXm988uv/odHmpKgQhVnUW/Erex8eSvXG5e2NrNJupzm1tLc4tXr7+7O13nz2++9LdG4cnx3u7V4+ODrb7g90XD+br9dHa5uLqldsPnr75+qOJNdbTd966deu149mtpze3777/5PmfPv/6yy//9Kcvv/z6629+uL3er/V3R+Vqrz9YPD65vVc5eHnt6Mmzdz7+6OuDfi06nM+HMleu78+n01kceRaPhkAxpBJByUUlUjFksLouSJlCJKSgZiU8gAJWDybpQhDV3Zi6YSTJ5xN8L7zwdxdE0jujhmFR8iSH6wOCi91qveizW7yUz2K3TNsp2E4eTnC4QDkzbidwTzaVDGHPvjmZlSeBtPP6sL2ccKlhM4ija2U0iLbZFIMXeEBb9GtzAhQxImGbdrCaGSQVRpR0zjR4WnBOMwqgkgdPYnzwZTkST2dymIPO5bDMOhozgwpsLJw4i42W8J7UVDKZTCQQgEHxQsAwg4bGCJO+zHAskYylMnB5JmiKI2zi6OeBAKxN2ho13R9KxoOhWBzn/sXiEKBT6QzaS0fimXItn631+4PZ0Wh2OL+2cfnwZgc7HeDXxKJGLJ6ptYfLl48LHp73AACrfsqNJc+k1eIFMOIw5cDKukR6PHBNXrD5CJ8X+35B/Qq0lwXtyOBJOA5nI1mW8VHwZYvFBcyE41hakDC9yjHYWkrQQFwwLYxJdwGHUAjs74AUjIaddqfWGw9aTRyvUGsPsGdqsdNMgRBBOYKDZTHNgGN60ulipVRtNdvYhtTDie2dwcLywnjUa7X7AxDE8KhkE/FgOOifeD5icIUQHY4lk2iIWEYXrEYpbuYrtVIQwtjEc5JFFz0BtCc8TUDSRGzt8qt+LRDEIcQs4aOcqACclktTU5ewe4MkuVA6IkrRWDCg+nyhXByCbw74jJ5rVnOFetusgB7OtSrFRr3Wade6tVy+3G3FTOCQqgrERZt0v0w6lVGCqbKoqqIa4FVDgjWkcR67LUkRhI2wk5yHlZ1SWJNChkjpESOBABxUwsA7nW4pLIRAJ3kpQ/UwEkudt1crgYCiawHZS/EBlZlyxExdjcZDbDj0/xD1Xk1yXWm2WKtnugFkVfqTx3uf56T33lb6ysrKyvIepgpVKBRMwRD0BD3ZTde0cCSbPSS7e3runXsnNFcRCkkRCr0oZB70qgi9KKQfoSd9O8G5F+wGARRRmXnO3t9aa5/vWyv+CwDn8/mUnQCBSxNJ3kf6/W5LYwCkgLX4/Jzfx8EvYCfIViwZi4AIVpSoxOiybkjI6psF2sgGcF5EAUxAjsrVbDadQgME+SqwS1nI1cKg52Ver1WylUK1UCpkM/lqs1lvzndr3dWV0crm5mRnYXG3CRvdCBtAG/SQGczmq53BcDScH0/WxrBcx/1+KVu2DE0KRiLAhhLwjYqt+W5/tWZawM2CUR3eczwdCycLlSJAfKPe7LYGa+vrq5P964tyBE1VhJGzjYWOm5Abx3Mz6P987KxPW+Genzv/lzEklFKmJCzOVA1LsXRaYC4oOdtE0xE0Q2OcT0adHx4X5ZZhfci0zz0bieiZYjaZBLpOe3A5HNVLWSpUr2vxOQTAFIGJKTnSiui+fC7WTDBUrBBVQKxyGUWzRV3mSJJFRq+KacP1hs2eShZyITlqRUNRDsSAY9btwBRRpTnfBa+gS8BeBcrrmWWCskQ7BR4nBQ73ey/4NR9JB/zAKgMuQiCcMwEc51DQqlLuVypuJ07LITtcbHn+3uX04QiAjSBUjWweAXAxlygCibAkTcBdM06H4wJAr9fpxdwkTXjdPr9nOuiPcoLRcxj0AxkWEQQJ6pjjGN7kRD7gcnq8Dr/T8WupXe5MhusPFsb/x87fWSrGJUQ9EY3aglVKxIA2GZJsZHPVCOftjBKZumnWU93bdQz3RMK1w6JhsoRsBku3L8lATmrbZkgzjEQ03Vpcub41uhbfUzd32NPl9UuOeiOjjPyfvlrMebHD042POs125pJ2fWtSHXYnlUbvLD13fHjj5kLvyhcHo0+eFrqtxdH4OQBfPjy+dnJyevPS/nZp6aXM5v4b//X3Pz1999bx8cqo8tEHw/Grn3x389q9Ow/unt06vXn79PQUAPjW7bMrB2ujSvfmem1v7cv/9h9//utf/vS3H579+U9Pnz365ut3TzZWr20sFpZ+/3C5v/Xi718/2D+99fCNu8e57NqDNz98fbdW6cfk5LheXqqmswthoTdZ2s5Ht9dW9i7u9kut1e21xdXJ9o3ff/btky8/ffP+3dvXjq4cXr1+sjw3v379xkarDW9+eXn37I23Hr7xwVuvf/jhG2+8/f6dG68eLW6/dfXiyx/97qNHTx49fvLNl18/efTlD59vrw2bm6uN7Nxo0Dk4PrvdXnzn4t7b73/4h0++vbUwSA5WSmZi7/TKKtC+TAqZRkVUlknFTTXAAkLAnjHQI8N8JRHSZRFZjtK4x03whBgzKVHAMFoCEqgih+dZ3OFUMPd5MyErnMIIyAgLJ0jc53Jy/lk/gXsCrlk/x2POAK94AmxQIX0e4IF8Ih+yomFAM4A1Q2ZZARYsWlU+IxwPoU5Y2Bqa7POoEY7H/ZQfyiOoPShvjN9LiVC+BY/BGUZKl1LpkOz4O5r2+LAZN8A4Dd9dS+RzuWKlnAeUTaSSqIcmrFtRG7UHIwCWuECwmIU/zkTD0RBoHNjUlhkOgsYUw/FgMJlBNh2ZbKlcypRQaFA+GUJ9JdNRVRQuHgyqKDAvm7VjqekQXjYeR/mtqVwmnSlX80WAqf48SODF0fr2paun7TCKx03Fw1YOhEm9M1y/fL1KSgoFlRsqSwA9oOS9s5igGKIg8bQY4ki/1wdlhiBgp1EkkGK/x+2jgbjTdADD3D6g3ZgvgPscHszrcjEorpvlZRX1YglT9yyeAQEtoJ7J6SMjXhJ4IDO/Gg4H8M6GHZDho4VBq9KYA2ELEnhjqdfJIgk1BWoROUoqyOIpkirW51qt9qCar3V7g/HyEP76ZKGBjh+7vU4TjSY1iyj60NRQNwjIZ8TwkSFYvoLAJ5erNOqVSrJYqcHO56ZW1gRJigyjQJ0HAWkANhpBVQuGUOeSjVrMeBYlPtF+5yyKPfahKQ8WV3JpUUzE4FU8RLacTaQSkWQmrKYKjYRdasZSebsbLRUShUq53JyrdPPIlCo8FxEkUwbVYaHYIU3SDdGwFd1W5Gk2haICGEVsWaUZ3wyfxDEM6Ca8NCcFzLhtxYM4l4lmYwkoQ3xSA9keYG0A5hiynLREQpTcKrI9AfFrAm81ZQakg0y7CLjToUTcYqNGslJDSYTVUrYYs+JkSKBMnSX9rF+SBdRKoAkii8kYJglTB27DisRjkUTCZqMaooOKpDLuwNSugsIZFTgKGhFTi9VSHha1pcv5cjqmy2yhnLSnADxXjIMArtZKhVy+Agq42e1WOytL48nq+ubG0vJeK5WJ2lFZFnTTDIdjuWK7255fGi+urQ07C8Pu/LCYLcQAMEMqbJgo4FI23+y3u8sllJmt2+FQBO4SXI9kBfZGBd5He9AZrY431ic7NwcqyOPnRljh6SNgwF5kSTk9e4aNgyDX+OUk4pcnAdLz36gqkPNwWABuEbFVQ6J5tzcWRtaRAZz0+gi4lSGR8HsDmGKbQZH3B3zxpJGq5vJJS1NYHy7HbCudFYR6SYs2QlMEDggZOdRNiWK+GSumpUCsGNKhnPmLimQzQVNw4QLqgUZPZFE6USqbzhVjIdD9dkTHgAN6HU4viRwKHDMEq3OazLAs4XfAzRBJkgHAJTSG8MxilBTg0INqnHWxGuX1El6GBnHswarz5TnHDEaK4Ui03Aucc8368AAvAOWMhKEOdLuoT64ARD+X1GleOu/wen97HsMDtBPzYR6C9M46XTM+txO5YtEC0ic05ecokiKmPlyEoMCWlnGS8V24cN7pnvWec6QH/d7C4c25vf9z+zemTHARNRQDCqTHCtVIMmHHDIJNFObiaqC8UC30U/nh6uppHrajrZQvZ0lF9slKtHy8zZOGPbei25YSshLVubXdpYvDy+UDbX9Fur65fdOdz/mF++fWb6wXvdaB+Np/vFquFw98Kyv9Zn1xoVpZv5TePrt8b3dQv/HR6snj92Ld5vJovLq1vbV35erlazeOb9093F+bT9zdKBys//xPP/z5o7uHt1YWasefHw5OPv7s/umdOzfObp6e3rp9E+D39PrN2zdPji8vtQbXr+Y3Vz/7737+219+/Mef//TDD3/87lsQnW+erG4db9bL+x8fdZd23/7wZPPy3bdeuX750ptnnRceXhqVjMpaMZxaXFvtyWq0sxjXbqxu7BaN4aS2enn76la92F/bWl5b3ByeffSHb1Gs0qdvv3B2dHLr2sHF1fZg787JqNndWF+ebJ48eO29h2+8++4bD997+4PX771w//LCtTcubj389NPfP3v27bMnjx89+vznL354uLnSGFxZzja7S3ML12+9vlW9+/ruiw+//ODzZ6/353PV3Xo4vnHzcJJDYW7xqBVUSY5PpUy4l4lkNJQIKabGaZWSHTQ0PuDDadzngT3gExK6l2L9PoBLqD6Mn55xsw6GYz0eKwKqCxkpkkzA63XPujEH8HYgbg4amyWpwAUXhtMeL+AL7wNQ9omFRAyFG9h2KmRaBs8IUHEZApSOFY5YIH81k4US7XAFE6SfxilZYRidlwk/zXhlWxEJpxLHfLCrOdFSAn6fjxDglX00xhKY84JsJXLJWKlYbmQysTgaNYqHUD6hjewZ0bYXGErP5zLZWCwRmXo828gRMwRqBBh5KBJN5zPRUCgOHD+bLZTR47RcGAXkwNdNIMyKagfDihUFuh/LJZNwCZNo1hj1SU+zhHP5cr3em+/1xivLy2ur64cnS7F0PBwKRZJ5KIu17sISsKkRhdxcNdWMWgyFBnjxCy5BE3kATVEB1kH4PBihgKSVJGX6OBi1QMJW9HkDNMfBH1F4APP7/Tg6cvB4SYYiObgHHCsgxYuc2oVpyzHCYn7a/I1mnH416Hfb3X6nMR4voIe6S/OgaqcPqyeDXk7TRHRki1QsgDkUJxO0bAHhR21+DpTyfH9+dby4tLw6bnU6rWZzbq5RbdZy+Wo+gvpsQDkjm1pFM0MxoHZAYArpeDxTbZRy+RTyhghPJQ1NUaDnaVqcPs5WUfhSMAyLzdANO2bB52WR4TxNEgGPy3Xu/IzbD6LC66KjMZG3bLh9LipXRI8WYqlkRAmni2k1M5dI1OLxWqwRzxamxxaJubqOewg1YcioxUvRUcgwioxCVl+m8byNFFkiwheBeXEM7ScMAZ8lp1KD1xg5bOgxm+FS0SRU6FgCEJFmGZy1EAAbAiVbMiWrGMLI6Xw40noKCpuTKRcZt4N2PBbkI8FMDUUBl8rFdBEWmWAzrCWTJFAn0JNWOBgE0MR5xkspsgJvTQkmQrAHsyk2GBJEVYRvyGJ+Ht4nA4VZRFYdIB9Ns1xBbYwR21CK5VTU1FhkGwPMklFb5WShnCvki4VCuY6MOHrzc/3J4mR5dXV1bbK81U5nYdmqyJ7EDEcSoG+7vdHSeLw87vUGjVKrl8vkY+h6SWYkFM3mcul0pT3XXipbpiYayKASABiNFRSLAMClWqUznF9eH2/sLG2c9FHzN4oB+S9xDNbUknLahDV9AGROcxgUZHP6HImRJaUiwVXQWDWE4poty7ANSfC5zFhQZFiKpn0+DId9KQINxXHVNkDwe91OO64lqoBdtq6w3oAUtoxUTpKaFT3SCJsKbABCzKihblqWCnOxQlryRwohWNyCM2PpJpsKyj6SR2cgaF4skc6UsmjaIQY8EnknUywZcDmcHlIVeHp2JkDrIhoC4xj/DCZoEk2QNE7gMgPL0usHVoZ7SRZIA6uzPlCvFAWrm+Ir/XJzdhan0TPgctv3G9esFyN4SddMy0rnc50ueoyez+eyuUxI4KUZh9d1/oIbw4gLLmAaBOFxnHdc8MIrYF4fSHIabQofRtDPh5EInAFyQAEZYAMOx+x5p899/rdcvzfsbDwYTv7vjfPpoMsHFC0Mr6ZaiaRdX+i1UoKSK9UjGt3oZtudfLrUGZ4WcD9m6qXLadqQcUmNlo92NCEUGh+EgTKBLinWFtbGW5uXM1esyxP+4ODiRedoYnqMQMpqB50VLPjwUW3YKl+l9zaHzcpkWMldmWQ2j47vgX586ZX+tS9PQsPOZHEJAHh778qVg+PjqzdvXtwe1Xt351b27v+Hn3768v3bN66O2isfPBhffPj7d++ent09O7t148Yvz39v3rp1cnBxfdDZP26srb36rz/+h7/98Lcff/rpxz99//TR11+8cHfz4OpWr3Ty8XF96crDs91LL75249Lh1Xe++vF3S5vVSia+sFGMFZe6kx2FCGX1ghxs50umK7TRr8yvL1883ptvdka7e6Nmqfbiu59/8+TJE/i2X7/z8t1rV69ePFzs7dw8mrTay9trS5tHZ2++gQIK3373jd99+NL9l89252+/cen4w4/+8MXjZ4+++vrrLx89ffzoG1Dzc5vbteLcYNTdOXtw1N794PD4vU8++uLbD0cLucJWMxRZun4wTmeKGdhJtqWRjJBOmVKATKZjzwGY10p52HKSSoMAw7GAj6AxIW5SPKwwKJ6cyboDPgH7+/MUx3mcWhA5Jgo0KDO/1zU763L/BmA3QDLYjN/p9AooL0QmKRBVvNc/6/OIxRiyqkOnvZamqzwnsyQNS4okTTMUNkEIiGj+aWZWD3IgKRRTgtpDYTgm8DN8OhVkArxER1DWFwAAIABJREFUc/6ATTtIElY1KYg0C9vTR8GqvSBrkVwpV0qnS5l8KplOATSGQOICdbeRyyFICI7R8/ksKJt0eOoEbU89bNEBjSgHQ+FkLp1M5/IAGdUasgpLletpFC6Mul11K6QZAKYaKJVEPJ1Dka2ReBKwNzyNSk0jAC5V5jq9wfzi6sbq1ubGleNxNAhiP57MFou5XHmuN1zcvDWiOIEDvNOQHbEIWoZyOXEa9jUN+zzgcdOCapnARhSRxjASZQSKIkchfWlaOkAplCbUIUoSJI4HAsikg2Y4+GPkcsFwNCeiIEMazfxM5344ZBwr8L8aDHogZLtzzVZrDvVfTUDRLk5WVtdB2ubQeCwCfGQZKilTAEbTvCWAkMFgMATJ3FmCnbS6Ppk+/wVl3Gw08rFEMRsyTUNFPp/TOahgOJFPp3LlcjaeTOTn5oq5EhSaciXESQh+SRDrIoomV9CJpCQIshECzWgaANy2KokoskGkQOh7HOccFxxOfyCAkRgN6GxGkX2vm8kXkqkYMkizFTuZyvLRdtrMpIyqXgihBINMOqlwWq4UJPx2SJc0Q0WKD82fmrKmiPp0+Gk6mGoYiqUG4SvoYEGwWS8eALlN8rpABXU5ZrE88nQJx+IJIawh/xAalhC8ERHZ/zOSRjEIPoAwWiiISqR4LSgTTjoeClrxqC5GgvlGAyUBl4qpvJ4E2KGVMB8gURKwpIQiaIcxmO7zi8iPE6A8HM9FQsUUcmPnFATAAu5FrlsiG/AzoqgBhui6baKIkBgaINTK5UTU1LlsMY6OiBmtXkwUyvkS8mco1xv1ars37M2P55H//GR1dWWjk4YFndB1XtHNaDRZKs91B+Px4mR1NFgcFlPVZgodKyhA3uDL8QKyWa22Gq3FMtofRtDWEbbCyo8VSrDMy7V6e364sjLa3FlYOuwBAKNsExQKjKQwQmHY5aCCpxrYnHafK1PQRQYcv7RjoR4FSeJVko9Y6tTrFVgWzbqElKVQJKwV1AZhATrTwEpJxYIrLHpmZ424FkcH8SFDZX2YELKMZEGWGjXTbsSDKgAwzic0cy6jyYVWrJCV/FbehhfEvXldiBpJS/FRoGpRYkk0jponc8jQPRoEgW3GYjxJYbMOpzOgwqYDGUroQNtAAvN+p59VVZbEeQI4FPzb5faQOEu4AsApvbQmYYCYaJSNN8P1fqU26yQZ0TTC1Y7nN26X20/Ci2qmHSrkc+1Oo1mt5EqFTLYQ10XJNxOYnZ0958FJQH4fLHnPzHkHykX0eN1e2OoUB8ALJQ7Qn6UDPI0CwjnY4FAG3A73OYfXMfvbc7n20vL27ebg/734m6iFUTFeC5vBoGrFM+He9qSf1+RcoRRUqHonM6oX07nh8oMKFNBgsHglxpoCrOh4+WAnqISN9dMIatAIBrPojHZ/ay+2b+6O+GvbG5fOSe2b+RkiR3k9bpsJLPy12q8WD5WjtX6rvtjOxe9WSxsXr99aqK29c7x476txbDS3tDhZ297e2b9y5ejo8PjmtZ31QeH6QeHa/jf/8uOf3n3x5ulav3/vg4uLDz564x4y3bh965f5o1OEwDeOLq3X5xfuLXQvnvynf/nrP/3417/88OOPf/zuu6dff/7KC0uXDtfmmg++vDs3unb7wQv379+6cvXBB8+++uTe9nq1Wg2Pr2ZjG3vHpcpywi50YqW5chmns/H2zpVJu7M2v3J8tNqpL6zu9IyDGyevvPvZl199/fjpoy++/OrjN+9d3bu02l0+vb7anRvu7k7Wrt55BTVDv/P22w8/+OBV0MDjycNX129+/NlHXz979PWjx18/+fLp1z+/s7nVHu0MS83Ganv+xtn9pea7L269+/5nf3j69dpSIbneC1n9awejZDKfj0UQOFEAwGlT9OPJbDwUt2VDk41iDggQSAPUh4jhPowKCBFDQF7OPMgpA4D5HEmdO08xjMuhWYpAYX6cZnGGhf8a982ixyIi7znvnz3vVkgHJch+DAoh5/W7Aj6pBABsm4YdjZkALSynPAdgigia4ViQ4zRK4SjO7Q6ZiqHSnMIrCo2dd50nDYzVBWxm1uulTJYJ+r2iiDIcMJHmMAzKNOl2zMhSECRAGah8KpNJpBDJAJGAukdsA7FvhBMaahGKQa2Br0XjsO+ggEK1AxEWisYyKFawXAQArufLFfQYGUWVWqiRJKSbyIcjFDTi8UgingD0jaJn2SBHwpFoPB4FTAbcrvc63YXRaHlzbW93Y/9wFJFhD6QzmSwAcAkFwG3cXKRQuDEaI0XzRpal8ZjLyzEkxZB+dMRkxlNRnmQxH+5zzBCiJCuGhUIqZKhWAiOgOCGexpH3NuYHKez2kRTBoBkfGs0LcgBjFMOj7CEUMswL0xxeQfjV/BRJh4MW6r2aLI1RCN3ieLK2Ohn20lPLLWS9JKP0AlB2ZiiZRXW8Xu8vjIYorW7QH00mK5NBq9PtdnvtRq0ECjkXtaauLRJPK5oBZToKvCedB36fqhTLc81yqVErF2r1ECNxSNrCzeY51AKj6vJznwx9mmOHjnKhIgPVp2A9Ae2bPe9yzroDZABjcEIA/hODVaNgdLqYzMSimYShSXY2kqbsVo7TIslICBkZRZPJRLKTVqRQPq1QQUuAO67xqBmcF0xN1mwQxab6b8F4ctDUw4ohEP4AE0VprwGSIllZ9htBJWZQfCQRCyPLVD0SFFEDt2ZoViwk+xlTo3mFZmSUJ6DBAgqGLA5Hbfm4k4+HLDsRVeVQsITO38uFYjGbNOOgfjnTZgPAmIBOKXbYgHdF0LKLUJASlyUzBgAcyelcWhVkXeQ1GfMTig0vI4DYUVQTsBE5ShVBAcPqi1p6+bkCzpZiQbiUvNkoofaoShkBMPIh66A7tthbXN/aWF5ZWQUFnImG47ouwHuOxpKl2lxnMB4tLG9ORsujarZYiUUTBlwpUQsnEhk069tstevNUSUUDqrTxi1AVQDgVLGKLNWqzVa3u7g42FjrLVzpqOHnwIsikex/A2DTtG00PID8n6eu3NN571/mkKaG0BKsOV6l2ERC4S0VNULrpOQEhaXBAidZ3O+nIlpYQe5phBDUgI773G49bcbrmUwa9jRQcSEUNhJFlas1QsEG/MUpAMdMrZ415HwnXijIfj1rcrLqx7Iak7SssOIjOU2ZAnAslc7k0/lMNh8NQpUww1EpwOPOGafDC+9N8M26ME0G3KVp3u/ysZou0iRPYoQkUKQLZDKy8PMCqfQHVIX0u90BmqWNfLHRr1ccbpIWDADgnvc3Po8LFAIjq8FIpJDPz7VbrXIpVylnsuVcWBACTmLGPfsbJ0V7PV4PhUz1ZxwzTtTS6nbjALsUQfMsTlEEQYHipuG3oiqhXmwOc7ic58+d8zh+TS4vLuzfWVj/3zd/U8gE8ISiI18jNZIpRXrbC82MzqTyJUvBi83ioJZLFZb23667Sc4CAA5zBsOLerJ8ZduUdGVyNazwkhIJZQqVlcMrKxcz+8LyQLh8cf+QSNQutWdwszDMiPqCGbzfmeRr+/yV1VG3Nl/LpN9Odnf3T48X5vbe3919+6tablibjJc3tnd2L145unZ0fOvGwf7qoP3GoHdw9o9/+/NXb57c3F9s7H92MDn48O2zG3fObt+5iWD39BR+unF6/frJ4X5/2Li32ry0+/3/+A//8tMf/+Offvrx+8dPvn38h9dfGl+6sTzXfvezK63lO/ffe+Xs8u7RK58+e/bivZMru/VSunS8GS0v769UooXeyLaa1WJ3sF7bv7g/6V3bX6ktdrrjnaPL415h0p6cXDy5/uC9P3z99VdffPnFN98+e/Tp+3eu7a+NFvfPDga18e7G2t6lW6+99eabb7713svvfPLq7fsv3RxtvnVr/cUPP/7i8ZMnz7599vjxo2c/fHe6u9Rb3Ow2SouD1v7tVy7nrn+8ff/tLz55/P2lSSW2Mo6Z7ZPDUQqkQhzhh0GzAMBByYclsjErZgEAq2Yhi3KK0ENEOuD1+v0kIYV1UaQwN2rkU0mR9DhIDBNo/IJDs1FTDcqZg3WBo+YZH4/7WYl3+f0ODy74nbQoutyqoTAezEMFpALKJDVB90RMVQEckhhkuUZSOMo6MwVB4xiQ1n4qityjPV6KUWVRCHgvkCbLkQGGxH7tcHMyhTswRUWGDThQToKC0hnAfG5JNEH4FnLZXDqdjMbSAMAxXbOQXTMAsCRIoCT1XC6diSVSwXAEGDDoWagVKi9oFgjVeLqQR+YyeagwSdSpmMlk4slk1AZijTyb0PMsO5iIR5KofToCP8XRtGg0CnUpHAOZW603+v3BaIQOa/f317cvLUTMYDiJ4hrg28LGHK/u3JqQrEght1nJAEQwQujZoVsEoBUINyZnbY2lKR8AK4Zid1D9QkOUvCrzNAOXmWGQPw58cGSI5fP7Cb8PQ2pBRD7t6AhX4EmCk6Vp9BCDGrSe/wAA7s8vLAwBTBcXh/1efwLou7S4vAkA3E0B9GpIAU/neZ8DcCpbgo/T6vQWRv3uABlQLowXl5YGyMESpSGlcrVOpxxDTa6qDMxGQvM+FqBWPJ0vFvPZWgmFylZqtUq52QzRwAjQrBqwjKlGl5CPFJoA1tFxSAhN0shwxxk6AOKCIAI+z+yMw4URQK1wghY0Ox4PmUEGj5QTqWg0EwPyFswHI7haSdOqEbWSWsQAiLBDkUSjl6JJM0mF4lY4Go6lYuF4JpOfy4lSWJNN7XkaLWrC1UJKXNBV9GjdRn6HPoImSdrEVUuLBBkmCFIzEklmoFSj7FYKNocZi6p+WtdoRqRpCSVQaWh62Q6ypAQMIuBSEgBByaikBoPIAqxWQT35oagtmIJsKjThC3CaKKFITVliA2rAI0zdGWXFSmSC6bwsRW1RmPphMxcCoN1hoRAsqBFTlVTNMnS13CxkUwm0e6ZhDCpXqMSDcDF5u13PFoq5EvDHUrVWa7R6rW5/adJH7fhrUAV3W8l0xI6qGryeFYslSs12u7cwRAC8uLjQaxRLsI5BjvGKHU9mcuVGqz8/36vPjct22PoFgG0rmognc5UqvES11uh0RsPOyrgzutxSnj/7RefOz/9lWwDAQQTAv+Q2Tvuhp5kYz3uwpkOFqE1fEAkilNJ4lOMFK4ITnc5wUOcIluZInydgaxGVhesWAIZj8pzf51GyZrSZBQDWgJHjoh0x4mWNrTSiej2Ljog4SohFtXrOkrLdZLGsBJScDdjJucJhKSxracNHCYZsPlfAqIVyCsB2NAoLzNYJkXQ7nQ6PCNsBdzs9sgpMi6EEYtZDwwuibk8/wYskPuvwwmZkMA+J5KmkMQG3F2UN59rN6lyzOuPBcdYIRsqggH0eN4ZCEFU7GoLNMdfqtIuFXBVkfLmYENiAG5/1zpxzEqB2CA/sfhIDVJ11ulCXh4dG2x0AGFlDI0sOLwESmEUdHwQhULMOl+M3QBhm/646GV96YXH/f90/l0/jdFIWg6jjP5rJW/2Li82cwSQL1bBGVQq1Wjsdy/a2HtaBO1hG5UpEUEhO0KYAzMvm4k4sJMLmCGeL5eWjnZXjyj417tEXr13dpovx6nZ+xk1Hx+HOZsFXXxtVu9vE3s5OP9+vZFrvxpYv7d++Ouwev7+8/8nHydxiE5j+5vbO3qWD68dHN++eXLw0bl+5Wdnb+viff/7h/QdHJyuD7hvvj1Ze/vT+jdv3z87u3bp+euMUNWuhh8AnV/fWBu0blyubKx/8Tz/++3/461/+8qef//TsybdPP3r16u61o8X24O2P92t7L793/+bWwQsfPHr6uzvHL9w62Bk1MuWTjt3d3a6PY63JlbVca7I3qa3N91+93l+trV25vl5fXp+rrl07OhjJ6bs3T44uH509/OSrR998/sXnXzx6+uzbJ+/ePtwcjbdPr67OtVZ2Nrf2jh+gdMI3H37w9v2XXr5292Z758Oj9Vc//fSLx98+e/rto++efPf4p9/vrnfrF1eqpd64O7r18gvt+S9Odt8AAP7p5qQRH29kjNq1q4vZNEiFCEgGHaRSKm0rPn88HQENoUB9MvJZOxRUkAcbiXk9AT9JqWEojX6fAyMNi6cYXMQ8DkFnsAsXJJWXdV3mKJzGvBiBeVwXBAEQgiMo3wWc4Txegpf9eNAQaJfXifvFPMrqNXU7hppTZZ5HzUUg/uiAHkmGoAgrAKc0zsBG5GWVIxmJJgATPDOkDIKc1RifBxYf7fM6faKAA1ckaVogWT+Feyjaw/HG1M85nsrl4qFoMhaBmqLbYVNDlV4RRIklggDOuUQiEUUuHPGojU6YgzKoDjUYDscAcVOJVL5cLRfL5VwCBTGgh1tBQ0FpfyHLCIYtuHbZmI2On6fPmeE1kFnH1HCjVC635qGqLU0WJrt7a5v7Q6jh0XgCQDoRS+Rq3fHa7q0VkFkUp0ksLZqoYdQ01IATE2WRZzDSFFCHMxfAJVGxIhHbQlYSUFRA9QJGiyxoSNR3FfDD/6fOJxg+PYCg0Lwg6sEkEAYDQ0djgwxNo2zVaTfWr4bzg+HCPOrRXposDoej8WhpZTJa2lxfHvZSKLf+FwX8b0fQoNqz+XKz2x0Ou3PTQaSlyXhp3B8MesjduVJozpVLlVzouaWCLP5yBB2PJ7MIddB5fK3RqJaKlUqzEWIE9rkCZggEwGhAGRAXLi66ujbqcpMlRWJA2yMHJFhHzvPnLzh9BHxWghXUYDSdDJk259ML6OAiHdVEVs+HLFLM2Zwlkeg2WCgA2QoFeT7erEXl6VEroDYsTilWqA+GEVGVdUt+nsGEOs3UiBYFhcyRTpdmMITPG0DJXCFR1LVQTCGUdDQRCSUSth5SAG8pydCNWFxFE8AMLfIkfAptGopkWiZLCrauYW4jGY5E0lEewKRcQ0FI+UIxbyZA7XG6yRAkMCw0agu3XZVIUnPh6tSpTNZCwPPSEcmOkpqkS4JMelwg2kUaR/iro5BO4EQmAHAbABjZGMp5BMAyV6wlTJSXZTZrmXwhVy4ik5JKud4ZdLr9ySrcN5DAk8HiXiuZClmRKf2w4wDAc91Od35hcWV1abywsLRQqyQTCV2SeT0WT2TypUZrfjwedgbrJdCyKmr/h5WKGsWi8Xw5V6jVy81ef7zYHo/6k0t1KWxN47WRAH6Ow8HpNBLyotSfu1D+0nOloiY4NLWOeu5hzXM8hbmERAjFjOpwMQQRcwJXYXw0aD+fGwMA1njSF8D4cCjIsj6fk0vr4WYuCwCsiQFcMCNGtGpy1UZMqedNHaggxYfjcqVoC8leulRVAnI5KoYios8O8xGFq4QDjKgL+r8BcCFbzCIADqF2wqAN78cz65zxcKooUz6nU9AFGVQBz806cahIFEUyARCzNDFz3hugCQYKD8/SXtHgSA+GMTTbHrQLhXrD5Q5gFOyHUsP1G5TyC9tSVsPxcLpQabV6nUIpX63ms6VSxpQCvoA34Jx1+gFxocxiOIn7Zs/NOF1uzOd0BQIM6uuYPmlDBBEDDhuAIslzBMmzngsXnOfdF37r+TU23tq/01j4v66ft3UfGyE5ZElrRFMle7A/bBYNIZkth1S6VZsrdRLJxuL4xTmSomy7eikpy6DWtUT5cNfk1ejCaiIhKbpkZ6rNzRs74yvZLXp1nty/dHBJa28/3cGsHHDFdrcTpC9udlu1Pflwf6tV7pSSm3ej6/v79w7ag/tvDY6fPIwnl/vDxdWtbRDAhyeHx2e3r+7t9lsvDTtXL//8Tz9++srJKXCD02+2l2787vUbt+7cPr15dvPk9BQB8I3Tm7duXrs46bSW75fXd278D//pL//4p7/+ux9++uH77/747OMXrmwf3hiVFj57e3F09eELZzeuPHj/2ZM3b9958ZW71wvFpXzjNBsbXN6sdIrF+f7Nuf6gc7SyeWmxdPbC3E53+87+MZTpyajWXN+fS01279w7PLy4f/zi+58/+uybbwCGv/z62x++fOHS1qS9cniy3pobb20vL1954c23337nzXfeevWVl66fvHKpffZw++CD33/++Ltvnz178h1S5j9e3xhUtjcrlfbisHV4/8398uuvrjz4/Isnf31jsZUc7JTN3NHhYiGXTCWQZYDOCGIqFdIwDAFw1FZNTdKyaQvl6Apwn9FsuJfAxSAfYLwBhw8zLUryef3Mhd/QMh2YmZFVoLUySuqA9UHA3wg4RR7pHB/mm4GF7vcBxPtw05R5j3cG80lFpDhBStiI+SPrBxTxASjqV8Jxg2coQBbK79MiMs0IRlAzInhApTnHb2dJnGN8jnOesBJOKKrqJGQWBKDHTzM8zjgJn5OiZwlWC0ZT8WQqjpzeYoCfKEoQzQ+iHmYN8IXDrXwuk0/EobZaugkqNhICvS/yoDDNSDSZy4N+AxlcqQP+xpEJoQCwrQCAo0Fg+CvBoBZLJtIgfkEwhyMxIM7Pu7BiiSkAV+q9+cHCysposr2zvrUziCUQzsfjaCg5W2kvrGyeruIsXHdTYQOEgIb/zXBMxZw0iwcYzIUzOE1xqg7syIRLJKMHvgwH2IxPLWFpYDosym8EXEIhUqCCMcyHc3CzELihJic0tyRwqOVpmn4w7dsAbP7VcDBYAAAeVhvd+UG3O78ExXd5NF7fWB520wrAPJofhsL4b01YSRQxUahBtRh0Go3uAlDZ1clksTPotxvoGWOnB1WwUoxrxtRRAQD4uQJOpbOFUrlYSBbr9XqzVoRi1KyFWAGNlZDoPTLINlMF/AMAhoodnjoIo+ILn5YXWYYAbe92XDh/weHy4SSJcBEQGO6TplNuKRWPxNLJiAHwF4+ZLJ+04M4FDJQIH0H5k/FIRvcJ+WaN9vlojqOwAMgns9xqL/ZiggrrGnlfIlRAbps2LDEBKq6HsUXUW45ayjUVtG4wbZBiNpqMhlLJCECACFdfMEwtltAYWtGBO4mEAACsI/MR4GUcyVmK6nNbCRsBMKi1ULVWLtfQgXDaTEiGxBo2iTNeXNZFM2abpgqYTXvY6TG8opjhRLQQFq2wSCMAFjm3jzNMCT2cQQcgKsqhDqJx9nKjkEnEUBNWoZyKmZpQrKCHOQKtVyqgWIq1cqkAGAxVftAfdBdXFsagcbdWesO9TjozVcDwyUPABsvNfr+LrCbXJstLC8tLzXounw9rKmvG41EUR9hBzfzD8XYR6IIKyARkUTcjsWg4ki2mc7V6pT3ojsa98Wi4vFtRokFkMRt+/ggYCWArhNQwmhwwkeeoJj/vgEa9GNPjB6CVoH85moRSMYvFEqaMWtEk5EDvxEyZ9eBeLIC5/ZYW1QUK+CYAsCXwfo+TTmtWM5vNhHUDABg4txapW0ylFpdrBSCzLIUzwaRYqITZWC9TrGq4Uk9JkahIRsJU3OKrEYLhZc74z13QmQICYKAOoECCER7KzKzD4SYBgNkAsoOWJFVkGNnj9AkqMq4XKQKHV/Gcd3nRmZyH5BnGIxgc5SX8NMV3ur1iutxwOjGMUrVQqe45B0IazQgrOtxl4C7t1qBbrBWr1SLKtE4aPr8XJ9yzzoDLF+D8Mx7kM+u9MON2u30el9vnp3kEwByJBUgy4EcanCBhJ1EoHAl4gHN2dub8hQsXsssb94ed/+eSI2k43YaoRNFpRCJdtXtb7VpRlRPJkiWQnYV6o5EozG9sP2hQJB0NV3YKhsIQohEvXd3VOCM0nMRivKLxkXS5vXf3YH47scWuDOibJ9e21cHulxszaio3P+6sNMvVo/ZKPbOjXN5eqTZbhejpRmJz7/DGVn3y6gv91787KaYWuwtTAL50ePXo8PT28cH+Smv5hcrGwSv/8tPThyfXjlcGKx+91br4/u9unJ7dRuL3xun0x42b8M+1Kxv9yuCl4uqVg3/973/61x/+3Y9//fEfvv/22ycfvXCwe3N/0Bx9/tbK0vGrLxzvP/jq2YevP7h19tIrxwfzjVxs/iSb7J+uJavD2GBj/6y1ml6+u3BtYye39dre0uLWSxuXLg1qq3ulyMLAeOmVS8O9W3dODg5PH7zz6edPH3/+5RdfPP4GBO3DK2sbwF2v7XTmltZXl9cP7r725vtvvPH+e6+8+NrZrRd3RndevHj37T989eT77588AQz+9vGff39x0p7fHNRr3cXW4u3Xb9a2f3fp9NOnj//66UI31dhuWImjq4v5TCIX/0UBq6mEpQXwRCZqxcKaqYpaLoMe6wHpRznYuMtH+mmNxRg3PhsIWKYgYL7fOi+cR40IM7OGLSAfW4EKBBB1CwA4C4SP5GiH3+8kWcHvk3jG5YMizXv9bgITc1BvQ0Gg9AoadxEFCTkzkBTpBdFhSTTmdoEUYRVJBVbPa6YZovUIT2IzjhkPFXBecMmWaFhmWL4QEEBOkDggDuenLlB+b8B3nmBAxqbi2Uw8ZUONiYM4BfRFVRKNDykC6OsAasLKRFDEqYKmP3SoaobCcqKh2Yl4Kl9IQvEpg4KLRUzYPgCcYdsypsfFQcPSJEOVoqBAbNTaHA4Ca552Qcfi8VAMALhca6AmrIXJymR1awf+6aI2sCkAJwGAy83BePV4jeAsmg3qMosDAtsWoLgG9AZlvvhm/QJvwneGqwPFFT4bUG/0cJfwkwyN+3GGR+HxsP+QRwoO2Ov1eHwYyaAHrIARBMUqqH2U5mRkcALXFmUs8QiDf9XroIPkwS9CeLSyNh6vri1NNtYng04aqTBQ2NMHdM/HkMKROPpA1Ua93evUK43eCPlgTUYtNGGEDpabVRTVkE9Y1vT5OiegCVMzkkgmkhlAglyy2kJJDMVyuzNXCSG3FhaxBHh3cLUVAEJ4JagQqBBGkD+ECBUY3idOYj4MHUEjjwH4bAES8xOsZIQVUxGB3kVTkWQ+HjJ4hTQTJktFoiFf0sJknhbQQSms3HSIcLm4nErQcIWhUEmgT3LldOdiWzIMzpymRBmo51sTIlxYtgSKJJzoJHra8sUb6kVpAAAgAElEQVTTKiYFzYxGifloOhbJZRJ6zPwFgNVoUmNIUWMpQSQF1NELyGIBAEucBMrW67biViSSibF2MFJDAFzKZguxYEwxJCYYpXAOoySZMxOwKGWK1tw4yr4CPaiZ4XguChoQ1qgggIrDZ3gV2B/cQCAquh1UVKCtJqz8cgUBcDQc1IvlRNQyxUIhDBCtsFa9UarWSsgKC+V4Vdr9wXxnfmm4OJps7K715/d62Ww0FJtq0RAsxnJ9MN8bTTukV5eHo2G9Va5WY8ALLFjeuUq13en3+gvDxc2CCXTcRKCK2iliYbgkpVS2VgMB3Ogtzq+OFiabJT1pIR8sBLxIBCMdjJ4DB39pwEJ9cNPQrKnJ2nQKTJsazDJEgHKTXl80BRQKqIcMlQB3zARVBSfg3vtnXJoaNUUaIwkWvresBNw+JqOZzUwmNwXgAGcljEjdpIvVhFQr6AbcG4IJpsRCPcJEeplCRSOVRhoUsIGZaR5oRMEOALnnoAaZVigaiycT2XQmPzV8j4WDEZbjsJkLF2b9AMAc4XLQmiyIIkkpAZeH1yXSj8uk3wO7DHc4ZwmMo1w4SzFORgMZTPopgq/VB/VMuXbBgeG0oljFVsDhdXrgjYpQzSKhTLHeac/3y81StVrKAQJnTKfHgUFtc1I+guB8Lgz2dcD92xmP1+V2ubxeP+q+4niGJTESUJ7GYU9QaCiY5SmOdTtmZn7rcf/a92tq6/Bsefz/HcwmLIa1eDsdDgaDyVxG7+50m0VJiaeqYQFvL+WG1XRhbv7uayUMZ+N6abNmawIuWfHi1W2JNvT5SSTMwG3KZrL1zbOD8V72kjBq0XcOD7aN/uYXa/56eXLrwftfHO2EJkudbH7NP9neBslXjLzSze9dvnFlobHzyrXhJ1+NW/luc2W0ur29e/nq1cOjs1uXDy6N5o6uNq5c/Oxf//jZqyBEF5ovf7qyfOujV2/duAv/O7uOnv0C/N68efvGMQjQbvXVxdH22tf/y0//4R/+5ecff/zphx++ffTxg8t7RxeXGtsfvzAZXHvx1eMXfv/dk9fv3bl375UXr+7c3Kmn2xut5sLRotVeDQ+XD97Zq60Utm4uX9q90pu7c62x33rw5pXdy0vNdqlxdevw7ddePlvfunV67ejw6q1X3vr80ddPvvni0dffPP3u6Yenazvzve2jnV5lYfvSxsqle2+8/s47b7/79lvvvX797oPh5K17Wy9+8skfvv/h0dNvv/jjs2ff/fnG5rC8td3M18b9yun9s27j87sHH//xmz8/HvZTpc2WHT0+HmUS8UIMDcIaNGukY8g8Nw16LxEBAJaMYs62gxrP0QRBICMODlQBFCmHf4YgbNX2UZTn1zN/z1sydf68HoXiw6KaitEgXQJ+1wWa8OEM5wM1J4g0AAosaApgi3Rh8GdsLILOqcxpG6oGfJfjAWQIknAbdjwZUaBGqyRlkzOwOyRa1EXaa0V4rwDLzO0+7+UIgrVUQpKBKqqMB8N9fpZjvdR5+IJv5rckC7UlG47FY9kYOh6OxhOhCPJ2gsolyiLUfQ6TskA/QBaHrUgmhZ47mRbwbVGHAhCLRhEhBtlXyUR0O4biHMIoYy0EdVG3QaNxNEjFZA5l1AEAh4IReI1IBIRwPIEcGAuFcq3fQdJhaXVje2dnb6MVjYVDUWQ7Bho5Xah1hstHGxRvEaRhAv3BCDEUzUQoP4l7JYEAPhFMAj8JgppCDlegf1gKfjBwiTDgwQEMiDRDo7lpPz71g8b8Po8X/h5sUBT3R0JloWiBJxmFBgBGR9ICaormOQEp4OFwMD/qD0ZL8NPi8vrG6vIKCOD1+UZS5NFDWXnacq1O81sj4UQBYLaKgu0GoIFrncna4nhtsTbXbjUarfZct9OoQtFP2JY+tfxgJQQVdjZdzKRK5WxuauZZKpXyzXarFprCLkf4cRa563HImhkEMFQINK9ih8KGIKDzb57GKb+fpDGXc8aNolk9GIbcB1g1aCoMyckOJWmHgSyGed0bSpiknIrpDKeys3/32/MuN0kRKdROz894pKgE/zlH4B5Zo/RwJVNv10FmmyoaP0YG0YB2qm3qcYVVvD43FWeYWQIQmCIlgZLhtst4Mpy2URuBZUR4Bq04HeXScx5JBRWvBkhdCioisJVwSKFYNaJoF/B4LBgO56JsKJxslsoo0DJXstOmZNGiwSO7VlpW0JytrssBTnPSKgj5EMhBM5vMq4JliZyEgrtwJ24EJSBSrGQipDD0YBSwAxCuUcumE/BrXSvW4jFbZPKlWBAUMGvPNbOlcq5WzNRKhUal0Br1+6PxwsJ4PFnZ2pofXm4kM9E4XOegrkQjqVSxORj0xusr463NhdWF8bA5LJXztiYKNjJXLTba3d4QGbrt5ELG1AIuEtLNeDqVycKNLRZrzXqvCyp5frjQ290qWEj9RsKwtS1regQNDPe5cU3Q/Lcfz4+iUaiRIiuaIUkCLG4yMOvGvG45CTQC9SqzOkPif8+bHI0Rfg/tcwa1eJhk3E4fb4XCOstis3zGDoHQz8SDhkwEhGA0ZM1FmEwrx9WzsEll1sfFo2SlactWL50r67RYS3OJeJiQY3xSD5ZMCsdRBx2ajwLul0jmUtlSHN6yDQzHMkmFPD/jdPhE1HXhc2MiahVjKJ50uRgVVAHOMF4PJ+OkA0RGgGW9JM8ymFfRSOASLEnEe612qVC6cN4ToEQ9WpjzOFxeD8sTgmKiNKRCo9+d75bqrSayKs1n0+kZhxt1d3vw8yRNoDaagA8nXRfOz3jhT30eXwBUBkVysOvdOBugYXv4GQknWZDbAiee87odrtkZzD9TuHNnk75vxKyon5QoNZ80gb4lC0Zvt1PNq1w6XYmJ+EK/kiqkoo3R5ksdKNRJpbhbF02ZVNRMfWee50W7vRkNaUowHM+U2qv3j1d2E3vq1jx9f39/Lzq3+fW6XKvN79y499U3+9bOykKpsa9cXdvrVBvZ3P1Kf/fk7v588/CNycHjd1qtbK+/sry2hYIYrh7cOju5cjxa7L066O3f+Ns/f/X+1pW9je7u45sLR59+cOv0ee/zrVtTA6wbJ9funm0eD9cLR8eNg53X/re//NNf//LzTz///OMPTx9/cnf/6PrOsHr4hwfDlTuvPnj5w2++fufu3Zdfuv/K3ctXD8frCxvLVnl9t2VXt9ONtfUXX9tp1+uXLm4c717eLly719vpHb77yuX9g0FydHX/8NLNV1594+Uro6M71w8vH964/8Hn33z5GQo4+uqbH3787N7Gzqi7fnlrUl0ATbW2e+/hw7fee+fhW+9/+PLN1066F987vvTW+3949Mfvnz599t133/3xj59sb1dbx+1qpd+o7J29drn44PeHD588/e7nrVaxdLETtrdPFtPxbDoaVdWgyvi4YtrSMCJWjNoRC8gpL+dqCVW0JVMD3kkiy3GcFkWc9bncNGPrAoGTPpfHJyoKPeORY+jxFM/DdqEohAmglwkSo/iAF+CR4z1OkApeGgg/AdSO9DLZuB6BnSobpqYhk3ketfQipDcyCctAJqQAHBJriR4PfE0VXX+HUy4PQzjhJX+NR6RZ0qIDhuT30qwfI7xYgBdYHFmo+hjiAqaoceRnD1UznkqnU4k4CNBp0qwdNtCDJ5AWGlBnOxTLotNKVMmgMFiqqCs6ajKJ5YupfCZfTRvBdLmaTyXjCA7tkCnzEschtygjqIdTMagxYZQWlE1GQEzDi0wbuMqoO3Su219YnKyuba9d3Fjb7QI6o34UAPdkPAWyZGH18gID+pSUwyFDZ71ewdJFzCsyIkcGaC2aDE3D/XgUjQcai5OA1yBPOuRDRyN7dg4UMOb3e1FIMFxvN4Z53AFAan6amcLQ4tRvCmknhp7OEAoCas2ifzUajiaThX6v12q2uqDEAYHX1ja2tlfW55sp1H81jQqSBE0RZcuCoh9OF0ul6lwDRH2/N1etzS8hY2EQVv1Ou4P8bpFffzGG1CQaKCE4VdZMExhMKgcCuJADQVZBlmR1ZEVJoUa96QdAzAD5LqCH6qiyTwdIYV1J6IkgkkQ06fOT/nMzUFXcHg/uAz2A04LCCAJA4PlANB7NpSVR0912JipKSlQnXKAkJVbQVCvomfH7WMvmA7iEQl8j1fFCnPMG4oNqfNIRQcuF0OMEdBaK4gHg7odUUcBBaVsc6fJR3gABVY0W7aglkbFYCiW4JkIAwLQPYzXTiCQjklfQ4IqqNACwjk4qgqGQQtOiKUjnsHDYjERyUQ4AuFEqV0uFYi5lRjRRIaZkgKBYIDgolVeVMNgdDHoiGpQlLZSKWxpgLrAY2Ba4lxB1DU2TMYIOm1IPglgL6khQVisIgENBQys34lFToPPFqInWi9Vs5EqVYqOSrRYLc/VSewEB8Gi0tDgeb2yPF/abqVw0HjJAh2kxAOByc9DvLq5ORptrQ1DA881RuZwL6ZIwHecq1lud3nA8Hq9uZ20DXk3XkEFWOpfN5zKlermMsp7nWoDhw/n2+kYeWWuG0eFWaKqC0S+ezwJP40Cfm2EpU682yfjFEQtWKUMGvLN+L+bzirGoIVuGqvEKTQbOU7bCBQCACY9DNxIRmvd7A6xhhzSOxRxMMmgj6EpaCIBFIxIymxEmNQcAnA+bqsj6mVicKTctyepmctUgI9WSXCwWpZU4HzfDJRXzB2gRKEDQAgkcTSczyAIemWiadtg2GYl2OmadXl6RWNzlcErI0hT2I+mcQTFWtJ9iMR96m7MOjx+joAxxFIm5FA2WiJvgaLXVhupbOvdbF0bLeiRXc15we504TgqKYduRVKne7S70Ss1Ws1ZBvqGZnGfWSYPW9TFuisVBB3s88I09sxdmPPAV+I0Pp9GsP7LICtDIrwMKM0dSKCOTo3moy57Z847ZGQe3/zD7X50jWTPBSjZpFC1VQR0JWnenUyuoVDxdjSl4M53Ot6u50eXjVxs4FwiFi9s1yZRxSU+3Tnc0TgoN90MKzytqOFloL906XNtObYubXe7GlePLse7uV2tSpdLbvHb3/T/smOujQbl2UT4eL1QrtVjlVrq9dXB1o987fXVy/csXG91ctz9ZWdvaRQB8cv3s8ODyuLtzvbx7+Z3/5un7d68frzTGb7w3Xnrr07ODB4C+z8MXTk9Pp7++fLLdb+zcaWxsXP+f//0//vNf/vqXn3788U/ff/PR/YOrx9vzjVu/v7O4fPudNz9+9NU798/uvnr/hTfvHp5cXF1t3L4f0uvrK9HUqFjfXLn9+v3FUXNwY+Pi8frupdL6a5OF0f5bL794MCz0r9+5sX5wdPO1lx+8eX20fnbr2snRvd89fPf7b7/+7tmzR199Az+9eHFl1Fk9PliuDy9urmysHr/4zlsP3373rbc+eunolaP29Q+277355Zef/vQt+vHs229/uLs1bq6tNQrtfnN49vJpeffz0zvf/PHpPx3BXdhfSBirR4upeCaZTkJ9CXM4k44HVULIpG0L5QFqglVIBqFCSALtd7t9fgeIEMrQYOF5PCQTCWugw1yOWTeUXGrWJUYVVRFhHRABgkA2pt5ZN0FhFO3B3H5SZF0+SUIArKuE3+UnfWwevnkqYYpaEAi9CpqIQ26TJIHpAGumEVRpWAqCW1KZGUBwRSHP+UnM5551nnPNOihBxFUTZ23S4SMYLEB4gYLyHBVA3Uhk4IJPNaKZNMr0zeSL2STKKrJQPhogu/4LABMSCG1keBULT53z0HO1oMKjbJ5QLBIvlPIoaTCoJxJZQJJ0Oh5FY56GyOnPD890UwslIijuJRJFKnh6/hyLRFCrbb5YqtRa/eHieHltc2Nlf2N9r48Ou22Q1qlEOpFEDrorl0cMI7OEBN81EmK9FwhOJDBZCDAyGnICAqQhRiPwqEmLp7hpZy5IYxC9sPewAFINcKF96IklIJPfgzw//X4C5DAO4pIVUDcWgx4QkcgnnpkOIkGt+xWykOzPj5aWht3eoN9pjRahPANTWF4ZNBMoDQ51xaDmGIkX4ZOaiKwXCyUU6VOstZrlahcJ+5XxLwDc7tRK9XYjG0bHyApqsUIJg5aZTIYiefQcsliu1mpVFIrUmGtYaE6Kmqp5liB55P5kTM3F0GQXcrIAjFJlgeMYEh2x4X6Xw+GccUBtIRD+grIXcU5RrOB5B5uKBi1ejMkzSiKsir5gRGflMCizfLU819V//dtfn8cY0uNQRRpqE87psy7SMSNVq/1O1JR0ezoFrE9Vvq5bgC6mwPlJr2TymJdzBwIsAxfMSoZ50krDnY0mEACLAoEAWDUjtupjdIllFT6gSrIEig4WA8qAsHTVQccT4Ug0G+bDoRQAcKWQL+ajFiw8hhKne4QTRUaLhAyQUoQQIFjAJFORpGAmlZANW2M41CJMzXok2AiiSDJADm0dhd4ABJthyzRr1XwaOWEhAI5FTIHJFyIAwCxttpqFcrVcr+YrxdJco9pdGAxGY1iKo9HC6s7qeLuZzscAgCWgVvFIKl1p9Pvd0fJ4+ByAh61xGQ11S2I4HI1nivU5BMBLk7UtwLlpWpUFqz2dyeRz2UqjWm3O9VqN7mi+u7DQWtrIGzYKAkbIG/wFeEPIitJ+3sP/PA3pl64P+J8CvxMQ2cIBZ4BO+ty0nQxKFkhgEbkxO312UAzgmBd3OzQzGqJ5zI9TmmVrPIfNkHHTrJSAKgMA4xj//zP1Xs2RZeeWGIeX7CoA6fNknszjTR6X5+RJ7x3SIg28994DVSiPAlDedLU37CbbVxt2N5uXl+Q1o5l7Q1JcvYwi5kUhhUKP0pN+gBSKmNGjvp1FjgbR7G5WVwGZJ/f+1lp7f99aCpStapiM1nPcYNFUAwztIUJxJlfTeHUokx00Kb4cYcORBAMAHNbjJRG+Fy0i4oTaBiLZRMKMpMIGPFQtFA6pNE1j/f12OyWKjM/eb2FRmBh84JTD4uGA6QAAe920SOOOvgE35qExO+nBvFYuwKA0dBYnG61KoZJ7rc/uIXjZzFbs/QDAGOZH4UXBUKJQbnYmOsVmqz5YQgiczGKWAQ+8VdD7OOXtI3GHHfO40CiS1W6z2ACBsd6pEUkTUPIw+E2EB0Qx/AKBwlj8fQOuy5es/XbHL1L3p+aezcTSutNjEnIrFpS0WCRrDC8PDaY5Mpou67wrWipVx+up1uLRiyEX7TeC+cVyQBe8oM/T+ysCrSqjW0EQ1lBKo7nR+avr80v5dWGtyRwd3tw1h5bfWxRhKy1eOX3+3qK6ODlcKG+yV2faxVxJ6R6YrbWt9dmh0Zu3xm5+eFQeyQ0NT82icPSt3f0rhzd2DpZGG3fGa4c73/+7dx5vXN8aHTz4cHP45q8eHO3fvHby6voXTR+hM+id3ZWZbuN0qr49/0//3R//8Kff/+H33337/bdfvHVzdfvKQrN797OT2ubZ2XtfffDozq3T8/O7t+/f2jvanZkonV5rTI8Prs0GS2PKwtje0/PTicnM+JXu/lIut9zKPt7OT2w/vfvixsLCzds717cXVq/cuf/w/OndubGTi8P1k0fPXrz13udffv7Z55998unL77+7t7662Bre3l9st2AjjU0fPnj2/I0XT569/frJnbO5kQf3l+++9dEHL7/++hv4evnV7z9aWWrXFrrZ8ngrf3x+MVL7+NHuh7//8o93mrX40kxanjyYyqazqUwkmUjHSEIE5cl5uFjSCMVMKIicVsiFZAZ5L3kx24DFitl9QEgJj8vp8BLRuMF5Xda+ASfsBdxqYUIcihiCeu8FAHa5XM4+jKFA5th8KOOHsHoFzmv3AUoD13V6nXQ2qikxEC4KwwYUERCGJEnUXOSV4KeDAhZkn5/1DbCqZBmwWZEpucvm9Nj7bQ73Zc5QRBDTXibo7cM8pAf3AQATNAptQu3A2IBDDJrIECMHVQJ1eoMIjvRYOTrFQ+3EAodzcRRViNIII9GoqYG4kFSeRl61SO3kCql8sZiUxWgMvuKJVCoKEGooPQO/3uiqHAiGQ6i9MxRGk6eweZEPFkB5GLVBlypDndHJKZRHuLCxPL/c1JA7fSwWSSBPJShrnentKYoIsDihhwJyyNB4gWVwjEFOSlC0BAoN6DA90yiQS7jL60VOWKj10u1GAQx+lJBht9kt6MYSyDEQHgvsPYfHh6MuLCDFfuQn4fXiUO9RyyZyz2FY2v8zlNI03m3WW41Ge3SsOwQ4Wq11JmbmpruNGII/XkCNMiKDQgwFyQyhI/hsrlQeLKRztWa12RmbnJ6ZHGk0Gw0g+cDvBputajqqgKTiSD9oVE1WdQBgLZzLFyolwJ/Baq2CbImbVY3gUaYPShYHiGV4Hk3wyMheG3n3o0Yd8RUAEzjldngBP6191oEBm90OAt/u9PhIkuFlJST19/uTCV0h+TDZR5pyQHR64Neh/MM3CYdTNfPnr11GHSl9l1l0bCfQHj9gp936N65KtZHkGUXq3QHDclADiiJqhmDoAuv3OfBQwOsm4EdTOAMgGQfRK2eRYVo8YQIAcz6MENWApBuy2yuBBOY4lyBwHMp1kHWeoUDUcX1EyAya0ZTBmkaqUiwVswDAhinICslpBLqbYYGtaiYydyQozkEzvCTqsIPMXNhAhlO0IHMy67bhsspxhJcQgrqqIV6jI/1rAlssoyNo1IQVyA5GzCDP5v8KwK16EX4i/MxioVQbHGyPDg+PTUxMzoAMnllZmFqqJXMAwEEJ1nHETKVRE1Z7bHJsGAB4dmx8tDVVzKVNTeCAWMbgvzaH2sOj41Nzi2FFQTGcQQUAOBqPZ1IAwKVyrTrUbLTHx4bHp9ujCxklFAmiiXk9qP5V+qoovuS/mEH/ZfYa+bGLyO+FY2iyN+ToIjxul9UZSJuCZoJKRhOv7gFF53CvF8MdNikINJUBFuaDZ6+wDGb3x5AfSaaAAoEBCpVISKlFqUijKJZKIOEZBvfrCS7V1ESpkc0MRmiuGOKNcIYXozQIwjTnIRlOQkP9aIAwnk/EAYB70WhB1NfBkyzR3++0+QSJJ4HC0SgOlScJDrO6GZGjPLAtncgO2nW5D4oO4xmAd+AboHgRx3wDtJ1udwupUvqSAwMAlsx8w3EZ9ijsRw6ZWxjIAaU71S21O81KuVwu5RMpd38/hnN2iw/DaF8/TrisXj+GOUECW21WC6x/UBvoPIum4Jl4XUCtcY+X8tMUQREAzbYB6+V+VKl/Sc2+fuefOjYzxvvDdn4sZQSkeLQQHVlqVTMCn8iXZA4zO4PFzlCxM7v7ZsvBkqpUmCvJhuClI5HcwQoPWml4KyQwgmaYRn5h59bm3Fx5N7hbp48Orm0bjcX3VqRKpbt09ez9j5aMjYXxfGXLf7I5N5QoBVY2zYmD/fWZ+uTZ8fTjDzcGx7KN0dm5hWVQwHsHh1dPDq5MNSbvFVY3b/7L12+ebx7PtmaePW6uvv/G0fXrRyd/AeCTq8fo62jrcHikdbhdWp/7zX/89g//9MPf/u0P33z7/Rfv3thYP1yqjJ+9tz26fOu9zz94dO/09unFxdmdiztb21uj46Onx9WV+7vLq2NDi2p5YurBg+v3pgfNtZuVpc5Qa2c8cnBYnz86f3L/4f37L05X9m4vL+0enD27c/rwwc7E2u27+3s3nj95/tlXn3zy6Weff/7ZZy9//6ujlZlOZ+X6enVofnllfOHowRsvnj179vTFGycnFxOTbx/tnH38+a96APzt119//cON+dlyZ24w321nVi6e7KYefrL59KeXPz2o1PTJhbQ8fDBXLOQzqWAcEMfHBjNJg3YzejocjiNbQVIt5xUSp1ASh89tG8BIF+MPMrjT4bB7yWjMFH0gc20+laI8jn7G4ASR64k0qPqY241ZGRlkNenwWZGBsR3nGMyGc1CuAEQxB5WJmFI4xOumoWkyR6OOIdTN53OL0RAgnECzOB0UMUCSAYcD9gGLQtl9Hrvd4e7jdQ23UDpH8n6ny8fgPtzhRqYwfg8aiXV6rDZBRzCYy2ZT8XA8nQSNnzX0Xpig+RcA9rHZWjGbiCazcQDgEGhuVVJYErXC6JFIMpdNp7KlrK5EUvFILA4YjnoJdQX+qKpJKNsPjSshmo+6Us1oNKKHkV1DFLnapTMAwD3b5Jm5+dWVjZX5hSZStUY0YoBGDoMCbo5M7cwyhASbVQppciiZNXgU1Q14rqu9aBiV9+ME5fcAXNFMr28W3fe6MAyw1+PyUj5Q+1aLpd9ptVr7rU6HDcMwAF+il8sMsoJCJ9HASIC6+GB/wuNBptCU/2eFSqNZr1Qq1cpgrTUyNtZqNWvN0dml5dmxbhIF54q9uEeBRRNXkhpTQnHU0FMqN5qVwaFuu9MdnZqfn+gA+g6hr1a93moNZtMCOgIB5Q31hQ+oajwTTxeAaRSKhUKpUhlEbh6NQdlDsTSBrOUJP4gJVkKHmugCXtX0XmqdLKEjaLo37eh1uHB3Xx+8S4fd6nQ6nJifZnmRk40IY3VYBSOsULzsHqDQjBnlIXnF0CQVUaJIqcj0u3DM6XS5/BzKsaQJNkDQnGC1ct3hkKj1jIh7p9CoCY+TNS6oBSjGZbcqkgu1f1F+F8n6uXCYZ8RCNBGJAlVFkSNezCdoSjCaVHG3IJN+RnCLUgB1hsmyAW9JC8h0H22ENKCAQS5sZCulcimXy6d1k1UkUgv5SdzpRSaToZCiSgDzpA0AHJYdMNFwQuIjCofu33nBY/cHZIFTMEwLs7TZG6LV4EerqHmxWEQAHNZlIVtNRAyJz6MjaIGlgi3EeYqFYq5QrgwWBjujIyNj4+NTMxOzUzNLCzPL1QRSwAayxQiHs5lCrdPtjE2MIACeGxsf60wXcwBDIhuCQpApNdqtdrszMjm3YCgohhNgFYhmNJYspDLlSmmwVq22AcCnJmcWx4YXksBeUZyV/l8BcG8auDeH1LsAll/dAb/KQULTR7jXZbOhbetyOn/l4mEAACAASURBVC0DTDYuyUCoFJoBmOljdYFAg3YOKyIEHI15PL6eVR7ITB9Q9dJgrpjUFQF3U2rcVJpJNlwvifmyLvMs4yO0JB9rwTOq5VLlGMXkVFGPZCUxSoXCMRnHKIYWVEkKhtFVVSGRiMYzJoCv2Xvdop9l0PZyMeg022r1C+ikg/RxHoud4DkSSLDXjtGs19XX5/Z4WU8/juN+q4eVfJh/gHRwzZFiAgDY7vKQomzmatZL/dZXAAzkR48WCgiAy2iYYBAAuJBJOC9ZPGTAZgVkZ3CLn3L2owsmh6X/8oANJLDN6vCgACRQwX6v1+8h/FBrfbQPKAxN+imOdV7qA7D+hf/yLwavaP9yzxvSfPYoxXRCAcVIRbNma67TKASFZCYv8mRurFpotapj8wePBj0BTDDykwUlyHoYSc/uralsIDSyFVNoGo3X5ed3zw9mpvM7+n6dPN7Y3Qy31r9YlQYr7bmj0w8/2Yhszo8Xa7u+o8310URRPZqLzZ0cLI5WFh/tr77/3nJ1OFEdm5tfRFPA+4eHd/YP97qV473y8cKv//ndJ1eubXea1z7YHD555+zg2slfwgf/cg595XB/a3m6NnVam1+++A9//Ps//Pl3f/vT9999//Vbt7ZBR9cnLj7ZbK88evHhR+dXTh8+PL9z+9a9B2tHO+WRpdtbtb0H126ujZXPJuLVybMHt+7cHU9lt1YGlya2Vg7XG8NH+1sn++/cefDs/O6Dmwf71/aWN44vPrh36+HrByMLt+9cXbv+5ovn73/x1ReffPLll59++v0fPtxfXwc4P9lqNBcW56fnD86fPnv++PUnbz64eudaZ+OtncMXv/nNVy9B/n79zcuXv/3N6tJQfXUkXx6qDp89Oc8tfHPl1svf/vR6taF1F5KB2s5MvpBNJIJx2Go+Vk4mQizG6HEd2fMEZFwvBX2cyLKkx+H0eNx2n4v1aQzhAgD2M9GQLgJRs9oojaI9rn7WQFF5JO5FKhblFnkGeBVIos/hcWBQY5xehsYcPpahUasA5mKysbQJlDUakpERFlRl2DAM7XdZeDOEuo1BAUlh3gelEyexgQE7McAqtBf3evowWG4Bh4UOqwwDzIDmfThsBB9qUHK73G67E7dZOT1WKGSigLu5WCqTCAVDkXAIjU/KOgJgjuf8bKaaS8UT+UJU00N60EAmtSzoagVWaziZTZeyuULciGZyqUQSJVagiqWgdm3kAymiCqKha+EgSBYDXSKH0KRvPBFJpDLIQKvebbUn5ubn5paWVpbnF4dNELl6xIT/RWGvl2vdyc1ZzhcI+FxkMJmK6RLlpVBzRhCpAo5nKZ7AAG9IH+pF8ro9fpfHhZrNHPBuPS6r1W4dsFoHLLYBR3/fgB2nKR/Do4keWXiVMiMxCAtBBnsAhIEp42hCF1lT/iyXzybi2Wqr3el0hkdHuiMT01NTs4sry9Njw3E0IhtAAcIcijIEsqGGjHAKgWgxW2k16yB7oR6Pzy/PdOGfw8PtZrPdarVqhWRMUWTUuiUAArNCUEvE4ymo7vViGf3hQi5TqdebZclLoXZuj8tD+CiKoCXt1RE0/C2o9Pw4FPSD0ei5B60ir8vSBwzD6bA6UO2lWGTIK0eiflDEkQTnF1XvgI2MBWWVl1QjmooakaCqm1q8YNjQCSOaKUYALAYB7YKKnTa9ntJYGWVavZoDlkTQwAq60geJSQsOt1XU/T4bBksXIzkK9gNPM5kISqBPmLLBi4TXx+tBLZJUSScrkwTJu+HBo09Nk03Q9UFFp/oDkYhuxhOqEDXylVKplM/n4kGFDbC0rkDdduN8AA0hSarkR1ZngiCoaoBDQdSypAscMgeRfHZ3QA8wnJeUTF0QglKPomi9OSBVLRVTiSiaA+aLzSQAMJfLhzUUYmU0iwh7C4OFfLlazlc6wyMjo2MT07NTS3PTi4tzK707YFB4MgCw+QqAu2Njw925meG58bGR9iRSwADABqjCdKk53IYPuDs5OxdGLZlyEFmsoFm7Yjo3WC2jFqLucHt0ZnZucaq7EAuE0WAeMoT+L0fQr5qxtP8fgJHdac8EWuJRnDyoR7fb7bQDs3dY+4lUXBFAn2s87GfvAK7LDAAwZh/wm6EwTyKjZDUU0kTW5fTGwkq+UgAA1iQgqko8rDQzjFEtiumKoUo87SfVBB/uAhhX88lynKLSoqSEU5oYZcxIEHd5GYrkJUGQgRRHk/lEMp7JmkHdRIY9yAyTYWB7DdgYSaAxS79HQPYENMHhNpuP56ne0ZOL5HAn6AMPTnsG3CTpd8Oi8DkxO+mjs91aejB16bLFTcuKkR60XLI67VAhWQBgJRjJFBqdiW5luD2ELoEL+WLKdQnqGDNg8QskYekXGLfV7nJ57fBU+iw2i8UyYEOmuyifkcCBgeOon4Ki/ai1kiIYKoC9ZrEP2H3/ZqDfNbr5f93vk2WvzWC44ZikhuLprNGY6dYyuhCPZwK0p9gdanRqxeHp/Sd1F43r4fxYXlVID0eJ4cVpSVDM7npMpciAKEWrEytnB3Oz6U1tu8XdWN/aTnS2vttU6/Xu/NHZ25/uRZfHR2u1XXJ3fqmbycauNzMLV7cnmoMbD5bW3n823xyKVsdmF5ZWN7b3Do9P7m7tzte7F+2J7b1//+OLm8cnk7X5t592jt54enx8cvzq/hcA+PjKyfXrVw/3lqZHR25NNza2//Xf//BPf/eHv/vdjz98//X7t9f3DlaGZp68fTBycPb8o9evX3t47/TGrfP7F/eXbqx3Z8evbA9v3bt3c22yvHGtstq4+/j27YdXFkc77dHJ3aWtua1rC8Nnj7dOdx49P31w7/qNOxdbhyf7qxu3nr/z/Nbp69enp/bPbh/sn7358IPPXn7+KaDwNx9//vvPb64sj7Zmj7aGmxPLS7Mz2xcvXn+BTqIv9u7tdK69u331jS8//+a33379zbff/PDJn+7MjHZn5yvpard6/PDpRPHj59c//P2f3u60jNZSRipuTmcL6XjUTMKm8fmEVMLgMUqPaBoyz9U4Ja6ykkCShMfh8HicNi/GkipPo4kXko8BrcQxrL+fUigOwwZ4Hcovh9p10QLxOF3Ya4xC+fwAv2hxUsD5aa+LgMrqdtmcuFcohBMR+DMq23NzERVkkY9MgZxcCDYv/BvP0TJJKxKHY4CpLo9XDSKQod2kiBMhP8ZrAUXGHS6Wx1ELEvBC0uvGvLjNjVvsrIZSD+KxdD6fzyL/qXDvujaITtFeATAhZYDyxkGuhs1YwkTXgUgBo1SeQNBEHVjZwVIkGM+hY2yUXIjOBkEAg75TJYAZ0MAIgEH/QqEKm6+GgAFcw/FkBupfvTXcak8uLs7PL6+urC4sjIZQW0oE+HXINOP5YnV4fHWW9woBn9Onp8MihQtiOCSJLI8yBXvXYugEGR6m22IHvHWjyyCL2+uy4/YB+H9AzIHYIHdYUMd+RtFVJgDiD4BIRt4SUCmAuvBISvr8mMMF+xiZDTGk3/8zBJtD9cF8uTbUGZ+ZHp+YX1mam51bmB/tdiKAOSgbAVkDcoDByN0plsgUiqCAc6VqrTJYqQFyD08vzo60W52RbhNk7VCrUS3EUc2VpV6SksRLuhaHR5JAfxDd/+bhIVbbrUZR8bMgxUnUhIWaxVAisNxz6YfSrvT+CQCMppd9Hj8QPdJtc/ZZLCB/4SGgWzAX7qcYI2piToztDJKExPX3uzBDExhSBMhLJ1AvumaGYgXDAbwRNSwDsvUGm2mJcQ4k1xRCyDUlMYiCrdAJNGBvLy3elIAL8pjHSRoBwunywtMlOZZWUiJFxZFPSzBiBAxRhsLHAGIHTZVzwgolCc7DsKrAiWJQDkMZ1EGTXwqYISUUj8tCLFQqF5ATdDqkgvIhOZ3BMMxDglYNRjVR4b0UZSO4QEBVaV6JxXTDAMxF6pBzeFgFTRY4A6YSgF+Wg4amaEEtpAYBHgaLyOI8rEssALCpBnh0BA1clgk10QhSJV8pZwu1Srne6XSHR0YnZubnVuYm5hYXVxqJVChiGgpgfthIZUrVVqc7NtLpzk4PL0zAv4wX8hkTHqgRjsaT+XoPgIenZmeAwWpCQNNM+MMRUMCZ3OBgsdJE5x/t8emZhdnZ4eWoFA4FkQvHKxXca8LS/usGaPlV7qAkIeMRYOw+HHdhyMocgw/X7nTbfJG4wQVDEnBwhsDtdlVl4Xl5HFZc10wet7jdmAQKWORg/cdMPllIA7UBHoORUswM1NO0Wi1LiSqaCAMMVBNCeFhXuUopOZggiThsEjOuByJMOMy73H6WooGzcADAZiSZjyfimRxSwKGejZcC6Oa0WK0WVIR8Dqudk3geXjLrs1u9nMh4AA1dTh8NG3LA6vL5vDYrRXn9VkYmYLt5KUJrtDLl1Gv9VhcFKjtVtV6yuBywpxkEwFo4URxqj3Wrw+3WUA2R1FLG24cSgPssbtbv/oVF82EUbnWSDgyzXAbtDC/FjhLh/KQHI3APDQI+AFuUJpDBKgCwn/Kim2KX7TX3L/tGb//vD6yJOI2bnDyalZVQKJ8z6nOjlbgWiEeLEcaSq9YbQ4PlyaXtF6MunEoEi2MlXSH9cjSeWZ1kaUntrJkSwyqGnO5OLJ9vTy8kt5WlDn9tbXsn0V7/eltvdSbXbj794Iv96PLEWK2xye7PL9RzicLN9ODy1a3xRn3v7ujmr27PDjfjQ+MAwCiJ8PjK7as7W93Kyo3C2sqb//zhw6snK0Ot2x9tT774zd2Dk6vXD3rzR8j+CjlwHO9tTU8MHVyrza99+T/++cc/ff8Pv/vhh++/eud0f2NvtTP98O2D9vqNt9+5e/P+k9OLe3dPzy/O1q/Mzk4s3p2tX394ev1otTzxoLq+f+PprZsXFzu7G7NTe/trqxvrOwcbcw/f2rl5cPv9u/efn1+5+ujW+sGtrbXDvQdP3rg4efJ0Y3Lz7q2Fg/def/rOJ1999Tl8fffZ5394eWdtY6YxfbI9PDq5uDQ9d3Dx7K2L56+//vz27fO1zjt3ti/ef/+L3/722+9++913n/zdR6vTI+2VTqbcrS88eHolc/rV7cc//eNbY0OR5kpJy2/O5IrpmBmP6kHEfLIJjXfhRswwo8GACrQxFFF5n9eHBk3dTocb1hQrs36P2+Ug+JgREP0eb/+AIFKiGxsQgwpyLUfcDCcIL/z2S7ToR/PAoE5JjnD4ecbjgvpEY5jD7fcHiqFgUAROyWuKDuJSQ1HzoggIIZrwcuBbsSQZlgHvba+9BluA5YIqR7AiS3t8JC5rjDOADskIp5tm0bg6hlP0KwB2eLE+t6jGo+k8unlL5jLJRAL+UpEjbVDrKWCW40kpW0wAMseSkWguH5E4SQ4AAKM7Yi1kxrOZWCyb0fVEPJXNxFHSYARelwrcHV2QQkUXeBFNzpiGHDTDhoEyXHu5SiAbUpk8AHB7qDO9MD+/tLK5vrE8P4KafHUA8RDUpkShVB+bWJqVcF5C6To67ecEVYnINDwRlCiFXF+9ftLvcbnRe0PZg7jdbR9wwgfhcztxmmMZFbkPG+GQiWYmzHAQ5aoCMKDTPdDpIEMZ5JnFCSRKSkOKk+zNM/l+1u12OiPjw81iIZurDk+Mj8wszk1CgZ6FXw8THImilHjU8IluCQNyBAmhXL5UaSBD6Eqz2wYAH4VqXa022kMVNG1ardWrWROKKvI0o8WAjEhKOJWMJIupcHqwXCrmc7ncYLtVzUokylj3oRFG1O1NM4IiCgHU3aMidqRKAZnnGORmDRjtxbx+bADVHqjOoASgRDs8OCtFwxpUpV8COoU4G+bAbZLCAVcB1I+kkoloFIVcpgSnG6gd0DiWZjjUWI1d+hsp5JBddooJiChpHI3GoGgO5PoG9IczBYXyYG6LoAAMU8B4cJr2cXGVY+NxIxk1E2Ep2DMeJ5CJlKkKblqiaELwswzqnw8EA2EKcEtUsctaLGaEEjFJiBvlUr4ADympBllFJQIhv8vlxllB4LQIUEjGwzNWtudDSUly1KRlmSMpXtYEj5UNAtMj3TLIY9QBDcsX6rYO9FiFh1XOIYPVMEjkYjOBYjZL2RACYNZsFcu5fCVXrmagxgLJGkIIPDm7sLAyMzq3vLiCjDhgMUusGgxr8fRgZajdGR1ud+amRxenxke7Y3kAYJVn9HAsHs/Wuu1Ouz0KAhogVeYDwaABKz2WSBVTWVD2g41qu1lrT05Nzk3Nj67FFJQCBQI4ZBp/HUPqpSG9imN4Bb89T8pAz/6ZgnLidLmA73hABVuduNtnJCNcMCLytICm1QYCKgdwhnuchK6FRdwC+yGgGwDAbicWMygzGUlHYJn6XD4xGhJrSVJqVOVEDbgK7/ciAI6MBFW2DACcosg4sMtQBAFwNExAGQL6KsASkULAoBO5WAwAuCfggzpyJacI0gWwd5mQJY5wO/opRLxZ4PnWfjfDIVtMwuP0+AmrxTrg9GGghEkKo62UzOAu0uEn+XIrmU++BorFzwvBTN3y80sWK+xsAGDUqBArtdsjAMCdbmeoWiqVimm/1etyOK02O+Gx/9wjW10qN2AhnT6f/XI/vBA7/EdYlCSJQTnAKMzJ6QE+QNMgXHiGZGiM8PdfdlidNoftElf6Pw8vJROkL0gEGyEqmNaTaa26OFVPhKR4rDGo2ssjI0P1UnVmYe/xCEP7wsHK5KCp0bShhzK7yyKrqqNbBs8IaoSPDc/uPF7vzid2pakmtbO4uRVrrX+5GWyPzO2cv/3ym93o1tLUYGuZvbK+Vk5Ha7cirY3ruxPN9vHt7pVvD2cmhjIjU7MLy+vb+4dXrp5uHWw3q8dr5Y2tH358fuvm0fDY3IsX7ZOP39q5emfv5nV0BYwuf6/2LCg3V6ebc/cqCyu3/+Mf/+GffvcPP4L+/eZXZzvbV5fHWrc+3asdPHr7+Z3b5+dnD++fnd57cHNnc2Omtnp3qX7w5Oats7Vu/WJs4uTuWzfv3H54Z2NjduWdzeO1vbnFre2DqRsf39zYvnh2/+L0/uPbN59e3Ti4srZ85fzFm08enJ09PZmdvf94c/fxs2dvf/ryi8+//Orl159/+fuvH2+szo/NXj1sV0eXlqem9h48fOvR0zdef/3Gw2sz07++dvXi8Ydfffv1t999++n33/54Y6ldXx0vFhud9sMHD4rLP53e/PYfno3Voo21mpEDBVxMxc2UibaDn8rGZADgaBIlBElKEOqcTPGMn/XC7nA4fahucCINFcplw5l4SJJIn9/m1Fky4HIPiCpKkqcJP4WDFsUBgAcY1mW321w+i4sJ+G2UQEOppEjajTndhD+QT8iqIBpaDDVpBCQohAIncLDm5QgyV6cpnuXitMMFi2/AIykEGUCkjHK67QSrxCjWq8tcKELb+2GXYGhWH90ZueFFwiu9hKsy2kyoVTORSKVBKsRSEQP1cCIFHAggL0oqXc3GI7FC2tQjcVPTBajEPI2CFtAtbbaQQKdYRjqayKTDPaMs1McZQFlB8Dt5HoSaCms10pt6RHUmEjKi8VgsEY4m0tkCStDtTs9Ozy4vrK9tbSyPo3NuYBqKEYtFU4ViZWRqaU4jRYXh2IBAK1FD5WWKkDmKRrfuyEMDd6HBG7cd0KcPYIYAesOgu1nkVS8hQyhkTykLuqojUzFQjwEQrALKEkT2ygqQGZJB7nmod4QC2eWlOQYB8ESnUa832mPTnVK20ByfmZ2dnUbdYnMjI+1obwqXJkAxqjQwIlUWFSOagOeYKeXLg0XkCt0ZHeu2u+3aUKNeq9WqlUKj26oVkyYPxIQCRUgjTwnNRK6c2UI2lWkONauDpWyyOlSr5WSaoP0EcDAnSGCS5NEH/+p/yEtZQUaUssCifjrU8I0TXru9b8Bmt1kduNMF+Gu1uPhQMkrYfZg7Fuacl/sv6whMCJxEw9+I/iTiYU0NRqKefszn4wOSAG+EslwW5Eseg7EHSEpGzQCS/hcbLEWEny+i1mM2BaDgcA5QOoFZca/T7/UBlQnrlN9ImuiOIQG4DbLdTRohpZeH5Bb9boxicAmKIItevZ+jg6ritslR4GSJFBOMxlD3eC6XjWkKp3OEoRG4w+2TZEIDESaJGAUwzguyEgiQATNqcKafU2SWC9B2PCAxKH9SBNQzVBnNSmuoozgoBcMBo5pLxEwjHOTYUjkZgc2QK0ZUSeKoUH0QhVeVquUSfFhAktql1tjI9Oz84sr8xPTC0mozndIjBmIeejgUyQ3WOqOjo61GexFWwdTkWGuyCCteovhINBQD5tBBU+MjEzOz4Z4Rq65HQNXGkvFSPlcaLFdq5Vqt0R6dnJmbnB7fiMugfiOpUFjVVZSCFOx5QWu9puhXAlhW0Oi1yANyoIt5j70fc2MoTtNhHbAD0BJiKiLLCVhCrAjs/xKjyYwXtrfXqwbigt9m8bvEEHwv3uPFVJmAamFqkiL6MS+nymw6zwdbZTVWBg3BghwQk4FgK8axxVpkEP4hCUIQdncgxioJ9wDOsDwvKAFZN6PxRDKbi8YiuVjvxhq9cpMlUMaBq9+Ddig20IeLEuAv4aRsv3TTJOUH8IW66ANovmxxezDkggsFzAHMAXe6vTjO1NrpYuTSZavLS0lmNAci2u5xekmaFuCxhM1Cu9EaHWp12s1mq1Iol3MBrxNErsXivmTpt8I79ikMhkaccHhKfRbAeYfd6oJdYbN4PG7S59JSUECDEiPStOjzM26Ktlicly19ff19jtD/tOLIRHE8i8mdnMSZyVJcKk8NFRO6liq1M5qrNNKsoaH+heMHXR9N6IHM8FDIQCVJTywu+jBRas5KILkUXQ63lpev7Y4uZw+VqSazM7+zow9P/2Zb7o5Mbtx89sH327GFuUKuuEBuTy01kurCfnR098rmdH7uxv74k7dGt7pD2aEZWHmb27uHV6/d3D6cq7VeL45vnP63vzk/Ol3udu58CcD466t7V69cu3btytWTK8dHx1cPr5zc2N3Znxhu3h9rHa789//83/z5z//wt99999Nnv3qyevVkYWz4/m+2uwcP33lwce/07MHFxd37Z/cf7K5uTLWXH8yMnt+88fhkfS5xfaO9d+356Z3bd8/urOx3Th4uXF3bWF5b3zxeXvvo/sbVk8f3792/f//s2p1H1zavHixvHj5+8813Ht88ffN0cuLOvb2dB/dffPDRV98BBH/xxVdffv3759uri42J4/2J9ujS0szC5qMnTx49efH6o4vTk5GbH2+uvfXrT19+880P3379w8s/fjo9XRlfHkqXu81bF+8upF++feuDP31Y76aqqxUzuT6fzUYjCdSBpAikmI6LPEnHszFQdLIc5KS4jE7DaNLfc3rwQEHkVcLjsdncOK8bwDAxpwunQQNgmE3UQQAHOD9O4X7M7XPZPFZOdjotLhzHcBbEr0eggMUGRApF9/hJJSsHQEAiaEOjFAD4KmoM5SlC0sKCzIkUgL/gs2GWn8OvqBzwPb+i4JgP8wLXFNFpsMQ7OdyKYSQwBLcDBwB2eJxupxvDLC5WjqNjY/SViCWRBg6bmmYYqmqg5lcoyn4pU4Bdh0ycQ+FICPgDyAvezYRhOxvhZCoSShiUEjdiQdMMqkGo2bwYDKkC8pAPANdARsnoVDmMzpTRGBKoW9S/YaK5pdJgBuhtZ2JufnpsYnF5cW5xAmWCaUYkYsYisXSu2BidmtsUxbghBkUZRawCbBJ+niGQHZMX95PA/t0uq83lANbrcvvR2IwqsaykChIUa0UP9kz8xEAgqAWQRWYAGdwDHjM0y3EoTAFEMmrH4inARUFkaToAP0dQ5J9NjnbbQ41mp92oVotZeCUTM3Nzs3Pz65PDdYNigWAwFIcMOURBhJqpx1KpVCaVyhdByyFvyVp7uDsyDiW70ahXK9XaUKvVrJfjvWbiXuSSCPxEAh6dzuQLuWxmsN7qAF4DC2w0iyj5mQR16XEhLyySRS1QyN9BUlQ0/tSzB2ZpCnmZ4n7cR/kcNhu6/rK6cLvT7vQ4LXYeYIdw+Ak8pFKOSy46FI2Yhog6Ulg1FA5HQAOHUOG3X0KVD4o46bf2XR4Q9T5PWndILCkHkRLT/jKA1GN/oigHJTYsc5wXc+Gm4MUw+BFeLzw/wEnCSESiYSMSUwyN4wiM0AwgUuEAgcuUz0dQ3gArID9NXSM5FnibyyqZQT2aStJayMwDAGezmQi642UIhXWj9jKh1+MkybyPpZ0E7DJZDDCRhE7GKBIFVNBum1XSVZ4FEoVG3lRZfeXriKL9VA1WTTGbSEQAsQNSrZqKwm8t9gCYZ8P1QZRfXSgVCyU0+TXUKre6nam5xaWVpdmpuZX1SiJlouE7WdLDZiRXHhzqjowCFixOT05NTIy1xvPplAmUAlZ0NF8odTvwhRoFwroG/A4EMALgRBR+BqyISr1SqTU7vUDp6e5SXDENyYib8VevVu/lfCKPb8Qd/qKAX8lggUe2eSB+nTjKbnHY7Q67G8c9PjoelaWoiFatD/f145rQI9YutxaI8n6H1e8RDWCejNvrVhRKixu6AiTK73LCg6ITOVaqDcqRSlyTGMqH8wlR6yYDfLERqyQENsBzshaJyHFOjjsHvD17GkXTzUgM0eJMNBHLRbTQK8YQNBjc5+rvdwy4GOCEuKXPK8DGp0icdvW5/ThNON2wOj045rZc7nN4cGBWfo7EbaQk+tDEHM7U25lq4pcD6GJXCcfzICX6nS4/ATsEnkY4UmjBLmx2u2iar1IoVfIy4bag5e58rb/vssXhcrMkgcAWALivbwD+QgN5bpfbZocHRXKAqpFMRFB4kaIFP8F7/JSt3267bL3c98t/4/5fHlgyaT+m8EonryuRaLpgFBrJII8zmWpZ1/yF0XqpmK+Mzp7c7xC0T9fz3RqUVVpT9NTaJk8GjPauCjVEZJRodX7rdHNmLHYSmR2Uryxvr2vdmU/W4xcb5gAAIABJREFUufrQ2OadNz/6fjeyNFcfGtpgd9Z3O0ltYy02tn+0NFZYv7Mx/dazzk67nWvOLywur23vH127dWP76mh59VZmYfuTn964dXI4Obb04Vn3zqcPQfQeXzs+vPLqCPrk+vHNG5s781PVa6uNw+kv//XPf/+Hn37/4/c/ffXJ27sHm1tjnSfvbQ1v3H/z8fnZ+dnZxfndB+cXZ6s72/OtmffGRm49O7/5YGt5cPVabevowc2Th3dP799a3Zy8e75wuLq5srK2tbM59/bzzaPDB48fXtx7cHHn6Pnp5tHB2sGN64/efv3F6yCnn2x3Tt462Dt+/NazX3//2RdffPb5y5df//Cnd4/XliZn965NVEcX5qcmts7feHr/8fOnZ6f3lzrXLzbv/Prjj7/74bffAQb/7rsrY8OtxSnYRUMrF2+epB9/fvTWn78cG8nWVutGamMulU2kgUgDurA+Jh4ROD+dKMSNkCEDvAlhKFIi12tqhn2CrBNEjcJBvXj9HHByGve4MJ+f40iXa4APov4khoCP0ufx4m4nAmA3ZnNiwPk41uMmeMJt94siBXsJ8xNiQlPMkBk1o0F0WoUy4tCZE0f4eMUE+SYzGO722vu9yFomGDXoyw4XJVA+2Au8z0P2LhJZr88HC5rxYzjm8lEsA0Ds9dr9vks2CdWIZLqXipBOJgFpY6gGAJBqvTxgAGAxkUPaOBlGE56mHGAlUZN8nCGrpomSyqPZGKfG9CgUSqNnY8sLvRjeXlg9oBOPxum1oBGNvMo/fZWGFDbj8Uy2PJgto16l2cWFuZWVhcWl5VFVRSdy4d5viqfy9e7y2HaUUMICKO6QhAKAKJLhKQ8K6kMi2I0MTJxOl92Js72mUYED8AV849DQC7wGNLDTyyzqpZqLbM/XL8DT8Ocp0HwsQxIUClWA98WwLOknFCiBsib+bGxsbBREcKM+OFirDda6rZEpEMHzS8tjI80wy7KoOxmd3AZErncHHAESk8lkS5XBUgFKbqHSaA9PzEx2kQNDuViuIABu1DImYCjKceCQEmZFPYzuwivN1lCuXB9qg0auI2cgUMAcScPn5AYA9hOvAFhFHwrQLGTjAS+ARvFNPoBfD+res9os/f0WFAjjtLtwt93JR3Xai9N+LKBqjMUtIxfumM6SoPgF+PdwNBYLm6YuYwOXLzsIL4ZbLl+29llD4YF+je3XJL+s9S6e5VeXkj1ChswzdUkLcbTP6R6QJJen3+Pwed0kK5gxiVDjkVg0moiDrOME0uuXg4oRjyiMT0Fzz5QXhBT6BAwFnp2mBJx2JaKHEpkEoxlhAOB8NpsKA3gFGGCwsHswUuRk0wAIJHysF8XY9SZcwklaMigOWK/KWqyULCOLKEpFGfZoAOmvX6hfTDaKRUQqw5oo16v/xQsaFikXqaCWr2w2h+zYBlFWUQ0q/MTc0uL80sL4zOraIABwPIxOAQyU91sqNTsjY93mEADw5Pj4WHskm0qYMiuETSOSK1a6rWaz3YGPPKKjcFKUVWCa8WQEff9SqdqsDlYBgCemphYmG9NxNWySoqGnDQ3NA4fMkA7/0stiQACMTh4C8GEjx3FYoF43QlYfan+22RwuDEfc0xuNqWKo58UGS8BpUWBJu5HDTpA3Wb/L5vfwoMRBknpcisIYKTSJJTJehx2YJh3LsmKxooZrUUlFHYh8gle6qQBfaMSrMZaG3avqkYiWEOS43YKTJM0IKro6isUiZjwVS8WzphoBVQk1SYsIfr/HZnUMWGnUk2LrQ15YFEniFDYA1ZCloPZgNhdqAe27ZMEImnCREuX3eGQJSiC8GbraStdTf2N1YH5OjSSK9ssA5w7giXwAKlE0XhgCDlsbGxluNYeqxXI1D+hosVpha/S7kfskEDVKoWxuUNeo09LiQL/qdFudDheQFpKWjfreveNcUELH0ATJALR7LRbPgK3P4rP/Ym+jPxn3khGNryaCakgLJdRMORnTWDpTK8kyUZ5qDlYH65NrJxdDNOvTw6V2RQ8GiKASTKxsy6wcalxHz5ATjFhhdPnG8mpHWlemK+b11d214PDcp9uBVndy68bjj749iG7ODHXq+8b+znozox1NJCaPDme6leOzuaWPbjX2h4bzjZWF1dWN/StXb55d2d8fKt+bK28f/eOvzq9cXR0bPv14eeH9j46Orh0dXjs6uHrl+JUF5dHN3YOFyaHlm63ljTv/87/709//4ceffvzt9x++ub5/c6HVOnvnanfr6fNH5xfnF/fP716c3nl0ura2Odec/qjavXVxdufZweFw69rk9PWLi6v3b9+98/jq2vzSo+srOwDAi8AiDscu3j3cO7r7/MkZAPDFjRv3Trd2rh9uXzt78taLZ28/uX3/8e7E1sNb23v333zz/c+++ebLL7/5+stvvvvzu9vr80PDByez5cntlZmJ/YevP3707MWzu7f263PPrm88fu/XX/72d0gEf/vH9yanazMrlWytNXTr0dPizPfH9378ZrKRLC0NhTLbs4lsOoem+YEuerlkXOK8vmghBjsHCLmkxNVggCXgs+45DaObW14mcbfD7fEywbAOUOv2El5OoFyOfl6XAxyDjB9g8SGvCLeFlT0+p9PhsWMc43TSIomBApZYl9PlIQgehG8EUC4UCaM48SCIEgYwRqAINAUo8Rx8G4fDaoGaKjg8IIlhH2AsTzCmofodTofVyjGS6CG9doLFXcAKcJLjXaCFcQfpv2RTQsE44G8uXyiU0ol4NJ6MopAzKRiUkP1RAOXGx/OZdCwUV5HdcTAAsEHzPM4GA5yoKLoZjOeTQiCkoIPjUO+SmudlFf7W85LvjeooBurWgBITRDPA4d4NcBjQPJuv1stDnW53fGZxZXVrY2lpcWlUVZAPFpS8SDQaiRca3cmZjRCgKeq+BskIdIIgewF8DE360TPHnBjmAL7MCnKPkAsU4LMPQBo1gqEsGZbmUPQQj9yEADB5vmfhSOMotAEF/76as2U4kPsMEHc/aqLVDP5n3REAYBAu9XJhcGhkdKQ7Oj4+Pjm/sjg22oryDNR8mgHwRZCCjDh0I4qO83OlcrlUgnperTVbw5Mzk8OtdqsxCL+ULFRK2UQYlCRqwQLODKDKy+FkOl/IF6vVEkotBIyu1lr1ZkECmkGQHgDgXr88J/XGQhF56B3uA4UIIL8QliJg4bm9LO2yDPRb0PUvagR0Ym4oZgnZiXGcyy/oSROziyh7MKwDFUEWILqJGFMYCVbC0f83/QDbfT//5eX+1/qDQRdmynaVIJDoVf+SjAfY24sFAKZhBoUYT1NOn5UxCdzqdfhhYdGiHlMIKQrfMJaMhkSDFQAWAoCC8bDK4hKLkh9xBlYuz4hBwUeQsA9sTjVqhGOZGBcKJyvoBjybMGRO4ZhgkPSDsuYlDs20qaKXZJ1e4BsAtQwwADECFBWkX4Cwe5HWBo7CgBxTRFFFNzVar6kJuZZroRxqwjJDMidVy4lIUKIRAAdg40SKuQzqHAQIBgAuFuAjaFWrIxMzCxNzC2Mz62uggA006ichAI7nSyVQwOMjraHl2cmJsfHxbjeTTJgqL4UNI5wu1dpDtXq70+pMhAGA0Wl4GB5wMh2D718aLNeaFWSQNjI+NT0/Xh1LwF7y0WIgZai9+18UyfBXAH71vAMBdOCP3J/9OCoTIG0dADZ2h9uF+31Au1xGXBNVRC5R4pDvNVHmQN4CVOucQROY3Y/RyEeLAnaqqLSRjoY1AeUVggJWmGiWY9MV2ahFA1oAsfkEJw0lJTbXSFSjLIncx4xIRI8JgYTTioMC5kQNXmQknoia8Pmm4hlTC7/a8sGYQvbMB6z9lA4v2NbnBF5KkZTT7x0YcPuRFz7htTlhoTr6Lve7gHu5SIUjSbsk+zyo6YIo1EFRX7bZXQTwrWTB3mezumwYyXJIASODx2a9WpkYHe0MtRqVGrLvIgZsFhAvl53wfiw+WIKGZHM4kbPvwECf3WkbsDnsIGq88OR8fC69/j/8p/9j3VADsGNQPzRJ047L6LJ44JL7NW8pkAx7XGE8UEmEzFgoGtEL1XzGYNXEYNsU8OZUrVBMxUudndMmxxB6uNyuRUzRA1sosbAm8apSOZZEqDe6Ga9OTB8sjnfkbWO+Sl9ZPd4Kjy59vivWm6Pr1x589t2+sTnZaBX3wyA/ywn9diM7c/VoCiDndHT7s7XBo8ZYvrm+sLWxfXxycvPu3tW5+tjz4uTe/X98futod647+dntqfOPHu5dubYPAHxy9crRMYoCPry+s7U9OVG/NzJ9sP6v/+GP//bvvvrstz9989nrm1s3Nqcr5x9ujBy88e7jW+cP7509OL9z7/bjK9eWVuc6y++2F289PL9z/mhntXV9sXZ658HNuw+unt95tLc5tvb0eG9rZX11fmlr4+r47vtnW9dOnj+7e+/+2f2He6fPr+zdurJ8fOXO228+fu/566fnz3dHt09v7x48fv35b776+qsvv3n55ddfvfzjp3vrW832/vHo4MTaysz05r03nj5+8c7D3RuHEwfPt7cev/z40797+c2PAMA/7k63RldbmUy7fnTx1lTiq6dXPvtmqhgvLA+bmc3JaDqRDKMcHonxBTIpTcDwaBZN0ityUAxmYVsjw2HkbuFy2tx+HxsgfB6H3Ynx4YTOUJTHS3oooIKOgYAZQI7ODAgwzEe43V6nhZG8BOZ2eAGAyQELIdEeN4WCwzAgdqQQCetohwdD4WiQZWRQPyRCCwKKGwhCDnDE7wYAxmUVXfpINNbv9AkK7Qdd4Om3WAcGGElT/KzbQQIAoyNokhPcbqsLVqa3z8Fr0RSUIJSYmorH0R1wWFXR0a0SUHrx3yzFpkupRMSIoFIc7IWUcgHBSwYA6GSQz5F4Li3yoHR0TQ+bmqqD4AQAFoWe4BRA4wEAo35JWen1QYeA7qPCH4snCsVas9odGR2fnJlfXlsGBIbiZ8ooGDWIkt1hrxeHOkMrG0EA02gAHrLIw7P1kxTmIf0U0QtYwD0Y7scpORhCtmSoUQ0Al+rdAouocVdmSdjJoFPRAWqvf41B2UdoFzLobguN0iK/Q6Z3si8KIopRRYeXP2sPj3SHqj01C+W1WZwA4TMyOjW3MjFSM0BiI8s9KYAsKfneEbQOkjKVgcfZC6eAkttsdSemJ0aGO0j5ViuVVndoMBczeDTWyTIULaLI5EgK6vNgtVErtdtD9VqjXq0N1YeKEvwO1MaJu3FkxsH15oChIAviX3pzkBRE3Xxo9sQB1M1tsdicbpcdCSQoO5iX4XTKSQisWxTUaIRwSlDzTROIlYDOa0UDJW+EwrF4zGOxXu5zWAf6CerSzy87RBNza/wAcDhVC8jaX02wpEAvlQFZfml0ROIEv9flDAvISwYIJkbySkwnxXgMDXmHTcEISD6fD2iTEgkHOUyE90syXiLAotFdgyNoVhFoq0MxkYFYiDXNTK1YyOezcUNmJZIKyj7C5vUJIm/qIfgwvCzvJFDHHE/zpkomRYJFFlFem4MGDUrhBM3LmiYH1JAu//UKGLgvgHIimU5GI2GZl6ulRAyAuFQMy7AHWTOXTmWR82cmV6pWQQJnCyCv2t2J+eHx2Ym5jfVBBMCmYYhSEJAUVGxreHh0uNVampkYGx4Z7XQyoID1gIy2Z7IEIq1a7wy3hycBSEHFa3oIAXAmlsnkByuDjWa5MdTqDI9Nz82MDnZTkqYjWIsaumq8+gr99Qj6VRQwgCc6qGFJvx+4PHyqXqfNanc43Tjm75mb2+RkEP0WUSAov4/8JaXxOJqDdAWZIE16HD4Xid4m4bXaVZXUUrFIUEQa2cnKGmtmeSJaFLVKVNJlHphOjBGrCZnNNpK1lEizaNA+ApueF9LeAZxEQ+sq8DcEwOFkMpKMZeBzMXpBTkZYJTAv8H57HxEUBQ4N+KDIGNpGEAN9bormPC6/z2YnaB+yynDiftqJB1g/YQWZ4sVcbgqP5RRFdDpsTpKXjGTeeslmc9lhAbMCsJNwBgC4gQB4rNvqtBrNwVQ4TA+gkWjvJbvThV32eC47BK7f7oCVj4aBLciT1Wl3uXCf2+X1K7H2v/zn//x//8HQ0Zw7S/l50ktifZf6f9lnea3/kr2bC8k+tyHJlZgeiplxPZgtpmKiL2gWRhMi3ijFwkA7ss3ZG3WOYoMKAHA0LHjkUDK/tCoJmtzckRWfDC893ZpbOFqamNYOo3Mt6mDl+nZkZPXrg0C1PrZ7793vftiRV6da7dKmtHawXjHi9wYrC1cPxuvDt651rn85Uj5ujGfbm4sb61tHoGtv7Z10K9cOMzvbX3xzcXJ9ZXTo9KvFhQ/fvnZ0dPXw+OTwxgkKIURJhCcrx5OTnY3D2sbKV//rH/78b7996+2vf/fJi5O92/sjzWdfbEzsv/H03sN75w/Pb5+f3bn/8M7x0vp8+eDx8Pjdt2+e3Xuyd1xePxtZvfnwxtn50emD8/tbOyPbT65c31hZXV1YXN8+XJl/48XK8f7jZ+f3Lk4v7p+e3H16a/fqyerqlQfvvPvoxbsvLu4/vz42c/fhwf7D9z/44JPPv3j58uV3P3z5/d9/fn1tZ7K9e2OkOLm4NDK6//Dp46fP3rh258nS6L3760cf/ebjH7//9qevv//xj8+nxltz09Voc3j74o2b5pPvtt9+uVjND64OB2NLo5FUNBSFjQUK2C8mE8GA159MQ6kxFC3MqSkZHXniCIEBgB0eCgQLALLD7vJJ4YhAUhTmRpPgAMCWQAil3IMSIAgPOhj22C1MwEN4PG7c4eGI/gFCIjEXCYUG+dqQUNIi6Po0apjRREQOaConsRKIT4YSQRoIksjC/rT1XxpgSSoQNVi/1epHDg9+xg/rHRYh5kTtNbzFTfLoCNoNaopzuixOAGC838YosRgoYNhWyOI1GTaRZYGkyKIAf4pF7R8knR2Mo6DCsGH25ogkPRjRQZqLAkjzcCqbyGYVHvZJGCpvSA7IrywoRWTV2Msv5ZBlVRDEsoHasBD8RnrO04lUsVipllojYxNTM/NLK3Nbm3OTy9MhSTOQkVAIJTLEio2hkaWdBBmMSmSApxkCZ7wYxeI+yuv2oKg+3OMjRVXpXUih3jFZ0kCBI13K872sIjQrBJBDi7KChhECEsvQKNONReDL8VChAItJFpEaBn6TpAhKQNXkoPKz4dGRTrNaSMfz5UKhOtScmpmdmRwbGRnvDDcjAjpj54Fd8AEWxDUKr1HhfSWzmUy2UCpl03k0ztsZA7HUatbrjUa9Vq/XysWciSQs6G6gZQDfkgqCMVusNIYalZ4rRKmYq9QrjbxAIQD2etEq8aPwUXhlKA9H7IlQNIyGxDvSR2QPgFnMZocvS78VSjRAH4ZRjN9BilAIORYknIAJAjIYA0yVBQ5qvwIcKNpLfvSCGOjzsoKp0339DhenX7qEuy8xQRF5nqnoHLp3DI0SkVD/lCTrvB4U0KhpnwQa2w41zosB54yFaSGRiICESMAiCYg4gXOGKgNx5TF4xwiAcZlFx/UhhmJEoEZ2DEikYSY12tCSZRDA+UwE1KNCckHO43WB7GXEsKkrQcbL0U4aPkh4BJJG6RopcvDwSauFkgMES/pYNKKloChrXUaXqmgWXdWDgMbJRDIGfE8T1EoxGgF9XUYALAu0AQCcK6LJr1yp1mg0W9litdwY6U7Pttvj49PLq5VkCjBc1UQJFjcs1gIyV+m02otT4yPtznCrA7wVAFiChxhJlJuVWrXRGe6OTIQ0TUFjSIDLZjwVSWYKFQTApaFWu9Mdm56f6pZaWQEIMoWCHCJaLxMYcKxnov6qCavXBikgrzCaQIa18OVyAHYiYgV8zA/M0zlAJ4ICi2aVfLQfJy+7VAG32zHMGWR1lsEdfg8ZUETa6+63KgqpJqNGEN417rIxAY3W0rwvnObkAvz4AON10WGSLQEAZ5rpWhLkHCOFghEocAKf9fV7CBKoKjL26h1BZ1LhRDwTNnryF11fB0mXx9nXb+v3yYLAOGw2NyMwJOUgGUefkyRpr9ODO2w+kN/W/gEH7gcBgG7s7LTMezGPi/ZpIahWJGZ3M6JspAr9vwCh7ATQZwX47uFsAT6cZhU23kh7uDs0VElEU/yAAxln9cMT8Tp8+GWbn7JBrYN1b4MtYAN0drsxF+7HMJLSMuP/2//7n/6fj4NGAF3ewWLxw+ZA7N2K8YQFT0cLlXIr6hIrMVkyNFPX07lEVOZ5vdAKq2Q+EQqn07mhybGTCkvwqlgaGjRDgM9aori8KnEBtbuhBvAAHYikCp25a6vr8+p2cLqjHa7d2jDba98cyK3u9PbNR198v2NsLbfrhQ1pZ3+3Ga48KDWXr+x1q/8fV+/1HMedrQkqeudekTDlTXqfWZlZWd4DVSiYMnCFggfhQRgSHiBIEB60kkhKlEi5brVuy0stqd29PffGndnYiI2JfZqdeZiI/T927z7sw+zTnlNQz8NCEkWCACor8/c73/ed3znfGb9zu3b5D6XO7epwZujmzMLNta39g4ODrVt95eeVvs2tP7+8s3UwWZr9/N7E/uePV7dvbe/u7qzv7DU8KLe37y3uLo5Wh096pmcu/vd//ae//Pmrjz778avHO+v3Vur9h19v1/afvXV6dPboHOTvydn55fHy3li9b+1opHb/bP/s4vzu+kj9aHj+zt75vfM7x/fOHpwuLw/vPrpzb2FxfmFmdnF1dWPk7OXc0u3zJxcXZ8cnp2cH+xeXe2t3NhaX7z59/s77j5598PDs8v7MxJ3H2xuXz9/79HME4K9/+8ffff7XzzZuLo8Mrd8Z7Rqbmhif3rx4+uThiwd3z/YnRl8cLd7/7Def/fjND1/98OXPXy6MlAZmh2L5/unjJ8875n9eP/n0Zl+xMF0KRqdHUrlELBUNhy2VJdRk3JDd3kQuEY3CBo9qegzAqFEThPjrdHopiEagem122AK60nC8cnlpgqUdjhbZEGSRYzmmkTxFW/AmFgDY5/f5nH6RtdsZlYHgCTHS7cUpWkoKeCioQdjjyZAiqgqvsLIIGo+WgqYuqiKuJIftzWsiZ0YCJKd5mykB/TqAlTpbMUPjgmijCk0eSiAaZ8AkLzg9NrfXTlHXWoDXalYinYYwlUtnUuFwPAYgCgFEVLFdqnFEmumIx5IQxKKJVBK2nRk2QwGC0zVJj+A0pHg6o/GYcMMiK3QtUBvlVwBuOEAc/w8ADAERBRcwieQv0whj4VguV+js6BscGhmfnJ5bmFuZn5hcGlOvfBQAgAEhMh2lysjipCUGccQ3TmH0EV4IQdjXi8KQYTkeBFIwoAZQHUpYnRQA3sAAMgq8gN0mHIuMhxVkBt8NKF1EP5Zi0YcD9C4wBEnm0f+Z5VlWViQFmAcOUw+8UR+u1/qrxUwinS92dvWPwXVOTY0P17p7av3Jhv00i5XTMgtvFPOUQWAMOI6ho6NYzOfyXSBrB+rDw3UE3+5uELbVUmdnR9pCYyOAToYFKSzr4WgahFghl0oU4PtAKxWK3R3dGY7gGD/p81M4VYKk0AkaMxJ41dgthLW+8PJAJQDWPE6vIPidNuyABB0MkA2ByE36HA5R8DGSjwfpYngp3oD4GdR0MyALDAtPPgpyFW6z/Gaz7Rodz1rea00eRxPDXCOBd6kNU0RDU7ESqwHA2i+m0HJYV3AMl8tvZ8MM+qmCHvNxcjzG8AlYIYlIWzSgK2jLzcBrATFTvECDaFYkfAYHwCmFWJD/uik4iUhUj0QzOhcKpIB6tLWlQ6qoBBg1CJzV5xNFNhAOmapKEoLfJUqSqsPDEdkYuhSKAuNxEKqhkISXBDhH+9S/2UlhDRbSh6AS7GhLw1JLmJLWk4+EAzIHAIzpHS5YyGXbO3D6RTsAcKXaD4SpNDg8MDU52FerD0/iGbAZwnMYzUIAbm/vHayCiK1hD1I/AnBbJhE2JCkUjEQTndViV0+lD1uJ8dhYvFLAViyJJe5dxY5KX1elt39gYGh0cqIv190mwtJkVEE2Mw0gQyUJmwRb8KxGtzXWW8Im4hiAFIcX07fNbpfbi/apFM6fdNubvXFDoEEoSz6B9JPOZkWmXTan0x4Uw5JAuigPJQVUxutsbVU0xkxh16LMkW4bPHpaS0v+eIpX02EjINJuBx2muHxSYzPlVHeCJ2kuEAH6EIkoQhvR5CHx9B0uLtIowmpLh5Optkjwao5x0LTCvJcAmG9p8kAgpN2uVgcjgx5wA0tutuE4bpcbcN8Pb8V+HRDZp8KzlGnS7VM0n8vvBOXAw3oVfQ43rwasTKHpV9ebXC7ctzLgeyyXL1UGBnt6B4drQHCqlVIqmZebnR6nm7jucrscoHWaHG7KDffHj3U4zU1N2AoMXwAr0M+xwcz4//Xf/+3/fBiwgPpyIkViWQwwWSEs0TwjxUqFYltsbsSm9uVDRiQUy2aKxUwEqESos2LqVKKQyeaSqWJ1bDfPU4Km5spFWJMEbILUxIzKCXr/LUugOcGMxjOlkd3lG0OJZXOlW9i5ef9mqDz96ZJY6Ru6cXPz1dfLoYXF3q78sra1tFK2asdt1cW99b7S0p3l0bd/09mz1TeUGl+YWVzb3L5zeG93a7o0/SiztPb4h8ut3dXh3tNfj668//pgeWd1Z29je2tzt+FFubu3vbI1Ml5ZXyutbvzH/+3n//iHP/z4w0/fvdhZOZgeH9j47vbowbvPTh48PD6/OD8/P728PFndHp2u9z6f7D98eHz2+OjJ8krXwUb33sHZndPDg6f3jh7fvzk9dvb4YOfG8sLCzNziytL24OaLzdmdk8ePLs9PTy4OT+7vnj1YW72/ubBzdPHhs+fP33t2ef722eTk8cXG+vGzDz/97Iuvvvjy66/+9P1v//r7W0srfdXN233V2sz85PTOg6dP3n56fHC+W9l/urH87NNPv/7u22+//+qIM7ndAAAgAElEQVSHPxyN9PdMT7Sniv07Tz+YKv72fOf91Vp78kYlHJuZgCeQySQAbAyeNFLRgORwRtqT0Qgq4ICZgNDAX+Es4K/TQ3hZlWW9dgeai8skTwLAulmSJW22FjkgSThVGzOnbpvD6XA0cZqfBgAGbBQ5t5tRaa+XA4y1uzw+AOBszMKsHsQThW30vFJuv8cJUU+AIANoTFIgpJ1NTaYMSlkMhPx2UqC8FOv3EG67zdbURLAAJ5zDTXIAwG47BGLB5bF7vHavr9kNcCMEYulMJpNNxYDexuKRRhcSqB6cb48Slo1jERaObk+kElZADYYB7fycqcOSi0TCRiyRVlndBOqOYxwsq2Fj26h/xqm3iMPozGsGsdYkEkumMf+cSETDZjiTae8o9A/Vh8emZhcWF5fmZmbmh3DqOxoehyKReLbQ2VMemcyCkAKNh0VrFOGiWMIN2kiCAMYCmQ9nQNVxvASfAFEpqKbCovxD6AWAAzBG72uAW9hsIh4Jc1ipA9wC3Z3wiFoQsSQWMZrDvldUaHIALkB6A8GzXiu1ZZNtvf2dhe6+weGJ6emp8b7eem8EAFtCl3yJByWGR6U6bL9kONHW1l5Ei+H2QldHV2UQfkANhE+1p6u73FMpd2RSiahypYBpDjS6bMC7zKDo7ewq9XQVi12NjpXuDOvnKBweQXr9FE0xUsAINJqW4ZKxyxoPsSWexbpXnAXsF0XS09Lc4vJ6nHaKBL7ndpM2FyX6vbAy1TgESx8h6KFoImKFTZTAFGhQMxqLRGIJ/c0W9zUiEvv7N21YvCXzZJj06ZYU1BWQv0oQncEbxhDovwUfXDDIxTSGb4XVbvEQ5xw+yudlAYBpOhoPByNmG7xGgKc4H2VocvQKgHlKUmm/yeHopAhcuWIGWDsRjRrxZHtQipq5rkJbLpcMisBLGCNIuh1+T0DmAZaABPgoyetVtMYghgCdEEUsn1MJm4uDq+UJN62pIlwtJqDNKCagcSGGA2ZYtnoK7elYMhOStd5iFABY6O6IGAFYMsGuPJZAA/62d3R195Srg33Vcq1WHZ+dqI+MDU+stMdSwSjOJkIP5HQ+195bq1b7BkdmJsaGAWj7AYDjli6KlgE3sau3o7MEfz0wOBDBVn+lMTo3HEuGYm2FzkKhMlAqVfsHB2vA4vpSHXkZiwh0iQm0h3HOfWPAlX4FwEGjMRIYVjJHMZTX6cLmIi/2ljUK8mgSLaFdjlZHVIdnqwiSR8SaiDdFTMnbHfagHJUlys0AodcDLHxjq6RwoRQmB0SG9LoYSafUjEJk04IaQysByuVgQAHn4hqT7IkXMjJFs6oF9DoWVYWcvxUYb8P81YLtm0gm29PhVKY9YuCoCxxJGIwKXsp9vbW5yckoEulF2z9FoGmvmyDt110MQ+PgFwdBE1779TddnFPx2QV4bx6nGPA4/HZCgGXqcSloFqRpwUxHy99jKSHJSZhHCCYQgIeGS+XBkSFgMJVSJZ3p1GCpe30oskkP73ddwxNhJxq8k9TVSByHy+93MwLIDVqJ1/7t//3v//esasqqzMnYUy+LwCh4ipRFMZVJZJLl8MxOE9/bEdYjmBMqFLNh2Gmxnn5T9cdzqWwmke3pn9nN8hSrGMlSV8RSvSIE3NqkKkqB6m5MUPHkKlYZG91cm64VRtmDkrhz83glVhp9viqVKrWFvQevv50VBm9Uq+Ul5vb8rU52dD9dWT7Y7OvbvLc0+fyjYnlzoJa4MTe7eHtra+/e/u31kfyd7cLu0mev723dHxsYe3E+fvjV2dLO3q29nZWtva3dhhvl/sHUxcCNysxJcWnp1X/713/++Y+AwF++2F3dW5vr2vpmc3z3xQdPj88fAP6eXFyenp/tbS+P9c1fdpWP7x6cPzq/2NronrszuHj3/Hzv7sHF7lunjw4Wh8efPt5fG19bXAA9vrK00bvw9tniwfHjp5cXl2enZ2f3D47Ojta2dm+t3nv61suXz1+8eu/y4OHb87333tpeOX364vU/fPPVV7//3Vfff/3tTz/sri4OD9zeLlVgZw3PHTx59PSdZ/cOLlYGHp4v7b7/+Sc/fPX9N99998f3Jie7Jmeq6Vzn6vP3t5MvPtp9f2M4G1scjQAAp+LRTDqRymVCIt1whXR5EvlEKIyzbzk9jVVRAloiuLANwEv4eF3gKQ/8TrLCksEREu3iScbf3NKqGI0xtH4SMyEu0DhUExcgGR822BMCiyhMuDysyNMtLpxYqObiVgSgFkN2w7GJ4gmAc9hxVCAQBD3NUD6fzXb9umUwpAxR3eZjNIkgYePh4B+Hze5ukUFC+F004DJwUA8oQRewaizSd7ESq4hGPJNOJpPBQBCPeHTdMhWstDU0UJQIY7FseyFmggJPphLhIHyZGQ0xtBC4GtNqJFOZAGsAEw5HYI+CBm7YNkiNYfUo9XhRxXygqRtWNAH4Dvs6lcsm0dU919aeK42OjIxOzmK6Y2F5bqI/FDDRBgRt+qLZAsjB6XZJCcq0DAyG8xE80/hXYEXUgSZomyAoQzQ+lrDoWg4Egd+SFDBsmhEAT0FxoSlPQGXR0Binp2GLVVDFfhaU6QAFAuCoocssaGDYoBwD7AOkFPdG92C9rzrYD7CYL5QHqsVCeXhycmJicnqk3BnBI0gBAB9fWxJVCPgglDs6q/29fUMDPSBkO8v9lepgra9vqNrbWy2DBu4sFztyiUQYeQlqdOyNkvVIKpnJtRfgO3p7unp6Ojs6yj2l9gymoIFJ+EjCDUIf67V4rfEdaqCh80G1SwLPYOkfBFWfoPOOJocT5xG2QCACYdDa5GUY0SsKdp8RUsJxxsXrhhmP4lmBITGgR4GtgaSJhSzfr5ogNP7qf3K57KCmgdHRMram/m0owC/OTMiMEPtBRkR4Xed5r8fTSmt+f7MfxBbtlcMpnrUyIIAT8ZihBlia8pGWJQZDcZXgcJgCw9nhtoHElVmB0o0A5WBjUT2UbFfURDzf094RKyYAYWWSDKoE6/CylijGI4YaNBwCZQMNpgZ1oJy6jj3blKo4miiVp3iS5VkBJ//oVyzvylcZC//0kBrsac8lQbZZmtyfj+g6zZU6LFPVZDZazmK6IttYZD3dpd7ewd5y70Bt5Mb46I2ZkbGVjkgqgsbSimLGYolUPFnsr/VW+utTk+NDfYO1ymBbKhrUJdWMRmP5ck9XZ6kfaP7wACxfLOPWcUpSIh7HRuBCV0+pDBhf7a/Vh4bK2a5IhDUCjJ5UlRgeMzfEZASPUdAGR4MNI0uqiHfQbkMnN3dTk63Ji+KXoNFnFm1uW92qphCKAMyTpEiX85pPZlibw26HN22KtAewmgfE9TttTWyA1dKxCMQtiXLaGUnjAumAO5tR+XQQtqjf5uSDAbojxxHBYqIYkz28j4PriMcjqpB027BNnheCWBYZT6YzHWl4WwWspGx09gfhtns4/7Um9zUnGRB5orXF7udhhRMkQ7ta3Zzg9zn8RAvJUn5n03UH5WdVu8dEKgBB0+ZzkIzoc7G029ZCCLIeLHT83ZstzaBraR6nX4YSbV19PYO1erlneAyHKZcrbe3ZsLPFQflYFwRKP4S6Zrun2UPYmjxo5E6RrQ6vE9g6AUoeBIAViv7n/+ffvkCD+kZOD6g21oEIHMWF5FQeJ5jVjKkNm1jpiQbVQCSSzLW3p4KC0lHMKwqVS6UBpFPl6tRW1kcRaqhzul2Ncq0SF8nVRlVWVvrXIQJyghFt65oa3t6pVbLT8mqF29/aWQ4NTb68pXZV63MHj778fNbsmq4NlG+qt2Y3K8ryalttfn9xYHD5YHXm3Vftpe2+WmZ8/uby8v7tg8v1u8t9fQ+Hqvt73z09OL05WT79vD758evVg63txgiG7e39Wwe7W1v3Ftduj4yUz+uDa4f/9d//h3/540+//+mrl0c3jtemBzY+vV/ffvvF4/Mz+Lg8ujw/u7y8vXtzsnfh0VT/zuHhg3tvPdnfGB25Mz98cPLg4O7h0f37Jxdv7yyOrD65vz2/uDg/Mz27MLd8a6H81nsre1vn71yeXR6fn53cv3d4fLa7urV3a/P0wevnz1+88/LV24enb61X118crj18/MlnH37/xZffffPltz98/+PPtzdWe8eWd/oqUysTIyt3Hj1+660H9w8Oxqff31p659Pf/QYE8FfffPv96lR/78xoulCdPn31Tv74+/2nN6fz+fnxqDWzkM5F0TE/k4mKhJoKB+Ahh7LxSBTkHojglCKKvA9UrMfjbW5yezykbMrwB4efloFt+wFyW0mZYD2tTS5F90H0gNDp4ygfesd57CRHEaDsPG4PTdtbfDzj8gASuJ0OF+w4JZaxgNoyiowVTejkQguEjyIpH4cD7yVNYj2Ml2yyC16aDQiUCiFZMgVAFYql3C2t8GOdgFCKE6Q1B7zZ5nKJosfhRuUkYT8yZiITSSwnCWGfQTgIqx75NwgKVYKFKrHJNsDeZC4O4SQSttANImiypChLhmWY0UQ0nU/Jpmrid0dCumogfcey40YCmuc1mg9HgCyEjDgOUYmFwrF0W769zYokM9lcsVIdGJ6avTGzurgwOz850huS8XTJDFuw/SOJTGdt3ALZKgLIUEDMaZ/PD/GAQx/HAACKCdDOIxwIptwouoaghFYbgoSNHDjHHAEkYIRCqM+NhouyytPYd8ShimJZ+APLNy4WHgtDkpQsonOmrL/RW6uVu8vlrkq5u7M0UOsr9dbHb0xPT08OdRdCEPQBuzlQ1gDzohoKW7FkW3uhVC2VuiBIj1Tbs93d1frI0EBfZ3epXOoqdpT7y6ViNhvFB8nSLM9julu3YpkcNqL2YKNKZ7GjswewuzMvszIOWvD6fW4QPbyMniairAXUK3dgPAPGCjkGZ2P53V5BFzH7AmG5pdXp9bubr7d4CMrDkBLVSkHoicREJ6PpRjwRjphYJATfDoHYiqeTkYzU1GJ/89r1FmykbnXC38ka9jvhSAPM6OJlIgorV44ciqaYqhqSeNLncPot2mtz+5xer5Mx0yKlZ8ORcDweB10EII8TrCQgUoqfkXCMF+vgBCAeVwCsq6SDjUb0SCInq/FoW2ehI12IgqJUKN5gnT67m9U5KR4KyrrkEAgnrCRVV3lYSUB8ZJnkSKdLUDmS9VACzqvXsZ7YxFQMdgGbON5PQwBuyyRjOEVE60mbikKyPQ0AVthYCYhloSOXLeSL2GbW1z/Uj52+I5NjY9OzE5NLhUgyiPkcSTKwaCGRyAO9qvbXZ8aH6ziOsNaeTYACVmDlR/Pd3QDAfQDAo0OYRZYUMxgGAI4DZhXxBbAZvFLt7R+q12vFRE88SCoqp4U11TKv4BcHI5kNDxG90QIsg0bEMy0P4fNhGtrj8uH0LpqmXBBZsBnJIxoqwcsNACZcrmaXxrLwF7aAEAjwNMQjD9x1inAjADNaCre2KFIOGyOpjJo2vOmMKmTDmkx6Wu2sqfPtGZ4w24xEQvWwHlKSzFg8ovApwk6ygsJzphGKoV1AMp9OZFKFsPW3D1glXpKy21vetHk1SeDsrXY/x2ODHE05m52MSBEOP9nqYWjC3dJk8/tZxeEJMKTHxrBkCw5xEDEP3drS4oUlqeeK15tsNgdBAYGGpwnLo9jXU4Md1d07OFTvL1X6i525qMfuoinWTQFlxuaSVsd1N9wVp59hgaC0Ov3oBY1DaxiOlzPy3NO7bSq6XrONg6MrAIbdpAdzhXS6Lddmzi83ST0FeARhANtsri0dkuV0Nq+xjng6lczGY929UzttfprUrPbJrBhibaIS7Zyf1zlV61+JyTQnK9F81+Toxs3JvtgEv9DLbW3sLOv9E6/WlM5KbfbOg3/43XKytlir9k7zmwu3O4WNhXTt5v5cZXBt98bc++92l7f7hrKT6AO9u3twvnEwUZl50HVj9cmvD3YPx+oTrx8N3vn4wa29re3tKwDe2d7ZW797a21/ZLxnY69nfuYf/9N/+MvPP/z5u59e3xs6mVur3vzsfHDjnfcfX5yeXVyAdL04Onu2sT890zf/cHBsb+fk0dmjw8d7S/27a6O72xcn9w8Pj0+OT86eri2Prr97eAdE0cLszOzcwtLacu3B6631vdPnD88vTs7Pz44P7947fLJ/e2/v5trZW88/eP/Zi/fffXL/8uHq2PqTu8unr95//Zsfvvv+m2+++/qr3//wh/Wlxc7ZtZV6eXR+amrl4dmD5++cHBxtjO2+uLX/3qe/+frbr77+5rsfT2+MlGdmC/nO2sm7H9bmf3zw4NZILj4zFElOToD+zeY72lKpiERJybAOyyuSjkXR19BS9ZQKsZAgPARoXmyT95IirGevx+kjhZCBE029nMz6WK+92YHtMBj70QyrUbblaUHrJvTkcPtY1ulgeNrp4UTeZW9pdnooI6cpkqECIoOeFLFol2bxjI/28EEVS2IF2kU43dfsskV6WUlkORH0Es6Jd6M/zZvNNo9fpjjN4wuIHhfpsTt9LOPFegWnF3O1fhyKBto0Fk0A00vGoyENu3Z1nL+uNKb90LFsHAE4DXEVdCmmp02dIUSIw2ErjGYFuaRkakEc9RvGIIJHhsCrr/qABUHmZFQlZtiMhUIg53OZNEBOoSOVBgVS6K6W+ofGZmam5wCCx+uzE2EtDHgZjITDITNa6CkPjJoAljwNDAcnPLpBnzW2DpZdY12uii8jNfwIMKusA7jIBhaNhUJoSo2fCcBtUqRAoPGGGsZCgAOsAujLghBFnwsGO1wkzu/FWC5iak0JvFGr1/srEDe7yqBJB4ZHBgYGh8fRiqNeKkZ44DgI27KArUhKGFNXmVxbV09XV0/vQH2kr9iRzff01YcHyh1dpQoOEy/3V6vdbZmwimMEGYYhOQA2I4KOnB2dXd3d8EXYmtrRUewtFTgciMVDEKMabcBoCnyVU8AiaDxkl8TGLAa4cGwz5w2VdLXa3G673d0KC7GlxcNSlIOSNLdNjgSMSDToogFSo6k4+kNY6P9F0YIWzaSibUGP0/arv2+9dq3FS4PoxhFNiANXQ4XM/6GEtcYQJvhFVoNiLCCwvlavMyJ6vA4sE3KQRlal1BwIumg0HtRMiaX9RMBSgqFYgKQlEUcve1gBuJMiMzyla4rfyYMaj6Vzqp6MYRtwW9bSWUWkNNVntzs9gspqUcNUApRH9PlFVgX1z8M6IvE0gaaaXJwi4lRPWmzclysARgNo/LBCsBRCqtWTy2HZQUgPFOIBSfLTnQVM8chsrCeT72gAcHtHudTRPTBYx8PfWn18bHJmdnp6vhBNwI/AXWfgDIJ0uqPSj77eM8PYkDZYGiq0pcK6KAHkR9uLnSCiAYCHxoZhJwRxDCMAcYPbFjuAVcE6KlV7+3Di8EA23J3SgZNIChYNyr+cpQav0PfKhUNRYQdTjSkbBFB5QKkr93gcvuFwuR2NyjcmpFNUAJ1paNLjc7SYHOtucbUGBE0B9PX5cEgG5XfbmlmNUZORiInti04bLaq0kgn6k2lVbIsZKu13OumAxmbTIm2kRDWuuimXl2JA2YdFNsPavaQQEFlDt+I4OjxeyCSzqQIy2sbRtQVbnnYxPsf1ppYG13e1tvphj7EkLF5Xkx0zVg4f7bAzIOhtTa1uglXcHkxBA+CSzS2tLZLE+iih6XqryyuqarqtqakZhD9JY2W7iS1evaWhkfH+nu7y8Filo6fQ3pm20CYcjTw0iedctustLddcdpfH5SKwmsPpxPZ5AF+uMRRMCmghQ4pgTyX6zNK/UG4gTlY6C/QslYmFV2ZdfEdGM61YNpEtlivFiKBEUp0hxhYvZDOFTKJcn9zLEzQdCOYn25Sw4JL1UPfqAhBlq76eNgRJ0dPFzpGJncWFgdCMNFvn19d3l7XqxMe31c5ybXb/8re/W06M3BwZHJoT92/u9DD3JpP12/s3euo7O/X1jx9Uytv99dzU4vLa9va9e/e392vdB9udGwsffbB+tDVQvff50tirDzY3tre2ftHAW3vb21t3FtaXa/0jF13jK4//j7/+y5/+9OPPf3jrcnl7Za7/5qu3b8w++fDR2cnJ+eXl+fnF0cOHG/cmZ6rjF7P13Z3TB5ePLk/ubdVvnNUXj08P7x+D/AVwPXu4sDK+/fLu/gxI4LmZmbmb8yvrk3uvD5cO7r94fHFxeoqjDO8d3Hl0trm+v7a4f/Hu65cvXrz3/tuv7t99b3tw4+Hl+sHLDz/59de///7rb7755oeff/oewLx/cnup0nVjcWJi4/7jt996cnbnYnr4vdOFsw9/8+XXX337zTc/fjw/2jV6s5Lr6Dx457cbxW8/PN6sFeILI2aoWC92F1KxWBCt/AkxETEFBOB4LGpKaDufUgWOJ0k/Wue7vIB4fgbivMdtd7tpU6c1kXXjNBfO52h1gnDTRAaH3oGWI2BzuZyU38+TNnerw8vQDqcgAqIKHLaKO3x+UMBYmq8BBoP0FHm0XwAI8vkYpxDE0TJAAD2k293UKob8Tjur0xCJAlYsKADkA9+E5e2lGQcpOn0mZfOwhJvysTyFFWB2N+m0OXxYO2yE8Eg2hrsrGtYxf6dLookjBWWBpqPpRDqdzGUS6GhgATTDbWBw+CeOy8YirHZQwIFwsGFyZYV1zKDhXJ2GLQbaUAXQ9hZANRqOwmpvS2FfczrX3tYGMNxVLvUP1KdnJ8dGlpYmx29O6qYlB8JWJBqKxVNtHT0DdZMDyUOLHhJbbvwcAC2KBhS/V6NiQKk3CkZBt2FAgLcQQhIgNyQxOlJLvCBK6FyB9hwixaIJBjwxFou4BMA15DUCz+GQWIZjAyqOGxLlNwZrw6P1gb6+YrkXc4eDUxM4NfHG1PRItScuiBxuYvTREiHoAMWwIulcW7Grs3sAYLu3Whko9/X318dHert7ypVGHVZvudKdSwaxHQrLyyleAQoeSSRTGZBihY6enlKpu5BL5wuVUhvhZCmmMbbKQwHgoApt2Hui66V21RGM2TQa51BAsBWCpuC22Vwep9PT6oAViKXTlIu3TJsnFFf0UDhFo1OaFUcv7pClyywJ0Ug0Y4lYwvQR5LW/u97S3HTdxikkB88V63H/lnk2f8lBN9pjECQk1RKtoMDDArcHdA/R4sRUDq2nNUaGWIYt66YaENEqVDIVYEM6TYkS3FoByBOLR/M0ALCqeF1SxAomMhk1mIrnO/KZfMLQeY2nDMnjsnkIRWLNMCw3DRgtiCMR5ygLAVMkRZkD0vomoQLQeD28qASAdQE3uOr/xf8sKxTRTT2khUu59lQMS6nVQsKQAYCLeaxuEJlYdwOAG96hlXJHdw0AGATq4ODo2I2ZqamZ+Y5YQgO2KYpSMB6NZdqLPX0DsBz6pgf7cBphz1ChPQUKWIIbFc13AIiXUQGPjehmyEQnrAYAxxPpAlCqbni05Wpf/+Dw6EhfyigmTZZ006Sf4Uj6b8YhVmMWIR5064qkSDgzBfDX63XZ7Q50VmQZ9F31OB1uD55zkRQZC7F+eGMKy1I+ynPNFFlfs6sZ2LrgxdEuXkZkCZ/T1sxotJIIxyxZVFiXDQ/jAYB98bQutcOT4mmXkzECbDancGaS5UKy3ed0+UksKRfItNDqdNMKzwSsMISHaDxVzCVTyXZs5Q/hNkQGr9oZytbkaHVIIqe5W5q92OGH+XJvc6uXpgmHl/W2UgzOY4B3wsh+L+YAbR6eaWl2tYiCwvplZ5PN6QZan0pdv44/CrBSgFthWumOXkDeicFKsTgwWkqnQ/F8XHORigxszauLnEy0NtlbrtlsHtLv9jAyZg9B0FBeP4ljTHjTa5mMFMRjQg4lMVZuSlgwYFjxZDiUiEczOXN1nBI628xQKJJK5QCAC0FatlKdCdGTKiRibelY99D4XoFgWN3smC7qEcWvaEbn8pTACnrfUkTmRFVL5Ltro1uL8/3h1cDMGLe5sbsSqE58shHoqgzN3Xnw68+XIyPzA5XSvLQ9ezjAPBjKTuzsjPcMH+4OnXy801MBBYwAfGt75/BkZ39rqPykNry9/vHj7cuZ2uAn79S2v3i0tLUJ/1wh8PbO7sadtdur9ZHuw4Xiyu7/+p/+8uc//uMfv/344e6dw5nJ4U+ej8+8+ODJPUDMi8uLs5PjRxd3tqan+sfO5nvv7Z6cPzp8dHK5PjN4uDBycP/p/uHh4dHp+cXlw7OF+Yn9J3fWZ+YX5menZ+aWZ1c2Z+fefTR79847Ty4vTo9PTk6O7x/e2354srq2v7V48vy95y/ff/Heq/fevjh/fGf41ov7W2fvfvbep9///suvfv/777775p+/3F+dG7yxsVDunZ0bG9m4fPLWOw8OzneHV9/b2Hz2yedfglL+8tvvd8eqvUujbcX88ju/fpJ578eL7ZGO2HAxEw1VO1LJaDxqBixY41IqYoB8iOSSsZilapaoJlUcicAQOOTA7rIDZwXCT6E9hJsKBoFs84TIAeZ67K3uQEi+KsLyebyNyisH2tkLTKuj2eFnSZsT+KyLEmGztWLxIy0GxYBu4mJTNAXLjjjOT7BeL2sXrQB8SmYZH/w023UfcIBWEuIBH4RNYolKUHC32Fwuh5/xtdBsKyn5YU+6vAIpingm43S7Cdim7oa7YDQWxuGw0atq5zDsVRWDGggNjqSiWB+dbE/EkimQN5pqoLsXrcKa03QrFk1n82nZUK0rX3kLmyx1kOysdNWNBCIYANiwgqFQNAYiOhnFTBhIsWwWPRA6evprQ2Nz89PT49OzN5dXJmPBoGxEguFYNJUG+VDoK5ksTbMsB2TFJwAOwaa30FYPT0JRjxmSoKLqVTXYrBbqeZB3jKjxfKMOG+usBJxojlkn/E3DkAO+lb7yweIa1dPwGwYLdBmguI1BUJL8Rm/vwFCtr3egOjDYW+3rq0xMTk2Oj8GvAMAxnGDI4I+UQOErKvYrhtJtIGW7qyiYewGDh/0i9XMAACAASURBVEbqA7WRWgnBt7Ozu6erWgIATuhox4V9wGhkgl7zuWy2vR1uRRHiNEixXC7X3ZUlPCKDOTuny8M0nLquBhDzLDC4Ro2cqgKhgIXk9RAQdnjLUvzolOS0tzidOI/c5/IzVCARtNHJlKDowZxKiMGgHk4CAofgNyp6YLMSKHCQlGyAaLnW5CJ8LgaemXFVh9fwc7wajNewJ7tyKA4ETMmEBRkWeafXbiOCBNkMTNPnZYy4wkuwfiKxWDKkmQqOeORAP0ejOu3nRJKmOAqppaBIFEfDbfB41UjQSqbiUjARKxTa0/mIrgkqxRi8x2PzoKd/2AKSInkY1stLmm5gkbrM0wCfImVz8oZA+EmgggFDk1UDrs1sVBRftdWGjaAR0qIVAOAoArDWngwqMsl0tps6njY0ADhfyGSKhc5qpbNUG6gDBtcHayOj09Mj47PznfGkHpBBQIlGPBbLFnoq/YOD/b29U7WB4eFaf2Uwn0sENVEN6TpcfUe5Wunvrw6OjgANCAgy2q3CncDz4Y5isQsBuLe/vzYyNtqfNXKJkE40U6QHWJBo/XIGjBceRDNNA+ivwBL2RtWV1+WwAcEB+OU4hvACI8OTAj+oSYaIRgWfacoq16iYvwaP1N/kbOJJES3NsRQRwo7H0QBgOR5KhOH2sc5WQgowatZ0xzI6KmCZIxytbMjis20BzkgynMo1uZxuLwP80OR8Cb6ptdXDMQzwCgTgRKYjm0wn23GoWeiX8m0z6GEZ23VncysjMKrP1uyGrQEyg2CI1hY3yfidboZsIhkWZyW5KFqigRvwEIxE1tbkB2lsSF6Z9sHblTQ1lW5uanbZnY2B2YZhhtIdfeWRsUkA4Lbuga6wYpiJEHIyTtclJqKpAc7e7Gy9fs3hoVifk9REoG8+H0k35hGCjuZFXkI+CIxZYBmaaQQGNaBboVACCEUuG8108FsTrkBvMYRF0Dkc6xZTKWAjuajkTxTj4VwuWaqP7eRJvA25iYIakkmQ0N03JyFymL3zBscqViDWMTg6sbMyX41tKBOj9C6moKvjH24GOhsA/Pq3a/Gp6WImO0Hdmtjvld+qds3dWR+pThxvDj97uVSqbPfWsgjAm/sH57fuLA9MPijO3zp+vXt3f2jw1pfLYy8/3lvd3tje3PzbMfDm/u7CnZla7+xhx+3Zz//rH//9n3/86acvn55snSyODL16f3zhwcvnx+dXH2enlw/31jaH+4fOVvv2d++9dXFxfP5of6W8eqe8dXB5//7du4cn8FUXj+/dHJ+5f/9weW5+fhaH5CzNLm8tjjx+ubi39/jpg3MQ1IjAx0fbpw/3bu7sz29fPnvv9fsvXn7w4tNXdw+fntSnXry1fvrysw/+4Zuvv/vh+++/++MX//TN1vJ0/+zmfKXvxuzE5Nrli6eXDw8u1qqXb6/uPf/kH7754dsvv/zp+dR4z8x8d3u+/uyDT6orf3i8PJ6PZgF1I/1tViyCTX9hg6elZFijAZbyiXAE5J4hKgkEYABCP+yMlla7lyAEQ6W9aI3ORKImhEmGAJikHbCSAyEB22BITBE1jDtc1wTBR/tsfruXEahWl8qjVzkNjNLu9HgpLQ7bOSAroYAMIo9hAYn8ftbrYexiSFc1ReEYnMLkfNPOGQyEOUXgDQM0nGywHJBsu8NDEk6vwtg4Ep0yvTSvSoLf5uUYykPQlMeBwzs1K5ZIZtPxKGjgUAgrqxSOR3MKCPwMGUUnrHghFUdX+6CmYIDhGE3hRJDOsWgylUuKmmSGrStTW7gmAGCORi9KCTS7zCmhYACPiCOxcGPMqYjt9vlUOpPNZPI9pXJ1aHJicn5+amxucX48o1sBK4oVlzErnCt2dqcMnMUi0SwEGTVoRSJBtAqRsCcFsBYbdwU8F/3FQQj+ivWRgiyJjXHB8GVoYIxiGO2T8TRTAnGMn6c5dGWifMCHGyIYqAbP01yg0WkLKPdGPwjfcqk60NvXWyr1Dw4MjY6PDdfHpiaGe0tRHMaL3wY0QwjoGkB/NJJpayv2lPqKXV0ldOwB4MZpSlf5Z6xtLnX1dGbimoBnEBxWQQO4WLFMZ749D7e4Db+qp9INsqynmEHnNAHXCY4VZ0QZm5slrL3ixV+UvYy5dAbIFwCwm8WxrH63w+l2tjjgV6/fh2dt4YTZKubSIqea6SjBwq0NgnpJxHBkZMNAmRFNiKo0E9EJe4uD0Q0BqAt21AY05ZcM9P9IQRu/dCLpKtY4hxXBRdrtrUEQUC6Xl/DQwTg8lngsEQqHAYCDGtYHckFDjUaDnJ+TSL+PotwCkBZFIjnGUBS3F5iWFc/EJCsRKxbac+1BDaCHEnXG7bK7OJmRcRhCgPGwPh9clwrKFRUPB9tDcL8JFA9UDkga1US/akNvOGA1GpHMxkxNCwA43tuWS0bCYUvXMzET2C3X1W4aCMCJ7myhI5/PZIsdncCZyv39w8ND+O9IferG0MjcQlc8FTREHFgJHCKayXeX+wYHBwb6J+r1kfoQtiFlE0FVhNVtxAuFQk+10jfQC9iMLpiigke6jakjiXyxs9hZrpQAgIGQjY3V2ox0NByjEK0AZEB1XQEwTkK6MuLQZJ4hgRxj/hm2sN2DSg6LCzHB4bc5XF6Sof2M3wB8UIFrsyAnCW8TrfHeJvt1lhRpJ87HdZIC6/8FgJV4OB5SRIm2t/gRgHNBdzRjiLmoLvGkvZm2TDrVpjJ6An4W+abd6fZQFCsbnDtC/31Lkw30tiLpsQRs92xbJtOeKUQa1u4h+ACaFmYo1nnNdq3Fy3MSjsYksEWO8HOUvcWFlcougroOYpRAj0iKFAUf/Di/B1aDq8nv9BC67OUFxe3jQFZmctebWuytDj/cGxVHrqUKfZWRcQDgzlxHtWhxCguEl2F4KWDIYggWpgJSp7Xp3zldlEA6fQC3fh/p87oZmqKA9dEOjeThTQrIl3HHYCYMdxGrS1TQVIxUJJ6g7950BvsKRtBKwDLMt2ViQNCtdDIs+sPFVCSXS5XrE9vtQBw1Kz1aUC2VlXirZ3lO57lw/XZSA1oZjmaqA+N7ayuV9AY3Mcrs3t5cNnpHX21qxVJtdv/ig89WwzdmuvPdM8Tu7EbeervYd/POcr1/8Wxl6sMni/XqdnUgO7W0cmvj4OD09s5UaW+jsrj85N3Ns/l6/emL/q0vHqxuAgBv/A2A99aOVla2R/v6LgdHF+/+53/95z/+5U8/f/XqYn339mjtrfen5i5fPzk+e3h2fo6HwOeP7t5eGp7sO1mrbh8ePD95cHHx9HR1tH44PHX/+Gz36O4hYPXJ0dnj7aXhxYu9kyUQwI1M0Nzc8vrqyP2Ptm/vnb/18Pz84vwUEfjodPfowe7a9u7C/pMPPnz57ut3P3r/5fuX99/ZH1l9cLp/9NEHr3/z/c9ff/HjTz/84cd/+nJzcbJvbm+qs39ufnxi4/Kdt5/euTiamHt358bxi998ATL5q+9/tzpTGlocyLR1PXj3t6vdP3+4cKMjKJKRcKScyxYi0bBpmDJw+DiOemGS+VgQWLYWkOS4JnECArDb47fbHBD6BEMBNexwexgrDNvDTfh4P8egNyk2UmAPCkWSaDHn9nhbgBgyhMvv8LEC2eJUsIdeZDm6qRW+n1Ij2M+oKUDesV0GVhAgKeP3UE4hhBO7VYHzu+DHNHkCqkfQOA2LTGH3qzJmAJ0ONEpupQ3GyePmpbSgApLaEikB2DIJFNwhioISBHGbSURDwRDWNUssK9B+iuQEBpSn3x/KZdPRaBtOldG0oI66TeMYRRUAikOxSCyRTckBJYQAjGwYFbCpclSj0VYUBIWVLQRgK2zFQlID+1Q9mi2kUtj91N4JumL4xuzi+urK4vLy6kRYg7gZxSLWSCSR7ywUoiG4GyCAKVBmEcsIgwwCWSIqIHgNVeRYNWjIaiikNgqE0P2DZ7E7iEPfK0xNX9WDNSBYRgNI4MY0SfiAjAAFgkeAEx04PPpFY0mWD8B7AXmtyW8MDvZBXO4dKFV7y5XBkdGxianJsfHphbGRgUpcULEnp+H2pQAymSErksqkMp0VjLRoZtVVgnhdg1DdXyqVero6O7s6ujs6C6kY3DdgTSy6fyAAJ7JFtETM5jpKpa7OnnJ3vqe7XMiwfhoiIZowEDTJSIooB3B2U6OOU7xqr+YFCCc0DUzf7WIMC3DK4W50wuH5KUFRtGAlooZdbcuotBgIp3hatQJGFBhTClQvQKnMgR6QzWiS8VshkSQ8Ts4UWQMZjY4J/kba+W/HkoqEAKzj0bAJklMO6TJBeOxNegDWsd1HuWkjGZT5RCqGyiKkmmj45mctUwb9KRK8SpMAlk5cwLII8dmUZYfHjJjBSHtcDifinR1t7RlDx6/TNcph83gBigMRAwguUAkHkBBVATg0eA5ICLzpVoeM+s5Li7welPHcugG7wataLMRiAODgLwCMRyd6qgHAbGdOb8zQjZXaisV8Hm58sbMLK5R7AX3r9fro2MDo1PD4wkJnNB2x8ABR0CLRaLq9q9xfq9WGhsaH60O1oVq5mmtLW5ogAn6Cys3Do+9tALBlmrBJTB3zQ8lEIonTsTpKCMB9qIDHRnN6OmbGGRsl4nM1GgBs/nIADL/iCCSWQBsJ5MzOVpeTYEiCYSjS63K63N5GNxKsYYaUozIlhPEUhfP6PXa7LribW65xlMw4nA43ADBP+72uv6WgoyHg2nBnQWZSSpvliWUNMRsBtc26WghTp+I5ldIAgP2+v2t1Om1+L8HpvCvo/1VLS5PHTwDfjsQi4Xi2PZvNZ/LhEM4Ww1RDEFax7GPdTa3XWp1YpeJ32LwsR8EP4hhHixMA2Ofw0E0QUGjsjCQJQfYRmkL47ADJzRCkSFUkGcFy+lRVj+Xb//5aS1OL08NiI6NiQBToLY+MT9W62tPt3TlDZPzA/ElWDRsmy+GRRpDzum02uGgS590QskbhbFgnrEsvQWIFBa/6vMB3+UYrCYMRSNZAR/ektFtdUgSWhswsztFmKaMYVjyXygMNzpocH2rPxAGAc4loOh7p7J/ZbqN5Ugllxzv1ICCuYHUsLqq0FBhYi8NeoOFWFLrHN6dudec22PkJZnttYyXYP/7RptrRU5u7c/nhb1eM6bm+6sAac3hrJ5d4mqnd3Jsf7Lt9Mn/zs6Olyb6d6kDmxs212zsHR3d21+rVRyNDa6vPTu/dmagvf7hRf/bZ9vL29voOKuDtRgZ6e2dpc26wvHGnY3P6T//lL//6hz/85cfXJ1uH61O1B19NAGg/e3RwfnYGiHkKsHl39+bIcO/hftf68e67Dx+eXFw+2Z7u3VgZ3D14uH/33r3jk7Ozk+Pzx7dnxlce7d1bxAz01NT07OzizbX1yVsvzxcPjt55fPngEnTy6enx/YudvYcXW+v31tbuPXv1wQevfv3s5cevPny2/eJyZPrR2e795+9/8uUP33z9++9+/PMffvrrbzfX6kMra6N99Ruz0zc2Hr94enZ8ejC0cb609eTjz7767ruvv/z96Y3+8sxYLtd+6+Wnj/O//c3USFH2+RdSSi6Wbo9hY4ylAouKhzSaYpLtoNAAgHVFjmkQF1kaaJfPDyvf5/Mwmgja1g4AbBosFj35eVrhnU4vCZwOi38gbvr9OOLTg9MECIFyukEBw3J0KALlImGtUNdtbr8f1EBAkQH1dDRhxpEBDAdiGj2tWAteGiu6QAa4PM3+AEMFdMC2Rllm2OACtNPe8NCxtfIm64Yo6SIFKwLaLp5UcVwrxZNer5tn+EAEa5aURh2pGcAqJk1kQWkocJmk02+m0tl4NJcB4YQdPI3R8DyrKKKG/j3heDKX1Qw10mDDFvYhaRD4eEpplCHjaG7FxLmhwXAwHpY0PFNTdSy/jUai8UQiEYcgWASsml9e3djZm49oIT0YxZYmVOUATKGQKNBYVxkECR5s+EHBa0v6lR2UKGshC7ZtpDFrAV+SBvwFsWhg0TgIXpUiCAaQisMCUgIwF+2EPDhWxolu27B1Aa/cPpJCQYwuWWIALpJXhTdA7/RWevFcb2RosD6CH0ODQ2M3husAwKIeUpSroUQBs2GBaOUysWRXb7m72lftHah2l8qVSqmnG3t7S1heVQAALhbS8YCgqQLmE3nsNzbCsQw6WGbau7BXpdJbAr3U056VQJwyWKMHV0YwMpAOHfgXzi1WMLePAyVkLCqhGJYkPaCAw6bsdfhJl81FuuFJM36XqMSSYcOl5zIGJQYC2QArWYEAzkZOJqNBPRAKYKMLI+px2q2HZLbVT3K6LDSOWXDocED7/33gMERMOUS4RpWxyvkoe7NqufzuJg9hJ+U4KN1YMoiGYGG0zGAYP20ZAuwbwceplMDyvIMHUicLfgRgyeY2I3ow1B4Vgcd1QHhN6Aan00QkQDtaKEYVKJCwOit7aN7OMrKmBkUh0BgjJVCtTXIAS4x8jCoHDYYQgBuaV2VYVqNCAH4bAqoQ7cUirEg4qCmZhAXamymkVSBA8CqVfGdnPg96p6PY0V2plspDdQTYsfHq0I2xqcX5YhjirgA/XdSi8Xgm31MdBHweHhmr1/r7hwa7K7n2bFjjBXi9WHuhvVDu6R3oGxgeCWIhs6bLsDmw3z2cK3S0g3zuwTNgBOCJjJqJKzG4ZiMSCVrhK/zFKdxGwwILe/dYHwQLn8feCvoXwIOnCZph8EDCjVksjiFJPMzkYxrPRUUceEYQXtebpuhqab5G+kEBe4CLwfdhITUAcKBRhBUOKBLtcvpFlZTbwv5YLihmIgZWkbSSQUuMAVHTUxzv9f6q2W5rdrm8rCG6DM+vbPYml89H4WhP3Yxmi+2ZXLItfNWFBDc6DP8FnDQQgCanXZI5lnC0uDmBYn0+lnU0O2At+h1utpXgZdbraG0m/bzi82kqTbTQAtvicthwvAzDRVo8EF+ypfyv3sROJj8jYIGHFY+3VcsjEzeGsvFIJh9TJIYNRQ0XHU7qAS8J9BnuAgPB7VqTk4AI7LapARJLsCgOU0c4TQSbqLRwVpPQiEfg8agiBFuuOtyV/mLAGw4IEsm2VyS9J61ZkXgqngOynApKgpVvR8Owjny+mElWRxd221nRL4fbJ7t0Q2YZ3crNLcmEYfQumjSlRKxE29D47f3Bm7nsbXZlktpY3VoLDd74zRYo4KH5gwcff7ERWZqvdHWu0fu37xfTj2NDSzszfdXb9yZvf745NzqwWwEAXr61fufOxcbhYv/oOz21vdvvbpxMj1eOPpy6+dnLlVtb27evABjnAG8cz97aqveNvOiZuvn8v/3TP//0rz/+8NnD7bt7i8PnHy+Mnz55/ej+xQn2Hp0itm4uLNZ77u4Xb905enr64OHZydPdncr4Ufn25tHpnXvHd0+PT05Pzx48WRufWXt8Z3tubn5h7sbUjZnZm4s3N6ZvPHln9vDw2ZPLR4C/Z+dnx/ePTu4ePT66devo5ur5ex999PL1h5+8evnhq0cH7z3sW3p5d/3Bq19//Luff/r2p29///P3f/rLr2+tDA+u7Ux0jk/Pzd/ce/juO/cPH012vX209ujjTz8HAP7qD++Pj5emZortbUPvv/51efUw194JvHmUpvu60kkQgaGgiSU8iYjOUlSiLQGi2NAtFQBYAc7q91Jel6vF3gLRnQpotNfr8hG8ZbIgml0EhEDe1uokNF1kKZRghAfYrd3h8jqutTKsvQVT0CJl8wR4yukDpuaDv3O5KS0SwANgUdex31SSWBJ2CEF7vD7aBE3EKzJJ+Smn8023yscg7CmqrMdjasAC4s4CUHv9sG1FnfM5Sax/FiRCDKUVBy00NVEq6SFwWpeEZUyqiqXQ0WgE/qBoAiOB0oUX5L2kEU+1p+OZSDgWD1khU8YqZ4lXNdkIh0LRSAIAWA3IQTMUjYYt0NCYkA0INEBEo/JJQtumSMyMxIPxkNDIAsMnwtGYCThsGWq4oxBNlcv5ru7y+NKtmVQgjKYWMTMM8TPbkUuoKsUR1/wgiA1MBWgQ3AwdRD6204paKI75UsPEkUeKZhgB1QTs4hujtyk07XPjwD5/w8bPi9MiPYDCHj/F4BBgBl2FcMI53CaSYCm7jeRZUgB1LxrqG7W+Sm+tVu2q9gH8jo6NQfAdm5yanpke7S+FBTTfQhdoFbQ1WjBhDRbE2d5Ksa9SLFaqXR09HV31GyPlDkxJVzvbCz09oI1zFoCIwkoq6yUUfCuhRDrd3Ztv6y53d3aXKz1d3cWeaneO50i2MeDSRzSMMkEN4AKA/+mYY0ATr4ZREkWSXp/ThVFFotwQn51ODyy8FtLvU8OhaIIjYm0JnadFwEVCNIyoZSQCkS4rI6kQjyFw48gimeCjUdHn5AUQIEGDt9IKZwb1//GBB8C/VGShJm6AsWapvN/jslNhxuVxkC6KUuNRnkyEY+FoNBELSIZIeAlGs4BiBEU/gRVuBOVG2zFJQrNWhWsmYDkZsXREiEUyndm2YhSnKVC0peDwAV7jxaBlBmTeL1FOSYMVKsE954EXsry3yaXJXmAeDKuqpsbQnGwoeBDQEJ5WMBgONY6CtXgpmwcYBPWntcdNWaT5fNwAyUhRsZ4cKOBCWyHX2V3srAwMlOoArUOjN8Zr4zMjc/NLnbFUOIoQIxuxaCjT1QOoOzg8XJuoDdQGBoBiAbSHdJYLBy30m+wE5jXY2ztSC2G3tAZMFg92EvF4R6Gzs629u9zfWR0aGJkcGE4HUuGgInhEw0QIDl4JYLORbQgEVAgQJLr6AODa7XaXh2YZGuucGzMZYB3TWF5MsyIv0WaMFwwxGOZUWCqOFl2mnbYmJ8UIbqfN7fMJMuhkn+NNyuQleDAhAGDW3UwI8Me2mDuatphYwpLxdfwBzR9NiaKYVX0EwD5I0OZmj6AYHt15vdnW5HW63diBHlC1RC6VbnRExCKhhrusHtFMnfC7WltsrW5R5WSiBfPO8JDcDDAppwBvwOPzt7o4iF6u5mY3B5rYLakk6SJCvmaXp5XhFCoAjIFQQuF0b/HNa82tdnSKCWDnfijZ1t01OjY6GNKUbNjUeLdbT9CtXLgjiBX4hMcVDADGtwI1ITzNMulkNJK1B7yxOCmpoa6SLiiMpoXyIzFF1TlKlEXViMDj6p3Y6C79z33uRIxUIhRlBfThpJowA1YuW+rpChm8FM5mo7pb769mkrn8wMTig6Io+kw9OzVomSot6OF0ZUnzWfHqLSBCuqrEs5X62tnqUjm9KixP+Xd3VpfaFta/PlA7O3vGbt//4MtbkdEb5Vr5Fnl39zjedRKt3b43Mzi6ezq1/s2t5bH+u5Wx7NzK7fW97dON7ana9nbPwtrR2ebeyPDkuwfFx5/vrmMCemtne2sTQHhr5+7t+d0bA5X7c/3ra//lf/nrn//63T9+/vbt++urw7uf3x3Y+/Xbx8cX58dHR0/uHz05v7Nxe3ZgcOteefnu+YMHDy9BEr+zcaPvaHZs+/Bof/fu0eH9s6PTs7OHF4s3RvZOV1fnF6enZmZuzCzO3ZxeWNnoe/Dq9u79Jy8vLy7OGoXQRyenx3v7D09mN4+W77377MP3X3/88avXn/z60yeHT4/ri88e3bp4+dEnX/387Y8//vzHn37447+8XL45PLy2Ptw3dnNxYvnsrXcf3HlrfXD5xa2Ndz998dN3X3/xw3dLC6X+iUo6X3v23ueL9WJ8pE1Xc4O1dL0rnkimQqYVBFEoxgwZ1FS8PR4KGZJs8oGwqkG88/kJbJBvzIKjTRnQmCBEXjclglEIuw8PQK55OFNv1GCRNEtgQaPLSziceILm8rv8FOduBnwFMSGIkrup2QHBV7bQoR1wB2ugBZGnKS9J4chhpwCLUVWwmIaEzddqUyOGEQoGFeD5AUWQaPStc9m92AUVt1ifRPswPU4BwND2Fq+nyU+AHnS6sLnHA5cZCMbTUV0NBIOgdEBXqpioARQjyVBXAsQvhKIIjmMyBDWgazyrAtwBfY8lYqBTMesMcaThYGVqAMEax6vYMSODZlewCCuiRyyI6QIPekKX0LJK5LRoLJbOpgvd5YHx8frgYFfX2Oo0uu/iVHc8Ao4lCm0QkWjPm2wohvIAu2FB+AbgDXKC3BhlbqlwTbLSqL0GRG4UJrldfl9zi9vmbIE7gH4omE7jaL+PZBr1KsBLAA1YCotQvbTfaXeinSeWEPt4VZJBn6oB5Y1afWSo2l0sVgeGhgb7ensnJ8ZGR8cnJoYH+8oRXuYa3h/oFQXvHl2+4u1dIF6r1f7+MtpOlsrl3vr03MQA2v2jN2Wxo1Boi6kUC++IpCjaD5BiRhKZXK6nr6uzd6BS6c63dfTg4NhiuhF1CS8OYafQOA9IEYuHzqC38dAeArUhXi0kCG4eN2dYEIadToi3dgdQu1anlw0CFCYEOpFrALAZSTKsDo/ISkTEbD4CAAEP9P+j6r2f28rSLMGK7ulMiST8w/Pe4Tl4DxD0AAiQIEHvnSiKnhIpSnQSZdNVepk0lVk+y2Rmma6p6emejug1MRs7P+zsLxv7B+13wayObZaCpZQokHjvvu+cc+/3naNRoLBDYR21F9ISKWmOkRLZ5EAiZIf+Br9/07/mD78zW8fBZtiEi4f5iLDo93uhEBJSNCYxyVgCeZi1ABjeJR9ydHT4SJIywCZF++BN8ZJI05Iekt1MOGJbyWxUSkRzPfl8Zxh1BFKyIyOhxwBNcRx0HkpJBBR2FIYI/4iXOIEnYd0iP3+ClEEx2qIPA0hFEzFI3LT8pMItAA7ryXK+iHqHIrqZjxoiT3KdmbAuKwyN5oCL+WK+s9jT19OL7hrc75GRsZmp0amFiaWlta5oChYi4KJsJmKRbE9fvTHcGGsOTwITGx5qDPflc0AiQbmFI8lsoau3XB9qDtfH6rAqNZRdDZwsngQALpZ6uju7+/vKPYONWnOmMZrS8iDaaFp3OtHCTgAAIABJREFUkF30VdO2hfqvEACriowirlHcZtDn9gQIimZbp5lQJJAAxkm0bYF8TGWVs+KiEILnQNHgunrbVR106LUAcEuft92DYbzCUqTX8yZri0oyErOBETNYR5A3eSkfx2KZKBdL2Cp8Hxdu2qyThr/PKMFgR7vbBR9vuHhe9Ep+T4fXx8EzEtIFAZ5AZGeXzqRjAMDRKw+RqO5YQHVdgNluVhUUyt3hA8XOkARDY24XorY+P+7DBInn4Ks8gLd8kIfl4ccd0hXwuhlKkRxXkGBDsVh2sOd6m8eDcSJy0LOBzaH+85nJsX6VBrJhIvdVO0p3kHrBlgl4kl2UpcEFAaXvCra7OToQZBkWzwrdWU63s8MNYFCsqsfLSwm4KzwjAxjHMqWeSnN+rzL8vw7j6TBcEIqL6PpwSktAlculurtLjiGwdiYbDRHpUk82m8tVxpYuSgKP2WZ+omrBfZeMcKxnyaFDkfLNuM7rqh3P1+pzp3fX+uPL7NosfbC3sZadWfvpgdJXqc/vnn38043Y7PLgUO+mcrx5PzlxOz6+f39heHTndObwl4trU83DvtH09PLG9vHh8e7u6NDhjcqdWx/cvr05Ur/1cnbp9XvbW/s7oH9/2ILe39/dXt0cKS8dN2fnf/E//uX7P/zpry9/fOdo7+bI5qcPJ9Y+ev/x6Tko1bPHty8vTk43dhfn6wsXvWtHpw8fPXr08MGjZ7dvjm7f7t8/vn985869k/unZycXZ+ePT1Zm5++fHWwsLM/NIgBeXlpfXtvcah69Prp1ePbBkyeXDy/QsfLpyenJ0eHZ+eHa8fatB+99/Nmnn376yScvXnz65aPjx/enFt4+h6/+/POff/eb3/3+t7/53fd//NPHi8v16Vt7w8PTy7MzO4+ef3h6fG99/Pzh2sX7r3/y61//8ptv7883K3OTXT3d9z7+zUk2PTCkYbRW6zHrXYmYk3QM21JYWkk5GtzieCGGAFkJSVZM1RjgqMiH1Ofu8PipIO8otN+L+VHXukxxUtCNswoJa59EW3M81E0WxYzhOObpcPuCNId7/C6MFrAOGqS0n+YFOeh2+3CCVsIhA43WajraUlUEZC9E4TgQTjmMTukAdABYYPF5dVuzYf1AsSV4SYtFVRoNLGBBT/s1WZaMFIFhOAncmpdYd7ufIvhgh59nfS4vRsuGYyhmNJWMgsgPh+BFQdhBtUfujgxldsZSiXgim0zFbWTHALxdYym0vQugh0K6UxkZiY8wChyEUqIDMdB4HnkX6ihdSFCjYRNtKoeTDs+pqPUJ9IqTTGRLKCBooD46ubC+cWNzd3311p3VtAM8wjFCyBoonuktyhzL46QchlcPtZLo9Zbrs2pGItEIGs5CTdWqaQEo6S1nK5efCPpwnpNkVmQkhLhowIii0JEqVDMoC0CUggzHA1jLAo6uPjop86D+EAo5FSsSyk6Sf9QYnxob7Osrd5eHR6Dgjk5MTQEAT45NNqp9joBGNVUQgiFFBeltmE40WexBFtAD9eF6pVop1/oH67Xx5aXxgV5Qxv29A4C/nfmYQrOaTAYJBjiMrtvxZCad7uxFh4S14XImmi4W+0Ay59G8IjrECqJzLChGKIfghywkkUeALF0daaHOHAL3sxbIEWQDiAVxNxZ0e9oCehRF/cliNpc0BUaEYqRRekzXgClIoRIoGCOSSjkySwVZxYilIlBSaEWzQzGGDJcczdb+f8NHrd+af8NiraWE7YjA4sEArDscEN9DBPlwXIWKnoigqEkDmClLk7RmSoD4IQBgnqZJDkgpLcISp1Rgcm4WDYincmElGS90F/I5E91gSrd5H+pflDkt4qAzBZ4PYIJsGOj7igDjEu9x0bJAI6sHyYbvgGMUQQq8arVMTNFGNAJgFJanJyuFfLwFwHY+EhI5gu/ORgxVZZlEJZfPZQv5zq7ePlCv9cHKCAjgkdHJqbHp+YnF+bVSJAWgBZIaAXAs291Xa4yMIgBujo03QAr35TLREPx00ShylunurwwNjzdHJ+q2ZYdkvdWgFE2ABM6VQGj39Xf39tWHKqPTIyNJtTMpkwGCN4zW6ID9g6EFOnhHfQpMsDVmBAQd1QYAW7jJFNkC4CDJ8IDGrNA6XoHSIyOuaBsqw1L+67wNMPymF+UNwXPt93OoEaTd/QbriCrcFksVBBR5wBqckI0Hw5koH43ZGk8BAIcs1soA2UnJwUAbAKDL7XrjOg/wLdC0F2N1X5sbmD6UMytqg/zNI0dZBMCmBZdad2yWokE2X28nJFlh4VEiGLjfUG0IX1uA4Bh0MBdgBZ7HXe0Y0G+USMhTfsxivX6Xlw4q4cQ1L86qkVhmoLetwxcgRFkzwxEA+1Shp6c8PtTsETCBo8IUK4YiFuXGxJghoYaqoBY2WFpkvNfasGtBiiG8PpaVyk4zy4ciPbOTIJNISU/WbiSBWwPUG6odTeY6BxAAj/73WjBpBSiFUeOh0FDeRG5DhXRnVylqipyTy0VUqre73F/uLQ1NLZyUGC5gmZ3NXgMAWFHDiZ65MKNZAzcTBq+qRrw4NDR7/87NgdgyszwZPNi9eSM3tfbzA7VcH12+ffn6l9vxhaX+nsyStLlwFF7cz8weHc/WGtt3m+e/GFseHz8YGC/Mr9zcObm/e3CzPHLaaN47fLF5tNwYfP5O/8NfHN3YPtjZ29ne3tnbPzjY3z/c3diZHKmfzTVXjv7vf/3rX/747Tc/Pjs43Jxc+/DHU3PvvHh4dnrx4Ozs4uL83vPjjaO1ycHZt3on7p48evzk8aOHj5+f706NXY4vHFzcP7xz9/7JyfnJyYOT8ye3QZ4+un9/fX5pHgHw3NLizbUb2xtzSy+fLN05ev/5E1DPqKsaJPDJyfGd+29tbd/e2r1877NXLz59+fLFixevv3x6//H+2OxHx/vHL7788Ptvvv32N7/5/g+//y//+dHi0vDcwdLo8MLazOLR5UdPb5/fb65+uLH56PNPv/7mFz/7/ccz832zKz2d6a3P3q03x4dSjk77zGh0vhTJFDOxcDQcEnkJJCZFMslizIpEQTJKTrw1l4g2oDEgk24/hQsOPGAB3EMJTlgTFAUPAGMFXAhiitlSwCSFGmwAR30dgWAQiJwP78BYKehiZIYM0BwnBr0gj3ESADhktI7jkN+ljPJqkQ8HgWOihSL/gJUi+HC5A+jAK21IvJcQQa7Gw6ZEBbwoI9MbCFsAV3jrcZZ0nCJA7RGk3+sJsqTH4yc5WOtXQ4sJ1B+rIVWHOkHQlifL8FYxmUsn0nkg8xHUIm0BAHPMlSFECNlLJlIyShyMRJ2WN7uBuDwK/tNaVpSyIEEddcKmnYgBB5UYQXNSxa7OIrLhGB4ZGBoem15YWV3dPry9vbm/mrUMEwkjxw7HYpnuNCCoRIU0JG6QlYaCLK4A9sLJiGObSKpLCkpJDKFkco5Bu2msjL6HIvOUAGWJY1HwMkkQyJsHLjUyyMMDJMfjOMhioEloYBILBALtfhRqh2AVtXip0o9GGo0G8oOuo1ik2lBjZBJNAk+MzDQH+xwRviciA6omtYyiQE6mMtlMvtTTMwgKuTIwUOurVAaGpmdGxxvl/tpQrY6GgbsSKlQQFiNQj5RpGXD5MqVST19vf2VwsDEEMrBYKOW7BkoszaETTvSB0hKBWshoqFq9ugChENwf1GnGoXNtEvcRZgxumkT73T4CI4kO/z94jVjMDsd1vZBO2iIjqHomRsnJVkh9nDYKqfRVHLCOgjRFwOI4T2hQ8+KkRCgxRUIK+GrPueVr8TclDCqtlccEv0uIPI75r7NJFid8bswvhJM6ZyWBakWTSUtzBI7GSdWUjDgAMC7BBScEDM00ozg43TJYFwNaNZzN2loyXiwViikDmZ/SqAfLh1GywOlRB95zUKB9JM+baNBM5TmOFck2t6CQNIMiY0H9UfDA+DGN5DWz5eWIWqCRDQuwQQTAudgVAANjViVK7E+jFG+eTVcLRYDfQmdXT09P/2BtsDIMNKvRGJscn5obn59e6YplYnGnBcDxWCzX048yGloKuDkGXzbWl0cAzMnAN7IIgMu1+tj4xMwIGtOTtFZLRCSRRk5xxUyxv6+zpwwg35weaWTUQlxlAz5KB+KLjCxa1pkO2oUOwbsmcGSjiEYUgYeAkoR3TKMtaTzgh8vHAbCxiByjgyAjqqIJVzMMAExj14kIQ3v+3kMA0fEjAGYVqErt3jcYi5cT0YilSeIPAMxnYriZifNAizWB8rvxkME6WV0WUiqGtbd73K6OtmvXWHgwYOFhpBrxX/cIFCGYwClihXQsl0ECGOS7ebXnZfMkcPmOjnZMApYTcHUEGBEBME36O/wkz2J+nPZSHMeBvA7SsLb9pCUQAb8h+lAFwvV0+g03MEE7munra3P5MUKQNKivqGOwWKlUql2jFZYWODbK4mI0adA+XDQslVcs24pHwyByONc1t7cNHnTkIi6GK7mFOKM7PfPTUK2CipGqLsdVSaEI2QgBVy50V8Zmd/tH/3vFFzMCuMBbKd2qFm24l+liptDTGTcEOZbNOALW11suV3vyg825u900HzDNnmZJs3VWEcPFkXmDsszyRsoR1JCeLZXrNy5urfXF1sS1Sexwdx0B8C/uGtVaY+nO4y+/2YvOzXYXMjPM4sKpuXonP3V8NDk0ebA/+PTngwuNyb3qaG5pY2P7/v3Ng7nu5dP86tazB3sHM42Zz9eHPn6xtrZ7sL2zu/WDE9bu3VtbK0PDt+4PLK9+93/95U9//e63Hz2+f3ZrZu6DT1cmn3728OT+yfkFAuDTp6e7B+vT5aUnteU7hw+foh3oy6fPjzYHDzbqx7sXx7eP7t27f/rg/unD+w+ebq82N986PFmcX5yfm5+fm1ucv3FjdevGeuPdDxfuHn3w7qMnjx62APjs4uTk5ODw7fPFndPt2299+vrFi1evX7367Mc///L88NFB9eYnx3vP3//qy29+/+3vf//d99/+9h//dLQ6OzWzv9wYW1tbuHF6+d7l8dnGyOXp6t13Xr365udf/eqXa4uV0ZVKsbD02XxH+Ggl19ulYL4APdOTziSjAAGaQAbZmKUQOJsuxJxYDASh6MRFmRfRVq4f9QDAegqypoiD3PLScsRBjuroSEMMYF4M1w00yovULxFAvT844C+oFr+P9JCCEuxgQJJgwHJZH9qfDrYSVUNXGKwgAAY2jNAbDwYFCzVG68gQmMTcHsyMWMm0RnqMcDyXcJJxEIQ0hl7DxyZi4YQh0wGfL8hI6BwUyAHlBrZIeV2tR5zXI/FkqhVUBDVFt9CsCWogluBpl5xSppCMplPReBwFyiKvZ43ntNYYrh1L5dKpjIZmKSIo7chBCgRqYCsFCXlZiiFZtO1Q2AKeHOFZTYml8sXuns5cd6mrd6AxOtgcnVpYWV5euXVwsH1z71Y3Mo5E/W4W8pYqZQF0WQJEl4mCjhACh9C4r+1EW3HDUitTVxNETZPoANAQkgmhw2eZ9aGhqyCOdusRw2FaPVgoO5gRWdCfDOpaAVCmGMzrgfuCeTuCnMCLqo5GTVFi4I9G6tXayPj4WKNerVRRaNP0zOTYeLMBf1CJSZqsoz16uEohZNSIzMSSmVypv1obrFfQ6BGo4EptdGIcSnZ/T7VWKQ/Va9XepBykBbZ1B1m4UHYsXezuA5ldHawjn8LhwcE6FIDeTopgWnnHQRxnGB75XCstw68W7UHTQKoM9xdHUQ0oDgszkkBHRFg7GK7JVEfgP7UJySQgrB0uppIof1eW4zlBSMZtSTYzWjCCSFXYicZQhCvLylaqKBKiEnW0dp1QkDG4+jfI/Q8b0YZptVqh4Y9jqkDggbZgTAiC5PZ5eScVYtVMAhZJAgDYViQWJ0MRXYtGQxSBTFRh8ZEUDyhAcCFTY1wcrJpoLmsgAC4USjEEwBxjKJTfh7EaL6CWd0UMiGSAF0TThusssjwrMaDYZJGANyupUsRA4RMEgdNo3AwdhRjGlaZEOKwnyvl8PIV8kO1iAl6OlsrpsK5qgpCpFEolwP3OUld37wDctkq9Xhseqo9OTE7NjM9NrHTHswDAhh5SzGg4lu/tr42OjTVHG5MNYGQjzZF+gHZTl3QnjGxluhGFGh2bmBsDXWsgaxbTBgBOxZ1MKRvP93UDAA+WByemR4ZLWjpqhAiCj0Vjmh1uWWcaaITKNFSRZZD8pVFrudeHUywKCQH8DaIEJJwBxsWgSWq0CwHLXwuHWMlRAIeRb3S73xFoz99hLCcGfG0dWIBTeKDY/muMyUjJRMSGRcMGXBhn8XwmjocyCcGJ2Bob9Hoo0xbiBUUQsjqGdXR43R3t1zreDPp9uCSJGKXFKR/OU7QcsiLxRFc+ns9GUJIWMhsJRwzdsiWKw9wuj8svWgKLdVz3MZJAI8d7qHJUy1SVdlO8wGEdLhc8AaBPVAHDfboa6PCD3tVT8Td8lKA6sXwFADiAEbwIAByLAastVobLfV1jVUpmBSXCt3PRdIhGCA30LBRNpNLxuEGzrMeFXe/wYAEQ/V4pU+pZdGjd7JybAmGCa1aqshQDpsyQEpoWjxZ6yiNzB30j/70ciGiBoCiYccUqZUzTjqcyiWxvMaGxciwZs3lfb3Wgr9yZq43OHg4wctAw+8a7dQcAWA53L60ZQcus3ExGkIs1cjVYebiz2OmsKbcWmHu311czU6s/OwxB9Vg4uHz1y31nZqbc37umrt96ZG7vZ0ZP7k40Fi6Pp7/4ZvDG3PztRi2+uHlr9/juzu5I/73t/N7WJxt3N8ZqJx/Ud746W9jY29/e3t3cQ2ZYaBJpaa/WGHow0bx5/j//21//8N2vf/p85/RgYfjZR3vTF6+e3T87uX96jj4eXOzvbTaHR5+vDN19986zxxcPHz14/Ozyzsj0ReXWxkO0AX3/+N75+f2zhyePnt1aHd19987dmaWF+XkEwPPzazeWN9Z2amcv1w6P3v3w6dPHVwB8+uDk/vndO2dPd9aPD7cffPDqJXy8ePnZq4++eHV+eHavZ+/jBwfPP331i1/+9rtvf/u77//wu3/51crGUnNze6Y6sbYyu3f09vv3js6nl57tr9375JOvf/nzr789nR3pXZ7s6h36ZNJN3Kzl4waLMywzXUomE1HbAL5LBNiYrcLjnsnFwqixPySGk7IqCCggD+qRp8OHgYQ1BOD7lJcSDBX1xLd5aVrwBzq8lKW09kkBDWChoJQTzOXDacRLvQQvBdpphSX8jCBwHlDA8BKy04pgReOXKlKkrTNOVL5BZaPpENAE8FpBj9sPQiORDqtUtlDsyUZQ9jhHAsQSyArSMNIOhZNosIiXGUBgnEZj/TRPeDw4xaCsMSuRTseRd4CJAnkNM9Sy0YCflLO6MtmIBVUslXDQJp99pYAlRWt1E2bT6bzhhG0oN0D54Z+iLi0D2TWjsVURlLRowstqlItN2Go0ly/mM+lsAQm9cqXWHB9pTi/fWLuxvgXL6+b+VpeF5iHNkGYAUc3l0klF9vspRTRbEbhqyDJDqMhqre1fkDK6jjwZRcbn9bZCklRHRoO9jCdIsRQrCCQofKhORAD1WeEgcimeQDllfp5GCjiIduYpmvC2ASVC4VW83OqnVuQfDQ0PDZbRaEm5t6/aGJ+YmBhvjoxOICv+gYioKSgtCnSpjPKPdd2MJHJd3aXuMtK6A4PVgTLo4Ob05PhkrdqNPKL7gUhXB/KWwIcMmSNxSrQiphVJFnJdpc4+lJVTHRweGRoeGejs7M5RNHCfVmcBRZJoBEe9mrFCluAIioEaiRxoIZrCKSzo8+nZVEjTRJpg5JRBuz3/8A9elO8MYjSfTEVEmpVlp4CC2KOiYjpZNhhOZdKwpkHBWLrIKuGYQwheKW10cAYmpMIhQ/3bFnQLg/UfPqNPyBIa/ts2BTQZEzAUAqilP8hYKYOVCinAvljCVExVZHBCdUwAYABJ5L8KJBQWmyAwJBcKKYxHDNuWk85oAMCduWKng+I/GNGSAFExVmUVNFSucLhE4DLapJFRE40IT0kHJsoCPD+EEgo5Ok96/TSLBdAugd5S6y175ZZHhJ4CAAYUjDpXAKyQQjkfs3TgrZn+fFdXsZgDBO5ubUBU6/X6cK02MjE9MzM5N7HaHUtHosA1QmoLgHsGhpqwAEZGpxr14eGR0UZ/sZCwQzJo2Fg6V+geqNUHAZdnmoZhh0TZdjQzHI4B48l1ZWPFns5ST7k8UBubGB3u1ZLRcJSmxCw8OeGo2dLtVy7QIjJvxtD8Lx5Eh0O8KPIsRZA46n6Gh1aAe47iTdCZFDqKcSxWhHcTUQWawV1uXSXdf+9neRnzd3iCGA9Cn/YFrrMAwKkUyFVNZvztuGDxQjaO65kE5wCIcbjXS4VMLllUeD6nY/72Di8Ss+42L3ryeAJj5KjEAojSimpE42gqtpBHUw/oCBg+owwMnRaQd5/LywP3Jt0dAUEVEQCj0SlkYQ1s100wHBto7wDOT0mMVxYx0iuHcJRjRMgx540AJWhwnau9bS54JEVJt4Hyp3O5zt6Rvp7qaCdj0KIR49+kzIQBxYzC4O5YaeSsl4zKHIuxzDXXNQ8ucYyHy2b7J2OiYxbnp42wHlSNRGUlDquXpeSQFtLDua7+ofnDrqH/bSBoS/6gyAOkWsmkYzqJbCqR6S+mQ4KAvO9VvNys9A92l5rT84c1ViNMq3+637B1RjKczvUNJ6hZldVoGAmNSKa/f+JoZ6XLWZFuLopHd26t5eY3frmrVodGFvYuXv7qjjUzXR/q3TS3t0/k/a1c88FRszZ1b3P6y0/iw0NTuzOTheVbN/bvHdzZqI8+Hx++c/bBjbuLQyOf7k+8+7NbSzu7eztbe5tXp8AHt9dvLDXqN/e7lrb+8j/+8qc/f//VO3tHt5cn7/zk9tTR6/eOzy+Qt+TF+dnF063bd5qj4xczDVC6Hzx4/ODxk0fPn91dHr47PX17/9HBweF9BMAnp+cPzh4/ubk0efj24f7MyvwVAM8urtxYWb+x19x5tb99+OiT954/ubzagj6/D6h9fOfReztrd/d2H794/fnrFy9fvfryw0++enl58vBW9+137+zef/2Tr3/9/fe//d2f/vDnb//6emtxaXrrZmNwZmVx+faDd54eXewPnTyc23vy8Ytf/Orz37w/O5ZbXC6Uet85iMc0d15uD/DFUnQxG0t357OpeNiQeSkV1eH+JwuJWALovS1H0npIhAcAxcNjXncgCBLWlECXkH4GOQ4TNOXFgLb6gf3RDkgnFGzLciiREAt4PS4fEN6AF3eB8PW3MwoZ8NKA0QhQCJJSnJZ/BHIN1uRWuEHLfhCeTwZACjQwKGaKCgL51GKgGHO5eDpfGijGE07YEEmCESR4QkxFjIa8XlxQUDIfA7IKg6eT9OM87fPCUuZkqAFOMpuKgWZyAODQFjQSmGgwhzK60ploJJlMplOoV6R1NsijJiwAwkgik0ikcq2NNJAzPwAwlGiRF1uJ9aLCiLLp2CZ13RdKZzu7C1F06pnv7itkO/t7e6oNlFG+sLi0fHNzd+fG/mYOClGrmxV+nCga+yJpdyAgS8gdSEQOcg7ygQIag1Rx6GqvXACF4PbinKIBJLSmUxigJZLOA1SRQLgJ1AcdgDcK110gWczHiWhLD+Qj1t7mC9IMoDCJtAZy75BaElhRfzQ4NFIfgNLcGKoN1qA4jzZGxsZGJxfmx2u9Fh/SUFI9fLEoisjzy4ik8l09aKAFILtaAwCu9pebM1Pj4/V6X3elPjg4AH9U6YobobCjQ5XgtTCIpGgiW+zv6y5Xy/Wham/PwGCt2qj09xVYlqcZwBjQQHAX0UBky1hMEiU0vAQrQmJ5jhMEFvWB4lgHly6aIIFpWk9mDNx7/c1/uGans1G4qdkEADDFylIol5LMQiKkKFY26pcjKbilUMKiEUfhjLjm6ZAwKcFeT2luOmmLoZDxHz/+BsAmsvpGG6B6DPgcRrlki8EClI+gjbTNcwBzYScOAAxsFSAS+UcCADOkyFAszfqQpxlP46xuqpRHQkcNyayipxJd2c58CK1wRrU5EP4EL7N61JJDKkkKAUJWgJaJqsHQskh3tDNAO0V/AKSgo9IiEyRZEh0DM6IGQHbViWDYCByMVKWQuwJgp5QMhwSM+3cA7st3d+fz2WKx1N3X118eHByGjxpQwplpAOCxf2/C0lQHbUGXysPjEyNDjbFpWAhDw6Mj/cViyg4JeguAi73V2lB9pDE6PWKELA3WvKmh4K9MOl7szad7eouoP68MID/c6FWyCQcAmM9ku+1IuIW98GMDrZE4WKuAv3gwgBo4KBZZqIL6RVlpAYpmBb7VEo+oLeqCVyU7zIpwKW1dpbmgp0Owgu5rLpKTsYAHaLagAVv3eq+xNism4g7QVon2dxC8wYn5xBUAxxx4RHweQtWZWFETuKyG+dpd3o42QGBXO9AqhfKSImfpMk36KVWzEslIOp/N5ZP2VQ8W2uuPGJYJi7WjzeNys7aqMh4XLmqCQJM0i7vdBM1yQS+BRpk4rK3NiwP7Zd2CisMnk/L6/AGCizpveoOcHomkK90g3oELA+WKxgCA8909U8XUQC9wXpoxMsw1kB4my3CYNxrRjVymMxNLZaMyy0hUu6e9nYESSQUTcLuyeswsLMzqjgYAHC+vJHQ9xBCibtjhRGffYHPuqND/rwOELiAAluxoJJxKoeOEbCZXLmYMiUvn4rEQURnp76sWc43xpaMGALDhdM9WTSvEiKFw5+qSFdScyqLtcKxGW+lydfrO+npvdJVfnmK27+yuZ2Zv/mxfqw415vcuPvvmyJierNdKm8r27m3hznLn5MVuY3D04c3FX3wQ6+3pmRyd6ZxbXd8/2Tqeryw87V49eH6xtTs5uPnJzO4Xn6ys7m3t7G3vb7Y6oA9u3167NTI+cjHSXH0vAOHxAAAgAElEQVTvf/7Xv377528+ur16sTK3/dnl6s777yPDyNMTwNTzs8vdo+2lqcbB7drK+YPTJ0+ePHrr+eN3Ht8cunm7/2D77YP920f37t8/Ob0LYH3++MGNycWzJ4fbc0tz8wsggmdnFpfWVm/c3J5d+PRi7fD40w/eetbagz4/P4WPB2e3T949W9k5vHX07quvPn/12Rev4denn3/xfOfZRufdtxbvP3/5xc9/+913333/2//8u+/+j+c31ydWtlZHG3M35m4enr93enw2s/xg5+b9Dz758mevf/bljbHSxFop13X73Vn7eqAvRKqRrgLXKPWkky3BEJI5KR2DekLGivFwNGIYYSWcDBmgJ3GiNfUCuElirAUAHMABdoHBg/byYgyt+IJeF+5oKnrKAAyCfq8Pw4AzBoKwIn0USuoNuhl4dnwMMhRHO6MYIdk6GngF4AmhHWdZACFBQ1kmMRr1JIH2Rr1FQa/bK0cAAtLpRHdntpCKZVOWpTE4xctB2ZQVWLM8RdAkmk6AVyUwHzyg/iCFRqUoikEa1UlmUtFIDA37GprSOmME8QqPvNWVSCeSaRDY8bATcQBuDB1kHLKBRAo4Fk9m0eHbD3HABpJOttMK60GmXxIvyYYCiKemS9lMZ85K5jpRDmGxVOqv9A3UG80pKHiLKyubW3t767f3utAhXjgWdfLdcZbEvWiWORAQdHgJJYQugqlfxR5dbRQLgiIw/jYvq6gCgwOdgBuB+T1+EsV+onMoP85QgQDoSRxlhTKAazweEHiSg4JGgWpo8/kRH2E1kJnIukMRWg5XivYjFK9eH6xW+sq1IfgYHh1uTk+NjExNjdbLEfi2qtTS+siEGnVjx9KpbBcyga4O1Qdrlf5KZaA8Mj09PtJolHsqQ1B54cX6CxHNthRBkXkeWA+gdrZYqgz0lCt9gNs9xb7GSHW0PlgpoVMKiiGxAMGgGRs0+YucxURJBXXVsuQQTJlGFM4P2INdCyZLeYdnJSdVjCs+3z+0vfGGHM+GrXQhk0hfAbCeLmp6LgFyOG51yqQJ8JLOxsPhcDquyjr+922irYc9gTTXzncmkZPEf8Tfv+1A23D7Ufe3oaSB6vjo61yE9fmpDow2cxGBzkdjaDbc1iyo/hSNADgSMWiCgztCUy401cxRQQboC+1T4pFwNJtTjHSyO1vKoLkyiQlZlC+IOAdrRENSSCMo1hsUJDNk86pO06qEXXfxCokLXlwTxKjg8asa5iEYGvUKsxIabbPQMrQjkUgUALiYjV8BcE8qrHF+rpJBFnKimO0r9HTnc9lSEZ3B9/ZX643GSKNWG4O7PDUxM7qKADgGWhp128Ti2UK5MTnZqA2PT481m0NDo82+Yie8TU5xwgATnf21waGh5sjo9KgZMjVBNkNGJB5L5ov5Un9nodxX6K0O1yvl3t5qo1suZiyHFMRMvt+2Wqlepo0avmWeJmCxB0kS97nars56Ba7VWwKyGJlLMTQno0AqHc2gy5rkRDlRtpA/OCUEvO10JOBpc1OCEvC6Av6AqHNk0NX2BmOxAmqYQh3lfleQ01ix0AJgFgGwiLtdQdUUnEIIQEcD8ez2tV9r73ij4w2/2yUEXPD1IUPFeaBNuo322fKZZC4bicNLRiJh2zAACC2a4txtng4PH1FlytWG8QqKCiQF8no7wfJC0AOqIUhL8FdtGBWUxbZgiOBdrMUGPKjPIRq97gmgVsJkufhmhx8AGNR2OArYmuvtW0wrmWRI4amAWgi2YWTIhucUo7MRRUkn8/lEujNrsCznd/t8bwLVk1S305nJlayonlucUS2dNOFlV+Jw4QgUNGfYsXzXwMj8cb7nXyu0DvwO5EIkG7VSuXgkkizk8wOZBGiVbDEWVvzdzUp1uJQdHls+GmU03AiXZuumEWJg7fUsjSm4FakumA7Lakoy11W5+WB9uTu6LiyNE7eO7tyINmY+vmsO1mqze5evf3VHBwCu9u0I+/dPQmfNwsS99ZHm5IOZ0dfP7VgonEv32YPzu3un68fN8tp5dnvv6d7uxtjg0ydjD75+sLS2v7F9sHuwtYt6sA729zcWx7rXT7q3t/75f/njv/zhuw8uN+7dnJz7+PXc2luvH9y9OLl3cnpyenZ+cXtne3N0cPt8YOP+2aN3Hj++vHz+9OFbZ9ONo5GV3cPHu7fvoCDC05PDh+cnF4/O1oZvXF7c2VyY/QGApxfmV9ZWb95cHP3g7ZXjg4/ef+f548uHDx9eXJ5dXNw7uzja2326v3LvYPfhR19+9vLzL159+fLzzz589ery6N310sXLjfP3X/7kZ7/5w3fffPf7P/7lH/9yubwwuX57cbC5tjC5c/T25d3T3eHD50tHb7989dVnX/3qzmR94NZIIT/+kwfZeF+I7e0WGIMY6R3IF+PwFBuayAiJSIilyGjO0Uw7pFuKFdNCcPtJZI+Oe9s7vATGWRIR9ABuIL8KnGBxnGMVdxDzBBwHyUrUMc0RPhQc5+5Ae6SYB/OTvEx6AYSDGIeSbDwul8cb4NHpEJqxsQB3rsyLeJCwNIVxhgJ1GaCQQgGhvoDiRHM5Q+Lz+XxPV66QiBiANTKPY6GookvxBBXEKIAiEFWoVRZli0KZC3r9AZIVFQvIZioVi0RiiYRjo1Fes5UmyLM0Z3dGEslkIhmNxcIoRwdtQXJMy2ZZNWPpZDKVVfVQCJ3/Igv/kNwCYB5FAktIT4L2EgjFLCRj2Vw02pnKZFLpQldPutDX3z800WyMTzYnltbXd7Z2Nhd3drtBc5gotzdW0Ns7KB70Ku3xERr6hugEFI0sgxQEHa7JEgfkw+UKUIzAosKFgxKTGAzDgXPTAs1TfADzkSyN3jWUfnQODHAm4gEQTCLcEjzo72jDWodULAfUhpWgQoFEQ9PL+o9GGyBbkbFGb7nWX0Y+weNTM5Mj9fGhei9UAAFZaagSUBF0LGtGEulCd2/Lz3mwAuq3t9pdHR5qjDdrw4OFnr4a/BqqV/o6k7bWcueSUOe4acVzxXyxt7+nXK81RmvdXZVa//BAudKFzgcYmqFRyx0FSl5CPVhoGA1NXbWoF3LCQnvQOBsk/G3XA3ZnPmqG4xEnxPvbr715vcMf6k5GnBzqndPgNkqKXYgzwCMVgQ3lMqLbSTmMlMmGAGPCCkv9g8sfNplrZgz3hBLRKNC+f0feq1ng1hxQK+2x9WcmCFSM4V047qCOhaCHUOI2p6TSKI0h5gDyyjyJiwiA46hHR4FFDSwITdCQFAMaEfPBK4QTuYwWScYLpXwGvkLneUsgUXq1KhB2WEVmMDwDcCwrjgHvmWF42uVmNHhlHwnX0ZKw4HVeJ1wYhWIb4d6paAfFAg4XtUGcAQB35VOxcNyRnJwTgoeR68s7FlAZNtufL5XyhXyppxUXWK311RpDtaGR0bHJiYnpqdnVUjphRVAUhWLGE0ko2Y1mozHcnJlsNkdq9dHRvnxn2tQUZKaSRkfAA4P1sebozBgy8ZQEPYziwRLpTLrY31WsDJTKwMvqwwPF0mBYL8VtjRClVDwRDdvhVo8binUQGRzYOhpOR2YxDCu0Aq9wPIDcvdF/CiyLzn/VqzgsXZYsEyiyoypoHMqPXQs4Ab/7GoOWOKLvEixS+N11KsKHjUS0YMqS6nFhaCMpHyHVhCU6KVOQcG8Ql8O00y2LbMwhr13DfB2e63/X3kbSLkLwt7Ga4CRAzfqAypuxuJXKpnL5hANEK4qaNYywGTEiEoW8sAB5jZDIe99sJ0yRQdMelPsaUC6d9WF0G07jRMf1628yflr1MQbNBfCQFHAB4eLCsTeCQU4yI/G+fJvHjxNwI22QqqlMsbc6FwEyKlkU7uGzagcmsOEwK5EM0DfNSeWLSbj8KYGVaR/p8/tZijNIItJnZPuSSm55VgrrhKLGqitJSbVYjBU1zY7ne2vN5Ts95X/r5UNA2zlaKmTgu4Gkt7KZdK7RqTqCkMulEyrZOzpU6cvkRsbX7g7pOqHbXRO98AyyghnpXZmBOmcO3zRUThQ1M52vLZ/eanZl5pXVMe7u0e3d/OTKlztmT//I3Pb9lz8/Nhanm/2De+zFwb59OVpePlxv1GYeTt3440MiYDhRPZ+oLe/cO9zcmOy8WO87OHu4v7dWnft6a/LjV6u31rb3tze30RDw7e3D3Z21pbGBsbfKc+vv/r9//Je/fPvi+a072/PTT79YWnz84vHxg8u7Z6fw6/L87MbZ2nRl/e3ehb3zy0dPnj17+/zZ2x8d3+nd36vv7T2/t3l4dPcYFPDJ2dmD07P3tm9Orb1393Blbm52fmF2anJ6dmFxYfkGCKTm6cut7YN3Pn77ydPnlw8uH1yAYj4FhD/af/B8ffV8/fDRi6+/fPny9edffPH5Z5998eXR8dOZ5rMnt+5+8NnXn3//x999/923f/7DP/3peH1haPvmaGNmYWF28/CdR4cXawuPd9Yeffzyk69ef/VkcWxwYzqVHf7gm4v+Pi6YhZInpKf6i6VCLg36EDUXpWI652bSIC/isZAeUY24paBITgrNzwdcHThyCdBwBidxlg6FAbKpAMkIEkEG/JxisDw66CFwFN/qdnV0YH6MoK57Ww1SAReLHCtJhiG8qKPB61US+pV3hS5fBdwLAo1TNI7hAgqHFRgOh5LkZ/x+G+iAIFrxIqzZYj4TA7VOshjygnQsEKE2HgzygauNV5ZFpzIBUMRk0O0DAWxEY8lYOqI7SSi9qK0Ciq2lCYB6HCVa6VwSaG8uHos5pqFebUEzsq6i1qt4JpbIFhw1ihycY+FWGA2UE12iRd3U4LuD0lPokGyl8rCw06jJv1BIp1D/S3cPGp2s1YYmJ6cWV7a2tne21/c2S1IYefiKpuZy+fGgh0eEgQLJSsmqJaqSoeqoEViB68FTtL8D8/I8zfnbSYRWrMhTUJo7fKyAsi+Ap+BBFwGPPS+wKNuN4nieAfTFWZYgMZb3deBM0B9E270iRkOtl0Rk0awirfmjOsjYMiBwvVxHBbcxONwcm5yZGp8eGe6PoD16qeU1jYw49BCI9kyuUOru7UMdz4ODA33Ven//8PjY2ES90ttdrVYq5Uqlv7sQR9OewB0kFOpkmpFkKpkqdpX6quXaSKMMnKS70t032CswAgg6Blk9c8jaC7Q5xwkKksGmLBshnkTjoSQJNIoKYK5r1655/LIFJTkUD/OuNpfb1f53dD6dTBQS0XjMEuENylY+LUeyGRN+bj0ZCTB22sbddBgkmC1xov9NnyX7PVHT71GSMeeHPeer/0MTMkDKWr/+JodDWtihKNpDBE2VDwZxH64kIrwMRC0Myi+mAYUTaOT9oTkxW6RBEaGzEgIIpIDhjAkSxqdH0MZBWnPi0XwpH1dYRqNFlLAQDABCC2FHNTQOHh9SQFwPGbDRIh9ox9AMKRmgZaCkgt/vbfNKoj8gU+isEVlZt/IIAddQtkGqUkrFY+GYLUeLUcuA1x9AAKzJbAYAuDOXzxa7S1ceZL2Dwy0AHp+ampqZmVvtTCUdFKlkqmbECedAuo40Rkeb0xMIgIeaoxVQwEAyFCgL6UKpr1Ibbkw0QQGjLSBJBHoFjDWRyWY6+7s6y/1dlcFafWRitFruDvH5qMxSBI2SwywnhJiYYcBy4ijUJSgxATSCyKDQa4Fv2aYGkHUMUsACOiC5wl9RBQYeiaoCFZKFkAokPtDmNUif6wcA9vj9KHov4PNcI2JyKl7oqsYVUfb7MM20Yv1RXEtHpEjakiXCi+FKhLF74IZFLPza9aDfBQDccc1HBnDS0wHQZsc5gfbBwwewa4ECzheSkVirDdoOAwDD/ySaDbR1dFz3QVESsHYXpkocw5Coz5ORVEPGA1Q7BqsZ1qaLC+KqKxhiWCwYUggX6QvQZvRN+HllK5qs5No8GKx6SQ2ZVjSezPdWpi0/LVl6gCa5uNzmpyjbEi2BgG+u2MlCVzKe7StpHNAXzuvx0QHaYoJSOhLrztu55XnJVoOSHC0vJYDzkgFWUAGAc92oq7mr/F/7SSXgdQNdL6QT8aTjRKOlVCI72meFWSWXikcVujI5XB3IF0bGV4+HZIUww73T/cBOGVGyuhbnJNawhm7oMq/qTjTfPTx9sH2zkp0ip0a4vf19BMBfrZuVwcbM7sNXP9kLzQ4Nlvu36ePN3dizWt/i7bXhwdnz0dXvzlirvxxLF5PDSzuHa4frA6MvR2dOHhze2ZofvPfR0vavHy9vr23tbW/u7u3uHuwc7R3eWl8eH9i/2be1+W//+z/9/k9ffXr36NbNic1vbo5fvvfe+eH9s3tH9y5vPzy92DmbWq3OP6nO7p0+ffoYBPDjdx49f3x3fuqourD91v7OMQDwvR8A+OzBj3dvTmy/c3S4PD+/NDc5Obe4iNqwFldX1rabuy8ON+48/fi9Z88AgB+eAwCfIwA+279zeWd153j97OXLn37x6ZcIgF+//vzzz892LidqHzxbOv/gs+9++s33333/x798++d/+enNhaXRO1vlxuLUxPTpo8t7Dw5G7z5bvPPhixc/ef31j2/N9sysdJV6H3y5bjgpXg515juL433FQrGYi0djyIo2mzAFL5vORexYRFMsBQGwDMqKE1iaIjAPiV33KjoVICh3kDV1iWQpnGYEPgDLmtMcVQTcIwIuAkMQ7Gr3+4Ik6wrifpwR/S6Op7xekmVwt8vjxvw+NdESWGgMCR0GA6UF9UwgS0UORfbKNMkSOM5ibwY4gCjU/JyKpQqFfDYJfJ9hcWQ7DX9hhQSO8JIB0u9iWj7UnED4aR11QAL8yGYkAm8OVGcGqpVtgQIOaSFNCbEoANFMZxIxtI2HhjJsC5kggy4BjFJNB2AnmUxnDQkNBDph+4egQABgRNVbh8gAGWIEOGcxDwUvncxmMslEtrsrl+vs6R9sNOoTzemZpfWVtZ3d/e2VrVtdEVMV0JPoCGQQR129BBHEcJIE7QeSXNXNkCTbDtASxnXd7QuyIkX5r/vYYGsqV1cEnMABaJkgMjsRRZYI0Mi5gCGJ1geJHIlBTHBAhyjW7wmifQjUEicBmWFQvUO6A22//6hc6e/qQS3NfdXhen14qDI0OjI6OT013RjqdWSgAOpVMWyNAdvhaDqVynUPlAfqw7XBWrm/WunpH5ufBQlcHewertQGK9VqubeYgEtoIOEsGGg3N5orZrKd3SiFoTbSHKnX6vVqV1+tjyUBr2gGHQILHN/aS2jlAWutZjzT1qFcI0dCCk0d0X63FzRLgJNVw3ZCZNu1Drerre1NPNaVSBayaVCgOKWIeirrqHAzkdVhrMvuoJxCWudF5IYogKi85tEtgs/pbg+fTl4lILUAuPX5PwDwlS+lakclgvDjXjGCWJI3KKcSohgBDR6NJOJwTRAAi6CUnagjMbzCkhSJAQALnBdjbU0LtAA4nkkp8A8AgB2VETVCM2Bl+gKswuuOoVoqTUlBCg28abKps6zCtru41kuRaBJWQUPw7S5aglLf2oKiOElvOVJatglc0ExXSplUMhzROac7FXFMQSnnUR4wAPBAoasFwKVSN/CegWo/AHB9aKQ5MTU1PTczu1xIpSJxA54F1YqaZqavNjzcGB8HfTwK92l4rFkGFDJUUYvH4ul8Z2+lPjIy3mxONQw1ZCiSbkZaAJzLdvZ1dQ7091QHqkOw1Ju1gkbGw4yf8uGWxLF6OKQ7aB8XdSzjOOpq93t8GMJfNPTAAXsMBOAZoAVk16iEQld8XEURP5ISBjFAaBofCkkC7ve4ZMnb1gZwggDY52VgDQW8nmt42iwWe0amS7ogApuNxpzcaJxQshHBAQoh4C64dw5t95sSHXOC19pwzO29/p862r1wVz0eDB6WkEEIdEAKhUD02ul8tgAAHG0BsBMxHMuxwgrAaUe767pX0gQ+COS51TFKMZTPRUjoaXUzaEaB9buudxC43/BhcGsDflWlXaBFGCPS5gsIqh1LD2YBgEkoUBKyiomjiaEZw0vLtuSTNC0muYIEYxtaTKRjkVjISRY6U/FkT29YE1hOccNb8dC2zGB6wix0Z4qLC5IpB0Q5WllKwMOKo/BKzUlkuwbH5046y/9YxhS/x80yUmcmGo0bIctKJyLJeh+QSy0dj8dUujozMlgpFBrjayfDgkhHoqVJBMCsJEW6FhclImTWbxiaoMK/TZaGGrcON3szC/Rkg0JntdmR2VebsdHx2Rv33/niF/vG9FBtoGtbuLd1O/OsMrBy50ZjaOXp+NZ3+3h0oNvuspXy2PzRyslC1/pHnevHpxt310bHXp/PPvktlMb1zZ2t7b393b2Dnbv7t2+uT9cal33zGy/+n3/66x++eXW8sbu5sPrl4+adF++cHx/fOz0/enDv8u7lwdbmxHj9yXzl7r0HT588fvLk0aP3Hz0932jsrw7s7j3dun10dHR8BcAn56eXb20uN+8+uXOwsDg33ZLA42OzCwuLq6s3tqcWPn584+7DT378/PnzRw8vUcDS2Rng78XR7vHlztLJzt47n3z9k8+++OJLpIA///JnH91/cNSYf+9i9fGnX3/9y3/8/Xff/+l33/7zf/twaW1kdnepPDkzObJ/+ujhvcvF6bdvbzz48MXrz37y+nCxXF8vF7N3fzXv1MvNWDId6bIHuzoLXcV8PBo1eE7LpWzJz6WL8XAsokohAGBTUTiBYtnW1pGHxF1+RaX8QdKFMSFVDqJIDlrg/H6PXww5KGUd9S2zKOw14OnAAKnZDkRyOTHg4UXS46V5FgDY68ExvxYPtQZfWyUPhB+wZGRkCVpbgIdQkYHv+TFWCb4Z9ILaiGdT0WwKgK6QAwDWOI7iOEBnnxSJhNGWlGIKVItn45xE+yjbZAJ+P8UIISccjYRNJ51NJmItwwXU3wQaU+IZ3kylocYkw3YsZumWjXYiFZZVWwDsxFBUYdpQkE1YK401goxwdU3iUWYAygLkOV6IhGOpXCZbzKcSaAc6le8qZXOtmtWoN0cmEQCvbu/e3l7c2Ow3OdnQwpmIHOKJIEn7A8BNOq57ibCuM1CVVRmlxXAk6fMEGAFgiFM5DPN5gySHDkc5GuGuwJFwPYCBszSGvBxplJpLImMAkMYCoB/PEKTPj7Xsr1rBBZwoET5KBLoCP7iIXB9/NFAd6OqpDg50dvaUK9WWk/4YaKCJyeFaN2hxZEIZguqstnIhAIATiWQLgKuDlUqtMjDYPVAbmVmaQiGyfUOtJttatb8zYVsmMvLiBLiWhhnPFQoFAIBqvTxQrlZR8PBgV2+thwoCm6NR+xhy1ORbtvQGctrULTHUoiDIihN15BEBjPK3tXVAocZFMxbRaX/79faODtd1l8srwYrIJmDZ4pQsa7F8SkjlcgoQEyPfwweZeE9nEvlxx3gyFOp4k0tpZk5u81DpLNrnQEQM8Nb+AYv/HYBbi1FV9FAkBGQQqGSSw5F3sZhMSZyTjACgJ+LAFFAiMKsbIHAjQFBVoAsIgEHJ+VoA7PeFIlYURb6BrCqUMroGUgkzQxzu85OCjAKeVAvoq+gjQ6pmwo3XoCrj1zEo2hRB8IiS8vBkYUTAQyiiHygWwDIjtGaRAIFNNMuWqZTy2UzUURh7IBdzLFFrAbAOAFwpdncVivlSqaunr68XWZg1GkMAwOOTk1Mz09MLRQTApm3IspMIO5me+vDw6OTE2OT46CjqxWqCLErZumKEw/AmQAFX60PN5vjMiIYAWDON6BUA54o9pRIgfK1aG25OzU1UuyOUExV8pJ+K6iKvm4i7on4+NPaN1mjA5QpCxZCACLYsKGGFMhzNAP6iLEr0rlvXXwIZL5lheEpkUwCZLuCeQDtneq+3cQiAYWl7UStiMOC9hhci3b09k0tlA7AREzJpozCbotRilHMSmswRLg+p2YxdtiQ6HsavtZNBj/f6Gx1Y0Oe5fh0LssGAJGAsQ8CbikSiDgLgfKIFwI5pR6xWv7mG0n47Otq8vC1ygfaOgNp6A3B72jyCLmtCB0h0UoCf8o02H+FxcAzlVQJc826/38cZTpsPE3U7mqqCAkYlkZcMeKhiALCDC7aP5GTSJ4RiSRYNmQDgpzgxncpFo4k8EKxotpSMoXxU4AseN+LifiZqpXp6e+bmVFMKSGq8thpXNTWISyDHI8lcV31y5bir/x/7AnrQ7xN4tacIaA+rWzHT4WS507EZJZnIZHSid3KoOljIDk/duBgVBSYazjd7DccWZDlanF2RsZBR34hYEsgM3UlXB9ePN4vJNXm+SWzfurWVGZ74cCtcH52/dfzoJ98fhqYmml09u/KdjcPSs0rt5t2bo42Ns+H977fwfA8RzsvK7PrBwc7+WP3OTu+tO8dbd+fLG7/a3Pjso7WtWzdvbW3t7O/v7G8d7N29dXNptGf/xuDOrf/z3/76l++/fDa/vTW7/P5X9Z3P3rs4uncKePrw3snZg/3treZC7fRG/daDi8vHjx4/e/7srSdvPbloLt4durF9uXvnZO/o7hUAX5yenz16dGO6+fDiYGcWlO/c7OzMzMLqzNLy8urq6sZy88cfrt09/eR9eInHj58+ukJgNL10vHv5YGXjcvPwxeuf/Pzll1/95EtA4a9ADt+9vN+/9Mnh3tvvff3r3333/e+/++Mf/vxf/vnh7M3a/L2p6tzs1NjBg6f3Lu9VD965sfvWJ5989tlXp4tjA6uj2dTGb+rWjfFuPRYiQsRgV6mrK5eOhqOGwKm5pC0H+HQnsr1VJV024oasCiLQb5Q+5O0gKIzSFBwQOEBTUEIwCtklAAAHMUJWNALKKY8SAkgMANjr8gcIkm7zeTGSF/weAYDRz4g8CZLGA9JPi4HgbI0hIWMLFf4lxfM0CkqRdIlTTJVHLu0C6/bjOrJijqULmXxXd1ceRfpyLOjyazQ8OSgJVdUM4AVoChV4As3x/qAk4n4AYJrXLBRf6sSzydWvVngAACAASURBVGg8jho/dZS7jjCUBxGfTMVRjm8YAbCB4vo0hQUFrOiAt1GE2WlLjyJbdngRx27ZdikIgJF1E0g3XgzF44k0UtHwkU7lgR7ki8XOrr5KfaherQ9PTU7NL27c2tnfXtraqfKskcnnYpKXB2nrYelgMOi7fs0vhIDlyHDpCI4jMY8XFwVNo2lJwgWaCdFtfhANyMAKRENrjx+ULkejfWka7dPiJI88DAQR7pSMvMPwIItjPg9cdZSOhPyyAEJoVRU51NqFJOePyoPVftCxvXDv+yoVRBbGZ8bhp51u1HtslHIoK63+uCsFjBzBcqU+gOpKtVwerPRXy7XaYGNqcmS4gRIXK6g/q9JXiNvIbxC0vCyFgLNEwlY609kDXAT+VQvna4PdvdVuhpJYBu2gUzwBoILSFi3kxCkqIcUyeQbIkYZ60NBAWwD3t73xRjDgo1BEo0rA0oGq7XoDuTEwZi4Wdgy0U6JpTr4gJYvZmAjVPVTshUucLqQS8BFlCSvm/nuPrTmpYJuXSOUR8v4NgK0fxLDd+r11hcCyaMCq4Uja5wukRILwYQQfS8msk4lH45EEajmVUDu6ZmpOMiqTNNRbBMAcx3Dw2VJVf8CMmpFULiyBYC4WE7rCylLAUmjcH+QVUXTCICpESma9pCprtq6C6pcZt4tRRIYhQBXLGuA6PFtBrxdH/pQAwBTNwE1WUaqI1QKGXBXFbkVtVYhV81FDF9SBfNhGCjjbDzSwUCx0d3d1X1lxDA2DBB4eQQA8NzM1j7agY/CmFQkZceR7B4dHxibHmtPjIyMAwM2RSrEzbaqSZtvRdBEtkXptdGxyHgFwCJ4N828AXCihiffKUKM+MjYxO1UtZxk9buAExqWR76puh0xDEkUaDwLfZMgg4fUEaZpVBFGgW65tAVIEJBMpTlTgTcutMGitZUgmq5Ylk5zDA+QLuBvroKOBtnaeEYF/enw+VuR4Ene/GSzFeytd48tDlioSASmXM4qLKdzsS/DRdEhlaLePs8Os068LZNTGr3XQuMfb9qab9F9r6+gA/Pf4YC2KDG/baOYqksln89lYBMohALAVRgPMjhPiOcrb0dHuoSMSB1rY10pKQaGELjerK7rs4kkfPLSkt93lp7026QH1wHpFXfa4/B7esK65/bwKhGww1+aGxxK4FjLzRN1vg0u2l6CY/4+q936O5LrSBRUzI7IbQPnKrPTeVmZ57+DKAVXw3gPdaHjv23tHI0tSJLubriWNSMqNNKPZF+/Ni914sT9sxM7uD/sX7bkFSfs2yUAQ7EahKvPe833fPed8x+ny0+kURuLtfjOUTHNCItWZTSYL8UhIjxTS6SDAPI4721wOP2eTfikSLVbL4+O6zoN0Tg6shkEP+DGBV8xwItPZP7GyU63/peRTSL9P4LWeUiSVDVmg57PRXD0fCrJiAsiqgReH+/uahWRz+vrdUXgitt451q1ZQWD5ZmJ8UcZNo7EesYEOgR6J9tSv7Z10Rxf5+TFyfXl5Iz8y9dONcGNwevXo9mffbhlTkyOl3nX6xuJB7+Pa4Mbx2tDA+mnz5PtNvt6tzqa1yNzMxurecmPszujoIejYvYn+Rx+P3/nNyY29zRvrG5s7e3s7e1sHO0ery9P9o48Kq0uf/Oe//sufX73cuHawNXD/i6W59392+/zs5q2L05O7J2fnF+vXV+YqhyfdO2cXz54+efToyZPHL+5/8GB38GRlfG/n+cbB0fHJXwH43u07d5/cuT4x9fTm4cbswtzi1PjMwnSje2R+GQB4aWV98P5Ha3unH/74+dNn8EKPkB/WbVDA8Nu2Tp/tzx2frr78yZu3n7x+/foVAuBXn3754/2zk971n+ycvPz5V6+/+91vv//Tn3/7u3/748aN5dHVgybIk/rC6f27N+/NTT/Zu373gx998smbB4uT5dmVQrrx4WpYHcKliEIzxFRvsbuQQTlgU+CUTDwoeJhUHjigrUiaYMYBgAWRQw17uM/lxKkAq0kB5NHL0prF+RkBCDuPJpRgl4XBEoc0LJqGBIjd4QbeCzoYuTO5nTzPeEHZcaSnA14JbwGwjowXdKE1DhYNJgMAwvweCfmypmIh05RxmnF7JMBNM2RaqVgSJFUpHlEVGmcCtFek/aIhsIrJkRCqUao0gKwpuABOoFkpGMMKGipijsQgUoWSwPZtTYXgCyoQBCxFmShNmUplAEVDQVMT0IghFsSKDBIuGAJ0jqWCqo0CNtqRhoVcmZErpCi3jLBEXg5HY7FEOBJPZVKpVAIJ9NYMmt5qX39ffXR0amx0ev7G+tbu9rXd3RrElEgmgoaKOshAG478KHxOFxPkRAFihc+Heds7AigbxnLID0ciPV6cknmn34uzaFoD/JHAIKmLEt0kRC3QXDQeQBORmNZQVYpC0cnLsTQRgP8P31OswKISHk7WFb4FwIDSP6ihd1evlstlwMdqua/RHJ2dGhqdmxzo77aQ/YYswkdUdJQDNtBhWabUW0GZvka9jqqg+6r9I8izsDHYU62O1GvVSqUKABzWtZbNGPwkoHcwEsmgubTdld5KvR/0F8R2gOFOhhZb6T+MZAkaUNdCKX7U+QlQrOvIEUpEDeUgcVgRDXdyXPF0OGgEmALpvAqUH7/icrhUk8RimXTMYEmI6JKRzBihdKQQJODZhstZGZMLnZFUIhEXAlaCeKedkqJpZ7uHiuXheWotAG5B2WU11v+XA0YPmDdU3ZYoyuVzh9QA7vaRTCgh03YuCuskGpUlU+QYgtZs1Y5HFQBg5EXZAmAOI1hTln3+YFi3YylbiiTjhVzYlkVFJG0JNBsGzI+zAIA1hlQCPhreOiwrheElX5ufQ2aMFB8UNZWHRcGwpN/rxRgJ+cuhZ4m6yZB9l4mOZLK1UjoNACxz0b5cSFV4pQzBFeWAc70Z1AWc6+wGet3VXa739zea/X2NwYnJyam52el5AGAL5YB1SQuHY8VqbWBkfGJ4eHocAfDA8EBvrpBEZ82hcCxbRIt5oDk8Nj0/JCvoR2wk31pH0Mhrqwctn1pzdGRioq+cZfSoxZAeKhmNhkKaCQAssYho4ojEu90uPxoajyYEkTh8NJLkZGBjIAk1NNv6sgBLarUCS7xhywwVEU1dFpCdLR4JtDt4GtS0BwCYFUEXBBzv+LpiPc2uocVh0P4sJsTzVmEp7gvXk0w0o0ok2eHkQhE2UdV4KmpTAMABpxuNIOz4hzav2+31wW7BeI6RQhYwsFg0nUln09FwqwgL3WPL1uBPeORG3d7mwAwBRESHg5N4UYVoR7udFJAnwcnQTj/PEh63y8fgQdbNiQTvZBTJ1eZtZxW9rd1JCnooXku1udxenEMOJ7CO4tl834LmCDAsaFtfMg2BtMOHDlVYKZGq9BQLXWGNZ8MlWOVRVeF4T4e7zUFGRYIMhVNd3c2mqbAuXk0OrkYAJHEMJXLsaKrYN7q8NTn2b1lcpTAPx8hdBSAWlhEJJdLhYl8xatJSGqKVESgO1fuGSsnGzMrtYZ4LGEplssShicaqlZlZEAOm1Vi1TUEJSqDfS/XrG8fl6Ly0NE5vryxvFsdmPl5PjI9OLB09/PzrhfDC8GA1s0hv3jit3q2Nbh2vjwxunQ6e/XIzNFeNrjFaz8LU/vL2XGP8wcDM8cnxrWuji69Omy9/dWNtc3ttfWNrZ3d3Z/dw53Bjc3asfHKjtrbzf/37v//+n39xcGPnxvjp65PhB68fHJ2D/r24ODu+e3Zrc39+YmThZv+1o3v3nz199PDho8ePnzx/cTGxfDawvvPw8HB/7wzwFwHw+e2bt+8+O1+dvP7y5unqwsL87NT0/HQ9bdcnFxaWVpYWN0b2frZ//ejpR++/eP740eMH9+/fvXfn1q2bt0/O9/fu392YeLB59t7rN1++evXq808/RQj82ZeP925t108+2Dr58Zuvvvn2D9/97l9++8c//G8frWwONneu1cYWpoe2zi8e3jkY3H+6cPL0g48+ef3ejdnq0FpPvnDnpzvuRDyT1cOCOFfOdmZzWdBwQYFV01GDdzPJTNQGKi1pQIQMUUYOGRAwAz6Qorif1mQaJ0gnwQdVBuN45ITIeLxuLxpBJ5A0mqOOmv28HrfH4QO668S8boBRpwNexeOlWKZVhIVhfuDKCICN1sGupqIJdBBxUJ+gaoWiaeDQCZMngHwyaCyoHdKsdCKZ7+ztjMfRFAPWS3SQAac3QMIORpUdGI9coYAQBJDZf4DCrwK55EDLRuwYqNNwJBMPhW3kNwkKUxaQraOZTCQANzPRaNRuATDoPo4SJOR6YFixFBBFWwnKQeQdGUHNFKKKJn+hEiXENnhaiNjAXUBf57LpeBwESQ4QJ1cqdYNG7G9MDo+OTC4vr25t7+6uHexWjJhtRmWng3S1E4zb6UZ5dS8uhWiJl/2+to4AiBzYaazH7SM4ifO7OM7hFES/y+kmeJR3kpCOZRiJoXmBBvUILJyEWw+xzAfC0Nnh9vm9qMcLHTxTOEqnkyyajAsaikLFzYLIo9GEP2hAQG5Uy5VytburVu6qVJuj46NjkzNjjXpnUFQVDdllo4agSyvoWCpb6gbYRaq+3qhX6pXqwPTM6MBAY7DWW232oZPpeuVvAAzURIdbpYZT2XyxuytX6OkulWsQ5Af7h5rNviKD3hzq9w6QOIvmXgQ1G0E9gG/wct6zLiEAhrVDuyGmOa84/G4Gno9Okc52Mmji/9BBEUY6SbjDqVQQaAYguhJNxfVIJB9meFlSY3012aN21fOZdFoijKjRdtUPj9Pp9LKhXFz5KwBbyFsZIXBQQ/CO6vEvAZhDZVgaSXr8DsUicXhQtJVU6WA2HI3bIVsUjRYAq7ZqhJHhpcjDk/ThDMNxQJUsWfb4rbBmx9MhNZqMFXKhqKTCbbF4n8/lFyVWsEKg8GhC9JIQNIFmAgAznKuNFlAjPKcosiV4CeSWKsAi8AF/QrUNJCpO40TUD2yg8YTZWj6XSYeDEhOuZixYGWpvEb5TJK4FwLAki12lIqqdq6Ln3exvDk+gE5nZmQVkIRbRDNWQ9UsAbgyPTw4PTY0PDQ42moP9XVlUhCWZkXAs0zLCQgA8szCo6kFdVCwbDRJARViFYncv4HtfX3f/+PDoeF9nUgyHZJJykxHDAMqMAFhgKF8gQKBDNEeHB81/FniWRElzf4DmWu2AAmr9UtCMehQHAIHhEYp8MCzxeEy2NFmhfKAlLcrpEliZJrxun1dQRBHU7Lvezkj3cO/g4ohtGyIhhfN2djHhizYSdCyrCBTZ3s5FYmJnvyYy8Qh/pYOGp+lwBEhvu9PtdOKwea44JZKVbd2wg9FoOp3KpmPIpgIIt4USwFoY4gVFegCAO7wqrwh+1KvNiygO0B4HJqkK66Y4p19gacxz1UPThuwlBFxyUIrsacPbKUF3t3dgNBCtrvhVDwA+JwaRlWcymcv3zSsOCpSJ24PZGUVRMVw2g7pqZzP1SilX0IBdhgrpbK6gw/7we0DSBGyND8ihWDJTqcCycXJKcuB6TJC0gB+CkxaMpEr1kfm9lZmvEoROY26a4AsZM5ULauFQMmPlKoWkxfLZTCJhksXRWm2oK1kbXbkYAAA2ja6JblFgMcaKla/PAyKHmgDAvBJkeSvVWV/bXCunloyVEXrn2rXtwvDMZ6vR4cGRhcMHb365kFgYGBxIzIlHexf1O70jG4cbY0O7e82jV/u9h6P1Yz05Oj+xdX1jpu/areriwf7x6ezw6Zcz1z56ubwGr7u+uY08sLaPdvdW1yYbI7dq11a/+X/++JdvP32+vn1jbvrLF6PnH/7s1vHZ+dn5rVsXZzcfbO0tLzaGHw5On588efnowf0HDx89efb4g7sbI0dLY/vnj68dHR9enkDDdQsB8OG1id3nF+dLiy0byslGT3WoMgFqeGV5cW1m6Sd35o7u/uLDly8eP3ry8MGDe5cAfHp6vnP85O7k4enO/Z9//s3r129egwL+/NOvPv/s7bPNZysDT843Hn7y6y++/v13v/kdiOA//9v9lfHhqe2RwfHFwdnd08d3bs8sPr+xdfv5jz7+9OODlUZ9pb+YP/3RL0bijTwsNt0YKmczpRYAGxxt5GKXABxDSKXoXDBpCBLHEgQaXuNxeX1eHwO80o8FOgIAwCzEHNhZDOX2eXyCZuksQAjqLkEt9wAFbpxlWCesG5xlnU6BR0fQsEwdbjcAMGYkkRUlKuy0dJCAioAqmBnkaoyOazJRMxiXyQBPemUGJGnIVJPZdK5Y6iolo7rK+kUP4ZMjER0iPsV6aYFxXfbDto7rUNkwfqXDF2BUO4zmCsbjkWgmDowWTfiUOOTvJXBMMJmIJxPRRBjYuqprInKg4miAHg1kGRBGAFQAYAXNVEOe1TxNixJ8UXhWQAgsM0IiivI0yWwWvVImDZqgmM8Wi931Jqp6AVybX712Y2tnf3ft8KCm2gD0ot8ZQE64AUebnyAxX0DQUP+zy+XBKNlQhQBIHsoP+jfgeFeXnATrx72wo2UITKIKbx3EA8o98xCUkasusBmP292apup1ARsJ+NyudkBwhkYzCgNIFnMtV2VGEFvNH4Io/GC42RxslLvLPZWurnqls9IzODbQGJ0cHetvAbAMEVBRAPFRDhjJHbgPIGTrqHWp1uir9lWbw8Pj0y3jQvj5vtoAYHA5i3yDzJajBgQbKxyLRVLZzlK2WKnVBgcrPf2DzRrAdxEYAX15TIL7aKVFwIIo24zmBcnokFUTUTMSTwbg71Hutg7QrbgSBiKI426vGDawH7aTdLiQcP7QIYICZUhMFLR4pqSHswlboUmWjaS7u22KT2QTibRCAjC/+494yrIcHq8QzGekvwFwSEOTepBtMTqCNrTgJRqLjGKqYYMgvAG3mOBIl5uigmmdMdOReDIUCkmSzqMZ2YqtqiaaLSMAcAa8fkBizu1jbQWNAw6b0XQ+osaS0ULOjrHAmTgFHqsXVxReC0d1VOkuQvgEQalLMshh0tHGiwyF+3gVoD3wj+2ATrB9aMwJqrFVkxYggHzxaAQm+ieYruSSqLNO5ePltAXMUPsbAOd7s8UC0OpiZ6HYqsJqNhqD8LDGxifGJmZnpueRhVgUHfNKwTg6gq41BgGAUVIBALjRhODfnTEE/jIH3FmuVxt9g6MtALZ0Xrqc5IPakEql3kp3b63W192cHh+baBRiatoifYyHsEVBRtNLVLg1JEYigx2fs4PkkOU7g2xFSQoLcKjSgRelVupHQr0QqFFfktCARlmOJmTOE5aCsiBzuMPh1Gm3W0RTkLxuzK/oikzh/qu+zlDnaGVoYdiwTIU07JyVmE/jyaE0kywAiHOODjGRNsoNReRiEfEqALADdgyaB+K+2ub2ORzuf2jTKZTwMsJmJAYxMZdJJNOxcCQablVgqbCqRZrydTgcDq8uqIK/rY3WAfBkgaM87V7R0LgAybv9sF0I3xU3iYQvIZG6h9V1fwcNn9kkHBCJWEnNRK56vUDRRFREF4sns7m+Bd3NCqzuwkg5HVGDFCkCv0qmOrPV7mwkCiSbs9KpYqkclC07EOjo8PllWcSIUNSKdPfIoIBZFQA4wXES5uE1BMDpzr6R6cNr40+DAZPBXCTG5lJmpitqxcLxop3pLuRjCp3NpZIWlR+vVga6Er3NlfOmIBB2ODNeDxoqq+rh+uYsTQVDA+sRG/iRwMc6y30bW6v13KI6P8DcWFzeyg3Ofb2TGB6a3rj5+Ivf3YhPN4ebxWVxb/248aTYvL5zY2Rw59bs7TdnjaP+0na6MLW0tHNtfbx887S4dXRw83hm6NHPhh5/ube8ubOBAHh7C3lxHK+uL06Vd68PXT//P//tL//69pOlo5WFxeefzy29+Ozs9NZNULQggG/fOtxbnh8ZvDc3uHd67yf3njx+9OjR4yfPnj8/nV66WV07fLa9fXB0cHz6VwC+e+fegxf71yaOHp9ezC1OzUxOzc2P9mRz9eklVAa9eGNp6sfPp09ufvLh8+dPnjx79AA08J1bNy9Ob9+6vbvz7PnRxJ29kxdfwPXlF29ev/nim198/sWrz59t3ZlsfnBv/f0v3n7x299///tv//jb7/7btzs35oavXe9vjI72r947vfnkYGj/zrXjxy9//tHrm9eH+pZGc6mNDx/fGS7W812g/Gr1UroXHUFHdJayCwkAYDaVS0SjYWCvXDBlChJLB0gK9Qv4nW6Pn1d5LAAxn2E0i8UhkrI07Xf4vH5eNgSOExjk6wogChvO1eFnGNYd8HtIXvD6ZJHy+lHTTIfX6/RjuJlqKWAAYFsiAqzAoKYaGg0Y4GUrkYlHMzHQ2Azl5RRD1sKGkorGc/l8qTMbVlQ+oHjpsMZTAQrCGmICWAePRgSjkmACOUNR2BUfxfI6arnLJEHBgkYyIOiGLSUkCgyI6gAC4Fg8FoqHIyFV1DTUfIysKCVUfmJHMwhTg5KlmRCTkVkPHSB4AGAGVDKvotHz/kA4lIqB1MvCL8gUsyD48ulMoVjsbQyh8uKRhcWla8trGwiAj44GTSORVjnGd8XFelyUx+mjWdJPcCKD+a46XMAKWH9Hh9NDdPj9hKaieWQdflam2tw4r2sQ9kVFIvyoNsjrdbS7XB0+r6OtzRUAEoTyhagEmuNo3OO66rhylaAxEMA0D0CBBBqHmraQ8TLqv/zBQHOg2Q9xs9zb3dVTrlR7+kfHJybhalSL6PwTWI2E/Jk1VQuGwlGQQd1luKp9l1d/d0//5PzU8ECjWe2t1auVvmq1pYBbbcCSyIkmGogMiyiRLZS6kHtluYyKgUYAgtOohhS1cbKkjwgA3MLf1RWQPaoOqgn9ZgVCrsSguiNkXOiFIIkTPDwYknIEGC3CXO3wMqaZ09wd/9jmohmFxli/Zud7rVAsEbd4NBXLzuQqlaiVzCQzKqbF4+5/pINxze3CWS2fVfTL1K9hhOzLOmjLbLljAe0KogHYEmfoIYNhgXUGonzAjzk5IxoRpFIyZEVScZVSYVMQlBRWtXhMY3CBA7Lg9bIUagMTDIV1sMGQFU7lbCYeSnelQ0ERANjQGa+DIFhV0Fo9BjjPeVlR1A1VDBEU39HGSLRIuEn4/TbrvvruVb8oc8BBkFMFJ9GwtrFWw44IjAE9lnRXIZUMh1AzYX8qqOqEWc3GQmjWV66WyYE4LRZLpc7OHpS47+/vR8MYBsZHxhanx5aKybgVQfVUagi2eh5Y1dDI0NDo+ORos69/sFErdfXEVE2Uw5F4Ol8qN2r1geboxHJTgb0qAPobYYCPTA7ZYMGyqHeX+4dHRsdHmp22nDG8Hs6PWxrQEgvUWmvwJDIoB3ropySVZ4EwA0P3erEW/PKChPSvhgqgdeXykkUevtgRUSRADwI7E4j2jiuS4uhgZZHgvFiHS9YlTSTdbUwmXhvrby6MWKGgQqnhrF6cz+C5sR46kweoIpyYlCzqlYmgSsUspd3L+HwdHg9ojWCbG8KFu+PKO14IcQJoewutdGBN2aQNpB2VZBkWBAstZCkshzmcLodDsOC5tzncKqxXXRUFvMPLy4pC0QIOD1bDMOBqhBgkcJlnGY+u+l1uv5vnJN87AYJWgOtccXlxDKcUZAYdjqaKjXnDy8KHbaMJJmkFowqhh5OxYqZQSAQ1eEBe2a+WCoWecqel2YKfcxMulZN1DPS9VayRovcdWIXV5bgsylSAkyXVCGdK5cGpnYXOusBIPOYI+MmozpcrMdNOxnKhTLUrbVNaMFG0NX/PVH+5NxWvNjcu6qJG6JHCREMNm7KoR7o2FmTSjPYth0IcL7NmIlIYOjzeTZdWxLlRauXa4kZiauH1QbhSHZjauPj47XJsemSgXtrgt/ZuNx8Wm2v768PN7VtjDz4+nj2eKe3O9o1cX7+2vjVaez7R3D/Zu70+NfXmYPwXn95YW9te31jf2t7c2d/e2T2dX5+vTT4cWrj2z//Hn//9V5+cbmxeHzr5Zn/s5S8enRydXpyfnFxcnDw4urF9Y7zr5knXjYvbH9559vzBw6ePHz199vT+afN8aXTnwfHm9sHh0WURNKqCvnvx+PHm0tTZk5OT6ZVpAOCZKTSAdXhidn5hcfn68tbgg09ndo5+/qMPnz188fzxgzvv3Tm/fwTwe3x4srd39+nKwv29m59+/uaL11+8/eaLr958+eVnr95+cvv4TmPlJxsnT37+/Zu//O73v/vtH3775//4ZH1xeHj7emVwemBy9/TO3cfLS/c2N2+/98Ennz0HbjE71xMfefre7cZgM5/NhPWBYrrQWUynw8EgzyjpqCn6uFQhigaB6KZqJkSeQc25yIrS6/X4KEoMIp96zMVIJohFCgP6R/kwr4fyqTEQpigGIRnm8zvbnB0g5jAP5nISMufzs0LA6eVEGnO/63QSfpccgUVvyEAmJeTl58dIlCnCnB1O1rKzXaloLG6wXozCaFVD1BsFi3wxlurMmzJPECDrPB0ub/u7V9v9Eg7vEH6XH36334dqEmmagd+GU7wejlhhNFYhlYLoHEmEW1pHFjlQg6wRT8bg0uAvIZ9nlHyCOA8YgkYGhmMJK5qxgsgQD0QdSs7YpqoqAuX2kLjH6+7w+ZQE7Co7lU1Ho4lEJJ/PFzs7i/lSd2+lH2XTJqZnAYE3t/YO97Y3Dkf1eAhr85E+uH8M5XFhVymcpztwN+Z6t43mWEmXSczT5qB9lKAFZRLHKMk0xYCXNizYjYqE7L5A57o7PB3ALzgWIxhULEyygdaINBanWMLn8XiBrbsxH8ajbACqw0JGlxKH6rRQk64k/KC/MTg8BAhcKff2lgEcUQAeHR8fnR3qbx1BI29q1AesKijSR+KJTBE+Ul+zhb79/Q2A3dGZyaFGPwJg5Cpdq9Z6cxFLBySFHxT+DsBJVCRbqVV7CtlSrdls1Kv1jCwJrVlUDGqmhF9hvkEsYwAAIABJREFU6JahCGgKjqygVhR4BqjIlCSRYTTmc1559wqLpDvtd/lpwTT87zq8vBXJGlygjeSZK+/+4zv/9E/tWKheoMOxZEShac6QMgU7nstmM8msxdrJLPmPtBWXO5x+Wsn+TwB8mQFGSdVLAG45wwAC8AiAWRadL+gGiXt9vBWPCEo+EQkhGicAIUMdcLaqwMIRKJEnccrn5eD2+3HJVJgONmiboP9tPhnJdCYtQ4S9osmYzxGgOJTdhCAn+9mAj5dbjT1BNG/ABUyM8XtJuA0a43W1XXX40bRJdMyB0QJPEwQBJAv5Veho0pCV6i5kU5GIoQupchTUbMCsopIsiROzvWnEVHP5LrjKff31JtDBgUbfwMDYyNjC9PhSNpGKJgwNSJYVC4Vz5WpzZBj+cGZiHEjVwOBAuVhK2pqgwR5I5zt7++r1AVghs1UVggKrmZbZAuBsNtvTDfStH6324dGJsaFyREgGCeBVTCKkhXXVkDkqALsa5LvX5fLh6AgG1SoQOLIpZzikf+XLOZCtuVvK3xEYqJwVkUVSDUomrBayw9km614Hr4hAdfweH9A2XSSd71C5ePfw8NDiKAQslVYiOb0wn8WKE2Wu0KnBffTgUqozWJ2ydDod010On9vb5g2w/pDahvnRnN8rVzwUcqJD9p7hSCyRzqUjWssVPhRBg8t00w62yqCdLqeTMbkWAMsIgDVeIBw+5B7CEEIAtqKMw87DcUYNYOIlAAfcbswjCqr/SoDgpFAi/G6HC7QKwcP+tuxIoti3EMYCjKU4OcwPlC0rU8Fgtqsrnw2LOBAUEyedag8I4Go5YRoyy7b72ilM0H2YHjE6qz7G+w7BWb3zCIBJUNaoDDpTqgwt7vfFboQYmfU5aZwIm1xnKWxaiWQpVuiHfcqJVixjSt7ySKXQjdqQZk+bohpQzexgr2zJjCBbxfUFhbLsgc1EhGd4WCZ2pr62ultIL0nzY/TGjaUb0dHZV1tmV3f/5M69T79Zi10faRZTK/Te0Z3m7e76jYu5wbm18+lHbw76D8f7z0ebE/Pri2vXBgeeNyYPd08vVgb3vp7dfv1s4cbm1uqNG1u727sHuzsHW+srY/37a83Fo//xl//2hzc31w82RpffPpo5+ezZ8cXhxcXFzYuzi1vHB3tLE31b93s3Dy+ePHj46NnDx8+fPXv58sXZzMpF3+LF7YOtncPDo5OT03P0Izfv3Lt4/HBjcfruk7O9mcWZmfmp0ZGxyamp8Ymp2YXFxYXFtYHDjxfXDn/60Y+eP3327NGLu/fuPLp9597Nm0dHZ/s7p49uTx7fPn7/s6+++eqrt19/+dU3X3zx6tVXr3+yd7Zf3/5s5d5P37x+/W/f/em3v/vdb//4L09nF4aX1if6J2ea8/sgvo/H906Wth5++JNX79+Yrkws9CYajwGAG33FYjpij/fCVi1kgDrbAgcAbAheBnkzRkxR0Fg5gnKBaNgLGlri88LW4oOqAOjnZ0VDIzHMx+IEjXvb2wmfaIBuoTgSC1CoGwgYb4cHo3G33+mlJMbrZXjS5WFEDne4XG1YwK/aVlCXUAoPggwJ8RhEGqxskMFaPJLMxeLpmIxDFMIRfhi2jk4YAeoKuZCJinQorw+oNeoT9VAySHEKZ/wIgf3eAOrXoSis3U8yghoKB2PpbCqeTCXgQwaBfAbRKAYOAIkzAT9Rx0HQtlVJM0RQYQoTQAP/VNh4kaCVSMmKHEXtACjpFUV5IUNine1uZ7snQCmg1JE/cAIdZMdjsUIe3cwCMgCs9A0ONYcmpmaWVla3N3b2drbWD0aCERO/0oFThNeLM5wPUCMgM+0up9t1tQ0DfFSDBo91tPsAZ1RT5UEsSByKWUAYZFMjvS4/TkD4YgWJ4jkC9jjLcYAEiG1wPOAOS+EYQWJODG4/PBuGohim5T4pIqtPSUZtSMgC4QdNVOraX+5BVy+o4EqtrzkyOTUxDSQ2KLdKmSUkSRRZNe3WWGQ0W7baj5qJ0EF0o1JG55WNRrNWbiWAq9UqbOygaepSq0Q8qCIf4Wgi110p93T31OtdiWRPAx0LNLOoEIxFZg0sfIU3hgYkGwoy6NYUNBvLALUPBAmNqkPTFN3tV6+CchIAo9w0r1tc+xWvXwmnEprNu2Qr6GlvhzXmePeq2pOCmJa0BZoRSSsqKPFsVz6VDUtWtCj+U8BKiG1OHyWn84Z62X1kBFsF0cG/A7CBnBMNAANe0yydQ4TOIccDBACgmbQ5OQmrJQbiUTFl4D2UZGuyDYIBTcchaATAPOHDFUuh2xmglgDAppyJZYtxUxQ1ltYEr8+BARsSLVjMEhcQfJigwjOXQAIxHje8DI15cVo2VJ7AcZ/j6lVcAgnZ0sBkyxaORJajnKhYpm1qye58OhkOmwDAnWFVlAGAU5EgALCQ680Ui4VirtBZKqEmompzaBD+HRhpjoyMz09PLKXjqUgcdR+IZjQUyvZWm6MjzYHxhdHxsaHGwNBIXy6bDsusEbSjwM9BQyMAHp4pq4aq0ujcHk0Yy2TShZ6u3mq9WUWrfWxqYrge5eNhEfQtn4raaYNHPRGBAMkA4Ho8OC2isw+WwAnMC6KYR4auKP2LhqOg2mfgmH+9YDOqYjCiABZYfFCSeNrtbuMMv0PSZNRk5/VpIPlFyvVDIh/LNsZGF8ciIVOh5GhBzS/ksK6pitjVaygG58PFRClYnbZUppAOMg43yGeM5twJuQPo3TsAwG0uP3Aa00JXOJqAUGGLCi+rghGxLvsPDR3Wngt5SNPIjd3Z4RYVSdIU2HMeLwvEncdFAudEnvA6nHiAVmicRwCsqARyHBIFxeMkCVE006F3rra7XBCgGAn4hh3N9sxFMDcZ0TDR16GFEjlZiIa6a9mgwQIRx7kQ53GafZ3d5WqtC2RCULjqafe4BBP3sarR3dOBea4EaKNzMgqcNuCneV7SQ+liefDaSTH8fjIgkW4XhwdittRVCIdC8XRnotToyYQ4JZnKhhRffabR2Z3P1evX749wLB5Od42UzajGaaLRAuCgPbxlqxQvycA/87X58eOKvSDMDlFr15duxEbmXm2HKrWB6Z37P/9iJ7LeHOrMX8M3Nw4H7kQGrp0tDg5cPx6783YtuLFYOeiqT8/trK7O1mcfdq+eHtw/Wmy+/Hnt4RfHszc2Nm6srm7v7+zu7+7uXt+YK8/cHZha/uz//v1/eft872B1bvBnrxcWP/34bOfiFMD3zq3Ts7t7m5szAyMfTow93L/344uHT549fvby+Yv3Xj48ap7PTG89PN7d2kUAfHrWwt9bd+/dfHx3fW7u+ePzG3Ozc9Pzk8MQ7kYHxieRAl5cWlodW/l4Z+X45WcfvnjxCBTww8ePHp/cPrs4Pz4+29/ae/T++vzzkzsff/XLt1+//fqrb755/frLV5+/+fLlzvlq5d6LnXufvHn97R9+9/133//22//63e61qbHVzYGBhebQ9bOb9x5Pzt6/Nn/zxz/64uP9merAYj3VffvF3dFGvVS6BOBcJpvJxqMWz+u5RFDysckYUEFbkXRJTyKLDAEpEYBf5KEe4IK6CjCA0YwsUX4/JuAEB7KtnfCKhigACpB+jEDtFhA1nH4CvsU9ED5Ijw8AGLASHSd53B3+QEALB3WZRx0psgASBzXWCqIs0BgmJxKZXDQcDcm0ByMCAieBEDOMSDydSSbSqWgEHVexbgJenvUDH6Z5nENp35Z5EsovBejWDDPASDSFJBxLoQaSeDQWCemihrovBABgluWDcfhfIaB3oRCKxaIWDOqggDWRl03btiPxbJJX9VQatRhFL8d0W0GFw1xuuBkCmvMSitpWLIqc6aOxdKFYKhX/BsADEPPGJ6YXV1Y3N7b3dne3DodDIZN1X3VTXADzukge47wOkg943Oh4ywUaykFLokB53V4GPrAOKGToPKuiIKAiq3cM5yRZ5jmR5XCCwGiKAzVBtz43ygeDooAHQrKkj0J1z4SfRCPfOBZZXQgQa3keYBpoB8/9ACX6mn2Vcnd3N0BwN5pZ1xienJkZb1QLhmKiPiQkRHUZANgKReOpVr1ruYbQFyC41qhWBifGhwaag31VEFh9rSroQtw24V2jM0U5qLQAOJUtgQbr7qkONErJXKU5CjorI6KibZTURE3MimkEWxaUyOPJRrCIRPClGyVgXMDv90Loc7O6ygRARQi2hb/bHqCMcNpWYhQmmVEBaB3Bi1RHu1oOh+OpqEoTLHCZdCaS7cyk0iHVDOW0d7xWSmhz+2g5XQrr/38AtqzWvJ5LAA4aKIut6JYpsQE/5RMybhxEnJY0WTmO6FoCxJ2FZvHQomUieidRgsiQtNeDmlTdAMAyAQo4aETTGVMHAM7FTSBUNGuIgOd+XuKlcEgPagyLinVUUOOyyGqMM6CiumtYy5opk2jOs7f9qhsWBMczQCr9JMeSsBcCBMWgdmDbUFO9uWQClpQuJHuihiTjSAEHVYUT873Zzs5CKd8JMFzoqlSRD0dzeGRkEmTsxNz05GI6lrBslHW/BOCeCiDz4NDE/PDo6CAy7KhlMwBDtIGKIVttSPWB5sjofE0xVB0BsB2OJ1KZdKrYU+qp1gfq5drA0PjU+GAlKsTDKsd6mETYiOmwmHF0fEYTyKuNaVWioRnfOMAghUxhOEG+nMCst0BYUf96aYBqghkxgH9GhJAC8cHraQsAAKumQROoI1I2FE2kve8SGTtVbQ7PjsEvlEkpXlKyi3msZ7oslmumbAgYgQC4MhVUmGIupLg9GIVxnBjIGX6Cxa64HVccTg8vor5/NLk4jPpzLEmGewwAjMrIIDyYFkPinva29nZKl1nG2+FCFRmKDBvK4yIEYKuYRPo4iWV8bleApBQhwAoc4+Zl0tXhcvKC0uFn/aJs5ACA25yobpSGSKdakVhuTPW7STtIS752JZwIa1o6Xc5qOIEa7gKsBe8y3NdZ7q1U+4qmGZPb3B0dDl4TkDN4b0+b33sFp83icETgRNwLu13U7GS+p7l0Wi79MuQVMFA8nkA6rFS7QpFoLNaV6uzvSlq0WkxnY6qnd7SMqvgy6aH9Pk7A9FDXWNkM6YwsW6WNBZkwrJENlacUTTCTmergwshpQ5kXZprU6rXrm5mRmU+3IhDj5nbu/vSrvdBybaRW2aZ2ltaG76bHbhzODldP7g6dfXXQuT89fLPWmF3euH59onfvpHP/4uTOxuz0q+Ph9z9bW1pbW99aX9/Z34YgebCxuTTdc7DXv3b0P/7Xf//u50cXB/ODx79dm3z+xc3Dk+Nb56dnN2+enV1sb07N9D9Ya9w/P3/x4t7DJ8+fPn/x7MXLp7dWrh3WDk8f7mxt77UU8Bko4Ju3AIBvP721Pr344f2LhUWA37HRscnJwZ5M/+jc4vzc0vWV1fmJn99dPLr72fsv33vw4tmDF49vXzx98eDmxenx8f7Ozp2Xd+eOnux/+Pk3v3z79uuvf/n1my/fvvn01Zu3t7cfTJU/ur/15Mtffvn997/9/ts/fff9f/ls9frozP58eXhyaOLw6NHDzebF4ezBez979eb2fK2yOJjP7j97uDhU70QzxwZLqGAyA+IOooSRvwTgVCgYiVmqooeyhq5KHNvy7cWRsyHFm4qI/BFISuQkCKIqQQpOt9tDuqSIIjEQ+H2AApjLi3m9aAgD5Ud6jw54/CxHeH0Uj/I5Ll/Aj6kJgBs0/kSzTA2+SkzLoTDg80rpTBYAOBI1ZA5JPUmDfWDokUg2E42lUskwSjPSDgqUIurVdAVoQqYZBkg1jVFswIdjyCLKf9WN0wDAsWgoFkdljYDoYQtiroLmJgIEs7wZi4bRyBPk7ofOpQ3L0lkK1TkbkVjYTqXSUTEUzsRjcRA/4ZY/rBVUId4yEo2LJvB0CGBWKhoFgI4lc5lCZ3dnEbV/lKv9zcGBwdHxqcXl5dW1rd29/Z3DpmWHbAlzgmanGT8pcfjVdi9Nux3tbW6/0+N3wHv2EqQPdo2CmjRlRgZIAHmIZjJiBN2qT+JIAtQ9HqAoDpGX1lBzkBUkBXIZFFIAJ2imFaZJP8gxkE8kzcnwgVCbNc22xgyxPwDMRBMJ+8rIqr9SqfQCXRgem5yaHKwXdFAZQPDRYEBFAgAOWpF4Ah1EVmr1frj66rVqvdI/Mjk2PDIw1Kj1N/oa1Vqt2ltM2KCA0dm+pFwCMDCmAsox1+D1+7qKFUDs/r4kz7cqummK4ei/AjCIX1TAZdl28HJWpMCh1jccWITP03HlXQcGpIjASV4Ja553HKQQstOmFocYKkUMwdXm9QBHC7RFYtFYMmEJOAXfZsu5XA7omm2Y0VzoitPK8u0uLy0nOqN/B+DLvqPg3wFYuzTTFJARC+o+wSgfkfH4MT+mpWxORTNL7HgyDB+PhxsrmGgcUlCkRJEhKI+ToVhYi2pQxJ08iOpoJqPZaVizCIAV2DgC7nX5BYlVY7aqKwTPg+hFJ/CqRsmBNkITAgGnD0SMLlDIEg7zuBweUgB4BhnpB+rA42j+M4WMHAGItExvLpWAFW1J6e54UJIDwWo6bCIALnRniqgPGAC4WOwqw/Nq9MMTHhpvDIxMzU5NAwDHLRt13QKBCUdzvdV+gOeR8Wnkw4HGEfYWiglD5I2WFWVnuV7rGxwcG1/ok3XdRLrYjqAj6HSy1I2cXAb6emsQiKdG+koRMW6yNO8iYkFBVy0+4MMopkWj/ATDCahxADm1ezA0uhEEsaxfzt289D+R/2cFLBhRS2DJqBxCBcc+b5svGOjQgyFg6G6PWzJkhae8bURMz9Z66yPD6aipknK8U80u5LHemYpcbdiKKZGsmuq0q9MIgAtxyYG6+2xVMgpxERe9bUB+PW4vrBbkrg0SGBh5pmSDtOAg+EUtYDd2KGiFJZrEHB2ujoCisYz/agcnS62BLhzm9AMAS4REeRiJ4X0u5EkpSCQtCayLFNAQBZcoqlcoySNowVzknTZQwD6CYkFrAABH04MQCOSgxQh+h2zbYthKFUuS3wMRzevxYWqY5kPFzr5KpTxUi9hhpd3VcdURoDUJIlS5x0n4r5CcXRwIQSzDQG4wohqMpUt9SweN5neyX/C7PUQbUQhzjXIwlIgGq7meZk/KooVcJBmVHanuXDwZCnf3VJaLtIxpka7pqhm0OUEJdW0uygHNHN1GY6FBvCfzzYm12bM+eUGeG2K2ADSzzYmfXzdrA+MLBw8//81OeL4xVCkfSjevXR8/zxW2742NVLb3h5+92h3eHRg8b1Yn1pdXV0bLD1fqJxdHp8tDW19Nb/3ig4WV9bX1ne317b3t7f2Dw43t6eGp26PjG6//8y//y+sHh6fT88tfPxo5/vrp1umdw/Oz87PTi1une5uLM5XdW+WTi+P337v19OXDF8+eP38GAvhs8M70/P6Dsw2QPAcAwMeXR9C3bt+99+J8bXL1R7fOp1am5yaGRsfHmt3pWKk6PDk9u7C8vLI69P57iztnv/jw/fcfvHj6+MmTJ3eeDiVu3zw/3tvb390BPTzy3uHdn33561/96u03v3r79S/ffvHmzeev35zvPhya/OjW7s8+/ec3//L777//0x+++dd/v3djfmx1u9E1Oza4eHDz4vbg0p3ltdsf/ezL5yuN7vnJztTak8cbI/UelOgZLOU6O3PZpB0xSLF1BO1h4tlIMBTWRVE207qmiOi8MIBcEwGASU6XWL8P9zC8IqiAtxogcYfLgzFuMaIpEINILOAj/E7QiC6HL8AGvLjLizOkF2dZ3IczHEs42p1YAAuIEeQEjKbwoQJYIJQB1AaJ5smbxWwyGU1mkqbM8izRqsUNm0YExEQkU0oiqyRSED08kGrS7cW9AZqUCRJ+kAl4AwzuIUACMaTnHT86rjPDYSsaj0ZB7EYNENItYEE+GhDkDUBlNGhBRV2gmiihbgiKVgRBsZAZTjyRDAmReD4VjycAj61oa0y3gYqELcHHK5Ju2MmIlUik0/FYMptPZQuFPIT9VuslRLKBscmZ5eXF5etrsB62dypBG95FkIRt7/FgsuT8hw5RERiv2/GuE3e7cIIhMVognA5c1HQACBN154iE193uQ7U9KrxxASUDWFQcy3BMy0IXiWDQkwTymsQBe5ErtA8EFA3w60fu9yQrqRAu5FbWlWPRGNYf9PcPDA8jJ8qe7p5eQOCeWnNgYHRyZmygDxSwgRw4lFYrsNzqgYZHUejq7e3tQSfQtWqlXK00QfCMjA4MNwGU+9A/1Z5CLAjqFdmUQBiQNDsciyRzXZVatQwSCpVA1/qGBpv9CQY1gnIMmgUsUKCATESJNBNBb8vrBHWi8CyH+sJp3Ad3p63N7cSQOQsjQ3RwXHGRatiO6+GIl2aEqK1DfHfiZNh81xeKJZKpuE5TblYSs9VSKV3I2EEjVMw6HFaWbXcA5EWKMeVvAHzZBgwAfPlfQAXg8+oKBHxQ5CYiOm5vWkAzgZWEzQjpOCyAWCqsGDJP4zgLYjkcDUo0AmDS5aBJxuskVABalwCYHsuk5VAynE/HdEEClDZozOPFRIk145aqigGBgsjfSnsbHO9pp1SBhsjLK7rCos8eAN0LCAwvjkbVY25cEAgK9xPAo3iI3poBAJyIoXkHYrIINEQIWNUkrBhQb3l0BJ0vFrry6CS6u1KtAm0CYJ1oNEenpyenF1LxVCQG1BoAOBaN5gGAh0ZGQBWMjgBrHBke6OnqTugKsNBIJJnvqvT19Q8Pjo7NVYEcBHkA4HAkFktmMsliV7GnUmkAADcAgIdrOYuPSn4/48AjOi1KYRrteNiUTjeaiyKKLGpAoiBCgAJEvFHRUfkVmsNxeUl/vVRRVXktYgtUIATrA+iyD6AsTLcHg1GFJTx+r2IqMke62/CgXGx0ddUHsrGgwSjxkpadz+GV2ZrSNxDRdZFilUTRqk9bulAs5RSHl1aNmKqmc4UIyXmuOL0oXYNO2C4VsBGLprssJNx5OxYCADZQl3pYA9LQ0eHp8PEaxwBthmULm0NE44F9yDWAhl1MSggE23wkxioUIYu8C2OAkHkcHCe30YpX0K1s9N32DrfbT0Bc4nnVjiRyw0RACkcMUBJuzgyKmUgsE/e50YgzP6gaISJIeri7We/rHRkCIqf5MWe7y+NVkVNYpewFCk8LdnEwyNCczw0BBMJdJFnsW93oH/w1KulzufArVGeEGOyzIulEqJ7ravakLYpNh9IxzRcr5TL5eKoxOLnZScu4mSzOVK1gFHnsd24sKqQZGd+E+K8BV0hm+ia2b9yqWCsqKODdG2s30n3Tn90wemvD80dPv/p2I7w6OdbVc8jfXFoeX8/kVw8nR3o2j0ae/mK3eWOiethXHt9Z2pwfGnw5PHV2enJ2vXn3k5F739yaXFpb39jcXttATcDH2+tLY7WDncri7v/+H//1Vz8/Ol+bG37/64nrH/9s5/j85snB2cXZycXto7W14b6Fh31rd04ev3j64MnLJy+eP3/+4sMXt68vnwxvnDy5tr65vbd/cHR8/DcJfO/hy6Mbk7sfnJyOL8/MTExOjPR3t/KF3f0Tc/OzK8ubI3c/Xt04++ijH7//6PnjH927++jus7mpuzfPj3b29zeWjj54tLj3aP/F5//87W9+9fZXv3z7zZevv/r61UdvP9o/O+la/+T05MO3X377++/+9C2A8L++3dqcndhZ7B6ZHGkc7F48vta82Fna/emPv/z55lDP5EJvavHhw52heq07mwiNdOZL+XwubsVMUr7MAbNJdNxqyZIhGWlUVoOMXNERtAeUL0bpMg981sWIuixSJCmTtIh5PbiEi0EFmCJLBShg6m6vx+l0+HAa9+BujORptBNxH8JY3Ol1IndKTjVghSPbR9SELwFkguyh0Gmqks8mkvFkMqKIAPMBWFaaFbWDkUI2lYQ3Z+iw5BXdzfspnnCDmKYFUiBQpQftd+EU7iUITuQY7KqX4iUEwJFkOpVGjbqGBvCp6Gjgd8tJUgNRGw4Fw7pmAAIYCG5ASiP8gQAMujmVDjNGuJCIgraK2DZAORKkaFxakPOKCiz3aDIaioP2hY1byMONzGZzxUvvg0ZzaGhyZn5leXFldX1rH5gUsNBwLJs1CYZ1/oNb437YRoASEmivv+2q23HVTflI0VRxJybAO4T3EwpxcNM7OrykYbdiE8QvVhTgK0h9ZBSNMsC43+dzu9w+kvJ7AJ1xP/IggVtBws32B9BBLxpfyqMBxjyoX45vAXAD2EEd1UB3tc6g0ekyaNqZwb5a3lCDLU9e5bIPGJShFcnkil093Z2lag0QGAFwrTE+PTE60gQFjEbBIgDuzqO+bjTGQRRUS2q1fyHhDL+ls6+BrJj6a6Ojw4MpdBDOAmeA5yrSlwCso25gEPugGzVkes0Bs0P9y63KP5fThUrDWZTKDmvIbYgxo5GQkgz5JY4NBxUvEEBWsiL4D8VQKpFIhUTeJ0hMpKfcnSllo2Ej3NntcwQzdFuHkxHsfFz9exEW8lpAKeC/9QP/FYB5RtVNi6VZn98dtaiAA5ejNkGmEnGUz4i0nhqO8ZYq2RFLJhkRyJ+jgyJYr4vUDB53i/By0XRSDCcipXQEFb5Rqo57nRguiJydsHVZICQM50GFArECde/ySwrHwFNkVV1suapQxOXoXEoQBZoKoKlBDEfgaDQKLaJS6ExvPhYxAen5eD6MANiuJS0NAJgrVnLFQq6QL2WLpQJSsKhKDhjhaKMxNjsNizITT6IcsIgUMALgWmN4ZHBwdHJsdGhgEFRwubMzbgAA21YoWeiuwGIeGRobna1ILQVsWsgJK5HJpIrdpd5KudEPKwDNMqyXTCamYj7GRScMXlc0CBzoKMbd4cYYZDnKIVdroBZMy2tFUlpWeC0r2stL/usFQV/jlZAl04GgoRq8KCAeZhMOS4+oLOXBfYoFAEy5rmKmVGx2d1eb+bgEyuAOAAAgAElEQVSh01qsqOdmc2QZALg+EDV1EZZ/JG/2TVlBEZaw5fAKQT2qmdl0qaD53VcALwkSdXbZLQEcMYDhd6kBgHsikgBQRideJnAxAvO1tXvaXIwOIeqqA0OdAiosdcrlARZjMAyPBWRU19/mowMgSnBFFtxehgUJ2k7TopuQ0NznbKQFwL4ABXuYU0PRRH6MCIiJrMxosi9gxIL5VDJi+tGcMwL5hNBBCERqpa/e6BkZ6ynZGqxsh9fpEuExh+u9XgFvYwUjP2JQJIvM39GYh3Cy1Li+Uut/a1Ay395OOcjOGDHUCMXSyVQ1Xah3ZSySz0YLMZ2KFzLJTDharo7sVATFywqxZk5VLZD/VnF9XiGD8fF1WeDgAdnJTHV0e/MiH7+mTPbhG0vXr6X75t5s2+Xa0NzBoy9+tWVujE93Vw6ps8XFRrVnoFHvqw0cn0+f/eT2wtHE1MPG0MLW0uZ03/zz6urZ4cX+wvhP7sx+8Or67PUbNzY2d26s7e7tHR6ur070D98cndz86X/+5c8/eXCwO7+29ups/snn51sXp8fnx2enp2cXJ1src2M9zxdG7x88e3n/0XuPH7//8sWLF+99+Ghv6mJ6fufJ8fzG1vbO3sHRESrCQkMVbt9/9GLn+tT5eweHowszUxOTI/UupJSy2UJPY2x6ZmVxe2L/1e6N0w8//emLZ88ePr33/MmDs/XNO2enR3uHO3PDM+8/vjd97+T8x29/8+0///LXv377zddffP3Nm9eff/XjjbON3ns/2r3342/efP/9H3/z3Z+++/YvLw9ujC/vDNaHJ+ore3cfXIysXyytPvvZq9dHE5XhlUpm/Pa9g+H+/t50PDzSmculMumwmbAIScvGg5KfS6EccEhTg7KZMQxVbJ0MI48pn4/AGVDAPq/fQbAaRCESlwAKCL83IOFySIK/ylI4idqGcY/D5fLjSJN6scscMEd6/LxAYy6fE8Q0x6Hkqq0KsmajylOBFyheaFkksal0IhWP2bYkyIBIlKDokXTcjqQj0YiqhiMiyeEi/0OU40SGyl5SxjlRgK0EGgOnAngApwHLabczwEmq1Rp9nU5nM/EowKwGyKahXlVQWWhKdjgSCkZasd82ke0EUFxZV4GVmzaAa9ggtRBSwKlUMh5D0c6yNAGoicl5FRWEEmpvimfTyXgincujBHCxVCp1dvXWQTUMDk/Nzi0tLa1ubGzvnxwd91l2KJIupGyC9zs5yfMOSTpx2IlOn/NqW8e77zpR+Q3uxuHOa0glCl5Hu4fgtFAQzYAzJNjmgKQCABgjcyKEXNSj4naCnHa6AwwVQHoXD8CTIljQlzhO+zDUk0UjgxK+Nb8YmZUhAC5XquggudGN2kgAIKugUqvID7q/lgd2w0utAb0CMA3UIRIMZ/OlHpCylT5k6NAAwVvrH5uZGB1qDPaDvII/qdfL3QUAYFVB0x547a8AjIpKIe6Ve5tDfbXG4EBzYHAwDfqNokAC0KzIUQrcURWdQ6MHEGlVQ6kCYnwkKi6DuOd1dbR3tHn9bgfQKTEsXG3zEmIoETPFlI6JFBFOhEi3u8Mv8HbUiZupODw1FbUZy4ZZzEdz6Vgqmir1+tuNFHm1w8WJVj7xdwAGMYemrrcMltG3KNoCvQN5hvxHBFiwlEczA6QLQnuYCKRQpiEODDCoK1wAF8KmbIVtNUAICIDbSYL1eygA4AAAsKZHUnEukoh2ZUKINdGG7vM4iAAAcCRhaSITEN0gdwHoYQewbgejiwTuB0YFt58BiYTczDAc93Z4OVkAPCZ8sMxFKkCi56wyvGqku0uJiGkHg0KiEA0KImHXUhY8AZYvVbK5bCoLK7Kzp7PYVWvU+6s9vT3dFQDguamJmblCIhYMqxrCjmirD3hgdLjRGJkeQUn6wYFGtZCLBRVBM007CQq6hiYkjY/P12BnAMoBAKNceCabLnZ3liu9/RBt+xqj02ONXpNK2AzJY0ohpCdN3o+hpeh1ezAa8TJeCPiBKPpIZOkmwkcPqqKIPE8RELcmYf/tAgDmZHgwLGkEZYuXRJ+z7V3d67TVkMwwHr9HCgIAM+6rWFDK9fdW+wYLUVUhtGjRzM9kqJ7pilxrADtRaJqP5IP1CcuSCl3V0FW3GjETtpVKlroT7W40FSlAozrDWBzt5KiBqtZ5JwaUK5k2w8C5kQGMapMY1ubwtTspQxB5B0hT1DEnsgLZ4RaALbCUSARkHqW9fEyA0QkfxDO3G3aez+egaSmAizTczlz4nbYOl8sLUpWjWQDgWG6c8FOxksCFbL/PzEaz+YKp0IQbHUED8Qyoeiii1nsrze6hib56QjNUv8Pb7hR1TYv29boAgDleyY7pJMF4Xf5LAE51Dcyv9PW/Nf2yevUK5yVLCXKwPxyLRrOVZK7Wkw2RbDqaD4pEKJ9JZmOpvv6JwwpOuCQ1Vk8B7wcFYhXX5iTCtEe3LF3SNSmYytdHttZ3g9FlZbJBrS2urmZrU59umr3I9ePeF78+Ua5XJ3trJ8z9reudsp2I5hLJkYHS8vs/3pm8PTRyJ9sEzN4e711/2LN1vnc835x7vbr2i/fHrm+tLm9s762t7x/s7+9urkz2rF6UD4/+47//96+eb5/NTU9+/cHo+dsPds6Ojg7P75weHl+c715fGu+/vzq0f/7w+YOXz56+ePTBS7jee+/WyspJbe3h41nA3xYAH6JhwGhu8N0Hj59vrEzfe7n3/zL13t9xZGeWoE5LKpIA0meG9yYjMjLSe+99JhLe0AEkARAACYAgQW+L3pVVqUrlpfKlKqnVanXPaFrdM312ds7unv1t/pj9db+XrJ7dLJKFAgtpIt777r3vfe/eveHy4tx8v55Lp5MhXySVL+Srw6Mnls7Onvrwwqn9Bx+8/fApAPCDx9ceHNw7uHHx4oW9/bOT5ca15/dOrLy++fCTr7/75utvvv3ym++++uKLzz/7/NNfP9y9vlp55/b64/c//eaP3//4zQ9/+PJPP+5tL8/tLjWaU/3uwY1r94/P31k5ee1Xv/rd9aVW70w93Tm4eWm21y1lEqGpQiabjMX8etzEBDUFdQ0UcDLgCwQ1gWeVmFdTJdbtwTGQWbbRMSSfAHIYt2K0VwOlgEkMLzqdoG+tYkwSGZojXR4Ch59wTKA8AMpjx+xOEMKgWwTa7uQlxmO1TEA5YQS0PWbIoqL7ZZRKp/ihqig8S+JiKh6MRGPhuMoyioRQ1IjnU8FgRqKhZMdiBsOTCvcLgQZEAgVodwlu0TQojEZdpGgXlKQYiibtNlKQVSMIAi4djyViIR3tNMGs90qAZKAjEQCHAIB9qi/g9+mj7AHkhAWlQPejUwkw2Ul/OJuMRqKRICg1vwmS2SuA1jc4hyzqkhFBvUaZWCSRSiSzmWy+VC5mk4VCpdlqtvuT84tLx46fXD979uy5/f2Dvh8FnKcyGS992CJRYwC+FkZlZc8YgIzD8svXnDxKxtUCwDo4hnRMYIwENRCZ4ADZwexuimWAchA0SwgU6+V4ZCdkt7tpx4TFhQP/BcWLerF4guOQ0RQHahjHPBiKPeAA6P8/AO51OgCHLbQFXK2USpUKaNpmdwodA81rAmqBGRlaCToItADInXgimasWs/lmp93uA+Y2m6CXF6dB1QIot9sD+N2qpoOaH7XVcYLEB5C1bjQK87tUypZ7PZQEMOy1UShSHCE0Wjen0aagbJjwIn6UxIBs71EiJLAxWgSAg3dPIR1w5LXDVpvdTZKUonuxI2N20hdIRFktqbBwH32xMO90gSgw9SRh5wKBWDoUEACoUNRGNptNx0LhWKImjQXy1JFxN6EGE6lXsUf6/9oF9o7WH//DlxLtAcuMqZsqEmt2MYVRjiNq2C/S6Ugg5oexIPr9Ake7OUMWjEhIJRgARlAmIF9xB+3VZasddFsgmghLQX+kaEYEtERjsDCFCFnh5UDEJ+jwHYoGZFGCvM+Lj6NgWdbjloAfyujS0CDdOBLZ3zg8rIy2ZlArBZBMxC89FC0IQqGSiwfDQCe5RCYoqwIeaMDU0EBsZ4ulZBQgOJ+vVJB+HQxbzV4jm63X4Mv5o8fmE/GgAcxB9MpGJBzJVjr9zqDZ7w5nh5OTg6mpbjlfTJma5A/6w0Cg6s3W1PT0zNLRNsrF4QEtgXSaYZDRxVKu2qh3O5VBc3Z6atish8RQmCOZcV/WH0iBbvSgDWCbmx11AnIcWqXCYDDSo1guZD6GGrB8vpHxuFeVlFf6V0FL7IBrQclL6H5WAeJBH3GMiaTVZ5jAtF2USzI1mSVtY5guZvu1yqCXDsD9UsIpX3w+QlXnWnqtE9FMmWJlwJrWTEhRC5VOaMKtacGIP5YpZkpBkLR2t4fzh8xwMJZKxGPBWCYVi+QlK8USXDgOFQAgGD18QGgd4xNWJ4laxTwWF4MqBY+LnG1CgMvIMCLjEFkA2nEL5XF7eQejkpSD1gkr5nTwgkKCNpEDKfPQxIQVAJgEGiYDw08mpzAPo4VDii9kZ2LZQjkRhqfD7XaSxFwTThIPhZVcr9JuNDqDfrPqDQZwq3NiDJd9vlCz6uHcYxhtprsacHPM5mIYVpYD2WJ3ZaM29YlIeEW7g7JiEZPr96Gkh/PlfLZWSZoUHg7FdOZIKBeLZZPhXnNxu0lBKfemppP+gF8UfYHCykmF9oe76z4vzymqESvWZs6uX0wZq+qxaWZlZW013Jv96IIJfG3l4t3Pv97V948PqvUbxK0LSzmy0Un469246n/65N3z3YO56Vv17tqxzdNT9dsbvauXL28vT9/8zfL1by6eWjm7sb65vrW5df7C/s7W6uJi6/lg9cyb//Ofv/rg4tXTJ+dvfrW68auPNlFL1cHBxf0rB1c2z5+cr2w8HKzduvXo7sMH9x8/efzk0fOXj955uDt/f2l69/7WypkzW+t7W3sXL+5fvHzt+mgL+OndzcWlm7c2T88sL883K5l0Ma2rphLIlArZUmvm2Onl5ZevHz9/5+OXbzxD7Vyv371xcACqe//c7tZMq1qaffzgev/BzWvvfPqnP/3xux++//arL78ABP7dx599envzRuf4+5cuvPHFx1//8Q/ffv8DSOCPNrfmj+32s8O57sz1G68f9C/cOnr52Ucfv1jpFNdn09Wdm5eAroKyMwe5WKqQixihqMaJcjLikzEhngwCsVdETfJldFkRPSQyAXA7LXY32slhcacTSgmGNmFwSqZR37KbFR3eELKTRId5kRMkjjmtTgdOeVweDxA+DOg+Q9gJAAJ4HrvLQ5JMKpMNoqMupqohBizxmqbJDObB1Vw2kQK1gTqBVZ7ieW8IVHo8BoIY5gpAno8jONLCkgwLk4F0YxTFI7s7mgUFTHqcFEbBG3GNuXBa1IBnRtEZJMCRkB+d9dVUA6X5ovhhOQQawhcwAgbUZFVlGBT/zUiMwKvhsD/AkVKymIxC3Y3EgCL7/HowEgroIvAEVQSQEFVkCRRCrnLhaAoFqSTj6ARmvlhBy3a9qanh9OLq+vra1vbW7t6lNuA8AHA6lfM5PYJ1XOdpzkkoJIWNj9mtRw4fPvJ3hN+EF/CyLovVTYuybiD7e1AEAg5chmVpScLQPjyIXwDfkZm022GzWsYmnG6CHrmQoFNdLgI5cnqcI8M/O8ZTaNEXZC2Hzl4JovSzbm8wHPZb1XKpiAz70T4wTPHh3LALACyjLQFk6KxAQUTxO2bIF44Xms0aKKF2u9drd0HwzCy8AuBaq9XsNFuteiFuaoYPuA3Hi4Jf94WjyVg0kc4XirV2C3lBQ3Gfnuq3ooKCMoPhBtFACiTdgHvi01D7E1zMAFrhR2c4aIrlKBDwTodj4ogFANiFk6zXJziOjLtYXzAZof1RkZJoRouGBM+E3cHIYtLwCJF4IhFK+gCpCFLQc4V8OoVitBqaxcyCAnaT3mAy8yqFYaR6jdExpJHyRU3QqBnLKwuCSBt6wMfihNtGJwkSs3ijIZWDW5dPZDNpXdF4gXNTsqaYIVMmGAUUqsMJd8BpoeDTOe0+Qw/FE0EpEk6UwjBu4a0anMdpwwB5NBBaogp3ER8FNOusT/JYWYGTSJhFiu4TaRZFjTCj3keUVwlzDpmZeTwwaVh4T8AvAYD5fCmdCEVGAJwKSAqHmdVYGN06Kl0qpxO5bLpYrlfLje5gemYwGPbgy1qr25+aX1qMJ6PBIJoMaAk6mi01+72p9qA3PT1KQxr2iplc3EBL0EYonSvUGu3pmZmZxeUWADBagkYZ26CAI8liKV9r1nu9OgDw1PSgnjOVoA7Y4VAiXm9QJjhgyi6HjSBRz7PAo0RrEMWM+B/4+1P8sqbAO5FVBWX7jSKBJQnZkXuDgoyrPkYSOZIed0xwlNVnBqCMeGi35PcCANvHPBqf6Var/U4maEiYGk75U0sxBMBatR3x+WWKQwDcnAnperHSilg8Pi0Y9icLpUQ+ZHFaQJCLUFISMFBT6XQslUqmkkUvzogCFIBR5IUPLXqFJBq3Hz48ZsNRUrnH4qCRc6oIlck+wWmSFxgW7xBh1BAWC4FhuuCkDYZykD7S5nHYOd7PyRIjBdKBQxPjIwCG4SMDIibSs7QTp6WgZoY9UiJTyAV8PGhluwMmMmZxuD2RmJ7v1dutdrff77ZjpimiNSEn59UjnSYpERacDWQHGsdyHhtUCF5RzFS+fXyzMf0JSyi8w046cIDUZicWjsUyiViq3YzrFB/ITwIO+wuxSDoR7jWWz7dGABztZ0DxQ/nzFU6tyEzAbK/7UVaXYsTLjZnNtfMp47h4bJpcnFs5BQD8/p7WaLSW9+598rtz6s5yr9zfxp6dbYW9x24H4290xszS/MzVF2tXJmdu1DorRzdO9DvPTi1fvXawMT3/5On8/c9OnVhFALy9e/7c+b297Y3V5fbZG52t83/52z99eWVv78TsxjfnTj39+GBrd3//4sHBJbR7vH18pbv0eGr5xo1bT15/9OjBk6dPnj5++vLFOzdX1q50tq88Pr6yvr67vr1/cevmJSSBr1+/fvvOs3tbSyfv722emV+aG2bDlXpYMsu9cswEEplJlqePnxk8fHH03M0P3njr+eMnzx8/vH/n2tUbl/f2drZPtFv9Zvn8s/unjz/ee/D1t3/+/g8//vD777//7rvvfvvl55//9uWl/Uv9i0937771uy9/+PH3P/weMPiHW+tT7e1j9dr0YHb72ut3T8zfPXv+zfc/eev0ZPnU0Vxx69bB3KBRTEb8wzLIu2RQM0yFZuRUzCe5uVgyZKIwBk3Wk15JllFAC+nxIESFoSmxUBQcNpLwqiJLUTLFk26ngxWtcgAwDWj7aMPY5XbbLeM2koXx6PbQAMAY9/8DYLeHIplkBOUIGaqpjfKAJdmH/JhZhlVHe8CxqOmTFa9AcaI/lsoVMxFD9wVCaFFIBZlK23gPRpEOq8NBMrTgQWckGbQEjbng/bI06Z5wEqwMCg45vCZQGzNa5NJ05L2EWhgFnlRHluumgawQFdkrUhhQdNYL00+TJK8MajufDgXjkWA4ZAZCplf1BVH+Dg/MXaAQS9dDUcBfQGcQtrlCFmQw4G8WLdgi3TE1Mze/dPL0mbPnzm/t7O63kKqOJNLZWtbrGrMSgk/ACDWgurAJi9M2jlL2vBG/zrrHJmxuBhkUiLykARwCJgBWsQyKXsZxtBkq8nA1QVgwuH3s0GvWcTuAL8uSo70CggCNBMKJINxuDB3HhvKHIopkWRjRDo772aCHrDNabajP6CRSvTIC4MlZtAStyiBMoEQiDQL4i5aGI+lcNl+p1nudbrPe7rT7vXZ/dhEAGFR0HbAXngkBcBBt4UoopULyqz6gPWYUfhD5QKMYh15/ABjca0Xg/bOgfWmSkWhORooXdSVDpTPDhq6NFLDAMYwgsRhGwNCyjNttAMBuSvRp+NiRCaD/gbhJRkIsLROEFg/LlMXtxGUpkxUFIxQO+pNRnSExqPSxQhmt8ATSrZDDSGEA3rgSSGbMn3qgva/gd3QQ+H8BMDLjEkVG85p+gaAddk+SJQirHI3qXFgQdZSTxYMCFhg3qxtaOB7WASCB+dgm3DRmszAwtjCLqqn+aCLIRaLxPChmUSREjXKPsggEHQ0kiWLgCQTFMLyiwVjtgsJzwGk5yaey6IA0wl+WQ0oYA0IrofgKEne7SVEkCXRaACZaLh8HBQzXi0+lQQFzeKAWA6GnSEymUspkigV0yyrl9mByemYasBXIU7c/ORzOLByNIu87IJ1oCToSy+ZrnS4C4OHU5NRkpzfsF9LZqKEImqkHU5l8td6Gn5+aX2wiIw4U9mya0UgsFkzkAYAbtW6v2W9OD2d61bhXMWgX5XHwQS+PTORJdE7fzYPilQSGQvajKNkLLrAEI0tXURKL9lMPNDoVpXl/imRQvCMAhuum+EHVMQQzYR+jGKthmhyF4wDAhgoA7Bhze7l0p1LvtrJhn+CWggl/ajlGlGdbXoBbw5BpTolkjcZMxKcXS824DTN0AOBMpRJNhyzw4wwrmdFwGlnCpzOJXCqZz1eDCitrBlDtMBoOqE/AFJFDzph13IUaBjGLlZCAN8AwRc1zqHoBwbDzKNDNOgGDVpddVECgHbjG2F12OycEYEqwkj8TODQ+ZkGJhHD7FGDjseysZPfYCb8RCDC+dDIfU0XSwRsOp8tJkRMOuzsYMQq9TqPZRnkavbppGqzHbrVSii/Wa9MiPuGhjFRPgwnjQvKIVxV/Its+cbYw+SlJy4zTRnhw3admy4lIPJ4A5dcsm16B0LO9iIb78tFQIhbuVuc26yD6NX+4XTK9PkJUgtXVZcope6srKpQeqMzRQnV6a/1SKXxCPDGNrS6cPhvuzL57Xq61e8ugGz/fVrbnO4XJ68TrOzBD5rIT7Ec7/aODo63CsauXF5dvNvvHjm8st6eetZfPX7t8un/6N5ePv//u1LG1jbPrZ3d3zm0DAJ/fXJluPjk2u/n0//7rt08v7W0sH3v+4cLeVw83zoGavQQAvH/t8ubW6mT57tbg0rWHdx+8/vjxw6fPnj579uTFW893li4fHx7c3+6vnlrb39y4uFFZvnRw5doo1/fW09vrc2cenz+7tHC034ZqHfGFa916v5ULBlLFYqTYON26/OtTG1feeevtlwjRH7x+5/q1a1f2LuyuT1d7nU5n8e6TGzO3bh588tWffvjTj6PHDz98/e2Xn/3240d7D9dajx7tPvjst19/98Mfvvvq+6/++NHmXOv4xmwGVM3SxbuPL9fu31178etP3lufqSydLmRP37k8P2iWQBZOl+LhcCyMDoMwlJyOG4KTiabCgXBAlYDaxUctqQxJkS63x2VzkbziFaES2K0UpSkSR1ESKaB1UF6aEExVhEmGYTjgr8vltI6POaHKwBceRiTsHpYm7KhvyAEA7MGBxidAV0YAcYI+L1rpVkaHMBG0qJlkOBqKhP2ggDUQBHI4GY3lilmYDf5AKBTwKjwtMnaoWIJC2x0eHAoSRgJ40h4HTuNu0IIo785iJ3gQncFQKpVAoYMG8nrQUfCs8gqAGV/Yr/tHqktBabwwzUh4X6xASl6alQjCyOZiwWAoHABZqgehburIiUPkNN0n4LxsKmoY/j6ZikUzmUQiC3Irk0UhbWUQDb3hzHBu+ejxlTNr61vnzl3Yv9yHmRxECef1lGb9hR2eH53k8nhp14TVaYWZaSF9KumZGKd42Wsg9sFx2qhJm2c4qMFojR0wltf8KvJTpmgnRmAOy4Rl/LCdROfwUWw7suJkcNvYuJNAPhZu+7jVRXIIs9HZ2pEOYX8GU7pSqgKxq6He5kq1VAUcbfeHk912VhU12YsMIRWJV5ChFToMmslkS7XWsNmslGr1ervf7s0sL0xPTk6ic8CNZqfTblayEdCUIw8PSfWrKDPWBDqSQ21YLZQc3OkN4NFP8q8cRGgQJ6yI9pg11OiFXicSNpEAhf9BGO0DY/ARnPbxMRva/XAzXr9kPTwOF8k0IxqZDjC8RuBaMuIVXYTN6dPj6QgwpEg8mkoGZLhaOCnFqrV8Kh5NNxMeLeEZH3d4JH88bXp/il346RySPmq2+ek8sA8+vCKzsmqYIHEcbkdcJXEbH45ptBfDaAYuChUMyiLjomHQBoBmsIxKkZTDgku4zcJpMu+COu31x3NRKhSLpyJBXuII2Uu4LE6MAwAOGKrO4yzpZBXF71e8PveYS5QYgqC8gtcQAHXZ0SEzDgQ+Q+GYB+YP4rqkB8NYCUUfkiTDMZlsNOIPAnYJ6QwAL0cEAYARk+VKtVIuXyoWq+VqqYzOAE9OTU1OTg06U7MLi3Mz88uRZDxoIj8SxJMSmWyt1Ry0B90+KOBBpz81KGWyMQBg3dQDyTQAcGs4NTWcmW9qfp8hGKhfCYRz2Exli/lqrdJut3uN4eRsp5qUeB2zUKRFSPpZQfaxHpfF4iKAzinIOwxDscA0J6kCMDsfvAEN8R0vsmEfLUYjDEYGbAr6LwTAskBLAbjgLMlM2MY8nANuEgJgwiX7kQGVc8ytculupdFu5KI+3iMEU2ZyMUoUZ9p6tRXx+WS4XZGc2ZyNGgYAcGIEwJFQplYNJcNW2xE3J6iBeCIdRcYi2SRqWSs24yYyxgqFQ5FRFxY8NBGYoNXimrCruiTiFgsUCPR+OdEzjmnwOUjOa6Ng5AIAu3FS8boxv0Q73BqHMmk4yUCbP5IP7QG/AmAORQcGYpH8rOYk7BQMf58UzKZh3EqUFfeDwrEznNXlcHn9wUqv30AtJWgfJ2XqGgfCBgA43mvRrPuIB/fGWhoUB6cD9Ajavk3keqdOJ/ofk6xMOS0EictefzQNXC2Zqmej6agC7yyWq8blCZgw4UQ01K1OrVUIltTNeLMWUE1SVszi8UWOMs32mREAi1ogmetvnLleiZxWV2bJnWPr28H2/K8uehv94bHd1z/97Y6+NchKPLMAACAASURBVNfJNza4Z9vq3WxKY4KFl8uJupLO70+9N3vydne4eHJ9rnL8bnbx7JXLx3v7n58+/+2d/grA7/o64O/2zt7u1tqx2srjxsbZP/3v//T2hTvnNudvfLa+9dZH5y7sXEDJggcHF64erK6eqGzcqV98dPnho7v3nzx59Oz5U/j18uXtlbWD7rlLD/K10ydWtjY3Di5UZ85fAvS9cfPWzdtPr5+a3n56bnNmcSZTLuR1KdXvlTKtfr8UMpK1dCoyP7n+m92V/Zfvvf3yxTMQwHdvX79y+eLe/vaJXmWy1V4ZnH18f+PYi0v3vv/DX/749+gBOviH77769OPfvn/r4HH35K+vXXrrs8+/+P6P337x7Tdf/nDr9HJ/5Xil0p2ZXr95/1H/yttnr73z2cfnFhoz2+XksTuX57qgWZKRqUwomopEAz5D42kJAJi3M7EUkL+AIno5Ne7ziQyy3cMddicIVwppQ5LwOOwsAwyQJQmREuA/nZI6IQR9EoW6ftBGD+a2TxyxYByJIr9wXqEcbngaBMD0KwBmSDqOLJoBAlHnjaErKhRAVQYuh0upBABwKBjyAwKIFGWEQKUX8ikVIDoQiSDzH1JigANQspd2ugmMJjkUVQwA7MQpzE0hAKaxCTshqKM0vWQiGAwHodAjraV5AYtADHIMD6CKSq7fp0Elk3TUEuLlcA+Dw+c0oOCG02kgKWbQQLZ0gNVQNQx0FhdFspMCwIwajKH9o3gik07Ek/lMJpeOJXKVSgUt1/Z7U/NLx0+trZ/Z3Nk7uHRlEn4c7QHnQPrHFF6kgdAwlgmBcVrsLsuY1WGnZMJy+JDLDypblEUaWWL6FFnjcCfB8TQBfAYdcJYNBS1JUhzBsJRjfNw6ftiGFqRF5HmA2shx59gRq4dCKhBYkx0fme7CJ2ZRkjF8+bNWt9/rtJqtcrFYrpSKhUIF2TwDQiIARs7bQFFQsC/8qaNMNph+pRoU83qjUq7VkODozCwtTA8Hk+16u9tqwnM164WogQ50oxNeoE90FOGQTiZzqCe82uj0ur3B1BAeGVDhKBEHRC5Mbe8okRLugomIDkqgBBEtUhwHYtKGFnUdwOOsDpvL7eYNHzl22OJgTRieIpPzUaIB9CUVM2SXx2LVVa9fF41gKAFUP2IqyF6NUJK1aiaeTNXSuBp3j1scbsEXTQf1Ed6OAoBHWjgwKrSm+WpHWILPzQmyHpRoweGxBfwkaWdCMS9a+hcRK+EFmZdYh5viSd7rN2hCpQnCNu4RMOs4yiixOUHL6ZG0n4ZrkIybgszRukY6LW5KAogKAT2hMQZzsYqo64Iujlvg+7SH5GU1oNM0T4L0FTiaFQGAaaQaPSzKAKEI2u7iUbo9gcOdTmfCIcNUoUIiBSzRWKCClqBFjm/W8nDZC8VytVrI17ud7nBmqt+fGnYHs8vHlubnZmNoCdpAHdhGOBxPp2v1crs11R/MTw363eF0v5LNxvyq4AvooWQGRG5rOASFO98eKWDkw2FGwtFIMJsHAK5XWs12u9nvz7XreZENcDaasaiFsOQPKJzHaXWSpIAWPZCdHjojh4YgWmnXdcS7tVHKyciJErjDSAHLCgrERHvAAYVlOBMuOJCSCcuYTfAYul9gcMztUEzNy8I4d6l8tldttJu5mF/ExEghlFmIUbmZrr/WCv8EwPlAay5m6MVyO27B/EYQFG8VADhitViAF2mhRCYTT6RSuXy6UC6VCt00QHRoFAkcDAZH3dF+jXbDDLXbrLIuCIRtAlmoIosiiZxwqz5Fo1jd5lJVgbRPuGBi6h6nLtJOuyyAAHZwisbznKDoSQDgIxa7G6eQ7Z3PjMWyM5qbdoNMMCQtBrUDWKjmcWoc4bKzElpI5PU0ipLsdpF5bHeqGZYjvrFDUCj8yX4bGeATlB5ve6ESOx1umPKAnfFs7+RqcekdN61SyLMWF+VAMJkOh6D0JBP5bBRmTSLXyPos4WQskUlEBo25zQbF4oqWaVRMJcjA0C+dPKGJwWD3tAjzVBTROOisHruc9p32rSyIZxdPb/jbi7++qtfbvaXd+598tmdszQ+KjV359pnkg1g6mdievs9wWSNTP9H7n4UTdwbD2ZOrU/m9S41TF67szwxvvrtw7/dnZs6cXd/c3Di3c35nb2/71NGp6q214da9//O/fHr3YO/UmVPv3z9676vr8HcIgC9dunx9Z+fMfOXo23MrN24/uv7kdQDgxyMAfuOdpxeXDlbmLt87FywdP7m2trm2ff3o8umd6zevXbt55+7955dXZi89PbOzOFPxp6vhULbVzGbqlVx1qhfXA4Vyurq0/KtryztPf/P2yzdfPH366P7dW9cu717YOznVKncnJ4/3F248utq7dm/3tz/89U9//vM//uOf/+Hv//jjN99+8dFnn765f/tCZ//dc9c++Pizr//w/VfffPPZNx8enOoNT8wXqoOZpYt3np05+vaNtWe/++LicndypxGbuXMAAJxPp8ODDOjxYAQEnpejxBQoYAcbHy1By7zCanGYcCRNeAjcbnPYrE6clRQQWpjLLXC6jGKCoQZ5PE634p0QQhI6vsmCGkBOetaxI2NujgZC6MGAi9ndDI2/AmCr3T4Kq41l4rFEImJAtdIMH5QDw/DKssTiQjKBEsHMaBBFEBHUyC6vGBR1mBFo4gd9HCYyVtxD8JQNHWniaJ5hPTSJeq5JD0qiZxgGxRFyIGRA4CeTQZTCANMdlV11lAXAczQn+oIBAP+A3xcI6ZIeBAnk5UkSZD0VjJmhfBZELTCBsO4LBEyfaupouVoXWdB4EutFRkqBKELgZCaVzuXSoBOzyWgStZ4W6+1WowfDbnn1zOm17QuXLl/Yaxo+M5pIAtNOVzpFjVPGj3AsYgke0HfWcZvT4qQxy+ExtF7Hokg/oAMCjVaVUawgg3vsyNWZwRiSESTkTEgxLOGYmLDbjlhxkuIEGh2s5inP+OEjVozmWA/UOxblBsvIa1mSRgAM5e9n/cHkAHCzmcvm0PGiIupxhjLabTYaKUXSRO+rzTjFqyhIm5oxqOe1Sj7XbDfqrWat0W20ppfmkX1ho9LqthvNeq1ezQZVbbS2D8Dt9/oCJrL1S+bLlXq73ur1uwiBB91OjGYlWUAHmEHFiSMPfs0/AuAg2qNHJ0NVgYdPiwF9ID1Wq2UChp7b4xEN0TY+bsPkYCQSptWUikk66VaQ1xXoVJvMcrrL5Qv7Acij0ZBPpAGmSCVVL2dSqXKWkBPuMRDSvBHNhbVXp4BRDiHcUX/Q/6oHy4/wV0NNWALLSFpEZTgXZhXDBO2izIhMoWNcIgV3h2IJiphwIsrDawbPqsB1rGNuGrdNcIYu2J0SMuJISGwonkokdFFkaJ/qcYzZcRHmTQheB8YqBhQOhJTgo8ZwYCS0m5ZEn6lQDE8hHxIWeayMNh4I3EEg1xWaZq0WahSDhQHLTaVRn4IKIzGRCYOswYOVcEhTYVi3a5lsqZAHMQdzvIzWYuZnB/3hsNeeWjp67NjiTBJkecj0yqrqCwaj6XSplKvXJ7u9halBD9B6UM1mIz5V0IIGFN5CrdkeTs1MzSx0ZU3VWd3nC5rhIMzQTLFcqDfr7Wa71ep1Z5uNgsjFDNBhHi0f0tNhDLc6HARPw+DjgTCSmANDjfw8L6LeQoS9P61Ba6g1w4t+vzqRhHx5UE6UznJMAEi0xDAWIGIi7tdNtDPhRACssRgAsFfI9UZL0BG/5BEj+VByPkrlZvtm/ScAlgGUm3Nxv1GqdGMWLOAHCp+qlMOpmM3iZFRdMyPJVCKVRVtIBdDzxW7KTAD7R26ACH8N4ISmwcIMPWxzTAheXmSc47g0AmBRQueQgMnQlO5wiAiALU6SJnXcBqTBNc6LbovNwaIVJVrQfPHgL48csTrcOAN0GIZeLJGeUXHKw3kNnQ8msuk4OtslOUUv7rITImF3uWhffbYLXB5+Dyc7g8msFovYfu4gJTM16PI0ZqVoX7LnBSXksLswFgDYH0u1FwHarloog7VNwFWX4AqC8g2EI0m41eVclPH6Y9WQQWjZVCafSUy357aaNE8gAM77ZRPtkpRPnTYY2WicoAlk2+VP5Eu9E3NXk9oZ4+ScvLJ0Zs1sz7+3I9c6g6XNK+9/uOPfnB+Wqvf4vf3zi61lnqppgmN2ORnRJ1xP7x67PzU1s3p0WH79RH/t0pWdwdHHd5be+3R47MzGxtb5c+fOn9+5sLd1cqG9eL+ztfHD//Hju9evnz7ef/rx4u4nvzq7Cwi8f+nSRQDgsxsnpiqvb7avX7366O6jhw+ePn38/MWz58/e+dWDrZWD/ub280o5111eXzu3efrg9Mzx7WvXr1y9efveo2e7x+Zu3D+9PajmkrFQoNqHKZJNJBKZ+nCQ9QZL9ejS7Iv7C1v3P3nnjXffePH8ycPXb18DAXxutt2ptSaXhnPTK8+erfYfX3ry7X/6JwDgv/wFIPiHb37/+88//uT9hxfvnu0+vLf94v1Pv/jux+++/vL7D398tLLQXFyrFTszU2fuvrjRu/vu2dc/+eb2Yr+52Y307lxa6DdBUwYGqBUa9K5PV1haTMZQGMMrAJZ4iTdiosJRAuYmCJfL40LtzKIiUChLm6W9yCIL53DGAeRLUkABK6PzEmgN2ul2TBwZP+RgeQJz21zovC7GsZiNhB9x2H4C4HgmHgkFY1FNGe3MIgNmtAXEAxFIRqJBE500gOFOcqYZSsQ0lh4ZE6OuJx/n5jk74SI51xGbx4nxFNQqF0UyhAtDAIwDALPYYQeOrGFCUdAhIb8/EEDGioZXYHgJ+REDZvNaLB4wo/GI6Q8aIIdNv6HygN1+HveHzEI+ky2kAqF0DOXX+aFsqjoCYEmB0iXSMK00oNOxcCCGjjnB/UQBMclUrlwu5MutPpS76WkA4NOrp87uXry0s1MLjSyEEtlMKpGvZ73M2Jgqu90u3u1wOifGrLaJQ5aJQ4fsQKxVZIEHZJtyeRgOWfBDJXJbrKSoyAwGn5vnKORNBjzHZrE7x355yOLESAAcXlY419ihQxNuEMfEqMRTOPwUOuSFlAd6CMLPJgd95OvcLhUKIE/L5TKKTGi0e7V6PSVLGj8Kh4MHFEQfKMMQ1OhMpdnqwD/NbqfZAgCeAQCeBgAuN1GuEgjgYhJqojLCX8EbALEPpAY5mhWqLXQMuNdpd7r9drMZIRmUqcjQgDToTgD713wjEyx/MArjENmDS8C72ZH3ostitVkBgD2YR1TxMavVxoLIjQSxQETBVC/pkhLZiJdwOWwCJ4cIuzcRRkdKIpGAJlIY68HUdLmQyRTzpJxyH4Zn4nzRXGzU/YM2nnXdDIAANkZOWGgn+FUTFsAkKaoRhWMw3I7HCbgNikYTDMCiRMqSLIq4xzWBweQQJKCorIqaot0kjdktFAxgK674/b54VueguEfjEi+QFMCyfcyJA7L6QzooKob2cCKQTl3UXRZagwuCcYpiaCjjGcEvChemRzv2LA0vT6JvsYwbbjMrMBRO4HgyFQr4gnDN+VQ26pUZMlQNAwcSaa5VScKnzhULjXohU+kMpmfmF2aGU1OT3emFhWOnTswlU6gJCzU++YPBWC5frJRatW6zDQq41x5MT9ZymYiOYhMBgNN5BMCggIdznVdOWD5gLWEznAgniqVcrd3qooHRa83UGzmVDRgEyXjkZEBLheygBz008FW4njAnMeRMhxLTUKIiPJMP/TnaAQYtjL7WX/lSogPBaEtI9ZusQAZEryHSjN1hPyziphEEBop7nIqhehEAu71CtlOq9jvpgCG5hWDSSMyHscL8wKw2I35DQQBcDNfnEgF/udKNT2BBP6j3TLkUycSdTg8LQ9wXjMZjaYRFWZgHwCjjwagfhRXFAYVREik6rsa4MPsRmGmsVwBZO+ZGHppod4602XifV2XcqtvOyjxmHbfgpFslbYrI44dp0TVutaOzGIKb9fkTgV8eARLoxtApLBAdsURyXuUoD2kEfGIykwYVXs7lTTcbwN12J09bXU6P0pzv9rsoybM/2e/3molwlPy5i5LM9GRPYHEbRRuZKRXYONB3gqUE2YgkmvPrx4/OWoWgMDHO4JjCC4oZi6J8rmg4lQwZdDCSqIUDXKgMnzqTnmkO1+voYIk32cwEFU1kGW9udS0oaoHuGZGH2yWaqWJleHr5VtE84zs5y58+s30m0J379abc7A2Pb11874OdwNm5ycLkRWZ/5UpY7NQX+4coe/l++5ympx79+9Kj2eHM6flh62V7amP3ysbk5tu7a188bZ0+vbG1vbOLAHhvb2tloXNpb3Dp1n//66dvX907vbj06c2jL764uLV5cW/3AgLgK7sbJ2eGG7eK65dv3bzx/MGjx8+fPX3x8vmLF++9vL66c2Zm5/KeF4pab+HU1oXtK3trqztXrl65fuvWvUdPzi7O3725fjyfLpZNf7nVyGXLuUAin0uWh5PlYLganp+593Jx4/Znv3rnvZcvXjx5cO/Wld2986e6zX67PXN0anGyfe2N29X9Owef/cN/+Sf0+Mc///lPP/74w5effPTBW7ev3Fs88eLS5bc//fR333//1Ze//+ibDy+cGAzXptARv7mDF8+Prn147cYHPzxf7JdXZ8KNWxfm+40s3IxJAGAYawjtWFZORX2SmwcADoQRANNmnFMkThk1YWEjQ1dKVBUO8zjtFKHKLEvjPMHY7U63IFqkgBd5dqBTSC4EwOO2CScrkm7bODA+wkEInOcVANvtdg9Gj5ago4Y3lgmhsyeaT+V4BflNcLiaSYZCgHSjoAHcw6K+WQqjQS5AvQyg5WAR4xgb5aFZDww7t1sgaJa1kziFAwBjHoogKZrFfwJgtLYZ8gN3N0aNHqAgeOQLNVLARgy16sZjQShEJrwPtBfDULxforyBYA6FkyWDoVTYi6JifSMARmkMis+r8QTUT68RiUVQk1cKtXnF4ulMOgdqolgs17uTw8mZufmF5ZOrKyfXzl24uLPbChh+EPDxTDSYqA0XyhQJikBg3U6XzWY7csRimfjFkSOH7KSkorAzxuNCHTgUj5bLWYJksbHDNkpg0WFfGioxgQzK3A7LxJFDh37xy0NjbtyNjniwpO0QPBdGU3AdaOAvbhc+SvQU0IryKP9N/Fmr05+c7Hea9UqpjM4hAf5WKrX2oNXu5DRV44FbATSi1VakUYwQOs9TrpUKDXQeAgRPDwHw3NT0YLJZbva7aIu3VYCLqCnyyGPMa3rNMDDuSDodS5TqlW4XZSj1B4D63SQ8NeoiA2LAIQD2mqgH3Qz4oBKG/SCvVLhDLGo6ApChgHXYrVZkMuDiZfshu8UmInHid0QCMq4ppFtKFhM+3m4Z42Qj7rUQqEcggHxTghqHUR4XZQD65gCAlbT78Pi4hfFFcolXC89+A1iXCapbH93c0Td9o0REWeQJUQ6DciVJlzOFUqhADHuQ+FUpiQeaQ9GYBTXBgQ6SMRcB/MDuRDvuY06CJA5bMFCpelwV/aFUNC7wIugUDmgEyYqCFIrouoRTmJ1jZU2Hgm6xEQowUlxQfD6BAe6BDiJRDLw6sixHht+oBx41ssP33U5GRjZiOJZIBg0tiN5vLh1WRAoUcCSognDlm+V4qlLIof72UrHZ6w8nZxfmZmZmZwZzc1OLp07OxJMRc7TN4Q2Ew8kSKMjusNVptGenhr1md2rYyGejcB/UoB5MjAB4MDnV70+3FN3nF4CnAFUKxjLReCGfrrbbvWan1es1p6uNjA9UvAdnrGzCFIJ+t8NBA9awEsVQGMxkOwskEMoM2nRC1iuvdoCR+wlwPXQmCR08R56UCkrClFTDT3Eeg5d1nqKdbtchETMDYREAC/fIuqyOFLDKZ1r56qCbNnyiUw7E9NRyFCstDPyVRiQAAMxJ4WKsOgslrVJpxy140O8PhXLlYiSb8OA4i6JAwol4PJNNpQv5arnaqTcioWggEgPaiRQwcuIwfCbnxOyggA/RuuiV3GNuHli4KiIEtLJAH1ibRDgpkUXhbG7CLlN2RRaI10jROTZhxaCAMVbSH0whAIZiiYJXZATA8fiCptIYZoYMpZBLpTKlarYQ8VAJivQ4BNEKdZapzHRn+lOTrUZvZrZfH1aBef4CYxUzPegKPGmnKH9hQcVdCIApCuqJEU00lzcW2hmXLyyPj7Mej5eTVdD5oWA0EY0WMkG/xGby9ZzpiNezsUQqPV2bWq9DSeGEeDsTBfpDq8HKqdMmTOPOGQG9Vckfz5Znts7cLAVXvavz9Pr2+RV/b/HTA6NZ75y4ePeD31wInZ3pZ7q3+Gu33i2HovO3ylNn8NTZYJeM3PxkdeYRfITV4aD7q/qxgwvXTkxdeG9t59ur9bOnzp7fOr+3dXH/wt7OxrHZyUfHTm1/9j/+8N69g82Tg6fvTN/5/tHqzt7+3u7exUv7l66cPTU3Pbi3PH/r+u279+4/fPzk5fNnL9948fKt9x7sLV2bW9t4v62WusXi9KlTW+vbO/ubF65cvXbrzq3Xnz5dXzz66PqpyVSxlFQLw3qplInmp1qZRLFSbMw3tFxqYebgneWNq5+8/+sPnr/x8tmDe7cv75w7M1+tDzr9M3MLw2752M3ni7MPzr3/x7/967/8y1//8z//5R//+c9/+O7Lzz789RuPrly52rv4fO3pZx9+/O23v/v6t1//5vs3jy11Tx5t1OsLndWn7+7133l06f1/+OD4VGnleLR2c3e2U0mGEtFhJprKBkD7GRLNKmkAYA8fS4WDUN94CfMnBN0rqjJDkW6ka50unEcdUKTHSVM+H8wrQqB4p92F8aJVCaJQHhCQLPJbd9us8L8zIoN73IwkUzA8ObeV4hjKaX/VhEUDhc5G/ak8KAIDRojGCSpIKInF9FzC9Gu6JoMYIhx24M4OFwN4HzL9AVPXA7qpUixuId2ojDlBAUtoddBJeRAAgy5kUJ8Kix9BAKwZpg+QAckaGfAHWQDInCRzoJkpVjZAkUYBKoIA034TtcFqIBYlwBEjkUpEwvFMBnDFUEAdQ4Hwo4BQQxfRKUCBEFVd9cUToUA8GYsj6ZtNZbOZUqMUyxWrjXZ3MOxNzy8sHj1xYm1zZ3//3G7LqxrRZDyeTgcyxVR3Lo0LlEiNu2mXzW4bG7daxn/pJnFZhQKM04RtbAIneZkjCM6rkHY3xzj+7jUX5cFZyk3THg/LEbaJCSsoA8vEuGXCRnHwkeEGgWh87ZdjLpIiadSQ5bRhAgsSGJk7qwAsyKr5Z70ecoPudWvNRqlQrkLdqddqje5kt95KIxsE4PZor1jQRRFtfIdCkQRKBK620VpzEyUy9GfnpwcDED+NTq/TbZfz5UomaLxKNRI5qE7IxySZTqZLtWql2kIHh+eGKDSplRjFMzEETQHMAtmQ4eV0TTeR96dpBvyaBNQILVCPEpNowmkZH3fYHARHO8cP212E1wwlkzyVCkuE14d7vEChgprdjsEPxL02EnXPjLaToyGVpmAkUnK0kW2lXWKUHLegE5zhVBwtrPtGp4CRwPEZph/+ga9U00QbozSMAYwCZQzC1uNxBVQMZcO57bzMA2ACkeEFBnNYrDiMJhAMmI1jLY6xI3YO5SdQlPPwBO5yY6JJM4lEIhSBmeSU/QzhHqNFmURWW5pISDY7z6sBJNHGPAJPY+iAgVdDp69ALwNOgQCmkf4dITDhxhhRllgaJX0yXuTRQcSTcb8B71pg49mAj+Fps5kESe+lxXoVWWQUctVis5YvdweDqdmFhbm5xaP96ROdhaNrw1gu7AfWI2miGYnlSs0ekCMkfFEYEuJm5Xw+qssiSkxO5uDvm4PpucFwroG2bRlgLsEQ6MNYNFnIZwuNyclOBQB4cqZfTQss53QCLOCmn2EFSXTgJCMzqIebImDOo+URHvk++l8dQEJWlDAA0Ar0yITsP0yx4ALpoiIGQ7yb1UTep5AM+5rriIhpgZDAYS6nTTF9XuS2o4aMSDGZrlay8UhQMs2YNzMfd5QW2/5qLQpkjhIFfy3cnI8ltAoM7jEaNfWbuUwunA1CcVEkU9UCkUg0n8vmktlSGQZoJRKJhNEjFEB0P4AWvQKKg0S9KzYHKG8Rt47TXkECrkNhLhuuGDo/RqoOO+h8y9hhO+c2GA+viMSYU8MnbG4Lx+o2qyIbGf8vLSgp1CMIEsocDyXyk0laE+y8HsoCFpSqnXTMiHhdfq/TbWNZNzEu0JHKQrdfrk83GvPT3VZvEPOqP7dzip7st3mVs9OsvzwneWjKjlomWORin2nO7+SDPM6lRfuYgHk4kYv4QpF0LB4Lx0pZH7z1WLdZ8hHhXC6SymXnmtObDRx3q0Z2qeT1BzwUnwzPndFkw+ztCJwmqqoRz9XnT6/dqIRP+1ZmxaWTO8fjk4ufn9NqtdbUqRsffn4Q2F5oZ3vX6Ft3H67WemuFsT//Zyoam8lRcuNgeun5XG/pxExt/Vplffve1kzv8RuDt79b6586vX5269z5nYv7O5dO7ixO7l/u7F38b//y8dN7uytLa19vr3786Ymtg439vQsXQAPvnzuxMVO5eb514db1G3fuvf7o+aM3nz168caLd95/8/7Clc3Ji3futaqxYqfamFvbOb+xeWl37wD1QN9/8PTJ5mDl3f2ziUy5IJXnm4V2IZVumo1hIl3NF2eO10TfYm3rra3jFz/48N13333rzWev3717bXf3ZL07HHZOLiyeLC/M7u/ceL2yf//K93/929/++m//+i//+ud//Ps//vDVbz95/53Hl6/eO9N+4+rW829+9dV333/57e8+/OGznZWF2tpUqdGbG95658Hw4Lc7T7/7bnM6e/pYJnN+B6ZlrZhK9orxaAjgzh/SCVLNxHTeLcTjgVA0SopeTokCDOpejsY8COtg5OMClAEMuD7H6CBLCZphCZsVdyuCwyD+ygAAIABJREFUXfRCoZcFBmUR4ph9AjXx0bSbICdcIs3bMZFBqWo87rA4rTBWPHgiGkPcMxMGdYpMVxWUCKuiJegwTD9Dpzhf0Gt43U6BwiktJzOAo8gfXQ9oULcIKxQt1OfrcrpAGqAAWbeA2yl4RQyZJXtcY3aMEIFBGOjoki7JpiTwINrhL9EuH80znBiIh0OxZDgQDPiC0bABjN+ncYqsGooWicR01P4b9oMw07zo6CiyxwrCzAdR6NMwGZSAEUuERmlLIIIzKIkwXyiVy6VKo43slvvI9eDoysb6+Z3z+3sXhwbM5hDq18pm0oXm9EqFYjTs5yRQknHb2C8OHTlESryIsrwpN6EwE2OHPBJ8LJqVJY5lWcz22t8dwjmKAN7DMITHMT5msU5MOODfNmQRTNEUR5Ecj7te++UvfnHIgmw/Peh0KoFiptDxIFkQ0BEf/mf9AWpK7nX6/W4dBRJWQAJXa61ev95IqpoXUFFCVreyLklQc9Gxz3SuUCxXgM6heN9Wr9WaObo01esPmpVGq9VpV4ulfAzAQIHLC8UFxAwAcDSaSefK9Xq9UW71u+3u1Fy/02hEgd+wgGyAjlCY9YBhoJ5kX2DUdIfSGNAFYIDyoThgEmTT2Ng4jCQkoADjnJQeDKdMik6FJNqQMUyJpFIRA3c5CJ4P5HmXaIYiaP8uFo+YXpEmOIGWElODqEOOEUfGJ5yMEs2mFbT+6R05YaEem8ArL2gNaADwLF1FB0rchGaG0BqDxxP0kTjKkEXJ7TA8RR6GD4c7rHYK0ETTBdxGsw4Y1nbabRlzsqzriB10s1sIcLRpJhMBhlJx1SCcqOkWBjGSfxyhulyCqPiRj80EoASDAmNB9jEsUCSKQrahqBPrVXoVywFWoI1/FOPocZNoi9ztiSWiCIANSUhnAzrHk0Yt7lNViZZatQxo31KhWm7WCtVOHwB4fh4B8MzC6tTy0TPTiXwUmKxP0aQAAuBWt90ezExPDqanBjBuJwcVqMyaiqwoQQFnio1mbzjdH87VNZh8CIB9phmKx2FQ5PMFYFdoTPSmpgftFEcrTidF27hkWPIZipcAYgxzlULH0t3oeC1AD5rsqPUO2O4oBgnQV/+PpWf1p39poiYpUjAs4RxQZ00iafo1x2GG0gNBnsM8HqcIoC0AgAdjgWA8FE5n06lUKhyP5wLZqSRbmm/r1VrC0FSYD2Yl0FhMxLyVei89xsAdjwaL+XwobYIqV+SAZoTjwRBQ51y6UCg2Gu1a7CcADkJZeNWDpQdUN+Ww2Ox2h44AeALwVhB1Fc1UGyaBbLC7JbRbRNgnAIAxjXXxwOTtLp20AgDzkumyK6qR9v18YmLCjnmQGABSH0nnB3HKUO0eLVVIlXrFTAamp24SepDAnayIOZwk6S8ul0vxGgDw1PRUpztT1PhfWmhBSwAAK6yN5c3yvJdgKJvVgbotFTOaay/uhEkbJiZVxxHODa8Gr4Fc7xOxSLySM7yA9+kQvDWjmE9k8rnF9nCzTbOkL1A/WeR4FZPlZGJxVZVNs3deRp7/hj+aqS+ePnOrEDjKL7WpE2f2T8W6Ux+uKbVaZ27t5q9BAe8tdIqTV7lbN+6VdbMku+ofhy9sz17+9t75y925J/PdmcXJ8oULjfXtm2vTJ17cmv7gq4XBmbWNTcDf3a2rW+fPLs02X99c2n37//rxvUcXtlePvvVk9eYXNzZ2tvbPAwDv7R/sbW7ONI/fHxx7/eq1m/fu33/49PEbz5++CQD80d0Lxw+Gpy5+sDBYisUmm9X+ybPr2xfO7+5dunbjxu0Hj57e2xicfWt7LdJOxMrtZq4Qi5Vb4sVu9ETa100UWp2BL7Vw/M2DE7tvf/7+b95/753nD+7evLR9aqE92+4tnZxenB4sPPzV+oVbq73Hlz77/t/+69/+7V//9t/+0z//w5/+8PXvPn3/3ZdX9m5emzn2zu7e219/+PsvfvftV7/57OsnqwvTx1fa5eage+7dZytHP7lz48vvzs9XFk/lkueuzg87pUIy0Stl0ql8PBqJB4BOJsM+wQG0HfRAgBAUwRuH+qsIFGoDAk3rdLpRmeARDWdpTRIZdFqRcsGQUhirjKw8kMMyOjnhso1P2MZdkuxxuW04LxGYQwJ9RvAC5bTZrU6M8mCRGKjvZALlmCBHPZ/M8ahFiKcYr4DMmBg1EJKgWiugTfzJiqoGfaOUbL9fk0FnTNAYKByXy+3ycDgF6oDGOMxKkG4QV04ox/QEijlhRXmUKWbIgjKyiUAPieUZAjlB+OPhYDhsIkoPddsf9JqayqmK4pO9kXAM4DeTjaNDwL5R9xYUC01XBV5VgKxjMurfBgCOhOLJTAoAOJfKFopFmMXlYi5bBNUwOTk5c3ztzMnt7bX1CxcutEYd2al0Ip3LpEvNmZWzTc4jW5y623b4kNU99nd2EZ1QhuvHgkwgx8dec0K5BaIApVcExf/aL1977ZDF7XG6RguSlAvZJI8eTpfT6cRpCj4VCbP28LjVjgJXORCAOMXQCjoFrCBkFSXUfvazXr+Pgo1arUatUhzFJwIA19u9fq0WV5ArkSSOkml0+IWOqoTi8MnK9XalOkLgRq/dmT22NN3v9hrlerPR7LaajXISNdZywGrk0Q1DK9CZTL4CqrdZG7XpDKem+u1mFDgGxaNuAVZhGZ8fAA8t/AaQAvYbKJRqFDOB3CbgBiOzhTGUWOPBQArb7C4uGImkQNikAiypSySlgB6OhCTG4WREIy6O06FwIgrPh0zLwmHa4oIRR4RNfEIKeQ5ZLQ5SDCbj6isrLP1VHLB/5IM1aocfvQFQ8QLrxLxmBB1mwjyaTnjsOIc5ORiLiqCICjqj7LA6GRhJmi7iDopzkG6bnXRbJtwc6zzsAmWEySbvoYhQSqcFwa14PXabxcmqLBJUIGE1zINiBYFxcQ7k9kyg/XsvMEReHql/FtgJ8k9BwxUlWJGA0GgBg0WbQUAf3e5oIgISDQa2mM2ZmihgRiWmy0DZlE49X6kABJdrzRrcte5gGgB4dnZ+cW5hdf7o4snpVDEegsmkeuVgNJott3rd9nBxqjsLINztDSYnq/lcWAcADpjBWCKVr9favcnu1EJT9ft8DHArHQFwLJrOASmrNerVdrXamRr2u2mBMj1QI+xSOqynogJKahSAT6CjVG4PPTKA9vqM0dYvALAxarxCVpQ/aV/0x+gLTdZgEAZCCgWUR1IVmmGOOI8AI/ebLOMG0i2hRmlTC0QjwK1BoYWjwBTSmUwplmqlzMJ0W62UkwDSNCuGS/7qcjasVWqTmTHGDAbioWK+EEwYlAcAOKgZoZgZzGQAw0sFEPudOjoB+QqAR/GjMD70gI4zKBrD7lC9qkhYxwlQC7rOoG59jwDvkLKJHoqReI99wsEzPtUlGLLicPlYp91p4ZUQ6ZQ1f0r7+YQFcBLnUPoqKO9sdhAhA367w8iXisP5hE+yWj1cjINfuJOQsQnC6RFTs+GAVJtCE2iu15nv+tyHrbSgxvsdAGA7xxuFGR04OVQBGEOSFkoU2scvmhNjjBrTHUd4Ny6LrE8Nh3UjE30FwKw/kIwFZSxYyidANCy1h1tdQaJ9gfJKHUoc7vWncsdPyIoZ6m6posjKoh7LVObO7j0pJU+KKz1+YWlrNdKe+viM1mpNHtu6+fEnF6J7w3KieY44OHjmZ+Ralsie2bpYTZw+P/fDTm/28XJ/anGydmels7F7ZWX65Mud9S/fbC6ub2xuA0rubd7c3tyY6Szdn1o7/8//2wdP7q2fWdz/bvXsRx+cOL979uDcLlTPiwc7ayemWnfXJu9eP7h258FDgNUnL16++fYbL999+/7q/rmFg5v3CoPZYbY01ajPrJ45v7+1d+Hi1Ru3795/8uLa6f7+i/UTmZqRmekV6/V4q8O/+//8rR+cnolUK8XG8XxwqfPWvZNbT7766LOPPnjvjcf3ru1sHJ3szlf7pxeOr1an33n/9tcvrj3oXLnx8C//9X/89//+7//273/961/+/PfffvHZB289u3zu4qOt2t2nG/c/+vDzb7/86otPPvj6892jx/unJ7Ot2cHiy3dudd56/+CzP1xcqrdO5SNnrh8ftktFAOByNp/PRAGG/AzrjYf8sp1Oxv1QE0nQunoKYBFFvVC4B5V7wE1WkkUEe1A70U4hCnfFnC5cwSyqLqujY7zIMsBhnbDYrW5ZxewuJy0o8C0JfgoJEicyFvSQBA46O5UAcRUzFJjqKA5Q1UeOWKJPQjDAS8GYrki0qgVDsUKB8QJSBkJQFHwAwKR9nPGwoKedbpAEOK2wBOamXFYM9xA45f5/2Xrv4Liu/FxwymOJBNC5b9/bN+fYOeduoHNAN7oRCYBgECkABMEAkqJIkZQoUaJEURKpNMpxgmbsCZ7gsSfYM2OPPZ7x2m+9b/fVq61N75W9z/vK60219tv1P/s7DcmeerUoCUJRRHffe8/5fd93zu98H0FirgdRn7RPVrVIFJ1nCqdChgxSEPSkiNY3OVAbJrrySAK1zQJ8IABWVQ4tjUkIgIuFVCqH+sEQD7aQP4Uoq2MfaWRIJ6HmIZDPsUg8mUql0gCrpUqlWCiWx3nAKP5nMD9aPnbi6ObpU1tndi8MDAv5cGSSyHZnpjlYOXe+6sMn7Ix7ihYYbIrGZbhcJFV1U+Pdkza/KCLzYJiwskS5D/7Gbx60OTECs/sJRkDkm3ADJ3I4PFMePwmwjE+4fD73xIHJKYcHQ4ZkLKhMkM78OGAPdKaJHMA4XgAA7ve6XdA9KNhoeqZengGdChO8W6unJEWFR4x8O5AXFoqJCqB961Kl2uxUqsg1utZotPqLS3MgmFv1agtULQLl6XTQChjI0lfkEZQFw9F4NldEYeItZMQxO5jtwD+dFC8ISOEBxoDW1RUO7qauGUEUGBkwdXSOlSYZlADEMDgjMp5Jm8vhdGOYy+nA3LgSTcQSIIWyAYoyJJqWQ+lsLBGQfC5cDMdCDjpsxOJJBOWheDqZMEkvI1A250G3FqcdUEL9fDARN/7Zi3IchjTGXRT8GETL0oqIHN08PjUQ1UWG8LhZyed1UTLpInUOLg80EAsACHDKUSSjGLLfyXBODBQI5bZNoa2CA26CJCg9wPCM10wg00mvovpcbqCFEoPMhTXSr+EEOs0GhJP2oV1vEkWOqIzA8Cqy6qc5iaOQIxhqhUb/Uig9CnUzAanCWIEnsHgSMCJsmaKQAwBWRF+okkQ257TarhVnQP9WQLpWq02kbheXFudH8H3p6Nr60tp8ppSIRC0LJls0HstPo76r0dpcc4QAGFkuAQDHTVVQ4SHGk+libabZme3Or7aUgGkhAA5GgEmiDonidL3VbjW7MAz6g049pzBRAj47JiZDgUKCYilQ7fTYGx4jaFEd6190u0EDI/X76bf93ittLIT3AVhT0Em4YEClGQV1ZAEhm3JP4bxuBBjSBUJAAmGgGbIZHNcJXtCsUDQSS6UKiWQpk8p2m0qlmJQllaGlWNGcXsyHzGp1kJtgAFST0SJQllSQJUlQwChpLRzNZ9PZNMzbVqNVi4X+BYA/VcBBCy7KbXO5nIKuSpTLhoMyMExWEAiHV1BkVbSLPvRZYVy4edEKYmJA0t1uQyBcbjunhFivYIYyxuftDsBJP/JCF2XU4TYX9QfDLjySrQyWWyrlOTCF+9MynlRIL6b4XX43TkVnRJ6oz3W7nf78bGthFJw6gAFBTw86aAma57Vc36TgrrhRQrioR9LlzpFHI25MVkKWe1L0kTDrw8BUtGAeSl2lENAYWUsWkgEyVM4l89nMSnO00xMlUreSa51YNECo4WTxyGFZ0iKdLaR2jGA0k59e2Dx7p1TaMnfm9ZPHz2zFu4M3Ns1Oa3B4+9FX3tqNXVjulysPE2fPv2PJ9aT1zNfijabk5qzXz51bWbq93h8dGnSene3vXLq0Mb957/Dlb+7MbGxunTp9BgD4/KM7Dx9an7lxqrF9/S++fveJKyfWll99cfTsx48cOX367OmzZ0ECX9jb3pjrXrjWvPj0qUcee/L27dvP3b1z98X791+699rt64Nri9vnXhqW+62HBqnabLO18vCpnd29vQuXH3v8yaeefeni0e6V25srlVAYhmltJtrqED/+h0f+6x8txOea1VKx2htURs2nbm+cePzLb3+A2qqeu3nx1MnD3V57ZnFj7ni7dv/jp77xjx9vPrExeuvRL3z/F7/8sz/56U9/8MPf/e7vfPWLH7x1/5nL507ceGJ98OLN87c/ePPLX/3onS+++96X75zcqB9erTSX5nuPvfrqwvkvX7v/3avL1ZnjlfDqIxvzw+ZMLjNbzRfymXgsEguJkpaJB2Uvm06HVSsAICObGVMfW9ggTweP24lyPCSJA6jzsmw4hM61cByDWrJUr0PTFVVBgOwn/T4P1CMf6p/CvT4UZSp4OIHxYSQv0G7ABxxGKxWMpjIhM1lMRnQzGjbRbjM6W8xQkinQIPoIMZKJWDLBsVY4UUh5NSjQaLMuZGoyS2MOFucAgOH1CZZgNRbHfBSOAeowHpIUJdrvsNOswADhFqygGQgFgsg4hEMuiDxJ0yTPCaIBUy2eSMP3ANreDWohpIANRQMABqxMx5O5dDyOtoICKLVGAv6uKzIMTV3DlQAAcBIAOAwVH50uKhWKxSLIydoM6MqZTq9dnVtZWT58/MSJ3XNn9s5dWbFQo28mm46ls8VGZ3a0dXFvGMYZ729KjQAu0sJ4649H9kgqC/Wa4CWRoVD4C1yUzznxwAMP2BkZBIUMN5kgCLhytxcA2HXQgZN+zOOZcnlctgcPAFgBW3KhLKRxCAN8bgBg5PuvjQ9Ai5/rzPZne73ZXrfZaLdq1QYAMIBqb65Tb2ckUZGQmwZagkY+3SBQQWRmC2htHSQV2gVu1Jqz86Neq9VsN2rdWVC3IHOns2HD3CdQMMEBzQLRJEpRqjZarTY6gIS8sHrtcR4wWl+FaxAE3lB5CZkagGIOgjgBNaMALONoh54k/ThgNAZMzuXyYl6nyw0Uy0ik4mGMDGYCtBDkCb8QyhVTaZ3E3B4hlEy6vJoOoi2G1iugbqSTok+QPJOOA7gWZ2wo3EKKZNKfpg/uRyF9dv53vyvaAkxUYRR7MSAfyOTN6fJJ8J0EAPZrMPolqPwMB1TPjqHeONFU/XaWs3vsdjflmpryIQXs9Pp9pGFQHO81EryoMbSpE06HC6CViQRB3hG4BGQUIASFyVIKQ/opTlI1UIw0B6pPRC4cvwbADGoahy9kqMyguciILJlIRKMoJlsQcrmgropEYhq1Zams2qyjLeDqdKXeqAJBavcWxgA8Gi0tHTmysbK2kC7E0YgH6RiLxwozrd7y4sLqXAMeKnpMnUYpV0gEVF4BWpRM56ebzS48uoVDdaSAWQDgcCwWg3dP5/OlWruLuuDrje6gXUqrtOWVeNLNxMJaJIgOHCk8BeqeQPpXVcf9z+MVh0+7r/T9veB/+drPYtCQNbQoQfGhKAkAWOcoYsphcwu6EWIJGNmMbEocookaDG9kFKYqGqiGcDgejSXjyXClrBSzcRi/HC3HUnqxmw1a1Zl+boIGBh+P5vJ5KxniKRLtARtWMBLLZVIZYBr1Vq1Ri38KwAC/43PAqFUgKEAlAwC20/DIWJfNA8NWNeF5EHYXp+iK5JR9fl7RAYAdtKiEvFxQsQiXJtNut50WDQ7jrHDWAAVsd+M42k+A4hOOZUZhOhD20NnM9GINftkx4SCwqIVFLM7nVVnc6cXJYJgifa3hAKbsYNCZW4xN/CaBavWwJyiMk+PVbD9IQ5Xw4AzDC2okXemuPxKjREMMBFw2xUfqAhtPhEMAzeFwrFwIGaymxQtB1RcsZZL5VHKlPn+qI4qkFoittCIhkzDCkcKRYxonSOU11YDiYVnh5MyhnbPXY9ltY3tOOnVsezPSG7x2Qq1Nt1ceOn/v/bPRi0fWavUz/N7ZDwPKfFqcPyokgp7F8+GqcaO9cnu1M1pqDe7MzO89dn51/ubLgye/222vIgBGCvjihc3ji4v9F/qHtj/5k7effvzMkcUr7x49/aXn10+d2jm3fRYU8Llzuw8tz87eW1h7ZvfMozduPfPMs8+/ePf5F+/fu/fKa/dOblzunb38GnCsuYXlTrA1aDSPnnp4d+/CxUcAgJ+8fe/8Ru/aUzujSKA6P12qZaenHb//D9/64X/40V//rrJQj6Sr9W57eXj6uWPHr37p7Q/ef/ftV59/Ym/z6KFOL19fX1hZyd344Om//H/+6Z/uPPFk8dFnX/nmn/75n/3Jz372Bz/83e99+2tf+ujt1+9cv7Ry+qlH28e/sH3zzQ/e+PIX3/7ix29+8O6Fw7PLW7PTrbnO1r03d/pffv6J7zy5VGk9XE+sXDy6vNKp5rODai6bScVioXBQkKR8yhQJIZ6OwSNA8XxmCia2CKCJvJ19mNdHkKwskhju81JUOAYChOU4yu12MorHpWj7RksIgNHxGDdBYKxIwF9mJAGoGjqXSvEC5bbbvSRBs0w4m0rFwulCNm6YY2daKxyxoCKBzOQVQFkxmEgHTJkUuUAsXUj6ACLHVTMISg40iAtELIuDAIaRhzEaABPIPU6UeeAEOK8J5JQvWshAERP8UDRVGUSED0OlHT40XA7USIrV4/FYPB42rRAAcEQLGmFDZRVT1WUtGgNSjFwzoMyFw8g4SApoWiCki4KuW5ZJavBrViIdiYZTyRRygK5kMpl8eWZmBoWkNmeHwy7QvsNHjhx9+NT26UevXB0BeYgk0hlg6IVKuz+3eHLj6nOb8aBABysyafjd/Dh7mWRVdMMZkL8oFAhQFN1Qn8d24OADB1x+WtBZ/zjuAgNYcrvcLtvk5KQNRKKHwGwHHvj8BM4xgEdo1dbPILyVFXSoSJZRXQNdK4mfa7Q7yF4WSme9XqsUASXrDXQMabbVzaIVP7QHPM5H15BVsxYAAC5Oo61ilH0EANxpdeZXFnrNuUGz2kIWG91mtQjVH+QjWuWWkJMQ1O5sOo+Ec7sDNb3W7PV7g16zHmMESRBBJsE/NAtcA51BQY/VHB/IBgAWeIrl2LEDBSMLmN3mcIF6dNlsdgzjQ4lMwvTRsSTy4RCBaQUSmWSWP2CD/wd6zmMDlSSi6MigMU6SlbSo/OCk8/OEnmY/b7e5/UIwHh1rMMOygvvCN2DuO1HuRxICAAOt9Hp5UaZ9UHJdTpnwOnCecNEq8mBWZI3ikALGJBlFFAMA07wTc7k8fpfdjgN2T7hdUDo1lfLTXiNFi8iyWvZ7gJL6GSYe1nkVirWL4gCO4HIJVqAIlLmpaoC7DGA0K4gc9+tL0AiC4YbgQBlRh4DfRQDzTSaiwBk1TZCKaeCNPJmvpKMhSxPUej0HVBBlPTeqM61upzu/sLi4AAg8v3j46MbaoVEqN6accOdh9BdB3y4uLy3PtXuL83Oz/cFsK5PKxQOqqBvhRCZXrnd7w7m52YXlijYGYOTnFgUFnMiXi6Vap9tuzQACd+Y6pahA8A6W901RyQjNI+gUFYagcZLA/ShTATALXgE95n0FrI1PfSMYBiD+NAjp0/PnAK2ipgokNaaBAk047Q67bJgRzu+lVdSqz6igBXSB15E3gSEpQcVQ0TIPkDklmdTR1pYOlcJMxAyAmYg1Xe0XEAAH4/F8Pm8mghxQHzEIoy4SiaAslWwZnUJqNFLRXwPgcAidDrdCMsxGm9NpJ0xF5V02Jy2KyLmHIwFwoVxIXtmPCarFYG47KYkhP2upGumApwPMkRQVAeesUMH4/NSUzYlhJNAt5G4RzoyCghnA5Wq11tQ9nN+DOmeUuF8Ji5hbEsgJr4/SDQZnBgvD2WEbns3cUgoAGIA2M5oF1WpjRaMwH+V5xuPxIXWhRjKV7trFKB8Iy5Gg065iaKcmnjJDgWQCALiUD5usaaRmQjoRrmRS+WRytTHabosSZYRTqy1QQrgWiZWPb4dZKdA5DvJFEn1iOJnvn9y7Es2eMU7McQ+tnXw4OFx847hQKjUXj527//G58Pn1Q8Xmnvjo7msBybiYdDWIbI6N7l1tGW8NVu8cAuk+vfZUZe3K1e3FxZu3Vt78enJuFUUBIwC+cP7kxpHG2SuNvQu//Or961dOLG18eGvh1Y9Pr505vXvq3A4A8Jmdh9eHzRs73ctXTl24cuOpW08/+/wLL9x96d5LgL83Rs9sLF14aavT7S60lg6ls8N2fggvfnbv0iNXkQJ+8dza8Mb1nTZfH1WbpWKl5PuDf/zuL57+5V/9xf/2K7w2n8s2a+213kN3N49d/ujDjz/84MO37l4799Chfqeb6a0OTwx7H3/h23/3//6n/3jtzN0jo3ef/OZf/tWv/vRnP/vpj77/u9/5ra98/O5rz9+8uHz84hM7tTu3H73z/jvvfvLBex+98/ZHt470m8eXa9XuYP3Oa0/WX//wxtdfWJpunGglFy8dW1ysTecyfQTAyVgMKCnD8fm0wRNCJBbVwkHkKmikVFlAq2Sgt5C7FUH4AYDRoQsPgVshiSIZlqMAAxjR6xF1KO5QH/xeigQARvaKmKIRHh/GszqKvaY8GCUIFOayuUkCSko0G4wU8qlsxQKxxdMU8EKWBPXmBQguNlEIQjxqmBolSsF4OpeiQsgoIwCTwgKdLDBummJQYrvHw4s4Z0poQ5pDDlcU4DKNGomjlVLcD6gvIltjqPoc/BVJRun0NIW7vQ43oUEViwTDZhidSA6rASNiqIxsAKXVwtFsrlgoFOIg5dCBQKjMGkyaoAZTXoP6TahBa78JK5KF2VvI5Yq5XL40Xc7Gs5XWeI231RlA4Tt05CgQvQt7FwdWIJLMpNOZbD5XqM/Orz109PwTZ3PxXFUT4T1xdDxKEimc4vzI1VVlaK/Lg7kwhFUUTbonJmwTDxxw+7x2tLzvdE5NjXh8AAAgAElEQVTavD63y+u22QGC7XbblM02cRBmuAe0EoEseHBaEFG/B8JepCP299hU6XNVZJ3RQOdzu+12uzEzXQVgbbS6c81GUoTyp6I94LEr7/g3AvFUHinZNoLf2jjLsLu4tgIlYVCvIKd4eLlKBm5dwFCQzS8AqhmMxFOZZK5Unm6024NWZbozmusAADdigCKiLDAAKgLFmKaGNDaoEPRsYRQqqFGbRdoPBgQAsEg44WpB/TqnJqcwvxIBeij6hVRcJwQVhTdrBugX8cEpH8Zy8YzkImXahWILMJQhrEbDRjzkmfA+SIgZ5aDd7iE4NaDte06O7aCRJDPHkTeghpFwH5uA8ZzbRdEgxV1uh3tSJjAnzuEuWuckSVBVAwGwA1QQsFPVVEDwCW5Q4F4/yGAfS7sPegCLvbpEKjJupZweF4axlA8BME6S4YAuiV6SBe2Ctlxk1S+ic70c3GyVEYB5UMBhUVgji9Ki9puwmLESpsem3miPxwcALmYSsQgCYEkpJ8K6zJCVEjKY1EStUU2ks7lSaabSqKKghfYQIfDiwsJwYe3I4fWVQSqPPGADlm7EYvFytdEbLBxa6Hbm5kdzgyGU+jQgtCEL+53s5ebs7Gg4119aKaMlAhZlgkUjUCSSxUq5UgP524bh0+z2O9UIg9M2jCPtdCrCikjH8gLppTGcpFEfA6cZ+4eP0L3XPlt2AOgdn0f6DIDRcBVlTmMEReP9IG9BiUsshTmdE/AXwwyBy4YhSBxryAoVNPUoTG7BEuSoHhAU3VAE1RTCwUAkgRrrgVLHgqZhpVJmsTYsTyIATiZy+YIZD7I4o4gBeOahaAT52AF5rjVnmq105DMADn+mgI2wCsXO4XBMeS1Fkzx2BymLomXAw/Da/RrIFJ/Aejg9BMLV4Zf5IM/Ao2UcwC4JHMoMVBzBCpYtAOApF47D0AI6YsSi+b6umgYVaLZLAaB8HFA4lxdPC1RMx5ycSE55PDQXYl3K8qFRa7ExmO2PAIAP+jleRgAs+m28FKisxASBxTAfCVNLj6ZLrbVHonwsrUXCTrvixi2FiaeMaCgZiUZjxXzEYiUxMhPQMXM6nS7GE2uN4VZblCk9nFtvJ2IBXA3Gp4+fjtG62Fzn/E6CFKMzjfrc8d3rmfwFc2OB39ncOx+eX3ztpFCe6S0fv3Dnna3QhbVDpeYufePs7UyqvLrtt2WTKSt69lhp9Uxz5e5q89CwfO6R6WOPXzwyWn9s98RXXwmMjqEe6DPnzp+/uLu1utZ7Zm3h8ks/f+3OlVOHV6++t7X31ec2Tu6ePrW7d/rs3vnTJ48sza7fbW9e3T174bEnbj2NHDhefOH+vRdfe+32obUn25uX75YbI+Aoi0uDZL07XV/denjn3KXLVx9/6tbdOzvLazcvP5SLLfby7fJ03/uv/+nU7e7M/EPVO9eS8Xw9DeVtqXb0xd2NC+98Eb4++eCFK7tH5nq92vShpZWj1Xtf+OI//NPfn43MnH3+YuHppz74xV/9+a/++I/+6A9+8Hvf+/onX3z39TtPXD66tHjj5vLJ1y889vKHb3/0pffe/+DN91490yvNb8xWe4PRjVdfXb3w7ec+fHO1mT3eTwwuHuv1p6ez6d50Dr4ymUgoADQtm7JEnIexpwbRSBaNtCbz4xSTseRy4X6ClmCq+zGAUMMQabTFSAEE0gzmQwfSJYAKwkP7Ma/HBcMVV1T4PZfAmpgbpIEbo0QexJnDi3KDqXgyFE3HYZKjiFuaIr0wTcdtzZQaKNXTqEogzwLAJT2ayuTEIDoRgCZ/UBMZEN7wEpTf63D5JJnU00GBYslxgzBMeQYkRCQ/U7RkSoLpq1vhmIUgRd73/EBhNn4S85AGAHA0nAzHM8h5CwAkrCto10lX1GAki1A1nwyFYjCfASaQktEs+A+KKNJ8smUFzHgyEoulYslcAXlAl8rlcj4ZrZWL5Uq51oXCNtubO3T08KlzZ8+fubSIADgZT4ACBgDuza+fOH/53LF0tl2JK7Rg6OLYspn2A38gKKAdOOkG1TdldzM0ASLYM3XQYX/gwcmJ35g6OIlU7wGX1wc3GtnNotx6u+2Aw4P5UYCQ1+fD4KmgE8W8rAL8GrrES7pu6OhH5XP1VrtZb3a6SAl3B/02DL9mswWCvVYJ81BgJAGl14joUC8ydo7E0qXpGeSW1UAN0/V6caa7uDQcDDvtmXIdGUoDtM4gBTx24pAVqKlGKB6PxjOFQrnWbPX6g35/bjTqddEeMMcKisQxFKvwnKEpaHMd7SvCo0UGhGjzl6b9hJ9mKJxVFQot7rrcMKCcLoIJQN0PUzifCGukrPEkC28YSOYtp9vrZDgjZrnxcCwC1Y12TriYQCKlsOn45KT/NycOKsLU1KTHz+sBzdrPPUJ4YiD0RYvRqM5qVmi8jQ0I7HL4SZby2l12z0EF87pJEXf6AzJ8XsMMUxzltU04GeApuiFRGCc6AV4x+Kg2L+V3PIh5WR8ZEHGFcVl5N0E6nT63w3HQQZJ+L7JfZD0U44I7LBmapJIKWuMYwxUtAwQTEk8KPIm69f/5GNLYioXjCU6WQQOTDOZlpGwiGgsFNCBvpVgE0J6cKQDWoObgZiUCyJnLTRfr1TJU7dYAxYLA1/zy4eNHjq4OMoV4PD4Gllg0XqnWh93R2nyzMz872+0BCs/mMvmIzHPIWDuZgqHaRR6ih1anzYCmIwBGecCRSKKI+vemK7V2q97ozHZbzTgwcqeDFwkpE4OXBibHsgTcCx8zNmhhkf8kSuwIfHoMyQTNan4ayvCZBce490CUWBVUos77GVkAbsIzlM9ufxAEc5D2EQbLE0BJdVEh4BZkTaDWJismLKQmg5oUiEhAqa0osItoxET+O4KQypm5xsL0FBMGAEaRKWYixBGsKgKemlYimkpmiuMMlVqrlQx+BsCggQP7MZVhTaJoh90+5Q4AQfW5nBRUk6ABJBK348BRRR8reWg9yGAem08idYEygqrsAqoHdY2AN+FEK1hBcYQ2D3IpQACsRxPFrmwFdDY804i5pyhSpD0OF2HPmL5UAHezCgk0msFTzJSxvj6qLVdHndn5xcSDB2lRUDKjnqBQdlEOTq9GgLP6fARNc4IaTeWrhy5HuERe1aMum+zAgjofT+gxK2wm4olSAQDYkkNlqGDWdCpViMXX6gDAkuRXzPJ6PRgy/aYaKa1vB32m3D8Jc8yKpnKNpa2rTzz2WDZ1Tl6aZ9cOnzlrjpZe35KmG3Mrx/Ze++h08vLiMN3fJW5dvNkZnL63aUXyne708U3vF/rnu8M7hxprc5XHt2dO3Dy7Mn/i7vGjH14Kzj2ElqDPnt/be+TkqcXOxnPdrTO//Y2Xbz12ZH3zC4+vv/LJ3tFT57ZPXN45e+7C3qnja6PO80sr1x85ffTqYzefuX3nxbvPvfDCy/df+sIrTyxeOdp/4vGrg5neEHm2jfLpznCmd3Jz6+yly6hf66VnNhcfevrCWnBhWJyulma51CurxVrEsECUhGutemsmUa4stubvnV89/4WvfPzxJ1//0t3LO2udhbl858T8keHh95bmtx6Vwy9ujy69MFr/ylPf+cWf/cUvfv7HP/3RD373G1/94nvvP3/zxnYjdeXWXvvqU3vPv/rBFz7++IMPXn/7gydG7eGJUb7fqZ997d3zo+/ee+3Do3OxzcV459KxZq9RzaW75Vw+n0wkgJgKspxJhlUfl0imQQmifg4zYyiIcRMoYsxD2H3wk6iKLOkFULB0gMHxmRkvRhEYzgZgilE0x9EMyEsUR4gToCFIYpITVWaKZxUPzkk8AdUUh3JCMqlULmsyvAQ6DaSAobGiJNAogY3LFkGX55O5dESzdABELZrOVswI6ogIRmOgahRkwij4SZryTDkBdv3RRsmE9yWgAiDLY1YUOCsSMEBSyxooZ7QYJhionIHs0CWFl1EnK8UHklDQ08lQOA46OKIFtJAms3DhuqKYIRCqqXQhl0xFg+gwliJoPKMawEhUYOI6UsCWEUtE4nF4jUIZoAZtAReKpXJrero922n3QfM1+oePH948vXvm0SvXVgIBdLAhlotlizOdwcLasRMXrjycSlZKUYGHjwwMQeBYvx/YrNfjJiXa53F5YFYRPi9qQ3JOPfDAAxOTBw9OAC7bUGuSz4sBv0YRyF6QiR7cjjZKXTYbWn0eG1UalsQrugxVT+Np5DiLAn4N9XPTncGgM11udJrVem84W5+u1avIr7ldq8YkZIYgCeMu6LEvAtoDzoGyz2fzVRC79WazWmt05pcXR3OoC7o96LVanW6zlEBHpaHQAmbDD/CcUvlSHm0CNzs9APfB/OKw1+22IwzoImmsgAHhUSbdPv6h/GV4RxnZQCIzKLQv6qE1GXc7JwmP02GbsHt9KKQmIzn9oVRCpmR44qwI9TSWylKTmA8XrFjA4TUjM5lIUPFMUch4TBeT4Qm7nDQmJyn71AEbHwwYACOmhfZ/Q+g0cDAY2D8SjHptQJGDAmZ40uencAxGPfaAd4oB+CT8rBMHpECuxQYFamjS4WRB16BIEg8te7wupx3DJt12gj1w0IP73IQo+BnOnQg6cdqNs/6pg3YUDiZZQdFgCJa2QxE14HpZWgTw5GQQSyjlFxlejTd92X1LrPEXWgFB1mAcSfJADniK8uF8IRWJhoLAkBXgPrpIkuVSSAf1zgZq+VQ8nU1kmjMz09P1Xq8Fuml5aWl5ZfHQ6pGN9fV+Mg9j1gpYKqBkolztzc0Nl1dHvbnhLEDwYH4YKxYRslvBQAwmHloomZ1bGK0XpUhQpTUjgJxtwolUIpnKFsvTjU6xXav1+91mUmIsEqiDL5BCmX8wzyjS78MIn4TSGDTZhFsNCKyjA/fGp9/2G+LQMvRn+78w/EQZ6gouKApBCZyomARJOyftBxU9qJIuL0sRFOshLZ71iKY5bWA+LYRZqXBSQAM9HIrLoYSJA5IbMCRBH/OMEkhX8uVRaRKqQhjYci4XSQZVnINxqhlKMIwcYnPFEpTiUqsF7CIKBGVfA48XRywDih1PuSZtE27VFAWfDeUiCUENnpDHjnEarxKUDHTREFHvhkDyBitFFcVLBhUe8/o0I0QKaqyoHwBZ4vUTJI/CTgy4hT1VTatWvllw034bIxFOp8PL8EmfniApZLfrwHysppDhudWFYa+3NOgMljMTB6GM6fmlOVryuWjJrBwKkwzr8eKEIEp6JJ6tL18Icuk0q0acds1Nh2lf1lAysQCwiVA+FzI4LZlI64rXyhdipVh6vT842dVk2gxmFju5qOlXjUTp6OmQ3zT6m0l0QCBYmK4f3n3h7o1scds4ssBsn9jeLa099KUL+ky1vXzy0v23L1gnVtuJ1hZ5Yfe5fnvrO8dc6elaZ21l/fhe70yn/+xaa35QfXZxdvvWzqGFi7d6l39nKzJ7dHv79Jkzu+cunTpz7NDg0TML5x774/effvzskaOPvHP0kU9unNw+uTUOKjx36eyxjUHr0RvNC3fWTp+/+ORTTz3z/Esv3X3hlTtvvfjKqxcWn+qdvHDtyN7x2X5vWF5aG8ZmBtXZjeNbp/auXL3x9NMvPH6qt/X89mppWBvUY4N4u1IIlq3c6q4lbK4PputzjUJyZrrbevqxhZ17n3zl469986tvnN9cqI6mZw4da23WL23Hkq89u/iT/+ml9pUbZ/NvPf3CD/6rn/3lT3/+0z/4/e9+67e+/NE7L928urUSWrvx+NrK81f2Xnj/nXc++ODdt95+881TxwfzJ1vF3uzCi+/cq77zrXsfHB9mjq7lKqc3RvPtYinTyYFkg5kUMlVWkdMxS/UL8Ww4EDBR0ywifiqUbp5FzvZIB4AGMZAvvEdQQyGRFaFWeKE6MoLbLQdJFq0tkjiyi/fanJTbr/E+wuNiZQ13UaLOIsHi9/i8uJ/k/WSuHBUY2TTV8cZuSONldPgU4N3MAvzmivlMNmaAJOINLZIqpqFCygIgXhTNB6hCBzmogKjvkLZEXykfTGoaS483jkSGMWWch5kMSo7nFZ6XQM7rJqrunKhZEqgIKGn0uA8iEbPi0XA4CnQ5CPXYlHlJhWmpxFLpWCaXSecyCTOiWiFZ4QTFFASZkyU5YCk+1dKghCfiaLczlytUKsVSsVguFwulanmm1a635vqt1ujQobWjD6OwrUfOL1hAL80EVMZ8sVLrzh9af/jSja1CqVgAys8rYojhaBwmpyH5cFCxdoKRZfjovN+F+UDP2h44MGk7OGF32h9A4Uk2mHEedCbJB2zHBzMVA/1L+DGPl3RhcINphkcd3wCI8rjjBdAUnXQF/SF/rjfbnR3OAmyirWBA4XK12USJK+2ZSlhEuCsK411jlM0KZQyqbaqEYpPQFjByja43eouHllB0HfKCrldA5KI4wnEYkjQGYAN5hsYi0VSp1mh12o32bH84PwCB1Y7QAgcAzAHnUHleRs2s8KEMuDfBgI7iVpH8Hp8E9vsxKNq4x2N3uz0ux5TTyxrxWDxJu6lwIixQkgpa2owmUplkVnF4cYxTwknGIcZRfmSIcjEW1FFdTkVsU5Sp2j7vPOiYwBBtAugZbwJrwX0ADo7DGZAG/xSARZFwYX4Cp30OzwOeSZbF3ARDO/EA3DxFC4YBIl02p4tTkEebxNq9MPztThfpmvS4/eyE3T02WRIJjnYnTZefdPgofOqgzSnyXgbGkEb6WMojKjq6YIGXRB9SeybovH3I5bn/7GusgZEvNEnxqM2coX0YU8gkAB5guMvlbBSdyCqXwsY+AJdgOBYSccSbZurtbntuHgHwyury2trRjfXDaAk6GkWu6EYinipPtwZzo6WV0ewIALjXnp2bTRYLQV0VguFgfAzA3W5/uDh/uCiHAgoAsBmKRoOheCqVypYq5dJMs9ZDxuftSlSgNJJl/D4tFjfDGYNHvvA+nKZkQRYFdNYfbQH/CwB/ehhM1bVfOwiMkkl5zk/4kUM2TiNblwAMB6fNOSlJskgC48RQG4ofWJyH1QNFwU1JChEEGSFGNAqPJENSMGb5BQFKB1rF5xnNMsMg1vslOxeIwmydngHcsUSCRRFoEo/cKFPoDGG73iy3Wkjd7x8FDo/daZFJuGWIPO2adNhR9oJCO6e8IGqDBrw4ZvNyGnAov+QlrYDid9rcNAUALEZkGSehUAFN1vQgDYK3YB50ISMO5E0HT9+KZ7OzwUCEj1QqcZ+fsBMy5XVOuUkyTUkZCnPzoseJ+RjdFML1pcXhaDA/AAmcPPAgTG0tPRoIwE4ZyZxei+wDMMlDlYsk8q3l8yE+HGFUy+4yvSw8lVwokA4HUchEPhM0ODmZzAd0LFDJh7Kh0Fxj8VRdoRkjXl5pxkzFbxjxwsZOmA4HGg8nY6IZ0dL56tL2rVvX45lNfW3IPbS2cTyzvP7WntXujY7sXn/xrVP66rFRrbXDXj93s9s58uUjwtzC4fPPvPLUjd2Vs7NrLxxtznUHd9ujczc3V9dvXBs+/dvHogO0NXfmzLm9i6f2jiyOnl85cea9b79087Gjh1dfeXL9vU+WLmydQAB8fu/ixZNHDg3nn11afebM0e0z1x9/6pnbzz3/4gv3Xn3hjVdeube+eWH20Yvf7i6eu3h4vj43fXi+lOu2GyvHtk6dv3z1iWduv3TjRGf71uax3kquHO7XarVK/sXjg7//H//P65t/9861vZlss5eL1eZmLl8bHb/90Sdf+q3vffPtSydG7VGltjh3aL1/tLD2b/79v/53f/v9v3l745nnmw+9+8TX/+TP/vSXf/zzn/749wCBv/L+q08/trkSWnzk8Wuzl545c+utt95878N33njnzbcefWh+9tio1O2Pnnjn9cULf/jqG8d7xbW1TGn32PywVS6k+qVSNpVOQvHUWFnNxgMIgFMh0Ha6Dgo4GdJ1ETXEoJVhN47RJGOqDPBRnygalsyJwNJ9mMdJCx5MC3ACQBsNIO3H0Daxy+NXOYzwuCle8tr9rET4KEX2u5xunCQFhsknDFE1kRN0IIxCBtEZD2RFSalZQLJiOZfLxwO6IsiqGk7m0eFNGLOZTCKakKBEkwclFdBSpAkRY/V2My4iJxBLZXlVYd0kvBYjKZKsirxEjUUFCNextaIqobYW1FUqyME4WqVKRAJQU+IJA+1PScAiRE2UY8AS8yW0Po9SVwO6qMObKaCgaV5TA6aCa6iJJxCNgXpOl1GuUBUAuIRAeGYGoU6v36lVQQavPby1e3Zv75Hz87oRiiZLlUwc+f/Vq2Wgs0dXknAXGJ4ieElGqRaoB4fHaT+OTXmkcbElMKfHDfPWOYmarex2m+1Bh8fj8vn9hAfD3B4MZQWhsCobSiDESaBHzLhkswKy9IKZLu6vvOuWjvy2de1z7cFoNNdEdl29Vm2mUgIEbSAA7lUrERRJA3wA+YaNVTAC4HQ6P12t5DP16fEqe6XZml1eW+x3O71mrd2tlesIgFOREGrCgiIpG4hQQf2KxrPT6BRSu9FBqbQAwN1OjOUpAQGwgABYMcY2HCgRA/mVoUgcdA6L9lMMTfpxTpdxL+ZygMB0uDBC1JORpIFhQiIV5FkV6rQcScaSxWQ2irlJD8MZubCDSEVDoXiExbhALBGRhETI5mPMsP+gw2a3sUASAvsL0GhpEa2FgiwzAYlN+BkVW1Clqiz6HBiMeQ6bch9wTlKyx+nhCIfPQp5NwBbh7oIgczDIsliUmUmv4nNP2p0+xxSGUdSEHYOHwKsiLvqxjOKi8SkP7pk4MOXkGa+gWTRlt/kcToJjdRifgBC0Fx6VaaAtDrTly40toLlfV8DjRejxFyuhvHrB72NKhUwQGXpJYj4DCpiipysxC6gcAHAOeE8xm4nGstO1erPd+cyI49DhtSMbhzfmMnlgRwiAzWQyXS7XgRwtLQ8HiygMCR35zZYKYUPhQ5FIIoMAGP5stLS4UVCChsKg+MZYPBICbM6XG+1Grd5tdLrN9rBXCHJ+kZAE3CtG4qoUgStF5yf8yAJGlNVQYJz4OM5e3o9f/hcA3pe+iPLJIofiGHGcIFQg/ozESJLJsxQoSw8qNyyJg+7zeqEUCbTXx+kxr50lMcIMxAB4/QQmR4NGJBLmRAGtpYydXMMxU0uWZ9oFFwPMMJWfac8ky0GWgnmuChKnBWNoWbpY7NTq060m2juOIhmMADiAPinMc1MWaM+k04kJGgxx96RbUthAAMQJMeXkDFUWcMWLg5qmPJMOhmINlg8pEkloMu/zuGXVBKCM5s0HYfa60ElpBMDBZDrdDUVMLldLGgJBeXGRJRwTTgJLSXSedzlR2XR7CCmgBeL9pcHScDSa7Q7iB36TFmQtMRjIMoGxkjmzEaVYAOD9kKVIstRZORNkZJXWTIfXchMBls8Ab7XC4Uwynk+DguKjCWBYXrOYSXdriWaudrQMqkQKpIbVWEDz61Yiv7YVoEKh+nY0zhhBPZNvLezceOLxaPJhfXXIbx7b3C6sHfvgjDU7XDq6e/2tr54L9De6+dlz9K3L17vtjS8e10eDlTNPv/fmI2eXHl88eveher92+PbMkWvXjy8dvXX20BsfLibmjmyhHKS9C+d3Th9uHrvTPH/xex/eenxvY+OJD3d3Pn5meHTz5PbuqZ1z5y9tn5hfbj1yuXrz5vLJrb2bN27duXP7zov3X37l3uuvv/zE7JMLG5tv/Pff+lptb2e51zjSXZxNVgcz/SNbp85eeuzmM8/dv3G0f+HJzYdb2dnM9KA03dm88x+e+Ld//3v/x19v/O1X/9XW2RdnpvvhXL9x+rnl9Rsf/PYn3/jR99+/cmQwHJYHy9UTw62ry7d+9tKL337+u3/46O31Z3ZqX3js7Z//1Z/+l3/y85/9wQ++/51vfO2jN597bOtQbO7o9WdO9u9efuTeF9545+P33nj3jTfvbK+11483YAKdfvO9C4OfvHX/dKeyvJbM7Z4Y9hrTudRoupDOZgCAQyYv67mEpRB8LBOLhIMhS+JMFFAJBQA1pHo83oMTHq/f0DgcJzGOVgOgCRkEwJiLYj24bslo/ZBCieFIlWEACCqL4egcsOR10RzvQ3FsfiilIKcFjsuENDUURpuAaF05hI4Ro/oNgzqZz+YLpUwuGwvoMrJNjSTzKVULRlJZdGQorMi8X3DBa5A4iXsJglYK9aJgqJygK1qsOFMNA/TwJMOzvISaSYFFhwIiCgJXgNiTJIXMdkk/wQUQAINcslDTUEJF62MiI+iSJiqJVCJfyAM3SaeQHawoWAoUEkaQKJhvpqH6QTqB5gOunImlSzMATdOgfkEFlyoztdpMtdGo1uqd4fz8PgCfv3hmLmiAJkunoAQUa53B/OLyoZXV+ZDsxkSZJYSA5PEimQf02E943UCFCR9O+j1O0H8AwE7nlGtq0uGceODglBOdKSX9pM83VsAOl9vtdKCSzpMkh1yWKZQLSXLjXVxV51F4GnxkVOpQ4tTnyo1ur9fujNpAEhrVmelWu1WrNTvd2UY1hhIYxs4dnwGwakZSmWK1Dgo4n0oVZqr1dqPeWVyZa9ZanXEcew2kdKOcigRRlB86aR0MAZjFU0l4iNVGs9NvNzsDAOA+vGcnzstA1Hhk4SLyvAroGzB0QMFwCMGbCpSBhytAl+AHADYUAsOcbq/HDohIiVYsnKQAiNPZAMfroHB01AxUyGZzpJPxkKwaz5COSCYUjlp+jxCKJsKinLBsPlYL+Q9M2iYcctjQPz11hAwWEADDN3MMxMa+HzRaAOB9LoLG3Rw26ZkC2aw4bA4Bd/mDOtxOAAoYPY4Jm51C1m2KTNl9OumxOR0up83jo4kDEyTDAHIIhIL7s7yL8Ux5fM6JgzYvQ2GKbpAwlyiXD+cZkeFgxoCchcdkKbTIoLyl/XO/43XofwZgdh99Qc8xvCwLoMFwrlTMjJ2wZDGLsgMppjqTDMXuSIQAACAASURBVAJ3YqxqKpqvZIvTyUi6Mo6SHS0sLs4vLK+ubqxtHD58BAFwJBa0NC2Q2gdgdFB4brA01+/3OoPRbKFUiJgyFwa1mMmWW93O7HBhefFwTgkAubUMA+bK+H8VKq3+YLY/127OtlvzvaxG+yi3KPs9UiwhMRZKiPDjIGIldGAoEEZdi5+2YO1/ffbDZwCsIrdyDvl2kPDwfbLMUozoF3kN/tBHiTxHUazAU7jdh9HoACSLO3BJd7gl3M7IYkjTWJshusVEKhVJ6CroAw6eEDKVTsXUUK5czXlwyYik8oXWTLaXYnlFY6HaMGokkUqm8uVKt1GrNptI4CMAjoyXoFHDXgiYgyIwmM3l9gLv4xTvpFNSOSsoUDxts3EgVlSf5vNJ8J7egzb41AbLBFWR8hmaAAQZ4JYWrGhR+43JKTvMXOTJKQMAx9JtPaTL5YIqWARN4gxDuidcfl/Y8iVln4fmvXaXy8PBBFFbS/3V4Whx2OvHDv4myUlqYjAny34fAHD1WJRGAAx1lxfVSKrYXjsT4kSFtwIuPOjyWbwUj6RiZiwEYiKfDposF4kDw8IC3WKu18sPumvn2grnI+Xo7Ew8pBGKlSisbQfpcGRwJhyEkWll853R7pUnbqXTJ81ji9yJh8+fyy8d+QgAeG5+bevKK1/aC80dH2QXLuE3r94cNjY+2TIG8+unrr/z3s5u/7H24ee2mnPTp69Ob958dANE5rFjX3yplx6ub585d3p3b+/0mSOHyzd2Bhdvf+vNW1dOHD3x4c2t9z8+sbuxtblzevvU2bNnHjoy7M7f6R9/8+jS5s5jN27evnv3zgv3X3n53v1XX7/78Prl5QvbP/yn/+tH5548fn6tPje7uFTI9pv19c2dMxeuPfnMnRevrw+vP7l5uDwbyy1WKnNnP/jun2/+7f/8R//xt+g//m9eu/LD96902pXYsHz8leOHHv3wW59864/+8ONra72FZnFtpbE2d/N7ez/+07/9zk9e+ff/w5mvvHD9Zur03Wd//Ktf/fKXAMA/+v3vfevrX3z7+Wvba/lha/fxp9p7z5+7cf/NN95//813XnvzlUeOzy5szzeb/fWXP3q5+/HXXr48V1o8mk7vbs132zOF9KhSyKCjruFwQFT1XNyUcC6GTjOALuGkQAIFgnESTVKo8xL3oaGlUFAxXDSpRmQk11ivy+OmGadPHx8hYVFsKYpxhT/1+hXWi3u9nKT4PDxUNZhEHO7GXKDUQFZHI2gXDmRhCAngYACdRAL9BK8ZS0ZimXIBAbAh8ZKhA2RlTRN4KjLOSAR0lccUEuYpsAI3ihdRi+U8cingWDFWKs10EshPWETrz6DfBb/ISvG4hmI+oMIxfoTAyOsfI/X9ZotgMAIUIIKKsSnQoqWZMgBwEjRGMh5P50zFtDjBglmD5DgLKA+ajbbgt0Bq7Ru5l6dL+cI+AJenK/CFQg5QbP3qyvpDJ0/tnD27t9NLwV+PJzPpSq3dbs8urq0fP3H6RMqgfOgQiRjmMcx+cNLhZRivy+6Amj9x8ODElM3hsjndLqfLNukCGLZNHJxwoog+zAccxwd3F3O5nE74I7efRNuEokAjxQ/ag0H7sWgbVxuHPery2HzCUsXPdZvlsUVwF8pnr9cDeTrbbqJjSY16HK5SRU5Y4441tAatoe3cIrCJVn9lrttpVvL56Up9uNSvA7hWZ0AfIVtpAOCwhYIMkNUzEmYWUA1kxFFvzQ47ze5gMBzNQpluxnhlfAwJQAV0nopMq1DIxTj3bRxMBy+B9hFRH5YPABjgyu7xggT1M5SWCMeiLsrPp7IWw6k8LQfCkVg6W8oWOSfrQ3EGhaCDyUDtVDHkSpmMKEbatLt43SIOTE5OYGbU0EHwBvY9ODR0EAmhwvhcMGrMBSRWJKj3MEZZws36Jj1O26RDc9rHbvtJC8aUpBogSJ1Tdgct8YJiiLjbKWIeNygdlx1IkP/gAdSEj4a6irM52kU5XQTusE05/ByFA5+kKB9BeWi/wAo0B3DKYJisyKZEfgrAn+0As/+yBM0x+41YAMCMKAGhYv18KZcMBYLIwTWXCGoSw9WqGaCzImNUUtFcKV2cTiUzpTqQo9ZwfnFhfn5xZeXw2vraGIAjAMDoVF0ygZag+4vLAMBzS4PBAAFw71MARuQmkwEA7vbnF5YWD2ckIMkCIFIkHgMWmU7mCtXucDQ3GLRBmi11cxLh8k3REusxchlNiWqWQGDAA9GCimJ9tpz7/wvAyIVDHfsIIGqMY36CwLyyBhfNY7IALJwmkKM8zFyGITyTNlyVBAUjSadfM7yMQXsVkTYU0TuVi0xiiUo+mIqEDJqnRY7XZINPpnQzkiwUKC8rBZOZZH2mcqgExUHwep2Yl0UZKalSvdFt1ev1pmbG4vHYGIAjnwKwEQhqIuqJd3sZ0+BFbMou6gIAMMlxdhuL/My9CuGFmcN7D05SFGWyFEw0yhsISh63gxeA1odi0+bnYToDADP7AAwVZlbQzVAxQDNhAvfDEGe8UwDActijK7TPw/hcqMPV0k2ttTS3Pj9anu8DAD9IMLyaHs0B1fFxslU/HqU5AGCS3XfCKtQPn0+awaAaCXvwkIeMWUoklIxayVAmky5mQiYjxhIloKixXiHfmC2N5k88uiQZPkEvLtailoKrRry4cTrCxSLDzRhMDtVKZuuz2xdvPFvKP2RsHSIfenjvXH5x7e1zwcEQcPaxl967GFw4vpBZuExce+Sp5c7DX9u2BgtHdm5+6Y2L2yuXukfunevOVx87U9u+fv7wcOu55dNfudrOzB3a2j1z+gwI4PMrK3N3ew9feudrd5/a3Vi99tUT5791o7Zy9eTJU6e3T589s3VyfrF+dbf1/LXe4e0z127cevb5u3fvvfzy/fsvv/bKUwvXT7UuP/HN/+6v//E/PbJ44URvejS/1I03h+Xlh07t7l1/8tbzz11ZGlx/fHOQboRnGqlXX7z9/p/90Pulf/jq39zMVf/Vd97/4bf+l2czy8mZ/tL9ndH5d3/ny9/+xS++cn25M8zNHO0OFw4/cWTzT77z/ft/879+/86R//v3l25uNN65/t7P/uLnf/7zP/oJIPB3v/3Jey/d2FmtLswcun7jzOC567u3X33ljffefuPVN159anOpc+xoe3p2dOv9r6xe/dmbF5eLC1uF9M7O0uzsTCU3KJTyuXQiHgpZgqJl46ZMCPFsDNSIaUhqMGGIaBuSoWja76fHC8eGQjOY28EwekQCismxbofTwzF2TLcQgeVZyk8i3yy7AwEw48ExAGAZ8wgC/MxLrM8DUoL28wwF2BcyUf5BKIj6DUPAYEGxQUHiovFwPDszXczHg4bEyYYJ06MQDMQTCQCwbCGhizrDUCrMVr/H5SN9ZKgWNIJQ2aBGqUGjVuI8SEeAAuZg5pKYJPLBaDAxrm3jJDzU1g3CmdHQgYoQTDVkwB5B7bAmT0uaYkpiNJkuoAXoVCafsgIaJegcaEJeVhhRB0A2aagfUP2Rs2QFVG8xmyt/BsDFXL7aarZ6c4Ph4vLK4ePHN7dO754/PRvUrFg8XanXpkuVxuxwdGjj5KPnsxLl8BMMRSo45ra7WdZ90D416cIxx4EDkyjZ12WftDldgLJ2hwed7nLYJ5HXFYF7fB4flCmv3eN0eT0ujCVwUkRBi+gULVwfqckyiHpNtoLmOG4mBGyGB0j+HHzSaRC9dRRjNDsHH3N+fogSgjuNZgIkrKZInwpgZKBlBKPJXHmmUgah20K/gZrzGwurCz1A7HoVALjb6aA9YHgEJvyqKPAoXzCMUgGTuUq11uz2u/3RcH4BYL5VDyPfBHj6HM+JyMHIRBEOKBxBhwE0lsDjyAyeIXACY8cAbHOBzifhsQVT4bA4RRNyOm2CAoY3Aq2bzGbK2aLipiick7VcHvcgnwjN71esUCIkB9K6za0EApwD7pwQClu6YX2GASgWwEJLz+hg8HixEVQxkBYJpAeOmrD9drdrampC8dhdnN+FRxGRUWUYaLRrym4nFYFXA7zHbWPdHo/P7XaixEjSPgnyGYUu4jIhgTQnnC7KZ7ehcA0/ZYoi6XfgHieOcwzIL5gxNEh6WdWB+VHMZ4A7Xofm/wWA93eBKTR6+bFJNyNVS8loGCWFqKVcPKgLQm0mE0YKWCvFotlSrlhO57J5eD6d1mAEChjJ4LXVtbXDR+fSuWg0hnrPAol4sjzTGQPwaLg0HA577f6glSsVQ4YqhJEda7rU6nTn5uf3AVgBrWYg51ZkBh3L5yvt4Qg0cHthMFztVg3CQ7sZWcZCpUIolg/ojBfzw3wROaBYEcR7zDEAm/+Mvp8uQSMEVoG7IdsstHaDmh7cXkP304zg1SRNYgmvx0dSKBybxFyTB7waz0oOp9/DGgatBEQO6LGmMT5POuR0aYWsnkrEg36WUSkmYMXpcAwteESLkpfhA7FEolZvHqmgBlLbFMw2DAA4mijVam2YANU2sidBK2OR/T1glAdsWADAHOEABuw3QwKH2+28KRkBiaQFN1AOmF64zKHUGdYzaacZyuT9li7SnmBUBgDm0HHAcLwaOWCzO10YRvGCIBuhdLLcZ5RoMctQQpj1+V1+hidsdsxHRQlK472TuB9zu11+3Yik+wuj9aX5pfnBIHrgQYLm1MxCn5EJH6cG6sfDFMd5PH6WFmQEwLVDe5lwIizHkhgC4HhQjYdikUA6nEylCumQSYvRWDFi+uO1XGlmtjzbG+wusmHKCJaWGgmkgM1kaWMnQJiB+mrMVLVQOFGoDk498uTt6dIxbXuV2H5453R5/fDrCIAXjpy5+dZHF83B+ly0f4m9dvbxxdHeb22F53qHdq69/fLm7sK1paNvnW/P1Z4+Nnf2+um1+TM3F65++VQv1V9FPhznL13YPbU8u3ulsXf94y9de+zk5rH3nzv++vuN2vSN48e3dnbOnt/dXFtsP/R0//QLrYWNU3uXn3769rN37t6/f+/lV197/cVLy3cWjj3+Uu7iP/3d//4Pv1s//VClPDdYyhTnp2fXt07vPf7kUy/cuTicu/HoqVapkD8Ufem1N565/N+u3/93P37zJz/5T8cufXn3J98d4M50JdufvX25v/vGd772vb/4N9+4Pt/uJoeH4TJ3zm9lD/cuf/NX3+9La396fffK09lnbj39X/zbv/zVH/3sJ3/44x98/9vf+PjVp86uNBabS5cuPrlw8sWd6y+8/Np777/x2hfu3z273ho9PJzu9vbe+MbZw7/88uZqZe5UKXFye7Hbm5nO9XOFAgqCDloaKwEAW6pfTOajQRRer8tWPKBB0eZg1JME4Xe6SJw0dIEEfOV5zUJG3RzjcTl9Emf3mRbacQQJ7Pd73SjJdRIBsBcBsKx43YJA2zFB4X1AI/0MDUU2FU8lgoGQJZtWOB4fn2lUUCcwzYZjiVx+ulwCADZBvRpmJFEohoLpbA7KCvxpLJiAigNTQhJBxlIsE24EY+Ug6cEFipCirTyDI3c/HMXdUW4XBdQwlpD9BMny3NhWCE1zHGdZDQXXjf8NoxhZtCYpQgGRdFGIpHOpRKZUAhlRj1uMH3SZDMpNEEjB1AAvKA0VlUShkM7kytVyKpqtltEecAnEcK7Y7LbaoC4Hi4fW1o88tLW1s7t3dqRrwWQimUMxwygmcmnj6IkrlxI+xzjLiOFwBzIrpO0HpiYPOAk/4TwA4tfu9UzhOPIhQwdN/fAHtoMHJpxwaXAlaK0BBR45MfR8AIH8gkgRYw8pzEeQSMjqusyNt1VltNmKYo4U7XNKMFms12vtaqOFTh8BAC+MhoNuEylgCcUdIxcsQUSuGgiAI9FkvjI900DeV3XUU9VttJc3lofD/myzAeALGngMwNrYSBneTNf3m7DiSDlX66252cEQQH4w22k3grQoArxSKNxeFEGOWkFDR5058G0MwJIgoDgGpIAxVpdJtASNUp4oToyE46bLTZChbFwXJENUdSsST6azhUwxgmEsjvNWPB+kAVaiGsnoViAeEANJDRSwaqmeqQmHDlomoMN77Rtw7Hf/Wea+JZY1PpNkoI5dAXMSDEmwjNPpmHRMCJjdQ5JTHlORdXQcjaIZt80+hQPdUSzB7XRzbtQF7XEgGyTcbvOQDAJgUMNajnT5PE4adzinDnoxjAkrEuF2MW4AJh7whkO5jIAKiqYAHv9a7zP/6wCMGrAAgDn0L4vOshsqr9UruWQ0ahmSUSukogFZ/P+Yeg/wuK7rXNTXsUQQmD5z5vQ+p005Z3ovaAMMpmAw6B0EQZAgCfYusYgSKVESRVIkVS3JkiXHsv2cXJfYThyX2E5cYydx7Pglz3GL73WJneI4sXPv/d5be+jkBd9HEhwMgHP22Xv9/7/3Wv8a6k+FgTMBAEcTWZSQXyhms+VhZETWmen2I+zMzy0urq5PJHOxaAxtU3QV8ECtAfp2ZmpyFh0y1sbbI6lSERUUh2NWIpUujYyBKu5Mz6xkRF1RBV1DpjUQlFPJIvC4Vnu81axNtSZnB4dNwodqGWQiks/F0uUIg3sBQoFkcMFQxNLNsIEO3P9rCvQ9ANbRygd1T3c95zEf6fUC4fQFdZzjJA8sRh6QyGbzAQCTFI2j5tkw+SmHg/ZzoiLCIzUsJWJYushEdAFnI1EpmUxaOMMZBGFG82pI1eIxQ8/ILgaoeDQ9VKsv5nnB79tp63U7sFA8nUgVK8Wh+sjIQEOV7hFydAZsdrt1hFUjrEkcabM57G4lLHCUp5cykPkWRQnePlySNYUUFIwQJRq4GsWQQYEwgpLgNizZ63NRgoR6O1UAgB0ut9fbBWBQwKlig5LTozE3FzBUgvb4KQiSvR4MiwpYWPDYfAzhcjoxWc/UO+OdhbnpmcnJydiOHURXATdoye9j1cjwWoTsAjADgVYz06XqzPGUGla5dBbzhb1kzAhkopGQkQAATmaBJ1N8xCqYGhYdq5QT/YX2xOyptotyyeFMZzAeUf1SKFVa3jJ8amho1TQ4JWLF+gemDpx55HKpvKHuWaD37trYyC+v3D0Sarandx25/PzLW0ZtrZNpHuYvHrnY7Bx936H4RGfj9EMvv7y83X+yMffy9lBj5Nr0wumHtubmzpydvvb62mSsvnrwwMEjJ08e3V6dbjy0MHfs+jtvnzu0vnnptfmTH7w+sTJzBqQLvOPo1lp7duTKnsUnD+SWdm2dOvPYlUevPfHkTQDg5565c23j0PHhIzfOl67d/NN///XF8tTeydHm6PxQul4dnNpz4Nilhx++8djB9uLDx7ZH+nOd/J2ff+Lz3/va5Sd+/ZO/fPlTn/nBQXswJnkOvOdyfTDYHrtwtbHvqQ/87ke/8cOPPDA+NlxYnhxeAxl+ePpzn/67Z9rLJf3i5MLBR2815m5f+eq3v9EF4E9+/KMf+t3Xn7t2YqY2U5vff+aBw+MPnTp26dbdt7/6/HN3nr754O7Jxu6larW6dus91zv/18f2LvQ3tyrxXXtnaqOD5exEKZctpOKxoBZg5UAmhs6A40lD1WVeAumUCMGK4+jukSLmpUiBAtzhAL3cLIegOQCLxusDAGYdhKGhs0MAPhxDpll+t82DtqBBo/EBBQBYZBw+ThZwl8NLsKzIMFnU8c+MhA3k25swDZQDCx8CzYesdClfyBWzsbCBEqWDViyPADhfAHzLJTOVVDoZVxUeGCfhg1/njzeHGzlRdHtoAlNyQY0ChcsLjKSFIxLuwz0uxkryO3yopTrgL9mFKD9GUCqyubJQpYEZjSeiITVsyqyE+sWJsWwuGUvmc8lEthpXCCYIACzKnMCRclANR5ACDkYi8UIpm00W+gvJRH6gDPK3XCpVyuWB6mh1ZKzRnJhdXFpe2dzqOnHMJOKZrqjOVqpDlYHRiblde88cT8L12N0kB4zETVK4z2Fz2x07bF4cxgvoL3K7AvVD+lFdL/LU9dh6HC4YQVFBrok8SVKE0+2naRh2VC9G+DwYDe8naV4SAG0VWYCxpjmBR/4iwe4561uKaStRGRoY7IfLHB5toJSsZqMxNjI60G+JgUC3mEgQBOSqgbZlTWSENdDfP4gKlQZGaqPt0drM4lSzWa9Xh2uj1e7mdRlFf1RqDSwsBFQDUDubzlWGAeHbzVq92WiNo7bAoyYN75BAAQPlEAQUe3UVHQ2iWiStexwoSzyFEegheRlVInx+j88LUdknhONaVttBE3wiG5ZQlWhQ0aLJeCKbzpRSfifvd9CRULIchddM0c8YETMZEiMZzeXnAzGTsPf2aSFkMNzNuOp6QQRRZVi4m4ato+xcBMDIFUYgvBSILo532Ww97p3orJFg7b6wCOPKyGGW430uhw1nYYQMGTVPB5ZgdxB2l5vh3b19JMfiEBMJmlAzJCgeN097MUePh8BAGgmk1yU4MT8DZA5AmKUIj8QroGmZrvUVQ987+/2ve9DwCnwV1WaxEPwZkQuItDRYyaTjUUOT9NF8MhoKSMP9iSDKgtZLmXwun0+ny8VMutCPdiA6s3OzU5OTbQTAa7s7iSzKggYJHEZnwP0jdVDIoIHnJjqTrXpnsh4vlUAeS+GoFQeQGBkbbU1MTM2s5iR4WgLyzbDiUSuZzeYLAN7NVrszPtOcGE8WLMwdQm5uNLJoTRYMzOenOYpiJCESCZtaFAFw2NCC/wHA/7EFHUSRA26dQgWPBCxop9fjdnp0AxcFya1wqAoDczopIM3wA1Fueq8H1K4HlxiOEpVoOByLm8VYpmgGgkELqGNQSqVSMYJgDa8nbGWTQU7N5w3J5OwUb8as7HCjMZsSFKcL1pLfS2mxTAalRvcDAPe3dBGdSMWi/38dUgi4ti5xlNPtczilsMDz2E5cDyghnSYFXy8GRFImWdXLKAHK3WcH3EQAHAoobs2UIRLiQBOkcLBgvLXX4UY5KyKwPMWIFgsNRk6OaL0wQkGaRa27GUevG/dGNSwuwX8lFhVtylppdqrWnl2Yn52amU307CQ4QUmO12nZ7+U0c3g1TPI8jAYjBBTFTFdqc6fjqGt0f8brjfj5dETIxQwtYEaSyXgaQj3JhaPFqIGZ/eXhTLXSrLXPTRIMIYXKUyVN4L2SniiuHDQZy5o4GgkywJGNUnFy8+SlC/nyPm3XvLi1uX9fYW3ztaPh1sTs+pGHXnxltzm03kxN7GMfOnV5uLn9oVORamvX/qu/89uH944caoy/dGCo1bw+vnDukc2ZtUfOzN15fXkuUtt99NCh46dPHD64MD396Oj2kZfedf7KnpXpF6+uvvja2oH60sU9e/YBAB/amOiMrT5aPXOn3pzdu3nuwiOPXnvy+lM3n3766eefuXll9vLswtk7Y2Yw11hOW43ptdVCfWhmPFWp51vr+4899PAjtx5ab21cPbhvsJSZj196z/f/YqMi3PrDr/3ifT/6S9F18h/+71uP/foX/3Qu3KrWztysr1/93Q/9wV//7BPnGrX+yupoZ3nX5JFHv/jrf/v1lxvU2Kd++PYr5TOPHsq+/fHf/8uvfeVPPvdZwOCPf/R33vnCU6dn6nO1iQPnTp1cWL+weezJW3dfeua5W3effnTfemt5A8Tu1JOvv3v80c8fne+vHxxKru+fr48OFdJTlXSyGLMsQw3wmpSK6hLGmDkAllBAN4PRVBBIPqrZBDnid3s9lB8HRCZpykHQahAUKEMAAjp9PO0gjQCyZkNOeR6adtk8yC4rwPpwpIAVj4sXaAg6PE95nRjJciJOZLKpOGBeKGqFQxYsTr1rTqeKdCBiZsu5fK6cj5thSVDD4WgsVzTD6EQqm88kGoN6NKGLyagaEHweWLVUfqg8ZgQCfhBKBCehzCsME2haCGiGAKHbT8uhdFKHoA5aguf9BIEaRnhxGlihpgWR1wTivKauhqMKK4ZVjRdjqWQpGYNlnO4vRWQqmFUZTVEBmBgQQaAeUF+VSMjKl/OoD3A2Xxnogm8FQBj14ANUGptEZeFzq3v27t+3deD4sVkQcOlMsZQDbVKpNidnZg8cP3vAFFTJCSKKQhGZwX0uu2uns9fjxyVOpP0oyYryoAZPfh8QCQ8tcgSGBK6fUaMRRWT9yKLD5weBSPh8yH8DoItFJMhPcbysGagwSBX4QECQjADqsSyrwbeksrlMPJYuJeKlxlhlsFOfmZwYyQ+169WhqCDJyMEx0EXfADrtNsIIgPtB2g9VAW7h1sojjdmFqck6APDgWBNgtT4Kk9tUQGEL6Aw4iHoRxVKZeBne3RhvtcbbrdrQULXZbCIFzCI7CRB5IsEpKtrmRp0ukDUhCOhuFhdPEiRwDp+d1GWWhBDpILxeVoCfGff00X4pngxrAqMGJU1DJ3qpXDGdZx1u4B2KkSgjsxNToHjDTCaDQiiv92KcaMZlwunlcZRuFYqEuo2lUQUwaoZnoNy0LiYYQERB+8u8DbOzMG0Ewm53OfoIzkH4eZc/GAkGRFBCBOd3eh29yA1JUQD3fSzptttcPc4ep58mdu7w8RzJBxiviFsJB+73+lk/SmLHBD8lgcz1u1gvBmQ0IFDIEoyiUddt+EREdhs88uhEahDBLZK+IPto9DKPsnoZlgeOK/KaEBwuoxYiyHpyqJCIhUVxuJAz4YmRVjmfyhby+WK+kC9WSoX+er05PTc1OTM1PTs3t7K0azyVTQBkR4D5JOPJUj/qFDkLH9OtyYnJ8fGpsWylFFL1QCQGCJypjNRHG9PtzuxSTlAN0PwhS44k4vB40+nCEFCqxiRKom6VU4kA5dMjbp7EtURGJrQYCXIYuQZIuhkB3LVQz+Vu1ymtuwuhoVN3LYD8shDLJ2BdErAAgHb2ujC/1wMRhseR4ztilMCYcRflc7gIkXTudLh32tERPM/pwMsiOqpZyBYrSYhcGZNlzLgZLGkelRZ9hJqwLFOImXlTUex+WrTMZL45MTpX4JTeXrfbz3JSxiPk8AAAIABJREFUONtfqVRrI2OtscFaPyyrqAkjmrK6TYFDiCdohi4zpMfmgAdsKgzjcHhCBhBNeCq+XrekqIqAqSQDhNjTZ/NxjKE7AxFRoARLoEBi05JBSeGYDOjscJGil+RQOZuVLo7TZrKK21hJSHIe1sH4Ce8OF0ZzOT9j4T4nK/vsXh8jD63Nt6tzM0uL0zNL6R07SJEPpWfrhOB38aI5tBGmRMHl9MPcUENWpjw8dzJJByU2m7Jjqp9PBeVyXIuFlEg8HTWzRpAzQolSTKPNwUIx38yPteZPTLIqJoUy7UYsGiQV1crNb1qMGmkdM0OMZOjx4lBr18krF63iprZ7F7V1eGl/YWLppeOhybnp3ScvvPKOU2Z910R0eBk7ffhqs7Hn3fui9ZmNYw+/+uLJ7ea55uztfYWR+av1laMXNif3ndu3+86zu1Zi1a39R7ZPnDh6bH2+eeJC7eTFN25evriwcPK9u8+9/9Hhg/NT53btObh14Ojm6sRU7ebK2vXN2Nz02sEHHn748etPPXXzzt3bd555+1MHl68MbF86n5HL//jayN3vHl5enh9JT0/MDkYbgwNr+w+DAn7m4cXq1uN7ZoZCU5Hq0ett4tFPXiAdH/6Xh77y8cDO09//f375yz/+4OufHSq1qpu3p2cfef3D3/zbn374wlg1N7pSmd11KLvncz/713/890+ZB37wk098/3Vp+ZFHRi+8fvMTX/3qV7706U9/4XO//7EPvvnS9QdXR8aHd21ePnX+SO3imYOP33rq1ivPPnv75mOnV9uNI7O5seqx1z94ePkrt6aHRvePRndtzUxUS/FUs5ApwGJEyRskr6SShkRwqUo6FrMMRRf0VEjSJBrZ0KLY7gUM4BQZQoPfS0uyzJFAW8len50SaTsvG6IsIa3FoU6uOGg2HNdEF4Y7WUGEeMPSPhrg2eshfTgBHJJOxaKxeMyKmLFwJBYPG6FuG1pJoOVEIlUqFvOlfCZsBBjBCEcSJYSGJWReWsiUrYApWnI+EtdRrqzAMfnq0EiS9/vcPgKnNU2yudwOzo8MVwMi7ib8OIUcodBBGqqpQt0lqG56pmoFk8FINKqb8WgyhvYkDRl5EqmSlkimC8koarNQqKQ0I67TnAqYKNGkrIcMy0ASNBJKFIqVVCqHqo/6hwYLmWKlCGS6ODBcHanVW1NT41MLK7t2bx7aPrS1vxMDAE7nS8VMpVypt5pTkxv7HzwWkzgGc+zsgfAclHnWZ99532/dv6PXRTI0OnsnAJtdLoKAkMtgoJtUgYW79MMDYRSJ0Vi/h3G5PSSNkRzuhX9cHgwjaAb3+HBSBzWJGjipMmpDo+kgZzVZCmhvabZbI+VCebBYyMDtlSvt6VbX5705Wo3LqFIL6Vjg+YqMzDtAJ+VKlX7kBD0yMlKFvwCHOzOdidpobXio3hxDztLV/qwVNH4DwEhOotaLsVzXQKtab7SnJsebrfrY6JAlKEI315cTJFbsdmHvnh2jGjSUh6OAhELQA3MO93DBAEu4fG6v14szEMUjit1O+OU4EEMO9W7U1CBwpCwCYMGNwaRiArEcUKe0JTGBSDSVDEpmIWTrE/RoVGVxmA2qiTKdu1lioXvboMFguNtsEmWD6d12TLLI2HGP4IcJRDnsLnsfxjpwjLP7c+lkLBoJgeDA7G5bLy4Cx1HQ5wLl6HH6euw9LpzGd/aQwKQETcA0wkw4PW6vjwb91mfDGIw1Al0bG48fhUuZliWawilUvM7fS7FCaVgIgFGWGs2guiQWeNm9rWlkd96tqONpVQgOFACAraDCBarFZDQoiNVSLgqQRkcrQAlLeSBZqDVIpTRYHx5pT09Oz89PzszNLi+ttYAaJaJhBMCpJNqChkc/M93N05qcmmhP1fKVIvAT0UStSrL9o81aEwHwYkbWkD9tMGhYsHTTWVgZ1fpYrTXdmpiaapTiERgK0XBRbs5IWISdjnBI+cEkDoZROjGQntC9vYewBoOvdVmXjuzDgVpQQPHRuZDP7XI60QyHP6GILEBo4dF0oFBQcYP4tXkYv8PmsO+wsbBepIAhmglDiSRSuUKxlE0lUlmTFpEbalLAdF6F8BBU1TCvxfsVU9pJeVUN7qk+PjKT5RSXE/eTgqjHS9Xh4XoLxHxzrFmBWawDH4+jemCUFwJXij5UgfbZ7XYQKAFBcDvchiaEDSBruB1lmcqsN4D6DAIA97pZRtddUkTmMSIkMm6nDygWhgqiHMAc3D4MpxHNjUBAazJWNg9EUxQisp/zEMA7eh1+ikxyTILzOZmA3+Hx0nxtbXG+1lmcmZucXsz1oreHMvMtWsDdohyt7gmRguDxkKjvCgBwZXj6WEZNBgOZuA0zaDkTCsDaBC2TSGQz6YIewEQ1Vk4ZVAQCQKlZqjWXTk8LBiEZhYl6PBHy4LQSn9kI0bpVP6gb8DBD8Xxt6fCDD1+wSnvV1VVm89Dqkf6plZdPGvVmfWH7zN23nzZHVydTYxv0A0eutCfW39iXnlw+8MDlV587cXD03OLsnSPl8uLZ/vlDp3a1D1zaPPjKnbXFeG3f/u2jR09vH1meG39qaXXr5ssPX95eX3r22q677zwzsbDeubJ3/cDW8e1dc5OtA+frp+8kE/Mz64cefOSxJ566cePW3WfuPP/M7UdXTu0dP3Vlw5f98vd/9IOf/eSfFquHJnPt9kw9NlyrLO47AgB8++LSyNbl5eVUfjzz83/99x998+c/edOIZEaT+/v7Xvrl977y9lff9Y1ffZYbnJuefXJr4eyrv/f1r3/1ExfG+nPTy2MLC9v9u778v775vV/9y1Of+smzL37g2PDex24sTb77xrs+8+d//KUv/skXPv/pP/zgmy/fuLjRmK7OHr96+OyJ5c2LR87evHHzxbu3b16/dn7/0sT+lf6Rwb0v/c6jkx97dnp0eH/NWt0zXh+qZLKNfDIdT0YtQ1dYOXAPgNOlpAWvAAUOZSIBAGCUF4HWhtdP0oIKE5EGABYDKmpqzxIgFkiZcnJKyNC6nRBIAGvUJACmToBzYYQbQofXA8DnIgCdMSeINIoX/Ewqi7JIzGg8HgnHElYwiNJuZZHFhVgskQdylkklDFVhJS0UTZfzVjCdzULAyGRQ9YCH5jKyIaBVyzNKNhErJwS3z4v4JaxKQCEn4UbOQorod2NYt4MuyuAACUzDv0S3vwHJykE1FozGIsDqTeteUYrIyaokUrwZz+SSoFjTqWwsphtx4LMqWvAcp0HENnVO1oNWJF0EUgDoVC7kipVKLgvyNwtoNTAIYrFRbzbHZ+bmQXMcOHDk0LHFWMRKotCYKZfKtWZrurO+9eDxlK7InLNnh81PaDzp7b1/x3339dp3vK0HA10AHNqHfI1JTtUov9/tJwIc4/W4UBUwQbDoDNzv6XN7/aj+l4BxxTH46G5Z+wheAUaDBGUXUFETJ0XrCs63DNQnxmvDA+ViuQRXW0xVJyY6rZHx2fHaPQDuliF1K3q7roGhbHmwvzJUrXato1ERUr02OT/VGRscHhgca4xWq4ODg6V41wu624wBlXsiAM4CEwHMHqmUqxMznfGJsepgJSwo9ypbkdMi2qIwdNUMoRbtimwEeJYXRdRUGHXiJd2UoXC0j/TQLh/FWqFklHHiNBNKpg2e18IyaFc1mkhmc4V0Dp45L3l9XCQVzyTSlsBqlpmOGwGzEO5zCpIe4mk2CqQyglxFwxFVjZjdpCu0w4j+oHRs9R4ASzxl92Mi5uElGhUXObysiyABgEvpeCJuRlNCALe7env8yBhDYj02l0j37nD7e/p6EBXa2UvzJMbDUgoS4ajT7vAB8nYBmMYEU2dwrxu34xRwogADAIz7aFFDAMzwAotGBRQwatcIVFHopl+hc99u+iBH38uOZnlKFsP92YQViagiLQ/BgjV4sVpOhgDSAIABGsv5TDZTLpYGBger9eroOKjUubmpucW5tdXd7VQ6GusCcDidSlcGarXx6enJyU5ndnZyqtOZGoVZbIUVASnARG6g1qo3p9qTc4tpFXmZhoKqCcoQudQU+4GKwTc3J6Y69XJUJd02IeihHLyWDOE2IioJkgr8XY2hvgaRcLDb2w8BsN4FYNSIUAdWi9QvahmM+bzdD4/PhXnsfd5IWOIZkWZQbhoLcxpz0n5nT6/X7Xb09uz0COEABwKaC1uKpEasRD6XAXaezERogyZENUjTihCE7xN5UWe41CCRUN0UpmrxBABwfTYr6n4cppqsWckKTNLGeAvtWHUGFVkVo0AwQqgUqWsG3T22VgTG53T0eRlLkQWvw61oYjjIMwLpcNHIat4nE16GI722nXaKUXQXG1RFr1uT0S4ywwe9POEBAHb6vD4vMCwJLhlkxpgQK4U8Tg8vygY69PBhflcfTnjCOp3QvE5KIZ1uD8GMrSytNZsLc4uzM/OZnX0geMPZxTYn+N1iIAYAjPMChDjEd4JWujI8ezgfycdC6aSLCHKBhBJOhEKmEQLEzxVKEY1ilVgpHaTMoXK2f6w0ODp3cloMUrJe7oyGQpqHCoQLuw5GmIhVOxAxQVmBzhia2PPA45fjlX3a0hJ78Njuo8WJtdeO6bV6Y+nQudsvnrbqu2eytf3C5eOPdDob79xMT0yvHnn8jbtHj9TO7p56+txQ7uCxgZUTR5fqBy4tnnzj0aWZWGPv/v0nDp/dvz0/sXS9fuDg8y9dfWh1+eB7to+/+srRPdMH1x7eWt93+PDWwvxk7cbq3LMHIun5mT3Hzj96/fqNW7du37175/lnrz84+1h9z+7rv2rt/9H7b7/9+Om/+NLIzH7kMzibzLfKs5tHLz1y9fbZ5cbxC6u7w+3ckz/+0B/+9Xu++8tf/mTl9E9/+YWv3/jE37/9fZ/82Nf/17vocK4yOXHr5Nj2Gx/71re+9M1HpsqlpYnJzc3D2f67P/jrX/3bD0qnv//B7/zTi+L83LUHik8+dePTX/mrv/ned77++c98/ANvvnzzoT2tmcHFKw/tOXb48PjF05tXbl6/e/fW9cevPXxya3Z1X2Owf+bmm2+0X3h9oV7ZPxZd3dMcG+kv5eulZDKdjqOUSD4gJ7sADJrYtCK6oivBdLhrJ4eTJPyFuTCS5gKKQBCYh+IVAy0dhnBiNr+Cu2k1qInIGtrv8+O4F/WJx3CFdfl8DkASrwfiiocSZIl0ox1VQSLYVDYeCUUAgKPhUDQZDRkBtBwFxi/F48kCMpXKpUOGyopaOJrKp0J6MgaAmIgnSxUV87gwiN4C2o0lfFKQ44MgRZApBaXwsu7pddgggMPq4znM68U8HgK5Yt6rAEbwBJ/7fSSrAi1ERcjBaNyKW8hrGm5K0mUZVQ2k08k0rOhUBpVsxONBHXXXEWlKAv0UVhkA71AolcvmU91LzZcHC/AXIHGhUCyW+4dG662xsfbc7Ozq4uq+/YcOHplLmcjUEd5RLpVGmhOzMxv7z5/KWWFNhMGy4T5HT8+O++7vs+/s3Xn/fT1OLwWBmUE9jfyMpAg+jAVpK7EU5nZ5CI6jcC9HB1je7fQjuCVxvNv+lwZy4cMo3INxSMciGFV/k9wkB1CpZSDwllhxtDY6OlwpQAAdhEidHRvvtIabU4DKJvIrCQi8jIoyA7KKTkbD6cpgKQ8XXh0ZHUNqd2SsPr8yO9UYHhkcrDVGR5qjI6P9ceQYFEBlSL8B4HiyiJygR0ZqhUypPjkxPtGoDVVCrETfq2zlBFZQuok44Xt1QYahIL0nimgbpVtlRmgqxxA0yXgxSjSDCd1ho/xkMJVUeFENBcLBgGIlIKDm01nD7YJw5aX0ZCaHAJgPxc2sqQUiuWAvz1PhdIAPxUSVVi2gFAh8Iyj76h70dh334T+oMYMi87xA2n0Y57GzIuVCZdhezkOKsofMxMKoNWXUCNJOAGBf15mK9yEF3Nfj8u2Al2jK02MjedLHaSKhEmbQ6XR5SQ53OXv7fDwhmgqqsPH34SxKpQIAhvXCgE5Epq7dGuB7HQjv2W+IqG0ySf2mIyHHd306AH9FSuCtgVQiZAQDHCEOFRMmAuCSqYpigIoNJpM5lNtRLBWK/ajLFcqiGp8AkJ1bWlzftdFOpwFbwyba20BJWDBNu+0KJ2dn2qhl0mi5lI+aCo/M+xOos0i9OTk+Ob+Y6pqJBw3VBIIOCjiLABjJZ/jRE/V+S/C67FLYx7tFJRUSPFQC5SAIrByOmWjcQvcsR1HWuaqj4m9NR9MSFDKG4d0zIZcLuCSBY26Hx9HX6wkFkQkBOo1AOyIAwH0E4em5z9bnc9x/P6hDXaCCMsNbJnJ5U/V43MoUk1bCZCzSQ8kKDTMJvgQMVFH8YjKHRaOyj4WFncyMtZpzGcWgSV6Q9XAyhQC4Pj4+OTk1M9NQOF2E2QuB4T8QuLsFjQDY5bK5CFOVeJ/NLWpSJCzSAul0MGh9+WUGAJjw2Hr6cErU3YSmKZhTkSm7y06LEQBgr+TYYXN7cYiiIlLAiWRpNJAa5L1uOyvTEZ6inV4/7d/p9TsCUSIcwlwEBFCXC6cH51dXO+2JhZWl+YXkjh5K5EOZhTaoGBcC4A0T7sPjwSlWCOiRVHl48VDOhOCaTHlwgw9YUtwyIkElaID2L0FwV3kjlksYZHR0MDdcQ3XghycFgwwEM+0RXVVwWbVKe7Z1PAQAbEY5VhB0M5Zrbp67kiptaouz9Mb27mPZ5q43toPtyeldRy688PLJSGPvXGp4v3D11JWJ5sare/JzC3vOPv6uG1uHa8dmp25dHM5eOji6+cD2/Nj2hc6FV08vz0RbBw4ePHHs1KH9c62jp8aPnnjuzuMnVheevrv51BsvnDy8sbxxcXPf/pMbm1NLgweu1C/fLA/n5qY2T11+/MbNW0/fvnPnzu27z18/sO/c2InN9/77Rwt3fu+FP/zC3//gTGN2vgkPczUfaw1M7jl+6eoTTx9anLhw4cBCfCHy9V/8jx8/+aX3vePdt5a/9dl3/c0v/3vxQ3/zT1/711nSPv6BAXN28vrpoX2vf/xr3/jm3zzQiRfWG/MbGzORkc0/+9VP/u1i4I2HPvL9h8IrHzx89omJxbuX/uDPf/73//zP3/nCJz/+wfe84+nLG82pgYVL1y49fOJYe+vS5snHn3jq7u0bTzx+5dz2ytTBmYH+0ctvfHTX6fetN8v76+bKvnZ9rFzKjPbn0oVCOhkJGwIAcEL/TwDWFEMxkiFR5ihkG0X6vR7UnZKVJNqP+zwEGwjLAkQLwu11YJrfS2qGwMBKQU2NGKD1Pq+HoFUWqVIQNV4vaiWO0m5IL+YlgDKSXBIYvBWPRWF5RqJx09ACqH2YwFFwHQDAlQqoSTOoMaIRjphxkI8xWPW5VDw6OKraSAzYtSqC3Ha7vSKQVpnTGbuL8JEgo4PuHqQKQZ77SLgeD+aDAMrjaOcZbesxyCuTwkFXhlPJJDJtikTDehQuBwIEyj5TDFlFCSgQx0q5VCafAIYQNa2QJvI8iXMGhJAAoKOk6ol0DGQyYC7KbC7kS5VKoYC8OIZQClaz0QBpMbu6CTzu+NHjiynUYakAsqS/XBpqTs0u79t64EzR0g3BwzI2j7vnvvt7duzYcR/86XU47b29PgGltECEkoFpYJyAttBpkvDhnITa1nvQSaMMIYvGPKjylAU8EFnUjsFLAJkGzJC7lbyoFzByMb7n9xeQ39JfHRkaHKnXqyMjQ6VsJpcbHBgdb3U6rdpQiJEAdpFYVkQevsVAtpLxYn8RBFUyXRgcGR0drQ3XGvNLU51Ws1EFAK7VWrVqtRwD/AVtwMPTBm2jh6wE8jjNlfoHq7Wh4dZkZ6LTbtYGQwyq9EatBUSZkVBDIlCewTAAn2pIyGQbmALKlQPGB0xO1xkSHiRBYTQIp7jQ62AwIpi0ZFEW0UGipMTS8Wgyk8xFPXZcFnCfECtk09loQLZSiWxE0yLZ4E6c8gaSqmgiz20hBrgT6paXhJEvIjr4vSdykCEH2kWH95B2j49y93EC6XK6nB4P6yF0HaNSyWgkEotZoTDjdPfu9MONyLpMOF007rI7PT3wEku6dthxgSV4IKoiE1fsbo+T4gmXq8/mF0g5IvlxYBR9GMXxqPsC6i0mIKdk1HoQNDCPHMx+cxYMo4AMsFiB7eZk8QKNZDEFL1A0aQ3Go8AaZI6URvIx0xCk4XwUpXDTyVG480I2W+4v5Av9w6P1Zg35S45PdsZnFhd2re1uZjL/AcCJWKI4UG90ZmemUMOkycZ4e3KmVilmAYBZlBiRyJSqjbFGZ3xqfimtgOCUVBgxMxaHr+SKA6P1xvjkzPTsdLtWsXi7yxPQ3axT1ywYLjbBgpbk5CAqMUQ7DZH/AsD33FBguTMkAWQYp2gcA3xzo1anLpcDVKMbC+qSIFIYzvthFUMUwnb6Sdx+f2+vy9HX52IVjcE1ysdbESkUseDxmlosbQUBZqO034/8XkQ5HrZQGr/iDVsmZ+SjoEVhKSertdZsStM4UAR6NJYFlT9Wa050pqZnZubmVRx+sYkYObIIAFauBbsGmhLvcXnsDm84JHNYr5NWRCuqMCLrcVDIRwQTWS8DGN23o8eLU4bPK+sq7pREvNfZRwVMjGcowbmjz+7y0yj+yRowgVJVz/VDaO0jFSoSwFmnlxSZnQ7MxSeBq1FuTBFQZ28i3t69OLcwNrWwuLSS2tFLiayRmhvnZMItKfGRjQjJ8R63D+Ir6OpkaWjuYCaUtkKJuNun8Wpct4K6FTZAusRyA7lkWGGC0UxCJ2JjQ4XReqU8MnpoWtDwQCTZHIXnQ8AjK2xs64QVHdunhYCLw9KMlju79l+OZ9f05RmysbR2Kt/c9dp+c3p2duXA+edfOR0aWZ9JDR9gHj51Zbq+9c492enp1RMPv/nc4ePt07OLdx7qzzy2VN17Zs9k88QD008+e2j3gjVx9PDRY2eOnNhcmLy6OXv20nOXLq6tH/zvJ4+++sYjj24eqU9f3dh7+NCeXZ2J6jPzy8+sVPuLc53Nc49ev/E0APDtp59++rlnH1m4vLB6+KHPfOx7he/++Evfe/a1EbN/bbEzNjK2NhgZGR5fP3H+6lO3tuY7F8+cGOqfLGQ+8MMb7/nlX/3ie9cW3/vxl37895/t/OMX/uhn3+mbf+EjHwyrqxPnLk7tvvOpP/vit//sVMuobrQW5xZrKx/8zNrX/v2n5u99+7HvttN/9rNf//O+R472P33hnX/785/+7Ed/+cXP/sGH3/f63Sv7xmeaS1eeOf3oEwfWG+ePbl58/Prt2zefuHb1gUPr4/tWRwb6j77++5cWX97bHNjfCM1vTY6NABsa7s8DU06j1igAwImELiIATlogy5DXcTKMCktZ5Evj9XghIFKCIoHWAnBlAiZIFRooH+gxA0d9K2VBQMZZqNMNKidw+UiZQlnQLMrRE1gcBDTDYADJJCPKFBdPRKPxZDzadWJGSVgyIConiqyUTCRyObisZALiMysDd0OOU2mUlxhPJ6Ox/pBbpEIWYBCFSo69yC1CYlTG5iQwCki1ThKK6LUBAMOvJCmX1+vBeRZnkAEWQDBDE35kPIOR4XgqqgXj8VAkpFuoRXnXXzOggBg3w2YSFHAulcoNRnUzGglHEQCLHCuBCIgoJAdApaNsz2SmADidyaEUbZSEhSw5BoeHB8qVxgQwxNmlPXsPHT55/NRKLBzNpFP5YqW/Uqw0pqaWN3afPJENSkqAYgmb0+bu7XXYbTvf9t/eBuvUCRQCnVwD0gqSQngoVkItL0AqgKzvGn1hOEf5JNzl82BuD8OQLIlhNHAOn8fn8wHDoDjk4qkoyD8RFd6gXF8NbUK/BUQsqg6q15ujlcGx4WyxWqn0D4w1xkaHI7TcNUMOoIreLgArhpUsDQ/1w63lysMj1eHqSL0BNLONetRVQQOBehga7M9BPEenx8iuBADYiMRT6VQKFP/QSK0z3mpPjLdaaNfFYAICfCB84UEoBFVFRwAcDKC2VRDcFdDsLNpaYUmvz6saDLJWQ7YVEd0ycRvaBoikrIBhyDoyXlTjaeBwiXg65XPivEJ7SSOfSaejqmKmUnmg/WY20usNeHtxWghFRVrlIxCRkf+kqobuuUGgvgwwPt3yVAPdgcQTTjdG+Vy8SHucdpvTyXjwsO4j0xmgpqkkxHQKJWER9wAYtzsIHwC1t9fWi7OEY4eTkEAZaQIh8GkRANiGs34AFSfMxUBEgqVEEju96ABBoCGU+0lJCgg0j1oRCrKIyoyQykVZave2oFm0H42GS0DamKFQt0nMFezvOsjoMqeO5iC8CuJQFmKrJJHxkWwqm89kS5U8UsC1eqNZb7XGxhrI/GVh167djWwWLTgT1QHH4gDArc7MzPQMgHCn3hzvzNYrxYwVRgo4Fk+ki8P1WgMp4KWsrBsw4sEwULJkPJ7KFgZGxxowxQG5x2vFMGvz+BXFQdlQNqbulpKcogqiYaJ9LhMV+//nFrRmIABWFIEDfuXzc34vzFpAENR13O2wAdVHeYUGMHwB5jaHAUQTAMA2P0G6exyOPgfu68ONoOAX3XaMEYRoMhsSo2FRj0ZA5mmWKIIm5EBnWqE4rOx0ELfUiC5X0n5cU1JmYrDank+FFJlFgJXIFwbHum5fqGXU/Lru1UNCyAqnLNSjFK5eA1qo6RCbfA7U482AoSF6nbgohGI6I/Ieux8ZznlZUMC019mHmnH4DcItGgHCzolkr9NOaBEK1R65eh0ulw/zIwBWQlaqXDULORA3Nh/oh6Cf83oohbf3+fx0QiAtyeuRJbQtgCvDm4sLK+Od6dmV9dSOPkpk9CQAsEZ7JTUxusfws5zL5cVBWavhRGmocyCtJ0NqIuHzBbhAFJFMUBiJRCyUHcpmDBHTIRAF8Wi1kh9u5Muj9aOzoooHwuWJYS1iEqQaKe45FKajZvOQERJRY5poqn9q38nz8cziWRe0AAAgAElEQVRKaGORGV9YPp6qr72yZXY60ysHH7776vnI4PJ0rnaIuHDi6sL4wTfWY2Oj7V2nXn/l9PH2+eWVuxeL5ScnGlsnV1sTZw/PP//Y1p75UOfI0ePHHjhwam1+/sbUgRNvv3P2xML6tdf3Xn/z6pHXdx1en35s7/rx9e35icEzl8auXclMpEsLU3vPP3nzxt2nn74DAHz75ZuHpx8dObbx4vv/4RdWs//Df5SQNr++sbHUaA3XFhqxUrW2dvKBKzeeOjg3ff7w4VS9OPpEW9D/7q9/+UefmnzhB59617V3/ENKo0fe7+Xe/ubrH2ClxsixqzOLj//xDz7/3T+51NanVsdm27unn/75t25svXn6zO++/p3vNT/8//6fX/3z5OXrQ8du3fjGd3743T/97Je/9Acfet87717d354dnn36tx/6xnf2H+4/eGbj+NUn4FKfeOzqg0c3Oyu7x4fKa6984JXJC/ta1UOTkel9M42RgWJ6rD+fz6csiEYKIyAFDACc7gKwCgCsx4OCJPAMgXfrTFGLHVGVAI1R0VnAEiWC4nCvw0MouIcJBFQFFBA6skIAB6/7KBH3+N1uFqUIiBzuwoHn+10gLgBCKDaajKF1GTa7zb8iQUMMSCwjSpwMujSXhetKxHQ1QEuSZkQSSRCb8CYzmU7GskFSZgSR8aPNV8yFhRUuIMFlQsTGJENCBTdmwL3TRxI4RcGS9mIAuMA7u8kc6EyJxgGf/JjfCMXCQSttSTogezcJKxTgJU3RBDGMgkwyk4qn8v1BPZWxzKgZlDiIiRCCQpZGcYBuaiprIQBGYj2br5S6G+d5IA+lciEVTdempmbmF5Y29hzcPo4AOBLLpZM55KZcLI1NtudWlg5tp0MBWmRdfW6v02/vs9vs9p07fuu/3efAKEbjQSJqgPMibXPyKHnHjmEMhcyCILTx8Dh8vaTd5nZ5PH6UBO3zIYNoDMNxn9MN6x2ZQSMA7lb3qJoe7jZCVwJvKReKA0MDQ6MN5Dw4WS8Nt8cGC5ny0MBw1eRQ5RKHDqmQfFaRY7+ZLAx2EXukVhsdGR6uNupjMwsTCICHK0NVZGAwVi0nzSAMCLLzDsDvCVnJdDoLwzFQa9Tr46jOqQ7SuZJXAXREUUA3QVM8KkMC1EUlMZpmdF2ogV2A0qMoZLLilA10CEr5SUENhaPC/X04jhOhZAztF6NTEwXibSwBkTKRBgXM6izuF9LZVCKiqSGQaEogZOUsWzhPv83FqFYcAFiUUF4rqkK6V46K8mvCwXvuEKgvLdyAzOJuN076nADAXpe9z9HH+vGI4iYBf00rHrM0nXZjrj6CpxlJkzCbg0LJQb4eWy/y7tjhpiTgFoZISHySd7k8Lj/jdzjtTooglZBAYg6vvxfWhihznALQjnwcBFoQ72U68zwPn6I0LBatPXQ23O1FyN47DKZgIQLD8vbKpVg8HrWCmqCO5MygygmDAMAqKK7oYB5GPpcvlQqlygDwrMbEeLs9Njo6VJ9eWti1vlHP5lHdPXwTqgMuDdRa7UkgijNTMygZrzPbKBfTIQOdAcfiyTQo4HtJWAiAg4iTBcNWHDhyKlMYqI7UWp3Jyc7ERL0Q4m1eLKC4qF5FJeiQPRBDRx56JNq1uuvK4P9MwjLCKtC8boEjzFqALbfH5cYQz3cjGexDC5cyOBrnfS47jhEwoXHc5QagdvS4vG4Hie3ATEN1k3anvY8UolYswJhBQjBQxYSWCFnwEJHPp6HGQ2o0E5dkOq4x2RxG6YFMPN4/2FnKmAGVVw0rEcsVBmEGA5OYm56ZW1iXMUmRVLhHVGwFKjgS1DWUPcEz/r5ep8uuhhSe6nVhoqBYOi2gInFRlDQfy3u7HkV9fW7CF+bcgqHQdqCbwKV9elii5IDg7HF6IUiRHELsoJkpV6MFi6VIp4OXJYtkCSepClgf6IhI2G9pfqcg+9wuByHkN1c7ndnJzuTq7tT9DggYemp+QjQYL9qC3q1hAMBOL4EUcBjYcns7IURkPhXzeYEJhnQlEomGFDMW11ND6XwogIcT2UwIjw+XSv2NZHm0fWKWV0klWJkaUbQQyamR/Oo+HaLjxOlICCkiw7TS9T3nziRzy+G9K9zW3pXD8cbGO/aGGs2ZXYevPvPqA5Hh1cn46BHy0qmrS+Obr60n2pNL28efu3v84MipyaVnLhTrTzXmjpxcac4+uGvlHQ/sX5sMTh86euTUmYPHFjsHLzUfOPPuRy5sre595cGj737m2NHXzu07tfzY1u7Du3dPjo+/ML3+4r5orVRYXth/4anbt565/fSdO7fvPPvilaW9B8ZOHPzz//PN84m03loI/PB//9uDG7PFieF6ZyqbqlbXzj549ea1A9PLFw/uKY5a2z+99dKTt772GiE5n/jmJ974yM8etmo2r7198+CF1+7iUquy71pn5pHPfPuL3/745YbWWaxONw/sff93/sdPHxw69+k/+Z+fXvjxv/6vf3wfCNxnlhvPPfIH3/rbb3zh81/9/Cc//P43nnl0f3umOnn7vU/88u/a21PTJw/te+DK1SdvPP7o1YunDix0NmeH+8effvOje9b2jQ8dnrPaG7PtxmCh0Cqk8tk4yAFNodguAONsKoecKRVUvR4LIiLJkiQILIL2YCibWCBIAFWSVaNSwI8zfszuJUXSjU4YFRnVK6J2AOigC+KO6PdiDhcrSl5fgPc7CFgSOCwvCqgaxVpRYJcQqkECh1AdkgbznmNliZFT6XQeABjQDwGwGDBC0UwmkUQJ04lkKqVLjA8ELCUROA0A7JTjigBxnEN5YpSqQwTVddFvd7qAMDOU1+X14Uj58uiIFBV1EGyXUvj9mBGMhYLRiM6qpoV2oPVQRBUAgCGchWPZZDKVSSUz5awRzmWAP8ZN1B2ZFQJG0FQBPNRAIJG2YkmQeYC6+VI5n04XyoV0sZAv9SM7jhqqz1hY29p/+Ojp0w+sJ81YPofQutRfKtWnx2fXVg4dzCZSNME5dnrtPohDtvvedt9bbW97ay8ly7C0XYxmaEGRcPe6OT+Epj6/nyVpWMN+ThYonw9Us22ny+3w0aDB+iCCob11msTcLh/JojLggBLoAjDquauhhvfwr/qWgVymNDAwiswhJ1rDA8OdufHGWHWonO8ftvhuJlz3qBENJLJHCYei2WIBtGy9Bvp3dHR0eGhoemmy3ehMjA6O1KrV6lijWkoEkYEWwgwRfo2BYnQ8Xy52GwY3pzqoEmlssJjVuQCLjuLRmSYnKggAu9gHGGx0WyDCLydA/hIkzBSXEgKkJhkaU5GzHvNWF0sybNSKahroVpFXUROlSDIai5hJZ6+X00XaTyWLWdReI5wspEUBFHDUlsyTvQwwyhhPBxQqFlbDIINNE20sIjxQUddX9G84HEROmCKDA6XBXL2sQPs8DptrJ0eTEclF52MhwPpoIhTmvLi7F5c4LhAM+O0ugezt8fjus+3EGMLe46UFGhdAaMhMlAM1h8MqsTv6bARJBTSGxB0Y7SQYSRQYXqVc8FlAQQDctaEE6cvSchd4WeRHwqHM6C4AI+lLAmn0uZ02n7eHLyZyqUQ0ZIjqcM40Agw/mAMAVgJEdCiXyqKmIMViZWAQ9X0eb7Ynmg3k17wwt7q2azRXSCYsA9Z4KJ3OVAZGm602MnvuzM9NtMcnZhulYtoAFWtGYbllyqOtWmtmojOzmAkA6VFhEsVi8AVYiBXEycanpgHgp1rFkLjT6RYUF71Ti9BitEcEuFaMSLevfVdJ/saFw0BthQ2Z55HXCoVq2/0up4/w+wlk5mmH8SLJrvdmkCUxAfP0AeFw9dk8HhuG2W07d7j9tMPnuY9KKEqv2005ewNiJCDjbl3zkErYjJlKJpoL6Qzqh6GqKctIpLNhzJ3hsXC2T+C1eDJWKk8spsKCLhnI1StTHBqr15sT0wuT04sLqwIuMKqkp6x7JrUWygxBOYICS+7c4fDYFUPmKFhssLqiIVaSCbcXVloIFwJejicwj9PhJb2m6BGDIcHJGqrL7nWrIYPRNL7vt3rdXp8HtA7QVMPMVarxvApxyQXTk03CPdsIFXlxEE4tCQQDB1z2edxOQkhsro8MLHWarZWN9A4vI7FGZnEqYNBuTjQH1zQ/zzttHpzlQdGnKtXO0ahfJom0bndwJBcKysDVIpqVLIRTA4l8WOeT6UwqRKbrA0OD7USlNnliitZo1YhNjJuGRsh6tLC6FaLD4alTCvLxUQ0zOTCz7/jxZH5R271Anzy0frIws/8dW+Gx+uz6gYsvvHxcG93dkgcOM1fOXl2s73vX3vTk7Or2tZfunD05fra98NyF4sTjw4vHji83li4vbb5+8tBKO7J8+Mj22ROHtufqj28unL5+5+SF+ZVj79t94YPHL527+ML65sL1fQf2bY+3G/se65x+ciY2NphbW92+cOPubQTAd+8888LtC5PnG1NHzj/4saHmH1/Nj1de+qcf//OpjY45OdJqzFViI8Pr5y8+duvRjfFdl7cXR0vWqb/7i7+9Np/WaO7DGyc/8S//c3/0Z1+8/PEzj//hQ3PPNXx/fDbfubE89cBHPvvlb3/kUstqdwbnJk499sNf/OiXr+3evnzuxNyJr3/rnQdKjblD1x/of+Lce//qm3/+9W/96ac/9/sfePPFxw+0Zyozr3zooe//5M/2HhjePr3r6IVHnrhx7crVS2cPr9c3lyHOXnn9c+c7B9ql/XPm2PJ0p11MFVpJM5PKJABxgyz3GwBOZqLhSFBRw7qRCEFcEBAAU6Aju0lYkkiRmMtNcVpcVnwYhfkdflbifCipQpU5XhYZkJpdN0oIRH6McGM0L3q8MucDicKzIFgxQEKBYoATW11POwt+mRkLyYqu8KIi03wSFHAmm03EovAzeQVorZVOJxLhYLRYTseSQUljPF4sKOF+0Ld+FwgSURdkHnfbfaAfVJzUVH9PjxuAnuYY3O8CKkATjExQDIpijJ9hUc0h5sOMUAIiCsTvqAU8IIySQwIcrI4AiwA4lcrlc+n8YEw3U/F4Khq3FAHgSZdULRwgeFUPyIlsF4AL+QxC4XQsnivlEomolSj0ox4HtUa7PbN7dde+/ceOn1lNRaxsLpMHWTg4UGnNTSxt7jl+qFAe1r0c7na81Wvvtdl23Lez774er6ABC9AJDw20xUG60R34PE5nH45RHk8vyAWXFwIW5UZtym22Hh8Hodlu9xGYF0eJIG7EOPhAt8EqcorXAIBR+gzwGfixbxlrNGr95SrM7XqrOTo00miAjIEQPZgvxAKybIgCLyKBIqtqQBBEJRgtgPYzMkOl8vAoCODq2EhneW5qHBUOjzbqtbHayGAuihCRRzlYSlBDnTOi0RKC3+Faa3BotDnearVb9eECqlMSBA5tkMOnOjLFMLphGa5NQ17gqB6JhwkETIJw8mHGz3MeeKh6OsTv8KI71MJWJGxGdJEVw6EICrChSDgVdttxn2LxflIdKgASgW7PRVU1Es7qbCxJ2ShJCyYknLFAXJhGtxAJ7ckDFIQtVBmMLqBbhgYUK+Bz+1na0SvIIuCnzWbDWFrVfWwu1XVIimkq5fGC3AVUVHRZcLklqvf+Hkefo8fLMO4eJ8vgtBBhKE5MER6/E8gQ5uv1egmeCsgw/dxIwzJyQGIEw4eRDAwyy3SpHarO4rn/6MXQPSnnGApHe9AMmq8e5Ehqczid7h16f76UskJWWAgODloRhQ4M56wgwCZmDeayWaCD5VI+WyoNtQBb2uON5gQ84Km5hbmVXY1UJtZVwIBW8XRpaATwt9VoIr/KyelGZ7mRHShYhiSGLTOWyqBuSONT7WZnNSMGNYjw4aBlJuLJPModGBsba050Wq2pTqcYZlx9HkF0MU45RPHhHUpcFYNmGFY4OnIPRbrtvLtbD2ENucYzAsPAfCY8Ho+DZijCgfXZXU6Pn/AzDMbwtBEkWBzovMvl6vW6dtr77idsfd4eh+LjPIS7zydoIt7rM2iXTEoQNzBNcEm6QkVMPZIsx8Oyh41CYIhEDCtfTipyRPHoAitzESMWzeca8wUlBEwatYgwc0MjVViqM8CW5xY3RBxNYpjAVrclUjgU1lAbbVDALpvD1efkg5LCuvowQVEsAwIi4/bxOkxULOiB2MF43HYPRamaTQhHBJvfQIdEOwN6GONNraenz+PECPimAISaSH6oUkwqqIPrTp/AKRoh2oiA7Hf1+jEpTcoh2uWXcZu7jyD0vePByO6lRntxrdDrZAOSmVuaCmicR+TDw/MGOuRzkSwnBILRbH91+kiM0vyBoNTnoVi/oghWRkqEEpmkkR3Jp+IBLp3PJYN0fqDSXxpJp/pX97dEmTQCqc5wPKh4QI4U1w6EGctsHUOtwQTZiGUGJrfOnjGSa8G1Re7k1srR6MTMy5vh8ebEyvYlAOBIeX8tMnKKPHHsycX61vv3Zmcnlo5fffW5reOd88vrd64Upy/377u0vTC+cXb+2Lv2nF5rK/sObx87s3V+fWbpTmvrgaceemRzZfXOC2vPv6d+5cDJ2w+tbj26Z33zUKlTfX555uat2WxtqDi7cvDKU7efvXP3uWduPP3cc89s732geujQQ/2eR77+dz/58VPDf/Ld//2zQ4eGzPHhamW6pZSb+05dfOyZi7sbGw8d3DMalle+9/qtO19Z2rj10j9uX9mcHnr+3Z/+wU9/9bmVT5196lk2+5ML6vTTG9XjH/vk137w3muDsdWJZqfx1NVPffVff7R+oLO5tmu9NV1OVoZXWxvnr7VXb97+5p//xTe//PmvfOZTH3r3i9e3GvONzm9/5Lmf/tuH50/MtR48vOfsI1evPX7tyqUHj223FrfGyoOHn//Yi+Mbi9l2c2Bo/9RIfyGdaVbSWUAMMxRUeFbMZnWBEhIFy4yi7UTWyKrA7UTksUygXGI3ziEzZL+Pwlg2FFVEiJI47naJIuaXUEttTUGpJMBf/RiFOzyUiHsJj1MQOZ+HE/1uNoD6ebpwihYBDZH/pIFajyhKGMQw2pSSRZRdJKdiJmBwNBOPBg2F05SQGUunEumI3o8wTvHSlA9mMSpQoFm/24PjIh8UeZQd7CUDOm+nFc5pd7vtbMBPSL4+h6PXxTK0whM+nOmmU5K0D6Skl1KiCQs1zkMsPZaIAe/QRFIOBgyNNJMJAOBcMpPPoOTluBVPoAZlqGJVAsAIoOaJeiCSTafjZraQTqVz5WIhk4DYpilGLFfuHxhstCam55fX9+zdt7m5e2t7MZWIp5GVSH+hMDA8XJ9a3HP4zIF8YSirOh0732rr6+kD/O11Q5RhupZIkujtvf/+PqASyPXHh7a2WBoDAeTy97o8FEa6HbYdO/r6+noJAfMzmMPpc0P0olC/KZpiUBdCJH8NTZa1YLdqNiBBJFHe0mrWRwaHRpCHRh1CaKvZbE/Pzi8sTlTLpiCJitjdhkZWlAEV/hOOpfsL+XyiWM2nyyPVoaHGRGNqYWqi1RqrgiAeLNVGR4YKsXvtgGVJlICMIQdp4FCFAXhDrd1sTYyPjY1Xx+qDECsDosgBNUIOLwFDVQ31N7aESvcIWeAYAB3CD3hD2X0BACcfK2iSFQq4QWXSfncgAU8qAGyNk6ORYBxUaSgcTIbdvW6MN1DSjlnIRoNWJp8KK0rEyut8LI7bSFELx2WC1FUhErpX9NvtA9D9FAFD15kJ1YGLPOt2eUnC3ufnFeQhCfGfpTUNAXA8Ho/F4iGd8nrtdpjndECTYK7xlMPmQB7FHgq373CxLMXJJgOqNkl4IP5StN+zs88FT09T6P+Pp/cAk+Sqzob5MWhmOnd1daicq6s6V+c0Mz09nfPktLO7s2Fm885GbdZqJa1WwZJWKCMhjIQM2CQbMAZjwICBz9gkY3IQxgZsMCALMJjve/5ze7H72bwz3dVd9573fe855z2Uy+oBckrDJ0VzfpeXYhQZJXuHVVdDyEV1zmhmNf37UYRoNCPhg+WN/MCtFovVZrO/PjBdyKRj4UiQ18ulCACwUi2E0EQDIl5F5zHFYj6bTRcK5V6n2+31Op1ev99bWFpd2bUHADhmRPSwpsOiT4+XK92ZBVCxg9n52ZnZVn+5kZ7IIkewYCwST2dLTaBnCIDXkzwCYEBTBMCpfDo3VI6A3p3e4szMRIwzWXARmK5L0TklgukxTQBqFA1HQ6iUGM1bHho7wjpBbmdAsXDChyzEHF6cJty4FXPibrcX9SmQFE/LUYURaYEXHSabmfDZLKO3YRa7x4zrhBf3ucw4DsHH6tMZTGRFUgrJOunTkiKrS1QQ+HqExPxZXVBTQAzT4/loKOoHYkrIPFoyuUwLAHhYjYemoeUryM6tO7u4sLSwvMF7OV4EnhoxbgEwahJH/cocicEHbwZRCzHQbsIgmoU1mhYpO876uQDjCbhIUSQwq9lJkKpuEyKGYvNoAm7xmER/2MsE/WOjIw6c8BAggRUtGBkvT+ZjqsTQpNkl8EoQjXhTRMJldbu5GE8FKAfGkQ7URxycSbiUHbt6g5UdOQTAQii7OiuoLCby4doOP3A1DDlJozYk1Ad8MkmohKJxZhewWL9fCITpJDpSV1K1Yjrpp1O5LCjgZLM0MdnK5jtrhweCTAWl9GwtGda9QLJy64dCVCjSO60g91pBDcYn+nu3z8Ry+5XNZfLEob1nkrOrbzkU6TZ7O47c+egLl/y5fauFxu3M+dP3LTVrbz0YbS9snbnx4hsPn+idW9p583p+5eL4ngv7FwFqly+9a/7g7GJs7fD29rmtMzs6h+4ebF9/5I5Lu3cefMvZ8+9+tPzg6UNXntlaf3Df1v7ezMTRG53Ld9+7lqtXxlc2jl9/6NHHQQM//uhjTz3x4PHTG83zdx5M62/+5xc+9v0PVL/9u6+/cW2llJypTRTb3UC+tXXmjnsfu7S/feLOQ4tdLp576YnnXvjUma9/8gcv/u3PH3T0fvWDB973H18nQt9+5/u79vO/PGyMXz0+efYvPvvxz/7JA7XAenl9YuGpA2/9yStXNrob7/rS04emwomJg2dnJiOnHz9UePHSR7789a/84xf/4e8+/hfveO6hg52V0vI7nnz4sw8+dGPPwcHWnq3zd9x14957775y6dThxbmDvVJp6YUPvXH/5qCQH8+lF6rN/lQBVDtAQjweDgRk2PzJlCYQXDIDuwZEqV8KF/zw8bNIL5I+3IE5QTuKEg0bB6dpPawroCdx3ObgORcA8HAaA/LrQae8HhxzuCmR8MAXkAztwmgWc5I0qqbGcVStS1CRVBLNQ4rFhlNphkaECpJeqgDSN4WagOIGUHpO84fC0WQyngwGiyU0L56i3U7MRaoUw8oK7XRhOMvpPFBPVK8gKaQF53nnmNlqxoFBc5jJ7sI8wDJZAGA3RDIf4faBcKdh2/uj0UBwaHgTiRqJKIrKEg1vPBBgQO+iU7Y4soSOxjPwQMo2hKpkZQjUMg1I5QcATqWBKaQNI5EqxOHLjXgiDvpjYqrS6HR7M/NLO3bv3XPg6JlTJw71jBgIimyuANI6X6p2F5b2n7hwOJsulidEi9nrfZ1pxDQ2ZrfZnB4SCUTgInazxWx+rdnkILw2i8vj9Ai0xYQ8gSwOAFuHaXR0ZNQ0Yh+1OUZtNEUTpIvAcavDCZ8wxaHm3+EDAt6wtxcABjldSADAzWqtWSs1O100XwH1K8/OL67uXOpMBWhkCiigFmLZL/NiUBdVI52fAsZQKFUK2clatVyu9wcrOxcGnW6zVms2q1O1Wr1SjAcDIT9q5RZFZGyhh+LpfHFyutFu1frdwcJcq9aoNJplVGSM1siwuZNFhQaBoRMkylMjI0tJ4ND/oOIc3O3wyEGFo3lWVQ2VsYw53IwPU3PJiF9Gkyv1ZEyPJUDRRoKggMesblLVVAajC8WkpkSyeVWUQrG8JsSjuIXkUA6Y9LEpz7ACGn4ZekEHbs1gCA7TwkAF0BWAvnW5vTYrzvhJB4TcMQdDaaqLziaH5QrxsE6CarORcJkIgG02CJMg3ZyWMTfjNY+4aFB3cpiieS4OcteOgdTD7SaPQFIBnaVxKzqoQEf9NCdhEDblW4O8hoVWtwygOR6Zug4/B3rYgoC7cQfoXrvdYbNY7SaL7XXBejGZiaEhKnp5IhxWaLVejAVURaGMKcDeXKGQTeaAQU5121306LR7szOLS6ure/beAmBUiIwAuFgqd2YWF2b6gMJzg36zO18FAA4DAEfi0cQQgPuzc/3e3HqC03RJgS0bDSUSKXjyielGqw3o3uot9vsAwCNWQvZyXo8OrE2mg+GAHAqHgCSg4Q3oI0ZVWKGQrslwj0l4T5jX7cKcTg/ho3A7ZnOiyivUciTQfomNJQQGJSNk96jFgk5pR62WUStm8gRojPC6rb4xEyvxfkPjYA3RoXgszIrhSV7VfQ4ZdrPqwANJXg4VIyElnctASPHTVhujwoo2jFy6uVyQVWSJZhhRI1uu1RrN9szSAkDwhuDjOAE+yBBKAQ9PoEM6ah/gCLfDZrPaKPgb6zQ7Wb8UCvKggB0YrfIa69W9Xr9MeC1WB0EpAScfiyo23C/5gDVwaoSkNcU0OoJ5SZeP4iVZCxvj45NpTVE5Cq6M48Qwybh9Kkd6UAmgFsR01mUfer54CDmjOAKL+2ZnllfSJjuLAHhtVlBoTORCjd1BjuVwELu8KGuR9ERl/mzSI1B+FXDd5yN1XYiklGQsnUmryXoxHlOIdCGXjlCJeiFX6uSKg2UAYIUOiJm5eioS8ElKKL3jYJgKBnpnVWloIx80Jno7D5xM5DfF4yvEqQMbJ5Jza390INCsdVa2Ltx87hRX2NhXrJ9hLt1+73xz+R2bsd7s+qF7X3zT0ZO9cyvrD9+f3zxT3nd1a21m+8L8fc8fO3t4NrO+ffrkucPHV1rXjizc/uB957dXNu54cddD7z7cfkXtYt4AACAASURBVPDUxvaJZxae2Le1Z3Jx8rGthTcdObe3MFUfX9mzjYqgn3j0sSefeOLJx6/OXaltbrzta3OpnS8/f99/nMx8/aO/+8z82rPFhV5xqjobT9U3z1698YbzS/Wzd6ztVf/2WceNH77lTV/ofuIbH7vjO19mdO9TX/nOY+99+fnDB744CCR+8crnJooXTk6f/uvPf/SDf/5wJ7BrrtPd8fgzP/nRwdNHLvz6X375tQ+fWYx+55UD9fbbz1y7c/zBe1/80stf/ebXPvf5T33onW9++HB3dXrhsSOD3qOfvmfr+GDX6T2HLl69+/o9d1+9eObo7vbW4vR44+n3ffjs/M4Ir/tDuxa7ldpEoTcJSGcYYR0kHSMkUgGJYFO5SCQWVPWAGoEQxnPULQB2OQDHkK6ifAAFFI18cxmGAingZGmnR9L8QZA2AEvD0Wlep83lIXmf2+dy+1jG7eFYl83HMCzhwjCCYniKQ5N90X5UQAIhvzdZGsIEJ/CAtqlUJp0wDM2vcKhMNQw4lw6r6QlOVdAUAi/hpVQOJTlpzIW5eSkg0i6UA/ZJEm530DJpd3pAevgoGhQMKgn2eHkRnaUjCwiCon2oUYfVgEQEovHfV2JH0Wx4mVE1WdNY2JipOFxIJpc0wogPgLqNA05HdNTPE1RITgKhHMumMpnCBPLWjaVi0VgC1f2O5/PFiakahKaZucXV9d37Dxw5ferUkQFs9VQ2m8vDc6Hylfrq5okr24VMsVWJwcVAXH3t60fsXrOJ5RgvqqhiSKvFZrWPINcBRqDdHoICfo0GJVlHxkZNJqvJbAIpbLKMWhxmJ0VILOPlSJ/VATSDYkUVwriEUsDIcghiHi9rKJml669ptpsgf+vFcnuAJgRWAIS7vcHCykxrOkAJPJp8Jfh1VVRlNaxLajRdnCrXa6VpgOFmo1Jp1LqdxfXF2d5sp4YqolsoLQwAHAwpooTqsNDUw+BwiFK50ujCS4C86PXajW6zXEQj45HzIMUA1PD+kB4ID62g4dKG343qsFApEk163RjuEYKqqHOiCNjislowH+UjA+moKEVDFKVHkrGwEY+EQAcmdNuY3e2TtaDf5wml8kbESCUFUQlHMpqSiLjsAPaxBKrnSlDKUI/BQw+EhhN6/EMABlj+PQDTbjcAsBVuhELjuGVszMFRQQVn0nFUTQSbQwMABgUscKyqSazdJVIOmx2zYFYvR5hHcIphJDlIwkcZ97gIp4vB3RbbiFvwkUGI2F4n6cZ9vKIogLewkQSRR6qbQX2+aBAFMzx3ppANJSpA8yF7KDQOC+gl/LBZLPZRk/22UGM8CQoYgDI4PR6JAAA3ikZIkxUqNp7PpDIIgPOpXL7crjfa7W6/0+jMzS8BAu/d28pkjf9VwKlCabrdmxl0u3Orc/P9XqszW8lN5qJB+MzjsUQ6M9lsgzgezCzuiiMAljU9HAnFE6lsMjtRrjURvHcGy/3ueIwzW0APcg6XofoFN4cKfwCrhzVYtwAY2WEhCouMr1AGBXdZrR4SdXl7QOa53Qh/UauVIgZFOe6necaFuzgv8uN2wibwWF4/iqYzM07K4TQzI2OsHgwnQkooEPMno0Y0qEUm1UjU6aSiqkBYSFV1q5GCHvEXU1EjGffDruIlAZhhPJdsLBdl5CgbRKNYk+PT1WazM7u0sLS0ukcgORqlb7Ro7JYXJTAJVDoBmh1uutVGwH7iXBYnqysh5EnOuTBKEf0CoZG4LpOUxe4gaCWEs7Gw6nCpSCKYadXgaUUeM1vcoPlvOWGFjFy2nOREjacYuxVCYlgA2qkyBG63un1C2ipLPptLIExON84HVSyxsrUwt7iUMjlYRQjldsxLAMASF6jvCd8CYBphJeoDnjtvwGtois+M+Tx0MCAlipGkkc3n1QSwtLDsTRezSRDFjfHJ6uzEeG/5UFfwE6qSmaslQ36ck4KZHVtBKqh3Tssiy4n+QCQ1NbNx5Ew4vVs6sUad29pxID6z8syhcLc3v/PAuWfedCxU2b2vVD9FXTl3faF34E/2GLMz6yfuefH546d651d3PPRg7uTx1uF7ttbnzpydefyFZOvUzvTC0e0zJ7aPzC0+urxxxwOXTm4t7Hvjw5vPvXm1+tD2ytX8i0ce39y51pne/3Dr8hNLBzeniu3iyp7j9zzw0M2nHnvi6SefePKxfQcuNQ9vvueekv/5n/3oUxfffk/qdz9pxx//0fTs0nhjaj4XrWzefu2+m6cX2pdv39pV/PWH9O43P/fNh5zv/dq1L3/m39/vPv7vn/rhc2d/9oufZfol/I6f//pX5czFa92td336s5/4i5vt6I7yamvx+U+/8uie/Utf/s1v3vqZ7+xfmfrw56u5/VeLJ+5aWPnTJ//mu9/69je/8IXPfuTdb7l5uLda3rhx6cjFn//Rxz+4vT5zfv++M5fuuuvaXXdcOHt8s71zd6VQ/MP3P3D8WDVGTY8b+1da7dp4vjMOKg8AOKArHCsnE7rgppKFWNQIokOXQBqiIYv8HW4dQbu8FJrK6XW67BQbimoKzVAgBZAVrk8BWYiO73ieQrydwJ0uHwma0+N0Q6DyEALrtpOgfQjM4YJNJtCgcyMBZH2gBiAQRMO6KCrAjVmS4FNpNCE7BajmV2QEwIFwJp8rRNSpfDAQ9aDjOzQ9RoJF7/Vh8ALAe2XaDXHLx/hFp9tJoBIm3ksxXpK2m1xekL2wpGWeRkZLogihnyLg7TD+IMA/GpwHAByNxoKhgC5TUhCggILQlEuCBs4XUtFoMo0Gw0RRN2PQL0uKEvZTvF8N6vFsEkLUZAalBhPpSDA5PjE+kcsVJqdrw7A3O7+8Y9fmgYNHj548uZYw4gDA2QwamTTdbDVWVnadOpqOZSbGq/VayISPjACIcGyA5lGRMHLWcDksIzbb6OhtYx6ecgCxdtldELydwMNNZtsoQO+I1TFqGgNQ9pIegWFJmefcThTURNRPg/BXR7II/UVB1tBoAMFrWp1Wrd5tVyYbvU6z2WpNT9c7g9nFlU4TAbDEQ9Cn4Mt5BXUhKVowPVEqV8vTdcDfXhvwuj9o9Bbn5gbzAMDNBsB3Ax1BA5bJPDq9BhjVQlEjkUjkJydLVUDnemWy0h80O43yuKIMq6DRMSuPFDCqSEatuKEAqFoFJZ0Zkrs1DsnjxsyYJAGYaVpCJk3ApEjcK/rhXkuxEEmH47GIARiMTi4i8tgohgP/oBXOyyVyoWA+F4BlEYmmVT0ZdWMcJ8eSHop1KRqL/AWHoweHuWe4gN8DcBAd14uAD06H0+uzjPGcygLSjpkcAh1R3ByaHYLaaQIa6cJtFi8I1yEAe0TSYbVhNszkogkrKGCWU/1BkpbEJOGhXB4Bd1kcJi8P5CHAsgROuJweFq1DgcVoWhxWP7PwgfwvAKPOexrYLZqxAdIXs1ttIH4xdPxsMQHtsmGj4WohidqSA2K4WozGVEqtF4ClCDIdn8yijEg+k8wmsoXpFjCmZm/QrbcG8wtzCyt79jT+pwo6GDXiyXwZSFSv12nPrMwtoKPqmVpuIhvVBQEwLZ7KTDRanf4cLOSdUUHzwy3SIxE9Fk+m45nJqWoTzWKYnV+dGUwavNNEcippwWJaVHSwsaymRIcAHI4MnTiGzdeawpHI1gewlnBidqeP9PrQwGfcR6M2fZaHVQsLCHa9h5I5oD/wZbaRsZHRsTEv9tpRB7BqD+4bHR3jbE4uFAWSEI5F4gFDD8PvsUI8mXGQlE553TZGY10g3TgjkUXO1TFVoHAIPAHYyflUc2VckgNBLWAglx3gw41Ga2Z+bnF5xx7eh2zk4Rr04UiGCCCwDlRUE0CEmMx2mzcIwcdtsVLo5E6hBQF3kqj+n1IphyKRtM3mIBgp4iNhoeAuQEm7yw4ALJGKNjpmdVlsmIeCGy7qkUS6aiA/AQ4VqHJCWKNJt0R7HFYT5mPyDgae0MazJgzDpKBiS+/ZXJxfXAQApiU+kFmdU1QAYFar7goyDIPZPcStIiwEwMERC6GpPovDh7NAho1UOJlOR7NyrAoKWPOmCymA4cT0RGmqOzHR3HGoLQS8cig1i3LALgbgfX2/nwgFOydlaeilF81MLxw4c5c/vqQeWqa39+86YHSXnz6gt9ozq/vPPPXCqXRueUe5dZq6fPv1xdnd7z1stLrrJ+964U3HTrTPLq8//GD6/GZ3+45dS7Nnt5fe8uBI89K+/O7Dh84cOLXVPfBAb/vGfWeP7Vs88dZTl99940j2vpP9m6VDN+7Zu7LQKz202Xvy+PLunc3xzsTaXlDANx9/8vGnnn7yqafesP/i/OyJ6/3pG9uJhQt/cv2Hn59/6nh068c/ne2sj9eK/fHg9Na5u+57+PjyzMVj27X+t1/phdf/9V/z3/vlUx959d/+rumKH729+4P3PfJvv+gF/Ds+8NLHf7YZPfRQY+3pT3zxCx96vhpbbA+aG09/4s82Zm//xauf/u7nfvSm+reP6HP9Vmbq4yfvPpv506ff/o///K3vfvOrn/v4n7/46JHuamHfXQ8eeOk/3/Zfr4Dw3zi1cez2O65evfPKuXPbB+Znt2qFxtapjZ1V1Rg/3Fb2rDbmGxO59jiAjIGOoFWeE42oTDt9iQwqUwGZJ2lJNMluOJ6FwAFKXQTNyjIQQXw41gtgiqWcTruXITDSj8axQ7QEjYvgDY3tJGjBh3txDyExmJejcIwC5os7QdpBxCG5eDqmKWgVJgC7EkYUnkFF5Z8sl04nkgaEl2hUlmTOHwgBABfyxaDRycBisNt4RZA1DuMCktNO+pzIU1LkvC6UPxM1Cfe4CVbSFa+L4mCpO0dcLg/ymfUhmcGDwEGFtjzIejfjD6PuiGGXBPyMAwAHZFIIahJHGckcAHAqXRhPpZLZPLqeYTcj6pVRFdgrAuw/v5Ed4nQ0AmiTzkZD6cmJfD6Vyk5UavVmu9OfXVhZ37334NFTJ07fvjcVj0NczGWnS8XidHd+cb7ZO3o8F8vEUhOT3SrnswYrGV0lgH5rqoRKM0Dp228bGx19/Yhl7HUjGKIulMdDkTjqxDDZrA6nZQQiO+x4xEJIGggHS5AuDKSy4Fd5VGOEwFcGZJNEGXW5yrLqV1/THwBydgaDRhdkabM7aDZa/bn5hcVBuxKgRL+GSmQYTvKLql9ByarUJOzU8XKtMl1tAUiXOv3W/M7VhUG/UW10mrVqu1kv5yGQBRVEb0TkBQ0wFQ1niqWJQmF8YrLWANRuT01M10pozBLcJ2o4+odVdHQEPRwOqMN7RmOIgXugWQSIgeC4zebB3YKixnTRbLZAkHZ6VZGmBWQToobjoQiElXAsEFTDkmkM99K8w0QwPrw4KMYnipoYDEXjGUVLxjxOjldiKZeX8xJhJoDMjQDzb/X+BlFyEs0k1OEf/GgqLW134DRpNZNUQLBZUBZYomKSh88k0HicSCyggUa2W73AkxS/yNhw3uewOdAASSdN2kY9HC+ATqSA7CUJN4m5NcbngtUvkKSmMTQoYJfTDSAt8DKDszRK/qDGaF743yNoNI6QRYVooH4dNgvusKKH3TQ6akaDhe12bCw8lYWdC9pfidWKMQMBcD4WUgWBik/ks2l4pBKJSKpQbaMJkt1eC36Zm5+ZW9q90cjlE/FoKBoClmQk8tONJuoTa3fn5pZ6nd5gpl6YzEaDghAbTg+ZhG+cWZifX9wRloEkqaoOjAfoFUgqAOBWB806nFuaGRQjnN3kZcNeK6ZpScVJxLKKYsQQAIduAXAYDVxRBADQoe+zG7N7ScLnsjutOJB1kiOBhMAKkBQZaFBAwGnag3ksPsqDW81jdszqcd1mwt0gQ33ukZFRVDgeihvJBLDjiF/zw/OngC5ni5Qg8rBSXLRBk35VpUAEh5KFTEBWGJzjtXAslp3ItleLohgI6gFUZZVAfiW1en+mP7e0tpv1IIMhWHQKfDzICwsdjQAcixSBm0wOqyugKAJhtxJ+xR9SKVZw232yJquUzDsFhabRwAhGNEhvOBx0O0U/53S5aCUqkcHI6IjJPmLzugGAYT0Gopla2CMqCkeTDozmtQhNemjEuk02gkxTbpV2mSnR6nI7SL/uG9+/f3FxaSltsnt5TosvDCSNxmROK+8IwmqBj4ccAnB6sjJ3TvmD27yaRtlsyJJNj6QLyUQqHc3745VCPKYwGQBgAU9OglxoTdXm1491hZBPjqZmKomg380L4eLO/aovHOqiHLAoSlokPTW7/9QjWmJB3Tsgdu3aPGrUFp7ZUiuV1vye25968VQ0umtHrnXKd+7UXfO9Q+89lJtrLxy+4/lnDm+3b1/e88SD2Su7B2cu71xYOn9o59uuz8r1br577MiZg6c2+pfO9M/df++5rV0rb3j04BvfuXB28eSR+rV+9/jZ9ZXZyZ0368fua+9anW9N1IcK+MGbTz72+FNPPfnMkw/sODt3dOv02f/7y588c0384ac+/e2dgfr4e7/7voO1PaVSoT2tTx84f9eNBw+15i8fOZa7+K0v/EoPXSxd/e19H3z1qu5gHjkdtKVe+d6/PDGfNw7+x0+/9KNfbcfWr88uPP5/vvbVT/xVw1hsrXTW3/PE6fW5L7768+/8+K9/9oG1f1utbA8ilZd/ee7co+U73/7s3//4W997+Rtf+OT7X3rD4c5ydf6+Fy6+8Hfv+fFv7jq4sXh2Y/PUpStXrl45f/7YoV2trf5kaf7uktFWqfhSmj24t9FulQqggBPxOCrCUiECGFGJxplMCjmHqhpI05TfD7GYpwiKoTwuJ07QjKyQBO7FaCYY8SusxCGTC4ZwUUMAliE4MgRK4HkJ3IrakDACFBvAOiCD207xLOlGji0Mz3sIiNAhYKOZXC4xLHAKIqEGT8HSiSTqwU0asQjgBifrITQRL5MLJLO6Q6RAFfFOnKetHk31eCTe7SYInqZdCNkFWRUJHyh2XuPNozjjZSTniGkUKClH4+hkE7m2CqDrReAVXtYfQa70EIujqOcxFgwGggotKaCA+biRySGbznw+OZFO57KZZETVQ8i/UANdGFJplPRW4/lUrmDEUI4aUDqdLkLwG+Z4J8uATd0B2tB79x8+fur4qXNb8IZSuWKxODkxPlmu1RuVidqB7VIW5OV4eqoDCmW9qcKlA28RGS+oHqcHJwmb+fWjo6B6bDhhd3lJVA5rtYzaLdYxq9vjg83uslvtDqfT5SaGJecO3IGKPFQ0zhnFO2TSgzJYAKSo0BcVPL2m3+ug0tiZwaDfadY7M7P93uz8wvzcbLsS4VHuQRGRsXtAQbMC1VA8Ux6fmh6frlSmK3UQu6V6t7O0e2W+361NNzqteq3VbFQKRjCIqltFUDAoaQCqMpIvlqanxsdL49UuvFANnqJWElhWQP3YaLoey/uHPbl+9IBL5HgROfPzoEGRB6PH4fbgmB0XBSksUmNWJ6o0Y4IivDs/R4nBWCwczyRBosQi/ohmN2MeVvOMWFyuscjM6lwtIYhBPZLKcVzScNto3m+k3XaCJdBAqPDQGxEp3wBqRYLbOhTCGgA7rBLa5iQ5n8VOEAEZaI7DapfIKO/hs8no0FBiWIRls/puATBrd3I+h91BUI5RNBdslIB15tdBorMCRFEAYIHxuKywTShK0zjO56RddhcytOJk2s3TKmI7wwdzq+4ZnT2zDO3D3W7M6bDbQFtbLBaT2WI1mWxAeG1Oi2U0MpVNJ+PRSEg1qoVYHAC4UYhHNQTAkwVA4BRi1qF4rtKu1ett+PSBEM6guUW7NhrZXNxABdRaBAFwudFE1fpt1IfTb/cHg3phIoMA2IggQ/QSULSZ+dnZhR1RfxAAGKhFDBl9J+P5yRKI61Z/cak/0+vnAozJ6ZaCXhumhrKKxxlJCUrcCAFnCf8vAKsiaj5yezzIEtnpRu0SmBXDfB5OoHgayBnyIJf9iqLzII1JkJsWL+X14XYTTrpItwXH3IzL7LFbRkcJQQc0HZoIABHTUc1yNl8qFiYiqsIQJE+RBuxRVZNCWUmNZrMRXWPdshyJxmPF6XGQK8CSAn54hnAknpucHh7sdGcWV3exIEY5mldUCVluRgCAkRGlqgEAu8dMDrMDrVXGZfUqkhwJspwIkU7URT8lyG7WD2BqsXkYPk7j4UDQ4xB0EYgzIQRkPhsYuW3UYcF8yIcUNQuEM1OCSwaI9tKYleSECEORaL3Ygft5IprNzxImj+TAvHZMCimTq3uXlldWMiarm+f80UFHDDCYImpTqwFOFDC7D3aWrKEirLnbxT/4A58e5G1mysXI/nC+DEskFR8PpaZz8ZgopDOZhOLJVKemp7sTlaXlkzNcgFICqdlqMqR5BDk6vmtLAwXcO4vqQBQ9GE2VZvYeeySQWpM3O9T6zq3DRnXxmSOhdru/cvDqc288Gykc2ZNrnPSeOXH3fPvw2zaKu5Z3n7v7Lc8e2W6fWdz3zAOFa+sz569sLG9c2rvvxcszpfsn9Jn9J4+fOL6y+sCu9cvX77q0c8fmH5899+77swdOnT+cPrK0ULm0tjAo3X20d/1UZWV5pV6s5Zb2bN/zwCOPP/7k0088+ewj5w+frh469sCv/t8vf/K7L10ef+nHL8zNjF9/5QPfOF/crKAZI3rl0IW7b9y/WV2+68ixwgdeev4fTuPZwAe/8Tev/HfCdv2R597+4T87On/v9clYbXHm+qe+/NtvLIR33tjsPvCZ73z1s3/fT6wVV2rb9+88oR379Svf+8gvPv+Lk4Pde3urle4XPvb+wZ1Prq1/4NnP/vDb3/vuN7/86Q/88WNHO8vZ+efesP3ku//0X3/7mYMHVw8c2Th2/uLlq3dcuHDg6FZ7z45afs9SYbVmcPZQyDi81u42J5ECThgAwIGAwjJCKuXnKTGbQa5PgEpaMBMIogELAGmoDQLDUSejSvncqAgrEFEAHDkXjgqKcVoBKSGjU0WeYkmfz+d22JyU4HJSIIIVBiN5wmtjdU3wwbOQtCRg7kgobKSzKcPIoSPgaDTASQgoABmR/o0j57QI0GFQYqFwLJNJZcMRhXTKhMPFEyYbRdgdosrymkjihE8gUfm/g1ZVEbV0sASh8DY0F4wTMLN51EmC8vWi8h8JjR5VBIZnCNYDCthIoLcaRuPjjZgeDIRUUNPIcS8eSWWS6Uw6l4sXAVyz6XiQF5Fbv4wm8QZkBvkkKwDAacDpmJEG0J3I54rjhXweAuAwO/Y/AHzg8OGjh0+eP5gyoolsoVjMZZAjNKBTtbtrdzYznikUy1PF+szyStjLK4rb5iG9TiR5MBcFMcg0CiDsUGTc5KMwjAKJBQCMRIPLibmcTlDBNvgD5vS4ca/D7SK8DCsOi3shUCC7e4BcZOKr+FEOGJ3nvwah76DbbnfanV631ZkFLTu3vLa6MqhPxxGRgiDJyPBOQ6oWDmnhXLE+VWuW69Xpegv073SjN4CI3e725prlSq1SrrSazWrRQACGSrAgfuogKSPJfCJZqDYbDdBgrU6tVJ9vt6oTEGAFNGyA5eF3XkVDeDVNlVG92K1BTGgWMTKrRADkwtw+IB0cLAu7eRRzu2hKjqro0iBUBwwQwJm4EQvGI0ok4ByzOMiYZBoZM9te7y72CiDHdTmYyRHuhIGbCF5PpL0mXGI9OodKeW/VQgeRFzUA8JAI6KD4kUsXaXVSNDZi5X1+BXdhFgBgX5Rzc9nEsJw3ElQJh8Ns9gkcyAuZczg5EmDR43OYvAJpGvGi4iw14KN4Jc/5GDfBCITP6iVFmggERZnGSczidPuATMm0R2B1AYHv0IHj921ILJp/AoTX7bLbrDa7w2oGCmYyWZxWk93lclgdI6MjsUoun0JlgSr8aQjAzUIUKWAmU8sDACfiqXQ8FMtOt6r1Rqddna61WoPZ/sz8ro1mNmsMAVgJxeKJ/FS9hQZWtUAgr/bbQMrqyHxV43hAn0Q2P9VAw6wGg/mdCT3kR+bd4Tj6vlSigCxXa7XOwkqv3x/kAuwI4dEV2JehRFEhLdEUKyXiQwBGvAUdQesKkHkCZK/bNmyPJoFeuXGPj/JKCi2yKjLzQSUEnBx0WTmzgtt9ZrjrHpfl9Q7Sw8CydGAihdlvs46+3s4CIUZ2pwaC3lgqlkxni9XcxOS4BioaNCip0X5YhfFwUlf88ULeCFEuSY7G0ulSrdRfzaPeNuTyBJs/M16uVRuzM6DmV3fzFCOKDKMAdKNpSJFwAHY6UFGJIDxjY06TFRUqcC6zC5a6EYWQgptwQRf8FKe4CT9HUGMWnOYSrCsSM0gH5+esFieEGtVflW4bGcPdHhfJI0tYLRJMFQkHBFHRK3oslMCFOJp2EBjldIyRuGqYdJ41OUUnchP3q3yqu2dpZW01YzJ7YGVHem0hyDj9cmBqReUEHrMRcCn+kJEtDQH49WQgItnGaOQ0Hk1mU9FkXMsHklO5dBJ5nKXTui9XHZ+YLGtqfvb0HKXSspyZRzlgN++PFnYeCBBBHQBYpAVZ10PJytKBkzeC6T3i0S53eM++rWRnxzNb/ma7v7T/0oN3n4qMry/lG6d8t5+5f7W/933bmYUdRy694V0vbp9oHO/uevLewrW1mYsXdi/uv7xz682HtJlBrtQ6dXr/ma3BnpuD49eu3Xl1eeeZNx/6w/dutpf3vuW0cOhEK/vAer8381Rz88HtQXfHoVqhk1vZf+rGQzcff+qZZx5/6rn7DhxZHxy8evG+933/Z//vN79MFqZTM8vz5584+7cXovua49VqM1A9fPHue+/d19lxbu9a//A7f/6Zj34x3pic/vAfVvhP/eNnn/zjP33nW6VEKtVbbNVLK294x3tOxhYe2NO84y9f/qdPfrYXW64vr+yZutrrf/Mnv/v5yz/9zWMHvvWLn11cnDj9xWff87bbH7oz9f5nP/X97/zgu9/7ymf+8m2PH+utTC2/4erpT777lV/91U9h/gAAIABJREFU/LePHl5fPr5++NzFy9fuvHBx74nDvR2brXLIIu+sl50Kx2eO7FroVPLp5ngyGUdV0LoMqjGT1UVaTGVBUwRVPyi9NLLLEX0+Gnn8Uxju8fhEP+vGCZyiA1GIkSxlczjdNIGTsl+LKhzLwtoVSB9DOKyYg5E9yIISlxmMEgiPRwF4c2M+kmQUGcMj2RQgLTDS7LC5I6pLfpQO4QUhnQIFbETTiagk+3lRDgJHzWXyID68NEHSdtJjc9E+hwOwUlF5yuFF6TUnADAX1gReGJaGcTJ8JTpqdmKUy8PQouQj0AQ4UHe8KtAs6YG1CVIoitohY0PfdQNZ1YK0lYKaJMRCyXQqg4yS4+lkrpBGlVrDrgSFFUGyQbTwB3UxkgHpnIzHjEwmOzmVi6eKk/lUNp0pTk1Xqv9zBL3/wMHjx89e2MzEo6AoUFI5HE/nK/2Vza19i4lscXxqolEZb9UbszoflGSMkAIKhVnNDh9FOW8zQxAeG7E4bSM2DHdazWaL2WZ2mHBAWgd8loTHfpsFzWdzwGdD4RQpsIIEl6YGE8h6EgIHmiiItK9f0JDRhCS9poWQd2bQ6fQg7LZb/fk5EMMAwf36RFBUZHRQrSLLLFUFQqIn4KMvVRDwVmqNRnVqvDDVnp+pT06UbvlyNFqtRn06F1JUURaRe5MMLyvQPBrMMDTEqk42AOyBjkxPV3Myj0wub1UZ0RREOTWkSij3K8sKL6EiPJpkQMd5kROHFcVnEJRaCBsxjbpxjiHlAAQWGRZZKB5TjVzaQCMtdd2I+gB43eGY10aJPowELPfzuhoOGzndrcfdFopVQ0lszE7ydJjTQ8GoEA3pQ1cIiK6ggIOaCowT+KYkSjga4euzWilGVTwAwJiZhpDrpDPhIBJFIb/KYlaTk2Io1i9znB2TCQwDvWw1eSiPzUKCypUDuo+Q/HmKYGy0EPJ6CBcvMmxQl0SvnXKNYh5coAhdIHlZotCpAJLBt7K/FEPSBFAP3OGwWQF9LRaAmxEzEDKzzWG3ABJbRy1j4Uoxl0qGo1E1UsskdJnw17LJAAAwnatPoUGasHLT0WhuutHqtTrdVqVc7w7mF3pLG1uNbBZ11EUDKurnLZSnp2v1VqNfn1tcmO/NDhamU/kEQKUU8UfT6exkvdvpDHrzq6txGRSsDHIoHE4YiVw6Oz7ZqVW67bn+YH6+WQhRt9k5uBAXJoXHZRaPlxg5Avs7FoxFbqWBFYH2ebwE5XHZ7RhBs8jBEw2wRn4jqKASuZApaIamJtNeuwnTGduo1YWZR1y3jYISlrwEa7fKgnnEbHudecRrIPUKkUqLxJLReC6RTqKBKOWJoAosDmi4SiuxQilnGOMRIVEp5yM8EQwFIehMlCe6ewuCEAwi96CgFktmC+NTtRZyDFvZINAUNZoRtZAA8jdhoLptQEzRT1Beh906auOCkgai1CorYjQMxIE0WXmFD3vpMI2LMpCLMbi34aArEA7xNiIsup1OnKND6SnVNOqA++phBHiTEppXXfHhtKxLDCwbXBBCKklYcLfPZB61kKyB81HS4aZoh9PqZQOaVNq7tr5jtWAeI2RFTc90OJl1U7xWXgxK6BwQSCtQkni2OD1/RXztCBkPaQDkhAe2m5EDqmYkc4FkZTwZVcVgopgMskYqnpjsJBLF6lwlqFJiIN6tGoYOF2Sklo7EGCPcOwPvkZEYJmRMzu6+cooaX1b2zNF79+/fDM2uvvlAoNmaXdl74e77jqXju3cX2qeZ6xevLfT2vPNkYWFtz7GH3v62I6ebp2dn73sg/0Cnd2R7Zfeh84sn37uhzRTz3b37Tx09sbN79p7+lXuuX9+9vuvmIxuP/sm5Znni8S3j4QvjzZNLncl7zvQu3XvH5tLBtVatVJjfOnPvw48+8+Szz9984dF71s83D55+YLVdKV+68egdzbVBe2bHzkHpuX/689ThQWaiOhOdPHrlrkeubHXX7t+7VfjAK69+8cVT9Y4xMZnltt505r7BYrWS6Q4Kp/7ux5+7vlqf2nr7m/X560cqlz/xwy9/7mu90GppbWNh4Wj0z/780Lu/8oufveMjr/72P352qlN99As3/+WF03c9Wr7/Ay99CyTwy1/7u79617Ob/bXK4nO33/j4d37zk1f/87Fje3YdObjz9tsvX7ly+ezBA0cXB3sXSuMcukW4ygvFrZk+RMPiTCGeCiEnLFXwsaKR0HhSTOXQ5vQHI8FoIiyimdiAp4LXi8ziaF5TaRwkMM2HoriHFz2Yy0xyhJtX/WEVqDxgHEFQpJcgcZOLB2HKUW4f57HgEFd8oqZyHjsGKMFyLl82nwYKb6SToAyNZDKEbAllgF+aiyWHoSUaQUgoiHooZiRAJmpqWEfu7RjFOn2szcP5woDXXh+GcWKAoQmnl/driiQTdll0SToniQJDMiQmQVijZb9ACcgXSuFgq4vwTyDrlRBE75AM+BsJJQCAQ5quMFJAgj0RjWbSEH4ySbiWTC6DLjGfgP0eViXAGV2hpYCsKUoqUcwCh0LFWvlCFvRtLhlLJApTk6VqrQkgN7e2e2Pj0NHtE2fO7i3EIskMSOlYqliudeZXd2wevbCdTxSnpoaGRe3Zshj0e1VaRxlbmfW6KZ9txOT0Ok23IVnntDvt5jGrw4GhuOxwk25QiF7aZx8dGzNZMIKFAIF7ODQDTh/mYGPR8ND/bzj2DY0b0JDnMku9BnRvuzczO2j3QMXO9AY9pGDmFpcHzXLUH9CCwtDCUpY1NRBUNCMTT+ZL0+VpkFLNRq0yXa735ue6jVq9Wi5PV8pTU816bboIW1yQAf15ZFaiqmooGoga+UIupkZiE41OvzVdLk9OZvySwgDaIJxhJXSpIT+DVDAyy0TmizzHUsgpiKO9mN3mdHuB+TGsb3QUZcC9JMc4PcAmeE6NxSOgwdIxZJcQChkxCvkEykm4hXDbVRDGUXjfoVAM4q5gEBafCDfUbXHQAsErXBhZYem/b0sN+G91IYUCKBENqwZEipfzWhwsp/m9DqfFchvDBhiXMGHAEg1EQMgBPzLZCEBMACrOgclep8Pq9djMPsZnN5OCRKrhAEFLagbeCg5Cn/T53GjQbzggSQTmdQIAuznSqzIEL4vU0HqSHpo+06jvyIMjw0IXjtktFot5dNQKGtxhtztGxiy/TwY7rfHaRD6DCu/9oUo2FdLZUDMHACwCANfGcwkjmc3ngNnm0cpq1lEzWKPX7s/3l9b31pAXdBS5gcXisXh+arrWqDdr3cbi8uJcd6a/WE0XEACL0ZCRSmUAgNudmf7C6oqhBPyCogdBzqLenUx+fLI1PdVsL6BVVM1oxCgm6JLHZhNjBcnn9McFOYJqoANDIyyAMZElvSj963I4QPYSPpQ48aEZoajvShyOzER9bIKoyQSsdZNK20ZNTofJhI1YbKACgLw77RznGr0NGxsx8SBedS2oiqLfHw4GoqGokSnmCpXppAb3kKMYSQ3G86XxbGEqEyk2KsWoSAQCgaSBtmdvT45lggEE+8FALJ4C9Tzd6ACXXNiBJjXDMhSUkKCh0pBQJBiErSBrNOdzWG0mGx2SUA7CrqqSEQnwCm3HJJDLBB3h3MDzccuYiyN03aFEw6LdF1F9NtzLM5F8WRkbsWMeD8kqOojyILxs1e0kBdnPUl6bE51bURTm8dF2u8nuI2MsEWLsIKaBjHnpkMjWD62tru0omk0MUNbsQpcSKBctaFMLyDkHd8G2ARIbzZRai3dIr309FQ/pTgvLkPDFoHFQo2UxmKpNJiKqEM2Ox/1UfCqXHO/kirUde6sC6Ao1N1MNhxRKVmPZ9RNx4BCtkwLPCn41mKnM7z50+TqXWNL29tjdu/dtRbqDxw4FGs3B8r5Lz77pQia+f2++eZq9dvtd84397ziaW1jZOHn/Sy8dO9M5O7f+yP25+3oLZ44vrhy8uOvy++8PrzWy5R3nTx87sbN3/cTaPffce3V97cCLF8/+xZmjB9q1Z+/M33ltaem+bqd7s7n/6kPXtvdt75zMtPMLB89cf/gNTz/11PNvfP7R7f1nKocuXmoc3tUvxSulYqf+96++uFU7sfnOj+QW2+nC9Gx48tgddz1yaaN04Z71A4Nf/PLVp4P58qGrR4ozmxmtHINwbTQr3Dt++pXf/PrVx1u17LkLpfb5C92jf/X9L331a4uJDRS9NzfWDh36wHs/9qGFz//mH7/+058eaw6++KGPPvCJt2y/tLrjgy9+7Yff/O7L3/iHj73nuc3Bjqm556+f/djPf/ufP/3gnsPnZ/Yf2Xv89PkrVy+dP3Lg2I7Z3Wvjm/sFm1gNCtlofF+/0arnMs1UNJPKghCNahSnplIBgRTTIJ2CEif5A7FECG4tgSyGCTTeCHOTrCrTuAd4GadpNC3wbsztQMXOnKKGFFSxxfKogBW+xW1zUZTb43VacMYNaMmyhIiqF1A3MUWzGJHLpVIgddOJJAB+MhkLoZIhARQ0F0skk1EjhtpukbewGojGAQRzsbChotSZS+ZpnnThDotfEGHlkbxICn4/RYlAfSGSETaasNMyQDDhtttsZgx4AyuILCEoEgA8yyPbP472Ubw/gvylQ7EwvBSocFSWozKAq6ouRGPZ4QAgiGJT+UQG5G0M5axRW6CiSAGVhlCkyoFiCsIgkOp0vljMZUHN5uAtJfKlyalavd2fnZldXt+57+ixEydOndmbj4YTGYDpiRLgVqM7u7Tn8IWT46mJMnpU6o1enpcohwysgyWRZSbpxjwc7x7B7Rbz2OiYFXN7MDS4cMyEykYxHGVIcd+wOdFqdYKSoEgSoo4f1RSBtEflp2jqmz5s8wGgESSRQcPeX9Pt97vI/7fVQT7BjXoLpPrcwtJKr1GOAg0KDsunUfJY0QKKGk0h19/pcmmyVK5UK+XyVBVV1baarRnkYDmRSwOy5tD9k+Hzl2R5WDMaMOKhWApwOx9JNqp5+DjL3WppMiXzQLK4YR8wkD24WG149IzmJCqcIKEULAPriCVAAEq0cwyEJi+w1tebnLiTdvgUzuYCnc2r4Xg0GE1lEih3H0BWpoLD5LBxyUw8BOJHQ00pEJgjoIBjuoe1jdo9Wi7pQ8PMCV+I0GNiNKgi8EUPbYi+8ANdjCRwHtxJ8LgJQwrdZwW6Y5HZOONW06FhBjQSAsULMZLiGVaTAYAdktvhAAVsMflor23MK0i0HtHRKI0ELWkEp6sCOtQH2Q5sTyRx2BNukuAp1HPCSwKFCtNuzQNGLXw+D0C+E7PZMIcFuayYzFabw2kzW52joyYLUC+7w4zZjEo+lU4BdQQAziQCfjrcyMYRAFOZSg5IbTafz+UzmfFSqVytl6fb3XqtVW/2B0tru+vZHPLACWkBwOFYZrIMAFyf7rRWV5dmO4P+UiML+kjl+HAsnkxmS/VOuwu6eGUpqgQ0UQmiqQqwYxAAT7Wr5Vpzpteb7U/FFWIMl3Qet1iERFaAuwW3NYICP0qbA5dWRCDmALu4E00kJZFhqstDDo02eQH1rEuKPPwNoSJhs9tHaa/DYnU67Zhr1G4hONJpBmpE017vqNv8Wq8R8qsCLws0L1AqXBhimREjOTk9HgEKKzCMGIomcqWJwnilMllrVSbiKgU3OxVHnGNmI0ORQR0lnREAxxPJ3FS9W2s25pbcLIcQmBF0RUGVauFoQAdpIPk5kYTrMVm9hqqxHodFkvkoAmDK6pRgsZFkjPeIktcFhIH2KgE7Hw4KNjyk+sy4j2cjmWnVNGJzepD1SkD366FwIt90o2HCQZ4mnQ5SksIUTbp9lNthsrtdAd2lSw4nJUD0dBMhRV04vra0tqtoNovwbosrPZKncE7Wp5c1lqExhw/ioCBGAICXryivfR2TDGsOC8tSqqglcwkIb/G8P14rJSK6kBifMBQqUyvGc438RH3Pdl8MyrI/PWgYMdXLKrH87hMGqUc758KKBFIomaosb164/4FQckXb3+Z2rm0cTPZmnjwehKC1tHnlTX90Pp44uJnrnqTvOn/3bPvgHx/ILa/uu3DjpZdOnu2en9u4eSN/T3vx3MnF+a0Lu6+98/7axQlpcODIqe2jawuPrxy699qN8zuWL75t654/K+6/Xio8fX/v5BPrS08u5o/cV7z9yvMvXjx612p5opxbPHr73Y888fSzIIGf/sP1szsXTt15erq62ZrYkUtOHPrvVz/35XevLw+Of6i/tFCYrHQCEwiAz610jty1tfP8r37y17sryzf+5v/95xOd6fmC5I8a0Uovs/3r3/31h//vq7++f2IhF5usn7/W2HjXVz73zS/OGxv1jZWZY/s2//Rrv/rBv//gvf/1wx98/9NfutRc++mX3vO5d7cOPnc5954XPvXD77788je/8DfveuP+/o6p/ovPXPrqf//w69/40puPnljZOHJo88Tpy9cuXzy2/8i+uZU9pURencr3VjMFwb+50m9P5wszk/mpqUI6k4wHgYClUhrn45M52Ja6DCEkmgjyHE9SPAADCesCd5OMqjCkD3gZryksw7M4yDKS9bhQ4yOapUoyoG4AgHEvbse8sHC8TrubJVysIiAAhE3ownwMaBqnL5dDXsvptAHwH0XO8ihlCaGfQ2NYQEfGk0Y4gM4rRTVsJNLpVETXCJMNp10glXjc47KOIdNIL6GotMerKjTn98O2EWjWA1KQ5FFLgEC77GYMZ5Brr8aKEkOgEWmo5JSn3F4GAgTSvrFgLBaEywihanAWuTX62WgMMDWbSI/njVR+vJhNpbIxlC4Kqag2OOhnBEmXhNDkkEBEDVRLlkrlxieLeWRfCWGvVmt2+v2ZhZW1jQOHj2+fOrMvHdRRFRb8J0BZvTu7uHHowsliopgvjk+WpuvNmYzMeRx04Bb+uEkfI3C42exwOuxW08htIw4MJJFp9DYIxR4v7gKSg5zs0fAj9GfU48xB/NIgYoD0jcQQLmlDPw15OIYQdTgLDBCR13S6fSCXg5lWu1brdBvVVncA+Lu80q6VwshrE+mQ4exCAFIA4EQWQi3g7+RUBZRUo1att2cXF4Bc9DqdbrfVqJfLE3BzkGMaAcKG5Pzou6MJiNOwDaql1mS1Wp6eyCQnS9WCTEPcYmn4Wk7wII2tSvpwSKIognaXeNQDC7eJJLlgulYICxTJ+4MB5+jYKIb5XLRfFjiv28uFU8loEFhZyghrICG0YEz32aw2JmKEVIYSI8lYQBEDYVB4qXCEsb3OZBlxqAnaPIYxFBFkxIgSQ/ZGmn5rGgMyRdKCAQ0V8sOihjXNO0ddhFfy+0B8mqw8FSGtch5VHQcDakjwOB0WOwWKVZVY1g4K2AHfQppMXsaLjEF5GoQ9AfreoCSVEXVRFUAWC5IaDwkC4SacDpD1HOXTeEoQ4Cc/rMCCnyRxayCQFXiWyWIxwc+h+rVZRkfMdtSF6sScduC0dqOcBtyIGoYWqaZjsNaD9WxMUwSBSk9n0+lcsVjIF4aTt6aqjampdmd6qoZsQZdWN1qZXCIxBGB0epAqlir1emO629m5vDDbmR0sN/PjqZCf5cKGEU/lpxptZDW5uLIYVkIaqEqA03A8YmThNSq9Tr1ag/+fHUzFJN+oWwYAttmZdEZ2e2g54EdmFkBcI5GQBqsa4JckPJgNdfx6PS47/BV1HiH/USB7ynByJnqI/NDKzmJzIPt5NIvN4hzziox51EO4KcrL2dwmUyDl52Afy6KoqbSO6jcAJIExJiam0gAbAsuKISOZn5rMF6rdTqdZnkiE2FAgmEkmi+Xa3K4MT+kaslwFADbiiVS+3OjXO425WScpcehEglNCig6kHGQARCZR8ksijQEfsuBRReF9NrMgsUArOOnWEbRM+aK8RxC92JgVp31S2AkKW3LgQc1nxjwCr8XKumXM5kBeX8BkUO95YryLW0lJCIs0hdu9smiwNI36GRyjQDcVA/MHAFcFj83lJuXI5PqxlaVdG0WTTdYl/8TagJIZj+AP1dc1IG5Ou5fgBNEfyxTKSxeV1/5/bDKiO80sS2uyFk/DG0wmc0qsOgkbhk0Wi4ZK56cKiUw9k59aPDFPCV5GTfbq8bjfx/qj+d3HInQ42DwXV/mQHktHioPdV2+eieXXpM2usHd194HMYOnNJwKNdn/5wB2PPX0qkTm0rzh3nLp+x/XZuaNvP5BZXN1z9r4/fsvJE81z/R2P3Ji6u7Zw++mVuQPn1q+/9Ub/7rnx5QOnt09uLu5/tHP22uUb2+urTz685+m/3Fy+ujz96H1Hdz+3sHxzPv34jtnLNz/ziQd2PraRzc1kF7fPXbv59FPPP/vGZx+/un61dHD9TTfHAfD//dWJ2vKr//WmFz/9wytrc6sXG73F3HSjCQB85e6bZ+d7Z+/cO3jmF/9k9HMf+tWPvv3JVz4aH7QWPvDRZ+8tVdPf/92/f/alH33td9/X0kv5VvnItfrWWz//f77zyZnIRmlrbu3M6U/86qff/fS//fRffvnFf/7nV/75XKX04V/+x7/dHJ+//7mpP3z727/7g5e//a0vf+q9b9wcrE/M//nHnvjr7/zrd776q1efOH2ye/D4nu3jFwCAj+7aOjg/s79ZG8SzlLJydJJNHF6dLRcz+X4pB6ItHg+HdV71J5N+1iekswDAmqSFtUgiwEKcAEUiegiX2+P2IZBjGWp4Fq1AwGc9EBtI2u1iJTkU9ktDBUyQlM/rwSwenxdEAoCwQHlFjSc8Alq4mMtDkQzr8OYKqWQ6mU4D1MIDgFCFXYiM6bloNJowUol0PKyjlK3oD8eSmUzK0P2eMZub8UgsQzg9BOXkBZnn5SDnBFWBc8PTK0VmOcJDMgwtc4wcgpfFXC6SI328ykF8B5oRkCQkOSjUhhRFdaQJAyJRJG6g8AoArCDYoeESCvlMIpXLxCPx7MRUqZhLRkJGJok8q/0hPyOhut1AMZmOGeGQkR4eWBcnAYCLE7kiCnuVerM7QEngXfu3jhw7fnJPKhgwUtlCPpvNFaYafaBEh84dz8Yy45PonLA7aEUVhiBQ1zJBYCagxmj+0eiYDR52q3l0BALy6MjomAlQ142jgW2ED5nzOyCeobQpaCkJEEQNg0hDnsURXdeRJEWtv0OXSC0Cm0+VOATA/V63N0C1OZ3ZmZkOsiEEBO41piLo/Fgelk7DLwJ8Elo0mcgUUeF2BS6zXq/VatX2/Ory3OxCD7QRPE+/1a5PpKMq7SXcGFwMBTdSFoIpdHSdnyyXWs12fbpamSgmM1NFYC6gcSkCATCviiIEKWk4pAmCLycIyHqREFmSIPlYSZRjk1PZdD4ScplNo24Ad1EWVBEIiUdL5xOhdCabTkSDiggy34hy+KjJq4HUkinNSACFlIOxlJFM6OEoNuZ0jtxm+/+Jeg/wOK8yC5h/F7CsMr19vbf5Zr7pvfeiNqMuWZa7ZFmW5Ro7zYkTp5KEVNJ7CJDQWfrCLn2BpS+wlJBASEJCeq88/3vHy/+L5AESWZpv5t73nHPv+57jF2xDVozEeQ1XDENSfT1nJl3X0VEmmklX5R4AA7wSnGWzE6iARlgs1j4TyfpYk5Y0AKyNUNDLOs0mUEIIgIHawasBATPocg32Y4xnqM9BMITXr2Acp4UIlme9hmwYyGkGmatzDO7G0PgrBZtE7gFwr/MZZS4Ay3XaQB5a7WjSe7AP0BdZL8EWAyU8aLLZUeihw2Z22XFHtAILL2T0ADgTEVnM186GVHQEnahmUqlcHpgg4G+pVEZRGfWxkUpluFEs1afmd7TjyQiQTsOLRnKC0VSu0mi266PDW4BUjU1151rZfMyvMiDvjFAiV260R0enEAD7zgCwjiRR7w44U22PNpEbeLvTKRmss88la4zTaqMSCdGDkbDTFJSo22sk5noOk7jHYQM0gXVig5WCAo8Bf3sGLL0jkF52NfA+RhTtm0Hxmzwcapp0e6yuARdH9fU5HRaKp3CrbYCI8Q6KEzW/15eIKrF8OptAG9Er64l82hAAmxnBH46liqV8odbtjjeL8FAsfNbA+fPlWndLXGRlmRVkWVcMkPqAW82R2mh9atzskFgUgkFxBi+hOAZYGkATFU0B7jc02D/k9AFbJCxmXmE0KDc8PjhIiyzHOn2Mi2V7AEzgXMhOAAF2Ovw+3GxzAKdVK9pQv8kMRZSWYB35/XooO2rr97CMzoNmMcP3BDiCsjpx1rHZ7nELMQdvuKxOFndaMQpPzM+vTM/v3JXpt/KarBUWJxiVcUFtbO3QYPXYzG4CABiwNlWcPqa8//+hwobhGGLgp6sSyjaGKpvVwrV8UJdpqGpB2RMr5BKpRjJX3XLWrBO3sr5Ut+rXJUJSjczuDYMOGCNnRVUaaEgiWuosnnPlsjexyO8aY3fP71hJjs7efURrjXXn951/253HU9k9i7nxdfLUOVdMTe7/5Gq0O7t17bKP3nlorXZiZPGGK1sXV2bPOzA/tX586bqPnRo/sTQ9teu8A0e2TZ1z4eTJC84/vXtpz6c3zr33C5/auXx6+KZLzpm9dvu2qzLTV2VOXHzNg5d/+sANa8XAcGr60LkX33DHrXfed+dtNx3af/bI/u3Pf3hntzr93CXM5Oob3/725w/8+smPjExPN5ozqUK17s/vP3nJdccmOuce398963+lduZz77z70jeefeyFU2rl8CtPvboazesvvvv89/769LOvfbfaChW6leUbupP3//LXT3x7Orp3ZH7X/L1ffffZf//jI3/4w49f//vzf3/kp6vFUmA6LwbOvfXIHTu2fuG2Xzzxl0ce++2Pv3jP6sTWTnf5xmvO+eLvXn3uxbe/sXFsZseB3Qf2n3XB+WfvW9yxNj+6ZzJTivM4M7oUxaPLo+16JZdqQ1HMJEKg7TROkaNRjSPldBJ2HjJ9lY2IjtLvPKSHsHlsoLQwmlNVULg2J0YpClRQlrBbbBjhsLN3Ku9LAAAgAElEQVSiZPhljiaQYoYaCrgwBPuN5ikH6BWPk5MIhxMWDmW3wI8hGMbizoAmikaiUZQKHAPFAhtPEs8o4AAUFmRF6YcFzrMyFL1YKp0EAMYtDg/pJkUcJCBNWklGBgrLO0y00zTI6CInKQKFEy6ziyHQgQy6CaLdLheN7Jd4kuFhdwvIH4pnUKs2oyH/HPjpUFOCEV/QH/AhAAb8EEjDCCajoLuj0UQyAZU+ZiA7dhbAVxFANgm4oIpeTU3EUiF0gg4vL5HJ5gtZ2N/ZRCqfL1YrrfbY5PT0/NKu1dUDBw4c3JEMBOLJdCaF/KALteHxhZ17jx1IhtJpEMAggWthlsNctNVkB/XzwQ9aedq0adBmHUT3fmab3dyPPBiQHnI6nTYziAMMDTd7AIBdHpIFVgGFTJU5IB2+nrumH5lLoS80q8LSnBSBYqiDqn3fKIBvZ2ysMzZaLTTGQKZPoCng2blOExSwIv6fDoFaCAAsa8FoDCU45Su1cglNUFVqldbkwlxnrDsDGrjdbLbaI8P1fBzWjMiigZozTVgSitLJZvLlfL1SK5UazWo5HQ4bPA3ipHcFzLAUGvlE16pnxqVElu8F8CEHZMxu87C8aKTiKssKZN8mCxoVpQWeZnnaPjTggbKrR5AxM6wg5OkbDonEYL8F1o7MEBo8vcIJ3kA4lIjIfsNuslocpk045bBaYd1gflwIabJuIGsmL6hfwCJ4DRo6goaXQLscDpK39rsZUlQwi8U0aKZkr2BVM0DXdC9IZQmDf2hysjQDfIaxWkWXyTTodiMF7Brss5M0oQdUjOd8EQqUUygTCUPFC0V0PaLzgB+k2e4hGByzAyqhM3fkw4FGs1wuJ+q7sg1ZzP0DpqE+wFurabAfyEe/GRDLZrdarE63y4F7aHfsDAAHg7KvnIsItAcAOIra0JlMswBvewEEcCZfKleQV0Z7dGK8OTzVKhfL4zNLjWgiFA76egAcCkWSWYDo0eZYc2aq2+lMd2aa2VwMCDkLVSGUzJXq8AP+TwHrPQD2BZBJHMo8LJcb1dLweKM+Mlb0U7Z+TPMyDquNS6U4wkVoOq8EAgDAsKs49JGjSE2LzUOhaBcQeiSFeq+AcvciONDxc08Cy2gRq1h/v33IRmt+TeCQ77nZRWB9fdb+zbQmUR7LJjJosQKZRkdlhWy0AHS3lCllM3G/1whkYJWxHC97g+FIKgtvwli32y7lY14agC8eS8BmG5uJq2hmUdFUtF96ANxoVcdrM5N2u4A+DljIMgBa79ZJ0uE7YeMLgHMmiws5wlMWM6XQEseSPG4aIGBNsxaVcbOMy96/2YrjVNiBbpydVt2PWR12QZaUqjzYb7K4kcus7EXdB5H8uL3fxbAqsoO22DhgoiTtdNGcu9/mwpkwRvgxp51hXSaMdBXW57dNLuzale63cZqiFxcnOZV2sIre2uWFl2u3QHHmOCUUzzYmD/n6308avoBzkGYYXQEANgLAydNauJwFasqnM4mI6ooUCslELV0ZXtiY8gik15+ebAQMyQOqOr/vkEH7o93DQDYNXYykymNbT1x13Bvd7t02SixM7VrNjc3ddUxpdRAA33vf8URycTpXW6ePH7xqZnTvQ6vRyS07Ny5/8Paz1lsXTuz4yBUjFxS3nFqdnz50dP6me4/Nndttza4d2ji0de5D+3adPnXReVuWznlo17UP3vilO0cObr394K6Vqw52LvOd2jl26ZELH5y/fedZi81iIzN58OTpG++67Zb7777tpuWzd3V3X/ND42A3PzHrH/7k+pt/uv3mq398/0Pt3La54dlCNtcM5dYuuOzaI92ZC5d3jF6yvTpZffeV3/7425/+w5tfDpcTd774E39muvjUO3//9VNPvvFiwhtJdaZqc9fOd2/7xZ/+9t35xFpn+66J7zz3zJN/+cOTrz322zefffGNBwrjs4lTnzrr5J4fvXb6iotLX3jo24//9a9/+f1/f+nulZGp5Mr8lZev/fyJ51594bUfLR3emF9bXV07cvb5564tbl3fPrp9rrZrWQiEI7pqF3aP14fL+fRoNZ3KpWLxaMTPSWIEAJiS01lQwLri9YtGTMc9JOFwOVwuCnfbYO+wigys1Q4ArOnIKJ9wWD0YwlZRCmiwcAFaMZLoOcdb3ThBC7Tb7aI9DlaiXA5BR94uTgfIG9bsyRWTsUgANUIHI/FYCGUSA93lBZrtFRbUIu1X0WCpovmMMMCgocCK83hwu0fBbJgdR5HoMsuBRrGjxHPKy1KixOA4VGgP5cZI2EKYg+RwEkNUAVCVo5H7AY16fQADMCcpAdAHQL/qPiMU0ZA3gVeiREVWJNLnCyYjoOBiiXwh6ZdQfKfIESgHSuA1VWXdjMB5NSkSSQUMQO9UDgpSKpNNJ+KgyhLZbKFaa7dGp6YnphZ27109eOjQ0eVUKJQA9ZtIptKZfLU9Nrdtz9GNTLyA5H0ikc7JJIc58F4mG/Bsj0h5HHbUhTI00D9kc9rQIIrFZkGdSS67xWqzY26AXrfDQkC1YGHzwZsHolw2kDcyyulDxpMoB0nT4F0h5YBPlo0ASNr3jSNr/jGQwZ1Gsdpq1CanZmbha67TyOkIgIWejTRy9wFs1KFE54qFQrFcrlUr6LK6NdaZXdo6MzGJ7oGR31ej0ajlowG/iNgNy4AOV3lKgvc1lkkXq8UGQG+y1Kg3aomglyKRWwtyK6UZD+sF/QvYJwnIgIFH3XHwHKyH6AE0oyhQlXkGdwAfsXkcGMkLDAcvC3SQndID/kwyFkLnm4Gg3wgHZY5zmTxenfXwoWggoIkqCoIHADY0s9ViIj0DDsLpsJopygHUAsUw+XpBwKqqG8gKtdeEJSEO4HA6Sdba76JJjndaLJsHN+GMQlqAR+KiNxANyxJuHjJZnAwCYJa1WXgnKFUPtrnPSTj6N9loBgGwh6W8QdByvmipVJqZA3Qw/DFDkhmcNveyRAg7TxE80mrAFEkSpXxaUOK7eXCgR7UGzeh/w6e+efOAxY40o8Phwgh46zDWEyvHUE9+ICDp5WyQJVzeZrIHwGyuXcln87lUKpsrAADX2yhsY6IzMjY12mrWRia2VKOxQCjo86MZAGC/yXy91R5tdZrT093O+PTYZB0A2PAyXAgAOAELuT08MtmZWZg1RC8AsObVUW9wJJ1IFyoAfMWR8Wa1NVIwGPtm5HXtsNmkVAZoCWkERCUU9vlhzaHnQ6/b5UR5mVASnC6MAv6CUg8k8f9zLRd7cdK9jnjGOuSCOqH5VYGxUzaH2eFy9/eZ+jYRiixg1g+a+QEaYVgyEi/lcjXYbbX6cLNZAxbCJjSaBDInif4AusdOZhsjE6MAPTIJfCseT5eLldHpJLr1RHmbhvefANyodsqzsy47wQkMhXLgpN4tMCCQV2QBfiWJsiFHUL9PFkmz2S2TIHwpHrdCIWIo0aKyOMe4nEObzFADoy4MuJ1tQPZ5Bp12EL16VYKP1OLBUfOhF9afL1nquPodFPwaliRsFkJkA+jyiWRwk8WCYX7e7aNwM8nbTS7MXdxY3DKxsGNHut/CeRVfaWkKRI2tB8A6TQLvwYFz8EoolhueOhBy9IH+NuyDNAuEBWXOQN2PJrRQPhkJqVwul4yqzmixkIhVM5Xm6NYRj0R6xfjEcDyquAhVz+3dr8EPGN4tqZRXAQpZGNl59o3neZO7wjtnsG5neV9hfOHOY2J9fGx29dw77zsaii3NFur76BMHr5zsrD+8LzW7ZffxKz5x5/kHxy+b2XPzJSMnS4un9m6ZOXp46saPXDJ9xbbGwsFjh1YXl67bsnHFhZccWthxw5UHrv+P+x78yWz72N375jeuOLt4UeHasf0X77vwVz96YOXc5Uh8NN85cOFlN91zx5133HHbh3acO7a8fNGnHvv00sj07tTyhfKVb3/y3//to89/MZfpzLRGQSmMR7Orp6645sDo6MkjK3u07FLwyFsvPffCcz9947X5ViedfKAVb+ozU9//3zffeObry9u+++1yvDA8/6Eto1f+9Mmnf7g1ujJ8YGT9+08+98wjv3/2lesPP/LiU1tcpcPt2lde+P25J95692Mn76ze+u3P/fmpvwAA/9sdO0Cg7GrNLdz0zuvP/u25t/547MTBmd3rO9eOnHXeeetLC2vLY3N7Qo2zEqyLj2ZEbc90s5pJxYZrmXgS/opF/wnAhJhIw5rTZEUTAwkf5iIIKPYmlF9gt7tJRpIIzGMFhAOAFhmCtA8BzjrdUDsBpXgGwzCnB5ncmMw2JxRRnsUwN4s5OYXBnaJXJq2o+BAsbcaK+WQc+Gss0osXDfk1EJcg4gCAUexBMBqKBBEAC73krhBoUSDtghvDSActeswAQv1DBCNQAjlkJWnKgVEiQ9E0SQISUSxhw9wUicYJKHhJALY4z2sisiBmBVTvUBqpixB8IdQlEkTTSEEdjUZ6RVJE55GUokdTsRjAZTwRQaEq5WopHfNLFEGLKO1HIBiak0UhGor5fOEILPtcEh0tZ0EGx6Mp+PhrDRRkPt2ZmN+1vHJgY+PIcjIYiMXiSE6n0rnKyOQsAPCBdCQLeJ1D1hwGvH4cc7pA6qAwAEzCQGYhD4bBgUGry2kdGjTZnXbQcG4MTTY4MNSEBV90L98AuUjxkoLYCsoQR+7KKGAetKWio3RJf0wQtUDAKyvv6wyD5AEQ7kyO1FujrQa6AZ6dmZ6aQADs7Y0E9S6BAaxB7gUjqAW9UKkU8yDTa7VqdWJ8YmHL1PjY2HCr1Wqi1uh6LQckW1JQgxVobdTQ7g8HwrF0IlPMVmrVAhT5armayycl4ky4PLJX46B8yIpCKeiin0cWHgJKJUAfG0YKwHc4nuIVeqjvX/v7rfZ+J+0VcCmgkA5GJFysL5qIx2LhQG84zBcKqlJYcDglBTRJMKTrIiv5/boeDwv+iNXhscLChIrlNg/iuAML8HLv7Nnr7XlCozFgRTW8OupiYln03lKWzQ6a4lin3TFg2cRyIaCmEuFCw/CgXp39fYNmO6CKDFrL6tZwi6nf4ejf7CKdA30OhsH1gOIiMcVg4MfG67M7r7x211g5FE6FNZV2k0N2p4fFCUzmGAGdPtM07nbZhwBwLVbQvFbgX4DwtgGA4YH+QWAPZissCiesZBy16DIkj8UrsaDhh4Ur+6rpIEu69UY8jMaQqEyrms/ksskUwt8SAPBIG0gSIl1dEIIj4/OVCJox0HUJpd0GwqlCtdEcaU8Mz85OdMYnRyaq2WzU8LJc2DBCKPKo3R6eAACeC4heBQBYg20SMkKpZLZULzabpXa7XWsOFwOcqw/TFMphd8jJLMmb6UhAlEIhn6ZLQm+wu9dEwrK43eZw473JI8QaZelMbKbcW3fw9vMiQKcgkXaMA4IDj0R72KHBAZvdPbDJNNDvgUVhtQ/2YZvFSMAXSSdT5Tyy+xpujY+PdiZGSgZmcG43BbyGR1lHPq8vXqx3x8vpgAy0Wk+A4i9Xx2fThiipAhpIQ+w7ho6g69Wx3NS0ywq6kqeQP7cX2T0D35D9Mq/xnCzjPTduUeU50mbHFVoRZU6m7AMehud8DpWjBMblGvrgEE4TcQ8OIGvtlw18k8vmYo1gWbEAsIIyQCEhAa83kCyMOzeDchVkjgJtjUlEFFa+GZ7QYTHhmN/r8rHUoJt3otuXzJ6FhYn5bdvS/SbBK+vlbVOsgNl4zQ8ATJEMaqfmBEmPxLLN6QMxYhCHquk0cQKrSawv5DdC0XjWiGTCfi+FpzKxkGSPlEvJeCNbKE5t7+K8x9BSk+1IWPEwXm9q527BoyntnXJQhEUWrVQ6K8ev28tldoRXl8mJiZWVdHvmlrOE6ujw9Oo5tz1wIpxe2VbqLJMXnbhkdOHE59Zzs5Nbjl72iTsvODR+2dTKzac7F1WXLti7OHv8yMzNN146dutKfvuRtcM7FndeM3nkynMv2bd1+YHV8+748Zdu/Pk1owv3njqw7ZyLWhfsOa904J4P7zj1wLHOwqGsUS+M7T91+UfuueOjt9x2y8ltZ1dXl/7nrWd+/rGT7dXp/Nond3zzhd997fXXh6vVyrb5kWyhMBzL7L34Q1evtXdeum/n8Fhjy3zlb++999rrL7x1XD93PtmKVouVnz71x1vP/eRZ41/58htvvXX5aL01cdXy2Omfv/jcL7fH9zRXti7/7s2Xn3nujTcP5ZceWqaE+z91qFM59fhndn39vb/MXPTJzlk/ve/Rp373xB9/8m+3L2WykfTC7vEvv/33F55+9tW/XX382Mz2g1vXjhw97/z1bXN7V8c6K+PlUaiSoVI2FJ8f7lSHq6lWJZPMZ0CIGl5OVuIJn0CK8RwIUL8GJQwBsBPHXS7c4nGTTrcLTe7IpNM+YHKSqpcTWYZzDNpxwuUBpaKLUPycyN8VYAH1kbgZIJHw3R4OszMi1BgBINBhcZLAT6khvJJNJuOhSDwaj4aCyBkACKPcA+Ao1JZAJBgOGprYw18DpRjENFmjTGaLg/DyHpOVsTswkA+ErrpcsJVgGSMjLg/GiFaCFDAz5hAZViCdqEtakRh4sXxvxoFFVpQgGAkXzUqwQ71SJKgGgzrqGUZt1wDA3kCAkrypBAo3iga8NjHbrOVTyUwEJbGpAidLXpXjafg5cioMxSyRDEUL5Wwxn8ujIPR0Kl8uFOuNERC5C9MzS8t7V9b2Le/dkg4Fo7F4KpWEv9Klkan5HctH98fQTHC+kMsVK3HKzko05nE5zAMDJqjA/Zv6LQ6HzWyxWhw4RbiBAaE8Y5TObLZAFXPaoDQ7PBhIYIoRkIxEdldaT/2iIWCvzyujgz1/NOIVAJy9Omrw1t/XGRtut8ql4U57ZGqy3Rid6k7NTE7NzY3W0wZy7xAk+UxbMjopQ/Igk0tnK5VcqdqogXqoj03MLc5PdCZGm6CKQf22GwCxccOL9AsUUAmFGeuhaDSZSAAKFHKgfUuVRq1QKZViHCOhHEm3CyNJioVyrggsOttHgpuFCiKhbizaQ6B2Mhb58DCOwYFN/QNubAiPkB4JSARuFSM67pQS8OnEQ7oBKyUQiBisCx5X1XiKNQLhkJflFQ0oQDyoaTFywO6wk5iNBX1is+GUR0WpOAFkCO03/CiKC4lh1Y+SAoBBAEdkPMB5WLekMq5+s3XA41ekVCWYSPn9PpqyARwiW2aXlZA53G1xc0433m+hLZvtGL5psw1NKUO1xxjNABUWTG/Z96k33/z1RSPoqEllSIww4QRDABPUSJwnCRa9H3aURW8GqT6wefOQ2fZ/R899/YOw4i12B/AxzA3sEbl04kBS3KlqOhqJoGHeWCnuF3CHvxYPovwMItcsFfL5DJC8fK2cLTRGuiPVxvg46NiRzlh3cnqiEEugGbWg6oXHDgK5agKxag6PwBqY7o52xmvFXMoHUhroWjiWyqPOu6nJmS1bAjLyZFS9vmAQdWdloXQjWlVvNoqNdkZn7H1OH0c5LGZvKs547JLmF+Hn67osUxgavHcO2TGgmIBGbgzRMBLELsqpVs8cQAPfQ+2C6P/DEhQUgSAtLlFwexi3bOvn2L7N6GLcZhNZZORutW3Woj4/cLBMqViut9tNIJWTUxPjM3UHgxE4aWcZ0RdD8/uKEq5MjpTygTMKOF0sVuudiazACV7FgBfYWz6JdB4qd706M0tQvaxIhoSPKEhJuh440yWIZtYJzNLvtqLEbNZuskmwdGWd5nCTjWcF1Sb5aV4G+TE4SHqYDO3RvX7HoCh5bBa3Q1YDZcUGTMqNQQESNdijRiw26el3AN7qCgpKd8sen+rBbE6O7p02ciE7r1HWQR43WXHcmFpcnOvO7Cl8wCbIilHYvgA7ySYoocZOLzAys52gYfcogWiuOXZWlBIsXsnvNIsS51VZeMBEFEiG11etxGMcqxdyUYWMljOFUrNQbU0cGcaBr3pTnUoyojnZgFjdtuwn/YGp82VFFTXR68ulFg7deo4U2x3aM8t0p3btiQxP33pErbVGJncev/HB44HEnu2JkXX2/GPnT04vf3EjPTez48SlD9979ODE5Z3lWy/dem5+ywUrM4vnbkx+5OaLpm9ebmw7cHj/rtmzz5k+dfG55y/Pn/74vg/f+dUvXvPZH+wd+cSRfXM7r24funDbzPm3Xr++MpatbdlTSlYS0wdPXnnT3R+76+7b79h3ZLm2Z/1nX3/4zy88NDE78qdnXn7qku/95dcPzp97066xXdsqpVahHU0dvPi6D62MLl66uqMxUU8tru/85aOvPv7Fa27/1puPnmg2mpUn3/7De6+9cn3svndf/s1jLz3+pVa7ceGx4vFfP//y7/ZF1lpr08fu/vFrb7/z7IWT//6zt7/fWf39iYlO+WO/3Jn7xrvXJvbdc6T1q4/+6vHH/vzID7/y4XkjFpjZumfPR55++YWnXnz2lW9fv7Y0t2/nysET552zvnvLjuXF7rFGpZRpphqFaCAwPz09PVlOjRZisQRINoA6TpUjQYnD2FQuBOUbirUaSKABOJVmKCQiHTY3KExRQtOmNpL2+qDUejGX2SK4zYAJIrLUAwAkPB4PihmzO1wE27OVB5y08SKDuVhVplwOhwe4KWPF88Cz/ZFkMhqOoCZ5fy+RDuovJ/rDEZTRFAv4ZdXHs6ovGI4lYQUpsrvPgS45GdugiyZMNEnRHBQx0LmaBr8BdV+JgL3AFykSw1kv46RJi0X2J+O0SxJAt1KcJoOs6cXPeGiM96uS7ge9BLgKpTUQ0lUFhLIoaaQWScaDAXSFSOYysFCL2VQiYkClRob3iKwrPYWZS0VAOgejOXTqBzgKMJ1LpdLZPCDT+HCj1ZlfXNy9vHff/rW9O5MGyP14NJEBiVyotrsLS3sOHkj704C+WYDkQlzASBZ3emCXDvUPDX6gf2Dzpn6zxQS618NwrMTwuJMgMNZlE1iLxeW2ejxWi9PjAv7L8wyvil6/hmaH4Gk0bzAAO8cwNIEXDZ8oMS6SRsZBGsVo70OHku1SvtaqtzoTY6MTU93puemZuRkA4AAayO01JYu9JmiAqEAonUUum4V8oVytQLWrVsdmZmeg1o2gqjfcrDUBhHMRn66KXE/VIMdCXzAURJfduXwe3pp8rtRsVouFUoyneQoewoVcNQm2dwAJ3Aip5jO3gKjtnaGBR3EAwCKN+tEGBz8ITMTqlDUMA+YjeFCyoExwoVgkhOJcI8GQPxAN8hgAhE/nCQYAIqBBCYcPJhwNevUAtmnIavO4rCTtslmAENp5L6cGURQX8ExAYr+mKGovokFCcYg2t4d29VtdhIeXcOuA6V83E0KgVg4Ykm74dSWgopt0gaR6XJPlbA4VH+rvs3j6Nzsx96Z+B0cwuiHiHkzWeSUUr81+8vU3Xn3n+WOVTCKmiwxOWdEEn6AyXo7zchSNwn5NQxYb8CkTMtoA0O3l/vYPDpnMNthtDifiKzhq1kJn9zRNuhNlNIKFTNuj+WRAcJm1ejIIS5PF8+0C0MBsOp3NVSv5cnN4fLTeHB8BfGqNjXWn5mfywSi6/TaQDbYRTuWLtUK1WmuNzsOH2hmf6tbLuaRfETl0tZLIlmpoOnZyYnY+KKPQZlXvGbdGE+lMoQAAXGm0muXWSM7H2vuxkEjBztcycQZ38FpQMnRDFigKx2nKaUZnXySOTp+RkEdJ4+jOAVgjL/6z+6rX+9dbfyKoZrcdExmzmfbQQx9kiSFkA20TOIVBd1x2x2Y1pPkTyWS+is7Zh1ut9tjU9GR3roVhwE2dJl4OJfLAHBNeKV7rDpdyQZX26V4kdVut7mS255SmyT61lwYeTeQq9Xq7PjUJ/MzFyjTNERSlqgwKUeyNIaGjccxtGXKZWTR4azfbRJGFZcOwriEb7D+vm/OSjIiOMoYogstymKJ47SCXKYvZapc1NSMOAa/GKBY0vxfNKcSTE0Sf3ckIPpWlXBa7SHn9JCgWkfWYTcACwhgN76pZoEFt43Jjy+Jsd2pnadDBK6pR2DZPCayNV4K17QDAAugakBaiYkSyjaWNsKhgCihgCwJgSYwH9Gg0qKcD0XY9lVQZPZcISlioUSin05H63OKJcUZiFV96tp0M+XDBkMpLayHK0MaOw24mOY8cTSercyfP8ycXlT0L+Njc+kas1bnphLfWGptbveAjD55lhHZsT43soy48dcX06JaHVmKz88vnXf7J+48d7Fw6tufGs2fOaWw/f+/0wtr+nXddfcX8LcvNbesH9u+eu/zAztOnLz48P3n1jcsf/9B9Rz9z6zcfytx17e5tW2/PHruyvHbpXT8/deCq6ZGNlVS6mpo6cPLqW+5+4I47br1h13mzs6uXfO+zT374jR/NbJt6+Yff/dZX/n3i1Hf+9+l7rt4/vzabzVQmIsmN09d/aHl85YJd+1tj0xc//eRLD5696jvy8nff+v2Tz19YCn7jvad//62n33rmurd++NQPHv/G/7zcrlRP72sf+8Xzrz56OLF/ZGP7hUf901ceKk3/5Z3Xn3njE6MP3HSwMXrj8djq75955erDN92feuBz3/jbI4//6fufvWopliul5w93PvLSi089/cJzb/zy6o21qeXlHevHjp7cWJrfsbGzu2tbMX32x3fWyslodHEW1mo1O1ZMpNJJwAU0hqQloppIsIlMGAq3CgrYFwdBxIHMhG1PER67EwdtKSFzSQBgTYd9o0JVc/C4leApQUWthzgAsBudQVssFozmWRJzu9wMaWVB1XgAIwiH1YqTlMRbsAoyWI5EUUtmOBgM+nuWwDIUQN4fAUxGaQxhL2q6BgnsCwICZ4OSw+IiASJo65CbsA3hFEe40RkW7uIUSZMZAiUeYW4cKILT5vSwHOx3D2/oqSRLCoyEwi1FkaHPxJ8THvhDSiQdC4MCRsXM7w+BAj7Tokh7ASrR1WIyX85mcqVSPptNRlF8oldG+VxeKFDo/j9fOvEAACAASURBVDCbCAGJDkZS6XQumUYdzpl8MplELsi1dmtkfGx0atuetY319QMbaxlkMBJHQW6xTLk+3J1fWj58MOdPplMooiGTb8U5N45esRtzDW3q+8AAkkCDFtvQ0ICFFigPbDhaoD2kyynwHsyNTJ+dNhdBcWhuV5A0wD3Ri8a3grrmNQCa/F4JoE30KgQQKGDroojy6un3tceGm81mq9Nstsc63YmpqYnpuZm5+ZmJVsoLwlPrATDUQa53Du0LZNKJONKy+UIRvkrlwsjM9OT05Mgw+mo1kEFHLRvy6cgJESQw4xM5GX5/z+g7nU5nsrlsJl+tV0Dmx3mahcIGiwQ0EABw7/5PEXkJWUKi00gUnEhyFEaLKqgwDADIPLi5b7PTYWcUm5vUVGCDyDvUJ3B8AsUBoVnWoM8fDcsMCHafBmogHEKXFxJq8g1F4d8F2P5+lOjnQA5tFoeDtxI+ToqpKJ8WndT7zvw3cE0FRVqTDo+Hcg860ByYhJksg55Nrkgp4U3VvbJPl2geNIEQCGgoGknhBLzPKREgzmz2QQtBuPpMTgIjRJnH3RiQV9kINzZ+9Obbb/zj3btGKulYQIOKZqNpGRQfITGcQrldTjvqvbKiKTPUaGcyDw0hGB60omVssbudKKYPUJdG+EsgyyzCFS/EwoGgL+AVQ9lkSPGYvc1UWOV4liiPFnPZfCGfy2UqlRJqsBprtMfa8HcdmaMuLuSMCJoL8ntlIFcgIGutWrtRrbdm5yY7I6NTE7VyKmaoPBfygTBEQ0qt1vTE+ORsEDmayho6uA7Bvk1lAYDbtWqz3ay0R3N+1rrZA7zIYnbohRhJOxg9wOleXaAJ0KM0ZjPbkMO3G9nSoQsI1AIlSj3zK/4M8KLux94a0CRO4CiPx2ZzcYK5z2W39b+fw9wc7eizh7wS6ldzO+x9ctQXTKeTuXK5XGujbsDxKViXC2Ms5nQ7bENyMAriuFgvhZV8a2y4lAkjAFaTuero8HB3OiuhPlMAYGRpimKhUBfWSL3b8dC0lVRIWiZYkgsScsiLXEsVQGCJx9xWi2uIUFmGtpmsosJ6vTrLOodsHMNpBAdqWMJxUMA4zqR4j1f3uwcBy612i9MblJPiwIDZjLM0PKnPMILhRHac/aDVSnG6ivyFzDQrhFjSbRI43DJg8TAh3mXwDivPu20EQSeXluZmJhbyJrOgeoPF7f8/AOsIgB0EzQDpDAAA71yPgHAVfX6XDTaxxitJQ4lEA3LMG2mUYhGJ1jPRkErFy/GozxD88bHVFq9xshqbHY7qXpRGU1w8GKWDvs4JYEiUEI3G05Pb9196cSg5L+xaIIen9h5IjE/fekKrNEZm9l5w24PHAvrSjvTkfuK8C66cHd33+bVYd2x6+ZKP3XP44NilY6t3XbztnPKuy3fOzx09a+beK65evHWltX3//tXtCzfOb1xy0em1+cW7Lzz41cu+cfyKBz/104Wr7tq60rl39fq9E2tf/PS9x7qP3HP4qmPZWD47tf/ktXfefc89d99+Gn7gytJ3nvm3333mf978SHPHm5/93nU/efLJv3/uJ8cf/N5nd+1uJou1sWjy4KXXX7ZzbOX0wW2txoG3Hn32rUfevqDx8qtP/+jJ/3329/zKm++9+d177n7jbw/d//c//v2X3/z7q8u14uFLmhs/fOH1x09k9o2vLR5f0M/79FUXPf7208+98tbPYgvXX1hpj7VueuLJv/3j+a+dd8/46a9/+uk/P/6n7z581Uq6lFBXr1v+/nt/e/rFl974r89+aveRycXVxb0njpx7aGF+4fCezvadmcLhyzKFVjGb2T4/PTFczg7nkplMPByLRnw0pyZiXpFgYvEAVBfZ6xe9KK8ICiaKxvO47HaH24MDAMP6thGUCkpRVNwuh5siLIRMMYoC4EngoICxngS24oyAvOccJCwUIFJOXNAQANswDybyQ+4qAE8iFovFY1EoJUF0TykDAANkGDHU3hoPBWN+VUGWrboRTmQyEb9I0h4r41V4l8XtGSTgX1EWHFisx4yJChrLFyTG47Ch22qXC8cEn0QwRtLg0zG3i0IOTchYS+hFvkEtcMF3S4GgP4SGgAGAVRkqqkQj6wqD9UXi6Rio8HgiXcjnK6V0Og/V0+fr2YX02DqPJmWzqXg0FIsin5A8mgVOQlnKZDI9Bdysj0yON8cW5/asr+1bP7A31zM2ABAOR7PlWmt8anH3wY2sF6R2LJFIpLLZYlIhMafZhdGYCXXCQg3e/MF/ASW8qQ+TOAwoRs/pkWU4DOS704WDEnKTnICqGDrMRedavlAyqHuD0UgInkkFeQVlJiAhmwc3IBt8kBj+vtHOcGN4vDs9Nj4+Nj4xOTEzOQkKZ2F2op32otQkwPNeJeRlUDzwxxMxNIeUK6IcxWKpVKqMQaGb7I6MjgL8NhoA5s1qNqR7fQroX5ZhNZZFYarRM3ZMqXSxCCK4XC3DjwAFzJGI/ADVIDFgQKi1RUUOZf93/gEASOACizMKIjt4f7/ZNDAwNOh2u1V2MzyrxFC4HgpqmqEQQeThAugLn50XLVnVr8s8xaLuaB8AHPyzYCQe1ANhr83sNA2a3W6GcVidFuCCqsSh+CY0hYTiGNChvYqCmeCVcJTN5aY8Q05gaCxAq33gX52hcikgahzmsFEiLQBYy73QANCDsuILkaTdBkve0zfktJv6h2wu5IIq8wQucm7e6ysuPfbGO2/+4+0vt2uZWNDLUoITABgemUeNuLBDUGOP3WYeMg+hC38TOn4G8Ws2O4CLOR1ON070dC9J9qIKSQIA2A0AHAmGjZAuBjORiJ91Gs1k9AwAj6BIAqCMuUy5XEJZgyPNkbFmtTlSQ5fBi4sZAyDHp/pUyYfygMuN0TY6rAGZ2xkbGZmcqBeiIUPjqKBuhOJp5PfcnOx2pmbQ9YQke0E7G6FIJJrMFQq1Vr3WatdBAWd8tKXPHVYoy5DVKEcJxk4afg75xRPI29rlsLtRqgvuceF8L3nijN1a70v4/wEYaWxZkXhYqk40/07q2CY0e/sBHqoJ6/ygOYjywAlgn9ZNUtQfSmcSmWKpWGmODDcbnanp6cktEzLP0B6n1RsLZ8qlUruZCjbbrXY5HZZJXVNThdpoa7gzl5UF1VB1WDNhIxiJoDei1RqudjoYwzrgk+cEmmFJg+cNr9EDYDQJTHnsVscQurunQUlIGquqKsd5LBaa5VSS9XOCxjCewQEPTiUktz8UokyUytndVo8RVTPK4KDFTHBkb1gffmkyPyx+0GIiGBAzDOUawkQyBKtmiGYIBxoY1jUzMrKkWfegmyR925fmlyanYkODgqaHSjsWWJGzi1qojgCYN9s8KKJcCcRyrZnjMU4LiKrf7UAzG5wa0zVYLf6MkRyuZ2IqF8zHol4qXskAP8kUKs3tZU5lFS08WQ9pqptW/cXFQ2EqaHTPBTYOKj8YjI1s27j5Cn9kUd0+Lyxu2bE3Nj1/+1EV6F135zm3PnAoqG/fFp89xJw8/9KZ7r7P7ktMTmzZe/Lu2/at1U7W99xwYsuF5dUP7+psO3587rZrP7R4+2oLFPDehV03jpy4/MJzV3ed9fHDV35+108v6Hz5hh/ce9VVq/OJS/dd3p0/74Wbn35o8WuXLF2xnso28lP7Tt4I6HvfvbdurOzNH5x75pXv3Pb1/3rrvu7Br37miV9d87/f+ul3br3s6F8/vny4XSwmR5Lpw1dcf9HW4ZWr9s3m1l/5x+vf+sELL/3hO8899qO7vvrb156J7n/3979/8pGfvfnCub95/Zcv/uR3b7wzkm/su3Rk+T9feu2vJzKrjYNLR0srL//2O196/YkXfvmbt3+9b0ej3ErvePiplf/6xwu3PnTWPRvT//GlZ/7w2KP/9akbD+eKodRlnzjnTy+++PzrL3zzgW9+6dDGtumVxe3nHDt6aGHLxPrusfld9eL8DSsz481KYQcAcL2YbWfRxH4csE7nRCkWUXhQwDHksKp4DUWPGLLIChSB9Vg6ivUjRFDATpSGhMK5BdmFhoNJC67SlKYKPArywjwe+Hb4clM8TxO4G8SXQ+BJOyFoEulC86s4z5mwSi4RjiaTsXAMFkcwaHilXnAty/DBeDgUBvwIRHSUWi4DngC2pSKKpku4SxBIzG6y2E2guCXO5SJkEbPhkgR/kIMa5QDVaLITJM54eL/kUZKxKBMzrC6SR44UEsfLbM/tAfPgNC35RUr2o0qm+gMC5zUMmdYkeHZW7zVm5PPpTLFayJeLIMCzMaMHwIosnmnbBDgHtZuMJJPxRDyZB92LerBKPZyqNFrD9WZ3qtOZHl1aW1s7sG97FrV7ZxKJeDSeRUn1k1t2bRzIesPwCmPxeDyVaXcqUMHsHpKy9g1Z+/s394MU2jzQN7Dp/VZOlY0AaFyQX7LCO9ws5sZ6A9ckVAae5TWfLnuNgCrqcb/uD8dj6E5doAAJRNSqS+Lodhb1OXHU+4bHR0c6461GZwKZGE12p7vjI+3u3OxIMxeAIsv3ElllUAgIkSQNDQIXyvlcMY8eDIo6vPSZqfGxzvj4KJLS7XYT1G0EloyC4iuBBbG8HgiEk5FEJpdJZ+BP5XKFar1eLhbDNA4Ai4Gow3HMBQ+FmlUB6rleEoOEsukpj5ulPbSqqT4fNdBvNg9aLH2DFtqHOUUgGzjGhmMhTQv5ed4fi4ZQFlXIj/y+ABk0qL1iCE0BC7zi9weCsURA84cNzIWZBqxuF8O57fZBN+/h0Bm0CmoONYsHUAOgqgMgq/ByeMoKAOwasHk8LPIZtPeR5UZccNvf7/AJm62E2WGzcgoO60REr5mjWfNA36bN/QPWfovdCXsEc1A0xviDUJEJJ6upifn/eeatt9958z8L5Uw4IFMUbycI9NSCyssCiDWz2Wq3Wwc3m9A1sAkdQwMKO1wumx2BL+rR6o0J42QvLAkBMImlCrBrATq8QjBtBPycy6jHgHBxFJaro36FQgHWIhKA7ZFOqzk6joy8641mqzW3JWUA8OiqV0IAHE2X6sNNAN7x8ZlRNJk2OdnKhoKGzhIBHYFErlKv1jqdydlZ/Z8A7PMZoXAYXUpUW/V6q10rt9ppH20acAc11ma2hithnLXToaAU5QnMRZJum8UG1YB0O6BYAJDyZ6bceNT33gPeXs99j9iigxBBlSmc8lislgGnRPRt7u+3vB/38DTr6hsQ3Bg8o9NqMm+Sg1oglUnlywDArdGRYZSpOdVdmNR1WQB67YvE8o1apd0uZEZbtUYpGRBwr6KmC7WR5tjk1gwIcB00sK4G/MFILJ4qVEba7Uqni1EM5fBIIsmTEsUbDOphRADMcRLPYUCWTB5VZFmAYlknew4ypHWQ4HiFJHWWk1nGbQa8pBI6rgWDnIXwq3a7zeUL6VnJBLSKYNFoGlA+2CD5lrLZYsY4zYBPDh9yK2RAJhkbwZAOi93hkAyLJrqtGDy3lSD5xaWFnTMzIZOFU5ACXmAl3i4qofoOL41zFgdGgMTwhpLFkZmTASyQUGS/xwFKGFZ6QPEnDCNRNFLtRjGmyrFCIia7IiPDU91ubWLbzqNt4JVqKN6txkI+jJeC5a0bftLQ2seg1sAzhgOF0T2r151Wg4vari3iobWV1eDk9K2HvSOT3cmd591y/0Y0vLI1OntEvPSSq+bG93xiJTWzsPfo5R974PDR9unhlVtP7rggsXLTweru9cPr1998+eLda40tawf3zh69dPzkVRcd2bH72jtXHrgn+qEDlVOfuOtn969vbIkf3XJ2ffvDf3jgsYdnb1xfuHo1GC8Wptcvuvneu265884PLx7tjh86cdGbj7303utvHc9e9PbPH773c8/c963/vOqWle8+ffp4o9gsdpOpI1fdcHJh+Ni5hyZSH333yce/9vc//vW7f/6PF378/bv//tZL/o+885u/Pvb2b9/9aO29N9/9xxtv/2lJmGxuv3hi21dfffWxo5nV9uLe1aM3/eqZP3zn3Wd/+/kXX3ni1df+c3t1/pPvvfn4kY89+99f6nz0ssgXP/PYnx559L8/e8e5xVq2fuN/3vbm8y+88YuvPfHOb35wYvf61O49s0cPHTo4t3Vifd/41N5Oqnz90Wq3XcstzUx26qXcSAGNeCYTsOE4UUlEZY4UUumgEYaK5lW8EZ8kIf9G2P+4G+qBG1lR4r07YABgjudlUMAuhraSGsMaUEw5kkBuPg7UtGkHzENqk3BQlF0QCCspahLhdLicKP/UQZeKqUi0F5sGAjwMnBspIAE0FB8C6RkOBtLxhKF5gdV5AxH0XSlKkC0mSgcNwVKU6AXw4YAqU2j2l1EVNGLkdjiG/qUPNiwSJB4mFJP1ZKwgxQ2cZTlN4CSEYFSvBxo0MUnpcU0IGlFQUaq/dx/sE3ERcD7AegPBaCwZN3ypdj0P5SwN8Br1I+UgM2hyBjBDEVkKqHMkmEiieeF0NpdHEFXIpAF0SrXGcKvdmZmbnZrdc+DAoaPr23JGIBzPAJKnUrlSuTE2s3XPxkbeH+n1R8RBApfbE4t7lnfpoLTMZti0tqHBoSGT+QObP/AvJkbzen3BgIYoiqQQlAAfiNXicHto5GHBibpfD2kghGEHxmJhvxEOqKj5WVD8AZl3e9xuVO1Ri5bEvQ+FMIyggNixsdGx7tQUKJ9WfWx2pjuc0ZDDpowyjXp6BHVt+YKg0LO5DLCRfL5QKpfLzXZnenJ0tDuMNHCzAQW8VslHdUVDAEwDkxORYWEoEUXZTxkEvwi4a/VGtRgk3BTuRPM0sEzsiBqgplekfBVNFSXgVCzlIVjCxaB4BJ0ZAgA2DZn7hzBFsXM8KcsuIpAIAW7qup8Q/AAEgBYh5BHpReZOAi+ooWDIkDlBRZf6sZgu++J+0Nz9/SaHE2dwp3XIJhG4zrNhFJkIxVXpjSOhyUyfwoFypVw4TiMAxmlBoWz2oWBQwJ1unrfIVB8V5Fm7TVBddtyKHBEU2bXpX/ps/SgzHpYc8D4cB4GLkb5IUBU4lDvi8970yItvvPnG3bFcMuAXcJI2Yzg8sUTBb2Ot5gELyhwcGhxAfs/mwc0DKAHJimLG0E05Q1MMS/cAmKWJMzGOJEWkivFEKOwzVD6YCfgU2q5VQF2jwYR8rZBJwoeFZDBo1ObwPwG43qjUmtXJ+WQooMIf1GXZFwpHUkXUQDwCOnmihZhZt9vMhoEOs4Sh6f5ABICpUhkbn5idBfRSe0fQvRjRWKpQyFeatVqrdQaAGfOAK6BxNos9VgyTrJ0LG3KSceFuyu2wO3GaYUDOexhgiwSDDp97uNs7ajkTxSGfuQOWZY3TVHQNYXO4USKUyQaY/gGLi8NI18BmR79bZkiX1WTpU8J6IJVOwl4q19qwlsc7E5MT47MTfgNNZ2O+YDRba8C/qVfHmvV6IakzHgTA+fJoa3Jme1riUKS3rMl+5GCZKpQro/8EYMFhk2VSJGWOCHGc7kdRJkC3JZZzDZmGTE5FoFnMNiT7cHRjxlHWfg8sYMbtZVmZY53mQQeBxwxCDgQFq8enuc0Oh9dnJGhT3yYTTrFAUWE3+0OpXFOFj9zNSH4deOegXQBFTXAuHBiAyep0smGXqJE2J48P2TCOmd+7sDS9FOq3MJLqz22dZyXOxkuB2naNwgW7BwQ7AHA4WRpdOh7FjKQIAGyH99THqT7JiKveTF6NVkvZgCBF8smk7MqONMeHh/ONzoHTyNRDDKQmqvGIARorWFlaU2ldbR6RVQ4Zc0jp+o7tF5yjRmblvdvovaur6/7O9D2HvONzs7PLp257+HCmcHRndssh8uRFH97S3f+pfanu5I61qx566OxT09cvHLv/0NazsttO7x+bO33B0g03XrZ034HGwurGrtnTG/Onrjh1dMuu+y478PkPx65bb488dNtX/mNj8pzGrhtPzR584Kmr7nvkusm1qZ37cnolP3vwklvuvePmO28/NX+8tGPlxO6lP//5d/82XY4efu7lV77x0KtL//3IJw7c8qE3Tp41myjUpxKJw9fceN7s6Prlu8YbX3zp1Sde+cujbzz1zVd/+d03vvzS65/jt5389XvvvffUp8q+wz99/qmvrzLqjkJt6ZLZuS+8/sqjR7L76+dt3XflOX97fv/Db7/zi/ueee7l4w+8fnl45Xv/ePel3xy5+P7bjlx5b/W6z33/2Uce/dnn776w2m3NfPS/bnjrjUc+/Y233vr7z792cs/qzPaDc+uHjhyYWZw7eHRyfLlTbJ9anxtvVdPzE+MjjUJmpAj6BPQbKGCGUZJRkcG5RDboC/rQSIAe88nA6FgKWDgaPnJgJAMA7LKfAWBQVKCA7U6OsFAqwwdgRbNQKHCosDYrMEU3JQhIa6KDP5H3DFKSBlrVYnOgSQonnUd9TeFAMB5BfhxhQ1N7Y5/whZpEgn6oYCFN1kS5Z2wM4jHtpPi+zQyQQrvH5cA5qwt+Ds8rGvxWGsoZT0FN79+0yWzqNzntNg9GROtxPZpNhssxkA2KylG8jEbn4fdTOI4mUeVgOAwUAOioEQKwUUHWk6jtOsj70IQvyhIKxKsF0LV5gJIwOqpUZVZEzTooNphjYvAVAPmaiMUyqN8oB7qjdxBdRLMd3YmpuS1blvev7z949MCOYjAED5GIZ1GnVr46PLW4a3097wtFI5F4IpHKIIPKzvzOla6BY/bNm60gqkAKDW7e3P+BD9g5UfSqPr8iylDBedxNE4QHCpMbZyREXAC/vCjex2tEkpFUMgKorkeBzvqj6UwmAJRB0pSe66KqyO8bGxtu1CvN6bHRUVS1prqTU53h7vzs1EhaYsSebRbHI2tAAGBZNSJx5B+CfB0KhWIJyl11uDvZHR8D2TQ83G5CjWuiJixd7cXQsBzKc0W3BtEYPFQGHrUAf65YKldbtVIIpDiD4thRYoeDgXeQF3spj8iKSpQlluEYggcixYIglf2CZcBsHto8iIJmKQfDUSKHycmYX/MbqhrgaFoOhEMBP/ASwAUADJmH3xwOgy7kYdmgE4eIKgfiEibQQwOD1h4CO5wWmnLLKotu9FHjFSwyvZcWr/s1KGEy4yEw0j7ggEWvqACzmC76MYffqzAu6xDGg0RxEQwytMZ8XtzhAIVuQ4ZvZqvJZiVcmHkQBVJTvC8UUnWJBG0fjKx+5ZnfPbQYzMR8wPBoxoITyHeTk2Q/bwdBbTUPDgyaLFYUvtCb9rbbUFABQltkD91TwDRDIQDGUf8CSVOZQgxoqu6ThXAhZiisUyknwz5Y3lS5Wc5ncugOuIAAuNEAbTgKEARMqVhtV8dnkygkMIBa5H1ogr1YHR2dGK63Wp12e7jVHB+rZiNBXWJIIOEAwMlcEaBpZGxy2vfPJiy/7oc1kS4UcuVGrdZsVMvNRtLHgvALqLTVhsezYWDYIrycJO5gPJgNhC/Dkh43hpwBWBxDU7ronuPM9JF05k4HneefAWAeaDfD4jYnMniye3CP1WqyYhxBuKyDQ5tI2O8eu9nSJ8eNUDqdzKIJ9V74Z3dyojs61TUMDWAQQ30jJdiEY+3hsdHxVjHjp9BgUDqbH25MzexIoNQl2Qt80/AZwViuWi02Gi0AYBxemtvGa6ixkWc0hVGCeg+ABYVB170mi0PhSAa39ct+HN5v4Jx2AGBe4tw6YDrPucwDVswVDhJCIKjYXX6dGfA4fGrQT9r63m/2eOCjR9MKvmA601RcJpudoHU/T2JmMyHwPoLzuFjBYwK6SERY1s/a7AJjdzp5embfeKuxO7ppiJVVf2ZxjpV5GycGajsAgEUHBgwHpHUgURrdvn+rj49DGXPbBFH0CZoh+2OaL1P2pRuVfEgTg+l4UnDX25X28ERrfGrlsknSzzPe+GQ16NVAkAdK2/YqvKK3z9J9AqV5I8lCtrvnmnO06Ly6upXcvnvPAWNq/qOHldbUzNzKqdu/cDRXP2d3c8uG59jxS+en1x5eTY52d6yduuu+w+d3r1s4+5ZEZmu3MzM1OX7R0a13XH3p1vs22lvXNhYXPrx1+ZKLTh1YOviJYx/6zEb9kUMTE8tfvPFbDzQ2Zlsfv2D26O1PfObzj987f/aW8fWGt5mdP+vyW+68/ZY7bjm0c728tvXed5bL4/rSvuL0WLB50es/PUu+4BNfffaRN9+6YG02Xa/WE/Ej1954zszYWQcPV5Lff+8fTzz359/94578e++89No7v5rxNMLe0jUXLWTojfPPzmb9tcTdj+xPNSev3tp96NWXHz1SWK+v7jj/irt+tmPt6edfePHV59556Pw3X2gmDn/1oc9+5qEF176nvnDs4R17vvf55x597FdfvP+i2vzI+M0/u+vF/7nhF6+//MwrP/jCl05v3bpweNvysUPrWxandh+bnzw0l6id3BgfblYz892xdiuXHCmieLxYIhzys4wYjwCB5uJpQw/qoiDyRkIXZJYGXMNAb7lsqCKIIuEGZgq6U4XvkF1Ou4t3W1iZFlAuCWwSGv4DlNdqGvTQQA5J2G7oCJrzDIICRgBscZCggG04Cq9PhPyBeC+NMGR4FaXXCcvz4ZgPMDcgiipHUhj8Jl8wFIqlUxjnYwDFZbyXpeLAnCRGcKxXBdlBIQcul91q7uvrh19tcTms8IqVmF8NRI1U3sBdaB6OBo7I02iYg8AI2kOxghZNBGJxvwGqCdF7+P0UShIwGNUIAP5Gcrl0olopZpHJVToIhdqn9A7K0Q0gKiLpVCIejMWiiUQyh5qNsiB/UVNVrlxvtUc6k1NTCzv3ru5dXT+4vrvQs5xNJJOJBKjlSruzsHP//pzmRyPyiXgym60Oj4xNb19ZLXFuU1/f4L/0Qxl2OkAXDfQ7KU5GMg+4s0S6aMyGURTmcjhAInFSzzZD8ytGJIL6fv3heDwWDXi9miR4o/FIIqIjERsCigO1U/O+b3h8fLSWLXWnup1uZ2y8SKZUcQAAIABJREFU2wWCNjm7OD/cyhsgRPne8LUMshp5VKmBWCSeAp6WSf9fE1alMj4z2ZkYb0+Mo97T4eFmq1XPhX26X0bH3ECJUNhaKBJOAG4D/Bbhr3KlUq03a+Uoy6K+OuBpNO5yg6ZgkPMlygTUQdyrChQnjpIYq5lC4cUhxTowODRgHrI5OQFUhSozGBWIIJ9NvwG/j3ISeigA6KlIKCPBp4vAHwJxFPgiaLoK+JuMqErE8FgF3uG0WeD94miMsTopF+vjVTQCjCaRfGgCzqsbXsOnqH4vZ3fanObNDhpzqZLTZOIMMi84Ino+5CCloX8d5EnOZgIdTBHB+P9L1HtA212V2+KO954mOW339uu97957O7v3s09v6aQ3ShJ6B+kq0sUrgqAUFRT12q7tir0+vaLXAiJICUIAIYCO/7d2vP93xiCH5OTk7LLWN+dc6/vmVHGzXRTGJ4FvTrg2TJgojDBbKAyIAsGHgpJfJxgFrZpUuR31BtIRzSuC/rOTOEvTaORVxqfsdnSsOTlltlkmxzZu2jRhBo7qcLhJFjWqoeAS5FJJMiwzetloEqcImkrngLQCI1TEWDkDCIEb5URQFwWGLDWKudFSBOTMF6vVSqPb6nTqtWZjOjvdme7OJ0IhX8An6zqyTAunipUWiN9yrTXfQ8ci/V45HfaJDI7rujcYTWTypZE27M16R2NIsmagBEAgjWkEwNPTtVqpUK1ENXLKhIVV2uLkYomQyNilYEBLua0MOs3xAI1wWtw0S1Ac7SQAKTgWDQWe9l6RTuMwryIsBo0NQC8ymMPsJFm3Bedwj8mCe+hRMLnNPC74GNLjMJs3CGEjCMSwUCkUge3WW10QwIP2sO8LGprAuL3BfKaEhq/q3d5wsVPMByncp2lAJKvlwXBzFNge0FJekXyBQDBWqE1nCmUA4BlaE1nMSagqxVGcxBiMiBxcZSgNGgCw2WW2uDWUhO4cF32YJFDAFVyTbgaKnUND7qqswzphxV3hCEkCJ3R5QiFhk8dqCH6eco/9L7PbzjOjcUHdn0k3ZHzSZvGQelBiadcUprEBgsenaOAxUxa7KyQSPt5iJmindYohZrak/fEzkhvNPPDszOoSq/B2VgpUt6EmLCCFGMGwoi+aby/t/UDFnfbqusPCsLwhKAHFiPoC6aKRrRWzQUMOxsMhj6mM3Fdq6cbCnhuGToOnA6G5qsqKbkr3FbbsUkVBb56j6xyuBP2JdHGw+8rL1fAW/84l+tCBXYeCiwsfPSpXerOLZ1x86+fOTJSPbe3MHKbPP3rRcPbwZw6mezM7Dlz18fvPvrh/08LRT0F9SwfT+eJ8q3Ht/ddcsfKxQ92th44sbblt4czrLrx82/ZLH9z7qXs7rR9dPZivfOSe+369I3uke+E1Z+0evH77l5/6xfWb5884IxVvplbOve7Wu+6447abt+3b1jmy9rt3f7Pa+Obrr+4o7PzQrLciHftgqvOD37z2ndVIf1CoZXrJ+Nkf+vCxYfvCI0fauT0/fOudU28/c4kQn7vmsqW50Poni2s/+2hidmj79N/Pe+0XkWMnP/nsj7YGm92rt7Xufe2VP55TONA+e+6C9x/qXvHcL0787eWnXv/l8ZOnLmK9KwX63ic/Vf/b1zcv7nj4wsbXHnj2j0//5isPXF5eas7f9d0zbvrmm6ee+/Prr371vt99ennXwoGt6+fs3b99tdk/vF7Zub2UOXD2fLNeza4Me612LgGbLZWJIQXs43k+FpV5WkwmvL6wH3W5hJNA/wTY+KhhxukCAMY8rEC4AYBxAp0b8TJKgRecFlGmJUPm+REAe9wOh90ysQlKCIP8bZ0kZmI5woKjJiyb1eYCGOdN7lwm4g9FgqcPEQMBny6hCRjUUBRNGIoRjAbCCeBlGOrjDUUAusJuj+xVeYly2e0YR5roqakpB00oCkGJNEm5x82mjRsmpzZNTU7Y3LYJEzq640MJbzSh4DgDKpEDdSbxNAnYhaDL7WZVbyzhCyVCQZ/hlXRVAQGH0agpFsCZJaXYdDEey1cBXlLZXCbpkzUAYIUD8atI3ChCLRkL+gAR0HF1DvX7ngbgRApZ6PbrjZn52aVtO3bu2nfkrMN7sn7U85JMpxLJbKFY6/aWtx88lFf1cAQENIoTL01X2ovra1uqGkH5U8lAIkRbLXYLisUx2Vm/wmvwtmgM6eAEwF+oBFCoPSQlQB2XZSOsA7gGE+i9BJ0OBW7UUJ6I+yKpEDLB0nVR9IX8uv6eVqfdaLTbzf5gZmbQ7/dnFxeHw4WlhVYro6ERYNTxKaHaCCpSUQ0fOv4HSQXiPouGkMrl5mCmN0p0qE9PNzrdSmW6lA5osiKO8pw5NC3qD4dDKJ4xlSsXURs5AHCtms/oFENDqaJRGgNp5ySKFBR+dAGryrKgyCx83QPK1kFqvOITJbNpfGLCPDZJyR47j9pgcAl5TAcMw+v1+3QBlKniA9ruC/l0zauLnBiIJcNeCU1aGj4f0CvQ4rLN7OIF6/gmu9OJnFXtdoqH2kpHNBVhiaGCGlR1qPuGwYlQRDHHpM3u2ER4xhxAHx0u04TDQboEr+px87QZkMWn407CPjWBS44NTCpM0ibHhv896aI3mGiW9Zh5EtnOGCEvoRWiwI0EEOzAJlA4LlAUDCcmnIC9FOwXWcKALm4cm0TWlmaA30mTyWK3oqlfjKBGrVcYyaOmhZEUBvilKZTbQGDpbDCKzMtVPl1OhH0CHqhF4ZOgUJlWMVPI5/PJTLFQLlSblVYf5GGj3mxUyuVafTgbi8GC9aqjBncA4FK1Vus2K9XG/Oyg0+r0us1EIiDRBA3EJpTI5ErVdqvRG8x2QFiKvIg6DQJ+f9AfTGeny5VSvlrJlcohQeM2WZigQnjcbCQoByWnEZMDUYazjDvtIN0Zjw3HUViT3WN22UmZ52ThdB+WpIx+UU7Hf/Cj8EyAwKkJh8XtpVw0mo0d5/wUwfBA/U1TdEigUVPKJjmo+ZLJeHa6WKq1WqBzB732YDjfj4S8mkgxagC+VK23e4PuAB79dD7EMqIXCEex0hkO1iISC9tGkLyBoBd2b7leSsdKnUKnyuroTXKyXokScFaWFFzzycgLS2SRrYDZ5HRIflxkrZOYn+dQ3xtrn3ACJ9edhkSK4ujvELSR9HCKX7OYVD9rc9oUPsAKtrFNY1acYCQRyHEgEk6WRcI1ZcUp2adypGcSA3nBE24XLpKw5nGb4jP7eLvdTXimgNW1By5b/Fho0gIk3J9cX2Bl1i6K/uqaBpXOZiOhOEuqFip25vben8XSqsqjmFhO8pNhRYwGg9mkXy8kkmFeCISK8TCTadQ69Va2tb7nphWHzkr++OI0pQtTiuQtbz8cEkWjdb4usDSvyrFSubtw0/VqcLtv+4pw0eED2xMr2x+8UGx3Z+Z2X37PY0eT+b27u0sHyWPHr1lZO/rZfZHFLVvOufGRTxy6ZPGq+UMf3ZL3phsxfzBjT37kjlvvWLj7YGP5/DO6+z8wd/TaK87fvn7Lh/d8/uPV5k92ZvrppQ9cd+196db88RvPXavOHrnq+//+gf2D1bPjwX5m7oKrbrn55jtuv375wvbOzXe888pbXxq8/PDXt6Z3vfr3x6z/9o+nfvfBRlwM9DMrw2wx341Ez/3gTecMBpedeWapBOJmz7a2Urvv2ydn3IP/3PvGN7Nzr3zxgbeOzz7/2JW/PvXdytde+tLH9gS67cv21e84+cqfjhV2Ns9cunxf+iNvv/HFXz370tuvXv6Hdz/HRRJR7sxvPTnz2LsnHr1h5s47I5/59K/+8sdff+O+a4uzrcHHv3P0N/986cRf//T6q5+/+fd/vXhp8559qwfO3tkFbnvO1vqenbX4gXMb9XIsvTTsNeulRC+TS+eKkXAkqNEsFwkZnFuIJ31edAdsiIEECCFQjBSQK4/DabG5UBoS5nJbnRghgVqRGMxtddM2M2lgtELzPOUBwCUZym23W8YJQuJx3OW0UIwNsNCFLJmdE5MWIPYEYXdn8yg6NxoN+mKgwP36aetiQEkhGPKGM+l4Mhk2NJ0H3B5Z8iRVu0OWCNbrcboJ0u30TJgmN044PXYSyKNpymIzORwm2NybJsbNLo/T5nR6WFKIhAOSzSFCRUYp88jPmUDpqxQahMF4HfVzBvwo9tNnIA2MQgtZnnG7WF9Q9GXy+VQkVynnc/l8LpuMBHw+L5BzTRZ9CiVQDAFcARV+UJ6+YCSbyRVziRQ61UdOlOVCBfQEKODtu/bu2X/0nDMKPl84nkmg/MJkvlxr9Fa27j2Y19GNdyQSQraN1WZnZmnLShGKXqfTmR+sBje5PBPY+NTYRqvHiEHhQ6m+NA8PE/ltY5jdbHU4cdiQghFNBUQplMqmIvGggQY5FJ4XjRiILuRIRHMRnQVQUgXJeA8U2Xan3+8O+qNMhpmZ2Zn+cGl5vlmLy7wEIMayqENGEFFrNVTpKIpLzaSQnkVadnoaoLsLC7rbaUyfTgmuTY+OoNXRGTQNL6Pkj0QjkVg6h1yJs6lMoQTyolYq+mmG4Sh0jYl5PCSPWpg4TlNHCYq6jG6oGZoUXU4Xw1MGy0noUHbjxJiFhmWHGgQIQo0mVL8BTAgkhK6JGKdHQ4HR+6crwAn1UCQU0IFtqbrh90UTfsUI6G6rjQDxgpqkQFQybruHBlpHebURwVBlDVliaSpqeQj5XeMet4fhEDQrhgxLxq9RTsJtHjc5TVaCdGGCrgOQUnbb5AYzbndRHoq1OExWu2l8I8YAdDo4QuKcU0oiiivNelAAPPZqHG/Aw9NA6DhBgrtJEHQSw8uCY2xsE7ryNU1OTo1tmrQ57FYbsmtE4DtSvxhOj9qfKZQPgAB4FN2AZfOhWMjnN1Q+VYqF/TIVqieCXljkZKaJPGFy+VSuAK96tVVt9xrNdqNWm65Uq/XqYC6FVrwXVpJk+EYADPjaBH40NzfsddHJRgoWDU+zmtcbjKVyJdS61Z+ZbWrAUE97l8B+CaLx8HymUIBfYomkiIm8ZYr0y5jTSYZUKajialSJ+WQJBKObJlweO7wFClQBi9uOeUiORcaJpw1PT18DAwKPfDlkdBMs8rTdilutPkNSg14aNyshilZ43OUwTRBhnnQ5bLYNYtQIZLLpQgVliaFmwF6n1evPdCM+r0+DVeiP5YBbNPuz/UFvplXKBTgQiKHU6AqltxJCjtPAQrzBUDyB+i8apVz1NABrHIO7aFVmWGQQo7BA+wVVZASWp1wOM0hWzouLnMOM+zkWATBnG7NxLKfbVYkCKeK2jU94PHLMyaoBw2ZW/JzNYRF4Py8TlvFNZpyiJclA5zPheIHFXJOTLkIELskQICdEVcLdDo9AWcfHPQ4+aFNlh93NeMx2wpkO2Sayu9JjFkGRAikAYIV1CGKgvlUjaNZuJ3E3LYDULXc373gkO+mLULTLznAEJ/NhVY0GAslEON7JpxIGrwRaxZhQnGm1ap1ic3H9khl3hGek+Ew3HNThX9GK63tB+UvV87wyADCpx6PJudULr1FC2307Vvijhw7uSKzueOhiudefm9975b2PnpWv7l0qzx8Srrjihpnm2j27ootbtp9/0X33nX3ewjVrF9y1NKzWdt8Rx9UDja17L7/pnof3tHbs29I994q5C2648tiufR+59JLv7y9Wrm0OV86Yj5x33Rf2Ry6/7MaLtleu+d7tHzzz+v3L247k/bXiwoWXXHPjrXfecmzt7Pr6wUt2PnPy5fzXfv/sTHP2L29cufbu339x6rcXDD/69L8vzs4lctPdRPy8m286a2b+iqN7K9mbfrv7vI/mum+f+MbbP9h81ReuOnC0Xb/mv069Gv3dk9+98svff87/3SdfO7nfqHavPF647sVXnj5WPbywe+H6q+965+W/vfLrP73xysdvvTFYK0b8ivczX5t9/69O/OPNk5+46pODS776neeefvI7n7qxstDYfOc373r51Rdf/Ovfnj/x3Vuee+Pqvcvr+7ZsObC5Uy7Eth9qbN7TiOw82qxOp3LLw5lBt5rtjWY7QeGEvZzAh4Ma4+QTMV0LGLJqSOEs6nvkCQpz4wDADqcHtCvncnuQJyUQLFaGWmZ2ok55L8FpKEeMoUFhUITL4bSbHG6BxdE8AU1ZaIawe1hFwKxmy6TJ7iScnlQ2HIrFYmic0QtC1D/ahpLAkGRw1PFkxGNBXVE4QtEMH8oEVE1OwWVlRYcVJILd5pqYHN84ZjIjz9yJCZPVZnWg0y7zpqmxcYsD4NdGix5coy24ixEJAvY6j/w3qJEPB/wP7nAJUEd8egyeP2oGCyEDMN6Dj3ZdYOQPmYiEgzlg+dksutyN+qBOqwojg6aB6slwtJRIh0P+cCIGGjGNgDeVyuQSGYCpSqVU73R7cwuL69v3HDyw7/DBbdkAyi6MpJKxKOotbXRWt+87mEPBAYBWoI2h1qHp4M2rpXypjEZ7isO8lkgE8SmPNzsdlyLIe1BTWFFBPALzQEV2Wq0Wk41RdW84mfZpwVwplwx5/Rov+oJeWZQDqSwoYpkVRVXDkVDmSIp7D4jeXn/QBwyGD+SNNOh2h0uLw1YtCs9cRG6MqEdXGOUDAYBFo2hIagTAOWRHWW12oda12s0mOoFs1Bu1SjkbQl3syNGZZQCGRV8E9Xans4DZqWwylc+lstVqqeRHDoHEKHfe4yHQXQQjAPFC7WHIGUKRuZEfp3PKhU7AVWX8fVNW09ikmyVdHhIwE6Nlw+cPjRLuDEPQvZhJBhKHRra9hizysh/+36cIvKgZ3kAAlpXiDagopYn0OCcnzHZ0L0Ijr2cOKo7Pp6HjDuX0KJKu6cLXX/3p3z+fwQlcC8QNENrwurFiWPHQNrsFaCOGuV0uJzBLicOtLtaBKYZGjo3ZJyftakCesCucnQAK4WIZ24Sc8eFqe5DzigSvSSSniDSISkXAKdLu9mAsL1KCLlg3jU/aLSZQwONTpolJwHEX6rQCkYv+w0eu2Tg+GkCiT+MvMAiAZaDN8bA/YKhcEgh0QEEA7NcBz4hcvZSBBYsAOF8q1Nq1NijgXqdZQ21w9XJ3LhcC/DVOA7AfAXC70WmUyrX5mUGv2+u3a+lc3CdxPCjgUVYSMhvt9GYaI/hF75EOwB0KBFO5TCybj8cCwVCEtPGsZRw3JMxpxwKMHFBIOsBHOa8OZIckkfMZyYkShdsnHW6MQB619MhyHHFu5fQZ9KgHCx4VrEGgwhQhuMYlIOawmnETpznYgMB67OYxZ1Bm0e3LmBrzBjO5bKEMSr/WhI8OADDo3YjfF9AoUgnG8rVatTlYmOkDBylkfMgoPZQql6vtQX8FVKGAHJl94WgWyk221qk0Or3pXoM1vAJICFxQBOA6jAgIrGmo4QNoKe12mCfMZsZLiJzTgvkYWmY5irePW2gEwLLKCOjwY2wcc4oJN6MFfS6z5BdsNhPDw4/nCTOKkWZkxefTw1AzihyJmyYcuGB4QelYLIgTeNxWF/CP8TGHi4i4aN1j84iYxYm5vRrjnl5NbhiDFyyYWp8HAEYJSvXtOgUi3EZ4PBSv+BLTnc0HPsK6wmESSA9Du0HoB1RvNBCMhX2RdsIrOXk6MFuLisW5bqc905jZeuTaOTcU8EC61U8aOkuI3uL6Ho1R5dqFYY0hWCUUCrWPn3PeRZxvi3fXZunQof1nJEEBX6rNDBcW91197+cPFxpnzuRmDitXXXJ1v7v1U4cTM8O5Q5ff+2/Hz9v2wfVdHzISe3O9A3XPlq9ceWDX8MqD1+8rrxzY3b/x7KXLbrhk/+ZLPn3khs8P1teePFbdt9Sdv+fDtz0ws3XXYwfi7Z98+uvfuvbIytr6QlzvJLvnXnL1TXfedsvOM/ZP79n5tRs/9+bjucV7TnZKB/76Qvy2d175yNNvfHv5sc/ePezPV0qJZjp+/i03HOyvHj/vcK5x5uefeOLXvd+/8/lbvv3i/b7nv/3oI63iS2++dYz+/bO//cA3n/1llpj53p+2+bqNIxfWrz7x+p/PKh6q7Jq5+4e/fPvdE38/8bHBgf848WDwhRmsEVx/54m9f3jutb8988rrRz+1c/nnjzzzl99+56GbaguNrbc+8dm/P/f8C4DAL3/jlnu/sHfP5u0XLW1en63487nls7rDI/3g8uF2pZotLA0Gw34l38wncrlMMBQOGsBGo6CDHXw8pusIgHUxnB0NCOCkx4UA2O7wIAVMIAWMU6pKA4d3O2wE77BSOiEaoApQvLgLJ2EXOu1mOyYzqO3URZMWDjaPR9BEwmkzu504IzN0Kh9FI7CxmC8U8IfCPg3tbTQCSIbSAFHRIAotlUAjqRow8UQirtsZzWpmcdAILheax5sYWdZPIL8K1KtjtpinUI7B1MaNUw4XSBFaJEjBOeZmoOrRIvJ7gG2PEgxBhaE2LExAZ3CobTiOINRnhFA3OK1qIKi8gPmxVDyZihdByyIBnE7/C4DRwRl6YUApSmho2hdJRCLpPGATmv/IJJOpRAwIWK3ZBQCeG84vbd6zf8/evdvT/nA0DKQjGY8lsqVqrbW0dfe+tOQFQQUAHIlnMrlyc7i8DgBcLIBcadYWF+bWFhZrjbnd55y/E0oevFaGLlO8iGIv3B63w45yGTyCF1kjgAqPZpOg/pCnny+Tiwd0PZSM+1VVkDlqFDTEI1Ne9j19NP/bbTfb3ZnZ2eFwZnbY7w0X5vrdZkIWVRQqOzIJFJAsEQHwQACDkM2ifiqUhlSrNzvw3c1mo1Gv1hotgOFyMR1URlb6HECwwDKiEY6EEomRT0Ihm0wXsrFkeTqf9SIoQVOeyD8TxRDwgqwj3SNLsiZzLM+RGGmncLNHUXggGpMbUBauiaRtFqfNAkAKjA6tMlqCRWHIwQgzGYhGYlEUO6sBuskBoG3wWZBAqAWC8RjKuhFcLquNptz2cRNAL0uwTpuHZuBh+v2q4VNHptAonSYSIC9/4dW3/vbjKbMbKixyL6UxzD7uxAiRwqxWmgFuQLK80wl8EneRuNVOa37BQuiCaYxUWBzdV6qwhFw4qDfBx4rJdjMXRn3zHMrJYGhkfcorNI67XShyllNY87jZapoYHx8NAJvRATSGDN6QYfYIfImR9eTotwh/Qf2S6DvxfDmaRN37KpsowLKVCF816kc+3kS+Vsyga/dUNn8agDv9Vgc4FmAsLKpSdy4bAdoJelyRdOAyqWK1Xmmhu4Ql4GStTrdVTeeSPpCjXkNHAFwCcKvWm4OW97RlswIvvS8YCYbTxVwiX4gGNE0NEA6Z3LjRBRsc9FuI1P0S6fJxAdpnkB6O8rg9OCuh6V7cMWXDHSDtkYsUvCo8uvtVTnPv0QesOCBegPWiaHCbKK/OAxXAzC58UopJMmazjpsUQyDcTue4kQyE0shzpFQs19udTqfd7Q1nhj1EwSScNKKJPFCO9nBx2AOGUcgEZEFGADxd6wz6q2FNFXWfrvkj8XwslUlOd6v9mX5z2GENHzqD9tCKTLAULbAGLWuo7wN2xQiALVbGz4iM0+TWKVJiGJJzTlgollNdksHxIuFxj00QLjFDUFrIj1l4v2C1TZGCIeESQLUZqJeq+v1GOJrI1USatE46cF73yQxln2A4UXe7YVlRjomNVo8jRrkClN2t4Ga7ByquKJY3J0xWTlFCaQBgCfXWGNWtPtA9Fgs6euQVf7LcXDn/vPdiqQANRZIhnIIkapIvGgDA16KLrXJKYKnYfMUvpLrNer1WqC8fuGLG42clX6LZiSgaSymB0uaDPkY3WpfENNIN8gl1Xe8473w2sMW3d5t08OAZu9OL6w9dqiED2/1Xf+xLhzPVCxYqmw8RF17+oYXW7kcOx/rDhTPPu+3G3du6FzXWPkj5Y7FjEnv8+KEDydXm7R/76Nm9LatL3bt2bLn6hvO3L153/5HP3rd9T+HlC/I7l7YV7n344kduj88+Plza9eSJ337njtv6mUKjFSsnqmddevUH7rrtQ6tH1/v7r/zHr06cPPnNpczZzdiVXynG7v/n/z374Lsnm48/85H1uZliKT5MxS+49dpdnS2X7jwcnT7+0E9+eUv7ue9ee/9rvz2R3P3oT38+3Xrqv0rk+o8fv/nsL13wyz/ds7NTLEQ60wcuLhz9y2vPndc4s79r91lXvf72w0/8/gvtQ2de/Npnuv91kRiN1U5978Nvnfzq7X9+5dQld19Ve+Lh//7Lk//5yE21+d78R/77gRMvPX/iqRPPvvP52w7//g/7di6tri/PVTJ6o9I6Z65xfDXc29sFAM4vADh0ivlaPgJ1NQQqToe9EA8brJOPpQO+kE9WdDGUGTkVjQDYbUcAjFOyTDudZpsbl2SKkhiXw05yNgul4LIhMwQNFctDkR6HzWaZdJAaizGYzeJ2TRAkZvcIKo8DYBBOnBUJPFKKR2KRcDwZS0X9p5PhRhO2HBVOBf1BFLTrQ83/IJG8wUQ6yHFu0UvirNsBBRGzTU2B0kXKYdJmGh8bR2g8+hU+bRizut1uD4vRvCTAXpdVgZNVXka4yTEsgiKWIdw4xnuDkWQyEg5Fo/ATddWn6T7ExGWvz/DHI/FsOpMKhNGFWiGfScZCPi86ghZ4aTSXwIosHwjqXiMU8YeyCDVRE1YykYiFA6FkCbW9tFEc0tzyjr179u7ZmR0d6UWCKDkYFHCls7i2c19GATEXiESCwXA2ky2355ZXl4qgXdDY5nS7O5zvzCyuru3YuvvwIAIUhYVaDHsRWVmgHAa70+12gChEWiWaT8ajPmAsKtDiTDGXSSeiAOoBjqFGMS1Qk1hkO6W9B6nXLoLQdn90CTwHKIxMhDrNlCxIsjK6/kWekKMzQUVH+Fso5NGI1WkAbiEAbjTanXajBnu4Vq1M59AcsCKeDjViOXQHDPCXTMIzhYeSny6lc9VKNqWisRoWZUGCDEIDriTDULqqaBqqvhQ0JvC2AAAgAElEQVTOcARGIosOeK4+AGXag5vGxqwkZrI4zQ6WhedqBASZJUc5doJPJ2yxcDAcCoTCfsWnykYEeL4XTS+jlKRgHE0h+UUngDfFYg4Qmw4P5aFcNhdBMBIBukPV0QCwMToCF/2G4+CLr73+yg0i6/7fdl4CmLDYyMkxC4ExJIOjsGCakfwUhYKngM2Yp9y4w2wG4TI5yegSYbVaMMNnSITHZcFpNxHszJb8uhGlQbxLJA3vAXqiBjrBwAjGA1QCM03ZbOObNiLjDfOkxekGje1BAhi9NDg6iEbjRwxSviMARkBModm+fCmajJ4G4DzsXh7zVWN+TYZXplzPp1GzXCqDALjaqna6jfZg0GtVpsvlSmUwn0Zn9v86gvaHksXKdAkgttJYGvYRKWvXE5moBrrUr2r+aDJbRINGteag4+VFkRMUYCognIGwZkul3HQ5HvZylOx2+8j3vs8u88DUPRHK7+NJZ0D0ioahOFnSCTtekmjMiZEAoeg2mJAklHDP8mi7jYAXPqunMViUkCmZJPu8ZlrTYH3QpMtmn/TGNAVzOCcnSIOHAmMf07LRaDYHpDCfK1Sa7Xan1R0szM/3gRTrEsl4gRSXK/Xu7PxMp95tFnMhVVJGAFwFobwcVFAXuKEFAKdjmXy60qsPZnrduR49aiakPYSs0kDWeVKh0WWxINC8QLnsZpPdSgcFkXaZ7ApBiDRN0I4JE8EwAsYbHCMTmGtsHHcLKR7XwwHCwvpFq82EAy3GFcEyZnLzsqb6/N5oPFpoijhmmbAC2AcUknKPAYRqmMdpwwnH5EYzZomKtjBvt4q0xeakgaprzc3JSQTAYQTAIusUOX16sw+WhcmMY0BnlUBqurn5vP7/Ggv5XW67mXbbVAV5CIACDuqUf6FZTIskl5st+cRkr1Fp97vD7WdePesJyIoQ6LaDAR8oXn929UiAUo32pVGFxLhwPg/0bMvxS/XkDv+ezcz+A2t78wurn70EAHhhYe9VH//cwUzl3JnG4hHxyitvmuvueXBfGKrWORfdf/95u7pXLGz7AFtwMts0pnt2j6GPXbn/kkvPrKxsXe7dubT/xhuPbd/ziZsPPnxlZ6H5pyNLB7btqt/6sQvf/8Xq4qPr29Z+/9NHH/voR/opw9epVsu1Axdccf0dt1+9dlFrx9J3333+1ddPzd3z+Eyru5i89/M/+N0vurve/vHi1sv+Y7W7mKrW5hLxi297/7b2jsv2Higlz3v2iQels1/4zTvvnHzmRysZ//L9mfJxX/uHz/3o8odv/Pdv/f0Pb7/x8PR0otQ5/4Lu2X9947mjmeXc8v5d7//dJTv+/bWLLnr9b8cPfaby3NsNXNnx0bmXTr1452P/deLkwx+6J/3QYz//y2+fePQD9flB/+MvfOy5V1987sQbr/7hoYt/8uZb1+7admjb0vJ0NlQvpI6vlo/viU1v61Yryexiv9tpl0rNUiyXyUYBMRB3i0W8nIuPZoL+sE9RdTmUGlkDIgDG3DaHG4PNL0qk222xAwBLHCvTDsuUm7XaKBFXDYWDGoNsHgGAURyDnVAYDwtrliTMOFBHQELWY7dZnVNOmnZhkRySLlCj08mAEYka3Oi8m6VpdzAbg4WAZKiMRBUt62owqZotDpzhuVFPtsdhmpya3Dg2ZQYFbJ5EXjmTU5s2jQMobxof2zRh92AYyY8AmBSQb6SE7A6RPIN//zQAU7jdJUUSCdC/kXAs6vcG/IZfVXQQcIwAv0HMJBOLJ/yhRDKdzWcT0UgQHpNPRUbxQBUkjuIZPgjYC1gDAFzMpsKRLIBgCgQ1FL+RPV5nfmlxecvW3fv3H9izbQTAmSiKEEjmpqvTg6Xl7fsLqMMbNaIhAM5Nd2YXlxYL2XwOSkejOxgsLA0X1ucHa2vbL76spED9slssThdIX7vdShAAw06nm5FAQqcK5UIs4EXeGX7NiOVzUJ2DPiOc9Hqc8AbwGlR7TpRkVfe+p1Wvt3ooELgPWhgNT87MzM4vLC60GgkQfYKEYolQyxoyiFRUw59IZQvFAmAvfOSgqNWggLUbjWYTDSEBAFcBgvMRQ1HR28Ujbyt4RCHgNeFEKpktICVWq0EpbBZSKs2h038PhuPwJuKsAICKxs/QLK6GAJglCdJFYLyOBJoi8bTgsI7bPXaLm3B4ULqVoCF/SU3mCZxhONxBxVD4MfB71MCtB2MRn4bcyjTfyOwvokCV1V0u+xTGEPYJ5FIFi5hwuQmK1RjFQJPRuheZeKB4QkoKUbUvvvr31xSbyxQIpkRGxBgvZvIIVpPFSAb9Xq/Ki7qExkf9Eu9TRRZ3Wi0mBzFpJdxTbqsDxAwrcCS8QwJnw/TqIEMR/hQ6FmCdGNAGmpUERdYkgYHNA7iK2R0uy+TY+JTZbLZbXUjxjnQvAmDCQ4wMOHD6/31Qp4UwhecKkX8p4GQh4lc5PFhPBFRFponp0wBcTGWy+enidH0aATAiWq1GpVytzy2mw0FkU6pqCgLgRGG6Umq2qtO1hZleq458s6KpiMKDmFJUXzSZyaP2uUZ72FKRzyirGIYvEIwmorEc0KoakKqQQkt2d4h67/usAgvw4fHimsqQWIBRNTkYQYOywHYkwAIz6t23OO1AMXg083/acu208JVEQfvXb0QgcvBJ04HlazxNunHKYZ8ErivjLpd5wu4VsNMAHIul06ksuiuabgB1AABeXFjoR4CCqRyQa9iE043ecA6eVr9dykdOA3CpXGv1+ytBxZANn6YFYsl0PFPIVwC/e+3eXBeHVQG8H/NwKg8ADAIASsdpABYplwP2nwkPSALtsZhlkhQphiTs45MgO2iM1BhapkiXaRwn+ITs0cJBkI8B2Wo3uYEUcjo1tnHKBU9K8SIADpfaIoZbJyZduBDQSAobd1GMDE8XjV6ZN055zAGvLSw5pmjRjsLYgxF9bjW3YZLT1HBqfYETeY8iGJUtOqwZk5VC7mJyIF1tbztX2ECFZRvhMlEOsy4xPs0bg+IVEpPr1WRcxuTyYDpk5Ib1bL3Xb8/tvHwZl3BZCwwbit/rglcpvXxWkFS1zhVRTRANPRosLB6//EMX68mt+u51cteB5QPFxfXHL/4XAD/w0MFC7WBturuPu/Tia+fnzvjU/ujswuKhiz710IVnLVy3cvn9NS9we8YiXe8Vg/yBC5hrzq/O7BlsvnXx3A9ef2jzwUevuPKRO9qHLvjlJbWty3tqnzp+8fGPHV24f3H+tn8+/NWPf+exbGJYlplEtrr/gmtuuu3WYzvPLu5Z+vLfPvvcrwr/8dbJmzcPes+/teMX/3jz+385+fyP5ueOT/fXcp3KMJ66/LbLN3f2Xrx7T758x18PUsPP/Ocn/v77nz3wwhPfvbdEZrLira8+84tX3rx3+7f+6y8PfPk3f7yrn6zWt13f2PaHN166YHrrXHtztXk4fvXb37vuqZde//t3t9SferfLrtzQ/8w3X37tzlt/c+Kf77/88eplX/72009+73M31mZbM3c/+/EXXnr+z3977tcXfPK+X556+55t68tnzW9dmPZmlzqHthYPHUlmV3vVcjy7PAuUuFzsFBPZXCYaD/k0luWjIVDAXHTUhIWOoP0J5JFAj+6A3XaH0w2bX5KhKNiByiogKxXGZbdirMXOiKAmBOQxR5KjBicoeVAyQS0TmMNOkBYSczuBSPIeq82BWXCBddPJWDgaj6fTEW8oGIjFvCPvf9ReZPOmY5FICFaMoY6SYnVd9MYN2Ld2OwP6G8Nc1qkpu8eErs0mJyZHB3jjk2YUXI/yU6fGJmwYQfFQ1mmKp0hJlQQBObCyKHmV5aG2oVIG9U0B+E/F45FIPOoHIDUCXq/O0pqs+QM+P0ouiqVyiUw8kQKSnYolUKK9V1cQjskgpRlA6mAY+dgFfcFUJqELSjwTDaeS8KwAf2vdXqu3sLK6fsYZew8cOnP/ljTINICEKIj7RK5SLfcXFrfuK6BsGQTBkWgqna+0ZuYXlwuZbLpYrhSbnc7M7MxwODe3snXn1l5AkLysxTTKADbbXR504e4ELQewjrqjilEQ8EYwGgnFk/C8AkiJAvCyZidGeBgoHypKnwdx8Z5OAyAUsHdubjiD7oAHve7MwvLSQqcRFxge6o2A/DFQ1IuGDDVQES6VS4U8OolHVhzVVn/QAQAG8K3WGk3QR41aLqSjWF/UV8OLEorMicQRACcyBfTYUNXrtkppFdBk5CeBgIURAvDVdBY5pIBw1EQOBeOSlAteWF1RWVGkPTYaqBzgpx2+TZREBhcMn6CCZFYF+DuCx+GLR9EVRigAOhoAIxZC+e+jXl1/ADAKADigOTBsykGRdsukxeXGWBCeLopmFNQCayD9q4/CGw1/SNcEj5rflsAVGxcM+WQCSrBIWTCOsExSvhCy7fd6/ZqgwBOUFBk4J8rLs0/Yxuz2yY12D4PjpBs1TjEuTiAIWo/7PS4lpMe9FOWkOQpUMWoz40EMs2jUXoDHQtonpyx2dK/iISk0HgcsAwEwgSNPJmI0B0xR/w+AgeDSNJ7NhZP/cwccC2g8EapHAwBjOF6pF9KotSOdyxQqxdJ0qd1rdQaDwRDes+lqbfZ/ABi4B7q6SOTL9RJys6ou9LvNBgLgMAAw8DA0BxxGqb/lGjqCbkgooo/VfIY/GEIAnM9WQFGDsjRYzeYMk+/dZBdZDHdhKg4vG8sYbkPjozGd5BVk+uVy2qYAeQmzFbYwQXIiGkT619Gz+D9zwKgtCgEw8sWSZMlg0J2UG6Od9k0+0PnIqdVk88voCHrCAH6cSiQyiOChob9et9cDHjkTDaK/ynvDKaSAYQu1m42ZTjF7GoCTxVKjMzNcC2kjPzAlEEvEYkATR14ezcGw4wYmJvIC4SIUlUc9CozG8KrAwtaQGI/LZnFOuIB9UR7LpEQzMs0ypGN8zIksujGVxlWKdNrGXBTrl51aKECbyYBut085VEERVffGcatHQuYffl8kFil3ZJJ1To07PKxfhddk0kJSPOembE4Mt20cd1m0iCOguM2YardDGQVq3V0pmey8poaSawsgjjCFN6rbNVguVjvCX172p6udzeey2aafd5OuScpu9ol0LOBLhg1vkI2uTiczPlIvd2pBOV1Ne2PRkBpKb+/SqlvQw8O6qCoeUQmkl84KkD5t8P6YJqs+KZkqN7ccv/W4El9Xdm8ht56z7Uhxacvjl+hz84sLe69+8MFzMpVDnezKjqlDl9y21l35xMHE3NLauZc/+Ikzz1+7ceWsO2dNu67duXuz1sCT8uTdO7VHd/bXtlXPvHbh4pvef8byBZ88ePd9H6335n/78cWDK2u9hw8dvuaiO3ce3z339Ntf+vo9/7EeXZmPhOvT3tqR86+7+babdx/ZWt994NJvvfK7u7701hunHpjrXf2Pd+7f/fqpu0++/eqOWx9b629eTjbyK/HMFTdfuNI7ePnuLeEtjXD1/rfe/uGP3/zrqW8998d3fvf9tVJx82/fvfdrzzx+95ETP//OG0/+7cTnRE9pbvmmxfXfnzpxOL5aMNYOXnLmsWde+dlbb77w8omTT3V2PLDm3/7qWU9/97mTb596580/Z87+9u7Zb3/hj0/+4PEba8P6zB1/uvulEy+8+dTPnnj5ix958u3Xf35g145d2zZvbcWyx3fs2DW941g2tTJXKSeyK3PDQXM620WeOclwNOgFAEZ3wKxLSCS9RtCAVUIbcTSmB/XgdBOW2Q6wJskUjtscHgBgjoEC6XJQtMnB8oTPYDlmRM4JF2g0t8OK4Txuc9qtY2bTBqfT5aQ4ScTMZhdhwlA6Tzgei4XC6ZRPCkYRhoGC0VCeDoMFkpEwSFOopLKEHOA0AyprSOUotwvNQ5GjllSMH41uWMxmBL6ggsdRhAzo4nHTxo02WMcCQaJWSgKQRwIsotFWZlDjBzmqbqiJSY2CuMvEw2EEwFGfgqLdOV4UZC+orEQ8XUhnc5FoBrZ4oYDugAGgoXDBv4caNJBUFAJBTQPkNoKJZAx4JsjfSDKfjMSzpVqrCZx6fnl5fdsZ+w8dOXZ4W8ofCoZgt4eisVhmulpuLyzv2JdDjsWnATiRKVYa/YXVlWImkymB7mi2+jN9wMjlrWtbZr12Fy5p2MQUlGqLyeIAjuNERqCsgUZt8yhiCVlS54rZWDYXC0UCyG0f+f3RImxBhpb8OrJdVGX+Pf0mCJ1upzM7Ozc7HPT7M51Wf3F5cXamHRc4lEcAwADUi0NIqhgoE7ZYqVYrlUIeJT4VCpXWYAYAGLVhQWkGBdxoNXJBNEwrwxvGMaNmGl8kmYglErE0aOc8ijOs1xvFtORCXgwos4NiGF2LlEohI5AIyIrXQD7MIk9iJK1pQjSl6H5OVyg7jwYvzWNOjmN51GIAf6gao1FRKegTHLbg6fN7wF8UnRiJBPxBYAIicCjQaYAkojfIW0ggiQTpdkxOuVxuAaddVozEGZE1QgC/gKMKALDuVWWQXbzT4rJJhGDTN42Jsi5NmjnSvBFjdG88EQZd7jVULyfCD1MjQZGWfSIp8BbHJvPkmHnKRbvcpJtA8+VOnOZgexAs4cblYCsGOKrQBIEaXN0k/LnHLaKJc1mUOOeEyeZyOFyYk2CQ1bNnJHMBxjGahd1EjO6ARx//OogmAIBTmWAy5PcDAKeKUFxFMjjtDwAvxLBKvZTJwZLNFDKFWrFYKrS7AKud7sxMr1mZLvfREbTfZyCJiQA4nivVS/U6iNnlfq/T6Q+6jXAqhmK1dOTWFEvmp6uNynS1W5do5B3iDSDKGY1HYrlctQzELOsTcNlsD5Pvm3LLHE5ilBegSpQl3R3V2Jjfa2Y0iRFws9Nh8rhx0mRyWl2Ym0VG2OjQC9lP/guI0US4IikC6rUGOawEAhisR5HGKKdtgy+ssSRunbICJpEel2vCyCaSmWSqUMwXytVavdUb9HtzC8uzyN1HY1hfIonugFuDuVajOezkM2FVUtGRexH+bGYV9oeqazIC4Aj8O2XYev1+c2bY8ei6XxZE2u6WDdQuotA+hlUBfhle5HCPzeKYcPokFkVLyyyH7IgY98SYkwLKAeiLyThmtSLrSFlwqEEAYCroBf1uVQWVEx1jNg8mCorsC/jCkUixCfzOMznh9DB+2eWmpyahZkkexuYgKOfGTQ6bFHf5FI/DpVqsbgfjD4Zzi2HLBK+eBmCRd0ucXtuJmrAcDopATp6+ZKW95czqdZsxP447JxiXLSyT6YgvE/cGylp8rZpOSZw332h4yVAg6M0k0tnB4u6S28tISrDXDXh1DAcZvXDYIILq8JqwiPJgQ8FyZ/X43RcYqc3q3q3U+sX7z8kvb3n0UmNhcWlp//s/+ZmLQvnz19Oz+8jzzr92aWHrI8eyw+HqhZc99IndZw2uXT/wcNbe6eN33SHUZ8q3JnvKGZ8+Mj2zvX38vMFF11+zY+XSO3c9eONt119/278tPXzW5j29L52TvuXgjeefPTjy0j+e/spnfr5Vmi77Au2kd3DsrMs+cMuHthybGxw+du6eldC+753855c+frgQ+/mp57/84Z/f9rOfJz76zlt3LC1tDtdqS9HM5TcdW+wdvnB1b2K2sOvF53/y7BunXvnGP7/041u/9sOvPahEHn3tjRf+8eZbX3rgxWe/+uzPf3R1l0iGp7dfPz/45Zsv7Qpu2bm2Z2bb9I1vP33iBQDhv55447LvLNVjR1/deduNJ/7x1Ffv+/jc7MFHrpv+8mNP/f6nX/5Ac77du/vPH3rx1CsP3HvyzTd+ePMTJ//xxO6DAL/LS93Zxtnru/fX187Lp9aWK9PJ3NJMv9+uZnqJZCqfCKPbTVGUY0GVccvZNPL2AxQijeTIKx25SxIYmgOGasDxIG9NVicGlYPicIcNAHXCxnA4QLjAszxwYA8ykHdaTU474TIDdbPYpt7n8uAeghZlfHLSiU3AuvFQ4Xw2ZhjxpBaKwmqMBgxDlzkKcE1I5NHJcBCEiSyjQyBR9yMTKRkn0S2zB/8XACPretT8PLZpwmo3jW2cmtx0uiv6vRscgibS5k2b/s//mXDIoi7QsiYgq38UGU8CBrPwlNwOj5rIZtIxAOBELBBMhFTkTAhiTNN0Lwi4OMjfdA6FMWSzozGkGIrZkTnJhzILSajyrBCOGAbIEGQ4lcpl0TVwOpNNxGA/V2vVZrM7v7S8vn3fmWefc/5Z29O6ZkRyyUg0DmBZBgBe2bbvUN4IgaAYnUInkXtHb3nbWglwHxBvptUYDLrziyszy9s2ZzzwI13mSYt1atJis9mspnEUVOhm/WkUPpdORqPZZDqdTGcT6VQqGQmEkhGvpkucFIhlNC2oo64blPOky+/ptMrZ6cGwjZTAYDC7sDA3M7u0sjjbmg7zjKajbvFRUA0vAcwY4VQ2mys2OvV8sZhHsUa1Wq07bNda/XobtHS92YbynYsFdNlA3iQsMCakgP3hWBK0cyKWygbj8RjKQa+U0gZJUDjCXwASFuNQpAVUk0zaC28PRbIcTXKyHE2noLIGvBIrErRgG3Ob7AA8HJRCWSUEvyj5EAPSggGDmWACoVAQGKSu65Loj8XCAZ8XaraKvHbDyXRMZL2i3el0E5MUhVsnUSwhKBXaZucpWqOEKK/70PuNDmRlDbVjSyyBsRzuoolJJ5A9ymKyOswTUxOiN1JKqn5N4fyqRKqSxtAsvDyKP0RTTvukc3zKbLIQpN2D0qZFhSdA4nKY3U1TVkzLRHC3qDEUB8oPd4OYstoppwVUMZR0Fbc6CCuzycKQFMnTGIMyj+DBEizqwkJ+begPkH0rjfAAWVPCS5jNJFJh1O7LFmvpMOBDsJrxc6JAEvl6OQ0LtpAuoJOHaRCvrTYyauyhBudKqTebDIdUvwh6UwI9H4xnp2vFWr1cKM8O2+1ep93tJLIh4JgamhuPJ5K5PIBbvd6fRu1SouTVfYEA7I4ErLZyZbqSj4VRkgCVcr3PhLNuweNhgm7VoHggA2E/E4+pYwRsGrfTgjlNNg9UkikL7hCcIiAwP4rbQikc4ugMWka9FYqMBoMBgyUtIHpABSsoZNE64Y0oGgbFZIL3qwzlMJsChVgin4znioVKpdqCx94f9oYLy4NoJBzwMlQwlCoVOo2ZYatZ6ww7pVRYE/zxWDLXqjebs6tRSRN9quINxBPxaD6bnq63Ztud4bBnY7SRKSpl4RQBmfaxrOFGB0IsBS+vx2a2moECaKzd4sB4mtNFjvRYTE6C0zmzzjtFAnOYN9jgO3W3GjCUKXdQcZscDpGTdZzwWJygYQTE+qKRSKmHsTRrgkWJbuso3rHBwxIgQd1OirJPbLRgRA4Xg6TNpngmMRfmBaWwPfdei2j4QqX1BU5hCZb3NXf5MJpxeVD6OqcEU9Ptnfs7N28mFQ/jmvLA9wpiIh+K6d5k3J9e6KbijBQqDaohwh+PRlLZNLzvB6uUzglGdNj1qZyLk/TE3JEg7jc6Hw6DqJZlI1YZrB697agvsVPeelDZfvzA0fLM9i9foS/1VlcO3vDIpw8kaucOswv7ySuPvn+xtfuThzMrs1vOOfeTDx8+c3j94pGPtthEYj4dzOYPbf7yrj0XLd13Tr+5NnPdzq3nXntxa+2G229+8OFHPnH7v90bu/Wc5lz5Gwe851916aU7Fq76xxu/+OkzX72rEK1Uw4bhXTh47Krbbr28d25t1+q1p27feiS54+YPedPBTODIu28/t/v23/znOU898/S7nzpn/1K5XBmEs+ffcWSxc+T8navpheFnn//VF579y6vf/+Bbb/zsoXeef2evnb/ti1+64sLrd5+x58BSp6R6WGtaVXtLN+xof+fUs7v1cgno5e65r5x6+rnnXvv+wz86+dYN/350e+TI/z35F8+OT172we9f+em/nvvBB/Kf/twPn/zF12/uzHYSdzx3++vP33jfWyeefu0Ht/7grbe/vrK6tGML0JS1hUNbdu5rtc+cjq8Oq9VYYmVptt9uljqFTDYbAwAOaowk+4MSR/OJiNcwJEFWOV8MpewKzKhp1WM3u1CIEIU7HU67x61rsPowq8VKYWYHzxGcX+YJnrXbrK7RDaV5YhJlErmRc7TN7rFSHhoEGW61W0AMSxxBBJG9VCGbjEYSCZQtrqAMeRBsGB9ORmLJeNTwjbw9aEPVdF80ohPIg49nCYeAmTDGPmmaGt80YZ7aZN4wad6w0Tw+DhC80eraNDmxwc5rGgUbwUqgwDHg0yrKaUAMnsRARYPSIAjaTXljsVgqFY8mkpHQ6HwRHXpzsqSp3oA3Bsszl04CumVTiXQhGw0jxxCvqiCJrPIUR8vo1F6NQAEHAoGC93KlYgp2fxgwENC72qxNtwDfhus7tu88cORIWTEC8IUAilIFRM8MhrsO7K+MABiktT+UyJeq7f7c2lIhX8yO+ko67VZnZnF+dvOOPDqVtEyZHB4LMil0ut2W8bFxC+sPRnIjx+U0OnYGOY+u1LNJny+ZTyf9hiJ4E7G4FwmK0ZSPhqyM3tNuFJOZ+mAW+UAP+oMhaoVegBXRrickGojVKCPudP+Vhq5Vs6Awmp0mOnCcBqXQalTbw26j2ao36iCNUAtWKRNBHVCorxUlEnLI4yEciwEAx1H/egr0UiJbLRdSXpphSZSZhWMY4SZANQBgc1o8HxNAN6LuNhYUoKQZoVgik9QkKIBTG82TDhIneUbnVJ0S/aIM8IFaBGSvMClGgkYUOBRas1IoGQ2AuPPyjIx6y4ORWEznePso08DiIUn75KTJ5qYYgkIHN6RIC0ERhS6hNmhkhoVSX3nSiTsZhxGIgxAxu3GLi3E4MdeUzaXEAhLByApFwMtI6yLjYWX4VWYoJwCk2TRhmQS+SfIEJ+pemSZYSSBtdgKzWwhVsNlh9cGLKzAunKMZtxsA2GGD3YERFGkxb0TTRhyGcdwIfHF0kISw9vJJtmkAACAASURBVPSF8Kj/mRz5cKBTaBY0cC4bj0eD/hEAp8KwHP3TCT8vSwxdbJbSeaCCSVDBxXKl1my12r3BYNDrwttVLvbmUrGoHhqtBa/XCAJZrBaq1VK+PNur11FAVjOB7hMEFfXBIYdykJfNGgJgCWXSjwAY3aKg4dlysZCOBHGSsHv8Dgvmsbp4wePyY4pKAIcj4l4uHtHGSIOjPW6Lw2m1ojYss8XpgWfJSSz/rwhChLaghv9/AJZOA7BisBjKCOUEBndM+cKS6MEcVrMXnjTtspl92VA8m0wAL6xU0AHyoD+DrlIGkREAM8FQplzsNIfz3Va1OehMp0Mqb4SC0TQKsZ5diYq6GlBkL/LDiGaz8FxqvUZzgABY12VgNIyTkGQWOcswEk2i9gZSEJBBl3XCrMNXHDarRwQJLPIUZplyEqCSrRrvkmncNrnBRBOk5paBm5ucAR232O2ypBuMQKFhTEnWDc0bTUZLXYxhOAsCYJnFAUU3OFlKpUlYFZRraszi8aRYJkyDEibMmAvXkqnqGckxk2T4goW1BV7jKV4KtPcYHpp2uEkGZZIGEsXG5qPt85qMwQKIe+xO2JXJQjDmDSRiRnqxl03yRKDYzIdYYCPRVDaV764eLuEoU9hbr0ajipuX9cz60TDl9bdu9imszIaCsWJr5djNR6r+Jd/+7fz6OQeOVebP+MpVoZX5pdU91z7y2SOp2rFheu4gdsGRq5dnNt97ILk4s+28ow89fvRQ+7q1sx9quxePftanJoq5Xc3Up+7afvuZhdWDhRu2zN/0wEVX3v7Fxx989K4rz9l58NJ9d18R3R5/dGe1efPxcy49e9uffvbV3/30wYePlXdvk7VofO2si268/c6L1y6M7Vn9wS8Pf+udb1z/zfu3kTF/LL+eWD2wbYbd/8RT//ziHZesDCNptWAEDty0b7Z3/LzFfiB/xtMnXz/193fe/P0vX7hn7xm37FuYKngJkVTXZi49/8Cn73nw68t3XZOStFRteN2u+uNvPnM4NMglm2fuuuXUjx/85+9O/vi7X3z+3TvX3zoYbx07fHavOvjKuy8//ebL15z7SOGDn//qb3/ytQ80h+XCx351w8FH//zOiy++/Levf+K/X37n1TtXlvfsWVhYXF04uLZtX7t1Vj22MldvJNPrK3ODeq3QLkDtjqNUNxlnxUBQpDA+HQeGq4qyzPvjqiAxPMdSbpfHbbe6SXR7ClBsc0D1crMUFCuHgyGsHoknBT/NgTwdg9UEEGEHaQxo4fZ4nKDZpixOC+nCRUmmbJZJl9MlsxgeTOWheOcToXgsHEkXEj5DRzFvLEUH4BGBlFF9fl3iaUIUkfmOjGYZSFYEAOZI0CdTG1F0jNlmA3nyvveZxjdYQAjbTOMTU5s2bsSAQ9MoWTQQi4VU1DvhdLnQ7rE6PCTQCY/bhqx21WQSinciAgU8FA6iHhtdQQCsq16/Fo5GU4C/+WwJtUFnYkF4SF7kBc1DxQD2IXAKx8MLZyiqNwQYDqItkUpGQyGQ78lUplRvDQb9uaWVzbsPHNi7d9+OpWkQW0F0Vh2LhGPZSn1u7oz9+4qSgZqIQOKHAOhKje7s6loxV8iihLUOGhfqAwIvzUUx55jJzritDqsNHe+bzRObJj2CL56CH5xOA8rG49lsNg0gnIono374MRGUSuj1BfWwAaUMyAWqdMh68T29ViWbzDZmAHqHM/1ebzA7HMytLA8b9bSKXD7EkTe+iO7k4a8HoqhlrNZoNFBjWKPRbDcrjX63WZ9uNGqVar2OADgb9+uKLo/mgFH3NArSiYYi6Qy8FLFUJoHO+sulbMwARCVoHNYF8oMepdzSrMTIyUxI9/Ks5A95QR9E0FlDMF5Op8PozGSjyU14SIHROM2ALxpCQBY0zfCqGj2hxND5ARQ6RRKMWDIEuKzzPChVTk+GUtmE7CEcyEvI7bYTrMcyiWwRORIjnG6eZFneqxrKqAVaVYH//X9UvQeYXGXZBuxvIcmW6TNnTu9z6syZ3nvdmd3ZXrJJNptNsukhPQQIIEiH0CO9CoIgzQKoKIIN9fOzfXYEsVBVVEBp8v/PO8Hvu/7lupKQ3ezOmfOe577v932e+5ZRlx7hcTt4OkDIPEl7gOjgIu7BPCTm0/y0Sfl8iqgbaENFtUISD++qrnJeigFdZ3MO9DvcjMQIihlUBZYKSITTRZCY04N7B20eN4dDufbbcc5H035EaJ2cw8G4JPqjNg/mdtNer9dPEIxEkxQCYPaDbiyUnsmizmdkCI36oTmG4sqlVBK5sGk9ANYlzqolLFFVeK7WKWVKlWo53esEbLWHR4Y6o6gLGu5dq17uTgJymwiA1YBpGuFkrlovNRqVcg+AAam7zUwxCtRN1Q0tlMzA55rNNgBw438BGO1HJZD5arlczKWiIYqhPIzq9LH+AT/O+3wGrQYIhpKpnKZko5aNVgkSx11OH9QCkoELd1IeFqBaED/YekadCbKqoUhRqDsIgNHSkzWVYeKRuCWKsGKcQUvgccbvwNIRXRQIzGmW4qliLlcuVpr1emd0bBIU8GRPAQOhZVlQwJXS8NDkzFi3MTQ6Us9FDMmMhOO51nB3ZGpNPGDolqIErXgkm8wXi6VCfbwzPD7edeDA1+ENhdsumArLIKsrBYfHgadFiafg1dscWgDFWNn9UK4UCf7SOeilOFlxq6Jf4SiPfZWdppggJlmm5vCETAZKoqqHDFHjPTgni6ppBEPxYrIy2ptqG7DZcamX0rnSwQOM+nEosJRjwIH54iEiLmBOkfP6faSUbazeHnfYZDMYLq6Zkw2RFZXo6E6TOAHAoiBrkUx9ZP6M/LAumwLj6scxPKSz2Wo4GYmlElpu9WgxK7OpoaFMTDIy6AA9ne+s2V0hTZa3suvGzKDJ0QEpNrdTZ4zQyCetEAsrWU1X67OnX5/dao4Ht60NLJ2y70hzbukLR625+ZnFbcfuvn9frnVorjB1gDxl/6ULczsfOlKY7a7dd+juz+3bWj9vbsed46zevQLLTkxR+5edjV1X3r7YnBtec3x6x7f/9NQ9t1198Zln7DrwibMPX/TM117Z2yh97tRia+ny7Q9t237BoV998ZuPPXB8zenLsVyutOHAx6++5vo9C7vHNh944NCXXnvnG4cuuvY3FatQPvPvtW1/f7i9c13hjOuns+OVaipSTBVT+6/ZOzl+2uEDw4GIvPXOz522dXHzaVv3zW5cCGbbpkJH7rx1y5e///P7n7zlsQduO/ux50ugHLqdM3bXbv3780cS6wtTrfMu/cIbn37l9VdfefnxV99/e+yse8etTdff/+dPvHLrGY/e+/Jf37r7/K+sX3703l997+tXdWdHspc/se2uf/3lt3/53QtvPXXT//z9zTefXDM6u3F+9eqF1XvWbdg11j4wmVqzujmUyS2csMIarRby+WwCENASFDkaCdCYVEhFIlETiGggktJlBU3tkD5AVI/bT1JQtCjG63BQdACjKYHyIgD2kApPySGGZ3liEPChF0bosg+4kZ8e4fM4HS4cEwgAYJVxuQYxDACYIiONBpTkXA5QLpkqlFMmoBvKlBeYMMAiaqZBACwA1Pesy3WGgu8GtdNHCgzUUltv8Bc+7P0elwsb/Fj/ADKBtg3Y+1auomUO6VQjHA1yILkJgtODejio9c41kd0lyk2k/IF8CeQvXH8KNUJHQqCFdFmQJB3+oZVGUbaZQqVQymULxWwmm44FQS5pKKde1YTeYLFkmKhPOByHb5Gx4OEuF0H7phLJTKHeLre747Nr1i1t3bP/wKFT9u8oBMxgLAZyH9RDrtoemZ5c2rq9LIViEctCfdCpYqXWHp1ZXF/JQlmptdCo7QhIkrmJmfmkE8qXC/M4fF4fekPtg/19TgUKULWUyaDk5EwmnivkknEkvhOxWDKdsHQTGUCH9AiodiMMclhRjZCBwhhAw5YLdajKPS/KsfHp6fHpNfOTjVpa42VFlntZiz1DaEQuUtlSvQWyYaTeGOp02p1uF8XmAAAPtU80YTUbtXImAm9e4AQAB5BdEhRp1ECeQl7jGSjWhVyxXohrLDJXJPyAwMDD0GAbQXGqBEiYTEVV5AUusKwMnCwRtaLJTDFtUgMrVvo4huADIJlUXdIjupXQjVjIigQD/j4jHkz1OghA+MYymXAQKJHKs2okHg5mCmmLcVGsx40zPsaBi7Qb7drjsJ5ZzCOzjCQqoR4AG+gMuDdFJYuE14vJGcHWD5IC96EgaZH020CY67KHAnxmsQDuARWN0wlNDFsSrCmMV2kP7nPYbHanH/XNKkjQyZroczgxv9ftdjvhMzafHaNJd7+HtBGs1+P18j7O4WUGRa1/sH+Ap72kZHA4zVBoswY5thFET/Sig2H4G46nTkwCIyMsrgorNx4Cpc1Vmpm4KfOReiKEvDy5ylAuibrW07lCqdYcaneGWx2gcr3TgnazOjYFAIwUsIb8mIBeZSs1BMCV+vRUF3mzjNR6ACyoKN8xmS03ai2kgCcasgoALKM44HAU2acmC4VSMZMIqxTQElWxeQSfDcNo3K+yigy/K1iaV9KhiIuQ0VSCD8iv004AmbfbCTfrFaVeDjBqgO4pYDRzjt43NXDi/9Te5nM6HAmKKBHViZypSNo7wBYsHf2Nx6wm08VcNp8q1GrVoW53dHR6cnpufjIdj1qggIEJl4vt5vjMeLc51O1UMycAOJlvDo92AYCBL4YUBWV9ZVPFcrmQaUwgyjti8wRgMUicRLtYEx00cDxvkCAEGUYUOcptdwKaAtXEXDYfLFf4k8S4AIBZQfPKAi6LFOYcsJM0G8F4yzCcTlOjnTabogcDtEi5/BRNazpIiggAcNdPyCI5MGAnJAl4Fj8wALdbAobm4ljnwKDXZ6W8cc1vo3hYRSQbmVzelnDYoeqE8mtWqxpP84Fod4dJ8ZwXZ3kBAXC2MbruDF3wWTrDufsJP2HpXKFhIcOFuJRbPZxPi3Km3U7HZC2bzeSBiXemdjZYg1RLQ9smJIbDPaYcX9htyOHA6NXxIAsPcyRfrqy58DO16eaIuWGjtvnIwVOb8wsPHVDn5mbX77z87gf2pau7V+fGD5GHD12xML31gVMK87PLp5332Yf27exeMrN085EoN73fKTQShaFgZnfuyB1bisOdpY+vP/LIFWcdOueci268/Zqbbj92/WPPXf7So/Hso7urM+1zFk7bc8G/jx3avP+0F8+eOGVjwsoUNx76+DVXH184vNg4vPWqt99+6/W/vT7/1JsbIjPV5F8zX/xO+tHXnjlw72NTeD1dqfG5QjZ08tV7x6fO2rMtJueSuBabu/yx791386NPf/+J7S/8VNfE6C9+f9GXbnnk849f+4M3L7n5pRuKsRA9PnTukcpFrz5zNLxhdP/C2Tf999vHn/zny2+++c4fnlovX/LaJvOst2549+nX3vz5zm+98uLv3r3+5ku6j9zy029/45Njs+3GuY8ffvPdl//211def/Hzx3/+7/ePblq3tH7HuvnVi+v2L27cO1Xfu5CdX11rZnLr5iZHR0caY9ViIZ+KQLELAqwkIiqHB3IJeMIMRErDSRDCHEeSaK7X63X6/KBDJBoHAUZQOkdRAunx+FjCRSkMFTAUmeJoH9pdxDCva7Cvz032KgnKGQd+72aAQlMurxvD/ADAdHS4AbU5XSii6LRsOorsfREAS1wkiwDYiocNSeBZRkY5PtFUlCFADSA/fdRrirkJNDrpdDpsfYM4tuKklR9esap/5SqHsw+wCRdYRVOsiOR10RotoryxMBKBqNVHRGmkIof29LR8KYvSKNCGdyoJdBV5PSMABu0YyRdTKWR/nAvHUHhCoZCKBg3UhAVUV9METkH8XQsFtVAkhvIUMiCAUQtUOBWPp/PFUiVVrLXGpmbWbth5YN9uAOFKQA9ls2mgotlsvtJqT01t2Lq7jjxhI72PTBlNKM4uri+lMlAVmyNQFZsj4xOjE+u3DzNul/sjK10ezM953PArkA42grLYimmQgFEA4GQsDdQpDW9lMpHJZVDOcioVQ1YDEagDoZAW0hXNNFTlQx1A03ajPYGGkMaRJeX01Pj0/NzEUDWpicoHU0g9l0B4+Kx4uliqgWrojnY6oB063YlJ0EnDQ52hRmuoUa2BQKrXKhlLU3S5N2/DozFOPWhFQpFEIprKxOAKE/A+Fps9AOaY3pEG6ffYbW7Qh4BxvMRQIopw4EkMNKCHkTR4o41IPBbPxOiP9NESALDIhYxQEHSZrCqovVg3NRlfhUxurQigqKGGMtl4b8eSVKygYVlmPAR4RaA+fJzGOIePZ3GnDZYfTYFYc/EMCRdphXoAbPTOgZHtjEC4/RgVlWmXz4eUDaOh+Sov47ETurOf9nkd/YN2j5+jXScNeKgATwUChE8Msj6vDYUaIccEwEoeBKQWEn0uj89jd7icDrcP9N+g0wlSF/MPEIzThVHwaSeB9RPek+yeAfvAAGkHoBJYlD2IfmFOgC1I4Q8AGJZ/bySYpgmuVAChZ6h6gCs3UjEA4FgjackAUgDIuSSyTIEnC4UUgO4dRjSuO9yuNFutxvR8Lp00YzqavIZLBgAuIz/nSrU1Mw2LoduFx7IQNXUhgDZs0rlKo4pSkjqT/wfAZjgajQEA53PlSjYZljCf06PxTkr12BwMx/kUXgl4WUJ3x0g5phkuQgMq7vejg6hBAGbc4fD5SFCCwok2P1X94Aw4AKT/AzwGsqgohiaradBkAVgepFPmUKKwvU8uoCEjhvYFS/FkFoQ4MNdSsdFu1oenZ2ZnZyfzaM6Z46OxdLnUaU5ApRsaHh0qpiKKYIQjqVytMzY6NQ8ALKJjk1AKSGK1Witm2qO9SCWXD3EPmQ+wGKGYEvKjFFSO0FiWF3nU++x0DkoBRvDa7B5OkHRJkFj3IEqY0XyCgAM38MK99FFUBGdChumxGQrpsg0GNFMEGevCcS8e0NRQ0MomS10fFhBZ+6CTkhW4SMnZR3GMQvCYk+XdA31uzCh6rDAJ+Ey43QSnLu5Yzg04BN20CuvWGhoHsjsyss2kBc6DsxxqnAunqiMbjoZpPK0ynKuPxAnLEKstC410JPnCfDuXEPhgCRRwwAR6DHy9NDK3t8NrmFwY3jyWsoCcakp625GgpHPdc2M6inkxw5nGGpCo1tKUurxT3nRg/6mdxY2PHdIXZ9bO77r0gc8dSOY3zcQ6e7G9+y9fO77hnn2ZNWt3HD12/wN7dowem9x//PJQaHwjHq6MjCfN9QvdqUu2jG0/vOfo9i0Pf/beL9991833fub662645PL7vvbEZ351v/iV2dRwZbQzvuam5577+n1rp76xZX7PmlCokV8+/exrPnnp9BndTbsOv/D2X1/8xz/+fcm9b+QkTXnu9co55z349B/fvGTjsWub3UQtIXiG8qG9l+8Ynvn4vh2GkkpRn3zisp/+8MHPfOdLd9x2792vfBaPS/pj712wde2OR5772vfeuGHnG1fc1jKiY9UjZ5dO/dNvzzEXR7bNHrz2iXfe+PNDb79127Fz5864+E8vTUYuevZbrz75+t+Wnn7zq3d+/Z8PXnZL8sFbv/XUU9cOjxfa1/z3J1969u8vPP/XF//2jUu//LNdVz53cGl29+L83IbFQ0ubD8wVty/nZ6YrzWweABgeyVrvDDgXj1lhneaVZEiTCBWF4AahmmqylVClAPIDIJD5uc/pwzBSFEk3yGGW1Qi446Tb6+dxB6UAq9OMADxmbhz3eIDx2wf6bKjdhaAZp9PW73QxbhroLu1GBRcpYCZeyaNYoEwSoVs+G7d68lIURC6SjsXi0UjaknlRQNoHPmFGLb+HoTkPLXEMADvw6UE01gnMEAT5yg+7RGrlh/tsK/ocJw0M9nk5yQiEZYJU43ELsNwKaijcVuqdUVKoX59HhBNKNvovlsim4/FYyDRMy5Q5LaAphmUmi9F4sQRYaQKTLlbysUzc6s0Bc7Kqw2OnIbsKAAoUvBeLAf7C9SRS6VQcVnoWBRMCbayPjE3MLW7ft3fX7n0HuqEg6Lw0ms1JpIrNzvT81pOPdJUgmk4Kh2OJdLnRGhmdXlgE8VKs1xudRrnaQmZV69evm58dz6tiLEo4nITA0MBBcCIKrz2fjVl6PJtNgPSNwPeO54q9sIcC/AJKOB4zBM6MwteYITNqCDw8TdaHup328HCnOwkKuGcHDfg7MQs/YbSR1CSZJzkemfQGevGMRhCdaOeRIXBndLgHwFMT45NjzToa7W3Xy6VKrdWo1/JhXVUlKKk8xyFZY4ICBtxNROPJaBiFTmZB1GdjCtxCNGsEAAzq0EOLwOEAFP2EH/OTLh/yXGQFCiUqaapqpeOJfDHqX0UyPhQEQpJIGBKeQZI3gjRrqAb/EW8sn4wlI2bY1OO5dDiITkV50FHxalogSS8tUTiBeTECZzwemqM9dpcPxApJ4S4/DQDMhUK9I2AkgXVDBf7A+gBeSbePZgY8vv5+LxctBASO1AI+l8+20tEHLNDlZmWFwAnUzg18EIQqJ/t9zj6/a2Wfj8BwhuFOxAzQXh9cp8vlttu8foz0un0uoI+c14FjcM005xvwUj4PiXv6ThpQ1px5fsTH8TSoZKrXbPG/BlgngJemmA+6sDiW4gqZaCQCAKxwpXo8ootMtAFa1ACVWGuWMsgRJlVAO9BD8DHcs4nq9AC4NTufSsX1KEqGDpgAwMlsqVxsooHh2YnR0W5nZKSVLwCj4dWgZSWyedQtODzS7kw1JFgQgoQAOBKLRJPpdD5TqedSEQH3e30C5guArB8g/LRf5RXVydE6HqOVsApYHIKq4MNdbswDlIsi3Ih3UBTq9RN7O9Dy/wGwop0A4B4uawE9DZxXC8DD6hSBduCugRVa3tQEgaaxYCHe86qLx3L5XLVZKQxNTs9Oz0wWEADzQiyWLBaG6qPT46Od7nirkIwoohmJIm9NFI8EACxZJjwXgEyFerVRyQ3Do9Adm3T7uACKX1B5CuOhHHAkA68TCwigMFkadw5AOeNUSvbb7S6Gk0EkiJxn0E0ynIrxoF4lGipTn4cmwiQV0oPeQV0lXU57QA1KDocb3W1SRObnViJRHPG5VV5ALaXAWShc9Kzy85xKsl4HxWO2VS5crmBaknH5ZcbjxUV5047NpT67qAfD5cV1hgncIBAZ2apRAuvCGFYUA1o4XR9dOKVtiUmZYxyrSIKIhJR6KxhD21BMad1QPiHyamE4G5GCiUQcClZxeMPhDh9kAqnmtplCQhSA/EQ3Hw4wSmDiSAS14pnRZGVyce+5i525zfiWZWV5z/6joxuXHj+oLk2undtx4QOf2xfLLq2Jd3Z595186cLU1gcPg87bvO/Cex/cs6l5YXfnlccaIwc+UQ/kdywc+fo55BWnXTM/t25m68kzex785ZOP3H7TZZ964J4bjl915Re/8YtvfukfD5+8PLNm/rLDJ2/+xAtffe/3d+8r5sb27MllK7ktp5939fVnzJ3e3LHl0nffffG+n7zx/g+vfWlxVJ9+72epzk//+Mqrv3juwKXvL0e7rdiI1a6nT798c2v+nOW9ed2shW/7wzkXXPKlL3z1rs0H25974+Ecp9df/vPaXYtn/eCp31731lOf+8uTP1uSk1OFnRcW9/7+DxcFF1ubtxy9+Ol3XnxodO6cG978xfE3fvTMn+Zil/z3jc9840+Tn3/3xVd/fOa/nrjy3tLN9z/65NevHerWh677zeXPv/PHv7364gt//8L1e8/5wztvXbJxw5al1VDCD23YfHBdduP2/OREuZHJrYFlOdKuditAlbNojgN5byeRplAT2XAwCItflQCARQnNQQCwon00P44RPAeFxGmnOMXL8QECGD1HOGiF4lCYuR9z2XHaheJMQfbacJbBcZr1E5jd45NwHICL8/hAYCAAZhMFoJ4o7aAAGFwqxlEd1AISzwmxDABwPJ4MyVJAJH1ocsgL5dLr4WgJE1SaYXmOcK5EpjR+v8fp9a44iU8V6pHBj/T1MmX6+zFRM0RMREGBsWjU0ExTVYO9+dCALHFo+l8CPSGhjZl0MhWOptGhoxUMhiyUfwkAbIaDaZC+RRQFnKnVs5lKOZVLIRNdBQ3koxmsgADc19DVoI7MkrOZZCoFgj6fz+RS8RSUhFy+VKq0RsZXL23ZuefA4UP7m6FoFMRpJpvPZQu1Vnt4bnnX0RlARgudeMInqq12d2wGFDAC4Fq9PdQaHpucmppfnJ1ev/u0Q3uPnLMxomiyzpEsR1F8OpMtlNJWCA0sFwqZWCpXyGaRZWQ2h0KZ8qkoFDCJ4XUrFoHnPWxpMtAqJfChkWH0MQJSdgrl+o7NjXcn5+dnJscaiR4AI/xFRlMismg2Y5lsOluuN+DFtdsjw+3u9PjYRLderdeaQ616pVpDmXSNYlQ3FBFqFABMj4lH4R6iPF6gUgDAoXgqUyqlYxpD9PLlCYLw2XyMFBAYv8fnsLt9Xox0O3FZJmCNBSQRiEJUTUSj0XBc6yP8Drffh7G8rADKMw4jYgVIwQJVv2olZeqRZNiwDC2NWrCsoCKSqmVaybhpxzBYojiPYV4f4LDLz/E+uwv0MM/hpN/FkpzEwj1HMck6cj80gUFwoF+crOhY6WW9sG4xkjBLln8AD2UDtN+1YoU3FFFoF8Eyff4Qj8bczJQhKKKAUZgH8/QPkjRGUgQFYkmQgX5yAoNjNOEAMPfANTPIy1UhScrtgtKIez0+H87xHsXp3vG553/5zWw/MANMQEPSCG2p3mY0Cq9AyEv3mrGQBIY/s9lUNB4P6kGNL9fiMV2go82Epeoyy9da1VwJEDhdKlfrCHJ7bdBw44aayD109VwsEdMiAMDSfwC4WGjUygDAIH9HAIWa+UIYAbBlIZOK6lBzBBTw8H8A2OgBcDiShBWWrjRy6RjQExwXEDhOrQAAIABJREFUvLTipTAbyrswONUY5FmVjqE4AoEQLAdG+uGavT6HDWMI5MiBkTjTazVAp78nNqJ7bhwIgE8gMJBcQ1HTaGI5ABfvBPnrd7vtK4JF0xBR+GiwlMoW4CnLpErFfLVZzbdQuPXsRC4Rs3oAHMvnmtWRye5YZ2SsXUpZugxkFwC42e0BsK6EgU1YoIDLtVKrVexMjo+NjE66PZSkgBRRec5FBRWWQxv/Ak4HYGUzDIkAeBWrUxrpsLlYXtJEmUcxwQTDq7gQIFiZxWy2VV6ODNNEUAthA4ZBOp0O5MjssKM6hqOsTFAU8URhBHNpnAjLxkcHNJYQ/X1engfk97oJnrT3OfxcjRfTnAcDAPZhnDS/vLk4aJOMUKy+tKAHBRoU8PCyRous04dWiaCGM83JdfsXcpIlsIyzn8L94ZBeq+vhWDqdJErrgIjIUrA5mbUkI4bs2lP5oYXDI3xI1NOF3bMRVQwwphXZeLouJ4JzR8NBZM0dMUPFkR3X5zZ2lqgN69Xtu/edObZ+7ot7lbVTs/PbL7zn/r3x4vJytruHPXPvRYszS/efkluzdtvhiz77xVO2tS/ubr/rpvnFB66j0p3syLrzztx27obLZyvN7imnTBw8/uPHrv3MDVd9+u67rrvyqitu+68fv3jzD994aP/Q9GnXTV4xfvRvL//z2YvO/6/zJw7ujyeHSsunXXjV8Z1LOzoH1t/0r7e+9sijz7x/548Xr9uRWf/DM/xPv/XaH199+Y+PHH13m9FOG+WEaRpHLlzf2nDu8g6JKWjGk38/+Z6v/O6X//W3r+9f+MrLX1hMCJf98ff3fGrt5hufeuYz715beebB+46YkeHmwUsKO3/7whXhDc213f0P3XXnPd+9/Af3PPjGVV9995c/fHU2c9qv7/7x0d1H3vz9q/94/a5bz77om81zHr/7qa9+sj01Mnr1zy/+9Z9f+M3fXnjnrS/ceMk/33v1nbs2rt2xafXkuoWDixsPLRcXd+cmJ8vNbHb1BHoka2NVKNVhMwjkn5GVjKmLPi2VCUNRUlRFsJIqzxMUBbUP8zhdTqhaBKAshbkGMNqgaS5AwPPGkHYqQHCmyNBeL9RQwuvzed1oSBfrOQpQIAoGbC7BDwCssS6Pi/CjLWgmVum5C+ezRQTA+YgaREYRAZ4V46DJUUxDSFECPImGCz02p8fm8Qi04ucYAuiAn8ZWepxOL+Z1ufpXfsyfrRYaI9HBj9jcg7ZV/QOUoptaGLn0AwJHUH+zoQClUDRDD4iiHBBRxiLL6UmghamUBUCMEomhGKNUElnubUHncslUDnlgVWqlZLJY7fWbBHV4SZKkqAIDfJOXLE2KGBEA4FwmmskV4N1MgG6LJtJZ+EAx9JX27OblLdt27t65raJHoqlkNpNC7cqVSqkM0nP7qBkJWeFwOAqgXWsNAV5vXg+FJV+t1prtkTHUozy5em5x0/pN2w6edua0akRBfHlIlqKFRAaxgxgQmHiiWCvE0DZ5vgAInO9BcCYeDoiqLJoAvpFwyEKRi+GIIbEfqjY7PVE0PgnfHD5Wjw5PrV0zM92pxgGAgaAg+xVUdtBAphnPl0vVoU6nOzHSbne7w6MzU5NT40PNJkomrFQbjRpC4XxYg7e25/PJCgIAcATedjUYjcDFWYCjiUQyW84mgxyKYEBWWBRm99Esifn9mBcnPPZBD8F4qHhKpiSozMij0AgnUV5lMuhkCBeGmoARAMOK0NMWMlLiY2aMWvnhFStWOfpO6jtpBZYCXLBQJoSmq3pIZTHcRSmgm4CluVkv4/RyImZ3etxeXvTRtEOkGInRjbCiaR8AMOripv3OQcqHfdhHCCQKsXGyuTrX7+csWQFieZLNBcDpI1yuPlySAhwF4hfDRJbBaOeAw2134D4vR/hQEqdoMGgWh/R6Rdbe58V8gKoih1pwAqrgwWWGcDgI5yoMABbraz/5k+ef/WGmH9YlzhIIeZnexBHaEeBO7EfzPHniEJil4b9MGtRfOBg2hEotmQgKTLyVDAVUkeKqrUoOOabkqqVKvdlESbkjo+NoC7qJzhAW1iVBAccMlOprGj0ALuTr1VJtaGYSFODo5Fi9ULAMAGBYM4lUqowsVdtDnammpP0HgKOxcDgJz0aq3Mim4xLtBolGioC0jkE36/GFONXs5ziJCrJK0GQp3uz3whvldbowVz8gEwmkGff7cB01XPWQt9eEpf7/ABhIkQy0OROyNEVmadIuUD6XzedZEaoETZH1494gENVCJl/OgoAt1tuNcgvow/TcRBoBsCABABfyQ7WRydHxdmdsuJoO6TLI6WSuUkcAnAAAtnTdimYymUol3x4uDY12Rzqj05gf52VTkRRWcBAhkBY8jyiPW0Vz2BzjsbkGV9IaoeCDAy4OlroY4DjfoJNgBJUQVZJROHzQvsrDERaDANg/oAcph8vOByJBp91PwC1VJP3EGFJ+GHPojEjYbT5KC0mURPW70BQfgyHbNBDGGFXTuBS8pQLt8oEE7m5YzjltctBKNDctqCYPFLIXxiCxyN0cWdeFkrWxTXuW87wh0bx7kPZ7TVOvVFQrksrEvIW1zUIywIdHplNBSYulUqlMOteYPjQu6Iyare2ezUZliZWC1vI5FsDBmvMt3c8G5JgVG+quv+iM0upOctMmdsu2k88cWzP+0H5zzeqp9VsvvOez+5LVbdtz3X3aJQfPWzex4cHT8qtXbzl44d0PH94+fEH94GW3jW367O3a5NbdZ970yVO2Hp65dF17vHP2ps2H7/ntF45/9qobHrjplluvv+rih7/949d+eP/3Xjk/PXbL23vvH7nxH8++86djx166eOHCXYVMvbl86qVXX720a3ftjKVb3v/723c/+u6LP/pJ5zdHw0vNJ9c9+d5fLrjy12++cPavLjuUzGV1oSMZZ126vrlw+rZRJZ6V97/+pwM3vfivH/zPLy64+I4H3v3tXaWNX/7iuUsXH7rh/l985YV/HR/+1TPfOlUolNqbLits//VLV0QW67Obdt9w6tNv/esPb7/+6OGvvfHGb3760Ez5/B9/980tl773xl9eeu7t19/8wsFvbt3x5A1ff+ya9uqJ4u3fvez5P7/82vP/729O//RdX3r7xb+8e+eO5U1b5k8A8OFdtaU9+enZeruQn4eHrT1UGy2n44jOBk2VCah5yxA8Ri4BvNBQtYBgpTQeFUwM2JfP67MBjSVBEts8uJeggzIjaLTbizGkjRRxzmQCnNPtc7v6eg1bTrvNjfoNKL8bZyi73atQdECRCbvbTRInzoBLlXK52AvQLZRKuQSgm2noChC3SCbeU8CWDgKJYhWRQ3G/fXY7Bwuf8vpcfR9eQTDOwQEglBhOuT7sShRzQPmHjY+s6v/IgGNwgNXVcCyeTKLD2XgsFjGMoKn0YtdBAqLMeQ4Ng+JyppTL5jMIgIGPmoYZRN4fsmya4WgwCYCWThYroFhRunkmkU6ET4yMauiMiJOEACfHdCkVRRut6WQkjsAclHAMcDYHl1UZajeK2fLo4qblLVt27j9l3ELOfMjSUlcAtOOlVi0zXpBC0RNNWNFMpVYbGl29vFQFKK/VmzU0QdKdnFu9fnp6cXnnlj0Hjs4bZlRVCB8j0iSbLhUzqSRcJZShRKZYgx8JPxZ0NxqeKuWTBujARFDr+YREkVujBQo/aJofarRHRka6o92evp6aHB9HXpSrZyeG60kNJCwdQEZNMsNAdVECVjpTbDZrtUKpi3z9x8eHJ+emAIAbDVC+tXqtWm0UM5l8NmwYiiTKEs+Deg7ooXAkDG9EBA1Ywc80Q+FEOp6MiGhLhEftRYTX4cAYHiqEC7ShB+qLyzXoVYMsRnIEwcO3UmlDE4xoOIyLpIuivZjICLrCMErMCBiaKGrxmElRrGOla1XfgF3QvLgeDQc1gQXwk81YWOTcfoLl/QwsGSftJ339LOfHHIMUctXicLdfRgLZChlGrw1LVYMyJyJDZ+CUzn5+pcQOkLLTH1QLYa/HS3pZDIqvz0sSK70KKB0VXtWgG83pukkMI712t9OFEw4bKeFuL4d8pkyAqwBNolMYB+bz+yi/zOBovEuWGSogeKDsroQng6PpvtW/e+XP391FejmM53pZDAhpSbRZ8J9d6N6+DwvlmxMokhGyhXwyGY1EDa5Yz8cDMpVsJYKGJnNUuVEuFMqlfL5UBFk71DpxsyemJkZHZyfmpmbXAcMOhTSEdioIsXg2mykBh8rXpqcmQP+OjtczBQs+a+jhSCyVrzRa9eZwpz1eFURJBGoF9xKWayyRyiRShXI+E5Hh4v2iJNAU5wd+7ZXCgajuYv2KP87IGYVlcW3QwXn8DO5wel0OoFuUC94NnkSj+SI6a/hPF5Z6IhUYGJGKkFmWVTMZipl6gMMJJ8sTbq8fd4fyIQ0tf0+0WSrVitl8sVIDqV8t1Ye740AOJ3KRcCQkB4JRK1outxsjIzMj3anhRiGs8IDqmVKxXWvNrI6hOWj42cFkPJ6p1qut7vDw6Gh7cpz0YxRqrpQkjvJKhiCh5lKBIRiZYjkK9zpW9q8kUQiSx+VAI3SixIm+fidOCQZOhwhOYSmnfaWHwjTRY6hxtk81uAGvHRc1je7zEixKWILLC0bjscKo1yFoEuWyE2wgogq84LSxwF78rIvkaduKfpzMRN0plfCxAuX10FJ2YWvBhgJ7063lJUXlfVRAbywFOWS+wFMiLxiRVG1s3Y4lgQswfMCzEse9ZkRtAXmK55JBMb+mlS4afHhiKqMH1Gw+BcqnPL5w6ghrEeFMftfacNoA3h0KL5wdFyxr/jxVhAdDSYbTY5uPHLyxO51ad8qCuHv/3tOGZzc9fCA62enObb347s/sjBc3bil29otXn33NzND6O3c3Vs9sO/Wc++4/Zd/wpc0tV1+3sOOG65Pdk7ecdt03Ll17+rbb51sT3U9sXDrwjW/c86nHjt38mU/ddePt11513RM/+Osvnr7uz1cqi//zwq47R65444Uff/uMm1++aOMZu/Oxen3b3mOfPG/mlImFbWcceO69999669/v7Vn42RMHk4sn39b85Su/ufjCR999/Kuzp1zQ3JjP1ufV4DmXzbU2Hd20eiTf6Jz78+fPv/iqb/zw6386um/t0L+ferix8MM/fnHb8dmHf339Tf9+5ZzPv//3V09nSs3q8rHpmV/8+SJjU2156/5zn3j/pZdf+8Pbj154w6d+f+uN7+zNXPbaH3+Wf/6Nd577+9tvXnXv+u1PnF1/7MbHHr98Ymy4fP0Pb3zlzy/8/e0bj332aw98990//fG9Zzcvrd+8enRxaf/S5sPbGtOHSzNz5UIktXp6bKjTqrST8XQqEgfs06RAIGUFJa+SSYWsWBANA+hxESoVB7qXhCrp9nm9GMWxpN/ndnqonrkU6XJwrM/BC7groCkUmjzy2ga8rG8VJmJQmzja7ycAQ+kBp4xjoqpSdpfL70XNpHS8USwXouliAuA3k8znw+FYCAGbwkfQVE3UyljInouhOUXhSR88fJxfE2gCc64ABiAGfCed5HIOYD7byo/J9VwCraRw38pB+2Df4EcxYN4xKxIJx0F0xWJhTdHMUATNiKL1hGb6WAqnqWCplE7n0N5xHAllTbfgYRclFJwLsjSbBUDNFMqxdLFSLWcThUQI+fQYPDKDlnlZ5EFqWbGwiXqQM2iaGL4eEQH4V1kAwsbQyEgHOPn6pS27dm7aenBUtaJJxOeNOBSNofENG7Zs3TWhWGEEUMFoKlqsVVqTC1uXm4lcKVduIo+L0bHx8en52am1m5aX9xw8fcJEds+MG1nyCIUs/FhQlmH4FR6kdCmdLFTKpXKqlEmhI+tIOhrQogmUfQPIG47HLRRkYygfqqPwtu4oFOWp8dHxiYmxiYnJmdWzk0PVuCJIMh/gBE5U0FGqritmPJqpNYdGmvVup9Xttlv17vjo2Eij3my0ekbQtUo+CxQAjcRIvABqATVP6yixLgFCCfRvCIhNEI0lJTMxGQ3WIBcUAsc8HppnSLifqDfF6XI7nW5aUTmSEuGeQzGS0Ugo6tVlBK+D5kkW6idHSqFIEOBdE7WwaSisKJOsQgdChpWMOuUwusE6J+nBcCIicxhBcBIJCIC5CZImBwHavYMDXqCPDEt4vQLJBKhQsHcGjPKQNInlJdrjdhC018/0kSnOjTv7CUEVKILsW+HWFMyPHgiCC5oMwTJ+26APc/pAjWMOF+gVm5th3HZKcbtxOWgGIxoAMGCFnxM8HtKHkSQhUgToZqjoJC2wPgwnVjhcXpJ0rRy+6awhUHcUfG8MO3H2yzDUiexf9Bv7gRsl4DCHkE7MFQupeCwaMYRqE/l9UZlO2jRUmWdrQ9VSsVIpIvu2ar1Rbw13kASegFs93Z2enl9Iwr0KGZqOJn9UIw73DkFYsTEzMdZBkULVVCFiICMOqAPpQqXeqNZBAU82UCSBIOumboV7+JvNZEFnZ2Ma5vfgkgpkmfG54XlXLCFseBgPj8cZKaNyjCivWkXhfj8Ak8s+6AECjkbZKVJAs249AO4hsHpiK1rV4K4jlowOgc1kMGoqMo/jTjmIkodITzgfUXmapD3Jej5fhqcX4LMOLKGGmMb09MxEOh6NmIBFYStaAHHc7ky1hydHarmILgDDTpfKQ/Whqdk4PMtBBMCJWDRVqlbQ0EG3OzQxThEYKcBVwk9lvIyuiMiAjKX8pIBa43CffdXgKlzmeMZts0sSr6KNMGzAidOC4idDtADS02Pv93C4GfCZaoxfFTA4mxdlMKjUKo+PJAh03b1DmmIX+TzzoKoB8yOGyPNAD9lAiGRcfo71DAziZCLjjumEmxaBRWJsdGZr3uZUzEiitnWjoPIeVjGbywbLEX4PS6JSaSVr49Pr8g5OpwQFG6AJrxlTalU5mMgkLbW8tp1JMXywWTN4Xo1n0plcMtNefeqsKLmC4cbetWZMA+6rhxeORuVYZM0FwYCmamI0kmnN7D1j9lPFsdbF66VDB3bsa81u+dppcrE5s27jObd+el+ytH05N32Q/MSpx9eN7fnsztLM1MY9Z97xqb0nj18ztv+mG9Yt3Xpdfnb3plOv/tJ5G05f+OTqeqd79sT68596/N67vnrl7ffdded1N15xyad/9qvXvvfMFb+++Kz1V1+864Hhs19/5Ec/uewTT5y2fGxvPNIpbzv18iuPzJ0xNHFkT33profu/a+//mD9O+++clZk8t1flp5+4d3Hj//5uS/cP/bVBztripNjE4Z17oUzjeVT12zoRLPnfu3Z62v7xr725PEvHDh0+JuvP/aT4KZb7nr3vmvOfvNvt3/nvacvPPT11vmLUqVdmbl8bvKHr1xqbavv3Lb99qf+9crfXnv7wSv/+tyRYze99Prh5Nm/PH7JXe++99Mrrv7iXaedcefRe2+rfObWB798xeh4Z+L49y790T/e+9kn7n33zR888s3X3nrujee3za/bNDe6tHxwceEIAPAplcnxcj1fmAZW3G6W22m4L7E4aCSV46RUSBd9SjIVCloqz4uKkZBQeBAUAsrnAQj2YQQriRyOwnhZCQih7Pc4kZaQgNmbIYV2OTGS8EF1dfXhMoFhyMHS5WIoXnT5ZIxQTZPz+HyEj5QkionUG+Vc/oS5YT6Tz4QsAKegATQ/kkmmkuGgFQAwlCiK0w3e57D7HC67KvlAMnzMI0uqyttX2gdXOaB0ryCyuRRI6VLA0bcK2WOtYK0oAG4qDdI01jvctVBXF/zB1NEWlwR8naVxwgBhm80jZ6pYLBqOmYaFnDgUWTHRXC5IA8DSdLZWK+dRo1g2EbGQn1QvtVRgBF6SkOMhsIZwMpNJRgGAkwh6Uyg/N1esNgGdmp2ptWs3LO/ctXXr/ll4quElhJC9br3ZnVrYuOfwGQtGEOpZAmh4Mt9oNcfm12/a0krmy4VKE43+dMcAG9fOzy5sWt66GwAY7aErtEcGFSQXckhuR2M9V8BIKN3LK6qUi+VqNgGvvVyIhWLpGJSphCFLATMcCQIAm6b+oVoToBNlt81AzUXyd3JyanZ+bmqoEgtAcZAkFgBYFUSaV3Q9AjBfbnRGh4e6Q83ucLNe606Nj4/Uq41GpV6v1WrFVLFUqWQt3TSQzzHwe1Q7ddQqG9QCaLpHN9DpegSuMhJgKTRF44cPDPOArHVj3gE/5vO63S7noA/ZKPf0HvLn4FRJNTVFDwU4h41iSU40VYJQ4dvq0bgWsCLxdEwxTUoIwhcTOEuTZhjgV6Qp2YrE4iEJlLSfkVhAfL/XAzBm97GsZ3DQAQiMSqmL5ikZsBoUMDoFBgUvcyxPe5wuivKynr5BWNp+W793lVeQnTiCmBDPoRgGRdZ12of3DHixFSsJmXEA8bM5Bzws63ZQAYeHkgKSZgWEAFAPyQ8q3Q24DmpdpBiBU3CWJHieooBVnuTwAf2AWr5yRZ/HiTFuXMDoHup+YL+BhpLQJBLbA2G2d9AHfxaL5XyvcVAVarVYVBWJ9HDqRAtFo1MDAK6i2IwKMuFuthGRQx9Tk8MT0wsLiUzEslAMsoyyfRP5UrZQqtZKTVgMgGHD3WqyEDMDvBo0QjGEzbV6vdXqNWGpMgJgRE6j8WQ6U8gj45eEQeIev6gCfFBo1tfHWkwoRHFulknxSs6U2KBo68PQFKHb4XENOkna53G4cT/FiIrS67QPfCB/T/RfAVtGAAyVX9XMhBmFT4sE5tBTaM4CcwEAB5A3mDtTy+XKeXjiqs1mq91sdUeHO5MzcxPJeCSssrwRiSUKhVq1MzLVHpnoVrLRkBgMW6libagFX5cwA4Eg8rxLxGIAwNXO2PDwyMjQ+BjD+HEGCLwmS5zfp4R41IpOU34crVyKAHAdWOFFVNPXZ1cCXEDURAkfdPhpQaWoMLBEkfbZ7C7RH1J9hh6V+uSg4PQ6fbwYoPo8Xhwn0LAd8jaI5Ufcg+hYAhuE+x4OyRLvsvkZOczQLh8r4kBWMKPk1S3aSSBXXy+rdXcVBlxocKK8Y5nRWA8whdZ2jWFxrxvlqzKSEat0G6PY/0MpXk7GHSwC4ECpokbTQJMjlbmhXJplIyPdfNSMBWOpTCqSqI/snJQDeKpY3rnGSmiAzHpi/cGgFI2vucBSFWDhkVhxaHLvRdYNa6eF88aMA4f3nToxv/6LhwKt7syazRfc8enDkczO5fLUWfolR48vTu/6zHJuZmxm3dFb7jy0f+aK1v4brhwbvfHK7MKOzWcdf+S8beetuWbjUGv+nNkdN3754Ttvffiq2z59+2033HHTsa//6L9e+NMLX7v+urtnb79g5pHSsfe+/LOf3XH2d89d+4mtiXilvPXjxy7ftXBqYc+BCy97dteZV1w2Z9S3XrB1LLb+Jz8rfuW9N957/9/vn7Pjpcdurs4n0omOHjr3rOnWjlMW14+kM+d9+Wvfv/f+i372g0Pf/8svz/ny258+Xz/87S8+X9O2fnp/qfOXiz3Nw1PXbAsku53pSxdGv/XiMWtL6+TtO+/7/lsv/eHR2075wz/eeOuZNZ9/ZzJ2z8tzzx287Pipa+/+y3t3PPHmzVd9pXb1Z+545PLOeC17zRPnvP7ex/c8995rf/3vB3/y7rOvvvPG3tUbludHFzcfXL/21G2t6VMbU6O1VrE4hQLpOrWRXDqbjEZDRlBjaSljaSKhJ5KmEVRQA46RkNFRGxQC0ov5XQ6PH6i3wOI+t8vP8pyfk7w+J8H6XLzMUsGQykE5JWkKd3s8Lpp1+VBsj8tup/ycQlAqRgQ0jXFB9fPhgN5MqFBNA0VN5lFeXT6f6kkoDRVxAOBkMho2USepSNJSgCcp0o/DN9RV2m1bdRIXFHjN8vYj42e7a9XH3GHkPDUUcXz0o3YfIPBJYjwNjxryswSeGQHQiyXCRgwZWfX8LWUJ5CvnJ/RMDgDzPwo4ZmogRTUJJHKvxmSyuR4EZ5AVFnyAlITCZcLLkuQAS7C8KvFmJIh6p5PAAJAbZRrpglQ8Gk/nAZ1anZHu+OzaNRs2Lm9d3r5vAv6ZlczkoCwCAI9Mzi/uPXruJlOLRiJojClX7bRbI1Pz67cOpQqVIqoqQ53u2OTU5Pz83LqlzVt3Hjg6gXz7ApRPFlgyUED2V9FoIpvM1GuRUCFfqRQKlSo6Cc7l0KZ5Kp7KZxKZsAmFLIiykaDWmabxIWSTidygRyam0RnwxPTkxNQcAPBwLS5zcHUC2nST0fmWbmjBRLyIDA2HEAaPthv12jB8/Ui1XG802q1arVXLgdCqZUOqHFR6gcsBDTW0osgcgEo9GARxaZq9jcuICejIshSJcu39uMfnHhx0uwaQETKaqxr0+N1OH82hBmFeFDhB1A01HAPlYHPSNMlLLCUacA+ioWhc1SxDj1lSOMbBS2U5ORIW/EYE6RaW0axwLKxQHEN4CVi/OO3z2UmScTpp0ed0270uEuCPcvtl5M5mmqDRe41YiiayHOW2eVmfl3Y5BnwM6f3wRyiHXZRdOMNi4aKlJywVVhC8Ls1CYz+RgBP4g6tv5YDd7uhzkrjdTgg++Mk4RgcEZKIa04FCugmNJYD2cZQAGp7kCVLmqIBnsO9jNhzDWJrzDOJul8/pcHKit4e/PQ+O/40/6rVe8f8bycAyYqWSy8STMUPgy4VwRBWxVCdpaDJU80anWsyXEQDXT6y0dnt4dGwUHvipie7k7OLaeBoBsIYAWFPNBKBoEWC20pxGCnikp4CjPQDWEQBXa/UhoJLtyZqAIjglFDMVRCZjqRTyEEhlEkBG3D4+AK/Q77A7HS7CIsyQwLsZNsGpuZDKWhxmc5AMg3s8BO5w4JzP73BRGENyyHUyAAB8YhpJ/6D7WTvxoRonABjFZVF+p56BV4y7HVYuLIAkwJ3pSjZXKSGjdrQ6h4ZQRubk9MxY3AoFVU5AA+zlWqs9OjE+MtbaqSUxAAAgAElEQVQZrhTiId6MhxOFBjxWU9NxTQigvZlQIhZPw/WPjA93ewqYFUgcRX7oyHrDJYRRclpv14ZgKdTCPTg4uMqLWlX8/XZZYhXJlCXSboeKqDBkRGA1kfIPOh2SL6R5NSOq2uSw5PE4PbwgU30+jKJZFJmtGMBJ00OuAVIUOfh6P2dF1ADvdaDYQY7yelj4pn12r1gnhQTvxETS6cV4sXWg0GcTgrFoZdc2Xmc9kmG0dipQc10uEqCdEVSrMFSfsX2UVTBF9Ds4yheMCKWaFssWs9lQbrKZSvBqYWqsZFJctlBt1suNibk9XRZea6ayY20sqfGMqWUWT9akRHLuHJS+qsOblO6s2X/BmH5NeWRiWT542qH97fnFx/ZE181OrN158T13nx7L7NhQaZ5mXnj0yvmRHfdtK62dWbN87l33n7l/7ljt8I3XjIzffn11zeblc294/IJt588f396sbjx1cvcNX3n8/vvuu+Xee++66Zprr7z+WPSLz//Py0/fu/assw+csuWKkcv/8fxz373myut3Th87UMoVGstnXXjFts3b6+sXvv7tt5+48J2njnz78JOP33NOeOzgFqNz3h3XPPSnr298+V+/v7MyXm1Vx/TQ+adOD+3et3FuMl/c/bXf/PPSbTcf/84nL757f27yonAumZ6dPzu7aza5+9Q7/vadey7//s//eG4o0mx1LlwefuyPl5qL7W1LB6/97/dffOPY+X9+9R8vvvavezbtm2uffJWxduKWX7/5zpuvvb3v1/+86uxvjx/9/HUPX9YYG27d9u1Dnzr3+J/f++0rL33rjp/85a/vvnDjlsU129Z2167ft7j+tO3tyVPaczPtViY/PzM5Oj3aAADOxFFpDuk8J2fDqkCZ8ST8rwYLRDUS8MiB4iVpv8ePRijR+R1HExgAMMPSwORcPgfGgAqWaQaQTYQnDCMov9uHEzTlwnHc57LZHZjLL+Cs7iekQACWkQ+wVA6glMlqJoVCWyqlLJDpVCISCwosaFM+mkFNWKk4lMSASHKAuh6ve7DfiWaaeLx/hdPUCUYNeQdsNqd3cOVJTimRT2er2ZQlDK7yDNr7T5IT2UQ0HUVBu7FoMhGNxuNWIB4No9hhDZkmoUFggjLSaFoHgDqZSIBC1jUAU01Q0X41aCgQx/k8IFmjWS9mc8VSMROzDKgPvRkdjhZ4A8h9DPRTsLcHnUTiN4W+HzKjhLXdGh6bmp5ZvW5x44aFDZu27xviAjroDRTrUCjXO2Pz63YcPHPJ1BPopDqZrwxNTIyOz27YtbWdylfKtSZyMeqOjSM76Ll1Gzbv2H3w6BQ6HZMJP0AOjgAYDTRlAQCrlXymmILXWK6CWk9mCsVyOZvMJiPJbCIcscKJZNjUQ8Eg2uw2PoTiA1GCeavnBT0BP6E7AT9jZrgW6xmY8AyKrWB4ubcFnUghMlBrDI+ND4/2jn7HuqPtUhG5DLfKlVarihhUKmwoyIhDQFvQPCsY4bAVi4V1ZOfQs5pCm9IhladhCREE7vdhBI1CrRwOl8ftdCOq5nC5vUDaCMbpoxhEBAIiClc0aQGDVUZREoczViYZicZjcDf1cBChfTDgcNk9tBJJBSk2ktRZ5EgUiYbjEYkURMrr5xXUoey3+f2kd5CECu4dALUgkKDDvIIflzjdRCcTqAFQ0SUO+Rh5OQeaJnJzCidRK20Mxfl8rsFVvmQlFEhYKBUHpVwoWtgwLBN4nMtht/X39/cN2NzOATvOkIIMEE7wOE7zakgjfZiDCcq8ogVISqKQYwKOCwypOlasWNEPZZO14X5P30qbs8+BtuZ7CUhIAZ8IAGYYqgfBvIB6oREgA4URapUMAmAdADgfi+kBMt1JhnSUXdJoV4vAw9B8WKVS7zVBd8cmRjvDAMCTM7MbVseSYQst5ICsGXoogTrn4WvLjSlQwAiAa9l8GBlxQN1F67jRBHBrDk1UewAsogxD4DfJNLJRAmaajSuEw+kRDF6kPE54K3x82K9pHG33U2FSTodUyqCwwX6MAtaFBrzsfh7eMjeJsTiDggdlANr/9F39HwCrPQUM/CAYC2oB4G1uPWXCZXpc4UJIAIbjtyVL6WwZALhQbAAAt1udUWTFMdFNAK6qQiBoJXNlwN/xyWanW2qUi1GdBQCO55ooJHgmoQmaZVpWCG1Bw/PSGRuCfz88Oc5JLIHzRhAAWBLclAm0iT1xbNIDYNdAv8OG6TzBY3Y7z9KKbAYkymnDODRCFpZZQ2Fwm8suYZbpU4Jh0yZEFcztdImCyg5gUEKRW6uiA/5aiYZzAOdFlgABzZhRTeUwp5sNGAIIbVoinP02jK3LZFx2ekXK6fdzdP0IALCkhRP1nVsDBucVDa25Q4GHwwnlFvUHqOF8s7N6sI+TsYCA2WA9h8N8va2HM4VUNlJZmMhGRa3YyoZ5L9estYbbre7s4ifmCYOUc909C9FIAF6nnFm/O6jkU9NHgUsLuqzqVm3NztPua+xauzq8M7Z57+G9jfWbHzsYnpue3rjn3E/fcXqhum0u2zpAnXLGdYsjux7cnpmeWDx87N6Hz9g6dWz40A3XdRc+dWdjbsPyx49/9RMLH197/cmNyt59cwcv+cJjd37+3uvuuf/he++887Yb74pe9drvn/nVn7LfHGkv1w/N7r3nui+8dN9t/3PB9NnbrVixsfzxC45t3D6/burCX97/j38+tunI99665e0Hn7tEn73135d/ZcO1j181aqX3XrK0fmiiVKx1zdhFp063d+7cNFHOji+funSl3059rHb+hs9eeu7ND33+8VzjkdeeOfmdH7363H3ffeb5185+5PjNU2qlM9Q+7+TG3b+9JLTUXli9//jT7/39zVOefeNfz73w9huP3rxmw8TcTYvf2f3Hf7740vNv3/vx3715/lnf3rb86NX3H2uMt8r3/viszc++/8rvXv3bsz+587vvvHHtp974zMKazWvH1q49eXHptB0j3b2tubWjQ+nC+rVzE9Pd6hAU8FgIdcqovCCmgzKHa9E0CMUA8mXVEACjNDASc/v9DqePBBrOkgDAHgINpSuy0+PEQffyGiOauiaSHrcXJ1koHgRBwWolvbYBm9Nnd2IOSsM4eKYYlx/AmVAUQs00UGRLCWgsIEm1mEzGLI0lGcpLW5lELJFIpqBMaAEGpSPwBEYIgmIIYoDzuXyBACfLgt9pH/Ti/R/FI1BB8ih9rdUJ2Qb6nf2r9BSATzRkWolUMpFOp+C7oWYzgCB4iAHCUMgT1DUDFHAm9R8FHDHMEEAFr2mohQg5NiMf6GKpUKnXqpVy0dBlHn3ISkDVREHjNIEJRnTDQE4cyL0agDyZSiczyAIK/tHwyEh3bHrd0sblTYtLm7ft6SjhKPqmaE4XRfotLGzZc9r6UAhNERXz6Fi43ZmY37B9WyeVLZVrDah8I6OoK2b1mjXrl5Z37Tl4+lQwqGsCTkigxwKFnkDPFMqtOrzKPEpmqzUq+Vw5lUjlKtV8Ph1BTvO5RNiKxsMoYRHKTU8Bt1qoNaczPD6NOrCmuu2h0ZnVc7OtcgRlEEoiLwtQFkSoE2rAyhVzpXYHitbo2PBop9PtgKQY7xQB9lutehGupNGu55PIRkyVBGRkJYgczQMAh0Jh6/9j6j3AHKmubWF/vvc3M52USypVSZVUpaqSSlWlnGMrtaSWOofp6Z6cc47ABIYMJtsm5xyNwRjjBDbO+DrjiMFgMGAwwcwQ/L99NPi+1980zPT0qCWdc/Za6+y915YEZEiBLh58CihXLwAIReO4w+HAXcjUwGA0wuYwWTG7HTW62ZxO+J8TeTDSQAE5TyDgZUEfAjDZQWIICqomg5ipg0ADjCUpxW/5bA/F+KIRkaZjEZlmGJpR4hE1onEuxgPYRwocDuLAgnKw/RhL2MyLLTYCrb7TRrlwDyMjB3B0MyB7vega1Wq2MSazxQHxT/EHKuLnQN1h5sX9/VykHBMFJLiBVKgaaHo0M4inQK5gVoDfPtjs/T1mwmWneJYkKdoCTJRkKFtfX4+dZTx8QCBYgYSnxdgxEsc91sWLenqcTrcX5DaFGfucNgcQ2q4DJYLf0wCM8o//C8DMaQCmCaZSjCXCkSCIx1IuAqGbjFUjmt/Lc0y5VszliuizUCiBNgQW1+qMdhpABzsTE+MLk2E0QbkLwD7UjRqP5/KnAbjdqjUQAKfSql9kBEDa00VYAL8AwIMQEng4gKJPDahBdGjSsOsS6QjvMpptngDFuaxWzNBvZ8NO2cs4+62uAMHHNL9Tdpv7+jHCggNVsVsNmNuJ5L7dRbg5AQHw6fzvfwQwMiXzSd1RgSIqwgoHRA9DUZgvBkgMpE1NKRzFAgCH84lUPpcCOjsIZLdRqwPPmBhpt2Kagkq8fbIeS5UrrWY7Ux6KF1MpjQd1oYWSg4VSY3wy4hd9mqKqSjgUSuSyuToC4HZrHACYJRxu0S8jUyCHQxD5rvcY7gAKAUHN3N/T12uROSfvNBtgrby8DFvU3I8xIE7sQS8p8Qy8ThOL67rDC1t/wKXzyMHdw/rpPtiPbjTiUETHIRStmPswNyzqwICdlEAAkHbjgEuQeILCSA439/fbnXGfRRPMZpay4jjtKh9ImeyipMYr61YJftbOiGJ1gxd2CPJwQW73UihXGZ9wMopoZxjMAGE6FJTqTSUYT8fy0cJUM6pyTKoYDkp0qJIrDOZz1dbw8RU2jg3kSyungkERaK+QnNumcunI2EFkiyezckjPT63e9f1vCufFqqXZJav376ksW/HAPrEzNbVsy3l33bIrWVg5nartpvacedV8Z82D62Ojzdld59/xyJnzjSOFTVde1lpxw225+ZXrDl3y9bMm985etalcOLhx6vBlP/jhw08/cc8jd950weF9u1ZuvO6xj15+5td/KN2uTZy9/5bs+R9ft/NLB2787f6R88+OB9O5teecd3R2S3t86t5PHvngl9s+/8SpUw8/++ZTZwWX/vK3V3983573v3b1M4e+981Lt3U6IEWGxeC5B8aGt25bsXwwm1r3pVv/5/ANX3pg/xUvf/ThqQvuvf/HqYnXnr9wyzOP3/fTf91706OXzR35zY82yoOlZuf43vw1v7gwsqE5O7H+7mdPvfX0zk8+efmey584NlQIr6xd/ce33mvc8vF7L578021P/uKDg7ufPt555LK7LqqNDuZvfnrNCx++/Pqrf3n55Pdu+58Xzv7SqZM/H1+6MDOydG7L/MKB9a36hvL4TL2Wys5OToyNNACAo8kYAmAfD8olHvAyDikSQd2uAFMeMeIFzosuxHCbHUMjkNAwUhyzmkw46/VSPA+Bys1arYzf7fFLXpZA3ZxuEo3gRuXJbhJdqpkdZqNxMS5aaaC0pNlmtTntvBeX02Wg14l0PpYoFfKVfCjogaBIe1wDmD8RC4cANQLwvGTK5fEHAsFYuhTXQiKIbKy/x4nwU2CxgR4LtnhxMNsF8VgmEm03iP/u7fncYiUeD6u+AILxRBKBbwCZ9wAAo+oTZLXIIycOQkplUR1Tt1o6iIqF/BAFYE9LqGao28sLeJlp1EoJFY4+hFQ0pY9B/nlehhEp0EuyArEbJZjDsVQ8mURWzAkEwIlsHkW/ZnscsHPtuvXrV6/aOOwHYR9HCJzKlQCA5+bWbNk/ryjAABKoHCKdSRXbE2OjG5toBE0JXR6i3F1rdHpmZunCyo3bdh4YU/yil7G7OJK2CflUPBaNJlAPSb6YTcOv7GApjeYhhSKpDOgj1BucjumqD2WqtYhfQRLYJ3+mOyKn1ag1RibQMAYIzvU2KODJclbjKATALCCRB/mN+GVejsTS2Vqj2ug0mo2RVnOkjWY3NNLRZGZoqF4ZLNcatUo+riOnSxBISDsDfHfHAQYjYVUNBtWu2XVA1VQfuh92UcjZxeHoFkIP9PcbLUYAMKvdgVksVsxiGjC6u9OCWVmB4OZnAcLM/Ra7naAkHYIxaqEMeaxuvxZVCCHktRjcgl+P6oIIIIy7ZD/PCWFdDkiwbVnQk3aOdSEfJjOsn8FEue2mHnQLA9LAZcM5wuMR0bUIAmAgZgzLIr8IN7Z4AHObFwk6GwwarE6RNhlMPYti1ZwfWXINoGmcogjbCQlnL2e34o6BAStoo77eHpvbbadYmoXAbbPYcRtmM5r6IfC6Fb+fI0Se8AgSjUzS4aAM9PQtJihOLdl6LFbL4r4Bo8UOcrvrAO1yfer8TNHICZpCiWDUmYS+wBBMfRCNvgwqIl/Mx1RBckfLsOMBz5hSpQD7AYApnwcWB3Kv0WoOj3ZQiw5o4JGFiUhMRx4eIDt9fl8gkkigi5NivjIx3KwhzjiYTOsBkRZAo8GxQ49RqZWrnbLXKwEmAfkMBAJ6JBoJAQCnAIA5GhaQD5A0bbM5DH12JkwoAksYzLRKCnAYnLKEGQ0mF+Z0W3pt2IDJ6UJVd8DUKVY4PXcBGVML/w8Ay1IXhEVRiQXCigiUkMZ8CZCaNGkNpDQvC2tqjBRQOgcOab5cHmwMo6c+Mjk6MhyPwILCw3iBfpeKjXqzWG1l6yA0OHcgrIYS+UK+OjYZ8qM5ZnDog8FwupjP1tv1ocbw8ESH8qBZwAIiZB7WhdEBzoX65lDSBAQwbjMs7lncJwqkiJsAgJ08MuB2mXttDMXxjrDkhPPjtPab3U495OBVf2AAVzinyWziKIWGeNVtKPN4JR+iPhVLn5UAxDcO2By85veRwElJXpJIBiMQAPfYbFLQFPBhJpax2jE3Xd6pY4zk1xEA8z6Pg+Kl+gYvnBGT3Yl4GuuLFioLM6XZ8Yibd9lMHMuEQ2ppMIDiSyocKaSDKs0Va7GYhCvV/GAlk662mruWQnznfMHxtg4ADAEwNbtTI+P6xBE/LBC8kYl4eW7d/ht+E904P5ab2rthz47UzIpHdktTS8aWbLv4/ru3hlPLlmULuz37D5032lz78Obs0om5nefe+uix+fr+yNqrz51YfeNdhWUrN5196dePzO6cPH/VYObQivmzLvnGQ1dcdGjboQPHzjznkqsu/fpLD774z+d//uKSyx557B8bHpzZceqHzz24advl0/MndvvVUmr9OSf2Te+sres8+92Lvrni3FNfuuT9z7/3yHNXacu/9sNvf/jJ/Qfv++FHD/7ttufOb44l85Fhb/DY4ZHR7Xs3LS8X8he9+Pott37w7odvfv9H99x01sgXH7zDN/vwZT+q3/j8r1/4xrs/+cPHa+/9ytNb6MHScOGsw9lLnrswsrGxZGLlPb/919PPPPbut1aWtt73kwdTP9kS2vm7P76558J7f/6P537xxmsvnNq19Rs3FO6+/Jbz6p3h7A2/vPi9N/72p1f+/o8XvnH/iqtfefudk49vWLlsprNkydb5pXtWN2ub6mMTlUoqMwNRdLgx2EzFU4muVaEX5E5CgyWVk0GAKeRNz4oxSQSgogmCsEMcMVvtThfKq6E5C7SApolZjBaGMlkZhUTT0Wn4NoBdixNVamJWF2m32R2WASew3kWEbAZqJ1Mm5DFuEWRCSZVB5gFRz6ar+Wg85PU6zE6O97KYSeoOHkL1SqLoY5wAA0oim0qEeNFuPGORzWp2cxTp9otYb4/FsAhPJOORSCIZo4LJkTH3f5n7F/XrIGgVfwi0bxypWx0kDkQTFRQNADDyWOQ5CGu4mCnEoon/FGGhbmjg44wXTSuBEAPcGvVIAaCpoqiGI6Bz4RFEjkZ3SC6XAO8MjybW+zV0YZ5IJdPd3GsyHlRDKTS9vlRrj01Ozy5bvX7zxhULa1u+oBZJohRtOpsv1YenZ1dt3jMrSt0r6EgyB0qjOb10bn77SDKRAQ1TrnTLoNugW6bmFlZt2r778ATQHC+NURzJYmIhBfwinsoWc9lSJZutFUvFbCwczybg65lkKKznc8FwMiREIcRogqdbY+pDAJwroqjcqBYbYxPIEG16ZHh0enpivAvAHO9hGQTAjAAwKnuVeLqQK9cGhzq14fbEcH2ojkR5LRGOg7wADZwvVrqd0qrEIytKBD1ddyNFC+khXdWjYdS0gry+NKlbpIXm6xG4HcNsJIkN9A4YBgxWW9cqymqzDPT1mwDOQKHiLq+oSgzjshOugR4zTov+YLehCQiPajmDCgYCHjqoO21uUQjGwqC3w34JgrnbQTn9MsvTNgcBodOJcRyN4ZjTgJGMod/FklaDwWqxsSzpNpk4nOE4Gd0LAPfiZQGV1gyYABw/a3QqNG4FfHeZDAJt7ycs/T0EbbcSsHU9jBMnTAYSJURBdApopJHZZDMuWtTb24sBWHo4GiURnQ7SBRR0wNTTY+ixBhSesAuMzSMqoI8JN+1ijYv7FrtYb2mpDWW/DSbMYLSZ7VzXARooCP0p4P4HeKlPAZlhSbZRjqWiIQBKNpdJaiCGYpWYv4tUsBiAqKloLI2cOErFSqM11BwZaTY7E812q71sIhKH5fB3pw35ZCWMCvYRAFen2q06qo2vxNOhgOASADwQABdLlUq9UmmXvTxQFB62EGppi8aioRTq00uGGaLXZOU1kqWR2aTJxQccCsc4jUZGJYR4SMX5IGntXww0nsH6cWd/L047cOsAQXy6V9AtiU/kBZQFOH0F/b8ALAdiqA3JK7C0VU760SBRu54NohGATlM0E43ncmnkgjVYaiAbTdigY2OdRCwAj+T3AwBHi/lGrTncGq+PhdUAQ6kIgLOD+fLouO4LKMDRFUnTQykgr5VmtQovf7ILwJjTg6ZkeSgGc4dQEQwq4nZYEQA7TIthPb0CwRkNAzSJcxAvaJelx4aSL/awn5RFD27rMTudatDuCfi0AVxinCariXX53YvMaG4wx3ACbO4YALC130oyomDqs2AskFSKMPeRvM/v8tgIj9NiBABmU7ZAwGliaJPFTFCFtR4L6/UHo+UNawCAcTfna24SOTdrchAu2C+sL1YYnJlccWJzFA0RMXOMWw8G4lE5EUVDXpOlwWKG58r1aEwmgoVUcRCgtbVkzYzIEZIYm2gCSeQZjxCf2hN2JtTp81SvwPtkORwbWr5+/50/Xeo/np9Qj67bd7i0ZNkDu7S5yeGFXefe+9COWG7lqnhzH7f36KXTI2sfWBmZmZzffcmdjx2bb5+dXbjiwOSy6+8szM5tPnHFN44tO7r84k0j5RPr129ZfezMC6689uaHHvzqvXfdfvvVd//+wfv+9YvfvTxy/Ze/++GBG9r73nr+7aeuv3BDddmujYliLb3u7KO7luwrLps99e66S+/+7st/XnZi1bO/eXavvuTqnxz99xOX3HbPax/f89zLjx4fXR4bio8HEsfPanU271m1ZKJQufQP9x2cuuPqG0+efPSa3z+18a9Pvp0ff/wbT57/1ht//tEz93zta8/e/+HVzx7nBqvTxX1n5i587nx9dXl6bMWlr5y84N7y9lvuvvW1Ux9M3fT+hsHjLzz6pyNvvnDXI0/9852//e2DNevueyh52xXXH6s2C9k7fnb762+8+torL5x698nL7vzwg/f+8q+/7126eklrcnrrwvyO5Y36Ntii9UoiO79kZrwxVG6losjKH9nLCbw3rvo9mJQKgVaBaM0xUlwGAKYpCEgOzGa2grylPZwLt1tMNrcgg1DCBswMbrSyqkuAoEc57RhqWXLYHYBQBBqE5CDMi3DYtD2UaqXkgCZg5n6TwyKDtEgnC8lkMRXOpCsxiNsOp9Mp+D00S5u8QRBO4YQW8LOcjyNYQM8IQGlY0SE88aDQfQwNB1YyLxqw9SwSUCVzDJBNq8aTQ74Bwo05Irqi+LRILJbMRCQ02CGAymJRE5EseGDzo54JgnWKuUIkGP1PDlj1+xDmCKiEVwEATnQRNZUWA9FMPhtBsV+Ecy2jthDQT4LHzSJHOV0+3YfUVb/xRCIW0wPhdD6frdWHWp2JJQsLK9ZsXLd0bm1L1rVYOo1mEKczhVp7ambVxl3TgqgFo8g6GmLI2NTCmu1n7p5IJ1E5c6WChGpntD02PrWwcv32HXvPnoZ4L7ltNEdydl8xiUynQeyUSqUihKFCdTDqV5Pw57ieTMZL2YSOTCATsVAwrAqCim7PIa7Jn0lnC+XG8NAggOpwY3RyBMLO1OjU7OhgXmM5L4+qnzzdD8bvFQKBeAEAu46GuHVGQE+0h9ut4aFioVyu1SqlcrVSzA5WsiE/qlllXTxDCjIq/9W1AHCfSKRr2x8OoisGULQcSkzgDqfVCorCDnul74zF/QaTyWBArslWNGhioN+OY2YSaUVvwE+ZrTRu6e8n1bASAJD06bA5VLrf4A3rXDguOFy8NxBLqLJP4twI0M0EGwgFFMpKETiIMqcNZzlkc2my426n2cHTVhvqlgOR7TRbCQftcfsVuZt4RHNtgG2aTQ7K3m/GnSTFeiVB7j3Dyjlw0xmUP5WMxpLRIFA2HV3mSxRuwWjJ77PZSLcdvsXUu7jX6KRImwtIjKiIFMocYhazeWCRwWJyujkbyVosHk5y0x4Sd7so20A/TrLl+abThJutfX0Gi8VotBIAz137Dfen9VddCD79QXX7kzy4p1LIgwjVAUfLhajC8u54JQSrxdNMZTAfTxUy0XA4jOxcqsi+rNNstmu18U57fHLpVDAR1Lp9wAiAA1GgmGlULz040emgG+hOIZICrkTLugInCPUIV2q1wUqr6AN6w/B+lARGeZNgKB3LJmPZCGs39tg9fifldjpMABOsjimCh+yx82FcjsYjDmcAd1t7rPCqgJLbLAab0+12WGAHAFViFAZOZHcYpP90KRwAGDB1BL8+SVCSEVlRUNkkqcc0n0BTdjWr+zy0y22LpULpEpwklNCpNdrDjZHmyMTEZAsOoF9G3YZaMFksDw5WJ8c6kxOxsMgz8NTD0SS8oOERVfSjWV+iCKc1mkknq2341qHqzKhJlFHO16vwHp+Hxe2SCD+MoV0Om0RcpOIAACAASURBVJGEY+809pgNvZyfphyGAStAHydLhMu+yMhRlNca0lxeH+2xGftcjC+Cc1o4OODQvES/2UR7A0SPDSOcHMsxsheeSTI2ZO812YCCYL0DlFMJCDTpOIOUhSAv2mwuButbbLC4kk42QwyAJraZCSJfJS1+IaAla2vW8n7gj7yvtdELD2m24C7SxYr+cLYyO3n258+rWz0uwwAjCHogUNIC0WyqFOczrUY2L9PpTEbzUGo8DnAMoWBsxxJGpCSfvnQq7ucZt08Mjm1QWD0yt0/xwHvEi1o8N79+26X3XDQ6OTcnz8/v3VNcufzeQ/rIaGt03dn3PbQ7k980G68cdR04cuX86K5H1idGG+Orj9774JHVzUPptZeeNTRz+RdL86tXHLjimYOrjsxfMLFuydbVK3Zd87sn7n3i/rseuvf2u++85baLH/z9n+689ZVf/Wn+yL7R6w6eWHL+89/59W/P/8Jrm5eeta1SqOc2HDmyct3m8tyhDx4g/nzyvY/fe+HC9psfP7G30Pzr8xff1z7/o3Mvf/2qk/c+ffFMq5zKjAX147vGOnt3rlsYKdQvvvf2Wy776J13nrnug1O//csVP7vxW6HVz3/x1UcvvezKvz9/157Ldx0+9fprq8RSuVnZfTRz+DsnwhuGp5rLD37+is7Rg69+9PHH7374xK7vn5rNXvyLg79/8u1/vnn3D/916pu/+OCW6n1Pts676cLj5bFm/qEXr373r39/8e/vv33uTdf85l8v//X19969aHblfGt01dalyw9tn27t6ozPNcuJ4pJmvVUpFtsAXpoUUGTBDfEhFvaxhJwJg/SUGMojqBGe4incherrcJu5z4rmAbrtNottwO7gBFJg0IxgFrPJMg3xhgdhYzY7KafNaIIv8xRrsiATNjtuNxopDqAzrkmEBY9HNb/GBqKJcimZLmSTGZ1HLm8EPLioyAxhgj2jhcKAwJLgod1ur1fWIIongjJ8FXRmhuIA/GROJCx2x4DN3x2EEEuka6VMowgR3t7zX1qID4AwjkbDOiBvNKgouu5Htr9yd/Jo17KJcRHeYj6lg3yKJcPIuViWUIxnvKIAx0MNhxJJZHMRAvGrqbrKA6fmPBAmUJ0SBzDOeUWAAy0Y0JEZZCKWRmNv0VAEVUNDSgvl9khnbBLU66q1a9atXbl8COAwk4ll4bSn0vl6Z2x2zfqtE6KSyeZyCICHhsenZ+fX7z5zLlPIFHKFwUJ5aKjZ6UxNTUwuBQDevO3gvOQDvm0HqHHZtXg8GER31ehf5+GjWigWMsVyqlRABn25DJLD8Ug4HtaD0bAf1bn4VZ/PL30mka9UK/VWu9IYbkJ4bk+Mjo93Jqfa5bzOeVCJOLpk59FcI68A0h95WtdQKW19uNNAk+0mRkdbg8VKpXsDDRoYhFYhGfR3q4hZyu1Fc+tQFxJKiXf7qzIp4E/RsOJF1TQQp3HchrydMRxVCSxetKint6fXYMVNRiOgldXZ22+2EejbWIHsX2QkbP1Gt6J1+ZOqK7IUCwfQZCd/JCjTJCvKsFQglWXdbz1jgOBFXlIDMkVQDudpAGYkF+m2WZwQPA0GHOUw+s0Y7qIIi9mJu1m3qCm+LgALAprnZYLNa+0x2EAFeRlaCXBmJgB80g6CISwDh/LJWlcxy1IwnlBcdhc/YOEEp8UyAC+lx+gg7DaHm6YFmWdZ2oXqvUHJGE39Nhy3uGigAAztRE+OZdw2k8Xp9I4uz/b12s3YQF9f9/XjqPIKlV99Knu7CWD0cVoJU7SLcfDVXC4WDgGl4UuFqOoR3PFqBNiZBwC4nI0lC5lubVGxNIhSuJVGfWi4Xm+3WqPjS6fDyaCm+qTTbDIQSSYy2cFCoVSe7LSBZDWH87G07kNJdgUUcCpXKqMpSvV2UfRKIuXxiQGfqurRaCSejsNbktRp3Nxr5/wE68ZxYFAAwHYNROGAhdIdMlAwJ+7DHZa+fgJN4MDsGNB3woUAGHeTEutD0z19vv84QCMAhm3CoDkNkiSqqbCIJlkLnDMQ9oucy2VTkjqghMtljSUj3bxLMl+qVOvDQAwbI1PTS0ZSMdSagKYZIwAulcpT48NjY/Fk0Mv4VTUSSw1Wqq2OyqMf6ZekkBaNZzOpynC5Wm7WZ0fNgg+l3Xi/1+tHRnwe+KObduPAHDB473Grob93Mat4eHffgBk1QwgSQWKLTCwAsCkQIHiJYa3GfoKWYk5Gi4QH7LpEDlhMjKTjPXarwwmxg/MhAE7Fhmw9BisvSs5eA+GUNYmlyR5C9Kpe3m510cRA74CNSFJMjrI4PQ7MQRCRJE5GBb+aqK1b6/F7nCwvN9YhALZY0agaAOBQtjo6c9GxG5oOFv4Jz9E+X7iWUpAICXvSzXIsKblDsGoel1rIVsvpTLE5s2spL7t4MTQzGlNFxsX5c0s3+blwePZQSGAYr+wLZ/Mzq3cc//IT90cOpgrTtbk1iYmZR3bJjVattWL/zbduSxe2zEWHDxNrdl82Pbv5yT3xocaSTUfuuP/QXGlvZO2JnUMb7709u2xh6YHLn9yx/PDIFctqQ2fO7tj/xV89cus9V1z34P233X3btTeef9+ffvn25T/4xxurbvrh8w/uPnv62Fs/+963r3n8G5vnju2Op0q59UfOnN+8vLl5z90r7vj/33npZy+9+c/OPe+8sE9unnx7/3U3/uq3T+09uPHXv3ryrPqqwlCyHtCPbW1PHNqxeWq4WLj06e889ODTjz183j0X3Xz1jsfevuUBcfs3n/hk18Gll/z9jzf/8cvsmpMP3z7vq+aWpHadyO994lh4TW16fM3UOX/+54vNt06++fuTlx068YWvD04ef+r53/3sg9ce/cMbdz75zY/ev3j4hien9t924kh+OF+89uc3vv/GCyff/t4jX//2td9//c23Xv77R1etWrKsPbp06/zyC3ZNFNc2xobqpWhqstnsjA0VquFQMhKO6gEf56aERKQLwFGQjyAUeY8SFjkvTYJUwWxWi9mIOQm3hyVtFsyIk5KPlnnMbCdZs9krUaLi9bgICEMOArcazTac9vIyBgHF4XA4AYBdlNkbigR4J6lE9ICiMUosW0gns2nVKyNrHzfhRIb8COiNgq4GIxC4NRkZC7jRfaYeisbDPk3TQFGF3S7aTbKUEAx6CbNTR38XjyVSmUyyFLYs+u/FBKt6lWgkHAohcypkzY5SkN0CJFmWgBp3G4HdJOktZFPhSDwYioZDkbAm+UAEiyzvFSRV05GpRiIWVUUFOXoEZN7bLQKVvGiiIWpVFADLFVULK2iccDCCDPCRIQeaLhjt3uo1mg3U3b905dqNm9au2TSk6v5EIpLOZTOZXLHe7kyv2bRzRgkCpchmc8XyEBD4qbm1O/ZPxtPJfK5Ur6DxB8OtiampuTUbN27buefIMtACPGlDvsAONZ+NRZHfNGrEAIhs1Iug03UA+GQsmsrnQWujShnQCSF4errqD2saCEXF95lkoVotV+qNzig8frk2NT46Nj4xM9moFHQPhCUegj6D7CgFkfdKvmgijxQwAPUQhLh6a2R0emK8XUWVp7UyKODBXAHoQyYoelBtG+VivJ7uFKVgBBmZIF+wNBp3lYhHVdnLkS5EtRwYhmYy23A3RdotPT09ixb1mhxGDDMa7U47be/73Of6SMnpNPcsMlit/RYmGNflrj2x5NWSQIlSOungUj7KDRFIT+joPiQQFAZ6nDQrSrAoNOYmLQRJMwTmoDxOBzbQb7HZnTazg8BMPX1GK0bSTqsJByikOF1VkPiSvDztomCv4m4LACnuEnFMLwOGhqOA3/bYkKTBG+k/3avavaH0iAHQ4eYeI+d1GDC8r2fAjLlonEQGXDyELo7nKHRraR2wmAcwHHN4PBjt42iSwDFSEG1Gq4OwMY310TO6ANzf02eBc4Z1xyF1659dp9O/XQAGjtq9hKZpF+2QhjKZBGxZGRVhRTVBdMWqUQlIk5upVjMIgGORUBw5nuYLqMQCFOxQc6jeGBlbMh2J6wiA/eiaFuWA45lMEbYRKOBhxLNa+Xj602EMfhVNdECzoGvNkSLoUpHiAIC7LWaA76lkKR2KqTRh7cU4P8nRqLnbYvLo9pBAkmaTU3NIWjBCETKJYZYeVJiJo2AyYHG6UMME6PzTAwmB1f7HCQtBsE/sAjDqktJSQVhZGTaOw6f7vMDfrL645u/+JppMpPPIyq6IstTNdqfdHJmaXTrWtYz1dwE4VaoMlgbHx9pjo/F0xOsJaIC2mXK50hpRWNjrouIHGhfv2mE3KvVKqz7VNtB+niadLLxDigyrTwRYlDhx2Cxmk8vjcsAGGejh/CxL9pusbhwWWSKd1sVmxs2IRsmPc16Oshj7HW4hTtBqLGZ1BP0uo9XAyhF7r9OEEcDwPQDAgXA6PmRdPGBhZYnuNWI4r8keju7DPF6/D2SIm2aNA/0OR9zrznnsNgm3wfunR5yMyvkDscqGdWzAQ3gEub7a62RpsxVdQXMCAHBtcuU5226Zckks7uBpt1/V6oOBlK7JYSk3PBiJ+YHNJsJeV7BWqFVTiXxnaus073Px/thUKx72c5RHTs5sVtw+X22TJMuCQlByLDGybNeGy+7+UXN+Fls3s2lXfX7hsT2+1mh7fP2Rm67fmsxvmQu19rpXHLxqYun6x7clZpZvOXTRvY8dX1Y9ml644Mjklrvvrm/ftfvSG5/ZNX189IpV6cYFw3v3XPeLhx546vbbnvrKrXfe8sVbzvvWe388+cw9//rTsjM33/Sr+YeSR/79wqs/2XnFzVvGjuxV04Xc+rP3Te3sTG/fOHLVxo8++dWTf/n439df9eVbrtamX33U+p1/nvzgnZcumPvkzSevnB7NDGWH/OGjG4dmztyybd1crnTltx9/+8wbPzn19kv7338/s/a9x3/MnvXcTz8+cfuNR37+1m9euuHGhz753tfWqrHiaGHnxbVtDxwNr2yODq5Z++WPPnj/8LHv/fbUj/e//MxX75uaPPA/33j56Tf/+M+PP/zD0cMXHMzmrv7ahpX3n3Ok0Gpmb/nJVa+88fGjdz938r3v3PPNf/3t1bdee//Qiqnlrcn53SuWHF/XHlnZnmiWi5H4eLvdadYK9XgsncikIsFQQJKkZNRH41I2HJAQCWUZKegTvMD9nBAvrDbMaLPbSQ5N5HUYccIrUqLHBvuJNpp40S34vR63y2XHHHZzP2qKxBjO5zKbTRB57JjRynBWKRgJMHY6HA9pECHVRC4TjydUhvRwHIhS1BlE4l1LBm9QBzwMhzW/JACvFJAxRjASj6LR9ZFgWBdImmJphmSxPsOAVdJRChYBcL7QqGeymeqylXlGj6pA0sPxZBRgD4SqgjoOkNs0AmCEoBw8W28ulQhGUyHk7BMNaT5QiJLIsgKceVCx0SRqplU9PtkPugdgW0RxXvSg9ghJ9rJocq4vEAj6Y9FgJBrLoTKHdCoK0U2PZYCV19qgLEdGZ+eWrd64ceWqbS01qMQTMTT6KZ3Nl4daE6sRAIdQ+RUaHddodcbGZ1ZtPjQDvKSQHyzmB2uVcrXSbNYaUwvLV+/Yd3w1UBKBdAAAE5iUSoRCqVwmh+YhFAfrrVolD+Q/nE3GQuFUPpdMJFAOPJkORUNAt8NaWFVkj9cnf2akM9yolxJqOhWK5JKZ8dHRkZHxmalOJa95kDk+geMEagMSFY/kk6KRfBHEbq3eHO4M16sNUPVjY+2uQzDAeK1eKZWymXwqwLNezgPvKtcdooRWLAVPIBrUtEQmh1qmErDJOJKkCNgmEIZxVHlFsgDaDszct2hRv9VihV+owsCKO0E2DuDmRf+1yIJZaSWioUlWmVRY0ZOZeDoWi8sEE1I5F+sV/eEICGJFU0R7n11k3d5AMOAz9VIuDH4W47I7XICruNlkAdAFPUw5Df0DJrOFoHDM5HDhQAi6tWk+n18UaLcbOADuMveYnS5WYm1W2snQ0YTEkA5e4SL5dCQgK+j2FhY+kAgKFOMLhun+xWYbZlm8uN9GkAzP8RSNZl4ytEcUUcR242iYM8mQlCy6WD9sdRqzwrY3gL4hbZg+JS822iwOk7Gn12w1QShGc7QpNPmpW7HD/N/07+kcMEXjSjOdAp4FR0QspsO6JJLRalRgWYZk6kO5BASrVAoN0cjm0gBSmWI2X6s2arUGbMepSKxrRSkjBexXownQf/lMNl+aGB2u/C8Ay7D6ml+J53LFGrCs2vB4SQBkRArYj4y+I0Ed1reYCiU0hrD22VkfwXF2q9VqNIkhS0gCLm526bg3oEVoSnLb7I5FdjfCMQxYlg01O1isJMm6BU+3a/w/LcAywl90fSyJQAAlWUvqvKTIfsmDK+GAD6IRpsQD8Ec3KGCg3LlCMoba1IEktDojrc745JIOGmXaBeBgOFWs1SqDw6OjU+OxuAoArOuxRG5wsNwaVVkGNqraBWCgsbnBamW43mlMtHodfpElcMrrAxhHbWkK7B9kb4A5DE7Bhdtho/azsttlN1gwlwOIguRymHrMtJuTjR4FvuBxmmFpXWyUIAOJNEkEA6TZ1s9KUfuA22QjqU8BOJSIAQAbTLArhH6z2cGiOce0wcR4JZV0GSmKNxt6cCysE2kRH5AAux1Of4SF1y4p4dLadR7FQ/KiXF3J44zbiACY4QRfOF8fXrHn8C0bbW7KZuMYWosIlZKeRD59gcJIORbVWD2WCvuocDVbrqRixempTRO84hK0xEQjEfWzlE8MT22SXH6tsRl2IMkEQqlicemG/Ttmr3tqP7+XWLZsz8bczMztO4RauzW+4fh9N+6MZTbN6vU91Opzrp6e3fXVLfk1q9YfuPSex48tLR6Jr73oUGfz/fdWV+/af8G1zx2dOb7i8yvKY8dGdux54I8P3fvla2799uO33nfPDXcf3Xv8l++/f8MP/zb+pUMZrvVV5QtvvPjRby+86mt7Rs7arZdK+Q1nbx/bV1yzY9+MunDJ8YU9Wx/90cyrnR9f4Z3bef5Npz7604OvnHo7d/Mnfzg+sS6XLrX12NkbarOHNmztVDLlS5790V/P/OSD9++5Y+HkP3K/eOvoM4Gz/vnm6xdee+cfnnj37w9ffE7sGz+4ejih58dqWy4fWXfL0chCs5Nfe+7PP37x9QNX77jq1zteP/nCA0932id++uRLL/7ud//46Q3n3LTZe/am/NWPH+k8fO7RcqeRv+JnN3z070vPe/3Ua3/49u0/fOfVN/7x6kfXLixdUZ9dsWdh5Ly9sxPV8ni7NJhIT4+PtEqDxVYeYmMipikKmpSTjPiAW+cSKqp+9YiMAJTM4+oW4Xe9oM1WqxOOOGEHuu+EvxFYK7prtpoFwS0qEgPfijvs1v7ePkPfIgOENtxqsRgXmczGfszrIz3BpMaCOgWF6JMZNGYWQjLgmAL6FmJmdxQDR8PGFkNoCo6mayDEUbmzIPoDejgeVQCAo5F4WEWjv1ws67LSMd0bAvAMR6Lddthqa3xufnJ2LkSGYqlYIh4Ox3RRVZQgYL7aFTrI7x3JSNAmbkrMxGLBaDocRI+hh0El+0WeZkD3Kf5AtDsFOKEJEBLQ7TWAig9FCI8AWOyFpwpAjSpoA3oiGs5kYkj+JtLpGOBvJJlFPvitzsTEyNjC/PJVa9cuX7GpFQiq8WQcicFkOleqdiZXbdw+5Q+e9prOFVvtkbGJJas27Z+MIePpuKpGUslULgdUqQUAvGr9trNX+X2Ch0B3lAQwpUwsXiiXBsvlQQgplcpgLZ/M55PJdBLEez6bTCTh1KXQpEUdnmRQCyAPsC4At5utdqsUV/x8IBOPVicmOo3h8anJSk4FRQLvDeMi3QzLemQOtEk8msqV67VyudpuN6vlOgS5sbFOHfTvUK1aAxAulYuFYgpgSeJY1IXEKiAe1FA0hmrSUqCCkc0Dms8YVSXG6aKcLrfNgWNOG+YADQRah3U7zL2Leky2xYus9v4es9Fi6u01WfqRMIZ9xPoDEk161G67Vg7kzmBa83JSOC0wbs4HqpTx6wEI2x6rERdkv6Yqoqd3EQNcAF6FG7fDVmVBwFghRNn7DSRlNhgAgJ0U4QC9ipMsKftQvJZkCQ28wYxmJ2FcBFKZ4Snj53oZ0qWHZJYwm0y+RDqEmtv8qEEVTZtI5JKazLpUl4PEzMbFZ/TZSZz08DJsIJ7ledbj5VkX7mAJk9Vuc3M0qlxkgMb5gOMQdovVjNyVMKds7TEajA6reaDfaOw3YJgdJ5AB5X9ywN2GpNP+0N0xhTQCYNhF3SpooZgJIQCOVCMAZRzFDDVySQDdLPyC3ZPPomHzsCsKRZQNHh2bnQzH9cCnOWDFr8WSiUKumAPCODU2XEHu44VYSkfl7wDAAQTAVeCS9fZECSlgmvcDO9X1YCwWiWcSubgeUymntd/ByjjDngZgb8So+t0Oo4OPAGvRIi5KdFkx+xlG9CqcaK6p1eEi7VYLQbAEz8GO5v9z/9ydy6ygu2GfxDPAdtWExoNWV2Se0JNBzcfSjkBc8Ym822VLwJbK5pGXQKlaq1aHhkdbw52x2U4EXbGhpEIsmsjXW/VSc3R8ejwWA4mgBnXkzgEAPKbB+RXlTwEY1YEPVkeGxttTnQFMknkSR80XoERZ0iRKLOl0U04LMWAXGBfeZzL1ugXS7eiDrWKjWVZ02w09JlSCbKIDGDAwO6yk1e2KuJ1KIkMDADst9j5WjDgtjNnugoB2GoCjUXQFbcJFr2Q2GR2M4kPV3gbKKwQJGh7PYxlY7MDUhD2mEn2iy4BZTHTUH+RI0R/MrljD+zgCojYAMJrcgJGggFnBHyk2lqzbe8lVW0iesZppmg7oTCWj64lkIRpIt8vxYICNF1Ka361X08VyOlmem9s6KQTggMXHG4mwSFGylF6xlXNns+uv1mhWDHuD2dr4kauuP1H4/DO3dMLa0rVnrsvOrfrKDm6wOTSy9uhDN+8O5zdPqa2D9lVnX7BkYvMT2zILsysOXHrX40eWFo7E1lywr7Hxgfvrq7ftOPuSZ4/MHFjx+TW1sb2zO3Y+/MsHHv3WXQ9+98vX3v3A3Y/dMuG96aP3njn2t5kzT122cfWTsfM+eevlX53zxT8fnDuxM1YqFTecuXFyT27HjoPv33jDS/945cwHr7t4LafNDtYXqifOfv39y675wcn3zrnhlseunFybbMTGovHDG+tzB9YdGB+rFE/88If/uPLrn/zhlm/+9uTTY+f9+/n7pF1nr1gXU9orRm48r756Yeqa0NEtbLowXF15xeSyq84KzbQ6g+su/+4n//zzed//5Dsz3/rXqe88cnd75oKXP/r+gWXHd51/z1/ffuGVV8YLxx6+pnzXBYfKw5Xkl547ceX593303u/e/f0zX/nxe397/fXXPn5myfJl9SULGxcmdu5aFmW9k5OVWhoBMJy1Qi2Tzhcz6Yjm5xmPnAjJlF3MxXxev+hySR5JR4M3KZfTbsNsVrMBTpGL50g7ygGTXi8lcZgFpzy4XfC6RdXnRoZtIICRt4Kxp99KWMwY4Xbazab+XpsYoGktCbte8gteiWHYRDSTjysQN/2BgBYEsSt5u3fDDIUjb6juFB2gBYCTHg9qW9cjER9IlVAoHgo4nLTgcMEhZkMBOYpuj7VQLAHBuVBp1koLU0vj3lAgpAGo6iFdRpP4tKCKfCZRCpiHsMhRyFHELSTDaHwvSvSGo6FoIKBC4EEzd+SAgjyrQGSEFBHlyH2aCuTci9SdB+WA4Sn5OODpANmBaCYZTcQiiSyATTIVCfhRrTPo0kqzPTraai9Zvnbt6jWrV68fkjR40AQAZCKVLVQak9OrNmyfUk7PQ87kAYBHx2eWb9i2bzKeBuUeKxRq7eH22Hhnem5hzYZ16zZs3j8v+3gGc6CyTCpQyKdSxVI+X8iDVK5XivlCKpmNBxM5lP9FndEgOlPpeCgU8CtoEpKC2op8ivQZAP96a3RiojEEcFqOxZujI/Bj2q1qTkX14bzXQ4PyYllehJgr66FoslitlAarrVYDFPDI5PT4+GijPlStVyuVEkiswVKpkABlKHlgXRmaQR5LKryp6FXBkyuWyuUiyLBUVJNoJ8UQDqcBc5hxsw1HI39ohkUFLn0DIFINvYt7e8/4HHz2mvs++9+fW2TAaFkLME4aHlpwuwVd8+m5RNiHZgWLwM54LRFRun5kqo9BJgfIxMwncuZ+F+tyoVs5pwN3sZTDbjMZccJpMhAU8EGDxYrTlAOzECTBukDOKsicRfAA5pl7DG7SuNjscLhomwln/H09kRBoHJsFI0KZiIbSEciiCX6jIPale6wc69dYnMB7DHaH1cEwXq/P3x165OVo5KrBOgdMmBWoh5vlWVaQPD7k4G/tQ+WKbt5p6e3pN/T2mW1WkwG1ZdkQABNOguhmfLtX0e7/FcCnjbEcviHYcZFQADC3XAoFJYGIVkEhyl6aqdUziVQOHQbYApk87I9ivphMZLMlkLejY0umQgmUA/5UAevxTLqQ7wLw5Hir0mi1hotRAGCx256lRlHBXqWOmoiLQCu8FACwKMOJjcbjqXwyG1HDfhK3DjhYyUG77HY0HpQLG0E62gdIKQoArIcJYMtOzN7X7wDqRdjtuMlkwUFQWnEnA+ToP0aU3Rp9NO1E+VQO86LkDSQ0jyBLfpEjwjngGyyNqwDAXp5yY4k8uk5KJPPAEYaq5Vqz02i2x5eORiPdpnTJF48nC432UHF4bHR8JJbUeI+qayijMlgZHtM8yGdG9fsiwVgavVuFeqsy1pkcMVh4v0gRBOPvZhncNsrPu3AXYhT9Fs7LEX1mcw/BERTe229wYrDlBQpoo5Gk3T6zK2ABomU19/RaGTzKOH2xFOMIqg6bs48TwrSdthI0A4EkIGtwQmINrNdgtAle2T5gtNPIdJV2D5A8H3TRFpJi7f2LrQ4pq+HCVwAAIABJREFU4wzFyH6eMVmtJjKt6y5alNTU0pWCj3N2AVgkObfJ7nYB+eURAM8u3bJre8vKMmYDHDBV58oxNZBIlMJKDEBCU6l4OS7LRKCRLVVy2crM7OYxViY4JTHVSoSAIgpcdNk2gckFll4puRhBVeL5UufsK67asmnZg1/9gsWxYvXhzZXJua/sE6vDzZHVZ999/a5AefuY2j5s33zo2ERt7VPbQktWbjp8yd1PHN04ctXwhitPjG+89/7W7l37L/vC0wdnDo9etHlwyb7xYwcf+d6dj371xsd+8PW7H7jj8ss3T8xf+cY/3rr2ulUP/M87f1/6cGrXS7/402/OufNP25dfsD2RBQA+sGp+S3nftnM/fqXxz4/e//Cjj0615z6+Yo+6olQZOe/4uo1DX39k+t3mS+fWV2cLmXYktn9jffnBdVuWNkKN49975/sbLrnxzuuO/PipsOKcHEyGw7u33LFw9SPt6R/85YGbr/7CR1//6WElnRuuL71qbsnFZ4emh0ar8+d+4+Sf/3r/x588eNud1//qpvs+Wbpu9cJIh7z736//6I/vfPyzd34w6j183/3VL1y+q9Ispy7/ycprX//3X1946f3nH3/k2VOvvfLaa6d+tnRurjW7dOWmDfumG8GVzQ3jzXoyMTHSbjSbOXj/8yVQomFN4kU5HpRpzJsDJu0TnIRX8IdFxkOzgKF2NNXchDlwSuAIHMOMTrdXYGSPzexwcaRTFCkJABgihZNw4VYbhgEFNGAG0oOusEmndQATFcoTiCmgOkXALCC9yWA0FvAqmg+VuSuIsXrYbjRmcFFFWVddU/2oJJeEHQ5CTNFUD3DkUCQRCbgp3uMg3SxhdXqDMS0E+jaEUrbFfLlVzg+WRwK0L6AHgkE1AKgrBlTAbxWVnHQPOu3hQca7KYL0xEKJaFILokn2qKTFj6ygKVbw+kB/xyMojQxkWgK9IGu6Dw0R9khdCezheMnnRYMCAvBTQGxrOuBvN+ep+xRg2cjevjo8Mj4xPrVs+bq1q1avW7e+KelaJIGuqZMpVAU9ObGwdtt0INq9gs6VykOtkYm5tdt2HZjJFPODECXKzU6rNTI6PDmzZMW69Rv37Dk4J/oEzg6wAgzdn84kk/kCkPdsbnBoqJTOJ2NJnREQ9ucBhLMZ0OSgf3XdJyndXmBFRV6c3s9AmG3UG8OdubnZ6YlWLpytDQ3PzAwP1fOaAOSER2YWLIdSZBDpRJ+WyJSqlcHTMwyb8CQnx8bHWo2hCsiOSgFAvlAqZaMBWUZFSzxD8chfUAlFopkUKJRcoTQ4CDQhn0snQj6GpFnC7uzHHAZ7v8VOUgywGQo2mBVom4Wh+v+/xYs/e8bixb0mu/GMnp5eM62oMo4xyVptaKSV04OZUjYWRa3JcR/tESQ1HA54QcgBHooESAk0hxfWnAfJRREulAQGTujiGdzpBHXmpJ0m3G2x9PRbbJibseNGu5tgKNB0isjDC0aY3X9GD+029ticuJvncRMpuQZcNIVZjYsX9WmDmVAwpPtkyafqQV2F3/pVhadsOMsLboPFbLNZnAhiAz4eaIzAutA0bSft6LM4MNwBr5ZmeDTsmOdk0WknIaQSHI5y0oaBvj4Msxr6+kxmo83u7ALwadD9fz67ahhiKuOQhtKJcDSM/DQqaB6wQMZrYQUBMF2ppAAbc/nupUM6B+SoXK6X8iWgXZX6CCrCiusqcAjfaQBOwnd2FXB5YqxZbg4jAE6ftqL0+bVwDLgiqsJqtPOwH3gXCFZQ8P5AMBLLFNJ5EGQKQ2ADDkbCWafdgUGYYII2VWIc/aQQcQhaMOwEAKZB1vdZMYJC01lsZpOdJDEz5nQTtEf2fmpDeRqAgSWiUo3T/UiimtQYBhQiT9mDuRD8LArXEhocAorC4jkdGZXnCvlSbagK/LBZa7QnF8aQAvbJwKri6UK1Pdoqd8Y6I8OxlOZhIQxE4jkQu8MjKqpUEEHkRkLRTCZfLhQaQ6XR9ni7f4AB5esiKB9occkLtMLnRZMgHSbzgIWRvYTRZu1z0rgb7+8zuJwcJ/A0IKXByRA+K6mZgfmZLYt6bB5bmHP6IgnGHlIxu7uf50NewmVzg0oN+EOwd4CMt2w9xgGLR5RdvSYbJWgiRXN9GMsGGdoBEYoEXCf4HBnIuAYYj3kAw8icFvTIMh9ILVn2KQBXVogkSxrtqG8cHjucb0yt2L330IwTtjFsXVoPycWwLwoUTPdHO5WUqrvDpbhPxvUWLHqhUB6Z2TxKeQkeALgZBc1FeTltfL3ExuJLr5B4geHkYKo4cuyLN1fOndt1+21h+/YNh3eMTk08sMtTbjVay/ffcd12obq9rTf2UAcPntdMb/jOruj8qnV7L7zzywe3TV+/5OBNF05uvu+eyuaNu6+4/gfHV53buXRrYfXu4cOHn/rJV77xlS/dfsdFO3fvP3hi686f/PmdV19+/rL5Z7/5t79s/fLwxk3LvvrkrZf9fPvSI9sSqVJx3Z75tSvaB/ae8+EDax/8+R9+/tIHt878+pMXL082P75j7m9vv3br179z/fTU0LLZmfnheLSlx/etraw5c9WO6Uax01l5Ys9ETL/k4JdPHdz05ftfueb7oYU3v/PB3n+eem7NNa99ZeWxSz569LXdfKpeHV56zfLJc0ABl0cas+uf/OSFP17/5pVnffD6ObdedPzo9I6hA6077vr3v55/9fVX3v3+ne+cEGZue6J17IubKkO12BXfOvCPT/7y9zdfeeWl55549s233/zbqx//aNnMkpHp5St2rm03pgY3hoYnm7V4YqIz3ChWMrVyMZuLoK4KkeP8iZCfwYRcIgS6Dlg864+ITLc3A8QmgdstcIjcPOuEc2YmKCChImc1I1MIXJQZnypRFO12dqe82MyoUKHH5NMEHlVM4WaH6Hf7lHCAxD1yTNECsge19QheVZUEVBCiBpDtJOWmWUBc4N5okBGITp5jKSfNocGlcC4ZjvUoGrL/EWQKJ20ON+EUQIcEI10fjEQin8rUBqvN9oTi4jV06epHTsSoqwigx98dhYT6qyDSotYOkuSiAMAJAOCoHkS0WQkAC6B4VHatquEg6Go0S0iQ4SjCvwdByCEA7lppCV4BFWEhANbVeFILZxJCALkTaAE1FE1kB0EcNtud8cmZhWVI/65atWHUF9LCiRwysEokMtWR8dElq7ZP+1EOGBVBV4DCj8+t3bpj32Qimy4WykP19ujwcLc+anzpuk1b9u0/a0GSBY+dZminhZAKg6VBZBI4WCxVh2r5eDGbTcoevZDL57NZkOM5+EERVC6jnfag1OBl+BTF+5l6sw0fw02k0Ecmx2vJQjY/umRycqige71eD+8GVEQfosfnYSQpggJcrVIfbgyPjHaG2/AfUPbNRhUQuVlGtoeDg5kI7CBG4miBccmKDwAqFEWX7UlENgADUEdqPhNFJoKM00WbCIgYfagRCRCYo2FH2c0Go4tkOctnP9uz+Iweq5txO/tsdovV5bL12DhJRhcNjaGIlq8X0olMLsRSMuUNJ8Mi7AlF1RXejeMiz8gcqWgQah1mVIJMIAC2Oz0oB2mx2gna3mOiCKyvH9AYpzCi30KRNM15FeT865EElnEZzuhxEQM9GEnQKm20MQZW13U/7EySdkYK0WAs5OuWmIVDqL1aDgADYFnRY7PiVoQsVrfAe30quh6haBKZWtmtNNaPATXFYeEIt+AhGA9BeCXWQwxYHASFmUzGgX7TQK8DALjXANEd2ckhM47/mwMG2IUz2G1GQlcTnENu5FGjESytWExFwrJIJmphEeiTixosJxMZEHT5NJAeIHq1wVq906jVB8vlUqU9sTAbiQT+kwNW/MFUoVgqDBZK5erkaGOw2R5GXtAhv0AJiqhoehjZmg5Wy9VmDt3+kKwsSLyiBvRQLJ/PlOJKWPO67QaMkQiewDCT2WJmNKfO03ivkwmiIqyw083jrNVCLka17S47hhMobLjsJitOooSo99PL524nEmoNQt7haGaK5BP1lEa5JAEQ0KplQyEAYCKYAnrAUjQWy/qURCQOL3WwPlQtVdtDVQTAI3o0iPod/Fo8X0cXSPCfTmc4EpM9TAB0JwBwuTrc8aOhXWgGeTQczWQL1WKh1RwcH5kY7l3s9isc0DfQBYJfYliziG68XYR9wGSjfV7cZLH0OmiCcfX3DlBulvN6aEf/4gGcJfx2V9Di9hBG8xmLMd6sM7gcTrD2kGbDGYPAhdBlAXB4LajF4FjG02kAYEO/ySNKTI/J4mY0CaRFj5FhdZZCiSYKfgLJ5Ek5TxjdHnMvZrEkAmlYHU5JL1ng/B6CF6TqCgGIZb+NcHwKwPXJ1avX711D0JTFRFFUQAvmwt50NBL0y+F2OaEEGQ1dQROxVg6WvjTYWL5nhhFJ3hcZq0DgpwhJS4/Os55sev4LmiTwqh7NVsePfOH2UOtw69qvaJbtK7fM1yYn793JVUY6IysO3nvzVqq8tREa2swc3nVRJTX68I7csukVxy5/4NF92ya/NLvtjuuWzF152/junbtPXPKDizceW3LdlsyK9aNnH37g9iPnHtt94rIrrrjx9rsevP7Q07/885/ffffnqePfvftbGx6pX/jBkWWzG67/7bHZvTsSyUJh7c7ZzbOT+89a+Ydnb/7egV//67Vjqzf9z7s/Ohad+PAN6acff/LBvz9+P/+F9+87PjlXrGQ7amr/qtL6s+b3jk5ns5f//PbXT3z+5qe+efLlx442L37/l9+Jrb/n+IfnHnnroa23vf75vbf85C8nnt3vzSbGGrNXLxs764A2NTyYX7P80Y9+/MaJ228+9e4PL1+QuPzYhu0/Oufkr1/7+xu/efWFU+fc8f5j2NAXn2zvuHZNudZMXPDcpa+/9/JfX37xnT8/e9tT77/y0gdv/+Wy2YWFiYlVCxuGhpaNRcdL4zP1cjw7O9oaKlVT5VIhlUknQ8Gw4mGVZERhMSGLMksoB+OSw14aQMf9aQ0g5rA73B5k5oeZXYwkupAHEMGKDrsosz5FIEg3gTlZxoFbDQaLseezRk12uGjO6XSY7YJE+MVQzENKUY3mA7I7gKaOqbpfDoUDMuCblwFYBPwFUuwD+NNgl6oSmhuIA0lWFSQ6UAEYDRuY8QqSzWrHrS7KZPOFlVA8Fs9kU7FkdRB2xPTkxFTEK2hK0C/KqPgZpKqGtDDKAaMbaDTVHdXrUhQbCcXCaPJwWNV0BFEqvFgKjWOB71SiQT2SiIFE50XkyeUXRQAn+EQR0CvLXlSspYK4TgZiuVgmyRtdaiQcDIXVYCiSQnJjdLQzNjW9ZOXqtRvWLizbPO7TFRV1ISGpnKqOTo3Nrd0169fRfXEuXyz/H57eA0yyqlob9vm/57vC9HR35Tp1zqk6OVSdUDnnnFPn7pme7p6cc2aGIcdBspcsUVAJCqiggKICV8R4Dei9BiTnUeIA+vxr1+hXjzKhe7pOnbP2et9377XeVW/3xles27L12IpkJpnPlWvVzli3NzUzNTc9tbh588Ztu48tIWcUA+lyOcyMt4LOYCuAbKVyrV7NJQEmk94UiB3A+FQy6gcAjvlVbwJ1UKug8QadSJCCPjfoKWo2QcW2+51aa2q8U0ykG/1+qexHHscUGkHODmZGuUVGihXStVqtW8u32t1eq9Hq9hvdCcjV+XyxXivmsxlUaJuLqSLv4TkXTRGQuQXZF47GACdRz1W0iGbKlkr5dEyjSIrCHTaTwWS12QCeKOBnAvwdCiqnC3NIGm/6/P836qQxE2QkwjJssAz/n/8wYyYT41FQw5gqJEuhiM+tIOMMXyQkM3LI6/YEfDzFQn4VOBGVRwkUabeCaAF6yBI2gqUpBxrCwJDUsJnGTcbTjZZR0ombLSZKJilSDYgq0CqJZXjWNrzMbhtaBtKYcDnwIQ4rtr1eFwNYSjuTyVAIAtM7GAjkD+rBCJq1pXMuXpMA7W0jI8ttIKxUQGw0N5KkeYT/9kHvLo0cDlCDDUWL9MADygWfz8LYMcMoCN8RE5DW0ZFReI0AOYCvkYyDRN3AaCbwqResDiACFNpR9zZTmWQoEAp4xFImqANCJEpRryKyuBvWdCYN6heFVTpVaLaquWq3VW22q9Vaudqem47GYTXIqPdWVbVoBuhVpZAvlZvTU23Uud7IQMDIaNtJVnVfKJnJ5AuVQr2bRN3zQFZkdGKr+qOZQjZbSnvDUQF5m7DArViHDTMN22SfLcHx1lErFcPcetCHO3WCxlD3lxW1OGMWh3HERtEOi4m0sQSviUiLAp+VtMFBPPxv0JaNWoLFQBxIuIchONbiS0X8KkM6oqWoxss0QeR05DQbz2SypVq1Uq3VGpX22NTShB4GAEbDMiK5Zn8CorvV6bcbiaTK86rii8Wy1UytO47KQRAD0XzIbzM/qPSvTPUbndPhE3gozuLgFI/mAbJr5P0iPrhwIzqYhUy4fNmI4IJYGl5OgDrnRdphGDY6GEqyOVQ7JTishpHTjazTz5oDckq0+BSzi8Otgh5wWGyCWwR9EUKWeJlMg1xmMhhp3S0ahg121qdKJGMxMIzXSzE2krYaTjPjeFkSc6LV5rYOWUcwPRtKaG7Zm1s1y+mcwykouZUc6XSazahsgJG9kWx5et32Q8f32FjObnKRwCbc+SDr9fK+WCDbrSWCqiucywXdZKhVQsdDrYmtu6do2qGq4V4rH/aSTj1S3nauxEUiCzfpHlA/XljI/X1X3RL+/KUT+74WwDdvPLgps3Lp4UM0sj9Ze9aXv7yLqe6o6/Xt5Fm7L6rmZr68J7V6YdPhK7/2yL4Dk1ct7Ln71on+tV8qr96069jxJy/fcHD8qqXJbfu27tt1/p3X3n3HnU8+942bvnzXjV+96sAffvs/f/3TyRdzh6/b+dSZ97Uu/Ozvj1/crU2u6m/ZnYjls5t39/c21x44svHkE89+9sBNJ/ZedPK6H//ugevUtR8/dOiKR1967q2T5/c+/sc7V07MVivpkpbYs765+cLFg+PVVPWeZ375UeWM//rK65986ScPbvvZmxfe7Vv73s9/fOlXv3Tfs2/9+HvvvnX2A8+8cDZRKzZ709du7Rw7FJ3utUtzs1ed/PTTM5cu2X3G1steuGdqfG7dgZ9ue+DXJ1568e+vvPf+1X/86G6ie8tjS0s37cxBjH3hmeNvv/XiWy+99Narj9z2/Xff+fT5u//02OpVq1Z1ZjZvrlaDHmW6Od0pFpP5uW6zAUm7VMwUCvmYPxjycKKkK27SyKFTTFVB5pR6WBOR160LxwhYWxYcVbVQDofDbrESrOCUnCazg6XtuFtgNDSt04U7QN6gXTcr5JRlRtUjki4nYbYYMbebkTUQmV6VEhiQAJAa3W5FQ6NVdE31+iH20PAj1MdCSD4fckoNAkZLnMuBWj3VcEjGKRa0koPE7VZ4YSRhtZktGJcOBlDTbiRXSkdSjU5nDGAlRoGoUSTBjai07lZ8oUAg7PMO2pBECVAMMAaymzuciIRjqHU3EAoFwiHFK0iEg+VZ1q1q/ojXBzLHp0AE6oMqLIHlUQOSiDZnBdDJMqxoUJeBRDKSAPyHRRUL+/2hQDSBWiPKgI2dicm5NavWbNi8ftXSjhnQ9bFUEnR6QA0Wms2p+Q0bts/6gknIcIUBj+/PLm3auffomnQWuetVIRv2+73eGPz1mg3bd+w6cMYqwH+XnQZpRdJyqj6YylsqFhqocKZQLJUKaOuxWMwlwoFQJJdNBP2hcAigIuz3iBKkG4+iK8Lnis1WozvW73e6YxPdarU52elMjhej4XTOyzKcyKHJ74wgcDyqTlcjSTRwtV5vjDe7/W6nNzYxNjk92WvWazlUhlWEBJjLZ6Ka2y3Bv+U5EqCblb2haCyVzWfRWIgC+oZcqZCIqhRqAyYxC5ptacdA/wG6MKDznATuYgmTgZAhlox2kBt23EnZR4eWLRsaNZjNJgsOzEsW3c7ldrfq09GprZCK+WVO0EMI7lSO4TU3y3kDHjYCb0PbzcgYAgDYYcYZEMIWu3kEw5wjo06Hzbhs1GTEUDWhycE7aUL0ybqsaQLNcLR1eNhFGpbZHFYIM8MohvlDXBAUpsNqtieyqNzAD3E0mHCso0lbXl2lnAIIBycO+m/YygqKPwhMK+iTaaTuCQdGOUlUoYpq7wfbrahYDTiOnWBcFofBbkYb0MOggzGrYdmyYSPkeSvoZYJ0UoPhC/9vBhK6Ty4aENzl8LVS6fgpAC5nQt5TAKwrIocAGA37yKVTyAwmXWq1qvlKGzl4t+v1WrPV64QSCIBl0MBeIITpXLGQz+YhDCZ6TVSDVUuHIwHUYoV2cb2hRCaTy5dPAbDA0LzbIyELaX8kCX9fzYdiMcFpWG4WNVDqNrPdMmrhAIAF2WFxMBGbpPi9OOtzMg4rZhixEsBFCIy0GiwkRdhMOEaTDLIAklFvguwRhUGB42AWEupG0mRf1OsR4cGIvC2Yhd+zTixSiui8BEsgpeshAGDkJA8EtFIut2rt/vjChD8MFAl510Vzjd7E5Hi33ey0G/G4ynCqHkgksqUMiGLITai4E3h5OJLKF/IgixvV8fF2e8RiE3WOc1CcougqxzFWhyK7XE6H1WoyulysxYSq+HjaRY8MDxGg3UU3T5qHR+wUJdkdKmgUNBP986M07uPNXjHOGxXZ5OKddlH1ElY7OuORNLhtCVgZTefpQL9wjyQalhswGh6Li7EOg7rxUmiKJWEaNpD2rM7kJZtFdozYzJiecaNNPT27uIL10HaSlVKzIrBDswmZm7KyFkxXxtfuv+CaM0kKLhUIG+SuUlgIRbzpTCjTLkd8Kh1L5VQPHm4VcoVcsTW+ZlvfBXLLExvr5ENANiGXbjjCcqnM2hsVxa0qSjRbmtx9/Nq4/bwLu/dmjDu2n7k1MzF5926q2+/0N573lVu3y929bV97F35gy/Gx5q5H90Sb7clte7/49aNH56+dO3L79YtbvnxrasuuA+d94fuXrd8zftHq5ra1s3vP+O7PHnn8zi99/dE7rrzxjjvuu+aqj/7y1o9//frzBx858cyNRx9MXf7piZ+9ed/M4Xx7z95cpJrbsK27s7ru8AVbX3z8px+c+Frthtc+/tofHv/qhYnpa9666ZWJ2z79+YXrj7759lcunR7L5lNT/vTu1dUN56w6NjMbrXz1mds+uPKBRx779LE7vv30M196+rYXIuuf/8ETB//7zT9/9KOfff/Hj+361ld+eRaTSPebU9fsaB/ZH5ksNQpz3V2/vOfK01fd/K3vvP7hp089vqm97cA3bn91048+efOPb7175OYXP7iCLF793W0rb9leaDfjlz97+Ttvv/rnF996468/uPapTz4+evuLH793aGp25djCxqVCLlGZ2paqTBcL0RSQ3VoNVmYxmUZ1OgG/zIrukM/ttLnTMQAVVVNEWg+qPMdB9nDYHZjVjob9OlmWtAAHtNNuHZdcZhPGcTbcLXJeryxCJkUTUwa5AjB6AMDIuNaKWXHFTUuKV4MFRsmqwtjMahB05qA5F1k0o8pVkLvIKph0Ssg/OAh5VUYFuRjFuT1aOKICZiNFgc6QMNBMNrvFbjGbHTqIVOS6ATQNzQeoduqdySTpcg9UMwCn6oUXspH0ovZ896AMWoB3InFSDKI66VgMyRrULezxeRRICaACUX1NeDB3xw8JB1gCSGIF1glyqABliOqoRdQyi/zsIklUcBzPxKPRKKC81xuIxJK5PEqBheb47MrV6zZs2rCwesf04NwnkUxGAoFIptqZWrF2w8450BhJ0Cq5XL7SHJtb2rhj75GlRApZKJSqzU6vC4yiN7ly1eqNm3YeOHNR5jkCA5WJE5SYBPStNaqVTK5azaTL9XIJsBj+HWSTTDKRyiB7knDYr/oHdcGS6tF1tAktfC7bbBTr42Ptcr3Tbbe7/YmZFatWTlTiiVxAFnigSiwDek3gAVAB7MLBdKlaRIeE1Vav1+n2et3xqcluJZvM15v1ejmbQVudYc3j4VnkYAkALIiqPxxLxJAChjRdL1erINML0YhOk04X7sJtFqvdDiHiAKx3uXDcAWBnsVhGlluR07ZbFlhW8iiS04HbDBiHGUdMNvhenlODqs3gAT6h+4ORdEgF1QVyMwAfEI2XZ1hBj3h5VpeBKBqHeYoE8sYRFoxyAThggKAuBjc6naRxdNhoBYVMEEYTKsfjgAPKmsKj4dfm4VEMFDDIc9ZJWAijjbRTyahOAqc0RLPI2SuEjDg0Dc1x9kMC93oI5NoAAYVZrAb4AKo/4NUCsZCCzDOAlNooHNkIuxgIO16GlKYIaMgJkElYO+ZlVqvROLp8GJQv0ErT6MjIqMlkdRAEqmo9ZYdF/av/lxzIYGTniftaEEahUMgvi+VsyAcAnCwDAMsC4QEARkfvKaA/+Vyu3GojI45uuzveb7daY912I5QM6LoH4A71AQdjyDU1lavW21OD4vhOPRuOhFQgmB5EkIPIKTpXygMASyICYMBFBMBoHlImXytE41HeNQKsSKFYymq0Wow2zmuNcRJmxoQYhqoXcQ6SOo45LMMmYFUuEnM6zEY75XKg0WkkqQA1PDX+yIOmnKAeNmVQDT3oOI7Ah9PdIBvt4VxMd/OUPVSKeAUB7kHEqwcikXgyFs4OWtIL7Xqn11sxEQkHEQCrgXi+AXRxvN9BdtjRKFLACIDzuWy9PeH1AI8GBewNhKOogaJQqjTq3clu3YRZKV1kCcaJjHlElsHNgod2IgA2G0CCmE2jBsMIS1OUcWSI8KCDNJ6yLB+2unDOhqkELTntxpFlRpb0CmZVDHEGWbbQEktIHtVpxWQXjTulYAxuX67QcZ02PDxsEyTRMmR0OHU0x9i+DKc4HwVRhTvhHUhzOIoXFLtRco3AqvHmSJcADyazep6RaYeLl5IzIpqG/AhnAAAgAElEQVTVasLsaBqhx5eqTqzaduCsgxDYFhTdXl3JhIRoLJTLBtLdalhT6XgsI6lErI26FzKN7vy2nstD8UJ8opsPaJTgC+a2nsOxycjmu1SOlr1KJFPsbTp2cSq57rKJTRXztm3HtpemZu7dTvV6zc6G8++/aYvS29vzdfe5Dm67cqK+4Zs7M725hcPn3Hjv/vX9K6f333XHxh1fu6+3Y9fe86/54cXze1ZcuD6zfcWK8w9979E7v3nLLfd98/6bb7nzrttuu+KBdz/93eOf/W7/dT899NTaR3NXv/fDp9+478lHFvvrzmpHysU1G7pby5vO3DPx/LNPfPr0jjv+8+XPrnnitVvPDo//6b4ffvDYpX/f/p9/P3riG9+5dm5VpgHENL9rsbr5rKVjKyZypefefeb6uz77899+ccsH7332t/jdT39P3PfwrQ93b//StX9855Gnf/vI2Q8fevYsMVcYmx67cm/r4J7I5HQ+W5vprhyrrXr37898/cF3P3gk0duwc+cfPvromS9e9/Z7J+/65UefvrJDy53/yLGxW7YWG/XY5T+76u23XnvrL6+989dHr3/kjYvPevfkB+/sXLWworNifqrU9OfKheDaFcV8OA6LrdFulqulRCqZSIT9msBwciQARF9Jxf26hhqRBH9EB7ShCBKzYTaz1WDDcZJlgNJDKqNlFRMpCwAwb3aA5NFUSWSRE4uKHIUEBJTLDEDVGIYlMSB+IoN5QAGzFC96dIlX+bjIShoaBKcCMALeSSzP0ciCwAmCxIfmt/uABPC000GxQI6DkLxRDwNGMqhL0omhbAVawWwHdAY+Hg5GY7CMKrVGd2JqRcbpQhIY7UYCxqMfFwqqqNkTuS0gQ3kRFhDhBAAOBiLBf01pAGDWFJVxcpDLUXsRoC8I66AsedAR6uDsF/kGsMLAowf0L4A5fMmHJhDGQXAmkfMWiDPVG4ymi5UK4FK+MT0PALxu/dr5xa3TvpA/HE2kQv5gLJ4s9SanFtbvmvOGkYF0KpMvZkuN/szC+i1nLCaSqQEAtxDadWcnZxeW1m3evP3AsSWZZ3EM7eLiLgHgr9YoJePxXL1erMAfKiU0PL2UymQzqK8pHh9YbIIk1xVJVPweNErJI7Gfq/VapcbEZL/V6zaQ/21nYqI/PjNWjaa8IqjegT5DZpSQ9zQ9EPJnKq1qOp1NpIr1JlxSf2xqZrJTKeRqrToI9VweEn06pICE4RhUH4aaOXUA4GQkgfZBM+lctlQtFfLpWMzHIgBGahJV6iEAZuGhszTpQIfAgERWBxB3NBDRhYyfHJiTtGGUYej05cNDyw1GI8my5tP4QjEd1Dy+pBeV6sIND/p1DxJNlAd5bnJKyGOz8w6DE2IHUJt22EgSABjYmslJEsstDtpkHjZgFuSxbzKSDCUwqk8RFQ9PA700DhspYnTIasdYxUVKoNMtcjaiECDKzfFsJIKGWyJbF68P+Bko3QAAsIPzQoqmMIvFYGV51D+qR9MxTUCzNSkc4yA9WjHChbzF0OgB1PKHDttRITY2ZLaZTIbh5SMjw6NmeLPR5UMWswVDjtmnqqCpf+PvKTcOVDdO4b5mIoEA2CeLlWzI7xaodCWiQYw6lQoqwcukkll4MsDqWqAL66B7O/1+t9OemJjoBBK+wYGryMNd84Vi6XwOCF+pNTveRXZSjVw8BgDMi24FzUOKIZsXpIATwr8BGCljXyAUSWSL6XA0xNHGUViFLho+p9lkxD1+W4wTbQarGMM1j9eLMx4nQ+AO27BhsLeOEYR11Aw4ZLMAQ8JlZA07EL0KcoD2eFT3AIDhpcneWNivaB7JLWCRXEyVBMYeLIW9ArB8B/AcfygUS8ZQFSEC4Fa92+vMTMSRAnYDACcLjW5/bGysV613WuGQ6pGAOUTjsCzrjXEvSI6BAg6hpsABANcbzclOyeRwYW43R7ocAlBvGRKFmVVpuFCHxTwMAWQxDRuNI+g5WA1DuAd4m8DTtuFhO4sxdrsK+EjjZsOQmXPqil0VA4JBViCWJJfo8QCfE+ykFWO9QS/a+epQAMCjNrip+HIzTqp+AGB8md1JeRkV3pA0Dy1zYHrOmvVhIwJjMNptesFi5ODJZNasokDx0DwoYAEEksnkwHEXI3r86Vp/5Y7DR4/RBG81AXvTNSESFOORQDyhpybaMU2hovGER6HizWKxGEtWG3Pb+6SHpMXYRC/vV5y85svtvICnE/4d9+ssKQWUUDxVWzh4fma+uHhoMkPt2HHOrtbcwiNn8GOTY2NbLvn6TVvd9Z09rb/PdWTXlRPN+fu2padWLuy95PZvnbu6cW6+fM1XN2/48j3VbRu3nH/TTy6e3Dh+bCGxe8XiuXu//Z07H7r+i/fef/cV13zlR//11JrmU6+ffP6TH19/z5e//NEXvtk8/48PfeObDzzz+KH53RdnY4Xy0uLkpuq2c9et/uTJb/1s4rmP71v42/WvPfKVy9X2/c/+4NP37/Wd/+Jn973yrXeuzq7LJ7KdQG77fH3XmeuPTk9Uyw//8jvf2vvHJ5763QcPPvSDi7fd98UH/Ad///1j53/01G+evvpbjz39wv6H/vvnG/VUHHjqZYeae3fHpiu98srO0s93/PUb//OPr9z83OsnLt38wRnHLnnypde/9/LDv37njrt+fdN5Nyx6s4cfurx6wxZIwbGr/vvat15/9eU3X3j51W9+cdvVf/707//z/oldi0srekur1yxuziU1QdvaLRUiyRXT491+p1wuxLOw+qI+VaRpd9jvdgEAw58U2eMWxAAAMNpEc54CYBNG4CRD42gP2O7iBEKmLGaMYUyEyLLqgL7CilZ1SDESB7lvyKi4JbSLhjutVohRVQ/6GBweb9QrebCUlxJ1P5qPAOiGLCAHM3pRxiFFH4Cm3+9HVVgsRVIM/GR/SENT7HB4EZA5bUazw2KyWjDcTjtYZEYYSqRz6SSaAdjqdAKE5EMzbhAAD8bw+UKossw9qIIWOMEtcyzvpKRAGN4p4Pcihethed7jcTMuaTCEWvWhs+FgNCjKnsEMAICjgUkHaDRpcE4lANWAd/BF4+FQNBxJnoI7NP8HALjUaNVq1RrI3PmltWvXrV1Y3DTlBbSPxeOBQDiezFR7Y/25tTtntHAa9ctmURHW2MyqtVt2Hl4ECAXFWGm0u13Au6mxyRXzqzds3LH/yIIscgQOyQcBcLlSqbeKgw7PRg3erl4BAVwo5FFRNZoikU6CAI5GI3BNOroRwEAgy4kAwM0acuhvAADXKo1Oe6zVmZ7t1WuFnI7YCceg2Xccx7llTdf8kVCi0KgVKg3QUWPdZr1aGZuY7DVq7fFWp4ZqqyDN5zNhIEtuHjQk4xzU13qDCH5RezPI8WS+XCqX8+lUgHM6nUjvDgDYjhEUol0MDckGt5vgCzaLnZIIJ3JwtJhsZpCCDivq2jUZjUaTxWwdHjnt/5gpyc1gJgvF0bzuR7Mw/JobBWwoFgBgkZRg3Me7LKM4AJWN4DgXUrM0EtxGAncOG3HabB4atptJUMhWE8E7WZeIKsU1iedYwjBsovCRYZsdl2STU+ZdkhrMaBKJ9pEz2XA0EtQRAPt8aAalHySiz+OyswGFxGnMZBq1CwIQHT2YysU0ABJk5UYqoJqQPGFRwys6xEB9wrwkcSRGCsAhzWbjyPLhkWEDBLQBKWCj0eIAIvrvCQz/HsQAAI7krwvWoLceQw3ewDfkai7k94h0thJGJNGpViAEcmg8ZxFVFlQajVqn0eq2230gc83u1KoxJYo8K9H+DUS1P4LOLkAKFerTU90maOB6OhXze4CIIXRCQ8EyhQIC4Dgni2gLGm6w7ocYD6PCi4g/7Id7bbJJKkhCzGI2jOJKGE8JssNs44OYKimqhZVdLEnagF9ZCIgPzIbbDSYnTThMBObE0bazNBDBbgmNBEZJZDCOQVY8gh/UuoYmE/KOaDaqiAiAiwDAAk07fGHIEXD98Uh20BFXrlchp02NJ5Gtu9sNzyBf73S7/fGxWr3bCgZUSUKrNZrOl2rVccTegEh4A/AB0+gQqFSt1BAAW5yKRVIllxNHU3sVnmGsLo2HJAggtwwi02oaMQMIwstqWOZwq8hLk3MMD2M8zhJ2D4lolWH4dCODaz5cUwNus6jirKIwguwxD5lcJgfmYDwDE9BMy3XayKgRYz0avdxoJ+WA7KTJYauT1DmVsgNZOX3ETClVaySCj7K82YDZlYLlNPjXanrtAiVQBMWBAhYgJ5oMyAvaJWjhXH1yfuuefWfTLt46CpIJpEU04k6CQolryYlO3Ksy4VzELzGheqlUSKSrjZkdY6SEM1pkvF/0e5x8wJ/ecg7LZWN77/Npbo+uBuLp2vyBCxtLenf31XHp4P4LdnSm5x89h64Bq1t/0b237JJKO7vy5C7s8M4vTE1v+cbuyPT00u6zb/nOJetb56cr13x5w6b7HqhvXLvp/BufvXT+jFUXL5b2TU0f2HHTd+/+5p13PPHU0/ffffmOpuIIX/rrj1758Ferbnz43sPrnsyd/ckjD/304oO/2TV77MJYNl1amplf09x53uz8C1+9cPuvP/v0n/eeu/aFz564MlZ65kc3fXDh/A9u/u3J257/5V3XjM0Xa9myltk829h3aP1ZY6ui/Su/dc+e9d/4zq/+9OHfXnjvlWPfueURdvPbT755+1cee+b475/++YnvPP/Z9185V4gWxsfrl57V3L0rNtnqJlc0V/9x83vnP/3Ka4++/OEHzXs+23rNlSdefO/kp+/eVipd/OxPH3//mFTY//UbS1dvL1ZayS/+7j8BgF868b+ffHTfOf/58Sd/eeeDN96/aW5hfnz10tLimrFqta+NTZeK0fT87GSn0yqWcvEs5MWQ1+thaT3k1VjMkwt7UeWwInJaQOUZNDkVGBYaVQOPGLIIabdZrQ74DeV2AVWnCbNTZjlN82penxdNXqdplmedOGGwACqj1kWctNgB2RQt5AcA9oajgAXmkMICqqJTYQ0Slo5Mr1hE8eEN5UDAHwjC//2KwNFOmpMV1R/ScYhc0gk51G62YrjDYTY7YD1brHYcZ7ygKXOFdDxfKeXHZya9dtnvUZCBBiw5n6b7g35A9EHdF0CnAMmHZXjSyetet6SgyUtw5Srq//eInGvQKKIo3mAoDIgZECUFUQQE5wrHwGJDeVQanFUJggaAG01GQ/F0AuAXGUejw+twLI12bCu1drs1tmJh7YaNG9es2TKtBwKxRDSM/DETxWa7351dgwB4MPUwA5K50Z2cW1y/5eBiJp8HJVtrNJuNZqc/2Z9cuWrNps17Dpyxyi1xDpyhMAdOCbkiZNdcLFVLp0vVar1eHpwAgxpF/SfIBwvZg6GZdUiUg0hEVmDAI8TPlSvVZqeaQ+aXDeTt3OuNz66c6bc6FZXheYChUwJYQCVbKvCLXKVWgvdqTs/NTnSQ7O6gCYbNbrNdL1fKgzfNRtAkAEBTniF4jyiqaJ5yPptMgLQqlkFdFJEIzgRBWLjgOdosAMD2gQ8HzzM44UAjdQ0WFGZIJKEZ5cC24E8mjCIMRgKSO/Is9HhAyS4bGQLCP4KKVjjUh+2LByFNyG5ZBDqFnqCoZaoJGVQszbpsGM06QXJxLPw0mwkIpM3oclpNQ0NG+NE4hlswnmQYwedWZMXNoyE+Iya76fTlwHA0btjF+6RgMp6GLMs6SSqZCMWjIR9wOySAg4D8qhrwyRQGAIw7aJvROOoALAkEQgibNDTjUGRp2kubbSTNSTzaHwIAViDQaMJFKaSN0S2jBrPFPDo8PDIyNGq2mlFFtNFgshGkY9B7NKjgGiAwzSAdDL89BcDJOACwLsq1XMjnEQCAA/8G4Gw2X0A9wMjxFNlINuutdrMz1p8cb/Xm1k7KIQ/P0ozAibDyArFMBdhYp1NvTk53G812t5FORgCdeDeipf5QJJ4uFirFZm8AwJDwJV4FjonM6hLZJGpWkEiLyS7pHOuw2awABFIYTwoeAu6s3wFUWzNLHoZzUVab2WDEKBpYDw5SmXARhNGBkyQjSujsF20+AwAjEJYHAAxA7xECCa/mQzs3AhlLh0G0M45QPqzzcCVYADnA+iOoqgKNPa7XqqV2vz05nkKtCG63N5zK19odtPdeb/VawaBKczrgdTRRqlQrkwDioqxoui+SyGcyqJSxVq50IL4J0Wf3qDKN42jQhiZznB3TFAZdv+k0F3A644jBYOQ5DvlkAAB7AIBZ29CQlbVTTrtC4yxlHxk6zUA73EGX5gtoFtaDudwaCGVl2WlGzOxwgW6VZNUfS9adpxuAdlGyxi83mEne76ad1KgFjXqTWTM869MMy11snVST5CjFm4bMdrHILGPcqpZes4oRacgC7swKGaDXNGxDU6R5LZJvzK5au37zUZLjLCMOB6F5g/GYnAzFkkk90W3E/TofrYTDPKVVq4VMKltpz++ZYUQHr0cmxsohxcX5g7lt54liNrr/gaDfI3sD8UK1Pb/7nKUuudi8oCzt3XX25t7U/GNnksVWu7X2gntu3yvX9nSkiZ34sb3H+xPbH9wfWbli0+ELb3302ELl4kr3+NUT0zfcUV+zdut5Vz5+8YZD85fNxNeOrb/wvJt+8exPv3HbFdedXdRxWoHc8tVHP3v5w7dW33vZo1esfTh/+UdvfPVrV9zywy3Tey6sJ7KF1b21s93d59WWLhlXLrjp4I1Hj5T7f3rh1j2hVf/4yQ33rXjpn8/teOL8z27/6dXtlZlkZkbLb55pHd67/sj0THj8zqce3X781d/+5Lbrf/mX/3ngp29+/zntytd+ffLun7/32lt/evujO1MLX9+8p+3NJ9ut2sUXNHbsjPaKrUS/tOkP+89a+a1P/vbp6++ddfj2V3dd+pe/PX/XOQ/eXLrsrj+88ccHPvxaJLf3vjsbl+wuNurJa3511Ruvv/LHNz985bwrbnnmk7+9+adX3v7w4fnFVb2VS2vmmtl8d0oeXygWo8m5qX6j0ajUK+lcLoWm5qgCrwdUlbVJ2RCAEaoy5dSAJrDo6Am34xjEH7BySuBdVqvVhjkpF+12miyYyzFKik7Ko4bDPiQUkZ0fzQK9dVgwr+JmgbOTpMmqKJyih4MiJemKzCt+p87wHp9f88iKdzAoXhYGlrfo2EsCYotQMeBzQ6YgKEZSFF9Qd6IdaIKE9Gmy2EA/WSw2M8E4SJx0YLSkBUKJFDqtLM2sXgxZGE0C5gzo6/OHvd4gGqcAAIxEugfNHkVWEwTJaToQPB/ap9aQFaFHcHM0SQP2oJO6IGIBIT9apujMTxUB/VjR4+YEZJ4H2QIAWA/4vJFEJJDIJUKAv2G/7vWrsPRRLVSlVOt2Gv35lWs2bAIA3jwowkpEg7FkIhIvNer98fm1O2e9ofhg5uFgGMPcwtpN2w4spPM5ELO1ZgsAuDs2OY62oLft2HvwyLws0FaCdmI4QYvZcr1ZS0WSqVAM5CmqRx7UQ6Gz58EgRRDA0UQMSTaQAwGfghIqmiHwuXZvDJJtfeCe2wCUr3Z77bEVM+1GwQ38h6MQACMpLEiaT/VGE7V2DUA0W2l1AasnZld2euMTY912q9WuV5BuRvvQAMASR3MMx5Bo8KEWDIfDyJsznQe4LxaLmWw+U84CAXO5SCSBEQLbCHjkLEM5IXFZrBajAR4rfMFsh+SMwQsesdFCElYLybIs6CEesXHWMUq7BQcGEQnUJ44GLqFDbiBMIRVVFIiMGPIFY6mM+B+gezE7xZAYjgM64Gh6jcPpQB1GpuGh5WYrADCIN85Ji7zqVnnkm0EhAHZalg1jVmRkwLJBTfOF0j6fJEAYR6LhRDiI1gcShwE9GNDUYEBxkqJXQgMfTBYTIUme8GA4ZehU2xtIYM1lxll0pqohAwxJhqDz0BiGy06CU4wjRgS7wyOjo8uGTTabeWSZ0WQyWQkSJ5z/sr761zgkBtYcWl2wJH0N9A7hkCbI9bwP1gmVLelArnhShSeVyRXymVQKdQEDMNWrjU673p0Ym53sTq5cGldDqowKvjlhsMGRrjTanbGJbmtsvI0UcCOTDOmywMq64lF9oXAsVSyUi62xJA/B54LPATwCWdsEw6lC0gsALNMmo0NWaIHE4ZlZnXIIi3OSw2iR/LhfVLw2IN+sk7ERttFhM0k5CTtBWM0YMAujzYkzJAJg4VTl1SmzucGvg64k0Rfx+oHUKrLgjCUCHoml8VAurHIy58KQAR7oOoj2XLlabzZq5UKj25qcyMZgGQ4AOIe8Y9pjIPz7zVBEBwAORJKxZAXo6ozGCDzqPPaGEQCXqmUEy2O9Rt+lq84AqidHjUgyKsMiTW6Vpc12i/nzFIvbR5GXKfBwwWJcTiB3MJ6jLMuWWRm7i3JoAiEwjtHlp5lAawQpze/32lgVIyUNmKb386fbHSTFS7Lk1n2QDGrkMqPBaHbwijxsMJKUT2WRtS+avSmKRheJDY0sc5B1gc64jC7BOjTqYPLe5axb0dJL84yHcbgEJb9KdRJO0whqKnDy7mCuOb6wdc+RSzBasBkJnPBA7gwJMXi3iBprVpNBnY+VogF0WNFIB2LJTHN2yyTHOQR3bKJfDClOVg/lt54rSenAnvv8PoH3+eOlZm/lzrN3FbGVxWqf37H1zM1TMysfO1OamByf3HnFg/fsFlu7m0p/L33evks77U0P7UtMTi3sueCOJ89aVzwvWz1+08Lil+4oL63Zdv4Vj16w8eD8lUuFXavPu+my8y47snuut2F1KbDr6MHDW6Z2nLjs+fff/fjYRQ9e+/Urn8jteOCX77xx5JbjW6b3X1YLVfLrG5u7k3svKO6+cMc3//nBL7/w8GM/SgRWBvKV3v79Uyu/8+oHnz59bM2Jz16+rDdfqBRyenHTdOfM3Zv2rewXs/d/7/6TX/rrpy8/eN8rv3l2/3f/etbR8NSWbftJ722Fo+sOP3mg1rpm3/GNnmyyA5d8UX37zlinWawVahu/9ur722544+U/v7H7lrd+c9PMdVcdXPrKA6/97KX3P/rNj379zHuPyNHtd98zeWxPtltNXvXc8TfeeeuzN7//7Yceu+KH77348om3//jxw/OrVo2v2XtgoRSvtBLkyl6+EIlPT441m61aq5rO51NRfyDg4WUloLopuwx6GO1VKpIIkliCZIwUMKQ7uwV3IQB2goCx2lGJgEQYzSAjlhOcDWMl5MvjBsR1DhQwCQBs1xUFlVY5SaPF43Yp3kjYg3reRJBxFjUsuNF03kGrEAJgcTDxBQCYEOBvIKf6Aqg7mQIhwIMWC/oNVhw0DZpLDJnZZMXtdjua3crgLAfv5hJ4SYlWWq1OudX1WlyQJBWPBtLXHwqgairk64G4NSq3lAeOW04XKGAFWAaaMHsKgHmZYQiK4wRF9ahB3RuA9SNBuMMXFUVA08NFGU1lECXQ1yKoGQ2UdSQaCiXS8XAY1UyrqnfgH5TOV6q1ZqfTm1mcXb1h/drF1ZtnvAE0ITEM4BiLg+LtTy2uRVXQIN7TCDnzlfb4zMrFNQcX09k0Gk9TBwRG277dqZUrVq3ftG3f0UVIPKiZEnMAAMfyIG8KmUI8lm/Uy/kUKjgGOZpLIQ/mOGB6JIBcsmPoMB3E92B8PDoG/xyIoR4AaL/TatTrzd7kWKczOTPe6TQr8JE9EkOTA8sI1HUNTyEaL7WqlXY1WwPYbSNGMNGpllHBaaeDekzLpVajOgBgieVQHzca5KEGAsjKH4AAjWsoooGy1VIl66UcTjSeAFXPge7Dka8xRULqsMBTNdlRH62DIEYtyNUfsNiOIcpFwBOQB0OGRUbVRNk1ShA2nLYNWeVwJFHIRQbVUN5YKR/xyB6WcXvdvlAoW/BZKQZHCtiG2RkGA9llsbko+nSLkzYbh5fZLCByGNMwSzsEWlZ8kiYxLqcDANE2/B9DDrtdIGws5fMxTk/C74Uk66SQuzJQEtRTjvqQ9HDI6wUQdFBuhaNpwmLGrASERigcjcWiIb8PHWq6BVohAZUQmgWCQTTSWPdoOovjJGoq4IcNFjPaeR41gPAdRf8F/Tu4D7gNmWc5Kebf4xg45l+NSDQZaCVAAYdDKgJgrw5hkSmg3Q2eUMrFIooCkMHJVLZUA55dbfXbtc5Eb6rfmVkx2wVQ01V4Rpyoe08BMHL4bjc6rRrAWLOaToZ1t8AIAIFuoK7RZCFfLrXHUwKirbB4edGDDsAjiXQRADioi4J5lPSIpAiKDD4Vr0fxBCvC2pR8Di8ne+1u0UWRrIPGjcuNBHwQ3EnaBpPpjRYK5whkPy78a+cZeeUg09dBuaTsRR1dkYjPp0g8Cb8OYjOSiSicm3NisVAoFg8jAM6Wqo1Ws1bO1VrNick8EOIBACez1Xar0Rprt/r9ZiTmkyTdG0zEM1VYmSs0Cp0Ba95ALJ1PZ6uNaqncqEy2ymMun8ynIJqBobtlQVV5ijUKMk2ZCZvlP2gOty03DQ+b3AIvY1aD0y3zpDAowsIllyCQOo/RDIYAmMXpoAtYvM8meHFS1HiWCX5+2EUAs0XZJRAOxJNVBMCjRiunKKMmE0H4dBEA2IAxopeXDQRpNQ4PY66aihUoE8nT8C1kwn8aJyt6emElK7tsOOvJzatAaSwGOw7hwku+THNyafPOI5diokxYXaRDFGTFz8d90YguRZr1TFhlYtmY5ia1ejsmB0KhUnW6RlLwfbGxTs7vIRm4Sav2MWIuvuM2JaTwaCZVpbNq/yV7SmJlqtbhDuy5YOfc5PjXD2gLM73J3Zd/7/7tTHNH1T+2nz667fjkxKZv78305tacdf4dT56xoXBhuXjZ9ZPzX72vuHb11ouv/8FFa86cOXsusyHeSHV3Hdiza9+Fh/e3fJunddYa3nvbObd8+vYnq+dv/e7Xrjhe2POFozc8dfzQj89JH7k8X8kUN1d3NOYOXPk27JsAACAASURBVOzffvQrj37yzyee+OnJT6664dCt29OzV7Toa79w5IKFI+uy3/3fB7ene61CsKfm1423ju3acmhyLBV+4I8//+XS0Yf37pydHguS/lSt7O9vL163+pqPH7zm19/76LPbzvzs9d9c44vnx8bTxy6sbt+d6PY7ufHyrt//7t3D28/47kcP/NeJu5YqE3t2vPyHkyde/uYHb7726kfnXfPRNZ70xlvvWXlgd7LfSF/97PF3P/zw/tue/eTEd+5+4pMX33njzddO3rFy5dLU2l0bUt7y/OoOMz2RK0Ri09PTY512tVZIZPPpWDDkhxzkifhkF6EmUZJANUYDAGYpUIqnqqBtJOWiOJbAQL/YSchVAmE02WnXqIu3mp0cJCNkpcxx8E0i6uk1WlWPgio3QHHYdY2WtWDAIwiMrKqCk5GQ4SMSZT5U64G841AVNKptIMVTAOwPeEWepzBkao+6+mwYmmIOOQ51McA3Wp2s3WweNkHEM6LoIinMKhd7aMpEK+ziPB7dA+s3CFI6FBh4bZxi15LIIQ8Ct8QCAKuaG41511EN9KBTVuV5J8sxLBo7HlS1QQGxW9UGU5SQvpJZVCMN2cs9OBOWUDloPBqKppPxNDr/9cEnQqAXCScKlXqj1hyfm1+xduP6NQurt874gt5AKBpPxePJeDRV7k2vXrN1xutHDQmoYLVY602tWFiz7vBSOpPKFcooe9Ybre7Y+Nzi/ML6zWt3nblaZl123EXYMJwWCg2EfPFYDUAwky8Xc4ViIYdaQFPxKIB6KuD1RRKD0VNwYX6fBgAMkkfTPtcanwbw7E/UZyf7zVq/Wq73O/3pXrud9cKHVdzkQHQBixI9HtUfTZSq9RoAaKM/MTU5OTXR7XdzkXiiMNms1MuVBrC4Ri0fVwWPJoiQoSlJQG5GOtyYeCJVqALwoiYPWPqpQpgGXEEbzSaD0YpZcAp1flMk6NKhYQvIvwHsWjCLxYGZTHY0OBiDh86j8/aAH52beoBEyCrEpqpSo0NGnIFc5NMEmgblavYqeiSqc7RG4bgWUgtBGw7Bi0uEzU4CzIO2thIMbR92UbblywFncdKGW42AbTSanygJbkA4wjhswEz/d7nDQih2E02GY4WAJxWVeJrk2WQuGQmEBnRR8WpuHeF+0K+6SNkrAirabQ4jJkoSyMZ4NJr0QQC6VVViVCdGi4quBYKhINpu0QFRRJkxO0gXgZxbRxGfNCwbMZy+3GJFBVnWYbNtFCdQsQOBtulPjWBwIZ84tKNEM/ZQI5uIhUMheGCggL1w4fE0cmjknaCAi9l0NgPwmEmli412s1Fvd1qt/uQUPLrJiZU1Xwz5gqNOOlR8GCkWS4BbTRRnnWq7Uy+DqlQVRmA8ouyNRoORzKDRfDrNygJP0h6eEtEoxoA/nklFg8GQLlCGEQ8QFRyNGMOcshhn0lLAyHPuEBkS/IKDEXBSQIcKltFhnMEZpxVzGEyki6RHHTYXz6AOJI/bo0huD2oDBpI4GHeiiJquRnyxiN/r8UhEOO5FJ2JYOOHXkH2aLZBAQwXiuWi4Uii1q6V6pVBpNvudDEg9eEIAral6a7rZmRhv96YKobiP5+Hmx1PZWr4xNqOAxkdbW/AzUCMWmhsMa6FVGSMkPirpboXBSZQGPHCfTKRPQvUJ5mW4TFvNw6dbhmVB1ohRE+bhXahswrZ8mHAjYRHlcYEmDMOnG2jareCaGgxjbMBGaG6/IHiHrDzL8ZIeDPqDaIeoahuFuDVhEqdgyw0WRvGpFGEZttGizrhtuIOwnL7cjmUitqhmNbvJYZuJUeIjTpAaqcV5TqaspOhOLSg44RgdsTgxl4tVg+lmZ+Omw5ceF3HOYaIIwivwoHd1YONJLtTJh0IqH65EvB5STADXKufytXXrqqyEuZXYVDcbkAlVTSSrSx6mmNh6Hdoi1PRwuT29btcFu6qu6NbuDHv04HkHZ+bXPH6mNtmfnN5x1fe+vp2pbO/p3Y3OC3ZeOtVduHd/an5u7f6Lv/TDC9Y2Lqm0rr9x5eI9d1TXrNt02Q3PHZ/atvLICkAYvye4plcp6Txnbq5xturd9d31/7Xx+C9O/m3TWRc+dvze+1NX/f32K3aUDv75yIqDF3dS2eJCcX99/YWXxfY9d/Cm91796dfufv3l/W/O/vxwZP3sBZf94+Svznz0F//VDs7HJrvrS5Vkx5fd0Ose3bl+30wvPTZVT0wFI+PnPv3Yq5emtjz03pPfTTz4++++PffYJz/85hvP33jNntn//dVTO93lfG+uePiy1qYd4W6/nqv2tt7//Vduf/l/pmYqh+7cdsNXW7uf++DEG0/86o3XX331hX/8dvst22LRhRu/tnL74fRUK3Ddcxd+8uLSjR/87fWXnrrtZ+++8erbb7xy8utrlhYn1u1Zn06UZ9uBwFg9WwxG5qdb9bFWIZ9OlnKpBGhEBdRc2OehMXcqqAd1yHS67A0C20XW7w4Ccgs+YiNIiDbQw1YbRlIU73GiMzr7sCDhGCkl/R6PKCk850RmyTSJ2ZwItliOwhmHVdEISYsHWIxQdbeOBjCg6NYDXo/X49Pg7TWWPVXj6aI96HwN9eHqmgQKmGR5yRsAcCMxo4k0GU1WF467bCaDjXA6CQuQTYIRQHgjgwJnqDUzMzkdx1xuSXULkh/QMeT3B3RBAMSkCBdyK4Y0RphsNEEIqGZZ9Q/qvXQV5K3iZkicA3z1oFbHEKqDRhaWmu4b1FW6BVkAXOJObZjJiizpfoTtkUg8nQDURW2h8M9iYV8glKw0urX61HhrcvWGTVu2rF+7dc7nDXn9/lQqHgMILnW6U/PrDq7SAbxBAafz5XpnfHJ6ft3mI+sTqHW2UEMDXlAVVm9sdnHNmrU7dh1aJbLUKOcicSPN8KUygFuh3Gi2CqFEo5kpF/PwyqZToVgyFIiGApHBgaU/HFRFuFBdR3dVcUufa/XGx1BJTrdXbXUbaLDRWPdfAAwP0C3xLpzkJIGWZMkDAjharjYatVqzPTHebTT7U9MLU+VEWPUWmu3xei6bb7YaxUxc53nkcEzzLNw7Dc2+iESRDM+m48ioI5krF3LFCIv6wk8pYCtmI+FpI11HOAnDiNGAvJANFovFbkabsDYSog7HMScPEIRGI9JeReQ44D9uX9iLHLlRKxnByHo86BFEyWn2hNPpRCIgaA7ziJXX02UNBBlBswDATo5Btddmu4vGRuwu3DiKCuidGIEZAZtJxApl6RQAjxisps8bSDshUmanWE4GKDUZAfFHsHQ8E48EQ4hlqagHGEUF2tsncVGHiyRwi91KCpLqC0fisVjK54H7p+uK5KMJNNxvAMAoQkB3AYKLDpwAFmsxm0ZA9VoMQEHgrVFx//JhoCdWqwv5YZGki0ZVceygQuLfrwEARwcALFezfoAWLlMM+jwCQ6h1dLKXSaMxHulMqdFENpKof3t8fGoCwGhlPRAb9MkCn0ElkNFyuVhr1qv17uR4r95q1SuRcFQRKZ6FpRFMpROZcj5frFQnk4zIwtqWeUbUNW84GEhkkmGgtx4GH7X503lVodFUb8DtmBRT3aD7fHEyLKgel6S4KBFuj9k4fLqVQmMLccJkBB7pMtkxknOhmorBxtSpYmhAYPRfBeiwqkb1SDjslSWRjCS8CkeRVn/Yq7A8R9lDIV8sGYiko/FqvtSCT1GBNdTodTLJqH4KgDPN9mSjMznRHZsqhWM6zQEVjSWztUJjbFZDyhABcCyZRmauFWR8029NNnQxyxX8Hjc1mG+P9vU5K6aB2rTZrEN2gTSbDEOm5ZIgSI5Rk02kKZkVBXxkhARuz+NRzgEZ0DiybJRyibrL4w5G7bRudepun8hpy8wcPEg3sDavPwjLtGY3jI6YDRaekbGhUSsj+5FZ1pAFcisjo6YT6+lDdkcoZo747CaJGrGZIRiXU3CvUguzjEzZnADAixDmmMFgxh3Amj2BdLO34ci5l1/KULzDTJOE30PHogqQf1+EDrQLoYBMR6oxn+yQK91SvpzO1lfv6lGcQxJC461sRHEI4UB+bo1HyebXX6QFBbTfUehNr9p0bF9ZDm+d7Ul7d513ZHpy1ffP9EKqndn1xcfv3e4ePzKjtza4Ltp1fHZi3QN7ozNTS3vPuunJY9PZc1Lt/7xpYfGeO4ur12y4+LqfXDqzffXxKdnJq4IGNK7YX7V+2+r7V48fWj0ZuvOlTcev/PDtcy9PrL357JurV5x46gc/ODZzpN7ef34tN5abaO+urt992HP8xF3bP/7720+cOPGXrYev/tbuyPTCzRd/+s5tX//GyZPXPLXlgYtbi81mpOrNbe73zti5cUt3rhy969sPv3H+w3e+fuLE71urV2/79KEbs1/86l+fmzj71ydu/c3zx884evtHDz6215dIjXdrB68c27Qz2ul0i93C9td/9e65N58RSi4+8Objd7619dzff/y318/6+K0/vfXKX9/7/S+eWVFIzt1079KmM5IT47XzHznn0Nnffv/9F97+408efOyTv5x46U9/e++upaU1s2s2rW/v66JUP9mJZkOxFf0S2vSslrIlyFkRACia1cJeN2V3p8LeoCahvjxvSOYFkuJIgrCZLRYTOgPmWBwVU1hx0LkyYTLjDDbC83aM4CM+FclIxgUxRqOzKxuJWhZY0LBODPP56YCoeIghSyjiCwKA+QDQUBOlBFis+xRJFwbcHvDR5fGioqkQ6twVOQZoHScCAGspDrPbTcuBKdLwFiTNMk6byTgydNrp/3Ea5G0rDbKadsj55viKhAWXQKGinVekwZH7KtpiRr0VspsTUG21iyZwDvVb6aihMzCwxxXdbh4SBOhuDzpTBF4SjgZAxKALRaPbZFYAlEazSiVUcgQ/GDSyzw+qNp6Ih6Ph4ODkGgDYH4yly7VuvQaCceXKDdu2rF9au2POD7nD708CAAMwlbvTKxdX716hR1MJNI4hV66DSplbXL/pjPXJfClfgKTX6HTbrU5/bHLF4pr1mzdv279K5BkL4yQcJoYRILkW0WlfpVrKQ/ZBvYwFNPSgABfjG7jeJuKDYzK4u/KgG1qV0OzzzzU7vf74eLfZr+U7Y1WQ2a3x3th0t9XKAAAD/rLoNUA6JIDj8XKtCa8OEIHxfg9IwuTk9MrJtB6EC0ypIq/BBWQTXqAvHAe8gBEEhhEFRlDQLiWoi5w/ms1n8iW4wBBLOkkSQ2LCBAhMsajEjmNA6tnNVitmRpXARoMDDcB0ODDr6LDJApgpC+iRMYITWTu6KAqom0DiwPZlxolMCzyBiE8GOhfO5NKZQkKTlw8ZRh28u5CiHA4bz+KDU2TSBsBuISiHweh0mkZRVTUNV2O2AZ8RaXT6KAHSgZI22k3LDLiDEhwmko+xLtGXDImoNoCOpYHShCHKUfNcIOjzqbIa8HtIQvbyLtpJmiwYxSPrvkgihmb6DbYcPFKQJVgAYMDsYBDNGUHuMx7d4yQGNwPVXRmBdpiHjaMGg8FqN48ss4xaHMbB8S/afB6MBP7X+cxghbDYvwA4CABcTvl1nmGyJQAmAGDtFABnkglgddlStYrmBPXHxiampqYnuxMT881w1K+DAkcmg2gaUrlSqDbq5Wpvdny81Ww06rFYxM06GVZTFF88GU8hI9FyeTzBCgxH0SInSWjn1ucNJ6OoA1sgHUYm3piIpgV0jbLmiejhAIOzoXCOSamyTrpVmgbWiKrgTjc6SdplczitBjtFkHYr7qCRY/y/rJ8HECwrp7qCFdDFegwkJKqtk1zReBBoF2X3h3Q3xYLWjsBaSgdDqUS2mq+0isU64HCt0e9m/x8A51qd8UZneqI/Pl2NRQGAgWhHkvlaoTk255URAnsUWCapTCpdqoAC7nWrY91EJOeqw9szFEGJCjobY3Gz5BEsNrttuYVFjGm5YUgUWcY+arBwJO2BiCeNI7gkcgIR4+yC6DKMDBkpJx9gRCkYd1BuK+Pz+NwAwEZYWJxHRzQsEIylGg7DyLDJYGFZ0bF8BKPloE46bMvMTlrgRKuDdNmWDdlJMW0MBHADzwAA42pqmRNEeWrVDC8iAJaSi17cgQGfxHCgs25/ujmxeM6Zl50NugW3sE5nUHMEgnCHBU9UiI3VEyE3E6/FfZLNV20VCuV0oTt3cNJKYDIfHm+kI5qD1bXS1r2alIwtnqGGeI+mirHW2OyGowfKfn3DUkk+tOvsI3PTiz86Q5+dmp7ace2Dd+9wN/fMRHtbmEt2XzLZ2/DA7tDk2IqtR2/+4dGx1DmZ6Suvmpm7+87khg1bLr3hp5eu2rt4US1cXNyw6eDe7ZvWrZht5HI3nC+U8lb+mVeu2/rFH36ycMy38heX7u0f+913Hrjnixdcv9TefH47Wco3V26tbdu0J3L0s58tfuuDD158/+TTscdPPrEts+LHG49/9NqT37jr7y9tfm3m2etb0+VmrKLltvT6h7Zv3jtezcWf+ss7v+tvffzWp/60Zaq+47rXH/tt4pLvX/LqeXf85p//fOmOI3cd2vGPheev0vOV9lRl2xcm1myLNfvF4nhv/uotB2bvu+3Q+7/c+82bHvpo382/f/P1i3/+99ff/O//fe3k87ddtDEaH7vx3k2LR2P9VGvfo2fcePKzN17+8zu/e/Lh595787W33nnhw1fXzK+aW1q9dubgTLM/UelUK7VoaKzdbI01cqVKsZaLJgAxUEtlxOt2YZ4MoISGjoBlb9gNwQRJCQDYCjkTIwgXS9sJzGLFXBxkWocJmcmbBM6OO4WwpqBBMS4cna+i4k0rAmA3L6jInVJXcD8nKYyVjIe8XgH0BIPkoy6LyKQZflFRzyRKL6zTDdHp84FaQJkFDebhJG8o6MsoNqtlxGR2WEknSGBVkVzm4eXDy08bAvFgs9pNJruTImlRK87mXYQgIc8DWMrwi6L5Q75BKy9a6YDILKLQLpJHJ81B+GowiAbWa+iLTgcvglwGagzI5YskQmjXE/VJQdZB9VeizKNGYlnkWVGU0IX6QlF4xaMRyK9wzcEgSOFYtlit9dv18dkVq5e2bt+wtLBm+xxy4wqF0IyEZCpT6fbnVq/bs8oXTA4AOF+u1VEf0uq1h9YhAC6CwG12e512B8BxxaqlDds2bt0HAMzaaJfDYeUYd6nTySfzxXS5VIGkCwCHXH3RHLp4LOLzBoORaDSCxir7NbSxh47UPaLgVrXPtVEv71i32Wm0J3vFEoTCeK8/0W420jp8g8TTqB6JgXwLD1TzxTJlVA4GRKAzPjM7NTHWn55ZuXpVv97MJFIgCHV/OFvMhCTWLdMMyDWK1eGO+lUtFIzGY1HkQatHkrlqLVcqBBgk6gB/QeFarHaKZ9A8QoBRF2YyAxQBKFoMI8tHTWYT6IzR5aefPowMGkfMGElS7P9P1HuASVZWW8P+z/98nzIzHSrXqTqxTqhTdarOOZVzzl3Vlbqq44TunpyHgRnCwDDkKDBEQZIgoiAqiooiKoo5673qd0UUAxkUJA3g/f69a+D+rcP00zPTfcL77rXXu/deCwv4AMSsW0S7XWBieHQJr8fj4lGRLBBGC+JwJB02rwEUpYVAPsBYDZRIWc0EyzlMNrPB5ACOa6Bpw9i4wQQx0kmZJmDRyCyApduNVlyTE2aHZc24lcAI6JI0hysXSYXdcKU0n8imEpFoAMM7jrAEEYBDAMCkRxMYjnEYzCgW4w9EIokYALAfuxt8HndQoFwn66YAwUG02kQK7aEc2DbjtAH0TlrgaYxPTMC9myGWjqMhw4R9BLyjXHYExe/PA+MWAQDOjgAYWHYlFYb0mS0UIz6PyFNavYhdWHkAFcjqypVyudLszAxn5+bmFudn5uc2taIxHQHYK8nw0PRouVKqNXENLM4M20141clkTEHXCL+uBlMA4pUSxOlKP+ESgYtzAo+nxX40CEPNZUVmCYfJm2wuJso6vBxBUbw6/DFpd6hq2VNK+EIW2cOghhfkVfZ1E0DpKRtB2w1WePpOk9PGkCMpypEhw2hKwe05CcdeeMp6UglEgjq8YyqaiIfcAu8IR1WZ4jjKFovGstlYDLZOtVBrlqqterHcaPb/B4Ah76u3etOd2ZmZmbkp+CIeQSvRdLFeavYXAIBR7AtYRiwHeVupXCy3W/1aeUmJuaS4TdJ5xu7kUZNWdLEGzquYzBbzmFFw2KyTAMA8UF/L+Fqjy8nJPOR4hnEry1E8ERNtspuahNSRZYQgLyl6nKIEmxj0B3ycug6yKhzq8MPSCEYS2WkncOVJo5HhRXJ83EqJQdVpt60xOmlOkuw2irWtW2NhqLLRFyEnXK5xs8nqy4xBTumKL865BdpKCmJyk+Z0EIZJnHSDdDSQbQ2XL7jwxrM5RnTaJIYO+flE3ANkPxyRE/1mOihS4WzIwxoCZUDfWr7aax/qjdtsHm9yth7TPYToCed3XaRSpcD2oz4/65MVPlSsD7YfPasZ9yxvy7kvP+OcQ0sr279zRF2cnxvsvfGhew/I5d2zsZnd9GWnXdktrz5wIDzszm497+PfOX++cHlj6623LA0++UBt+/Y9wIAv3njOjmsa0dqwuz6vMLrbKTKmxO2f2B3oLiw++vA3zrj46ke/fNllX/rKVdcvXPmXh3/wxKePf+uqbfsvbOR6hfrK5tbBw0cC5z/z1fNvuvlXf3/mq9V9r7/8+Gm+ra8/mfrN22/85OV33uydf+c9F01vrFRi077MjtbMGXt27FqdTuS/+uvPvnP99d9q/uE/2/u3b/n+exu/n73lb994bvkXj934+iv3PHDTuV967bMvXaCkS72F8vIVg6VdydagVGx1Whdc8tZXfvKJv77+57/cG/vkewfvfOafd33rzb89+9xzL/71vV8svXSHWmh87IGD8+dGu8380c+f+fyJp//897//488/+vy3Xnvh788/89bbt21bmJ1Z3rxlsG3b9g0z5X6v2khnFgadZrWUr1ezuWg0HglqsuDWY7qXsSu5iF/zKaoHqE0YAJhxUYTTabOh+gbhoGGtERYIlk4sEtoNZkogzJJAOGkp7kORNA+eIXMjoSkrBdsUe4cZ2kYGAnjs7Pf6VYBCTZWA+Eg+XVc9bk1BC1A3IDXPjj5Ij3pyfEhTZY6B/Sm4FX8wDFhA2uw21glUxjA2YeYgRbUYgDOcYqEg8lO8k3TYHZTDZHEXEqi4K6HkswfwIRbW0MJhJATN87wA65d3sTRHCYGAForpgVFtThlJXwr0CIAhrCMtDsaS4dF5mA8bvDUfDrtIJ3s23SJglRvPWiORMJZ2EwDAkTAAMCQLwUS+VGnM9Jq9hQ2r2/bu3bFj2+qWBV3VtRiWiwFws5Xp7sLmLQc2BAGAUzgvW63Xm93ZxeUtZ25JZvO5YgkAuNvr4CTjcHHD8tZde/afuSJxjBnu22EXGG+51SrlIHNvVMqVQiZfzRdKo0Ek7HzG/pR4NIyES8cxJGATWAYeuZ1/qN0HFO12ptudfrtWrnWazS582mw20r4RAxZ5XpTdLpKRNVVRYwDAU8CMpoE+YfNzuzc7vzg3mJ2fhYBXLNdy2UAiGXQ7HTwHC4UWUMvKq2sKcotELAYXk8AHlC3nS6Uwj6TPYTMj/3VYYTWN/OUZ2mmZMBBr1q4bQxJotdkgRHOsx+vmPUFN8AQSiZCXtWGF2MFIXmDnLI6vAKqpmk/iYc1JqPsdDibzQYbVMgHz//sRI6P6siXJajbzPGklOIGyWC0mAGDSNEbSxjEUf4R1TRjWESwlsTLawPMuxj4xYSEtayYshCBaCFqKuD3pBLAGAZJKCXXTAYBxxNzj8WkBTZF8Id3tcHo03onSTlaLUxC9kGUBOKR0oMnoqanoPCuKshbC5n5M0sJYkPfL5AiAgQIb106YjRbr2PikGeI4AYxo3aTVYDZR6MhAU+T7wOsaFYE57MQiws3c+wDsqaajqpvjS8WoH4fo9AbgbzaXH/XEo3kycFugv8OZbmdxcXZpflMzFIHXKkkeeEt+NRArVyq16f5gZjg/GLan6q3pDGCVy8VJJwE4natUYC2WOjFOdAEW8TwqmvrcvNun+bweGTaM1aRlqoNoLi5yjEtxe+EFYauzIpT8+UosaVG8SOJ5p8VKjI85aHjbJEOazSRHMibCBncljAaRJMWDlV/vyYNoD9BfAOC0LxANwgqWHNFsVD8JwJqb5FjSGsugXzdqVVeK9UZ5qj1VrjanB50PjqADkTRKYXWHPbi5VjauCrxP1RKpzEjvFyKehNs6gP6EuVwZlvJUc7ZdnyXhVUbGXJA12RwuN8rHC6LJ6fVZTBbzhNFNOq0TE4YxRqBo6/hHjCIliKjPBYjroAjeGpEJn0xD1mgAANY5oBdRl4MmRDzlo9SxCZvFyQp4+A2BJ5lrk8bxNWNGAwl8YHLc7OB0nxN4ttFBs4pMWWmOmFhjYp11hxhjJ1keR8aVnN0AKyA4GEjiSQBe9kHkmxw3EnY8DwpmWzM7L736ttO8lEwRXp4JKHI6gdlpIq5m+u1CzMsFMyndYw5WS6lKA+vmB/oW2iorqfkpWOhWMRBPbTsm09XYjiOaH/aorqUK1eGOc88aZKXFPWXpqiPn7Jtd3f71I+rS0uLsgVu+8cld7vrBeb2/1XbR4Wu72eXP7AsOevPbz7/h6+evz1/WWbzxY4PyNXdUtm/ff/nHf3bR5rN2Xlt3+fVAO8AmC7o3P7958RunXr26+/Tmr37Yv3H3PbdfdeDC/gUPfKF27ZuPfOpLH7vr0l1zp13TzrUyjeWFzr4Lj0QPPffbf773mYdOfK3zo6v+8OJdp0VW/u9vKue99+bvX3j3++Hvvfvwxa09/aLW86e31efP2r39vPZ0LXvb9+94bjB3z+m3Ht5243XWr7y79Y3aJ566/c3LT2/vvPOeh847/rMrfvnUGxeruXJ3tr54xezCznR3upkebrm/PwAAIABJREFU9Ie//Pmbp576gz/8443XXth66MoNN/z6xEXPvPDPJ//23B9ffGvP1a8/pMZL191/1sw50V4rffzHN7757POv/O35fzz5gwcf+udf//Kv//ufH13avDDb3bh1S2fr7t0LnanFQbUcT84Neo1ktjhVTBSL+WwspHt4QXufAcdQ3UDzSLw/JGPVB/aLw2KxGMwECiAKIyVfBwQGQbQbLAxvNwguSG7FhOrxwf7heSeFnTVOu5VWNWCNsAYYG6XrQAF0UQqoHtHl9mHFx41S0F7J50O3PEg0AYAx0DAODwpHaAGfRxYh4DiBj6peNaQJOmCfw0lAGjgxBhTGaEZ9EKPBQJAOYMQosCHQdjuNPa9Op5OnR1I3Pq8SwEYkzQNbW8Qaoghbg3cQDOvgIIYGY2FEUN0/av1wixzFAbuCVBxrpuFYPKTATQEhxh4tDxoiiR8wYBHCgUf1a5C/BKNAGwCAo5GAHgpB9M2VStXp2bmZ4YbVLau7D5x6+sG9+zYEgIrj8TMAcDpTai1tWFm/ZQiJcCKZTOWK5Tqa9C5u3nPWtlQGJxPLlal2p93u9HqDhY3Lq1v3nXpki5uhzBxrtxEup1wqFMulYqVRLefTqUyxgiIcOIESTyaQ+6JHMd4aSieqeAjt96Pbqkf8UHtmdtDtdLvAd5JJnDZutJutzlSrlvJhViGMZIsBcQSIh/5QPIk1YPRvGM70e6hs3xxsWA8Y3Oy22rViHiJaOuRxEXbaBS8HQiOEFw2PL8LxVCZXqk9N5fO5uB6KAw0OcwTpJBxWLOQjAPNoiUGTLHoFkS7IbPDRelENCRXM4Fp4TyjoTpWBs3emKqGAAi/YYoFnzzjsFKZCbnirXlrE3jhsLE1mU7pIizFh7UfWmBk1VvQQhBlPnwlW5IjRKQ5DW9fYaZth3ZoxHEpyWMYIkmQZFyT66L2FxqxOwxqz3SG4bHYSB4RjmWREAe7HSIk0zv6Mhp4UH2RTmgIMWHM7KV8AojbjtNotsFo9OnD/SDQ1knMLqIoMzBASGz2s6zqWgbEhHf7nQatglEa2miFcm2CDjRnMxgmLHX59ZNI6aTMRDpKi3z9+ZlkXz8Av7FREBowAHAuHNADgVEh2s3y1EAuoEkcGpqvpkRcDioDCmqrXpzqd7gxkTtPzC7OL8xvqengEwLIowzYPJSrVWr01wLrCAI+gW+1cKh4QeFbCAmkynUyXKsVCudAKs6LgdrGi5FfdHi9HudDHyCNB6muxBou5ZjyV5jmax/E/mjQyFK9xOTncymWYAArqSQoKm5nGbCSQeZJ0msZNLoo1WwgnRwuw77DhYAS7Xg9uN5Sj9HtlPeMPRqJhyMRt8cpoKMMRjgMAQ1iwxLKZ5GgrZSuVeqXUmm5WGu3usJ1MREZNWIFQKtPozvYG3WF/pp2PqTyn6sFUIlYrwVr2yy7xfQDOoKM2fI9Gd9CZm/K6QhPVSVoVSTvp8qAGrVu0W7yK02Q1G4wK3C5Q1nFadJK2yf9t9LBeT0AGMrwOaCvpNgW8Dp/CGgzjExTlUlkhqIR5q8Mh+lXdw+jj49j6z3EChDzYWNlpymxYs844bgfuYVhnAABWGZIYn7QzrE9yWWjWYVw7yTjrIpkQjLRoM5lN3qxsZtye4GCelyCuinJ62evAHgqjw06eBODe7nMvvGSDm1EYQhFZ3cNFwkowBNlUMD3dKsb9gl5opkJkMJ9JlmvFaq13YF6UCUlKLHUTPtEGMTq170yB00P9rb6w5PL6o/lic37bsYPdkqt3eEq84NxLThts2v7YWcoC5HQHPv71O7ew6e3D4NxO4uIzr+/nV+/fq/d7G/ZfePzLx9ZnLmrtuPP2Tevvva+yefOeiz/20/O3X7j96n60Wu8mB631ilbuVCuFR06tXEIX4/c+ZvvBNdsfPHLWwfmPfu+O8iWv/ub+H1370R9cMdhxeTNbSTa3Doc7LztVOfuOqXN/cmt6/8yvXr3+vz/9+FXa/h9988YHLn/ozR9+on747Ve+eW1vR68eamqZbbUNZ+/ZsXuwlK78/I+PvX345t/c8KeXnvjatff88te3PVX9+Dcu+fk1T375qWe+//Trbz1+8fObHz83UKu05ppzV87Pb493p6cKw43Lv/6vd+If/8drL//jybcf/u7Sxo8/+e79H/vaqy++9sfXTnzpwc+/fIevnrvy0+d2z4rPTOVv/u31T77z9NN/eeb5vz5yyxOvvf3WUw9+65VvLy1tnFla3drfsXXb+pnWQrtViUS7/WG7V8uWS9kS7LegCjk054d1TlkhXULOpMqSHIgpAk8yToKwmyxWI05GoLsMYbXYGaCQktthtNACYQQAhiWW8o+MxHC8BzkN6bTQQLoCXohrnJ0C8BJYdPGDWMcxPE52KoDIuuL2+WF1QkotwbccVbgILxA3ALNoUFdEiXfQlNvvDSRCQU30usdPsQMATxoI86TBMBoeNTiAnzspYEwSJLWKV3RZrXaKNNspTho1ofK+gAapAMrtoOu6By5B4m02F0u4AqGTPVQRbI5BEzQ0f0AgwAkMyBrD0VhQ8fr8I0lLjyJBBETDAewZwejPu7woWg1/LZNLhlHiOYJnv6FgNJ1KFWOwsYv1dme4YRN8bD+0EtVUPQvwm0hA1Ci3ZmeXl7fNBoEnQhzJFIBmTAHX3XrgyE7Uhq5UK1UAYOC/kL8vAgBv2XPgyFYAYAvDWMx2xirmotFCOZOr5Qq5VCoPcIz4m8nmwslENB4NhfH8OQI3F4b8QxmxeORtPuVDrd7scNSFBZgWn56eatVbDTyPriV9EGMljuJlN7wjGaem1UgqjTVgZMDdbn92btDvD4eLCzNzi71mbaqcL+YruUxUlVmKlVGkGoiipIzUt0M4XIVSWUDEipAUaIF0GFWpLJDBGXCWjGB4DqIR4+BoB/xIrxdVMHmg3y68ANKBIsjwDr3YbRSJJbOtdme6lk/GVImlSMJiQUcr3uPXRdZBunU/J3t8gVyjGGKBmTk+PG7TotkgZYVMC+mWi3VYbNg/TzvWWCCLW7dmwm6F5NJhwJE6llTdfgBg2jo2SVDjp1gJAlXQeVURA+UMRHQX9krHU6lUBJtysbvZN5qe08K6m2K1kESxHGk020he8AVOKqMFRiUJv5sPiXAXCqq94FMJBYJ+P/xbmaJJPFyGazFPTgI9t41NGA1jkxaj0QDJAXapOU/C78kyMOsanT67Th5BN/OpeCISApJYToRgV3G1XDQAOEUG29VUNp+FlCyHjfVTU1Ot6RZ280135uaHi7Pr64EQEkRJ4mW/T48AANdHRy39+WGv0WxNt/PpRMjlckqw5qNYvG+gWVKhGXbBtsBjCdUvyF7GwbhwFgAWCucgtIyahp8IO1jABksXZRVcnM+d4r0zhYgU8EHaC6Gcxdkxo4OhOJIgbeMTDMXYjU4bS4vYrob89yTzHYlBKwqSYS2tQkIbUT0ue7wEuY7AEgDAEpb0LZDKxqLJFEBwrVHL56fqzepUrz9sRuNh2MoAwHoq2+zM9YbduV6vnY/6BEHV9Xg8Xi1OTQ9Ra0QGqNfCsVQeABjZc7vbXmgGtKijYbB5ZcZJcbIfRzJF2uCRXagkMuFjWeuEYXKc8dKU3fRhi8IHg3GVJ8bX2SDLUA1+hfAqrNEAVJ+hVY4L+aMui4MWFT0gc4HxcWzIZ1lYtWogkkg3SZt5bMw8bhUZ3jQ26XRpKs84DGNmhvIJkpliHJZ147SzGLCmZJNDokxGk5CMEBRkcwsbXRJlIUU5tclrh1U8aXYgA/YG0o3+yv79B5cERmPsXpELePloVI1EAlFgVulU0AP8I9kK+gkfPMBSqTDVmNs/L7kJjxBf6qX8EiF5fan9R9ycJBfWS7qHUgQtFq9OL5y3vdik6pe0pPOPXnVkfnnfz87xzc3Pz+y56Qu37/WmV2Yi83vIS067elBfuX9foN/beOpFNzxybH32oqmdd9y8adeXPpVbXdlx7vEfHNl+tH/RdDYdSbTy9Xjo4MGKx9x69JDxwW22uW03b/nut8++b+np7x6697Onp46/9K3P/OKuGx88c+bw8Xq2kZra21/cc8We4P4vfPHWn1/XOdjaem3prLPbzfzSd374nROfvvS1z3709Stf+OOD181vnppON9Xsjtqms3bvOnX9IDd99w23femuf7/xmSe+/o+X33zuiqefOlH8zD9+cvslLz183ze+d9/h5UECHlsvkk3O9euDy+cXtoU6s1NT9e6Wn/72vtpr7/zoq4+99vYnLqyuXv2tN1/643V/evWpp9987Ft/+caJVbWcvehT5/UOJ+dmIzd957pX/vbKcy/87dnXH73s8X+997Fbn/7XK/cuLC3PLi1vmd27Zet8vbqhXwHUXRj0Kq1CqjaViUg+PzYrkxQ2YdE2TzquBf0erIcG4wpwSg4A2GayERYTsBdaEGgspREU5XB7SJOFlpwWAc8ehYQme2TF76JHzSIU5LgkztECQSGdVlbHBY21RVrSIW0nRcHl1UNB+LKmCWifjbVVjL6A8Crwt3gskU4mdI8sOGmHqPpjmXDCBxvf+L8JuxnYOJp/W1Ae3WChGIp1Axh6VK9LDvqcAmwNijUZOYzlbrfg0UZODAqq7wnwFaBLogvVCQlXKKoHo9EYEMYQuijAg5Bo6wcAjMeFUWTAOCYFTFfxyWiUK/NYshKxGiyi8H5Y08OJTD4Vieh6JKJpYdixwXgoDCS41mx25+ZnBkAcG52VpSjQQgTgeAKy9mqn3ty0+9SlUCiRgq/lisV8odadW9q858wduUKhCPiLTVid3szscHZhacPqjl17z9ripkkrzVgsDsYspjQ9W85mKpk8El9UZM5ls/jQgPomEmGELWDA6PaM7qg+rwIMGGtBH6q3Z4aoUd/rdDK5mW5nut5sTLWbnWpSEQQRhThYjgd+iarG/mC6VMWB5FYHY/hgbm5uHtB3odcbdjrVciZTyOQDiVRMA8rk4VhsOlZExQ94EwpE40kg5qVcKZfLFarFmJKK0FYKINEK6GK1WeHvMhDGOVqkCVERXSwOxroY0sNRLONwkISVQC8hJaYqWkANpWP43HKFEtDwZjUV1DhgUiwPGRXHyoosKX4ddUPy1ZqHT7k/4tAjhXJRHKdICNZmgmUIi90yPulgyDGz3WZau85iNTA04TAYKVgJDk1UPwBgbuzDZqtVEK0GUve61GImHoa8Eqh9PJ3NxOJhXZEVFTvzRhWMoOxk1BDvpFnnmMFKsawajOARdBr7rYJBzSOGRQpr7yOXTVR4AwYa0IHGMSOdDZKcNI+vRaG5CQTgCbMZKNCaSes6iw0AmCKxSu4aqYOy7AeH0QQCcCIVDfklqRiLKYqLb+QiKKjOhJqFTKGUTwMK57KFKgBws99pAwK1OvMLw4Xh+qnw+wDMeSHHjMRLpXqt0Wo2uouznWqrPT0NABzmOELUZG8Qu6BrtRJkUK0o7B0Py/r8ml/0qryTQ1brh2cvMoSkOb2pZAbeJ6/AuxBpSnCZnWqCdS/kfbJfollBS3hpK2lG31xagJyLsZjgdTsmIaF0Qq4njoy2PSMvhvfboVGXUk1qoQBcsF8m49kgMGDGGoqrEollhUQ0EY3C3smk6s1aGg+Wq83+zKARioUUnyIBAKfzkHX0ZnvzvW47H1HcoupTwolsZQTAHtjKyIAj8WS+kC+VKs3pWn/QnaVULpYYm/T6gOMyElZvPLxrwiO5IX0bW+d3CcS68bVjnM6zdstHbD4hkUqHPOTEGKkpStjgVexumYb3OEayDk2gg3qcQc8iJRT2uPQ1a612JzpQw3LAM+gGabNOjJsnbG5GtIyvtbGK10XbDGuMNOnjZBNNO6zwjRyZuCnjNdlFBugGE07ZrKIeXlqlRKeJEKTEeq/V7oAdRWAXtBJI1YZL+w6ee5qbCrJWWeCCihSLQJwKJLOhIHzGO3k+Oa356EAiW6wW8q3m4u4+7A7VHZ1vRTyiTVDS8ZVjflfY3dgJoWDCyXoVJZGsnrkSG5CVGzvKpUcvP3fD5kP/dWFgaXGhv/P6h+4+Wlk8Y8HX2koc23XJsLf+0/tDM93FvRd+7LHzF/OXTi1/4s4tux68t3H6qYcvu/VXF59+fMP1g0a6trAUvyrOrlx2543Vld+fvumu23vz5/3iU4fuvXvfWbeeveuR41+NX/m7zzzyqesf+/rR+aPXldKNVPXg9OL+K/fpx//73kdfvvqJ139875MH//zdpX50287h8Kar5GLuwZeOvfvDr964uKc/nR4omZ21TYd37j5t/bA6dcOPn37ogRO/feMPv3z8s5cdO37ujsujiwvpBW3j3iuv2vPtR37yyuCh33xtf6heGXbKvcsXNuwI9gbVYre9+1fb9n3hvTc+8bNHn3/rpvmf7rviV2++8Pp3HvnVWyeef/Zfz19+7kyimD1273m909MLM8njPzz/jRf//uyTL7zyl4eOP/rUmZe+++pf3/ry4tzi7MaVLbNbVncuNVrL1Xo5nW4321WgWY0CcLcwqgZ4eFGNBhSgn5mIH5tLvArnC8s8j5qTWN2ym8xOyMIx53VarUBLHZKHMlsYSMNGg31cOOz1uH26LCJN5GhUesUWJQ98gbRyfo4EDAMEkyM60EQWtpsLIpJPkrSQ6PfKftmPFkMQAzkqkEQZxXgoEtXRPQk1K/VYUvHLEF7lMYd10upw2lGZ3I4S1QSBZzro9iOhTJUA6TZnNNM2K54lo70KEhXFr+mCG212eAF7eFDVD7Z+EFWyYvFkEqIqntACsRFImsceH8kXiwSwCUtxe7EFS8ESNwQGCFwjW1fAYlTTRW6th6PJbCYVBvAFNAbmHs7XCqWZ3nR3MJjftLJrx879uxea3TaOPSfjUQTgbL7em2pu2ntwMRRK53LpdAGtjOozixtWdpy+DdC4VEE3hqlWq9MfNdAsbN6zY89ZWyTSYWE4q9XpskpxTc1US4BswDJz6Wwxix/pWDicSUaSiVFnWDQcDALf8ro9qoo2ciiVLH0IK4LDuV6916/nG4NBd7o7XWt0u43pnApJighYA3kGZhgePxYJ04lya3q6N5wbznTb/bm5Qae/fr4/aJUb1UapUEjEI6lsXMWkxEUDWMAzd8t+SEzi8Vyh3GhA9K6Vc/lyMZPKhpyUw+kw2S1W86QNFhHHoei0i3I64R3y7ws+McijAYcB0lClStJLiWAIO+Kw7yighrP5TDpfqbd63U49pbhcIgeBB18IhDVFDYX1XDHi5mx2nz+cTnlt6NxFmB2MBDwYmLfNSU1+hLEbAOTMELFoh2WCsrO8A1JBryBylnEL7TCuMTmdvNvm5BSfpJXQakLgWZLPpHPJZMA/MtFEEosDbAFNAVTSBJKB3GgS/hnn9gUjoQgQdXT50AOKS8WDW682mmxHEyVVh1WjCijFgSVe0rGOWLvOZDMDE56YmJycMNsnxj9ixXksEv+YZk8aMZz8QA7MMNF6PqpFY5C8+uCzoMqLjWIiAKDBRJrFIjoB54oAKrCMGtOdZg9f3HB2fm6mP1ipBcMBLIBKnAhpTSRbqlVQTqXeXxi2Gs3OzHQ+mggILjvKYITTKCcN+SAQpZCMhQm0v9BwRpFmFNkleHAwzEkwsFrCmYgMz8gnuxUKNbEsJGTxvmHB5XWzRsLEJGWXw+Y0jBMkypHCn487eKfDaqKdLkLnZB+njLSwkPoiAuN5lCIHYDlriaBHdlPxjBaUWJ5Qo15AMJfFEk7Ew7jKItlCMZ9K5SqF0lR3ODcVhjjm88hBPZAq1ztzczPT7Xa3n4gEOc4L37CQyE01Oj0N0mfJp6s+PZYqYJdZZaqV7g06tUmrmCRM43AR8HY4j6oIHhdrdKi8zWgxTPi8OIc0ZiACHp4zrDMrSiCWTGq00cjCD8yOKdqkm7fZx9espSjG72DD/gRtcroU2IcxSVtjdlgg7WBEuFFNjaZrgtU28ZE1kxZOYJ1rx0yEx8/RhH3MwDjcogTJJ2tcM2GzhTKGlG41yY7xSYMzECJIVcssrsI6MAuclFv1EzQJMG4jHEDZ9UxtOHv6+WcfctMRipYkZzDsieucJxCM6UFvvuj3kJKQLfkkIpBOJuvNYrnWOzBr0QRnIDnoRiUfxata+MAlEqXHO1t8PoZRNSVTK69f3T9XXiQLx6flKw9fe2Tbzn1PHdNXNswMDl7/1ds+Wt11rKNNb+QvPe2qXnXrw6drvf7SnrOvf+zClfx5/V0fv2PHqZ+9r7Fnz9lX3vmLy/dduelTwWBn+vps4bxqf3Zq1+WXRD/981v33HKMbv7XJ5Vrbz1Su2f18KOXfDt8/vMPP3rLVVc/dkb34PFCthZpnlbZtP/gvsCV7z7xqYs++eM/vH7puVf888Qjq8mVL//HaS9+tHNe5rybBx9d36xv2tkf5Ove9O7q8pGl9qGN/Xxv95Xzw+RqtvrR48cO336WadOx/Ykdxx58dPfT//Grbz30lf/48aOPvXr5Lw5rpWp7brp34frh1jAko+V2d/WH55y49C9vf/OOJ0+8MP+N11Y/+eILf/nz06/+85HPX33N8f3bf3g0lMsfvvOC7rZCp1W56AeXPffis39/5i8v/+tzlx64+Y8nXnz5ubd+MlzcOLN+ZXWwe8eBVqU+qOWT0Xi3Vc6VCqkpoF25WDSgBxXe5Qv4vC7Ckw75tSB6hPn0iJcX0S7OarVZTCaDlSQZRRMp8yQQCp72yOgn5jZb3IyddEqRgAT8CtalyAtoSUhauFhM1WSJdRhsbomkA35Z9ARCftUNyOvhKfgtAJtM9al+PLtWUPCKZxiO9EU0r4bkDf6F5AI8B+SNJsJhoDgx76TNYrQ6CavVZLQRBhTvYznG5RE4ZXR8CfEAu7McwLIIjJkSUDkVsgJ5JOfsxeZlDluxaBLCARsI+9V4IhKOhtFDAfakx+8mgWrwKMOjB2BLxWOK7EXXJp8qQ1qNNWDkvoBjgipybgikmkcHwhkLaYlIKIptOlo8l03E840KGg11h4tLqzv27tuxZfuUL6oHYqlUOpVMZ/K16QGOHK2M3FhQtjdfbfYGg7nVvUd2lHKZfLFeHkk190etxwsblrft2nvePo/L7hSdVjPFU65IKleeqhXy1XIuBSCOlCeFypOJRCSAwiOQwISRdHlHB3ryqLyKSgcf6g2HEImB+nYblemZTmuqg9bA7Uot6XVBcgF0C58kPCdUCgolc8ANmlOd/szMTH9mdn7Qnp3dON+f7TZ709PlbFLzQSRJ6B5RQOc8Dg82kYvqkRTwpnwZEoliqZDOFPKpbC7ooBwOu9FmHgGwjRYhGQI4cdidLI/1YBQ65gWGpFgXhyM4LofDaSWDmhrCnCWZSkZUWCqSKGuRRKZQn2rWi+l4DIfo5Hg6Asmehr+0SCrAOJVUEiI1ZTY5WJkwGIF4wU+eMFhIzjLG0BbT5DqD1UlTTpvBAXhPeBUvpI6Mca3RATHRQDgEt8XJeRVRLWVTwF4gMRDyuVwcW4jf/4AVgufKfpLyagJWVgj4VoLoU2E9RZMxLRTSIPFTRA0WFDxLeCrBkzZf2BkXkGmHc4S/FGUFQm62mqyTEGAnJyYt9omxU1AWzEKgGzD3AQCPGggFUUQAbhQwQVVVQZ0qRYMaL9bzcP8+kQpDSEV3jHwRFlGp1mg2m9OjXr5ef3a21+ltqgZCaE8pyS50HYvmKvWRlcdUf24wjbIvrXwioXK8w614/JERAJdKhWKhHkAHTp6XVRzYk12kyw95L3zCCiyKquvRVNQLoO5zS27W5TRNWkTGzavzJZaXXDZ4wWEatiVlHrM6GZ6jnCQsA450Wk2kg3V4BbeX93wAwIjAnlG5RNbhSQYjQcUrOWIZHQDYZVcjbiyGE45kNBYOQvocTWVRfzVXLJQa7QEAcCzog0sM6pFspY5TwM12t9uDpcNyfiUUy8XT1ep0T0NFbnRi0yMx9KyGf1zvNKd706IhyWTN/0vUeARgr+YTPSJvM3t5dJscc7tJiwEA2BHwipxx3Oz1AF1I6jxh44Bk5oxaxAJQbR0fNwoS63cwQW/MaaZccjASjnP6GGQi9pMA7NM1AGDeap34yDqDGSVc0Q3Lo0qMHfIv2umWRKedZs1rYaPoRVMkYLO4aYPB7PAHKS4QyCxtFgXOIvJycavP5nSOj+EBJcVJWrLUWDznqo+ezYsRiMpuUvNLER8tet0y7/bkK34fI8vZSlgjPbFkqlJO1/rDA0scZVPk1LAbFWUrQUvh+f0epxxqbfXDU5BYIZIvLe++aD62ygeuHfjPP+OGC7ZuPe3vR/WV9f3+/useue2Kwo4jLXXjKnPFmZd1+7sfOV2f6c9vO+Oarx3dVDw6tf2GGzcfePC++t69Z19x+88u23/Vrk/H4vMLUxmITscu/tjymTefYvjPa0+5YfVRZd+31I/t+crC2Q88fvnqjxPX/f2Ld91/0eU/P9o745ZMZCoyfaC8fOj03cG7/3X3wmN/ffrd3/1s78aX375nm3ray1+78genfuvNh2978tRX7//+ucO5Zi8+5c/uqa2et3nh1MX58tTexWuuWv/UG888fvk/T7z2u9O/eexz1UN/+vp3P/G5Kz7+6c+fv//gxsP//tnvt6uV3Ey/On3+htnNeqffrDSSO/64d+M1z7z83u/ePHFn9wfPbr/rsX+/+u+XXvrPVXr+/n8+9eg/7wiWwgfvvaK/uTg7Vb76F1e//MqLf3v+2bf+cc9Fd7/3+osv/fPZt76zsH5jf/3ycn/byo6pRq3bKGUSiV4bQncugR2TqcQIgF0uLYzj5u5ELAjEFN2xvbrbheEYgqbDDiBsdVC0iyMs6E5jo2i3MGlxUm6T3cs5KKc7qrn9KuwREts0IXpSZlJTRYFEq1cK1rBfS4QBBUQv5MkMK4iM5IOt4vf58ahJwkNd2SuyrH7XAAAgAElEQVTzLMPSvrDuC0XD2MECtJZ3ywr6DaphRfFHNcJpMZgchI0gIGxNTGJSwLpg+zIuwFaMVPh/2umwmwlBAOYhSJDF+rDdwq94JFEA8EVHX4ZyOQkuEAsFIgDt6OOro46XrPB2+CuiF6XswpFQKBlX0BYV/ZBkbBQTR542o/EmHn4HpMHysB5OJGN6Ih1PZqOyPxjHrqpyud4aAfD6LTt27dt34PBAD2vwR4l4MpMvFOvt+S1b9x1a8cexKRodkfLV6X5/uGnX2dvymUyhWMPxzKkWSlZhL9f2fTt2n7PHzZjtnMNmcnKUWKjWavUy6l/lANCBA2NTSjwajEZDAexcOan6gMZSKvB2z0khbOASH5ruoaJGd6bTrtcBe9ulJmBxv12txD3AX0fTnHiIwaJhrAoADBG6jNcGH4P5xWFndrhhfma215qeahYzSd0fzxZSkOO4sKGZZSW/B6U9/UDE4TZH55eVYiZbLGQLhSCBAGwaKT/bbSQHKZITW2IdJCcg53UQDpLhCJudQOcNs8VhczgtAM6S2+NT1VA0pHi1EKLeyEIS+5lCgM7BZCaVb/bavRgveNyyKkmJrCJnp9oxt+x2mO2MhzbDY3MB1o5DCGTsEwRns4ytncDBOofVYIFlTbA+vxtSLxMAsHX8IwYbrB5IMz0y7y+kk2EPSwP3zGUz6KrlP9kjBOCKD1hVSdKriwzvou0mBylIAMAxbIELhLBHyucVdZ7mxZG/Pdp8BYPY4B/QAYCRNTtJ2uGYtK4xmCbtENjNE+NGC1znOkgwMb9FBP4AgD8QheYYOtoopmLIgEW1WT4JwNkQpIgiGWqWAH1hBaEjcHmkJ46SK9jNNzcHz2hTLRRC5XVJ5iFV8UcL1XqnNd2dxrJEuzXd7mJ1WWEFyu0GcpjJ5YrVGhob1lRUoQQABnBTZN5pI3krzQluxgk3LmIhJw6XA5jmRjVap9nKRVx+UV9fZXmBJx2KO0ih+691fNIJlB5etc1ohozNBnuZZF2yhGYY7yOwbyThCd9qBMCxMCxgRbBHMqGg2+WyaxER28EJKhWKwBqPwE9Gb/scyq/XWn0E4JCq+TxBLZZDAJ5pNbDYkoopDKdDXp+JFRq1dl+TXTheiK5nUViZAMBTpRmURZftGWfb9v8wYRkuj5VVv8ftlqgxt+SwWibXuHjKPjk5biB0RWaMEya3O5gJRTSBtNO+UKBgD2foiOywQ8Ln07gASQU8IauJ4kQtEomyEZPJYbHDW4T44g/o0XQVAfiUMYOJhTx0ctJkleGybM6JMYBOWaDtJGsbm7RYlJrFFyGsvGCetNrFAC8Fg6n1W4BM2Nyit7LTfxKAHQDArKQlipX5/edcfIj2Rpw20U373HJM570+PL7wp8uyQon+Uj2mO/lgOJLLRbPlua0NibdqrkSvFZa8NiftTna3+km/2liVNYnm3XoynZtdvmi9uMvvvmVBufTsKy/cuf30/3OGb+MiAPCNX7nt0tzesxr+TZudl511aXe46+FTdeAM24/e/NjRldqxyu7rjy8f/Pz9U/v3n3vV7T+97NT9g9tKxV2V0Hwl0t25+xPuXUd99g0PF25bf+v21pfvu/PNew7d+9qPbz32k9CRH37x4Qdu+sQde3unfbyRmor299e3HT20Rb73C7tve/f1v7/03MuvNr964oltvpX//uWmw9d/75e/PXxo41tP/vL8hdXeTHzJn9lVXTm2Y3X3ElCFy//8udufePUrD37999+97tHzH3npgs9pF//khyea9a8+/f3vn7httXree8cfPtdXqE1vKraObppf8Q867dr0cONX7vty6Z53fvfTE2fc9eVvfKZ37x9fvOW6M7/7m43f+dr1Tz549M37xXxo/6eu7q8U59qJ47+89IVX//L0eyce2XT1JU/8+/lnn//rX098YWFhsbdhdXWwfXk7gHq/35mqFIdtCIz5dKuMjjWJUCjkE3g9psuUTU7EwoFRa5TgDbhdAo7wQdC0mK02o5VmOdpuMZrM8Cktu0w24J5WUkFHBCmqYvdyUHJgNzJFUk4rpek+VXLZrQar6BU4Ec/t3LSArkMClnyVQFCVUaAVqDFHEhSetQEBojw4L48ogi2kPCMBVQ4no76AqodTIafRsM5A2E1mK2zhkXM5xwjAXngOyRR2f+G3oWnIrWmOgc0vjXy3IanGKQ3UlxBwjJQhWUi9dWCuQYCqGBBYDZtrFIW38QjAXkWPR9DkMOZRsH9YQTkOLP+KcHsS6vZ40DjeEwj6A8ABI9lCLpYv53KFJABeOJEFWMwWa812f25p047tq5t3HjhjA0B8KB6PJ5Cr5mudhU3rTz/3gBbAKST0LypU24Ph/Orus7Zk0hm0gKs2mtPtaUDKmeH6la17du89utdNGcw0YbcgAGfKtWq1mCsVUf0qk4ym06lEIhkPJ9AWESgYfCkYRDMkXcWO1yBqG6AU54fanU6zWoGVMF2ttdvtQb3dbU93phv1lIJFANTyFkduSB6coI6la/VqsdwCBtzrwO0szg3665fm5juNdgvtDEuFSrUURyloeAGQ/ghebMJStWgGAlt5aqpSBvwGilHMFQohwkkQEIOAARsJoAKUg3BSFAq3MLDKUCQasNdJQMJHEAQJBIRmGTulhiO64kULXbg2Nw5lByLxeDQSDaGTFjrPxTNYJ44V6nld9IYikj+pQyage9yKTAKGizxwbIazW00GA9Be4MMuwrZ2DboPU6TdZKBJF0n6/W5e4MxjJicxcYrJYudZM8F5PLy/CADsxRqwkEunQmF9lNbgB2p84mk0QykBkeZYSFJJnDHxw5KKADEPR4I+j1cWAyLLy2hkr46qwAE8vcYasJNiIFMkGatjzLxuHQCwcWLEgI0Q6cdQC8yOfdAU+QEAs6MTaB5H6IABw8tO6LqoThUhYxalRi7odysIwOXcqKiRTeUL5Rq2VfWmW71+t9MbAfByPRzWYCtgFzSkEhEA4N50d6bXHwz6bVhu7al8KuZlRVr2qME4AHCh0ijnCvmqn3EDAKOjk1vxuuyo5Q2cXGYdkovk1BCWPMIx3a96fALEC6fgS/lTcgAYsMADksX9EdVJOu32ybVwxwyaiqMYFkOYbYRTpBTJ4zs5feT54HwBB/hlPRaJh9HzWbCHU2HdLbjsgYiMigEEmQzi+EIwFInEUyMELpaqU735VjiKACwHYAWWqu3hsN1o99utTErhhADO4ScqzUZvoEnciGwjAGdy+XKpVK9U+/V2yybLesjyvwhdZyknJXhhXYgit1ZUaKt5ci3jYp3wkgx2VfGwpnGD6A5l1SC8TAiDIT1Px4tcQucoo4XUA64YRwU9uslI0pwSCoddMcskZJYcRY0AOBBNVXm7bXLN2gkj9l0Yx4wWNwAwQU2uI+CvuDi7k7VPTJgIse7kk6SZ8RAmh50NeGRVT2zcIsuiHQF4VwCW8cSY2elwODm3nq5MzSxv2beXFYMOsyAwPtkdD3nQIyYgadGc4CXpYK0WkAlRS1dbhVh1uPvMFis43EpsuhYQFSenaOmF3R4y7Ktvgs3MCRJErcLsxss3OndFvJ+eE64869gFO3ec+qND6saFmf6eG750xyX5Q2c11Pay7dihK3rNrV/YH5gbLu4+/+PfPrrSvKi2/4arl/bcf1/9wIHzrrnrp5efdnz19vMjnVam7AptKayP15Udn7v91m889MXt/dunjj349Xe+tvW7X/nOg+f8vDZ/5IrvfPGuS+87c7jz5l6hE5zb29px/qkbypsOf+/md1945KbfvfHfhy792SePhI/89/3B3/7q/7z1t28fX3zmD185o7uxvZha9Kd3lpfP27Hl4PbpXuzib93zzi1LvT888ZOHTn/vwf3/+M3n9Yt+cP+7qzO//sVvXnzx9ruv+Pwbt/384mAlP98st85ZWVj1LwyrM83W9iee/e/Fg2d+98TDd7/1X/cebn7s/OuOPfX71//z2ffe/dp5R378xie9pfjO267orRRn65lrf3LbC3959b0nbrrv5/dd8/gbz7344gv/eveTS4sL3Q0rKzM7t+8bzHXnFvLZbG7QrpUrpex0Be1ak8D1NElSIhpOjiUDSJkUBVL5sJcXsSJH2NCByGK0Ui5JJEmzwWynXZRXgNxVkAnGPwLgWEBRvd6ATPtkbIthnMCAgyo2XJGmCconE35RDoewEUKPBTmbjfAFUEfAgwzTj4MybuBQo5qXF/uIY4B+Qb9H4igE4Gg65tXhi/EQD3huxwYIVHOwoq+Oi+Sx/CuNOkU5inCOOANpH7PRCCVuBZ1FAfU/AGDstnbRwObttBYPBSDFDkfjkYAWwuYahSdojkPL6wB8SQ8lItipgQQYaB16eEvSaEgH/oOnul7dL2mBQDhVKOZS8Wg8Fo2n4WkmUQEhX25AZJtd2LR9y8L88s5TVwKaP5JI4uBEKpGqdIbzSwfPPRCJpVGKEgJIBStYi1v2HdmaAe6CNn51NCya7s/Ozq3ftLpj955z98k0pD6E3UoCAEcgvtTLuTxaMOSyKZR/BuadTKTisXgkGE1HgRnBteloSwtcXcMDTFFwcR/qoT5wvTUC4FYTgHg4C/G5VZ9K+9x4RI9uaQJyNgTgYDxdazZr1SaE6F53Zm4REHhm/RIkdS0gTOVyq14vl7MhjxsNCeAFiB4USg6EIvFksVoq1psok4/WtLlMrhB2kHYHZXWYrRaj3WohKCC3KPkh4CKz48vHD8BkEqCHpoEb0zTBpUvVYiaTSWOdXhE4hsExDqDBozEfTfUlwkD44V7VSL5WzejukCarIdGEcm20w2a1WhnWBiSBddptVpPJTpNWA8+QhglsMwZeSUxSJPymKB8cQTsm1loshMjYSEHxiWo5kwyPfDGVUi4Thx+GFluBYDCojSQ1VIUhIVUFmLRZ7U64GdELf4A5HRBhzae4ec1FoaOm7Mcja6waB/QRAJPUSQZsJ81Gy1qL0Wa3TI76sCx24ziKgJmtBMWcHI7//yvA8BpZJlbPJRKxmKbyvnoeAVhuFsIAwAIZBgDO5AvAgOF5wwKZmmq2p6ZQfHRmdtid7m6sBGKj3gvIHnXVHy3WGp1WdzgYzA6AJ8ArbeQSMR8r0d6RUcEIgEu5YqHqY2FVjFTS3T4FrQetFKRzXhftcTkZuOVEJhbLxCG9CHhpEgBYDnlzor+fIQXWYnVE3cGsm3VaCPMpZsi0aTQVn7CyHIl2G6LTI0q+D6QoR33QPp8HhZjDyTgK9/g8giMcDyqiwFn1kCKJLOOg4qGR/3YgHI1hgSKfL5XKte5COxqBsAPYrYXTxer0cNhptXvTU7mcT5QCeiiYSRXr1d5QHzVTym648ii6gcKGq1d6rV7TpDBxdvLDRq8qMA4H64b7gV0z4fLRkDKMMS6BNJomDVa4Ps60bkLwhDNaOKRQZloPqVkuUnHFoxIHqZimi1mRCXlVoxE4vwyxRAwa1llJB0PRAMC+QDCaqvAEYVhzyjoD7eI445pJs+iTBSdlWGOlXT7OZScYYmLMQHEVlsxwk4xGW2gHG9IUrz+2slmURZvIy6UdEZIB9DaRThRmDWYhj9+2ummP7PQRJp5h/D4upLv9mj8c5dVw1qMxZCiXU92kJ5NNZtORdK66OoMz5lK8XQ/LXjvlC0fW76VI3VtfkTw8zfOQo5QXNlyxntwa8366K1x4+rGLtmzd/4OzQiuLw+72ax+6++LUmWe1QrUV69HDl/fqW79wamS+v7DvyM2PnbWhcWlr7w1XzqzcfXd5795zAYAvO3h8+YGdvj3zF5js62O5kD+3/lPLMwfvvuOR5oFzHrv5wK+/+fjtd37uN9ds+Gnh7E9ecOSaj573p2vmdtw0nZ5TZrfUls/Zsz5+0deOXvOvv1//4J2vP3/s1Q0/vZbbdfPRK15/4cmf//aPL03f9a8vntdenlpIb9DSO6srR7euHFyZaZaPf+ze98py+93HHzn40fc+/81/VB7PXfj8A6+decV/7PvDm5/YddvK5E+f/8qhcL4+mGu0j2yeXVWXBmhlsu+nv3z87J/e8ZWvX/SDB/uV5eljF5/4x5O//ebDb//+5Xde3Dp86tNCKb5685X95dJ8U7v88eNv/vvPl9784nuvfPWmL739zNPPPPPXdx9f3rDUX79xQ2fHztNmutPzs4VcNjfsNhu1cqZZyhdyycRJAJaBj9J2T1L3a7A60b4y7BUkF0+igavJZLFhld/tJpxmgwUAGDYejilyBK+OjqATEVX3KQGvywtx3sW7yFFflsTxqCrIeEOBXCAccjq1WFgPauT4OoMXCDIqCGqjcZ8w+h4AOEJ264/H4Qsx2F2wyiXeDdE2korgMVdQC8cjlkmbi7ZarJMGiOMmo4UhWNElyMJJ6zbSCdQJwhZFjMMq5nn0PpKQ+vl8XjyBRhmOkwDM2ik94lNHtx+LABLjeAlEE9gMLiDNgYBPAQ4Q8YyEsEZWfiIeaaOcOvJDCW7S6/OIohaOJTOAgMkonokl8rFoNJ7KlcpTrXa3PzMYLG5ZXVhY2XVwSySkAyylUbcyliy3G52ljSsdNYXHzxAsgfC2ezNzy7uObs+ht0K5VEajuE6nP7+wuGl1296t287cIzMWB+ew2YChuLKA0M1aHluMi2hGmMrlcTAymYohAEfSejiExrV+AFXUEubgPaDwg/NDbeCt080Wtj/Xm/VKE4X6hzPT9VoCQg2+ARGVsDA+eRQ1DN8WzYya3f5gZjA7NzucXRzMzw3n+51GrZbJAAsvlbJh5M4iiz4css+jQLSJRsPZEj6EJgIwpgjpEQAD5bXZAVwMVjPEJRcvCRygoNOGM25Y9QWiR43oMDoRMFgMRudybH4uNYFIp8OQtmmQmAmQmWFxABKoUDyqabFk1CWHCxlN9rhCqhyOu2mz3QEwTkzaSNpsIhw848BEknDRTgPDUzajwWwjWZ4jDU6aFhjJ62Y52rDG4CDG1sLFeVizg/d6XP5SNhn2uQXWqVby2UQiiCWHkaRGcKQsqXqcDjcCMOew2q0Qaj1en6qHY1EA4GhQ9csuH0u6JEw0sZteU1FZHKecHRT1fg2YchqJdUajxWGfAOY7Pm52mAzrUHnJgprr/9OE9b4WFjMCYIC7YMjn5321fBwBuFWMqG6vQEVa2EGQT6WymVR2ZAdca9SBA87MzMxCntXfVNFjALwyAjDkAvFSfarZ6I5cNrqt1nSrVc/EYyon0YqGasoIwLUi5INVP4e9hwDAit/ncVE0ZBqjDmFWFEjOF4xlC/FEPh2P6mGZg/zYwWp8jvXP5ACADZMWL63kQxxtddhPmcCRQRo48IQJ96HZ5sBZf9Ej/o8Y9Ek/JDx0iqQTyYiuQ+rsjMT8AsfTJlWHl09RBIkd/uGACkstlsChq0IR9kF7sRsNB1XVI+laJFPGvuhOp9WbbmQLPnkEwNlMoVbtDnwomIpqWGjakMlVKqVKo1Od6k/Be1b8xg+PKYobAhwr+SGfEzmbU6Yh4kzQvOgwmycNFsUtuczrxgGAU1gaAQAOhn1pV6jExeIekbCRmiaWPADAfoMRdXtFJSR7x9aZaZJyYkVW0QOxdEVwkMa1p4xNQgbospwyaea9skhSxjUWAE5WsNtZx9i6SZbOy0RaniD9jJUiGC2sedTIyiqEPKvoche3x2iON02YSPjWLm8wXW7P79nU36aQMmHknbTPzwVVUUGTGNYfS/t9TiYYjgd8rDcS1pNZSBIjkYyPYzkh0p5OayqQ72h4YRfFeD31zYqfczDuQCRemZ09f4nbmOBuafsuP3j0os27dn/7cGDj/Pxg1/Wfv++i4OFDnURvh+3Ccy7tdTY/uD+y0F86ePTWb5+zoX5pe98t1w1XP3Vfbcf2w1fe8aNLDly57aFFYcvZG90HDyx9bJu+9LlL6qWF5eU/XXKw890vBb/9l3duO/7jG5+4+Je1he/9+GvHt2y+a1t37y29zIwyv1RZf2TvFvdN79y475/PPXvDf738wgWPH7v/jOTWnV+98rWXvnPjH/91Yted1z56ZWPPYC67qiW3lZePLC8e3DxTKl3+3U+9/cUz17/58l+Td711/aG3vvFY/oyPvvzl6H237PvFEz/902fOvPmdvT+5LNquDbrN9tEdnRV9sdHODWdP+/0D//7Cs9+ZleyHvv/wz57duOfJ9545cc+j7z7zyt+eevvP2y+bjxbSW+64aW5Dfq5duOVrF7zwu/WPvPXCm//ne1/88Zsvv/jPV/76zu/WLy720ZJwx9bTh63mfKfTKOVhs01NVbNNbK/AY1g8gvaFNYW1ulNx4BUSK3pFX9iD0/8UADAQTYsJ4gshSkApbPCJS/AAYXVSDMEplM1JCLGoH0tcMpBmGg+tDWYqGPFKLjc9aQJGGUoH4G0a2BAa6ioiabe4ULoSglE8PpKVHx2PotU9raDBXyQSi6JFhOAS3eiwG5dDcYg50XzSOG6wWswOSPso6+SkxckwPPZPu0QeR5adFGrY47m5yULzDCeNfLdR0AalKEVswAKQ4WmI/g5WD3rV1GheFngNAjBcHI1NWjJ6CUNuALHdN1Jd0PAU2u1CGSwXakGjaqXg9ki8Eg9AshBH6pnLp1O57Ej9KQ7Jd70xBQx4MFhYXd24aevu0zZHQz4IzJBcIAmuTE/3lzdu6etBLAAnAZ2qDTTq3bj96I7CqPOlWqnhaOLMzMLC4sblLbt37jx7r4e2OF0AwBAguWq9Wp2ql9GDoZgH8pstlnLJODzNGCYvkVQ4kQgoCloqk3aCZIA42/FE0/mhVqXcgvcPfKcBwbnWrDV7w/lhu16LyQKEWHSbQEkMdA33+EOJbGo0pNFpzw2Hw363N1zsz88O53roCFwoTreaZbQDBpaAWsqwj5G6+PVwJAQxudxsIciX8Zw8W8gHCAYSJARgs8luZXlYQTTLoCmQnUZ8QYbn4gRJwj50XkFBVIGHvG2ktp1Cl3l4UMVcLh2H0OvHoj8H0KalC8mgrnpogtJyaYV065ro0dyOiXHgWBILbESwm+yEmyUJOyCxi6FMdt7phHVkJiDbIg02zgGv3eeB6zGsNVP2detsZqfCGAnOI7FKIZ2A/MLF0XIxl40BeuEJMjLZMM55QTR0EgDAsJ5sZpuJYvDgXtFGguDRSEDTvKKHoVyoO+z1oQShivoz/g8AeMSBSafZCj/YbAfmOwEIbHSYLWMmo91qtUNUdX4AwML7HzxDx2qpcCQY8qsiMOB4UHW5AYADskdgY61iPpsHfgxpHeRxOAhch1SwNxj0Z+eGg9mVihZFuzMJB/2DWgyWXa3ehbxqbthBc+hWLRWP+RCAVZ8eh+9UKFeA/5arfpckQloGO0PzwdOA5z7qRxRdrEDyoVQWMkB8Q8lQWBZcdhPBBeQKo85VWFG0m60c601FgOwT5JoxEs8dgK5NGrDXzmRzUhSHRWD5fQRGCVlltO3kYCIaDweAg7qc0ThOsFJGTYM4gUckAQwbAQ1WWgyVa9CCMZtvAgADA1YBbAPhbKU61e13ulPdbiOdgxCAArfZTLFe6/U9HOvCQzGPHo7niuVqpdxodeqN6SnBGuJi1o982KfKLliRvBLQUDrA9P/x9B5wclRX9rA/e3cNkmamc6qqrpy6qlN1zjmn6Z6cR2lGOUsISQQBIkeRg8DYrMlgzBqDWQMGbMCJdcaLMbYJJhgwYDL2/7uvZW///EMCWd1T1a/uOee9e8/haduQbhC+SaiFQ4MmReQp09AQIwYSsAZEwoS5Q0qc9RXocNQlYVYHfDcVhQy6VL3O4gB1ymgSvUpvJDB7H4Blry8KAIwRxlUrBoYcJMPbV+qNNNQoHDeuNFGYjxHsdhoDACbxpN8c8ehxlbY5rKQSC3q0wMIiL7AWnpULG8IEyZqHUNQywcj+RH5kdt1Ib0mgRLuecxCSKAY9Amp4DzjVWFgVrEzQHw3IuCCmWiPVdHtuw2RccOK8qDWbAMA4KwaiExs4p6qUFhQfsmxQA7H8yPipa9heBr9kwn3RttPOXNy29N1dHmSttuXKO+48x3fSnuHoyC7irFPOHe0s3rbRPzE8uePw9d87fU397PaOr1w7tXzPXeWlNTuOXPf0kZ1nbXp0TW3b+unq5OLELTfNNjeV4Cfe3LngsW9v+uqt6w7d+94dX3/su4/uf7w9/+377r/78oU9teb2qyeKPXVmqrnmtC3rg4c/e2j21Q//+ue//e2vvfM+vn+fd/4n15z75lP//V/3vfqjU99K/uq62IbxidSEN7Y2N3/y3MTWtSPt8hUPvfvV2OzZ37j3sas//qRc+ej7Pywd/t1P39/27oVPfH/z/b9+YvcFnz/wzY2BeHMOSt3ZO+oLwWmob9P5Xc+de37n1DWnPn7Kdz648rv/OO3gy2988Ld9b7720h/efvPzH/ziu91KIb1w9RVjM6leKXr+M6cc/NqLH7/28tuv/Oiexz98/eU/v/nGh/dMTkyPzM8vjG2Z3znbaU7Xc4lItDvcatTLmVYRanc8FvBrLobxBd0KaRQyUVjWkggE0BOSKBqECDqZs5jNegPIFIZzQFmwmzFWUJDlMzxKpIRZMBsXCaAuW1VEjn5Oi16/6kSDDEuXlSidCYqyKNhw3EGpLgonOYFlKSuvoT3TeAQdp2n9WHVVAmCEJaP1KxvoBwXEGyx50GGZlCcQhMcxEOYsZqvNSoDSUhjzoAFHU0Eg2VAtYJ0OGygp+By0fwkqhsZJ4LhuNAgr8X0ABvDlBNQF7SAxglE8iieEPq3fy+NBRlEIswFL4Eo0t0cLhkMeF5I0HkV2eeCxkQUJATCyrEWnnpwczgT6J66JWCAaj8bglzAK400Xa8ViudYZGRubWb1mzfqljTvWhn2CAlcVjaHe0mp7Zn5592n7i/54Mp1KAq5UG8jkcfWGQ8tQ9UqFQqWKnLCGR+Lyn38AACAASURBVMempyenZ+bXb91ycJtMGDESkJQGBQwIXSyXixVA4GwyEgqjXd5kMg6/C6NdUp/b7xXg67GBrkQMnEfjvWgD/gvtSrU31q43O8O1YqXeHgGQH58YbZVrUZlDcQrI8RdZUvZzj72hWK4IbKDRqEyPjww3G8OTUyMzs9MzvTYC4Gy9Ws7mkhrUIzTdRTkJVkGExxeOxbLFfLZUrVRrwCaQS3Ux67XRKEvRbjRbzLjDQqLYSpC7hN2CcWK/hx2lxTAcOoemSbvdCRBF+aOaTwPZ6/dH4AanUvFCqZhHZ+yFXDoRBnXEcUo4pomMHeS9ki0lQ6Kkool0yqozOqDg6TGZMFvNqKEfuVVRNGUx8Q6n0WCyOEiWIfRmzkrhuNcFCxcBsAMA2OBw4SaMc0m0uxCLBV19F4xsNhuNaBoykEEv1AIEgCwTmOjnHRihH7IYnE5JcCsuTyga8gVQx5ZP5aHW82i5uhFuo5V2vAmLQDs2QD+ANNqtBusJdhNyChnQW3U6m8GqM+lMRiNIdOr/mrD+mYgEshGPlOOBUBiosuCpZmIBUKyNXFCTZJ6OtnKo7TweSyWz2Rx8b51erT3c6QJ3Gh0fHR1fLKjwnKNOcuFfY0jlSndyYmx8rF0DNdwsIy9oSiBdwD8j/wTgPPA8lUNgC1Ra8Sk86ncEIkPzgowitNlIvpAOp5KFbDoFdwUUoMXJ+4Nt0jNZpXmVxnFS8sR8FtxuJQYHCTQ1BiRZpyMZFHTvxBhKkTzKvwAY2cag81l42DxBLeT3awpH2SNxGYUqmZBFLZQeDEeBX5rf6w8Fo8l0330zlUzVp4bD4QAoYEkLaKlSuYY232vDvXoiKbkEnz8cTKcy5UpvVAH24PF7ZDUQDWVKRSiE9ZHqRLvWJliec1tP+KIUFGi49YzodksyyQ/ygmNoaACjObPZODhoUkXeaTboaD6QigTdImnFXGElxnkBgGOqi7DaFZWvqkRQUXSrDFaHRWf38PZVBp0N5aqD3Bc93liqxOFOkNFDA1acEQjgXiSwfMBkAGAHALDDwaKtQhyLRYwBzch4eShtjJKIBcPa3IIIACygM+AgRjKmQQPmxHBa9sfzE4uz3TW7GCcCYDvB0ZLfxfkCbr/HIcW8ioBTkXDCT5qYRrtWzsRrvTXnDBMEx1uD9UpQEO2s6oqObeDNXnduSvQJwAm80WSq0d61ma2WnJeskQ5vPOecqY3rn96nzYzPjC9fcsvdFwYP7esEaiexp++/aLKy7tYl90hjeGnfJQ+esrZxTmfrTddOLt1ze2ppccsZ1zx1zp5zlu69aN3Muu1bV6tbzmpOeracPHvWnt2nd69966EDt908c+4nD957+9OPzp8yt/Pih75y+z2n/s/e3uaj3eKsMjs1svGMpdnQDZ9devIFd/7hiedfX7/w8Xv37Qxt/fRbhV+/+srNP33tewfOPnz/9ZWTxprJSS2+Nr94aHHq5KleeuLCO968f/HOV3/0/It///BY94Xf7P1h/Jyf3//q8jeO/fr6237zwKOH939824sHgoXKZK82fNFJ1YXo7GipMDFVGy1ded4f7v2fj1+d3H3aSx8euerVT39+xQ8//PMr7x/7xQdPr7/0mJiPtk8/oz2Tag8njz62/YG//+XVv7zw9m+/97UffvT6X95+6eWPHpmdnRubm54e3j6xdfVoa7qaTyczkyP1Yn8LGtREKhEOAADTHo8oOAaYjNeneWUV9IUSkCjgvGhoz2EH4WtyoEqA2VHlcrK0QhI4Cc8kowCa4WLC63QCLxYBqhTBYUELzRN0yyxrtnMCFFKjhXEyPhH3qKGwYCd5kvNFo+FwJBAAuACxEOjH9TAUSUsagBQKfvMD+IGylT2eQDrpCXl4r8/jNukMZrMZ51hBIHSrLDSKQCQ5nldAOXFI5uE4bkcDHsASGJJxiYLbLaBYE+Sr3q/wPEfTuN0J19CfzkRb4CCgFC+Aq0ukMSfLUICwSgC5XIXgEpD5vAqAi3bcQDdw8A6yS2BJhhPdoRAKpgvG0qlY2OsNRkKRNFTleDJbqjXqtWZfAc+vXr9x4+Y966NeVoml43nUsVmsD3cn53cdPFzRwolsLtOPIxybmVtYt+nkdZl0Bo1wAji26s1hBMAzswvLy0t7N4uE2YnZ7HaKJfhspYqasFACQxYNIqWAzqSyKbSBoQI3oFGiIJAJghZVZNorKP1eaJH/AqjYXqtS7YyOwD/b3fYwAH1vtFGvRF0cSBuORJNkPEexKDjco8XT5Vq9USlWxuqpRGVsamxsamZmagxgvNGqphO5equUCiILfTS9RFE8Aj+PhlRJvoSylirVEsrTyaeyJa8TuBEGKGixOWwW4GE0fAxDkDYbcvGAP3T0046QkTfqv8JNQ0YbwUc0Hxr3RI3xPjRcFYsms+lYIp+HC0/F08Vq0MMKAIF2hiFoTk0WYjKvwKU4LSajiaR0eoxnrJie5jDKYbEaaYK2mxnWahgCWklxJGEFIMBJXJA5hhhaYcDtJ660WCmRtFCUpLJe0O4hiQNlImUzEaA3fc8WZKkR9oejmqbJtEPxoTElk96ic8LacHt8gUgM/tSngtKVBTSjJICcU70elD+ChpA0n1e0EQQavCIIG9wTi2FoldlssZp0qBFaZ7GZdENG+PGBPqFbgiIr0IgWGhGD9YdHavDURoOhAOep5oJ+mXY3kxENDdGFO/lCFhhZKpNKZPP5crNVa6GR9JHR8anxESB4JS2kwoPmEiQJOE04Vy436p3J4dbECFLA9UY5flwBAxr6Yml4q3Qhn81WO6gPDSgcXIjskhi72eow2Xla9MKzRFKgtf2lUjyXjKWjiagPbgmpeHNjwfRUUxbddgfJw6MB3z3y/VqxiuAp1ml0OnQWliEdetImOIH0Ho9CkiThuBulgg6FNY1X4mGfIlHWSNInc04npiqg4gD0HQGA5iDQoBA6A87k8vkwPHaN0Xo05Edt3mpQS5fLtd74SLPdGq4kYx4XMoRMxKP5XKnV8QJ2ubyKC5nRJlH0Sa3ZrdSmyy3MYlYJy398kQzKOE9QpCjzLqC7Zo7DDQMrbaLTZNGtHNQDQbUbdYOY6M4CEVCdZkIJSyFRLdKhsCISDrvs4QsSFeUYgFNgezpKdJ6gX2W02a3A+kSXxx+IRgs8j9sHB4cMekJwEoMDBkIAcoHRXx504sBycJuTta44EaPlkk4L2B2qYiEwUgjH3IHQ9KLLxVkYXs0s+5w8i8JZcQwp4HhuanF6YX4zT/FWC4nZWKDR6CwpEFZI0RNVRNKuJQIeyRKpFdLFZKFUnz8wYqWsDAPlIxh2W2jVm5jcINpFvj2nymhqJJBIVZvDG88ILFSoixeJc7aeecbChp0/3OMbnZ0a23DJHXdcqB7c1QzVd7OHD144V56/fXNwojm1fPbF9x8cqZxZWb7hpqmFr9+c3TK/+ewrfnh4x4UTt93SrK6+4xFl7MyDZ05V1xzccPoZh84/9Ywf/PqWu265+LYH7/3mc09evffJ2MSRe/7r3pvOvWHD1K7rh5PzwrpudfqchTW+Y+//5NFPL/nxR0/uP+2k37x10051w2c/zNz5yRu/eu2vz4e+8/lPLi2tnR/LzXljG8rr9q0d2z81PJk+98UffnD+j9771p/+8eF3rp+4+P27H45dce0tnx2668HvPvbtJ2/53uO3PbLzhUP+Umux2W2ftm18vTbT6uaGR0fuvu3Zi2697Nsv/+n5O+tPfHjw3F9+dsNrf/zju6+98L13Prphy9++wpfzxQOXd+ZyveHMkSfOfO+Dl1975dU3//ij2x97/89v/PGlT969e3pkcnxmYmp4z9pNo5Xs5DAAb3KiV6/VSvlGJZ3PpGIBLejmGFfILdCYKxXxqagdWJBkr4tnCRJ1pFpNJsuAyWohgHVZzMhxDwiWRALdJ3DChWZHnKLM8miTTVaBhxN2ZK8HdZ8VJc5ucHC40QKl1IXyTcLBoIrsN4CVAcJpCH6DwVgUmV2ATgbJJoKKDEb8gM3wDPJoisgXiKdUrW8vF/KZCU7HiiQrOQ2DZkr29H2lURf08YNZErNaMJLAHJjZhAHDpgXV60Yjf/BeLCdKAshAhkShLHa74vf43UpICwfUAEp3VeBHdxIcAJVLBqHgDfiCEa8iS25kwO/2uQWUYQzIjzqERZLkeRcI9wjSv5lsAh7tENpd1sIoBzeLzt9qzd7Y6Op1GzZt3rh553JY9UTj2Qw68s2VGt36xPotB/dnQqFoEllPNgCux6YWl7ecvDFTKCaT+Vq12e22O6PD7fbE4uLa7Ts2n75ZhntJOKwYz1JMuZ5NlvIJAOA8KpH5CDpNjgc9Kjqcp2nS7fe7VT+QGEABtAfvcQkuhWXcX+h2hrtNgF6ouNV6Z7g9XGs22sPVCgJgDqAXbhB6MSKofqAn4US+VKqUy83hVr3Rm5oc6Y1PTU1PjrQbzWY1D2IdPjzhk2W+L9RYySO7fcgIGq6yWK42QCKDMMoWsolMyUeRGIERaBMFKB0FbIsDtCVIHGNQ2gHqSAJFiKHWX4fFiKyR9UN6qxWjWF7W4hHkvA8SPxFAgNzfY82k4VPauULQ+KX/QO3CNOga2RNLaCBwXBRm1hlw0qa30IwZdDDtoHCbzQxAYjWSrMM0ACvZyTgJ6xCBtI50HICNCIDNoOAIA+gCiXIDBkUVXuBIOZtGsRKAuf1YhWDYH4rCLwpPwGqGlWYx2PTAymS4Z4EwKGAfcutQeNYHvICXFQkldyDJ1t/E9shY//i3bwgNd8QwNGAwo5wovcGo05ksJtDTVqvFDjq5D8BoTLpviYXGgZ2xZjaDmtz9rKeaDQcU2t2Io+hqHg+3kRFHNpUGTgbitdpqwSIcbg6Pjk9OTYxNTS0UNM3lUQFWhP7jlK1WW832WLs5NdFrIgCuJCNhhYbr9vCeaAq4XbJYyOVqHbQJAF8YC0IS7gXACGFBe9C8IJAiHQwmtEwiBOI5HgFhrvCU6PHkx/KVTi3kk8xWgvcFwxIN+IlbBlZiQF5JC43pLUgKm3ArjTMS/88t6H58WT/IDI0h+fuPmCqQDnSgIpAU5nH/C4Ajmhb0eTWg6/0u6HQ0mUxVhquxoA/FVanBUKpUaXRRc3etWU7HPZLg9fkT8Vg2U0QALCguj8sFb9CH71Kt1evWR+otC65Zg84TvohpEga8DIoWOlqnzYyA6VatsImU1Ty0akAn8ZTTahjEeDUbDWkqZXWqQTEoustMJKrKTswue/mMREd5amjIarcbjDRpOsEwAHUUTXApaHIxGcnStMM6uGKlTk/IDDWEAFh10XbnCYNOwoXcWJ2MfWCFjZRKRl8Iw1TVSmCUENUkb2h2VpAYM0XLqaUQ0JnBISuJOXBG9sVz3YXVS5u2sjhtNgHXpZDnNWppD0q44A4ILG4PpMI+lzXWruRKyWJjdG5/B9iQlqhOtVWOw0jFE5/e7AJq0Z5VJScpQ32ONkZ6ay/gZya4Aw363O1nH1ncsOvZbcGZuamZrRfedsspkUM7R+Kt3eLhQxdPFhZu35JcHF+z6/ClD542Xju7dtrN10xtvu9rieXVW8++5sdnnHTx1L23NRLTF6lc7JRL73v9pOTOw6ece/YZR3efefs1jx198fMtpTtvu/K+K74/f8XlT11182NXHeu1D1xZL60R1rWbC2f2ZiOn/3D5u3/71lW/23/3xze+/9z9Z6gH3j12xrWX3nP/08+sOfnzP917aWN5bD7T8kfXl9bvXze6d2ksUbnknsfekf739w+8+Pbfv7V367Ovrn4oe9rTd37/+v/5+ct33PncW6++d+iZl985FMrV50bK5ZM399Z4JlvZUrm5++Hfvrz7/N++8/Zfnv3kyit+eOaZP/n08p/84tMXX3rvtY/emnzg42fEUnniomtHFnPD9cR5z1749lt/eumtP37w6jM33f/Jq3/+2z9ev3V2dmpudHJypr1pZmm8VZkbKRWSyfEe1MV8tlZOo+5dZFhFOdWIV2IIJZ0IwoIXXQBrbpFDOacOm91mMZl0VhR5wFrRMAdKBKQpqwUWkINVbXYonG6/AsxaFhjVxVMOq9U2YPJ43DxIHLuNVRmzcchGsmooElRkt4tX/RLrg8c2FQuFUfNwPOJR+nvEFE5IIdXjDvrC8ZjfJXCUk5d8oURKCboF1eMJay6OHHJCoeccBhMFdb8fX0tTJKoFIupWtZtR9w1pMpjRJIsouPpHXoqCNivRtjEvoJ1uzEmQHs0T8LqDUBVV1JjqBgLAENS/zoAB9+Ex8ckSmhkAAHYLDAgHDjVBC8gpT1JEJejvC+BYMp2IwmVE4gkUtwDQkC/l0Bb0+PTUwprljcvrl7cuRzzeSCQJEJxCCS7N4emlLQcOFqJ9IMlk88lCozc5v2553/ZSOpMvAgCjHqyRqfHJke7UmnXrt288tEGym5243YJmL+lUMZctl7O5IlKCWUCmZAKVAoFhGdalhZAZNChGvxcl56EpZwFkMGCM8IWRXm9kuNHqdWqlWqfX63bqrUarW6tWIiKHDn/pfuwxz4qyIPkCyNerXq3VWuPt7tjE9PREb3RiampqYqTdalQBfFOJaDyT8iuyyJBOiuOBgAEAByLRaB+AkQIu53OFUj6dLXoAYwFy7BYL1CR0/kojJkEAGcIIqM3w321W4+AqPepyMQ5aHBbdwIpVRoPZrNcDJLGCyxeKpzPJeKpYzoRRI3IwBPKlkY/RQ0YrsC1JkWSolzIv+sOKg2bswAJx2mjAWbPdaGFJFtiZwUHTFj3GENYVBpMJqBrh0DsoikVjrgyhW2Um7CsGLADAmIGEpUd5C+lEQED5AWoOANgf1PzHX1rYj1wiQiqNeTXU2mcz2Q0AwJIH6fRI0OeGJaOILONjMIqBuw8K2BeA1aIhIyyvq98ziBQw6GDMCsg7ZLKaTSb9oFmvg9/pBtFGvdmOo44G1J12/IS83wftjLfyOaiiXg/jqWSiQZVBAOxGSBFp5QB9s7Ci4sl8uVJrAWsabjeGxyemUCLhxGzO7xVVRUROjADAwSwaVGoO12uwzFqNRr1ZTccQADNen+iLZ0BOZ9COfx0AGJYFgwaqBDSzjVMM6WYEkQRa6yUkoe8uEoiFtJBHBVYLhNeVbZcKxUYppljNNkL2Bn08fM+YbWiVnXHC3aLsQI9omjABw8JJ1JfdB2CXitxi0Ev1wE8oq363V+WdeCKiKQIFAOztA7ADKWAtiCxNwuhMJwPsM51KFurleMiHbM89wSj8W7vb7Q43SrVKNqkKvM/nj8XjmUyp3QE+jgBY9nr8cTSFUKy3W2PAl8esfMyQoP7jiyav6qQJCqfhJ4GnzUxKuL4PwDaTbmBQJ3EkadWtsvNqHgqoQtsJJfRPAI6rLnhIXX4hofBRgVplxmwWo5U0rVpp0lsNJsJk57yaL5TKx3Pw/g4DLHg9JtCkrg/ACmMjVg46MEHG4amg4UONGFuyqRHCLqtWzE7xERftCi5M8QJjJmkptSFM0cSgzoZG2ljZnyiMrFuzsHWjwEIFJHELsDfF3Y9dVChXIKSqotmXCHkkc7hRzhUT+cb4zIExO21Rwo2lEQ+Ua0JSIhObRBvrLY3JKkWqSiCZLDYn957lGq9RZ02Q52w588zZxc0/2u6fnJ2c3Hzxnbfs9p23pRfr7VZPOeXoeGX+lqXEfG9my+lXPXr2TPuixqk3XTO94c6vFtas3XL46qcP7Ds6+c1vzNYPXBpUSpNnPvLM6gOHdh089bTdh3ZpmfA5F33z68bar6/eduyhu8779QX33fDCrTuf2Dp1xk2jjUV2HcjwI4253PL+q/dfueSilHPuXHjoxrPGoxtefP62j45+8/PHTtl3ynP/c/dlte1j6/OTgciawtLJ63o7tkwUi2c+/OS7u19/8pbf/Pwnlz/y6Dn/ffcr2XN+9Yu/nP+7Nx5+8/nvX33nDamt27eP5EvN2dF66/Q94+s9k+1Kdrix7elXn3Nd98RvX/vZOx//6IOfbT7v5fd/c9b29z967e3XXj/vils/uZxtRaeOXt6eSTXriUueu+rN11997eU/vfKXJ6575P3XPv7srnN//NXxybnhsZnV3U3T68daldnhQi6RHEf1tpCt5qOJMFJ+Kizt/wPgkOZGgXyCqALagKjBbUgCG/U2HKNEzoHZDHoz6ntmbBYSWJqgWOw4RmqBfoKRyMkST1pNFusqk8frFnhOIiw2u2lwAKqz1Hc7YASBZgRW1FBqUBogC7QjADDaI0YAjElht88XDfsjMZDAsI4Elz+cTLuDHhGFjbosq07Q0TRgBUUwslvuYwaH+kEAf5ESpgg004JTNrMZI0h0TKUed0FGRhqiwAo8j5wy7TjB+DV3wI9ielUvCo7wQBFgMSdoMQ5pP08g4A1F+8lMPo/IhMJegF2a6qfwuFySyAm0oEERCIRi4Ui/cTscQcMh8IomcqVaHYXodjtzq5c3La/fsG0pDgUqkoij5z2TrbQ7kwDAh0rRRAQ0MKBwKJEHVTo5s25tJpMr5pLAyYeRh8LMzMjw9LrlDTs3HVgW4ZY7bGaMoZ10uljO55GxdwEqbi4djcdjYdSVgqIckTcX6hLV/D4fuhIv6GJaUWVZYJkvdIe7KFaw1yjmG6MTY6Od5nCnN95plUMgftHpHo1Cozhk2qmgKctMpVYulWo9dFQ8OYEOEtE/u61Oq1pEx8/RSCyMkhpRTxTLi4oLvj4tHIulQYGVq+VirVoqliqlbLHosjvsoHf/CcAkaDmUvUQ4SNLuwIzI/AlAx2ICwudwUk6oTug/WVH2NLLvttttfaMOxe2H+50qJmLhANqU9sY0/ZeGHCYK6BhOILsIWA+y6KR4XKfTWXmbwS5Y7RYjQwPCWg1mhrLq7QxpXaEzmu2oEcpk7ScOAQDjugELYVs1ZLNSAm5haFGi/JVCKqSwUMfc+Uw0rPUPdlEPlj/sAwAIhxXM5vYDa6EcZoeRYtGIVN8IxR/wKP2+Px/tAAmMki3cHi2g9b8Vr0/5Z8YvgmACR/N0K03IjlK/EhFcu02/cshgQptNJIb+nzRNoubB46fkoIDhxod9HgTAqWjQBQo4Ge57YITryJMFnUrEU7lSudZsNwGAmz30tU1MTY9PZzWfCBxZZHkB9DhQ/maj0x5uNcbGu81Gs9mqpRMRlZFpgL1AIltAzQjFfLEx7GJZQWBpDnBLZCmS5gSXy0kLFE0qfgvNqJoo+bwRzeVlHRwy5VbIaD7sSQ63shERN9oFEH08mnu2GQZsDPAJG0CPzgb0y2IELoYrxwEY5SOgLS10CCzIgifkRcPWLp7EYlE//OK0e/xhlacoAOAAyEjgYFokljo+igdXnqsU4iGvqqoA3LF4rgHwC/q/XK/mkirPeb3evlouDw8fB2AJATBq2YDHtVnrdSfnJu0UR7qt//ZvQx4/EA2awCV4dEjSgsu0cWCFlSMswJGG9C6BxIwDKwGAgYJqLtbmkKOuMAAwHYojBWyVA0JUFWMisdLhMJkMRtsgVE0jbjSRZjsHhD6QyadKDowmjLpVBr2NZ5yGAR0uqCpvx3WDVgctO1ADntO4EvhhgRDijJGVLFYLyQY5pxhcnBQlzkrRUmaTBkzWaEAu0yQw71R5ZPXE8NIcSBLzEOEwsyyFTg0UT0QleL9XUTmDO6apvEErF3PlRLbS6+4cIUSHS6sulPyaQFOiEhlfYq0cHWo4XVB+NZ8/VOhOb9utNYriwTH+/K1nHJ6eXfr+Kd7u/Ozohqu+cccB6spNE+nRHcqeA0fHWku3LaUXR6e2Hb7usXPmhi+p7Tp2w9T8V26qLG/ZeeSrPzv11KtG7r5354a77tLK7erY0sale2+e3bDhpAOn7p2bXX3TKQtnfHruj39/3enPPrPptzdd+5//+/Vbbt7Q3HxsrLzIbWn1tl9QXwxd9M6TD392zeWvHTrl/t51p2Sbsem9vb1PXLn12MR33tj6yV2PX1daHt1Q6IWiAMD713T3L450yuf/6aXrnvr87x9//NoH77/7tezNt1xZ3NsduwzvLU8enD1y7uXXJG7f+eT53spEt1drH943slaZqI0WG43dT583d+pnH33/9w/95cMnn3tw18EX/vL6x9c9+9L7v3/x6A9eeP61xWg5NHPV5b25bK+VufSXV77x5psvv/r+S6/99Nqn/vGPW7d94+33f9Qdmxken10zunth3XAlP9WBRzc50atVq4VsOYs8DhRAJ4Hm1IhHRFvQgMjo0FRlBI/EohBuAu1Bm806NEvJs8hiw4ziWhUWw1iEj7KFgCIRiCBfZDcUHVliCaixg0bgsqwgKoRpaFAPJdXmhDelQVorCg8qyx1Fh3kpND4bi8YiXi8ynRFYyiYloaIDjw1F/ADJLAoGDMZTHp9b9nhVD2fRrXQqPKvHodghtEDql2LY/hYWmmMlaZbCrBYbbhwwOVkKnfSicDtAYRmQE1Qwcj8kkAUTDcU7FAhpMZ+qqbDMgHfInJ2gCGCSLrfmDwZ8sZjKqchuJxSIJaM+YNGygA6BkZKmWRJKjT8cisRCUHBRN3c4CiUa7U7G0oV8sdJAAnN6cXnTxg2bd6+LBYLRcDIVCKMmrFq31lu75eRDRS0aCsagKKASMDw2u3bD2pl4vpRJoj4tKB+d9vzE8PjC6vU79207tFm2gECzWRAAM+lCORPPldLZQi6VymfjyThy0AbcS8ZjcSRFUBgh4IQb5C+yD2T7HkYc94VGA/kjNdrNUqE5Pjk+2mqNjoxNdZqVEEdzLEWgZq3jk1aSGgiGkhlQwOVipdPr9kbH4DU8OjGBAmZRnFKhkEsnIyE/2hBADeYMC/IKbjc6A05mCsVypVKslIuFYqmQKRYUDHcQoA6sAMA2mxMBJShgCiMpDLMPmi1Wm/34t0qTUExsOEFxtMOqd6KBEJpB8qe3iAAAIABJREFUUzuY3Wa1onkqUgJi1I/38/tj6SA2iPGg2Vk7xnIul89NESxHcATUSiNDGC0C/C00jslSDruVphxG+Id51SBULRwWj9lIwDrCgQw4hgathHmFzmqlRdzMAHsj3MVSMoBGyCklixoW+wAMrC0QCCGz0khYJjFvAG4XbTdjRsAlNFiHuvcCUT/aShUQAKMdG1ff+NDnAdRG4t2FmvUR+sJKRAhsNq4ECmKyGFYY9UMGm8Oi1+nNqA+aQqFIQBAotq9+kQZ2xptZEKrwvbLecjIeclGuejKiyhJFhiuZTDKTy2SziVS2AEuw3Wl2O+0RoFkj45PT41NZLeBSZQ4NDrgDgWgeeOIoCL/u6Cho5Xa7U0vFAeEUqNruQBw4VBFl/ZVbHZmlkD0aK8qqxDgJJ81wyCSEtDEx75CDVcMK5/VF/LKbtjho0RNymV0RGYu2q5V8TMUoL9B8eHCcOG4fMMHf5Rw2J3Kj5EiHDneQmPBPAAao+BcA85Lgh7UVCLtFkbaGEn6XQDltniD8eOS/ADgQAACOoym+QjGbz2Xy5XwfgGVJ8cZi2WavOzzSbtU79WwCnl0AYPRgFmrdrhelPiBl6A1EY4lMoVyttaFMTo06zAzhNf77vw96fSIFZc4humUGOTSLnHlghYXFrQbd4OAQOks1DA5gopKKJ/wSa7MBAEf7ABxDAGyRAkLMI8V5+6DTpjfrVugHQf2bKKudRCmXPjWYS2bqRhPn1A2coNNbgPqbBgYdnOJGEZoDJoxQMJDHJGlcAQs3z1IpwUBLsEAoNiCRcmB+WgAApmk5s9lH0LTJYEL7CKyspUrd1RNj2xZQ9tQqh9UgyQw89i6O1bxOIRbyK4TFFwu4RWOgVs73AXhmzzAmOJRgbaHo11iCld2JyWWR8Gamd/u8HDxIjOSO5CoTs3PLDXXPlHDxziNnza/e9NR2KtNqlyfOuPWGU7j983OZ9hZp+8FLRprLt61NL4zP7Dpy7L+PzLYuLp5083Uj87d+JTm7Zt3JN/x430lXjtx1+55NDz8gzK8568Y7Tu0u3n103/4DW7ac/sRJW5974Obnrj909TOHvnP5g0sPPXDzXdd/4yvHto/vuaFZWC3uanW2XlxbjF7z+bGfHL7gmff+sOsX5338y6/vyE9uvve0284l7ZnZg3NXTa3Z2tg8ur7SCUXXltbvXRg+bWYy1zrlgmtO33351plj/7lcmA5L8VQnPX7NsZ273nzv00eufuqF3318yfd++sZpSmtstltqnLK3u94z28hVa/WdPz7525f96eOvH7r1ld+f9r0Pjh35+Sfvvv7Lxx768QePXfvBYzNnLUYbqdkrj45NpXqN3MVPXfrGW6/95c9/fOulx869+6X9k7/+f29+dN/E2Mzo1PT8yN7FtZ1yYXYEdWigM+ByLlPOhSMAPB4VFDCropw3BMAAo6IgCoSgKVBWOHSeCnhqN0LZo0Ak2JGFApAuHrfaGUkgeclMOB1EKK0pfZ2JNqhAMesHDcivURBlym5YqbMYnFYHaGo5iDpB4ZFS3fEM8qQAARiJRaLhvhckfCxnV7KJRDDkjcUjXqjqqNL6tEjSDfgMUlSTCbueljjiBCvB8f1QBK4fe4SMjkGWCryT5mjMAity4MQhgkcbqpLq8SAvK1lA788i4yUkOzDKBwomEPQDAPtlqKoqL7g4G8mQpKiqHpAwoWAy6VGCqXQymc5EogGP2yV7kOEWCyjuEl2CEgIKHgjHgIT3z4BDIAeDgLMoXxB1WiEH5an59QiAd62N+ICxxxIh1NqSKzVbI2s37T1Y9KaS6TwoxUarOza9uGHnvv1b8vl8Oler1hqtDvzt+emJ2TWr1+/ev/v0HW6juS/v0V5gDG0f5Cu5bKmcRdYL2VQ/wyKKjDjQTngEsQK/P6Acn5vxyKrqRmZeX4Aq22612p1uvdIamxgdbrRGeyPjjXIlLKAGNScaRULBjYKkeDRfIJmtNpvNegO4RG8cCeDexPTU+GhvuNGsFQvlciEJ1wy8S2BQXC0ve9EUpycEhCANHKRWq5TLJQDgfCadcRFOq9XqsAEA22w2Cp0gshQaqwEgsg5YHQRyYnFAlXZiaNScwgmOxe2ogQntf/YzNBi5n4IELNCA5qpoCfiFlihrdoyTWbK/QxoEuu/2uaEeEQ7TkA53WvSMzWQ2Okh4S4fD7CQJi5mkTLoBvcWCMwDAQxhFMbjM0baBQSuuO2EQ/lyASkwLPKYUMzGvgCIj5HQmEUOTv+4+BCNTLL8/GpFoKhAAbCH/CcBAQPzInykY1byI1NFeqIUMi4yw3CifGn40QOiAy/GvJqx+JoPDjJyQzGaLYcBsWLXKYLNb+4PuZmvfGZtGcRP/cuNgqWQ7l44Ggf1x3nIqhTYXa4mwWxGdZLiMLE/QLjSyRy6Wa61Ou9dp9Uaale7YcQAOgcjsbxl5A8F4sVatj3bHpsZGe01ggGhgJxJwAQCjY6D48U2MIgJgCQURU30lD2UCbj1m0pO4w2bx5ZQhK63ENN4TigV8AYWz6nF/2mMgvSoRLWVrpVxY8iaDPgF4MuHAsZU6J8OJUDLsBiPFkoQOw0ic+icAS2gD+p9xSIoUzsXCoZgbHXcGkwFFhJvsiyIAJu2OYNjvR2Z1vkjf27VUQV15RaSAfSqynvEeV8DdURQlUs+gM2AfypaHxVjrggJWUASMDO8RjaFwj2p5pDsxOTHK4KHBnGnFF3WaSyQwkrHxbplnCNzM8uZVKywMYdcNDawccIkkcoV2Sq54KO4TOJvNHZHDoqfMRqKKRDpMUhAAmIvzIHktQ6bBLw/qaIfBQOOgZwgBnsdoMZ7pGHUcadSdoNebeJm1DgzaaZdbsVvMK/QE7iUoHKNJ00qDkyiojoxipN2Y2cxyQR+tBGfmGIGGVSylNmhOyqkbMjscGMFIvkRpdO3o1IZZyu60rrCbB10qLku8i2P8HspTL+ajHKbFNLdsDg5Xs7lItjay9qRhTLQL3uSakaBfxGhZTUxtcvGR7NrDLsJgIDAulkkXOqun9+/JsicvUOduP3LG7JrNP9jhHh6fmFx/xi1Xnlwf76xO1bcruw9fPNZcf9tCYqI7tvW8mx4+d6F1aWnfzdd2527/anLD5i2Hv/qzA/svmX7g9l1rv/FAYWnfuVe/eFOjc+5t2xbWb9y08wc7Z6/448+/evi+dfdfdvLCHed/51u33XzbDbvumstuu6TUWWK2VjqbLmuuCZ7/yc31/3z6rfd/c97qmZ++ee02z+yn99z24ear3j3ja89sv+GymfX13XPrq5OhyNry0p65zsmrx9MdKMCLvRu/+fi3Lnj29U9/Mfn0Y/8VP+2Ra587ct9vj972zmOPf3Tpfe8eeusad621MF5uHdzbXq/OVgrZ3uTiT3Y/df5vfvrKfz//ycPLH/z9ivN+/+bLb7790Xvj62PLl++79uUzArX0yMUXdUcS7Vrx0scve+udl18CDfzBU9eu3vL1P33+9h/e/dnk6NTozNzq8b1rNozWSzPdXC6ZHO/W69VirpqPoANgUKo8ybgjKNBbySQ0r1cClCKkoII6clBNtJmhbOIo/Y2GNWBCYbuU6DChRFcLLxntDjsZjSg8x4noLBAw2mG3D+rhUQJ4lGjccMKQ3eSGf3GDfvAHAPF5ipFj+Ww6lYgnIjGAizDyFBLRJjLmzkQjgWggmYh4UVmnJHcgFE+5Na/kUlSfNKgbwDnOcqIDlhsIbqnvzAvggho40IQRwzIkhjz/dTqjg0bRCS4UxIDGC/sAzLMgi1ESq4OAWqh5Q8GIH/i56vO6BOQFjY4mUQxBCE0Bo7CoXCETA3mbCquKz40wg0M/Ji+JqsuLXDzQMEocMDoBAByNx4BQJJLIXKdQqneGuyMzC0ubNm3ctH191OcL+KPICzqNmq4mJtYu7ThQ9aNpERQZVG50J2ZXL28+aW8zly1Xy61me2RsbGphcnH1wrotO/bt23vGHp/BjDvgZoNw5BPFaqlYLuXzlWo+lUoDAMfj8Wg0jvqF4XcxFLLoR3MwwD7QaaRbBVkvAgCPQbHtole73uiOj7QBgLvdsUa5FBIYIBZOAJPjACxKqt+rJVNQnerVKnKqhgI1MjY6NYsmklq1egUkVikTBQKCLJ+ADiGfbDf6mjzBWDyZPd6EBa9yuVLMZdIiDtBnRgBssdnsNJqqZhmRoTEr5jAOoR5oQF4DgRxPcZx083YTGm6E71RQAexUATebMEkD+sbxElA/1GRltpnFZK3uc3CySNvtHBRvj1vzuaMhnLDjpB1QjLQPgAgxmDHGyZBWOwgK0mZ0MhbjqiGTCWNI2jqIUSQPAExZVg5YcSiWZhMJH86yEijgSjoZknlRoNQsADA6qXC7kcO2FvKBkE1EJZoM+Gnq/wC4r4A1WBZRZGeucJSHwlgeBRKCAoaF6IFvxIcAuO/YhjAYvTCbeQhtwJsNKO99QG+1W0ECG01GswOnmL4NJYW6oIEc0SCHOvl0xAdAz3sr6URYpdV6IuSGGwQAnAcATsfi6XQyU6xUUSNBt1Uf7jXK3dEJAOCMPyADAIu8oHi1QLxUK1d7jfbE2OgI8oQGAE5FNJlVKLf/+BZ0qQQ0q9Jui0DOju9AywDAaBZw0IgzTjOZiHJAqoRggFdiEQ2ZU+FmJloI2DE24E7nktl83CuFM6GwQCD/V4d9YBCuSAQqZNfrcNpJ6W02nHQI3L8gWP5nMjDAaCQXCYZR1BZjC8cCyJjW5ofL5ZwIgCNaf5dHiyQyuVyuUCzmM5litZgM+aAq8Io/lio22sO90Waz0allE30A9ieQWK522m5JlQCAXVogGkdDC9VKuTPaa0+Nc5JmzQ8NfEmviS4gCZyZVl0ih1MGUrKsXGEC7qHXDawYkAWCsBj0pOyKBxM+nrNaPBFXWEYAHHHJNG6WQ1zSTcaYAWQ+rl/5ZZ2Osw4aaaeI20jR7dPi+US6a9ZRTtxwosFgZKBM6gatFFB/3GI7cchp73cs8ox5UOckygFbTrHxPtJi5rhgjFTD0+ucHGkgKCm5PkBS+MCAGe8rYF+y3JuvdoYbNovDNuC0DiiK3aOywGH9ksNVgy9DJAPwuMrmQK+SzETyte7E1gbhJmR/ZM205vOi3b/IxGY3H/KPHhB4VgiGg4XO9IadpyyPTuf4zTXq8PbzDo/PbXh8m39yZmZ28znfuGXbto3tpWJlj7zrrAtmexvuWcpNT0xtP+emhy9c2zxa23Hsuu74sRtLyxu3nnHsR/t2Xzj37a/vW/76Q6U1y4cv/8MDldWd869YXrtjaef/7tp4449OXVi8+/Erfnr9/AMX/eSOO6944tjNDy9nt1yYa8wxy8XxbUcba7Rv/G34gs/feOmjV//yn/mX3vuvvcrsP7524Zbtv37z22e/uPf9J/7nxsLmmS35Xii0WNqwb751cHWv0Dn94QePfuvPT3/nF7c//r+3P/TMr775ncy+p+9/c/cnL5z6ixve+d0v1+747KJfnanWO+s6hdq+nbXV/Gh+Ot7ZsOXJiXVTD7//4p/+/vr2Kz77+9cvfe/Dv778Xzdf06R6P//4Z4++fyDbyHSPXjY6Ve7VK5d/7+ib77zyzq/f+Pv7d5+//befvvX6a3/+9JfjI+OticWliT1rN080Cv0t6MRop1avAQDnQiEvGpqTOSelht08hSmZZFDzS0jMuAIyK7IcRYDUQMO/DnRsR+NWq9lkJSjKTZjtBEPqadEEf0ZF3JKEhmU9AR8sWHiYzGaUmsLzNIEZVjoDQP9F0RMJeWW3LEi0xeiKZpJ9bQlyMRGL+ABEkYblcTUJ0jOdisTCXtQ5BRI4GE5mfZoPmQz5RCilnEsYGCBwRKQFvj+9IKIDYFFgkUMAfCLeNyE0mhwUcAK0ndVP+ZYAPTmGR+ZLOEFidkL1KAEtHA8FfR6v6gMB7lIYuCaaEuCDQt5gPBxNxgDNwghSU1GfV1NYut/QJYoSyyIX4nAINWMGo8iaNxJCAeGxUCQJl5XN54qN3vj0/Mz82o2bN23auj7q1yIhQEYAyWSm0p4YXVi75UAjkAa1kslkC432yMT0wtrlLdsbxWK1km/WO5MT7dbI+Nz8/NK2XSftO+nMfd4hM2F3OCgEwNl6rVwrg8opFfPpRCKZjMWSqWQilYyEEQqDGg95++F3PuAxKFvVI4toOucLo6Mjw+12q9lp12ud8dF2sz3W7U206/kAR3MM5eQoiuuDMM8rwBlShTqySGoMo1PE0e7IZHt0ahIp4FarVqrUivFgCEQJ8CBXf7cBnXX6/IEoasKtVGuoCatWrVQqpXyl4MJxmwO3Wcz95eTs76dSgpO26S2mQR2sM4xmSYcZqjJG4DbOaTI4AJtMDlZxo4gjDw846U+4fEHNLdAkMjpjaIfeyKp+xiIqmo/FgRuhFA23JxszkhactRtNeopYhTv0equVwpC1tAkQzabHOZt55YDRCHqbw4YIGucwYKHGFass+NAJOlDAvN1Ac1BmPZUwiDsnzeC+fBYA2B9EaRBwhaDAAsFgMiaRhN8PV85gCIBZXkaBCxqaWg9psKZYxkPhoPVlt8utwuPh0ZDvuBZ02VH/Vf8EmOhbuDn0OoPFajIYBnSgiGxWo35IZ7JY7MgzhnQCUKOUSBaWPEmTAMDAB1UfAuBMJKAw3lYy7FZ5jIpUimlYfuFIKpPMlIFm1+rt4Xql3W1We2MTU+NTaZ8PWDLagnYDqYkBANdHajWQMpO9dqcPwPGgzLhotyZ4Y/0ht1oxX2m3BBqeG7TDgDJTnDar3WHEbJJgc6VlgrRbGLeH4cM+RfN4vBzryxTCDG4NxkuldCjrY2gt5k+oFE4hpzqDDiMpAQAY0+sIhmKNcJGsXUAd7GL/HEnspxGqqsQFU5oWCUJBYbBoGCQp47T6/g+Awz5/KBRGfDeLxgBypVwqVagWU/8aQ4rB9Tc7oP0b1WY1m/QICIDjsC5z5VZLRQCsSq5AMJZMHFfAtYlOcWbULmIB338M/Jtek72Mg+BNBDB3Hmf0hGofXGFyonaYob4CxkxDQ05ZSYTTmsCajWpcjUqeEh2KuFys0yJHmJTiiJAnEk6HbuDElaYh0TpoYZwuqKKiiny2k7G2ecBhp3Vf1hkNLGgSw6CV5BVkt3HiAG52M04HKfLWoUGnsxqzggjmNdpiYhktjinR2U0E5zQQtJxYpzlpJwJgwkkLipaujq9tjDdrOGZz6Dl8SFHIeIhz+WWXl3SVI4mIxIbCHtVlCXTLyXyqXGsv7BmmFBvnqawZlVSvA6pbeGKbl/Gmxk+WfSrvCobKzfb8ngvXFDeOuHaX8TP3HT0yPrvh8R2e8YWZiY2X3n376JbzavOl0m5682lH1kwt3rkuNzMzt+f0a7994ZrqJfWTbrymO3rV1YXV67YdufGnpx68aPaeG0/e/tXv1Jb2HLr2D7c3NvcOPHX6hu1bjr54+p6Tt91yx8W3/+SBI09c+cgdz55y14MPXHvkyJrqtqsqza3uzfXF3ZeW5pL7rr7kex9++uy3//z2xyM7fnfb3uDGj7+WO/bQs89/5/ojq5/6wX8erewa3lKeDwXmiptPnm+cNbMmVT//5ms+uvxrX7391798Zp6r3P/KyU8ldv7+Zx+XX//k/CeeePfqJ2585u/3f3KJONlpdQr1/fs6G90zo83ExOYtP3j215WTnn/i6eeO3PXbzz8/9LUHbz7t8OwTv1r7/IPXP3fNxR/cpY6mu1cf7U5W283yZY9e+sobf/79p/94ZvG6C2/67C+v/fXtv31098TEeHl4ft3wzsUNo9X8dC+XTcRH2tVaPp0sZUNhXzjodrlA57qCCut0uNL92UZO9kqKT2Bl0IuEFeg4KBezCSoayFu72WiBR0ixm6y4wNkwDkoaTkFZCceC/mDI5/eh7UgGc7h4juIlhnSaTnR4ZLeCzp4Ynpbg2RftJi9KjUc5BCAJk/GohjaKPW6Zd7qTmuZPJsLxmA8gE2QzmplLA0C7PP5gzDM0qGdkYRUJKpTECc4lu5R+ziCysBNQOxbUcIxwmCz6VUM24A9cvz9LQtHagNIcMlqi0RmWA6e9fm88FU74/V7ZJ/sUQUJDAMiIQ3C5AxF/NBn0R+PwAwbDqWTYFwR2L/IKj46bUayT7FG9IDc1N/DZaApQGnlQIgAOp7KZXLnTREfAY5Pjk/PrNmzYsGl10OOPRhKxdDwciqbK7XZzenHzwaYGAJxDh6VA1semV2/asW87sHFkM1ksd9rlSndmfHR23Zp12/YfPOskzyqoenYEwDSfKmVTpXyyVMhm+rNNoH6TyIsyFkbbv5FIEO0qBEKaX/N5kA2xW4OHySM6v9Dpv3MpNzJcr7YnJrrDUJdHR9vlrA8JewEYCg84BqQf+YRq0XypBuq80+nC/0YAvLsoonh8rNcutarFei2XhY8Le2QQoDxKexQU5HDmD8WyuTxcVbVaqdbRLBIIlJLLascdJtxmMiMXbxK1fIGug0JjR26nDqveAtSKN2E0kDYnS3C02eTkWRNOUxLKo6StjD+oadFkJJKOqbIDZ1WPW2RM//4fXzbJsK68PmQU7HaHkdujG4U7gLLSr7QyhJWwAdg6rTiN4QaU92DGKcwwoDfqHQz8zmgCMAf25jSvGrLbhlbqzDZWwK0UDUvMX0mmIzKIVdJXSqcjQa/P7fO5PYGgHyU+hgCACUILsP3HBDWCSR4JSUsNtRCEvF6VZj04zQNwuWGlomRpWDWaRwvyJI16v5ExMoFhOOpOGhw0446+BDYCeQS5bzYb9RaCRACNzEQZFpmU0DxDFau5TBSdfkDZzAQDbtxbTcTcKHo7UcgWE6lcMhLPJHOlCoqUrg23as1Osz450Z3qTqcA+wGfZHQG7PUmypVipVNpQpGY6MGC7bTKiWQY9LrgDboDiVwum6+Ui6V6py1SLMWSFNr3kUWnleBYxkaIApP00rQThV1whOKhJVIXcMueQKYSlgiMThXTpURSwVaiou/jGJykTJhllR5dDmbHrXorMAsLSGDKSqMAJAB3ySVLx8+AZYkPwLeOIlkE0haJet2cE7eGEzGvSDoM1ghUmlA4logEYlmU/1QqZFDjRS0Ot90jw8XFMtlWZ6Q93qlUe9VY1Cu5/H4tHk8ny8VMzy14AQZV1R+O9kfWq/VqY7LWmCuSdpXAuf/vS1ZFUqCOsFab1+uSSbvTqtADXzLA9zQ4NKTTAxkQ7LoBkvPFMmmv7LDZpag7IskV3heB+4NZXGEp6cbi2JeAmA2sWLlS5yD0RiPhgO+IUhVfNJBOpMv2Ex0cbj5xwGDgVBC0A1YHBSvGhq1cheGabCUJjiMGdRSdy5mzftoaVgxWm+KL0HJgZoGh4EMJKT/ns+HE0CrEVWleCeYaI/O1artF2AirkbLpRDcRT9EuVUtJuK9STmgBO6IoDBYaK9QymXS1Pr+zbCftvLu60IH662QkJTG+xUNG09MnKSrr9gWDuXpz8bSjWwvrG56dVeqifQcPz8ytfnKjOj4/O73x3Lu+silxRWMmNbKP233wrNmZTXfOFbrjU3vPuOKRszcOX9w46erLR0cvv7qwtLT5rK8+e+CkC9bde+PJ6+/8Vm3zrouvf+FqJVtNjC/EW+U1P9i9PL/vv49+47KvP7J87wv3HXlzz2n33nrzjqf25ndc7S+vEzZUp7efn5gvLJ114bF/vH7bI6/98rPTfrvxslP8m55cuuDjV1949fk/Plp79Pc3n1HeMj2bmw0E5tLLJ88NH1heVy5d+frP33Zd9bcPfvqnd5Vx7dlXdz6WOnDtBR93b/3k1N9//PaVI9ujH373+1eo1eZsr1jffLi+3j1R81fn507/w29ePHDalfd+duzqt298/aba2YuP3PfHv3149jf/+udrzzztwb9dJ/bi01ddODqV6/WS1zx61Ttvv/Ppb889dOsdl9313luvvfLRPVuHO714dmx5fmT/wvqZUnGmW85l4lOdOjJxaMYDUCm8blXmGdoXQ/bjcjLq9WpulFLkhiUqCBTybbVCWQAExngXjzssyGDIyaiYyeLgOKuTdThwMx1IAp6C+gM56AfpKzAOUgCBSkgUidlOANHqcxJukfaosldTXaTOEsyEgyAsAbTi0UQm5vGCUpMBIJ3+ZDSay0UjIJpFWcBBOKtaPILKl8R6gi7j4CAXsK+A6i3Cp9AcwaBdZheAp4iiiHmSAyEPFQ3Tr9LbnCg9UOrzaQ/aSkKOxSjQjXI6GSet+LxBZEWpeVWXGvSqkugSnU6eo0W32x0MhuKZWDgVD4XgoU0ko/DEA0NQQNWjMG/WJSn9qWY0xhwC8YkaoNAEUjQcjmcKBah+tUZnbGp6bHxuacO6dctzMbcvFI+GQavCBRfqvU5v9b5DNS2TTWdymUyp3uyOT84s7dixtZLMJ7No9rJZKtS6C9MzqxemV29b2nZob3BgiNNjNlrGHWS6US5V8/l8IZNKIUeKOIBwMp1KgMJGr4jWN9j2omkYZELsgV9UFKj4hW6nXm/Xc5l6rZSvj090693R3shYr5H3IwDmaOT/yXIsSaMgSC2SzlbrtVar1RkdHR0D4B2udyen0M51u1NKl6qFAojdMNxAGSU90Jykym5VRfuC8b4TR60+XCsUa41KLluQ0VyrFbMDm7PZHBTDcSjs1kmgIEKzAVTwoAXDSCvmhCXnwDCGsphwCicBqKRwKh2hh4YoLaSF4VJzaR/UP8avhrwnrvjif5xol1gW+JcaDiqCL+DWPJRDh05CnLhplYFwWHDroMFAWB0k5gAABpizk7hjYKUeWAD8PGYrSUP5omnbgN5mHzhhwGhlaJOFRD2H3lIuH1eRR7n/XwAML48WCqEtaH8sggBYA2wk7HYAYFJA5yT9WWFkse5VKdoLcEMLfQLqQeLZqwEVC3IE7URyl7xvAAAgAElEQVROz0jeollguAP6IaivVtOAzqAb0pstVhR3bbVY+tNKTtRu2AdgBm5avpLPhFGwMOerpMJBD+GrxEPw+HBUplzIJdO5ZCyJaF2xXKvXqp12o9Nt1cfGhqdHZlL+gKIi50dBBpYSKVZrpVYfgEd7DfhK25VkJibBCleAscWysLyAO5Vq7TZPojEuoL0uEKq0nWApymrnnD5N5RjCgdwlZL+bEik9p8j+SLYYUkkrEc5E44mMn7dKIZ/qpmgn6TRj9gEdAd89LATrkIlAyeEOZAetiPAcA/i6+mGPgL6qLAUTKPNKAR5kRwAMzNkeSURVlsDNtlDYr0UiiHAm87lCPlMq5jLFXKESQQAsAQCHs/lmq9ce69Rq3Uo85hEkNIYUS6erjcqIW+oDsFuLREEAZAqwxtuTtfbaJo+FsJDz31es8ogK7kAbJQpUQ6cNt8is7ssG3GbW64YGh2SJIwwDQ6zoCcTjXgUzm8WAFBPVkuBLul00YVMicsbrTDhPkHCDYRVgrNVpMNhAwYhO1qN4QwDAqSpnwhnKCtzQQLsYwrDSZHW6XTxGrFpls7tdVieOAHgIp5JFcybM2EIuWCCqGqJd4YW1HJIQNJeeRwCs+/+peg8wOapra9TvfvddUJjUOVR1VXV3VXd1VXVXV3XOOadJmiyNpAkajXJCWWREFCJHSySBAWMwYOA64QCOOOFwbXx9L9hgkrGNiQb7vb1b/t/3vfmwZNBoOp2z11rn7L1Wr85qIWjWo2ZqnXXN9syUg7AZ+m3GAV4m43nQClDffMFSLhLlmVRUlZ16eTBTTqfSldrYjibjtPLB0uygX+JIh0uIj22T7bH4xD5JdPCgf3KDaxYOXbI2s2/Ms71IXrP36MVTM3PfWpZGpyYnFi99+JZthS1js6XWbvbwgUvWjax9dEtuZHLt9gtOfuXSudaJ6vl33Tw4fPNt6dn1ixfe9aOD+69ZeOTO89bf/2h22+LFp//7zHSzvKkTyFSK219au/aObXue+tUTp+85fesvv3jBdx559NrNI9t/tT2wfGcgt9G/nJ06cE1qwv2Nd3be+bc/vfXEM+8/d/D9ypNH/ZNrH7z9o1ef+8m33vjr9q2PfeXG+u6JtcnpsDqVWdw1Ur1m3XA9d9vXvvjhhmOvPvHKrxeGdz3/8LtnTsUOffm/P+/b98V3n/n8sZfa0vI7X/jbzeJQe7pdqCwea2yWJ/Kj+ZHNCz9+6ke3/PGpQ9Pi9L75330+uuGJf3z84kvPXveTN/78xuvD7a8d9FZT0zdetWamMFyun3jukj9++tt9l//g73/86t03ffja26//+c3leimTGE9MzY8fm1uYKOQnAYBTkfF2HRVwPQ5lxCuAdASh641ILAUKOK76VYkDEsxLLO90s3Yb0Q1EMpitJLBgwohWqCaSlUiDycq6zBRjMNksfDwckoOgFUFxIZ4BCAKSuVmSt9tMhnN1jNNscwcFD0hGNAKyrtD6s4lIIhaL4ihpOhv3A0AAADtoixgGYZEIgdbx8R6O4FjBH0oEXegq5I2KmhWrdU63vg/kFoenzwIIXIfT5fF40MEdNDBUO0Bfqwn2hwbzdjCIHre0F/Yx58JYTFARUPVtGOLilaNR2IIBUHCgE3n4c6i6TjsmKwLeyn4lhA7EqTQgMDY4A6CJmKWIo0iYYCrHwsFAKIrIG0UnKsDfWCgU6s5FFKuNRhMwdWZ6dnFpfsPcVMSrhBLRSBRVciJfqw+v23LwSB0zV3GWt1xpDI6MjM/v2rqlmgQZUyg3BocGBxHBx9bNzS/v3rNv3yK3coABNWdzmE1Eug4gn83l0Wc5jV58adC/OH0UAioQwe7RMPbbqpg11Q2TwIMC4CifGRxsNpqlVKrVqZcaE5OD1fZQZ2jNSDPvx9ZYFgAYc40cjMMFJSsAz69cw1z3Ns4Pj6Jl/8j01JqhdrNayyVy+QR2fOHEjYt3klYKp/5F3hOIJdKpHJb/Wr3ZABCArwIqYCthsFiMer3RgtyoC8DYXoSdfgaMmtbou/kEsOQsNMfZCNDHJr2Vj2SLlXJOsVlcwbjbC/9WjHIWH+Cv33jOf6xY3WdzUw5VcAE8+PGEOCwZtEarSW8iCH1fD1qXmvsHtDaLlSatmDFk1Zso0tTXp4eFTBBWg8FGYzgR1MIevalvZa/e4mD6EYDtVm8hmQx5sDUbABjADk0+8cwjEAauqcrhMG8jFT/jcFBmo0nH0Njy151S6gKw10MyfhtFUywvwgLFCGGAZwRg1manbXgHDH94NkXEqOtHBDb09esGVg6YMf99wGDUazFgE/NF0KYbAdhhpzKlfFqFrebnArVkOOgDnR5RJI/bSaeK2VQinUkk8NdcoVKvFiutVnNwsF4ZHB6cGplJygHMqxc4VlRkbzhXqeeqBQDnkfZgrdZsNSvJdIzn3E6PT5LDacDwCs6gtZoAwLTDRrtYj8PBUiDVaLRxpmKSwNoJs9FMUkpYYgSXxerxhJKZlOJjjSY+pIiRhCq4fSGeF0mgOYTJSvT2WmBb0ibCMqCDn0oaDEablXGz6G/TFcFn05CAJnQVsF90gTKIhH1eF6i+SCIiMCRltgQjfjWKU/fRTKFYKeVLsImKuUI5hIHHoIC9wVyhVhtqDeFRVDERF2E1++RINJ0uD7aGRUFyCVK3VwF2Y7dbob6mPTLfdtsVKmVcce4Kr1ugzRaneYCFJ0KZrQbWqVmhsZl12oGe1b0ej4vQ9A24BIxj8vkIjZb3OZJOb47zJySeIgwu1ZX2EVGqh7dqzP0rNVqDubfXZHASEunye32qmkrGygIQK4cJF77NzVD61VoDCVLCRvWuNph5wUQRDtbW32dgghV9NOawBCT4KR4+4OAj6+YcQAqcDBWd8cEq7+/TW60kwwlqqjKy0O5sXM+YaEMvYdCIQUc0C1qFB1rqLxeCCRethlQ/r1XamXI2na021u7tOF2EWy3MDkPhJ+wAwGu2+u3R6Ph5ss/FexU11RiZ339Bzr1nzL6n7rhix9FLRifnvr4sjUyMT266+NQDC42h89dVRw7Qx/ZdOl3aeP+G5Ia1s9svuf4rl00Vr0htPXXXaPPam7OzGzdffO9Pjxw8MffIZ/fPPfz48OLw0Zu/e/fyhUcO3nTBRbsP19bMbzp8TfvUW3e+fOUTj9555sT3Tn/7/lsuGF2bjCyf9Bc2CnPB8YPH0+OBuz+5e+ytj95+4d2P/5xZOvPAjsz0kT3XvviLhz7/4G/+fN6XA49fmdo+OuEfCfsnilt2jdTO74xnOtc+8P0fH9xz38+//8EtlWE18c/bn0xf+sSPX5trPfnhq1d/7qWf3P/9f372vYscY9MznUJp/lBzyT9WLw9Obd732le/edElF4ekzOf++synH29e+vVf3v3HyR/811sfv/GzT5+++lSlXEuOnzw+MpXrDBav+9atH3yresNfP33t5e/c/eUP3nz7tfc/OjqzVPaVIks7asfm58YKhamRYiYZHoNFCQDcSIahUING8oACFnC+ziqko35Z9cImYHkZ0M3jponuCaEOb3qBtZsMwNR1BpJDACY4t4VhdCbKwgESeQMRgGBV8YNO5GiSYKEm2wSgy8YVBsah0Zhh2UW8aATkpVbr2EQiHFFDkWQ0HE0kAhJ2UPOYOuMB5AiFQ11LTDdLcCAe/JEQugpJ4SC1avWKfoZ30C4vf/Zs2cUBe8C7RxeGKYEGhi1NoQeyrk9jJiiHA/Wxhxe8vNMJiI1zSHa8iyItlAglLJSETRxG803Jh4ZHNjvroDmPm1MiCKzJUgadM9KAnJFu5p0AD4vphpwHfkMFHETnDcBn+JYo/A4IG0uk0plsqd5uNTtrJmam1y0sLS5smo75A2FMS4gBUIPgrY5uWD7vSAPUfzqTz6bzALjDg2vmdu/Y2UqXoOxVsS96fHx8bHh4an7L9h37Dp63JPZqrTqLgbTDbktUc5liLpfNgtpOxqHkpboqOBoMI8RHwmrXE9rvR/BFzeaTulnn3GdAEDWaxWSq2qwVqqPDldbw6PDw6GA164MSCNoH30Fs9IbPXvAHI6k8Vrdao9Nqoqf/YHNkfHoc27jKlUI6m02E06mYAj8YPmzCQjp5vA6Wgt0hGHgNjUa91mjWy8ViuVz+FwDjGJLJQnQBuNtVhGfQVpuFsllMBiPxrwFZinI6KfTtpwlHIBEJhr3xuMtgESLhWLFWygetFkcgovrZlef09WlYj93FOSXFw0uecDSd82lX9RJGrd5iNWoAUy0UodVogZfBQxj0JhuhN9psepCZOh2sX5tBY6EotFQ0rurRm3tX9RsAgDVGmuEAgIvxeIAHALYhAOO5Z8An+VU/zvMGA/5wyG0j/TKoU8qgM2jsdpdb9HUBWFHVgFd0dwGYoVjMboKCLwOL9KuiP+BicHwO5C+GPyEAEyaQvP0Gk0Hbq9Ot7DfrNN0vDE3ExGT6/zuChuULCySjhFRF5oKNVCToo5VKWOZdnN2WgG0NawE4YzScgDXYrAEA431/pdjqtCdHAYBhZwEYORi3rKrxfLEMcrqMV6XtShk+rnIyEcGsJMHvlUOpQrFQKpdKtWaDpZ0AwBTnhD3qJHUmxkEPGA2+sMKzDGGxAOUVA4JD8HGk1xfPpCI+RabMhOjngrBR5UCUdfsokqHgM7D1rzJQ8FLMJKHTUhxDGTQ6oEYsrD7s5uhOAyOXFhCAVRWqkctBEdEwDuPT1mgqKjppxkqEY0oAHQQS8UKh2qrVaoVCvlwsV8OqAvDNit4gkIfaaKcN27BVSCUFtgvAsWym2GkNwgMgAPuCaEcf6/Ld4uDI+PoayzokUd/7f2nhg7SbLHaiz4kzfARhpJyalf0MYdABAPcJgttu6OvD8Wa/6lNsGp3Xb8/ZvWlOiYsu0qx1+pxZny1qHwAeQvT0m3oMvecCszKbFKun66maSMbyLljpjNFq0fdb3XbG3Ks1kYLottm0PQbC5bXShJOjtf1au9Qw+hNOqyKbDSaXJ8S5QtMbaYuRsDNMfEoyWq19/QYrGi1IarI0sblamJ4hDXZ9j9Wo9cf4YIJ2AicWXVKzHgx5SF71ez3acDtXKaIByaZ9Ndpl48TS+uGgX7A5eDE6vOSlw+GxvarMe+RgMFZordt9wYi4f8Z+oE5ds+fiy0dnlr+5SRwen5hevuSW+4/WZ3efF+wcMpx38LqNg9vuX6tsGF+387Kbnz0527qpfOiO6wcnTn82sXZ28fxTLxzYc+2Gz586sPDoE9Xdu07c9oeHuKJ1dJd57d2bxq4+umvT6eX9Tz3yy+997anxp+9//LHnH77zup2nJ0PzN0cLi8Lm5PpjFxTmpPv+fvLiG3/x9vM//fN10e+999h53l2fHjz+xi9/eurnL35++cH4l08Wd89Ox+YD6kRp+57x6kWb5oNjV3/pH3eEd97+9s9+9srpySv/+KOvvpm8/eIt/1zqXPDKx786febtQ/s+2fPH0+706OxUobR4oD4nDWerncJQYff4nslvnFr84EfbTn3x3U8PXvKj9//6zNxP33npti+99sk9z5zclCnFxq69dBAwvha5+anlpYuf/eSN3/7t9W/c/fl3//ryXz65wrdhcW3Kl59bbp+3YX68VJyeKGSSoIAbVaDKzVQ4BHQIJ90Zmg9KHAIwHkF7eY+H9aiSj3NhxpDRoNdiS6bB5qT0BgxVNVkZDyaJsZyJovUW2mxXQ0E5FA3FQrEAdnUBabWyHt5BSR4naVlptDsli8GfUGUPKwgM4LaJS+fSqWg8FQ6Gk5kEfPS46XjOYRPCUZzvk7wK+niQeCjlDUVgzbiVkENn1f/HakYQPS7gpaDTATC6QtjFdvN+nRyPBv9Az802/YAWr6YcUPowd1iE7+HPOmdB6SMJ0kxJqqKEkiEliMF9Xi/GIzqtoPIpDoqZGE0lQVMmU11n3RQAcAAD4M8CsJvneIBg7IJWQQHHAfyS0WAQoA99KEGPZnLFWqvVGhqbnJxaNw/4u2V9SgW1HEB9GoPSWGuNTKzdfqgeSOWymVw6mcHI3eHx+R17zxtMFfKVfLlcbQIkt6Ymxqfnt27bvHP/gX0Jg9EyYMQsBtIaKkPhKWST8FCZZDwBb+XZI2gMg8BOr2A3jEdGH0rMU0QfbZTB/Gfa9XK1AQBcAFFaHR4stUYwja5dzPi6s78cdtuCLkUzFsGnRjJQojPlerPdbLYxUWcIWMGaYezBalbzmWKtViqkgl4RJLCTJkgG9C+6E8FLBEqQqzabjVYlmy2W8+lCwW2ykpQVUNZgtphgSbAsHloDDJNm89mzZsIMHxkOvaKxNPwBfpIOKwnvuAcbuyKqEoyUi9VKPh932wguEPZazzmnd0W/C/QaR7FoPuUU5Xg2IerOheqjM1nMhh5YBgC5/X3dTn6DDsCX1BtIytK/osdoNgMqGPqNNsZBMXZTT5/Z1rOyX2+gGIOBZljG4i3lclGRhdfWPYLG4V8vXq2jyVggIAcVBwIwPF1KrzPqHHburAJWFBWKrCi6aaePoEAYsxzeBOA9i8+viDIAcFf+Ujbi7BE0KGCjrhfdsPQr+w09q3TwpcW+LHjSaNrJ4Mgdg43QTiedBQUcCADTdSjVRDggUWotgilBDiqZS8WT6WQslQoF4ngNUqtWmnUA0Eq13mpODE8n5aCEAGxnWJ8STHY9x4vlenu00SyheUwpEQt3ARheYRgAOA9csAx/n2MwDRDDTTwuljaagQoY9QyAoNuJoVak1WQThG4R8SvJdDzkCwV5SmdXxJCTIHzhmN0R4KwkGn7bNKsGSIZ2AGrr+yzwtps0ejPFwF52ga50uQA+u67QooBH0EG/4nM7KDIOAMxSpCWWiSAQm4loVA3i7VUiXszXO8APy5UKrOxaKKAA0WRFX6RYqNQnBpuAwK1iJgUADIQ0msjn8/VaB23vzgJwNBzCZrNys1TvjK6tMjbKT+l7P2NwiiJrMtO2HkaWeM5mNZJu3coep82k7e/pGZBEl8PYsxpdCnyKz09qjEqQLdmFtDOQ6AKwQ+KKfjrOGW0DtGmF2XyO8dyVxn5NnyVkEoG7+QJQNbI0YSfNetKo7Te5WcbaqzHbPDIAsKFXT7GKjSGdnB14IuNs2fg0a/EqNoPJ7omIXHBy3k6RQN5cmQmfhSAGNLC0KYdbCiRL45tLiTVTjNUJAGzSBTJeJcmJfkFR2UC9GvN5aCGseNiBQLtQraQK5ebs9hLF025feXY4GAAqyQvhzqLPHgmv2aVKbs4rKolSZ2r54Dpp30bH/jJ5+c4LL2lPLH1jURodn1y35cI7Tl20d7B1PNC60Lz32HXTE1u/vFscas1s3XnpI5dN1G8uXf7Za4fGb7k5uW7D4rE7Xziw9+TsQ6f2zX3+89ktmy+57U9PqbMH9i6FOjdPb/xkcd3Wm/ZPbb/z+V+fueGqB2d++PBVP/jSybu+tSs9e1Omtj2wszh//qHcnO+h9+955KFbvvr3n109v+vl3943G1//4edjT773yi9+/vLr00e/8+yJ/NrhnLxBjUwWlnePZ6/YM1Eav/nWhz84cedTv/31b95+81LHE3849Fru6t89/t5s55kHvv/Jb3//8sUP/OY37x4XZoaGJvLlrQfra8WR/FBzannDHdd8cPePZ7/59vO3nTnx/ic7Tn7/w9uueuaDjx7+wq0v/fnxzAMn3YOxiRuvGBrPjVYTt3519rZPP3j1jT++/V9fffBLH/7+9fd/Xi01S6PZ0OjchjV7FpZnasUJAOBU9w4YlHADj9T8XvRAtjO4dyiLJx1XZEVEWyne5xZBhKAXJQhgjcYEAsJJG/VaUJZWgubNWoPFyRpJCsiXiUuEIko0GoyGk0ERx31Y2sJ1e0ARwlfoaC7sdSsixXkdgmh3AwDbI9FwpGsnGEmAwAlKINHcHljqnmAEixcaaznh8TGyU41EcJJf8Zo1duN/9Do4hoWdyguCR5Q9GFbk4ZzYQolxRygq8NCc1Gt0Jiu2QWOXFnyXAPQavvAI2s6A5DASHgWboBX4+eiRDxAlCBy8Msou+pVANJPBaKF4Op8DPE3HYhFVwi4at/P/r4DVYDAUSYAGjQZA4QL0xRPJRCKVKVbqjfbI2NjaDfMLcxvmlxbS8GiqEj4LwOX64JqJ6S37q2qukM+AkC3A/h9eM7Ow9cCBTiydKWVBPrY6IDvXza7fsLh125a9+/cdymgMNgAvu52w6lVQldUiTiChEyXoljh2YoHwDYdDgUDXmAtbgWS8/5YAE7q9ai6X+zOdOtTcXDxVrVfLtU6zVOuMjIyND5ayMipgDjARx5ydLgRgrz+UzoPOrrUadZypGh0dGR4em5gYH+3UoC6XsuV2s1LOhPAe42xLFdRNJaCCCkd73ly5DsWulktnUEgVPWaCsFktRlB1hEnv6AKwk8VHs6Hjos1ssFgttu4dAXo14EkFSRB2m40V/bCu/GosGQuH0njKkM6mlDBQMtO/nbuq79x+pyT7gOJzDk7wcnZOTJYlndUEkGg2m3oG4MdCre/TW41Wm16vN5E2g4GwGbSrVusMZoawGTWYGQVgb1jdZ6F6VmkAfFkLALCTMnvxDliC10bJhVQ6EpJlSZDQo8Xr92EnlsLYul3QdhJohcGBg8DdNmhFgcosih6G81pIO45cCR7UwCJOCQuywuLZM2r97vEzScLbYtT1Y9KIaVWfAbSwzgK/DhhMaAhNda047A74p9uElS9nAGADiteu1BKRgEip9S4A26lkPp1IpGE1JkMxoI5ZEIHlRqPWaNQ7tQbowUm8A8Z+Q5bF0fcYfEOzA9/QHmvVYT3VaiD4I4B+TuxYiqQxqL78LwB20A7SxjrcLqBMpJW2ORk9wKPPwXY3FGhbt2jhkzjjnEhEwyDQvU691RuIOa2kGI0wtoCfNMO3WayGnl4LrBSbmTD1GUDYWzQGE4MtfF0ARuDtDgKLPBeI4RG0j3fStkRExiYscywbktwMqbfEQrDK0BI8VspWW5XBTh24HvANNejnvSIAcLSYrzQmBnHqvVPO/h8AThaLxUpp2C9hRLjgxZgPfKdARHdgT65r00aXh9evOqeX9wuc2Wxj+q3YHGIzGwnBuGolSxo1fT29GknkaMNAP16M+aBUETqTHHVXWE/eHop7WKtZ45DcJZlOQJXstfevIPXn6M8dMPZoV1pkky8U8gOHU1NFirBbtADR8LG7XAzZ22ciXDJP05ZeLc0EaTvp4BzG1X0U1fE4cm6LoOB1nysic8GJJRzmMFvdmVGZpEiN3kJAsWMFNVWe2NrKj0w5rQ59D2nShQohf5L1KIKquMOZdNLPM75IyOPU+9uFciWeK9TGttY5nuDUwkzL75dI0uUJd5YUNhab3B2W3A7RrSaLALiHWo7lDfZ9NfuxbUeP1kY2fm2TD6rB1NKxU/dturbdOW9N65hj35HLOxM7vrpbHmtPbj1885MnZoduLR++/bPza685UZjdsHj4zh8f3n9i+nOn9i089khn2+I1D794cX7hwrXbtt6Y2LDno7XLW09fNOnfc8Wxia07d+156Us3XnRm/5OXTubX31CobY1sKay94PzcfObSF+9/6+9PHv/w+mv+csm7379nq7D9k/uOHT7zP3f/9PmLZr/xw6evqqybyCqL/uhEbnnPdPaiTbOV7FXf+/Hb+ct/9fEbr7z9/jON13459eP0Z79w1z8uOP3MV+599olff+FHJ194+uMT9nZj7VCmvOtIc8Y30YmVxtcd+dlLP96647Ef/eGlD97b+8L31l39y48vf/e2339y39FvvvXG2GXvnnLWo5O3XD08nh+rNc4/c9lfPn3lj6///p3XfnD/fX995+0Pfr8l08jn5NLUzrmhA1t3zDbyo2sKmXR8slUpZBOxWjIYAP4G0ORkaE9IYimzJx2F0oJ2cABuDpcdSDVIFgwENjCwRGgKdEVPn8nGcKiArQDAdgYgQc+mApEA6ANQgYqEV7EOBjYk52S9QO3IlTrGJQZ9booSFRl9DJherZzPpbNxvIHtBgIHAP/QBNZF8sFwEI/vAIABDxgHC7AXCAMkw9Mi9XrDv51LuZwutGj2SoIoY3qZG3StE2eA8VwPCinm6pBdAUQjk/CcnUPCK1CMLUQvLAJIAykGQwFAK1BVIWAdsuyTvDyBkO1Tg1HQEdEYsFQMhEkk4tEEBh3Afjt7B+zmRF70yPFwKAQYjHGE6TjO/8S6CjiZSmcr6ES5Znxsdm5xcX5uYfNCSsaBpRhm2yYy5UZ7cuOmnedVI1AmsV+mjAA8Pru4fOhAJ5HL4rkfOmENDk2t2zi3sLxj1/5D+88v9Gqt8GGAjCD1gUopV8AchnQ6m8umEtEEJguHFXw7VbRiwuQAoNpn84xlv5v3uFl47gDApVI5ncg3QbuWKuVCYwjdJQdLGV/37bGzdkfXiNLtcfM+NZTMl/I5vM8GAB7sdAY7Q+PTUxOjg81MtlLOFqt5oHJBEX66ExGYdUtuqMHhWDyVQyto+ILiX84X651qWbCixjWjg4bFYu5mZzB2FpQgYTEaDDabxURStm4uA35ZzGYLCGWj3qAz0VCfMGY3FIqmIiFVDYXCyTy866ymt7enf6XeARUGW59hxbm9LpaR01wv/F29wWSx9vTi7Ymxr99gAzFpwFNum9FgJbUmzeo+jYm12sw6C0pRktStHjATvas1RrODs5rsdpYySYV4MuTBHARfIZ2JhmUZTxNAAntVbHYOB+zdO2CGJgxGqxHg0SX6/KqqoAUZArDd7bWSdqCcmHiLHpAAwIrH62cBUqnuyDOSjO6lt1E30B1A6u/TART3m4zavn49uoahGSW6P2I0Dc4R0MVyIh6JAsSxoUY8FhBJAGDYaCyDR9ApjEJKpaMJ9FcrlEolHCKr1jr1enmwMZ5UVUlGm0e3V/bKsVwJe/A61eZYo7k6S6IAACAASURBVF4s1er1IqhKdNDhZVkFAM7nCkW0iamxjB0AAfs6OAc8EDx5O8nE0EUe06Nx49Gsq9+d54OBIHqxKbJPdpNGOpiQ4SNJhhw2b9RuwoYSo2WgxwJczWEmyH4ttmwMGPQUZcdd5eneAf/rDNrNKlEVRwQFlrYlYz7J2VXAIclFE3prXA2Ew7BNo7FKulTJNpu1ZrNdq9fUUBeAJTlUKNTqo+3BTrM5VMulBDsHHDuaLOXL5cKoH7NTEYDDIRAAqWy52VlT64zODjkIHxPSrD53lTfIcxYryWgNkoBuQkaTaO5Z6SIxuGo1KmDKpNPyKH9DPq/NZBajfNXjqdmjcexU1bFeoSwRMZHo0dhWD1DagYFeomelZrXFblWg6oqKomZK2IhmJOmePp3W5bbTvb0mCytj2GKvhqHCjN3KOO2GVQM2aztoy4nwZ3aDiWTCKhcYW0LbXouVS63x2xCAzdiJzqIV5djW0ergBGum9b0g14OlqJxiWZ8n7OXldDoW9pByMCJxhNCGzzWazdWmdzadrJkNFmbafp/HSrBCdGhZdQSjk3visschesPxbHNyy0XDypaNzvMa1NG9F184NLXw7UXfYKsxunD0s3cc3nlgaHHzmi2OvYevnZrZ8aUFdXZsfMeFp794xUzj2vRFt92+bd8DdxbWzm7Ye+N3z9t95dj9p/dv/tJjtZ1bDp/639MH1947ccWRH+XOv+STLXPrrto3ce307Q8+ecd3vj731gvPnPj2rVd+d3Nw3T213FJic3XtJVfVd7S27x+eu+KakDv5pV9v/8flTx8NTjz1zZv+sP7MR4+ft/XQs8/ee3FpYX1dXVDCI/mtu2aKt2wcj7dPfPPRX6699U8v/vClS/fd8fSprz/wbunkz3/86HWfvP33t37639989gcnHxj63P5YuzI5kS7vPdZeK0+2CsOtpSNf+d8/VW79xYuvv/nyx8+9du3Mge9/esslt/38F2/9z2sffmf0Bx/cL+Ui4zddOTyRGymUb/vPq9579Y3X3nzlzZefu+fMO6+/8deP/3JFoNLINwY3bR47vG15sl4YHQMAjk0AAGfikWoyGPTh2BzvoGyggFmb2ZMNeyVZRE900ce6aNZpwyJo0IL2oi1migZdMaAxk4zbYwUhw7JGWCKYjBJDT0ZVVEOKT5IETPwlBNHJur14HbzSwHBCxOeRVOCt6MtErTZImWQyDYIxnUmBZowFQAGjk5WTEgAWVVXGtinQuTQG9LiVCEYmuGnSuHrg38+x8KIkdNt6AVdFV7fy23EUyYEzRtjTY0U9BWLCTDldgMB4/oyzSiDMnWeVldVCWSg5Hg93LaO6ltjoxSUJDHyjAP8fU4LDyVgEtCUAWwyPdYN4BC3+HwDuNmGhkTPQB8CbCFpAdtugof6lM7l8qdZsD45OTEyt3TC3uHnL1oWEVwmGQ/FILB6LpUvNzsTGLfv2VyLRVDc4rlBqDA6vWbdp6+H9nUwpV66gNAH8HZmYnt04v2nbnr1HDlxU0XYBibRaGYNcLmVzmbNRuyA2k/C4oIZBe0SjkWAgBP8Dwa36eOz9AcjoWo7iDdtnAHjLpVSqOtysVButziDI39E1Y51iUsITaDfrRjNlAGBBcPP+UCRZrOQzhWpzCL51sA2/dMYmx4cBiuulciGZr+aKpRxsbkFydsOWBYkTRV8YB5NzVaj8zXajWgZ50awWC7yVQidKAF/M78BPAy82BTdALnxZAXQdWOVNOlCuJj3oQgZDjB3ACORMJgjQhyeUbkFWY/lUvJgpZbJ59tyVK3tWWzkx4lUEm03y8TzFeAA+jOcAgCN6EdgzaLKYANZIo5XSAdRbSQRgq6XnXA2sEMpu1ZlphrYSpKFXC4C9os9gdrCwuJ0cbRILyXSYR7nqBQCOAQBjgKYaCkgqmnyGVFDAigL4Y9HprSacYBN9Crz1wAbOArDHayUYAGC3H1a0h3HiZ+H2KrBO7TQ6OnZPbBCACaNG09+nNWsGens1A6DDTRYdlGYTWhyhQLej6zkuYIoqlbE/ISSLbKQRiQdFAgHYA8TDlsx3TSgxECkaT+dKlWKm3Gw3a8ViA8C1XRtLBoLwvLoA7PMqyUKp2hkZHarUR6uNUhlEZCkeCblRASs+JZpBi5gCnlJXnYzddhaARcx+Zt0uUoMxzQKB+NuNaqKof3fkGTUSSUWjcR8vwNPTapV41Kv6syEXzSdZk4O0EAZS12OBv+I0WsjeXgIoiNakowimC8AAi3w3jRAYrhsUMNQCyQdqEwDYK7HA/2OZsAT/aiQTciASVGOpSKySzBfitWqp1mjVm80gArDESv5ArtiodVrYNjjcyCUFhgPGEUkUM5Vybo3P6RYk0SMFQsCJU6lstT041p6anm1znNcW7e/9TL83ggAMOlIrwVa3W8waj7lvlYcCWrRqVR/UAcas62dFvy8QU2WGsPARvuITO854SnJTNjOv+moSkfAxvRZiFUFpyF4d9x+rNQMWky0YVL2gxkO5kqVfo6Pt9lV9eo3T5WT6AICdspu2ATFx0GGGsVAORr9aa7O0Yua0z2r3MnoTSQQDrDq8YHdRBEVz6WmZtFn7tQDkNob1+OOF9vxQuT7iJmxaAGBNoOQXCz5J8QT9gqdWVUI8oahRH0vYO6VyJZLLN+Z2Fq12iztc2bgmpIg4yxQbXvbbJHV0Z8Iv2D1yNJEbnNl2yWho/Ri1v2nct/vCo0MTs8/Oic1KcXDh/FtO3r18dHBqw5Gd/P5DN6xtz311m290fGrboTsevGimc2Plwltvmlu+67O1pc2bD936wuH9V46eObVv8YsPNRf2XnXXq5+7YO6O+csO/qS4a9t7V422Tm7f8D9jdz311Ru3nRg9//njVz1yzdWnN+Znby5U9kU2NSaPXVbaETn++tP3v35i8t6RdcdT45tihcjmp7ccf+/ewy/tvfWV45/cdeby4uaZlm9DKNTJLS+tyV6xa7o8eNWdj3/zuv/66M0vv/j6x39/Zf0du9+K3/TDy+ujN841L7zhWGH7TGBw26XbysWJ6elMee/RzoxvrJJvTC5t/u0vrqv8+s0Xr37s0z//8OXLh7f94cO/PFP/9icf/+B79x+84+EPL+A70fEbrhydyg1XStd9/dY3/vrq66++9pffPf/Qmb/8+R9vPvviDeO1tePp0U3bOoeWNg5VS+NTxUwqMt6qlnLJWD2J94SiB+3VaT4oOkmzkOseQbvcPGxB3kVQJENa8AQaWHnvaoPTbtTpdXqz2cp0Adjp1NM2A+Om3HEZ1IkiqGGQpAKPtYsQRQfnkQQnYV6ht9HeoNcflP1eILfo+Eh7ADPQigNnZ1OZMEYmdL2gKUFFe0xAS/QL4EAjuAQ5ElP9brfLqjdqV6zWEYyDlzBDAhuMPCjrQGozOMDqoDFLAfaplaAsBoPRZEPLASDUblZ0d+HFfvYImqIIE4XTxjjiqwTjUb8o+dEMBOOHQUvJoXQsGMsk41lAtgw8z0wYA25gL3aPoLt3wDzeAathEMHRRAIRGupOMtVNW8hks8lCrdEcxDvg6fWbtmxdXkz4AuFoGG+tYsDDWyMjEwvnHaqo0XQ6mc1noVoMDY3MbNp+cG8rU0rnisVKo40APLN2/fzC4tY9uw7vOZg30VazyeoAtdYn4ggQyPNCLgPKN4FmWNgMFg2gIXUgGEJProAqcR5BQjNKbB8Dmcq7PlOu18rFbKY81gGQbw+2qu2RNWPjQ9UCaii3kwXt62S6plagnNVIopzPl/GwGsC6Va+3BofGJ8dGR4eajVYtly2WsqUs2u/yPHpsgwIGXSGhD1YKSEQZxFe7Xq2j50e9WuItFA0vwIADjGYrECfOCbrprDu3nXWC+rWTFviMAbBohwtDp1jKIdCiyxGIAxjkcqloPMBKDpfHpSTDoUS7rFA92nP/45w+SgCGQTv9AZ+syC6uh/Cc02sl9ISxH3MOBoxmncnQ029Ary2jRgtIYtQStFHfP6DXWxmaNOiwr81Kas4dIImVq8xGM8/pTQ6WtuuEcjwR4GgHQ0gpQBaFY5HP+HCeCPOiowHWRssi/DllMBrRc9LDe1VQp37J75eBLLB2H0U77KxDkGBl2a20A48sPbKL6s72gg7uph3hcqSN/ZqeHgsmIvX29/WYtCbzQL9BZzHhLbDD0W3CgsdhabJYxsUWAKIbqqXiUZEOVOM+iecYKlPEJIZcLp3E2QJgKMVitV5vNKt4EF1vDK1NqUGvLLAAwG6/V01gGtJwvT3axLTJSrVeycaTKp4SSaJfiWRy6WwlXy7VG2UX0+3A5lDKO1w2R8QB9MwbELr+rWYTzsDYdb1WkgjF0+FkxCO5fYLXR+kdIUFKRgopj8Ml+xwWm5MwUgbAFIajGANh6TE5bDYL3ghYPSyGNrLsWUNKDETllKgciKqinbXbcjGv6IaFn0iGvQA9BmtU9ftBA4eCqWw2hZ6ZxWq5Ums1IlEvD2LZFYjGq51yqT3YrAyNNnO5biiBFEwVstlybkrk3C4PtkYooUQ4Agq43ZkanJiea1hZs0D09vzfq/gEx2EZsa4CMeKmCH0v516JQdK6PlCyfhdHG3X9LjUsqICndr1FCrFFv1qX0nm3G2qmS3ENytZEjO53WCw0L9osTrxQgA+Tw6Rot6DGMlXTuXqLHR6uV6cjJJrW9xksNOxCK9WjoZwyrDnSaSdXrSYNjaw+ESAYL22yGCwhn1NpbYSPUEcyrtikAgRNZ7RYzQTFuPzxzJrFocbQLOw0bT+t04aTspwIi6Icj0SCkXIyKplicYnnDWynWMHIl8r0oTyQPC6amWkB5yEYSQiObZO5UGxkV1TyOgV/MFPujM4fn/fNTzEHKsbdOy49ODu28Tub/GsaufLe8+85cedVuw7V11807z144ES7uf6RZXkMEPvCW7+2s1I8nD9w56n5pfvuKixtmDt0y/cP7L5q5tT9Bzc88lBzbvvV9/zhc0cHL526aMePk8e2fnLe9sSxIzOvrl9/x707p65ePvLFu2+5dcsTD0xkZm7ON7cn5nIzRy+qb5Hv+scdX/ruZb9677Gr/njZn254dH14fOLIxlvmVGvs0rsWHrzq1L7Ghg1r5Fmvfzi7Y99I5tDaiVjj2t9959JH3rnzqW88tWvLumjJ7R/NDk3W15UffOFPH93y0aeffrDl6z9753iuODwxlarturA94p+pV0aGNhx5IrX1xk/fv/XE03/5+z03/33Xwu//9uePxw9959svPX/8tdd+9SAw1NjUtVeOj+dGarlbnzv9l7dBAL/x9ivP3X7H399+9PbvfnhnYv1ypzw2tzR+eH5hZjgz1irm05nxNhTOeLKMZ72Kz8N77ITNE/E5CIsnDlAng9JgXaxkB4liY2gTobcM9PXq9QNmjjXrjDqN0WZ3CoTJYGVpI2XT2dx2KROIBGRFUeFX4P0cyzEmCa1tYBlR5gEj4/CBCBVcnIjzQ6IAJT6eigSj6UQ8hhZOEUXEFkioyRSQQ5CWyUjAC4LYQTKMA42pVOzytJmNwJb7NaQHVLsoy5KH57tnzACsXU9orE/YuuOAOm/pHzBZgLPDs+B5YNbovie4XdhSivBLkpSSiEZDiUAwFouE/BhK6EEWLng8soIGOcl0Kp7KAaSmU+FEAmgBjvJ0e7+4bm6ayHtD0WAUHSjjsTDO98bw+hdIBXZBJ1P5SqMzPju7cXFpeeu2LQspqMgRAEigHdF0bahRG1s+cLAWySYTmWw6ky92Oq01U+u3HTrazuQK2WID6l6rPTIF+L1hdnHXnm1HDh+OaUmz3mi220yE2Q86tpzNZguFbhNXNpRMRyPJJKYgBVQ/SLQQHtr7BAwAkAOyB8MocHzqM7V6vV7NpEqtWgmeYKfVGBwZHRsbrGbRIhgDsEBydpN1QSNA/UuW8rlSuVhptkFIVeudkc7Y1PjIUBsEfj2fKwOTyyf82EaAztxOTL7wysFINJ5KF0pl9OEd7jTrlXKtWS/zJpB6RitUIfR3cnSrOYv+o5zTgS3tDoq0mo2MSU9y8P46bBQgLQurhrSFC8k4FONsASAlAfDmlRXBI6gCx/Seuxo0MCHKHhvnQxMMIc5ZtIx9Za/FaiENA/BQhhU9BrNV0zdgsFgITF3Cw24DxZgMAwDABG2z6rWkHZN5tSs1NqKnB/glzxoI1uVw6KVSDACYcdoJKY73mnYaPvwuBndfZiLIUowiYVwg2ovA7y4BiGY46MeZX84t2e0SCcQCcNsn+rxOysF6VZ8s+Tkc7cVbYJsZoZ+yAQ4bBzS9vWa9TtM/oNH0GXQGfV/PgA6kOtF1wsIjaDTioKlSBUhcOADSMFCOR8MCrRajMrBemgLuhm3QGWwgTHUdGuHTA2lbq9TqzVajPZVUA6KXd8IbLwb9oRSmIXUq7bGhTqdeLVfrtXwypqDRDNp1RZEYVkrlQrVZddFAhYEWAVsXnC6KjQnAzxQZiLITtjperNsZQz+80ngkHg554YniQbLdSMCeU4O1HNT8gN9htYGUpAyrBqw0R2P/b68BDwL0sFEtQKE5vC/xnEVgD9p6x2EjKqLdQZPZiBeImM0aj/s9Thts37iqqMFuBChsu3Q2ny9WQdI1m/GI1y0CwwgEIoVaHoR/p95p17MZlvKIghzG7y0XJrsADJwfg16CXQAeHJ4cmdlQEmg3GaF7/l3DJTi3DW+qVrm7AGzod3Ar9U67Xtvfv3rAhwERmn4hFBEi0SAoU4sY4Up+tSYmsy6XnbaJIdegQiUS9gGGcrt4weN39vajhTbNKbA4eDEYS1csq6021mXp6dPrrCJD63v1Fgp4FEn39NqcsstBUU7G2tNjNecyhljQQoqM0Wy0eH1iqLWRc3F6kuZik2FYRzqtdsBM0AyvJHKduU5jbJE22PW9pFHnD7GRSlzyycGg7I00shEXEwlApTUInUI5F88V89OHGnaW4cOVhfGQjycoUQyPbxVpX3D0YFr0OGUMjR6a2Hz1ZmV6lLhyVHvovEt3T04vPTcnDQ2VKtuPnbnpmi/vuXGmNreJP+/I+ZMzm5/Y6p8Ynd1x8emvHxxpHq8cuOnWTTvP3JmbX9h6/s3PHzpyxdrTZw5ueuLh1sali2/7zd17B3eNXrLt/trOPX/cfeOm2ZNTb+5c3nn1gY2Xzt345S/ddcmRbz64vrj+lkZnS2y+OHvswtpy4saPH1k69uXf/PpbJy8f+9mrn50M7Hjuc7e8fOCq5+cPP7Zrbkt73ZrpyaXKjBKeKOw6OJG/an27PDG3ZWTIt3PnsSsWv3/m59c5vvrkW6njzz13/5l/PvDNKy+69Iknb/riqxf86uLY4Po1a9K13Re0hr0TlUa5s7jpl5teuuSHrz193g//+ZeD//XxZTteev9vP9txzewz7z/28NMHCqNLgcZZAM4OtZP3/uy6195/7c2XX3/79a+cPvG70/v+9P6Hx9qblqr5icWFwf0bNwJjWT9dzsfjI02o3YlUBTQSSGBBkFyMQ4jKrM0qJL08HkOKAsf5HC4oxTRphqKv6e/RGXRW1mHS6jX9BiBbTqPRAJvGYmdMDokV4sFYOBiNhUPJcMAvcXbGZpTcILhEF/yAgQGSBbpuZzjJj/rWx2h6ffGgGk3izSnm2EcUbKRFsyqrS1VFfzgcVCQ32lrRjNON9vUB1imy+r7+FX1Ghvd5PU4XTrZ6cH6/O4uEZv3Y4AxlwoamwgTR34+SBM030GbWw3cHh91np2yw85RWE5GQgr1T4ShIWT9mBnXvoXifooSTGBURS+YA0wCDk9jfJGOmA9cdfkKgFnhfNBkNRGLhQAi+IYlOGCBB46lsLpdJYxMWKOCp6bnlpfm5xeXFNPo2xKOReDKZxDun1sSm3XtKKrZMZ9LZYr7Vbo+tndt+8HAjkcrnK/VSEW+1RtZOTs5s3Lw4tW77ngMJA23VG0wMoJhRKFWymVQGHiybzSUjoNdToIHDgQg2YeFtc1hRFUkGGeIVJL/iQ6qCOcafAVXabOTS5Xa1XO8MjYyNjI2PjU0M17sA7O5aYWEvEbxlwHFC8VQJIxdwLLndqNWagyOdibVTa4ZatVqjmsuWa+VcKevnRRFPIu1Ot+AVvbKKzWupfLELwKicm/DVqvAglKxGhGAAYKqLv/BQ/NkLP2y9JS0kYSbM9mAqLLBuwDreQZJugLp0PpUKR0HnZ0uVQqGQzxcy0ajsGOjR9a/q6V29yiKpIk/RIGqUoM/US1CrzuleLKIdKWVasVJnJQf6+nRGg8nYB9AGGAfkTNPfiwN1FGnWagg7CUtCv1pns/asBDxgGT0ByEJpxXwsHnDbAYDlhIyDP/buVLmAvX/YQOh30nbVS9tpQqvTWxhY4nhuEAziHagfMIhxegkCDVJ5ryh7WQYEYwA2gN9JwmLFlgXbvwaB4R+TVtsHuKvTaTQ6bb8WjaFX9+jxypyEbzo7hgRUhaHLtSQ6j/u9nFqE+u9hlGxIcWGsRbqAbmhAHZNJnEYHIpiNZdKpQjmfLdQHW+3ppBISfR5O4FhB9anxNKyzaqE5NjrUagBIN2r5RBwB2I7BJ9EsvNOVWiVXadVdJAG8leE8Hh5EL+WMyi4PJ7u9yAqsBt2AjqBowuz2iplUNOA0G60siz1/pNEGYONvFWUvH1LsBENZLaCA+8wUyzBmq6VPDxhDawGVLci+cc0Jnn+lMgjuYCoYCMmSgybILPzuspPWWFTiGJI02+LYvxkKhcJxULC5HFCNSrEEnDUV8mI7Ji+rEXj6lXq5Va+WKqmkm4IfLYfCYRD1pXGQoLDuAO7lQDgQzeTKzXZncnxmph6gY7qideW/DQhRzkOTBACwUxRB0xoHaOdKndOu02q0PQMS2un29/uiMV86FZJog1WIcGW/UpOSObeHsREelR8MMMmEU0M7RSiDvqx7NTA7khYlDEnBFMRUjdDSDg5773U6q2B3GHp1JsA/N0X39pAOCX4M5aRN/T0mQk0bw2GTkbfD7idd8JybG4G5GijaGZ0MADPSa2FBk7SdV5P54aXRkYXdvM5hXGW26NySLTcUEWTJF5S8iWYq7LEHAtGYpPM0gc7GgLhM7Gs5WMohxWdGQn7Rxrjc4fFlN7yekX1x2ev0eAGAh6e2XFsnGm33hoOOTUuHl0bXLT09J7WnW51tF5y69uh/Xj9/eXVkt2/XRccWxrc+sSxPTczvueieL5+/bvBk5YLrrpldvuu2wsaFrcdufP7IsatmT99z3sKj95amZw/f8tvPHxuZ7xw++ovqgV1/3LD/gl1XLb07sSt47J5Dd8x87sHrfnLf9d9/Yrk4e93w0FJ8sTR79ML6VuF7H62b/+nPXv6fF144kXr/dzduUXZ+ev81p08++/7XLvzZNd878+vrm1Obt+XXKbGp/M7DM+WrN4zmGvf+4b9O3/ve17/53CPf+uJXbnzoD4+/nrv5nSd+c/rqHVve+MaHd1764PqPfvPOZYnMyPrpbH3fRe013qmhenXD8t5fF/adfPPHb7/05kc/uuKTT/bvf+HTv310098e9KvC2PWX3fGDDYFKbOb6ayYnc0O1/O0v3PfHV97BNKTXnr1tw4W//MN7r354Orswm0xOLc019y5snmwVNkzCu54YaxfRMKeMDUheCcQca6M9Ya+TNPMp1StwAHkC6/KzLmxQtVgNRq1O26M1mkgHbcZ4dDMNstQCZMxBmWkHwXpsrngkGVVDEaWb6usgzSaLAXi+DNsIQ6f7LByrRv0uIZAEYRAIOPV6LpwE+R4NogKOJ8KggF0ubN6yuhRF9KGpu+jGfimScmIMkk9lOVmwDvT2mF1oWcl5JK8kdu+BXVj67VzX1QHQFyg1xutYrb29OjNIl64XJbBxr4SG7yjyaFv3ypEJJCNBOZGIBtRwOBAAOg84AKIdk1ID4RTgaTSazGUz0VQGiAJyBABg4WxwGte1pfdFU8mzABxPJbpHwKBMAIDRHaPcaDdbI5PTUxuXNs1tXFhaSPhkORwJR0LhRDpTqAwNTW/asbOgxNEHK5sv5gGoxtfNb91/sJ5IQ92rFhGAW4OTY+NTG7fMdaY37zqQ1pEGUMA0YbIa3JVaOpnOQYlNp9KxUAQTIZJBnH8JqKoaCKqggFXJ5+km8PixGQsZCCjg9lCn2aoB+NbrQ2tGRicmpyYBgEcaOcntcmN/LN6UsxweBULBSqRKOMOLsTrNbiNWBwB4cmSwVS/VqvlcpVbOl7Mq1DJcK7Sd4zFuAN4+NBMpVdBDutIa6mArTKfKm5EZWQwWWEkWEpOLAOtBmOCADoCwiKKXspnNNO+iHV7BCR+STmPosznhP5pIpxKGNzADfCAZz+VjgXQ6yup6V65YtWrFuf12SVIoq1v2q0FildZFnrvSou0hbSbjgNVo1fZpzTZdT58WQyAGNCBE4L/rLAMAbwMaK+CGdsACxc5q0ffobZbeFVqADwBgO0sTGikbSwR5OygRfyYYCYW6fQBI/XgJFqDk99opAGA8Q9bp9Ra70+Hq9mghn5MV3u2xcz7CCnzG4RZFr4BDRO4ALATFQTnsNNM9hLZ3u85IG2kxaAf6Ace1A6CAB/rQzbx3taGb0kghs8QLcfiiAYDTcWy5kFilK9DpQC7k510cbUtkogjAwMVSeASNzQiJXCYBn1E8Xuq0h9am5LDkwyQ+1i2LcjRZrhXKxfbY6Ah8vvVGo5qNpQMIwKCZ1FiuiLO0FVjLFdZKYaOVE6cCXRyofi+PMI6976QeuLmOsNIOpz+sZrKRANHTr+McHiftpjV63HPFfFBx+v006UCpbwKagfzDYrUMaDGPSmMx0YTL1XW4cQv/ksCChwumYV/KPidlIXNBNAAHAI54OTusByKCgVQBNYBdFQAl6Xy2hMfQjRSenEEp4ZUoxn5Wc9VKPlWMRwGABbcvGIln85XykAhyGKMxiqGjuwAAIABJREFUJACzUCKXL9WbI811kxMjIhU2xjU9/3aON+xEAKbJHsBMtx1UBMn16pyMXq/R9g54ORdl7NeqsXgwn40IlMHqCbIlWWnImRyWPCvv5ztBZyrp0rCwpXifnBVXrbJSdg64fRTKTRg2b5Myoxu6qbdXo7HAO2lEvywe55AGeknaLQIldNCmgdUGuztr9CfNOp7Vac20MxDy1+ccLGekaEd0UgZ6Bp+A3mI7C8CDc4Mjm7ay/Yxphd6stQtkvukXAv5AVAkX6uGISsmRclXRiWuAe2XKtdrs/lFgVKw3PzcRVTwWgnVHJrd4KH98aE/QJzg4XyhT7oxvPlHzjDgJpjW1uHhk68TGrU/Py83pwYntF9xz/dEHH6oe29jaUd9z5NLFJgCwb3zNhl1H7nr8gg3t63KX3nzN1Pyp24vzGxb2X/+9g/tumL/3gSNLX7y/tbj5/Nt/+8ULW8enLr3sxcFN0+/GyluvuGr//56/cMmmE6du33Hycw8/c+eJr18zVZo/XqpvzywVZw5f1NyWuP7UBU/+8+1f//Z3b/yp+Z33HpqKbvnw4c7Jx7/z9YePH1169NlnLxtemFubXPTHZ3I7js7Wjm+cKZeffPUrb998/HM/+O6nz738j6OPvPn8W8Wrv33fp6nd62949+h7z//0V1d8cvUvjqnNqbGxTOW8iwcnfDO1TmZ277aHPntf8In/54UXfv/+t7/67ge77nj5n996KLP2Dn+jdP2HP7z9tWv4TmTmhmsmp/JDtcLDL970znsv/eF37//jtfuuPfjB39578/V333tsYjSUmFqab+9e3DLZLMy0S1BRxjqlQgYUcBR2cUCBksISNk9QYkkTn0nHAhKUUZeDU1j0dCZMpN48YDD0aY04M2nV62DTOJwcbzXqjAxpgDUC1YrLqRHF7ZEEHhNbcH7EbIClFhR5v4uhTEba5XXZbFI8Kit+n8/HEiQb7l6GprB/KB7xezCtFxtwQd5KnBgIAGC6OYedImkAYFXxSR5BEgS71uHB3is8ARbc6OYPwI25wOiPbOsGzGBsKdRDs6WvTw+rFaiCCw+NQbE6HZyTQgPELkDbGDUeCSvxTELxh4JKUJW7Z9BdAFYBgEHRxmLJTC4XT6UTqVgsKKObhfgvAGYBaboAjHetOAKEvVqYhoBH0Jk8kPFmu9FcMz09s35u0/K2rZsX4l5ZRsNoRY1nMoV6Z2Td0s7d5WAim011xz3q7cE1Mxs37T3YyhbgX/HgEPB3dHRqdnp6YXFqbuu+IwWtVQfyDOcP9EK5CvUVkD6biCWi0RQ82XgUBQNOOwVBHgVk1S96PZ7uEBJOI3lQuzs+0xkdAiHb6TRrrTFA0iHA35HRNYPVLgADSCNLAdbiQJsxUMDJbqpvpd4GiVRvddqt1ujkGtC09UKtXiqBDC7mk6rAYToFAAS8LaIPHj8KBbFQwumlwcHhTr3aHmwP1TxmfONNBqvZAq/AiQ/mEXhsE0OzLgyxsVvwQJawQAFSFI4krGYSEIfAKTityS4FfAwbL+RTyWwaPphaI+vR9fZpeles6rdwfsxuEn0CqTmXZAZWrCJ1q8w2wqI1GQh934CJQocpQDJCD1rBYAQhTBv1fT19vUYgiLp+IyhRs0nXoyPM/St0ZpvbabLZOdqq88N2CfEOJ232FxLJaETxo+Warxvx6Pd6AYBJRpVsNgKYqc4E+MqjFWUAz1N8MiwUO+8FAGbd2IgguQBBGTYAr9XvsANXpIAwUmayO46EGdXovtFvMOoG+gY0AysB0aH66s2AU1BjibMAjC2EdAkAOBgKq6IzUEumAywdLoV9wB7ttkQ2BtsJNhX8kyvkMvlStVSvFGqtai6Jx7EzKX9Q9PJugbULiiRHkuV6qd4YGR0egwXRaDYBgLMKmnrDolFj2WKpWK5W86Vy3mHtxhE6XXjhwzEMD39dYD2sy0GZ+gcsFhNhsTnsUigAPDzs1A/0M6xAWZzUgFZLWI2BRCLkEGQ7aScpCxDyXh1hc+Cwgg7IPE3rsLOfcrjOZiF18RcPGTi0q1VkmaWtZD4EdAOU5VkApi1ERDkLwOFwKA57IFVM53NAFWuJgAwMyePipFA0lobFWS4X0oVoyGlyewVvIIbfVqjBOyBhSrgXAx2ShUIJ9mplfGKyw5pFIsr1/9sKIcJ6KIJgmB6L6HPZYSVZhAEdKBCjZmC1RuZYwqjRBaKwP7IhHsqgJ8AWfUrLn814RGBz3gjfDrHJJK91eTysT1Gy3lUrbRwvgP7E4JZYvlQaYSi0fLX0re7rM/NOl7lHYyA5lSVJXS9p4xRYvgxt6V9tcDJ5k1QkNC63rt9EO4BsNRadZwE4MqEAq9Vo9UZYIHZeSWZHNrbXLK2j9TbDuTojMFM6mff5Y8GYj5USGcHrYpRIoSAbg8P5QjqSyhWndqxhnSTrzawbVn28hXAJsentPlcsMnokBGIcPT1L7bHN1w6bege0/Lxv1+KBTc3h9Y9vkMuDzenth+66aff9D50eO1Yfmzu2+/ja8a1PbZNHO9PbDp/+wgUbG9dlLrjz1vWbH7grv7hx/rzrv39wz4mZO88cXnzsweaWnRef/u3Tl0xeuHH3gcfysW2f1G48Nv/4i2/vvPorx5965Btb9248cdNjJx77wmJq+pJybUsaAPjoJc3NjYWbvn7jB7+79qnXf//3HU8duP2w+9jLGyf++uwr73376cuaP/nCs1eMzq5fLG8MpNbldxyZbdywNFocOvPUUx83Hvz4kz+8cOjOT+45+acbP4re+Npzf7vo0Ymj/3nx/ffddcuJv976q/+XqPeAc6S8tgf983/3D/R0t1o5VKlUVVKVSlIllXLOWa1uqXP35NgzPXmYAExiSEPOOYMJBmyyMc822PhhGyccngNmjW0eJhoMJo4xb/dejXe3gWbo6aGlqu+755z67j3nkDI2O7suW9l/bGwusFDulBZ2bX/2rV/u3Hnuc//3X3/x4cf/+sPa/fu3aNdd9Ksf3Pzu75Zfev/Zn17nrUeWX3Pp3Hyp28h89b8u/sN7b779xW9/tPGay7/92T9efesfr33y96npXGXFpo2Tu9etH68VV3Ta5WRicqxez8QzzUwmk8NA9XAAgCwmC4xdrGYTQCF9fg4BmAMoAwC2EnqrTW+22ggk+gadnsDkVateZ2Ypq4sD7LPyeU7GfowAuiXz2JZst4YAAbws77Kb9BaH3WmzsVpcFSQ1wAk+QMtgOJotZFUoJNFI0O9Gi2YS6i0rSH4PLFOfiFKcRttYQQYeLOMcpRZwerGXN4Aexz4Oz9DY/ofbw6COcKFEgDrBUDbCaTDZcK6F8fSfjrp5ngXKjv/pRiMOUGNyLAaQlU0BO4TXEMINKfCCz4seQbFMH1Cz2UQmmU7F0/FkVMUGVvVkZprQZ+pyIpdB0ZvAYON/AzB8ZACAa/XOeHt0cm5u+eoNSzv27N6+lIVdGE8k4xjWUKiNj06uWdq9rwHXAKODS9lSvdOdXFi3cfcZo/lSqYBxDK1mqzc7u3rd3MSqzZu2bN9/pGl0AusBBWwnjGKxhD0yxXw+nQKyUMQT6wQGEiZANUTCwWBEC/fPgPs90LJfAHXP+3z8l0a7bbQn7EyMtjq9iclpBODpmW4jH0ANwuGUCT404HwBP7pXw5tBAG6PjbfrtQb8a3x6froLcAzqF60b6rViKow22thMxXJ+SVKCKjpx5Irl5li73et02u1OrwcADAoYsMRhJR0klOGTJ8A+7GhDmS55QUDD6rI4nAzrtDm5MGezkRTrDeGTC2BZhJTKxtyEoEjBqCYG09VmrRqlbUbdaacODptYFWHR5yb0y8wK8eUvD7ttQ3jYazI5yJGBIavLOoTPcEinRa8zgc4c1oNwGx7S6QGlScsImhLbrMYhA2HTDZisTp8Hn++5bEYtF0+BAnZTtlCjmE8CAGPcsYLu2iqetcs0QWuSE9aTGV47DQAsiPjABvsDFbjiDHr6gwKGyynKXheoandYFlUVQ35daPDMgLTsW3I4CSewW+OQ1QZC2GA0DOhg/RqH9GbMIaPwyQ7wTa6fZ11p5tPhSEwLeGKjuVyEc8WbCdnvE9yuXDmH0wUIwOl8CbMUmhjE0J0cbzearXpzJg3UVhEFkXPLYVmJJopVEH9wj2a6HWxZb5XSOYWBOyPh6Wi+XK1U681KtZyjSWQLzMnwMYyp84WlACPANSKtIwYQiqTdTloZRUuFRIm3602c389QbspsHnG6rEKoEBXcCo92KyRBWoYNhNPjcjkIq85KgRQ2WR0kyXr7ScDefzdhAc6HsxENCDvHOp2leEh0w7ZNxQKwfRmSgp0bjkQj0Xg4hqYvpWYeWwJr9SRadCoBL+8Px+K5Yi7XbDQrlXiUMXJAmiKJLG6aCvwkjAqDdwnbpA/Anclue/nqit+hccXCaV+2yimf6HKARB2yiCoPAGyyymYT63JYDbplhiDvIW16UzSRgg0YRwAORPiqHAQALgRkxukUI/5OzJvOiGYWBDQw4JoyPMj40WMevXiiycrY6HLsXKEYYmRwaNgmcF5i2GAh3MCnXLZhJ8mnQLnQLvhds9tZJaUWo+d8thEb5Y4rwuhGbx+APfFZjXQ69Ua4gDTNegGAZzZMLN86TZNO02lW8wgnc7FcSItIqo/gEgVFdDB4vTQykoPyrETT+c66abeb8Ejxqbo/4HexvkBifrvMJzIzR6J+l1uWI/nq+Nz2a5vWkNlZnjafs+f8M2ZnNz69Wq01R+e3H7jtug1HH/z9ps1rqsvP3nvpzJqlb2wPTnVX7T569+PH1ravqhy6/ZYVGx68r7Z+ccfhq3906KxLVtx69/51X7ununnnOXf+8TvnTu7rbrvutfmjez5cc+XZrcdembngv245fuiC+xauO2fd2luefP6FPcX5SzudTanF2pqzL2htCF/24OonX3/1jq9/9+WXdrw894eN6vIte+/8/P3/+OrPXvnz2I2PPXP2xNbFtcWNkeyq8rb9C/ULF9c3Jh7+3jMfzP7xX68+etf9B957/6l7jryfvOPP3353YXHrD994+W/vPjdN/en7vzsjOTG5sLxYO3je+IJvvtXsbNh3xt/uf+KM753+wB++9uELl6+ZGl8z+8aTn9977epv/fq1b982f/2H1wdq0ZXXXTa3UO5VMjc9f+1r73/23gvf+emPv3bFY1+8/sb7b776+V9WbOx112zcMLVn/capdnl5q1rK5ufGy4VoMFbLFfOFTCoaiYhuTgxLAm0N1NIRTfHx3n8DsIsigds6gGBB9bIgITMbRwwgJGiRMOutQAjh5rkFkg1xsgIqKxBEXy3gyk7CFoTi6iIIi35oQG8xWNzBoMAIGgc6xytyTksQNGNCIf1if0iGwzkGkqDcLl4WvZKm+kTJjwBMAev3B0NKCIqCAhwBFp03gL6Uoq8/VASgi9KAdWIzKdO3BQAUpqwAwEZ0YnCgRSoaIMhiQJJ9fUEMvJO0EqRPCycioVwyGE1EY/C20WaD9/p9flCRsb6izWYzWiKeSgEKJ6PBvqmy/9+ZpfiIVk0Vc7CjM/F4On+yASuViMZT2BJSrrU7oyAWl8+v3bJ1aeuOXduyclBD69pEMpPJVkbbU2u37NrXCGXzhTzAaLZQ6fS6c+s37tpbS2YLpVq10WrWGmNTU7NzExNrtm3dsX3/4fYI0G6LDeQWoZfzhUIZfhIAb76UzxQSmSygbywUi0MFCoeDWjQc0aRgfzpWVvCgAQSnDx9Bt+H/Xa+1uq1KtT0xM7swPzs9Mz/RzPqx8YoDUERbfC+UWtQHyWy+XAPkHR3vjbUaTfjXxNzy2cmJsVahVi8Wqg0QGBlN7Hdh4SFwQBZP9ifF4GU1Oq3GeL1aH5uc6nXGa1476QA9Z4OX7yJIPCLECGkfPs4IAMDa+/PmRrvdjk6VlJ91ErDqaBwIttrsNmsQkCUmaxonZROypIbTmVo15BkaHhgY1JlIt+aFZeUwm3W8bP7ygJOxDOvQccNgI4xDQwYnMYTZBgQoYANgJVxGhxGDd/UguCn7iNHJIgAP6gnH0IDJZBcYvcvldpr1wVQ0EQYAdtmizUIukUA/cFlW8Dm0Alc5JDMOVx+AAeoNNjzr9clBFbt7YDnxPE/zfgeJfpt8QJY5J8NRTAQB2OnCNEZ016CBPPYVsINygooeMPVDCQ36oSGTw2o06EbMNqvNxfbDGHAO2M3QlWYxEwlHVD+XGM2kQafEWgk8RnfT+VoROCEs20z25MlotdEebba6PSBOo51WsxePhSXsAUIv6EAgGEZ+VW9XG9PjAMCdsXY5k5ZZQfCIYhDAqoRG0K1KpZwFEdo/A/b6+gSboWEtuRn0fSVJq432sLTZ4jCRIDF9rIOyLLMJPjxAIs1mh9vrFuRiRCJVkXQ54X06bUN60ukBMUzYh80Ez9B6u9VJAXfheKTX+PjZD5/5cCasgaD1AMoXkkE/TZJkMuaHOgE4jk3+kVgMlnsinc0Va61yGe1eAICB/0EF8/nC8VQRTdzqo81SPMmaPJKkRuPpAqzoiiSCBMaEEiWEAFwsNdrjE63pFSU/ExOr+cFTrXLSJ9GEg3UPG0SVY+x2i1G2mDyUHdT9oF7hOadNZ4T9XMkWEgGnxRkIcQDAY+FiSVZogvCpgbGEP5VVrKws+zRNqQYNRjdsqYgGkiMWTtamemuwyrpchGFoaNgKK4fUGSx2OsS5GfsygmDzHtYGtMwwZHI665Q0xulZv2PESruTIam9yotnwAwXm1YdTtAadicBlRAAuNxZOzG32HHaXPplUKJ9AT5cjMuyX4r6QtVONukmk4V8PkH6EnD3Q2ng/etX+ry0P9xa31NlkXJ5hejsUoAN52eORBQPjwBcG5/feUNvOOr2Ns5wH9x6zoGZ2Q2PrVY7Y1PT28669+b9q6968qby/oni7n2Xza/a/tQ2ZWZq/b5jdz55ZEXz8sbh266fWfPV++prtpx+7JofHTl69daH7j9z6cl7u3tOP/ful57a172vfubNP6lfsevEts7FCzfc+fyPH7vpjsvGLt1zw/0PPL2u9I39nc7StdXOtvjm5urD57a3qLf869j8ax/84dlPP/r1liNHvrI6v2LXV67+4Pd7br/znT8fWDr8swvHV63a2NgQSi4vb90zU7947YZM/fEXvvnuse+eOHL1769Z9fmL9EfPvcSfef2JF6OH/usff//wi08+vvjC9x77+Gp5eq63UGkcPT6xSlzRHC0vnrPtzSs+efatuzPO7p6L9j/+H+nWPZ/+7pPDZz34839+8vM3jrcfPuivxVZdf+nMXKlbzX71+WMffPbUDc+98cXHj1zyxAfv/v2vH7z6ydvrd85PAgBP7l/ctqJbmm2g/8XcaC4dVSO1fCmHx6Ag61iPL+jjKZNQK0Q1zY+xfkII+DtKRZvTbjaYDTa72eFhLBb4NdQstwgYZnfTBMs6WC/JaAoa4AZ8UJ8wS4ljnA4VjaycaNVustFuRfY6bIwcldUAH/CRJocWVf28GAhIJx+RKmLA7/PyXifsE5+i4aGggBOGJOYeKUFF9QpQ9zgCMNorKQEPZt8x/UjzvrEk7GwGu1pQDENho2wOQodHK/BVjw9nN/vx9BKegwKB51jK7qR8Knw1kour8UQ4Hg5KeFzKowGUChIuhekK2RwAcCyVAe0Vj/RfU+BkQ5eAQcR+NVPMQ52DupzOowIGpI5GYiAaC8VitQ6CYmJ+5Yp1i4ubNm/bsT0DZRcY80nLyGKlM7Nm0479DQ1ja/KZLND38YmxmfWbdp5ehSJRrFXqjQaaYY12JqbnN27funvb/sOjw3aTwWpHEaEX4I8VcgUoJ4DCuVQ2iRPNGh6MBeU+NMRwmFpVNFXqxyGJ/TxGjv3SzGh9tFsrd3Igj8aneu3Z2WkA+V49gzZEOPzh7XdDY4CPggBcrDab8EK68IFzUQjAc1MTo7VKAyQh/F6pkpZx8tKDfgzomqKoSiiRSsLLqo/Wq+1uA5Tw+Ph4p8I7KMzJsPbPgEl4NX6/V5Bw9lME8UbRTovVYTNiIAHwecKvhlXGTEoyDlwaTHpKkBLFsJTlhq2JUjoiShElBsuXFrw4zMSzjJJSod4bRlwDXz7Fyv5v4H0Eobfq9SRp0w0RtAGqG9Qq62mDAPNo8Ge36odHdDZgA44RAwgym820TE+QuiGrye5z6+DNUCaDlgrHsAnLZQtXkV0F5b6vJ6YaYU9WOMg76KBMURSeARPokCbio/+Aik9UYKnRvEhSIHFJJiBLHpJ2k3REAXR2kGx/Gs6F0pKEb2GdDhfwBfNpOqMFe2p0xmGL02q2jMANt9hIisRRW/SCBqyrNEu5KNxoP59sJxNRPx1tJgJ9BZyvlTC6Cx/GxHKVWrXWaI0CAAO6jo91ehOd8WhME4Oy4Oc8ftUH+yydK5crcIdmumj2DQo4lVa4AAh3UYskMsVKpdJqlSuggB0AwBTt9nolAcgyZWddNOFh/W7GxbqcsBtZk8VJsKFYym4aJKynmFmWoj1Oi2GEYtFUoBxTrIpK4m4FAB4EWexx0g6gOyYb7+J0pJ11urGjGvBdOCl//QEE4FBEDbh5msgnFYGCxZOMBqAmuAgnMIlgCI90YgmMx0J/K3zw1EiFFUkBge/zavF0uVBoN0qj7UI867HxfkEEUC5kC/WGpmAXNFYfNRzNlXK5cq3R6DZ7VUqQ5UKYMpzCRb0iQxIez/CIqHoQgPUBk4l3Wo16w6BO5LyUbVAPm7mSKaRFCgBY9ZTlYDdaKciK20lJEXks6U/ngvYA8J1YTCmpZqvb65ejoRjGvyQb0xNrvRzLuyi7UacbtnKc34lhHC4NiJTtNDtBZt1uAGDSqDM6qAYbHPMaWD8JoseTjoea0x4vZ0YAntJI2mUEBYyNAkIoWx5dnF++dYK1MyODLqvRzzNaJSkGo8m4lKjWYgmeSOXiyQRBJwKhaDiVK42vW8mzBB9urRuHAklRXiE2t11yh2MzF6REJx9BBTw2t+P61gDQ0Ezac87Os3d35zY/sVLuTS7vbj5005WX7Np0/7endm8Krd163prVZ3xnhzI1uXb30VseP3O6elHj4M03rFh84O78msVdR6/98dHDF299+O692755d2/P7nPu//OzZy5cPbH7rt+NXbn3s9OPfsO25cm37/31wxc9kVh/6KxrLlnaFLpsVbqy+rrR6aXEUmvF/iOju5Rbv7j+rO988I+X//jRi9L9Jx7ZKJ753yuvfvnVOy6++6UXzn2q9ctzOlsW11U2a/GFyvbT59oXrlqZmbzp2f+5LHvrIw+88MC1f39p3XXv3fKn2Hlv/ubzx8Zvff2tt174yiM/uP6zF967KDi1YuV8qXr0gok1gVXddm1px8EPzzi3sG5JKk0+/fFPP/jnnvw7X7z3eXv7r377x1+98vmfLzx3LFEOr7jmwt5kplVI3PL9I9++ffcv//Xmu68/fc0jX7zz+rtvvvHpRxt2zY2v3Lixd+bmLbONzBzonlR0tJIvZaLJVrmawwkcNehz8/6g3+sy+erliBoMsLDRfCGvF0Wpw+KyWnUmvd1hAbJqMhkNFtJJexkbYbOhV77H5XHb+GxIATrp94UAxQCA3ZSLDHr61oYOO2E20yIrSpxXi4X9AufTFI4xMW5BkqCK9PtFNVX0uqHsu0jKEwgISljF8Dys6RRoCjEIxUaSA2JQMLpo9MYSBQnwGV2dCWffx5DBdDt4uU7CxWK4jhUrqdHqCShorKEqoooC3e+X+oaVPEuTNCMCLGtaKqQkUrEshlIgAMOPxyO+SDqdjMVBXoYSkQRAsRqPhoP44JHr+wXwHB8AuZ/B0VQ0wOir5f5sSDwWT8CyrjSb7VEAz7n1a9es2bi0bWlnTlI1AOckjuwWS8Xx2TUbth9ohxPpYiWXyFTKtd7U6OS6DTv21tO5Yr5YhmLSHh8fa3bmVq/duGXTjs2nHxobIWwmG4GPLI10rgxIns8Ui7lsLp3MlpLRWFiGlwmfZdANOHQNTKZvQIySrP/YHDTGl7q98Xa93mhCHRqb6I51pnvjE3NzvWYGHcE9NM7yYr4Fy4lwe0AxYJZgHfC3AyjcGZ+YmJjFMKR2vdkCBVyulBrVbFj24fk9jsnw2NQsaYl0qgzXoN1sjfa6gL5j41DbvaBxSQJlMKwqCh8kCAKqbR7lHZqjUFBinVBubCPDNpaTA4rASIrbodfD3STtLiVTSAUlxkICM0ikA8Dg0imGqqWAQ2ZKYaXqM+pOHfo/Txk89X+d5nDB8lw2SDlHDCM2yjo4YMLWH7PNYTcYUVJaTMOAroahZSNGyuUgzSN2F0Wh9yOA9aDJQvpYG8t4SPOwnE1EJLebI0cilUwio8lasN/FIIvBYCgE65In3GG/k2MtFpPeCkAkKDhFHlHwOTS8Q4YX0fmDY0lakuCi0g4mrrCqBJKPwYMRtm9igdZsrAMQyWoeOA0b3UfMFuOQDsXwMoOlfwjMkDS6YXEMCKQKUJ9EGKiVO9PIp4I+V6oSh93lp13Yd5XFZze5YgrdYMrVTrsz2h6f7LXGx7qT01OgxUBl8h6SBaQRQ5litVKv1cs1+AbA3+54vZDVYNt5YHEHU5kCgFqzVirXC3YH6QT8Bc6Edw3n9Z12u5cO8DS6u0phibU5QRbLwYRnaJlx2Wm6IZOe8+D0l8khcCGpWJBIt+zAIFAHRRsGjEy/v5M0Dzm8VmbEanKRnEdwMzIn9Fux/CIv8qF8QgsrmCtOpjIR2slRRDrkB6pCEa4UKuBoPB5LozFpvtyolvLFequSURQoE9j3pETzQE/x8U29nI+LHCcGlEgkVaxUSz2FZ9GJA1SDmuiPa1WqrUpvqph0yW4FqLbnf3sLsKYdLo4zDQdkn4u2O0YESk+7bCNG3aBBEb2ExTQSj+DujwgkrJiwWJdl5xMGAAAgAElEQVRD46FiThThrfnj4kRaSOcVu09Q1URcqUcMZk5AN7eglspFY9XmzBqPi8MgS9vw0IiJdQse/bDD4RKDrINZZqIcYa9gs7sJs26QIqtSYEoxcqoD7aKT8VRqihM4A+Hik/OKnXaY9DYb5hECAFcn18ys2jrN2ATTgN2xTPQziUJcC4WiGiM3GqEET4YKjVSQZTQtrGlppd3bOsO4SSnaWDWmSAGa8gUic9s0i99X3hqT3IIYimRLYwvbrpiyuPV0jXNftP3gvu7K9U+vCnZ6U7NbDtx881kXHvrK7femznEvHrlkYWLtY0vh6eXrt551z+PnLHYuK595xw3zW79+V2nDhu0XXvuTI2ddueXROw/tf+aese1L59781rfPm7skue/RHxau3v9++6mvFtc/9PFPfnjHt66e3VnfffsNRy5eft83tqbWXdWe3prd0lh5xrm9HfLXP7ni8r03/PC571+4cuun7zy+Tjvro6+o/9enL33znZ//avf+K358UXfT+q3FbdHkQm33mau7167Y1l71wA9+9u6FT735/mVvf/LRD1s/eO2yE+rh737rxAQ584dXf/69b/3oups++/5bx9PdhfnJQv3I8YmV0qrRXmXF0bFS5ozt33/unBPvP3nDcx+fODL6yy/+87reXz//5YU3vvE/j155/rp0YvqqCy46dHyuUavd8sON63/56rtv/+Wz975761c+eu+tv/7tzc/+vmr3fHPt+i3je3ZsnW/WlndTWS02M1YrpWOxaqGUAQUcDGk+xi2Ggfc6xHIppcq4PL1+lfVQHpqiCZMR6tWI1W4lPR4CQ+MIliGBAZqtLtoGu4MDBZxQpHBICwdjiqZgJ1aAIIKSh6IpliLsFgJAE7SB26NqgpNzh3nBZeYU+MGSH9AB07kUYL5eFn0IBUmUMNoBCrkXVqeT9mDAjKoCfxUFD8cSFtqnqG4W09/RgAOjBWmo/jQexBGUE83tLGYLBZ8oN55kgqCVANHRuSPgE/wK52UJzIqgvdhEGYRSGgVSqgFOKbLg4gCn1WAwnM0kIrFMNiWFsb84HY1EUQIHRIBeH4gNn+j1C0ohF8sC8mLMdyGXTWMTFCx1ELClSme01e7Ozs+tX1zatm3z0r4dJZ8awzmtRCaXA1U5u2bVmtP3VaLZQrmcTefxKK7dnli5uHNLNpjPYVJCoTZar3W6s8vnZxfWrN+ydeeR8ZFhvclkh3tC2fl8KhFOZgrZUrmQwYjhZDIJtzKOSVL4voDbyJhAi64R2DMEZRcqnOD50mQP9BDQg0r/KXmzie7OC7OdaibgBWbCMC434q/bzUuSpIUjiXylVq60xjrd9mgXavjk5DwA8HinWatXCgV09ShnMI5QoNGDzINe0NFQMIpGiKV6q9lsoYFlr9frjhU5OxQJkoKFYyNId3+eC34U2l+izzHjxNQB0gEECtQkE2AkNRr0haOCB4SgHVN7YeWRQjAeTaXi2VLKL0fUkOwglEQuFswWQ4m47bRTTxkeNJ7yv4YIFp9cDw86PbZhnZWyAxw4Cf2wyQ7626zHyR6zzmE26QcG9CaCtDtMIw7a4TAML9M77UPLTGaSp0wMqFXziJqPRmQPrEtHuJxJAgBjwlTf2ERRQuFQNORzcRHRyTIOs9lkd3v5gAQKLIKdzrLE8QLDS+i8CQhLiyKsb5eDiapCVLFagAFi5gSLh7oU9g9SJ33mBuwWs1VvMFtwbspqXDZy0gzLRWMTFFo4skytXc4nYiFF5nP1dFIVnMlyPAAsgWIquBhS6VQynQcAxiPc0UajicPYeCLSm5qQBB/LwY0iXAK8h1geFlqz1qw3J8dbbQBgWAYZlQUAlkVJTWeyBViJ1XKlXsC8I4JiuX60WD95jCFJDy/5PAGgtcGY5sURI58qhZjhIeOyAd2QbsjpspE2M+2ycym1nJasTASHrlDHmgf1LtZNk3A7RmweO222WmkHzfKsW/x3j4UP6gUXykVxlg4kN5nOhDkG+Hky5HefBOB4FKM3YT/FEELLjQoOLbeqGU0NqLDOgQjFsrlsvtKswkrNA0EBUiFHY5l6s1GZUGAv4KQ2bG5gy6Vytd5ojFXGChHF5/NpYdl+qpoTfDy8Y49xUJD9LtphGeJcBpa2W+2GZSNoRWkxDMeT+WIqE0UAFoP+hqyNqaWSqnIs5Yv4JjL+fEW1wNVRkzEAYLuD49GIVNWSmUi0/P8CsIchdcMGM8v7OMOw1U4FVDfBDBpJZ8Tvszl42qIbcjnKQWFSNbKSbcTqYMPRcGQKOIbByfgyy2U7bTcMWXDInRa0THl2cWLl1uUBmjOcZrMNyiKTzUNtjiU0j1qrR9M+SsvUU7IL7kk4GS0m8p1Nky7G7tc6K6twSy0ObyA6u0WxSoHCxnDAxatiMFOZWLnjylEXb6R7ouPcLQf3TaxY/fhyZbQ3NbV45j1Xnrnj6r03P5eYLi0evLzXXHpiKbXQm915/r1PHlg/eV33/DuunFx/1y31zYu7L7vxxbMPXrrpkTsP7Xv2/srizkvvePnJY9O31/d9/bWJMzefKF7y/KXjT3x6yfcef/z6Sy9Z/9Xnz3vorAuO3LOtsvGK9vRSdrG2+shF07sSV/3zJ7///KonPnrwzMe3/O7t2zfVjv/rtonrX/3Jo3/406WFp1/6ztHJPRuXh5YiifnKrgMrOufsXZGafuqV//z5nQ/d98YfP/7N168efvBXj7ypXvPzhz+66vC5r/zgzdf+/NHbj/5pzSs3RGY2Ti8HAL6gt1xc0W2VZ0/f/7UHfn/VCxu+9dGJ175+zusn9kduPrH1wfNfe+Mr11z9q3d/NH/TZczY+pmxbhKuZCl782P7fvXF395979V3Xn765se/ePP199999eN31+xbNbp2w5axnUtbFtrVqWqmEE3NYRNWMt0s5JLJWARYoJdyqTERCk6gmut7v/EB3qdyHOV2OZ1QWqBq6SxWC+FxO4wGvdFOA0667BYHbGQ3DTfewaYiWiIRU2myn6ZuwkcimJ0L7JimSLvTA9RZgj0gR0SQzEEv7zB7sItFBrBTRARggQPB7QYxJMgIwGFNDAD1dbsofBaK2eeSX1IlnmGtJkHhOcbr4/snYuj9jEdp6JlLkDRHukFl2GxWhhwZNDk9AT8aOoEewaLZ93kPgPJwuinAYCESwolNLZ4GOh3TkAkAeYVvkVUFNBxGKqSjahQHleOhcDgMWC1KAZ7HYAdv31MkmUkXTs7+psIYDByPJ7MnbanyuWqrXqqOTqxcv2XH6Tv3nLWrCkAfjUejOK+bKzemV65av/+MSghts7KgNcqNTndiZuW6/ftaiUImX64UMsVaudScmppZWJhbvmbr9l0AwDqDyUwgWFmFUjYdgTqbA/WdxRuZgDupBDGxNoL/gArGNCQ82Vb6OcYnn557vtTtjPadqZo1PB9st6empufmptrllL8PwKiA8TBYAAkhh6KxVL5cRQAemxjtdMe7E72p+YWp7ninVW/Wy6Ua+jSkMY5QwPY3hg8ovBoGaZVIZPsx51DXMMVhEmC+wBI4nu0gsLmKIFGRowcHxiGhemaxBY+xY4gzZTWTbo9PiidkzmG0wwq0EWYrYRk41SqltAi802w+6vVpmuSx2eREXJYjsWiEHhoYWrZsEECYZEmrxeB0Gk2UyzJkdjqMOpPdZRwyIowAANsAgIdRDQ8MGq120mo3DdsZgjAODRoYx/Cg2UoJtIlxsaAstFIkGuSxTGrFTCqNfQBqsN8DLSMARzSgbGGJdLmcJlC6wCpEPC7BXndV7nuZe/14gA2/7/ILsE4pBwfAGffrdXayTxzZfuYEAJMTqaTNZB402tCCw2gfGTKgH/QQPjoHAMZcYOyEZhmmPlrKxWOaJPK5SjSpCGSiDGKFYUi2Xi3gODoAcLYPwOVKu9FojfV6ndbY6Oj45KSEXf4ul8fF+AF/4gDA7Tb83ZlsNfDIo1nOpBUG7ogo+5RUCjZBtVoplutFAmPBnSw+RMHHFh6WwWECtFbDuQYtEZXdgsMkiCzvHBkxDg7oBkcG4cYBa5D4kUAhWEwFzEwGh5mclM1m1w1jUqgLANhgoZ0UYcGuAJ53+4Dh9h9BA8UVPJE8XMeQLIACTsMiA93tjGsIwE6HK9XPvobNCRCcLQDZKyEAt6vpSNCvoF+dosVTeL7TxLjgfExCVa/EEnkguvUpgGi/HEQAxm7BUrUBTLFXaWRiYXfQFwuJVoOWFgICuqGODLhlP8vA6mBZE8vajRb9wIgsCaRhaCicLJbiqbBAmElR5ZuK1pFKpaAGhEGI8L2Mv1BX9f6Apsajci2CRp4KFBFZS6TC/z8As6xzaJne6BR8XtOgyeoMoE/ksJ6kwpJgdwicbXjYZc3F3ZNRCy0SBivtDkXE0IzgYXUE403OSTbGYRy0WNG4WtDSpc7a5vSmlbzdPXKqzTyoBNhiKRQOiqEgFyyUIkmBDiZrqQDpTcmhpKCms53FKZYjAtrYqrbs4ymWF+OzmySLpBQ3xgCnNQDgcm/FtssnUwmvsq1EnbP54OkTC6sfXZBGp2YnNx265dpj1cO7r/nunkR027Ebp6Y2fHtndHZqfvfRWx7btW7i6tHzH7q1t+q+Owur12y9+IYXj5519fan7j2y/7sP9PYfvPLel589tvH2xt7vPF+46PzPcjMPlaw/e2fDs1de8PWrLp698iffm73+vnPOXl7YeP3UzKb8YnX10Yt6W4rnnL9w49u37z23+5d3j/zze/+5y3/kd3ddfetFT/7i+T0rD/7ooWcPjW5cPR/eHEksVHcdWD565eZ1nbHnfvzDPxz9z9t/+s6LSu2R639z0eET/rP/9NCtF/z4tS9+++6//vufHx/64KPPzot0V07NFxtHLuguiCtG282FHQd+8J8/OXT6bX987/XPPj/8g9e2Keee2PP9S178/Yu3/PrD18f2vn+n0C4UJ+rdcm9PMX3dI/s++MdfXnn7zX+8+txVD3/w4et/fuPdE2/M7lnVXrNx6/j2rdtWtErT7Xw5kZ5plkpA/Zr5bCKZSESCqo+mfGHF57L4itVoUPN5vF7Opwocnu8QVoBek2HEbDGTHrcdbQIsFOv2umwWEBokS9kcLoJNJIOy1xvwqwLoGQ8NWGiXAl4o6B4a20s4L9TzAMcI0QDnZxTB5zK5JQBgVcGgWvmkAhZYxk3RggLKKxIKY8A4wLfL7fWhfYci+rGNhQQt7lXdtEvwcSznxog2TBd02G0ns+xY+MtqpSirkzAZ7C5Ab9jTEpRLEccOAgIPZdDDuXna6XH5E0Al0+jonoaNjgAti6wHdj8glhZNoUNGKhRPJSKReDyM4QYoJQPwhwMBr9vjCXA+gNt0Io1xRHEA3Ww6Ho3h5VTUUFRJFvOpTG28M9bpza/ctGdnFd5VBKR2Oge8vNqeWlixdv/BmprBsMN0OlNpjE3MzK9au+fMCZC1xUohlykBTE7OTkyvXr9m7eLWHbsOjwEAG+AugPowe8vFbAyAu5hH9/1sMp2MgcrXYlFFicWgtOIscDioon+XpGDilYgt3l7Pl6rV5thordaqVcp1wPzJudmZ6aleu55GAPbCLeD7AMwLiox55ZliPxG2MwYSaazT6Y5Nzs1PIf422q16tVrOAQCHxL4RN0b1CMCmsEc5n8rmy1DQG3WcHp6cmpqcBAB2gQK22tGA2WHv19i+hQp7EoCddsLltAzrzIRdj8lsHiVXQnFhJvAhtMUAOKm38sFkDNR+VA2Ew8mEypPmZFwJpqJajtedtmxo8NRTT7FQdiuUnhGCNg9ZXfZh0LiWkRETjb23IMFNI0aLxWoaslOOkUHsO3UCYRyCJUOZhpYZGfvgoNVB+WgzQzNWoyFcjsdDAjYWhPFBA5A0Efva8NmlgmJG4VyMGkAzZ6PJ5PB4hX5YcDTaTxGAJc0InBkAmAYNHQhwOFfAwzKLcihvsd8bp4pwwNZFORjKQTmMluEhq8lshwtgGBqxWU3wGSQwgDUAMHY4wEVm6u18OhYNShKfLUcSiuBMlOMy53aTTLWcz2DvPiyJNBpRlopwn0bhzrUrHYzHnFRFn+BnGJ/HLcLei6T7eVZwhyZqtQoefAB+y7QHfRsFKYHtD1VUltUCDkDg7DZO6XrRq5IDFCZBpmKgUDgci2sB1bzMBVrWbjAYBgeGl+mHLE4HK8oaNyLntETRT/BFgXDRJA2FY2SZw0kzIIatAD3wJROaPgo8COB/nwH7cFQ5mgN6rAR4liJSSVkVgKLEggDAdtJOgQKOIgBHo7Ek0N1itVgqlhCA45pPxvlrdATFMcJGsdyo5aMiALCoxJPFZrvTngtBUcCzgmCk741VacA6rY+VwxEvHQrmZLhT3qRXCpAk7dad5sI8JsKkc3Fmt9sxbBwZ1MsB3mEYMWmxbD6WCPkYwhUIC41gpCMWi2rQ7SL9ca6X9eeq6ggCcCwiliOEk/NIaHKgxRLhWKU5s9pDo2k+6xwc0BsccGFty0YsTlERXB49ALAi8STpdduHdC5LPOeaSFoJ0WW2sJwW8iZXAVUesru42BQAMAkL3eEgqD4A99aMTWzYDFvReCphGIIiXijEkjIX1nzhTD4a81LhVDklEnwG7rCDjJXHN89wPkoKlWc7GKzFeuUEArBfqSwlVcbt16K5UnfVrmu61Ywk7qqRFywd2tmdX/fEgjw+Ozex+cjNVxyorbv8zMeenyPOOHjDZHfD93aH5hdWnn7sjsfP2Nq9bvTYI/et3PzwXalVq5cuvuHnh/dfufWJu87Y9Z37J8464+gdL39rsT5fyiVywcVjJ8pnvbSoPvXnA9+7/Jv3XXvLxNf/eviqZ2+56P691dWXj01vyW+qrj5ywdhi+vKbL9tzSVfTMkfOrN3Rm2/F97704LN/u+LBd889+tyBH9/2xBnTuzf05M2R5IrG6WeuHDuyek2888R7T/xg9zvP3vyn3/z2tQ9f2vfMb04I9/39t0/s/8fPvvnWSzcdPToWWbt9//LW+PK13XLz7AsnVsirmmOVuTMP/vJ3rxSu+O3b73/yl09eff+RpfzSHzcfWfHkK5+99vvPXpi/89PbXaPlzu56Z8Xx9YnCVT84+t/vvvXaO2988NrzFz/y0T/+8vd/vfPjqyd3rxrtA/D2HQvl3PIV5UoiM9cqFWPRZD2fS6ZjyWhQ8bOUJ6gEGGugionWHMOzXABzOPGQ1WrFnBYDVC2KcztwWNEMxJB3WUwkTdrdLhsJ6y/k5WVJUkPAIUWf3+tykXbZ72U51oMN0aSHF4LArxguzAkqbBCRNzEBBQA4CJpSEINBRfL5BZZmSBcAsBiMhMOYMchxeOTrDfRxBLWsl1qm09GS4CYFL7oasDy2sjgdVrS0c4B4cnmcJr2DdWHkLOAvEH20eAiqaHwjQvERANZxzgZHEgMpAOBCEsoHoKaEJ8XAQQRJEuFXwf5sbzYVSaXRKwsjG9BhX5ZB6fF+H1Q7GvR8IRfPp0B8ZktF0MFxkH5iFOpvOAawhTZTAKjbd+7YunlFr7tUkkBuxzELKYPhBpNzC6tPP9w6CcAgg7HPaWJ29eL2A71ENlsq5/KFGuDd3Mzk7GpMU9qyfffhzsgwSGB8vkqYOWD8iVSmiLZbWHNTCMBoKxCKoLEmDiPFoipUGQnPtCVAu74VpedL2WKr22k0RmuVSmscbaBnZ2amuu16VgQARi9oDueA4coC49GAL/Qj2eutUTwDBhHV6c3OTY61a6VqvV4p12rlchEBmGP7Q9iAwArcaCmeSSazpXoLc3iwGQ0AuFfwEE7ANidpMQEOu3AsChuueQ5hBRvnCLvdZtab7DbDwICBsnIg7tweOcq7Gf0yo9Wg05uMBgcHTKdQiPvdsX5LeRQqtRSvpeREwGoYHlg2qKc86N5HGS0mk9lCEiN6o5206Yd1TtuIATvAzCOGPgDbKOvQ0PAwziE5zQAWTgqEm9FlGRiw2p1e0gCvyGIwRsrJWBCYIEvHCplUTA2ht1gfgDXEYBUooVPyUzQJUKm34hCSGgqqYQ10sKRgHrDXY7YTDpCOApA30e8VfEg4PSar3mCj2JNDc30AJhnS7nKazbrTTCaLY0RvMQ0NA5Ew62Dr2Ul0yjzZCs252UYLHeTg5/C5ajKm4BlwUgYmQ7rKpUL/8Usmk8tgGmEhX6mNdSqVTrvQHMNwLUUSfCLD+jkWX14oVWyOdxposFIBAC4UC+loTMIMDBx2TqbSeMjQqFRqCMBAXtCKEh9B++Az0DpWEtREIpdPRpHGx0ynmEzDeovRoB8cGBzWD+oddkaLSPYRNhlXywGflOUJGoiGw0roBmwg6CkS7oyeAOVugL1rB3oisJy//yEIMu+JpMMhBTYbQ5GpBE5xuQCAfazT5rA6kxhEBggMlBaochbeKqzEWruaSmiA3X7W828ALjTKtXajGJc4DjZ2LFlqtMfGlod8fuz5UMORKDZNwjqu1MqdosTz8M4T+MyMTvkUyelkPPrTSMXHuRw2k9PbV8Am/fBIP/mCcYdw6CCqyYrfrybEihZrSTkAYJZyBqLcRNafLalGwR9UI+FAOWZzePmAGoEFEolFkrXm9Ko+AINiGBo0mUiB8zmW6SxOuC8MbxohXQGQ/AxPEUPDTqtado6mLCaf22oksZ+1vtnLsnqS5uLTKgLwoMVhRwBWU6XZFVP11ds9mmjXMUaD5vWUslBf5VRYhDKVjIkE3LCE6vTkBJLnSbU8umHCLZA+tTLbDsm8g+KlxNwW1eL1VbYAs2BZrxSJV6cXL2qX4j5mMWc/vnRkW3d2/eMLyvjs7MTi4etuOHN6/qr9l/1st/2sPddNju55Zimxbmb2jOP3fe2spfb17XO/cvvinntvLG3buveqW35xeO9lWx6/88zTv/9ofdfug3f//t5evjI111uxesXaE1ec/92Vu+/8/MX7rnt474PXTX39svU3fvuyO69amd58Q2t0XXZjdc2R470d6eu+eOiFEwcffv/8yx+dvXfvzHho81xo4oKJdq332K+u//Dil4+1Nm+ZkjeFAYD3HVrTu3jtZGH26Q/+dvk9n7/26fsf/+EbT57t33fBcXHNZLLmcOTUQxuWr7z0nJW3rrpqV31scmG+1Dx64eRKeU1ztDx/4OAvHju68m8vv/iLN976+MnX7lgsbLrn+c/TT574zfPP3LzquvM+vEWZGt+7R1t71lVzifq1P730rX+++dbbb37w+rPHH33rrY/+9aOH/uvX8/s3dNet39zZtbQ4VcytWFktRzMrurVKLpmsF/LJZDgakiWBJv1h0eMwK51CUFXdLBRrURbQ/45yAADDnjKYAYA9bgIdB+wu2ullTEany2ZzUxY7ZSU1MQBUOIpdQBIPfJG024OSz+P38QDSFsLt9YL89HNCFCq0XxEDbhPtB60ko3O0gLbOAucV8IyM5GXsIUVERDRwMkC1/WoQfYf8IpBCkEe07GVI+B/j8APPnpyihJfKAHvjaKcZChsm2xHGEQtB8zh/JAG56KfR+3CIwott0qDGiEAqrEXyCS0YjmEaIiYSiowHNr8ky2oCvZ0zadxfajDcN1hGIRkQ+mfAXq/H5WbFfAEANV+E74xBMda0oBZBY69MvtrC/tPuzNzcyg1Lu/bt2rJlcwFPtmPxRCyWyJZr9d7syg37jo2rgPK5TDpXRl/I7uTqrbvP6sUy2WI+XyrXR1ut3uT0HPDJ1YDMe46OG3TDACr4rNIKAJxDq4FcNgcKPJeDagSvXwur0XhYkYOhKNpRyoF+aIWqAmMXsL+Z576Ur49PdDtj3bFREERTUzNT07NzcxOtShqKMsNjSi+PCXMMxioAAKdq9Ua9VmuOjjXb42NoqDEzO9lp1YqNRiWPXdAg9ENwbzkSfSVw1DogeTm/hv4I1eZou9lCAJ6cmuwWPQRpIwBI7FZsm+sDMMgpP4+9SHgE7LCYLfC31WYaHtLbnBRPm/UWX5jhRPuQwWTTDZmtBpNTjKfiiZDbGoyG4VdxlVDjqXImGK5kNImjWB9oSeOQ3g78EK6Uy24yGq2kwzC0zAYLwoH6W2+02hwWHQCwTj88qAfodVmHbS6SMg0uMzOWwUEoZTyhh0ViNpii5WRExvwfOgE8J6JGVBEnfFVVCWE3lqYKAMA+2uOyGPU6CwckUQ1pIIJlID4IwC6Bt5IU6QHiJ8uSLPpw/FSWnCOYNdgPWfCwfT9K4IoUgUeN+oERkJHmEb1VN2C2W6z9jEKCJAxGqwN0Is4ttTr5NDZhqd5sNRmS/Ey6mlSAylB0uVzqT6+n07ksOoyfBOBqrdutNboz05MTCshLyeP2uRlRDoiRTKWDADza6VYbjWajXk6qIQkoLSuLWiibL9VrbVgso6MlgqIIm4PmTrbOCX5RAuzRwqFkMYu2tulMMpqynKIbNhrMcCFAAVvNQ0NWGx0KM8ODxkhGzipRMcQ50VyKdDhGBs1034mEwON3J2u0WUEuczhF+P85cXjcWiwUhk3r9dBUKir5PS6nMxH0uZ02u4VMofiNwIYCAAUCCwBcqQDrraaAL0kCADkITUwmKzaABtZLoAEBgOVostQc7fZWBHlMWwqoOEuc7BvnlEudelV1RFmWlYBW8Z40lCknxfKm0xyqwFMOu8XhMzEAwCODQyM88gRFURGqVVmBe6El1KwWLSiZHIC3k/QqQjfly5VUqxcBOBSoJqxWL1S6qBgMhaOxVLX1bwB2upy6QYOB8DECOaSzkrC6GN4yTLI+BZQMRxBDy0iHr0LV8oTJL9hNhKBoSm/J6+FMLoZLzIVsLodpmdECtJHmlGQJik5l/RKXCtMmn8Ue4+l6mfdC9dL8iUw5HZEd6Vw6HnR6InCJVDpQbq8dYzg7r1QXOhFFcLrcgfjc1pBd8FU2SRyeRghaON9eOKNXyUv89pL7vC1Ht/am19/4gqQAACAASURBVHxtThmbnJpYPPPK+45Or50/tOG7m11nHLx+enbPtzdH16xYfca59z10aMvMNeVzvnLL6qWv3FzbsW3vlbf+8sj+K5aeuOusfd9/tLNj17kP/tc1q8fXr9+5dWFs10W/+snTjwSvvunDc247cM3VV+1bt/f4jcfvePqe+zdU999Y7u3NbaquO3Le+Hb1xk/uvf/sy1/44PvH/+vs//nOj+ey8zc+tf2xC7Ot7OyBwlxmXWd866p2cIsWX97Yf3ht79rNGyrrH9qzalV8bady3s78aCeWrXiO5kevvbo998GnJ9597KMP3nv73G///JV96YXl0+OFeh+AVzXqnbVLe59ftfmyv7/zre+++MH/3HfTZ/vlpe/+9uMDk2c/+OnvrvngowduPBBNZc+aJtZOZSv1/I0/veTNv/3pv19/68N3vnPlo198cc+NP/ngk1cX9q7trVu32Nm3ed10s7bQqxaCiblWDsd/QWWlkpgZC1Dbd8IiTGIzD8wamJqflyQfbBA3LDz4MBlGjGYrwdAEJppTLGX3siYjTVtsPGm0O810phiBdZZQlQRsEZ5xuWx2DdSil/MyTocFChAfQAmqxBGHg0Gf00T7FJQTATHgl4InAdjNuimCkwJ+BbBDAp0LgM/wgjegaVD2QMRKkp+3LWM1xs4GvADADIUSAuCXBdGG8zNOq9Hs9NAWs9NFGoaMdlroB9KDZgn1k4MBQAEiWNbFQimQs5FQIhUPh6LxkBRF9wRF5mieF+D7g7FUFipZBnMQVRzuQU8eRGBswsJxKYH3e7ypUiWSQF/EoByJRDEOCR2pkqj+QOR2OhNzy0G7Lu3ctWvvtjKGcEeiaFaZK1UqY3Mbtp5x7oSMsQXpVLZcanSnJiZWbjn9rG4iX6gUi7W+4pycnJ2bnV+9bu3ijtOPdk16nQ27TRmG9JaLuUgslixn4mkULiAGwkGgAHI0HhQlHD/q9wH1x5+hRoh4AOwFBP5SA/C3OzExPgGoODUxOTM9DTRhslVOgop1ewEQsM/bJ3B+WRLDyVS23gfgRrvXwT/YG58A3gu4Wmu1aoVCtVGvlNIhWcQDTjRqCCgBRdMUNZrGKVJ8TA3Vfaw3OTnZK3N2kiAdNgIzEWyOkwAMt4TH3juaJuGLNpxSstlhzY0M2QYBKUmb2z5MiaTBCpJRB+JDb3aHYiGFNQ77wqFUjDJbBKizxQJakAgBr16PJ7Fu84COMtmtdpqyu6wAxKR5eMhIWYZt+PTSYLLa0QHCZTdadANWE0nSNp2VomjL8KCVMS8bshMur8vMsrTZYImVU1HZi+fbiWwmE1EiMk50KbBgkeAEQwpHMorP6WFsIM9tHp8PJ0vx+F1VRABgngl4bU6a4gTsIQQ2BFUb7pFgHVimGx6xQrnDaVm6H4hEg9BzUSB80YvDNjTkMJxmgM1n1MN1IAjHMhCVBoOVIhxMe7yYQWc20ZOtRNWAj8nUUorPCy8FZGy/BwFpHbCyUrH/CLo92u2OtXvTExNTQcRdjxu2FuwoNZYtj46PYftfrwnLdbRdy4RCGs84OTUQihZK1VYDyBOwp3o/s5hwebw4xMd5Qf+GY6l+o1exOVorlIq5dNY2MKSzGyzAEoeWGdyU/lSD1Sl5MbwAeEs0kmF4Hs1yKFgEQD+QMWM4hw5oB2OGW0/iRJnfK/zbClpg3UHYUwE/Wt5RcZD72PeVUv0eyu6wONMxjEICAYvm6jjXV6xVC2UA4IgqyADAPGzhTDadLdWbbVioKdkDhUWKJMvNdre7XO03WweANEdw1L1QhCvVG21G2CxJeYMJXm/2pX2Sn6TcvGXAqnoFijCbLH5YFHb9smUmu9+rAMtVfRhZIgZkuKXBkBYLAv9Np0QFapI34G+FvIUKArCmRsNSPW6zuDkpGAwAAEOhKLamVwK4AQCTDt2QTufw07xrWGdxwOpieOsgaJaQKHk9AMCnOVzuClOoeKx+gbCSATWZmNzgYzgLVMDk8rCVtJsG8QJSDK+mK71Vc9XF5XIpyphFqyvp4SoVvweKadCXyFQSsujMpOIxiRCCZCgkuNTa2Lpxhnf4tPRMJ6L6nYRbTs1vCdr9UnVRhcsI1TqVrk2sOdzLVwOBvRXPBVvO3jw+seaBaXVsrDe15cBtd+2YPZ3bt+ObG91nn33l/NS2p7doc2u37Dv+1acOLe27qXLowbvnNzxwV2nzxu2X3PiLs8+8eOPDt+3f8fTdvZ07jn3118c27j33yluuv/2WSy955uF/3Ja44Nsf9iZrx8fXNyYu//6V9912w8HbpvKHbqlMnV5crK47+/zRxfS1X9w8cccvX3nruetm1/zjR19Zrh46cfutP1m68+Nzj//02HN7D6xbuXXVeGStGlveRAA+vnwps2r3wS3RbXde/8xNx37+h9/9x9zDj3waP+O+ax+465d3PPG1Fx743rvfuPGZG3+2N9VZWJopNM6+aGqluLJZb6/eft4rq1879srP//SXv//1xPrffXI0tumhZ18/9OSdN/10yzl37pu9eUdRU9P1aCISnBtNXP/bi19/52/vvPX6G29889pbXrv+nL9+8saJ9+d3ruxtWLupu2/LxhW91vxoJR+MT9dSqVAwVMrm05kYms0INOMNyT6XCZZMLq4BynjhnokU7XLb7DaL2WqB6mexOUD5gkixEjRN8YxBz7hMNs6mJ2kzU04B74+lQloiGQr4QMja7WibARyPdfWbsHwBTLBRI5oI614B/Uz7VPiRIkpTJRxSMCCNxWlIjwQSVIPFJwkM68YtwAVCWkANeH2gyfwu4ykulbLyfs7FeBh0lmT7obF4MMXYTQa70+0hzdhTYzHaSJr3CQFZQWdbJdB3epd4kffwLhYERzAXiWST8YgGCliOBlErim63D6itqoYjyXQqBQoYpC9mA4cA3lREYDwgBU7uhhfJCalCIZeMaaKazKIRdCKihdALC6QzAGgL26CXz6/bvHXH0ob1u+uyFtKiMRALuXyxUhtfWFzac3ZXxsdk+MSwVB+fmZ5asXnHvrEUJtiU8dnt6Pjs/Mz03Kr1i0uL23cf6hj1IwjAcF0obzGXwQbtUgbttcJaNBELww8IIiz0nRIBI1Cp9QmIhOEa3v4E9JfGJ3vtzuREG9Rsb3ysNz0PGnh6ol1NB/xAdXjOxUJV8fvQkUQMg5ivwEcZsHRyvDvZgz8yNT/bGx0dbYFkqlYbAMS1bEjsd8xhqmBAgTIXjuMoVhlgu9mojMEHSu3JiseOflNwYwxms5Xs26jw2O7HsP/28XZBifZ4KAfILZt++BS9jbANDJuGCI9xBNaQzajTGy12HcEpImDpgMuXT5tOM3rcvJZLhcKZLCdrZjPBerxeCqeJbQOn2GkHZTOZSad1ZFhP2wYt6ESsx5Vs0WGylGXwNIfJSTG2ITPhYixDAybnyCmnAcP0MlZ4PWaDNVHOxlUeh9xiwMciSlhU5EBACSoBNPzUgiJNuENeBxRm9IIGfEKXDVXDxkLQRyLaP1mcNO31B/z99i1Jg2WvBRwAv0ODBjvFoD0liGB4YU6WthKU2ToyYLOZiGXLnKZTR2xms0k/orfYQbiPjIzoBnWgyp3tLgBwQhNFb74SkX0CAHASdhtHsvUKerNhiHUul8/ijG+rXkFTttbYKEjd9kQIvg+4EsdyyDLj6Xy979DRmgAgHm21GsVkLC6yJKfwwUixXG02Op3e9NxcywXcgES7SD+mgflEoBFavJatlfOl1lijUgXGmHcMDuscOose4GTQEuAM/8eQ0cpalhGOYckbCiWzNqePcdJu0gGU3DBI0m5siLYPkxTL2KDMOAhB8MjevtUrfni4IKhTKSDLPjcZEcMexk2QGUXkXA6HlYJln4jiJFIMAThXqpUQgJvVVLgPwG4eI0Xz6WwZ1mghkU5IQDlOAnBrbHxB9YoijieiE0Aim8PQikJjrh7Xono6lsvbv3yq0G/Cojy8dcCien0UOaI3BSxut92iNwG6e2UVyC3nFvxAZGQcc5RDmir7VfhJGihXURYqAXexqpi8/nAwFlEaMbuFYmRVhPsfTgBFPwnAaGXiMOh0OjLg5JhhndkG8gMAeMDBeqOixLEEoTvFztJlNlX12by8w2rhxEy2t1piOBvLcOnVYTPwVb3d6XDSrKDlGjPrm8HJvFIL0caAjU2x8Ir8DOsPRcVMvhr3+ZkUMBefTczbQ6JTyJR6G8YZLxEIF5Z3QziGxGv5BTwDVqtbYgrGiEiRaGly0/lj6YZPPlhjL9l2ZF2ru/brU0E8jtp2xk1fXRrbrp13/MJ1zAX7r9k9se+xjfGF2bUHLr33qW3Lj9/SPHjv3eu3339rHirYxTf+8thZF2187O7De5+5b/z03ce+/sqBuRXbd0ysnFszueajB959bO36yz67aHzxyMHG0vQtjzxwxdXHH/zBYnHvZanxLcWN1Y3HL+0thb/1r3U3ffH6R+9+9Otzm5+9/B9Tod0fP3Vk4fCLP3p628FtLz738Nbujm2j8uZgfEXrwJG1vUvnNuQb7/z+9nse/sULX3vuN89f++O77n/mzl9J+5667F/HX/j5N37z45dePHHz3n+e+4NtmcnumslS65xLZ1aJKxud6tzeoy8urL7gyec/f+/P/3rmnE//eUTZ/erN/7z2t0+mbOk7v//d3/zlAiVXjG9cn8sKc+3S1b8/768f/vXtt9/62/vfPLb2il+88uk7r338zpo9Kyc3rd3Y3bFl65pudXa8XIzmVo7VGsD8GgUA4ERY1YK8k/aFAm6HUSgVclHZ76Y9LKwvACnGTjrMJqt5GKPBCTSdJ0BkkiCVXDodTZmsjGnExRrIQjwUQRoI+BKRJcFlt1okGTDT7cH+EgBFUYxEvR60wQOh4vEIfQCWvP242lA8qnpY3gvqi0EA9opqEL7OUzQAMu12+zXNHw7wAVUJ+Gy2IVKkYXm6nTTHMp7/h6fvAJOkLtP38f6nMDuhc6iq7gpdVV3VXd3VOeec0+SdnZ3Z2dk0mwMsG0ByDgoiEnRBAQmCCZRsTqcYEMTjvPM4FFgEBSQq5/P/vl69eeB5dndSd9Wvvvd9f7/ve1/cxOPhx6Bpl1lvAQHLkWb4JpI06gCA0V7ROyyHbgGNigE2ZYfDaacpO+VN+QOYxaAC3AJ3VUGxyIwIYII+vyHMGYwnsU8L44XwlBqADMqoBFzCJbAy7+TdqTh2UsZjyWHZy6YiAT86A8STOYCnaq3Vn5pcWN2BCvjQ4YbXFwjGEpHkqeGIycVtW3Yc6fmSw0aqVKJa60zPzC6t7TzYTRUy+WIZtGWlXO9vmu7NLi1v3rZ1196z6lCDzSYK7UbsAujmMCA9wi9ceJwCxpEjD+4/Y+tzAPvI1aEJNMIj2lxh8yr3oWGmQqfbq3anpyZBA8/Pz2EYTjMqOQXexTscwnBSWhIVNLRKFcu1RqVYbnR6IGMH3T5+w6BZr1Va5UKpWmt2yvlUQBJdMrAnhuLcgE4+P+7+ZTPY2wI0otXu9NHsssSZ7TaSsBoBAbVakpeGh/w4WupgONaOWhB+t+J3wv2jQAMaTZQNbZv1WgP8XY9eh4RJbzBp9KxZz5k0diWgO+0jWq1FjqbjATUZlXwh4IccC6rCqv0oTY5rNRM2C/woK9oPj1ipMQNrNVkNuAdt0JoYk1F7ulZLGO02g1ZH0Dbz2IjRZj5dTxjsTlJHO6xG3TgAcMKPC5NPJJKpeNDn9XmB1/j9PtC5QdUjUbQMdBL70s0aq4N3+2QVLj8wIEAOEPmggIETsAIsXq/PJ4lqUAoGvR5aO6HR68Z0FGMHAsnR6C/D0jY0hdZb1xlsBqNhzGweW2e0whvWAZ2wGTV6vW58YkK3bsLRaeaSiUA46HKWchGfX6BzRcwAkmm2XMwk89l4OjfsKyiWEEKHGrgzGExWy41BPKiCLAfi43D7fd5ooVrvwc1sDKaa3UYTNHAlmQq6ARjgkYln8xVstZuc7m1sgUQH4ck5OFj1HqccToXUaCpfKWYL6Xq/Uy2Wy5UaM2Edw038iYnTxw1OBt6ixkaPUyFC73CooaxKYvM1zlqRNot21MpgNz9BWDSMQNAThIklnCznFNzyqS1oSaLC6VTc5wnh1DEgnCTYKToaxBl+ykwlYvEoPG1xbKLKZrJ5eKs4MVVJhUIqUEleVNQkwG+u0MrXEt500ifyHrc7li3net3+hhAtQoEBRPbjFjQw4kKu3phqpkSTqPgaUXn8o1LCC2zfxvPE2LhbEjm93jgumWnOetqYxYvhziJ8P+aDKxLjVoNQYaD+hVzRgIT5rh5gAU6PmG0GDKIy7BSrxakJkxTyeF1Ak6PxWKI42MjRQGY4htSPjBr08ObZ0QmtRfRLLodlxEQ70grHO0hCd7rewZRZf9mJmUlWE6+GkoNtLtZpojlnclMQFLBpwmi2EiwLT0J5akee86RD+aDdENDyaSZZS2fcciQYDKVaZZ+bJ+G6hdxWISn5/by/WO9vG4hOq8dTnOvEPSrcYyW5sDtMOJXCTh82aUu+aKQ4uXL2oJb3uo5X+Cv3nb2abi/cuV4GfbGw6/xbT5zT2tPcdd2ZTfno4c9sWdj/6NbUwsLKmVfc/eDu6dbN9aP33Ti75+7PFDdsPfOKTz999qErtn793iN7v/f5zo6959/5m89sLS8fWV5d2tzf+9B93/jT/fL2hy//2pePHP3Wd8Srbr/tiQcuufnavcltV6c3HCqt1badf0Vne+ro2ef/9wfvfebEyff+mrvj4SeXlLP/frXvK9966tff/1x39tf/dv/mzs7VycjOSHileuRjW7qXzGzKDn5x+y3vffzhc+/93YsvPvnXpa++cvlJ+aKffe+t5o9vOO/Agx88/9crn37vkT8diQ16K3Ol+sU3zGxwbS53C1sPH//m176Y/NjJN3779jO3fOutdwbxfbcdPT957ecHx675xuvPfvq9q52VfnX91Dkz7ule8aafX/kfr7z42n+9+sF/f+n43r+8/uYf//DSey8tnbF5evPS5t7awp4Nk535Zi4fCbfKlWo8nagX06kMnm6qvI1x+dyS3ayUctmwH26uJHgCDE0LdpawWM1aDRSLUwpYa7GYCDvt4KEQ0ozBxBAmijbSmQB6swaD8XDQqygCIKdJxeg/h2PYXyJJPkADUcAxSknB32Cwe/ygsdC7EgWbOpSyDsFhF7xuUfErsoym6xhbLshe7xD8FGw/naAnbApFY1Iix6I5PIAFHhKBRjCYaVFysDaTjuBou2lMa3fwMmaODX+D3zecIMKkRTx0tDKcH5hzIR0LqWokGY4pMvZBA5S4FHiWAj4g1oloMuL3h4anTcFwUIEHy+PmBUXhHVB1JcnjExxuNZ6OgjpKJNOZZDSCvDwKoFqqlGvdwQCwc9O2PXt37z/zUBtKSQw+g05Y6Xy51Z/esLK74Qtl8plMDupHuT0NCnht+xmTqXy+XM7lcoVKuz+YGUwtrmzesmPPjp0Ha7rRccLCCKzgZBzZXCSSSEWBT/uH+TuACm5Fxffrhovl8WDjmhttUVzowwnq1sE6AFk/1O32Br1Wo1Ft93qgf9fPzc/NDNr1akx2CoILNxWE4SCwBMwIw2NqjXq1XG0P+v3+oA/oPTk312826pV6EbN2SpUKArDk/gcAywjAviAAcDyeKlRr9SbacPQHk5O9EmcBALbqNeN6q8lE88BjnEOvKNkJBEoeMgWPD9S0IpIGK89hqqQVc16MZpA8Botl6LFiZwQLQBpzusGg0X1kZGTCaFdUkZGi/oAnEbIaCHib8CZM60DlmsxGAv1i0GVZM0LYxg0MYSGMeJpq0uvsFqtxZHzCbLKBJtdS8DUjp5tsxo9qCRMjkVrWYTYYdOliChTwcAs6mUrG8HAXAFj1qSBnQyHgNwwleUVM19IbNYQguFWPPxQYzl57fIoksB6nieIYDEpGA1WXL6TAz/Ayev2ETjcxPOk+dQyMvdA0bbfZtNZxjcUMct9kHF9nwP0nLTBg2joC+nJCazDbTXStWUrHIiGf25mO+T0uypqvRt2yUwQFXEoBACfTOfRFzeQLRQzEwCjndrfVa3YGU5Ghww0SCgUAOF6sNvod3IGeanXqjVarWYongy6OxeCCUwDchs91F1u0jaasFI9GcTK8fwwxS8Pny8VKvT/VqWJHXk0wWMfHCbtxQjM2puVIHdw6TiK4OKsnGdUXV+FpRctYYFKkRTMyBGAQs6ZxiicZDWFmCAFXqPyPPWgA4Cjo/JA3LAs0DQRYRACOBESkKyYSxzcCwUgMe7Cy2WyhXCwVKqVCOYHtm7KTFz0+eM4KmVyjVI8qmRSoVXgcgDQUgX3OB1lpmO7tRTkKVKVQyNc63U5EVDnBVc4GtKNy2qu4gB6JhlGN1y07DFqDXrLaaDycx7wS9IxXvSwDQAxSOaxK8ajXG/eqTh738uD68Q7FES36LU43VsZoPWYdN0kB4Pj+0LBVsjq9LLDYkcLYjOvGDAaB40ABa81C0C0x1lEzw6UlhmEJUn/aBE1XRbkgW2nFrjPz3mBycrvMyRaGFRLLIYuNMAMAk8Dz5GiqNLMzPkFE47UQpVO1jjgTrqWTTtbjV1zRbjXok2yxWDzmMokZbygMhS89tTYQBIuilpYGEU/QZnd6otNrEbs3WNoZwEMrhzsYzPeXj03Wy0HlnDp/xe6PrdVmV+5ZUHqTs3M7zj1x4uDcx9bPHrt8xn3ZJZ9eWtr/+LbE/IbNBy+984G9U+WrE3vvv3Nhyx2fr82tHr765l8dO/PS1QfuOrz3+1/oHT9601eeOu+GXUfPOn7BkXPWFm+8+v7n/7B1632fvGTv5tIL3wp+bO2y2+767PE795d3X5taOJZeSSx/6trZvZmjV134nb8+cs0dD73158u+tPE/NwSu++HceW/+4tmf/PIXj4V++NSJrfMHtk9HdoSyS40DhzdNX9tfSK9/7uUfPzl93Z63n3v8/ZdfX/71099+O3Xedee92/vhiT2///sb7//lc8fefuTfDman28tT5cZF18yv+ld79fzieec+9J/Pn79yxetvv/ajv7363s8a5dZ06ps3vfHNI+++sPXITY/95Wa2UsmkatunfSvTiet+dfmf3/7dC//7yqOHL7v8xDuv/emVl1/568kN+zb2lxc3dXYt7F6c7s63Mvl4arpZKSTj4XImk89jd68q2BlZdTntZk8pk40EFYcksa6Aw8GKGOlmNet1ONmLW4OElTTjdp3gME7o7LTO6CABgE1MNhwNgWBMZobJNk5WYKx+mYcPkNV6M8MzLK94HM5gDAE45HNxRrtbdbngKVDQiVL1oCcDxwsczbo8sgt3ezFAmLGj/R0Gh2HGiRcUx6h1lHTZORm+GjQDOhOwPM+CxDFaSRpbRFE8MQIjUGZ4XFhBHuZuqz48eYMyiCHFAotYwTAqvP9CJhEN+CIxXwwLpNeNia0gzUHigOJJJjJxnxpAy1nAN9WDTTROjne5eA5qglNwKrLH748m4wm0wohjI/Lw2UqmUoVao93pTU7PLKzs2Llr9959e+teWPGhQARboZPZUnduefvuQ21PLJNO5fK5QrbSn+m353bsO9KPpTPFUza+3X5//dTc0vLy5i27du0/q6lbN2o22HDjneSzOXiB6XgkGIB6H06HfUHALhU7Q9D+2Y02J14MUvZ4QA97JAyN4oGtfKjZ7k32W6B6AN2n5hCA189NdRoIwDwvcYydwfrCMhg7H4olstUafMAXT0/Cuxl025OzM712q1ltVAB+gTdU88mALCvSPxWwMtzSwO37TKECCAyA3xtMTk11i7zFTpFWs0FngntEDfOkZFlixaG9tuBBYwR/OIoEzknbcUfbbsebSVAUiQFKmIHpkgTBZzOIfueEyTA+9lENQVNozjuiY9RIOMBOGG2MneUdHDkxbiIMRrPWZDbBjwDZO2q1a/V2EhN4dCar2ThmNZsNI2MTelAQVsMYZbObR04nGMNpiAUyqec4k8FgLlSSUZ8Tm7SjqWwiEgqgtdjwEvv9+Oh4WVJSRcBNQqOfIJ2i2wvrJeiHt+L1+lwia3cLRgoUvuBWZEVVcEgpCOBM680arVaj1VtIIDto4olrmaNtFKWxTqwzWEgo+AYNQDFl0k8YDUaaOu20kVGdkSBFgq42S6lo1A9QCsrfKZLWXCXqUZw8JbQqqUQOADgdj6WSqWy+gDNnuOPRbDQ6nZm5yZAfY8bwSVN8HgTg+mAw6LUBRLtNnAovxxN+FygzeC5jCMCNTn9yur/U5TAtwg7QoqiAKJFwIlso5fOVarXRmZzq4DxaLC0S5tFRq4PQGQxjE3aaYmgrLVByRjHqKZ/b5eIEePJIhrERJGFYB0WBA/VHmcYsDptDZ7HYCd4hOAXpnx8iBdQ2HlXDLsFmD0dUpwDFIBKAi0qRZnsmGcEOqkgslkiDAC5WSuVitVyqJENBXOyC6FGBEwMAw+KNejNpIM1QQcLxdKXb6swGHC4PvCIP3KdgDL2ki4XqoNn3i2WKFtLFwLhWTqmKiwYAHhsZk0UHbRjVEaLNxppIs8nK2RnRJQiKbLXijl4I8NYJAOxP4awyY+NFzuli5aDgT4ZoQcZzoVgjbh23SACDCk4jhsOp+gwAsAgVz04Z1o3q9A7ewWsmJkyOiCrSlMZE29MiS2JlO22cpssKl1dIRqEmzA7Fn5pZkziXlQUA3hSCp8qiMZkpysHJkWRxsCt6miGSLkdoo2J0hGyRVirmcrh8ot3frwYDcFXjcb+oZ1I+fyCWSaS7W9sMZ3D5q5t7Tk5GMxlfe0W1SuHCNp8kiBKvhCPFwfKxQbkccp1d5y5bO3tHc3713nnvYAYA+Lybbludu2xbauHW3d6LL7hifmnt65tjC8s7jl15z2PnrPY+VThyy3VLe79wa277nqNX3fSL4+deQbE80AAAIABJREFUvPWBL5y55/t3N48duebLz5971W2rBw7t3LNjy7Vvz3/hsZefO3HVNY9/6q7d33tYuuWrl194Reey7+5Ir16f7mxNbu3v3LBzakvqkZcPPvb8H++//GdvfOnSp4vPznoXVm664YP/ueG8H/7nW9uuvuiW1dbS8pRn0VeY6x752PLM1Zvn661nH33wj4cev+ep51789jPf33fhD695zXfk8WcO5p+49Us/feq1F+++uPv6D356dqpbXVyq5m64LlsXJjv90pYj+3740Fcufu7rP3ru0q9/Y9dXrk/3tz/8hd/d/qulR95689+/s/Oqdy9VMr2ymhjk3Bt6zU99/9Bv//Te29+87zcn7z/vc++dfOmlk6+8f3Ljno29lU0rvZ1zaxtnO3PtQiES69fL+Ww0UktlSplTRhw0I6kyYJanmM9Fgm7M/pSDosgJFGU1WywGvVE3tFphKIowGima5kEB62y0wcSTeisAcAYIaSiaSMTdmIfn4kXSqDox7FQgtJgqbrQIAdUh+ECtSa6A1+UwUZLixENZ96n9uuFwP8faGNoJDFYNqjj/x9JDDMURXtnpBkDw0VrzOqtAAcDTDFoYMFC0bCQelVlsLMbLMqCVbLxAozm8yYpTrZ5h1wwCsCi50XBraBYNjF5JpXO5RDQSDiUSgcCQCngFEP8uwK6gL4pdVeloOIihKwE1FPSjc5foxCFZPHAWvYonFIzFAKSAgycSqH6jwUAkEghBASxUmu1me3KyO7W0fW3X/kP7d1fReDPoj0bRPL5Un17avu+MYz0P6OxUARNaaoPZQXdh5+GzB7FMrlotlGrNFlS/md7s8uLS1q1LW/cfbYG4sBjtoP15ko0nYoloLBbFVly3PxlBEezxIvBiv9nwNoBMC/jRPARUP6YFQgV0fAjnnboNjPjtTs/OzsD/s3OAwPUIegriLcMNSrj0MtQKBOBKdejX0Wk2232MzJmanel3uu16s14FeK03qrmEX3YrkgPvHo/n6B5vMJaIZ9KZQrlSqbU73SEA90q8edjIQ1kIu9VEnDpollwC9nrCi0MiFgiGo4mgxwt3Ay407snCF5MUBiYweIKNozyyzKNXkdNMsoKddogjp004PIJVL0XislFDMrBkQODRhhENMa4xjptNBr0BZK9mzGQz6CmSsho0GgP864TFDKg8btBaSJPVMELYaQBgitOPgD63OUkzw5j0eqLRSMX8MqgTLpzOxUOhoBetoHECKRiMRIDzMJTLJwFVICd0E6QoyhgjhGHAAI+w4DhK5vQAwLgjivzRi9+n+v32CbMRT/7gldgYKL0smrricrfhIfCYFiS6TqczaEDfm7Sjep2GJEHsj5stAPUmttnMJWIhn8clJcNewcXT2ULU7xZPAXA0nQbyE41k0EimUK61mwCivTY2Wc3O9oIRtxeYKFwht8ftQQCempruN7tTvW6r1W63qwkAYAfoQ5cSzQwBeDCYHmzsC2i5TjuHAKwAH01ghFe+XK212qCQm7VixuV3ssaxdRYoCCShNXBOEQoKZbe4shFaR/t4Yuh35qBoVLA285iRBkbIUDYzYA4tms1WkmB4WIP/OAKGJ4xKpIHTB0IST9LxKG5B25hYyOPkSMJMZ3GEIRqJ4NBBFj1HKpUiDhMlQyEEYNEpe4AXoz1lvZ6OpBMeBGA3AHC13ezM+HkXlh4F7lMohtepWKxONXshZ85CuzNl15hFTgCo2iiHw6iZwOeBOF1j42g7R1AWi5G10hKWLAdhYSVJDQuK1+UNAO+UHF4XY+ZdDtHJqgmXLxqTaB5tAZKdJKGhJFA5HvTZCyUqzSEAO3jODgp4nVZLw1vXj2mMLPYcOPQ6ikrLIi2wFu06DcsUvVxRJW0KYzCzkppev0tiJVDAYmo1bKVtVu0/ADiaKg72JjRAXfIhgfZS7jAVbQR9ilNSRKtvqhYM8o5iPu31kI64HwhYNlHqbu+wokny11eacH0nSF6JTW/1WcRAeovPyXIg5qOJ8mDjkdl6Paac23Fetv345spg8z1zHmwOWDvvxrs3ta7a5e0fWPFddum1y/OHHllNzE0v7L3szoc/tm3w6fL5N1+7sPHGz7f37D3jsht/dvSCi7Y/eMehnd+8feGso5fc9+r1g+/etPOcQwd3brnq/emDj//0pVtvvv8zX7vlwu99Vbnv3vseum3P1O5Se/etc+sH1alO2dNe3JP4/N+vPvbWG2+89Nc3f1q++rpnt/uOfnn+U7/+0UWf+Maz3znv6d5XD01u2b0SW/PlN7aPn7c4f/nspszULx/5yQ2Hr7r7s9984OGHj0War1/7dnT/Ez94evKR91759ut/+80fvvz9d3784jH/7MxsLzJ/5gVn7OvPJCrJreee/cK9v7328e83ldInH7rob++fEVn+2ree39d+7s9vvPSb9x9fufaYZ1Atxipbs+H5dvHqbx9764N7rv3e22+8dvclJ/768osv//Hk+69t3rs02LJlZbB9cuviTGumXaulUlPNWjkZjLbS6WI8EfH7/RJNy6rMk2YlX8iGAjKoDd4dEgXGQdrQVgpzSo0WwsZx8Fej2WYHZmjRGeyMwcJZdQRtsqMRE7YTR4buGiIOe/rdAs+LPjdPoHWW0R0POp2yqPpAYXpkh4nkJUFSUJ9iHqwCuAhilqHstKRIsi/gdmPZY+w0y8uojQK+WDpZTNrNhlELQ7E8sAHcumNoEiusiWAAleA5sdvQuZ510LYJvUVvRbRUEIBRtCjYRD30gsbzNppyJVLZXBw7KVOpEAbceAM+3GB2+0OBQCgawBGFUASngONh/xDVJCioTgzRk52y0+X0AumIhWPoAx1HY4BhQEssHE6kMmVM0W0NJnvTi1u2r+07dMaButsdwD2CVCafL1Rbc5u27zl4fMoP2jlTyqdz7XZ/dv3iln0Hjw2iqXS5jF7Q9dZgbqY3v2lx09qO+U17jzQNGh1hZgWWF0g6EAxGA2HQZEAWQFkBqQbl5XUp2IQMWh0+jcEBqme4qe6R8HwRB6c/BFjabeKGXbk5mBoMpmanp2bmZzqVMAKwxDOYuQMfnOSW0bs+V6/Vm61Gq1utYx1vd6fmZge9XqfRwOZoEMfVXNwvy240g2aHJ+huN7yaeCwG31uu1Or9fr8H/3UnK7wRkJSCcoGhDAwmWvCC5Mb+JEmWXV7c64/GEuFkKhKESwkEjLVThNlqMZrMJM05ZZfLGwqpLsabigY8nEbPuJ3A7v7f6WbZZddr15GgWExGkqOBZzg568gEqdeaNGaLUW8AxNeNa0mTnoD1jGmEQNh0VptZPz5q0BE2M2kcwaTC004jGO2IjrTQIgAwDVBNtFvJqN/Fsyx/CoBD6CzmD8BHEJTM/wEwbQfdN2HlYa16gPr4cb0qsI5F2uUwUA7gNG4EYCAZCvCiYNA2prfqx8fGJ3R6kw23zBkQVadcVW2g6NF7Q4+jwOM6yqgb02snrNaJMaPORjA2s5ZutnLxGPAsScwlAQ9FtlCMBZwCT3H1cjqKPUnpWCyXAWACZQio2puc7LXanfbMTDsQVdCRRRQ4nPRNlqqtqanJTr0z2ceJ7Wa7CoiHhjlA2iLpHAIwyOPe+o6Ig1IM9swpkjcciaXgYSwVcYu6OznVa7eqeZ/f4zJqxm02s87NETbBiYc9Ik/LyYRg4b02M2Y5OZwshYfJlBnemYNHALbojCwtWAyEhbTxwwOlfwIwmchE4omgz8ERbDKkgsKn6GjILWBshi19CoBjw/ztfKFULpfzoMMriXDYi5HF/wfAuEwLychwC9odSeWq9UZvJgBCGzPSPL5gFM+A4b1UJ9vthCCYxWirLRkYMe51iSTFO/TaUdbB09Z1GpIirBYTpnvwVjsfBknOE0bSpobdVn/cKThdqs8tx2O8SfQBzWfUuOILxNwW2uOPJLL9lFVvF9wS7xx63cZL7dlNTnjeRIFl4N7qDDaZk8xjEwZ71CcKLuM4QaRUl0PgKMP4OG3LhuiSjyDcnMlIi97s4h4AYPMQgCOwJqxas4UkHZw7li7PH0wSfDieUd0uvxj6PwD2iBbvVCMaddLxeMHnsvCgvLyxeDDf3zUQVVIO1pfa8EVmoBCp+e0+i1PN7AhJDCc7lXC81F04PF0rB6RjdeGiLedsrrRXvjjvGUzPb1g758S9q7Ubt0ob5xdCl1143eb5Mx5cSq7vTe+54o4Hjiy3rs0ev/3E4sq9X0wtr+68+LO/POPYudse+PyhHQ+f6O/cdc1dL91evfDZ1e3nHTgw9fF3Bt0bHnvyzit+fsftj6w9+qD6ue+dePDr53/sgkJp7TPt7pyezXrmNsxuD9z192uWP/7fz3zz5VcP59/9w3dWlXPfPXjNj/74o8O//Nljx65u37FzcvuOGd/OQGZH6fDR+YUTM9OV3o9/9/zR+fPOf/X11798+BNHn/nlDa9n9n/6a28vPvHOf7391gOvvvO9j71+w/PnlHq9jRtr+dmphTM3z8x06juvXL1geeP0xz+75zffv/XBr7343p2+TU/87inmyy/+8nu/PvnBv//iC914vl6OFhdC4aXG4IqHj9z9pcP//vorb7z86KVf+NsrJ1/948vvv7F511JvdcvG3tYBAHBzppMtpnMz9Xwq6o80k6liMh0P+P0yTbt8soMwK9lc0udXHLLiVAIOzu6AEmgxD/PRMEsGipLFasLNXqdg0elBAVtZq55kTLZ4JBCJR+KYShBWvU7KarHEIiAaQwHVzZKcy6V3hT3o5uzzCZLPKzvMJC+LoLLcCMDoFCGL2FBFU5zbJbgBSYZuFxyDkbCYjhBUQ2F/1D2KsyJ2u+gkbczQvEGv0+mNVholKYhoxm6xMpzNzgtOk5Ew2TCAYJg7hiF5AMAydhjhjh9wWVqJDaOMIpFIIh4IodmW38s4APnRpC4yNOhIovAd9mIBvoV8MoeDGPAj4TkCgu9Jw78HYync8kNvWqjJsWgyFoLrUK0UCrVOb2rYQLV9x+5DZzTcbgwXioEAzmSL9ZmlLWv7j88EE6l0vpRN5ToIbYtb9x44Zz6TS5cqNcC9oZv03MbNy5vXdmzZvv9oUzc6bjExAsM7LBwgb8QfjgWj0QAggi+GLtQhRcI4XuzLRLWN3tXAgiSXV3XZGXrYMv4hPOqrl0ooBAa9Vmd6w9zM3PqZdimCBz5unkVTDA7bodwuJRhLwgKD6lSs93BDfbI3mJqen5vsopllowYsAYgGKGBJcqGfxhCA0XnMjzuDUP4QobsAv+gFPV0TzCRB2SnspiJJ1uOWJUGQvThchkcEPpDN2OgUTOXiwUgi6Vecgt1iBv5nMplINCT1h8J47kkHM9G412ykFJdt5KMfHjntox/9l3/5yNiYXgxFGA0LSpx3CA5q3ToLYTAa9ADAOosNAHjMajUCAAMM4+mkYcLMEIaxj44aSJogLWiFZT79NCut/4iGIDjRakBL8TFrt5kIq5LDTvPRVCaO/RIKyqZAMBTwB4OgxFlS8oqgDi0G4/8BMBrMhPyKS5RFRhKNCMCCqID0VFS/1+9XQ0H7qMYMaDWu0ep0JMdjjBeNbhxo+WwAhgCM0qjRAABPDL1JNBNW88Q4YQQkokiNtdbKxyOhCABwMe3DVqFyI4m2W7SjDncjk0nn0NwUABioXgmUbxejNEACz8504BV7h7FYLDwRgVSx2p7sg4DtTHabgL/NTi2BAMwBAHsiyWwVfaRb/f5c20mzHNR7UXDjlD4ASjqBHA4/PzVoN5r1SibsVbQGHbZpViTGBgiMniQe2RMJCyQvWonhVrvA2Ggb8DCLboJgEYDtZr2OsXEWoEd2+DLggP/4EBxkPBOPR4IKy1pYWA7YEWwPB0DwwzWxpeOnWqCz2MJcKAJfrQyNUZNhoG5u9DH4xxZ0o15pNxIh9dQZcLpQq9YHMwEg4m7vMA8Yz5DzxXKp2u80MpyBlOPTUzLtYOLAACm7KI5pRoGUEmgAaNbrR0ZH1tlEHohk2EmLTouOIiW3YJRVSaBZSfSqyRhvcHiAo0vBqBrw+li0iYZfO5Uw6WkHJo15sPc6nm1OLQocpm8zmAisNRAKJ1kBgEm8r4ppjCBiQcxH4ayaEYLMpi2FAAkAbNQBAOeW9oqCbLLjGXAU95ROATCvxLOV2QMpwetXMQRNAT1uUvJ+H2+H32RxtWqxqGwW5EqAW8cFgb6kEsFcc0uD9dlckcrCZCjqIkTGFZveohJuT3ZX2MlwEi8HYqXuhiO9es4lnpl3HFs6Z0ujtXzPBu8ACtbasVtPLFbu2GBb3bcpdsmxK5eW9n5pQ2bT+uVjV9/99bOWu58qnHvrTauHHrpHXd2+84LPPnXo6DnbH/j8WbsfvS2zb/HqE6/dPTN399endp+xf/GqV1Y3zX/rtsd/892Hrnzl4oceyn7hmVtuvP2Ga57amtt9WyG3kK1X4muX7d5T+9RLDzxw/dHn375v5cBZf3nke0uBC9+676yf/PHZn/zutR+Ernvm3rX+2q4N8f2+2ObCxy5c6V0WXWoOnr7+zt/ec/3O56767Rdbd8z+4Imd7wdWXv79T7be9vu3/uuH33rtzYef+NPjzy0lCt0N2WQkFqrG4yuT1dz+yxaOzf7qric/+dcP/vbNS298993LIivfPlw/9/0XTn7r7t9/8PjZ52x3d2YHkXrV515uVq7/ztLF//H71988+ecX7r/w7ndPnnzl5T+89+fNa8u9zavrO1umdy5NN2e7qWw00a/kkoVkopFK5VNJNEGW7LTbL3OExZPNxr2q2yF7gM/hliJLWM1m3MbT6M1WG8sQJotudMJkdzpMGi1pM1g5wmhjzXQqogSS0Vg6nU74ZJmnLBZLPB6LRiIBhacIh8gYXTgKj8NzguT3ujmLzQm12oO+DYgZCsCnA8sQ6VBkwY1HRqCAcU+ORgD2++MIhVG3zjqmoSgbD9LchueJmjGNCVQzJ2KyrBMEsNkOTJmW3YJJh9ZdQMRdHlVVZB/2X2MmLrpMABiROPocSuay0VAkmkgEQ8MdWy/L4AwBCpwYqNl4Ooz+Uj6oWbAU3TzoekYAyuBCjRBweVKwggGAgWon4L2GA/5QPJKI+oPRdLlZKbd6/ZnFzZtW19Z27D7zYN0NPxbDkgCuM6XGYHHz2oGzZ+DZxDjBdL5YbQEkLmzbdng6nUsD/lbr7Xaz1ZueW7+4smXbzgM79xzrGkY1CMAsx5kBgP04V+wH1HUHIoEo9oSG3DJuj6JVBCpgFTg+ALAg4anq0PeAtn+oVGm0GtVas9/pT/Xq7dnFhfXr5yZbFQBgIPE8PfRa4rAfGc0WknjUV8hlK12c5+22u/2p+fnJTrvVwBGjYrlSLueSfhF5DXYRiYosK14oa3HAgTxo+Gq13ekNpmdmZqYbktWGXtA2nAYmGAX9jmCVIf1Cqe4LYZtTMjX8PxaLR32K22E22a04IEyyTh+2vAa8cPFBXOfDcjBZkI2naUY//OF/PW3caLHwnkiqGjDhVjiIYAetG9FQoBzRQlVnsFoMmhEzaaZsNqtxCMDGUT0A8MRHxoxmBuiizkjbLWMjZrvpX0fNZtphMaP74Cg12UyGvRJno4V4As/4A75hWJYPETiAAMxREkhQjrYYTNiE5UKXrHAACKMfBaBgl0Q9wbHDCA/gQ+ow88MfZMY08MJ0E1q9TmvByEzEX/iw2ygWftCI0WwxAwwbxsbhTwbAYqtxbNxm4kyUyTxO1puZaDQS9DidhXRIcdmpcjPpdckyKzSr+XQ2DQCcymIucA7uHQAv3LoWaNnu9HQ3iKkkEh7ygwwLJbOlJsjXRqM/2WrhQUOvgVvQPG5Bq0Aja4DKk52pqdmWjGNiHHA0BT6DAJzNlXKpQr3e6A/6TUC+YsHvVsZMWpvI0bM8TRhY0e2PhVVPNKRQcOONBIPuz5wNaQYeGo1aWW4IwAaNnWKtWsrIEADR/2zCAvptjWTTcb/fxTnMNM7/8rSdCQ9tIUmzPQ1XIBSKZwu5of6tVOq1EizJRjocHo5/Cf9swqq1K+1mMuTlHfBYxFK5erk6mPI70UwEFx3Gh8J7qZRrvXYzYzOLHl9/IDkddMzrEki4fQbK4sRMN4teSxjM/29MO0a5KdJmcbGUQySMNNQoiaYZr9MmSKTsi3tpqBE2UfUGA/6o4rKYQQFH08WZqN7AQikDFR4LxeE113rzPG5mOWiGmBiZ0Fu9rESOThgsYb8kuswaggxEJTfD8YTudCuZLZkKIZJQeKuOkXz5pd0OUTZQrJhYigEAmzXohH8KgCf3Jng8cnI7ZZETBcoZcfudDoF2su5KORp00h61FZJ1fDiWK5SLmXp/e5n0kHK0PDcdCoqEjXfHZnZGWb83t9PPMw5RdAXi5d7i8empmuo7u+g+a+HoSrO5fNd67+TkzMLa8c/cOJO7c5NlwxkzkcvPu2HThgMPrWY3LS4fvPTOB89Y6n+6cPFtN6zs+Nyd7d0H9p170y8OHj9nx9duO7Lv8ds7F65dfuLdu3qrC09etnHfgW1Xvb20dfnYN3756pcefvyLx394n/zof9z55fuvuPT86cquTyRCpVaRUrceTDHNa75/99vvH/v2W2eceOPIO197etVz9vtXbZj7yndu+8Wj6xee+/X927rbdiynd0iZ2fJZ5+yqf3pHP7Lzwad/8Iudm5999Z6X37+hf+tjX/nYu6lD37vvlbNf/vMf//uO51748VfvefLld85rtvszud5MaO1w6/rd7U569zlHfnr/v++75IG/vPryuyc3//rdPenF717y25v/8tojt9z+wp++kXzxFk++3avt2NIILDemL7t5/zP/+/qLL7/2yu+/ccOdf3np5ZdfevH9P61sXxls3jLXXZ3ftzTZmGnVKvHk3KBdaxQTdSisiXjYp3pFO+3yywC2ai4bU7wuhsc4EYfDxtkJVMAmg25cBzqTZ0mDVTcyjrOohgkNQRkIjjRStInNBVkxEgpChcL9bJvFRFii4VAIp9MlOyVIrMWj8oIb7aYcUtDnZkGdKrJLkUUFW4XUYYcGoK2dZFyKE2qVyz0EYAp0m9PjDwS8iiypfl5DjpgdFEUTFsJqMhhwn87ucDCMw4FjLYAxlENiCc4tUfoxED4Mz2NfDJprIQBLGOSLjYc0Q9pJKRJJZdPhYCSWTPxjeNYLy1SRFESvGAjgKABzwONyDhu03R4Z0+NQBuBmuSAzAiiyCO67x9NJTCZFZ55IPOSPJDP5ZqMFCDe/uGF529rOnXv2H6gp3lAgGBk6X2VKzcGGzdv3nzPji6BgyecKhWq72+kvbFne0wwCwBSrpUoTlEW3Mzs9u7pty+6Dq5sP941jWsKKLgoOCw2EBCQ3uj273b5QMBgN+kGi4xQq4Jn7VC4vwJXCY0ag7AAFbLPZ7dSH8FS2CfWqXG5P9Rud+fn12IRVr4TR4dfJUCw8c6BUQHGiJ3eikMuX69VitYshDv3B1AyOIbWajTqmvBUrtSoCsMCLgoOmabvgktDryQ8KNp7IVhqNWr03mJyemZqemmq4KMy/MZI2uEuUAxOlXCDOXcqwv83jDycwUjlVSmerxVgkW05Fw5LZSFvtrN1ioUW/H9jLcIQyG03mEtViPqL96GljH/7X08c0Boq220OJQD6sMaMpNWh91jY6Qo6to/UGK2kyWKxmAGAAArvdZNBq9UaTYczAWIyGUYtebwdU0+tom3n0dD1h/MioTmNhCMphN2vHmNlmOqLKrJ0Vk/F4IgYkEJvq4S0GorC6/UEvxnc5eZ616o0aEqqVOuw/V0D9qT5Z4mmXQ2NmHRgzjyN4IE1weyXAabWnG0Hkag16rZGwOUSOBATG9W61Gyxjp5mtJkI3odOOjRuMsM4ntIQeANjIaAwT60aZTj0aSkRUySnn0jG3wtGFShyqtjDcgk6jr0sqkUknk5kcoBMAb7vd7bba/c5g0ItE/H4vBm0jAAdjyWyt02g02lOTuN/SaHSq0bhPBnoJjDUSS9fajfokfHKq7rTb4PXJsqx6JSUSjaZylXIynKnWqu3BZKdRLWUzbtmrIbRWwW6Zs5BWvZUV1UjIq+ZCDr3egpHxmJPC2RlkYRaDfsTCOoZNWEaNzcZQOsrIWeHWCe5hTx4waIclNJQDLl4w2YDWC+iHEsHOEgqNOEJx4OSJfOlUmGAVXkmxVq/VUyEEYCfHuf8xhlTpVRt10Acc5/V6Qe42y5X+pA9TnVy4WREKx4GolCqVWq/RiRMOT0iudwSXg48ossNqc4omxsqSwOYJ/QRtZU83cXrCpSNY0g6vHu47xztZgHvO62RURcMqUXj/LGOV4y635E143SaS9fojqeJsWGfkeZc/4E+lwskKPD/deXTSBSrEUpqRCYPVx8nUKNCyUFDmnWYDQXhjko9zOkjDCEVlyuZymCS8kl3Huv35jbs4XtABLU0ux0k7YZowA089BcBzh8IW7EYVbYCeshpMF6KVUqXgDaqBSiWqCmIqVnarVjqXrTWbzVpv+9Ee7SXFSGl2RvVIHMOIgcmdMZvkL+5UoXoCEQ/GSp2Fo/2ZmjdwdtZ17oYjS43mprunPfBgr18797O3zqXuOMhMX7IQOn7wxpWZHQ+sxDcsrey57O6HD2+aujF3zonrNx348hfyK3v2nnvjk7sPnb39y7ecufuR27q7d11029v3dPcs7D555urx9Z/882BlR/OS+x/5xn/ce8OBb98b+sobj37ynhs/8bmtxUOfDMS2dWti/ouTwWrj4jOmD120KRub+8H3Dr125PUt4lm/+MF3Hj/7q+9f2zx33wNPfGZ1Yd/Wheiiozdbmlm/c3D1/IbS9EM/f+LfN/3876+89uZ/vXbJxXs/+8LrwZ1P/OGH173/9w/+8rc///4/f/zxF67/wf7IVD8X3bwhLQRb52Xijfqmsy999MnXmk/89c8WJVwkAAAgAElEQVR/fOUPb/3o2ze0m8vPrPz85qefef6rT7/37uydb32a6U82u5t21cLL3eoVX770zff+55WTL/ztqa9c/ZW3T75y8uSr7/9paetKf2XzTGd14cBSrzpVL+bC6aW5TjGfDlZqlQzmzHsUwUbLPidLkL58JuLxeRySi5P9Avwz3FerBRtGhj4cnN1kpCxQUWiSNQ4VMMkBJFMGtuAxEr5QIOyPxPwgpRwO1haLhLDDWlXsZsblMikBWPFefxAAOORXWB0pASLKTo/P63J5vTInipwNw8ltkteF57YeN+bSMqiAcbR06JwXsI8ZPmpx2uyoxC1mE0kSBis8BhzGtLhk3m53MKJos/IuhrLojVBuBU5UVEwxQl8oRXFh1ii6WALvpNyJFIi7aDgWh2qGc8BeryJwikdyg4oMpeLJRDweBMUs4pN6ylnKF7LD7zQZrYwV6rqQjHoS4VA4DACMOUcpNKiNBQOJPEjGVrfTm11YmF7evmP7jm0rh+qKCviMNkXpRDxbnt64aXX38Rl/LJtOZIrFYrs7tX55y45dB49PgXgsV+qlUh3PhfsbZ2e271jZfWBx/f6eYWQMAZgHALaHw5gZpQawN8zn8/tiYX9AkVTs+fbg+8QUKJTC2NbidguYp25nWPZDwAu69VIZ6nK3Was1mlPr56em+s16FN6n282jMzOqWQGePPjuWB53w1FFdUGO9zudweTc/FQHALjVbhTzZVDqxaQP/bU51kbagHLLqseH89V42I0+0sBE+pPYQd1wmqwk1F8bA7WcPBVH6JTd2DHsB8YTiIPuBe3rj2aK1VoplwgoUa9gNrsjEd5okcJJWUlFEuVQIhNPlrPxUrkVGf8XIzE2auYYAyxJl+DLpxxGK8EITjwH5gw6AlCR0IKG1JlZQFytxTL0dBzXm0wmq16L08Gnj+gMdhth1epAmp3+EdKmG5kwGe2s0QoAYBxxTDcTCZ+I1tjhbBobzj3DsTbsngUsDYU8LC34XTRD01qdkWAFp+SGtaLiXrNXhQVMu5zwnlkRTZTdw1aEcMAXcUkmnVajNZq04+OjeguFHdAsmmExdtJGTRj0o6CAzVqdWbPOYDeiHzRwBa2ZMk6Mj42t4yrpWCjkVt2cUCmGPUAHy+mIT5EFu9goAWHKYTAIrLJEtpDP5SrNbr/fBRRutHuzLTwh9cDiAAAG8hbNFMq9fr/Rn2tjfnVvsleMJjDESXQ6ATYA2lrN3sxMu9lGozOo+VDRvdjJHcXI6kw812oV2t1WB7Av7/O4FI3NRPG0hkGebiUlyReRlFRSIo06g1FHkHa0lgVKjVsg5nEtw3M8RdCWCZuDZnUGE41jXDw37MJy8k5+IgkrwusVnQxpiwbQxZ21BeHpddgoK5uLY99jNImzcMUK7sY0irVWvZGM+fHgxSnKoICzuWSxUam2uvEIzgH7A4lkulauNOZU4P1QZTyKGoyF0/lUtlKoTfabAYFWw2I75Y8ATqkup8XmpsZsxLjZOq6f0I8YWV5DsKMO8yhl4OwOxS67BEYEgu4SBbcghEWDoCgisEuCcAKfVSzJcMJNMj6g5unZkJngHRI6VMdTuXKjXZ/eCOQNj9lYm37dqM4oiRIzMmEhvEHRwRNjJkIuciowJZtuHUUG2+ZcjrO4PBbQPIHY5CHBadPTNB9ZiBAcrV9ngkXE8N5opjy7I0Fww4N0UXWp3nAy7AIZ5IJHzZnNpRSGCsVTqlPvqVZKaBRb2HR4vUUi3eHCUscbdrKc4Ez017I2r6uw0+cUHU7BFU1Xp5YPNwbFiHqw7rxo9YKlUn3DXbPebmdmce3sW29bTN55htC+ZCl2waGrl+e3PboYWVzYuOuiLz5w1vrFSzMXn7hp0447by2u7T14/o2/2HvO+VvuvO2MvY/dNDh4xhW3v/5AfWl96/yz51b6V/6ttGHP1o2bbv7CV2/4+pZv3R154k8/v+9Hd9zyxIby3puSldlwMhnuONbvz9zy5oN3vXDF5ts2XvDF1qZqp57bdOvx2397fO3LC7e//LG/X3vnyuzB7dPV1dRcPRbKF5tHF7qxLbc++Msv3vbO3/73qfvfev29Rz9x5zmvBTY9cc3xrVdPz170/aOZmVxm096FxWyjHfA1M3lFrVTz/dnc5osOP/uTrwx+/6dX/w3+/493Hsj31n64fnvjoT/97pk337314m+8dUzorm/Xtm8tRpfr7U8/duHrr5988ZWX33nu3vPuffuN50/+5a0f7ZrcuTDYvnW2tbu3db7XmmoVc6HUhulWsVJIVFMRvycQ8rmBqLOyV3RQFiWbCng8MkgmezDCCTaStpqMRpNJrznNYIYCwwAXhBKF5jUmo552GGgHYaJZiz3kUDCdLRxMRb1OwU5BnU3ioIQ3oPA8aVMkmxqSZA74v4JBd7LDYuUB71yi7PZgTI8Cjzxm+zIORpVcbgAVRQCY5OyggCVfLA6CwuX2RAgD8WGbWzuh11k0/7puQgSVjB5KDmHonsja7XY3QxMOhXaQmHlDM6wbCp8MLE5VPafOm+FvToFG52JnOJ0tJEG5AtyGQ1hcVRdjEzEyyRf0RPHxj8uiC3DMGwhjvBx6Skm01UJA6QAFTjFh+PdgOhGBUpACgRTxqcFIPIYoW0CT3e70/Nz80uqO3Tu37dpbwqn/UxusyXSpOb1+w/a9Z8/ja0iBXqkUWzPrF5bhny5eSiTzxWKuAvJ3ctCZ37C4ffvytl1nrB08u2MZnyCsnAD13G4JxaMxDDdD70O8ziDE0THbhU1QPtU1nHKECywDekD59wDo2Ug75/hQMBDO1judTrNWQYfn3sz62cnJfqMGNUeWgMs74Gqiw4kEP8brjxeK5eqpPuh6s9fv9qcH07OTnWYTtG05m84Vi4VsTJUw1Bej5UWXLKkoLNLpGLqRNOq1Xgsq/2ByZqYpWSgbzRAEvA64R5IMv04e+ggFMLfJG4piWlQYVFm+mE+GKI1GtOn0MlqFSzZacvoSqj8fdSdCoWze7802Cm6zVXJaNKfREea0EZ2eDwR4DMQapgtBaR8bNWK0g8FoNOuMtGns9HHQwSazDaORTASlmyAs2rHTRwxG2kYQwNYIy+mnU5RxFHCa4y2kCAC8jhuU0ym/iBPnyQICsCLinDVeWRVTu0KKAxSOE/gcqdNqzSxQHTzkBQEcgjeG+/IKA9qPkWTvKeDGA4JARPUY7RNag4UwjE2MaY1WG1xzFvGXsVE2m85kHMemYJ3WahjXAdU0TegsBoPOCHg8OqZZRxdi6DoaUp14BowWjeVUJKDIot0JnAjzsdANOoNjSDm4lrVWtwv3GzRwb64VCgNFA1nDMgoI8ThuQf8TgBstAOBSLKEgM5KcnmAsXyg1a92pqU6rIwN/o7FBSoHbGwwlcllYomnA5yKspHatVM14RKd7nDBbHC4tSdktBEXzvFt1eRNpPwuvXo9HWA6eYSnc/6BIy8QEtvOTVpxDYhjeojdhFrSIXBotwnmB1aSz0bDyTwBWFBkAOOx2CRyIAiYLDxow/ESmVMxhu3a12irXO61mMoax3ZLoFJVoPFPIVhuwfJvRsFfkFNUXjScr1XpjVgWyia0RXl84DoQvW6iV0ZEkJJKOgNKpxz2CWPCjEbNA6DXAlfSasbEJjZHg7ZTVQIyMWcYdoqRybhdnk1yyS8HsCGdMZWWZtUNx5FiHTLAeazhaChJsMJ5M5mZiVsLBS2oQvavh97Xa6zdj+hOmydhhGRgNwF0dExorqYZkQSDGLIRY4DzwPDLGMYoKdshSgbYoXspCif5Ic4skEhrKJsQWIxbaZhizWGwMKwAAV+e2JWmv1w1aO4hnOy6H5HRzPOMQbM5aLh7g7JFIyu3UqdUo8OpiqbX5yIKFNzkD2Y0dWRFYGyuEB9ujpMdT3hNwQSlUlFCsPLXprE6vFFbPrLouWz4yW2jMf3ZDcGpyYXnP+Xd8fjl25zGxcOXG4IWHP7HUW31gQ2p1efOeCz/z7b2N2ctT53/2ppW1u27Nre05eMFnnznzko/vufu2fWuP3VrZc/S6296835evFaXKwa39W9/csu2MAwuX//kT9//sOwe+c2/0q7+56M5f3XH/Fd2Z7ddOL66OJfdsWlw4tBJ44u+X/vyeg79457uXn7zxg0tPbA1tPHzh5kt3pJjSx6/f9JWzjm3fsm1lub4Q89H9Umnj5ot7C60t//HUicOf+/bVJ+564KxNs+F8KrY+Wys0K50v/vSpRze9//Y772948DuP7shV83WJ98ebXdmwfn0vt+3SA08ePnbLB3967dnfvfT2N//zSKu48I3fvtu/9bc/f+73h27/t4f+pxvvznU6e3dV45sG/U89dMHrb/7x1d+/8sKbD5/76F+e/+D9Xy2ef3Nnx2xvdXW+t7W1Zb7XmGyUyqnC+k69ksnGi6lsOhJPhL1u3mZ3+yWHzaoWUyFM3eUFQg1zoh24OYnuQ2bzqMlipmB1WY2GMbjzLKPXaSlaQ2E+B220hXzhaMCDFsARryTYCBtFYcyS6gu6WSC9boEPBJ0y55FVRRB9IJmspABCzQ3314M7kUC7YamhoYE96A+FYtFTR1UOO89wTm80FXNjIfYb9ONm0USM/MuYXa+3mw0kPGo8EHOMR8OdZQ4otJ0QPTwLysdooVmHKJ8yffWoQHllqIIubINmAKrtzggGx0TRTyEUCuNsp0dmORnNOABCsP1DTYROTZ1A3Qz60H7djR2xrIDNXaIgxoKhiD8aDkTjKZDLCUwjjKFFAc4ZtUA0zszPb9yMUUY7D+2vgAgPJVIZ3GdN5quTs+u37T2+IAcSwALyhWoDtOXU+i27j1+0MYHmeJlqp9ftTc3MLGxYmpvcevjYvjOPNU3jOhOeATt4io1F4BUP/Sb9PsXtBUGGf5PReFMZtkJ58flTZEz8c7pVKOw2DKD9ECr0Yh2AsQmVudPuAJ72Br1aOSygzy8n8I5Tp8A4B+z1J0BeDAG4DSKq32t3JvtT0/1WExC4WcvnStVKMRf3yU7JiT1YHPpX+lW4XLEo8nzQx5VOo9bCQODppmTFMwYgLlCcSV7GDxdwHq8/hO4t2DeGnp+KxA5jkfSaCdP42ARpgcKpKiJDOlOxfNzEhb1qHOtXnz1Nz5JMyG0JNF0jp4+sGzOSFo3GzA8pGUuT607T6iZ0VrMRAA3U1fi6CTNJWK2EBUoq/MmgoaC4rsP+UxLUpslBGEdGrBbN6RNwiR1mQgDRvM7RL2ZSPjze5kEnhSMRFSTg8EPBzm016BGsjAdkEGPRa7UWh+wSlaEHtw/bpfF6elkDYWMAnIYD0rCUVG8QPmeh9KBrCYsGz4FNhJ0ThqEidhsgsMlsGDdaSNIAVEAzBn+C2242aMZBLY9qDGYNW8As3KAfML2YCQfcIldORoKwru3OeiFTKOQzKVhkuDULC6uULzc6nXa7BUK1DwAcUgHSBBEAGJ7NeLrY6Q8Gzf5sC9OAO4NeOZ6A5wQVsBJJoBl0FVlguy3aGMoOb09Gj6xQJJXLVEqwapv1cqdTb9crlYSXdSrjFGmUEibCTFsNFNRySXR7gsmYaDWZdDj+zQCs2ux2GwKwZgKKCEcSpGnMaGd5Sg+YTQ4b6JxDAObtulwBeIXqdDIEFQ36fS4HY4+pLp5BAM5EsDUymswV8+lEKl8qVhvlWrffSkWBKsvYBO2PxzN5oLpAAhuxiCLyXh8CcLHeagzzgKWhsU8oGk3n0VKk3m8jAAuhQKeXZFmxHuJFjrRZ7aM6UmcCjByzWs2M06ihNB+e0J3OypJH8LoZmyzIQM29ftEZCUhuwYLZzuhLT3IBUg6UvQYmHE9li1MpguABgEPovIX1ob2wReKw8xSYq2lCazbwguTQTpgIT9gt8sQ6K8HmBTcniYxxFGRx01at2iyKypCUSw0X+qpETVC0M74YNdttJh2J8Y6ggLO1+e0ZKQYULxBMeMOqT0A/fgFqmmBSpkqxCMfGgxnJbYgklE6pWSh2V49tJASTFMot9mXBIZCsKzy7008pvtpev8AAmRCD8fLU5uOzvWpYPauoXLl6zkJtsPnugbvTGsxuPXbLLSuBzxyTY9evhK4469ot02c8spRdWr9572Wff+ya6oYriud+9uaVPV++p75lbd/5t/xy37mX7LjnjgNbHrhxcNbuK+/+yx29qe7qyuyJs5pn3jW3Z211/fVvXXvrjV969Aefjzz8+r9965477/1EZ2H/rUv1lpTe2E1fOnUodf3/3rp4+Hu/efZHh67e+dyTjy+n9z75ufv/Z9euH591+MT+C9bPFdfv274x16hMqZvy05dPd1uzxU37Znpz0TMOH9p35b1Xf/uK9l1ffc131dPfPfyV177xwPH7vvTIbSe+9fQZD+zP1DvdaHApf9l+JbN9utXYev6ZL2574a6X//arn7/66l/3fPXdvbmdD/3oqbNvfuyRd7905IMnr7ykGe1MNtt71sqxTe3W9Y9f8e4bL5585cX3Tj54xZfef/e+XYtf+ss3+/vX9zYtz/a2dNaWBo3JVrWcLi60KpVCOVMG9piIoPOBk2G9QRdPmjyFVCTkExmHaFVCDhF7oCgr2kHrdVaSYlm7jTABH7fbWdGETQU6VrAabIyZxnRO7AKOBwIel8zRHEXGMEcoGFWgGDo8PK+qvCz6gXcLsMZFEYic4hQkN/okSqBSASZAZ7AOKx2NphKpeDDk98gCcF/KofhDEdTlnoA8YTqNkvQem4WXdDo7ZzRRnFNRMKEIFTTHOd2yQNgkt9NGaIxmgnOIogcQX8VNQVWBJ9vlwgx4DgPgaBfw+Fw2grGu4VDCrwYAwEQKh1jUUNgVjKXCoVTM58WxE58CuCIIquqUoTjB4y2iVY8zHorE4GtDcfhJGRTMAMHJ+BCAW7j1OjM3v7iyumXHjp1n7K+h8yxuayeS/5+s94COq7zWhrNWbq5t1ekzp81pc2bOzJnee+9Fo9GoS5ZtWbJly73RwWCIMcX0EnoPGAidJJAQ0i65AdIouSQhgSSEJEAChFDvd/9/7yH3W/9avxa4yNLozDnvu5/neffez0aL+O70/Lbdp80pkVQ2X8qnUoUyKJCZpZ27T52KJgD0IIjmy+VCrt5qNAq56e2H9pxyuK3vG9bpOauAhwqRMATz3tVBJMYjT2ev2Mzh9sIDgEDpQKs9B9ry2CSrw4OdzyxNMV9o1cv5dDJTKuTLrdHR7ky3O9rujlYKAawil9CMTLBgjtCO5eP+eL5UwSPo9gg2E4HYGRsbHx9tgF4qV4ppEPqlYj7uwdQ63lUBhYcPD2hDAeAVRfwolRsdnEY4WbcZKezppRiK5Wlrb66dA1HJh88ayE3PWgrCrHFgbd/QMAKQSjPUp5V8HsXrkV0sY7YSA4rL5ov5g4lI2KId7B/mgvFIPkn39a3RD/YbaMJI9QgZKFJuCFTxkJogDWq9ycSxWvWwlqAoVmfQq7UECGMtQ+vUoCg1NKxplV6kTX3rTIbBNQNaLcMbCAur1QxI3WIi5sHbYQGdFIvHAl60JcVZhDLcXMBYnuA9EmvlCY1WT8HNYyUHDsLAnl8AYKvgthiBxdpsPYMyPIL2+v1+RyCkp5nhdTpSp9fgsAWSFT9fk/CMaJNBA4hLUHDhRuyKMuuH1GgJ3bd2ANWyzlJKJ+MxP2rqYi4ZdFr5QiwUsNsks7WaTfbGU6bTqUKxhAMGcUTQCCjD2mirPTYDAOxU8AhatPTy2LFsq9Pt9gC4CjSr0y7F415MYMg2ezgGy7TV6GDzWdPKWVhadAB99TjRKD2bhbVZqoG8bPQUcCnm5RxuNcPqfAUDaaBNOoKnJCfWfoejkoE0qeEWU7RoRQAGBCYJzTDEEwtD0YQKIghLw5PiKYtgtXwOwJKF1GbyAbiNoIBJBtsNHAJrjgeccCFmksvEEulkLArgmUrE0Q46X8wXR8ZbAMAeJ9q+h2OZdL6YytcajWotFnHICMDhaCJTG6mN+wB+FZfHhbYYkWQmkyuWquNjddglvqCnUY3wZnsjYpFtFGEkNQYgADI3pIIdRLJ9Krr/i8Pr1rI2yW5zO82MYrErVhfaxwBFUAQ99nXLitsl2UIk7cyKKi4QimULnRRhEkQA4AgEgES6UKlNb7byVtDKAMD6IVDAolVih/u0RpvfBW++z0gyOdkBHIYzDOpIe50tNc0mh5unCdkVS2f9TrOK4e3x+aiJNRs1QNxAbbjCmdr0SsYe9TmdDrff7VNAmwM1tge8Ngfr79ZiAZaP+3I2ly7m9IwWKpV6Y9Npm8wyocSKC+Nem0VmRE9o/U4X7XSV9wCpkz2cPZosjG05b7JW9DpPzbnPWTp3Q7G5+LWuq9PuTm898+obtrovPeDyXbboO7bz/OX1J31jY35ufHHv8fvue2Db7MWV0669cnbLibtKW3ccOP+2l/adc87Kgw+etvqNG8eXly659q1bqmVtwEdtfHLToRe76w8sT93z8lPX3fSjA9+60f/or5964omzrn50dmTvLWMJ4PLjMePk4Z2RRz7Zee1rz/75o198/UD99SfvWQwvf3rtlV/e8d3f3nrJk0eePO/7S5sPtav51kxIarqUXKaen8xt/OtzL1zz2Md/fuc7L/3s0e9f9aMff+W33qMfPPmn2658/LIfv/ba1z775mUfP/fjlXSmPZ1batk3F3ZesjTWrCxfePT1bRvv+58/vPHW6x+8O/n7T3Z7T/2Pmz555NOHtp3p33nt7sOP7kqUO7XatqVseLFSu+YHl3/yjz+99eY77774+PF7/nhW/tz3Pnz/gZED06MbN06MbO3sXuzWuiPNUjS/oVMtlErpajafjQVDPnQ7F+1eWSD1zlwcqKbdYpUZV1C0mM0QMUmcAazSmQhGwLY9nX5YB0ApaVVqs1kFMRG2j4EHpHL5oxGsSwFQsIkSQ0VDfh+sPbcgIgCLHrcg2wIQZSUx5BcgLNk9NtCnoH8d2KAh94w4BIm1xLCHBSg+SHIISQwtebEOOeB3uHzcMKUmnBxPgOLSDqtg6aoJWsBjbI8NnbSAPcucTnBIVtjWBoLBWl63C9NyaA6oYKMNbm0Ua5yZVZK5VDoOossbiEYiTtA2it0iYuxxe93YzBt0OK1ongDAAArNabX2WihB5YBWxLIvSzgQDjmDsVgcmHg2GQ5Fo4FwPBpNptKFeq02MjY+NTu7acv2navb9++u9AA4ifNLk73RCwvbdxyacSdAqeRTkWg8XWp2Zxa3HThjFv49k63k0qV6rZgf7TQ7o+35pemZlQN1bZ9Ob+BloBU0AaQEsADrcfEE2teb0AMh2QYqHwtMrGhBCWyjZ6shOxSrmeJ42KVfaLaa1VwqV8sXK5V8rjHV6bQ7U2M9AAb9y6MEhncmcng+7Akk8v+bA8Yi6JHW6Hh3YrzdgHBdxsKbYrWaz0adOL4Qu7sseHzoVjzAvns2DpVSoZCrtrvd7lh3pmnTEyRFQRgDsk5jvzUgcK+mGCdH4G9+wGEHz9E4stdEDver9GqVVrS6/B7F6fPbjBqj4PSyhL8o9WmtksNlI7Wk5E4nRJCHg8DHCK2JIhB/rQJn5ocHsI+Wogg1DrszazSDw0AlaTUmVwlSp1NToID7+lTaXg4YAJFcu5amh9cO6fUsdsmxGvWAdbwUi4JitPBCrlxIxCKAnoi/INaBlblcikiQAk5EYimNzkiaQXwLsgvr4FAVoRe0SwDhB9LR/X8BOOgJ2PObKCNHDKkMei0ofbXOSGMWGOd6AVGi9PApo5EkQDTq+hHUhlQ6HWEaXDOk0xsZg7WSSUbCYa/iUHLpRECx8rlIwA8/jJVr8GQxB5zBs+dSIZvO5ABXR0YatQr2kc20ggGXgnbmFitQYV84nm+NjXcbo1OtRrVSbbRHivEEPAScN2KPhBPFGgjkzkizWbcKMk8LaGTj6uWAswUQwNVGvVqtwqooZotxD2NX1BSrzeb1Bh1JMkaWkiEmeD3+qKDF7ajSYX4e00QIwKRukADNxkB80QHhoWiViRRoCQEYk8A2STLpE1m/xwtIxpHmZDwScAB4J8IekGUcxWVjiVQCtloWbgEgWiKBFd/NiXo84uuZnztxTFm1XqiVawDA0ZAdqzucWHJVbpa7PngfDodTsQMAx9Czs1gpjY1WnWba57M1MmEX5ahFLDaLUasdJE0QADke2BAtaTVrCKJvXd8Xhy1w9xW3k6YcNtnCO/0ykjKXzOmNrB2POrweh99klOOEmgM6mi500oSeBwAOoVkATgqrzizJPLBFAGCzrr9frRMdFnq4T68TfG6rhenT01TOqfBWWSCG9LTc4DOjosnm4hij1ZnKRLwKPczwjvhcmODNumHYVrwgOgPJ8uTWFO8QeVGUrPA6ArJExRcJu4PeYKka85i5mC9vU1TBQKpSK1XazfUnb2LtpBKtLUyG3RYbyym+2VUnhQoYPVhlye71xeoLp3fKebdyat591tL5mwrVhXun/FMTM+t3HLn99h3eC3cH5Su2+S7YdcGWhQ13z5UWJhYPXHj7vTcfn7uwfPaN16zf8tWbklu37zt628snHTu266F7D6586670wa1n3PrhzbO7dhbGztpxzY1XfjK/eGjP+jtfPv6jo5ds/fZNqQd/+pNvPX3Bg1fOtA7e2h2Zr2bSG3Nzq/uSd91/6Puf/vP15/7w5z+WHnnl8Rn3/nfu6+78+l+eve2U1aXvP/qtqfX7RjqVsj3lSeYSZUu0tC0z/dv3nn7ytluu++FLP338lf+z+vQffv468eC3b3p7+Zd/ePuZ777/g1/deM2Ht760lB6tT9XH044Gu3zxQmtqbP8Fh555/MqVd/77r29+9Pfzzn31o425s18847VTj17l4roPffC7b75zrtTpNls7txZiy62R679//MN/vP3mn19/69O7Vjeef+rXX/3kk3dPLx4Ya8ydpCgAACAASURBVG9amm5vHtmxfqTc7bSryeLGsWohGQ1CjAfmmAwDc+M5UZEE2uTOR9yIMjabAAAsgFLhaRMmgXVqvYHkWAhnOt2QDk2VdADArIqRjFrarGOTUY/i9sFqDsfCsGdw2DYAMAYqpyhQZocFM3Q2yefy+CU+6OUEHeXwKaBI0efZAyLUim5IEL44CTgBvAjoOiv8FcSMhAYMQBOAVpqGCBXr4gcNbrvZaBomORvD6NU63uG0OzEVg8kfQutwsxYzMawnzYJog88raJ+PvUQO7DxFI3qeRz88ezwZiUbCsYgvEI1GXU6vz+2ACGDHaYjeWNBh5Xm4Nq8/iNoeE3ugYjB44RAyG4o9S8gf8dv9sWjEH8KxFqF4PPK/R9CVanO0MzY5N795ZcfeXTsP7Cy5ewCMra6JZLbUGF+/snXvtC+SyaTTED7SAFTjk/Ob958xl0pns5lKrT3WbrSnp2dnFpc3r+5cXtq+u6xaZzCZsHTSytChoNvrC4UAgHt9v5h7dOPwVIRbB5AIdBpwyaKZE9H00SbRJtAZnOUL5UqtUQf4bHdG8pFwvg0Kpzs9Vin2FLBVEEBeAwBbeAdoaF8omUOToWqjCTJqBOc44GCjUYjnoH6qvZFP+WxEsX5uL8YL2CQNEikQTETDqVK9XgH8HRnr4DiG2abNQNE0/IdFWKTgxlpt9KmG//Aee3GYosch0zQAjwkgkKCGBwe0Ot6moL2yCyKKN5jMKYxRiYtqs0/R651B+CrSxutwHAxhsQsGldZoQSkOwYgaGDDqBjUMxWjUBh3guXYQVLWeMJBGlQqPoNWosfv61FpsaFOraTO9dg1NDfape0fQCMCaflDA8ZhbkgSWzRRz8WgoEPa4e0VYAMJ+r98n0xQoYApwRAvciGStSm8+Diy43lqx8k7RyHCCzeZwuf6VzfB7grbSPrlfTxvQa0M7OKDS6kl0VcV5UOi+atBo1QYgK0at0Tg8TJv1KhWgF6NeqzaBLjLKtUw86A954Wnn0vGAw8LlogGf4pB5R7OQyeVwvnQumy2WC9lMJlOHhzbSrFc7I6Pjsy1sZMaUvSgpgBHhTGUUFHC9PTnSQsMVBOCkH0+UHDZHJJioVFvjY6Pw7VWLJGMpOECj0xUI+sJAR9CrDWhmpd1u5NLFhItV7DqCNU6njBpgFDxJExZseA0H4oKKRsKjM5jMaLeJEwkBgAcMDCugFtapaIFkVXqCZQShNwhExnFsBmM45fOi+RxHsulU2G9naSYZ9gK74kguB6oXx44Bk8Q9lcrk86VcfaISBQCGfQrSNpov1hqlRq3ebNQjQUcPgP2wRQvVYsfrkNEZHp5RwB+NA3vOlqqdVsUjkLagYyyf8OosRT9nJrTa/jUW0sTqjbxeO2hi+4cGeNPgwJo1JAQ7iChOkwGID8fKdt4TBO0hcSaj2erolWS4fSwje1VGweMOJIvjGZOWs9g9oaDfG4jBw6nNbpGxPU0UAYD7+oa1nGIx6/tNOs7ns1q5AY2ZyLoUXgAAVmnMYk0Kd+0m0c0xhKRksxGXnRykUQGHjByjGSBAeKOKiha6y1E9ha32BCFzPOcJBiJhYCno0h8vRX0WMRYqKPZhX72YHalkmxMbTtvMK5QSqW4YD/vRl0vydLf5GJevtM1uJk2UTXKHKtOLByY61YDrlKL98ObzNtW6W+4f94yPTc5uO3z3HUveC1fTwpX7PBceunzzxPoTM+mZ9tye82772kXHTjm3cfTWm7buvf/WzI4de47c+PMDxy7c+/Bdu5a+eVtrdc/Ft7771aXD3926cNFljZVH/zh/9uHTtz/2u/X3/vjh656/OHH+jb966yeXn3VstnXaHRPTO/nwdGT1nInNY4cvP3bP+x89//233vjw8LH5ZzdGTvrzzNG//+D1N1795rGNP3jih0vzK+OTlY1KWAq0KgutXc1ucfbV+19+ZdO5T3/nshtOfuq/Y8///dY37Md/9tXPjn/6u1dfe+1vv3n4qqf/ctmvTku0yiPrpyasrZGR0c7yXOrQNYe/9/Z7Xz7xX//42wfX/uYX//hWvpmfbeze8qMnt7/x0x0PfefLn17tLnVbYwd2VWKbAYC/d+zvb//5nb/+45NXL1+5+sM/3f3KH/96792F06e62Ia0vr5trlmZmqo3C6WZejEfD/qqhXQKIBgA2M6ZsZXcTCipmNfpxPNcUfELgIYMQ5qMJpMeIoLBxPJmmgJZoQUOajPpNLykZyWjjuX0XAozeLDS4qFYCGAMATgWQsMgvxPb1h02M0hfmzXg9Xit1qDPatOarJiUxSZdlJherBYSYWsRfDQEWwLknU/BzhZMuNpxiqEse9w6jW7QwamMnrCDg4symACKBFqn1pIcoIYN+Lkkak0+NyvwxkEtwcA3AxC5PG6PD42eHQ476CNsOOZYmmSUeBywNRKPeDyBQASoOoCsjRVBAAcCHitAseJNhNBzH0cCB5yA44riwfIOUQS6gFVfIBJCbnjHkWAERzdEYvFYNBHrKeBSrdVuAwBvXFpe2blz56FdCMCBeBJPoOOJXLXRnVtZ2TcfjWYy6B1YKJXr7U53bmn14GQSHaSK5XoDs6fNiZlNGxdW951+6qmnj+m/NGwy8hIoTZoKhQEC/D54VVdv+ALEHK/HLoDoxSuz2CGG4TxanGbh8LgwkQbYx7BfqNcbrRGcgDPSzKdLo5MdbAgeKRYCNhuoSonnLD0JLGCLEMSrdK5YKlXqjcboKITxRrOJANyqV4qlciGVzBYLpWLMKeN8KIQPCQK0F40/Ie7GcmVUwO2xsVa9NTYxWbMZQfxQFAWrhyN5BGBUwFih7oPn4MX77HMB46dBRVhsJodX29enG9BYXHZ3LGJn1STKSLfXBvLM7XNYGM0w63NSJk3foEE7rLPzFpeDoSVrr5iA4/Rr+4y6PhVD8Ho1escM64eGKNpIGQGtVXqS0alpxqgb6NdoSZIgVCqIbOvWksa+fljpLK83sQyoH2mskIi6QKRwfDafikYjoagbiRiKLADZUNjF0yxaV5OUVqszsVaXz/25nMeaPQl4jEsizBwPqIJ2IwjAQWfAj8LFSejhpxq0+uFBlQZ7/Hge3a85juZgZQ9rGJMJAJhQ9xOUEa9YzRj6tQTBkga5non1BkE4lGIWiKKFLyZCPsUu8/ZmMds7gs5ks7lSpZgHNQzPDKlTo9Pu9ADY5XQDg4NF4fc6g7kahJrRSnOijcMIm6PtUiLlR+8WxeaKhtL1UnV8FG08KqIEK0PE4lq3JxAOxvKlYrkKL92o1drNaiZTSii8SyZp3rw5aNbqdAYzayJYp88diPlTliEg7sMardZEMiKmtViKpPQDOhoAmCFJ/SApEIJOB9/AYj2HFa0kZUFP+OM+X8Btk3kQvJmg12amaNiQNpFnjeZcKoFHz9l8o5hO9nyvc5VcbaIUCfvdSu/0JpTJFErZaqter1VAY0gi7JFAOJnIFvKjHhwLbnVgAYUnEkH3znxtrF31CLQ96B1rZGW9I+UwaYf0VN+gjeYsWkIitX3U8JdUAxytHxzUmp14LiPJBq3dCjcG3ofsQyM9m5VhOJvDGUgkfCGX02lbR4luzORM5AidYAEpgYbncQDgxvyKzMG6EAWR1Q8MqLWgUgSqX6djvH6rBAAsmJJOHEwlkCoVw5Qc7gmvgfUJJMk7MrmMx2UeohhbfCFkNNOaIRLupSg6fPHS+JbQkN6E40sMWALjdtsV2e/xu1yCK1MMhSxcMJhxW9X+brZUq6YqU5tPX+QclDNaXOziYC2KE70jK3GzW8luccKTAAkSL81s33fu2FQ97D65Zj19/Rkzpc7mr056x7vT89sP33rLhsCX1xfFY/vs5+w7Pjey+o356GRzYsfZ99174aHj5zbOu/7qzXtO3FrYt/+Ui+986cDR8w98474DO566pb6yevFDvzuyuO3mhfpD92TPefCdkQ1HdneeefWMozdded4vzivcfev533jq0G0PLlV2Xjs2ebY+UJ5t7l7aErvnxOLjf3jt8fN/8fufHXxq+hdzhb2rB7769m9euuW3P3+5dvTETzZN75yfru6KmJqzUxtHFs6emCrMPffEM29OPnjKN1555aLnPl758Kmrf8bf+asXn1n458fn3377ja/edU30g198e7VQr08UirVcrhngT52ZK5575SlP/uKBW1564Dcff/+Pf7t+68pIa8fDd3zw6NPrH/vHr+8+uunef5wntLutzv5dlciGSvWqp46+89Zf3/3o41tDF299+P0/3PDU7z57/sLCuQtTGzdNtOdrK+tHG3NztZFyYapRyubT0VoBYn80GvCCAmZ9IYfEmuyxhB8ni8p20e4DnJJIAw66gqWogXhgFnmaMegGtRBqOb1mkLboCABgXjRwaTdOzMVkbcSPtoQWMxXtTfELum0Sw7oV0u2X7I4IAKFD8ftQ6FjsmBlz+4I+P+waDyCIbBVYI9dzVwZgDLosLGgTRpKVQMDulUExqwxqyk30270OWjRpTFojyQGNFQ1qHak3kjSebVFqwe8AiQvRijTz2P+BVcwos1Af9obAI4UGBOY9qXgwjMWCoPVANAI6SyIN9FuS4Etkjz8GeOroHY/CC+D5LhaywisAAINcRyAOR9KxEA5NimPrZRwrj3oAjPnberPeGp+ZXVzcuLiyfcf+fTWApWAsBl8CAFxodsZntmw/uD4Sz2ZBAceS+QJaVsxu2X3yVDKdSedqlUKx2qyXyt3p9TPT2/bt2LX/9Fnm34eNRt4KW400BaPBkB/9DTH564Z3YLW73Q4LxGH0ELPYJBHQEOvSRNEGUtjWm75KUV9oNFuteq01VhtpVWqd8dFOu9lsV3O5gE22yU4EYHhzICNlrGMJROL/q4AhhtfrQCoAgDutRrXYq4LOFQvVchwCkSxgCqDXQuKUnR5/PBJLoUFRpTYKArjR7o53yhYTWjaSFOo8ku8l//Gc3OXxY0utG6s2fXABSKgAUdW0TOj7Neohxu1zOVxeul+nN5mGlbjiCCYSfln2Ok1DdCDjNw2q9UaDhgbQtjuQZGE9PG3SrOkzadYOUgbBpDYSZlZtGOgzUSazzoBOHCZSNURQBoB4ox4uidJpOYNmbT9lBNFtMnAC/ChCoxuyAgBHHBxvESXs2YtFcPZU7ygEF4MnGFIYjlEgTFKUWmNgbDjtKxCGneBxwZdZBJH38AYaHSx6Htk9Cw8JIMJXLG9x60xalW6I0AyrNMPDWgatsLBVm+RMBtPAkFmvMwAAD6/TkwSpG9areGZYo9eb9WqpkoqGI1hs7SplQiFF4svpCFassnK9kMXq5CSeoRRKhRwo5Bp6YLXbIzhKcq4V8CvwkPEQRQl47f5cFRC4XWqMw6+t1kinXU6m/LIoyIrsiYezrUIRO88mRitCrz0N+3OBrUaiqQL6uTQaLWxVr5cy2XLcLrhtNOiwOYk3UAzF8AaSlt2cNeJJWQYJytynUatNBAl7muEQgI0DOoazYM7b0G/kTaJJR+g54E89ALZaZU5H+eJA4D2yXQAAzvo9Voak4z0ANhvobCwWDscAdyt52C4JNH4pZyoTxWg44HXC23PavaiP09VmuVjI2u3AuhXFDtiHpwOjTsnqkq1Yye7xRCORNABwqdupyCQTcHpqIwWeS8ZEdf86yjqg4gmLRUVZGe0g/29f1HyJEphhI08JvEO2mK0AwCIt2M06SvI6fV6bPwIA6fR7gZsBssd8Uj8juty+aHa8QOpECEZBkBtRIK6V9sZVhYf3CfeVNw0P63S0LFrM6wZ1tAdkKtunkYwxBZ6tIgFXZOmSxzHh15v9FgPJ2tP5ajAoaWhaim2IGBlar2GwsEJ0BjONyZXQkAG7/TAdw8sSY4YgrhJ9pnXWctEbZIwOd8QpqP2t2ChQlvLYplPWk1ZCieaXu3aPzWyy8L76copS/KVtToiVdpcnmqzO7bk41875nCe17WdvPmc2W5+/fcLTHQMAPuu625eSZzfzli+f7jmy9/iGuZVvLsQ3Ts7sPPNrJ84/eNZFueM3X724657b61t3nHzZvb/cc/isnQ/fuXvH07d2tu489uA7D1yx9diGhQefaJ136ScbOocPLT3yn+dcyG095aM77D///c8ePqV52YmNo7uvX5z+sikytql94cEtme99eMr29/75t5/85U8/3XfRxm9sKG298qYrX/7dtfsfe+vlI1fsfHF2/ckLmzoLnWjhYCV+YO+26c3J0X8+9/2Hvnze6mN/fuqRj15Xkh/98HX7kTPfO3PivRe/fdPdH973/GXX/PGs35wW7+QX67bmaLcjhU6anU8duuD8Fx5685PPPr2xtfzAibPvfGgyvu+Xz79x9pbH3nzrkz++Pr766jHXyNTIyO7tpciGRvniR8959+NPP7u5deutly8+/slz1z7x8n//upo4Z35ydq47Nl/bvjDWnJsb6ZQK6ydb2XIxVYXYH4vHsX9U4Dx+q2gmncko7GuJtzosdr/Es4LeqNOotTqtGt3jCZ4laL12UCsIFgGEBGs30aJeB+HKnAoHnHY3qMlQLCBjKwtD4Cx7nzcIOoBhXXbGG7BC6HS5nXjuCAIboBFCvMvfU42JsBcrdq08Q4sRCGGxQABEMRYcc1jFFwgrEYfiEfuNgwJE16igOM2wwIaMJprjLIrXJRixwlIEaagftnstEm+G/U3zoihbnD4FJKEIlBhzwHIvPPdSbZw3FfWHnIC7vGSzAGcGALZQFGgQyQlaHi7fH0lh/tmDHcJenwcn7eF4Pwe8jCTA/3wgmAiHM6loKhHH2Q3xaDIPSJxIY5Vjo1ZuTM7NAABv3r5jx96Tmr5AIBRF3x006q1PdLubtu6f9iBaZ1MQA7JlCGjjG7bt68YgfBZzoDDhRerVsYnZ6enlHfv27jt1ju1TG4y9PmCCCcG99PhxOo/T7fM4HL3Ur4In7vBGLCBnrTYboDArimjiZWc5M4RHgf9Ce7QzNtauV5rYh9QYnZie6jRruWTWzQuSbONsAh5A40GBzQ4KOAbavNZzzkK1A/J3bGxqahQEcbVUryQjyWymkguDmLBJ2GQsotkojpgJxtOReC+1Vu92Ot3u2Fi3U0IA5hiWBu4jMFYZU9Sy4pScPkxVhDyYiw8pNIOcD3i4ROoNRpN+sH/A5I75BKpvjYo19es9SY/V7Qulg/CuqIF+ozsnmfRDOppg4CmiqFHQq9vCGPvW9K394jojIbLY5WsmTAMatc5sArWrU6lNJrVuyEjqVH1DasAB0qjXcqJx3RBFatboTQYWTxLxlFTplCIRF6Ys+FIhGw/6AyEPltPLuKoUTzDi4zklCDcXANhoMFsk1+fV3MBiQYc5JJn3CXrKwplxFrULuZzPZ/dEnf5Dp18zpR+iyS+qVLrhIYN6wMSaOYvYs8NiaZNueIAykJRaa9SqNYyZANJrILByW63Tr7FW09F00O8HplNMhd0QoQsJEMRAal3VQilXyKcxq1mBm1/I5rLFEo7DqNcBgidnG7Ct3DjkhhdAqztDmWK1VSkXKyOt0dFmu9kaycZCXtj/kmL3R9IlnAfSQiPRuoAGcmjdjcXT4Rgyr1K11mse7rRquUIlZJVdFkI2W70S0CyOZw2EIEhWyuB1S1bjIEPoBoa1agPLYjECRxIMNTyIBBkkFxoL8LQRHi9v7OG8FVcvQRhCsVDAAbSQN3HlRNQlmY3mfMSL7f4EHQ7BfY6mU+jUVsynUrlcIpOpjFexptKNbXGOCNyFVAZHLKa8slPkWKfH7gqksvFKeRyu1grvBeev+BPRZCwTz1RB51t5h8NlKxWCHl84yazTqUmS7Fezlr6BIZIBtj/Q96W1tI6nSNFAAeDZRMHE4vVKlNHsomQvZ08GCQPpdvnQGieUicTlIUq2ez3B5FSZoFkILAqEkFgObm13ZhmiiFXAlgzTQJ9aT8ACINf0aSlH0MpyAzqJVPyilVdkXqcRzLkgP54y8REJ7p4jk2rl08QQyVvSi1Gaow1DeiPNwP71JCsze4IaxsLagOhIQEbtBptRTQ4N0Jp+S67s8fKMJRR3SmsC1Xi+Vs4XO0t7l81WM+vOjIzFfRJnEm2e5vaQwePNrrgFTgRWH4+Pbl65uNkuh/0nFd3HFk/bWJ5YuGnK2ew0xzedfPO9y4kziw3reQddF59y3aaZvd+eS2+Yn99zxr233H7+tmuKF9xw7eYd99xRXN226+htP991+NStX73j1JUHb6kv77noxFsPXtY+Z8vSt++dPHDl+xdMzXXc5528oUvc8aNfXxh66r1nX//57n0bK+N7b5hdPCK09t2+4cDKavGr796w/MB7v3z5w88erD32zA/n42c+s+WeZ3/1yKEXX779zNs2/XRm/sD6uamZRCDZjYVyu49MLpear1z3yd49F5z8m3ee/vsnhxa++tx1b4oX/O3pNw++/syRr/39mZs/u/jbn97x25OSjZGJSc5XbHSJxMGJierOS8969s4rF845KzG78OQHTzzz9rL71B/99KP0GX/+/ce/f/V/nt1waCpWHy139m2vRtZXGlc/eNKnH93uP/SrD184vnLRpw889Lf/+Pj9RxJH5yc2bWy3Nk3vmR6tLk00apXyTAdufTpaL6RTOFbT54EH4Ao4RFLvzGMfCER4h+hySdg5SgH/JgmDFmCYZLG7A2KinjcLALwqUjRxAqGlWR2TjMKKCwaD4WA0oOBgWZro9elh8oUzUqLABfwus90tCqyVsTpMEOLNPKyPUCQeC4J49uAYHSu254pAAYIRtx+LsVkzLQiyC9S1P+aRQuSQacBrZWFJOi08McwTemDZosCIHmwZxxpSmhjiAlbWLrDaYQPBWWABOS2wMjkS3pIbW4J7rll4BG1iXSGnAO8SzxOtLpyN4vLaSQOgldfnciaw1TIc8YP4xWpjQAcsrcSeZTsqaRFnh4vOaBJHAiaSkUzMY/fGkpFAKJ5OobVVuV5rdMYnZjcvLm5eWlresmfUF/WC1I9G4yiQq83RyaXlnZOBRC6bTMYC/mSuXKk2JxcWV6fTqVy2kM0X8QQxn2vPzc8urOzZt7LrwJSpX6M3CbIFHgPrBSjwubDIzOFAbybAHqsVaI0EzEB2u11WxWKxCzLa4ShY7oQHZaCLvzDaLOVypXqr9zHS6c7Nz0xP1rMZL6ZOOcLMi58ngWW4D6FoCi+rhpMXyiikOp2R0W63UaminUElBRibKaSDOGJKwmNrCAGg9dC5O5qIJTJYwFUbbbc7Y6OA+qCAzWaWpkgzBYAl9WrEsFvKF8BivZDf5w9Fw26JIvRaoxkIEU/ph0HbkthSyhAG1qBWDa4bJiSO84XD6YTHrB8YMrJeWCgyGqOxFrQTx2w0CDWB0K1doxVonU4L30uo1fBLD4BJ2gjopjKQJqOKoI2ageHBIQNcE6GjOf2aAcKk6tPoCJEzGFgTwKLSzkdjbvSJtBSyyShOhsapHnagc1jx5g26WUoOOoBv0iqD3myxIlPDQi0vcjW31c57LXpCMJttDuVfg6nRNIUvXnrR5XtTWgM5pFIbdcMajdpIU4wgcMgMGZo0aNUmuCz1sF47PEwyhH5Iq9UTRsPQ0KBqrdLKxTKggJ02AOCI02HlKxk0prRS7mo+l8t/7gJdzpVqJfhLqQgw2W6MdPEIuuH3ORXEJ54HAFaCaTzIyBWrjfZYpzHSGmmmo1GvXRJkp+wJpYrYKN4eG+t0aqKEpAwtXT4HYJyz1GiifyUCcDZXDnrFsIt0uswCtjKLAkEysIKcnBEoFq1RkdjWrIFbS4EExiNomlYNAnuWGIYnVAZeBBimQQhb0QQVCLPNhgAcCfixi18guFIs7LTypDkbdMsW1myi4EEEAtF0IlMp5IsFoBxAfVOlsUoEyA+WSlptwXgqn8m3W81i2u/02gTB4wUBms6mG7XxgLVnheVQ3F4XaIYIUMny6EhVFpyK1zZWzDsD7qDZSJiMHK9eZ9Ku1fSprBRj6fu3NUa9njPSggbx2CXLLFrgOu0sxUuUIFGOqB2Ikt0KDz8EGB6Lmwdpm+yBG93NGxnO5uwNqoxn0+V6e3qLIksOtJ1jqeE+2Ni0WTCt6TPQzqiDYwc0IuHwCxbWYeU0KpZKhfhumuKjNpOZtydbC8kgrWMES3xjGLiMQYUdfrxk96Yq47sTEGAFG/Y+OGwYb40mKzBAG+EohnwRllZyOZ97wFeOZGrAwUe2HNpM8lpScpXqaPtpInm5tOgzupy1/W6GtTrd7mRmbHHbJbXRit91MO84c/ORzbnO8gNjcnWk3pnfe93NOyKHC235rP3y8VOuWpzZ9+R0Yv38wt5Lbrzr1rMnv5K94MZrFldP3FnYuW31yB0v7z793NUTt+/b/PDNI1t2XXjPmye+3Dlr6/y3vhU5fMNrC5eU86fcc/FqZc8PLrl2V/7JN77+yCNX3/q11daeW6c2gNbcdv2m01ZXqpe/fc4tZ1/wyIsvHJteee+2u2eSZ/3jiqk3P/r1Hz9765nOHXedWFnaujxb2xvypjqNlhK/cHYpOfe3n/78l5dc9ubbz/75g79sX/6fJ6/+k3z1E0+/uvf9X//uvc8e/sVzFz328U8+OiM+Up+e5cu7zzrNmdnXna+uXtFut288/MKzL37y7gX373v64w3+1ef+eEfzb39746YnPv7wifcfmvGUx+vj+7dXo4vF+tXfWrpydeyODz/97dVXTd7y6bUv/OalD/52V+qcucmlrdNjm2f3zbRKW+ZwitzcWBVocqxezKQS/x8AtmAVdDjgcWEbnehy23CCHYNV0JhQwBpPUKSUUTdk4IDrm4waSjAwFlrP8gDAMZ/bF0tEg74AFn+C7KIiIUydeh3YTCbbrR6HwoNusAsOq9NhktH8Q5LsvQxrKB7xojK2cVhNH/Z5wwm/P+R34BhWSZQVFwKw2db5XwAAIABJREFUS/TqdSa1yFvhB3hkVjdoZLQmhhJFpHo2DwQiEDsGVnRbeZmXIHaZzAIrCqB3JRCrEFGxH8ciS5beqFnKRMk+RfIEXNitjM07eM5sp2gbakjF1RtP6A/2jAN9nl5+GMcGwJ6RcYythUdN4Eum0+FEKh4NpbPJGB6K9RQuhKd8DWfXT07NLSxs2rJtddfuvW13yA0AHIujGQf889jEwsbd075YNpNMJyKRnm1Fa3x2aedMJpNPpRNpQHF03G2Nd8dmlnfu377n4Ixpbb+RENCik6LdAZfLiwDsxvIeF2APHup+3o8lu5xWwYHOkpaebHG5XDIvoAmY7QsjjXKpjAnqUfjojE/OLaxfv36slHWKPMNA0MGhjr0csEPBKS7ocF8ENlGsNTvj3dHRscnpSZBKjWqxUspkipViLhVyYhuSIH5+BN2z2A3F4vFkptfChP3DHfhp4xUAYAZdgliKYSkr8B74YkXxYwczHkJ7vJFE2OOEcESQQMTgNZnBtf1DDM8a1VqdTrEQai2h6+vTCeGoL5H3MJq+PrU55HZYPGFumCIFh4JBx46W36AqjGo9wL1JS1Igd1UAscNqlZZhGL0BJKeOpPVDJtqg6R/EUQ00ZcKZXqCAiWGARMrGag2cQacedLWzybgbbgxnLWZiOP0RnVvdWM7sxwHVXoWm7GFFsJhJAGDGYsMuI1/vw4sNt1bKYTUYQRHKeO5jt2MtfijoMU9eunL+0RVJA4A/bMAsMFzF//YicZyZNKiHdQaG1qgNhsFBI0UaBjU6HWWET/SvW+vuFGPpqM+n2JyldNQOOqqeiwRgBdDeej6TzWVwzne2mC3Vy4VCoVqqlqut5ugEPLvphs+jyE7r5wrYBbhQqNYqqUqjMtbt1EZGx1qZZMIDIGh3Ss5AslDGSYZjndF2TbT2VhJwOTxjh0WeKVUAgBu12mhnpA7LNGgX4jF4nD4kwpzE60izrLg9rE72uUmdUWtkTWq1Tq0m+M/NoElaMwCaD4czGIfUtMiTKtLIk7A7cdgY7FLCpMfmfMVlt3EElw967ejXmQ3YJREkI52Ief2fA3Aey80y6WIqkyyMlnF0qILDlOzBWKqQK2CPeyEWiHgBgEEB+0EnNxvjXqu19zWg55VwKBYGAC6MNMtWUXEElKlqyeW2SIRAmlQc0DJ67ZfUa9byNCf1/7vaotYzeooZpmiG9zrgZiqY9Jct+HIMYXMSeoYVOK+T9/fioXGIk51ee6TYzpsAIi2YQ3eD5C5UGxMraPkj41hzAGB43ibCrF/TZyQdcSdD9w9zJjnAibQsMepBighHzZ0MzYdlHcmJ/rkdLjtvYkVLdCFOmym9ykTDXbcqgXS5uzsrORTRBru/Z6cvyqyZZ2W/xShlJX+cJH21oi+o9SIA18rl9sZDC7TFYPXEJpoWK2/SWTyJ9QcTlMNR2uMBBezwetPF0bmtx5vjzYj/9EbwnG1Hl0qTy/dOu0enxuc2H7r+K9sTRyod6bT91svPuGzLwsEnphLz85sOHLn/1iNnLxyvAQBvXL3vrvyBPbvOvfcPpx+7YPX+O3ctf/PG9vL2C+5+/cTh1uaty48/Ftl36Z8sl59V3HTnA4snbtg7c9H5uZf+/oOXfnDJVTftKO26aWLDUX9n5bqls3asVO//xeOvfXbxc/9zxVk/3P3zOx7dlDn84Z27z3n660+8+PwVY889++31c3t2zLfPDLsKndllf+eiheXc3EdP/+Kl2Ndff+y//vn+m99j73/hm6+5zrnx0Q+veO+D59/4x8tfefiW5194+OnT8w2Ihrb6nlMPyfmTu5PFmXP23PjSx0/+5wv/50//8/pNpaf/uTW2+rNNZ971z89OnLjvzfe/d+7VFzurEyNToICjy43cFQ9kr3viiV/8/Z37z7xl8Y5/3P7Wf/zuk9/WqmdOjq5fmu9smN432yosz2XS2dL8VLuRiofrxWw6hQDs/hcAU3olGwWGbwXEsrg9eJQMfJWmKNJk0JsonGjH0gatysQyNsFg6AGwQOrNgp5NxYNeHI7rRqsdN4R/gQpiHQrAFpqr2ByyQ5BFF8AxK9mcotbqlXhBtLkxweqJYLut027DHgWGjwIix7yegM8hojcszuXxhbwJkHSDhEbLc07FgsVUxkGVoIKgBJudxhJ8CfOJCsC9hL7EEggbiGiMQAEh53naDBJKcWJiVMB5PxyOZLF6Pa5AyA+7PIg5XvjwOECWo2vb58USvmi0Z5SIIOxxIwA7FQA6nJ5nEUWIFMF0JqKEUrFoHCIeZqISgKapeCyZxRaNRqfbnV6/sLh1dcfOXYc6roA7EEOXrGQ8nq2MTM1uXNw/54mgaVEKy0lK1frI+MyGlYlUtpjJ5AqVWq1WbWAR8djM5tV9q3tP2mjuGyRIXkL+QAGZcXrdivdzcwePHY22vDKwE7vD7nQrViAlkk2wYkEoCC+XFQEYxPEXQLSMAPS2R0EbtDpTc7NzU1Oz3WoRBDPL8gQCMN4iTnGAAo6lcpVaJV+oVQs4rmm8MzbZ7Y6NNOqVQqlcxGGrpWImDEpA6o1RQtdpJxKZUK/ZCgC4Uhltd7qogCfKPQBmKJqjEYDRaxTiuYJX7w2GQwGfHwJT0I+V7AjCJsbCa1U4XJI2YVktRar71bR+zRod5wnA6mCMNIAT4fdzoBQYQFgBBwuDRMNEP/5uNQ0M0qxeTxiMmmGCJjWqYQ3NMUajZnBAYySBwFEGdd+AUU+zNGEYJjg8gobvUWsoK6s1cka9etg9mkvFnTzLslIpl4hGQF+hC4cvEAj0kNjrZFh3TIE4adQYdIwk+7z/gl9YW4oLYEQCAAb97EC/VYfTB+gQ8PrEDSc7Trnk3IKBxDGJOs3gkAZ9YxgeKC8Ws5HwozUGmkYT68F+PU5rUhl0tFEgCNXaPs9oKZYMg5bFI+gI4BJfywDZtUlMYKSE6xBLgjOFTLFWKpQr9XKtXGnW20CeOpN1Px6dSyJgrOJxOUPpfKnZSDVGit1uq1gf7Y5kM3EPLBVZEXsAXBvp9mZJAgADKcPRYqiAI4k0cq96C3hYebTTrsPfgnZbKi4n4x6/rTfbyUjSCMCMlg5EaMo8pAWKMgxvC1u1GHimBKntNzAc2loZVUOEwDFqo5GjLDgM0wYMnieMukDQ43WC4jWb2IxHgSUGABxEUWcm+ELCH/BH0oksNsPVqqVCJZvPlEZLmH/HJWRxhXEaYa41NtaoZmIJn2jxemQngGKqWuu6pF65tcMNDyQeS8fTsXSuUc0LnN3hczZrMQ9oRhNjVA2aYPFYB/5t7dovEQxrGRokeFJjMhk0AxoIMz5Z8Qa8ePLndni8QQ/P2kSd0cwKrNvOOFzWWC5AaKxOb9ABt7hkImnGDLcWm6H86WJ1bEUWJXR95Xmzum9IayBIFgDYZLTFXTQ1OAhwHmRFymqh1P0GkzdBj2TN5oBsNPGifWEvY5UJs2iNAQCzcKFGEqib1R3OVmZ2p3ir3WITe0QGdqYdQi9tUxijLeePJswmZynr8Gi9lXi+ms8Ux7Ye3ixY9XZ3fLaFNvqiK5jfcUbYADi8yeeTzLaAP11qjC1dVB8pBd0Hir6Di2cv1tdvvQcAeHJ8funQbTduKp5X6fIn7xevPOPilcWD35zLzs9tPunonVcf27N0WfHYTdcsbH/g7tyWLZsOXP/CzjOPLt9/4sCe71/fXF654J7XHz13/oypsVcey2+77MP0tm8vnfS795K3PXva9vvOifzn+z9+7NuXHb9g9+ipt3bWH3aO775ly+krq+Xzz5u4/gf3bD101lsvfeW/D/1yY+aUZ2+49oLt//nKU+uXz37+O9/et7jl4Obyl7OWRGlsilm6anY2t+G9E9/6+fwjb/31Lx9853tvHnj6wa+8EjzznRe/dvZzT73zz08++/j9j0778Rt/3Zeaacwt24vL+09y5/eOzzaWj5z1yG/+sf38d//817fef3X75CXjsd1/2PvxRa/98SeXv/jO73de+tFFvna3PbV3ezWynGsduXT5/X/+53Vf/+Sp47dtuvmT33/w8h/f/fjqxoFue35prrFpatdkPb9lAW30Jxv5TCQUqBQAgDEH/L8ATBsc6bTP77NaXTaL24tHnTxnBs1CgNzVGUkGE4k6jZow0zKnN2hI4LkcoaXMGioFKgYEQizeA2AFYI7AYTwKiEnYVZJgswJsWlxOjscaQcFgC1jgj3Ig4PV4fJE4KB/FbhU5jqf5WKAHwH6vA331LRyAiC/oiTodtnX0MGk32yUepQ7dr7LoNYSOAkVopinic0Nd3kzzsiwwfN+wSQ8hjGexD5ajRUpP2ewSALrAIedkzYABmHsM+EMeDwRTF8ha2engOJtNtDlAAWMrXzCIqIx54B4uYHTvAbAsiyAHJCmQSvmswVQonslkUjjqN5NNJkEKJwB7qtXKCMDOwobN23asrq6e1nX53SFsWQQFHE/lW9Mbtm7dN+UMJ3F+ejyJQ5Eqze7M3HI3gUdnWUC4cqXWxCzt7MLmrZs3LO+co/+9jyA4uHwzSSgIwB64TrfPB1rY6fMGE0FZ9tghSLo9DtlmA0zEUir0OrHLCpZV2WTLF9rNerWOM4HrNbQKmZueGe9OdWtFN7wpQSSMHE5L5jkG+IYXPXxA/RbylWqxXq21xwBNR3rQXYWgV8ZW4kIlH3H1jBMkDJ44LsfpdIGi/dwKuloD4QUADFykJBDYggIAbO4BcM8uwakgXAWj0VAYFg+ImGgvgsJtZkVZokiOYwmDQafSwvcaNQBlxDAOw3TbtWqVWRIZyub1hxTgghDLQf8DA7BhUzIvOWWXpFcbSKPWpAPNa2RI3fAwUEbGpB/uH1DrTYYhI+jj/oFhNWkmjAaNkTWs7Tfp167TGUiRNZjwCHrINZpPRx0YIvlSPh3DskLkF4FQKIg+bwDALO+N280iAxoPARiXMxpbe91e0MmggO2SkRBFG7xXj9fl9oMu8ju8lrnd3OZLr9qoowigAxqTXgUCV49Tj3lgJ2Yzhc43Rjx5MhjVAzoTRQwOauEHmCnGMDTsaZYTiTAOnsccsEvm+Woq4PXbJTrQLucz/wLgfBpbhaqNRrVZqzWrjRaI2fFaIORRnDgEQJKBP0Rg0TUQgAvd8WahNtJpAiOHfQcAbHUH0RwGa7fwCFqQegCMjXg9AM5mQQGjwXR1tDvayOZKIb8tnw9fe9d0UuYlAQQua0arKdag90domhvUkaRWpVOrAGUQgBmCMvRradD8DE3qVCZgHjoDwVDoMACLyMpzhEENW9Pr8gAAE1zG5QRabaQzQYgKnJkQYdmFg5FkPJMD9K83a5VCupArj5XD6NEN60d0R+PJQi7XbLfr9Xw86pRsAZ/dE4jHk/nKOPBRCAsOnJodyGQK6VwyX2hUshxjV9y2YjboVSTJTJBw01WMaBv+0r9pQQEbJD0AnW1IRw2t61vL2W0BhzMUDiB1hFDhDQfsVpvIkGbWbnHKFquXS5fcvB5+ZtiVa7UrIAh44MOy2x0M+lPFcntF4q0WvK+SqB9U60AhW4i1/aTRGnebzZp+irBGWAtlEUlNn55UMmQ9x5FuK0XyNtv6XZTdbTTz9vTGoMlsJrUEJXC8zRPNVdbvTIp2t8OB/X3ovuawK6GAYqdFzhFNuJyMXszkHMqwtxrLlov54ujmMxd5q8HuDEyNugIQmP3e+PaTFKMrmNngDjrMchCIWGV028XNejbg3JFw7lk6b1Oxu3D3pBs43ezSwVtv3li6KDYjHtzLX37qBVs27f/6QmluetPBS26/9MpT2qeWj9587fptD53Ibtu395w7X9p55LzFe+895bTnvjK6Y8dFJ177ztGJC6erP7tj8uiNb8XPvODLi4fvWL3uut9e+eDu3Iv/54VvvHrTTV/dXzt068jGY/bJvTcvn7Jlx/g599515P4t9Vpn7yn106YXq43ly679zl8v+uo7593wxlkv3fn9jRPbT92UPtwQst0d2/QbLprZUFz5w28fO3HDC3956+8vv/jxuy+e/Zu3PjLf9ND1j3/t7ef+49dP3rD12Jb0qadsH2nPNutbXJWtJ58ZyG4b21xcPnrm85+8mn7lfz545423Pr39P3bFood+v/7gVX949u033//nz4588tF1jtpoZ3rvjlp4Odu96IqVjz/+5r4H/vnw6kPr7/vspdufePutD18qbR8f37J9fW11dvtotbhj68R4pz5WTCai4UC1kMVWOgRgBgFYog32ZEyx2xjWyou48nmcoQNiBD702AcsWcykTquBjWITTISW5DQmWB4mYsgUi4Qj8JJ+v9Mjg3xiGMbg7Y0/8HotnGzHFmBFETxumrY4bFbWKPpFBv6MObFACISF1+7AFhheNJqjwUA0FfQF/Qp2lAicKDuDEV/A4Zb6zVqL08haZL/TaabWaDhGS5pMNJBZM7JL2Mo4qMwCCopn+jS0QU+bRbPksFvNZiupNXBYx+nAAI0TWVggmP5gIADg7g6CRLTBjrTLHCNYRDtOXnJDLA0EXeiegCIT4ELCShoZlDYgmcBLAOde7KJOp/yJVAiEbAxHDSbRBjAF2FOrgqIYn55f2Lx91+7de08bRwBO4pSgJH7RyOTCti2rHfgUfi4cTwBeVZpjkxu2TcRjqUQuny/kAcVbrdGJuQ2bNi8tblraPs+uHTQYWWA3ZoJQAhDPgae4QZeDYgdi7YkEHC6IHIhrVpyqADhkVVzYf+V0u6xSz8HrC52Req0G4bhUrjVGOuOT03NTE9Pdas4NcUC0UAyQHjSI52H3AjNKgkYq5XPFUqFUqrW7nRbIHpDPEPDKuH2rtUolF+mRF6Q/vSNoF9wzXyiczhZLZYD6Xgp4ZLQ7VhBIHpPAnytgCXgCJgkV7KgNRUI+kMzxZDaTyCbRdhAPHoJeWaA1Bo2OhmhMmgiASaxgtjglk1kaUhNOnyIYzZ5Axj+8jsQMGKb+HIATVmBtEmNTbPTQMKUntXrDsJ6hjADApEgZNIP9g2qtQT8A2ljTB39GADbqQPKu7ScMa9fqjATPmkjWqMMccDYVcYiwEfhiLoUA7O9dWSjYo44IwLQ7JtESR+h6AIyDkgKhoN/j6uWArYxTNFLwSBSrA7vh/D7Q7i6/1N6fmT562RY1TVPagSGcfKQDhgvUAqAeSxlMwDmMJoI0aDT6Qa2JplSDIJH1RrOZMRr8jUo6GQmFPA5XORXxO0ABp4MBn2yhfK1iDgE4nctns8lsMZevt+s1NFGp1gFLR8eqwbDX6epN4ZFhWUezuUK5nAKVPDYxWm21O610Ih5w2mDLyb5QEg1SR///AByMxFPZfBHzGCP1ylh3pFkoVcMuV7Z50t8//m7NY7GLwF8ks+T0OEEMRwMUTauAXpg0anUPZxjYqyRDDqjR0ha2onHIAPChM1A0PsaeAhbMhF4diAJh8aIfnpDzgB4w68l00APE0mziy4VEAvZbJNmr9GvUq5lELlseq0T9nwOwxR2JJouFwkhrpNEsJaMQggJeuxcAOJWtTHgcvAI7A08ywrC6ga0UyiM1UMBOt9/aTOZDcY/XzolqwmTgbMzwmj5uSCH6JUplohSdnlj3b+u+OOSQ/diIFoblCiI4Bkvea7cIPMnwHtntcrtCcqnolUyyLxDx5hqdholgbU4fzjWPxyOFaqW1IvKKVcb7ajEMqbVGhrMQa/oMejHiZFlNH0FKUbOVFgWTbp2OthVMlTxvdFhNBG21zmzjvH4Dz9rzm0IEy5Eao4ljQQFHsuX51QwQ/YAngEYxmBDxuCCUOi023qIEgfzomHTF4xz2NCLxMtyb0fmDC7SVVrzxua7XS6n5UDCz/0wPGwo0t8F+4mR/IFGoTBy4olXPhXz7c74ztp0zXxpff8+EZ2xybH7rKV+5YVv6itAG+cBuy2WnXLy0Yc8j68szExv2HXnommMX5HbXjtxy3fqVh+/LbNi5/4L7X95+5Pwt9959ylk//crUSfuOn/jdD8/uHNky/ti1jQveecuy4dLLLr/yzquOX/VQ/qHzQy9+8Ozz715+/a3L1e3XtVeOOSe3X7t06vKO/PUf3PfMf535yNvHH/jR9veu2p8a2bt9bv3x8XCk8c2bz3rlyz9f2nZg83Tr/KZnds/x49al45s3pRd+86df3f34x68/+9qvHj12/YRlz0l7U/VWciKyeeeZ+ztfufupJ/becub39ta63bmuq7py8CRXZld1trDt8OFf/uDcS/+f9154++U3/rbnuR255tbv3vVI9lv//Zef/O6pg9975aNz7K3O+MyeXY3Q0kj5wpvWv//eZfd+9927Rr85f+PH9/3wvY8+eWdva3WyvXnLXGv77O7ZbnPP1hFghJPNai2TjGAOOP4vADYjADMGOR6ERQRRmBecHsy2AEEFADYiBGPPj4Um9XqNyUxbQSPoaIBLzqg2ksN0Jh2BqOmy8RBqsM+eIXQ+nCDkgRcX7IrdIfoUmfN4WdqhWEXKJARsDElbgKR5QtFoOBS02TFhIYgmNh4ORpMBf8CLBQqswFnsrlA8HHX7RRWhk606wub2OW00ADDB6rUMgcRSRA8hQQDwMPbmGnLkoIEzGWA7cza7hacIFvgsGmhizQPOAQcANjqi/lAgHAj7vAFM/2LppRUB2GJ32iSvDy4hlgz02jqRS7gUK042RB2M9m4o0Cw+AN14MRXKpILhVC7h90UzaAqQSmGjfa0xNjE5N79+cWXHrt17Tx5z+t3BWCQWjfUgenxybsviylggnEqhiXQsmas2AaYmNyIAp3GWfblUqjZGx8YAgBeXt+3es2ffktSvNujNYg+AXSGcyONFky7siMG8tdetuBW06gIAxjEmis1h8/ncdgtoeonByY6S+IXOaLuNnlYVROHRsfHpuemJqW4170YbFNEM+kK02UCzAQD7YzhWAse9ldB3sDWK5dP1eqNWyqbTxWIBQl+tXs5FPaCwJQbnZljxGMEFzACgGwD486FLo6MjLcDuvEAJZpyFw9FYhCXbe+2aTgwSgSCeBAIzSWeyoDQTOEna44/GIwHZOKwy8v8vUe8BHld5bQ3n+b4ktmVJ0+vpZ+ZMOzNneu+9F0mjLlnFki3J3djGDVNM7yR0wsUkhBYgcGkhITcFEhICF0ggCdwQSAgEuARCCSXt//ce537X8PgBF2lmzvvutdb77r2WTcAQJcEqcIBNUjagVAsqvS3uIeRyBg+xqX4Fy/RmoOxoowjMkTOxAugRVb/OSIO2BO1LEjK50mA2qBSD/X0DMpW6T6lRyddvUCiNNChNhZ7XbxgkDRv7lSojai1Oq5QNSG2QhBIAOmMpZuFho7vqSSOsgB+vJrxOxuCMCKSF0588gpawSxi7oF1up81hFkgnryPNJotDcPaMOLCjwBe0Fw8tLK6tDilBCmoUfXICCjBmNPUOoYHIUAYtBtzojRoArEEl4K5SLtNrjEqGZgkyAAAMBBoAWCqlIz4bzzcy4aBkNROeOgjgTM+II5tOZIr5QmOoUoEnMIROKkPt4arfh2EMZrS3gc0ZyeSLhXwWh8VGR5qddqeVicV8Tis2YfmCsUypt0SGO+0KL5zsJkDX42A4EkvnewDcrJZGR9oN4HIRZyBRu+/TT94ejdqttJa02QjO5rKxdm/MTrCkVq0yUNoBJWpIumd5TRg3ymAhcIyR1PWrOIbVaDAsmgOkhwfNgi6WBeLBgOTG2Qhz3gdAzGiJTBjtnTgDW0hG8cwpHM8UgFzAj1wqlyl2SmEAHjRAt0qhcLxYKLRa7XqznI6LnNknWT2BaCydqYw6nebeVBg8KwTgVC5VLMLbsJnd3pA4Uqwnki4PbB+V3EAZGKNmo5bTWcmNjE4JBJ8n5Bu+uO7/rvPg4Q1QMVgTfgDVcDQRtJlYUkeC1vAHI7FQrJ6LmimL3x8OZMvdNp7RuLyBQCwOTwg4Q2uVZZ0WB48dF9oBeQ+A9es2KNV8UGToQWzgjwIAs5xOvUFFCwVtoWDS2q0qI+yHqWXY2Do7bS3MhwmW0cvUGgo7pgKp4vhKIZzMRoEFet3AlYKBAFQD1mJlSZPfB+tQR6cqbkkptWPJSmt4dHb18LLRTJkd4fGWw8kRVimQ3X+a1+T1Du+ymU20DThLvjZz7MpiJeWWTi04Dy+eOlGbXrqv5RwabU8uHbjmxrXo5cOztj3b7V86ctXi7J5vThYnx+Z3nXXnVZed3bw8f8aJG2e3/vtdqfm1HRfc/9Laeeeu3XPrwdN+du3EkVMuufv3Tx6cvGSm9Ks7/Ufveid90eNHdj7y1q8v/Otvz3np0sBj7//0wf+85d4Ti9O7b2huOcM1se26radt2eG7759X3TN38L+ev+30b576/z1+/WJ6/7fuvObnp8zsqFx61vDuqVLxlO17t5XPaQQXd519Njtz4ebFxsxtc7M7pIWZ+a3HFjadv2lx5/CR2DnXXnl492t//vThp3788VMvnfetXz+13O5OTy3YytuPnu7L7Z4Zzy2dce73ph6/870P337l97/77PT9jy4nJn//zofHtt949xsv7n3hD3/97463PTI2vn1Hzb+QHP7StZs//vSR06/87/vG7xo98Y8XPvjbL89dWBjZNV7dNNdtbR7fMz/e3LWlO9KpTzZBvaSi9f8HwML/A+Bo1O902KE48i7semA4gugpYAOUAwNt5vE4WqlnYWGotErCpGcJtcJAKumsy2q2OLALSLSgoQCr0+BBHFQcu4DK0c7jWnO7GA64oZ1iJJ+DMrBWh8sm4XBsMIgtrKDaaCOfCAdCUY/f74Z6agYqANXLH48lXC5SrdI7aANpt1vtDGPcOKClAPrR/5cz89gDzdJGvdHECzzB6Ad0nE7DcNj7bD4ZvgC8gOaBftO8CQ1FSJUY90WC8M0wAQABGHPKWQqEoBVNiiWv2x2KeFweTDnwedAt0yZRCXUMAAAgAElEQVSiwT42YdkwXsRkCcT83hBgbi6V8MYyMZ8vmgGAjcdjQKir2AU9NjU3t7hlbduO3QeGXAHMPoPfTibi6Xx3fGJ+Yce4P4w+WLFIIgvFrtEcHp/b0gnHshgzBAhXrNZHu2Mz85tXtu/Yu2fPZv6Lg3othSeiBoMUhu2PMRJeUJySywv1BFOAXXhTLblsNqfF6bI6eJ6lSRIvnwiCZqC8fw5ULF4D94ytGrB8xiZHO8NDtZKfhw+QIQWGoAQLy9nsNtEXBaleyuXKjXq5UG4ijnZaI0Ptai4ei9eqpXxv0jcf6+VpYZoti0FKVhEUcBg+g1wum6vgfXMHdTwAMMljAzTDURxPYUdtbxREwku0YNCfikQzOcwCRhPjfCaZTqLjsQeEkQGYH0AvGpXanaLZlY7q9NZBWgybNq6XcXwwCEJYSXFmhHTQ+YLQIxF2B8fYTMo+mlMDiCkMBCFXqPRmg1KpGOxb3y/X9gNkKjb0yQY1sKY1gxpGu24jALBcNmi00kBzdAqZ3NtJJuNe9BMTK7lYBG2W3CjZA0EQwxgd4WK1zqiVsrJaBZBBC/pwenwBTOHE/GnOTDo5PWnizHazp+fHBhXb63U7cscP760mogaCovSG/j4jIVf2KzRqDaxkbHVkgVauUxuMpFaJzWM6mlErBoxqaoA2sgY6VCslYhFQwKK7nIl5LJypmYuEnVYL7atngcJkknGQwMl4tlwsNodKpU5nZLSFvXCtkSq6pWEaEs87vR4plCmUy4VSvlhvjrTrrVqjmY7gETRnsQu+QCQNa7I5BA+8VeYtAgaeoJ2mPxwJRzEyst7qtOrlsZF2E/4z6nUnqz/99C8vjcWtQM4tASdJwxrkPJLXaDAztHZQy+j7VQaZ1kAxDEWSOn3fIMVyJp5kDP1q9GPUMKQRSgzQaMFEGYzqwWAyHHS7bBaONOX9EqCyns7HRfgDJoLL4yVHKhVJpArACIFMVvPFbKFVgN3swVEFhwf0MQBws9ms1kvpuJO3BNx2bygeyeSqIzZRwAZAUfKFMHQRsLsMWrkqWrGpvtMupjy8xewTFJ/XsgqDiZUxJElbtMZBNb1B4WI39G34/OfXx6G6ub0BCRiwGz0AE5kwLD9CTVt8zkg8mQ9UW5kcbxKCgUgkWxxvs1aXxw2ImEgAO6rU2p1VmnIKveY2s16mhCrGC+SGfpVGCEs8M7Beo+eipA04igYAmDUXtfmioLXbVYyOcc4uuzweg5u2FDYFDTTeARuMBG1y+BKFsZUykN9YMIG3FJFIIOSHx8YblQMDdNLlctEEm8zbJbV7JFesVppTu7buW9KZzVZPcHxE8kJdtfuT207xisFge6fbY6UdwFny9bkzL690ipLzcMF8eOXM2Xxl6NaWNDY1Agr4K19djF94eMy0bYt4xeFr5yZPuadbmJoE8Hvg6KVXz18yfOzEv23aev/dqR07V47f+6utZ5+57b7bDx194qruwV0X3fvGs6cEFxrZl24eu+ayT3Zece/onk8fW1i4/cmbnr7I/cz7P/v5987+0oPj3T03FRYvtE3tu3n7sS2709/++5XR7/zsjd987/jM6h9eu2ZkeP8Hl1x7+dEXX7v69p9e9bdbvrlpaW3v5uKXRwPTa2cctyydP79QGr3slq+vXfWbf/z+hrv/9Mq7N1zxwVMPOK7+7pNvnnf2NSuPfPr0sx8/esfvz//e/Pjc4syIv7bllEPewt7GeHnhwtMfPPjrK99+740/vfnxY+k7P9vk2PfEz98969vn3PnJ6Te/+/Vb9owmC6PjoysrFc9cK33hrSuffHTJws3v3z9/d/nbn/7zjcOtW95+tro22dq6eaixPL59rFHctXNsuFWbaudT2WS4Z8QR/xcAO312AGBrxAuM045pnABJAEfo3gD1yWBQ641G2mSijASh0vOchdcCEFNKA6VTGUmZPoY+GgBJIpBrnLJl9FrYCW7QjzYLEGpQYQ6L1+UVKSMHelVtBKAwaji73WVz+qMx4GmiA/62lTPomHg4GEnAQvWgszFjwv4qTyweMnEqnYKRdAwHGl3iaK1sg46yqHQkpdcBJsECZFA6UGbeKTKsYaOW1apgg1ttJkpwCDRvcdiBgWIhN4FEJvT6AVvUDfzVE4Tq7/L0jmgtAk8KNvTU8rm98PIBgO2AaTjA6ZScPd8my8kuaAFvb2zBiBNDV2C9p0OxOGB5BEeCE/E49ojWGiOj49Pz84tbt+3cs//AsCfkCQDgx7BLK1trdkdn5vdOOMPJdM+bMl8qFbLF1tjillYwlo4EcwUMGa81hobHNy1u3rJt295TTtlqXic3GijsIwUAjvh8SHJ9HhGIj02yudw2h88r9S5/nIA/jMlEsjpAH8YGvAhoiB314efQA6uNp5KNOuDw8PjY1OhYt1lNucxWnsCgIgAvDHsCAecNolN1CV2CKzmgA6jHh9vDnSrw90qlCK+wmMuWc1G3w2YxYY8nDovaRYynCIYieE5ZqjXrgPLj491OJ0EbOQrwF52wONZCmy1m5DlObIFGQINamsnlc1A0i/lUKpONRVLFXMStB0VKAdvRk5TJHQiEnJ6Ql9OrBkwS+cUNCg3DegVbyg5aEqifIEJhFazAHM12wcRxAmCBmuX1OtUARZOKjRu1vJGi1eo+tF3a0G/QyfvXy+VKlVKrlRO0Zp2KkX1eJpfreVLLG+BXBz2lXDmGA1q0rZxBz2+vFPAhimLwCFqtigzhCwkMTwN6KrRWl9PbC5fwo12HDficycXoQdnYcJzD3Tvy9Maxd+7opVPHPAKvN2pB6g3KdXr1ANpsqPQ9/KUpo25AazDg9IFeLdPyrLJPrlfjgShN6MINQNeQ3+e1uTv5mE802SqFsF8UbXSonU1kUsl4JBxHBE5nsuV2Pt0YhufdHeq0G8N19DwXzSarSfB7Pb5wMl8uFeABN+C5tsqFZjsXivvxFsNm84YTWXjw3bGRbmukZBIwosPcI0y+npdxrlxtDTfhp+5wrdYsBANcLPGNTz++Oe0OCGpWCga0BsBWeyDsGtSZSN6o1hLafrlmEHS+EfMIdbSiT88xAgeArFbSAkWoYPVpgWTBnuVMBqNMHYlHfC5YvJSGL/klG08ayFTIaeNNrM5SdrkjKXR9jZfr1Uql0YUlncm0K7Ew9ksCl/aGYr1L8O5Iu1NOxd2CzYOSN5MCYth22Uw22DQOr98bSeaL6PVWblbTFpsDNtFoPheTKIKT4LMeYLiNnH29iTAIgko1oJSt0wfkqg0b+vqtHpsAAA4syGFziTZ3JBiLBFyUUck6YEknavVwebiQcBMOdygWKlZGhy0moGe+UCwSTabT+croxLLJaBM47CWxGvsHlFqSsVDr1w9q+YCXJ1WwIOmY0YIRlcoBLUPWtd4xl8puw4E856Y1WEQEQ+EcsIEmtQrs8OIsDk+iMr5UTMbSMVcUw8mjsWjI7YsnIy6GJRxxL4gkjo6VBEEZHMmV4dlPb10+OqthzSYpNNG22xxGky8Ynjvgdbg9ze1eycxZAz5fLju563ixVvb69hUch5cObaq0N909ZG/UWkOzey67Y9F7fP+Qe+sm62VHL53btPOByezk6Mzusx8+e/nLU+ePHb3pxvkdD94a37Zj19F7frF4/KyFe2879dCzV4/t2XfxrW88sz+wtxN/6cTcuVe+efzbT+07+/sf/ft5B/cWXjzufv7N397/8IU/eGB7fueXCtvOtW3e9pVtp2/eVXjwV93r/vniS6/97Le3BF95+7Zuc/+fvtVZve0HT33zwOH9T//4mpnlXbvXqheNBSa3X3iGfe7iicXM8HfufvqJS795y9e/dd9/nH370Zcfuuz7/BWf/Oa1y7754jlP/OOdP/31F5d+fPMLC5VNMwuT7urqgcPe4v6h0eLahWc8euMFq+9+9of3PvvkwZln/r7NvPvV5/728J+/6bPQW06b2fHZt4TSZKezNp+LzZdKl9yz86MXX/vtbR/+YOmm8bv+Nscvv//ZZ0+UlsZas3PTrYXJ/ZvLpV0rwyAxus1yLh2L1HPpTDyG5lQWivKERBOhc8T8Lqej55fs9ViwB8pI00ZDbxBJxwgmGuQwWpzRLK1RyLW6QTWnUVLEgDERwoLjFEWLFeQmS4FSloJuINkSPkSn18aDILAERAb4LCfZDJzXpjZSdsHpdgejYbwEdqCzBWnUmEJAGYMhv9PpFi1mijPazFwwGWfUcoVGYWNpPefEyBlGubFfYWQZJUnpsHsFVBXIXMpAmCw2KL2qfi1h0CqVOqidyBzs3l5Kn4gH3YIZxB6toZxef8gL68sfDHhczp5NloUlLHYQ3XYPtrN6wlEfoC+IzF7SAeKvZDObLWhYAWyBN3nCHthPiVgomglHw3i5EwR9GwkncsVcGdRDZ2x6em5pBQTwnkOjPXcPPFxFk6h8tdGZWd424w/BM4jHQoDLpTqmgs8sDIcT4Ugig94C2VKjNT41u7y6vDS3dceBZbZvvRFNC3lGZ3CFegmEfnhfDrvLf3LG1OsD8RmBt+Pq2UI5bSCoCALQCB2eOUBI0+ea9Tro32arA5qo3R4GjjA2Mdaqpdxmgafws6IxV0GwQWUJwctIF2uNWrVeBhxuDqOpxuh4t4ENsM1apVotg0xPhVxoBU3TLGgTwWKHqhQMRROFch29s2o4Q1ypNtvdDGdgSIriKB4tvy0WtMJ39TJy8RHAWwa8yOXz6J5VyudLhXQ8VcjHfaxaSVkstBYejiueDvtj4XjCA/V8I4b2KfuVQAM9AUpFEWZMgbUKPXrEossu/suTcspM6PQqo9kwAFhL0TpCo5PrdQaqf1Cv6u9br1RqdVqtegABWMmp+gCPSTOpZgwqlU7mzsYzASfP86yjkomGI0H0f/YiwvYA2O8XWcYfsvICo9Fq4HuIovtfAAyPwCYAAEsc3mtazDZ06O95swYDfmt83+5dZzYDJHBbEmq2TKlWy7ARS6XHOGMQiAbtoFIPv6tVk9oBec8OWocAzNCkPgIAHAsGAz6bZ6gQDzgFWymH+8XOBlvZ3rlBGAA4n05l8/lKp5SutVpDrXazPdQZqQYxjhDb402wdoKxTL5QAfgp1Ee67Xal2GzlwnG/o5eH4AknMvCcR8ZGRtvdsrkHwIINR68w0jabr8Dzh5XRao8MAafLeDmf01l9+KpW1OmTWJPTk6C1WpWWdnmsgyqG5gmVSk9oFFg0DNivQegoRZ+OoWApk7C3DSxFqkmC0gFrYsxmitHpZeowuoLY7DZayxUCosASeioVdlhYjtGYi15vNBWPp9IJEHI1IKqdZquQbxUjAMBo6WNxB4DAFYqNYQTgZMzda5DzeNJJAOCWaDkJwB6/L5rMAeUrV+GfvJXhnDZrt9WIoYEopdMYFEAOOPr/kjTBCXqDQtX3fxQ+xcD69esZq4ThLG7ssUCjPVgXfrfPAxXMjBau8UIpWenUU3bGDi8kWCh1hwQEYG8gEY0Buyw1EYD1sEZN2BBHDMjUQNSsTF+fUsPBlzEq1qmMdJyw0BxHKvs1NFHTe8cljSgadbTGMbNqkVxGlhWSc0EdRWhkGh2BmR+eeGFkczkFisAZTwACRyMhpyuA9khxM2ELe4Gk0WSsZLcOOoeKZfjkprbO7J6QExRv94+1YP9oOYcvtXrILUpSfVVymjirzx+t1TbtPrNaK0reAyXHqZsPz5cbM3e3bM3GUHdh/4nLtiSvm1wUF6csl59x5fzszvsnMuPDkzvOveOq2iXbzh4746snprc+fFd2185Tzrz3V2vnnjF3962Hjz33pelDhy687c2ndkQuHGn86uqlQ196JfXW453LHvvw1cOXPl37xcXiY3/77XsvnHvNBZsaB66rrx3yLq7dsPWMrTu6Z3z1zqf+/NaxK/74/l/mLtx3y6bwue+tXfvMo39+6bGHdy7//idXTS5s37m1dN5wcGr5rDMcs5eMz+WHn33u8UcWvzx1xytvf/eUi3PP/eC8F7xXv/nrP17+4p6z3v3rm7/763d++PFrr64V58cnF9211QOnuvP7hiYzm8/d/aP3Pp76r8/e/fMvdv7immdeakaP/dfRGyZXV5Zvev6VJ9448cRVvsJIu7tnKR+bq46edevYq+++fPThj37/s6+sDCeXbv/t3//42cudHdNDs5smqtvG12aKua3zo7VyeaJTTidj8VYhm40HYN84TUYSjThIoyvlx1EekDKMS+pVbZZljHq9ToP2RBRJMQbYVSRBMLROowLdYOC0KpoYJJN+O/w1B17C2XgACEKvkwLYSOyWTACJTrPRxFstfjtjstk53kxa3A6C5TFLU/Jj/1ZAwjtYDvDdEg6H4ojIbrz9ITgCCGJQJBX9CrVW5xbUhOgxsaKfUg0MyHQsSxgY3giYBMoNjXRpDnQsR9MyKKg6rYEgTTxLkqzgwCwGB0YI8oATeKKkp0QQMiC+oCbCNodXDrvWwtDAA4AIS72BzlDUi0EHHrcn4HL2riwlTIqxORxm4ACCyRMLx6J45JxIR+MRP+BrKBiNBn2hFPpItjvD49OTM/NLqzt27Tk46vLheGwghBer6Wy1NbJpy9oktmUGQ6FQGE/1gK935hdbkt8bCCdwXilVqA2NT04tLi0uzC2v7dvM9fcb9Ricw+i12Cbm9frCfm9vTrnX8ebqRdWieRf6QXh9fnj5LisITYsZdRXDm7jPtRsNUMCtThUzjhCAZyYmx9u1tLdnQYmhhWjFgQAsgVxPxIpVtNwvZor14e5Qo9EemxytF4r1drtRq2MaTj4dcmLHdS9OjzWZe/NQ0VSuUG2DrGrWR4ZasOSaQ9282UCRUIppE97Qgvy1odCyn+y3wjtjjK/N9yyGK4VCOQtSLlfKRm0amYEHygSEwpvMxCKZRLYQYHXawYF1fVo9ATVQohVGWmFgbU4UEz0AZlgcWrViMINMb2ENlEErGGVKdJUykjqtXKPV0TIFqRnoWydX6pFVbjSQqi/IaNVGmUpDWyk1TWrUerknn0h4YcH2ABgjN/14i+tHHMXwxB4A+wJmXqCx2ZrGuCDJjV3Q6Adt7wEwradBmqAVND4SrycoRUOm4V2ZlaOnjlDGgQEDw2B7mFqhUCqVoICBXrEMbdQpZTpSbzAoe8NWlB4NrfV6LdRPQ7SJABwCAHZ3CvGwx2orpnF8y0EHG+kkxvNFMac+my2USrV2LYc6tlUp1oE9VQInARhUpOjyBOOZfLFZAZ1Y74622tVSs5GNxH22numkJ5JIlYCndYdGWt0yzpgB9bTjHXAgEkumM9VaGc9GANib5VIp7qR5l59LBMI+mzPqFSR31IZRanrezqng2XCkVqkykspBrUatI2gGJD6p3KihSA4eDqdT6Bia0hIkpWdhbZjRakMLABzyuWBXCoyOyQURgA3/AmBabSqEAtFUIpnJxDH3pFFvjjQ7QAfy4TBQUhH2sDsQRieR4aFhAOBExCnYceDfk0qmi/mmw4JcwuFw+/3RBBrGlKuYx+gkKcllHh4bibJGhlfA99Po1UZC3aeE1cERtFr2hf/T51Bv7NvweZF3WBxet8fp98O3DICGiAZskovQchaL6AsEwpFovtZMmji7yxcO5EvdNgKww+ODwpvO5aud0YktJi3sAA4vbagBuVpH0gK9Yb1STXvceM+sJuk4/ArHUcqNatJQJlxjHq1T0mpIjX12h9npNHK8NTEdxPkAhVZHwcKxB1L54c3lWDwRcmBYFBSWoMMVDEvwRm20K+pxOw0MHS9KolyEp5Zt1CeXNu+alRMGmxQY78DHpjd5gqWde6wOt7O6IrmA9AaC8Up17uBFrXpe9Owv2vYvHl0oVyfvatja7ZGxzQdvPLE9f9b0Tsf+ra7LTrtqYX7tvvHM1MTC/rPvvnRo/76D08dO3DK39p27UztW9px19y93nHPulgfuPHb855fU1/ZefPdbPztcOb9ZfP1rp3/p8t9Zznpicvb+D752zql/WP7PY+nTtz711suX3XTfcmH/ifz0fu/U5msWjm3b1jh40Tnf/Nu3zrnvx68/dfR3yeenM/uu2HLTJ+888sBv/vBK+8FXrp2cW9u5tXBWJzKzePqZrtmL5kdT4088/ctv7/vLt19+6Tv/uHxp4a0nf/Ub6r5vP/DL1sMzt//zld/97blu/i8PXjndmp9fmPDW1w4ckHL76ovlqTPP/fW7H1x4+nc+/PjL9/ztt7/+t2ShWpg9M3vt26++dNuv//rfP/ngG2y12ejuWcxEZqvlC++aePeFI3f87v1PXj48Ubn7jx9+8M5bHz/b3j7VnpkZq6wNL8/UC1uXxurF0ni7nErGE410LB5yS+iSRNBSwMEbQQEHJJfTKlgESnRh46MJuKrBYDRo1YBmBgPJalSAuxo9TWhhR6lkBPZBGQGAAxjp27s+tnJAUQkAS3Ttk7xOzmK3OAQDy9odPocZ/RVYKE0uO0WzggBMy4chBkEJ4Y8nDXozLJp4COpLwANUwMhTvOD26L/wxXUqvZLw8nrWKQpWuwAFanBAzfCchjATGiOB595oBs0KZrzxlQ/SjEZD89h2JQg2FygSjB0GjoezTgxBkEbCHgpiEwUaETvtYu93BRxiQj9DsRdCGAx5eh76wPpFHDBFALb0nDpwVkkQvLFQLB6PRmOxaCIZC/jR1gtbh0JQ/0o17Kkan5mdW1xeWdu2f9gJxTcSQaiBupFvjEwsbl2dAHoaCwQxvT6dBcjuTs4vdVyBEGA6VtJMpTE0Nj61eevWldXtOw8scYMygx6vyVi90e4SPQC74WAwEo8GvCEfnjw7RbdohXeLPsGAROhwDWQfOAX2RAM8mvjPdTDqo9MZKpfKtXqzMzIxMz4+2qqlPWargJ3dOOGMAOy0QR2BN5QrVasodcv1oeEWnvWNj9bz+WoLFDAgcL3eO4IGBYwKG9OrAIB9GCULiN3udGCT4twwiOV2FgCYYmmW5EGKA08SYVmgoEL75HAcBH8hl8kCcSmXsQGtlCvkUplSIWHTyjQGwiTyoJe9vmAyGc8XRIVMv37dOjlF05YQq1fJtARN0BYRHg48JZsdJ1kFNOLkTSalnDPpjXoly2hkA1oOXoNWvlGu1RtkOp5UDqyXyfU0AIXCQKm/MEjKNwwoNLSF0rC0Rqke8JTzSZ+Imen2SjYWDgf9Xowt9iO3QetMv5OhPD4zEBeNTmkAXe90IACjSkb+aGZ5J6kleYtoc/cy6uBHyBWIWLfs42ZOO39UNdCn1lCMUSFXarRqEOgafc/uhmUInXZAQ4JYVOi1cgWBPcFohQ1qkdDHWvlkPBTye6xSKxcLeWz2YtrvBTJDB+qZTD6LbdC5ci6bxyDJVgM0brXbLGRLjeZQGYuxU8AjaFjVvki6UG4D3ck1uiOtdq3SrGcicX8PgO3uWCpVRLO0RrsxUgJS3QNglwjvH5YrirhypVYqgviEn7MBC0/4BJfDJ7kEIRYySZhsZXU7Cd5E6RVqjiUJnVxNqGVGtUqtByoP0l89oCYpliMo1qjQAunQG4Ae0diUJPA4Cq0LB9ywLU08Y6CzIclmoo0UHkEDv9eYijFYZMlUNhPD2+h6td5toN1LPtIDYGtPASeL1Wa3M9wZqiQiIgAwdqEn07lKqeXoxTqJGJwZjf9rXg42hJPlPCLXGG6EgCPalQ4Tp5ORjEKF/SZ98Euq9f9nvYo1qmSyz5sNVoc35AfqHEqlo4l8OltO28xmLZQkXsA0aJcrWa0mLKzD5Q0HcqXRFgCwy+H2xKPxTK5QASK7Img4QcS9cBKAQS0AACuUhOQRaOWAljJEWAtOVir7VKShwDm6Xq3o0WpJrX12N+9yGnmTLT4VNrK0XqlHm0LOHs7kustFqGp+RyyJTYOhgNMVjIMQ9oqsNynZRVheqZzbqXKPDjcLQ+3xhdmVBXhLTldoYki0CHqLN1DduxtUvFjeAuTd7gEAzhenDl7cbBSc0t6scHjpyEK5NnlXyzHUGR7dfOjE9YvS2ROrnoNbpfP3XtAdQwCenlk6eNYD122dOXZg4ZwbTsxte/TOxNrmnWfe8fyO4+dt/+49p53580uGdu064463H99bWh3JHh+tH7n5Zc+jvz64dN+n9x499+Ohnx/2XnLV5t03LH3rx6v5/beXNp3rHd9y49xpO7am7/tw6qqfvvrQN/7wwr2Hrl/97njpyJnn3frWL45f+8wfn9n/rYtu2TS7unutcHonPLP5jDOcs2fOTJYWHvv+b/5w4mcf/+m/7rxp7ebGFR9d+1Pulieevjj5tzdeffX19//5td0zn/7ke9sLU9PjW72NbQdOdeX3jw1l1y6++oUn3vvyq+88cfvYfbeX03sb8Qt/8rPzd7zy/f1v3HfXxzc8+eQxa6vTGtkxn45sKofPuLf7+yce/NNfPruqcXDitE9e+elnf37yR38a3jU7srB5tj0/sm2hXV5Zmajlc6Ptai6TTlTCeIkoQcXiaBMeQRt1djyCdlqx/VjyWFET4RSSkTDqVbD3KYKkFWqdWq4yEjqlclAmHzAQKiVhGCASAYfTbnOJDrNFwBNGSqf3hPFoxicCB7Q7HTTHOhxe2JOCwJmcNl6ykzqjyRHoncvG4yHRitkxhE7HBwLBKPpa4iWwhTAxjNVtHvxC30a9XsG4acLsEKxOq04+AACsAdZn1BKgD/QIqxT8YBGeQAHLSUqjY0xm7LWAyh1ABSyKDjwsxT9JwHsSQgEJ+1mDQcxowwYyi5nkcXTdeRKAPfgaXG4spm4HzgCDArD3TEXQ8tFssgXjAU8Yb9zi4VQ6GQlFgHpGE/FYPFMolDAPeHR00/zS8vKW1R0HRpzYghEBrI7Gkvlyc3R6ccvKhCucTMAvxjF/odzsjE5t2joWguqWiGdzqUSu3mqDRF1eXd22a8+eQ1tNg3KQbnglqSccbkxEw6baaAW3v4QAACAASURBVDoV9rhFu6Nn5uW02SUvvFvRYbXa7VbezDEmkwlTz0BcgALugOwdQQTGmNdqY2hyutsdrldSEpqE4SGuRegdQUsIwNFUKlfq4SzI5V5uQ2t0YrxTKdc7jWq5Cr/e6DVhwdPjTpqhiHZR8kOFRqOGRqPZ7oyOjna78M2aKQ64OgMIwqHhInwHS+9KEU2lgIGAAgbkyOTy+Wwqg1mHeO+cK+ZiDqPaaNRTvE3ySIAZ0Vg4lbKptLxKqyN4zqAiFApASzUOL9vsgoDewXarCYfdsBvLZDL2Gc0GtVoBhEzWr+bga6kHsCdLjwCslm9QgD5jKFKrp3XrFbRiw6BSTQGlY0mlTDngKWVTfgBgjrZWcoloBABY8gaDJwEYu19FmvIG7SYzS2h7AAwA1ctV9HqdkmgDseZALQUUtJcG7O51aHmi9oVD1sKhUytGWZ9KY6SMGhC/erVsUKEBfcNgMjCI3wEVqQfNqIWdRjCgiJVavU5vZI36WDufSmBDts3dygJjtomVbMAND44NNfOFImztFGBK5iQAN+uVRrk83Cjg0HYTABhWsokHDYz5y2FsFiyXcvlmd6jdAgFZT0cSfocZ+9k88XSqgDcI5Wa9W+E5HE+ziC50wsJGhmwqX6xgb165Ui5kIiJsTI/oSad8Hivnd5M2n+TziCEPyZEGo1JGQh0hlQq9XgkKGBDYiIP7Whm8sZ4vtEEO/IgxaikQzYBzsFZJg0ppjPrReh2Y4/8AMMH8LwAnwtEkAnC0gIY1QA8x2GkYARi4thVYaDAKAFwfag0PjVRPKmAJBC8AMCj9XgwIjhj6/JFYD4BBxWeTUJocPFtpFkIWu92tkVjSqCBMKh29fv3ABuDois9/UWMlGEql26gZtHhC4UA8GQ6ns/FsJZ9vVoCN6eBNcAKwyoDHkm4Xk24GSknAl8mPNGF3AQBLsWg8WyiUG+PTq4KKMeGMm02iB+QaA0ma2f4+hYKQvBZGtUFO6sKwJ2GvqDaqSGNWsA57NFY3YaRJ+9QeRnIZAIAT02E9RWgUBpJmGNYaSmdHt+Qsbk/AGwESH42GAyF/ECpOxCMxjqjLDBqHz6bcdpmrlE9446F4vjIxqRUImyU41rKbea3F4iwdPAzVQywvi6LZAp9ZulidPnRRuVZ0SbvS5rO2HJyrNqe+0XF0WkPdpaNf+7dp6+5De10rc75LDlwyMrrrwYnk2OjM9jPvvn37zBnH56++5uqJ5Ydvy+3Ysufsu36957wztv3HXftPffqy1r69h2977d+AqqcrkUioePYH83c+fOL8f//sP8+84IfFV8+03fPUYw/MbRpfq9R3nmivnh3adMqdy8d2bsnc99drRl7++0uv/PGTp0xPvvD1yebhu7ecePZ7l974ow++cu5H0/csTC/vXM2eNuyfXD3vdPv8ZcML+c6zz798cGz2rLduvW/i+x9V1/77kT+bvvTMK7/f9ehfP/nzW3949+Glx95/5bFNnfHR6c3u2sq+/c7c/uZwfecZFzz3q88eeP/poG/y2FXHj3+yxXD2Qz/+8cVvzl//7leufzt0919utxW7Q90di/n4XGT8yNcmXn/55Q9vHJ0/5cjCOe+8+fzPf/jC0++P7Jwdnl+Yqm+e3bOpWV6am2gUi+Odai6RBAD2Bz1et91q4zmrFBDNlFFK+50OhwWgkEXPdszopYwGwF/dSScsilQbGS2QM61eKe+XKQYMwGgJ/SAZ9+GErWjDRibYQhwAsCskSS4JAFj0iJJLT9IOh9si2M2osAWnR6TVhMkdkQCAI9FowGpB5CR0eh7AF9PW/FBZ7GYjz5olh2pdn0ap1yhsbkptddttTivZtxG7ZViGtxlUPK8zGkls7WE5sxUUMGXYoIJKS9CcgKb/Tpwl+hcAm808Q9MkSZFGSygAWhHjfn0IwD0HJZqxQfW22l04hiT5gh7XybR4l92BWYeCDQEYSjwGP5gs/kTU4oNlnkrH48lUPBZLwH6Moh9HplSpd0bHx8cm57Zs3bK669Qj4+7eETSafyayRQDgybnNK5NSMJGMRGFTxpI46DM8vmllKprGfId8IRVLl6qN4bGphYWF5bXtOw+vCnKFVosATOl1DjzP7A3FRJIAwGbeZAeq4OtddPWOo4FFuJx2K7xUeIwCAjB8QPTnWs0WDuY2h9vNRq3WHAYAHhmqlZMSKGAOvooV8dcEOw8NyOJZKONVLMN1UM5tPLoeGx8faWHEXa1aw8PpQibsRrQXBIulNwgkunFOJYGqolJvDU2Oj45OTAJqJxmCJQgjS/Esw5LwoEys2YrO0QDAoVAIPrVkKpPPF3PpNNRUkFc1KO6FpJ/VGChgUpLXG4jHe0FZQTtnBqTnjUaGVGtZaqOGGGQswAAwSBEBGJuw7BbBghqYHzBYaa1axxqVAHEUb9AbFGqlQUfJQWEq5H1KuY4mAZU1lH6Dklb0AQiSvF7FEEqlRubJxZM+Bx7f2yr5ZCwSgM8XAdiHAOyFei6SpAcA2MQQapUOPWNceGGBZtCi03ESgA2wCu0Wl8OJAIxh9r6wo7o15JxqBey6Det0BoIEfSsHXjsoV6vlBortDSIZZEpsvtDoDCqZjiJJlVyn0+n1nNEQ7xR6AOx1+Nq5hN9lEat5vMKx8bFOsZRNJ5OJeCIFn2WpXK01qpVOvdqpFxFj6kV/0CdJoIAFi9OFkRlZnFvK5FrddqdVrXUa6UjvDhifYiydxq9QKTUbYzVYGCacTXOJ2AMewryQfL5UK+dLhUIuHZF4A2v2JBOhWCXuc3psBlPAAus97FRrdDoDiHme0pM69B+TazQqtdZAUsDh5XIDyDbSSJEKJc/AR4g22LAqQG4b9EoVFfNLLocdh+6YXEgUOMrI/O8RdDICGi+Vy8aL1XK5WKw2ivVme7iAl1cuEfDVHY4l8uUqrvZuLYkA7HG6AwHgJqVCA0QH5mBK8KTCsXQePpxKqZqLYIw9y9WGymlMSdUKGhVFym0sqVi/Yf0XrFaTfN1Gs1tPwdKR9a23BkMBfyIVjaczafgkSs1WAHm9gjCL/kg8G7Vnh3JxD2G3il53ItNpwXp0iv8LwBPTqxYVyVqEkwCsAFZiMLEDfUo16faBAt4gZ40xIFUgFwCAKTLlMHc8GrNk0BK0Y3wf7xT1PG9LzkYMQOAURgqjW+3BTKG7Jcs43ZEocNpYHFZsIuSTHJLfEzQJAT9ALGktZwP2AWs6GnRHAslic3ZUZSIsYmi0abeYdRanlDvliMtul2orTtFkEt2BXLG1fPFXs+WC5N6TtZy7vG+21p6+s+NoNTpjW4599Y55a+TwQdvWucgVh6+aXtjz8GSi251aPXLn6Qd3Lx2fuu5LV05teeiW7O5t+86576U9Fx7f/r279uz60YXFpW1n3vrUl6byW7ftPn7s7HNuf/MrP3t4/Gt3f/bwFWd9c/j5neIdJ3775nkLO1PRodXrmsuHvHOn3rty5u5t4Yf/cfGRrQ89/8jT35pf/Oyp67pDF/zz6t3Pvv6Lb73zi8eXvnLmvQuTi2vL6WOTgak9lx93LF85tpjuPPXkaw9eevHrf//gg7ue/OzSn7/6ynOOCx//7Xs7f/ri93/y6XsvvXL/3teP/+f2bGdyZgmU/yn7HNl9tYni6nm7985NWtZuf+pXr//1N29tfvNg6NjjDz87edXs/t88/cxffvDgn75sqwy1uzs3F+MzQ9Vzvtb46O3Ta7XrPzpx/JQbPn395d++/JcXP2ivTXbmFiarOzbvHK9Xl2dG6+XyWLOQ8IWilVg47PFKVosVqHvvCFovJkJQuwFGTbTLbcXGHdpoMBhxChh2P8HgoIDJKDMwKlKjHFSo5KRRq6UMMirhtwFu4z2uTeBo+FuAEH40Uva7TA7J4RRlesrl8tkEEbSAaDM5PQ5WTZsA95x+HAN2W23ofEkTWh5qXBDd+YMeu81MsrBx2HVf2KBRyPoVkkjprSJ6vGs2bFQo0ViWl2gFKxAkAWgLlZ0zCaiAiT6t0WikMaBWRG9Et0c6eQSNSUIsDiKyBGkPhRB+Q+Gg14Xp6RhDyFJWK8+bbXgH7EEA9uBcP4buunpeWFDc7aIV3ivUWitnD8VcmGWWQjfKeAI4ZywajmAWQ7pYrrVHQP2NziwtL23Zvu/wGEgCUMDxOIaYFort8en5LTs2+YIJTKQCAYjVrj4yObM8FgZmn8yXitmeoUerOzk7swkAeNfRHZbBQZ2OwghvPfAboA1OCRV1PBHxYxphb2IZj0ZdAIh2HCazY7SbYDVzQq8JC2rZ5wB3W606nhyCsm20hyemx8a6jXJCwlkuM9tzjxYAgPEIOhhLgdCBIoz3xY1Gr3drfLSLV7tY2Wu9O+BUSHKg7SVKTjQzwZCgSDyFAqxabw91ezYcwEWSJAH6k2TwCJqneNGJRw3OnioMRjAXGR2cCmhOXCxVq4AXILAr2biL0eqMvF10gvyNo2tYNOS2wCKA90ORtGGQUgysG5T1OXE8FKgfGp/BEjT1rH7tmKc1qBc4QmeA+q4ZHGAF4JMKNcAdo1AZNEr5BrlMQ5F6jVxDGzYoSNkGkJyUyaACaFfq5J5sNBMQce7LVssnIsFeygLap/kQggGAHQTl9sGKoQDBtZQAdQu9VfH3bGiQzXIirSMZs93mFuzYTADw5YMHJIVsnJs1cuoNaLJJk3o1YK9aLlMo5ZiKgwCsB8EIzFevNagG1QQA8IAOsYwnjMmhQjIWCgLG+zu5RNBldlQLQWzSF+KdfC6djCcwoh4WFDy5Ojym4U6jUy8DRNVbxR6lBP1rEnCgKAoAnEimUrnWaGuoVakNNdLhmA8B2GGXIgDhuUKtUm40x2smjDD5FwD3rkxS6Wy2UC1lMslELOSx0Ebsj86msvFMPOoRCDZocQUCIYdabYCnJJOZCKNBB/+jk6nV6ChCUEajTjagA2UNZIxTKTioLQqKovRmNJox6fQKFRP3S/C24DkbuELIYQEVzfxvE1YiEu81VKXLlWKpCDQR5HqrWwIAxlErhzOQSCbz5VoLlyAAsCjYsashlEllijkEYMnp6PlUBGPZAgJwpVGMIwCbucpoowAA7KDMGjnDqy0Cv2FjH5pBk6qN/RwHfE0hH1j/BXs44AumEjjVm6sA16x2UjihrGZsHvhcK2l/rlGI2Qi7YJNcsWSrbbP0ADgSggKRKzfHJ1dtGpIGwcBaJVqmUun0Op4d2CBTkB6vQCn7VSYAYBNWNfVGNU0mXHzbozG5dSo9Zx/aywtWLcfbUnMxYKFahYFgGcbkDGYrw1uypMsVhjqEg/VRXxiIuj+RTQacDl9INJlpeyUdcSlsEdhQAW+mMr7SVcIjcAW7Tado1Zojkcy2gw6L041NWGYgE6F8rr1y/QO5ct7lOSVnOWthz0ytPXXHsKMNemHLkVuuniOK9d2u1U2BC/ZeMTa7ExTwxPTmvUfvOXjgeHfH9JWX37Cw+sgtqZ07Tznrvhe3XXD+tu/ctX/P4+d3llZOv+mxO26/5sTFB+++eveuY8euf/mm5PZ//+yyr5750K5jmypHF77zzGn7rlipdrd/tTF/zDm77xsrp+/YVv7+B1//1Q+2v/jJ9TuuOP3DF67anDjrnzc0vvPKz5/74N2Lsm8+ddfizPLa5ty5M8GpvV8+17Xl+OxSbfXZR3/xwxuufv+jP3345mff97780XNv2i7/5LVfHnz1+ese/t5T//HhQ7f98d1fzjQXutObxfLWffscmVOGxyp7jkwdu/W22ac+/eFzp//k4+9f8vqk/fwHrr+19fg1pzz9wiO3rrz2zmnOdrM5sm1TLj6XrZ9z49ylc5W973z6yb0XLH7lg1dee+3XLz0DCnjT2PKWTc3t82tjzdLifLdWzHfKuSQUyWI4FPFgVrvdRHHuoIM3aGyRCDYEAxhybm8PrAg9MDOtzqDWAgBjnjqwcZWeVhFajQw0KG3U6Wmjgk6Enc5eB6rFZkaAM5IGu9eFz14yWUW70y4z0KIz4LJLDovJKZkdkpVWokWu3RmMBqCWmECq4VGgmoP9A6Ut5A947YLA8labVfXFgfWKwfXr1R4TSUNZc/DyDRtkWrVCbzJzVsGoY0BmUDSodQqQhoWlSA9oSUJP8mYzOiEjAvemiESH3YyuChz8ER0hBkFGBEORSNAj2kBXW9EJi7TYTCYLKGA31NpAEA2xeheV7p6xJk6a2tHD2IqeWrwdr8OS6D4ZxPnfBKrbaCQBoiKXwy6soeGR8ZmFpaUtqzv3DzvxyBK4cTKZTOcr7YmZxdXdCyeNOOIxNKNMZcrt0amFbiSFeaElQOB0roiXxdNTc9t27Nx9bKfQP6DXEhzP01rsgna7JG8qFetNpIKw8XldTpS/GK2MjtDwMh14imG2mTl09eR5UMFoRQnaslTGNFc8I57AJqxWJdEz4kCDEdPJUHSX3YWWR/FCsVKt1lrDjWar3Wq0hqbGRoaHWnVQRqUqDoAUs2HJZhUQ/fjeKLgowaeSzOSxDRz+0vj42PDQ8OjEVNJo4AiCBRjmeIEDKgM/OXvN2+htmMKmq0wBKmm91ag14KUBR6jnwl4jqCWDESQtFGPJDZIjm/ZA5TGjHTc8cY1KZehTWY0kdukC/uJttAX+A5aJzWHjGVa/UU3RpEZjZI2KPqXFDIu5XyGHrypXEYDAG0B7siypVxEmaqOCkG2QYbs/oeHwCHqjlI0VIpKJ5xh7PR8PoQ3W/xwxnwRgu5H3BmCd0jq1XmO02K1ur9spYWowMACzieFdvJGkeYvg5OG30LojLPrcMSjp8J0IQb2u57LJGDUgDXXYV6hQ6TE1EvaVWqGljFqjSqeSqYFNqgb0PQAGLTRcgAXnd7tFfzsTi7hMVgRgCehqvIVNWICouCYRgGvwMZaHh9tD9XK2OjQ0VPKHnXYXrGG8A3a5g4l8KZXOpHLt0dZwq1wbbqZDEa/djN1xUiiZzWdyjUqp0RirctjAdxKAsWMd6SZmbhZimPrtsfM0a/c4AvAGAfxTbqBGsKf9Xq+DFhgzKyg3mgzYtSnXGtUKlUajxsR4g3Zwoxav10mOVw7g8ZqcIimNmYI6wGm0gyoW1L3kspl5ymAqBiW7mTl5BM2bWL2llIA1lkrn8/kyurTlC7VSvdYaq0YRgNG2PZbNpguwbqutTreWCCMA212hcDadKeabIjAiAGC8RgjEcrDVytVSrZQysyaHhcwM1TJWEeqiyKgYzgwKdcPghnWwxoAybNDKQaMbZf39n7eH/d5ILhHLJiK5cqHYyLeKkiSCjHX64ulsKZvIlasJEwN03e2K/g8Ae6RwIIAGr62xiRWblqR4qwkBGPiX3qg38fL+jTLC7RVoVZ+MUQexudHMafpBAcfcbMurMXkorZG3VFYJxqRBAJ4P6SmjelCtZUjS5PClqkNb8qTL4feFMfo0FfHGg8Fouphyi0garYzAWPPhkKQWc17UOJlydaGl4igN5+3UXS6rmglGM9uPuQSXo7zsdAqCyx8u5Vubr7ijWsu7vPty5qOzu6Zrzcnbu85OuzuxdOp1t82wqytH3Cuz4UsPXt0d3/HgRGpqbuuB8+/6bvfi1enFq75806bNj9xR2LFr7+n3/WrreccX7rvzyKEnLyqs7D7t5p/ddPYlp5177eX3X/SdVx866/s3jizd+9dnr7n97GPPnRK8d/tzP2yfevm2fH355trsGb7FfbcuHVpeLp5//82//+iM4z8646HXLvjH7Q+N185947Kv7rjuu4/dcWj3dW8/dsfmxW3bl0qXTfrHd1x6jrh4xeZN+fk/vPbTh6XLnv/dTx786O219uvPvPM71wWPPPvBuff88NH/+NnHb376mzvee/vlXfnp7tyis7p24IAzu6/bra3uPecnvznttvce/eovrtv26PhX713kjv38x48ffujEN3733z85etfjn3zFVmm1R1amMumtpc6pNzVS17/63PvvvfP6NTtu+OzPr/30qTfff7+7c3Z4btNwZmlmbaoWG5+baBRS9VKplMvEcv5AxCc5rTanmaTcQdGMXdAgZ9A6g7cEAg6c16Fh72sVCrVMQ5AUC8R8QE1qtKRWB3qiv3+AhnqGCjgewbELEaQQmsMDQvCkwwMo5vZJJgFqskNFUoLF55ZsXhcDiOD2WAk5b5WcohSOB9ySg+TMjAFKjMbkdzu83pAX3RN7m54n+waofqW6r0/vZ0i9XRLNynX9fUABZFqznWdFi0IvgFjoeTyANOIwD61fTRMqvclisolQuEWn04M/A4aCzsNOX4pWGUV/OOrDmU6fZLf48RJYtNEAwIIVCDT2EXuCQYAhN05wSi4cYbJjVcUjaNFmBfFtC8TDaECZSCfCcRSiiRgCMCjaVCFXRGerYZC0C1u27di9d++QK4AehZFEMh6O5Zv17uT86u45qIGJcC86KJ1MZKrDE1MLY9hSnS3m8sVCNl8ptUE8jk6vbF3ZfmS7MDAIhZ7hOEqltgIQBPDb+YFjw4dld8AbdYG4wtfZe6VoqotGnFbRwpkw7h0L++caNXQwqlWr+SIAfqkxNTMzOdouZ0TBJFgtIETwxhhvg22iNwx1FohEC4F0pN0ZbrVGRoZHumOjQw3463hvBuCcCcAHAlSdptGMyiK6/UBqktl0qVyq4X3z6PjoaHd8cirFQi02g8xG61AKQFjESF3XyTvFRLKQTmaKUAqhllZKmWy5WiyUK1mfRaHQGAmDkcGGOmcoF4sCAKMnlskKuGomCLlKo2eAKeo5ixmfDWcRHQJnttqtPUnMcYSK5AlgY5RW1S9jOewnRONlVqEmewCsUtM0SatVHN0no+TrBpQaitMqTSToZBVoulzCYTLRJkulkAwgHcOmeRCBfrwA8AdElvMF4MVwtFqnMJlsDmev9d/nkbwSADDNiiD1GAEAwSw4/QGPJ9C7NLAMqDSqAczsUmkG1HrapBtUqY1qmXxQDWiLsZ9GJbFRq+ulIzMqOQuArFBoYbORhCbZANIXDUgeS3ioAIvXKhXjQRdwJj5VyWAodQZ0GcqsIvCjZrXVbtQbjUq51W0OJYGoeV0YFG0DhhmCdVpNFUr5cnuo0akAK2xmQ7Gg1WqzAAsPJFEBg4Iu1SeLDAIwb3FKTnhcoTC6ySRz+XQyIvmBfplIyuxxCG6/RQimPCG7hSJtHkfM63PafV6Hx08r1EZ4C8Ak9OoBjVKm1UMFMRgVA3qeNTEERWnUlInl+ynarIbPmjWbVEaZgY/EpYAdXiyrEjIhLzxeoxAPSHiuoBVLsVQGf6TSxVKhUsllKoB34+1SOIAdHU5fKJ5Ct8xGq9puj5QyXjcvAuXwx1KpUj7bsos9DSwFPL4ogHihRyVLMYOdEwRtthvI8Z6Q2xO0K5UmM2Fj9Zp1CgvL6DXagb4+h2Rmjaq+dWLIH4yk04lkLJ4voS9YPQMCw8zydgDgfCmby1fqCRuDLShOX3503MIDObX6gr040nJ1ZHpeMODliomxWwSNTK3SkAylXjdoICSvk9L1y0jO50DretYI65YIxulWXG9xaY0azpxa5nRGpYmzpudTRpLUybRGtIrrAfBKmnN68BovmE6HQql0PJjAc2hghoGgSNO8txiX7H3mBNB2EB/55kJDQ6lctvhi20hQCnMolDvldIfZbWtt99k4kfe4Y5WhtStubTQzoncxEDh35vBstT57Z9fR7gy1547cduuMbHRmt2dtPvTlXV/uTOx+cKQ0ObW0/5zrnth81qnD01df/7X5LQ/eVti965Tjd/168dwztt5/67Z9P76gsrblzBP/eeclF1xw7JLLrzn9D598dOV1L6wcuOOtK6946MD4O4dDDx1/8fHlhSPjxeLqjZWFc3wz+2/bdubMQvmSq0e27Z+K+FJHr910z9RVY5VTH7v1p69e9JP3rz7vkV2vf/O7C3P7N62Mnj4W7i6ddpZj8wWTi4WRF3/4/Hf3Xv6jT975w6dvPP71K5//4C+Wa99977s3f/bO3/7x93de+dUTZ92y45xNwxPjk8ve6uqpp9qzR1qd8uLmPT/+7ffOe+zIlf+189DTroc/WGEuf/Rrv9+yefWmv39yf+0HT/74PGloeGx4daUcXS7WDl3auf8vv3nxT2+888aJHXd++NJLr/zp3b+8MbG6NDoyM108sLTUKubmF8caufR4t1HKxmNZfygERBUqNE9zgaDLSurFqNsD+xND6l0hoMnohEXqFGqAYI3SoGMJoOpqUJtGvVarUvX3a9S0QaU3yIzxMMZ8Y9ut/V9596QUwCHPgIOxumyST8cKFgBWEcfhzXarwyMalYzd6bNHItGw5MCEH8yqM+jZIJ6LuwMSxsXaWI6XmD5N36AvFBQsHouGdYmsYoNcpmRovVGO176MlVORVrxKgj9stnMUwTHyQQNHaQ2Y9yDCF0L3AEAmvKG0mHqxeyTDMBZ/0Oc/GcQDW9MN9B7vvi3o+QzMGyeBQ0Gv03UybsjVizQQeDTZESwiHraLQiSFjYYR9KYPhZPpaCQWjYVCURDB+Txs/ma7Ozk7NrF529rK2o4RV8gtBSPoFR2PJfOVztTS8rb5oC8eC0QAuEG3AGYPz25dngAtXMih0SOexlbbk3ObZhZWtu/af/Ye86BKpTSgx7NV9HijuVgAvj+OAwNDcPdGl+FtOqzWXoUFvW612e3WXr65QHIGQGEL87mhVrPdRu1bqearQ/XhyenpiZFmMSViforA0lARcFLaIkJ5igAwop9zE7Rsq97qNFvdsanxLpoTtrA3uoJRwbmQS8QTYRMe3eN4B3CaSDKXqzVqzVarg3aX3dHxyYkkQ3M0x5pY5AEsKHN4HKIbrQ1j8JFEE0ngIMl8rVUrFXLZQhXDkPPZeJBnCF3PvnmwXyUfpEyheCYT89p4q52hCVarMkJZ1JM0a7IAe+DhCeIhtMVqw2QITNVhlSYnBQAAIABJREFUAYAZPXYSalSDUE8ZI7A8jYGk5Sq8e90g68UWkkodQw2oSHmfTKWleJ3KZJCp5GpvPp2Li2YgDvZKL3RCdHl98DmjCRZAcCAgMozbCzKFNii1SrPZLkq9eWy/z+1zw4fBcM7eFBwei1sQgL1BvCUIWTYqlHIE4AG5fKNKR/CEZlBu0CnlG+UylQENKSk1OYDDnQaFwjDYD+JLrwQA1gGPMGRaIIC9QY/PGu5kfR4HLxaifofZJHCJYjISj6Vgb6dSKWBwNQDgVgceVgsYV3O4NQLLFCgxjrwjAAdjqXw5lyvCc4LnWylWmvVsJOy32x040eXGHvg4+oDXJkoc7C2Ww+sjpBfBSAyeWToVCQecHjuwHxD5Hic8edgaiVAUvdktXnvQCX/S63L9/1y9d5Qc5Zk97D++s6DRzHROVdVdXdVV1bmrc84558maGc1IoxlJo4gSQgIRRJBAAkQwOYMMxmQb29hrG9vYXpZgjMFgYww2OGEwwazZ3d/5nqe1v++cb3UMVmKmu+t9n3vv+z7PvV6RGpVp4Tmq5SqtRoLR4mo1pkQCq4fnZgS+rJKTsDpGSZ1RyRkY2sQqNKNqYyxqcdlNrEkvM6UCLo5ltWzUMwBglS2PpybJVDKezBcK5XIuU8wWy/1mKQIlzemERZWB7TNYud12t5D2uXng1E5fJJosFfOtgRG56HT5RG84iaPn5UK+Uo7pzAzHU+lspGD1h4OhsJvVm3gt5mH+PzKbQadSyIdGzra5BYDiEQBgALBEPA6rNpuHbwYAjGPLIKJ92NeVLlTanbRFjzfN7kBxvM8zDuAvgTC+7myp2pvZYNHBMoQiKwgm2YhKpTUAAGPgqAsdTodGKBq0BqNn9Nq1o5QmFKMacS0vQgmm2dgmgaAUHGtNL8Q0eJuuoQbDlt5kubs5Y3LBBx8LhpIJvz8eB76PBjawLANBB/bzh12CMGKODGw0I6Xq+ibBqeymwHwPNoxGCAQyuw4JRruzuN5hZvDsMFKZ2HHVTelC2urcFApdPndwXamx8EjXXCqUq1O7b7hlg7ae3+Za6UWO77uhNb7tsWZ+Zv2Wc4/e/eMHtt0427rq1G1zGx69O7dlZecFX31twyVHNn/9K6t7njtRXF4+dMtztx2/5Ojlh4+dPHDNnW98dODbt9/16sfHD1+5vOH9vdHbrnz5vvO3nD9eKO74Smv+gDh9zv2bj8wsRl/876Wv/vuff/bqD+46v3jRdl+hsvdA6+BDi5GtYz/5xs3/8dAvNvcPHVzKXNkLTmy7/Jhj7orp+dTqGy999PiT//X+3z/+77ff++M3Tjx8892Wi566eGt5rtC5YjG5firYv+mSuzZUO711S47M+r2HxPx5zX51Ze+JZx59yPrM6rF39l3xl6M3fdiiL3ns+QcPXzX+r//x6Uu7rn3gJ3dai9XexK7VcmRjpXLBpWMvfv76Ox+88aevnthx6h9vvffh+3/+/B+bt870ZmanGjs37ZrrlefWtcr54rpuMZUKh7OhsA/0HWxGjuEdTp7RqixBj2gHBmzmaWcQdhONrsk6hVIth9JPEQypwzE+oOVKhVqrGR1WaQmNkqTkhhTGAFttgKw2Mwa76/WEE32UPW6L0WwzcSYtBdt3kBNvdfFWi8tv18pgRbod0Wgs4gIhi/hLwepiorBsvPjlzJzA62ktx4xq9dGoL+QXLXqj2QlqYUQxrOH1cq0UW29oMw/rmAGloUcvJoahAIAlOChF8RaQ9yh9cTx2kBJq5tBaxkCTOpLivQEfHt8GAGcBwQSbnedpmjdznMUBRN/n8Qf9aMc1OIAeSGD4Cpj3jsfPHGeysH5Y5QC4aO4cCoTDvgDQ4WAwCnCaTwOG1FuAPZPzG0G97tjRdfpFN4A1zvcmslAYe3PLOxdEXywKCjgM2J0qNvqzG7duWxeNx5LxQgHbZkqlbGVsbmFxefvWrdvO28KOquRqFieSBYM/EQ373EE8ATxjMuwWMRnYidNSAyJkH5h7AuPACSS9AR2YaZb+EqrZVqvTbzfqpWqnNTk9AOB8YgDAQEAwDQkB2GaHcgUiqIGOWRj8CtWsVmuPzUx0Mc2wUS0X8eqsUsmGXAjAaJQEH43JLnr9PuAU8WK1hjHA9Ua7NzY+MTke05NG4OmgsWF9oAGQACLE7fB5vfC3E4l0JpuOhlMYwliptdqtfr/bqhXTCbeV1kiHR2SwEnnOYNDQtDUSd6ODkBFUsVZFaQGfR7QCHjwbOZygwzlui2BEb2gAYIaEBapSg4xWykbkJgFwQClXwooB4CU1iiGJXAHLgZBo9KRETY4Oy5Qa2qRVmtQjCqnCk0nkIg5EdXs+GXCiFxr25Hlg3SAA+3wW0iC6AYAppVSt4DkrJq4DFcJ0Y6cVe/psNChgAVaOGVioz+MNer2ggM2jcplEwgiK4VHJMMpxPSUZgRcpXysZlavRWtWgoXAyhdCp1aRCQhr0OoUMhKMafifTSka87oDoNQcbSbfHxjrKySBoL55J5ONRdDqMRqBc5vJFvMBtNtCCAxC42myMZ0BUelw4cIe2FIFYCqAjlam1qoUSOpAVc/GAz42TewJjEGxOry8QDaWyxX4RO/hohh8AsEsMRKKRVCKOYZ0OpzDIFmNFB8bbW3SecMRkprWUj3dbLV5MijIZdEpYtjTwHYUKeIRcLsHwAJ1WI5UR7BkAlmn0lFFGqPVqE200sEa5Uq5lM3GLU4QnCACc9Ls4htEMABj2vMqSDUQSAwBOFUqlWhXWYr5UbDdKcSgTDjxWSeWrjVa322n1Wp182uexOPBuIBRMlyrl1hkbLKfTM+gEh0+qAISxEiVtsHOsxVi2gm0M0XDAbWFYJdQ75ZDODOxHo1w7erbNa6Y1asVZtiD8JTSxS6ey2Xy11qxngvDZGjmHPwKUPFtp9rppuxHBMBAtT/R5E0CxKxhLpNKZXLnenV5xaLUEZbTQnJUdkQAngQWtwjAQh8dlJIckFInOfQagjBIppYnFyXpSzbn1OjVrCq3Y9QalCQB4MarWEQjAJEXzNl+qPLalYPe6vdFkNJqM+fyxQCgQATYR9jjdAT9P6vSC28qbZdaQ2w/6I1yuLzYJs8bKBOYnnQ6ryugPZHYeNOmt7sysaKd53u5JFpsrx+8qNiuCeChKXzR7eEOjM//QtKtRbo5tOnzsqgX7cv1IaMdM7PrzLqvP7ft6Oz89u2HnlaeefHHp+NbFw1fdvnHlqbty56zuv+jR15cuvGDz0w9u2fXc1aXl1UO3PXf9NbdecfzSk8cvPjR96NlfXfGjh771X9/9yvfurr+3JfeTAz969YL58yeLqaW728vnu2f2PrDlwrnlyiuvX/vmPx5+8U8v/unVo4/86apa5chLywfuv+m65eXzd+TPq8x3FrZu25i6dDI8vuXSy+3z13S2VVZe+fGR7VsPb9y02O72erxpYV87vujrbq4+fvexU88+/+kXj3/74+d/uZLpjy1sMBe2XXDYUTram6hvmtv36E++N/7u8Yv/coc73frl21n++PNvXj+7e+MP/vPj2x760TffelCslHsze7bkQxsKuatv2vXRZ7/85VuvfPz4zQev+uL3H77/xT+/eKqxZa4+Pjde3rq0d+N4ed1kr5IvTjVAoMUBgKNBqNs2swUYPgKwTm0L+8VBKoGZdgTtgoD2ylC+FCogqxqG5iiNVq0C8StXSFSkZmQISpYOmxLIuHcAwDYk1ximAyLZ6cceB5eDt4tO0Q5lyIrZfoLAOXied/udhMxgsYliNBQO2s3MIHcYqovMGIu70HTKgu3IJpJj7Q4z4FHS74PfZnmGBfzVGiQ6i2FEJyd5Fkiq2ahXcSaoomiTzHDwomVSHJ0kAcFtOByLp8uY1I5ZDAYoF0Yj+iPzXj+O8Xj8oRC2QZvxgteAXREcqEePzwt/4HfabIMBErc4uBpHemEyY3ePANXWFIjDiw/gqXLYH4jGcdOGcAY/jEmkhWq73+93ptYvbNi8bfvujgu9/0IY1pBMF9EFcm7lnI3ozR6NhoKxSCJTbk/OTG/YNuUHMQjlEypivlhu9dctLMwvbtq6dfvh7dzwWpXOaNJjiJ07FQB6g1MtLhwxhZ/jILBzEAEJ/8YeILz1xeZybEsDdWjAIaAvAZCC3mn1AFXLtVZnGo+g+wDAaAVqNXMofwdH0DazzROKpQt1PMAEIXEmBKnemxjv9/q9ZqVcGEyaVgqpgMMGz8qIV7tnANiHABzJokFCs49RwBOTE+NjUYqgAYCRqWPshhWjkEAngoL3BGOpTCGbTmPrbh4guDU+1q6h8XQ5EwfpQ8glUjnwfMJo85mloyreLoDUNcObMhEag1oyOjyi4WjMYrJbzKjubHZ81EAjjMA5KIWOUqoUUNwAgHmB0imlUplGB/gGHE0+cL4yELoRFUWMKKnRIYVaQ3M6BGClRO5OhnNhJwYtOjMJHELCqWU0DgEAxoZoEfSR28ODSFNJ1EoBmJvHM7gl9mDjvMDpDVYDQRgxldlqwwFhX8iH0TmWUYVcKmcE9bAckVuB3UejKAxHZaNSucaAbXaEXK4hdTqAZ9mImqIIhUwF0p3Q6lKNVBS+itNjCdQSbr+dFZv5mBt2FZvMJ0GXIgBnCul8Hk0aG9ViqdFpoc1GtTGRCUYdwAwws/EMAGeypUy6VK/kc8kMYFgqDHQOAZWhCNbs8AdDMS8sxmYWhBiwJgFPUwdn1/F4MhYN4r7AEDMjYLMbd4rHSRi9PtpiVCn8jCjyVp9BAi9fA+SHNlAAFFK1SiJXYli3EbiFBNugaUpvUMPD0BtVpBadOIyGQQu6nsslnO6BnYmSSwZEWM5aIeF3mQWGBQAOA/KlseU7V4D3CShcxnaxUiKIOeQujz+eqza7Y2PdZqfZzqW8ogUVMFo/l+r1FsgAAGCXwwMyP4mxY8V8vlbwU+4IyPZ2NQ84Djw65PdaDawaZ6aAGygNrMkgk6+xeyxGrVq5xhaAnQ4KGAA4lytUm51GJgifLc05/eEI8IJ6q9NM2lmXiL+sTExYBEwdD2BOdi5XaXUmt4kaPNGwGFmnSaJAI3DaoF5zllINAMxQa2U0aXbzJlqAFaygdImkrppSs269WssJoS0O2qBgjOYUKGCSxCNoUg/a258u9zcX3SG3F3sBUrFgOBkI+MLJhM8Z9MTSKYeJoqwgbswyIeIGaPYHCt2lmlrQWPnAujG7hZeRvkB210HO4PDmFkSrXm8wWLy+aH//yZlK3Ow+LyYembtgpdmbPT3tbpUb4ysX3HvXSvicwLJ5dp35iv1XzUzvfapTWDe/6ZyLTn/lyWOrx9PLR6+fnH381sTebQcveuS1Tecf3vTkAyvbnz1RWd5x5P4Xr7/poRtOfPnUiVPXH3pu9eeP3/bkU3+86uS33ph+f1/8ntX3f188eF2rmN/+QGvTQc/M3tNbL5zfEvv2a4d++I2tb7/7yD0vHvjmc0eKoTv/fvg3H/2fn7391w/u2/fjb+/ZuLp1x8bERZOh/vKFF9s2XL6wLrE4Vz2xY/WZf/3x7ff+7J0/PvTiX375iOPe7//kqZP//M5df/n8hR/96cfXvv/4K1vb8425LZbO4aMHbQDAvcqO7Sd/8MbN51zW++an90SvePCSf2ymd33vxLnbHjz/lf/86Ld//cO3v32Fq9bsT+1cTAUWctmbn7zyi0/efvO1V974wVU77vnoo8//+eGuV29MbJkrjK3v57Yv7ZptFdbNTNYLxfESbLZ4NB+O+AeOeUCzWK/HwhEaezjowvNL3mx0oAI2srSO1Gtgdcg1OhYLk0at1uLUhFRFKEeHh1WETgOVSxsNiFbBbHO4LGYBB3pBYjr9LuzKdZl4myvgJvWsDU/nHGaTCGXeI7ooOcHwoicSCPjt2LmFCpgg1KZ4QsRpQ5foNPMcxfIuj6eUDKa9wFmteq2aUMnktCBTWRipQamkTSYSypVRQXM8jdfALMsPABiks5IYNGE58eQHo9/RBwuTRhnGxMLCos0+vNRzu/1BnxvIqRWzJGgD+lHYBkFeXqCOLvhdjLERnU4s6hYbGscJZosJ3qeNCyUi4YA/GMcowhCOBIaDsGl9AQBgEMDN7vg4YM/M3MaVzcs7GyJIQ/QcAQqcKdZq3enFjVsXIj68Og4GQWoWKu2JsdbkyrgHSmg+i6EExUq1OTYzO7Nuw5atq9sPbReGhxQy2ejQ6OiaUWfU6wt6xcD/APAZAYzd3sg4bAOuYcLAbw57qliAX4GmjFrDl2r1VqtWKmFprjQa3QmQwADAuRiIehzbQatuFv5bm2izeYLh+GAMqdZo97sTY91OrYr9zPCjU6uVzqQhZeI+OywZTk8bGQ4AmLeK8AEkcxmQ7+VisQ6Uc3xyAMCgcSiQM4PEOZa1WEU8f4bP2Y8B70moFxl43+VqDVZns12r1ZvdfqeSKwHCWw0axYhWzxA6gSdJysiAWDfxDGU0qGUmxVlDmFUN+I8HE8xgFgqPwuG1YPAdowNxq9EoWaNaPqqy2AczP0qNjhhVUFqF9GyZXEZQOt2IgqaG5LT0LARgnlCZ1BKVVO5Oh/MBFyK5WEjFopGA34+TXz6oaqCA3QjAJo+HYzmAEI2CZwWb6B6kV8LKB74ogAJmDRQLChgHlLB1GhWwLyyA0JapjSaNBDaTTi4lQQVKR6QaQjoqkcqUFMsadBqlBAFYoVQrRga5hRKFWqnUkVSykowCP3R6rcFa0ue3GsV2EQBY4JlkIZXM4hR5PJ1BKlOrVpoltC1r1psAwM3JDHpp//8BuFrOZ0uNai4BVKuSiwHP1WvUOiNlEJy+eDKRDqVSiWoKiAzDmvA4aWCcEojEIoFgENkIbFI81BB8IIBtQLAJh1lrYbVyv9Ebc5icmiGNclhFykdIoNiEdESplchVI8MKFdBt1bCcNBhpUk/rZHKjwaAmSb2WQCtOtVyuNBiTEZ/b5gRypxHSIagaAMApAGAziwAMOJbNAABHMMezkC1UGrUyvFs8PhNtdncgVaq3umO9ZqPT7BTSHgcPaOuEFZ0tNlpNWKgCKOCBN04ql8kUsM8/aaNCxZhLHFsXTebjoVAo6ANVwlKUVq2WjJytssEDJdQjDreFJdTyEbvPBwCMIxDJXAFtd+ppBGADADAw8VSh0ek0kg7WKfoj0US5P2EVMBsugGHg+Xyl2xnf7VVrtQYKuKvTKFFIFTpsDV17RgEz5IicJjkvy5ECQypkWm0srauk1UbRqNSyfGiHyBjkRqM1tT4GGK6FlUMBHbUFMqXuctEb9vgGqZSxSCyVSicS+bhotZlj+XLQxRCOgMfCSLi42xuOhIL5/uaq0qw2W1y9lsMsqPRuf3bXeTwj+kqbLIyR421uX6g8f875tWbRaTsQ5S9bOn9jqbf+a+Niu1xtL557/W2Lod2G6WJ0snRk+/Hp/p6n+5XZuU17zv/a8VveOO8afuOxU43O47fFNsyuHrjzxQ2Hz9/46H0r275/rLq07aKvvvrlm2+8+7Ybrrv2hivu+OL5sb+eOP38j7d0T7xQ+t221JOHf/DW0uGHWvX67rvzi4fEiZ33LR+eWso8+dGh1EP7Hv/Z/I13bXz8+CVj8WMv3/LL97c+/osH337l2Lf+eefczOadC4WTTe/46tFL7JuunpvMrpz+4ee/ePrzFx7/r/+857XPn/7OB0/crP/qK499c9fzt77yzw/enPrRHbd+8Nw7K4X1UysrzvHzDu0TKwf76+obZy594oHT3f76Fz/+9uSWk5N3LZPbX7hv9a6vPPOPf3zy8IntiVAnnO/1J7atT4XWVyqnHr/ss89+9/KP3nzjt19eufu//8/PH1u94G9/m9rRKyxs7JbPWd65rl1cN90FsjiWi8YTwUgx7HcBMedNHK1nfR4zq1NbA0GnGU0mBNYVsLACwxkJBGCVWqFR0zgfqVKTLG9QjqpUWplSLdFq1EpCN0omgx4ow7AB7XjpCHCq1jh9eP0R8Amc2e5xEIyA8sDhtfNeILV+DwAwfCWHPwai0GU1YUSZHv5R0f6AE0qUzwP7yMLpOcYSEAOBVMZu9bmJs4bQ90VGmZVyjpXQGhlhEvSkgeEIlYHnoUrw2DRp1EuleoNWpectZ/ATO5kd6EwB1XkwrMIOjqChGoKc8aIVtFP0WK2gHmk95tY7BtM8vmAk4LbaMRgYAdiB72zQXMuj4z/IHRZefDjghTqWjANl9rk84WgYVDVQzlxqMJbY601PTC1sWtq0ZaXocfqCYZwNSKXTuWJzfG5xfsO0D7uyEuFIejCENDMzNr06HUijFwWOWTaajRoAX7s3t3l1y8qeJU6GPvBrJZRRo3PHgqGA2x2EeoNH0HhIju/CYR+cQqATMkAvJjzBD5OBYAxmxmDUUAjA7XoZALiJLg2dfhfgsVfPROxmHD9CN0nYdpzJAtTDAwUmjwBcqYD+He+1OrVytz8x3uv2u81mtYhnd+UzAGwRaBzCFv4HgCMpwGb4JsVird3tjU9MTk6Nxwwow+HTNyKACrwV1I1dxNllfzCaSEfTxVI2lW9UQM6Um40yKOxCtVZMt8cm+rWEyLOcmAvpKT0HHIrhzTjdTLJ6QkEqJaMSmZbmGPSwZjnQ4fxgHgqeFY5869WjAMBaFUXKJSNK3qLD4SOlVkvh4JFSNiRXyHQIwHKjfkjOyP4FVrgBAVglVcuU/nw863WZAA/dtWw0HPThNS7CaMCHned+n4VgPXgHDHtEo+AAaQcsCEeBRScsXwNtp7EJGvQWmj4AAqPzqS9iGVEoZTraqJWC+IbdpKVoSiaRaijJGpDnUIpZhlCphzWEZkB5JRLKABgmV2GIBBHJp+KgpF0+e7CaDPgsRk+3GPc4rRZjspxP57GtOYkNwmcAuFKu4JFHrVpttaeyfv//PoIu10upfKuRSZXb7QYw3ZBHDzqbNwkufyybSWVSOQDgJDJbIGawujBtEnPufKLH74VNKvB4iGw0+ZwOlw1kplEglRZWr/SzwWLE6iXO0tEapUaFsRl6vWJYqZNKlbIRiUqjI5XDckwEpigjIZfBH6tAzKk1mN+lUsrVBjIWDvusLovA6cyZiMuMGQxnANikseWTmVwWxGciksoWyoVcqdquV8udUszn94l2uzuYKgKDmxxvg/zvl3Nehwm0u9MTimay9U7TZIVtDLveC4iMAFys1pvNMEOFqxGXb2K9N9wp47C3aGGNoH9VSpV0zdk6t1MAjSJzihae0sgkdq83FI7Ho/FYHMOya41qOgQ1y8C58OAgnWv0eu2Mk8Fpr2i82Olb0B8DfXtiuUKu0uuN7fWrdFo9xZloKzEyOipVwxbS/n8APCrRQ1WmeY3A6hQStS6QJktpHS3yCg3Nhc9xsLScYa2p+aiG1OvkgMI0w9qC6UJvSyUQB56B0+A43mjzeG0iR8NWCCVyfjdFigE3p5dbo053OBaJljorVbVNzQnOTgeKh87g8mZ2nWti3GJlu90kALV2uf2FmV0XVSpBh+fiivmSpQtWyhOLj465us12f9MFt96/nNo5GnLZ41Pnn3Mk19/6aKswvW7j7oO3nb775ZMbxpZP3TYx88zN3qnxDXuu+enCkSNLj5/euv37x2qbtlz81V/e8eXr7n7w1J2nbrjwmU//cerGn+95673vPDmzZ+Xdzd5//cqbv9q7fE2zUdz25dDCJc7+tnuWD01uyL70l233v7bhmZ8feO5Y56ePXpIKXvr0RftuaH/91dtvuuPIL7/55Nad+7eMZS/q+Ce2XHDYvOnyseniwrPvfXH/qd9f+MPP//nc0q/uevTTj05x37vi9Z+lZm+86KX/vHrj/YbNf7vnV3srU+Mry+b+wYO7nNXD7en6Yv+Kd956+sK9K699/J367Hnbn99OnfzTYzfNnn/e4St3zu47uPGhncHxfmdi54ZcbL7cOPbA/o8+e/m5f/v4g+ev2XXf3y/u3vPTf376m87qeHF+Q7e4c3n3wlhxstsuZdLNdCSWDoWyfp8PmLzTajbqWb/XYgLVGvEBAFugvHFiwMzwICeRqSrVKoVaZdBzQFB1hJ4mNSqVTDGiM8pJUqsiCQmVHAyfgszEQmAGRNdoXUERaqvDYRLsol/UDjxSPTaPlXcDAHuDLp2csZrN3kgokXSbaYokCApEsJpyumyiJwDSSEQbWLPF6hMjkWgEs1elZ42YBBMxorPrFQw7ShFyrcnC6PW0mVVTHHxbo8nOMjRDjMoNAMAkIgKeQeMVsANdQgCSWCNaZRLwg/P6oFB6/KGAiOOoAxtDgx60LXo54jUfVEundXDphwDswtkjnFVCAEaxaDb6oqGg3+OPAA8OBwIB+FkYjQ48wXg6XWo06m3YZhPzy5sWNu+bSfhcAZzNQwWcyuTbvcn1G1fnvRj5F4/F0gBljf7M3NzCzvl4Jp1K5bJZHMip1HoT3UZ7ZgkU8IFlTqoYkqq1BoeNVDiiQRDwoQB6Q2ATFr5DOx624w/rYAqVh/2DAtiMo9lGnjXSBPklHD3CQIZaB0OOMF9wYqJfz4RseH2KN+QmtM5izXbeDHwiDYq0DtW71qj3mrVOrdjujI21Gi3gpQDAaNORS/ix7QsAGIq0gG3n2NaME8zFCvCHdrvbHx+fmJoBAKbgZaC+0dMmxEenwwx4NfBtDCYBOcqlTDJXLQyuzjtocFhpj431CvX+WLeei/kEczJq4mwMx7GAsSZAWYoHNqYltLK1IwTPI11nObOJHcxDCQDSULIxvEBBEDIMPJJIRmRGo0arlCAAG6CQ6ZTyYZlcTuoJ3bBCTwwpaem/yBRKPUcoWbVMLVUAAKecDhB/em89GwEA9vpR3w4UsN/nD/ptFO0ezAFrVFo5IJQNIxd8IO29TgcQAIp26HSggC14puIbvFUgdoGYTaJSyOHDIOQmwiBo1ioIRq9RjioI2dpR0MDRqLLbAAAgAElEQVQqPcOSSs2QWqvSyBQyxdqzNVoAYAws1Kk0vnQq6Q36XV6rrxDxes2Mr1eK+5xOGxOvl7MF1DzJTHpwB1wpN2p4fdAchFK1J3NB3/9uwspVK9liu5HOVlqtRiUdDPsZrc4IxNwLKJJGmIsnagkDnkAbeagMVtsgyR6Usgs9OZ02IHZ62mjAXguMN7AyCrWN0UsCZl8hF4iQw6TZRNEG1YgBqIhqRKGTjyrUoyNqDTZkSbR6E0hMIymXUiytkhMIwJTeoFHLCJpIRiIB0Q0LmTCnw07BRKsBgEWzwJq0jlI6l4M3mUomkahWSvVyu1Yt9UqRgN/jtDvc/gTQt870dL8BK7yS86ECdrv9sKJT1W6bd/A2m+hwout6Kp9Ft7d6I2igQnW/IzozHgxPN/FhiXaTXktCWSK18mFCdPGMVqsUvXazHhaRzesL45FXHM8bcgjAGbzAo3mXPxCIZnKNbredFRnHwOov3+wIAsqRcDwcKxRzlf7E2IGAQqcmKJozChrp2lGJysCwuqGzlVqXV2So0RH4k4DBqrJwhGIUymKKKqRJRhQUOtoc2wOcUGZkbam5qBoAWKYh0YjIGkhlx7bXA8lIDP3Q0JYg6AzHvHGPO2w1p+LpQJDSe4NeXq+0RRxiMByKVFsrNbVDxQq+/lhQdJAGly+76wBrEJ2lXaLZYjKafaFoaXr/DV/byns8i27zuesPb61NL36tb4P61l08fM+d69M7tS6Fz+fec/BEqT9/bz41NbfpnGtuve/oPa9ssC5fe8vchmeusc7OLR889tPFy46sfP2r27Z//8rK0tJFp3/x4M133PKVO+689vqrHv7kw//+t9+devKNF35xw1c2/2W5fPdVn/zXtXuvy2TzB+6LzB4We6v3bb1gZql825+vPXXV4g9fn7/xV5M//ODYTPquf247+vLU1//ePHpZ/c2vfW92ZnVzO3nRRGh85fB5wqYTMxtyi8/++sOvt0/P7fjwvXzhevv3Pnn9durRf//gBWrvnUuf/eeNG/9+77k/fvm9XbnxqU0bufbB83ebSxdNTZSX5y7/47+dXOrMvvbZ9w89fNOx383L5y/xGmLVxqWvf/zXJ57+zVsT/txYZ3LXYi4xn6+cemzf3z5+6Y1X3vuP392xsXfehXd/+OHN772cWp4pjc/1cqsbd893chP9TjWbaORT6WI0XIjGk9lo1O+0sQYEYI4iXTG3E7PoBCMnYsgLw9EUpZMrtQDASr2e12v1pE6tkKkIpVQ+rBfkpIHU6vUyMopbEdt/PGeMLA2kzhFw+zwiw5CsDSidjsYLMrfTbTUBg2QBkikVA0ISoDYcFa0cZrDp9SRJsf6ACKgIlUrEPDeDWXA44hF7IOjRDUkUOrPJoF2rcbEK0iQj0QfJjP1bHAss3MQZSIMVdJhJs1aNChib/AUrSMIzCIzoKcDuNQHKUHo9ZQL+Lvrd3iAsPJDuDG8TBCPFmgGJQVP6/MABPKLVgepSRCMOCwCv3YxG1DiJZOYsjB8TGNB3Hb1EIvFwKIhXg274aSJfbdQbvbF+dxIE8NL2A81AwBUKhWPxKHzqqWyx1Rlbv/mcTSEf/E4skUgVipVWd3xm/dLqfCqF/gKgiculfDZV6fTG1i1t3bxz/5FV0/AIwQiM0cYr1vCD9ufwGd9/xF+XE8EXERiP222o1zEdiDNx8GIFljMyIIGpL7WwpbkKjL8H37IAP+9OTI03s2ELvjMzP/DN4kysxSGYUQEXarUahrJ3mmOteq9R6rTGJ0D+NqvVSmlwdpdL+q14yq036EHqAer/zxF0Ll+odUF/YAfW+PjUOgBgvZEyol8oHkKbrBa73ewQnVgU0bszm0qmYbMNSiEgcK+LvpfNWqnU7LQBGqqhQKQYYYBSYZMVdqpbLSSsWAVvUI4oKEBmeDpmljFb8ZKBE8zsmRhoGrggpRkaHlFrlQqJ3IC3qhKJkiApqZJUyyRnS+UKPU1o18q1yiEVMfwv8GvyfwB4VObJhOM2u5E26X2VdHQQsYr37ThPNjhPDiAAB2ycSa/R6GSsCVYLwHJAtNrcoIAFk4F1k4SBxfY0p8ePz2ogoCOWUaVCiRpeKZAmB7lmVIPuZsOjWpV8CF6rHNNFlNohlUahUmmVWukQgU4ccrUKNJPOn0rFnaLf6TG7Uj6nRzB6u4WY1+6w6SP1ShoBOJ7M5TN5bMIq1nDorN5qN5qdfmssG/L/7zGkbLVeafSaGTyobtSyoZCfIyletFs9wUgiHs9kU5FEPU5hWDQNxIeFBYZxV/4AAHDA53GIFqMe9BXBOe0Wh90qOqAaiEbd2UGLK1lIJLQUA8/ZLijOImnCoIa3phyRa6Vr1Vq5mpAPKw28SY8ALAHRrZbo0ApPS9I67aher8nEI368nxIIIRl0mjmj2pIODgBY56pm8/lsJgNcFefkquVmqVWplsZKoSAOFAJDSJdA80+Mt+uteqeU9TosDnzHkXAqXul1LCKaYiAAD3zbs4VKpVwP0fpwwyOkZiuJ8HQFHiMQcJueMZmsZnQJ0bncZqNKp/T4XBYDoRmxev2I9sF4MpFMZuBjrmUjoM8Zs+j3+6OZIgZ+Zty80+UNRaK5xv8F4GQkXizlymPT4+cGFfBsSYpjeI1yRAIADG/sfwCY1UuG9aw5TLsUVl6LcUhCksynKUZkZRTrTO3WGikJzViT6wZH0JJBwoXR7E+m+6tVbywcSeayqXgsAfUplgxXAZEdtlQw4gnqSFiHAiXjovBq/L5Qvbm5qrApQDz3+36nQ8+6g4Xd5zIGl5jbYjWZOTPvdIcq41sufuKI2+XanjXtX7d/qTC18Yl5sdnotNbte/iO+dxuT1XI704cW75ybv2uJxrZyfGJ+T3XXXj1nW+cPHvvjTfOLX33+uDcwvLhS3624cSRzd96ZNvq967KLcxfcPdLj91+0/X3nj529ZXHjr/7/usf/+Gvjzz+vTeOnW78Y0f11PoLHr/0qsealfz+eyPrj4i9rfdvv3h2U+nF/7h05dD5r7978vJ1y7+6/+Ja8YZndz/zZPGpX9de+OHU2689sbi0un1d5ZK2d3zH5Ufty5e25pMLj/3o/UfYB67d+bc/Vy54u3jqs99/1/H9V9+8YumZhbmPP705cOPBa//4/MsbS9PduVVnfeeh/dbMwfpUY76x+2dX3DB3xTfe/uKn333hUGIlQKd3bj966JaffvHJ397/7T3vPrkh3J/sTu6YTcbWl4u3f//gB5/84fX3Pv7nW0cW1/3u82fe+tZfP/3GxPJ4Y91Mr7F9acdUNT270KhVSpPNQjoVindq5WwS6LrNajIKbpfJoFZZ/BjlZbELBpOIY0hGk4HCMSStEog4QTBapQYv3oCjw/6RslYZAWLYQCv1saDXIaCDjkvAPG0jTakFl9NlNXmcALw2lx2Q1Y5jMj6nxWsTONEpmnR6o8npDzg8QfgDl8OKvluUUu+FGudyBwFx0c3ewPF+hzucSHitmuFhKWWjtaq1Khsl0/IqPa1W6DnQVKTRwOuUBgxCNNOshVcN6QhKqyZpk9XqRCMNdNXAdAIr3uHyRoxrIknOB2UEVKQ/6LbbRYuBt/EYv4SOWHb7oEUBCO4Z8HajoEF7ByfadICqNuNAMABwCG98wyGfJxQIhfCAEpONYql0Eg9uG/3xXm9qDkB1566iOygCAMcTA9erQqXVm1pc3rkY9CcS4VgqmSgUq51ef2bj5s2zsHGyuVS2VC7lQIFUu+PwJdYvb99zaMk4qhCcDprkzbq11gB8mNgRNOjRHniNOB12jMPAH2a87sZxJOyCBnwUTAJlZPSc4UugiKrw2vB4EnPMm82xqYl+sxDDc1seO5lxoIhheavZ6kFTryqo5Q4eOfc77YlurdUfA0E73qmVihU0ay7kw3Y8+MVWGj2oToHHSPpwGthDoQxA3Ws0uuMTY93uRAQ7sRkARPrMIbHFju7ITo/DFcYj/FQWm1ly5UqtVqm2AOe7zXq1VCiimUQFfreTicSdetbIWUGrA9RyFh7lLUnhmDrBwtscBBCaDUZ2IIJpNDUy6NRGQq0ZGVaulQydddZauVJukA5hLJJWd/aIDpAZAFinx34gUqcflhqGzoKVrTerZAx8UZncn4/4nQJjMho82JEdDWEKII6O49N2e/yw6PV+P8vwBo1Go2SwxgI6+5ASWRywYvSMaNAQJl5wuKweqHd+LxAOTyTBj0hlctZmpnWM0WQxyiQE2qfLRgBj1549OrpWiWpRMzwC9JbA3uhhNalQyqXYBk0og/lYxOP1BHycpxBwiybG38rFPA7BysfyuUw2mUyn4qniIOBn8IDb3Q488lq1OzGb9ISwDwOHvEGSB6OYgFFpVtoT5XSq2YNPPe2JBYCE8vB6Xf5IMpMMx9PxRDWoNhB4yQ/k1Yq7aeDmhUfQbodgMZEEwxooM2c3Mw54TwqVjaGG7R6Lx5sv2VmgTFDINVKVwahTK0eleAMgWSvXqCnd2rVqHSZEkyQIZCNDjxC0SscSRh1oY6NemYlkfICnNpOWi4fdAsdSxmzIa+U4vcZWyxbyuUI2mRo4h1drjVazXK52U9GA22XjrR4f3gE1mq12tVSsJVIBC1IObzQYBNRutS08mnMPTiv8iXwhVyiV6zWv3JBsOoRsLxGNThfDbn8g6LXiX3PaeJZWk06zhaEImRi0s3pCJrEGfIFgIBrJpeL5dCTbbjVT4RDQhIENdTSRarb7tYJosYi2YCKcrzRcvNslBoOxBNCjYmNqamJ/TK3W4dCbIJAyiVSmNRhpzdCQWmcXAxz2kdJ8gLaoTbROBoLCWFaVCjRlZxU6xlqY0NI6BSFYYzNRHVAViUpL0XihlyqMrZSDyXAggPfjuF7DiVgiFxW9NlcsEw26WZ0Y8AgGmRAF6RMNRCvtpSLBq0wW//Sk1cqpCIp3L66YTC5ffrMTj9BsFn8iPbVn3+5vhE3igbzhqplzpmudDY8umKvtemNx/4M3LSb28TIiWQtfunTl5PzBf+3H5ydndxy+7cSJW36zT3Xtl6+YXP/U9Z7phY3nHnt+7vIjqw/fvX3HD05Wt2679MGX77jp5utvuP7qkyeOHf/Tu79/9+0//OO7tz371KsH/rKr8tLTty6MbT23WqrsfKC8ssfRX7p15ZLFxcwnzyx/64p9b/3pwUvuuuMPPzjRym/57dG52fyP39h8ybH5V55/fmFx+475/PEJ3+yuy68wr1w+vpyZ+v7vXr9034/2XPjJZ+ctXzG1651vP2D9xiO33br34sP3/9cXz+VTP/71Z7/99Wq3P7VhwdrasWObvbinNtmare3++RPfuPRHL/77T6b787nooa3SIx8+8uSl17zwpw/f/eNf//Uv/7Yj2Bhr9s/ZlE1srhZvfOKijz5659Mv3vna/IHZU//9wYHffPrJO1fMzq9Lz8xMdXZPLY1nY/PrG4VMvQ+rNxOOdovZbCQIu8jOMZzLxZMEbYt4XaCgLBxr8vhs2EELNU6jxehBhVYzMKlXySS0WoLeHFKjoNCzSkLPKPSJsDiwIzQJlsFNKWMgvV633QGMmBXsnqDNCNrELvq9bifnBWR3+11qlcAbYdG4PaFE1IumTaBjDWrC6bFidrkb20rMgAYWEcgoFDyLchiEAgdke43MQetHWK3OLJFpGYGlGSPFUSo1LXAGC6unyeE1StagVRNoBY2YZHeIXhGbsHjWik2b2Ghp0PABBFmsp37R4nHBN3LZGcJo4s0Ol90djuCQkh2NPJwogkFHW4xGvCjFkAObSTCbOG8iFsJhpUjc7/Shvg37At7BqH08UywWm61qpTe9sLSyun21Yva4PLF0BLMYYEeUoTYsrO5aDnqjiWgCOHQqU2o025OLm7YtxlMZ7MkCMCrA5umMTy7OdfuLuw/sX7Eq9BYLAgJnl1rRGNFzJvrOidG68A98ZjaorDiKxNtsUPfQh1LATCDjwAuapukvNQdTwCAZamWQwI12sz853mvmo+b/G8PAwQ8TCkybJ4KGkqVytYkxDN12q9usdYEm9LG5tF4uFzP5SiUXcaHPpRGtjIzwXwsOUXQH4mn0R2g2651Ouz8xOdbv94IUPCfARL0RAViw44E5hhOIgPPxWDybB+GWylXLtVoZLXx7bVTqSBLQgatWhV/X/Aw8XYwahLrAmzFTgFCRWqVEpmNw1NaG/s824Ff8mSAkljVSGopSq0bWYMeCRqNWqVVSrXZkWGMg5GcNyyQja0Ylowo1TtNpNdSIzDC0RqKU6QWVzAiqQ6b0ZWNh0cpyRtpbL2YS0SDe/HoxQisY9LpA6jhNlMfLmQSaUKmUNMda7a6BUZbXh46rnN7oNGoRgO0OsxPlr8vq8HrDcUGhJQhY3UZYbkBzMYJBT+nkI2slitE1wyNDcozG1Q4PaWHzKVWYIqEDyQg6R63RqUK5SMSDXuV8qBYP+y0mAOC41ylYuFgBZE8KZGEaswhLlUHHOwJwq15r1LvjMykvRpQNwjeB5AYiePJQrhcbY+V0utltNGtxVzxopEyCy2UfBPWlMBI6XY1QDIVJJ7AsbDiXh46aIg4RgFI2waqi4VFwBs4Oi85IKjR21jBq8wkuRygTgRVlYgVOJ5NikIRmRKaQS2XSkVGVkiAlEi3a55DwjEZIhjFICAo2rU6vUUtkDKnIxHJo8WYx6fhE2MGxDMUWYwGbiWcIexXTK3OZRArWTAVWSKPSrhdLYxmcQrICAPsTJWz273SAidSiUTdvEjxuPyZ85vOdtsXE4XCEE6iEN5bDfvF6o+FTsLGKy5ltZdKxyXoMXWp9dpfdgQ/SqFdo7YKF0ZNKT8hhMhhUCMDBcDieLGVTxVyy2O50MkG/jTdwFif8fiwNAFwviILF5QoAo660HDgHHPBHY7FkrlDtT0/ui6o0GpmGYjiOkEmlUlgEDCFdo9BanD4TJZNQei7EWjQ8S8qH1XqmoimXjZSdVxKMNd3VMCQ6r8VnAloDoZJrtZSB4W2+ZGFqawUAPxRKpVNI9mORWCSSDIt+uyOaiYVEI+UJes0AwCHR544EYtX+SpkEADb7xvsWq0lFWjzxLVs5zmOPb3QAAFtt1kA8NbZtV/bqy1jHOU7xsul969u99acnLO1uo75w8KE7l6J7RY0umrBfvnplb+qcrzej66YWdhy9947Jcx+4gLj2rlvn1j11Q3j94sK+K1/acOX+TQ/du3PXj07lVrZf/tBLXz5+3ZdvPHXtTTedvOOTd995563f/PnNk4988+Ob396e+dnzL79xemK9O1jdc0929RJxetu92y7dsJh/+vLpTcuXv/f+7t6B9Sd/eO9k9v4v1p8+f9fbf7ru3HWbP7rp/qml87ZO1y8d88/uOHrUsvXydeuLk1//3pv3bwv5Hv70wweqM/c+89YT32Je+uCnf37vgz03/uODTw/s+/ylr7/15rbq2Ny6zc6x8w7vEyuHqqnycvHct2+/OrfYXXfj46eeuuLchy+S7H516c6rv/nx3/768dtfvPPZs7sDpcne1J5N2ejGYv7uJ877+PNPnr9v4a6Xjy8f/+g/Lj75+Uev/Xx+Ziy3Yf14ZdvslqlGZeP0ZCNbbNaK1VQk3s2n0uGw3+O2sQZadFtoUm8Je50WAXthjZiGNBghNVCDNEKFVmfgKB259qyzCUKjhMogZ3i5zqTQEQYZFY+47UAybVAG0T5NryO1oteL/Ut21oxplKQB7d+9Tr9b8FpZUL4upZRmQM4EAk4xHnFg+UTrfIPR7cFDHKjiDp410awJKpff7w+HbFBD9WYrsM+hEQB4CXByi1opJ9FkEWoGIABeDZrhK1Aja1UgwVWECQMEXehhZYdtiR1JpgHKo2sTreXQljeIcUjYtmHnrE67zaSjOQEPR8Vg2Of2eZ02h8s5iOxBG0qOG8hKlJgmDmSmCAwTy2ooApoogLlKgVgsFh/44FerjbGx3vjACWv79q1156BHKxQb+OQXquijunllfcCHjBhjCLKFamtsbuPy9kX4G/F0tgjwWAZy3qw35+a67R3n7N6zmfuXUdbEUwYQ43Jr0I+nmRjJgPIeXibaJUO5sA2csBjsNMYzZYEzors/PFMa3rXxS2jDAdBWqVeL+UK51mz0xse6jVwEARievEk4M9GLAOwOg0IaqINWs9bqddvter3fGxvvtdEMGhRIJlcqZCIinnMzmNSBqtOCDuD+aLJSq9TazVpzrDc2MTk+Nt4JkAMApvBQz4SHDGcAOOjzhWNRKErFXCqVylaL1VopX6jU202cQ0IN08OR4EZrfLof5uFzN9IcvCVMUjWwrE6t16lkCtIk4GgxNhdZ0c8a3jyPnv6gHnQEXjZqaKNeq1RojcIIw0nXaIykSa2WDa05a2jtmhGpBNikVkOMykn4lRzkqFLJqoblcrUvk4j57MBfaG8DCm1s8Jn78QAac5Ec/pCLptxugef0pEKlMJgYwTyQhz5/EHDOJhiMDkZHsDzakMPTAfEpmL2+QMSsoUiSNWD8HsAPCbCq0RCEWrp2RCYfOntoSKLR6XWEBB3NNQqlRjEs1ep0ilG5Ckq2JpKNxPxun8/DRztQU228r5GJue08zyTKuXQ4lUmiiWQGe9RRALc63Q6Ql2az053K+HwIwHhKAhw3EIqmCtlyLV/rl9PZVq/ZaqQ8CQBgHrioLZBIpPJZYIuZdD6CARrwPxystyICewdhjG7RZTXjeJtJsMLjYBwultZpFTqbSS/hAIDtVl/CYh5E/wnKtSrQj8SoTCaXwr/WyhU6UiHTEPBlKYNBM6JlGb2c0Gl1NHwQKomS1cgyiWzAAwWJI4VEyAYLmOLKyaCDEzjKUU5lM2lMzsIcz1anUc51AWsncwDYaDLuDcTLbUyM76AheTzqFhgAYF8imSuVSv2uheNBq8PLcru9kTTeATerDa9CiBT8/nytWElNjGGjucdrczrRj5pnDHKtY1B8VJ6gA+qlZtQSwIWbSpdymVIxX2v3xnIBqJmEyeoOhUOxTLM91iiKgtXl80WSqUrPxcLnFvSHAQ8B8TuTE3siWp1GhtKVJeQylQIbqXTSIblWcHk5vXSE1LNRXtCZOYNyVE0xFaJYZQiroNRx1liT4GgNyVsT6zw6WitXECpshLN6E/nZbdVAIgLUKp2KR4BDRaPhUCToC7ldkSwAsVHvBgWsl/IRt88dBQDubCzoeKVRcDVqJgurom3+5NbNtMHlTCx7rFDwLBZ/Mjuxc79+8s4p5U6P9fjswflmb8PX2vZup9vbeP5X7t4cOVRymheb4olzTo7N73y0Hpue3rh66LFb4jfff5g89eXrJ5d+drN7cf38nqteWrx838ojp3ftePaawtbtRx967a5rT95044lr77j1+Fc++93bb7/9h8+eP379w3+659fnNP/9tSdfvun8a+dLjZ13ZHdc7FvYc3rHZRs3Vr797UvuWL33D3+4Y9+R2a2nj5Wqp69sn1y//+d/vHb/yb1v/PLumanz9k+WLuv6161ecsS87bLpyez813/8yQt/+abzyS/+eb3717958Ad/+67j+z+57sYnTxtv/O13/jw5dt9TR559dVttvNHZJHTPu2CPJXcgP1FanEj0rO3M0e/8/fP3vvvYyT3HFuVX/fzUCze99IfH/n7r6fee/sWvTzlr/f707qV8YrGdu/LBfZ99eGDnZS9+9uebF6/+zw83H/n075/9ZWl+rLJpcaq5Yf22yXZrabrfKJQ7jVw6Fop30rFEKOJ3iwDABqdoNRKkORrw2AQWHRtcIjpBMgjAOo1CppZpCQNL6dXDkmGZmmcAgBUmi8rAqXQ6vUyfCLlh3VsGofc8UFUtoRVxj3rceLfq8phJ/RkAdruwC1oQA261jGYtaBsHatdhQfML0JQczQajnkAQ74DdFgF+aRLsaP0XDVgp9BzUa1TqoSGaZ5VakhFIpVxrQE9gmh4kwrOcYDKy1Oiw2kCqlbAXMLkBm5OcDseZS1H4FqDqcQpJx3s9Pmy1AvxyWHGGwmmxcDrGbLE57GaXP+gBpu+yo7eFU8SYP2CDFsx45wYnqIAAZgfI56DP7fUAOtsc7kA4nglHY9FIPItTiVXQHd2Jfm9yYcuuvTU3iORgIBTE6NtkrtqZmNy4vLqS8MaSaAGFvnnl5sT6xS3nLCfi2INVLBUrlXKj1KhUxye7vcXNO/ZvNQ3prHYrQdo4UmHGCWbfmWtFAOHBBJIT/brOHEKDAGQGp7V4H4C/MEK5h598qVIbuEBX0eYDXZ4HANxEAMYmLJYxD3IbMJLdKg4S26GMNzvtZq8LYrZeAz070QX4rZTQvqBYzKQibsuAOSEAc4JgBeLlCyczZTxJbjU6k2PjExNj45O9IIlZwHoSAJjFfKAzMRkuP05zYB5yoZDNQDkrgrLO5csAwC1MbRokWsC37ta6k/2QyWp1mPEJkgY8gtYTai1NahQqPSfQRtaCk9p4wM2xLIfjMSiBCUJO8Tol1PShYZkSVKSBxu5bI7F2zdlrpKMjoyMKjVImWavVwNJWnn2WRD6iImUqRjuilGsC+UTMj319oIABgOMhWJd4AYqnz7B0PUEnBRvFLDA6/A40B68PfV2A2WFrvcPGsE4AYIaz2K3YHO3BaXm/zx8SVGq1WieXAbrKR6VyqVwhkasJrXx0VKoaOevsNfCaKJ1WCsJHr4OXoR4Z0WoRgJVIhOPpYDzoAdZoirRTIb+V81STIafZxNKZZjEHmjAaSWSy2VyhjL297Q76ltXQl605mQt4gQQMLGXOAHCmlCnXc7V+KZlpdeEx50OJAAAw6GMLAnCxkIDFnE6HOVqPg94czwICw44F0orvxuUEpkerSZsddqRZcNp1tI6QE1aeGtb57F6PxYwtEX4P8FxiSIbMVy6TKuUg9NdKlfA3R+QEKGC90agZUQGFVhJqnZaktPDmM0cAACAASURBVKD51axSBvXJj3dWPGUF3OVZmjSVEwGnYAYALmXQLy2Lo2u5UqNZyWU63Up5IgOs324xWUABV1q1xth4u9Fo9dJJn8UoeEQ3vBlY8uN9uyDYBBNQbpCngKHJTKlWrIkKa6SQCBVrtVZ+ajqEXtYemwOqg8tuNhnVlGi1s5RO7vLZGIpSAQD7IwDAyWwKvUCazd5EIQBclBScvgiAbLrR6jdKbt7uCLgDyXilK/IulxjwRsLhAQD3xvdEUMloMEUGAFitBAA26EbXynW8xyfQ0mEdaYxZzIRFMKpG1SRTJtMVRmvhFGrOHmtzZlZHctbErBc+coVUo0IzOCso4NnVij8eiSaywBdDwWgihNO+gUA4KIazsFdZ/eAIWipE3T4x7AsXG/NZLac0mj3NGm9jVYzdn9qxHedEE8sBO2sEKu6N5SZ3HZYF9t9sXUwzV84fXmiOLT/ZttfLvalNh+6/Yyl8ZDLqPTTjOb56WXt6x8ON5MzsyuqFD1+99YmrJvhLTt4yv/Tc9YGF9Yv7r31h7sIDq08+uGvb968ubNl6wenX77vh+ttvvuaG26+/5PQ/3v/9r99497OPLrrmjmdvuXZL85knfvCTpy+8Z2++es4Dpa07/Bv2PbB6dGk5/4Pnj97/6kN//tt373zi0qfePjWdeurW4iUbu2/98ZadOzq33HH3uu7mC2fTV7QD05svPd+yesXMYmbpsV+88vxPTwaf+eTTb3oPfuP4ib9fZ/3WNw4fveX6uaf+8uI79734rd+88as35qtz/cX11h4AsLVwuDHV3tRc9+2nf7r/e+9+99VHv/fY1Zc9tHPoqt/e/vPLX3lz3Yff+upvnvjtKwe97XZvesdiPj5XzN/1wPyT18z85PPTX//JdXuu/ue7nVs+/MO7H85tnG5unJ9uLS/vHKuV1s/VSrkyeq5HQ/F2JpEKR4ASO3jG6HRZWZKwZWMhj0NgWd7k9ZrPHFsC/irlUpUUSLmRpHVybAlwWwEHFZxdy/DA5WmFIeHBgxoBO3ARpIwGUgcMWYTtZwNl4vRaaDTEdfsBJTiPVbB6PKJGBVoTNrEYSfhdLsEKspMzmShjIOYPBWHjoQuGBfa82TZw9/eA/KZovUSuUg4NEQKnUxBGRi/T6chBewiGEWJUE/ohEVCvsKuUgGoBhB1tPYD3Q9URUAQDIg3AghB8UEvdg/A+OxQVu9MpWHkclxoAsC/gBsbqsmF3J/pBu3DT2syA8ya8bASM40wOvycY9TncTh52tycYRESH+huA7ZcvFUAEl+vj3c7YusUtOwuizwl/IRwMoYlBvt4aH5vfcmBH2I0mlClk5pVyfWx2buveLVAPMoUcCEyAyBrs7Ean05tZ2bH30DZhSEnRoO9JnUJjxhghjxvv4fAWGFOLUaqjbwgG4WEnu2CzDkCVNXE8chSaNjJfqlSrFbxnBfQdBP02AYB7zXzEPOAW/wuAI6lcsYLzVKB+azVQwNVquz/eazWbzUq+gGCZS4TdFnRdhs9UT3P4XwH6AHBnCvl8DVTA5NjY+PjY2MRYiMQkJANFM8DreIAA66A9HREtFElmo+kMEhH4ooUCpgh0YGn3Oq1mr99r1aogz9pj4xFA10GnmJmDYgz/b1ApjaRapqRMZ8IQ4RGx8JSwDwFTgeFNG3SEjOQAwRRrz1ozOrp2jVqtkEqVepaQyORKUocoaCC1SiiAkrOHJWefLZWNADSqKaVUNaoMlxMRrx2+Ct4BZ1LxMIIJArAb1o7X5fY7KD0sG57WaJVadFt1OgLB4OBuAJaP086yLgaEDG/DyXbQzn54SCG/L8SPDstkirVD0rVDa+C7jkhko1B/SaV0dFQxevZZQ8NSFaFVSIYVFAFvT6UZGdaq4NdypUIl18ZTvojPJTqtdLidCsKn76kkAhbgG1Sug217yWQ8lsQ0yGqt3my12iB/0ckMIHgyH8TtjoeqFqADgUgiX01XmoX6WCmearQb7U4hEvfRCMAOWzCVypQKqXgyl8lEOFpLYvOcAJ8/dpoFQ7Bx3Q67w4r92pRN0Jp5C2c3a1iKlGjNFv2wNADLx2ux+oOJZNAbDDGjEspAG5RS+KTXwrscVRE6+ZDUcAaAtaMK1mjAQAuVhtaolaMao1SRDgeBnrmsAmVNBFzAxkmuHPc6QWyT9lK2kMugAs7k4Y3WK4U8npeMDfx6BNbi9ifL9UpzcqLRbDR72YyPRwAWw7EsrP9xVMAWBGCXxxvGIOpMsVaoiCpruJj1lYA2lmanB/ZRkUF5cAIA0zra63ByBkJi99ihUiok1gCo2fDg+CpbLNfr3ckSPAwzY3P7QYBmk7BVqgUng32p7ki41HAJ8KF63OFgMAFbu9ee3BchdWq1CsoqR8mlUqmaoo2UFADYBMyFlq7RUoaohUcA1sCHZSqT0QqrsZsUKpMz1nECySFZa3LOr9YDG1AT+HRs/lRpanPJF4/EEplMMgKvMOpB71QodFHRn0qERBMoYK/ZqLCEnG5HwBPItRfylEXD2RPTYw7RpGasYmz7Ts7oEAKLHgvDmK0ObzjT33ZYY2xef3Cdw3pk+vylztjSIy17JVNurz/w0G0LgUNTAXFXz33V1sua3S1fqSemZzevXvrgqaMXH9vpPHHtrYvLz14TWFxYPnjd8/MXn7Py2Okd2354Q3XnrksffuO+626/55Ybb7v5/6XqPcDrrK5t0XzvvGBbdff277/t3nvvvfeiLlmybHVZ7oDBxnbovQUCmE7ovYZwQw0QQiAJJISACcUUh44xBA7J/e6cW5z7vqcEQozsvfXvteYYY605xzh773VffvThoTff/+Kb13++8+6rptvjD59x4lV377/llERj902xpZ2WyV23Lp22cVPjwnypfdbKPa9cf8F1e2985vpk4n/ds/3h0y95+/CdezfN3XPzTY3Jqd2T2bOqnqG5c/fqFvYPbUiO3v7K+U9dOuX/25Gjjw7c+cqz1/3zed2fvn/qg0f/8e37X//r228/f+Pot689tww1bmTM3Nh5wlZjbs9YozIWOuGti67YeNpbT3780bsfPnnDw8s95/7xxkdPePXlA0fvvPWtp46+OesqN9ojS+NRz1C2eMFNjQe+fuXor2//5rELN1/2zZH1k4/+56vXaxuHiuunhpM755cHyumxiXohliiX0/FYKFJPxOLe/wFgh92gJGSmXDjgsemVCpXC4QS1qADaS0rFQNfFoIBJVk7TQNl7JR4lLSeEaoOIUqGHnIAKmA1Gg1rTcZvCA0kGARgNwAGANQaz00jTKgBgeDGrGl2jLVaTgK9Sqwx6t9/uDHnR5BEt/UHFWmx6m9sN5cEFolWhwHw79G8zMSSlVBFCmuV3dQnVKpInBdDlEdLV7hDAAAZQFSoEIxdiszAJm1mh1WL3MmbkIY/VdYZDMduGlBGUTNsB4I5rkdVqNOEJpkGDo0tawGzQ79gbbdGjeMazQ6tZo9JhuhDWdhzH0CsUNq/F6TFrTBYQty6P3ws11+vz+bB1NA0Y1RoeHBibnFmYm56cSpgcFp/H7sPr3kg0Uy6NjM/u+NkOpwmbJEAEx3KlIs4hze1YjEUTsWQqGYtlcVy3VG00662xpS0rO7dYu4/7f49b919dhEQkN6DjktWKhkxAD8y2DgADIpgtHTtKAygiKDKKjmBXde51MaZR9pNSqYgWznlshQaFBAjXbjerKV9nYgmeIrZNqzD4WGeyeQKRVR1Vq1WrmUKjUS0XagNDQCqqlVw8Eg4BzsKm7gAwCfKGAVzFouYOAAPJZVL5MsJ1qwPALa+cYmmc0sazCqXOhPFUJlwhHSeOeCQR63STosNlDkR3o1ZvNjG3GFuIQHhXqwOjEYyFB6muNRoUJE1SKoWYzxBCLp/sADB+GcwGvCbA+2+87qcpsYwvFq7r6hP2dXf3ckSkSMTp6pGQMn4Pj7P2uJ+uXbemRygEacnn93b1c3r7uHyenJbIJP29/C6ONxf2Oow0RdI/AjDOH62ez2CyLtBLijCagHDKZAIxbAat1eJyu5w4BwxAYDIwrIWlQEWgGZxt9cLe7nW6faqeLqAEfX0CeMVeHry8RAz8BbAW3gOvZw38Sw7UeC78XUxIuDwxp1sslAj6eXyekC8JR+1uqwmWIOVtxP1WndoOuhAeioJI1dOJFLq4hMLJTgAwsKcS3taXysV0ulgZSXlceASNCtgOOywYSxfixVqmNJANxCr1Sr2R8QecqwrY7sfTj1QUPppYyofd63IC+4W0eoPZ5vL4bGazWW+AzUUIpKyCllv0lFyvkalk8l6p1sz097ltrmDQabbA7nXZXF6tuA/Zo4gLDLqvl8PtAQUs6uUq5GgNS0k4fJpheCIxIRCwQgBgCdsriPvQEBYVsC7sgf9hCHU+aMOxSZkxBz9oFD4RkJ/ALcoVQNtqvdYKwQ+IAGx3RTP5fGWgDf+m3Egm3RoEYHsgnILvblaUDIu2OmYHGrknUolUvpbLWUUabz5hSrUGsun1w2F/OIgKvLOv9CpWBgBsUTMkx+gwq6D4cdCK0uv2xWE7x2GTwMbI+l1GowJkhj8QSoazGVgyOrlOZzRa7J5MyaKzGYH2gB4NxaOpRnV4l08u5Yv4YhmjJnmc/n4RFDKM45IwTpuG5K6RMIx3VQGLAIDVecpbVEssGpGIBQC2GrSUXKGPTrgEBCnul3aSWE3ueH5oNmUL+NDaBt2B4ON0QDEFMhEw28NBl0kpM9ktKoqn9ZiQC/qz9ekMpRcrjKGxYYtNLVUZLb7FJUqi1HinLRh5ojfZfcnW8j5/j2HjlScxypMHd08UatP3VM21dDQ1tvu+6zb49kx4XMt118WbzxkYWrqnGhwampzZcddVp4xeeLrn4OUXjc0/d6ljcmJm18XPT565ddPdv1xefvby8srmA7e9fsvBgwcvvfiKC/eecM93Rw6/+d6nX3z07Wvbd16/a3zw0Mn3nXPxzx+8qjCy57rwjv36ieNv33z69NTggzfOrcxv2j4/1B7Ip2LhaOPiubnzTr34hw9+9/j5W+599vHSppXtY6Uzqv7h2Yv2Gpf2Dbeyk89+cf9XL71x6I3/HPvym6N//fCf392peOzQZVff/cSNp9/y/Enn7hu/aKA0ONYeGBlcNFaWlhb06Z2Z9UOj6eP/dOVrW3/z5VPf3H/wqwfOf/lM7oXHnr73jk/e3PTpLVf/7cHDH5/gzzUaAwujEe9IInvquad8980Dv/nsu39fdfZJZ/3wt8bWT7/5/p2xxXp6bG5D+vj108ND1Q3jg5VUtl4vFpORSAW4m8PntFrwCNplw9APXTboc1l1UDQom0OjVOPEDklIxBKpWEjIaC2oS1DDfWKPWkGRYq1JTCnEJChguc8CAlKnN+A1HEAcTUvFoIRsTrvDqNAZzU6zTK4ymmw2vcmshpKhszotfC6gg9EA3wHoiNltmHavUCgcDpPdha65TigyrEJrMFp9AFE6mlUZTCyjU3GAQAMlFYsJpUYiFElJBSC+DvYUjR7/UAx5aGROwDtW6tDvUKeFd2CzYp4vlG8VSkFSSoICdqBlEZ7f4pyRVaM1aHRKGvBXb7aacZoTx3u0BjMKS4vRYkIbaB3UPQ2IKzW8L43G7jLoAe/s8G5tNtjM/kAwGPD5o5lUJF+rN0bWj42Oz6xs3bw4P5sxOu0+j9MTDePYbzSVbbbGZk/cHjL5MIkwHI1kAOYG1m+c37UE+jeRAAyP54sgUnPF9vBge3Bo08KWRWtP10/XdHfJLFpaYYEXdVhXh5St1h8DE4Hd2sw4jGTWqlgWJ4qUCqUaT4ixgxWkv/wnIH6xLhcrHQTu+E21mpWkF+2t4emxKkxeB+zW6c04iBJPIBzitFKuDNK3Wqq2BtotwMR0JOj3BmPRiM/SOYJeBWCQ3iYbAnA0Wypki5UqqNjmwCCo4JqbYBQ4ZExjbjN6Oug7h5nwoD3+UCQCiiaWSKaL2U77brFar+LlZRUUXBUNXJvl+uBQGAdRgU5g1JFKQYjlpFhIyQQgaNEatNMFrUOahdNXnTMABSOXEyJRfxePC7qSJxYIREIxv6tHLBP24WFzT5+ka00Xl9PbD19d3dw+AGBOr0QuI0FvCnr67UkQvejNSNtLmXgkBPIFr/pxRBwHvm02HUWYLfC8QL1KhHKFxmoBmevoWIQCAOsp2kJT8Eh15tWOHwwxhEUQ1HCEAr5MLCHgP+itTrKwgEmZRNi/rlfEXdvd29Ut7eQXExIpweNIeN0CKdR8Lo8vEkgiCSe2+hr0bKCZ8NsNGlsm6NIqtApZspaIJ5PJRAwwAe0VYzGc0SlmMvBpp1PF5njKjab8JkyqdGCrHI6RlWvpYjsTiJTqlUYzG/Q7GVqjt+LpRzqXScYCQBlzPoLpeEayGLhituAgtA10NICxViMTEjRJw4IRy4xKUiOV98u1VgWv12nDNAe3xWBxO+0ut1XF7SVYuYzPg5+irxsAWCKTcfppbM4n5RKeAJZHvxB+ap6CKxT0y5XdwlQQNiFOc0nVIa9Zr2EJdc5vN2vVrNycjSdjAMBhAGCgqVVgabVqvd4Ou1cVsANkJizbegPjr5vJpM/IwnZ3hPBkIFMvKVkVbGWDxYlBKqkskJNGPmMVqfyVpCY8sD4RnRiOh2MdAHbYLWaTQaMgGLvRqKQIvtll1VCUlGv0urwepzce7jjbFQrVVjYEZVBltLkDoUgyls/kU1GNzGTSWGyWQKFq1VgMOiw4rmDEHymXB7a4aJIv4IkkpJIU8LhcMQgKgrO2T8q4bTo5f41UrXBrtDL96hG0Iku7KzqJVScV0aZgxazX0XKcA3aJKULII9n/AeDh2aTZ68FzdagzWI48AZ/NFfD4TfZYBABYarSaVBRXgwDs8wZy1cmkXCtg9K7hYVD4MqXDHd22VUGZ7clFm0qh0mpMDn+6vbh/geZ5dl42yO4d2T2SLm96sGpoVeKpyT333jDj37MpGNrRcFw4d2pzePOj7dDI4Njszluv+XlpZn3uwquvmJp+7IrA+tGN2y9+duK0rTP33LwZFHB649Sugy9ee9UvrrzgnEvP3X38XT98eeTNdz969+t3P/7L6bvvGm2/sO/QE3OX3n1luHXKzcmdu42Tx4MC3jAZfvXX5996xd+OfPPbaw+Mn3XFcnB0ZSwwnkuMbB0ZXCoff8sVtfXbt0/nD1TDo7OXnGzZes76wfyux1547vv99zx46yuPXHnrhXPVyYQ7Vs5XovbRya1nnHPd2Y/ceN4rrz64vVBvtTaZG1s3L1vzO9pDpdH8yf944K3LXz7y+N9OOe+mmw++erLggsPnvH7f93+459N3Xn/vhTdfXY7kGrXm/Fg0sKEY33/n3re/v3PDl0eOPXTetgt/+Hj04A/vfH9saqWSHp+fLe8YnZ0abS1MtsvZ6mAtm4uHI6WgP+zygILCOE+nWc2I+ZpMwOswaYCTyq0IwApKTpFylMACISFl4N+IxCKhQOTR0zKpQGuRKVQSSkbySZ+9Q4iNeuCnUPthgYqtTpcN9IJRCRTQYSY6AGwFLFSYdRrUwmI+q9BYUOrajSYH2jbpdSqWUQBh9nmxp9hl1GoZFuSoxRMKe1W0Smmwwnui+vhCjhZkrEis1hI8oVgKulcB4rkTsqNQ0jJudz9JysQieWeXGY2YCYwAjH8+iHqawuNSSqJ2YsxRB75MJrsNvlMDfwqevZqt6LgH0GADALag1aMFj+06LodaTEtF63+NXm+yoGMylGSHyePz4ZRv0OdzuYLJRLCYy1aHh9ojI9Pzs/Nbtm8pGRwOD8jjoN8XwEYsUCmF4bnZoNkfDgRDQOQTuXJjaGp+84nL8UQ2lYhAKS0UC6VipjwyPjQ4ODCz9fg59riuHr60V2jUK1RWDMSzdsaQ0IZy9U0CF7B1yivoBTx4BlajVKL1spKiEYEV7E9AF6Uw/6ZjsAEqtQxCs1FJePC6GIBLgWCKk7RaQFKQpsDuszgaVGgVaoM1eD/ZUqOTk5CDQh8FsRVDAIbfhPfqoPXUWpPV4QnG4tFsLlOqNQbqtWanCavshCJOsiB4GLZjWabDhlqTCfPdMQ4Jj6wz6RTiL1CEQq3aad+tAVcs1YeGW9Xa4EjDrTBotCCjAX61nTtgCV8oFXF6uYRCZcDufbVCxWhAWwOJwpMYDYgmFSmWCoRyHsHp4kilYjGHy+XwhAAT/89aDl8kYQmRjJbxOL1r1/10bc/a447r7zquhyOQi+Q8EZdrCgcDXhvSUHs5G48EAYC9LqcLbTi8Vkxe0FKkzYY3JzJ4Ix0Axm48wGdQYrA6AIBJQBhaqdfBIux4d1tdTl8Iw9QZNSCPhERHa0ap1ZhVhFQq4XZ3SQXrunvXruFJ+IKedej0yudI+N08khJzODy+WCCNpGFvuIHzqUPNmMdh1FhSfqeWUjOSRDWRSKQTQV84jiez6Rgo3GqtlE4VKqV0sjQwmXT5cCfg8T/wSwDgVDpVqSVzrUzAly2X6gjALgUDAGxzu4OpfCYRDwESVYKESk7RnXwLPfpwYA+WEa3l9GoGR6VotZ7UimkzTWokNJ/RWlh+j93mcbp8voAV45HtNrdF2C1XkjTeAIv713J6+UKZnNstwlVBEPhBsspePkEIuYp+Pp9DqbqEmZjLBdinYsWqkM9q1LOEKuNxmuEXaEs2Dgo4Af/FdvssAHAFM0IGV4+glXqnN5QsoOdMPV+sNOMxr5kFze8I4k+crpXVaiDbeqMFzUaAhKTToIATZpEi2EopvYObYoGxkUwiEQwBngP3Nhp0KkbO2vV6BqqK1WXBkBqeyYezaJ6wP4gTDCV4mWwkaDWqTHZPOBpLpcu5YjqmkdlswNNN0WrNwqL9ic1sdQVDbl+2UJ+3MaxYyBMBuJJCQW+vkGRVjLCrT8p67DpCuEamUzo1egIAWNwvltMp2lnRicxamVBu/P8AeNwtV8j4AqCIPwLw6HzC5HIHY8DCOirY5/Z7jDavw29ypRIes4qyOqxaVqh3G8x6j8OTLI3HCK2QMXomxk16VkRanZEtK6zC5c6tYHu/Vm22+1O16ePPaUvEgxfe4Dl5bN+GUmPT/WW2WssUNp5053WbXDunfb6TWu7Lln5WG1p8bCAyOTG99exbr7rKu2Nb7tIbLtuw9Ny15snR2eMvf358HwDwbdu2/u6KzMzsKTe9eNVl19zw8/Muv/jAKTve+PiLwx9+9Nbbn7772dHrr97Y/tO511+x/dSn780On3x1YMce+/SOGzbt3zBVePmZM+548Pm7Xvrr/def+Myf70rmb3tk7uFLL3zzwYN7JhOzPmt9cmbz9tzuWmxi7pLdtl1nDo+Hd8xF1o8qGlMjW3bv2H7P+Ik/u+mKxPHfffvBk5+++d13b/z7raf//PK///vd+dz66voJQ3P7ypItt6U+Xasnt/3pjnfOvOPQLR89fO2rL1xwa5t/2dtnPfa7Y28c+fKzjz7+45/+uUdfGWq1F8bC/g2xxC8e2v2P728tHf3s33eevf2yH57b/cnX/zr2YH2uVpucGs/unjlhcai6ON0qpMqtQiIdjcQroWAi6IISbgRCCOtaKZcYCiG8A2YpmrK70G6XIOAfCYlIyAXCzlh1oB05QpJ2K7AzS2OSMhp02BfQQSdaTRk6ad8aJUOShNQGRcLlcBmVeoPBbmI6R9BAIk1Ks1qtM1mtUiHLKAH5OvmdJjxq1mvwztnhtvuD2MqEgcQUowU95wr4HVB3abVZo2FlfFrWxQK8CPhqFSEUCwUylRaULWAizWpoBUPwe7gUSYjFpEqrxWFTzCewdTySNavJBFDzAIA1gJx2y48uWRq9Gju2dBTgFd71oqUvqByrFmNE4TtWoxj0HQVsgB1pUSj0OswtNFisRrvPCaw3EIxEAgDADl88ES7Fo9WxwcHpkY3zm2Y3L03X9Hanyx8OBfyBKFTJRDsdHl7eNuOzBSPYOB2Nx5KFxtDk/MqJi5FoOhELJVIdd4BstjU51h4aH51eOWmLZk0vR6XvXUvpdUqzA90nrWhvaEcHaBT5Rryt7rRBG4Bto/+GWqdGh0nsbcYzaJr6Sb5ULmJzTq5YyBcysXim2hpqlrLuTn8ZSF+ABYwEVurwyh4AOJHNZguZeKJYqVVAN9dzlfbQQLNey6Xi8UQilQn5bOhYRshhnZBqgD6r0wOsOxVPJFOZYn2w1RoYGBgcGq5ZSJyDIpWddh6VHs0pjMAa0HLMG4liL1oyhYk82U6IXLlUroOiaRaxabveatZBDw861VoVOnZhs4BWrVUqaZ6YJAX9fALbv3CKSq3SGjpmYKvGmnjozhXKWUZGifr71/WJeSRB06JeASlbt07IW9fFI/vEjEhK9Ao4Xet6+3u71gl4mDPS3yfii0QcozsYcJhAbMsdzWQoCgrYhUnzXmCpdo/R6tSrSYnJCLyGEQnEAkKBRd6LDVgYCQB0lKGNjFjEwrLrIBd6htqtAG06ilICVQTxQzI4aIDX8wC1cjEPyKOwHyjAT3vkQklPH1csFHP6hTzgGGIB/IOEx+nLZkJRrxcwTR2sxQJmg8KSdDnQi5uI1zJRkMAxjPbIJGKZQjJVq1WzyUw2W0wDv59IugId/MX7dyuAVCKbr+QL2XSr7omUSrVWJeMPudmOAna5k+lCMZRIxtP5hpuVSxW0QqNUAY7pLV6LyWM3mQw6k1mHW13OspRaJGWMckopY7sVjIMU9VEWl9XiCDr8TmPUDa9mFnfxSUoh5fbzRdzePv46oUzWxZOCsKZlMrJXJFfSBFcu4glJjpTbQxO9ZCroMulMQCIJTcRj1Sk1Ul0+ZMOMUokln0wn4/FINBtLANMrVDHhq9YYi3jdIDmV8HKhZLZUT9WK2UqtmU55jEq1w271RZKpSLZZBAYNe10PwtwfBJ2fLxeLybRRRucbQYNnaDgZHRvIJlJRkwbLoAAAIABJREFUfyiEoeaw9zUqKWnV6VmZiOvwYgAU0Wv2+BwBhzsUAwhPp3LVaqWQ8NosOovBlkhFMhlYuemERgab02qzRQdbGsZoQLdYi93jtftLqcqUhVCJxcJekYxV8fn93RyaIRWStVypPRF3yqW9cos6pFHLjGZW3MehmDTtaqlFOq2YkJjcWbPZJFGyusSoW0zKJQI5TcOCMrnCudGZuMnlj8fRCzrsd7stTj2jNlq9Qac1AGRIRzjsJjT1NKmNBr3NlwiNF+VKIWUJjo4ZTFoxY7ekT1hRsTZXftmiQl6rdURTzcUdW860SdQTNw+e0D4wVB6dvq+kKDWqhYm99908Edw9HfSfNBo4f/bUQnv51mp0eHTDwql33XLAum9n7txrrty4+MSVwdmV5f23vjp1ysrSXbctbX3+ovzM9GmPvnbbxRddfO0V15x/YP9p73345eF/fHT4o08+eOe9Q28/tunViz96fOa0e89Njew7WFzeb9144i837Z2aLv35trN/87dnH/rw17+86sRf/vqSeOLmRxcfPe3+Ix++9+T5U+88fHCwubQ8W9pX9Y/NnX2K6fgzRzelBy/560sPP/7Gc/9549gPr33++zde//pFw7XvfvD6JS/99fOP//nBx289+sBXX392Yq4xODluaiwsLLmqcwNjxWb+1H/86bkdT/7tF2+cc8Fjvzzp3Jbkps/P/91rn3z0zXtHj31x3xn3jtprg42h+fGkbzwRvf7JvYe+v+eh/3xydPrnx+/9922PfvnPi886v7FUSw5PjhR2bt0xM16enxqsFgpjVWCP3nAx5gm7fRi8y8qVLruKIcTWfABklVqpomC5alFBoT0V0HARVyzlkhYtS0rEMorxqKSstF9tkUmMIGpIjsznsRm0erMJbWY7YQyURO8GALM7DaB8DTYjRarMRrtfg3OiJp3WaFGzMkqpsjvQkN9iAUhbvbSTswGP1+0HIAu4jVoVpdUwBpcv7LPJKa1CbTHbqW6xieFIFbAtuVK1QsIXSyUKkw7VG6YOaEhG3tsnFSrkEilIJUzEBXC1Oq2rfVTYJY3H6lI5IWadLqsb0BVqosmE3dIYTEEptSB6rSYc8AEl7sDu4s75LopgDIjQduJmMbkAu6LVZq3O6XU53AH4AiUbigZdzlAmFcjlcsX6wMjo5OT0/NLi0uYaFCO/NxQGuA1Ho7FEs16e3Hrytqg1hL1HgVAIBEtleMPC8t4tkVgmmUKr+VSuWMxUB0cnNmycnphfOXnFiGF8ZlkXX2ekTQ5U6KspDBacksKJZxT8eo0eI6j0nXEpeCjwaeJ4EfYOkxTzk1yxVMAz5WqtmMlksiWoywO1fMa7Ov8LNJrtaGWVWqOzuHyhWCqXyyO/x/PgerNWqNRbeARdzGaS0Vg8FgYA1uHIrZyiCLlSo9QCpPoCoUSm0z3dajfRCnpwoF0xk3jbJ2dBKDO0UocfDXoh2NEQD4QMXukl4ScuoUMIoj06YDVb1VK1Vm80W60aArAKiRKGRgD6sipWyYKUlfP6AIDVhtW4K5TxgM0GtMdUKVVKhhYKJVLQFz1r1vzXWh6Plspk/F4RKeP2Eoxg3XFdQhkjEMjFhFQkFPF7enrFQhEOwwAkS3k9tkgcAFjJEnJnOR2LAP5aPU4cwQXe5TCBFtIyMrMRp/ZEfLGQVOnR3d/lclgwBgyePkUbSakMCI0KBZcRu86sZqfTr5RJRWhKzePyBBKpiM8XCoX9IHNkIn4/R8hb29W3pocQSzh9fJlMKuQLeL29UolEwBGI+QJ+IR+JgQa2W9WBctBjMSqtAMAKeKpEvJ5LJJLJqN8XjEXisXg2n6/gVFcmmysXq832RNLp7XRBwzuxWe1edOwu5Yu5TLPmieLYVzEdAABmdEYM/Y0ns5lALBrPV1puYMYailKwWo3RpTe7TQZ0lEZbVpUMRKGMYSmVBHY4RSukdLdS4VYRvTIDml9jIJ4p6jbbPQ6yhyunGCmnhyfk9PRw1wkJeQ8X774ZqZTicCUskHtSwhPIAYD7WHm3NOIFGmOB7SY3xFwmFaMUa7LwcRhVKpkF8DERT8bC8USqUMiWGvDVbDTHol6nwahWGi32cKJQrKZABNeq1VjCa1ZrnA5bIJpOxzIAwHhVojfYXZ4AQGUyA1w0ndKJmVIzqLe1xzPBNgAwPMdoDMQ7EHg8gqbMaih/BMfuMWmhTvVZ4DMIOD3o+pnKZNA7Jhf1WI1qk9kVS8Qx+wIAWEfA77faHPHBQR1rQltcs8XuD7gC5WR1o1WmFvOFvUIpo+DzeD39jEallnbzCWcmF9LQHMauj5uMhF5PCft4DJOiHG2N1KCEpWpzJ80Wk4RlDZkNHgklF/NXAdjsjuRGZhJmtx9KTDTSMaOMhvGezBX0OEH/u6ys1OW16VieIuSK5hsTG2bGJ/08rZQ0uofHoQpKGIMpvm0Z+L09u9kBO0hrNDhC8cb8dsmBk2mR/4z9S+OntxuNmbtaunyxXp/c88AtE8GTNgW9J42FLt58bqW96Ze16NDohsV9t9y8z3za3srpBy/fsPnpq6Izi5tPvv21kQPbNt9128LyMxcVFpdOu+G1m6+/8pLLL7r60lN33/Dlux++9+7Hn7z3/ltvvvvRt68M/eXhz57ac8lV6z2Vlesbs3tsc/vuXDiwcSb55uNXvvjprc9+dfVfXrv46j9cnPY/+PTOa375wP477v71L077w73XDwytbNnUPL3kX798/gHLiecNTOYXn/nq/b/+7vmPj31y5Nj7b9/15MNf36//zdHDr/7is2//cuTYY5/88OgdP/zwj9nyxODoqLaxsjxvKS40R8vjhQOvv/zhqY8+ePCDx/e++uKl1w2TF/3lgj/8+V9ffHXjvtv2hDZdeJqn0qgOL0+mvWPx+BV3L7/x/Z2Hv/r4X+O/2HDtfx+967rN59z3ZXuxkRydniysLO1cmKwtbxys5rNDpSRI31Ap7g27Ah671ayQMx6nmpEKDMmwEzY2VGGlzaZBRYRNinKZRMwXSQS0XqHoADDrVZMKmVBvJhi9vAPAmJyLJ9BabHXCLmhSavQ4MBnIrIYNbzfJRSrs0NXiFCFIZatTKxOCMrA4zWYbArBGqzMZQEjJGJ/H4/L5/P4ALHQVpdLrrXZHMKCS0RqF2qBQCHr6TbRQhHJOIlZqpXzsftFqlOqOhROjJikZbHSZVMAVyNGeAbuo0D3eju9MzeJUDo42A21k8bYZla7NpNOgXwem2FFKjRrtKx1YYUCng6Y0d4w4AIAxFAnwXNsp82oFq8LQJqMRA338oaDf5+tcAvv90Uw6iims7ZGJyampTYubN69sLUFF8zvdQEnQYAhERau5YfMJKyGjN4gXx6EEWmKMTs2snDgXiqfDgU40EOzhXH10auPMxqnp5W17t1opnZRS0TwuQQjUNofLheCL00cWdOLGgSnY4EYgEGYdAjCQBQCrzmAvNmOh9Gd+AgKz0Ekqr5ULRSjQ1VarXc6kvQoWLcxYBUYFKoDeQLWA+gSVHJ36MrlKIVeoltK5+sjw8PDQQL0CugMEcDwY8Nk0LKtQkqBuKaVagYOwULgSmAEAoIlhSMMjw61a2SxfBeDVJix9x7kau7e9eCgAajmJk1hFjIjAJutKvVor5wqVUrbYAL3dHAAcbtsV8PCBJGBnGQh2VkHzQEZxexGAOwZgQDewix1poNGowzNokJkCsZQPACboX7O2p4srk4i4HClDcI7rl4n7e0QCCcXvk5EysUQm4XX3CgR8AuPfyOP4RO9aWyIedBgVDEG6M6lE2OvzWPHWArup0NbKZaVlhNWE3dYAwGJG2wFgh8MK6wo7jdVy2iyTk2hQosb2dKBywDadTi8NkCrg9vE5Xb392F3V29cv7OsVygkhl9fH43ev6e5ZJxQL+Ov4Ukkn/pPXI5IQon4e6HJBMR+KeDyAvOpA0eeyAgCnQAHDewAAzqdTqWQEADgaSqfi+Vq1COCCjhw1nKeeSDrcndsUvV7vtFi98TTGL5fy2XrFG6tWyuVcKhgEsEUAdvmT6Ww6DAK4XKk7FCpWTcpZBewmp97kMBjwZFav1esUMnTnomFpSSiNCUd6mX4169LKeiQaq9fntnpCfkvYBRvQxfb2gsjvhErw+3r61vJkQJX52FwtldDY90xK+uUSvlDGkXD5SqJLEvF73Q4bfJZyU9y+CsC5gM1oVKtlpuTqGFIoEE3kcul8vdFutQGAIx6HARQwAHA0VskX07kKNhPE4h6rRgMKOBBL55KZVhGn4MwY+u0JRdOpWDKXK+QTGhFbbwX1htaGgrcylE8kIrCO3Xa7GbidipKRZo1eyVD/o4D7zT6fx+/yooMbMJxSuV5Nh7x2g1pn84ZjaXju5WomqZNb4WVt7tTAsJE14co0mh1AcvyFZHPBJlXLOKJ+voRmgYv19IBE1kk5QsJZqKSsGqHSbcu7HYxBg43wajbPOAb1Uj0QOqnDETY7LQRL65MbvAjAPDnNIAB7ornhmZTN48e2zkg4jH/HtDUQ+rBkAwG3hZT6AmY1w9U109lcoTW2aX45IzXIaKtnbL1eq5EqjNbEyrKe0diyyyDBlGq90eGPtZeONyTOKfOJwTMO7DswWslP39e2FPPNxvhJD9w85jtx2u88fth73tL5tebCXQPxodGNS/tuvHWP9vSfVc647ucTm5/+RWJ2ZvmEW/82fGDb4h23Lyw8c1lheXnv2X+9+uDBy6+89JrLTpq7/dgbb3945JNPPv7n4bffOfzFo/mvf3jzr1dd99udhanjrynMHjDP7r9rYd/UhuhfXrzumd/t/NWLW6976e4XnvpFPfrY8+c//PErzx75w7t79z90512Dk1u3jQ+cWQhs2HLBPsPO88c2RCZffve3zz3x9Td/+OzrV7469tzLf//nb/S/+uL7Zy/49ztXfvb+/le+efraH44+P1AYHxif0DdXNi9YivPtqdJwbN/T1/x114MPvXX4d3f8/fGDj+SIm7+597JdD+864Y777vnzC4e+vsxfbVTasyMx31QketUTJ7z9/X2vf/b5ly9cunTpV6cX7nv/uy8+HpxtJsamp3NbFnbOjZUXppuFVLyWikRdtkA5HUr4nXao4EpSYbMqaanYnIkAUqlAyDBWG86QKuhV/BVJxIRMpWVUAMAExfq1sGtEOp1EoadUDMOXAyHH5kqtxmrUqrHbh5CZscPYjXfABr3VIBcZLCaHUdcZbDcYLU4drQ74QDKgfQQAMH7UOhVFEKwfewt9gUDIZ9FrOw0hdnc8xMLuZ7QGRsjhdOloggdUm6W4cg0tFIglGMSA5pDYvkuRoh4uScrFQimr0eM5GSgtmxM9H2wGVoaGFKDq5RQtUzgdRqvFbOmcMeHFoQbAlYK9qYbfZjRDrQRy0BlBApVpQp9H+BFR/urQ6ULDkrTWYu9EATo8/nDQ7/V4fH5PIAzbL52o1BrN9tD45PTG2cXFhYWFos3j9TtcbrfLE4wmMvnKwODU/LYFjyMEOyQcDPnT+Vy50RqaXNoUhv8P6JtKZUu1WrExumFuYW7TzJYd+3bYaR2605ACkE7qThYwdo9ZkFbjDBJAMbAEEypLjERC72s1mlarsLcK5S0eQWfyhRz2OZUqReyELkPlapVSSa8K74zRg7JjRdmhITa3PxSN4zxUrlAvFsuVcqnWriYdSjmtMYUisUQyEY8GfXadojNkjEYNWrXKard5o3gHWejYSA+0B0fGRtr1ageAaYwNxDvpznh2B4DhwwZKEk8m03n4DaV0odps1qqVVr1eSsbSGMnQajZag4DkbRsLoIZiHuSvQa1mFBRXgAAsAABebYIGBO5UOaAjJjx9VzCkiCujJGKhjJDCShFJCQDgfglNEuu6Of29PYJ1XFLUzZdyezhCEae7T8ThkPKubol4nUje32WPhYIOA5RbypNPxQHYPEAWTRab0+sH+eNyWcUCymZGTgcALFHqDTaby423rMDtAIBVIJukcpy/Vmv12InQGRv3uL0kl9Ml6AP07+YICKqTd0zgIKhMyON29fD61qzjruUKucI1PLGIKxJzefwukUQm7AV1LFwFYK/HpFeFioBwBqUt7XZCrWSIWDULyyYRCQTCsVgumyrWK7lMqVwqF0v1MkDROABwpxsRvgCAfbFkppgBAM7Vir4ofFslnwp0ABg+GE8Im6DRURmImoVVy5UkpVIbDGabDu1DO7ceOr2WpYC6kCyAp4TRmxSwfymuinIYJD0Sg8XrDbi8AMABB6pANbdbIKdJYT9XKIQn3c2Rybk/ArCUEfRLoAD1ERKMWRNzxErROiIVDfscNvg5CXPMDKinkiAAGwwqtcyYjGVS8WQ86A/F0FoZ2FmrVW+MBGFPW3Rqk9UZjdRz+XSmXqzWWumECzYu7BR/NAW/NlBSaFU6HIFzesIhWMMpYIulmJqvGGgHjMahTSV/eaSUiIX94bADfTh0GgUplluN2AXNd/nMGoaSckw+D2hgXyQejaWz8JgatUTA7zICAAfgPeVzHQDWy81A5a2edBsUMNoU6c1mUMBOTyY9sNku1NFcEZcrphUSXn93FwnkGQSF1FGspW0mqcrrqAb9SpOBIURyi6Gpc48YJVq5jJA4rH6Lw0QpWVN8yi2mAKCJTl6k2RPJjswCAPsikWg06PWHE8mAO5wMeAI+s15jcxg1YqnLrSTkPFcjm40F0wOL67fXRXIeaQisH1dQtJAx25NbV7SkzpldNCsVKp3W7PDG2gu7GLp+i6nLO3feFTvm4/HGnWVHvVCvDJ983y0T/uOnfI4dbcfPNp5dbe16eCQ2MDI9/7Mb7tqr3H9q6oJbLhteeuLSxOzGhROu/8vS3q0Ld965OP/UZbmFTSdecOjGiy6+/Nqrrr/mjN3XHjt06MOPPz7y3rvvvP3u+59fUzjrgX1/+P76P+x1D51yMLOyxzx7yh3z+ycnSi++cMnjj1z8/AcX3HXmyS8fvixSufqmix69c/ttL5706i2/+dOTjwxMbd4yMHRW1je15YJTDDv2tafSi3/49M3fPvefv51z5MX9h79/7uVXvrrReNsH3z994ff3TL54qP3nb5576ti3r81XB1uTo+b6/MKSvTjbnsyOJk99/Iondt/xx7dvP3Lki4O3/H3O2tpoyQ/e8+KxP33/1Xf3nfL5VUyrVR2YG4n6NlZyVz5z/KGvfvnkN599cew3tfZZK/f9+8s3fvjH6GwztX5yQ37rpu0AvnMzg7VCtp1PZWKBRD3jDwE9A2gBALZYMNHelgsA7CgVGiVtsaN1o4qm5TIAYEBgOanUK9SkFK1bgnqaFfM1OjFlYLQKpYjyu+AP0mtUahP6cIA6lctM7o5rvUllNBkdFkpmVJmzXgNKYBNinFply0bVWqMWtJDZrFdgF4GCYeSsD5a1B6py0Gc1GRAWTLZg0gc1W0mztJAnFvbQUHhlKkLB9IoUSilmu9IaFY6egC5S0nJhDyhEEgCYUWlAVms6jbnOztUXtk8pMCWWQmNkt8vcCdHFO2irRY89VlpCBShssADqOn1eh8ONJ9TouLwKGCDSQfxifQdRCXijNxgsdrvd7XYG/D4vhh0BZuFlZrJUQcQYmdiwcXZ+bnZ2tmDFyWZ/ENC1E0dYGhyamt027zS6fR6g0h4/sPBqc3B8ZNMU1s8M2lxksfu4NjC+cX5xcePS1n3HuynWTItEAi6XI9F3BoDtQGzRgQMksMlsRsMRsxHev8mwatiFEzmazkksTveiGdZPMiAYkql0ulHNJHLwLkGKtyvphFur7kwhdawoEYCVKj1OmwSjqVS6UCw3Kk0kAyWnQKbouIEZTc5QZ0g0aNcpO8168FABt2mTzeIKRmLJLEqvant4cHB4dHSoXbfKcV6b7QAwAwC8Op5tczpdbn84AqUiXSiVMIkBZ57qrUa1XkvHMAyx0hocHBoZGhoY7AAwTqJirBX6azLYSruqgDWrQcBowQwgbAGhhFNnLEXJAIBFIu6annVruno5XKCToD5JkkADDM7atf/VJxV39Qm713b189CJCtSvZG2PTMyTyIU8dzQY+hGA66lwJOC2o6CxmK0Ol8MGy9QuE/0IwEK+RKoy6HG6FrvhnNgTYVATlImQyRmWURlXu5ecbofV7fGRPGGPoL9HIuGIZIySwjNoOSEj5ARB8Lq7uNw1a7kAzXzJWq5YIpRKuFzuWokUYwxEPIGgVIzE/EEP/Jzhkt9r0SvsWa/boFOx8lgpFU8AcASD6CGaBuzN5dCnEeMYsCFpPOn0wHLB9wKfEii1zvwr5ujm/BHgY41y2hf8nyNogJFkNJYpFwrZopWF7UbSKpVOZ7EaAH3R/hS3loampCIpraDlAkJtMWvgSYn7FXKHQ9YtNRtBcoa8Qb/Fa7eanV4rAc+dkQv7e3kCTld/f7+MFPTiETQrIxher1hBIQCLRCKeqF+m4K+jsomo3+4wG1SEKWa2aFilSJX2OowGlYawZuPZTBzkXRgUcD5TbMJXq/EjAOsBgF2RcD0HTLOZL1fbGQRgtdVqAQWcTqWHK1C0NOh363CHg7FYHOCyWImoeYrhVsBkHtuQD1WGK4loxBcKwx9nQU3BSki7yapl5DynFwFYxjEA+npcvlA0GstmYa8260nsW9HpbEAK0ql8oQR0SE9hAo3FnWq3OwCsN1jMdl/A6c1mB7dYuVoFT8DjiFklKejp6SahvMi5PLGjVMvYLTKVx1GPhEG4GxQy1mOdsAUmbTIdZhZarUGbQU2pNa7UtFNEEkIEYJZhzW4A4Lm0xe3DSEqf3RFMxOM+7OWGcmq3JzN+h05k9uhIiuctQsFJl0eX53aW+ggRa/CNDlGEvJ8wmmPbt6vkDnduyYxBLlqL0xOrb9ouEBdW5tR90W0HTz+QzjZvLVnLmVpt4sD9d0yHdk8HPdvbrjNmzqoNbbunGWqPTm067Ya7f6bcc3bkwlsvH11+8tL4zMzsnoOvnLN36/K9dy0uPHlham7qxJvefeSKiy+5+NwLf376/ku/Pfzm2x9+8vHht/5x6J2Pjp6VuOGCwvJDP/vq1+31O3+e2rbbuXDK7UtnbFyffvqNK//83HlXHzr1l7df9/c3r8pVH3x4/sbbFy65fuDVsy/5672PtdfPb2mNnJv2TG658IDlxHMHRzLzN75+6NkX//PIPW//+aJf/+/bXvr4y0c0f/ju6EcPfvfS2Kffnf37I397/Og3byxXm63pcVNtbn7BWlrMjpRXmj/7zX0vnfHhsaOPP/rhSzbL3EA2e9nTX334r6O/3XPVS1/tOenw/Uy9WR/fOZPxT4XD5z+14/CxW1/65o9fHLlhbPnb15/86vAX/z48Pt/OT60fLy2NbtnYKC/OD9SK+aFSOhPzx2vpQNTjwzMplmAcTi0jExtjXuDvKgBgymI3YqFDJyysC1wJKWONKgUAMMkog3pGLePqrIRUT6tpVkR5XTazQaNg1UYdzr4AI5YZnTbMK9OxIEnsFrWEktnrIb0KQ/I0CkpJkUqAZa1KocNKDACM7SgMI6NdDicoTqfL67bAXgMhZ7b44nZYHNhdtUbESnh8NehebHjlihmljC+QiGV4LMmgjTNFEfw+kEW0RCRX4Li9DgN9zUZ0sgIpDhodfTgYWK+UyuXBlIZOThJUHNAFgL1SBcAWKOCgG+eT7D50nrfbViOB0TfCoNdqcQwYX1CtNxqNFuyqcNucLlC4AVCyIN2jiVSyiADcGp6Y2DADjGplJWswWzxePKcOhCPRZLYyODg5v3PRqbTCr4YCAeDMhfrg+rnF+YlwNB7FAprJFdHNdmBi49zC4vzSyr6TAgzD7znuuD4h8CF95wLYae+0YIEMN3dOFo2m1Ytg/GE6h+V4jw8AzP5fAAaun89kc9l6FcRRpVyrN+oDtWzChV3QnaC/HwFYozU5PPAzxVKpTLGYL1YBhKsRHYFDWCqlBhDe7I1EY6lE0Ia6U0GRMnlnxtdks7kD4UQaXggnm4cxjHBkZKRuJRk0xQSdzLKMQt95s/BUMRMzEImEU8lkFr2La41mAyCjXspX6jmMBM6ha1gHgAfMoMEUeC2FfuNqNctSfMn/TwF3Qh4M2PuOXAtTkxia4MgoAZR0WtDPExAkrEwhBgOIejg8vrCvaw1oyu4uQf86QOD+rrVdYqGwH1SxDDM4Rd5oaBWASU8l4gujFaUbQ6jsmAvscnmtpBiPoBmaEgoAgPU61Lg2gDi8AzYatSRllEsJeChqNArFSWCX1Wh3eWkxyZMIQP1JCQZbHaUSCUXTFEHIKSFocX73mp6uvj6BaF2/EJSvmMfndaOnZj9fLOBwi4VI1B/02kyaUDngtegUjrzPY9SrFXS8mIhiEjsCcCadQr9vhN5SDeAXHiweQXt+bIIG+HF4gnFszipkC+W0P5zPVdq1jDfoYmgNbAer1xOKh5PZXCaXrzpha6oBKVmtFjYKIJndbAGqB0+ckQn5UlZBSriU1mbQyGWskKuQ2jySbpFJZ1G7Q75AwOp12o0gwlT9fVK5XIK5ityu7v5eiUzQJaJpkiUIhtsloElpv1wiEgp4wl6S4XVRqXDY73RZjBq5KWaz6ZRqsTrjs4PqVhHWXBIUcDQYTMQSuUK+3GzUG+1meyzsshlMOqXR4gpHq/lCutgslUv1RNRlAQC22UOJDDCUkRoDIG5GExhXMBSL4SF2thxGAG4ETKbx9eloZaAGjzIYjboMVjtwc7VKzsCfrGbp/7kD5up9Tr8Lz4ii8Ww2lS63GqmAzw60F2AwHosXC8VaLqUnLTYAYFdysKVjTR0bT7M9EPaGSrmBLdZ+lZLH56PDPSPo4/TKQezTHK7IUa7nPFaZ0mWvRaMGj8+mI1UB60ZvdJOXsilUGqnRlnAalJTG4Eusd4goOYY3yoHZYhMWKGAA4Bi8e5/VEY4Fw0AfkuE2AAAgAElEQVT6/V6vx2GwZgs+i1qoT8ZteoGzEU8As66NLO+oyI2EwuYeGIASwZWZLJFt22ih05lbtuNUgcpo86abs3tCNM1cWxaKS+fefGE2P3VHy5BK1AdmTu8A8Kawd1vLc8HSOZWB2ZuK4dH1G+dPvf6OszUnXRk/54bLJ7f+9orYpvmZ/df8+eCpSyv337645bnzk3Mbjr/r1YduvPjs/fvOvGjP8Wd+8f47//jgk4/+efif77/33kfT1d98/vJ57fSlx4fHdtxcXdrunDvp5oUzpscqD/z1vBdeuPBPh685/1fXfvDMGfHiRddd88ebdx18futLB5Zfefmx0Q3zK82Bc/L+qZXzT9HvOHdqMrH53mNHn3ny8OH7v/jXLbd/+5tnj379mOmBtz589eff/rH+xdv1mz646br//vIPY9mBgemNhvb2bYvGyq7mbHG4/vPDHz17wntPjUSb5dnN07ef6l469NFDe758/ao3/3rowfnZQ3fbMu3G+PZNad9ULn3Faye8eey5f3236YrTTpy44ujR1779+Ktv36pvbuVGJwdLy8M7Fwfrcxtr+XQardeD7nA5FUwGvU6L2cDIGLtTS0uEupAX5J4aNIrcZEMF3ElUlUFh4EsZudqmVWOAOKsKGRCA9Q65yMgoSUbCeL3owapSajt0UQULlAAAdrscXitwZqvPbZPwpM6suyOQQSexLNB9Gl6XpDValdqAU0Rq0N2kjMLuXivIUti0OiCqeqvd6IrbxLy+/v7ePh6hkYq6VQzRL1crKZmEVNEioUwqoTAPgAW+JpGjt5FcTkvEwBC1htVaY7UCEFttJiWl0yg7aQxy0NoOECsoH404kAoAjFaTpAr+ZjAaOqaDIM5AIK86dXT8ltFPqyOUAYYAiQ04+2M0gKZx2hxuH4YwhIIAwMk0qLk6iMvh8fXTs7Nziytb0karPRAIetw49BpN5irN+hgqYC06/uEpdDyZhO2waXl5UwIQOIZm+oUqNgKPbZydnZnZuWvHgZN9ctlP1/30p1yZRMjHeuJAI7HOKTrKMox7wmY2jRbboI1AFRB1AU6Vq3fAq0fQpWq1hCNIhXKpVC3D26xC6cgnXZ0eNpxZ+jENiVLo7N4ACIx0KlupFEv1YrkaoqUqRoXXt3odCG57IBn3uZ1WfFmo/xRF0jSrNmHseSiezBar9WZ7sAU8pD00Mlq1kAi8QHwwFFiN/mSdOCSHw4kvg96JmUKxWKrU2+0GTv8Wqs1CAoREOltp4Yj80EDbRChgnWj02Iil1+pYWsYVAQD3CUn2xyZotZpBm2mDDmfF1JgKwlAcOSuWg3AX8kQyjVYhF/OBuLFkP5fP5azr7hOBFO4TCtatXdvVA38J+b3reiUERgb08zyxcMhpVNB4BxwOhIN+P7YFWWxOt8fhdXr8RlqATVjwXAVCiUSl01gdbi+27WC8l8GopykD0XGQQtcvQG34shntTi8tUwAUySl4d3g8AU+OQLtQipITAkFfD79/zdq13cfxhT3dfJ5EIhAI+RyBmBD1coRQqAv5UNgN69OiCVbDmBXhzHdieBRsqpyMRRGCI9E4yL9cqVCoViv5QqNVrZTrrfZEwu5GQxpsyUYSEUgXQD3m0sVy0heC723Xsn4AYDTisAFqBhPRbCGbzhcQgFk1RbIKnR44qMVidoCSsxhhybBSAV+mYKU8DqO3ajSEWC0SKiU2v7iXr9NYGJMzEAw7/F63EZa9hdclkJGEoJ8rAird3yMhhGsFaKMjkzL8bgEUGo5cLOQDL+qlAZGZVDDod7vN6IQVddn1gDyaLDqP06zMnE5jDyBmEeFxb7mOhlfNgYmI294BYKs7nAL+l6ygDWclFnZaVCqLzYH5x+nEaJ0C7mAymWx2pw+t2TOZVLYU1AEAVwNmw9j6TLTYrifCsXAs4jBhnwcoETljRwD+8Q6YIXg6vzPo8gSALcezuVS6WKumgBXpVAaTIxINxcsdANaSaGVpcSSHmzqFpUOQzfZQLBAuFge3OzkAwDwBaH8ly+Pye2QmnYIW8FEBFwJWqdJhq8biFh9wDlrlN80EE4shlYdR6qVqW9ZpguIJ/GbYKWFpMVdGyVmF0uAMFwZn0jaPP5aIJ4IgXSMuD4adhlAfOfLFoEMrUuRqAbPI1oiEIvF8ff36LQ3WIJQbfa2W3mIQyC2OyPIWmm92ZBYtwOkYVmfyZJpzp7aFvZ65c62Efvqa873x0bsGNalsrTXzs/tvW+/bPRd27ag7L1g5u9Bc+mU5PjGxacupN9xyvm7HzckLrv/FhpXfXh2bWZjde9PLF525tOOhm2d3/v7s7OzM8Xc9d+3Nl55z4JzLbzzvzIs/fff9d97/57vvvPXpx+8fPtJunfvI1LXPzZw55xzddl1+617LzO6bZk+dGi7f9MZFLzx21V9evOTch069/1e7mpXd55z62BWzlzy06bc3HvzsnnvHNy6ttBrnFQNTWy7Yq14+fcN0eObRTz9+4pVDdz7/6d/PufPfNzz1xGsPKq994cgzZx/91Unff3/HHcc+eubL//77xsr6wfUbTcO7T1wx105szFdHBzZfefF89/rNd3779ePH7r7jwaHC9Aufnrnw92e//OLouxsXk5/93lAYrg0sro97N6QiZ/1+1yff/+m18xeueu+GgUd/ePP5Dz4//N1biR3t1MDsYGXH6O6V0frMRLOYyQyVUsl0OFlNuANQuY0mIyhgk01NScTGqB/KB/olkKsArGJokgDyLZNKacYA/I4m0O8xZCBZKV9vkYgtLCtjZAqvD01mtWqdGVud1ApGSljcoIAdIKndHk806FSICJNdr8asYBZjkKQMkDZSLCQYWipHmECjWZBRpB3TCDGQ126A+gnawWFwx7VcTtfaHiGpZLWUuJtS0DyuSkEpxFKlUiYi5RIClZtap1WJSRmPL6NogGEZy7Dqjjmyye52WDHDF5to8RSUpUFPM3haCIURNAH8ZcGmTp2O0aCfIWCt0wtfHjeOazhsVsRgowHkrl6jVGJEiNFkUKu0nbEfk9WFIYQ+0L/hcDCAoJXKYIRQozU0OrlpZuP0zMJi1uJw+v0hnw8IaSSSyNQa1dGNy5tcWnfI73U5XMFoPJmvDm4ADZz2eOPpOE50lurNcm1gbGJ0dHxx6/af7XYJ+T/tWgsKWCCS6W2oze2rWcBWO/ZX4tEiZlLpDZ1ABh0+ElWnC1qj/L9NWMVyBQC4XC5Wy/lctlCvV4rNZjHthm/o9A3jHDAAsAodB+2A6g63J5TDa8R61kSQKuzMU2t1ep3ZalDb4wGNSo9JiCaDGeMkQQEDPTF7fN5QNJGtNNv1ag2bmNvDoyUTCTKKlitBBitxnaxeAcNn7fJiKk8kli5WSvkccI5KqdIaHm60BsuJZLaUgT+nNTg+MjoybKVVndQjbK+Cn43B42WplNsnoBT61SNogwGAGN6ECfiUmoXvYpQMh1KKQQOzAq5AyFCkEKN4KFJwXI9YxFnXzxV39Uv4QuHaNWu7e7p6eTxe9zohrDEOl9vb701GEYAZQu7KplKxgN9jRf8QCx7+++1ev0EpkpgMHQAWiSVALK0uAGCHzeTEO2CjgaH1UgrWmt6sBwLoQAR24+EOLVPK5DSDzgs4hQRALMc7FqUSCrugZy2Pt/an67r/SyQCcc+TS7lCXi/oYULc08PjcXilYjjscsOKVQfr8aBNz7oKPo8ZJ+wy1XQCFw7wtwRAZyqby5UalVyhPdSsF+DTGI/DRrCvXgLbnA5HEMfcStlUsZzwhYqlarOSDQZdNKHUATH12PyJaL5YyBVyJdBdchVFq9V4DaOHT80JK82ogz2LoSekkub38lVGuxoBWCBUyZxROZer0TlonTEUCrtCAZ8xFEm4hV0CUi4T9PQJeF3H8TgkLV4nImhWIZUwoj4xQxFcOehfDgAwy/R1KbORUMDjgk9UpkErSlaFChjdHtWEOZOJBaPJoC/RscKq1Er5Imjg8bDLYbICANu9EdD11XitUikXa7GQ3ahQmK32cCKdzSfHanJDJ44LKKwX04mw06AQ1PPZoYrfph+bLEbz7WYyEg2GAxbsvMQuaAnlwEBgQuD2mzU4ga4POMMubzCeiMayuXQmWyqlwj6HkQVcj0b8iUqxWMsndaTThocNAPoaBGC9wWR2hOP+QLYyvMvHUyt5XEGPGD46rkDQJTbqWFIiktjz5VzAIlM5rJVY0u7zWPWs0mOci6Q3RzV+WEwS1pq36aU8Ce0IDLsIJSvlSkk5CzrGESm2NqbtvgBOCEZ94VTEFkmG3QEfXjvYYgm/UyOUxEtOvcBaiSaS8Wx9euqElkQpV+pDjZrGohdQekdofotaanGkZjQUKadUOp09Vli/d87GeOkzlvmi6Bm/cGWb97XUQDlK609+6LZx357lmGt33XLu5jPzrRPuqsWHBia3nnnTjRdpV25LXPnLK6fmn7o6Orc0v/vWF/ecueOU/3XT9Pbn95U3LZx0/4uX3HH71eddeMnBs895+F9vv/fW2x+9e/jtzz56+/DnY7VzT53af17iN1cERk+6JrNrm3V+3+2LZ2wcL9x05LoP3vv8jYc+feTpC997cn+2svuKzQ9dN3nwLwfuPW//s5dfPTi1vGWodVnOO7Xt0tNM209vjOU33fm7d5781Td33vrtN3f/5b+f+P2fPnyCfeGzf7773LdPvPLV0b8889W7r3/55aGF0vjQ5Ix5cNcJ22yVbWOjqdmJ7Mr59+x44dtPT/vd1z84Bo8thM8+emx6Zdfdx9776MtHJ0aP/lpbbZfaKxuS7ol4/sxfbf/2zepJN3z1+ee/2nzJD+/97tAXR75+xrd3NNXaNt7cNXLi5qHW/AYQO8l2MZmI+GK1dDDmcwFwmlkpabJrGJnUHAs6bEZKrqBJs92EXv5QXEgZSGCpQEobTKyWBeGKACwnAa6NIsJMkyJSyrpdFpMZ44vQCQtQViEm7B6sOE4jC8BnM5ktNEhnRgo0V86oGIlKJCckSoUI1KqEwyehTlIds2IJgZ5aVrMdSoUJrRShGJj9QUkXH2/uKLlWqxT3S5Us0ft/eHoPODeqe3s8nxTsrep9NCPNqI00GmmkUe+9S7vS9upd7669616wscGAMb0TegmQhEASEkgl5fFeyIOXF1JeEkilhNDBxmCDKQby/r/vV877L17b7K53RzP33nPOvd/vOVar2aHSmBm9kiDUGuycAQAh9WaDTGmgKBLWBewWxfYiDOj24SEpCiML6N9uKzBQ2gDu4vrgFqCOZNHgmSWBjTIs4E4kGgBVG4J/KwZ8PhGZihMgCWQ+puF1Y5VoG565YqSZGEokEnF0dQ52t5izXQDujE3NzG1cXlxY3rK1BJpCDMYBgYGRJjLF0bHO/MrWlZAjlIgG/f5QIJbMVhojc9Mbl9N++FgyEQvHcpV6Jlus1aqNzvDc2kUH/Urp+r71n5fqzG6bgC5/QFPwDBiEPJJr3Hz2oK01yHprt/wZ2ASGDHbPgf/VhjTUatSx2KlZRrPqCgjh6tBQNecF0kRj9xEmGJDwiGlAL9wvptB/wZOsj+cdOgIzDmwObPRhWFgYfcD4Ofh5bofLj1V4TjttdNg50FbhZDKWKtfhykdbjcZQe2qxyekp3KHGrF6atrocHBA21g00AgNisN2plIflHmueQasNw4LameoUc5VKuVgcnpmbmJmem3CDcsatf5sNzxIspImQamitVKbSG83I+4AY2eAmuEAh293dI0qGovQaHWHQaUwmQDE1TeuNWqlESxgUvXgU2aOgJT1KvUpF9fYMyhF0e2X9AHvSHhBp6/v9sAjzDpo0mEONciocifq6rQF0t5Fd9AX8DGUQXGaGJmQ6uAYbDDQvjBbe6UOjCgdH0LxWjw7ZTrcLPbL8fn/A6w14aaOZoO1WuMd2bGDuRkNhzb3HotQD7svkkvVn9fVJtYoBJaHVapQqYAV63LEdBPAqFJOxgAiIxORrwA8EKlCPYh+fDRVwBgRdBmRwJl+qgK6rNtHRpD0yXAMGNT6X8QXcwCHxqNyLW9DFOnCrUrFdC4TT5Wq1Wc/G0pzJZmB5Toyh02ihVsrlq3XeylA0UGU7A8PMAXPBywMLYRmbjdTrNAZKL5OaGZhnJpXBKR1gNK6IeaDfAzTLbPaGUYsJ/kAsE9EqBtHxWiKVDMrWrwMFrJbJCLOZIXSkRi6H8SlX4gmSQiahrAOD9mIiFgoILqvZ4EgGPQzLELZyVMT+Ax2fL6aT2Ww8ls4WyqVSq12t1SqtzkQy4OM51uby+aOFRh1Gd6PSbNfTEViGbJw3mMzlyrXyeBs9auy4JyYE47FoIlsqFYoxRm4cHwnwrrmlerLaGclHA+GYz40CFjQ1padEzmkxE0oBFDBD66T2AIZShc84bxdy5WK1lvLzLgB/fxwDgIHQVPMO2oPOYWJqatxqgsHJwrLqS2fj6cbw1J6IhLQpJEpFv9FFKFTKQYXLAnRRofHXR2phr4EOe6uZtCcQ9zloa9C7M5Xcmrf4jbRJpfVEeJduvVbBhec8BIgWrZ4gKbOdE1OVzlwxHIWrSidz8Wgm7IYBkYx6bSYj68mkAyGH3JAd8tqM3FCxCDejNb+6b4JiDJQrOt72slalkeeTu9Zsao+Y285TZrOT9ScK5a1XbWvXWkFl4opmj2XsnmV+7vtjmla73awd+cmDM4Hz56O+XRXPtedcWp3d+r16fmJs466L7/vy+Z6z7w3feu+Nq3v+/Y7EyrYt5z3wxJ6r18579Nuzy7+7sr64eOTBX95/6z1fvv78q66/6MofffL883//+yvH3nz2teOv/fWDufFz9/7lN7cnv3ZLaurQnbVzDvArFzy4cnhpoXT+r+cePPrHb3z9lbfeuvCdV2+tVi5/9Pz/efKxv/z49h/etO+nD9w9tWH2vNXhi4dCm86++kL+4CVTM5kt//mr13/3x/cff/bEsR/94f3f//qvrzxM//6l917+7TvH3n7v1MfvfXr0+dOfnNhRnB9bnndOnnPudtfI/trG2qbpq5899cbq8T/MXrd6+OnI6ofb1y499u4FS4c+PHr09fd/OTJ69DvOxmhnbNdSKrSUzd76XyOXX3H+ydfeP/b295bvPf3K028ce+3Uw7F9s/XFXfPt1fkD26faO5Y6rTw83kI6JqYbhWjIj1EEDoYkvF47rVNyhZTocYLMdMEC77K7WOz2MRKEkVQD6Bk9FgeIAQPtiLr1JrXM6dUZSb1SK5XKxCCsOqCzYEFxWGgrLLUKT9jvD7tcVlKjt6Y5nYdRmHirDIBRb/e7QVUTOjVtg8VQbjJTGHtEwS8jRWi7+3cIjLzdBqyXtQmiz7VOoRxU680uLWMFtq0GCB9QsAxlU6td5j6TUakl7IzRCh8hGI3CYDAaTQoVZYJ/7OC9IFFhteGwRRZWaMwDNpEEYTMSIeyRDwSRorKCj3Oy8LIt3TB6EFChSFDwhgMsf8bsUeCBRHJ4gIZWlOiBC3+ivZEYEv2BcCgBRDgRSSXjYgSgB0RFvdNsz87Ob9iwsLSysmlzAWZyKBwPR/GoOF0qVtszWzbv3BFwBGMotAPhQCyXK7WnZxYXYVlJJELxTKXR6vbxjEzOzc9Nj81sXOCkuv7enh49aF6GF2GtDwo+0S8IfsHtdXePozmPE6ug7SzvxiXZwrAOBgAUrTNBEFpM1GfgOw636pVSOQ/QjkeDTWCy1bwPt6nR6BqdOs1dW0d8HIyNtIHSMTOAmBRBA55ZrTaW43G3227zIL3nOd7t5Lxojui0M5TJ6uT9kWQa7kexWqlhciGgfWe87jLgGbDZjGfACMAstrHwwH/CwFzS+TQeWtYaw0PtdntkFAMYhsaGi7lSsVCsjszMTk5PzoxxwI1s3dNePKm2mhmjFPibfFBpNJtZB+Y027opD/hw8ADYglkUBo2B1KsVBKlWaggbPH1CpYJLUfbJVGp5v9ogk8qVOoO2Z/2AXKFWSfoGehVShQTXxZ7BQCod97A0ZTAF8rlECO63s/vtsbDPE4BxajaRfh44AanU6ghTF4BF3LP0+wWQihzJ8HoDCTjlhCcDRA0PNTzohm/Ftm2HDV4/h63cII3hC3yC167T41kLOmf290vVQDrVSrUaVmeJnNKqpL1K3aCyXE4nwyG0bM/XU1G3m/KXI1431msUUAFn0oi/OSyCq1QBBZr1+tDoaLtWbY3MpATR4+UA7wEIEIABXxv1cmmkEYoUgS21Grl40m2kKReP2ZmxTKFUK2QBszgMWSZpmoXn5rTzAswP3g1c1MoYdHq1SgsXyVhgwFEqwq6UmNSOgGlwwGRgPYzREsimoyFR8IfTEeBASpJQAQBLVEB4tIDFgwjARgBgicRMkko1LCuDikG5yTggsQHRgH8IAKx3JAJei4M22EpREQYmo3PnyukECM0I7iYV8rVmCfd0OhMJuO9As1nBnyjWq6VypdwYGhkqJv3A1t1CMJErlOvl0SEaHhnrBAD2hWOxeAYGarEctcqIyfEI717Y1EjWJsazkUAwAiwXN3icVrOO9KElNKH1hziYBiqZIxiO+PhAPAr0EUhPIVcsJIJeh80l+GKJcAFoc7NWdJjgTvFeMTk+ZjXjngjv48V0LpFpDE/vjUhJqxIGWp/BacS4LrXHbjNJ5Tp/vV2LCHoE4GyG90cFu5kOcNvS0ZWMxa0n9GqD02O16dUaayC9MYY+JhqdERY9q8ufLDVncoFIMJ7IgPSNpIPOZDwajUdYnR1keNrnt+pNuWE/SzpbhUI6U25OL+ye1ABt9oTGOn43qzF6hPSOrTzhiZT2+GH6uCxctFSdO/8i/aabBGpk+2X8oLD7S43hR8ZNHdziu+yRb82J587FxF0t3+W7L69Pbf1uJT02trLvmm9+eXdqy43R2++7dXXno3ek1lY3H3zgiWuvWj33P767uPl3V9WWlg5/41dfv/2Lt15/5LJLL/3y94++/o9/vPTaa2+/9NqxF/703vTMvnveePmO4HfvLW04fHdj/37PxnMfWD6yabF69xWFoYXGjrWFyy7w/uSJLYX5I48evPXld3/6n6+f+P6lL/3s7snNm/eON67vhDZsu/x8197rO4uNqV/95u3fvvTRH48fffX4qU9+efT0s3+gf//pBy//6MMPPv23X77w0muXHH7jx19fKM3OTk3y0+cc3MFPHGxvLM0U9v/yhUu4P9zx4O9/+6Xdk763Lti196VTd17zxjtvnjhx9LqR4Xd+xuVHRibPXs2GFrOZKx4c//XJ50+++Pyx5+89/6bTx199+Z1333g2v2+yMr99tr15/txd082ViaFaujxUyiTiYrJWiEdDIT+MLtpkdrgYUiVx5OI+IHFmq8Pq9btssHrTFAnPljAatCCLQnarBdDY5gw7CVqvZF0aSidXaQ0ydRhrgVi0uGLdWB7D6BWgEPwRwSjXWDwuP6FQD7Kg1aRanUFH2FiTTKXT62k7o1YoKLPJ5UT0NZF6g14ngKrjPT5fABc7mmEtLB8UpQMaFYG714yVhh9pZGiNxMTCaq41WzQGHUnpGAs69ZBGk1JB6EkTpVQjAMMSD8rVg4mDTqxPYru+xWbSQMALCYP0tbu93V4ejxfwA67dzNic2NbjwFi5QDyC/oGYiIJIg3oNILq7Cwp6C5ZhFpRoBJRyOJHKxFH0xcJiLJ3IlEu1GoiOyZkNGzcub968eXUtz3n4IABwLBiKx+L5aqMyvGFmddVtETCRWIQ5E81k8vWhifkNuVQGFr0KhrkOtxu1cm1sYWVly/LK8qy1BzfiZZSNIPR2uDC/H82gsTiMgxX4zHG30+108c6uHRa2IWE+MyYVmBnSYGIAgJvNVgvjfGulYgXwt9kerg81y1kB+4BteBBgRtdKMx7UdrUq4wDOQulVRiwlstA2E1qLsvANQUZhEXk3BREzk7tWY6wNAJgTYnArEolcsVSuN1qtZqs9OlZ1wVKLVdCmrgJmrVhLDfRG8Idi8XgymykWsvlSbbhbvDY6MjwEwm2olIXltTw8NT8/PzM1M+amLQ6sFUAANjEWktJLtWqtckBOwYXBN8RzX+RFeAqMgcjwtehVTKCDOUkqpErCAVJAp8IEGmW/UquSDQC2aeV9WqLvrM/3gPhQD8ol/XqlQqLVqAZ7BoNdAGZMRkpIYBghbpacib3gOCEkeFwkRYpeq4Wh1GoQghbMKQihsYsPa19ZN2XhYWE0WwCAMQ0JK/VQAWMfLUAgPEG+ewSCjcUupxu+rd2oU2A+g7x3XW+fVCmTKDVqrVqukPf36nQaWZ9MI1FXK+lUGCaum8nVUyGX2xwoxwIe1sqYAIDPVEEnMkCvEH6r5dZQqznUQU/k4dGZjD/IA4fEMgefR0AAxpyG6lgrDKtsGUAsF4t7CcrCudAMOpbJ59G4tNbgYQhYjADAFqedhaXcDVPa5YDVwKTT6ZWDcONIK2CzxQjDRCPRqxwCrYH57RFYM+WKZFIR0ScG03FeOSCBKSuTyhTafjxpV0kGDCbaQupI0MJAwRUKEMASRZ/aqpIgAMdDPhEt+thkUEATPFshhgBs0XOZTCwUCfnFaAIHTqmarzeqzeHxhB+b+hmH4E+XsN8dXn+z1Sim/QwAsFeMZgCAS52miaEtTiTmItrAFqr1SrESYWWGyUkgNPNL9UR1ajoVjYiRIG6OeRGAtUYAYMZMqIWACzitXuIIBEM+jxhHb9lIPJPNZNOxiM9qdWLqYSjfqFWa9bKDwvM0kN6dUavFzXIgj73BdDaRqQ3N7I1KjRbNoELRp3VQauBYKrh2AGC9UGvVooLejAo4wwlhr91k8ru25kJzGYtTo9WoCRujBUmrCUfzazkVoVMpVCApKJs7kCo2ZjJCKAivKp6JR1MBZzIVB4IgmAXRn0t5vFbKnB0SOZOzVSpmi8Ojc8sHV/Q2vaRuE2IAACAASURBVNUaGmsLLofG6BYAK70kK+Z2eBkLzbK+dLk9t/uLMeHsgNPoO3u/Sh2+61D2WyO2Vq3Z2XjZ9x5aDJy3MRfbNxG5bOdVjeG9j9QzYyOLuw5/5c4N+YlL0rc+cMfK2k/uSC1NTe+489/uOry455Fvb1x76sba5rULv/G7b95x881fvOKyCy755vdfOPHSCy+9/uLRV19567m/nZzetPW1V956yHj3vYXpg7cWd2z3Lx342tJFS3PlF996/MW/fvrMb56++MaJ6c2z2aFNpUh5/7Vrh2575t7Oq088OL159ez50Svncxu3X3Ox/8AN0/PF7T9/59OfPPfJR6f/duydFz7d+t0nb10JX37vj6YC19y6qTA8d8fXFkYfePy2uebo7JYl19jO3ZudI2c3ZwuzpYv/fuJuz5Z7Tp88dvyKTP7EOfu/fOztS35x+s8nnn/vze2L4y8/SnfGx6f3reUjGwu5q7+/+92PH/vgmT+feOnurTd98vxT7/7j6Cd/q++bqM5vmR7aPrd7pV3bsjTSyjdG66VcMphulFKxANYIsLSRYNELWu4qRAWes5itdovHz8FKh4WzBG5BG3SAZ2HWzuh0RptDtOtJrZI2SQmrltSZpfoIHi3ZGTR44+w0TZqNOiEYAjrKqAZ6DVxQp1QOhsOxlBSAV6MxWymJVKEz0SB4lXKCJKwMhbG1lIHQ6mCuCm6PKGIcIYx43gXjNyiT6jRqu01rs8A81Cr1MDQG1JyFtBlUsPjJaZOWxF0yBr6XVEUaKNogVxhIWJWxLQWmnoB2UW5Yn+1dvw6S0FE6AlZQ3u4CGQerIOdBacPZCewtQqOgSCQSDkZF7LP1YhkWrJMuQJszAGx3/B8AC6Io+IIhMZkMxZLxZCgoxjDdrIgKeGhqZmFhcXnzpk2bV/MgGQLheCQWDidi0WxjCGB1ZtOC246J9N0Qw2giVag3JgGA05k0KJhsDrN4i9lUfnhucWF2w+rOnWGNUd7bO6gn1QbK5ccsCbQ25NDjsJtwg64hLO/ivC43+y/HEKZbtIwlWITOxJjNnwFFhJK01ajiAg00HRQwrFA8kDAsfzZbAYDRKowkcUsaNydoi91uhptpNpJGdENhWYA7DtZg3MPz4w4dMgC3m+tehtXuAGyKhOMxDD8vV2F1q9bbI52Ki0Knb0Bf/DFWvIF2LAXiPf5QJBJLpfJZbF1qNjAcAn6NDbfa7VoulYqnG2Pjk7NzM7PjXvgn5q4879p2EUadzIAGUQrSwmD2BJY+W7suR5yj+2OAazEaJWnWK1Vmk3xQprfZjDqlTKHSmzRYaTXYL9MqCV2vTHPWZz+7flCiVMu1SqVRpRzUEjrp+v4AkCoAYDNFeZIpLCYN+Lw+dHsWRX8wInicBGEK+mBImbRKlY5kMPVDwAhpfxeAOQoUC8YR2rBcz+uDx4wALAosy8HYAans7BZvs920aidCGqVVyPp7pYr+z57VI1PIpUp4gRqFQt73WfRJxhghXb2aSgTFQMDD5BrpIO+mg+VkCDCCMeWbuWQqnYrB7cwW8OZ3AzFwz6NRxtirmawY9AAAs3arAwE4XoBnA2xsfCgSyZcLxVYrH4sJhMHB2TxcMBZPpZKZUqHUaAIAkzRB0w50KHV4/V6fx+ew2eGjBMjYvj65nrHaXTaaAADW9ynULh9LuUyMCHPGQjpShbAQDIbS6bhmoNeIzttSuaZ/fa+a0MgG9SbaSsKIlstoE5BnHVaa9WvtcpnUWkwmQj5Q+jbSlQ77nADAjkz0DAA7U9EgppYGY8lsuZQr1YrlarnWGksGfJjewPoCeDRcbTRrLbgHmVTQ0d2eCCbzxWphqIauFS435xFCySSGAVdLhXLEr9SNjIU5bmqunixPzCUTCTESQadXuGMWAGA/KGCaUHpEzmqmiQG7KAbRRTUaSyYi8Xwml0+GIwJQRM4djAayjToo4BIoYI/oFcLJ1pjNCgOC8/sFYHWJTKU1e3ZUaqB1AzJ5n8pOaZWKfjmwaFIi03uqtWrEqzcF+UomDQAsIABzWwq+TsruUBpAAZv1EsIskrCI78lLCUKt0gI9tnBiPF8ZWsx7wzD7ouFUPJoOAlNJR8PhoBAQhUzSI9gJMtX0cyZXI58MBNOpbHVxSmFTMZbY5LDTwqhIzpvYvMLpHd7kqosymx1cOJOZ2LT1ui8qz57yJAxjX2zLDPM3L9wywjUaQ50tV3zvO0uBQ5uKkbMno5fvuqbeXHuolJ4YX9p5+MEH5tOdS7I3PnDn0sqPbk9sml3Y96X/vOvynYceuX9m/onLSqvbDj3w+/tuvOHKiw+dv2/Ptd9//e2X/v6PV198+bWXjz/33PHRmW07nz3+3dhNXytNnXNzcddOHwDwxgsXZ7JPfdp6/OOn7/vhb06fuuHjZx+rtR588oor77zq7hu3Tnac27eel9+6c8/i1JHZwvymyy8UzrlsbLQ0f/2tT05ecMcXN08tzt9yNpH/3pdGvfU//uXS5kvvP3H0hXfe/+ArX/n4oxcXc0tDIwtsZ+u2ZXZo+9BMeWPrhqOnbize9sIHVz35/td9m/++/4JH3j+182cnn3v91CsnfjzRfu1BsTYzNb17JRdbqeVv/M/zT56+69w/nDj+6sPbv/b+C3/59LWXTr1f2zXWmF8erW+c2Lt9urNtsdPM1kYAgFOhTKMUD7iwu9WB4YEC8FetpxT3edxW2uZgPKLbav1XFTS8aQ2wxokOF63VkXZHmLdYSIONVpmVcp2a1JDRsB83wbBHxWUz0zBbVa5A2EFRBqVC7c1maICMPMgcs16jM9CcXSNT6i0OE0Ep5QrKRFkpEtd+hjJpdQF0EkIADvBOB2OBASz4wpRUQ6hplugGChrkahAVMpkVW5FAQBtkRqPeYLGBctObdINaCia1VqHQGnGtZkFHcxiX6/VymIYE75hHqCN1VEjwo1Or388BZvlQv4ECoQCIWJhDMP8iIjrewufwoBwA2Mnhfj1egb0bioTeWaGQiJaVAjYNphIwBYFlYIF/pT42OjYzPT83v3FlZXllU97l4QPhRBTYMrxnavXRBZDGQ14eaIrPixm60XgsV29MzM5lU8l4LJFKo2V0LpvNV0fnNszMLm3ff25WoyVU0kGD3eZ2eHxevtshhQ1IoNixJaobx4wNLy6sccIqaAa3n1Hz220mwkxT5s+MdoYa9Xq9gWF15UqpmCsUm/Viyt0Nb8AyIKr7RtImwkB0QZnB2ncC9CsIY8qCDMTOun2wEDs43uVCIzPXGf2LEtjFWmw8LE0xuAnlamOoXWuBlu2MdqqcyUKbugoYu51wI9fBsjwscGI4Fk9m4ulUugLyHJ1BOp1Oe7wz3BkdroCsSNVHxybnZmfmxr0Otms4iZXaoMTMtFFuIHUwwgxmKwgp+IbYYYPBzQ4APaRItBG0KWXSgEQjlXItaQNmqFAo1UaGkBlJ+eCgxCjVmyS9kp4vnNU32C/VaFRqnV6hHZATesm6XjEZj/BO5CXefAZbzEKiR/CJASy5g8XZ76EM5rAfI6a1CiWMNxvcFdYKwyfg9/K8AzgHp8WiRaQEbh53mkW/Vwj4WFs3Ngw1ux1uMItOcED84JIZrUoxsH5ANvj5z/bIFTLJoF6thvVV1d+rNmpkEolaqm9UU8mQ6Pd7LLkmhjFQgVIiiHsydAEAOJpMx6PxZLqKR8C1GsLSULvdhFvb7kyl4ZKFroeVU3B7Q4kCkLFWszbaCocKlXK10y5E435K73LQPId2hslEppAHYczRJooxMrgdBcsFQIrod8PUgvlq0hgUvX1yAk0LbWZCRdjJ9RItL/KMj3FF/H6v22j0Z2MiPORkPq8fWIcxwFKpRCFZ36MyaGUD/wfAAwMkRWs1RsPAoHpQY1XIZdauAv4/APbzVlrvSIRErNXXsglgGclkPAHjplQuVFv1cr1Sa46lgv8CYDGWLZaqDZDF9Xo5kwy5TChNxXg2W841KiaLxeQEAPZH0mmgy+VCNlOIZQhtsx3kne2JZqbQmUpmMsFoVMQaC7i3Fh0pul02xqj2BngbaVQNOIJIm8PpRDKTiqXKuXI1Gwp6zUj5Q7EgJqk0ynkHzfHA2UKx2rjNwtldnB9DqJKJdKkxe3ZEpqMMgxJ5v8JKa5SKXinvdpJSGeGB+YkKOOipZrO8EPGzJpPoXs46izG7VUZRap0JmCcTYiPe1IGcmrFRaKBrZb3RfGNkYlvFG40m4pFgIh5LBbgsuvwgV/DziZjHZ9cT6aaPJZ1x0cN6YLXKTbQVDgXjTEy3nYxFTXqF1NbNrNYVyGzhTIyFs3gjiYmllWu+M64/9+yQdmjtarfCc/Caaztssd6qLh7+7sOL/kObssLetv+SXVc1x7Y8VEiOtmc3HXjgvvno8m3Z6+6/c3nTT+6Ib17ZeuFXf3XVF/cc/uF9c4uPX5LbvO3A/f9z+2WH9u3csm1tcdsD777y6ssvvvzKy0dfeeMvf329tXVf9C/HO+JNX69O77+5uHuPe/HgA0sXbpxNvf5R/sLf7d3+1QM/+pnj18fuyKYfeffsZz88/vilr7/8yysufvyq8urq2uz0xSPF2eVLDnr2XTQzUtzVefi/R1r/eOiyHz/z6Mcfzvzsg0++yfzHe6ee2nDizVPP/+bpF1+6LPvnU4+ONWZHlia5iV2719yd7e352ur4rUeP31D8n09OPXjy2IXZ1bcvvO7X7x4/fM2xo8/85dgH79+ZOvFtvjk9NbljKRddyqZufGz/66fv2fbpe8ePPbjjlo9fuP/kPz868aPylpHG5Fy7tjJ7YM+GsW1z7UYXgPOpYKKYCnrtXmDOIG1o0W9jSD2fS/iBtMJCYkGj2y4AGwmDXqfTGRja5LOzJj2oIGc66naYjTZGTUp0lJk0k2JU5N2YA4AK2GozWwiFOxo06J02pYHLhmxqhcpezIW5uEGt1FB2amBQRjCkUmdRKtWM3cHbjViyTBtJrQ5tmzmAFtGPRVgOzuXn3NmEWmI0mSykxW5z2LFWg7ZqFDrGSVkJ0sQadEYTQQPw01qzRkqY9BSl06LHuY21ITC5sdsF5hHqI9sZiDGQRkvIFw6HPLwISt3vD3q6J6jdHAI8yUskU1ExEnL9C4CxENrhAkaPAAzS0m6xoPW1Q4gkwz5/NJXKJNKYYBaPRhLooVGujo6Oz0zNzc4voQJeK3BeTyiSjEWSEfSiLFUm56d3bgqxQjDQDfL1B2PRQKxQ6UzNpBOJeBwNo7GlpFgdGpvZuLy8unXrjv0pSf+gZLBX54K1Giu1fX4fZkl00RbdQbD22d4FYFSkTgTgbm8RKDSLjTHjLv9nms1mA/2WS+VysVDAuLlMrVZMe7D5l+naUNKga4ygduGNBApss5DKQZUJcwphljscZjPrdVuAYkkHFEYrXAWWEXRjiLEV2eXBo2GPL1bERPjW6OTY+PgI7inXQA6iRYvRSHW3oLEblWXd/jONWZl8Jp/NYzcJKOBOGwAYfx8bG66VsvnWxOTM/MTk7BiP/tHAMTA82mJ3AOWSqsw6mVyto6wWtBliz5itOFxnlKWLs8FI0FGkRqEmjbJBJYGDXCVXaCkLCQAs6R/o0/bKKfm69f1nndXbe1avEpghoVWQEqla1fu53mAqHuoCMC1UckidggLgLwJwJBYO+UIBhjQFvXDbjEq5UmfERBEebr7H3WV2NifwFYwKcmCGH4xBMQg6xOsL+tGSAffMYRzhc+kCsMXOoheKXqOS9fRKZes/3wMqcGC9QQukQKPsH1AZQSUCOOlbdRA1IUHgrflGKhxkjeFKMoTbykyhkYV5nUkC/qaKBdyJKZcbjVq1WsetZgDgDB5acMAc7U6vCwC466NcL7cbwUABvmpkOBOI+8x6F2N289FsLpfJFAqFSqvJMyaSITAzEQDY7ha8foGFV0WTJlpDKHr61BRD210Wk0Fl9FI9cj0fcLMC7QHC4hNYs8WfinniuVSlSkvXy/QGFSCwQtnXo9BrpH16GFkAwBrpAEnSWrVBP9ivGFSZ5XKZrZiIh/z/twXt81oAgEM+oDu0Wc3C1AB2mkrnYolcsVgbbtWBVzZAAQsIwA6vL57rxmhWsIM9F/eBqHB5fYFYNlXM1MvIBYGkegIY25cuFNLxeDI6RGvKQ1HOVhmqZzL1oXQhF41H0ZMAprndrqdEnoPho3CLvA17qbiwHzR4COOA08lsJVdtFSMBD542eKLJKLbal3NpG82y6KsdKo1bLS4ry3o5XowCbyjW5/dFgRFS0kH5gMLGqFTKfinPu+CFk56hZivuNzBhoV7Ie/3RgAsA2LMhbU1GHRYlbdIQpE6rZwS3wOV3JBhg3wzwUjvrS1RG5xfOGfLFE8lkLJhMJpI+NhsOJNJRv88v8pGIx8foiMyQD5RMCFu988X61NqUziannNHpUd5u1xp5T2LrJruWC+W2AgDTrM0TLo6PL990z72Eo8L7bMWL1uSa6v47Rq35WqMwdd7DD877zl/Ni+eN+i7efnlrbu8PSsnRztzqgXtvm4ntuy9+w9fuXNny6J3xDUur5979XweuXj3v+/ev7X3qusLarnMf/MONhw8eOLBr25blrTe+/fwbb776yiuvvf3KP/78zNsTG87eefSdqy23faM6e85N+Z27vMuHvrF8wcJ08b2Ph2678ennf/7DX13qffofNwzlHzhpP/DueUsbjpw4tvLhG/82ubi8dWr8ymZtaetV5wkHLptdHNr05Q+OX3zvR2+8/8gT77/yzvidL52+2vnND97by/72760vPrrt8R9cMf/0qe8s1MYn2mPc5J49W/jO1qH56trMra+fGLr9+Lde+OSBC/bGJ/954JI/nXr7gpG/nPrfU/88/dyi9dAhEZa3iZ3LufB8KnXdT8899sEV3/r478ff/6+DX3n/N7/+4Ohj+xfrW0dqY3Pjw9uXDm6ZGNk+327km+OtSiEbjmciAZHnu51BlEWEIUrquHQcBjBtsjosvJ93oJVu14dDpzPqjCQTdlj1Gr3WaE1GgAVqKUqhMbM2s8qgEwFGBL/XZXMBdtMW0kwoxQTbpw0ESK3MaJD2yLUOp99lTsFqCcjI6EwSqU6j0au1IFBoqwtmt8nEUFqdTivgkaJPAMh0YbgC6wx5XLliRDlgAGiwoLeTSaXUUfDFMsoNrNxo4M1aI6wF2GhjoDQKk1lPGbQgtXHrD1bEbgYNNmc6u2s3QxlJkxleFSN6wuGIzwMwGwgJIqYieZy4hoL8RgCGYRuJdmtk8GoEn8fh7AYXn7FXBpwGxuEKJVKRAPwWx6bBaCIaCgUiuWKh0qi222OzM4sAwJtWVgCAYdUK4+cTISESTxRbU5PtvVtcVl/Aj3FLfp8YjYXipcbo7HwG6zqi0Ug0lsoVG214wjOLy8tbtuy8sKYa/EJP3xcULFwA203W4dCp2tO1wMJGHLTj9nAAwOi73bWCwkNvi91K09gnazLSnylXKpVyGfcnK6VCPpMAAK5W8yncgsaKO8piAfzVa9SYuYFF0BxrHOyRGUH+UuSZY2A777YY9UrC6hE5oxruB1aAoWNnVwV7OacHgyfS6CBda2GDJgYateocgeoXdxgYK2Nj0ZWAtXFiKBAAcZQplKrlYq1RrdRbw8MIwJ2RznB7bHS4Xiq1xqcmJ0bGZ0Y4CzZAda0mXehTzpASBaVDP0PaYjljhMXa8BwEiAB8xO502RlsXCf1Wg1DDfQM6GxWg04lGVSTlHFAZ+jt7V8v75NqZevW9Z31hXXrPrdOphqQGnRKWiIZlKz/XF8oFQt6OIxW9tXzcaBroiAg/oICjgSDvnDISlnCCMCEXK7SUxaW4wNhn+jjBd7r8dpAdrl0ehJ4IIduamgM140qFPChWOxAEzDGwty1FrEzVvwoTEKtun/9oHLgC+tkMpl0vV5nAM0uH+iRGrUqZS9IxqFaOhML4ZFPsZaMhOzGRC0BOp110JlSLOKLpZMYroXtwOl8qdisFXO5fC5Zrg23J7OgXLtV0HaXh+VD8WyxmK1W8q1aQAQsrrebKTHuMetZiua80TR8FtOpasNDvNWEVdAmO8NyAMBeeHWA4Sw6xWsJ+fpBggYAdpoJg4oSjL0aggvwrNvuA4YCkt9B2cIxIVaJVysORa9ET6iVcrlS079epgMANsB4MOoprUoG40ut0Mjlg4MDWhO8dgDgWDjg+1cRlsdL0zqbl/Oiv6jKmUvjaXcylU0ls3mMW6yjt/kItiG5HFaHV4jna/V6s1EtVxoAwAJtsTq9YjCaThYytRIexnBulzeI1nSpQj4RAqQft8ozwxnOVmo1c6lqKV8vpVIREV1ecSYhAKMCVrj9PEhO7SAHDzocCidTmK1SrGTLzUoi5HPYQGjHM/FyIZ/OphJWk93q9sKQKWERlh30AOsWI3g6U184J6aEdUs2IB9UOhilUjUohxlklklJT6c1HPNhFXQ9nwctH+QQgKeSlmjEbqYYQm/WKwxaApVAqQVjzeuifayT5XyJ6uTSygUjPmTvAMCY987GA4FoMobjlg+FBJ9Jq0+2RKeBTvl9QjCRyI9sbisIpckVnuy4LBal1saGljayelZMr3FmBiurI+Vme9dNd911yfpN96+TCI1r0v1s7aszrmZ7tLN0+Q8eXhAPLWeDB8bEI1sva81u/XY+Mzu/9ZxrH/rySmX/HcGb7rttZdt/3BVf3Lx6zn2/uPTSXZf++IFt5/zh8urWPYce+tP1Fxw+/8iBvbt3Hbz0ry+89sYbr7/86vHX//a3508tjF92878/foHvKw/UFy+4vbx7t3/lvK+vXLQ0U//gt86rb/z3D//+wu8PlX/xxpdrkcdPFVu37f/St6988uvG+0/e09i0Y0e7dU2+urz9moP8ngs3rJRWH/zwV9Vz333ijjtCa/94Zuni4x/ca/nx6Te3Fa6aq//wty//9YcPFX9x6muLw83Z1QV2bOeOTa6h1eHF8mLnimfe3n7dew8+88mvDtzWSb+8d89P3zt6zZE3n7r9wYM3XnGZ/93HuNGxsfFtG7OhuWrh6h8dOXn6uq+9c/LE609uvevjd577t6VLj344tH20MbFxZnhp4eDa+MiWTq2cqnZqhXQmmsxGgyGfC0MQQMP6fLgF7c5FBd4Feslu4bxu9G3E6Fx0wiK0eqM16rTptFq5lokJnN2sN1kIeNMrBvo1GGsoALd2eBwsQzMGQjPgDZt6DbyF0p2ltFEyBcFoPLzTM6iFNYcVPH6VwgSLvUStVBIkxehIUJ4w0/QIwDws4Hi66bKCrnFyEZ87Ea25B5WMzYaBsw5Gr1SQVoaQqWxoR6ixGnV69LaymIxm7EgyAwyrDXjUbEUHfDRzxuhfl4tzomM05vGYKZ3G5POExZCIhTFiwAsrE+/k7YQV80q8fAjoY1gIhVhsA0ZnLn/AB+jCYwvqmXwDEHG8L5hNx0PRZDISw0C9MDD+UCiWRyOsylB7fG4WAHhxaePi0mqeE4RwNB4ORfxAaUPVkdG5yV1rHACwD7uJAj4vTJhsbWhiwyI+l1A0Fk/nq63O8Oj4aGdsdmFl1659l7VU/XKZrE/LuXib24edVZwfrYlRgTpt3f12gD+X0+30YEsw7tfjZnn3zBQ3PM2E6TOtBhr2F4rpPP6RT4OQqJYzcY5BfxTsOyINeky40cFD1xOMzWnT9EjMjAqLZbDFlgOJRxlswQaWUif8AqkzOkDDYymWC/fk4T/O7QsngvFcCbe4gYy0hltDIw0XLLWUyYBuzdgxhGXQdhsXCAdgWcSdzkq5UKlWatVGawgTh0fHOs1mZ7Q9MdKZXFjaMNMGAHZZUDUD+sKLssPIooxyjUEn7ZGSaO+CHmtOp7t7mGqzmWnsF7Na0DsVz7QtZoVEYbCYQID196sIgkQA7pf0yJRqpayvp3f9WevWfb5HpgBNrFWaevt6+td/rh9eRhDkvslE+5rFRCQUFEWP1y8G4C0cDImogNm4HwaESSWHO2TDUmfMIPH4kLc5sPelWwXN8likiLX93oAfvofVbMJHgrZeeN12J6AGY0WHTYvZoNNL1oPS/fxZEplS2S9T6nVydOuSEmqVuk8BAFxNJsPdcJFiNR7x04ZENRoRgFyaYikQbJFkPAoKOA4PtlCulPMAUelsIpwtNprjaaxmQMcZlucd7iAwvGy6VMzWqwjAtUZnKBeOcbTBRjAuXySRLpVymQJmM3M0ZbZiEZYNRhqLB/foJMrCcDHoAIClJqAODtZk0KvNvK6PMDoDXlCCARvHB8NBjqbd8EcpWMrZZT19Gp1CKpXK1b3rJDotZlKZEIB1CglpNGtVugG1rB8AXSKVOYrxaDjo+1cbkttjprVWzsFjXpfKVQQAxparfDGXL+RK1VK5Ae+dBAg9zoWVyOFMpVZr1Cv1aq2ST4cctMXhQdPTRCFTLZE0ZXHzAMChcDSaKhbiAdHhmWAGYsNFL1fvdEq5Vq7Srhby0UDXJwAWQgBgt8tKEwZ/CFOgtf2ukNcPRDmZTqfScKPT+VolHRNdCMCJbLycT0cT8ThNsFY3COVgZYQ2uxwOIMMuDCEulBsbDyRUOtKiGJBLVKwFHrFEwbtdFBpidZpDYUFvCniquZxfjIc4EylynYg5FGL0TquetKn7dSql0WA2Fz3OALr3h/FE2x8vTa6sXTQqAABnomICxLnfhfvkMOT8vMgHgn6RUqkjjYDbQIVcnDcYT5aHt3SUWA4bmWhZCOOgwmwX5xY8pM2X3uq1Ox2cTfDFMmMXXnvPLfcuMxuK42ru/OvkRPnucTtMz8nVq3/245XA/smge3Pde3jLFUNT279bLszPLm+7+P67l9vbb8rect/Ny9v+/c7Y8uqms7/+37dftOeyH967dvCPV9TWdp770B+vPnRwz95dO3btPnTxEy+/+NLrx156+a03/vzM396dnrr25hMn8NAk0gAAIABJREFU7uOuvTM7ffDm7NYt/PzZ922+YttK/c0Xsj+987ljHx/7zmX5O099rZX46bPJycl7n3nnrcfqyTvfenB8cXHLWOuSXGN1703ne3dfPTNb2/Cd9z/atflPD9/0zd8ffefkl/b+89PvEf/18a/nyzPjj5186423Tj7Df++9H49UNkzOTzrHEYDbWxuLpQ0jV730SXrtw7++8dzJL/3u6tSpfZf+5s0/tItbv3P3tb95+/TJi47+2FGeHBtZnc9EFnKFG35+yasf3f2NU8+9/fKDS18/dX32ludOfHyivjbSmlqeqmxb2TdTqm0eadZyzYlWJR8PpfKxgJ/zOmysDXSPx+e0Emp3MSp4eBuaUjnxuBPNeYxG9KhVaykTE3K6zWZKbWSTXpoiVARDUqSeJvTrZGIsLHoB3twRwet0sPDhQV/KYxF8NpIcNDlJpWxAZ60ERFuv2mqDZclBS4xOA2lVSKRKdFfQm212h8tuMgEAY/aBz4cAbENPDBYQOR0Ol0Ht4jaoFWgkqRowOhijUoqVHlYtsEGt0QwvgiRsOrXOCjij0sDCizHnZ84mAT+x1IpzwIdwW91kthrU5oA/FvAIAcTfUCCMEM3bdVY3drZ6Iwn4zx8OWdxoPegRREAKAPJuHRdr71oeujhPOA1jPRpJZDKpTDyVisVDflAfwH5bFdCuE3NTM3MbNi4tbti4OYcAHIkFQ0FvMMYLrVZ9eePmRc4q+D3ACzifyIuwYpYqnZkNmUgwEg3H0wXMExoanZycnN24srxj65ZDFZVUOigZMNisLMP5QGvyuE/vdKPZSBd/HTZX1/PB4e7GK8NVMmdCKrqLvZXU6D7TGaqVCrls9l9pRolYPJUvpAJu9IGgsUuIAYzSa3XArHQEBddH9/VojToAMXTZgFtjo0F0KghXNJMuVrNheU/vIOXBkl8Ph73IIJE4XgxHkoU6WjqPDrew6rrVrrAgO7o24WYaniLbleasV8Q+4BiqGACLSqOaB7jGU+Cx8bF2szU6OTE2OT27YW524+zkVNtBY7C9y+Zwu53oUm7US1V6jFDQkFgbjUmEdjxbhedIdROT7Lgbg3HAarXNqNVoASi0ap2kV22EFV+vk0mlSpVGo5IP9pzV89nPrV/XI5V/XqpRSJXy3p6e3s/3haPhqGCjgNmJjVI6ig1j2NsugJYNBHyBRMCit4T9DuCuSr3KYHFwgg/WO5+ApY2c2w362Ks1Gqwmp9PDuR0WK3bfiqCCbWZrt7rcbLExtMlsd3PdfEuLmbY6SI0WwEkmWf+FHrla1ifVqTUamUK5Hp6CRtKj7DO0Kul0CJdde7FdCHpYU7SeDPEggKlEMhKMRtCQLZlJpDHkp1SvALEp5tPxRKbcGo0B3RM43Ktn4fr84VimDDSpVsuGgtlKvTFcS4VSHEU4zVZ3IJHOFIuZZKnSaDU4hiQtOtrCOrHWzuvzejys0+nEizeoFVoKBo6DpvUGQml1y3q1FpcYwKRvmNRet8fvdRChYDQaCYXFwXXr5aRRCYRCrvyc3CBTSw2MlaFJAzmoBgA2SA1KmaJfatYPyJTOYiIVE/GMjHCgssXS36DXgcV1GiGP/VYJkJLwGguFYrmMRqal4UwMT7AcGDQYz2UqQ5UqJjJEYgJrBmT0h+JpmKuVpslqZDiXFx5hIA5jLxsVON61pO8rNHOucGFkuJoYrtRGRzPlNOaRejin1awxetxOE22QCXCvGVLTBeBoPBmLJjOpbKmQr9Zz8WTQYuN9oVQmWyrlc4VCzGmwcL6AGEqV6zAKkHy63EIEn091al9eA6unsl8i0QDHGBjok/hsVuOAgnF36vWwYDAHXNVC2umJR5wms58d9dNJv9EBf3fqFEaFluilHV5XOu0Qw5zV73ICvUtioOkFHU8YHn4oAfQk4ra5g/GwD4tFBE+kJPpIlSpWB51hCnlAFMdTtc5Cx2DX0vboVAcoHGFiPfENmx16Xsxv8glWg5llhUR74zl333P9V24PGO+pSRLxDWmycNuEq11vN1av+tFPNooHVuLCtmHflZPnjk/vf7icn52a33nkG1/64sy2a2O3fPWOzVsevT2wtnn5yG3/ecXd2y76wX3bLvjbJY092y968E9fve/GO284fO6+PQcvfPHt5194/vgrr7zz0p//+vJrC9PnVnf95i7vV76bnzrntvKmbb7Zg19evWR5pnbi+cZTT333rU+evPxQ4aEP768lnnu+HFh66+1XPvrFUvbAWw9MLs9uGStcVElu2n79Affuw8szhQ2P/u/JpZ+89eQLT3zw4mP/OHTv+5/+wPzw+/89lC3vfenPb7787Cf/PvLc6R/OladHN4y6xnduXXSNrjaXWxvaR/52zLP63h9fPPW9bS//3XXJpi+dc/O3hi78y8n/7/Qnb55869qTjzhKM+3Oni3Z8OZK/oYf3/DB+488ferFd9786v7KxctfPHX6udeei++ezG9cGa5uXTx740xzx0yrWapM10uZWCCejgSCfDc+EBYCv4geG3wmDFwJVmzK5I64gWuajZSZIvTYREmZLH6/E+tYTc6wx25hCMYOGsmok2tUSl4MgarlbZzPg1lnNoY0+AJqU5hSWKleM6hFsq/PHvQ6dT3rewmasLqV69QgVE1qSZ9Uz1hpGld/mgbg1ru8MFMCGDSPhUEgqwABYZznC7TGbjXD0sU5zAaVwmh1mKVSQHM9qSLQDYAkKdrCGKUGq8FgIXSAxBjajjY2HAYq4F8crP1MZZKJNDNGB2gvEWlgrJtrAigLEh6tFB1AoIPxRNzHB0XMsPFirFMoIjg4j7sLdCB/sWeHjSSDkVQx4QmmMeQXphX8lspkssVqvdwE8JiY3jC/YWFhcWllU97j5aPRoCfarR7JN4YmFxc3L7hYUcD9Y9ydBCGdK9fGZufTIb8YTGS6aQxDI53RKRDRm7bs2b60r6aWS6UgGtDUy43b6kK3hJtzoz3TmfZU3s2ybhdG8nX/32Z1OO0mYDo0Y7PRIK4+U6+WUZbmC4VsEk0wE4lkJhP3u/HwG0ukKDOp1Wo1Oh08WpiOPk7f00+YSUwxAo2MpVc2M6EBLUZ4UqWI4XOf+9y6db0qE0ZCcBi5hxqYD8QSeBOaw2OTgKNAI9qdusvMdIeT2dxdh9AOi+UwnxwAOJXNo1qrNuvFKgjgMRD9I51WrT7U6YxPjE/Ozc0uzM/MjXF23g1y0wwLO+OyW9E8WGXQyKUKA4B6t+OKNmGNNIZRYFW0HR82oUczDq2FUCuUJENpVJrBPg2s9QqDXj7QJ1XhZrtB0d/zhXW9PX2w+ivxGw6eJZFI1g+EIqG46GQcFnO4Uc7AOEEvDXjHHjW/xxvyg4AFALbTRqVGYbCynBcrtOBr8MwCpDPoLK1BT1MOB7xSHFfdT/i8MIot3d1ymwPdT/DM2to9DoapQsHd71snG1z/hXWDCkmP3KDVoltmf78GXmqfcsA4XM1kIiHRw9lL7XxIYE2xRjzAO1mGTmVgcEWj8QSamWYzXQBGh4pqFR52utAciYcDMENZtEXnOT4QBeZTwC9IhSLZYrkxVElE4i7K6GJsHCBTqlDMZQvlOp4BU/8/ALtwO70bQI2+6oQG+68otDq16A0GldWlGNTTrD9gd4pxeAq0g0XPLhFmWDAUCav6exWkUS6VDcpV62R6ubJPZ7ZYGFJPDCiNFG2UE3IJkA4zMShXOIqJRKTbX4VnwF6XjdZZY347WoepPOj4BTMOwwgBgEug1QularGZjIgIwA5e8EfSsXQ5X6lW8lj7zdJnADiVzGSrTbONsnpcXr8QCALRLeZiXtbpm7Wqs41SJFkaG6nFW0AEJ5K1lIi9hxyLfcAeN2h5vcwX9jgtJp2Uj8DPiMYS0UQmCRy2UK6VUvGA3cp5kLvkSyDAy0mecnqAcImJUtNhPpPk4saMk2isNrk3qya1pKp/YEAFgC6VDw4KdquhT0LxI81m1Gswi2wpn3R6okEHSfnswyKd5PUODxBLrUoPd9HkExyeTtYZCHOMj2N5jy9ZG53dcdGIB+tBgwng1iG3E2ZXRHC5AG6FWFEUzTpNouW1G0xRYIKogMeXRvRWNe0MTQyzDjNpsbsjc5tZLefLrQUFRmfUmvhgYWT1uh/ccNNdl1Ptu31y9fAmtnz/jHu41m5uvux7P1zwn7OS8O/oiFdPnzs8sv2BfG56cmHPxfffd93Y+FXRK7906/K2R28Obpxe3fPlJxe+ufXwI3cub3vqyNCubZc+/Ltbbr7l7jtuuP6qI0fOe+6Vv/3j+aNvvPHOi3/603PPtJcP3fv9uaHyLbeVxg/elt6xzTt36KubjyxOZd57Mv7Lx3/+wZt3Xp1p/OWNG0vhv77lWHvs+Esvvv/ulvg9J+8dXl7Z3ip8sZJa3XHNPvfZF03NVLY9+c8X+V+f/o+njx7/rxuevuDwh//8FvHIe79cXbnhocf/+PHTL/7vb9v//d57W6pztU0LjvE9u1fcI5s6083N9SNvfXTxHR9+77b3NubWNmmv3j1077vv7H78+T8cf/utk+8/d84LX7GMjI+N71zKRpay5Vsevfmd04/8+eQ7px+/fmH61PMX/+ODN//jBxUMY1gab+6YP7gyXt00XqtkcqOlXCIeTuejwbAPzzfQHVAQ7fCHWIoG/G4LICHjDjrNgMwwboH+wVKn0BN0IOi2WyijgY2HYDqQFqtSKlGhQ4aOj8dDPt5udaIfkhPEjV7jj2o0DrnEYNIaYLwrBqV2UXAZe9ZLbE6dwaKUU1at3mLoBwHMkDSLXacmE0UaAIBxtHh9fsFJw0/n3KLgjSVC8ZwXIAAuxgHTgdJIALZNapmaZS0ZxiSl0NAPfpEaJUnr9GZCpVHraNRETt6NzntoeojWAdjqSmMZtFFr8QfCQa8/FI0EfL4Q9tPwTitMTAE4vjcEq5goRINYwIVbzdh17+IET7ertmt76bQ7I+kI0MyoJ5DJYSpKKhmPRFNoagzTfnhsdHwW8HfD/NzshuW1LC90a1JCsUgolsjVqyPzC6sAwCBJXN2gOn8wksyWqqNTM+k4TOssrDC5Yq010hmZml8AFb1t+9p5TdWgQiEfNGL6AoosNBhBb2Ked5+pD2adPOhidMlnuwH1DtZlNZFAnexYkQX8hvoMVj/DeyGbxv3wCDZFxeMRP3cGfnFzwKjW6bSgGY2U3uwRzYPr5QSFPsC4je1wWgBuSJLQElJDUJB8rk+6DgBYqjL7vJjGxHng6buEGLb0DnVG2kOt1hB6S7ZG6kDdTSbCiEKa6Z53og7mfcg8El0ArlawIrcOaD0+1hkdHWljhO0I/n0ay8m7AIzrvwudo+wuu50y6hV6o16l0BhNAAF2ENW0Ca8RbbrPADBgmk5DUsA8rKRWpqDQOlw90K8xgpTRGeQ96wZl+CaXSwd7+yUDUqVSCfin0QNQ9A2u7w9GYzE/S9sZBOBsPBIUvWL3DBjwFwaMKNhpSyTgtMMCqpQb4Lq8PpTA2C8MKOWyWpxeIIYWhsWSW0AtEWHb6/VYzXiS0c0l6W5Bwxy02M90bGMombZ/vUTWv27dgELaq6QIg1YiVwwOqLVqlUQ+YBwqp1LhkOiy20rD2ZCfNSWaMdHjZC2WbC6ZQN8F9GLL5nP5CgBwGe3OauVCJpNvjMRDAQ63qHCTgPOE0L0tjcoxFcNU+VqrFI9GnGaTG10NQUmDNoTnUh9qcWaCtOgZUO3IsrpOnGjdarNQOqXKgD2oDExjrc6gtThUcj3l8AdAkoXQD5tmeD4U8IeCYTEYjRsl6wd1hBIAWKpcL9Fr1D1qCn1MdIZBudEEAKxXSiS9UhMxqJLbSoloCKDTShPOdMQDI1nvTPrsuCun8uZTuVwyBtwRndJK5XIZKGWt3IgDALs5q9XJidF0JJ7L1qrVYkH0czaLjfX4QpiUkq22YEGye5zA/vzBKOr8MLzi+KjXmimXU/Hc+Fgr06mONGYSzbjP6vJ225D0FCwgNK1VdAHYrJd7AMKi0VgqAgAcyxTh9lXSUdFlAwBOZQGAG8PNasZr4rD+05eoDLEM5p1YXfD/YjQeK41sS6pNOlI7MNCvpEmVXCkd8NosukEp6QXhHuYNJtGVL8Q5TyRgN5A+WzNAxxxK1sVYCI1Wp6UsAVFwxncXXYGQk/aBnvcH09XO9K4jbT4cT8ZFYC9YM5iC0RD2eIPwyFKFQNCq18SHfDadKeYPBELxZAkB2HIGgB0OmrJaudDsqkvHCdm1AKb02D3hSKYyuuuBr113+yMb1ee5aI9n60jtB5P2ar5RWTz8ne9v8O9fSgR2dkLXLp4/PLL61Vx+amJx36GH7zywOnI4eei2m5f2/Oz68OaZs/d+7Xcjd205/KO7tm156sjwjq1X/fB311936MiRI1deefi8wy+++uwrz738xhtHX/jr3154fnT5jsf/9PojxXpdmLjinvD+XcL8oa9sumhprvXma42dv33nkze/c+OC87EP76iGfnHUes3vrvvzq688uDV0yYmvtJY27x4pXFFOre24ag93zpVTS+WtT376XvvZ159++9Vn/+1vLyy9duKjR6wPffDbI2s/+fmP//voi6+efmLbz957db6+YWJxnB3dvjZrHV5tTuemOtf9+QcjE1/ZVUgmEt84uv/k3sYfTr99wZ/+8tR7rx997bH95WM/58rtiektc+nIfCl/yxPXv/XR/5x8749PXLN3+PrTf1996sWjv3hsZmV0eG5+tLHWOW/bWHPTTKuWzY1WCrDI54rRYCSA9oxAb00enw0wTMiH/T6OwfRYTuTsnIuzAudFBGb0JrMtFHCyVsBINhXjYK1z2NVSNWlUga7wxMJhET0zvCg1HRaG0gYSOqXNqNdStJK2K2VqBelwMAaTgfC6NQaHBVSQTm1R6wgUvxYWf0cANeidXg7jVuD7ONH3z+kWeE80HI9m036LgbbCGgWIrRpUmxkTpekzM5as3SQ1mjGMB96kBAOzmSLUWo2etlrsNrcgnEk78qLdJI1NSAA08HOUtBiJR8VAKBzy4dEcfJ5jHSYrL2D+QgDmluiLBlzdvCRfGFZdb9d0EdtXYQEDMWh3BlMA3gEA5iC6QEci8UQsnADgREbeGm4Mz26YWlhc3DC/sGlLmvd7o9FIMBiLRhLpfL3SmV9cW3SyfgEA2OXmvb5gVwFPTJ+pgi7kEcfrjZHh9sTcwuLGxbUtmw80tAqVUi4hBcEP/MSDlbW42+nG89duHLCbdwke5/9j6j3A5KiubWF/711bmjydQ3V3ha7q6q6uDlWdc57OPdOT84xGM5JmJCEUkQgSIptgAwKEyAZsDLaxwTbmOmOujY0xti8YI5AEiCRyEojg+/63dwu/7+eDD9kMorvqnL3WOmfvtUQRR3wEnEpyChyO8YL6pRneYWPIr5RPC+BcOhkL4V1mJATKJCSBAkb5S1oYhtAajQYTKDqL3iq79e1dBsJkMaFPh41HT0UbQ8EjtHEcqe5qb//a/2rvWPXVDotDbF1FQ/lzOL3AS+LJXAUTeED/Dg03G40yTwL2WsiWERbeN+O1rd3jw4bieAIbdrFhdaC/0Rxojo0O4jH04PDo2Bgg8cjk5MTszNTsiMAKzlbMkYC1DAFYbaAIjVJrMhMkjS8Gj6Ad8KV5Z+sI2oaWCQYLbSZMLKnvUdE8pddpu7r1BsrYrbNoO1Yr1QaTpqu9V6fo7Oxq71IqepRqPWE26draOhGAkxHZTgOJCdZKOTRm8gK6BkKAKPgKwl6GOA3ApF6jMnE27BhoiWQfMEgv+rDJ8H1tdhFD/FoH16cB2MZgdiaepVjhuXKYgMFwmGLC21mKIIyK1e2Avas6VMpOpdlkMirU2s4unVaj6e4BAC4mkqGQz25lSwOZkB8AuB6R0aScBUxKAoSi/X4mD4hUKZfqJSCDiE/FfF//SMwHm8uJ/XgIwJF0OplIF0BDpmLJNMBYtZQIhQWGcjE0hw1KGVDRIIwH+52U0cx9CcDAshCB3U5QwPBh1VrCYjYSFoKldXqCYHmdymBx+P2SaIP16AsKDllOJl3+cMQXDMeZnlXtGgLbubuVqzv1hKFdDSvLajaY1SrgZoRSp+sFACYNnTqVrZSMBEMeWMGEIx2RXJzF4Ey4UA2YtXIxmS8k4+lcplwsltDyq9LX16g24rEWALN2IRBNReO5XK1YqdZgGyPhEb2BcDSdAwVMcThPJyBqhVO5NLxjC53pl7x9yXwylBoZrmeHS6P9U7la3MMKHhxDsuopoJiM1QgA7P5SAftBZSYQ5pPRdClTbJST0YAACBtI5YC41PqrpaxECnhg4EvVm06rA+PWBFhBoWQ6URxcietoPWHq6erUsJROCQtQYq2EUklK5Xwx7DKSspgtJbyeSJAnSNlRj9AxVuFkaValMRgNpD/pkiOZfWXB6xdZnxO4XzBdHpzaur9fDEM18seTQK9DsXgYFp0bOzO8uXwwZNOpI/0IwEAffIFYsjy4ZpiwaWl7bGpIAAVstYnB2Y1uoyhnNkg2iuaBT4RLI1Nn7P/Ondd8+ztu5fglumB9pPKTKWd/GRUwALD/rLXx4Jb+0JUbLhya2PqdQt/k2Nqdux+6fteWiQsTl9x+3cTGhy+NL01vPfvgY5s277r8wTu27Xz6woEzz7jyZ0/fePCWW288cN0BkMBvvn7klaPHXjvx+rHnj7z8xtrGD35+62s/qX9je354/13Zc8/wzZ1zx7qLNizW33tj5Lkvnnr1vVcfu75w+9FD6fTTx9yX/vXsYyd/Or+YuvSdmwbWL545U91XSqw/44ptws79o3P5lUf/51Th158e/fO+c4/+5Z/1Dz/85Dbzf556cuCG1999+vtPP3/s0+PFm049s1huDszNead3nrngGNs2uL5+xmBmcUGM/OjFV48+svfwy18/uvOsZz/5eO+FP3z2szde+PlDu4ff/QldHhqf3DiTDk0XY9945PJPTz3+5I//8NGbd0/vPfXm8j0vf/jWv+bWjTVnZwZq8317to40l2YH67n8WLWUi0fSuUgg7AMAxoA+SvLZKMLgjKMBNGnGFKqgT/J7JbzVa03dmIHfh308himYhWRY5KyM3aZV680EYLCWD/uCPp5HmyB0i2JoShfKUnqHyBg0RC9r01gsvWrKZNCAenJyKj3r5rU0oaG7VToTjV1N2ChEIQAbQERLHjHgccBmhxUguD2iF/R6NNnXF2QMDCegGQ+pUltYxkr2GNHfiTKrCbyqBmXWY7URJsBXg1GnM5MkaGhsJbMhposu2DmtE2ga82d0XDSZioWCwVAQaikO46LBkYW2t6xk/QCnQV/E75J8fqycftnncYhod8zh8CaPR7rOSArtOvygbIKpRCQQiiWToTjG/Rb6SrVquX9yZnwe1OvSunXrkyCXANOjoVg0CtWxWhuZX1xZIzhaLcxY0XzYmlGpj09PpeKxWDyNY7TVanWov39ken7t0vqNm1f29JMGlVLZbZE88pczwNjf3eqqaeUaQMWzgYxH02s7tkFju5IdJCloV7OZAtVJk1+pVfryuVwum0a9HsRTeF8g6HPbERYpeLcMbdAaDXqTWWMwEQ6fXdmlo814A8y0Bn3EiIhmkjYxJFqUHYru/9Xztbb2Vf/xH706Gx4VuJ1QmR1Ad8RWXmF+aHZyuDk6MzPSKPEmNOHGSWB4A1YbjcM5TtHlD4ZBayVTKGMAsZv9g83m6PDA6VDgkbHxodFWFuHs/Mz8mMBiYFWrtwx5EJAuhZoklL0aePOWltB3OEEIYuykiPfeCMAsGpBAzaZNmm4lzYO+1Hb2amEt9ugZY2+nXmNhaW13l6K7bdXX/qOtB4SwQqtVqzUYT9MTCMdifoEBbhqCPZOKRwIymnAEg35QuoFgVKINbMRvtzEWHTq1cQC4uJK8MqYcS060jIYHj/4cosMtoeWZT8YLORDOLQDmW9PXeKDC0yB+QQ3beMZoNOMlMEjgNoWio9ugN4J217R16Q1aAOAecrCcSkWjfuCwLQAWqGjJhw2TlDWXTcBLDQERTMIazPdVyuUGZkqXy+ViqVBqjkUlWOIs3gGgN2Ykk8O2A/iHCX8gU6sWSuWUP+xkSCdN0Z5AJJHNpLKFvtrgAEghM0fg8LULuypcrWgSB8/CRtJodSacVTRaLVps1OQ0PXrSCXzWxYqyw+MKBvCUBdZCRAoEYnx3Z4fahPHzPcr2dq1J36UyWmjGZMREH9JiVOkM3UCHSH2HXt0CYDx6thptyTDoApNeiAk0cGdCLfUlC33pBEj0Uh9AbKXaXy+V+mv9iVgA/cRsgtMXBDKcy5T6KvD/hkSg3qD65WAYALhch1VBOgCAQRQH4omgV+SMdLrmDNZ9sUwkO9bfF6/nBvvH69WUy4Ymc7DktJRfdtGsRe0LuUAp6ntcEXQ8T2ajiXw6ni0nq81CNBbkGbvoS2SA/5TLfYWs18QLHr/sTwMA07AqnQ67B5QnFJ7qCAKwRmPu7ujU2mmduqut1w+Co1dBSplMJSkaLZI7XUv55VhYsNABVyNFxziFm6KsmIylFDJBZzDr313lRdnFy3aok75k38D0tr01AVh+2BeNhbFHLBb2S7IswPJyFXPBoNWgifbLvMES9wGHjKYqI2tHjKyGERIzI07YUQznDMxsdBOiL73stVKck3N4/cWxuR0799976Ma79mvOPq9H7U2N3jvlHqoPNZYv/9GD84GzF5ORrY3wZcsXDkyefW+hODG2uP3cH15/2WDzQPDGe6/rn/vhvuTi1Mbzr/vTxWPnHfzBt5Z3PnlB/46tlz7wj9tvv/tbt95w7bVXXbz/jVcOv/jCC6++/ebxY8+++Na6+ef+etN/3igfunNkZu+tuR2bpdlzvrV88bq51Ht/Gn3lvd/cf9dnrzw5cu+HVxfdfznuqT74t48++fzvE5FGf8T+AAAgAElEQVQ97x+ob1y3Mjl0VTGysOnK7fyW/dMTfVsfee+p5H9/cvKt62/54NNbz3ntg89/p/nrB4/PXP/QLz9+88PDT3300Ld/9dmrm0qzjQ2Tzqlzz9noGjtzaKm4eXzpTx8d2Hfio2P/ev/Jx/9y38eX733qs093jn379Y9e/8UdP91Tff/njtLE2PiWxWxoLli59bffePcP8UMvf/jKyXsWr/7sjbV3v//hx38Z3jBRXbNQAza3a0uzDoWwnEwPlfKpeCiRCQdCklt08FCXaV/ADvXMlfR5ZcnO2UFrhMNBv+CQUBaCqDDrOYcQ9AOTBJUkxANuKG5Ws0KrVqq0pEHpjAZAHvOiiD59dqvFrFeGc4yGoAxEr6LbAkyK7FSxZr2mS8+4BcJo5IxtBpOaVPzvHgv2qlLobERZSARg2eNr3W2CkuNpK0YLBLKJSAxYZjnKkVYAYMHJESoD3lqa9CaoDVZWo2M4CwCvVslZDSRr0oPCVQK9pFrlzeYArdhKILMLPNo40IDMZjGVSUeiYVDAAX+gBcBu0QmKnGMESQrEEuloMIr2+VhMg0Gfz9tywuKxckLBhGrrjSX9gUTMJ4fCwWg8jmFImIWUSueL5Ua91hienJmdn5tfu2790to4ADBgejwYDUcwRLw+MrewPNcakhIRgD0AwKl8tX9oYgovk7PRVK6vr1iuDTTqQ5Pz65bXb9y+/fwhWq9UKLpJyeV2ebGvAi/jQPJiCIPbhbvbxrlcCMCt4DOUwFA8rDQFlRM7nC0U+5VKMY8GHzkMzQHSAPQY9ifaLVKtKwAzPEM1DlFTBgNBe7xUp8JEmcw0SzLYeAZ8hEVnCVeAU2k4d6hQdWo62nt7V321nQBBgUocJbDotON8m8MdyQ2OAH6Ojk1VeFgFTCuLkGEoBu+BWxn1eCEWT2H8MUqwRrN/aHAQALgJfwP4nZgampiYnBwdm52fXTMuMCjBkFgIDgBbhrKoNWYjALDFylrMJjNJ4zAtdnjxeMJtazVhIQBTJhNtVPWoGR5+pe1UapWksUdP63s6Qe2bTQa1okfR2b56VbdWA/LCrOvu7NGpNT3KEAKwE9gCGa4Us0iyWpGCiKPw4PwRmTXZ4wGHnaN0Bg0qYEDZL/OCfTLm/rm8JoKi8Vpe9Mi4mOAv2QeimmFaBwo2K7Jb3sYLQCwxnIHjrQRBGrtWdat6V7cpVR29Rj22Qas6Og2EQduj6LIMlpOpaCzkdvDF/rRfEshA1gMqnSEBgOPJeDgYjgEAZzHHuVyq1RoNAOBKqS9fGpqIyh63g8bwZKcHATgP8hdQupwOhQr9daCNCTnspAlkY6IcjKUSsVQ2Vx5suhnKzJmsDLa/uTGAxOvBkwgGaoFOozZZMZgKSrvBQNpYRZeBcvh8Hhcj+Dm3C3VvKMA7fWEAoqhL0bm6lzBqFF29yq52jVHdoTaYAYANlKZLR5qNGr2us6NdSRk6dBq+CM/bfxqAASQdlElvjzoBgA2ExldM5nDQOQ/rplyrlCoDdSQb/QmQFE68gXFIfmC6+RTaQddiIY8bTQFc3kAklc2UahRrJgW7C6i9HIhFPFBP9HSyLKTqbn8mWpys56N9yYH+8eFG3oOZYHhmryV9kovhqH8DsMId8YWT8Vgunsxn04VSpn84D9+UZQBwgT6DLi8W+jIIwF5458kaADCPYhoUMDyRRKzU3BDTW/V6c1d7h97BaNRd7cogUHulmpZi6UocANjrSQ3kQv54zEXRIU9/nkk71W4zRasstKgMRMyM6PeeU+Udstsu2zCiKlUenN2+t+4MQOmWgqFAOBJuWXJEQTCxrFDOBAMMYUgOSA4jkYRHK0fipcn1I3paxbpj0yOiwMBGcvinlkWDU05t9IPatvHuQCjbmNp9/obLvnfLdT9YNu4lEu5k/aEJ11BtoLx4yY8emA2cs5SM7GrGL924vza597v5vrHRxW3n3b//wsrIDcEDd904tvzwBclNM5v33fbXy5aWr//Bd5d3/vn85llbL/je32+95dChm286eOjgVde8/eLhYy++cPytt1578R/H3lps/uHdo0cfGz3vqtTay25Jb97imtl3z6aL5kfKNy74z75w4/KFD9/2ZOH6kz8oJF59J3nf50f++/gzL1xt3/XJvQPrlzeONK4ohWZXrtrObbxoaSq/4+mP33rroxNvvPr202+c+Pzh37/6f+61PvfRc/0P/uPEW59/8a8PPvzjrS/96y8bixPNzYv28T2719uHz2zOlDcOXPj+67/b/vzJ55//13/95ifTr226/MUPT10xs/PIqQ9/+bP/PCv/wYO2/pmx8R0r+fBCve/KX63s+t5Z7/7rzbc/uHPjoU+fHXv2s5e/+PX4ynRl7VKpOl3dthkAeKhRTmVGyoVkAup9OBjyYv8OekF7ZdhEZrmQjsKCdDgExoHnsw472tXinRpQfd7u82Map9nkSIRcWDwINalXqgirQeuDbR8E7eVu+bZRJoJQh8K6rq5eFWXSKFQ6ntS06+2Alz0WWC80aaDNWprW06TCYKE5B0dh6g4aMBlRAZ/2hnIj8WQFoNvBXDKQikVgN4UpgGqrDbScRgN1leYUesJh4ShaYWbMJtKk1DEWPUUbtWZCpYTSx+IxLFokuj1OhhFQ30PB40A8s6Qnk02FQdVEwjitKLWMRGwEyTsFYAAIwGF/1B/0QTmFlRwCvMMDVhda/AMUYZ6ZHIuI3kTUK0fjmDEYi8YSiX83YfU3+ofGJmfWLC7MLyytW78+AQAcBgAOx6KYVFCqNqfm189iv7W3hcBAzqOJXKV/ZGo6HYsls7CHczkUH/0Dw5PzSysbNmzZenaD0qsUSgUledCDo2VL7PKgGbQLnrvLide+2BLtxuAJ0dUCYDdodcShlisHw/Jf6cP+Ubxhxi7SAEg1r9vtdWMDAL4DAGCzRmMEACZAaNhkh75dZzISFnjWOObjlMI2i5HmAWFJuVIvDjXDvR3d7avb2xXtClLAQIiWkSdwmaBPlpxQskP5wbFmY3S+aj8NwAD02OnFtMw84Ukj/iYAgAvYF1YEwoH3viODI5Njo4C8k9Njk+MT8OuZ2en5MQeNds848MsjAYJPrNOZjWqFxsxyJHX6dhlJCNAslmFOAzAIegveq1oBxbQ0R4F86lDplIy+V2/R9XRqQN6j1TmhVSm6OlSE0WxmeLK3s0fV09ulisRAeqECpiLlvgyqCbmFoa0uLMkX8VlNzrjf4bBRWr0aai1mJKFtGkZkuJGGiLLFxNDYmo5m0JJXBjni9ck8LHYGPh4o+db3QXc1wA0rBmoCkSQJRXuHStnWrlJ1KAngkRq1qrtDbSR0Pap2U7OUTAJxlFxcthpzCXaznJbdLKAhl88mgCRgfU+lMwDAlRL6W1XLOPSNADwe8fkwRhP+e7DipGg6WygXypVKtZDOVXCMBw/FBMpoYzi7U/JHEsB6s9lSsykCANtMLAIw2o66JWR9NiSy6OxpYGDHm60aDaGn7HRPt4nivH6nSHJ+q+R3+vwJEci6DADsjUiqjq+16wmdStHd092l0fe0q42klSV0FnWbhrIQGo2uo71dTevb1Bp7XywSQBsqq5GLByQbadLbAEjgp8waXx9sokwaewew4zHX16hVK7VKMxGAL4g2J3Y5mEyks6kSNqLFwxJaVAEJCsSSmXSpTvE07cJzGskfSkQAZB1GOlWQG3lJSkXKU/ViLJMaq80MD+Zw6gwnvjgD9hlyNlIlB0Fh0ITCgwAci+aSqVw2V8iXmsN9kViAZUVvIJ7OV/FgvJh0mx0AyD45URsSAYDhsblxyceSqXxjfUzPGgyW7vZOwmlVK4CTBF0ip9LRciRfDYiEyeuJD+Yj/kTCQ1vDznqJLfr1opWjqUC4anQxKtLCpvdVeDHgsUk2qAm+dGlgctveuoiDlcAEfeGIXw4HQXGHA7JgE6qpUJBBJyyvQBiiEjp0RXIja4f1tJp1RyaHEYAZVvBPbXAaRDmx7GMYUCuCP1oaXrz4ys0rt99287duiTt2n2ULjP14VhodGO5ff+mDD0z79ixEfGfWYhduPL88de7d+eLIMADwA1vOmZ65OnrFTTfOnvnbS5IbZlbOufmxK3ZOXHXvXZvP+vv5zR1bLvnh32+66Y5b77jj0MFrLnjgoyNHX3jhyNHjr756/J+vvDMz9/snvv/33zcP3Jaauujm0lkbnXMXfW/T/tmR5suHF47de/Nvnzh/45KcXl8P1S7d5f3Onw7/4ubDb/ywcuU7PxpY3LB5onpeOTi94cpt7KZzZ6fjO9779NS7J0/+f2++8saL75644InHPr2fefrkj5O7bz1w2VnDOy+8MO8fuf2Cof7xkaUlz8w5Zy05Js+ZmGrsm9j3wVvHD/7t5Etvv37vf072nfz6zU9/8d631m099tH7D95155mht75rhX9nYsdyLrQmlTr7lnW/OfXgk5+//ubJ++ev/OLl4cPvPvHR/2zcONuYW6oUFsa3bBwaWDvaX80WJtEFOhhPBX1BL7q8tABYYi0mk1wAPeeF1clYHdFkPIg+DyLGm7OsEVSUXxYBgEmLExgVLzhsZh1n1Gl0JlWvyxeOBgENwj6PYGMxR8cQ9Ch7u3u1NGvU9ho4IL3AoGmtmeUFq06rZXiBt+JBHPxnrS4BCpLZQlIW0+kmLFkGhAHxxjEMb8cwkUgkE4lE44Wkz445Yi4HS2A4g5nTKlWchaE4NRpHWHS9ZvgWOORrIdRaCo2GWmFvDmxg5hi70BohQotrxkq60T49k8CbWayaIt6k2kHceVxePwBwvNWEhUe7ciAcDYGuQcto0cG34nCgcrr9kYBdSiQx0zsHYN46g45h+0sJw9+Gh0cmZufWLi7BHxtWEm6fNxyJxYDWRKFsVCrNqTUbZoATe9EIC0iGLxiJZysDY1OTyVgM41VgV5f7hwcGRyamZxfWb1jafMbOKmVQK5U9VKuS+6RWEgPeunugTGAoArZjiQIGSeK1MCpF0cnbHJji0jJvBGz6Sg6QFypXMp0EEgZvzIvXxy4nDwQIAdgCzAggV29Sg9AQJKuy20LqzGjizKKxdiDeurF30BqDLdkXj9i/2vbVr61q7161qqNd43CD8MBjaER/qNQSsDSP3R2vj0+ODVd44O4shXEMTMvV0mpvDWmjp0UkGosX8GC8UAHBPzIyPgqyeXR4dHRkZGxyanRsYmxsama6pYDRrrFlxSEIdlgyapWZ0OIILuAt9jLBQgVUw9T400fQIJJBodEWg44B9aix0Ba9Qdmu0atYo4Kg9GqFUWu0kEAxzBplb2dbDyZ5UHaruqtX3d3TqQZtDgBshZUaLxXSiWgIVEMLgIFuBmR/1Efr+bCHtVlNCq3KZMdL+dNTSn6f391qF/NYCIZy8k473v3iQDq8K1myWSwE9mvbebRUs4NqZ2kbz1CsnacxDYNQ9azq6V21SqFY3avXGExatUqxukdH6LuVHebBSjodi4d9bmuiL2hjOZOUCQcAvSlbXw5eKx5BJ4EGIgAXc0VsbitVajXA4sHRkBxAx1V4iEj5YulMrliqN+rVvnylUe4rV1OBUNBOGmycA2OaQQGnioV8eXDACdvzSwBGp2sPWkyib5cVqLZGqSNps4FmlRqTjnaQ3T3AtFwB1kHyAVL0iKFAilHrlL6YFPCEZFX319p1Bk1vd1t7d49W1wkATHGsUUMoV2sZtIk2dHZ0qCnNKqXGno9E/BguCAAcC/jspMXABkUrBWxJ5c21YheTafyWtb5Urlav12rlQfgC8JQFTD0IpRKJZAKviAcyMcmNISFOdzCRSKdLDcbBskjKAYAjqbjk9btMVCYTm4yH5HSsAgAcieTmqguDw2m0L5O9eKhHw+ay2QiFFICvbjX3uloKOJpHz9h8Id0YHCrFIz4b7fT6o8lcrQhFoBxzmu12tFtN9g+3ANgruPHQJ5LKl4eWY1pSpaJ7O7vNLlbTpVF0AaemelQWKVobCIgms9sdHQYATia9jDVsr1a4WsTg8HjtrkJ5xkxoKMFMNXeX7Z6wl/XaPG6HN5EvD5xxbt2FUeZo+RKJSGI8HAzKGK7hcNaSoaBVa0zVPKJZL2FKUzCULk81CU5rFcMTwy4nTZCcE5BLINy+2JLLwggOh90dqY0vXXDDrpWzbz949d1XaM6S6MT0vVNiszbSv+6ihx6cls+a9Ylr0/7zlvcWp/bc3VcZbq7ddsH3dl+1ZvTa0PU3Hxha+/BFqYX55f0Hf3/fJWuuvOObG3Yd3j+wZfOV//nMzTffduiWWw8evGbfH07+49hLx547+vyLLx8//MqbQ2u/85M//vCRkatvLcxfck3y3M2uhUu/t7xvYW7g+LHzTv7q5HvvvvCPu7Y8eGJtNXvVASo7s33L5Na1Y67ZY9f2rd+wcW5kfyU0s+HyrdwZF88sxHa8++gj5//XX2658bJduy84W45k9240b/rNLsv43gP3Xr3vhsd/c809r506uVScGd4wgQp4iR/ZVV2qbxm76L0TF153+V/fPXHinXdmSp9fde3TJ0/esXLjz3/28Wt3PP3ozDvftVcHhia2LaUDs4Xi1Q9s+ej9mx8+8tHJ93+05bLPnjn3nbfeOPXFnqWp5vT6wb4NC5vXNRtrh2vldH6iVkiEA/GkD4AGXdbwCDoQsIFM8ORiADQODptt4smo7MCBe/T1txNKs00MyQ6oFFbanQp7MPvcqCShemlBg7h8iXjQ5/Ikg63pXSuj00V9RpNGZdCReoOGQdimTCSr5mDvs2q13siKNCmwJoUFKqUDf1sLNuAaAIA9Drcky17RIYqcEeqpJPvjwVjMl0C9mhJpKy8IHE/rCI4xMYJeq6IsNtoKGsdmVnaDoKEZs8FoMqi0NI/lGD4oSDIogHbObmdbZAIvvQGAUzn0+o9EI6FAAE+80UoE72nsouQJJxNxIK4J9M9BChlFKw+Px+XgeQdaWnKcUw4lQi4hgCrJF0tkctgyEgrDL/D2tjw8OTw0NT8zvbBhed3apfVJBGCQv6Eo/ki+Uh+aXdo4w/F4+gx7UpL8YVDANTSAiqKcBg2DON4YHMYhnLmFpaVte/YNMjqNSoEALLfSZf2Sp2Xu4HHjyQNOW8kegXf7PU60qGx5RDudAs+QjN1htUDFZ61fyaZBHaWSqXQyHnC2DnShojpYxox5zOi60nLB0mt1JGFyimaFUmdCcWmmLTZRAEYCNRbwCNaKSuEv0oC7batXfa2ts6tndadJwJEoEPROAH8PvET4/d0umyM6MD09MegicA7JhIPAVrwEtnLADDDNIhSKJFJQ6fsq9Xr/UHOwOTg4Mj41ASg8Mjo2PjE9BX/BwxwaH3GzvLPVaOUSWAB7jiEUesqgUhsYnrEhsgM2Y44iYxOcGIFsB2HPGo0UadCqKQIA2MyZTEqVSqPXM+pewkz19OoMJgt8Z4NGp+zuWN2t01mwQcyk1miNRoUpnchE/MAUeWuomI5HJI8/cNqLEkA4BNTBYzUJUcnBkwa1HgBYEDwBf8tt0ifLTjvIJo4zAu/g0HVJDgT8Mi4iKSDxzOk7dXghmN0EQt1Gomk3DrhZaJowaVd196gBigxt3TrCaNRrtN2dwA3Uis5Osl5Jx4KSz+figymR4yh9JBeT7fAv2orArrCrHa+AkQdi/3O+XK4MNGu1/r78yBj2RrmdrTxgNwi1TB6bFRqler1voF6v1hr5SDjAsyaLIDpwxjWTyZWKxUqp6mZ4NGsHyf6l8wvyRoeVsbFoYaUyMRYtrQd+oKcdlm4NSdrcYY0ksE7CFBJ9YtbWqyE8QGrhXWs629sUoOS7O7uACGk1q1UmAHZGb+jtUtMWC2Bye3u7nlH0GlW2NLBS2LY2yuiMemW7ldRycRfeNZiU3mLrljuTzeeK1WpfFm1EapW+/jja0zjw6wV8qXQMPZcrhWouJbkZhhPcUiieTCQrJZyYx5FmN9aWeMzncdNMtNioZ8IeOV6dGq16pdLEyFxjMhYMBIEwOUWO4iS/m2ctGlfIZeMoc6cjiCbmmVw81ZdPp9PV4aFCLOJzsA4ftg2X6uViuZwUCUwg9Acz9UE7ha2gLti5oUA8lyoMbkwYbTolo17d2WOz6VXqLpXHLVK9CqOzUOsPOymDy51ulEJSKuZmqZBQGeMHSjq37HTGi8O7MYVdJLmRbUk7/AcE2GWiM5jM1ftXLhgQwiFsVfB6/X63KxyFOgE0yMa4MolAyK5ii3Ufr9D5/a5EMlMeHFlumli90RWfHMRIeJLkfNNrvBrZl1knkyxnhzoXzzeW9n9ry9nbr7ji8hvunWOKQmLoh2uE5vDg8Porf/yjcd+uuURg10DwypUL+yfOuTtXHB5Z2nLeA+ctzE9fEb3+imsWVn5+WXrD4saz7vzdo9evLN9zx+zmI3sbmzZc8P3Dd11/6w0Hr732usuufeS1Z1565bkXDx8+fPzo8y+90VzZe/Ujv7x/4vJvFGfOvzq+e72w7sq7tly+YWTwjSf33vetD19769QT9+3+zdvnVOOPvjP045c+e3T7TbvX9c3fOp1at27jxNCF5djM/GXbmTP2rFmT3jof2LmOvfLbtz780PfveXL3GS+8/yD3t0+e+OOdLz3z+odP//r152+5++hnb2/LLzQ3LNgntu5YcjXPzE2XFob2vXDqqoU/v/Pau8dffXp67LOvf/PIJx9cvHLjw795+91ffXxi5pP/cvRPD0zu2JQKTZeyt/xs94unbhk8dOKtx+/fdfknLzxx8s23vnilvmWusri+WlqZ2bTYP7hhqlzL5UbyIH48/ixO4bgFnmcpxia7GZJU+3LxgMvDk5ijk4j5Q+gf4GZpOy+QGjMrhIJuOwtc0JYMe0WXwJuVZoVRpyYJjccPglEUcdog4AbOSpl7g1HS0NWlZxmDpgdjP8wGC6M3c4IHtpC6R0s5ORNrN4J2IWk0i8DuZJI0G/VOt9ODmIJ2RiwJCOr2+NN4w4puDbm0RLE8ijnBAtXNYqVJvVJnZQEf9DoTZexlAWcsOr3RYNTpLaif0csDFB5Als0mOluTH62MAivDZ3PZXCzgj8RCraopoRhErwSQl3IsnEiHARWhckajPn8sHA2D4vQ4Wo5TUDtplo1EEyHMcoVqHM0nMi2z/kgKR2qq9VJlcHRwaGJmcnztug0L04vrWkfQsGEjkVgiGk5VykNja7fMWK2cU5IA+1t2FKlcqTo4Wwq1ZorT2XSmWB8Yajan1s6OT21YOeOs80ZxiEavpvGA3u9v3QH7PS68DvZggKOIVskeDH4CZPNLnM2FwRgMalsL3ltbAfu+koigkWIsmYcPz/Mu+EmHiD4QJjPiLGkxEXqNDueqTWq906VvU+lNFkxQttC8wxGMuhhexNgbvcZoELzqr61uW/W11Z1dgF1t7VortqmJOMUl8iYTByocGAsUndjQ7GRdRABmrTTVCjrkOAZ+uvXFWwCcTqVy5Vq9f3BgcHhkdLjZPzo+OTU1OTExOjE5MT03MzY5MzcsArAKoLyAgaF1I0Ob1CY8FFBbWthlszvRxQyDGVuBDTZgjqzVSNAkfB+KUCi0Ft5s1Gh6lUYjqVEQFqpHqSfMGDfyJQD36HVm0srzJoXCYDapyGwyGws4bLBaIqVUNOyDhQHQ2gJgtDcKeRiTO+4TcDBdpwYABvUj4/0JrCUJY7jMDhsAsNWGaVsS/luyDArY7+VpgGXMqEL359b8Mkvj7bXNIQBRokxmY2dnj6JrVZt6VaeWMBJ6tUrZpSAIvaqrixqoZaIBb8DvsgdTHjvPGOOFuCywHOWo5LOpVAx72tK5XAuAy9VSrYKRg7VGX354tAXAOEXeOo6NZwp9RRDHxVqjOFCrVWoNgJAIdj7C5wXKm8hkM4DftXLVBXyVASJhsznwfMPtxpY/BwuvABZCT6eGpE2UVmPQGxiHrltrJEXZr/K5adpIumCFJkSVXu/yy0FfMGqApdJj0CuVbW097Vq9vlNtMrM0rTOoetSU2aLQ6TsAgKmuLp2GT3nwRt3B04QYlbw8oDwXc/EWgjCrvS3hmUkB2y1Wa+XTd9mlvoGEHMA5Z4TaSDYVTyTg++UykVSgBcAuKRhLJ1OVIsdz8L9alNUHPxTwuC3WRKW/mgyKUrQ8MVzxSsXxwRkAYH8wDO9MAP76JQBrPRGg8qRR4U2ijVYiFYnD50iny4ODhTiOIQlSKJavVvorxVIp5SbtAmzWYKbWBAB2ACsOeGDlxHPpQnMlYQAA5vRtnb08p1VpejTAommV2iz21QeiAml0e7IDFQDgOJTgkLs5KYzVNO6AxxMvju8xqSxGzuRobsnTVklmnE67YPeG4qXa+r0NZyQoBSK4Wr0uTyAYDIcxJZx15zNhP2Pkkjmvy2gC4Z+IpUpDY9vmdVYdw0sDNSgghNlq802ulQ1yMDXvtQq8zeryhXLNDed9Z8+ubRdfdPmNh65NWp2u+j2LruZAY2Dpyp/+YFo8d1MusnUsc2DTucWxlZvTwPSWNl383cs3To1eFT54/Q3TSz+7JL95eu159/z00bvmVu67cWnbM/tqO7Zfet9fDt1w8LpDB284cMXBB999/ujrL7zw4vNHjj3/3Ivvza6/eP/Pvn/Hwn035Oe/eSh81pmepcvu2nLJ0nj9+O/PePjOt44f/uC9X89//bl9tdSfP5n/2++eWv+rxz5+ZO6hz+4eWlle16heUIjNrb18J7/rvPrE4Nk/+tmHfx/+5NOPPn/zuSc+u+uDk//nV8w/Trz5+spfH3/6mcffe/WXN9z9t/ffWukbb6zM28fP3DbvaJzRv6a0Znj/K1/sKLz08YnXnzv+/prBj8+/8ugHH1+2YeUP75384MOPT1zwwk3WytTQ1NbldGwuV7j+l1e/9ck9idvefOd71277xkcfP//G/3x88nYE4IWlWnXP4jiNzVIAACAASURBVBlL9frCaBXHkPrSiWQw0hcM+V0uHKmhKNbvZSlSLWfiIY/HaqBpJ59IRCIuX8DlYHjZJVA6ihOCfpG3WkkrpoIBmFnNGkYD4gIkpy8Yj0sO0R9NJvw8TVkZkzoWMWg1sG1NZlNvl5mmdF1GUkVBCTUaYBnrTKAzLCxlsUIFcjr51giM2UyoVTygpd/XuhoVbAzvRESMBpJJPFYDSi5bgHdjwBGjAzXFMIxZqyVIC02ZjUaQCDRB4lShxdjyguYc6DRix9Nlj5NDAG6F5LJYOmgunU7E0tFwLBaQ5YAHib1TwPQH0euTA8F4MiAFQgBxMczwDUWCpyOB7S1nRwZkPsjUCHBLUYrEY9FYPB4OhSNh0Ey5bAHYb3O4OYQ+HIvzC2vnl5fjLp8E0jYewb6eRN8ArPy5lQlQwOjgKHoxUimeypdBGJeCsXgsksrlcxjpWuofm54anlhev7xp13ljlFar0yEAowyTMSrNizfUIZ8nJOHQlt2JeVRWmmFl0PRutwP0Ppo8swwCMN6LfgV0eiAYiiZ8DorQmVgWQ5JFgSVN/5bAAMBag9FgMmkI0aFapTGYWpcDpE1wuJNxdAO2mTG3Wd9jZBRteAO8uq29va2rva3HyImtJllJdvHKbi1jx8xCWbKLubGZATdoKOx9wztgM8W1FLDg8vqCITTejMUT2XK9gTaUo4C6zXpzeHxyYnx8fHQc/Uzmp2fXLgzYOAG9NVkOIYTFmGKlgTZqFAqC41r6Fy8oW1HINgaHfByYUm80WUmj0UgDqGpJO2nQGXoAykxaJUBvt0KPNxco+xGA23oNQDcY3mHu7daZCJUlHUvF/XaOtlmjlWQYINcPEldGK0o0T/MHvVaTB9a9wwqLUGOxOVwyIDOsXXgxbtFlt9Mu3mCmWIfLLUKpbw0ogYIO+pxWM1qHcOjVBSoDvb2BhVppzuliMAzSTChXd3UpVnXruts1BACvUqHu7DaYDKCK6WY9EwvJQYCDcEpyOlgiVUQABolT78smM/Ewhlv8PwCu9VeLrWC+YmF4xPdvAIYt5/bHMoXWlHCh0igPVGrwo8V4JOYWGCus9FA0EsvmMln0Uq66cNAaqoSNcwhCq2ewdWxibY1fdbX3EsDcVEqdnrDyih6d1hoIe5U+n0VtYBhgh0FJa1AJeB0ZSZA9XW1dOr1a097R267TadsBgKH+4Km0mjRTgNSogMmuLpXOnvRJUkAWHAwhxmQ3R1k0XFTkLbA21R489s2l01l0wADuUCr3lUrl0lDKF/IDADulQDRTwA3al6/n4/50yMlYeQHgKAoAXO4DAEbJ6AQl74snUyGvy8SkGs1KPOD2BIvjQxVZKow1pvsnYsAPZdkN78bEAgA7bKTGE5OdNouh25sKBEAVJELRdOr0TXkhEQuIaDsagac2UC0BAHvhlUrwBNKVpsA4oBp5AnIgFIpns8XmctzI6ZRWfVuHgmdUSnWvVva6GZXKLBaqjYjDbPR6ss1SGGqyh6WCrrEp59ygyhsCNdA3czahgk1kkWpbqkaTz03YPXan3ROIVZpzZ1VFWB7hFEgLv+jwhD2+cDAQDrjs7mw2LFF6OuCjbXoiEg0U8FNPbF3SMgqG9dYrssum01G0vT4p6CV/ajHAsJyT9foDmeH1u759wZbt55xz0fXX3bW3x50u/XKI7OvL9c1c/MB9E8zuTenIntHg5bu/Xh5Yvj2fGxxZs+7cuy7YMTl1nfPaWw4Ozv7kor4Na9bt+davXj62fvtPD2ze8/cLKmduvvCBvx+6+ebrb7j2wDevufPW9448e+LlIy8+f+y5554/8uHK9G1n/+4HV2144Lba2q9fn714q7zm/FvWnz3ZbH707MhHp04cOfz4e7f3PfLPC0uZJ19K/vrAI/d/+rtP//vMnxz/TmbdljOnx68uxBc2XLHTdfbeqYXMwlPPfXzLX98//Mprr7z07nsXvfbyO9+jnz352M4/nnrhV089ePN/Hbv1sc8//3BL/2Bt3QQ3tnX7gji8qzZXWhw559mTa4qvPn3s1SMvPzOz8fOD+154+53dI9v+8fyPDv5gx1nub+6TaqODEytrEvH5Qv3GR77+8sd3fufkSy9cfuMZh06+d/zk8duKiYEzAYAXq/Xdc5vX91fWjPbXsvmxci4R84XygaBPdPI4+09a/RKLCjgTDkoSZ8YOqwhwaQ8O+JMgiO1mLc07/38ALKFrhalXS5IGLcszcjge8eAVYTLqtmj1pJXRBPxmi5FmLIRJ19lFmB2kirPpbSJpIWnazJIExjjAvm2Z5jvwiBrPloxajd2Fk0fu1qQh6FSHKHulRATwNwUgnMz7QKJYQZJ7HIQeBRVgvVZtxIEjs0EPysZEs2ajiTQZtEYOE3K9bsBrPBV1ok2U3SnwUDdAe9AUm07FwplENB4LSFIQyqUbGz7gJ5xeny8QSSf9vlAIjfdk9DeCjY2t1C5sUMGSbLOlMZMUcM4VTGUziXgUBS5a3RUyaSgKgwDAk3Ozcwtz6zYtrywkXLIUjSeiMfypRKaYHhif2zCBt5low+Fxe1td0JXGwFRfAHu54qBh8sVKtdHoH52dXbNp/YaVHeeNg1IwaFU0aHEcQ5JaIy2tv0kxbD5xtvyfOdpM231uEMM8DbIX6BBU+FY4H2tlv5JJAuWPx+J+niQMFpZFTengGRzkwfNng6kFwAT+ghGong4cigUNTDIOQQxkIiwjuuBTUDRDaOxiz//+6ur2jravfRWPotvaVQxIWryF9npdhu4uLelwOVz4CuTS3LBEMrSZJNELi2rNRNm+BOAwIEYigQ1BtXq9Afp3DA+fB09fAYP+HR0em10zP7cw388xmILkQMdJ3mGz0ySh0MPnUKrMfGvKuHWsiFaY2Lpj42zYp2vRm6wWvcFoNaMCtltMOl0vALBFozAQ5k48gm7ljRgAgDvblUb4uqBFzd0dSr1RZYqFknEfz9EcE62kcKzS78EJpJYbdNDvD3k50hPzcHarRafVkTj2izcDkuTzyU4EYMbNG0y0zQnKxyvhqYUfuB4oIDdnxo4xNMu0cTy8Ang1dgcLUN0a8sIB51Vd7ZrVSr2qXWsyGvWqXlVHl84ACridalaBOIaCPo8tmvZ7nDZzphyXBNjGpwE41jpQyPz7CLraXysWS9X+Rrk4MoKG5l8CsMvjiySB8ZULpT4AYNC/tXp/KQ6k+zQAByKReA6bjIv1Wt1NtgAYu6cFN95kw6p3OYDomXVKVW9nj95sMSl6tQYza1OCvhWiUa/KE2C6NazJ6Y0EQzqDgvf74EUnrL097Z3A2jVdHb2dOq16taoFwHoCAdhCq7RaoHMGBGADnwj4vQGfU7CaxLjfBQAMCliE3W0wqjxZUO8AwJlcIV8A4lZDx69adSTtg+fSAuBYsZxIpyKldK2YCWcD2IsIO80fSSSSpT4bbAgHWrZ58OguGZJEoyXZP1SOhXwuuW9quB6Q82O1mYGJuNcbkACAHZyRlf3w6CiVKyo7ecrY7klI3ghGsWBuYw6gbLCvBcBAp8PwYBtACloA3IoAzpQHnFYBT2iCmKUVz+TKzQ0AwFqlxQBUhCNVCnWvzgcA3NNrdGT7KkGn2SR7soPFiJxOeDgq6BifcKwfU8lhfyhSWLOX0ANTs0cqZzW0Bsmhs3tg4wXiuZGZiW1lVzIaSKTjoZAfZC/IWJ9bjvm9Tncy6fdaVXTQrTWpTL5QoC+bKTanVmaM1m6LPdCseAWrVm+zSTPLgs4bzKwPgHhi7VCZciPL59x2+aazdu3c981LbrtMIwenfj0pjI4Nj2468NDDk86dy+nE9vHopTsvrMzs+EEt0wAA3n/vpZPV+q9r5x26bXbr7/bHZucXli/69qNvLq6779Kls/5+aWXz8v5f/POOe+697dD1Nx+48e6b3n7u+ROvHzny/LFnjxx99qPt03dd8uyRX669dk9i3eVXJS7ZFlp3wc0b9q0Z6/vk+80v3jn1zlvP3zm3743HLulLPfY3zytn/+bnjz905N3bf/vJ/QPblxZHm1eWUms3XrnTu3vv1ERh/5HHT918xfcPf/rqaydf/eyme9/54qfWJz57dHnPK2//4ZGnnnj03dePv/vh80vlZmNpjpvYsWvRNbpncLG2OLjn2L+m08ePvPjR20demb3w5M0XvfOvk2fOnXHxvmjtwZeO1N57iu8bao6vm47FZkvFmx4964VPL//63+751V/v2Xjw8zeu3bN4389mRrfNVNaurdY3D5+xabi8NDlQzRfHq4VY0OPP+gGAT/vZkIzktlosGn82GPBKdkYUKTqUinhtThB8hNaoN2kVFC/iETQAMM0nw168daR6VZjvxjps/mA0jAAcDch2o1pHWmmNz8cwGlCptL6nS0UYeKvRyludDgPBchY9a1HrgV3pe9GXgcVmmdMK2GTQQdGGgoRR7a12Lt4peXwAlYlEAmVSxk+aLCTUYYfImXH2grLSRpUOSrqVIqCkgqRmsG/UbFAbeVjxNrz7dWJurWi3g95HC+KW8SXN2JLwO2LvcgzETNjrAJ2CUbJOBx4aRaCS+YLRAGpNnz8YBrKCAOw+DcAYCmHPJgNeL7pTOn1xENPRSBTtz6OtqYRKZWAQAHh2ZnrNmpUzV1bWnDbiiAbDwVAM3YrCjam1K1OA9sLpPD+3FIgkcuVGc6oA2juRiibSOYDx+nC9ODC/tLh+eXkjADCjNxo0KgYoCfICCbd2KAhYgE1iOBvicsK3FOwsj/Z5TgwNBNVJcYITIdiO198AwIlkMg56MyCC5KItVnRP5hgLPn18/K0LR4PRqDMSrGDs6DYCOhlBAIGgdEXiXivvddMmzkZ2aa1hn66ra9Vq+GPVqlVtHR3tvRZQGdiEBZ/FqmrvJoBMyXbBL7lSU0NuAg+fEYFx4IlBO0qESi8UFLyMzBWKZQCB2sDQyPDg4OjU6PjEOI4h4VXwxMz87Pya+WEB6BFoMJTAQBHtDG3RmBiDSqmlgRIB02CdeDjaGoWyt4w5OZow6whM6NAjAGvMNrNZrVaoDAZGjQDcpdAbzOh/akAF3NkJ6xTIG2cHAO7WGFREJJSOSjZ45Uy0nE7EsfMq0AJghFKfP+LjKXfUw/IA8QDAnE2UkK61wi/hIdjtVo/daKIQgN0tAAbcRltTPwAwPAVsHGuZmzidvJUTRAxEciCRAGGp7erp0Lb1qLs79GaDQa9WKjq6dXqtuqeDHigl4aOEJA+XygB02MhsOeoFwkE7q4VsKhUNx1LpVDKbAQCuVGqleq1UqdYH+mvV0REfUGjY8gLPwf7ygRCrNApZkMmNUqlSr9capXgoKNoZBpvJovFkLl+o9JUa9cZpAKZhCblhQ4CY9wAOO3AKyaBSKzu7NITZ0NOrNcIqUXXpjXIkJGscfqFXyZk5TyaWJgxaW8AXjoSith5ld5cGFnFnW1enQa/tUBB4BG0wqwGASatKpV29usMIAKwxcIlIRAIV5wQATgTcHE3q+LiLRrc8lVSMZ9FLNZks5nOwTYC5DTQatZEUer4jPZdj5Voqk41XcqBEUxmfnWaA6Lh8OCNdLNgcraBwnE4MAhmFp2gwJZrD5Wg4KHqLc2MDETk/WZsbmkh5vH5J9vB2Tg8A7BJ4UuOO4LU00S0lPO5gNB4CUQ08AO+A+xJ4BA0PNhJPV6tl4D8pN4Wj4WiRUbfTdgB9EW3U4J8Xqs11MQIUMGHq7lTYKH2vqkcLn53u6jY40rlSSDRZAp78WCXmTye8AMD2iSlh44RSDsmhYH7dfouZo+xyorq3QZhBi4her0+O56rTi9M7K65kPNxqbgkKnNtnk4Ep+O0g9+MJ2W1T0kGJYAx0JOpLhqPFkdnNkySlZwT/QEUSrEZKcGV27bP32gTvsEDjAZrdFcz2r99/84Ezd2/fdv61F11/hcEbmfj5hDAy3N9cf9Uvfzsonbk2HtwxHr94xz4A4AfrqYHJdWec86NDE3ekDvz0nOuu6V/+1d7Y8tLKvuvuuenNLUvf+8bs1ifOrW/ZcvEv/nrb/ffccvCGuw5cfdUD7x9+6bU3Xnr+2LFnnz/6z48vnt+/9sCvn1q+60B2+pJrE/u2yEv7D66/dGWq790Hsod++MHHf/nLhcX9Hx65aCzw1Bvyz08+8+Ob7nroJ6UL3726tHPDnsXmFeXk/Kardsg7L54eT13ymwff/5N014cnPnnzxTdOnX3+8bdv8x5+/0/Niz/+5/33/+z1F9988+Hfn3pyXW6iuWbBPrVz94K9saW2UFuonvnUqcHie6/847UXX39z6c5T3/3mQw9fkQ1O7bvq4bc+OXF47Ykfi4XhoakNM/HodC55ze/2vfHp9Wd89M7bh3+8/Yanr1667chnJ2ZmdkxVNqyvVhfrZ25uZhenGuVCZayUDYa8wVwgKDtBZfIsRVolL2uxaAPZSNDjttFQChyxlJclrS4raSBIrVLdY7E5QyGvg2UBgBNB2eN1iTwBZN2ks9jsQSkY8DjdcsDjdTKgUVm9LhKkiF49lHi9WmemDGaTtlvvEGhWoEwUzjaaWJE3qawAECxegrWmUC2gZjFPAJSqR271U1sdGK6XSERi8VgslkjFZNqoN0DxZUUXfBLMyEP5gcEBFFriUQDEBj1htBjUBI9BE16/aEc7V/TcFDBIthXnjj6IthhAZiwaxQzfcCTY6rFysnYQCCAvQa2GpFAUh9hB/WL6KyhgUQSAa00hgX4TCkmfy2V1+WWvH03ZwyFs5k2GYrk8CItibWBwdHpubnZp7fr1i5s2Jl0yOmEFfLIfW45SiebM0saJ0/fTIBvl0wBc6R+bKYZigOWYcZbHEcfGwND4+MyGlY2bd+2dYKAWa5SMD2oCTpUCCAA/xTEqHwAu1HGXyyvYRdHuwIBDdPDhW/1OTgeHoxnYvf2VdLz1MTOZoOS2wSNrFX7QpGhDhrehOr1ei16UJoOBd5s6egkzFDxQifClvfGgwLtEjrQ6GI09kMjlMtmoVd+5anVH2+rV7VBSdVYcfcV+bA+vae828l6X7HIBc0k0ht1GCmiWCefNEIBbYyEA1JI/FI7Cx2m5l1RBhmEO0tDoBN4BT0+Ojw0OAf7OzU3Pz8+PiBxeEAgsoJXTYRcQgA2UTqHUM/ZW6DHjRPSHt9xKJgRgs1sps85IEf8PgHkLqVar1HqDtXUE3aM0GEka0wo1egCGLmz9NlEcb1b0dik1CmM4kAp78LSciZUyqUQIh39bAIyTSPK/AZhDANZpLThd621dAWOKu+gSBKtHIBCA4YFg8xa6VGKYkt9ts7QcOGA5cjxGIwCnEJx8q28bvgaacfR2dWgB03oQgPUGjVLR2WPArOButllEo6Og283lchHJBQBciuCUO+UoA/dLRiNxPCz6twIugjisNxoDzUZ9bBgA2I0UjeNEfPCxTLkfoAOQtwwyEv5WjAUCTni+yItieJFcqJYrgGxuIL0tAIYviDcfshsWrsMKsEzodcr2NqXRou1W6AiKZRVtegJPCbScX9YqYGU5ErE8rdPZQvCi/WF7t6q3S22A79He3WXUqdt6CYuNYY0W0PgWC6tSGNrau4yWjk6j3paOwv7zAQATYiLkBpKutyfcNMhuQu2vRDMAwEls3iugY02t0RxoVAYTMs5B8g6XFC31g0rOViv1UiWdkt0tABblVr9fnuNp+5cAjJZ3QcmpM6eGRsrAsFye0pqJoaQ/P9NYGBnPeOWg7PPwPKOzyj7RwVv03oiHZy3Gbk9cksLxVCyayueL5UL/2EgR74A52JnwCtB+rFJKukgnJsEEkuWGg7HzoIB94RAw7EypMQgAzOuUBnN3u9JGGb8EYLKnlxCzuVLYqTf6nLmJajKQjnt5OihOz7o2TqIRZtCXX7mQoe2kOxRvnN9gWa+LwW4QXzxfnVyDd8CxeBhIfCwe8YpSxBVKuJ2ywDrcqaxf5Hr0opsRzFQwIqfCkeLY3M550kjarVKjBiTHSDmcqR37rCrBKk04TUARzZTNG8mObz90465tZ2zdf92lN96g8NQbv5l2DvXXBjce+MUvRqTlNRHnzoHQBWdd1Bg/44fVxODU4sY9P7iLF8216StuuDQ389O92bVrls656eGDfzvjzJ/cvmbb4zsHl9bu/fkTh751/7dvu+m+Qwev/O0nz750/PUXj7529PA/nzv86c3Tl0Wysxtnvn9jc37vDdVLNktL5x9Ye9G6ofoH/+3f/Jtn3vzz63+uXfXyy3sK2f/6pzv/f7746cL9Jx4uX3nye8Prx7aO919TjM9svnJ7YMe+8YXM3p89+fHLqW99/NrPv/360aOFxaff+yn9x5OPTf7tiyf/8LuHjrz02ds3/erzZzcVFpqzc/zk9l0LjsaWvpnSmoFzjn6+Unv/+F/ef+PEH7OFczZdsvHx189Z2Hr46DNvHnvvGuf7j/HV4cGJDbOx8ESmcODRS14+9d9/eu39j07dOTOfvue9V19+60/fWLtjorZxpVqdyG1cKoYXp2rFYnUwm5Jl0ZcNhoFeOqAGUJizYCMBgNORkMdlo22kwxONiCwvChxUacpg1CssnBAKuAGAKasjHYEq43bbjWZg/goVQYkCsGI8SxU9IJKhFpr0fg9FqQm7VmmymEnabCJJhQ4qqOA0qzQqnQZPNVmW52gLyeIkVMuGyURoVRyecsFfXjemMVntDtEhxkEztvA3HfJZjVotOhkCcFhMVpTAjEmn1eNlHmmhLBbKrCcsRrNORdhsVl6UJIGzw4f1oD0UDpCiQz/X6n8J+QOR1u8LABwIyB60sgCN5XDCYgbMDQGTDeGNMGiWcDwS8KIlCR4JYN+M1SZkIphw6MV/mErHIqEw/BFNhGPZXF+tUe8H5JicmppaXNqwbmHTlpgTADgGKB0KhqIpUMhjM4vLIyyeSmGCkAc9qVOFWnNkqhCIwu+TTCSy+WIF9O/I6OjI1IaVTVt27x1nACq0oIAlAGwfAEHAHwwGpFZrthNDFF0uyYm4Y+MFf8AliqcD6h14st46c3M4vpLEJp14Mh0FIePAIDyP0wpKhmiZaZPYPK7XIQibjWanR9+uxRNaAGCS4R1y1GcXPZyZ4oC+ZLORAJB/f8JNdLe1d7TDn23tSpK3i6fnoURDZ6eWxWYdt9slhVODbhNFW8wEiUfQoMoxWUkQ4QPDVwhhgE8a+Ua9Wu9vDmH38+goQPBky4kSABgbwdc0eSve58Mr4AX4KgJNmlRa2qBW6YCqU7DorE5YOK7TY12tswXRBmLSSJlA17YAmHRQpFajANil9WpYlT0KHQAwaTTodQYVALCGAEFMc7wFVrWit9sUC8TCHoBfzposgQLGLAa8evf54A34JF/Yx5lcUS/HkUaNFr2g7a0JYA/oNkkCqSlQLicsfMBW0YMAjBbScjAS9Ll4Ei+y4dXY0cIaIBieG7wtYBduF8sKrMmiaOtQa5SEYrUOFLBR06vs6AJeqe3pZgcwp9YTFFxcqS/qcfNkrhTxumCfCpVC7nQXdCKZKuT7SgAC5UqjVu0HDG0O9I8NyQEf9kQ4AIDRlAKv3fPpRrPWX+3rq9Wq9VI8EBCdrBWeH5JKHLKtVAf6+z3AmoA92QCyJC9OxuIzdnKMlTTpEIDhMap6FAZcGV3tRmPIJ/s0XDBEKIAh095gn12j5SOBEKg3Z5e6t11p0Cl7OwCAtcrVvSbSzloJi7pXYTKzaoWxrb2bsLR3ETqhEImEJNAIAMDJsAdtvf8vU+8BJUd1bQ17vWU/SZN7Oueu6q7q6lS5c07TuXtmevKMRpOkmVFGEhJCBCGiBAgJRM7JYDDG9sPmMxjw49mGhwNgwFhkECZHkcF+/39Oy2993yxJyF6anq7qW2fvfe85ezOggG02o0ElFqLZQiaRyvzLeb0EGr+/XuyPy6iA0ZEs0jfYly4WK+V6qZxMSqyNoNwuj4jspC8LAOxC03JU+qFQNCi41ZbU0AgCMMcV58aG0oHsmsbCyGiGlwOCzLuchMouyR4XbdbzEZ6hLIZObwQYTCyVTKRz+TJg0fhIC4BJ0MzxSLhQhntfiHttLOOFNREtNlwk7rFxYjgUSqaz1YHm2pjJqVMZLB0rexmrtlfVoxUFn62nx+RLpfJBr1bH0cmxciqQinFOIuibXMMuj2ukCCuLuY3n0iRLgEAY2lN3MYLoxPlyLpQujq7eet6AMxgLhWLxSCTilwI+yseRJPxmvIl80Ef3qF0s4TRY5UiwLx4vjsyevM5sMLgIuV6WOUpn8gnJzWe4CT9f2hHUKDVGu4f3J0sTmy67+swtm7adceme289XivGxn485G5XS4MbLHnjgjMj6tQlxfT1z/obt/Qsn/awca45Ozm+944dZbWw8ceiqy6e2PbI3tbR+044rHvnZPaXN99wwu/vpvUMjzV2/fuqaI9ddc+TCqy+45Oyfff38K2++ffTV9194+bnnX/j8ztpdp9320I7BuWZy/VmXlc/bGll/zrXrz11oZj/9WfrG3/zu1Rc+fOTWnX/88oLR9O/fprf95ydPLz381t19Fx+/vTK3esdQ87xcdPWWA1uDO87un6zs++kzX704+9/PfvLAj95464ur3/zqL1e5j31zz+Cb3z3xx9cf/+Dv3z6x4y9fvjydma7PrXaNn3TyAju8c2SxPL/6kve+3VF8/enlNXv2nOqLP7ZUeem7T89bs+2pex/+438/dX3+k//2ZYcaI0trooGxfPG63+598finr33w/vOXLy88csF/HfvgnQ8eP2V+x1Rt8/pqvZlYP98XXpxolCu1eiKJkyoZfxCKNPYaw+IURdpsUsvJQFDkGbubcvLBgM/NA/33UiajyWFRW1pd0ECebSQDuoCTeJ5Rq8wGo0plIty0D7tv0VYRDX0IE6n3OAlabyEVCrNRq8fEMpfD5qF4h03buWKlTqFRdGuMFuz+95K0dQAAIABJREFUsVLoFgkPFpRnvV7TOmbC/ohWHKINRI+bbVnchrGyBP0U6BkSXs3ldJEmEieKSMIEiHEiDwl+m3TAGLDJhqZIfMZArWJfNXoue1vGmmgDSIEyBD0qBYLYW+OX0fIZtwNazZHYxOqPRXFfnfexcgBdy4Em++AJ9rSOFikH4EdUxN4uHF/CiAWcMUIAjiUzqVyl2kArxeGxsYm5+aXldZs3R7ySGAWtDb+AAQPSjk0urB8i3QSN9lpuN+qRZF9tcHAs48fN7Fg0nu0rlmvVRqM5OT2zbt36rbtPHyWNAI6tJiwEYAlKWi4dEdGD2YPUGv7GtnqQXIyT47AXiXK3QnpdtPsEADPfwxfHuymzoFIpj8j60HqUtJBoBGrWaxRqHaYhqbUGknV1rTAiKoMKtpidbg5TXkXKxlBmbwGkYFjiwmFJdJm7Qf+24ylwl5HBuTVgT5zf2tnWZQE0hHcmsnyg7DIAABOEyUaSVlCFlOtEu5RP8AP1yGQjqXyhXK+VK+VSZQDtJ0EHj46Pj60eHxkZn5pes2ZxoeagPZjCzGLXNnyGVrNZrbebdGqtzeVCgxaoNR7sOP6XEacPAJggAGwtKODMil6NzUMCnGETlgUB2NbZ1QpyMBkMRr2yu6tLbdRZMcTBiv1OPd22dCgS5rB525EqgdYBABbEFgC3wkLQC1rvjfAOEmeRFXraxXAyJu6CAuZE9EUxwy9Y3y53C4Dh4wL4DgCVczvMaDuJB/bI+DDGERcgJ/ulcMBFeSiTpXdle4+mU9u+Qm0CAFZ19q5q15gwy5isFdPpCOdnvFS5EOU4AOBSmGcduAXdl023zlRAYhX6CqUS/FHrryEA1wCARwYFP6avtADYzWEccLHalxloVhvVYq6CYjHWUsBkyxgmFMsDgBXLjUY/D6SJtFlBsftEjvcH4dmH5wQd7IzAEjo7e9Xqnm6l0UxQ9rZOsyEky34lHQxZlDhvT0tlQaNxRv3BkBj0dSq7Vyn0OlXHSgBZvaatx2xzUXaDWa3o0RvtKoVu5apuk62jy6T1FYPhsCB43AjAYQRgHW5BW0xanZLPRDL5ZDSRzcJTg3lPtSpo/EJ/MhgQvbC2gD/km6VUqVLO1yvlZFr2WNH7FAAYVn8+S7tI978AWAgCuRZdvWYE4HAwIHCFmZGhbCg70792ZDgD/JoXBa+bBACW3Axl0nBRwe20mXp8sRAQhEgCyGym1Kg1J0YBgP1eB8/7M4lIoQoInI95CZZmBFkIF2u0FePJvSLgYiabqw8CAJudOrWF6Fih9hJaWEBakfcRXV0GTzyWFmWTUaCT4+V0MBVFAPaMTrOLY1p/DAA4v/kcFylRoB8mdlW9jOCH6wXG508WRqd2HBhwyDF4Y7FQAC4nbCc5mQFZ7nS7Irkwx+gscoAgtWQqG++LRApji1uXCFLBOOVKjvc5DRZGym7e6yMYV+6kkI2GhRtJ9Q3Nn3TaoWsPbN92yhmHzr3qSgOfav5kwjVYrw4uX/yzX94an5+OBnb3J85at61/aud9pcjg0Pj8nmvuGLa6z8xefvklo+t/eUZufnr9nmvvf+y21Fn33Th/2lPnDTTHznjoT9ddeeT6m6649eCVB67+6ugrH7z/7BsfPP/683974eM75y7YePUHDyxMLidHtx0pnr4hMHvGtRvPnh0qffZg/qqf3POH5x759cblK97Yki0+/Gf3RT+/4U9X3vnDWwMHvr25tHbN+saas7OxmZP2bwps3zk7lbrg2c++ffrxz19946OPP3vtmY2vf/jt5Z4XPn7x8O2vPPzccy8+9/Z7l//0s68+mypOlheGvVNbt8/5hncNLQ9sWH3yDy8XrPMXHRk9/Mqx9Zd/deX8sS+Pb5rcet+Dz7z/wYfPZN97kimM9Y8sz8XDU4XotY+f/vfP33jj4XPG8qtP++bnj37wf15+7/4L5nesbmxeXxsczW7b0EiuH23W+xu1WDoU4IN9waDkQQC2gyDxsaTBoJIS/pBfpEk37RSCQQAfykPThNVmJmwai8MTDvEAQLCUo7gRx7Juo4km7Babhw/accYNSp/X6yRtdsJkNgqMyaZzaHVWc2+vqsvi0Flowsm4HZbO7//7im69elW70WpzOaxmgm6lLmBvjtGgV4MCBrTERGAv7kEzbs4nJEACYyBROBQJ0EYdlFSDy+XwMhYCirmZcBCAHBghb3HYgCDrrYTOAOoBvhtEBQ404U4vlmUv60FrRpwAsVntsfC/RjZbzcQ4ygNX50FjKhDdYjwuchIULJ8/hLldkQB6DML1Awpgu4zbE8FpILQY5L1QOf045IvBPrlMPFUslYqFUn14YvX8wurZtUs7To6xfhlKYwQ0d9AfyZYbzbF1W0YItK5iMQtJAAWcAFwemcwFMNYhlQBAyudxSqR/Ys3c4vxyC4BNGp1eRXAs1AUUjvEE8JJAQAYwxlQkeClAWbTeANjzYigBRr8yaA3JuhnEYep74UAokQgiegKZIinsBfUw2Ddt0hlMep1eb4I/jSajrtcuEW0dWswFNphxp9/j98PLYowtIydSEsB/CGiHxFIAYArshG5vX6XENllsxOJ5urujS4t2yGiaKfrjHhLzHgCA0QjLTqH8AwLjFqRADE2NMugYARK43qgUyhhIONhsDg4MjQ8ND49Ozc5OzyysHUBCgYe/eGqKM742EwhYk0qhIRkGp9kdXlgz7lYzGu7H45G+0643OowWrY3C+WaH1wG3UK3WmGmt0mw2dyjg2kjCYNBrdOqetk4VtmQB57NqjXqtstOYA9RlKYK0UeliJpmMBQQx6G+NgHEirBi/QFqdIQnKsUHRrTRRHpwsbfmiCKKXp30MKbpNJsLZuiUsPFGSFJQCcoBrBXA6WgBs4yWgK7BK0dhbDkVCYZrxOHWkvq27zdytVa5Q2Qw6vQIEUofWqNO2r3I2+6LRsN/jc7mLhQjvddGFvrDso+02tpJJxtIx3E5I4oRvCb+KNVDAjWp5sN4YBwCG9+GiGQzl4STgPOVGMVcs1poVXLGYhhSW3TQBQIFeIuFsLpOvlOr9g4IVvvCpAb7Eg74X4R27PQxJ2jQmvbKjHcSvQokDRR5jZ5vJGOY5WWmUeLvS7GRsdi4fA6CJQskQYj5tb0d3t1WrVwNn0+n0XV1ah8/m1lq0SpXR6lQrDG0re0iQwwadKxVJiILgc5JmX0pinXaz2hnzEHhkrxZy8Xg6HY0mk/F0tlCrlGqV4kCt2MiJssgCNWelcB/QkUxfrQjXlQ4EBYLApSj5w9F4Ic8wQHxxGlpC4psKcq5eS7w5WEzi8E517WgzG+ub7l8cH01weK1eF+XQObGz3a7tZeOSm7Iau9h4AF4sDXgaywDQj48OlZOxIOvGqclUqlyvlgr5OEuwdqCjoViu4rEzLuAtbDCMGab10eGTIiaPuVdr6Vil8dl6VZ09Ws7rtGqVVp/ERmSBlQJsOtMI+BMBzmkOOMfGvZsmLMGgIPvz6/e7nWGaC0SaO+sUL8Ly8cPNDWZKzdld5w16ocaE5Cio4gjPun1SBCS+T+L4eMLP23UkFyadWiad6Munc5WptdvmjFadlQpWyryT0poYIbvpDIHwsJGdfpIhPIKcSTQ2n3T2FQcPbd+049wLzz1ygzqQHvs/U+RgrVFds/+RGw9snFiKhTbVYwc27Sk1t/w4F2qMzm867457fB3BEeba6w6Mbv717tza2bWnXverW343vu/ea5Z2/eW8yvjJ+/7ruSNXX3HF9dfcdvDyQwePv3L0vXePvvL3l17+2wsvHr9kdO/hH9596cLlN2cm9xwsnrEUnN9364Yz1/WXv3g0efdTbz79yz+88+DwjZ+fVC7+6k+Ogw/88sULb/jRmb7Dx6/tm129NDK0ry81tXjBBnbPzqnxwpnHPvryxZde/tPfnnnuV7c9MHfqi9/+1Pbn94+/c91zjzz32qtvfvrWz5/49Pin09nJ/nVj4sSGkxbYwW3VLYV1I8lNvzst9OLHHx888+W3JvZ+vW/32199dNrWs1958uNPPv7kl6mPfyEWmgNji1OR6GwmdcvvLv7k67P6px/4r8F1D/3jV797/6FXXvjpWWOnzA1u2lwYmcmctKm/sX6iv9ZXaCahaAtyCo8RfS67w0lYaB5WtlYvZSQgt7QFajgIP8Hr8QHLBcg1GrUaG+mJBT2MhwFKH5FwwMRH6qFSmzUGqPB21i+gBSGOtCCUmo1+iupUOKCea5U9bT9QG9CKw8mCOF61qvP7XWZ9Z49KR7XMrqCiOlyUzQjKS6/V0niCyaEHJkfbHIzHw3nZWAxgEgE4khUok1JrAVFgcwK2IPaCvLFZ9QYj1EyD1WbT6wmL3qbXKA2Uk3K1fCihJvOsj8PeWMZutWIEqxXkUggAWApHQ2gr6JcFH2hRxgaC2+3jOVcgHAZZ7OJ9jFsIwlMWB5UhiV6WoUCy2OHb3XFY9xzHuuENenhY5JxXiqVTaDLVV66Cyi2Xq0NTizNT07PzG7Yn3aIUhAc2EIsHA4m+4mBzYnppAPdrWfgRLlYAcpEsVusD4xkxhHvVIE/QZr6loyfWzM+tP2n77nHCpsU5YBk7gYKRALzxAI5qoIQXfK1UJbhahna7aZCWvBf0KtNKYwCFRdO42e3+XjIWz2QT0Th8AygPpxd1WCsi2Wy2gsbo1uj18DP0WrOG9BnbeiwALiYzoAjp5LAj1edi7HZvOBELYiQQ1EfWjQGVqo5Vq9raO9oUBCA63D6fwLk0XR1aAMoWAAPMUmbMkm6NIREt+ce40JUJ+4mBb6RxxxSETG0QiHW9OTICDGVydLB/EMTw6NjkmjX/C8AuN/ZXOZ2wZkg04bAalQqt3dmyV3F4fW621Qft9SDb8mF7md5IGS1qs9OkVatJN2k1aFRqnZnUKg1GU0eP1mgkbMA7NHpVNwCwwWSzkU43YbBoNRqFKZ2IB1kGB78T5WwygfNqARwBDoHQgrrHey0Wd4CDN2JW6nQmYJInfMlanUoSA8+W5DEYYaHCihK41sS4BC8Q5B0ndmEc8NvGSZzAeXwCniBwohwO2oGQanESuN3Qq1GuVFn1OkNvC4B1Gm1nO9Wfi8VDAAsuJp+PiD7Gke+LSB7glXwtl04kwujMlspl8IaWK1Xcgq43atXBev9E8/8BYMCJGDaelwqVUqW/Al+lSr0PgykZkvJ6+UAwEM3m8yXAtvoAb7bYrDbSTrl8Ep5loysNsFS7HVi7rrcdAbhLoTQa7T5bZ6dFJ/CS2GtiGVqjgwsk6FjKrrFGZMnPh2VNV3dbDx6krGzv0Gr1Xd16J2fn9BZNr9JocWp6EIAJVTeIZG8mHBMlzGIzsVn4GOxWrSvB2m3w8KvFPiCoeVCKmUQmV6zDVZaLg7ViLQM02ss4PWIwmCvl06lcFeOccgERKgUIXl4OtACYxtxvYIBemQfinAywrl5rcrhZSoSColBZGB1MR8rT9bXj48kWAPvcTkrHiLzHRWhUfMLvgYrZ7YvIgWgMRzNS+UqtNjY8UEolgl7mBABXgBQUC0me4CiA/Uiib9BDetyw3jm4seh512hs9GtofY+K7F3V67Vrert7VZSdtAJRgIdSkkKiHBRT8b4WpaBMvGdkkFlcQ0kBWFvZpf1ed5ji/KHBXTWKlzgPiycjwVRhYGbb2f2uYCwS9kfCMhStAD5dmKMJ8giqKEuoCT5K0RoqKEWgEhRHl09ea8Zod7lS4x2kzuKW81v2inaflDhZBD3jYcRicfSk7WdfdemRXZu3nbV/36U3aMP51Q9P2+qFcnHNgZ/ftOaO00cCwS218AWbTmusPumeQmxwbG796TfelTAXFz0HLr1w5pRHd0aX1y2eev3PzrtjZO+9Vy/ufHJvbWHn2Q8/e+UVR66+8rI7D195y8Ufv/LSe28ffePvL71y9IWXjl80fNZTP/zo1vS1RxITp11aPGUutO7c2zaetdiYvHy2b/biN37z9N8/fHr+958driR//QZ97V8fvH3XL5866Nn/7c21+cl1/f3n5ZOTi+ev9+4+eXKyft5d73z72OOvPfzmEwduf+XjG9e/+N01rhe/eu/J3/7PF9++/8qXn3zz1/1v/3/vryuNDCxO0c2lzWuY+pb+0eK6vnM//HZj6ZV33zr/ovPvKZ//z93nHD9+fPfSBa9+9fePPv7u7twnj3sqI83JDTPR+Lrs0FVPnPv4Haff8sa3r5y27/df/uQPb/z5oz/efmDyjJnmpg2F+kj/lsXB6sbV9Uq+OJpPxaP+QAr9G+w2s5Uwai0yRxF6g5wJ+gGAbbTdxfmDEnxoHmzjsRHwz4D+BgR0ZzZYHQGfGzNRSLVKp9X1aJwelvRIMiagenELGpMFlT5CpzBTWqNJ39Pe1tHZoXVxbregt5sUq/5tpboXGK9CCY+By0GQODJCmo1GE3B9HeP1waPrxpACGqDS6ea9vkjEL2C7LJDNoNugMJIaow00MxDZVoaejXQAchtxjslqM+itRq1Zp1HpSQflRSNK3HuGp8gLpdvjdWLsgx3qH+mU4GkTQtEABypWwsFNeNIcHviHOBYUARop+318a9AWWG40JGJpbxn2Ql0HjRVjPTjX5BVkng/6OZriQpEgniknMn0FMZrJZIuNwTVTk7NL6zdsiIN+DINIlsOAm7F8qb85tWax7nC1rKPcHlaKhEMpAODhyZyESj+O53i5UrVS7R8ZnwQAXtx80p5JQA9AChs8k14hFJLhvcOblAMBiUdPARxU5nAnHcdOfTiL4xVaeHQiFgnfNv29eBhUlsjzPPpukk7gF/gJ2HDYl6QdmpUavaG1B23ROdzaNpXdptOazHoDSbqlgIDe0hRBCfFYgEcHLrhv8JnbsBkW0Lejs73bxGAoMOsTfF5L98peePUTACwKBHZB24n/BWCEX3xv2BUajKRy8JXvA8RoDvQPNJvDo5PjI4O1Sn1oZHxidGh09ezM/EKDac2hYh6Sw0EDDFNmjdZiUCp0doz1I+FqfC4OnUDgC4gHjpXBqjZRJrPayJg0ShUAsBkB2GgF7DYYEIDNZsBxuGZDC4BBEFusDqdFZ9aotCpLMpoM8YgzVKKaT8Yj/tYMMBqjRf2SzHFOk9Ujuwm73dqr1xmtDoYVOQ5b0LBVmIG1Ini0RoIGABYwuFlonQHLIQEAGE9BbDY7RXh5HKttZUr6WEEMycCKPEaLpbejS6tTq9p6sTVdqVD2dGi0Km1Xp6OajiVCANoAwLkQ73MS2b6IyFAkwdcBgKOBQDSZSmdbhAZ+1fqroGHrjYH6wGRTkBGAGQRgH+dPtDrPS/VyuQEIUqtUarlISMBDaLiCYBhgIpuv1srVaoM1WQiQwA4a9BR2JeKOi68FwCadFgC4R2fq6FUbjZRAdXQTGsYnC2q7x+Ix9doZ0mri0oCwEb8c5AJRTbtiZY9Sp+oFANZotB3dBqfI+I0mTU+vwcxou4ztKxVEb1evVs9nwhHJzwEhMHpSfi9FWDRM3EfZzDqdSixEkoW+WCSVTaJjKyyUUmmgUqymBHSzwwCEFgAnMgCDfeVMQHJZMVuchWc5il3QTgRgKAsSjy2AAMBKW2pkqJQMhQS+PD8ykAxWp6vz4xMpBGAciKS0lADUxaZTcjHJRROWHm9IDMTQWCuZzBTL5eHBRiGVDLrpFgCn69UqUJqM6PA6vBh6kB3zEB4PanO4f+FostQ/sCVscJk1vWTvih6fXd2tNuhwFoTyue2M1SME5EBQDIfSwyI8v06CpTNpdu00wweByOWWLhSEGCOGw0OnVRGAQfELkhSIZxtrTjp3gAkkYKmGYkLUH5KwvyLsx1LPx+MSS2ocfIS2ax15bAVNwzdsmNRYDATFV/GgQWd1i7nNZ4qkl4ttE62wElxSLl1fPvnAoUuP7Nm6fe9Fpx+8XhctzPx2nXOo1l9fe/ihm+kLLh+JhE6qhfdv2tOY2fzjYmJobGb5/DvvW5NYtz9+2VX7x7c8tCu5tLRu9y0/235dc+9Pr1k65ckzi+u3nvXLp6+74uCVhy6669Cltx/+6OVX3zt29K23X3rlb3978cO9kz/5+Z1f3lq67ari9G4A4KXg8vm3bTx7qbrm+Q2j2+qTY7W9Z89Fx6+ppEsP/FLY85fXDt7/7vGD/I1fXVuenNg2Xt+TS0ysO3/Zc8rJ46PRXU8c//LYx+889/5Xxz/7/Os/Xfo/3z3EfvLtF7++6ZG//PXHN91/3x9O8e778S2V0tToZNk1sX3XWm/z5MGJ6qaBQx8cv6rv7VfevuX+89aOH/rH/vPe/fSTbfNXff7ZV29/9ecdtY/uYeojg5ObZiPx5b6RK25ZG5j98v2PPnnp8pMf/fah+17967G/PfJA84zJxvrFcjHZv3aqllue6q/my+N9qZifE5JopoQto7RRbQyIuFkno8cOzxA04WIBgHEbE89hAeCsJgRg0e11Oy0k7XeTFO0TnSaD3WrWOyMBHlUXHuuxuF3jgG9RelnC5ejVg6DqWfHvq3oURg/rdDCEDer099vbFHq1orsXZy5a/oHwE0GBWY06iwFYtoy7PSzAMEVYKTfmAYfDoDcC6DCQ4LXdVofK4mRsNgadnuwtWz+bXq3HPmiz1WiAimVSq3o1FpvDd2K/EkoyB0ITM2Cw6cxuR65JSSEZ1WZY4sRQQGi5J7sdeAYMLDqAHtHBMHbOIB6GouGQn3W6OOw8aekvJxOBsukFaSP7eS6EoYAegBpsmcZwnxgOcPQPDTZGpsZHRmeXwh7Qv5F4COOHQ/F8tTG0Zn657sAUMRTBPE7LowIemcrL8PPCqUQ8ngT9Ua8PjIxPzSwsbdiyfe8ai1Kl1qssnMDTQiQgBKMS+lj7ZfTtFCQ8hedaltW4m+5CdS1i2iE2BnMtp2vG/b14JBTyc0jG3TQJms3DeuxWwqKzmkw2EsiRHjSNVqcHUUi7te0awtzakDbbCa9fZkHc2oGiC5GwiBZjeBAts5TFAqjW1dkOLKtL63AD5mLnM08rftCFPXQ85iYKosMKOI+GozYCCB1OZLSgElvIY4lMPt/SbIAF9f7h0aGh0ZGR0bGheqk4PDY+Ojy2embN/HwNIBf7lVoBQphiQFm0eqNB3YsD4SAdCCdGQXmY1rZHy27RgwrYTJktGrNDp1ICKJAmg1qhttgxr8NkalcYbPC9RiOwP3V3WxfoWPg7aTeoDVqlWmmJR5IxgbFarXSm3odphK0BYHThiIQCQUn0Wmxe0QmUwqToVRlIBs8j8CiGEySOQwD2MVoTSTM4Gc2zXi4QCoh+OSySrT58G9xyDLz2obOj81+HEQJvd3k8VsJu6FSqLVp1Z49BrzGoepTd7WpQwB0AwClYRyCXXd5iVgZGSebyYdHtAACuZVPRWECO4Bgw3MzWV62/Vu4faDQGGoNTTV5m/x8Ajrf2WMr91epAtVatAwZng374BzgHzOFebSqVrTQqoKABgIFTo4j0tY6/ReATcKNJwooOJsC71PpOlc5kZPxMe7cNyrlPMHrcOpbqJlnGZqAiAZs+GJSDQiCu7+jFES+1YmVHu1qjae/SO0VPxAxVotdo8hg7je2rem0K+CT0QioKoM1zbrvBDQDsIKxaOuajrCadXin0+aO5bDiAwX99pXoFmGqp2leopTAn2+VkfEIoXynmkulyrZwvpoN+jw032rwnABi7oBGAvV6JQx82P+dWmRPDQzjrLXDlhdGBhL88XVsYG0twGO2MAKx28CywHEuvLyIwDpulxxcS/ZFoAucjMbms0d8oJOItAPYD/+mHu1mrZkWHhwJqDAxz3GtDY2UXBqeEoplao74xYHCZ4DPuXKn2WHq6DTYr3GOrmXWTrJ3hcA9CFPzZEZ5xOlwOn47xp5aG7QIUbn9++UJBSriC8ejIWRU7hwCMM4n+aLoxu33/kCuQTAA7CPFw87hgPJOOBfHAREzERI4yO30yaTEyCX8IPuF0fXr9pJa0UC6hPiiQOIYk5jadKZBeV+SkgIPGdON4KD9z8sH9hy7be/Ku0w/svvBabSQ//egCPdzfrM9e9MjN3UO37Q/w2xqRAxt3lSY33JlHAN6w76Y7ZqOzF4cuu+biqW0P74yuXVrYefsvNt4+dPZ/XLu855mzSpuWz77vT9dfecmVRw7dffjgkes/eenVt1/927vvv/Ty83974a3l+gt/P3L0ojV3XFWd2Xm4eOpmeen8W9efvVie/PSSta/+9r9v/dmrd10S3/XDYqp+xrwvWl3ccP7PzpPEw8dvnlwY3zrWOC2XAAW87N51xurVyTOP/fO7Z1//8K2jz/7Hsw8/sL1285Mz1KnXXZg2zw3kzrt27dnXLc++/cwfp/JDgzOjnqkduxY8/SfVF/IzzdMf+2Ap/s4Hbx968cL959/53aVnvvf18Z31hz55/HfHP3r/mY8+vC9eGumf2Dwbjm8qjG5f/P2P7//yww/eeWnz7nv/+cD1T77/3pNHlut7x2uLC5Vcpn/T/GBl4+xgLV+Z7EuEA5y/kMrEY2iP5yONpF90ElqDlAQA5mgbRTKs7Be8jN2DDVJQM/UaggIMERgnZSHoEOemaZ/AgHy2WrVWgfc5WDwuhQqCEQqIykQ65ws69Va1QqPpXPHvvaCgbZiZrvm3H/S0r/y3NkVXt1Jn1UK5oz1eBgc5gf6Z9CaDE49JIgEAGaihCM9QvOPhqAwLG8dV0rym20oqzRRDYp4MjvRaLWaL06rT6Awmi8FkNoKONmvUSi1UMQ8O52CdxyYXTB1CFwcEYPhhTCgR9kdkwR8ENYOvD6CFY0huLxRLOQbIHIhgVEAU/iIFAnB9Lp/AMZia7qRJyhUFUHOhtyBAHvo5YW6SBNgZS6ayfeXGQH9zfGpict3SVLVQGwp6gkBG4wF0EA7HcrV6c3ph4yBwD5b34f6kFJD96XJ9YGgiK+NkVCKZzuHA1EdkAAAgAElEQVQhHhTGwZGp+eW167fs2DdnAxAxqM0Ab04MihD9mNwIsA/IeCKoFUo5Ajr8x4uBSJyIzd84A40btw6CcHwPR66CeL7uYYAn2Sna5SQABsxWvdFuU7R1GvQY/K41aAxOp6pTZzWazQYT4XCQfFDEKBySdLg4wHz4nDHzAPf0LRb0SlSABG7vVNuYFgCzkuRVr+whXS5sgIMv2YmBwzaj1QxfVhI7fxknkATOHwUqnskX+0COVdCKY2B0fHhoBH5NTI40Kie2oKcmp2dnKxR9Ioy59RsNT3UK0Kw6lcZqRwdHm8OD42atQ2+AB9x4Z4BWAgDbdDZSq1JrHYwVu6uUFoddr7FZDG0KEwAw2nCaTVpFO+gukPs2BwUAbFD1KkzxcCLKOWFdUtkGAjCSHQBgSQ6Ew7BsgiJJsLLbBq/Uq1AaHa0ppFZEZMum2weE06E322kaO8d4zouNcpLfHxFa0U02M4ZZO3BuC9AUVjNaaAPlxXNui5W2dquUNp26q8tg1BjUnSqo00a9tq2dqqdDkaDk9To9xYyMAdX5LDqw20kA4GQkGfKjaw0eqheKZUBPkIcDg43+wf7m1CCPCtjd2sHx4RY0zrmVgPIM4SlqvVFL+0FveYnWHDDyyFSm3A8vUWPNNgRgCgGYb7VNSCwQLQeqUZ2qu71TqelQ64xmNuRs77TaSCMhOHifmvUorILHZiK4EKeRQhLudRi6uhVtBoNGsaqjTa3R4qyayCYJrb5baTGx1hMA3NOpMhiERByRw+eym7zZCN/qgo5zdmB7hl4u649k0kEAYMC+YrWUR+/lVKE/7cf8VKebkyJ91UohnS719eWrQFCw6x7QTwwF/wXAtA8BWPTCe4oFeK/GFB8eKiVCYZEvL4wNJv351Y11o8Nxzt8KtqLsGornGMpuU7JR0QXCoJuNSji5AE9qApZvAR74AhQKT2sLOpMbqMNXNSc6OLcoSZFYepwjnZSboaBCsv5YDj4PAGC3sUdjVqgMlFapMJjgy2DRuiiryDAsxmGEpWA6h7fZTVEqV6yxMOCAIsXLuaUDoFDd4XhkaG+Z5ET4x5ixJYdT/fM79g8DAMeDXBAKuMzJnB93oDHiVYiGeZayAQuxQ73MRuLxWDwzsGbDlM5ucTjF+oBI00arF7egJQfrSW4LUaTD6fPHErX5nRecf/jIuXv27Nx36kXXaUOZyd+sY0YGm9U1F/7yli55z70ZcmstfMH6naXJjXfm4s3RmY0X/PCu9fH5SxOHr7pwfOsjuxPzi+tOvvW+ubvGzv/FNYt7ntnb3L58wf2PX3PFFVdeffkPL7v0vLs+f+nlYy/97d0PXnzpr0dfPjYye+ql79xzXfX+/fk1uw6Xdm+QFs+/Zf3ZS5Xx7/al9jzwx+uO//jAr/sf/fTqZumh57m1N+/fubzxzBo1dPVAYG5++8jAnr7U6uX9y+6du0Ym+pYWrr12Ib00d/INp07fcMfCwE2vnx68+4XPdj/23dfffX3s42+/vvfez7/+emtutDY36ZvatmPB09hYmavM1A9/8M1JlWNvPLbr6GWXb/39/xy+6PPj3+y59KP3Pvng/dePv/jiF/8lDI4NTG6Zj6a2xCd33PD1H//j/T899t6fr9l+73c3vXr8nTvHJvoHz5sZWJorphuVUzc3B5an+8vZylQhEfVz/nI6FQkJ6LpMWGiJp60aAOAAsCaHiXI4OT8AsMvudjEOTK8xaO2YpuUDgNMYiHAowPpEwWFQaUzWnk4LwzthCYDw8kD9c1KEyaAjfCwTtuns6h61VtHZ3a40A2axgn7Fv69sb//Bqn/vVYPiooxo64gNOfBfwmIGqWJg0cOUDwmiANCBhvU+3p8AlgoLO5LMpFOcTmk0qw2EA6c/cCMagdsA321Qq/ToqGjSag1GgASDg7K3gnO8vpYRAiY7uVsATBKYvseg11fUD09RUJZjqA3cUNXd6AwJrDcSjUf80UgsEgpHQhIvYM6ZDzSvE8OAKKhF7rAbpLsHcAhuoRwN4b5kOJhOJNLooFGv1Jojo+Or127YuDi/ZmIo4vXzQCCCIewli2Ur/c3V85ubFM3guCjLeYPhQAjkRrM5npGj0WgilswWytVKuVjExqy5xamFjVvPnHMYEIBNoG29PNQKIBWobFlsevK1PLUA90T8IPhWwDHLi7jVDIoesQg3GYjvgX6TeB9DudCIDDeF0avSQZrNWjNj61jVa9TrAIG1Bp3ZSXR3GW06i0VnIGm7UwpyINYYNDbG40zBSzvdbrtZq9FbCAugm7Kzrb29AzM7vEAqUHvr23otHldL/UHVptCTGgAY5LTZTGLAB85rslIgAnc5lcP0Y5zn7B8YGhkZag5NjDRHcIxrcmJsFIjM6NTMmqID56vcre/E6CPSqlPp9GgccgKArXY360MLU9T8eCQOWIwISFlsBtKh12h0dlpv0iu7e2H1aNVQyXEKFdmH2WY26pRduPEJWo+iTBrMJ+w2xsOxIKhoh4nM1vKJlgI+4YIViobkgD8kkzYu6HPYLSa1VmcGuSD68QPASWFAVRBthFlvRrnf8jsDfSsHAICjgtmCY9dm/Fk0zYo+N20xGS0U5jczXg9HOy1milAoFRZ4U50mq86o6VR1nQDgNmogHQiFAoKXYvLpgAhksC/jF+ATtQt1UMCpCEBMIpHKgLwtIoWrVxGAG82B5uQAJ8Mn0zpEh7cjRdP5ch0AuDE4UqsUqo1+AGCJ9bgJu4/Fc8t0Nv0vBcyhnbgVty3Y1hkwhj3B7aUJCx6f97R3KFSrejUGmxhxdHSbaY9O5fWwgsbFqo2CB1YdJYVNXlh5sPaNnR29K0wGtbKtfZVap2vvMrklLuPQG7tVVjNn7zK0rVJauzvVJqMcT0ahPrFoRZkJiTSJACzY8b71+kDqZ9KRCGY+9RUrfZl8tZyPF/vToBo5DyhgPpItlgCAi5VSXyUX9rscNNQCnxhAAMYxJMYHDA1ufQuABa/anBgdLsbwNKc0P9ZMBbOrB5ZGh2InANhNkQanwLscpBUBmKFs5m4uJsPaTbVcT9J9xUJ/sxAO+r2MzycCADdaAAwKmPPIshxNZCcFKFhupx1zy6Rorj7c3BIyuk0KpQU4qUmp1wDl1RkNpMlpNXA0A7Se4dLoLeBhHRRrJyzJYn1kyE25PKKc23Ch2xv3haOhoTNLBCv4XCzmuIuh1MDC1nMGmEA8GhQjclgEmeXmgDUGAY1FIRoReaeF8cpuq5WM4zG+h08350ZUViPhEMs1yeU0WD1ybtMZop31pbcG7ATj9QKsD6495fx9hw7v37t35zlnHrrREE5P/OeyZ6w5WJ459Ku7nOr4LWeZl8uBsxdPqa/Zelc+0RyZ2XTmLXcsBmcujFx29f7hDb/eFZ9bu7z71l9M/njyovuvmj/lqT0DGxfPfeAxAOBDlx289qLLL7z785dfee2Fv73zwYsvH33h2N8HFq++9b9+9Zv6YxcX1556sLBn2b943q0bzl6qLX5zy8Rjv3j0vj9dfPzBgaf+tjeXeewp9/Zf3/DQE9e9/SPHdV+dOnzSwobm6gsKmTUbDqx3nXzG9ERu+cZP/vnH3c8d+/izz//+8TeP/OSLfzxJPPvVVxf/+LubT7nott+++rtzznr3zx/OpWcGpvvZ6R27loTBjf3z1YWh67/4evPAMw/96Ka3/7Rx8t1/Xnrk9eMfv//Zpx8fe+O9419++OlHz7jqY83JTbPR5KbS6h13fPPX//ry0T+/9+h5pz/1+V+fPjI1vOHswcF9swNLC7lUMbN7Y39j7USjlK1MZMJB3iOgcYvEc6ASLAZSBADWmvwpP1QO0khRtBAMCD6P0+EgTEaQCUYtSQPauC2gePXWcFhg4IFymVVGsw0UMOfGlCEPimY3xpMDDNrsVqtP2eswarWKVW2Kth90URxNsZ3/tmLlyo4foMOSUaMlyNYshsvDkICkaHmoNQFXE3lBBmzxnMi2Ad15QgHL4XgqmWT12Cdkwp1rs9JI2qxWgoQlbCVtBo3OgvFMKrVRZ9D06uzo7dfqfcaYVg4eOA+D08A0BgmTVocESIcCNyBKgZDoxXqNAOwC8snx2GEsxxLxcCAYDkmsHA74PLzg9cBrQlW3gQqTGQ9euEeKRfyhcDgKWB2Jp+LxVDZXqNZL5ebo8Nia1fOLS8vrN2xIgXSAZx/zGsI4BzwyNrtuyxDO4XqRIPgQgNNAo4fHM/5oOByPJ3FvrVoHATw2OTm1ZmZp05Y906Qet6DNqJk4dAmRMN2Oa+UetV4GhIuEUXEgfbG3G4UYvsUTChhPG9zf+9+MVRrwy0YSVmw/JwmL0ay3UGZMh9PrDGjFYbA6LZ098IEYTToAEcIlB7wujnXYXai4WcELFR8+MjRJBFAD0azqbutoa+/WtwAYgNDDWTq6dfCTfScksKPlgYWbvQiVrTNpbE6X/CH4DJLZbMuXuFQeaDb7G4NDw/0DI1PTk2OjU5MIwJNjE9PTBQco3xZy4xGqE6ibSWc2GTRKvc2BE042uwtTmE40YfnQZRuu2K63MFabzkobEIApvVWvUql0FodOBYKjQ6E3Wx0OTOrSa3GSBi7FRDidZq0J7oPCkIhEgyBjGRMJVTzROgOWJLS3B1LmD8h+zmbjAj4nAJFWB/fPzWIK64kvL+OhcbJOhxDPYOs2QBJaePgDcdGMvidwNxyMC0qql3LYTaTZBE+Yywf3RHZ7SRNFqBQKo663u9NKGU3aTlU3aEytrruN6k+D/g7JUKX7MiEZ7kUu4+c9LgDgWi4dj4UjiVYjIMBvXz6XK1VLxfpAY2BosDnZz8rC/wVg9IIu1crlgUZ/s1ot1hqggEMhCZ9Fr5f3oxFHJl+rlcrlGmcjLCCAgf6wUOdbewA8rHyasJq0eq2io1Oh6lBpDKQ/bOxQmlwBawfJuWW9nTPqWZ/RSFi9YTcthmQgu+a2zu42o0WpaWtfqTYY2jpNbsGXdehNCMAC1dkC4K5OrckUjifCIUHiGMLgTkoi8EUdnZBodCzv9aZSiVQqmsj3IQCX+zJwncVksZEMyyIAsNPtC2HIdDJVbDZK5UwozOP+OQYZB6LJQtZOA7TQ8InIXLAFwB6lOTk2UooHghJfnBttpoOF6f7FsZEEL0tiC4CNTp53U4Sll41JIFJNPWxEksOxdOtup/PFUv9gPhT0g2hw8Yl0phWPWAEA9rrhSYT1PcVizaAoNuDnhGi2VG9s8qsJTVeXUW8yGHuUWoPaYjQZnHbKpGOsTs7rc7iTPC/kJY/NyZG0u5RKl8fcGodHEjObD7ldSQ4YzeDpRRuQ79YYEscHQQFvOavhDkEpkrG3VOYkdBqJJeOgIfh4IiA6rVC4BSCGYew1lSPVoYVJAyhghs0VJTels7mFzIbTeNLrSW8JUiRQfX8w0ZjbdcHplxy68Kx9uy8+58it5mh68ncL1MhAPTd18a/ubtqZbT/KTfcBAO+ujm35UT45NLJm4xm33rUQWLs/fuCKg9M7frNNWju7fOrN94/fO33wwWvW7nlmT2lu8fQH/3DdkcsOXrj/uv1X3HLTJ6+98drRo2+/9yLA8LF3h5ePfXPnzdck77+0suHMiwpnrA+tO+e2DXvX1ra/d/XOZ3/66jfPvf3kJZl7vjg/Jz/5W8/Sg9f87qfb/nCT5cg3l4wsL26bmD+3mJ3ZeGCZ2bZ9eiw195d//PPOQ+/85s33nzr2yWcHbn/+n3fZ733p01NO+uyFO995+slnjl162+vHv96YHBlYmHZNbd+5yFYXBudSo4OXvv3tkG/+in1j1z52/Y1ff3Pw7KP/8/67D3/y5bdff/XN5/954QP72NrE8NSGNdHEYnHk0L1fPf3AR3958PgThzb+/rNzIgOnnDU7sHpoz3R9aTmVygycvnFkYP1so5yvTQKzCvCBcgoIPkCmxwVKUuCdVo0pkELDJ1TAFB+UvYzTDoim1+oxh8XcyuYFfWu2kOEQSzgDQY42mQ0GvSvGW2mv6A9HgxgLD/rQ5iBdSUmrVkJhtJjV7SvaOr7fTtJandPZs3LFirZVP1BolYqOdr2VpNERHf09HHa0wjIY0S3GHxJlgcWJervDDgoxHAxJILsCkXgMFLDWqNeYQcl6CY3ZYj6R8W6yEBhOarIazQaFxqzTqhQaq81CedwnAFgQOYZGnwO309naiwUAxnQEORT2o1IMSq0QHcpGufHwEJui4iFgrmGMWAj74eJCAho3YQoqvIADXiUgwKML7DKeTYaxazkRkoKgkiKpbLavUq/WmqNjkzPzi8vrZlbPb8x5BQEwOhSKRIKhVF9xeHxhcWM/hQF+eG7L+4OBcCpfBABOoxFHLJ5Ei4Fqf/9Ac2xicvUawN/Np0xZNRq1TmnhQM3zwaAIOhRKvsijDbSPw+4rXhLRjA/byFqdQOhPiVnvDFpvIuZ9L9yaZ0YIw0xG0ope0Q4SQxhMFk1Hp1qt1uh1SqVab2Ns3Uqc+TCajEar3SVJLrcoUCQjYAOOD+0rAbQwRai7p6dH2atSdHa0tXWq7R5Q9D6v4AtQUEd9TnQZEUAB0y0PLJPRYALAt7sozPX1el1o5dUyXerDQLlypTFQL5X6R0aHms2BRmMIJPDYyNjU6tXj06v7SDz/dTpbub+0C2iQXqWzGpQKvZ3C3nbCzridKH9xIutfp/40obe4rDaNiQbg1ToYMw4C6/Vmh0FlMNt6lDqzlaKAiVhA9uMoq1VvgmVu1QMEW9SGBFA0J+l0GslqKdsCYLTA8mN+RDgYlkSvleAk9Buz6ZQaM+7rCi2bSkwjpOD92Um7Rm80k6DWHYSdbXlB+wMJCdAM8Be9SHycnSRNVooUGJIkbfCzXF6/l3MYKUKvUBr0iu5Ou8ts1nereuCzUepVbVQjFYxAgeVc3nIuCGBAZDIBzknbCa6aTcVDwWg6m0pi0FGhry+Pfc59lUb/wPDg0ES/T0YPd+S1rTjCTL5YqVSHGrVGpV6uNxrVTCQW9DIO4FDAFmOJTCZfxygHBGB46uHWo90LyHhZFHkGzautZtBtvZ2dCjVGMVDBoKZDa3LH6FUG0Rk0ETxp8PIGPWGgpSDJxmQuELeu7GnvNtiVuo62FWqjqa3d6OQ8aYfO1AkALNIdegBgW2en3mgCIQ+8mPc4rAZv2i/D/TG400EXCbSm15dJx+OxSCKf/xcA5wu1aqZUi4dxaIgBzh5oudkAJtcr9XzI7yEpD7YC8v8CYKg7IChYP48tGUHepTAmxkbKQJAlrjALAByqrGksjo2lcO6bRwDWO3BKkbSq+WTA6ySsCl9QREurSDKTSmYK5crAQA5qCeN00Ww8lSpXK5VKOSs53IwgCLF0fooxoUOO2xMM8wDAhXpze0RL6FQd2m6oV50rezVqh8WopWmHyUAZHayNsdMBgmGHQw6t3Wvz+tK+QGHU0WVhBF9y8yUuOgHKl63tLmLmMsP6BfhfgWRj9qR9/d4I1BkckotAdfLKGBQTYFmPL5oICA6C8fgl0m5O+HAqK1iY2DBrthvMhCsBUE9qSLec3XiGYOe8uW0xF+FyegPh7MCanefsPXLk4FlnnnLw3MtvM0czU4/PMVMTo+U1h39x43i6V7r0otFs+PzlU/LlDbdnEgjA+35494y8vD918Mr9I5t/sye5YXZx57X3Df94zeFHbthw1tGzSvMbd//6z9ddcuSKSy65++C1D1323htvvX70hbffe/nY0Wdfe3d07rO7//L6TfM370uuP/eS0pkL4bX7bl0+fa468O21jXte/+rWJ/5xbJ/74W9vH+Sff53e+uyfHntw87M/0V1x/KrhxeXNg7PnlQCAL1x2nnT6bCOz8Sf//Mfw5U+//OYzx9585U8Df33rm4fplz74n5/f/d0Xx19//dhr391743fffLq92GyuHvPM7D5tPVuZK62prh28/MMva41rHn/5+NMPv/Hk618f3vPpV/88/s9/vPjkHRtHJ7xzT6xJDa6enNk4k0itqw5edu8Xnzz60dHnv/z7j/YGw7l1ZzQHRha3rj5tpr5hYyyWXNy7PFZenMZ2/dlSJhsW/IVIwB8WObfHQ5pJHD5SG/3JiJ/1UVAP7FyAp23AyQi71YRjkgqDFXgS76QwbygSCjMYzUCZjFarSg8PtS8YlfC0EQAYx0s9gtnL9KhwOAgKnLFrxYqVCr2q0yCVRWXHD77f/X2lVmslrbSzlSQg4ePspCm7BVQxA8RM4KWwzKIlFzblM55QyI9nnXIwEs7wOq3FoNE7adJFGS1Q3rD3mWgZcmBWNzJyrc0ACKyD/8fNs62eJNbDA2q07DMdFI4+AWY7/VHAOShZoVgsHIaH0OlmSKPDi7ZFfCASCAfESCwQQNEaCqLzkZv2iB40dLRjfoQrHk0nJRDQGECTSGDUC/p1hWO5Ql+xVqmDrhhfPT0/h5vQi+tzoI7Qmkb0+wUpns1Wh2bn1pZJjxf0NucDGIV3kSvWhodGUzIAMBANbAuu9BeLoIon59evXV6/tHPKptGqtUoLpiWLQRGIitfNwwt6cOhI8FL2Vh5tQGI5TGUDHc/YWODtDGb0tpwZafp7INw8rRA8+FzNVoK0kBSBh09Gg4XQtXUC29KrVfCHzkLrV6kI3M0HWmPHXjjKLaJ3By9wLEbI0wxl0ak1uhMQ3KtWd4K46e7Qu90u1oO9vR51uxZEEypmjg+4rag1TRaT2UY6KKbVEuZrhfTJIVAzJ468K7Xa0NDAYHNorDk8Nj7UqA8Oj0xMr1k9OTE4Op2jKKfdTrdcrQkniFsoh3qLTqc2AKOyOx0EfLRezGnA1wWsAEoClEpnc9pNahMF16W149i4Qa0ykLROazWZupSwSCgHbkGbDarurl6dGUib02HTwR0x9dpCoWTMS+NpR65WiEeifl7msS8vGAoFgrIke6wml+xx0DYT4LfZ6eEk0c9xyItYBsMirLyzW2shaDzLIXFQQBT9IX+Ys5IOCzZH4wGJDVawDZ4c+Aao66TT4aa9vMXkpG2dvT06Q0+nmbE51Z3dyhUK+MC6OplqLh4DLcM5XOVcTOQpKh33cy7CYeVr2QzgSSyRiKdy2Wy+kEdhWK/g1kKtOTQwWYN35vIyOIYEHNMfR8eYeq1/eAhAqlSv1eqlVMzvZQi7z8cH4tEo5jRUCn2lkgfPeQjMe2SBrkoB0FvwKLkph02jM+p6unpVPT0Ko8mb4no7FRZfyKvWSJ6Qwci5NHbBrdWYbHQwAPJbFmPEim6Qvg5td+eqNqUB0MdMi568yWxUdJuNIarDoFhlJLo7dQZDLhtNhIKc12nXi3GJoy2k2p2QGcaqs6h9hWQijiwVHrZSpVgqZuHNF2q1TEQUORdwPjYSDCSyiUS5Whps9KVkDpNZOOwtS6YLaTs2kNAUDYo4JkZSftbeo0w0hyvRYIgTqzPNkWwgvdC/OD6WkTh0XIeSqKVAJsBK6uYifi8sGSUb9YshzNFMp+Jp4Dr1Rj4alAUgKQDy6XwdFXBGpDwUy7nkvvwUZwNu5XKKMkiJcKZQ6d8VUOv1Gq2CWKGlVq7QkDbsdrTTRq2dtpIexuzFlHNvv8ukZi32oJcU2XLOTtpAQ0dmz+V9ISDZ4fopabM74APVDRfIc9GBqS17+rE7W0ZVAc+dn0qnQL0IshwRpRIn2ylGDlitBpPf6fYIbDw/vHZCZdBSXGj1KGMwahxuIbvlDM4u+VNbQx6HXfCFIuHs+L6tG2+88LIrd+w8cPqt15vlyvyjaxl4Sovzhx+8OHKJTTN1/YGs/+wdu1Mjy3dmU0PNuU1n33znbGTmguBZl5wzv+03pyYWZpd33nxf7afzF//6hi3nPbtnbHHz3l/99tprr7z00kN3XXzVr2/76JVjR18/+ubLL7/90nPv/72++tFb7vvo9pk3DkRnLri8vHshtrjv7s2nr6vMfH133433/Oys19785abB331wpJz8/TPe8fde+s1PHnzpFubyL340trR268T0OcXMwob9G+jtW6dG4xue//qb5qUfvvXu0Y+efvnzM194/+snPO9+9Omxo5++/drr73z+0j+ePPzB1x/PpyYHJ4Y8c1tOnfOUFwozfdNjh46999tfPP7B+29++Ic//uXzL27Y+9U3LwzNN5emdj70yseRmz8/1Ts2OTG1ZXU8vlybuPEXX765/6XPP/r87sH+WG52qDa5fseu9cOnLFS2LBa4xpaTl8bqy9P99dzIZD4RivH+QgwovcfndrocVpvEO0mNXs5JgsA6KbvJAWKP5mTM3XbYLQYLiE4HmjMTeoA8FwA3cmGnTq026wydbh/N40LFLBhZxPYcn9FiUvQazYyJNNKMqrutq23lin9TyFEx5Oz4/ooVP9ARVsrrwfNJqNSyyLpBNVNWM2HSQfXm0GQRUJ1ohehBCY8DGKIFXiAkxTiTzqg32UDBsk6QU3bSZLGBnHBYSTMFjFxHOLQ6m06j6AGEp1wsZs7iLBHbyiLxudytrFjQX4RZjiQS6EMJENtKM/D5aAuFc6agSflYKJ/iIqGov/VAu0Cr0bSTIkHKME7GBUJMSEp+0K3RSCIjUGIsjL444QSIuUy+VCpUy9WB4bHphcWJmU3rF9YtFby8gLYVwCPkSKpQrQ30D471O/4Vh9RyRI5mi5X++mQCT5NjkXQ+my3VqoVMutA/NrNucnrT5t39NhNu+dkwJ1WSOTnMizhA5QPlxYli61ALO4CAbQT9ABN+dAvF2cPWGTtaWAMAy7LgdjhA89owkQL7kWkAYLNZozZa1avatFq9DlS2Tqu3O3XtGqvOiABssVNOjgUOgZaygGsYKQXfDPirVvYqerq7u3vUOI+yqq2jx+R1M17GDQXAq21X29GXF01CeKe1tVVhNBitreTAE57NtJMLxQF/U9g0VCgUS2VQa0PNgaHJsbHJ1ZMjGMyweuwlkB4AACAASURBVGZqdGhicnUaMb+VxcA4KZfLQ5FWrZk06FUG4BMOWLVwgV78bCjahU3g2IBGOw0EcEatzQ7XhZPhVuwVMBIOndZmMXer9GZM74D6DwDcA4wRWKGTcYIkMBnNAMDBRAzj+QiqrwXAAaA90olTYJDAAb+XsHgDAMAgq9Vqi5PxCpKf5/AAGNshgKyKLrURLtZD2yiANT+eEMtigAMsI2Fx+jjWazfoTFba67FaCLePcTgIi93mYk0aJ0P2KHugPgMAE259t0IFeKW3dLcxNQDguF/02T3VXETgaTqTCMBTStuERjbtxwa+RCLTl8n2FQtoLgbAVAYROzjYmKwJktDyJ6VpWOxyPIk59mVs06r2F2u1WqOUBK3kImlYTnI8FssXcqVKuVKveUmr1Wqzt7agOa4FwMCx8EhUo9XpersVvb29KsDbON3ZrSc9ftaokT0hq5H36e2i16Axmm2+kN/PSmKEXNnT0a61qzW9nR0qo07RY0IAtpgtSoXFEmU6Dd0r9bgFrTPkUuFYwM95aVInJWQfbXOo3XHJxdiMhI4rJDBKJZbMFNHApVotlOEimgPZkCThsZAPhGa8UMkk+irpIvAUgafQKF2UgpFUtpihmNbhF9Ma+4rGJJ7pMfWNDJYSeOhcnxkeS4Xrc0PzwxNRES1ucGJPy0gccDyTgo8A5XJYlN6wLEXiiSQs3nimWCi0ABh703yAy9liFW5cKS04fJSPd4mZ3ITP4gB1bAfMZ/lIpq88uFXu1Cs6ezU2FWVt79QQZpVGpzM7bFZ8d9j74vEQejZi0BrcBmtQJ7udfULCrSLliFDfDfKb9fsjA3tTVhfvdDI8z7g4KVoZWbu9AgswhE5JaPIa8sdEOeaXY8G4LGe8PGUgQzmW1hl4N8dL3mh1bGlaZ9bTYmx61GsjDbQgJTbuFWxuOrwlwtJ2r0eO5mpTZ26buvrSKw6vP+Wis6+90SRWxn87zwwODBTmLn7wdvrkdV3uk+8Ihc84aVdlaOPdhfzY8NzGc269e21ibn/ovMN7xxYf2J1cmNuw+7b76z9de/ED120859nThxY2nXH/YzfedN3hiy75yeVHfnzv568fO/rqC++89eJrLzz31muNmVO3bjh02uKDuwMTBw7XL15KL+y+fcf5G0ujH98tXnzno2f95ot77qg98cnhkfwzTzsG3v3zb55678jl7hs/unpow/yGwbHzcum1G/dvcJ+6a/XI/8/Ue4C3cV5Zw3n+/TaWKYkE0csA0zCDGcwAMwAGvXcQhQB7ESkWsYikqGYVd8u2LFu2496743QnceLEcXq8aful7Gad4qxr3Htcsnbikv2f/14o+30/7cR8LBoEZua955z3vfec9so3X/vlL0788ke/f+y3j/7+D1966n+/f3vk+b//9We//dtvnv7508++/JcvXvvkf7+/Kz82vLQkzK6fMSvUlxpzlZn2za/85bkdX//gw3fe++ilH/3s+UsP7/18q/znNz5+5vW3n320fsc7q9HR+R3TmzsymbVK/cZPv/fqw+//+YG9xcZMuDi6dPDQGUePrA8f3tXcv1ZT5paPrI2Orc90WsWxHZVMLK6Ea5lMQvMpADi03QEMkzZZtTIsLZ8b9whxqFWD+o17rpQDZxEFvySJJJRmpycU8YMSCvrQvxnUgxISQ1jwNS2aTkYCMo8eA6TehP51TsBBa3/vaT3bej5pxhA3+vRPbt/2SQcP4IjJ7WjTHFAlCiAUM3qdNhke0EAAVqtfokEUc27JF0hHZOBrUTz6ivmdZpBrToZlPLhDjm7QWNrhWzvtImmCZS0Wh8lh1BkJFk0zBJzHkbElCcOMAO9ENL7k4JclgLwm8sW0pmpRPDlFkMXEF0GWJTWbKibkbDWKR0BKUEXPZQxr8GL1xxNVj5LtOknjoW9IjmUS6M6A3lQ5YOUD9VpzZGp6cnrn6szC+uryxr4CfCyQP4FoJBJLl5pD7enF1fVpEK7wnjCSABRtslBtjbRnMrEYbhrlCqBh0FihUB+e2rkwv7S5eVYHUMJoNdOAAbI/AGw+APUBO5q9gDf46UDk+5BreP3eQDgYAO6APeASfmhEelEUP6GFfB70HSNoAWHU3Z3ltAH3NRO0+fQeKKhmE4KwXeBNOpvL8T8AjA4XAcAUjNzFnWCWcjoAdSwGXZ9e39er0xvNpt7Te3S9NkEU/BhaF/DZt+spYC9qNz7WQ8GLwf3B/2PcHrfH4wZkI2xCFH03s4AVGMUwONjpjE6MDE+ODI1Mzc5O4z+nd85Ojs1MT+c43sOKaJvGix7O43VThJlkHVa91c17OYFDa6mu1yiLQX9eGSe/eY+D5kiH3c3b7QDAHLxtq9FEMPCQ0KQTEBebsAiCJBwWfV/fKQD2iqwDnmvSQEXhvSkyS5NsrVnGeJlQDM93EYAjQKciMk36I16WZ3ErgOR5UQ3BZQ8F4cMHAAQ8lCJYSdxq52ma5lVcIYBe8SC8O2xO8EluEq60i/Z4aEB/0gMXy+1yOTnJafDIHovZYDbr+5xeVib7DYYeI6h2/RbvYCmdTIRDEu0bLMcRgEvZiCpxPBUaKuU1jAyDh6aKYZYDtVpjaLBaBTBoD3VaMy1AIARgkRfgYddSXQBuNE8BMJqQ1bKpEChgHvhSEF6lXAFO2GgPtxGAnSQCMDywga4RBzZsMzSUA6vdYujX464JEUw4t/Y6WCEY4uyaEGWtvgAebpFmB0EwsVRECgZj7Om67b1W2mjR9/T02y26Xrsn5C1TBAKwIyludfWeZnP29lns5EAW7RRVmaMBgEM+keHMUvefpNsRKIP0TCexeQ9DPFrtOuj92lAnH8YTGGzUC8Wy9VY+WahjPFlCURgfTvbE4ulStVkGiAOWJgFHw66siF8RdExtuDlQLqTC6sjMyFQ62QYUmZiNaVgYgHAyFjESAAB2GgKJkJcFAJYiQS2ZTmfS2UyqUKvUAIDT0aAkSb4g5jx2XchyAbfklgI+JVOe8VO8gDFUwM2CqVKlPbU/ttXZp+u1kKToMOgMhHV7n8FsA5hGfsmJuJJpq+w2WF1uF63qIyIT4od4ozuS9FfOLMY1XyqZGjuZo70yxXkB1mU1kR2Y2HWgpYbRLRQqXhAYXyQRjOZikYQSU4MaTdttVLiouK20AmQ97o+1R1fnbE4LH4zPTIV9koMMhLKbxwIuj5rbG5YlXggE4+WhnRcda914y63Xb5x9xYlr77Iqtc6/zHqGW4O1XVd8657t1ZPlbaWrrmkePvPC2uT6F4r5sZH5jYs/ff9KZuHSyCXXnTM499Dh5OLCxlmffXjwgbWrv3v7nkseOza4a98F3/rJzdfffdO11z9w87X3fveD559/4uknXn/zP5984j9feLqztu9z96+eseehq0fnrzxRvn4hu3r+fQcuXGvMfPDoxd/7wdeuPvLQ8eXmb569s5577XFP/mu/feGnf33vJuaeD2+e3rew1hk7kc0u77lsQz521uJUff32b16x+oV/+8k7rz35x7/9y+xLT/39QfXFV9/99jef/tJDP3rw6Uff/fIXXnr9jbn6WHtmUprfPDTv7ewZG67t79zx7rvvXPDw8w+f2x4MWvfuy8x84a0bzv7lM//68p/e/eGdla9+sJienJ+e2jObTS3XR6649/0//+ddsxPzB/c1AosXHtw4cGT/4uTUmTur67ub8Z2TZ24MTe+d7zRzw9PldCQiawMIwFD6RYE0m4N+jjRatHJEVX2Mk4b7H0vHYZV5eBqD/gi7mYI16xehljmcnqCm8MD2FYZxExTNiJq/648TDMOS0XBgnaVdhMFMEfZt/TTvMuus/7xt6z//P/0RWFHs1i1bT/+khWU4D8bR4/6w6hOhKNMgqVxOuz+EijUSAQXM8BztBgYZTIZBnwZjiXg0GlUZk91ptVKiwAm8g2YAe0mHiwbm6KAwcpZh0YrDZTMaHfAsw4JAKSRjGxAwWVHsIjADVZdhM4VcGneEJNHjhoqJE7MyADBUJ78/US4UgqSsJmPxBJDpZCB46ujUy7I8wrrIyykNlTO8RiYSSsXCoXAM3aqhKOCZUHNofHJ8fMfixPjO5eVdq7vjgir5QQMnkolkpjw4MrZjYfOsNbUbkIAaHTOS8pXBsdGdmWgcqX0mV66UsqlMqTmCU7DL63s2zmraLDqDzURChUeH5UgUQ4+wPnjRBUvFJBiAumBA4nk/RgxriuiTpe7ALXaCIyB9AgQC8COWprHBnAXdRBJWM8AuqCva0gMK2GIyWRGAJXe/Ac/U/wHAwF0kv8QhsqKzmMigdbfFbDX195uM27f1G/QGY//Wbf3bTLwHO3llJaCQvTonpiN0WYbkcVNObFJ3UZjDBzDscjEM6RBCkXAklcvky5Vy146yWm/WGhMTUzOzE0Pt4anxMTwCnh0fny4KQLnc3aBfwF9OgOfS6KJtZp2J4bwA6W74E1DAIu5wAMAL3u5Ztx0Dou0cb7OabJybJgmANSfLmS0U6ewFxKU5FseQrMa+7b14JEzAY8XanE4XbaQT8UwCRCpDMhWQUaiAw9jiDPo3FopGI5pAunxhgeFZwmxBAPYCAJ9qQw8Gkbs6Zd7iZD0YRu3m5SBOEEegGGqe7hQ04K9db7ZRgG52na53e7/F5VFkjHP2kAaPIhFmk9mi1xES63P3m/q3YIiTYYvcKaQS8YjmJX2dMixgQSgjAPMcGRwqF2PwiGG6cqlUGajXa7XaULMyMNRuDg23W7ODIGwlGQgkx8Gv19K5cgNgd3hspN1sdgG4mk4FJIF2oycXQEupVBwAgTzcEoHaIgDjJpISCmvBUwBMU6TNbHHYjTq92WS107Godet2q0sIaAoTEsKCQQy5rHKQMVkJAtA5Dk9rnOvRbddZKbOhd8uWfpulb7tN0MQy7SD69ZQ97dtKbz/N4cSUKvcgAEwsgpP3di0TVL2026oWtJDkpt2OYDGby2VS6Xy5kEO7kMFqoZjJNZpZDdezFzhgMJqpDGQBgJOZYiGteAnJLyrxVCpTqQ9WeYEBEuJXoaJp4VhI9rL9Qq5YrBYzEb883KyOxZOl9vDy9HQq7Mdq5AMFLIYDOAcMAKxBEXDqQQFryUwmC9cpkS3lq63BcjoegsogB6KpQhV9UKr5oNtLe4DBp2o7/LSIw/cSNnwg3Rxa85+m67HZ9LAcXKD5jbotp8OCs3lkFv2DgkFfICCwtMPmsBMg1mledLlCLYISQZyMXVxLhkEjZKauzLE+yeXxacGQEsqVBgHmRrR0QMOyFYJnVPOkC/lcPKLyfl9E40gbwWkJD233qCIvZYKRxuDSnMNlcauxHZMAwDaXFCrtP9/n8qmVQwrhJDA3xZ8aWN/MXH3T9XceOnzpiWvvtCrlsR+Ou4cazfrKp37waZoZPukwzXz94N6NY8323i8V0kOdufWL7/3ScmrnJZHLbr9kfO1HZ2cW59eO3vuN+v3rAMCbx/9wrDaPCviOW++8845bP3PVp+5+5IPnnnvm6Sdee/3xp595/MVnhg7uv/31B06s7/vUrpHjlxZvXEmtX3Lf/nNWB8deeff+/3jwo3f++sC3nvnc+/9x7WDlh/8+NbP+i5tq773Q5O79+I65PTv2jE9elkkvbVy6Lh+7ZnShdeiXbz99wyO/e+Kt9576t/ffv/onv//g+77fPf/Op29577UnX3/t2fff/8VTH/zltdnGcHthVt515OxlafyM9nJnV/vWd3+1kowMCWvXPrxSf+up6B1/fWXjql8/+fo7L/zlDw/n739nV7AzOzm1byEf31mf/tS9r99V3rF+9mRzpZ04cOjg4b0TufLiznNmq7vXWpmRmXP2DI3tme/U053JUlILy6FaOpOMQC2XvaTZElIAgK3hSgxqJUtQOIAd1VT0PnY5SJfD5bLwilfxc929KFELhzHK1YumFw5rn0PE/Qwgn9F0LBxAhcQ7MO7IZbH026Maa+p16HtPO63HGU9rUb+td8tpW+ygbb24nYnCzY/1yd3NUSBsviBW7DAAMFQ2kGhuQJZEOKXBcwuaIx6Leq02l9VBil6W49EIhAKEN9M4D0wxHMbt2OwklFyr2cFyjA9dLtSuO5GC+NsF4K72ot2ZLMh17A8K+jwgWxQcGmaguIsBTQN1CSRD5CMh7HaNReBVgIzwXSdszoOF3ZsMRoFg5vKYE5sEphxJpFKJdCKF4cXl1tDY+NjE7FJ9eH59fXlxLuoN+dRwKg7gmkAjurGJqdWje3DnALeK4olCvlgs1ABrl7KRGAJwKlOuFfOlga4R1sLC0sba2tGq2WCwEkYCqjSweS0axeqA1lcgWDBSGL5VcQLXLwoRn4zBNhqi5T8sL7qCEABYRCMpBreQ8Yt0Eg67DU1AHS7jlh6cAkYnSrNNonsNhIP6HwCGiyerortr7QmswQN0CZMmjfq+fpO+Z5veYdJjW932XqPbw2OujxpQOWOfXcQTWT+2hSlwm2knEDgKrf2tGJLlFgQBfbTjmUI8WwbOU2l02vVSUvHHsfNqanRodHZqasfMzOzc8Oh0SeBF8VSGPTArPA8mLfBgmvvh7mMbPcu7OQRg9OoQOe5UsxZto1nCbqNpk8loFwQ37bIYLATjNplpl2O7weYiWdpuBy5h6N3aZ7Q6XQ4OJLSNIACA2UwqF8WuYJop1SsZTG7HEVgtHI3FsBc4CAAsh0VWYAmT3eLiBKiZiE6wboJhvEik4sWMPgE7smUgRCENyIYWD/ECzqeLPE3YnJSbMhv7eywmY7/O6GDRsJtxk9sZVXIaTSZLf5/dx/pEnbX/NL3Fyff3KJ1MElYBALA8WEpGVcFbyUVVWeBdwaFSKYXGEjgH3LWCrlXQjmJgeHiwM9QZnG2BeAXcBADm0YMsk680W602AHCn1RxottqD5RQoYJHhVX8glE6niqVSA3NFGgJF0iTJAm9A55SuBaksgRalSLvRDADcpwPW5uATQWPvdpNdgiskqGJY1rs1ziyGBJPBRtgFJa6FA2lPr65HZwF+rOvZaiQsvdusYkSosADARsaeD/Uy20/Ds3m7jetE4xgc5eXcjnAmGBRdlDVUDmsiS9F2rYSp1sl0vpQDAAYhX8wXAIBbuTCGg8ESlrR4tlovZkvNYrVcKgbcDskv+DE6oTzQAgXM4AmwCqQSiCoQVpeZU/3RfET2EO56OFBUAqFKabYzkA+LSiiEk01WIah4BbdLH0iGgZI5+n3pKPyOQi6TSQN5TlZag5U0yFJ0+4gmc6XyQB0AOOT2MCIQsvjAmOgC/uLFShkIZ0qVkbEzNH2/PRntIRgHyfT39m3fssVAMjbR56AkTk5IUlDWYgRPO6ykiD0TjN2aDDM0AHxu7coS4Gs2np+5LMf5ZVJUwhrUg3x5dOPgBROhPAJwKqEFw9GwM5gAyS4wFMuHgiLrtEmJuMdto/0eVkgFIgP1xXkXbeWUzOy4wrltbgDgAxf4SL+nfmHMYbHDiorEK53de9Tj11/+6XM3Tpy49S5HuLr0g1F2qN6or1757YfK/Y7L5ozBc29bP+fc/M4DX62AAp5bO3Hf/cup2Util9x+yeTeH5+VXl5cO3zX16pfWL38W7duXPibs8fWDh57+Gd33HrZlVdcfMmhI5f9+K9/evqZp5587ZWnX3zqsZdemFo+ctstX3/gmkOH55Pn3VC+fCWzcfHdh4/tbsy//dHSF9/987PPvffiF+/578dva1Tv/uiPH916+yuvPff2T+JfeOe6ydXJjYmpy3PpXeuXrovnnL2w1Lzwa//+l4cefeanv/3Ti0+98rvdD372+S/7Xv7LR4//7uM/v//WW2+++OcfPPPmh88vdEaGV+aExbPPXRFGD46sVXdPV89Psicfe/W6l95746qFJ74x+Lf/ev/Eja+++adH3nn5vl8MPfD2WmBi5/SO/YuF5Hx95vwVpXzWgbn6+PlnFnJnHF0dz+dK+cGJs+Y7mxu12I5D56yNtXdPAQC3J0qpcEQOVZM4LhaQZYm2OgBtKJMtUokDVvHo7aigFaPi9boR0pwUZRH83pCfdTMMzUhaNCJjj4/VQoJ86PP4fViVopgNEg+jSQfP05G8Rlspk0H0guggXL3/yxFKpkJKOOBxGbf1ODmK9UponIt5dRjyR2MvKOGwyQEQT6CnMcqGZ0GpgnJMRuIBn6J1e1/ifofNZaOdboFhOBr0AiNQhn6nCwDFSTGgsQirBf5yOMwmguWxPRh+hdxFqq5bhRfTV9E+y53JxMNqNJOK4mxJONQ1q6RwwzCogbrHuUFFCSmY9BXGkVsJo4TdJG5eYVCxnAbppiXy+SS+qVgUhWtMg5JdKeeL9drg6CSOsQ7Pru7dv2f3SkaJBLRoHJu24sl8daA1sXN1c0ENxPEEOpXJlnLlemNkdnZ1TzEWxU1EgOlivtxqj4yPjU/P75rfvbJ+OGcyGG0Ovd3ndcOSC4Zx0C+ATc+BiKaia6YkgoxHMPb55UBM5cS42rWIxpkchE0eANgvYBc3zk/TDMhYksATUJvVYrIRxtN70THZgoGEDi+5zUD8XwUMiKHCAvbgFrTXw2EXG+Oy9INw69X1bQMpadT16/t7t2/VMx5BEpAOqJK114ptvV3ir2K/ncxh8hCiG84ksTzUv0A4giGtOQCD+sDgyNjEWLsSD6ea9ebw+Fh7cGpianYOt6JHJrIMOnVLeCgiipIb9LvL5ERjQivDeoBR4MGq5OlCG/xWDyI13GcrBSoCdKjZbHSIgpulEDMoxmyhXfZtehtJAQA74KEBBawz20ABe7weBGAnaeTy2WxE4Gm426VWLZ/NxQKnToDhC54YUGM07Y9InOh2WuyAjqIfABitOLBTS5Y8HloVbQTOz+LsdLDr4qiFg3FN8IJKc3eH5+BKWvt6+3X9RniDer0RfhjuENNDBfyM2Wq26vpsitsv99oNp+tNlHd7TxCUYTIGso2WmoC3Co8AHABYpUKdQiEVjSWz+Vwu3w0jrFVLlWq51hnCsKChmWYwrGEshwi0BwA4WwDZVm8O4sxqu95qDbYKiX9sQQPMZtLJYqWMCN2pC3CzAYDRvBEnrTC9xN9trafsJruTMBtMFqOB9MckXZ/ORijhUAzAJqIamJBs50KKw2CxEpQb4EBN8339Pf0mgrDot20zEeat26xyQqhydnufkbIVIr10z2lO+1YAYO+YBqsKJCXvdmhZLSgSLnOorAV4hP3o/zRhwVqrlIq1gXw6ly20Wpmgpkg4YC6H4jmQutl8u9FpVCtBmvX7vSpaN4P4zNMYhsH7um3ywI5kN9QMF+GLy5TL4C7xhIcgyaCcD4dyMUWLaX54D1YQsl640f1QjGQ349D5s3EgjsVCLodmHIlqu1NNY2+66AvGkhlsf6tXCyG3wMvBgC9SGeIBgPHgwRdUQ8lCqd3Z6zPo2Ua7p89hNsDl0/XrtuopnvRKFgfvlBOUGJLSJToq0zZB5AKBgs1I+KyMXZQjjcNX5+OxSDZS2HkcFLBMif4QNuZny5N7Dx/fESiAGNAi0e7Itt8nQdnmvX4eqhnPOi2+eJh3W5xeHKT0xRqNxTknZXH7kzNTmuA200Ett/eiACn4KocD6D3Ky9FIaWj9qHL4lpOfPr5x+SW33knEqhvfG3MPNxu1pcu/8v2sgW5dHe9t3XbNVWdmZpbuy+UnxxfWLrn3i0uJHcfjx2+9YHjjh4fSa8sbR+56oPqF3ScBgC/49ZmDC/su/t4jV5+84IKjBw5trO1/+C9/evLpJ55+/ZXnX33iNy++vHP5zM984xeXtQ6etz923i2l83clNy+948DRXfVdb3/vjNue/dPrH7zz55/87L9/+9lm/ccvH/vqvufffue/nrnukQ9euHpsfW59ePzSXGZp/cRuz5nn7ZoZnTvzkXeu+cwr33nwC//xq3//1eJ/vf76d+Ivvvv2o488+/x/vvbqu++9/19PfvjBz+dHRoeXpzwL55yzJowfrK+3pzsXvLM68qt337r/0Zceu+rIOw/tfv+DD0/c9/Bjbz3z5l+ufqhy0yvz3rmlubkD8/nsWmVtM1nYUxhbOHh07572wK5qIhwqj3R2jZ812969VktvHDu8ND2yPt6uZzqT5WwipoSriVQiCrTO66XspKbytBkAOKb6ZQ+ALKsCyQ5ILIt5vYyLouyw+GJ+jscqB/dEk5WQ5qeA9Ts5eyzs09CSOByJpRIRXAGi0xpIi/oeg66P4uw2u92wtceTgodGC8qCx7HtNDzXEJF+4ryMXxJZxmV3saC3UAGr6FfgxwNZlmcp0acmotGAGsRTVhCnXqcdE3rcAENu1sPRbtFtxf4UJ2VHO0sXiCy7A8eMDRYG2D5qNh+iE6ptpRsL7GFpdFTMZ4ElRhMxwF4Z5Az8oYRdWBjfx6GVEg7KBAGAg1o0HAjiLh9LYxMW4DDFupV8NJkA/M0mNNCi0Rjm3ANwpPJVDEKqt4dHxqempxdWVlfXN9YPZHwavP94CE2lU1AwBidmVzbnZC8OdcB6zRZzjZGxmcXZjX2VRBwWdDqBE/6VNs4hjU7MrexcWtncG7cZDCar3oHbwYqmqJqCvVYhBDEF+ImmSrgX7cceZIw6UEOqhB7YvlM2WZhGKHwCrz9AF8eybnc3DAAkKWG3WkABk6aePsJsNFkwjJD0ktv1LhfxfwAY++VEBs+w4BLiHjbNUHaL2dDf26szGE0Gvb7fYDL0na6jPZJfUpSg3686+ywcj7mDXh9Om3W3GdwUHgMzbLfRRFRlBYhEOpspVuuNRqPVrrWHgHOMTXdaLcCNSmFksDO1sDAzPj0+CQDMQW0VsS9P8rhB3dr1hNNqMyEAYxohz9BQV7rxG2LXcsXDuRkrSdptZoKzmI12DyYbOcwAwKzVBk/cVr0dJ9Lg/Thtpr5eAGCCcnngabQBSXDquWI2HQFSRlNcbbCWQwWsBbp2XI+GMgAAIABJREFU0CE8cQmFQAopMRmWhAuuhAv7zQJoXRhAEJZloCmK2w7I041dDnT9OTRUwGFMpnK7bPDbWMZu0vf2GY2IwPAWdVYnC3dX3ObSQl47YbYAAAfcfnWbSb+t38D4+3q0wVQmjbF5nNwsJsO+fwAwMNjIUD6fSsQBgPP5Qglb2ur1arU5UEE/6NbI8PRAMBKU/wHAknQKgAcaAMDtdhs9yJq5eCok8RTjkxVswqrUUCIPggKmcZ8cFDBw0q4RJU4zwfqkSavRQTosVniADFw47AYyRlBQGRKUQ9RCZkpRXLSicTaLgXC6VE3zJxhd/1a90e606nt6DHZTzzaLPylUBZttu5Ey5yPbqNNPp+09RodDmQqB0tfg17DWUC4ekGnaHCyHVbilTlu0AtITJ31LxcpAKV8ZKKRy2Xx9IBUMwhsTeQTgbG2wmkkPNYfbA6CAOaDXwUy+UKgN1LM0MGgeOxZFGjidJHHw2JOkHBFIVy+X99iN/Q67mxEITyzqDyejfp6lLR4cZGSdqIAlN0v0+9PxcCKTK+aL+He6PjI6kAwHFEH0a7FEOlvEnAsAYI8X267CpSERoBU7FDDOIl6oDI/v8Vv44Hjb1bNNf9o2ndUABNhAeRhBMDoYmxKyCAExnpBS6YDJ6xXCkYzVRos6q12Q4sNHrspDSSxE83MXl1hJpgHVoZKlMtXZvYdPzvmySjiRBGofh4qTi4eSsUA8k/ZFQxrvoWyyFuRZo8vn8QqKkql3lufsLjPorR3TMR9vdIa03OYxAOBAZtlNQqUQhFAw31q/NDd/y6fuvObMyy69+i4iXl3+3gQ73GxWFi7/7teUTNCxa4FwrX75xLljmcV70+nxsYW1i+/+4nJy+qLYlXceG933yJHS+srmmfd8rfK5jcu/dRsCcLS5cPGPf379lVdeev5Zxy44cuDW55975tnHn3rllRdef/rR55+fXrv83O/++82bmyfPyR6/eeD4WnTv5bduHtg1tLp+zez83tW1lbPPOP/YS7+7rqE998Zlf//wrx++8fZ/Hzvx0Qt3T28ubQxNXJLOrG6eWOXPOrRn5+SB63/62v0//39v/e3fX3jm2ffv+9pHH34p8pf3/vbem3//+KOPPnj3pfe/+7lfv/e5qebg8L4VcfbQwVXv9KHRucHlxqXvr4zc9Jl/ffSZ5548cdXvvrr37x+/c+UD337g5dfeefma2yrXv3h2ZGRpYfGMuVx+X37PnnS4sXj46N7zDu0eHyhm4tXWeDM+NHXWdGNhdbCxb9+Blanx9alGLdWeKBcycTVaTyXjYU0VRZEmWGzCMlu1cjSoAr9zoxWlhpqPQalIg7SkVK8vLoG4FdyMLxYP+4PhiIoJgmbC5BHh8fapmMSmYU+QKAqsU8sFONar+oMhymzXbTl9mzukRLIpTfTw9q1b3DLnkeRQCPUv9jahGYTL5bDZbX5ElrAWAQBmAIAZCgd4onENk9uh8mkyAz9mNVBQ16EIe4Cc8pyLACFMck4aXaG7TVkEQTgsFrLbENsNiO8aNXbNNgTciAQB6E6nkilYRaEoyAmg9YDRILqxPZp0ETYXyFxAYD8sU78awrQk5PxQ41kMD6I8vC8bTadTmWQqFYtEAEVjoD1SiS4rR0+ndmewMz47v7y6a2l9bXV/UggGo9FkLJmMaolyA9B2ctf+JYkNBKOwivP5Yq41NjwxN7m0Xuom9mZS6UK5Um93Wp3JHdM7VxeW1w7sDrmsBr3Z6MJuK7T1VaUA6DA8kcMe8VgUQ/JAaPkFSfULLAelQsDt9+5xI+5DYx5wQAIAhg/BsG4cx/Wxzi4AW+02J2Xu2WZFADYbLQ7WS/X1O0n7/wCwjAYXPNsFYNxdRZLGUhRDWPU6k8Nu1pvNOAu8dbseEyYEnwKlPkj1mT0eqbv/ip1tuAubCAq0w0EBerJQz3jcmwhFM1AXawMN0GDN9lBrALQwXMDx6anx8cnBamVofmVhZmFmZ1XiOBZgQPAAafS44T3Y9C4AYKOFZjCggQdEENDaEc+csU0LW97ddhcgndlOGvT9Nhxsd2G/Geux21kAYIMDFDBlszsdNlTAQDwAgEEBW4HAETqumElEJS/lcnLNVjUdT4SB6SiIwADAWiAQ8rkBgCU0gnEYTZTAe9UgmvcH0eAG2xs5lbYRNG6Gy4jAIezBwk5qjuM54CEky3F2HchfnVGPTQsmqwlZDF7kPkIL+xwEALPOEeL8gW29uu39/WzI0KN1AGtASwZEf6OYCMi8gADspxg6OlIopJPw9OS6HXzo0dhqNIZa1UanVWuMjExWg8COcQua531er5YpAL7ipsPoCODvYKvVyMb+zxhSKJXK1OoYhwnwLXZ9ihkMt8Qg5C4Ao+MdTVp0VofFaLWbHSYxqVG9uh4nLSvhpL2PC2pWp6RQhBRTKCswJUJSg3KE6tNvNwDYWPtP36J3WLZvsygpT81jc+jMjLkY20af3uN29JicNmVKjcPFAgXMmIP5VEDheUsA6hPP805LuFDIppLdhVOFYlcaKOYK2UylmongMvXyHm8sma00QSePNIaGB3KK4AZqpuVKlWqz2cgxAghf/Bgi6ZLRD58A/a5oYYEkeuiMn+63CLxHYoxw4UlfPBGCQmgWwioQ9//bhOVPRiPJdKYEy7RcreYHJybqCWDyvOAPoctyAQew8yEGE7KCKihgkZK63qgKPDyJYq05tiDoA9pQKbb9n3T/a2uP1eB02820Fx4Jg4MxB3wGIEkq8OxGvpcFVp3CxtE4qac4Rhs6eDKXCkfLifzcJQOc5GMEOZQMRLK51uLeMy5fEONiIJqOhmMgLTSMdgmFMkmVCvoCJEtYRS2u8gZSg6dACRfLUxuLDtLGh/KzowrHWt2+UHHfuZLLp1SORIBmc6InnKjUFi8eal93xc23XXTsykvvdSbqO384RnWazfLClY9cpx71G5hrJvpiF33+zuHG4a9VcmOjC+vH771/LTt7PH7ZrecObX53X273yuZZ936t/JmNy79589q5vzxSG9t14SM/u+mGT11x0bFLTpx94OzfPffiS0888cJLz77+wmPPPT205+Bdl11z954DV5w3cPWN9YtnE2sXXHfkwoPTS3e/XZx/4xf/Nv3VY0dn+F07peETZ6+cf9GdN37/kSfvvu/Ddx6YXlnYmJi7NJFZ23dixXPueZPj9YOPvffXl1778NX3P3j5j7/67uW//MNr5yQf/uMDa3uv2Htw98S+HUfzrvP/8/yh9sjI+gw/srI0x08eGFitLe+67PHFwduf/8lnXnvsm3d86rmHZj/+8I19V33v52+//tJ733/its9+dik2Oze/dHguk91s7t1UJw6et3loz+boSD6QyA2MFkrt9t7xs3a0gRF0NnYc2jc6tDhRKcWbY6UCMMp4I52MhmIYHM64+GC3CzpUiIQ1CW41FFEtFZUxcoZ2UU6CZj1h0RcVJLTuYf2JRNQfCAVEq8llI+z9BhZhEP0PZAXdhzwsSdvVhJbIFwbiokgSrG5rzxZnNJlOpSM+D2szWGkvKBZ4vrtjulDRSbZrIU1arf6wgiUs6pd4RnCDApbVICpg7MwMxxIxgXARJpNDlmiKFVQ3imdQcyAEONmNGQksSRI4POMCgWYnGTcversHoJLc3epGOYKBTRRJw/oGjog7NZEYhqyDtON4ngQscRCkEzAcfkNIDQSVQDh0qoFLQNMGFrFL4r0JDdSsFoznMvFIIJFKhIH5JnL5rglCOd8YHsHuqcXVlT2HNpf3ZLyhUETDTIegEik1G52JmeXNeb8ciyXRUSCeSVabldb0xI6lXBRNLbPZfBUkILbP7FyYmVlaWd04tEuh7WaD1UKCooRlDpLSp0VxgxxoVBikfDQYTuGotOoFlot46ddSp46+veg833WG+kRM4nkMRaBFt5PlGFDAmAAMAtjkcOs/qTPhLITVBlcPh4gwYMqGFtusRwEIAZklSt1NfAA/ioSLy3EukkRCZDXqUcNhG5aZA/wFPgZF3G3Qs14PBkrKXslhYNEIKh7xYQs2w7hZRoRLLqtR+LglBGAcV2132g30pBxotTvDE9NTnampsfGR4Zml2dkG5cE7ANIdoNXjFTnSYrRRlj6dAydb8TFgQSFjKKPiw41oL7p+s0ar02E32SmTwWLnvLhvbrC4WLfZ7ias241W0umCx8Vps/Ub+vpsNgc8/Ji3Dvjr6BcKqWzKz9OMk6+1CpkMALBPwfNddFBHTysf4/JEfCwPgghui0eU4VHqxkYjBwC+5oI7Zid53LlVcMsoArgZikZVjqIoq8UJNNDRrzfbzP1Gm8VotODGrAUoFuPn+qyhjMI4Tfq+XofqDoV6zfoevZmrmE6LNPPZLM7H8sFWNqIFBLmKczQelom3KulIGi1hskWcIh9oYCJPp1buDFbqw8Ojc41AOCD5McmXl2CBpzGOcGhkqDMy3O7U0RSrHE3gFrTbD6s7ls7DKzSanfbogIRz9t0mLPwTUPLYOgJwRDmtBqAsuIlipaWI32ro7yVIwReO280cp7F2IeaxC6C8dEaX7FEivlCY7zMYLDojYdP1bTGZzNtPJ6SEv0Fb+7fpHY5y7nRq+xbKudXssIanOaDnEY+XoyyBTBKUOW0K5TWQACxhidQKQFGzIEBLA5VSJlsrFnPJbKGYB0oPjznnkRORTL1ZySeHBsfGa+mI1+33CNHiQKECar+Ck2Fo1eLjSVb1corHZPcyAJNeh7WXTIbtRpfkpENegydKmvsDcdHvpRxsXIGa5erzpcNeN0n0qRmgOul8sYDzc7V6a3y0oUUCGMmiJvJJoJSFaiUbAtnrQwPq6hiPI+wy7/UFVSVeyA3Udoo6Ld4YULdu22Iw/pPVydBW0uL1MKwLvuUlklU4keVCw6FtfsEuxTAksuXhLZygtI5clstEE/l0dvGKAV5W4EU1IPKJbHvXgaPXzMkJ3FWLo+dPUEnhAVkURxWlUEiAaylHIwKlcykeUfTHMvXp/TOM3U6EMrumaHTiUkPZw8fCpEcLzMachNsjiL5wfmjlyFz6umtvuuGaY+dfd685V176/igz2B6o7rz8R3eLZ8UE48ZlonHsnvsr1cOfz5dHRlbmzvv8Z+a1ibMDV1x3yfD+H2ymVnYtHr77K817l09+68Y9Z/7HkeF9ey/4zs+v/NTxc848fOjA8uLVbz/70ouPP/nSYy+//swTz7+Q3Dx29crmtetHThweuuaG8uWLiT1X3Lz/ogPTG9f/uXrnz1753Vd+8+rTVwW+8/OhwYPfqGmfmVtbGZvWIuP3HPTtmjtretel0fzqvit384eOjAx2jtzx3HXDtbnR+VR7KjUhSefdNBNYefmW/Oyvn3j89796+60Pf7P/0Y+em6/PDO6ZERY2FkZ9c4c7sxNLy9c+fWDy5E+/dNsrj/zoq4d///X5j//2xonfvvJfj776q/99zllj/siO1Mjy3Mrh+Xx6X2PvSmLp0N7NuVYqOlgLNYeq9fbO1dm1yfN3Dm9sDI5tLp6xOjE5O1KtpDvTA6V01B+vZGIJAAUvGg8wqgSkzhHLo4ct7eAYHsiyH2SxBMuMdJG0QMEdDIcVwQugqILkCwIVFmBRcgThjEShMEJ9VsPIj9E8100TcgSeM82PUSIUQVq0aCiRLeaLUb/Ierr5tEJ3DCCgYB4Q7qARToqEH1RkT0AJAzHAliegYIxH8scxUlrpThlHBYuDcsFPmox2TtFwe1lG/2mO646mAi64HBYr2h05nC7SSQg+gRNkHDsV0cXQ042lZ4G7U5inifMkIexBVlW0ThBYC01ZLHabxeoiSJF1ySEsnJEQDrL6cCALJ5N5jqFYWsUxiFgilcunI8FQF4u1ZB7D0IuVahWwc2R8amZ2ZmVjdffezd1pr+LHY+JoIhyM5yv1zsjs8sEZJZBORCM4dpRMF0vVoanJXSvdiO/MqVepVuvVamtsanpq5+Lhw/M+i8FushgJ4EwCCrEAOmz6g6jHVNwmV8OJEO4TBBX/qTACv8yDTPb6/F7eH/Dh0fwnFJD1GOkGn8BFwfVinHgGbCcsFifbf5rRZjCZLWaLnWB91m0WAh2y7ARGuXnhVZBcyV2vlVOn6Ax8kRgC6QDh3P3q396jMwApQt9sv6rxJj0DUIkRCV6/S2cX/Wj5pQo0jb3MLMljfFMQLksW9VoDPmy9MTjYqGPjT701OjU5Pj48MTU5OTG1c3pyxwDFeUUca/Z40IoSFJgNm7B0fTYGmAQAMIA67/biiTf6QXd7oBnWZEO7SjuDsp6TGIfNZDDD58ImLNtWPYG+4KiALbr+7b024Bou2sOTcE2chF4spbNpEE9u0lMfLGazyUg3cAOFrKZFNABg2iVEZOCOpMlyCoC7W9CqGug6VYikClqa4tCcAbgpulh2cVsFGuew0zxocBNcOLPNajJi6xt82U1GQ7/Nw+r0/mzQTVqNfb0EALDWZ9Jv1ZvcFdM/a7VsOh2N+Hy8r5aNqCov19IaAjAdqxcT4VwynQdgyhaLFYDPeqMOfKY92OgMAQAPdMMYMA9YUBCAS9WBZn1wEJh/Z6jZbDcblVgyKPKU2y/7MfkE/nyg1mqO1CSGp6hTRhwAwHABkK2KcMldmMJIEja7wy6oYQEEfD/JSP5I3O6QKT9n44ISwWtRr8WOTZoJLZCktvX3m3QWyqTb/kmd0Xj66Q5/SqvxNOe0OB3V9Fb76adRRI+JMMUnBAUtT/2i26HlM5rMsxatGPGjEaw9VssBmU+nMoVitVzOpKulfAZDyHKhSBBptuhLxgvNZrWYbcNSqyQ1L+0XpHixkik0B9tlGpsIcHlwBMXRnI8n3ALp84U8dts2ZzzC2iyUgQzw25gw1e/wB1Wfm7HSWLkYZ78/HYJ34NwmJ5EoZ4qYxwQAPDg+0tCw/8UbCKUKcBNS6epAQaO8XlCnyUx9hAMRI6iSpCCtSKer1WG3Xo0O1KMewWSy6Kw2wmajrAwGeLgF9L1Rk7LmhDLD6bweMiy7FCc/4CUtohTsHDmRL8QTxXxh15U1QQ10A+QQgAd37T987YIcB/HbNSaIx9CdoGsmpIWUiCa4nWZfLCLyJhIHMJRYsjy0uUISTq+W3DHKkg4Ty3sjG0cDjF8JLaRoknVzghrNtXZuzKQvv/nGay47cukt95pylV3fn3APjbTqi1d944eF6NScQ394zcXufzDePPhAITfWntt79mc/t5KaOxa56arzhja/vlRYWVw8cvfXh+5eO/mN2w6d84vN5u71C3/46xtvv+rYWWcdu+jMAxe+88Kzzz/z1DNPvvjKk3/40/PRueNXnbj5mtEj5547cvntrePj6c0rbj54yYHp9Rverx356m9/86ev3HP9au3bn9+ZuPm1zs3vPvfqj3/7xM2XRw9ek1xeOVCcvCySWT541apw3v7l8eGlC393kjvy51+/ecvL77779v6LPvz7t8Wfvffv85/+4JU333vhrWd//6vMv/71yYXBhbEDC9zc5vKoZ/pQcmHH1Jm3/+/F6duuve+OF//0+RuOvvzCSZDQd/zmx5/ee2QoHc0lApXdeQDgpUM785n9pb27w7N7Z+vFdLK60FFqyfb63MyOscWZC2Y7G2v1zubswbXxybmRWjXTmapko2E5XsslklBK0EmPZFSZI/X2aD6qKiHewXlAvuBAnYyNLBRAI+f0+qVQGKcY3J5ANAJAHYqrgNysy2X1wGsoUYXzx7VYPIJBZRxhVzKRaNRD48gJTTJ0PAlAk8sV46pI0yyD3sQofrENS8UzYDxoxlR4M4CGqoSjQRnPWhnQ3D60sIgHfYA0sXgg5iPsLkZw0Gjw4HV7BcxLdGFLD0U6na4uHNjsdjvUMvgO9AdF8X4sojgbKmD3Kb4uC2qb9cfisRAAAiBnWFH8oHBFzkY5DGZQdA7a5fLQTlEF6gha3x9Av0yvxJMuiuv6cDB+wNpcNw40jV2psRhU5DhgMjpxVEG/DY2OT05N71xc3b17bX09AyUYD4qT6Vg4VSwPDI/sWNi7IxSPYB59EtueKwP1kamxhZV8LAKVOpbMlTAdqJYvj04NtceHRhYXhkVUmhYTgd3ccH+0gKqFgyqaO8SxxQnUZSocicE7CQWx68wvApGSQfHIwHe8XeHKfyLgYeGOwqcnKWwbZxjC5oDL5LTYSVq3xUoAHpgRgDmftdeOTp+Ew0Wx3dug4DkytrFJXpxrRQCmSHRLAwA29gP8Apr0n74dMFeURQmjBwRrPyXiSKNP5H10bz+jYK889huwAI6UnRRlbAKPJTLFcmWgNdjA/NrhNraedQYGRqbGR8bGRqemJyZnZkbHZmoMd2qeGbfAgXLxrNUMVELfb2fRiYNFAIba6/efOm1Ane5m3GYHfAQzwVqMoIAlBnsDzAQmXzK0Y0ufgwb9Ck+J09rf39NrteLkhYenkLrZdXwhkUQ3AgDggVY+nY5jowDo32AAg30iEQBgUorJDM+BnjWT3ehFbDWDm4Hj48A8g/DrabfbjY5sagj+M+ChoJPcJEMAXpNmowH+Q7PNYTPCL7bodEa7GYP5XK4+nVyKiEAGdX1EkNPCOr1+m97IVmwAwOlkMhL1KYJUzcYUhZMGsmEVD/bjjWI6ARQvl8vlM/lipTZQrzcQhfGqDnaGZwcUDe6hAAxSULyylinX6o1qo9kF4MFWp9Usx5LobcnDT0WTgGeVaqU+2ByuePAMCucGJb+va7YZVOQukSWxXx6TJShSCQcYvUEHACwrkYSd1uycYHX7FZdbS/hJLqPlgB7KCarXgKfADqNu+xYjtl651Hgkj/Edgl8YSFrc27cQli39hCU3jIZ4qk9BAEaHLt5tDRfRdJOhHNFKNpNJY45lqVyq5tIDA7l0OpMr5TT0whA8vmAyWWrWioX8cL09WktqEgNMNVOqpPOtoeEK7cZxCFnxsXbQm7yXYyW3Q5CCnMOhd8ciXqLPaPdEuF4+RvXykpLwM5yDTagSxzqNSjqIcYTbfOl4Atl2Po+TyI2RybHBaCTgZ4VgOFtKpgtavNYohmgRmU4m3+wCsASPTgSeomg6myuXObuaaGaC0aDRaLVZbS6j1e4AFgkyQRbleCpd1goEKXAmOxDOhOSMMWrcF7T4lPDooYsLWS1SLJSWrqmKoRAn+MKhaDyRay/tP3zDohAOxyJQk7rGBFokrKAxpxb0acAcXBZfVBN5g13DjNJMqTN9YK/dYPB6M7PTAZW3cZQ7sLjH4/SrseU4iBSek0LRbHPH8o702XfdcPXxMz51xz2mXG3XD6f4kbF2c+X6L3zneu7wMmUdvz6mL37xgtieh0rx6fGp9bM//bnlzNJFietvuKi58uBKan1p97n3fGv81vWTD9y4efhnB4b37LnwW98+58Jjxy46fuEF5xw6763nn3nxuWdeeOX1N/70+Euvp9cvOe+CCy6aP3TR7sYNNxUuW0itn7h+/0WbIxvXvJ468/tPfe+lL3/xxt1Lv/nWwsjNPx3Ze/uPHn3k2w+evGThq19vzK0erKxeG0svnXH1snjxmanl6gVvffC7yF8+eOuvv3rzxdffOt7688ef9X3xw+/sueux5//7B4988Le/3rrnl3//w+LQfGdz2bty1qGd3plza3Pzk0fv+W65dOWhf3n1tT89+NZ7z35p/f6fbGZH24O1uZ2Lszs61aHl1PDK/MrhuVx6X2thqTlf9Cezpcrg0oA4vGeqVT+wuzExd+HO4X372iMHxw9ujE/Mdyrl5OB4IRkKCNFqNp6AOiF5PIyLVX0eSm+NZOOKL8joCVrwhcIBb7eXFPQS7fEyvgD8q7AsedxiMIoW0n7F47SBlnD1AyKCPlX9WhTQAMdcaLuL8KdCPhlgzO4EOewkw8lUKp5Op2OqF7NQRcRCr4ThtSqGAzBulqIBgEkiFJK1cFILYushVHg3A7IJih0G7ISj8WDER5Fu4AcBP/bx8Wg/iW21hKsb8YauHNgIjVoCTSrtgMcEyC237PV4/pEMLGLCAyYp+aLxGMgYtEcI404tzqo6KVu/yWHHSSaSZxk8O/Yp/9Az8LbxlBldIFiRkdEtIw2yKBpLJaMhTKiB95fEzpAKFLZBAOCJiYmlpdWN9ZWV9YwcUNBWGkRzNFsqV4ZHd+zcPeILB/FDJeKxTK6Mi3ikM53EPtZiJodpNvV6vdKanhkZ2bG0sDA2IJK4kWomcE85eAqAcQM9oISwZT2EfejdEZloBFYgXEDRH8RoPpxvRvcjBM5PBD14+MvQvJPi4UoyOGhI2O2EyU7RfVusdhMoYMwE4mWLjgDocjocTvzMghLwgf7xopiVvByJ42gMg6wHeY4Fe6CNZqvF2LNNR3tFnyj7cBTH0ecCSq/6fR5e4XR9DPaTg2yX3TSaUdsIXlLR2TGezhdL1Ua70wbeMjY02B4eHW3VB4eHh8cnRyYnO8PTExOTs2Xeg26aOESLPogs5hU4AfuNDhZ5In5h16a/m4r8jyMDmrMQJOhbgjXpTTZOpGiXWW8iGM5pZyjMA8YeQ7sDfsRs6Om1mBxdBUxhPqGtj8/HEzEf7+YAgBs5uHUAPAFsf8aW/xg8OD6GUuIyqG8XwGgXgNVus3cAOJsqixwAsJWgWRYAGO6VpsL/QANHA/BQY8yJud9kMTucNgu6Ubqsup4eHWZq2kwAwv2+ZspPGkw6nTPIhyMAwL0GA1MjTgsDAKeiMVXx+Gq5uOZzS418RIXFAgBczmUioWgqncujS2MJAbYOMFzGs97W0I6BQCTQtaaBsir5EIAxaaEF17ndaTY7zQYAcFgWGBFudSRxCoAbrcZw2W130aCAAYAVtJOCTyLzOBPAuqzmfqOLZWg3Fw5LLqOpr4+gEIBddMzsAABWVIoJJVQxmNEy4Sjv9pM6cz8OIhn7tuoclMvisABDlzwKRkkpiYiQtm8OypwFAAAgAElEQVSzGbfoXI5MtRALIe8WWLuWTWiAflYtH1aAcNNErJzN5bMYfFIulerlfLNdzOYzmXIuEsEhPCkYS2VqrUounx9rtMcGkprMAKvPFkup4vDEeA34H+5AB/xum8QwAm5q0VZGCrHAgjxaQHb1mr2hlMfoT5JbBUFNwDPg5FNBmWMIg5LqxhFu92fQcyxXLBRAAddbo5NjnTisRgDgSK4CXADAtZFXacB5DW5Gc9zr5kU5Go5nc8l4MldOV7MC4401SsGEz0CQDiNBbd2+3cExoE1g+fhy1Xa7PsI4KEMfHqyEOVqlBUqO2/yB6OiBY6V0KFYuFJeuq3oBgEEBa9hwNbR84MhNi6wSioawCUsDuhhLpUIq8MVQQAoCc3CZeCUgunW2iA84dTJbm1lfcVmskhSdmgwEPRanpKb37Pc4VTmxEnVSyB2VUKY1szRZXr33hutOnnfl3fdY8wOLP57ih8cG68s3fOX++xaixWyaOHLUbVp8aHDqq/X42NTU4rHPfmExuXRh6upbTg7t+e6e5Or8ylm3P9i+bPrk169d3PeTw531fZf96HvnXHz88quvOX7sorOvfPeZ51595qk3X3v1laf/+OKb2c3jC7vn9syvXn/djuM3tS6ZLRy46rbDJw5Mztz1fvW8m//46z/+y0/uWa5//7b51jXfXFj4/OPff+W7Dx7dM/uV7+9Y23dGa+/JZG7pwKdWvBftHx+tHvntRz9U7n3q9b/f+/LfP/rx3OabHz4QePJvj8x86e8f//Wb3/n4jd9dccY3//6D8cEdhdk5YdeZR+c940dmlqZ3HP7Sw8Ord375py+/+tSlP/txPbKjkG+tri6vLU+36sVSbXBiKTW5srD7yFwmsae8vCtUKhWbnXaxstyR2guDkyNT+ezS/EVzw5ub7dGjncOb42MLrVIhVh/Jp8IBIVLOxBNQEyQBlB6rnALgXBxqB2MiaVaNqjI6N3ZjZD1+kfX5fbFYEG2GvCACfFDXWai8ULBcBhfr8fFSLB3BDDYPRdIOI0kGkuop4yE7BTzZ7vFpES2RCMMKAjGK1s8eNMPCbehuOg8CMEW6rFZFBdyIot0xz4BQdbthZabSYRVbs8IRdJ8XfYCmXi+sAicWV2wSwi9AYIQFwmq1ojcPHmaaTSBnSYb3qXg0FwhquGUN1B1eliQob9dLEl0dI1H0s4BP6CUZUMAgoO0uACjOE8DGaSy6AHY+0FwMVGPRy1GkQPvSKDey6YgSiMfxdDoeRSSBxYYWCI3BzsjY+MTkwq7dezZ2ryIAq7gfFItHohj9Mzg8u7C7AxcFTR1i0XA6U6wMDI8PjS3kEyAIgdjjBjRAcHt0bGxy5+Li2sG9yymXwQgA7JIxLUILdC2zI5jElC7k0vDSIH27rwd8Bb7BdiAV4wDRQUXCLQcvKGCeYgQPXGzcfCNJlmbgg2IyrdFGgQI24V6oGRN8eNGow/1n9GQkofaKaG8syzjlAxqUpzFZAQoviZsODpsZNx/1oN7027b1kaIXgRoqtc+1zeHhvariB03iNfVSfn8AA5BU0c2xvNtFiT5/ACgDttMUiuX64NDw0Ohou9Ec7IyOnMLhiZHJ8ebg+MSO6R1ZYFAeETfScSPD4+ZoQz9ht5pMDjxPpmkGM3WF7r6Kiuf9aIXBuAGACbv5fwCYJJ0mnd5Gu00mwkYYbHYAXOSHAHvGHp3VCNqY9rhdAMkuQi8Wk6kEbtkyYqOZT2cSQDxPpTHAFwKwzLJqzEu7GcIMAOzpKmD8UjGbRvZwdIgnSIZ1A3BpwUhYVbF9KxIPcLziZwmLHtOMCSd6oNBAYXr7+vHqO1mXzaQzyKP5MNVv7EcAjkR1/QYE4AESABgdQaJBiVWbmVjCx0jNAgAwx9LRASiE8UgsmUhnMVE6nS110XegWsO0o6EdtUBU/f8BcLoETBGEL2jC9nCj2Wk1yvF0F4CDPikUA3Sr1mrVgdpQmcMEKwoefRkNVkJaCDPU8CSHMFn1BieOSkgRlbObLdt1CMDhBEUnHDbBQisKQ0EpCSbgckX9JuB62816s9FGmLf3mNFKrX/L1m16vQmIOuVkXKJUJraZjb1GivBHBzIBWJcBL++KQsXyut32cD4c8LBAy5PVLgBnsA262KiVO0MDhXImM5CLIgCLcjiRLbaGasViYazZGa3Gg14aHr1EJg8APDk5AACMyzroZ60yx3toXiQIEymHKcJhdAdVydln48MpTi/GmB4XrwYEL2VnkwjADkxDkjwM+Q8FnCki/taAO46PtKLRoMKJAS1bLVTKvkynnlPcXc9PUMAToBckfwIn/tEoZaDYzAgOl1odkjjK5rIZjIT1n/7pNDvNuSUAYDmQr40PzUz7Hc5+HUcLUkBK8naHQxFJwNTO5vmVdCw7UMztuqEmBlS31xdESpgfXjlw9KZ5yq8lwik0vvXBd+iuqaFrjF8D8k0YSSHoc+spqISiN+APllsDpAO9U6bGQWhbHFIof+Cwl/C5o0th9Dmk3d5gpjm90GlN33fLjVdddNm999rz1dmfTnOdkWZt1w0P3nf93ZngmW5d4eqWznPy+h13DWQbnZ1rxz/35aXk8rH09dccnz763Y3K7sW1c+96qH1J44qHb1w++pPN2q71kz/96WXX33DN5ZdffOKaC29975nnX33qiVffeOPVp//zpT8X91zd6kzOzF58fDh45Q3lK2cLZ1x7x6GL903O3fZs9th1d912zw8fufvM2r99aXLgxl9NLNzy2B//+B8PH9/XvuvzEwfPOlBbvzxVWNpzxZp07tEd6429f/jox/K/vfPxxydf+OjNr0+d/dsPr03c9sHX8lc9vudTw52rr//jp+e/+eHD8xMrIxu7hYXDRxc9I/vru9u7zvvq/SeOHdo8csd6Ni3FmoM7WhlQB81CbWjHxPLK/iMHD5R27ppfO2s+E18vrO9ypyfHq5nh0eHVjrdxoFAamNx9+MydF811VlcGho42ztw7Pr7YqhRjAyPFbDwsxaq5ZDqKs6MCRbCKzFMGWzSPCbMuOwdrMOyDB0b2gAoFvJQZF8d5UwmZckLVhCWo+gJBgG4G5K3TIqkSK4YyKVUKoLrhBI6wOtWUH1gz1DUztqFSNFryAQiG/SzpdLpFPLNlRUU+1YQlcm48TXS6LDafKspBTQ0G/YLbzTHdltdoIq5hynk4EsfYQIlzGe0k9iqbAR9A/9ptCMROp92KWIDIC8wAxTBOWqJ/j4IBwCwUbgE7Y+FtQz1hBT9QQ3QuwoS5gIzheJKLdoIGNNtcoKbh12OSD+a/REHZ+D2CjO1bosQzjEjLmPwWy2ZA9ScSWiqVxJ4uHDQs1EB2AIQMDY9N7ZiaX93Ys3fPeloKqOjCgbGD2UK+VO/sXNoY9Qa6+0SwPJKZ8kBjeLgxu7sSx8HYXB5kcnWgXmm2BwdHdsyPLOw/dEaV6gcFbCL9alDRMAEUPUR84SSgfjyeSCZx26mL8rFoFPuEVL+kyJiT5FekU4ei4ic8CMBAftwUg7cWjxAAgWw2k9XF9m/R9yME2wCReE9/r5PACVm0ruI8wMYEwSef8pfqsjKawfYAPGh3WM1mk7G/34yzPL3bnADAwM/gyvnprVY8AP3/qHoPKDnO81pQ5ziQCJM6h+qu0FXd1VXVVdVdVZ1zzjPdPXkGmARgInIkABIMIgkGgEgkwCxRlClZgbZlSyt5bcuyn87z2/PW66DnJ1m2spzjO16v/d6G72vI3l1Q5KFIYqan6v+/e+//f9+9qsJLctA57pFCmL1h6EDoaNZPMxjJGgPCUQDGUakASPR7fTyC7vV6M7PTg9mZAfxleqo/v7S4MB+HyhQARghECOd8gd45bJTX7XB4fCxNDlOx/AKPaUiqghoZFbDPBwDsdlgBgIGLBQSScNsssHhos8Vtd5od9uE1uNdjdzrN+00uC0lTrOAnXXj6bvIXUpkk8I4AHWw284BqAMDwWHG5oKOVoUk+VjYCFAgjG/AiWGigf1VlmP6kqKEAx0QfAnAQ1Bbwx3AkitPggIJBVUDR7CRc8PBcwIPc42PjFrvDMmE2uX0gLM0T/Hwt4zfbxh8C8ITJPGax+NrMI3otFUdLiwClttPRZIgWOqUo0GiOATmVy8TjqXQqW8wm04DDpUqpWMiVa5Vqs9HtL9VUQ/73I+iQngL9iImX7SmgPa02lJZqMofNTgFVEiMxjKRuNOoAwFXOhVFWPgTgEHZzAwDLEvrduSz2iQk7BYtBNgTS5bQftFA+SdYSlC/pd/FOj6RyXkFTo8lwVDXIR8dHvRN2MzxdwjG232adODA+8uj+cfO42eE1W21uO+FURx4ZN42bXHZCbhfVKCwXMUDGi+m4yPmJGFANP1AtMlnN5PD+J18olUpN+IjddqmeK3QLsPDVIC9Forlyt9eslHLTwGCrSU1gFUmNpwu5/OTMQwWMBj0S4/TjzYUgOAmrW456CbeV0XXBecDkkFO+EToqHXRIuhCUaTudxMM9EgBYl3jfEIAxiQV4Y73RAOEzN9OJJXQZXm0k26i2a1Kh3yioAQyASKXynUGQFyQF9mipkCnkC+16K8eZ7aFay/aombQcHPGwlp96ZIKmOFZAh0A9lSnner1ckLJbPWRAidbbUHkp3suFIsn29rWyEc3X84XNB3UxrPhgF0WhjhQGx85cenXFp6WhtMdjcSNiZNKxYTopVDlZD/tB4vtlQwEA1uRQIGgkCpOzNWBRpJpaXQA2TrA+KX3qgugN+WOHRAcml3FyvNRePJKf6b37zms3r11//z1Pobrw20v+qWkA4Fc/fO/1z96N7cwFqKWPxm3196+9kStNDla3H//4546mjl1N3bx5berkl/eKW0e2H3//V6dvDu596c7mU1/faa4feeLLv/rUyy+8/MJLTz376lOv/8O3v/uj73/3e3/x93/9nT/98V81T3344nMX16dn1mYyL73ZeX4me+rm6yce3+6f/ZVv5U9+6fUPfuN/+8yzp+q/8bGj1Y/91cza5z72uRuf/Z2Xn5x/5/PzJ86daBy7m8iv77y0G7p8fq6fPvpb//wW/+vv7D2ROv769p2NYz/4p5u5l/7l58pf+cY3//UXfv1f/q/vf2bwa//HL61WBt3tJeXYpctbyvyp1mZ3uzLVzHWjEpTW4uRcu1lebYnNXm916/Tpi2dO7506vraRXVxb2X5sLZfca68e0srVSjO3sHF4qxMo1avTO4/vtQ8fenq1v7vbWzpTv7w7t3BkslFNtgCAkwjAuWQ6FlaE4RiSAkTM4o7l9IgiEG4/GRCAfXIMRwNuseitSwEApwzGA9owIGtaTNXjESXodtKEwxTgSS4ShbqqiPCnPxAKep0EF6SdBEUAyQVg9Pj9DN692iRDpkmCAACGhc8JykOTJlHwczjLQXjdXsWQlSgqDUXgWD/l9/k5vxZN6ZivZ8QxcJvF2RNkzw6XC00UEYBBAAMgwCcF0MdeXexERQMm0NF+QeTcFrPJBAXOieUQPosHVB2HbhGABhhRDz/Pw+tND+UBLLE4PNjii+ObQwDWDCCyQcaHU9A+QQS9LtBiKhnPFnLZdCKVy6Wz2XTciCZBdmQKtSZswC5GwC2tHD66s3fi9N4xAOBwMolzSokk2iSgAt7uiw+VAQYuZeudbn+qtnC0FDMSmUIayH0JILhebQ0Gk4NDSxs7W7t50oH2wHQYuDuoEBw+Aj4SicdAXsWTw1yJh+gbjeKbRU/tCEBvCC+48eyYD0ofkTk0bQzwQLWZYUcx6aVIl93utEMJ2IeOzjYHoA/J+6FY4hG+G5Me/TwexssAKkFRxOtXLIMA39TDYHmXHXDbbLY5bKaxkf0ukMuCGMRIC+6gBWFJVRG2iTGHiC7fER2KpA/qOU2DFNRisQSUsWqz3WoD8PYH/akeqP5+fzAzNzeDCDy9sDi/NL+wEA0GRDQhAwUcCGATFuNyUtgBRAcCPsyFhmoBAIycbtiaNwypZmxur9NucdEWk93DC16CcFisboqx20AYj5odFMWyHjRvAQC2uMxexhcICT5YsgQxwWUTAMCw/qhgs55N59IxXcUDaIwVjCXgqQuML6QH6ADjtjpsXg4P1COwpJEaKRhqwmisw8uybFCBf6LpAMC6FkV/m2DQ64DVC/TGC2sXzUEAfrEXy2y3uTwUR9kO+pa7NQkAeGwIwLB6AYD9XRYVcCKhQaWnQ600qEoEYAMAmGUS3XopF41nc+lcEVdkplCtZNP5TL6SS1eq7d5iLRyV/70JK6QnM9kS9p43u1PdXqvT74ICzgKtZvzAXxCAi9U6Jin1q6wLCDTlw2jJh9NUiqDC9mRoN6ZFjDtpllMiAY/Tbj9goxgpFI5TfkNx8153UBfcnBoB/gwMemzfAZPfah8HtmOxmA6aRkxjgL1WIEgOr5/2+NwsaaEe+dmDI2MHJ8YnlHZJNSIYCkPGC6l/A2CFYyjKHSulc7jVijhx0Gy1+41WsVkoD/K6YYSFoBTWM8V2r10vZ3q9+ZlK2uBZRQ7H06VSrtOfrgGjFIbGNYwbpzw4kXdSTkJJeEmvg9TjggsYQSjmG2ej6iihacAm/Q5fGu/kKKua1gRQwGNKdngHnMcDLwTgpcXJeNqAPaaEs83GVEeu9OvlMItdhtFopt3DpshQLJYu59PlYrHbrJb8Y1Z/Km3/6YPeA5ijbd53gOCh2gIAh+RoPJ3KA/mJkG6nkwtEsgsthvGTNpcoaNnm5tMFRc+Ws+Xt+zVJUxhBMWJRI1aY3jxz+dXVYLpQTCejsXRS15Poh2VoWjSkAgBzPpJSDE3wm1yaogqhbH168/I243TQamx5jvW6rIyo5s5ejfjCoeSSACqGD4hauthcORtearz27t2b11745MeIYmPh68scAvCRB5/97M23396UX016Qs9vub07H30jXZxZOrx26e3PbcSPXE6/fOfJ+uavHk+sHDp06u0vdG4feuOXb64/8VvH20c3n/yff/O5G0/duPPg+vUHT37wt3/0/R99/4ff/eZf/OiPvv3dHzd2P//eu7dvvHx+x5DfeDV/a7V64d475585MXPyw1/bvfM791/9y998bmtr98ufmu688rmZlQ/uPHnjo18/+vTsx7+8cWZ3p3f4hXh2/fiNHfHq5aOr7Z0v/o83k++8/ON/uvMn/+cXnzi5+oN/fjF8919/sXfzK5/5v7/0O//jxq++W/0P//qLG9XB5PayfOTcuSPK3InOof5jhhALi8Bcp9rlcg7vAuvLly7tnjp38sjW9vaxvZ2V7eqhjdWtiyuZxF51Y5XXK3MrKwuTk5sLWunwucvPXGgwS6vPrE2fOrOwfrJ5bWtuYX2yWk40B8VMVOVjtXwyqeEcsMAQvrDEklYimknqcoj2giDl9VxK8jGYq4B2yyLJCbIeoikv4fWJ8E4VXffTpMnidjlGQT0E8I4hJoOoFEHY+hyoTGwOArWF3elyYRg1ptccZMMSDbVy6AaJlyLCwws9+IY+BGbSQQigRSOypmuggH0sg22tSjIFO3gYRxgPSTxhd6GRIcgzJ+AvTlOyLF7qAPNVJV4ArYqzxGF1iO4i5xPCIQwRJdH6iaTQgGl4Kw36G5S2hmJRB94giOgwQVIuq91ud4EEhH08VDPhYQJdRAUFCJXYBwDMMSwo4FQ8mi3jUV8ui6fRqICT2IRVKFUqZTQY6s0sr20e3dw7eWLraEaKRFJDH8pkCtRtuzd9aHWrL4TRQiueTCZjqXK9MTXoHtoGBQxgind4pWIJiFRrem56Znn5yO7xk1nHBACw3YddzlpEBgDGYcR0Drh4OjXEX5S/2B0UlYEgJWIRRVNFf1CWRcxcEv3+4EdCfszm8bq8fgaggaIF+BMqoJOwE5xjP6LAsH2c5LnRUa/HBfjg8tKMPwgk6WHXG7wAHKjAG3f0KcMIyH9vwnI67eMH9zmA2gSDAVDe4cCIicPHqIpAhshRcwBNRiNhXeUCaFwFXEnRDCOahmfWmpoCzjLZ709Novqd6bT6szMz84PZ3mBlZW5ubmk5FuSEwEM/EXjjQdB8LgeqbycTDLJACIAn4hG0Mhxtk37SHE9b3R6HzeIkzRM2IhAkPIR1fNxB+e1WivaAXnN7ORZvuu0u8z6Lc5wAYoYA7AUSYuKyyVwaZE/AF2w18jmQlbGIEcV2c7xyiOlhnmYUI+gLMC6TAwiMX8R+PVFS8PAByIqPilBmD8cxvGJgbhUwubCBnTqSn7FbXUhmSZeb8sNvnzDZ3U7LhBUbF+zuYMC2n1rpd9XhpeoQgC3mMbPVP8ntizWzKaisksiG6lkA84cALDEkEes2y/l4ulhIgf7BUeBaq5rBal9JGaVCoztfjcQVEYfheb8EAAwAUqhjVFK32wL20+s0irFURAr6eEwoi+NEexV/9esBD4AtzfL8cJoZ3hi8zxBAPuN1emxjB00eHyuHOY/Dajto8ZJAf+NMIKx7gj6CT8guWtGTiq4Z6qPmETJgMe8HljF2YOLAwUdtdhegMQf8zxuOBlVLOMSyB0bH9o/sH91/INLIy9HwEIATxVRM8PmJaMEI8yxNu2Nl3Ha5UhnYbr3dmRzUGvlWqTabx/QigQ9F9GyxPeh1atnW5PygkNQDPllSYslCqdDtD2qwdAOYESJxZIhxU0GRJTiC1JLA4Sw2OSr6SNonhym7YAijFHBzmRWcAMAK7yOckXQk6GfIcTUTRwWcK6DpZGuys7zUiab1gB+qSq7V6k1Hav16VaVCMvKxZLMXDMIm1CKpUiZVLuY7rVJdHJ2wszKz76dHf+qRn32UHD/wiMNHcn5YuOFIMtXurM/1agJ2SIb4SHlxOg/l0k3JQb3Y2Ho2F02WKtnK1ivVUFSlgmHM5ooVZzZPP/7aeqhQysejeqKQ0SQ54A/FE1oYQ0DiYZbyOGVD5ni7A0iRpqWz5d6VSzTp8ovG4pLMuyZoNZI+cSFE8MHkRoxnvVDtIsl0ZeNp8XDxpTfv3H7mhfffcpc6S//LIjsE4Dc+/Uu377/5c+r8McXfeb13ILB0t1bsLSyuPv7uh+vRjavFB3eenD77la3s2srS8bd/qX1/5v4X761f/NXjU3snn//a15+7/sLL1289/+Jr5377H7/xFz/+1p9+7/f+/Ed/9L0f/Lh/5gvvfPLLH7z5xhs96aV7rXtzjYt337n43MnBhUvd4t7m0tGfe/zSxe2rH3zhcPWXP9N5+jPvfPYP//Dzl3dyuzemL27vrhy5nsxunHnlWODxq4vH6htf+Nd7/Jtv//l/f/Nv/vuVi83H//pf3tW++o8/uvXSN7743z711n/68H969ZUf/dObS9NHprfWQkfPn91QFk52Nnvn66FkvZGolprN2cXtY6f3lqemj2/vnj6xdfL89uG5+X57pbS4dWTnwlIytlPa3I1W5pb7QGMbs+3C9pWN9dOzi9XO0WdXesdP9OZPdZ85Njd/uJ3LGY1+PhlRAvFmKZ3SYmE0QCZ8WshHWggjJcMzdzs4TtSxoOvA40WO9DBBzkaF1DCIH9rroflwTIL3bjcRLquHZrD2kqEI/mtVxGFRnrH6KMJFUIi+FovNjl0ylNfhYkykIlK0142tywznD2AvloQNlYDHPvjSlJsUDTmky8DaZH4Yl0cGQmpMj+pRHJjNJAM05XB4cPjQgVdnLIc6FaqtltACFIv5HYrMMqD35GFIQSisYFaX6GNYFvuuETJw5BiEHQM8Ar5szIjgtRxUJHWYIuG0ugi3l0WnWDUyBGC0MIqiv4jEk36aCYp+NuAnQ5mEngTBkcln4/BFAEXRiiM2NAIsluutzmRvdnltY2lpc2/72FY2hAAMQJuIAwDX+qCAN07MKdGHkwKJODDebL6zsDi7UQQcHwatAYxXKgXg11PzS3PLq+tHttOEBwDYwUVk7B4GAFYkqOggwPOlfAb0NTygNLw1PIdW1GHQshEOCz4OR1bwHtjv4z4S4v0BlqQ4H+3jGC+FmUKkB1AW7bTNIxYciLETwLN4ymSmaSeO43hJBvMPBFULh/ihwyMQHoaBkkzjyT92cE2YzYC/VqvNOb5vbILhIyLK5ZAh2SycJISGLcEB0uoIYntwGHvcgywX8DG8JGvxKGz6aqOOriPtyUmE4MFsvzvT6y/OD0ADz8wvLS/Ozy3PxTnAXkEYnqXzQTSCsIN6cjlcFB5y+DGDgZd8QRwZUyQFOQAsDq/FRdgtVhIqq9XJ8yTmiti9DGN2cl77QauXQLroIt1um+XAAasNz1qFoJdmcUQ3mDdSSTUQYN2BRrdRzqdiiaSeQP9WzQBIVXWZoZW4yHIUdv0B/KOvG8+jC2dEl0Ux4NOBUbKYjy3iAQ7+8ED2kmEfaSdwvAvorJ0J0rYJkxmn2wGEh13lLjdpG6UOr8zEzHbLGBGjUpGxcds+m9M3F/yZWCudSBmqLJFqOxXXVZ/cLGU1IFd0sVWrlPAkBPhYLp/LgjarVYq1Rg3PoUvF1iAXjsEyBvqCMZ2SkclgN0Kl3ezOdNGyo10DURcGUPJjcBAs1lylVq4329OVAHY4UkCYh5ODsGswxkAKcgxgrmN0YsxN8PCYSJttbL+ZFAOhSJJhgY1LlMcvRyiHHI9EjUhUBqwLBx0mbPod2zd+0Gwaga3mhEdhtdkV3e0aUwI52WQdM5ntI1Z7spRTNdT2PBkrpnTZz3oSeXQHAqaeKKdL+USmXMo3G5ja2eu26uVqY6ZgYPebX9CMZHuq2241ktXJ6Zki6HpszoukS8X85GC26PD5xZAY1BWCUT0qRahuNwu1wxcMOhxmLenk0CJGYOhIMOB2UqB8w5Q7kFLlAEtbjQTsApYYF5MxzLEuFuARNVrd3sJsN57SRVqV5FKtMhio9alaBb4tvPawnm30ZCA9siLD7i9VytXJqVxH3L/f6zWIiYOP/OxPPWpmrKMHTAawO/8AACAASURBVBbYXlBwEtnm5OLWzqUVIB9QYIVIJFPqtAU8+uZlI9PYeioH1LCSyp95rgNigw5GEsmokSxNbZy+eG9TSFVyUaAHuWw0ooN4LuJxdCgcwMMND0GHBLd31J6JxsJKttxY2DnOeh0+KTMzEw0GXB5eyR+/pDiCUnpR94Dy8gVC8XRh7Qa/Unr6rRfvXb/3/qeIQn3lP2/4pqY6laN3P/XhnQevvve8faPl5Itl3rP8oFzqTC6vXPzEz62l965kX7/35NSpr2xl1tc3T3z6C0sPem9+6ebRM7+20l7bfPbXfuOZ6y/cfen5Z1985eLv/s3v//B73/7Ot7/9j3/5x//le3935tpnP//Z9z752Z//4s3KzXut29P1x+68e+nZMzPXVinYQ9nJuan6VB90DDv73MVjm3c++sxvvX7xmavbj79dvXDy5Mz6jWx++8z9vdDVZw4fnjzyvX/5Bf0rP/zT//7Cb//R5z7/5rV//Zdr+t1/+MqNO+997MyzF9bPrq7OHFsKg26ePLkYPnrpiY3A8tnm7uLVktDoziwe3jhx+cq5U5vbW5OVpXOPXTi9eXi6Xc1mK8nCdn12c2XrscOpxF5tc0/JDGam+53koVON2ko6d/Fo7dnl5b0bRzu7Zwarpyef3pubWQeWW6r0SoVkVEjXC9n00CuYBUzVFZZ0OgOAeSxlt1NsMGLkc8mMGg4BKKG5FMFxwPQpwuyiSWkYYmB43JTDa2FtBz3WA0HD0ANQZkIhIcAHORCpThvNWD0eq9XlQj0J5R7qupkFQGcYzovZCTQXHDrTonUv9vNgB5XNHo5hEEQiEo4EaRzsZf2CEk0BvBkIcimPi7Y7KSuQbZeXlWPDFmr02jXCMsjfED8ktqKIXgFo8CEHMBBIkgIExYNCCWJfn9/nJQmM1dUjGh4JRpRwXEejSqjZDD0cbQROGZHVsDJsgIbSqUU1BZPMgxjjynN+EfQHfJhctpzIZCNaKmYkM1BZNSObwRu4WmtoRbm4sr5w+Njxkyd2tnJKBGARW8Fx5LfZaQ0Ob5ycEzUjruCEtJbPJpOlybm5w5tQVzKJdBJqYwExuNls9ObmF6ZnD21vJ7w4NmqmFXQRCOsRqPFSJFWA8pot5DIoglNAdmOgzfS4MZywBigQgMAoShBPoDnO/xGMnwQWgfNUIIBxgsZLegFEHXaaMR8EBYxnCvCeg7TFQnntLhd2Qfu4gMgjAItI4wN+YDFImACDyWGbtMNityFyO50O08joOO1H80kFXorsmvAJgqprakgIAgAH8GAC4CsS8gN5ogGAxXA0ji621Vprsjc5OTXdg2Lam5/rYB7hHIjg6cHMHA4EL8/FOOwkexin4cdZMJCRXqjgbqARAkIyjrZh0jBOeOI5O84qMTaCdNpsJGOxWpyCAB/YMmGnGNJKBEjnQStB+ATW6SbRY+zgqN1JgvoXBS9JMbTbBACcTinA8Qih2a6XcsloNKFH8dY+aoiYeCQCAMcEAGCcPYclDGRWlgQFVpUWkYUAS0U8Li+27oWAg2CKg67HDD0meTxOB6hfr8eD19f20TG7FxakA1cewK/d5vZaDnjXN+cTFvvYQWeETKij4+OPWJ3+Wd/+WBN4KM7XU2o7EY0oAMDFlBKAD4EAXMRrjng8lcW5WAymxqP9ehmBdnI2r+oSArCfCyp8MJLK5CvVfK5Sac1M/hsAAxMNUH5VAhDAsZ5yESdsKqD0KRo78UI/ubQJwxKUMNnCZbWNjI44XH6ZpR1mh3nMQvhZSY2RdCwsKbSHC0UYt5LQgOLCfgxJUdLmcE6YHLZ942OW8QNOj90Bawyom6o59h30UumAxeGx2sxm2W3kU0CrFaDUVKIIn4tliERRV3gOFFu0mEPnDWAW5VoZdlNvstvtdJr9HM6IhQKSpmc7U1MgRtKtyal+IQuiFQA4nC4Uyt3JmRoIegGtKUMEIzGU2SVTJkbg3JToMzstasxGUJIq+IIBwwc1KZDQQxrr9qfCcsBHmY1URIIKMi6l4vFMDn4BxWniHfB0G6qWSMuSXKiUe32t1a9XRFYKAReO5WqdIBvkQ4qcxDHFcrXbLU7yjxxg/Gnv+L5H9z1ywE2axkdGJ4BbhiN6KtecXDl74fq2z0tTbEDRtfygWRJkhWf4kJFubj8F3zZTTWVPXW9ImkoHoULGY6ny9LHzl1/bCaULSSOXhV9Ql5RYJpdJGUowEooK8ONY2ExeDppsmWhci2RLlam1YyTh4pTUzGw0yDpJfyi9fS5kBwW8GKVoqAS+YCzf2L7NDErnPn777o1b733gzlWW/9OqbzA729m6/bkP7rx5462Pr6ceC5nNW53Q+oNMtju9tn7xE59aS+xcKdy7fa13+stbyZW10xc+8Ysbn5i/86UHx878x5Pt9a1nf+2rz9146c5L11+8dfvSb/79t/7sB9/5znf+/O++/+3v/NmfzR66cPLm537l8+/+wsfTL9zqvT7dvnTrnUvXz85ce/nYzurh+alGMZ6Kh8P+wLlj/jg84UgqmepOls8cVc6fOr68d7tY2jl7f0+5dmJ1pXX+az9+/dql69cOH107urx2pHZmLdsKFCVBDQb9kRArczzNU+zFheXumTXp2OUrq8GV093tmVOzc2dPnj+xe3xn48jOkdPHVxYPbS11q/lMPKInItGUVjhaXN5Y3rq8ks2dwTngZqeSbBy+9NiJZnrZ6G93T3/w2c2154/2T54brJyaenJ7enB0ulHJVwa4TcVko5hKplVYhyzQIgRgh1uUcdyGYYNCMBLN51LZCPZXMrTP73EBwZdwBh7UQygKBUbV3U74LXbePe6xHQxqEU0EEYwNkgEOgJl2j1opJ2wmu8fjZXychwC8Js1iWGSg6niGTbQcD98tOLRNwHQAwFsoTKCuAYBxQIoHfcugYb+eSGdBJsXTcQ2kLO1ywgemWAyAMILDagzIInCBiOpnKR8vAVGkfqLTfB4osEGAeN5Dcj6cFwHQYDEJgHDSCpRDtEeMKFoCwAwHbASaAU3loWhJ17GhZvgLNTAeLaI5tJ9l4asFRY4Np7VwqhAHAISNGIOah1bPqWwGdUWtifOsMwuHVpc2draPrB85lpXD8WQ6noHimMwCZ28Nllf3+nw4nkCz6WQUx5dqU7NzK1vFZCIRwwHHIuzUSr7W7M4uLR2aWVzd2kp4zQhz3LAhTR0mJGfyaMoHXCCJWYiZDFSFZALwN6aDbkcFDO8DnSmweRkwif1ICNkOSbFewE0vTvgy2M0GCOykadNBi8NudRAUDcKQMFu9HpfH4YI3zvGCLIUiUQ0UMD/sf0XbKRr+QhF4BA06yG4xWxzAukZGDhygsX1PVkKyoRBjjCCqBj4+kYaPjpQmgq1vPE3DFwB2pEaTmVy+UKy1u1P9fg99meBvup3BYGZ+dnp+bnZmFgB4bnZpNsoiAPMIwoHhMDbjsA5vIoYA/DB1UeaRIGAkEgd4EfDR2AUNkOZhzGazUxSBWljHraSP+gkAe9xDAKZJ+8TE6LjDSRMUExKx55cmzMGckUkpsE5JsdWqFbNJAxvxYXHCQhQCMjYEkbIeoDjK4zZbAduBnYnAURRNU8OSEGA8Ya/bC4vYjyGRQwDWgBwlRMRagqKGLYKUbWLM5OFcFgt8UKfXRXiw7cY66lo5s56z2Q6O0YY/o5kmTCNWk29OfCTazKbSelgJkUorDkqYllvFhIy2kMV2rVLIZNKJWCyZyafjqVK9geAw2a4A/lZ7CyVVk8SHClgRhHAilS2V8tlSsTHdbU92Ot1GPpX6CQCrWjKfy8FvK1XqUyWe9pGwGYHoqtiyaMC3hx+UZxkKxOvB/QcsTqhhXrPFbRl1Ej42FI6RZExTIz7CF4pwZBhoSwy2EVDNhMdstpksDvPIxLjNMm6zj5ptNqcLn4f5ZywEHXUCsR6zmxx5j1pKykZKHgJwPhoWWZpIlOIKsj+XXsgXsxl0nSvV0PV6crLdG/RbvWwM74qCsh4pdib7k816rj+Y6hXzmshBmVGTwJi7k7N1LwKwLKoiAUvYss8psfsDOjNGqT6zx6FGCTuhRzmPzEbgnZLBWBjkowsAWAEFOqGnIwLLAABnEvFMFjQw7PZ2tz81P9tNJDXZJ0sqAPBUL97p14tBBoPAjFSh2g5yogCLP4M23ZVat1XtCz87yvKa12YaPfjoPpIYNY0dHAFdDtsjk29OHj5z5vpZX1BiOCFixFubZUOQVYHmZT3V3H4yVy5ma9nciRtV0Yj44AdOxoxEcXDs/JUHu3ImG4UvkU+nM0lDigFfy6d1H/ANHnSHVahUVcFGJCOGpsO+m97ehapLi+m5hTheHQbl5OY52Rnk4wsxmiEoISAa2fLhp32Nzvr7r7708ivvfYrIV5e+vsFO9XrNrdtf+PSd+zfvvf+OeqTjEcPV4twDWGn9laOPf/CZo7FjjxXu3Hqyd/LLO7nV9RMXPvXh7Ce6b/3yC6ee/I2NzsbOc7/+tRfvvnzrhedvvHbn4uf+9o9/+MPv/sl3//pvfvDH/+U7f75xfpHW+ytPffrzn64+9ebMy0utszffvPjihdmzD5557omXbn70qauXr57dWy/y568UW2VY92IkFOIZRSLOH9+a332pXN45c39Xeeqp5cXl81Je1MmA5M/qQsgfkQR3ZEP1KXHYSNU0Ts1XK/lU7WlYMOfWgluPX1mR1k9391Y2ZtfP7WxvHD1xcmvz+PrW4vRitgCACHowV6r2p7q1wU5m/tjh7cuHM+mTtd3NRCw82L548lB6MFWc05aOtJ6+/4fPLj6zOThxuruw2byw3GhtzNYKmcpMrRiPskatmIingJZKoIZ8YYkhLA4Jx4I5huVYIZLIxiMaH2Qp0kv6Ah4nw/LYqQUwiU1YWjik2qxui9MpkGaP9SCehapxHds8RQ7zyQ+OW91um9tpshIezH0F/QG606zoEgAwixND8F0CooBWzaBpABsY7Kp12mVDUnQjDsUK8wZh14toviOruqGGokU+4LG6WclIpnO5pB6ODAPYWVTKNBR3PoCAamgKcIFQaDhCpGgRKDqsQJEAGSyNQcCcDy0/XFRI02Iy4t+QN4BuEgXM2KFI2seK2jCWeHgJrKHb8kMA5niG8j+0gdDSYTlZCMuJQjpTyODnBUyM4p0wOgi10Yhj8fDa0sbm+sqRre10SMW6nUrFYqk8gM3kzKHVnV4gnEige3MSJ4nK9cnZxbWtUsKIDkc5QcIUS9VWZ2owCf/50trWMQRgq93FxyKaYugK1JNMqZjPpNCBOpNKpVPxaAR2XjISiSWiuo5pKKqu4pGtNMxigE/9ERGBy0syHhde9sLWBQQmsJXcSVETIzYXGkbh0SjlNNvcANJOl9vr8wOoAAAbYRENsoemYz5gTAy8NBKzFRwWh8VsstjsduvB0UcPAOYidwnJmuw1sSDWNRWdMX02h1+F561p0VgMxCPwgEAQeVUW6Hqh3oYyNuhNTU0POu1WpTc9Mzs7O78M0Ds3v7i4MLM4Y/gAfEUEYOAS/x8AdtFBSeCGCKyoaBONVstSMBAU8b7Q4gRxaSWoCbPZJQZB+HusFhfNmZyc1zli93qAggDj8rhMprFxu50iGFYSABvhGViEjJaKhUDsE2JnCMDwUBPxaDSZTuhSQE2F4UmGNI7yQWEzmTyEk2QC6N4qoH2pLAYYr8YQJOuHnaMqDyeIYS3p6ZDV6kQLT2ws9thMVqfLQzusINWB+7ldpNuOnWLmxSu7VYftgF2IhzK60+O0u+z+ycBP661cPGYkJcErtxJGWKLkdjER4uBHGAIwdgXG4kmcmUoWatVSvdrotsvFSqncX66EdXmIvzjJxyvReCqXLxYqhUq32QAB2W0+BGDSLw8TBeJJUMjFcnWy4KdBinF40oTbwdDxcEnEI2hMthjZt3/CyXHwvBzE+D6CoAB04xQVDSt6wE1KkSCL142a+tCwjRgfM42b7SbLxIjZDhr4UZPD7ASaZxm1POpwuD3jLvgidjuRsEuVpGoMJTsZzekRnMVNVpMRPzA/p17E0E9Y+vlqHQpoqd2uweJp9+HRwM4XFE0tNtu9yVqtOBhM9YvZiMSBZFcT2XS2M5ivOIGwS7Cigx6G9Nn2u0R6PGwwEx7Z76DISIQhPDGdIUKuEMeb3aAdJSXo8qcjKgCwSU8CF2A8Y1ImicGPBbTdgU3aX5ibSiQ0mZVlvVStTE1lur1aLkhDfQ1H08VaR/RLUJs0+A2larncbDRnpEfNFBUiva7xg4+O2N3j1okDI6BIwlosm29MLR/ffvYxf1T3s8Gwnlm4XMS+7SDJAzVqbT+RLeUztUJ+51ZViuoYHgsAHM/3j5698vquUsgaaLmQhl+JAHaQZwsZSRE0TeIpt1zOCwEbmVQjYQPY+9TmLogOfzg5Pa37aatbkJNb51UXL8TnYwyuXh+vZcqHn+Ryy/337z/z0r1P/ryn2Dz89VWm06wV1l7+/Odfuf3g1TufuBa+W6WIzE7lpXii3lo8dvXjnzoaO3ope/vm1dbWL++U1rd2Tn/4pd7num9+6fndp/7j2faR3eu/8bWX7t269eLzt95+9bFP//U3/vTPvvetH/zVX/7wW//5v/7NtQuvHZ8tqEZi5tIzD27WXlxoHH/5wZkXLy5c/fi9j91//f4rd26+cufFl5+eT2+/8eLjZ585e/Lkic31hc2OKn70/N7iiRdL5d2z93fkJx9fW158lklUo41ioqMV0s1CoZ6LT27V0p0yzgiUq418vdEupUsnKsuHLh0Obj3x+GroyLnu5mKncfjU8VN7R1cPLXTLWcOfWwpG4oVGq9vqteq1bL07t5ef2VzdvrSUTOwWT11KFDavHj518nB+plFaah6pr25/4lvvzz2z2ds53llYaZyerTaPLtTzqdJMNR+NBjPtcjYZx3BXDgBYGQJwSA9jXQMUEiOJVEQM0uguxLH+IOkC4FWCjJumKVgQsLukhwDs8nushOWgEgUVCYsfyr4U8PtI0uRivLZxq2N8wkFAkXaZzATtdVrliMiSJIhqDygDbDiVFAUDPJmH9hAet02KyuEo6IRkSuEAlPEIOiTLYYEH9h0v8F6nL5yIQjnTDQ3kOrZqocNVSIWqIMqgTwwDu5riw8AakIGqIvFSyC+y2DM0zIz1YRAA6XHRkhrGoVkcRArHhubJogj/EtUP45dlcTjQImOwPdTTsIpmFpyfJlk+gIJbScYT2Vwyls6nkmiGlYpGjXA6NhypqTVAxM3MAQCvbGysHjt1cisZwjAkA0Q87tpSszd36PD2FB8Bxh7Ro3h/my9Wu7PL60cLcfj/6RSIWRwHLlXrnV6nPRjMHd7ejHodDhBPvAH6KmzAFwOMzmB2Q6EM+zGdSuhoBxpVkXPHsUzCr0iIRxvJYRohUBUAYHQvIelhqzMdCMHD8BKEy0E44J2NOgiXHd4XYAPrtsM3s9udToxi4AHiJGzsZXnMYqS8Hnp4QY+GlISbsFudJuAGOMA1Yd4/ArRZfQjAKm1BAI4Mc59Zm92v4NE5nmKKQy8tf0BGqwAgEHiQ2Jrq92b6vQ7wl8ZgMD0zmFk8BCg8N7ewuDgLAMwgAKN/i8D/+xG02+0E/i4L/iEAYxQj/Ft0SnkY2+z3TtgJpwPAbQIQTuQ9JO21W10UM+FgPY6DNg+Fnixe0uEym8cmbHavm2WFAPkQgPk0aDeRZiin0G3XirkUyldYMLFkMqZJRlb3M4RiBGgOcMhqIjwukvT5/X4fr0YUFRQwS0dZL8kF/CLwNxkHkDCsUE9LVjsBjw2eq480T1g8jNdpt7twqp7wuK3Y429zWEYXn90p2p0WRonKcYMLA1WVY93gWKKZicdARSMAgwKWqFC7aASBzAAA16sATGhCmM5mYfmUa+V8BThcs1SolEpTy9XwMIwS9jMP4Clo0RSAV6GSy4MkA0RoVTOxmCpyXlbCZEUo0BnsZ6h0CzzNerHdghdx46HXqYQmARyDhwvjj+4fd8K2cQPVHtnvdFG0FI5TjC6JBu92SxFZiGA3YNgA7SwG7Wabdf8Bm9M+MTYyPrZ//36ra9xOmF2e/aMjo06PZcLqeHRkwkoFTEIZfgd+H4HQs3oYAJhIVNPwzBkA4EI+i3aPyVy1ls3CzmnW2yBgZgs4iosArBQbLQDgerkz2e3lkzImWUtKPJ1KtyZnygDAIEdDYsCLpH/M4feyUczbZXk3RUo+0sfFFMbjd8pCYMIt4dG56A5ktDDIEbMWVyW/zz0qIgDngMGUK9UGcMeF2cmYoQgAhtFSpdodVCYnqzmRRb8PPZ5HAA7haVsc1nqpUEBiLexzeD0aRZgPHjhoHiFgCY6OPwTgTK7eXz11+sUnOC3mBzFg5FeeKYVg9Qk+PqLFO1uXgXyky/ns+g0AYM0XVKKJeDxZmt06d+WNnVAppyezSXi5qXReShfjRjoLSgM2hyBwDrGYEwU7kYsMAbg8ubXjpT2sEpvqGSHBywSk5PYF1c6FErNRxueh2YAcz1VXn2bkY7V333zu5v2f+8BVbK/89jzZm2zkDz3/wSdfuffqa3fvfdhLxHOyvXDuUyk1X6x3ztx9eyOxfTVz6+aVxtEPN7IrICTf/82ld5985oP7Ry7/zqHWkb0Xvvq1F27fv3vzhTvv3X/8y//t97791z/81o///kd/+s1v/MlfXDnzwrm798+vTpbJ9As3lj7Rbu3dev3ECxeXn3jj+VdfvvHqG+++8eD1e2+/dXH+3Jv3Xn/l/t1XXr7+wouXPno5I1/a2108e7dY2rv4xm7oycePLLSvV+uDFs7b9fsztUG3nTZax+qTi4tba1snT504u3P2+KmtnbVzraXe8dXg0StPrAXXL00dWZoerK7MNippWLqaomcSnSNKrl9qtnqFbKbZq69vL+9Wp9cPbV5YymRPVU5dTixfWqq/PD2DuZ6TzfXZze33/vyN/pNHJ/fO9FcO9y6tDXpbc/VsvDBdycfjSrYAgDGMhsVOzLDMkg5CNUJYn30cJ6jpjI4JfKAmWDwtJHxMQA1iuiodDBuxMPBbwgW/haDcTq/toGzoCUXDRBEtFAzy6PFgPWixmAiLyeGhob7ZoOa4HF5VE3weggUA9DIcJ4ZlgDZsDEHQpzHR16mkdBCA0VgmpcB3HobGoleDwuOxWCnudAD2aADLUiRmSKwuB7gAhr9Horg6sfFZDEqRqKGhIQJsRQzBlUKcgH5eILpYP0YRkjTpJXwgjo0YICAok0hMU4b+hcA48HDWQ/OY2hYMhXHwUQvLwBdDGKSLRhwggIWgT85kc8VsDqN7AVqjibQOLDQbTebQVRFeN0q4xdUjW1vH9s4eX4+FdLw6xBPodCpZaEzNLC4d6wawpRTThBNJvDnuziyur6VjsHtA1EKtKFRrtXq9M+hPoxnW7lbY6XQ5HQ4O22mHrkqpYrkwTGUrwRdNJhMGjv76fayEV41DANY00T9sUnvonMB8JIAjwF5AHIKmSRCvpiHeIgB7SdOY00OgHSMoMR8GNOD/4P8yPn8Ak2CxIeDhl6FpVHBeCnugHXanzWQ3W+12G/yaMO0b94rBhymIuuY3M2IIA3SA5fhtVtAHaF2NlmoMzTGcAP8l0o9cqdrs4BzSVG+qN4nuEL3J/mBqsLAA+LuwsLS8PLcEABzA4+f/fxOWy+10UJIsPDyBVsIqRoIIfi6Is1J4BzHhBLFv93pN8JMIvNfntZkcFAU/N0vY95vdeMDs8nqsdrP5wJgDIBSEcwAI2kMFHI6HBYYhHcFup1bIpobe4Wg5moK/TWSjAuMNxwWWZwi7w4qo7SHR8zQIgleGVcLSus8F34HhFXScwURgeA5anLe6KZfTTQOkYOu4l3Tb8HzIhaTIZfFRLq/NOT6+9EQ/bHFbCIbxcgFWEAA75VqOztdS6RSsRolUWkAbZVDAuTDQS9pTaNdrJczYRD+2HKzOGgJwudKol4vlcrGzWA1HJB5ns/zYdMGH4UfI5POVXKGB00bNdi0Ti8oCS7Aix0tKRE/kcqlUttDKgcj3glr388MerFhUA1qLAEzDwrGbHh0Zc/k50mF2EyMTDi/HSFqKZsKBgCF43EEgYhEQ6gn42eMpweMCojYy5nA4rTaA34O2/SbbfovHwnr2jVpNFGVyWk0/Y95/wOuzh0pYTICgDwEYp57ciTIoYGB+zki2kM/A9sOJgmyh1u61ut1urzdfgMokS8GHCrg/1WiUm+1OHwBY/AkAJwu1cqdK8bTIA7IHSJolqPFRN6kbsKodBEeRLp/ZGZBjYQzM0ATvBKkqITkQQABWgyxt1eNqiPe5UQHj2Q06jqGH2/TifC+uyyIXlOPFcrU905rq1vOKX4QfQNVBLkmwCDCOEq+gioBQ7Qa3z01SKmGbGB/fv+8ARXqtJktIwCPodLY2WD9x/vrVYET38+FEPL/8RCmU1HUxwOtarLN1KZ3P4AHAwnMV0YgAjzZ0oIXlua0zV986xpeKWjwdi+dyiUTeSCYi0VxKDsAe4ewkbQ2kE7zgIApAVFQoOjOnTkDRJXg2nQMVhIZJmd1Lqp2VY9M6ArBf0tP5ysrTHH28+OobL7342ic/ac81l7+6xAymWpWjtz7z9t13nr3x8Vfevcd3Hxvlye33klpzavHomVfe2szsPZG+c+fp3u4vrsaWp7f27ny11PzCWx88P3f1D3bbGwDAv/n8zft3bl2/9bHbj339n3//W3/1g2/+4O9/8M0/+MNvfffq+WuN+szx2y/f2Uo9uDN4Y35w6rW39l64eOjae69//pPvvHbrzq1bd27cunG6tXvn+t0bt2/dfuH2S7fv3HznyaUXL52f332pWD559Z3j8lNPLM4tvrLQPXJkee3Ixu7K7MLW+vJ0bfbSysXzZ66cOX/pwtnHzl89d+744mB3sNHfnAlsXH58xb96ge2EVwAAIABJREFUaWpz7RCoGh3NHbJQr1ut0txWVM/XK93zp9eqjVLl2Ob0ZnNpY2X74nK+cGby9F5kpRW8/HL/wftrndzs0kK13r/wH07OPnNs6sSF6cOLs09sH5o+2qqmDADgYkoH4sTLEubiMh6nm4oAADsJRQv6AxxJsWxIzWX0iIB2zLQXygrtZYF8AUskfYxfNXRVVQwvQbs8pNftIR2jYkSPhxQ8/w0LHCa1Or1Oi3nCRdqtDjfUN8LtcLrszkAsLjKEC6Woj8HBfmmYHBMK+ji0/KBJyhXOYEdwJpWKiYD9mGYEqi6Op8BqOFlJ2Gx+kpZYTk0ktKGZDQ4ySYA6vAyrM4BN1UGk7+ow+zcgYR68AgAssjTLkLSf53xA3Bmvxw0AHNb0KLKGiASFWwoBJ2ZYn9eFczhQvqHKo8EmAjB8J1UA7AIRzYugtiQfg2EM+TyG2cJOTOqJtKroYfjoRXSG7bY6/ZmZ6cX11a293b0TOxvRkBGPgVQ20DAjW2n3ZpaWjk3xmhaOx9EmO5bIggbsz64dhtKezicxoAGYfQ3dePvTM4uDwfLepmKzQcFz+DEFWAVWYiRL5WIB4DefwURiFPN4LIDN3yqenCO66xIa+OKIM85hsx+BR4/Dux5sovI4JkZGbWjlCyrWQVLmcSfhsNownpCgrVaXA7HL5fZiv7ooqbomiyJ8Dbz/ZcnhPSnlcbkcNlAzJgvmCNttlrGRR8xuSXwIwFokaKYFAGD4wIYesFpZzI4w0EoqxPoCLCeKsMHjKOGrIGE6TUBh9GWa6rUnW1PTU9ML03PzC0uLAMDzy7NDAAalKwYD6KcCRMJupVxujIeS4TXLQw/KsIx5wOLwFw+r24tXqzarh5iwWZ0BnvYR5nEHVBaTw0fYD1jcJMCnczipZNp30EV4SQE+E82SaJkVymsJWPM+2hXsdGtQ7+LwUxiY6ASUCRhPQvbRkQQwHBaNODAJE0ge5cMJaPQNA/6okTa7h6YCGCHBBzEvLAwvBe0xnQRJ04TNBJjrBpbj9Hq8eJtO2pwS7QoQLot5agnl+8GxsTET3vy7CLPVJiZ8+Woqk0RrVEpFAFZouZOPwKLmyEKrXq+UgCfgPQjehFSr5eJwkKhcKpZzjbkKKGA04oDXyfl9wYgRTyUKuVK+MtVpA/vpNnKJuMSzHlbigqqBJyug+rPFdg50PIlTC0FkEfD+IqjooaAjANssj46NEBzrsVpI536zHeSzpGcYUub8hkSS/hCQYz0sJg09HEv5bcT4OKpckx3+GDONO8et1kcmSGfYa3UDJbSOcX77T4+M7CcCpFqJJTAkNMR7YrkwfK4hAKsBHD+OJNF5spjP5HPlbK7cnJ4c9CanpuYLGihgAGBdK8BC6jbq+Xar2StmQF/gETQAcKmSb1ToICP5Q6FgAM333NZRWzAG74v1uinWT/htnhDsLcFPBJQgNUHriqxyAReXCsu8j7LoybAUAF4nZxPRJJLwMlq4dWeWFvoJQ5G5gJwolmvtQReWc1HlhsZs0XyzKwEVgXKO0V+VcrnRblf9+z1enwSbz27d/+gErB7rhBkAGDZtKgsKeOv8U5fChh6UdKgb85eqSlLTQRNEtWh363yqmM9lkun5Z8tCVGMAgPGAJd9b3XrsjTW6UDGwoqTTiUQ6mYxG4oUMsKCoHLBRPhuf1GnO7s2h9V8sXZo8sUv4SDYSbk0asuSlA0ru+EVQwII2pTE+kiE4JVlsbr4Qcp4svPjGzSfu/tynnbnG0lfXuKl2o75998P3b73zzBOv33r1wyv88bTom3srE200+usXbn9sN7N9NXXv3kdnTn3xSHxp+sjea79Csts3f/nlQxd//Wj3yM7zv/G152/euXn7+ZffuH76t/75D//rD7/3re/+7Y//+Hd/9/f++Oa5BzcenKwOGrtPtO68snR/av7U/bf2Xr506LFrSyfPX3niyesv3XzttXuvXl8++3EQ4A9u3b3z6ovPvfLszcf7j528dOjMPQDgx989rjxzZX115gl4lBevnj9+effM9vlzJ7e256Y3D1+6dA5bmk+dOr13cm/nyPLMZufQ4mPr/mOPX1nmNy71themeaVQnez1QDrXS6mZk9eOhvKXt6cyy2trLaB1h6Y6R1JTWxt7l5ZzuZOtKycja4PC3d1Tv/j714qJ1VOHW3cefP3t5qHnj7R3z08fWly4emx5sFEtJ6OlmUohFQslElBRJY6Bp+z2MBGJJuzuEOCZEGQ54NpKNqVFAniiBjrCL1Jev88fFmkPyXGMHAV4C2mEm3ETDOmhSOeEDLJAUSX0zwj4AK4D3kAs6tqH7Z52i81hsbvtVtBUfklFb2kW7U2Bgwd5eXhPK4G0xI0FCgIA2DASaeDxOjoGMNzQMjqSVHkplgzz7jEHz3goLyEaeigUzT4stsGAyPiHVe/hVJMg4Pyyj6YotGAYNi5D3QmyXhqNnEE6gQJ3UjIAsBHTgdRLzNDBX5F4H8eSbreX8gDfD/IiRttENDR11MJoAsHSjF8Icn4BABiUbyYrhqPpHMb8ZvIx3Qgnhi6SoOaancHcdH/x6MrGse3d49tHEnIkGs+mQSEnYslivTGYP3RoqxfEDuhoNKnHo4l8BQeO1g5n00Yqj35GGTyBhq9eHSwtLXVn13aORtC6ye7gMVNHiw1NPwo50L/FNOY8JGLD4/cYHhAKP3G/0VXQPCBWEBKGPsofwZMGCtQrlE+GoZwmm9dHEQSotyEAO9wWk82D3UGszea2Owmo+x4aHkXQH1TCisCjrsMLfIobWkL6GRDBTqd5dNxsRqMTq8k0us/qAJ0aQtCPhHkr9f8CMJCnMCgrNHPURYZiaZrjAhKwdTy2r7Z7k406/GWyXe/0e91mb24wu9CfmZ1fgD/mFw49BGCORycQPFb3s6TNRrsJp50UQxzaqgwBOAQVD/4GT8xDANekFfih2eRyjpknLGwA6KTdZINFPGFnCMdBm9fDiT6n0+u2WS379jvdLhd8D5+XBinssSlleDUSw7KE0OpUYUnGo+gcrkXjUS2eSUQTKsuoMYETfG4QLyyWc3i6fmXIT3lc0Rppd5A+H079YJSUCB8tosd4J+EiaJZ2WmBf0JTDZCVoxu0iKbebHHPKXodI2UlLJvqIZWLcYjE74DPbWbfN7CNdHkeqnkka4bgkkmob3X5pZaoUxYsFCgG4Vi7m0ulhnnQetFmpWIV/BDQtV0iVp8saWqqLfg4joWk+Ektl08VMLlPtdxr/DsAALlyIl7QEcOAc/M5KfarIkV50OQEVJQOxw7QJDY+G/YzXZbdZHx0fJfw0YXX6bD8zbvUrfj6SJl0Sx0clmvGJwAUBgI1oEtYjZTaNWuwjI1bLxL6xCTsxNk56nT8zStgNKzB2VSCYcN730z/tMpE8JVdTSWxnE/1kMq+IPIt3wGkZ9jJL6Tj9B+od9kg1k0iXB9PT/e5kdy6vxTQVADhq5NudyXatmm7XK51CNiL9GwDnq6VmwRPkJYBGnmcot4+g7M6Y4Q/5AW2crEyrrKDFozE55OaAbU/QBgBnQHCxSSXk91EmIw1V00ealRwee4EOLeTy5VptsDDXiwO/CQTUdKlSh2/ebjcL8HZgLWqJcqcV9KN/LBD1dA5Yc6XZrkmjXjejBEMcbBunw+chzCNjUlAElE5lG731ratPX9DCMfQVS+QWHmtrKT0KxDOGAHwuCa82k84vvVgWYwYbRADWopnOwtq5+0tEvh6LxtLZdCqdTmbz2Vg8kzbCEU0SXTRpE3MJlrO6sgoq4EJjcPY4QRPeUHwwlwhxNicXyuyck2AxK50I0Gx4f1q6WF9/SjUfz3/0jbuX7vz8h95CY/m3VpjJTqd59PqnPv/sq7cvPnvvwb3Pl4PnVeXo+xm91ZpcPnPjnZ3EkcvpO7ev9U588Vjq0Obe2U99zr74wo3P3Vx9/He2p45sP/vrX7v+yq0bd1946f4zx7/yv//RN7/z/e989+/+8k9/7xt/8M3bp68fv3L+6itHNlLxN+7O3K3PH7/3xt4rlw/f2KJFkFdaKpdtDJZ2Tu6efu6xV27dfu3VN+984vXX3rx/bfrC8UuLx28UiieuvrMrP3NtdXn+8aMXT1+8cOXiidNnzpw4fn772ML80eWVo3urG/PzvX67WCiX0qnG3vTy4qV5/+7Tl5ekzcf6x1d2ss35yVy1nB8c31sYrOydX4mn1qcmq0vz651qppyQ2mdLC5sbexeXstnjtRMniovtmQedt3/++7/Qzu/uNU69+b/+w3vHVj66XDxybn597fCVjaWZnclyKlGZLWfjRjCeNTTMy3kIwHoIANij6KFhXDvnE0RAwChoCC7AczQFqsnPsHLAS3oAQOWECopRc7t9HgcG4ngcJiMRT0c0GUqtgn0oPoeDjef5MWD12J9is43DRkWt4iRp0JgMYLCf4UKqFEGOG8akd5x2wgNtLRcFZp5JJgzcIB4GB09CYWy8VATPhNli9zAgvRVQ3Nks/icYNxCSwywbZCjag+kAJAYEEG4MRHK7rHZQ4k6CgA8FQoVkAxicQ/ugltFqFOAXo80NmVaUoWEjRzFQl50e0s3gWbOkKxgWENXCYSMCyhpTgDgB556CPhnHLZMGKNV0FFUBWhOq2WEQKDogtPqz/cm5I9iCtXdyazUjq1o8l4I9q6vRQiXfn1tePjYViKSMlK4ltGQ8XSiXq71DaytFUMlZ2D7YW1Iupsv19vyhuX5j/sjmRsxrstvseAes6jg3XKqUi/if5Yde1EmUZakEnjLK6nAESQFlCHQED9+g8gNuAQDzwPmdXj+LtwsM5ZoYBeDFKTOo/65Rk9thcRGEl3B54VG7HQ4MCyYYgedEv4ie3QF26EOFY9vwDPAYOMCyftphsZhMZpPZZrParGMjNp+IrXVBIE6awxUMKZj5FImpLgs3TKvHODuRpmjQRxI+l+GBaa3TqtVanW53qt6Y7vdBCk/1++iDNT09u7i0cGhpToNXh8m/6IYp8GKQ89psFCY5cRIOZAE6wEKQ0QENWNmQ18FP7LV4fB6rifCOjoxavBTrIWyAvRw95mA9zhFAR1h4ID6tFvRitgL1YgMBGseQCLvFyMZSRojnfJQw2akBsmHeBmIwuoejBpYZnxYH9kgSNpvdy/Okh2GChqoYgHQKDtwZjAOoSiCkKOhaputhGRaT5sdpY58PyKnbw2KuJonOKB673eNxjLi8dovDaWaVEOW02d3wtmhgPaQAujlteOzj2Vo2G9cNACS1njLUABvpVpMikBmqOlmvN8vlfAakURlTesrwCwC4lM8Xi4V8cVANxyIAO7h8/bSXU/RkNpcDEKthbjA8+U4pEYOv5AXOpmjZNJTwQrHYbExmOY7AbowAj0RMxnOjmKzKwQDpcpsdloMHxuwsZbM6aeLAiEXTKUk3KIfKcmGDpWh4IVGAa13VASUOmswge9G/cnzspyYIYtTFeu2PPmqjeDtppiSrREsD4ZH9AXdQHYvUsomsJgMrpjMlnPjyE7FSHJ4qxVLhaDKFp9DpdLmSjyVqvcGg3etNLWdiUS0i86Bgs816o1WrFrr1SjuXNzBOVVKNWKJQLHWTTJCD1akqAZr0sl6vOxIRoAJ5PZTTHnAFhXAkEtOjIdpJhXi7pPJA/Hknm1YFFpaSnooEfT73WDCmabDfYOXm8aK8059pZ6Jhng3KRq5UaQ9qjalmMcrB3oO9Wu1NKf7/h6n3jJbjPM8EdY4CiXBD51DVoaqrqqs6VOhQoXMOt8PNOQcANyPnTJAAA0gQBAGQIEVSwRItiZLH9sgzu9JI1mjtGe3aclqPtJYljW3ZY3tsy7NnrTPza9+3Yc/uPTwkiNDoW/197/M83/e+zxOFtZ5O60CZq+XG0FCZ/5SLpkDa836ryeYI+N1uiwPvz2LwzTWnl/fOvXxJUvWorKaK+sLlWtzQ4xHgq6rR2DtRqJZzKaOw/HxNSSZBdWD1SmYak6unHo5548USFqd4Dv15gGWlUllQNTE+7OP8jrBhsB6zPxMRokJGL4+vXGJpglL00am4EHY4QpHM7r7iiGj59YyPCTABxUgX2uuXFevcyMknb9584ysfejO1ud+cp0a67frmG1/6/L17b9248vK77376fqQWKh775VS60x5dOvHK55fLG5fLT964WT/+G8cKW3M7u5/9umu39fCrL63e+N727MqxF7777bv377959/aTt+/ufv7vfvrDv/rJn/7Zz3/6J3/4B3/0lxdOPD5x/czVy/vvLScevzTx+emhnQdv7712af7G89MrM6MzM81Cp27kVJk7f5zJlgq1+tjczrG9/Su3j18/dWZ295VM4+TFz+yFbpxfmJw+O7E+t740vzw1OjnUxSHs/NjplJbWVF1RJExrjYgxRjs1PDtzaZ3fvXllObR8emhn9oRqjI5unl5ZX9vdXVltrJ7cVAurE4VaPpnNFYZWV9ZPHa1OHV3auTSXzuxUtreSM/n9tYl3Pv833x9XttbaFx/95Mcfnl94fqU+f2ZibXnu/O7izDFYi6nmVDObikfTWczLAZ0Iesfji4QDHjshxkWsywEocvFMRpPQeogDnksLtJcJBCXeiw6NeDwVD0ZUs590EX4vDULELIFezqgiOv6A1qShuAS1rGg+BIhtIhzWg+b+QyaHy2G3ODxomk/TboIOxZJKAnN8EjGplz0IRcTtTub1VFrLZA2lNwCFpr+CnIDKkYrZQanYoCYBmzXymURci3E4HSPzbJC02rxeh42gSD/pY5+2CuGRNoeNOJTL4fTzEfScoDH5BB0rvQ6vCJIxFoYlHVeAaQNahQK9eAESu3+Dstybte3JtaRqgKoRno6bhsN8kOeYWMFIZsuJZDqjJjQ1DXwFG3qL5XKpDMUMj5NnZhdWlo5sHdnY213OKmJcTWUzqICNQqM9MTG/sNrg1CSKayjp+Wy+3GiNTk8tZLQkADtK6grga73aHhmenKyPLaxvLMlui9lhM7N6TMZuXAPUcRm0YzGdLqgggI0MILmhQJlJqoACGE0rJUG4oxk2TgHjyfHHGI/HR1KAqEE+yFDE4CEb2l7TfpLwAwC7gSbhwJgLHT+wvwkHgZmIwPI99SZwbBAWRBBNL3rZjkIQnTkYn9tlgS+7w9pvtQz023H2F/AfE5wJEhY4YK6e1ESHhVXwIhQDdcMI+z4uFAUAzuA4Za01VG+02kPNTr05Ojwy3O2Ooh0lAvDk7OzUzMxELBjEIRoe/ko86OADfpeTpjxOp4/HyTAE4J4Ixv/gRBIOhEf9Nh/UeKvXO9BvcoCM87qtA1aP3zfogDXa5wDA5eGReF02AOBBB9kDYBqNjwFU4yktm8Tgea/QaVUL2TSeMaDPWLIXoZE2RJqW1UiQ85M2u8ODU/RBPgrYG8c7elFgGBV4HjyvCNI7GcfmkmoinmAdXjrMuMwWp4/B+V8S57082IRFEIM2l8NisTkE3utwul1uv99NwKsyMm23xbNGuD9TTQGP04Asys2MFgszUi2bCAVhsdeHa7V6oVxIo9tauVypVnH+t14tFQBHS4XSaEVMYk88h6HelJ+TE6l8DhRSvtEBtdZpDTXyqvoUgENiLJuGj6Var3VaI1madvl8PprtHaM/zaPonYfQpMdJ2PsPAeXyWG1uv/PAgCuZoARF99AxilGSLABwTIFFCH9zQlLDB/tNfYMDg+YBq8l6YNDpPGhxO5x9By02gqb6/YSdIaUa8YnDLBGLmOKNnJGF7QEKOF1SIgzFEmpJFfGG3qsYeiqLZpQ54BuZXKUzPj400R6dBPIeUwCAVbXUrHVGm7Vyt9no5vPJMBXGeSA93QNgWP+hUFjECQA0m2BkCSkl4aZId8AlcNhKKkvhoM8fihBSIqyLLOekUiDGg147AjATIAdCRiKRwrH+NA4jVYaGx4cyWjzMhqLxbKHcHKk2hpuFOBUB3Z3OlFvDoMGleAJNZ7P5Ur7SqhfpZxyUB2+2fD1/O6h9ZhtI8zgeCbVnAIBfuSRpKUlR9Xxq6WoDo2xAHylxvX38OAj5XErPL92qx1QNr5wkUVazzcnVsw9HSDlXSKc0Tc0Z6Nemwb/TwH8TobAnwNilXIqjrQSIq4iQlLL5iU0P5wlEkt3RsD9gc/Oh9PaeYmUFfSVDM8BPBSVTHVp7TrGNzW+9c//aGx99mS42Z7+5HBgd7jaO3P3yV1587Y1rl2+98/D2o3NsMD776ZjW6kyun7/9me3UseO5N1+/M3L23x7LrS8dOfGZj0JnUi9+9fUjz/3H9ZmVzdv/23fuPXztwcu3Hj+5f+Zzv/3nP/rZz374F//1J3/2ez/40Q/2bp2ZXtm///LLry4bj57MP+o2th882bt7burWqcbKkZ0jJ86fOHH64tm9hcrzp+NNYMNaKBSPqJl4PHb81Pnl/ReN6vGLn9kXb59bmR4/n8lly3nkZhlUQFI8NHI+ElRS6WQc+Ge2WGs2W1rp7PDMxNmF8P6NC/P82sWRjcWLsezJ69vNxRMzMyfXZ0bbc6fidLmqN5prqycund09tbKxm506unDs7KSe3ilt7Bidof3m2LEb//u/a1ZPLy2/+s5f/+6vnpy/tVBdOjW8tDR7eWd+an18uJmujjcA/KMawj9O1VFewuMXIwHS6orGolBiaZplhVg6o8khNsQxbMBH8wEAYA4UsNtH05wEZSQoGg6AboBEnw9WTiidTBiKqADHj2Jcu88ezhgKSxIUawU9aXG4SMIKNdDt8dOBHtJ6GF6MSRggDIJIxvB0dFfykTEjbuRyRkpXwhiojkIL+5+TiZAfG1hdNgsVi3h4UI4KGizhLISXcLEekmHhvfg9OI/C4SGR20nSHAWVBj0/vGwEBBFOz7BPfZxAi4tJAF68mEnEYgpQgEgY+4v8GKzkYyIYaBNP4gAS3pUl4piI2POy6M0BC2yskNEz2UTCMOJxTUsDtmIeL5QEnE0ECB6dnJ6ZX1pcXju2f2b/SCYmo10zoKRhpMtD8MuL65sdLg61tBcgmM3mC+V6e3R2KQvI2pvqxYEFLCPjY9OzI5NL6+vzotsGAGzh9ZgSSRrpXD5XKhYLOHqcyaV1TEGCn9WSGvwTx6AGRcbhqV5+Xy8FCpDrYxQesAPohEHNAPUdOGDxgrahsZXOPWAlnHbSQ5IuJ2kjSbfb5XC5XCQrhgNMCC0eeyPXaA2OBmQIwBE0pgLyBH8eVLDDaT5sNgEA02gHFZPxfp8EAI7EFPgAtajNxMYAgNHZU434SQBgHDCO69gCXqii8T8AcKPT6owNj4+NjIyNj09Oj+M40uzM1OTURIwPRTHtCBvheDyCpgknLD6b3Y8/3/OAxqltbFxXevNjErw92uFnvC4H5TeZzARmWztNA2YQvmY77XH320kfIzAgogm7zdRvdnjg2cBzgXcGTMwuq6CBxR4Ad5vlXCbVA2CobE/P+g0jStPROMaJkVYAYE7geElRAICTsbjY8wLRfAS2bve4QaznII0imndSXJCw2rDXwGxz4Y2KywekD547PEab0zpgJkyD/WbCbbd7PMSglQmy4cMHHXy2FurLVXtN/qJASw2oqyIbKWkyqHYA4JF6tZavlvD2olAs965+S9UqamFghaXSSDGCt/jw7ATMcw4Ci8sBdmTzzW6n22jWK+V0UgcA9kX5UCSeTWWLxUZraLg9kvH78Y4alo3w1IsSADgWl0ICqEeny9Z/4JDVT6C9ie2AxREJUQHecEtJH6OoILRhI6lKWEpK8ZgqHB40wT+gf92H7AODdtvBAafN0Xfg8KBbIPrZAco3yIsHPj7oc6mMNV4vGNlEDIoQaZTg+6Rot1pWxZAQ8BOJrNYbe88XatlMuVqsjY4PTdVHuwVsvhQFKZmsNGpj0+16tdNqj+aziQiF7uSgRWFTdQw/Hwj14kkYr5+guHAogi1XVgusea+Lo6OJuMBxISDsTJiSk2E1wnIeNhVXwiyJAMwHAuRgGHZuGrceTrFXGkPDY820lgjzobCcyuUr3Soo4GICcB/nD8utbpgOAc3XgCwDAGfL3UaZ6nezHpQePihrLpb2wCoKCZFEogfAKwDAl2U9E1Mw73TleiOeSmlQnuE1Rk/v52uVfFrPLQIAaxo2+MlSDFT/1Op5AGCc/U2rSgoqOAgHQKdcNiFpSlgJUJRNKaaCrNWelCJKIqU1OhvLdtoZCEnt6WSQdwOXzWzvx+0cn17LcgEn2oCkq63VG4qrsrXw7quX733pQ1+hMfONRf/w8Gh785Vf/ejqvTefu3Tt8cPX7rzDsPryB2qq0RheOHP3C9u5zUvqm6+/2D3+60fziysrZz/zYfn55M2PHqzf+N7y7Nr27e9+596juw9eee7hk0dX3vrjH/71n/3kp3/zdz/5L9/7g//0zfbN914+szG2MXV2of3wtdl3us3dx++dePXsxPbt9YuT1zqdxuhytTk+Px6/+cLilUvPXzx9enNuYbQ5VIxdPH3u6PFbmdqpy+/vRl+4eHRl8qYcjRermVQmlc8UWt2JYWP6SmtopDMy3kYTs85QvQT65/Tw3NTZRW7n2oWF8ObNmaOrF5Tu1eND00PGwkiqmMwn6idy2fkz5y6cem736FyJj6UmdgpLxxY2To5p2eOlteOl1rFLldWXzn39nSntwurs6ff/6c7w8uLtxaHN08MrS9NXN+cm56eHikp+vA2aSdY1JYazihRAFUnL0QAJCjgmQrnA8sorUMqVENSUAFRnOsg8BWCfwx+guJiuxngxYXHabM5eyxI5wBkAkWERD9kiCIq0VcopSiJqsRB9vojf6vd7bIcP9Dv82LvjA4gj/VwwLGEvL0KF9M+SNeAlE1nAOzR3lNCg0gebHnMCjWjCP+CwE06X1QGsQJBUTYRCzJDeXm4gJdB+HjYMAAFOp1IR4AnoWs3BVnES+INohrJMAAAgAElEQVSwHJNCvQxTBk0/fB4XlAYR6gnoxRheXXNsOArfO14cUwwLmyUWS2hab3xTAwaZNHT47RjFg624YZ4W8zmQGqB+tTjI+F5fLEAsQGG5Uq42hwBFpkABb24eObZ9dHHBkGXEXhWjEtIl7G2e39jusnJa73VPqYC32WK9Pby4kjfgd/QaWXHCoVkHcj81Ow2MeHVOJO1Wu80R1uWYqOdA5BRK5UrB0DNGTJUB4JNJI2lo+A0lMOMJe497fpzYDyVKUYAs5mMAOxiQHOCDUD9pou+A1Y/5bgRJ+NyYB29zoy2W3e3maAd8edxuAGCBonFeDAGYwccX6AEw9rdF0BsaXoplKZfV5rBBdR3ot/qDITyxxgYUwi1ERXiUyXgyYn2qgBXQ/BoCsN8PrxJN6KlMoVyqNoaGWu12qwEbe3xkcmx0bGJycnpuHLTvzPzczNT0ZEzATygSYRmc8MWjGreN9LjsLgZ9wMORp3VIRuUdR/RXJNCgARcFAOyiabPJRKAJp8tsMtu9jM0BcqfP6vIHgrTLjaPCgHhOjwcAGYMuvX6/1yomk1lDxHtjodNAAMY7YEx9VDH/XNO0KE2BQALJ7LHZnT4hHEYLVVVW9ERSRCfqQIL6FwAWe01xwDx0XQ/7WIYwmz0MRThNNngOXk/v2IVwghq2W2wAUm5AdNJjPdzvcjkP9uHdyrMHLC5Zd5pLjRRW1yhHyUPw3wgTrRhKEI+g66PNer1QKxkpPFguVspFHDJCAQwrBQC4W4jEYXMKPPYyUBR2QWOKfbangHvBSSk1HaL9vigwq2Tu/wPgtJ8iMOwCnevgsaKjiBrD2D8AYLvNZjp42O51m1xs0HHAaSVIKPMpr6r6WEXlaY8QlbV4RIoD+iTDLr970Gy1DB62P+u0m2zmZw86rHYA8H5PwGIJ2WKBT1odH3/G4jBHvc44xrWpMZlnCKOcQKsRl1bRRWxCILW8BlsNfddruVytUSoPjbXHG+1WXoXVBQAMWqdaH5lo1SudzvBY1lDCVEjgo3EdWW1H93GwnoGChjkv4/RzUYaDheEb7HO6XF6Shc9UJl2gXYN+Al1FAIB5nuJ0ORpkPLZ4SgmCWh6MpDHDLFcA4lypDXW7YxPNFB6o8YIEby3frjS7zZKKJqQxNVMb7opcWIRHAOo4V67ma51GjUIzGIkHreByEG4m4PVabbBvYG2l0o3Zlf1zd6/EjHRcSQGvX7tRV/SUGuEEPaFNnt3N1SqFtJ5deK6qJFVQwBIAsF5oz2ycfXPUE5ZAEKjRjJEIw3pL6Voul5QSoYgWoUi7nEvxAYvNiEdjejpVnzy1aPOZ6XCgMp7gGLuHj2aPbSnOkFRcy4RYB02JIMA7G5fjhHpm5MlrV1/78HNEpjH/m/M9AN669/UvXLn79p0L1++89+jWfTlUX3lPTTea46s7j97ZLR29qr/52ovdnV85ml9aWj73/pcm3ii98JV7i9f+j+X5jd3b3/nWq2+++uj12w8fP7z2tR/+2Y/+z7/80Y//9k9+9rt/9NPvd5+7c+sLn337zOaR0vAv3Z36bLO1//b7J189N3ny7JW3Xtk//d712188cezKybp2+Vq3jv2GnZmZo4urO4uJqyf314+/kq+dvvreTvT5U/OrUy/lulNjC6PdqemJzthQZ2QoNfK8koDSC59TvphNJosjM+nimYmV+Uur3Pa1S6vS1vXR9ZXLpbm9Dt7flI3WxPLe3ulj6fX9uW55fVrNra22Y6XVY6mRzcWNUxOp0unKkePVzvVr0x984yf/cK/S3lsfXzv12cfXZ2eeX+rsHR9eW564trkwMzleTImFqW4BdLiRisdCHI/3uy6CkUXG6/RIsQgX5HFSlpfh41bCvdhtv5fm0TwS54BBT1BcXIvHYVfZSLfdCQWd8Hr6WShIiiAlVGxLBglBO0U9Eo3HbQPOPjpKEUGvdWDAZCNQYPpwjJT09XpSMJMEJ5EQfzHhjnAp2aSRgnWThKUJv5tGr+ewoAuc7ZkBEFkuGxkOUhLLYZtykImEOBogl2M9IEAY+BGJ86WeEM1yGCEOv0DaQX0HMKoVaiLmlgN4BChPD4BlbMpVQQXHkvEIlHYhxODbYIVIVMGUonRaihvZnr1kykhGw1GcQO31Wgt0NJuBtY2SVtUzwK4AgDUDKVajWau3AUxGJmcWVlY21pZXV5aP6rKCAKylNFVNF8uVoe7c6mY3GNd6kkoD0ZvJVbvj48ureYz41Y0UDvlX6s1Gd3JibHKmObWyviDiSafNFVZFJZEt5EHVVErFjGGkQA8J0SS6QIOch3+ANMTxnDeekMVeO3IUNRgHuPKxniV3EPun0CcKARjEnt9D+L0UMWB2mCxOl9NltzqdwQCOFXlJ0stGeZ9f+GcAZjHTMchhGlGQD0cjvcveKAptP+g1K6DbwGGzD56lJGF8kkK6BVGMKaBk4mG7jQNOEFfQTvgpAHPBYDQBz7mAl5WYCIAADNp3GAB4fBKNOManpqen5+Znp2emegAMoptlI1E+EOQCUP19FOlwUiBWsPkuDAAcwbY+DLqJinhnDehK0aTLRQUsAyYXADDrsZnNNoJyOkG0HzI7KJqlCK/P7bAO9A06YC0zeNPvxYgos2RoGSPKUn6SbzUr+SyypR7y6loSPnlVFQP+uBpiWNrntLuoUBRWDSYFxuFfQOhCnC/O4BE0H4VHgI7i8TjoGTUZZhiX02L1UB6X20H6gQ16fC7sVySAxMDzO3TYZHPZzDZ7/7P9Tqf1QB8J+nLw0KHBAGu2lBuZXCaJDUHJ4bweEwLRSirWA+DG2FCjnq/k0DY9l8qXCrl8D4DRbSNfKpW7BRF5Ac89TZPELmjQkMVcrt5qNoHKVStpNc1T2KAXjiQzerYEANwebo+mfX4Swy44PLbtOdMkk0osygdpknTY3O7BAYfHYyHCInnYZTW7QV+ng5pK8XIyhLxY0oGaK9h8J4ZiIZfVNNh3YBC+J7O97xPPmEwuG0higrL6o4Gy8slPHPj4swP9/QwViFcL6XQCAZhM1zSJ8/udRk2XgUD7falCr8kIoKyYL1TrtWpteLjdqrVzegIBOKpISqXZ7g41SgDAoylV5JEHRWNaHgC4rftYCgGYh08o4PCzUYr2w0cw2Gd3ur1elgVlYrf4JGDZdo8Qjggq8DuC0jHfirLGDImjaWIwmtXxOReQJ9eGhkcmJoEPxcJMUJDT2XS2Xa0PwUdBwyOTE+lKuyWhj2dcy5TKmUqjOARP228nGJ8cZmmvy+l20X6SHDTzUWwgSKUaM6t7AMDxtB5X8rlsYe1mAwAYREfEiCcnzu7lq9VCRsvMP1eVewAMK17RC535Yyfvj1NhQTGymggFPIgBNqqipdV4UhBjAkUQYhpIltmtK6EoCLBQcnGMCFhoMVQfUyi/nQqKmZVlwSpIueV0hAfiCqxBHzp2K+kJnWs9fPPWvV/+PJnFJixmbLhTP/rar35495WHL1+4dunJi2/e48XmkfeS6WptbGn/8RvHtCNHy/defmXq5Ne3shtzGyff+WjyYeP2L99deu53l+aP7t/+zW/de/jGk0evPn7j3pWv/fgvfvzjH//if/zjj3/6h7//078YfW2M++KNx09+7b3l5vu3u5+Zae0/fnf/7vmZ5969e+7Exs1be1c+c237uYdzxQtvf/DCxvSL5yeO7s9N7q2MsNcvnlrYfTNTOHHtvV35hecW1ztnxPZQsV3MtcfH2/V8M69lWneyWm1sKJ2fm59qFXKVWjlRvDC7sXBhObxz9cJydOPCxMb8uVwiaVQWx48cP3Hh8oXNxe0jteV4ePboRrm1srG7P5Sd3cstbS5snJrKlE5XN3dy7Rf2937j3/3gT+52a6uji1duHP/0jx4MX5lvbx8dXlsavbazvDQ72iyrlYm6Jgm8bigY8IMA7CaZaBh4mFfCpHRANJz51QCkQxzisZekBQBgAOUw66IDPkZOiGI8FbFSlMOOqQser4kHZh8DlaknxJ7bvw+YbzQSigukx4Y9XZwHGL2XcGOYGMbY0SBKcKwfDZdlgPMeAPspyusIJ2U9l9P0pyHjfprBvlchEff2HXB4nzGTDjsf8YFmoXm8+FJBCbgsBAbIYboOSDmG4yiCCgFvJgOo5kmnm/SDSEPHy1AYVAkeQlN+H5r0YBKP1jtmBqhCt2QMa8CwUFlMZnGeMp3K4iFeIVdE90H0+Q8He3eQUU7JGQlNxxgkHRR7JguEWEMjXiDklSqOJY5NTi+sLK2vLq4e3TxiKIoOqhZ+s6rnyrX6yNji+vZoSAWpr2F4QjqVyjfGpqdWVrM6+lP34gVzIAtbwxMTw8OTU8tHNuajmNRkd4WTETmWLaALZTkL+jcLmxQHwAygvKoai2l6AtObYjguIkaAD4V6R9AhNOD4mId0uhieBXnGsTTtGXjW6sVTCVBgIGKsLovJ6XI4bRaHyUeDHLa5PF4qGGF9PqF3jwzyAy/Cex3QvfY3eOUozpJJPM/RGCQ/aBo4bAIeHe79vBLzkSEZPuOYLCqC3REExhPHgOVk2O9BIw4gDnFN/5fh6Z4EHh3ujo1Mjo5OTE1NTs8DDE9MTM/OTs9OKlCdeBAybBBUN07rEjYXfNZWC8HBN4nOKYC5ePUry8A7EIDDIQEAGHSm0xewmgacQcbrd5vxCBrkvY9wHjQ5gaVRXgqw3Dp4eMAGCiiA/BEYos9tUXLpbEoKBgL+UAcAuHcELSfhc06j+Sf8j8QAAAtosOayuykeR7UMPJ3VFEXkg2HOE2dd2C8e6ZmKK8iJYgDAgOlmp5P0eZwOtx/5IkmiDwroIOdgX//hZw+abLa+A8/0OcwHDzqchw8NWGwHnjUd7LMHHP2WXCWdTwOx4hhtrACklw4VVDkI65oCBVyrFMuZpJpKZ3WAhlyxmK8AAOcLCBPl4aKkib0pJJYBBA7F0cqlUAIJCcBdqdWbtVTCCFFeTxQWTCKlZsulRrsz0hlLe71ED4BBGcs9CYxR1JIAnItwWUivqd/m9Nh9UcXb77Kb/CGW0UB6MYKoRulAKCRpsd7RdQzvHqKEuW/APOgYdNgHHAc/2eewu21WFzw8PyzqRtb6iU98/EBfv5UJxZLlfFaXe0fQ6ZoKAOzpATAVgI8nnVczwIkzxRJ6uFYbjWq7WxuqtHJ6MiYDlYbV1uh2Oq12FS02gTuDpIBNq6hoetrWvADAeBaP2TIOLxdiKMJNeCz9FqvT6wtG4qGQYxC0Kc87KAzWTIQRgFNJGZa4RdEBgAMkALCBtPlfALgzNtnK6sko7A8lDcpqpDk0VMrGYVEA3TTylTqeFWH2ZiGnFqq5ZrFW8FlJyidHsJccpPdTAAYsxSPobGt6effsK1cTUA2kUjlXXLnZjBtpXRLCSSUxcvp4oVrBK7D5m7WeAhZjAMBaobu4feK1cVYMRrW0DqJCEiQoC0k5kdJ1TUyEMK1VTmUiAQupihGQWxGSbbUozk4rydGFVJh307yUWZznLWw0tZTlA1Y3w7DRRGHtpaQncKL7ypM7dz/8oi9Xn/nmUmCs26odufe1X7v/6uv3rly/9corr9+VwvXdD7RspTIye/rBvxqWN9bzr9++Pbr39b385uzm7ltf6d4vPf/F1469+Dvzc8eO3/nOd95859G7b99//MpL1x7+6c9/8Yu/O/+r//0vf/oHv/ODP2vfOn7/ArW9Fr9+Zfbzb86/NdQ98da7e69eWrp1q764sHP24onrty9NdK8PSffeOzG5f+7Fx9du3zl94d1fPiLduHp15cTjXO74jfd25Jt3ljbGL2XXVsrjo6MLxzbniiPrY8Wh8eea+frYWD1T6bbaE4tz9UQkd2FqefbcfGjrwun5yNErI7sLp0fnVi5cuHz+8srZkwm1PLq5VV2qZVY3252t5y7MndzPNS5kN4/Nr5+cSOWP1zb3cqN3lm8+/A9//ns3V8sbMzuf+b37N//+W91LyyNbGzMbi2PX9uYXNsaHKsnCcFlVImFdhRoZ4gPofkwGwgLlcXqiIJM4KDiwRwGA41EBGyYZr4fmOU/PijKI5vGcHJcjMS0wCCTWSmHskdcSSqh6TIwrugrCFQDY42WhJAZjhu9QH0BoCOSR0wMCtRcjiyBnN5NMCKukLAIAPz2Chlrkc4laDOMEkoDkDO1HuEQPc1nnabfJZUWvRKfdbEcNRlpBv3gp1mslwgL8NnQY4CjEBhqtfvyUEEELHzcBapvFINtwOIImkvAV8PtJrwDQDwszjiPDIhBnkHIiG8C4Bfg/NCEAYATCXC4VC0UAugQ2E4OoQgyAIg0AnMxghgLK9UQqbSTjSTw8zpYrZQxDGpmYnls5urWxtnZk++gk9qdpOgB6MqHlyo3WyNjSkb0xPgY7A2SVpkFFLzQAs1dXMlrPH0RPZXA6toSmlgBKC6uri1MRj8vutDsEeLFoulisAP3PYiJEUsJGrlgylUqqSUmCt4O+nchrcPgI3nDkn42wWOZjhMft5vgAiFi0JPFbDtp9vShdt8vjNtsJm8XlBtFltpvdfo/FZLWBJAyLrAfHY0P4Uj1/KWBpvVZkUJ0YfYAfI9AtnqVc5r7BgcODJNdTxjjk7SPDUHkBdkWJsTl5MSzHY6iheB9gnI8VQmIcyAaIfeAaQ41Gu90Zaw2Njoyjk9jUxOTM1PTU+OjkzOzs3JSMAAxfXFAA3I4Eaa+T4Lwui9nNgSSO4Im3HEXPMrwCxttg+LAEqgfADg9ts6ACBv5h6jOTNG2zegnHQTPhAwVM+mif3Wbq6zM7AICBtaEk9RHWWB6qPKxnlg53GqVsSkdnNWxxQyaV0eEhs5SSYP1AKgGAfQEOKn9CApyBDyECb4nyxf1uP6BdCLORsfusNyZmiF63Gd4RjbHWVG8qG3u5PS6HzQTq99DBPosdQzccpOXAMxb7pwZtfYTpmb5n7UzQ3GfPFFL5FBABgdFG4ZMXKD6flDF1wlcdruOFb0ZPAStLZnAUOG+UKiX8AZ6XDBdlTeylOTOBpwBsZHNF+GUEYMDfViOdSEVoLxmBTzaR0nLVUh0UcGc84/V7ejGewOVknMvD6bxELBL0ueFxur0Dh2BfOhlZJvtg6YQoHx+PaGogGNYkn1/A+18B5/gUJRHnSfNgnwlks3ng0AHHwQMu0uUymUkoDQEuIht6cOCZjx+02b3hWCZRyOd1MaFEONIoKSLnI+1aJS772aDXbeQSqYyGSJVCC5tardJogoSvo7mQ1ANgrdnpDrda9ZF2s62r4lMAlpM4XNBCABbQtRvYuJeAjwBWroekCYt50Eb4w3HZRVoHXSia3aLIR0Iyx4cpRleijM9tBQAOBljvAChgHD0oYfZZdQjH1ltZIylyoYgCW7c8MtTpgAKmuLCkxPVssR6BHYPdCRldTBeNWq2V8ZlBciAA+wiXk8TxfJMtKkQSIJOzrcml7TOvXE3mQL2Xq/nSyo1mIpXS0PsvrnVOnshit7uWmQMATiR4ELegY9RcZ3Hn1KvDjCKEY5qhwW4QxSTw24SG0xHRDLBxPxXPpsOs1aXjekyUQolmk2Gdflluz6RE3k4EpezKmuJkJX0lR3ksrgDFSHph7kqSoDanrn/6xZe+8EVfujz1zQVquNtpgAL+6Nj9Rw9u3Hjp9r0XXlGD9bU3pUy9ObW4/8Y3l9XVk/pbd24OHf21vezGwub2Ox92X6+8/Muvbr34vYW5zRN3fvM7Dz/91pOH9x48/+LtJ//49gc3Tzgu/D//5S++/8f/+U/mXnru+ZnWyk2tfm700c35z46OnHry3vF719Ze2UoVh3PFam2otbSwsJfKvPj8/u761Xsv3L9z9tiRc0/Opy6evLp+/u1idv/m+7vilVsLc8MX4o1Oc35pdnJ+odacnejoqYkb5UK53JlupKuFQnN8vFlQShdGZmcvLnFbl88uRDZvTp1Z3h3f3ji2WFtb1oc354uZ8spedbyqrc3ps5fXK+XFM+NDF3Jru0tHTk4a2Z36xrn69O2Jmx/+1R8ePT5b3B+f+/Q3lh//4s3Riytjm0dW1xenb+61OluTtbyc7dbSWkIykpjpGQRJ6iE9tBjGMSQMMQWRwwCWyQYOtPACQLTfH+CCHioQBEDGFBxBUZOwoSgbgTEzHnQSHhSUpB6T1JiqxcI8GmFBUQyD3Ekxz/QJbJT2OUxWNx0Mg6LFREAfYzO5KA6KpiRFoWRFelOToMS87lgWipSCSCKgcwbO44rAnhMxXew/GHDYHO7BTx5wQ40krH0Ozu8XxCDp4bDghdG5KhrleFh4ASHMsiHg4ixFEGiI3wPgKPoT9SAYJLqXj0RBiyUkPLXspciGQyLeEeOeQYNETEUoFqF25fKFjAGbK4q2mUEBjZgCfjGX0nPFtJoESEUvLD2JAicHDBsrQR025OTM8tG16aXNI9u7C8moBGrbMFIgTmE3toZHFzZ2RoKygS09KkCzkSlVyq3J1eW0Gld6uU+wyuoNWMzN4eHu+MzC/MxEFCSm22EXjJgSzVTK1UrOAAmDntiKrvVeHmeRFVWFd4KhQ2jI3IsCjmIHloAuyR8j/aQnyPkD2N3uZwK2PidNeVGGkX7CZHYMYO8zVFGbm6A8A/1Wq9PHRSUAYBy2RicGXBFIZ1D94gl0zwMSSguOafGcz3Gwf6DPRLChqIgDubJIugV4NyB5JZG2OIMRXuzlJCY4jwe0FiMAeU9iRyuSlma11mq2R2p4cTc6NjUzNT4+NTc3PT46MTO3sDgtB8NiT3oHGTaE08AB0kX5SEziBXKBACzJeBYXjcLfKz0dfQ5R7gDldtpJv81mIfgASXltfSZ4CGazx+08aPUCbFK9OWC7ub/PZHN5aQyr8GCvuBUUcA7bggM+rlkvotO2BBpGTyZTGSOD9t8yR0kK46cpnxMjpCngqNEQTq5JcliJBX3+JElQDM4B9wxIegMmiVgqYjWbCFDdTpcPGAEBYE+6CJcL25mePXTgwKH+QbNl0O6wWQYGrGbHx+0ekxBwDjxDBAX4HrL5VCGlGmqU10fzqsJT4ZIhY/MgUe7Wq9Uctr6qCT1m5GDZpuPFcikPIrGUKyIAqxG06ORxC/qBMxvYMZjP11vNBqy1djOjZkUGABjHTTN6oYrast0az+H68FMMFwI5i98e2qerCYn3u73OQad3sN/ldjhh27kPOyzOGOGW4lFdoxlBl0kiCLovGtZiCTz4kFyHDw4OmKx9A86+Zz5le+ag12p1mCyk3WJx22HnBaPuZz9u8lNBKVmIwZtDN+goR2o5EQCYsCVLikQFBcKhZRU9BVpQ17OGkS0Ui6VqpZRrlsvwmUhhPqKIBqylTrUKQFgfMnSZ6wGwlMCOKQRgv8CHokIA2Jff4XbAsuaZMEPaBmxOX0QN43s0+bx80GOEg9EwVBOJ9ktBPhDwWWMGTl34EYBBdBjFnhtlozM0Mg4KOBHB2ys9DZwGuEsln6AwA1XS8tUmShvYQ2IqKWhZtdLqGp6BgJfuATB234EC9piswGiBfxup+sTiFgJwPqtFy7VceeVaI2EYKtQpQNP2iZOpcqWY1dJzN6tSLAaPTYa9nsy2FnfO3W0FYuGQHE+lBSkakxJyvOcaownBUiolO33JvCEErZY0tunHukm9WGE40huKNUdjwaCLosPp9e2Uh5XVlSyJKY3RmFZozW4m3NTq/MX377zyxS94jMrcd1cCI91uY+2FX38rcv+9N69ev3b30v23GK689iCaAmgbOfb62++kF0/k33n5hZGdr28nF5eP7X7wxfGHww8/eunIrd9ends6eedb337wztuPXr9778ZLr7385YUv/PD7l8b/29/89W/98Z9+e/T59xbzI/ULJ+Yvjv/K7fH3G8Mnn3x6/7Urqy88ePXJW4+vX7l0+tL2+t6oXr27N7yQXpqoLy4tzx07cfN46ea5a4un38gZOzc+2Feu3lyZnbydNBqzR49MFApVaWg4XktLMy8k8A7YUNPAlYbazaFuYfj6yOzijTX++AvXl0MbV6d2ls+MTmSS2caJoc721qWzZX1+rz1THj9aH9rcUarVsSPbMyeay6c2ts5MpXJ7zeVr3Ynr1eN3v/LVjbHF7trksS/++sz/8vN/3T2z0FldWZ1fXHhhO5PdmmyVE8WxRgo0p6HKSQldc30k6aXiUgAAWI6FAID8FMuxctpQAEp7d6wBJsCjaW6YQ0scWoipOkexhNXhxO5NknQ5DgalhK5IWjyhJaOhEOC0jVeYaFJOGgwneqKM32FyMqEgiC4uyAGkc3azy8cCU8XLC2C5GOca8HlJryuqx9O5TCabTkSCAb8Htr2A5gXxeMxgn7H1Wbw+u6n/WRfsWLfZ7AZcDUHxfZomCMWcY+Hv5imCi/A+ws8Cacf+xgBIIYwIliTQTiDgOM5L+emILMV4KSah654kg2aLhKIgV1gOI7STupHKpA20eSxh6komlcDhUvT4F3qe0CLwXVCv2FWUAiGcwRQ4NYGef5hj3uoFC0wurI2vHV9Z2T+mKXHsf0717HOKtfb4+MLa9qiQ0FUN+yQyup6DHVWbRgCGv9xAAC7X6vVss9Ucm5pamFlYWJgR3Rab22njMzhxXC4U8noingHFY6SMXApbxzGXWFPhbWBjd6JnAClj1lQoFA2Hwmge+DHGh97OmOvEMRTtsw32e7AJiwbBixe49gGTzWEdHLTavDRptVhsaA0V4Zz+cEQMB9hwJNLLOkBDDhTAUQyRwlboKJp9RFkfOXhg4NCgC8iQJCFEiz6CC+sgxhVRDFi9YlDoTQEnpDDHCTy8YDiGAUOpaqk2NNQAGVbBePih7uj4yDjg7/T0zMzTOIaFlRkZyWEIdHgQ73sBgAG9AMWsTrzQw4N2Efv6pSheUyp4WQlyLxgwkwGXy+0OoKRkGI+LgG/KSXkHnYTH/IyZ8FMcVD43aRj3EQAAACAASURBVDH3HRhwum1+Bu/G/T7CS5ilbAYBGHig2GgWUxpmUsoqKuB0ErmOGqGpZCLMsLTLjofXNHxLyANi6BMlAvbzSb/DByQQ71qA6sXiWjqpxpJhiy3gozxWm8ePPqBePIL2uS39h+HrkwcOf/Kwc/CQ3eE+fMhi8nrMnzrsZnlAYy8pBnyClC1VcnoqERfp/FhGkRin0DTwsIjwlFqNYjaTwaMYXU+n09l8Lq1hMx+SyHKx0sopKM1hC7IsGaAEBZVRvlTKl4datUq9OlQFFslxlDcYCfFqJpurNBpD1eHOaIYk/T7K76UjoiA9PYKOSfEE9iQ5CJsjYLbYSQsNRNba7zE5DJs7EoPfwNKSJsKfAtqqRDA/La5K5ME+UMCDhw47iYOftA/aLJbDNnh0Tq+bFPh4Xtb8pmcGPYQ3SEUktZY2VFg6EZ7WUjH4Fl2mZEbhgB7RhFzQYLdhP30SuycKpVKtUSwVW4WkJssCB3xPq9bqDUMbGu3Uh7KpaIDmo5EoMKdyJTOUIhhaCIkCzfLwUYP4pYJ4SBGknIftBAmS22J1HDI5AmQ4kA4zkRjv50KcN8QKDKiUhCqHAz6nNVpQ9QT83dh1WW2iAu7k1FgY6L8MCrbZbVVb5XKMRh+ceDpbaURg04UEAc/u1Uy63G7JPpOHoaQowxLwEH0sLAa7GTYYEGg1PzSzsn3+5cupXC6u5Kr52sKNVlSFksgr8WRqZPdcvlyvprXc/NUmFC8sgPGEHMt1lnZPP6hTaZHhZOBoaLyOZmkgcIJiOIouKx5vHJ4G76QMSYFyIOiG0fTjYKfaGo0JISeQr/TKEc3ui1RWoXQDiYooyXJ39owYpLpHN3/p3ou/9FVvprj07RU/7NPa0btf+2L4+cePL714/eUX7j0QQ43d9+NGqzu6vvfp/X/7cvVM/uGDK6Nb/2azvLx85Pi7X+4+Gn71o9e2bv/W2vzO/vPf+O67j9568uDhOzefe+7cJv/Rf//7f/zZf/3bv/ij3/3R/9V+41GmOzp65OzS6Yl3X5p52J06/uitvQdXVu7cnds7u/HKhw8+eP/RBx8+uTh++7VLN65d315Y7I7NTpersezNMxcXTz/M1Pauf3or/fKt1akjr4YqRUDZ8WIl1amMt6pdIC7l2sqRxc2Fjc2t/aN7O7vHpmfOja4v39iI7z5/czGye3nq/Or54ZmxhHF+vHHh2njnwo62stucaWyVujOTzdVv//jO8KnjJ0orm+OrJ2aMyonOxtnR2f367oWVR7/34lj72PTKl35l5tv/+K3W+YnW1tb06trarf1O/chkp6Dluvl8Ro8YWUWK8kBtvYTT7RWjaMMTlfH4jYLaHIxmVFnmo6zAcjRBMxTr9UHZ5Rx2D0WLKjD8JGP1YQCMx+3xOszhmK6h8yH8OxoSWMrtCIqRuKoqKSbC0LzPa332AAFcjwvzXpy7YHx9Tgo0VQgn2OJJVDaYsUMR7nAsns/jbZsapWBl0CArerMPSShe1CHbgDlgGTx4cNACZMBj9SR755kJYJ60h/T5/U6CwrAjXohwAdhdIYaEEkuxEby4BWEroSUgGwiwHpbwBYOwMjFXItZLPhIjaChMB8ICF00oahovgY0MFK9iPgMSWMMU8mgYO48EJsAxsgGEIwVVGTZJSk2lUjhgYuRTqUIF3WG7oxPTINvWl9aOHd3ZXdUAdFDWqvmclgaxNz4zv3F8hFdwdkiFWpJPZ0oNQO0j87KMShZKY6rYrOjpxgjg7/jEzMLswmTI77SBJsUuK9moZQtGRk3njEQ8xMkplMLAARKqmkgkUYwrPSEoRCXsHJZFHnR9lOc+5gd15+9ZIYEKCtBAYjCX10cRpMdhNjucFqvNZh4w2W0eyo3mViQliULAxQDKChwfDfcCZXvnz6Cs4avX4QVADP+HngkM0X/4gMnGhXhAIDSmYumQqAOhkRRNMLuiUahACg6mhLCrC14lLAPh1418Aap9vdYYqjU76MExMTGKADw1hXmEk4DAs4tTUjAUDoZwmKoHuKD6SAJKocXu73VghfDvE/E+oXcJ3Lv2DoUpi49x2p0Ea7fbnCzr9RCDA2YH5R90ujzWQ1bC62eBQ7rcVkv/wUGX2+VnBQynpjxewiJlUjk9yjABX6RWxTWJ2h0eMKBaOpPWNC1CUYlYKMDAcnc4SD+CN44gy3IkKkRg7QlJygkADI8eaQFegeKItsZb3QzGXnopYD4+Esd/Cctgf19ff3//gUOHnzGR5n6X0zVgdpndpoFPHLB7/XavkyRZP5sp1ivVgqrGZIlNd7NJibLzDQMwx+8iCs1GKY+d+djX9zSRIWPgqE4RuFqpUB7KAgBHIr2MMVDtQiyhZzKgkOFXWtVKrdKsgMYCAPYLICL1bCYNuFapdTtjacIDAEwB9Q7zT+FXUeR4DGPP3E6TJeC0290AwHLMYSIH7KrVKShxifV4IpoSoLzotSLpvR5wmXE5Bg+anOY+k/ngIcJqHzxsQ0dxH3xnql4ZazdcQOCcQD7cdEguZTK6KsKWpVOFpMTRbksiJcHeQ7/anKoBz8SqkMJO7mKx2chms808VA1R4BGX6/VGTdcaw20A4HSUpRCAE6lMpYoAzLE40gb/YvBA3kfDdk4qQZ48ZLPCeg95fJLJ6vE4AsE0x0YUxuZigwCVEs94HQlD4ikfaQrlgOlmsUGqXCk3ngKwhl3QEvawAADXOpWyTIWDCMAZBGAOdgUvxhNiMmuU2m3FZ/ayVCwaYEmP3e5hCK/LOgjbSFbVZKY6s7Zz/qWLwKoTSracrcxd7CRzGSUC2yWRGtk5mytWSxktv3gTAVjgxYQSkxOF9tzWqTcafk2GHSon42IU6ktC6Q16iEIopXI06Ytn9FDA7E5BtYsl5USu0iJ5hyesdScTguDyB4OZ9S3D4QuV1wzYBRQLEqXQnj4Vpejq5vrn7r70IQBwZeXbSx50Glu/8+XfaG6/9faDS1deuP7aIylY3HqSzA2Pz23d/FdHL39hZrNw/7VrU1tfP5JeXjmy/+5Ho4879z569dgLv72yuLlz+1vfefLk7XfffvzBrRtXrn2j+e9/8fN3/vaf/vPf/eB3fvAPc6/eyA1NL9bOHz8788HdxbfGJ068/c7xNy+vvnc7xPg7r84kdx/orebEuanjn9l74bkX733m3ccPXn3p07dWJl88d3n98tvl9snn3t9Jv3Rjd3XpVm1xb39tb3dn+/yZk6cvba3MLlxf2j26f3xh7frRiRNTsfrsyOzspZljC1ePJfeeu7YQ3b86cWF5p7leSZ3eKW+9ptsse+caU/tjc+NL7fZM7nP/91f/6M9fOrFysr59cuHY6RmtsNtcPz8+uTX6xu98971/+EG5tTl75PUX3vn9Hz6eOtNpbiwOHxkdvXhyeXGnXU4l86PlYkYVVEPCXhUAQT9BwjqgSKdXltFqPxDwe0NiVpVETgiGOJ6lhIg34A9EFSWCeaVkKKkAANMm7B3x4s+4bLysJXvjJUkorQJHe52huAxIoMcFBhu73DRhcXkx2p1DHUMxvsNoHdTzx40Ay+WezrfQfiKiJtMZvG+L8piagNZTUkI1tLiUyGQ0l8VFOizWvk/1uVjGF1T0hNzzeGIEwACWDcohlkPzSjnM8LEIG4kHAZcpEO8glHFUFPQg38tdYtwBNIiA4hDDZmi8NgQNLAIPDXJcNIYuc2nY4tliPpfPpvOYhNNzOQxhtH0QhLUMhQ5QUsNzPIRqHfuP9VI+V6g22iPt4bGJydnF1enZ1WPbuzsbAJnxJHyhg2G22hgamV/b3G2yiSy8iC4rAN/pUn1oZGZjPhYHoaxDjc+WG2Uj1xwemRgfGVlaXVwaD5Jml8PmjGEMlF4tF9MpVQdiAOxDyWFbUAb+INRQqPFx7EGO4iRs9KlA5bHkgOr9mBcesYcF8YnHijRNDljg46bRC8vnHhiwmmw2m9U0YHHagVaBIHa6aFgGHlcwGuSCQOZx8hdtjUOhHgCH8BT6n5N4MQI4zHL2w89arf5ICN2oZAl9AWMaGnPF9ZDFhZdSmK6sx/kQ/GpPl8vJTFpPFUDv12pPR5G6I+OTk6Pjk+NjU5Nz05MTk9Mz0/PLM1KQD8GH+xSA8XqBJtyU32Wx+QT0vsL3I4oKel7Al4xICG/PZ6ODhNPlxzxgB8t6fB6TyeYOUAMOl9c5YHeRXsbrIhxuG55A2wFpGLRppHE63qak9HxKZtmAJ1yuFECPYWs5XhgYKex6B0WBACygWbTDiQDMhnFcWlTkqMSGo0GvkPADALPoIiajJSF8MMjSOCcV8LocJE37/b1EDLfD1odfhw8+23fw0EErMdhvHhzss3usjj7LgYMWk9VK4V2ll1QanVoln4jHRIXTmzldphwCAjA8C7JQR7OQzD9PhKtaOpfDlYtOTQUA4XIzAwAcjrA8R+P4vwDMBzvtywDAQ5VytdyoGCkdezDDAHpJWNJ5PMzpdMZShMfXIwt8WIjKCbSCjilxmQ8Ai3D2mQI+t93pZJRY0jnoNNlki52PJSWP3RWIJxjKw0XkRMxAVhiHhRu0DjjcVrN5cMBCWi2HniFoXIjwjvRCa2FjwfLMswetbgfBKGm1lM3qCtBHwZ+uqjLjI+xxXYxgBrULbRk19DTBPjIM5c03a+lsrplLqKDSgSUkMu1Wu5UvdTqtRjufkbieJaaeK9bquXaa5IMCkCKoPUEmGOZpeB5xQwlK1AGTyUcFgYJrhwY8DqtP1AhKEBmzjWcYFYNN/PaEIXLA9AeEbFJXcwU04UAA7oxOdvJ6HIihpKTg7XSGap1qRaZ6Chhwvx7heDyCDieTUS2jAgDLHpOPoxIizXr9DocHliZht0TCIvalZMoTq9tn7pzTCgU1li1lKrMXuno+o0RBRCRSw9tnsgDAoICXbjXhJwReSsIK0wr1iaMnXx+i0NiIDcdisBKfksYk2giFM1rA5/HH07pADTg1KA6JdLrQXZ4h4k4qoo3gHLCLZrj06qbuCAjl9TRNeQIAwPFSd+68SHL67uL7L77y5a96042131z2trvt+sadX/318fn3Hzy58sLty3fuS+H6sYdqsTU8tXLia9P5L70zl7975+rs5te3MgDAO48/Gnuj/eCjVzZe+A+LCxvHbn/rm4/euf/Goweff+mVl1/6X2986ZcuWN/7H3/58z/9/n/6+dHL48Xp9Qu5vVtnp96/M3e/M3HiyTv7988vvH6tr7j99u12vX7pZSG9vNG5+4YsxaM39/VzV0orU8e3Jm5fvLx68Y1q5+TN97eN27f2lueeX1lcP3K0MX9z5MSxZrQ5Nzw9f26pKRX89bWhWGFltx1wKyvz56eOzl5cl3duXFmU9q5O7s4dHzuWWbpUOfrcsIMkiztbKzutlTMjo7vXrv/V97Ze/Y9fKT13fKx7cnHz9Ixe2m8dOTc+vj7ypd/66NY//ftO48TC6uX73/+TT78+eW6ovL03lC/WL+wvLO108ik1N1wqpg0xW05lsGsgDEzdwyZCFGkhFJEOoBkFHQhGjSTIpjAv0LTPTQU8fioQViIsBfjr5kFhSRooYJ/P6fMTbo/HTYsYrKcBAigCLwQpj11AgyjdkMN2lqUCnK6AVra5SaebYmkvSXsP20kOw+WiYVhUEZwC7kXMuiOGikIyncS7ZNLnA1kBSA6vFU9mK7Www2n3WczP9A32BQQfdoiBkmEltYCmQCwXiQbxpooLCCjUGCaMh944XwQggQGxeMyMcXpUgHIEQIlJMRkjjKXe+GhYiIgM3o4KkpzQMI8olcpi7BkIoRygcRxlTIjHQ++gEIimDD1tgP5U070oopSehNoKeqOAvaOt7sjo+MzykRnA3/2ttSVQDXjYrGVSSbVQb8J2ndk4PsoreV1LJSMS/PFcpVbvTm8sYF6KntR6fUmlbKnZ6YIaHJ1bWlie4j12jD6QY/BGjGIlpcYSOSAIWUPPZ1MavOMUnkZr6FeM13Q9K45eaxLgHzIP4MUfo3iWIBgBz58BdinPIXMAXc5oivB7+vuhOtoRgM0g6Egb/MdNcIoUJMlwlMNMQoxuDqEHZe9KOdIjNNhkDXVDEUNQuBnea3rWBpUrKgGxkgW2d0IBoBST45zNGxXiBry3uCYHQ9ioDOQJADibNdLlar1eq9YboH8BfycmegAMCnh+ZnJiem5udmEFAVj4FwAWQEsztNtFgU63+YJ4NoGeIFEAYPyOI5E4/kAQwh4bxXkJgvYNmkwOjvN5SIvN7Ql4+x2Ez9Fvc5FkANakw2Ub7OsbtLr9mBGIci/gIxwxQ82nJI5lPHyhDnsGI6YSsDIwbNkwNF1/egQNOOp29o6GuDDOPysJWFBMRBK8wbjPhbEe8JPY+50EzaYndYPzBP1Op9MDohKjTKDwDqL47T988JlP9h84eMhiPdg32H/osN1lNvWTpsOmg4dtlNtGeDmbLd5olLLo1BTnjWZWj3NEpKmLQQrqN4jjQj6TSWFfvZpEbYj6rJDvYXCxUAEATkT+fwDciyPEEaVKa6hSrFSaVaCRHOenQlI4FDdS6VIVPpR2d9xw+zwE0FgGdxJIOEUC+FVEjvZ7CPegyU+Tbk9YVOMxp8lus7BmVyiuJjx2BxGKcZSHDinwgeOixDm9BDAJ04CDsJjNVrN18BBJYaYWQ7GJXGPq6Prgx589YKX8AbUzUSymMoYssixPGpWYhOcUCV0RAwyDPwCC0VvmyFTRyrRWATHfzsJ3KEWC4Wg822mNjjW6o+3WULeQBbIQiSfUDLC8Zmk46+E4nJMTJTnMCbhK+aCcknmVf3aQdJkC4XiU/9QA4bIzYd6MrZwEEaUYA7gWS9kTGjxtyjcYyiVRAaMddbXW7A6P/08AjmVKeOJZbVcqMTrM48RIulwDAIZX4kJAn1OpRK3dEt2DPs6XkFnO63O6SM7rJxxWMSKhq0Cu0l3ePHn7bLJc1EEEpCuz14djRjohwqv3ADhTqZUzambhfwIwLDktV+yu777aomPJRBBThGOSjE57PZtd2GipRIAi/bF0Khwwe+JQykQtXW4fnTQFzH6fPjwZ5zigi7yxsJF0CEJhxYAKwQUFWa2OLF1RiHDk+MyTF1/96COv0Vz99gbd6TRrm/f+zec6k08e3H/p5ZevvHRfFjtbj1L19vD04sWvHzm8/d2jwdduX53d+Nd7+bXVo9tvfjT+evvRRy+tPf+9uZn1zTvf+sabbz16/dH9z7385vsPvvbCt588mi39/L/97Me//6c/2X6zqEzNPj+39PDC9GdfXno4NnXi8Vs7r52ZevlFce69q931I9PtO5ORtc2py68QQvfWm+3C2NVzXrV8pPvizWurl96stk/ceG/LuH3n2OLS7dURJctUr40axePbOZoqra2dXFnwOlNb882pxenVnaKZ2Vw+01mZv7QU3r11bTly5MzE5tql6bX2hUrt/FWVj6yd3z51ZCU9dWRk/MaJ5//qjY3P/uJXhP3TtaWduaMnpvTyie6xs+OTm60vfe/q27/4WquxMT3z5O2//9kH92tXFlvHttvFevPcWnt8a6JWMDKtfB44c6aazUAxDPMhhvDwSYH2mdygGZlArw+YjagJORoKB4N+P2kjCJIAfh8NejwEcPZQMiaFErSZBOruhcrg9ro9QHpVHe3R4RUFzu+18+ibC6AUHPQEfC5a5gEuaY6lvLCTce6lz04wPNRvUCpSXGRpnNqlPF53VIurqTxgW1yKsCT2fsCii0UTvQSadCtw6IDDNNA/MNjnpmDz0kw4lkjoWRy7FOF7CDB4PCqEqJDgdftZju2dTvJo1Q/faVTqXQED3jA+Z0CWIxHYw6qK4zqShIYSkSDHwyaRREVN57IYeFbIYn4giFxDQxwRQ4g8ICVpEWRqStOhtqDu/Jcj6GS2hLKhAkJuGAB4fWV7e2v/6NwMaCcQp/CaRkIr1Zqj/y9Tbxre1nlei/pHW9uSSIKYsYE9D9gANvaAvbExzyBIcARJcJ5HUSQ1D5ZsS7Yky5JlS7Y823HsOG3mJmmSZmieJE1O25ymTdu0ueltc9Km85Nz0pybpHWGnj/3fUH33vKRLVm2RWDj+9611ve971qAMBvnpmNGPp8xdXh0aNHeGBgDAE5a6POQzhartVqt2tccGp2enZppz82vzkTZIOCjD0W7kcmW4VWniqUS8INsIZNBAZwCXYCH9/jorc7UqYYhT50T2YPZofu4iBTwcbIgcTxPUSx9BACYxft3oFJOF9Fxc3biRTA6lzn9QSpmGBGKUxUMp4goB2pX6TzjzhE0hmHE0WcLvkM0kQAmRTzodFEKdrVpCkOgcbJh4Bl0QvLQWsRIYa8aoFZY6eRMgUxP5nK5CtAP+Bpojo0i/k6Ot1sTU3gHPDfdbs8uLCzMLkypYRzExjnWSAzHMwWWIDhYfj4GpIWCrekRbEY5UMB4rKGEw3IQ43YJH805Xe6AHKaJQK/LH2SDR/wk6T7kDJAkj9O4AScAXnevjyJZoQPAAh3yJUDipONQ8Um51CjaaDFm2hghjXkM2QymIXEpzHUCAHa5g5j6EZZVPYGXFUJMDZNhiyMAgGVEZbyvhC8gYOkIB1QKnj26xQRAk3sdRw4dOYIK+PDhnkNd3c7u+3v8flDqzu7uLhzbeaA7xPu6vUKBP+KtjID0QftWKTeUs5NRWhtMa7BLiVC50VfvK+YzSexNwCn2AkjgSrnUsSuuVPsGcoYV+y9H0B0AxmklAOBasV4fagCrCIsULStRJZkrlvr667D+xqbSsNVImuM7M+DxBBJRQ9PiMpCUAOHsDQDIxnKpbCLu8xABR8BBxMxkRggSHgZWAElH4L0nYJNZgL/5rCIEunoCgd6ew4e9ZAg+GAoqisBHkpWh1uKy8/6ebr/ICdmpRdhy2WzCgEUbTFdVJUSEgnbW0gQoSUGMFUIAxm2Fxl/wHqrA4YYLug6bNxyO2cWhxsRkc6I1NDw8XiuhEQd8/yJ2RzbaFVoS4jG0ANaB/INIUOLxaMpQCsqDDtZ5WIqm07SbCbH+KBdwcbIckziZEbKmFgYATiTVqMCGHB0FXChVclkorkMjE20E4EQUAbhQrw6NDvYN1moGbDdVS2Sy1b6YFAUAFhUFCGfGGhoZVgMONkybhiyTZIAMYOOqz6PgqBImFo6s7py+dd6qldJWrpitzjw2bmXzthb5zyNoAOBCKr/4RFPVTQBgCy39csXhtZ2nEYCTMivGLWRKCZwZg00aBmmtiryPSeRzquhh0kBP4ZeF4ZUWyRFhMTs6AY/aGxLk1Nym5ZajhTmLBWoOCtiujy4+YgUVfn/q3u17n/w4mx1a/eoGP94abBx7/vOvTzafevOFp2/cvv78q2q4sXrHqqOh36lP3Az2f+Ll5LM3r8xufGYvv7W+e/LlT82/NPLqR2+tP/HN2ant47e+8pUXX3jtmTtP3D1/+d7dF97+xS9+/g9f/+H//pu//tbffnfntUFlubW8NHHv/PhbTy291p4//dLL+/cemn3pZvrKS/Uud2F3vP3SxPDOxOWXIpN3X1rf2J+buLkYXzveuvHopaVLL/aPnrmKAHzj2NbqY/OzHlfywuTK/LH2zpmxQ/rW9JnZLS7y0Fp9IJWdW9y92OdbW394eHHxyrJy+sblpcjqqalTJy+1lne2R9ZWTg9FE498YGT9/HZxcSo78uTOxg9/+ZH/893J2f39wa3jizunp+zyfvPopampU8Mf/r3bb//yd4cbWytzT3/8F//ye384+fD0yM722NRo/5mVsfndqf5ytjRaLqa0cLaWzSS1RDQcEYIUALDAuoIJRQkfBAVG4UPsZOmGATQZUQj6gJYmFKEzbhtLJox4SsJJSl+I9na5SX+AixmpfLFYKaeAVIoUT0QBSdAbKkTRJOnHiw7Q2qBSwnSIFTiS7PEHhTBuAg2WkI6TEZJAB4mgamnpfMFGL0oZhw8FKQZ1Wsejv2yxXFacLo+/p+f+BxxHXHiyrMGmjMUMiQ5xsoTmDjTFSApO7IVoniNE4Pqi3DEjioHo0mUMU8FjdpoUNCOmWtjQjSfROgAwVEp0qABeEE1kyuVsOgf1qQComUMcBgAGzRbr5AyEJdEopKx0OmfbaAOJXwB5gHulvr56f38fCLmxqfnFxbWjm5v7x1aWOgo4nSvlQAGVKv0TMwure2fG5GQuYxkJzA5L52vNkfbCxmInrA89tUpQM/sHBpsj07Mz89MLi+szUsiPN5mGlbTiyXTZgu8GxTUP6sLK5EsdFXwAwHgd0Bk9TXQGkNALKyqJEkjE+xiRBYEKJIThAIA5vqcX6h9IGSpAUW4n6l+Px+XodSMAO1yBIAMfUCTIQ9GRQHtiw/P/96UcHEPHsMs6DkgcVXAkIsx0dXWHpCg2JUdDHjtt2aCAknE9FfOQQMaTnWSkqDckaQk8q00kgJrk6xWQwGhF2UIjrPbE2OQBAE9PTwEAz8/Pzy60MVQSW9AlKQKUKiwKDEEIHQCWOwAci0XiHQ8sPM7onImHpTDpIxkq4KZEt9vtl2AVhvAImqOPBEJBxwO9forCxixvABTnoSNOX4jiwnhFge7YXiOTKtgxDgA4XKykdQOeq5VB+MVMGxBeWZUDAFbxhQTcHpLnwxFZBlphabLER4GuyrYQpNG8FJca+lfA5wo4rnBiyM9LDMmwZBBwqvvw4YMT6CNdPb09Lpfb8aCLCMHP3b3OQ+6urp5DXlYiCdqesI4cKo9X81mcNhbzwzk0aNWaKT2KQUmYslMt4p0EnkHj2Dm6FMMSwciFSq0BAJz8TwCmOwCchUUD/74+PFQr1fuG+mARR+ERhWPReCJTKDUGGv2DQ62ZVJALMWzHRl3EiRcMNwZVFYX9GvC5eh2AsWYmYWlhjy8Y7O51BGTdzMQEyhOMGcDfZU1N6BZen2Nol8p6nV5fr6f34AUnoAAAIABJREFUyBGapfw00GgOCoyYqLYm5xb9RxyOANCD9MRiHuP0dAu2JJUpqwoVooLpAhSusMiFzM4pOzI5bCyHulOoVTKV2mDBjIuqGhZj2dpQbWKs3BodHmtN9ZUTCshaGy3o+ocHZmq0yGG7ckzRMLahaEENEg1DTYcf7Ar0dEnRZDkim0Ga1EBss7wY16ISLeRNNOLw4D26yBDdMgIwPNd8tjKAvneT7WFQwMDPdbNQqw63hhtD1YrGyAjA6Uy1HkMFHBY1GVOJM0OjIypo7QhtAmaHQgEqEOY4MuCNx7WOMU2ttbV39unzRiVvm5l8uty+OJGvFEABAwBnxvYulKr1ajGdX3qyCX883iybhmpkSqNrO88M0lbSjNFM2ACd1PEtMw0tLsU1nDXxMkYuFxdcTFiIouCwys0KSXtCQr41mYjIvhAjpxZ27F5RLc0loUJwoqSl6sNzl8xQlNpo37rzwm99TMyPrHxtmZ2YHGlsP/OVlyaaV97/8t0nbj9x7wWZr688m6iMjk8tPvLx8wOx2S997eb1h6e3P7db2Fg+duaVTy2/p/XaB29uPvGnM5PbJ25+6YvP3b17/erFR08cv3r5k+3XfvIPP/7lO//yz3/9ze/8w8KtweDUYnO674mLw68/OfXy0MKZl189+dKjy29eGXzj6oMOii4ttzdPN06MXH5jYO9D0x52bHFp67XBoeOtK+cfWT1/p3/szOOvbyWvP7Z7dOHRzfVu4dLS7Hw6Mz+6dT2vHtu4urEc3tqabggkwQ5tbpxOjK1cH5+fu7IaO3nl/EJ86+Li3tbD7YVzE5MnT623be3Ym3zx+Ep+cWS4fWZ1+v3fff+fn9+cmd8rLh5f2jsznaruN3auzo8d73/7+Rc/+ZMPT9aPz+w+9tc/+/Arn2mdG2keP97INsoXdufWjk1VMum+mb4S7INiPQv72IQqKpK0rEc4yhXQlDAHhZmhmEjCTOpRRRLDfCQKAoMJADLDFmPZsMREk6ahpMIEF/IRJOM97Mbep6iRwRC0YlpBAKaJqGmiKlScmgQSGf5gXqCh8EcjDIhpiqIcgZAAKggBWOtYUUqwvEkipMFGwI7idBIIm0jC+o8lTN3CKOt8paakoozT33XE39X1qy6jI8Ai8N0Fy4jh8DGQSJAinMBKIUqi3Q6Hz+UKQgGIyABBQIyhdEQ7cUjw37KKCas9kzb0pIVzdHhgibmIAMCqYiAA22icXsiXS/lCpZBJmWqn4xfwJgKlKFGwMF0FxGsxA5z13SPobKlW7xsYHhkfH5/Ek9ONrY3t4yd2NpM43JsGDptKpnKF2tjs3MLR02Nhs5BQbZAsaPoBADw5v7YAvCWdzaWxekK9aA4ODIEgnJleXNqY5kGg+nwBkPxAUkp1IAaFIgBvNlfIQI3NZ4A5w2dqowLG5jT8wkwgeLbwjnB4VxLug4LncpHYWMQCC+JEVy/JsUywE8Hg7nG4AYI9rl6nxx8KeZzuQJCCkhD281qEg49O7lwBRyKR/4LAOCAMAN+50FVNWwsLrq7DJAAw/KMc9Bi2mTaShqXqyYiH0mKG3QHgSLeLiUNdUE3sDU5nKyW0/RocGgIFPDY+MdFqH3RBT8PXzOzs3NzcYlsR5ciBDQj8rQPAAULgAm4vGm/Bpwd/xXFEVTswhD4A4FCAZumAhxc7d8BCiCYxA1DgugPBQM8DLh9FAwADiDscXYe60IhDAPBE/GVCbi2bzttRAB46XCjaGsa5WnYmbSaAHuYA1vIqy1lWvAPAAT/F8zJ6uaiqpeNUSzxMyRZGg8gYCxWLY7MgQpCd0WiKJPGQG+9zfKC9D6P87e4CCtDldLhdXneXx0M4XJ5ut8/h7Ha5nEFG4BSl2Mp7uqtjZVS5hiFmhoBIAwD323pMYEm2UisVYE2kLJTqoIABmQoFgN9iB4GrAMBmCo+gYRn8/3fAOCLcGB2qVRqg2ODlxUTY/IBOBlDAvoGBweGh8bkUZvbhGBIw1whwVbQ4QxgWmVAQnSgJOqLFRFhibq+f6gXaJsZNEJRiiBBNlg1KOLwKDDSJ5+J2nPIRhMfFBJw9POV3AfMDBggvxyiPziyuUF09PYTACOnxJaDb6bRhxAWezZcTKs/SRLqI/vQsFzSyGH6NjlyJVLaj9MulLFAI2JNiDGAumq4PlkfricGxkfHJ2f6yqUiqlYY31GggALOSGIugijcTGdg6tq7r4YRtGMwDR9zebkI1yik1E/DyejQss5xi6IpIAQBrski7Eik9xjPBd++AS5VCoQY0ZbQ1PjFUygBdkA0rX62O4B1wvarRHQBOZSr1iARSOiwYsplOFSqNkWHF28PLpAXwieyXiEqgH/xxRYfFlS+VW9t7Z565oBazSVC+mcrUxVa2lLfiEiBqanT3Qrlar5Uz+cUbzbgKGlpJwIPSMrXx1d3nBkKAuAmB4eOW2elHBBWsxqOw1bSI6KO1TBYB2LBKOS1mjwzPjfvDJKnkxqetSNgTYiL2/F7GKcVLixmJx/lNPV0bnL6QoGVqce7a8/d+84NSYXjxa2vs+ORY/8aNr76UWzr91ov3btx6/M5zsjS0/2a2b3pqcvHip9eP1agb/3DzyQsTO184Vl5fOHb+lU8svaf9+vtvHr3xrZm5oyee+tJnn3nu7tPXLj58/eEbD38w99FffGP1K//+v37wvT/+9ncnXmsRxbnp/f4rT068787se4enT7362vHnLy3defTmUyvxT/2vv3h0prlwdX15+unnC2/eDT3oo/e2xx95uH9n6sYjN45dvFcfOfPYq+vWE48eXZ9/7Pgce/bYdlaP+rnV+b2j5tr+me2d6snxY2mPz/Mr/Mb42cWRpavtxRk8gj5/fEHfOj+3NvPw9ML+0PqdddIsqHc/Xans7I6utgZH5tfWB6sDY+O7H/+/r/ZvHFvYOzub7Ts5sPXkZmuv9Pybn/7p3741WF0Znz7xyl++9+t/kDq/PL69Wc/PNB89sby6Plaxk/0L/aV0SsmW7JSd0OOxiEAzohZjCTcRN4CH8RxF82HQnEYUrbAwwz4SFkkAX+CRLOrMSNJiCMHvIH1OimZ9h30cQQCcZYulYq6cUyVZoIKBaMIs5JMRn0cV3STD01DG2EhMiqJHPfwxjAMVcAwA2EDXXqiqoiiAEiNiOgipZCaX1jGMgaA5PqIbcSOB8wb5QrZqBru6PbzCeHppVeG0uG6pjM8XEiMSbAsPCAoCtjMUuLDsOdTtoNAPS2SxT1bupAJpMUlAS2CKoaIpqKkZvNAzQYN3zlIVgFZZioKCSkLpyhcreBBdLefy5Xw6Ccv4wMkPHpkoGLmEhvrZAILauYjKAQDCKyyjqdNICxjx9OzC0vbWsf3jJ3bXof6k8KIYx4Ryxdrw7OTE+pkJOZFL6OksAHAmU6j1NVuzKwt4uAbyv1AEnG7Um82BwVZrbKo1Pb8+I4TQIpjoBPrl6+UyduImc/l0vpwtFuB9JLMl+D9BQoNQw3Nf7IPWDwBYliUWDYfv49igy03yHQAOQV0PuCh48hSAQZDw9aIPlsfdifYNhXwuACQGKLQcCFsRhsXmNkV5t/3q3TtgBW04UG1iF1QkaqRtkQ84DjORuK6ABgx6oTSk9aSqmaom+jlNSNi6AYxccDhDEV3VkmhqCKiE6bVAN5oDY6MjgMCTk1Pj7WlswpqZnZufm52Zm5qbiIoRvHE+AOBoTAYADrBcwOkmZUxqgrUUQXfRzt2ehkCMR9BeL0WTPq8suFweIiIzgZDHG8Ar4YDf23PI4wMFHPIDiDucPYe6/UEM8JCAkeD6cKq5TA4UsCgx4UIpYybwusKA3zLtpIEnn3lQwAm8tmGDAcIPGCUBB4CHAfxIDatalA4bBAIwBlqjgyN8LqaVTWX0IKxRBtZgMEj5nF1H8Pb30OEjRw7jKTgoSI+32+UL9Xp9PR4vBkQG4FXynBFJVsthX72ZLxXSdtwQ7WYlE1NYrWFpUZ4JsdW+Cp6IAvimbRNnVDsIXCgeQDAAcD6Z0WQFPcvgRweAC4VKtVLpHx2u1fv7BirAEWMSzcWUSCwFArTaaAyMDE3Mp4JiiCLRoqSTrIVRlyCyNAU0POXxuh4IkEKYo1U95vP6WI/TT3AgLG0jyhGsIfBBALukjde1uEKtOEVQfg8tkt5ekfR70QOMI3lOSlUGp5dXqd4eR0iAfxpbtPPlVMaOx1iGL5QsXRKZQKqQ1BWe5IJ64aAH2k6ZnSPoYgFUMOjQgpkU4R2Kslnqyw5khPrY6MTU/EDFVMLxhJ2v9VUbQwPTVVaGTyqBRwWpfLZUwQ4xDcGdOtQT4LsctlkqK7a3OxyLRvOynEyqMhsU8sCrBNJlZfQI8PfeWDGZsnIA/JV6Xx2W7dj4YCkLouFdAB5o9I329+kdADZS6UoNL5qjkmBE4DVX+iuDzYi7i5UIOyGFQTeEAhFJooO+WATzaaBQjGzunHrmvFLIpvCIrTZ9eVRPZu04C+vIHt69UKk3+iqZ7Nz1JuxxeDcG6phMo716/IX+gJUwUjFBUCyzcxWDVr+gHGKmLrEeMp7KQEXmMibI9VhqbOb0xq9ydFBKj88kw4I7xEeTM7tZd1TKLWYlDpi6qKUqjYmzCS7MzC49/trdD70t5gbnvnaUH22NDmw88dk3xd3FD7x058oTj7/4mq6M7r43WZxoDU2d/vRSYSPYfPOFexdHtz+7WTq6dPzSa7+58Mb06++7dQwAeH3v1LNf/eydV1548dqp008/8ujlu5WP/tuvx/e//9O/+96ffu+P2veObqz0DT46d+JG663n5n5jfPzEa6/u3D4ze+32s/cq3/mPr/3JI+bc1NaVoxOP3zx9a1NS+CNTp+bWH9ncmLt96fG186/URs9dfX0z/dRjxzZWH9kZnTi3dirMEc5fsfYmH+6fPfXo2sTplamdqPP81RtmfXL53MLK5fbawsMLxolzuwvqwtbgxtzZweX1ys55wy4V7dOzSu3oXqM1Xh8dHB2de+yhufq3f/GTRyrHji3un5vJ1PaHVm+cWDhXevqj3/5//vaD45mtx/rX3/rXH/34z4bPT43tbE1tXVt4eGdle6XenzIb83VAk1i+BthjQNWUOJoREgYf9FNG2sKQMZKNRpOJJE4hAS2DhaNEJcqMcqbChyhZ5qK2GXCSLgdLQpmm3A94OJ+Hjpl4DFqslYGQCSGSUg0DCGHwEAsfo0gDlxIINsqhjzJO5oqcwxvkZUVTNBMomv6fXtC0T9SimCBSyMK/ikJZEcSoYSgIlVhPSlkg8Z6gJmkR4OpRmfQTfJjDpBaOYkTGSzI0ugJKPlYmnaQYQL3GBumOPELvaUXDPHKRwVM4pYCDhCmcl9MSAK0dwyixk2mjmymAhEqlnIGdDQCc63RBqyrIPPjXSiwsi0YhiU3+GqZ85yooPRCAc7ly/0Bf38DgGOjW6aWN1dVjJ4/t7iyqcd3OgUZNAXXPl+uDM3OLR08OSWkoeR1/fxOqQ31gfGllIX0QtlME1K83Kv39A0OtsbHpkfbc+owYCvW6PR0FbGYqqXymYEP9KGUKlXQ2ZRo46IT3xyg1dEDISKfvO4aHC7KEjdCAw/fRlORzUAxgDM0wNCv4e0Ji58ETQcLt8hNOj8/rdnu8HpJwOr1BWtDMWJSIJDBjMqzE37W2jEZiOOUbOxhE6ly6dnBYT9gKyzocfimeSMCzot1AnYp6wlJSsYTs5bRIqtMLbtC9TkaKJAwds5ZNO1usogAeQA8OEBOIwJNTU+3ZucmF2ZnZmampudm5ibiII2AR0G/AgjCLGHieQPudbioSx5YaJYqe/500BjQ4xfb4iBwkeJ4iCIlxwrsSRIb1e3sBSxiX30c4H3STJC2G/EGv3919//0OtwetKXEejmPRCzqfLdgRgZWpSLYCZAfbIoBzGXhRl06B+ImHRCsRFSQx6CECDBeOA4WTYzpmV8fj8SglaEwAPc+hBOIJdAIwOJPJ5SS/EGYogQGOQ3T1OLoPPXi4G8Rvd3ePEx48Pn2vt9vb4/M6HgCJidLd0+PqoskgsKFIvQE0NwvUOVYYLMJnE9SGchofZkmmf6BSL6VzWbyoxmPobCGDt0KwKQv5fKVc7ccjaEwLlTB5DLYVUMFyqV4tD7aG+qqlvmY5ZadEnuHhI4ZVXe5cgbRaE7NWxy6TA/QN81IM56lMA5agAkQ65OvtOtJLcoC5MUXyeXyk737SxWmJpGXERYK1ZZDmET2ZA86YysCfbxkKHQq5/bTf38tTblfI56dB3FJytjHRXthmj2BTF8umR1cy2UrKTGnYr18pJVTMAExXU4bEcULIKtgWzjsngGvYGczuLKdLA6PNtGWxUY1jRSVlxm1Lzk61WpOzfeWkIsY0G+3W+oaaUxUxzmJwRyIF+zFbKOcsM6UW83Ym5u6SVFawDLOR0iIUE42ptYiaSMhxLhjOG1qYozxGCk3qvUdiBcDtLIaRlesDzYGRifHhUiqlilErXaxVR8brUAYaGo1nfGYqW6opbAQIYUSH5WGVBxtjozGXLyqG02YsDgBMBMOg7AN+dJVMpTOFamv7xN6tc8lyPpnM1WuNtattJZvO0lI8r6fGj16CYlEoJNIT1wbCliaJmo12Cvn+9vz+q6M+ZICmyEu6remqlYhrhp5Qo4kU8AgPnawWI4yLTFnFomzZ9dmlScLXRdNGc0iWyF4fQ6r900aQ0oqbCYrlxHAkkS72z5wzRYqZWH/o5Tvv/y021Rj78ho5Oj7Y2H7qc+8LbM289cK9689ev/WiIU0ef8NOD08NDi99aL/3Qsl74g+efmZ08aNbhfWlxePv+8zSGzMvvX197e4fzW5snnzh85+79shjFx86t3/83JlnP37lc5+bHGi88Yt/+sGf/cUPpq7ffWz72P5DM2cfab/51MKbI61zz7+0/56HFu6+/oKv/LO/OHv0mfe2Z9ee2Bs/+/TdJ3dnno93r5zeap9/ZLX1zKXHN6+9XJm6cPHtk8a9J08dW7i6PXdyb243SNx++yl9amtre2X1zOKJk6tb/clPv/Pzd/6gf3Fz9+jCmeGF6UuL6onzZ+f09dOTe1MnJ1dmh/ePxbOF2oIdb/RNHm+2xnJP/92f767cubw99S8//9mN4tbu0vFzM6na8eGlGycXrw985OM/+sXff2hcy+eVpW/96T/+5TdnTyz1bZ8YnT+/cvbk6tLmZLNmNibqxWRCKQIAW9gpjEkgUlJhCGcoXQLVFOV5wCitUELz+yh2ywJd5HkgvHoc1AAn8LKpBoMslD+S9MNu8Xko4P+CBuBi5dJGtOMu3qsX7KwuMD2AjyLBCTQRoQGL0YAV8C8kUi4nyXfiVTCpzeQYINGYlBSQYXObZjKbS2oxISTC64uqgJOAlKiAa1kMHI7qDGAqiFviiBv+Fw9vM5TPS4m0y0OC3PEhx/a5ewiJF6LxKMC81hnFjGF7bDwGEhzEdohRbRNwPZ1JgfxN6BF0V4pj0p2kWJaRRvfccj5jgwSuFTOVQj6tH/QSh0F6CfFoImdkLXR7BGlbrFYrxbSdPvAEwH6XocHx2XZ7YX3l6M7u7v7JNSjAKdAb6Ww2A59nc2RybXHn7FDUxIKeSlopK1OG/To8sTmXBgGczBUz6UKlhmYCOJYz3h4dWdiYjpBOt6ebxLtdPZUrlvK5SrFcKZUqZTxrLGXtDAh1y0xaasQ01bCswa/UuMwxPLr/dhzI7uOZMOEk2TA6b4PM44K9lMSgFT0RCnl6ofj7/F63C2CeCTp73T6CVFOq5JEszP2NdORurBPkhkfPePb8XxAYfqUn0qrAORw+KYpujDHGqxiJvIYDh9EOAMdMTFhOxUMuNwd7+8AuJJHMYaZ5/0B/X31sbGwCgxha41Pt8fbsNKDvzNTE5OzsbEuRD6y3RFTAEQy9DBIsALALARjFuCzHEXuNDgCDClajYSlIANUKBsM8oFpACrMAwI5giKPdgUDIfdhN0myYJki/3+V48MFet5cMYdcyD5SkA8CZvB0FthaUs+gQinEeOFyNns+pZL6UVynJMqJCGE1pfLC8Qf/iGDAmfKEjCCPqDEpqtAVT0fovAW89lc3LAY4XScAh0tnt6Ok+cqSr13XoSLejFz5eh8MBL8PrdXic3e7eXj8wLqRDHjKow/9uBOn6cL2UzQAblHPNIii7oNbMGqLM0mz/QLmaBwC2AXxtE5YR+pui+sXQvHKlr5nTYU/JIo9LgeajiXS+VC7UKmVArnq9VOuvAEJGRZrFy3Rs4ar09TeaQ+NzSXQLIDkkcNgRiefJOvwNjdODPmd3lyPIELQek/iA10u67yc9nGoiWRFJ0Y5zIXguyTzmXmPTFAAzRwbdBBvwOwXGH8A4Zx6et5iqjk3MbdGHHQ6GZ7ns2HIqVbR0U4sINF0qJmIyAHCqbMUBj3kAYMtMQ03Aa3kE4Hyplq/2Dw9mk0kupnEUK8Ui4YQhZ9uwlmbrJSsmqQm7hJEfw4MzVUHhcTYAmy9SdqYA+zhllArZshV0RJLxWFI3qum4zAqYqyUaAORxgQjndQ1ojku3MJ7D1xMvZpOpPA4hwJNrDsKqHSpiQ0AkkSxUy0OtWn9fX10lY9iRDwBcV7hIPCxHtZhhJUsD9dFm2E3INGurYYUB9huKRnjWi3GEZiabyZdbm8d3b57P1KuZTLG/r7F6ta3CZ8vHzIKZm9y9Ui/WcgUzO3W9LlpqGN4c1C4j09dq77wwGgSxbySAMGtpPY4j2RrQ/4SiJ2RgPIReLiqCj80D9YhoemV1dZpjeyk6PjCmxTm3j2WSrUWDYKzydiYsUiCB1WShMXkiKXJs/9rxF5/+9Y+zueHFr28zQ63RxtqTX3m/Y37kzt0Xbj5z/emXzejE7huFwkBrbHrvoycCJ87R5nOffXZl+mN7qYmphWP33hx6buj5D9zauPfNufXN/We/+KWbNx+7fPnRixcunLt088/f+ffPLNVe/Y9/+cEf/fU/rty80Oy7cmaifeaRqbduL75vbOzc8y8ce+n01NXfXPCXf/SBxv5H/v2h4WOPHmtde/XZUdfjH3IqC7snFo4+cXzi5oXLK5dfrE+cO/7GZuLe1aNbS08s7Z88utayv/7z//POJzPT26fn2uemT6wspZhbP/9vH/n9X37Zc2xmfebU0OLMw6vq+SsX5sztM+N7M6cmFib75zdTVnl0Za3Vfug9J5pTA4Ubf/DTR46deHxr8pM//7ffKi6eXt07NZXuO9W/+dSZlecGP/itn/3rJx8vmmuna2e/8E9///l7wydm+7Z2JtrHl86fXl7anOivmI3Jesk24+V6NptU1AimLdCipXCUl0zCJ6bIwI6BPRVLpmqlFInneVlVeUGPiWpc4ASG5yNJnSRCWEDgh9/n9nMhT4CNmUnTSFo6QBTPUO44sEuFDx6m0LmG5ygiHCI5NoxfAkN3yC/LhyNo5g9kVAKuxaGpbjBmJ3CK1bQTqhJm4btD/cJjRah8CTtbSBlQQ9CNjvA62WiIYnja56LiUY6VWI+H9QT8BCfRgR6nz+MmKCIkyJIMYjymJfQOUADeYxo5D7IY84CtZDqdRGMfVe4AsCyGo9hnAnI1mylWyrYF0hZwuJDNpDBeFwE4Cv+pIhsFu5SyEolkOpPJ5vN4Bws/gd5A693aaHN0enZ+eWX96M7+/vETK1CxoC5m051WsnpzZGJ99fiFkTCgt40HaSCiS9VaY3BsYw4ofcrMJNGxslZv1Gto6jE2OjmxtDYmBD0ev4PCzka9UCkh9hbKlXKpXCp0vMNAXeG8tCJztKxZCYx57Mx2YZg6iylRVOg+gRaCTh+F/W2YTMUcKGD4RZAiPb29Dq/P63ECEPhJP94EB2kjbYgurmN0hSNY8U5XV7Rz79tBvVgHgrHlCX7WjLTKs93dbgG721WF80UMIwfvHQiOIfnQLUkDKWgrhMcnIAB3irlh5SoYooxfeJY3DrJlGN7ySGtmBn2wpiYBiafHYjL6Sx90k0UBgEWWCLBkAAEYiVXnDgHvfzu3wGoHgEU+QEgSA+Ut7AfEjQK5JHy9IZJnXUSI8nZ5SZoRKQLYWy+mDbm8NCjWaJijKQRgvYBH0BLDE3K+CLgG3C+G5+6YMJcy09mcxkgmEM4wD2/Hj+36SoeKoPzDy3dGUCl/iBUj8Xisc2GJt/NWKh8NcvBdQZcT3YfcoCC7evDLAU/d43E5e3udLqez1+M/7HYTzu4Q0CSS5MNKpX9ivNTrqrbqhRRARFzONougfkJ6I22GJYZEAK5k07mcjVFNaCeO5zElUL+FTkP/wBAAsI4AjJnOtKCYmLiVr1VKjaH+Wl+52qjksPGCZPAIGkedK42+WqUxNo8ATAMA4+kQpspbnbVlqpLA+b0uR1e3D4i4HWP4kMdH9d4f8nFxC9ch8G07ShO0FDFysNcMDMm0bEsMBVxBNuDrZWlvgCYCNI+5WAjA80eZQz0Olue47PgqUBwTvesEKpQvJCKYgJAqGlGWYbhQIosKOGHp6GuSBQAuVvKVSv9g3kpxUY0JBChWlAxdKc9MTrRna0VTlnTTKvQ1GsOjwws1LiZiG5mRxFZq2JVmIqllM+lyhukNY5qVGrPNSFTWUobBcsmsFY1LhJjVVYklvUBiJJolezGMIZ0r4Rk/ti+MtsabBXh8kqybAMvNFpCXRl0job6pVjpXqasAwBE5qgI/Sxb76q2GEGDkIJUQGYWjA2QwFhNZj0+RFfSVzxZb63vHnrxQaNaz6UKjVp17vJ0oZnIRzc6ZhfG9a1UoShW7OHejIiQUUVbxSiierAyOrD89QkfjdsKKiFw8a0RkM21DXbbTiaQdl3l/QC0UVWCAaEoP/GJwYX6MjQRktTg1a8Y7Y5/p6XXdw+j2XJymQxTNRPRcfeyozYtMemP9xdsf/BCdH9n872v86FirtnjrC2/3LM/b3JJUAAAgAElEQVTeeum129cfu/NyQhndeQnq29jk7NandnvajzUcc7/74YnND51Mr2yfevTtj828d/iVD1+ff+obM9v7+09/5Xdv3X3u+efuPvPU9etnn3/6r97536fXx977zz/+3nf+ceaxc2NTO5Xq1smLk2/eXnxrbPTs8/d27p1qP/Xhdb73d/7juVt/+U57ZuHyQ2O3XrnQnf3zcx4xIKyfHzh1afrmxevrl18uDp7afs+y/fwT21sbN6Ye2ttJuj7wH//juS/+2xvBpbnt1UvTG2szDPnTd77woc/97NuO7NrKzKnh5dlHtqIPXbswbW6dbu3Nnm5Nj9ZqW9Njpy/PNec/+qPX14rj/dXHfvRX/Sfn144NnHrnJ08Vl/cXdk7PpEvbA+tPzk+8svXKe7/x7f/2sQn7yrXok3/y1g//+dnG8YmB7Y2p1unNR04vLm1P9pVBAdcKSVOt9GVzKV2LhMMcFCQrxlE+Co3LlKjAA0nWCllVS+c0bNcIq3H4DRmYMQIwx0WSGu3zBgLBUKA3SFNeD0O5AkwkjhNFUPXQZon1K3bWpgnPgyEGoBogLyhTIRb+aLThYHma8gE+cmEcYcEWZFkQJbTdIPxKGsqXDjvY0pQIRs92AFiPg+BSYW2mEwpsDdHf5Y9KoQAe2Ll7ulxBqtcpxdkAvho3LZBeN0H4iBCBN3OsCK9Ks1No1K92TiqxWgFnj0NRSHbObM2kqsqoq2IxlhGlGLD1bAlbnDArspwvF9B2AQAYxE9EFGRZiimSXkiVbUMHAMZD5DT2QmfyKDYKAMDVwf7h9vTs0srm0aPHj+/tLcEWh6KZSmM8WLHWHG5vbJ44P8wDz0DFio4e+XK9OTq5PodeSQnYQBnMGe3vq9UHJ6bbYzOz61sjfNDvDfR2AFgrVvOFchFwu1Lu3IBlUoC+eHiNGVaiFGCwlQ64k4zTOZ0zRw6Pne8DOkR7XKR8YDZBMb5uAgEYSgpFYQIA3gD3gvT1B72AR/6gCIVWcAcYI5m2lLCMeIu+0jh7hKworrz71bkFBp2H9oxdR5x8x2NUF3yRhJ4xU7ahRhNSgIuj/aeJmTg+vxSRdRDAlqnFE1nswRpEF46RYfgaHBrBfuihkanp+VkA4bm5uYmpsVgYUFdGJ9EDABbYQIAj/U43DWUNZ4rjCoZ7dAYf0ZpU00CU+UD2MiFSkf0B+MQVQSQJF0mJggtqi6/LR1I0FHgGm3kPH+rpdQUJRgbIJUOYhpQoZXO2EmY4Ilapl/PZFJprd/IzQWOadiqts1Jn8ory+/wBXooZKppQKjp81vBaYoyoUQGKBwDWdURfTH5OgtxXSHSipP0uV3evoxtHgI8c7nUAArtcTi8eObvQFJQEOA50HaGYEBsiJC0z2FrZHOk5UpuoZFMW6DBQwAVLDzOJPtuUOHjF/c1qLZfJ5zCjOpnKpLNAybB9vzMPXKr2D+UBPDppSHggEo5bmTygMwLwYH+tXqk3ytmMrYUpBsesgV4UKqDhyo3WfJLByAhOFDqpU9hXC8TTTOqRMOf3uHq7uzyEL5yL0VLIFQh2PxAMiHHLNg1FFBUTlC4rhYGNJ1SAQBN7chGACdjpvSzpCVAAljRFUnKmNja5AADs6ABwZnI9ZeVMWGCyECKyeQtYMxdKlYwo2pQRup3BiD0LhyPwEhhvgIBLDJVsAGAdaAFB87Kh6f0AwJMzAMARXrfMfGOgf2xsZLFGo2UomlrjMBOIaKBrUfS6TQkeJorHF2GJ5uIqMIAYIaayaDAfBAWsSkzIp9sGCFfWEcvYpo3d8Oi5XakNNFsDIKVVHEPKlYsDY41Gf6Oqk1FYCKCAyzUAYByViytaIpmvNSYqFCGE/VScDioCHaCCkajI+QNxWU1ms+lscWx199gTF0oDtYydq5cL7ccm7VImo2iptFEY27tRLVUrjWxl6UZFSsQEGROcY4pVHhxeeWIECpSZsOIRVraBIym6kTA0MwFqSovxblIvFOJhP5NKmpm0breXV1tB3ivGG/OLVgSWJU3bs9s6aJvETDRIkBLLxc1Cf/tEGgSOsjP/4p3f/CBbGNr46rTYHhurL93+6OtdU4uPvvLiM5ev3H1Z1wZP3Etkq2Njgxsf2eXM6WcF4dnfH5z54E5+eXXrwtufmHpp7I2PXZ2+9Yft+a2VRz/72w8/eee5W9euP/bwlYfe/8ovfvw0RR723Pv69775t8tPny20t4dXN05cbL91e+HN0bGzLz577Pnzczfe3tCck5+58T9/fo9+aHvv/PrF3972RD/zPskn+QrX565cnLn96K2da6/kh86cfmst/fzN3a2NJ2Yv7Dddof/9i4988AP/9lFPX3tt9NL86nKVPfS+n3z/P/7HL548UlxbXjg3ujr78Gbk3OMXZhKbp1p782fG2iN9m2OV/Rf2M6Xa13/6zd3sRLX56Z//cfLMzrn+yZOjl9dya1szR09PJ3Pr5c0rxfFTQyeXv/Gvf/+ppm9gK3j5y5P//Q8+MHG8PXR0a3Ly1Mb5rfHZrVZfxeqfxCNordrIYkQG5qiEQAFH6aCHSuUAiWKSGBbCBvpDpFKqxLNMGAqXADtTjgqChFHelsJihCUAsJMWhYCbCroIDis92hshx2boQDydT7i7ew+FeJIkodwEoyzJSIwAgM+wQojG8WFW7mTFIwBzggiIwfj98SxCogb1XoUaK4ogSeM4WolnLDamesgiZiF4OSvmdZNO7BdyO109Dz7oFqO0g2QIp9vrBilDhQSewil/movFY4lMWouDbMBz0VhEgIoS7BxBo0GPgX88SINO2gCJ5Dme0LOVCh7eJe1atQA0N5/JpHRVjcZBVEH9AkqsF8yMrnUi1nAoFOoenqTmMSW8DkR7bGZ+sr28dezYzsmT+/ur2MEDANwZzwQAHpnb3No7PcTpKlQyTF/IZArVxtD4zNosegybIGKK1SogcF9jqL28tjQ7t7h9fCJCEl5fdwg0nqnlS+hVnc11HChBg9vY+2ri+SDWfi0ah48RaoGKMQzAjrHFDU8e7+MZXgy6DxQwAnCoNyQydDDIwafkB5XocztBfrn9JOV3Ol1uv5TQFdLhDEQSuWwiFo0fAHA0hpMoaseH8t0fOAsMv2cChTkAYJA8uuSLWGoallUcUFYM8DHFwMGIZJzwB+VoGIOwMMVBtfEQEfQJKInhoaFm/8Dg6NBoa2SsPTU33Z6aX5ifGZ+ZVAQcIhN5TpKjMvzAOWAh9C4Ad14AHoJ34BdngVECR0SPT5ToIBUPA0QymiqEKXj3VFhyUSzr7fGRLBtmMBLB5zp0yNHr9AUZvCLBPOCgx6rk80kAYCGo9fdVirkUfNqdAWtsdweqk9Q4yQIRyhK+oNfPS1EtjkZcCMAGPJwYI+kUQaO5uGFhHDCyPVwlCi3QNEH0djt63A9gB3S3o7f7IIXBAeDrwjNnLxGinejOzTAEQwVFozQ0urQ+eqRnYKKYy6H9mZQdyJu6zCRqSSvMkiQ30KzXgchh9mvStIEOAvgW4GVncdSoXKk3C4mkgmkMGIcUjsTNNBLGWrWjgCvVgYEisEw1zAAFieqpXKlc7WsM9A2Oz5mdxEoeABiqPE634WEyQGw8CnvfCQDsJnzRjMzK/l7Sf+iQPyDFMZBa5UVVBTXKCKKSShlK5/DasgyBJj0EQxBugfER8OBIPKGJIADPb5OHe528AAA8sZ4yM4B8wKFCgUwhiXs2lC6bMp5XB3EnZTsAjBsKzbBKhXK+NlLNpLlYgg/4QyQX1hRzeKoDwCVL4XTLyoMqHR0bXqhSETneOYrpHEkABVTQuzyuQxUM0PFYPCkHDhGxiJa3wjxIY6hpYiiSNzQAYJdmJ2RYHY5oysIYkRwOIeMdew0AOJ9QZVkzMqV830g/hqXoIXiWMVDahaqC+alhCdapYeerAxNZj4fjPXSECCgiE6DIiCwI8OsI6OU0APbY0u7etXOlvno2VYC1N3WllSmlU3EVHmR+bP/JOnCjZqa8dL0eNmM8AHAcOKjdN95evzEWiYt6AtYfy6kxGWpfHGpCQleTIEFEN2cWczHRR2ezmVJRSU7MbU/5Ga+kZFpzyTAbCvC8PbtneaRoYTfPhSg5HLPztdHlyzlWZsXj08/d+8SHuVJz+XfGxfbwaHP52m+9r7c2s/+el567fO3e60Zi8OzzZq4+2qwvv3H9rJ95+6R7+LevlT+6mVlb3Tj3/k/Nvtx87eM31174s6mFY5tXv/zlq8+9+Mrdm7efvHbr3ub8+36++quh6du/8yd//92/Xrl1ur+9NrVy7OTD02/fXnjvyPi5l+7uvXBp5bVn8uuD2caFP5x3FRamz+1OPfzqbtrnujvik0PW1d2dU7PPXLq+88TL9ZmHHn/fpv3c1f3NtevbJ8+oh3/1E+/8/i9/5+82f21gaXflbHtrrVF66Te+MfvH/9drP/zBkDS7eGFkde7ihnbm0UsL1tb51v78uVZ7bPDhqnXxRiM7sv7sj3+2U57rr7z8lZGZR04e0973R2/MbJbWdhd2Tk5YleP9Z0/E+xrC0qN/8p3vf2ohs38v8+F/eOVv/ulnR/fnhrd3RmZOr59eH1/YmYC12N/uK6cTaqWeyWbeTe9lZfNdALY0NYZxfXEzk9SsdDIOOoORVQBgVQqFIwcAHLFiPN4aEhTJscFgIMT5e3wMaNuIkkwmVMw4DAXUdEZzHjnyICECv4USSESEUJBFu1zYSgJBh7wBiouitz7G7EpsRwEzVEgHBm8YMd004p3QWkGUYWck1UisY+YI/BN+k/KQMmzJkNfR7fB4XEcecHqcXQ4i6HH4QVe4HL0ueH2RMMtHgVeKcQDKdAoKIwJwDIN0BI4NsToCloWpuWgGrcD+ECWZokAbRvVEpghiolxJWuVyLo+DPpgFFo9gDxcoylhcNnLY2Yvz73gG3QFgK1tEY1q8EhpuTc+0xhc39o/vnTp18vRWAr4TdqFgJ1mpPjS+sLmzf3aM7xzlAQDbqRzIjYGR9uos/DEpK21ncXSkVq8OTC5tbm+ur63vnJxUQgGPr5vUMRsqA+CLV3ylcrmQSac7ngSWoWLzL97HYq/qASQeTACjwQrGQN7HMqxEumnp3SNoluwNwiccCsHnGPITNB3ygQwGAA6S+CA9QQn0gf+Ik6ViqawZ13CwuHPsHOmcxeJQdPxABnd+hqoW5djuIy4+ghmSukQAC7fTeUsBOOaDQlTB7ijDigYIEj4GnEKydFmKJeABlGtoPTw2OjIyOABAPDQ20RpvH1wAz89OTizMaKKM8MHzaJaCAIxjSP8JwOq7X3rHClrDplAdbysAgEEBU4rk8QYYHTCBDLpJSpJcNMf5HQTNCTJL82iC0H0Y3m+AYMWOFyXTCd/J58yoyIghfaAGSGZjnxsaIOLHaKdMS2WlpKVKHOEnfQFBimgqeo+pBp5DqEqEEuIhWOS8GNMTB/U+mQR+lYvTHEV7eg93ubrwAvjI4S6H6/CD99//YLcTDyAAgd0ugvSTDke3PyhwsCJpQS0PtZbXJp29g61sPg9COiZmBrIG0GKtZlsyTzM8AnA2j4PAaPsIT71azpcqJRBpJewTqDULZjLWcWTBNBFZgTVeLhdBAQ+MDNRK1cEmAnA8zGBWLoJEHcfQh0cnZhMHAIwD8nHDNA+CjTtHVNIBAHsITzghcaLPSbof6HL7MfgvYWmCrIocFaRZQbHTJj4AC493gPD5QiFfwMUzgZDf46d5QQwrucbEzOIOdcTpEoBjZVrraSOJrfUSFwpkC8mYyDAIwCIH/D1kZS0Dto1lJDvN3oCBlWK5WB+pZXO8YklUiA1xEUPLtTsAXC/bqggfSr5arQ6NNGfKjIIA3CknKMqxrUSMxQRR02SfG4egZMevONkgCypey2TTug4yPJI3D+6AM4bMsJQjmgGWky3kOrdOBXjQE81cVlUFSdPThVzf2GCtv69g0iB5QXum8xWFkyLhsBhFX45caWAy3etiOA8nEkQcAZiGqikQvkgU/mvbzlXHl/b2rp4tVuvZdL5eKU0/MpItpW01ZqbU1Mixa/WBvtqAhXnAEVvDKUNc+NnhucWd2+NxS1TQY1fkgI+mTQVAG+Q9pmcoooc3C5mI4GNAZVfLsczo+NYcIZFRrTCxmORpKiiIyak92xuRyydysAQjYhRezMjq1SKvCNze5O27v/EBpjgw8/lJqlkfbM6d+cR7CHt5461Xnr1y47nXNWNw/8V0eaDVmt5+49IVmpm8W6XPfvn4B/es5ZXNc2/95tQrQ69+9Mbai9+and5af+wLn3vk9jPP3rn91JNP3Dz+Ivf8L1+7+7fv/PI/fv5X3/jh4OsTfXNz63Pz+6CAb8681myfe+XO8ecvLd5+YWN7+NZKdWB7/PZV++ypydt3CttTxuLNCZ+3tTF1/PT8nQuXt66/1Jg9e/V1UMCPndhYBlze7Gt+7He/uvr7v/57P/1GOL04e3R+fij61X9/51w0+/h7vnj89odHFi4MLs9fXDNOP3xxwTp6aXx//vx4uzW8X+u7frE8Wp0/+rEPrJbnx5r7jfO/sX587e4P/+Ib5+YH548t7p2ZStVPNY+d6K9eWzz1lS99/p8+N5565NOlL/74/d//5S9O7C8Ob+wMzZ7fOnd0anFrpJjT661qKW2qpVoa5CTm8wkUI2kRjvaRFgCzGuM5novrdgrqjKVANQI86gAwBZjHCwzDxmyFxgYsX4ikOlEyPHHYRUIBgn1n6koUoJHyq0nLCDkfeMAngvINMVwgKtN+igUFjP3OAQZKFsmjp78cUTVNAlnDgyYjg1oWRYZmJDCtg0eHaCmmW8C2D/Z+0lTksEC6fCGGJ52HekEBw0shoWb19ji8oV6vs9vl9/pYNgTfk5dwDDaG0fR2EhWwamg4R4OTniRnYFFAf3wzkQBkjsSiMo4QxgEQVNBkGZzFzViFUh7QF4+gO01YEcw0ASSQjIJmdppuk2nbNDGZtKNu8QIYLY2bo5NTixubW7u7x/dPnNkycMA+l8cZv0Kpb3RqYWP/9KVp3kADTxu4eSJdbvT3j7RXZpM6vNYMGvmiGWVtZH59c2v72P7e7snRSADKVS+NOgJbJXPpbKWGRvvoiJnEd2Fo8PwBnxGA8Cc1hlnwUUmKYGcvepzdB7VDCLlYQcBGX/z4HATfsSYLBAgfArDH6XY5sEfYj9YVjFKwDV+3SxIUQw2LcTt+EACsvDsKHOvAbydquQPFGvr0dR3qZUDdggQVCSmtJ20ol6ahsaSE2RvoCRXxhWg1DlUQRFFc4KO6kcxi+1qtDgJ4eLC/MdAcGGuPwTOcmZuZnpmbbU8uzKiSAm8ojHNgMjpbC5TPz4d8TjcDsNLRvBoee6P5gNHBYB0+1AAhoTyMhD0eP6PHOT4ERJMSRTcr8H5nCDP2WDSlCvgdDrfXz5AcNmFxQAUJd7ICxVeEWh7SGiAU87aRsA+6ttPpXDptJuKcZCeiYQym9weAKapoE6Ui17Li0bAQ4lXslWAldPDC5YuTwFaqEA9RARw8drgPH8LLX0dP1+FDDz7wwKGuThd05wiaoAM+n7s3FCCpEM4Lq8XBqfXNJa6nOZot5iwrERVzg3nTkEm1ZpthIRhiQa42MJMj00kKslP5aqXYSdMsdqywGkOogOGR4OlBGADYBJFbKlVLxeZYs1qqNpsltOYJ02xMiWk2MMKBIVjGYwDAGBlNC2F4g2pnE2Ij3bsAjEfQ3V7CLSaiAut1+50POHq9cjxmG4BXmhYKURTDijENfVM7+GtbIhXykqTP5wACHSL8BCsJACHF5szi2j57xOUWw4KQbW1mDRMXlsSGiGzBgp85jCXE5BA6ZOUSuo1+1NjDkc4UUP+WoPD3lcph1Y7imYaopZL1+Tb2D9QrKVXUQIYCTvcPNiYKrCrjbQlO7AHawWeqyPDuaCqeUGg36yPsSNehLq/DJ0Viqm3ZuiGJhNjpgqY9iYwmsjx5cASdK+WBUFf7QI82ZpvpVExhRS2RxUc6XG3UckkG1IWOy6UCayUSkcWIZtiFfK6vnXE4KNbLCyFSBQAOUVA1WZ83GkEATuZqbQDgK2eAlKaBmxcKM5ea2WImZUS0tJIY2nq01qyV61p28Vp/JG0pUeC6sP0LYwtL+3db8UxYtoDXR/iogoP5EWyqicqqFolwDiZRyMi8l86adrWqVYcX9hdI2c+K9ZkVi6GAGIrJ1nbCJfO5o7rXT4U50UxXhpcvZ3lNYo+2b9165W0yNzD55flAo6+/OnvmPdcCyvbMq/eevn77zquK3jz6cqY0NDmzfem9u/XpQWLpWMx86zfePGotr25fePsTM6+2XvvwtYU735xd2t29+cUvPH7nqdt37zx5/caNx1/e/v7PfvLEt375x9/5nz/69ndGXyqYSxPLe2u7D7XfvDn9av/k2Vfvnn7+oZnTH//jjy3NybXdE/Xv/k391G7r6q2t1fVHz44+dubUQ6ONc+fn7zx8bevqS7WJ05ffs1h48dqpzbWrq0fr8pd+9smpZOGZz7zZfs/N+vrl9fHk268PNNv//ru70v7Rn/60vnCxf3HhoSX17CPnpoydhyf25i9MTI40TxSHbp+xmoX8aXvpeHWuUZ5+9Lc/sb4/1f+1P1+7vlpp78zvnp3N1I631q5P63crxu9//HvvfH7Ivvhi9UPff/UHv3xn+9TyyOrmRPvM6qnNVnu5WSuZfa1KIZVUi9VMPpvAIF6eBKoe4WlvKJnV4lqMpTk+HLPQ0cGMSADAMT0mCprMKTGBFzHHL6WEfFAePCHKz0oiSXB0t4cS5BjmCsXCmGjO+DBRSOg90hWQOJIJCIJPjvEEMGlguwJDEyx6xbKRcKxzWKiDrMUmLJbwxVDPmR00AfXK8kIYY84NDV3V8BQPRLsoClHSEwgcebD31+4/1NXrJShHV5fLCyLHH3AewZR1maMoSogd+CDb6c7Fauf6Dkk13icBAKMC1t8FYFXvZMtryAYw9BStLzO5XKaYBBQuZbDe2jo2wMqCGIFagHfAiaRmKuiwn8Cb3RzIWzyA7pj+DY2MTMwurG2uLRxFL8ozGwjANsqmDABwfXhyaX3/1MOznJYGvIV3mzOShb7m8PjM6qyFw7GwY4sFoL+1wcmltdXVrd0Tp06eGwl7fV5/LwslMKHDh5fL5Yp95QK2f2VSnUDgZCL1rrcmpgNF5FgcQ9QlUL+dsAtREO7jBYoPeQUQkixLh0iadZEgKShQJL6ANxAK+Xt7ensBgAmKgNrqoc2irnh6nLQBaOMDPYtjSLEDe63OQPAB/nbMtvA2QQXByBx+oCsYQfdjFepWxjDhVdmgzlkKozfw0CEpe0hW1+BZw8escGxE08x0qVrBu7T+gWZ/vd5XrY9Ojgy22vPLKwtz8/Oz7fm2AqCO+UmRGE56RmHdenwMALAHATjeGUlWUYIi0hn/CcBkKCxz+DcEYE0B1kb6aDocBu3BB5wUL0dVgeYZzutx9rq9hAgMUZZ4mmQpwmWV0kmNZwg2qNSqlVIuCQCcTGiddwCMzOoAsBYOx8RgwOPFyI+IZgIXgNcAsCwKpJTggsEgK8ejIlZeNEVIJjOleDDoOdKNSNvV88ChbrfPfeTXHnjwwQfuf/BIjxuPoL1er48i3ZzfFyRIWKrwahKVoan1jbVod3O8VMsD/sWk4kjJTiqUWrcNqN0EXe/vb5bK1Uo+k8tnbCzcZQDgSgWtsMoAsCOYhhSDHS13WtrVZL5UzKOTRLPVrJSrAwOVQsbUZZLFi5pUrtw3NDo0MDo6Pmsy2McnSCJmPXUM1vAuF3YiADCQhJ4eb8AVtvUwhf17D7p73LIio9l/zNL9vQGGg0cqZ3BP452/nQSh5yKBCCEAB8kgCdKaF+MFAOB1AGCnGwV6bmK7ANwMmAso4GAun4h1mrByUBJ4iiKwSzEN2wA+ilTKxqP0Uq5cH50aHuhDiGJZiQmbuczAQmu6PTXXV0lpvGKmgYlU6wO1sRyASRzHEmwrCWCYy4KIhKoUorSUKgcEtzeldDm7envcIRqEh2LqCUnyCxkNR6JcBuI7G+gBBZywc+U8bsKhkdGhoaXBpBlWGJDahWoVnlyhUrKNkAQ1yExaqYoGSw2Ij6xbmUo+XZlI9fQQlJPlKUYDAA4SESAwPr8aVqw0KuCZ5b29y2cq9Qpw8XKhMPtQI1fMpk1ZL6jGyOalvoFKqRrPrNxoyNmMrugmPFer1Pp/eXoPMDnO60pU365JZMz0zHSu7srV1V3Vlbqrqqtz7umentST8wyAQZpBjiQAEswAARIQxBwkKlA5UFaWTWply7JWu36S3yc5yV7Z8rNXlkRboiiJFO19796G9ebjRwUSMz1V/3/POf9/7zlzs0ceH5ayER40hylSnBBPqqJkWkZCkq0MrBYPaeQyIjMQKhhmqaw3mgvr4z7Rx8TtkQWLJsP+QMQe3av1imxuwyKBo4sxM9vorF4yGT1C7525+sh7AICHJr+xGhgea2QXLj9/FxE92nn6yetXbl5/VtaGjr5gZ4bGJ/Ydee6jzpkWm52dD0y//4VJe3JiduPFT4491nrqE1fWHvv29Oy+Aw996csP3rz6yPVr91y8//JdN1/4k98/0vOxN+750vPJV/6pfXOBHJsb3dxz5K6ZDzw69/zQ2Ilnbpx58vzUhWe/+vHOMLVwaKX8xnvre0+sHP/9v/yD0ZWEfOjhJba+uff09LXLV/dfutWYvOveD86X3nP/5r69900diX/2ls/Z+PmXG9bGxbe/W1w6O7Va/ZffPkf9yZtf/s7xv/ir3363vHyxsbh4bk46c/nkuH74wvhhAOBOq7o+vvnYZmHcufXpDx/aU1ouL25e+OjFc5urn/jR9x5cniqsnljaf2TCaZwc23dtMPuYdvCb5//op38wnL7v5aGP/vDFv33j/5o7uzy+tiA9uBcAACAASURBVGdh7NTayf0Tc4cWRoey7alqIWWpAMA5BOBIVKBoIS5SQVcwVdJVXWJIqM8xM5dKJoFaczQdU2HXqjFOxXrO0qxsxUic8/GjOw5LhcgIPRBgIjEZo8gxsAaKsDueTKT57e4BQoQ15mFpFwt1isFwhQg66DBhtxsDe6Pd6HRVAlAlw6BbfXI6ldKxpxbFK0+x8G27eb1GQldQbWoiTQkxJhJhgru2bMMxyp27XH1ed18PKBjPLuAFPpKTfANQ7bUklnscaXJwuhaqstY1Mo5AwaUIBji0AvCHZ9CY0il3AViMRQXZAIEJ0tTJF/IJdNqxzRymYSua0s0jFEgyzmv5pA01PpFKJUG+4uBH0skXnWyxXKkPjQ4OT062m63GzIEjmxsnzu7rtqCkMDEhly+UB0dW1w5tnJ2h0bJJN3Ul6aQLUO/GpwCA5XgiYVvpLCa55kamFhfn5lcPHD5++uK46PG7/X0U5gxohQoAdDFXyaWx/TmVyaRMO5M2uwZ98E0xlUeKyt05b4x6xDYsPE14F7xbAC5Cxo4sEjQw6fOhJ1M47OsPYCBWAI+g+9w+T9jV7+vxkUnHlEM7d3MxZOghVpe74jfKw2tBMOxisByT4Acq3SaoGMOEd20fCEiwkgCQw1xC0nQHnZsMlmDxXk5RLJ30BuQ4D3oZgJkaCMnxmJbIVMqZTKFUxuc31CzWRjqjreGJpaWl+dnZheWZ2eEYGmF2zTZAr8Qljg/3B0IhX7+PlbrLRdXVeBx9f7ozSF1LaFkm/LxAEmSU8vkClKrTmEwdJmN0gBJZr5sg8eSFpFHC9u5GIyyAJ0mkSIYM+Xr1ci6jxqgwHZIa1WLWMTWtm6qX0JOwSNPJhMZQ2PjKA8y63QzHYiu2qoGuNzS0GqbFBBsOBikowpKMLtV4OW2bmfiAe8Dl6kHbq527Xa4d23fu3L5j25Y77gA2CZIS/mHvQE+IIcM43hcG7AsEOa08Or18+Li8q9GsZC3D0mSxPORYihwyyqYahR3F1xuNerFUq+SypUohbVm5Ih6i1Es4bJQrZatjRcPGpssuAAsgtWAt5grlYro52ahWmq3BrJmxYgLNwmtVrFyh0Wy0W8MjY1M6RYe6QWai3D3Z7zJhLZXRY3zQ6+vrGfC43THToYES9wd37OobiGgkncJ3YhHubkMyz2hOQtIN2OwJnQZCHowSA308BQU/FKbFKM8n04OdmfVN2uUOimpEKs/tTwO+qhLmevvLjiXzEYKy0go2EQb9RlJ30kk9mdRsBzsg0sB9B5ut8Va5EpWTaoQVRDVmGGNLY5OT06CAU0oUxwDL1dLgcKmTQwtbDb19svCsClAedFnmeZJj1bhIwkc2zZ27iVDQ4yZ8LC3EpHiM9kUycSnKk24pAZ+W8vdG0qaVc3IZYOiVVnN0uDPVztmJGCMbdrEGvKXZqBXTskcExFWNjFOUME0ZM5gS6XpOLTb0vt2M2BeRAhErQoT9RExgOK9H45XuTVV5Ys/6gYtnc/Vyzs5Wc+W586OZQi4ZF0HSmu3V09VaIZ9JpFeuVKB2KPFE2gbhXJ6YWzp6bYQrW2HN1BOxCAdwyolMNA11JpbK5BLxAKuWLJl00ZVEOl3JV0Y6ByYCQj8jZqZndHj1YSZmT+1TvXQ0dzDFU0EQXXYhO75yvxOVhODqwsNXH32esJqt97fDI0PF0vT5ly75+emxR597/OGbV9+jGe1jLzrO6NjsnrPX/uhq61iFa11IeVY+tlRYXFw9/v7PTr+7/cyHLq/d+PbCwv7Vi1/4g/uuXrt+5b7LDz3y0L0vnX/p5Vdb0z/59Dt/89w//PXSlZEobPm7D588M/H+RzpPt8bPPn3txAtH5s9+7c33D5c529pf/fqr1fWTM6df+MZXF+ZkrnNxuX/y6IGTs49eurj/vidrM2ceeO+K/Z5Lxw6v3LN/sfrG28car/2P3/zZ4df+/tevlPauT+yJfv3tj3/47V8vv/2tP/3tjycb02eHlpYvLiVOXzg7bx66e3L/3OXxhbHM3OVz461adfqVrxxdOTU4PjZ6z76zX3q8k3n+BxeaheVa59D8oRMdu7rRmLl2dPQfjl7/1w/+r59/Zcy58onGF3724e+88/d7z6wOrxyY6ZxfP7Y+MbMxO1IyBifrxYQar5Ucy9EUmY/yIUbQohzZRzgZWCNRUERUNO7kbCclMyRUbgn965QIg/KPDdNsRIvSBN3b5wcgAzUbDEXY7bt4XkLMVCVBjNBMwKvlrKRMb3FRPEeFCZF2A3Rzfo4OBFkQyCESNiFJcFwEu5tBAQs83w1nC0oa5rpKWMiw4yYixONRQF8FtZYOKKOhVSDAtd8VjtBiplKUeu/c1jfg7dkd8O7u7Q94CX8wxuCVtBxXTQs0B9oHph0bM2r0aFyLx+A7UAyASUIxzFwGiLRu8CCLozhnQ3PoZqSo2AqRSmdKactBkyugyWZ3jgk9IGBJ85KWzqkxS7ezGSedSRsJK20nkugVki+CBG5WSkgjCtNTK2v7Dl/YAPVsZrKWjqOXxdrw5NqhQ6fumWAT2FJqoLGQU2yOTU5N758Eoe6kElBQ0kCki0NTi3PjYwsH9hw6fXGZBVHqBQWMIqwAwjxbLED1cdJZHAl2UngbZqL8hUrfTShCy0gouGKEYzg+gq2v/LtIlqWCA34AZZaigYaQARzSxjFg7wC8EJ/Pg13Qbn+AcgfCAwHKdgyB6NkFJAu2pyAnQO2CaFRwJhdlb1f74mx0tDsXLMdZnvNu29Y7EMFhZTnqE5IKGn3hETlDRCRDBhpka4D4ihwBmLR0nfbQwIqSyVQeBFu9XisXK4OtZqk+0hkfHp2cX1xamJmeXZibG0HTy5iA56BQ2uNYMeHzBT2wDLu40G3B17sArN3uVsbBpHAwEoEVEeGC/gApKyEq7O2jqBg1EBY57wBBs9EoTeIgpq93lwfAkudBr2I/Phn04B2wESNDFCkPlvMZBGAdzxk0xXBs2wEApumUKQnABf0eD8MyWKox+tdIapjuAWqIxjbrGN6OI9PDUWJQppHdvdjx3IPeG319vTu2wteO7du23Lll2w4cQuoHDewiYduEAv5AmESjJE4rDk+tbJ5Ue5vNcs4xHdhnxRaQwmgoWbGUKB3007Vms1EsVRGAy1CeM6VKCRRUtZApYGhetjpaAACWcEGgpRUoYDyCzgMANScG69VWq5m3MyaAC4NN7VYuV63XhlqYzayGQgGCYnghKnetDbGb2U44GS3CBgP+/t4Bt9uXMNWw372734sX2qLqC1oJIHmGCIBKIwOUzERcN4ClJQyGCPuCQtDdz8GfIIJBJobZPenBibn9G2QXgIVYeWG/oyU0XVKiVNCLY5NCJESajsIhNyIsByirhd3Ypp0CLpRJF3ON1tBos5qLwBrl6FjUiGvq8NI4hkmXi3acBWWZq1TL5VaxkxOwh1BPoKNooVKEZ5PUlWiE4cMxM0n5PH494en1+rAbJEDQvIguekHeUWR4Jf2yHRc4MuAS0QYeQA3kdxVP6idnRoppS+FlzSo1miMgiVu1vBKIxfSkmoDPJ3OYLRfVQAGXnXiurPTsZsUeRiUEUwyFA0QsggCsipqdyaaztam96wcvnM3Xi4Dw5Uxx5txIGgBYEQ1LSQytnazWiwXgS8uPlOSEHVeSmZSVTlWmFvccuzrCF1J03IIlEo+RQlLUozEbyLAInD6hBGkj74hcL5NRbBuwvTVxoBOEXRrLTM0kRBL2JWdMrBsBLpbbb/NkkGFFK58dnrrLjqpieGHh8hNPfiBkD3U+NUW1hyqVmfPPnvHz4zP3vfTYQzcefULVW0eet1MjI9NrR298+ltW+wBNPLW6vfLhVWtuce/pD74y9e76Ux9/aP6hby7Mrq/d88U/fODRa9evPvjAI1euPPzEK+/85p03r/7bv/7izZ/+3z9ZvzlKtZdGNzYP37P84cvzzw9NnnnPQ0ee3pg+9KnPnFqPRVLWkYXaxfHDh6fO3Xjr0+NtJl44d8gzcn7/6ZmHz1/auO9GeerMAy8u2++5vHFg78Mrh5nXfnPjo2/++fO/ufXff/1vzaHl43MT7cKPbrz1byPuzNX1pyfjk0vnWitLd80ap+8+OW2sn+4cX7x7fGlm4uTV9WxmpirOPFWfOBEfmSgu1xoXmqv1u7934EPXJ0dm9k+tHx23q4cGF959YvhvD15946M//eFLM+lHPlL5wuuv/P2/v3n49NLYvoMz06f3nTg4PXtwYrCQGOxUCmZULBWAaGlqHACYoDktypJ9IScN5VGGyhyOxdOlVNLEFncW6ptGc3GeBgCOALgyoiH5PFSfhwAuS6OLIU/39XF0RMLOVxnTCOmwJwbsNOOwaLJEBIkI7RYZigmgyS6LFY+iocaT4u0jaF2PCRzHgCYL+GQrAZpUxrZkEFpQz+M6nivKOIGq2SjQMRctxgzsokw751TKqs8dLQQHvP7eO7cP7O51kVQg7COx+RlqBdDUNI7Hph2QqFCYY90YHRbYJklKwByNFBrBgrKKRyhkEDLHRSMxAGo9hdiWwjAkEBCpLDZZYRaDCM9ApIU4JeUStJDMZ20NuzkwitdMoF1mrlipN4cGh0YGR2ZmVmYX9+7Zu3JgGuAItrttpjL5QrHanlg9tHnm0lhYtrt9IPAN0qXGyORUZ60DZd3uBiuhJXutMzW3tLK6tnZg89zFVZ5wD7h3hZJmwojj/EMml0njEGQ2l8P/7OYx2aApQfxFu57NCFkYHSjwUHQj2P76Lnz6hMeHFAbeJBChYICCugIv0dPnCwW8nv6uFYQvGPaE+WCQTqcNkQsATJACL+PVI9CXCHp2YgAgIiIaiEm3fxq2ZcGb3nXn9h4Xjzgoib4ISKVU1sGDAgZWlQIADDWEJFhViqiGZmo6iIs4xoebIMiK1Wa9hBd1rUZrdHJivDM1MY0XwNPzC/Mj3VNvnIDCeV85HhHJAYIBAAYFjL76SlcEa7dvgDGAB4fGoiE/cDW3n2cDXj8ZV0EpegYYJka6iCjv6QvSfCyK56sBwu/qQQBm+JgioU8ngLKTT2XMaIggSXWwBABsA7VJmrapxnXbAgxIqDSTSsY4ngn4fF6GofF2VUawTeLoh0RyKhkIURzel0s4sgpcS4X3ym7HZ9zn2rltp6u/F0MIt2zdgbfAW7Zu2+Ua6HdhVB8t0CEiEPCGqXA4FGb0YntyGQB49yBwgXQSRC9fQAAWCatuxYE+E3xjqN0slypl7AgqFvOFSqVUrhcrBVzA8FdtNK9bXQAWugpYs7I4QV4qZAY7g4P1oVarlM4mOZZk4TXGrSwAOEi7ZntsMh4MBRGAI1H0gNYMXIC26TgqRp54+/o8bk/YcWKU3zVA9O7s6RmQVbdLsbSQW9L6+300erFxmPyJZyKJBEsQXoLxu90s4Rsg/D46yjKSmm5NLxzYIPo8twF48WDaSBq6FOVCfm8xZSqRCEmaqXiUYcMBv2HiAFECtbhpW3Y6mynn6vBZ6xUnoiYiFK3I8Jak5iIA8NR0qWDJbDyZyhaL2Uq7Ol2IyAjA2MOcKQNLqeRMtI5jRA/pOJFAv183vP0BIiKDGCGBraiyECMYCxgVEeqLp/UIGw72R7OWmbHTxTQs2tYgUMXZ0VLW0USQ/aXB1sjoyPhYq6SHJUlPaol0tqgKOCYiqmoSgC+eKSm7XZFoL2kARkbD4eDvADiqW04GAHhmz/qhu88W6oW0mS6n81Nnhp18Dt66bsYTrdUTFVTAZnrhvqJkWHI84QCvc8qTy+vHroyK2XRM0ExH0xWGisczeiyBwYupTEaL+UiQHGzUxeSSxUI5XRqbWB/1iT4h6oxPJcVQwIcAjAo4lt6TYMkAxcQMOzs6+2BCUMTQ2Pzp97735bA9NP+VRao+WC5NnH76aEAYXD3+8vWHbl5/StO6ADyMS/XJl7/6gj022zfxrDb6yZXS3PKBuz7yuZn31J74zLWFh7+9MLNv371f+cOHHrt58/FHr1x99NGHXn7xjR++/rPP/+zX//NbH/1vr5+6d9EcWlla339is/XsA5NPjUyeuvXwkSePTN5/uVZ6af/2QrXTmK7OLp6dPffR7xydzkfjyZNnlOI+UMCPnL378OVrxalzD724nHrq3r3La/dPHSqxzy59/TNU39nTD37A0BfnTowMfv+zu8eLoY0Hr0f15nOTc4unW3vWLq0YZy4cn0qsHx89MXlien26c/OEWZtst5996fj68LHMdF7JVZqt5gMzxQt/9dYPOyUE4GMT6drB5vIzZ0f+Zv/VNz70q79+ctl64KPlz/70lX95+52Tp5cmDh6cnjmxdnR9Ymp9tJJLDo5k04lopFzOAocFBRzjCYo1onSoP+TAS9MlmuaomJKr50CXxVGuAvYxPChgWYowAvDySFL2usk+T4AMkt3azVM+N09HZJxQUGIxAODgQMxO4j2lhPLCTwiMW6BJBrYxh3Fv8EX7vWFaRgdfHGiRBBaNmsLBgOrgca5sGKIgx1gQbirQXMwfhYpuZu2UyoOei7JRTYonlahTqpfSAF5Jn5t07+rt7fFRfMhH+NwU7IR43DANTBbHnHrHxltgWRCkGMuC0KXImBJPamZSTxhSRMa0gaisSWgUAugPRBStm51CIZdBL8p8PpsyVEwjFFkhStESodd1ghYchRgIiHYetnLK7vpxgH4bGh4eHR8uNubm5pYObB7aXFsbB2hImF0nfkAZUMBzew+dvtDhE3bSwPtuI5kt1dqTU6OL45alWdhXDTWz0hoH7Fncu75n5eix0+eX+JA36N9NJBIALelMrpDB2z60OcqkndsAjA0cRtcGMYbTR1I82u0zxy+MgGK5dzEcDS8ELbZZmsFH3vUlDoUpn8sd8AyEBvoAG1z9Hp+vnxDCQdZOJZR4xL1lq4fkFMsydfjZOLyNzhuohqGedzuh8SxaiUtiWAhs3bJzt4tP6DglzAhJDWpDKumkTJaKyzGUNaZEBEU5Kiq6CjgVCkgqWnLYOXx4Q81qudpst4eGxzrwNQH1f3JsfHphYaELwPizMRYRIEJEAGbxCJqORHhMN8TfHBVa9wuvLIAuEQCMsP4inN8boBSdRQBm2Rg5EI5yblcAbTdgCWMrIQBwIBBCAI7RFI5oBUwn4ZiRUIik1HoJYx+tbrpxEq1DAIDNpEpzthnHE0m/3wcAHO0CsBQHAIZ3FAuzKuUjSFYQ0A4arSg1RbOdLLNjoG/3TkCqnbv6dm/fiofP27dtv43AO/qAAvW5el10hA4FA0FPmA7hJtPLw5PLG8elXYPNajGD2pAvtvDyMmTXzTjmXouNRqNeKpVLeTyEwWcJaNwoV0s4JwMiuD6S06x4rEvEeAFYJvpUZnOlYmZwrNFsAACXM1lDAAUsSVHJRAVdbg422uPTaoimoUYgAKvdDixsJzNTtsrTeAIx4PcFI2Y6Rnt7wuzWna5dfbIR3MEaST7ASyGvh0Sfdyp2+24AAJiDdxCifF4PB9s9RAS7h2xKZmh68eBGEGi9qPCxytJBB3sn8QrY7ys7thYV6LBlxSWWIXxeHRc6NhwmdMxcg21QKtSBL1SydheAeV2HPxGrL4xMTkxOFfOWLChmCt1ygGzM5AVJhNVi4QxRpVwsVzMJU1eg6PX2m5ZK97iTyd4AKyoSA5xSj4pGnBYCjKVIdCjUH3e0CPCO3wFwGT3GAIBHJkABZ1MqcBSrVG+hl0xnqJKk8V5Ox8N+FacBsfE/aaVtLVsxdg/ExN6QRdNaLBwKBiWR4XyeeFTDOpGpTS3tOXjXqUKj4CSzlUx+8vSwnc9ZAMBJ2WiunKxW87ms6cxdKEONi6G5h+nYhfGl/cevjkuZnM7GgKPpKhcUlVwyiocyspNOq1EPaRZSnNjPZBP5bCFVGO0AAPNuJuKMTSTFMEGE+eTUXnmAltKrBkeHGCGuGbnx2Yd1VhHD9ZWNl973UshqLnxlKVwdrBTGTrx4hIjkDq68fP3BWzeeNYz20RdTAMCdxRNXP/nFVw8NfpFLnDyReXl/dmZhz5kPf3765uC7P/n4ymPfmV04ePi+P3z12hPvufXuxx99+KGHrn/gy2++/bXk02++8aOPFD7+b2eOluPtdio94SzteebekSdzw8eeePTYzSOdm++f+dJrf9jQ1JUPTCzPHJqfePSeXO3lS5yaWTm2PjV55Mj8Y+fPrt97vTh97sHnF1PPPHhgdd+9i3ueOOQapXqOP/LRjJKx2nsWzy5OvDLNjvV/+J9O/OM32HJ7eH7hZHvf6sVl/cyFo5Pm/qNTJ6dPTR9ann54Kj+WBQA4XWtNHFDFdML68vePZVb3XPjuv7/9pUONiUMz+09MZ2oHaotPnxv7wcFHf/nSr3747ELioc82PvHjD/741786fmZlYv/+yckTa5urI5P7x+tFuzWctlUlVq3knXQXgAWoOokoRfSFnVQcqi1Js2E65pRzZtIGAKYYKKS8qEc5WRKCTDgQjDoGaExXvx8KA40+hjzlcYsRRcdRAwBgkaEDA3FsDUpkhQDNBf0kx7p5huToIIm3xhRBhmj/AEHHIlLXxEGWeIZhsS03qNgW/EHYp4oUj7ERKaolDQv9KpIJw4IabUkCz0VoMRGP6mq0G8cNRWcoTktAEUBqx8hAJE73ENh6ChAt6dgmCd8yZXcLYFSU0Q06DHJcgzKp4DgnAHBMjSNBlQUe+IOsdr2OcMKwUMxaDmaOOamkFpfx3pMTJZoSeKcgh8KEj5RSpaIVT6TQSgMPhQsV0G/NoZFWtjY3P79yaOPgqY3Dy9gbiw2bKSDM5cGx6dXDJ+6+NM7i2JCuoyVArlJrT8+ML47ZKd2yHQtPvnP1sdGJ2cWllb37j28eOTbNhPwhwkUYBsBfrpsF/p/4C6oqncKstzTULPyY2JKEfVFKJBqLRgShi7/MbQBmaDpM4HAMdrvT4aA/BJwqRPpc/b4BAOCuEZOrzzvg8jJkgMPZJkXy/dctuwYCESWBZtM4vZEyrW7btRLvBiTf7sdS5AgrMH1bduze1c+ZaOAd54WEYiEHyqUTNAVMy8Qub9HvV2QM6YNfXAqEFE1K6pgMkOvOUNcH26Nj7ZGxsfGx8c5IZ2pqYmp+ZX5uGCR2TBIlWUL7NEmOiOE+AGBvv5cEDcoD/qvxGKpgdKPEo2gdfkaU9MFqDlMohQlKVigqDADMSZSP5Gl3P0HxUQBgjAX09e5yB4Jhjo/FgWDxVIjw6aaeNvkwRVJaBR2V03iNoWoJdDS2TMcyVZo3TUXgwv6A3wuPV0ITR8wXAbUH8pvkdDaAeV7oJYM+cfCxcDyI2eVxuXZs6+nv6+nZtmXL9m13bNkG4hcBeMud2IY14B7oJeEjBINBN3kbgNXi8MzakeNRV7tdLWSBtslCaShtgSyx6xaIPYbmS/luzxVQhVwRdV21Wm206oPVcrlrmAbEWzNhAXdPQm4rYHRwAVU4OFprDg41AYAzeoQnKVgz8UQmW6lVBuuNdmdGxegmGgFYxt8eXnzSSsJDULgQFfS5/aEQoyoGF3R7+dBWl3t3b0Rj3JSUxBbOCOEJ4vUHFcGZ+URCvQ3AYSbgAwAOEWgEzYtiTM0OTS0cOgIKONQF4OUDad0CAI4JZNBXtJNalGOIFEhAmiICBMg9EL7Y/aglMWMpnSmV6vn8UNVKcJLKs1FYcnpUrc8PjXcmpkABx/FuNVvGsb7mpMNERU2FFZeG9VYplitpI2EoNBnv3SFZOtPj0bR+nJDkiIhiaBwP/4zxcCk5JrBhj2wpEZYkfncEXQJZXRtCAJ4eLuD7UI1UodycHB/rjLUqJifGMYUD1KvWtW0VYQfYjpPM1JM7+qNcT8ChCClGwouWogjAMjxh4BSZ+vj0yoGzJ/K1QsbKVzPF6TNtKwcALN4G4FPVKqxHKz17NwBwAneSYdjJ7OjC/uPXOvFszuGiqCwSMZJXMib6/SqimcoY8SBplBMRzk0XjEw6nyoMj++fCHD9bLwwNZ0USYoKsNbMXskjKJm1hMDRET6umcWxkTM6BxKlcPjA+55/NpQanPv9hXBjqFYcO/H+I0Q0uTHz0mMP3Hz8Gd0YOfICAPDw5NLJez/xxc9+tlp/2Cbnxz85mZqamj/ygc92Hmnc+MT1pWv/Y2J189j9r71645lbN2/euHr/vfdf+9DmR1447l781X/86s2f/uSfn7i/ZY9Cecvrnbn33du5WRo6+vT1jQc3xh75SHLmlQu6lLn3r55fXTp0sPno9ePf/cEfVVXLbJw9t7L3yPx1AOB7rpWmz9z39Jz1zOWN1bV79sxfHX284P6Ln77y1jeMkVZ1fvpkp1P9wDHf6i++9+w/vjGcuFVaWDo7ujZ3cko/c36zY+w9PHV0/kS2s7S0kknkMq12Yqa5NLipxCas4c987qcPdy6+/Ou33nxjLTt9YAoBuLJennvi7Pj/OnTl15/45Y+en7AffTn3vh+/9Po7vzhwemV87/7J8ZN7j+4Zm92YblVS7fE8CF0JFLDtaJoSifFBmusCcMgBlScL+BqCsITTlhZPRgWWh+UpiJrIShE6iImBUs5iApRrwE+joTCUKo7s649KCdMy8AgaAJgh3ZKDPjE27WP5gB9Kv5vjaI4nCEYADewngywBANx1wsK0DgwZAz0W9nllG4NYEjoOx0cENoorGNDTwHZb3U6ljSgCsMRxlGBqnJapN+vlYjFlKzGZD7HR8MBuwk5FAr5+DyurhhzT0VwZ1ryNwkUHrQa6LcJRwDEMB+8jU2YiDipOU6F4CtitGuWjsE8M87a/Rj5rwpPA2zucr8LxDS4aBwkFYpj2EbKJLZj5XMbK5DLwl41TCZgH3BweH5lZW1pd3re2fOzI8X2GpiacbDqF97Wl+nBneuXwmXNjPPrad+2krWKtPjy7ML3WsVI4CGjb6XyhONhpZuyNAwAAIABJREFUTy6uLK+sbxzcd+jIFE34BrwuEn2IDED6Yq5rNAjy10n9DoCx1bRrGxnvGkSieRR8aDyAFrDsRt5Fs/DOMCNKiPB46IDlDOpgMEC4e/p9Pr+7z9WPKtjn7u8PkX7OQiEphbf9111oo6EkcIoX3Ycw/glEt41G2jL8hGj3LpijxeCOLbt7dvVSSTWmaTFaSMQBgDO5omOwDKqOFFRvMRDWZUntNvOwfgZWIShKq4tump0v14dGx4eGR4ZHOpPT07Pz83PzS6tzs8O3e74wBkLGt8hHwn0BoHEuD8VHOOBVIrCj+O1pJL17Cg2frAvAISIswIogaFmFlenpZzmZ8oY40u0OM10Appmwz717lycYQh80HIXlyTDh0Wwza/IkEyK1Mt6zO92PqOo27AwzmUIAFiyoxwDAQZ+HYTnsDlduA7AmRaMUb/B+gsRRJ9ApeABj4DR4ltoxsGugZ5fLPdCzfSsC75Y7tmzZsm3bNrwM3t2Pc0j9PWFsnQgEPCEyDP+FjOfbs/uOn5T6R1p5xwHaqIjl4QwowpBVdwxVYkgG87OqsBdKhWyhhq4mg8328GCrUauVCmWQhyMZ1cRLexx3jwEA2zgGjKFfrbEa/Kt4BJ3RgU3QMSmuJTK5ar0yWBuEtaoEScztEBCADcw6TFopWKaqzBAkEUIyJwLvJv1ERAp4wyRIWxVjxbSUpQgx0uujRbxgjQMrASBNJPgw4Q3zhM/DEgF/iGcJBvihlmtPzx8+GnJ5w6LKSdUlAGC8igIAJgJlYL8izQRSFtQpMuAPAvu5baHRVcCgKUGkVLKF4aoZJyMSzytOJWuqdmN+aGwcALhox0XVtPFWvI4ADFICGHHSdrKlWq1SriChUZiw6t7FpGP+Xn9U4WJRPKaLRGIRoFEKx7j5NOx/gfRKSQTgsCuCAAzfIFPoHkEPdwHYVkQl4RSKjcnO2NjIYMXiRQ1n1+x8XkVzVjma0EAPZKxUy94+IHG9AYf0CRLU24AcYzi/p+swlzAztZHxpQOnj+YrxYyZreZKs2fbVjYHZM8w40Zr9XS9BMTbTE3fVZR1Q5SRclqJ7Oj8vmOPjcvZXDbKJ3G+UeU42UYLIk0TE1YmIftoraxHqQG6ZuUz5VxlbHhfx8/2c1ppblZjQVGE+NTcvmg/H0+v6CxDwsrV7eL4xDmdV6O8fXzphWefDGUas5+aCjValcLI0Rc2ArK8f+bpG/dfv/aEoo8efs6y4WEsH7nxhZc/++qzzue1QGn903uchbmlkx/+4uQj9Sc+fX3xoW9OLh/cvPTqV68/cevGzXdfu//eB668/9a//ujtJ9f/5T9+9ftz7/3nh+8ZsUr6aNM/NWS8dN/8IxPjp567tv/Ckc6lDx+L/8HNY0ln7Nynlqc3N9cuPWGe+e7Lg7IeEcfPn5o7NfPgmQuHLz1UmTl73zPzqWfvOryy+NCe+eJH/j29+eNPffHvf32v53x1aPXMVGfo59e2/Nkvv/PCX/78lcib/9rsnGqvzp+ZSZ45t9nR1w7OHZo6alRGhprnD1cnJzPmyLPfn1gnM3ny0Y//6y/+/MDV9/3iP37zy/vLy+tTB07NZmsH64vP3D39o42rv/iD3/w/L00493++9al/e/Gf3vrzPSeWx/bsn544uufo3s78xkSzZDbHCmnNkErlHKBZQhNjnJ9kEIBdRMoB3RllaIbkE+l0LqNLNmwACiCQF+IRDioTUN4AEU2bYR814CMYFuVBMMCEBtyShH1IcVUWowDA4YFoCmdz0iyAr9cHKD7AgsjlkO5yEcFLBznKE+bQGKY7ixJDz2magt2q4cgtgKKI18ccgYpER0RG/qiZCQuzSBg+ghlNKuXtI6K6Fgv1B2WRwNx1YeeWHV4oMKGg20OJMoCHgebK1u0r4G5AvRgDIiEAFVCdpJ7KZUwtyouqHo8CUklRYOsgkOBHYUYRKO90Bk914wjAmD3M0jwXk9ioGmN4IUjlcDcB9jmZHKCr072RLdaardbYaGdsemFmee++1aXDGyf2JlRFT+GkkpMG3l1pDLZGZ5eroq1jtJ2azDjlwebI7NLSgUkzhQkv6QzgUGt0qjU+v7Z37/r+5bUjZxfYoNvl7Wcw6yaJwyUouTOIv9iJlU7DY4OK1L0BNbrWGBje97trYABgwN/IuygOp478fnyEIIBJBGMA4IAfAdjr83v7e3r74GtgwN0boPwgZA28ftu1JYA8OoaxB4BweHwHv2w+gz/VMuJ4OIzaChjW7ju37nK5dvk1kZFVkRIMxcbfJmVoYtRIpAA8LJMPCoYkd9MJDIKQNUwXwgFbNSZIZqFUxN7dar3WGJmcmZmZX1haXFyc7QKwKKpdDYw9ZjwfHgiQ3n6Xl45EIzG0w41Eu6Yg6u0erK4RR9DLckFfUGA8boKJqxwdBgDmZXKA4KiB/hAj4B0wRRN+d08XgGFJKlGK4kIk6dFz6bzF02yQ0MvpQimHrrp4jJp0bANvQZNxKuJYsoCm1B43JrdLUUnRsPUeGK4Yo3md8wUA5EVsgk5o3Q7ihJMPbRvY2dMHSrd355Zt23eA7t0CAvg2/u7Y2dvf7+p1uSiepsJ+nz8UxndEydnm1J7jp6SeoWYOtJ9pyEJ5JGvJcsgczIPaA+GagyUDgq5UKWaLjcHBRqM5NDzcaDYagxVMBmiPplUTNbooCFE5Gk9mimW06cjm2p364NBIe6iUziYEFp3j4loy09WLdWCSUwDA4dsADODQtY+y0IczKlLAYjge/oFkaDxP85rGSXEJWJhu2nFJtVJAx1nCFwSWw7EyyP8UckcBeDZmUIFeDnhDLB3G/mo1NzyzsAEKGABY4eTa/MGMbhrw5wGuA+WuRSYTgB0Zg8Xr9eo4UozJDhoo4CQaYlQckOztio2hQwyrZOq5VDJbnQEAnpypFC2g1GYKOG220mlNp/m4rMjwfzgAyfVqsZyzYJWz4bi/j1IpV49fQKgM+IDPMzTFKZhk78cmLCDubsnW0fbkdwBchG9aGawPtcen2l0AxijxUr0zMTY60qqleJAlsFzMXFmLKmgYmVChZBQcq5Xa7lE4l98Jufk4EyAQgFm/N9Y9G7cztdGxpcNnjubLhXQiXc6WZs8NIwDH+QQ2Ye05O4jGI5Yze7EY13X4mbDek0ZmdG7PkcdHotl0TqWhqqQMPUKJZkaPqnoCtDMskz5ayyV5spcuGulUwckPtfeM+dgBXi0uzCl0KOxjIvbcesxFyellJRwmOElKpnMTSw9ojCIKyrHR5wCA09W5z0wEa7VCYfjQuw/7NX5x/voTDz129ZasjSMAt1ujcycefPGVT33xT6eyV7P04sdnmisr++76+JcnrzSf+eTVtUe/ObOwvnHha1+5dvM9N27eun7fPQ/evL/09bd++Xcv/Plb7/zZkdd+fvNSLT6Wq+RChZH683cvPNaaOv389YN3H5+8eilduPGnF/nch772bGd5+Wjj9Bcmk390bEl1LMXad3b5zOTl0xcPX3igNHXm/ucWU0/fvbFn7ZHlhdnXn3Z961cf++CPfvbJ4g8ulTrnh5vHfiNb3/ube5Q/+dundr37pczgZn15+cJ84sSpzUl9bWPl2MSp6tjYaGN5st6caA09/B9/sWc8udAo3Xj5Bz/61MWLf/idX/7mzXsqnfXpw2fnAIAbK89fmv3HI9d/9rW3//FD0+Z973c++S8f+bd3Xj98Yrmzb31q+sjq5urozKHxZtEcHMmldSNWqhQcB9adEGF8JGvE6C4Aa7BDaYLiFaiUOVvRDJEPESA5KUrkBV1mwmEfEF3LCHlIdA2iCIoIB4Is6fYqeLnh/A6Agy4xjY0Sac7P0F5/hBOwqwSUBS2KNMf1M36W9FCCgMaQMg5sYsczRZJBIpHumgmpEt5Rwg7nYloSoMZSFA3DA1N6F4AZjmdEkQJJ7hnALLkANrJSLBfevrtv9+4BKcxxDMsKQDqBdZuw5tGFV9dBKoiiFBM4kE8hLW0mcpjuEItIKvwthsfTfAS4e1yL6xZgGqjmZLd51UC+jdoSqowQi9CywolmMhbPmabdNcrCs+DMf/pwNIZGxsaG282J5eX9e/ce2L+5cWafocqKgXXLRt+Acm1ibHxmrsCqScwUxzuiaqs9MrW05/C0hSOc2IGN/9dQY3RuZW1t7/7F9VMXVwCAfYSbtS3YXHjTl8mjRQgK0TSoXwcjUvELr0HRL+N2chHenEZRAQtCRODeBQSChhrmQ2tfdIdmQMPARguEvK4BX/9A2AePD2N5el2eXT4mwCmwuXkmuMMjJ4GnRAUTR8QkFa+uExhkkcRARV3VMIwINLbY83u/t3VHv2eXRyJ9vCwyfCIO9Cedk6N40A7l0rFtgwpG9aiUwIt9xR/WlSgebJrpUslRc/V2I4f3e3baydZGJsYnZhYWF+dmAIDR/zmiiZgKDAIGu6DdAdKHR+ViLIK90RiUEUe3RHwCAMCGJkUCflEM+cMS53UTIO1A2Lr7OV4K9xERpr/XTwkSAjAVwAFoTyBI4qVXjCLZAACwUcjmUwDA/qBehVKdd9C7H0SwjmodNHBCJoWsFeNELuhxDyAAo9t+F4B1A8gPIBLjh82E09KoirvK3EgXw1vdPVv7fAO7QPtu3bHjzju27fjdFfC2O+/c7hro6/f00wKodb8niLPaoQAlpRudlc3j4o5Wu5xJY+YJDwAMipYwW+VMIiKEQtlCtVasAnspZYtNTJZqNFvNGpqa1KvtemO4C8DYRNdtZ06k8uVKMQ/ELTcy2Rhsjw63S+mcKXA0L8uxuJlBfAbwbo9NqfCAQhQLOIvPFDMMTMMyJZan6RiDrCgqaSqjyIKqakk8+JcNxwGmoidUjY8w6AbN81TUAABGggh1wE+xQZ9fpAgvwzJcVIio8dzIzMLmkUCfF4+g5ToAMDxFXZbhX/IXgaRGQowfuKZIhgP+QNKGSpBM4mx+EqMXM/mKnszVW8W0xqsqTcuZWiZt5woTrbHO1GylaEqMZNiZQiFbHGtNOZwkAgDbmXS2VKxVEMqgArGEGPSQIX/vDm9MhV0T9gMA0xSLA1QxKcSl8JqY7pPSyRhDMr87ggYAzpcb1WZzdGIoDwAMTzZVKtfHAIBH24MOLwP7z9jJbE3D4hKN64qVAkS16+YWd5zZ7XFC/ZzKBUKBeBeAoxK8mFyu0BgbW9k8ewxZn54qposz5wGAs8k4n7SVZHvPOXil9Womt/xARU0Y8F7iqmJo6ZGZlY3HhyLZVDZBaaqdTSYkgk9kdR5eHAfMwIj1M3rKoemdTN7IZYqpXGtifycgeAW1sLSoMQwTIBl9+oAywGj5PToVDvGsYBWzIzN3GbwG7PJY49nnniKd0vxnp0K1aqE0evDKQX+C7izc//yjNx69JesYR2g2a4OdxUvPv/Cpl/7k8+pDK6765/fkF5b2nf/IZ4fvaz/9wfv3P/Ht6cX9Ry//yWuP37r1+OM3r1y86/LR632v/ub17936/P/+xVuvf++H189PpDq6aoq1Sv3qg5PvaYwde/qxjQsnxu+bqQzo306ryeW/q1mzpTnn/Ptrez/z5ftENJnr7F080bn/7N37zj+cHj1+7zNz5q1Tq7PLp0far/zm3vA3vjvKvvCXn3ONT9pzR1LVQqbXdfpjHxz+4w9u+HcKhfaR6sLCmfH44SOHJrS1I1PHxo40JmYBN4eHWqOtY//863c+MpTfO9f82K///YPHHrn00P0/+ot/uT+ztG/68JnpVGlfZfG5C1P/sHn9jdd+84OXJvUbH8l94Z8//cvfvnPu7NLkwX2dmZN7NxeHpjamhmvp9lg+A8K3WIE6h3ObPOWnBSPGEL1BO42FNNTno2NQLEyZV2HZCAxew3hpkjPiQFe9QSpqJ0lvuM/tC5MhKgQSSmAGfIYBhdaOa7cBmHAJKdPJFS3aS2MiDRdxUZhKI7IxMUxRPbSXCg1QEQGtikFaqd3ZIBy4CKhJCUoo6AsF84AZEU3jC04OFBOKGiDeAtfNDKQpJeYnWY4JDAx4/J4+X9BNqUqox9230+WV4xIweY6Dsgwfy86CUr2NwIkoJhkJUUpg2GQuZaZTKg60orUTHmJKmLcmi3EdxxuAU6e75glQq3CMuHu7yoMO48JynDOySTOXTFtArFOpdDZXqhYdHDIqV2pQzeCrNbk8Nz+/dGhjc+PcvgSGCXfnHrK5Ym1odHrh4Jlz04qSsq3uERq6HoxMLK5vzKQc+NEZtJhtjAw3Gp2llYWFfUdXD529tEQHA0Son0mlDKWrgEF2o/bO56DYWGjPa1pd5EFrkzi2Cqsqyl+suV1HaJCo72KR5wDghkWBBIIDzy8cDBKgEb19vX1eYDMudCYGUtPT249NdlA1OD7U3y/H6ABBMiIwI0EQ8d4eaZMUF3g9mwYZaMRYQVXInjv/y9btd+zo76VIvy9qxlkhYeesfDqjMIYEj9/OZGxDohglLioGIJke88USMR3kTDJTbdZKxXZrcLBeqVQzSVmxnXSxUsNOtM7kwsKggA103TQIgJGuAu7zhwIed4AD7dvtAZPhV8YGV5wAVjGMPK6EAgwb8gVl1uPxMVqUZvz9/SQZo3eHRbLPFeQAP1hYwYTP07PTHQoRIvCWCEUCVwz47VzaTkgcS9Fq0SmU8ynLxuxKvHDTlQQwszjHpay4IFB+v9cf5gD95e7DB6aIuUksI/PuIAdPPq7dDkjSDTudylF9rt4+d9+2O7Zs37Flyx13bN25/Q6Qwlu3AATfsWXHbld/f/8u2C4hUIhB2GMhIshIOdBY6ydiPe2hIto9AzOu1rK6HGXSg3lbi4tEtFlvVIpQFWuFXKUBAhhU8NBIs1ZrlNLF0fpgZyad0CQ5BhwSKKZq5QqVeq1YyDvlVqtdH2oNdWqmbeFZNjq0pzKFcrU+2BoenZiSSI4MEXR3DFjpis+kZnCkwIO2jwk8QrAEvyV2bynK7d8/gQfuqpJwYP0A1nbbHkXdSliwoYA1e1kadKxAhsNhoBmsGKG5ytjEyrFD/gEvEdV4qTZ7OI/RMJIcpQJkMasqXChMOakkGyL9AwHHSnaFePL2EXSq2ABtbQ22AaMiMZ2iLKeYsQup3MTQxNTMeLGSjLOg3bPVcr4yODxd4CUB2+GAMRdB5udzOceQo6GgwAd8fX0+dy9rRBTeTREG55VN2G2qzIe4TFKNcKRXg4rBk2QfCAwzi5S7ksvX6y3MaS+CCovKehpQvTM+OjIyXLdEoCwlvK3NxPHkRoqBUk0DD0g3YtsDErvTb7GuWJzz+0PxGMsFAoakGGYqB59ybM/xE2dhZ6tmvpLNz1weMjKmHWVtRTGbG5cqQ7l6xaksX2mqCUXoNj4oam5oZm3z+og7mzVtWUiC9FYkggKSb4DAEGMJOxHx0kY+FWNc0WLSyFVSufGRpVaA9YXkZHPcECSfz8uaE2txHxcfXNc5IigI0YTtlKfusghbjUaPNh5+35NUujzzqQ4DIrw8vO+RQ2GNGl8+8+IjD924pdhjR593MiMjs6vHH/vI88997HP//e70cGzuy6vZhdnZ4y/9wfgjYy998K497/7m9PyBE4+++t9uPXXr2ZsPXz936uytnz3y/dd//jePv/8vf3D98sf/7sKlEbNjTcyXT23MvHTv+LXqzObzN9fv2T9z+do/fntGs7RWZ00X7NKkeWlWDDh/nRNScTNZ3ZPrTF05f8/y/felZ0/d9eKs/Z7Ng6sHHhhOrdwnbzn79S9f/+SrZz0BMb9wxM4IbOrqV1776c23P/azN57T9enN+tz8+Rn52PHDY+qBQ9OHZ46LzSH5cq3agWL+3n/66dt/OZRYGm2/9Ooz720dfPiFz//27TfOZmcPTq9vjpql9cGFF++e/dsjN3/5zbe/e2sh+finyl//10//5K23Dp3ZO7K2Pj57Yu3w0vDU4clm3qoPZUGzcGVYOAUnEaHR+S2SEMmQm0TD5Cjn6+kLxhKambZSKTmqxWPxCO3zgWhUYxwR8pJczDH8ftLlCVDYAx3yw3bqD0F51eyCllBAJtE07Y+mNBw1CwyEw7tonmXdQTEcZAhRJrnIgJ8K8sFdPk4IAxWV9aQu86LEEmE6ROGwoAZsBrUqj4kBoqRmU6b2nzFwToKnOLTjYthIJOzy+AguHCBcrl6XG0DV3xt07fK7dvHJKBX0h3leNaHop/MWbF1d7xokCSIfj/BiKECapZSZMWUBkZeX4wDLiL8CD+XdVJxiwbHwkrzrcgVLOmHjwJER4aIiRUXJoJwxQemkkla+mEFPdjQfyhbygMBVAOCh9ujk7MLy2tqevYcObZ5Yw4NhK5uxzXQ2k60Oj88tLq2fH4klMt3D42x+cHRifGx6Zd/GPHoVplNlJ1drjo7VBodnFuaW9q13Ni9cWuPDPaFAP2uh4xXo7Vwxn0sDfU91HYZBMZroUdkdEjESiqKBEpHlaCQSAzCATy2IEY5/FzZeMXTIR4hRFsQwoEsoBBI4CADc43K7+9yunt5uH9Yul8sd8BLwL8Nb8gdDJBGkWF4yVFCMDI5UoKMnXprj3b+JZwtSXPTv+i+/t3Xnli298F78hJrSoOomMnY+nVeAvqHvddJKJYQQC4QLADhp63QwrsfRJRmEASi4SqPRGoEFPzY0WKnWC0iCsG28PTaz0AYSAYIIfaixd17qAjBJ+NxeOoJRVojMsqJ33c5kLEigRWMSEeS4UCAY+/8BOOgeIKlY2EViJHWABvHMdIOtvb27PVDj8VbkPwHYZ8L7smNoPqwUnHwpZ3Xl/m1HNRXDfRWetZIydkH7PL4QK2JDIcAPHoDLwClpTqHdQTYCK1i/7cQGAGxbudD2Hb0Dfbu33nHn1q2gfLdu37Vz6x1btm7Zsn07OkLjIXT/7i4A+714/QqPnlSLo1PzG6fl3a1WMQfM0ZSEaj2XhLdh1XO2GhGpeHuwWc1XgbIUsuVGDYC3MdgcGhqsVsrlxnB9cHzauQ3ALDAZWTMzxRrI5MYgPPJKvTo4NDzWyGQtNNoRgGTamSLib3touDMpkzxmmghAlYEFG7CNgDGHA2QoEKZZkmTZMBEmeR4v0GO3ncElOaHEscHBskDE0p4wHYnQkaRtop0cEHEPwwQDfiEUCFAsQ/FRjmAKwxNrxzeIAU84pvHR8uzhHNAzzFajA6GcE48L4RCZshI8QQY8AcfRDNPJ4HS/adt2ptSwk3pycCSfSfKyQvO6nrUSWSs92u5MTo/mi7rEYwpgtVwo1oem8pwkAEOzMHGx0r0Gd2BZB3wUbAsiGHDt4pJAAjw8bQhkIpVK4Ng7AQCsCBzpUW0FAJhyRZykCQq4gLFktWqj3R4fymdSsD61NDzvyfExAOBakgfWXSmWs8WihrQGvUpBrsMGb2jbfRK10+OwfZICCjgkizTr86mKBjskU6qNdfYeO34aqG08WazmC7N3D+oIwHxK01PDmxfLjUwxYxRXH62rSS2CPZew4rOtmT3HbrUHrKydUgTDstO6CuTRTiUlVebwEl7w8gDAUEfYjJnMV5xMe3y17Q/3ukKxXFUg2P4BMmKOztD9gjkIABcOsFEuqmWas6etkK2K0WNjl1+4ReIRdCeQTefLzaVL64RON/acefHhB26+R7HHN56108PDMytHbn70uXe/+PEv/NFUxBj7xL7awurS3c98duJK85mXH9689cfTa+sbj3zttRtP3Hz3o9efve/i5Wfe/MK//+Qn3//DL33nrQ+0v/2twUfGzNnS0lrj3JHp5y5M3movHH3uxvq96xP3/uLv7n19SYp1Aqm/nWXLtZHLV/74c9WCKFkFp5Fy9EbzwdMXV++5XJg/feF9s8lr9x9c2XuxanKu9hc+94P/9//89unv/PWTFjd8StW5m9/88Wt/+tHGN7765z//87QweqQxv3h2XDtz/vh4fP/hyYOjd9enxsaO11rtytDsJz/x3TeeGMwsTtY+8er/fP3RKw996c/+z29/NDs8sa+ztjmRru6vTT55au6Hh6784ptvf+/JFfPqZ2r/7eef+d/v/PbM2bXpjfWhmZNrB+cGJw5PtwqpRjsP6zZSKUAtQFtHPjTgowGAg/3hlJ20DAnjAiOm5Tiw0xKKJgkxLuz3sZyg/A6AU7cBGKpzKEww3SYsQsKQUMdIKlDSaJLwohmdk3L4EOHfTTO8MBAUGABgXoSi7w6THpbp8/FqRNFVHURfTIAdSlKENxBTsFwlDUUEho0sG5d0ylRR4uiWZesCRXNQFMOMwAVdPOEhyCDR5wmEQwF3764+om+7N+AaoCiWZdACMAEC1c7hcXICGEJcU0U5IgtChAyRRslJAXRIaGis6/EIHtGyAMdKVAS1akThR0Tiioa6NZ01jYQWkw3AMYB+jiODUtoyTCttp3J4EZvByLdsJt21gm4OA4C0J2bnFtdW1vYcPHTk5B7MnbcyDvZrpjOlZntk4dDGybqQy2VuX6bmALibnenpzfk0DjyZ+QzOYDZypcLw2t7ltQPz+4+eXyaD3qCvj8Vj0GQ2h/4KuXQun0VTCFThjt3VBEl09kooqq7ENU2R8RY4KmCIMcBU5F0UBS+DI4FQARwz6MURJqG6EoR/AFSZe8DdhxOqQGh64H/7vYEQSTG0z+0P0t0Le11XBBIdlPEakSZA80jo3omRVujezRO9O7Zs3XrnzqCfDIQ1G92uNCddyBRigqEkDKBaiYxJE5F4DA80TFP20yCUzGTXj8wuVauDzfZYZ3R4eGR0pDM10hgsVQopK1OuDU8NSSK66WKcgBjXEIDJAT8Z9LsHwpGYIGJCE77JbuSzmtQNQIB4JOIPCiwRhL/9JwCThKc/zMjANvmwe8AfjkQBgENoTezq8RBhiuLxDhiQmAn6gIIm01E05ZALabwpTKB3cPK2zaWuaknQuFbiNgD7AiQfuy3/uqcmcUMVSUE2agYFAAAgAElEQVQNe4NMBHugE7cNurWUZRXD23e6+3Zt27K1C8AYg4SN0NiHtX371ju3bN/d19/fi2NIhM8bwDZHIhBS88NTCxunYj2tJgCwbSZjfKkCACzRZj1vK/AZ1HZjsOyABq7lMuVGuZulMNgcblaKlWZ7qDk0OQO/DvBYgRcBgAEIivVBfNrtdjVTrhZrjVYlm9VFDm9koxJQvBIi8OhoZ0oOsSEOlg0Pzz4BMl6PSxLnHQgAPcAeEF5gadjYPIWeFQoOn8XEiBIDLQgLEVhhSibCIU4l+VQKiLSq8rCOGZoIAQfvTk+DtKY8dKbZWd08QAz4SEkXooXFzZyWwN6hCB0gMjbwY5ognJQWCYZD/oCd1pJId3EAAJ1oiuUEvJbKcM52eCWGI4gZQ3eSVmt4YnJ6rFBOyIKasPMYoF1pTuZ5GY+gkykHADibyhYLKSMZ8XmJABGJCNTubYypxII9DKtGRds2dVhwAMB4AMxSA4oVxwv3PjFjWjn4ybliJlcpVVsjnWYm60T5qJquVFvTY6iAa6agJK0SsKJyVRejMgIwhkAiACe3epTwLk+a7Y9rtJ8MY+60zws7DA/AirWxiT1HT50vlJKKVaoVCtPnGol8ypFFSzfSoxt3FSvZoqPl91ypqLYBu0kCqa1nGhMrR55ouKR8xtH4uJ3JJg02LJlOMiqrESBdKu8NR+wEGepjUpadK6bzwxPrHSrq99FKqSlzsSDBxcura6yLi9iduMSTwLCjemFk/rRN4SLbmLv03lukU538xCTVqFfLo0ceOxbWucz6oRev3vfuJxVrHBXwcHtyfv/Nj7zvxtMf//g3H/al176ykJoYH9187jNzDw099cGrB658dXp1z+aVr3/1sScee/z6jScuXXnh8e9/7qc/+vn3X/unb/727Z+8/vr81aY8U19da5zYmH7h8uLT7bmNpx478ODhyavvn3vuJz/rwIP5+ZsTQH1qB/7075/4q2UCeE18aDQzvThx7ejplQsPleZOXXxpznjwyL59axeLOel933v7q3/1sx+8+Zkff+svFG7sLjppfOlvX3vrp4+tfvNnv/2b12+EK3vL0/MnhuNnL57uxA+emD4xcf+eA/MnHmmVWsPjtftmP/Xe58ecubX273/ow2+97/iDz3/r39/48KH03Hpnz7HpTGVPufPUqYV/OPjor7/5qz++f8a69pnBV3/x6R++886J4wtTRzdGZ46vHpj9/5h6DzC5ripbmG++B1buVLluhVs31M2p6lbVrZy6cuyc1JJaanW3UitawTkJYxvjKOeECTZgYMCkMYzJYQgzwKQ3wPwwMICBAYyNAcO879+7BG9ef5Ys2+3u6rrn7LXWOXuvVZvYmK5lE5VmxooZfCEOdTMUDgXIgMvti4CmG/VbliTRbrvLZRsOazHsrTUlmaXCIZ/HRYZoGQONXH5KjOl/BmDs5/G63Sw15uHNKJCzRFyFxQCU3cUZoqRLAh9yO200Q4dHvNi1RFIcTXttVMgWDA1tGwuhe1EEoB7DAEGReb1eDic5oJoD8NOhIIjgsKil0fZOkGTYdXGdA03GMKQ/xIX9dp4c88CfXfbRMbtrbOe2Uadt2O13jsFC41kB+LOZzCTjaex9AgmiQk3mQKKHANdJv5pPWWhaJMl6NKqEAaDCLAP0AjhDwIN5uiE5AloqYiaASJjRiMzyKhQXADNRoPxSMgb8fiBfs9nLoaC5tJXOIgC3OpOt5sTs7Pzy7n37Dx3aPL0f8AWUOKa4J610sdbsTa2unmyHTGug8XIlECyVRrff29OJZrNWLF/IwpcrtzrjxfbC/Oz+k+snTp5d8IHOciIAR7QIyN8c9kClAPXxd9hQGHaYjJsYpwwAoKgSHggO9AjHCFKY5gCH3wB4GgL+4HGSOJg0AGAo8T5QwLbhEZtt1IEAPIoS2D484nF5gJt7HTt3uQSMwVWBLskchRKJ4lWF8uHz4yhRZMO8rBvRaESTgtv+asuW7Q4/SBzZhIKjaslcPpVmBqRGi5jRVNQfkGQBgyyiOuMUI5JqorGwoMCzKjab7W6nUa10mtXW9PTUfG96sl4slQuNfpVjMZBHxDQBGfT2wAkr4HLabH4ehT4e8UkKhxL5/wFgF8EGPR4v/RcAJjy2IYLWggDAQceYO8DwHAn4S9jtQDncBKCBooaB0pEU4Y6hvxBOrBFSMVMs5+IAwIP8Sky6QEEbDgIAiwxLAhYRIQ5P5S+bcEXjmiFzQVbxuwiKRz2uXs5q0mIxMxMYGnXt3HIF9lztHEwfwW9btgw6sYC8vPGKQR9WkMXZKLc3FAoEvB5CS9cnFjaOc6PNej6VjBgRgcmXMqYqhqxqzlJBuGqgcot4/AkAXKoVS6Vypd5odKrFUhXwt9Genk0mUI9inGdYjuhmbrxSrbf6nVYpVarCIqwUrbgM25PFtGcjBuAEGN5p96ZEgiRo2LoMrygRGR85yxFjdp/fh6HSsBq4cJgGDoQWYPgG4C4RePyx4ZP1SDLCUS4yFqSteDKi6RoTIFwhv5dw06CCkV/QTMDFpqq95dUVL3AiUQsL+aWjGT2qykqYC3m8aHcsUASRTGi81+f3eOKpaHxgIwLgiRHcmbSZtIxCM21mKRmIDxtL6Rqo43J7amq6mysBdgJ7B7qbg803mWVlTkVfWyuVK0J1yKdNXfWPOggipEm6MHIFYZisfSdJCZwCUkBHzkIwmahEU6RNGSjgAABwLJ5NZnIpIMGgcRutfiOdSohokVeuNKbbHaCQ1bgoRWNApvPFqsFyg4iySGJwaTSuX+Ew/MMeK+SU9YDbhwBMe5xYb9Azs9oDLD1zVb6S0BNAtDJT5xqJcjqliEBK4u31M/lSsZI38ys35eWEwWLLpa4b6Up/4eA9+R3BTC4ZYblYOmkaYT+rJwCAI5KoRYyw0xWIRAKki7IsNPwo9uu7OwEBJJRU7EY53u0hhfLaKrXTx0T7ikw6vAEStme+czhOxpUQuW/3+SfvDcTL3XfPMSAyxqfPP3OdR+aN1YXH3nrdvfcrJgJwutOeWli9893vvvueZ9/14XcT8d1/O2ftn1lYe+b9/etr9z99654bPza1dODUbZ/5xF0P3nn3XXfdde2dT93z/e//5D9//b/f8do/ferLf/vDnxy4tUBPVXYv146sTz9yw56HmvMb996+fuuRqTs6s1/+z99/UJOe+T+/v4dIzlcPffihwz/7dV1NmUb5oFWpF245dv7g+Ruy0yevemw2esuFYwtzNyjh1V/8w7de/+irj7z2g/944rtX7ewcMNw3ffeFZ3/5mQ+ufO6b//3df/96pnuovnvf2Tnx9FWn+gDAvVOT5xcOzh8+V25MVcoLn/3IH15+13R+ZrL10JnPvvK+c2997qXffvpTq4nOwanVE7Op0oHC3FPnl/5j49KrX/rDV29dst78XP0TLz/3r79/beP4Uufwybm5Q8uHlppT670aKOBm1gJBmY/IqkTxFBRkf4AcGHEEU0kooPbhUduYC6hazEyYCUXhKAYoOOwUSgIA9rj9ITGqIQDbPYFA0O9225wMY/OEzbgRhQWuC5KAHj6cBisuRAtQnNw0Q4WHPTTncWOfDmkbYwJQYJw2n4DzJFoc6ggn8DRN+YIBATttQb9pEuhRkib9LCzpWDYi4lUxbCoVAJhCHydKkBmX2z9mI5xjw0Nbt+yyO0ZHh4fshMfppXx+hmdYdCBPJFNWGmfvTAOv7kRO4xg/vKAgIedTcRYbpSXd1AV4YfBBOz0hDxRiVk3gdG1GGRwJJeLRCPx4ElADmgzzNCNylGKZGqYCptAqK1cAjE+nB1e3hXK12ZnodSemZubmF/Ye2Fg/cnw5goENVjwaR3pbbfeWpldXr97DGvg9stnCeL7amZha2H/o8Hwik7JiOEiCbay1dndmfn7vwQNTm6fPTJA+u8s5Rg8AOFfMZVIge/FSGTA4nTBjCTyMSwwCjjUMhgcNIgyiA7EbGugMADDzhkHzFRn0e4NsGC09Az4iiOZ+QGF2YWeuYwS7oMdsjrHRnUMg7OxOh2Nk20goElUFUE54wSrhbWuQ03WOpEReYkgRHhVUbRlnMi3D86Y3bd0+4oXnrsR00A+RVDlvxUKyrMMrM9PxuEyAtBCB+RhRifRFo6KG54hsUIzosUKz2eqCAG5PtYqlVrc3M720PDc1NdGenK2D/BXCwCYQY2XpzwDsdNjsAUFEDEBDEBUbkQe9yHgAoPK8188G3WiW+mcA9nnGdnoojRwNhEOOUXcoLPIYheyx2YeH7S4ihG0DYT8RCIQQgK1EPBykAl6p+hcAxjiQgR0HhlZTfjoOAIyOjGOekKBcvgDGuL6YoQgCRUsht5/FO2n5z3ejhmEaMc+obQT0L6jdrUNbt+3YsX3b9l3bAIARkXEkCSSwbThABzEqiKDg5Xm9fiNdm1g8dFK0NWu5VEJXI2K4BK9I40KpRg6TXkmjW6uDVsqVy+l0uV6plEuVZqfdKhfrzVqlXmtNTeHgFOxnBs2dIkYMoLpSa/earVqx1ihmsq26FdM5KsiIaFmdLgwmmaqVxoQUwMTKYAhIl6oLrCDQIcrj8LFoMKKIg4chcgqjWol0EiMXcQViyreCg3voTqaKtoBFU2YsiTkObMDnRo9sJwl8O0CSQQo2upipdpf2r/hsLm9YZoXc3EY6EtNkmeMpjzeVNiWB9hFJYOoEPCyvlbGSmQHvLRby8JFNp8fHU6VmOmb5BZEKksmEqplmPN+enppoJnOawChGLJVOF1KFaj8NChhelplAt5tkIp1JGCozut3u81GSEI34ttvkpOK1M2FB0DBAQuNYYQDAFBV0qAlVZHEMCb2g4UVY6VS2lCu1651WNmFKYVlPAgWf6HSxhTYhSibAdCGXb5gch9EwsoGjiJlUUdzmjPiGPVHGJxs4WiIwAMAumQfqY2VK1cmZPYdOn00WU9EkFJfszFXdTDWbVkVDlaOtg6eBGjUqVn71powYUynYkWhJUmjPLB24J7vNkygmYxxjJGOmJpOMAltOkTkBthnv9DGWxYY9ZBJ96RP5Tm13x88TnkC40IvSlM0tCPmVfYyD4a1pXSZdAYLSola+vREnYwpDzu/dfOwuf7zaefe8DxZNtX/83dc7eEHYP/PQPdfed78S6R5+MJbsdGeWDt357Pvvu/XxJz7xKDs++dfzxZWl1WPPfKj6lvTdT9+2dOsn+0urJ6795CcfePC+++6+66E777zlqV/8+Ps/efXb51/83affWX7o79fuKDGz1cXl1snDE/ddWHigufvopdvXLm50T3zop6//971/rOe//r5vfrJ99PTqqYULL37vtfeZ2YSV3FOxGvmbjpw9eOGmzNTpax6ait92dLm7+wa98t0f/uPXPvX1H0/97tWff+MH30rvO15euP+XX/y3L3//e+e/8NM/vPTKS7vnN3sr+07PaVcCAEsHj0wen7iyvW9x5a5GvtfpzH3423/89E0zuZX57vP7pn7z5b1vef/9P/nJ56rV/oGptVOzqeqR0sLT55Z+uPbwK5//w9cuLlq3vLf2N6988Lt/+O3mlfu665tzCxt7jiy3pte7tXyy2sonTU0qoFsPaCKO9toJVhNo/5g/HjG1MOUDISAmMDgsFk2qmji4RHMHgySoPx8Us5BsaF5PAARDIODy+kiPM0iMecLozRfLJhW0mgp6QAGDDpEM1ed1uwJ0iBtzs4J3DAE4OOIIB2wkgy71KsIfoirJcCSQW7+P40FbaYC2AkViZm2Ak3UrAhwfh90005AxN5gicUhcDduGgt7R4e3bt+0atjnwDHUU9a/dHw4RJGx+zUxnsZUqjSI2ihJNlQYATLEhv0fKAXkUZFEAmm5g0iAQ3ZDNBdKXhV1ULOUB4VQco8eTXby+VAF+GJLlaEYQGDWB3nroBZ/KFQrFNJ4DpzJQDAqgOHq96dnJqfmF2bk9+9dX1w/N6JoexW6tWCyRLtQ6k73+2oEzs3Qsl8PqkS3kKp2puT0bJ8+u5tKpXDJVbTRbrVqpUG1O7V49tFRqnrjmhhnsgnbZ2TgCcDaP9s849pTNZaCI4J+TeNI+CGNAcw9AAFm4bNYsYdgxzfN06A1eksFJYJLwAW5QLOMDKkWR6AFqHxmxOxz2kV3DiL+usdFdI26n2+mC93W7S44agCc0xSG06UBaGEE30FYMlCiJ8RQkHRY07OiOy/Yr3rRtlwsEixFTYnEjlqwUkjoVkTEnPp6OaxQRVllON7RohAtyAB66DgSJBMom6YVGo9Xt9yem+vV8odFqTUwvLC0sLM5PL+1uCcDBRHS3QiMsSWLCCMCE0+4mQdIJAMs4AI0GH4MQLFWUdU0U/AC0BBEQ/wLAJGEb8gblgC3AUc4RVygsCSFYdR6HY3jE6fbBQlUUEDhABT0uEx6YyYcon1etgR7MxPCCPZ7AQ2i8y42qoUA4gQBME+4xDyUOLoe1QVoDjrUJIVKk3f4wplXga1cGABwzIs7Rka1btm4HAN6yc9u27Tt3bN8xtA3wdxt8oBnHlh0jtmEfiES300tQJAEfCMCTS4dOymONSjaVMHRd5Aqg3DSGzDSypipTAa1bqxTzuXy5lM6Uq7XaeLHS7nUapfFOpzrerHempxNxE94gFu8PYDkmi3hJ3O02OvBXs14oTHSAxrGkPyQAACezJRwkbtTG6xMyrpBBBwAASJhmcQ7W56UEgRMEBTOw4PM5idSyyVxyIEeTVgLeJ5CVsqgAcQNm5fbGxJBiJmE3RQGAPaGgz2sPer0ukqJCNMvxcr7eWzq4Fhqxu0I8zaX7q0kjHlHxuMpDZLIxmaf8fisRkeA7u7xoLpvCtZ/P5Qog9gu5bK2eHW8kTYXg1LA/kIiBGk9k8u3ZqV41llbCjBqNwfYsp4uVbpIWObSitNCkE6cHTUUI7NrphX1Bh4244BxlMxpJcBJUDFHSoprIcj4mHREHAGzBP/r9Y3w6ngCejC612WJ+vF1rtXLxqBRWDKtUqXV7/YmJ7rjJSRETPsXKVKO4buGNioLuzqTiqdCIUwmO2BWO5jQ65PZwTIByOyVRQauWfBmqwaErz1llK5rM5jOF+Wt6mWomDWJTVyLtg2ca47VaJZFZe3NaNOWQJINeMuK16T2rh+8vbnOqJbTxV2PRuKpBsYrEZSkUpOGlCM6AkLIEwRWESpGEV1Ht7p8IigEfKZX6UYpykYpYWFmRAgKfnJGhjsM+j6YqvfmjcRIb76dWNx5/mz9Wa7xjxgdrbLy3+fANblWmF+fvvv/a++9Top2jD8USePp3+I5nP/jQrfc/+fwlqbL7Y5Pl+fm5E49/dubW3H1P3Txx64vd5T0Hjn7kkw/ec+mBe+647213nPvg7376i+/9+l+f+PYvP/fjr/3DP8zcMR6er8wuNE4ennrgqpm7xhcAgA9ePNTffPHTD36s/EBJrV/4w3en96zPXfOx/3j9v9/9HxUzaUTbB+ePLt1x+OSeq2/JzZy7/oHJ5F0n1vccOJnb/+0ff+n7X/o/H7zwyu9e+tW/31vOrtUXHrntiSdueerpR95+09mL529e6q01dy8d6epnzp+YUNePLR6ZuG5iZd+hW6rFTqfXf+wzf3hPazZ6dLn5tff237p+9OIXjn/51V8eFifX5g6fnk5UDpdnHju++KOV+3774qufv9CP3/q+2ou//ehLf3rtzMmliY21/p7D+44u1afW++PZxHgdew6kHKbgCixIQexWgjfXP+KNqBwdwgtCvxAB4hO3YiqDl54+wusCAJZh5bl8/hCQW8IbHLJ5yJCL8IcIp99j9/FR2C9SRGNJFu+AXRwIxGQkI9k9TmeQpwQ3MKWgPciwLDHq5/y2QMDuI4OgpWAnRFQ2SIUBzQMIwGEgdKCBeQRgauBEHddh1StY3uKYhkRStJ+m/JTIjO3wOIZ3DY0Njzq8/mCQcAb8Qa8zQAdYMqxrSjQZz6RzadgAsN6MgUuwwqkcF2LQ509KR2QVb+wMAztLNLzqoYjAwAeIVwd2E2lNGagdE2+QMWxHlnmalaQwz2ggQ8zoYAI3ncOBjnwuky0U4aNca/d70zOT04tL84v7D64fWD88izeGQAKSscHuanTL7X17jrUoM5PJF+D/KzbqzYmFvavrp/fGI7GMZeqGLEWQ0OSrIAlbxfbR8xcXgi4gM7ZwIhrR9FQWh46B+WdzCMAWDiFj5gTOCEN5BixCm89BcCAOA+MdMM9R5BtcvhCFBhwEiD+KCYd8LlcAERnK2tiYw+m0DQ+NjNlsdseIbWTUbvMA4ttGhnxmVA9j9yzOjGHMgoJzxtj9KnGhIHa2EyS8ZTFDCquR0Pa/2rrDCUUqGuWjIPhi5UJao+ISdu/EY6ZA+CQ1zAFaxTTKr5uSFlGB7AXcvKHoGTQR6/V6E81audJqtqbm5uYXFhdmp5aW28CoBj4q/CD6cADAQAEdNneIDQuAd+Kg/wcFP5Z9VRR1TeD9PpYJEP7/2wVNEdiEJQacAYZyj7mCjCRS/kDA67QPj7g8lwE4DABMBL2uKCZjinQoEFDHUzg1AAwuFk/EcdwrmTCjgH58IiKgAnbZCVocZDBjr3MEO8FELkBKIZdvED6Erw6vgLVoPBpz7dq5BdAWp462btu6dft2kMHbt1wBv+E/ojYeto34QKw7nR53KERgm5xi1aZ3Hzoh2RrjuXQygrGfKbxVYUlQwDFVDLqlXhWkUqFQLqazeP+LANxt1QfBAI12szc3ayViQFAuK2DBSJeA5TU6nVpvqtdv1cvlfjuTNEEB07wMGw2dyKvwMOqtKZkI+oJ+YJ7Al2WgqSxD+r0eMsxQDM72A6cOgxj2qZlYOg6idPCRzqSBwxuKaMgcp0eCDkUPMVgkMQ/Y58ZbDztJeOwD/GV5QSq0+rs3NkLDAwAOW70Dlh4zFAWKiceXSRsKBowCg5OCfpcDpHAc1zsgaCIFmw7wN10sZaoNeBpUWGICTNyKJuLZ8UJzqtcsRlKqwOixqJUrVfPjtV6Sxr2B3mtZIDOY0SyFvLtseB3tF+SIwdjJjM6SDCCWRrGyho3/fiZlSDQVsKuJ/wHgPACwlc3mivkKMJxGBlYLKOAEADDU7Il+u2Qwsh7JwipKlXQOu+HR/gOEdzIiOb2jdNgxxHIsybOcy82HScrpuAzAyVxxemHPkQtXp6pxVMDZ4sK1vdR4JgMKGApz9+DpVqkyXktaqxdzSlxj8XooGrXqc/sPn3qocoWdHU8ldVqJRlO6Hg6H1Rj8AHQYGDDvIKREVBTswRS8pmwy02zv7RBhwhuQC22dCjn8FJ3bt4f3BNTikhIOYlqOGiv35w8nSV2V2M7BA4+/zRetVZ+aoVqtanni9IO3eHWN6S/e+sB1992jmu3jj8TijUZveu22977n4bvuffr5Rzlr4ZOT1ZU9iycf+crV5+oPPnF945a/7SwuHtj8+Ccu3XPp0r23ve2td13196/97x/++2/+4T2v/cuXf/3Sq3878+YiO1+dX6wfXZt+/IaZO8tThx64ffXNR2duevpHj75+fHWaazz2ufH+6tHl1S9848mPHb59XMjFzPrBud3Tt2ye23PNtdnJczdcmkzfdWZ9cn6zcfbBdy4deOhdV1759L2nj99+HsOb28ev6z7+/osf/sDnPvuPf3/4i9PNjcbivpMTyumzx/vq4VPTG+2rp1aWN++brLZBBb33e68eXliz1idb//ziCzflbrv47ju+9M1vzXZXjiweOT0dK6zmpx4/vvSjPff95m//8K2LM4k3f7D++Vc//us//fbk5nxn7WBv9+GVYwDAa71yNlGuZwE7xIwBcAs12e8nQ6GQIjC+YcLUAZBJwuV0hVXNSoMsZDCOFMNyXGQwBJs34Ar4Q5qq+YjgkMNHc3gvRwbYYIARAMwUoMjA6MJBX8AZBqqfjEX9OwmHh+FpnhgSONZFsCzjttOsZ8QfdJH8QJ/h3aLIwE7zk0EEYBakG7w4Hu8oKZoSZTVuwOqXYPcr8USEIzGTKeAP4Dca27XVTtK0Ey8rOU0g0BSBoKjA5SAkgLsUED081UU+DvxdkViBGXyzgF+OyyLq24QVjyoR1Lcgq2gqLHKsZMQSg/NdNE9A53c00lIBc3geiKogwLc2EpoWx3PqNChsqAHFUs5KgRQulTEOuN9qdKfnFpb2rB48uLK+uTuCpRcPfRKYRzje7MzuXTnVE6JxK5PLZQvj5VK1t7D/0OaFPRooN0WVzESmVi2UK41a1qp0G6WlPZvNgDfgdtvYGAqs1MCGEg/hBs1fiQSaXcfQiwMHltENSwJJePn8GY04QN+HWYp6gx0EL8NipmpIDPM8OtsHQPMHvR77yPCozTY2PDRmR4+I7aOjI8O7nDb8GKNSOARJAzsbXARgS5FA0wzDhHkQaAFJo90hGRv4yHBYZofeuGWrjSaISFSyorppQIHUKEtQ0fFKj3IeUtV4QEc9rvgJ0+AMUzZNyU9IJgB0tdoABdyfwEnqZrXWn5+d371ncWZyfrkDbFHC8+9Br7EsX1bAJKYhMTysIAFj7wXsweIYEY89RU3hWcJDs0GPV/yfMSSHkwpJpCfIUB6b08eIIhUA6uaw7Rp2uggqxGmgoABvQoQHLTRjEk0GSK2YLpSzcRzAQUfvuGlmLGA6HC1AyafZkMdp94RQVUUiChBIDX5yXWG9ITngJChYU5jsPjg6gP9iWB7AXWxVu2L79i07tm7dAb/wDHrHzm2X+7Cu2DqEAEy47Ta3kwz5YAP65GRjft/hk7KjWQHVFolqEpvEiF0+lKznLZULuqTJRj6ZKRWB7mRLxfEKAnC7Xm+02p1+r9vozc3A65Yx2QcYgUKpoAWbrWazUe1NT0y0atVqt5HLRAUQyAN5mMgWx6vNNgKwCiuEDDKg4NACXAxzPO13Oogglg6KZgfJWiHOpwMsWt4AACAASURBVKWM5MCiI4md68B7E5apBgGaw6IatAkmFTSTiHa0j3AB/gL4+r02FuoKArhQbPeXN9aIEaeXBm4Vm1y1tKgqiTQT9PoylqLCjvUBC5ZJv8NGoKXNZQMcnAHOguTG3xvtZEREX5SgauXT+VSpUai1aqW0aqmgz009litXx4Hppmk8yzLQQhoYqw5cW/LbdzrxIMirCEpc9QbTCShkgq7TJIfnxkI4wCR1CerOmBwfHEEPMfFoFHs+kvl8rpCr1lu9WjKZ4ICGJYqwhtvdfq9VNBgtYhaBKWWKOicMFgE2jmSThn9XcCehEDsDYcZFsQDHEk+hFzTIbjOeypXmd+87cuG8WY5F0/lirjB7XTdZzmR1WGGa2Tt4qp0vVzrZxL4bSkbaFDCkOmpa1ZmVI1c+VH3TaKCSSUVZJWLmIhHY/1pcotE324xxtqAO75EwGszGjWQuU57uH+gRDOH1a8VOlGPtbporrezmvUE6s6TJPMlSfCSeb80fy4SwSNf3Lz10u89sNd81HyyVa/WJQ4+82SGqQnvxhoeuu/duPd458kAk1urMLB247QPvfPC+O9/+N3ew7akPT5nd7p71+//mHWer9z9x6+TtL3Zml0/e8NmPX3r4oXvvvOuJxy6de/EX//Xzn/7sa5/43b9/66fPfOE/F24p8sudfSvdzYMTj1w7c293+uhDdxy4+cj0LQcevO9HH/7MbOTaz//pwszq2vSJL/zw7h/cdnNZzCZju9fmFyav3ji9dPPNye6Z6y5NZe46cXh2/bx28wtvPfs373z0yfvf8Z5vXHjuM6Xu/uLCC4+++Ucf/OIXvvuVf/nmt77xjcnuZnV636meeub8ZkdcOzFxavLCwsbeE7dXy9Od6vTf3PTIM/3pxL69E1/+9sqDezbufPA7v3/+tmPF2Y25jVOzyeL+1My7r9z9wz2P/O5Tr331mq515/P1L778/Cuvv3zi7HLzwOHJ6bV9m3tbUweb1WK61iqmo7qUwWQ/CWdTAl4fKfMUMQLLTjeEgMfjthOcmi2ZmiyGWKikHr/HFQzRQH+DriACsO73BkccQV7CfJioptGCBMoQL5bihqrLNMhbWKBmOhUe3ep3eCmSChNbAVm9XoGjnXaGJG1B0uYKYvoqXpFJMs4c0SwATJgLY9NoRA2HYMsFSUBpJRFNqPA3DAWO6xQ606L9FtBmTXePatVGnvXRtD8oCFQogAMzPla1cqaoW2YxKetWKmcNnNuhKAsiyQDyMCxJAmIIooA9D9hkDSuVh+JEQ0EAoBKkiJVKWbGBrRS2QYPAjOsiL2g8E4YyD0ActTQ1boEOzWYSSbTFSJtqFMN+y+OVWr1fzNSnpmZ3L+/fv3f3weN74SuhazwaZ8Gnlpqdpb37jlfDGgJwBgpmudqcmJpbOXphjuPkaLJSbdWgfLZmpnfP1fvre1JzR/fuywS9dgBg2oQXFc3mkb6n0aI4BVAMv5KgrVJQFQYTpwbOBcmqOEgJxMtTYFjAgtk3OOyY+AM1ivDRYRr+5HO6AW8ARt1jIzaA3l27hkeHAYpHsRV3xDEGGDDilqyICJ8SpIAOyUYsYmBWtMrTGKvhI/yMILFh4BdxgfMRErXzr3bssvlJlx6R43g0BhxF4nQdE4tU1WQJXpN1QY2pGucCxoauFbEIS7DxuA6av9Du93r9fq8D+FvtTM6ABF5cWpieWyqHOQWeOJ4+wwPQFQENnQOU2+YNMYKKoyKY0KSqmNKEpyXY9CQLAR9L+7x+mRwd9XIiCbDqdgWDgt/jJULOnQ4MoyV9QTq0wzm81enzBkKcbIQ9AT8F28AElaWJJAi1aKMIsBdDr8w4rCX0gkSDNCi3phaGL2obsRNhCpSIFgVioMVikQH4BwTS7gV+Sw/4hmHoetQwzdjotqHtl5uuBmfOW0AID8aRBooYG7LeuHV0iPC5vbAPCfRaJ7ykkmnO7zt4VB1rVfNlfPNFyqwWk4YYsuqw1JmgW5uqFnKZfKmUTWWK4/VyrVLvANp02+2JyR6A8NJCLBKVFexbh4ovRQCAG81mvdWod/t4VdyYrmXyBkeSJN5fmGa2CuK512l22hJ6tlDwkAdz1kDnwiQB6wjwlyIZhgIihoGDpJaB1Y1jY3gGHUsbhpKOhzxBUmSjquARc2HSRCcOkyPgEfjczjFYUS6oPgDtYVZNNSeXDu4P2F1emqW4+NR6DN5LhRdYYPPpVBww0OcqgqImvMSYMxsF/ZaCdWUB2sNHEvZRwqq387GYKDCkpMcLlfFqq1kpF5PpYiIpiawC5CdTHi/VWxNJWr4MwNi+qGtRQ2YIm83FEYQ3ZGhcPC040nFdCwoiE6KFYBhIFeunzJjEk0EnvCqOCrntvG5Yafh5cfcW86V2tTaetmICzUcypUqz1+h1JxvjalBRYsViIpYuyIJEC5qoQYm0cknZ7/YPuzXvLlYK2pgw5/MJYYpx2nGOGGheuriwvHb4mnOZhhmNp8tpa+6aLsB82uC0hGrW1k40c/lmpZjZc924mdRhl+G5VGx89sDGuUdyb3SFEoVUElgM+svhCERGIEDxxw1ZcBBC0hI4O5nQNVlStFRrokgIXg8pZaeivG/YQ4rlA6uKl+EyixKNEXVhPZptzR2t+CMaSxeOz91ziz9S7z45TWObQfvwk292aJFQZWXz4eve+qCmzR5/xMi2ulN7j775vc8/defbnnj+Ellb+diktTC1+/TT73nvY4n7nrxt8uHPlhb2b976mY/efd/db739rkdvv3TTR/7rFz/84avffPb377nxovmx185cW5enKysH2idWpx45O3lfdeHQwxdXz56Yv+t9hw7+8vt3TkeXf//3zZmDh2ZvOfGVZ/79Q5/qyVZO7x+a3jN73drJhatvMCdPXfvARPr2zb3tpdPJm3/08Ud/9E9f/fhnP/yFTz77d0/FO4ul9Ufeefb9H3/Lt//re1+75f4nX6r1N4tze6+d0k6fPzkhr5+eOD5z456NfSfuaDfa/erM147f9pXxudipvQe+9p7sbz62ef9bf/T67/9jX2H62OTBM5Px6kZp7skTy//f2gO//ZtXvnxTJ3Hnh8c/98uP/PxPrx89s6e1f31iZmPv8X3NmSPdSiFRb2fS0YiSAZEgcDyU4gARZIHi+Uf8OTOKN30+p5Pl1UTSVAZp7jTOethhC2oKBssE0VqeocMegtQkBRSADBuU10ApUAwnqVD0QVYH7eGkmcjF7FuGPQ4PRYZZ144w5llzKjvkD9PBYT/jhMoZliWcmRQwjpCm/CBkwwKoNQFKmUgGAWgDULxUqMuGgqHmpmFqHBRMDvuY0QBJ0GLZcj5bHk9SUOrgZxFlwBWvoCUsQzdjekZjOMOKRwTD4BgZFENEF2iKooC7B1TYfEYilbAyli5dzvfhaKD0FDewnQb1E4uLA0KaQvvliAZ8QxZZTmRpiab1pAHFGCUoiOwcqFFLFSMYr5orj4/XJ8czlT6gxvLujX27Vzb3qTJshngqHQGQzOLA0dzy+tU91rAyWEdyucJ4vTO1vHH87IyG7tKlaqVcASHdXZif3726ttRdPHLuulmK8DmcDj4BKszA0Jt0Hn6hFXUml0I1YMVAE0XwGFTSVRknQgbmyRhL+Gc3SvoNXrs3PLCxIAMYSUhThMMFnAUB2DYyNrCBBuk7Muocw5Nom2N0BOSwz8ioQgh48sBVUY9jxlQihseCgVAIx7JYXhYM1bAUkXIx5Ogbd2wd8QacqiGbegQ9xTIKj48ZB3QibEBSBBlIlqFSvkF+oB4xlKCPNw0F3uRMc2JicmZmcgIURLM7OTu/sLC4ODc5tVCGVXHZaEMS0Fc3zAfdAG5eF0HzMhrIIEVTBj4dEt4sDPA3HPAxAMA+mXY4CE6mqSDhdgaCot/pCzLuYVDQHE9hRvKIZ2Qrwh0AsB4mQPH5PB68YNAHAGzU8rlMEphmZDDWlogDbYvHIjzFWxEeRJpzzOkFeqPIWkQJC6oJP4oicIGQFBxzB8gQHRYGAIxkLhGPjV2xY8tfPgaXvjiBtH37oBv6zwA8PObzuQggXN6Az0t4vEE1355bXj0sjVWK6axuRuHnT9YLcU0grVrWlJmQR5+sAksAAM6hxUalVKvW27VWt9VsdbqdVq09OxPRI6KMdIwJK4qZKdVaoIBrhfGp+V6tUqpPVjI5g6dDJB6jxxPFerXWmWg3Om0Z3dOQRQClk3E9hYOE0xkA9A2zGDWIXuMiz5jFbBpd4TB9CUAxntZkyusPAFE2DDXAZcSgEbUAXcLAgfx+z2UApvyeAM0yrJpuTi2uIQATNEfzVm81qpnofYoKOJmMSWzI662aihjw+RyePGySDNDP7MCHZmBFk7WSjVbWNEE0hyQQu+Pj47VqpZ6z0qVkGrYtLB3dyqTLjfZUGgAYHUXQTzoJZUKXaI/d4aMDhJsBsLWyGhEHKuvFHCyGC4Z1mQ8TdCIhhYMBlwZVkaaJMR4Hiqw0JqCNV8Yb/Warlk7ERJY3UoVyrd2a6E3Wy0rQ0MxcLp7Il5VBteLQOtNMxcLAqYY8gmuIU0JOlgXs58MhymEHmEYAThXmlzeOXX9Vth6PWdnxTHrxQjuTz6R0Tk/o8fr+o9ViqTmeT+6+thixNNHUYR/pZmFi7+qVlzLb/MFY0bIYBt3aTBxEzCoh9HTWJc5GcFacC9uCcV2HiieZ8UrGKwT9pJTpwXsM+CznlpZ5FylnFjSOJRmKM+Kw9I51fBEtTKdPz9x3q1+vdB7rkbVqrdI5culGX9QgcyuHH7vmrfdKSu/AfXKi2e7vPfbmp55/9213v+0jD1D1/R+fyS7Pr114+l1v+VTj1vffNHXbJ7rzK0dufvGv77j7jrffdM/7brx44zt+/73//K8ffem537zj9z/74D+8dN/1dWWuvrLSPLo6+9i5yfubc4cffsvRq45O3PKfH3V+/eX31FO3/eEbiQlQwDcd3rj4x28+0wUANiaPzB/cfdOhM8s3XIz1Ny/cP2Fd3DwwvXr1+JV/99Jb75149KX/+tb/frB03w9y3YVi46kvtH/7rfW/f/3l5+48+uivGv2TjaXFs30A4BM98eDmxObkjcuH9h2/pzrenW003/u+Z5d3Lxfnlo68d+XZPz48e/NDP/jT7149Gtm3OXPo3HSiulGee+Lk3h9s3Pvap1798k29xB3vKX3h5Y+89PpvTp1aau3f39uz78CVAMAbrULGrLbSqYgmZiO6JnAcjRmAASauhry7fMW0ZigM8Fovp0SxNxn0agiKXAAjZOCBKizUggAePYoCH/CHDVXRQTiGGQUqPkuCnAixmI3DkgGHkI7GsjHv0BhoVY4MMd5dNCCBnZVCOwlQ3SNB1k1QYW7grGBoAma00KBL3MCm8TBbUUV0nAz4Yd9rURC+ePIIZDWqoGMlgH0oCF+PAQDL5ZMxq5jXCLuHEhlMv6U9nGmZIqdFcGaJNzGwIKZjJyAFRYQNBX1EIBj0qxZ6/yfgi5vqwDxAAm1AAgCzIoI+IHDCEgT4IjHUcVBEQMeo0gCA+TCjpzDlJ5W6fPeby+YycSOWzZcKxWqt1mqDtJhcXF4+uHp47/6NzWUZmAIUDQTgZKZQ603MrRy5bgK4AU4R49VxrdWb2Xf4+IUZ2Yhn4UugiUKr1e5PzizsO3hg+eDmmatngf44XU4+jjFEhfwAgKHkod5IJuN4ko6TYAbGRgHsodpUBjfAAFicOMhkQC9o2GOAUqqI3Tag9UkopR5QwF6vxz46gF6cQxobc43uHLY77KPwL0eG3JwKlTDghWePZhPw1Y1BJlJEhvURxJlsXoMCwpuaxPvCYWLL9q3DbqhVUTUeicLbl0gpIoZDRnBEhabgQciqIkdEH22giQ88VJagtaiiGLqSBgCemJoCFJ7sttq9OcTfhZl+b35cFDVM/R0YbsiywIYDrhAIVZcXozEu23AAPuAfAN3h55dlkQv7EYA9PinkcnmAN5G0z+UIhiT/mJ+incNEgBZwECDodXhHt9m8fkym1ZgAE/R7XZcBWCBDfsKoFPK5VFSFYh1NADOLRgZH/gLFpqICui3aXG6a4WRRA2mKKRMDw06Kkf2gz2kmLIh/AeC4lYiPXbHtz/D7pjft2L5168AGGm+At2zFXzgLvHOM8Dr9PqfL6yfcAMEBrdSdXjp4hHeVcsm4aKgcz2caOdiiVKqWjUo0Q+iTtXIBsLdcyObLlfFyo95o1zvYUd5udzqNzvws7B4R06tYBuhQLFOqt1v1dr1YnduNgcD17ng6GxEZhlQlVUugMVmlMwGf0ZFxXo2k4KeQ8f0XRQBgl4fiGFa8nDuNiR8cYwL0p3CgvVQsFoqZZEENjtiBLMOj1zWaThqkaGYipsm4vR5/wO20waJzhwiPj2JoRk83JxfXVvxjLj/LM4LVBQCOo0Rgg24PbFKe9Ln9rYQCYOFzeXNxjN/M5LNWNo99WIV8MptMN5uwv0SRoQYAXBkfL9d69XKlkc1KHBQVSY0n48A6AICxCUvFZMloAl6QJoRcw2NBggoQqsFxiUyC1UHDO4fGAgwvUmJUlXkPk7JExu93wDLlQKOMCGYUKO9lAK7Wu5PdXj1pRjDkIpHJj9frXRBOJYVEWpqMpysVLYzh52E1ahqRlEm5ffSuIOUYYxXaFQ6LQQ/PkiG7TfwLAM8srR+/8ep0JWZaaPWxeK6ZziEAwwvO1PcdKpfLzWIqtnhdIZqOSLGIgSEpmdb8vrNvyzhIu1xJWByN3ntxA2h4WgOGbFiwXce8CMAsADCs4GQqWezMV10hKABKvhHn2VEn/PhTS6InJCWmNZH2w6KOpkrt2ePzPpQw0XMTd9/u18Z7j07QrUZjvLl+6fqgroat/QeeuHDnXbLe2f+AmoC6tXzsLY99/AO3PnrvB+5nWgc+Np2dn9x79unn0h96+Nonr1m949NT8wc2b/vSJ+558KE7Hn326atfePxjP/vxS9//3bc+8JXnX/2373zh92evGxfmmisrrc2NpSfPdu+qzB576NaT1653rv3Zr/Zf+863T0dv+e1mZGN+Y+7Yvz1Z/9VvPt2WrWxk6ujy0uQ1ayeXrrsxPX38qgcmrVvOHtl98Mr+dd/5yeyJlc/86Y+vvHKP8PRXzImF0uZH3nfdH7+/96O/+fG7Ws994pcTk8ebexdPtrUz5493hP0bk0d7N+4+vO/421rtVqs3/57P/PHG2mpsec/aC/c88vLdux9/+0d/+4dX3xpZOTp35MJsorxemn3s1N7vb7zt1Rde+fwN/eRtz9a++pu//slrPz9+bKG/fzbX7+09sxsUOwAwGrYBAEv5mBmF3UgHMWuFUVnnyBX2jAVKxu90OMYEnCJAb11QSlCBPK4xEliqxPoIbxAYNKuIoIt5VYYKSGsqTdGgqQiHd3CkjAPchEPKIABTDpvbS4f9FB8c8VG85GZ5AhQw4xkO0i5PkMVDcBEAeBAWAF8y4IM/STKaFohUCL65f6CAjbg20DWAXwoIY5RdwSCwAAbngHL5HGz4KE6bBNAlwhMkRA3gEthiIm0NTpijoF4MXaBInHoIhkD9Bf0BLaFFo8mUiZ7uA/skQCo6BHQ8jP7URgyDBiT4SkBaMRtcl8O8osssK7BQixgtZSXSiWwW+H4a41azUA0SQH6LpVq90an2p/tTy3sXlvetzK5uHl82ZBUbeAC04gjA3akFoEQdAU+gsxns4QKtMr1yCB6mEk0WcCwY8LfdbPWnZueXVw8dPnvl6avnKZfT5QIFjHfAOP+YxlngP48Dgyyz8Pw5hpYWGl6rA+GQxMF5rCKGZWkQEMy/gfTg+AjL8hxJBLlwEA3/vVBegfrY0YBjaGxseGjENmob3r4L/rbLbrOP7Rr1+GiOpwmAanjmgzvCQZqbFYuEA163y0VKEkd6Q6rK86SkBK/YsmPYGfBqph6PxyOw0OIIkUrUQBIUYjVFgP9f0BifYkjwOqNRIUDK8YiiRxQx2cAr4In+ZQCeQAW8MD/V6c5XoDhxA69nbADDI3W/k8S0WA8lqYP+Z5S8yKQESY1og8kfUfQTCMAEVDi3KySzJEU4HSQlEiN+mhwbIvwC9noGfE6He3S7zRugaFj4dIDy+jwuPIK2NB6ntIxxAOBMTFMxChje6HhiwHeEEGNFBZoOOO0uZwiPATR9MIqE88CySIcVn91Hh+FVK4McXSMyuIUYuwLV7hXofXXFNkTc7du3X7F1x87tW7buGAAw/Oshj9fp87s9BChgHBVTSp3JpUPHeXc2Bd8yojAMm27mTVVm0rV0FF4IofWrlVImWywNALgy3qzX280+jqO2Wp1+d3L3ImgvGbvIAYAxAKQIOq3W7rU7s7O9VrNRb5XTWVMMsySwJSNuFSqlSrvbRgAOBQMhkmTwaB9P9iUu6HV5aRwZZjl+YDPOwV5V00hZ8QI4m80UcumMSo/avYwh6oIqcf6YRbNG1ohGQm4kwG7HZQCGHw8AmNXTjYmlgys+BGCB4eP9g7B4cD2FSbcbOz+ChCfQsWTAfqBGaXj7Maosm8oDE4X9U7SyqWyrmTIiwLAZBdRgpQrvQX1yqtvtFXLo3aJIGkjWXLk2kSJ5BjvlI+hWH8U8q6Bz51jIyZC+qEQJUBN0HZ7u2JZdfvg8To1qCudjk3GB8RM2xcDoVGJEstCEFiPQMqVytTPdn2gkdBCN/GCcvQL8p1UqKDQaY5tmpjauh0FtAD/Uo3o0m6DtPnYXF3Q6GClkZ8Jq2AMENuSwIwCbZjxdnF5cO3bD+WTJjECJSGYXzrWyhWzK4OMJM99YOVotlWqZaHT3zQUza0rmAIAjycr0npO3ZZ2erey4lZLDMqa8mIoqxFQoXWYmpgp2gk9afNhOKhK2V2fHO/OFHTabLyQXx81QaMhBMonZPSoREhIzGuxVhmK1WLbSP7TiM0wpLJ3v3nGbz6hOP9LyV0rFTGnvpat9Mnzv+aUnzr/tbiM+sfaokey023uP3fbUx5+78dEn3nsf21n96FRmeX7x3Ps+N3zoE48/c/3U7f/cnd67fv0L7zhz/oYL589ctefmQ5s/+9HPf/Srf33+m8+9/NV//MRn1y7WhPn2gf3dk4eXn75q4p7x+RMP3HTimvWJs7/89crX5a80kyf2f2li8cB67+z3Xp9+/JOfbSpWOjJ5dO9C/7ojZ3Zff11h/vS1D05Ybz6zp7V0Yvr01374/DuPPfadP33jHU9vvvCVRGOpuPvT75/+5ivr51/93YsX7nj4r+emNsrLe880tCvxDnhldfpw5+aloyvH7q/W2+2J6Uuf+cMzKylhffrwdz/99Z+evHD/laf+9O+/PZXcvz5z+NxsrLBWmHnkzPJ31m//9Sde/vT1E8k3P9P86q/f99Lrrxw9sjS5bzLZ7Ow9vdyd3d8u5xO1ZioZ0ZVCLKqLfBirj4cIqWHCvdOTtVSQosSYzSsMCjdPo1tDiPQ63VCwaImjAgEiCLjHqwJBOHiRtwMgaxrpIaH4UN6AgqVRESmf2yakzEQuStrG3H4KHqMQHHWHWIbksAdLDDuGg5TL7QckR6d6DasCfCu/10fAloNVqMGyAW3lB7HLC4qhxYDy4xhHJKGS2AyEQXq0IPIGQA+mIRQyEhHiWb/D7iZHXSNuPI3U46l0Gc1vUrCjIlFDpGkOIw+DUDdA1fjVmBpLZEE/wzuhDxS2JIK0Zml4AYphgvyJx/HcVI/GdDSxlHle1hCAOZrhAYAB3hN5bABJpgcgnLXiSaQCVah81YmZiYmFhanpxcXegeOby6aKuQsxIwEgnS0BAC/t23eiJSSAxQOG5ovFers7s7KxfnbeTGUK+Xx5vN7qQPGcnJicXV47cuzsqc3zcyGX2+W08ckYKEn8jgMAzkEFGnjrWOiEhZEMBlpBoTGyjKEvqBZFHsEYz6PfgMkDPjIEqgOeZJjFBmAgQmTA43HZcAR4x/Do0K5RG/y2c8eOoV1Dw2NO25ANCiaL1MzuomUZWJakReDNxW+oQlGCMgpAH/KRnED7nBRPXvGmbUM2v1eJGNF4LBI3jSivApUB7SCrYYpTZclQophAbkJtVrSYFvJx0YHTpyRatd7E5PT0QAF3ejPTs3Nz83OT7d58VRLEMD9ocpbghwMA9mGHEihgBo1wNTxzlnhRAKUPjy+i4j2wLCMA+72ESHo8bhooGBR+B0WLntEgExjeSQQlmacCoDKdztEhGwgzUtI0JggCxev2xFKpVEQiqSChldLJRBx7ImA1gIhNZgb5iXyIiUVEOkQ4HADrrAA1Xh/4VKogwWWB5hWfAwEYbxz1CJ4ZWJgZaXsTdlq96U1vugy2fx4A3rFrx5Ytf9HDW7a5CRcBOpOAF4dGzEqpO7X72Cl+DDAuoaWiPEMlWwVTFZh0NRkVKcqr9hCAM2iumCuNV8frlUqrMdECDG002r3OxOAOWFREfqCAVeB5AMD1Vr/fm57udVqdemM8m8V+WQBg4JzxbKlc73a69VZbDPr8FDnIDkVmrEhM0OsGZR/wk0HsqUd3tUDIz4HaQ4aBzq1pK5u1zJhnLKBZPLwtsujVMkJITQM9DLkJrx+egz0Ez4QK+IJ4iWykG/3Fg6CAnT6Wp8NmfzWixFQVHmYI54BjXChIBEAB47d2e2DPWoMxpGwO90+hWExkUvl2I2kY/GUALo6PV+rVWm+6121nMwrKcElLonPHeD9NctjOD08yYcXMuCmxfvuIi3ZSfr9G+wUlClQ2Zcac24YDpCByBgiVoB+etMCTxJgSkRiS9I4qScxLQyOcdKFY6cxMTrcSmoomYxEcdMhXx2u5rAIFlFN1I1Es6GEW+/RhaRqxnEWPuMlhKeByM1JglAqrghtDXJ0O9A+DtzBbntu9vnnThVQpHkkBRS8unGvnillQwPFYNF9fPdkoFytJw9x3ez6aifDGIH4kao1PRb6nZQAAIABJREFU7z1yZ3bbqCuatFJ6GMR0zjJFVYgYIqfEsnFdcnr5lAUKGDZsJJnOWtnSVGnE6yD8Ymk8RpLOICvll/ZInoCcW9Jxq/OCEc/V+uurpBZX+fCV3YsXvQDAlxrEeKmUb2zccY6Q9Sjfn3/0mjvvMcz+2oMqHkGvbF58/EPPXH/7w89dYpt7PzyV37tv8ex7vpjy3f3RZy9NXf939cWDh2/5wvuvuv7crcffcvX05tRDv//5T3/46vc/9tqzv/7iv333gfl7uvJ8e3W1f3Jj4R037X64sXDqoZtPXHt49uI3fwN/e0cnf+XaV6CI7m8f+9kv1t8T/X5Ds1KRiY09K1M3HDk+d9W5zPTJay51E7edWF0EhLzpl+879ejBG/70q4vz9+duf6zXWirMfPSJg3v/9M83fP6b//IvL9z6zc7kkcLiyvmGdvbCsY6yemDmUOvWxc0Dmw8V61ON8alnH/jF199ZlHcvHPjCpbPvtk7ec/tzf/rd766zDh2Y3rhyLp5bL8w+enbxn9bf8vLHf/3idf3ELU+Of/4X78Y74ONL3b17OvuW184emJ7d2yrnY5WalYyqQhaPUxk2FPADvAZiGks7/MDxBQBJr5fkQU5g+z0O/aFGdoN+pUWOwtwY2AO0wXs8Tl4S3V4PKfNBKhiWRIYIiJgHIwnwGbawZSaz6tgueyhM0zzDEjYPz4HkDY55eDlsHwvRXiLAcio6pOJZOMvQJNZBNsyKOC8nc7CvCTLIDAAYajen6IYBoAnKLYQ5PgGsCLqVwhHfyHhBdtudY0NQNu1bRh2hwfBQHBMYzATuVNNKKHSQYmUJvfYYGiuIZCoIwOl4VEe9P/BsDPn8IRJEtxxBfZdIGoKIHf6qMQBg2ECwvQUeA82j2biZRMYP+JvNp4D4J81YKlvIF6o1kB7diYmp2dmpxZV90wePHF6KSDL2cqGqTg6s1hcPHjrf4aIYiI7ndhUQKXMHNtZOLUKRyOcKtVoT7Rgnus3GxN5DRw4dPrRxeirg9Hpcdj4FL1gHAAaZMVDAUFUAgK2BFeVlT0dNH4DAn0EJTTyRF6EKfgNF035PIORD/5UgvA+BIOFw+QNeDyiSkV3Dth27hjEOaWTHrl07tu8cGt45NDa0fdQf8DGKwoB6JFhU0hJGy2SSGEFsSDxL0TzLBnxQpgOOXe4QN7xl69BY0K9gQEQ0Ajo5wgETMCIcBWoIvallXTK4QFDEUELdMDmC1GOGBAJYShSa/Ymp6akefLTbvZmpmdnZudnJTn+hIomKcDkKGNkEz4T9LgxacHgZGc/bUXqqUjiM1uZQgbXLlomDMSSvTwy6nC7GECi/y+GkaMHtCDHB4V2BEN6XYB6y2zE2POYiPCQna2FMIyQ8XuAY6aiCfbhaKYH5T5os4DA5oJMVQUdujuITeP/qc7qcTiCZmjzodMaPSAToqqASbljyAubYG/B/xeLY9pMae+OWrYi/V2zdvmP7ZQh+42VH6CsGTVmIwFu9frfXa3d4gPICxQnq5f7s3uMAwNgzYKaBTrLpdiGqsKHkuBWF10Do/Qoq4EIRx9rGK8VKqdyoAbD2cAqp1+guzMeiMUUZ3AHzmh5LFaqtdrPZqjdn5vqtVrdeGweRL3EsqUqXAbjSmej26s2W4CP8VHAAwCquIwHeUZfL5/d4/T5/IIhteAEfSaArC06pRaLoGJvMwJcgHIIVD8uwcRUvl9FDUjJp6iG3x+UjBwDs9uChFGwnzkjV+4tr+wGACQYBuLdfl2KaJrLhkDdYKFgCQ/n8jYTKUkAYvbDpYc2nU5k8ZhrnQAZbmVShU7cifwHgQrFQrler7ZmJXiuVEhl0HFDieG9c6qdD6CqO0cZYINDN2z82TAQ8pI+WA4Qo4MBC2oiDUheQ8JnwXnv8dFTjRdpvgwoEWtU7pqXMeDIBQJdMF8q1/uz0bDcV0QWWFY0EfJNibbyaSYshhhFgWeqJjA7/RZZUEVDRysbonU6/W/Q73ZzsHw4yatgNtYdy/Q8AL+09dOKWa7KVhJ6EPV6ePdvKFTKWykUMI1NdP1evlSrJaHz1zkI0rQPzgfKkR0EB79u8L/smX3EKVlqEhcWaSUTDqhiJGWEZAFgTHR4umQjTY6SuxNK5fCrfXO76GMIXkCo1M0S4Q4JWmlvgPSE+uyAxdICACm2kqp29+xk5rgnMiYnrb3Lrhf5dfapZq5Y7x+643i9wiri4eOnm2+9V1faRS6pVa00uH7/lrg8+/7aLl567lyzNv3+yOLN78dTbP3a3r/zchz+w5+IL1f7Snmu/9KHrL9781tNz5anvXrX2jh++9sNXvvv5H3325Re+9J0X9tzV5iYb6xtTp9dn337z3oerCyceve30Dcdmbnrlo+xHf/xEOXbr7zbNY3N7Fw594BdXXjr++bqRSkX7a3tWJ69d25i65kKiv3n1/d3k2w7smd1/pHjtr7549dpHXvvO3/7zB35w8dEvRWdnszO3fvi6Sx/67//++stP/+ozN3632DtZWdhzoaOdv+poV19bnd1o3j5/fPXEXfVep9Kae/zEt5461eLnFlb+7oGv/frkLU89870/vv7jpcrMgZm10wtW/vD4/CNn57516OIrn/jVi9f1Yjc/Xvz0z59+6fXX1jeXOwfWZg8eOHjm4PTsvmYpF6vUk+m4chmAWR49GT0EGRGDwVFPMipILNBu1yitmoYsYEOyBAsfZNJYgGJUkfYE3G4SNGwk7Ha60Y3Qtou2JA/IYkUg3V5Gl4Bb4rm1g0tEk2lp+zAsaL83wIZ9To/IESxLDPthIY/ZSMrn8wH3wwNDgFcW3SF9HreLodH9WcL2R5ICik3zvBLR0WIarYQUdD8Ihmgy6PeDOJYl00pmM8lUvl6WnTu2DW3bsv1//a+tDh5QaIDAIAyBjUeNtKVxwEbJwYVomMIxREKxIphflE5ENen/AjCUGqjPkoA3NzErGxWlgX8H+v+i9BKBoICE4LiwCeQyCV8Bg+nRDjINXyeOzjyggBtdEG9TOMG6srq+vH74yLKpqFEzkYyhqk4Vq82J+f0b51qsiWO8IOBzlVqjN7dv9eCJxWQmlSuOV2uNeq3eREvLmQOHD60eP3nq/HTA5fF7HQMFbOSx/auQLRXQyCOFphxINgZeTXjdqA6EGPxUgEkcCFa8H4XKyb+BpemAy0uSUPXwYo8E5eJwEn6oiaB0tw/ZhkH1Du3atWv7rqEd23YODe3cuWvbFbscdk8IvggaMJAhoERyDFQ/An8ulzJ1mafJgG/M5SMYyuMgOcW+fdvwCElq8JoAtlKWobOyKJsRmpRlDjvCZFVWWVCkIo5dGgbpEWMxWTQMWa80Ov3/n6n3DrPzrK7F+d0HW12adnr7eq/n+07vvZeZc6bPaGY0mtFo1GVbsmS5yHLBNq4IGxsTMM10MC2hJwQCJAQC3LQLuXBD2k1ISCANkj9+ex+Re+/4wY+QR5pzvvO+e631vnuvNT2AqomGWO3+cG5hYQTAg6WKrBiKhgfqUMjgE+KEkAcUsGPCA58XJj+hE6QmoQQWcBBYxX5AKRjgOcIfVEJTky7O5IkQvFGKln1ukqWmoPTxAjrPoP6fGJ90h/wsLD6eAI0T8HrhTaZNBY3g7GY2Bc/XRP8kzJ+N2VCjbSCtSjqKt6ZAHL1QasOaGgYERg9kw5B4WjZ8PooXcUIPrdQAgLFNOD35+j17R/L3wIEDhw7u34d9WAC+B+F/aM9xqxXLH/QGA06ctceoDMquTC9tXbxTdjUK8WwsAYxUzHVyts5SyVIMJ1SDkUG1UsKR9FwasLNSrJarrVoLALjXbv8KgCMxjMeSBSzNMZBp9Var2ajUZxdnOo1evVrNpWwAYEpHcIrnK/XecLoPq1DE/ncAYDx4QD9jmSWCHpfXh86dsElp1MGwnTnsk5BHCZgSCkxVM51ENKVKVhQYV5CMR2gxkbY02udxhSiPw0l7EIAJBGAxnKz3l3c20RASipIYG25besyyVFFkgnS5GJcBgEEB6xzjc/l8qSS2HqZHVhywAwr5bDKbLnTqsNxuAXA0n8eY3howuEE3nZZpQdMVLYo8udBLEQKAIbxHHJqKoAtecOJgwAUlRZYCAVXAzvy0ntB4JRaBVTUSJ17KNkV4404rATSO8k0ZgH9pPH9DAG7MzA7n+xm8Ax4BcLZQbtYaoLxB28sGPs+MybI6qg3FTGTzUe4QLEDBCwCs+MegCvIukNeggIX/6oJeWDlx7uF7M+W4kcjl8pXhpTYo4KQpwuLKNE5fqzUrtVQ0duyxgpU0RCts4SBSqja3ceeTsQPm7GY+nojgRUMqYbO6Eo5bgh7Pwafv9AAAcwDAimBEU7lUoTrf8FCeEKfWmhHW5QlwWnYwJ/gZPjGL1+4+PylK0XJjuKGIEV0STg/uveELZ/rP9QjsOKhuv+nxgMjK0sLiE4898mZN7p9/k5Gptmfnzz95/0e/+OLjL77/GaK8/LFBfnH56N3v/diLJyavffM3Go9/o716Yvuh3/vQ6TOXVvq9c6VPvnn3LR/70b/95Aff+MmXf/bl3/+Hb2+/scF0a7unZ+8+tfDOG0dfKC2ffvGJiw+en376+bnTP/jB29vRR//19xILx1e7d/34dyt/9OOP1K10Ojq9vbEz++DZcyuP3kjPnL3n+X7q6XPHekevVi584SfX3/bTHzx1/V3f+987930rUV+NLN/3BeOZ1773je/869u/deXCNyrd8/XVo3f3wlfvOd0N7wCuNp+cP3f84s1mvT691Dg/95F3vq3LL60t/v67H/75U0ff/vRf//tPn5zp7mzPY83On24svvmO2T/Yvf7zT/3dlx7oRx95Z/mLf/fKX/7rPx8/vdrb2uqvHN24c6s/v10v5OKNVgoAWM6PnNkl9HsMhEDRhojJQC6lmTIJMmuC0zB8j6cMQ6ECIViaHpoBdKXcIBdo95RoM94pP2+ZIcc4k7YCTgyKBr2qRTRYQnio55bQw0U75GV5yut003zIO8XzQZINHCFYiZ2YIkgoLCSDesaw1dEwIRUK+LwCRwuSrmDgIAUAHGQEUY9EongHjLdrYRzVpVg8SaZBS+mRRCqbjKXi5UY5ZUWLvlAsWZIozVBVILgJNGnM4h1pTGVpwHSSESSR59BbIejXM7FUMpUGgabLeOONOTvwE4VRfpARTUSjiQzaeYXDOFmr3xqohe0Nal0QeSuTgG+xktlUbHQhBXsxEgdMLBTrzVav15+ZnV9cObq1fmJzZ/fcetw0I1CCLWytThZrzbm5la27GtxoaiOdzBRLhWJ7bmVj6/wy8An09iljnFyzMzszWD2xe/LEnVeu3DNLej0AwHw8AnKqkAPwK2TwiB3dOG4BcBQdofFCexRIj4g0UsCg3G95VwAACzRNuBx+CrN9yQBBkwxowyBgsgcAeP+hScfYobGxQwfgn0P79x8CFXzg4L69h8cPugkJM5M5DigKL2qJAja/5OBf6Qh8WJTf5zzoCoUUlWRBfk/ugz8aIgzMDrIjmaSp0SBfYxZFGhjZC5+vbum8T03ABx2G7w8EosmILNumGm0gZAyH053u9EwffrW4uLiwsDDsDZdKooyj2rcAWMCpIwJ+IuGY8HHSKAJ4BMAIxBhaaMhA2GReCgV5nggEFcox6REtAS+NXSQl+10hmnGNAwBLIvZlOZ3jY2OTAAfwsAw+CEssiGNIqbQswBMiEtONajGbsO14OIFXD6lYJJEA9GO0bFSkecbrcAd4VrQ0jCRBu8WwpokAz4bXi9YzgMARjM+zbx3HTP63vftef/u+gwi+B271Y+05tGfPgYMIxDgGjAEN3oCXoEYzViTh9zN2aXrl5J2XVFe3FM0nE6apSIVO1jJ5OlWKGhLJkLHZWqWYKpTL+f/qgm52a41Gq9NpNVuYkb5gWzY6eWICaBgAOAsQ2wCi1xzMzvRr3VqlmktaugQArGpGOF4E/TiY6QE1FPyItASPeXojX02RoTxOt9cbYlmGE7ERGugQpeVAiCYTsQjaykk0TZHEYS2TQItKirFCfisGZT2pS7Tf66Ep9/8FYAZokHkLgEMIwBInJ5ZPx8PJCOCfyhFMuYDnvn6ymwQA9jq9vmSqkMXJu3gsWygV8dobiHSxU42alghaWQvHEIBrlcaw153uZnO6AJ+FbmICcDrfSQRZFvg8Il0E/VQAgMfHKAfj9Sl0iNQ4U1PNrJ6yVGVUIy2ZIiccZBTFNemykpZEk95JPWHHMsC6UxgFUesPZuZ6mUhY4njVgpKULzfrzXw+LDOYgaDp4ZxJw86AXaCEMyXgE0d8LFBQj5cVfeMgz3mnJBCkyyHIOERuJ3LTc5unH7wnkU+H06VipTF3qZ0v59OWYlqRXOvC/ZVmtZ6ORlau54yoylkmXrkAAM9u3Hmv6s73VlpJwFlYj8l0lNFlPWLI4WQhbsgur5hK8OwUBb8BFCxTqi00/bTTQ0qlpi17gkFWTs3M8p6gkpzXBSLIsWokWh7OrqwZHCgy+eTg2sMBOz14oUM0quV84+Szj3uhshCF2euP33jR1OZ3H5czle7C3NnnL37os889+sJ7n2W7278xl1ubW7zy6gfm3hmj3/VbrQe+Nrd+5uxT3/3A6lx+def4sfz5jz39+Ff+5mf/+tf//Vu//fOvferHP7ry3LTUr5861b96Zvk9jx57uXF05+YjZx44337yjk/f/N43Xxwkj//Hd3orx5b697x4/4mffufVmp3JxGdObG5OP3j+3NL1q/nBmavP9+KPnTi5dPTO/I0//Ern83/9pZ/+5dyzz93zls+LsyvZhRvvfPiVFz+U0t74ld94+ZX/Md09UVnfuLtr3XPPqQ4A8Ox286nZs8cvvq1R67QqMx994YffelPLXFzb/vKpV/7tLafe95a//+VrF7YqK9sLx88tJXKnmvNPnx18e+faTz/611+43o8+9p7y5/72lb/+xS9On1nswIvaWN28ut2aP1HMZeONZjxmSFI+HrV1jaNBBIHqs2WKdvgzcVS9FOwsoLmKFVOCLA9igGNAJ/EMbUh+v8BSrGOMizCBKUKIR6dYgRI1nvFrFut1kwbqTKhZAZ9LTkZSBXucFoNekNBuKGhjjMSGWHKcoEVxahSD4idD2AxhmKO+IIYiQ1MuDGNQEQ4RgAMEiGQRCnncVEfNNwZaU9MEtmfRGMzOSXokGYtlK7l4qtadXVuY2Vw7YRMqCi7AJLRnhC0WTRkY7MFRNAfyFVu4fAG/R8FWDqgXeF2HOCVI8B0BSkJ8VXFIIRKNaZIBWspEAAb85XmQDzj0KIisDsAbM41o3DKsVH6URoTBw0DHQQF3O0CJh/NLy7trOyd2dvAO2ADhFI9iu3KqVG8Nhyu719o8EoAsSN5KKZtDAD5xbjldKJSyqXwJ/pZ2b6bbm1vb3jl19uS58xf7QI18HgeHvVYR+CTzAMA50N9IMvAmOh6LJRGAzdExIJIGNOQYXZpKtwyiJAkUMBmC2udDL8dggGAp0u92ONzegHti7PD+g0eOjI3h9S9AwJ49+/btuQ3U2P4DBw8dnpRUI2oqzOjQkZbDuTQ62ZeKmWTCEliBJ7xOF4CQrdsybxB7DxyaIBnLSthAPIDvGQoX1qKmnzIZjE6TTS0sgKrTWN0Qw+GgT08atqGZipbCd90HDdxvtUAEz/TnFhCAQcfMFhUZhK8io+kkKGFZEENuIhjyjDsY+BsNOzyKIhyxD8yNwFtwiWddeNHtpyTC6XDROhv0uV0uklZCY6TIOCZplpFEAhaDyzF5cP+UJ0BwAqdK2NgddIfw6gKUF0sG64vNaj6bjVnYIINdb+lCKhMzZJpN2irPED40xATehr1gmCMPSlDheVZQmQCe02i6ZVsxjI2MREG7Tb5+LwYh3b4HgHfvntv2Hji4fw8+5tFx9D74f/D7+wI+HxH0OfwYRxj0BSPlmdXtOy7xnk6zkIStaytKoZ21VYaGXQYAzAWsXrWayWZy1Uo6XaqVS6VauwvQW+pNNwCAO73FQTQexvgzQRCUsGJn0olCo9Zt1ZuDhdluvVNplqPJsMoSHNJXI16oNdv9Yb/a6gm+AEF6QzhspGNUPfAbPsQEMQ6cgTcJnA5jgVmpVMgX88U0jt1nsoxjbHLSlUxqZiQv7OWiTFBPK3QkHtXh3XiDLKwXxuv2sMgCWUE2s+W5+ePHveOTXl7h1NzqWdicUQv7VEi+no2IouBkBgWTC8FK86dTeUDYFOBntlzCxu9cDt5wsx5XoqqCc8DxUqlUAQbS7/Y6vXxaZzlFlYxEOp7MZdoRjiNEXZBjEQPolK3LtPvgBDrq0goQfk6IyEE0lrITMlQ1LgYlhw46mWxYkzmf24KPHUrXhJGBpZBMZID85qvVwQwAcDxtYjxnJJnKlaudWrOU0wSSwxBlI5w1OMEII8u3U/liUj7gZhUx6PLQgjAekgXaA4KDcblGhw/RcLQ8mN7euXI1Xs1E0tVmIdW51M+WKxlbtWC/T+9eBnFfz5vJtQcyZjxMRXC7h+14eW7n7JaiJPrnM6lEzGBNLZ3QOc6QLEORoNbpwhSpWrZET5F4s5auVnL1mWKA9jsZo9oweNpDAABPL6gBv5gZ6gpNsiHdtnO9pc3NCG+LErO2cMfjHrMweFObqVXK+fbxJ24ElYTOGksPvuGhd1hme+umnqg2e8vbN5df+c0XH3jxfc8FWic/Pqitry9e/NBrwccenjr2tdPnvjqzvnXh2a+/b2Zua6m/fqy9+tAjz7/v1Xd852dfffE7f/c7v/HjH971YldYrB0/07zr/MK7byy/o756x4uPXL6xO/3Iaz/99Z+/68P98pXv//OxhePrg/OnP/yGv/zwp7tGKh/pHl9Zn79+6tL6vZdTvZ1rz3fST5zfWdw50zz/8d+/+j//4vP/9P1H7/rwB975RLKyEZ278c77vvj5b75h9ks//J1Pnnmm3j9fP3rsvln17itn2sap9bnd+o3Fy8fuer5a6nUb869+4t+fP9nnj29sfOvS8Ocvnfvge5782Q+/OpPfOLlw/ORaPHm0Mf3MmeH3tu7/x4/96AsP1GKPvTv75b991x/88qdb52brx1Z7q0vrV9Yby9vlfD7SrKWjoBJyFrBokYd6HAyEKEMM+d10IhnWWNeYw3nEyUuJaBg2mqKJLMvxfjTT0KFWMVLIL7hZXRL943yUmRIzFq+bMqPp7BGHFkKjHYknQr4JGRhsPiVyIJ6dXgfl8/gPBUSJZNmAj5eJcQ8aDACQgiAyRgjM43V0KOjhRF4UNJCaMhsKgCImOUGLREyQTWg0ZJoiRdEEycLrZhRdFYFvRm3QYzkQZI3pfnd2aWHR8LGqAqgNOySVjKZLyXACjZ7RSg8bkngMOvLDGoPNh/BsW5qAqRCKpnDwEiiGFRROsUFKWkkV9qCNggZdJNAkU8TbaniNvB61wzbIYAs4bTwahXIRAdVQzOYqzWajMTOcbnUXNzY3lo+dOXNiaztmmJFIIp2IxWPJdLHem+3PnbinxcShHCdjCSDMlXJzdmP7+N2LgKmRTCFXqLYqmWK70Vk8vgkaeuvU2XumGZ834HHJ0bBlJODPpYuFVCKFJ3Hp7IhqwJuJJIAW2DoOzI6SaaVRC5Y4ujtFRHrdrat2HyEoqkj6/CGSDHocUy7Qv+MTE4cPHcavQwf270MUADi4DduD9h88eHiCBw4dDSsAByTJwK/RiyiTzSbitswIEutxe1xOH2YOCqzi33twbAoUsJ2ARwRECKqDauuWGuQ0AqeSVeB+oaBiYvCVZggBzo6oOL4s2w0A3xnMUp1BJ6F2rzO6A16YHw6HObS6QvgVBHxXqigE3cAevQ4vZkrLuobxd9boJngUSghfMk+7CAE748WgwwmrFn7pAQCmlKCD4imnA33PJBqWmcPlOHzI6QtitI8uExQZDLqCCdAPErC9kLcyWy8BzwsbsFriaWQ72XQ+aSm3nLDIoNfp8JK8PHrkdjQcxnlsRWR5hQgSLE7vWGELJHMkidk7ORdaYOFV7wh1D+Ao8G379uGJNA4iHTyIv70v6McRYJc/FMLTmpBV6K+cuOtu2d+q5jHlJqwoxTZODdHpoqVJDB+0erVGoYhe0CnQwVVQrp1up9uq9PqNZrPV6y8NY3FrZKUtCgryolSq2Kx3G7XWcH7QaXVL9UoiZWkcxcOSAV6bKddavcFMvdMTASPpICmJmHYsj/ozZZYPuWEPkTzwURp4DAOrIhXH6aBEMpNKl0rc5IHDLqqQFbVi3LkvYLEBJS5RsIZ0wud3BUHIOmmvx8sQARLnyI1sdW5uc9M/OeUXNUEvrJ5Ds20NB5EItpaJ6CLv4XppA+qJ2+lHs8tcDkf4c5VKqQywXyvnCrVS3IooMgCwESsUy9VardmZ6bd7+awpcsDZzEQmlS1mAYBBNaicGIsaUVjTukK5j0yQbk+AFYkQwUu6yACNs404qH2SjuAlDuthsxYCsMeOm/8PAMO2ywAA14eDwVw3DgqVRQWcyQMA10cAzGIIoRkOp3UOT8ElRY9lCiUEYF5lA24HpwjjBPbPKALFOCcxmS2WiKZq83Obx69ctYsxO1WoFNKtu/vA0lOmYsM27+9eaVYq9aKdXLmWsxIWAjAwTitVX9ndKIWF6OJys5qL6aypxgGAWV20jLACJQoUsEeL2gI9FTKhqCXKjVpzrhLiabdPKdZsiZz0CkpmBgoNyRcXFXjWZEjU7WxjuLEaYW1JZlaXzr/BY2Z7zyEAVwqdrTc+TElRQ7QWLj32+Dsi5vSJm1qi1uyvn7q5/Nxn3v7ACx98zls7+clhZXHp2PmPvZ9ZebXAf/Aj9/zu4PjOuWe+9fGN8/deuHzPbCSdKw6me4nNP/i7v//jf/zmb/6vHyw9V2eXmsdPN+4+O//KvbPPJ+fPPf/QXddPdB9733d0fY4rAAAgAElEQVSHT++sxSu9t325tbM8P7P73Z99+mfPfLOup9LWYHd1ZfjAqUtr910pDE9eeXM/df9dq+1Td5Ue+P4nnvjXz3/jK7//Z9/99rN3vWLkV5TlzccS54527zt338r2XPyRzuB8fWPr/qF+9erZrnlmY2639sD8pc3LN9u4iOaf/cy/7q7v8GcW1n74rtrVxpWHPjD3g1/86Hx6+/jMsd3VRHajPrh5fvZ7Ozf+4SN//rkHuvHHP5D/7I/e8d1f/mTx4mLv+Eptfnr56rHO8na1WIi0m7mEJUk5IE2qREOlCQRCNCyqoJuKJyRZYQkqOCmGJYBnwDqOp4IhGkQEQ9Eq5/ewICA1XJ+i2ynb3J4JMQJ1j5kyE4pjHP4M1EVVYujApJqNJTIZkUOf/4CL9niJwz4AWZYlCEkhxm4BMMhbeWSRC6jGwmvxB34FwAq2uRKhYNBPAnm1I2EVw7xAiZoKdg4xBPAGnD4RtGg6GU3gFFCh2B70OzNzC2uxEKOqZjweiaYSuRxIzAT2lgh4O4XTODyLs6shv5qJRSIRgFcDezQwkEngCGKUdQsKIAKAaidASZvWrQNoDbMHsPyLeIrH61AgQOvg1XAYxS/8OCs68sWpNToz0zMzM/NH19c2146f3j1+bN3SwjHsFgPBiHdv3eHc0Z3LTTY6quZ46VspVXsr2yevLKTS6Wi2kCvVAMbbvUZ/eWW6t3ry5OnTl1qUPxjwuGVQwGYkW0TTj5H3PZpRYihEHC3wMaI8PIrFG51D42gVvGLMSR+1Yb0O/U5IYFwY3cr73V6SAAibmHI7JgCAjxzG3ucRItyChdtuG4XkgQQeg7oMb1fFVqsQCVXGwrecSESilshIAiAFoJCX1USNJRnn7fvHncGAbMW0cCSejOE3R02DJwWBkUcAbAkeJgLfDKRKDlFW3NDw9WqJbhf072CAz292CKjQmRnOzs4vzM/ODjKiDDx+BMB4EKoKfMBN0SBpg/DRqDghfOtt66ahyaOAYlgrpJsU+JCPFHwOt483OCLkcTkISg6CDA5NTZFBBOBgwOd0TR065PAGCCAThgQcg6a8wVgsYctUIOTzlAa1YjIaC5tRMxxNIgCn0oVMVGf1uCkCn0MApgR1dPocjVl2LBq1VJFi5UCQYESkjqoRjWp6LBUByuXeCw95L1pQ7t2P5837R43PCMD7R+bQmBK8LxQKYGQfAjABFBkV8Im7LouhBl54InkGAM6EJY5OlcKwHCXCBgAulmFVFNALepRF2Gr3WtV+r9GClTQC4JE/CKxfybChsJeb/V63Wm7Pzc/Acy/WqimQWAKOekuKGU2VGp3pwXS93eH9o1lvEM46kiZJQFGn0t4AWqjRLEAvg7NaVDwaiUUtkPmxdLbITu3f71OyoEnLzO2HJ00hKEQkQktGNCrgdYRoj9NB+7xe+HMkDX+Dkq4MZzePhRyugKyLRmn9Iuw/gC6NZwm2Cq+LYbx8NxPhg36Xw5/N4bJPAn/N47xvPltqltKFegHNUWSWUowItjrW6+3pQa/RzmVMnAPWTPTNKWYaJi3QksKJ0ahhxzGklHRNTJJOHwYihDyCArsDPzItZkhQaCKGoSqin88BAPN+TzRpKjRFTBgpO5pOAe1NjxTw7GC2E8vYOidq4Xi2VKp1Gq1KXhM4GSpHJGKkQInCcxU1M5kvltPKIZeskT7vhKryE6SmCD5RoFi3UwMAjqdTuebyyubW9XvDedtKZoqFbPueDlCHmCba8Wise+pKu1qqV+Op5auFSMpGADY0LZxprZycTyQZY7ZZaBUsidRlM6bzAMB22JLtSDwsO8fkeERgXQRUNTNWbLYqcwVnAMMYCvWIQjn8nJBfmheCBJ3q8wI6SCtWqtKa3VqIs5YsMvMruw/7w9nOcw2qWgYFvPXGRwU+bGrRY+eefvIthtLfvakl6/XexvkXtq9/5v0PPvuRm57q7m/MFleOr5x/32/3JneeHGt86YOvTS8cO/nkt99VWZpbXVrsZWN2zi72K8rmX3zh0vf+5MN/8zdHn6owa8Pdc91rZ5ff88DK29Ird7z06KUHtjvXf/zv7/v3d3+ml7vwwS815o+f7Z/7zBdrnz56vWykk+bsmaXlwf0nLy7efVd8/sI9T7dSD22fXljaLd390sXW9VPL9zx4PH2sWT2ZmF3JDrZqpbc8+cLLz3/i0196dfv93f6p6vrWvdPalStnOsapowunag/M3XX8npvdRqs7XLz5658f3tNh7zh14k/e/uXr5ZuPvOu+P/vDP1+Ormx0Ns8sxYrHqoObF4Z/sPvwTz74409em4k8/o70Z//2o3/40280Ly0Oto4WF2aW71yqzG51ygWr2cCBMCkXscOKiACMCliTqKCLiMUVWaR8Ad8EpwthXQVRSrEkisKAj6FZlfG6+BBsFlkHbn9oUktaPg8dC8thym8ZbMjLGDK2/Ig0FRpXCsDVEiA/CL+X9AeOOMjDHtDbFBUCKu0/4gUY8BM4oqFC1YQNwtB47xbwsLcAGHNmQZ3BPwwrQ0W71UY06ikCmcqRFEmwqqFKWmQEwKVisVhqz3Tbvem5jYQ/KEl6FPRgHFZzXFMkRB1Gwt4d8ZZ1LUGH/GbWiiAy2KbMSZqOoe5AFzBsGCPUw/B87JgMVR8kMPY44BiSgmlO8FfwAMAAPpYBu9rUDQv4cgxPrGOZTK5QrLRneu3OYGl1dXV7+9SZUye3NywNmxtjdjYWTRdLlfY0gO2dDQ5dGpPJTB44NNDG5RNn7llKZXLpUrkEv1FvtxvNzvzK/ML68Y2dU3e3Sbcr4PEo8L7CkWwpn85mb80/5RDEcRg4GYc3HbaxKTKMvdAG2l9LInZvj8aRVPV1aDRCAs0gKEmXQ15fiCB8jvFJp3tqDLTvkSO/wt/RZAwA8O34S4SGMV+AEZjRgUkwFKIFzYjEsAk6kYiZssS4PQTld/tpvA1kOeeefUdcQT9rYPN3Kh1H2QiIRNEiJWmYFWirgaBsqRIOtTAhJRHVTcyZ1eJ4790bANz2eoNhvzfdAzQezKICHmQlxbh1oI5CTJF5zg9a1ud2BiVV1hVsdTFw/Me4ZYIFAGzIDOEGBRzwhnj3lCcgmDyJ4y9oxOGimNDkJPBKxGf0ZZo6DADsJwhO0EU/thYBACfSCRUA2O8pzZSL8EGFdcu2sTULJ99ymbTJGsBlGSoEr8JLQelFI+4IlMg4FESRJ1jFC+yVxy44RQ2bsmJFcXzLve/wwSP79x85dPtte27bg0/34MF9vwLg0Y0wekUD5oFU9HhDBPYZE9HK4CgAsEDU8/lcIjy6A26mAA7pRBH2saCQdqdcyRVK+UIhW6hWMI6h0Wx167Vep4luGr3FmUjUUDRkMKyo2aBrWt3p6U651F2cn+l3eiCHUjgHzMI+QTPodLnVn5mZbrTbrJ+kQiGKg7eBFFsHVgU1lw0G8XQcGTWahJMUh6aqCSsWN8OJWIycOrTfI4f1SN44cPvkmKFRbEQm5VhYpYMeB0n7XE7a7/MwOJbv9wSVVKk3t7UWmnT6RVXQixsXohZsK1DkIwCOyAzt5qZzUSkU8Dh9OICUTeMRV74IUjeXLlaLuXKzFA2boszRCMDZSnOUwditt3IgP1ll1IuczRTSdYNkSVEWFCCyNlI/NeSccFDOoEeBt+nRtDE3y8lmWLdBb9N0NBxWFSHIgwIWWb8bAFimydCkCQCMHXWpLDDqcm92ONeNpeHlwuqO5cuwxevtalHjkM3oiaiW1DE6DBtK04VSNQsArBkBb2Bc0/hJ1lA4r8BRnNdtKAbGJuYac6ubO4/ea+YSdjJfLuQHD9TjIx0BZSna3b3cqJXq8HGtXCvG0lHaxj2vWZn63EohY4SM6aOpclYXSE0zLYXnDQBgVbBjSVOYcCrxmMy5KCNsRdKVRqO+1gp6pzyMVKiqDOkOUXRiOKeRHjE7kAQAB04OJ0rNwcZcjg3LHNNf374RsPKdm3USiE+hu/34o8bI5XP31M3HHlfk3uk3a6l6rb164YWrd3z+Yw8/8tG3BOonPzOb3zi2eO7tv/WQP/L8afqOD79a7h7deuJbz3KpZD2X67TK5UJ20Cj30qlO/Av/+OWv/9X2G6vs5vK5i7P3nV55z/XNdxU37n7bY5cfPNl/4uLHn/ubz3x1JfvED3+xvXh0pn/hd//+/X955QM1EwB4cHJuffGR81fW7rvXnrvzvqdq6ce3dmaPX81dePo9W+/96Jvf/cqHPvjbz59/JlI4Lq08+mtXvvJbv/7a117+xEe++NJzne6pyvrmPTPalbtPt/WTq0unGzfm79q694VGbbrXPvrx/n0v7MybJ47N/vErs4/2zr303A9/8dLbN7X1zc72+YVIaaMyePrs9DdP3P+T9//5B+8ehh//cOnX//KVT3zlxeLVYW9zrXR0evH0TGG4NV3KGnUEYE3J22FDAopDEkF/kBA5IuAIAkdSON+Uyz3p42hdVVgqQPI8Q5EkAC3Na6zPp3qB80q8rEuucd6kgbvFZMLmFYUErQqVRh0dQQeDY0I6nogZNGCvxw2V5OAkfdgNChglpsR6jngZ2H4EQJk0ugSGokADGfAG3ayAAAyfKUdQVAAZAEgvO2GOXABGKCjgbCdDgyTDfhwrjkfQoAcz2Xq3ORgOF46l/H5B0iPxeDIdM5NZDTO/AXMxzF2TOABYMuijgp5w1rCNCKCiIY9m5PEOeATAzCg728AIX5DFqLsNvFDVkBogfrMMK3AGNvcaYROUsqULioU3sKkEEvN8qdHrNhr9uYWVzRMnz507e/7sCXjieEkTTdp2ulAod6ZXTpy+1OSTKWyihrJQBLKOecBXF1PZYh7WNnzVGvVqr7ewcfzEye3VE2eudkjnlN/jVhGAE7l8Kp4aJTHgPEZyNJSRTiVsTC62TQvNmNCOEQFYwsN17CAbzQHTDH6eJKpYhQn6/SHS7xgfn3JOjh06jE3P2BkEqHv7yCBx7/8BhCOTjkDAR1PiyDMUJ4FHcRXpXCIe1TjK7/IHvCjXcMBSCx7ct98J9RmkqWLGRybVKRsYOcMFJE1Qw7YtuiUdPnnVAN4mxaL66KUKnJ6stnr9mcFMr9fpD2YAg1END+fnBoNhAY+ZR4FUuGBk+MyCHorywTMRFdVEUYZH0JaBPE0zsGFPk0ABEzzjdwc595Q3KAIAhzyOKQJDEliJdU6GQgyQLm+IDHpcY0dcvgARYkcATIUIbyiRKhUNOhD0e0szpUIqHtVlIxKJYhBeZnT4aFFoko3Z0m6njxJ1UH+2gUcdUVynIiUankAQFjAvjQQ+wBoeMGbcB8ePjB88OHZ4z+17Dx1A4N27B1UwOkOPTqIBiW8PMRQFAAUADGwpSJr5/urO5atKsFEqZmLwPhUpW0uGNZmO5TAaSSasdqmSzTfKpSL6sVXxDLrd7lTrvVar0+h1AIAtAOBRFgMnAX3Kg0IEXK7VphfnpnvNfr1TT2UiioC5yvA0w8lyu9/vDdu9Lk/QgLIsLwBNCusg8ZPpeBjqO05HELKE8dwCsFaljLEEsAViyVzSICb2750UVDMWm3j9+OHDcpihbIPkbV1lgO4wjN/jpAN+DwdcmHA5vOFspbu0u+ybdPoEhdcKG2ehquNNPs+SXC0bldE9YjpniIFRHGEC7S4T0XiqkM8Wa6VsER1wmrW4igDMgn7PF2vNWqnWm2nXe6WcIbCypoOqT2eKuZbF8CTscNi88F5gvcghx4SbdIW8GkEQIcvYMwFswsBQT4ER2JhlK1DShAz6vvldkaQhgXj4LwBOpQDTgcQMBwDAQIj4WwBcLLVq7XpJA9mrKmYypqQNQQAAlpRwMluq55TDbt2EcjcJ2O7gDIUNoA+916Vhl1Uyla32lta2b1wOlwp2ogIYtfxoKZKMJzQRqlKsd/KOUq1UKiVyR68VYhkAYHS+08OpSne6XJBCeus0fESGTAONAp7KGzyaKsF+1YRJSgkDDxojgGTp0XQ2He3lKXLCRbD5Eu0NOFysGK3U+KCHiA9UzuvnSCUcLXTnjw2qoK5Ytn1s/bo/XOw+36Bq1Wqpd+KxR2KcaurqxrE3PfygHu7vvtnINBvd1TPPPXzsN1576oEPvkg2dz49k1rvbt3x9pevXXYNP6mKb/3GYPb4zlPfvSkABZieb9ZnqoXFQnnQGM4Nir/7o+9/++vHnqyx64unz87ed2rx5atrb81u3PWWh+568NTgsU/92t0//uMPNQtH//MP66vrx2YfXnnxmT9/1/dbZjJtTW/PrwwfPHfl2EMPF+bOPfB8O/346c3pncuRa19894O/9YWP/8+fvO9tf/L0e1/Jlta1jfs+efZK/b7f/dbXX/7cmXu+0p0+W1/fuDpjXgUFbJ5aWzjVfHjhzs1rL1ZLM73G2ueGN959dCBtr5z/7htSf/OmC88/9Y+//OXfLGU3t/o7FxCAq4PHT/W/vnX3/371h++9PGc/9fbMr//0/a9++EbhnunWseXsYmfx9KCxstUppI1Wpwi4pOUBU+Rbd8D+AAErLOAI2FEFm0KDASdniGgDJwRJlmOIYMjvpqAyMV7S8lJA5UCVxlQPq7lAfURZv63IAHF+VkPDI0EWyFBgnLUj2TgX8LncDoANcsrDjbtpmiVR9LLeI6CoAz6C4XBIAwomJ6AlSNAXuAXAsP8NAdRyEP0SAUttKPKiCmUH72MEwk9RNEWyGHOrhGMxO54t5Ar5Ymu6M5ybW9hIEaw2yttOZw01njMAMgBcWYoFKSiyIwAGUT4CYFhekTCgsoTH05rEkCTN3WIFuoFdkrok4d2piDeKCs/Smgg/n+Oh3pjpKM7e6QYe++pWMgMqFJAQuDmAabfXag/mF9Z2t06cOXv24vntCEhlBOAEXvjmKr3Z5a2zVxoMqN9fuTkDaE8Pl4/dOZuEElFGIVOtVerd2bnV9aPHTp7cPHX6rjrh9fncbiVuR8wkWm+kEH0Rg+EvQTvcZAIeRRREsBnWcBAGUA29KDGQAV0ZQYkJr0OnLzzthxIjKgL6OxMB58T42BH4Gp8cO3jkMFoi7t0L4nckfff9yjTx4KExn9fHc9gIjZfgsmHHR7ZHYV0XANHHJqacHn/AD9hsmPTY3r0AeAEO73iBnVtQJcIWT3JkUDUUHKqmMcQMdKGhELQVNxQTRIvq8wlWrt5HE6z+oAcAPJztzw6mezNoDT0sqrKm3gJg9JlSRYn0YZbEpA9+iq2HDQ1vKKAS4em7hWPB2OPvITja6w7xXsdIARMAwCC/1KCDU7mp8RAJipwIhMiQ23nkiMsLdESQDSlIMQTpCyWSxaKB/XreUr9WSlgAX5hMmYjH4vCw47GsGRDjJiyskNeJAAzKMGbhgojbiq6oGqNabn8AGB03MquG129osKaSroMTY+OHj4yPHTxwaOwgHj7vue3/AvAtJXx7iAb++SsAJkPUCIAvXZECzWoxDQ/TUsRsNWHpEh3NgBzlxJDVrdYLpXI+D3uhgl5qtWa71So3es12Fx01Fgd2zFQ0BGDgi3Y0Vy5jq0KnPTM/6LYb/UavkUzbqijgmLWq2+lKZ3p6etjpdTiCZig8rVJMYDcWfOrpWAwQOAQAzGgK3gKLJKeqaSuSyeKke66Ui1CH9+8bY/WYGPxv+7x7DtBhNmCEKcbQNSbo87C03+NAAOYpAHeXw58sN2eOnltwOVx+BODi5jlz5HgNrIzk6rko7LrJ0HTe4H0+n9efTGZHxBM2WzFXqFWLJZDA+VotqZm3xpBi2Vy5US1Uuq1apQeqQ2QEBQA4mU7ms+0wxeJNLywV2P2AXGJgctwX8gaCGhEKMLb++iNON4lRx4YE9QIjLCSB4DOWxtN+BwIwgwCcAQAGFpbMou9Vb4gKGP4TcC0zjnY8zVoHAJjlFNgBiZiZCwuCikapRjRZqOfEw17NILx+pyJzDkGX2QDIS97n0VUrEk0ks9X+4srWvRdjzaodrzbS2bXH85FMMq0jh4tP71zIVdAaNbN6ORvJxGjLCCP/TFY63YWMwuiN3Vg4Y6pAAC0Wp+IZRdKkaDSiSm74KCXGdzBkm5qGJluRqu4mHb4QV26IBOlwCPFqt0V7g4RZZUWG5kOSYRf6y1vtJqkrrAhgcp9bL3bfXAmW8Qj6+OM3UoJmqsL86rOP3DDs9ok3hzOtzszamWcemv/gp16+8d4X6db2J6YTW4PNa698qPd4i777aOi+L9aWd848+99fULE/cDjoDfrTrQYsw5l0b+67//jN//F7S091hNXZnd3htTOLb7m2+VJl6/Lz1y8+sNO78YvvC//0H7/TTz73b19KHdvYqD/4ZGXnF1/4SEuPp+yZneWV6ftOXV67fgMA+PoL7eyzu2fml48n7nntw3f/6U//5a//6nPzP7925telwVbs+KsfS5+v3/G3P//qu75cv/MzAMCN9dW7OubVy7st49Ta8GTj4fnza1debJTa3e7Su+94cma3z19YuvjR5ov/eP3ih1/8k//8j5+dLMxvD3bOL8dKx+tzj53qf23r0o/e/t13XBpEnn5P9n0/ePndn/u14j391uZ0vDM8dr5fWzleL+esbq+QjJpazsBzPGbkQhCkdJkKOoN2VITN5Pf7pkhNsqBoSyPPqWCICnloTtRoD2l6KNihXICxVB9rMh7NCjN+TVdCshySNHRuAwCmyOAkG7bzcTLod3udjqDX7fIzk64Qw1OgQyXGM+5n6KAPj+ckHK6FqsDjaBAAMDMCYCjSMojcEBGgeJAdVsIURZDKJp5AC3QQ8IMieeCuomqnkpEI0O5cJg1UGB0cZ80AbwDc4ZifqEfDAsuEaNxKABsSjyl6VChABLxGJmyrsAXRXwFblRRNJEmCGh1BjyLdgSIDAGNdH423IAArAsuNAJjRU1ENNrAq6XYig5lk2AiNWYP5cqPdbrf68wsLazvb2ydPn7144YSlGbYNhRklbzpTbi2sbJ27WiOjsRRe4uZyuUK53uovrJ8dJDP5TKlQyOYq5UKlPxwuHl0/vnV0fff0nVV0jXSDArZt2MUA2hlQ3HkMQ83hMNIIgKOADomIYei3/CAQgEeTmZryKy9oIFQsi6GTNMNKKuvDizzX5Nho+BcA+MCRw4dGoHv7begTsX//HrRsgn8d2HcIPkSaZDAAFvvZNGsUPRfTZLxXp44cmQCwQSsOUlSZib37xyYDsGZgZUDhC0cTIE6BAQUZBVWNpFCMiqbJmkrTWsyQ0bbKoCe9sm4VO/3pIeiJwXA4M5gbzg17nem5+dnBIA/fD3JC+VWHlSaJhJ/nQ64JPwCzOeqCxk4UjHYwDczl1WABc16So7xuQgo4XT4ee2g9TifFKH4nK9HjR0IU/FmMIww48Qja7fVxUCKlIAnUzxuMRnNZAOBg0FfqNSpJ21R1vGVPRECkJEF/pVU3HzUAgIPuKZcPYxxsWEwmWnZoFrxGWom4AkECz+U1DcSPrIf1SMSOOw8C44EvfOYH92ESw+gWeIS8+0fd5/v27glRo4gqUOcIwHS4ML164s5Lgr9dAy1uh8OKlKslbYNjE2nDNjkhZPfrjZEPZSFfqlWK5Wq90Wi0yq1eo92tdVEB2+ioPgJg1QpHs6Vqb3a63+tND2a6rfZ0vdNIpS1Y5DgrL4dj2Wp7ejA76PQ7LJrTBAlgzjqsKFD4yQTenQqBAOaisJTChVgfZ0gKwcfjUQ1n6FNpadzhnQqKgmPf64849uz3hxmPblMkLEza73NThNc1RQUCHoGm0OuKTVQ7w/ULc+7/AuBj58JW1NIU41cAzNHUJNnP26LP6wUAHmUhYeNloVzIlSulEqBBsVGJGwaOIWGUSrLQaKAXdKXcKSQ1kJeSHo6n0vFspmkQDCEImoXzvrDFVT7kGAv4A15CDQU8oqnunzx0CF6VyEmcqvBR24biAAo4ogsIwCkDZ5IBgCOxFKaB5+BBlnuwUjtRUMACr1hJbEgZAbBCSniUBmumYPE8qBMJPW6ztTR7GFYt7XW5EYA5XRb8IscIUJMUG6caM9Xp+ZWT915MNyvReLmaKWw8kk4UU2k0OjHiw5MXcqV8JmpkVi8mw+kYjU0fsIUS1f5wLqIK5sy9BT0b1kh+NF8iaLQs6qJtg5xwBWD/hvxHSOzZTBWb07ObaW9oyu9XKq2IzLoDYqa9uCK4+Eh1ABon4AxQnJIodZarbVJXWbGytXifSyl3b5b8xWIx29x44npG0E2Fm1998g2PKGbrxFvCyVpnsHL2TVcXXvr8O2+8561M88SnZtKb64v3vfLtnZV7J/1PdM7/Tmf++Olnv/OCXu/NN1orczOLm6vbSxtbS2+4R2v801+9+QtnnujJK4Od0/N3nll684MnX+5tX7p5/x0P7nQu/ce/XHzpuY/184Ovn26eXN1d3f3+t9N/+g+fqevxeHju7OrO0o1zVzau30jNnr/3mXr22VNbg/VT9cuv/ab4J//wp3/8o+ce+Y/1N3wmPbdoDu742vUna7OP/Nv3Xj167clPtjona2urdzbNu+880dABgHfqD82eWb3yQqfa6g/mnvnE3+62F8Qzaxc+f+WlP7p+7v3PfOuff/kv96WWd+Z3zqzG89v1xcfP9L+6ffm7L3zl5Utt64m3pt75hy+8/cMPFi9Nt443k9322ulKZnGzUcrZvU4magEAQ4VWoHgEgFIGKVMmA3gHDCQv4HC4pqYoEoo3VFrg4djJSXgoWMGMj9a8BBI2QtNZgmQlMRpVeQKqKQc71xAI5RYAE8EJPhbJhAOhgNfncoZ8+51+YsrlpQWKkWSedE8iAIPyQJsgVUEA5gjQIV6/6xYAQ41VOBDnJEhwUbetuDm6/lPwtzmGpGk8gtYNFXAtEQ1DgY8Cdw8DtNWbzRnDz+tovWsZmgYsWuJBLcsqQKckCTzLMqC1iWDAKyUt7FmN2PA00NxfkK84SQoAACAASURBVEX8L6NwHxFN90bHzgCwsWgER0xlkeeAXuMRNMPTSjKBkba6aphQjkspy7RA+mQLRdCuTUDg3nBuYeXYzub26fN3Xdyx4YVG4gnETdiylfrs6s6ZSzXKiqLRHABwMZ+vtqYXN3ZnUmnYasViAfZwqd6bmcbLoOMLQBgv1UPuKb/HoyUithFJoQFHOl0o4LfiV27UERJJxCIx2wyHrVtTSMbIkhIHeBB/Oe51BM3SGEwYpChK1AVQtQG/e+rIoamJwyByj/wfAN635/Y9GJF3G3whAu+/fb9n6ojHGQrgrTwvYnMamtnDw8cbempywukPYbue38fI9NTe/YcPeT0Uo6sAaOiCDB8ITbF+iRllFKmixqlh+DskPxuN8ZIlxwzONU6aqpbp9HvTM/352fn56ZkF9OBo9+cWQAJnBEmXpVEz2QiABT7o40XCOe6X8Q7Y1LFJ3kLahHJgZESiiLyf5mmfh1JCTqeHM7ggFH4AYNnn5SVyfJxiRU1lCAIvcY8ccXp8UP1lnfeHQk6v0xuJFYoAF6GQv9yvllLYlQucA9DHtIFqJWNpySVETSjHIfckADAP7xTWkmUhfbRVTQ2J1lQQnU95WVeB02lm1IrHIgn3EcfU+MT44UPwrEHs4j0wxhPu3X/g4IHDB0btWPv3EXjuhDlIBEEDAGuZ3sqJS3dLgW4tn0pFsL0uX0/ZBs2m0/DjBIGITNfruXytXKnkCxgJ0mo3G61updOvt7vVTrszP2PjETS2LXNyOBwvVOrdTqHTHT3udn+60qqn02GBoQTQ6qoVy5Qa3cHcbG+mBxucFIBYAQMC1Wgj6kQsRWFcHqCxhC+kCj4CCDdPTYTiUZsLioBsecPDGn6nf2z/bfsPHRzb77E4jxmjSdjLtM/rCgXcjgkyEPTwJM0zAVIB4jVYvzD0OZw+XubUwsopvE5QpJECrmWjChVy0K2kJQe8Xrc3nswm42ncAjjBhwkogMO1Tjli6LzIUjK60Jba7SoQj0atl48rAsUKmg38GBRw0yR5WuQUKIAj0zi01zgS9AZdlBL0+wzbmPIf2C8IQZaiA7wmxEYATArZKOjooCOaDsssE5wMZ4A9J+LpDPCdaqk9PzvXjqRsXeRkK5XJFkoIwEUxBPhrhiOpXOkWAIuabljpaoo6AiuN9Uy6VZmbZKDUguJBYw5FtLCXJF3pziyfvf9iqliKJ4vlXHnjeiJVSSZEETZ1fLB7MVcq5KJ6dvV83EzFGEwjNDQ9Xh3Mz5Ut1Zx+Y9ws2CYj2hFgxxIwQVnhwpGEKYxzuiqQxCQhqqBQUrXp3nbRF5wKBdRsKaKQTlqKZmeOCk7TWjgtO6f8IagWWiJdWSh3SV2n+NzO0nWnXO3frIRGCnjzyQeygh5W+cXVRx59g2hN77wUjhab/fnTN88vP/2ld1x79WW6sfPZ+dz8/Pqd7/zKp3vLK9zspTNfSQ/Xd57+7iuF5eWjW7tri8dWF+bmZ+a7jfPbZrp4YeFz73uoIy7O7J5bPrkzfOq+4881V848ee2OR05P3/0vf//87/S+U19YOvFH8+tr8zMn/tcvZp8886mqmYzoSxeWN4f3nrxz+d77CvOn7nhjK3nfyd2FpaOtB77yycuv/OHDX//lyod/Ov/GD5Y6R7Xp127OHR/MnP/+936tRxx7b6uxXd08dnfbunrXTtM8c2zuZP3G8PTqlZe6DSCow2fe9oOHt+vW8Oj5r37ki38w98DHzjz1iz/5+/sTR08u75xajaWPV5feeLb/5e0rv//8b73tSsN89Gb85W+95dVP3lu40G+A7l00upv5zPJWM50we718MmHpBdvQRVZkCT+oIErjAz4XlUxZisiAjvFKYcFA9UITJI5kAMcnYcVyQcEIkqIp0GPA3GyVDMNegz0SEGHTEqzOiqapyKPe6nEhFY8pfq/X6ZoY97n2+gjK6XKEJJYHEk77HAGaDuJEKSeqI6kiMgB9hMfvZngEYDSd4oJe36gFG/i6ATUBC68a1rFfi2NAw7GKKkXwplM1YsUMMO9kd25+aWlxPc2bwG2j8Sgm2wPEg1KyoyaPIyZoHQ+q30+BuOCAYRuglywAYFkRWUaUMA0Vb7QUQcMjXJCakohTwFjwRR7t1EWcAaZImRYTydHApxlFaZvRYYNj1lwmn82U2yAs0AprZW17bePUxUt3nEQffyuWTqVBKacrzWb36O7uHQ3WjqNrfRo2bDZX7Q4W17b7mLWTA1wt5Mud4exgfnV5bmnj2PGz5+6sEoFAwOvRQfGb0Uwxn0qi834eu24whBXNKOMW+jRF4N8RGyWwZuqYXiOJv7q8Zl/nIzieA4rBQlFVRFX0uNweDyjgwwePHNm/7xBgwqFRGxY6NeFx6J7bb3v97SOvpr2HJj0YIswznAzSQDMAgCNR08JkIEt0T0z5CSir8GQ9NDl2+96DqIlDLC9pgL14LSuxwKcwiJaQNUHFXDxZkygiktI4zdJtOeAhFQOUY3fQHTa7w9nZ2eFwODs9P4tt0cPpQVpGNT9y9EJjTV0Vgx6WDTimQnjQzWE3PbwWG1PWsKEafiievweB8DsnfVzA5XSJNk+wngkvyUvegMCFHBMEw8oKGitOuSYOwfvDIRQQqyA+vf6poG3mUzoaUfnr/U4xGcf7XduKJaPRVDqJ3TeCn42ZEgP47ZwCcqkYkYSBns9ASUw8XpI0R4BkGJoB7Yj+4rZtpWLptHP/ocmxsfGJsUMHDx/ae/seeLq37x9ZYO29bf/BA3uA+ezdE8ToxJDPS/oJX9BLmcnO4ubFcxzRqxcymZgFhbVUSpphlsagYo1lqFS7XQH8LeSK5WymWgEW2Go2W61Or4u5SJ2ZhZ6dMDVDBkkECli1s5VmvxFvju7Zu61Os9mrpNIGKmRRlIxwugwADR9Ar98V/CTHAVeBrW0ZGKMbjwAQs15XgAgFoYBIBuc/osok4eUzmTDp1RJaOMd6pYjHCe/o4MFD4wf3TaiqX45QIdUOE1AUSNLjdHIhn4uHCs8CobMrnfm1M0c9U1MeweTFwvqJMHwpsqnyAaVSjEogPulm1lbZoH8ylIhngH7mMhlY/+l6M52tlkulSq8J1FOWWU7DnO1av1WsTjeb9XYmZYgcIchWGGMLc3WNomlJkoGpWRFYNioXcEyEvM6AHKIdrCUbIXZ8TLIZ0TER8el2NBkWNYUS0mFNFEhPLBmWSCI0aSRhp0UxEKmQT+Wb852FDmx/mVGw2TpXLDYb3UpBIwUZz8lS2YoOnFUXgaTpdjyV4PYTUCZBAWuy7KB1gQng/LLbF1bQ0zmRKvUW13av3lEol+LpUq1UPXo9n05kkgpnmGq6u3WuXi3nI3puDRRw3JI0ILS6Fik2e/Mz1RKXPf3GaDRpC4KEQVRqCOS/CKUraoeVKcFSOJYcpy0jlkmm4KGv1ymO8BJStmnw1BFWN0sr26ZbtXs7JkeD9OL1eKE+WMsP0e9BSZ9ZvuqQC50nazRe+tU2nrycF6AQcP2T1557SLabm29LRNLV/sIdL+ysveGzL9z/npfY1rHfnE1vrS/f+46Pf+aF4cdjxsWrv9uYO7r9+HdeFlKZXCmXzJTyJcy0KhYz2dJ0Y2nltz9yrcUvzg63Zu+8Y/mt9y69WDh68eGrpx481bv0Fz99/NXXPttu3v/eP+isr67MnPyzH7zhG/af5o1USlo6tzC/eOfameXLl83hmbsereXvP749u3EitfPl51cvN574i09d+8nHpLufKJRWjc5bn1o9u3V+zXrflRMX3/q5dmu5vrpzRzN68fxOJ3pqaW6ndmXu1OKFt/Xqc4uNlRce+aPXnq6pJ4+e+8L19YeFK69def9//uKfb2TXTvW271yJlbeqyy/sDr+we/07z3zq/fc3jAdupt7yew+96bVn0meGg/mjvbyrvb1cXTjVrmUj7ZksMDU9h+CCXtB+UMCEAPvIScSiAEJoVOP2Eryu8LhZedLvC5FBQExRJn2cTnNhmSIIdI/TZcuwZF4TGUXRFahcgjDK1AX8DUyolpWRgoDlU4f2Hx4/4A5xnnGM1xR1iSTd4ySPJ9vsqOVSwT8pwEsJ+ANOSmQxPAaEEhPEgHRaFNVYOBGWBRVT1uGHCjTUTT7kJjVz5DcZicQR2Spo3TgznJlfSxumooLiTEQkCUQr0AzLhKrMk6xA87AV/QEcrgzICewexGtDmQE0AAksofnH6F5aHnWAgKBCa5qIEVbRJwtP70D9ssgAWCkJIBfHMSZ02TcVzoyF44kMlIVSvdUGYTEzu7i6sbO6fuz8xcunY4YRTaTTUTOeyRVyheb00Y3tu1qSnUhjznYcKnq+1uoNF3Zb0WQeikoBgLXSajcwkH5ubvX47tmL1+rwwbicTtEyTC1SyKTSqQJ85bEdBZ1A0plU4lfTwJgKDLQBe5HU0SWwNMpiEFjqdW70VqEZniR5BgBY8fsCQR92QB8aGwMAPjh25CDOyNw+ciQe9ULffhsoNPiN/YcOT0xh+C7PAVPBViikJdgunkhYChqEhkKkPwgA7J/ag+fXBw6OuQKsOMpOkAy0T6JoThJJmkMti+nAgF1ArfCWWFcA8MTRpHe73+o3AIDnZmf6gL3zM92Z2SGQ0AyegMjYoYtNzjjkG/QyTNDpAABWNahzqH2x83s012aMvM14xuXHySNS8TkcbikqsyHXFEZMe1wcT4J4JoEukj6f3zs1MQb8IugfATCNMSCwHexCyqARgGu9ZjEZs6E4xgCAY7F4DK8bUmKQi4dlREqX04+jK4aN0R1Af2LA6URKVKfwRAU752VldNhiw+eUdu0/OHHkyNj42OFDRw7sG9lx7Me+c3TAGjlR7tt/cI+fJHAoAAHYH/LTZqq/tHH2DEMCAGczcRCHYrmSMjSGKeUzMY1jQ/Fuu5rHVrFMKZcpl6qNkZlpu9vrdTudTm+w2LPjpoqNl4Igm9FErlBuN3NtvG8f9lEpdkqpjKlgToGihsOZSq3e6fdne72OEIDFQjEAwBps+GgiHrXCwKcItyskc4Q7oJoi6bNkx7hfVhIso8ZTdjhKOoSEGBw/ePj/2zsFyn5M1gJShA1KYXMEwITb4WACPg9DIwBzgl3pzh89t+addHg5jRNzGzvoLaHIIK4Ccjlva7Dh2VbWlpnACIBBzELRTgPSZWrNfKGGfYvdZiRsKQjAehS7oKuF2nSjUQPVAQhHiPCj0cUs1zAYmhIl1bDCYRsPZCifYwqYLSEHSDdnyCYpuCelmKK7xiyatWPRMPoDChlLEzjCBTpSYShiXE8i8U7hKHAili7XSzOdRDIqMLIWTuYKpTIAcLWIAIx3z+lCVQeRAv8TjTD65nGHQopMOcadQKTGQAELAVliqP+fqfeOkuQ+r0NpC9g0M7sTOndXd1V1VXXl1NU55zwdJqedtDOzcWbzLnYXwCInEgwgSIAAEUiKYAKzGGQKFCUqWCatJ5mmJOtZejqSj4+fw7OeJcuS/Mf7vh5Q5805ABfLmenuqvp9997f7/vudXsAMI1wPA4AvLB2/s6VXKUQTZZqxcrao7lUMpOQWU1X0t29/VqtlIuFi5s3UlYqhtEr8PhbuRrAdimv5RbvDfc3OQyQ1OWAyA391yNhTZjgTDnE0RPBiGllMul6Z36zTpBeNylnKqrCTwTUcHVtW5oSI9N7GhskSIqRY4Xm/FZ+npE1XoidX7pp16uDj1UBgAvlxvbzt0qKoYeF+t69Tz4rmdXdV8KJUq2zcPDK1tq9733isc+/Emxv/3AuuT5/+sYr3/3eNzavX07kb/5+pbd15ek/eG1c0JRwKlOoVpu1eqNarVdK7dnu9Oxf/t8vxeT5wc723KUray8/cuHN8ur+E3cvPrrXuffX/7n3k//32/P5p/7bE6XTm9tLu1/7q+vPLn+7aKbT0vLl5Wb/YP361u1byeX9a0/VS08e7HTX9+K7P/zq3pPrv/t79//7f764+uq7yfpMNH/mnYvTK+8+3njy0kOdSz+oN9fqy2euNI0Luysl49LG3PnmvcULqzee7y8udBpn3zz363d2BuqZ1d3vPvPO7y8+9pmX/uJ//v1/bBcXLvT2rq9Ey7ut5RfPzL23e/3HH/zuO3fr4Sc+mPjUex/63LvX4xc6vY3tih7YuLXYWdrs1zLhRjcNAljLhnGUIzQEYIIEVPM7qVgM1pPNDRXZFQji0J+JctPvJoJ+ux9KKenhlCALSEbToRDUUl4wVaCIUdDNMs+i4aGsQNEDAHZPSHHLCvm8PvcU1PapKS9Bu8b9FLZyiRTtGQ+wAZyRHHZ8yIqC+7pBkvASDkYMDbt2ZdAhJOGnaR4BWFdETJrBlBvcrKYpHHrCg04D1J6FjanZUrXWaHf7vbm1jAF1IhYFfSrjhvMQA+BZpP3MMHOJDKC7UMAnxk0Ns3ON4QgwsJGQwAAAD+ulAqAA+GUoHDpl6haqLhldhELYxIXNwGIqBhCso6oBBhg3QsAN4ugKjXO+Dax8M0sb21ubFy5d2b92CRZ6JJ6IwcOWiqUKrYX+ysbZ62U2kk1DXbesCA4jlTtLW2fbmI+Uy6UBp+sgPmYWVtZWT2+f27pwcKMcwOAhJ2cA3Ojow5wpFtLpbA43oItoDZ1OxAEb4nGcQh32QA9z6XFuZxhGiPfyA04fhTUvRFIhmgnKOkuABHaOj6IYO3oMwHf0BLpQojPT8cOk+OFx8FG0Lj4xZnP7eAPLCA4XwxcPXEUD4o8u9CFgXsyw39x74p/jdx8/PjLhBLgNofUD4CU7jEHkHFC/JLiecFk5movqioEsiHB5OcBRkLDYMtQazC0szs/0eoPZ+V5nZnG2P5hND7248XHB4SoN1AQAMO13ORCAh41Z2CKgvn/6HUb+ofBBlz9IeVyk5LPbnLzBkvD9ZJCXPM4QTzsnA0FFFUmvL0B47OMTdg8JClgBQkkFacpFJSKF5KECrnXrpXTMMsNmLIxeJxEjGoulEYCjOC7nBzlHcPAcD1vno9EIALCGAKw6SNzl4eE6yQb6DseS8UzKcfzEydHRk+OnxhCAjx8/euT46NEh9B4/Onbs6MgIWkP7An7CA1eFJkiCIhgzM1jeuHiBpnv1Yi4TtwxZqNSzhspytVImqnCsJ9ZrlTPwulq8WMhVitVGvVqBFQEg2gMI7s0uTYdj+hCAOeyCjgOAtYHpzPSmZ+cH3V6z3qlk89YhAGthIQK/odMfzHenWzwZPARg+PthGiPOepEudKvmOaeNUtDxReOmjrslj+QOxZKZmKyH3HLSYj0jow+yDx63jYwJBhmyOII1TMpHuOiA0z4FzMcLfBYnu/lIFQD4yhYx4fQxEidm13ZMy9DhdkocIZXyli7QHq6ZCaPrqY1MxlO5XLFSAPpazlZa5Uq1Wq2UOs1I2MJaoqiRTL5cLhTq/Uaz3konFJ6kZEkz0Kwu1zQAgIdmd2EzDDSNQ2s4n8cbFOATibIcZiTazQO+ukdUxQu30jQN3IK2oPQEnFEAYJYmTqopIP7JXD6XSUTjmUI21azHExbPiBj0WEFEaVVKGsVj60okla9p6CMGy0YHfI3FhZN+UWEcE06oc2O8rEqkDGrH68XtonAslir15lcv3NnPVHKRRLFaLK/dyxwCsAIAPH12vwI0LBkpbNxMhtMx6XAyIJyp9k+vJNKR4uD+osIqBseIPGgRSsHJeUk2VTk0wZro9j3BWBEtlU022tNrDW/ARwT1Qk1XBTstaNW1LXFKjk7vqTRNBKigFC20F3cyCyHVEIXwueXrNj3ffL5MZfP5cvPM0zcrUBwNubB355VnJaN6/uNqullvzO2/ubx65TuffOqLn6TbZ94bJNc6a2c//K13fuUziZdi0fs/bs1tXXns52+dsDLRYaRrDvNX661ef3m9t/6pQvWl/+dhsl5YWN6+eGnxY/cPXqusHzxz/+pj5/oPv/LmM//pH79Q6X7sH35QPru3PDj7tx8M/clP36xEMmll6dJqe/Zg/fb2jav51UtXn6qVnti5uLi0ktz/zjd2nr394qf/9G+eX5HOfT46vyJvf/BzFv+TP/3+7/zwDx4eXP9arbneWNm5Pm1e3F0uWtf2li5176/sbzz0Zq/eW1qeW4p85OqjZePq2u5vvPKhn1xce/fFP/vHv//ccn/2wuDc9eVIebe58sLWzPc2Ln/vya+/fatpPfZk/s1feeiNV6539tsL6y2BjW3dX56e3xjUc1Z9Op2MaFp6aPYMAIzjI6TI04SNsCwGv2j3JKPAGpWBN7FMiPYQrN8Z4ACA3ZwUDCksIwx7TCWBiYcTYYqNWLISCoZEDExQRdzkdUzw+YTEAP7asd/T5vH5SM+El6Q5XuUp2n3Kz5Kgdym0KcYI9ffngH0+OyMBKKOjNE9RtC8QZERRjYexax6xLhbVOA7jfBmKCGGnq45xs9EEPJ2FSq3Z6Q4AgLNQBCMRE6Q1du3SIdMUAIAF0ktB/ccZHNLv9wd8QtTQ4Feil4YsCbgdwINIAwnMYr8ntgnqhoThxBbaUSr/BMAMvFWJE+AlI2GQxxF0Yo1ZgENmJDoEYHiWpqdBcyyvb23vXLly9cLBOUs3E4lkHP3bY5na9NxgaePCjTwdLWZiGDEbBdILgLuwttvJwpLOFeCRLNSgdoIUXFhc2TizefHgao7wuwiPg1VFRVQQoXPFfGYYBQPFqJDPZjIJzFCMx1CVG9iBha1kKIFFcbgDDezjA6D2hnmM8BkCfkoK6+TEhCfgnpycnJoAhMURGAThoT0E4i8o32NHjuBU0pEHj550AlUzdYFhOBL3CuCXhEKyBa8XFSkKPcJoStYl+uQDx0dH0NB4bAI73Tk+xGHz9PAUmiJUlhYF3EMOMSIUdAsPEVgHLcs4SKsnpqdhHS7Mzc/Pg+7t9+cG3blDAJZE8TAMeBi8oIZYvwewD2SYoKqH+IsAjP9Gz3ATI5F5hqBDjNfpD/lAAXNq0B8kXIQ/KHh8IYaYnCRBtoqMH6DO5xw/Nekm6SEABzF7wBOMhXMJlSL8XqLerVVy8QgOYBtwr8OWiWI2JRBcROFoEMB2mxd0NfabASNESoiHJoxseALo7AIALEkqfFSMi8wkbdh2dWLkJKLw6HDm69jIscOG86Mj2AyNThw4ZOvzu720nwIAZq3cYHnz4ALJ9GqlfDYe0UWh1syaBsvXSxkLANiVmKkBEsNHT5RKxXq51qiVSpV6vd3rT7fb8DQudkxgO+rwSZAMPZorVdo9WDHtNpKcbqM+XcsXAIDZYXoirWWrzemZufnpTpOnmBCQNgRg04zE4xFT16zApCtAeEnC5hUELZk1YV2NjQdtTo8UjuYijG6wRiwlMaP/vPbwPxuZGhthwxRlSkTQsIL+gAeIk9NOeTxeZIMIwBYA8Ma1ncC4iwAAlnMLG5oJIg4gi/FJ5QJ83qCXa6ZNBGA7nU7mC7lcqZAtZsu5cqtWK5fKpXyzEbXCisKHAIDxYDZXaPRa7dZ0NqUJoORUxUzEEpl8Ux8CsIoH9gZI+VDAaXMSbi/LE16vwismJ0s+JhmNeI5xui8W1UGq8CSfjWg8S3hiSRwvd5/SMjEoO4ViKZ+IpwuFQrpasDDXQdCj6QqQnxrgJgAwxp1rZixVOQRgQQKlCjxMGPHyIuuxuyWFHxEEJUQqMsciAJsmPEDJcndudf/h/VQlH00Wq/nSyp10OpWJSyyo3fT0uUulWiGXttKrCMBxCRBYM/RIrjG70Yul1Gjj7kCjlDjPqCJcEBpfVoS7JIvcFBdWQiw9wYbjejqfbEzXVtveIJQErdbSecrJc1plbUu2K/Hu7hCAGU6JFVuLO/F5QTNkKby3cs2mxQtPFAKZXLZY3376ejGpgMzOn7v+8lOC2b74spoBNTtz6bMzS+e//coT736Kam2/N5Pemd24+Pr33/zKrz8y10o9/lv15ZXdJ/7otZPJVDLfaA+WlleXlua73cGgtzK7/BXBdezirxYff25wdv7G/vQrT5x5qbZ2/qmHrz58tn/v7nsv/rs//HQvefXvvrG6tNBtXX7hrYf+/mev12KZtLpwYW1u+crara3r1/Kr+zeerRce2z0/s7ReOPvRHyhvf/Sh//bH535zKfmxV9ONrlG+95Xd65ebS//1o9+59/iHbjeap+sruzf61uUL69XYtd3Tl6cfXb50+taH6r3FbmfrkZV/8+WHKuLa0ub35j7+7x8787Un/+EfP/7QQnr74uyF60tWea+0/tGd3ldXb377zmdfudk073248snv3vrEVm5+r73WltlstX33dGNmD9ZYtDGdScESyoLuUHmg77CM/ECVKO+ExzBACftcLrdnigqIcRUglWM5yucP4hnwEICFIDwtkqmGFFNTdSkRs4JjpzggQSwdAkEN4gTANEg6J9hyisE+e7RXmrB5AWwDIBOCvChD8bZPkBjJ6wuAMMXtOQSI4c71oQKGGiirQFpp0M0sPF5RdKMyLIymjus8jwKFGyYgihpI3WHITDJdqNRb09g3ezoXjiQNrNV8QNJkTrLCkgIvwgZBgIUw3ziA/bpeHgE4PARgFO+g4QSGPNyDDvEKCkgzLPFo5Kq9D8BYSXEPmmVFTkgn02FDHfbdYD+SkUiCak4kcEOl2ZmexiCB0xvnts9duLq/vx0x0UMuEdMBhfONVmd2bfvirQoby6aiQMOtCLz9Wnt6MLfTAU49jHiB+tLszbR7cwtLp7d3ti8eXM973Da308YoGGuGIcLY/JzHTehMGupRMgnECvOAkVRAJcIzUAVbx/hhbPohAn+A8jldfgb/CJeBlTST9fhYCWWRANXFdmIUnSiHu6FDAD72wFHEA4CIIw8+eGxsyuFBiQtXz0cESLTzBoqjA+jEJfu4PxggqFAkqoXsR48NPZ2OHD3hJJgQ4DJJ0IDBLMvRPpENsqKoGQpLhYw4+jebOu0Il9Hm1gAAIABJREFUiNhxEw5ruW53emZmYW5mgOPA7ebs/OzC/KA3M5eWhjmEwzQAdTggSqCbi8vpF4ZRhADApnGIv3DPQIyqEh9CUz0A6oDgsdk9ohHC/RyPl+JdnmDANTHu82MYAxnwuR22ySmHmyAAgBWeCoDq9AYjejYpkz74rI1erXwIwJaBfWcxUIF6IoVnwCrQTZ/LYfPQaHUKuI9uHIDQSG81y0eQbAivv4zdfBF4UhOZxOSRB3GLfxRHgE8ePzIcucZtfoDdkSMn4OqPjR0fDVDvAzBB+2k/Gy30l85c3/dz7wMwVNNGI22EeaFRSlkqFPPMXDGs8poZTRcLxUa10awUS9VapT3oo59Lpz/fMgCAlffHkMx4sVKut6r1VqM1M9tpNKvVdiWTgZLA8jKQTjFShMe0N5jrdhohig2hjTomCCGHiIbhpoX8XsBPn2OK4FglnuBdQdV+ipw86ZP1ZDIE5IVXrbxCHjv2zndOjJ2YPEGZQUJX/JQeCfr9bjLgdjmDXrcLKBs93IKudRc2buyS426ClQS1uLCOniqyJsBtBgUc0USG4JsZBGCfI5jBLK4s8M98ugQAXK8W8sVCplaPAe2GT6jo8WK1XskDp213Or18SsdQBE0OwxrJ5YdnwADAGBxmhDVJoFwAwA5PiCddhMapOPlAUVDZiOOkFkpGzBjogQCfi+BRrTsWxwRp54QJwAurNpPPJhLAhCu5aj5iaTIbUgE+m5VyGVRxHgAY267MSKyIDkVAJ2RFteLxKDfig4oX8DhDCjMO74X1iQDrDhfWnCEAT8+tX71/kCoXY6Cnc4Wl2+j+EgNqoqvp3vn9QjlfyBiplduAwnFc51B4I8X27FrLSqmJ6UdnTFJNC0FdjloKreChkSgCJQzZeCBrQXIiFE5GssV0rTe90fME3V6f0mhqnN9OKeH66hnFLiT7e2ow6Cc5To3lGws70QURLqBsbKxcdYZjpecKgWwuk69tP3s1k5MNVUpfOPj4k0K4u/dJI1FttOfOf7bd2/nqq/e+9lqwuf3D2czp5ZUrn/vuZ7/4jR8txdKP/nZpbePcR/70DcIsVhqNYqlSKGUzqVgMR+2DUiAWz2TyK699s3ihevta+43HVz9RP33+mYevP3xx/uHf/u/f+V//4geNlRd//rf7iyv91f1LX7r1Zz98pRpLp7S5s6cHc/urN87ceai0dnDz+UbpyatnO6vL0Wtfe+ny2y/NfnSw+NybH7x8N9rfiFbvPr75g6+99Jnv//Lb77zavNpprZQXd653jIOLp0vh/fX1S407C5fWbrw5GCz02ovnX/rptdqKvNvd/VWz/edPXXvjuU/++f/4ebq0e2nu4rUFq7xb2Probv/La3e+efPNly+XtUeeTL70rcc/vdtYvDg7kJlowazcXa3Nn2+VstFGJ50AqMihj5MwtJvykSFVYgibLxxWGJ/Hh32xJCGmDFEJot4kA4TfTXOCQntDfJAHUDJ9U35VRw4Z5jwOuw/ESZCWNCmE235sMOB1jQcLUT/h9jnGT46NnpwAAA5QHpsPHnyZJUn7JBliyEOTAjTBkEAeMSiJ/Q5GQDMZSdVAKAe9XoqRRCmsRiK40ZwtAABLIktjGzIZgv8HATiBjkxx7C1uHwJwASolIq4sUOjEKCgqwDnueso8gCdDk34CdKBXiA3PSlE3CQDAAgcfDvdcWABgDkdk0EcGpZqhopxSUQEfokgIJJ2UjsWg5KvKsJUSB09MFQtsKlsA9YFG8LNLaxubK9t7Vw8Oti3dGObhRNPxcKrWGcxt7ly43ZYiSdzOgy8MNyq1Zld3WulDm71svlRrD+b7cwsLS+tnds7sXXyo6nY6HXYbq0qKaOYBelECDHegMRU4E4+lUnHsAMJ/QAVbJp6KAgzhIfA/ATAXcDm9GKhMB4IU+mPz71eIWCphSv6TJ0YxiWH0JG5BHzt67PgDOBSDm6R4UAl/NTo+ZXe6vCCkfX5QdyTLogOjFdPsI1OOKSchY0quHbuojwIAHzlh8zEcQxNuFxEEisWwpEdxB9DLUJeZoGziEXBYpTw+KBKobA2j0pvuDfqD+dkB0OF2vTKztLg41+/PzuMZMGaEoKMmEAtVCAEA0z63yy+g2sfJZ/h15tAHSzdw5EcSQyEvDRUcXhEA2Cto8E48Do+P5h1OmvROjbs9Ak7Aw4PqtI2PTzn9wy1oHv+G9NBRI5+RMI6XqPeqhcMt6Eg4Gg9bqWwirEWHAAz1jPI67A7v8GgbT6HRDgvWFgCwGvb5qJDAh3hR5CUjhrblAMATDw4BeOQEXN+xYw/g7sKRI8ffTwI+derYkdGRB0YCwzNgl5fyIwRzsUJvaffWARHqVQF3AGhUuVlPqKYgNcvpqC4HidxsXuMlMwYYk803ao16CShprQ5sBuC10+7NtxGA5eGGrwxVPlcq1tqAwLXWYNCqN6t4BpxGAMYNBT0MKNLu9PF4uMEBAFNBtFjRzSiutWjYMGUayIVvym53ef0cT9scrGi3BydPulk9ITjYvEKzel4Y/SXpZ489ABR81Ktzfk0j/JoFPwgXGgCY8bocyKax7Stc6y1s3NwjJ1xESBO08to2kEgoA5IQ8kvFjKnLoYDYzlpiEBVwJpPEZot8Kp0t5yutarWULxUzVQBgQ8YtaCNZqDRAJFZ7zXa7l0tqApAgXbbimL9dVymMj/gFACty0G13ERhXTjsAceFFeY31J+MmPQZyPmnFEqog+LlcBE/a7ZGYFApSnkkA4EQylUtl0qCD4VIX6qVUTJXYoGxF87V8sQTgnFMpXj5sVsxJHK+AFAVBDIvepJygwYWg1yWojJtVo4JXAkLqcGuqiXHKyUp7fvPqo5eHXdAATvnF2+lMOh2VQJ9rAMAHsOgLaSO7fi9txCOiiGmcilUEKVlXolZp9olVAwGY0ZWYJVNScBgIgrmhtpClQOmc5I1oNFXMZUEJNKdIh5/SmhXAPodbCtdWz+iuQwBm0ARRiWRqC7uRpeEYirq2su+MRkovlKh8IVuon/ng5VhJshTROnfh5Wcls731SYDnVm/h7Oc61d3Pv33vq29wzc0fzmdmlxcuv/HuF7781fc+5eo88eNme2nj8X/1aSkyMeH0EsEQyC6004mhYXUkzVTalaXuS1+pnulcPei+cWv91cr6xRfu3Xr08uJD3/vS4N3dXm0l/tbvDOYXV5ZW/uI/fO9/Pvm75WgqZc7ubEz3Lm9e3bp3q7R68dpTleLTl87Prs9aNz/3mcVPP//WjdM/eP7VZ7qXa5UFc2GtYUF9XS3NJ3stYbo/vVpZ3r3WDF+5uFoIX95cvdS8u7i/cfv5RhttcTde/cul8ry+v375j65qz/Wvv/Hx9b//m/f2Uov7cxcuz1vlM+WtZzcHX1658bWHPvux8zn9iefTr7x9+8mt+uLNmbg3Vg455x+bb63udIq5eKubTUF9SGODbIgNoMmGjzUUxu8IRKwQyEAu4LaFxKASV0IhWhBoimX8ONMpaFyA5xEzZd4+4RU1WYuGw6yPdLtlUeRYHPJXNVVgMcptis9ofhBKjvFTYyOj4yA53QHCBgqJF1iKckz4WdDeZAgBGNSugrNFBFDqgJMRMatTloESMGyACII8kxEprUgMI/9iugBrlsFAwpCEndFGJArQFscQ61qjBXx/Zi0fifCcKGNQizyEHl42cctT5tFYi8XQB7cXFHAsjOH1OIgQUiQJwJmj0OgYC0IImCboAEMVQG1iTzUoNZkPBgGyWOzSYjklbVlQpwC7ceoWCnMsCg91MpXJFUrAvhudPnZBz8ztXLy2f7BnqSpGskfT+WQsW5+endvaPX+7I5qpmDHUc+lELJlvLW7vNBNQP7OZbL7aarene+gENbe6sbF39tK9usvmcDjsuAUtmDj8my+XhqGAOBKcgUuTSCbgJUzc1R0aUeKBko5xhL/YgmaZD3BBv8ftDdAk7WcCHDaTqSbIe5xYAuTi7BhAiJZYQ1cI3BPFSAbswcI/Yz/W0eOjE1B2AYaBqcHVwg7fcMTSSSdwLZuHFTianHjw2AnA7ONHj41O+YKAUAT2GYBgpoMBmnaTAoYKgnbG8UUD8NdFCApccpS24WavM5hFE6y52f50q1kZHAIwKuBhL9lhE5YGOiUED2WQ8LiHAAxvwsRNaKBKOPgRxnYukP8hPyxur8PH+EABh6SA3+sCoYsAzDAEoAUhvg/Abvup0VMO5BOqihZ8/oCTjEVKWZkkAj6iNl3NJYZNWFELcypT6aSpWCnBF4oBjyDdtimHjxVwyBNqOipgNClVQoru9ANxFdGFDHukh5kd2fjE8IT8xAiKX7hOR4ZXeGTsBCrhEbj08F8PHPcDT3R7nQjA/iEA95d2bh14+W4ZADgaiapiAwBY5/l6KR1VYU1k+0WN1zDvEEhZDbRvvlBrNtrdwaDTajY7g8VOOIZOWHhSIBp6OF1EL2gA6tag12p2mo1OIZHBHlkRd/ijSdySAT7b7zXYAAJwCAHYiMXwMYuGkwYXFFXGjjmWPuAvk0QQbiMP15GWeK8jlCBIUk7xR4j575cfGLONjdp1mVRUn1+L0CDsA6TLYQ/63A40xsF+AgMAePPmnt/m9AmmqJQ2d0xYUBLSR1IqpHXcBRZbmbBEe91TJKhBEMHlYiZbrhdrTWS89VoeFLBlKgrLKgbQ4GotlyrP1FvtbhYBmKINBZhTJp9voAIWsCkd2DeIVplxAymb8skcZQsqvMEZrCa5EwmDPWXnrKgZi+sK5zsEYNIWTcgsTfsmjSyQ/mEOWTJTKJWqpUYlC1o0RMmWla2kQaJW8jmZkFRsFI3Gc1AyQEJKQN5xUQagiqh60OWWlYCfUBM8oagC5/Vq6IQVQwBe3Dq4dzldLMUSuUI6t3g7k0unAIA1Sz8E4FwuZhS27qSUsAH8DleEVWj0l6tS2Mh27vRkSktJnKYmoyotBTmoGUbC0iQ7g4FY9CRv6rFYqRKtzcwVRklHgNFaoNEpt5czqsubmltJdHcRgP0Up0XT1YVzxiEAS2vLe1NRM/tUiUbDl8bOhw6sqhiRJW1v9+PPynpj+xNmvNzqzu9+ZiZ79vUv3f/CG3xr60fz8ZWN09fe+vbX3/3qv3xJWnr2p93lnYPn//jL4XnDM0mE0BvPjETDUWBVajaaqc20u5WZ+39y8+Lsra25Ny9vv1hYOv/87Wt3L/U/9Kt//aW//uBzlZkLb398enZ7tXfx3bdyX+7PlyLw8M6e2Zob3Dp7aeXO5dzShatPFDKPnz3XX9+sbM0v8rP10o3Bem4xnNpILKwk6ueuxD763DOPPvbqR7/1Sv9mp7PeXN273o5cPzhdtK5uL17qPrZysHHnk71qvT9z+qE3n5d2usL5M7s//8jLZ8JPv/Ps7b/+m/86yG8dzJ/bn7NKW+XN+0vTvzx76at333pmuxJ99M3c89/6+NvXBnN7JiPWS0HfmXsLrdXtdrmQbHXzuZgsp/Sh6iMDAa/DwxgS5bMH4PENUV77pN3jcTlYXcThcFiuIZbyuoKcaIjBUIikmZDot/soFsSIFRUC2LIVklQ5hNvV6jCCBmr8lB6lvd6g1zE5cXJkdAJXXICa9FCw/mkSAJgAIUoEQP6GMEQGHgqKDPh9Hr+Tk4EkyrilwnPADxh4B0oqCTfIwvDARNzgOYriKDzGEXEqFO15w+FEDAC4Wqs3ut3+Si5sYMwNG4RCLwmwvGUdmIIOIEShFTIIYMLlIbyhCJZLHXegRYy3CzIMvolhaxiOC6ACVjkRVqpuhYcAjOKXHZ5acZycCocVTPjUYBlHzHg8kwpHLcz3Be3aakyDeFhY25xdOn/5+qWDsxFNi0RigJHZDCj1Zn9+c+firRprJKMYHmjoESuWLU8vbe40McA4ly+W6+1mDWrj/ML88taZrb3zB3eqbpAbDhsji4poIABnMZR3iL4Z9MGKAxGJAXE3LCz/Ko7g4r/Q/foXR8DMBxhgU06HFzQNyfp5AW4XRtyzoFEdToLnCefU6LAJ6zCb59gxkGkPHkbnHT3ySw8cHUHMgO84OTI2bnN5AbqCPPozYtMvOXnS4fZ4CYo6+c+OjWDr1oPHT016aTxcwMwt/3CkTXLRcE0FnSNDOGhtxfSAhxYFWg3DRdfkSKfXmV1YmG/3Z2c6gBvVweLC4vwAeFUST1JF7MTCoWwFnjPCxTB+rycgoF2+EQkPz37RBisChAB7sTSJ8ZAM5QZ0dE/YvKISpAOu8XEbKbicHOMZO+6ieJEPkqTPaZscn7C5A0GGB2insUdvkojHymmFAgD2VTt19NzUjWgM/cxicbTkt5ICISRUEPgeu93uw0GoIfexopFwGM1bQopmJ3F8Rwb9Kx56ISIAT76/zXDiyPB0HcMHR48cx35o5CzHDxOSAgyNAOzBE2Daz0YKM0vb1y8dAnAaaIAcqjVSmh5kKoVURGYZOt2tGEIkk00lc4VirVwpZguNNkAsdkE3qt2Z5a4V19FxFVsZNB1Qogaw22w2Wv1eu9Np1puZSMrCOWAkQolkFq1hZmb6/QbzTwBsGPEY+pfHrXQC91hkzseia6eTDOBeGqeGOG+IdbhogR0NUFLMOLV69cXOiZHRUyMTqkYrqjtgxBg/6aMp59Qk7fM4WeD3mMRiVIcATDgcXjEsyMWNbR24pKQAdyTlYtbUQAELjZQuUR7XRCCZLBYy2RIIz0arVG+W69PN6XapUY+aoGhZRjbS6UypkomV5mqtoQKWGCJgwkqNp7LDM+D/PwBLAMBez5RfYckpXhYMNsxqmi2e1NhTEzQ8ovB0a7SPy+JJO+WIp2SGonwTWgZHwpMYyZQGzt2sNkqZqCQJQTliZaupQrXcLOclr6SiJxCgqBAEZgPsAK4vUE9KDPhVg5hwiYLLN8GFSR/62RAezNUEAE5V2kubFx86yBSL0Vgmn8otPZQFAI5IvBEx0t3zlwH90mGtuHEjDdUJ7wy8TDRfH6ynhYiWW3xmiaf0FCh5NR03WIUVwqygJ6K6bCd1VeSZKT6uJWL1aas66GdGKJvXLzTyrBduXCjcWFoTpsTY9A4AMOFnhHAiU128IM0P4+Kk1YWNibiVe7JA5vKggHde3A/XhQiw4r3Njzwt6c2znzSStWZrsPnmXGz3Y+8+8bk3pPbmj+aia0vL+2/92tff+fJvfSK0/MJP+qe3rr3471+fmL6Y8gXVoUVKqVwod7r1zkxrut4sdm+HI92bOy8/vbDyztXd+4X1qy8/eveJ67OP3P+tl//8p2932k/97Od7C2tzS9vf+D9e/aPNR4oAwJHZ7e21+Ycv7M3fOUgv7d9+pph65PyF+Z3ThWt3+6uf+eUvXd3/wpe+8Hx1u97eUM4/89iZT77+mc+//upzLzz23Jvl+nprde/atH4FANi8tDpzafDE0vmV2x9rt+bm6ysfMy/cnp82d2fO/t4LC4/W9t/54H/5xy+8u5ZYPJg/e2nWKm3mNx6er7/WOff1O5+8s9FNX/9K8dr3735kfW1v1RnMF3gmsXVwuja/2ywV4vV2NhfDMST07Jc53BX084ZIeh1UxFRJu92LJ2ITdiGsaaHhWCyORSIAh7FZ2U8GRdlz0k8RjKyGI/Yxt9flmuJkBaCJgxuhgATyuydOGYrdZgcAnpo6NTI2OeUPemhm3EYDAIPynYL/pgiPNyjCl4zdq2wgQAcxqCykYZGNACdSeYEnSJBMQiqTQGEXB9qbMnmGpEGHMzi2K+IYjGWa4VQimcdWyEa/11/O6Bo87gIA7+HBrYrGyGjrjmwC6tpwzorwcOGh36sKChEtDkX0qESxRtC8zEkoztABEw+LjAh6C6MNJQBwEK9JiJMQgNEKBGS0lYwmo7GwCmsnDuuxUO9UW93+zML67tbGhf3r+we7IJZx827YLVYs1/oLG7sHt4sUSnADDwwBmnMVAOAzLXSGzpdKxXKlXK53uzNz8ytbZzY3zl66UfITwIumaIBMxcTW5zTC7qHmTiUSqbih6lY8ZqI5J/5eDV2j5F/0X2HXMsd9IMhxDOmw+0kyKGAMBvatc5QfiuiUzU2JhkWPj46NgQoeOQHYexQ7sjAa+OgJPKo88gDo2hPDHJ+RUzY3QC2BLcXIVKJqEE9C7TYXRYwfO45GHkeOPHj02BTBBmlgPYBiBAVAFwRFJwpAq0CFgVoxoirlCYgSg6NShiwonWIVZP/CXKfe7rXqzVatv7Q4Nzs7tzCbkNF0Sz7s6NQ0VMAelvG6PFRIC6sSnv+G4UnA8wArbAKrQJQOeYI85XJ4KPfYuDukBgOE3T4BN5jwhFhizOYJkkAcAkA/nPaTkw4HSTKirtI+kmJ8Lj5tlYuGz+v3BYrteikG6GoC24sAEkdj6YhiZWVQawpD0YTTafOxEqj54YF+ZNheC9JNFz0BUMDo9YYdcSBu4tiE5Rg9fhQtOAB6H0ByAxh8BDEXnbCG/Vk4GEzCY+73uuFGUbSfYOPl3trWzfME3akWs0nMNRLK9aSsskItn7Ik4JbZmWo8HMWA6EyxWi/BFzxCpcagU+9MNzu9ueVpM65LOqAvRYuiqaYblUavURt0m7ML0/V2q9kqYnI9y2K4lB6Lp4qN7uzcXG+uCbxTJGn0iNbD0Tg8oGk0oMAtmEwCLUBC/oBXlHHXCEHTIqZ45tTkSTkoZmj9kbc+9Lj3n0+NHx/TJEowvC7JAl3lCfrdLhvpdjlw2BnzT4x8tbdydsnjdPpEQzGLGyvhhGWBchNZf6gUsTQ+GOArlhgkXE47UcoDDcFhH1gjFZDAGHxUbQzKmirxIDVFORXLFuv5aGXQqgz6xaTGU15Cj1mwTHKpZoSi4a5gfDQ8t7IhEV6Xw+ugBSbg5Dg1QlsBM+wyCgY3PuEDzDFiCk272Nyw/9NnRRWODvocRgaZCJ79wPUuFyulZjmd1HkmJKjxQgnUebleS0sBToVHEh7LYpjncZOG8bGUn5RJxkeaUnBsgoqPjXjImMcBFAHoryrrgL+JXLXTP7N35yBZzIPKzqezyzdK6WwsKrGGrmS6566UqulYWEuv3oqAABE4RTUNM5ZvzSwnOSue7T+2QbFWTqHlUCyisDLvEyRelcOa6IQyLrP+kwDbejyfzVTmV5tkwOeixHqFowM2RjRaq7P+KTkzOC/xDLC/oKxGC/0L8oKFziXKytyS21Krj+bobDyTm954/pwyD+zXUDa2P/y8ojY2X4kaxUJtev65Be38ne8+9ubbfGv7R0vJjZWl669/9wvvfOE33+BWnv/J4saFmx/7+VeFQK2VZqlYKRbLG9FMtBHPFgrDfYXsTLqYqm689NrWypfvnH2luH7lU/fvPnqj/6HvffHcn/7546XqI//xq/2FzcHs/sUX7v6rL34ua2TC6mBntbX40ObB1kOXsivXHn82V3jkxuWZ9bXW6eUXDt5+/K1v/uort17cvXs7NliI9G+/kfzsn1z9ta9/6y+/5Jv/era3U1o9c6NgXrmyVYrd3l2+Mvd4/9LOpeegkDcHG2+E73xkvqOc3b7204dSP/vgzuee+x//8L/+01Z27dLy3pV5s3y6PbjXaX+ueeWL9z98ZWeu8OTbhZmtxdlqev5ixixEuMTa8qWzjYWz7Xwu2mtn4jHNKIbDloYd9TTmAkakYGCKiFoyNelw2+EZH3NIphRieVHioIAGCYJlRVMRBNZPcYhTbi/JGnFN99lOOgmbz8+blszg8VEoyAb9Xt8kZ02NBr1DyBi3+0acAa+PC06QrMSSFGkfBylKeUkGfeqxaYbngpgQ4PU5BHRnNTRgpjzDAUpwvKhETM2Khs1IMpOJ4bk1yYIKJUKCBhiC2fNRUJZpIJ31FgDWzEpOFniaEmRB0iX02OJE3dLRkIJn4b37fABkfr/fGwpr5jBpAVuF0Q4TQB3z1YIMywUxvFA1TBGn2RXdMjCaFG0oASjQ1JHmjCiO2koGiC0tkiwm4U1EQAVn89ns0P6vN7e4unNxdfnMpct7l3csVYtgTMIwtChf7y5vbO9dzLKRRBQDew3DBNhuDhZO77ZAeuSLQzst0CTT3d7s8uaZ7c2dvat3yh6b026zcZogCia8TC5dgO8soBSOp1NxC6A8CgwgauJslImfScbPBbArDIc/8QN+gA8xaKDsDRy6RAJQKAJLB1nKY3f6OcVgnSMjmAl8amzs5OiJE2MAu8NspKNDAD6K/VnHx8ZPnhi3uf00Q9N+0LM4C6zzAY/bg81ZQXLi2CH+ws+dmPChmxrAL54Zo+04BZANzNrPqYYGBV0J+hmcZ4PfYqicmCznKp12d2622+72O612qz27NA/yd3Z+JiGp2CuH4YpD/3CB9bmDQa/TjR9FApKlIxWCYgfcwzQ1tBMHAHaTaDXsIYnxSQ8nkQTtcU/5SNbj5tjAKQeQQkUIgCJz2G1jCMCBkGgaDJA+QIhQ0irlNa+X8JHlbjkf1XFcCiOycAo4bopGWiKkqCEAhXW77QQ3tPyyLNxxBA1sKApjSh5QwLijIw07CgC947FU3AaUZgSPgI8fPzwABhA+jrv9IIAPsxjgDxR7CMCBAAn8iI8U4Zm5ddHHdWulfDoeN3WxUk+pajBUyaXCAg8APNvMwrOTzWRypVoDn4xCqZgtdaqlacDX7hCAhyeksNRY3tRSlUKt2yg12+3ZhR4CcLuYyWpDBaypWjyZKbd6s3MzvdkGw9CggHkZF9sQgGGxlYZf+QwwQJXzEfDoyKCx0Bk5xdoVbszpJcKsma0+/M2nX3OhpemooQcF1eVRIgzhA8Xscdtpr8dF+n0YAMpruWp3YWfJ53D4BFVQ8+ur4bhloS0mTwplKACAW0wK2BKy50C1XMKPV4b/qdfQfrbb6NRbsxUdJDjPhmQtmyyUW+VEebpR7k0XEIB9hBrWo5FkIdM0SbgCQwAGSR9SBZ/H5XLZgyJIEZ6JRXfOAAAgAElEQVRWzGCEDFtONW9wE1M+WVNkRaApG52LG1BAfJE4kpSATU9H42jGAh8Yt6BrIHhTCRX7N9VkqZQplxCAZZJTw8MmzZLFC9hKSntZvzeg0EE3oYmBExO8fMxBu03GpVA+nnABbbQiVixTmh5s7965nK3lEol0PpNbuVlK5xNxlYc3neudAwUcj4T17MqNMAA8Zi3qqIABgMucYOTn7nZhrViyGJGTlhRSOY+sCsCONMGJdips4KQEz2qmkk1WurN5H+l1MWK9qQrUpF/QGmtLLBT/zl7QCYvc7YMyG6+sygsxWQd5tTK36ImalXu5YCGZyfbOvHhJWMSdLHF184VnJaWx/WrEKBYb/c0PD5iLt753/823hebmDxfjayvL1179/pc//+5vv80tPP6jZmf17JP/+ov5JMOXs5TTRcp0OKUnFKjl8VQunUhmEplSrlj50Eu7S+/c2HiluHb5tft3H7k5+8If/7T0lT98IdX81t89aS4sr89effHCwR9+75m0nEyEexvLg4VbO9e27lzOrd147Jli9Ynz5+bOnc5sPv0y9Z0Xn/13f/qpN/+su/iaMb2aLtx5uf+31/0//tM3/+VvVm6+0V46Vz29c6dhXrm8kQ9f21w8mHuse37zwmOV6bn+zOlnbt6OXmnKu5t33+pd/YuHNt554a/+8W/+dj+9dGF5+6AfLi/nTt9Znf747PUvPvz8/qCQu/ncUrNYiAq+6b1KI+1LV/WlG5v1pe1GPmtNt9JRS9OLaDSjhLgQQ7h8jCXSfps/FlXoKafHAex0zKnGwromYv2G0u0PcJxkqdLQVQD+KHvseJIHaBhyOXwOTPYN0bhIYQUIrHvSdUJqGU5fgCQ8bseU3TPp8Hi8FHHqfQAGHRcMAgBTiG/YSSyLmAtBBrxuJQrL39BBc4ocQC3HcIIMlc+yDNWIxN4HYICSUEAQdfEXAJzK5bLlWq05mJ0bLMZpWmLRllrQsOkTZ0Php4cQS1Ek4Sf92ELk462hZMFqDeReDIVCDAn6HnsyRYyvwdk6qPUYsoNDpQYuPAYoCbzVEMeoUZBdwqHtQhwPYPN5UMHZfC4Lz001g47Q3dmljZXNvYvnbl1SeQlr19C9PVNuzy6e3j57UODgrUNJV0wTvShr3bnVnUY8UyplE+VKvQUlsdefmV/d2t05s3vuyvWc2w5CzQ4ALOEWNAAwvlg+j0IklUrglGkC5ZcxjCRA6w156B6ma9iJJg2l8AdYILUi63V7Q5pA0yJCBg5Z8177hM1Lc7xtFAUu6t7RMRyJOX4Ch5LwABiA+MGjI2Mnjh0dmZiamLB7A0CZaFR4sgoADHqUYHGYi2ccgCNHDs2kx6Z8DAv61+MCoePH7mk8ZA/4/B5+CJLw2NGgQXiBF2VVZsVUvtTqdgYLUPi7063pbnswv4QtWPAXSQQxPEYbBhLCowvql6Y9NoefVTS4S/AUGVoYCgueAoehIkUMRQ25SMbvsHlI3/gpZzDkc/vszgk3wXhcDENOOD2geFmvL+Cx2aYQgAOBkBQOh0j8YB42EalkFS/Gzld7pXwcaA0AMOIr7vSHJSMl+WUAYobxO50OIqTowyYtE250PKrrssKagpOkGXRbVXRNt6JWOJxMpBP24a7CiZFjJ07ARTqCVlhHhl7QcKGPDweoAYyDHIUATAQIPzAEIVzoLJy+ecnL96rovBE1dLlcSesKy5XzKVOSg0Rq0IAnooDMDBRwvlwpFMrFVLZRLAz6tXZnZrGNAIzjpnyQFqD+FvKNfrNUanQHs71qq9XqwHfrYpDm8WgemxrbvRn0YmuxmDYIWAiLDQ85Mjn4KlUqwHeb1VItHwGhRDCqIpjZLEi2jGTnyRPj4+NBmrt/57Vvf+Rx4sjI2JER3WB43eeWrV8AsAPTnjBUBZaUaBaaM4tn1+kpBwEArBXX182oZfGsIHCUXE9EhQDwIIuXMb/cQ9aqxWKxXAGFX2g0ao1mu9/qNjvzNQMnbtiQJMUTuWKzkirWSoV2PQPKEWqLbIJAT5ULTTUQJBleRv9kTQMWD5jusztYkQ/4eb+ksVHSstxSLsxN2FyypcOypykXW8SNBspjxoCksP4pAOBYKpVNDS25iqV6uVFKxmQmxHJqulxK4whYLaNSrIpzduFIKQwkw9Bkysd47B4JEN2rCe7jNpk7RgTdYcGjeT2i3ycLwzbodKHdX9++dSlbRwAupHMr1/PJbDyqSkAvC4MLlzP5WCRqFU/fNIF54uCzqurRXGtmKcEZycLc49seIZEK+SUhA+RMY9yawmpWUhddQVERGWpCBDWeKidjUDCTbhpWA1eugxpzULxaXVuXnVJy/opMOAOcESvVu/Nbt8T5FBBgWVmam3PHrPKdFJWNJ5PtrRcukEuapZvS4tYzz0laa+sTppLL1/u7H54OXDn7tafe/IzYWH9vMbG6vHz5E//iq7/8pd/6DL/y5I+avfW9+7/7qWJLj7haS+4pl8dEGwUtEo+GAYCTpUxxptLYXNp/5uLCZ68tvVpYufL6ow/dvTJ4/N/+l9Untx+rNW99eqG2sb42e/r//DH1jR+9npYSmXh3e31x4ea5m5t3r8cWD249kik9ure/sLtR2H7uE+G3P/353/3919/9u+euPhfpbVqz9+5d/rv1qZe+/vxvPn9m7RPt2e3S2vbtduT61c2CdX1r6crSEzP721eeLE/PDZqLZ177N+n6oj6/evk7q5e/v3nu08/87H///d88E5k5t7B+rq2VBpHZndn2R6dXX7v+8JUzK4OFSskSJdpUVq/HJVYfVAOnby82VtZaRfSCzmJmSwG4FBo7sUHC6WMNniSmAIAl8lABuybcGgCwClWbZgGk/X6GEQ0pRHKyDNScF9wT3oDNhi1StjG7mxo2F1M0gKuPoEn7yVO/JDRTgXE3Sfg8jqnJKY/T5YVaYvOzIhug4CdBY1A++AFRxeBdXRJBaoM4cvuMyCGdA9jgRJZAti6GdayrehjzBRUcnUIDOz/Pq6CAoeihy3I2my1VytXp6V5/KQ5vOYhLl9cwEdsYzsUCWmIGAQj+gN/j9Hj9hBCBl7FM7NjhFYR7ifX5MPglyAmMMAxFNWVBwPZaTVf1sIHe2KHDgVbACvQ9jMSiaG9kDUOIojqe95hmNJlK5AqVFkbLL84srGxt7m+auKmXGAbJJnDid2n9zIVrZQ7Pa6OmakVSuWwauNbqSh31bCpXq9XRQLDfH8yBWD6zvXPx2tWMx+F0ORycBhCko4N0OptGPw7sAxkej8cTSXg32H+Fztk4X62gy7YoAosRMRqI4z9A+j1+jnY5nDTrd/lCmob+mRFdonwuQBGH89QIQO7IyCgOqg5NmrA798EHfgndKdEWGvMCxk5NTJycdAOaglRkQ0NTIUuivJSk6YYgiJ4TR47hBvSRkZOnXH7cUGACXj8dpBGB/XCNAwHGz+uYKUv4WNxqgKKJrhlUyCo0+/3+/OLs/GC6UevOADhgP/Tc4txsSj4EYPhSUL0fArBr0uYPaTq8sh6GG4DAi8LGxDMxXVIYFxn0223ugHNkzE5xHqdz0nbK6Q16XPBuTjlAxYdor5/y2QGAp5yACwDABgtSnQp4mES8llWh4HupSrtYAHplmTh1jlsZ8XRct9JSAABYYBjCYbcTaAVtoqmICY8CMFxZYYwhAB9ma+lAH+En08DtHWMnT6LWPTYyOsy6wP2C4ezvcHZr6Pt59Pj7AAzwD8wlIOh5AODbl9xivwyEKxrWVKVUTBkSx1eKGVPWaCLZrWVTWXRGy+aL5Xy1VixWColMo1SaG1S7rf5CS4/pkqRwLACwEo6DRm4PWvVSs9/rd8utVnu6mMwYPBMUsYstmsxhGMPs3OxSC9YNgxPTw010AOB8oVAoVmq1Bvx0NqPJQZnysLIk6LGoBRRTm3LYTkycmjxpi3z51V957bFZdfIUkAxFoTmDcYsmE/C7sC/eTnk97hA77MSXIoXWwuqlM8FJR0A25EhjaxuWbUwFVsySAMARCoSvP6GHMbXUR1YrxWIJAbhcwY2iRmO6CQC8UMfhL4ULibwZz+TqtVwZvg+UqcXTJEOrsVgml6mUW5KPCQxpEeCvImohL9AnmzPEh3yUQMgKHw1Yll/MRZlTU1NA/nGuMugTymlL5AIuM45z8MQ/AXA2B2swD6/SKKViaPzD6+lSMVssVWqVjEZxQwC2okWD5TRd4QM+1jnuFinPKcIQp465RfmUzRlI+AjD7ZYCAfQ6AVaeLrT6a1s3zqbLhUQiU0jn127n49lYRJahkuVn9gGAoeJEyhu3AYANjhs6IqACXixwQiy/cG9eBjrKsYacCYucwnq1kF+OJjXRFeCxl3RSsqJ6FDTs4vp2zh30ugJyqWoIrJfl9erapuyUc3MXJSYI10TPVrtLZx4SZzMCnmnNzc84I5HSw3m2mC3kutvP7xOrelgxpdntx58Ttdb2y5qcy9UHmy+0qYP5T7/4+mek5sZ7S8nl5ZWDl37tm599+9ffktaf/53e0t7+B3/2anQz3TL1QYt326CaBAVLBykB3KXc2mhVG52dy+1Hrs599sbi67nVa689cuf2ufrTP/6NZ75pfjx5pnb7vdLS+mDl0h/8Ve3C1iczWiIV6Z7bWVh46PzVjYdvJlav3rlfqD+xfwWYTG37yQ91556+//v/V/ftnxSat4prC7HGq3vNP3pFuvyHX202pdStzuxOa2f3VtO6emUIwIsHC4/297dvP19uTrdKy/Mv/N5qdUndmb//a69+9zdbO09/6Mf/+w9/byXS25he32wL7Tlz6ZHt7kud9Qvnbu4sdirYsKdFo6305nrYEJb6VP7s1fnW8up0MWt1u7l4WNUKuqYCGaaw34QgDwE4HpWoKZcXFLBvyqdGDFUE1MLkIdLvDwYFePJYXpEogma8XqfTdnyUZFjKOWVzBaHKYOqOoKg8aGHK75rQ03HD4wEA9rpsEyed2DNLwiqieAxYnZwEBUz6YBXgxhwAPQe/OUSSQRdhhBXcG7dUVQYt7aMCLC/oOG0LxS+ZTkflfwJg7MZGkITHOxHPpNOFcrk6GMzMLkUpmqKwfUwyVVFQ0BzZxFZn9PrAz4LprV6/T8CXwTNDE6NqAIBlnkSfKBJUnT/IA67AexHwCE9Rh5uPIKlViTu0yuIUjDtMDVN34R8gbXEMyUFjjFK92Wy1e/Mra2tr66BfL57dX44Y0WTUgp9IY4RavbOyuXvpZoXFLWDTUCIxPZnJVAGAl2tZoEfpOjrr4Y46YvjaxtbWzsGt61nCBdQIAViRNMxQSmeS+Qxo3+jQHTGBFlgJVFnwaeXh+a8sD7194dbwQEeAbHEfwJYiv9tmdxF+j9sf5BR488BgwmFNpNzjY6OT4+gGPXpyZBgMfBydik/gfvLRBx944EHcLj0xAbcTFPI4XEM3QQcRgNEkRaa8JKYaCZLkGx3qOtDL40DBkK9wFBFAVgTXl/T6KIpkgjiUEQwEghIG4Ek8q0k+hy9kpmvtdm9upjvb77aa/Tn0wpqd6Q9m5+YzCMA4U4XzqBr2HBCgnzxTDkrQDHiMgEmYGh7WY/O3Cd9iabxEeyjGb59y++0j426G8zjcNseEy0u5XEHSMzrl9NEhJkDRuAV9EgGYPARgQD2/m0kmG3kFGQNdrheK6ThcXAxBBhyNpbLpcDQlU2oyInMhyu3GJiwNrqWFVhUJbO9TFDYse6ghAGM8A26WRKKggOO2kdGxE7jfPHpq5MRhf9uR4xi+DP+MDhORAI0BgCkCANgfIGnCxwAAL288dMEhDyqHAKwolUIqLHFCDXFYYclMv1FAE+JhOlYpXwGRWMrFM41KZWa62msNFtoGKGBRZimWZgwzWQS62mtO11q96W632oYntpRMG9heiO7FUaCJncHcfH+w0MDwbT97eCYTwzYmAOByvQFSHOgw5/ZRBh/ghZCoa4qhacmYd8zpHp8aG5u6+u2PPfvio/uZcbT5khWa0RivOLQjCwIA2wCAXRwalLIhMZyuLawd7BBTLloLq/HOzp4eiSTCkgyEXSiHNTrgc5ClZEQMhYJ+Cq2fh4fclXqzXm+3Gq3mdAMAOGzKkszysmim8/lGs1yrlmudcibKs6TIa6l0oZIrlzuCJ+hncdNF1XU+JNFu+6TP7oMF4mIkvypICMBUKBunx+3j2CloiAznF4poh0t7I0kTiLjfZmTj8VQ6B8swmwbe0yzVyum4zDGMYKbyxUK+CPQAAJhHADYjsXIYsC2s8ATBOk65FWbiBGlKp44RIWPq+CgdO0nqXrdME+hmGo0msqXO/PrurZ1kLhuNZUq58vbjlUQuEVVVy1TT3f3L6XwMKmJu/VYYo7CAR8O7jOWbg8U8JyRzCw8v47EdYICcCIs0zxEy51WTCVV0+HmFp6gJKREz46Via3fvWtVJebw+s1I3QrSLEsO1lU3Rpia6O0PP/ZCGQc27Dyszed7UZXGwNOsMxypPZslMKp9trnzwun89rEmGOL199zlOqe9+wlCLhebc6ofavtOzL7/08ltyGxXw8vLawUd++O2333zvTXHtmd8ATXnxI//2I47VuUFHDpZrxnb81tvXnr6x2lrevrh1cW/ztXhwtte/1L9zde7zd9feSq9e/9TDj9w5U7j/G7+dPNh6vLCavfR05Mxyv7/+u9++8GrgnaSVShidcxv9+XvnLp6+fzOxdu3u48X64/vn2mfOZDZevhBtN19463MLFzbZ5s3EYEPs3Xsy/tp/+N766XuLlWt3v4AAvLWxXzQuH5zO6gdrs+d7Nxp7SzeeypTq9cbO2rn3nr9fY/cHu//6iZX9XGV5ZqnZKFdyneXa1ukBs3Q6ffrm1sJH+s3FtUEyLkt8xCgA662mTh+YSqssV06fv7JcW1xv5NNGp52NAWXOw3LhWI4k0GqPtEQ6YA8kYhrr9AW8Pq8HABj4rI4e+rBCgn4iyMgRBTscOJpTJaCwU1POgBKkgzJvn6IIVsGs8UQuH9dVKcTTHt2MZYI+Enub3bZTJx1QTMigx+4PMYTfOzGJJ8UeRgYVBELWDHM0zYWCJOklNFONWLKGm2UsrDUaAJjX9Vhk2F0TSb0PwCGGgyUF9RjHcKEeJrOZdLFaA9U4PVjJiCpuIwu8bKFr/3Cf2dABOilsb4U35CPQiCMU1vC00MANZgGdnoXhmBIAcDCExrfYbos+mYdHpfA62PwDMM4ApFAhMwZC59B5CUo/luQsgCISYvTkmp7uL57e3D5z7tyV67evXlvWFCtmatEktkyWGp3B4unt81dLjGbhGY4ejRqZUrE2PbeyVwdxlc6X8XSrVGt10Ax5FSTw2au3rqQIt9PpcnLwovLQijKVTgD9TiXwSPLQAiscwzFgUGna0KdZkQ2g+AhYh61YbPADdrfb5fF4Am6324dDOYyCaUYxgGCN806cHB8/hUe/oyfHTp0aG0EPjqElx7FjDzwI2HtyHDMLJ8dOjE2OnZpyAY+hsDtWAgUcVhiCFGRRYAXBPTo8MX7w6NjEhOv/4+m9nyQ5r2tB7hLAuLbV5Sur0mdlpTeVmeW9d+29N9PTY3r8YAYYAIQnQJAACNABIgEST+JSWlKUSEmUtBLfE9dErDZWEfvLxovY33YjNt7P+xfsvTXUK2AAkNNT3ZX55T3nfN+959CyLIHKjGOqhsCgAiZ5JkHykipRMUZFmzzgPposRqbDgqpYoFoGC8P+4sLyKmDvaGVlbWN9eWl5daMMnELHPIYU+j4r6tiKkk2EYjz20I2d9S3dxiwGVKKyptmaKNNReqyAE4GJ2QjLh+cCM/7pMEGHQgwZvjSLaWtsAsDWH/RP+gIB3II2TQGWCBkLcvlstyrH4zGCbzYqNUy6dceZk1kvV85jHvt/BeBoNEDwz9ZiGohZzrXTsIBZSyHGAKyOYxLTGN8IKzXrvzI59e8APDbchqt15cLYjPLy5WcD2BcuszyFABxDACZijFHqbx09PgtqK+1atQRaXDG6tYKrsal2OWvAMwEA3G+CMq3XaxVQwM12p9VqVAqler017MF6XNka2VkLVjOuA8nRM0AUB/3O/GAwGC0u9oYAwI1cwQC+pgLfzGSLQP2X1zaWlgGAQdfFBQUeNgBg7PmtVivVNqhfTyJA7YbjKUnkuKRqqZJJECC0wqbrn564Uv3Zrx/e/PHnX+w/d2ny4guKwbJSnEAABixNPDsDjnAMRWFHlJ1tru/evRoLRACAVbd/7Uz3PNfRVImNiw3HgjUUZtqFsRwlmXYT8RdEcKvb7fTwsKI36gzWAIA1XeWTsqiXAAX6rXa90RvUCg7PU5ps4IMFV2iUgurFoz2obuo8L1Kx0BzpJ2WOCyRl2koqTtxxWKaQY3zR2QRIWJAzKVqqeob0DIDx0MFvl2Ep4MkX/A0SuFdt1otZDa6DbOeBAJXrrWajZLCiho15rtewWMGwFT4a4wMzcVOYukQb8tRlUrIDl2dYY4rW6ajMRzHHHBZJpTHcODh7fATfwXKKrXrv5vttt5BJK1Awlezw/E62mnVso7j3JG06poDxU6bplnvLG9mkUStvvH0roTvpZIKXLEOIcxyREhN2MavLc5Skg4KakjO4Bd1bvXr0uD1HRuNxvdJxUmwkIbrd3aOU38gunys89nfYldZw4/ipttQQ06aUXNxZDafz7W95QdPMuJXFt86jO56mWHL/9MkHAMBXv2/o9Wp3eft7w7nm0fc+/fgnSn/vn1a9nfXtOx/9/u9++uXvfyrtvP0fWyuHZ9/+P94PreQXljoaV2rfe/Ln/+Unv313eX737Hzj1o2Nn+nkcn/3wepL56u/eOXgZ7mth5+99tY3Thtv/9t7yj/+873myvm/1r2NxaOl85//tXv1+Fs50CJW72xzfvmV6zf23nzRXbv56LVi9ZWr11fOjktbr7y+8eiNt7+8tv/FndPN16qjE31454fGyX/+f/+/H/3rfDYz+ll3fq+2vXNecR89PK5at7fXb87fa11duv+GV2o2Bnubzd+9ebvKng3Pf950Cr16E56qwWpzvnI4PDtZoXb2vdsv3145WJ7vlVNUGi5arT3f2B6J4vD1qntdkrY2rr24V1s/rlSL1nBQ9ADhKlCgeZ6mGCoaiLKWSMfn4q6j8+E4oGAs6o+pmOyu6AoiTjIWpRgFxwgBcWnZ0Tk+MjHHplI8z5vSrI+Oi1B6ssVypuDpssBwcb+QhhUcIimSiEUC05eDFBEmOcKHKTQUMRvE3OEIqxiGDELWNIF+8kmBwZk4U0ubKV0HGsvgj0cKomjano1WgwjAuAVN8QLDU6mkigBsAtQXssVxE9ag0uqPtmuWLaUkeEsJQ3GeJbTrmgQAzNIUSaILRyIejwoWHhxiG7JtQ2FK4ZgOQTI0RXHAizWs5Kai2S6e/Jlj+39ZwVC/VCoJP6xm6pZjOS6UCdfLWk62WMKmZGzCqnX6/T7I2YOjq2fX79x5cPfBFixR1zLcXNrx8uVGuwf6+PBWmbdcB0pa2rWdSr3aWdzYvdGHdyiWathf0kQj38Wlta3949PzB49uu5FINBQOC0B3VauUL8Df2Wy+kC8ABhfGacA4/oJNQtgKjY4U6tiOBEUjfjqQ7ezXfH7fXIxikrFwOE5GAsG47GazOc8GdisQfl9gamoSAXhianpsU3zx+bFN0/PPX5qem/OHY0Q05J+ZuDIbDcz5I+FAFAFYQockQxVIUkhyDC0wAZB1z1+4+PzF6TlfiMGgKSqaiBMJPIAnSAq+AniOrAoUJ+EhvSQJgpRMzIG2V1IKyIdOp9VbWljdWFlaHK2trm9tYjgwArBmKKqmjAFY/ncADhMCRu0q5niSGceQ0IfDAiFsGbLKRkgmHgyOFXCIYkN+3+TMVCROB+YoMgIATDICE8PtnJD/yvScP5HgkprGwRpJhOe4vNeqymhTKdRLhTIoYNBkXgauFkiUPKbRKZSasSWOT4RCAYJLIQ+x8Twki51wssyYUgTdzyVV09Njk2jXK8AbBSYmpy6+8GwLGoXvReQ2eCh8CYAKd6FBEl9iOIoinilgOhZj7Hxn8/DhaVhb6YzPgG1JGzbynklJnZJrSgJNFhZ7zWq5jPmU1Uar3wVV2KpVizhO1OmNm7BsUMDAdyVe0BzdLcJ1bneGi8Pu/MoCIFhvoZXP69jgoWJ0fanRGy6urK2sbnbRywyUkyJpluVmEIDLpWITADgjxWbmiCgBHChEJTVLTSlzPjNdZJtFiZgJPP3q54ff/w+//OqDyORzF54TdZ6VE0RK58iYHzhPOEBHIyH0ROUFSXdy7c2dO2dxf5gGIHe6V69p2YxlaYpIx1LdQk5LsQTfyqFVJkNyHSBE9cYYgTud/vxwsDhc6PZX2zgLrvOCnFTz1Vp/2G5Xq51eKZdm2bih6NgfXiuWF6QgjVPboqSDBkmlqHjET8+SCsvNpSTGETSbcDMCVcjTvvhsVIJHSUtJtFRx0YY+ks6aIvsMgL1sDvh2qQKPfLVXadSKGU3kOREVcKOM6rts8bhrAJTYrRs0r9syB4spOEta3NwVIJ9z01TSikxHOCXAKBIhi4Hx6AUC8GBr/+zxQTafM9OlTnN458OW6TmmmAIFnF+4c8er5DKOUdh7KW05BshU7FBOF7srm12RyVX2Xt10MAyJlyRVJKMMGRRTlFcCbTTLyJbGxia1jGbmq6Od/b3HnTADoksptEC/E1QSAPhU9Zve0i0FLrSspQFKNk9eEefbYhoYyMLectgttd/PR9J2NtPafu0ssFHW9bTcOXvxI1HvHX+i6fVKa2Hr0/mIdfb+Zx9/oXa3/2HZ2VndvPvR73/305/+x58BAP+nzuLR+fv/55+snF3o3+5VCqzd+7Nf/P47P3ul3Z/fOu6cnS9/XI212qePW09OVn/x4t5PsxsPf/TqW69f63067Kz90/Mu+kUAACAASURBVJfXG52j//Ja+vRwdeH4f1v0/+OXr5cKpUq6fW17afT45u2Dt5+UNm+99Fa19ebx+da1o97OwQezb/4/9977w1cPf7bbf99b3HNWb32iDH9cPfry/76zXT5/v7d4UN8/ebGTefLkWjN9d3vr5uL93rX5e++AIPIqxaLdVost89bag78s11eOV65dO5xf3Vzu1M+WT84Xmc39wvKwV81mLdyuzTqNhfWyrQ+LscTNRxUzbR9uzJ883G1sHlbqFWfUL3iuppdVReZ4iqSpCACwkSRjswRITyYQjYejYcIfleyxnbKcBMEnENEEJbuGonE8S4ieaXHhQJhhE4JEC0KM4lglnU6jQZ9nq9hsHA8mi1UvFU6gzR/U7Mk5qN0kS07FxCQNABwVOIaMcRiSKmGno5gC7ohHhVFlLGMMAGCZ4WiKxs0iWME4ZJL2QFuoKZEl4QdnyZSgSBKe0Jpu3ivkAYDbvcHS8mitiHqPh/cDZHdcG9HXgLrNsyyLTtCJaAxF8FgBYwe0kU5juEwKx3wBHyiK5kUeR9vhWQD5DLpK0zWcfFEQgOGLUklB4YAV2BiKlssAUU+D/AUgLORxl7xUb2Mw0+o2SODTs9u37t57vG+rIHMB6hCtgSA3hyBsrxZ40K6YJeQ5HjyzCzt7e6eDEvY0o7t8EwTwuAtr6+Dq9dv3H93JhoPRYCQqWqatOeV8rpAr5jJ5gO9i0SsWxk6XruPgtHTGg480hqKxRePYD3rcBc18LRKcmoqiIUY0EieC4QRQcNtCK2rXSJEh/9zMLGjg6anJGR+eBo8V8OTU9IzPH2fxeJ/H+MKgby6QiELdjcQYbPLFFAJV4eMxioyRFBufQcuOCxe+fmHGPxdh5RSOboHajkXRQAsuL5A4OalIcAkNHm5zUpSTpD9CK7ogWKlsBTPWO6sLy2sLw9HC4sLi2vrK8sry+hiAVVD/OIgkyUpSQACOBWNo9DiWBng7rWdpwAjAsIw0LhSniEAwSoamZkI0G4sEZ+dmo0RidpYko5dnQxQvsgT6XoXmLk/NzhJxipUkEOgJMjTL5Z16RUM/KqGSSUP5M6DQANkC+elkSxUgPzIpIwBjhHYwzqO9v4M4i4kYmDHN22oMARj9YoAZOXh7cqiAL1+ZGFtfYRPW2Gz7wgQg8sVLFy5OXsJQ4MsXL1yiWSCqBABwggQOy6UzjfX9e1cj6nK7Vi64jp1Uho2cZ5JKv+SmFSCXpaV+s4Jt+CBPG+0B7sw2QYm5uXqzBxJxZXNounpK5uCRZVTdcPO1brvZG67OdxZWhl0E4HYhr0uAIPC7dq5Y7/RHi0vLKxttmuM4UoTlr9t4+o1N+qVKt9+q5jUyGGIIwk/yEzFB0tQk7/fpUomrK4b0deX7P//l0//+p3/40w/Vr/sufp2TGVZjIrzCJGIBKh4G2RkOBQR0dhVE2cl3NzdvnZFzwYRiaV7v6Kqaz2q6bMgskeoWCyrgbrKRzeop+A+mXStVcciqVkP3nWG3u7iw1BsgAEPBYgWgu9lKY35p0KtXur1iHhRwTH8GwPVccVEOUAQnYbyLnhIlMREPzyamEirL+UDJu5xqE15OogtF2peYJsychbN8Mb7oGLLIRVEB80kKARgetWK5gDaw5VqvXK8WPKgPnGAWqnXAILi61bSILB4EsNsEBWymVT5OiSEfaVKxGVAfYT8dN6IAwKkQI+kJWZ5F/1vg6JX6/O7hjZeOy5WC7ZQRgL/bNoCsiynHtSqr9++5Bc9La7mdx7AWdRaYKwbFFTorWzUxWa4evH09Be8kRgkmRUUiTGwWHhav5FrmLAOamI1O2UXdzJcXD3f2X+onxECENkrtjMQTJO9292+aQTO7eD3J0kIK29MXtq99g+51AIAVZX53IeRV6m8XCTed8bpH755HNtuGaYqNaw8+TOrd4091s1ltza9/e0FUjp5+9elPte7m7wCAlzfufvj7v//qq3/5mbT15j+31s/uv/Fvn7161d4tO4OFNpn88J9/+yc/fwnuYHO7fnZn4S/2Lg821u73Hu+t/nd3t36SW3/xR09ff/Xa4JXXv7j2hx88HTS2/umt4s7W4urdk37rX7/zoJrJFMzqtcO1/oPbD4/febm+devpO/Xue7eur14/7l179I3k4Rc3fvJ//cX//J9vb94sre5ISw9f23i/1dpbuvOTa9d2XmsvHNb3jh/UrPsPjmvm+cbqtdGd7mnv/F0ACdGieENxer3a2q3bvz27dXp4/nB3dW1wNt9cPBqt3xtK21c7xbJji6yetpv1zmiYLsaTlhSQlo9ecgVze3ll9fT2Vm9zr1uvpAedTDqt6yVYVoBI2BAciSasFJ3wkxkPADgWD8ci0bkIwJ6NUgOjbwAtGUZ2QQPyshiXoNrzjJxCM36V5oy0wzOKA2CCgXymhFgajYm5jK0GKIYmouGgb+KKLxyB6nwlnAQAjk3HQNxSJPoIa0k+JYs0jgdzHBUMSrZu48ksFFWOx0AkDgA4k7V0A/dKcy56t2LrDMfIoqoqOnpZOblMqVRuAtNvLywN1uuWjrm+gmxnHQ/DDgwVI4cB81morID/cTocIbAL2jBUKYWbwGYK6qQoiIjRDLrnK7CoQEs65vhPCiixxlvQEkvRXDKpUiIQDBtwy7bxqzKYQwSleTwe2WjU2t3R6tb27sHR6a0bt+++uG/ihygUcyCS8+VmfzS/srZ1lBOy+SI8SIaXKzQ7g53Tw80bbTtbxGAJUIGdwaC3srq2uXt84/ate49fLMeCoVA0lkrbjuFV8jhSnM8XHEkBjoY8AJE3j3o4445HUbHL09JkNIRWhGdhSMzXUKzNxBSTpROxCLzi8TgNX5KGlZNOBuZmZwGBJ6Znp65MzUzhlujEjD8cTeDWAYVNzwwIQnTEDIUJiokDpNKcKOGprGaqdCBAMDjPNDN9+fnxuaYvGIowsirxVBzwOhENBkEy4xYDA1U3pYMaU3gFqA9HhBOiqSZF1VANJwtiPtPqdjqjUX+4OACusry0srpaRMtuXdbHuW4o7kUiQDKYQ5QC8MW+b2QbIMZNXCroDG0AbQpEEyDsI8zc9OwcJYQDs9OzPj9Bhv3R2NzkLHx8lqfJeNQ355+ZCUWBZiZVeZyRHfNxmXKnaLJEjKJhYbuI55qGp806rPg86GFPIWXHlKC4BcPhGMlqbs6VgShmPFDKlqmyaRmuHCwszXw2HGyhJ1Ip67t48YUrl8bj1C9cfv65C4i3Y9cTTATG6aSpyYsXaY4EphiNjS95jJVz81tX716LK4tNdMJK26o5qOazBqd3agWcmKfKo1YtmwNsLBQrjXazW6i186V6vVBt1dvzo9HKQdfxQKKil1tStxQrV2l2e93+equxtjwYjRaXl+qFsiU/swS1vGK91RkuLK7Ob1QFnuUpHt0MzTQOaQK+NNrtdqdTVWOzYZYN+4OhyYQhyvGILxSMGDko+4Vg7Mabb/zjN3782Ze/fOp/bu7SBdoE4OcSvJQkAlH08A7Q4XB4jL8p1ci3hmvb58eJ2RhtOmq2e7prFV1DAiJFR7RBNqcJ8BOUs7YosnyMa7UqwGKb9XqzORj2h8PBfG80Gq4NoBYASRZkxSlgj9hgWCu1uvWcJcYpTbPy2VKzUm70+QiVSAI0qnIqldKhJszOEcGExrIhk2A0MZ2icqZMZYv8HMtyGrBwg1MIAb65JNChdM6SRZGaM0tpL++WMH+0Ui5X6s1qsZzVJYYRzVwJhE693u/mdFjeVhZWSrFu8byqKykiHo3PklyUJoBQEGHfnBqb5BQqoAp0TJYDtmI6QKqLneWN43sv7eSaNdctd1uDe98fOIWcp+o5262uPrjhZJ1cWilt37Z0d8xi9bSkFuujlUIy2aotfOO6JEhiKJLEyKqQj4Lnkiu1ZBGUtqQIJOlTcoaeK3dW9tZf6c9SkTBp16oWTYeEpNXev67OWbn5M3hs2WTSyNUWV/ffYHt1JW1a/MJWN26X+u8X4mlA4M7Vb5+GlwfwPCrZGzc/ldThwce2Vqu3V/feX2ZSe9/84ac/kgbXf7+R2drYvPn9f/zdT3/2h8/4vQ9+3988vfnNf/tcbp5sR61ab+EkEX3z1z//3a++/ODw8Nvv3t/f+uXq3KC9ddi+t9f6zp3tH5rDW5/cf/OV/c7bX/zqG//p1uPyVu8nfz2/srm++urhw72/f/hKJQ0SYnh1NOg/vv7w9PWn5f2br7zVbrx763zp5Fr7ZPubw+9effPXf/jhG5+81lmtb6xao/Oz5hc//vyr028+fP+N/P5K+2p17drjlvrWvZ26dn9j81rrcfukd+c7JPCnbLFdT2c2W0prXv/ytZeeHL78+Gp9qb252G3vLh8cbm2227bIsIbeaA67rdFyxk4R/nZnMTt/59rDRrKxubmwenRnt71x1KsU7UE377mKXcIeWZzQJIm5AK+naMIfdzwj7gsTgUAsPBtOGpYuYZgdKMNkghJ4UMCyboKMEqDMZ1xdlSgBh3Z0U1NYqHvpbAbIfxoKJM9EQ2LazSlEPE6SwDCnJ2f80aA/TsYvpwSaDF6JA7jSFKeqoBo0XlBBrzLo7R8Pa1k8lLV1KMwsw8cI+ErRxoNWXeT1gmemOAwQ5QSWFcfJaWOrt2yxkMk1Ou3ucDQ/3KgbgkAxQtJwNTzjxbZYGfPzRB6bsNCUKU7FEzFuvGFlYs23lXEiE8+TNOYh8cAMMMA3VzIRulVFxM1NBQdQBQYDHSiONzstdH7Gg6CsOzYZzOXw82eAvjYaQMsX17b2Dq6eHl+/fefWqqLDbQR1bHvFWqu7uLG8eO3BwyqZKcAqLldBt/SW1g+u3bz3pGUX4X/WuniA15oHDbi4vn96du3m7VceF0ExRIJR3TFd7EfLZXD/OYeOtPlcCQQxBiMBdGGbkJe29bFrsgriV8Q0BDQh4Rjua4lYNORnrDRFAnxGQM0GA3GAUFnTpBTpC4SC05OTV6ZmQfROT05M+6NoX4WbhAzLYd4vB7IXwzpi2NVMY54Vj5PRoIFNI4lbB2Qs4JudncRd1Bcu+4JhglM0CSOoAOVC/lCMAiUcw6tMsanxkLYqMwkiweGYFPxKSuiKKQPxtmy3UC7XG63h+sbS8ub6RknFjQzVhNWmG5i6JRJBhouGQwnRQq+ysV/3sxeGAWMwEXymIEGDsI/SwAp8lBAN+2Zmfb5IzB9I0MGpmQi6oUaCxLgLejIQiSRoXka+gB37fKbYqXhJkqC4XAadxjCEwNKttAEAjAvHTpGqa6R4Ph4AQkIysp3W4aIbHmijtKbJrCPH4ZJhrTcQgTGMAUSTO4W7zTgkffnCc8/j64ULFyYQgbEH+srlFy7Ar8ssjwAciQIAJ+AhUEuLW6cPzqLyQqNaLmDsntkrZxwVALiaB35FRzNN3ICplAuYOFCtNsfRH8VGGQRro9cbLu930p6GTdBJAQ8/M8VSc75faq52WsuLAxz5mq8BACuiCJfPcmGdNrtAExGARYFN0pjSjeoMz4BrjWarA6+6A/eciftn0WjbUmUyEowFAqDvIpzz3P7L7t1fX//2K1+8n/76JHw6WqdoTYjxqoImArFg0E8GgyGMIcUe/Vy9s7R9+5RGAHa1XP9sP13MOIaj62xU6bqeAmiQquatlEizUb7dxoPuWrXebve7HUx0GiwsjNb6xjMAVtR0udvpDYbDWrnTawIA05SmGBmv1ARk7CdjNIHREvBoy0kFVuSMD0R8KkmHbIrTU+kUnTMNJlvifbzIKlnbkBiREEqeJYlsxC3YEs/FQk41kytm0YmuUoULUmtUCrgFLQiSnS/XGtXGGIBZBb4tAnDNQptARcTw16k4G45JTIwmfXOEEp7iJZZMMYmIqoZNxbC9XKbQXlg/vvPiVq5Rdpxyuz64+92eWypkVS1tZZrr929Arc1aanHzjq25OnqtaZaoFSrd+TzP1qt7b+67sPAiESoWYSKBKBWECpsu6qo4JYgpnghPallNzVR7K1tH3xgGEqEoqZVKJpWYJUSpsb8n+OXi4nVlXER1rzRc3n2N7bdkQ9H44WabsPKdd/OJDHDQ1sF7R/5RTzYMxTu78UlK7Z9+31ZBg4x23ltklI03Pvve5+rw6j+sZjY3tm5++rd/+7Mv/+VHwu63/qHeXTl8/X/4u02vvlERjUzz83fi3/9K6N775M//4q//7JNv3Bz+snuhUB2sVY+O+t95uPyTQfvR5y+ev342+nDJLW7U16vL5e2Dxun+qHP9V188/Zvh44KVS0v961u9/qtH59uvPqru33r6RqPxztmtlaO91ktPhotffPfTx9devXrvoLpb6W/b9V7HbWbztbSL8ZeLa+3t8sreg7Zz62i7Ip0057e6+wub23ef6hwQ6uUFN10/7JlLV+u/3Bps1UeHt+ZHncFoYXtz9eZJDnUp68nl+fZiqSwlLbq8UZEfbWVqbfX0ycga7G0tbJzc3m5tHPdrpfSgm3PTmlPB0kwzGAwUivCwxjCMwZEIf4iIRmKR2bBk4TYaDugCRUUAVjOWnkylNFkytTSeiIokT3GsgD5RHGhlYGWW41gq/AGGiUlONm+J0SiJk0i+qelAIhKIU9QMwwEAT/0RgBX0craBv4HypLEhmwzLHm7kYZZcClCZIClBEG1TNeCXbGRcSxmbQbI8yyYBgNGcx3FcgKJMttZstOfnFwbLhRSJP7Nipsd7zFCRlRTabsL70RhGCK9EnIyygFKW5aSh3KBcBAElg9THtl5Zl9Emx8Qyr+roBG1CPVewr1qAegqaiWOkYsHGsR+M+XVQ36QxhSjreblyHT0xBwsr61vbV6+d3rp77+6ehQ5JGUDNfLHa6Myv7m3fePBiVyrb6UwBoDTTG46W1jf3bz4dAH2uVLvdGnzZsF9bWRgtrB/euHPv3tMHWTJOhgJRw7Ndy80VMQo8n88iDBcLJRDEaIvl4QujkExtbESJLB/NQ4BeYOAU8zWGISME3MlEHB0NQuFAIETpBtATkSL8E4FodHoCkHdq4vJ0IEJgNxrGpQtCEjE4kaCT+MeiQIviNM6DxAgacBQHnjQ7bYJykpno3JxvGgOULrxweTYYifOKmhLG41+AJqC3iUiUgOvPkDTwdlAgyUQ4jo1KQPNSwHQw8Q5HjZI4gY1Il2+vri+u7GxsFiXMWFAMBOBnecBjAA6FSTwNwAwi9FSxDW3chIWxMgDAyVCCpUDuUkGQvpQQi4DG9/lA/foSbHhqNkpRIheaIxIBn29iYi4EAMylUjyVIMl4IOVlqsU0RwBrgNtWBJ6Fo3CGPQZgCxeFQChQ/jgu7g9E4jSHblw6QLDjpdOegQAsYQAnNsEZgL4ONgtkciVv+sKVyT8e/j73wsTUxYsTmAw8cRFx+SJGWFy6+PwEL1BkNBqOwiNKJRK8UV3ePH10PSzPV8vFrAWr0eiVAIB5s1vNKYJARrxaJpvBLK0ctudW60VP0wqlRr1cAoBo9Zf22gDAyh8B2IBqXWwt1qXCUr+7CDwPNPAQNJyRSo7n5r1sqd7qLaxtAADXEIA5UXmW/YlnwP/eftyuZCyZJwB+CVrWLEz6FoNzs6nYZc5PfnKr+P6L978sFsT/9oXZC5cu0Xqc1FNhVpEBgMloMORPBIIhtCll+JTsVRqj9VsnlA8BWC8Mzo68Yq7gZnRDiCsdz1MFihbqBUMRSSYqdNrNGk7CNwBmW63RwqA3WFxaWOuZlo7HRKpqV3uIv8N6tdtvAmwzlJrSXbeI3XS9FEZdCZKKo/JCioxHQB3MsYyaCFmMYMh2issZZsIp8VOcTvEZwxRFOcYXXUtO8eF0Pg2Xmwh5VXjwcuOhr2q13kQALngaPEdyulCp1aEYAQAbLCxWNwMAXP0jAMeiifjlGBOMulw4zs+GOCXkT0ksm2LImKERwDEtJ5vJAwCc3n60XWiVHK/crvXvfdh1K6WsqpgAwGt3bro4B2cUN+5BJdfZFLY9pOxqo79QJel+YeONB8ZcNB6IJcgAPTcdi15JKgwncmz0IsOrtsL40llNy7cWNnf2Ho9okYgTeq1VUGWCV5Lt4y0+mirMX5O4OMkIupfvLO09pTtd2VQtZbDbSTiF7rvZOPAKt77z/rF/MFRhOaZPzj6WtO7Jd3WlXKkv7HxnidbnH3/2/R8bo6PfLmU2tnbOP/nNb7784l9+kNx5/7eF+eWDb/7mn56clBbWH0hOcvnP6p//MhaOMdrg7Mm73/30068egsA4upu9ez766OX65wfutQ/fOHlpb/X1rXSjUK+2q+Ws1T7eXhxdHxjYzOMqqsj1rq6O+q8f3t15+3Fx6/zp27XWO9durpzs1vbSTiJJsnyAYm02NOj2FwsjQ4ZyIImZtGwkvd7GcKW6ODjNSzeOt6r2tU5uvr+6OtxY+0GPN5MRu6farcOe1d/d/rNufeiatUGjtdBpVBpW+d65Rae1QrnRGRQ9ORMuNoLkw/VK8bBlFNrt609XvYXD7ZWNwxvrjbXDbr2MAJy2MCoMgBLQCIpoOMrqIhWdjWg6jwdmRCQUmQnJUNB0BZ2UOATgpKDnXVuiGDoej8U5igckBgBmOTGdMTVshM/kXfSFkkFwsUxEcrNZW49ESbScDE9fDlCxuTAF0phmqIBvDMAkixZBNqhdFVPusUOKDqdA4GUdFKY4txunaDEJAKxgwjpoGsdG90zcJebGChgAGCqbAxUnl0M/mv5wYbicTzFQRiUT4z6f4S9aN8gCw/DU+AXllaQjjOsY6JAgyeNYCgExWqBpKFCSqWBXoQP1HH0s0DRWtx0DBBo6Y2OnUUqUMxnTTZsYJOSm0zibgueuYwXcaLW6g/nltc3t7f3Dw+s3b97cxe4c0MiFUrFQqbdHK3sHt198OpRcNK+yzEy10WiPlgbDzZutPAb8tlqtTqtSH62sLK/uHl+7df/hw9dezETRC5qwsrgFnS8VEYCx7wuticqF/LNj4GwOTaHh2xkqRtObuoL6VIOriZvQ7NdYno4nPU8EIA2HgsFgOBrnTBthGgB40h+OTE8Bfk5M+AC5MHaCHm88Y0gyz1IUzY272OAFd0Bg4jg3LWIW2vgyeJ6lsBFfwD994XkE4EuzIdw8VUTgXAQgMMUyCZxGA1FHMIBXqpJKUWSM4FICtrZJoKNVEeWtimJXRZtS1bDy/aXFla3VjWJS1o0UTiChtAc2z0cDoIaCYTI1nubCyw8sBzAQp7FxFAlICB9KMPEAAPBYASdj4bkZ3IKOB2ZiVHDKFyNJUDORODEGYF8oQkKdEjkyQSaIkJpNg+YgQ3MhIpuvljLocIJxhA52Fnge0E2eUDydB62KbV5cUnMQlw00HzQdTZE4V4rS4xg/PM/Adep6Tq6SxTCGF9D3CgEYYfjyBO74X8QoQuyJvoAN0hxPkjEAYGZspM2plaX1k0dnfmlYKRU8+Elko1/NZ/Sk3avmNaRPpU6hkK9VAZ9xSdRq9YKZadUbUKoalVJzsLTXsgGAFZ4DAAaumSkXG70MkV0Y9peWFkeLiwujerGsw9MG9McEnlBv9RdX19cWNmsifEQeg/R0GzgEEMxmvVbvDnrdHpQgT2cjIZKJcbzj5qxMhggGhOiV2Ezpp4+aL+784Nbc5YtTvsnQpcu0Eo1rqSgnJeNAuWLhcJDCEwp63KYmp0uN4fLpXmyOoHQHFfBxppAtZz1NT9FaN5/TUjQpNAqaCgAcE9oNtCMplrG/rA0APOwDAC+u9ywHND5oeA0AuDsYDob1ZrfbKNgpmgKW77mFRq1c7YICjgLRknBbLIlHwDP+8JwQt6MRg0saiikms5oRtcrCFJemaUvH6WlCGAOwEHEAgEWRDHrlbCFfqOTzuAVdAcCtFoHy4GmVhWbc1SZIrILJarLmZJxMsWLyoo4KOExTl2N0iHf4MMHHYpwUjWkKTUhJgTJlarxSEIAXd05vPdorN0tuttqpD+5/2PXGAAxPdnXp1u2cV3Z1u7T1yDVcnRGx+VDOtPoraw0ytZzdfOWJOkdGpoHuBomZ6aD/MvAKnknEI8EIrbkGO6M7qpZrLu0e7dwd8EoiEVVqvaqhJOAu90/2UzE1N7yaYhMUkzTy+frC/lO2M5RdK60PjnqkV+h9M096UO0b++9fDfYWoIhq5tG1j2Sjc/SRYXQ63bWDzzdJo3v/hz/4sT48+s1idn1j+/anf/3rH//kX76X2vngb4tbh6fv/t3f3/7u97K9nfJySjs5/9ZvHu6v2DwHCNBefvC9//DnX73x0pv7Oyv1j9/v/Gire/vdpzdf3d569cVGu7kA9Ktfya2ORjvNB5uGIecEOSmK/Ohkban14vHt7VfvZ5ZvP327UHv17Ki3vdndiYTiSS6WEuIAL0Jv2C6l5p2cW8n3KoWikSnY3e2d7d5S89ij7uysVPSjbuVk7XhtdW/lk5LkdXfLQ9tp7a/URsvlLafTbfU6pYLrKZKcJLUHN1y1WG1WjEqRM7UYebCZaZzXBU8oHB2e3Lzzyoo9PN7ZWDs4W2usH3bqZXvQy6VNJV3RJbR+YsdPOaslychMWFWThD8YCQeD0amABGJCxeHeJMclAYCTesFz6Cnf7FwsxgcDhKCrlMAADtrAw5M6uil6adcxcSuXBf2QzUGdIKJxOhGLRWYu+snorI9k6Vn4NecjAIBJPH1MYW6cJIDK4jgGintYco20hw6naAJCx0AoCUlQHuOiltbQtUqgGY4HHZxKCZIMxBs7T0EQFmv1RrfdX5hfyUsiJcEznTbGHVQAwFizZRyE5fAwkyITIOCiDBr6gaSRVRN30YH4A1ixDM+SoOcdYK0lQDQMth/veFqupaGKBqwAYErJWi6bduBtMQoIdGxmLD3RFatYa9Rr/dHS2ubO7u7x8dGt27du7KB4wK1i4Anlemd+Zevg5r2HTV5xcGbIq3Sb3eHazubm0XHFB8q9ewAAIABJREFUwczwxqiay1e686Ph/MbJjes3zu/ef+1JARRRLELaWSutYfdHLlcojMMYnk1ClMvFAmaWwXfBtjD4aOn0GITgUijog4VdWF+D686aOS2GJ/OBYDgSixMYJQ8QKstMMBwOTE7NTl2ZDSaTAiAmxbDMM8aCuw548TgOp0KpRBKtpVnswVLNsfh3cBPeURNz0/6Qb2wf/fyl2Qjx7AyYjhMI4xz8O/EsDoPikhhrxQQpQUyy3NhdA5YbQi6aaAJmaWgkYjuaUZlfXVtf3iiJKQ1gxxjfKdDAST4GZA69oCW0/rJsCyeR7GedZ5Y5Pl9Qk8E4FZmdi4IOmPWzYizkBwUcjCeCs0TCP+XHmWSMh45EfL5JVMA0hzscwM8ScQBgt1zU6FgoSuYK9XLOGWf9PssDzthONm0lSTMD5TrFglRN8KKGKjzj4Fy4jRYSjCPHMC9KkMaO/Gl77EWJChjYycWx4wY6lly6cvnyxOTMFAYxIACPt6IvsywCcIh4BsCsVJxfOXpwOicP4F678C0UPAPOaJzZLWfhUaHoJmjjQqVaq8E6wE6sZiVb69RaoBD7LVxy+y3LhQsMixd4q6am0ZQ8kyyOBsPllWXsdpuvl8q6nJJwDCkLRKEJALwKAFwVeLgsIqa+W07G9YqNdr1U6w5BdgII1wt6zB+jKJ6xvFq5U4jMJbiQf8J3/csntcPl1ZnnJi5OX3xh5splRgpEVTGWVMVEjOIIBOBQOAKLgsf1aVW6y2sAwAGCBJ2V6ZydeDmvmEnrQKKULhAhkUwIjaKmpmguLjaBbFdB2jda7X6vM4THZH5peWm9az4DYODMlTaQ8f4AJHKrVkiLJKkpZtYD7VRu9IQozvsncVAiKSVJMjTjDwakeDoQUxhQErogZhQ7ZtdlAGBF0GxZFyXy2RY0l8gWTJHniEC2lCvly9VMtjDugq616uVSRsPMIzNbrlUrjVqnU0rzgPuO53ilfwfgeJhlZxIkYQF/JKgkSYG2MXU+lkwprCmwoHAtJ5ctNJc2D68/2i9VS05mDMAf9bxywVOUdFovL9+667lVx3TKe08ypqexKV23VCnbGq6v5/j0MHN6f21AkZFZYOyRwGxg1j+XMvUUB5U4TqYsW2JmNVvV3PJg+/jaox6VjCcSSmNUU/kwx1u9g6tywMgNT6Uky2PVL1aH+y+JnUU5Y+pC+7gVc7Odt/NULmNnOkfvHPubS6quGMbBte/IZuvqp05m1O+tHf/8kNBbD3/wo8+V4cnfLBfW17bufP+v//JzAGBp9+O/r68cXn/5d//L6Xs/eaulLF8thJ3rP/yr73zrhx89PutlVJbgNaN3/623P3rjg8f77z/q/2DJevjDlx+/vrv3wZP8sD1cH/ZGjcp6e7BZu/7Y0T1dU0AsMt2dpcXqzRsH/dOz3MLdJ2/YlSdbi/3jnd6R5aZ5Gla95mZ7/Xq50y2Wc83afHeloemcqAsr+zdPl1Z7N5vSw529vHijXTo/eXR8dLD45Umv/OR/fXM46g43lppA+8w0AK8uppJMgklaku48OSzl852yArrTKK3VFq+5Xsl1O/sbJ3vrByv3nywZwzMA4MObW53tk261aA16ecfU0zUDW3oTDBULB6KckaLgMTIMJeYLA4eNhif9Ik7wSJiuAKBEIgDnHdtKUASopDk/yAIhhSP9rGCYSYoFqeJhTIxnqfC2CMCFvGc7fCxKUfFY2H/RH4/MTicYbjbOsb6ZKCixBEFJBlT+tKUKWNcZdO0IqRkD1ILhOIYk4vgKfGMJJGYaj2odqL6AvySDZ8CMOHZ5UtF8CjdyoZ60+r3h0vySCxVDQfNlhCBjDMDw5zCXEHB7fAxMxRk+xubgA9muhW8MqtEC/MWJGJEhGMPKAA4Wc1kXxZiOMKbj74NOBgAG+Gd5ycuk0yl1bMVlpcce/PDyUCHU6nXcgd7Y3tk9PDy4cef29TUdAXh8YpsF2j5a3jk+vX6rLKWzoK0azWart7C0un/t/NGDjqlo2Uq7U650F5YXOiur28fXb955+OrLrz/Oo2lxJGFlLMfMg+bNgvTFPCSQzLUCBp2OU5Gy3jN3LmucsoR6cax9xfHwFP81wEE5m+H8Y/kbIRJEIuwLJpIIK4CeRMQ3cWXi8jTBjaeGKTQiJp+di+Oug8BR8NnF8YUEAE7Bm2JRxu+HKIxRTFRoLhD0Tfw7AMdj8CipIkuyDB1HF0ESE5GIBIUmOywJeAyFMMVxMjqmWKYsjHU7RmPAM6Wqhlcw1OLC5ubG6kYJTUuxnR0Pt4ETiUksZvFIjNOwuwm33dH1HlvWFd0e20EbahKTZ2cDCc4PuMtLRCQ055sLxIm5IEUDAEejSRo+YSQc9/lmQP+DMOKEMQATsbmk4zZqJnqI0Pki6M6MC9/CtV0P++7SAMC2SFu5NFo/YMIthy2FQEOziLOeCdySSYvheOIZAAP+YmhIGpSzefm5ixefHwvgFy5MvHBhyjc1OT05NXkF7T4vPUuBvHiZYfCHCOPOAQJwKj9cPrhzNaAMgGh58G6q2S97lkjpzbyjAFVleystkLCwFmAdgCKrtmuVTqPc6/cH8wPkgwct00EAxiYsEFq2V6g2G0D1eqOlxSUA0+GoViwbsogKWHf0NKzC+eUVPAPmAYDZMQCbGAVVaLRrxQYA8GA07PU6nTwTgAVkpJR0ud7TrlwJh6fnnlO/+a2nSyXu4pUJ3wRc2UuTE5QYiKlCJKlJFNx/IhQMUOFQaGz8Cg+nXRtt7Z6fUIFYXDYkt3l27GKfkW2qEptq5x3cDxUaJVtJMQIpNiuIwGgG3RwMuv3hcGlpGQC4o9u4yQ4/jFUG3jGEWtttN2sFW4hTGijTDABwpTUQojQ6qEq4o6UABoZmgoGIxJg+WqQF3dK4lKs4CbuWmqJUXUg5kiVJlAhXWxIYwsPEBY6Yy+azhUy5nM3BM1jC/KlWrZIFli9qVq5arwEAw0Ps8IpieF56DMACPIwpKspyISbO2wmGiEVTFCVSvG2rLCWorM6O04M9AODWysb+DSjt1QKmC9d6dz7uZ8p5V1ENW6uunt+13YqTdkpHL3pmxuBlXbd1NdsYrA4dLte21rYHd/iZaMQ/EwzO+sIzwYisJoFAU2F/QvY8TfDrjmE4+e7W8cmjLon+nkpzvqEnowLr9HZPlTkrO7gqJTkcMIAPONh9xFUXBM9Q2OZpM+J63XfSiXzOzbX33z7219YMC6rjwbUPUmZj99uWN+y0l49/cUxo9cff/+wzaXj6dyv5jY2dez/87W9++uN/+UTZ+eQfWusb56/99n9/7aM/fe/VJeXs3jXG+OzLO0+vfvDDT/7kw9dPNlspiSES6eWV84dPP3r1/pc7tfNvP3r71dXl97+ZX1pc6FR684PGYn9xafHho6LnqgLLxeKJwUZvpXn/8W7z8HZhcO/RW+nBO9u9zcc3+8uOZReyEq3whj2cb9755JO3SyBzMuWFQUaUdVndOrl/Bm97o88+uH9Tc95bLh0enuytrDVvjZrDZsXqN8qlvImxKgkFQCSpy5Jt5ysNUEEvHbdyerqcqG3Ec3dy1XRVsnrD3YP1o92V4+ON+49X7KVb22trh7d2OlvHaMTR7xccU7VKKAnZGCaBzIU4Hbtn4qahxnwxMhwmg5MBAXEQTYcAgDkQokktm9ZFgkgkoCZHwyF/jKVweFe00mqSAx2UyaAncnp8BkyFRBzPyeiJMAnEKxy6FEzEgpMgaIH0Ymw3qqEYJZvo4whYOxZWNE4H6nngr5aJ/yeAbJykREnNYm+Xgjbl6DpPEBSa09IgRZN/VMDjIN56E565+eXFFQ8gwsCCZ9rjM2BlvAs9nsMROAylZRkoiwSXzUMdBbVtomIEDZxKSWhyxZGCpbuehwaPrqpgvp1tKLqJyX4IZQKHzFBCZ+CUhoBhWo6ORhA2Nsc6qB06HShr61s7u/DXyc3zs0UHTfxzuXEUQ709WNw+Obv7oGkVqsV8pdlq1uuDheXda7fuPh2CgMrkS162tbSEQ8Ab2wenN2/ffXj/pQe5eDgYCRFmJu3ZhTIoYEx+KGMLSL1RwV2vEo4iZ8YdYY6DfcAIwLj/DrwCilwSrvHX4iRrla14KBQKj89yQaP6wySvSEpKESLh0Az6QAeYJChVfjw9hI1WLL44dAEHXSdC5ZIV/AdKa8zexSttjJNyc57Kx8P+2YmLaO8EAJxIJA0TzVzwtqERJeY9JhIkxWNPNkPTwCQ5WU5iypEC9Qkuv6yN56YwnlgzMgXLrCxtbe9sbeRxZk3BkEVlHAgsJhMRmiaCYQ7h1h0nFVl6Gu8I1CMN45ANlYuxfDwYYZLo1yYoZDwSDATCZNwfYlj/pC8aQwdyIhKOzvpmphGA0fqUp0A2R32cnakXDYEFElLEPYYs+pZmHQBfG2A0k3VskTIyabjAbCQK1xADdqx0Iee4GQ90sK6ythh55pVtjJuw0LoUfsucuADgi2FTOCz9/MUrmD41NTExdfn553E06TLGMvxXAKYpEjcg1Pxw9eD8JKQOy5VyNu1hE1YxrfOk0sjYssDRPABws1IbA3CpilFa1Ua3Uuu3u+ixsbiyjgCsjQNpAQpsANhivTcc9Oe7o1F30G31hqNqvqhLSdxWUnQNhFi1P7+wNFgr8zwDN1DGLmgbPhxu8VTa/UF/uDDf7/UGFSHC6BnPTKUBeZgXJi5PTVy+dHL7yXvZ/+bi7IWLvunpFy5fmJqkhWAcSnxSE+PROJkIBwMMVJEk2qvDUnKqg62D+6dUIBqTxgB85OYcDychU6zYLqRlLk4J1YIDAMzHRZCb9Qb2QDea/X6nPxiC/l1Y3Ojq2LzJJ03TriAAd7u1drvdKBg8SY8VcLEByNhPxkC9cDg9DvjCJajgTCgQF0V5JimQSdPVWAkAOG6WxClS0mglraKFpFgZd0FHsAsahIsPuHTeKRbyhVK5VCzX4Rs1ajktJci6nasBzjcBgCvuuAsaQ6qqAMB4rMJFKTrOx6wUTZPRGEPzSUbLmIpI8iqjswqUM+Sx+dbqxsHtp4elRhHHkOq92x/2ngEwLPDayvW7jlvCKnBy3zEylqBAiTKNXK2/WHGoXM2o9tcfi5cT2N09GwyGguG5FCjuVJJL+IO0kdHpKcWzDLc42DneetCOmwIRS1a6VSMV45NWf+8gFTayg5OUAJxbTzmV1sLuXbq0yLuGJrVutqLZ7OB9k8hm0pnW3nunwcq6CQ+fdnD6XtKorbytpnut9trxnx4m9MLDjwGAB1f/dim7ur5z++Nf/eYXn//hE3Xzo7+p7Wzfeus3/9OXv/ri09dOrxYrLy+nv/hJth4v3bnx0gcvf/tPvvfmvdW6nmQIWiv1V+9+/73vvPTk/M239pfeeKPQXNup6st7h0uL80tr3fuvZVRdSrEymxI3Dlf3+k+fHndvPPRa9158z1v5ztnS/o3TnZ1qIGakCcGIKU69UP/4r776Qafd69v51kI5iXEEK6e3T5eWeoe9xK27B3b98erCxgBK6qBr14pFS7UkmksJbEqzsOUI7k9tod5u5wpuI5e9f1bhVYreaA071VHezDZHW/tL2/3+0c7m5urJvccbztL55ur60flWc+2gXS0YCMCGYhT18Y5rAupwIMRqyUTMTxi6TASiZCxChHxhTkubOOGpiSyXJOmUqGdNVYN7FQ7HQ7F43B/hcMMOARgqJyyBLDA3ADKg4yyVCIlpxwXEpMIkDnWEL0VA/kwEEnE6EGfnJiMMKmAaAw0RJjEVkcMZ3VhYz6GfHwgYQ8bTNTIhSHo+k3NQK2P8rgB0jcLdTBrQAP1px+1NXj5fbLTbgxHQ+bW8ouGBj2GMM9rHhRy7uhTshAZQR7GdIIGFAiJm82V0VMimcdgX0IrhQJkJsqk6uRyoybwHnBMzUyys5jgxg45SAMCKrHqOpkuqgiegtvcsgs4FBuK4+Vqn3xvML69v7+4fnB6f3rx7vub+EYALxWK11hqubBydvvhK187WitlcoVxr1rrz64cnJ9fvtrxcPu9l8rZXRyeF7vzy2vbB3ubq2umNHANIgWfAaRcnHcpFhIVyFURwFc156wDA6AudHbslwo0w0RXa0Mc52piKNE5DihKcV1Wj8XAkRsB9ifiiRJzhWJaIh4nwtG92enJ6xhfFqg9QSeH4URxIEEgwbMVCGJeApuCHxl1g0KjqmIEYuulmXADgjKvz0YBvZuKFPwIwDStDBS5NE9EEAC6IXswFJuMMCdoQJ6qTAvxT1HFYSiBBB6iaiS3coob3zcyA3G+ubO7s765nROxUN9AfBfvaFaiCYYqMzAUYDV0I0IHEA1yRk3gipY87pQ2ZTSQlJprgU7gbl1QZOgbliGCZsJ/h/JdnY3EuCXCLk+oAwIFwhGYoLpWkElQ4Hpay+aqjcQxJcZV6o1rAvGU372VhsbguHjcgAANCSGIiEIzQSVE2HTdbLriZHLA6VVM4R0lg6qOBLfXusxltdAv1TUxcmpiaQpZy+bkrM9NorT11ZWJm4vnnx4ZYlzDFgmWxfTEco8g4RVG8VhitH948jmrDSrWSczLYhFV0AFnUZwBMMa15+CHrsA7QCqZdq7dLjXax3au3es3e4vzKxmHLcpGHplK8YDgy8PfWcNiZn+8Ou7VWu9Wfn6/m8IxVUJ7ZoNtuAeTlQm+lBEwsyWDcMSjg8Qg0MD5Q1r3h4gKIz2GFC5Iq1KWUBx+evRR6fsL3XGjrxsv7semZy1d8vq9Pz06FpyfpZIg2RZz2jo1DmkNBLh4Noz07Bh265fba3v2rUQDglCF5LQDgvONa487jVK/iAdVghCJ8VBGos9Bu4UF0vdVqNHvdNqj3hYXRcH6zb7kIwALG/7Vbg2EHPlmn18prPE2PS0KxUS+Nz4CfNcfhWmbjVGAmHCAFJTUj8/GkldUZ2VWduFEUZxnVpIFoixITFypZDGOIZcquluSigWIuV3DGZuzFfL7cqD4DYKSRdq5aK1dbCMAOOlnkM9YzAFbxSSDiJMlHcwmRpiOJCJtMck5RA1khqIzJ6ZKChoJerrW0un/75d18owwKuNvs3/52J1MpYDXytMr81XvAJdJZM3f1tqVlbOxbhyqULXcHrk7mc95wtHjHmBPImUjCxxDhRGxStMSkSMUTEU4wMlp8Mg280S6Odo92nzSDMhOOGq1RyzUSnKz29td4QinO4xY0xzupdK2/undbqG+ILjzyrfNWNJcdfeAksq7pdQ4/OAvmVxCX1IPTd3i9svau5vRana2rP92ndef2+599Lo9OfjPvDRfWTt/56le/+AwAeO2Dvywsnhw//pv/8a/+5osfPrn5ykedxd3cj389RWe1bFZthXduHL7ynY8/fPnudt/TuEg8ZXRv3P/euw+/8eK9J3cePL13/vDozv3zrcX54f7wW6+kNd6aGl67tp1Z3Fg/G7x057hzdmJV7z9+3xq9tblysrpyclAw84rA60Jaz7Xq3Xc/ef/VhU47l60AU2qUcvX01un1azsHK8dL1Rtr61vDxqhQgzJaRt3HoPU/jfQtAwpntFQf1WvzbS+p5UjGD1z75p0yt1R1Dhuandbay9urJ6ube0uj+eWV/cPr2w+ebKXnb2ysb5/e3W6sHnSfAXBa160yBgik7SSUCAK3oEkimLAMkQxHiFjIHw1GGclQWKivIO8FGQA4pWfRriKeiIXIuSDJRkiJZ1GLgnIBDqEaUHcypqlLY4+NkJSBSmW4dISkYjEieDGaSBCXp8moOBtl/JNRVoASzGqSmTZ029LGB4vwiofVLFoTI3QoHAulkOBSes4reGiWIUNtlXGmhWFxDCmFBgzPxpByxUK53e0CAC/Mr2QlEHSOq+rOOJlvHPvpubg7BTL2mSMFEIE4D3iZzhTzaSABLrrkoleHgM6KoKGy5XIZiq2VknAq0jYwMQDnkZI8QAYv8Lycyxom9lGi63B23CJre3kP0LzS6nb7g9HS6ubO3sH1q0cnN2+sABq62DFVLEL5ai1sbh/s333cMF1AZADSSqPdai9sbO6cnZXT+VKpUGm2F5bbpXp3sLSytL63u7K9cXzVIWPhSJhMZy1byRTRjgg7MOu18dkvetLmsccrnwcI9mwbDcAMeDKws0xI4uk1Zjh9bS4st5wEE8Pghci4DwtDFQgySpNzaMHhm5r0xwF/MTuQ4nmOQu/o8QjwODddVDSQyiaaXphjiY3BSwD0eAzseEDB8jlHY8KzkxMXXrg4NReMkIik4wCORAJnkdCGg8bZlTjFY3eYkIQ31TRsNUjE6KSCQYPouIFneSnLznjpbGd5fWtvZyU7HneEezDOeIL7xfhDFBkMhGkFAznsseGQgz8VViMT/el1lYrwPB0OcWI0EI6nVIYlA0GCEpMRgiWJSV+QZvEQMBGNhOemZ+aC0QRHcQKDs7cxv5TNlLM6SzExBhP4gFw44+RLx87ljKwLCo2j1LwuywIV9ccSDK8ACuFQGK4FHVYq50gJJqmMjUFwgAepEdAtzzfl88/OTF6+ePHK1OzE5UnA34nJKxPTkxcvXHoe1PGlCbh8rIAcKAz3geHicUHNL67snR+EjFG9WcnBk6tYvWpGEXm7nXVBodHy4qjdAFVYxKa8Sr2LmqxabXU7rWZ7tLiwBOzb9nTVkGAZyEBunFy51ekOl7uNbr/dHo7gVc0VdWCo0jgMKZuF1dXsjVrzRVHkk7iPDovYZpRMGZ22cMhnfnFxftAa5EDREnlNch2vUg1MTUxPXJkYnr9euTDpm5ryXfDNwL99vmlammB1muYMKREnSDaOo/jRMFAzTEOSvXJnY+/2UTwai8hp0Wxf24EPCQBsSjJt9CquxHGEUrJ04Gt8TGy2KzhQ1Kg3O+h5s7C4uLLW7m53DRfHkETdcMudSm11sVpvNzuVjMkCg1HsbAa5Q70tECQBNyaVwo0Xjon7/YEAwxhkWGZoVARMspD0onxVnGJEC1gAJosRApAAWYrHnYwJyiAccIpApvLFXDFXKmRrzSL8MFVHQoNpO1dGPtxtVypZXpJ0qC+FYl3nZdAAYoyLcgJta0ycDcZCMSCIVtakaZ0iBFVSDVm3MrDQ8vWFrZ2bL+8W62UjXW3XR/c+reeKJU9JATmtLd14kCkUPduonDzCushq6Fpg5muDoZtmMvlsbXfhFXOaYEN+iqR9BBnx87qIbiqxWDxhuAo/a///NL0HkyTndS1I6RFjetp3dXmTmZWZlZXeVVZlee9te+999/gZgEOAGFjCDEABEEHQgSBFitITnyhRXqLWaCM23q5i98V7q9iI/Tl7bzbZARBDzKC7qvL77jnn++49x1DkZLm/fXHyvOZTwt6Q3C7G2ZiL5cz2ziE3q+QH+3EmyMTj8G0bw/1HTHGbA/0Tbz6ukKlk70WKSFiaVl57+9hnbaAhtbh5+k6EKW29K6nAi9buf3UasszL93/8idTa/8eNxML6zr1Pf/6nf/nFv/6Y23jv7xqLR7tv/dl//19/+2dfvH737S9/ciVmv/9bu3QxJJUMpRcLFX3rYvCNZx99+K2rrVFWjPhd+z94LV4qZbPVXhuK4cPzl88OTnaOv/Hk8SsPX7vaPz692DmvL+0vrC89errdP71HWaevv6ssvXM02tm5bGWylXY5kQRyWmrmesuNNoiV/qBTblVKzfrCaLm7MGj1F1v1wdLg2QEKVHgYoDhZkeHjYtLMWLVKa9RrVArVnFK3g3Ixz81IMTExF9Xqj84qbL0oJxOZQmtzYbiyury2vdobHhxsHB0s77786tAcXpzvbR1fblaXDiuFtN5vZ4E/K/WsnQS0jDF0aN4dlpmIfxa4MRkKuOe83hlPeD4QS0LpiPGchJd/UY5Vs1osxsBvk7GI3+fxBkmKdBM8VGQe/hBws2TCUtFzmQaR6ucAfwGAxYCPCnki7ok5IsDM3fJQhMcX9k6C1AgGAgRH4XgeFEuGjhLBIEGFg4rtxPkYJoaOIHbwopzIZjFqSEc9x/EiQzAUFQzSHDBzUTLwvBjejJ0rNbrdemNhYPOYNAtwaOvwr5M6qOQUBhrJMi9zMWy0Ykm83bQzWXTq0FTTcdpS4jGRxjtO2DN6MpsDNLN1LPa6gU00yD4EBsOQ8CCW4eHt4ZYBENYxCQHAB61IQB0VavVqF8eKtvaPtvcPz86v7q5hGxmodNCnhVy12MOQwbuvNKVsCetloVRpo5RY2Lt72cpmsuVyudLsDfo43biwhOPEe0enV5epcMgd9AW1lJHQUlk8e75uuvldAE6pgF7U2Vw6iW5NKP7NBLwpAQN0eahx6KLJfs0fMSpqIOiZd3uc9KNAMBzyukOxuMwFZsdujU1PAAATmIHneEdGcGyacNITaIxIlhyLTl0T4QGhwbasGtcJQAmUhxbeOtiWTLqn0Q16bMrrKGBsQEeGhcQJz/9JAsgYBUtGECXgM+irwYMSCUYF0fFNBpktiLwiiHjgo6eay+ubO3vLKZqD38bLbAEDa0UpFgiztM/rj0oa9lw5X5qh4kGGgj6coiCLZCDGUH4fE/fOeYK87Fi9BCIs6w3QZGjSHaAZPga8Lxj0zU3OuH2BILxj9F8LUaE5xkzkbZEIUUG2UMxh2gayDJyRs1JaElifQUUkGyPjIyDcwhQrAc9Lp502dBxri1FmzAeCGk90MTDEGdFOZ/PW1Pj0zAwg8J07EwhWaDw2iYoYQwqxK/r22J2xMYoBlhL0BxCG/QFaSg+XtgGAlX61VkzKcS2utfDOkdHrqYQqcpQw7DVqgMC4BACAG6gP4e9Ou1lvwVoaLe/WjaSKCpdl0TcJAbjVHozazf5oMFgYDoeDciancmw0ruJEQw6PsVv9QXsxF2WiDIUHdbrChxg9jd+/3kb7i4WlTq1uYqA4H4urqpHNBW+NT7lvBN7+vDMNTGJ6fMw955p8af7GjRs0OOVbAAAgAElEQVQeDH1hI6TEhYDwUSEvwLbfE6NpDAsRE4XW2t6Do4jX7xNNTm8db2Vs2LoJjecJpVVMCQyDAKzGgUUGuGo1V6mgbm/U62iFNRgsLdXbm02g3CJ2QStWvlauDLrlWrPRLts6Q5Cwmux0qVapVpuxIBEiaOyK4HiOInCO2U0SWsAjUZSCmb1cNmaGhSozRohmMmVi34EDwHEuFMDrfVDALisPzxlqRDFbLGQrAMCNOgBwjBEVxSrBDy81muViihF41TITmVxZpnlZEmIU7aXiMQMkdWh8ZtZH+mPpRCTExZkILfCyyqMLqJ3MlIebO1evbmdKeQTgav/RZ2UbAFgS4WFXRif34DumTK1w9AQ2u8kqIprPZEqdnq0x6UKqvTd6W5/zEY7fXyjid8+xeMsHJdbn9ssJITqjp1UhUemvH56+WvAqQU9AqJbgfbmicaOxtknPmZnBoRSPQAGGJ9MYHTygiztxqMlS7WEpnLI676sBIMd25+Cd/Tl1LYGBsqvH70Tj1a13Fb3ZbGzc++o4ZGj33vnyE7l/DADcW1i9+vwnf/KXX/7bT+Mb7/6mvHZ68MYv/uO//tOvf/zh87c//MWP6MJXv86vP7s8+/GD2ANb4AkLcODkuPfw4ukrj++f6IEHP351mvJHKQ8Z9od4P2OqCZCvlWqnN9w6OTjeXlxd6B8eXL4OqPzg4bNvnp0dvfKwuXz/ELXLqD2qlir9pXa1M2xWGp163razlUEum9AzOQtza2SWF2gg5oH41VUJ9Cgbl5SUZJf0an00bK4uNoc8n+L4PWNGiEvx+ZCmh+PJ7qIhbq2+fNak4lKx2lpZ7i52O0trKyub64vDk4ud3YONzaevLaUXT/ZXN06utqrLR9VSWm6UrYQuiFUbz8nwnjUIaldhwt7paGgOT4bcPr9r3j8b5BMSiBdFULl4LEwJvJ7HJg6oxwThnvP4/b4QzaNBPigWgZdE1UoYCMAiWg+GfADAGE2rkPNBMhDwz7hBcs6PAR3ze4O+SX+URt3FcioAsA6FEvOBsd02IKWwp1ZwoCMWIygmLhl2NpsynEA3A0+4wwGKYfBsGo1sZIT5VCqJFnn1Vr/ZGAxyWkJUk7lcGnuRTAv1vo5DsaBVVPisJQBhioyydCph5NLZDF7pJRQRjfQ4KkqDBpZ0QEs8W7IV0MMA5niICB+WY0SJY8gYUZ6ERSeA1sKQ1AQoHBtvhRD88pV6E+TBwsrm7v7x8dH55d2LEWAUEIJMppzLl5uN/tL69uG9b3bkTAlDFQBFG93BcLR6eHVZT2dzJUDTZr9TLbcXRrvH22vbOxtH5w/vWcGA2+cOqCkjqdsYylpE16M8prM6oSxAGADOUajBpnTSxoE+4NU3fPEg7pFHfY3ii0UeIHd23gvy1+MnA25vAKqRakiUd+zW5NTElCdMwLNBxwCSIqjrO3MSTZ7xFhAfDICu5FzeY+S9AUwHNqADTujAlUxnknI0eOfm12/cnvZFaB4BGHQORYGWjkSdO+BQIBCJiTIfQ0wXBVHkomGfNyTAc3eMOGA9ATEDbgUAbNit5fWt/YMVAGBADyBIsRgG84B4CYYZKuALsoozpu1YruCBigxPTAeo4eOSQAaYKAEAzHpd7iCvRGli3uUL0qA+YnRo2k+wnBxHi+qQHwAY2IjT10BEIkEiOMskErmkEo1EgyyGWGVguQDqJuBhm5YBb9XWyYiSFK8B2BuKxgCAQb6k7AzyMDRRT3I+IspynICdak5eJDbOWZNjk1NodIJhy8BSQAuPT49NjN++PXEHBfAtzGmYxHuBgC/gJcgwsC5atvsLW1e7brVfKmQSIiXHVABgRUQANoGWUvHBNQAX8DSkWKk5X/V6r9dptXv9LnZBGynteuAAo3ATdr7e6gx67XZ/YXFhBPjbL6YycsxRwGrKzlebjQbGcW1kgYhFI4BVoi4Sfkq20kAZMTGj3Vtc67erGh1Cf3HYjLxqELdR1Xe/v3D7D6buTM5Pum7euDmee6VElAmoGVF4ZnwMqTcV8gXCIb8HliUAsCia+dba7v3D0LzfL5pxo3O4mcsC/zU1AD0ZRKzIIgAbCH7RAFcp54Cl1hs1EPHtDrDdwcpSs78NCtiUFS4mKVYBNmG71Wi0mt1K2gAAFkUjlSqAZq63YhEqEnXi20SJpwjCM+PyU0TC41adwASJ5DOcSXI1ZizEmyk7oUoiDwBsa3EnD1jDJMy5RBHqQwGIb75SLdZreaA6RYNnKFESjHKzUstXmtVCghY50EamnS2JFLppQ2n0kJKk0eEIOePyev0BLm+6vLBW8fwHjd40KBPpXHmwuXv31c10IStfK+BPy3Y2n5KltClXFw4v4RmkElrh4JGZSCVY2CxQpECB9TMKk6kZo93BC3nOHw6GA24mFPD6XLQqoNNRyOPya0mBmtISApeodNfPHj6vhIxIICyV68WE5I/F9drKGuky8/0dNorzEWqy1Frcu6KLu0ICPon643I4Y3fes2jUCYuXHx3OKRtpDb7fwtEbMbG+8bZittqtzcuvDkKK9OSNLz8Sh2f/sGz0BotXX37/y7/60f/yFb/1wd/Xlw6O3vjT/+//+de/+uK9D95/80ffM8qffT9hqlrz6N7u0dFC4+5YpcNBXffQrc7C/Ucn6dM//QGtWWhpQMeBh+M5q8vHesmIBx5mCKq2KSYSYjJXyldhWazub6y8fLeZLTZKlXy1mClnS2lJBvSQ5TRPSBw6KvGRGK+G5BTweonnMdNNEWLqwcO1OK/byKEajWE/Xy0olsSk+oGAoUS4qFfk2xtxeuF0Gapt0gQ1stZOhqX28tJwod9ZGjUX1ldXNrY2lvYPNzf2d1efPuulVk63h0vHV5u15cMakKhmFXtlpKptYVNxLAolOMDIdDjgYgJTUND8viAIJM9USDDimixpcYkT40FKYIWkLsM2CEYiDOn1B/1eH8Fiar0cjyO8GbZl2o4RBxslrgE4ocsq5Q4QgaBv2h0JRj0Tk65w2O3zTYD0IDAXRwB8B4opRp3pFlBbft7Ew00OGAgCHo4LyMlsJpdBjWoBWMocHQyxNEuEGR7EhYrNzpiIcA3AvRYQ+mrKlpVUIQc6FoUKvGyFYwXgnyIHLxevvuMMFHLa0lUArbSOV3oaIHOc41ABx/GwzUo7IQd6HDHWcQZRFImjnfNr9I+nOVTAGL+mG9hvqyXSGYzoTNrpbLHe6fWHiysb27sHh8eX5xcXS5ZpJGys4qaar7Q6SxvbB/de7ckpHGYs4iVuazBc3Dw6u6gAqy5AdWl0mtVqb2WwdXyws7u7fXz18hM7gBPVYS2pGQrUcfgvS0Xn8Bm+CngeDX/b2PqWMA1NccIJnO7veBzvvkHCMlToa6zWzNDhefeMy+OF/R8Mel1egmUZTZNj4ak7rqmp2QBJRUIggEEBwxOB4svAOwaihrNXqgiMQ9X16+RjhDwTARh7fPF4FviHlUzhAw3N3nxpbNYXjoFcBZpHYwySzxckMBIYeFYoiiFILC/rOO8djQS8zmKA/yfjEbKswDODfQA100rXeqO1/f3VDHwrXojFgZahomc42hcEcPUGYyo6cOiYeQWvQ8M2aOewROIlgQgyVMTvpxn/PCpg0OBulzcQpeaDfCw8HSRBsAgkHrMHXFOznmA4zMUEPgqS2O+bEzJ21lRoignSmUwul7XxBDoLItcyTCMFTEsjCDUpOQDsdodAoANDtGElZrJOD1acTeEdsJMWhakdeEqSQQCeGpvAzEfsFL9948707MTtsUnMnBrHa+Hb19NIkzRDYgauH6omfGS0lOwOty535vUe0kqZE1i9W7ZlkdXrNrBHLsr1e81qpeqcgxTK1WqjUas1m7X+oNdBr8bh0rUCFtDZXVBkzbJz9Var32m3e6OFUX8wGPQKli1yMRblFGBVvdVs9RZAOWf8ESIaAborqCI6LaayBYCx3mjQ7S+u9gdNO8FOTfoCDBENR1jP5MTs18nLxRt/MDU7PX3z1vhE8Fb05b9449O/znpcAR40GR8LBYIUHfahAvayjgKWlGSxvb537yA45w8CAJudg80cMGjdUONcRG7kEw4AFxIGTvMDABeLlVLBOVFsdboIwMuj5mCzqaF7LgJwslxuD+CNN+E9VGwjGmEUBdZpDlG7GYvQETT/wP4FgSJI77QLOJk95zYYXjNYnhTT8VSUKHOTEQYeKaxmngvgHTDsIt/vAHjWKsOeK+ZLZSj41Va90hp0chrPwILSUtV2q5UrNipZnYbinrTMZKYiA4F1wl19UVGQomGacXvCfk+UT8ie+ZjMBz3BGGwVUbOzmUyx3t/cvfwGAHAa44jKPQBgPIKW5aQqVBePruxU1rb0wv5DI5FOslJchk2ZLrR6aZ2x2+ri5uBDYS4cwttE//R8mPZGFZEmCCoMWiuVRgCGz8nOFUFLP68HBJ/XF89US3rcy3BKfXOLmVfyva0o6afjop6pdBb37iIAm4YUrz2thHLp1jsWmy0U873Tz0/dymYOdl+8f/zNmFBdf0Oxmq3W+vlXexGJf/atLz/geqd/M9IXR6Orn3323d98/1+/5Hc+/m13tHXyzp/9v//xr7/58Ys/+uzjr97VCh/+Tz/5yatXWxlLtVZ3z/7y1dfv3RPW78WpbimcySws7H/+6f7lk6u7Fwe7h5srW1ubC51qa7lXKeWqoHySciLGiFGeCgM6+MJBgOeFN9+QQUoQICLYUATEBxsjiJgWpHHWRVcFXc8kMrZVKpupFFApVDHpVK5y/25b63eA3HbqPdpM+NNFQkux3jgbqYwq1EKlVDKsrJaVVF7VlFI93T3ppMjsRnM46nVXVuvtxbW11c2d7f215c2t3aPNZ4/L2srlbm9weLFWXdqvZZPaoJPPJGS5mkqgWuBoKuD2RxWGCM1zxDzeh7n9QZBGU35Wi6PcibKMEKdY2POgrVSRjASApRJBrzeAfa1RUVe5GHoTmWkL/krA8mR+dwSdsKBSE4GI30N6JjyhABWYnZgMRObcgZkgwyIAs5wo6KlEAlP+sAeLiPgFXQIsxAxeCf5lhGZY2c7ZeQeAE0AaAEtJgqMYimDjnCCqoIAVbExLpnOlBuBvc7DYzKQANC1D0QGNLDupoRWWrAIA8zzeSIJEhx8HnDdhZdLppKqCbkNpLPAOMCPOaHiZBwBsYcyOYjjeUpocZ0BLggymgYQJ2QQAsC7LGNkiGoaVgS2RMDBMrIAtpWiEtb2ze3hyeXx8uWXqmpkCBWypfDZfry+sbB3ee9aVUgCjxWIB5GxzMFjaOT65KCdhV+dAwDQ6fcxDX1g7Pt/fPTy6fPoki6joj0AFMOT0NQA7p8/4hbMn2I4JrxhhEASwaeIdMI5AXw8BY/8Y4ftaLNHUA76Z2bm5eY/H5/O5/SHgXGQMm96IqVtTk1PzIQqv5wEqw2hNhkPX+IbxIBvkqYwxh47Fh6Y4/8AAXPj8TIxB/J0NF/zCUun5ifEpbxiKKz7HaMQxIMMzaAq7qVmaiwOQSjJAB4mg7HhKc7zT3eUkSIgyF9dNO20lM/lia3lrJQ/fCj33JAG/JQ8A5Q3hZZwfABhvJ6+jnQGAAcGdL0UQY2HgaoBgLHsNwFCDAID9VNQdFrnwlD9CxuU4gUERgfmZObc/EgX2JTNo2+V3K4VMVo2TCMD5El4CO21URjKbAqxP4TxRJCynsOvn9wAMH3oykcAzAHRR52lLiESwxQheEt6Qw5LKgQQ2J26Nj4+N3b7x0s07k2MTM7OTt2+NTd66OTEzOT518xa2Zt2+OcbG0CzUFaSIIHx2NJ/oLmydb81rLUPVDFVgGaNfzSgyo1ZTpsSxUa7XbwIgOaGYpWq91mrXAWABgPtdoIO90cqu04QlIRmLA68GAK41sZe50xstLgwHIIELyTRsDk7SFdXOYQ9gb3F1uLKf9UcommB40fFH0ZOZQqXRbg8WRqOFpcXuqFdr5+kYMQ11Y3rae+fOnOsP1fqNWxOzd6am/nByKn771st/++s//eu/tG94QhIZCPF8JBiKMmG8Aw74caieB+Zll9qogCNzgZAEANz+HQCbChcn5EZWF1k6KBYti6dJMsBXQOIXs4VSoXidxgBCvd/ordbRfhQBWE1Viu0FYBW1RntQTZuggCVBs6x8pVhrNNhwNIwnE7CgZC4SCrsmZwMMm5z2KDSvmxRHyinBYgKl+BTByoZlIAD7uYIN3ybq1Zw7YP+MA8ClfLGUq7WALTe7Cx1blWMOYjW6w36hUCulVUqKq2kbKFlFxIRy9AjEE0TYBSw1PQEaJiLE/F6PPx6LBGh0zGXVdNa2i43exvbpk41MMQMKuF7uP/q0ksnnLUlKyHx16fhu2sqmk3ph7yEIDxvWMFr+pQrtbjJBpnry8sbiN635MCxnX3B+wk3zXk4WaViLYU8kls3w1DQwGyNfbW/cO3m9G+L84YhW65Q1zsfE+OrWTtwrpjr7QF+jFCOlyq2Fw0dUYQcAWOTKT0uBTKr2psmms4Vc9+LzY6+0lpV1je9fPOX48sZzLVVvtNfOfrJPyvFXvvXTD9jeyW8WzOXR8Pynn33wN6iAd178U2tt+/Ttn//7v//2r3/2yaff+fhXfxQbvvfLj77/k5//8E/ff35YMLR4NX/x87cfL6UqVjhjkq31re8/86RefTosDHZ7o+OTnZcvDh5d7e2cXd0/3d66XDs5Gi10+6Nsu5otJHKWzIa23v9IiOoYppPMJ228rIPt0WrWgZliz2Gr21jotsuVXrtdqxcruWYznWr0GsrF3aVsjaVYvyToM3FVjGgMnW9Fk8tmpZjOdCsx2bTsRLnVWzm4evLstYfPLhabbKk7HHZL9e39pdHy2tr69s725cby+dH6weGzl2v60tlmq3t0sVJb3qvl0+awkzZFSSxbBkJdDBPdfKTGEb5pMuR2hQj3lCcw6w7PuAgDKqGi0iwTZ3whNsqnnBsWng0TwbB33htC58gQq5kKDqTwGhThlA74hsssggBsWYahRIMgb0j/TDAM8sc9fccTcrkDcwH4scEgCcJUQlNvHWu0Y9MflAzB6TyWZTwfx1tgOZ3PwOsGCAP1kVIwtZckoYTHBagJCMAaALBtZ/IAwO1mvTusp20VfjIekyoI2oCgSRBIoFU4QUEFHKNB+BNhK+WcGkNNSQC3g+KOqRPYBy0g1jsAnOB5dHkxUV/h4TrrDMEyTIzhM6YmyIDtGnpOAfyksQHKMMxkrtwAAB4trW3t7h0f7J8cHp2tAxTi5Y5dyJjlQr2xuLh9cv+VtgwqGw00coVKZzBaPTg7vaqkoKxcA/BoaWlha2Xj+HRnY//o9P6DTDDg83jCBg6hpHIAvWjBg4Z8UAnKBfjheHaVBmCwk45Zk9PI5gCw4y8o4RTj1+RchZ+fm56ed7nc8OXyeDxzLj+FICbRMzfHxgGASTTKCPqx+QqzoKN45o4jR7wTYQ4AjBbbBlovQ0GG54IA7DT5YpeS43gMUGwIhGvWF3XOmNGxA8/tabzVd9qpGdYJn4qCLsaYBioWY2PYUoepgvgPCa9aBENPpEzDAjnWWlnIAgNg42h8KeAYUjxGuv0krENfDMquo3+xUR7dIk0HgTVVEJgAcGEyGGQY7+x8UFCB5M2jAqbdUPjCU54gEeNjDgD752ddbj8BNBkAOIoJ9B4pl87pAnUNwAWcsLbw/DmVT+NJBwCtGgmJKcyBAiWDAIwj6cD4YFVZOsZH0wk+EsaTe3QKw0tgWFKpdFYfu3H79o0bL339pVuTs5PTs3NTt2/dnnjppYmpsdvTt245yQw3x2KxIHzBfgw5zp0xs7+8c7Y5L9fQbUTmopQOAKwpUbmUNHns0ej1W6VcDqV6rgQlpnMdSAgg1MU70sXVvboO1VvigIjFgTYm0/lGE8ALVPDi4sII/kg/b9lyPB6XdUWxC7V2uzNYXh8s7+WDZJQhr/PBrGQqnSvWmphUvbC4vDTqw3+61M/X6Ruzk7Og5Mdfmrt9U576+uT49NjtqfE74fpM5k9+9r2/+Iu/enAnEmLCgSAvkKHfA3AwALw7ygCBNzOV4frFfsQVDIkmbzb3N7LZLACwzPGk0shoIhMNCMWkFadJws+Vi9VaIVMolysFnOoboo9Xq7fUAuIjXANwudAcgqgvAzDWM1Y8ykg88HQAsVqjzgAAR3GeHRZ1DNa6a8oVjMa1CV+M4XSL4EjFklQuUGEnSNmJI4WtAwCcNCKeiPv3AJwsw84rwR5EAO7Chl9sW6oK9EbL41j/qFKuIwArcgL7LksVMULCj4zhLJDPTzA0DwzVO+f2iMSdWfeslyRI0RAJglagbibzte7m9smj9Uwpr1mVRmX49NNqruAAsCrVlo6vrEQGAXj/kWWlkzE5DlVISRXb3UQikunJ67srR71A0CeK3pB7xksyc7wmcxQRCfkisYwdp2Z0Kcbqpe7K7tY3+rQQigmF9Y1GQg7FYvHy5iYXUOzOniSSUYpVMpXW6OAxmd/BI2ix8HLJl7Vr7ySFfL5S6N394323sJKTLV0c3H8s8MXN53q61uiunX95QKjc/W/9/GNQwH+3bK0sLJ3/5Ms3//GH//NPEICbm9uHr/78f//3f/vbn37n8z/64L98Jo/e+vPvf/7xu9/5/POvfvTlx8/W6mmRKTZX7r7YSn+zIJHE1a+e3yQ1RiMiWqLTz8wwqhizqmYuUey2a8fbxdrm1nBv92RzeX1/EfhYO7nx1vs1u9/vdGudbnvYXho16u1WvdlrlJutUqZYhQ1cy0CdYpK1voZT/FRIyhjK+ekQ6LeertPMQjPRqAq1lWqmaGfKKUWP63p7b/v4wePXvvH86ZOLi3unZxcnw16brAybzaWNvdP11srq6srG9vbW2e7e07PFvZOXX19KL+yvNHqnl8sN2IPFtNZr2KYiSRXASyjKDBWNwIJQ2bD7TjjkmfCF56c8CMSzMxFsJZE1XuY4yuWjacGSGIrFg8Jsjgr5A8FAGNRLGFO20M0GA7RTCSDnGMaACjiNMUFW3BsgQ4HAbDgEinl+fsoV8Hp9bi9JXQMwrySBoig0jV5YoLx8cZUXsQSAeAOgdKJb0iDtUlCMEdITMloFEtigi9kIsqZYScNOIcUpY2dIs9bulVMZ1QIugCfHGKCkAvYZKFQltHCQpTi6blFRMulUSxCUSVPD3HqQijilBEjgNDbjtZ/J8wp2GDnZOo6bFLZhohkHn7N02bieUbJQHNloQmWZiXQJ9EFvgAC8d3C0Pto8OD1dwItTNPQv5DPlUr2zvLh7/uCVtopzhFgxi/V2f7R2cHJ8t54ugCSuVIGoNduDpcXN/b3Njc2d8/N797Nh37zXS5jXAFwqIfDmrq3w8hiCg2bQtoUACKpUNSzsg3ayCQA5HfyFz+xrVi1DzUy6Zl3z2IQFItg1Me4iWeeqNua5fWt82h1GAMZZtAhB0Yi+UbTLB7kg8ryoOroap56dwS1ZMRCADQd78ewbjwAQqFKphBqLRGgBxy1ZdPqmQOlGKMeMO4y5u3QkFPK7Qv4gQUVZDL3EbiUZ8R3npsRrALYszcginAw6yRgv4HLgOGzCQkcGtzfsD3gCnObEOivoiKkaeCfvQLGmYGe1LxqN+L0U5Z11BUWVJCLz8/4wS7uBUIam3X6K4VmsSz6va3beFyKgSIKqhNcaDc8L2UzBUhmSDjI59D3BgHicAszZqRT8yrQ0IiQ47o446B6i47DgDCsJMJsygZFpIpsUwsTv5oB1M3ltFJrJGmM3bt166aUbN27cnpydnoU9gRlIN27cGQccdq6AAYAnWDYSCQa9YXRNDQVI2hiu756uz6tVw06bsshG9U7BkhVKLMMiZSiG7Q5aRfgBsJyypWoNr0a73U57MBy0291rAEafKB6d3EAwgZAtttpN0MnN4dKw1293e92smZKxJw5UpO2kCA8Wl4eLO0UySjMkWlHqzgQ04Huj1RsOh8gQR4vLg6WF9gr9h7Njd25Njk3enP76RPDrrrHZ+dmbNyduRYT/tPDnP3r/h9/5x6c3PQRNerycQIWCUSrkDSD7ItH7FXacamWbo6OdoCsYFBNiorG3DhsjrekyFyeVZs6Q2GiAL1gJAGDSx+Lxcy5dqODAbbne6fc6/UGnM+pkDJEHaibJyUKh3uv12tVmb6GWSYksJ3OSacLHU2sCANNhhnHwV4gB1XLNeNGUbzJMcLyeDHOkasqq4CkDAKuyDgAscoyPyyeN4HzEpSZ1gaEDs6kK8GZQwaU8AHAPJC8AsG5wTFzPlmut7ghkYCVnUKqeLpYarUpdjpBoP41PAM2vOVUkZn3T8yGRnp2ZnZqJUFFejgYI0DEYN13qbe+dPQYFXNCT5Xp5+PInFaDcCMCmWls6udLNtJ3UCvuPTaBjLADw78eQdKLSErcO+rsH7khEjXv87nl3kHEJliawFNThIGOn4tFpRY4RjApUsX9cJLl5Skzv75Q02UfwYnN3nfbJ2e5OPE4wLAj6cnO0dx8VMGxGKfNyyZvNND8wYXcUM7WT7+65+bWSkjTFzv0HipDffF1PV+rdtcsfH0f02OFrP/0o1j35+xVzcXH98sf/+Zv/9L1/+UFs+6N/aS/v7D/95f/13/63f/nlZz/+3id//ULpfPiX3/v0488/efHjx5+8+PiL9//iu68+XK5KkpjvbPcfGKmz778+t7QWJqoNyS+KRDxTiHm0kq+gGVVTbqTMTD8rR8XuKKWka8nc0jC78Nq3O1rdULKJjBDX5Wi83FQoqU54pHbSK8YTsExyQoTW9RiUJU7mk4Y/bOjE+f0FotTLDo9TuXvbUlJO5QB3zUIjs7j64O7dZy9/6979B/t3X71//+Hl5f2ry4vT/c1OuLC00F9ZWD7YGK0AAq9tbm/uHO5eHm2cHz9+vpJeOt/r989BKa/v1XJJuURvj8EAACAASURBVA0CMaEoNajViownOsBFI1I06J6Kkt6ZOZ9v3h/yzwdBASdAV8iKoMOagaclabYCxQSeiVmuwKsOBqB2khF4pLJIkryopLJptJ8EnRiNBL0szqTYhs17g1Q44JnEbLWg2z834w0H3O75CBXBEByOk23QTyIJ0sNxXvLQIuaeiXioHQcFDNCupXIFBGCQWfCK5BiDNhxMNMrxaE6IXudY2fLlCgBwt1EfDIuJNPpJa8jYE/ALVTUtBe9XZMdwSeLwvjnKRIGCmICdiFXomSzgYS2LvgCKJptpx9UiIYkA30kds/0k2IdxEMEMMlmaL6RMNYG/oafS6aSZSOH8DxpoVZsdqAejxdWt3YO9pf7m0fn5EsbBYnqgDWu+WBssre6f33+lo2Ry2N6TBc3c6i5u7h0c3G1m0d6qjAMlmEbTW9vb2dw5OLp7+eBhDuq8308mUpqhpvLlEh49ZzD6BsC3XHIQOJt0UiEM3VB0nMjBQSGANAH7oNGDkPma3dD942Me16zbhzeMIY9nFud+o1CTNd4/dmNyxktEyUgk5hhXwdJ0tGuMlwTBaS3Gu19sucSwIbRKw9kUHHI2cAzI8QKzMQ0xgR9ISmMjPIb1xpxUjaDbHSAwfNfvw9ihsNcbAk1EOzlNqH/hubCSYyQJIKxLoH2MRMbSk621zbXVdt1gBPS6R/dRvCbm4zQODUV8wTg8PbQtFxW8ikZKpDoArAqSEPUxNAEAHPW7QAErAP2u+UAkxniCNBkBAGagMBPhwPy8d3Yag5PCMUFTaIw/CMyJ+VzZVsgAGeZLxUIGDU5MDRRHGjuhgW8kzSgBYCEI9DUAC0AXME0deJsB8C/FmRQfoBzb0t8dQaeSSYDyBBpxOJ3OdyZnpue87qlbtyfHxyfGx++MT9wZQ4+O2zemaYai/BifTOBdMEkZC5v7AMBGPZHNW7oZZ/VmRgfwlyuZJI7RIwAXklYaO+GLlSoAcK/fc0KC2i1YjtdOWLLAoql3XDMAgMudHjDFZntppd+CX/R7eSut0uileA3Arc5wcWk42i5j+BgZl3jJSiiO12q92UTFPFhYWhourC0tLw632T90j92647p1c2p2fOb21NdnXLdmZr4+J+Ryd8rffuv8Zz//H72bfpIKzrlAagQDFBH0BQlgedEoGn8IkpHKNgeH20FXICgkZKuxs5bN59PwMca4iNwsWEqM8XM504wzUKXYIohKAGDgoNgJ22jVyugl0mmmFQEBWJQS+RLGabca9c6oYuMHxNOiaQGo1wGAQ3QYI8/QTAY+5dDsrC9IyvHpaEQU9VQ4TqqGkhBm8twMKYqaCSSAIb1c3k5AdZpVEICZ4Fy6mssWKsViuQjf0QHgjmWYMUa2MqVmtztodnr1YiKqYDRDu1ttqiTNS6DosadEE0UzKRPTnpkgLB/GPTHtprHwRGCJmtjOks/3dg4unm5kCnktUawWe0//qJIrFZOSZCa0+tLZlQoAbKmFgydABA1WlTVB1tOFZjelUu1afGu/enJvimX5kM8775qLqAElY8rxaNAXCNJpm49OCphnkizV6r2tNC3MRmTr5LCUMAOkpI1ONii3kO4dqM7hJ3yUjdHePbq4y5umIlqP8+5MuvHCEIHiFFoX30MALkuGxdfvXqlCdv1VNVWqdVfv/ugkbMQ2Xv3h+0zz4G8X5eHC1uUXf/Xw77/47Q9iWy/+ubV4cPTk1//xf//z3/z559/98MXffax2P/+Tj37y+edffPr2px9955P3vv3O808++vT952+erxTFRN6yr376pnh0v2gPlkupJ4+V3N0u1zspzUmgeQJ6aY4AzEhPB1SDCAh5r7fWsla+9UFyXghFspkyHWFNNmoVNUaMxW1e1z3pYjkREDQ5lM6lxUKtJMcy6x3aXBk17p1sCYv7ZpKLqzqrW4VMZWHp/pNHz+5fvnrv/NXj3ZNXzg4eXZ48enB8eHp5//T0/Ml+K1aAx7/ZbO1vD5eWV1ZW1je3145X1/cvnp09etbTV195sD64OF9oru5UshYAMPb1SVVQq7IosxQZdHtCYjTkm2Mis67JWb/PE4DdMeOlDdmwJSGm8rJEsgovJhQ+KiAAFzJFwe/FZlkPSKUQJ3BBIMgWAFYyoaACJv3zjJNXm04wITLij7gmwoFQkAiE3TNeKjQ/PwviORJyzqCR8fEsy6LXP8X4GUEENARKrEochc6AIkjfXCFtYNi6BsKWgz+IfoHROGKmIkEhTNt4A1osN/sggFdXS3oSkDUh0RzIXlnTUX2CbENvaTkWk5Q44+Q5UGiAlcyAArYwsNAZ18FT7xhAjWKmcbA2hYYKaiIhmiriAs9wjpUWdnDxeUsTMUtJ0tNpnDVOggJOp+xsodpotQeD4cLKxs7+wfb2yenZxSZgAlrMJdOpnFWqDQfr+6dXL3dkK4+NWdki1Mv+6u4BAHAbBUyxVCvmyp3FpdHqysbh2enJ5cX5fQDgYMADCjilJ2CzObe+GEeaKxRz8GILubQTTJhy8ggtVbcwCBmzKCQBXSgdj0Xya9UsPTM9PTEzPTk5h14c4xMTgLkhIipomhidu3F7LhDCduVwxOUNA8GKwnOB4kDLMt6GS46jCToiOd9awX4stGD+/RSuaaDhhOPKjP9Wl0DcOMcKSLcCPi8grxdUN56FYAYSfF/WaXsTRA40L2AwYKYETx4Eu8TFJM2wDd1urWxsbvb6CQYb8xSeQ4DVdSFGegNO91YcrcgMx80bs3qd618ZW9cFUaACLEN6QOIH590RDuQT5Z0LRqKsO0hH5ydcYZrGOWA8oZmZnfcEwiQd0xQyRPiDfpcI1dUUnO78LHzETt4G3vBij7OOrs56lFJSqhinA+jMSgtaCp8wXgUkgBiqMVbjQ2GCxhZF2XSOBtL4vJQ7t166/fVbN25OjN3GbAh4FtiSNX57bOLW2BT2Zt0AKczSRDSEneiRYJiIENH0cGvv3rpLr+cSWduQ1WiillNjAmU0ywmFYaPyaNhKSrCcc9gxBpDQaXf73RbeAff6/e7i2kFDNdAJCzNMVC2VShfrrU63U2surLUXB53+qJlLJ7FJC11MUvlStdkdLS0u9DfLNIcWNrwzbGpjUGGlClQX8Hd5eXG0uAQovLhL/+HkS3fmbt2ZGLvhmr5zc2be9dLMzcnzZw8vm9o3Nl/91efvM7MeOhr2uRmeDPgZOhT0MUDiZQ5NwQUpU+mMth5uuma9EUXlU/WDdbuYT1kWD3VCqeQTSowKxDK2xrBMNBjLF4tpkPDFQjFbaXcwmzBdrVVHDZCnMtRYSbCKlVq93evUq+1WEXYxCN4YgJ5dgO1ZpAg6jPlbuDbpaMTncvmCEYudoaNxIZkm2TAID5WbzrLTFI87W+XZWIAuADshCI8KVZBlw7PJcjaTq1SqZfg0Gr3FhcFKOwUVgYlrmSry7wZwgpLOqwDA8BIrVYFilYSGagpjxs1M2nKPzXlBZ/Ba4M4tQlRD3kiAwnZ5WEXZBkjYw6druWxaS9Yqmf69N4rwr2H/JdVEbfneqWimcqaeP3uoqEmFU2DDiZpVahUzkr/aFHeOG0encyTDkMFwODjJ5TjFwhOZsN/vi2YTIjHFKTwv2tVKd+nc8IVc0Xhmf9tUI/NBgs0vLHH+eHJxn9OjpMJJyWJleHiPKW7GLFOUc08zvrzd+UAV89lKpnb3s4N5fqWhJQylcHEh8rmV5/FEu9ZYufj5IaPHlt798i22t/OPHWm4sHn2g//8yn/5yd9+yWx98NtG92zryW8++9l//Zevvvrij9/+h4+M4YtfffTxJ59+8OLTD9568eFHL95/4/mzl19/9t63X3z8/LLjq9790TdJKaHoUGTS9WYVZHZp/ZWDzEajsmCfn5Hp0WohGc+s8jNmMRtRW8Hw0RvvGHyhzNLFCqnV61VeW8hSxXRdTK/1+cIA5FVjvVvMJpOlbr+Kw4MJPWnrqYuNRTpCA6qUemtbB2ePr548vnv/6uLyuFUfbty9enZUeHJ5/8HR6eXVw7tP7z569ODucZstAPAONzrrh53l5Z2t4crB3u75xsL+01cOH7y9qm5c7i0NL66WihublULG7DdSFtSpUjKhaxKPPTBuXwyKTnCGCrump6FO4qBIxO1mZBn+nCiosAApWNSSIRKUwJCyaeY1JhAgo2QoGga1EIlGfRFOTWZs1AYyOhOE53nMysskU1EffDOSnIXvizlKnnlPEAT2VIiLBMIBgpR1I5nUFJz/oQgiFPVzjn7BCQGBpaJENAYrC9YwTgfjAaMq4kwpSQMRZiRQZDLIVyNh4GhEsdrut7q95bW6YWJonHA9pqSaEm+lEwldRMvDGLydOA2ogo7Ppm0AazAxvh0wH9N5MO0Ip0bMZA5ETzqnYceP6oy8okFx3MExPISmeRxUw0N2FT0QYVM5FgyoSIF793EKaX1za/vg7Oz8+OR8Cwdk7FzWztoYF9xd3t45unrcUDLYyZCGItLuDxe3zy5PzlsY61QqlCpNZ3Zkqbt5tLJ+ee/i8t6RHvIFfPNkAj0RU7liFi+pnRPsLDZCZ207m00DZ4A6D9vBMBUMcsLINWyCxuZtCgjO10rJyMzs7OTs1PjknNfn9U5NTk5PzweBnmu6yvnvTLj8jksVHXV7gn4C9C/QHfi8JWA7Kibx4qm20+fkmGFh75qqXRthX7thX6dC4dFD0k6aapyLsRjigInAsAxIXyAUwsvNEBqZxeCz5uFPwAt0pkLgh0jYACDCryR4doZpJ3S7vbq1sbG4kIqhPwf8nuOEJQOa+mH5hXAMCQWmgR5ZMvINHI1zDqJhCUU9APFBL8V6Z2bDcZ6hIh5XCBjFfICmPZOuEMkIbATznbwz4zN+giTivKFEkCkG5pVyoWgKwB0iRA7oTtq2HWl/DcQ6LDmTJkQLCCcbgQ8yzPA4Dpd20jAs0FBaLKbzaDzCOrmKANh2Cg9BcjIA8K2xWzfuTI1PuOdcrrmZ6amp8Vu/A2BHA98em4wxJB7S48NAL0oqPdrcu7fm1kHw5lOgUUmjmtdiPGU0SqYMT0hZHDZtzU4lMJwyV2t3Op3eoNdaWBgOsMN5aW2voZkiz2ELHDzrZBJELgBwu9pcWq0BSg9GrXwmKfNOap5qZ0u1Vne4vDLsrhVIdECP44AY/HcAwCWAHNDX/dHS0iLg78rqwtIufWP25vjc7TuTt8am74wDrRjz3HA/+fUvPnjxZpTv/PBXl8oMMeenYwEPE4943UQU6gEDb09koyysTpwDXth9vO2ZAwDWBLu+t5rMZy3TREN4qZQz4lEqxOfSJlqYAgAXMqkUTiKV8b67VimV8tVyqV9XQGHCyhCEZL7WbtUb7Xa926lkLBnPWcSEnSlli7USLOpwhGLR3ToOPMc/P++PEEl2LkbHOCNJxghNUwxh2mJmoeypCcddN8wUbZUhCY+WRIOC4JxdKeQLVZDAxXKl1h6O8AY6oQqcaGShDg0A+lutggb/Nw+/3alUeDomGpph2HYK9ms5m7QC43M+pL1KePpOmFfJIAklCQqXBSyu1t84OPvGIhAGPVEupnv3vlVIpRJ8jE8oifraw1MxkcxoSubonm7YMqeaiaRmJsutfDIeLNfie8eVe4fTtKrjVQUxK1cENWXoMhC6eR9pm1J0VtChwqar5dbiqeEPzUa55NGeqdAB4It2b8i42eToUDJoIi7rmWp94eCSKW3Fk5asll7J+guZ7geGkM+VMs3zPz6YoUZdDGwvX13KSmXnXcFsVBprJz/dZ4z40ns/fY8b7P/LyFxa2jr74hePfvnTv/shvf7OPxR3N/Ze+9W7j/7b3//iF7/47g//6dvS6JM//+Cjzz77oy8++/CjD996/70Pvv3mKy+/9+KtN1597e0XV7HGy599+OjZw+ffeHS2OWoWM71ipZjVdFPU4lq6XDBqiXK7Vds+H9i9Qbu0fGlIZ8/eKJRWenLq5DyRGjVrhd5eP9tKNTPZalXPZtDSPZMyYPtiXJVhGFC5LJVWdw92KH3l8MnDh0+e3j293H107/zi4v7xw9Wjhw/vbSxtF5e/+fj+wdX9+0/Prr6xcvno/uVhCwB4ud/e2Nxe7y0vru7u72xt7J1srZ+8/I2jl99YTmwebKyNLi6Xi5ubVSDPvQbsUkkt2xYAsAB6MjTvY5WI3zdJRwPzbpIIEKFwiPTNkGjnj71MqhAnYgIvGRIRFjhSBC6GKhCvFEAqhIOhsD9CC5hI55i3sixNRjwCSoZUMklj9Gs0OIPd4Xjo6QOh4ZudDrIgLPwEg8fEsM84x1ySIigvq2D8wXXvDhWFygPsLZNLWwaILii+EkdGoE5SDLoyiTFehE8N6DzAX64EtLzZ7iyuNhJJy0IXMSGO7SY2LFq0hhLiArwLtLOC2h9lSBbv5TL5pIIAq8r4E4GOUCwvKrpo4ukwaB1Zcgz48PQV8Jd1xmrxZwMAp03dMjHyEIN+c2jNjJeyWXgdzmjEYHF97+jkdP/w8PR8HQE4BbW5kMthamJ/dfPo/itdA50j0zjS2+wNF7dOzo4vm5l0Bs3d61BAB0MojKtbq/v371/df3xuhf3BgJc2kyA3k5iGhIed6Sz2vTpOTVj7sza8dfQsNhxAEq8tKFnWSaKA2vu1lOCemJkan5qenHZ55udmZqemZqZnvASF94JyZGZm3hsEYhVkovPuIHAsGqhKjKZiArxzWcRQWOeQ+Bp+AY55UXK8yK4/CROwCQ8fDA3gF5vCbF1GJy6aQhCOEPDkorEYE42yDPogsHEeXt41ADtphBgqho5kqLd4AWA1nTRS7fWt9dW1lTTvADD2gKHCjcWZQCiKWpXFpnULGxYU5brxG/+EooMC5ikfzTIhH0jeqZmwIDJEwDUbJKIMYAHjm5kPRmICi+G/ocDsnWl0gubxXCoAayzg1iq5rM5TZDhMFmC3O+7PBvaY4zm7aVopjSLkhBLnGPSlCdNxSccbYADqFOCzonGcIYSAeNBxPILGJizbCYSWx26/dHPqxq2pyfEZt8sB4OlpBODbAMB4ED02NnZ7nKUj2KcYoogwARyXshc2d++uefRyxi6mYIdELZC+vAPAhhSNRpTlQT1jZSwjizcT5QaasQ377UUHgPu9pdXdup4QOQeARTyvSCEAd5qV+spKDhjjEAA4m5Q4GtMztHSu0oQFuLy6MNgoUsg546LjBY0XlOUqDrr3gTM6ALy2sbKyR9+cuz0+MzY2NTY5fmN8bnx2auYPGr/85Z+dvvEOyX/199/9sX+Cjoa8bvccxRGgw0AF+5hwKCTEGLSEFM18c7T9aAcQIqzoUrq+uwpSPmEafDwW4Us5wL5oRMjaJoNNWEw2Y6cyhQp8FYulcrVWq5YBDztVUaFjAkZbJrPlRr0CKrjR7VZzKTlKcfAz7HQBaEeRIqMh7AcUQC3HGABgd5Akbdon0LGYmqA5SlUEQ5jS2NkArSQyaRzSiMQKKRVYP3pBx6PREI4h5fPlUgHTkevtwaC72LwG4ESu2uovtFrtTrNgxEU9V6m2u40yALCgAeWHPQrIXS8l0uysJyxqGs9HPDOBmMZQdIDUYDMBANuVwdrBg9cHiWpONwu5VPfqsW1ZepyTEqrZ2HxyJlvJtK5lj+5pmiUyiuEAcKmZ0SW60uSPTitPNidi6Askx2m3XkezBVMhCXIuSNkJmZkTDYEX07VSY+nUikRcDG+eHBsKB2WdTXZGrDue7O0JEhEio4xspkqD5Whhk0smAIBfTvsK2f6HKb5YKuR7J59fBrhhXxVUo3LvUtTq++/LiUa1tX781R5jCsP3fvw+Ozz616Xkysrm6Rdf3f/pL/7pC2bj3X8o7GzsPf6r//H8N//2Zz/71Se/+PU70vLnf/7xH//gi09+9Ecffu+D599+74N3nj+8++rzt9761qtvfnASqb/8wYcfvfetFy/ee++jjz588emb3/7knefP37h483z/fGllq1ms5k2LpxmNT6hx3kzR7PnztzOYFp9KpKyyrXIAWziMXyyUciBwACsW+v31tbW11ZXV9a2d3S2MztkaLZxfntD1B1e7+3unIHzvP7h//vDo+Nny6O6j5a2rfi5ffXTv6Opq//DxyZNvrC8+e3Tv8ggBeH20cjbYXByt7cKvtvZONk/OD9e2L48ev75sbR7vbQ/PL5dLm5u1fNro1UEBC0olbWm6IsWjkRA2kpJB/yRF+txuMuLHu/qobyqCZ31AETClIMzEob5IpJ/jSS6T01GwBqBUBz3+UDAc9gRoCYDIzlqA7Vhww27eBlEIwAl8O0qz/tkQEYyE/O4wZsr7Z+/MgR4ifBEGdBXU66TAYEAwDsWjzbIoO+7FbJSB8g/SOp1JJzVYMaKoKXEqgjF5DAMLOk7zoq7FWJA8mDoCSAZVv9rNq3oS/SVF7NJSjHRK02xHAUvOTEwMO6kAgDmspLlCQlQsJ7YP6jXrjCWCcuYSOCCUsxJ4Ga2BpAMtiXfATqQDUAUuyhm2qZuO4LPSIGyzTjcUIHC+VGs65gCj1b3Tg8PtnZ2js01swoK3AXibKVZrLfi9g3sAwFBIELdzmUp7uLR5dHaKRhwA/cVSC7jEaNRZXN/ZObi8d3V298lFMgJkx8dAbVcNK5vP4M9M54olFGdoGgIAnE47ucQ6ntbjmayChwA8No8h/MI7/5oSmZl2zUzNuObm5l0zIH/hr6nJeYJkRUWTqXk8iMWLfTI8PRcIUlHQjDTQEoBLHBnjeJwRc25pnf9VnJN51bGdlrFA6wmnaxm9KlJO1y9ULx41MIW9xn4vnvJSwJ+oOErj60glzjn8dyymnexpqLmgjCWeVxGAdbuztrEKNMTmMC8Y9TEISkmK8QDAVCgCAIwZqo7w/t3f2Duo4LwZz5HhGE163VTMMzMbkSQ6HHTPBSJRdi7AXAMwzdFhJ3h3bmbOi1PnnCqFAsAW/PNGxU7rArCRcLRQgc84hbblSTzft1LYEm1KRNS0MbQLFPB8MBrjFRMzGdEKNGH+DoCx2YBXcEAZnTjsLBAm+c7YjVvjX789c+fWNDyGuVkQwFMTt8fHQAHfuTN+5zYmIo3RVJhyjqCJCAkimEovbGxfrrq1Wt4GLSaKTKZTNnkhajZLhhglg/LqoAzwnjIywMjSznxsb9Bvj4b9Xr/X6y2u7NQNS4z9DoBBwGeKjW6v0yhXV5aszmgwHDZzGQBgCgBYNrIOixwsLC4vbpcAvJwIQxnTkOxMwZn86QNmAwAvLSysba+t7dM3p25NTN++OTk9PnlnenxsfPYPbz374tsf9d76UfCN3/7d938Y8rimXcSMa4aIkcEgG/H7fSwAcJxlgGvFRbvUGqzf2wl5/A4A1/bXU/ByLJPj6ABfzskAehHetjQmGg55aTuZxSG8UrlSKZdKlVqzVQbW2q7EmVAEw0I5s1Aoluv1Sq7eapSAV8BuFyQziQlLpTysv2CMChOMwP8egKmoTfhFePp6MsbTshzXuSlNmpqLJrNZC9Y2KJB8QgE5iQAMaiE4ZxVzuWypVCxV6o1mZ9jvLLacI2jRzJabg8Vur9dplhJxxcgUio1+vywwMUHVkim8MsqkixUzr/iCGCLHA6yHSVoDXu8jDMUJY0hXB+vHT98cJhtZ3chlk63TKxAZOi8oQO1q208vdKityVTl4rGmJRVUwJiiXm1ntYxU7smHx+3HGx4tg3djQsynVzglqZgayfIeks0lZWpG1Pm4kKmXG8snKYqYY+OJ02M85qcZLtldFX1SprPNskEo0lFBS+RbPaqACljRCk/T/kJu9IkaslK61Vx/ZdXDdXsqbPji1XlcrWy8KyWaFfi2P91jTbH1zvc/YEanv120lpc3Tn7ww/tf/uk//zG7+f4/lzbXN177s//+5hf/589+8Bff+ZNfvi+PPvrywxcfffDpp+9/8N13333v7bdef+uN5+8+f+v5a2+++9Z+tHb63rvffP3dVz/49rvvv/P6m++98847H777/uuHJ08effLJh2+8ePzu86dvvfnKN+8/eHS2ttIvJ8Tz156nE7lGe9ju9Vf7e2trW1t7p2cPzi8e3Ts9Od89Prp7ijkNu/u7GJmzu762sbW/v768t71G9u5vX91H/4az8wd3n762XFxfbl4c7yxDXS8cPjg+ePCt6t7rV88f5ZdfvX/v3mknVlzYXFo7S2wtDdbWltr13urmyf723vrO+frlayvq6r2rrcHpxUp5c6teSKMCtnReKdsJDUAJSlTQ7Y8pZCQ8Q4ZcM7PBoDcIAEx4pkEBqwoAsAASJURzcUkTSX+Uo2PJNGiJkM8XIFnqOuHG644I6HYLKGDJUKvpiDsOSyRXsA0omxRFeadcPm8g6Jl0+1zTs67ZiRl/kAh7wlEa8NVQTAnQAU8pCQ/NI9fGWRQBUJKlmbhq2el8xoC6ocAqEhmcKMUr4ygvAfyaAMB8XAeNkSmhR3x7tNbOFiz4oyZiqnNNKYlp4I8iUG1Q1/DHMemS8ZMJQ5KhmilGUvs9AMdRmgFayRaiadbWQUMrGlR3DZFGxCEkkJKA0gjAFhpFJJ2uX805Ay/gjW6uVGs59kJAzPb3To4PNrdPdpDKQG3OmmYyky81cebo6mlbta00xvgWSvl6f2nz8OLqsmrnsrg/G+1mezjs9tc2tw6PdnYQgBPBQDjgpXQTYC6RuQZgJ/nVab9KQ2nMOKUfJ6ZAjhqarJiigBlCAJwcMBzsghaCLl/A5/UGfKB/pyYwhGdqcnIe6hZ+NrQPAZgI+ULhwORsMESSGJnBREKYkssKcSjDkhNagWh7fd3qnEU7zwt/S8VD6FQSXqLpeHKk0ylDYoEzwTIJg353ezGCOBwh+BiDkYYO20F7T4lHX0BA6hgv8NhyLcc5WTeB5KS7KyvLGztrNoeeWfBARTTLAnSlfQEqHHD7WGcMCe9nLcsZRUYHcOgmoAAAIABJREFUNtTKCMAhYBBeN8kAABMAwCHCNx8I0zFXmKW9M250JGQiBIZ7zc3OY983HVOloB8gz+vSyklbF2gKAbiYBlw10VPczqRTeN9gIwDTiawhxGMEAHAoCgU2gVM6eBsPYggA2BSgsqOrnWZe3wGnMplcUcF25xtfH5+99dIEDmTPzgAAT45NjN2ZvI0AfAuTksaZaASTKwCACSoCrzMDAHyx4tJbZbuQNQWOzrULaox3AFii6ZC42i/AKsiY2AdtlzEsoQMggFn1PTRGXd6u678HYB5WR6pQ64JCrldKK4tGd3EwHNRhDcksArBiYLRYqzdaGC4tbBUIFv6r3wFw0s7iGHC3PwAFvLS8tDgarm2vrx+yN+6MTU+N3bwzf3N6bu4/zcDbmHvy8vOXD7//2Pg//vHPf/TC8wce+iYSHRJP7Mmwz+dFAIZlEOc5jk+XOwsbV1shrz8sq0Kqsr9h5zLA5EQuGhAqGfH/5+o9myPJsiyxZk1VZSIFdGjl2kO6h4e7h9ZaI7QAEAgAAS0SSInUsmSWFt3Vorqr1Q5H9MxwubTldvfMGrkf+I1/gb+F90ZWG80IyyzLSgEgPN6755z37j3HA+8D71dAhFrNOjoYSMC6T6Cz8zSWsFhNxhLpSoYnzGaSsrsdAMAgckqZeCqVCPuRobhgbU4dVJJxEhSwzYC+XGhsaTMsa8wUFzYaXZTDIwecDtYt8Co3L3qvz3pisRB21DlsbBQXslUrBb0cQZo0ajwSiSTTiSQAcKFcrwEAo+st55bD8GSbjVqpUEjJrOgLJ5L5Wj3j5h1uyRdEi9tEBH7PF/dh5wWwDRabBFgJvhe9VfobANfX928/bYXyEUmOx4KFrZMIaCen0xNQfOn1u8ehaDQVTxRP7/pgBboV7LyIxgu1uK/oTTTk/rh5c8ubS4ejsuh2mLxxzhsQZC/tcBsYRzLkts6CAna4I/lUvrvtp60LDBPYnfi9jJWlOH9tza33xGobHAcaCdZKIJpvtunU2B0O+dTERdyciDa/DjKJVDjV3brfXnbV6p6wrESODu1Ssv/KLWdT2dbubzd5Vci8+vVXbH33vzYBgId7v/752S/++OfPuNUP/wIAPLj7299+9d5//813v/789//8ma/12a9fP3/10c8/+Pj1Jy8/ff/9l88++Oij1y9fPrp98fjZFtWcfPDRg/e/ePb8xasXzx4/e+/+xy8+efj+w52d7fH9188fPPno4YMX8IePn756+fL5e+89bAYOHjzJDW6fTM7uXhwdn0z2d3aODnf3D3cn2xuN8kpvtLG32dtcH44Af9dX+2v9VfjFaqe4udmlqkf7k93dra2j8+PD+3dOj2qR1nph/V7R2+oOTken5+fnkXyr2+21N08PT88PK2yys95aaadGreaw2BgNOu3iaG1jd3NytnX8sCV0z08HtZ2DKQDHQ75aEadrxFQAAFh14xyczmj3EFbrAk3oFpcsZoPZZDZju6Lg8XmBQiEAW2ne4fE6CQvJO5ySz4HpclaQDm7QqBbCptNZOLQHlmENelwu1kYbXaFoKhFTPYzLDgqDXJ7XQmXXzy5odUvzS/qlZaPRNgVgXlBg1dkZjieB6pN6xmFH44Jp3g2Nh5WgvNGdTRVQ/EjoKwwAzPM0yQLGhtB3SQ0itiXShUq90ag122mok15RUb3TqCLBieQXbzjtLrvbK/I8QDvj4Jb0ksS5Q+mwpIbk6RG0x2Vnp4ZPbij9YewBCQEDn54fyjh74wUIR0sLjAXinEoYZTZ88XBIBcmN5syJKN4BJ7PTCaJet9tf3Ts9PhiPJqsydmJDdUafKH8wVcK87ZtFbwjKGY4Bp6PZamsw3js++hGAc1k081hplNu9tcl4uHN6696RYjJazXpKmY4aTQEY85qmRlhxnFkO48EciAYFA4p/BGCvCKgIz8yF3zTA20/sFpPFaLSYbRaTYXnu+vzVWVBf8xqDlUWk5q3LWp0ZU4cJ89wSkCts4rDSNgBhlmIAxacqFOAXU5DEN6YZbz7w3Bf/H/uTVBX4kKxOfSvg5UoOymo1GM1vjnoNegP+Ch40zfHYDDfNOqTt08Ew9K1wOvASD0QINmGFFSlc7QKV2RyGnPhl0aBlOv7kcjF6I2XTLWkZTF7AEF4UwGgEgpNY2I3lcQNIUxRpMlCMZm6RgCpuhXILwoNbtHGMbkFrpVgXNw3hMi5eWzSTFgPrlAXMjzHqNWIcARgqvo3BG/YgdrVNT9ZDCPIA9V6SkoMiFE5Cr9VZWYcA+jiESc1+xa+KXt6uOE0kJtkDCcSTeVTOkURKuHr9ypW3L83OXbp0fX4eEXgefSnfADC6YV2+CmqYpqw03u4QNgBgK8nHWqsbx70ltTwFYLedi1fiksPFKIWE7GFZwtWtxyOxcFwN4XVIplKtlsugcJs1EKvVeqPZHeUk1e2wY9O5E96ecLpQa60UC7lkr+Or4hxPHl6YaP8RgAHaivVOt9lurcetAMA8ogRGmwTfMEy0zmp1e10A4CEA8K793cvXlzFRYhlE8Mxb+rmZ2ZmtnYtPv/xPibV//eDJ2eEvapc088Zl4zLBWPQ6wqJ/A8Box4L3Qmqi2ls/XjXrTTZBdAaz8H7DtxNUfE7G5kmF3G5ghWxQ9dk50qqnQ6F4Mjk1/Jp6ocPOT8Yz+UraCe8lw7hEtxpJ5iulXCabiMF2gRVICZLPH1SVQDQ9PYI2G80UsBGKoUGaAwDz4WWTi3R5fX48FPdwQce8wzc7D2CIGwo2BhuRAIDNBiUk4RH0ki8EKwDIVjyVnW7WSqeMAGx3+4KxTKnarhZAlvvgYUYyWZDhWYF3eoCwKxE89Ipl4v6kTDGUg4NF6RLUAEhubgrAQPLCwUiuvr57+rCF1Qm4RCg/2gsDALvdQiDgS6zeOYmnk2gDdnxLVmOqAFstEIjH0sWQtykm2rHqev98pzgshWOK1+OySADAQVESWJ7XkWzE77LMCUDNPZFsItvfVBnbEscGtseKSJkZwu6vbwgaTwgA2EVZzYxdUsP5VptCAA765MRF1BANlD+WqGjUn2iPv9vRe1a6TtWnBo9OHGpq9LEoZ1KF3s4PY16VEq/++HOqsPEvNbXfG+z95puTb/7n//jUMQQA7o43J//Ll//19r/+4y8+ePab//VzT/vbP3z5/PUvfvX8608+ePHJq/c/ePnq2eP3Xzx49uTi3qMNW/v400+fP7v48NWrVy+fP33+3sdHnVePtnY/ffrJw42nT99/euPeg8f3H9+/d+/Rxe27t++drvj2Hz/LD8739s43t/b2R5uH2+PD3bXx6tb+Wq/Z79a6G9ur/c3N4fr6cG1jNJyMRptrg363feNkyFZ3T8939/c3j27uHN8723/2tJ0exkbjaG4luXO6e7IxrtXGpzcOBoWduwfHZwdFKtaCz9HYa1bG9Xq/397c65b7uyebo4OdiwctdfXkoFfe3uumV9fyqQgqYIAmBGCfqrjYKQDzMmMzz5KUaVljtehNRoPVuKhzCG7ZK4tAUDkevVM9ooOwkRzm4TjR0ddkMBNOFqszbdbpzYQDlGLIL0Ephr9uFqLxbBIWB+9x0qyF1V5f0hgIzdzcsl67sGyCmr9stBoIjmccXklSWZJmocwQpIG186KE3vqSx04zFAK/HIoHVRHbY6dpRixeQIMOdfqg0OG1YyDkV4NR2I9FNPXpdjMqfBsiilq36JFgZXsAPyWvw4GzNCIobMynpRcNPlVQYumQV40EEIDdHqDbFMVOm7CUELAHJRLyOPEiXJZERBzYXtNIYHSEtkvAx0Fn+YLRSEDGS+BoPD4F4MS0ARONCvqrO3uTnZ3d3Z4KhABvqiOxGGyvbLXRW98+zomhBGzHeDIeiWcrK+3BeHc/G44BmCaz6Vy5Vq23emtr472trfODk5t7stlMWA0M3osCK01Ep18T/TJBj0XfTBS/kcA4jatgW/A0hhFgiHvjf8ECALMWi2FhCVNRLGbtwvzi7NLi7PXF5SUjhdZ8Tkav0xgJs85Imq8vmEwmg8kKX9UGIEzZSMBLDtUpCtEpCgIW/v+OpHEq2iejKwZ2ReNHAM9baBt8LrPZRpJGI8hvg9E0vUSgMVMD5DD6fVDTQWEMqeFxQMQjOB1Ig/xSCBTwYGNzEMIMHwHzH6dxwM4pABP6JS39BoDffEwty0B+ow2J6HGxRvgiFhPL65Y0lMfDEma9xgh6fpHgWf0iXn3DDiAIk8Ewf2UepL+ed8miSW81G006MRYISw6GIQg2FooGpxFdMk4TYYcBKnwvQUpBEdYDodfgbQpwLHVqRCkrAVUUObvsMNoYxBdMS8awimAUeJp75tqVq+9cvw5Ae33u+hy2Qc/N/q0L+sr090EFk0B2LSZ4Olac2KNdidbq5tlgOVyMh5NBSXLzsXLKLwi0nIvB//CUvd1IwKKIycFYIh7JlUD3VuBHqw7QWq01VzqjrFfBDHDOzrthx0XT+UqjDiiR6nd9xXSu0igBVgnTO2BRjqYyuXK90wONu5Eg7A7WPg0Jg7cWXl8iWywCOWy2+31QAa3BqD/Y49+9tKC5dHVx+eocsAuj9O7M5bfrqze+/qY1F//o868Pvvt/Bm9brUuzNh3FWvR6EgGYhbXl5JFxuUQ1UekM9wcWYOmi1xkqjIfBMLBJ2WtnCE9UFR1mvY4HMHQ6GMJAY4IJCOBMFtAXj6ALpVwqD4CHDmEOzuVxB2LJXLmczxWyKdhwihMB2KvCTomn8ynSRhgJgsGePIKhzNplrYW2h+fMLtIBPNkNelzkFdcirWiW/CGgWlAuHQjAgp02mjAPmGXMS95gIOiPxJJT2+1CuVpGBSzh+IYfAbhRzJWraS8teMPZXD6fBgXsFGSf3xuJBTHQMRbN+HjexpoYN+10+PyiAu+MweYTYe1gF3R7ffPwQTOYjviURDJSGG0FQIrDuvcH5fjqreNUPgXiu3B0U0YFLKMNbNQfSqiehjvZzObWV+/utHZXAmHsibUpKbsvjHNxHKW3WmWv0zrnxu7SSDZVGI4VjtK57L6tDdHNEhTlCq5supeEQHOddJFGEw3fW6TY7ROJDVfQL0rJOwFN2J9/4eNT8XCmt/PVeIkprQl+KRA8OuLU9Oi1T81ly4Od347tfl/oxe9+TuZG/1Tz93r9nR++OP7iH/6PT1zDD/6S7mzs3fnL8ffv//I///rVk1/922tu5atfffHys1988/SXH7/+4NWr569evnr69JPP7z59+eLxsz1n8firT5+/3H7+wfNn7718/OzDT14M6v3O8f2Nmx/ezA9ut0avXt5/+OzWvduPH956cvf53Y66d+9Btru7O7pxcDjZGO0c7GzuTjZ319tb693Nuwdra1tr/fW1IQLw6sZ6fzLoDmE1dzs7O126untwq712undyb7dxfHFydO8o2a+sDTrb7fjO2d1Ja5jcfHiYHZ1VJ2enJyeTPBVt9HdOJwfF+jjbXknl2uvb/UFrff9wq3rvQScwPD7sljd3u+nhWj4R8lbQvV2QsAlL8aICtuoMjMLajNds2BBoheqr09msyxo7oJfoQwBmOQRgQXSQJlCkgp2yEzYL/C0Lw1DoEsARWr3RZpfwNNbrdLrtlM0shoG/Sh6edsKesBrnL88vLFsX5xeXtZqlZd3cshGDh200BxseRBPsewRgijIATfPKCvoMYxAxWiYJSigalj0ieg0HfRg3TIM2ZhjQpjiXgkZUXn8oNgXgUr3RaadkkLSozjwur1MKeRCAvYricQkeJ7ZSOR0cQxIGAr2pIvGQVw4FAajQfsnOgBLn7ECElVA8FgrFwh6nJE1HX7G71sG77TgHgaZODi9AnCD4gmjYgZMfEeyCxj4bPJTCjLRWpz9cH69v7RwcDFRRUPGPY7FYFMEWAHjrEAA4Hg4iAIdTUO5avdH2bh5bmWPJdLZYQjeP7nB1fWNjY2+yd7Ijoz+VgVVBFkjBeBKAOob6GS2o/XgdHMHEHjwPf5OLMDXhwGeAR+rAbxB/qZ/AU9ZemTUaTWab1bC4sDSv085dX1ya1dp47E/jjdpFvQ14GGG8cl2PeYVmo94CmpkkrQRaQvM873hzRCxiX5rnx16sN/NOgMVoCok9WdLf5pKwqdML64e0mk0WbJ+jCBDhVoJzoa0vjWEP+ANv7nhUxbB60I7bBWQJm7BCUqAyGK5ujnvBKQCD1MaoQq/H7mIMJpowa3WMFwW3PD2EVqU38O/1oxOHx8mSDpY0GTmnWW9kRYElLEZMaHJpbBxrWDIQpNPNYBOhYXl+dkFrNFsAgAWTnrCZLAYhHIhIPM0QID+hEk4HrGVchCqmXcCH20LJURkIDm3UGWwMdm1j6EIkqARiPwIwplE4eVjC8I/geYRikUTSdRkA+N35q29dmr0+e+XaHI4hXbt66erlmWuXZi5dAwV8ZeadmakCtliA6QIA21hPsrW2fWtNm8iFomlZUN1sKJ8KiR7Kl4mKbt7Bcq1mKpaKR33BeCoRzRfKNfgAWKiDAq5UG3UAYFEWPCwNAOzx+fwAscV6LV+qpPs9Xy6ULDUr8ZAqwPoW8Q44nS9ioma309mIE3YX65g6WsNOBYGdyBVLsDZb3cGgN+y2V9d7/T3m7XeXlv9uRrv0lv7K1Zls562Zdy6R0dXaxjLX3P7nX3z2f/+PBGtdMiw5CbvdqtNYfgRgE4+jhozdHU6V6q3tvk1rIkWvK1Ier4bwqF920TThCigSb9DqeChZDgdL6MkQIl8ylc0k0knQv6VSsZwtFfNpVbY7AEBdzmAe80zqlVKlmEklgh6WBC4OezWWzhVTNrNZa4PSw1IY0mX5EYBnbW7SLgoKMnHJ4bIvkQHTkhCF3eVzOd02PgKlkDEafQHRTpN6rRKNxmDrZrPTrw5fqVUK+r0Ou8OjxvKVejmTLlfjbtInhVKZbC6dcfFOUfapYiITwxn+SDwjsryJ1JAC6+K8ICWA3ZqI6QKKRhLl4frG4cNmMBuVlXgiWhzthBNhGaSPElISq7eOUvlkMhrPH9/xB2IAwEh0w7ISVb1FPl7JJtf6jyed47YKbNzjtAWyAMAyTvYRZosRyphtFp6S0xPJZyuDkcRSeo9d2NpwOZ0MSbmD9Q3XohDtrVtclNFGAQCHi70BkRy7Q36vL31H1cQjxecClwgFEs2tz3ZM9sK6CDw5fHxAycnOK1HNZwud/d9vOVRJefLL76jy7r81Q+12d/uHz44//+N//9DZf+/P6e7W6PH/dvzxH1/8629++fXv/+kDafD1d1+//vzz9x786v0vP33y0fvvP3/x+OGrFx8/OLvz4O6Aqh19+cHF6+7gk6eP33txcf+9w29f1kbbZ9XT+7svx4et5svnD5/cfvzgzt0n9/duHz++2VYmNy8qGwe7o+Ptyc5kgq2wuzugh0uDzd728+ONVrcxONoejrYnW5tbo96w0d7YGg07w8nJmCrv7V4UVs4PD85G2TvnO7vHR/mDSa+YPX1V2d8/3Dk+KuzsrDbL/XDy4s750WaOjq40B9tn9dpqpdtOV7dK4Y2tjWbv4HS7un+3422cnLRK40knPVzNwxIp5qNhv+jLRoKy5PLwJFRkHeW0mAzX8WpjGRWwwWCjdEsMJg0oaOhv520YyO11UhqGZVwgaCkrlHALJsayBKgZk95CMlgwZVnA4FnaahYVB2M2Qr2zmKyMDtSWxUag1RrAFwsr3+EmSRo+BQ0ArPi8XgBFm5VisGuVA7AE1JMwwtIBhdktgR5V/clCPhlLguKAigifhLSSPGhbQVawBxaFRzyVL5cb7W4z6lGmzkiSzyvyvpjEOUGYQb20O/G4C9tuOQ9FkqxLjAYC4QDOVmB6Dd4BU9MpI6fXo+DIZjQSxLHTN0k7sPp53oUd1Hiay7llFRP/wkmg2NEEzs7HcQYoEML+lXIJBC26ko0mk93tnYN11eNWY5jhDYoX6xfg7+5p0RcJQj3DPIZMvrzS7m/s7uQBRRPA7guVQqHeXKl2VldHW+P1g+PzfT+O8ekYRcWRpnhqCsAYGYE3wGiqGZoOAeMZNI5FvclvdE7bjB0O4E0YUkX/hKRM83MLS1qTjTAsXJ9bnF9euDqr0czpTbap+LQsLlssmIi1vICBSXqcCrcBaFHTxje8I+fs6EUFa8KJAz8IvW43nnVjipEbLfEkbIP2AQqjGgUSJik+J8ngUKLJBHhCsRyGEmLuo8PhnFpLomE0frg4GsMe0bkCm8fg0wY9vlB9dW1zNOoFndNGOGwOAPiHn6TGwoFm1ZA+RQRpioff8jSTAcc4ZTyCdzsIM00A4DOc2WhkvW6aMBqNFqh4FrPdYZjTgQKGHUAS+mXjwqxGq0G/N1G0mE1mkOlSRI0qOCBnZsLw3gYQ5uElKcFQcJo/qQiUxRcVnS7epDHoCQd2g8toBhoKoAL3ME7VYTGTHBq7+PBuOji1N826ZmaXLl25eumdmeuzC3Pwc/7qlevvzFy59A72YF2/fuXyzMzlecoK25E0mG0AEoSVFZL13vatoS6SjYUjwaDipsPlTMTLU3IqKLoZh9ndKGUS4WA0EISCncgXaxVA0HKx0azXG9UyFIi1hKQ63sRhe4BKBBPA+WrlWq682lLSaTyCDgcUNOoQfT41CiSyXG12u73eKE7Bv6Edb6a+gRMlMrlipV5ttJqdwaA/HMA6X93h354xXn53efHSVc21t+fuFN+6/vaMu2B6x5a6vXb8p1/+5Y8t4sCoXV4izIzLbFy2mPQaE02aLHZCa+Ttdl8oXVwZ7vesS0ab4OWV/OZQhUUkOVkAPXcUAJiyGUEBS4zLprfyQDiTKH7j4XQskQUWUSiXQfNn/IroEVjOLcLv5grojlWtVJNBv5OzOL1edEFJ5QsJEt5gpP60gzfShMGwtGi1AgCTrI3DoEugdl7GwyzZQi4tHfEDqYMHbHMGZcXJWTVA1kWHA4044olYIp0FqlzMFYHmdGo+BYOtPWqyWK1hFFUuJpBOAdZLKJosSKxLwAveSDyemPZtZCWe1zM6Gh653e0OeT0cpyMlPDkKRjNobHjyuBVIxX1SPKEkN3dj4QSoVgFIZn50fgC1LhaP5A7u+vwBicMMGCg94STvzvlTqUy6PX6S750N5Jgqi4IlkGe8cahiFC/pzaTkEywLsH8djkA6WRyvihRj5gV52HYyLoJi7P6VbZ/eI3VWGdYGjJ8T5Uix3bemR+5wUJVy92RNJFh75nFGoeA0977a0njyQyHqi/jPdmze3NqTgBrPpdu7v9sRA6J899tf0tm1f24o3VZr74+vT77+3V9e2Tsf/bfMsH344P+83fjfb/zbD5///h/+5bXY/uqXX/z2ly9f/+xnX3zy5Zcvnr6PCvjjZy/OH+w/uFi1rBx/+vn9j84K9z568vrzs/NXL24/edY42UkeAfzeGG3ffvDg2fnw+e17tx9sNx7evX27rR7de1xqAeTuno0PTnf39ibru5PdnU57ezW3fnGYafYqhd7W5u7K2u7qcLw9jpW2tzrbjd7pSddS2du4WfUe3urVU6nK5t7p4dnaaavXy9cm57uHkxuHe6n2Xr2YTZY8Nx7e3N/IsclOu7MzKTYq1W6heuPOg3GitrfT3jkdtu/d7UTbW8ft2mStkV0dRQSHo5oPAuYoKcnFcSSBO2HZSEsOg2XJSmquLuGwkFlrsmgWCDUg+GRs/vU4GaiHgodjrDTvctE2hiPeDHPyDIPWgvBZQBwJSkT24egLT9FWxXlVr7fpzVYbSdsMNMs73W6ng8EbVDvPsBQHCIj24BRwa6/iYaHOsAygP+v1CP6QFFRx5JezkgRrt3tFJeBDdSMEfA7WDiyeIVkCR0bQGkIU1aA/pAbDsVK1VG3UmlHMF5S9eGflcoNCtvNuFkg/Xiq7JVkATMLDVJ62K5FAOAzkc3rNA5jqRqkIit/lw0tWbFcMubDF0CdMJTC6KbMcP8UIxu6TXS6syQE8dcYG5FgiJIlyKAZoWiqVW91mf1jrbe0eHh4f9UCp40ZEr6xILJEp1tYmm/t5EXhjPJWMgeItFKuAv6cHyUAccDWWiaWnvTOdanVte9Dfv31+f1cgEYFZBbMWAskIMASQv2i/hSfQEeymjoYCUKMkNeD3CV58AKLLaUe/H9ebYWCW/AnFWZfmFpcNRoKyauZn52bnrl+5tojX8vBmwoOhtFpQJwA/S3MLy8tLy1rNsh5AzoSjqOgXSqOHnwMeK+rd6ZWsiD3HeAqMU8fCNBJQxf7wNwM7AIo+NeDDyzn4sMCasVLwwZIY/GifdkHzU8HrwTEwB48dWXZswUKVLSohoDgra+ubG2vdAALw1KVyapflcpNaM0uYdctQUqagj41Y0+sCSYb3RYS14eYJG4NrnGENOgMrC4i/BjPjZE1WO6dfMKCDG0tQpGF5eXZWozdYOcyVsRI20mTQiyElong4grYyIXiyMl6nAy9U4BmjWUJY9XKkGpWmhpdmPemARw64htchAMCy18s7ZTvwUg43hor4iwAcAwC+fG0ewPcqhhIuXr82t7gAADwDoDuDI0jXrs6gH/QcZZkCMIFPy2JhXKF8Z/NG35gspWNhNKhjI+V0SGQpXyrodbNOs6tZyWLUg1+BlZsEAC6DDqtWms1aFQC4PgVgxeHBt49z+yR/JF2oNhq1VqHcbwZK1epKoxANqehGJvqwoRFgrdrs9drdcZoF2sU44ZkjwwAATmfyaCHdanWHg/7qcLi+Ntol37qmuTSrmb2sm7vyd/5eWvP21eti6R1b//bf75x98euX66NWfkZjMlo0VofBqCMsRp2JsuoNHGkkgFP5Y7lKe+NkYF3Wm9w+p5rbGmIrg+xhOcLgiqlenAN2AFnmHYTJ7AC2GXuTX5MCDITtVKkAANezwQC8SWh1HUoXCsWVRrkI+yodDmJesugNxqKRVC79QFIfAAAgAElEQVSfICwWk4VGCxjKbLNotUsamnaG5wFw7Bgb7nbxXs7DLJpCksWO+WI+r8DaXCFZ4miTLhSSPJzdvBDKxJOJdC6byhQK2XylUGpWlYBXBABWYrlSCeO6U2FMYBBVvxpK5EXaPk36UnC7Ag8PJQWeN3JGCogA8NqA4GY5PYm9moFgNF3obuzceNIOZWOyFEsEMps70RAAsFsEfC6Mzvej2XwkGs7u3lCDIdkeRJc1+E+cc6fVRCKe6O2cZQYXa1I05BMQgDkl4ZMkkvUaKVc4IFoW8Bt1BVOJ/Oqaj7XDsveud712O0lRnFrfFLUuubfOcYSVMDvVQDjbWrOk1l3hoN+XvVB1kUDthehORGOJzv6XWxpHZiSFvAHl/JD1FwaP/f50qdDf+n7bE5QDD3/1HVna/lNdaa60Dv7weu/L3/31lb398Z+z3dXNx395KfyXiz98/9nvf/iX98X+tz/77Nc/ffX6y4+ef/b+zUf3X3728uXZVxcffXD7wa1H62z57L3XT1+etu7vjffW8xv3nj+7/+lGYVLuPNhY2+offfjs0w8nK4+ePb24M2g9enBxo6LeuP+o0t0dNQ+PTjYOt/fX2yvbk3G3Eh7f7qyeD4vba6WVdnv7uJSsNVbXxq1CbtRZHTU7R8cDon44OS3U2vHu8Wm+8+D2/tbB6U7h+NOL81uTwUk3VemFy5OhEllvhoa3T/fHWTrRaff3O6VWZSOduLdBeM/u5tNrW7Xd/bU7p0Wls39QzW5v97L9niw67JU8nrj6EpLb4QD4tJr0WjMtcUb9AhQiKM1mg9EMWkCjodDgzwewAxuQAJbqEZ0gTuy8naHtNGE1G0E1sdOcdYLQLdlYN15fBNCIA/6GhvNZSaMJZC+JoywmnCib9tkQFPxbK2W1GU2E0UBAWQclClDrdJBWm9WwTHklCbuKZcHjoEio1lCeZSUcwIYqnyh77TReyrGsi+c9bhFz8TwetHnEidhKvVJv1poRnIQJoECF3eSBteZwObCDy44uuF4PFH2Oo2lQ4fAX0D0EzZtkEU+uEIDtAMCSV4UNDuxXcTqg6kwHW6D229GEEpugYfc6kO8qeEjgD0XjCISxRDQATyCWzBYr5Uqr01od9zcn462do6O+hO7SIFBjqugLp3KFSn9z+zArhjD0NBCMJZOFSmM4nhwepUKJWAxlbQa9BEulYmUw2QIKd+v2hkjorQYAYMBft5qMRGLROJpf4eBpCKOW0GhpKgRVvxKC4jXtTMacDFD98CbROI4LAEwszc4t6fQ2qD7Lc9eg5l+9Nju/tAAYyzvhFRq0er1Wq9XNX5tfnAdwWFzSmXTLBryenSYaggJGPMfn4YafmIcB3MYDT0iSRARg6UcAxmQkv9+Lp7UBv0jazATLkSbz9OAE6Rf6ieEQEs++6YfGaSQHXrJz2OmFpMEjqSF4axvr6+PRagcBGOeanS68bJZcTkZvpm2gqhCA4TWreAGM4CthGKEXcyddGEDGkG8AWMfIIqw4g95E2yk9/L5u0UgQDhd2QQMJXVzQgNansdMLpy/MBq3g94WnAGxjQLwGpmZosBjQ7ioYCfoDspe1+bALmiNMJp2Nd4tT5BdEeMmq4BF5h5c1Ueh0LKAvZ3A6lxULZ5yXr8y9cwmk7vzstbkrV+eW5q8A9F6+BIL42pWZqwjAM5dnSQtJmkkDSaM/jZV1+TOd8WHHlCxlEIC9AMClZFDkSV8y6PWwLpurWcuGA9EYpkWAzivVStlSrVZvNcrllRpsi+EUgN0UjU1YgAPhVKGKXc6VWr8ZrjfrjUYxjmNILMYrK+FkNl+sNLoAwBsAwCzL4YORMAg5AtCSK5dKK512b3XQAw08Gm3sWt9anLukXbq8vPjuZaKUGorvXL5Cq9dHBx/+44dP70U8t+6saf/OaLbQSxanwWigbGa0qNUbHCxtF91uXzxf62+fDc3LWoNbFQLZ7VVMX1ElO0cYXSlsfKKszmgAVANJmJwxJYRn0Nj/n8jnEYDLpXy5mgn6vahgRY8/UyoWaitFeBD1bFi1M8D/pXAsHEnncnEAYIuZZqAuoZeuTruwTFHOwDxDmlgJCp4EWsPh5ha0wZDdnQxPAZg3u8I+kaGM+nDY62Q4yxsAzuSzwEby2Xw5V1ipqEGMZnXBBs/mcEgqGRIoEsqi7FViGYFkpomzoqxgdVKUkIu3Wx2oT3DwQgWRwxmoKQCHomlgWwfnT9rhXFTxRZOR/HgnGkz43AjAgcLG+V6kkAtHQtnJvhIIyTyGn8AKDURpVzoArCQyOBjG156sCeEIyBOrP8uqSSiHJCNaKCGuOo0LgsfuEqK5TKU1UhjeyvOB/b5sp2hYHv7ahmfZpfTfADAUZyVeaffMAMAhYKGZC78+4q+9cjsxdqu58+WWjk9syn5Jlc8P+UBu/VXAn86l6ju/2RWCsnLv26/pxvr3uVCz2Tv9wyfjL3/71/fs7dd/yXY3x4/+40vtH1598bsvf/fVn97zrH77869+/bPPv/r8g2/v3/j+F58dPfng6ZO7dx+/vvXhg0er1tr5+x89eHZnsLP/3ufvr9f6e7dvPL/RebgxuXGw2Wg9eXZrc9jMDw73Lrbq+w/P7x9XgrcePKoNDtZz3YPJZDQZ99utg72t4XZnMBkNhu3dRnNz3BtuVcuVbm/S6wwamdW1fmsVwHKVrh/undSb1eHhzu5h++j45t2js/MHZ/3xgycP7xwfHY4q8XKrvdJsdI82T44Oxhky3l5ZG1fysJ/Cp0PGx7n7T8qV0erqxuTeaUHuHe+WcwdH/fTaZsbn5NEL2ieIUQyoZ3maBC4KAMzYdLOczaDB299pUPSylhcEnxf9ommeNbEc6/IhbWLxFBmKFmGBsmzDkox2tYZFM+2BghsJ+twgIRkH6Su49BqMUqMokCkGKGpWUBVoA8vgVAUAsIXBsDuAZLuLoViXi7JazEYth4oSShVeIHM0ArDTpQZiAYfDAwAseV0A5zaOYQFO0acZWKVnOqcUisaSQOlbnZV2DERKIDDNxBFcIGncKAKBSNjtTtYN/+ewcxi+xHgVt+CPhf1+AAgvUBOAE4bEoUcoUAGQpkEp4HN5fIgoomdqFM1i1BOSDgaYLSYc4W16ALQnQiY2vwARDcczhXKl2mi2VjfXt8b94ebBQUfxTgHYH/Z5vCFMk2lv7BylhDgOyqoxUBsrrc7axvbBcRoBOBoLJwqgMWqZcrO7tnu4u3d09/aaRCwTbwDY61JAc4NUnga8x4BO+0B2yYBXih9vKFVZEeGFohEHDgJjhDFebvMs9ROCIzWzswsAwEA29AtXZ69dn7t+bV63oDHaWDwbMGk0i4uapeVrM3MLs7OglgGA9VqjyWSh8HXT2CTudqPDM854oVL1oF2uD+0hMbvjjR3HmyrjxyhU2LXwTgDOmUHNgRydimAOz6BxDhjZATpi4bECfrgdPFpx4NdwY2SPTwmtrA3XV4edoBvFyXSuCsfjXDxjNFOEUauhJdkrT4MgZIzqm1KBqU+mx+0gbDxDmI0Ma4a1JwqMzaDXGkiO0GAX9LzORvBu3mo2gc5fglcN9ZgHhDdih6FO4wEA9nl5AGA2GIyGAXBB4qpBeHNAowDG+ryUyRvEiHibQauxMA5AYAnpmxJQ/YJH4B0ig4PGTvz9Nwo4EomGEIDnL1+enZ9fuHZl9uo1eMyX3r1y5Z23r8xeRwcONOIASUxYSMpE6GADAMEl7Z5IsT8+ahtSxWQElozkpsPFRNDr+psCJl0rtXxYRaPqcDyRLoACzpVq2H1VKtTrtZW/ATDLOqZGHFIwma+2Op1Wvb3aCFbr9RUA4GjAgz0ZCMBpjLpfaXd6vVECj6AxT9uDEj8QA2TJluu1ZqfVAfwd9gejjfEe8ZZ29op+7pLx3XevldLlI//s//Tu7BXnk83vf/rgm+/eNn33qGebMVvNHiMlGI1GAGCDBQDQ4uA5l8fllqL5lcHWac+0rDMJfjGQ217F9OWg7HKSNnsyJDlpwsSDAvZQJG10JLzRRCqdSsTjgVi+kCtVC5USKPZMwA8SFs/qAsliPlOqZkFL1nMRhSNZYNWw2eKZbDZOWq02M0PTdpsByoBBM79MkW55AQCYRgssH5INnltc9sc8YjwI203wsEZXRPLQtFkfCYt2PEaKAcaC+s5hbgpwlXxxpaoGBBfQeCmYSGfg62QQgDlOUADTw3EXpj653A5xGtupwkK18w7SbrXYOCesENXjolkD/abNL5YttbaOzh82Q5moKkeSscLoRwB2S0qwsHG2Fy1kI9FAdmfH5w/6OD92osJ2C1POYjwFtHx1Pxtde9QT8NBYsikpUolBBSIpl4kUYj67aUFwsrCkculKa+InaYPdoR500ZEfVnGwvuFedsu9NRaPoO1Ojxyvtrvm9MgZBAWcu1D1UbXy3GHH8Lfa+NuxwRnfkAIqKOAdUkk1nohSpphv7/1wIAQU8ebnnzMr3W/TwU57cOM3r7tf/+bfP+Bbr/892xtv3/y/vl5+8fXTP/30d1/842v38Ovvf/rzL3/68XufPH/63Xvli6/uvf/+w4t745PjO08v1qzNfdDFLy765w/2O19/tPX8w1fP79289+zOMDN87/n2gzu3zkaNycnttfZJd/zg9tlRPXjzwaNK72A7U93bPOmN+q1qpt4cH44Pdta297Z3Ngdb24O9g1KhVu/U27lGq53PjzvdQW93b5Wu7O0dr5czo36jvNXZmWweHty40eqO+7Xm9vndO4c3NyrZSn/SzfaPbh4dTgG4VR2trBRbQ3V7G2qTGglWzzv5vdb26sWtmr9ztFnLH5y0Y+uTst/NF3OhoCQIYZATTvR/tBi0JlJmGP2sw6xbXjSZNAbQwKa5eRangGX0nuJYPQCtU5E9LE9aWTtttRKkWbNspAgKP4ONJHVmyqmC6oHS4HQ5WJPRkWZmrmp1JpKhbTr0V7JA4cXhJawotNVk0estBoPFDLhM2jk7wwJMECC/ncDsoug5JHkctMVMogKGNaliE7TPLUsOliFsGFDLMG5B9WEvkC8U8UewOWTa+dToxFWMpUVIUASnwy047U5MLsTuDBxRcGASHkMTXCAm+0KxEG4IUG8u9PmnbSTv4FABKwGobFEZRI/ohcKOl492PD1/M09Lsw60PcR5W5z7SESBDqMxcyQUCMUz+UJ9pdlsDTc2tibjycHJyaqK7tIRtDxDjZyr1LqjyWFajAbw+jadz+Wr1Vp7MD48Tgfj0Xg8if6xpWol01rb2NjZ2z04uX2x5X2jgH2Ar6IKkB+PgfAGoY4mWNj/jHeTvmmnkE8SESYF6Y1rowcDgTk8gqZ/AsBjWJxf0BtsHEdZtHPzgMZz12a1i1qjlUYABhI2vwhwBOAAv784u7iMAGwyGPGGHqdanWiYwdpR/oL0RAtnDzbNTQ9/EYWnoQwIVKjtp6YVqscj+72MyWgiOW7a7sxM56kRcvE8GVai2zG9rcaWWDTkQDOWKQBHFDm4sjZYW13thATs6H4z7+QVgUkCANOkUadjfSAx8MAShS9agE2dMqduHU4QNQyyFtZgNFFuF/xap9ETrG3ZwjK62UULxXocVtC/WuxEXrYwDNRIj4WwWc16rRCQAoDZFsLMosFzUJmergMAA82B9xKIBWuWAAPtLA5DWeCfCuhrZHcDAAdkwQ08jrNYKH4a4ohTyoE3Cth9eWZ+ZnZxaWnp+pX5ueuzc1ffeXfm0jvvXJ29euXaDOYxXAUAJq0AwFYNKjVMj3UlV4bj064mV46jJaaIABzze920kg553YyDdVWrhZgaQAKYSGRA/lWL5WqlAmUhX2usNFo/AjAGenFueMPC6WINAHil3lmtquVadeWNAsY5YFjTaKVVrqwA/v4NgJ3Y847dB4lMGhRwo95orrT6vdFoOBiNtw8ZAOB5zfWrczOXXYN4Me1avHLl2lvRw93ffXX+12/fje4/+PDuop6zeiy0x2Q00ADAVpYG9ME4YLekhnMrQDC6pmWjzat6AoXttSllAQCmCTICfJK2GfloSPEQJKPnEwL6cCSiuHuS6DSVr1cKlXouFPBKkgO2fCSey6aL5Uwsmq7mYkEnhz5lQOuTgItxCgEYS4jNwOHpx7yGYSRpgSdtrCzJDi/Fe7wUt7ykxERv1K/I6LtmdEWB9FBmXTgkvAHgfBIBOJvJIFWp5ovNquJ3O6DGYFJKJp0GfhB0k3aHqMqCFAq7oO4xwDVEBb1cVBHnIXmKtRgJp4t3+BTRQzMGRnrjUZavrWyfnD1ohtIxvxJNRvPre1MAxn76QH4EAJxNx+L+7MGuDCSFBwCeRqvGWE8lnQQZsDYJpUYXTSmu+AGA5QSpBrxuD21jtIwY9TmtS4IiiL54Nllq7PsJSmt3ebbaUZVnDLQjWFtzLnnk3irLEjaKdKmhcKY5NmfGTuQNxXs+XcxffORyYr2rj386NAqJkTcGFfd8bFEyjZdeKVsodDZ/ceAJhaTbP/3CVur9tiS2VtqHP/248s2v/voh3/rk3zOtwdrx//jc2vvNrX/56X/6zT984u1//cO3n733xa/++e79758M4uqzz46fPn314usvv7j38mJIrGx++vLi8Ub3MNkZnb33+HBn7eThqw+2h0/ujDYfnd9/+fDp9vjZ9sZhs9G8ee/0zlFZOn74tNTc3s2tr01GvVazvbZ+sDker0/2uslyv5XZ2Ftfn2wNJt1ia9CKFGOjjr/aX6v2dyYDurJ/0C/mEs3t/dJqPlron13cKK8ebU8uTgeF/PnDsxunSi2ebsc37x6dnBxsZOh4s7FWWGn0SvnDAqsEI6l6on0zVLlZ3rp/uyo3DofV8sFZL725mYt4nWUEYK8Yxf5YmiFhJ2hNlEJT2uu8ST9/TaszMGbDslm7ZHOhLbvDTlkYGgCYdCiKh7cDIXUzFisB2gNUFMn8CMBaC2WXsBtPFj1ocGnlCinFziziqK/NqDOaMPfdQphojgSdQVjNtNlo1huMWqPNaGRFN6hqliF1Og0ni24JAxQkJ0dD/UIAVvyyjD6EPuADLMnguTUAMOtBi0kfKGAo+GgGFSuWK7VGtRVFf2mEYBlbGgUBo37dANQO+BJvFDBLoY91IBnEhhlfIAi6Ea/E7XbSSvAghWHLCEoiIAZVYRolJ02dsBw4uI+hQhyUDRda0yuiBLU4BJI9ipEI4Ug8Eo6m84XCSrvd7q9ubI129g739w7XcQwpHJnGL4WgOFTr/dHmYcGHV1nhcDIdT5Wq9e767vlpJhiNoJlWpoh5rqXmYG19Y2NydnRw/9BltepNBgrBxutPRvCqL47KG4+gcVrRj2lREqo/EZiTV5qm2mMfNAb2oN7kOeYnRpo2Ls8vaAxWPLwwLoP8nb125fri/JLWiH6jrM2kwd6sRUCG69fg55JGa9BpjQjAwDzYqZe/k6fsOInrlRApHdglh+05ijTF32kTmIJApWIjTSAS9PmAQXlIgx5QCmEXzSC4H2OBnZ5pE/XUuBrQi0dXLDQixVYrXxAEQGBlfbC6utoFAEa3rR+tMPEI2mBhcIKXkxVJkaeRhPheKZiCJf0NgA0M6FMjyy7qzbTbSViNeo2eZG2LPwIwLCKnVbe8rFtamJvTmElQwIJoJaBCm3RiwKu4HITRamLgfY2EsNHMNwVgFb3PohGVNith+EZ4QrdsIDg8ClDwsQeCsC7dDqjj9LSHinVhfCOo50AwlIhk3Zcvz83MLSwgAM/Nw0O+egkA+PKVqSvK5SvXrsxcuXJ5loTiZzAvmjGuAngun2gAAPc06QJgThCQl4kWo4roYpTMGwB2VyulFKznSCKVTGQK+VqtVK2WSyuNcuH/A2D7tIufQSesSLYEoNsAJdst+euNcr1ZioX9PwKwEkminVujP2x18AgaJ9+n5iteFQA4k86VsLm61uz3NzZW+2ujrUPqreW55bnZhZmrl7pVlb4+/87iOzMzav7sD99/9H3qrUjtxZ//Shp4G2kmeaNJz6ECZgijCZTYtOcikgNOetizLJspSXEGSltr2OcWBDrPMNawKnkYwuSMR/0uYO96Pi6CAE7D1onGMQetVCtXS/lyPYeCz8txbm8sDhq0VMpmEtlaPhFysaxbhH0O5DidiqN7kI0BskVYWJI0agGAScV5nSEIwGHJ5aGpKQAv+qKiN+LHgC2BNwsxr4sk9NpQUHBQrHkpAgo4mckB0KIxWCVbbNYUFVgXKGB0y04kEslkWCBZAH4fyNagiyIJxiVMzVrwPsMn2GEbUSa9ze202lywAYAlMkAAlCkA1yc3zh+0wumYqsRT4exoLxZMwJqy+5RAbu10L55NxZL+3NFEUgM+Dng9PIlYLGUXy5l4LBLemETLGxdNJakogmABAA74JbdopxkN7Q557YZZJ7wTrBRQ4sUtj5nVOT2h3V5YdnIkyfkrA37RrQ7WsUWIoV1KOJ5vj825Taffrwjlu15d3F944HKgA+7K9rdtgzc59iaAcp+PbKHi+tdBNZfONEY/O/SEIsLZN1/Q5c4f6sJKpXH41Sfpb7/760d885P/SK/027f//CUX+OH2D9/+07/86QNv/5vffvn6/c/ee/jNd892d77pqLcfn3986/aHX3xy+97zoXNl5/XzFweJ9klp497Dx7vr9b1HLx4+evzq7nv39u89urc7PL272V+/0V5P10/v3np4nBNPHj2vtcbbtWGnVG4OzkfN+tb2ZGu8td7tbeydtNrrO1v9/nh9tNbbO2hk8ofrlRzw0d5kMmDqR0eN8qCzd5CPbxfS548Oe/njnWq41K6tH/SqK0ePn42U/Uymfnjz5snp4UaWTTab7WKu11RvrtKiN55NtNdWunvp/rh3cbMgNs665erksBHf3CjEFaFWCIdkyRf3ClBuAYCxUZmRKbP2OujSqxqnbRnIqZ4TeBuF/TFQpm0sbWQY2umTPILDZuGdDPrXG4DC2qG60HgEbVyyMg4J3aBVL96V2gxUspC1GzQarV6n0egAao2Y/MrD7qLwnSUcoH54B0/QoLlIwc7xnNVsMeq0rGCHzSJBUXfhJQQFJdGNog6EF/peiSwFX5GmaAdvF9Bgwyu4vVClYxFYdznYCivVdsw3jT/3+8TpyajX7faKkux1O2jrmyNozDmkLKSCcStQMv1B7ILG0yMXAjCIZtkj+UKpsCSrmD8Aaxw7cDx23gmslUMYomi71yf5/F4ljHcucdB58Sg2WIEmBQDOV0EA91dHk429/YOtzd0RKmD4jpSw4pXDeDEFAHxcQZSKRaKpbDpTa/fXNnZOb2SCsTAo6mwqW8wXayut7mB9tLp5c3fj3jFvJjUWI4WqVgikAOmjidg0+gh2tOgDrJMD+M0EcQAJzaARgLGzCU+hHdObYJ77iY4gDZqFuQW9mWA41qrDO+CZK9fmcD7MTAMDIWy669cXZkEaX8OO3NllrQabog0mK4Ud0NhBxzkdlB0Ikl30upxeWUDlhyZR2PAsvZkD8slTpYhZhUGMz8WAXDdpNJhIinNgKzUGEGLDFTbnTWeJRcBfO//GJ5TDA24nAHAopvr89bX+cLjaCbqnhtxoBC3Amyp4GJ2FJYAZcHjJhmFZUxBWpzGUPuxAAyJIYByhwcjzizoj5XaTpikA87ZFgqX188tWxi7YrQa9zjC1hzFit5Mg4GENadZ5/F4VYBQU8BSAwyoOvMlqKAL4Gg4BUVJIkxKXHE67TW8wUXaXgLfvULDh9YZkt5NmnaTZStL0FICn1ET1R4Np16VLc0BtZhc1szPX565enZ27dvXaVeA6SHkuX8Uj6JnLc7DISb1xzkSzeHBP2mP14fioo49kQfepqtfFREtRePR/U8C0e6VSzscjmAqWTKZzOQDgSrVUXmnVilVMDlxdRwB2oZE5Bg5K4QwAMPxBrdGpx1srxXqr/Lc5YMkrh+LZAgLwarMzSuOpNYc97wK8/GAsnc3kitVybaXeGgA/XB2sro0PzO8uz2tm5uevvqtvuq2X3np3yfD225e03M3vP99RZhcdqYv/9g8USVlNQNnNFg2HbmuYRA4w5OKdXiGWKaysHfXNyyZC9Dn8pa1VvEYCpe8gGEs8JLtowupJxVQnTVEGPuZLpjKZBPLXQDCZLVSqhVy6UM0GZFCSLC8IIewUKxdypUy+losF7CTjEUV/BPZaMhGjTEaTDbO4SBxAN+kWtLRNpi/bbAThxmZL3uYRWW5+ToohAMOCwjtgISqA+NAAAItOmtYjACcTqSx85IqVaiVTateB7wt4BB2IJkGHxpPpqEDQdlg0UBZDTgKqn9ttFzEYGgBYERxuO8j6ZbPLrtPA6vHaWSMjo6M+HkHXd26cPehEUlFZTqSDmfFuFAHYaVf9gczgeC9RSEWT/sLRBihiiQWBkJjORTuESiERCwU390C0PunIcb/icZnlOInzm143x+goZ8hn115zyS4xUGg0Rv0jh9FhcDhik6FfcNJ2gvOX+9yiJzAcQfm10XaHEEhX2wNzbssJq1so3pH0cbX4iOdw7rG5821T74lPpIDfJ5+v24LZ/leqL5spDcffnQihsP3g00+5lc4PNalebp1+/Vng02//AgD86b8nG73eg798wwufPP3yZ3//p//8nnf43fcffvH5Z89f/ezV3vt//OkvB4nXj+7enFx8+9nje097VH33w/furnY3HvRXHz19sbv54n206Xi0NR5s3b916+JOP9XeqDbPRu3jtfD5q7OjjHJ2+16lu7lWL/US1f7end213mQMEnh/tHawWW9vjibbw43VbLkzyna3t1pb24PNbrvRaU92BszK4a4f9sXuampcb+3f7dXXH7bFUC0DD2Jl92SjObx33nhyey3Wu7Ozf3q6nWWSzXq9lu1mizcDbECKVzsjd6T/sFzYXbl1XvI1z1vVfH8jrw76ubgq1gshjH0iaKoAACAASURBVDOLez3A3Tm8jIFC5mXMlIGx6a9YI9y80cSZaZ9kMRAmisYrX542g15yo60SZzJzPOCn1Qj4y7MYr47WkGaoZU6UdyEVkIynbSZHJBrWL6DdP3B9/TJKLgdsbX/AB/pEIKwMxYtOlxcUKl7QMKyDtxit6HUsOnjB62I9EkOQZgth41xu2Tsd8PP4vDLQOI6m4AeGqmEzLtRkHwbUY4tTrlyuNld6CRmbcP1QhIWAPD2TlETZ57I7WCtyUDsKLYayMXJExZZi0O2YXIAeSx70nkYABr2aSEaDfhXvEhW/b6rrccgfTR1pAGCCxXYbTKeLof1zGH0hg6HYj05YhXKjXu+hD8fx0enR0elExe5Z+FJBwIoIAHCzP969UZTCuIpxbjhRbra7GD2YDMSnnzCdy6RLeMgHMnq8dbqzc3HoMFv1ZiMlYjBTIBVFY//gmxCmWHyaAwH1JRmLRvGCQfTKQHkxtRf7t0UcEhIxlvAnWoI06TSLi1qjDdSoTX/16pXLKL4WF5emV/qAF6a5+aW5q7OzV67OzV2b0+m0OlTACMBA74EzAaA4sQncDcJFcPiCPuyH9sqBIA6ETQMKMaAinEiEURJHoqoS9rvsoio7rdolI57JosHZNIjBwU0h144jyC54T2gGo5ZJqFToR4kALHvl2mqv3x92gi48TccLYDz6B5VPa80sKFoj50P7ArygRdqBUyMivF/YAu7ibYC9hMHE83qD3urygL4HAKbsxDLgmn5RZ6NdHs5iNhuMy/PzWhMIX9YjCka0DDFqXKoUFD3wcm3YBR0OysLU2RTfR0wZiUUBgNWUyDmwC9qE2hn7vVUE4EAYvkHgaxSBj9nhmR7NTy1KgkrCeWlmce769TnN9Ap+5srcEvCd6/Nz167Nzc7MXJsFSnRlZp6yAQAbZvUkhliRtCdSX9vcbZrDxVwy7IU9RkVKMUAbSk6HJA9AvadVKxfTCbwXTWA+QbUKuFCuNjoNtKQEAB79DYA53uN1e8M5tHpuNeqNQS/XLhVXOpVY0C+CQhYwWzORRT/V7qDTxTEkpxN4Erx6xa8GgC9iAF+10W52hkAypy72R4YrICTfnb92+Z0Id+XatQWyGqZm33lHezJsOa9epfjLnd+fLcLbYcVDFssCAwBsZUiTGWq+k3VIQiKZKg+P+6Zlo1XwOf3FrVU/QJ8CmGAkzYmwj6cIq5CMKA6GJo18TI3Fk8mo34/Wm/lSsVSB7VKo50OqKjpo+HRqMpUulHPZWjJdTEUQgF1uTyCRiCbjsShp0BkIEgOXaZvFZtAuGTg6QF6ywRN3ewWfx2nFmKTZ61JckiJ+jPlws0ZXyAPsVKMLBb0umlrWxvKJRCyRysNHqVqr5Mrduk9GAHZ7/XgKEYc/jLhMtFMUpWBIjYDMZZxQfAQAYLyaRSsqO20xLBhcDu2ChbQDoTVSwIzUIEZRVSenN+53IomIBFwjkN7aiQTiMuxgoCWZ3tFuvJyKJPzFw6EPuB7vl5UUOoNl7K5aNZMI+rePS93x874YDgY8LpMvRqgBrx39h5Y5MRkRjQuBqBrM9rYm5w9eylaXgSbtrUHQ67EyhD1Q6XNLQnA4YlmrhYCHGUrkG0PjFIBVIX9HMcTV0jOOCYUi8fbBz9oGR2TfK4Rl+WzNLIcGP1XFRDTT3vjZqRCKcHtff0w21/9+xVMttc++ee188c2fP0YAjrdaG/f+x5es587HH3//ww//5QPv6PufPf3sq/cffvNs+PUPafbF15nss9t3X25/8dHF3ZtrttL6+x+NV1/f3D4/uTOZDB9++PDj+zcHhw9efHhzvXN2//7FeqZ2fPH49UVvtbhxcvM4E7qxu5Ptjrvp6uqos3+wNhxUy8nq2ubmzrBYbjWzrfbayU53s5ZuFFfbaxu7jXpvMhzVm5PdAV3f3Vg/LXfXx2vZlcMHvfTJajxS2DzcbKQy1XZ5cq9ROrozeTCJN/YPtk/Od3J0sl1pNFfaobMVqyJkko11H+GM79yOdUbHNxv+2mGtVlw7bCdH3VREFmq5QEB2eqIY084BAGMXNOvhSAnq8cKcUSb0oBE1182sZtGwbLSY0SOBsFA058EuVMpow55awqw3UE6ghBY0g7ZZGMBXvKqNRgJe1FyMyekPhvW6xYVF9Ohgp7E8PEtDWYQq5VddDEOwboZw8ui44LaTJMI6RVj0lNvpEEXBLqk8ydigFsLWkYSAggnBsMAxJNhm4+ysnXUpPkXCk0ufX1LDsFsDhXppCsCSF1snoFb6w9if44PP5xNZ2umkMEQYb4TtaG7gC3hVDFpSQZaifb8HcxamY0igV2N4uBXFVmpBwgMjl9vJAPZzGEnI2u0UB1vILQcRgqOJdCoOUjYYnubzpnKlSq29ggC8tznZOb5xcrqhoigHgBBRGSZy1e5g6+gs7Y6EQLQCKU+kKs12b7h1shVRExhzmiyU0olqu1rtDDd293ePDs8fH4hQ540GSgSBKQIAR0BxK7AJpnEwUGXCkZDkwj5JWXQLwIV8HhF0PYAWakkHNjYB4P1Eo7faTMsLSzrzm7Zo4/zldy9dBTTAJiSDBd4C0qa9fm1+cfbKDNpEz2t0i7PzOpPJZCGQcNk4eAYeF+1AHJRVxePD02fJqYA28ktycOpBCTXr/+XpPbgkOa8rQUoi0V3epzcRmREZERk+M8Ol995WmqrKyvLedLVBG6DRjQZAgQRBEKAXBZJnRMqL2j1zRhqNVqtZ7Z75Y/teNjTNcwB2daMqM/L73r33+967V4+np6l5UQs1RIRH0IoBUjndIAoD8OlhIjMjiOHpUBjDBlnG7wlwAjM95GfDIrxsJWamo3KqPx72+xMcQ5reaMsosUGVyIwXWJzf7WXQjjoiw8eEF/9T3xTMI5bQutvtDxJQ9Zmg0+kM8Az8f7vDS4bIdXco5Fhx0WFWCXs92HK1ugJvn6RwBjzgI3ykA8eQ9IhMeUk/Y5lQNtHaVAFKAUIAhDasLdVPxCwxLKChhIegw2g2HNUxUD2JSMCHohRUMHgz+NLwiB5IoZZIhL5z797q/Pzi2voKHjcD9M7dv39/ZXl+cfadhXtzs++8Mzs/uwAQ69lwrrmp6a05I5rN7d2HHS+6L4Lk5ehgtphQFSZolIwosBaCb9cqJajCOZyPzefRiKPZaLZb3W6n0+11O+P9tKzhDTBFoiKP6VkcMxq2Nls727VWrV1vNzIJkxeooByR1EQhX6yhnWpvuJcKwAYN8bCJgEYAuGRzxVKp1urCit3ePtjZnuztHV365lZcc3MAwLbYHy3avy1VnpU3E6v3782Rtj++5w2JK8uOeTsr+BVLZHxeR4j0e2y03+MRaBwo5yNZLVI6eLTttrmDgixqlYMxMmNNkqD40FYcj329bMrQBSZI2ok4Nl1mYcPFM2auUa0067VytdLJmjGOxe5M2Ujny41mKV9PZqv5pMEFQoIUiScT6XSukPZBRSJJiqH8JE1BhVnZCBI8abe7bHZS0HVeJsMROrS2RGWjEagOKnCykCtkyazfv75hJGSeIW32dBkfdjGfKZbztXY5U91sxAGpOYZTjXi6kJ0eQQtehuZhsWqZNIuCJSxhwoiVNBUNh3pZMuijPJToXnV6yLBMrhHhGFqspYv55tHV7XtdswwkI5O1SvuncVhTAi/FY0px6+lRqgIb3mycjBXNVCnY7bkUsIs0K9UawMTjpzf1/sVHAyMZNQDkY4kAVFxZpqjAql9MmkH3hpU246XW8OTm6fc0b8hH0kKukuQwvDMUrW2xK6S5sx9iQHtRgpFM17b3HYWRktQUufuu5DGk/kcUZyYSudbp1wMPnziR8erxbuJNZg++VPR8OV04/NU1rHl2/6ffC9W7f+iE27Xh2S9+zP7pT//j08D2j/651JmcvP///pLQhj9//duv//H3n/HjX/7VR5//9PXXHw5//buwIxJ+8efJ2k/e/eDBu1+9OXw+CBT3v//Rixevnx0+eq93svPq08+eTbYefPL6Ybt2+t2n4/3Hr988zvZ2Die3zf1x4/zxRTF2+2hc7W0Vh63+2cHWXn+nWRxORudnvXJzcjye7I979e7e8eHZ7l6js1MbTXq90Wg42Gxcn43o5s3t4+tqca9fyl7ejlrXA63SOjlt5HfOJ4UsbKfr8/zxy8fbk9urJ7cPH03KVKHTbtQOUrvXvKwlco3DDMvn2ubdUWbv+rrDD8/bjdzkqpvZH5WLiVgtb0VVTkrh9SjtxYpkd5IyzflsNONYdvkcC87Q6vqyK2gH7FSg/jB4XkSE6RAe0wY8PoAhH2F3bwhBhvBBwQZ09mPACUCdgcaDqhAKkc4wyEHO7kDvaIYRwyBv3hoeYa8KKDRBEnCCmEfFw+DoMObVQfl3UxgEK4VFRWKDBAEFlObQZ1CFegxAGlUYEGIBHO4IgQDDCLoorOiUgV0IqVIbj9S6KVHFLmAchcGWWGwOgrotCKrgD4V5bnoZ6ofNJ+uxOFREKJaw2RV0eGBDQbzwEnC0eMom1DAPIluNoAUTvh566l9MggQnYujCBXrIsNK5HGjQBLosYCZSrliHV7G5tbd//OBs9/zZ85snJ/p0ANCaHhjHc81+rzk5v63KRhLzfEGy1Nv94dbe+YObMgB/KpsvVSvFaqdTbfa3907PL+8un7440vyrPo+DBFhVxGgc1HsiXyhkQHunkglQ+WhDgewmFoU6oEwHc1UFPSukaecN/grR31q1w0e+trwCAAx6kwr4bAuz80ur6+trqyvrdg/aNXvhS4uL87P3Z+YWFhfXNtbWbG7kWSQdokk0Dw1JMhrLi4ICrwThDh4e2vsbCIxTAI5G0JoMKLWoGaaOLWyRqJHEHBmPF40nCfgHRWEnNKbMSmGgZiwL6wjoEQbUhDhU2owUNVIRKbG5MxwOJwM9PE1BxPNlFUfARKideIHiY6cZxQLaHGBw89sjcEWVFJFjXV4qSLjcDOV2Q6HjCJ9jHbQ/TaziHPCyE9SpxKLthm11GQ2xgfDzikgRfrffZpcMeDtCwOXzUug0BIwG7bJx4imKQcWapRJENC1zfMjn3HASIU6Ch48O2AZaZegKz0RpH4r6sKhG3wKwFTNSKe7ezOz60vL6xirmLszMzs3evzczMwXge4uzGMawsDi7EIZn7XCtunBMAE1jrPZ48qjjzZVKGUNBqpgvpaKRcEAvAeoAFRa69UoJuFw+n0lnC8VqvdlsNFrtwbDfabU77e7uflrR0ZWFDgAARyNGHljiaHMw6uxs1Tc7nWa3mUlYIgCwhACcAQBr9Yaj3mA3QYQxs0jE0wdMtc6g++J/AvBke2sMCvjCu2hbn8Xb7LW1xdXvzNfuHtROTpZtq+/MfWdlw+een1teW/BHkrxsCCGf1xkifC5byO/xcgGWYcMcPFQ9v/Vgx7PhCorAn+v7OzrOskkS1BI6HpfCJOUG4RsV6QDpIAF4gfZi42UhWWzVqk2gD81aN2tEwlMAlvRsEd0wchV4EllL54IhXlJNbBTJ5lM+B1CtAE0H/QGKdLocS/ZQUGHX51c23N6QYUqiPyCH2I2lQOYbAJZE2sMlozxJ2h1WXIAS4NpIFmHPFyqFbKlaanQq2VqvbqlQRIC96yBhk8CEsibvZRkhqseMTCrs9uNAmji1ujJVUwVOg82nQoCWSBfsa5oLOGgV/bbjmXyxfXJ9/aJn5IEEZjJm8eAYw6FkXjJjsfLWu0fpYsYy9NrhSIaVRUe1eB4qSSLDqbVmLpNJnF5X+xevO4omCnTAqaZDMUOQRFD8G4SYMIJuWzylWcXm1unNe9/XPEEPSUvlZkaRSIYWMt1hYJkWKk2P3+lwufx8xCxtDuzdLWx4CbefaU6tVHpGc1Aec+3Tn3ecfPI8iofqDyfeRObwKyWWyafL+z87j1gGP/npx3R79IeOXK8Pr3/+M+57P/r3z0JbP/znXH548up//YLQ8j9/+auv//oP35e3f/67z3/y2a8+3f39lxw8dsN6/dPo6Q9uPj5/+mcnp0fB2snnHz1+9tHr68P27tXxszcX2yev3j9q541Mubb/5r1e95PXz5uVk9plZ+/lzd71RVm/ebRbbPYnx63qeDzaaadb1we7V71Gff+0X86V2qP9SSPbOtg5umglN7cTW63O1vb2oN2+PR/RjcvL6yflSrLXuHjWGT4tGpvdx0PRExTjnePdfKnb3n9Y6x59fHZze3V9e7tTILOtZgeW32kZMCmb3WlIbK5flFrnjc0nd21566Tdye0BAE9G5Xxca5TTlilKCQC6MJRgv8dl94aVEOuad3o3ZkiVvj8rGhvLLtq1vO5kCU+QY0AUuYN+Csqa1wVcjaJIv5PwciTlC4RIAE3CQ7rdlARVF88hFR7WtldOZKvRZXsQR0wohg4E0HkB0PibRFkB82xEAeNwaAYdGLAv2U8QLhpNgPG+SeQowusFAA5DuZBlFqoyB8jIUmwIO7NYhlcjCM3ovGgYUyusQr3R7Q0HWVVPxGRlmlKLRRmoOy+gkXOYwG+C14xUMOALyDr8HQxHiMdiURUHjVjShy2fgKyoVBOJeAxQBv3AplMxwtQngn7bPhTA8UBe0vAEGKd5NeCtueQUgAvVVrvbG00mB5cPrx4+eXT7bArA6Gwbgb2ShdLW7RxeP6wrgN4J2DnZfLWFAHzx6EHBSIDGyObK1XK1020N9nZ62yCA7wCAFe+GH5uwcNoHj0FTxQKQXR2zErEjO4rfaxqDLIo4Kos2kdJ0DBhvt8NT/A18a3HNPVXANjdOIALrca8tLiytbqysggReg8Lk9/kcywtLgMBzqM7mllZW12Ef+vx+fwAAmOQ4OiSpghzDR4O6czp1hMe+04Y2bMbCQzuQgSkT6hF6NgJ5kiLTuSSVnzZywQfrDwL1Qlc0FhFY5BmeB2TgBHF6E8zxoI05CdiRpiR625jYOdDZafTh9Iw7EpOBwLm9eIHiCwMBkHFGF4941W/6wGW8dwAAdlM01NgpAMPKInz2tQ03ESLXAIDtyw6oy4gHLodjaXFpw+UjAmgfDjrf6Vm3iaBXVSHo9ntp7DDXFBEdON8eQQPR1C2FIGNZBW82HKt2ErQXcH60/9LjaGOMCpj2B4PBUFhSogY6g+lx3UqnecDcjeV1h30ZgBd4zv1779yfm1leXlycvb8wvzA/M7u4MLOA6RQu14o3GMD86yBrtMfju5YnVy4lY/DOGLpQngKwUbY0jH2S+00AYLRBAgAulqq1eh0Tgfv9LhSHXq8/2U+rBj/1JcXcFMXCVvxRpz/ojIe1PujkzSZwSOUtAINYzFcBv/tb/cHYIsJ8KMS/fcRaPA30sAICu9vdBADGX+P943P3onNhduXevbn172wsveM8+cV+5sFNaAnU/cLKd/5oY3FmcWk2aJUiohYO+XyukM/jBAD2+hlsNGFZVYpni5tX2y6HNygqYqw02ZlGakmw70k2Yck8GXSFUjF4fQThpBJWFgEYXks5X2k3MQOt1ap1MjqaMbMhQdSyxUqzXcmVisVKxtLZAAUArBtGIpXNJTwOLGIhCihoMOBxr887aDIsOVbsbt+yK6JHRcqv8ADARDqqwv5SYT9RXiGrCYGgy2ElBIamfRuJAux7AOA8SO9Gq1Kod6smJpYjAJuJrJkuFHMG5wdaFtVBEqfCPpJlOQkzWUDMRg0JpAgTYhmVoQQ24HPSIDedwRgPDDaVTgEAX10875ug6fVMWi/sHwNXj0MZA35X3X5ylCmmYDvVDvpKRIuGIrFkAYh4PBNWq41sJm2dXNaGVx82eBVDx5yRQjiqhUU5SAQcQdHSKY89kdKtQmN0cvXe90ySIUOsXOtk1SgVYpXS1ja9Ggrnyh7SaffAF7REpd0g+yOponGRzaeMp1DY/xEVtpJxAOCfNp1C4lKH7aEiAKcPvlL1XKUyuPn6OhK3xO2vXgV7u//QjtQbnbMf/Dj02Zf/9jnb+/S/JWLlzet/+pIuyD/+4Ke/+d1/+9NI/5e//dHnn/348Ddf6GYurenh1q/utBfvv/fu3mdPj8dM/fizN0+fffCsc7j34vh77493nn1wOcyX9j6+HeYTzQcfPdu8/uyusDnZ3d16ej1+dFbSrx8d5Jubk7NeqdXujWL184PxuN49PB1lcuV0udTsdEbjbrq907samNu9ar462N4Ztju3p0OqeXlx9dAonV6fX/V3LtLZ1v5dluGguBfKtd5NN1LbGb8YDu4ePHlyfHl9Pcr6M61mv50enIEAjpea+6Y/1hqYRubBTuHZw6aytd/aTO9ddNKTnQoCcCkJi0qycPiDweHc9YU1yr9sszsYemOBVPilGR+1fN8bj63OrlM+z3R0BD0PKBXzWtEIGe18gzRNEB6C8pOEJ0CSbhcpqJg5HlVAAdP+NSmjsL4FOxUGyELtC7WWwZNFQAVhqoClMI9zqpIcDksSujEECajyrpACX8OhQ5EPkV4fkFROwhEXCaBbjgoSF+JCOA3DsbyiAMZEdR3niED/ptOwGTr97WFW0cxYFNv9TfgjHWBA5uSYEhZAmnNvJ2ODNBRWvOIDqFYTafRQwhEXzu8hWAwRVlUjndI1CzOYcIZE4jlO4EMBAWP9GHTbDMQAlyPwltENEipBJjH1WsC8hUyhWiqXm5u9zR1QwXvHNx8+nAKwqcXQrqYE9WIwPLt9VFcTGlpJpzJQRQaj0eTyyeNcNA6COp+tNOr1NtTN7c364PTm5uHD9055t8PjctIqMPK3w4TwztVp17MkRBQ8f7CShiZz00ndqbOUEAbsnapfYdp2TJHfmltx+j32ddCBXtB7qAIcIL2WVxaXQQOvOTwBwudzri4uLi1OHTqW5rBd1+Z0+vw+L0HTZDAMn64ghWUNHk1Uj0pvj5x1kNuaFdcR/nQ8CTateFwHBawjtQkLchQesBSNSNNLSHghfpJmsQtr6ofFizL6dOMEsCxN57UFGWoZvKWEoSY6w8FovDdEAAaJj36Q8DNUGaDRF8TgpnBM19B4C0+Go287wBCIZXSd8XjgNbs8TNDhcFEgo0AB24FSUhtenAMGBSwIuIxdnpXFpXWXnwgIUP6D8BWvzSFqAMBi0Ev4QtP4wWknvBIz46ZmYCKSJROUCQqYpfxum50SuLAalTEICh6EhQsWABjwE34GLCH4XgZIY11PpsL3Z2bWltfs9pW52fmlhdmZe4jDS6srS3Mz8L9pF/S9eeCIQZd7Dc9agOMGOLOzs/Og5ctWynF4lgAC+VIyojK0VU3o6HGmDFuVUj6fKxRABRfLtWq1hiFI3S46QW9uDiZ7AMCCyE4BGEhcvFxrDEbogLU3qPYBogfNZCKhctiEJUfiKXRYbva3t0a7cRJ0HSNMj6CjeL9ZKFer3wDwztZ4vL1zcHLmmbHfn197Z3F9ZWXhXoR/9y8bxYODyuL82tzGPZC/315dWv02mUpHhRjwFYAb9P8BBexnA9MwaFXN1lrDi4HD7ibDMq9md7dBU6lRqBIhgksaEgIwg5fe8HG5qISZiaPxNRDVUrXVqsNeqdcr7bQeEXmRpXkhhuFInXqhlMlVskmTJSlBVjVtmp4QdwEAEyEmiATU7/OsLrpogpb9bpIglxySBrzRKwrsxqI3qUXiWiyCqVoePqvxRNC1bqYUQDXPVAGn8qVCoVSpVqslVMFohAV6XtbMZM5KF0p5SwBdK02delK8j2SYMJpRmolUXFNoAkoi6acU7DmVKJ/E0UGbP8JH1Wg6aeZbR+enz0cg9DVQwEZ+9wwKRQIA2NT1+s7T40wxbVpGbb+H5/QhWU0WAYATGVauN3PptAUKeHD7ps6pOFbvjeXZSISVIlCrHSHR1CivI5U14wDAx+ePP7JYieFZudrJq7KfVpTcaCLYgmK1RVJ+go7o6VJ7//LM50rHw6oi9Y5i7oR08ROSsxJWrnP6y7ZHtC50dOB7iEfQ+19FrWK9tf/8dw9V05SHX7wMtid/15Ibzeb5Zz8LfvLjf/0+3fjuf0+0dyY3//WHdJH/5JMv/uL3//W7UufXv//+937y4OVXh09vS3o2lpM6f7OZ/OLy47OrD55tUbW973706v13D/ujL97/+MPBzefX/WLh5KMPL999/aibyG8+ery/8+Z4fN3ZHdw9uX62l9cuH58XuqPds36l1Z8c1S/OLnZKo8kI2GPz/OHZsFxo9xr9k1JtZ3hw0Dwr5qqD0faw07o86tPt68vbcrL39MVdbf9aN1oP99QAUO58Pp5p1zPH17lMb/tlr/n04fXDq+vrYZbIdmq9TuJBh4tqueq4LgZqm4VIpXF+kn74oCb2d1tda3IGADyp5qxYvWCBPhDiGKWHgTEC4/ZJgeU1hzvkm1/mrKhj3ulZmvVF1LWFddQq6I/icFNBRg75HDab00eCfPQE2ADUKX/AR2KrFgBwQFQxmi8iAwBTgY1Iwr28sbpAcIBWOLqDFsosN/XyFTAhj2cpvMlloJgD4E3tLUAB+1wM7CFpOofC0aQP7R8YXompqhDG+2MB3bhCAWCPACoARdPGEN1A3EumMwWMuh8O0lAmI9HpaDr8CeYzSYJqxQD2w1MARsdF1O1qPCIZyagcz+hvA3+lcADHkECH4VFbHISOJmL1xJw7nGzhQtiJhS8VNH1MUmMxtN6R0NIkYkQlMaJj5CveAlcq1fZwMNidHJ1ODg5vJ4YiIgJjko6VKdXqw52zi5uymDAT6UwKJHC1MxwNdy/efTerxjMgYwoVWLGtTrfdbg8PTy/ubm8+uBU9bofLSQHtQFNADcABiuIUjvCFaloUY99VkQ3B6+ehaKADR5h9q9ihQk9PkL81DwDsc6ytbDg9Hj86Lwe9IIFBfC2hAnb40DnZtjw/v4jHo/Pzs/Mr63gEDR/E1L4vAAjFMqLIihq8c5y2kafNvUYEzyESVmyaOaBFVJxL1qYpyFGBmwYYSaoU5QAAIABJREFU8awQjUGJwstfPEPxkcBkKOwMoEMAvTgGHJ5OBQPXwblglpWjRjomW63+5mh3b4R3wPANZTTd0M0IoKkbVp/P5WUj8AXgQdOYRvzZU4zWoHpzYZ+PoUkPwfmdDmcQFLDXtWH3UnzI7gcFvOKiQhgBQ3pd7o2VpXWnn0ShJBK+QMDvdMt6VFf5gIfwUnhzoOE4ihTFyW0AYExFkvxUPAlaKeDzOu1BHNKMyJhZiB+0osIbjtGeQIAOY9scHsrDatRiySR77/79ldXV9Y31ZWw2X8DD/vnZxfWNJTyMnlvAG+H788hbHW57gA7ABiSCQryzvf2gQwIAJzDsEBRwKamCfLKqcQ2eIakOG+VSIT9NCMoXi9VyuYr3v71ep9XZ3OwOxuOUovPCFIB5eJJxAI5ev15v9fY6xeEmAHAjEY/L3wCwCd8DvkF/a3t7kggAHNHhaQe6Cgp4egRd/+YIemcyGY8BgAPvrN1bXrm3sTpn/878Sf3Fz4qb3dMWszAzs/THXsHudS7a/4TI6zERAdjrCPrdDjsDACxQDCfIvGLkmqO98659ZcPDyFIs/58ALIZDXj6pywB+bjatKXKIJBGA0/F0MZvOZosYO9EAslGtVdoZ2IQIwGEhliqUAZSLxWy+mk+aXAAnKzC0BADYhG3kJtCRHKMYfO7VVV8oyMmE2+unCT+vxVXFTQr0xqIzbsTiMXTXxZ6WzBSA1wwEYMq3Fi9mplaUpRJIYNDZjXZJRzcfGgDYSGRT8EEUknKAhjI1dQrgMYY6jJfv8LuEIRJeHHZz+nmWU3RTIiIiMwXgGABwwsi3j87OXoysdDwWy+QSxck1BlLLvBjXtdru8+NUKQl8vrTbhV03BeBSAlR2mhbanXwmk7x4UOzffFjjgPwyjF/LUBGVk2VY1x5WMkEBO9LZeKLQ2D49f/CBwQghgVEr3Wos7AnHpPRgR3CQbH3T58dJCVGPZ3v7+xt2f8bmcrjm3c2wUj77HsnBhst3z77u+kTjHK2AlbuJL5U/+HEsDgRt/PA3TyKWGe3/8AO6vvv37TB8Sjc//U3w5Zf/8ind+fzfM1vH5y/+/Wd0Sr38wXd//3d/812x/fXffvzz717+8tmPMuVHdSsNO+jJn0duP3j85vr2zbGvcfDpx69ePj1+9PT59x72Hz/a6Ve2Xr/f1f3BzNXry3qyfvrB0eDj84enreLp08uLs5xx9fRhqT8+PiinW7snB5PbR+Xa7V69CLL/ZlPRdw4nrUq7WxsME63z8c6k0wLl1t9sNS8O+3Tn+uKkd7B/fF07upYKg6ue6rbMXDbR6MaVxl5l87KV65Ze9Tdf3l1f31wPM0SuU2znWrdQeYxSb6RQ+rBvmoDoV8WzB7Vwb7fbNPZPO+mdSSljxqYKWOSTVjIe12Tsw7I7WWbD5VjasK+tUCyx4QgFN2yu5Y1llxc9+KkgSa7b/AQAsH9taX7ZSYCiJQiKJHCowB8gsGzjEbQKi8tURayxhEel76/6V+9h4CcmlISnUMAKPLa8Cmi4Q/oDLKheiqUBhDm0lyLIoNfFxkDX8rBuQW/6/U4vBbwxYmlREW0fFAXHdXFm+BsAxnqMV4KgtzCntNrqtPuDrKRg8UdnQAA8DTuYBUUDAJZwHGeahkTD6g/KKEkTmmKmoTC+BWCoxgzDgcTUMY3UNHVJwCbi6fd6G/gj4KlOiAixFs7bxuSwEAGUT2ew6zGXRl/obA7nIlr93cnk+OrBowe3B4ebIAYxzUmPY2ZEpTvq7pyf3xZZHXuoMul0FlgawPXVs8fZCE6SFAvFcr0JENza3Dq8OD25vgMVLQLauJ2khMM4miJF0OwLqCcggzYdMNaiEcz/xQEeXoDKBfhLcVPlCwQoiF7OQeJbK6sOn8+xsrBqd3kwF4GmCdvS/PzMzPzy6goAMECPe2NpYX5p/j425M7OLgMw272E0+t1ebBohfGOXuYENHuKabKggu4E3hEzLU0D0YsJSBiChBlN06lkLcIxohyGz16MWaamg8bCy2dAYD+ak4anyEsHcVB52nolvnXPRM9TKaIlI3K8MxrtHk6GJg+fPrx3vOqFNyzzQS+OhLs8IYzJM0B1YkygqUffenEBAIscIC5NER6C9XjdqID9Htf6hisQpm1BnnWsuAKULDFQaBx2++ryGipgEAoAwEHa7/YCAJsR/Ck+2ozjVQZyLSiuCSOqxdHhS8T2aKCbhMfjsBGcABsgak5luGag9Tin0V5immIiTwEYeEMMFDB37/7Mmm19bcO2try0uLCwMDczM7ewZLMvzs3du4+N0diXjg2BNo/bC7uMAKjgjUZ/cN3y58uwfXV8qMVyChTwN3fADKn0q8VyMZ/OFaZNWOUCSMBWvdJqgcgdDPr97Z2kCgAcgm3I8vB64kXgiL1avdnZLsT7QwDgOgAwoBcCsGoU8vlStd0fjbYmCZLHI2hY/LKq6vH0NIGv+haAt8a7+3t7BycXzDurs2sLs2src6vfId87u/5gt7R9VNLnFuzfeSdQEfvr91f/hM5HdWl6BG0PkB6ngwUAlrAzSRVkM13fOTpru9ZsHlZVtPxkW58eQfNh2iOkdYUjgh4uDYqBCQAApxLpRLaUT2cy2VK50qyXa81ao9rJoBHuWwBOFyu1ZiWXL1caubjBT0cbYUMDOc6aLqfbjac/GAxDBjxr6x68WQkA2aeFUCBqqlHCzQZsS3ZYTQDAGGpPu8NpTQhQeAQtAjfyL1uA7blCuYg+lBWAnHqzqKsSi9OROKuVyRVKxZRMwdtTNCOezvOYgskBXdXjqaSlCx633+Ul/a5gkFNiiVhA5hnKTcegymk4ULl5fH75/kBL6mo0U0hVDh9g0IrEiXEtWtl9dmSVU4YZK+0OIjEzRinRVCmRyKZTlNBsZVOpxPldcfDgTSMMG5RlST1Da8CUw05PiORky6DdjkzGjOeb4/OLZ2/MEBMUWanQrsVYj6yK+WGf3iCp+sDncfkDkp7J5rt7E87wVE7dDpAtpYzXPPmcFJJJq9A7/1XbJ+mXCT2uKw92fZni5ItIHETm+Prr98xMPNb60QdUZfIPXbZcrBx9+avA86/+/Yfh0Zf/mmxt7z/9jz8LpWKtL97/7R9+91F0+Iu/evPz009/90vZJu6clDKqlY3+5In56fnHzy6e7wa6lz/6+N2nr9/7+OnHD0bvPtnbrJ+/GkucbuU0roA2j7nem5Pxe3cfjmqTi7OTm7x19ex5abC7N2nXN3cOxpfb+fFJtVIvb15vi0EhxuvNg71ee7S5NyiUJifdrcHWdn9zs91EBdy8OD26uz0/H4xuYqXWsw4VAqqVzrdq1Z0tXejuDPYb2ePObf/45uoSFHDGn2uXuub5gI5Gsu1JkQ21+5lYoTruX3eOH9aF3m6/oR+e9dJbu7ncN0fQvJiJwzKQIrDiAOWE4LLNteHyOJfd6wvLroDLubRhI+dWCc80oDXgdzn9fhrUp9e+uuHDDmagsICWbl/AT5NODG7x0LC4tEQ8JisiTfldEn3v/oZtmcQIBhZ4IRcKkhQO0QZRAaExv8tPB2gigHZI8J3RVDpAeVwcbDJFZHhZgkodcPtDIEi1dNJU5JgGWjTKT20wENChIAtRPIIFnQXl10oWqvVerz3YKkVhVUosUtG4DvosMk2KBzYthKZpSIBKLJ6BSrpmYXicmQIAnvZZhSk/CXIMpHLExBkH05QFxF0Bi6gAwgzYw5RIAHQAoGtWVFGMTAGJdj4DhMZMJNL5Ao5QttqD3d2908uL8/O7s9tL4AMaRgYmc8ViodQaNMfXt88anAbUOJvL5QulendzMLl5/qSop1OA4NlMrtKA71LfmkyAC589vH15w7k8bo+TFBURe5piqO4R5dD/OCajXRcQMDRLkEA84hE0vM3gWwCmAiGAKgJU57dWltfdPtfqwtK63YVNv0yIBOzBEHhQYysObyBIetaXMCF+msyz8PYOGH6uDyAJtmowzIdYWWZ5zQAAjokCYI1qAiYl0wagoG4iAGMnMP4LB3NBkuPEL0UxCjxrPWGgdyOKj+lJQhB7lHBwHM3FcBqJwR71qd8zj/FCVkxJbW4DAI8HBq++BWB1Ggqo8kEfuro43DTmVWlIRQzzf8cxKhEFFTDhpGggD7QLrShFVMBraw6So220wDpXXUFKlBiv3++220ABu/0EwYoRKUAEYW17JC0GP4XyBXw04Gw0FpHhZ+smrIoYqllDlwgqlgRC4fe4bQ4vgwYWuh7DxCQNFhSQjijlITBfWsTlh6bYpmalU9z9mdkNh23DZl9fXVmYn1+Yn5tbXF222eZm5mfm8NfszMwKB/vB7vUANgAtIIOcVun1r+puKOtp+EYRLlQsJ1WFIWMFPcKwTEDplfLlYg74XzoJrK6QzRSq1XyiVCwUKu1eF7RsKqKHBWwFYAV0Ji+A+m1Xa43uKKF2+r3Nfi2RjMPqno4haaCAK9gZOBgBAHNIkt8eQWtxJJggr5vdTcz7gkV+CFrhir63Mr82v7q4PO/4tvzm3Z03H+i7h1u1lZXQvRm5Ek2jw7UIywTvgP1+RyDgcTo5v4fkKcw55WUjXds+OOl4HKAJI2osu7et4SmWGA5THjlnqCE/5WFTMRWzAJ1UJptNZos5oKrpUqnUqBVB/9ar3YyOsd4hmhe1ZLFarZVysBebOVPjOZoXFIwlSuezhgs2EggIhgHeRwedqxsutDwQA5RES7wrqqt62A3bYnktCowZFpsihENuLhUTKARgCz3lPavxYhrngPOlfKFezler9UbhfwNwzEwmc+VKMSlTLF6i6lamILh8TJiXowDASahKtNMT8BChoMeLfkemyUtMKEgIaChnxq10eXB8fvtqM5qKKFo2Fy8dPTBhgQMA69FIafR4P14CAI4W98cRIx4NAoIX46C6UyG1Wsd5xLPbyujhxwDA2P/oj2U5JOyczcMQnJKwaJc9m00kco2d09MPPklwTFBixEKrFOE8vCKWxgPaEWDqoxDl9QcCUiJTGp0cb9xf4joL1OqyndlLazffJ0WQ8dn28c9qQFSvUrGUqdyOvZnS7ueKVag09h/+9nU8G49WvnzmL+7/fZevlhp7X/2MfPLV//qK2/rhPyW2Do+f/c9f0kkj/eWTX/3DX73Stn/5m8+eP/jd59lUgo2fb2cSRk7r/KZ4+OTJ00fvtkLdq6/e3N29ev3y5aP+968G242XrztWvpjMZYHXJkYfTBr5xruX4wfv39zc3Tx+eJw1Lp+9LAzGk7OTk6O9o6ODwuS8Ud3sP5xYPrGQsrLZuFXfG2aao+64mx4djkeDYX8ACvjqeEA1zk6uxsd3o/7TdGlwUwoLiaSV7u/muBDXGw+0+GBynY1vjZ6YD25BAY+y/myz0S7epkApViY7Om/tNKR4rT8ZH+6dP6krg61eM3p4upkZTTI5K1rLx2H/ynlDi0gYThTwOrxhbnnd7yedS/ME4VxZcpPOWQdnzM36gX1D+YTqDVqYEll2A+QQwTDoUL/OuJ0EiAaW9pDBgNcDzDmqJxJvU4yCzkjCN7PgtwdA/4YIdByHv0JQfioUwuneIKac+EChAenEqVUeRGkQFLDHHTbw/g4bjIHKBn3+IMtLWtLURIxjkYE6hKAc4Ekyy6sRaaqAIzhaF8fx9XpvszfcKk47r3iUpiCdNR0jE1QdvkM4hEJ86gAB5Y1Wp2M8CTOV1lEB4x0w6UNCABJc0TGzBBXw9NwTvgsQAxzzQ1/lECMEPRjpltY0MxHHFuxsuYB30IlkpoCDgVDPtvcmB5eXFydHDy4ePjAj0jSuXY6BYtVTxcbu1e17HcFKJnAOuIDnZd3+5OrpkwpU6EI+l8sWavVKvdscbm8fnF9c3t29vOLQotsVwCAgUTRSpooOIej+hBYU0+xfDF9Aa6oQO42e4vCE9xsFTKFlNwAwaFuH34ueRTaHm6CCXJj22m3Ls7Nz8/PwNbefJACeF5fRDwKF2crq2oYDz74JIGMhjg6FuSAtCHRYMxRF12X4tywZsKJSOTOimZo5Tcs10HRTx/yCiIhxC0EqHGIUTJ0CrSzjevJTXBgPAQFb0CSTCeMsEgfldnoaDQgscCw2YUWVZG+IsTubOgIwNmFFp3Jf5ggPSfkdNheDVwTYp4zwa36DwSJ8ZgDAfhsVImyuoMu+vu4XwiDv19ccBAAwxbPONQ9mDDAef5B0ry9NAdgfFiIyTQYJl8MtRKOGwpEevydoWrAAIpKoxvCuA8MYLITYYFBOSBTp87mB1YRkWLgg+qMaGiYbmsQElYCbCMBqAY2nw5eVCLYAYBf0HACwzW5Hy+0pzYEnv2Jbv39/YXZh5t7M/PzsvQ2OJEiH1+OnKTIAbJHXa/3RbdNTKhUyJvwghs4XE7JEBbSCpoQYKiB3CjkE4FQqbmEbXyqZLRUSkVwGvdlKZQTgqAEAjLFYEnb5FzEvuFptDsdJudXbBABOphK4XgQc4Mvky7VGe3PQH+0lSSDQ/3kEHTGS6QwQxkqz1x+Mtkbjnd2jw73jG+LeysLavHNm4X7ojyOfv+j98vNs4/n7N9S9WOCPPWus9/7Kt1cNPaEgABMEALB7CsABNgifusDJZr452j3uejfs3jAsncL+Dh7oaCLHUx41b8YQgEPxGM5GkE46X8jDtsnAS0mVi4VGrVApFSqVTkZTxLcArAMKVKqlQimZbxTiGs9SwDoA2QCAc4bLDQCMHhMUCADv2tKGO8DLgkExJh+NOU1D0SQHlKeVVSgaAMDYfRdyMfEIAvCGHgcmTjnsqRIozXQuU8hkAehrlVqjAPqbBXEACthKW7lavRgXAnyIge9i5QqCm8BR6mjMgAUUU7yr3hAZDFMBnx82rZmCDzEUCEqCEdHippEu9g/O7j7cjGbUCLYk5Q9vDM2wAICh2hX6D/asvAUkM7c3icVTERIWVsGKZ5IpTq81oZpkLh/URndvqiH0rBFdYoaRwqImQMF1c0oyTjttuQJQhNrW4cF7HyV5NigElWqnoIo+JiIUJ2PJR7PVAc9D1afkVL62fbL/joO4/yfLK2urcxtWRDn/HiHAu0jV939c8SqggNWMpdzseDKlwy8UM1+sTp78+v0oMNXSj+4c+cO/6Ui1xuTh7/48cPuD/++Hwf4P/rnQHh8++3/+jMnEUz959PO/+bsX4ujP//yXg1//n3qgW+N1666Z0syK/MMPYq8vnj96OSKaZ59/+ODB04cfPal8uH/c638yKdWqlhpLFYqFlKRWPz5tlSrvjvuPnjy5PTh79zSlnb37QX6we3Syf3Swd7yfODqoVtvjm5IoQ6WSoQTnLbOyfZxv7TdG2/Hx0XhrNBz1avXL40GwfnZycHZxVH+RSnYf9jnaBAE87OECqbRqW7tpozt6lLP6xycd9KLcyhG5VrfcP4L6lC6fN2S+Ocjr1er+9rh3c/tuLTLst9vy/slmdusgl9LUCuC/ySkFTZXwioxnSLePC8yt4s2Ia92xsoZpwG6bzxUGUEaRAnov6LBDyeRp2guMDXtnnYRviXe7GF8wyLMeggj5PRSUJ6i8ERzVDbrXhaTiXV5dWnf46KAH+0t9DrubAJgWKS9B0RxP+2iQcjSLNVUWwjigSJAIwDE8SUU4YYN+wusP8VLUtEwFT/jiAMAMH8bbZDSMRL9nFe9A8QownoaPBDPS8A44MjVHjKkgxPByVJVVUxcY9q0LE05tUMAFtFTMSOVS8VwWqqM6dXsmfMHpyEU0Fi+WMolEZBoLr0+N/iMKYDQPaAYQDUU6m7dUiZN1wOlcDRAzncmmrFQaTXSbHZQHO9vj0+Obh48/fPrkPBUBFoLFmBNEKZYu17aOTx43BSDDUC3z+Sz8J53N8fmjRyXQ3blMvIReQ6Xa5tZwuH9xdnr78MlHd4rH7pjadgIlkTQT3rWmogUyngFgbDNetIbR4ILl0Ncae81onnvr+RjE0Cr49a3F+SUn6d9YRONFr9tLBliWcKwv3r93f25ldXl1w0u4XPNLM7N4EDozO7+wsrxmd2ysbXhJr5ME5hVgJJqBlcNpsA8B50QRHi4IPh1PADQDqNK0Jx0AMmJMr2OhYoIMIDDlN8wwnAAwLAX9JBlAO+1w0B8A7A2i/ACRTgRZkgadIEmo4MMCBivKcdBh4539TRMoWUSTlW/GfBUx6PLRlM/pEyJKZKpI8TgebcFMHVM7olFZ4oMOivK5vAxt37AFZJEAKuF0kxy16udD9jVPgJYUADiQwM6F2WU8mWRFVcKYTI/dKUwVMPzGHbLMaMRAZ21dT2XjoGiseMSKiUFPNAEsh/TZ7fBaeAwj1qcZAvF4VBVAWBAej48K8wwjCKo+dQvVkgVu7t7sqt3rsK2tOtbX7s8vz644ltaA6KwvL60uwCcxMzO7sEaRfqCsLgwzCVIBP29V2v3TApHN5NOwpDkmXKxCwWdCSVO3uCBPKr1GsVQvJKx4KmkASqYAd/O5YiuLzmpWpjncsZImi01CdJADdpKu1cvFcrVd7W2nYq1Ru7vZyKYMnqNYCefbUxiu3ehtDQbjXIAGGBGmRC8SF1OldKlafHuwPRrvjse7k73jS2phfsG2uLI041p9Z/OHz8f//XEy8eMfvWrpvGfhj975Y1hd99bpBJo6A4H1eSgm4PQypBM+QYrlBWCnydpo73qH2PAE+KgcqxwNTF3FzgwuSMgpLQJkzc0ktHCYA8HA5HL5dHraboYTt9VKvlIvl9vtlIyx3sEQz2uJXL1Wr+UqmXILFDB27isgFhPpVC5n2J0emx8WWygA6sHldKwF9aioJP1qnJXlQDQpRnS3m/HMrgq4ngwNm09dnCmGoa6tGeiERXs2Yul0Uk/kCplirVQo1yrpSglWBEtTLM54pc1yropxhCFgq6KqZcuUjaB5dO2DPa/JYfuG3c+rPCZCRGR0x5LDtF9mFEwVTBhmfuvw8smbfryqSXoqEU3sn6pRwxRZIaZFM7tXw0QhqcYjtf09IxHXKdUyM9lkMRMpn7Wz9XEmefi0uX3wKp8GAa2ECCUuxYC2Mu4gA+UjGQk5nPlUIllsbx2evfrIDPMEx8nFbl5V3LSqlIbjoMvLFTqhEE4+CFq+3D6+XIoGHfeW59aXBfF+wDr4zB9BQ4P+yU/bblG7yhgJTbvedmSzR1/KcaAkW0//y+t4xlLzX52FOsO/GcVane3Lr38nTH70H1/Q3c/+JT3cOXzv3/6gGBXlvY8///0fnom7P/vbT27+7ZC3lJ00azRfFIxkNtr4fWn8yeWL5wNf9+jzNw/enL256X3yYNTc/9NRq53XWueTWiJVrWZ1If38qltrP91vvXp48+D64DgVvXvvvWJ3d2vncgskcOb0ON+rHl/GZb1WEKxWwZLRIs3qndWLk2ZvL7O1M9jpd8eN6vlF39+4uDw/vKhedSOtB9ssk02m61t9iUjmK1c3163eRZ4fn5wlC4PLce/y6HY34S2Ve6WLfsjSK539ZCDW3YymWpujveHm4cvrojTYrtSEo/MOUJssCPZGGR1vwsm4KNM0duNDZRXIeTftcvl8UHAXbAHKR7qcYXbdEZw276Bhi8dP0GGW9nuxfDk3ggy56LS5ALopmvb73AGPEzimHjWsqAwKOMiuCOl0wr3gWFyZWQp4HF6/z+UGcQlFV5XDqLvJAMgPUUY4kRWJoRkGneG83mgiFpUFvO4VQ0HKTZCsHDFjZlTB+Rao7ioG1tE0y4c5qIkguqdWjIapZwvZMp5BD7cL6FClKYKCd9J4CazIMq9Gw0yYnl5F4xk0RXopI4cBcXELx3eAN+BrCZG0wFKcrILMSWmYpCSj9UJsOvuiwGvlaJqjQbiteIpFINwhEah2OZ/NZNKwIeNmPJmr1mvNbq/bx5yY3aObm9PH7330IOq2ezgApJQVT2droI8Prp+/6aoJNNDCcPFiazDcOrx7cZpXrFwuk8lVNhslEPTD0fjw9Pzi6smTD+8U0uvybZARBa0fY4aOul6Qp05X+LgkHoSWOM3LFcWpmSNUA4IG7UsFCTSfCoLu/BaO23j9juWFxTWXx+0NEAwbdDuW8dpxaXl5ed3uttnnV+aXsAkLBPDCygoC8IbNQ/pcAMBMkJVCTASYiBmPThWwiEaQlm7lk4lU3IyYehQtR1RdiWAmrhwB9YBZTNgDTweCoQh8hrBAMGoggFwBtBuFs9lBEAA+rIlUGA/RGTSSxKa2COyWTQDg3Y6Gd5Mggad3DmoEu6D9VMBrd3FAQbDzC0eOIyCEAYpx8ltVJSiZHiZEuAGAnQ4nHZUpULZOQFlqPSCGbKsucgrApNdjX5+fXXG6/cAHoxJNEITPAQCsmWqI9Pg8TDJuxIyIElPhS3ETf4YVszSJIvQUvHbS73A6PFQYp7C12NTy2YyoYpiWCVeA4sS38zvGW7vueDo0PzO/suK02W0bzrW1mfmFewv21Y3VlfWN1eXlaSrh3P17a3SQgE1lJ3F8Phjwc0aptXlS8IO+SQGUC1y4UDFjajiUTKVTAs155H6nBvInk0ykk4aJGR159LLq1RvlQj6ZafVHuqVzwpSQoeGiVaoAy2vUS+1RLtEbNlqdajqho1SURTFqZrOFarOzORjtjNMAkSBU3zZPxqI4/lqoA2Psb/aG48l4e2dncnwVmltctS+trNz3zKWK13df/XXc1/7Vz757eFVYmlv49pLNdv/bKzdpXUO3GygYIQKYE0PCkoKtjPlW8Vy1N7noe2weNKPQygDAxlsApvxSKiqFQDMzcU2CEuRzMVk0WwalBwq0mMsBAJcqlXK9kYlGRJ4P0jyvJ1GUVnPVbLGejZsCekErRjwOBLlg2hweJ3aW0gDApNttW2MMVYzE/FGDldWQoosxzeOi/IurghVB+zp4EbQnDPqTIFyrhgWwSbkRgFNWulguIvbXqvCj8vBx0CGaw9nUiXCaAAAgAElEQVTGjF5Ml7IJAYg+MO5ILF2hHSSD/SQ49xgVqHUXEaRQ3nCkhDMCCZmiiDCqZ91KWolSf+/q+XeHVnkKwLHkwbmmWXGVl0FYZCdXw1Quqae16njLSKSS4VgiWcrGc2lr8y6fvTnIWwdPa/3xk0GjXSqGWaeV5VXgTownSG+wairKOOxAyxKF9vbRxbPXcUmhOYovjcqK4BWUSHGyzbrpcLETYnBaX4LC2tg7WJxb+ZNZG7CVyIJDMc+/71bMZDzRO/lp0y0aNzkLqvbVtjOX2/tcjOcLrd3Hv31tpa1o4cvjQGv0t1uRZmt0/qvfMqPP/+MrdvPzfyv2t49f/uvf6XpZffTpp3/5f7wwe7/6v8e/+As5par5gSmnTg+snJnMfPdB5eXNuy+G/vr5528ev3j9sv/q0X5376tOp6fl7ra46HavmMi1G3Gde/GmVq2/f9V/df3g7uw8oz188aLQ29s93do9384ej1O79Ye7sVi2GIs226nkqJdMd6pJM3vYy+5WR71U96S1u93cbF6c96n2+cXBXW9vP9LYP+S5WLZR3Ozx4US8eX13e/P8ork1ZGoXO+LWznHl4sHxdooqVDu1yzKsuvpwZIRyw5paaPe3dkfDw/evS3J/VK0JhyeN7M5ONmPG6sWEHpPCqaQaFfBClfY5fGFufhWqe4C0ud0ba2g94FzxknaHE+8OA3TAa3N5vAEGViyeHZJoj7G6uAirNMCgLUcA/Q3JUDimRtEuiKcCLj8Ix7y2troxuzC3THl9vEj4gWp5yNB0lMkfgvo05b4CL0UiONcIAjgAAB+xojFVgeorA47TnkAQCnJMhpKKl54JqK04EcSy2CkdNaMYgo5XfrAa0rlCs9EabA62CiqUSyOGglzHplxQJTjTEmZQZ7MsB5IrBG+MilqKaphR9ILWp3HrkkC4/SCShaieiEgGxtFJCMDoaSzL6HMj8DTNUESQ99KFbNaQ9Dg6H8SNUrGQy6QSVjpTwAHMNuYIbu3u7owPzm/effjyA40FzZpKZFLxVDZXbjb3z2+eftiWtFQmm0lhlFK51RvuXz28axoJNFKoFqr1VqfR6W1uH56dn58/uHt1I3g9br+DikUEBad/MBxSQFcKPGdS1KkpCfpNYguTMJ3tgA8X26yAIgUBZXDowf+txcXFFRfhWV9cWLGjOzd8kkH47fzsvXuAwCsrNsfG+tziLJpC3JtdWFhYXVsHpLA5XKTfTYQ4UF5SiI1IYckwFSESFVnJMOBpmfGMaWXTlgwQFNEQCGVVi0xPwIBsEYEQ6rggFVYNAGnQsUAGfAG8HhU4GiCKhWUFuigQojDnURXYbwAYf4jV7A3GO+NWRIrgncNbARwDAKa8JOX32pwslEiMIwTlqSmaNo1jxAFlUMBh0hdmSY+fg5rjoFSZ8jvtOIIS3PCHQQE7geADKBMel21tYWEdoZlWNIkBxhJwO3kEYCbg9blpUJmYK4NLCnV2LBIFADbkIGkmhXCI8DpcNjcwB9BYmobjYEgBJJ5RCKcvGMI2X1mfXk0bwPiSAZzvmltft4MKWlqbX5j7zizstPXV9Y21pfnpENLM/Zk1dCp2O2wBzAMOBAgxXu1uXZbJUrWQgLcJAJyvWHqED+jJtMUzNKEMuvV6q4RTwGmgdLlCvtSo11rYXFUopPPN3hDkNy+DFgzhEw5r2UK+WG3Uyq1hOb/ZqTdb5VTCAPbJKgCzViaZzNe73eZwsmXibQH1FoBlBcpqOpduNFq9Qb+/Ndmf7E4mB2c3ofuLGxsry4vv+I1M7KOnXz/2iKfPf/3xq4PB8cLKO/a51Zm5k0daPCKIYYb2+Rg3iHsG+Mn0yEaQ1FSxUJ9cdD0Oj5/Vonr5eGihracihimvlI5gVryPixtRnvL53XQimc9k8rlUIpUtFoq1Sr5QqlYq1WwMA1OR0RlAPyrVar6aL1QzCUsAES/IRhLve4qWze4F+ANi4/dSHrdnY42JCaLGEUYUn4yEU/ZBm8+/vCykIgZ6u8hs0MNbsJoI54qZjIlByrURy2QySRwCrtcrtXq5BkCvqujrxaEBX9YspYqZuEBQQPGAFabL3wCwEgMaHuH8y0DNsJU0wAR4DiqgJbpQk2PeoAVvq9zdvXj2ydAqaTIAsJY9ujRAv6sicEAlt385yADaprXSzsBMZIuqnspXM2YmlRpeRK2Xm3F16zzfaB7uD4AesaI9lWNUUCGsn6ZWWCWhMk4HNqzkW9vHV89eRUk6KISECgKwR5C1/P4m66CFUhcU8BSAU9n67g4bnXEtzC/ZSG3REY1e/8CpJtLxeO/851W3aN0V46Yqnw4d2czBD6VkodDcefDrD/GuO//Fga8x+vsttd0aXX79m+Dmp//zK673g/+r2B+fvf4ff1M0SpHTz1//5T++iGz9+g/b/+M4WI7pyqgryrVHlaSWiu38Inv58OGLLbJ68PEHT14+27l+tdfdfzncqxvDu4YWF32t/VYum68WYuZ7z9up4d348L0HV4/OCsbD588Lm/vj/ePt/fzBbnm3dHis0JVkMttp8n5NbOzmE81qKW2cjtKn6Z1Otj8Y95u99uXJJtM5ubg6bJ0BnB5apFpNVXZrAhsrds8fnz3cu3pyfHTSkMbnjcRwMtm+m2ylQulmo3sGy7bYPWhKfHsrrdU7wx1M6nx6WZS6/XpdPj6pZ3bG+bQRrRUSWkzkMsmYBluNBZ5jczPMsjPgcPgZBxHwgjKy+9D2cMNhm9qV06TX4fb6giwT8PhImoY/Jn3zi0teDw1KliU8NHpIkiwfi+J8iMTT8Pc4E4pyeN62tj5zD/5OMIRO+2HUvNM7X+ynkSWOw9FK2GewK6fXgV6PauESBYmFM/ekZ5oHHJFBTEF9tYA6QO0J4VmywItmJiG/HTnRdOw/LrQbndHm5iCnAnnGqZxoFBUwNirhVS4X4hg0X2LCLHb/kBTgq57JmRouJSOC4y9c0ONDmS7KMUVNJo2EDkoKaj66YApRGWQ3UpYgGeJJLpcqpKNaPJUCCP4mjDCZzOVBt9bqzWJnuLm5td2f7J/dPrl49G6Mj2HLVDyTyuazpWarPz66ea8lqGiShBU7nsqkM/lSuW1FkvkcyA8rVajVCrWtrfHRxeXlxd3jjx4AAHt8zhBQEIxniiJL4eRplNDbf05TCpCeYGMxSv1p/xVFI6oBcUJLJeJbc/Pz87aA376ytAzA6oTPE375HSvz9965P7+8tLBhW1+em5uZmZ95594soPXq2tqGzW53ugJT8sRxvMywyERimhBWlbCgmiY8BNNM6/F8LqlCsYH6Y0ZjInxmeDHNTx1lgQMABWBkA8d0dTMapjHvlgyiaxEH2tiHCw+bvNggLSp8GMfAOT6CByqJZne4u7PbUnn4pDEHCRvQYJkJFLwlr9fh4TH9EC+B4UerCMSYTajK0agqhwkPx5AegudsG/aAxIOwhfdM0EGbnaJcdrfXz/AB/MlO++ryOipgUgIABqHPeF0IwDITxOg6U9MjsFtUSdGm7w71rGHIRNCMA8/xexzuDQ+NVg/oa4qJJLD0AIBVwknQTAit3KY3mjqeDyfJGcDY+Y0Nh8NmWwQmNHdvweF2O222jdXFuQXsVpqZnXsLwC4X5pX5AYCVVGMwvqkG8JQ5EROEEFesWTGVD8QsS2EFho4N25Vqq5LHFuhsNp8rFkq1SqnWavcKyWy6UG5tJcyYoOLwHyvIfDiaymZyoIKLtX6r0W802+1KKmmizw0sIw2jTTLVTrvanwwiFFA5JixOQ6hkPZNI5jLlequ32dvcmkwm+4eHR2dX1L3F9ZW1hXvr+Ubw6JevPjnih7unf/beBw+HhzGcUJqZLXzd5iIcbCEGPrUQ6FgAYCcZBsTiRSWaLGZKe9c9wuElwlFVqwAAmxFADQEBOBOhQX16WUOL8gE34aNMM5uB94gDfJjHW4IXVClXa2lMHwEA5ngjU6hX63UozMUqGnGQISgo1tRkPR93Oj0OH0XBU/WSbqdrY40I06JBBOIKp0iKzMuWKYHiWJhls8AnYaMJIcrFWRIfCLpW4ykNdK17DRRwJlWslCv4lBvFSqmVj2oqC28HRC488WqmmLE4T4gBPpqKZ4qUg2BEVYnqmGoZcq46/DQnCGGCIFi8a9HDqx7SB9ICyE86kcj3xqePPuxbFQTglJE/vsBzPhXwUZHzhxd9nAM2lPzuFlCRmmaky6WEmY3H603NelgxY+NJqpIdHu4cXO1HVK+RYEHWyGGKoVYo3pAZtysHAJwDAL5+77Xs8JAyF6n08orspjkptdUN2kip3KGgGPpJUUtkmpMtJeFoLyy4VYecW43Frj51qslMPL55/rOcO2zcFkwrop4MHNn0wRcicqmtm6/fxBMJI/fDA39j9HdbkU5rdPXr35Lt7/7bF6HOp/+U6u+cvPqXv+jECrHhl8/+yz8+E/d+/6NXfy2lMoVEJHlgScb/T9V7cElyXleC3EMAbctXpYs04TMiw2dGZpiM9N77LO99dbUB0HAELQiQFChyKErkcChqRiuJGokrrbSrkVY754zOWfPD9r1scGe3TjcJoLuyMiO+ePfe73vv3qtT23Xs3C8OBu89/3jCDA5/+L13v3Oy/9nRfvvjg72qd3NXzY3H5bqojfcHjXo7l0l9+2bW3Hlv8Oq963fPqun7Dz6qTw7me1en5e3r9rz6fMKkrHa2O85JmUZj0NAGI63aa+TLF3uFo85hu3gw7887/euTYXxwdvOi/KJY2r4uUZlSs9jd16lcvXf94vzs2f3l5bObs6ty+vS2VN29b++dH+Zpd1LfP1Qybmt6VRaM7blVQpuP7e3dnecXJbU77HWMi8tucQ8A2E53QAGnVbGUxbZOnWd4yhcSyLWYQGyF2FAkFmPY8HoAExYoZjEvF4/T0WAEt6BFNoindyCSic2ttShwtng0JkSDHBmjCEpSM5msl9Y0iaE4P5+zDTcXeLq18mjpqU+Gqq3LmmPg5iA2zSwC3DUZeysNAGD05AcYp0IhAGATYQSoMoiPMAUCXDRN9INcbEEvzECgqAmJhGwXvcXZLGhjK4djSN3uYGc6GpeNDG5HYileNORgezBglIKpQPDdrJDAFtMoncy5VqHsYV8rKmssM5jgztMsvFvTKeZwnhOTfgycN1JTKicL2MTFspJIJiqFatFx8wUvV0Ij1oUJfqWI4WSYpDqbj/qj6fjkAtTr9d2Jp+gZJ+cAABcKuUp3MNo/f/ZBDQAI3UtAAXcw+3z/9OK8Zdlerlwt5eutZqM+nE1n+6eXN3f37372PBEMBMNB3kIATuNkMiAwDhzpOO2jyRIO0WJmPXxhG9NiAlhg0LcM7UIjJEWR9NfegeK+CXdrY3Vlw+fzh6IReMiAPi2jBfHyytPVtdWnT588ffwVAK+sIQL7A4EQTUVobF8TVQRgWUKbQDMlGSkrbXo5M52zs+VSIaMmMQvYShno4C2ruAscIPg4jWcO2LwuxCXTTieTqEvhfTFUQpcEAMkAxVJMIsHEaVbRFVnDJjIZjaSNbHe0e3K419UEHVNTEQVwzEd7A8BEiAQukEavZpyFNhd3PYWqBUM4xCiBW9DRhQJmFgC8hTlQ9AKAA0SUYhM0ycRi4dDG6mYIczU1AGAhzoixkAyaWmXJcCwieM6bM2BlEfMEatizLPjDKJO2YUWRkWDYF4mjfxoGawEAm3o6pSR4AxUwB5CWSpmGsTifBsJGPnjw6PFqAEhNMLS+vvTk8eNVfzAYCvm31ldXHjx6inNJD9bRdQwuEXAnuEE0pXrtye5NLVrv1PL5jCwzYqNr4wG7lc8CjQMAniIA18ulcqVShLUIwNRqNLrdbr/sFQvlYmOnYCeBPcHq5wW45Ek3ly+WK8ViFRsXO4PhsJHL2hg2L8tKxvMAqxq9fmu4M9QZaTFBCF9AnxPZvFWsFpvd/mAwmu/t7e3jGNIN/XBlbXnr8cP8PVn/2eU3PppVL3pHs5P3jndHe0/f9m09DH1y047HgLpKAMBRngWojdMhEhUwMBczVy81ju5GMX+USeiK2Tyd2nbSTGmSwMT0QpJHvzIOKpZIhsgYZ1uAv+j5hbS1Wi7mvVq53O56GGIpggJOZFABt1ulehG1YYpbALCLf7tUyobDwJd47LwHWR0AyukjIpIZ4WwlYUiGJuK8ejQcevKQ8bChPwUqhQMAhhXHElvZXCpBsuENE9A/V6mj9K62uvV6tVfNOCkJZyjSaNfZKdVLWQk4ZcrygKBX2CCN7jWWkzEMnQv5IzSPwV9kKCYoCTmdkXxBGp15tbRb8JzceP8SAbiZ1tJZz6mcXWGToS4paUMvn1yNcmUvk9RKhzt5+KAgP5plyy6krapj2DuVVGp/6jQKhycHR3eHnkgbjqJamiZDNVijxLTKE6FyDhRwFxTw6+9kaHig2WR9VDb0MNxobzRnCEqp91kGij6rWzkAoHnkrUTyrWXOeJDYD9qZ228FdQwoGV38PBsW07fFTM5OX2+HK8X9H4rZWrWzd/+r7+a8rF348oTpz/7zPNnrTq/+9M/I1uf/+iU7+OE/ucP5/of/5ZczvWjVf/Lq13/7gTX/mx/90Qfxeq7uefK865j9lzUMuXn5B8Xn9x8O2M7JT7796vLw0/uj/HdOT+rlq/1ud3tnNGz2kvpsUpq0W56b+u7doHP0bPz8/Zvzaurm9SfNyd7+3slwclWe9C9HeSPXz4y6llzebhuJ+cyqDbLFTrdWutgu7zf2+629+bw/uDoZsv3Lm+3tM2c6OxaSuWZhdGDFq8Xpzc35zd353f31xd3d6a3lvjx0+8fj5t1JgcrO61dD1S41Z6eOkNsfptv94Xx3Pt+ePLso61DuW+rZRbe0t1tcALCbyWhixQUypSgsyVL+sMiu+aAUR9k3sbjof4UGBxqBAAwyivF/pYCjTCwIy299fSUYpMNkjI/GxGiAiRJUKCapePqVlCUB9JbfMGXb8Vxicy1ArjyWAX6VJCb0YKarDEJK1eFJAV1qIB5r6A8JME6GCTWNf4VleAxMoILAB+IJgGT0PcRIVUNJwJMjghQVRBO7foyFB1TWc0uVUrs32NseTyqpTOpNJs9iZxJ+pzC1IYkvAs8XC0DAs/DiqoXmETm4HA6O+gKEyUI0CgAbT6iLRGE75+gKuvvrGpZ1WVAF3MXmeEWMSU1g4G42nwcFXPKy2ayLces4otFCD43+cDwez3b3j88v7y/vznKymsZtMw8Ru9TqDI9uXnzQiKvwHVAwK5XWcLa9d/Hyo093C9kcvEqp2mvWmq3BYDjdP7t69uL5e5+/0qJhEEogAxYyD0AGKAVIXRlPRvECqRruLrwJuMdxKx5PXskoRceiMTJCYGgG9bW333nwaDUUi+IeNEjbYDgEf0BGiY21Jw+x9q+urj9ZevTk4UKIPV1eXQEA3vQHAwQDAAz4S8NnF3VFS2D2WtoEAE6nUp6XTOVcqPMFR08uDFDSqiDBW1JURYyGKOArkSjNLzajoQIgmslcFI+BqRjDCyB5GZIH7aDIoJQ5BW8UNmEpZjaX1t3u9Oj8aLurxWUtuQgPNoBypXALGqAzEIwlMCQvgxEzaayXXwEwpibJPAEAHAsSLAUATCkJMhbc8gMAU1ukwAa3QiQfVxiaBpEb3HgzB8xrpoot40KMwA0dlacjsUgcna0cUzdwoiSXs820a1mGqYbZlCPCOiWJSDAKbw8+vPMVAC96FQCAiQim0Gm6ZaYdJ5NGJyzywcOnSyu+TaA1xMbK0qOHT4ALbQWC/q2tzY03TlhPHq/xQFkiJMsgANMMLWc7k52rSrTZrpfytq4yiSYAsBxncpWcKcWpiD4ddTv9WqVSLpfyWbtcr9cX/kyDcbtShSVanRcyuiQDAEtACYS4ZqFdMaBYZTQbDBqD4aDuYWoVxckJ2cw6uJRbnWZv2EstpslBqEqw1hQq6ehupdDu9nuDyQ4UuJ2dvcPzO/bJytqK7zFxvLf+h4fFD5+1D8bng9zRu6du9q7y1urSW5PLXhYQN67AW4iRPBvzh+NsmBYx6BAAuNRq9A6vewEflBlNSrWOJ5a1AGC4DEZOF0QyGuIdE+56lIywpu7misVCDr6yRRDCebecy7d6HpYWgeZkOZMr1mtNUKG5Qh0AGEoGjiHlsAm6nCcjoc0Qh6EqIIKDG76NlVU/LxO8LomaiKmjkqKKXHRtmQJKZ1kpBUpgWMoaCgBwwPMMcQHAngvqEy5fs1Vv9TqtaqdqWTr8IEHNePl8sVtpVfMqxXC6ma0UirV4iFcMrIigqTWO2Iph1ynDxgIMr8ITZWskcFCJlnTTxliFydHtB59NnZoJith1KqeXmYUCls2kUT6+nrgAeEaydDgBbtVIZfL1kmnlNLttMelBJaHuTlPF8s3J3tH1UZakk3lDTMsK3HdyjU5kVC4YKP5+C/rdbztQ0zRWwS1oJabJSn37kCFIudbnOBQ/aa9Ubm1PA0HmracbQf8DyYwm9ftvEYYDGD66/oVDy/Zd1fUc+3Y7XC0d/ggAGL7hxS++Uypk7dyPz7jB/K/nqW5/dvmnf0HXPv/XP+DGP/7XwnB35/X/9pN9M+9lv3z3F3/9YXr+n37+q5lRruXcQqY4r5nu1b5TK5dav2mevnxvQNfPf/Ttj4e3Hx+2Xr13WXfu92fD/mAyGXbrwwLfPs8BkBas1mfTTuvF9uyTF6fl5M3rj5uT/cPrQe121JicnSedXrnQrSnWfCdPPX3LXzopWru1QqPbqF21upPuTn4ynw1HF6cjZnJ31n/udI9ODLFYLvWPKrzd75y9d3Hx4vb69Pr57dWzl88PEvt3XnV81jjfzVH5QfdlOeVUGtOxIXcOGplOZzyfz2eT0fPrqtnrT+rq+dWgsr9XgvvWLi9Cu2qubSQ1icUiFknEA8FgkOT1sqfFfAGAWS4aJuNihGIYkmS4uC+IZ8BxmmKC6+E4QzxdWYelQ+HZokASwCOpAAElF9BOA+1FU8SWqQmu5RaSBMVRYoTjcA9LFlgJt0rhKedl+NkUqy4EcUrDkyEqRjFkWNZEBceSZBX+nA7EKEFWUjrUWw0HLOEJlESWw1NgXkjZKcd6E3TuOlapWmp2OrvzwaCcQm6hok1U1kUHGQt7sqB689zi8JdcRCjGaNkARp+0bdN09MVZqqzEEYC5uKSZjp1KAQBrShJTZnXQL+iopWjwhHOczIb4eiHvAQn0iqg4EHbQhRIUcK3V7XXrje50ezaD4nR+92z/+oUNShfIr+O6IEYqjUZ79/z6ZSsFkAVVxMu6rf5oON67evl6aLnA571SsZIvQgEt1zqj6Wzn4Ob+m8+1WCQUDgpoXr1oy8aubAVTFDW060JkUhdG2xr8OwY+LWxD4Y6xNHzFQOnGUAG/886DJ+shMrC2tLq55QsEA7jpAdAe2nwKxf/pxtrG4+WHTx4sDiKfLK+tbGxuboFWiwAAMxikLACyKJImGkZCTiYTGgZC5XJJM+9mQXgBtpqOA7xGwZBX0CMKDUVWBNoWpuM8Q2GoFrbSWTpU0ijAMbwvTgEg4UWkEmgEjU15OHOGAOzmTM3tbZ+cbk+7SaiLOjI2nPq1UrrCElEG7WrjOm7uwk3OAPKlF1+pJOYVygk2GIpzMeCK0a0tPykDMwxtboUpltykBMaPE8FxoKBUJBr2b6xvBgDw3jRhxWJshFDMlGUIzJsz4LTpgLRPWW6ugPFOUJdVUwtzKReWO0uFQkSUS+CkGdwazOQ0ADrEeJIMRKM0EAzDRO9oJwkXJ5enHz5ZXl7xbWz5/cG15ZWngLcrW3givIWb0MtP3nnr4dPlFaDBNChghlkAMCVme/Pd6xrVrlVLLm4ZJWptJ6XyVLFimwmWCWuzca87qNVADwIyZWutZqNRqbTHw2m/XinUuo2xB6QgIbI8DhHwvGp5hRLgcrk8nnU6jd4AANhJSxyJyWVJK+MtDMmr7UbLQtGMDexA6zSZEuW4YlXanU67P11YQe/uH55dc0/RhfKxeym5f2WeHd2/3q5+a/rs5rB22bzkVpZWlj/r7qa4eEgEVoShJmQUFTACMBYGPVmod6cHl324O2Rck83W4SiTMXCYECqM7qgJkY4FBXgcZaQ7TFK1svDkeFmvCPjg5cr5Uj5Xa+VwdIKn4ppqlcr1Sr1Rgoe0CjdM4FggQTYOCVbqJZIIB0OcAHWAomJhYD0ryxtRiuDZeFwWuDi8JUBihY/FBAMKGlw1AQHYS2o8Fw16WR0AOLSVztmw4oEqNzuNRnfQLTcrFqY5xkXNzhdyxV69W8trUOI0w60UAYCJBQDnsF9UpsO+GNQZlgUsFBlFTSRMLbEZFcWwpCoGvGx5fnL7+rsTq5pSUpZjl4/PM7ZtGwkRhEXx6HbqeJm0Zpb2e/lCqZay85Uy4LSQ6dtker/Cm4cnyVT95nR6fXOiUqRd0iUTSgVDRtYZxdG5QKDk2m65v3t+++6naTbOKrzW2gYAjqq6Nbg45AKkUhsAAFOMaHrVamtnJ1Da/Do8blshY5lUFABgM1dwnMn9n2Q41X5Wz1uWfTMLVornP5a8arE+fffn36qWPTv/41NmsP0328nucPv817/lKt/7ly8BgP/3yvhk/8P/9sOTQq5s/vD1H/3Vx+rBL/78V3mnUreL2XJq2Eubwyuvkq+4f3A5evViGutf/ejH756+vpju/+yw4706njWao35nOD6o96eW0T8pV3sNzz74dLczues/++S4nL7/4IPK5GT/OncyHuxsv9Ir1WpmXFPzB3u2okYCD5bF4dAd15PjYaV1VTqqDTrV0WgwOj4eU7Nnk+N+sXPfYVLFRuOoz5v11tnzq+u7q/Ob18/Pbp7dPru6G5k3/Xrv7PBwO0cWWuNXmVSu1N5uKOp4O+e22rPZeDYZTp5dVdK9/qyqIQAfHJRzdqZTcfQXEUUAACAASURBVNIZXWy4jp7SYcExEXwUYvB/4SgQU9+TBw+X1gIcRwd9IAgwAIdmObQOZtH1NurfJEiKWVnbiPrjcQrQFaURGeIIAGDs4QOWneDY2IaU1ox0VtVYLhKQ0P1GVAVOCLMJ1JlkYhFfI8Z4Cc+A0WsGO7xoDnSHjmFp6DWgAlQSAPCqnjYyGojSzMKRMiEwTBxULC+ms29aSxfznybQ0XazvTvrdsuLDWgchnGy+GWjEW9S0+MkDTIwHKWgphFAKOSkIgqA9ADUOAiM257xGObtxSVJxxg9wFRNxVka0xA0UxYXDtbwgHIyExaKTr5UXExD5GwriSHc1XoTNwDr7XYDSPF4tj0d7R1d3tzsXT/PGRYwAZRpoJkrzebw8Oz0qijZKJ3RDbpca7aHBzcvP5tlrKzjVUC1lOvdZmcy3zvY3z+5Ojl5ccIH4doHeNtx3PSi9QxbfTEfCMQiwi4Cr66ieFSVxEIAA8XnMPePQg8OJB3U1x4+AA38NECHN5ZWNxbnu0G4JpEwQNPKo0dLyytLa49Wnqy8aQV6vLy+srG16QsRGN4KABxnObivIPrw/FdYgHDaczK5QjpThOqWy1kp1bAtTTVlBGDQTFI4FNe4cDhMMnQEUVhJLUY70kmQxlFgQbEYg/5kUOOwVwmjm+LwaRCARSlpZwGA+zvHh4NJP5OQZQyawJ5iWB+GwoQiLE34Q7yeycC7AL3qLBwx0+iGAYQLuBoX8sNaDAYpBGBakWgK6i0By2wjzFK+zWBMAAVMxsKxqM8HGBgCAMYxJBDnFBFSTNNOsWQoHOJdELaoYYHIOSB+XRfWlpzUo0IqK4pxJubfCsdoHo8TQN+Ytmuh52ZCSMV8wUCYSwBzcBaN+RgGXWIeLy0/3ST8wVAguLqyAdf60dJiKHjLv7GEOcwPHz1+tMID2cHORwRgeMZ4FwG4TrdLxbyZTOuyVG64GYOnKyUjmYgnqORs1OkMGo1aGbPqS9VmqwXgOR73R51KId/a7oxAxWuSxLDYh8iLGgIwsr/8aLvfBzk7aHhuWqJjoB8XQZAlJIqVeqFuY3okngIngBspAge4JdbqjVqtNZxOBuOdw6ODw2P+8RPf+tNHo4vo5NcnP3N/+Gtl+7u7tzu13pfeifPOxtfF71xVpwKB+60s3vNolMAzYFKM85KsaIZd7O0cXI58W6EIp6np1sEwDQBsqHB7KD2DIcJhH59zZFBxIIXtpJvH2Kc8wGu1li82QPcXitWcIUnw/gRDd2q1RrnerLSrxUohZws4b4aDMyV4OquxYCQSEUV0JwDuFdhYRxe0UIgNg3zlYww84YqI9E1FE9okcPkEzxFSNgkrngp6rp4AGeLL5GzHxczBRrdebQ8HpVrZzugyDzLELRZzpUGrX8upwH9l3amWStU4wUpaxsrbwMMTZJiE2pqQuOhGQKaklCZAOVwNyWIQw1CtYqW+d3r18huDTC258LctHZ3iU6OLcRADhcO7uVOwTDlZ2Gt5eQBgF6hU2nXZVDcVVY8zYXPvLC01Lo7Hr18e0yLp5eVUBmg6sPBNRskafCBYATFQGeye391/bHIik+AyrUlF18J8wh4824sHeLUx4lioDBxcynrn4GTFv/LgMcGuypll3kpffxA08/mMNb7/qUYnzKuyB/Lidhaqlk//QMzWy62d93/2ab2acwp/eEz2dn63bbSG8+Nf/pYtfOuff8T2fvAv5dHF/kf/9t2Tmlc3Pv/4p3/xSXr33/+Xn/KVEixVt5SsDW2rdtssFCve82/X3r3dCbePf/jTzqsXJ4OfnB+kX513a8NRpzuAdTtvd+aOMjsGGlT08u+9aHYvj3c/OS9brz54rzC+vChOjqbT/n22VK+ndxps5fIol9ZFI7wOWqy360361mhcGl1kz1qHxWl7Mto7GMa2nzWu3f7xoQS8MH+0aySLlf3n9xdXl2e3F+eXt/f3z569eH6drH3mtnY+ODwskZX29F7Ty8XRYUVRRoN0odXamQ/m08H25Wne7A3mFeX0HM+AS3nX6lWzFnCppmOrBtQ7kQn7w1wsSkdjkadfx3GU1fXVJytQMGMhPLUTeDwr2QqGowwAMCilCBBIfmuVCJCcEg4DTyQjFBWRYhEZkBIWiQQvycSIeEZT3ExG0tkoT3E0Hd4KsZSfwvhPTRU5M5NgJZmLsZgeYmp8XMCQIyYYUBaJMjaIGIXFYb0YKxmubWsCxnrphizJCMDoLZ1Iu4DI2B2dNjPZjFNswqI/3On1a7hBY2ImzyLdC7FVxZ6sBK/IPOhskGKA9AQpJVUcZ9HSNvpJoY8FAGuE51hRxUHbdAbEs67Bd0MlIDmNE3RBQavleBw4q17IwDPnpq1yvZQvGQvFUK4UywDK9Vq51R/0Rrs7o73zy5OrixeXeUUz7VzWs0GbpfPNdm/v5PS2orjZN+kNxVoDwPb45v51J1Os5nPVLtD3ZrM5GU9w2vLs+bOb9y8kKD1BH4dDqClsPUMPDjTiwEgLfYG8UGSgbqCjsoS95nD3YixHhsMhPwESLRYhiK89fOfBwweP1kOR9adLy0srm74tfxB3pxme2nj85OmTRwC7jx8/fOfRU/yHp+vrfv/mFkH4owxNsnE+zibUBJvQE4JqIBomDNPOWLlCJu3m89iFllV1G96dIcSxxSShiDQZlzjCF6OocDAI1U3AubIMWofEY0GCjBChGJokgFbWFUFKotc3njZiRmEi6WTTcnZ+uLc9GfdMFceaFPiYOsA3rC4yRFPR0KafRWdsnAHGGgXcBARwauGEpctiwBdno+EwTW9tbUUkUB7+LX8ElmOQiJGbW8C24iILby0aDa5hHCHDAomUYyQLOO3TkoDyPBmKELwNcsNx4HNlAHwzqbTjOUbS0WJ02lZ4no2G4GlgBT2d1PCdoFcWrDxBVEk/EcEuwkUDgwm33jKLxRgKXOwGC/k2Np+sPH2ytPQUfnjQ5wtsoC8HpmAsbcoszcY4Cq0iYiTFKs5gvnNdopvlUsGBpS0L5bxrwtsrV62UFGcjyUm/2+03UfdVKtVSvdVuNVqD6WjQ7zZK1V5/OnWdlKxiax66sguo09CFDQB41u+3QNGWHTstA2JoPDwS2Vw+X6zWcR9XI4U4TXMi+oNqhgyCiTYr+XKtXsNVPpzNh+3+Dv/w0dbq2/SLQaL9k8/+1Pnnj/i9916ftIuvf5Q+Ki2tvZP7SbP6foQlF7HwBEFHiUCEAz6MGx+qpmr5WnN68KIfDhC0rCv28GSeAjoDj6dAxYyCKfFkdJPP6Ql0Fg3xObdSKFSrxUIZPmiz3mh3gPhWKxasDRnohZxyKp1mvV0v1UulWt61JYaSdHQxK1RLjToVjhIRTmBJio6xhA+jITc3QwQJSyVGM5jQJSnYe2lnVAk0sCZxdMyn5jLAHYhQ3jUEgQxvaRXbLjrlSqtZa7Xb3X4D9J5jYpSmahWLbqnfg/8khEB6q1YF+HU8yKrAv5JZO6MwdDgYJzmR29haJhQCWCMsfT1ExQJRiSGVHAjmvdO7Z9/su1VDTtlOunB4CswvlWRly9DLO89HdslOWqniJO/lcQvaKxeB4fNm1+S93azp9l4lSoPrY6g+7yfEcNYTHQu0A8cxGxHFNvhgpOhm3FZ/fHL96vvJaIKVWbcxr4g6leDd+vmUDDNSb0CzESosG4VCo39xkBEev73sh8qor5NJ4/kHRMazhdzOyeceGc88L5Udz3oxDjWKF59LhUatMb/940875Zyb+9kJPdz+3V6yMZqc/Ie/4r0P//HHZOfH/5Ifj4/e/bfv7uxYXeP5h5/950/S41/9H69S1Vq5BK+VtXbrin1+UGo2aqOft65eHsTaFz/4ZPrRy8Ynn04LJy/H5S7ayPT6g+lk2B8NK8ntcaNZrTmdT07Hzdfdq8uiefTu++XJ5WHlbDDrva7nph17nNeqLya1tFnNauxGzEmyudPqdj1zUO0dTmr7g3lmr907OeqH5/vbQ2f0qiA63drgtMBWctO7m6uL84vr65vrm7vb69sXL1++7Ojnh4Xusw+OSnSnerGtZQqtyUmOz81GWrPWH09H4/l8dHOYlzu9eUk9Psc54HLeyvTx9Ncw61lT0ZOY/UaFwmwgEqaDwUdf33yKLThI0LfI2BrB4lMHYor2B6JhWuKBjhMgGBgytLwZiXIiyQskGWQoGpQqDWUU94gBgKlYaFM0EoZlmarER6DYiRrxEF43wpExDnt0BajJEfQh5CUt5ThJdMJiWYZmIpKW0NKIe6kE/HuEEhIKPjm6ICQSKmCqiukOmFgXF1Kujd6qOEiEAx75Rm/Qme5Mp1VgjZaNJskpEweNkpqWSaFSFDiFx0m9BI9G1pRqqomvOpcwaR0PTwWSwsjiuKqlXYBG29NkHHTCdrE3LlPwi6c5gBbVcbyqI6VzAMDZrOvlcoVKrYZhNMVKrbqYk5xv78wuzg+uz26uPEXFdiXMrLesbKXRmx6eP6soTh5HRgqgnsu9wfT48uU3xna2hDMk9Vq1jhpjNAKNcXJ+dfLyViNCFOHnQX7ZmEi78MACQNJxEBikAnaH44Y0UBRJwNQmluUTNMth7kEUCD5m/Ya/9uCdB/BredO/vryysvT06eraOpKrKMVR/qXlZUzjQQ8sQOCHbz968mR1HWqTP0JshQHsQDsBWQZklFRR0nEYGEeQQX7mgI87+Rzu93tJHfMfFQ4Nx0RJjZOMqjJEGNA/CD8nFouFeVlKGuj9yYVDRCwcBA0e1xGsZbTQxD1JoHKaKglSyvUySn7ncHc+mvZNycBtZfh4uplOAQDHgjRNBjYDPKCblcGJM7jnqE0z6IeR1nRFSsD1YkB+UyRI/YiYgMKHZ8Ac7ScZamMjHFmQwFiUIIKrqxgUDOvRVEiKj8G71VNWxhAoIowAjPIalKft5jxgZk42a+iWRrIZD6gGFwmGQjTHa9iHDTQgm7NTuqLGBTm6FSMZBODkIiMKTWFyOfLJ0ioIYGA+Qb9vfWP50eMn8LMD/kDQt7GG579ogbIm8SwbBYzgSHh8aC6R6c52bspMHTQC8EVdjhfhMY7TVKVmIwCH9VGn1e4BANfq5TIAcLPdarb7kyGohFap1OjPZq5tSArH8YKYkGRWTuNJZQlUw3Da68N67VYdKyXSFKXwsppyc7i5Wa9VGq0UI3ARBp4aAeVdCk883CLax1SbnV6rOxp1m71Z9MnTtdVVbp63y99+9cvJ74D3v7zrHbQvp5V5auWtpfYh0xovUSFBElgqHOYiIf8CgIU4etNoulfrzPfve5FQhJE12e6fzuEmOklQnRSZLJsyR5EbrKsJeFpCSJVivVxaAHCxBkUa2AYo8kYjh2f/GL6ZtMuNer1dK9aLhUrOSQvIrHQr6+WLxVaTCkUCMU5gFpN5wYBvZXl9a4OgWI4iCLTKRas7UYJqZuhwP1MqvuUt5b8DcAIAeEMtWXbRgye9WW8C1Rl16gWgaHGM13RK5RwCcL0kgqhWtUwJJG2C4GQl5Zqea6kMHdzgaI4KPXy6RcpBDXc0EhpJrGyQHBdP5vOl9u7p7d2nAMBJBQA4Uzg4Nh03qTNyRn8DwPkM0L18H25TqZbMeKVKyvLEZCOZKnSLJWV0wVSPDvfO9k++qcfDrguiVdMA92PrEdnS46FIvuC69dH+1dU3v2/zAi0r6dKoIkpRRXCq5zssySVaXSYeo0lJhyvYOtqPBv2rKwG56JlhMZO+e+Ezs47o7V5/kY1y6ef5HDDf56NgvXj1hZSrVRs793/8SRsoovfHZ8xo53e7Rm0wOfv1b3n3vb/9AT348p8rs/nZ63/75vg42UxdffrZX387M/nlfztPVbEfpuy45rBvZPdvqq16pfnl7PD5dmx6+fNXl+8eTX96Xxt8f9bArJruIq5mPBqOhg3P3W7Xx6VC5fzVeHJ+dnidS529uM9Nz+sHs3Hv5MRp9t1pzyjeHrbE0jhvq2EymvBMvXZQndfyO93xfhsUa2ky6Z/tddnRzn65dbKrGYViYzzWjGrr7Obm6vLi8gbx99nN1dXt8+v3z5LtF4Xe4eV+lWrUb6eGU+zM9r1EbXegt4H6ziaz3Z3pzVFJHwzmBfX4pFPa2y3lMpl+DVakkSw7eE8SIhcLo6k9qM1gbBNbMp+uBX2PH61syRoRk2AhiiBNoxEiGooCWkeoCElGGIr0bxA8T9HwO0LQNBWhSDIuq0lMUJXhmQEATsnJTNqQBB4DxQPhMGC7n4+FAhGg0Ew0uLpCsAzJAKfSUikZu6LgZeB5EAHykhk0EU4AeIRAdgGfzeVMGaPlYdGpAC14TJMQxBRqLZz+TDlpy8kW663GbGfaHdQMGw8C8ZwUimYGvS1TqBATcRBjLDphIQBHSCW16OzUcXMwiYJOVSQSqjPJcIpqwmvYlmPg5F0qtWg0lkQRrYoFeMjg3YByrbpOAWSE53g2pipUykWUwVV4IvuwMmbbu3uT0/OT+8tnd3lQ0RnXzrooq/P1Vm92dH5XUV30AcnaVq7THvQGuyf3H48dD830a61GvYESYzQeTfeOzy6vPrpVI0SE8AvZrIUNGHgGrGmYw5vCPjQgEQkc8/o9TVjk//ICH49zVDQC2jeMe9Cxrz0AAYz9zmvraytAth6trG5shQCAQSQG11eXHz98/AT7rx6+/Rh+YRf0xsZmKEZsIgCjayAjYHYvADDmBaqGjnLUBACGe+TZmNqXVtUk8Bqai2OqhU5T8aQC9Q60p5+IRoAIhASZl/R0xjJlEsDXv7UGdQePwWDh8ALmp8GLJ3FfXTZdL60Wdg62Z8PtoZnQVU3HnGMgZNYCgKGABnxE4s0QEubdOxaaUaINZiaDtVgiAjyN+99RgLuoINIxwucjSI7agtqyvhEBQbYA4FAouIo+nEDt1IxOxYAxBP1q0kobIh2OhHlsrcL1hMvMw1SjrKspKYXkMjlDBPkZCIZoXtAX78K0vDy2V2iogH0UScdBTyWTlpU04DODqKeXlteCCL5BAiB3ffnRO49WA6CI0RJi6zHuPzx88HAlATo1ysQoNrboDUuYrQkAMF0rFRGANVUouaYusHS1ZidRVGr9VqPZazWqgEulyhsAbnWH/f5w1K2W64P53LW0hLIIpxTjcTphZrENuuDlhpNuH83Lay7yDTIm88AWHa8AqAE0EAE4jruzfJxDu248YU9lnUWTVqPVafWGw257uB18srK69CRWKbmp1v7N9pXdLu2MvKv9TvtF6a11/xPv1cWXw4DMYJYZGY7GwyF/GAA4htGeEiiBbK27vX/XjYVjnKwpVvd8insJUAYSAMDFpECTlI/L6hJ8czgsl3K1RfBiqVpuoNLvdFoAwK0i0DqM5E0YdqkM1KGUr1eL1aKbgpIhyapTyOe9YrdNhQg/B1UN6hJwUqhlm6FomBOFOCxxIHg4x4cPkSzHxRRu1UhwizflbEYBMfEVAEc21ELGLuRqlWaz3sIr324UgV7z8HzoVrGUL/bgghZFkuU0PV3Il2uJGCdJSTeTAwCmyEAACmNo48FSiEIAhhojGxrxwMexCcPJZwvdnZOb/x8AHwEAGyotp3W9tPNibHvY5+c1rQLwfiOTLVZT6byWLCdzJafWF/e2k/3zxux2fvlDlwnnnLiV1HUZB/5jSkaPB0OOkrQtqzQYXV6nFYkRlXx71lS4gChYhZMpGSTUZosRYjTNaSAo2odnz4mvPwpEg5pGrHGGe/+csItFPb//6gdelLdeFrzfA/D1FwmvWmnuvfrjjzpoOP3zE6o//5u5XOmOL37z15z5+m++YAc/+If8cHz0+r990nmRbrn73/3mn38rM/3lvw7TVTzCK7luujZL2513AX8rxe/dTV9NqfHxz+5f3vdffn/fe/+2XoIFi1/dfn88GY3Gg7bWmbbHtWa+++HR9uTFznEheXF7m59N68+2x/P3msVRtbZfLB6+KCbLg85oUGg22pP93SLd2etP7MmkdThvT4fD2m7vZNwQ67Ntb+e+LGRruc4sz1Ya8/vrK/y6ubm4uru/u7m7v4d/rmfeBa1/sluia63blurku9uTjNLZa2utNryv8WQ+H18flZPj4czTj4/bxd2dYjZtdstuBmp3HkqUBqoSuGiUIjmeJPw0sYztIQGRW360tBUXw4z8BoApKEJQB0BjkRIdIcNEiI6u++UEJXI0FcKjFJKKxeI4EYOJnHGKIjaElJpKp3RREDDnaH01wvrXCDoU8AVJlgwuQ12HNQ+F3MDNYm3RMcSAoglJJqbLAcJgNCnnjwD5T3mFnLVohVLttJZAGywQVwk5bWvYJWGbGIHuemUoB6PZdLTdRQFkpjAnz0XZkcTgXgxTSKgSFBFeFDmcXCblpLxoLMm42cVzhhFCkTDLUpwEtNUx045t4ugLhtNqBvwNWebjmG2fwGlbqLMVr9oAGu45OQs4aLVSzBZz+Wqz0WyjF+Vkur27fXp5+eL85jqraCl4uezCxjAP1XFycHJVkDFH2MvaTqlYrFWq/fn5ByM3hwoYXqTeBA7fH00m24enZ2e3n97KmIb0FQDjB19MdKHJEmh3NF3HnCdJWYj0BGbqCjivhRbv0XAYRHAM55C+hueL6Du5vL7++NHTpceraxv+IBEOB2IUAvCjB48wE+/Bw7efwK/VlaWNzS1fMBLyRRkqSsOnh0qGCjiBnVJQN3EyNm16BStpe24mY4MAVRKGlpBJHg2eZSXGqXqcCMWYsD9AREKAOWFJoVgRlLOls4QfBPbm+lZUVDEzUgTsxSFmUTbejCG5XkrJz3bm88nuKJ3AXCrgQaqRgRujKiQyuFAgqqTNRf6RaWEgkuXY6SSsPBM3kMVAKA4AHKGiWwEiFhfoWHhrK4QAHKGojc0oBT8NDzrC4eDamj8UZaH6pzUAzWDQtykboH7g22NRwV1MF2PsouVmHctxs7amAYHgHVeDKxwOBP1UXEqmNBVbArOeDYwPHi6NCUYjZFxB9xAA4BS2p9kuu7q0SoQAfAPh4ObKClz0x2tb4UCAIAKbm0tLiw2Ih8sC3DoAYDwJigIAK2kA4Osi1aiUCw7oGTleymaMRBwA2MKAKUIZdJrNbquBVsDFNwBcrzWhRA3HQ/Rm2547GVVEAF6Mh3NyGuO7AIDzAMC9dm8wqDkZBDp4zFUA4FyxXGvUq41mQyfRUQ1TnGlOEFKmlU7ZadsDgdwE5BuMh93eeDvwcNW/8j+w28f9XGlnsNt5djIeD7rvvTdu/uq3hQcrjxO/+d3fzsJRAoAPcCDCh1EBw6WPYzgTLCSv2t4+uOtEwiTG49rdi1HSymR0GQA4puc0eAdUQCoDeLCggaW8XcL982KlUQEAbnV6vU6zUm+XMIkaBKtoOBWMCs7nG61qs14wOVaUZc0Fflyojnp0KBLkFpnUGHSRkFhGSIgKWs+zUmph82KaBqZ9itgrqquwkuObCgBwggsHc85iC9pnFGwnnysV6nXQ38h2miXgxQK23GXypUKx1+1V8wmaZDUjg9vlEslJSsqxc46lkhEfpSu8f2PZF6JUQseWQcmwwo8pPgEPkmdlW9vHN7cIwCkEYKt4eJTOZgGAFRMB+OXE8XD2PVcFAM6VAYALRd3Ip82ilS+q9YFz0q3t79nTu/nVjwv4lhM2PDYSEB4/o1s6799K8mJKE41stTfQFS5GM+lar6QkYqqSrZ1vM+FoqtVkBLgZvJovVXq7F1+KoLOk3Pc9wica3u2V33Rzmj28+jwbi9svS4Xfb0G/AeDW3uufv+7mi1nnZ8dkb/Y380S1M7n6zW9p6cO/+wOu/4N/8Iaj/df/9mn5G3azOPjioz/9Znr+q/+1iBGP5Uopn3Ny2/lk4b0ZwLHz/rf7r4bs4OiLj+6uhj96tzz4fq5a67Zabfjq9hbj6NPppJram9WH3UL55t3p8OxoUjXPb17Vp5XZ9k7j5CTZa+VPiu7lbV1r79daB6Pt8/3Dg+3jg6q+Pxl07cPW+Lyy050XRsPjaZMv7HRrh1dpLV+pD0eq1O2d3F6iHdLV9dXl1e3d3d39i9urbv88czQp7N8feGyje+0pbn542E/pw91qstlcRHGPRwME4NFg4qROT1EBfwXAoAm1vAV0HHRHnEZ5FGejfh9DvPUQVI+PY1Yfb4bCYUrE6MCEyGMTK0MJSYnlDYagwr5NhvL72YQAhJQKUBQXQzs/hC2UqFKcZoh1PqWZ8DwAfsPfIf1Plvy+lTWfH142ShLrBO7z8IIqK0molaiA0SuRppiIghu1CwAGpGUDUVTAXiGbXewIm66VlIWFX7+UUGwHN3Qt7Dl17IzlVTuDOkj/g37SAIwyU1iR0bIiCRgFJVAREzrmIHJCnAYAjlKogLHvJ5kBxWIoiF5SmOCAxeqKhqZGtoX2CRp8LkHSMIlHxaha9JqCZ9Iul6pQhGrlcs5d+HABW/NKnldtgmzoDsawMGY7+ydXNy9Ory9d3IWET2ZjTHG+3miOD44vcrLjunY6kzK9bK7eaI13Lt4bYmJpqQyvW0MF3AMhvXdyeXVy9Y1bCYRsOCA4GDm0ONpGF2gEYBSFGMSgKoqCnVjKwvELARjN7igyik1FZAy+om8A+CGe9K8+QdPDp6BxfX5fwBcmA+try5i/gAr48duPHoACXnqKfdKg79AlLUrxcRFtTLiEpkgovtHrwgDR5+UzSQvHgDCgSU3ompiI8gkA4EQ8ppgSReFhLc69BkPhYEjRSJLlE3rGVFGeRsK4E5yAOyED8gqLCyxpmFolJR0AYG8839nf3R+nQQFjMAbchSSmpKtUmKUjwUBMAZ73lSO4k0nbiz6ojJHSU3BLg4TAwIqjY5uBMClgBy0AMMXTWyTL+rbCES6RYKIkLN6tlVUgGixOq0gUy4f9W1vY9acysTBJig6e36IHFoYhOWg1mTbStkIKud8DsC/Gy7CGFqnP8BaQ5QSuAAAAIABJREFUEAG/pIHbUCLq9oVBCZRWEM/c6tPlEAEIhF43K0BFny77A/4QEQoRPswnXCDwishzXJQhY3QEAZjTMq3pLgBws1bJW/C+BBaeZYAjula3DZFjCW0MCNxp1XEKCQEYUKFSqjS6/cFoCL/H2zM7DQDMcvzCxlXUbGyCBq1WGI5xJ7nfr+DjCstFEXU95eZxJ6dRhUWow7WiGARghhPlZNKxkpZjZRcA3Gr1R71ObzQJvr0cXH9Q/Nb756NXR8fn7/3g9SfvXt//uy+ev/z7v4x/PfL1yT/9L391DtSWxembMAGfKoDDwDS/GEPS9Vy5MTt81gkTMRZWgtM57+k2fkxdQADWeZ6MBfW2o3NMJBKWC4B98JUvgcBtNJoAwIN2td4u2+kFACeSbqNYqpWyhWaz2mmVM/Bj4UFxCyX4S9MeRjxT2JkIRYhmMZAc2Z6AD0scABiDV0w8z09bMsmpKQNPAxZb0CJLBHKOLgjA45J5JwvvoIBH4e1Wp93G8c5UAu1YbLj+xW4HAZilWKhRAMA1eCkZz9IQgGPhTV6X+a2t1TcAjPtvCdnwr6IRm+24llv//wAwXOzS0TEsHkNllJSuF+evpnYW3mQ6l38DwNiAoSvAgPPZXEkrV0Z7ldbd3BpeHJx+UdrYsC2gTSraHlI+zrD1uH9Tl0lBNnL5ynyeigcCDJPu1AySjcaFbPNqToVprdEW5EiUElVQ1/3x2R8a8UjELHzaZcNaMnt77tNNN+m0Dr/rUkL6Lpdzc9bLcaheuPoikatVm3sf/tF7PbfkWj/DLui/21Pavdntf/xrmn/373/M9H/6X6vbO4cf/5/fsb7jlsu1H370p99Nbv/m7618NV8uVyvlXM6adfXs3WWlWcqcf9m/77Hzix98/3J+/od36Q+uKtVWrYlrr9Xp9vqwuAGAt9OtvfakVa2MP9obTa97Vfvi9t3mtHkymPavqu7Ibu/og5fDzGzYHpYbJ93R3qQ/HU0ui8mr1o45nDQu+uNpr16anh4PY6Xj0vRorli5fGdW5d3m/Oby4uISvy6uMd/u+ub2cJrJPCt0zvM798devDa4sYw8fHMvac52S067DgA8Bg02vj0uGcPB2E6dn3bLezuFbDrdq+WztmGUsPSnpTjPx7b8tESHN3wc/eCtR+uBIMDgozWGYyQtjo3BApSYQJjnVEfjeZ0MMmRgg6cpwgffhaO6NMWFKRqkIwCVhqEGAsOG11gDZ2kNWeIiBI46PV4Krj8NhWl09okEARfiKZDghpY0U2kTAJhZYARFSCkspqCscCKZJWi073e9N4u9kHNtU5MwYRgQRrZzGdNx3HwWxDwOCbvVXms4Hc2axqIUm2h9sfBlQJzSkyrPywpHM2w8Tv/+DHjR2QXvQcHRF0mW9Ri6e/FKQkk7qKLwB0B5x+hfPJXEMOME2nmATPMaUL88NG6Gd+ehJQDw67KXq7UwIhRqEuYx7B9d3tyfP7/1FDSmBuTEM+tio9GeHZ1cFtWsY6cMoApOsdRqAgCfvxxkvSJuZNfrtXq10uj0BpPd0+vbi6tP7lUihE5YFkYOGUbqzaAz/EMKz0bVhVEgArCKO+mgg+UE1A0eDcbIWBSwNxqJRKJfe/Do0eIYGOTt0tLK04eAwOubm1s4/hHYQAB+DAr44cNH7zx88A6OBQcBGAIAFQTIRBpdPEEExQGABRCsimFgQJ+JAAy4k0GF6GZNWVFEPsLiuDYfI/UkHWZ50r/lC/i3/IAyET3FsRyIYIDuJNApjqZoXuKx71mQZJxKUSQZh9l40YA6o2aH8/2TQ1TAIPgXiYQqxmwoChUGLeXzRxXc7MCqiWnAwHEW9qOmqWEXdpgQEYAZaisQxszXWGjLF6Z52gdi178VifKyBABMhkPrT1d8oSgnABgkSJoNbW35ddDRGv0VAKP7B26rYPTxYsbcyFiJMOfmktiaGAgESKAUhp7U30RRwPuToOgzwUiUwY5/GfWz42VtkMfcypPlQCgEkjcSDmwsra0+WiGITaQmYf/yyvKbM/h1EUMLmGgUoGrRhGU2p7tXRa5RLcMzDIyVLbqmAojWaLrJRDwe1iejbqNZr8LiAQAu19vdRjGHpmv9HsDTaLI9Ad2ckBeJoNhqa7ilarVcrBRKo3G7CyKyW4TFJHEMrYp6MuMV8SSlUatU6ykGs7sZHr6Tx1MHK2NYbgYoZ63ZqDf6o253OBoEHjxZXlqefP+7l3vfvL26/fzDH/67n7z/8W9/8u+/8w+/Fh+FH3f//K/+7CBIkawIN5wIxt4AcIwCFi6hxRa82hQAGD4sI6qa0z5tKA5aYCg8uoDBMqEWACyDao5F5IKLE8CYLlioAHMF+T7sVKuNQhr3ckE2JJ0m8IeCV25Wyu1G0YISphkmcIZ6pzfpMiQb43EKiKZpkhagwoloDYCpIBQ+VNj6LCd13XHFIK2mTWDtjA8AWBaZ0BsAJsMbqazjoZlYo7FQwF08Qzd1AV30rEKpUOq0+/VCgmVFuO9FYDMqycqmbWc9K6PGiE1ek4VAYH0lRCshWU6m00CcV7dEEbf0HDdX++9b0Mh2yscnmayX1AGADWMBwG4qk8IBhMUWNAJwSgYR6nnFsunZB73S7JNZtrB7e/ft+vpGOi0aDhQ3muM2FgAc9JtyTJD0XL65s2cI4YimtU/6WjhGsEK+czUOboXj1a6ixyIRQUzn69Px9Q8MmWFS7jcb1BZo8ud3vqTp2MXu0fdybCJ9m/UcL/N8GKjlrz5HAG7tffxH744dAOCfnLCD+f+0pw4G2/d//jteeP53X5Kdn/zXymzn4OP/+3P5M5Aaxc8/+tW39O3/8a/NUhk3AmvVbMHsbyfTey9r3ZI3/+n27YCfn3/57bPWN75XG32Rb/TQd7S5AOAOdtuMRsPZwJgcdmuNau3u+Wh0M/K8y+fPyv29vaPuxak7arh7bv3ZTnq4PSnlO/3x7rRVG+7PR/O515nNu+pRa++sfliduKOLyzFRP/COL+oJr1zpT9OJWv3o2dXFV18AwNe3t9dnXc/Jn9Vrz2qD45OSWJjcpjOF8uS4o2d2t71cq4JGENPZbHZ/UjZGCMCnR63C9nbOS6dahQy2/hbttJ4yJWC1kY2QBGtiZYNTNt95EgJs4uJbG7yekHEfML7wEvYTDCXB0kvAX4QqtkFRfGwtImFSGgFyklj4qiZUXU3hGQzDRNbYxdLRJJEjQrTgj/k2I+tvr8RlRWBolieiUd4AqIVfv9+Cpil03wolkvCMg3ZRdQmekTAAMAiehY+9g7EulqklcCgCe6msnJN0HCefd51kGpSJW+6Mdnan263kmxasDKbG4blcEtOVkvh0SOj4j0F4XwGwiC3YysLgYXF4KkdCDPBgWVJMgPA0Jok5aONhIgTLmGuMrSh4SCRm66B8S6B6PdfNeznPzeZxqrdQazWb7QZuHk/n28enN7e3F69ucqqBJjh4eGtmCvVaew4AXFLgDZpAUzLZQq5UKPfnZ8/7ThZwHNNM6/XK4pRtuH1ydf3s7tMXWihIxEK8hUIas+k1+J/Um515ddGOhYUenTgAiFXchYYCg7ETDBWLEuFIZAHAIIDfwUbotx4+Rculh0+WllfX11ZXN8JkaGP1KeAz6uMHD+D345WllYVFUwglMNQ9BvgHywD5kXBGCHticRsaLk82j/kEb7IGHAsWjsQA6NKMyGJ7VTTMciGA+KBvfZPwEVTKXLwOJ8EleWNtBspqkR4BL4k9rAoOXEtwnQ0nm9Gyg/n+8d58YCYWs87GwnklnVRkEup52O+PyhjAm8x8BbzwR0lUB2ndANIfDgI8hiIMAwBMSwlQzL5gjOaprQgNCjhKJRR0diAJBEI/RqarelqJhmM+nz+A1i0qR8JSjWPzOvp74PZkasHGkCbGCc5ZAHAkEAQAltF+a+FNnkmnUioGfTEBNJBDB6lM0si4LqzKrMcsP13xh4O4GRQKbT1dWXmwDHI4ECKIkG9tdRnbIB893BBZhifpcAQeMBwGQADePs9z9WrJhY+vLgBY5Rmm3nSSYjweMybDdqVWBUULAFyt1Dv9Zj5bRGToYK/KZD6C5Yx5y3G8hSDXsxXE61qpMn4DwL0yoBfAPqOKWsoBYGsCsNSqCMAsKEaGh1IA2nnREeFkrGy+XG+BPh5MBsPpdOB7iP0D408+vzp+/92bF9+4/cPP/+T1d3/zs//w0V/+svzO5kPrz//nf7wKc3gywVKhAPbeRTjgPjz/pgkLuMJ0/7ZDhaIMiFWndVROuFZaT4D6JLUskGeKDAEAK0KcoWNS3s16noPbCQDcjc5gPB73atWaB3dIwyYsw6qXG81Cod6oVNsVz4LFpCXTuVK5DmyhBRQ8ButX4ki0gYtjSOnC6EtTOBY4FqyiFPoCmLYW85GCDuqUY7YUDwCYJXALOpGgIv60Y7kuPLTNBipguMrtspUChSIAd88XsuVOq98oijSfSFvZcrFc1lhOSlpWFtSCGgsBAKuJYMi3GqA0QoYLbiXT2kaIR2JtulBE/t8mLAxVtSunp1DgAIATXwGw5SQzybSXsfJwAQzTLeQzUjqHaYtZw8zMy+0XH9QK5vD2w9ftjc2Mpeg2JykEJWxwSceIB4OWEk8lRCff7c1FVaLTmdblzEvE+XSyMXmxEw2S8Xo/AQo4xnJGtjLpXf8iwzKSrn3UUQOGlbq/24R1YBba+9/zGMm+B8maXZwBF66/ELNwzQ++8fP35k7Ztb48YfvTv91VR73Z/X/6O0l6+bsfUe0v/tHrz/c++b++YD7vlpr573z0i2+o23/5Z6kysL5iuV53ymbj2NW677X75Vr3J5dXk/jw/EcfHPY/e0/+8Fx1eo0uzoggALfbHaRfw9G+3jhtddvl6s435tOTSdI7e32Xq55Ojls3/fwwOxrnT89Luf1+Ydys7m3P+rrklEYH052T1MFk3xhP+ze1cXdaalxfDSLdQfH8wlSArm13Bafdv7q+Oj8/X4hgVL/Prg+GhWxn/3JYuGsBAOfF4s41PjLjw65iH87tQrMMpBcE8GT6DAG4P0qbpwfV7Hyez5mpBixnUZILNlpOwdJiIv5IQo1G19aYDLuyTpBECFYlISUBZxRRxDBXlvITVExwDEFVQFARhJ8g4TEi0OQhEqMEKkjSZAx3X3QcNRSgMK7xpqqbti7hFiAryHgEpjAUekEDmSVJHsAsFoNqm0wBAX6zBY0hDYRsagbgHcioOMsxYSouJtRkapFtlM7g5p6Gm3PxeJwXM3nXdCz0rc26XqFULNb7o539ncO+kbRRCOHMCMIoblHKUB7xSaPCUcB0gSFjizPghAaUWYFKa+iLLWghHKJYXlI07MDJWKnF2V3ShDcpQ/XHoCScWJVkUYrbVTuTq9SKGKcEAJzzvHwezWkRNLuLOeD5fHZydndzdfbizJU17BazMlDCM4VauTU7PLooymYGCjP8ELuUg3c/2b++79kuVFBs4qzVK8Vqrdkd7Z5eXt4//+YzJUIEosGvtqD1N0nAOO6CmhcQGAeAFwCMLlI8TprAJV3EFwM5wv7jaDgc+drTpScIwIuvR48fP36ymHt59HA1BLRq+fHXFz24AMLvvP32o+UnS0QwEAiFQQMTwFiYOB+naQGdmjGySJLhwkgqVIxsHqeuTVTBVsY2BEmhoxxH0iCEdUMiYyztD/oCAC/rgfUQkzSAxoA8j8MtRadQPQGaDA87sAFGxihg+LVINTZsLw2P22x3fzbppRLoea28SQQ2TVUK+0kyEgqRSgqKJeoEPKRFQxUND4DTKQDpRDAQZ8NBgl4AsCxROJFFMhy5RfOcb4OIiqiAYbkG/Wsb8EFpAE1Li4SiQDkIFNyaQBNhgrNM24HXT5kZAGAokmbKATksxgTX0eKYJxbyk6JuYk5VCpOq0kZKSTC8TG7FKGB98EEdQ8/gJn3K9ailpdUABg6DCgz4l9Y2Hq9FgoTfH44ENrfWVpbwGPjRhsiwAkWDbl8AMKWm29PZSZZuAADDddY5OmcZqhCnqnVLj8PFNsZQ8Mt4pluEmlypdQetPDDSZhtbVYaj6WxoZpKywgkCHnQrSipXh/LVqper43Gr2+oOhjUrZYgsyyi8mgJ53EAArrdwC5rCkVkEYF7kMY3Z8lIOLPRmp9mo9CaD0XzW33q0sbn8YPTNV8933j999uKTZ1+8/yff/sWPf/GjT/72n14+JB62/u4v/umbIiwhkJmxYJAkgj48QYjhs5yQdcMr1v8fot7DyZH8vBJkSJxp32VRBY/MRGYivU8gM5Hw3gMFV96brqo209M9lmNIDs2QQ7OiRK2W0u5KS0onnkSKt7o4E3FxcaGNi437r+770MO7Gk7PTLMLBWTm73vv/X7f995k56pDgQLmZNVp7Oe5rJOxZJzrlTJoGERG9Lan40Y4IZfyTjb7phkuX661BqOt2ajVaOSAJKmY1KKlq+VWu1Ru1ZvNbslJQ31RdRt0aK3T6tYZlosnWcB2NOShZez6VGVYRlAORQzV8jD7yrI8lwtHwiS8HYWn1yUAYIGJhvOeIYpwU3AZOnCp6/UawO8AALgCkl2Aoqmki0W/0m72m0WeBAB2crVytaSlUpyKO0TAnhCAFYnbAMa1ltAJFRitoWXTwWgCRJEJBa1Q/f/HkP4IwI5raBQPxaI4XShggOwcvDbwIARgPyMYuWy+WNR5WDHF2WcnWtPt7L6+ba2spx1YMglB3oiJGykra6SCIUdKClEym6tMdmlNiWhW/XK3bacoUykPn+9hVk6nT9OhOKYxZLxmYe9HWY6Us/63yuKKklae3m5i0Gupf/RpJs45zwsAwOnnW9Fm+foHnFuqtA+/9YvXO14l6/z4JDWc/HZX7be2rv/T7xT55W+/ZPvf+11usH/8yX/7XvQ7vVw998nHf/WJPP/NvzdLhQZalzWcmlO/rCnN16OtYqv2w9vjKTt4+uXr+cGnT4rfNiUvjy4zbxRwu9MfDgcgdiaFwqw/7xcb/W8dbG2PlOz+hy/yzt7+3vyyNWiWLry964q302gNOpPZYFBKaTJveLXp9nZ3NJ7OM4fN025+r9sp3V72mXGtdbyfVKvV/kkl2ejt3RyfvgFghN+bm+vDVtpt777z7m7msrFze5wWqgcXFjzB0+Mt2T/byZTbtdFoNB5vjUbXhyV92Osb6ZO9sjudF0GqdCtZ15a1Si5r6QpGCyQAk1SSDQaSWRUNqSJxqLLJtMHrmpBCCQWPfBDoquKbnMhRNGheIsJQFBNcI2kGKjOfCCYAlwGAAU1UQeSIeHSVS+PBlwkLKJ5gWAzjAPKl0KykcZHlR2/iOEmGVdFu2dAWTdDJZDIakmzARAtkKa65RILGnlgrndNFFf2H8Aw4haMUIEGlTD6bzbmW62d9wGAfbt1gMB6PtruaBvVyEVPoudi8CvjKp2RAbk5CTcGJKexMiosa7hrKi7EWE5SYCEyASgA/Fhat2CCkMGnP0Q1QNHjoiZpcUpEtA/ik3JqXreVLedztxp5R3PvDs+Bytdlug3Cd7uxuz7cPri7OTl6cLAAYnbAy6TSgaxUU8NFlWTIX4XaWnSv45XIL6NhtN+MWirlMrlyp1MqlWr3Vn+yfXpw9efbJpUDEN6JBLuth0r1hL86A0+bCqVpDMYq0AaOV0YWSxLlNqAZJvKzYcEYlyTgIrm8gwN658/bb33z7rTv3Hj248/Z9nDt7cHctEQluoAnEHYDlu2/9yb233r739t2V0CaIXzwFjhMYpsBzgL84aiGLAJbiwl8UW+Bc9GDUsPe4YJsir/FUnBZJJhVKSCYTTlEb4UeB8PrS6sbacojRdTrBgZogadkwcKjW4mlMTQXuIPIpuLa8IAr4U0TdyZuaXxvsb493u7qkob0kaBw8AwZtGo/ECBBThLoIRnZsuJg2toYvgjgslIk8HY0JHBGKMslIKMKoUDhRAlNMfD2RooOBMCWoKhUn4kQ0GAgEI5EEIxsZJR6KRiPBMHbA8gIQjyjvZtEvDf9eRG54+HSZGuCJZclAcRLh0EaCETRNFBWZ4y3HRBMQjtfikQTN8qDENds1vKzlWrafT95/uLweBFyH8h5aX3r86HEAeUEMeE5g5fHS0mMcBN4UUjSdSKA5HEHGY5ScqQ92L3ymVXC8LNCAJNd0FU0myUYTPmeKJvR+Hdufc4ujmnyu0mjXi8Ua1Kd+t7816s/3RmlLEjHMa5HOZHrlVqfdbPSavfGw0261e/2aY+kcRdI8D0BRyDfqnXYfs/ZMahHIxC76pRan2VD3Fz5alWqz3m13++PdHijgwOMHO+9+fnv+8cHLp1+8OD///s9+9eHHz5/+4//6w0ex+/Xf/dNvP09EkgA8VCwSJRLBtQhOiH3dhGV5xf5k92IQC8VoBVZdZack5nJZGyoUSaoZmWNj0ZBd8SQ8jQYAdn0/i86ejgNso93uTvqjbrtXwZ1cDdixaIFy6tdzlVG31SvbuoQkKJOv1IEY97skywAcYaoplSRS0iLZReIkuOIJBhgsLlXLyRiOJsc3N+IxEqoCHZYLtsGnomHP0zR4pNYApm1sVIN12mi0enAZqkBCeRCaRhZTlwadRj/P0oLq5P1irVrWaUbRbVjuGUcKrwdp2SSD8eBaIGwGJGxy17KZ+JKoiLCIXL/YmJwdX77fzZRNxfDcTP3gwjDcNK4LPV3ZeT1N+wZy3bRX8HIV1fZzHpTNXKOWT9uiBMLh6euCXsn544PxrCqqWRlkESOGKT5Gc45CR9d0kcx4uldoDueCIsZlu7+317X4uCY4INqSm7y+PYY6SzOMouVKte7FzzwlKWXqH1fodSuTeXEYNs2MXRw/+SQXTfnvZLMAwC8HsUr+yfeIQrvYmn/wl0+3CwXf/vleYmvyu2l62N66+dt/UdV3/+EHif5P/uBPds/f/z+/JL4zz7bT733nJ1+os9/+ebpSqlaq5UqjCrr+qqsUPzzuVBvlL14dj+nZ6Q8+aV38rLnzKsmwXqmG09+tNm499AdDQLv+cOz3LgbjdqFw83w276v65csbYzo/Gt3sNPcyW4PSydjbbbabrf5s1jCZxYahlikAHDd2R3N7Z2t/J7/XaLpPDtupan163VA8+MehYXS7Z9fHF9h/hVNI588ujg6bpts/e+dk/6B4NJ48OyoIpaNTy/O7k5OhUjjZdnxszx6CAptOnl3Wzd6woZvHe93sdFz1DaNTLuRMQyrmMRlBTOEZbYRVGSq8QqIbFJcIxZNxCuMLZF1P4cguwySDALqia4iCQAeg8JGY3BZJEhtiNBQjWCaIHBmwFb3MOT5FkbEAq8kg04CPMvE4g3Et0XUSm5Aphlq7v0ShHTMLS91UDV0xVMBfTISNUSEOt/iwJRnDkEh4YZpTHCutS4rpOIt4bFDtFDYm8naxXC0XsugTmPc8YH+NQbtRqY0aGjzlwFMtUIogkfFtYFSQhMc8HAtSXhFQFlIiSioDwMsyVNOQ0f1SZCgmxQmyiGd5C5stM23jOApOySgS2vRhHAMLXLnY8BynVM07KRXj+BZ20A5c20qzWh0M+/2tKXwB/p6fnt+cOaIC8szMYJSP7RYqrcne8U1JzDqWiRF1+VyuUGtW23vPBtlcqZjPlkvFAjyFwCWH093TJ7fPX396KUVC8UhIyQKK2zZmNOk6NncDbskKboojhIEalhZtcyAyscKgGxYNABwHsYjb0N8A9MX95XvffPsOJr/fffDwIejdO28tg7wOPHx4F3eg74H+BfR9eP/xRgzPgMM4p/Q1ABPYXAUFHOAdG3IU1Qa1kPVM13cwE8MBESJxMktECIZg2AitYq8Uub66hnOEq6uPNqKMLMWDBMY/U/ziBBnDMYEriHh2zXG4+ywJHEAxNmHlDM1vjA725ns9Y5EHrMD/FNMG7piKR+IkGdqIy7gjDffadr007hPjTjjuStuqiAZsbAIBGJgErQoJANr1MM0RG3GW3FgHeSMpZBwuTzi4vrYJuMCIuAUdikG5D5s6kAmRAgAWHOBOGWwzS6MFP1ogesCDJDLlppUUQ8dDoU1KkHVkCLoi6ZjDqMCTL0bCMVDAcIOMtGuB+HHttJ8DAF4JYEtaMBQERrL8+NFaNLrYkA5trK6uLC1hI9YGuo6hiTdawSbiSSld6++cZ5lOGZ6zjGmwXDOnaxKZbL0B4IQxaFRyON656EfIFxudBlDBLnZXgUAYb++P0rYMGg4eb14CneWWkSe2Bm0A4G4X54ArwOswvIMXVMwXq1S7nVG7Ua/rRJLEYDqWSTI8rE0bHr80tj0AAteboEF6W9vd0MOljdWH89ffPrp47/bZ9V8+P3v9q59+9L3vXJ7/1W9/9njjzvT3v/rNlwlk6RwJTyKZCK0DiY8AAOMW9AKAp3uXCwBWTT3TOKhrxULWxr1nUnNViUkQEbvsqfDUJONiIbPYgoZl7hcKpXqjORiMer1hBXi0oolMircKwC8qfmXYbfVB2YucpBoOiMVGs9sDAGZJWeZTwFPJSAKea1AhTDyZpMkogR0vKWD3KkChwEaBlkZZgU1SEaVo6zwXD7su7uFFN9Ke7xRKVfQdq2LPR7tTdTJ2CgEYakEu121WOz6dFJW0n81XSiUAYAlPIVzPkaIbIVoxyBABCjikhyXg9bqSMclVzKEAeuOXWpPj46tXHacoSzoQjcbhtQ3gjXtEmlXafjVJ50EeAKPPFLKFmmZlfSdtaJlyrWRq8BwazvvHpoJt4rntw224nJwiCTQfgf/xasFkIxtpOiSqolPqTLZhJZOK3Tvab+oyITNa++wgucnIkwEORDMM4Do8TMdfgWaWMrWPKqlNy/FeHQEAp8386Or7GiEX3++4nmF9Ug/s5G9+wJSaucb2B39xMwcimP7FITWZ/vPYHHbGt//595r+/DffJYY/+59L/e2T1//XDyMfH/kTdIc6AAAgAElEQVRt953Pf/KFsfPbX9jVSuOPAJy9GKr+69N+o1H5/IOjCT08/uFnvZsfFp+dJSSg4S7IX1DBrfbXALw13T6od08n4165dPFqd3fLTl+/urW2Jrvj63F7u7A/qI+q3V6n2x30y3JSLeVUHkBDl4xsZ3g8nxa7s+lBawZr6MleT6o0di/LSr7e3t1XM72t84uzy7MLBODrJ7dXl4dtOzs6OL0+OjyrHwxH1/s5oXx8Yrr50c7ZQClf7OfL3eZ4PJnO5/PZ7XnV6I2aZuZ4u+1vT8p5wxwULSA/atGxcMKGAdQDHqpQscBjwjIElgxvAgATKsKWAXcT/R1SbAiErpDROFGiNzBMPRKhGKDm4cRGZLFDDeU9gQAsGwsAJkKrtKYahqWLbwBYhFtJS1rKwkOo0P27gRiNLUIcpyp42qKyC+NiUMAbQhobXFQJFhL83AhNc7LpQ2nFNBkgpmkD2HAyyeAZsJ33MZwBHlF0T252Wu3BZDabH3QUDVQQfIOD9oFoT6gipgtAthexw5wI0JQkWfh8oqTKvJLOaAjAIkgVBGBMBdDS2MZlgkJzXDsDFwKNEFXclceNXrSMzdWyfqGaM20VjQr9Uj7rl+rlSqnSbDV79Vqjh03Ql08vTg5Pb594koZZThl8I1Bsat354dnTiuxn8HDRxADRcrXVnx497cOL5tGxHd45qunWYLJzeHH9zgffvVXj4UQ8LKUXQ1aGbhhv/J/RDvr/+8L/wmW6yAOGvxn8ArkfSwB2RwCAsQcaMfhP7tx9g8SAtn8K//4IIGf9wf07D+7dWXy9/c079+8tB2PRCAIwiEQSAVjAY3QeKubiDFjG8QmsAp6Hw4pYmOHfAIBFbHwiyRQdYXU2Fqdiqw9C4bWltcDyg7VQguNjQRCGuIcCxUIHym+pIo11GICXRztrWUAXD5AFbtZQ8+3J8eHefs8EANYQ4mQVJa66AGBiMxATdaBJJoY9Lg78URZl8O7bmiwQBM/EwiB3wxsgvaVEdGMdCj9PgmBNrK2FCHgHZIIA/AuurWxE4wQtAAAnQKDFwhEoXBnQa4lYVATt6zi4W+Es3L6AbDlQ8xSKx6EUFgE4SGMohmZhCjKQV2xj4CguFIpRAFqKjEvBRRRPe7nkg4crG0HcWAhtBlZXVpcerkZiGyG80JtriMgrK8uP11NAULF7jgIVnEjQQhoVMABwrQDaDzdaG4AIIsW2WzbOyUSNUQvqVh6dTeEfuRwAcLXZ6+EB8Gi4NdtFb0dV4gF/geRo1hsAbre3QL+O+v1Ou4NDPBqbJJK8jIY6mVq90+w3avW6mmAweIpdALCyGAKzrUUISbUG2g+zv2ad8NLSxsaD8Qcf7zx978sPbv7D6e37P//Zyz//+MXFn/3tX66s35v973/xDx+EErC6kkQign0kmzGaCMcWh6ZoEVUazPYXAMwAH/Y6Jx27nPdsU+VoSvc0mUqQAMBZPQWUEgDYAZ6xUJO5vJ+rVKptEPrDSQXjG4BEMJzp56v1YraCM8oNzxJZCZ3oirV6q9vrgZhPqlA3ZJakorjtARVFSGI0eoJcdE/gpB1HpWLRMJ3cJOEFU0lQwJbCpBIRz1Xg+2JB28njmXKlXKnVas0OAHAlbZvsHwE432k1OrkULSt2NpsvF4sG1D8jg2fXaTEe3GRVjYjAT18OyYQgMTwOMqQ2WA25j5MttSf7R1fPm64vSKZjZ9onzwBuMxq6FpjF+cuxXdBNYEFwH7LFmmoCJ3dtRfMrZVUQFFnPf6suy+h83ZocXCq6gwY3FAdUIsgbJSu5uZHRw4ykwQ2c7QHTTepW53ivrCiEQIvF3R2o8fKkT5FQoWndzOcL1cMvbZESM7UPS1zIzPjvHW6CAjZyoyefaCkj87RczBW07xZi9dzpZ1Shkm3uf/iLm+18oej84ig5m/1ubPbbW0/+5ne6dfvrz8jBz/6Xcn//6N1/+zL0/o3fyl1++tX30rv/+HOrWm1Vq0Abq4Wifb5tui+vxp1G7eNPD2b04OTLT/ovP/XfO/dtmeHsYhXKbLOD7m+DETYcz4679f29ybBe2fvoeH/sujevn7mj6d7eDYBu7bg2rhcnjf5w0vU1w0sLwMASCd21Hcsr9A52+sWD4cl0MK30LnZ6Sql9euLJpVrvYEvO93cuT66uFgB89eTJzenRIJ2dnQ9GR+cXV83paHS95/Plk1PTLU4Pzvt67WovX+vXp5MJ9mBNbs4qem/UMPzTWauwPysXzfQgE4ukZL2cBqWgccD1ocCmFIC+taSpSykqshlNhCltEUO/iGUFypyKREhScnUgwOxmkqSoWJghmSidiISTuKcUJmNRglVNSzERgMlEcJXWEYANWPIAwLyShBoic+GUKLCJ9cerlKApaKzDmYtRGgbz4imKopMJK4+q0AGhqOFOMYcnhb6TsxVJtTHiGX6XZaA4pRjOci2OE1UTaDDGh/eBjE/2jk4uBohymMpuwSOaRt/kRTw7jwNI6HTDgQAGWQgAvMiyl9SF7zsCsAwATC84ueG6mJxt4FCUkUnDlUDjJ5Gk33Rh8SyXr+eLlYJnOVAwzLRf9B0A1mK1VGh0260GdmFNtvcvbvH8/vrcXYwgYGQeMEe/VO3OD05uKxJGo6DacKxC0a+NdvafDnzcTvfQdckrVCqdznD74Pjy6fP3vnim4EBKWMlY6TcCWJMESVMXkYSYGLHAXnkRRYi/LLIXecxhoMg4umCFgpF44hsPsMn5zttvv7VAWfzlrbfeAiBeikeDq/cf3F9MAePvfhN+dyUcBQQOB4PhSAzTKXGuCKqTIIksDhtjF7RkLTqPTeylc23bdw0TLmQikCASyVQinNITUYrYXLkf2lheDQceLT9eCaVEIpxIYoM2g2PVqpnJGNh8JeAZ8CJgUUbLFIEVoHYZanG4e3p4sPfHLWgV7gMmRmtvvKSDAMAa2o5mFgoVO5AXzdALAFZEkhQAxpICEw1GOFvBw96NKMsTAZKJr61HCJqTKIKIRDZCa8sBAGAQ5bZCJpIkALCuOa4mYoyFDAwLMD6TweRmF6AYIMhFRyM+65s8m4yFQiEaLwe6mNuoTRwgtwIrRUI4cAVvGfdarAw25ztZCgE4EoXSHwlurK+sLD1aBwYAAIyDwBvrqyv4tQaUlCUTMeJrAJYyjdHehc90GkU/65mSlKoV07pIpzpttAhmotak2yiXS+iPjDEFAMC1SquPO7P94WA03T8Y2BlN5hCAGU42LLfUwOPhca+/NRwgALeKcNW4ZIJC40zTyTYb7Xq3Xm001EQqlUhiSAHDSZKCWzauiycu5WodJEgTUxk6oaVHgdCD4cfvnt6885NXT395/d1Pf/pfPv+LL7//7Je//rPHofvT/+MXvz6MBJF3YRMJXOBQHD1GsAv6DQAP5/tXg1gwzgD8Z/unfafiOzYIOsCALABwjIyky1kNHd7iYtFxvewCgL0cxoGW0XhzMCkDWCkKkETBdP1SOZ+twCcbNbNpiRUUI5MtVOo4t0KxLKXAPdFSaCQUJ3EsSwXSLXJJfhFfCvTOkqIh4EU0Q4iGAO96Q8ybUpKJRbOeAnI8EjQzxUK53KjVGoAEAASdbhkWJSpgHQA4X+x2W50cTyuy6QEQgvJJ0aIJvCHnW3x8M5BS5WiUjifWAgzFaUmaB+6shkG1mADAXqG1Nd+/uKm6nqhYruP3z57hqtdEASpbZeflyPC1RQgnLLhCDcQ9/BlHlp1CXuEFRXEKN67K1Sv++Go2PoyovpQS+SQXBgAWzLxBrm3YfDKfV53KaLwvwNXQzfbRLCfLcZFXCrM5vUnq8wFF4vmVZmGr9+kPAICldPX9AhfWbf/17iYUacMfXn3ubQrFjzI513ReN+E1Tz4g8iW/dfjxn93sgHR2frZPzbb/ZWr1moOLX/3esG5/861k/yf/WhgeH7z4tx+FX77y66W9T3/0fWv+9z81q7VWrQYPVa1YSZ+fuN7LZ6BJ66+/sz9LTi6+/KDz4XulV4e7DQdKj5Gtd9D6DXPnRlvj8XB0MCxNT7a2WtWtT853R553/e6Lwmh39+yqNmx2D8q7xcZw1K2XTS2blVOym8mVbIaHJ9kz7KOjef5o63i/Oy0Oznc6UmHw5Cit1urDw4Zc6x1fH9+gB+XF+eXV1en+wMnMr/dL9Z2Ls9PmeDa93ff5yum57Zen++cDs34+dWuj5nhrC22EFwDcHdY1/2TS8PemxZxl98y1+8sptYJ6wRYI7EAJsSKdwEFeBo2roNhGU6ZuQJXHdpsU4A0HnDWpZC1F15iNJIVttSTJxEgqSfGGQiKjjZIcyEjVVAUA4Hg0wOLUpgkAzCIAa1Q4DrgXeZzUdS68vEwvtiCBiqNvvSKRkSjJLCLIQ1oxlwM0y2QcXYLVwbKiZmZB4sKVyrpOztFxQhREKs+wICgVw8mXSnnQn4UKdo0Mpzv7J30V0wMtQ9Vt10JjQgOnZUEBpzAvG9MGUwjAeASpYAPWm3x7Cc+A3wAwhwDsgW42DXQdkjK+udhblHDKAD4Rj3OqhWYhnwNJkwMJD8rPdbKFYgGpQK3dbHS6g63xFryZs5Pz0+OLk4wIehzHlXAnM1+utKZ7R9dl0cnCf+PgqFep5JvT/cOnwxx2VUN1yWI7V3PQ29o7Obt59eTFt5/L4XAsFla8jINpyiZm20g6ArAkK38EYElEc1EOrxB8VpD5+EXEoyQBIAH3CxTwYpP5HqIvAPFbgMV4JPz2KhEFmHz8+M2U8B2cQrpzL5BIICwAvIQAnNBUUUAvBkEBkSvjT9dlwUjj4Si2jjpeOp3zDEMWpehSnIwnmXAQMCjGRNdWHgYeL4UjS/dXl1ZDrERthhYWjUKKofCoF9M4FjYiqN0XJtKotFnRzudNrTI7OjvY/+MZMO5Tfw3A0VCciIU3E5IO0GakcUfOTGewHxuqKAhruH8iQQjYaiDQsWBUTAO0RkPBGCtQmzRHBDZiFMvLyUVXIeYBR+MJIgWll0T3i2BQVtKOyiMAKwAFhiTCS2I2HIYK4na7rTK8lzPhB8AKiiRZQbc0zUazK9DIFuYlmESYYhYKGG4P2kGn0YgFAHg5EIvh/HN4c2P58aOlzWgYm6Cj0VBgPRBYW0L/MWCKLNw1kiYSRDyeFDKN4e55lm3VC9mFqTNTziNFZdsdHEOiE+lZt4lWbGjNBg9msdGqlhu93rhbbw8QgPcHtgOqHG4fArBpeeUmxmZuQQHrgwLudDvlTNoUk3FKwi7zjFuH53jYrTabGrBg8msAVtHDLJ3xcjl0PS9WWq12vd3uTbqbjx9thB9tffLu9ejg2ej8z559/K1f/MWzD37x05u/+qfvvRW+e/7br35xzmwS2MVMRiNJKhFJAH8nmAUA6wsAPrgaRINxVtU1r38ycMpZ4D0Y8GfkdJWGi5WueBKD387lF+0duAXtgsyCxd9o1CudYcl0bVnkgNwbLqzGnF/tD7pDBGCOx/3fQqWJFsIYggRs2jA4RkFzeColwqKWBJZh1D/mSfvq+sOHwCIJxQDAJZh1IW8pNB0Nua4i0rFw0EwX0IkaNwGazTZaiZVkURPeALBfKLRAArspQsZYlzysbp2hRYyDyC8AeJ1T+HCcjVOba0AA0lCTZEU1I6QqoWpwc43hZPfsSdXN6ri/XBiePjMyUMewZzXTPHw11BwtncGjat/NVRXTzXo5V1XSUBt00Nwlu+lY7PGus3V6VCwt21nQCwLDbSb5sJzOGvRG2KbXGVn286XBHkgkQjU7B1s5TYpqol6eTZJBWp/1iQQJax4AuFRrn32Zxi3oynsFIaJb/qvtMOaduJ2TTz3aaj2Hx871v1tI1r2nH1GFcqG5/8m/u9kDapT5yS453f6XmT1qD8//+g+GfvMPHzGDr/5rrne4+85/+zJ08WG+Wtn6/Ac/1Cd/95VRqzbrtUq9VSlU3dPznP/Ou7Nho/bye3sTan791fudz2/bH7Qmk52KTHJmqd2FQrsA4PF4PB/vzUqD88Gk1+x/cr0zcL3rVy+qg4PJxWF52pzvDAfl4XBYBjGFRipGtpSKSIWslEzpOVffP94r7W7vHfS3SoMnJ+1UbvJk3zbb7dlZRWt3z5+ePb24vr5CBXx5MPDd/snhcGs029/Z7WzPZ7eggCvnp3auPNm92DKqpxO3vtXCDujZ9s7Ok5Oi2h3VNfdoXHWmo7xrW+0cu7nJyOVcVhEUlRNApwAAs7DKiQSOLSbjBJ0UQUKgAhZFHqduuGg0SSuuCSyRXCGwoseBxFJxmgeA5KLBGIEKGMNaLZzgJGLEJp4BG2gaz8TiLK8wwPdoIr6Gf3Jz6dEGOhRAxbJ8Fz1yJXTsE1IUEdmQcjk0tgAdA5BJA+4LmgWQnJZBEXB83jXQGQ79pFnOdg0/l8vjV71cLNfb2Po93T7qyZKO+YHpRUyDayzckmXckcUhFyHJCCKTYqmkZGXEFCfLOm7o6miUpeLk/NcAnLVhSdhp3FiE+o5+F7BaOUHGCHFJ4blcq5i10rqWA/LppB03W6xWy0AU8g3UDk0cBJ7Md/a39/b3L64yWNU8B1vCQNmWq83J3uF1FceQMsgVzBwUzvbW9tHTQdZ1sYMMVDKeLPU6g92T89tXl7efv5CieFYpOWnsvMLRLA1nq9CBY3HELb+ZQ4Krk0KFnkzSNLrdUuhvkkAADscBgB8t8hbu3r1/B3Xv2yB0376Lu87rRHh9+cESRvPA/3/nbUTo+5tQJsOAC6DWEJwQMjFNA64huzgDRrdHnOP2PNuG9+xYpuvqCMChB5tobhkIsSmos6EVUHX3V+Mb9+8D2mwwEhkIhMPxlCjD0wVvkFNALyq4ZY7Nz2j6DfSKh9e3/KKt1XZOT/f2FmfAGsb8qiDCAIB1IRpKkHBBSNkACQ7FyAaURPRdDOJiYJKqiIkEDxU2yScjm1HRloBQhDZjKYmJAAhvbMTgEy0yt6LB0OrSeiS2AGARx9E3NzZE0crIHAULAwA4rbGsnjYNfDStRewhpoVwrm8KqWQ0GESzZKSs8NgaXs5zLVsRRJsMExSVUtAgS8f+2kUqIY4hrePWAmDKxsYy9kTH0IwsCvRqYzWwsbb0aHl9jaEpBoguhQAMq5JP1/rzU49pV+HFMRkzVckZKgBwq+NbGFGQnrRq5RLaU+DZH6yGRq1Sa3WH8Cj2R5PZ3l7fzugy0NY3W9AAwC100x32h8NeFxRwt1d10paUjCcV3UgDJ6xVWy2QDM2mTi3CGFI4vwQAgaESju9j5Eip2m61QIkgAOPI+NLs408PtK2jyuF3X77+9p9/9u6nv/j+2S//8PFb0W/e/Pt/99VrMkLzuMqjsKwRgIkoAYsaCCQwWATgy35kEwBYU1wE4BIwDVj2FG3kLA3qRzhTdbH/g4oKhT8CsJsrlcvlfK4C76bRLRhpW5J4jC91fQz6rHYH7UHDh9soKHo6W6q3uu12O5FIxARVM4BTAQNnYsDIgLcqAlQ0dTHXp+u6k3p45z48GWzGhsVO0AGxkDZSbHQj4yIgRzZtB2h/qV5BAG60+63uoCwL6gKAXQDgYrPTrjmpuJBSgK8UK3mVZrAPrJD301JiM8CpqSCRitPR5WiCc1UhJau6GSYU4CIZz/Xrg/nu6U3Nydma4efzvZNnpmeZFi9bttc5fW+kZ3Tg4bYFiiRbBJENhN0xcCeolVeVXC0lAs683Jaqs2ky8ci3aZmVuFQgwUXVTEZnN6Mmn7AcLdec9raBeyRUq3M0BokfNVmtOp9QIVaf9kkSKgejG4VStXnyozcA/H5RiBhp/9VOBKq2YldmL3mn4NX6eT4nn1XX8uaL90ABl1t7n/7s5sD3S+mf7pPT+e8n1rg/ufqbP+jK1T+8zw9/8q/5zt7e+//3jyM7H5Wrtd4X3/2hNv7bH5t19H2p1JulXDW7f17MPXt3MmxVX35/b0RNr3/6Ue+L49H7jWF3b1aWGMEuLlrf0A4apOZ8a7Zb7V5tzUadwQfPd4eef/3us1rncHyzXZvWj0YTEPttqLRZR+GMcl5JukWN1QslQwRePzk7ro/35vvDaWXr6XWb8ecXU9Nsd3bPSma3d3l7dXvx5Mnl5ZPry9NpLj063x7sHO5tzfYOBzuT8fVOlq+eH5l+aWvnYqyWz3byTQRgwN/d3d3Lw7zS3Wrq2dN505uPS55jNutZhWfFrG0lw2QsQsY2NzaTuoh2k+HQWgDkb5yiBAseUB2ECRZEUUiBiqV5QFOajT2Ok2gPFCQTDKheDgp9JEzFMHAdg/0sgHSOjMU3QAGbtoPfEosxIGroaHjtwYPVzcDyyloQVh6oYowo90FN4NQRCyscSiEVUfK5XDbnY/gWgDfJ0oKsOhnXkjlOTfu+Yyqgm+iF1ZMNaJfz8dCrUCkDcerhPNhs72JsYHhhFn32UHgA+uLnoFlUXKwoJGkeAJghKZA0Ok70yibQDU3G+VYAYGyxVmQDPSAUoJ2i7roAnzI6PykciGiWxnFIlvVbZd8CoZUH/eVY2WIxj9ZCBb+E9kD1RmeEx/Dbe3tn5ydPbl0FwCOz8BMG1lqsNCa7+08qUnoRXQuyzYeHtTuan950M9jK5PjlZhMqYA8q5M7xxc3Ly+vPnguReCwWktLw89Ar2zRwuFnHfh9Nf7P/rGriwssWEyOABCVxvx27oNGKIwoATBDfWFl5/OANwL4N+Pv23W9+8y1svLq/Ft1cXXrw+NHCBxGlMajiByG4r9EINm8BOrwB4CQH14DnFj3W2AUN0GLYWXiYstkMlGbMkIOrFHiwSsST5FqYxU7ezZWV1ccPgrGlR2v37t9fTghEYG1zM0yleFHReBq+OAVzljlehDuAp8voVyyIcA+Laa26e3Kye7DbNRQDaiPoFlU1UeFK8TA8iMFNUjHTi65kCwE4/caPGZ6pjKkoQhwUMBGjeCa8ERVNPk6ENjfjvPwGgANR0D4qnYiHouHNlQUAU7yOME2GgsGgJEOxBcEWj8lAsUyBQ7HvLgDYQbdUQ6Q4z9P5VDIWDEaTLK9ZyIsMUMBO2rBkhtbiIWCrSTwiyBjo0mXCRfKY5Ufws/C6xsMbgaVHj5aC8QhGQgK/CqytB9aXl5ZXA0wSxW8MkAoUcILm7Vp3euwyvYqf9SzsKGzkdUVg2FY7a/IMk7AG1UqljHS0CJhUqlRxyhfUabfTwX7And2+ldYWFuF4zq5bXgXNI9BMdwuEcKfRHdQc25KTiaQCOh4wpFHvtgfNRr1uJhenBTxPU6yMznWG7WZz5TevDwDcQ50dfLQOxHr79Sdja/eqd/nx2fMX716/++kn3736+e+/9Sh8Z/8//8dfPgsRbEriqXg0SibjuAWNTeI4gKalveJgvn/ZiwRiKVUHAD7up/MeOouzFKVndRWbsDJlV8QQ3YSQT+MmESZwYwxhpQg1H6Ozi9j6DmtdUy1vAcCVVq81aOVdmcGotmyp1mg3W22CpEhJVTQTHihd5yJRFkCbh4vJsKaJ2ywq0G3q0UogSRBwP2VMUAxKAMA8F99EBcySxKaTzXnwUyu1RerFoN0Z1DDxlMHoST9XLLf6vbonkHxKAeKVrxQUGhNeigV420o8EOA1NpgUEyy1Eo+y6HAvaoYaIODZtoGV51rDg/3T541MMaMZhUK2c/bMyqdNm4cXc7tnH4wtT3fQQy+ds20vpS1M2vAkzN2uyUqlFmczjn/hxY26uR547OqskpI5di2eiihOWmfWI7oQ4gGpC5XBnBN5QrWbZzNfk8MGIdd258kgBQCcTAIJTKnYBd08xjNgKVP9oJAKmensq92IqdtapjJ5mYhnjMZpfR1U1gXpms/fSeTypebeJ1/dHAFLS//8gJrNfz+1ut3Zk7/+va6d//0rcfjj/8kb7O59+G8/Sow/bjXqnS8/+4E1/buvrEYNH6oGAHAtOzsr525eTYfd6uvv7/eT46ufftT9Yrr9vD9tDKaTlioKRrE76GOLAwDwdDraOmg2nuzMt9r9Zy/2txz/6uV1tX44fjbtjGuX3V5rq50XrLRJp/y8xDtFDwiUxtJZuKls8/KkNdqd7ff2iuOb607K3z4dWGajs3Oct7vDq9ub64X/xu3N8bzsNI/3+uP9ycF0++RsMB9vPdn2uPLZEYjq8fZJVyud7hXqo+4CgLe351dHebkzqquFy71ufm9WyWbNRiOriEDXU3IyjM646yubIdKQMfUlHNtc38TCEEkZONGyyNhB73aoAikmJWGgffxxjEwCgIYj8O8JkgUgi0XYKHBZwC9tAcA8WvulYJ1mXLRujsVoTrB0JrG5tLIcY3mOJFIsds5kLMNxoWyipz/oW4aMAxsQs16uUM07wDzRRAKAmWVkOUrL2EGYzjoWAPAbT2K0Cs76OTzzKhbKcO/wTGs4P3wydxzJzhYqtUpBFURVhaJtgFxJsimGIlkMchDebEHrGh4QS6LpwkKUcZ9GYEDiLYYtnGwabf/TWtp3HdXACVsAYCgWoijKKs/xuUbBT6O9nYJqOwfQmwUUrRYLtVa7h3NISIH2jk6fP7+8vnYxOAjzetCgCwpBa7YHACxi3reZho9RKFUao9n+1W0XzRQ9rwYEGp0o+8PJ7vHl9dOnN5894yLxSCIMK8hxnEUDliKjPIfPtxDAXwOwIgmgJHn0UILPi+YmC4uxOCYPJeLfWHr8GJ2W0A/63p233r6HIIw70csggJfuP4S/MArg7l3skn4Uo6NEHC0SEYTfADABChh37FC9Ak8RdChZFrZe5fIudqnDulQYcv3+Gk3RJE6agNxBAH70KBa9vx67/+D+wygTX10BAE5QSV4FmgVPSDwpCRwKd17BHXW4EyKPEQZu0dErO8fHu0fbbQ3qKrY5gczELWdLRgsYYnODAAD2PGCWFm5Bm292EPHPAACL8aScgodV4MKggC0uTgU3g4QgJ4OMQIk3j7YAACAASURBVAXWwwQrqcl4LBgNB5aX1sMxeCZsV0EvaKAcmub5Bg4DRSWcQlJkK2OnF9YpUPtwWFROSkVHE1J0PBgMUSyPjYvwDkyM19AtiYzxoM/JBAmPlWpprm25lu9ksqmVx8uLM+BYIhZcW4I7shHHMe1YHAB4fX19DY1RAiw8oIlElEriFnSCEdIIwF5qUPV9z1RUUWwXdFWkUs03RhwRvQsctF6CrzIAcalSaXTb1WqrMdgaLAzFEYAxfAXXM5Aby6u2e71uBwPd4NdOvTusO5Yl0wkaBTtgSKs17G+1mrWaCUQODx54luJkSbcseGB9Hz0g8byu3ewDAHfCjzdia4/mz15MJpdnw3e/f/LBxfnL63c+++Grr/7xk9WNe/1//bv/eJCgo4wsQnWAEgIXHVRwfJGNImppFwH4vBdZj6LzhTc86gBZcdOGzjOU5uIcMBVLlx0ZhyJjfNbMLobBsrlqKetXq8VyrlKuYhtUWtMlXpJtKCJ5P1eqd5rDdsGTGDy8BiFaBQDuQkkBmS1LJm4laalwhJeS6JLJ8Iqny+IiRtOkN4BSJYWSLMgsm4qGpJyFXdCRrAfVkyQ3vVzOKVVq5Soo4HqrDwDcyFg6vIb0BoCbg34jKyWFFC77XKUowcOu2OW8m3GU6Nq6oLNBRiJSzBoZTkKh5QRN51dJNDV3PLfQmZwenr7bhE+sWeWi0756ZhXhmWdlKA+dsw/n6ZyJQ/eGieljlGAYNu7J6JnCUYOXGxWQMYbbo+IEB4V5zbRwo49jVxNcWIWFwq5F9ETU9dVMsTeeMoJAApRe7DqyFJYTcv1gl92IKeMeid0jKU31S43OyQ8sgcQmLD8ZMNLey70gJkX5ze0r6bGr7n7wviuJw7MXRvr1axrNiHa+9aPrIz9XXQDw9h/m6XJj+uQ//LNhnf76XaH/g9/Z4/ns3f/te+TWt/qtRucn3/qBu/3rr6wmpnvU251yoZEdn9dyT17Ph/3qB98/7DGTy6/eb357eHRb743n3cFO2eb4TA03bgCAAX93t6ennfLF7mzU6J6/2J/Y3tWL61rtuPd01B81no8685xjFXyZSJfTLJep2GxC8Cu+SWTKGSZ3ud8db28ftI6zW2dnbR4B2Ek3ujuHuXR3/OT65uoavm6fPdnpGaXDvUJ7v9M9Pdg7PuzuTUEBu6nSySkIvsn2ftUqHW/75eFwOp3Nt7dn09uTgtweVMTCxU6nsD8rAeC10NoGammEF4HgMEwkmEgkJT6BfgvRaGAjFE3EwyzoDJA3IhoSsSxUcwKEj8imaI5cjhIUESfiG6BPoyEWGGo0wkA5hedVXihgHDSIBfi0lQZipolsFG0JMx6aBSL0J2kiEmdkjLXFZD0r6+mWLSz2hkmajsm2hEa1lqkDUnKRWAh0G46oaDqGwYH+UHBkRcBZVBWWLfabFMrVEkaX1uqN/nh7/2ziZK080uJS3hQFnL6DH2VxJEknQZdhsw+XoimS13VJMbI5Q4HH2cDzMYYFAAYYljRNzwAAS6qZ9fy0gaE8gLu4Bc0JX1tRitki6Bwv5xds3zHw2LZQKmTz9bJXaLTgr0YP3srR6dnJzfXp1U1GUmQlgw7Vhm5la93+3hE8SwooXy+9CPHJFUvt4ezwWS+T8fycX603Go1Wf2swnu0cXTy5evXiu+8IMSISCS3OgM3MwqsH/bDeAPAizRguEhpx4B40GY+TGDyDCVP4C0pguJDxbyw/fvRwkbjzAPud791feF69dfdhMLzx+P79B/ce4O+/fffe2/f/5K2NRYMwdk8DODAUBkLjAbqQkuWUgGfAqiqg61TG9207n3sTWAA3To49vLtCEanY4zg6OBCbK48fP9pkVu4R8eWle8sRhlx5tLYeilMMUjZD4wmMQxQVHkSCDApekEG7wr8otp/PaKV9eNZ35j0LuMUbw008o7RUlQjhSWKQ0NKO6+A2tIP7+VC0MX5DM020n08kceSblqn1YIwzZCoeCm5Gk0YyQvHU6moEd20AIUGKrj5ahDEA93KlGG4HhyJAz9JAJuBhl1zHRLoIV9zBfU8PAd+Hsq6hMWGKIdDCGKd7LKAGOvbvAa9SeEoCxgS0DwBBxjxCHGR3syVp9f6jwKIHC+eAHz5cehRIAL+JkEQoFFhfXVt9vLK+vM4naTZORCkGJDRFUGy61psfZfheJWs5Lqb1tHKWJiZTnbpn8WIqZg1rqO+wKbdSKhYqzW67DvKs2R8MJpOt6WxvYloqj08wvFGe1fO1Rm/Y7Y4G/VmnB0K33S66foZjErQMKJvO+rVuu90fNCt1jeRpnGrjaFbEuT1rYYhdqILifpND0O3udNZX18nV+1vPXx5Vd7ZGT7949u3DF2fvfv7e589+8of3l9YeTv/rf/r5lboOEC6yVDxOxyKggIlQBCNJYb3Bmujv7J03Y6FESjVNv3fYAcSxMobB0CSgKrbJJ+yCq6GNXpTNZYpZL5/LYIpJvtRqVyt5dO4qOWkTpC08QoaPTu3Z5gDIRTWbBkyGN+6WG/UeKFMKCJ5qCGoGPT2JJB1OAAUMkwJLq1khSClaKoqNhiCNODRQUQWOY4NKOWMIUCXR3Y8hQ0Ev7+aLlVqr3mzX651up9FvuAYGkEl6Jleu4u5VzZNBeqhw57OVjLAY78r4ec8UE4F1ySGjvJbguVhgTZLUtJQ0reCmpAiW52az+drWfP/yRQu4uKhlC4XmyQsvm4E3AIoh2zn/bJbO2yBGcBIJ1k+Cw6ROuEiWM7jpxMlcJyaBruFA+YSi8dimacEzmEqlNhkuJqZ9nQlsZtlgypIL5f7ODierjO7kdrZzSopkGH12OqI2mPSsSfBAdVjBduFS7v9QUwjR95/nuYihOu/thTO+5+eHVz8Kv00GWKsL6rnV3R6J776TLBb94c6nX1yfGqW6/eMpPR//c0esdLYmf/43eubw719zw89+XWpPdj/87z9MdD7tVuvl73z5ubX1qx/YnRY+iM1Gxa9524fFwu0HgKfVmy8P+szg7Kcf9r832b/tjfvj8aC/WwNR7zVGgzexN9P59mynXzrZGQ9rnat3jvqZ/NN3bvO9g9lte1jrXVVnjpbJmrxc83jFLdVSqlzMqhm3WOVZOVM5Oxi0p5PzwZ4/eXrU43Oz86GVGQz2z3y/P396e3t7c3X+9OnTvS27ePC0mh4MtvYmw+3d/d4Ut6A9vnZ1bGTLW5ODjlE73svUhsPZ1nAyn01nV/t5q7OVkytPd9u57e0SlChQwCwbiaUiKUUi0Sk4shGMK1DdQR2Eo5sbUdBLlGDxUDQ0tMzC3gQWE9F4PkWl4o/WNjeSVCyZ2AyxqdhmggJ8xXEkIspKUKEMlWMZKpJY47Nu1nMyIsdEgefpIIY1w/GBfvA81CRKNoHouTlgSzkoabol4uEU/KQYrcA6gGcw59siw2xsbIYpJVt1gb0vWF4aFFOKARIPSikNJBcAslguF7EXAscax/P9o4vtQq5edGwHLcJ9EIxZIMuOl1FFDpYezaQAPoGCUCnVUCkjbRqy7C2iZjlWFAlSQMxWTXzDimIbmZznAHxr2BKuYP+ViFvgcopxy9j/a6gGmsehG2sBN6B9P19ptWrVVn803dmZH59c3VxePrlycbrfA1WNB5ROtjCYzWZnRQHNkeDbnWyuVKm3e7Pz2w6gCWg50yvXcYSzMxzvnF49uX31/ndvBLg34biEfb5olo0xSLIpi7qpysCtQUrKAk52gcZJAWeiGJogkgBySajuoKJIIgaS6xsry49A/yIE38Peq7ffegv7oO/cX99Yf4RJhA/ehCHdu3v/T9/epAiUX1GQZvFokohRsIiBo/ApCQH4jREHHgE7vpu24X5he44BipgP3r+3TFF8bDmBs4RUcPnhw8fB5PIDmg48vrsUSsSWlwJrAISsKGOznMZRCMAyVHgMxxAxUxFDkSTbL9p6Ze/kcH97d2DjrqGKwz46+k0qcnyTJGOhQFzGDAhr0ZubwVZs7E/DJmhdlRh4XSoRS0rkRijOGxJcg1AwnjTIEMlRgQAmfShkjIjFI5tLSwHcR5Z1T4yGQ8FYOKzraUcjgUNERRfzQUzTNFTM+IBbBBibSQuM6r5RwFEEDgFDpdNvADitaQD/KhEhaaCR+KnQn9zB/qWCuPLgUWCxtQ/kJvDwEQBwPEKQkVgsFAutrAQCKyvLDwJcgmBhcRGogIkYyaar3fmRKw3qBfjxssRJTd80FJbv1BwzlaIi5lan06oV8sWFAC6V6+0W9rM0u53ueLI1nuxuGQsAhjWGLQKqX6l3Bt3u1mAw7w06sHRalaxnC1SUFFGwO2651Wz1Os1qQwcAZrETE3MTcPd64UAFIq/aaLfbDVAhne02XL/4+srsnZte8fBieP2jZy+eP3nvk++8/OL65//0cSB6d/Qvf/3jp1Iswss8PJAgfmORBAOfmU6CFpBUw6t2d/YuW9gFDfTX65w0JEsU4TmnaQKupsJRyaidc1SWopkoX8zBSsv72OpcrdS7nVq1UKnW6nl4GGUVmJuczgITKWQbmBRRzWYkzCpfNH4P4DNBFUjJuqg7pqGRkWQqRqSSdIjQpHhSjy/HdIWMw5OWBN7PG84fAVguwNXmEomsr4opOhZwcw4w/3Kz1mw3Gt1etz2oAUCmEIAdAGAkQNWvAdi2s5WcwvCCYmW8XDatJNbXJDsR5eQYQOLaKrADQ6O0dCTAAQA7WPwqo9ne5TsdP+9Kpp/PNc/eQRNpDXiD7jYO3x9ZeUB1D4ino5vGYlRE0mXdzW+9M4qRuUaC89I6TyZSDMUmw7adEtACPJBkw4LtaXQglDOSRsHtjQ5OTjiSIIx0fneeU9E5M799OiY2CbPdoOIJGgiTDcqifPg9TUpyqvPSSUYs0329Hc5koWoNr34ZfJhMGLG3lsjH61xIKb16QZdKha39b395dekUqpmfzfm92R9GRrW9ffGb/6LaAMD81hf/WB9s73/4//yYbH17WGtVv/jRZ9rwV1/aXYyVbDebVb/q7RwV8rcfTiftxu2PD7r06Pyn7/e+u3Vw0Rr1RqPhaGtY0Ti9iLmvo/F0Opltz/dH1YujybjZf/LyeGh41y+eFrrb8+edfr1zUqnlvIzF81VdkSteQWC15u7h3rwh1EqOTObPjgYdBOBdf/r0eCDk518D8Kmf7c1ur29vQABf3YK2dfa35p1yq7U1HXYn05321nx2u+tytatD3a9OZwdts36866Ah1AgAeD7bvj4AAB75cuV61s5vz8tZ1xiW6HgisEEFU6qKU7GJyGaYkPkYlQxuhoCTh+MUneSMlJQCzYeHTYv4hDiBbTFMMnh/PRoEQZQkg5vYLBqK0EwiEiU2yTi7yGIzZYGjY/F1IYu9RA58f4LgBWORR+54OT3JiawgMYrt5lwAN9dzNFlIJkIb4RgBaiMi+l6mUCsWCnmbJ0mCpFOilvYwgA19ymEtijjPCxqUF0yQn+gAWSyVKpVqs7sw/dneP50vXKnyi2YUUKUOqBYM1gbJLIuLHTj8YpMcQFdSs3E80lDRw0iAGkrTosChAgYyoWLOruVm0o6DJV1GdyOclcFBQYZxgKEbWdeSRdX2CqViLoce7Llio16s9qEuTWbjnfPj0ydXx8fnFzkFYAFbd3BXwC/XezuHBxdFEQgCcAP0lIdq1h3tPnneRbcsD81z6ouY0/5odnR2efvOq8+vuY0AXGgF9TJuN4ECViQTB6w0FZtv8egLCYKATmFJGm5tHKo3Rp7GSBoBGO5aAhTwg4XTM+4937nzzT9dDAPfuftweW310f2HD+8tppTuYiPWW/fCNEWEI2hTDLcZXodKcQKDJ+niGwUMACyjtSZuuWbyPvYfQz0wFXr17v3HCUaILyegbgIAg7ZejSQePmS54MM7j9c31x88Xl9bD2P36cI0AyRHjOJlTHlQvgZgDliEYGaLplHdPTo8mO0PTFFVDAOu4yJ4AT54AhXw5nocyAdAHhYjEECZDBQiU9PwMFaVEYBx10MkQN4uADgcDCZoAGCKT25uLACYiBFxeILXVgKhONxfNSPGUJ4GQ5pqZ1QiTiaiAgCug4FIJqgmRGAgUaZl8owCRRHNViOxMLk4gdHxDBhP5xRFFDmDCCYXY+U464790xZcrBy/hAAcQ3fuaHjt/hsAjmNscZQIBQKh4BqI4E0unmASJEaFxmH5kYxVaU+PPLlXL1pmRlU4qZUFrsOlAIANJkVG7Wmv2yy5iwPgQi5XrGETQbPbajdao63BaLwzwkm8BQCz8IjrOQCuQaczBAWMANxtteq5jClRmFnBKUY6U8AHsNmoNTWCZ1jgx2hviq6a+Ok9PGuudeC7EIC7O93Q48fRwPrk5mw0Ob6YPvv8yUcXry+//a2nHx7+8rffehT+k8Fv//LPP1OEOCdxOOJFxYFL0vB0sXQyJWJSUaWzvfekDQBMi5rqtA5LrJri9LTBMKSd0VU+SSfSBVfn0CxAqJTRdt33sZ0RD3wqFcDCai1nW3DheV7Vsj7gcdFvDvudLnpBsxIsEa/Y7I5a7RYlsFBURABXVYqGiGQownLRQFxVKJJbWYlKLKnaokZFJVVAAIY7zNEhOadJDJcgfV/lGToRyOQymOdYrzZadQDgXndYtiw8PJFNN1/CNIxWxZOTLAAwDl37Iih9NeM5vu/q5NqqaoEClhIsRwSWsAPCZtQMscZgOoyTzWZLg+nuxTv9YsWR7VzOb54/994AsKl7zf3XQ7uQxmNw3zNU00wC5dBESTRzldm7O8FEtkwxHlAQ15A4TkxFTDMFrDnFbtAAwKaj0BuRIhdKWXqju315I0VCCdsu7808hSMZuTE+2U6E4+qgh8mtFK0YuWy9fv6lySQlNfs0TYYt03u9HXGyUM23rr+z9pDW6UfB1QClK+tm+v0XyWIh19v+6MuT81y+nvtqlJpv/W5kNVo7z//wG8k4/h9eCZMf/o+N8d7hB//9J8nKZ+Nqs/qdH31gTf/2p5lOq93B7cN6ruLuHedzzz4aj9v1my/3O9TW5U/f734+ODxtTQaj0WgK2rMsc1a5OxgNx/P5eLq9e7RVvTydTDqDq3eOt0zv+p3npfbW7J1er9U7rNfSjiKUynA3/Jphx1Rvdzac7s7SfLZc09qHo0FnNjnv7/pbN6iAp6dD0xkMFwA8XwDw7fWTJ7O60bsqlkbNSnd7MhoAAHe3JpPreZqpPtnT84359mHLbBzN3Ua/NxlP5tvb2zu3xwWrN/bV2uVWuzifAgBrW+aDzdDqajRAQulgyGg0HIwQcipOkRsbIAJADxM0ySpJnqY5TUXbC4pIxOMEjQa+RHg9ngyGE/CnwxuhBBDHAMHRkTAAcILTbMt1QaLyTCIWkHwcEgCFyIOoVA3cm7QzjqeRrAAimIJHyZJ4PUkSUfjxCRKKHhQaUOOc7zsASLlcLiMxFEmjhw1UWFiDAF8uiOUFAEsgkAQL6gyIYEBgHIivd3qYgTDbOZ6Vqz5o4mq5XClWqkWABxtHrtDsFRt9cA8ZuATJ2Y4t6CZyBgU+Ji+iSy6UZC6lmAZ23CKwoc+iB1dNUlQZdAf2fmHqfYpmvbKHGt5TRd3LgwhHjyQfFli1WqoPa7X2cNAZn5ycXj+7efbyRVZWdCiA8KqAw7lae7B3cnpbkbM+SHhvcXZcaw6mR8+edSwbXrRUrCym+zHdaX54evns+ctPLlOBQDScUDBfAkDIxOhTebH9bEDNt0SaVTWRlxSc9eSTnMCSBEWTC9wlKLQTxrv4jeWlhwuJexetKAGE7yEW37338PHK8sMHjwCAsSUaO6HffusR5sUtunVBAUfg23GXFQGYExCAFUkGQQoA7HhAxb2Cj/4g6OkpUct37j+KMWJ8JSEmk0DBAYA34+F7D2ku9Oju8urq0r2ltZX1cILmZdvJwNvn4wjAAi+qaGSNnljYsS4absEw6zuHRwfT3a4mKJKmA9+w0Hja1lQiTNNkaGOxBY0ZvaiAbSetiJg+qVm2oSEAp2gqkRTJzVBcMEUiHtrYJFiTCjMivWjCkt8AcDSy8jgQhnrISWkBHsRENBTSoWarFEERCMCel4FLbhmegy5bhpkBNOaSivvG7TwUIWhgJxjthfPCAMDAI0TBIoNJPLUA4pDGGXB457aTSy09XAosojHi8GMXAJyIBck4RjZvhIKhjZW1wPqGQBB0NB5MIAklCYa2yu3poSN2SllNzegSJ7dRATNsu+qYHE+TmWmnUSllEYCLeVgYlUajVkObjEazD+gwAQC2NF7CbSYOSKRdqDYAeLtvALgNla/byDmWRMNN4RdpzYV6s91rNOptNcHj3D3LJOkUr2A8LWBEqVgoVtsdbIIGnrg3DD5eja6tDS7/X6beg0mS9boSQ4B4b2z77vIuq9JnVrpKn1nee1/VVe27p3v8vDfPwjyABqDgSIAEtRur2F1R4AI0orhciaJCUgQjGMtgbOhf6d5qQKEGZt7DYLq7Ouv77jnn++4953ry7KLdvbt79/3LLz//3p++/sPzf/+fv/80+nD9X/7DX/+AyYRongEABgUcC8eBdkdZCr2fZcWv945PX3VhgW/ygNvHecHBUYYcy5CWq6s8SaWskoNXwpmYUKsUK+W8h6gL373bALZdLteaJdsxgPGzWcUtNuqNSgFIbb9fyzvixojDLwMAN1sdEmiIKAs5SwHMjcWjB0cpauswhY8m+SQSjwXIkhkRqWQWKrypYDIMS0WkgiICXKZ8X2Iz6UQQM8ALeAncaNUbnR48yXJOlxiak3QXJEG1AULOk0ialWG92GWXRxsx03H8vJtLH+yrGhEXBIJi08FtVpZZncvZxBGFVc7O+15puFjffNQv1WwJALjQunlleZap8hpw/s7lF2OziL0iXt7DT6BQKGR50Sh01p+eH8adIs8aXud42jcygsxHVY3ZBKiGKDrE56xsOhgrSUnRscbLq9s3GpmmTL1xNoenlCTFevP6JhlLk8Cp4O1Kx4Wsp5fzp39oMLJvl144mbCqOp+v4q5ve8XZ2+9x0ZTJBz4IBKxRclvPfesdCbpnsP7ip5dX+WKr9CdDcTX7+7kz6C5e/+dfZ/XLv/5EmP7oL0uT9cUX//KTdOE7y0qr9r2ffmIsf/VzE7C33wIN3MxXrNOrvPf2m+Nxu/7iR2d9cnL3R5/1vtu/vu3OR5PxaDIczqZFXvCbA4x9XUxnx+vLcfnmEhB78Ozt+Vj3X73/qNTszT7G1X/WGyiE1CgJSrnbt2WRs2pn8/ZguR5mxVzFG1yvEYBv+uv86OX5BoCHCMBnV54/Wr19/ebNm1fP310OtPqLM8ud1POj49lsspifDGbD4fOFRddfnWrF5nJ13tKapzOn1e8tl4C/q/XJywtfHUxcpfls2CkvpqWiZ/bIx8lkKJiMUbLAsOlYBACYkJl4MnoQOAiGQ4eH4XiCEZJQxwVsT6ZIEiEYKgzHUlDGefbwIBNPwRoMxGFTxqNxANFUgEjyymZAQ4LSH4sFZd8AMefkgFYRvKLom3xeW+eiOPMRBFEiywwlKTwZi9CGpwFs05lMhohwnme63sblWWbpdAbKhWZ5jqPh5LkDAgdowMaOiWF1DD/YBCBUG7VqY3OBDwB8Pq824Y/qVdC/hXIF54qhfDrwUkQWW5xx3IVlM0nWdA1VlVVQYBK2QPNYYTIAwMB7jRze5klZ20SbyLyNl0hZSRYw4wDnVSmSdcqu75v5omva+RL2ghXyrm27nlfpDdqN4XI+P7m6ubq8e/36zctrBGBNVzSES8OrdSbr8+t3zaztew56CmxKSX9x+eZtBwGtWAU6j13d/d50eXx2efv27UffvmWCoUQ4IRgIcvKGH9xnE8iYoKLQwF4lwEacpGXxwonCqIw0jgHjcV/yXgN/7fBwb3dnC8+ZHz5+vBHCOA4MihUAGD4ePgFQ/hD9sb7+4QHBUKCif3METaRSFMtJFOxlFv7LScpmtksBLHLg5/YKLl7/YrKVSOw+eLIVJrnEfoynoXIndh8/iRKBh1tJJrHzePdgd+vx/u7eUSSeYjcuHKoqZhIkv7F8QQDGZGPMlJA1O48AfHZ+Nl+2ZUHBdnYFAdi28A4YADgVC2c0UGSWjfZUwH8cgD6gASZKUVkkowBdRDzNp8IAwBoHkjMYJBg1GWY44vAgTLBZiUgQoICPnm4dhGIEIcoIwEBaYjGom7a8eQC8i/cpm5glBwAYx1SAa5psWgJqhgc+oWAsRVJsVsVpo5yJl4s42WxkIgQemtwfm+P5sw8KmNnZ3gvE759qdP/x9u7WIQBwChE5eQTQe7C9d3S4j6Fh0UQkAW8h+qxTRq23ODfZlq1LkpMTMmIXDWUJun0PwCl70amVSgXPL5awDwu2RLOB4zGAkd1We7RYIwCzGOhFYZSk7pcb/VGvP52MV8NxrwtoXIddIlAEhQCsmnap3uwOWlAS5QS2XzFUBq+zEYBt2/Hhm5SrzW630wSR3T2bB7aOoruH048/Pf74ndO+e/nJ762/9+0/+x+/+Yvrf/d3P9g6fLT6x7/6m7cZHFxkMql4gsSMCTyC5miALNgVhdZghQAcxkwXyWwuC0bVc2BlM2zG8tAhhEqaeUviSARg2Nq1at4roQdWt9Op+l65DJq/7Hg5UWRpUbIqzVq9Umq1ZqNRo+iKNOw/Cw2yh41Wj8nSpKggAGu6SBFJDOjYOkhRsFEC2/FYcJ+whEOOjEsSrRuKoknA+cNSQQX2GU/6eahZ6XjE9XV4CsD8G+16o9trdUZlXRdBWssGuuJiE0fNlzcArGt2KS+SQC+1nA/oalJHB4oYjwpsKgPQvoMALEuunQqyuINwtKM8Wq6v33ULZVfKefli+/K5CQCs8MC5rM71N0c5FPtQmzwjZ+kUVIOsJChuZXz12fVhzCkpouJ3JrPbGi2oYlTTOawKXRpHpgAAIABJREFUTIikAgjAmWC0yEcZQx/OTm9fGbCLDb11OnclhuCyhfzLd0SClS7HkXQ6zvFuvlNqlk5+IKbthlV465KRHCjgJQCw5RXn7/4gFRJMrx+LyWbJSEvl77yhyrXG+PLbf/Li2q80C3/ayS6nfzd35qPli7/9a81e//ojYfTDXzrD1fWX//zjTP5bZ/Vu7aufv1emv/xjs9PuDdDWpFWomCfXvvPqy/G013r148sxM7778af9r7q3z/AIetQfjLuDxdCV1WJnOsUurNkSALh4dTmZdvo3r8/Givvi3etCrT17M+j1xie9PqWWJc6ujlZt15RMf3F8PJgsRicNVTKcxu3lsLecXffW+cmry6FQXD4DAB5tAHi8fvfmzdt3r9+9muSdy7tT35q0nN6gNwQhvhpMB8PnK5dvvTnTi/X58XlLbp6M3c4GgBfL1cnJsxNLGoxNuX076JTn46KbM+293VQscBSNAwDzPABoKBhJAQBHjwKYUXIUxAZVUYwDcZd1VaQ3rlGogBmOo0FIMVxwO5UgyHT0KELGKToZCKeY5FEqKSg6EDT0r0pEYkHFx25JJ8dlCAJ0BibEaKZjSaDDAIAJkMuWqvmWwqfjlAp6BqeLKDIdYaEMeH4p7/mWRJMMWsdjQ5SpIIJZtn0PwFBGSFrPexaeheGJTxUE42A46g7nx2ezSqNSBEgrlSrlcjGPs3eWZtg5OctjDwpIEpEXGYIBeguoioG6mwQ8nsxAlWEAa3WQOzqod0k2TeQCwMAxrxAUMB7C4Rk0w7BWHuq+my+VfeAdKGPzPogcy9Tdaq1QbHQ7vflqeX716t2b129fFwDndVBNAFI5w6u0RqtzUMCCXfQdJLKgWAqlzvzi5Ud9A61gYfu2MEmu3Z8tj0/Orl69ev3FNRMKJfAgVcX5iU0uLhBfzCbYtGIBLGKiLkOjcyiV2dwAp+OIwKlkLLKRV8l47GuBo4O93a2nT54+fvz0CWrdTTLSoyc7ezsYyvDgMdpkYXPW1x9GKJrG2wfsgg4jAEM1yVIUn8VQZFB7AP1ZYEeAh65tOB48Mg2nbyWe2HnwZCdA0PGDEE1TDJPYfvQ4kTl4vANfEQAHvtHjg529o3Akjhk1lq6qEh8hWJzS5rPYQyOK2IMFCttwAYDX56eni2VLzuYAgPEIeuOCAQo4SlHAH0kNnTE2Cth14KWgKyVoJgB2mU9DPc+koikOJG6CV6lIOBYKZVglHiRptKJMg5BPJ9PYfry1fYRWYYKks/FkCoAdBy0MMYle2AIsRtfbuKFugi4Nw9QNz2EJCVgix1CJUCAYzzACFHTFgnfZ1HUF/SG1VAgPjhCAZXRwxDYxL09v7xzgrEE8EY9GAju7e08P4vEYgU1ZidDuXiCwu3+0vwPck4wRyTiRTm24j93YNGFVsE3cVNmU0CsAAKdAAVsqRRFxa9Gtl3DbYC51uYJpRiD2+p1+F7Rta7IEADaUjQkrAHBWVCy/1hv2Br8F4PpwXINXh3PwsMizsmGXanXA705/rCaAUmOKIcVgpgHQH1yxpUql0uj1u51Bp9M7Xx49PQpvB2afvJy9vZbGz2/ff3n91epPfvyzj1Y//4uPnzx5tPif//xHDSglGY4l08kULKxogkxF43ixvAHg9mh18qobDcZIISvq9ZOqX/N8RVEYljA9A/0lU1bBAvVJZOJitVipVws+AHAd/TTrhWIVAbhoYus7ArCBpobVSru1mExaRUegs8CsCtVme1Br9Rngz5Ii5mzV8NC3jc+kiNB+KJ0KhmKRVCKNBtExJhETJVoxFOyxENlQNq8IJB2LOr4CJS0adlwoZ/liA1Mvmr1BszWsGjkBu/gMDxRwvdFo1PJyBgHY0GGfi2iVZprFvJd32cCBxsbxrDvD0rEDFuQ4C/qSCLGGppse+vqNAYDfdvyiix3pxfb5CytvGxKralmz++xbIy0Pi9BwS0U0LM/AaxTVrFVtr+4+vg7FnQpQT6NcG31rxnIyH1Z17Ltj2TBNBzjNlMhgJC8meMueLE5evNI1mdGM1tkCfjAKKl7+/adpQq2dn3DhjK66reHxbDV58YvkU8LNuZ/ambhl+e/HUdsFpgAKOLmXZsMyGUjFkiWW1r/zIg2Eob74/Acvbrx6vfTzqjgf/+3EmA2WL//ur1Vr9hev+cGPfumMj5999V9/QhU+u250i5/96Tt98Z9+bvW6g0G73eq1izXj5KZo330+nfVbL394MaQmdz98P/yqfXvdHPUnk+FoPOwPJz1PsCuDGSavzxery0np5gYUcP/Z24upZL948zLfGi5f9Hud8apV9SyBsxvzk6VeNsx856I/6A7H7fWgWDDt+u1qdA/ABVTAeAeMADzeKOD1R6/fvHv37rN11Zhf929q0nDqNbtoqdY/HkyHw9uFzdafAwDXZscXrWz7ZOR1+wN0ojw+OTl+dmpJk6mpdu5G3fJiUrQVU98PJQFnw8mMSFJ8JhENHoVTEpcM7ScUJh4KxZNAULNijEY3iywe+ZCw4LDNUxBYMhFNicR2NEVQVDIUiuFIHxTpdPwgCQCcU1QEuTSUOwBgnK+xciwQeJC7hgNq03TzFsfQaZqClY1x7OgqBIrBMQDVNvgL0sR1oHji5bAhYnQas/GwcSwFY9g3AMwhAGMdMQo+kMBisYgA3ADAGox6w9nidFqu1UuFcg3/tFbadGvAerVw5mATeYcn0JJI86YlZ7MYUJJD5iqyuB0oXhLQXlHTNnaGpuXnHRDPOJW1acJihY3VBc+LXsX3bbyIMkROdjG80MJMXIxALDQapWIZz8d604vLxez0qoAZeqaGae2G6Zab3dXN3cs86xd923I81PClSu/46uXrPpR40MN4gtXp9XvDxWp1enb18u75Jxc0PO9IlJayWQVUO6YAq7lN/A98ZGUMJcxiUgQAMJmGtyxFZIgERhHG8RIxgbIuFvva0eHe9pPHjx/vYB80yOAnjzCV8MnT7Z0thOQPHz968MEHoIgffX0bVA9NwLu3mZGBspSmaEYiSTzGFAUcW8ziOSvO5uQ9w3VNLYcxVprEJx5/+HTvIJGJHRykgNRwxN6T7RS593hnL8VF4fsA4u/s7O4Hw3EKeA3UJ/hSYRzWETaZSGjoxW8csYCp6mrt5GK9Xq5aoGwRgPHAXce4X5mI0nQ6GqFyeEmPSZUY1eHY8Hxt08WjbVkACAMVH0vxRCQcBwAOh6OBYIZT4+E0mTw8CgPjlzOpTCIeDuzsBYFlEIKoUZj/B6xUA5nLwzcIhQXPQ68PnBExrE1LAabV2Xwm66AR88YLOkGyIgLwxhUsl4OazVBKMpjK4Fg5jkWhETQ24OUpBOBwJIqD96Hgzh4AMJAjUIOxcDwMjyWwtx84OOCIVCaeIWIEdsIlKc6ud2dnFl9kOSmbU1hC7Bc0AGCmW7fwDpgwp616teRtfGnymFOPdvV4NNrtQVGbLFYjRVdZAb3BWUnKKqZXRQAej0bHAwDg1mDccBBB4G0mGTGrO+VqtT3s9ieLXBLYKkAn5irij/j/A2Ac/BsP+r3zRehJILJ3UJrOWueN3GI1Ww0uel7/8pWZv/2otr+/13z3rMkxsTDFg4bFBNNEJA67PQalAL2gNa81Ol696EQDcVKUs3ptXc0XzbwqKyxLGBsApgm77Kqgn4m4WC/X61Wg1pVardUChV+DH71YbxWgmoCaZGTVrnZbjWqlP1jO5u2CxVHAHDCMobsBYJ6iAYANRzXzrqnbjsyKbDiAyQxod51Vib1YDHiPwHOKpWl4QMZHpLzMk3Q8YrsymwalAmIbj12q5Xqr0eoP281+zdIEPII2PHTJho+qL6VZNgtS1c4DW2Mk3UVlUSqKoT2dTsZlvI8HAQPwCK/AtskgicYCXtHzKqPFagPAlqQ7bqF59twqOHqWUXXZ7j375sjwTKgkfq2uKEaOgtKimkqhP764vVkGY1YVtLVsWJ0/WKbpLBNSdJrCAbQoywRp1ZSZcMSH/2GaAFwAwLJI5/TO+TIv05msoFQ/e0tQTmV5qoTTlmJVh7PV6frdDxL7B7zlf2SlYwDAH4+ilmMgAH8hBUNVP3BIRgiBiSqVr26TsBX9wZu3N8/9Zrn2b2raevUPS2fcmr75L78SrelfvOJ7P/5P+fny5nf/9Y9p/6O7Vtd987PX9vGvfu708dINZHC7WDdPbyvOs8+W407j7g/PBpnp3R++H3+n8eyyORlOJuPpcIQiFNa+XZ8uZ1M8772cFK+vZwDAt+8up1n39Zs7vztf3/QH7dlpc8nyvt9dr846sq+VG7Nxuz8Z9nujebdiqc3n56P+cnbVXRcGd+sO7c2uB78F4PHpx2/fffTx+9ue07prFG4mYmOZbw5bo/FosBpOx/2rsU5VbtZaoTpbXbak/sU43++P54vF8uRsNbk9t5XF3NTaL6bd8nJWKjpuT8mwRCqR4liVBIkTjxwdhFKikA7skl4W9GkK7YMpJpTmdRWYGSpgMhOJopcziFsikcySW+FYAvYpEP8MNjOymVh8o4ABphCeMkQyHJRtwE3PNAQUYUIOsAkVsGOwVDoBsJrDA96sKqPBc6nsKgpOz5ApKpFFVN04NGoCK2AOKa/gH+CNHF723QMwomjWKRWAbZWKJRx9RAmMxgLTxfmiWm9UyvVmFXsky3nP85wyaCN028B5WUQpSlKErGVKWdkr2YaBQdqYjUIytIBew6auaJapqJbtwsuxPBDDeAcsoxUW9jMwHC/m63lb1U1bl2DPQe3C8VynUCzXQDlM1rPJdDqeLq5uXr68OD6eeyLwB0vHv2M5+Vp7sL55+VGFc33XwqkWp1IvV/qry+d3PWcz0IRjVc3uYAQAvD6/uHrx7PbjcwDgaDhC4SiOBKodw+k1NStIgMDw8vBD5Gn4QAdKMo0mWGgVujlCTt7r33jia4HD3acAuU92HnwDwffh44cfPgQMfrK1DX/85DFK4g9+54MHj598sE/zDJ2KYGoe6OcUzoswrJzJIJkGiARyJmKPnuWZdqlo5YFrQaXKKYrERx/8ztb+XiwVO9iLAWBLdOgwmKZ2n2w9DjNsaO/xg4cPdnDUNZygsKQDNZKyBCuhjzUj3Icai7AceFFxK7pSO71YrY5XLUmE5YUz3ei4DIwIm7BA3UZowwUK496HBKI2Bj6Xs3MmNmExqQzPZOJpkQweRTiVicaCB0cZPofjPalgMJykAYAJnAQ+2NoLYBe0LOsk2kKGwzETQDzLJuGZCy66DmlqLge/7hvgdM2yBBK0qMizmXgkFocHRMMOUBxHx5twvMpmc0SEyFAgKPFWWtcBg30AYHJr5yCAgcOxaDh4tL2z+/QoQ+LEERGJBPb3D/ee7hwdhUWQYgBR8XQGUzkpzqw0R2uTr/CyoRk5mVJGBVURknSn7ugcT1HWsFarVXzHRXO4YqnW7HQ3N7u9dn/c705ny4GsbxQwTQuyAmUdFPCg05uMx6vRdDjoA4a4sN+Bu20A2PCqtWpn3AcgMFJZLo1RHCIQPXTaxiWK+AssEbTfbDzsnc0iT4OxvacUzx9ShwQbIhPBSHL7KHW0F4jFngai2/tA7hI5MkELbCaVIOC3ewWMA5GiCIjZHC2Pn3fQCUtSZbO+AOKcKwKj57i0mQeRn8ok8Q6YBfkck5q1Rg3vloBkwz7pdZvtSrFQ75RM21IVFmDKLwOnqFRGs+V83s5D0eHFnJsvNQbDWrNHcRSQpawJGrZQyrv5gi6bJh2LExjRBqtMZ7ZjR0lGFGlOd3I5HaiuEFMKMkeyRNT1ZS6TSYbd/GaQspSvNGqN/qDX7AMaCPCVs7pXqjXq9Vq16mdTPCsC63byHp+iBM3xSr5XqcqhnVw6FpMoTJVJBWlaVDg259BHyZysgYB23epgvrp+182XDMlEY6zzZ0be1rNsTped3uVnA8OzHdsqNDs4d0fnciCT9ep0fnk17x5FjCrQGllkC9+bxhmJi+QslkTzhDBNHpKg6blI1OfiguMCSNy+0iWBM43u5bEvphMcJTY/vSXYgnVyaQqCpnv18fTs/Pz9miuwbKH00k6Hc7r7fgIK2HKL83ffP/zwsGx/I2ClkhWGzXpf3aYceFuWb69v3pWaXu3Piup6/Q9Le1IbffwPv+S9xV++Fjo/+XV5ubj6vf/2M9r56HWv77z8+Wt18h9/YkH57rWxIbDUtE6f193rT9fDdv32Dy/G9Pz5D95PvlO7OWuA6BwMJsNefzhot9qyVhyvF7Pl6WoFyHdxPpu0egjAovv61bXdXpxcDsbd1VWnJjvN3vriZF4omg4U1s6w03LtYX/aKdbtweVy1D/+LQC3aW9+8xsAdgvT808Afj/5pN807m658sV1zh/5zeFgsZgMjvuj6eBioFHV26WSr87Xly15dDUt9geT1Xp9enGx6N2cmtJsosmtl/NuebWsgA5dlWMkAGSUoZUMhgFHDvcBgLPk0RZdyIJ0ShEkEYkShwlGh/Uv8TSZTmGfM6xhjk6QNMElHkegdpFMJnoYE7LJKKzL5FEqBewYViqPAJwKHmUtBSqjbkoUmUxlsdkVuXPezTJENEPSuqPKOFGoG5ZTrORVPLLjqBQRYR0LVjD67ckYupDJZBhQqZ6DPamm5TiwyAGAxQ0AF33sdy5uGk9KtS6eSwymx1frRquB0dtlqEWlcsHDof2c4VqY/Svg+SZDMpohZUERAAAXNDmnwNcTeRLQnuJlSYHijeQY8MRx845m+J4FQhNUL3o1YRO0wLCc7at0JC0Ziqh6Fce0MEawAErWLbTb5c5sOZ2fXaxur55//OXnL1eYB2z5bt5F365qZzhfnb/8Zl/M4RUwXl0WK4VCe35ydTdA/bJp4ajXmt1+F3O2zi9vnz37+IKNhKKRGIu9YfL98K+q8mSGV2TVQCtooAgCBv+mCWwnT2XSieTGiBLe4gj28mzGkAK7j58+Bdz98NHjhx88uDfdeAQCGDugNwfSH34DYxgePnwSRcfsGBohAlrF0gyZTNOsyAD4MpySE0FPAUJmFUM3PN9GfwoVD/NzisyGH334aO/gEDuLoxQO+zLJSIqKbz98HGQ5MvgUI4ef7O4dRhIZtLvCiEkJrykEeLwYroiemhgpIZv5sqqVV9erxemirWRzG09RXZcB/MycnIpR6VQkTkKJypcKvucBkYFah7FMJjYcQGWhYhRPEUlKSMKj4zQWmxMisFCThwQo4MNgnMxmSVDpiWho58l+LBGPs4pGhSPJcDwUxqRiJpVIhENiHufHsPlKM9A7BTS4rpoO7B9dxbYmnJZOUzSsLU0ygM8BDORwHE8lNvk/6KiuG3hKni/AK8xsbx/GEuFIPBwMhwN7uzu7IezDTqQiwWAQntvB3t5BIMpS8LJwPCkJb+bGiKMxXqtS0zeBACgSpXULelak6FbL1ViSiTudZr1RRgD2HadQw6HgTgtDgqDaDPqD2WqaQ2d2eA9BAatq1ipV2+NBYwJcfdTHLIFx21QU+FnQkULUjEK50oIiN1msVRJIM0+mQaqqhuXjcEPe9quNar3bb7Z6y+W0f74MPT2KHOxubT39cGd/+wkQuO39g/29vf3w4cFOMLa7s3MYPKKyRILigB8mEmhznQDyn0gTOGAvqIZTaY1PGrFQlAJaZ1YWFdvz4JHLDJMySy5mkMbskqXAJxIho1Up1FrVvJcvlSotAL9Wr1YsNDoF3VbgDeGlnF/DBu76cLwYLVsVVwPFq5ilaq09AtKAyUDA8QzHBKbiF8o4J+GpBJHlAfyzTNXc2tvZphgtCyXSx2ANKHxxDCUW2HjSNyWOIGORvOUi6XOBiTTbyP2nDRMUMCcKsB8q5c04tp8laCaLIRzFIpOCpe44IG8LNSN2kAMhr2XSlMgSoZQsShTH2sIRi91vjms6lQGekTX9kg0KxfVqJ69cL2/qLGwxfXjz8cTMg3C3veOFlfOdNNAEQ7cqo9W853jxmKsDWYI30bl10bwhJevAAYGIHtFMgFLyWS4c9dMEn3O7s/XdXU7MZBy7drXyFDaeTudqH90JcaN2cWr6smWWy4OTyenJTVo6AXHVeW2xAMDe54MEhn9WJh99K2vXi092d5OK5OH49VeXad8pNRfvX119lCt2nT+tyFerf1z6rfbs/d//mnXHv7yN9r//v/rTy9Pv/D9/FC6//qjRLt3821tz9uc/sfvdLsBvq9Mu1+3jV4XS+RfHsMIuf3rRzoyf/eiT4Xdqr66bkxFI11F/0h+P+7rfyGrF5Xq5WJyuTmfli5vjaaf97NPLKe+9vLvxe6vL1/3FYH21GKgNDFVbdHzdqaHvar3mUjGp2+oPO/nW+XLYX/Sv+/Pq6PaqRxaPnw9ybn98eeEVR2cAv2+/uK4563c9xV2decqkWmjNFqPR5Lg9Pu6/nPlM9cXKLNcW64uO3j+fFXr9wXJ5ejK7GI5vL2x5NtG1/u205a8WVc+RmxX0x4+jnXEGVnU8EQ7GkiJNBh5nPDWDR5bxWCQQPgzyGKzGcwKdyRChBPb4wEZMg0pMBgLBp1SM46OZPULCyQYiGQqTGA+r4F0DSSQTIcnBcQ3X4FiKgP/H9zBE3vUsgaZSZIoHKgeCFGNXjAIsqqwEEMgz6WSU8rGXR7dcW6Ep9MZg0UZZxW5EHfa9q4nwFRALedGolbxCCQCrADS0UWsOxsP2cHl6e1bJF9GjEg8N0RYftpiLB82gztAsGRUwkQfgUB1VsIumJKnYaIHwj7MWipxFwwxAd1XSTNcFMaNiAC2KZ9iCNMuQ8Lo4TreULBMSbUOzfQe7rzaNWHgwVy+Ve6M5NqGvbl999O7Nx5++rSliFnAd/g7slWKrOzy9e/G2n7Ec2918Lnppdo/Pz1/O7XKpUqrUcaqiATQNB6vOTo9Xzz++4DbRvKwCMstQUP8CFIP+4rEdCq9Os4qSxWlNigG2m04BlwJ+HY/hmUYSNGwCG2+/doQXwGg2+fgegB89Ajn8FOeP8ED64f1s8IcPHj18TLIZNpUEKR2PptJhgqFwFBzebEFE/2wum1MFSQMppZvwQwFDMhCAFeAy1NGD33mwvQ8CN3J4uHFR4pg0R0f2DkJJlmfjew8/BLjf2d4+CqfQJB8vIxS8CRR5YZOtKIHSFURBRADOqZX15fHx+rgL4gBdAhVdV3IYdyRhWBwRiVMKZszgRDgmYmC7smXbAIM6DkYn4RsT8bRABGMxQeeIeCKSIAQpcZTMJI8C2ISF8QPpWDS0u3WAqcdQAhkcBwoEYxhrJJF4B54t5OFrYtKhaW9CKnMGnmbIGc42ZJ7bADBIXV6UdBXwGfsdcCSMVIhoMo3OpWggBYUV337boXa298OJUDgaAgA+3Nne2g4kYslwFN3KAnsb3DoIRID3puOYeZJMEYkYmXXbndlZTm4DhOcw5klu+TmRT3PtppNjM0TUBgCulzGqGEidV2o02iAMm51er9tFs6DJYoQTYgKmCrK4YqxKdzjqtSaj2WI8BBHbHzV0LceRCYImYSsbQF1bvcFovjrTGYGlGAoHmrO4j4Ewwa6rtxpNKF7NzhQV8DS6tXe4vXsQOnx6hI3c8KNFIqFAMBg4Ch6Gwjt7e4HAESURcQYeF5lM0ml0vIU3g0oLQMJw3r5UH6xroUCEFO8B2PF92MASyxB22VF4iow7FUfDq/Gw2Sr7sEUwdKhSbXZatXqnUS42uiXDVgGABUkHed8FCB5PVtNVo2DIwLQVo1iutbv1dkMEoM3KWdMx84WKXyjZsJlyElYVQaHVXC31wYNHuzQt8zStAfOy4bGxUcXXJZmPxz1D4tJkLODqNjrmFMrFQqWOg8Djak7haDorW55XrQIo1yve/RE0AHChwKSAv9iOD6KhbiUPNABgNY3RJulAHKqSLFBWNkCrOPHhWU6511vdPO8Uq66i25ZbO3vr+3kjR8uGpnYu346tPKYjeScrXXXNlGaprg2fM6hAoYxHTSkep0ghq7U4RYDyrZvwlkPlCmQy+6yWz7LhuBdPSW55tDq9ea4JVMa0+rdLQ2DSIms1Xr/mo4Z/fm6YnGGVSj0Qqz2TCvXG7J5+a7ORnO5/PoibrmeURm8/TdC19t7O49DwwglxnvtdBOBiY/HlR1ev7VrH/kVFOlv/X0tr0Jl+/o9/xbqLv36W7vzo7wuzi/Ov/vWnYefFx41O6frf3LnHf/4jezzo9TqogcsNe/GyUDz9fDHqdK7+6LJLjS7/4N3wu9UXJ/UJEEp0UIVfLckEGprrz1bL2Xp5Mi2eXS+n3c7Np1dz1nv5/NZvTS5e9QCAL+ft8ur8eLw+LXhuvtrqYMucKguCjJGalc7Zagh/7ao3qwyfXXYz+fmzfs7tDc/PvVLv5JOPP3759titXQ46uj5YlaVRt9QZzUCHz9rzZe/F1GdqL4+NUmUOAKx1AYBhw82Xy+P1fFi7vPKlydxSe8/GdXc5K9t2rluORiPxCElRHEnQqUQ8cBiKajQR2CbdXCYV20THhiIHARad7zmaQU9QDMbA2Z90OgV6N3AQexxPZ5h0OhKDJUYQVCIYAlYpCxpAAkeB6AoIJrZSOjoAAkGlCUWHRW6Yvg1UNkGmRdAxKtQx3a+WiznVlDdm/HQqE6dd7BMGvWCqAo22GezmAtlScTzHdB1VhKUEsANc06jkYQsAey2WsfOz3ul16o12dzErl1U8KkRbYK9UxHg213PRVwMksMjSoNAZHyeb8q4BsjzHCzl0j6JS8LNRFKhkA+qsU3BlURZV9I400VcBz0axZxNvq4FYCoalKKKAPtZoW4DFFQC4UgNC3Kw3l9iGfnp9d3N99/rjLz99XkGZ6jp4Tur6xTpI4OPVTTttWfdluVCutXqT1fnly5FeqRQAj6v1dhfAd7Y8no1n64vL1x+f0qFoHHQcDgAbObyRRgjO8jx2QuNhMF7JYgsTiEcetCEzUPKiAAAgAElEQVS8VckkmUom4J3C02c0O4x9Derg3hbgLajeRzjvi7kMoFseP0SD6AcPH3zwIfz6xoePHm5LbIqPY/0HcCHjeJeaYfksFBRYt4D72ZyWBbgVchvDE3T0gmeuKTlZIPY//PqDpwDAGSp2SNB0Ks1LPHa60HhDzVLBxx8+ePJoe2cvBAKUB2jCdF+SA16ByU4IwHipLaJDsF8y5erJyeJ4sejBghGxjRxRHqSRIkbCQDGicVoD4PU2AIwY7OGhAl44gBaXhSTB/eYIOp6UTA4WZiiWZIV4YAPAEYIRBQBJjGjY2z4AEZpmZZVNJFPho2AUna1lGh55LJtHX2LbwtNXFMKwuByQxGJG8G0ouplYOBIl0tjmiiGY2uYHknkGADiWxFRzDrN3LDRwBHXq0btbe0FQ2CB4w6FDEIc7wWQc27STycj+/kYB7x+GYM+AKo5v+h/jAMBepzs/16RW0UVY4lJi3QMAJsRW3dLh2ca8fqdeK8NSx9E2HyRwG81MG51+t9kezpezxRBorSyg3Q3IP17MlYeTQaczHi2W49EEStqwCvuTIxJpTMdVTb9YbqGL9PGpRvEMkDqM8uQVz5RNU/OrxXqr2RqMeo32sNsdnI+PHu8CAO8d7T3aDwRCgQ32HsAPsx+IhsKh7YPDYOCQlFJxdOHKAADDK06iJR5PCQIQXN/waq3pVSsUjJDw9tu1edWFZQXEHDS5U4GnDADsAgBTGZIM642SV6puJu/rUEBrJdhzFQDgsmluAFjRvQqo915nMlnNj6uehlGiChDxGrCSYRNIKjJW0zG8fAW4m0rC0qZowHZOTClecX8LOGkmzZEZVgcAdrCjLqwUTPQWj6MChoUd8kzYyKVivui78DKaOAcMbwtAGKCss7mbrpWcbOa3AOwzBB7pOFgjmi6xrxAAwESGZLNsMK6qss4SOf4grcDicXzbLnaH64u7XqliyzqQ9PrZu7zv6xot27rWuXo3c/KGqeUKl2eaauuEClrCdsvtlisIWjymZZORHb6o2iXekHiSMvU0A8+PDpGZI1bNK1womiNIUbHqi5OLFyovMLpTv1h6upBMs2bl8jUddfyrS13nTKtYHcyXt4W92D7RrDnVFw6HAPzFIIYG8KXRm68YruZ9sEOwZkehs0YBADjvAgB/9/OruwKQw19UsuvTf5pr4/b4y//zbxh38Jc34uDnf5sfry++9y9/Qti3n7R65fM/u3OX/+H3teGw2+8CBAMAe8vXldL5l8txp33xk/MONb36vdfT3629mNdmw9FoOByN+4NhPWt2Wq4IIn21AeDC6dVy1u9ev7+Y8/6b1y8LjcHp8868f3w+ns3PL04WF1PYhcVas1YEmMJWHonP+c1W7+xi1JkPLrqz0vDmopMBfd5RnU53feKWO2dfvP/09U3LOL8pdCpKa93PtsdetTOdTobT9mLeuRu7dO3lQi+WZ6vzjty9mBcH4/livTy+Ggyd8+tCdrx0lO7NqGbPp0XfNkelaCIYCaWZrKWwMlDRcDASl8lU5JBUARyjKdgbkUh0/5DG/lqOpjCLOxiLp1gewzwxWuZoj3iyR8bTTIaA6kwROJMUTuP1KXBzwNF0InrE5+AdBhFKZ0AQH4Z4xCnAQ1ugiDiZAeG0MbUDVIWaoWMXtIDITSYZBGBQCjjQRKfR2QmNOFxT0gGAcQ4YXYN5BgduzIqrgNTIAtBbhgn7oIgnkU6lCNBvWhjnq6MoRbNHKH6WzLE8Gi2htqANq2jJBR/vLWXQVIBjPItzFhQlSZLjAqqXi3gwhS0nzr14BgQWMA5JxDgCUQQAxmZk7KuyoOjdpzJVa+Vys40eztP5cn12+eLu+at3n31yV1KAQAANKDhOoVSsdcfLs5tPFjTOpjjwuovoOzm/fP3Jt1cWOuq363VsoukOxsv1YjxZnpy/fH/JhyPhWETECWB4QaKI3c/3aUiKKm2sKEFCgvhFFywW/omDI+lUCgE4hnaS2HT7taNQaH97d/vx023sxXryBEeQtraf3AcwPHjwAD2gUQI/DKlcikoRyUQyGiHoRAp4FLZ4cpyE2M/zspHLAiTyaC2Rh2LpmRoCsCYx8Z0PP3j4aHsvkGEQvIlYLM0wgpJl4MHTBMMSh08fP3kIEjmWwAQtVUPkjdI5UJMCL/3mIyvwaIhYsqXqyXK2ms47gPcS/LzYUZwzNWB6UVDA6Vic2gAwjpp59x84EAx61dQxMYnkgViRWTqUIGSTJ9ORo3CczaZCaSp5dBRKZAQ+FcFT5sDezn44liJ5WWHi8WQ4FgyqumNyVCQUuTfiMDeDdI6pbzrZHcsGABbzrsbTBGBMDAFYxDAkYFrYVgaEktFAoKcpEud+FAxjxxfneszO1l4oGopEQ6Fw8Ghvb283lEymIvAy4sHtwyMA4N3d3SCJAJzEq/t4EgBYdDu9BQBw1XcxjVJMZ+tuLiukxWbFMiUmlSoM23gHgr5tgPOATdXNIHyt3apUe9PZcjnSTOwYA/ThJJFhlXxnOGg3R+Pl8XQ8BgE8quQskyKStMiQgmrnEYCH89nxiZKGR8jyyJ64LDx42IOOn680QPcNuq32AKjj9eTw8f7R9g5A8NMN/IaCALuBo6PAwVE0GDraOjwKBQ4pAGAB86VimwlzkMExBGA+C/vUq3QGJy8H0VCMllTVbc5qeKqRYyWejjllU2HgrXbKtkql05mAWit6pUoJrXZA9jeqhWK1BZSgUzYMBGBRybml3nAy7E4my+msCNoVXdMRgDu9/rTN87SQVWTL1l0fFHBRBvmQiRJsMpamaMlXg2Rs61GKYDIkb+OJO2glPporGoLAwXO2AYDpWKwIzwCZPdqB5P1SrzcCBSxwaVE2LLtaK9Wb9ZIrobOLcQ/AsNQkAO18odb0qT0pTaS0FJVhFTEUAyGicZRCH6VlBOC8Y+e749XJs45fNLKGh0fQb2Dl5DRGBf7Xv3s/t4vogVW5Oddydo6AjQc1CJ6FI2XVVFKDwn6YbVaWbU6T2AypijEa86xCGTJEqwVdDEWBWlMZ3pquzp6rvMrr/uh2Yas8QRNaafkqEy8Wby5zpuQYfm04m106j/fD2wmCLCAAaznv815cdzy7Onr1vnj104/jCT7bfqMSsu1/bwPA9eX3vry5qnRqPijg1dk/T7VuY/TZ//E3jDX41Y00+tnfFibLy9/95/+es66/7AzKqz+5M5f//jt8B3hgtwcgXG76i9e10tk3F5NO6+zHZx16fv37L+bfrb4cVubD4RggeNDrj6uyV/Fqmtk5OV2erkB6nl4v54Pu5duzmeC/efOq2OghAA9WZ6Pzy+P1+eVlzbbcch0IHQapiyJPk4Jkl4cX58PmbHjemZX61+cdMj8972hep7M68fOtyy/ff/lmYVY+Oel3hmrtZC0VZ3a+PV+BLmhDXbodOVTlBQBwZXZ83lF6l4tif7xYrlfrs37Lur72s5OlrfTuAbgEwntYiKQTR2Eh55QtCeM2E9FEUuWSe1vJLOBvNI2/RaN7+ySG5cJuTBFkJhBPURKUWyIVT/NkYCt9+IiIJSjYDtiFBRspjMaCCp6JciyTAVktmJLmFCydxvTNw7SqsUIOnTlEJh3LpMXcvQI2HBUgybDhEzcej+k4U8C+aIBaEwGYotBHCPtqAM3hLdfRiANKCCNyvGgUDTzANC3bBmwrV0qV9ng0Hi96ppkzLAu+eOE+n7xYMh3fM9UsYhRIAEACNV+11AJ8PU2UbCuL0pinGRGIPkA6RiW7pUqxVCt42LqaA/2exSbj37hocTyLHk4y/FWQCuVqpbz5NugOVCkWG+3OoDOYHa9Pzy5evn735vmrT96XFBxacNzCRgE3B4Pl1dvvnpLCbwC4UKxU6oOT2+fvpjpASaG18QYE/O32h6Pp4nh5cvfuko9AnY+KoOxzlipjSZHgiSsofdVNGmE2C+WNEXiSZDNpvP0FERxPwn+J+0YsBODdg4OtJ0+fPHyKwUf4Lw8e4OnzBw8++ACxF/7xwQcYhfSUEflMkk6mAUDDiQy+1wTJZxUGQwTRkxkAGKQKdw/Ajo+TXhoAsJqlItsPHoCifrQXSyRJ+MaxcDAUITkyGg7FMImKJhLxOChGDFuhJUySEDk2mNEsXYZnvDmA3gxUIQAXzGz15Hh5ujjuqFn018C0OAxaAOaRjFPYYpZRQfduUrGABm0Oot1NoKNjqjIXZ5A1UlkymkpJOvx7IhhNChoZpTgiEAjfA3A8Dkp0b2cvGEtB/VSoSDi+AWCgBCwJAIw56QoaUeMQDgpcHUedXEems25eF7EJKwosB52t0bRJxRRMBW+xDSKIOdfY54vzndi0A+qU3n66j88iEYlEjg5293Z3Auh0ch/UeQAfAMm7QSpDJGOYpJFAmxBScDv940tdLnk4aKWKlFyzNQBgqVWBhcgQca9bw0lo3zIs5CCYBoRmcIVaDehdrzefDzRTB/mJMCpL8L755eagXe4OAIAn4w4AcFW3dCBctCRysuHj7Wp3uFicnKsZDnkTh4ufz+qaYeQcC61jmqBW2u1esz9/Ng1vHR482d473H4ajgSCgfBRMAzs4vAwCNI3ePT0IBgOAgCnk1mRggURQwWcQgCm00BpVdX2y53R2atBNBxHAPaa0xrgWz6Xkfh0yCrmFBq4/gaAoZwcIgAXNwOGxWaj0aoXC+VWvdzoVqzfArBT6o1no950Op+O8yU7y8FuMQvleq/dGbezEocmMpaVc/OVQqWaS4WCxEGISkdTII0LdEbJfPiIzPAkLWBhcQGA2YRZtUQAYKLsYzd0JFa00S7XgwpTLOf9cqs9rOqqwNLZbM7y69VSo9Oq+cr/B8B5lgQABqbuFWuNPLsPXDCto8m2kg1GQS9gIxoZodGox/YdK9+ZHK9uu27RzOrwXtbPXsNbigCsqrnB3SdTo+QAAJevT1Xd1tIq9rf6xUrZMzQlSeTKrUpBcYZfdIkcDlcKmSADsoM8TKUDXM7XhXCK3YlkiKxzcnp2JwsKq9rjZ3MvJxJMyuldvKMSBf/mStcFC9YBsJhz+2kqRhnEfu2VxUU1zf20lYR9b1d6129L6++/wv68qz82Y7mi97uX6YJXrB9/+/O7i0q7Uv5FRV6e/8vYaLSmn/5vf0Xrs18/Y4c//F/Ky9XV9/7pF6x29VUPMPVnt9b6z7+iG4PJsNPtDgCAvfHLan79xXTabZ3/5KLPjS5+73b+zfKblj/u94eDASjl7rAgFwpMvyRXZ+cn8J+pv76eTXvt8zenM9Z98eLOr3XPXnQXo5Pz0fH1GiDxuOS4xWpeE/gMB5UGl7JMkmrvcj6sTkZn7UW5f3naoUrzi75ZGPRPzot2+/qzd1/cNrXzV8N1t29403PNXBSKg2P4jqed0bL3YuLS1RdzvVydHZ911P7VsthDG8qT9bDv+y+vrOx0bqr9Z5OGezyvVCRhUAikiMM4NgRookihk2Q0Gqco2CBiIggVIxUNRyORvb30xtwQARhjS+IJFl5ymogRAh3aiqcehQG4aSjLyVSaiG4AWMRBFDxKziRjAdFWdS9vGiyRJOiU5MASAwC2rCwH0jkl5HCoI6ebgHLwrx7UNwRgEBNU0XM3Qb7Y34I5aJwMBQeKXj6PIXN2Ttjccoosw+U8RTbyaJSRLxfLjVqpMe4NZsuTPvacol+C4ZbLPlpNc5tZEE1VWJKAikgSlFmtmHbFKdmYYCZkMUGIpygOtC1gsa5sEgZcTDxB40Nd0zFRNMuSaAWNUQzw9SxHxmA8y86j5w6gPBS8vF8slJqtVrc3GE/nq4ubm+fv3j5/+dk3q5pmApt2N6Oq1U5vur5+/Z1TLoclGeRKvtDodCYnx/1l1yqVNrfAUN86AyR6neHy7Pzu1asVHYolEzEJfh6gDQqmVYk4wSFnf/MbBhNmWVYUoeJvtC+RxkEPQN8kQdxHIiW+trOz9fjR440d9MOH8M/79MEPvv7gg99o3w9+53c+ePDhgyOVZakYm0gmAYCTmTiSLYoXZQBgeFyqwks5LSsrvJDDJwXMwgdQzOUAgMnw1oOHoK4fPd0PREHppJKxw739HYC7FEhzfmNxJctZFZ3Fsiq/Ee4cF03zImghFPabPDiBhuVkugVdrq1P1mfH654m6zhOq8IqMGwzp8kpqN7JRDStAvTiOBg6kaH8dTGnLu85oHu4JMNmMgQppGPJpLgBYJC5vJwOs3w6GAJpvjmCTkRCB/cATCAAhwLRSCgUzSk5Q6Li0XAwA3wAA4EwKFoQZHzaluW6KoudtAJLxiOgdEkWw8CgWGvW5pqW49hcCgEYKCTeXCNPdFAw0VtP92OhcBx57tH+7v7ebhAtObDbLbK/u7e3jx9BnMmDPyMxDzgWITi71UUFXCn4aGEssHIV7yYJpb0ZP01F7U4V11HJxxkhD4N/KptcpEa9Wmt1u6NRTzNzIgeUluLQUMwpFCrdVqnRnc7Gk0m32x/UgNml4zFakSXdwSXYbPXn85NzJc0x8FOwsOM4RrF02La+m0cARgPLVqfZn16OD58eHj7d2T949BBUb+AotAe/Hexsb4UPA4HQ0dP9YCQcoBQqgwCMMheo4QaAmQwPCli1vGJzdHrXhQdJAQFzGhOgE4W8mmTp+IFRwI2bSXgVR0VbgUCulncK2F0J+wZeRRN2P3pmdquASooAaKBZlf54OoSfbT4b56sOTyMA5wGA4Ul0sgLN4UWzqQF+5isVEwoWdbAfJ+Lw8pQylZVTv/OYovh0hlELsLhzqsTEjKori3SUrPoywGY4WrA9Hzb8xoLW96r1Rr+SU4CkyNmcW2xurqarXpbYALDlFPMsKmALOFKpXs2LARJWpZniM5Qih6Oq7VFCTiGi8DIBgD3LyrfHi/WLPvzEgBKm27zaKGCVQnfcwe3HE6OEkdfFyxP0K0+DDrBcjIaoFDQxmZIry+WqbNTfTwRdEug0kwqwHIibfYIMwqbKkkcZdjuaScru1eXlM+DTGUlzJ11bF1MkXT95+zEfN6yrWytH45Rne3Z85z0NhWjNStZuzQ0Av68TQCjNQn11Wz7+gxcUzzjjTy3O8Aq/e0EU/WJj9eUnry/KrVrj31Xl46t/HTqdzvyL//1XpNH4Hy6F2Q//Jj9fnH31T39KKVe/1x9Vp398Z538T19lip3xqNPpDhGAhy8bhfWX03G7efaj8x7bv/j9m+WX1c/qzrA/HA6Go/6wO3Tkqp8edVW7uz69WJ9PnNXNeNhunL09X3Duy+d3fmO4ftac9o9P+svr07PVyahkFptlhaSyoobJX2mKw9nS8sVsVJmMT1vLUu/ipE1XFpd9o9Dvn5zlveHtFx99tCrUP1sOjietgtG/dOVZvThZHa9XZ93xavBqnmdrL6d6uT4/Pmtr/StQwKPp8fJs3eralVeXZnY21dXfNmGV1OyoForFAzHYSUAXBTJDJsOhwJNoJhKmuHgA2y5jsUQocrBPcDzG2NNoCQoiOYWO3inMdmPCWwFqZy8ejVJsmmDpaCQJn0BQgpbTcxLLgMaNHvIYUOMiAMeTvKi6DrphgZzEVup0QtRBpGI6TLlcdC3t3jgIGz+jJFQQACXPQdikcPoQb/1MbNNiJSnnYEohRVM8BWvXkWQdtI7r5wErYUOWe4PRYnXaU2SMbFUlJVctKOh0FGRIkuKhQIKgJ0EAE5xT8XSvDFrB0jf31pwo8RghRDKgv0wNJQTe13o22nmZhi4ygiILDIMwwbE0KGXbR79K2Ialei1/fwCNAAzCodVotXqj6fz49OLZ7dtP3n/y2fumoRvonpqzXduvt9vzs2dvv3up+Pg5sJFL7eF4fHx5Nr1ZFCrlGg4XYtD0ZLQ8vTg7Pb95/vzV61MuHInHYpJtg27XNbSKygIWbgaA5d8AsLzBCTJDY4QkaMxMIgJlJYo3+MnfNmE9fQIfW9hwhV3PAMAb2fvgG9/48OGHoH4Bgb/xwcMnRI7JUCkyGY0lYhEMxgMhSYIAohlJyUq5HFZNBGAgXYaX/w0A60jAsM354eOnAPRbe8EEmYZlEj7af3oUJbOywOJFOkCYwuEZsyiq6LeBt+sUvEEML2DoIx4PZUWGFnOmm8/pteXJYjadtVRZxwuH+yYsfNcAgDMpAOBcHpNx8Aoe/sVzMAPEdnFVyTKfoJgMSaQFEhikaAh0JhICPsgnw7xABENJCuR8Jg6UM3S4v7cfSqSSvKwy4aNoLByO5YD5iZlkHJBDB7IjYmeYgn6ZOMkGgGpKwNZ09GqNAVwTFL9xJMNOacdEYxk6nU2Ek2mS5u8p5D0A5wvs9pO9CHz9aCgaC2wAGBRwNAq/YuE9+Ng/2N/fC8DST0biCRIYYyYRIzmr2Z6eKmK9XHRymirQct2zNCktNsuaRMFP4PRa1UqpUC36hXKpgKZPLWCCTUBIHCgfDEZ9TOcWMN2TleFZeqUyukW0uuMhTmXA36oC6QW6TCsYq1Otlsr1emcyPj7JJlmGyLAixzAcAyhu6JgRj2Yx7W6702i3B8PT/u6To6Ot3d3d7SeHhwfw0wWCUFUODw7DR+Fw5Ai5WDRIKwwwGIYAtU+n0N86FUvyJI8K2PTzjfHZTQseAw0L2a6N6x48KyWWTIV2zQKsFyqT9Cq2wqeJdEivAKRVSwDRQLsb7Va1DABYxzQkG7tWQEya5d5w2GmOQQJPCjWH5yRV0f1irTvsT7p8hkBjO8PQ/DK2TUKVUnQ2EooTjAaUKsNRoUePAICJDKNsAFiTmZhesSWRjhBVX2JJKnR/BL1JXCtV8ug83StpMseywF7cUqNYbzZrZfcegG3LLeaZFMeBAva8Sr2cV4BaJTNmkifgaUdjilNKU6qcDBFQsgzLMa1SezRbv+7ZVSuLp8vNy1eu6+U0WtJUrX3+amSVQV+Y5ZsrzXEUErtFMUK82yxLTCJNO8eXs2nZX80sbMIimDTUP5ZJ75N0QFBgTR9S1FGaScr21cnNZVZk04pamtZgdxBStrN+fcPGJPPkzLA4KH6V3nz9srgVlrW0lCh9agiJXM57X00Yjmf41dVN4+yHNwlGsM+/5aTUvP+98w0Ar7/50cfX1Xar/ct6dvnsv/W8cXP0rf/716RX+Lcn2uynv/LHs/VX//UXaeXy+71Rffqz5+7qP347ZZe7o3YbALjUzA9ftYun356PWvWT/+60TY+vvn9z8s3q5w0TtM1wMB4PJt2BqbQMqTsuqZXR+QaAT+4mw9YGgPn8m1fP863J8qo6bM+P22fn6/Pzq6Zv1VsWTQqyxmMvosgSVE6nvKvVtDKdnjaXxf7FqkVXlpc9PQ8AfOoVR7ff+eyuW7h63Z9Olt1yrn3ZEActd7hYrI5Pe7NF98Usz1SfD9VSfQEArHbP56Uh/HTr0+NutVC5uXSlyUSXuzfTVn69qMBqGrbQGinEwTutGVkqg4kKwUgstL0VytDBOJGIJ5PxYDRwmKKZLOhZAGAmHc8wvAI0FNh4kmMiO3up6E4oAmU5RfB0FCpXJJwkeVXLaRJDYm/1EWdqOJSps6CwWUm1DNBHGGwgcHQyHc8aprbx5nNtE0sKMDV+Y4UVpz3UVICmAMBQOkkcftBN14RVz6qq5pjozEpTXCaVUX0oxSB1YB96fhHYfr0zBPF/3BAEWLaAnsVK3hSpDJNVUDLBC8jJaPNPA4LrngWAaCuWKQq5HIfGhwDAmA+uqBrwa9ASUMYAhL28hyEKkiCrgBnMxjCRoUDGubDdrZxdrNbKvnPfggWfUMKGkGqtuzmCPr988fzd519+/unbBjphu7aDdthQHLvDxcWrry4EAz7HA/SqNhutwfz0+vnnJ4ZpQKGGv7WhIflqu9vptJsXz15dSIgKMdlBANY2+YOSmr2/McV0U0mGX9iAhWlI6IS1abtKYfI55s9gc3ss+rXQ7pMnT5883UEDygebHizAX0Tjb3zjAY4Afwgq+OsfPN4RFBbocBIeSToWSRCxFEOnKZYTMmhhICoqqmD4lpyoqjkX+Y+/8UpGAD568gAk8AF8i529fUwDPgJlB2wOXTw3jWOY8IHXFaos3s9T4WAVR8HblOUAvzb3GMDjsrpp53W7NjseddrdqixpkqqJoLwlFaM95GQMKkY8kjGKvuNvnj+uBQBgbAP2MTUhx0cy8F4TaZEF7iLCWkgFQukMzaUSgkAEgglKkJAHE0ARDvb2I8lUgpVyfDTw/5L1prGypdd1GCGR/cY7DzUP59Q5p848z6dOzfM831t3Ht78Xr/X7DbZbLJFkZRESRSpyZZNmbJF0xISx3YGOLGUWLYsOwniBIkDJAiQfwECB0EQB5LjRBb8J3vXbToBcoHuft2v371Vdb5vr7W+b++1kikiEVFVS6dBY0cjQgHD4DxHB/hR8LxBllGLg34RdTTcSMdj8SyNpNKUdcBa14JHIlDJfDJJ5oD5aZatAiyjOA+LFX7r0RYIQpCEsWRka3Nra2MvkUjGMf/h4CEeQe/ubG0eIADD4yawnZ3I5kUPu6A1qVEt+0BzJUbFOGo1x9SKCoASkfAG3Uat6JcwpwijTOqAvJ12E+Nlen28yJgA/RMENJFjRFky3DJI5OawPxj3m91Bq1lvVYBUKJhRosqaUa+XQUS3xqPliZjhWDIH3APH3+Hxea7qFtHrtQk/oN/s9Ib9415s+2Dn/ub+4fb9jY2tyOH+wV0HdDRymEgmDh/tAacBAOaAbvE0mUrTsDYBgBMZFiQ5Bq8Vgsb0/KqZTGXy6yYsAGBAOCUeie9vOiVFYXNkyqvYMkdmczG9qHkVkHsh+nHU2y3Y+dV6vdks2o6qsIwga1a504XPA2r1HAFYxJVm+MVqd9Add/MEocKDN009rFaqTcwyrXaqYjyNcbtFJZmJP77/MI/RjZID9HgNwIRTsSWJJ7KVggTUNIIKGI8aqvDzu7VSo9MelDWF50hJNr2wVjl46QsAACAASURBVGjBq6qEGp1nZdjPQblAZzGMIQCx3CyHBpDiVM5K81lKlhMJyakwOUUlIpm1SoH9XemOZydvOkZZFwyoA/Wz51CuTINVdU2uL2/7TtXQdLf2/KVZCHRGlw0opRXYJK5AZ3OEOrseLPvVQQNqJUdl8lSMYkQxt5OjtnndMfhontoiRc4vXM2eXEgym7PM8e3CV+gko7SGlxMqJTmToeQC5dWrk/nsaXknkQU2SlSeAgCbZuGLtYQVFu1C8/JJ6/y7r0hedk/euoRaKn/9PFsKS83Tr7376Gm93+v+201x+fyf9IJFuf3pP/y3qMrod06Nzi/99er8+Pwb//mvJcWrn+2Nm7Nfe1lc/eBrWbvQGLc73VG33CoMXnaKp19dTLuggM+69Pz2W1cnXyp90DRA2wx642F33OnrSpfzG4uJHDYur04vZ8H5q8UEFfD5lCu8//p5oTVZ3dZH3eWqd7I6vTg9hX3cqoqkbEjYei8wvOrAbiBLT48W1fn8rLksDi9XLbq6vBw75cnk8jIs9S8//fJ5pfLBdLgYL6ahUrsYir2B15odnZ5dDOaT1tNpQFee9uVSfbk67yids1kZxdfp0WzkVQun1yV5NLPkzs20Ha4WFSc02w30BopQuuMApwdCmY7HYafj7NFB9CCZjkVTqchBKnqYoShB4hgymSVTyQwoYOxEzCQz+Xx8ezNGQcFiElmMmwMBQQIA5wR0KQKNxLNE9pA1deyN0lk6G6cF0zIxEabg2SBrM2RatnAqCURhITRKQTHQBI7HWXEywxVUWbF8G8/ZoMBSLC8oDlR4TbW80NI8RwZRjoes2ZxRMnBKbm1KHgCItVvN4QjeegeEMQbsAi/GyA4PGL1p4+To2uWQA2kIy931y6FmWaoIMlKURI7lcTxfxD4yNXBKd9bOto8tWJoOr1ZSMIwQ8JciAUlkng3qILnKUFBDy0ALaDxJDqH4VRr1ShWvKAbTk6vr21cfffTRlz6q6ZphA7MFXPCAIE4Wq4vnX70ULdiQrmWHoHnbR+dnT//cJ0sRiAkwFRBwQC5K7Ua9MZxNeqeXNyse1SgAsOeatgRApqwPa+V11zACML477JVZd1/lWewXJZMMmzggGHi8mbUp9OeiO+v2q42djcebGw/uP0Y76LtEJPjCS+B7P/GFez95LynyNCjoTDSZhp9JM58BMMvTtIAQJAGqqECNZDxKNnFSMcSQAk0T8pltvEN+7+EGIP3GBk7VbB+k1xmQLEIwBvp+9qWuG7odAEqgJ7qCOl7ErjK8BhaEvGSYYdE12keLyXDSCwAaVYQ9YHkmOh4J6dT6CJo2PW99koC3wAGqYGzHwqg2Q2FiBKZCkTzUNkI20AMimcgxYjLLi8T+YYbGXKtsNpuK7G/sHcRyJKh0PRcHDpo8SKiguLlcJh1PKJXSWlk7wAhwymltCG2aAkHrGjBpJgP4CQBs6IavuQ4+wLU5b1ogIwkyzzAg8YCcmFB+fadYYze2DuLwscZB8R7sPtp6vBlDV6xEIpWO7m6AJN5+vLsTBejPwMugcySRyRA53m8C3da1fiPEbC+NtnpFTxdyeatkcdloMl4Yd4qFYrWC1BHoa73R7rWbLWRv62aC5ekE6KYkwDOEkgPPzK10Oq12fzbqt0AX9hrtbtWxTZHNcLIkimatUGuFtWF3djIH1cxSBKA2Dt8baAcGhDisVOvtdrNTa3cG/eG8u/sgure9sbu7ix5n+5FEJBKNxWLRSCwVi2UiG3vA3PcJhVcEVsB0FzaXSVFsJpqg0pQoSYrilTrj45tuKokKWHKaxw081LKSkej+nmZCncpRaadoyrAAyYRq6EC6ce/V6nWUv/VKCyhsp2SalsaiTDRwIFq1xrNZb1AsOgqjoq1aWOsPBuNOen3gJQqguxsAlc16rzsZd9Qkw1uK1kjee/Te/XsbaJtNCpg77MPuZxNOWeN5MkrVbIXKZSMRXG7Vcq2Ihj/lWqvfGdqSINIZoJgF3wRJXKnUC1yKW5uXeyWXyWa5tYtJ2KwUnFw0neLNjJBJyBq5p1Z8i5BNepfSZRwvsrxqczQ/e97yfUNVHd+pHj+zfVOXGdjgaqFzM3IqquVa5Vcvdd8zGQ0w23MbvaKtEYl0gtUGl53h+cSHFUowCMARigHdEE9FDyTVkLhDkt2kZdIrHy9vTmVJ4XSjfbP0TY6QteL45DVDuf68Y1i84zrdweLoTWWTzhhWmS3c6FQK3uD7lYxnWobXvr6snf/CM1IR3YuvOlnbLf30nMaZhPknbz8+qXRb9b8x0Psv/vtqZVLrff0//aFU6P/OzBr/8u9UJkfnX/+DX80z59+aj7uLX30SnH//LWNYzea0NRi2y11relsuHX9lteh3T37+osFMr372dPFh/V3XrIzmsGpnAMNtptQU7NmsWDHLk+vro5U/e7U4brZXb6/mQvjq5szrjE5v2tPW9fH49OL86mYcuI2px0PhzEs2SR0epBjahaeqXR1P6kfj0/a4Or4669OVo8u+U+tNTi6KYffZty5W7snLo+F0Me8W+ebJUg6HQX14cn5+1ZlOh0+OXKbxauYWmvCe2tLkcu5PJ0fLc6jaer38/LQqTKeK1rmetL3ptF5StGElxzK5bEL1dQv0CoE+GyBy7pySIrEIyJ3kYQxVMUHnmDwqqXQsmYASLOSzoKIAl5N7OzGSTBwmqFgki14FkRTa5fEAHobI4rVaOsqZOAyAM4qpRD5voq+U69u2JYCMpnKCjZ4Gru0E60NYB5PkQWyn6QRjYF5DKkUQSeIzK0rVdEJbUG03QOt+bGPmmHyezGm+bflVEJbl0A0qzSbOIA2nx9djbPx3bct28ahSNw1FUAScexYEmaW5PMi6pBb6pmr4ui5LeVbDBun1HTDHoK+FW3BByuIexuR1qLU21DpelFkqj5GMGM7G0KVmq9Gul9Y9P66tyE6xWAC+jB7UlRoA8HB2fH755Pb5uy9/5UsftWTJcgt4QOoUanXgCavLZ59eCUALXDy1xmTV0cnN87dfvSo1KsB4gViv74Bni/U80+Xr1x+e5hLJTDajuegDhT6QigREAK1F1g6OmN0scSB/WZT4LIO9czRFg7hLAsDEsyCo1kfQuxuPH289foh20I8fPsBmqTUAv7eeScJJpPfuPXzvMSGuwxwysXQmG48SoBlY4P3ceg5YWf8wSVdB/ioSaHG0Cij7gEnrXqXMJnyPnwA9vbG1s/lwe+PxdizHCRS9joIXOBBB+IJl+U78Ai7BB24YKC2xBUvX1LW1dZ6lBFUPCpbaXB0fLY4nJUHGI2j1MwS2FDGbgSeZilOA/3j9+9nXugnax2lgGwpWPEOTRDon5iLJlGgKTBZwLpeXkileyO7tp0gGhGomnckkIlv7AMAU0AuDTuOSP0wYjmmJLJCYuHznGIo2H/A3YFu+i55bCs1bJnBpNpsAqYvWraoNXBGzu2xNkoSslItGMzTNSLDMNJwetq1CqcJs7R5EE4lEPJmKH2493t3ciqfgNaQxHXh7c297b2dzbzeCQRggk4BLAQQTtBC0oBIaRq8WYFegwhstoK08RdkVV4JXnCxgFzQs2qCAASRFXD7o5YIH0d3+cDA7HjvY6vhvANirdnvd3mg4HPXbvT42VNXQk5XNctjPZ1XDervUno0nq4VIYiwdJ6/b/eBdwLbCC8cmZj0MawDyvcGsu3s/sru1ub+/vbm5C/I3GovefR3G9g9Th1uHkWQyymjApvOwsIgMVJJULp9JkGSS5LEjyi/3JqubTjKepBHC+idNzw1K+uEhfCTAvNA0KmkFuoh/OKbZdqFYLmHPY6XRgbfYqK5P24vYm5dHvmMCAVJZrT8CeR+GlszC7gC67VXaoNnToigysLwVr9goh+1mrdsZjlrSIQUC2PK2f/LRwy1QwPA5kZxTgfVk6vAJe1UtzxAxouqqDEVE4kj4KhhIiN3mtWa/PQR+w6UJoMMgmvE+tlz12RTDybphOAWfzhIcDupZhVY1MNNRMinoSZnISDoXVYuBTYoqtUsbCiaJOPDnR0dXr9qeA7wUkLa4eGI6CtInnpP9zpOJX1Qdz66/eaEHgcPqsCQ8MyjDA0xHoBAr4yfjztGqaUNFwNQZKspgfkoqG91jJU2g97ME/CJlFo9PL48xYNW021dz1+AIRS1Njp/mmLB+OrRtHj7nbu949TLY5FOi6jG1VzqVVNXgdTHlqKpk1s6vAICfkJJon33ikl6h+rMrEZ5J9/qrX/m5i6DXmf6dkjj76L/qBeN6/9M/+qHod380MUe//KPScHr0ld//1Tx9/NOTXm34vae11V/+IGW7Xn3cHfR7pW5w9LxeWX3laNppH//8RZNe3Hz7fPlh7V1dL7bHvdFoDCK4xZZqvD8caG3H6Z5fHwMAv1wiAL+5mPHB86sTu9pYXbWm7avj8dX15dV527YbQ5uieEPl6Lx59n47S0cEkzSvL4fVo+lFd1ye3l4OAIAvek61O1mdF0uT15/elgdvxuPpbLqc1ITK8Ynm9wv10erk+KI9Wg5vFh7XfDF1whYCsLa4OQ5nk6PT88m0XAr6b0+LwmKqWr2bSdufTaoVwxqGCdjrkT3W1gxFYdZdHmvH/fjhIVDxOLbNxg9i8XgqB+hM59LJVOIwGk9lgeoTGBdM5zMHewkyG8MxjshuJJNL7UHNAoCWYXtK6OmYTscl0Htu4JqA2mmOVSxHUx0oXI7E0wDAEvoFubCEsUW56DsWwmqez2eTLIhN3fRsS8WzbJIkc3kZKryHzaWgHy1Ngk2Ihsc5ygg9P6x6BR9QsFCu16uYsDY9uuiDdrFcB+dGHIxlR9HFiWhhjCYeHEtmCUJFW6KwgBeZPKuAps5zLNBFhszLkupi0kcxwE7XuxR111zfAYLaEQTYmCBqAICBe9crIfwPlml6ll3AXuZ66Jdb7VoIr2N+BLL15smL9z/88KMvdaA22y5meAJVqNQHw6ObV1+7lGw8a14Xku5wfn799PXHKwtkXIgDJLCr78aZjs+un94++/CCQX/EBLAOYBU4PbUOXgO1AmVRgX2KHVnr1PTPABi9m2n0ESZIdHlAf6xs5nO7e1uPHu9s3Hu0AUC8nv9dA/C9tQpGHXwfb4a3GXibRA6Pr7NEAkgWuQZglpdBAWMdlkTFvANgqHk2DtegKFRwcDzx6P6jB5+Hb/R4Z2/7wYPHe2mgZDgdtXa+zcOCg4eH3W7riV90ltTQ4wweu7g+UAdYBlrB8QyOh4a60jw5PTs5WzVl+ImA8VDOdLRQ0yUAYDKTSjAWdsOsW6ARf9dt0PB6QM5BMU5m8RCZkql4MsGbImjVeBwAOJYEAN4/SFPcGoDT6IS1fxDPYWarxWZzmSwRTRqwgiXgW8mEBLoXYBfXLDZ5rfW1A4KSEVxXEyUui5sFSpsimy4GhPiYpCUKlErG4lmG5WRNk5E2AXEIwyC3fXB4EIUNl0onoxuP97a3YykihQmIh3sIwLtrAMZZgjhacBMogUnBbw2Wx6bRrWGLoiFz2A+tMCQd1H0V3b4Kg069Xg79AI9+0B2ujpcX6EbR7o9GAMAj+66E3wGwgQDcH0wHw+mw3e01esNhAx6hyCAAy4pdLjc79eFqMUIAJsksw6MXq2pYlgN0pwTw2+s0RkdTnLkDBdzbu3+wvbV5eAgAvAeouZ+IAwRDETmM7e0nI9uRfZD7eY3JSyyfg0XJkNk0SSWiRC6dEyRFN4LqYHZ608E7YKBlhf5pC2Ox1b0DAGAFTUVzRNzwVA6eVjKie976xgfeZak16HeAe/f6/UG/ZKIHNzp/OjpwO8noDtq1binUBNCzHOhmK6hU25U0LOFsMpZW8K4naNUr8AEMWkYERL5alO//BADwe49AeuQJwa0EnmuqQi7tlgB4szGi4oLGJiNJvJ+qhoVaBVV4vdltDXxDZhOEwEt+qVivNGqVssOm6DymvdhBSGVznCioiuHXS54eP6BivBKTswSvq0mpELiMKJJ7NLxEQweaV25MVzev256HAOwY4eyJ7QIxYgUojpXZm6OwYAS+0373TPU8i8HmA1e3HMvR4zsElRNnz1fV3klfpUEQkVkefpYIdTlNRreBDPK5QzK5z0kxyVmsnl+KYj6vmZ2rqaMzGVkqz47O0/lS/3riuqJjh43W0dlLZ0tKyYUSV39q5jO6VngdJh3d0JzGxU398ju3lCibq4/tLNS2r8+4UqHSufzlX5++PNFbo7/SZCZX/7ThT1rjT//hj5RC54cDc/grf604Ozr52t//S5o6/6npoNb/pSf28K++SfhWUO2NB91RseMvntWKy48Xo1br6NsXTQoA+Gz5QeX9klmqjYfDybA7Gjb4UlGsDtvcpKJVjm9PV/78GQBw6+jV+UwMnt9ceLX66qq96N+czC8vL6+Oq1bQr0kMK+A9Re9//Me/+6e/73I07KHX/VFlMb7oTcqTJ9cDunZy0bXXABwWZ68/uJZuX1nto/lktWwr3vzCtnulymi1XF50Rsejy6knNJ+N7UIbFFfbWN6uivPJ8uJkOHS67uVHJ4GwGCve4HbSDuaTStGwBv7BwUF0f5+1DFPFMSQiC0ibSoAsRNekJPrfJfcj0WiSpEg6T2WSqWTkIIb9STQZj8bSDJve202xHE0RWTa5tZNlUvsZEA15dEaCsoztP8moAOXLchxD4IgUKCfTNVQrCB1HhD2Uy8iAWL5fCm2MI8LG6UwiGk0zTDYN7ASqVLUYOlIeIBiKNqfYoGdwRB2dkw1FBpREbCHUwCkUik4hKHqYiFQDxBpNZsuzDpRC0/7MssjSADpBA+M643l4uzxHgajQPL8EGhd+VxZ4BTs8BZakQHJzqowKOFhfznrB3UiLi1YXqsIz+L+hnS6ouXK1WCjZ6M7vQHX24A8USvVyCecva3XA06Oj1fnV9ZNX77//5oMvtVQdsBbtsoJCuVQfDpfP3n18KkElQR4QFutQDWent2+/fKxBZXdDjFUvVzFrdTA5Ort+8uzlh+d0AiRTXPFgoxmYRQglHjWjiEfQJhpwIACDAuY4hGF4CKCAgUGhUVkKTaFBOyQ+t7e3tbGx9RjgcePRw41Hd14ciL73sAPr/oP31sfQByj0ofKnook0kUpS+UyWzQMV4hWa4kR+PYaEAAxQacA+RO8L4Ds6nirTkQ2A9Pt76GawubW1Fc1xPDwujGmiKHg1iCgUvDyAYQ6JDHwTy/dsD/QqjjaL654sfC+cYpiF0FBbAMCrk9OmJKqSts5DMPFy2JLSqTyVSyUoAzlM8GMB/Nk/fYwMlllstUUfKTKRTfFQejLJRBy0aizGsun9wwwD1IBC+nkQ2diLJACAJc3mCCpLkNG4BmtUgDWeTMhFQNWCbxumfTdp7Jie47kKI3q+DgsrHYsnSChtmgYSt+AXAgs9L0TWIAF/YeUBpGCGse3hgJCb3do/PMBTZ9hxsY1HuwDAyXQilQLMiuxt7m5ub2/sbkcBgDOJVBJtRfEMmvcafVDAGihgBzaBRMlV35GZDF9rFTQeuGNh0K7XimgKAfCLgUh1oG+DQb+LB9CT8WI1siwJvYoBgAVF0txqpwe/M55M+402XgWPm56DAMwDA1WdIvx2e3qynJwsReQAnLBuWgcGAtqzUm/2O8N+c3Y26g4G4+Fo2tq/f7C1uXmIMnj38HBvJx4HBI7F4tHEYSQd2TqIQRGhlDyn4IwEADAaDpCxg2QukxPQJz2orAEYmAy6RhYGZ50QiKh6cHi4u6frIg+fRgwAGGfYEhEzLJQKAc79wx4BBVtvYXb2aFA2MXhPUHQ8aKg2whAoSHNYK8H+BtZouqDQipVuKU4LbDoRz0oaz2huvQYg3ht03ChBU4pH3rv38MHjz2+AAmYp0SsBAdcVPpc0fQW2QDxbttU8Q0aTgL9hvRjeATC8iMawYKl8lgSa75XL9XIDJLDFZFkec8yBS1AZWuB5Tbfckm/riT0mKkoxUMB5VU3Ioe+DWCX2aUM1QTV4Ya27PLl63gpCU1Nt1ywubh1fVaGU6ZrXu/r4NPDtku/2P7hRXMeggVroeCTjeHJsi8yTwvR6Zlqtcp4IPJHICrmoxEsclyKiW3lJZ7NRJrHLyzFBH07fPpUlipGM3tXENag4J9dPLy5SbKl/NXJcyXPCRnt+9trYFJNSvSo0r0yOMPTwTSHhYP3u3z5tXn/vlhU1+xQA2PGK35wJ1aDcvfjGNye/+HM9Wzn585b3+h8VypPu7NM//JFe7Px21xr92g/DydHJJ//xXzStyafzSXv0ncvK9Ne/G7dkp9iYDjuzsOOMbyv+/OPZqNVc/txli1pc/dz58oPym8CqlMZTtDcfDspiNVCb07o4H5jB7PbixJ8/WRwBY3h5Nhf8F09vwu7g5LJ1NLhZzc+hFs9Cu9zVc3mMKyAX/+w/ezL99j/7m5RqZ8Tj80Vt2jvtzmqD2+sB0zy//jEAl0cvX87894dC9Wg5Xi57tjG+Lhi9eqG/Oj6+7k+PRhcjh28+G5qF7nJ10dGmV8fF+XhxejRseK3G23cnBW46VLzh7bhdWEwrgW4Oy6CkErG07Fi6uu5ZzuTo9R1UMplMYAJ7HOPIo4cxMp+n83Q2lU6B2E0RoIDJVDwGCji5s5+iSPxtik7GKSqRyAJw0wLsXBOdgYhc6pAxMS3E0jg2E89zsuWamukXoKSxVIZMgz52Az/0LQnkAex4DvUZduqlOUPVQHealimvj3vXJ9C+ZWGDfuDhxZ7E5vCeM5ORXNP1sVU59ItQeGr1NtSR2dFZB/6IbZvYdC3pGEunaNr61AlPZ/GYmWaydq0EuttxLVTGuszz2B1C8yKsJVmxPA/HKGGPlcO1w7CFkzHKOk5Y4NeJbiwTho7pKGiwgI1aAbpfluuY0V2r1tvNwWyxWAACP3n19s2r9z9qqNhYjf3dINfC2mi2evOlj1ei6q/vL0vVVqfVGp88+eDLoIABjtwSfptao9vv4/XdxeXzVx+d08k0kYhLNtr6Y2iuhEd38p29tSoIAocsl707gsYxJCKHCXJrO23E3ywJNexz0b2d3Z2Nhw/uPXr84P7DB1+4/9nXvXtfwD7oB/e+8N69n7wfR8UBpCoexTneVJ5Lp/MsieeQdwCsrK0o0Qt6rYDxoMBByanqFh3d33jv/i6RjYDMPkgB5KLvCbdOichD9UU5R+Gv4ZURmVSKYAR4RgBoJo4gacr6WluW8Q4YdFHB1Nsnp+cnx0dVqGysLK8BGJ5bwZSzGZbOpeKk6hTWTdDhZ+fQ63/6CFMKB8IUe4jFTDybFfX1HXCMoIVIjKYTu/DqeDEPEAvre+/hbixNUXlYbFw2lyWzh3HVsWwRXm4yqZZDAGAPf/Dd/bJt4JNUWaWAfpBMGvQ1AVUMyqBbCBCqHUuDJ2IQCRqoBCCKiozAL1fKfhjmNnb2DoDvroX3zsbO9g7svHQqARgc399aA/DeTgxeF1DfGDw8Cj5AWvDqvcWxrjZLeGcugQ7pYpZnVmk3fZXjiXQ4bONNNTI3AKYqdkh1e512H74Go+kMAdgUBfYOgGVJ92sIwOPpbDZodqfTwXjS8mE3MAQCMGbndgf96WI2P10KWYImMSdSknFL4+lzuzvqDged5UkHwH0OKF4/eLC/ubGxv3+4s7mzv7e7fQgMPnIYiUQSkfUdcCyVOKRUTgIsJOCt09l4JI1D2SReNHGK6pZ60xMAYKg6sgoi77yDLXXiYeRgaxd3L5vNxOyCLsIjTMY8oBgBbtESdmFVa612E8PQukXDzMN2kDW72Or3+s0azpTO2xUoQgrQatifnUpzVolnWdhLiUyepXJ6oV6vtEb9XidIp6JZhdx+7+HD+4/ubbJcnqNFN3QsU5NFKqG5sCbJaLZkyvBAYskiMIA68P5ytYaFp9mahMCCaZJhJReIQbnZqpdtlljnN2IGVi6DLw09dtFMNLlLR0UhKRMpSlHiWsXxNS1PHNIahhc6XqndPz6/ed4MioaGF7yl5aXhAfsURFP3+jefnHgFrxp4gw8udPhmDNqp+z4OoMnxbQTg7qREZQWJpEq+mM0K5KHASjyXyMZ2GV5lEpF8cldUY7w+mr284cVcXvP6l5PAIiOM0bp9cZvli53zvmlJrlPsDianb9WHaor0HLb7VGUyGihgP2GbrlsaPHvauPneFc/rwcVXXdIPKj87lxphtX/+s9/edb9c2NOtn/9Qf/WHtXDQmn7t7/22Wur+sO1OfuOHxcnJ+Se/9xu2N/3abNIZ/+JZcfGDf7Xgm3ZQGo+6s1LbHz+tB4tPcAxp8XNX7dzs4mfOjz+ovPX1cjCYdUejwbDnKw1Pa85L1nhRcHvn58fu9Gq2aLSXL86WrPv86XVhsFyd1Re98/nk6urpzdB1Ki1D4AWRY6g/+ufL//lfvvnNPz7ZjbDKxelRfdI76U6r/evrIdM4v+k5tf705DysDN5/Hq7et7RwuJzN5qOS3r2q6d2e2zk+ObnqjBfj67HNt1+OzUJveQQyYXi2LM6nx8fLYaEWnHzxxVmVGw1Vd3AzbhWWs1pomeMOnU7Fk4zpmrIiQiUEop2JZYl4JJmMRDNYCjLxZCoRTdI8jy6UUB5i0SisVyFPpJPxNIDubiwR2dqOQZ1COM0kMkDmU4wom7oJO4wmyUw0b5qwRWyVZVJRRsC5XEzqsx1AsRydURCIAhCatuUHrl9et41yoHhTnO8YXtHRTVOGf08TNFBIN3AsCUA1cFxbFXGyjePyBKF42EaNuhItcItQdTqgPFcXPVnHsC4UHSBoHEwzgeIu0GsAZvJ4g0sE3XqAN8WWjOGgAMIgWEABi3lBAZppeRizBNu8Wgp8YJvGHdKBjIP/bx0yz1Ceo0GlAkYL3BMIAEqPaq2KNjDNWqUzmi3mi5MLUMBv3755/x0oYPRmWhfwsFAbH529S1inDwAAIABJREFU+/iTU0UP8d9xpKPdHqyun735aOVgehOI6SoebHWGo8n86OTs7Pz2w6v8+ghacfAwc4266P6srNP7RJG7c4hE7YvDWzmKJLA/jqJzGey/Ar2VpfK51OfiB3sHe49B+25sPHr0CB0o769PoT//hXUn1nsIyZ9/mJEZAgAiEYtmcGozLxAAwiSRy0sMIIogaQqLXtCfATAoWA9EsGMbuqER0ejuw12gSJm9zb0sj5eomFCMOcUsfH4ggDEgCLUvs75hoBjAcstE5zIJAPiuS1pRWah+aGSGAHx2dX6yqHC8LKAPFjphoFGpTBDYIpVkDDzLCNdOKOHdKfRapLquoXIAsRQCcCqSAQDmKBLe050CZpJ7B0mS03gqmwb2ufNgJ5GlMaTDzmeIbC59EFMcy1NzBJlOqeUCnitbmHno4qW/A0oYAVgthmsATqRTOUbUoFj6AZ772L6lw+MwMikaJD66fYWeZQWVWjms1tlNwKgU0BsAXMSXnXUcMCYWZ+L7uwDBu9sHezE0TE0lo2tHFYKkpaAJ1cTQAtwAPJ1NmoPAUoWM2qr6GivS6XDULhcDwHhQwOVqvdZotXAGCU9m0dJ0fjwE2iYKPwZgo9Do9vqjMayvcXc4myAA44XRGoA13QYAHo7H4+nybM5jRgkn4tybhiHwaOiIjkWDwfKouzharo6Wy87BfQDgx7s7AMDbu7s7aGd9eLC/f7AbOYgCAO/uxxPRvAFshGEywOlyuWQ0k89EYrk0AYtDVKxCe3R81YqvwxjU0uSy4fq2Su9H9je2FE3V80CEfAA/IIapRFgrF313fefTbNSBpnZqQAp63aLlMALHAuaFrUG306iBUhoctasg/YEbAgBjs/JpI01wdDwVj2cp3giqjVatMeo1uw2H29yL4wjd/Xv3720wLMPlBCuwTYwjpNOaq4p89iBbMiTYXPE0Tp5Xi0X8rOv19rDTnRdhATOgGBS7WEY3gEbV4SgBU1gcKCc0xo3IwDTDShhYya3UAbZHZQkEYL2iQXlkyQiliibAtV/udo+vnr1segUd+wr0cHmpuaapcaJr2O3zj0/9SlAreIN355praQwwWKDtBbdQUWJ7sO3ZQqBRSTw/cQKZyPLEAZeHGhcnkgcsr3PJQyF7qOhxwTlaPb3KC9m84vfPx9gaxpnVyxdPs5zfPu8bJm+Zfmc0OftQ29SolK7nO0/UPKHrpfeDrGcYetB/flu7+u4Zz+j++VdsMghr3xzxzbA2PP3OVw9YLZbfTNdu/ZM/avjd5uTTP/grarX/11rB7Ps/LC7OLz/5vb/kBsffAJE7+d5N4cUv/dl/y5VML+hM+pNKqzh90fLnn0ym3dbsZ6871PD46yeLt6X3q2rJ7857o9Fo2LO0pmV254Xi+KzrVuerpTW5XAPw8/MV7z1/ehkMjk/Paove6WxyefX0suWGrZYlMDwX3d39L7//i//6f/1bL/+3RmJ30zo7mtdmo4veuDi4uhrlq6ubvlsfzE7OCoX+Fy/0V+eq71Sni+lsXtcb5z2jPXJaR6cA7oPF9MnU5juvJ6CA57NlVeqvFuXl4vx4OQg6zquXT84bwnCoub3rcStYzGpF2xh26UQ8kRJtz5bQ74BO4sRAMhUFEE5G0TopTcQi8QQgLZOj8gyRgkIRi8bTeZElkvCfAT8jSVASsIApgiJAI6WTSSjzjKS5hqVwPJsj0zEBU1p9T4NKHGclXTdMB6AHFHCeIum0VYG1Wyi4CMtoI2mK61KdpVNCMTC9kg/6VcljIy+NcYSAgRI2YdmurQAOUli/CVID6C6GRQ/9aDD3qFpvtQfz1WVfNdczTrYJBQP+hu0+HMfRNIc2WJiIShNus1Yuh75taSpD5Kk1ABMkyzO8IoFcx2mhMtpI42ipjxiOl62gfllsBs1zPEdhg4SKtvw2NoXiTCJoDyx+1UqlthYdgJzXty/efvD2/bdNRXMdz/FwXqZSbs5mqxcffHKmWKXCnRN0p9PqrW6ev/+VC4CyIKygkm40Gq1ObzRbHq9W5zcfnOWiMeBCeoDOXPodUiEAr6eQBE7WJGxvWkMwDZ8a/gXqFx5RJpsFRpXJQt1If25/f39v8xGmDz7ewEYswOB1H/TnsQsLEBgAeN2DBVwLaFosnkmnYnGGJ1IsT5E5RsI8YB6UNy+bGnZBK6aumjjxhZITtJlAxA7399IiErdElmHXRow8Q6A0B0JF4lgO3isArKx1MMOLmG+MFww65klIaC+GA85CXjbMsGRosNIxxqQmyTr2QAMGY0u7KfOgyknAKM4uVkFYYg49WqHcNUMXAuAD6IRFi0w2zUjJaBqNOKgskBiKV2IRPp/aP0zmeF2g8Jsk9+6vAZjTDItJZxGA4ypoEQXedCajFv0AZO06TdLDFixnnaKhMHIhwHCQNDphAVNUVPgNTDG0PNNAi8UMXgHwoqIZGNQUgAIu1tvCFgBwIo3xzInY/vb+zm4yjY5XuM+AHm3t7u0c7kVQmSfT8bur+2xOvgNgdd3UwOepjNb2TIUn1FY5NGmJyYSjDqy/dQ80fhWrsHw6/cEYg45Gs/8fAOtBo9MbjBGAJ/3xfNwfTdqBY3A0gecpmhVWmoPxYLhYnMx4UHV4EoUAjHHx5RpgXQ8AeLJYzo5WR6cnpxeTvft7m5uPdzb3trfQS2QPRP7B/t5BZDeyH0lHNvfXAKyzvJyH55EFupKJZ6jkQYzO5vI0LSqG3+jPzxuxBDwxkXe716Gg6SJ5GNnb3jdMzcyn0+mwegfAyUI1DF23gEdOzSaw1HGvXsX0p5LjswjAillojnqdZm0w7w2PG2VHwQgT2y/VW10A4BwrM4foRUYb1Uqj1qpVBt32YDA233v8hXv3H2FG572H8LK4HG8GFgIwEBxQoDyTiWZKpkKjAsbKAPu9uk4Obfc6nWloKBLGGwP8V0uogKuuQPGCYjh4P8Xk8oKsOKYPABz6xNbhXjoJT52nZCMpuXlFB7kcyWHmm+MXyu0e0PGXDQRgqGFaYf7MgAWkcqpnWI3Tj88K9RAAuP8WSoihUppphLYVOH5JPohCTWYUVhBobOvhSjqdZYlDjpN5Jk6m9jnOlFOHAnmg6AnJWyxvr/Mi7A9nfDEKnFxMsoPlk9s0X2hfjCyLtSy3MRifvRN3ODap22L7Wucpy6q+K5CBZRl+9+lN5eqXVjxleKdfMjJeWP+5sdStdmZn3/gLXyTfI7xqoR0zX/0nYalTG3397/+WUh/+qBnOf/DD4uz4+KO/8xumefzNBQDwr75onf7un/3XShUIbnk2HDaaxfHzljv7ZDTtNiY/c9NjeotPV/M34ZuBXHQbs8FkCACsG03FmY7c0uJiFhT6R0trej1fNDvLZ2cnovfs6VXQX56f1Zb909n88urJqgygWqIzeT5xYJ/9hV//b/70f/l3f/9bv/KLrcfck8W0thhedCel/tn5OF9a3gIA96erU98fvBtWXtfViuH2F9PpomFUVlOrPvYai7PVqgKy+OnU4tovBqrTmkzmFbl/PC/PFxfH80a50fjg+tlJhR/1Fa93jU1Y01rgmMMuBeU4JULZlGHFUFQqGo0drI2AUsk4mYZ6TUQPoqC2SDKb57kcHpXF44DHXD6XSCTSJE2CqGLwvjGfxRM6Igd/ZTIUK1sGHr2xVC4VkzycaAV2zpEp0DiGabkFBGAeCguVdKpQJ11sa7EdqFeGwjDr8d5cWggczXJcTTMBgCnUTrwCesOTVcRpvNiTeYqBKk6QQEsKIYB1qVCqQFloNLAvE/3AVBvHPixTkzzXNqAu6gjAwAy5HFrx0YAODh5d4Sk0jhiyJIeXjjk0DuZVGZuwHG9ttX6XsYOH9TgrIfKwv2Q04ZJ42vcsVVd1NBdBRw8cyw8xaQMqYq03Go6mAJzHVzcv3gcF/EFLUd0AnduL6B/fmY+Pr1985Vy0Cr5fwBDDXq/VmV88e/vplV8ISvBm8AC6CVq6PZwtj45X10/frbLRFIEK2MBDWGQ0Ok7QKuu2JYkVZAH4hSjc3QAzd38BxjHr8+cMiWe/mfTnQIusg3+hzDx6dP/B441HDxCAv3DXhfXg4f3P3390byuLB4XAsdBCmkgn6Xw6xYtoCi6RBMOxAvbj4B2wjnngoIALYTlwQMQahphP7u9ESDYL5YUR8iCe0MqFwgYsFoNwcpjVRCEIU3dfPKZiSaKim+tLYPiFfteOxcm6HgS62lgcX5yt5lUoq4qmGOj+iY1xMh2J5HK5aJyxi5WCgR//uvnoM0+sELidIrNpAGAiy8mpRDYtWkIuGYnEgCjGIwwV3z1IkILMUlQuHY0erBUwjfeHDChgMhNJKKZqCGQWFLASupVywcYuZrxj9uHH442+TEsFF60O4LsmsjkWyINroQkkEEVDh4ehZ3LrOC9ZM3FQDThiOag2he2tXbwDBhqciO9s7O9sx9IkgD4AcjwKCngHFfBhPo+RuUlsgQYMpiW/0VscaXIxXLe7qYzW8B2Fp7VWqeTQwCKKw846AS8sV2uVEoi9VhOvZOajPkYqzI9O1kfQ3I8BWPFqrU5/NJpMpsPuCEAYAdjWWARgAYPHSrXeuD9YzVZTHugpQXPYtg5YUqxUqs1WE771cDZfngEGL49OLuc77+1ubT7e3tjegte/swva9/Bw/yCaQFPKuzvgxGFOZliVZUmCRPdaWM3xSDqHpsQUJvXVutPTGjweks3nrfa1TQiqSCUODw6TBQ9YcjqdLVVNEePEE37oFO4AuIk6fzDut2D7t1tF2xMkgZUAAhuT0bBb6066o+NaCItFUTTLK9Xbne5xlRZ0Zj8ej2XydrNaKzaqxX5nPOrOjZ/c/sJ7Dx+/92AbNgUJFYkWzAIoYEWCR2wGaIOQypRsNU+T0Tiaj1eB5VTKtVa73W41RwFQfdhzgmoUakCym/WqJwIAS4YbAEXkqDwvK7YT4IVZkds7PEjGaIKRCdFO5eUMpwEAR3MqWusWiuXG8PT69lnNLxk6BpMHs1cmMEqZ1UxVb559+TRoFCoFr/v2QrEtndENzdf0wHUDdifOZKDQZWhRAu4cIWsOm2GIQ56XGTJKJnfyeVNJ7rHEtgi4bw87N1fww1mA4utxYJMx0fcmN08Ipdq+nDg2Zzthoz85eZZ5lCL3eUsdvFgDcOVtkPZBTxQ61wDA312JlFk4/7KR8Yv1nxnw7VJztPyFX+xtPdzwf/4/NAT75p96QaPY//QPvi/WRz9qFhe/9dvh6mz1537/tzx7/Oli0hx+71n5zV/8sz/9x1rJtv35uNdqFobPWt7ip6aTTn30zZt+fnD89bOjd+V3U8Ezi6P+uD8c9jSjIdhHLd07PluU/Pby2Fk8XSxb3eXTsxP4qTfXhe707KQ8755M50+fPlt4Zr1fItjQjhV+559/+6/+7t/7j/69v/HJP/g//qZnXxzNarPBaWda7x6fjNni8ikC8OT4xC2M36+fPNeVumF1ZtPpvG6WlkdWeezX52cnx7XZcno7NtnGbYvX6+PJoqb0j2bF2ez8aBK2issPzl8uA27UEf3ezbTtTcZVIO/TEYsmcJzi+JIgQzGEVZVlDrcOoCKkkmQK/o1AARxNkDQFhJJM4RE0cHz0cEymoCKDkqJwqBTvJFMUlQY6mwFimiUY4HHYh4j2ljKaToS+CsopzQqAs9hHCttGpHMknbJLjmkZKJLXIam6COCXh2KTTgmWqpqaiwFheZw7zuUl0y/6jqwahmtomizJLEnmWTZH6dhwij7ueP+KjZlNNKBanrQVENZAHXUdyjoaXSl4ZsvBz6UJmuXw6DMb9FvVSrEQ2JLE5iWQtJLEkfgaWChONpoZFkBRrb2FcerTwhEbBQCFZLGTOi+yJAg+dG4F/uAWG+jbAYo6APF79zJGo9nqdLW8vHnx+vWr9z/saqqLNoQBKPV6rTmZnV09+9ql6Di2h6PD9VZ/OD25evLqK+dusQrcudeu16GENuvd6dHq5PT87PaLFzQ8g0yCUwTdQetOQCNJQLm47oNm1lFD1LpDDNQvc/cLHDjLZEjyrs8uTVKfe7i9hfNHjzYfPnz86N69R48fYufzw4cPMUABQPke/OPeISuwoNAy6cNoNgXUK0eiDxqIFVZAycpCMWZ1x8ChI3R+Mt1CAT09bQOglIru4Rzo4WGcgA+cAzqOHlf5PPA1EMAEcCo2D2siT1HYY8dKsrK2IYWVYxuyyPMYqoiGWDyrG3qhoOi1xfHZ1elJWVnfw8s4PWzYnm9AgQGmhwCMp/p4WlEuF9EdcD2VhDrVUvNphmfIFKOkookUZwnJZHQ/TkpCLJbnyYP9WA40fCZLZ1LxjQc7aSLHSaptcel4hkwdZlXLscQMNqGpeMQN9c001x3WIIVRB9sKLRQ8VMCpBIi6rKAbho3MreDaLiwYVtFz6RzNiuhEqZvYPQyiqdYUth5vR2H3JNOp2OEuCsZYNk3FInjVs7d/sL23v3OwG4H1ncqkUsCGKcyV5J1md3GsBp2ab6Lndt5oBQjAcqvhmUAH05VRs1YvFzEZDL6KjXqr1ehNQeFOBv3xdHJ0OjZ1XhAwrhIAWNG9Gjb4zWfD6bTbGw9A7PZCT+GAgRqKoDlhpdEZTOez6cURR3A4HQz7QoH/jj+g3u12Zv32/Gh2Mh+Plqfzm/Hmw53tjZ3t3c1NUPC7+4d7AMAH6Maxf7AfPXy8txuNR1kTfjALTz6TYLPJWIpIRFPY50lTgmaWgA9clOKRJC3ygtM8LqiuqwtZiiaygW/ZDJPJlsuOmmfgMwmKju+VQ7dYaVTr7XWacRm2S6NgeZzAggK2K+3ueNRsDaed2aRZgqIDCtj0Ss1uszNt0xzLxlLpWEYs1BvtTrPZ7XX6s/Gx9d69e194uPXo3sbmvU2eyVMMZ/u2Yaiw49N6oMOnHMuGlshTuf1M2YMFVyrVQEO3a6UW/LyqZYFA52TNwj7LWqvZCBhSECUNVkSpIFJobm57QalcLAVa/DCei2oEzzO6nmAFWtbgze5TQBMcvIDqjJbnz153As/mdd+UvLN3plMUPEF0Zat59vGqUgtavjl8M1dNR2egEIHcQAd7bieSg71KZIVMXqTSCbJYohNSLiqzLJbX6CYtWjR1GJf3OIpQ87niu1u0JeKt4cXEMcldQagd374khLB0PnUtzrH9Trs7etV+tC9EGEcZPjU40lCKbyzSsSwrrJ9d1p9+74hjdPv6i3recVvfamnNaml++vVvHbxHpTf9txHLefH7Zrk3Wnzyj74vl6e/0yhf/uAH1ZPTq6//3m8WnMlPn49a3e9eN0+//6//5f9VsYtmWFkMmq1g/KRZXH7teNZozL/6tJvrXX1zvnpVfj21gBONJ6Nxp99WyjW5NOy6VVA6Y6dzMtGWF6Npuzl9fjzn3ZunV/54ej1rz/snw/Gz50/7njHoywRzu3z01T/5L569/r3/6Uf/w898+9M/+SfvkuOTUW0yOG3Na43z1YRtLm46ark/WhxbxeWV//IkNAuhbw+Pe8cdz51f28Gs7C1Wq+M2bJEnY4er3TREszIYT32xu1iE48XJfFRslm6fXt0eu/Swr9v9q3m7NB6FvpMZFnmJ4DIp0jXxPhV4dizDcvGdbfLgENhlOp4koOZG47EsDufkaQw7jR8mohGC5/LxeDRKK8xumkC5Clw2i8fPBJEg0DiAZGXHFARA4GxcsE3HC0NDAvWUl4E7o7UGgKJMAcBnnFbZtWTdNUECY9OKJPCAFgJIUw1Pn10NUwZAzGWgTIMC9ny8xtF0B/EU+5DXJ5rALd0ggPK7Hr6oN+rN9ng6m592ZZVX12HDMuw7Q0MFLIvr9mUit74iJTNus96oYI+PaYjYlsWiAs6h04aA6Uu2A3DpFdAoE3627jgG1h8+DzIOr5HRWVX1QBUD+DiGAy+g0qiExSrI6nq1WOt2msP5bHZ0enpz+/Ld29dvv9SWFaAaXhgAUJdqneHq9OrFp9eyi9lxIJkq3U67Nz19+vqT82IL3ka3Ua8juQcOP5rMj09Pr599MKXjyVgyyQDm6hY6YYH+FhkGJTDDUXg5LfAg4uEtYMcTy7F43gsbHMATCAtDkVko5p/b2d1A6QtaF4eQHm0/vGuCRhtonEN68PDeg/vv7dMsjY1BsAqymUQsRcM3yfNUhuSkHDAQjpNk3nA0+HShkpu2C6q96Fp4nK8J2cjezuMH9zf209gHhudh9NpHGA9M4Jc5vJbO5zFlAwAYRYG89oLG001TEbEZTsbj/h8DsGY0V+tL4BLofMxdlP8/AAwiMZnk8F7dQ9lbBFUC5W3dEIeO0JZCJ0mWycYplYwnM7wtpgDykjlJiMfzXHZ/P0FJqpzN5pKJ2O7DrWQW8xZNk4WFnEsfZFTLNmV4D+mMXi2WK6HvYZHDpgMokmjqrTJSydNg5abiqVQK1LSsrQe7A+BktqHyCMDo5AZPCgioF6zzoutNcXtjF8UvaOAoXplubR6m00Q8hlZl0T0A4L2dyEGEo/PoH7oeQwIFDADcPzrRw14dNJlpqAwCsCrQaqcVWArI/NqkjXKsuO6CLhYbOB87mI4ns9loMByPjk5Hhi78GwCWDL/W6eJFyXA66/Wnw35/1vJBztMkp8mi7oaVJgjjxXx2Ns+TApekYXnBZ28HfhEBuNOZ9JqT+fhoNhrNV7ObyeP7wOy2NrdRAWMMIU4CH+6DED6IxdPxTXTCwjtgEeguSWTi2MycoVLRJHBFYGay6QBkDi4BgBOUwHF246hqub6l8sibS0XbYIDn18qmlM+nM4SHri+ehzko9WanP+j3etVardkKLZtHAJYtQMTBsN0eDLqzSaPkiLSiGk5QaQLpmLdp+AxIKU9lbNixsM06/eFoMJuszM/fe/DevUcP7z3auPeYpWF5AgBj/KTEMinNlVkqFUsWXGDqucN0yQ0RgKvVSr1dK7d6g2nNskEz3AFwBQC40SywOVjMmhcUygWOYGUVnYeApwPTOYT9ldJIqGMWALDIKLIpZA/ysqAYQGcr/eHR5bMXDeD+AhRJtXT91rALvCtIlmSCAj4KG0EzcMYvR4rpGbSOcTWwJh2b2Y1SBMFks1KGZQ/SiVS5zsclPsUz6MpOxHZIUP9k5JCPMDlC5bL+zakkEBQbdC7Gnp1LqHbv5tXLNCVVT4emyUEF743GR6+akZwj+g23d60ypKVX3tmka9t2qXV1U33+ywsR1NwNArDX+lZNqpTC4ezr31pYHxrJn76sdqS3f+D1e63Gk7/9Xak5/d16ePaDv1w+Pnvyzb/7G44x/cbFpN3/3k3w9gf/6v/+3/8c7GuvOMIj6MF1xRp9PJs1G7Ov3LTIwflPH5+/LL1bhFbB6qIT9LCpVGtKbdJy26vlclkorEba+Hwy77bnL06Wknd9e+6OZ5fT9qx3MpxcP7tuecGkld1b/gN259/5F7/x5a++//7L737nW9/5D/5Uz56vRtUpAPCk3Dg9GjGN+XXfrA0nR2dBOD9rv2lVC8Cc7ObxbDkI7MlNEIwq7vR4tWr1R9MnE1dsvWhJVnU4mRXE7nwOAHw86xRq3RdPr2+Pvfyor1m9q3mrOB6HBW0/lGJElkmnCMfUJR5gNBVLM+mDaCofj0RSRDIepaPx5GH0MIlnjnl0G0rGD+LxeI6lCTIVgX0kJHA0EKpGjsRZF6wQWCYAWXnAM8TSTBzvgL2woIt5KJSiYVm6ouHJqURnAba9TtmzQfWgPyWwWQtDBkFb5emM6sOKR08HqCoUlaWYPI+mL5ooaobhWKaO0dJ4ogn/HYDSRXeiUrEAjB2NOPqj2fJioOk86CrVtDQcjFFEUQWViNZQ61HU9ame3242K57naqAeAFRJdFjEnmv025cMWMteWIKCWUFnIdewkauIIgf6GaQ0g2OstOFriqYanu+G9bqP3Ri1coCHUtVmv9sZghK/vH3y5OnrD969evNhS1YBJgoVPKlGAF6cXD775ErCZi9Mjms1W93B9Oz5u09Oobi4mFgJUI6RhIPxeAYAfHMHwPFkkjUA+DQAYLTDECS0dVExHoJfJz1RNNQzDkkti+3PNMVyGOCWY0Fm4PTV56KRzfsYB/xgc2frEQjhB/h1773P31s7Ut4dRn/hENA2jl25kXg6Dc+eYYk0/Kc0wSkkyckC/izTUlGEqxgyAG+i4DqOpcq6nNlZ3ys/PswSqUQyAwKHuUvSwRYsbLwCEIbvBeI3T+XyIo4z4zgSLxsA4BK/bi0DaS8LnKbrhVA3mmdnJxeXJyV57VkprgHY8R0NxGkeFyH//wJwMQzw2AKQLsRMYFPOxQmWIWKUTgNLFB0xlY7sxwmBAwXMpvcOUrSkSLBs4zH4WLaTBLA9zjCxMyab2U9rlmmqIMBSGaMaFoo+UC0dmwPuADjw7wBYBdGYjiUSaVoUBdWxgY6gY8ePAZikgRkBS3FdKMPF9UWJsL25fzdzAMx2exOU434qg7f08B+jOweAXzvR6AFLMRmQyTliPcpNi157eHxqhL1m0cWBrzUAayIqYMwnyZG1aafZwBiPcrUShuVGs9vvDqcjAODxYDgaHZ8MdB3xF6NMBFziIGOxP3o4m/eHs3G/P2l4aK1FsIokYkxQuz9ZHC3mpxOQcVwixwkAwIrlATSX651Od9xtjiajxXg0mi4n1+NHD4B3bW3t7gIIwxvYOQQGH9nf3/sxAOMdMGuKGDMJtD1FE+kkQaejCQZPCOBz8zB76bL4GQBbjaOOa/meYchcliiXLIXNJXO1oiZReAhnYY2wHMsrV9CQGvC3CwDc6pRMAxCbFSSz2GpBje4Ner3ZuFG0BVpSTa+InVq9aYtBuxpPVUjAT4DJdm8wmg1ns1PjJx8+fnAP72c2HjzMAwnN83aAnF/mmKxmi3kqHYsHrsISZCRddArrnDU8gq5XAO4BgOFlwkLW7ALUgmpMaNbAAAAgAElEQVQTAZhS0NfHL1RDluDRud5HAC440h6R2qcVKi/IlngAW0rnTSFzyIm0qDlBUBtPTm5evKz7gSUajmk3n70FOSM4nGKIduv0Swu/EdQDd3TdlAGAc3j1gd4wlkHsxZDjZkkxzWU2yWSs3FYTkoq9PBQU6ThobEPKJfdZVE2alHHnfYFJ0DmvcdExpVRW97o3L5+SHO/Puo7H65pTG4OeU3ZITS01w9a1yTOeXXtrZnGGutJ9+jR89ssjWOHuzYdG3vXaP1OVYAv2Jz/1tWVLjCv16XSqfPh3Ob1dqz/9W9+RmuPfrQbHP/jN4uQYAdi1JgDAncH3rhvnf/7PfuX//GMdtlnYntRqYeemaU9+ajHvtGZfuWrkhqtPTy5eFN8uG1D0a7CkB6Oq0qwqnXnVGZ3Mjs6axvHUGlyOZh1UwEs1uL4+tcfz80l72l0Np9evLipec+Yfnv+LP/5k8w//u9nr5ct//2//wstvfPNX/4TRFv1xZdo/aQ1LzdPFgGnMLntGtTdcnBWqs+XRrdrqWHbRCeYn00nRHNxU3E4V9PDqtNGdzJ6Mba7+rCnZtcF4VpB780UR/sy8Wigfv7m+vlkF3KSvmr2rRas0mRTrdjRUY1mSyWYIWMQyhTdgIHF4vLE/SGUTFOx9Zj+RjMQOE+jlkGdpMpuKH0K1oEBT0anDOGcq69kIBNw4VFgax2JpRLVMglF1EXtEUjHRczF8TRWAjgFW6qBcFQxSl9DgIeu1y0EBbSIBlUqVcmiJINyAvdJp2TV0KOvaHQCT6yYszCOSFPi74zogk1D9svm8oFtWoYADxSGa8DXbGKo7XRxfDmScpMDTHFtB81RYHwjA8M0QgIEvELmsD3qh7LqhKXEMJ/I5RlKwhZGnGEUVtULoeWG1WgpLAMChoxnrGRmZXwcB48EAwzGGI2P8XFgMijWM9QYIDr1iqd6o4fguMOKj1en57ZMX7795/vx1U1bh8wjK2CtUbfXHU0Dnj69kwyuAagtAvXeGk8X5yw+/eu4XDKtQK+OERbvVns5ms+XpxcXt8w+mVAwbZVmEXuUOgBXJAARRoLCiaJRwTIrh1m7QoIARhTmSQT1MU/n1lev/w9SbBkmWXtdhCAlAd1dXV9eW+/Ze5lvzvXz7mvky8+W+70tl1tZVvc/Wg8EAM1g4IAAKFI2NOwggiIXBzbKCIZIASAYBASTtCNk/HCGF6R8O/ZD9g2GFJYUUNGUScjjC975q0C5gOjAzharMl993zznfd+85WeJ94dDeDh5B37l/cG/nLgYj4Z+3PnB7B8j/zs6tD7wfZHA0LzCox5JhnFAFAGbTAMC5FJlXcjkexCl2+JqYiCjrlgXsu1It2aZja4ouJ3dBXO/tRzPI1RKpHHMjfgVAWTx6YHHlsHkAYZBCWRYNNHkGPmRWUII2LBGHgeGNSWJeVdVyWVFaFxebi6vTCrxfBf2nbwAYVF8mgzZVoIBxsgt72bAHCxVwMcjjc+DH5eJUnsulGC2XyGQLdiFNREJxMs/FYhybPApnaEEppHG4KxzeO0yRQA5402QyuVySOEqoaF/OEulEUq6g84YFq7cIShaQ3USUtSSK81yJZelULJYkGMyWsE0T0ztgmaoSL2vAWYACCXhMENzAlEEBt/L3945TyG8Qgvf3Q8f74QxBJFOZRDx2DAB8eHA/Eg1zWSqVTiaR1hJkjpO9/mSzVYqDVsVFpsIYvZKjilSh3bAUniHJ+rTbasDyA35X88qg7Hr93mg2GU/n6FsAdH2gYHsGciB46gWt2OzjgNJsNAcAXk6Gw3m76BkiAHBBEA3Xq4N+Xp+sEYBJnk1SeXSiwWCBcq3WwuHifncym63Hk+l8Nbsa3d0JHd27D9h7/x5K+IOjUDQWCQP8hiPheHQvBIovBgCMgZMkSWXwJhcUcCQBC1aSC6pdrMGuuAYFHKdhcTndzchRXFc3RZYgAIBxEIioOLKCM48JoxQkdjuO73e6vS68047faPb6vqHjETQCcLc3mQ4G49FwOWlXLZGDklL0cV54MOuwQKIFS9HzFaC+rRbA9Hg+Xa4v1Pfv3tu9dWs32BI8B7s9AOBAAROaDTCcCQCYJ8kwAjAGeYMKrrebwB6Gs5puSAzNA8oG9/AAwGUe08U1KHL1KkcKMjx1t+RDSXEKh9nEoZynOFnV6ENBlQzazKfD8AHJOFpZmy62V89f63hlHduii4Pnb4LELVi8Ykh2AMDNYt2xOhsfaqpKSooDjwSogpoCAIaync7xBB9KqrmE25AzkoYFAP1PYgdpHlZ/eJckoqmcqubcZSObiuVzevOBz2fDZF6rLC/OSFW2Zv2iy6uK1z45OZ+R95IMCy+s9dREAK6/oaVtt1hsjJ6/Unz280NO1J1HCMDF3md8uV5rjFf/1Ru3KFpOx+2Yqr7z56VivzN5+49+XmqMfrvmnXzza950dfWp733FtWafPh93R1+6rFx8/dXwx37WrpStYm3ebJRaj4bO/L3ZcthbfOK6xYxPPrk5feo9nfUt2ypPp8PJtKL0fHW4LtvL08XZycBYnFjjB+N5tzV9crJSildXp9ZkeT7tzrsno8XjFxvbGo746F/+x//wv71/87f/7F985XP/+l9+/xt/+af/12uHhUcnc3/e33RHtc75esK15+cd1e8Nlmelxuz0+Vqo90tWtWT0TmeLmtG76ljtttnbbC+avdn80Vhn6o9aolkHOVwCAF6UF+vV0vf961cvrh4BAE9BAQ8frjvVxcKv6cciE47H8Fy5IOsq7Ec8CKIKkSQVOwQSnomEYpnDdDKWiCQBAFlsoQGdEc9kMkye5ahMIsNLXCYSA0mcSBPoLQXIC2wRE+9SCVIQodBms4mIgKMpxaKMxYGFGqTKQgFdcjH+gSKddtXD3Ba0FUIfI0fk8iDdWCYto9kGWsrhXSv1Ey97y5AQgK2SC8ILLQ2hoMPS1P0K5vvh2R42RHb7GJ57OQARpaNnnuuiVhQ5ITiBvmm+xRmdLEUWO8ERtGdjrw5ACh98A8AWj4HvHlTxcr3ZqFbwRNOUVUu7OYJmgyNo7KyhFAeBACQXvA0s/CXbKdfLlUYD6lN3NgX83Z5dPXryyosXr736Wl9VHQcPmwFYG5h0dHb96N1rRUfugKKiDdRhffHsxScuK81yudZEVdwfdpvdbn+0PL28fPL8rQUVxcw6VhYFvAdVJNi7qoZ9w5oIeIX2VEw2j0fogTklxiYKBQ7RGDQaHcyTkun37e7d3dnduXPv9s69nXv79+/sgADGRCSoORjOcAu0692dGIeQCwARAQ2bjqV5NpVm+QCAATTzmAmcV3UZsFDCiWvbxQepO0VL08T47g52WBO5TAzdF1D94vWvwKMPBz554Gk5Bs9WoFDAD0K6RoFM5mB1AGoFR9ASvh9BVbSyJ8vN8/Pt5cOzCgKz+vII2nYtFaQrR5EBAJerlQDdAi9uHBwDRVxyDKVAJQPbVUHLxFKEaIkZMh5NU4V8MpnnkkcRguZVMZHE9MyDXVj9mSwlWCZLUFQKAdhQdZ0HAE4UiqBrHWxwLuHgm41OIOhaQTKOE3QqRKMpgg5Sf3XDtPF4WpUKrKSCAmbyAgZa40F9cAZSb3B7u0fJaAwzPxOJ/YNI5DiKoY8pHEs6OAwfHO7vhcOxPEWn0ukMGnFk4WnJpf74BAB42PGLDqxGzhp4jipklV47UMCkP+42a+UKAnC9XG2hM2NnOJuOJ/AXxqO9BGBsQedEWVJdDKcfQyVDAF6M+wDApbKRp7NcIS/otgeAOFuvV6uzBUswdIoWYIFJkg6ctV5v9/t9IJmT+WI9ms7n6/mD3s7to/2de3uHB3v39o+PDw/3j8KIv6EE4HACADiWSsVYLS/mRSGTzqazdCaeQurPcWixpZglvzNZPakncQxJUsqj84ktu66qivlstlo2VAG4jGdKCksn0xm73qhWi0D66qCAOyCCu81KozMYVE2LQwCWTL87mM36vclsvLoBYEU1XHgqvfF42cV2CRFIrO6UG816czAewLsA4q68f+/evVu37oIKvr0jAAllePjAoRYBs82otiywINk9R+JJ4hAAuIR5xBW/6reaDdinEwBgmaN5HEv3a4ECLvOMAGwA6mCtxpPAPjS3VG40qmVLCGUiUYOk8pKmEEeSIpqkw2ZCsH1VE6RldTRfnT55rVMqaaJZdL3+0w85UIYMTrNUt3P67km5WarZZm1aMQxTyUqyZXp4BaxnjmI49pAmQcAfeS2Fk3SGkCSapbAJMxXaJ6CgR452SSqcYNUCW3zQzCRjAms1Lut5Kk7lBL01mScLQnnV11XasKvN2WLbSe9lBc6Q7fZTmSINo/GmCQBcKjXHr7xZfe0X5iJjgQLWEIA/VVZrldrg5DPvsXvE0f7FOqRqb/5zzZv25u9890tKa/hbVX/77a95m835x7/zq442/8zZqDv64nn54c89OM0XqkVXNbxpq+01r7t6/+3OfNSd/9SjNj/evrdaPS0/GI2KIMMG08F0WlQHnj5cF+3VZnXZaZUHJ8bkbLLstwGA1wX3ChTwZHE+68w66+H8yesj1Z52c83f/uv/8CQdeutv//1/+o+/e/6//Kf//W+/dJBh+71led5Z98eN9vnJlG9NNh0NFPDJRdGfPvtw27IqDadU0Sur5aJltc8GZmdgt7bbB43eaHw50PnWsyYC8HjuCf3F3FusFpNKvfX06fnVw02RHQ91d/Bw3a4sFlVf3T08Powdw+Y4yPHY/8JToHMI6TBEh+4nsmQkHiIi4Ww8AGAab34CO6oESNF8ngYwpUDSELFYHE2h89iDJ3KYriljHLzA53iWyKQSqXiIRwB2AYBZbJwVFF0RgRvaGjZh5Ui3XQnkL96Bljz4xgKHN4EsR2oV0JQljCcE6M+ROYoRcKpXzQuaoZlFWy+gAkUcLBTLTpD/Cgseam+t0erCTlqsLoaYGmuiEYcNKgoVs4iZ7xz6MwZ3wNksWWwBSfUqOAqMg01C8EbxCBLeCo4Bl4pF9PSr1iuuY6q6hUOqeATN3XQ3cUxW8yu1loc62a9j/w+Io0qrVms0/NagD5/FBj6gp89eefH2Rz/y9tsTQ3M9eJWBf14Latfp9WMAYCM4vcVQl05/sr588srHzr0mTnLWgKz3B50GSOMp6L/rp88/vKSxTSfDwZOWJS3wfVTRixlEBSbk4XkwnxNefiHjyOfRWYoLTqPxC6gH8b7bGJFwd+c+OlHu7e/d+YkPB55D30Qy7N7dTQKLSiEAR1OYkpdB3wKag7KZl1C+sqDtOLxXx/ZlDZ27HNuzdLsEj7sQv7uLp5DpFJTeZDqFrIoFRc6jaQv8lXsJwBRadQE44ceMPtEMy0u6qSscHkIDf8ij6Y9W8RSleXp29vDxeUUQ8Qj6J01Yri6hFSUBvwGbsMo31RDNCX005ShVyq6hFqg0gagv6elIkhBNIZNFABb5eBJE3U8AOE0Rqejh/VCaIChWMA2WyIFAO04rAMBqHqdxRdcKTKANHVDYKxdN9M60dJHkXBsUMJXEt5plkBih3aSD98OSQBfUXAqPIATVMOAlo2EnOjRx93YP0SgqgV/7B2EA4HSKSKaJDJk6OgofHh3shY6jfHDYmr6ZA8Yj6M7wZKuVx726VwRuwTnDsqMJpD7ouDoad/vjXrteCY6g6z5yQJCFw/l0MplhH/RiczpU8EYVAZjFNe42AIBBHqMCHs1HvcGsWfR0FhvBYauZCMDTVQDAHEHTsNcBSgqAIA4q4EEfdOdoOlssh9PZdLW8au/eOdy/e/8+vPa9g+Pjo+PD43AkdHyMnl+xVHR3PxRPRFijoMAHDjwHHgsRT1MkUDqgvgVB0r1ab3H2SisTS8PKMmrzq5FrlIq6WhByJEh9GU3dKjYa1gJPcprdaq1YKxmNOtBu2COdernRHfYrpvWTJqxOfzbtdsazCQKwKaINs1Nt9fqD0arL8DwnC7D5TFCmOFQ1mmCf+LXy/vu7QEn37uIpNGyfAIBtXcUmrIRsSXkqFU55VoEjMweEfwPAZb9abTYa3VZ3UjMtGRa66pbRCKXRbrU8ngE5bnquW6sJOXjqQAJAGVdLOuzl46wGNJBTVSouFzidLFJEiBVF1bBdpzJcrU+fveh7JV00oUK2r1+3i5qiAQBrRQDgLdD0mm1XB55lmmpWliwDCqFtasRRLIdD5QQ6Fc2mVZfnU2mxQAvYkJEl4mFG1oV05IhnYjFRzvHu4y6ZjeZ4z78cmwWWJzjFH59k8nxx2SmIWUXWLK/aMjP3SIU3BbN7rbNZy2y+aWTsoue1xs8/3Hr4qaVFmfb1WyrjlPo/XTZ8z++dfPLLzq1UYfulaaZY+OifF/rj9vzj3/2i0hz9Zrl++hu/Vjk/OfnIH/5aUV//o8tRd/LlM/fVT//V3/zwQxMcNvD69Wa1c9lQu28PJ8PW9L3HrfwEAHjxvHo+nDUM12qgE6WtD0HUrmx3tdmcFj3YH/b4fDzvNEYPlyvRCQB4fjnrTDsnw9nzV1pGdd1jv9iLSaWGs09ur6qZ26leh9nVO+XNaOHNW+vhuNXYridsfbTuaLX+eHPhtFZvPZOLZqlZtMq2PdrOu3bjdGp0Jk59u3lQ688mF30j33rakuzGaLIoi8P1qrrerjuV+vjZw6vL6xOXGQ30Yv961SzN5uW6c3yYSBGRZDK2lyRAnjBZVCpEYX+PODwAzXtMxsijJBWPg/DB3pgC4BLD8YkcrCQ2nYqkcjQU0xwrauaNISKa45u2YaL1o2EomhicTSdCnO1gLqsisCTB8AVNl3nB8AIAJnM5u1kpVUD71gGvEL0ABTFVAFaNCvUTa5yCxlN4aswKGvpvwFJFK17HkAU0joSaIxYrQBZBhOIoj4fWFTfxBecD0Eo6ZvPgwI6mAj4FAAwwkAs8EfFezamD7rZdXTdVjsacNUkWGOzCEgsoWPCmD+0oy7Ag4H0aP2nC4l5+FQTGbtXqTbzz9Wv1ch3P02E/1hAA6r1eszuezRfbB4+fvvrm2x/5yNtDdMKuY6tuteo3u4Px9urJu1eyWQwAGHZlB73oX3n9k+euj80dFcD+WrvbHU/mJ6dnp2cAwGsmHE9Gk3kdZGA+yGdCD0oJD8cZjHECtCjg+XMejxLkgoBH+qJSYLANCngMfuXI9+3t7d7bv3f3/uH9e3v38PD5pQ/WDf7evvOBD+7c2UnDs0ilkwkgYQnQaRk6l8rQTJageIGGhcDxsgryDsUolGTLQrNsPIJ2DdCu8d17IOMwxj6aTBG5IDwZmRVDAfehgHsB+6HYLDJyRgSYyvPYpYXXwED+dQ0vszHXiRUAgPWKpwVd0I8eXVQDAJZeLjjH0cR0Cj7JAICLeAHsBxaMeBEMHwRmA9uGRCUJGr6poOMIVwEBOBZJZfNsLIlH0FFQrbKUIaBkxaIHoRRB0OgvQicSZDYVImQNbWUIMpMW0H/DsaEWY5NzpWRZDl6GFLJc0ZI4NpeIxBMBAGNQBA68Fy1QwExBySYB02lGgp9kuy7GdlVrDcwDjgVhSKlk4ugwFDqKZdIAwVA2U8ehyOHx8UH4OMzlAIATcerlGJLotAfrU6M66dWxGwzUxqjsAAXQ+m1Hxcn7GwAG8lav1zAjr9vvd4ez8RgHJnvj1eZ0pCq8IKAhKCOAlC0BAMNuwTvg0Xg+HAxndQcBmBFlAS1Q6p3BdLEGHJixJMuSdADAkuFiTEkTBDAs2Nl8uRhORoP56rp9/+7h/d2Dg+MDDEM6Og4dhSJoxHF8dATrILK7fxSNhRmjoBZEAd5OiqIBapkcUDrY3wICsN9bXrzWTMWJvGZYjeVVr4R2ZkYhT2aQzrAUka16OAacyGSseqdaL9aLSr3eaAHU9bv1KvzZr+h6HlsEEYB701m/P55MFqNWRc/zaMTht3u9dn/Zw1ZLKBEOMDfYr7CFR7P5erl5KL///s4uyPi7d+/t7sD2oWnOLDvY9okADFSLSsVAAReYdOaYhKcVAHCtWmk0mu1Ge4QADMpAcQJnnWYHAJij4b1ZJcetV0ValDW76IMyrhaVXCQWEvJxjWI0nU2gA03WI7MhCpgR+hVVh6dnD15/q1/ybNGAlVy7fKJZAOC0qiklAOBNqVmq2sVq29aggJFCAS+AQJzIxFEyF49R2QwQFWMw6LQsOZMUZah6FEFkyVQiK5gceXTIUvGIIsZE97qd5KJJvli52JYKEkfyWm32EFayNWvywBmyInZlF/L34xptsPro0haYotN8XSZB95Q742cvavVhvULp1tWbCgDw4LOeXi03+9u3/6m2Kyvzn/XYiv6pH/GtQXP103/8JaU+/023sfnmr/jn6+Vbf/C1srX53MWwM/nyaa3/m//5b/7dJ+1WpaRXmrVmuXdRMwcfWYyHzcmnn7by08XHVotn/oPhfGh4jjfujwaGOdTc8cIqrbbbsaH3l4tS92owbdX6D+YLyb26OjXHs8tpa9rdjuevP/Xd9qpK19Plx6++9c5A371/MP8MeRRJ137t69/+cGPhzpvr0bBR26xGdG182lUr7cHJudnevnuSM0ol3zeKntE4mfctf7s22jPX36wuqoPl9Lyr55sPAYCboP4qwvj0xN+cbQHVNs+vHq+uTlx21FedwaN1szRflMtWPAyqIZIBEpfM0DSa42LuUe7omMNAlmyYTUePM5lEMhNPiVjNQcBC5UzTUNtz8UQomQEpAapSDfpgOKw3iMM3OeroDAxowNBMKsxZNhokwfdApRWA2AEA60VHL3AAwLTZrFbq1Xqr6t8IFkw8hy1O59IKehjBwtOgOHM0RssLKggeLS9gxpGHpQ3IKS8JOd7xMC6wWEJZUsKL1E4XqOzJxUAsqBgrK6FiNhCwMOpOzLOBiTOLU0hJq16tejaIW7VAQ3Hh8iAW2VyO57HVBLurvSIGy7oVnMSHkqDhuC1IYIZDhMNY4GKrXPJazXbL90FKuzbOF0Dlr2IcQ7s/ni/QQeP64ZNXXrz1oRcdRQWBDN+Bw6pN4Ambq+efeCDZlfLNV7c/WZ4+fPXNn7oMIlbqpWq15OEtHZoozGaLp8/fPmEBgGMZAd9YHsiIis9clTDGD4eo8G8UOZC/AHrY7ALPExuz8NYPMI8O/LHeBzpl92Dvzu69nZ17u7fv3MPG57s7oIA/iNfAO/cwIOl2osBxGQyNPkagSGJGRYZisiQsAirL8FQOyIwEBEBRgnNjRXfLRSwAslhgovshvMnMxMLRRDKXR3xl0AAFDz6gApAZUMBZGkfZ0qxqKHiXECRhBLdnhgYvuKCqUp4RCoBalZKGgaRnj65uADh4ywHjMyU+kcLT3yQfdLKhMzBCr4tu2/g/K+WiJVMJKp+nibyei2WyBetGAefyXDzFMMnjKAFoIwEbw/uU/fsRDPqSVDkbDsUzyTCB5qcSDbiYzDvoKeO4lllEO5kiADAac0gBAPNcLh5JxDMUKC9NRwS2A+80BGASCAACsI5t0DZmfwEA83u7B9F0Am1V4tgpfHQYIzKpTC6bTMQPw9HDUPgoehziGPgIEvEsYHMwYl/sDNZbvTruYjyAqTEBABf+HoDJyigAYL+B7sSN4A64PRhjKuao359uNmdjFXYgphdTNCwXE1bXYIwtWsvVGAAYmF7N9gweAVgEulxt3ADwajNm4FMkGeyCllVQZx4gTq836o2Xy8VqMRz3O9PVo879O/fv7dwPTLBQAN+MIR3jGFIknIgdROPpRIRWWMBHjsik49lsMppmcykizyC0S0ax2llevFqPJwhBN6zm8qLl1crAryUA4FLJ0AQ2lapUVQDgNEna9bbfLDVcEeR+C7bgoFdHI9peBQqTJAAAYxzwdAHkAzT+qOlpoHhB8yOj7Y5OBti0IhhSUa15tUarUa0PZvOT5fYhKGDMArt76/bunTvAG3MUZ1WA7KAUSKoOoH8mGSs5BaB1kWzd/XsABr7T8ZtD3zBBagrAtIG9dFoAwCWOxsY1IPrNMvwr5NsVv9WqFJVsKBaRc3EnwxsGE+VEU6bKGSpEqLoFRc7zh2cXD198qAU6QNTLRb18flXQeamQg72PAHziwK+3PL+hYURJihEwIhPz3bLHKToWAx1DZUKNcg3WQIlOFTQuh4ZwqWQ8RgolgTkKcUTsWM8fqaXrRphPwx6qnF26DE/DJvFnj0HGV9b1HMvI2bxT8iucfC8BKpfWFw9UlnLsxmsFCqRDtTt++tQmkkKV1s0Hbyq04w0+48gAzMPTd37wWkr3XvmhSxe9z35f8Wft1Xvf+bzSXP+WXV//+i/VHmxPPvz7Xynq28+d91vjL268zef+6v/4wVWhajsySKme2z2rmp3XBtNRa/ozr7Tzk9GHV8vH1cfwUZmVUnHaH/Z1ayAX4W/L69NtUxVa21HZvx7OOvXBg8VSLl492Bqj2eWkOemdThZvPCy6rYEci4zf+7lvf+9b335Flr737/76Xzvh7h/+wff/2aozsxftk3HPr21XI6o2e9DXvEZ/c26VNp9aC3JFK7dNu6p780XfLG9PzdbcqWwW5+X+dHjS0oXWo0bBqg9GM48bblbl1XZTqftXzy8fDx+si9y4J5vjp5t2ebmqVs3oYQIK+XEidZjOQammiHQSdodMRogoRWfTUS5zL0yg8VUkweGkZjaDDXM5FsokmYTymQrFeE3RgzkYw8Z8ON0wMKEGkVjieNBJdI7KRHgoN8ViSZN5Ik2LecO1ZAQ2wGGQtZzdBoVX9hsVNE4AEYhNz5wg5GhCLUGpKtmaXMBuJ4oT8oKC4grbfnQjaJgGLkAJPMm6VSiJVhHAFz4Sr97GgLTJcns1Brqr4V7UHbzCwYtDUdFVAegpE9hw0FTagW9uYoOzJufFAP1B1DJcgcurGsaDo7dWpWgW/QrGr1rAgqH+iDyBx6Z5liYZ3mtj1a/Ugd/eyEoAACAASURBVEc0/SIQwlKx0qzAG/JqXZDis9lys109fvrstTff/vCbHd1yzFKl9pMxpPn2+rWfulbQwjJwj8Zqd3Lx9I2PX1ZAUTcwXq3ut3q9LoqX7fn10+cf2XDhWDKTzctCAYBIM3VF1QxVlAqKEczyYCQhKNKbLAM0zsRcAzx8x1PzIEeRYtj3HR4e7mMI/C4K4Lv39vbu3rlzd+fW+2/vYCvWB27fvXPr1h5ZALKVJFKxaIhIR+KpLE+m8FiW5CQ0C6NYUQamr8HvExXVAWZRquAtqQGAnI8ehMOA21HAlgigNo2XwDh+hM4bDN4AY8M8mSWI+FFMMC28TmbxI2EBgRXTUkTsYpUKBTQWtypVRalOAYCvNxVMw8AECpzttlxLETLBHXBWNIJcq1IZU/gqQYgGojFgsSLQSZqHbxJ0IpYhVZOB3xpNUwITi1NkaC9EUowkZRIkRcb2945T6ViC4hU7nyET8ViMAjg1VDaVTWeUUikIATYtR7e9l9GErlsgOQcUMJ3F7vR0jscGMR1WKRBG05TkXF7LoDBmOBH7/1UThLpXazaY3btHeLcejyXTyfBx/PggSQaRTGj7eRQORQCRj4/gYRHxZCKTTpHZHM0Uir3RaiVXBs16rWgZqlDsVQxDYPSx7+E0IdeedQB7m5iDhH1BjVYX6Bu2IYEEHo5mJw8GksrhETQaSxfQCQt7sBbT+XLSn8yHo8EYarqe5yj0YlUNv90eTqab9exsAHxLANqFKc2aiTLex7vUTne2mo2n42GjOZtdDnbvhg73DnAGKRhACkWCLKRYLBkOR5JRIDeJWIixYD0KyGnSOTqVIGkoJ0yWgsUqaaVye3X9eiORIHjVsOujB1UTG5Aljkpkaw5mkCaS5YrG0fCcSKvTqjdg58i1Zg2YxmTUbjVrtW6/rBmcyLOSolfai8Vw2YU3v+j7ZRWen2wUa+1Otzk+a+dEBhmragFpb1cb/W5ntJhvTx8zt2/jbsCc7J19FicHeNj8QctbNlWA10Imk3HPEegMGaJ8p9YIDqrKCLfNenNYs0wJz3FsNOXrQHlpVYSgKRr2RtPjaV41jQqgdb3mFVKRY0GJ5UwWFpmYJeVygfVYIkprQQ+WXRmuLh8/e6freo5kuDZgzEY2dIVlRE21e9tPLo2yUzJNNFDgZAZkrWy5aGukZ8OxbDxNsolkNj0qquXmxubSukzyXBaJXDJBFAw6l9gX6WhclKNKFRRwLp7jnPbFuS3STDbv1iZPWaCMgwbPSDwjKl7HzqaPU1mnorvNa4VmLaP1uk6bXq3WWp1eR+6FFDPhas9ekSi3OPqsowCtGZ699oNL0ik9/WGZ75a+/CeF5qSx+Ph3f0FrrX6nXNp+4/O11Wb1oT/4Fctdf+501Jz+46V/9umLj79KvP5lUcbA9LrXOWuZg+erRaPV+8RVMz9df3S0eVS77szmVcMuDybDgVZqy7X+TO3Or2a2XO5sJsXBg+G04y+2g6VSvLheutPZ5azWa50MF29uSvaolz1mP/rFT33vN//xL/9GK/U//Zf/7m+EO7/137z7jX+yHQ5KY1gvvVp7czJkvdnDvlZugQK2i/B7vbxaNrog7U19supX3fWpVZmVvel2U4WNsBk4TP1xXTKro9nU5acn0+rpZlrtV155+Gwxvlza3Gxi2KOrRbsyn1d9MxqJpjNAIzPRWA7IeRapeJLkoSRmMuFwPJWOx0kqEUnAPyaCriQikUynkikSzZEIkMaRQ0KRA92r4YlhQVUwJUVVZUHCdDouQWDYQbyg2G7ZrWgiTyZpCUBaxjE411a5XJainG7Tb/i+3wRFgOM+hgqaDbQQm1E9C6SGZekFITgzRjM31yjbjKx5tld1DUXk0GYix4huu2rgjQkIEjzHbWA02nS5uZ7IBVSIsPJLFVuV0dpQFNBwg3+ptSgypXdbzSbyA5BbQCfyksgLPAOrmSlgT+bNVAt6/AdDnfBOZex0wpkSEeWcxHFO1SupanvYaHQrsuBg/2kT/SjhTfUGUNOW69PNanP95MlrLz709lBVXdexQR+7rt/qDCfbh6++9wjIMf6WSr3d7wyWZw+efegTD7xatVrvVduDQb/f7wKJn602Z+fbh29s6WQkmkxLmu4A9hroRanqN+1YN1/YNw4ArUj5gimpolbQRUHg2HzAZAIYzObet7MD6LuHHpTwtYtu0IH/1a3AkPIDUIFu37p1jwCOg0kAMaiHqVAAwGmKzaUJtkDCQ8QzTBYKMnzgoEod0y6XKq5luzq8FjEdOjpAB/5oJJzMsUEEA5pvi0xwBRzkL2SA0RGZ2FGEQCvKPIcTUjjNBuVFV0SozyzONBcU2SiVVdUHBfzw6qyKRtF4yoLWH6bj/KQJC9C1VK16FQ/KHlqHwv8uIn3yQDhIeYIG6Y1NWMkMIdv5HGYA5AQ2FqdpIABZhpWkdCyTSYcjR6EkkSYoUXeFLE0QiRgBOhBKb4pIp5WXEQymibb6not9Z27REqBcWTJHA6rHsSOigC9Ng0JpWKopIwATScBOihZwokm3g26FBgLwYRznu0ACxw4P4qGjJJqUQYFMxcL7R4fH+/uRwxBSXzTGIeBZESQlut0B8PrKoFHzi7alCaV+1TQLbADAQp6m65N2o+434Bn4eDDbfAnAo9EEQHI8P3nQfwnAdA6PoF8C8Gw+nS8ApIej4aTulgDgspwswuuttFo4AbqanfZBCApZisUQZ9W4eQ+wglut8XI6Gvd7zeZ0et7Z2Tk+3DsK5O8RCOBIPAj1TiYTgMfp+H4kjnfAlsQDsQoAmIK3BgBM0EAHZPQFKdWnZ89rCfg84dOtj8/KJih8eMVsMlvBXCs6manVTLzQSpN6s1H1vWq14DexfWLQAwpbb0ERlVVgc1yhoFfbi+Vo0R3BOx/WPQW7VMwS3v10p2cdSkQ6oRog5mst+Ied7gjbxJ/Q//Af4GXMLuyB2/s8xXFcHjctADB3cwRNA68sWQJLZMNE1cGJ61pgGN9uNyv1YcOGxcCJCuA6hgS36w0P6EyQreY2KjydVw29hDclFZOOxmJ5KcXoec00FUG0agXBo9IYxmDiAF1luL58/PSdjlOyCyBdDG+9VUxD5TlR1+ze5uNzvWRAgXNMhaclOsFIoJxNNMxNH8fIaCrLJWK5dFenjWpfYdOGmuMDR2FYZJRis9nEgZRLJTU5qVtXAMCJHO8MzraOQlFZGskPwZjOtM3hQBinFNsumYilyWZxkHdPVIYxzdarCgVyouwP+qudWMfDXO9nzyXaLU7/kav4Xm1w8uoPrqhS9ZUflYRe5Ut/IrQG/smn/+nnlfL1V3xz++0vu5v16sN/8Ku2efqzm2Fz9vl1df3NmcJ9/cf/5cS1nYYyrg0e9JzJ65s5MMl3Lxv8fPvx2fZh/UlntKzB7u+OB13Va0m10Vjpr877utwszlZ293yEAHw6Xkn25nSkDycX0/qguegtX0w0d9lR9pn3vvX9P/7+jz7y1e7t+v/5d1+K7X3zm9/69m9clQfFYW/W6vi11clEqIxP20q5PVifmc31h0TL4ctuuSGXPam5Gvr28rzkLX1vfLqt9aaLi7HLNh41ZMsH0eUKs83cP9tMSr3G608ejwcPN0VuNjWd0fWyXZ3PK1UL6CkgKglaN4EVkUwlouFYSsjlSCKbgA8Jc7pycfieSJTIZQFrUvGgQRMvgjLZaDQROUyJhaBLWeAYBLZCvgDaUJDzeVHkYTnApsoSCVmzHc8ta6KQJTj4gGATYXK7rTAkaGSnU6/4eCHqVX0XEFeR0CQAEDijlqFQQX0zFbTOoIBSFlTUsZxUMC0oPjrOAXM0jgxZzQp24BYd7Hm1S/VufzCezlaXY2wOhkqICQFaAY0dCrIgFtAhJB80O1MkYfU77TagX9G1NRUbmgqw31iBo9A11nbKgT2GX7WC8HUT9CbGChc4jJPPA2YwnACvsloZtnUilWXzGc3zy5VmMQDgVn84WqwWi5PzywdPnz1/8dabbw6wCxpTTKtVv91t92bb61fee6w5ThET9KqNG6V79eonL12Mdeq3eoNeB4eZFieb7XrUmF+9dZELx8h4WjYMx1BVQ8FuYRVFV+AHjfOGwIGgsgBI6bYo8VJewbY2DD6gcziGi81j79sB6bu3d293d+cOjiPd+kka0m3shb69g8ZYH0QAZpORyPFxNJZ5CcAZmqMyBCsSNEZm8GLQNl5QRVmxAYCLZQewSUNrkGz04CCZxhbYKCwZ6iYbgma4TIrGdgJA3gyBKjgTC4XjaYJ72ZmLJ+Q0qGpD45IJRlbxJk/SXE/V6vPl6fWDi6ogaXivgL3fiAO6RBAAwKDK9XKtWsIGN2zCwmGwYCTJ81xNouM0DsgJKijJhOQUqEwsksY7YADgVDgOACxLqSjgRCgWOo7BuqRFzcmTNOyGeEbUTajnGNApYx0G+DUtWA/wg9EGolg0+FyhZCs8lY6Eo8kMDWIHeCZ2+pu2jgDMAwDjHDQjYoAVjieV8MSEuXv3IBpNotN2PLJ/P4JdGSl8LEQqenxwfBQ6OIgeRYE3pAGA4UllM0AMBLvdmy/k6qTlV4EKqLzTrRi6QAcAnOepbH3abbfQBgaYaBODPLro1wwgO51hF3QAwPyNFSUryKpeao0QnBej2XqGOA0A7CAAk4yYFzTLayIArxfTbT+XZfLZHJPHCW3dxn3RgJ/eaI7mk9F4NOwNFrOL1s5O6Oj+8eFhCP46PApF0AQrGo1GEuFYLBW7H4rGUzHWApKeR4aVpm4AOJ3JkrSIDf1FrzY6eVpPIaFCAF57tl8yFSrPpUlPVyQqm8jU66bIZolkUqkD8FXqFcaugA6rNdCoDJWsq+AgkCjweqU7GbRng3F7MB02ijIr8LLl4dFTf7Jt5vI5WpQ0C68umk00sB1N5qfbx+w//Ac7t27BtgAFvMfmkK3bxSCmi2NiWlFi2cxxvIgkIBtJ+W65EvieAN1pt1uVxriJxyGA9Eaxikbc3WazzIO8V91qqdzxeVpQDM3BPv1iIR2KJ3khx6nokgb8w/IkuUonQqwKIsVxrPJwfQEKuON4VkF3bgDYMjUAYFAc3c27Y62MkSywDnlOphI8utHZjiYVUodRIpKi8okEl/Yt1nKNLBHXNNAxBNKhTC4nWUw6eiDmMmGFTpoqAHA2nssXJ9uFo9HwUbvNyVWWtUqLLpfjgf+obrOYPE5QhJl2j/QnOkObRvN5gdSxpb/jV+j+q5siUbCePpUY251/xpYqRb+/fv7Dx5zffONHrtSvfeFPeNCWo0/93ufF2uJbqjv5+leqZ8vNO9/51aJ6+rlVrzr+2UXz7Bde47/0Nz/+8deottnrtmv9Bz178sZ60ep0P3reyM9OPznfPmw+73ZPWvBOm+NBU660pPqoXRhutw3N6ErDc6dzOp0Czp3P1rx9fr10Bt3TUW3YmLRXHxqo1YUTDZnvfuF//f1v/M+/9PyVRSzqp4X3tl/9xiu//KTfd/vdSbtX95cnE7E6XLe1Wn90cu5I15dWrUqDcu2pxWbBXUx8ffqg5i4bxcF2W+/Ol5cTh209bCi2P57PiuLkZO6fngy8Xv/Fs8v++Om5x03GhjW8XnX8+axctWDTJ1NENpuKpVhQB2Q6GQ1HEwJoE5IiaAJj0XJUPJLJxOI5LkvTWXSazyTTWRaKZw7tAqJZJUBB+D+TDPoLAlfMEVBesbmGzSazLJUjEqpu217RBWgmCUaS8BYV1lnJlkFeULRaw2AFtwgsyrcN21EKeHkJEEgYOBxUhG9U8XdQLANbpeyahoA/Axavhl3QoOuwRbHpl0BCeg7AsGVY5WYHnsd682AU6ELVKlcAgCU8ny1IPI+NzsxNszOVRQButSvVuof+RgagVwGTfnE+wQCJWaxgzkPNL8MmdTBY2LoBYJ5Dp528kBc5zvbLflmikulUNByP06JbKXlW4I4DCng4X80n8+0DEMDPXrx45dlA1x0XcwdrRbNY6wGmXD39xLWkg56oVgJJAZC9efjGZx8Wq7UmbGpMsukNR/35erW9WLW356+c0bEYpohDiQfRDowAdy6oLnirys0bVmVALRzU0UEfi6qsYzdTnmNZlr0RmQDAocP7u7u7e3vwx+693Tu3dnZ20HwjiERCAAb8vX0/W8hzBFKxeCydDMXTOQRgPpCmAMA4riVwgiTmZV2U5ACAcRzbVmVNZVOhg1A6g0b8CVgyWZxzw9AjWEWMJDI5tOUCeEvRBFpRZIHR5LHNPriipjmQJUY+FWcUAGBJkUAwqEZzudw8uDytiPDTXw5fqZZXNGQSADibJnmjXC0jAAc3v9UbAPaqpRIAMBVl8PJZUuF3IQCTyVg0RfJ8PE5mE0eRDMUqAMDJZBJQEEoXy3FQl1kC9kIuni4YeN2RwSPoAH7RtS2IY3BtE+WswVGS56g3AByHB1RAnNVgXTt4BC1lEYBTOQ47ftQAgLHlroYKeD8SxjieRDxytB+6vxdLZdCmjEzHQsER9FE8hACcSWBKN3DlNDx4q9mdzuXqolOrwGKXOacDAJx/CcBsNluf9fFgto4KuIG+6DcAjGHA4/Fstb7sS1o+iCNkEIDNSgcbtCbz0XQ1GaCZ1LSBzu0vAdj2Wm0A4NVsuu1lAYDJHLp3SJiDUUTT11ar2RlPx+P5cgbfNb9s7u6Gj/cD8D0O4RceQOOYVRpgOBHePY4m0zEGSTgvAJFL06DAcgyZTEHVAQCWAID93uJxI3MDwLXR0is1q64BIJjJeroqIwD7vp7PZdKxuISDAuV6idQC6zOMJvRKpVrD0RyRzotZshB0UDe7s85g2Ks5EuxsGYQpcIrhZN24AeDAnxsvrlpdvAE/nZ+QgL63YA/s3t3ZucugwQEPnzds/TxDJTRXYhkATtcABUyGUk3P84ALBaEXnW633p40TV3EeGv4RUESRrtdEeBRG0XP8Xo+R4sqqFQbcNvIRsKRJGwDFvskQR3oli3rNfjpgqLCtwAAD1ZnD5+923HKVqCAyycIwHqey8Ma7GzfHeoVNKG3dasgGUwSapZVKpZ0qZA+ipGhJJ2PpbSMVbVqWi6WjMh6LgcAnEzECJYUTDoZ3s+TmSOdjJnaZRMAOJsvTTYTVWKorFhszp/jhMm0Ay8eKq1RbDihu9F4Is+yB9KVTlOG0XoukDqmK7ecvQNN37yZN50nTxTWsqefNETPrg5Onv7oudjqf+jPHW1Q+/wfc6Nxv/upH/wyUz7/eYEcfP0LlbPZ+Se+84sldfszq16l99lp9eLL1/y/+X/+6sd/mPB9xe1X2ucdffxiCQDc+8hZA3DtY9Pto+bzXmvTc2y5Nh76cr0lt2Y1aXIxLyrlmjw+87pns0mrMr1YrITiw+en5XH3dOCP29POyZOWNVzasc03X3zqiz//9Z/+xclXf/+1bEj7w//+1//Fs1/6pdPWqNjvzHqjdutkPeQr45O23hiMTi5K7vZC1JuqVLM7JatjGJNZXR1ed61py+luTmqtyeR0aLCdh3XF8UfzuSuNVgsA4G5tMH/jyXa4enrh0YO+og+uVl1/AQrYjEQimL0CFTFJcYCemWQMlIgImElQgLgZdNyg4qE0EUuwAp4MAuNMpQMAzpIUnikdo5EHlDU8TMxiuhgspVyGFugUFDSeJnM8kyPiMnxCZRc4L0dirwsaDaq255gFRHraaPletYyABDyx5JUMtSACNtJsWq8FcXIgLVAB5xhWLKhl17Oxnd+rVhw1uKtlBZbljCbmgdUxBwBtElB+juYnp1ejQsExJFH3Km7RBHjC5HoAYD4YLMADTwBgs9tqtit+0NFiWaDkJExloAvAWGXZLlc9DOpFX3+82UQfLwmPoHk66IPOc5LAuK1q0RTjoVQG3nc2nbI6tcAZp+o3e/32eAkSeH169eTpKy9ef/a0Dxju+KCo4Z0BP8bZ3scfu5aMG+dAjBUHrXvx/MOfeYjnV5WyU+2gfBn2Zovp5vHV4mL7eEvHY7FEBnBJKeQLoLN0VRSEAl4E3EQjyTJPF0D8Q72XLSMAAx1fNHZjof7F9rH3RY/37+0G6Isn0VBoQAbf/sDLXujgjw/ePqBkkSWCCI4oGmEhAKdpnsG5XWzEAloEmxMeq4r5ci8B2LICb0oqDGonFj06DieywewTgxYAoD8TqVy+wOcyJJEmsmSSTCZB21F5JkgoRFCGv7A7SAYFTMFnxUuqYlV81WgtF+vLi6UHyIvxTyq8b9UqOToCMJ1Lk6KNhwg+rIRa0ACNAVNeqVwslSxdJAKLmIISjyOM8plEPJoiAIBjaMsXAlGuymmgNfHw/gEqYI6DYsggAKcjKRGnvPh0NkMo6K9xA8GBDAblAXgaKOCiymO2bTROMDhHZRiqiXfFOhRDklMziTQFRbagKEDibJxt8/wGiwB8HMMA4CR8HMf39+JBODBBAADfKODYcQRoC5FIxlPwtNDjFQC4M50r/qLjBzkTQrFfs60Co49rNwBcm3RbjaANH+RhvQ2g0B+OUNjOJuPJAgC4J+n5YCiNBjRSXb87wS/Azymo5NHgJQAzOZwDBgXc6Q4BWif/PwDGExcdhBYQ3Xaj0RnNJkOQyOPxdDa9bAQAHDo+PniJwHGkPAmoHNFIJB7ZiyRS6Qilw2bkYQ28BGAaFwFJCQjADg4CP2wQCULQDNsfrKqVtl80QYeSOQ80KEOn0mVP4WBRhqMS8AzgXKWs3ag0W40GqOG651Z8UyhQtMBEE9hAlU2LznQ47rd9R+aywR0wIu30pMUUAn9Q3QL6W2s3Mfl4MjtpNcKYCnbrzg6eBe3xFLZqwaq2TSVPk4RiyXw2GUsgAKdTR6lWxSsBAHu1FppxDdrdSU1TBbwDduHVNBvNbqtV5hlRs11btds1mpY04HGaUSyKsSMgYGjhG7gYAUijXX2VI44ESQ269bz+YnsFAOxWrYJZtM3KdquYAMAsb1hm++ydgVmSQfOaii4DAKcKhqq7LmgTIRlKZo8TTD6UqPJSo9wXM5FURDEYmsqkkrEYIWR5k0mED7lk/NjhEop11kiAAha84WaEVJ3knPrsKZ3lS6MaFFk6l7dLDetoJ5rMmiUyZK40KgBgkbYc261U5b0dcp98YLM3AGwO39EKJcPrb578+etyd/yRv3CMUfULf8TP57Pt53/4jUrRefe39c63P2+txw8++YdfcNTVZ05Gtd5n587lV18v/tv/+9/89b+1rHKnMai2Lrr69MPLWbPdRQCenbwz2T5uPO40NiPXUsujcUVpt9TepqYvLnuK1NTc5aLWO5+PWuXh+WqpeJdXi9JkcDaoTgfrwem25IyG+dlXf/+r33vy5ovZt37vvT/6av3g4//jZ/7Jb3/v89enxak37M66o1ZnezLgqtNtW693e8vzUrf9w8fZmk8XK5WuXq8YvXlT612PjGHX7p6u/cZosOmrTPdBFROtZ3NX6S+W1dNNu9E9f/FwOV5dn5aofl/V+w+W3dpyUa2Zx8cR3O0kkQDSzoEWiUdCCbKQA56NPkXpZJKgAYCTqWicZgkaJDCRRF9gEs8SKWDlkfDh7m1AgiyZShEUz9NZmqG5LCOyGSqvSfD3DJ0hYjh0DgpUlYUsyRU0AyoQurviGFKOypmdBgq9WgPnZn2/ZCHACWyOTmpV13ZALFg3R9AsB7y77JYsqeAA2AZN0HiYmmcZVm9g242Pp49FxOxytV7vTpbnA9jPCMClkumAFkSHYQl9rEDj4sALzsMSZg9qVLUG+xZTmxTMh5GB9IocRuxZQag7WgeWPdfAYTictoVqzOXQhRovgfN517csb6KmE9EECdwjWQDkbGKLRb3dHzR70/Vme3r24OmrL9568errHTRwhp8J0O43mu3RfHv59JNPDBwlRJiv9AaT9dn1szfevSjCj/F9WISjCSa5rk5WZ48eLM/OXlyRx3EilQFElQtiwTAAcANLDgRaVdNQBwsMpxjYpKVo8G8VQF9GlLAbSwhmlzlUwEcHB/v3gyHgfbwK3rl7F+rNzt3AkhJF8Adv3TmkFIFOx8JHx9FwKnYDwCkKHVWYfDYAYEag8ookqBonFmzLqQDeAXOHX1rgwofxRCR0HI4DY8tRwQl4Dth3OBKLZ3g0VwFViHnR0VSOIgkcyw4mFHNBTGG+IEr5HMBNkHmoWtWaarYXs+XFxayk6AjAGKulY3e7JhMZlsolSdEpB+7PAMBVeMJBPxb8F1idqQoEw1FkhpfjcQI4O5dJJUBtcnw8ms3FjyIkSG45ncDT9sOjSJIgaU7WDDpNYpBMRsL2eQaHKmX4SQA+aLIBKKzDl2bAf3hS8EoAwLlUDNYAm5cM27B0CxSLATyoAAo4k0DHLyYvKdiEhfZNNwB8ED2OYxpDMnawFzo8QKxCsEpGbwB4P3oUoYElxpPxDD4cgmRFu9WdLRR/3MQTH3g9pX7NMkVQwLWyCgBMN6bdJs6jYxymj96mPQRgELnT0XC6WK4vAICFwCsNE72Uot8F/TsF8JxO+gDAvf7/B8B4BwwAPBhPV2O8A/57BVyQ1ZKLwqdZawI1BAA+mfaH0+n0url79/jwfigcOTzY39/HIeBoLBYF3ZQIRSKJGKyJVDKUA6qockDyAYCDI2jg9hQeQcuyVqw2+7NHTeJmDKnaX9f8dtXVKYrL5jwdJCyVSJZAhKIvfUxp1uv1il9iSu16p4stUO1uHWBPRQsokY6nWQ7YXjYr9IezfrvuaGIWr5lrnf5wPF4DALMF2DgAwOVqten7vV5ruDwpOcdART+AZ0I7OwDA6FiSDyKgNVjxpGwoPAma3jUlNp44SjagRNRqFc/HI+zhsNsd+boucgyUHRAVOMDfauIcsGy6tl4c1GkaE0l1vKzlE9FUMo2fLDYpsjhEyEmKw5EHefTPtRzL6y02V88+1nF9U7JKtlk9O1VgmwMA66beXdmOVQAAIABJREFUOPtoz3QwM9VUQI4oTFrE0ELb1aV8PJqhjhMsfxgdOVKzOJYyoQQoYCDCQIFj8ZxMsWouGjri0tFjkY7xxW09kQPCW+5tJjzDclnaaU6vCEqtDL0sBbtVsMpNI3Q/xtElLXG/sVFo2gQALrDwYLxKRblzmErctTuu8/SpzNrW4F1DQgA+efwXb8id6Uf/zNJn3i98V5jPBq/8/O//1mtTaf17W/9rX9Tm46uPfedzujp9bzGsDz679B794nXpOz/+u//841fVql0Z+M3Lnj7/6HJab7bfPq3zq9N3J6eP69fVxmpaMix7MCmp3YY2PClbi4umZNby/mZc757OR+1K/3S9KBQBgIuj9rpbHvXXg83aKfbqiS9/71e+/q2f++rle7/7B2/9+Z8W07/yp7/xFz/4r3/qjfda8+qoN+t0/dbp6ViozbZd4waAS61//y9Fo6HLFWtkuy3dn7WN9uVU743c7tm63poMtgOF7Z6XZacymC2KcnM0LW3WsD6fvHU5nYzOT4rUcGxag6sAgP2WC7sCo0dJMhlN5DgyAyT8OA4ATKTSOQKdhaAM5eLxDChkoKjYu0oGAEzQHEehgAG02bt17zCFyTg8C8KSRVWYo3mKZAVNZGm8LU5HA9cXBwGYJDn0gjbQSFJXBcA/KqtDsWhghhGCnF/Fe5Y8KOAcKOD6Tej5SwDmeNidFbSeAwpYqrqmpkgYxoBzvaCA6xV04ihV8CjXrwM1709mm56Kp8ZGseqZGIqkokkIADAaWHJ5gYeSn0nrNwq47Ng26BoVjStwxpVjJNCNbhlDAnGcD366Y+KsHQJ0AUMbcF4ZEDhPGXWv0hlKZBaqeiitK7BU60ELqt/qdpvt/uzk7OLB9vrpay9effYacDQdFLxXrVdKlTpomdPrZ594qDg4goQNX/XOeH35+PmrH730AnMdv9EbjQZD0NEnm/PrR49ee/buEzIUh6otFCSMl7B1EW/yVFUDAA6GXwK7bQr2ogh0Gs2UBWQLshqMYAUm2FBG3nd0cH8fABiE7729PXRtvrMTtGPdvoPjSHdu37l1+85BTuIFQJVjvB0NADhPIABnQSLmaHSXpvO5POhwVWUBgG236lUx+0pHShAPJRLhcAjwlcPLYjpA2HT6OAwQnKTyeZ5KE7lsKg4MDuMhoP4EeYkUmvJzeVkGfsUX4GmDbpTNckUxWvPJ/PxiUQJoRP0LHwZOAQFjI1IgbpMEb2OvnB+4UFYqwVx1peIBFhfVApMEACaSrBxPEIRsccAf42jqFYvkconjGICNVMikM7FYOHR4jE5YoLsNOpVNp8gYqeCodS6WTmVkXcqiP4RhuziUpuEzVxSFTfEVT+VoOhMNxQDqYZVrpmo4Jg6hSzIl6EQCw35oUJwG2oeAnir7QRNWLASIlEglIvv3jg8OEthGjQAMpCccCh8exI6iLI4koEIMmsbpgtPuz5dqbVCveMACNN7tVU2MphnXKqrAZ7nWrNts+HX0MK3jRugiAIM8nY77g+lysb7oSgYUepwCQCMOt9rCHqzZYjyZjwfDYacXAHDghCUKilECBAeBO56fDSgEYIoTsdNADcxE6s1mqz+dT0bT5aQ7Xsym1/X7u6GDvWN47YjAIIOBbyEAJ2PH4Sh2Qcdi8RBlwkLlGFD0aRa7oOGTSQECFTA3pdqCV/kEAVjQTbvaX/h+p1o0aYYnsyVdYrLZZLoCVCNHZOIJo+U32zW/xHmNOjphNWuNTsNvNnUqmy8ACxUUNIjXCtqgN+12mrYq5URZc8roLjdcNnJ5poAZpUFAVa3ktWteazHT7djOrVsfvAOMdPfunXt5Gn0A0ULUVGDfJxVL4nKJSKLoyADAoRQOcICCwIcBhHvQ6w6BkENpKhjlIMm7O2g1ikDUZavsl+vTFk0rsgmfAPAYHkM5YR+xHI4wwMrAnSupNLkHxU43gpy/JQJw26kahRsAPlcRgLk8LDD/9O2WYcuWbVqqJvMKR+Rhixsmts3EYyR9nOD5/fTKK3SdqZ45jIZVncwy6Vg8nmRNKidmQtG4BBqJUxm+tK2nmBRdqPS3c2DdbI4pduaPspRWHlZoPILO6+WGEj6OpHMlmdqrr4Mu6CYAsGFDpSqroejd2KFoq+4rz0S6WBx/wiyU7Npo/fi/fVFoTd/5M11Zlb72XXE+bj/5wvd+4bSf733yN1985VOd5eLhO3/8OUWdfmLcaw5/Zupffalp1P7V3/34b3+Yarjtbg0AWJ19ZDZvtDofPa+ziy0eQdcfmY3ZsqwV5d60qPZ8bbIsurNtteA5cnWzqHU281HP752ezDn36vGmPPBn3eqgveyvxlZ50s588X/451/9ne//2S//znd+/Udf/Vd+7E9+9Je/8bt/9t0/+1hzCji97HUrjdPzCQDwac9s9Ifrc7cx+rXfddxyhbftfk3r6O6k67ROp1pn4rS3y0ZnOjwbq1zv1EMAXixLUrU3dtfrWsd/462T4QIEtceMJqY5wjtgtKJ0Uyk8VAMgReXGEBmosEexjAwATODMI9RF0LnRDCahUSyLFoaZRCKdTGXovMCSEQBoPgdlIpLGM0gZjfYxspdHm0eKy0sMBVs4n03GFN22Sg6sfY4keVEz8djOxPkJDOkh3V6rDtyzUioFNfNl2AFHC4TZKFoO6lL0zqCzLAdr0kdhozsmSBsbp/JgXRQATvWa56HDcgnj0ovlervXH89Xq21Pc/HCrex7ANeKhrG5Io5AcmhMAyo4uKLutJotvD8GUgCyRUG3aCaHd8CaphdxnLSMDRZlNJgxApdiKXDTwtB7QeBlkVBBcfRb5DGez8fyNc8G7VFFQVttduFrMFtvTi82F9fPXn/26OlYky237FVNr1JrNRudyenD5x+/FA2cXcVfVGsNZpvrV9/8xLXnlQCCO1Aq+t3+eDZZnJ2fXb/+sbfee5aLxg8SCSDJtgZ82SzAQ3VQ/GJHOv4JzFnjRRC/oqTLBUMuEHReCe63FTHwxRLz3PsO7+8Eg7+7oH7v3dsJcBe+dj4QHEPf+sDO7dt39rMCx5Kp6HE0Ef0JAOMRdDawsGJBU1J5SgDKBOVUEG276JcrjgkMHGfJ4scYBBuOJbEFi0Yj6hxKuDRwuOhRNIseYtlcOkwi/KICQG/uLJnOIluAiiTlgeTAS1XyPF46lACAZ+PZ2cXaK6gG6nxZNR2gRwDAmSRU41SasTBfBrRIYEiK4RZ4KIKnIrrEk1yeIQGAUW2KBvLNGwCG3x90QfNCniBzmXQifH8/lklncWCIIWgyk40h7HIsEQGxIqliXkFlCw8c1K+qQbGD2snEOZCfIPKJyGE4DW9WgaUmygYCNHxETMEE7krSLPf/EvUe0JKkaXXg7Ex3VT1bz6Y3ERkmw/vIyIiMyEjvvXu23ivX1b57enq6Z3pmemeAYXEHJIzQMouRcMKIEULIABLI7ErowKI10gqxe1bA6pzVYaU9EkhHaIU4+31RPeINXbSpei8z8v+/e+//f9+9Enas68iRykEDAHj3KBlL59IpUHPH+0d7e8lM9mtjSCcAwKCAj0BykJl4JkcSeGlOF2W3O1yuAYDRyBAT8iqDWsniKXPSqJoST7PNSRuN22qYd9nufA2Ap4sZmlytFl8DYBwJ4wB+HB8KDHpJjiabRa+LANwqe4aAXtDwZk231e4NZ5vp8noE3IgjUTUjaKETWFBrD7r98XQK+D7tzdbzyY1/fD92uHMI8Isn0MeHUSrw/ftHpwkoFanT7YPTeDLGOJZusB8BcC4Nzz2T41leNYCb1LqT+fppA56XZJac2mAahL1GUOYYLk94ID4pmmA6bRfPGzL5UrsaopGOGDaj4cMWbKCw2mw5iqHKgHRmCTZZyw9am96o02vZqsLwqumgyh6P1y1aYHGmQUOH7kq1VG5WrNqkK7nZrY9vv3APD4Tu3T1AS11exAsHU4aPOKG5Mstkj9MVVy+mMnGyDc8aHQCgSLT7g/6wP2mWy1APEYDxNXX7zbBEkabjt3qt1qTHsMDB9SJFEBSUS14qiionAJNG9o/R3pLCFPZFQ0HLlrLf2+ARdLsEn63tlazw6sawMbdN1G21dvFOwywBmgMY66akiyTOZuhQHzUxkSqwJxlBOGCWNjcqz6zCcSplW4UCk00k0zmhTBN8NpalXUF0vUlNLV80c1y+qITji7WjIQv2WqtX2QLnjRpQkYE76n5DPDk9IhUgHgf+A43lHKv5isyZDm56gT65f3KPV8ve6y8LtF9dfMESPa87PwcAltrT935FV869H/p5GVbh9bf92jvxTPWi1e3/9DdUL86fvvfL36wa5x+O++3pN0zrN1/4776t7b32w98/cxslt9vqPBzqi/dmm0538NnbZnG8+czs/FHzZbkx3YS6z3dnZa1fNWYXYXW+djhXcytnlzUA4Mmw3rs8X0qVm4eryqg5G7UnnfXorO/VF0Gi/ku/8Oe+44e+87t+8sPv+aEf/7N0avN7/+ynvvuXvuc7P+xNKqPhZgjC++p6XAwX112z3h+uL+3u+iW12bV6nOa3h1rPtMZ9r3U+N9szp7mZN3vTAQAwP7z0NTccrjY+7NBZ5fKyNW288/Z8cN65uKgWx2Ndmz5Zd8PFInRMvLLES+B8GmokQwACoxWeRhG5QpEoZNMEML98LJuC/wqACuqFALUCVDXHiHKRwORwnsmREkAjju0U0RcL3d1BvtBFgTOg4hZYNptKWbBAyi4UZbFAS6oOfA1Wi+0YQhSwVu42oEKihRWQyKDqOohwMs8IObNeMiwXYFHh8YqPZmXFAHlT8Yx6vVWvwjcEAC6iGwQte5aql+vdDpSdsl2u9wYR7D0YmRgEAcrMMTGyQFNkBVu0RVnCoRj0oyhkzT7UKBCrdUBp09Qx7VRjKRC2bORdgx4iaKrUAokMggYjIBQcFkYA59C2WuFKnYrXGxHHBJ4UMjJrdsJypYZjvr0RlL7F+cXZ2cXtoyevvfPms1dmuuIAUwi9SrlcbfZmvfWjVz//WPdQvKFzLI6MTC5eeffzD0HQY5cpAPCw2xsNBusnt7PJxdvvfMPrueNcKpXiFMMBdLJsBfathdNIBlpn66gMTQ3kuw04CCDhmTpZBD0H8gioBToxY0Pyx3D8CK+A72/vH2xv7WEYw3Y0gLQVdWMBAG/fO8Yu50w6Hk8lcmQG9jT2ClC0mC9QwF44KNIMfACGJJgqJ8mmXq6WgzI8cUPVZDUTSxwfniZyFPw8ihIYNkq/AJBlCmlA5jzBSsUM6OMCie54TBSTmMc+X0QGJAnFooCnDDLINDP0FaO3nE2XN8sQ460MEd61abpB2bAl+FZFBh49kJqqh58WWqqhPz7+XTXw4ENjMwwnMoSk5FLpjOKImDySy4viSSxFxmIJlpZVqQBbIHt6ev8gDWqT1R2LzVN0Lp8iFDyuSSXSJynNUlVUIDj/ZMEiti2rZJg6m5MaviJIbCaZjCdyGMZuRMM62DKgiLSi5VKw1SgW3pUGDAlPF71Gi97ew8TkHCjgXPYYjaNiGP2IAJxJpjIgGROZeI6EbZomcnl4efC6BNnrDNZLuTZuVj3QTArp9Zsu4FIZcNMUxDzX7HXaaE2MXRHNyBd9iBJ3Ne71pmeb2fmDpm7Ikoy5KUUgBFYVfWwny+V4eTbujrCbueGVdRzY5jFUIqh3RtP5cjW/mNI0z+ZpQZEEYHeeC8S2BpjTHwGsT6eA8JP16jrYASF0vLu9fbC7u7ezf7C3v3v//s7ewd7W7p2txPHdvXjiNMO4miXTxUIum8WcaoLKpQsClHjDdNz6cDiZXDXJNMHajlnFQJxew9WoXD5BBGj5U0iQkxomIMNigg+70QzCQKhjYFkb1G+1VQPcq+BeRytK0++0muPxABMJJ1VfFRlFlQ2c2h/2z+o0zgSI8ImWbODaeFnhNwa18oD4+NbWnS3cIffu3UfjA57W3OhwrEicGi4eD8SyVUcvFAqnVKuCvu6NahPdB4b9UX8cATCvmJVWp90HBl7zyiJpWn4In8ZmwDGwflWooJkcB+8aHeCAb2qmYWsV09JdnpMYOVeCf1P2SpXB9MGzZ+8NoIrJmGATnJ+bjm1LDGcpSvvqadOwRQkvQizYgSyJUloH9qdKyVSaTJ0KwpY2V/Smfuul87GEoacoJpuKZxKKQWeIVCwu07TDVIbSYUmtpE5jshL0rqeWkuMJ3mldXjE6V556ogIFgzPrTSN1/5jmWg5/p38pUaJl9l/mKQu7bhyGir+YIi2hXHr7MUdX3auv0wWv1j6/+uSvviSPJ5/+FcM+a/zgX+NXi/bDb/2Vd06KjdeCZPmn/5tgc/7k/Z/7ropy/eF0FC6/fqpeffj7v/nb/6cvCpreLld7tf5tPxh+cnFWrw+/cFOXZlefW64fdF9SyqOzVsmV6it4GSVrsi51rzqaHprtyuS8NVzOJ+1gertZiv6DBzN7MDzrtObddW/d0Sdzlzl++nu/++v/+4+Ef/93/tFv/SUupW597nf/xf/9j9+yzjuT6qB1uWg369fXS7Y2uR5aQAIvLrTmK9N9cxB4lWLYGALn0NqzcnhxbdWXlcb5Rb0xml4Pdbb3sKL69f587aqw8eoPz5qj1puv9Tfrzu1ZrdgbGWr32WbgXY5Pd08y+9nT3WzmOHN6mM1m6GQiGz9KEDLmbUq4uGn0183QJ8dsBq2YWRxzBLaey1OSwhay2TygVJHiAMTSBJWlCIpXxH0uivGTVEMTBDLHFykyK1smDr4CANMFQVVwDEmzI1zFPEC36Ud+G42KV2tUg5oDyhPqF0gaNSgZJQc0pyrLIkuwDFQL161VdFVXBXRIpxgaaneRiWzuzXK93WzWUQIHzVar35mcP3g8tdCryK1UHEMWQBNqAo2R6MCmBRatgUkim3V74aDuuVW/goMGOjZKi+gxzQrA820/QE9/v+IEnukFTglEj4ZpB4wINAHjDSiWdQcd30pA5cykc6BSuHIzcCo1nB9u99u9yXQwPrs6e/LSs9ffe++NV2egmnwQD2EZx/R7i9nm2esfvmY5hl2phb5f7U4Xi83F7WsfPC37GO3UbHexgI5nm6vLzdnNs7ff+twz5jiRzWcKmKauOZ6F78yycEZLwdtKxcDAHbtccQEtEI1Rq2klTdd4SaGyeVaGj5f+2OHB/X2cQ4ISeX9vby9KBo6+no8E39u6u33viOZELpcBypwgidRpMk9TsC4YBGBMMBJoXAI8qEITx4FNqNZeDVh7xYQaoGRPTo4O0WQK9CzLihgbTeZJvOclc9lk4jgJypjKZfI5PIKO0oIpkoB/otCkGFQvJubxQnQJLGu+q5j91WKxfrgJVWAThqKjBarrO1ZJzqOTWybN2jj7G+D1Zx3b4D5qhg6xA5BJs3gJrKr5RCot2xzSzRwhyTGcA74PzEJVRBLgPx+LHx1lCgWa0x2TyRbofC6W14HogFDLp/JGKbI1NQGAS5EDp+XCCrN4QgwrQO3obDqZQoIKGwC7tDEZGcOeZADgDKwN4HQCeoioIM1KtQZ5dxfkYQydoFPxw/tHJ0fxHEYRZvP5TPIkDhLyJH6UI3MEkYFf0DeVAFkaAbBUmzQDr2QCIAXA9wyp6M5bDgAwQYadZr0SYlME8DdswRoMh+PJbDIeDqfLJayjhoZNe+hmzqErMdBAoInL+QgBGBv+Bg3XAQCmcVJAc8L2ECTpejU7nyAAkwW8e5GNqI0Xx1wxeGwxnS0Wy/nifHNTAwA+BADewR6Cu9t72xhKeffu7u6LO3e34ie7x4fpTIawdVuk8AIoi47xQPeThMiKeDhfbqBnyHk1nSJY01TD0ToslU1FpFLpWDaAv2PpNDGsljWOAvGAs8iNsOYLSLjQ+wt+Cf1G21PRk4QRFcNr1WuDQXvY74/HQUURkVUYfq3W6bVX1QKLcSJRqnQ5bNRreKA+6DTPxE9s4xhwNB1/HycHOMZysbFB5MiE7WlcgYzn4alDDYlRbR99ZWvYBf0RADfKDgKw4TXb7T58AKFbKuYNKwCG0Fl1i8DHbI1LJVNZvsDTIF3wKAJkeFkrwWLWs77OiQU8GHc9xx/Mr19CIw6vJBsl0/gTALZVrX3+pGkYHA9bG7a4pHIULwC9QACWQTflE7Eif2iMVLkqPSzFM6cxTU3RAgFMOi6rRAbqO0ElpKnOevZ9oD50Os1p7vBmWFEKIJ7s5vlD1jK8eYUXKaqgOM2WHts9priGI+8O1zLFA/I94xlswnZLlJw8OvL0ouO985gv1r2rL2qiFzTOH77195/Ik+nn/r5ub2o/8Je5xWL04Jt//Y39Su1GENpf/bB+c377qb/4bZ598V8vJrXl18+rt5/82d//1//ybwif/XcjOWxPwu511+2+tVrV6v0PbupC/+yzi9WD3suy2TnrlRy1ujDMvl2aLO32VVOxfbPlT9Zhb76ad/zx9Wqphg9vF3a/f9apjxqrwUVXm47UZHG/9caTl7hd9u13zvdiQUjcIZsd8bgotQduu34+B9p2fbnkm7Or517Ql1Zn9VmR61WdQPLCfsUL1frY8TcRAIeb81Z3Pr8e2eLwkSd7tR4AsDaYjOsPzjrD0fvPWotZ//G5yy4nsj16uuiV1sP44Wl6LxGP0anjDMibHEOl07nkaYaUYZ9TXIHOgEDOpFJJ6hDbMDk0oMSwtXQql6dlhWPhv+Zh8UQJR7kYFFMKVlP6bgb2isjzEg7zFAgA6ByUO8ureJEVJZQPteSAPjJxsAN7cygTDQOqwBEjh1wADQlgQhQA151OA9APPt6o0pEsK+tWWPPMIi0AMDolFe05oCZw6H0PpbjRBBWJ3s3Vdqc3bQ8X5w+ntue5IMkAgFH8aqpYBEwyROye4qM2aCrrjTt9z20EPvxOUI6IYBEAcyKISSfEl4U9FrDG/ABeu4kuxDJigyRGsQ48o4cVJZvEqzyosjlSCrqNWj+MXHCGnf5kNlteXJ5dPX3l1VefvfR6H4oCCOAaKDUoX53eaPn0jS+9aTsYReEDR251B/PN6vLlD16uNlpQ3lBjIABPVhcX55ePX3nltQ+eFe4fniRTDJpeCUrJgnKv25psoGu17dqmXcb7bDcAzo5j+qC3bE3CQV3Q7gzGxbNZUvjYyXMjrP37B3u7+/vYBL2z/TwRCXTwXcDfuztbRyQj8PlMIhEp4HgyB1r1OQAXIgBmaF7keF0EAI7Mk+2K1wS6ggpYUcjD/eOTk3SB47D9SMSh6xz2PWN4JVTd0wToOwovfuEfCQo9Op6bc0Rjl4BUaKSJ49qyqGD7u6x3ocSvby9DGceQdNME2QJEwypJAMDAAtNsCfufsZs8AuAaQC+mIoUggTU6xdAMWdD0XDydle1iLsrclOVEVubzu9k8MEMBB3CJ+OnhURq7jQGAaQBgInuYd31DYPIpIAuKYUQ/F0/6ozymkueXnZJESVVPE4rILDIFePUKSFPddnBwHF4/o2rZJLx1Gm+aVUxaVA3bCuvZF+5CjT/AW/EYfBwnp8cJPHpKZ7HD8SgRS8QBgLNkjiQyRI6kSXxQxQiAF1I4bqLJtSHx1TZ6QTPurFHSeYEo1Hvtul/vAirgDW2v08Mz6Ol8MJ5Gfcqb65aBm5RhcQ0rso0APJkspqPV+ag7hMU2arolBGC8ZdHKQWc0mq5Ws8nZhC5wLMni2BmuONut1hutTrM3hT87Xc+n0+XFGgE4cXi8t72DwZZ3t2ANYV/B3d39j+9t3TuNHcQPsrlkzjYMnsRDtRyTyWTJQjrxHIDhmTXgx00vggQwN12Ta7ONp6A3HpfOxInQNSWWzRO9oKwVMc3D9QFx63VXRKKF5x64Avxay4vcYnH2ttwIw0G3PhgNp5OggkdrEuwU329226uQ4nl8K6ZTCTDyLDLwGQ5HD7U7916Elx81Ye3hyQ3LlFwTXo7IUynb1aDqJYmqgwAcpxGA8asexXb3hv1Jw3EUBgDYbQCgd0EBuyU2a9hho9vrLDrMcwBOg5qBkhllkheAFiiCjhe4EpcARATyo5m2WykHw9XV01c/23H8jwD44syIALhoaVpzdROaRpFVkGgbEnCSIq+oJg4JKJlkLhePkwyh+DxX4Z+5x+nTmKqmi0Yxn0okJDGToQs5NnbMz8x9vnLgBZ6cTBTMYHzbrckMhTpi9ZiUdW9R4QQAYF6vtc3kCZnimo6w3VurCMC9l3jGQmf+Es0fHe41LMKuvH3DsjXn7ANFDfz62ZN3/uETeTT83D80yme1H/gZbjYb337Lr7161A3fmliLH/ly5XJ585mf/eZSaf3halFbfN08PPvyv/vd3/lpt/h7/+Gq5MPHV5uH5e5by3mj2X3/tim0lu/Pl9edZ5IcbKaYCzrVrJ5VHs/s5kUg+WWr7k7Paq3eatHzhxdLBOCHy1KvdzVojuqL7qZtNAcaTdmHR3vH/UvrYOew9Pgv/eo752IsZr3+W9/hTSr9xmYCYu5yM+Nb0/Om3hiON5el1uUvvUYMw0pompVevVTXg3HFX9+Ua0u/sli3e4v51cAS+9f/BYDHy1l4uen3ph887J+NZ48vTWI15o3xw2mvtOzHYikqmcnC/xJZqBoxbEnNJhI5AmPJKYZgsRMEECWdv58uSKwmyJhCDb8nlc3RsHuxmT3PCAIHlYGjYwlQlArBne4SAgPfgBENviixpFgEYaI4No6DAAATBACw7VgqVk9dREd+yu12AN1AFTtl06pUAC0kVhFpQHbRkqFgsTxXyKRJ0FqsKKvo86DqsF+aYWBKAopgLgJg+BE1AMtK2fE8v15voAHV2e2sBPDp+YFvyyr2ByuSiAHBMvagYCBMAVi42WgMqzg9ijFeUFkRgDHmEI/ZLK8elEseGnFYFS/wnbJhK5KOXpZ4iYwwzIq0ErjCaRQLBYyF1H101azaJb+O4/6d/ni+Wi0XF7cAr3SPAAAgAElEQVSPn73x+suvDSRY06CAnSrgRAsY8erm0Xsv6aV6FQ/A0I1nuL4+f/DGmw89PJMOq3VMbgENM1+fXdy89NqzN770tgRon0ixCkYni1Yp8kTGBrGSV8GbXhOTKRxABkNFthxlQfHIG0C6FJhCgcUIoo8dA/BGZ9AH2/f29+9u7e3tIvZuPY9kwL92d44ImkfGjMeGJAjhHBUpYBkBGH0J8RgaCDgAsEzzsqHAQ6qDvC9rmGvDHO+eJuJEoYgmKgwHxYrAcbXIg5LM5wqZ48M4sDccgAPZiwBcgAWWK6BDvowHiCiAgYzJoqqaVU9S28vlan17FUg6XmcbaD5dwhANMUewLJVKRQAcPgffMPLarkadbRXX0Zg0TkDmZTUbz+TUEgBw/DhNKlI8J3D5wxzJSioAMABc7OjgCEhmAZkNm0MAvl9otGy5SCQyyQyvPvc8j0zFsQPLdoACmACxYVkT8VgxlqHg/SoGAnAJmJBlGBqngQIuMJyA2VVol6KigKw3Mh9/4c4LwHW2d/fx0vTkFHMgYGPhZELsKBlPxI7gVeazzwGYeg7ASqU7WC3E6rBRDRzTUCm/W/dMPu9OapZa5Am2Ney1w0YHARgzgpqIC6PZcoTTurPFfPOgbdnqcwWMAOyEmIo5Xc4m682wN+oPxpO2a+vAgFHq6q6HkV7LxXCyGTMAwIViBMCAISU3xPOZZm8yGw+n63EfytTmthoBMBqsbe/f397e3dq9u3O4v3v/4O7hzt2TOLCNZOKEKpsqVwDuVcgC8c+QhVS8ILDCRwA8gU+5lkrkGU1T6otVxXBMoFw0naEangGvmyB61bKCY90IwGGzXrNEH42owiqefwAANz1s9qAoQdacRq0+7tX6k/FsWkUFjP3FXqUSATBmG38NgLEjo9PpDMfT2UP5E1t379yLToO2dmiWgdXpeNhPJwl0CkoArNlU3rc0WMwxqvU1AG62I7IzmNRLpa8BcGfU7U+alTJHIAD3Br1lj2NhPUd20hkmi3WXyMMCFsUsLTCUIpHkgCOSUNNwVsQNR+vLx6990C6FjmwCAFevNkYpAmCA63B6FRhmkYkSFXUAYFD0aLVrwIPLpEjQRVlaE2BJ+MVXw8N0PK6qObks02QyIzGZfDEfZ4/zpKVvF51EXavqsXhRqU5v+77CMAXRay5eyrCyt/A5QHZWsZtd/Wg3nVPbrnQwPNcozjK7TzkKGyF8lwMATpRbVNl944qmg9LmfQm0VWN5+6n/8ak66n/462blsvYDPynMJ52Xvv1vP8tXhacjbfCD3+ovZg8/91e+1bGXX1gt6osvTWuvf/mf//t/e5764I/+/V8tQDmseV3PG701nbU6nfcedoTW6jPz5WXzsSJYq42nO85YLfWMynhkNTeOVLfKvjm7ajXD+bwfDC8WK8m/uQUA7l4MOtP2ujN36r0+lx7/kyfJ+rtf+eq3j63Mq3/293//d74rndF/+pv+9DepC3/YXI3b9dbV2YxrTs9bWr0P3NTUVv/PL2b8gVl1lXK3Z9YtF2Bj+agSrsLydNbszOdXPUPoXvqKV+svNq46Wc6qF+t+f/re5eKqv7xd6cSgp0rdm+nQP+sfp9I0mcnnYwgamZNDQNts+jSezSgF2PAsie1ZGEOXyR6lGcAcHL2h6UIBylCeFTkiD3+K5LA9Gb4FlTimkkkimTvZJ1JA3LOMagu8wpJCkc5mdc9BdRcpYF6R0U7ZQC9dicXjyHIrrLi2Y5erNb/arFqgLARREgSe5BRsfQaMoTKpDJHH5HbOsjXYpJj863s6Dj7RDFdkOFE2A7/qAwJ5Dpoc+NX2cnN2djN3Ki58VTxb0Y3IC1rGJgVVlgWMpkUOTapB0G82sGQHXtk2ZRyYBeUli7CUba9er5R9qONhCTa373ogHmTc3BzeTwrw6jiBtcISl0jDAwF6kmTqg2rQglpouNVadzSA/bg+22zOr28fv/Luu6+/OlVUHS+mI4/pem98try4+uQjtRRgGjJ2tYB6Pzu7fuXNJyiI69VaszvAyLfJbLm5vH3p1avH7z8lD49j6TQa/UiS5jh49Wu5pgb72sFAhDI2ITlOFJSH18O2U9J4PRoQVjiJwTwbjvvY4f297QiAD3cAgCPlG/Vh3Ys0MMrg3b3jPMWBAo7Hk6egW04TGYxRoBiJABT/GgAXOU3kDZmWZE22AjeofATAavFk9zSVxt8JjI5GFw4oOfkCer8ARytQGfh2aKiP3xN+wZiWTDpHMZgIqShy1NInyWgMKisAwIreOzs/P394WRF1S4UPQQcgdFx4e0KGYJkCMJJSgI6ADTSiDIN6o4HHsNUIgHWM0WTJrKDkYpm85nD5bAwAWOZPMnQxeZqEWq1K8KpyuZPDA8A8AGTJtjmCovP5A248cFSeTmUSaUE1IxdMDErU4LniUC/AMUerNQfjvnKp4xQUK163daBvNrqjYsiHrBJ5Gt5NdFmPo8OO6/qtevYTd+68cOfFF154EVB4d2d/f+d+LIFH0ASRSR7EjjGO8DiZTYMgJoGjIACTzwF4LlR78O5KsKQJKBiuweW8SWhrRaHA1HvdDnYgRGcB9cjgqTear2az6XiyXC3XV03DUpA8stiyoZRrTTylWa3mm9VgMEUPua5XMjj4RCQZxWJnDJC4Gs8AgKM4rSJ8PkA+nitgPIIGaBtPl8PO9PLB5WMfAPjg6L8A8M7WvTtb9/cAgHeOt++eJu4fJk5PT4q2AQjPARnMklB/8ph7yjM8fKalcnM8O7t40kwnc7Ru6o3ZCuR8xS47okAwTTQI4fLEsOYIsPkLJPqBVv2KqlQamO9ZjfI3AgBgzA+m0RPUqddb417YH08Xs9AHAEYrAowP6LSWVYrH/AfDcoD8hu1Oq9Pujkbz+UPhE1tbaIS1Cxx1m2KLDEs7mMWCAJzWDEVgC/F8xVARgMkm3gHXcIYfn/RgMJxhGhIjwI+BpzMBAG75ZaFg2FE9WAEAg0pFz7JsIhMjyQwwqzzBKUwO3hnFZY8VM587ZhQZm7C82nh98ei1z7WdWkmxypYZXm/0koUADDQunFxVDZsDAFY0zZB0kYoukz8CYAxZzgt1LpdmK/SzxmE6kVA1wvA0jk1kxVyakvLHTFrO5kpxSaG9fKeUTOp0ZXIzsmSSyzOlcP2MkqzqJoClAuXcbnW1g61EQQ0M8bi7MACAre4TloKNWK54YvHwKEPVi5r31g3HVt3rz0lWGDRnDz75j55qk9GX/yfDvwx/4EcRgJ99x9+5ybjteTro/PQHwWr9+P2vfqtX2nxhuWiuvjRqXrz73f/uh4vs9/zRf/wJriFPw2Aa+qO35tN2t/Pphx2ps/7sAgD4kS4qwD9U1x6rXk+vjvpWe6arDdP3jcmqCh/kpBeOLpcrOQAAdvrdZasx7pz351Z33Bb2X/5Jhvzgb/zQt/zGN/gy+5U/+Fff5SZSr/8Pf/4n3hpMnF5zPuo1O7cP1nxzdt3Vw+5guVHV1r/6zfzppuYFit0eW7WS0Q3Ls8e+v26Wp5N2e7a8GZrS6DZAAJ6vStpkOa9fnwN5fXezXHavnvY1qV4xxfDhfBBedE+wy+M0U0jEM4lYOh7LpjO51NFpOqUWyWROoJCJp1PJVDqXSoMWxLYXlQONko1lyKIsFTLJRCpfhDorMclk7nT/JJ5EH6ETMgu1lQWyJksqS/AIwCZAWKXiaREAf+0OGCqnFBkveM0KoIZtYRSZDqswkySpdAGTNmX0dLCckgULnudTJFmUpJKrYmuvXQ4ju1UsBzyIUUGy6kHgmQZeJ1ewN2QwWqzXV1M3CqNDFxs8tQQIkgXJtNUo5p0v4qVk0uxBye428cLQc3A8QFZlji1GAGy5IYBuUA3Ctl/zPK/sapicjIn3UE5F7NYFGeGFUiaOpwU4PlIohZX6oFurhs12ezAbd9u92Wp9fvPgpVdfe+vN196eqqoBYjrA1IiK35qOx5ePP3hZxyQ9KB0BWj8PF5cPX3n3ZYRjDHTtDwf9fn82BwC+efz0zU993etMLIXxOJi6INquFaW/m5Js6EbZt4COVgB7bQdUMAgw0MVQOVQMCQZObUaGnJIgKjiGtL9///79/aMDKI9oxfG1CeBoCvje9t2d3eN8oRjdAcOnkkvGk1mKYQgEYIrCuweBYQSJ4XSR0yUG/cFKAXpMVFyQf4rKxveP0zkAYExdB/2Lhi0g7tD9lMiDEs9kABLT2XQePU0YSuDofCZLRilTmGoM3A6fMY6LwXqpVWStd3F1dXFz4WOglhzNPWPGhuOIOWBnuQiAw3oNPaCwHgI4NDGXMMQjaABghhWonKgSsQyhOxyRS5xkKbkIRYOLHx+TGJJeQJeQo33AiBwJNMAq8UAT8sSRuhqhz2Q6HUvLwN5UpHEiHhHaNk6AWICwpFJ1FKFI4rANURQU01Jx3K6Eo2uGDEosh99SwCZoJESu57m1Zo28t7uLmVMAUi+AFr5z5869vb2jo+NYCrbecfL0BERFPJFJ5XLpyKsR55C+BsABgGwEwExtXC/pQqEyqZVMTqALYbfbxRm45+cArT5ossFotlhMRwP0Rd1ct0wAYBGfeVFSFdCxvcl8vt6szlf90XyIAFxxDI4qMOgUXQ7a0RH0dLEZsQzsOJqLABhHsfywVm8O0WJrOpn129OLy6un5d1dBODt3e2t3f2dHVDAwOru7Rwc7BzcuxsDAD49ScYYWSuxNLpaZAgQZtl87ITgqecA3BpPzy6fNtBRzLD0+njTxqH/siUDADdwPpnNkaOwJKCNB1HGXsayq9p+A1lyLYCthQ5gFUPHO2BB0svVemvYrvVHk8U8xCYsAGAbhHKn11nX0BsFpabrA//FC/Nud9yZIABjJidsCNgUezTLF4t0yYdCBOWDzuoGwDhxSlYMjSbJONGo4JUHxi+3ut3ecDCaN2xHxUARv4V3Yb1xw3P4glGqhp3RcNVhGUW1LVXFmJMYw5LRQ5UtAruYpcLuPiZnnTCaDDvX9eD9owLuODVbxuslBGDbNAXYdbpRn9/UDLuI/SiqosGfRwX8tSNopG0EpQ+h0LNm4dnoIBWPKVrBLCvF4kmOjydpnUnQjJ6KmbQklY3CoJw4NulwdN6Vigk6Rznh5kFBshsXAVNkhaIEAGzEDvOE2XDFg+aZQRVtu/OIYXUDCqwrJ+6enKbhqftvPxS40Lv9kmL7XnPy4M3/+akyGnz9P1C9c/8rP8hPZ5OH3/Jri73G51epzuRn3nUX66ef/dlvc7SLL66eA/Db737/n6fd0t/9z3/wvW6/1g16jwZu563NpNlpv3vdErrr9xfrB+3Hhsx3rxuaqw/VoKfWh1273wO6YNRDe9DWemcDoF3jy+VSrz18uCr3u+sWcNZ1q19qDBpSAXQm/53/9Ku9H/8NU0gHP/bFXnKn8KO/+Kv/6nV+4Y7aAMD11sPbDVeb3QzMsIMALPV/+zdePbU75dAw6pNy4Cvtpjt7VnVX3fJs2uuN5wDAyvRJADuqN1tYxnS9at1ejvoXn94sJ/OX3myptkuzVPnJohtM/UQ2HSeTmdxpIp9OY4ppJptLH5+k0wpPxdMCnSGIbDqZTKYLZEYEjYNTLAIvsMRJrlDUTJEks6ksDWoSdCALXA40apqlQLYyLC/i4ZwuK0weRGY6Y/he1fccdMIisZbaGiwS2zEkHEOhbd/SFKBYuUQSSHA+G99PESdpnqLyoufAD7VhoekgWEkWjcYDPGPVbcdrumVNACJKASkHnayUfZB8plV2EdsajeZguDxbX00cz3EraJ+PR39RTCKIZQRg+BuuyNKFXNrsQ63u4gUshoiYeFcssTQdAbDp+F4FBXCtFdZgpwOzjTrANDnCCYxbhKJUCQpQJp8DMGo8CUAhwGPmoNnvDHrD5cWDx6/cPHny0utvvf3+EqQRYm/VBXLghf3p5OrJZ1/SSr7/fHCpP5+PlzfP3vj008jtPowCHQbD0Xy5Pr+6efjorU99+JQ4ToJOYvEMVrLgQaoWvDARhLXtBpjK6Fq64Yaho2olNNNGqyxNgYeoaoiSODzFMh87jpwS8BL4EJTXQeS7F93+wteLGMZwd2vnKE+wfNSElUSn0mSOQkNARiIpqojuo3gHTBUNsahKePEpl3ynElQqriZrAMDpY4C3AskQ2FBPAQATuWwOkAT9rgo0iek++RyZyhcopljE4aYcXgBjaBIoeyG6AYZf0VZcK9Uqkta7fHB9fn1ZlVUU888BGD92MZNnCrlkikODFiiFqICfe/NGwcARABczLMdThKwTiRwUIb5AwvovatxJlubThydpUlRlioC3eLS3dz+WJciCaFlsFs2njs3NALQlmUqdplW8+YUvWYruNCzXLYOkVRlSrroSkBPYMvEszUlQA3HUteQ6pmEotCDh3XaRA0WmoRk0Njw0an4BTcgO96IpMHzogMHoRba9u39weHSSxDiDVAIBOJsuEAQ8SviVUQGAl3Pe74a+X4YFwNWHVduQCt44LJlFnmYa/V4nGkNHTvn8AmMUBTHAUpwtF2c3beDAksQ+H0OSnWq9O0YAXl+sBpM5HkF3KiWdZSIA1iy/0RtOFov5ajNgiyJbQBN0UVaBYCAAN9qYZTgdwg/pzTfry5esvd3kweEODrhtR9i7vb177872/Z17e3fvxU/3Tk5jmWNa1o1CQaCBWRDJ09MsmTjJRwoYmHl9MIJv00ymCBY2fnW8bFUDINCiLOQpAFbgZbnCoGIDfuUIEnet51VtNLL1gXlXMX8DPnrP0ASpCHtUxd6QTqOBOVCogHmKU0Ca+n5j0MMuaCB7wF8dH11gG81+vzvsTmY3HADwHbyNgf87wORwAOAAqJSqCGTWsJQimU+QnqYCACeIBl55wVqr1wHAe6PBZBkBMKfaQavTnbR7o3rZLpI6AHB31J8BAMtKCfakqbBMmpOKRfj2glEWnJIpatntU4EgiFhRV+1Sya3Ux2fX0R1w1ZCAaxvB5UaH3Q0PyzCt1uphXbOLkQJWFVETC0AvPmrCwpQt4Lp6Zxf2HF14tj5KJ2KqTlkliS4e5oWTJKEWc5TMZdIU1LxeIIaVzIEk1Gabmsac5lmh3rkaJWi1cebCtxVYs9Jpysf7Sc7rtP1M9xIAuFTqPKTZaPDR1Q73sjleMZzqW9ccH5avvyiXq15zePX6P3kmD3pf/CXZO/e+7/v4yXTy8Jt+dXw8+8YBX+n/2Ofd2ezRF/7qt1nqxZfWs+rkw3H95s/0hWrr//jj//z//YI6DAbB5JVhufPJs2mz03n3sin11u/PNzedx7rGhFcdvSz35GpXbg7b9qQueK7ZrZmdqtB/MJ50q6PLxUIPb29X5UHvolvrNRaVitWdVgrKqUyFf+G3//Aff+9vvbW5PLp8dr/zo9Of/eLf+bcL/TyYDZfjQb3+4MGqWJs+GFj1bn95blde+4P/97ffV4flhitXRkGlIbc6lfmrNWfVsycjTP+56hry6EFVdWv9xapkzM42bQDg5tXbi/VkvXrWU2QdVK76ZDUIAi4JapXNp+P3T1MZOn0/mcpmsuljUCxSkcKINjyBzqQAU0giR8MHjIYDPCfyVAyKr+oaNGYjUaBFBEHRBFjpmXyeieJugCDL6A8OAEwIxUI2i5F+FccGxCt81AWNcal4BA1FmeZUNBOG1yarmFpYVVhehmrMyYxUMkDuajJ2D6Ea4lSrVA3Q3MkyTDyCBgCmaALnWoqKZ8G+skroDlAJYDv05ueXF7dzgCinGvplW8ebO9BVCh7tYOQh5sPTBXh3aqvWbLZsxC3sFwaMxiYsThElTJQr+1EcYRjW6/AbDEBoTY5ykGgWO7DQ6Y4tlcjI7zYKVs+lYiC2eBMNnAxMx/Wq7cFktri4vr595fU3PrkE/Q//0q2ieXW10V0vHjx575FSxhmkwK91m8MRDgK//pknOCnaaqEC7veH4/kK7TwePnrzk59/AgCcTudEkF+mopdLmg6vU1dNB/2qQx9wG0HQdzVRMUx4AtjzZuq2wst4LUbjHX8+8THAXyj/eMZ2f+/uzv7d503QW1u7O1uAAls7uy/e3T4CbSnkM/FYMgZvLJ7IkjQD21ku0HSRKkC1L7BcoQhUSsFLdVWxK+UAHldZAeDUmFz8KFss5Knc8+5pigLMzeWjA+dCgcjkyXwun8+mM+kE/AamSAM+ExTeOuDdr8AWefgSQa0XJcXwHcUYPXh0e3l9XcMDNx29sAzd8UCGwtpj6XwqzbnVerOBvVeReQq6I9TwVAEjC4p5+LBIUtXzmQJjeyJNZZO0oAsxUHSFw1ScZBWZRifJo/uggFFtSpZBpbLwGk/ss64JbDKdieVMS0Y7E+RyPMgOqwzMzoLvTqmhJ1B0HvYRSFWaBwmMcU3Afwx4KwVRzucJeGfPAdiwMNKwGbgF+AD2j/bw4B/PaLe37969+/GPv/AiQPHdrb0jDMs4OUxmAYAz8IJofGp5RvUBgGe83wswChEUYdgLSpaQLQ8CW2OKJNse9Ro4IVTDMaxGD52whiNQqAMM+5nN/0sTFvqNKYpU8mvtER5Bry/XgKXd/mjc9kpalN2EuYNBvTvEMaTVus8CXOBwEihgXXdK5QDwt4dzwMN2qz0frzbL61fs/QiAt3Z2gMvh+/mvXty++8LWzgt3d+5uxw53YslEeo+xLCFP8lQ2mwbsPc3T6RjBMxx8ppYdgMC/erkDlI/TVT6YTGsVWNI2rUgIwCZeehW6QJUlOk+yOOtXr7Ur7SDA5gP4tKPTpdDFlv8iLCHFrTbrzbC1mA+n09CXuQLDyyZs6la/sw7RoBzIhG5Xwlqn02iNxqhkFg+4TwB/wFP0nZ3tkyKDVB0BGBadQKZ1S6ExRa6sKlA/4mQzuu0ABG7iw5gMJqumXdZALwAAtztjeD41xyoSeqlW74664z7HykqU02HLXBotgYAIKUDlXN0zpcQxXYA9c1qEtY1hl/XR+e1Lr36m4/iagNkr/gUCsA4ADMWptX4UyjbPyBqIFE3ByS5e/WgMKYU9tMmM6N9l2Uws+3h9mk0mdYMpOTLN3iekeDon0ASp5UT2xDX1ybgohnySU0oXV9UKnyRMYzR5XD8GZrm083RRYjm9UmaBUgP99DpivWaQnON0bgsUpmWXfHsnnmNkrujW37oqCrXy5Qei36y2uuev/ubL6nj85b8lV869r/y34nTSe/bNvzDhNt/aZhr+j79XXo8uPvNz31xyz764nnqDz43Cp9+9qZd/+Y//+N/84W/Z7UE3HD/plEfvrhatbv+9y4Yy3Lw3W9+0HwKZcC96piN0RADg1rBdmvtc1bZHVblZU/qb+azrDy/mM8W/frAsDwebdn3U3bhWedTX1YJgHH7y+//CH/ytH/27X7npaIzAit//hb/36T/3nXywdKfD5WTcbDy4XvHNxW3PbvX7y6tKa/3Pf/uf/aQdeK1AKA3qbgsYijd7JQQANjDPZ7EEOiD3N6FWaYzWZ646uzhrPTgf1q9fGa/HA3U1UfMKW8wwD9ezmhKLpRLb2VQsdrq7H+fSW4lcNpUGxZIioDSlUwC6RD6DjsOgi3M5qKye5xocU2SIBFXIy55Fo6k+TiRI6MVQiKaPeIXmSRHzZz9SwJTEQckA2RqU8Uwa9rykCToasQOCYisDWSCtsqoaIGZcvLS0y9WyJcsGT7IMIYFu1UW0b4atxFIMKehOLQTODn+6FFZcPBIHHgClHRZwxZQUNAgsOeWyD8RzPN2cXzzelC0b45RAM5slkIo484eXJKBiWZ6PZlpT6qDf8pshADAobtPCHlWBw1gnWQc8LqGhEkjqah0d73TQtio62BRxkglbqQWmyGogq2KpVDKB5bfAZGOk6gD+YeR2rxE0serNJsPLJ48fnF8+GQm8jNETkVdTezCazR+9/uEzHf5VoxVWqq32YDzfXDx+51PXRgV2dROvgGFfD2erC8Dfx0/e+fQXn1GxRDyZ4TCIWdUqAb5sF4/XtUpYrliqAfjuqCrPSqYhihxV4PBeqGzIukTTQJQyaM/7sft3t3a39g53EIgP7uOZ4b0t9IPe2XpuxbF9d3s3ns0JIpGKnQAKEKmTWBazAgtFEVMTgPYIVF4QaEbmeVBgnKhJSrlkA92J7ERlKXWUyWTQIDmZpXBmBMAsB/QtlwF8y+fjOTIPSpOIkuqOU2j0AgDM8mjHh8pM4ItFECgIwYqi+65qz2+urq+uzqqqZkS21wawChe0hEjk4PunM4IH+BvU8eK3GviN2vOLOTSMKlskvHSWpDUVZBOteBws5DRRkMUcyQnkaYxg8QYNx29P9/aO0/B7OLVUotJEhkgem+u+pYr5TD6VM4HtYB89yG9VFFR0bnJhsXMFJbCB3WTjpyfAWdFgWNFF0fJdCwibxPJCGp4BpggBlYXVju4w1VpAbu/v79zb2j08Pjq4f2///u7uzr2drTt7L76w9cKdOy/eASZ0b/+USqZPEqkchSEN6EPltyfrAR+2AGrKpqYy4SAwdZF0B76jKkyBb7ZD3w3CRj3EtKJWu9Ub9keT0RCqRG+02OAdMAAwVFQAKFjLAD6j6WBxtlovp9PZCAB4VK14skiDYAcqXYIl2Z1i+9tFD+8KMBC8CG/EdCwPfgJUxeF4POj1J8P1YnO9eVjZ2k/sHO7jqfodkJF34Y3c29l+8YUX7+zeAwDePr0fix1nndCicCwNYDYWPyVoHN6iAAoNrVTr9s8evNRMpeEzkdTqZFmvwPuxOBmAtxYYGstlqE7VUiVQwAx23TXqQbUeukGUGoqtkiCEy4YqFgsUzytlHA9qtvqT2XRRdWWGZXjFBpLeGXXn1SKPmQk6yHxgbTh03++3++P5Q+Ljd7c/cRfQdxv2AcULJFN0qprqWALLpnVTAoiM5X3MLMgfZ+oV4Hq1atDoQBkeAACPGp6t8oJiVXmDxzsAACAASURBVBqdXq83mVY9l8vrRqXe6baXbRYUqwXc2dUkikWLBZZFCWvZJduQiwXYUcX8KW1o0Rl/a7J8+OT19xpu4Ch4BF17cG4juWN5Ta/0lg8qpsHS8JxsFA5CVuDh/yMaC5h4dFzIluxdomzGCs0z4iQW0zRKcxSOP03RUjxJZCxBLaTTBTLXGZasQkWJUZo3uF27FkFLYn162zyVZf+pSzDYcqlnOPZ0nyiRGa6SFfMyxVWM7g08TtEuleviVkLWpBJVqrx3VpRc9+GnZaiBtf7Vp/6311Yvtb/pFyRv2fier4jd0ej2G//mSHzzxxpip/cX32us5k++9Ncf26XK04ftWueDUfD4+66Mt//TH//hv/xP/3FS77Sq7UftoP3u+bxV6332eiyOlp+ZL9fDR4pmCGcDy5U8rdKSOrOePfeFpum3ymLn2mmcLeadevt8Mlb969u10+9vmvVu76zbq046FkjA/MUPfc8vf9+f+vGf+olPNvJcIe9/59/829/3U9/x7bXzYDhZjrvD5uXtmVAf3baDTrO7vvTq03/8e//X73ecodOwxH7PbWnBwBu90rWnI7PR73VHq9XQlHpXtWJr2Nrc2KXJ+Sq4nre6mzeWF4OHg8XYTpIOvSPeLHo1NhE/OTwBYUNSOP9/FMuhBULq9CSJecCp02yBQ9tJ0HMY0ZAp6oZqGkI+mSUAgIuEZLPEQfxgv8DzKqbhCEwhpwEcwdYkZYZkQBiXdKkIzI4jCimrXsKIBJXnAKgN2vAsVbMdx5IiVeT6IBRBFwDcgbx0PFNRFQ7QkckCx9NlPDgFKGHZPE1LmhUEoH5grTqBB98QPakpDpPeAXwU3dI0ENEAtUGn18H7rutlxQXeZnsOUERsX7UMDec4LR1oHANbmikWSL3m9pp+w8dpYdtCZaPyIL4UIMa6Xq6Hdd+rNWqNDuhTnFTSdU2WZTThEDE/nhEZVmNS+RTIo2TyKJ3KECRfqaE5G2iQTr/VrTXn55v1xeby1dffeP2VtwZFFMZVH+VuWG2NVxc3L3/xFR29AXw/bLa6w8Fgsrh86TNPa1W3imkq3dF8PhlOzh89fvT46bO3P/jyk2wsnUxnJMN0DA3AtuR4nqMDIMgGPHVF4IwSZoTqUbOQgl7QJnZFYd6KouLVNQYDfwxNKDFzfA94/u7e3t49vPbainIY4C88QtzaOc3mBT6fjJ0ksuglmMjReG3OoAd0sQACiiHwGB54r4GD0fBpBZ5T9Ry0C5NUKXlMUjkWVhCgB42uR2h6jLM+ORC/GQTfPHYa4M15PENRDENGJ9BiZEGJJ9BclB4h4L1FvSobkwfXtzc3m0DBTwY/yAiAYSGRuajBi3dr9Qb2YEUjwGjFCAoYPr6K45VYtAwhWV0DHKVVj6Wy6DnFF9OkIBCxBFmEJ1PIAQ2NHx3G0IRVAAAm0/l0LnVsrgCAi/CKY1nDxuEjQFVVw2jLyNIN+GCxoIUOUJFcPHYKChiqOvwuSbbKpVIJVjC8q1QyD8iFBBC+rOf2bCEJKmv37r0d9ATd3zvY3d6/v7e/t33/3ovbiF7oR/bi3dNCKhNPZ3JUdHBAcXK1N1mPhGon8EPP0gGA+76hcvnSAGq0SNNsq98MPQyIB1xodTr9Tn8EIDkYD3vYjLU+v2mbAF8fATAQgmpzOBosV8uzzWwym3QH40kNARj4lSjrdjmArbRaL5ZnV300Mc0zIh56qQAXHjzdTq+PccOD4WS0WFxcnz0qb99P7BzsAXV48c49WFF3osNcXFt797ZPD3djp/HYSc7wVGzGzyUT+ZPT4zydSueBruMIjVPvDs5vnrXSaZJD79nRIvR82JiyCB9hI9BVAGCmGwL/AQAuRJc02DpRrURNWEHF/RoA89xHANzqdZuN/nQ0XoQVJZK8VqUS9Fr1aYAAjNEeZqUa4NAW4GUbntEtAPAWSHacA97apXmRZpkSsBxAdZZMaQDAZD6WC0yVpYgYUfdwuYUA9J1OdzhpD0Ee2WqRl8xKsxcleSMAE6aNxnidNd4BKyB/TbPIkKAf2EwGHqmkS4b9/LpCKHJEjDENDDevtaez68dvvF93Q0t2qn6l99J5CdSEBq9b8zqzK9fQmSLUKgvtQcUsh211CMBcCp7OaS7jlLZYp3yadWeJ01xckouOrfBcLMdpRDzPBjpf2NlPk7mKtBNoWhPkQ7l/s3QsktWk2ui6cSzLwWOngEqnwCdp+nQ/JVYEopArFUDjW9rwEXxKsl3yQjaWYEuNOuMG761ZueLefFrxqpVa9/z6L+eTD+bf+IuSuwy/88/Ik8Hg5su/OFbe/HM1ZTj56rvBYnL7hb9yZQbV2sITlMbSf/Idj+if/6M//KM/+g//dmaNO37rcTfovbta9prdT286Un/zWSjt3StJVZllTyvJZT1oK71FqzQtiTXNb7li99xt386m7Xrncj6T3atHG6c/WrVavf5mMCo3VjZ87m/8ta/8g995/8FPffe/+eEfeSJw1Pf+97/y5tT7ke93z8PRELZBp3X7ZM21J9dNq9kdnV1XRg/+1r/8vT98V2tVGiWh1y819QoA8Kv90nRkALR3xotFR9VmD2tasz9bL6vKaj0fPrpsty7enZ/1rl8/P/PybNnKOq+telXleCsWS8cPMxwTPzyOx1N5bJBJxU9jaYmhUrDfaeySBwzOgQ5Ooyc+QCKZSydP7ycycUZjCphqkKOLqsyyAgPFU5RTMUmCCk2SnGIAAECVZgSRyadUD203XLzzzRdEUi6XdFXTXUtiMDzJCUpeFedGNTNy6DOhsPHoapkTobqIqglyRwSyTBWZCIDR5A/KXsV3NDSTLoAMo1le10zVcADoy6DBnLDbBwSeLc4ngAWuY5Ydw4rC+WzsYTUAZgGYoEoymM0lhH6vDbUK4LUE1VzmRJlnizweh1lWuerD7sFw2aCk4tgTDnliby4H+gArGAcSWKESiaPjZC5esHwpJ5XDZg0T8Wp1qCWdTlifnJ1tLuabZ6+9+vpr70xwVN62rRK82ZITtIYXT1/57K2O18KuGzRa49lksnnw+NVP3cD3aNaqnSjjrNdfbM7PLx48efnNd7/4JA/KNJbW4J3qmuNiQI9tgh4vSrquqGXP0hQV43qie28JYwlVTVVlkPaSKBZ5DmqDLHxs9wAV187BzlY0B7P/3IgDERgzYLZ20Av6OJvni7kEELNcOpXA2FzMvqKj2A2cBwa+Dg9BYhldKYqiKhnVStkvww+GAq/KuUSBylOIu3mKjkw24CuLKcC4trAVGud+E3hqn8jkSQo+TrwBFvEAQopMOERQaAJ2QVuhr1uT66ub68tNFdmUgV7Qpl7C0We5EIVQpYsuar5mHY04cCQ0bDTxIjQIXM+mMGGwEAEwUTT9IoWn4fkiALBYzMbTVFFVigQaYCRiJ/EsSTKiXnaoTB5e3LGx6lkyLOTUSSYCYN3CY32cK7dguVmwTlhC9h0R0OlPADh66iZOgMk8QbPpVJbEVDsZj68jAPbrNeLO3e1d/Av4D3wc9+7sHR0cHB0c723vb+8iBbp798WPH4NWT2A0KElhJxsr1weT9UTye1D0KzaosLBX0eVi3hmGjsSDzm8P6p4dNMLoPrTe7DRwFnjQmYz7PeyGfu6E9ZECRiOOenswHK3my835cjyddIaTWdP3FB6TGnTLKVc6o/FyOV+eXw8YtljMc5gGrGmweP1q0Oz30OoJDd9G49nlxeaxubUX37q/e/fFO5944UVsLdvCm20cb9u5u318sBuDr1PCdBWCKxLpRCIHAJx7DsDwbCzdCdu99fVLzXSGFIErh4NF6HqWYekcW+Aangb1JsP0AIAFmiDICqY++8BnfRTA4fP8jT8B4OgIuj3sNeq9WX84C30tUv0mPJh+WJtVi8DeFWREXjWITgu63TZ20+QRgNGkFRB4j+HFIkfbFRvwV+DySQBgpgDAG1oaS5HJQt2thejXU2vAn+8Pm6NR3S0b3HMAHg4Hk3HolTnSsKqYzbBsc6yqQaExFaCfDOiKo5ggs5xYkA1VNVUEYIFMFi1MQ6oEzdH04vHb74duTZccWM3DZxfosqPjSnJb47OyrjG8JqsGrjcxg2JagoppcGgvnEinbeOebIWxlNQ9jRMxQeUxU7F4WlBMIZVOKzpJ7seI9KGqpEQ528gVucb4dlEygapK4eCqdczLwbVRgPLLFpkUSaBlRCAqDAkbQeQNZfQwF91W+yERJ0nabXJ27b0lI/vug3flCsiMzvqitx2bt77pb8j+pv6nv50HMnjzDX99bL71g6E6nn71ncr5+skXf25MWlK1EqqM0wsffeWTylf/xW/+r//sX/9ardebNYbP+uXW26Nhq9b65DKUepcfjM8vezeyrtHzoVpWLD1sqv1Fw53oWlWrhTY/WFSaD2ezTqN3vVzK7vWTM7s7WuBM/LI37rf6iijaP/kTP/89f+/Xf/cf/Kn/5Zf/9F9PHr//89//M1/3vfo7ny+tKt32eNprhrdPV8XB8sHQwr7860pz8a2/8U/fUt11qxKojaZTN92BO3pt5EzGZg0K/WCx7vJif6ICpWtWFJWVvUB/9C2r8vzV7vly/crllZvNFthj/smo05oqqZM4ld3PqHTm+DAWi6dS2VQycXp8dKJwJPzTaSEyBsyhYEFXAp4HpcOxIIZOM9k4LVMFNEpMUrxioBkjxYqUkEsUGULMZsnnw5IiRZAsD/VXtpxKySgBXhbyFKg020CjoJLGEngLaFVBC1gaQDDGCFi2AfsbQ4agpoGQ4hTATgBFhqRY+GF6EESDrhZ8Sxz7gIJU5OA/CbpqyBqOXRqwbN0QmOxwut5czUEQVxyUvNHoJl6F4hWyqYiCAvWdxtlKodXqd9u1WqVSAb1iGKBRJJYFBgA8wsTYddfF02IPb4clAcAXR5ng9RWjJiyGZooqSJxsKn10P9cch07Q6cJSqkdprL1Rr9dojtcbQM/rV197+ZWX3x4X+aIA5Rn7iHTb84Pp9c2rM9YKEClAUHTHUABefvXVzz+q+H6zEfa6iL+j2RwkyIObh09eeevDZ4WT01gsowGGw5bFJjVNex7C4EbOmRUHngOQiRJaJgLXQTmKrbuyDOpXxAgpjit+bP/kYPdgb/tgf/95KiGg8B6WnLvYBX0HFMuLd+8dZfMc4FMM05fS8TjsaZZiCIqjiQIVATD1HIBpVcIpV0EBNuABtzcwpknj8c6XzaK1IoWZeih+89lCJseQ8SSFEVoE/JXM5RKxZBYtKCMDDlEUeBHvlDFtmcfEZV6UjKBs2ZOrywdXF8sgWinYCGAaTlBBACaAL6ZTxUqtWms1Ih+OOnYAR5bcTZwPtwr5IodH0EoWATgA6QKskxSKeOeSjGefA3AOAfj06DRDFljRqnhMvpCNALhv/f9cvQe0ptlVHagRXV3x1Yt/Tl/OOYc/55xeTpVDt1qt7lYrtIQAESxsGIMFGAy2AQtrLSEYj4WxDPbY2AsG26w1nhknGBjsNbNYYBsbC7UlFICZc77XYM88VZeqX1W/ev/333v23vees7cG0ie3W7Q9NPdEFmdj/rIDX9mxPIerKLErIQBjvC+JsXLoemLYQA8AgEF9FwtZ7PYWQT0CzGCYMMBE6dq1m7dxBOlmYgv64rXbW5tbO9s7aJCyfXfr7u3bGzdfSFHAfoAHUwkAU6zSmswOl2rcb9TqIUbEN4dVSxOxCxoBmBH6AMha1KnXoE5bYb0Fz6Q3mgwXc+yGXh0cniMAizKXjCEZhl9vjWbT1fJgvj5czKb98XTZiyMdAFgAAex5VQDg1Xp9jAoY3h+004T/Srf9sFardifDCey1+WyGdo8nhwePDQBgPIK+fv2Fa3jwfO0OtnmjvenN67d3t+7upTOZFOFFCiEK2LNWyeZSoIDzZQYUMAJwvds/OH/cBgAWAf+b44NmGLu2awmgwpohmsgWuRECMKAfWW226xEo0DhCB/DG1eXDFQADYONUTtjsjwGAB/PReFEHABZ4GZCxWh92egdNUELAQQzTxVNkBGDQsKP5OgHga4lL+p3bm0mXFOXFjmnKElfOmSgdyAwAsA7/n2NbQbMRV/HcBdjOYAgA3AxCG0jkFQBPZrNmNRAYw4ywa3zd4zjD8Dzb0YoEwRBc6W5OVzBLRAB6rEiUgACc522UGVHcmiyOH73xwXrUcuClNBrjx2dhFCMAA9XuTA8Dy+AkS9OxXUYRCxwPJEGD+ihhE1sxX9C5W7bege3WLmaLO6rDS44pc3u07uh0ZTNvEEQZFBY76cqCxcp7FSZcPFj7DsGoanN8OUqJauvMAPlLCwKwpHyRYLb5ssHSJVdWdd8YXRKcBTyz3ixuMVTeDDknAeAouPd+JaxX28Pji29laXn+Fz6nVg/bP/DnuN5wevltf3vqv/rXWtp4+lNv1Fer+x///DAlc3FNYPumOz/7i+f66c//2j/79d/54oN2dxj17nftzusHy1Fv8tb9jjm5eGt2cdZ/BHWani+MUNesZlMbLprVueJWzW5kSquDZhOgd9RFANaje09P7O5oH97e9qo/qi16pl58/Iv/+J8cffdv/qff+s4PfvEvf35U+PxPfP4nRj9/+T2v905qo8n+/qTfuHy0L4zXlzOnPZkeXsbH63/9P7/923ww71fbatwLG74/DsYvz/35wq13B63a8t5CZEJX5DjS1WjR5FjO8Eb9+RvffrGcXLy8OvJRRO7ST6f9xrlT2dphmM28xpZ2ttK5bD5XyoPE2d1Nq0I5VSxsU5hMQwLHxIC0CsMyCs8KLFQvkqFLoPkYzdDNFAdgRHMaW4AakS6WUjnMUGKxe8n2VYYAhUxWKM1wI9u0YUtTBPYgmthX5doKhWZbeasGJNtyAiNJ83FsLFxJaC2pY6iH7pm2o+NFJkvymlVvOo6umFB8A0cT8QiYYtEsQhcVNLq3LQ2H59CWdbI4ODiZhyEoRIxtdaJEHGMWIsCwjkecIuA3y5JCv99q9nDitl1H7wpQiyqHFiMysPy4VavHcaMGQBn6MV4qQsHFpAGaBSYtcSTihuk6oDrpVJmtQamD2h/WoOrXmp0O+hoMR4v9g6PTB/dfeunps0cvT7GbzPW9Vgv+RG84WF4+e+nD9w0fh52qoNn68/XR41defv6RB3GtDnIO/jcYj2er6eL43oP7Dx6/9uHveIlO43yYZiQX1Xjng6LKh9fpB7D1fXS6RC7jWAkwW4aG5l1X3buSKie929y7tvbu3tnZvH13cyuJI7yVJALfuZWMIN248eIL2BC9Uy5zfCmbTuEYTD6TQ8tHtkwJLAIwjQAsAxVReUYVQfYZkgSyFPt+sd9NNVS6VKZ4PHWukNjuBpoTOB0JMFzKFdHVBd7+IgUsLJcFLGaTblC88RdF/InHS3Yey5Egq24zNO3J6dn9exfzEKEPFDD21YWNmu8qFMEyRC4vVnFsuv2OAk5+1NGcEu+AE3NRkkIALjN6CLV7L1smRS5XFslMqkhxmoEATBQzO9t7JTxUAQDmiASA7cOxq3NUIb9bdDzj6nmaifufGwY2VFOHo4y6BU8CADiTLVKgTjTsJYCF75sWkhMhD1CDvtkS/J7poLM/LKzCtes3b75w/QY2wN188daNF2/duXP37l3sR9/YhPdlY3N743pBqLAkRZRIgmIYQGGpMZoeLNWoA2rPtw1ZqA9iAGAmmlRdVWYotj+KLaParTeqjqr5rU6zi51F88UcwWB9eHDeveqCvgJgMwz84WIMINseHe9PpyBoF70Asw5AZJmO5zXGy9V6tToEAEZORLMJAGt2GNdrcWeMo+6zOSDwYjw72j94Yt3aSO6Ar98EEvci/IxuWHiiAv96Z3tzYztVyO9V/Bi5G4nvfyGfBqgoVhgKSrpt+s3+OwqYEHTLbU6PGn41cBwNh3VqLjaSFIRxHcoJkCiy3u5Uw7jdBgCuJ6P8tf8KwALKNjVsdQf9dnswnYxn1Ujn0c/HhT/WH46PmxjiBvUGiHDiw44IjNv1XvndN29dS6wo79zeEliWYwk/Ng1HF2GdOZ7C0lSWbNjoGphlmwEQgGo7AeBev9ceD6uua8AXtqL2aDqbTqftmi8wlhUCL+8edRGAXdd0dChpNCHktgoCVSqlSBKrEUkJUP2IPG+ZsJvhy85Wx4/feH+t2gwtqEON8aMzkD6gvZE6taaHoW0IMlQkINqKxOdY3lBkHba+hFOiTLkk5rYtuZMpEG0im9tWbYpxLZndJTVL57lUXiM5slioiPN5J4o7XIWSmot7S98Fbqq1Jw+XWV4fnJnAPziJKmW39wrlyi7FcBU7BxxT9pzROcPZumnX28RmmZTaNhU2PnjIyb7/4HXJq0ad8dkyP7tXor757+nRovGD3yl02/3jj//MKHrvp1raaPyTbzT29y8//vO9O2xOpzeZs4OVce975uVf+OMvf+0Pv/61o9H+rDl7NIn77z09HLa6rz1sydPTD0zODttPTM2kBysrsES7XdOG82o8ZX3P6tUN7fCo175Yr4fdwdlqrcf3nh473cFhv9vtHI0nrWVcpve++zOf/ctvvnbx2V/++Js/9daf0XYfP/6zf3b0o3/280+9i+pofrTst7r3Hh3Lg9lZ12kPxsf3at5L//ntL31tKbYa7Z4QTNF2YhKMns/dyQKtwCx59uRQJQG+JLEgmqaekjqcZgqa0Tm4WMzfe354UpVczdihni27zlrI7d2l+N20opK7uyWMQMcEFgxjUPjiXqmwUwbshZJZKhcLuTyZOBmRFOa2wW+UBI3mKFUppRhdU9D1qpQv0ek8WaSoHYpDAwvX8VWOKLEiU6Q02FdoPy7S6D1KsqqdnCJrmEZHFI2qa0NVCww0B8JRO6gJeE7KkWYVEBioL/r2iNiEJehOvW4iALuO8/8FYE0U0KFHMzXA37jW7vWmi/3943kQWJaPeUa1VrPViIBTBhgjB8AkyXySgV0kW3XHbddBJLumLifNzRKGmSl42+w1GqB+m1DCozBqtFv1WnK8enUHLEs8TTACZ+JEUcMxm7V2o9sMq81Gp19vxFAc+uOkSXS5Ojo7P73/8NGzR89WsmkEDbR9jsIY4GJx/vDxm+c8sv3ko9rpdKfrg8OXDtHIrgUCrjNZQJFbHJw/ePTkvR948xu//UF+r1QpFuFbhDpqGzryFiAZHt4hwYuLa6AMPcxdNpPUvgSDdXg1wC1UADUWR6jkd21v393Y3trYeCcPGCMIsQcrscECvfIiDiQBADOogFMFeOvyabwDRg8ggacYvgIAzGLLCAe1URVAM9qyhA1G+BeamFXMUyTDguCtlCvJdS8oYYJAR5VclqBxbSVBH5g+nysRFD5O7LpSZXTgADGgqEneFHwCuHYzsJzZ6cnlxcUs1EwMArTRCwI0r+/IRIVhyExRrTWT2SMcA4ZfJdaEydW67wMAYxoSNmEVi6QW0DSdL1OUyBVg/aAnFiejPT7xpwDMClbgMxWqWMzuuscAwAJZKKRKNkYdXxGaqzlfvMuDr84YNWS8lUw2myvRIn7rOCochC6URsw9yKbKFHr+ok30VRxDtRblr7148+Y3XE9cl268kIzs3LyzcRcbsUD8wsfm1saNkkwCESgnAAy8gZZq/enhQo5a1ThyAYeEahdn7Bm371uKwlBUb9quxu0urDF4ZvXBoDeajufr1XIBUAAqd33asV1Yw5gxgAAcOfZgga1Xcf90f7qY9jrTjuOZQjI0BXQWAHi5nI2nR+djUPAieaWAgVsA5lVbw8F4MpsDyiyW88XhwcFj78btvet3brz73dfejUfQ11747164jkfReA28sQkvaSdfSJNhTRaBVRPFIlvIpwgeW8cpSdEtvAMeJgoYm7B0uzE9rLlVhBmRJUgEYIYqCJO6iYBcIeutVhxW220AKHjnm7UY9vp/C8CcEjQ7/V6nM5hMx9Mo1FEBqy7o5N5ofFhjJREd36H0YOJKq9vFNqzF/mXp3TdvAgAnXdCbIsuA4vNj2Gi6QJM5J1BRAVMNU6bISppuhejAhXwPNmy32x70a54NAlwywjZs/ulk2m36HGubQdTs9A67HKvreCbnKJogkFwJ7/9IFmohSZPFEo0AXMnxJvbJgAKe7p88ft+rsIx9IOlhdfjgFINtDF41dLcxOYpsS5BN3XAMSxW5LMlooAgd22RTxTIvEyUulZGlZqpU6RCZQkoSyrJnStwuoVgWTaYLpYoLtI4sNw5fchm/UE6Trfn53PNgOyqd+ZODLGcMjnUOhLoAG2e7jOHgRVkxqhXW02ndnV6wvIUA3GG28kW+ZfFu/QMHvOx6j14X3TjuTs6Dje2j0bQ1iGrT8Ps/zjarjcW3fG5Qe++Ptozp9Cdfq56cXn7T/zTaMt24uEXzgVfb/9RT+Z9+8Y/+4Pe+/n9XR+NFtb/fr9eP5+t2vfbg0cgcH31gdnI8fsUHOd888H2X8/pVfTyvRjMG1MegpVn7B+3Ovdmi1+6frQ/U6PLRsT8YHA/7/f7ZYjmYdCvl6693rb/0P/zHx+w3/8CnP3b03emt8x949Yc/+8nv/fTB+Cgezo7WaMTx9MIYL867tfFodnRaG9z73a986V9H7W9phEPHHnaqDXsaDJ8trNHCkiWNpWePV3JRVF1N3M5LhpCPXooVWHdmiVgvj94c3jtt8KHvbJMPVwNvJbL5rZKQ3hMdLp2GGgRKt1wupHZzhMqX9gql3QxJX90C4zQZi2euDE3ldrJ0AT7HS6BXgohMlWADa05kYnUDyox+9oKK8Zqeo/HoIMmz+RLCr2EZCkeCEqLxotIwbC8wedBQZFGDAoARM4aNrUSOpcmaIQkSbDejVgst7Nd30ZaQZEhgE6EHS02zQexhExbPYEAalTTfwz86cD8njKKo1hkM58v1+mQZha4doilQFY9mPcMCzZDYKAC+8jQeqJbpjSriHQAAIABJREFUZs3xu50uUOcwDCxZF0WVJfCcFqq/Bfs5qjVD+CY8POnCRCRdxjtgJenSRR8OxqgGVQDq1qAF8gtKQRt7gRo4DYVOav3pDFjs+TkI2EfPn760r5iGX40D9A3AEaPlg5df/vA9RXeCGD7CYDAeDBZH919+z75brQJ+tGqNwbhTjdrT4/PLRy+/9sZb3/a4kspmsjlBN2xVtvFGFBShl9wE43BDEHkA5l5wlV9sw5P1cILCsgA3FF4RMQhKkN61BdoXjaBvg9jaAK6f9OPeuX3jv37cvLFbKVMctvbmKuiElSmDAiZANOIBQAmzgCuSynC6wGoSzcumrHiuh1HjDlpvqyJDckypWMJ+J1C+SdICRupVcvkKml6V8xgRVMpnUc/TV+HKkiijQRmDSJV8wG5XNQBgoHSLs6PTs7NlFVMY0HrE870Y06/kCnZZZ8o6UKVuMvx7NYKTRNPV4c2Ht5UkQPsQFABwuUBoEUPThQrLKWIJfpXbyRGcqPMVdKDKpIHnEwB0hufSZQDgzK53PLJUAceQigjAhp6MXaLHCR6uwJO2AYDRIoKvAP4WShS6pCmarFiBY+qqLDE8n0sTOKUH0Czj0AhGRlbjAuDS7W+4cfv6izdvXb92+3bignJn48VbN1+4fevOrVsbd+/cvFEUCRqDLvEOGKeqlWpvdjwXkzNmzzZEoQYALPOM3Q8dgCeG7s96LXgOyYVovTMY9MfT4WQFKhZwcr462D9tGXgHzCd3wADAUTRajGazcWN+vpyuxp3muGXYBt4HSKrpx83heDAc9Ef7J0MO/hu8A8ZTW6CyGFiNlz3zxWQ4XU1Xi4OjgwfBna3cxu7WbTTguHPr9p2bN+9u3d3Y2tlNb22nUnvpNJ6DCAHAmcKhAT1bRACuoDMLOoVZYRsA+PRhE0SboOlGdXxQ82qBqUsKR5CNQJUoMi9MaoYmQj0hG20MMGmh7U2r3QEArtb+FIBFhuZYJYBH0O90hvPxcBrHRvIWOLUaAPDoIGZkkcceRRcTW2DxdHHHLtbnhXffuHHt5m104ri5AbxQIPN+DFRXFJhK1gkVUL4ptmHA91LepTpxkiSKEhr2Pzz6XiuyVVEA/tXCcIvxtN8KONY0vLjdaS/xDlh3QVdEaCLLog0HhZaYIHIYEoiooApcKSeYavJdNSf7x49eeqneqtoq7Oqod3EMZMG1RNAaVm1yHNmOIBq65aH1l5gnqcSW0tDo3XKR1cp5NputqLWtYrHPZ3JpkNY2dsOmCcVxmfJu7m7F5UlCdufLsxnIZirHDVYXM9clKEXuzB4fpCmrf6QxFAmcmyxvSjaZ3rxV1EMqm9d0QbOm5wxv4exYh01VCCbUFavx5ppTfB8A2KvWuqNj725u895jgq83Jv73fZQBPTP7tp/p1V790ZY5m/7k+2JgGG/9wqowPDAGRBBK/WD5a39E/P4ff+mPvvbVr32wuZyjEAr94cwUDLW7bIm9w7fG8/3R/boSyBEQEJfyh7ExmdejBRtb9VFNDNbruH05W+Ad8NGJUr28fxiNe4ejYb9zPFuMF10qn/+lv/nGd37sF3/o9Je//6OPP/vFyd6vf/Yzn//Zn/ypXzzqHTRno9XRrN2+//RYGowW3Uav0esNo/DiV7/wtf/04OQXOvagZvR6YcuaAQCvrNHS4jiNZ1YPxlKOMWOPv53hRL4sN6uj/uLPv39//Li/fmP/dNUSBvsLxXh8MKnNOK6wVxJKGcYSsxmaKRWgShZyqb1MSWUrUGjTOyTDAACXSvlCvkCwHDo+UvlUAT2gC+g4a0cNe6+o6KJkeTovyhSsH46ukDhXZ3uOCfQ2v5cplzJ7WoRBtbrMAodnedv3ddUMaqEt0VCLi2pkg6gF3mZHibm8JoiKJOF9ml6tRyaeNFp4H1WhSBF4t6lYhobtVvEVANOcyLC8ACpDMuA3AjyI9ard0WSCnSVTzw6dqBmFgaOrmoXHM1APEToFRecqLIueiq16td5r9+qAilCpTUdRTKHC4SiwYQbNGGhnIzAdN6i3m9W4GnjomS6zaIMliiI2fhuNIIZC0MAA37iFHVh1zFZEP5B+vwFUe35wcnJx/vjJk5eev7oP0tBByww/rOE04uT8ydMPPzKdWjMZOmoBXR+uTx6+9pEz04Qq1wgcv173AGA7oF8OT45ffc9bz6VCNpMBAFbhBRkmtrRhQhT6wRpW5Jl24DsuFBR4nIDH2K4E4hfEBZAOhTOAYPPwVr3r7q2tnVt3tjeSQ8/bt+9sYPzCnVtXV8AvXHvxxo1bN/cwG7qY3tvNlAoYVklgYlGuLIk0wxUBgKnSFQBzQICAAUlagHBk2phgBRtHrFQIJGyFxO4WXY4BisVilqBy2UoOxxRpli5ms7DMKiw+TQlvqVm0jGZlvPPDy2oONDBoCd9w5qdHZ5f3EwAGzgGIHPhxoxp5crmIHqmUGcatXvvqDBpPBbEJC+09G3FokSWWZ0ukppYK2aISQgXdydGCIRVBVxZ2MgQrIABXiFI2u7uTyReLFR0AuEKXSpld/2RoyFy5UEoXTN+2bUNBjxYPmA2KYNd2TY6zahbwByKL0fME0Afsgr4yfeNhlbFCIY8x2iDsJQnhC4lStVb8hmu37gIA37gOAPwizrzcwJbhb7hx4xtu39qA2r9x4zoAMEUXMZObotELltWqvcXJTIh6zUbVdwxRafRjU+ZZb4zwxDDCcNpuNFogTyN4Au12rz+ZDSfr/f31Yj6dL/ePL9rohq4J7wAwrNjZfLpajocnl9PJqt+pjxqqqbOYiSHpHobYIlNczg96DEhgdC2WNd30Qi9q1jEPeLJcTgbT/cFyvj5en3v5ilzhWKJClgkKiAw8dw4D7QWRRFcTmgHKoGiWrdoqxzGFHFsupgmuVKxwtAwAbMe98fjo/HErWyCBUuvxcL8eNgLY2wDATCvSAPRywqSqa4pAVahW4kCJttc97HmvVevN/x8A+wACw3Z7tB4MJtWqKXJAn22A6f54fFhlgbgALbVRAcfVZq/bAv06X53l330dSBEOAty4cUcWJZnKYR+LyIpcMeP4MkVUdoWmLlEUADCGidfQSRbNT4D1oCo3JRDaVtDoJdZYg04CwH6t12tN+wJv6J6Hk5S1MJRZHRQEdk5J8ApJYKmSdgXAGuBtGLVn66P7T57WO7FjeGEQ984Pvajm2wDAqhFPTmLLFYCoADHUREkq0jS8s6alKfReOU+ruRRdyqSNeCOf71m5VEooZx0PtEqWUDEfLkdtMxJobyvotyeLOiVnitro+P7cdQhSkdvTh+td0h6emDzDqTJNZq/LXmVn526aN27k9oqG7RjDUxoPy71qGwBaqY9EKW69f8Gogf/gDcmvAfnZD68VXijTG1tONAp/8KNCp9VcfOff7tZe/fG2MRl/5rXa8uzywz/f36p12VY29P1W4+iHf0j77a9/6Utf+/o/Oai3/GHLtjvVwb5ldBvj06ndOfpIK+74rZYYKO5+pDlldxAak1ndn9Oh3hz4XPP4OGpfLtfj/uT+yZlWv3d5EI/bB+Nhp7boj4ZLlamUf+tfPX7tzV/688f/8Ns+ev/Hfmty67f/0V/68b/5c//gJ+53R7W+F/dqcuPB41kpDPzANCRTRevG1Re++pVPjD/XaLYse9b0WsY8HD5b2+N9VxA9izu4NzLKfOS6lRdzHKOKpBlqdnuy6k4u+o9fG50uB/L84annXM4HjRFBp/cqEpMnRCGT5WAhQdUr4CRrUaEqeykC9DF6XYEsBlUAuAlCjycL6b0CiXFpgsIooek3dwgNgM8NYU8Jer7IlDk1hyZ+hm2CZqbywHn3tu9INcf1TNcU0UaYU1x4RW61XvVUDodH9BConGHZihXXq2gun6SwSAxXUWGBYuOTrkMFwzEkKGihIxiGiv3JoXt1BA0iG2SoKrKAlyAjPQu+WIgR4/P54ngV+b7pVV2shCL8ASUxOUQnaPgFXWQ4kP5sNYIq7dfgUXuYmYs53gDAIIFVAyM5wwAUsOWCFOg04rjuJnFIMoKDJAkMAXhhtnyv2Q2bzW4Q2tV6GHa7UBGq9U670+t1+qPx4vjk8OTs6dPHz15+/wk8nLABZSKM4ef2eLh/cvmh566DRljoIwESbnJwcPrkY2e6ifdsAOyA4vXuZL0eT44vTi9nh4viVqqYL0gyJ4oKPDoDY2cdnG4BXegEtq4LvPUnAIw9yUhq4DFC4VQFbPHGAbF3FVKbd7e2tjGTYXN7e3sHvQPv3MH8l+RO8hYeQYMCZvhiOpPClJ78bprE7KIyyQs0LQBXl7AJHd4XWdAEilN1xQByDk/RgWekSZohMxWQvgC6RLkMRbZElosVhi7mCSKXLecxvqJcwhipUoXBYGcZaqPMkTRVpiSRKlHwSRHENXx14BW+bs8vzy/OL6A8wJtsI8cIvbAWRTVYesDXipQaNZvtPupeHCnpoCdWrVptouunTZEaGp/JUj5fqNieyFD5DKubEvYs57byFIAxAnClmE7tbeYzBIGzXDTJEGQhFx0PbZUuFHO5Mkhvy9RkWQdGZGE7n+P5pm3zhF73NJ4t7+1my9hpqGIVhHXqmrIhwhoVC9kCPCRWViW8wTbRwqtaLaIJNKYvX084z3WcOrqFn7t+7frt61eZkC8UKNAe+TI+jqRLXK71JwdzpTpoBl7oa4Ic1HxTpIlg3vYtQWbYwQj9wJrNOIjqaI84GgGPX68PVtPJZHFwfHrRxiFmgRU4WoTv06v1Z/PlcjlYnpwermbjznxet0wD5x5EyUnc3Drj1Xr/4HSAV+OUfDXqYrshNum3kg7rzmAMum++3+vfb4EuMjE02cL5Hgs7Jq76K11d1TVJxv54AAvF1hTMAy4T+exumUOnTgZ3sOV3BsPZ8dNGsVCiFd2sjtYR7CrLMCWqzAwaGuiCrIBtZ4LAFckOUI1ard3vNmqdqxNogN+43fVNUPgsy/NqVG+PRu3uZDZYjCL4i1lN0Tzgx+3e+CBkJBDEumb6YZCkk7XRS2N28CB97cWbmIZ0e+PO7S3sLKfLYeyYKjBXIu9FGkcTO2ysyXS5mGXbAUaWhkj1cA+H9W7kBiqUQTNutrqjwWTerbkcowVuszVWux2WAeiyHC8Oan2fYuSiIEuMqUmMZIrlMiVoEsdkFF12bS/w28PJyf1XX2lEDcdwwyhq3zuwa6GjiqIs6vH0LDag+luhFWmkKnG0hMeEMqgZaq9UoamtClvOph1iK1/o2plcgS+XnMhg6TQPZUIWyMJdKJ+i50bt2rBdZe0yZbVPH85cg5QEvbl+sJ8S1faBxtIErxTJres0nb+dLqcl4oaY3ipVHWf0mBB0I4waSgl4ANWIWaf7gSUt+96DV8Ra3Gj3xzaas27LDd6oxZ/+dr7f7t3/rp/px6/9eNMeHvzUe+Ll6YOP/EyUAVqQIhh9FTROfugTwm/+wVe+8odf+0Fn2I66fkNgQtMjxHp7fzBXB2dvToNmc7jvm4J9GOkuay58f7YOOh2+prY6vrpsdxv6wazaV4xWv0l7gKSU2epX3Wa3d/7quh8oOe4//vwn/vGv/OJ3nf7K5z7z+W/5L6/e+uf/8nM//IOf/Be/2ZB10VW9Wsi03nM21dWa6ng6QJwe12rSj7z99jf3f+djWqthNKZAuftx6/GlMT2zdcdSs8vnI4XhYZEzLMULlkA5M23Bs/b04WL0+IPDo7OuPHu0tqKHi36rjSmnMsfnGVtMF1hYYDRJEbm9VK4sk8WtYqm8g8HgGMZAlHL5Ci9JKlcu5Td3qXwxW8SBDlj/ap6GjSophkxWeFrgTJVDm0Y8f1RVE4hDeS9TKex5PmgV9EoEgscJquXa6N5d866csLTAQvlrO+iy4Rq2jNaWoLjZsgpYpmmu64D8oCmWInkToFIXsIcJDRYBVlgSFhBN85KKzg9Q9HRJVO2gORj2ZtPl0cXSR883D3NxQYuY8Ecwh0CROU4WeUzWoysZwo380HVxoMTBAVaAf00oC4aAHf0A6RFoLNeP8Iqn1YgDD/UkCAQ8dccxZJ6htFrNc0ACY2phjB5EjUazXYvwVGw8H86Go6PVcHF6/vzll549er6EauQH9arrRnFQ7cH2PH/+oYewHRsY4NpGN4DJ/sXjpx889VET93uD0RA0xuLg9OLs9P7zV954zxuvUHtZkKQChi7Ds8ObOsx9T4b5bd+z0ZaOV0yciXaTgUMDo+FBKBuqZiuSIrEgA96V3d3a3tnZ2b11d3dv687Gzt07dzbRERobsZKzUFDAu5USJRRT6UyBKBeyO3toKVkpEbzA0AL1DgATFP5tAsMqmqwHketjezKGl2vwjlOV0hUAV4DPlUEGMwDkJaqSSeWK7wBwoYxOKqLAofyVOAoWH8nxxc3dAg7OCryaAHDsG9b0/AyewSpwfBver+Qti2rwF8r5EseRRVKBIlhv10D7xbUkJAfPFHoYFxtbJCmzaDCqlopl2vE4bP5kFF0slmguv50jaUFnQeWXYA/sbubSFVIAmCdJFkOe45OBJRGFQjZXcq0ksFJHN0kX58pNC9aszTNmy1ZYpowDWwRQESjqWqKTdUnhGYITi/kM7CIgTHoyROXgfV6Qffe1GzevvXj9egK5gLbXAIGRA918EZD4NrZG375ZwcmvQhkHpRnYL5yc3AEr1VErAspoyAIIRFNmyXDe8kxBorjhuAXkA9cqFMDuAKfYxsv9/YP1fD5fH52eX7ZNW8UrlisA9uv9xKpyuj45PljNJ+MlsHtQ1rBHdM0KgvpwOkGfrOOLCccCAAPZxr4lxwsBxhqtQbM36rX60zFIx+Wwf1rFjOHkNAY2HAZW4zi6ih+SmEx4yzhoxnGShFmlRUzRzpB8BeOwBB37ytvD8eIEAbhIK6oeDvbjEO+6NZCdYh8NQsoZYVx3dKAjRapTR7OVbhcPPZqYxQAUuVUFADYw7JQCBRxWm6Nxtzsa9xfjqquLsEyBALdanc5oHwAYKB6wBT8I63EdWBvmJ88OH2XgfUjiCGEzbHA0Hu3hpL2ON2M5J1RZqrLD1XWVISo5ruPXkuTpGs5CVWNAs9h1ZVi6RpQA8HjaSQDYAZY+MGcdjoUSAPQuCmpdu1xmSFOhCpKQL3CWQqFbLwApALCCl0kBAPDpg/e+0qo1Lc0NwrBz/8iuBhimochGFQHY4QTNVl2hCJyKBuWgoBG7RWfQ2WEL9lYx7xJb2VzVTGVybLFgexpD7tCGa0lsKX0bdjRl1ga9eHjeyNAlTtIm06oGSk41uquHq4yojc9skWckrcyUbu/mKrubOsPnd/oERVu6PbufZXHysakUKaJQshk6AgBmlCB4+ESsh43hYhGwm3ZT/MRnCTWOfuwbqXajd/Ed/2Ov+qFP14zp0ace1xcHl9/8c115Mneygjt61B5Nv/BV8l/98e999Qtf/V+1w7ge2b7IqLxeyUtGEPas0elHG77Xm6wcQzIO6rrDWosgXB747Y5Q09tdk+9iX4bbsRhFCBpdMrx4vOainq+4sWsuDhbTiC/Zv/sT//0/ec+nf2r56V/4W//gW3/jgPmDv/6TP/APfvkLf1NAJSNZzToVvvRgqXE23RqppCZbst6tve8Lb//1wRe+1+q19ObQqdvDuPXo3Owf2rKh8vz84dQAeJMsucTbBmmT7pP1KhBbF0/3x0/fGp2cdbXl4wOv9eh02RgaOVGQaa4k+Fy6yPMiB1BWSbwGFYHOZHLFDGb7JEeG5UIB9CCr8ARZ2kkx+WIuAWDg43yqYmA0maGwNFBJThUZRQLIwnZcL8SWJpogAIADqFZehGlIlCBrTuhZTlhrRgZPEyVQwBjY5gCq2REiHew0kec4ji3LXujpOs60yACymMJieLWOZ2BIArrga0ACWR4zYrDvC4SFgY2pHmB7ewjLfrJYH08tI/A8TKRxAYQAfRVREaXEph2dKFmWyJcYP3CCIEJrfRe7wKB66kKJUziso1boh1EYYuwoaq3G1TSSrMrAQGS0TARAZ81W1bDaiMAgPaAAYD9Gp9PsdKpxZzCaj0br+XB5dvH8+dNnz15bQwX2A5yqiWtRrTeYHT975c1LJ7yKYmg2AIDH67MHj14/DvAL9XAyYjxbLA4PFuPZ6dNXPvSBb/oQnwY5VsKTBgXnSq2ke9xM8oHwcADwT+HRvdvBkEJ4VhbwIRClCgbIaJjOK3DEu3DkdAeV7+bu7t2bt7fuYvYLyN+NZPrx5g1sy9otFwkRADhbAvzJbO8RSIyKFV4E4oEATBG8VCKAeoMsYuHhan4IJMa0nOTQW1VEupx/x30DMwfLJZop54oVDDjM4d1vcjmMOX2KIoGuUoFRlQB/aSp764VbeyTP412BhAkv1cC2J+fnOIbkw5dPMiZglUV1WDMSaHKOKZSlAGePAIDjCJRQA08FgYK3QSNVHYqUefjmdR0bsAOfI4lMlhJUqVik2cJ2rkKJBl8GAM6nd7fvpjMEq/m+CYQRMznj44EhIgBnS+gHbMCDBvCPAijbHp44uA5PajVb4ZhyGigsiczIwBDrxKwb+GSFFQpANxjdkFQfe/3xZCII/eLN7b2d25s7u7t7uzu7qVRqby+Ty2fS2Vw2k8kX4L8pFLMMT9NEsZzH7Ewakz5BsR4t5HjYjj0ASo2tdkNTFaho3nQtUSSE0QSPUdogyuJ6EyPyxhgHvFqvFsvVwdHJ+UXLwFRd2LAMAnDY6I9G49lqsX+wv1rMgOyNW5FnAMeSTE21/epwDr91cHR8ORN4TmTQqRv7ljAmG/jioDOcjXuj1Xq6WMzno/2glDh9MySLP+E0I5VMU9BQR8oYh0WgiUw+kwM1DwBcAAqWJdk81Jh3ALg1mq1Pn9SL8BlYQ9FoH/ixB7teoQipYYsqR2SFcc0C/UwWmWaEJs5dHLVqJbNnaFtX6wAAq5LEUByngQodDDvd0ag/H9d9Q0yMsJqtVq87Pow5qAbwt2I4WyNCy6wemugdPsq+eAXASRgDD7qfrYSOrhmqwlfy2AVNEbtsDepbpZgRumhXC4wb0T+OQstrVn1H5AXRCOHTg/5w1Kp5LAk4VRt0w8OOwCEHC7xq3Og6ZJnmLLlSYMntDKvDt0xKusRSCQB7UTXujmaXj155uVOvGyosuqDz8MSOQFEosqKYtRkqYE5QTN1nszIQTABg0dRtzWLyZKmQ3y1XlGxWz2/kc66bTmcRgG2Vo3cIzQVZU0rfqVCZEgOytT28rGfLWYLXRy1HM4ukqrSGl6MMp84uLA6QXQIuvZcji9cpr1AsspcFgRRNe3WvQBuGHzXEXLacptSc4PcAgNUwfPJYaXrxYDaSSjejg+YP/njFaDV+9MNsf7B89InPdb33//WqMdn/8YeNk+OLt346YKcrneQJ/6jbHv+7L9K/8dWvfvm//OGv2ou2oZrIZtVIyrC2U29qzeO3ApG33ZUDn123dYu15n60PvTbbSk2u10r9AxaC0KHydRjVeDp7uWzw5Ku1n1WNLy42pvWRML5vc/9zN9969d/9GP/2xf+zD/6ud882v03v/rrP/HL/+aL79mVLa3My3FLaL7y5NDRQ3m2sFKCGtnC2c9+4WtfeT7+Dz8iN1pyZ+I2nFG19fDcbR/6sq3zxvzRzNBc1Xa5O1nV5Vk2WjZ7s0r74cP90fO3BudnXXP/8WHkvXfR3l9yrM4RBbIoVpUCKXA88CCynE+n8yWWLWZTKH9BthRyiMWFXJmXWFiDZGU3RSMAiwDAmqmIu2UdnYoAjigBBCFQahmkVojlLwqhEOsiQ5YzYQ3/veZoaE2jqE4EAiZqVD0N8KBSUQPbcgwryZTGrgNYWypaPzNlUUfZhs288O8cQQuK4dbakYWGGkEch6aClogcQ1HA1U081rEwQTMCbdHqdoaLo+OzFRolOR7Gx8IOVvB6WZUBPjHWBeQrloAKG4CkCqrYtAQ/vCTthi8xIifoQApgS0VRtd7qNGOoOA1szMaRHgWXpChgs64mWIOq4qhRr9/DHug6FgJsyWy3q7X+ZIyaYj47OT1/9vTxk2ev76NFcFjFvIZGtTkcLQ/vP/nA08BFZ+ikDxNE8fL48sH7Tqp4igoloTccT6aL8Wg0Obj35Nmrr3/zh+jNVDZdkkTFAY0OrAPj4a+mgQ1szgUaokmaiY6fIPrxHBRjkEGTApMlVZ4DwiUy79q8e3drc+PuNshfQN6Nuxs4iXQdr4DRmxiD5G7f3C3ly3wxnc4UK/lCdjtFATUqF8o85kBSFC8gAFcIGcBTRAAWFNdHx3oMCtRV4C8SVcwmmZaggClcUZVKDs9580l3AQBwmSAIhsexI3g1eAmGCQ0cmb51486dNJpXIcfBkPFaaNqz89Pz8/MD0MJoEuoDs/CAIIeuRAA00fmSFHU67Q6om3pyFhiH4VXEFDAjj2U1CVaRoRczRT4MAIB3MySnq6UyzeQx/kg2BOx5yKe3NjZSOUIC7WdTJFcBpRwd9w2JBAaSKboGJhEDTrjIAXGthQDAFkdqsaMLLABwpkgm3g4WztWhETf8tfASE3MbTZe1BIBxXsyPamKR5SjQfkmmR3Lsg+cquC5R+wPccYlRMA3iApQWSbG4XGVswlpIUa8Ve6AMFbYxigz9Kg3JkSQE4E4X24GAMVar9SasnhnOCS0WAMDoKHlW1y1FEBCAJczGbAzGAMDrxXIxm04no8Vs0IxcTRAYQRUFM6oPJpPFan24PpvyoIBZzLBPHDpAWwJbHE7n68VodnC4PF7NDhbr8O5eand7Z+vuzub2zt2t3a2Nza3tu5tbu9gBja5rW7ex2/72Bgm6slws4XOtYJgJywgYsBE2x8ujMwRgQoAFXZ/thw5waCAyVJm1NfiuKxlhUrcUQMEKU3WCGr7hsHNarTaeQkc1UMAd39JxJIvjjdqg0+s1QVcN58OapycAXIc/2ev9PL5TAAAgAElEQVRNDmMW5biBadoe0JVmu9Pp9AeT/QcZnJ/CJiwA4E10umfLPiZwqQowMgBgnqHSbF2XyEoxxXWxmaPZxp43wF8gijWoEiIsajywawKiDxo1nyU0JXL7vfZhW+BxOCEKa7VW1+cZgWZZjDXMlkWJIv8UgA3Zh9Vd7U9WD5+8/Lxdi3QVe/7aD8+cEN52FaokAnCk25yo206NTWkszYmkKAEAgywGklPI7VXKTjYrZe4WC3qc2UtzpQKUCJ4BAPZhy1HFHYpK5fNZvtYDOkLSuRLnjTuxZRXKqtEfP5pWVG98qpLARIF554uGy6Qtk2Er9H2XIsTAXpwTrGP5UZXeTRMlmq3odv/NOaNF0bOnctMLgX+YextU//STn2SC0eBHP6jMu/NHf+7vjILX/2rd6i0+/Tyere99088drj/2fT1e7735gXg8/50vMf/yS1/76pf+8EvfUW84Xt2uDWvtVVWIR/F84HcuPjDwur609i1bXPV0i3dmbrjeD9ttJbR6baHpsSoldsPCpgJvsJHvHD09JWthc763w3klYzSKTZb9tz/38dfe/Bu/8Pd+4++fnHz+Vzrs//mLn/zW59/9yZ+dlBihjOechc6zh2vP8vhGUN2VArfmfe8ffOXLX/ve9X/6nNbsCp2R17ABgB/fc1snkRh7ijh9OpW9tqLIpbt7JGgKtjHm+HolOD6cD1/6SOfeacc6eLgft0ecOjqsMiTo3UKWjW2S4THou4weQHvpPFXZzaSocgHqZCmXSafS+Vwqh9GzTJko/zcAHNc9PUM7CuCvhveBAL94XujYHgJwHNqOY8qguCrZEJsEYwBgEQAYFDB6VVUbGMaAZ2oqyFPHtDV09jXRy1lXdNgmPEPAn3UtPQm1lQWoQjRQSqh4popR1dVabCkSUGw0w0BbGC1RwH6QnEK1+4PedDEcdkCd4IEo+kqqqIAxCkhOBl04DkQ1/FRgghj9fkDmBiFwA/jrFVUos5IgGQAlUR37p/Ggq4aOs5EXJnGbUGxFHEUSRVFjjVENNlez16zjPAT2YoAEblQbrWZvOgcxPlysDu6dnT1+8uTZ0/euNDzxqvlxVG/U2uPpcv/03psvRxb2b9ZxZKI3nC4Pzx++fhonEStdUMST8WTeG84OLh4+fPDKa9/yFrOdLWWKQCdMJRlqwXpvWWYyHRP6Fjbpqha8DFWVRZyxcOE7hlqrgsYEQSkLJBCld2Ea4cadu9u76PewcTc5fr554+Zt9A/EwoPmRTtoYQxyNZUvw3be3aPgYYMa46BE0ADAPFFhJXij0IuF4WSZl2wXvgUVTSINGd9HsgBYmyBwmSmWqHI+nyPJq4PHInYcAC4D/oqSik6ZsMaICkGTZHFvK0NmiySNvyfKGKFeDxVrfnF8cnZ5HIL+BeV5BcCNKLT5CiyzSr6sxL0eTk5321iL22jLUMUxJCCAHickAGwZxSIlVQOmUt4rMLJnYPxDZjtPMKrOVwogOPe2NrZSBUIGkepQBFMhcwDAPXglxXwqXcQcDxPnrGwc/XDQbUyTNY1l7aap8nQpBTuogpnv+IbgPLShSSJPsGIhnQetIyR5wiYeYANNbCqUjFwQkBCeK4veyMBHaJqh0aCEJIlSmagUMfixXACNRJAsUyEEJe5iF3TYbVVDQAWFa0+rAPNkNG/5LuhEYTztwGNot+uoyGrA8QCAcU4IAXi1Xp+e1nQL2bKQALAVNofT2WyxP5vPMNMIfgyaga2KEivADjXiWqc3XO6v9tenE55hQAGD9tJwpwZxozMYjefz5Xw0Xa+Wp6vJ4fqgdhOwNon1wDN1zJa+nYQ93UzC/d5J27p1684mmyjgMlUsZQk6l0cFbNgWUPPx+vjiSa2QLQqAU43FYWTbjm9KLF2sCKgRQXROm8CDObpCxZaLOWaw15IMymYt9CJshPRt0Afw9vFaPAQIbHdG0/GsHzkqD2+OU+/2kOcehrTAcgpQKmxlh5fTbHVAr05XlykE4FvJcPytTZED3V/yAgNP0bliyXEUnqXSQstSaLKcZnvoKfvOFHIVr30wV03iANlDBOARKOBGyNEg4pTmaLRsCxg6YUVhDEI8MhSDKlAsVUgxvCqhNZEMsgUBWPH9uFbtjVf3Hz1/1q4Gpob5060HAMBoZCCrErCTs0gzaMkA1U3umBTB8ZSkmJpt+lwunS5mtitFu1yWcluFnNhIb+4yxSxUQRYVsKdpKlVMsUwhm5d8v7G8iEjMDQUN2baMckWzhpNHM8rwRycqbEQRNBHNVev+KWY4Svr9qcgqkTU+KrGe7UchkSILRSJT0d3+G1NajeLnj7lqWGuP5tLNW9crw+/4fi6ejH7kdX01XDz6zr/Vd176KzWzt/zM83B+/Pitn14sP/AD63p18JFvbB2Of/tL1P/yx29/5Stf+PrfMQeNuKF6bTfumnzUFHrDxvDi9WHvfGQtAt3mV33dlf25E67WUaetuXavQQVjoUWLgZzalhqh29SOL5+fleqNfD2/Ranc8GjsO2Llf//sX/gbn/uNf/bvfunPfTT8u/92vvv3f+RX/8NfnJ7/9GwsunLdNrTs8OVnZ6GOSWZR2XbthrH80tff/vLPOr/7D/VqV2hPg4Y1rLaePLTaZwHTDA1x8GgmBbNmu0YRJTfoNhqPL0ivRnXW+9Phe76peXnSMvfvr6JRsJGOzlZ8Lp8vZbezqlSgOTwkKmSzALfZIkdnSzk6l07yfZIshvzuXkVAU0mivJfh8PATATiqOlqa9TRONk2BYBTQKqKmaQGI0AibAoPAM2W8p0n5IIfhf5Yq0pQgJiCLvUVJExZB6gE2tHpo/GJZoFddTU4AmMW5fM9UoMri0D0KVhGkYxiagNWWA2LVlNEDE+oVy0sqJiBirjbo1bjWaPeGo/m0HnlXghAHYg0Vw/hgC2GcmigIsshRJN6u0UHswWbwPceNYJkjz1XFCgcAjFlMQS3y/bBaw1OmVhNVlYV2/JrASwqGMQiCQmv9mo6mfADArQj/XILAyMx7sPs7re50dXh+7/Ty3uOXn7+60Ey8A45rIE+i5ng6P3746H0PPBf7J1Fr93qj+erw4sn7Tz0Q0/UqCGDQJRPQMIv14enlg1df+9iHuHQJFCmHqRBo9Yy2FMnsLdpXg9zHc2nNxNAVIQnXxd6mxP8Z/oVLXl2F5d+V3tm8i2OZtzZAqWA79NUUzMaNKzto1MI3tqEMUsVcZg/zh5MjaFgqxRIv8fSfArBAYcoP7M4EgPFwTMXhYxMA2JAJzH0AwQsADNSNLIPmpYhyGX3Hi7lcoUwyDBpeAQBjPBUIdKCDgIOlCrw1aPsk4rWprOkIwM7+/dPT8weHAehf13Y8B8eQ6nGAAIzJsqQad3ACrNsFHYwaEJvKWyCKamFos6zMQ7V17BICMNRDskgJemxC8QMARicsQ6TK5XIutbuVylTKkml7NlmGGp/Px8ddlQfZntor2JoiA41BtqcgzYFVJLACXyH0SOJoogAAnIUvJuMtKA5lg94QeLbMKaVMtgIvScazHiMJUAUySe0UkIbk0nupdApPoHd3drZT8Ovtjbs725iSAUqSYJGyVApUhcRMKUGN2tOjmRD2AGEjz9TFTgLAVLRoh56qMuJkBq++3Wq+cwQPjA6wdTZfrRL83b9ABSyy8G2zjKQbdtQczpfL1TpJLASkHk1HDeChwAxkkMGmHza644Oj/f3DCzyC5ikcclZxF4fVRmc4mc6n8/l4ulouT5bj9eqoeXM7u7u5Bd/4rQ34sYVLbGd7Ez+2trfR9HoTW/+yJQX4M/B8IjmChuLNc3KS/wkAfHLxtAbUTzBtt7U8rrqAyyrDMsUybescSxTkSc0EgUsWyJrrRVGCnfXGVfQz9uU1255tySKsUNGI263RfNgbjqezXoikX9bsarff60+XJzGDYQy6amDwUIQo3h2gW9jF3ruvXUdXlFu3QLJzwAPpUhADNxd5tlSyLEVkiT2hbcmwlnfZXr2N7dftdwIg46hRjQIFpygw4qw3Hk86zUhgND0Uoslk0gJZDksgcQNPGL2CNgslEvvTaIIsSuhYBACsh9h+0h7Ozy6foQK2DCiFXuv+iR25tiaLqmw1ZuexbrGqaYad0qZNAIkhBdXSbCvgsulUJXWXKcnlIpvdyWX5dnYLADgHG5Oh9xjDg+pWye1yzFY6yztBb37pwVtBsk6rPzTVSlnRO6OLSUnRh2c6zQI5EDRBb9XDD/VKDGHUzro2K1j25LTAuFZQ9QmC2UxLBVJ3B2+MaS2KX35ER1G9PV6JO6mc0Pgz38PF4/EPvaIDD3z0HZ9px+/7sUCbHH3qQTw5fvaRnz44/eh3IwB/9BurB8Nf+XXm1/747a++/fYf/FNnEdgOI5qiqlWylCb0R27n7COBBeg3CkWDW/XhhcRzO1qv4k4LQKBXleJRVXdsflSjbXvcXNHT42f3ibBqz6Zh7A/2l+PQYMR//w8/+atv/x9/79985gMvffLX/u154Vd/7h//lbe/69VPfXeThPrJ22Fl/7X33Y90r2rVFSHSxwvuY7/35d//6seXv/vPvbgn1uZB3RzG9Qf3rN55QILY70wuV5oxO3p4povC0fH59PAjj+jLA+fh4cV0/Oq3ti+Om/oKADgYiJQzmolQDYm9jTuF3DaRkGGqUi7lUpkij1dOBGoUPIbGk8ZKZjdTpnmqWC7upNlCCQBYpKGUycIuoXMkr2tshZI4WQMoVkLHxyvTWq1ZdXQcHSjveXGE+aeGKpIUL2BrX/AnAEwSpBHgDbDn6MlMhw/wgbgCS5JSQCoCAPsBXlewNLZ+WGEDANByXR/TmRQEYAoAGL13sQkLGLSGAIx1pz8/XK8HjgdfNXGg1KBgQvFMHA4RgJNTPxy8Y/3Iw+mFGL/tBIAVhS/TUFlxph32AHweFDAOO1ThS4c48aNpAqD+OwqY01pVM4owT7TX9BF/EwTGY9B2pzbqdAaz9eHx5cEBTve+PtMwjQ6zXMPQr2HM0ek9AGAHIwRjKALd3giQ9t7zD565UQ12dmeAh89otrtcH5zcf/beVz78Or2XyxbzALCKYCRNpk7itoG9py6OqQJFUGSallWBk2iMkWUZShTRgYNjVcw34DniXentu/CxuX3jDgDw7TvbydXvDXQfuJEA8I0EgDMFppRLp0pkIbO3tUfioEShyMrwtf7kDpgHABZkeCcA3QXLM0U5seay0BZFoQoFzPQoERSsqTJRzFfIJISwiC+gUKY4npfQskJJxqoF9CYDAC5SUGVpvCPAVGBYEJrTCDTv4NH52dm9tWc66EMJfCvwIgQhqQJKhioAAGP4QisBYPiBKa1QUts1IFcGRUsIwK6DVpRhJPE8SbNaVcsxMp/dI3gR1i68JKKQ2d3K5uiKbHiBTQL4UdlcfIQAXCqm9vKw5hJ/EN0yNSu5Vuc1IB7FAm8JHFXJp1PpdAmbAhURz1NxaFwA6cappb0c5h5LOJ2ERl4OBpSUb21uo+0kHs5iyy38EkkRfubu1p0EszY3yvBtgQIuVuDRoVuSGjbHhxMuGHbgtQeACu1xFf4aJlx0QldWGHk6wzMAbAkGDtgfdzs4iT5brFZXR9CXZ3XDEq4AWIbvsdZO4rqWs9XBejGfTYezUc1zTRG76kTFduN2f3JwsH90dDEVeF4kcZRZNlwkP402APBsulyOx8vl+nQ9ns3OOptA4DO5fCqzm0rv7mX2gFikM5lsdi+d/AKfUCqVIyhdldhKCZhZMU2whUL5SgF7cWO0Or4EAC6SIjyl5uyw6jmmLVUkrkxTpiYwRFEaeABwZDlbaeKxVTLRV01SoBH7alGjCWRelhgW5GC1Wh8tJwDA83kvdhSGlnWn2urgLjuNGQmWn47WzIDjVTyC7g3gdy5T1164di0J5rx16y4URNDqQdWBCiZwZMnEwkPscm0LFGtxh+03u60atn+0sO++WWv2YtdFAFa9GPtR/uQOWPUldzSeNVkOuwhANV6ZAzV9VhB0qG6yDIBOlERNBhGk6HqEANwZz4/Pnr2nU6vamu35fvvBkR37Nqw7VbGbi3tV08VxyeqwsuGQJBADTrUN1/TYbG6P3NswOLZcoPJ72ZzQyu2mmXwh8DWGzvCmq+gakd2lijcLmTTfWA4PLaacLzJxpzvQpXJO0NvT81XFQCcsBifmYZMGvY73kk9KhOEetS3ggt70skA7oPRdQixu7Hk0Gzuj9yMAV9/ziK+H1c5kQe/u5oTOX/heNh5Pf+g9xqTfe/Dtn+ovPvFDrjE//LF78eLo6Uc+szx+67sOonj8wY/E++Pfepv4v/749/+f3/3a17/6Kggu18SrRZcqM1F7vXS7l9/kS7Krjxrw1Pa7hqNFUzPaX0Wthm64vVhohm1adRitWjF4i6WV2enzh3maJUAUGPXF4bBfsyrK7//SJ7/vje9564++/C/+6k/98K8fFf/9X/v8K89+8d//3hcf5iqK6VW9/OGzJxdV0+s0xyTrG8vF8D//wW/+ztc/1fjy74zbY9kZB3VrFEenh3bvPGLq9uh0fTw3teHZ0bGrmmdH8+Pxe58Z50fr1yf3J9M3PtE5O25pq0cHVVOKujnugCSoXG4vvVfM7pA4kYAud0DgU0WOokmsRFC3K9gPQ6BTUSpXIUu5YmE7xfwJAJsaw6YIhWUlQxcoCgFSNG05AnmHTcMxICwIBI4gUz5gWxRHpgIALEJhC1Fr1gIbmwYoSg9seDCOnbQSua6LxVhGl2VCMR3f1AHQMUeQYwQVADhu+xhva3ugsE1ZZMjk5gwUh40mdPVmo4Y1F1TjrDU8uHi47wIXwg8AYCjjScsUjxbDAo+2BgwLlJP1gbPiGH0TNCjeHemSzJcoOWnCsiMc7G/gkD8eQldBtV4BsJT0gaMfFij2es1x0cUqbnY69YSKY9wgfMF2vzMdjOdLKF+nq8PjB+955Y05KOAgqIdASrANsjcazk9ff+w5KH9r9Va/2xsD0l6+9MGLoNbAw9ThqNMeTsej8eLw9Pzh81df+fAbTBrvT7FdW0YynfhCaQnq2XaSlIulAq2MANdkDdgy/ASvWcQCit3G8Hzpd+1t3tlIavydOxg8u5n8g/PAmM6AB4bwz04xk+fLmVSGYIrp3a09CiOUCwX0L+ApSpIZisdEJMA2hmFEiZMc34YngqPJwIWAxbNodgVVFhZVhaBAAFMo50olBGNQPexV3qCcmHBwnChyDIvZDfDHCwQ+4SsA1hCAVXt57/T48Gjft2EB2a5lY2tfPY4DqUwKTCVPqlWoaL12t9fBw/tuO7mM77aqUA91kpaRdDlWnmTEMAIpQ1QIMZRTrCHlM7QoY6sfboHM1kYuz1KaFUcOw0g0lc6ER11Y4mXYHXlYc1by6jzPxIErz7UDx9YoQrYlkSEKCDIlEPWgkURAaddWeZGjCqxc2M4VCTTYSsaAgSoBstXZrd3d7c3t7Z3dve2NLRCGIHrvgkrc3tvZ2d0B6MrksqkyEJH/l6k3AbcsvarD9GFLXV1Dv/nO95753DPP59wz3Hmex/fufWPVq7GrurpbramlSIqxkEEBgmzAkiM+LAxCYNnxECMmOwyxTZwvIY5JZCUCAwEPyCCQhLqFWrKV7H1e8yVPXaWu6qr33j33//da6//3XgsBOB7mAhGs+rXB4ZD3B62y75dsQ2n0yzgo4M/aoS1KdAzAwEQiPE8BAdZpd+MjlPl8Opsvj9ZnJ2XDBr7MwHsGgtytt3pjAODZZLk+BA08Gkz6keuZHF/E9jcPnakG0+ni5PB0iBcCNIgRAGDgyuV6PTaamCyW/d5oenR6NB6NL7qJApXLU0Qyl85kEonUAWa8HFyhMGBvYh/+D8/pSeAo3FUidGxFWWAYXjMMJ6gNZuuLRxXQxoJhWVFvEZZc2xEKpkQJNABPJp3gW44s0GTuIIedGbAC/KgcXTXdVSK/EtRqjonhDawkG/AUetNBG17CtFvxVI7G2WYgJuPJfO2T6Mth4lGFEwQVoNBNzA6eXCSfedvb/uK1mzfwLmYX08HZQhC5pg6rkSFtnKAi94S2ozJ0YY/vAQBXceIaCB98hkp7GFk4FA4PD+gBZgJXApMqaAoUo25vHgOwGTOYGlSJUjOgKKFkaCBo0IuNEgCAOQBg1QcxX+lO55vTx0+bEQAw4JDfvjzEhkRQ8qriNJeXVdsB6aNVx/SNEsuqRZJTgMUYNpPKHTD722ULbSTJVCpdxDtgKpEpl1SKPOB1s6iZbH6/sL/PZPJ6Yz5YmzwuMLcaViUhd1AUwv56kTPU3rmNFbaoCHaz3a8+X2YKVLt1t6HSphH0z1OcY4Q1m9QPDratPD/1R+8cMXpUeXopNYPKYLnIJ5lEvvfR72PDweS/eaL3xoPnP/Ij5dFf/r6SN5r9xL1gdXT//X97cvT+HzwNarN3va86Hv3eH2X/+I1vfO3br73xxj+X66oThUGzFQAf63Tqw0rn6GFUGpXFaU8y5MOmrsulgR6sFkG9qmtuN2Kb7Uo3GWhqkxQ1reZ4k/XDh7wRGiNeL0TOZNmJfJb93A/94udn7/mBj/31v/OzP/XCb7S4P/vEZ//J9/7Q3/+nP//JOjzP0LO4ozv3HkwqhhVV83nVcPRPvvEnb3z1T9/f+OK/qQcd1VmUqvYo8lYTs7GO+Mg4PF4tu5YzWJ+uA1Gbrjfj2Tvu6cenk5f88/70nR9pnhw3teWD46q8l1D3kwMln9vaSwhFhclwPAlAmM3kCtlEmhLzuRRwvkwul0knMwUqlSEYIpWmoJIW8vsJLle4AmBNoMSc4AAtQ/soQSA4mTcdpQLYW7IdPwwBlXBQhzrwymEpgAWkijQja6obuJgvjCyOZ0jCKJccx0SVClIVtgIP9RitMjhCwqhzoOglDwEYPiSjBArUAIAWFVjDigAlBP4BDmAChDaasJ7x8hVEUBNE52R6eHtua2iJbDuWjiGCmPPOFiW0gYZPh2kqNJVn/GqlDt8hRpoFvge1UVVlitMFAeeAAYBxvA9nkHC0I/QCQwXhIwuwc8UrBaxZ5SoAt42phZUwHkUsR2Gj1WvX2uPxEL6V+XK9OT66uPfk5RdfmauaBdvSC6FohNV2qzfaXL58Zgd41VwGARwD8Ori8SunAXpBNxv9XqXcHQ9nkwlA+MX9hw/f9XZmN5lIFCRRQk8QbLU1bBe7rnBjl1z0YVZE4EVFwTBExXINjDaObTiKPBAQVWFIlntLPHKE18DbOyC48L7rKg0J8fcGhgM/88z13XQ2KRIHe8lsgQAanSrwQM0yWaYI4oJjeIEs8ApPgnKVWBJIMqsgjIkKfD0rjmfRBBJ7Bgp5Et7pXDIJMg6doXMYngwwS8Obgb3kKo4+ovuVXKTydIHkyUSKBkjn8F4DiBcQtFpgWKNzIJQnM9+2Ldv0LQBBy6tUwlDKMCJL7+UteJOwkRVkSKPVruHgGGiaarke2hqoPYGjONvIErQUBbCeGILTfTlbNIUEbAFFs1SexmH43Z0MSFUVFl+oCTJLZdLVw5pWZKFUJSg3wPVkxWQRsz9wHi6IHIY0G4EO6iixs5MhOdnUAIKBpjuGWaSo9HZByuztZTGTgsObAc12HaiuZS6RSaaSe5lsan8rBtuDFIjH/b1UnKUODCWbTibwargAlAVTpMgCzUt+Z7wZM9VJI/Ax1FOo41COxHrzflnRZUqZjLu1bqsWd+3jURB2IYwmk1V8BH14fHZatiwkYoLCiyDLKq3+YLIE8bvaAABPRoPZsBa6Kmg9DpiaGcBjbA9ny9XJSYcpijIno8sXLDrADzyyHU9WS9DNk+Xx0Wo2XtyJtvZ20pmbN/f2Es/tJHZ3t7b2tm5sA9tDP6z9/e1b15/dyhRyBG+wDFdIFbhs8iAH1YXiaQ7WqueV+6uz87tlYGCcqOluc1QtgVgmSUUmczqOm+V2+GHZBZlIJNly1Y8qDpD0qn+VhYTnVbBfPU2D51bgZSmst0b9anMymU2HoUUWGUm3AyAd8+Hs2I77EXGOwHKhcAEAt1uY4n2U+o6b19967Xpsi3JToDiZStciDwMeODJTcnSZBOCtmypLFxJCv9VF41MsELVqvQ1FqOyYCs0JiuniRW+tUfZ1ktIUJ4AaNa6AmDA0WBmh70WB7dVNgVJcAYcxOSJHUIoNpZWQdbMcOBFWsqOzR++q+k1HNaLQbl8emWWgfAzsGrOyedJQHWB6euVQvmbTHKdwsmZYhi4RCUIsZpl6U8JWPJffkrW9RIKkE2FJJfJ7hOQwJqB0Or2XIg/UYnU2OQrTfJbizWY3pPl0jlcqvc2ALbqjYxk9WRjDjsJOp/kkYnhCdBuRnxEDY7zKS4IdlqI8l97fN3JsJxy+2OaUUuPxPbkc1RvzU/GadoNofvS72Gpv+Lfu66Pe+PLVV0xC/u5K2Ft+6k5lPL/9wU8v1+/94ZNeZfBfvFI7bH/+t+g/+NZ/+s/f/vaXv/b9QsNXG9352f0TeIuWT486weDBi43JMFKGI1lVhgO9pFU7XrA4jiqR7ZW6oVKruE9nrKxKqQPJkuTh6PjuYy9rRzorqqvqaN4LnCL7hf/uY6//L//iV3/oU7/2qx/70dffmf/TX/nEZ3/if/y5D//tz31vRuXtqixs7t5/OOp6vQfVA73e6o8/+Y3/+KUv/dq9wme+X3cbcnXqB+4wqJ3Mo/ptgw8BalfrqR8tzgCAVf/4GOjuOx/I5+vlS92z9urVDw82h3VzeWfdSe1kMgepqJzZkZ6l+SKfpvM5TkRLCiIPZaAAZSofX9tBAYjrZCGTAiqbSWYydH4vy6KvkWJxAicp3IHigx4EuqwIIg9aC34BYjdABQxS0YWqRUG1tULTLTnoG1/IF1XbCqB+aWXs8yhydEGPPIBYV43HZ+AnTCmCssuyuaKF5c60A99ARFElWFoVeLrMQSNyNooAACAASURBVEYEvDOlInwCHmr7PueiJQOu/0qlVq61OoNhd76ZH54fohIDgW2alqKbpga4qWAgqMiDGLzqeSGzNaCwA7tarQRuEGDvsKIrFC8WJdiZbhnHj8roegtyqloO/NC1dEVT2Xj2OJ6JFJSoWiqZOFtVjfwoKPllKP5A/5q11mg0HWLOzMn68M6Dew9fenp3rIPscNwQ/lyp3Oq0gTKdPj4LbKAsQVRr4YHh6nB1+vDtpx4U0KhS6Q0AVLoIwLPV8e17D59/+TadyGfzGXgHVLmEHp4lC7WW4WL0kRW3xekm/kcR9JZscmlGEbg86AsVJCXah+Bp6Vt2rhygbwAKgwa+dRP/FW+BsRMLu2WehX92UyA3yOR+MlfIZWED5wGAaQBgPC5mKFCrBU4W6SLP4VmELLCSAVAKbyDGcRiY/yCCXgbpV6Do2FYtj13PgL/pNPph0AxbxGt0EYCXpXlRVSWepuhcjqILeSK+W8ALYk01dKfqoxHH+fHh6dLHJlLDtQGAQS9Vg1CCb4glUwUDSFgbHmm7hR+NGH5BDJYrvmvxtCwCpJhalqCEIBCBf+UpxZGyRZXbT3GCplsSKLd8+mBvN4PWarZbiuCtUmSGbKwahsTR6Uya9gIUvRjbZb8JwV7JD02KtJqOAnwSOxspXrHMeA64FDgWD7ovI0n7OwDABWAVAq/hGLHru2HIJrIIvthsgfEaOICUSuTSqezV/F8Oz+9zLHCFfCabx3QUmqA5NewMDwdUpV8NAIEd7U0A5qJ5J9IMmdZmky4QOzyNBShq4ozRcIQWWMvlarlYHG42oRkDMA97VldL1fZgNFsdLqbL9Wo2GQ/6UwBgD88DRF0Rgdo22r0h/MfNSZeDt4rFlEhssyuF8LixQSH2uJysjg6PFtPF7eAvPHNtb/9tz9y4sYWNBVu3rt+6cX1r6/r1xM5zGHZ8DaAYqDxZVFmWJ3IUT2RTBQYBGNOX4MGWO9PN6R0/g/7cmuY2JzVf46lkmmezhGeoHFHYE8a1kgKULc1GlSAKYTvZURRv/no1DIAAV0sGKGAmz4qCX2+OBlX4MZ+N/GKKZ2TDDuD7ns2WJzY8W+Tyhu2UqqVyp9fu9Fr9/nCd/I5rb3srJnI+8+z1m0WCAZlSxexl2DlUNihZKkXgHTD2gSURgBvAvYErNxs4jlStR8BDKbaomF4csVINXDVPGDoeeDWnkchh0DEOIwJ5iCqNwIb3gce0YYHKk5QC1ZTMCopecuDhN4fz4/PH7675dVc1o9DpXK7tiufqjADEv7Z5vq45eKZSW+s3ShzPwdujG5YpcyQlmaaotzvmbFDrjmukoRykkhSdKnsaQ+0TosMZJmjffOK5A0rjK735cTPPpDjNa/QbkpAlJKU+vTtlGa23URiGgq1oVaNWs3Y/4rJ5iuHLYV6JrPEiB3qxXPIII7e/4+bltjd6pc8rXuOFSzEqN5qLC/6tHLfjfvy72HJ3hABcP3zy4oS2j3/UNqebTx+WjzaXH/zUbP3ev7ZuR/33vVJZ9H/x59L/w7/9jc//i3/xq7/z2WBSdTqDxdm9DZDt5YubXtQ7f3H9zsdtcdIXtOJgYLtK1HfLo37UjBzP6bpqpeG9fZT0FC2fdvtVezA+ufOgRNXbQl7wpsFw0WjxeeNf/cP3f//3/tSnf/BzH3rP4+997cXdf/2jn/rsZ37pf/6Zf/aLf7MVGbVHK+P07p3Lwbh9+spM6q5PLp//6d/573/+n/6bY/+3Pm+7A9Mde57b1DpPL9TyrCR6xvh0eTh2S5PN2SZEAJ7Npu98qJwdzp9vnXeX7/5Q//y4Ls/unzTZ5PVtqhCMbL2SBULH5slUghE5DrRJdn83mafz2QLIHILnOBQE6RxRKFBEtkAWUvn0bo7PZ3MFzYHC6AbaHoNNoTa837zEgULVVN3Hk9USrKx6LbRQKBJZw0fndpC9AkGImm15puVatcCWeSCphFPxsGNUvvLHDSNs3gWNyvEEVHNFkDEZkMhTFM1zEnz6IApMUQ3rlXrFVtDag6KZPQ6tGcrNRhUUcFTt9DBVd7FZbu6sgWriCbeBp3465tPHXgAARHgPCvSgkOfZqNqstfuwf8olwHpDRfVCMLIg6Zbt16Jasx6FtXacdlYO/cDBuTRTxNwAAW+BFdmohDqin1UKQx/bzwA565HrwebqDUfN7nQ0Wh6enZ7eef7Fx/emNshVwHR4qXhJV+2szu48OfXjNCT4a/VBfzhbHJ4/euXcBzKOYyT9Tg+j1CczkC+ggB+/4y5QkHQirwEEAKsIKqHnWAbeuHO8iufPAL+6rGLXswyq11QkyxQ48gqABd3Q8P5beMvu7m5sBH1rayu+/r1+4+aNa/EUEsAw9mABAO8kkwcMld5LFIhUbndvHwGYyWYYWQL6QoKCKfBqbEIqcgwrFRkBUyrgwSAAgwRWdZkFPMljAFIuS7I8VSDwQjMdD5nDpkajDTRcEliaATEsMCDzAHxIBtPnccSMAzahq7oOq0T1FudnZ8dAMKF8OXEWkYdhDH4AAFykiTwNAIy3nwC8aAiNPyMCN6MIHdspQHqKM7QsrKSSj9bmOVKw/z8ANhyJyOYL6f3dnTTwAs2EN0gtAmUrstVR2VaLTDaXYXDO2UFOZ2IgSCmMfDzs0QjabeCwHABJDoBDhUWH3hFBpWRze1sJzpH29hOwrXhYeIplxV23QTliD3DOLwH/I/DaFH6RAgxOJpIYEIr0F4kKwRap1F4iA0+EogiK06POYDmgqt0K7DTP1sTGoGIDANdmTViGMqtOJ12kiw30hQIAHvUH4/EINO4SMHIxX67XoWWj4z8PJFpX3Up7OJ4fHi3nhxtA0PFwOI8BWMTbUlEwr1qdJ6vjo5M+L8IzjH2uLQded6Xe6g7H48V8OgUAXq+P18ujy/Dara1Mbntr79buzVtbQOWw52pne2v7AHsObt16bm9rJ5Uv0ILEcSwOnYHKz5HpJImzDHihUm6PDk8vg0yGEtC1tTkIPY2jga4RKarqWzxFHkiTug+rmMkwQTmIfHgrdDSiglfbqQcRGmJ4hiUWmTwj8F6tPhwiCE+m04BICLRq2GG7158sDk8sli/iBKPhloJaUB9N8LB9vVqdZ/7/AMwVaFjG8KWN+Ag6GwaOBt+E3LJjAOY6jXYNJx6acRY1Nl9GhiJSsCF0NIQFVQyvgKAMI6h12vVxpLAqZlpinGNYadRb7bYCdBbvjkD5AgDrskSlOUWzdT0oN6ark/PH76l7FVdDAO5ebgCAPQBgU7Ua64c1HXMBzea5+1xQFIoKAjAoc3SDMSxQ0VVzNa4M13NT45NAIKlU1Qbdvp9jNcE06BxFZcispsrVcnXRILkUwerN8chRgZyq9enlkOatzrHBYa+H4lb8Rqv5ONLTyQyZcvy8Ejrjebao+VHZKZjZxJablDt+5+1DQXPLDy+4sNpqLO5Kt5SeHv2N72KjzujH7hmj3uzOIztz+GMfn4v11Y8fNZaHdz7wE7Oj9/7Vw2Y4eN/L0WbwW7/O/Oaffe2NP/3W17755Xqv4XUH85M7R8CRli+eDquTk0fr97/cFEctzmCGXdOWS32t0q8ZNcf03FmpWK/KH/sBvdMZOPL44VF1vLj94GknvHsWlofnq2C6KEU+7b3+yx//yI/97t8/+q1PdC9//P96/tY/ed973+N+5jtnH/v4d56cThv3j92TO5f3R9Pu5qWFOT7e3Hn+N1/7+le+/I1P1//kj5tiVTIXoeu11drlSmh2DNYqnp2vjsauN1qdb0LN32yms9HL95Wz1eJx+3Zv9e4PjzabhrZ6fu3K1s5zIkXnJculWQLe8cLOrUKRZUiKyCSS2YLGFBhQwaBU0JgUrespCg0AWLzV2cUUuWzB9DGhte4kWctWDNvEAV9AUxHQGN0JAqR2oIBh/3KYd+RpGFyuK0KB4GXHwvgqsxzaEseyNKGFHuBR5GGAPN4BY8sN1GRY2rIO3wcvQq2AukNS2L9oBGE5Dt9s1aLAQNMsrKS78G2oWtCooglGCxh7dzSfTVfzzcWRoTjYgYUZg0ostaDwSCC0eJlhWY7BG8liUO65ehsDG/wwwEh7RZNIVhVF3XLDq/kj2N1Yb0AChxXPwkNokIAoIgRs/3JqJVztiu7hIGCAp9DVWug7HgBCf1CtDYb92dHt9fry0YMHj8cO8A88KgN0he3ZaC0vHry09oKoeuVq20O1uzq7//JpCZQ3Hoi1m12g5lgl1wDA9x+/6z67n04nKMu0fNuy601PB86rm44pSppWBNkpAhareJWOLdDAlH0Lqq2M4AjPFHCYh9f+lt39g91bN57bgQ8MwMPpTATgePbxmWfe9jY0SNw+SOxTdGZnv0Ak8zs7ezke+A6IMkUuciwAKEmKhkhdATAjFUHFIqDCQ7EcG1MvdI0nU8kcAXCbzKCDJTpyFDJZdOYo0ADAoljEG3mA7yISImR3yUJseSxgPCE2uGPbEgKw5i9Ojs9Oz9ZoEO6aDrr5eeV6+U0ALhQYq94EAMYuuGZ8YRAjcbMRhjEA83ioauhQ8jmvxLN4yyy6So6zxEQGAdiWyGw+NuJIMTwAcBiFIivhVnArrq1yhVQ2zfhhvFARgUH7gtjy8SxDowSvbKqiQGdTmRwNAOxYnmdb5UrgirlkXvKUZDYLrxezkOAvwnbAK4+I3gOoTR8cbB8UEjtvdisl0RwFHcoOEql0BtA4T3NkYmcvWSjgZBLDaREo4BHbGMA+8B1Tkxt9bMLi6tNmxQClLo7G3TK24YMYhBLYG3a7o/FgtADsPVwtlqvNpuy40p8DsGKHzcFoulyBNl7HADxZjuMZQRYUsCTZIQhgkMiHx6vjPupmQlZVHAR0feyC7gEAw16bjsaH6/XmaHl0N9ze30lm9/YPdhLbO7s3n3suuX+Q3N3eT+/D+tnb2U3sb++mCwQjFDmezmbz2eTBQaaQTGAQn6Jhn2VjeHh6N8qnAYBVxW4MSpgRLsoMmaZrvslTxIEwrpawLSTHlNAlB74ZG55FiEY4FS/CQEIXM03ZPCsIpWqtN6i3J5PBeFYj0goJWzXo4KX18tjiBEExUIyGUb3cGE2Ho8XydLO5zL/1xrW3XnsWJ/KuXWdJRqDzdR+AWpEAgEECyASRkJvxEfQB16kDAMc9By3Yq81aoxXBF8cjaMMFFtdqtMqBQbEAwABI5X6owSr0LDsI6s2o1m32pktAOMqQVJVHAJZVSaZSLF6FmWFYmyyPzx69p+aGjmZFgdu7uzEDx9EZ0ZaNxuH9mlnCnvzWRXCjVJRElSkqhs4XchSHwccyKO1mJer1pmU2nwTmTKQqAMBMIltgoRIzOZrNy7xnuNVWZVHJCRQo3tZkFsIuEcTK7G6X4M32scEzlKC6XjnqNKqPIqtwkDcV286KvjOeZlnZCppeXqTy6VJOHjc77+izqlt+dMaFtVZ9cY/ZF2qHte/8EB90xp+8NIa90fkL6pbz5Dt/bFg7/lu3o8ni8i99en747r922CwP3/dSeNx+/U9T//4//6evvfb/vP5nr7WmAMD92cndtRfWli+djWuL04ejlx6Ecrcp2cysI1uK22HL457eAmmjT/Ri12d/43d7sM6r9urJujKYnNx+3G8+fdA5unh57MwmC0sWd3/m45E3ff/Dw1+cjFYf+nRR/Uef+uQ7Zz/59773Mz/yCizq3sMj//T25aPRrLN8Oremx0dn97/0ja9//Uuvv1z791/q+U1JbrqyUDHMRsvvjoxdmx3fWW+mXml0GAPw8WY27T+5lM+ODl/sXnQPX/3w8HjdtI4fLW2/ntiCspxLgw7iaIEnC1s3UhiLQBVSB+lcViNTOTKbwtMv9A/EZhiGZ0mayqeIwkGWJLKZghVAdVdlfp83dZwCh4qOQ8CSrtsRmmlgA30l8nQZnR/ydmhhy5+jiyTJC1CbDMvUvcBVBYYkUQHbCMo6NgsJHJfP00w+T+RoQndAAsPmCgMDLTfQy9kBFYpWv/VauRKa8MdBOHH0Dm2aklqqRmG1UevWQM5O56PpYrY5P7IUxN8YgOXYvVnEn+Gliyx8MPCRZoNKz5ZC9JILwgAtK1VNxVROAGAH9kwVL1ECF6cu4MtGFddEkY7CDe+AAX8Fs1rSnDhVNApLVqmMl1GA2p5bb9Y63Vq1OxzNj06PLx7cO7t8cQhU1ylHpTJguhc2e/3lxaOXD23/qturDly6C7Xh5O5Lp/FDrDUQgLsgNYbTw83Jxf17j98FazqTTdMAwCXHK9Uq8B6YmmKU4uhkKQZgQ0VcE9BuQRQkDW0AVUyBUg1WRglMU2/Z29/fvnn9BooSUCZbO9eu37h+7RkM4YnHNWMFvHVwsE/Sma2dPJnKb28jADNUnmAlqcjjHTBDyRZP8sUiepVh10u8EADnTbym1aCeYtx9Gu989xOxsCUKZDaTh/edhHXFoAWlJFx5qcQhDOjUQSPwCtIVwxEVkNGq7lQ9I5gdHZ2dni59CwfLvNgMK6qGpTcBOE07sftJLHzbne6b+NusBmXfA+EE3xaNChgogFMSYe1DkbEUQrSlZAzAsDwz8FhTib0Mw4l4fRcKwDQEsqABm5C5XDKbon1Y35iaaTt4XFOOAr8EP+m8ivcwIrCNgyQApoxZEfBRCR1PL3JF2VEy+RiAcVIMATgA7lXxiZ10Jpc6SGztFZI7iL+gfFP7+/sAvcn9JIZEZbMZkFJkGtAY3aQYmhXUsDtaj9n6uB6VS7CZYgA2ZK4ybddgO3L8YNSvYX9tJfRD2AuDTnc06g8x0xf/OTo5rbgIwDgJIGqSGTb7QO6W89l8uZyOBv3JclQtWTIHxQGQthRiSyNK5MW6VxR4jsCmOVTAQD/q7d5wNJpOrwAYj6KXt33Qvnupvd1tAOA9AN/9JFCLWzf30wf7B6nEzvbe7s5eukCxwJw5El5+Op1KFYhUiqHQGFPTba8xWm0uQgIIG3wlqzEreS629XNUlq1YKoc5CKOqp0CtyDGuDwwIVkJQcYErAPMNXR+PoD3YBQILfF+OmvVev96GijCZ1Ik8ADCohHYPmMPixOaBLyIAB+VKo1rtjoBpzDZH68vCd6AZ6LU3ATjO6W2E8Oc0iaeJSglTRpJy01BYOr/PdxudOjroNID5dzvYBFg1FZnhJc32MdMbANg3KMY0Qe/Wol4AAKy5sFXdWqvaGvaBbugsSamCLHNEnqAEDPVIchggBwsoGi42p8+/WvcixGO/NLh7jBHpOqc5otlaPWg7gQaat3k7uO4JiqRSDK8qVIErojODwCuOF5iVTmnWgtWUSXOFNJABvpgtZLOy5zAZAtiFVg5Kdh8kQ44qSILWHExCnaBYvnz0dFQgueYRIDZdFE2r2u75zoMol0pSkl+382LJHY+yvOZ4Za3AyRzrSsq4PHq1m5f9xtvP+AgAeHaH3GeMRePuXxH9zvRHb2uD7uH9S+bmXrL8Pd3g8CcfhIv1gw/91Gz5rr+2alVGr74YzLv/4auZ3/72F//T17/2pTe+Mpi0fVi85w9Og3Jj+eI5yPmzp9N3vBDI3Z5pcIc9Wdf9Dh1M5nLdBC04s+S+zX75q6Xjzcq3Fg8OgU+sTx/2ag/utlaLF9r2ol9v6FrxFz7zwYvlL3z6vX9w+fgv/8CXx+wXP/uF//Cz/+Dv/si/+ld///ayPXo4DS8ubj8YraZnL8zM+fnpnYd/+K3X/uhL3/xL/T/8gu4ZglmvhTLmAoSR0TzNE+Lqzvp4VvIn69N1eHUH3H9yWzxbr1/qnPeP3/+h1r2TunV4uapXzZ0sYFkxXcwAoRaKBWLvZpIg6AKZS+wlMykysZcF4YvBr/EVKQEwxTEUm4OSTyVzZAHqp+mDtgJpsFeE/Q8UUkf9C3JGlo3I83wcO6pUEYBxNjJn+KYP6s7VZZoWZQsz8kwDzRPRqZK2SipIHTwd1uNTYprieYxS4WgLhHFYj6Jq2QaUY0UevlIVW5VxYK9RiSxZ4Bm+yAIAG6asxflCFdhK7V6nP4VifXh2dgS00TLww7Q0WcZbWz5utuV51DZEoVCgGOzYrjXbjWY9DDwcV1JVhQFAkPFqCIO6qz68Jqg3VRzy8wFXVMNUMa0QMx00gdWrPtrI442gC7UAWzExGyUoNZo12H7NVh9Pj8/vP7x7cffJGMedaxXs3XRckBejxfH9l4/sEhTkKx/pznAymZ/ef/kcx6mqrfag3+vHIma4PD69DQr4nXfp/VwhTTlQ/i0Pg56AmThxRJ7jGSh7JUlBtJWw3QwTIzhZkzjJgEcBW1RT4+7ttwDy3rx587mt2AXr5s0t7HqGcnMzPoJG+fvstevPQQElqPTWTo5IAwDv51iKpQoEK0qoV3kBFpDGEUVAXI6CN4iGD3TABwAGCIrtt3UxC1s/ncYBHWB2NFnIY/ovATuc47AjXQR6jRcMoJ/zOcwspONeYTE2g8K4dEWL54BLlj9eIQBPPbzpju+AS24IKBMIWUZkyCRhN+rVeh3VLyLwFQC3WpWwGromR4moSgw5lc1RTkkSRJ6iOE0iNaN4gEfQsIjpHOBden83w7C8Dp+6jNaqsIJV27ZFDifiaT90MIbYtmIARvzFKXdLUh0XrSIK6UQ6D08Cx4BBn1c8w7MVeOKmnM7kMYlE13TVRuugsFqv+YUdEMypZHovicEnmdiBEh5VNk/ixDQ6UUJBxkbBNKAxTeG4PtRXAOCjIV0Z1wJQRI4t13tlx5SZcNqtGbrEFAejAS46WE9BVO/0sAVrBHBzBCJ3NlscnZ5WHAdePqwBTlAlM2oNQAIv5vM5/PcRGo8PK3HYNjpTOWG50273AKCXAMB8keOIqyNoF4h2FZMerny2huOjk+VkOF7d8a/vbidA1m4n0zsH+UxqL7GTSD23lUodAAXL7GODdyIDdV3EAcc0GpVm0gUynaKKgFiwiO2wMz3anAdEluJERbabM9tydVOXEIBDTYbicBDfAQssk2OAgFqhY7pRxSShFiID9sJytVbSMSuNKGp6vd/qD+rN8XQ275fzOYFWdcNv9VABnzrY2qmZpoUA3G504LUsZuuj9d3Cd1z7izgHjz9ushzICLpetkBgSTxJVTxdIomEggDMFA6Ydq1ZweSzRrPT6/UG7W6v7ugKQ/OKCWS83mm1q6FB0YYBJSQKeiWZ09AqzfWBJrX7vfHxhcJQtCxrCoe97jRQk2yCAz5vl2pR2Jtvzh+/t+FXDdUMSgDAJyCfXaNoWILdXj0/AGSGj8Z5cN2XQDvnCxSe9GgaD9tfKJogSYx6wzus7ueoTJIlMlFk8kKukNyTHIdO5mgywWhOVOqZqZqvJWhWq7cHgUYyrFg+emEAFKZ1pHI8KxQ1C7SAG7yzfGsnk97iGx6tlLxRP1U0Q1PIZCmmkGEVxs1XXumSZlh94UyoVBr1yQmVMBpBdfReudSZ/ci51ustLi/kvXSyd9JpTj955C6O7v2Xn5qs3vfRZbMyePfTaDn4k99V//Dbr3/5y1/5+rf+dD7rBP3B/OT+CairxYvno2h09tL8fa+4XKetU/SkLota2BLsRl8powPJ0KIbevL//pK5PFn67ur+Gpjn6e0XJq2Hd9uL2Stjd3LktsK0/do//uEffPnXf+GDX//Iu29/7HcH9B99z4d+8u/+6t/89K//6nePFpXG7Wnz7PTO49nR/PjJRJ+crk/v/No3vvrVr3/1k62fHTgVVTE4xSnyAhAepe+NNV7tXhytpwDAm6smrJP5YvLypXhxfPhi52J85zu/q3bnqGqtzufNtp7KZWlyn2D2D5IJki5QiVsHWcxFzwN9x56QA8ziEwGAoVhmswUK7VkKTKGQY8hEnkUA1l1e0BVZTPCWi84EePHHIABLeuTjMgMALgc2klCSTAkqfLOeA5SVpCRVtjQbNhR62sssSCbJtZwSEFkLWCzmuNqAEzIUeI7Sg6gcVCth6Kl4JC2g4SQgVBmdNhotNOLAXmSOoXcow1IBFNF00gz8Sqs7mk02m835ZmGr6NBo4ICOAbvbUMUYk9DcpsgQ+Vy+wNMAqjXYooB2UE9BnBuguUCRAc23bb8WG8xWMd4tni4qR1bsuqwyvIizM1DCeKtVxdlbCx1+AX5rcdsWprS0et1uvd9t9Oar9fntu/cfPHxwf+oYFqhW7FLDtJracHZ4+6WN64MAR/NekCyjQW988vDpKfbQVHFOqT/o9ibD3mAJCvjB80/fdZc9yBVyFN5CmoGtayZ6UeLhJuhOCS03VLEoIo2Iz6AVoO2aGf8LfgDVAXyW+LdsgdZ9bmc7Hjy9ieZEiL/PXr9xZcRx7a3YFY0AXCikdvazAAjbu4k8Q/FMAaSjDOUPARiIb5GEpyCxJAsQCvjJxRedOImEdw2WqRCZdCaVI/KgLdO4mPKYAgwVOPZbhHeCBhbGsiwagwPc4EAbg8cpRSgfIIJlFTsLNBuwzBkcntw+PV24wNVsw8VMCy+slgGAM4zIUWnKhDcIB4GvBrFraI2EnanlelSyeFoC9cIbcjKT57ySgOqd5QGAVZ3HO2DDsWQ6D+wgsbWTYRlWtWEJi7Qi0CylOK6BHthkhioFlo6n36gA4c0Ow8DHvjxJMHxLYqhCNp0DlsFjGIllO/CHfU/XNEXnE9kcLHZFBzSOATgCZRSSu5gfnCmk0WWDzCP8AyIRSE/IPLZmFQiSLBCFbDIBfwS2KEEwQtyENWTqY3RT82wTALgC6E9Hs3aomzIlD/rdWhNkVwV2CiizPnZhjafzw+VijgB8dlqx8Q6Yx454RbKjVh/haLqcL1cYmDRaDKuBh2m9mKoTllttNCOfL5abHqaS0kBjgfDFDXDtTrc/GI7RiWN0dLEaD6fre8Ezu7sHyb393Wx2+6CQ3b++s50nE6l8YmdrJ51L4GBwOpsjOIWH15hIovlnIkdlUyTafmPIQ7U3Wx/fdy3IDgAAIABJREFUDvM5IGWa7rZGAEXYzgcATIdAJBGAsTGryNA5znExcBSd8VzGBtWP01c4tVAyDGDnhKibzUGrP2w08K66WyGzDA9fw291+5P54RkCcBEKhx2Uy/VuszMaT5fL9dHRnTwo4NiOBgB4m2PRsq8CAOwAySLJyNFksrAtN4Dt0IV9ulmpA37X261Wp9vtj7q9fqNkabC8JATgBvDnZsVmGKTHYRgOfZGXDd22UJTE0SsnlyKoDmA1CvqskyQog1SC1w3PLVXL5e50c/HkvXW/BgDse17v9rHmOSWDhxdot+aPRm4FpywBgG/46HMPAE7R8M7FZ17FYqnba5balcpKzhel3AFHFaq+URRyuf1twTQIePL53Z0s5zZrzHP1Zgjk0W11RqFKcJxRXj5sk5rbXOtI1YqaU6s1feeOg7ks+3mzxCmeN+ymikYkZ7dzmWR+J8Nk6D35SY91guDRmYTnd+NVJuH3Vbf9WHE7s0+c6b328O6j2l4iPTI1v//xeXm8uPPBH58cfeAHlq3a8N0v1tbdN36T/9LXXvvGG3/2+htf7Mza8BqmJ3dPgkpj8fR8FExPn05ffaLyVZ8/YOq2QHJ6CYAH2+ig8JXYgmcn/tnvlGfHy8CeXy67w+nm7Mm4cf9OZ7l811jrjge+yblv/NJ3/x+f//2/cvgz//JX/sE7/rHqfe3Vj37yE7/wdz76uV96Zb6cTl9YOiebO0+nR+P5S0tnDgB8+YWvf+mNb33zXU/+wS3dpuDtYUXFlEPfSH7kh1cJITo/P1pPXB++2JsKeLZ89aF67+zwpc5Z//QDH25tljX76M6iMnIy23sqC1ojncgkCYZiEjf30mmCLMAzTGSI3MHOAc4/YBsINkKnMU89m8XzL4Hcz6M7fV612Nh5cp+UNWxsEvmiFKeHamY5QFtHbEAKHV2Wi0whKSiMiKgqcHlCkEVbsx0FCpipiui/56MtK0aLewhH5RC9mEXM8iR1tKqAzxN4qoR+SwKoiiskrGBzf9VVBDwORQDW8W/F8zhWtVSqdqfT3mK5vjiaOSoqYB00kwGIpGt4DYqtYTiFBBWNooF7hr5fbkZQyLF9ynsTgDkAYMDZoNltlMtA/UBTYLo7KnnEclVkYwCWsNnY6bRKDuazI/riMD6OFYMUa7eHk0Fz0AFROz+7fXHn/qNHDx9NDQUIexiir0cFRFpvenj+dOO45TdDfEBU9LqT0wfPb0AmReVWt9fpwu+MO53R4WZ99vClV977kE/mAEZMXbHsAP0uMBFYUyzftQ356tXqGLoYp0UIvGqpuqXAb4FcN0z4fQW7196S2d96bnvnFmYQbt1C7+UrAL5+FcyDAHw9BuBcLrV3kM2ns9vox0IWQQoSoirQeCxFE5wk0Xj7wMC/FdERkqOwVxbPCDBXxLY1KgdQUmCY+O4XbfnzeALNiIi6OAwE7wKHh87YchC/IWwRii0nK/CtY5M06CJDs8qebvXW55dnp+uSBNvNcs14DrheCxCAUX3SZjyF1oyjCONTCLy9r2F9DBwehAFH8Y6WzlFC4PEsmyN5xZIK8RgSL5quJRLZfC6x89xOnuc41XbDSOIMDUiGCIyR4fJZIk2WAtMA5e3hRUsJ/R9g5Xqhx9NG2VVw1Ao+BQDw1SCW4Rqa71mqLKlMgkwTOAYvyWbJdYIIr/wD6iC2KSFzWSJO/wQEhl9gx3iBIICuABlBO0oyl0xkCVyuFF2UtbA9OJwUO5OKX448Q4kB2JLoyrxZUh2VUPrtJmyPZhkYXRmWLYjU/gAwEuB3sVisNudnVcfBQWW8ZldkNNoAlAbcnc2X8/FwOF2NsQlLYTlFV3Q/ApkLFHC6XB33MSSbfVMBO3aAM1+9Pwfg9cVy2J9u7paexfPz3XT2YO/aVi6zc+3ZG3k6lclvb12/tZ/chUWE11sFXitCxTnYS2fS+/tZOp+lgPUICmziSnu4Or4TZAmGk3S91JmAVoTHxvNUho10gb7qggYApkkAYEDgwC2V3HKklAeDXq9drTehNniaHgOwYbWA/w6bzeGoM+82iwWM67NAAQ/m89WpjT0cEhpQRxGeBwObmC+BqJylv+PZZ956ZQf3zH6cjMyFCMCWzJG5wAIAzt4Sa3EexB7XqbeqNUBfoCPoI9sDwPUdDQi65oa1ZmvQG7SqNs0YugvVrDYPYRHYOoBoNQpa3c54eHpPoGlJA1bMIHujQGUnk4Kue65bqVR6k/X54/dUvaqpmb7rds/Xquv6OqOonFUfPxyaVRyMayIAA6uSSYYnCAHqnFxUNI6Phv16ZVDuzLKaaeX3OJqqA1NU8vDkQULlEnkqWywUad6in0vLGSrPsm5vMKsoBY43K4ePO6Rs1A7hUdI8r9jlSsfLSnzNyVNlg3do2BeDTlpQAzm7R+0lpSSsYaBtL3QJ1S2/41SqBtXmeJbJRWUvOHy34rQBgI1ed/nwNEqS5LJtR5u/sQrHq/sf+qnZ6tWPrjqN0Xve3l4N/uiPma98+8uvvfb61994rbtqAQDPzx9c+OX6/On50B9uXj563wNJ93VqRwxEHsS3INEUrFatKEklider0mf/ebQ+21S9w0fHvfHi7OLJsH7vbn+1eqmrr8Z2w2fk/+n7P/U7d37kTvRA+eHPfeevz4SvfPRHvu+nfv/3//b0h++uurPmnWV4sTl7ODhcbJ6f2QDAF4/+5Jtf//Ifv/GDjX97P1kzZbZj06KWpJViSnnH/G0Z7ggVsBdMj99swpqNVu9/Yj5/Z/1i87Ayfed39S+O6zgH3GzQO0lO24XNTqSJJCxz5uA6EPF8Lp1K7e8mC1Jh97m95MHO9n4qT6FDdJ7IQ10hGRBVzH6WJQr5gmLgtQgtZIqaBrXWkDkubsIyTBCgsCNKAAwOGlGyZC6XNgIbhayliyQBKjawSp7m+hE6qvIcEwDAVQB7QQM2mrVyYKGDsawAv7XR1rkR+hi7IHHwlE0HV2S12WlAZfEDC3CExUjDHRLtx52gGsJP+LnqbeT8m8vj+L7QjN2irjLRAHtlTca8QxFj6VmGIVjPicrNXh0KdhCEJQVqE84By3j6qQedBmYMlusdtBYKsXPZMiwAYIkXYgcnVVBlowEcs1MLy412HUd5u100Qqi0Os3+pNPsVMv1xvD87Pze8w8uH7w80yXTw4kjFMq1Tq87X58/ObJMH0+40U6nMxhODm8/fLTxI9DA7UGv1R2P+uN6e7rZrE4fvfPdH3giJjOJJF+yDLwDRG6hgRoGWQLE2pNAtHGqJmIXtAT1hcnxsSWGbsAjsgCzzTePoLcPDrZvbe3Aj+du3nzuFobfYdfnDZDA8enzM2/9C2+7kczs5EAB72Xzyezu3n6OZ1g6l8c7YHiEGPhW1ECHCEWoiwwrYhcTSGF04TPRcjE+K+CzyWyeglKVzdN454AAzNAY7UPDX6QLBM3xeBv/JgDD3y7GzshxKiX2jmmgxGAN6aXB8vji5GIWAADDp0frk6BSgc0t5xjQz1nGRR+FJhKfJpAZXD3lCtoTVkPfxM/Ls4KpZgF4PQ8oGKAZpxczkiEks5yg2SWVyiEH3dkisE/A9CpRkVGg9pCybthFAqAwzZQ8RzM9eOyOj4ewlXo1BMJpc5zTsmELkAioFI8t6DreswBKIymSpcx2KpWh+KKiFlXXc7wgagTNSn4XJW4iy+TTBZIj0wdZTLul2HyGAHmXISWJAOqSSeUSe+kCZncyTFF2gvb4cMDWh/VKLSqZstroRgDAVHnUCW1F4eX+uNNqxE7YaIvYGQzwmHg6W87Qa3JxegoK2JFlLr4D1hU7qDU7w+FgPBovDueD/mg8m7QAgDEmXpX0qA64NIydUM8HJC3InKQqKraguyEKuHaz1+mN0Wp6PemP5ps7zjP7e9n9JDpgXdsCOr/1LKj3dDK9s3Pt2kEW2H1uby+dJXiJ5VgisZsgcuk0jl7ETXkivA2lVntwdOEWMgRv2IY/Gls2etixNJmhQxV0c3aLHwPdQUsYDig6vBt2ALpXrbRj79H6oFapudhzSZG8VmqCBh22W8PpdDwoC7DYFN0OG/3xfLo8KjFAT1XYPDhw0G52+sPBaLYer26n/wJQUJwCvnn9mT0Rv9NCI3RsPNNjyPBqDtgABQyIsy30G42oCuuug05amMo4bJR0hcEppKje7nUG007FohlRx07LzqgsCJrugLqtVBqtTn+0OD6FdwOzQiSSShNEscgWcntFNEAoeWGtPTo6ffr2ulcBoe444fBkZluqp7NQnazO0b2eV3Vt22mehtfR/EMUVY4iSA4orMhLFB9VvFKlVBqW8p6jwBYhCrVIkYskkdgnAj6VTZApU7eV/fRWusY55YOiIDbHY0+nKEGvrF7q5FStdSSAwOKKRdeuzksHCSVq1fT6SdnIyXo47OQk1eL2ckIuSwFr5RKmd7vHilH16W0eO1jnk9SWGmid6cuCXZ59/NBpdlYXd6v5WwcXdbO5/MS0PFpsvucTk/UHPnrai/qvvr016X/r88WvvvbNr7zxjde++bXyqBG0OrPzxyd+ozV94XLqzc8fzt99N00BY9/jurSQFSwxLRQdRSiWCMqRaZV1U+F8tlmX7dX9RWc8Pjt7MK5fXvaXm5e6znJeaZhF/U9++V/+R/9XLuqf/cjHf+Pnf2tN/dv//ed/9Ode/d8+13zSPT5sjB72qmcnFw/Hh5OjxzNvfrE5vPeFr7/+xm9/+YOVL772qNilM4rI5EmukGQUrQA6gu1dHB3P/WCyub321eD4eDFZfuCx9fzJ8X3YZErpbHW4KVtHdy46IZF+zpRJGlXuQSrPZNN7t7ZQ7RJEJpXJZSX4/xvbuXQin6KYPFPIEQJaYwmKIrD5gySfyacTgsHIEpromo6Ad7do8ChIRQBgO/LQYyAKShVse+Y5tpAC8HOrAXwXfAFKmxXrB8+pWlIRQzb8PhTRRr1VazTrVye86CMhCRynIyJiRlHJkovAwQRFc6JGpVZRHCcKIseQ0f6QFukdRsX4H7z8qaP8rDXag+l8crQ+GWk2DqTGfsmGrqL4w9Ec7MfC2z2GowsFqgSQGTUrQaVeCdHWSFQMiS0qoLhB5kR1KLJBvdds1iqgdtAaGgeLQffDt8NLOkpgs+rVmqNmBeCy3+7g7Gm7WQc6UW90+91ePCE4Oj6+d+/y/t17L850yyz51Xhasd4egOSYrR6cmFaEQ4xxJ3R7OF2c3H1yjkayLeDqoxFaQY8mhxd3Li4fvfjSX3rCJvO5DK9bQP41L44GAECwQW4CUoH6xFNmVI46Rp+bqiTrJlpmXVlixaFIAHJv2d3f30ZfXpwBvrW9sw1K+Mazz16/+RzmEF67dgOE8DM3kuntbB4BuJAu7O3tZmGlsfkcjXfADMsDoebVYoEtggImgYQBAOdoHHbl0SgFR5EsxxFyqVyewOFy9MMCeQdSkgYAjrvg8HKDRZ9vwEfAYhBlNI1hQIDOYtxoLuIRg65bkSu7o+Pbl6fnixDbDqAawipCCVoKrwA4R9vofIUeHO1G3AaHxmXVWi2K/NDB1gIOj6BBiPKlQIJfAP6bxSSr8IkMy+tOScVrFlBvO6ADRK1UigEYUJsoCpIONSuXT7MAwDjF7Vjw4rwAnS7QQdRmWatmSKJApIGCULwkK0ARdJy+K7mYIsvv30rm8kw8AYf25PBXASV8Ik2RbCpDELD74rlfDP9Mk3QB+9VyJAv1kpHoXC6XPMgW8KiexvawUmt8NGTrk3atGnimqDT6eARNVSfdCAFYHYzb2HmAzRJAVEGQDccTjAKezxdTgMg/B2A8hRc12QqBsfR77d5gsjqaj4YY39UIHI1jWFlXTMCMeAxpvpifDfHaBT3QZRwD9kKcoAGF3e328CB6OQTtdHTbvXWwk0tlU/v7ZCZTAEqzm8lkkvt4opZJY0BPemcXARgj2Mh0IkvlMgjAGRL9v2FDmX6z2V2cOLDgYIXrwXiO3FJTBYoAANZEYCa7wqTiabBGchyehAeu7QdBRal0Wjj+XO9XyzXPUEWepETNKcOn69abg8l8Nq5rLHai21GzN5wAAHtvArBTimrwYnrD0WA8X40OAYAxi/n6tes3bzyzi/NSFFGveA4aAjFU5GoSSewrNV0GRrkvtKMaFJ5qtVkD6jcAHO+1PF2jecn0gaK0Or1Ru2zgsTC6h7VHZf4KgDFCAh/t4vRCEWlWh/pJUJkCVHOOKOwLhmZ5sMCrrenm9Ok7mqXI0k2Qvv2Tue3oCMCSaLRXd3ulGgCw2zr1r5ugKWCFSYDf8RA9C9+4qcsOcKyAUfo8nU2zJNGoxNP2id28yycTB9kMTRfpvUxWC43qIE/zetTtWRpNC27r+O2dtKSVF5IqFqFWOkGjwW3nimG95lamkU5B0WlWU7IdFA8oObeXygsOe2C11w1GCysvXwjIf8f1RJLzS2LtrhY0Fn99btZr47MXOntb9NOh1br46VV5ffroYz89Xbzz+9ed8uBdTxvr+n/8d/nXv/3Hf/anX/3St75YngAAtycnD9d+rTl74c7Un5w/mr/jPIXNG3m+LGsC7UcFFSdAShLNCCZHBeJWaTbZrCNreW/ZBQA+fzRt3r/dnW9e6rmraVR3OfW3f+PH36Ms2sP/+j598ve+tOD/9a/9zC//o3pz+a5/+N3r8aB9b+VfnN15NF5NN09n1mB9uH70B9/4s9df/8YHj778ez95oGt4fkQVLYU1Ko1hk9TU9cXRZurhEfRhSfE3x4vp8v2PzEcnxy8JYa05uLg83FSN0ydnNS9/cEvlsS11L5mGzY/uPYkC3r8V0slUJqPwdOr6jUQqVyiAzMVaLbEkECIVAJhIprgCkU1LKkhZwxJvEa6Hzv8KZpsJnGBYbjnOpS6Hvu/Cb3Msk0/qsJYiz8IrDhJKmeO52J0f6piGwHNeH4CnUWvijE+lWg5sQ8W0BHjHtbAcRmWcvbWBzjJXAAx/tqqD0EWPAx1vcimB2qIVDNxzSn5YxlwSIKK90XR8dHg8MWKL5PgSGAEY4Ve6iiOMu29ZGioBfPWqgxTWN23PsoEp6CLDywIIH8A4tIiFzVmPvFK1WS9DRTVBTCuSxMsKRuxI8MfLdlTGWcBGpwsFoAl1qdNFHdbqD7oggYej0er22YPnH96/vH25NEzLD6tBdDWlOZhOV+uHp7aLYg1Qoxq1h4PJ8eW9F84BPeCpdDud7gAA+HC5uXP38vl3vPj2D78iHiQTKS5utLXw2N0GEPbQkNLQdNfSxCKaeKFdsWHI6I9iW/EBgKapuoXzy4hrb9nf3d5GF2LMQYrTCDEOGAD41hUAx21YNw9S2+ksAHCmkMnv7e/jGBK6JxQB4P8cgCWCLYIwomENkDnY+wTNcoKCcRDw/ZiOB8QbzSjhR+wszuBcOQ1Kl+HwFr5AgvyFcsEXQVvg58XQ+TgYiOewjRNEI+h3wy67mjs+vn17c7IM8bYbzSix369SCSIEYJogWKfZbrVQhgCVq6L2jc27a4Ffijw6L8Pn5g0lAzIuCGUMwOYVp5hgJC6ZYTjNdlUGVC4CcIHjZCP0q1cAXCT5omyKVCGbAwB20fYTpIhlusGVNSnITItjrYomq1IhmSkAAGNOlWPqhheFnqPiQMzerXSBwqFmRVDhjfICP2pUXYak80SCZrI4XBA/nnwmw9AUiX5hnFzEm1GRhM2ZTAKug1oGABY0txkD8LRbj0qeLcvNYRUAmIHfCK8AeNQCQtus4e6ptfrd/gijCN8E4OnRyWnZcmQFjTkxEBlQot7sYu/u+PBwNkYIGjcDV0ejSh1NXurtPujC5eHydFBED1cR5wNsB4//2zh2M+h329iMNQP1PDu6U9reu5nN5pK7uyydTaHTSD6VPthJ53IUmdhNZpIH23uZHAnPiKeJOGwrA3o/l4ZXR7FFYI1Q5tvjIyuXInjN0IPp0rWAg6kCvDd0hGlIhT15WvXQPC3Hua4dhq5d8hGA4fto1ar1bjmquYaG+amSZngtzONoYJvZuOnE1NsuN4EyzFZHLi3y6DAPAFxvwjaLX/18dHQ79TbsT7x1HUeBt2GtwHKsRbZpIO8kAfxBq6bEqqEyDJUQGxhDXQmhNDU77V6j5NZbwLoAgC301qp3gJWXdUpQDMd1w/a4jL14SMGgTjaH48H87I4ikIwuF4sFEigLICcIVNFQMHzBrzTmm+MX3tHyfFfVAJE7JwsoUiWNgzfQaC0vu6U67HyvfeJcN67is2WOBN5DcFSBI3I0RRB5Nr1HV208hmBJsgm8gWfoxBZlisndRCKXSGcObu1nnbJXGuHhWXvU0WSKlbz2+sXWQVErTYuxjboIRU5PbOXZqFaN6uOymAORPGgleTvg9kghmycJsu4WuNqox+lh/aU1i05DY38/V/CjncoDNWjMf2hitvuri6edmxnt3jjsXn5m1Tk9ffyDnxkdve+/Wjaro3e90Djv/8kXE//+P//RV/7Dl//wW/+n06+DAp6ePL8BgTR7ensaDU+fn7/7oRYwYu4gSYEQfpZoSBQtiSX2rW7pbakIuNnf+aVgcryOzMW9VX8yQgBu3L/bX2xe6lizWVR2ae0Lf/By8P1v/8l/95EH1aO/+bV64fc+/0sf++7/9tWPzh68vz1Zty6Wwfnp7Qf9+Xjz8hwA+Ojk6Te/+cVvfOurf3Xw1f+VFUFayLYlCLbKKp3aqpYsm4vbR+uxU5oenx/5Wnh6upot3/9Qf3hy8pIaCOroZHl41DLXd6dtI3HzWUmi8qmtrWScO5PdjwG4QORTOHrIF5nMfppFd3148/C/oyd0oRj3g6ZSeM+VV5UsB19fShV9MT6CxqYtninqph3EnUphCUoMbmKKKqQxvi10QRBzBQrQwPPjI7gQVjPUE9YdNFu1OoBmo1IGKIywUxe9oBkaAbiMEbwe/FHMRpV1N6wCAJuuU3JD11Q4tsizoIBZ1QQegIWxBKKkiTm67dF4NV/P0TFL1zAr10QJqOL9L4p5QQGZgg1cJM1WGlFUArkKmtxwDcfSNF3AnDIQXkCWy/ANgDhtduJ8wVq9BJUV25uKnCijjhZBDzTLALh1vAXqNOBPdjCWARuam71eqxJVOtjG9+DRk0f3Hr344gq0IZQL/yorrg1MYX3y+AQ9FeNL4Eq5iUfQF/deOAtxT9e7oGZ64+n0aLY4PT++/eTJ4w88YXeS2QRtwbdil9ABOjaGsExgGpoca33d9lyAZU3HFEKQvKJmWXgAAHDM4HAHSLS37KMFx/Xrz8U90GhEeQPN5/Ho7VrcBv22Z65fv7Gfgi+V3tlJ59PpnYMkiYcWAMA4z8VyxSLLAAUp0JykFUGxihQAcAEnGASQ4YqBd9OOZ1AYiAQAXMDBIyhZ+DMKYI6jiQKJftwkBQvhSgnDZucQnvEXHJ5F8/CumboZWJY7OMQnsCybyDswQA4ZF8AMALAI6xIAuINTIHhbX6tiCxYeRFdrPog1lybgrQcAVrMEK0eBwAGT5BRPSkEly+QYWjZdlQNBk03v7QBN1Aw/rJcFTsPBm6KkuxKZy+RSAMB43mA7HrLIOIC9BFzT4nmnggFxhVQmFnKiarq2idN3LvA/oJPpXbzTxDVXVEwD/dD9Wj0s0mw6kRNo0IF5eHA0z+YzeXiKBFrgyDKbBTkEj4jOJ9KFPENgdmMMwP8vU+8BJUt2lgnqMGo9W++VS+8zw2ZEZHgfkd57V5XlXlU977ul7pZXaxjEIIGAkWA4GmRY4dEObkAwuBWwwK4WFi1IuNXAYIR2hgFJdKvV3Wpx9uz/R7XO2ex+rkxWZsS99/u+e///+waLHijgdsXWTUPk6oOqLhXJ6qhlywDAfLffQGPECtb01RogT0HtYRZhsAU9Waz2PUUtBgBcAACWNPiqdqvRqg2Wi/Fo0B3PRgEAFwiMurSsWnswHM+WO8v9DsOjwzjHspKqWcAi0fq40et3ms1uvzcdDCez1XVnfeNyKpUIbWynE+H1y1tb6cR2LLoZBfqyfeXi1VBiYz2SSmZwPcFT7zToslimkIqm8zC0WIBDGxMk5nIiAgBcKjkTAGAOt89yrwFwDgB45KHNHihg0wKQ0gPnW8HHEEYA4Bb8QxNLDJnNs7xo1tCiozmejsa9qsmDchFAFbcDANYAgGHCKLrlA1/ujkZ9AGDQTseRJy6vXVxbwzakfxUAMJkrmxIoDRACSdcUAYAjXFURAd+2+YbTrKHdPawAjVq7IVBOHRYdkhUA6Jt1mMDddrmUZUDRAiJ1pi76nmqmjf3KjdGoMz085ugcIfI0ncklMgkY+rlspCgLko6ORtXRzur+U1XNNHnetLTG4VwxQfaQMIXV1vykpVd0WdYbu8JFKShrFLDAJZ9MEyzJ5nOCUMyz8YuXnH4MHgkyk6kDb6ABgNdZiY6ux7cBq5PhjavblGVwXXiZ6tHhQGAyhaJWmz9ohlmju8diDyjcc0vNbW9HyXLdNxqTkiWUxHKntl0QNTKUQK/4bLRaCIXy1QXN280Hi5xiVloDbT1B9KwrzQdFszL63r7Uqi8PblXXOX2343dv/NSovbN7+9t/uL3/9vfNapXxsw9bvcqX/zDyl//y1ef/8eUXv/EnxqBsNdvToweHtleZPjwalcfH98dPHTJcGl73ZjwH6lu0ZKVY9EbXbIreSsRF+tNf+/X67u6Op4IC7kwAgG/1y6c3u9O9J9vKdOT6JlH62z//me/84U989Isfe/Stf/jZ361lPvPLP/dtv/7eb/3oBybv2Z90BveGzsH+0fXWaLD3cKqPDlZ79z7/9Vdf+MbLT0r/9/PdrNpWQ5qeTQLJI0vugjmXI2fXdldDDRTwtV1H8g4Pl5PFO++iAn4TXdTLzUH/dBfQv0sXqiKRFNiiENncCueA8scjm1c248l4Op1EL9o4yeQiuDUdC2eTyWwkubUeS6VTCWwyyWWs4FQwAAAgAElEQVSikRzuIIpcvFCUaDFOOEW0cuPwSJUh2cCgDlYl2zR021JLRRr4akw1NNXRTYmnMjlOgmEVpDVgPjCInZzerzcwNwizELCIUS7x2N8Dukj0yxht5AKSY/cuw3CS4fhe1VODHku9xGRAnMAw2yR4ieODFHSAdg8RsNUdYQn5jl5SZaC46lkptISFSCBDBABgBjtg0CckXW7BcjUA9lwGYQ4KB3QiqHmGwToau15reiZIehRVniHrvm0E2YbYpoqmHkXAN8lXLaNWrlQ9r1rFUowmpgG02kCp+62qj90ak/17dx7cPrrx8N4UZKmhuzammCIAd0b71x4AALvoII1tg5XmdDZc3np4YNnANWutoA9zPNkdz67dPD65e/fG0zeym/FMOCeZWkk+y6YAiiNIKN0FlhYwAxnQF14kw5V4YBHYhySzNM1hdiFG5QkcJ7wutH5lfR0NAy8B2wcJfNYHfP7CE2cIfO71bwA9vBnZABGzuR5NxuIb2+E06F4CsOCsuQluOQAwlcwCAFNZUMAAwIl0KpMtYEAkj7xH0U2NSMRB8mTh44i9AboGx5n5/BnywsqL/0Y2hn5YNKZEo0kWhjaTNJb5iSXMzFLa8/3D/euw+KK3lY1dQGhf4gIAE0Uim8jJWBVUC7ygzx64EV2BQWRaSh6Do3OkyMUSBO+ZJNaqELxZjBdLxUSKKPAKbmpShXQitBkAsOnV/CIlAe1MYYY7l0/GE1HS0tF3W8UeIyx6B/kLEGCqDKN5IoxaYLQxLCorYjqmgjbpuiZJRZbLRVMZiiCKwNlgRMpYweU2ykSayiQAhLeS2VQOAD4HjCRXiG3jUTDGVhAsm08EABzPJIFi5DAhWTbr/VmHqI8RgA1DYuuYjsuR5UHDkhCAe8EZMEZnetUa7sLgBgqoX3iMRlM04lCUIgb7wLpaKkqqU6512s12dbizRCvK0XSAcYRozSwKslNu9MbT+WK53NlrUUW4ISzPoc+KARcfHVcB4DutdrfbnaFV2+qGe2VrHZA1tBmKRiJr5zaiifDVWCoSi0a2r166tB6Krm0mM7EEIwt0cCyRwz5gPAQHmk+yRb5k+Y3+YCbHwhlGEEvOeG7ooiKhSUUcABiYVjrEjz1DJLEKGi4kUDHDcWxPLGO9RqVSb9lOWYU5TuYKQBU84GLlcmcy6Y/avsWjHb2GW9DY2qzminRRklXc6W2dAfBgPJ3uX4s8sXbp/NrlN3zLG879q40isEAi5xuSiH3AuZhjSVwuu81WlRKshltcs9yu4eyFmVottzsl0qurqghzQvewHrDT6veqYpYqacAWgeUgAAuoFLDlEAH44IgBaojt+9lCMgsKmAYAZjGl2LFNp9rf2X/wZEVzTI63bbVxsiPD6ophzbzSnJ80NR9LP6pT8rKEcwb35Dh0CKR5tkSxnm/qdjqersrAgBJxIpWuOZLEwA/YKom5yFp8O5IACNheu7yWL1JDJSm079yYlJh0ntHqs0eDZKl6fE9mSCCOoJyKkXA8TJV7NbU7jcEqCHLKjrOiwqUS2fz5i0rWeeJyctsc0bzRfLCXVTBZSbkSMY75rc4dzq6Pv6crNKq7p/ftNdY8aLr9B/9pUFkcPvqOj/f23vTdi0Zl9MzD5qz2ymcyX/6XF1558Wsvv/x5t+tbzQ4A8BFcsMmDw1FlcO3R4s1HxTxHyCQGF+U0tyoB1DDAw1hXYvLslXd8+j9Yk8XS1xc3Zm0E4Nt9//SkOVo91dWXPb/mMMI//OQv/8rbf+9Tf/oT737nH3z0b1val975g//xw89+6v/43E8se8vB8Ea1eogAPB4e3Btro/2d5c3ff+X5l//p1Y/m/usrP5VS+FSWEiIRlBn2ahe0CTE92t0fm85k92jHFt39/dl48dwD/d7+6kmD0JqLm9Nby4Z5fFSKzhfjiloQzGg8vZ3OEMloPLq5EUkiyEbD4ViSpNPhCCyZoc10Kp2PxMIb8VQqGQdJmM1iu14asLrExfO8RBTDOU8KYl9JLAmmeQwJNW1sjwSFIHMUzdKFZEQxNMXSTJFnsrmiyEl6YNThaSKu5lm9X6t5vl8H6YpHwBbKSw63oPNipeYACDkY9kBh1TUAsOs7ZWw70AwAcAoAmCpQ6Y0CEHo0IVfQFdb0G+3ucDpb7C8O9+1gK1DVMa0e20dKnBxkBJAM9jDBEpQt5GrDdg9EKgjWimOgERY8G0ELvADPZlex/KoNr063yzVP0ywPJiKANBvUYGFarVAsOaB32vVGs+yjGx0eJ9VBCHdgbWrh3jrQgcnq6Pj+49t3Hj+YAC6hcQ8+yrVmZ7i4dvJgX8NNeRePhdv1znw5Wd198gguZBmt6rDQdLKY9waHd+7effzg9lvu0VFYtXIlXS2JuAONKRb6GQCXADqCEwEMbWWyBY5HVSHweKyOVWXYIYxHxKCAw9ubm+tXr65j/B2WYV3EM+DzFy6dv4jR6RfOPfGGC+cBgNdDCMDhRDS5ubmZpEimkEoVgMbQBVTAeYon4+iaT54BcDKGfs+BxS78JElBswwyOOXLo5ETAAj8GRwAvxa29U0/FKIAejhP4FMSiL1ww2nMi2RAtxdBAztANtqL1WIwrZta0PwDVA8DRxueW0wQHJmN5tRGp9NpdtuvxRHWzzqRgiIsCYuw8AyYjyfyvGsU8sAnyZJVjPNiMZ4kSVHXBBL4IBCN7TRB8bKNAMxIaKZK0rxWolMIwEC/RBVWPFlTsZTBdk0FZIrGMIojFRkynUxEXgNgBRgDgJQJDImmS3QylWVJAvARJKeqwsu37YaXicFbzSW2t5OZTCERi+PxOZmLbicKgEggf/kiXFGsG48mMklsTspkCUZ1moNZh2xO2xUXqICIW9CayFF+v26CAiZLg0kXBiMAsONhiEg3KMKaTEdDeICU3V15ssxiOSJDFEusZHjVBm5B14e7u7Mx5hYOEYCZHChgXnKrjd4E8Xexs9ckMJcbszZULPk3Lb9SafTarRY2qndmYwTg6/bF7c1sLBLa3g7FUlfPhfOwgqTyWEofj21sJuPr6+FMOhRlVZ7GPsdMHqAZPh9LY0ADALBkubDsTeVoJMvCWHZHM+AwmiyQ+WyCcIG0ZzKR0sQ3lUABA5nXYDlxbcOWyk3gXPCOm5ZTUXmeIfMkzUgVtIksd8bD7qjl2iWkFQjAw/F0Z0fJ8jQrngFwu9kHAB4MRwDAR5HzVy5evLoGAHz+X22xQAfzGVDAJbjKuUQUvenz2Q22Igu5THqbalaa6MFXhnFX8Ts9S2rWNY0ji5KBVVatXnfUq0ow2HS8XMMdF43Hgbthv1x7OOxODw5xf48XOS5bSAAA0wDAYVqE4eM6plsbrA4fPVU1PJ0rObbWvrUvGaZehG8oSnUAYMUFiSH5g/SaBOSIxgxVjioUKA5IZVGqViylrgqivpVMJmLRQipdNyWZzWbCW6IQDV2MbG9FoskUEKQLm5HYwM6VOqcnE4nP5Sm9Pn08TZfqR3dlluJZUjAcZmszHiP8Yd/vj6MMCCqq5CRKolQiU1nmCn2gaFfTqaznkpLWeLyTlr1ms6tvhNzDRGh0n7Xq0w8M5HZndeMpZU1ZXat444e/MO4sjh+//0cmJ+/67p1muf+me5WF/+rfhL7yjf/+6ktfe/XVv6lUfLvVmRzc3YMLNr53OC73Du5P336/XaaTUjZKlYT0WqpObqcLZDOcF8UYV6ZE71f/0JsudirG8vq0OR4cHN8dVm9fb473n2rwvbZX0Qulr33kHT/1/T/y8ODDP/U7v/lvXqwWn//g93/6R//tW5771O9/bG/Ybt9su4d7B4DZg9XDiTpYLZa3vvLql59/9WtvLP/xi79dKupyjLWzhVqj7O28+zRWoszdw9XBxHInO0e7AMAHAMDLdz8y7u+vbg+LBfvec739nbZ5+HDHBkTw9aKsxNLkVjxBxKPJRHgznAT8jcO0iSbJQjoaz2ajoa1IJBbfvBpeD4XC8TjBwIqVjccK6XQiJXCJvCTSfIyyBJCeIk5miiKKMCkdMwjoBISUGdygTySjGrBUxwQAZvMwp0RZhy+wXVsR6DxJ5owe+jcDK8H4PpC7AVrAE+ayQq3uwtdhcy7aRlMMD4tFxSmbGB9s21iEhTbEAMAkJ7C8iBGxILh0K/ConcxW8/1dU0LjLYDlIEIO04als6oxNGbEpooMma2PO71GrWOpjmMApkkCV+LQmJgVsbGohoBaxcNZNMB0bFdHK2iBYYXADKwIr6vk655b9evtWqDhTYAG2zBcPI2uw/+tPmiD3YNrtx/cun7/jXNAJUN1y0FqUq3Vna+Oj++tFMs6CzJGI47hbP/67WdOgFT7bsWrdUDCTHcm3d7y5Obdh08+eNsdIp6KxXIClkAr6MuI56GyLGLtrQB/FimCgpfHU+ncWRlTUHoGzBg+UQjibIMt6HBo8+p68NiA5eYskOHCpcsXglqsC0EeMALwVjwA4Hh8AwEYq6CxCCtwq2KIPMnRSYBMHsCNLuZhCCXS6SyJKW8sx0tBxjMVCJ18Jjj5JQtZGEd5opBGNyxUxGcITID6zOVx0zlDMEU8zcKNPwTgUgndNF1dUrrLnWGl7sHY0k3bMB0Pm0davscFABzLm91Bv98Z9LAsqN3qBOa8GJOOpi25HEg+klGERCrP2gaJx3qU5HJxXkFRTIk69vHmM/FIbCtVIBEHqi7D4OkKXEQAYCadiEdIGMp4tg4grLjAM0GAqUASVYqSPakIbDMRDwP/YIqCDMpXwWQOM0ilYpPJDEvkBZ7iRFXGNlrLq1qZKEHQyWgM7RdywQ4BUcjlAGgLuVQsk4fhmUpmiGwmHU9lU3Bd8wDAnOa0R4se1Zo2ymVTlkSu1gusKFEBqwJXkIaTDrrKoBNlQPGwQmoE6nc46A/G8+XuPgAwI3A0KmCBEU3cp4ZvaAyWq9lgMJ7NR1WYKJgdKvCS49e7mEQNCLzXItB7rgjjRw5cUEwQcc1BvwUSr9nsz0ZjGOU37LVYJBtFJ+tEOh9eT2MfRJ7IZJOJIGYjvRVP5dOhBKvShRwAcBbHTDKXiKSyaXhqdI9y2tPBRAGuzwJXdQcTkJMauj4iAANpT6Yj4msAnEIFHPB5y7DFcjNQwNW64VQDAM6RLCuWsS/JbwMAj5sOADAdAHAXqMhrACyIaEFQa7b6mCkxHo4me4fhi1uXrmxefcO3nL/whjCdJZlMouzIgsCS2UTcsUSeyG1wVcApbEruVOswEKvw42Gw9bo1b1BWdIqkS3B96s02iOqWLxcoXvNgmRssPYrBAGIHiAFy6/708BpNYc8Xx+Vy8XQShn42G6KBfOiOY3mN0d7hozfVDFfhJFhW+g+uSbqlczRZ4sT64rQpOXho5nRia2IBI2ZgDQB8BepB5XjF8ByHqQwU3w5lkolojMxk65YkwQ9AO8T10LmN0GYiAZepqEe2L613bZKtHl2bKKUCwWi10cNZivHHJyVUwJSgqmRkYzuet8t1X5VTmk7lRN0LF3H9Jykx13yyyRVKSX1hEADAD6dp1a42+/pm2Jwkt+aPSb02+76x2q1PDu4XU/69e2V/cvtnJ8PF4d0P/FB3/rbvWDT9/jP3/WX9619I/sM3nn/lq19/6ZU/rjV9u91FAHbrzdGdw7E3unav9+Rpr56JUZFLoVL+yoWow7AabZbO5ykimS2KzU996S/snZ3dirE4nbbG/f3jewDAN9uzwyfdlO4YrprTvvoz3/WDv/ff33v9lZ/8yI3f+moz/l/e+bH3fexTt9/66x/7wf5w2jzteIer1bX6oLsIAHi5c+cLL//1i6/8Yl39tp/+japeq/LWQBCGg4Y3+3dvIRSxeftwtT80nCkAsCP5h4eLyfLdgQK+19a719/xTPN4r6MBz9PzhRRdLEpMPENvJ8K5WDSRwLg5NKSJhbfDcSafjqxHopfXLp+7tLkd3lxf27y6lUiRHFPIoWMc9iTxIoge0dS207IeGP4j/BZyjG4bQXeGbemKbWAhZTaaiZu+rbuBnyQAMHa3IaoiAFM5oJYAwLVyFQ0UcOfQd4DBlUo8TRA5oVpzbB/UjiFj8QN6qxp+3a+CuDZ1z1IlPAMGGZbdZgQRC0bwDNjGrl7cGhsMFpPVHOaupmro3ovgbOoK8EMORC7PB1kK2IaaqIxa3QasYgamKLiSLHAgJNGuElZRu9L0XRDmnuObmu3ZmGIDWI5lxvBEwIgBy4q8zmLWn4aGlWbFNTSQfZoNb6naBkYNM33v4NrJ7Vs3T1eD2c0VIKaluwH+Vuqd/njn9ObjA1mzAt+NStVrdLrjg+vXnz7xyuUyNnS2uwDAy8Vi5wAB+OHDt52kotlUhAjAV1WwO0HVLU2C64a9R6UgdALUC88UKBYoYhCdWIK1G5BYCDYY0Cb6dRvh8PoaVkFfvrJ+5dKlq2tra4C8ly6DAsZIpHMXL1w8f3ErfHUjltjaiCQS21e3wmkqkwaUCezySLrIkrCuFNNop0LmaZrLR6OhOEBNgcQuaU5UTFgfDSaTTmdy2SxuOmO+AkAfDIwk6mD8EPyOn0RnS2TuxSzKYILm8EALAz5kiS+VZNeQ1O7O7rjeqgKqwdUybA+tw+rNig8AXISRlrd6g16vg3aKvV6vO+g0Gy1AlloF1KCWyzCYKS3zsdfCGLAIS/FLCUHnY3GCLCn6mQKOhzZSJA2awak4NG5B59LA1mQW2CcAMGgQtBWXTBudsAJDSRhwMklqZfT/BdgJ49VhsZoAbaRskG8iy0psKpli8jkQqBwviyVMtK6UrTyGa8fiBTKdLSSTBRB52WQECAiDLuVEDouh4UqA9E2ms0FpazbPiKrTmez06da46lZsQHmu1sH0HbIybDoAwHlxMGzgfALdb9levdPu9AYjkL+j0aDXH8/xDFiWGB4LEQsAwCUD+GqnBQDcm+9Ou93xZDYo66iAcwy8VsuuoVpc7OzM9ztkkaVyHIcu6appaCayy8Gk0x4Omi3M/1ysDm85oVwKPYYLQNiJTJqIZokcScJvRSLQdvAZIhNJCxpWwGP0MwizZDYeTuUyBLBEQbXt1rQ3VuKxPP4Yrz+HS6iruG2KAFwkEomwMHINhcItaJjumoUFJ1bQhnTWgq87NQ0mOIFN6iUHxanXnkw644Zl8Xn4kOY1EIB3d+Qsx8LNlTRYMuqdAcr/yWgw2j2IroXWNrbXn/iWCxdfH6MyJJOOVyq6hH0duYRnloBvbop1UMC5zHZp2Kg5XsUr18vVRrPfbtZHjqzBFBAs9GUDPj2qOzKsXqrjOuXu3EPRbZg2vFAkR8PJtRPgCgQ2dOaysWQAwJltEl054d15relq/8Gb6pop8YprmaPHpzKsQQJNqCW5ubzeFGwQDSWrHV0DdQ8TRhAEKo1WlGScFCWBN/Jsm+v64UQqGU/Q+VzDkUQymwtdprnLkScuR7dD22jx4IZja/G+nCSb10/nmgiUWqkM7s+TlDu6rrAwuSmpBOQHqDhhsKXS2rmtDJtL86KboIQSWxQkQ+q98YZQKBnlhxWS11t3pgXLBKYjXolbU2lzcoM26/PvG4r1zur4djZFmP+2ZfZv//ywujy48x8+qsurb502vOHbHleWlc//4tVf/b9+75++8I9//vmf1PoAwL3Z0YNDt9ka3jocO+1rjydPH3dcWMzyW/GGlE2mOqOKW5n7W5TLhjJsZPDrP/d2e75alfXZybQ96e8f3en7N09b06MnjTBHi55HG3/7S7/wlu/7nY+/9+/f/753fO9L19Of+dZP/s5v//xPvOeXfvlHF4N+917HPd7fP24Ou/M7AxkU8OLGj//vH/7IFz/p+r/4tb95xqnVJXtYZLq9ujP77qdzYrW9d7Ta66v2dHd/YZbcg4P5dPncffUuAHCnsXjye55t3ltWfZ8VMnmaoJJRkkil6EhmOx10BmzHErEAgDe3IkQqHdtMkbHY9rkLV67AONyIhqOgZXmGyKZCYeRooBqooiuwxCajyrCeCzwLs5kiOMs1LR0kqAsLj2mpHEiZXCZu+CAuLU8RWJAhkqmp8PlyzTMkBtbjvN6tNkDJV4L+oapvBYaUHJVnCaFSwWQ/WOEUvsjmSRC5ht+o1A1DsoyyrZSYXB7rZDNbIJO4s2Yc08FyxBZIIADg2d48MA5E+3wVhLQBAldR8EiRpYJcega3PVP1abPbarTLAOmaoSCfAwJAIr5KsuHVnUoLkx/QJb6Kh26GhklzAiVwrMhTPCa4mADZIq96LpZrlYF1IgVoNrCgaoj+u8vV0cnJzdt3by52nzyQSwrwdSy6qtRAHHcWtx6//Yaq2IHzJFyHSmMw3z268dSRA9ejXG9jl8cAVsXF4fHJjTv3bj969610JBkNkYoqKbquyEFLjqPBBBbgNQcwDCCMscno705h51FJUtCFQwSyAAiMopJ9HVArwN+r6EZ59crVNUyPu3Tu8tVz6IYFIvjMCGg7ehVIb3gtlI7HtsKhFNplpLAIi6GzBYYlsmSJLrA0WQThSrG5WDyEpxkwxgjskRbRDkrl0qB5UnkCj3yJXBZgjoKhlCmg7SRQA0CbArpCA/zkEYNJgGiMIUQNjJXvAtwwWfNB7PX2dxez5VhXgQaZBhbk+UDbfIfLwo/OJCi90QW4gQVv2Ed7iF670UB33nq9XLFpAr2gKUVMZHMsfAueEFJitZihNCERLzCiYnDZdA6rsEJZCvQHPD0CMF+ksxjaztPZdDpOmIaK7c0wqozACMtC6zMb1JhqScVCJhkNh0CzFoWSpJXgKU1d02B9ystkIhlHWVIsstiSjZzQ8l0mm08TmQJFk/l8LrDExkItkDHADtFtm6BobOvGo+F0Io/5KAVGUKzWZNEqtCYNz7dFXhbqZ21IlUnDh0WSKPWHTaC0FR99uspBPQQeAo9m/f6gM9qZH+y4ukLzLEmTBPaNWn4FZGyz3hvsznoAQaN5H6ZcCRgKL4mq7uF5znyx3B2uapg5mucFmpdkU3MN3cUKhW6/1+u328PZ7nKyPLrtJFgqliSDqg28gzTcTpqiyKCiDu4slWGo7fUMV8ylivlMIp1Jx0K5ZCKSxYAGLNk3vc6oPTXiaYLkVM2dLDAuXATEycYJR6ALqUSI7zumiFvQtAdIbJlAvC1PcOr1OuAgzNJqTRGEPPw8hhWBCFfL8A7H3UHb0zEXWrbcWnc0ms13RJD0DIeR5l61CZNsOh50u6PJ4d721dDadnjj3BPnLl6MskAasuly0AfMc0zSdiWeykWFuirmUonNYgc3WWCdqmIEV3fc6oxtHb6C4RS/WS23hq3hsKHmSVHTa26js/RJ3EFwQUqUm+3WYGd+7bjI5AlBKBWB26bSLMuArqYxs9IChtndvXb08E013eA5y7Od3r0T0DAqT2BtYm160hRtWDIlz05d5oBg8oxI81QihbsL23xWYIVoyFeKw+pZviydpOsOfDOZ3Qwlta3wlXPJwqV0ej1WkzLh12frVIrpnNyci2qW5WTXOdqJCfbOTQFkDmhgkSSil6MJYNGqkDZh6ooCZbgJjJMqSVa1N72/x/GsvbzvFkSj+uS0YBhOrSNub9u3icjohuA0Bh8ayLXW9PatfJxu3fL13r0fHrWXi7v/7u1Lbe+7rzeqo7c/rM+7n//Zzc+89PyrL331n1/9z3rH0duw9t09ML3K7PGq5XV37s3fOju97tiemiP7Pk/TO2Pd9efDgjQ3CmbV/fYXXvglfWd3VbamB/PWYHBweGdcPT7tTg/fKhVomfI8Qvwfn/r+06Pf/ujyrz74A+/5N//taP2XD9/8E889e+fgu970HePdQeek4xzs7R1VB73Fw4EyWOzuXfvlr3/xt55/5en9r77y1x8RWyPO6/HFTr9uzt73LKlYnaNrq4Oh7Ozsr+aW5B/szWa7z52ID3YWb6y19v71t721deNoWO9I6DFUZHNb69EMSYVzqVghG9naDqPVL/wXDm9GGSJ19QmiSuWz2MO3HtvcDG1tZwAQYfKkt2NkEtZfXiDyvCvyYUaUYCoXgS6juTuMDA0B2Mb9QdssgRLAvTS5bFqOa6lFpEzoIWj7GL5nS1Qe1JDWrDeafhAkh60jZZUH4BNYlsxzZcv3vFrZd1XM72VpUZVBolZdWXex/lNmMSKV4ZKbebnE4LKoaEABAMTag25n2Jkt9pc6NsOgAtawikfWQL+A/ACxyBEMGjXS2VzW7w5a3U7TBwlqagZadgB7TvJoOa9a9Ua9Uak1vLoniMF2l2MoEoAzj2HxWCwGkMS7oFR1wyuDqrXKdpDGALTbdatt9AOZjVar+cGt27fv3rv9+N03AKtVy/ervq2jT4VVHYxXS4I1vKB9y+/Wmv3h4vAEFLCP1hxl9AHslFuYhXR6/+7J6e3n7mYi+UyMKKHBpoJl0CUMY4CrVuQEUVEEWHZEDnUuX6RIgQk8dkW4fyzoYw79/XCXHwD4ypX19fUrGxtXAzPKtUuXLp6/dDnwoQTsfeLCBQDhrej6ejgeurqdiIc3QuFUAfdKAwCmQPZyZJYUyCxN0QKNW9CZaHw7lMROWADg4jcBuAhKLgWaCPAlh6e/OUy+jCdQ+5Lo94yrMv6NBPh5beOZIAKnSooCyFKwmFvzLVkeHOwu5zsTU7cMQD7N9gLrMN8BFGXz2XhBq4Pw7Q0Gw8GgP4BfQKtq1Sr2mFdtGs+tCQYAOJfnfYuh4KezUoXJFjUxmQAsxtaOXD6XTkS2MrghqFjlYAuaITNoq8/T6QRWQRtqgL9a0MsbPEwXA76NILEwm4zF0nkKy4c1ScYMMPSBKZIahd6h8D5ZoKsCDADAb9t3OZqjWByIcAXZ4muPsxhnWI6LQZgVhwCcTqfxDBggmOQkszledqjupOmib5wUALDCFbxh3YP7TouDUauB265ADqxyq90FLjIcTWZzoCXd0WK5v7Q1haiKmlUAACAASURBVOHRXIHAbnHdq7ZHIzwoXi1H0/F4tOh9E4BlSTMBJQazxXy2mOzXGZJFAGZ4WbF0y3KrzVar0wm8UgFJ9ncny2t3vCTLZnJnXipYxE5jdTuWtJPk2Wk/kLBYOM3wiSj2VmeyZwAczQEA0yzMOQDgYXuqxxJwHTXNHc9URQSNB4I2TngiVtuF+IFjiFShkGJ9zxRN4LO25QhOkNgNeAucCHQBgEYBQMKp1up1dPrqDDq+LiAAmy6o+tF0tgsAjGpew/OAZrs/Hg96PeAg+7tbl7evhsNX3/DEhcuXomwuT+XSZRcWEYln8xnHlTgiG+EqUgmGywbbDgAYy+5r9VZv2OmdATDJqz4woUa/PRzUNZKUdKtRbg/2yhQCsONhdWarPVwuj0/wuLqEixHWwlMUlcuGWVlQdNO23fbO4eGDpyqqXuIRgLt3r4m6qnF5oNVKbXqtIdnoje442TWBIugiBZjLZHP5bCYRI9JkppC99XGPrJLJaCwWjRAxwjfRPyEfjsW05Pal14fKwsZ2wa1QbOoJpkZn6ea1k4koJ4H5Ou7xMirYw+MiTTM4SguFyJVkiuJTlK52GhRWWrtlLO9WJNWplQ8e77IMZ8zuOgXJqDwa5QzTrTSFSMKeJjePrpN2a/x9baXTmz96ktnK9A7r5fHNH5mNd649/Z3O/PtPf3B34i7e9Kg6b375c6F//H9f+uor//y1V/++OvTM7mh5dO/AKlfGD/a6/nD1YPG2+fVT23SVPDnwOYpeTU2/MhvkxbnFeGXp//xvX/ljE9ZL354fLVqj/mp1Y1i/das/Wb2pmM6l/a4q8P/rD1idZ9871P5yYYxv/Kni/8InPv/+t/3oJz75XR/5nka7095vlvd2V4eVXgcUsDraXSyufenrX3vlsy+8a/xXf/EHb7NGNdMfiEK3X7eX738zrdqdo/3do6nqLnZ3Z6bo7e9Nh8t/fVq6M5/fXVYPv/X7H3du7jb8mcdkC1q3UwpvYer5ZioeBj0bxzi0TCbIZdmKU0QucimvxyLoC7++tpkCRQzKp4DxQYmtaAED1hmmkCuaHLtJBnudgoy5bQxdguUpcGSE5dHxHBkACquglYoNyOTKQIYLPC/psuXbXtkxSujqkNfbjSoM36pbDvqXDLg4qFApMs9XbMz4BGDSYVSBRBIkBOCaKyt4MBx0SsCsZtMhAvNvYblXAzPmaq3RaI8nvfnyaNcQNCx4cSwNsNXSZRi4kiyifSMKQgHzRxJWvVVrNqotPMmxOGwaBr6dB65bQr+aWq1RbTRwB9qq1Cqugfa7aPSInpYlAUu5iJJbditlx3UMeMEVz6vWKpWai/m+tcG8P59NV/u7+zdv3br74OEbn7suirACwMJhO7BqVJvj+WrvxinMIdP2avVaa9jpTxeHtx+++WZQyNvsjofdTrXcne8egAQ+WN688857hVhyK0aICnbaaoHNiIoRTkWmeLYBDRK3xICcwKYrPJ/nAJmDMEbs1C/CR2nsA97eCA6AtzCN8MrlixfXLp2/dOnC+YsXzgeJwBexGWkzsnE1FtvcCEUToArCyQLm+SIA00GSAtA5gUxjbww6QgcAvJ3AJsQCUWTRjQJTg0r5NCAIgiqRhyWRxJabNDa1YhYSaCSkMthlRmMnEg1PHJwJE4DNgRu0LPOlkuJZkjI63F0uVlPLsHDPUbeDqvFy2Q0AOAcA3EAARjvjIfwGSNxrVrEOulGtWjCc+CKJAAxapGKSBVhVeaXC5CVDSqdJBpZHGTugMunIVhboQwkA2CsyUpEh0nhsyFOpeDxKwkA6A2BNw/11uImm4jg6WTCqaglUNTa1EqwQUCMsFAYA1qUibVIJrG8uBD1gQExUA8akZwPXZItB/SLNCmg5gn1yIra28SURc5WLcGECAMb4ZDTKxvouozGctcnOpO0B+isiArCh8qQ7qLlALAGAh5jJCCMMHn6rDcgKGhXk3aTf7g2nO/sLU1XZEqYRkmyRk3S/0Z1MhpPhcG8XYHY0XvZ9YM8AA+gFDQDc6k9mUxDBh3WaYLkCYKEAAGwohg/stNlFp0oQjuPVwc5odnDLiRbIDAJA9szaLBfwhkzwO/yZhrGQgreTZ0NbRDqD1fGxcC6ZjMI3IAADOS13ht2pig6Doqp647GiiMDBimQ2TpZlHq5xuDSw9RJFBABsyOjG7Viu6NVrZ2kcbrmKCEgTOZIR3Vqj1ekP+51mr+2qRbi1kgEAjK1VuzIwEFDzsGwAl0CQ7sIVGvV2lhsXNzfCobUnsBspyuQKDACwD9ICN0KyrisViXSIr0oimU9vMW34sfUAgOvozNlHAJZ5qoBRy8D9eu1ht2pQoICterUzOQoAWLEd9NwBwbzYPT2hEYBZBOBUGoQRlc1Gigonw4pl2o3F/t69x74CT2l6ttu9fU3WZIPLwRTX6pOjumyrkixbXg4BGOgcjC60b0vnklmYY3HK+J5PGqScLmCJT4SMF0AAM3B7QrGoVrh65eIFdRSLs005L7PnFJcki+2ja1NDwzpEp3J9AQDcOWBhHuYJnsjmttczuSgZ5+0826unN3POvBFiBFWHdbJVPbyzEHiWG9+yC4pZfgAAbJWrLXk96j8qby1uUnZj+sGWCiPlzkP6UnSwZ0n9mz/ZrYx27z5e8z886T+eVOaPn/S71X/608t//eqrL7784stff97r+RbQxsO7+06t2r+96nqj/fuzt8xOj2ERUAhm4BYpZm/uVGrTflaYmqxf4b/3lS/+tj0OAPhwVh/0VrvX+7Wbp53Jwds0hjeVqskon/vwO9//Q7/ync/83XPPPn7zl5zBNz75mV/46T/4n3/r13/s94+Asl6rW6vd1UG5257dGiqDvfnszhdf/PzX/uxz9fv/9IWvPVtquLY/lErdTsVefPebKdloHqx2jqaKNdsBAC65B3vTwe57bkv3Fsvr/cbq/R96W/vGTt0/6IIKMEZjIVkQ0wDA6WQ0iQC8tp3K5hLJ8FYIzQZzyY2MsLUVhs9tX1kPR+KR7RTNAgAXEpvRQioRiZN0IUfJdDHEGZogcILEkSzcpZJlaibcDMe1TUtVipgpR2fjShXx15ZplixwRVmXDB8EsKkJFB7/ad2mX/FBowSugY6ulIIzZTqf4yo2uj8CUMGYQeceWNfgqauuhGHpJqw5eRisFJcJ5UtotojmbUDLPb/RabbGO5O9g+uHrurX60E2qoBnMLbGGwbPqJaKjlECXyRgRbAxCKVpGIaOMpHBnDYmnxIAgOFjHjYI1+uWa7mOW6uDrDVVtKLEoQbqI7CXloBOeFXH0hXdBfVbbdQ8H76tBrq4Ox1Olru7+0eH10EBP3762Xddx+ZKXDlNeGt+czCcHZw++UCGhVDXLaymUg3HqY+X12Ygqev1dq3dbjQavZ357uHprXsPH91/+Nw9MgH8lpRURZFLKsYgYa03mu8FRvnwQVjKMSEhyGvCeEBAZlhqOGAsNCh7WHlp9nWh0HZQBR34cKyDBL5y6fyVy+curgWBhBcvXroQFGFtrMUjV7fCkeTWVVTAoGHPAJjALEEEYAZNe0tkmmZ5IHHb2/FEPA0QyrLYGaYCh5HJTD6dIQINBD+YyKIXJUHi/jMADEAuhcZa9JlEOlNKCMRBVyNCUakoCIpvierkaHe5swcKGP4zDDNw3Qf18RoAAy9vYHIU1hoNR8NBdzAatLEJtNKslg0ixwswIDVQwKRctwq5LMhctV6EtULO5ihGtW2ZY+ENZaNhNL4VVbta5oIq6CwTADC2GNGerQWuLhoeTJoaDDhNc2yNyOlliadBpEVj6QLLl+BrsCndgS/RRZoyiBiIvXwOAFjAjQHQxsBRbY7lcb89MFBgadS9eECPFt6A0oERGFwVAGCgLABZQRs1ycpWYzBtE61xBy1GlBIAsKcrPOEPaw7MHFLq92Hk+a4HChi3oOGS4GMwng3aIIV3VjNDUYtI0ACAOUGxqu3+ZDycTMer3fliPJwuB75lIACzAi/rfrvTg08Cs7/WoAsAwDwCsHwGwFhh2ASEH4/Hi9XB7nh+cMMK4Xl/JoHBVhkkDilgW2d/ZGCyoVVaKoe2KeFtIgMXJZOMAwCnYgjA2OqvOSBPBzMFABitbcvTAWCPhuFGOQTgIpFLhUt9S4OrnU9QMB0NB7NcbF/065hTCrPVLddsVSyy+WwB5iao0j5wsTYAsKdxmAymB21Io8muQmF0dgmQzikD9+11ms3eeNieLzcvbGxubl95QwDAdI5gAwBWVFmgsznXERGASzVZpIjMNwEYx2KzHQDwyEIAzgu612xWK10Q9L5O5TnRrFSakyOP5DgFJARu99X7s/nu9VOMZhR4nkWTmjTQzlwmRIscEgPDqi/2EIBlU+F1x/G6t47RiINLw+tGAG5qDm79mRXiDIBJXsRuy0I6nyUzVDyjd37ivWU6lEgl0N6fSuQtmcfJshFOOfTaxfXzWzZZJNVskZVfb8gpAODjVVuVMyQt+M2bs7Dk9g6xJjJb4IA/ba5nCqlsRGyUEny9WJSdYSUZOHw59W5z8WBf0mR1fMuCSVV5OMoqerlck9mM+pa3zw7vl7zy7INdvd6d3LytMd6dd3T1/s1PdBoHNx6dpqT909o7etbonW+3lr2//K3C377ywstfefXFb/yJ3HaNzmB+cGfPbdR7N3da5nB1b/Lm+fVjW7cUgh04AMD7AMDVxaggzU3Gq8kff/kPP2kuVnu+Ndkblbvdg6PbPe/a9e704K1SntCshlI0/+7TH3zHR/7rDxz/zsc+8MwPvzxnXvi5H//pn/7zD3/gS7/xm3uwhtwc2KvVHirgxZ2J3N2bLZ7+6qtfef7Flx8889IfvfDmUr8tOn2p1G761vQ7nyUlo3W0t3M4KOmz1Wphlbyjg9lo79vvKg92d+/5w9Nnnn52dLrf83Y7vM6JjptJs6V8vrCNtYmZWHhrMwqLaiIZ2Q6HUnQuGdtMC4lL6xvb4c0rVy9d3tgMZYsCS+YLqe0YkUrGEhRD5CW9KGyzKvD1Inr9FL8JwEEgvaVrGC9NgOLKxUEBOzaIY0HIp4qSYoi65/geZn4X8vm83Gni2K2cOTH6TuBEyTLFfJ6vYtgcPEyZJWmQcgDAIH3LtqiigsS2EZIiOCG1mQXdpwY10A58xqmiA3m/M9852q8CCUW/nmrVweNhmLeWzRYMXxYQllDxZLN+s9PstISSLJPxjAALPi8IDAHqtqTrhg9TyK3WbU+3DaNScUC5o+EUVnEFG73ofYEA7DbLWCiNTS+1Rhl0OFZM+2j6Pt7dHcyOrx3fvXfvyTe/9V03ZVnRDXSSCBRwu97bufbofom0sJffkFUP04crg9lybFcbrUYbVopBvz/emS4PTk5Obt576tn33M9thsNxBGBVEbEtGbMYJAnkOCYlGhgTxRfRLATjmooBEvM8ADDPklgdzaHJY/F1G5sb61fWrqAV5drVjasIwBeuXjp3+fLFs01o9IS+uBHeuBQNX9mKRFNb6+FoGjQscQbAGBoIeEXwTGDEATqY5nPJdGgjFo8lUesBAgcArEtUJpNKF7CpCDt7UQVlse+XQABm6CIThB8x2IOE2Bv8jgBMBXmFeD9ESStbojY92t3Z3RsD/GqGjgCMpmf1iocAXMinKKPZ73W6ozMA7veH2IVdxg2RsqsVcoEC1iSQ50rTIfM5gmDVRjErGKVUlmE115NAh5LZVDQMw1YQNa9eKWLmVxHtHFSOBACOUnCH8OaLePiOJ7yGASNelwo53cPIzEwsGk/hUaYoiYFXJRAFVQAALsQy8QzCp4AW2Sr6WAPP4pliULnKwP0CbYzbF2IQo4GuZfxrDyYf+GinsqiAQSXKVrM/61CtYbdm67pcEusdV5WK+fKwasPALcj9XrWCsZ04F2rtVrcNY2jQ6w/RiHI8WgIAqxoAMM1SJFxd1a4DOI8Gk/l4d2c6Gw6mO0MEYIbJcQInaR7ox8l8sbO3OmlQeRoAWGAEUTJxD73ebPVGneF4NJ1OFqvDvfnu0U0riZwCM7FwGxo7vl97BNYr8MfZ5jSRT8YY9P9KJeIRGDdxWN7R6RIBuA2sVIqncqwoSLV5X7N1QyrRoIApH7RnLhkReiauHpkY5Vc83IiAJafKuzUfQA00sOVXTRmGeS6DAAxqd4AkpNXHLWiszw+sKEEC7ygUzZZYYBk4lqpNrAXvTfqt+c7WxY3NK1vr5564dPlClM6SbDZV9jVsNABUd+zXAFgSgQ2ss208+4VrDU/QgosFI9A6U8Ca22jVqt3OoOmqZI7hDWAGkyOX4HhFBcYAd6k+nM8Xp9dZAGCYonQhAxyFLTI5LMICBYxtnQDAq/tP+grwQyCJXu/Wdc3STS4DuketT4/bhlOCdcBq0WuwHtIcjd2YqkRmQK8WipsZ2Tr2K+R6FmhxOBQmY2kV6DlFpDfDBSO3+fqL21cup2D8hZWs9npLSpB07XhisEyG5uVa7/Y4rHmDI1jtCWDLmXx2az2aD+VZUrAkVibguvXdOEwOIDCNXmX+jgPC8uqz21ZOsmqPe2lJdZRShs7kMzWjZMplb/m9Tb3aWxz1Odnr75Tbs5Mfa3Wmp3dH8TRz/diblcfveGt1Pnzhf2Oe/8aLL335lRe+8btK/5tnwHajMbyzaukDBODFzVMHqD3B9i1UwDPLLy8nlLpjs64rffKVP/5tDy1Xjcn+pNrpXrvxYOCf3OhN99+q8YqhdBS6+6Wf/9CH/v3fvPvOv//EZ7/v2ZeOqb/+2Rf+6Id/5EPv+PhvvKs5H/dujLyD/cNr1X5v995U6e1NF2/6+tdfeuUrf3dt9MVf/PSbjXZdd3piqdXwnfF3Pkspdu/6wepoKBrz/f0dW/RPri0mq2+7LT/a3b1TbtxvOLXB8XHfAL1uYOtKNJGI5DJ57P+PpbBnL55OZhMpoEihBBDNyGZaota3Nta3w9uRjaubkUQBWDnw91QojgCcZjmqICmMsEkpgsQLssRj9iTJ46oUnIzZ8Bedh2GVL2QDAAYE1gQ+l+IAeCTQDOjlDCQxlyvI3Rbw1qqPWQSe79liEK/EMARRglHtWFjXrHCwKhfxaA3gvWxKJoCiZUgY60sUi8mtHHa5ihpu6wHn8t1WrwLLW3cwX2ApVLkB/LSJTYIgSISSowS7mrLAUgSS9KzXaMNEEb2qAehlomuWFFRXwddIOjDqildr2B5gid/2NdfWAytoDqup0YgSJLDklh0H3qTveeUAFMqmhf4hhtfsDcaDxaTcOTq5du/Rgyeffeu77mLdsqqppolFqtVmZ7TcvXlLAnobRDzVez0Qb+ODk+v7IL0R2ButTmcAgDLdOz7aPzi+/+Rz95hEMhUnMX4QnkdBwymJF8/MJuHFuCUaBLBUCoyvi1zg6SUUsfWIx6YkjgtSCl+HtVdYAb12FYuwsAPpIiw354NQpHPnz527dO7c+YvrAMCh0NWNSDy5tR6JnQEwaBOOLmBQEQnEmE5mCaZE5wkWADgT3kCD03whj44NJWyR0lU2j/0ziKvofILtSMFmKoUaj0U/lKDJDEH37EGiUxYCdj4fmBPikaqjidrkcHe1Wo1BFqAPlmG7/hkAcwjAuQSlN/v9/iDod8V96EG/Uy97XqPe8By1kONeA+BUQW66DJC3PKNUyTilFWNphlWcigSvLwc6IVRg0CzQq5eLWIrHgewTZLaQiscjBV0N2tdwkzmoPlex01kSCoTuigJHZ+PxZBKuDBamYE2+Ba9TFou0QcQzySzWlAFXwsYxdNJyPHhn6FSGJm6SgJ9An0sJz83xgfZt8G+mkM8l4kncgoa/kQyv17qTLtUcdGsOttcBAGPQSb488G3cqZUHfcxBrrqW47nVVqvVgFHYDWQsumEtVnOQ5cWzLegzAO5gA850jkYck8FgshxhHCHD5vmSACKm3oIRurNc7hyDAqbZPCewgiiaGCiCB6ej/nQ2BgU9nu+t5qujG3oW3bKQ+AWJzsxr95RhAqEPtIoIbMSJdC4JsBZL4s4+jJt44ESJW9B2rdEbTUvwAbRjbMx7hmsAAAM1QgDmSARgVMBAnmNUuV4xHcevVf0aBwBcrtVq9apVqetw42gEYNmrdoZ9oCH9RqfhwHcVAP7cenAyvgAApmEmo5Ol62MVSqXWHXdbi+XWpa2Ny9ubAMBrF2J0hsA2JE+VAbuKZM6xBJZIb0t1RSxkkxvFDgBwzcVr3W422r1mZ2xjXzbJKzY8ZaPf7jdduZBnBYwfnV5zEIAV08Qmh8ZwNp2dXkcFDDKTyGL65DcVcEnRdMt0m4sVALCnuFJRgX/2bt1SYHnlCjCdldr0pGvZgi5r3ohZg/WW4bF/GOsuCDqRpMgr8WQ2pHiZDJGEJR8UcDyt8EWOLKS3ooXMWnR9I7Z+IRQRqJBImOfLXrbIVI6HhirmYEQ3x3dHUcPtH5C5HFEAWkDm4lsb2aspj04Roi6lWMnfcdcDmu3Ue7WDB86GovDLu2ZOshtPdfKGYRTiGxRtnstux1ix6u+919WaneVcjBZy0ZKynB7/WNuf37gzizDl1g2h1pu99UFvVv/GZzZf/pdXXnnpq1999c/cvmt2hsuj+4dmtTF9uN+2unv3J8/Mrh87sFYTTN/mKGY1NT1/OijIS5t2femDL/3DT1Vnhwe+OTtatns9AOBR496t/mTv7X51PCGbXrrz0k//wIc+9itv+Y8/Ljz3Mx/+gtz/0g999n/60Mc//de/9L881Tscdm909YODo5PaoL+6M9JG+7Pp7U+/9A9/9cUXHtc/90e/+6jkabrXF0ttAODBdzxDylbvxtH+yUx3l3uHK1eqXD9dzg/ec1d7cn/vVrn6YE9lq6vjltrQS3C1hFIklYhm0/nteCYTjcUS0a0I3PlEOh6JbCfIQjK6ncbz1eR2OB5LxEIRUAjwLmHVTIdj+UQylmF5mlRVXtlmbUUTFa2ExciAhYAFiCt4JAMgKzFUYEWpVCzH912VYXEfULFkFaSf6akwloH16r12DahrUE8DrN2URY5l0Q0JFLDtWaZu2aYCcjMHfL2kuI5fAQntu2dOH8ilmWQoS2VBlSm4J1l2Ww2vPhz1222M9mx0qp4PAFxueU4Z9yMtxdZFVeF5WaBJrL9NZgBfQSRpuHkNsBloEJAdDB7WCSoe6VaaTcsGtVFpuGYF9yBxIvI8OlsW0SO75KDpgYqY6nqYBlAFLMUzYK/anYz683Glc3R6cv/Rg8dPv+W5O2iRhHvloIHgulRrfQDg24qowId8dHSvdXrd6dHp3Wu+Y9iYrQy8uTfuw8K4Oji9++hw//okFYmn4gRIdvTVPsscArogBikWkm1xjChzQfoT/CpSeaIoCqjlMAyKDnamAYJft7m5vn7lyhXMJLyKQQwXz124dB5+oRclGlJeDAA4tLm2Gdq4Gk7FNwGAU9hB9E0ABo0LAMwwAMC0AGtzkU/HM2F0QIoBVBReA2CYhXhcV6CxJgdbazIFkD8AsezZES8bhEOiOMaaWXzgvYfH2VY0HmsXBUGCNU0b7+/urXaHhm6qRgDAXqVer5VdLot5ZElSbw4QgOExCPC3226AEGzW656rE68pYDGRJaWayyKhZJQKEecMLpJkOcWqKfADQZKFtoPoac2uAgDzQDNy2KlCZRKxeDiriMHLLQpiCQ0/VfglawjAmi3wHJWJxZLJPIxJSVW0wIXEsERJoDUinkrnAzdVLILGLRANbq4oGbL6zUcAv9hZhnX7mmGivQq6qyIAx2PJ9Gtb0EVOq3WnPaoxbJfx1ENCAAYFXKgNPFMEJSz1B8BKfEtD+LaqgTdUs1rv9fvjyWA4ne4ubF1jSwzWJoPoRjQKtqDHMBCnk/5wtBxhHCHD5Hk8A6402sP5cjFfLI7qCMA5Du4HAjCMzWq91R0N5nMAYLjsi8V4eXCqxeEq5vAOBmmfeaRbZ7V36HGdwc2QdDKZTsVzSRqWoVQGATiVSWQwlRKroO16ozuZ8YlsipF5uTkFANZVsUSnUwnaFwFWU5ESFmEBLMRprCWBl+JZusXYMNVhPDTLRq2lAxWhcyBdZbfW7vc6nW6v3qqAbg6WIA+kO+5zyxRNcZitCBMX99OrMPmGnc5idvXS9vp6GAB47erFBJ0uUKl42cMq6CIMG9fiWSK1JTdVsZBJbfO9eq1SddDWDl3rOvX2xFFLLPqhW41GvTNs9dq+XCCxqqlamV5zSXgFsq5jGEOzNxrPTk6RkQQAnP3/AbCIxzem157t7Nx75EiOVFRhMezcvC04nsIxjCDI1dmNnmnzpqRXl+wljkAFjKNSxRU5mmAz0eQ6t/e+fjQRDUUS0WiMjqUVlobnT2zGsptv2E6kt0LxWKgYyRJ565LbzBZL7ZNJuarlszm9Nbs/jBrm4BCwgCpgX2aeSKylciGz5JRKtpRWTGdoJji8fn6z377hb14CDEEAlgGAW6RjSLFIhE2IOV+TVL3lH3y7jQC8ENOcQI5qJ8MbPzZqLI5O9+NkvfrBI9FffNvD+s3G858O/+03Xnz5+Re++o0vWm3PQgC+e2CW6/NHq4bZP3pq/szk5MjWTSlPD1yOoncnpl8e97KlmUm7Te3X/uxLH/VnB/ueOT9etgCAr98fNh7eG8123qRZ3bbZ1wnjC3/y5Q88uvX//PNnR/f/6Ode3uVf+dyvfdd/+q1f/c+/9pvvHE+qvdtte3//6BgV8N2hNlotF9f+x0t/8fcvvnCH/sR/+ewDuuOwlb4gtOquPfiOpwnJ6JyeHJxMDW9n/2gPAPjmjZ350fsemW88OnrS7zz1TMs0aztVoyobDCuRdJTMk5kUEYplc4Cw8chWLJfPJuHiRUOJApWJbqVgAJHJjc1INJqIxDM5ChQmCfogGssHClgoMq6tGNukLhqSbvJBOjDNyZiGhMDiWrCCSAxy3XRcLRumBVburgAAIABJREFUC7qVBgDmONFUVGzDsWUWg7PyZqdVB5WK1RNlwGFblXi2yGJaL54BO/CFLppaMlmYK5KOClNlOBkVn0ChcwPB5uK4uouSiq23Za9ZL7cArHYX1w5PjlotmBfojNRsVGt1gHnTszTdtmQewxApNB7K+zWYtVWlpHi+KqG+FTH+m+FY+BlqGeuVq1XTqaPfju1XbQ1WSglEOnYTl3iK45iSXXGdimmgtyRwcR+lK/DpVh0bgUejneVgcnBw4+69ewDA77qNPVGq5QQiyHQrTnuxd/eewtl+YE9ZK9f7o9Hu6fX7x2XHRmPpeqsNhL3WH42HIIJPHz96+oiMJfJYhIUrPPIBEE+CIOIeNM/hQZWAhdHYjoT70Ch0RExNBM4Akw80J6jhIvs60HrbG1evrF3Z2Lhy6fLltYtPnL/8hicuXjj/Whn0hSfecO7iVTTrCG2thdORjauRaArdqlLxLMvDpATMLIDG4NKoU4k8PH0ymo5sbQMAZ2G5pdgiehwABkmoaWns882nQcvlsQIKy6SxuCMIxaCoArAEGuV1sEuZR2OOPFZCs3iqHZwB26I62tvdX+30VVVXNGzDhctdR8tFHgNBsynabPV73R56TiAQ97qddrtZrzbQac0k0RaXZJRSPE+WKjbH85kso1aIrGbz0TTHq1ZNBd4HWiEUIliaF3Wj7AMAA8fL0BwvEkkgo+GsLKKvGIgTFViYqOsAoZImi0RONlj0CQ6FYvEc0ELgeICfmg5rqCCLtFKIxjN50DmsUArOgOHeA3AIsgW3S9UUDLPGinENVC9WWKsqqPzgoarfBOCzsiaSlZz2cDlkmuOm58A8k4MtaJknW2PPLIlMVuz16xVbPTtElrG7vN4s25V+tzUYtoAQ7i5cAwCYLVAIwIJSbnb6CKD97nI1nw5AGI6qjiky5FkRVqV7lia8MzusMwTQET5wW7NM2600sECrDwA8nY4no/l8tDi4rm+m0hFsakyhF0cCrhr+mUxnAEBjUSztBCUWhf8zcSIei6ZhBQIAziawKI9FAHabzf58Ucpkkowiqs1Jz3DQ5pzNZlKMXwJYTUXFoWtJVD4fJy1T1hSgygxZzGseNtf6FUuuNLWSzCAAcwDAGMjY63XanZoNQ7EAb8qrNxpNkO4S1h+A6sY0hnJgIV7vDDrdxXjtYmh9O7L+xBPrG5cCAE7Gyi7cMxEp5//H1HuAS5JeVYL6ZpG6u6req+fSm8jIzPCR4b3JSO/te/n8K++ruru6q53UQiNhhASLMAIkWDzL7MAwCCQGJ0YLgmGxg/0wswNoBzNCwwhJtARqATN7bxTim/qkrqrXr19mRvxxzzn/f+85gQOrP78ptbRaKZ/fqQ1hDQIANzCFpdvtNHsLXxexX63mtFvwNHcH/QjngOXAa9QXZwENF10xdMwE7/TH08WVK1WyAnWEZ3AyrwDyg4zHkJCn22F/vrd3+74juwjAhtW9fpPz6goPJLumNgGALUd0JLN9xJ2HZ5DhKUnSNdVQBS5L8Bma3h6874P9dK6YyqaSyRSVzKGfdamQ3c6W8jtrO8Q6kywQ1afkfMJ8SmmkGWVydRYE6Jxp9vYeTNOmPr0EZYODR5ylyiJ5Lrez6Qtd1x06WU4L52ZGVEw3AOLSvl144+a5jcrqjgMA3HqmVXVVZjvHVVNkoNsS0xwFp+8Kzai/nAlpILVGaTJ+8O3t5u7xtUvlDe7p75z2g/23P92cTz/568T7/+IfPv2x1z759/9VHQAA4xnwoVtvLu/v1vXlzVeOX9m9dtkxEIAnoRgDcP3xGbDL1evSD/zOf/+of3R8BAB8tmz2+mfX7o6iOzcmeycv2d64J7VVuvNnP/ru73jX4Y997Bfebt74P/+uq33+D77hPS+9+Jl/e/zSu472e/PrrcbR0eklWPz790faZP/o5Mrvvf6nf/Da7y+Zh7/yN+8TorbVGIlCp+E6s69+iVbt/tXrp2dj1Ts4jQH45vX92enXPGM/e3L2rOM96FhCmRqGTij4NCWTdJ4vFAq5yk4Klj+Z2dlO4olBvohb0PkKW0ps5CShWMpupYF0F7NFEuPRsWujmsuWCfgCB2ILhIq0yYQuSEpf4bB5hJegLEYg7Uwbe4wcWATAmoicEWrAlTCMqJTjJNHEIX7XMiU8gSVIq9sE/dnsgZSJHSoBgEH0gLitSO0QOGkQNQILVDEU7Jpm4xmrUiJAuzIcTeYKVbbMUyVe9zq9yLHhIah3WmF9gCF/4/2Dy6fNhtMetJu9btRHe/o4v9XzTUwuwMEpiqxQVB2gudcCFHU1HWiDglM6bAVkomToZtiM6rYbAMNyQ/wDhkAgxgmUKHO8JFIAwDU3CjxXxSYvzwtsy0c3gC6iMDyQk/nB0Wq1v7h1++btZwGAb1o2yBbTkUHFmU6j15/tH9y6q8MyBlj2w3bURsw+O7t7OXRtDy6mFcHlaXlOczjdOz6cL66+codPJkrpKpRqy9RN5AO4Ba2qsceIhSkIErYBxaFNseUmDyDGcTg1xbCIydhe+4ZsYmtr6+L6xXPrW9t4GLx54fz6hSefwDzgc2iGBQj8xLnNzLn1jcTO+mYmv7mRTheq6EdcrEDdqhC0wJUJssoWYc3wDAE6u7KdzO9k0juJHImnlbwAMAZYArcau58ZppzP5IqPfa+ouM2Kw19oO4Hu0VBR0SiLZLjY4xK7vFiGl9BrTTJcu2ZMT44PFsuBYeD+J/qtYOMpcFCuhK3CBd7rDCcTVMA4cDMYD0ajdgO9GRqBp1M0MBCSVtkC/KPhoAdLmVUaPGU4fL4IytRryBRukBdSSYqrsqJlN3wJ6ABdLTICx+M8XTZDW2pNshXetCS8X/HkuQF/IYoCWpsTcE03syU6TsTAyELTBMksy1S1lMiXUPrTPIutDBrwJivAAU5VV6WaGiNwbJqqq5itgd5tGuY8y4oC5IUsYL8wxjwAhEthZ3owYDrLro8DWXKt1fNMwMvBGHQG8GSlP/AEQRNrHDBi0425IOBNtzccNoNosFiufMPkRY4WACRESQ3qrclq3h/2egcnq+V0vlhNGj4AcIUE8qMZjQGGEe6tVruX2zgLWGZxsFw2XBOzftpdQGeAX5x0gt8PL13hN1JbO6nNRDqxA9CaSu2kdhKZTDJdzOykMxsbqeQ2FJzM9hasghL+CT5ZpkoUMngEzDC8rLthd7S/VHL5Mg/Xo7XsWb7CYDNcIasGAsURpZzRNkHqE/mdsoGtH2xVorNEzfJ8eAAbrqR2oxpHxs6ngmarThRBfRnWe11PrzFQymS33Qibw/FQoGEJAhdXQTJErRDKA4YiDfaH59e3ty/urL/xifMX1nJMpcTliYYLN6gmciXK12SxVNiSOqZcIYub2rDdCUOvHjURgDvNxmjqq7CWeEp26s3meNzq90OdpUXDadTroIA5+JC2rrvYON0czPYvXRWqZBVYBEdioxpNsxUiybC4UeJYwWB6fHbjGUexNFELPaN/66zmWIoAakSvtfZuNExHMSWre0JfUCpVeMBlLAcYOU0XmUpFL7/0wZ/o5vIEFPcdUL2ZDFdGX21yPV0mMms75IZDpXOFvH9OlM7XDYryh/urrqETZc7uj56ZZB13cUlkq8BDZXhftfza5lOyvcMMg46T171gz0/wsMrraL1f+5LkZoYMDm57VUPtPhNRhqik8gady8rKpF1d9tXdd0d6q3cwJMvmDt/ix+2n3+d19laXbtDZ7dH/cdoK997xXHgweO2PSPEn/sdf/8FnPv33vyMvQw9IytmDQzeq7z17MnVHd547eNvunSuubWtZbhbSNHeIALwalrWlyYQh/z1/9p8+2p2fHbec2cm0MxosZnenndNr09m1F91w1DcaXil47TuPf/LDl/oPfuVT94Yf+GTN/Pj3/dDXPPu1//0D17/15slsOrk81Va98UlvUD+5PTHGq/2jG7/6id94/XN/+aWZp3/3c6/WOm09HCpyp9MMpl/9Mql47bO713cXrj89u3bgy9GNy0cnZ++57T0CBdx075dziQIRYnAGyI5a32BrIH/KZGaTKhE5Is4nyRWKhWwqlS0yDLF9njCq+RyZWNtJJFI5goeqoANmYRo2esbngPRj2zyf5FxQurCaQFDwfJwrgtZHnmchwqoCQ+OjpQA2WbZWE9kiKWiSodm2YoaOhm1d1YoFjwbuxDbR2a/eDHRVrqE4KhBqaIGy03QNu7VINPiTDMtibcAtB9u4dIGnKezopSg1ajVd00FvqU6n1eqNh53B7tFsdTYGkRTA09Xs4TlRAPgbeI4JRVHHNhcMJGSq/T5O8EetVh0HliQ8i5OpPMsCZxXkMEJ3O99y0Pgf6ICLY0iKLHJCPIXE8jQ8C249aLmmBp/ej1MbwrDeBOHdbLS7vdlkuoT7d3b93oP7Tz/7wqu3TNA/mgX1Fg2sQviGvZM7d80qdkWDXAmanckCKtm1Z+8G8GltH0+90VZQg0dxsTq+dHj11Ud6JlNOM/B4AoZjC7SBk1U1UGZKjdHiQOWaqOC0MsAwT5VZSTEs+BrPxukMeGBPsW9I7WyA9gXg3YqzgC+snzu3tnbu3Pr6uSefis+Bzz917txGFgeVtje2M5mLFwGAKwRRqeRJ7M0t/RMAc0QBZDAAMCOQ24nc5tZOOpuHVcKgAsbjTNOQmCrDUTSFzUREHL6AiYP042TEOJgZ9DSGR8cxDdj6G8f3Yh8PeoaKNcnwbMmcnx4fLndnju3AR4+tw6ImsCo04mDhXXFeZwQAjJZPo8FgMB1Npl2MaK83fFcDABYFBOA8ArALsF+tsGqDJWWTyRY4ND2WGYYii7nkDoA/J1lOMxCxHawCAMwLMQCnKVOVeK3GGpaioqlLfPEtF0qf6qsY2JNOJOAFBCmeFMbQJNAiUo1iMME5R+JgKm5fy8CdNNM3eQYj1LHnGRvmeBauCItd0XhlWCr+VY3NKbP5QjZOQ0KrsKAz3e+zg1k7cEzbkGqdgW/ILNPsOkqNBTDqtE1Bdi1YkCasfGB0/RGejfd77cCtd0cLUMC2KOEMcpWDpWJ5jcF00B11e4fHy9lkd7Y3aYKW/mcAxibqMSDw8qzFPAZgbLU3XMsHdtMdjGMAnk5n871DNJzhLyR2UunN7QRAbwb0biKfTgIAJ7OJHfiVSV3cSe9spVI5tlot55PJHMbBVAr5FEGgdTOoUa/enxwulWyxIiiK0VqOnEAXVbg45Tyn89i+lZZCFRRxPpOgPcfyoGR4Bq84DRxDavZdzeq4DFXKo7UnW1NF3ZD1qNdpDrquJuAZsOQ0owA+V4/FPgSR41Uc3Qg9Px4l6g0Oxuub25sbiYtPPHVxYzMHOqFaqERAd7SawBSowJBrZHGr1jZkEKxbcq/VDkO/ASWs2e62o8544usaXUUAjgCOR53hsG1WKiI87UE4O/Y5LgZgLHqtznhxePkq0DsaHmAE4GIRFkK1uEMxQMSg0DWme5dv3Hvk665e08LAHN69KnsYViWqhtRe3Wo5tmLUzM4pu6YB6LPVmoAO7KYVGJkSoXvKyx/4UCeXKxazycRmigAALtZ4YLkbObKUWctUtyudYildtr9EErZGSpo1BqdnE9colqpmEN1bELY9OQKyygA3gudXr26mN3lbJDS57pc1w93z06JiuVF/trBz21+SFjTv+I5Ttsz+g3oV3nG+IDPJZN48Kqfdo/HBV9WVRn8xYUVzu9piLjcefV3Umx3fuUNnEq1vO6gHiy99rnm0/NOPbv3cP77+95/5/Gf/7leUYeiOHgNwo7F65ngaNG+/cPr2yaUzqIx6npsFDMWsxoZf3xuU1KXJhl3jnZ/8o5/Vjk8OGzYC8GzUdY+7ratXJ/Nrj2yvP5P7Ouv8/u9/41v/1XHztz7y+R/5wp/87cHo777hF9/1pe/6iXe8+PP7x4vu9Fo/WtR7R81udPhgZkwP9g9v/Obrv/y7r//do9Q7fvv3X641LDUcyhKoRmf+1S9RpsmJ80vHE8FanlxZeVJ47XR/efA1tyxQwC+3G2fDaj7NBHWt3zZrLKMwjAIShamkLpIEmclntncKOLdH5BCAq9VSar2oQsEpJbdyuTQloYeyhuEvCty5UiGXz8PfWFVWa0kGiqFrODq2FHNfBGATXThghUlInCpEDmoTFGGZ55hiCQQY/CxbtXzXqIHOIUtmd9Tv95r1frvVCHyrhjaPHFpbFmmBhMrKojEkiOUCCewfXoHFKPsAUc4QOWCOGEtLa412u+5jWwM8WTh2P+pNVye7R2ejKOq0W512FHVBTdcB5G0QlSBg0agJB3KgwA1GvW6n0alDWfcsGXOD8V/UeFpUZb0e4clQBNiIUQmh57hQg1FaChz250LdlFjRDf2oE3v/4451u4NzwJgH0MK5hMlsMlsdHV25fe/B8y+8/KX3XNOGz6/aiJ52vdebLg9v3bFoQUX+UA/bvdF0Oj+5/eCWq5kAwAA0bthqN6LueL46uXLtxr23PdLS6VKaMSzEcFtXVBBbKmYN1jB0EK3JJJHB/mwRJ4Ex2keWFBDDDNpC8xjkBEjwhngMeH1tbePiOvxz7QIo3/MXnjq3dvFcfAT81BMXzl94ci2zvX5xa3szmUutraczhXKRoMqZYpzYQvOg+UiaBwDmayxB0Vw5kS5s7yRSSYAhCrRtTYnFnCFzFMtT1TLOOZbQeBK3l6vY4ozxfPzjc1/EZNyEZhCQAYDjOSQA4Rp2j+mggM3ZCQLwBGiJ4VjoieLXW40QAZiiK1UA4O5oOsGRGPgnSLLheNJtthqtqAkKuMpIolhmNRZgUIkBGBSw1mQIXqMyAMBa2FSAJKARxw4JyCQabtMXkRCQBUYUxSqAazpVMQCA4X+GjTvM2I2noM+LRFb1ENRVuZhNp3OlKsoTA495HcfUJDynYNPZYrHK0QzPojV3TdU1C94UgY8dGWdRwFUp4vFoOpnOYHgU8Xh0tljEZy6TL+Sq8Hf8zlrUm+526N4IJJtlaqLcHSIAs25dhweCImvtpqmYUVBHw9ew2W32xrP5bDqbjTr1qDMcL1eB7dQkgeMAJGo8r3nNPqDvvNXdPxiPRovp7qQZ2hKNbWsIwD3MKhwvlovTBg5LVbA3QlIxdQXILUZVz5fL+Wy+mB2c7K9OLnFr6VQ6vZVMp3d2kol0NgWMJpXNZLKbmfROppBYy2FbCcHAtS0XM3C1culkpVhIxymOsedZYzg/3pUBgHkFFfBYN2Veoirlao4UgHPTZLIWagpLFNJJIfKBY/gevOGwjtS72RrAs9h3WL6SwwBmAbSCbUpGZ9TujXueJlTLLF+zoBJE3V6bqqBpKoXzxjpGawQ4Wd7u7g7XNzbWtpLrTzy1cfFivlopgQaufxGAK4H5GIBbugS3bEvoAMcPwjagP5SeFlCckWeaLMVRCgiKaDDAAmSTlZpmwLdNDzx4LlRLNzFIpNObLI+uxACs1GpcBVcARm0TSU4AagcEqr06unH34SuR5ZuSXg+d2TM3NT9wNL6m6GJrdbtlO4oh6J1LtfM6wwhslY+PP6xo7CcyxdB2Xvw3H2xnsdctBuB0GgG4Wipv5gkisUYyua1+Nb3DVp80lXRP3BaF4emluafliDLO8i4Jy0MAxnEWCpa3L+4QqQzTFHXN86qa4u/7uVrNCsLupK/arTeVTN48um0WDGdwOwAAVssEl1wnk7ySS2V35wfviuTObDGuKmaab5ZvRs/+735jenb/NlOsNr91N4iWrz5sjC93+/ufff2zn379s5/7wh9G7dAZThZn9xGA9x4cTMLu5cu77zq8fAUefADgqQ/lDAA4qO/1iRiAg/4P/rfP//tweLQfWbPTWXs0bakng/rla+P51UeG22tLoczU//iH3/Pql7/4o5/8wDe/84Pv/oRw+Ddf9ZH3/fi7P/L+d37X0Xi1nF+OumfNybXueHT27FSbHR0c3fr4Z1//y8/97c3ku3/xZ2/ogzoHClhqg2ibvPtF1nWYfHv3YMbbQEFXvhJdP9ufH37dPefZk0t3G73rL/pcoajbyrCr0axIZCknXy6RhZ31fJ5MZlJbOzkC5/SApKaQ72Uv5mSKKhR2tgkiW9V919ThP9bhYafIEiar645ZwzDdbcYGaWg6Go2mRXycrInE38YmLJwzgspaBACGr1gq1P5KFUquhVFuQNF0CfCTKGJmqo258jKAiMgUEolkGhYHiV7iAivLcSwvAGKhVK7QoqISph/4DvwPB9roCs40UJRSb8Y+jk3Qipj+N56C7Dw+OD3p12Of20YQdKOwAVIosF2QBroioiGyCABMkv0vArATRq6i44wvSkWeEuDzRPVWBPgH6I72zT4AsIVOlCLmID1ue5L5GrDneuwkiQntTfhhYRi1m7EFT787nQ1Hq+OjK7fuPHj+0fMv3sWuERU0MDpk2mGnD7r2+m2bVSzgD3iE3RtOpwsA4NuOis0hBjxuXrvf6Q1Gs/2zK5eu3n7lOS2dIzOMhuHwqqv/kwSWH29jgrTBLWeBVwylhjsTOBgo1eJQQi7+qwBlFBQwAnB8BryGZpRrFy6gB8cT2ImFcYRPnX8jmkFfSG2dW9va3krnM+fX0pk8WShWyXQRtEqpRCEAg/gl8qCKEID5cjIN9y+d2trMVODacpKGmS5wu9EHOI4fxASGGH/jmWDkA+jpQaMjRwXP5OGbOIGBogiSGZu0aOYxAGuOLRrTw4OD5XIMvMXEHATMm282657LE1W6XM3zfm88GQ9nc4AbUGSj/mjSa7UaHbh7gclwcF+rrEbnSpQcOfCCJMmqTbbIqdV0Ad5piAq4Css7lyTR0w9wyQM8g+qbZ2q1GoUAnCjrSg1omQjLFXuWMfMRfxcIUvHx6ShkAD0JUKn4KED9hLWt6rLISHwyBZ8Mx+voeNwIz/d8vZzP5wv5ElkslJCbFOCvmcTm9k4yS5SKeLHQyoIqk8VsgSiUiXh8Gt59Z7zbpTqDZlR3DFWU2z0PKA7jNExJoGhS7vd8LwDS4aK3ebPT7o+RkkxXi3F/MF0s9g8Cy4alz3A05hPzRgi8ZTja7fT2V+PxeD7bHTd8SwQAxu5vA2OuAdbggTqJgMFxFLJOSQMAxkBgXJUxAM/mk9Xx3vLwjNsmcnCl8qVCKgWMjcjn06k8Ucznd0gyV8hsJ3CqKk9LQrkCfCWTKxayaeAWWZxKq+FWWdQc757tydl4CxoUcE/AcXPUhglCUiSWJFIafGL4PZcR6lA8gBo3Qi8KUP9G9XajCYxE1gUSx4prmgVfr7cmk+5w0vN0gcI4JyMECg9qFS4tzsPRkqbpNjCiwEfK0pp1L6xvXEik1t/05PqF89kSBlaLvmPgzWeJMgCwSBYfnwEXCts8vCI8/J1GA8+c2lGrP3ANlCSUYoeNsNuPTK1uk7T4GICPPBZN7XUcPe50gX4fXL4SAzDOAQMAExyDdvyCpKIxQNDdP7394Lm3NEzXlLQo9JbP39Fcz1Gxv6LWObzXtjzNrOnd6/p5g+dqPMWxsiIb4eRyvVykHdl+7gc/2Mmls3kA4I1kMZViSUUG8rmRrRAbF5lK6byublXknUzoEwqXkYTRwenUUYsUr0Szh+OM2di9BHWWwx5bstCUtsjkxbRj2I2eWlGV5omXhYrue92eVjJXtS1JdI7umHndHd5yKQMemwrL5FuWnbrpJ4Lo4N2h2p8cTHKqti20qKu9p98ftGYn925zGdb+tt16e//V+/7pcXZ25Ste+5+v/8Nrn//C75i90B6M52f3Dryovry/Gge7TYJ4ZnnpGixwPctOfChn+1MzqK8QgC02jGrf+LHXPmrOEIDnlxed7rKtXZ+HZzcny8svaP5wGkQWqfynr3r3L736/V/58nd/7y9887s/brY+/93f/0t/8aMf/vEf/rVfvjxaLO4N/Cvh6HqjPzx8diTPTg6P7/7J6x/7q//vv5zJX/ZDr90X6h0pHKpqr9cOp+95M+dEdbMTNOemd3Dp8irQWrcuH65O3/uM//D49JlBcHrEFEqEUzf6Db1WVbcvZAwoFGmgplkorPnczmYik8kVCpnEdjLLVQrptZTEV/PZrS2CyBVUz8D+EFHRcDsTykCxYLiOQuW2EjsStmCBHGBjb34Z1jHCK7A717AxoxQYezEjuziyAfSco7D6uMA1dZypE2l0B1ZhOQCIQr2GkivWHo9/UiBo8qKtSWpNUZXHQI4ADISWtKNG3W80LMxeg1KNwolS600THh9UivCrCYR9DyrN/ulBCyRAC2Sx4wAowpMIaAZySAUNFe90gxQkyd4QkzzRVt82QU7WADYAPOANwVIGJQEPd6MduvF8M2YjWrjHiwAs4OSPJIACBvit2z6aQjSaIVSBsN5oAh0HDG4Pu5P5eLI6vXT11u37zz967vnrFkhC1cYGG9Nywg7UxP0btyzGcH3cgg47XYCQ5cmth/d8HKqG9wuvHUR1QGAQ9SdHx9efe2hkC6Uso8YpxzqOlRoyiBLDtg2JrWHkoAJvUUHDLrRjB7WPHVpcnCTHY6gp6E7hDTs7W5tbmxfXtjfWUAA/eeH8Odx5Rv+rOJDwiSff9OSTF5IbT60ndjaSCMCpdL5cAEWWJjiej9Nqq0SFE4gcyQhMkaxw5e2dXHID9U8Fd1A5GViV6cDbAgGJO6g4fQQ6Lo4GfNxiJQixGVZ8PB1PqWDZZxmew+Nh3FYBuRADsG2JxmR/b393d+4CCfLgp2LcFHCcwOMJiq1UC0LQn0xG/fHjIST402g66PU63f8VgFUEYCm0AIAB2pQGU2QfK2A1bEgAtgRARQq3oEXda7psGeoOkQMAlqhyIZ1KkBp23mHHuSShg5IOvwMAi6WK6qsCVcrDcwUvgBnZuBEItxTEqCxyqpBMwuvhwFUF4Rcbne1AL+HBT7FcRgfCAhGL3nwKGGgqT5b/2T6KrqDjEPqHAAAgAElEQVRlcqn4TwBM19z6YH/E9waguFwE4GbbMVWOqvdD3GYqK5MhbqWGHs6Zg8pqg0odY8zecgHMbnf38BAIMSZuouc0x0lWoz9ZTMeLwXB/fwbfMt8dhVDt2SoZ51nByut3+1PA5eM6AjANLAL3P9HLCwC4P5ziEBL6fy5Xs+nuCZ+pFECvk5VyoYAZG9gQXaXKxRwBdLuUThBQE4gSLzEV+Fz5bL5YzCEA59AFW9KBszRak9WlGIAFRTU7qx5LkQRdJIrpzapjSkwxn9QHgUYDOcnxHiCZH8bK1YsajXYTB5E6g0A3BdzfZ9ma3mx1+4MBZkJ1XFDAFEnzKgBmq9XvMWSRRK4nAf4GIElD36832u1Z5/z61kYyffGJpwCAk8Uy3AnesXW4+aCAy3VbFiulbbmJVpSFHaEd2951oqiO/eZNKNqeKlMsQ2HSY9DuezXBt+DpUI3A86fHLgKwiQDc7sKF3d07vQwAjLyGqWBCJ/re5xOMgOdtjt/dPb374NGrzccAHIWrF+/rjmMp8Byb6vjK8wM7MBzJGtxxz5uiINcYkYelFwyP7y7bFUWR3Zd++N/18lDeM6CAE4Vkii2pKrzeeoovrW8xOWKjIGwy7M6O5CpUNS8q/eOzqa2WBE3tnz7sAgAfXpV4BopHVayQ3drFajKZLtZq3QOVVJTmkZMSZNtxe2EuXVpcyVVd5/i+Sxje5L5dheUoSPqgZplu7j29quWfvN022+3TRdY21qg6cza4/01ue3r04C63IfvvP2o1D99611suhf40/PX/+dqnP/u513+JnYZWfwQAvAqjcPlgf+zvmhn+leMrlwLPM/L8LORoZn9qBcH+sKSiEUekvvc///YP+PvHhw17eW2vM9priFdn9Wt3p7uXXlTrsyEHlF384//8LT/2r//v1vCnf+jnHvzga3Tvv375t/3qL/zrr//eX//6H5sMDua3uo1LzuAa3L3VM0NpenxwePszf/fax1/71Jn9Y2/+zB265dn1saYNBp1w/32vsmZr4NZZceT5y5OzXV9t3b5ydHD6DQ/8h0dHT3f9691svlANIiXyTYOzMkXerQK+EplMNpnOFInU5lYqhyQ7nYR/Vy5k1lOSUMnnNi/mCrmKFQJeaip21gJzqhDwKBiup0nVZDoLwtiwEIA5HuN6VTTpA0mMWWWgugS4NmwpJ1vYlquABCqSUAcdEzMDNU3macynYwRRUgReVdA/UTMUPAqEFV8k8ixIXFlUVYnGyl0kyCrQMqPi1uuB12gGgSmJdBxxV6W0ZtcCXug3QPA0wqg7ni1mk+UKAdhvdjrdyNJ89EqPPBNulQHSErUiz+H4VGUw7HZ76J7rKDKAGghKJbbup4EP6PUg8t2oGWDXZxhA3ccxYdyC/mcAriEAu3FHblRvtNDQCx5iPA/qtpq96WgCkmx5ePnKzdsPXnj55bdcMYGMqE7cIOv6zd5gtnt487ZJxTUtqEdQMMezvcv3X3g6NNFkz4Xv8izL7w5G092js7MbT7/4vInpVYyMzVcq2jIZqqICY7YtmSmjT6CqSNjzLDzO/qVpzPSL3zKHbtEix8cKeGdnc3NrY31n4/y5C2vrUGriXxcAfM+fewKk8JNvfPLcWmrj3GY6cXEnm1pbS6YKlSKUowzJC0KZrLIIwIJIZEsAwAWyyld2dnCmDag2zZJVmq+hdLVA8ctVgiwW8QgT3QljrVumYwDmubgXGg058O3hO8M+pRqH/wLdM3mc+BJVy5Csyd7uwWo1hiuHTlIWmvk1EF2FEgvKpiCEAwRgHERCQBj2BuNBr98B/Rb6BsXAFSjTAMBkDMAsi3nAdabI4RkwIErQkOKp8FImAQDMy7bfckAJswDA8HYkGgA4nSxrscl27KaBrBRWKAd/EktVPVAfK+B0FuiAICEwGw7cOdWQYXULqQxQF9T6FBYlPD+2AICz8DDFZlDZXA6do0AMx5aBOVDAj/egiRKS3myhmMOORbJUpiQ37B+MufYQh18wGKTRciyVrUSjCCoeS6rTgQ/MpBkGsHrQGqoziGNuJ/PlfDpfLA8PXVXn0QwdLjjDaVbUHc1hmfb6q73Zcjyc7w4DoEwsVUYzUa3ud8aT+Wp/uXcc0PGJNc5Bw5Pq+WGj8zjqcDKC3+FF+q3OgstUiqUqkAqiSKIDNNxuhqXLRFEoYxBhoQqfEcStgJaj8CeQfLlUGZQ/iS4lim7DwzZaXdqVc/ky+lX0DkaySFESQ1Uy23zdFKpEfkdqWVIFz8w4qDW2F/oYgYrZJTjJ2262h6FucI93VhQHr0AbmHCv17BVHgoYjQkNUafd77PlEub8xLmjkeVDXcHP1Jm1nlrf2tpKrL3xibUL51PlKvxHbAAvpYAYz1ENVxGr5YTSkGuVUmGr1q43gnq9HQL7bgPh6wzHviLiEQp6XgJ98VQ1MIvwvKqu60+OHJaryYZmogbv9Wd7y+NLXKVUxdMYzCgpw8IvF5NcTdAt0/ba87O7Tz96tWV7BgBwI9x/+WndcW0Vd+e0ybUXhlZg+pozehCetyXgfaLCK7o7OLj29LM3i6pg+G/5sZ8aAABnU6CAd/LJJJOXZK5MrKU44twOnSsQmWSSIJgLJbYhEWnWbF+6OjMlglWMwen9DmEF+1djBUxRUDcG3EVYybltQ28uPVKS3KWVFDQHeIKxUZBHtxcsZx3fc0uGM37armiaqLuNtxwaRr35lTPOax2/oLmNzsG46EQ5s2PcGDz3TqM5PX5wi95ZXn7nWdfb/9Lb9Ss+L02dX/3cJz7+Rx/+vZ9TR4HVGwIA70XNaPXM/jiYAta+4+TOWQjstiguIoEBALbDcDUoxk5YXfk7PvJd7zVWJ0cNa/fGXmu825CuzaMb92erSy8r0WJlRqHA/8FHvurR1/3VMy/+7Fu/6tG9f2jOX3vPF372nZ/83rf/2jf9yI3ZYPmg1TpzRzfh0Th5eqxOD1f7137zYz/5oZ96v1bd/8YPjsN6pEZjXev3WsHh+16mrXarJFXYtuHMji7tBXrnzrWT/ZOvu+c9d3JyvzF44ZgU8yXLk9t1led0rjdqGlIhQyQzuWz2YiKTuLiRyCZzRCGTzBQY4KVbWSDAhcLWerZQqBieaWBvpq5BFYJiANCo2yA/eYIoKJjMatoKmk5yQuwxoJroV69B2eEY3HYkclqIfVmGADSYhNJkQmHCEySjFre9sqAHQMChAyXumOJLxOY5ZIHTpJoiC7LEUdUKiU51DK/aNHo7OyFwXlOqxU7vdLWihA00kobCE7brYXMwGg3nk8Xq9KgT1btdEEGBZ9ZbDZDClu2HoMF1GSMVMJKQrvQHnVgmWVJNs10dPgT65bACywo1HS617zciP8C0osC1DJz/jZ0ov7gFjQo4dNCWqR4EdaDgLZRlBsjmZtREE6LJfDbbO7ly6+6D5x69+OoNJ85m0uOd+qDRHcz3jm/dNqqcbLmg6eqdVrs/WV1/7oUHgWE7lu0YFhRar4Emd7ODS1fvP3rxOW0rlytiGAPKsNixQXcMHGKReGDGSrztzKLshc8oio9zkAA1xNgPGk//mCrzhq2dzYsXNzfX19cAfjc2Ns6dRyeOC/+UBvzEk+eeeuNTAMBb5zeT2xeTueTFtZ1kgSKKFTJTAiCHqsTyCMC1UgzAxWqVo5LYcoPxlVUWnf4pkpItTYvdKONMQhwIjYeM4J9QHvHNYU1n2Me2kzyCMAu0DY27EJRZKEsiOjSi16Y9WS4O9g968GnhmXcMtD1r4BwwT7AiVc7z4XA6HffHKMmmk8mw2x/20BsBATg+AxZIWgEAppW6DT+8XCLFgCFqDpdDAAYFjAF5BJEGAK6wshN2XKrKQ23MxwBcKWYyqbImcWjMJSu6Chga6+HHAKy4Ci5wbDsqlqtA3SQdm/I8B3cneIVL5UoEADADFx/kNjxPqh2ZJAJtDgMJcrlCBfswcIcJamUW5TC2qlWB5yAAP/ZqxNNzWvaj4f6QisaNsO7qcIdbfd+UmWowqOsSRxPybBTicWTo2xaQVa/ZHWIo5gLAdzadz+fHh55mCnEgGHAdXjPrHSQus1ZvtZrOh73Zchg4hkjTAMC8pIZ+f7HcPdifr45ctO1Cbw2WlzQz3oEeIr9coALGxMOOY3bZfLVQYthqHjg/ThPCQuVATZerciWfzxNVulLNpgBlcIyiVIDvKuWSRDabKgGhg3VruFE03AMAzhcrNRCm3f2xYYiCVWMZIlMLNa6CANzQRZIoFDIcKGDbDTzL8eAJxDHgqIFxYpGmCWwVVqCgY39ns9Hs9Hu9yNF4YPJAHxzE2V4HVDjF4P0wTLduB/UA20h6vWXnqQtb2xs7a2980/kL5zMUiOZCte1ZwLd4Ol9pODJHkgmlLtYoMr9RawVoBd8Kgel3ej2gfeNAl8pQQYBjtRu9nuf5vlbMCjXJ8evTlc3i+a2qY1hwpz8FAD5jyRIFFQUuSL5YhstbIdI1mcNDDLc9O73z4NFb205gSHqjWT945YHmBq7Cw3tWR1cfDSzfCg1/8ky05irIvc2abkfzs5vPfNmjFCYavvUnPgwAnM0mEzsbO7kEArDElIj1DFU6t1Ml0oyQoEqMna5kI6uQYbXWpatTQAdGtHonDzqE5u5dgiKJrmlA8UfURa24nc1Ztj1qEpxojM2EqMEyi4TNhOXMHroF7/iWSRjW4IFPykbNqbe/+nlbq+++tKgErYOXdLvTD+xyrSnUR/WD0Zu/1urOju9fEwpXz24cDJzDf3kzWkV6zR389t9/5n984WNf+DXLDUwA4NO7u0GjefBgOYxGBtAy726sgAvCvC7zzN7ECqPdbl5aAgB3/N3/8AMv9mbHh5GxuL6sD6dN6/a8fu3+dP/SK7Vw1jVCS5L//ZdeefX933969Fu3bzfv/rki/qT71ufmv3vz8NbDV1cHu4srUXff6l8LG+2je1NjcrDav/Izf/ubH/+d3+Vv/Lf/68MPpCbQ/5EGANz097/lJcbtNrbpMl3XrdHJ1YO60bl7/XT/9Bvuuw/PrrxlPLg7265mSbduDJoqy4lMaPJqKZMsbKayucyFrVQqsbOT2EoXC+lEKouUf6ugMnSxuL2ZLxYKkoXTiXEvDUjWSrFA5FXTlCi6UCyA/nV9KwZgNgbguLkX8Fq3NIGulAvZTB64DoYNeprIlqFcayY8ZGiiYEkMAq0MJL4m8DJ6QIKwQl5cKhXzoANoHUP+QGdit3KZJCl4CdVWMKABcM5xddBJNO5TUhXJC5uhF5tptaKoDXx8vJjt7p2d9IH/d0AmNdu612iEPgCpDaBmazVZlmsclJMq2QMA7jQ9s8biqtZAcmOyBAIwCAC3Hvr4sxvw04FpW6YUH6nWal9swsJwGB/jJkKcKuj0UYVHkad5zVYdt8S7KBIWq4NLt+8/eOaZ51657dumaXoqAjAgbquPCviWUVWAGaB3R7fdHc1WVx88vOdq8EahsrjY3tl5fAh8fHLl6eee0zfzIBDQa0PRUEwB77EdeOfxRrQGpY2XdUyVwNNzxGFVU2oC2lajBJZqmAtEv2Fjc2NtbWNj/fza5vb25gWA3XPx5jM6UYL+vfDUk2966skLye1zF7c3NzLF9Mb69k6RJovVcpYA7KTKFYaniIoolXIkW2Ph6zSZSGZ31s9dJKDk4ulPIVXgdQx/0lk05UdJV0EyhTsaeOYnAieg2djFheXgx2EogYgmaPgnlFo4RIVTaZhvL1mj2XS1ArYLFM+xbd2wHDxVCB2mwAoVIssFw9lsMhyO4z3R0aQ/HPd7/W68BQ0KWBT4EgUAXGHVyGEFrlwosQFbUV0+l2dFrd6U4qCmQjpZoUlaBGHoURX4NvKLAJzNpiuaxKAxF+hbBQ8AZEnBowSJrMqWjDET6UQiR8BHq2GXNNwVNIVTgUTSO9kKCeBD8SxgNihg3XCbdqVA4uRJFSc/ywyN7iUMReChKVym2CubrZBUpVLKAQAXCgjAIKDdxmh/yADKYDMOPCCdcd0Uq1QwAAUssKS4mLV7LdwmskyvEXmtXgyOk/l8Np7ABTo9CUxLEGkeT4R4XrUaiBnT3dbg+Gi+GA0mi2HoAgAzFWBEkhKEw93lcm85Wh3aZOy9Dk8pRuiaTtjqDkaT5e7e7mK+2N3fXfbNWksoM3m4HxyRL3EST5WzlAiCsVRh0M05mccetFyKEgUDyAVIf1jH+SQB3KaEYw6CZABnGOyeLeVisSIqqtHaHZq2XHMkmqkWRVfhqsViSmubNaT2aT60QFbCJ/Uw3yUImsB5A785rssqtmvB0pKsqNNtNrrd5rDfBBVQqWK4lY2uGd0mNkHD56nppmEHfoSOVs1oND4Ynl/f2dlObT7xBDDSNNzWSrrYxjEkWK8lsm4JdInYVgJOpMjceq3pwn8bNsJWD/herwfkP7A0TEDR7bDTHna9KLJrZEGRRTtqzUCk4XiVogc4Q9cZL3ePT+GpooGm0QDABRKdqkppXmQ1QzPczuLk9v3nX205IdTNVjs6ePNtxQs9mZVtRxlefWHogLSwgtmzjfVAxZZANJlvzi/devgVLyUUW7be9tM/M8gCACeSMQAnmJIi0wSxnmWZjQQoYdIq8PC8FosJ3cyXBL57dmVuKmVOsrqXnutlaz4CMAMXE2vhmLxoUptF9DRfNjOMrA0BgEFxN5xKoqRYi+u9mnN2Sy/Z9vCZiBQNyQ2iL3tWU1p7b19Uw+Dgy2112ChWKcKq8EaND5/5ZgUU8P2bemFQ7szG/tk7roXTjmBKv/CPr//PL/z1J1//ptIqMLsDYCF7dtQ+uDPuRj2OLgvWo2PPdTQ8A1Y4at7X/HDezNYWAMBD7f/5+J9+j7l7dBBqs6tzfzQMjWvD+rW744PLbxa80VAay1bphXe/effq14+H77o9vPmuny0Mf/LkK7/yy9/1gQ+9+3u/djpZjS4PokNvdD2KGke3p9bkYP/w6m999rN/+6m/ubf/l3/y60+L9b4QDFVt0G+HR9/+VsHtdZNMsejbRuf0yj6eAV85Wp1+4z3zwcnVp6edu8PNHFFxPdZSed43Sqk3XdTS2Ux5K51JbQA1B1aYTW5lCCIDACzSROpiUefoYn5rE8CWUFzHUGRTxbbmMp5XEXmoOsCgc4UyrEnXQwDmajhCoGqGFTgYxuCGTQfKEyBZPm/30GDDi/OAWQHWjekZDghYERNPKxLotjhGXsChHhEqdSkWSESOQQUMeIfpwGQclsIwNUMNPReQyvV9o4ZnwCgTqgoQUBwDjur1bquJx6V7i/nu3unpsBl1O+1uB8OKGi3fMANHEWQDO5llFUomyIvyYNzv91phVHexLwpbhgW4xzyPlvyKGfpuveW7Lc8PAox/BfWsosvjF8eQeJEWw2ZQd5HohlFT9+phvd1ptQa9KOq13ag76I33jw8Pbz549uGzL7z1lofH5D52QcdWTv34DNigLM/3oIhg+Mxib3V87dk7DjxK+FM9NHxqNNrwoQ73d1d3n3vR3c6ncyUW5bemo3cSQLClYRwD7n2i3X+NA3FcY+GC0oC4mA0QmyrzoCuxg5upUG9IbG9eXLtw/tza+oVz59cuPAXiF49+z78RnSifOn/hyafOPfHG9cQmyOOLF3ZymYsbKQAGskwVCyVsuitTPF8pkqxCZksUy5J5AODMztbmhfOpKggLEmCeSGaAcymmY/AlED9UMZuvcmhSC3Ucbh2LZtUMWlHiYaT4eAf6n+yw4EsVgEGBpYCXMQATpqgDEhzuHw49w3Xi6TcvwG1/36NIDpOd+WAwnM7H/dEUe45mIzyXHA0H/dEAALhSFUS2WtHpAlWWO6EocWSZlUK2rBpsJsfUVD+Q0Ru8VEiCfK9yIKxaEVPCSboiA8BAkTgvQ4GcFTBwCjd7EH8xKVGSuCKpOCqLwT7JzA4BrwVcyFAM18WJPIPhTC6VhqtE0xwQDl7WgDQZnitDxSXKdLxDWyoD76B5eDnMbSUZEI/YmlYqMhSANCjgHFEggMVQNdX2usuh0Jm0wsDSFVFqdQHkWSrogvAC/FZng0G3A6QxMNG3zQf9259MuiBTp7MZthccearGicBqcdpJVJyoORz2pvPe/OBgOR10FvNJ3dGxE4gTOHSGBFoz39ubHR772LSF0VocpzomWlF2B4PxcrHYw7jCvfnxwuRbFkVkCFFmykQZFijQHEbSVS6fpw1ZptN5UdaZTDpLWWipAfhbIHKZVL6YSqAVJSsqmIvQmB+tRLgIvGY47UVf0SU0V5RJUrAtFpRvWqibfLWcziRlIGJO4CFRrWOYZ4CtmPXWuKkqNQzsonEno43T4K1ef9zwTRbqCiUbAMDAzFtspYiNaLxs6mYEANoFJt4ZTc96TwE5TWTW/8UTGxvn0+UcUSoUmyE8ZhTF5kjsOecKWzUfFEShsM53fGy6xGjqVqc/HPbHvdBRYUUqOmD6eNB0muOuWizDZ7PD/nRmoCeHAYjf6naAHC12L5/Az6EkUWCqeI95qkoU05wgohWl116e3nrw3EtNv27XzEaztffiXSy5EgcEz5xcfmHoBnbgBqOHwQVXl2XDAfB327tnVx6+6/lMTdajf/mRn26QmdhmeHOjtJNii4pBlfMbKbqczJWz6Z2SlM94hExeFPVKWlC7p5cmlkJQvNG7dHeQN53lJa5cgcLBq36/U9rQhJ1UEZbxvFPhZHam5mqK49WtYiondMLrlyX+1rNCwXdHTzusJml2q/Nl92pR0Hu4z1rtk7e4bqdZKZUprcbLrcB7+WuU+vjqjV1Omdbk4ah98Oplf9blbP5D//hX//Dnf/xXX/gBueU7vcHi7O4hSJyTu71efVrLCYz/tgOcaCnzw0BihZO52wh3++naQmOdyPnQ7/7ed9XHu8ehtrg3Av4YaauFe/vBdO/6y5I7HaudOq/9/Iffe+8r/vAdb/nV73r7N33o89LRJ7/lBz/woX/7rR/60I9+z2o2nF4bNFfO6BRI+Mn9qTo63t+/+dkvfPKTr/9ltP/v/sN/PFKhovhdWR92m+Hxd7zEW40ZCGDGNyR/ce3A0zq3Ll9eHn/jM87TpzdfavXu8Jligqp7RVFJsY1SlV4/rxTJ9FqayBUL23mqAPomkUgmC4l0qsgwZHaroHBkDr2PCllKD/24C0vXZLpYomGNFHRT43iyUAT0VCwoMRIl4FihqHjwWLph3fPQWtKCCsUxxWwYwbWyFA29l3nOsnDqrhV5ejxuUlUNI578wYxASawpqANAiRRKBI0pAzKUChqEcilfqYBU0izFDsO44djXRahXXBUnCVTfw2HfZhQr4C5GnUwPjg73z4bd9qDfaTfq6A8pUTUv8E0Zj7NFTRGxx5aimGg2HnVbIBow6AiwGbSxwNIcVWZBgTtREMFH8rAZysFdKgykwwSG2CQCGLEMJCMKsNRic3bkhd1hB7hts9tu4mBgrz2cjCa7B/vHy7NnX3j+5bc9wNfQ7BCHhj0P4Hl5cHLrtkVrKKLDoIkncnt7x7ce3cELZboBzifiiEMd04UXB6c3Hr2gbeeJXBnxV5JwQxvj4eGduRa8dw/NHXRJw0hwUQYMpqq8potVHLllcORU4mmcK3hDNrX9OAlpfe08APA5kL1PPPHkhYtPnYc/Phmj8BNv2khtX1jb3LiYyKbW11M4B1yi4N6gtihTuAUNF6mEAEyXihWKzGwDAG8WsDW9yrNUIZmH6yuotq2AZshubmbIcpwJhMe7mE7PxxMOcSAhhy4hOJj9GH5ZDvOGmSoTxyyKmmkI+ni1Oto/GLqGg+4Xhu2HjXh2ja2KcLeKHAAwgE0X9Fx8IAnFEPG3P+zDWqlUeYGuVgymUClLLY/lKQwWanBVBQAYVJrqBTKgHwJwmqQrtGIFnXqVYBmmmmdVVaqUirlMsmrgMgXgxbAF7D3HCExJ5gsAwApbLuHM606RBABWFVPRHARg2xJrFp8t5EkU+gB7PJRfBGBP44HoVRhRFspEVXjcJVeDd1mm4EtVtPOQqiWWBvKZy2EcIW5QUzXJicarAdscRAEwbmCSra6jS1Q56NVNhWPK6hRWfCuANWn7ddewO90xXJdBPCo0ny32To8BgDGTEq4AEDTJDKL+sDudD+b7q8VsPAShXMfBQqrE8QDAfhu78lfLyeGJV6WpMgmUUwBCpMOPb3YHwwmeKy8Wy739xeGuwzd1Ip8qiApHA1sTBLqQIkRDp1JpGng2nYZ/I1Mge1lbKmMbcyZfzGfS+WIygXY/XC0OJmrMDne5bJ5E4/j2cqTqMqzxGk8SNdeqVYl8kq9bsPSyuR3R8wwdHz0XzyOgLiAFj1qjpqrWYPFUaUZ2sAu6EUXt3rDu6kB18hS2RuOoRIejSywLVFoxdSOotwej4XDQmy0u9wGA17dSa//iic3NCzm6ANedbMFVk6sUnSU9XWYAgGVYMCDHN/hOPEKMjZfwuA+ABPYCW4UKohrw4I76naA77mpkVdYsTFqc6RQDWKzbTtTB4+rp/PQISZ4CJbSCAFzjmFIpIwhxyp/XWmAX9EvA8G3RajRauy/d0zzfkljFigF4YNftwPbHz9XXvBiAQ1v3WsvTyw+/6rl0rSZ7r/zQvzEyyXw2sbWxdqGYSPNZUauWi1tZlkwR5Vxmh3PSnJF2SwV0yKop3cuXxqZKsqLRPbnVzZvu3lWRpkFxwFLot4sbai2RFyS+0g8pShQmSk6QbMdT4T4zobj7wDcXZ9cKijt7YNBoAeB577imyqyxPFHd9ukrqhJ5lXyZzXrVaBi1XnlXEI6u3h7lyUGk9yaNw7dd8RZ9pi43PvG3/+UP/v5v/u6XzJ5n9wbLS/eO6o3GpXu9XjRmNpmC8uIx4K9VFicRIMTJwmtFq0FWAgC2feW7PvunPyxOVsd1fXFvGPYWdf14z752d7q68WbJGc3kllPRPvEfX33vT33267W/yOEAACAASURBVB78xW/8yPVv/iv69NNv+fJv/5mf/1c//JM//t0He/PZWSdamMOzsOUfPTPXRkd7u9f+39f//BN/88lnHn7qF//6htFzBa8jaUMQbqff8ZJgBgudKlOdQLR2r8Lrdm5fOds/+Yan3WdOrz0/6d6St/LpatAldZuW6mY1l9wsoAN0NrWWyGUz+VSuktlIp5OFZGonU60W05t5mSOzyc21BACw5ns6QCE8AwqDAFwsFjTDEASsxSCMHd+2ZVBAFSCSnKxGQIzhK67leAbIROBaaT/0PM8B1g3YKoj46PqOZ7kaj57AsC41BVWbjEOr8HDHowFl9IylUWkAw5cEBpRqsVqGSg3f7dYDP2rUgwAUMFtl4kBZAGDTdmP+C+CHFvHzXajWB8edNvDMdjsK236nJTNWww492zIUrqKj6TQLFYVqzEYDDEwKoZ4ZFpY0bPRErSJJKsBaFNQ7TWAMag0vhQNSExQ7h9u5ICZpHFlqRWEIQjXwojYaeoSYCIzbWY0GFL/JuD9YHp9eP731/MP7z7/1DsKl6eBoFtRneAgny/3rN01aQ2+/MKi3+uP57u7RzefuIpsBeg+y2wc+E0Wd6d7B6bVLNx490razhVy1hvFH6Bgb91N7aMthe3Uf4NfUcZtUxN1yWcJubrh3Em70o+JBYUyV6TdkE5vr649PgC+cj49+0YXyHPz5PGLxm3AU+InN9Pb5ta2tTcCV82upTLFSLALUlkDJ8ZVqDMB8jcgCIFNFolIpAMneWC+gQzeoK7qSz0C5rklQeTQ6n1p705PbxWKqWKpihxWPZ74cg4lWdLwFjd3QTLWCg2UUAnCFrcHyYVVs60Y7FsGYHhwAFY0BGBgHXMOwCerG91kKwKtU5OsAuwDA2PPaH4wwGg6huNfvBoFOAgOhqpTFFmhK6XiAq2RF0FtCWTZjAFbcQMJOA4CPJEFXKMmKumElz1AMnaNVTSDJAgAwZSnyYwBGy8jHFpKGpMQAjDN6hdROIkmQOMGqWrJiYReWAc+BDnBUxH4f/KS8YsRb0J4hgUIkWFkXiFwVVjpF0rKuCDRVA7oBz4pmyFWCgScOkCpXqJQAgEsAwF57uurTUdvHtENVlNo9RxXKpN8LDYkFAJ4hAPtRYHtR3bV0H3hJbzxZzGaL5Ryg9OzY03Re5L8IwDagxLg/WwznK6g8OEU9Ch2D5WhSwISTEAjNdLm/GB0ce9jaW4G7URNUU7Ftv9UbAr1c7M5ny73V0e7hvs+3tBJZIPFpzpNMDXhEgVZMQyTL6JDIl2kN1iY8sTWbz6IhdCaHp035QmKnEAOwgvOxjen+gk4TZUHV7c7uWEYyo8h0OSd7hkoTuQRbtwUqn8tv84EPLMcyMHjRjZNQIoxWGzZUVUS+RdGyU2/hwxh1uoPAUtF8j8KkjTaskDZbIWhalHAsV/ca7V5/AAJ2vrzcf/LixfXNnQv/25ObW+t5GtugycjFdlAAYDqyFJYv7sghAjCxJXTcwHFjG9om6OzBeD4IbE0UOFX3641hv13vDRoKALDu+I3+ZIoKGAHYDIA9tuALJwcUADD6JFRKhVIZARgUMC8jALvN+cmt+w8RgK0YgFcv3dehwEqcYhnW5PKjvhU5vuWNX2hc9HVJNt26Y3jN+enlZ9/5MC2KovH8932/mEjiGfAmAPAOngHrVRIUMEekK+VMdptxt3x628twLEgqvja4dmWsyyVWNAent1sFO9i9zFNUTRCBT3Yb2Q1Z3EyrsG6bllgW1Yma42oW3OBsKp9i09rlsGeY12RHGwMAm7ZjuP7brlnF7RzTM5zm2SuK2o0yolpNS+Jq7C7ufjUfTU6utzNEPbK7i+DoHdec3RljysGnPv1nf/L3//CFn1MajtUb7l4GAG51Lt/rdqOllLZY44VrIOoMUgAABgW88NqN/VFOmquMq2s/8ud/+J3m8uC4bizvDuvduaeerswrtyb7t94sO8OJPg4Y71Pf9tE//PHfuTn7vo/+/Aff8g9K/Zdf/pnfeO/3/Ol3vvMXfvR0Ntm9OWqP1OFlvxHu358oo6PV6tYvv/5Hr7/+5/eib3/vJy7xHcfxOjUN7m509u0viqa/F2ZzZMNh5f7pUaS27lw7Ozr9+vvesyeX7s/7z+wyXJnyJkVBrRQNKsnyBUIpJtbS2YtbyXyxks8Vd9Z3EtuFdCaRrZQLyQ0A4GohvXUxTRKs7sehK6iAAYAZolDIq1hUKJKkVUuzA8dBAAY6pDJcreXhsSVQUjcwMW+3XMwAAPu+qz0G4JrhAzO0bcfG/PNKBSMFsKdJjFOQeF6okqUytkET+ccADCIPj5Kg9JSheimqhoP3UTMMcB6eRd8kJgZg3IzCXdyw1Wm1B9PZ3nJ5dHjQ6mATTivwO/BkBiYKdExL1Gts7FmB7i7VxmzY7/YaoKktQEUM+8UQe2DGrCDpoQ3ast5Gj9koAAHsWCYAMEC0iLumIhoZs1wzqoPKh/cQwiPV8B2/2cAceED/3mQynw7He6dXrpxcf/jwwfNvuYH+VrbrOI8jWLrt0XT3yjWtip2YDUyOGIxmAMC3nr0XuSC3A2w3g1eH/3fnB8eXrt+48+KLRhKNGQRsBEMJhrb/TgNUANrSmxIONFouhvVguI6lCFjXYtcIUaw93pmmSOoNya2LaxiIdH7t4lrcfHUB0Pj8uXNPnnusgM89BQC8gVvQIGsTKQDiJCjgIkGTxRLFiyJaZlAAwGIxW2Y4Crh7Kb2xtraerDJlmgNNXC3hvGcNGwNsjc6i4/RWGq04qqgD2Xjf+bH8xSlyDODAQeDKY6vKf8rOYVATAtNRtRiA949W+0PPdB14tgHdQAG3G57HlgW2WioK0Xg8naGKgdvZHw6wEwB+9fvdMDQqFAAwRTtcnqbUGIALJKe1eFKy2GwWN29CBOASxtMWWYoCndkJAf4AgPNVQeDLZczNYxxdR4twWcUgJGSOAMCyKhRJ1anRKJ+3d7LlcpUD7WFIMsgyz1DQ+Ka6kyHQDJvGUwH0wcKBG1OW+DggTChmq6oqMyVKMVRY05KF8Yc8AjCJ29ClfDZP4DZ1uUSLatAcLntMBFTXtU1VkLoDTxOr1aBfNyWGqejz4SAGYJB5QH111eiPe3j4O10sppP56uzERwDm4pULV9ZvdYC2zOaj+d7uPJ4pGoauyXHVkiBwsgkLcjJb7s4BgH0aPdR4TLpEJxk7QME3Hi5Xi+nuwcHR6vAw5LsGxgoAQ609znKuiRoOg8sSekYqomw5wHBlUbHoRK4Ufy60jS7sbBdKCMCwnL16NEEALlURgLt7I7EGFEWoAfbJrqTRpXyCjWIALiYEIPZAZIDhIQBjGhmCcHMQaQjAlXKFhvv4/1P1JlCSpVd9p44ZVF1L7hkZ+x5vi7fv+3ux7xEZERm5Z1bW3tVVXV3VS/WipUEg2ca2QLIHc7ABCWEhMByDkVksMMKsAx5sMHgwA+YIM2KMAIHQ0rQaOHPvy2rsKUnd6q6szIgX732/+/++e///yEknaLW7ji4RsLJUoKxwcYCqTiGAoYhVTFgZYKEIa61uZzg57bxz6cqVlc0rX/vU2tpymsiVcvkSfJJKZCbENW35bQCXswDgtoODgg6OQSDDh9M+FDACw0iwVNUG/ZrfaXtiqSJpNojs0bZG0jzUJJbhI4BhpQIAl3ME978COBNnzhWw3dg+uvXMw8cNL9A5ow4AfhkVsClWZVM3x2cvdo3A8gxn/FJjxVUAwE5oak5t+/js4fsfJmGh0p//l/9K3Eokk5uJjZXVciJOZkUE8MoWW0iTlUwunqFTfqKgxEWBLGRpYXTt2lgX8xQndg5vuQnF2TmlyyVYmHlZb3lbq6y8ts6TFBkoWkUwJ0q6yutQHSe28huxlRUmo+w7ubLj7OBkpelY9c7r94XYynpaF43w4CXF6NfjcieXLsm3BV1+34f4YLR3vZYg6gOjs+vsff01azZnJWn7q1/83Gf+4M/f/BTdtozuYOfqM/tuvXV6p9EKR2LGF+3nDh3bVHPVoS/S1YOJXQ93h1lxIpFWu/ptv/Nf/zk/2T/09NnTvXC4bfJ7M/3ardHe7ddkZ7jQhj7bf+MHv/9XPvzPPvavX/iGf/BjH/2ydfKrt376+77zm378W/7xT3/ydDrevtr0u3L/GsiexTMDoX+w2HvmL7/y5b/48hem1/7HRz/9rFRvSl6bVwa9Vu3kO17izHDH2CwyoSnr9cVuKNSeuXlycPKhe87D49OHw+79h0NTqjrDXEErxOQMO2BKZie/uZTOx3CeBacfN5ZglU1jGEOlnI2vZSWGLKQ312G1EkwfEIuNWLJwDuBcRtF1gSeKZUoxYLW3LAkAzHG4i8LXUf5CMQrUsERMniykXKAxLBUqg+Y6gubLig+oMqRqFPzKn/c08SJijWU5eDWlSIlkCAxqQy7zdBFWd4wYZUHKIYBrdXja4DVEAIaVRLJNzzYMzB32Gq1avT8ewqJxsLff6vSaYb1um42263fqBpQLtg0CCr4PrBHAT7pYDka9HgA4DNAjGvfNseuLJtEtV1Thu0L9EDqODlTFDWgEsCjx531aUDPgbix6TzqWbWmW77cbgRc2G0DMFoCg3R1O57P5/snp0eLkwYsvPn7lhm5GetW1MIKl3oYncH71qlDiFN0BnV2rwx+ZzY/uPHuv7sDXwKXDWDnbbja6072D47Onn3npJRM4limDjoTFAyNTsPY4d/IJajVEE45hY+ASzvLrCobaKefe0Dg2hXZ+CODNNfSivIKHwPjr0uUrsOxcWboQ+WBFevjCO5c3QSbjFnRi88qVrXimnC+QpWyuAoswUYalNgJwpkwDgCNnl6WV1SxVyRMMQRRB22RokeNRAutcMYGzNpkiWULvMqA3qtyoAxreBxUBmMAo4PMMWfgrjUSmq1U0DsGzbk4b7cx2d3Z7thopYExjwMNxxyGjM+As42HsPEYBdzudXh/UDFowDvqYd2lUKPioCNKk0+Wy2LQAwLkio9aZPGuz6TTJK15NxHxqtMJCAIt20PCpYhX9f9ANhChk0sn/CWAFs4rQ/QRb+BUeAGwrUCbmErGtdKmMW8mSIsg2FJ7wZRSlEFupfAllPp7So9uzZsK6CR8JVcaHCR8zVeEIWsHTXBowzLGUbOgyQ4lsuYiDwnB5c4VSEQDshN1Zj/LgngR5LdJCq+eg501tUDclhiEAwN1m3fF9KAdBlxmc3Bt3x5PhcITtytPdkyMHkA93N74cmsf4v+GwM4YnZmdnij37CGCDYfJZhmUkPQBGbG9vj8f7Ry4Bl7kQbUErpgqis9XpdgeD2WIbAbwPv0J+ZHKKxGObGlqq89gWokr4TjAASMGAHwnevKQalc1UoZBOpHKpZCKTXl+HN0dWBVGWbT8c783oVARgq7PoVzlRoSmWJFOcVpUqxfxWFRVwIZlJ8AYGm1iO7+o6wPc8Ui2sdUNAwtsADqBwhv8CcVE/lwuFCqhH0LvdfoMmS1GjGXwL02s1MfkMfWyPIwBjFzQo4aUsWSjnSqRjG9EccJ6u6TxBZSMAlzK59Wrbq0GRbLtwMzag8uttD0JHF2hKkBHAw9DvdAK5Qoogstv9yRxH0mU0cgtgQWn0J5PDXVDAoF9YBHC+yFepYj7JiU/OgKdHt+4+97jhA4BNBPCrd+C2MiUOJLQ5ufZSz/ThRnK3X26sIYANJzA0J9w+vf7oA48yiqK5r/ybTymJVCK5ubm6vFHNA25ZOdqCZivZCpEvpBIpVlt22LKsMPkcJ/UOT8a6kCF5aXj1np/R/L0zuoLbHqyst+3NNcJMbmKuuCtZtORMpUTU788lNgvZRD5ZLHMnT1fhg5zd0ymMZ28P/t69zdX4utTn7Pr8gaQ3zFKxUcpbkp4uZR68xtT6+7fDdXJ+Q5jsOYvXrzrjAR/Y7Of+5itffOt3v/SblaFt9oY7V+/uWbXm8e16K2gLCZm1Hy5QR+XZcSAx7MHEqgWLQU6aiKTlOb/+2S9/bLRzeOhp89vtcLptiTvb1tmtyf6tVxR/ey52a0z/jf/3x371v//YJz7xqS/+1k/9zH/Lzz/34z/44Ce+7kPf8+G/+48Gs/l4v95sat2zIKgtHoylwf5s5+7vfvHPvvLG77hHP/DDP3dsdXw27AoqADg8/q6XGbMxLm2VudBUzPpiDwB879bx3smHsQv66nt7/eM7C0mT/B5VaDN5QxpMUky3Fd+K5TOrKTIL8qZIxS8nNtdSGxtrSZLIxdezIqyiadDENC1bIK0s28TcHSqbJwq4BW0YIkcUSjQC2EUFTJKwvklVUMChDV9s25rtmyAl4dZK2IBoS7c0AHABHjFPMxuubr4N4EgBg8rlziPIUQEXSzifAAo42kWFO5Ms5qH2L2MWqibY+JwggKMtaNzTo2jJ1B0zitVGuw3MM+j3FwcHO4ddAHBQAwDXa2F0FgRromOCNMQ8BRDAFFMpObBWt5vw5HpGBGB4QQhglqYFtPayfMer+yGoAsMNHO0cwAL6uNMYWIiW0lB6o0mlrZuR7m0CFnw0w8K2SEwzX+wfnZwd33z46OGLr95CGxJQwLg3aTmYNDjdOT3hSyxcsXoIr77V7m/PDm7fv1ez0csIJDs2Rwd9qAOPTq/dunP3hRf0rXQ6WyKjQSjXcaPub8swMI4xrFnwFvBgDK1DLAMDeXVMqMKhZYxhoDFPD7egY5vra6vLly+C8r2ytAQi+PLFC1/71MUrF6I+aKDv11648M6lGIB3eXk5ltpCAKcrhWIEYBaP2Eg2AnA2VaKZSiafT28sr27G8QS/QlVK8VgiCc8x5glKmiGi6wpOmEUeHBUAcDR1BOKXZc9PpyN5SEW2lBjUUKmgYyagTGThQmOKpjacbc/nex0Tbj+0Wbaiw/HQ9+giILySZXw0LZ5sj4c9VL+jJ7+G/U6tYRJVAT5V0qAAwHLbobERnNMaTL56DmDVD0EBl4ogyuI5skJKFgCYqbAUVSiwVVahMctnizRkKcq5kFVFV85ngYEmAjZhqXDrZuOxrWShFOXsKpKKOzKaKlOMSmOmGLpzVnGGWMEJJTswgcUC7q5jM7WtajLPR1lWeCoDkIcbReY5Ge7QfArPgLMgj0okx9thf2dAmjXPQwCTXL1tY+d7fRDq2GmsTHqdRmi5nhvU4Ma0BKM/HmyP4Hpsz6bbO/u4Ba1jGBiB01+8atVa48lgOhtt7yymg/5we9SDYpamsxmGq0pG2Ojh2fFktti3oWrCM2C4jRTQWU7YAt4MocIEri9294/29hrawhBhoZBVWcW3ECUsws1uaxJmoGlQyZsqpgopZiWWzGWT8WQmmUikAcAY6xGlJSOA8QwYt6A1u7vbZ0UEMFMl0rREV4vFfKLq61USg9x47H+woz5oE59vKEDhUQ3bAY4uPdmChsI6AnAXFLBMlwvFCiMDp6DQrcHbgRoEAWzb/jnAfbc1OMEt6JX12NI7L8CDAfd8OVNhYAmDhaoKqPQVtkIVEmIgUaV0drXa9jF2GoGKw/+d9mQQOAZHUDxohdpw7NvNTk2JAFzv9Ld3DaoaARhnJv1GbzTaXxBkgeLfPgPmaFTAfwvg2eHNp5973AQA8xb8gMWrt0XLQQAbGgK4D5LCN7zZq60VR+ahsvB1za1Nz24+/4FHaXhKau/58Z+WYql4Kr65thLji+lKikOf4bUUSaVScLcnkmmjsNwnZEEoJbOSGMwXHZFOlKpi//BpN6e5i1OqXKZAYOlmS9/cKor5bJmkZJdTWcneEbYQwBoXX08zFd2r9bzT22reCfvHEqGbrlcP3z+/uLF5UTmtwnt5FgBlQ9EnOfOB2uD9s3dr/eH+jWCd29+uHC68xXuO3UmDbzee/+wbX/qbv/7MG/8H1bUtAPDp3V2r3jq+3WyHHSlRJM1Xjl3P0YvSvKmwPDZhBfNBXt4WSadFf/vnP/e94s7RgavNb7Zrs76jbw+d09vbBzdfloPtgTG0SqM//8w///kf+PCn/8V3/eYPvvZrb8m3vvwD//DjP/H8z/3uD//K3+9CoXra7QRG/RCdT54disOD+d6DP3nrzS+88SftB7/+Q//XrmD7aq0nKBGAv/sVSqv3U7kyXbcErXt8WBMb924c7p7+43v2o9Or7+ksTna3KV3z23Smmctq6AHbGAKAN9PJ1SR8FKurcUxbRwCvr2fpCMBoBZtLbuWrOJ5qYOwdiEuFzuUqeAas/k8Ay6ZrGnypUqkwjEKTfMtHaLguFPgmKEwEsIPmzUAnHDRnBNXTDNdAP+TzLWhRObdRjP6HvrlQ8COAs1kKjzEF+F0e5wgL2FNR1RRYGYFtIEaxC5qOwhgiALs2bulGCKq1h6PeYO/4cHHUxYmMWsNzm55h+rAeOedYkkRVYDm8s8iKBXqpVccsRBPQiOYWIsoDEF7oh+67OAgMAHbRpwoEsSbxONETuV8DPCSJo9Ehy7G80AX5DVCowU9xap7t1XFMA304FocnN27ce3jn1sN339UxRseMAGzaXq092l6cHvMkANiBhc9ptKFMnu5dvwcABrb6NpTWges3W43O9Ojs1t1791560djKZLIlqoqZjO4TD8yGj41grmdrmsDrdgPEOjp4gPjEjh+MDRahtsYdN46Gyp98x8bG+iqeAKPwXY52oS8BdNGHMookRCuOi++8EotfQTyDAr50ZTOeqeTyZBmP0QQkGAC4yDCZVJGEpQjIBTV2KotbGARZzq6vx5JZkoVqGIfYZMBTLiIwZh9B4UWyHKKXwqTLyPEq2hJF++cK9v/Cp01XMT2IwyZoKHMUDgA8mc92AcAm3pFm5AUNpY6HW9BEMcvWhgM86hwNgL/DIcg2uPSg3fqdetNCADMkodNQ9qtdnxV4khI03IK2qxGAg1Aoo1tmJpXMEwR8GlBsVymWoCrFKuhZIgcAjhG6hFNIcIuoiqlEHmTw1nQxX5AsEZuwtjZjAGA0fNPg3ztYjMoKXZWJeLTFWmWqAs7wQE3keDWDJqPedLSiwaZqGefKxchmCwtSWQC1zElQhmTi6SzmkBXK8K15t9Gf90mrEfiOoYsEV2uaikBWwg6swDSR16b9XrMGTMLtWNc0tQAvy2A4Gk6ms9niAAFsRBejgomRsl1vb09H850JQBQADAq461oaSRSyIJMls9YZTGaz6Xyxs2cR6BiKhuIsVN4A4Gar0xttI5+354v948VeNziSWEUB4QtVrIA94hicBJRU4B3qQA1VhJtBEhjJrgJ70/GtZCYej6fTGxtQnlHYwy+8rYCzAGDd6e11efgj8IOZQoaWeLKQzcZpV6mSuVRmi9UB6q5lYBd0UMdWDNC7QdgKdJ17uwkLA1igHga1js3i5XypBAoY7dXbAUmi6yjIblAMPjpRYh9kZ3jSeefK2voGGnFcurKcLOVLKYKFAldk+WoxTXgyU6byCTFUmHI6s8p2sOPcd+wQzd/b3da475m6QDACADgcjAOj1msqJQIB3O5t7+kkE21BY8tl0Oz2xge7BFmkogi2fCZXgHs5n4oxwjmAG9PDG3cevAwANgQ7AvAtES3rq1C36WMEMChgzZm9q7NiI4BtVzf8+uzazUfvf5SWVaP++o//e3EDbqB4YmM1JpTSpTQnQ0W3FCOE9Ho2vRVPUtpmppYXGa6YyopSfX+vydGJAkk4rT0xyfKjPXhq4UlkTaMmbmZLoJJyZMkI4KmUzAMxzkAVJDObq3mGkXzL1Y4O1LSq9p8VSYCGHxq3DYpbv5ScVK3m7vNQUYVSq1Hr77xyB0TIS6872mj/JNhQDoTc7Umw9/qhP2srQeOXv/Qnf/A/PvP7X/l+oXOugJ/Zdxqt4zutTtAWs1laenyE/bQleacpVfnjqV0PZsOiNpNp35c++lv/6Z8ZB8d7tja70axNapbebLqnt6eHN18S3dHU6wnF0V/+l/f+0r/79b/8nf/4+5/d/j/f1I7+4l9+7C//9Ds+/Yf/4Qvfd7o7Gl9r6pZuT2HV3703EIaHi8MX/uKtz33xzc/fePD7v/anO2JTE8MOJyOAT777VUYNJ6DW5JajuNvXjkKpee/64f7ph55xXrh68lJn/2ZvwKmCWi9njI2Ukrx8SZ223VR8bWtrPZnKpnLJjVVQOpsb2dhmrFSl8smNvIRBCZlEgaEEkLgYvIYZBnSuQOayoIDh/uaIYhkVsG7rGgcrbpGmJZYTG6B1XbjurhNYAsdUyoUUACQMHEvF/PaqCB8RfGDAmidNWJKCCjiqlkFZihwF6gibsLI5Rkb7iChmj6zgPEaFYHQNZC7wJqy7roZkJqMmLAk+THSKRL/mAHeXhsPRzv7x4XG73mrVwkYYNGqyHIQWlAXwy0DnaR6HJEoEQzptoFsdIQZvxcCDPRzRACJA6S1ZvldzndDxVBOWM0PTTR0BjO3FKAXQPZMhfVgKHTvAwd+27eIApgVVsR802v3ReIxTHAen168/8+DOredeuafD+5dUA5umLNuvNYezvatHIiMgjm3DQgBvz/au379fd9CAWoEvNRSzVgvb0+Nrt55+8PDVV8x4NpsBFYq++MD9mg9faeEzHdahGPdVXpJtF816HYwtiAZWpegMOKr3BRauJ/mO9Q10g16PRUlIq8uXLjwFUvfKpYsXLr6dCXzl8jsvbWwtL60sL23EVp66tJnIVKAuwsN/AQMiSZbOw2OXjqMXcyoe31he2swUS5kihVaiq+uYrcUC52RYfDUJPdTy+RJVzOewXiNYLF+iNCSKPG+Ixj1RNG8pEzRDQtGNvhUswzORsZTEaaP5NgC4Z2vRGbCFXtCNRt3z6DJLlbKZajgcDMfD4aDXRe8n7Cea/C2AK+iPTVY0Ol8mlI5XFXiC4NQGW5HNaiqFAG7IEf3z6UyJJAXTbbXDKgEArhYoeJ3lqAkLFDA2YUV5gqYsog2crCvnABbgledx7TMUVAAAIABJREFUkh6kHIsmxKphm6bjyBoIWyJZKOLcFl0VMNYazwz8mlbMAJRZ3JfGg27MaybhgjFVCiOi4G8kJ8GFrlK5RB6kC57NlElWDlrdcYfym3hmokskAlgVyUqtbUtoxGHOR4N2ww0sjPJ0FM1pj7qjaW887COBF/snB7aKAGaJMgkVnAQAnkwG21P4PVDAg+3tYQduOCiTChzLSFYDrulsZ7HY2z2wCRqtQrH5H94zSD4AcH+yM426oHcPT+a7o85ptQzak4p2N6KWM3grpQLDV6tktZQjoPIr4kaDGKrJVBrj17JbWwjgTewsYHAL7AmAk9gFrbu9/Q6vSDIUZHQ6T8tSpZBOb9G2TNPpdG6Dts+7oKH69tywHqJhuxsErcAwOPbJGFLgWg7U0A0AsCbTpQwUMaJuQ0XbrWEhWgIAS2i6brnoRNlsd4fHra9dXtt8G8DpconI0qKDABYiAItkvpxel2oqWwEAcx0U2L7n1tttKEj6rRFIbU2AwhMB3B/Vrcaop1coKQLwZO98DAmXEx9leGf7aI8ko66KCMB5KJMLaQDw22fAEYBbEYAb9doOKmBbFxgMvBydAYAD21Pt2Xt6y7YEAAY4Y3L9tZsPP/AoBc9d7fV/+wtyLBdPbSXWl2MiWaC3aKGQT63EGbuwXsgnUglNWGe1NEULTLnAa9NbZz2Rw/LeCXbkgih0ZmgCXKqQuuqwsRJh1oMskCSolEXZOJVTBKerErG2gkc1KsE4h6cSqZrjU7Vqqk5YN+vk8SQdf8rizMbBC5LWMZv1p4fa+MPvynRGz70u9PpHp/6ycF1MP+iHh19/FIwmthd8/1t//dX/+w8/84Uf4LqOiWfA9w6cRvPodqvt9eGjtdTHh/Bx6QVxGr49hjQblowdtRo0jY/8t9/4Pnt+tGfrs+v1cGwrAhRXp7dnhzdfFKzeVGqFnPj5X/70D33nz/zehz/51hd/6dNvkK0/+JlPfcd3vfeVf71z+u2LneH4ZsdSNLUfePbuc2NpdDjff/TWG1/84p9+pn/2w//0F25JNdv0W1WxjwD+6GuwehyEgm34shYOrx14QvOZ64dHp9/8tPv46uHj/vjUritSgQqLFStVtar5y0zLzG2mU8n1pVShkCkVs4nVGBSipfjGOhRgxfRWUWFKxUI6nq2URDv0DC1yexBA8NBoH69oCsMRpTKjmgosQApXBrVClwTJUH0Tj95t10QAV6lSMZ90UHjqhsJgYyU6FgPHMMqiimduTwCMY7noI4GG0ZiUUyjk8oyCAObQzZ6u5DLYrsNFW0Vh4IUtx9XRG7OCwUmE7HloCQLPAdpm4MkULL7T49NT0I1ddJkEFYwHtY266TkmyBagLMuLLDyMVdpv1+q1ehNENaZO6LjnHW2HkgzHCI5lof4M64GNTpG+axsK2gxK2MGCRopVYES94Zs27lm6AYDSd0wr7ECF3e12esPxZDrfAd1x5/rTjx4999z9+xpaN0uaZWIzlhs2RzuHZ0ciq1q216hHYUqD2c7BzQcPmlBSoGuIHzq62+l2hgfXb925+9yj114xYulMmpREbBOzwnbLByVt4A657wCafI2HwiGKK3Dw6AC9ICPb6PPDdoxooEn6HfF4Ir62vBrDMIbVlcsXLl4+nwRewhYsoPHFK5fe+c6l9fXLl1dXLq4lNy5eiWcKVCHPUtgAxnJl4AOFx7+ZzQzFFJKbsbXVzWyxVAAJSxGZ5PpGIpkCgVyiQdOh82gxmUKPilwRRXAFh1DPk4kpKmrKokCT0VQlksAUfNj4P8AfSEIePgdF4OTxPiz0e10Dl0sjAnDQaLUChyhyLFFIVYM+6rfxcIDzR/3eEEPyptNBp91ompUq2jTSajVXItSOywos6GzV50qKyUOdwBj1QKqUGbqQSqULgEFQxP2Qg1dXZYsUy3HlPDwvmxU8tqU5TZckzZEFRVdlAK3CZAuiLRClUnoLU3ALVdxGhofGcFxTlZQqqxCJXB7tTeHtsJxkmKru+m0vt5UvCdhoWK0KKr7NqqjIEsfzLMhfPGNGDxV0U04nsQkrX8znSVFwgvakS5gIYAOeKrrWNFShXGl00Y6aLLuzwQDKktBvWGHIyd6g14vSevvD0WgbOHq0Z5oyC3hCVcNyCtxAeHTem+/uzjHGYjjoQj2JVp2UxIt2o98fzxfz+e58xyMoMrLDwV4pzXZqbTQzxumm8WS22D3c256ezVLriUw6mUrByh7bigIJ4YrCf1JQv2zFE1ub6XhsK6/4dn6FSG9s5VOJeCwf31zPlgoV+FQE1fVag3mPgcsYbUHvdaE2F3hMNk1zGksW0sk466nVcjadTdOuzlmBZZlmgLZo9TDyomu0fEsTseWkTAlagFSG362jcSdTgAIM7ibdDlsdn6qWIzMSXndt7IqzLbfRm/VOu09d2biyvHHlay6sgjTBLIaKbOnRRAGIYUcjK8XsuupJFJFPXKnWcH8MliXMXW53B+3tHigWAW5d1fVbo7Httrptu1IRNDvs9id7BkFhypQLUECXvu70ZB/KPkpgRLKYzZSyIgMSKMbSGNhhmPXZ3s3bj16pBYEuGUGrvv3a06ptGSwJfNBG159v4wSU4U9fH6/ZIhqJgfjXg+2Tm/dfv7cKt7j94o+8fzmT2cjHtrY2khpV4DIMn0uRyynKSF3JJa+s0XQiVc4WoCgiqSQtNq5fbfIUVNSc3zxtpXhjd19kykwJk1USG4VsjPF1hdwMHIYW5eYRvwW0VQQiuZ5h0yVJ3BqfHbIV12zfNMqwdjWaTDzbuqoNhhLj1veeF1Q9aE5vT7TR339E9PsP3603J7sntTXxzCo86Nf3XrpnT4f+eOeTf/03f/n/fPVPvvozQtfWu+Pd06f3vVbj2q12s9Zj9cZo+9EpUEUsVHdaUEruDc16OB8W1JnM+F35277yJx9Qd48WnjM9q3tDmxMs3zy7Nd25+Yrgj6Zu2xS13/7OH/zJV//1p194+bN/8Yvf/SVx+6e/7rde3X/2w3/X/sB3z3a2u2dDx7O6x6Dmdu735cnhzuLmb/zxG3/++T8cvfAnn/iZx0zTV4KOqA777drZd72Lkev7zaoqtQU9mF0/daTO7bPj/aMP3tGfPzt9PNi/Kog1VxfbnOqLjidpJZCiNJSd+ETEk5lcKra+GY+lU7nNeKIAMM1uEgINN0MyniVJCff7TMyuFTgiUyYKmUJW03kOVGqpClAWVV2uYgMrXZV01Wy4mgH1pWkZngULC3xV2vOBjJYpcWShyLC6qqgqPFm2xFUxy1exZVh2JJ2T0dBJwM4JjIMtlnKco2F7tKAbAg5Dwr+vyjoalONWMlpRYhc0CWtChZZ904GX6QL+GtFBzGB7Njk8PtjthWG9icFEzXYICtZ1DMHRBFWqqqC6OXTxKDPwpzoN7KAA0Ol40iOCkoDKnSbR5CV6eoMQVjsTt5WDJ19QhTqWx6YmiaXpGrw9z8XT57BeA4LW6m004PJ97KiazBez6d7JjZsPnn/hxQcP78GCjd1REVtteAQbw/l8T6MVC36QV6s7nfF0Nj++9+y9EF0zQSu5OG7TGrSHp7dODk6eefqll/VYLgfiCV8Ba8Oy02yFXmCZUNQoVtPHbjBFw94tC08VjagXS5cjBOM+P0YU0vQ7oOTaWLl8GaMI0Qj60sVLEX8vLkVHwBevRNlIKzEA9NrKxZWt1aXlrWSOKoHazGYIkCoUQ9DlVIkh05tpiszGlpdX1pOFUglTGCpba5lYLJFKl6pUhQHEqJrKl1KZEkVGBhNQt3AVAruwzseTMRcAY5HQI5OIRpGieMJzqwiWwz5uqMQmB7PZfK8HF87E8VoouND30wcAs1XcMQ37vcFkiKNHfWzAGm+Ph6PxCBRws4UKuEqXaJXJAoDbDkiyCjbPs0UZAJwlKcWvyeUC3Hm5/x+A0Yq6SHMI4FQyvlEBrSlwaOQiq6YswY0sGwZUo7mi5HDwmlMbGxvpTAGboNHtSrexc0eusiqVKuTKaDuM9i04hgQAbhipWA7z17EGYTClGQPFRFdXeJrFS6aj+zCoNARwFt2hS4UCCboqaA5bhAOFpWfoCtx9DV3jS5VGD404yJI77fcBwEHYME2FsTqt7gC3YcagZCez3f294/1zAGMfOtxAKhSLULdsj2aLvbcB7CGAy6ANedGp9weTxe7Ozu7+TCuyPKhZBLAEa4IVNJutdpQHjEZYi4PF9vTqLLOyCdRNweoCEhd7x3K5PMY6YY5aJl/IY6xRrqKF/tZKJb0Ry2JSfD4R38xViiDIeUn3g3Z/PuRSuWLUhLXbkxDANAA4w+k8XcykEpynsZVsOpOq+josrhYQOHDwZqj5nl+Dp8U3FI7BM2Ba1GpYeft4QOtoCovnI4wIpREA2COZYplAAGtomIL5WkGrP+6ctC8uxaA0BQW8srq0VS4UQSdYOB9BVwrJsq2S5UJ6TfHVaiWbWObqNQ8BHCWQwsXuAIBBkwCANSDseBzUer22VSF41a71+uNdE+fzVc0BKeE1Wp3R9GiPIPMkTwLnsulilgespxICh4mWltPcObp167nHgYcGG7VWffrabQXeLk8hgMcIYHjLljf9+hEAmEcAw7JSm57cuPeuZ8qXL23ZvYf316AS3sAurC2ZyLGFCho/XMoUtGKsnNnM8sSVnBgvrml6tlQUhOH1q3VsECgggNspwdzeYYg8kYPysby2VkhvlAOdz6SbWoUQ5foBnyTR841OrmxQ8LHaa9Tjp7mCZU7eZZR106mHlZWk3e+d/cNxxfLPHkum5XWHL3TM0QeeLzqNF98t12c7h8GacYNJPpiHZ193ZPR6zvzo7//x3/zxZ//mzTd/kmi5Rm+yf3bvEL7X1ZutRuiTiu23Hl1zXU8uVudNjmYPJm67uTMqajOlGgbiz//6mz+nQaHpWQBgZ+gxgtkwr96ZLwDA4XTX6DuE/Ycf/J6f/c5Pf90LP/Nnn/+Wn3qL3fvcBz/+Y+/91tef/8jP/yDc7NOrTUc1RrdAzkzv94Tx0d7hva+89dk/ffPzu7N/+4nPPKfUbDXsSdoIAHzto69Raut4HtTsrmoF21ePLKF96+x49/Cb75ovXjt9pbt4Wi6rbVXyFd6q6gFbXt0opLZi6WKlUsQzAADxZiyRyBdKULIW+WIlDQCulvK5dDJPURGADWSmwJOZUjmXzmcNSxarVLnCqipIAbjZsUeCZUWJEx1HQwtay8EzYJapVLJbJvrx62oVFocKJyEcDNP2PBXWwDIqbE3ETlIRI94UHgMa0LK/WC4IroYtTqJhSrB2RmHkgobm06h0A3TCQjcFTHonRdd0MfulVgsatXp0MjWbHezt7fY78Fg0Qs9xGn6AKUW+7OgAYEbEZudoCoZxwrDZaHabKF3hheLhFSCKQQCLioVBK0FQq+P5bD1wAImq9CRqF3cUWbQUQo/pEHMUQs9twINYi9qZAenN7mA42t7Z2z88vnb96Ru3Hj6CEk/DJ8hyUKx6+GIni/0DldEcH50yPbc1mMx2jp5+9FzD8TwTI8nOi+vW5Pj04PD6s/dfe83YzGQy5SpuWnJ2qwvcr7U9x63VYdXlqlyUJGpoBqwqiqSZVrTlLkY5wTyH3dD40t+xsrGBc0iXl5bRjuPK0kUcAEYzysuXonPgSAevbMauXF5ZvrgSdUEnskADksiky4BQEmBZShSpSiqWJYrx1ctXVpNFDNAFaZW6dCmVjG0l4AuJIomzT6omkdk8EhY+x6jNGd03UAFjSASwANQhRVbPAQzlHG6OkFHMNI+OY3B/AICPdkCJ9S0c49KjOWD0XvFcsoiJdTk26Pf6o0E0/dvvDwHAI/y/24Nus2lUaAQwozKZQllu2XQUBS15fEkyhUyeodUAAVwu5rLJJwCuDyMAs3QJQyUqhXRic61iqSITdTHLso79vbwEAFar+YriVQmSSK2vrWeyxajvDGoO3cTULQCwRiXzOTSSwYAhQZBVIIBfUxNb+QzmkaABNgN1ESPololx0+hWiK1ruipwdKlUxKiUXDaPfqyc4oWNfpMMh+26Bx8sAlhTOABw/9yIw93u9gDAfmDzDCk0un5rgONZw/4TAJ/8LYCJSAEbfgs7FSbTxd7OFAA8eqKAiScA7g2nu/u7i92DqVpkxWIGASxEAPYx8BoKHezzX+zv7k63Z6ezIpCzUCSrVTJKI8LAQ+xV5KMOQHxc4I9XGcWxltZLyc2NZDGxtZFPJmJ5okJxoqCYXtDqbA+5ZKHMSorZ3unJkszDQ1bOZXgDSvpc+hzAuXQqwfq6GA02mD6e5jTxICmMACyzDJq6MKKOUPbRp6ruGmghXSQYeCicWqvrE1SxXMFbUIHH0cZui2ZvOOwcty4ux1ZXN0EBL68sbZWg9i/DKiQDgIliqmghgFOrcmBw5XR8lW+ELtpwwb1YbwCAuwhgmS2TVc0P26MRMHYA9x9ocbsGxcyeAXUPqFvbhldVxzTSw0WFLJBVQqwS+TTcxkQEYIys1C27MTu+deP+C/AeDMVtNGuz124CxCyRkd9WwKHtO/b0A6M1B+5G9LS23cb06Nq9V18+Xv3fNrSNw09sLGUTyThmmslkgaMK+WwqcSnPuEQMvaHFfEwcNszNoZml4QFtXTuuYSZdkfPqJ52MCPgj4OWVqGo5s7JRSMc2eVrMlFo6QUpKfV/IUlCHamxqeRU/oHDjirIA7Wv17xoVWLpCK53OtRz5xffXyJp187Ho+OPx+LU6t/+tz+uN+ktfp/UHx2fhhng1LN8YWyfv33UaoHJc6/ve+vIfvfFXX/1VoeuavcnetftHdugDgGGtq2q64r9waju+UmLnDaHKH207zXA2yCvbEhPY/gf/4M1fMHaODjxjei20+o2q6o3M47s7ezdf4es7C61rU/Uvf/zuP/meL73+kTc+9W3f9N//Kn/jD7/5m7/3P/7Kxx598vc/tjPsz643Pc0Y3QdJdPj8UBgd7h7e+8JXv/KFL/3eaPdDH/ntkdl1hfpA1kf9Vu3Gv3hXRfd642bNrmuWPzk5MLjm9eP9+cG3PGO9dP3kXf3pXTVNNEz4eEhdr7MFppIuxjaIyIYxB3VqKpmIxxMJYF4sFi8LuUJ6s8xVy2jIjEYxsMwo2NKoAoDThSJ64hm2IsHtUqnKGg55ajjzh0auIif5lm5btm85tqcD4CqV/JaOAYSmDk9kBXQI7slhspCv8ky5WC6Kti6hmUEEYDS0LxbL5RKUzDketDEHl1czBCbKbaiQPOAELZ+BOJ6nI4ABoCAseBfHe3EQ0K0FaGkzGg93jg7PjrrtdhuqJs82Q3gMLcu1NFcXFIFiz6PrYeWn7BpOLoxagDAgMDZo4RbtEwDbDnAdyA3sBV7iwYAKKyRad3FRXF4V7SK8RmjYtldv1j2nEUQeHABNDAjv9Nvd0Qz1w9n1W0enD154/KyrgWoy4KXYqgHlQnMw2zs9llkN09Ac24LlZzjbPbr93LN1+NkaBqX5fg1QPpzv7izO7j/77LveY4JwSJdZFlZtXgsbOP+I0I8asJs14LAJFTbIRA+7T3UTG8c40AMkWihgNzSOX71jZXNzZWV9DfC6jONHyxGALzx1GeeAn7p48Z1RI9bS2saVS0tLAOCtpy6BAq7kcqDH0mV0wqpUmHIiVy6ntqBu31xaWo0XQUGWi3QlvnJpJZHa3NhKV5hKtlwVMJxPZeEVULCsUwhfkqAj/UtT5+EQFQwKqlBUGWeRCApebbGMSzjDiFA2sBKIF3n7eHdnvhhEM9RQYUQKuB66DlWsAoAztI97zz0QfBGFe6B+h6j9oAir60UKQF+panQa1GrTxuRUglBCsSJpXLpQZY1aIMOKDToXAUyzqt8a1zh0XSRLnIAAzpwDWKBxzxhqHLisUKxJ6ERWLZK6B5qHym6ur2VyJTxaxblXHX1LcQtaJbawaw4VMBsBGCokv66lEqVcCSeTpMhcS8H0DY0kOYljcXMFN3o1HZ6SAgI4n8sXsZFLdIJmv0G3hq2aC9+epWt1VeZKRKvva+cA7nQjAMuVPOH2Q7vZ73VH40EXCDxd7C5ODkxTiragEcCsjADG39pe7C+mk8l4Mur5tk6TRJmBu8Wpd4ezvf29xWI+sysUXSgiUBHAthMCb3qjwXi+WCyA7Dvbs/nxnKAxdFo2LAyrwOYRvAzYhg+CHqcPsCxRRc2Ul1OFeGxjqxDfihUS8VgBcMkKAGAHnoDpiNsqlBkRAdyVJbgeUL1n0rwpskQuk+BctQpKIBHnfV22fdu1DdfCMIRmAyrwsIEKmMezLIqRTNBMQQTgBtQrXAm7rUEBo4tXQDBlkoxGXNGIHSrtBhbMg9PWpeUNeDYu/50LS8tLsWIeFkpe10SMhSlnirYGQji9JvkGV8kk1oQGlOVe4NUw9QEA3Nvu2SoeBjBaUGsDz3uTXk2t0LIBAB5ODzT0OFMU2/CCWguNZyMAQ7Up0kQhXcwDgHOJGIeGpVDk1KfHN87uPg9vQBXdZlibv3omgMaVAHuyMjx72LRqhueY0783XHPwbrR903HrkwMA8GuvXfkaok//g9/bXEpvFKOQMoUq8nQ2nUrFlgq8Xd7KZSqGkqcKTN9gB0JBTJFa9+SoLuFRhuDVjzsZQetuExgYS7Ol7MZGOpHMyDSfoNp6lRalYMGlKNyrYdNrG4V8ouynLhBzq6g6k2d10rBcV04sxXvs5o37HLdrnb7IG41aa/HqRDl55mh0PHj0Cu8Nrs7VbPObv2/v1f3w4H2HTp9R7a7+0h984uM//R9+++OlsW30RrsAYKcWnN1CT0PsbwxfOXYQwNVZnWf4w7EVuvNhUdkW6aChHf/oz37QnR0feer0zDeHHVoyJ+bp04uD26/wtZ2x1TRF4w9++IP/4pc+913f+OfP77/+oc8rxi/+01/8zd/5pR//9t/65X90fDJd3GoFruxeNVxn7yUA8MHO3tM/9Cuf+t0ffUnVH3/7Lw/1uqc0BrI27LXCa594L2HJgguVNgbxTk4PTa5+dX8+O/yWu8aL10/eM9l+2iYI14WyAW5LurBR1gq5lS2BysHFzCSBvltbsY31rXQqt7GZIMRsPrNVgiUxn0kmCrBGKgqe4MGiIXBEGkcS82kNfqBULZfo80gBXYBKl4D6XRLVugWYMl3Tdjy9CgAulxIWKEuQYQBgooyTvDjb4/ouLB3lUqUsWSoHyhdePrZDnzdmYaNsIcdbIo1x96oeARhPCUUDvm9Yq2GhGxh8FZbxCnolCF6UpRsl6roePkbD/s7+3vXTVr3TbuIALyYdeDrO4Dq6pAgMLYuwvEYjOWY98IPeoInDfPD78AKFqCGIIEGEgFB1QtxM9m1FsXQkiRz5LbO4dQoKguYYwq8F8AdxDiFwQyyFG01YBbApsjvsDnf2dmZ7J1ev3715GxTwA1cTFE0zgNgGjiM2J/O9a6cSj+l6UBN78Oe6s/3TO/fuhpilo2t2NNHUGs/393cPbz57587jl7XNfCFVirL6eAcEd7vbhOK7WQP0+wIHmgDerost0Y6h8jJaZaF5yPn8C04j4ZnrOxLp5Mb65uqltWUcNLpy5dKVpcsXn7p4+cIlEMKYRXjxqQsXl9Y2V+B3n7qyuX7xMgC4nM2SRD5LgGwowadZimeL5fRWOp9av7K0iYl6sJKUU8sraxup1MbaZqpShWqvij83yp88n++NrCbpJ3+tYGoWCZq4BAUhGmNFv0+S524caNUEb5MWIgCf7C1m8wGORttw+dxoa6DxBMDlFBWMht1Os9uPADzCg020Px712vWGXv5bAD9RwAxUdGpdKglKNZljYLEMZQreWjrztwAehewTAPMsD286GVurALpItHlSosk8A03IoCRjirThiQC0fGJzJZ0rCxgSqeKHjIfvMsup5FYmXcDkLljteVHGPGCnZmWSUK5ghBjcddg07dkKS4mcIFCAOjwuwO9SLT2xosSwYkws0L3moEG3B43AM3VVPAdwmWz3XQWdsEABd6ICUGMKVHMU+O1BtzuaoB8lxgouTiMAY/lIYsqE6oQYoTyZTRYHuzMA8HSMYQw4ql2FwsetASJ29/YW8+ncA2bnK28D2HEBwHCdh5Odvd3FYu9gMZ3vnO7QVYwokXV8kNBtFTsRHMwm1vFyRb5t8HfbEraIPLA3ltuKJ0qJWKwIuIRKRDPdsDdcTLitXIESVau908a6HOqFAgJYwjjCeNWR6WI2m4iLgQ4cczCNwfIwjajdrOHcPyx2Ao2O5FXZ7jTrGNTdOAdwGZ3IeVkHNdnzK1QlCpdA3Q1lKwhW3DiZXG1gAMk6KuCl5eWtYh5uTt7AM2AEcMk1WLKc3ZQ9BSRrakWoeRYuLmh812gDgCfY7cXCjQ73VHs46HRHbV+qMFAJe53B9oFaIXEL2jVc9Ixv92dHAOA8vCgRncjLEYDjmywet5k2KuCb1+4+wnqK91phffeVUx5+QyR5RZYHVx/UjZrhmOrwfa1zAFs+6GN/uHd2//HjFy58jbw9/KFf3djYglInvrmyKZP5ajGVjMXWN7JVMZsoZjKw0jlcIjTbHadIpTmle3Lc1lhYgkW/ftRO8Up/UQHRXCwSxXxsZSOWLWpkZUvebihwJ3tzJg4Q0FQGlHGWyBYB6teui0XbGr+iUJZla2wyJu7JSfU+zV7z9l8SpObo4ObLo6CfWSV73Zfea/UHk5aStZ99dvINx8HB1x/ajmT3BurDtz7/u3/0uTd/VBhYJgD4+v1DBPCN0HO1qqxI/mtXYY2Tisy0ThPVg7Fd93e3K8ZcrtZqxp0f+9n3OvPjY1ednsIr6VRldWid3Z4f3HmVD2dDs+1w5C/8g/HT7/+tb9r7yVO7/t7fkTPf8uif/KvXvunw5Y98/3OD/cn2gWW3DWNu2OrkYZcdHcx37/6r3/7IT/33jzI3fvJnP32vRPm2AAAgAElEQVRNbTS0Rl9SB+iE9b1fTwUK6RCUCnpUH58dW3zj2uFicfKPAcA3rr57PHkQVik/lFnZ5riimc4QW9nNdCmfSecKmXgOR27TqcRWfDO1HksSHCjceJnBg4h4vAAlMtSshqHAmiFUy6kSkc0U0poN6zhdKtCqaeqWrfPYR4P5uLzo2XALGJExpM6zWL0nnABThKBsJAkCcAqrEtyKoSOxVLlEVJ4AWEI6gPZkiPOwukqpIDhKVZR5UTdEtkrmMVxMMmyo8TDWyA4DHQHMEBRUsZIf+VC6jl9DAPcGg+F0Z3tweNSqwyOJBpUhHg6ZlgcrtwE/iGMi3w8GrZLNZs1z2214ANGLEi2OoBYl4JVAiadAde3W0OnKNkQRBIodRVNEY0g4j8FhhAQdejh55flhDavtRgsqYQwfrqNRQbeHZ2SLo7Ozew8fPXrw+B4Ge2qYyGTDg+O025PZLgCYwyAGHKFqNsLm9v7Vu8/eb4LydgM7gNUD+7qnu0dnN2/dunP7hRekdaiSShiny7FeAw+94D3Wa65Xb4Td0A3rOC5lYVu4Y4N4VFGK4Ikijrmgvkejr3ck08nYZmx9eW3lytLK6pVLl0ABX4K/PnXp8qWLF59CK8qLl1c240uXlpYvAoBXVuLxDAgIkihgwlyVgro4B/dROR1LJLdWlzfShWKUsxC/dAW+OJFeX91IVRgilSMFBTAUdbiDSixEoYS4HVIho+EjtH8GBYxdRhXAMFUp/W1oITZhPQGwykqTYwDwrAdLOgIYaq2oCcs9PwMGBRyMh1Bt9aIt6MHw7TPgUa/TbJkVGmOWqiqdLpNq26bQQ6SihmJR0LlUnmFUvyHDzysWKol0EQEMlPPRc4IlSlW2yhO5XDq+XoZaMAosFjQdUzBQ/iqqQhcAwBJZJgqpLVDA5wCGG0nHzX8oVTmdTuaz6ORGc3yVi6LFNCMAAJfKHHwd3A5Rp5wiooNWtVJIJDD2SJCwL4Ip5nPpdCaNacVZqG8o1WkO60QDAOxb6NWBAOYrdKfvSDxFFp3tXheekFrN04vloAugGWBIxWTwpAkrUsCgUkmaoEBma07QHqL/xnhxsI8Ank36kQIuVViBl52wNZju7O7uzHbnVpmii5EC5iUVwzNrTdzvx28KEvhgbz5fAIAZjJCEFw6PvGEBd5/wF16qfi6FsSPBMehMNZcE+KbjCQDwVixKx5IUUE1hf3tvxGDHn6ja7XkL1lsM0gAAC9YTANsSWcjmIgDDq4Bq03BsBHC728ZB4BoQkGdgdcE4wg4UwnhI0wAsqxysKyWCk3WvUe94JTICMPwjbmDXMD0U57BOQwDwehy9U68sLSdKIM7Lom0qMnz4xVTZNTE2Ia64IkUWUkts4JjnAI68oAe9ccfWJCjf6UgBDzqdQdOVKlUQinazN8YuaBHqEw/KBrS/HE0jAFeg4CoXi9lygSGIfCKGHms6djHNTu/cevZ5qKYVzu+ErcNXjjhYQAWSh/tmePW5ml4DzCm914IVW4rqF1hf3cHu1Wdee3n3wgVxNP7ob61eSKdWtzDVWyazdC6Z3NhcT8PSnkqWMqlCrsq5vKkZ4aC4meEq7bOTtlqF9VcMG8etJKd05kWqmCcqxXxxa2UdypFCEhZeEN5QIIaLagIqBVjc0/GNeCWVhfd155QnLL1/T6RNw5Tp9AbVC3PCjVF5Nzx4RZQa7fnJ683AScSYsPPoBaG2F+jchn5/nn121zl9345dr2f8nvzutz73ub/5qzc/Uh5Y1mC8d+PZA1jxz84c0xJxTN548ZrnehGAWYo9GFs1b7FNmADgUGt+1x++8T3q/vGxrcwPNaddt1uNiX96a75/+zUh3N6W2k5F/cw335q8+ycf3Pzjezee+ZH/mp5+8hu/7Rt+5KP/7OG3/MJ3H0ymV2+HQcP1xoGlTB/2+MnBdOfuV/7yC5/98pebV//oP//E01q3ydX7otLvtmqn3/s+IjCogOMD1RLl0bUTW8Qz4L2zb71nPr597d290Ut2PueGfCbOMfBgMHxhE+5iXAdxyy2bzeVwtjeZ2EhvxhMVJl3Ixis4DZ5OJEuw+J0DWDJNni4myxSU4mndQy1dKlU1234bwCzHSaoog/AKDHi+IgDzuJGd8gJQloqGu0gVBrQDykzH9zGeEBQwD7LS0Hi0tVfRBhLVbxnz6vI86AFBEkRd50CHZNAIS9INxUCnZdxsVlmGqESu/aQITyCgD57CEFNB0QV4vjMbH550fVh+8fGrAx4dVbdgUbBgpZO46CC3yjCVstms+w7Wr6FnqJqMeKWhAORIGiSI6doY04sphpKIulVTJB7NQ1D9oruyUKXZ0D3PAwbZ2wiCZrsWNrD1A20p9Q7IhO35AlTu3YePnnv21duWJmIYlGM6viWZ7e5ounftqkyjbSGIOrdeDxvjvat3Hz7XqeM3A4q3O4MRdhPtnNx8+u7zD15+LK9ncvkSBSthlbZqoaGqGO9SQyOfWsM1cXDYgQXStkzTxG4gGT52DAWG91tFn01s/HnH5mZsc2N9fX11ZWVldfkyWk9GbVjw9ydxDCCHl9e3Ll+4vHxxaWtzbS2BAC7A+oDNVDRJlQDAmRJ2HmG0cLoE+CLIYnL5wmX4pvFsbB0VMJkCCYylmSJzFIE5vNjjDMUU9jgzmMZQjiwoKwDgXBmWR3jSc0Vs2ok4jRM6UOZIusJK46NdAHALl/VIAftAgHbLsysFjqWKWQRwp9MenP96+wx4OOx1Wy0TFDCNZ8AAYAIBjB4iFdkXSpLBpwtMVQ8bEiC/kC8nUucAbg19jP5hyCLDMAKRzaaTm2UV3gN2yLMC7hnLihrt3FB5WrdF0Iy5ZHwz+/YWtIJ1lipyIs1qdBLEK7xjkuVpDnUtQMjXU4lyhZcRx7DYWjIe0osylU1B6QuXosLwEgK4AOxPp5P4lOZKUBkaXmfcqNT6Nd8zNUVkajVAA8m2+w5u3RSd6aAHhWADatwyFWAR2MP+qwmakqBYPdmHWxlt2okKziurllsH3QfyeOdwH7uwpk+MOIplVuJVFwE8B+E8O9gxSzQTAZh9AuCw0Yfru/1EAR8s5jsncwIPOkDhybAEYPufcT4eiAzGrkOcjIZ/a2tUqprNxpKZdDIRL8Ffy3hCAt/W9IP+bK9HJtN5SsQ4vqaiKbyAaRsZ0QYAFzOJCMCZQiohBQY8247vGZ7n1dutdq8N935YdzUQzRUcmjYaUAs36gEeDNmqgpnNJRLTGOqNrl8ioV7kqngN/BCWiUa7P+iP56fexeXVta3YFQQw2vGCAhYcS8X4tGKq6BigEvIJ1Y26oC8zIC98P0QAgwDu9XsjDMeg4e3oQa0zHvW6/aYnE6yEE2G90Y6Ohb2mOjjiHzVpHi5gHQYBLALkMqUiVKkRgOEOUg2rsXPy9N1HLzq2o3FeJ2wfvXzAwWUVaNkyjMn1Rw0zdG3VHL5WRwBjdxncWd5w7+TOe54nvuYCcRh+6DeWvgZqlSQUyTGZSBP5eAKe1zKUX5kih63aFm90u/3AGYrFFCdNrh36PIoasdY6bSd5rT3PU+UiBmMW4+vxZJ4p5kwvlWBkeEf1XTbFyqqhs+nYeqwQS4ju5OxIrojGzrM8pemOQqdSSWlSpBQ3Z/pnj3mz0d+5+00tIXOBscL2cy9b3YnBGyQ3bvDzvfHVrx8r5qA6nArvfvONz335rbc+yfVNazjZu3F/zwzCa1fRQczmec16dAYVuFyszupClT8cm4EzHVXMucSErvZz/+UrP6TtHR+Z+s6uHNqqO2i0/OM7891br4rhdC63LKL+1X/3A8/8vT/74De98bHH7/vOL1t3PvfSt37s+//Tv/zuj378398cDQ+v6TzcqkFdF8bPD+XZ4fbO/V//8//2+5/9bG/3pz/1n+9rocfVe6Iy6LUbZx//hopvUp6mNESLE0fXT2yhffv61fnVb71vvXz77D3d0UsmRQeeQRRUsUTGy0YhVUptAIEL+UIhtxnbiuNWUCIRL0AxWmHz5fRGmaehxEynSqCVZFDWqsCZBk8VEiUSVv605ulQDVbKnA568MkWNLYywJMVeG5gGGgK4Rs8z+JJsg94snEMv5wrM7RsWCYsoXaoAcKLAGBTE3VNiLbb0BUa7YBBN5cK2aopVznMgpXhZqlA4Uqijb1meVHMgeMoAOAyRTIkngGjHx2obxyd9etQCfcn0/39k6t9BzRoGw9IMcIQljrJtFxbQ0MAPMZl8fTRrNcCJwBKh56pazilw9EkIbIEAtjygL1ezVNNS4ProGgSR1E81GCRDyWNFpws7XsYm4BvvV73gYJhGDlhoQiROngGvHtweu3s7r1n7t9/fMPUJR09CuGFOKbX7venh9euqWU9Mr2yrVqz2Z3und597tk2NlV1ME8Y9MtoOhrODq898/DlR6++rMcy2WyZ4Th4C06zhfvvuOMN0PfQqBNWg2jHHZc69ODAwWMOPYjRvfh8OLPKviO2sbGO4ndpdR1E8CU0oEQAPxWlAr/zay+cpxIury1dXFq9eHljFZaiVK6UyYCGzYIUquZLJaqYyBbLSUxgWF4F+YouHeml5cuX1xPxRD6+uZkiqiTINho/XkMFfQY8K5O47UCi0ySe92LXNIXuKwhgjJ3BRqh8sVSEG62Ep3hAOw6bsFhxdLS3mE7r6CMGdR8OhOOxXwRgjipkKG80PJe/feRvDweS8B+7oID1QgWKlXK0BV2SW3aVrxZxek2oaGo1maUZvVYTAMDZRAoBDHWi1x0HDIX+0UWKQgCn06lYWYF6G3eReTSURDtKUB0yTldqFpSOZXSVyGNAhQgVgyQqCGCWpxgZfZ9KeFujxymCG8Sxr6aSFQIqE9yc1Q2B5TRbITLZRBZWYuz6R6szCVMOszgym87m8vAQEKpb62+3iFoPqixdElgAMKCB4lo9VwXhlbdnw34tCFpOYJNKr9HstLB+G45HmJE8WyxO9g0DakiOoAkagA/3HTq3RgA+QABPhl24c1i2UOYkQfWC1nA63wEA7+26ZbgYRPVtAKPjxQCu8WS+u7vY3d8/3J3PTmZwV3BoNCHximVpKhSw5xP6IPhMdEfFWgMUsMltUdlCLFXIZBKxUj6fLhcrDG7N6vXacHHQpXIAYHhQWpOmamiCxJLlfE6yZRbd5VkAcDFTTCdk34CHzQk8wDbG+7V7rcB3a63AlFkOFgdOsNst7I2ABaNew94oopwrMpJuwRf1wzJZoUiO5XXcvWrUag0QsIPtxanzzstXllbXLv6dp64sr8VBrJQKgm1AaV6F+7toaXS5AAD2ZKqc2bpEgaBA/w/gPAjg/qA3bJkyRxRp1gjrvclk0Os3fZXkBMUIesPxDkZTi7JkuKCB271ub3SAAKYlHgR1MV0qEWUis7XBYSulZjrtvcM79158DJdPY9120Dp8cZ+DHyhWNXjqZzdfaIGUcbRg9t7+iiVh772j6UYwOTi++fJzK1+7nphd+bZ/eDG2kUxm4pvLG2IpXsgDfjeulPk8UaKYZCwdTwnE5Ohgvnt4MNwinO61HR23Klmx1r7aSYvm4KBIFXLw2BbzmxvwdFRg4XRZPBTg5dqcSUGVaNh8an0tXkkkGSF4sKhylrF9l6uouqdRidhm5mxW8NVC3r31iPabw537DwbjZpxu9HoP3uX7e36aNZM5e6faPd5591yvBYS3qL/vr//qj37/C2/8G7avGYPx7vVnduBq3gAAuw23VHbrL141LE8ps7MaS1X3R1bN3x5WrIXC1tva61/5ow/ou8eHprHYEet6papQvHVyd2dx81WxPpt6XYszvvSb7/7+n/21f/odf/HJjzz8hTeVoz979v53fNt/+fhP/eqP/BOM8bkWOs26bfRcafSwL82O5kcvvvHlX//8H/2a88Lv/cafX9XqvgAAVof9bvP0e76RDNyqo/IBoTHi5PqJxTVvnJ1Mjv93APCt068bz15CNxsn4BjDLYmFspjMl5Mbl9YSqWQSZwWyWIUmoLippBIJQiLp1GoJTZyzeGxVqKrY7smzoEPpfKJIgEZIKTbWpJUKqwOxAMD/H1PvASZZepaH6sHanZ2Znp7OleukOjmHOqlO5Ry7uquq08z05Lw7O5tXuyuEUAAbATayQBJCNknSRQhjjC++pIvhEh7ABOFr4AERLSEQloQQK7Qg3/t9p3exe1ezmrDbVXX+/3vf9/+/7331eCRWMjwgduWo4nrVCF1oVTSWzGWApwe+jsbzWVaTHQAa+ENhxVFFhmELugfaxtRj9xzs1MUx0AKUXion+TgbacBiBQBm8UoQTztcVD5AaMPQxkkDgRZ4gVXKkQ+EPIqPu0qgd5vd8WRvNjsYYqd/GyUw/GLZL1cB98olx3YMU5Xi2XeO9aqVCiAYFK1y4BYtFSdfcAqJFkCVgyItB5V2zSnCsgdA8xxN5FXTULGfBrs8BU3hStWy55bKfhH+ROiV8CQZDUEaeA5dak93h93phSvX7t26cffug6sAwNhsgzbNUAW6g8700tVrRQIlPJ6i17v98fzg+O4T95sAwI0B1ITxdGfSH4zmx9eu3Xz84b1nnnU2QY7RsqpoJuzqaqXZqpZR5VeBgsTOuPAmKxUofeUQT0EBrHQONpWoATGnWUHGues3La1tbSyfXlpdPre0snLu7NKJ/capR9GREqD39CkUwefWtpbPnD372BKA9LnVNF2gKYbLJ/PwvNl8ls9m03Rm/TymNeSBTAFsJs+d3VhbwfDvfGptJQ30KJekeBXgyEYbBAAVQN0CJ0nw1LBVFtsAJBmNRrM0mQXpWyAYmgK1Q2QZJpfFs25J4HGSSbIGRweL+bjjenhT76NzUa3TbZR9iRZVnshylfGoP5oMYFegE0t3Mh32R6PepNeqVi2SVSSeku1CLksZtaIAJJ/hilWDM4s8yYDiBQVcwMNxMpOmaFazq73tmozht1KOERSNyUGlSjOGIgL6wjKVFRzqwixNHMXjuGKgypJApZI5oCQFAc2ubMcrhY5uaLxosFsbiRwQXhzXQyKESqXsptMFUsWpYNs1eOCvtpBLpfAinWaxFQIP6SWZI0kqk8pkSJLBpEJJKdfqO3W50SlXKyCuZatZtV1bkpr9iqOLAhtOu80yDsRW4sn3dqM37HUGgKu98aQ3Xuxe3HN9W4W9AxtHkRXbj+rYMzHenh8d7GBiw07bdx302QE6bLu19mS2s7s3H13YdwvYtQGyWZItWL+lWr01GPW3dwCfD/Z2F3uAwxe2YX3gCTXee8Bu8my0l/GichhW0JEW2zEtH0RJSchhN18mS+WSCSaTS+fQ3gVEX7HWAqY5FLJZSlDMsDlohnh3IhU4Mm/4ulSg0ik9BCWcpZiMXXTK2GSFZLPUrjZrPWC/9Vq7ahmqyAF7U33Y/s0GHg9H1dDBMUeKEXQoWhXsghYx1gvYghNUajGtb6B3+3H5kbOrK+ubS6dOn18+lyJJ4FQyjiEhDchwLtSjfHozqFo8nd5cEqJSUMYgFhDQbdjP9XYzBL7LMlpQrvUnk/6o14q8AlQyr9zoTnYdTBixLRsPzdud/nh0cZcVcnxs/1OApUeTTG5rA4SHgYbhjd3Dq7dffsKPqraKTVh7z+2poe+okhf6len15+puPayUSjvvGq8GOJFSxAH52mBx5fbLx2eWHksPl58rPbK5kob1BxpV4wkiv7m1cWatwOWATOcSyS0ixSVNv1Ltdo86hGwPro/w1kMU5HJ9z02L/nTMZPOwF/Pp5MZKEtam4hmqp+0YtGi2D8SsbLhFX0tl1lZTmaRLOrcObN4v7t6W8/D4dTa3klohL27Tbx8YpcvPF8JW5+DCTbX/gXpuMO68dG+7MYwYh6WuaKXH7NHeN06MqM2XZ8EnvvaPv/+Xf/va9xnDUmkw2r96a9cPmzcuOYbfK+WIbu3eMSpgRp2WFEndH3iN6g4o4Lktlhrm+37zDz7o7x/vRvpsXwsDXvE5y75wZzq79rTe2pmUeyUp+PSP/vSrf/WjLz/1Cz/4V5/91i+GpV/79l98/3d9x6c+/MQ3Pn59d3Z41a92W7510OI6D4b67vH04O1f+cqrf/f3f73z+J//3F9ckGt1NeorwG/b9dvf+/VaWBJLetAnawWpd3hYdlrXLh/Mrr73rvvMrYvP7TUm9fG85VqKat2bcHwzzCSzGTpxjhZpEYQunc0TufxWIg04vJUV0FIvTysazxCpJCPQnGZZDsh82xFYEDwFIKuUFbqWVCiQggsbxjWLJg6RCKJuAieqYoB9PfLDyI0HfdiMC/IR/pwmszkCMEAC3ewC/zMNhSQKjBHZum1YJhApjP+VZZZCs366kFNDU8XDYgX+TYoheUmQYN8bIeBMuVKqRLYMe0yUSaEgKAS8YJLkdHittlUMw9pou2r4w+1uq1FvdUEnVTGwE4OKMSsCFIACexqACMpQIWgDUGLXSi1y0RVEjZu7YAspWERqjUqp0anicG0xiqDwh54m6zq2QAMCiqwBqsPvgMgHKurIegAFB/C3EoXVVr1cb0amV233J4vDq9dv3bt3594TN0LPlkuh6liO53mVXm98cPH6NRNbG0MMFK+1+yOQujdu3a1XOq16dwSA3K+E5eneztHly/fvXbv51IvGZjqfZ5XYpwEkc6MJeI+t5qAJqyfS2ndt0B9epezGXULAyBmKoAW08IKnAm9PfdN6AjjxmXMry0j24YcT+6tTp+Jk4NcB+PTSysaZ02fOnjm/uXFuZQPUIw3ykEySsirRJC1nUqlCbn1paXkjyxOYW5tYfuz02sryxuZaIptcW8lwEkckCU7CCEfLVHCwFygPw4D0hUcsYAoDD3KaZng6B9KXwksJjs5T+SweQRN5+G44KYx91JI9vngwX+x20crMc4DVRVGt06mXAhUWgMhl2dJwPByNBgMAYFS+AMf90Xgw7rVq9SIjyhJPilYBiolZc+HxUiRbrJpisYj2MnKxHgMwRRHpFFRB1a60RxWckZK4XEGUVeCjqUya0WVBkk/8V/4JgC1d5wqWh3E2VCqRxntagLWgCJytHLmGbQiiJecJAru60VwSAxzwgqBaTGdAvFumG7mKqLsaR2RzsB3JAou5xLErdnxpTpAIwCcHBDSnBKXKuCw1OyArdRl4ba3qOHqBbfYixwSVX9rpd4C6Yd9DFefnmr0+hlRMur3JuNXb3bly6PmWLMYe6qCAXS+qd4bj8QQU8N72eDLd3m4FnqNwFKMDAHu1zmR3CvJ3e39eZEXgBTwAsGLhasMj2+FgBwF4f29+AsATeGJACx3Xt+BtFSMPPgTgpFFYKp8AcLHkuC4UEDpLUfl89nUAzqbggeOKttw6SO7DkZDJwnI1g+agHhSB/8scT2aNyJQBttPxUTRBkingLCHeRZQ9XfSrQejBPgXK3K7aFvqewUvxm1AC4ky0WiNyLPjXQWmDAo6Ao0cFAQBYRNkd4KgwbNqoBqL+YvnUubX186tn3nx6eflsGmoPychBER64xBeyrG/i/dxWERQwArAYA3AprCDjxnHGdiOAlU4zml/G+MHxqNMsl0Rdw8uz3nRRjOeAQTUCULbQqefiTkEkeE0WOJbKE3gUFCtgHVlaqTW7cPXWSw/isc2oVW3sv7CnBjEAl/zy7s0Xml4d44h33zVaAZFjxr7vQRUB+K2PP/bms1sN+lH37JlNIHbYcm5KFJlPAPHeBIUj0wDAiQSxxaQNCSMARDkrap1LO2VLoAROr9YXXlYtjcd4m87RJ1dCAkfB5jNsrcoVnGJtxmV5KF2hltha28qnNkKOuz7XGa84uysR8LCNAmybVZLfLg0uh+7B82qlMp4sqlLtPU/WyFLvzq1r/WmV9/Xyi6NBzm4dv1QL/W4x2in/zJe//Lm/+cJr/0HsegHaRd/dd4PmtYueU+qHOWJQfeIQHrvFqDvlNwB4dwwA7Ejliv8NP/17H3CvXNoJ9dkC52LDqlKrXb49nV9/Rm/Ppm7LZadf+K6f+OZnHr7vh1+69Ntf+cDvabPPfPjn7/z8f/rYT374W58Eqrl3y7cGrYx27OvNp/rq9MJ08fRrX/2zT33h98QnfuZjn7xp1zpedajag3anfuf73yb7oVL1q1Oxziq9w6Oy07x2aX9+9Tvues/evvj1V6IQIAoWWlDu3r9Y6Q39DCUWLG4lkd1KJVLrqa1kYn1rZQVQGR4M7+k8laMltUAROO/Jiga6xWMgnCgwGYIl8hnKDByo4hwtujbsNdPRoYxKmL+lOYAFiEBVWBQ2njcym5tBw0VHRIBRghI1XVEdH6NvLVWmaY6WfEMzVFUzYuMfBRQShXF1LE/IniqZmECiGzLgLA+kzPJc04/iMDrX1TCdlBMpeI1iggTlkuUMEMiAhPVqY7QYN9qLCyMAsXYLB30bjYpnxx6ApcBSRBlPoDGVnGf8Vtyk0WqBbPAtGx2jYD3CBlYsAGBg2KVqHU+3PT8KcYE7SE51Oc5ak0QoxErUi3wcQ8ZrIBSiONDr4GRyrdPQnag1mh1cPDy+df/+3cefug1kRAP5DmIad22nPzk6vnlNl+JIBfQRaPWHk73j608+1anWy4D9rc5wNABefnhw9eb1+3fuPf7si2Yyl8+wBho1aCF2eJccNF7yy+XAMdxyrRqhObVn2Zi6BGwH/auh7ONMjC7KCl4Fy29KZRIr59AMGgH4/Llzp1//OrcUjyGdRhDGI+izp8+ePbO0ev7MahKKIk0JEpWiQP1TeVrKpZLkxurKWjJPofwltgB/z6yvnlvfWE+lE6sAwCKX38oVBB0tuCwNMwg59Lri0OaKiyeOpAKDPwfWh/MeJMUVQP4S+LM8QDoTH67AEtBFe3JhAUjQRU7h2kULynqt1azVQpnmFZ7OFny0fBoA3nQQgF8XwsNBu1Gp2hSefhOCVciQrF13BVlgGNaONBYUcJ0GHJoAACAASURBVJ5kZa/ZNAH2SBI1aAGYXLkzwiYsgWdyLFA1jiHSWQBgKc5wEsV/UsCm6RgGS+lAUgUoyIlUjmQFHTsjXJAtlcAxdQRgLF8c9g/H/VnYIVeu26lMgVaKvovuWIZEp7fgc6QpHlYlAwDMCxhJwfAUQaCZVIHAj4UqyHYRipDY7kVhaOqWztdbXlErsI1uyTFlngIA7jWaVTwRidsPO70e+rGN2/3tUaM12TneL3pmHON1AsCogIG3jHs7B7PxeHuyPW6UQhue7wkA19uj6fbO/sFiDtpN5mg6BmATbRLLzU63P5rt7Mz39vb24YfF/GhCAbnTUbwVgZgXS0U8BvBwlgDjvzwQmyXgH6bnUDkCQCCbYxCAs1CmCRJbxE230R5Oj8ZoRSloAMDDqudYCiYwkRkdUKjA5jIAwBJGliZNF3a8h67AEg0KN3DLYVCsNZpl21LRp1bSg0avhTG97Xq3V/OwCQs+QcvDIO5OhBdYkqgBFQ5xcACnNUCV9o/Kjy1vvA7A585m6AJJFbSSres6riE2sHiWzG0Wy5bE5lMrMnxPtBqqV1FFN9rdTqNUhCJaQABuDybTAQbU4FWeV6r2dw88TsSQCkw5q7a7/cH00pTmCV6VYgDGjVTIJzcUxbQdL6q0dy5dvfmWB1C0HC1q1ZqHL/5vADy7/VI7aMDvlebvGpz3DfRGxfbLSh8A+G3Xzy6fOl/OnR4tn81vAtveWE9YMk3GvkupPKnWLCiyyfTWKmvO5ouDsScWshzf2tvvegItcEatvgjyqtceiHg0RGxlciCESSIbOtjfX2KFwCnvcmlOhZWubmyur+eTy0UufX2mMq6ze08i3SLGN2fXUrktq0YOnPIVAOBatzOilP5T71zY0fTSNbXb8cVqsf/c4fNhf//g2Z5YqtWng/av/sPf/c+vfua1/yyOi35/uHf13mFQ6Vw5xASKiKJG1RcuAYbYjLJbVURlf+g3KrNxwV84crVuf/yTv/KeYHhhJzBmM6PkAkRRbuXSje3F9afU9mLb61eI3j9+/vPf/29/+Y//9Fn9e//ij75mb//GT/1fL7/2sz/9O5/+yo+NLu7MHjaL8+GWecO3ms905cnhbO/2r3zxbz7z21+Yve0v/59fvVts1KT6ULGHnW71zke+QfRLTieMduw6r/UuHJXt5rXj/QUAsP/crQtPX7H0yGRDIy/KzWtXJm1XStA65VTJZGoTdO9mLptLp0ioeCxHJfPG6wCM8eIEji4qgL+WLkP9FIUCAHA2CwDsWarC8YyEPgNo0cHE7kaAn6CAQ2x19ANF4zKpBBTjZafmozO0oQjYWIl+V2haXLEVnNSjtKhoFUHJYVgAxpEDANNxU05WAqlpmlACJfRmBgHBiabrFn0fvqPnBoEp8TjVlytAkc7QkY8ThpiEWAMW2hxsH4BkPJ5EjUa7Vak2W412zbXDMgYcBKYs4i2eijqAo4ot9MoC3tBooHe9ocaREKrMiYZheugPif1VPjp9eJYTohmSpuuxmAEk4xSxEA4jPHsPolYn9uEAJg0FsFGvNHstTOGezPYOrty8/+DerTsPbmJhKsUBLeVqpd6dzi8e37zlGNjGhRAMe3Y4XhzfePJhG81p0e9+MNreme3s7128fOXO7aeeev55I0PkMhx8GLauVCqBX6l4FuxKB1t7FBVtNtDxWWABCSxVwLBmjKsyNJ4iaRytxRmzN6VSmB547rElbIJeXjqLX2fgC02xTv8vAF5ZOo0jSufPnVlLpbNQMzmBTAIAYxQbR6QSW+fXExkKYIqmyNzqY6eWl7bWz2+srySSW6srKVZks+tpigPOopo2EG002eZjbME8YBzDljgGI4GBZTM0VyCIApNDnKcZGr4Y7DSTZQUb48zhwe72fN62YLUUTdtES5ZqrdL0eVLS2AwAcDzF2e31QAGPhpgF2ev2hlCAyxUzz4gxALMZknMaRQA5WGImYLfm8HkCALjRtFiGoshsMkXh5xb1J2VRUoAs5AX4/jxDZk4AWMRLUEXV3wBgA/5mSQ2WLs9S6WQ6R2GMpYvxkECFQgfKtlqUsxkCR34FycDUBbSyLtUN+FYF0/NNqM4ml0xhOyTFgOJngX0QJ0YkPM+RFJnJZJNENp3LZnCq2ir1fKnTKwUhBsHJrbZXNDiu1gUFLMZd0D1gm9WTr1oNgxlB3w46w+1hC9D00p7jmgos8dePoIFiYvNvv7NzsDMcb4+mo0a5ZAkCxZ4AMGyl6e7B0cEbACygPZjpwD6Mmp1Ob4wH1PuLBQLw3vxojJbXeH7quBzNQaEoAtSc9F166Mlm2y6OpLkOMC4K04QK2dcBOA/UTlIMt9EBAJ5ISQRgy2+OasU4L02RyLQe2irLEgjAMsdQRMJw4EHhDbNviI0mMN9Go2wADw5MQ4zzrsyg1m7WgSh0WsNB1QX8pgu8VgSZ3Gn1ygyHByMqlBMMTA0x3KJUa/YOo8eW11ZWN5ZOIQCnEYAZHQQDiAeRIxnf4gvUGwCc2VAroV/GJi60E6g32/12PfJM+PhUr1JvDaajTr3qFgsswHyp3p8feSy2wpro5Vdt9Ufj+eUYgHE2n6NywLBolkAAxjngUqU1uXj1JijgUogAXG0evHighb6jiMWSX5nffWu31AB2E+19U28lRHNyH4/4Kv29K7dePj678eiSuaxGX7ecWctvrq2tbhoSFPrsBlDpTJaraLlCfmMjnyJpTIutARulNak5O+pZBVDAWq2552dFs9Xl6Hwul03lM2hcTCzRSI/TlCFaRmVPSEu6YznSZjK1lMotS1z+1kIDAN65K5JQpX0+w2SylFQe9lWlefdZKWpVutW0dvHyW95ZGjVu3Nfr41bn1s786YfXO6Xy5ZcaGj8f71w+fOFzr/3Pr33mtZ8sDIrBYLi4fHs/rHUv7wPx7nlktlF86sgHAKbxDlhU9gCAy7MR7c1tudYKf/bn//CHqrOjXc/YnRpRZOghZ0VXr20vrj2Um4tpUK+plT/+yntf3P3uX/g33zatPviTL1v9//7e73vml/7Tz33rX/3NnxzuzeZPNaNZj3WuV9X20211erh/8cZrr/3Zb736161nf+XHf+ueXm+5jaFsDjud8q2PvV0ACtjzzY4TiUb34oUKAvAeAPA9//lbF165EBarFbsSyZZW2RlUOTliEltnxCafXF1eS6QS2VQ6nRUA94gCR5CKq+FpoKJJDPbBcIKO3ZymqisGzxfSeSh0GdpCDVngGNkHDQZyRKNjZ2RNl/UocLE3xcLIIwU0M5neMEJsyvJ0GQBYUqD0AEWrliuwiDgWFADwfzT/waFcWddEhaMoBngakVbKLhrtajhOTOIIJCtZHjYquUVMvi07ilAgKDZPEoLG6ydux6YZlquNTrPebe1dgoowbtYbvUEbm5MBSAEW42xidHMGPosXYQjAII+rFdMHAlv2LUOBMgAYAYQUm7AwBrhcrdearXa9Uq+WypFroqeyznIixvkADPNsbccvyEE9cCMcKa6hAi5V4oasUrEK278/3pnvX7h68+bNew8vAH20AWerwFsr9c5od+/48u1bloRwgk5YFQTg+eVbTz5sBlBFu63+eBwPkezMDy9dvX3nqYfPPKNniXROwBZZQ/M8Q3NAfil4fABS0xJyaQJQThFjTuQqOEPPCQoHFYkCQRn3jtG59Js2N9fOr6whAC8vQ5157OzS0tnXk4DxNPqfAPj0Y2eXl86vr55dTaTyaBvPEylaVUUyC5ViC10HU8k8ziYB3zr3dY+unE1srW5urCbSybWVFMOzwIDJgqyY2K0kA/YC4OIRB3Y4SxjIIMTJF2iIAGxPpGkOwx7QeEWEJSapaAcuY+4irO3FzvZ8t4l9Tw4G3uHRYRRFrsSqGkvkpagLUDPqDXAKeDJutnuDXrsLAAxoZBGMIPGE4PBZAOC6w8siSVJmqLKWxROggN1ay4KaDgo4maRjAB5MygLaZ/GkAMJMIE8AWI7dv9GCFAHYcED+xgCsOyjKQM2lcyRamBZPALgSAFXQDE/JZfM5isc1Bc8Mm31dr6YkklnOtlXVcaT49Blnn2GXkdlsPp8lSAaoE8oihs7lMIwJZHAyw0iKVe75SqfueSFIDEFt1eCV8Fy1WykaAkeHsRMWBuOi/USzNYhdsQe9QfzDeHrlwHUNjEp44w643OgOh/1BZ/dgigY2O+NmuWTCf4hVFcVya83BdHcGEHswd1iAPQbP4PENvgHAOzv4u/MF/Lg3OxyjjRhOMDs2k0zwIXBE0L+Y54LhI34xTuYqOkVHFQgKVlK+8LoCzuYZWJqqWWx0R9OjbSkBAKxbXmPcdGKuI/NkWnVhGRRyGSOAtU5TVMp0LT920Ch7RqMGNLrVifQyALCh44i5oMJv12KLyE530CmZhsKQwIE8tNzoDqosR6OFn47jZA7as9t2UGl29kIA4OWV9aVHAYCXkhQDj8KoAu/WFRnWf2ALwPyTTmTwVCa9oQMDLodlNJvHA/92px4FngEALLvVRmswazfbbd8TZRPAsTk8AWDTMNFXvtyIg892aC7HIf5iEggJFCG3tYbDyZYTlJvjo/gOuFQu6lGz0th/4VAPA1sRnJJfXdx7ay9qlEK/tPfuzkoI67GIzthhFQD49lsePPrPHjtPbKRypzZTKXoD9uSGBssYOMNqKpPOiBU5w/FAdEEGoelt3jWovGY0pwdthaZ4ToEPwk2LxUEf3QlpOodWosALOdXWZWmFtDnNbCy4tAIAXJS2UpmzGeo8o0h3FlrBL+7eEynL8ytikuPP55K14LZvVK4/VKN6o20nxenh3bdy53Odtwu16eDgbTdmD77pbZfr4fUXfZAU27XR1d77v/b3X/vSax8vdIvhcDg/vrlwo9bxvlf0Ri1PHVUeXvdLFYuSdqoAG3ujoB7Nh5Q7s6RaSfvAR3/hu4LF4cw1d0dGVHLspu5WL1/f3r/xUG4tJqWaL3f+3/+iffsfffcP/B8/+KmX3D/9Y2P3tY9/66T1bX/wY//jN37i4uzi3v3AG9cp53okdR929J3D/Uu3P/PaJ//21U+G3/+p3/jyC3a7ZrSGsjXsdqKbH38HXwoBJrRAd0S9d+lC2WpcO17Mr773fvD87Yvf0osULjAKihWplBN0JNGjCW6d9LT82hJIlc3k+lYqC88e6jaVzQkIwHlWM/CwJkfwElQ607F0QwN2zaQINpM5AWCBYWnJgw3le4HBYDODrFuGVcbpRw92mAmQq6o8w2eLJce3raIisCSQXD/C7OpqGKHDMzx9w5XRc0DBWqZDjTZklsWhMzKj1UvY0uShMQbLQDkSdQ8j/3DotlwphVAksCmFpUlBBQzHPCU8HAlDnIlvt6aL2Xx32AOmO+y2Km6EUWPxNRQ2BcOfNZBWgzyk3QYgb7nYHZb9Wlkz4vFgvHAWZNOyPGwpBr1ebdZPekkQvTG7CW04VAyxAaSr9KSNjFGrwuqqoO9lgIzf9jDwyI6wCPZ3j+aLo+PLly4dTxzPseJECZDqneFk9/DmnYePWyygL+YnBOU2yJD9q3eeebZdQo+NJmDKaDoZ9qdHiL93Hzz+8GkjC7RVhEqOkShFXdZUUJSKaemwi+GnoFvQAAJT+5zAQ7tiC3OO0XnEcHC0BZvdsAt6YwP7oJfRDvos9j6ffizuvDp90o6F//fs8uppHAxeWjl3bmU9CfsSOBmVZqGU5fOSQGxkQLVl03mGJrKpxObSI4+tnt7cWtvaWEvl0rDRWZHPrSXzUOdwBhnjmEQo4iyoYJaPHaEBdSWew7Q5BeSxIjKgADkWrUcLokAzksyrqoK39Yps9ha7O4vdpgkYhjPvWMYcDxaDZ+mo7dVKp90bAZQAAI8BgHs4Atwbtuq1Ss0mGE7i80JRyJKsXbMK8B1IxsIjaJPHeEUoliYAMEWdALBmRZ1RJEgaSH0o2arJ50GGpuh4kgt5Q4zA8ey6AX+ztFFUoSqnNzfT2XxBtYpePIlXibDjXtUcmQBxQ+MEkxrjNg7DV+VUOsNZoCBMkcyk4uwAIRYbAMb5DPzA4IA0AxstRxRolMcEoLuk2OW2rzejYlAGSSlrrSpoM0Go9WIAZiIA4GYdGF45igAB2v1ebzQZ9XujbWzDGuMRtGugBc0/3QE3evG49O7B7nA4Gu5ut6LAErAJS5bNYg044mwX/j5aOAUkT/j+QZ7hpP+J6esuTgEvZqCD92cHIwJUPuwP3TbE7Pl8paQYyJahCnqvA3DRDzFbXFUpmsumSOakCSuTx4xLbAlv9CZvALBhuSCQbGwaVoVCPq0WYQVR2RMABrKUdkK/GsdSVn2tFsZNVKFdwc4LXcTwFglzj2KPyM6g141srGrABQGVMQewwYsMrkIVz98szfZ81ytVG80d77GV9fPLK2f+GeYBJ0g6T9B6De+AVSCxQugocoHMFMsmT2czm0YFNm0Q1SoRdnDAR1IDRLRElhWLtUajv+i2hwPX5gXDCSrt0eKCx6G/gF1CP/tqd7KzuLrLcDlWhr0LAAwsrcDlE+vo0g2kpdzaPrp29xVswipqpUalvv/CwQkAF0O/tnf3ZVDAURREe+9qrQRIezy8LKsO9q/eftv9R9/82HpuZS21upFJbmaTm2sbmkiRsEg3ttJ5qPTU+a1UKrOa2UoArFJ01S9kRKs+3m9CvWVpvdNb2FmjMu6jO44oprYyBEBwXjNxvCKl8JThNadUVtTwCHorkTqXI5bzunF7phQCd3ZfoA3PrfOb60ubclJpvqPmhNcel4NKr2wkeaE1uKPbyp23qINhb+/l25P73/SOeSPafxxPSLr2Yi96xz9++vOfffX94tj2+6iAF17Uurxv61an3wunrSuXAQRMUppWFBEBuFZaDEl3Zor1hv++3/6NbyvvHc2L1k5Pj4quXqSLzf2buwc3n1bbeztOr0xO//6Xf/Cff+5TH/vEr/2Xj3z8j34ncfnPv+eD3/l/fv1Pf+TF73vf9d3F4olaaT7Kle4W9TZ2QR/OD+/+4Zf+21f/8r+W3vHffvazN5VeRW6PVWfc71VvfOKdLAJV33Y0Q5Q6xwDAqIB3r/7rx4Pn7xy/q6Umt+8JBdH28suE3CjLhQ3KIVIAfLmN1a2V9a21BDz2dIZiqFyK1BCACVYzpQJF5mhRMiwdKA5gjiULAMBcFhSwGZiKVGDjO2B0/TcZnOqHJ+EUy2jW7OM0bQg01JA4IhvUQPO5oIDhIUtqMb7+qkUlXwX1SXF+2dBixyAcsXU8D9YWHpJyTFYuFS2viMdWBo6Q/G8A7GP0b8zSKTY2uFQVPf7SNAUqMnpXtAbD/nix26lVMS6kDBzAiTcYUHLLtjEHHS+eFRFIsNtsAENuYccyVCO8J4WXIKP2Mp1iCL8a1mBPubYkGrZhxD4cBjBxQZBOMkc5xqnooonm6oDkrYoP1RdehO3AywRSjG4co/2rx5ev3755abE9KhZ1reTHY6xoVzXePbp453FXKZcjUArlaq032ZlfvHn/iYctAOBKvdXrQ5WbbO/ODmZ7V28+8cS9B8/Z2Xw2JxcdvJ13cDzKiTm8h3Mp8TeH7wyv3sN4RdQcSN4NTT5BDuw213TzTcnNjeTWyvnV5fPnQQSfO/N6DjBOIQEQP3rSknVmeXXp9Nmzp89gq/R6muYKJAAwwIah0HmRK6QpChAHNVoqk0knVs+cOX96c3N1c20tlU2tryQYUciuJIDW82hArWkyzwsnSfCiCh8eB49QkAsUz0MB4kgapEVBwNrF0zTLsziHRONNgQgyWLJPjqCbIPyhIjtGfOLheAE8XU8hswUFnlOr18YQqm5/0G8NRiCAMRv3dQAGLsCfAHDVoHkOAbik0JrBZ7O04tVregEVcDaFR9CaBWoFm7CABZAAORqbAwX8BgCjqbH6BgBj8m2BNhz4NKgMAHAmx8DCcdECCkqsB69TViwxT6TzmKsKmI4j72hKUROzVI4RGN2gUnkMJaMQahMAvCRFYSI2gW+fxsbYLCWrCos+YtjD7gRVV6sFblT1PVdR2i2cFhZxDAn2KB1NOt16pQTvGhYfiL9OG32wBoPh9qA7mU52L8zxCPp/3QG7pToq4P5gZ38+GWIbdDvwbOx7VCXJcKqd4XRnujObH85tBGBGjK2wLGz5iw1iJvPFdLrYAwA+AAAeErLAKzoavojkes4xOTsslSpREQAY2x+BiQMHdi1VUkm6kE7RZD6VoNO5DEnzaBPjuPX+dOdwIpwAsFMbN20l7spgMmnN12GxZACAoZgwZB5UqB85Hmyzqqc0ArRCH5TccrVZMXVZENFr0/KwGw120bA3bPsmZqgohl9ttnv9SQu4nqCIkoZPES+ro5iyNMb2Y6sbyytrAMBLS6iA83kAYBczjgH/Rd/SFJrIOxVH4YhcIgZgAD3A3xqa73Qb5QgRkhXsar3Wnffbg76lF1hQ2JXWaO+ih614UFiw7wsBeHZlt8DnOFWRgWNk8gyUpPwWALBiQ8WK2tNL1+++8mQYlR2t1Kw2D1964w7Y9+t7t18Ell6uBKXFOxurAexqKHDYBT08vH73ndceXT61mjq1cu6RM8mNNSKxubYFz4SgU4mt9RRN6aGcTmwmk2u5rXQ2kc1kVSililUZ7Tc0CXif0ekunKwWjnoMXeAlOb9F8uksS/AWFP1QCknScmtTJgNlv+gria38uTS1vsnbN3ekQuBM7yApNSrc5uYZTU886ox8K7p1ly026oGa4bIa265fvXL7OaM+3Tt69unDO9cfPLgY3XkyobXVxsXLQffyF//kd//wf3wH37e93nD/6q1ZWG5f2Vd5WbJ9IfSiURSVDUqeltUTAA72RwDAhtjwog/8+lc+oe4c7Tn2TlsLg8gMxNLgwo3p3g0E4H2t2ZD3/+EHP/r27/qRD/3Hf//tP/wX//Lvu9PffMsPfPAr/+q7P/rw+7/j2t727H53sLjk1W+XzcbDob59Yb7/4MuvfvY3//7XtBd/5od/90mjEdmtiVYEAK7f/HfvLFSCSrGK51oyXTu+EJnN68d70yvveyJ4/u6VfzExc+/5ftFrVWoCLxKEapj5dUBeGmRDbm1zbXV9eT2VIWErIBclZE8HAC6oOl9gSAL0pQ5AZZp46iQKTDKHhgSU7uoSCFVKdAEDfDcwkapzPABpMfDRVQAYpRZ4wE0wJ9atuQGsC9CxFI1nV14c2hf5Mg1FkNcDTcHTYw4dd6GwmgrGwwAbzEqBjcd7lg30F/0aGB4n5oHv4nhDqVp2gBFA6UdPeUXVEWMcdG8DHKvg5epgMNnbqXse+hy4XtwM7AYYGGQD/45VrKbEjQ9uHUhyp20bUVnXK/Fv4YmoIuBdXgCa1yuX0EZP113f9cMASqqFXdCYYYtpEALvd9ujUacaB3pD7YPdArseKlsYVuu9wXg83r1w7cLl2w+evH/75mFgSGrghBYaBVu2MxjPZlfuuEo8LomH3Z3R9uzCtVtX7rXR8quOV5q9wXCyvzgYTy5df/DUvQcvOOlcPiMDa8Ggc2ATALM+VnoHB0pB9+qaWVRU08UsYMvCI3P4aFF9SiKv4RSNJIpvyiAAL59bO79yHtTtyrnHEGhPn8V/ngEAfhR18KnTy6vLZ0Eir2xsrK5sZBiGpjieyIACFsUsSYoFPp/K5GiayGD2TXL93JkzZ7c2ltE2K721cm6TFoXkOZDJBQEJgIZe35iyUKAKmHJA0OhOJVM5AFtZLORJATAZh9CA1LCY58rSOAwjYwKeItjjw+l4tmjiG9KBQBmogXGI1g1rHpctiE5YqjXKOP0Fwq8Fda/Z6AAG4yRokQTo4rKcw2dIzq7oJMtksoQRKgwAcCZNKUGzojE4GY8AzMQAPKoBArEMkQM+KBfyVBYBWBZPcoxPmrBiADZUhaF0G0gFm09sZQDOJR0Dn9GdPPQcHT3ypUw6TTLopyrg8TU6kwUNkWIpisC0OxJKPHZ9Z9JZiqDwwgUDsUka3VtJmiVSAPCOiLnohYKiAro7WsUrlsq2CSy01YX9Jgjdnm/aukiVxs02KG8goVVMIABFFwPwqDfpd8bb491L+65nvt4FjUfQ2HfU67aaw+n+Yns4mm5PXx9DohVRNJxKC0Tu9s7icH/XKshAjBCAVQ24aalSqeHc7N5iPJofzN8AYBU91EHLmvDJkSzFAtT4sIEQgEOkv0UP1qijCArBFNIZhiAQgPM5YF54QlP0av2d3cOxkMijhalTHddhjesSxzLplB7ZMl4FGAFoNI7MbNoh+iV7wAU8tRUAFNWHEeBoDMDA6CiaN1wkIo1Of9idDEo6iAZV1v0aOmZM2rLKSVC/AXwtEJRxE0at3m2OzEdW15e2tpbeDAB8OkWzZJ7WqgjAuirRAhBohczljZKj8kRuyywDAHsBBi5h7Fq72wBxYSIAW5VauT3r1Dtdy5LwCDpqDvcu+fABYuOwXwFh3tvemV6eAQALOtQiKpPMQlGkU6vLIAEA6Iql9s6Vm3deeQhUzlFLzVrrwisLxfcdTfY9v7F364VmWCtXg3D+jvp6qOs2oK/nhbXR0c3777j/5keXz/wzPNlaT6Xzy+vrqwDARK6QSiVXkvB5mgqVXN1YX88lSDJBS9N6gS0IVmdyUJd5HCZrdhbFNKcOe3gII8j0JsVvJNg867IELSlFhjaNyp6YkTUAZCWZFs9uiLnlvH9rKjKeMbzOMIYjhYXE2S2RS3N7QdUJbtxmi20/4jOMLiWz423l6VekZnu+e/3x+bRQnFxvXno2ly81yOm+Nuy++tqnv/QPH5FbTgzAN6d+0Lh6oLCSXAyFsB7tg6wyaWXnBID9qn8wprw5AHBD/8Vf+NKPmPML+449bWp45TittYYXr413rz5UW4txOPD47Vff/58/96u/ND3+qV/469/43q/W67/68Lc++L5vefd7/83Pf8P2laPDuM/9xAAAIABJREFUS9Xd9qWD6tFYqz8cq5PLe/vP/O1Xv/qlv/1K5xv/4mf+7wdmM9CaI80ZdXu1Gz/6zkK90g5l3qrW9WxwAsCX97avfOeD4Ll7176tUje//Ucqg4kfUH5REzZyPEekt9bzpumomTzUzw0gm4pEsBQ2QnAeHkEzssoDNBG8QGg6+sdDdVF5ntrK0Pl8mlRh6YECpiRY+0gdDWyQkiUDg9KdOMYFxFc1hI+GZ5iUWXJLRdvVgS+Sko6HxDi0WvF5CvQUK8Jv6AqGtBloMqbrAopKtlDIa9UAuDqgqolNWKA1BdUCqR9fAoe1wIcqwtIsp2CUnarbJvzrjm1FeGRcLVeqo/ne/nbdC0CQAwzpLiAn7DITLQRcy7TQy0hCTwq2GEExL/quBb9lCiJoM+DZJC9QwMHVooY3Kw4a5ePsVKni+UXDdG2Zx2QDQRAIsiDVxx1QXK1ep1pp1KD4N6uloAP0ttPq9lC+7uxdvHrp6u3Hn3j8wVN3yoqg+za8yFqt2d89OLp2/4kXXoikOL0Xb7ih4o3nRxePHx82GtWo0e2D/J2Mp7PFlcOjW9fvP3f/wYt2IgMAjBMwtu56oIIdy9Is9D10vCLIIWAbsUsEcB7GxMkqkOzY2c1LAMQqqGBF4t+0lU6unl9FL6zzGIh0FmXw2TNnl07FChi27alHHnlsaXkZIPVs3Ke1ms6QPMtJbD6+okDnBKmQTWZZKp/N5DYwYH397JnlM6AeNhPnt5Kp82c2aI7NrpzPgpzlTYUXNV1iE5TAACCTLMsUOFhiHBZqmsyxRI4q4AgwmScYBvt9CYZgAeQxkkjFztvx/u58NmvFCliD/wFbQ99Q248qJYMthKVipRHh7E0VZzrrjUbsTVLxgUDpPKfQ8N8yCxnslVfoAnwfwi4JrG6ymQwtFStVDS1QyXQeoJIVjKDeC3kOSEIqK4iKBoCdg0qliiI2ziIhkHWM8gVgBJLI0LatIJqmk+k0AVBiecDUylCaA0cHnmazRAbeEXDWAjZCOw7CRtWmoNpixFHsMpklKQKkby5LxAIYFHce+wwkIgcfYYrmNDqVozMZXpSN0rgq+ZUIlKSji1K3XTL0gtJsgEgSC2R50GtV4XsD9iKe1BGAR30AnEGnPZjs7F/Z8x0HXcEkIAOyapcqAMC9Tme4c7TdHwPVG1Y93xZAj6uyWiyGTfRHnu3vzeYWjwG6BTGePzc9r9pptbqDnSGs1/3FbGf/YG9xvA1kyhANRcNGWhKTBw3Pq8BfGCKJc/LA2WGvmTgHiOuGpoHx5PK5PM63KaZuBa32ZHKwwyfzrASfVH3WsPGwiuPIREoHFs9lMykncCQO5x7wcgUgxy2XbakWVnq16qAeYsek7YhCgYLPz/DDRi2qdbrdTqdZdlhC1CUDGzTak3FLVbBZQjVO7Lj9sNKoRI1aZ+6dgh2RXD9z6tTS+ZU0RzN8QS+XoDYpsPiFwDY5jsi4JQvPwTeNBs4B+VAasO28Wms3y3W3KNOkaFfare5us9XplAKW0U2/1BrPrjWYgmDqjlvCi7JefzS7MSkAjKnAP1i0RmK5DJVZZTTsSXXD5uTylQcv3amWIsOA8tPYf37PrGBnve8F9fn9l+uNGnxv/+ibg7VQUaBIlUqAVNOL12+/+8abT4JFz5xe21hPria31rZMeFlUNreZSnJ6wdJY6nx6I7vFanmqvHslypOUpjUmiwrw4XzB7g7mxawYbe8wEnBhkUhlMusrW2mmsLV+OiHqBKVojTmT11QgwUoqS2+cYTeXs9ydCc+41ugizdkBCJXEWhITlG4Vj+zS9Zt57HSDRa8UsuTsKv2WZ6X2cNG/cG/bplWh2rt8X6IH/cFg5KpH//C1r/31az+Z7xfd7nD/+OYirDRvTCjN1IpmrbZTmjX9kpu3diuKrO313Yp31MkHM0ur1fQfevXVj3nz490o2B0CXpuC4xr6pWuT2fWnte7BwG+Upf5rP/W2T//e3/67G3/1O7//jt/6/5yLnx++9J7v++BH3v9DH/nGg0uXFj0eSozTK80895mJuX1hdvjcl1794uc+91/Nt/3yr39q2+1FYr2rGv1ep3Hr42/R7KTiG0TZIcu58OBiSe9cO5j3rn/gTvnla5e/dTJ69l//+Lvn+36FJKtRejPvJFUxueGWHWGTSK+sbq2tkZxgqBzKGEZ3LZnNMXgcR8BXNi2hYySIX15AE7McncvkSM3XVMBpVgdBWrRs1+AYjo6NHqzIwtsxvOcMPYwP4eiEVQEBGtgilh8NDWKjqFislVQetkiBUy3YAMAJY59iG2BUAIXE0iSblwIXcM8wHQMEB4f2BqoNaBqFThF0Zhjg0COF/dd4nqlhviC2pHpxrGet3hrO9i8vQiv0TzIGi0FgotMOiGULJ57QZBhbgtgsKHhbVN2oDPodKLoNGhGFGJXDGBwjRDs91zbQdMT1g8j3i/BHZB12riJxiP2mUpoM+90OyIhur9FpnRR+qP/1Vn806gLI7s/2jq/duPP4g4fPv/JUExR4iA3Q8AUV8QgQ+K2vuGlZNfHda16z3uwO9o+Pbzf8sN7qops0jmnOZgfHV6/devD0zWs3nUQ6lxEx49cCQYFnDqCm4UXi7C9IMgevwrHbHEMYMH9GBzmsoY7El8zxKCi1N21tgahdXcGsBQwEPn3mzIkVR9wLjY1YAMCnziwhMi+dW15ZO7cCAAwggwBcUKEW8YKECaZ5DIbLEolcjsitnz51ZmVz89zqxrmNRHp9OQ0SLnP+fBpUHRfHzluamKMFFsPNGJYBRcfiqDiFvqgEAA/gDkHRNAmolAUApvOAyDh3i7ftsjHen83ncwRg08YwGCsGYMP2wnIZaFzoO7UmCj/AXrTfRw/+cinAkOfAhgeeTaY4nU5mC5qjsQWCoGmnxDO6w+dAsxarZY3jCjRwU2CZwFUUxZBYgcoQWUJSQCazmWwuQQEbxclkGQeqkTDCgsMjhgLj4OQslU8lkim8pjXcACokkL/AQdvHokBmKZLhQVYKyokALvo1m0LbLyr23SSw9hJQAgmAYRq9WAkEYEEWc1k2t5YiSC63lSazecwXaO9WpbBWwqtUmVN6ncg0WKXViBCAqcqw26zgjHQtHkWCdYhzbL3ecNhuj7ancwRgWxBhQ3O8jP0CmLeAN+fTw0lv1B9ORnXfg91KAAArGNiFeQvzg/3dhQ37BT4aYHGqgb0f5Wat0R1sw9dsfz7eXuzv710apylBj41qBI7Iw5vICXYxtENYn3j0HG9GWK2GqlgGk8+mSCKbTOaJHMEAF0fXHb/Z3t4+3OFTJwBc223ArgAAZslk2gyA92XTSduzOAa0Q6roWrYFBaXmG2q7HAIGD+sB0I7AhtfK4AmC5pYblaDW7XXb7XrJLFCAdEZUrYGuH9YlicP+Pnwc8MrwaqxabrQH+/6ps+eWV5dPP3rq9NKZJHbm01o5RBoPmlcIbQu4RaYYmjIGFJh1KGjl2Bg1/uq1a03PkwuUaEXNZm/W6XTagQeC0w7C5nDnSrPAxQAcwNPpAN/ZvjovFDK8CmS+kE+ls5yQo1LnaSU+3Qkak+Mr95+/D+/M0oNyVNt9+ooZQqHgip5bmd58qV0Btl8N5u9onI+AvrhuhAC8ffHG3XfdeAQHCrGVcn1zI7WGR9AGth5mcxvJBKcLGpdJnKPJLCELOW1ydFxlGdowyqNFXRB4WKeN/n5AiB4CMPyCLADDXt3IrK1ktzIZpxaQtG605nROhdLqCRsbK9S5tH52PX1npjKmMb3JsIZXtMXExkZWyFbaxsIu37hBlCK/KGqqnE5ppVnt2aeV+mCxffRkRxe1ysK7+rhodRsP7ppX7jz3xU/+/sf+5O2FieW0+/OL12duo3M8kbW8ZZNmVHB24WP38vq0Jkvq/qjULO+3st6OqVQa7Vc+9WcvGcdHE7+43Rckz3FKXqnYuT5Z3HhW6xx0nI4t9v/6P3znrVuf/8RbP/vgu3/xe/602PjvH/qRb/nwBz/xfT/1gR+/P71wsR967Sistmdm9cmhvn1xfvTcV7/855/9u19M77/3+W8u1YBVtgaaCfhbvvLRZ3iHK9VGTHW+5bL2/qWy3rw03x3d+tC98is3r33bdPTu93/067cv9CVK3jZyFKWsc+T6Fk1trTyytr5ydm09JQHb4mgyn0kSimeJbJ53VZkjsnmSplVsUMahWEVkMmmCyaayhB5oqsgy6G9q4nGnhdnsHCfpul32UKAgbgaupijoWm6X/XIJNArsaYLHO+Aoct1KpAt4gMtoDgIwyAn090NrCQXUtIC+ulLoGuhyAJuZQ6hlQQG7AZrwYx4SHkGjFzTLYxetggAMasSOo3YxHLsz2N453HH1eDYHxGDsG6ibcacXtkAraD0D0F3IFgPTNQM0OPTgy0JyLjKMyFHwniXDP/HJN1RgEegyE/gWqC8FZ2PwBjnuKi5tD3vNZqdVRdcOJMIVbPMGmt3p97v97fkcwPPy9bsPHjz++BNP13SclsKx30oFOz4Pbt595mlfQvMM1y9Xe/PZ3tGle0+9/HTVq9QrpXIZLY87vV5/PD88Orxw79bdx/1UOpfmzDiKxw88O05Y9kFbWHhlDv+Ad+rFp/c2groqCbIO1QzHqfU4DVgUxTelNtc3NtdXVk4jAp9biiH3MUDds4DDJ6Ycj50CAD7/OgCvLi0nMxSbz8HCyDOgzLBZjcPWIDqFHpXpbI4mNs+eOb+ysXV+ZW1pdSu1FgNwduVcIpunWVVXRRXdeAvwxCRYGQJOcUsaj9GztKAykiazeDxNQ3EtiAQDEEBwhUIcvKyoimhM9meLxaKFOXdFywViAQQEAbjoobVasVQs1ltYBesxA2rERmTobubYaPYoZza2OKuwlaFUS5fpZJ4pFEOWMQKJIBgA4AgBGDTs+mYGdWieV0ReZLNUNg9cS2OoTDabZAxFBQmKZ7B4q46Xh3FPHk1bFnBEKpfcTCRJWBM68D1EnCB0dFmRHJ5IU1QB3dDjDhycGAvrNhS/XA4AlwAJmAU4gh9zdCGHzjhZMpchWIBIIZ9hya0smQUtnqYwDdAud6clodwGae8aiggAXDJBAXdaoIAljin327XIOzF1wQyCWq3ZG2Ir9LDdGU3G29f2fdsWkIhhHCGeZ9c6OAc82N4fd7BPetQIoAhwOUaTJcut1XuYorQPAIx5KjSoYAWbsOwQr4HQRGt3vjM7mPWn+0eH+xcHWxkO2LQjZNLpFMHkEmnScD3TRwDG1gTfRUZrwWdnm5ixTOSBFxEkLp6CgAbtXqM9nR5u8+k8/typ7dSwKUPh8IDOCgyJzGYSlmuwZDabSALPxMwlPE2TevVSpdye1L2oUg8tMy4ZCMDVRuTXev1uu1nxjQLUM8ko1+rt/mhQE0RWBpl/Yg1aLJUC5MWD7aPg0dNnYEOceuTRU6ceTTK5HEPpFQ8em6ULJwAsAADjMDJJbFo1txRV0YfnBIL77WrTR2NS2Qxqjd68D9jvuywDTzxsDLaPm1A0TGzVwBntIfCdy8fA+2gNO95zGxspRsgTifOMYmArvd/YvnztzsMnK1bJkp1yVBo+/rjlOp7NO4FTGh+/PA7bjWq9NHx593RUxLNHKCN+fXxw7e7brz1y4qlz6jEA4OTaJt4B8wRBZbPriS3elPl8cvWcrK7mNc3sH04OSiDAdcPv7NRA85MFvdnZdQkxGE8pnhd4Rc4T2fMb8Ap5EEKTaUAWDKs9pzOSCo9U2MDuhyUuezp1eaoxjju7xrCaG3hy4jyRY9OjrjGyKjcuE4EfOlDJyXXSre4uHjzBNSbj0f49g9XVYK9++KxlhPXf+olTv/Ta5//yi5/9lU+9W6zboID3Lt+cO/XuhYGqpi2HsioJflTzywGpjhuGqu2PwnpwECtgtVKzbzz1PTfDxaLv2OMuiASlXJLKvc6NyeLW83pnf7tYr8jNL3zom97/nl998O7P/IsPff1//IeK813NH3tm9A3v+eYXqJevX7ncszsW2xgz6q7pPxjq00uLw2d+5dd+4MM//m5eeuH979wptn2mNdBNIFvh8Uef5bxis76nlw5pk48WFytG/cJsNrz5obvBSzev/vP56Ml//1PPO82hJJSm/BZIixU6u0ECvlIU9gHzFC1JhUIBWHg2keV9IL95EeieSKKlAHYoGybO5sgCAHCORgDWPBy+YXlsToW/LJ3nMP0D1oxTcTH4xi5apu+qsG8YIuWUfXSaMk8A2AnCAFRpVDLxko8jNRuHahFADbx+NXT4L6E3MJOTS14864EW8yL7BgBjPCDOvFfLtoRSiuPhbzm+0tUBenBcF61xys12f7iY+jZ2RmPgjK1raLJRxO7ZONFXV7HbmedIL4RqHji2Wyp5ru+YiqwrLLpxsYqiobMMdk4DovlFP7azBbJm6nFHkwgKBa+RvVGv3Wz12gC5VTuo1spYA3AUqdnByZjt7Z29C1eu333yqScfv/dMVcU34VfQm6vRG88Prt585oUavPBqowGA0Z3tLi4c33vqrU9VgJXDH6s1mq3ucIL/IQyMu3jp+nVtM8/lRezksTTfc3TYeMUQfWdEGe8k4aeW7gA1iqWWgdNauRzGq6P7oxbPCUvSmzKJrVRyc3XjzPLKeUTgE/+N2AQr7oDGU2ioQ+fPnMWD6eWVpXM470uT6CEFlY1XZYnHY5JsfjORpdgs4AWdWDq7dvZ8Yn1t/dxKMr16dosTRWp1aTMNaAccixctS5FwCgm0ByeLBR4+RbR7ZguSQUvIe/DeV+DyvM4gp6MFvPNEuxNFEQCAdxd7eycAbLsYLxsrYFD6aEwcAeo0GkjOThRwo3nyBU/VsvCwlkxnJVfIkYwB66GwAWzCDQu0GUh5ghGdaknjWJrIZzY2gUtkKc6pB7wgc3Q2xwNfQFuaTLIAAIwZ83gsDhxOMU1ssVI1mjJNiQUATmxupSgR8MnFboUQTdBjAGbzIPPiTgkJyz0aIpfqVi6TyRAcTWTTmXSWQa9L0OdcNpHObCVygMEYmiGSaZbJFoCTMPkMQQH1QWcXX2r10J0N+KncaYW6RgudZmSjh1vYARbohgH64aA7U7UKZDTOh+p2RqPB+Nq+BwCsgP6FRxBbUcbxnaMRAHC33wHGWA9cA/Qro0kAwNVqpz9Cu+fZwoaXT7M4ByypJsgeALxGvz+YzueLvdl4ceHS0f6F3kaSYQC4c2dPJyiGTGykUjLsOQ/Za2x2Hruw4gCdqTPwxikyBwBMpNPkGwBcb013DsYsLBlONpzqdtUAzoi2P+mM6esSCYgNAIyzWomEU7Qd7MvQEgml1ao124Nx5EflWmAanID3U6LhRfVyUOsN+q1m2TMKlGLIFgBwqwdKXxRZURbj1Kmi5wFXK9frzfHOheDNp3AM79Gve+TRR74ugT3ojIGRJ1BDeKiNlgmfTvoEgMlNEwG4AvI5KsVtWO16VHM9lQd5AgDcnfV7vQ4CsFsMg3p/cgkAWDAtD2Q7fLSDwWh86XqBZkk84xHy6xs5gsvlt1Y4NGdxHL+5c+n67Qcv1ozIFq1KJezdexrkjWfxTuT4w8O37nstDGBpP3/9kbAIT9NxTbNYHcyPb75y+c1xrNljpx5d21wHAN7aSOhc/gSAE4Il0/ns5nnDzGUJzpsf7xxYUNplwx/td1UWip/V7mzbedEf71DYL4Dxb0J+YyuXUkTdGfVVgtZNUMAZQXK8opDM5NZIMmOmty5NVKoYzi/SnA5sQM6cJTNkprkrN+3GrUtk6AV2diuf2hKLh7vNB89SjdF4NBhIhmQBu9h7qyt3u1/5/NZf/t1rX/vaF1597R0CzgFPDq/d2XOizoUOp4hR1W8NPXlW80s+rQ7qlqouhkHVPewS4dxWQQF9+JO/9Eow3ek6zqQHHJoJ3LxdN29tz28+Bwp4tziUGPv9c2qv/Q1h9YbUk659e7L6Ut5/68UrF5+9c/9dBxeudbh6lQh2dHVHrzw1NqaX5gdP//qX/uAPfvdL3sVf+rlPv6y36la9pyIAl67+0LOcW9venehGXSIZf3ahbDQu7S2GNz50z3/p9tV/uR8yo3/7TQeNQc9pd9tCMpHd4PJJJjKU1/N3SRpPo4QCTcPWL/i2xAAMA9ejSFaUBEMFhghcmIPylE3lqFwmm1dB3GKKHOgpxVTxyhQEo8BBPQIAxuw7L/SswNVjBZxxI79Rr5Z0AZ2wdDuWBl4YWKpQYHlStUFjA5THw36xFxaNWYR5MiNFPvyabVqGBISdQm96E7ALk3dBZkYlC695CujpgNAPG1qHcuhGoR8n+9Xbg+FsggaSoF+h4ukaXlxZuPltCwEY3pOIiQCkU3Y9TAqP1aPj2ooIdUwsFBhWkjR03YKq4RgG/CNCu2ffEFSoqrAo47NRXZGFcALyotXtwvatFUPsP621oko5wliI3mAEtW22uHLlxv/P1JtASZae1YE6SLXlnpUZe8Tbl3jx9v29ePFi39fcKzOrKqtrr+5Wd1V3Va9SI7SxGWNbCDzjwYBABmFjDjKDsY3B4MOABwZ8MFjGNjBixNgMtoTQSgsfznzfq4bjOqVWdy2ZES/+/7v3/v/33fvel5+88upLLWC/tShMulQ7o/mV05t3X3mzbeNUAv6F/nyyc3L24L1vvtxDl+cplL/ZbL57cHTl6Mr1e/fvvPDw8QtmpkRTipv0h0MNMhCDsPfNkHgRiiqGVlhKcqJvGSoQJMeER1xOPKXExMcJATiXyeYzly+nVjfQjRInkfC2FyMZlpcvXri0/J4LS8s4CYxH0gjAq+toTsQwmM3McKADFZwdJ4hCcStL8VA12LKQXbq0vrQCunprfSNXuLySBeLMbV7axCQCSTckSccOUhqNOFiuUkYtDExHhFoJYItXEiw8dVrgioIKWhGNvhlG0UDBo/G2uTja+SsAdjCszUV2ZaEfJ3oZJVM3jShO7J9ayY82/qg3ai723ZkA85onA7AHAE5iOkuybsgypi8W4aVboICx4apU2NzOFgheD5vThlSWeYqmUQFzFAEAzOqSDB/7UwA2NFjwuoG3HxwLmMYmAJwt4Bywi64TEU6tGSawVK9M5kqg6eHdlXGGDRE4apoAvPBIBaqYyxcJJpfK5TNFAQE4n85QpSJTxsRJtsCxJA8ElEW7KHilfn2wiJR+JwJdnwBwJzQAgLutqinDkwy6rXoN3Ugj9I9pAQXpDUYTwNXpeDSbThY3jwCAJSDekijKT+eA+3jttti5Mh+O+8NWt4EADN9QBrXt1hogFue7ewcH+wYAGpNYk1VkE4hp1Gj0JqP5fPfoaHdn/+jq1ePDq+N0niZEUUu9e4PTxNL25dQ2i84jAXrUhdWo6nt+gsDw+JB50HQ+lSHJbI76qyPoZnu+czzhsk8BuD6r608BmM3ndU8D2ChkLVfnSKKUTQDYBzGppnNmlNhvNm1Awoavm9I7ABwA+681gWJ023FgYuoBAnCzNwSlX5GABSoqXgDD3u606+0eTkofe+++kJDRc+85d+49KRoAmNPrARA+0CtEGdBdBPXoRwnnSuvNoFatwd+H/QvrrtltRk3XAwovGWGrM9jrD0bDqsdzjhOGIK/P2iAw8Di6BkyxPxpNF1dvs6B6ZQMKCXBZmuQLRGZT0JNoiqC7d3rz/ksf6tstR7Kbzdr4hUeAf44mAAB74+O3rrnAsFpR58mL50KnorouDr0BAF+79fr19ywvA61eunB+K7Od3UqlU1lDJKkEgLOSIzEkldkwdK5QqNTnxye31UyWKMMD3+0oLEuxcmuw79OCMd9nYYsKUhkkil9aJQmBqRjDkUvRmtE9ZAlZ8QJXTGUFvuDI7bPW6UIlTW/vOimZXtWTiPUN0izFEdtyu89eY6uB5bBpmsiL+jML88n7hObgcCfk/Jnonen1s7eq1qz3jT/d/NX//h+++MXf/8bbf0eZ2AF6Qd8/8Kr9455sGGHVae3XnWkMpI7RBnFFLO9Pat34SqfgLrRKrWX8/u//8d9z9mc9x10AAOukUw/bLem5xf6dJ2r/ZN/t1oTmH37Lvefu/v7jWz+6M/3o/T8pTT/z6g//05/9Bz/yc//il3/k6smNedydho3jsXu7Xns8NxbXDk+fvP1nX/jvn/tS684f/dtfXjjNuNwcqMaw36rd+tRLtNU7uX+95tS5omIdnEZ698bh/vzuJx5G3/LinW/vSNrK449dP7ba1Vr11E0XAX2Bg6jF9NYmHj5u5DkcmZN4AOB0nsc74CLnGapI00KlUtaVioKDIOiLR+QJjiiWCMWBxcJS8EEYChQgQ2EZAQi1DAAch1gZ/dBDBazKIksW3JrfatSaFihgSpStAAE4qPm2IbG8yKq2pmqYDK7ISa+QjJ2eDAWkWEoUMOxUvQzoT3NPATgIHN2uoa2zpSS+0SJe2OmI1CYqYPSGraP6Ge/M90Y48w8fFBQ8xbSNZOIeQNhBR2TQvxJOEpfUCKd7bR+4o2OjXQSoHF7Cq+VyWcHhiSiC76n7UdSIPdv0bQXPoHkQ5Kqc2ESU/eFg3Gu1O1Dx60/Px1tdPIiOG6hegeQudg/Orj/z4OGT1998oQOvMm6iJwgmF0/nJ/eefemluoNjylgv+9P+5PjGg2fffNKLe6M+ql8om9PZ/pWTk7P7zz//4pO33myUoHRLrg9fybC95OQc8RcoulYW8L4MkAF0WXKpzEEdw2NnwGKkOJiuC2+b59+Vy+Xzqc3L22tog7WysvLUB+vSpfMXl1AHL50DAEZjrDX8rZX1zfXLxRIloEMVjUm+SNgZslTIFYvbOZoHFKMFPruytLG+mtpYWl/f2MpsruVFSeDXL66nQbuJmgnUxjRU4PsCepAL8NIQzGmGRwd6+NRpmoOVRNJ0kWaLDE/zFPprKAjAsBKtxcFs/xC7oE1MvnZA1eKbNpN2aMuF8tclpwl2AAAgAElEQVRuQhVsNvAsEEQwnkFjW0yrUYXnY1qqJmtWGdZcFIZ1IZUmGCcEBexyKLaMOFIwh6mQW9/KFgnerHZ6AcZQUwyDBk0CTRXzWcAUSUwUoKYalp7kHOPhCx5Bi+hck0lnQTyjUyOQAijLgZcAsCsSORLfHMMJCMAOwFfc1IuFYonhGSKfyxVLbD6dL+TIMovOOBj8mAAwfJpFlimxLEknh0+sbIetyV5UaTcjDxvANHXQjUyDk3qdyMIEAr8DCy9MZtpgQbW7g+Fo0B/0OkMQGovFfO/swHccWcFZPwRgy8NIkNFkDgC8M5n0R81OPfB0+GDYSll23KjVncx3dncP9vc0TqwwSRyhVEEArjVbg+lwd7Y4OpwvDvevHB/uX53mSyTBi1L6AlWR6GJmO5VjVJy6CTACDQ8FgmrVAwAG+s+ReAecvpwiqVyeo0GNAgCHjcZ053jKZAmGVyw3nsQIwCrs1HxOczUZHk/acDSWIEqJAkbL7UjLpgQoM6YsGUYdNJAHa+1pg4ge+K12DEg37XUQgAlBLes1TP6djPEOGOcD0EEP9mO3gzN/8+ns0P6mCxcuAA09957z58+nyCIeQcdAHSxVkahyaOiCSGSCWjKqmdZa8LCjIEZnO1xzvXbc9oHocRUjbHeHe73BeFT1ec6yg7A92bnR4gXBsKvVEApFbzSeL05uwD4olWGPCkQmTzNcnspvcthHDm+ts3P1xrMvf7ilVc2yFcfV8YsvVezA1SW36tjjk7euOR2cgu698uh81VaMAJOjnOb06NrN18/OrSyvrq+uXryQyqVz26lUKmuWyb9WwJJAF9PrikoTQtjpza49hwAsuM3xIBAwJF5odEEBi/Z0l4LdCavBc+ORsl4oK7RsDsY1ChRw74gldD2o+uVUJlfKXKbYmtfrarxl7ZyVKpYbumUmu6o76QO2UrdbD44ZeIielKYIglVPTttPXpQ7k1nXyrpHvnKvHt14sqMvFl/4vBLWWr/953/69ld/WO8BAE8AgPe92vBgGHpSf9g+enN4/SD0PZ3WugFIv4Npfdg+7uSsKQjkavQP/ugr328cTbuOsxjCEua9/mLY7T+/2AMA7p0c1hYKe/Sn//RvfvzVL3z4xm+877s+9OnPe4Nf+YGf//Ef+KUf+NR//KmPn908XRw0etXawZQ9qDsvT7X59ePrr3/x7X//9tc/5z/8Z3/wmatWp+G0R5oxAAV848ee8GarPz3dC5qiotYPTqta+9refHH3R16uf+TlW983Lbtp4wO399eIfujF6SyRz4DUpTKXU5e3trLbmQyF7o8MDrYXMgXRMWW+xPumLlIERs7qKjZ9SqIMW6CUK7JUsVSUbSCOoGcr6C5Y0V1TBAWDAAwbxsQmJ9e3NQ9QGlM8s3YcAi617ASAFRvPX72gUXUMBQo5p6E2xZZkAGDDMjTMieURgHNl0NB4oKqDduZZ0LrAkN3QA2x3m+04DBMAhqoPskLWNEwUhoKUxCFFCGWjnQUAsGNhhxL8hooi2EJ7UviHhrJKKiOpEBkFE4RcP6palu9qImpxAb8byi49wpnjWtXRFADgOHItw0NnHlUtl7ENGr9GWXQ67V6v0cCKH7db77QBtdsNBOBWZ7SAV3J8dnbruUePn7zyfBuYAhAINEqIO6Pp9OjOg8dP6pYXNhIzvc6oPdi/evf+w4ddDDaMu2jUO4HKCBB89Zm7D+4++/hJrUiQBRl0u5mY32CnPdAe27DDwFQNAy3FgI8kcbU4t4y4ixMzeJSPQT4VNCl4Vy6fS29dvryxhjaU6IL1tPdq6eLF8zgEfAH/G6TvOvw2/t/mykaJIDkClgkrCoKkS2WmmIevQZGZAijXQoHk2Oza6tbacmrz0urmxkZqfTnDixy7ubSxjTeuFU2VKroF4koQKyLIJI6HIsDRJFqPchJNFAnsBpYYzGQgShRL0EWWJIWKnHwUkr3YG+8eHLQTuLW9xGwKs56Sg2jY7NV6EzRQlNzAJ/K30+1gzEYbU6KAoST3/1Ay+TjwG3wKKrxT5RjdYXMAwFoUVmh4CfnU2nY2n6dVr91xAW0p+CEKFY0jGQBn/h0AlpM4Qgzq0k1YvipF6ji3xxCggItoRYkmKcCpAs8zbBxh5ktZoBgscI0yfBw4Cxs0mnqpCIUIPUyKhXyBQR1coMt42J3NldCQsyyUVY0v0BgTCw+FAmoi6JbfHO8EIrqnurDPFHXYjSyLl3udmq1VRN5GFuJjYDIsa1hC7d6gA2yw2R90eovdxc7Vfd/1ZDzBgY+hAhgX1lvAEhez2dHubDYYd/sNoA1llmSUigwKuNUdL3Z2dvZ2dnUeAJiR8LOQdPj6wDUHk8F8utjf3939awAulmhOYotbImxOKp8pUbSsBi5mhOALSlQwMAdTtQ2OymdJInM5TdIJAOPlsRnG8WhxOgdWxAiq48cjBGBVk8qggDVPqzCFpwAMTymdtgGAbT8MjVKqYMe+yhBa3KxHqIAVAVQcKOAw6rRrzf5wPOgAQoMClkUNVkpvNBk1ymVeVSuq9RSA2+gZPdyZTXfNb8IR+KWL599z7sKFLF0sUJSGM9fAaiVaAgAW3wFgWJ4poxVEVTxywBQ0XHWtuBMECpAVPYBndwjfGnCD5wwTAHi6c6MNlVKzwiBstlu9wWixOL0miCwhyQDAZL5Q4pgsQ15mdWxY8eBvnF179uUPRoqnly2onOMXX1H9mmdWrMCzp2dvnTr9qFn3xq+/FwBYM0Ev2KbTmB2f3X7fzXNLF5dXl1YvnE/lUll03cmY0lMATqdgJStsPrOJ1gCKHTUXt+4qxVyJDxpH4wB9iGmp1ZvqRSkYLQiyRNM0ULV6r44T54So97pmidat7j6REVhZMytFusTXSJ5cpQdthXedxbViBWiGK3F0usoXbxF+3ao/OKLx3EpKl0o0pe+d7jy+V+lNR1GFlHd6zLVR+/jhiX598MUvSG40/dJXv/Ff3/7u8q4dTqbHtx/s+9XR0aTmq93J9Mobsxf2vKiq03ovBIF4OIl6zeuDgj3VlFbY+Vf/x3/+Xvtg3rPt+Rg+XLPa3XX0g2fne3dfUTtHfbvXYCdv/+0P/N4Pf+r553/5E5//+Q/8++37f/x9f/cXvv8fffTv/+73/ti93dOzM73VkjoHUKAaj8bq/Ozk7LX/9id/9tW3/2jykd/4J1+6Z/VivjtOALh24x++LlptgzVjqwZSsr53WtNap7uL+a0fein+8MOrHz0JVHFt+OxsIz+tR9RSidjKCaUcn6cVhia5Qj5DlnmuXGFxBjJTTAC4yPl4BA2aRk4MUCVF4isCzxTSBVC0xaLsgPyBHVqxPK9SMTxLgsIiCople/WKqBhA3UzVA4CswC7IQkVox/U67GmKrujAA0PftBstR1UE9FlwddgEGlQxTDgHtctzfJLJXigHDtq666YFoMz9FQCjng0arXotshWJo2gRhRQAsKQhAAOzjGoRuly0BrP54RwvnLD10sZZP4xJdwC1XFuVVC3BIY4Vea3qOwFeTft+AG8FAVhiWOCp8IesehQGGHagGdU4ikLXsV0TQCQ5FJAVdP0B7hCP+8NeA63w4K0mwqvdacLPRgunUMf7+/P96zeeufP8o5cfv/KwabgeGm6gUOuOpovDZ+689CQ2GzFmRLUHvdlwsn96/8VHL/YBwhu94Wgym+/s7M52rpzduvPcwydPXn81TOXwCBpeiYaeD/gDWQb2YuHFqIGOJKAT8YDWMBRZwU5PlPsYJodH0ckdcDqzvbGxuX4JARgnkNDwCl2vVi+du7C8cvFcYsdxaXVjdSUZD964sIJwgXEtPLo5g5AtYop0imNyRZpmCphHmFlZWl+6lMZ75bXt9NqlFC9JzNba5naaFCkBC7dqmziQrEikpohlRWDwAKMicgLmA5bxGEbmSbYiMKBfipgSi96H8JhlpeIudkdQ61umgV7CAbxbzw/wo0sS7f0gqMWgyao4gZQoX3Sh6KAnWqddrwYggkPHhgpMCc1q2C7noMK7VT4BYJLj1apXpmiylLu8upXNFliz1h75JK0IJYoUYH1xwAcKeUEvV965A4aqY+BFhon0BrtXYOGyAMCZAiMp8MQVzKICXmQ6uiZjExbJYMpmWU4spOETawEAg1pMgqFwIIcugfItUBwgcimPzRYFWNtlVWdzFENwLMXgp8dwmuU3hlOvMm536i4OFyj9TtUyebnVCA1Z5CgDw6ltx0TfZTes1auNZhyhwGvHrenefHqyhwCs8Dw6RVUU26uCcOuO5pPpAQDwEJRh08cj6BIDW8R06832aL4AfTzbMUTMrcJ1X5E0D8fd4954MASBjFmEByenx4fXJtlcjuMqJE1JLCuXs2mOI0TJt4IkDBgBOEisAhwDFXAhh8ZMOZrOAgCjTZhqhHE0WFzbEUsAwJobxMMYTWM1SQIANnx0QM1nTM/g6Xxuexvg17NgEdhCiXBasc2T3qxZrzUDAGAcQxIrVrXZa1WTRIpuzdXRCAsAOK53+vNJQ+BZYFMa+pbFuGi6o+Fofz7ZMd69hE6sF8+fAwAucaUCSRttx3Fh20uEXDWNcpkEADbKDEFsWy2vGsXYcIc3Xw2MYmmHVU0UZc1rdidXhiPQlC7P62ZQ7QAAd0QE4MCLOt12pzeY7Vy7JkmwnWHV8JjBzhGwpbY5tMYHotacXDt+8PjDDbduKV4UVucvAQBHjiHKQegsbn/zqT+OWnV39sb986GDTgg4lhJPjm/cef+t91w8D29i5fy5rcxWenN7azMFAIzz7JdTW7TE6XyhsCVVBN10W6P53pnCFohyrXl94qsiTZDlzvjAJUV7tscwFMfzmhE1auPjfUYgJG9n5hQo3ezs5NZTG6kCJ7I659UD1fOvPbtXLlnu7vWCpJlVryKU8w7l76Wittt8HhRw1VErJQYKiTFrtF57XG50DvsFWttriw9ataOHnfgk/sbXthvRP/yLv/iTP/rznxYnJgDwlVsP9gJncG3qOLXOZLd3cPT8oddsWow1rAGBOBxXe81nRkVrqmmdvvnpz/7hDwSnuwPHXkytUHei4b2GcfPBdO/e62pr/6jacbi9L3/wQ5/6wEc+8PK3fN9nPvXs75PHn//oT3/zp3/u73ziFw+/9YXj01sv15r70fTI07X6w7E2v3F89fGffu0/fOHt/xS8+Ztf/Ddzt9GtdEYqAHC7fvMnnpDG1CUKqerYlCNncVI3Wqf7B/NbnwAAfuHo246VcjFy719RKr7lFEpCaYPQqCy/tE2tr22S2Y2VvARahILSx5YyRd41JSbPuIaKRziirKgGLH5VYsocQ+fh90v5QkF2FAVqBiUaXggK1dIEVsSpQiiDDUPF7lzX0AHm0CmKzTmdRrsWNy2EbElF9u/IWm3gJj4WlAwfCOjpxO9XRw8MPG9mQGYVy76laAZUOUuB2kYDSZB10Dm2bnrVuNVu+qCWGa4iYbge4AyWNcdGT/W4Vu8MhuPZ/GgncJ52flhazVZxpNepAkO0KgCzOAyLGeq01gjtKp5nBmjUo8MuM9CpXgS5qOhhjDFHsaO4jWYNabxna5oNf0Ypo2MXEJSKJNdG7Va30eo0oCQ1QQyjtRboWWC4o8l4OLtyONu7cXZ28/4Lj15549W6igFGTTS+wtu34dG9O3fv+m6tBhw6BhCfjcfzg7uP3ng2qHab1Vqv1xtOFrt7uzv7J2c3Hzx68dEb74tTOaZUNi3LMjUXX7nno/VhFMJ7i/FgEmhMRUlmm5P5aB0QQRHxoAAnrxCBJeld2Wwun93e3FxfWVpaXV9fXb6QdEwuPY1iuJj8+6WLyxurq6sXz69vr1+4TNKlEgAEQbEgLQSAiVSeyBa50lYJHmQRUJjLL6+uL60ub24sr69tbW+sZfkKK2aWli+nsgW6YhrYTQW8Ceq+LMhlHmgfDUIayB2sH8x6B8lXluE1KkpZVHkawYmT8Qi6LGuSs3u8u39w0MP5ZpBQDlqugQaMkmxlx/bxWrXdbMDPZhPRF10R+r1OtwsI3KhimrPn2RUqL+ItYWUrXeRcH7u/uFy2JOiexhBUMZtJb2xu51jFrXaHAS+CFgDw41W9zJSITJZFk9IkBxo9Y/SnfQuGrpAk3p0AOU1vbRcJtpIERSJB8F3Thg1kcyWCSk7v4a1hyxz8qMeVIsGXdVUsA67lKA53lKQqvFKGVZln2QIFW6EiYgQk0BCWrCgiA/SBtwChPG3R69WwLddQ+j1AYkEJfKsM+4Y0mrGHU7q2gwmXcR0DK+JGPWzWgFNMJ6Nrcz/EuBE0JJNk3Qpa/U57MB7PFnsHu5M+rLZWULUEkPwCGhgDroBcHA76uwtNqpQpNJ1FHzArBKbb6E9mI3Te3t0/un50cjg/HW2lKAGDNUplGdhXAdYYmcQfBNjhWEUiFIU1X7dMW2YBb4oM6DGKyALzwI5GGVAq7O8cjNQiw/CqYTdmNdkw0SmcyWcVR5XIUjarhZpAZLOZrIPzPGhvV+Z0LWqFhlPvd+I49i21XOGBRYtGtdPr1JvDUX/Qq1VBj5UriRc0tm/HFcyQAcLtVuuNRr1Zbw4Gw+l8vK9906ULsAXOv+c9AMEZnA6nzXoyRqHxpBBCYePIrF+10VO94ID6jf0Qb9wjtIRG871qqIiiaAMJnBwOZ4tRGJR5YE713nDnRgzLSQuqflhv1JqjSX98cEuQGFqEvckVLm+XsJMgv87gkJsXRL2d6ye3Xv5Q36obFaMWuYM7j40AXoGg1cJofOPNa34L9Hw0eOn+ubpjqK5ZAzIez45vPPjg1XefW7pw/sLShYuXs0AMt9LraU3Kltgc1PwMwbOmyhAboqGKZr072Zs+UIscqTvt40nEVegSLceTfb0kOnt7UHwFXrbcMO4OToc0R8nGcGzThOF2FmQ2vwb0fH1re2Vtcy2zRin3+4JgmQc3CqqqmUGQW7b5grvYbk617qtTKvQ9i83RqkRHys70xRep8WKgs6Kx1w1u3Iybj8b1w8lXPpPvcr/yl1/4yy9/5Q/4sROOJ0c374Pi7VydhG7UPb4q27XZQVStmrQxrBkV+XhR6zav9AlvoctxvfrpX/2zn6icLnqev5g4UVSdLV5wzBt3F3u332dGi1mrV2Pmb//4P/7Im7/wPfc/9s//98/+9O+xO5/54V//wHf+64//1K+87zuun+6c3WyKcbt75thq/Ghi7Z8c3nvytW/8+W9//fOT5z/za7/zvNbpSY2eYgx7rfja//Je2evIpQw9HkiB1do7qlmtk/3dxb1PPm5+25PbHzoNFsZ0J9692iqmPc4xt5cKYimVXdtKr52Dj2b5Qp6H2gCrDHMycpIFqz1V9k0liSUqo7O6gv02gkizZI7Ay9miCPWoTOaKPOgvQ1IsFRSqJAiaqZk1gG4N+LcKawGrJkvngm7cjBvAF+H7yIAKQSMAJG0FIscxAmPZeI0sJViLdv3YPEHTFEGSIs5xAzJriQ8OxfOwV0Iv8mU9qLfDRg0qucDwaMElKLARDU2DcuGGUVCvV9u9NhDz+W7kwCfuubYDvBBnh3SowkFoAj6BeJTwuhmoGGb2BTXP9gI3sZQ2NZHF/iDZNMzI9Gr1yNUVPIkGAAZ4w2g/XcIIZBVqL3aCB/1OD6RWvddoRbrf7LbiWg07cVudTrM1PjwB5Xb19PD6w1cfvfzWk7bhBXG9iVF1KHgBV289d8s1MRGt3mrVe/3R/OD6/RfeeH1cQ894jFNHK6L9vcPrdx889/yzD19/f3S5UCyUn/YhAfCggaeVSP3Ac2oo8T1HtxxLw/FZy1AriXmg/rTvLLkDBgx+F13IoF3k6uWN9fX1NUDhixeXV0AAJ1fBT22h4R9L6xsrK6uXAFBXU0UCJBvIRBzf5chiAVOLsnmhtFXkaNiINMXlV1bWltZWNjdXNja2EYAFhRfSS8ubANWUAGAhgeTCBy+VOVESeQGbB4BasZgBTfOJsQroYR4WAXYFYtsw8xSAJbVsTPfxsLNjmoZimTqqXg875/Cdo5eR/TRWvZ10Qbe7GM7aBfrSRQRu1SMfRZgPqqWCFlXCWo4UfI+mZJ3KFkmKUzUQmaVsOrWyupVnZcvvDANOlOF9cryoaaAJiEyGKaOHdWKFpSTwq6nYfqBSFJALbGfObKeKGFgEy+jp5Ty2G6mixZYIEs+gGV7GOWAXUaNlkbypVcocwizB86UCq6oCSQOb4SlCLOYYReT5JKORIKHSU0QOXl42y2vdlh6PR72qgUnZQrsVmiYvhYFVQflsJQPCgL/4TXA8tdEASIqjRhQ1eoPB4HDoBBqG9cH7koBHVFu9xKxyZ2dnPhn0+6NJMwgtPFcCfMbGRSfEQINub6hIkkgnTpSKZtqApdVGF/XdCOTx4uDKydF877STz+GFoUBlgVJVhFw6x9K0oAFMIvaGONQH283HBB0FKUeJLm5lGDJXoNCnsywBuoSDxd5AKVAUB+WltWgqhoGnDkwup3uqSPwVAMPDyDo2ut/Bute1wIngMw6bvWZUAwDWymXsNajYca8PADwYwUqIQ6hpsG2Bxkc4ghvL+Bbh83CBpwApqzdgtYymwz3tm5aAiC5dPHfu/PlzaQ6Di40Ywz91EKkSaDiZI3JhFSRFqVDw4rAW44wVxisAix60WsD24FMFAG62Z0ed8XwUeBwUOrva7i+uN3lYA27oN9rtRnswGS+O7/AiTQNgi2wxnSPypVK+tMmA6gcArnYXJzfuPHi14wS2YtZrweS5R5ofQtW1I88fXH/9xOnHoG8mrz88V7d11bVqUOHqs6Pr977l2rvPL8MuvnD+4mY6tZ3a2FpJKWKOpLMAwOkSCwDMltYFXRe1Zqc/W9xV8mS2YvcPAYDLGANQnewrhbK/t0uzjMRLmGHXH5yOaJ6SzREAMG3Y7QVV4KjsxsZWKrVF0Hkir3q3+yKjWgenJO6Map0uiLRb8zdmQ7v/ZM4Ege0pFBSFzZp3svv4rNIYdj2BKkWNoHV9t/PabnA837npv/63P/kXf/m1z/35J5WhW00U8L4X965Oqo63uDIqC+xkJ4oiizEGEdBCDGOI91pPj6Dd8Gd+5fM/EO7utG13OtD9uBZXn+k0rp6Ndu5+wAgmM39YYxZf+5mPvvqpH/qdf/jWRz7+5r//4/x7v/pzH/3Bj/3L3/6+H/nenzzeXTxz06J5b3AmBXb80kA7ODm8+ur/99Uv/pff/TPnyY/9wueuOTuR0+jJxmjQqj/40TcEddzKlbh2X7Htxv5RZIIC3p3ffwrAf+8oONk76puy7+Synts3Chvbm+uX01s0k70M7GhzpVRGZo5hqEQqVwbcZNN8aKoVUCBot6hpcgLAAsMUUyWmAKVA0iocjXMnMshOzXSxS0oUBBU2a90GODWh6muuDbKrzJG5oAdwE4damaOosmJ5fr0KcNMI0PBZYDRLMRRNxMBDVUtGg1D/0iRJlauWoaC0BT0HhJznQHb4Xugpuhe1ovo7AIym8gCniqHj97WsKA4bcdBoDyejYW8c+rUguSl0LMyE13WgsVCclIqmY3OtAK+bNkJ0TYiqvm27DhoLKqDIsDMc4wirSYJwYOt4yRji7IsDIG0b6EagJDfJslrx+xiC0gqa9U4DY7lbgAGYB9cejEaD8XxnMpgdP3Pt+t3nHz5+7RUE4FrcwNTeuDMY7Bxee/DKo9ip1mD7AoseTWY7R2f3X3j9pWYI2gRK3KA/nk0Xu7sH127ff/DsoxdferWG45NlG8+dUesg8AZ2kjKDtkyYSmGjfx8ePssVTF9QgexICkhLCZ0ocQy48i4yu53J5wAlMQxpZenS2urq2irI36V3ohiSUaQLS2sbOAt8cWUjg2aTBKbCs3gwTKQyBIEAXCZSCMDpHEkiAK+srAMAr17e3NxYXU7zMg8KeGkjlSdJVjZ1KWlYL9MCqLyKBLqO4VBqAcqwDAFbuwRcEJYiC2BOJ5mENAlyS5bwFsQY7+8c7O+0gCGheSnOljm2i8nQ6EaIH2yAfajtFvAeDGaG/2u3u/0OaOAe3phWA/h939SMEIShuJ4psL5LkJpFZUn43ooN/LCQSadXNzOEoNh+qw8ALAGo8mV4ajyo/3QaARioQQWvgXUcgldlOQFg2jYRgEvZVLpYYiRcyxi57qNXBmhjgy2WMM4Lw0NAcaHDQhg2bNgxEnBAIJCqIPElQjYlIkdiCCPPSqUCr5c5nilRDFpUF9Lp9aWV1eWV1c3LXDbT6AxbLmyvYopqNFzdEqV61VZEeHZuI/Tgoeiosj2ciYcKBD/r2JuPZ557fTtQMZkMW7IBfXzMpp/CEp3Pgev1B5NpExMSuQQPAaBNgCt4rp1aR4F3z8gCXoIruhWiU2IUN4FKDoetznxxfDA/OY2LIPUpViC3CYZkyY3NtMoSrGpa2J0R4o+kjUM3DUtK5q/IwlaWpYBe0Hg/IplhWB3MFj25CACsIgB3gJZXVEXisjkzQPdlAOAAiEohl8o4tokWGn7oB3WcAoIt1wNeW/MsvDSmeUF2G4NhD0ORe91BIxAEHo0gEYBB89dkPHABMuEiuY6azSZQNdDKOwkALy9funAeARi720t65LqYTc7Tcs1VKiyRi6qGgDfRXh22rh8CAIOKbtTjXrtTdS3YcLxZb7Qn++3xYlL1Oca27GqnPz0BAEbLKie5Lwa83zm5zQLGl2mAYXgepSIJGLxBJT0tXtjdAfB57rV+GDuKEYXO8P6LFShgumQ1wurk1lvX/U4VVnX/lRfP1S1d9awYWF99enD1zgeuvfvCKk4hXVjeyqRT6c2t1ZQq5uhiKr22vJ0nWVNhiqucqvNyo90aHdxUiwjA491JlRYpoiREswMlJ4Y7c9ic8KmbflTvdo+HJDwCczyxaMawWgua5vliCohhaY3mCE5qDm+PKqzmHV+lZNcz/CAPH4BLHQgAACAASURBVDJ8Sly74fZfXHBeaPlKjqK3i652Y/flE702bti8JEZTIxPt1V5aeMdz6d7hnb/46v/42m9/9uvfw00cBOCb9/fNaud01gz93V2Ho9mbR9Va3WH0QU2XpMOJ34qPeoQ/19T2yPrBn/31b42O9jqOP+1qQcvilHlUu35nMrv9frV2eGjs1MkrX/+RN37ub/xvn/xbH//Ajz7/z77C9373Hx3/5Ld968/86MHDj4+v7xw/cDNFZee64Tn1xz354OTqybd94+u/8cW3/7P+kX/75c8vqsPY7AzgMQza9ef+8Rvlzu4ENocdy7LTPLxS1Zun+zvz+//gCQLwx8/kcnvWXSh+UyipZiRnt7MZgskV6GyK5TbPbVzMCei+y8E6IzM50TMkMsPWbFniKKYsy2UVQAZz+ySOLWwRQr6YL0p6hSsVihQAnw0A7GigZbAJCwpLDQFMxQLk2LouiyKVC0EY1uKaqVR4TtYM9Ej2gSm6aIHE0WpillvG8+HEoBl0EUOSJE0AAAMa4s0tQLfAEzxbBgEL5VYznKAJNcVRQTFx/DsKGA02gGRaSUOiXweGO92ZT+EBBrCMQxdDjXULvWIcx0NzBFWRsRcJpJyB45qBV4ts0/NMU4VqL7A0HkHjXHM9CsJa1dFtkKjolWEhuYCSIOM1MIpJIOd+v9sDxdUAtRXDv+DOwgiAuNHDbFq0QVgc3bp548a9R09eftzSPVBq7Vod3WP7aK9x58mTJipgkCgd9MbZBf76wksvduIWAEmz3+8Nx4DiOwfXbt29dx8A+LU4B5pIcpJcJ5AMsOW8KjYFGxo8erRoNBwP3bE1vD3Dh6qC7OVwhhQ+TiWZA5bfBZsmtbW+vgFcH602AH1Xlpew+SoBX+DNyTzw8vrG0vIaQOg2Ucrn8gDAwNaKeVpkgawDXOYJAQGYpXMZgmTzq6vLqxuogDc31tZXVwCAuUp+eWntcha0s2iaFSh4piXRglpmQQWjOsJeGQYQnQE1RJZITCSn6BLoPQb+kyBKSWahLMllc3a0e7A3rwOCKTh6ZD69+3XQAdxPWqIxZRd7aeDpNxIrrNbTYeAu3gM3IpBstdDz3VoYxloxkyVcj6JNi84USLri1SSimMtks5upAokm/o2Oy4llAAlRhufGM4XCdorGgF4cX0crLNNGQxZs3VdQAcsCQ5Vy6QSA8cjfcEM8HHcwQc9gS4CjPLYcYItBYpwSVw3VLJMcDxwSgLjCoy8xWURTMGyoKDMFtoK/R9BoVkmWUqk1BODlpaULyxc2jDD2dIkF/Ug3m77pyWo3dtQykACv7ru+62iJAw284xi90eO41Up8sXqjedcCABbQ9pPFQC87bGCKfKcznM2BtPan06bnGwIGP0syWiY2u7CYO73mQAV8p0RWxOWj26GFZuNe1XPRDy9ojvevHF27Ws8SFEWxPLGVLeXJ0laW1OkigyoT739DQGE/CqqejvkRIIBhReUvAwDnABBYVOROrRYPJ5OOQuARtGnXpy3b1mVY2XwubwWygHmRqo9AnNtO400EWk+g+V2rFuF+6aIpFShg0A/wxCtOYzTu1+tJL0YrwCIlVzQ/qrXH41EEsPIUgOG1VWtAnGGdDAbdpwC8tIxOHE8BmCjpMU684bGgHDmyxBL5aqAJPFXI2TX4htVaLYyRcoPe7vRrri2JLKdHcaM/7kx2plEgsLrpNQe98XGd5XVgR1Co6kAU+7P58U0KrxYoUaIKhQJIVDyCpnULiXTQ2z86vfPwzYZetWSjVvVGDx7KCMCCUbXd0a33n9o9PHLvv/rwXIwAbGNCVm28f/XO+0/ffXEVN/SFlW3Y6+lUZjOriTkWeOTqUipPcKYCCphTNE4K2u3xwSk88oJqjXamPsWXyLxcnx9pOSGYTeGjgScFsidut49HJAcAPJmYgOBmZxeH1WBnFzIiBeSEEaP+vYki2OHpGSG4vua6BUBojfA7oeP2Hsx5t2r50uU8lbdd8vrew1tSa7dt5RnebKtb3GLyeKd1tScdvtT6hf/xl5/9R5//2g9RUysYTw6fuburh+3jOdCrTqtCc9HLB0Gt7rLGMDYqGMbQaR0PmNq+oXV943f+5Ld+3LqyaLvhtKPH/ZDT61b97r3F9Pablebp0O448vTPfv3vvfL9P/Qdn/6Jt3787//UF6h7v/9PPvFDT777Oz4ofezXjnYW1+5HZImd7vVcq/PaWMaA4o996c+//pW3v7R49jN/+h+GbrOrDUaqNRm04ns/+wq1N47QGtlThbB3fBxqjdP9xfzBj73S+vZX7nzPoaeJ9V5kVdsuBfVYLjC6HtZ1gUhnK1WrtH4hA1uR4uF/DJXNi64ql/Js3alA7UnmkBIAlgVJYrnCNiHkAIDLaHlXgs8Q6hTIV0vFwHdJkEzXi/CPS+hcZCL158pk1m1hk6CvAN6SOBmPU0j10HcrIIk5RvMMQzZlKKnY0msaCQATJFMiy6GuKX8NwCQAsPIOAMN2j2sJANMcz4KMVSwoa4nBgQd4VG9E7W53tDi5suPZ9RDrM9pD6Xgf6lQ9x3NNEIcyTuMABBBmHEXwB4IkO8gwNUyK4RgBARj2TL1WxS5oFR24Ygy3eQeAxQoqyUrlKQB3ujh32u93ao3EiKnVRDOmRrffb3VHAJ77V85u3r77/ONXXn6lDViLAIwppo3edH54fP29L9U1twqIjLdt4xmI4nvvffnRAE+x241+H6dEFju7h9dvAwA//+iNt+qpElGSbAfnfK0gwBNYbHFBAEaPItsybRefRuIJbWkyXtmZEgsFTeHlxIajIr2rkE1vb4KiWltbX19b37yMZPnipaQT66kCRlcOAOBVPJDeyJcoEsslduIS2QyrVooEQCdXYtnSVoFhKBDEFFNYW1tCAN5YWl9b29xYz5fhGxaW4dfSAK2cbiqSLJuOwgGFgwcsChRVgUddZoEACqUSi0GUAuxjWF0USDSaADmV0AVAYM5cXJkvZpMWzr0lUUg2AgD6I9jJeSu2ojk4nNrsJCSohf/SaQH2drAfuh1j/4/vRn4c+rB4aIJ0PJo2FCq1nWONakMqFoqF7PZmKlegeM2ttRwOYJCmypUycAUE4G0KARgjiZLYEBTAaKOUHEGbQCkoIg9SAH3CsA3LxmXnOLpSZg2OILCvj+MkvGjBzny/HtuaJpAix4tcxZBkSTNlugRqg6ITkc3mCCCXkpCEcxJEHqe205lUJp0j84zEwRfWFZDPxXK/V7V9Ve/FOFlPFd3YR1xK4pI9vNioRs1WHcejASAa3dGwafiaqggi0G501XCiTnJOX+/PF/PpeAgADNIFY6/QqDKMW4PpGFgkrEsN07OTCXAViGzVD2IAO+yvrOL3WcxPrl252kuhYmdYIr2VuZxJb+RYiSiwsL0DF5liWA0jUIy+bluOzJLA4uns5SwDzJ9Ax/+K5sWN5ng87qhkcgdsxeMY1LxiaIZQKJi+LDLFbE71FADifCoNOOY41RBDVmrtOG536vVOXI3rvokATLNCxamPJoNGvTvo9SftQCgLsO21oBZ34J1GmM0lw0fpJv617XYTmFp/0NtFAEb+ef7c+Qvn0vCcSNKsw3YzNImnKlW7IrFkIYAXIdD5tBVXoziq17wqTn31+r3+uO6hSx9gZBS32t3JfFQFAJbxcqo9vt5gOD2JTwkbvV6rN1uc3EYfVrydpmABZopEIZ1bozV03Lb9zuLa2b2X3t9QA0O2ms148cLLGpAeSzIDy53efevUbkdxPRg8BWDNt2qh74TD/Wv33zx5qoDPn1/eTG1vbwEA5zUhL/DFwsZqnqABgDlqU1RVsWw28d6rUiBLmjncXbiUkCfzWjw51AuCN54CVyvzEgBwo9M9ndKogKdTk2ANa7BPc7rBZIqptSxNwcYpqo37fVF03KOzEmtZqudyrq5xy/zxVcMf3J/zTmR6RqZEZdx6eXjl8V22Pez5wIWlQI3N3ukb82ZH9QaPrn3wG3/5pZ//yle/VxlYwWh8eOP2wo27J/NuDFq37vl7jw7hebusOWpYqno8DTqtvRZRO7S07tT43q9/8Vv9vWHTDcZto+mFLMkq3avX5/MHb5XrB3vxrCZMv/Sd//jD/+onfvJn/ubL//ynPvS5wke//Hf+y88+fP93f/ytB793b7pz8sxYpZS4P2ubvdd2tP7g5PDbv/oX/+5zn/3n/Df/i5/5P0/MUagMhoo9HbSbL//LD8pHi3a35lZcu1wfnJxUtfrJ7mz+7Kde63zHq/f+7nU1qPdsS3UMr+hKjEJWLJYC/UELAqm5TH6TFIFi8yToGSCioqerZJGJLQUWGZUc2KhoxQtqkWKL20UmX8oXRfSHLmZLwNwdE6i+JorSUwB2A+MdU0kNU3xpiittGyE2rQJp5UgCARgji+pB1QdZDYoCMz7LeNeL1n4YUCSweOcF37wcaKrsoGdkGXQuxXOSood+6OOdTTOqRg6eknMVEY+gNTm5ksOw0ShsdRoYSDfZ3ZnDFsAhUOxdxrkcXfd8bBZ2AEQTIyyO5SkrRoUMv44OgQ421cg8i3ZcFcP22zHG+0Ldrkc4jmQDKUcpja6OGobFq4gNfr8NuxeLQLtZw+4rdGMC8drpD/r13mzv4ODK1bMbd59/8eHj11/rWn6AQ7/ou9EczBcnZzdfeKkJAAC6DSQxFLrF/unt59542Kj1Bq16Cyj5YDzb2wMMv333/rPPP3z9mwGAS6Rku3Zy7urZic09XoWCDnw6FouWX8nRu43/gQoYhTHOLSt4ngvU411E5vJ2Nnt5Pb2d3AKvL2Hn51MrDgRgnEWCArSMLtErq1kaWwRyOORZIKhCXjTkIgHchy/SApUGAKZTWYpi8usJAG+sX1pbWdtcBwCWuXJu5dLyeqoIklaGR4tNp3q5okAt5MsSRSFJk1hWgAVJo8cFL4kcDqULSSYlzYoKAjDaXlqLo9lsNh0AT1N1TVdVtLtw3jE685JWLLxfwN62bhfbr5qtLvyj18HbYPjZqEUh/PmqVwucqu8qIlQIoiiWyXQqx+l+TUQLyMzG5nY2B5rNrTVtThAZlpEkQYQtUiqltikRh6eEspwYt6FBhGZgJBXFOo4msRRZSKcIkquoeD1hJeNvlg6g8VcADNLZ1NGsG+9nW2G5XBEFABqglqCMYcMgH+QICmfMNQBgvKvn8R48iWdgiALJwII3q063Tkeh43u6YZXNyQDUmaS1QwPeEkkkbXgGfGPbxS4sHC8H9RvHeCTQbPbGY2CAsBAw3QQAWKp4cXeQ+JePd+aTyWQ8mTYSACZ5JEtAaPpjYIU4Q6zBB4Ofi1RJ8oADtJtuj3qTSa89nE0PFicnu9em2RKNN9Fkfmt7DX5mGSYPfEE2q14Ywl+B3VQDqquZhoOeGvkinQMALqWzBLq7yMh7OvAqeloJj6ANqzaCv6WpJgBwqWi4SplOABiVcD6dxat/ExuQwyBqwvtsgrQFMGz4JhQsnFxUvOZwMmw2ukOoCI0QozTKohLEtdZ4PKjK6OGTdG8GAOHNRtzpdQCqd40EgC8mVpTnQJ+wFGU3bLx8AsovAQBXOOopADP5tNPA+cQ4crCbvNNpwwZueK4sSpIN3KTVxD61WiSxsmZX49rkTptlZNnGUNY2usfP9q/fY7DpFLYBAHAxVwIal1/JY+cBPOPm6PTs9oPX+35kymYjDkb3Hyle6NsVM3LCxYNvvuY3q3EjHL726HwdCpNvVqEehMODs2ffAABewZ18cXkjnU5d3kqt51S+IFVoYnOtSNGcoXD0VhkjQrUGEI99JV8oafb0cMdhxSxZlMPBvp7nvcmM4QGAZd0JYWOdThmRlozpzCiymjk+JDnJZJcvgdQubC3lCULt3etwouMcXC+JvmdZzHaBNHQ2vHlmVyfPzTm35tpmNl/athsxf/TGGWjDvg9STq+YD/ad3demwa6mD555+cq//ov/+o2vfv27Kn2cAz565u7CizunC6BXtepsNLxyduqFNZsxxwDA2vHEa8T7zWJ0aCqtoPbv/uSP/5a+22t6wXTggopRNCc+uX+6u7j/vnL7sGuNqtziy/f+1+/5z3/40kc+9Opv/MjV36Hv/94HfulnPvihj33i//rUJ68cHB7duuI7s/ZkPPPqLy7Mfv/o+H3/7bN/+P/84deb3/4Hv/Wbd/RWXez2FWc66PZ27+3Zw0atwWOYoxR3jxGAj3fns2d//HUA4Pvfv0MZXG3ian7FK4bsNpMVQ9+L6/ALIewjKr/NcCg3SkWorADAoa2yeTbUDUx3EfCwCRSUhikwFEds55k8USgKssAQuSxV0TTVUi3YrlCiJFEyTStAf6JEfAWWhHMvVMYITc+tVnXYEkxFNTxc7s1a1auIsJol3QF01xBBAYBBOFQ4mgHGD5wgUcD2OwDM0uLTJqwQyL4TNKpB1QGWy3DSUwBWUD2DYq1Wo6DZjjvd0WSymO/gYGiI2OqaOJKj6R5mgtuWVnk6w8vRHAlfFIeXHE2D0hhAITRAlfFJE5blYeszsFWoNbUwjEJLTvJfdRWbN1BGozgrez3QFwC9cTdpvEJvmg6a4rQAijujxe7u3pVrt27cfv69zz5883ET9lUtbtTrtVqjM5yMjm7cffSorkd10G2Ndh+drxYHZ3efvLcRJRM1gz5aEe3vHxyf3bpz/7lH733xlThPlSgZWDQArg0/gc1gbLKDJkMWto2DMoaPwUU4Ni0A3orIJeMyaDuAJxTwvt9VSm+lC8XMNuLv2trK0ura6qVLS0mASjKBAQD8nvdcWFlbvrCcypVotlTMZQslqJk0WyxKplQsMhQIMEIAAswLbDZP03R+Y/2vAXgdj6A5iS3nAcJXN9HHuAysrAIvz5QrEl6yC7AiEIdF+KslnmTQGpRL7iY5piKh/KMZCVuwKui9bU/3JvP5rFMRKmW0hxckFd1LMW3CAk2JztB4LO371TpUQjx1xomwRi9px8KJpFYr9l0/dKqBAyLR0iRTLxJShUxnC7Ti18rFUimf2drYBiLPan69ZfNoQIUAXIZ6XwQFjC1IInYhwSpJxr2SgxdTYzjfV7EHuZjNAG2VNfhhoFWo6xh6had0AGCCxpPliq5qSeOQZzdBkMFfEoDGSBXBtDUci6MJgUTFYVocsAB06gR8RmyCpU6WGEGsuCBopzW+1a4C0FRrujvpxY5ZNlsBJm4ThBMBuKPjG3ZBYyhxPTl7brQTZ7DeeKfv+HJZSIavWQBZv9YGmtJodGa7c0Df8XjScPEImuTKQI+dENRjfzCdTeYLDRQlL+AMWkXDBw1I1+pi3/B85+DK8eLgZP/w5jgLtYTnWQqzK+AnKRLZLCmqFqaSeUEt8t3A8Sx0OpbIfDaTp/PbOaaUypI0Dl1o2Mk+my+GSg6bsHSjOgiAu2tQJHiKNmDLkwjALlDvQiGbw2glBweePS+5566FtSaeBfuGKgkMArDfGkxGGDvU73WrQaXMV8qiGtajxmg8CBMA1jCeGe+XGrVqewBI1Nsz371y8dIKnkBfuvCeLM8CAFsNHJ1SgBniHbDMU4VqoPFoDmgDsYtr9cir4arrdQejad11ZUGWcYSr0xzAM23UJQYIox/VpncBgBUVAbgO/LA/nh+c3aPwvcPKovAMhuGYUnElB5vA8EGWTw72r9x6rWsHUHqi0O7eelGyAdngN3VrcP3xvtmNm63q8LWXAIANwzehADvR+PDswZun5y+uJGFIyxuZXAYAeCOvsPlKhSEBgDGmChTwFnr883qjUevOlGKJ0Oz5lYXJSWmKrATDAy3L+fP5OwrY9qqtzsmILdNlHQC4xKn65IhgZVsvbaVSl2kyI6ui0b/bE3jbO7qaEz3HNzPrm+vplW15snCC6QszLmhEup7Zzm8Dtdoavh8AeDayiyVSTmnPvV6fvjaDIlvuv3Lmf/LtD/+nr37tw8wAj6CPbtyZO2H72m47iiSjHvf2ZnuwtC3aHNd1WU0A+LRTqB4YFVjrP//bf/Z9CohTz1vMg1rsq1G3fnhysj+/87o4OF50BlD9f+3vvvHdP/zTjSv/5JN/629/z6/m3/iDn/70v/lnv/yLv/RTn/jJ2WR3bx9q+N5kZ9wZNJ+dmMPR3s03/vwbn/3tr/z35s3f/fxv7unBQOr0Vdh67f5QLMez2BsTfEVQBLeGd8D1472d6YMff7397a/c+85bHMgV3xIDxeNiKWUJgqaKaKVaKNGl7bV8TkiM6YkiyJtsXqx6MpfmA9NUofqhWSxUbOyBgJIplC4XhAKRL8C3wllFuqygg5XpaXhWJokqdg3jsRsWHje0pTK2L+fsCPRvZEugYklYVQAZsF1AhWC5KYuGrRqKLiFsJJeWMk48UniRJIKalhHuNOy6RQBWdPRewO6EGiBxAsB/3QUN2whjtTG/t9GstVr9+e7B/lETGDG2LtuOiQVaVy0fw4p1LOJ4bc3RdFEPoS5E1cBGT2UPaip8XahMSb+QFcHv4CBSuwGSFSq3qZkY76diM2gZDUoqFUlwO/U4arcG7WESAJAYcWAYD7phDaYLPIG+evvGrWff+9yjNx7VNTeoNzu15MS51xodXL/70os1LUy8oLuj3nAyWxzeuPfwhU5cC6Nuo9frTWagig+uXHvm1r1nX3zuvU9qObJIyXbifmUiBgdY3dxEC8Kv4N0ounEnLpV4c4Vn5Y5WlnRTFbFvSAZAflexkAe4wTDClbWNjdXlSyvYA72yhMfQy0tJIPC5cxdX15fPrxAMSdIATpkCUUyXWKFYkJKRfpLlSwxT2i4AhuQKgD+5DWzZAgBeWl/d2lxbSXEVQS6sLC0tradBJfOqY8BaQmtTkQKpi4eyAHIiTxSL2VKBFhgowwU8hiVIiSNIUSAIQauIIvwlWTEGs8FsPg1K+RKB+Uk0zaOtJqZvwcrBq24DZ59xMimOG63kEBo0CAJwMosE1bEZ+tXQroaubxm2rTkmzZta8XKmUChXY6mYy6Rz+dWtbLHE6kDjHDz9ZekyyCaRzOdyl7dp7HlXlHJZNpKA6WTo2tBVmvMDVYAHUAJaSgsKvBbdTk7FHUMFWaqxJbyxkdDaqqJgE5bvh3VXgdVOK2IFjyQcXwX2QYLuBASjBNPkSix2XqAGpygazYiKOQaWnFuNJ3On0uyGtQYsXMUdtmPXkrx2aCo8sGMncgOcqsOk3AARGHCp3u13cTqr2Wz3Fz3bA/4Czx0tbCS1Wmt2uxjfNdlbTKeT0WgMAGw+PYKu6F7U7g96g/nObLLQOaHMCgBtoqxbsOiwNasDMmGKLh37/eOTnev3ehmG5fjkcjS/nS+li2wpmy4Jqu07QAftwENXSt/VYKFWqHw2W2CKqTwCMHyg2GXpAi7NdvbG8jYsF+DeficMXVBfisTQrOnqlRIAsIIAnIfvAF8SXgZQbBuDCmqwjevNalCrewDAHLbrK14LBHy72R8NOg3Pr5S5slzWa9g4Nu6HiohtaDpGMeBoWq3aGQ96/S4A8OrFS8A8z11YuvBNWQEB2KyjnbgiCbxa9zWojYW4CmWPIYomTh/FzTjAfOTecNztj2quq4hl2anjGER3OB416kIJ1j26fN1u0LxlJdfzINl7k/nu1VvFxHFBFuliLl9gObqIXdCyYsIfGezdOjx59NGuVrVkM47D2QuPZAcnzozQMLsnD3fN2PVcJXz21vk62u6YPnzpeHp0dv99Vy8AACeUejWVS29kspeLoK1kmWO2NwmiyCMAb3IV4BRms+r3O2WCJGVtcgqfcyVFs3I0PVJTjL87p1hW5kULdEOndzISJCDSAMAkV1EmVwhWU12XT6eKG9tbIKWM3s2+yBjBleNtUhKcUJDLSrve8aKRZY9enLJRp6ZaUDE25c48E73/LtXsDz2+kPf4zODbD3Zf6Tqdijp/X8O+/bX82Vf+3+elvuGPxgdnt2Ze1L2xGzsu5zp693R3HIahQRujGL7B8SzotI6bWW/fUKBQf+yXv/bD1s6wZVvzXd+pBNVGr7Ebzxbze2+Wuzt7lYXNHnz5u+5+5Ft/YXb06fcd/43v+9XSB778g//xVz72k7/1G5/4+A/uP9PWwoqnG73hXD/beWFiDIejO6//6df/789/+RflK9/9u58bBl1P7g11d9xudW+brDtqqSMbKojE6d7eEQLw/t74/qdea3/bk7sfe0aq74leKES2LfrCusIVt1eX1jJL6fXV7MZSgeMNIcfAfisVEgAOXZHbEqoedtyDApbR40JSFBC4DJdby4uYl8pVRBYTS4HPWxXJ8HTAMkkUdccw6w7m4AEWgnblRbnM0lkrcnw3tKD6sLRQNtATwwyroQN6gC0LqlHBuM/EqUkBDSozJAM6gASK5ulaBb6mrmLWIc3D3tHQrBlHL2FXYir1/9QFrWCLFciOqIZH0J3OYGdvf++oXcPQGAwhNTGnD6DeSKaNFZC/OAQocizlNKKqYzhRZMNWNBwTACvxKIByoGp+oiDqsLVrMU6cekAf8GupeP0rY1Y8fHu7Ddu32+zG/e4wqqL9EDogttDZbggAvLt/dHxy48at5x4+evmV13t2EMb1RhUkcKPbCg5Ob9x7+VHdrsd1kNGgd8fAHK7df/jqC42oAYy+1u72pvPJZG//8PTsmTsPHjz/+I1oK58nJQtNkU0DXo9tY9w5iGCMi8B+YPwFjD5Hr8oEnTTQnnj2jIe5FQyCqrwrn8ukLm9evrzyVzaUl5Auo/sVwO+FCxcBgQGSVy+vpQFWOCh8AE+ZbC6LF3xFIHEEmdwBMzyxjUfQuXyJYkpr5y8lxlrLq3ixvLbNKUKZXD4HsjhPkiBxTQCJioFX/XRZoClVLkkg8GBP0wpfwMb6LF3I0GQBmwCIJCiHB/71//P05lF25md5oI+xtpJUqlJtd/nu/fZ939e77/utvaSS1FJL6pbU6m611Hu3bYyNq5Rx5AAAIABJREFUFyCJAwEC2MQJDLttIIEQ4iRkmDOAE3I4c3IymZkThuGQyTAnw8CZ5CSEf+Z9PzW07W63VKq63/J7n+f5/d73eURFtRQp6I+6vV5NRMvGcrlEYZRBuUxAwUePR5oGxBANW8ajs7jZamDQPHY/1/M8i9wTq9tO0Yo4irERDx1JFcUOVHoL2678VCgRxS0gJFulCi1bfq3l5mfAoEBZReOqxeL6OgsvaZ4nZTj5XDHm+mi6o5FCVNORle5s7TBVRseAaTeJQFoB4dAZUYfbQ1AshmepoIQ8PAwFDmpwJK/Dw0D77kD3DJqEd1IDJVQRHYepMCDzZSCDAiwchuTZagXuveJgrnuiAq1o1tLAsbxRt+Z7qtsIDZGtlssW8MkMNDYOhwOwNGP4US2chcZ5nHpndNTxHR1dWQBYZGADIGQ7vXp9OJ7sHy9B/04nrTBwJfgMuiIbYZbi9u18dzGfaywn0gzgr6IbLjrEwWvcHc9mmFe92JvvXzu5drNbIFmsFdVyoUBRWwWWL27tVODBx3hClFPzMPRsG8SRRpaLBZIsb+9UyXKhBAArqGZQa7RHy5ORAHIAHr0RdjtRYKioaCuM6ZnAhApF2cNY4PLOThCjU3uSREGY1JMwTjEYMMuyxFFUQYCbZfq1/hjEEIjNXjcOFQ13T2zQyJ3RsBdzCtQU1XL9OIobzUYat0ajbrNzoH3HubOgHM994hNnz53dEliK5PwaPG8HGFNFqzumDLcnjQxBoMolkN44vZB5cWswGnaawGBqUaxxvG7F7cGw2R71Bs2GWtbtJM6687stVpH9BBZtil0j0/n01n2Kp0js1KCqO0SZt7gSsUrJgoFzF539vZuvPnm/58Su4nXqyf6zN7xa6Hi6lUbpwb3PXtdqVuyYrTcfnWlDOXCMKPb9+uTo1t1P7n8HjhWeXTlzYbNQ3NnY3F4vqXQJY+4215kdkLQyQ24qmlxlUqAK7RSWc8kMRsueSQlVtirVx4diiQt2JxiRIggmIEyzcwqCjzT16cQuS5Y5OqxyrqlGLYU6e1GYWCIXte51WNHyrh+UtjaqsshrqhD3mnvh40Gj8+6YC+t1z94gdohSfbDZ/8xtvjNa+uUt2jOstfDg6LV6UHO0+GZ/3JkFn/2d330k9MygN94/vjP1wt7pATBLqa4JtRv781aaGaw+aeiStj8Oa53rbSLds6xOPH7ryRuH7XavGcTLmRcaCW222rahdeaP35GHx3NnFlSO/usXxl/+2s9ff/iVZ3/t1Qf/hLr2nz73rW98/y9+/he++cOf2z851FVdMpu1+n7rdPnKPBwPhrdf+4lf/sa3/s530VE/G9ayVl1qdoxg2GrU33zK8HXXtBdRUzQkJ5xfq2ET1v708c++1fmetx9++fao0VWArOuaV7ViQrSvbskEgeyzVNgqsb6qkHy1KhIEUS1vbHGpp1EFIfR1DmSIAMTMNkRR19ApH63mKZKsFkRJBq5Osgoeg+kmKGAVwUyFypqiDvMxlTZ0FVmEWlrwUjeCX9N4kS7hJhPO++B+sMqxHEuCLFUlVQNUQGDEwykap5CqJKEElmqCtHVMwEMczJUAjsPYAxmLe66Jq2GgHc/LCjBykBUYtRCgK00TE3UXB3vz60eAae1Wgp9Ic6BY2sAOsN8awFcABAamzjGM3Ugw18DGwN8QqYNmCKzMK5j5EtTifBMvw/QwPE12YjTAt4EUiOgZIQsa3Jtg0GnVn1f5Vj6DhDq40213YT13RtO9a8d7ey/cvvvg0eM33n67YzgBZhXWMS+9O9jbv3nn0et1N8xqSdrqI8jMdg9uAwC3MmTQ7Q5q4vlsvjy6+cKNF1565eGTDxo7pWJZ0tBGIQ+acEwbP3vu5IUnwbk5NHqGgCLEfl1NUeAGmxonQLnHNCRJAAVc3N7cAgjGICTAzIvrVz46/s1PgM89t6M/e+HKNtAyhd/B7dkdgqoSJGjeMvccgDlQwDKzWcIhWTQqJtcvrF7G9MLLq1fWrqytbgu6KJOXzl66tLqDHloyPG1BgUJsy4wocJypkZgmJSuCYCkMT1dpTGjn8O8kvhwEQcPLp8AntgzDb8CaSwOTKmNSNYhmQN9KhdgpAB7D20sSNHwgOe+AsrzAd8IM9yLa6IiM2g9nktDB1HdwKByUqWsJkuvD/WBLpYocNRSiVNhYW7u0RQDzNINOP+BYtlLGc19N5chSeWtHDnwUtwY2IeWt1/BCGLavVuUkwe3JSnGnCCLWypvfQKd4PrJFTtKpcgVtyyV8zU0bh5DSNPEVjld0BY+0dR1qJ0sKKIYlkSEl2ybLlCSifxnDYksCUIxymaJZ2Y4avWmq93ttkF6hpQWTbua5stOMcLO7QjgJyDmQawHQA5wDRgBuYit4fwAquDc+bAMAw01neAb4sKQHuXdMbzyb7h3MMZVh0gReIQGfUWTFhu+QA/ByvljoSEh4GZjw8+tP4MbiUc9ssZgv93YPTw5PbvaKuJMsIxMAibpdrFKVrfUdVnewucJ5/qFCeC9d39GqRGm7Ui1tF6qAqgSLZ8AIwK3h/HgoEADA8CSjfhvuuQ6FRqhwTuBIVGF7Rw0MCc+Ay4BjIVwfnhKFwHxhWWFvRa0Gt0KUGUaQFLfeHU962Bff6cQBvPcSL5pRrd6dDfsJr/CyodkOSMoww+nw9rDf6vQOjbMX0JDmozlgAGCKBwD2fVM1VEoFAJZEslJLoIzQAMB1DCKs13ALCyfexqNRFvgSrVqGlzaGGBM+bQYCp9opLPDpvQ6vqgDAXtrs4ldPF7fuVjmyquuqQdMlsipafIW6ymmSFQC16BzcuPvKo7e6UceRnU4jO3j21EoSuHkuwPnBnU8fazWcyO6+9xEAm7EDIqS/OLkFAHzp8sql8ytnVzZ3trc3trbXigpTNjWhsrFOF3jgtExlXZJ1TqsDV231QHYQpj84nIS8UKarWmN4IFfEeNytVmmKYZHZetnJQBABgGcztyTa1uSoymBCRhr76+L4RZdngvb9NiPa7rUDgsK0gfWd9cvVytoWHaRx590hl7Rrvlmpbhu8tne5+T03hNpgEVOk1Noee+TypbeyaCLaAjc+pl7+T3/2Z3/6BbZp5AB8GwH4+jJwHW4QFt2p16onNZPVJi0A4L1hkLWvdcjanqk1WtnjT33fa9Gs1/SD2cj0eG6LV0SGTca7rzyTOoeLOAO58vWXotHxM2H//cloeOezpeSr0/cfnn7yzntf+eLx9NZpnaOBbwSt5OitySszD1TUvff+xme+55t/9M+NvdeXE3id6lqtoXjDdrP+8B+8Qrcj1VMISTQF1RgdJEbr+uHh5OFPPWt+99MHXz7pd5tBDWSqpFTiZlFPKoXq2iZFXL18dWu7CqDpUiAfBPS+IDYLEqAeXRJcS+UFmgTur1u2Di+HgHNKRKHMQOkrq6rCiRyUKVCsumkFBicJOQAbVojRPLk7U2hB+RD4aimoeZjQoPMSA6hherkVHchIDQGQUXUogfD9sakFG0uxjrE4IkEqoMJRsNq4BQ21FVS26fkAgLaPSy7xcOwRvgVULCimOm5BAruG1VRrNPvT6e7B3slRv99u18N8ggAPd3EEE6N0ALskHALGkVPGAmTNMh8NNKMECrKsguRGn1zVMN1aPUswxhS7a2MUvgFIZMt1TOQDAMAADyIfjTsZFLm8mbTXxcFTqPYgv7qj8aA3mS2PT07v3Lz98mtP3ngGAAzokKF1O0Bwuz/eP7h56/7jBobHYXhNe9wfLff3T1/64JW8bwZPpboDuJjl8vDWiy/ee3j37uN3azvVSlm1sRMmxgN31/YiNOFA0HWc52l3eBKPYQy5mZimA8E2DXiYKLdyO+iPVYsbG4XCxmqeBgx/ra+uPJfA+ewgjkCiCr60US7THA1oV9je3K5gfjco4DJvaFWSowGAaaF6FSooBbq0ylTXV1ZXUf3Cd1wFBbzBa6Bu184Bwl8lAIAFw7FlWfcCS8IEEFZV6HzCTRYVB5QVyE1GlkmZI0S5KoigKOHbSzrKdsfU7QzTLhqhQOJgDlnFYwoK3kYCoJ3+KM2eBbGIipiDByuqGFzr4l0BDtXMyVGjVk+xTw9w2AMdaIYeMEyFxKarhN3a2ry6vn5xu0rTvBm2ez5Qf4B6SQfuwpI7pa2CEvp47ItBj9gB5+LsF0CAVNWzEBQwWy0WShQIXhvnztEfFJ6M64qyTqH+FbHpVsfXNAgAg1NXYBRTV2wbN+WNyKApUeIllpd4SrIsskSC/pVFFOEoghkKRDTDqWbc6s9SYzRsp1EcmDKUmsx1ZLseGCIHlCWEytSENZZicleaRDkAtzvt/nDUa7cH04OW7+K8EgAwAz/AcFIgJ+PJaDlb7k6G49Fk3PBceD7YbqX7UZB1R4PBbDlfLjS4BFgYHCtqJnCLMGngWBNmyi8XeN5zcnB0s1/mBVBVwMh4LBACiLr11S1a1vNT8QA5S4SN67AK1QpR2ipXCwDAlWIRx5Bwiwv482B6OJSqAMCqokajlouLW7eYMmsHtlgtbW4bMaxQsrhFZq6JLZ15xhJeZhNhNKo3fUMTJCAwvBTAJwQW3O81Op0kFDhaEUQjztLOYjSqCQDAJh6cwedCx9l6G+pFr3egnrlwPrfCwjngHZ6GF9dPA981gNwxasOzJJGi6qmtSAxRfh6rgvtZOH7YH82m00boibQCaqRe6/XH/ea4FfFVzQFy0Jre73CqivZA9XoLONF0eXD7HsnTlIkKmCqSVV5lKuRVTlEx/DzuHFy7+8rr7/eiJnCsTrO2/8YTPcxCG0R0XDu4/eGRmgITSjofvHgmN0k3Y8vysv785NYHu9+xsnL+IgLwxhb8Z2dnrSAzhGXwlfU1eodXTZUh1mVFE1zMlUyGCscQhj/Yn9VUqcyyfm98IBF8MOpUYMEBVUQArl0bCQKha7OZVxIse3pUoaVYLzFa3RrcuyuJsp+91CRFxz05qGpKeWNjc3OLsCTKODTtaPBuj8u63VSpFlYUgp0VOp+7pjdH04Sluc6qeltanN5z415V0QlHCx7+0e/+1h++y7Z1BOCTF6d+NLgxcW2n4nmbwVQWs6RuseqkDQ9ld+Cnzf1GtXFgGe2u+/mv/8IXg2Gv5XqTnmJH9lZZsTSTttr3n2r1vWXQd9nZn37jO99+83cGn/r269//Mz//x6s3fu3Hf/lnfuMXfumffOPb33vzYNGtMA6vZY5ee/vg8cwddIenb/3Ib/ztr/ze/1VzPnlzDwHYqDdkb9RtZo9/5f2dViOJHVEMQ2Csw71Ib58eHk4f/NSz+nc+efR9007b9xJgeoq4pbZtzqeJyuVLm0Vsl7laMSQ/xRY8DjdaiK0ykEuZAgA2ZUFiEYA1BEhZFDAjgSyhOz5VMS0VN+ZEzdBkQM1AZyUeh4HgDYjybDzPg9pkwPIW4M8EGTBXJzCAPhOSZrthHHpB7EL9E0WBxRM8gAglTwxwQH9iNh3HcWRZApViGcBtPQ2QkuJAPoBKxZ7mMM0S0Ka4kYbWRKJg5Iwfj71CtLOIXeCXnel4NKzXOq0M8B5zTPLwuDy1HueAcxMObLOljSTws3qIp9Cor7G1VWDyM2BDszA0DAd2O3GjmYBuN2JMurctPXfkAyCDEslHozYOK6HUyhPwcL8TFnK7MxgNxzhAdHx6/9adB689efLGm8/asNyfWyPUG53BZLr/4v1XXq/7CfpgNVvdyXi6f3h068EnH6U1zLAA5TKazpe7y8X+jbv3X3700oOnH9S2KgDAroNtWLjj72ETsGdpup2bMiIThk+KqRi6nAOwjk3fuckXRhKilZH6sUohB+DLuREHYPBlEMAXVgA48cgWtC92YYEA3imUBXa7whUur21sEzRZhrVIV3hdBQVMcxxB8ZWrBQo9LEA4EmvnL+bZhivnV/CfAMCsxFw9f/niylqhAoVMtRwAW9c3RZB18H5xlMYzHBpioUstFF0WagQAsKxV4LEy1Soj2AYrQMFXRLO9u7dczDKVxkYtmhfhEWGDEh464jwZizPhMiYn4FkdIDDuTMOnFQD34Dbkxh15+1OSxUk9TU0NqqobRBEAIDz8gFpfv7q2vn55h6IZCXNpPZaTOCjZOryGXHW7sAEK2Hve/wwvOTabA6Ig6VEoIwtMXeIQTTArGUQ+/B5oZNvC7D/QNlWGxxdVkNFBCzu3g7gecJSK4KvjEbfuWXBPOF4DBSkwoqGzFQopnpTTEhZbE4kKXI1mJ63+ODYnwxYeNxhyOO3XPEe0Mh9Pmwki6QASZGnUyOIoTqIgwTcLOOFgNOqD4lruAwDjgAJaU+OScuNmpzuZjQBil+PhCBRbzXNNCe1GFQveqxo6JM8W8B8FnhSNMaQAlHiMnbY6HYzbnO/uLvcO4a3dP7rRK/KCJHNVWkSwdvTK9qUrm6UqrxjYfIaOKXm7oO9avkpUiO0yuQMymSiUaPyBqubBo+nPjgCACUrQFDkctmxM35Z0pkybcI+qla2CnaocQ5a3qwkAMN5KjEBLsmarHsE9d2otF625y/AuSVGKI4GD4QD4cBJJAqvIkgkvQAvEfh1KnKSBujYxPbKGbpSYHTXclz5+Hufg842gM0UeaI8IkOm7UDY0Vml4psBTVC2xFZklymmjmaLlZ9bqD/q9HICbkS8Bt3Kb3SYg+mQ8adXEgukBv+7N77eAY7pRBG9g1h4Atd6/fZ8WKMpWFI0iCxWCFUmicgWKK76aUefg4M6jZ5/q4BiJ222lu6++qsVp6CheltQO7nzqWAP1maTND258BMBQpLzaCGrFh/vfgVay5y+cWdnYuLq1iQCssIRpCcTVdWobAFViSxtAAAU/aNS62UwB+qb5/fmsaallToyH82OxSPuTAU6wS5JmeVHWut5nubKmTmdeWTDNCQCw6ktlmmn0JveuVyXdq7/UICXPOzksAFIXidL2WknjKeu6asSjd9pM2h7W+EJ5jaWvMMry3VOtMR3HdLHskNYH3u69x5Hd9kTF6HJp48f/yQ//g32qrwW90R4AcJgOb/YAVngtqnJBe1ADAOa0cQNkxW4fAHivQQIAm912/Hd/5QceZ5N+23WnHcntjYQNJXLjyWzx6Jk3ureMJyGz+C//8uUf+zt/cvM7/49f+rkPvv0XXPCvvvHr/8Pv/5uf/oHf/tZPgnDrrlKmFjVkY7M+eTx1x53e8vW/9z9/+ctf/ee+9/DOC91Gr6m124o/6bXSxz/1QdkWJKtuc5krmMnsINJbp/v780c/+27rO588/v75pBlZngVwKG8U027YAl1JbFxdvwwaZYO2BK9GUyxUwByAS0pmi5WCEHjAHmmSFzTteYqsrikSDwqYrVZJ0nE1mmM4xTRkAR56aPISyFPZ8B0AYBt9mBz4G1ATBUpoKUhtBGBTEGlCUgH/ksjzUz/PTuNo38U2q+fnlCb6UH0EwHRVjTzb1j3QEAjANA9V1A5jHzexQMMYoStCfWUEhH4DHe7SPGkli+JGPU5ag/5yPho0ABdxvtfFuRD4TH5kWwjAGDAq4BQSVDYDviCtwYuLp6auY0OFVDCtFsq+atWCCKO2a80EABiHfRKU4JaBkWz5SC0PYjrot/IQQmwKbTyPAqjhFnQHqtlwttg/Pjp+4d79B48fv/r6s9caNi52/Oo8Kn28d/fBk6c1M4nTZhtj0kbjxf71+0/ef4TmeHXcTp/M4C9QwDdeBAB+/ATHkIhKWQM26FiYyWPhwAkKOmwNwvqG4hf+7uIpp5ErNszUABA2DQE9OdAM+mOlnc3N7a11PKxdBfi9jOndKH/zfwIAn1+5BDB6ZavAljdZdmP13JWdchUUMGggusKpUn4GzBKUSG+WaAoEIskw1bULl/AMOM9PAmDflnRBYDfOX7q0cmWnAkgim2gFbfvA72iKoyiGFJkqw4LSrZbK5VIR9GOxyNMlni/DA2IompMAigTdtCXRHV8/AQRumDhKIoo5s1DREhRxSpFoXgY8UTGdIm+0c/K+b1WC60WnGSaPO8T0QxYzfW0AISAChhWnaB/um27KbSAAr10tQsFR3bA/DAATaJoDomWZXKVY2tpRohBfj+fNzxhLHIFw8j2N1eIoB+DiThHuT95qiAe9oWkG8NFVk8HQBQm4GtqW27mBSNhMBFJ1dFMVVR04pGmKFCdrFjpjMbDuRBIEsaLKHPANtARjMZ4B3ksnAUAJdVz7Ie7s+JN+I3BFsxbgGHClGve73XaapfV6LV8R6A7W6fVxlLffG8z29pofATBOOUiKGScdQN3ZdDHbXQJl7fa7qe9bAkOLKgjSOG70xihy54tpDsDPjTgMFyAra+HG9mgCALxY7u3uHewfnra3SZqligUalhDF2Upp49LaZqHCaUhacgDGhgxYkADAFVC+VWp7KwdgIBmA+KoNFHqwOBmBAqYleLzBAPOAVUXUBAIA2JaZ6nbRzVSOq1SLRSDdGMQJKj/NsjoIYHTKc+odz3RUAd5RUrQVS/e709FgPGiHIWCOqCl2kqWtWW+QAfOTNHi4hh9B1cg91PrD6Xif/3g+k5cD8NkST7GC5MXA7y0NtL1cc/LjuTQyAYCrBDLzIEZ124cb3BuMBqN66EocPNC03R5PmkBsmolYcd200R3O73ZYVQXiljZrtQ52fMxv3mcEomJpqpEDMO48Vq7wInoGhmFr//rde6++UwvSUPO6TQDgRwZArq9b9STZxzPgegZ8vvupFwCA8YgtCR07HR/fvv9dx+cuXbpw6cL5MytXNze2t7d31osGTximUN26Sm2xIB340qZja0qY9AfL2XUHIyH83nzWsrUizbn95alS4tNxD9YD+jwYbpQ1j1ocT2iogKu8pg4PK7TjqXoaj7v12zc5iTcHd+uU7PnXD0uCAM91c7NcZsur5dTRo+Hbba7W7sTspiSrsWqE09cXfGsyq5HbMqVN34yOXnkUOl2X97gsdorv/cy3fhTeYDXoj/auvTgJ08HNhhsmhsaRItcat7PM5I1RaqrGbj+sta51mcaerrXS1o987Xv3Got+13PnXSkCIKoUqrx07Xj24FWlfm0SAQDv/oefe/Kj/9Mfjl/6vW/9fz/6U/+Rnn37G//mm7/2j/7al3/nl35ksnu6t1kgnZgzbYrrPxrb09Hi+DN/9Ce//dXf+GE+PT69M+j063oXAbjfTB/84gdlVSozKlepOaIe7h+HWvP6/sHi8dc/2fuuNx7/0KQH4Kz5AU9x5arvMkJ5h64Uy+trl1e3GcNR4AcB/rJoRVnZKkoNW6jgGTAgFFHBLTMNk4qw1Ufjy1slliCqpOfpNI7qKDgHaduBwcl4Hmr6tunpOAWDm5846iMxFFkOMzfCAxRBoAhJdmw/BgCOI1fHMSUa9KSBW6QAv5br2eiCwXMgaeiKCC+4IkiAcALDMiQKHcNDJw4/BGZvBY4IGofNnbB0z9XdGDVoLQ2jVh8Kyv7i+HB30cswYsGD7wsl13KiNMKJFRCLKhJ1gYFXhrFqUZDV4jCCjxX6OA2Fx9OY7mRpdh3KaJaEEYa9h5gvlOfAO2haDVcvw2eTFSkatmoppoGC0MjNl4B110BXoPUuKI/da8fHN196+dFrr7/+xlt/BcA5YPfHu4d37r76ZtOqJVAys3oXOPR099r9V998tZ0k9Vazh38Np4vdg2u3br94/+GDV9/5MNuqUkQOwMB2sAEcLikKXcw9z90PQRQEUS5/3OdzSMhv0DdT0yWcCX4exrCD4/lrq38JwOfP4xTwyoUzZ848nwMGGL5w6ep2lShVq+vnznzHGvYn0zgKw2CDLkmx8EwIWqhullkaam6Vpoi1lUurGGJ4aXUNrS0BgFmB20ST6Svb6KElYpIUcGl4OapVCdQUlGuSY8sEXaZ5YIBlmsSgiTJNFFnM1yUZnlEktHXR5HBx/XC5nNdNOb8EeM9A5uOF6RZOIglQ4eHhxFkaY996LTc+DD0bp9DQMkMQOZokQV3A5yyVAfo5gSEpADfAeEvSopgGBXwVtAL8nqD7cbfvA2pjW7IomSZHlImtHTmKXDwERgC2PwLgzPd0To0inGAnS8VyhZVw1jmHhdAyPN3kFRPEPihgWQQxnzcj4aRAMxVRAcs8rxsca7k2DzUNXinsvYZfAgAWBFGRGQYPgPEX4VOzrGTHwNuC5wAMQlL3cgCWrRoo4HwLut/rNEAQxlm9liS1JupfgIVxv9/vdf8SgHMTVxYPSc0s6QxqjfFsPtsDAB71hr00CG3gRyKsbh90ZQ8DrZeL5VThRJGROcAs1XSDfNwLoR1ezvkUv2R/7/B6c6PCMIW1Ncw23t4hypvYYH+5KCBdcnIARmt2zM709CrQSDoH4Ereg4U5F1YQ1mDBjCR4TMC9tLCfYJuaqap8mdIdCzTnFgAw8LoKVSrAN8Tt5zxpODe9hiUDoNUB4qNyPLpmmCDGrf5i1B/1G16gSSSjaQ7GEc4a7QjkPFqcWqaPGaaYIt5ug97fAwC+dPF8nsuJAIzGKG7s4/acKlFqw0ULLCoODQWkfg7AaGOXe9C2cfR/1Ig8RZR0I+10R4NZvznppQLhWFG9N5rd7guGDlUkrQNHH6LD3c37nAgA/FETVgkeNF2+LMg5AAetvRv37zx6O43qnuJ2Gtn+G4/MLHR93WzE0d69776hwzVntdGn7yIAA+tMQUnU5qf3Xv7ctTOwnC+dP3/mwsbW1s4WAHDJFAjdFOnSFnmVgeLKFzZcR1adZDA7Pr3lyBRrRMPluGZpZYZ3+3sv6CW+PupUKZREwA29pHWtxwkV01jMfZJX5GF+BhwE7fFpr3HrBi8zcu1mnZG94PSA0gDur65tXi2VrqylfcuIx+8PJOw75TY4lffHx0n7/QHXH+61yUqrIqSnrcNbL7h2h6XGvtLpvf5/f/4P/scGHypBfwwAPAri3o3EDkLNuFwv8JKSAAAgAElEQVTt6UrUq2UGbwwjQzWW/ajRvtaharuG3m7W3vjCT7/QGA76nrvsy5l8UQzpskQ0R83X3jY6J31/4hA3/+uv//xXP3nj+P6XJv/mN7/nT0uv/78//u+/9j3f+cnv/uKX/vpyPr6pbJQlumg5SXv02sTEWdEf+rM//3++63d/VTIX02Wz203NRkNyQWbXn/7sU55zAstQ1Fagm+nRcaA2rx8czl/95if7n3v6yg92AyaJRVuFIskoIbdaKBQoWODszuV1xvEtww55AXAM+0jJ7aKU6jxJSJ5lq0KZAJUo6/mBTZiGtgzvB18uV6uuZwB/Jjncy4Ra5CMAA0nSoNL52M6MuOC6uqRKvFjFLegI4wEk/MaSZQdxBPiQ5E6SDINurs/HhHA+2DfhHefQbpgsszIPSxBjjjSBZys4p6B5sNQCL8C+x8jB/h1MsxN5FQDRiXAVYWhgAwvOcnGwt79s4VBCHqWt+pFjxxl26eNAvQiXpogsr9CUic5IGVpheYDvCpRAHdiFKArAjb1GI8Xejma30ar5AMB4vo0qWVNlFRORVLhGPpm2YwstBFqNfLcPW6caTWDTo2F/NBzMjw4Pb76AccBPn/7VFnQdrSjbg+neyd2Xnr7fsTBBPau1+j1Yk/vX79x/4/VuDK9Vs91F8TKZzfdPTk9v4hzSOx+kW3gG7EBFc/OIFpyJCXFnL4yCOG/5tm3DBtph5u4mOP+LREqHNaTjFju6UX6sWNja3NpYxySGVbSixCZozAU+c+65ERYWnwtrO0US0P78x8+dObdeKlcQgKFyU7wqATrh+DjDEFeLoCyJ7QpVLa9dwM7LSwDAV0AIX94SVEYSts5duLhyZZNgaAo3k3Gr3LN1msIcApoWGYErkSItqPmwGU2QNEGzqKfpKkFUSFbBKWDHkqLl9ePDg0XNNhy4Bh2vHi8wP+j1gYFBdYca3Bv3Qe4BBcNTX/RBrmM6ZRr58OVIPngV3heKwqQHvlImyfJOcQfUuxyH1SvrVze2t7Ywh0f102bHzVUiDdJV1zCtd3NbCoOPpn/xqB3+C2I7jUKD1WM/D78uFYkqI6kGjoBh54BtwJezIqYZMnmEFK9axvNxqbARS4yqC3njM8NaoZ0P1fE6z9Ikb9g8SYPQVxSeRe9tgQNdWQQFLJphvQ1lZzJopVEU2Fo47dU8R7YzD6fzy0TY67YaCfxeWsPa3Mjq8AoNx1PA306nP10iAJvw1goSx8I77GZZt274w8l8vr8YDiej5agWxq5E5wo4wFcSD3lB5E4UXgIAFjDMyvbcOIqxfWvQRRU3GU/ni73lwbXG1TJNb125uobB0uexjeDSxZXLO8AssDcBz4BzZ3bfsVyTwheqsr1VqFaLJYrmsH3ODuPGeBcVMEULum4ko0iDp21pIlMiNQxJJXZKTmJIAkkWS6CnMS80gf9F2GyH509RrdtNLM1A520J9+qgVk9Gw1Gv7oUqV6LQxwek6LjWDElsIJFs1w5wowybqNp4bHQofBy0I+YBP1fAmEnjJgDANipgo+kaokjTcWgqCvCyuAkPIqsludFYs9UBsd2KfcBm0611OsPOvJsMenWhbFtRA8jKnQ6n6a7nZzgHPJzt7h3fvscpdBW+mUpWtsslqNPUzoqgIgBHYXv/5MUXXn0vS2ouAHA9PXj62Ehiz1GsLIx273zXda0WNtJsgmfASO3sDH69vXfz/sPPHX8H+mmeWwEA3tnZ3igU1oqGUDF0eP2L5BqlCDK/ve7bqmGm3cny5qkuEJyBobuJqlU4we0ub2olvjbsAEnmeV7VocR1b45oljDNxdwDAFbHJxQDNTnMJveH3VvXMDDHOqoBSQxu7JUkXaQLwMO3C4Tz+iuamU4/2at6SS1WGUaBWn8wmn5pX2hP502KbrJ0fRHu3n2SqUODDCfdo+l3/efv/f1/3PIaUgAYff3FcRj3boEEMiW3oA10ftav1wxOG8aaoi96UbNz2Kike5bZGcWPvvhj11qjwcB1dntS3T5bjQNNpxsj5/5jpnd9GLZdafm//LPf/Zff/OwXfvC///7f+dc//efEa3/xS//r3/wXX/jOr939yufHu9Pr+hXB5ERLhNfv6cwYDw5v/Nhf/Lc/ef+b36LZ8WiStNuJWW9I3rjXbrz1cx/6RDWrRW4CzEWPj499tXV9b3/++jc/6H7+zUdfmdY0Y6DZDCezDB9IRpSiZaEt7awRJhRt3QkZDucLaIqubpfkSAWhIDuGqSkVAp3nTewehrXjewZIaEDlatXxTGD7lIiGPzjxqNISdirIKMRs7AnCbieg2arAiZWiD7wFKL+FACxLRt63GIeJC78LFdzFjSmMFcC2yjQEpJQ47INmGCOwvSRKsdFIlUVs/oHik+aZe5hA7ygCfFIODQ05BSoxWu8Cu8bWhRTtaHYPdo/3oPw0AUIT3zTCLPTgR/s4OmIoIiaSQxVSaNKsRT7CehjhdIqmy5KuYgsKzs169QwqKQ4awBLLJyh8nKLASg5lVkOFAlgeDptpnDXzBqy8GbqNZoit3nA06I1GwzlQgZs37zx88uzZs7f+sgkLARiK23i8f/fB0/daOm6fpw1A29nu7sHpi/feeq0DpLzVrHdGs9l0Mp3vHZ6cvvDivdeevfdhukWUSzIaTuLkr41eeug67Li+7yL+ouKVNcPIM4u1/BRfBQjWFcPO/z8GIn2sBAC8vbV+5fJHbVhrq5dA8oIMvoRHuOfOX750AXNUdkr01jlQxRdXNotFgmMrnKgIjAwKg+XR85cTyI0CRQE6UCxFXF1ZuYTW0s/PgFd3QAGr0jYGG66ug5CuspIKZUw2PAcqqoyzZbzCSVyZ0XlGYngR4UdgKopWBWaFSfVE1YRSKuvA35Ld69evH44b6Fpmo9rFB2HkrQM4Bq2HeJTf6I+Ho9l8POhPABDGIDEmw15vOOjUwyQJkXvZqqQopmvB+5i7GqtCYXWbMaOU3djc3t7e3Kyg+5VXwzNgBoRgBd4EqLulYnGzIIeBlccQ4rk73PEgj4FNddpMHFDATLW4U2I5AXOyPAetFx0DPiAIatxHBukoc2Ie+oXbMGkjklhFImXTACHFWY4Ol1yldEugyapguSzJ5c9PYSmaBLLDUaUSi3Zwfq07SczxuJ1ESWSr8ayXOrbs1ILnCjjudVqtWoYeWFkSY8YWAvBk1u/DO9kdz/EMGABYoGHJ4uBtrTWIOQdesMX+HLeij2Z1YMfArwRZNiN8R9EHdW9vNpKB7tKiLImS4XlmGif1dm846Q7G8wUo4OVyd7EPALxeJja3iC2A3pWLHz8DKHZpE3i7lodn+Lh9lR+S2KD46WKxQpe2N7ELGggXPGXdcKK0OV4eDyWSxtlYM5uGeApmyzSeAfu2wgIrs2Nd4hmiUIXV3MSMjRogMCynOlxwGjZ7nZqtAjHjONOHWoSJnqPpuNsMY5kukJYPPwLzu9shLfA8K2GoMKaI4x4WnmnPT/WzqxfPgwY+e+bcuTMlnhUlwU4iDz3wNEHLTJXnq0QSWUDniHLSamc4IlHDFsp2swmcuxk5kqj6AWD6eFSbLpeNRGEsK23D/b1Xq4LmdP1ard3r9ibz6Y07dyiFrujPm7CqVYak6J0V4HwuJjy094/vnD58J8manopjSHtPn2hRGpiiEwfR4tanjtVm1K9ls3de+EsAjqO0t3fj7sufBwAGYn3+4tmVzcLO1nq5uFbQhKoJqoEtk2tVkRO5zTX0a3Ha3cn49AVTrHBa2L+7l8hKmWaN2vBEI8TGoIPWbDwH5dDP2td7Faqk6/OZW+U1fXadZlzdrfX3X27Wb98mCdrwdjNAruDGbkm2TFstXSyubtjDV14RjHj6QW2dFv3Iq1n1l25cu/3GyQfHwmC/H9OEJnGHS+nwpQdBOJAoxrf2d6Mf+/Jvf6vGduUcgO+OomRwJ7JxELwUdZ1K3G00TEYZZIqszboAwEeNcrpnavWk/hP/7IuD3qw/cO1lV6gbOwTl8iUhm7mvv8n2D5fiIN5+8c9/8t1vfvvLz374G//bL7/2Q9+utn7zNz/zA1+//9Wfvvez/+p4Nj/yNtjQp8NyPzXfmBqT4eHJj/6X//x/fvi9X1Po2fUbtWY/U1ttLZgAAD/4lbdE4EOyYzUzy9Sjk2Nfa11bLBZvfPO9zhfffvSje/2o1JMVQ4ICUTZUXmC2N7Y2isXL6zL24slORJK4y4Vd0FtFOQEAriqwRFWNIjgBXpbAVE3PM2DFSFWSLxMkALAlWnhQBaVP13VbJnkOm7BQAetmLg1yz2SVI2mqDAo4BIC1ZYGqyLLmRPkMZGSJLF2lOQv3uOF7BBgtF6PAUAUW4LdCOylUSdUBxmqB1i1VGR4n+NIQnivIvczXZRk4bt7JpYDic9DvGYRHWo+DrDsY7u7PjxaAafUE5LZvenE9w7lI7NDGLUlLYtGMQ+I5ux4DeDfQJz6KfNc1NRPggFfhntl+ve67ST3xHGDZPnpY2ni6Cn9ellQT5IvCKKZsN2otgMoa7vbldnSdbr/XaqCFQbvZHS4P9w7RCfrJ02dvv//WR2NIzcZzK6ze/PT0/ms1I2tgXlwLyt1sujy9//D9V5sI0s1uH0dDlgd7B8ent1968OC1p+++l2wRpbLmIwR5IOzyTYUI6hriQR5F+3wTAm2tAX3N525Y2HllGBJOIckiz36sWN4srW+vba3idvHqGujVlTx/EA3cVy5eyPehz69u7FSuYEfKxZWVtXKJYJAZiUKVNzUGI6R5khSp7SJZpUpFgIji5fOXrly8gI1Yub/0Nqewklw8fwZA+UqRYasVXncceJ8CeKZod8JQ2O7GMcijqoIKj+T5oT4wG5BgbIWoyIqKXbeeIcW7J4cHu4MOEBXfcvHQP8rHgJwQjQRjUJwx3NfudDxZzoH4zHb3dwETpnsHu4uD/elo2Kq3eu3Uc4DrAY1Lce8AsdSnStUK5yRZdZMobhYrhTJUZcWuNZsOmlWzjGTIlkiXyziGFPqmAygB77eDhifABdMEFDCjxbFp6RxRxHZeEefDAG3gMzlAhkxG1BlKgGuEG69gowPaogLd9OBXSFLlFZmpUI7n8CxDMDi6B59H09gSpUiSocssR9E8nsAUCqCx0R+pM0p94BTtVhK4mjvsNkIXGINrilS1SMQg5DpZmDTwDBj453NYAQCGet/tjReHTRvYjMbjcFMehtSZpLw7Go0m0+kIjdimgOy2SAuCKmth0mp20OtqPt8dyngsjymSom5jK0eGTUuDZmeyu7cAEby7GO/uh+vAtXZIpnDu3Pq5M+c+ce7CSqFQpjnDzs26wzBK80wxx/IMqlopEWXi6lWKKxUoRkCfHC9L2r3pQVcuU3DjLbcxiVhJVyxTZGgSmLOE01hxaElCpVyuuk7YqMcNUK9RBB+m14iArmedTuwaEvrnyVZUbw26jcFi2u80vFBjyxLUrKzZ6Q7aAx9nvoTnBrbA9IGqdEaTcXd+Kn8ciOjqpQvnzl04f7YocCrJGnmaNAAwbdRtA2fYI99U0Gw369XgT9fqUdZAax2MXaqFvsTKhlNvZZ3+fDKbd0OFMiK/0e8dv9gEImYDZMcN4IXjxcHBC/congYGymsstV0CfUORO5dVQ3GdNGo0psfXbr74dhpmtuG1s/r03dcNUAuuasdebXL66YXRiBuNZPHBy2daePZnZTi7tH/zzkvfd/SJC6urly6unFvd3trY2ioVr5RMmfYshWHKxFoFqAdd3LZ9x0674+X+7VdUuOeGNb+3zDR2h6Phfr6kl7h00Khgq40oG64Tda43aZrQ9d2JSymaPLtJ0bCgs8H8Xid9cb9c4fTgWlwBkD2Zkbxlub3oyiXScLsP7upGNn6vtsEWtrdLO4VKIKh+59rnl8Jovt8hOZMwX7SZ66d3gnCkSSUmuLOwb//Tf/dvO1oix8PJ4cmdRRgNDlLf81lSSXt6uTlIE0s0Bgko4OUgbnRudMvpQrfTuPUTv/LXB+1Rq+GGi7acWVsMv8lXNO/67sOnUvtoZveT4uP/9ksnt3/+H3/qJ1/7+X/AUvLGnX/993/mF77++uMvvv21vz+fLK4FRQMUY720d8t/beqO9vZufPqP//Rbn/3iV1j6+Ktfc9qtodQbqBjG0Hjll95ypUrNFQuVBFAoOjqM7M71g4O9x7/6qc6X3nj4g3tprZhErC5wpFQqluAG7BR2CqW1bdNlCTnSnExgOUVn4QUvbpW5WOeJHd7RVEkjS5zAUyq6+YB60lVbIylswiIc32J4Bl4kKCWuqRuY2pJnfyV+vh+KbsmKY4oi8NRqJYxDN/BszE6DGotzSDVgrLBGFK5KMooFrwQsBNNBWeMBrKoCUWVK5bKJKS+uq5u4e81UoDIbeq2WxbAMvCip+ejDAaoYdIOk27bmxT4oQGDQSdrq9qfTxWx6elRLmk08Fc0y16q1shSPjLBPGPiFhP5DoszRZj1B9RzZoR1hvA0GB3PwQTHu10X3jbjWrGeWbmGusOulmW87pqwqoqQJrEQKqhRORsNuu5FmrW632ev3Bt1Wp9Yd9tvt/qg/nu8dXTu9+fD1J6+D/n3/WdvywhpOLTQbteZgMj+68+DVVxto3F7H/eZJf7o7O7z34NmTdlxvt+p5n+l0NtvbP7p24/a9l5+9/eGnss1KlZAx88a1jCixNdv3npc34CAu4C42PGOiN0ZZ6JoOqg1jCBGNAY6BAmuq8LFSeaOwtrW+sXZ59colnBhE5Lxw/iIsWWzGwiaU8xevbBWuXsChYPi1NaJSZXHkRxRIyTYYCkO0EIA3CiRJl4tVulK4fOHypZUVBGA0hV7fxjxgqYRi6OLFLagsQJsxLNrE7XGVqdIUZi5g6gdXZcuMUAUZjNYXCMBEVaSJCq3pOnoEO5ocL0+O9pfDduj58DDcMEUARieKMMFRkBjoSqvVHswm2E00xr61/d3pZLq3v5zv702Gw8FwNGhlSRP40XAIz6jdAIRKU7u0SVRYJ6sxO8TO5k4JNCwDb2XWbjvY+E8zMgIwUy7iGFIUAnBYTn4WkbtKBEkcxRavxaGiyBzOAcOLKuen0qBgPJw31mjJYKoYO6goooJpVfBc7CBrRryAAFwpV1ngkJ4vC1wJ/i9ZqVR5w+QJWkUAxhxuWqCBlBaKPFuVQKu3B5E/hbXfSCNX88f9JgJw5hg8RZYqcR2EWC3KfaGSFGPmMRa5P5wO0AxssnvQMF1dVGHpMADAdph2pnU1mIxHsGJGeEo8aUUBXDAr6Cq8XM1GGwB4ASK4z2E6FA8KWDGg1KPfWL3Tzxu7kOocHO5NF/vJ1ZWV1e0KWzh3oXj1wvlPnDl7sbBdoFjdRL6I3lxpjNEolukbcKFlkihe3aQYoG/wNYpsWmHc7Ix2OzJBoNWSlQ4DwbBUE5OfAIBx1Pk5APMVgqA8N6jVwgwIdBhmjXYzBZRM691OAjUFTTxlDFsc9DrjxQQYcRBpzHMAbnV7w+7QBfotiAbGEWa1Ws4nhsN+Z3oifBze/8uXQAGfP39mh2MVSrDR4BPzL2izgQBMkVlkqwJdKSedGvC5WoaZwvksYm9YD32gVabTgGowgHq+6AEA6yEC8NGdJo47wycGOghfujg6ufeQRXNXUdRZcquMTa4AwLKmeG4cpEn36PqNF96rh3XH8Dq1xuy9J3qUBNgFHdRntz6z0ADJG/H8fQRg7MqEp552D1+4++h7j5D24kK+tLW1tQ0AvFayZNq1FI4tl9cwXY4ubJnAh7PebO/w9gNVIVjbX9ybJQq1o4j1VvdFjeCjYZPEHl1BMVw36d1o8wxpGntTlxA1eXKdYqHe14aLe536nT0oDlJwLSElN7i2KIm+KYSdQADKOHrtgWHUJh90Kia9Ud4RClpgxc3a7PNHamt50icKlVLzuiof33lcDwaSxbLhSUcb/7N/9HNTvq1EveHByZ2ZHw0PE8cNRYpNRgnbaMeJKZjjTJX1/Az4epfIAIBrbf+HfvMXDhq7nabrTxtSzbu0CQyu2tQP5w+eSp2TcTB0pJM//NPf+pGf/7tf/YNf/r2fDlbN7ff+42/8hx/43JsffOZv3f9wNp+eTGRblO20cHAzfDJ1BrsHtz79b//FT//gN/6p4T76xW+o7X4idQd5GEPj8dff1sNKmgZUJfFgWe8fxnbn9GB39/GvfKrzhScPvjzPkqIVoK6slOERMAxFbF/dKlYqulmFm6RaEaYu4BxweWdjh5LoaqkgupomqXSZlyTWCBxMuZNV2VSrsFQqZAmQiafQeci2Lc9G10pepgVJi2qRl++DmJZjepaM/adUxQ8jL/I9XQYA5mXN8vOeidjRFI4iGR2lMk7ceyZoXWw1xKAcqL1lo+7Z2PvvBpg3XKJ4AOA0SWIffmgU4ywjjgGj8Z2ko2ml7+Wb2TG2E3eG4/2jxcG80a/X0ZaiXo/cegvQFH3rAtyJVHIDQEESGSPDvbwsBViF2m7qtqGqIA5AL9q2D6w2y7CWeSBdTDtumEHkwEdWRBEWksDJcEVSOB7gmMegW/f1sNZsdTutXr8F4hX08Hy5u3dwdHL91t2XH7/x+tMPn7UAF5MsQ8lcb0+Wy4Pr95++1bVruH7rjeZwsrs7md948O4bzSDBsabuYAz4O9/dP77+wt2XH77yxrsfJNsUVZbQbRK4QgCsx0Z7MS8X9xjaYtm5ugOwNYBIYei4LGFCFdo1SvlVS+LHiNLm9vrW+trV1cuX0YPyMgLwCkjdPI/hArphXbgEKvbi2XMXLly8fPHieqVKctUKKmBStA2c4GJEihSqG6BtWVhElfL26oVV0MqXL2NsHvzhgqDD0yFWziEAb5RJkuKk/CwWHVFUgHC6gjO8FZIhSwxB0eUKMK1KFQfT2TIpVApVWlYUoHqKqWjx/NrR7nzc9i14YaCMYoYVhiGhqV+zkeHAWAcIDLoy7c7me7vzvZPD2XTv8HhveXAwGw9G42ErzeAGj6fL5Qw03XQ87HXaXuEqyfBeI+NKxA6y8yJDsxrIgo4NIFWlWARgiS0XiltFDbShBRAKuhlNUf3nbliRzRtRIGJoNc7U0DyIHxcfSYRe0IrKyFbehCXAglA0E6SzD9Kt1o7hVsItIUh0NzH9ADgdehLCqiB5TRcqjCqJQJUAgBn4G0UVSjxHAQBn7V4QwI1o1NPQEkKA4siVncRCAC6TYa3RaNViWCn431ojriMoDIaTQTf3Hj5sWADAMtxhJlfASXvSdrPpuD9ZLkb93nA6bga+hS7p8AIBHGJqPL7Eez0cW8LMAMxicL08UQTec8zP3Nvd3T/cP9xdHGSXL11cvVqkdz5xVaaugAI+t1rc2qE43cDJYeyLw/4N3BeIzEq5UqYqO5sFmimXGVhysmxBdWi0Bsu2TFQpBOBs5MmOo+qaAgAMFF0TyHI5xDnyClGlgXInjSiLgEDjFFIWRXFYa/W7aeDqKs8KmhvX2kAR5nBl/U4YaVwFADiqtXt9UPweALCkqIab291FaQOIe6/dHu1zH8dGhpWz2I54dofnFFp0U8/H7SWNeQ7AJJkElgLljYhauf1WmtZyK8phtzfCpjgRAbjX6vcWs91dBGDN8xu9/sHtlqDoGE2B/tyN7uzw4M5DlilX0fCXqm5VgJJS1QIAsB4C0MZRc//02o0PGl7dNf1OvTl//w09SuFHB42oPr/z2YVcA5kcTd976UwLt7osYANp++DW3Ve+9/AMNmSsAACD5CpsFwtrZUumgPjyHIBxlWNlantds0wtBQDeO72rSiXW9oanvVCtFkw1a/VPZZJzBg0SB+tZSXfcpH+jLbCkbuxN3AKvKZMT0LkAwKPlS73O3QOOo4XgOGVEyz1ZEmqgV6TO/t1O6DXuv8jr2ej9Hh/wBFncKOrtqL7oTT+3kLPFYZ9mef3WA799cPpiGLTVVGTrC6vzfb//x7/XZ9pa3B3sn9yeOOHoKIKHZ0tCY1QTm3DPDc6cpEATdwfA2o7bRDZX4fp7f+tf/uoiG/RajjeuiXVlk+J9R2xKe7OHz6TejXkwtqrj3/uZP/l3P/vf/bv//Sd/+6u9HZp46Xd/4ttf+O6/8eH33V88ONgdH1yLWilvepXrx9lrY7s723/hw2//wa/+w1//Bbn69t/7O347SJ12/zkAP/n6O2wHGEVLKEee4cL1pHbrxsF877V/+NnR973z2g/MYhd9gw22WKkWC6LA0BiatkOQdtPRgIfaEWZxsOhFWdgsVBUQJBUtsg1BoiqYCWQGNkYOSBIvskWSKVZoQsubDBlOcSwZY9k0nhMZAOAwBQQwkePbtucZCjYokQRmtgIw4pQGyUsGTr0HURJj/ydN0vDFpoETbL6PyihyHV1SAdmqZT21rQg0XRCZkqQUgSSYRoqRcp6TG2Jp2PnFkwwnyrqhwfuOu2KJn6fhADPfPVnsTpqDRgvQLm01IycDxIsTbC1E5FKfA7AIEj+KkCLEIM1CAAfVAD1Os3hoCldRb9SAGddDW5ScJHQ8DwolArAqy6KsibwiyjLvDTrNHiiqRrNZT1vtVht9sLK0O8IkQShQ+9du3T45vfP46etPP/1WBwA4BrGMvhvt0fzg5NaDt97tgQKGdQyA2wPttti7+cr7T+phmtXbzU4fAHi+mO8end6+9+DRw6fvfxBtVYmyhNbWmmwG8LEsHG7282yGfDYJUBiHqzFdCvMiMEtIxiR4M2/Bgn8TJADgbWDGa1eugFq9iNEJqyugcwFs8xxg3I0GAEY5fPY8OktevrSOCrhCAOkQKpyhcQgMCMCVqzkAFwnQf5fPo6vWJcytvQQKuCCooAcrK2ehFKxulqoUzbAmSmDDdi0QxwpXKtCCyGBrPVR8qEMcmztsVCsVEMIFnGnhRfgxigVqbHbtaDmfdDxsbLId0J5+zrhwIhWb3wEP2t0+IOtydzlfHP5rBl0AACAASURBVOzvHZwcLnePT072dw8PMOq2B/q30RtOJtPd5XQOsm45G3VbSWkDJLfbjDmCAP1aKJZA2Bturde1YF0ADMiGZAF5LJS2SzoAsKYYlmH6Ud4QEIXov2byWhRgbhG1s01QrKCYtmV4lhuF6B+ssYrN43EjxgupmoWRTT7I42ZQLbMVskpBISzQfugDsoHWNwSGIjlN48uULPCKLDH5FjRFk8UydqmhAu6HwWzUaTUABKRwNmzHzwGYQwAOgMk1MDQG1D2iQtroYk/auItN+fDP4xZ8YBEfHwAUXEjaGnSyzrjXGi0X48FwPAH8QACusqZh+BFO0eYAfDDgOBmWvSA/zy+I86bB3gD7E+Ce782mhwe7R/XzVy5fXt2sFj5R8cTLnzh7aeVqeacANxQ4Vx67m0cCY3poZBAAwNXSxiao3zJB87yu6h58EUjuZVsqUzTcDLcxdQEjgP1LFEWh8SdPlMrw+SSmCgrYx7jiKAs9POtudzJQsnG9PewmgW+qIhQbL866sAjns0G/BwBsiBQQIPiSHh7sgAKGi8H5VriWWpjWQb92W+3+kkUAXjl/9hNnL6ycL8EXUaITwRWH1kcALPBkJcEtaATgJvxh9L8E9twZDHqwguueJYG0dhudRre7nO/vDyKNVpyg3hvsvtBCA98aGu+0GsDA95c37jEcyYAeUYjKDpBcuLLCZREAOEZ7kdb+zaNrH9bMzPkIgJ8iAJty1Ayz+YvfvZDqcbMZfwTAjus0oihqLE9ffPSlAwBgeBYrZy9tF0vFnZ3COgEADJcg8qXClQoC8NaaCjUkHcx358e3VWGnqurpNA1NpmjKcXN8yFc5o5VVc0t0QbMcAOAWzxCavjtxioKmza6RPAjj2mj3pUHvpSOOY6Tgeg0A2L++Rym2KWmd03dBmacvv6wY2fCdrhDxJMdvc6K4prUb0y8tjN5s2WZEPn7tRB7u3nspShOvRUuDjjD/rX//538+U3pm0u3vX7szcYPhUWw6sSez7Y4rDLKsYTDaMMItaFTAB00inUpmrdU9+aGv9Kb9fsv1JwDU5U25AgxXYmfjh28InRsjvxdVb/zpbuu+sLOYs5Hn6RVQ+IUCUSpcOP3Jz3x+Ph/uHQbTgWgKpVv73ccju92f3Xz/t/71D331G78cVI6ufSmpdxtys4dpSO3G67/4FjGokmpLKoS+Yibzw9RsnB7M9p782peW3//pd/723Jdl3dQCoyppFkNXitvFcml7o0h7+5N2FtlOhFY7NE9XiNJOidR5ulwQPdMSBLKC80Cmb+MssCrTFLFDC0WCquiWpckix2lhoKPgRQDmJMkIAT5tA7foYLXZiqQILE+UfeyM8nFIgqIlxcrny0EBW5KI5vtOrpc9V7WhWJmOb1gSttiCEtIiE75j4GHQDLYFCKJlZkmY4FYzSFb4WBL2hjIcrCJYu+gIkmZJjCm7QOSH88O9w712vd2tgzxq1V09BnyMYzTRc9DyElNeBVAtlBaDkrJBfMPqd21TRrMohkWrZ6jzaRb6WbftCbqC3Wiu50WRB9CnYGsIXBJIS4l1AYD7/S4w2ixqYbNpo9ZKk1oHuDcUp9l8uX90fOP2/dfeevPND97p2Z6fYkQ6Gk32BrOTe688e9axsZw183aZwfjk5p3H77xaT0B9t5rt/mgCADxdIgC//PDhm5/8EAC4REgoBDUVjSBsy0UxmHMLPO8F9uPmcT2YS5h7J8Jb+lE3NDpt6pIoAwAXd4rb65dXASgvr2Iz1oVzF1fQAOijv86eu4jmHBfPX8BA30ur63gGTBAcI3IEqyuwKClGZGgEYHhNQAFXieLquQu5/MVt7cuogFVaUACAz19aXb0KpI+mac32HcNwfEcXVVMobgOD4UiSFfImYU4UBCCDAkvTksht77AsnW97ao5hRtNrh4v5rOXq2GUAUinyPXwPcOInjQMA5Lje7I7hdi9moMpwOhXu/OHRMWjh3clw2sd4qt5wNJvCv8+wb2g2HQ/6AMCsKDiNWKiUtouVnb8C4I5ZITlsztUFBOBieaekJaGl57ldAMARWk0FNkhwjVHDwFRgxWxvAQCLOQDD78Tw9hq6DgoYgFPgeEnVcErPziMko4ZP7FRLpASoCYtKjzxBgYejisCHoe5ZfJlWRAFUcQ7AoMSrpQr7/xP1HlCWZdd1GAhMp+rK8ef33v//5Zxz+DmH+lXVVZ17umd6pntmMDPdE3oiIkGKJKjEINkSZYgSBQGkTYAECVGMgmgmyaIIm7JMy0uiZZGSlhUo21pLstfyOb+HVGHQPaGq+td/9569973n7F2vAiH2m4PAGYJWy2ArKM4YANgSrEBX6kQlX3LwNDTG+V88jYxgFfaX86nA7fq97mBy1jQBtj8CYFk24rTZbHa7aWN4OBv2+/BX6uEYUqUGG8H0mvBlwFVA4g7QvrXKLPMLNJzAwjSB7gDzk8aT2eF4dHKyOEsubK1fvrSe271QNuuXPn5u9eJeJV8EEoM+Su4fAzAemzlKuVQuFPe3tnOVChqIVSVRwbyGRnt01GJzBAkC3UhGjqIKPKzYUpl0LF3Ay3gEYKpSLFbgASSJ49sGdgE0YNulsGlagxasDEWEFSUZbtjrtTujEc5g+Z7CUThMk7bg/eh2VRoVsIT+IIDAbhAvJXCrMwMAvrRyCQAYFXBJZDmC03H24ikAJwjA5XLigQKmSnk/9fwIW86XnuNZBIQZ1CrDMJqTNZJ2+3C2OOr5MiWobtzuz2+nNVj3gRMkmFTdGS+ObtxFfqXIPFMoF2BjU8BYVuuSoKMzQdA5uX127f1YgcdrteJs8s5jxQttUMCJHY7vfH4uZGEzCyYAwBnSIquBUTeTszsvfvfROWyo3Fi9+F8AWP8IgIu5TQBgjtzfFlVFTUfzxezsjkznyjRvNz1PZ4qy6DUPF9UKrcQhgYa9VRYAOOzdaNSpoqQcjc0yJyvzGyStWOZSATfuX4FtzFs3sxpnBreOSF6xwmTywidN2W29/BynJ4N3OkwgEGj6Xi/Qum0Pv3/GN6bTJiNL/bdv+sfp9Xu6Ytsu6Y4c7fo3fvdX/+C22DbCdhek8dh2uldCHQCYKEQJz8/iOFMosedCnZ62nTg7yooIwEma3vrRrx62O53MdKcp1zD3ZLW8QxtEv3v/Nbp5o+dmTv3Of/pwpygflrd216pX4zpJ5/mHf+rDH4r/9D/6n7+cjLvHh0ZfYazK9o1u59WB2W70brz3yz/z5b/8lV+gub/4A//sujNx5aQtmqNuI33564/LXZPgIqkYepwaTq+ESnzteDp/7Rvfs/izn377h2cODRySIUHYVYHAVoq5g/3d3X2aM47HzcQDDkwBuaxUK/k8VOQKXyWLeQ4wCueoQQHXVYxUU2RRAOmcr7G5fLmsoZsyTVWVOLHxgBm1DMuLGJGAJ7XWsj9FA4kIAFwse76toRUlRyMAI3fGO2APz5UpgrSW1o54KSQpy4AFVWRElgIGLrmy7MB3d7DdiiuDTNFU+MIwcBCATUNdAjAe7bGijAZDGEboBXEYw/7qT+ZXTk5POxEGA2ZxI8FDmyx1LJw0NLGFikP7apqu183Ed1yQtxYmzDoKenvBDw8ALCiS5geuEwJ8swZoF0Q2DwmAAQIajwXoGtRUkbYH3Wa/B/sfXl6GGfDNRhsTGRrtTrM/mszxDPrOiw9eeuPtx6++3TEsWC7AfkElAwB3FncePH6zoyVPQwM6o8lgDIL54ZsvxQF8w+YSgEECTxenN5597v4L9197971gnyiXOQ3tNdGKz14C8NNIeuw3R4csE7vRDRMbN3GOG7bzMo0QTURrnCRwoIDzxVxxd2d9c2N7e21tc30dFPDqKoAtGmLhKfT5i2vrq5fX19FXY2MbALiQL1HLEMJqsa7KyNkohqwylZ0CBsPnKgQw9/MX1zfW8fh5Y+Xy+laOl6q0QFwGLN9YWdvOlUmSEmAx6KoBbzfDyUypJLEUhXaiQLDQlBJQuMqgZ5QARL0IK4gTMAMeRLM/Pj3COWBNMpDnQdm00a7eWgIwLKgogDKYdYeT2WQ4GM1G08lgOFscnlwBLJ4POv1WozMc9TtDkGsnxyDpZuPhAOA6KO7Ved5pRky5tH9Q3EdPiLqkR+2WUiLoKrY6LAG4WDooiB7OiWtAIJaT1i7GfPiuC4XABcnF1Ut7mNyIEsfQXMMOARoQgDmlStBo0yUux2F1y3dMJ2q4gDv7BF8oFIrlCu9ZrKgx1QrgL1EkBZWr1JZH0DQJRIcBIgAAjLPwCMDDyBkMu53M0dGIo98MbMEKEYDLuaIbAxxg7C4AMI6IttGEo9frLy1Se5PjKw3dUlixDpKTA7zXULm1O42oPVnMBgDR/X7mQwle3smKlt9q4Ts6m88PB0vjHKYOuw0lsOeBZGzAfxziCc18sTi6cnh4Nbm8vbaysrK1dbGo11fOXVw9v0cUywyPnvHG0rIKMHjpFWMrlXIFAHgPm+jzxRqFAIwTDo3O5LjNHJSeAvDQByElApsHAIaVjgBcegrAhULJdoIscaEggAL2k0aWZkkQtwct18I7NCA8hp8Ohp0WvlmDfuhJLMkvAbjdBkRWWYHhBEHG1wVEO8R0on4fALj+icvoBX3hmXMXzn+8BJ9Ecph24jvasglLWwJw7KrLULgAGECE3nwRUJl2K+v0RokJ6oIzXCgB3e58Mpt3EYAVL24PZ3fwDhjYlochVO3u+PD4+h2SJggFcDFfLlby5TowvfW6IspAMtVgcHrr+s33Yj3EJqwYFPBjLLOGZIZWMLz52UOlETaycPrO83gHbNpmBjQ8npzefvELR+fwLmh9bWUDM1Ry+webRUOgdKiv9WJhs8LUWPJgR1IkNRsBrz27o9JFgpaCZhJoXEHSw9bpnCI5Iw5JIMX1uqCadjK4CQq4rOgnE5MEWXd4g2J0x07wDjh94bRCMKJ5LSbrun9zXpF1K2sfv/G6rXnNF2/UtXj4Xo+JDIMr7O6W4k83jHj6Pb16ux/ppCK48emtd7rXXwTKKrBir623rn34W1/99anY0KNO7+T63Yljd65EAMBB5cBtMOoM6rxSFfvBUwWcNK40QQHzeua3Pv83fmhhDzup4R82uMzaJLidHUmlBt0XH3Od20OjY5Rv/qdfevJ9P/pP7r7w4x3ZUQzjk7/x53/n1/7Fv/zKX/27//Dne4v2/ErcYEiGrd0Ug8cDq9fo3Pjg3/yfv/dL3/r7Xv3HfvIfnKRJqCctwRi0MwRgIk4I2paLgVtXo9kJ5gFDpXr9p7938cUPH//A3AP9YEolrxWhP6wk8eTO+n4N3r7jQRKYsmItARikcT63nyfYWo0si67O1eqFAxpkiIoHm4bO8DRNFkiyWCgTOFMEsoWUgsCEze4sDxMZToWVAXz1aTuyaUgs1FCmXAkCR4dyBQ+eJFneNCwQKpHnqxyNR9CYXYuWCmiqYMAOE7FNl6lzAMCOJAEAgzSVRZ4BZVFXlcgPMVLU8XxspsUsBaCaNCsqMt4945UcaCK/gdRyfvV4Pu/EWStrtRudJjzjNIkMTTbgW0KxFJb21ZjIZiYeKmDbhddg2yKraLqCd8CChAoY+6UAcnWACxz+1JZOPoYmLXNtWBp+lRh70Gl221mctPuDZruBKTwd+D1pjfpx0hkfnly99eztFx+88Oobr77wVlu3HCh6jRjdODqj6ZVbD5580BPRRQRESrcznMyPz+5+8q1XYhfbQtImdmFNpocn127efe7+izgHHOyVSgQqYDxnNtEZxDSW/p846WGjDSgmDjw1DFGVp/1XAMD4O8a0Ad4w9Y+B7NrLb+1ubm1sbV1e3QQEvnQRb4PRjgPdsC6BmF2/vLaFl7qXN7eXCrhcLRUQgEt1TaGqbK2KAExgGlK1CDqmuL9y/hJoXQBg2PdPAZiq8uT6hYsra5dWt/aLFRxes2xd0SyNr9IiXakKNRCaLGzrOt510jhJQ8B+x/T6ClSJKivUaI7XJDmYnBwujqaRKmL0s/JUgYIChifi4n1njH4ICZqWIADjmTMyl8nxyXxyOOu14JkMJ6NeGwH4CgDw0XwyQB9Fv5xjeAl2B1Mo7O9jQh6wOvEjAEaGxwq0ytdAeO0/9YKWAYBVc4nAaHkOMKyCArZFEWXyAZAURlB003ANJw5w5E2pCVp1aUWJ+R4YBWVhW2LS8OuF/F6VzIO4zRU1UMA0WykVQEaQhTKnCERdQgCuLwGYoOhSnqBqDKs4QbMfOKMZTraqMocA7FtPj6ArAMB+Ejo+8BHM0cQgkWS5ggaALGmjM5geHS/vgMUqBW8rnoigK0y7mSS96WI6GPTbg0HmowKmAAMkJ2g1u+gW8RSAGYwRZgUJzXZ8P8oazc4AAHgCdObo+Orp/Oh6srYJy2Xl8urFskGvnr+wenGnUizDnyQuJfCy+wObMAx92YQFmq+we0BV8wWGpgFzTADDRmcMCjhfIhlFMwGALU1QTIEnSFTAYrVYLEOZ4Cj4ygo8+DT1It+J8BQ4yTIc/O6MWg5UH6DnAMAxMIR+qz/uNQeDaAnAqvkUgIc9jZNwBlvWHdCvgKEp8InBsNmZ0wDAsAfwJubCJ0oCzRICRn569hKAY01CAA4smQNNUfRjJ4jd5YF8DOjba3cHsaXzKDUwlrwzHQxHbQBgUfaj1mj6bBOdPH0XZwwbjfb46PDqHYoukzrLcsVykSgQTOmgtFFXVMk0PckbHJ9du/UksmNUwEk2fe+xgS7fkhLY0fDapxZGE96CcPbOvWUTlqljalMyuXLrhc8uLmzv7m5tba1tLXPMDvY3C8BfDLwDLpW2ymydIXK7osTK6WA0Gl+9o9UrVFXNGh3YYXnWSJpXJlRVsJKA4hCAAU+ddHgzg52qGlfGOsHJ6uwqySMAgwJuZ/fP6sAxreMAqJt9bVbUdSVqX3nyiiGbjZduKWo4/LBXi4Ms9qGGzH4wYxqTz/WZcSgy+TrJ7BSaL6Q376mmVqOjQez2/au/87f+x0hraWG3f3zt7sSyuqehood+lbQbNRC3fqjWxX4Mku2w56fN00bBH/Ja2oyvPbjTbh/1E809bLAJRzLVbdHj2En/4Ztc+2ZH7bjkjX/51c9/6au/d+25f/q1541mJNz9dz/05K0nP/WZH/jyw795Ou/MzxqeLFY47QGpv9vTes3uzQ9/4fd/+dOvPOKoZve20G21q3GTh/+QJq/8zceEHlYZXT4wzZoWzY4Co3E6nx0+/ukvHn3vp17/i0OZYXVT3VcitIBiJFms5fZImZGVs1EWGIrmovEFWSNKxfxBgapjqjitSyzD5vZoUCDysrAbPPwbHFMjyiQFtV2SGaomGZqgu4GFMd0gUFUX6srTA2UDLTnQeo8my3gEDcCoSRxJsAIsEqCLIGR1INQUVQOltrQuxi5olMIy2u8xWJBFR5bwvth3YJ8wRbJGayqOvEdoWuWAjkV/jirmmiIAo8UuqkBQqOGy2E6vHo3HDeePAViTvCQOAe2xVVrmWRxBEjgA4JrmA/jqsuZbnm7BD65oKvw0eKoNpRI3dYQ2dKYAekHFZmML0xbhv8IfyTESSGDG6nfaUOSGw34r6XTSpN3GBosk7Y6H7e7k6HixuHLt+nMvPnj10auffLMJrxM3axAmadKZXr393MMnH3RFrJXo3QFfsDg8fe6VN19NXaxwyMrRigi+xU1QwC9+8pNvvB/tFIrLO2A8XLZcC+PXAYBNNABdZgK7NkYBYOjUUyPK5fXvEoplBQuTwNYQgLcPNna3N9Y21ldWt3dWVy+id93lc5fgV5xEunhpbfXSyubK+fMXVjY2L61tATLS5Ty6lpZAAZMUV0cvDobaL1apavEA9MzOxXMrl9Y2Vi9jkOHaxlae4SskV93Cpq619e2DYokg66KxtK0W6iQt1IkaXcVwozJRqYFUoirlUiFXJJamkaByqHKFBQUsSKYmBdOj2dHxEoAxhBdnt21YCFDUn3ohYb96lHZ7CMAArKN2G2pvd3C4mI6m41aKbibjfm8wmE4Pr5zg5MwYMLrXc8u5GsM7WVQDPbpfLOaLwAJEI/kTAGb4usLVioWPxpBETtIQgHEK2NZByZu2UpU8hxNFIA/5fLnGibKm667hJiG2+6mMbEBtY1h0AP0vABynHl0u7LNUgZboQkn3rBpJ5CpUoVSrlkjZFkgAYJyUo5aGJwRdzJfJ5UUP3gG7s1ErDYEYLhWwb3J6oMkAwPliAP/aCz03wKB6P0wTXEHAEHtZlPXG4/FHXdDwTWtLALZgleGdSXdyOBkMB93RMPMcHX1WYFN5IZ4bLAF4MeBZjq/xS2NtWGjAeDCBfjAeDaeHi8Xx/Ox0fnYzXF2/uJxku0AY9ZWPP3P58lYJfiIGQzCXt0/+0zEkXbVV7IImifzWToXY26+xjMILmu4CfR4uWhzAKy2pZtwHviuqBs9TFIWzFDQCsANIUioWSc/148gJsVs4RL9YPFeKO+M2ADAUEZD4Wtwfzket/qSf9fuhK3EUfC8fj6C7495SAUvI+yN00IuyZqs3HDbah+wnVi5i+9IlNMQqiaAiODTQ9SwEYClSlwAcOwrw2EregxeQQkWCLR8uvTxa3dDUceBM8eH7tSbdbr/pySQwyKg1nt7NAKWU0E+xsqSd6enh9Xu1WqGkgTAGQkKUynR+N3+ZEFUBpAprdGaL01tvBG5sqHY7bczee2yCAnFlMXDi0dkHR3YrgBc/e/IsArCuy77luPH45Ob9Dw8v5yvF/P7O+k5ufw8BeAMAuGqqQh1e/VaZq9OVg11BYOVsOBpNb95RqhWSUBpJL1GVPKVl6dGArIICDkg87awhACeDG0mdAgV8PFSKrKyMTyo4opqOjl7sp3ev8BzImUVUoxX7xiKnK3w0uPb+y6Zmd165xunR+LODapJ68zZLBPPvmjNZ74NuDr68aXqN567P7tyLn3+Ot6Wa3G0GWRrc+6O//b8P5VQJAICvPjvRrd6ZL2oRT/BGRCRHLT9QabEXi7w0bTtReiU9cPqsErmdWz/4BQyFTBVnnjFxjhFrO7JcFKe9Fx7V4pO04bt0/ON3B9rpy+z9Tyf9YN6pZX/tB9989eyDtz736AvvHrWHJ8cBT7T4QvWJZr7fErut3s0PfuPbP/PanWfz/MPbX5s4HV8FAFa7jSR5+COPKrLPq4a2p2g1M5kuAqt1OptNX/va9x19z6de+ytpoUxKErtXVyskUKxyGe2FGOxpPunGoa3oPg1smALdW8rv50m+RpXyvO+Kslo54GSuiuVONwAngT4WqzUolSToLYwLBoYqc7yOSMiJqFI8nDdSZdXEQXvYxAyUaKoIsIonpCoAMMnJy7AkKJqRiVN0VUYzl/EBmMiAM03CMkWYw4NwwZFlYJ1e7AEAc0WS5gwNfU8joPYuhvCBAgYJjF3QkiIrOP+EAWxRlPUH3e5wfHplcZjJcYYTtmmEAByFjov3ooC/tIBWWBxTZ+sKymZTVhzFVBxbk0BbQ5152oRlZ43IjxqpDRrSSSNHl72nY0x4k6rKNMYWipwzHELpamc4hNBIfT8DQeGhUV/W6rVxDmZ+5cb1ew9efeONN957q6XjHCr8DIDTrf785M4LDx+/3TfwBBrvKKe98eLw7N5zj15rhmkriyJ07RlP54vjqzfu3Hv+hVdeev397KBSLTC6qauyoLmernuBi9IXx2Mw8G2pC0Gd4en08uhZQbCG5yiLAiIwUAn+Y/v5/O7G+ibGEa6sbm5vXVrB02fA3YtPb4HxNhg08OraxZX19c2N1dVdtMUo50E5kQDAOkHA8xSoKlHayRFktbSfLx5sXEIfDmyBvrx2eXNjba9azTEstY14vrK6sZsvEZUqrxmaJPAAJjyNbU41lsqXqkShBDAMa5OvlUpVbMuCilspVwhBZesg+1QpHC6OTw6HIYh+XcXoSby6w2tW13ddFyMq4QdPOvBmjQf90bSPDb3D0QCvggdp0p9OMGy+35mOp4dHC4CMxWIGirillYq1Ou+mUa2U283nC/ulGs3Ktt/piRWMy6qzrKAKZKlQ2MuLLixvCY+gTaB6iL22YVuWVJVcixe4OlEu5ItVTpBxRNi0Pd+1NEUESgkUX5AwYFpXMJgaJKAfZ049t1/mMXOsRlFGqNbKhQqRz9MKR9RUgyXqPMOh8y1JYkQ2TeWLdQYKoR11up437rfiwAF4d8atpq8JRmigX2aBsnEs1Y2w0QJJXSNt4MVu2ga23ux0eqPTxDBlgYWSWsVDFMUPs047jdP2ECgJvCGDaRJEOkOUa7yk2lGjPcAe/MX8aIj2cVWQ6djOp2mgGrNurzcZoknM0WI+Pr4ym9/10EN8FY1cyjq9cv7C+ZUcaFkcJMP9ZNnwrgWYGeDqrlKF97RYKe7lyMp+Dt5nvFs2HWxjHje5XTyCVo2oa6GxjyzyHEE5aFFPFYo+kHuqWjpgDDsKjSAJXQ9tbABBG5HX7s9agaepAs/RnNXoDYbTbmcMBKQHAMySnGbBzmx1B/2BxfIsz8u8ikFIkRMAenbbjWR8vbays72+ubm2ur65eqEMxYjidAwbMxWJryqhoXBCsRT5qigylWKEk+B4IZ4mEa6+fr/hqfVKlWPNJGmhDVa77XtMjYd3GiTyacByouYppJm0AIQ7s6PuqxzoFJmvlYtAUKliuZA7WGcZkZZsU3OC/uHh2Sfhadqi0Uyd6Vsvaz6sPN7w9WB48v6RkYWtMB48efFcpKqGo8RQA5PJrXt3Pj/fr5AVqlIp5jaL+/lSIb+WN4WKoSqwmPc3qTpdJfe2q4JktWC/TBenQrUEpKuX9tq0VKpxUffauFbQnNijMWunJpuu15rdiev1gipe6asEr2iH1wlGNr3WaPGg3b4zo+p1MbjlE6zsPHtSBJqW9U7fecWUrOzxDVoNFx90GT8zw6unNfvqnDw5VQAAIABJREFU52Oh0X+3kSdqdYVheHineifx7QeUpDrta+NW1njzh7/583+QGQ0h6A+Or94ZeUnreqyrjrLvdwy+PYZHblbVXsgK2mHLCuJFmveGnBoFndf/xl8aNocdYEXjFh+Xd2RgpaVz0rj3+qtccjzQOunurX/7Fx6N3/ilq1/+rRvH7vEpc/1/+lvf/q2/+3M/9c1v/q8/Np63jq4GnCtVdphHgf120xw2Bzc/++//7f/2cz/616vC9/3M/3ISZG01aMpW27ODF7/+NkWrAeMbxQoQBHd+ZCoR8NX5Gz/5nUdffP/tPz0ni25Ma7WKK5c4FjRFtVi3axsF2RkPM9sGzlmHQlesVQ92CzvbVbZWyRXEKPF0jSrUeR4AGA85HdiqElup1CuFAuEZUMSrlToaGklo0IoDdRxnBH5gapplgRg1fU8VVR7nhnVLBpT1RJqmSHo5aOD4sGVsYJYMRRpLsyBF1yXsztFNNNoRsMOrLFsAHD56OWsibLs6+smiXyOQIx/2r6vy6FqJsTfAxTDrR3WzeCmvAYHb0/nVs7OTppM2mzEQXN8wURY4miSKmJYDCpjHayK6TqlxGKRJYCu8aPihIRu6rtDogsnQKkgrAOB2rCogFeBbm7wberATVbXGqeqSAYhSVUfzjF5n2A3DTracZWi0Wo0MABUzaAZQ8a8+e+PGvXsP33rz7bcHNgg1PwSMzprt3nh+44VX3nrSlgBEYA83O0P08Lr2/OtPHmdu2oiSpNkbjSfzw9OT0+t3AMRfefTep+OdEpnnluGNsuXYaMgIAgpFmYE2wziQhGcEBhQ0UZRU4Lx1HvMj0PIEfnZQYhzzsfyyAWZ7e3UVnTPQDGs5fnT5TzKB8QQOxPA6WksiTm/v7+fLJRC6ZLlQk0RgUxTFkRRL7eVBopV2CuX8+sVLqH7xY+3yxsba5sH+dpnAm2EEYOyDJogKo4OO5NCDWWAwI4HhMNKhXiUqVK1erTC1CoGn0YC/BOagyTIgoGhoipNBmZgBAMuaImOldvE+ES3MsLPHWao+EHlA54e9Hgiz3nACVbYHOnc06nSms3G/24O/nU5n8+XH4eEUJHHbLOVBoLlJTBOlg2KxkIOSwEp20B0oAI0YBcgIqkiVc/n9As7Ea4puKThU4y0N3AzQ4CpsQDRsqhP5g/1ileUl3cScYDRN04DwLAGYFVhRFjVgdYoGLAlwz2NLuYpQwZCKKqWGCgjoMlmCr6aJumaxJLpmYhpSFe1P0OZkCcCqAwDs+9NuK/HRYtWfNDNX5TRXlevlUoF0EzzkDZ8aJEcxLMJebzgArAQAbnf6UwBgQxY4IN2ggIFNuH7SagJ2tBCAx8Nef5KgtiDQiArKL97yTnEO+GgoYFQxuww11gwzBGnd7/cmo+FogmFdgMLzo7vWJ/DRw+JZoRQSJ8jXDnIlsoYUWcYmIfRqs4Clw9/IwLLKFWzupir7BxQ8BPgUUJqASqMGf1Am8cgp6JpLOi+LTJlEAGZKuWLgakIV6hRjWoGvOpi5iHmAgG9ZErUAgH0HYEZAAE47o9Gs2x1jkwY8I5bi0ZIHAHg4mHgg/yQVjVGdOA28ENuY281scp26sLm1vrOztb65s7lCcEINARg0hCHxDKlGlsJxpXLoqTwejOChOvrgBJhw1uz2JvNh6ipoUmvHcWsIBWA4TEKWlvQ4bfXGtxvAfwW+RobNVqMzmByPs7vFMtDQWgWAd28/j+HIe2v45FUQ/2F7fHj16uMY0EbQstgaP/4kxq6rrKGLdmfx9ogHMW253UdXzyc4YC7AonSz6Y17z31+kUejfBx62czv5Yr7oIBNnrBANBHl3DZVZ+h6breKfiHwBE+uH/PAGiihmbZaHLtXU/32yYjM82poA0UEfcbDgm7ObvksALB8OlAqvKrPzwge6mKjv3jYaQEA12pidM2FB2fdOSmA1ko7Vz98oEt29vgqMMzZO20+yJzWCy9wxiEIy6jxZlfKiI0ikK/Q8xtBdPu5ar3KVp12Muz9V7/47W/+x2vlTA57vcXZs2M/bZ6FgCuFemKrdjIMo8iq6YOIF7V5ywqTkwYCsJZEzdd/8Cdm4Vk31OxZuy7nKaLIyaXN7Kj/6qtcei1OmjF5/f/+G+/9mb/2T1758u9/5UeayZx6+V998LUvf+XXf+O3f+9XvrFY9OaHjUSnChvadSV6u2n0G70bn/vD//A73/6n35KTb3zrHw3iQaBGTckeZmH88tefwDvh8+5COICCFl85s5UQKsvgk//tdx5/37uPf3CqAHfRQ4a2tGJZFnf364xo0/uM6kz6iesAha5BpSuTJAnPqFCka2QBFHAIS5jK1zmOg72GqeOYv0dXCLpcKJQdC2g8V6tLpqkZmK7OcCzLMxqUFVsB9q/peKwsYYGtkRXVQnMsC9CKgkcDqhLNHcPAEWt0jSAxtcbAkzzt6dH1cnKVqRLVkmxJEohqqK2ayNFFTKQEAI6WAOwDxqigYOt/cgSNrNxJU89wQ8CswWC+OD05OurEnX43A2qbWobtAjLpAOa8uozJESSRrVX5urZsnQ6Dpc2krUuYNsjyoqIIoOlDEDFeEuiyhFnqsqxYng0/zTK8CViIIFG8zHmzSb/d7vZaUJKazVYHc5C6T5tehu3u6PAIGNzduw8fvvb2o9de7+imAz8EnlFDqRke3bz/8PFbXQMdi/EMujecLY5O77365M2WnyThcjAJj/hO4JvcvvfCS68+fu9T0U6JKAjouaGqOImDF5LYg2VopodZDHjwCTrYVoBikHVJV3kaA8ENbEWVRH4Z4/exfLFwsLuzvbW1vbW5ub29sbVx+RLmIV3EBtCLHyUjra+ip++F86sbK5dW1zb2ioX9g3ypmCeZWqlcIwiGrAjVXdjpdH4nX8lvXLwIAIxYjuOgKCE2Nvf2Ni+exzyky2s7hUq5jC8IzUIQgAFcaJBVVInCgFpqmSBYR3+PKlFDo1GqyjCyUBegGGGYTtDsdjuRLoMKxdyJZUOP79o+ZkECf/HcMG70R0M8WB6MJoMRQm5nMOj1RwAUk2EPAXg8AaCYoWQ7BNSYjQdO+aDKyV6cslCqyqAhyVqNlgDlhho2bQMasyIo4PJ+br8oAXRo6hKATbwVxHP+jwDYU0SBIQ728iAell7JiukHaIyiwj6Q6iTNSIIsY/EEAIZ15vuJx5XzFb5cAp1Sr4qBjDPQJCFzLA2U2mYqyyNoFtZolYR9VMcpaQ6P96J21w9m7VaCzb60P85i2AsqzgFTZJHwAUtsK3AQGHAOOMs6nX4/6/XQpK09mJ8mOo681MkazYgYP7T0ewHsAAAG7tLvT1MEYBIAWFJALfb649lsCksQFDC8GB7tMYGDOF4UN3rdznCE5/3z+QwbsU6fNT6xBvh7/vylVaK2f/78hUsbO3tFsoYKWEPPVMx/RGooWpZUwwMOqnwAJTIH/JrDFnHg20nWHQMAw5oQeSXsYbqmrkkCXSKWAFw8KMcIwHUSAdj1zGULvOfHT8+go2Zv2vKgdKBTPG/GrfF4CcCtQc93AIAlnAPO2r1Rf+bzPIN5kKauRxkOMsFP1Gp1ZgjA29sAwJvbu9trVU6gqwDAnm3rUIdKWgLvNlciQx/qHlUoLC9/0QMzSdOlD8e45xsSTfGiHQZZH91Qp1nIVGUD9O9ocT+pMYahWY20mab92eHJ6PCN4sZOCTtKsQ+nBMyisL8Oawa2iSo5rcnk2dM3Ez+0JaOR2LO3XuUljEg3ddntn7474n0v0Z3+60fnU7yBEix4hxvjK7df+PS8CCpDhMVU2srtHRT2c9tlnSFsTWKJSn67StYoKrfPgXAJRvPDszsztk7U63KrnTU1ucTw2eTqIVmRABdpiqkDfwQ61p7f8kWmpGpnQ6UiGObhGSUbthV3Fw/bjTsz2K9SesWBKm/ePsmDqIrb1z77QFe81pvXSCscv9kSwjTuPbhf4Rff7VWD3ns9KeMrHJWXun42lJt3Tglyd6fElkst/v2f/8Vf+fYVpalG3c78dAnAVzzT0Ipqz9U7aT+KQqOq9wNRVCcNM8quNgv+iNezZvqpL3zjTtRoBYqz6LJKSZNkt3JuYzhvP3i5Fp11o1CpXPn2D/3e3/nat/7cV7/13/3zz4Wt/MM//P7/4Vs/9MPvfO6X/9mPdMbd2XEmHZDEueCQTxGAs97Nz3/7j37z137/N2vCl37sd8Zez7OTpmCO23H4/N98nbfNQPVGniPVatnJFVOKDueTwcs//p3HX3zvre/vZCDos8i3/Ky2W+XIEqz0OAts3Z51I9+VNRft3slarlLd3SwUqxRRyHOubyoyla+xDKsahmNrOPMi0uVKjQARY2oKSBiyJmDDs2aoTI2hAYAVTXM9DSdMTEsD4JJoBpZoRXNwvEfjOYai0KIAvTXC0LdFvP6raYAWoK4BodHFydCAZi9zesmSYsF7i6fVmJtULwFhF1U/wJh6rLeOgwqYBgEFZUEANMTu0jiLoUwDj+1P5ouzk8VRDxuRozBtpK4XQ5kJ7cDG3mDdwHwCkamSDG1kseeaWYaeG65hKroK4pfBhmFJc4KmDTIgcQQsVbYqG2hEjLNWMoa0CJg+K9MWenC0+r1OK436UOZ73f6omSZozd4dTo+v3bz93IPnn33++ZffevzGGwPbwoyZrNGE0jg5PLz18uN33+tqKTZlLePQDo+Orr7w5qNHzaeTre3OYBm4enh0dvve/Rdff+PdD8KdYrmIAGwAHFje8rAZB2IxqDH2l7pMwSEYwGdJxvtIRVYIWgLcUrSPXjcNCji/BwC8uYbqd2Pt8tbG6jINaeXprziCBKIVxMy5C+eeWVm9ADV1bScHEm8/n88BAdjay+eLFYCP4tYBQZL7m/sHe+uXLl3+6AP9sDbW1zd3tzYvw9deBgm8tp0vl4tUjQcVqGskRUNxoDAksFKo1AA6aiCJCKaKMb6lIsFhix5VpTgBkJrDTAnVdIO0BUADdGjpKL4MPMI0wTAMgfwBqoVJZwwIjINbk/5g1O102+0+/A0I4SFKkUG/P1ocz6ZHp1cwRn42n448Ikfzip81AIDh9ZUKqIBlHBlRKhQSBAGoF1cp5nJ7RdkzgOvpsGJN03jqwmG7QAVpJXBhkS7ngCu0IEJVshUbViksaxXbBEDTMrKINwYaPDTD92xADAfUXJkrlkADs3UpkNEqp0LSlSrPMopNlyiBY0UeXdbJKk5iAgAzwA1Mv9nxw3mnnTgW/NHOII4QgFNLY6tkseyn2LIQOAF+hOiF3gJdlna7LVhL7f4MAFgHAKZBrtCiKKH5MgAwbKvBbDIajQaDWSMIVFBOTwE4RfesxWy2mPfYpRUlw4kIlDh8DQDc7sNXjPCSeDSeXbl2x0CqdeH8+ZW1vf01dFDbWt/OA5sSJEHD83LPiiJHtxKAcARg0MCFvQOCyBVpFgSvDPLUDrP+tMHuFkn4k7SwjfoX3kOMngZyCQhYIJFwVGtUnrZtdH6P0QDLBQTNWs3YT9ujpgOPCQQwzRthNhxO2u1Rtz3ueU8BWEcnrN6wP3ehPHE6HteZYRaiXQBst85wdrW2sru3t7e7tb13cHAAzICpciayGgTgopa6KsOUqADd7MliCWAbADj0o+X+7XQ70wEUQY6iBRMHpZs9AODUB4alhUlrcPh8WqOBfprNEARzbzpbPHvvjd3NYo3HyNXiQQ4AmCgerLNIcySe1eJh//mjN2MnsGWrkfmH77zCKZYt1wzXDEc3PzOVfScyvcGjs2dipIaCY2omAPu1F96fFDiJF1m2XgYAzucPcrtlrlIydYkliYPtKiwpYv9ANFUlOjw5vHLzWKhXaEZtg6hTmDLLxFCI6Dprpg4a5tTrQFTc1vRWJNElVT8ZqKSgAwATkmEZQXfxIMtuTyskJTXO7AqLCrgIAJx0rn76gQFi+q1rpAkA3AQA7h698w4rTT6d1N3Ouz25bbP1KhcFhVZHbt07ZJ2mm/Si7lz5pf/vS//gt0Z8U4t7HeAHI9iRZ46Kl9jDSXwymUWBp5JKx4U6PkqMKDvL8v6IU+Mw+Ymv/vT1Rq+Z6u404x1Vkips6Rwzng4++RqXnkV6z2F5//bf++7grS/95GfSL7+pTPiHv/mlf/yjf/kro/N3fuvD5Gg4u9YliwXhIJwG1ltNa9js3/r8P/+3v/OlX/0Wq/3gj/zjG06WqmmL1wfNwHn4k2/wlm6JwI4dhSL0xbEuxsdH8/ErX/nM4fd+8N6fSQwb1rVsypLM6NXLZKlO89m0l+jmvBOBDlU9ug5StAZ7YRcKe40s5/K85xsAwMU6Q9ckUFmmKmt4xAaqp1whSUtmaLJC1EUAPRF4PUPBk+IZSZZsX1eNZW4IFH86V2EooqQ5y3FUYHgEif4wtikptgMkDpYAWdcdPKaTNc2yNdU0VRrHQFnQ4WUVARjNhpYAjBd1subjFW8GSx70jwGviMGYcxYPuCQTcAiUrGP5jXarN53Mr169etqNWtjh2UCOnzUzdCyMYRnDi0STKAGePVNV4wDIbauVwTbyLBN/UgRggUPXIi9Ted3xzaqCvh9QF0EBo4BTRPR7FGlKkGQ+mE5G8ymI4F6/22wsY8k6vQ4aH6Dimh1fA+R8cP/hS6+99eonX+t7rhuGKUYnpt3x9OTWcw8ev9VREIAxUHjZ9Hzy/KNHj1pekqLXHzrpw4+zuHL92edffAkA+P1gp1gCAMbYC0NBm0+8EAVVpcELTpbVCBNn/ADEsOrgzKUOoocFWDGWjdPLRMKPHeQBgLe31leWB8arK2uImZcvXQAExh7olUtLN47zz2AkzLlLqxcurICcBV2wu727t72ztwF4vLmze7C7vb22tbe7uwbf4/JSO19E/XzxIkjp9a3NrT1Q1hfhm17CvIfdg/29fJmRVIlBsK1WK2WiXCyVCqVKcb9IlHO5IgkisFzKHQATLJfLlXKxKtA0I4ByR8sWI8gsWQFViX5qgY+Xb54T4MCriwDsBVFritEVs8Oj6WAwaDfbzXQwHsO/mgO6jIe9Tm+0OJpOjq6c4BgwvK9DnyxyvOS3GjQUvlKplCNomlO9pDeQKzW83xAlSWHhVYLGV3ydUZZXJdZHDec4hu1pjBr6IGEYMn9QrmBnvAH80PJ9G687AYBlmgC0E2QRBIdlITey3Cix6/mDElcsVCo0DxpaYWvFPLwfORJWmuKByOJxDhi0KIUZu0T5oICxwADArU4QLXqdBG+GOKsfx67KKpmt1omlFSXmb4Y4cwuyLEpajVYDAPijY5ne+OwjAK7VKBrome5FQAWBmqa9yWSENGWG0/JMtcqjTxZ8eWe8WMyns1mPpRGA8T4XGy0DHLrud4dId2aHi8PxdHH16g398hoegKxubK1vboAYXt26vFWgcPKGBfKnOkCXIldr3go1U6wt7/yh3JCV/XwV2DovwHtr+0l3lND7JbLOoZOVCYRYEdkaXaZc22CqRJGMbYWrU9UcDVsJdWuMnl8+xhk1YpC3/QwAGI2a0Tw+7fWGjSY8+EkPM1ZJUUYA7sCmWth12NMaUljXT1Ifx5DaIJYnV+qb+YM99OutUHW89marnB26sNskHhWwrTBMkfJ9g2cqhRImQOAhdLScYwBkPxp5msrXGRHQP00aQAYnic/Qkh4loM7vNlhWhsLmAa3PepPp4ua9V3d2yrAC6tVKbvegVIGSebAKwkLkOUk0GsPB/aPHkRPogp7E/uLJy4LhWEJV92y/f+tzUyU0A9tvvXrrmViVVFvydNlIu6PTF56MCqB/eRqE7VZuvwA/0VaOOMjDw+coYnejSgtMdX8PHowczeajw2u3cPK8LkIVSkSiLKst2DQ1mg9Tp0YxFKa/W242vNnga2VFPxxqVeDRh6clRresqH/8YprdmpQJSm5ct0t1yb17UlI0Pe2evvuihkfQZ6Qazt5ucvCMZm++UxVH77pFJXnSFZNUZWBNmdkisaP7g6KpO4aXtOXb//A//Pp//qNDZqBGvd7R1dt9J+ycGZJAUXs1XW3YLrzvGql0fUWSR6kZN06Sg2DCib6n/egv/sqZO2s3dXfo1RWHpgmGo9LxcPTyq1xylAaZpNUKv/gvPvcDP/HXvvrNN/7sjO3UHv3BL/zu7/7tn3myN/i5HxgcdjOLK9I8xy2GtP0os0bt/s3P/e7vf/un//DXKfOvfP23J26zJaUdyeg3Qu+lb7zF2HZg8LGnz0dB6/jUkuKjw/H4pS9/evbd777zZ7sagBkFNJreZZ7PNvYqmq03pnGq6fNe7Fus4tfr9WqZYIhcGf0dqsX9vOC7hqxQRZqh6zKoKImusXUaimalnsuXypYm0qBTGAEEmMgrGl8DDOc4VeZNHwUCAjDQz2qeYMhCXrEA6hTY0gTOl3CyZUmyrgksRcAOpDT0ZXeA05mWCnCLQpmmaVDAFQ0+T0PLIAfWDF2ECqbpgYdGk0kSu0FoLe9wWQbKswI0x0Q/DZBFtpOix+p0fnb1xrWOi8QWt2hoY+XzAjQR9vDeGSgyMPo6VxUBzBOA5RgqFtp7YMCswCvoIAWay9dMTFCSeUmkUUQiAAOOyRraRkPRrbIyVG/PEFQbmAIoCt1cDlskIToUg7hAnXt0fHjl9O79+3cm3duJ6fhx2sAr4jZgw/H1ey89eb8jBlgAsAIA3B7dfPD6k7c6QdZ4muU6wLC3kxvLE+jX3vrgU9E+VC7RxPY1y8RQIMPBo3eHp2jZXM4De0GILhG2tcxZNkxdc1WO12x4qoqMh9DCx7b393e3N9fRMwOE6ubq01PnCxf+5A54mYb6zDPnnnnm/DMXLl08d/EydkdfvLxs1Lp47vzF8wCy65cvrYLoubgC//jxj5+7cB7+On8Bo1QvXTi/sg4f8Ecsu7rgm6+sYvTSTpGsUgRRBNSFCgyauILux8ViARR1qQi/FArFfK5cKgIywy8E0CRaNCUZry5V09aAwymw+d1l9rHr2ybUvjgJ8Ag6COMWBgegAQemy7eAeXUPj+cAyrPFdDRCn8D58fF8tjg+muLB6nw6DhCARb+d0JWnAAw6QNC8ZDhWYblSFM2jAoaXiADsqXUAf0NV0erNdizDxgOHp0fQAoN3wPlSjRdENFXFe3gT7+k5UWHIGiOJisSBjIeH5gF0JplVze+X8RiaYrm6HmgcmS8QFaJA8HRVCaUKib2CPFuFd4uk4E3KAQBXgQNG3X6UHPXaQDZhJ7qjLAFNJjdsjcV5/iUA25H3xwq4AySk18+6aOnS6/ZGZ8s7YB5IN6YOy+iW3ILFH2KLNABwdzCJHUfC/kgRADNptQYzPGAezfu4X6o8RmNgBHWQpO0BAPBgCcB4RnNydnyqrGxtbm5t7+7sbgI9297Y2FzdqdCcIKucrCrYug7PyZy+EdGGUCPgp6UquQJF5otLp0544yzY4Y1uxJYICgHYcZaRV4rA0kQVCA1TJQtE6GgiQ9RydOh7yB0ibIOKcMPBP8FPnLomRpXVlgDc6fTSbNDtTLq2LdEEAvAyiGh4ZFXhc2RdsXzHiVLv6Q0Q/EBH9e38Pk76oaWKBVqWqzJ24CzzgJmyFpsSzWAHtsrVy7liFj8dbk4w+jLrDIaLgQMPusZJqpsmSQcbAUOPoVUL6PVgdjdlOVWz3dACddwdArm5+waseEpk6WWYFjxBspJfQ4N7jpZEvTGc3jt+xbc9jdfiCAD4FRnUC181A8ftPfuFmZaYgeunL908l2oSlFpX1ywg9mcvPBkDADMs3vNt5Q4K+dzedr68X7bRwZrYWwchVqP2dqkqy5qNRmNwdCaS++WqEHUyF032CbW3mFYPSLflw5PBASPF8rL+rbZYrSjWYmLXeNk8vlpmdcdNh6cPs+zmGJ6ZlN2wi3XZu3tUURGArzx5oEtW+uiMlMP5kxYfJtPTJ++UlcMPAtJsfTjVsmzQN1b3Dr/4Qhr6DzurlYNSFSCZ/et/8PV//tv/10uaLYe9/sm1Wz3Xb51KnCJakWFPjxuTRpZYVW2YaooyaThp86xRyo4kOYjtD//6b97TWs1MdGcRw5XqDDCm8cPrw9GDV+j4KHMjUzWIV772577xj37yc3/5w2NGDap3/+CrX/irX/y1G/utv/+Ls3R0KBMS62jW8VzxXkvNYat343P/9N9840v/7pul7L/+1d/wg0Zspj3VGrQb2fNff1zVdUfXAA7GHUM5PHXk6PhwNHzpq184+d533v7ucWZodd6SWbNaPXJNWvJCNT7qRLo2xeRoTg3qgJ9lqpyrq/nVskSX9zF2DUo3KGAAVs3Ew+caA1wQ7/2KUCkNdEPF6UTFMNADUsC5TSCTCqt7qoKuTK6JUQYcx4KSVyyRE3SVJvF0D5gUyDJVV2WOoupkidAtHUWcAepX0x0HUyAQF2EFaCaUOlt3lp5XoIBp9EJz3WWPceT4AMACU6vhjBqv4iG2j82wLgIwnuMu5idXrl3teMYSkSwT1KGlKZoK30sxQVMDeGKEU52u6u1ub9jDI+gkCR1HB5DSeVj7AsfDK+NVz1dg8XEgW4LE4UzX0nTMisJoAzzDrjG0YsD3sTqDWFuadYSYDIozMng91Gy2BodXFqPh6Oz2nRuT4Q1YP36WQclLGhjUcHh647nH73Qkz182gfQx4e3w+r0X33zU8FIA4LTVA/ydLQ7Pbj/73Isvf/KVtz792TRHVPKwjfH63HYd9Db0AgckGdR7SffCACiFoyqgi21tGZqLc8IYkKRh6zYwa47nAYBz+9sba0+bptae6t+VP7HBWrZBr1xCAfzxT5x/5hOAp/hx7hz883n8DTD54/D3ly6cu3juwoWPX/g4ADV8MgIwfA78fg5+v3gZ7S2X8cKXLl7AFq/17b08Br5QdaJcoWpV7DCq0SRBgRIuFCuVUq5QyOWJSrlaRld6+KgJ2Pdj6Kqu8ComYUi6KbMggZdP4busAAAgAElEQVTBso5nmS7aAEYuCOIwTjt4XDCezI9mg36/3ep2Dq+eYnPRaAG/Djrd0fLqdz4/RMNKBOAQj6BFtxHViUoBD0VJhkEFPJgYVahRsGDhQXNEpVjYzUuOykgMWgiDkkXxa9qBbdkKrfguqPoaUcrvF2pAb6DCBk99OoCisqLKUstsA7wD1kxsqtBBABlU7qDMkoVKHRDXCAyukqtUK7AnYFkrPgAwbAWB5+BNQgCuUYUirDVB99L+IIoOO43Isw1F8icN0GSc1vAsoUZV6gDArv0UgHE4NWkBCQQA7uCYOjanAQCbGCUPuE7DItacuN1BH9VWfzQajfutwTi0HKlOknVekK2o0R7PxqPZ7I8BmGV4RFIDAwyWR9DYZThb9mAtFtMj8cLWxtrGzt7O1u7W1vbm1tbq6h7JAZTr8H/Y9zbOEFrzd2zSEKroOkqV9vMUWSizjIBB1TgrHLZ6AMAV0MSijuOGOHQG2hMA2IGNRhaJ2NfEeqWep+PQb0LdDnCyCcPI8A44iVuJZ8JDAwAWdT/rdLpJ2u92Ri3T+giAk1a71ewfW6RQIyXsGtXMIPQiAMherzMcHNNb+3ugRqqAoVYgkiAlaBuqELwKAGA90kWaKZG+pzL18kGhmYTwLgODT+GPb3SGk6NRaMJD5xTNjoKgOx4N+4HH1BQrBcCd38sY4D3YCJ+iydhocevewyJNEdUaWgTvHhTLFFnOrbE8r0s14MztydmzZw/hbTAkM4nD43cfSLalS1WQ0E7n3ndNtcQCBdx4eOVcasiggB1dd7Pu9Or9dydFlgMGWa+R2wDsB8X93WLlgLBNjqqQB+vlPaC+W5sYhiJjgtSgTwE8V6W0Ecgck98td07uPds2ND+1iArosxqnWEGjfy0VynneXkwMklXsk6tlXnPcZHD6UiO7OSqRVSk5s0qs4tw5JHVDT9pX3ls2YT06rajR7K22FMedk3ee7BL2FeegSt/22DAZ3+htiy9+573Iil4ebXJShfY0s/vzv/Ar/+9//5/fE3pK2EUA7rpu60q9hCP7NNuJvR6UUItShw1VViZNJ2lca5aaJ4oSht3P/je/dJoM00z05pGgCH7Uj7z3vvnmfPr6O0LjRltOHMFl17Kfe+eXf+qND79/6Ao6e+tf/Mx3/fh33i6QOw+/Nm2cvjaPB4Pw2v2jF57MQQEPm71b3/Wv/p9v/sS//zv55Md+85+N/IarZD3FGHTbzVd+9m3WqFcpbhu7lvK7o2NHSa6czEYv/8SfOvvi++9+D/BBtSQ3DNq09/YuewFXlTj3qOdZ+mjUcGxOcUGK1onqXk5Wti8dsHUil+Ncz5JlMgdPr6rZGibLCiwv0OVStUSQZUB7rk6WCVrWdZGTNZ5CQ2ZeBwD2DcMLASWRnEsSQ2B0g4FT6bD2S/kKlFLFBgA2dUOELV4jKN1Zxhyo6GFsPE0qRW8N+E+KAdvRNmAHqlCgijU88QaM9ZIsiiLQeE8BGD61zoKiVk0cS/F9zw2bvWVJODk5O+sGwTIXFegqFBO8w4daJQFe88vza5aBEmv0UCvhED8IZdc1TJC3bBUNqRnFcuN2r5N6fgO9qgGDzSUAw49G47cRabIM9dqI0QCvn/lRsxuFSbvf7/UwlmwIFW08Ozy+evP6yY3rz7/02huPntxvmoYdxwngpR+G7cMrx7Px2f0GutliCWn2R+PR4c2XHj16venFSdxstHogMI6OT67evHXvxQcv3n/86c8lB+XSAQPbGPgEDv6iG0TqqGaYhJ6JJ7I+FDlZwXNpK/AtRdaB/Os2+hIrOMKMgYQf2y9WivvbHzVhbW2jWF1bQQeFSxgLjL1XK6uXAENXPvGJC+eeubh2+cI5hOSVi+cvXcZm5wuXvuPcue+4CDD7Hc+cw085dx4h+vwFxF5Qzp945qmV3xKK4Usv4JXyTr5cBeYgsfUqXatjtiw8Ap4HXlYrVkiyXCyWK6VCqYq9WDhjVq3VOQEnvXSQwLwQLY66wClsBZ44ECvbNFHm+/C+paHte0snrMF4Oh4OxvNxF55BdzRanC0Gw8lkPB1N5hMQOCO03xgBTE+Xh9L9qLRT5SUniUDtluEVoBsIo3hpZ2wt+8EY9I9kgRkAtgqmKmBaUYkSFcv2Q9+2A9cB/alGvgKqEWD6oFhb9gv4oWthh7qyBGCOwiNFWHMqNiMZlqYBg9TIg32ovXlQiFVC902+dEDRlUqBgCUt23yJlCVexE7xGrG8A0YAZkTDz/qDIJgC8gQOLER/kkWWIjiZZ4s1okhiExYoOs9fAnCcZXGagghsp2EIQDyanqWmpYgcNnbRgiDoboqd+r1We4Cekv3GaAIArDIkDk4tAXgy6/fnR9NZD1hmnWLQrlrB6/gYFmu3M0AAnoBCXhzC+34knd+4fHFlY2tjdQdjsba2Lq3skugeDUUEbVENF+i5CQDMm1K1hBORqICJg3yV4dApG7iiG/cnMZ0vkHWa04BN4nuoiNgi5Ls4hlQkE1/jCIIuMGnkt2LkXWEImzdtdlpJkMbNxLPgoTFVAOCg0QUATmA3DhqGJTOEJAODaYFy6Z/6dalGLu1ved3HGfIGHtKPRqfs5t5BmaCWcauJQtECWcNtD6+Cp4tGBNueK5NRoHF0JZdPAWXRrSdLcLK32e2Nuz5AdI0HjpK4TvsQ+EsScvBaYoDn2d2IrMKudRsBOtYPJsend14uEztFERRNOX+QKxVgqe2s1FnOAAAWnNnxvXu3X/ZwG1tpHBy/e5cBMi1X6oamZbc/2xN8w9Pd9sPpMwlwVFcGAQFrd3r1ufemRQaVbL1ObucO8vvFvd1CcaegWky5SBU2iiWqfLC2UaVZVgvirNVICSJPUGKSNX2d2qRmn75hc2acRi2HJGqVpR2sl7aPbHp3vaJNe3y+JlmL4yIPZSbqHiMAD0tUTYqPzTJg9c0ZaVpG1Dz71H0QrelrJ/C+Td5sK0k8ufmp9w/EwctqjlNezMR0PHrwXEl+8MG9ttW6398xKct1Q6v/s3/v//jX//qPnudbAMC942t3erbTulLZhtpA5FmfS4dAeoyy1M8kURo3rCg5S3LJISe4TfuNL/1sp99PO5o3MHlLlw1dZMd/4f1B+9X3meCsrbRlsVrTxef/0vf/8Bc+Y/yFBwWz/sIffv0v/uS/9ApcXvnMdNI7jkSe5QPYNOPRWy171Brc/d7/+G9+7df/3T8kZj/x9T+4prQbXNYRlF6nmT746Xf0RGAlRpVkNyzVhyeulpwcTycvfeU7T77v/fe/GLd6zk6uShN1Y/fSM7W0tC17rUXouHp/1HScuqDlcxWyXCJ4rlDMXyKBjuZZF/a0XMmBRCE1G0UTD3JRqJfLtX2g4oiIDEXWQEYCMEN5qQFTF3ldZfXAND1MYTNjIFISCwUlxyoMKAaepkp5QlBArQHigh7jigXgepTqOqjQsE1LwwszkaXxSBwUkqRJywQVz8J5n1Ktyis6AnCcBGH4FIC5OjZB10Ebgxa0YA+hoU0DKi+U2Onp2dXTToAZQzE2yFqgs01Q/yryaVmXFFnA0U2O5NFPJ0lj9OMANiDKgmyIDKcoHKv5YbvpObG3DNV9ajbl2jhjomKoASIZUZNALkGdiAMr6ne8LElbaAfdiDF1tN2eHGL71LWr187u3n/wysuPH7Y0SUGpBsXRs9LD+dmtOy++kskgWrG/2jFAq2vNs/vvvjeK48BPO93+ZHFycnR29eq1uy/cf/bOq5/6TLRXyBc4fEWGpS+DaULfgbdd5NQA2QZ+BJYTerapiSrqZJyzXmbT6ubSQZqtfyyf39/Fjx0E4M3NDUTg1Usr62sYYQaq9fIlPGYGQEZpi+h6eWnUcWkDoBjtoS+eXwrdp7+eQ038zHd8xyc+AZ95EYTzMxc+AmTQvugpdPHi5vr6Xq5UXwbSS4C+6G/FsTTNIs5SJKohAih0pYStsQC8dez/rS8tlFkavaB5wZtcn5qWoGGfOh5smBooKgewDueq0VDUjxqdXmcw6qGaA+nXnR2O5ov5EBjZpD+YTHqdHgbe9tqwQTF4oANSyCju11gpaIWggIsEWvwD8uh+2u5YtToDREAQBYmplIoHO0UZwADWDEhHXfeWcYiurbkOX9MAgEFUEqUiKDcQfLoXpy7me2APCKdp2MQMpW7Z6SsruqZorh2Z9eJejq3k82SNYtTAqhMHLABwmRTqsC3YYgXoicCwdYpAnUJVcxWO4VnDSfr9KB63ssC2QXxHgyRyJModJJ7MMFQd6AjQAlDH6AuWNdsNHEWKEIOjznTQnVyLNaC5Ak2iKZnAa2HaHQL+ZtlgOhoOutl0HJu2xkC9EBS0bWwMp8Medll1gOsy8D9egcVkeXjuANp52B1Pp/PJaDaZz6eTU+UC9vStrW9ura9evry2sbHx/zP1pkGSZll1YKtyiczI2FffP//2fd/8233f3SM8tozMyH2tyqyqrH3r7mqapoHuHpqGFi0YtqFpRgiGRRJjiEIgwSC1BsGYTGibQRgCM8ZkowExyNDIpD9zr2e1NJFVWVlVkRnhn793zznv3XvO+k6Z1yReU11NMzXNj0NPH30QiY5aAS5fxTOPKjqcUlBDsMHXDAFIYz5fLlIiAGgW2ADdpo4elGjEQQEVbwUGsJ3KjlRPklZSg60Hej+J0lanAeug2WzqmLVCk6ysh50MPUj67e6wUTNFmhZlDKKqN4fD/ZogVikThLkkWEBcMUSt0+32x8fkSi4PbyPGOkcDAWoRLdogWPDcjy0DAEs0VyJCVMBEodiIAzSCrmfzFo4uLKq+Z0k8L2JZsGqd/fG0m9UkQdKzTmcwu5dUq6IKHLxeq/fggR9cv/dytVQu44wISODd0nZhO7++ykmyrMm6F3YPZ7cfPwPS4otQ9qXo6X3NNwyQibphZ6cvd+zEAsFYf9y9EGNKM+86htvojq49ePd4k+WqAkmXChs7m5VcsbCZq+7mHYvP55jKepUpV6vLawLH82bazOrdVCjlS5SY1Qc1Mbd57S11o0yxKgCkz1Qpo8KzhhLUexOxUMoJFS62oPLrp1fzqulg+sPDZvdmj+YIwz/TCMmw7u9Xbfg//eufvgM0rvlKv2D6ozcjI4zGZ+9/mHfufrdXqI3+u32uuy+l3Wz8+LP3m0704GiD4KE8meOv/C9/9/f/4rf/0yMl05LO4PDwztAPOhO2LNDKrigZwckE1rhZFNqxpMiDuh02TpNic19QQ7vz5l/7vX406taN2sjJU2RZkMu1D1/Z63de+1Q1PGq7qc1XJafc+ubffP3sS/2Pvn09pV79k2/7vW+8ybBlqtiYTdsHbYfn5TTujgn3vbY/bHeuf+0//qff/ujP/5jr/tY/+L/uKiNXa/RUa9hrJi//yntsUi7ijaYiUDl1ehDoyeF4PHryM58//M63PvuVoPfK1x8uFstlpri4vH5OsHO0nZy20UFuPOj2OrCRNZqgN2i1dGWntHS+KJR3WccDlk4VGJEiARMkUcMpCqmaK2OINqE5gKcMQUoKZhJooBdZUZREU2V0UMAACTZ2p9g4HlzO5xVLkrCBkqvslCXNxHl22fAdCfQGSZTt0NBsxDfDsRUZNoMk8OiuATXIxmZS13NcXdCEAk3J2D4cYjpvEoPcNWVFgk8DbcBbqYMGwbUEHaayRn2435vMzk6vHrdrNXS5CX0H2LNtAKOFgmggHIkCWm6xNCcajcao20zS2AcpGcx9FqT5fIIAVT5upVGcZR4KF80KI4wEnndrK7qm6rAVadwnUSPFgct2C8R3I4qb7TZQ8aiF/hz9wfTw4PB4dv3Gg6cvPXjxzZfq6LbXasyzU0bT2enNBy+/9XqCZrmaSALrlzVF85J0cJqGtajeGQ9aWe/weP/azdv3n7z8+gff9snPfSbezVdKMvqjGFoNrZCfO1LMb38bAR5FO8HztL4gwEMEgF0bU4NsHe++Zewboz+xu7MFyAsVcg69mEmIVhyLzy9sLz/PZADNuro4vwe+cPHyMk4iXZkfV+Os52VA4IWLqHURfS9+DMQogC+i7l14/g+8D55PNF1eW9nIlQgO1Aw2r83NJlH+0gAwJLC+yv8fgDE1CUeSKHT65gSB02xdlczm/vEorOE7gf162Ow9T9gJ5owD4bAWgoxpDkb9wbCHU5bDvYO9w9mk3xsO+zgB3MMUusm4h/fq416v32oiAO/OAThBG40qQRTIOQDXBwOPRqcvVpZFmUNtu1nSMMdDUwRZx1FrvP7FOSRfYZ16AlsCNEyxRAmKZnpRijSxBvgsAzcGAKYpThTx1MQy8NbF8P3Epos7ebaYL9Gw4OXAZqt5AOByqcLRpBEIFRIzYlWOJnAemq4QOxiizitm2OnG6aSd1IIAuGmtX09rOlNrguzDjiEcekczaKCocQKiDu0e6mlz0Guk7WGnObqemkCg0cUM2xcUJwAA7rWbjXkXNFSU0TB1PI0iKQ5bIJJGozcaob/2XhtNXzkMhtVRAc8BuN3ud9BHadwHxrs3nZ5qF1dWV5ZXVtfWV1eWcAptbXUeMk/CixcBEEXLCUPl4NOh7KjlUqlAVMofAzAjAGjKmm4GIGUDDgAYnePDNEZbAUeXmGIpcAyRJItsJ0IKV83LaJaOHpQhcLAU47gb8E21Wi1Tl+GrYbtYrdXpt3sNeMd7mW9JmKho+VG93oS14XAyScH7qcuyE9gebtvnAEyt5HIlkhNVtxZ3gNPAU7VCvMaCIlvRI0NihQoRBTqP4cSwTcM4Bg2czsce2v3eOHRBKwuyHQVu0JyOJgDAImsYoNm6B49STsD2SbcRpK1ef3B0/d6r1TJR4YGClnKYUkfmAIB5WHSaIBp+f3Zw+97LXljTBL3Zjg4+/UA0FIUvgwo3stOX6rKvGsCibrcXIs20HbnmGU7WAgB+79ZGpVShy7u7+Y38TrlQyK3vVHdzls4UCmx1gyTLRPnKMoMOhhGohm4MyrhMK6DlTW5lcoPYpkSOYfJ2pw7bEIioaOtBNjh0aYaQq7peBkpi7J1UNFBc9dG1l1rtsy4nklbzll4VdePulHFA53dO3r2rKmb6dFjVvNFbkR4lvZP3PlkNH3/e5ZPBd03E5sSMrw+u3nvjft2JH1zLVziSrVWf/W+//gf/5V9971+3jZ4StfoHR3dHQdA90gi6RAhSRXEO+14QmSWpEyuaNm77aefaxwDs1j/6nV+6mRx0GnZyEBO8QFiBEL339umo8+q7RHq15WauSAjG9tOPfuaz7/7ONz76vs1EffvP/9rv/+bDNY3bvvE3TobdYc3mJbvXG46lxluJM+5N7v/3//FP/uzrf/pr9PCbv/F715RuW2v2FL3XbTdf/tvvsplv5NFqliQJe3pQM+pX9/dGT372Ow6/8/VPfWfWfvi3v6aQpdS8fH5p4eICa00PB1f39obzu8VDkFcHe6NO3ZGo3UuXt/OLS4XCBh0nisSTZYojAYABrDSOliWZKpJMoVQkYB+BbCEoRZUVXVI1WKCCIIu6whk17LhFdeJCPRAEplzIq5Yko9RhiVxl7nzuA5T5lgj0Fxad7hqAePPsPKC5siqDwMDySxG6raOhMfxQWZHMU1UBc/xqXoRNj14YWqLI00wVXrhgJo7pe5jRHsdho5M2hqOj/cOjm7f7zlwe+o4BpMCxdM1QRGDwqqKhHYUkoJelksbtetKru7rphwGmKUJdEoBOyBZIZuydbvcSTVJ1De+jnbkXpW0quq6qqsSyiirBsvJcIODDfgszgIFH94eNOAQ5hlOpAMAn106v3Xjw5KXHT958KQVYB7THBq12f7w/O7p+56UnAT93BHN8wNxWq3/64KU3Hvt2CJwak23i1mA4258e3Lp9duPJy+99MimWCgURz59Nw1BVE9Zi/HwSIwxARddAA0cOunh6jo5D3Krh1vD54pwCtkArmsx9Ymd7c657l5fn+Lu0vnRpEdQvXv5+qxHrCgiZVZzqvIi6Fv7f0vLS8so6fKyuXLmCN7sAsHN5/F8/4D9dwJat53/GvJEar36vLF5eXdsukbSARAO+PIOzb6AJWQqtKAF/S0SZIEA+fgzAJPb9VhGBMW9KNPBkIt47mk16GQZ92JaLt9/I84Ia+uSju2nt+VxS2gNx26snjdH+ZHpwcLyPWrffnoynky76L0yGXQTgSbfdabU6LbOYg0odtlMOABi+MgKwaoWNQd+hKBYPfXGaskoUdrcAgG1DNQx9HogLaxy915yaK3JuPcJWfZDAJVLSdSvMMBMwSUNYKLArTJzjEPCE1TQdCwiSYYdx3WFA/dLY7AOrUKoBAFcEbMYoUNWq4YsVSmRY1RAYYn4kQAD9ZQDFVSvqdMJo0IkAAi1FdgfNpGYwXrPmaqJAc5jBgDZYNXgmmG/ZrOPfLbyu6g1brfH1zLQUILmgZwHeNc9Pu4MufFK9PwUJ3ANQSD1PQfMt+FJ+nKHbJOZG7bV5kEtoS4Ii3vL8eB4n0gMZN5xOBniovz+7rp9fngdSLq88H0VbWllcW1ve2N4p5kCF0Tr8mXEi9u6ooq/DwyrihSc6zONsBg4eqBpswrQR8JgVjPbySeYYTuBoClcmIkfhSCJPd2NQwkQ1L6VxXI/DNAsDQEAUv0CEEYANEKc8FEQA4Gav1+o2OvBGxxjlQAoAtqix4fs1aJmlZAzt1GuR7UTAxtoY44IAvFskGF4PoiABIQ0Cw4zmY0giV9YiS+GEUiUOjTkAx3gEjpNI8C1kOGrdm2JWKgeLNoAa0BwPJr16TaBVPcrq/f3bCS+oqu3W6mG9MxxPrl67+woCMMYtlnPbeYKic7m1FXgasoJNaO3J4a0bjxycgvJBShy881DQDYMrKixnNE5faqquqvJ2eNa/EKE9nBJ6pps1+wfXnj1czW0Vdta3dosbxe3d3dzu2k51Z9fQ6VKZJ7fg4VdKiwDAzMcAnECtLjFGoxbxRe7UWiFhCRTpSs7tkhRbhhJv6H7cn3mwxmSyZWx7uij2jyhgk25r7/Rh1rszVlRSbt61SKBot8cMLHK/c/TWPU01kyeDquJP3431uD46/fS7bPjgTS/oTj8/NhqTG69+/2Rw9pmHqZ89fMBVVVrsF5/+Hx/95X/517/5G4HryVGzBwA8rPnNI5el8wWV59vR6RiqnUmovQT2414Pb6fTUnMGANzW/+rv/dpx1u40zGg/oeScoEs265zcGvdff5uonzSc1BEJVlz58Fd/7e2f/LOf+fHptlF8849+9af+yZ8IBWFj7x90G73DRKNpXtMVk2u+F7l7vb2HX/1n/+Qv/u4//+md/q/9zs9a/qguDkaqDgWk+covfsB7vWv1PEBZhWC8fQDgxrWD/ekrP/f54y+88cH3uNm9H/3ZR23X2z2/tn5p89yOfnDz4PBgNtvbn+1N92aH+4PB/mwYywxd2KkIG+dXixskVDJTpEoEyyEAC7zKcVC4yXyFLACblRTMi6sAAEsKBvMxJCtwsgjgaXnzY1oLRKLnKJLIgAJWbQlQj6HxgkqUTS/0cSLfFEkC1hyhmgZAnSGrqgCUj9U1gaEZhPeyahuo5XyvZgoiAVVJMJ0wCYO0jpUtjkwB8BNoPMcLRuzjEg2BgtajOpST7mhv7/j47KwLyzaCguTMT19NXUFfIniwEixvzMVl5gActUDAxp7tYW6EoqpQKTkAYAwEA3Zbs8NOqj0PQfVrmP5kAcsQFBVDhThKEAQzTe0gSer9Qa+PU8DNrNlr1pMo7Y4mgJtHB8fXTk9v3n/xydNX33iSgSaNMbkUNmyjN94/vn77xZciEZt8Vafm+6BbWoe3H77zNAOpjz2s3R7g9NHBbO/47r2bN85uPn4sb5RKeRHts9G1SzXhewpA4M7FIKYVWxaaXUZREgL30c25yadtoR8H+u+DzlBE9hN4/Ly9ubEOILu+Dki8vbo49zD6uBELlevS6vra+vLlOQBfWADNC3V1bXMnt7O5vry4dBnxFxuyLjwH3v+qgs9fRAX88TTT0sIl+BVo69X13QpGC8kIwDzLUSTJQElnWLTAqlaKVQDeUgVnj+b4SzKVMkkD98bYSNF0VMnpn5wcHc0amPXkOd6c5TmgQzHOOcIIXOAfQDqcqN2FUgrVeHwwGc8Oj/aH/cGg3xkPx+Nup9+bgN5rd/v9YavZAcnT/BiAOxkoYPQ6fw7AUbPbtQH+se1J5AGAK88B2DLwKhPZzPPYC1TCjsC6WaB8DMAlqK8mjpk1krgRWTasaMPGNT0HYDyAd1yghWm95WEEKAArTVYpQfMttlzl6DJXLVarpOGIoBpZToM3DZkIDfunUKZhQxpe0mmHYa8V18LAAOwftSJHp61mzYN1zQg4koMxFbUwmiMCSEJYkaDumo0uUI/pKRpxcAILD56VFdXxk1YXdkySdgFl+4BUXeyChm+Bxh6oCFRuf4yenrOOIPIcvCEi9h9a7jzEodXq4XnDdDIcTYDtHJ1p567MTZTRSvzyZbx/wNv/7fzW8vLy1nZVqZluGqmmb+meUS0DAJNl7IIulNjnAIyjT1HWCgX0RWZ5zU9iQ3UChD6CTFyJJUs5qh0ZClWoFCTM9AwBgIMgmTthNeCZw08NTcb4KR4qStjpYCdeu91rho4pVklRcoCjNbvD4cSkRABgTCgx/BoGIzfQxq4/OaHXcrkiKGAT5KRJE4zAAADjCZqMY0gxdkH/NwDGyKkM+BZGP2atbq/Zm3qGKtOybMb1tN4d9qeDZiAA0kf1xmDvLOSwXQbtupu9yf7+HIBL5TILbLOyu12oFondwuYqwKIoKm7kJdPTO9ceOjVMuQFaNXv7rgjrR8wzbJX3R7cTyTY0wQ3O9s5Hum5YcqArdtbq7x288mRxc21nbaNYqmwUdrZ2dneeA7DFlCtsdauyUyKKS+vYhmpEQFvaGVPK7VJmXTSonbG5wtOlAhGIy00AACAASURBVKsJfJmtc1UKqi8p637S70sYGlo+Dor7Fm8fHpVl13Cag73b9cbtPVVm+MZ9mwIKentMm6oVdI/fAQB2Gi/3Cmpw8MnUTFt7Z597g/fuPHLag6PvGjqt0cM3fuxweOfbH0Zedu+JRcmdgVS48w9/8j//i5/68o/LWkOJW93Zwe2u42X7galWKJbovdq4PoHdblb1XgxKaNqtZd2zDABY1MIs/OQ/+L/3WuNhS3eGIaNVVGJNrgiPbw1H77xL1KeZFVsC0Jz1xtd++dUf/I3Pf31IJaXH//mjb/7CH1kloej/xHG/fnU41wh8lZM6n4q8/e707nf/+f/zF3/693+pOv2ZX/9G2G+49mCkmb1Wo/7aL7wrWp1X3lJIPeYVK5od+Doo4On+s5///NXvefv973dbT77nRz949Tq1uLW7vrZc2CqpaT1+PjqH1VrnSiUsMrwIlVkW5BJj6k4a6QpPYNNU1QaxKqgcr4gCsQusCRPEZZQt5ecALCoqbGWOlUVZEh20JgBYQFsrEy2tCDyClpHN0TjBJ0iGG7hoWoqHSSRUWsyp5Vj4I+hiSWApJOc4hgSSSHOwhdeCIqvzYrVIE5xhR2ktqLfqWR19UASeoxns9OOMNEAFXEMvmwhqZ6/TGu1du3b9agubKqMAXqg+t3LQ0YpS1+FlKpqmoF87w6lZ2qrX3SCszad3NEz6lVnFlDnNctB8OukMIt4wLSjuXgCVzcZT1Hm4uixLJZplzWYnikFDdHrwA6pZXIsaaaNZbw7Gw/29w+ODo1ME4EdPXn322tOGi1NPGGAaBHFnNDu98/DlpyE6O6sK6HTsBenun954+LjbbiRZf9DtjA6ODg+uXr9x+9Gjx698+Jlve0vfAXIqAwCDAnaNuSuj56A3su9YIIFBmlvBPKgeTfPwD7UAM5T5rTW+bHh5AMDb85TQrY21ja2tuRnW6srcQ/AK4iWeGYMCXt3Y2lxBXwVQuZeWAUTX1jd38sXc9vrK0vLlhQsXPwZf/HgO29iFtYCdWfPxYgwGvnwFPS6vLK+u72CDE54yarLAz5MkgUJRNAWoR5SLZKk8B2DsjIWVUaXKpepzABZATFiKEo6PDk+uzhJMO/YsG16fiy0C0cd+HFENFT/eiNcbUI79LOtNRmNgP3iyOhgMRyDket1eezzoIAAPew3A2C7wZARgJeqkdLlUKBVLhXkQfNTs910aamKVFgQA4EoRnlVRASKHN+loe48rHYeBg8iTeS/1saueqhSLJZDMoKh8WIlBGgJHMkCy4KWKIEkyikfgTfC7AIBdpJk0AShfpUTdtZgCzZIVjgRUog1TqpAy0CdVZAmCpBn4yJcpAjSxE7fbcTqqp6HvWjLrjZqBqTBuq+aiYaMyv4bxfBzYQwBuoZl4r9Vsthppa9jrjo/jOQBzJEMjAKMRR6eLZtBdNAvrdAb9xHNFNAHlZRMUcBt02qA3nO61OFGYAzBQbg3WXIxis9kBztkdjfCGfTI7uKa8gLQLPy49HyVfXIA3v1AtbO0U1nZJ+aShp75FWWe+pRKV+RH0boEi80VM9hRRAVu1uNkJ2EKpUIG96Se+JluuxvMAA6krcxSRp9qhobLwZ0r4AoMwhaKAEjRJ66CHsyYCMFnieYEXtAB4R2c46nQHvdS3pSoliZZfS2BrDvZsSqCwhqHlpivX4noGwDxAAF7P5yucomG7vciUSKCLZuThvZPElY3Ykmi2VJ0DMFEoouFnVk+jOALGA7+/N9zzTU1mRdlJ62lzOPgYgHW08evN7oQCaA6QKGHQaPWn06Oz+8/I+RE0RZW2t3LlElkob68Lkg571Qv8xuzWg7MntcAHlQIVe/buDQmjJvKERApe7yyRVFXjTfvq9HwM5c0SPRnkSGt0ePLWs4XNzd08TZXIjXw+X9rdXd8ld3OmTaGd0k5lHcTU8jqeaehQN+NGQsK+JhV7t1BkxqXdcrlS0B+lFbbiOGQV/k1Q7aAx7jAiQxKF07DUUTj/6tWK4ph+ozN6MK2djnBErXfPphQEYMZUnbB/9YN7imQ1nw0AgGcfAAA3B1c/90wIHj3R2+2rX+gZnfGdJ1+7Orj73n3fDm8+DXiu8yJJEj/827/75td/45eTeqYkrc7s6HYHtuR+PXYpiaDufVvtpBtGkUXqvRCPoFte0r6RFZsHkh6lo3ff+K1b9aNJ17CHqWDJjKQGZnrn5mD47nuVZJSZEYg/mio0f+gbb3/P148+2dTU3L1/++4v/u7fq22ybO7RybBxeGKBnky6lm4OPwjd/e7eve/6l7/+T//5T32Dan/qzut+Kw6tVle2hu00euNvvcrHnRsvj9mKxlpeMDvwtAwAePLK//Ttx19+9/3PN1q3vvutWuitLG5cuLR14dILC+fOXzoPtfLCC+cuYNPqwsVz584tnLt06fzClcWLqytLwP82NpfzwE1JniZsbO5ROZpHnwECqmUBSswcgGlVAx0pKBqPOaUAwKLo+Dq2Bs0P6Ew8eK7mdxGAYZkDphYJQbK8mq3qbmBK7Nx8EOdSaVbjcoXtvMCxFh4Lk+h9+9xBS1fgh0iDLKAqrG5Hme3EzToAWJq6isQDAEMlEczYD7IEdBA2PUdJd9hJZ8Atb99s6z56RHmOiS5QqAUBiHQVNicUQhWvpmlGTuNWVgfZYJtujLe9INJUTjYkDkpl3M5CYK4B9okhyoEefw7AGFeIWqjEcIzeGjZdgN9BN0vxNi2BspU0Wo1Wr9/pD/YBN87OTm/eQwB+9gShPsMm1RhPSyfTk5t3Hj32SAPTlTTTBWkRNUeHV5++lPpJs1lvZPX+3mx/7+TatWu37tx/+c33v/09Y303X5Kx7wxekSLrHuAP3pYD/hi2Mx/P8TGOHY0asfUUfRM07DA1dR2NsEC8i5/YzRcK+Z2NtbW56d7aOt4GX7m0uIRyFaATw9iWNnZzuxuItHjMfOXK4sr6+vZusVzcBQ28egWPmy98fFyNADxvgr6IacKYJYwn23gZCNJncWFhcXl1Y6dQRlt+3dBkzMlCCxX0HMX+qzKgbalElMvV+YwS9mRVK+j5QjF4BC3opqrF4/29o6NhpIPu9G3b8+Y+VAGwj2/dAePtgOP78zvBWhzU+8Px4fHe3t50hF3RoykGzndGABjd3mDcabQxqL5hFXZoUUMALpUKRYDgjwG403VoIAdVCr5NmS/nc7tbBQmWkaPjFIlp+XOqaaOvucw7sQNISWNKPCXCO+L4TpIEtbBm26bGyhpoXKCKCF34NjjwAsK4YcMmqlBlise2Ltk1mTzslwpTLZIUa9liuQr8ThV52HIkHlIzhQrPCLzqgFQL40GaRr4LDKs2agSWwkeTLLQ1kZZAiGFndoAX4phw2cCOhBZQjm6zOxp0RweRacusgOY5nIp4FzUAgBtZazCdjnq9/v4ocW2hDAqYlzC4oNUbwX8e7U3qDB74zOMIVR0ePzDbej1rdwcdbC0fj0fwgI/EFxbm6wCYHIIw/OLClaVVtJeoUsublPHmCZ+5dnn4oWWoeO4BILxToKlcgcUmLJCsuhMkrbZX3S7m5wAc+ejRA3KQIcjQVkSaLDLdyNQ4AGA2gFWO4FsLUf/O5wjDVqcJAMyUBUngedUDaQrbMMk6w3rgyVVSUiwvyjIAxn2XxExzQ4U3pObrGE6WtUHPj4+ptXwRLzI10AUCUyQ4AODYx7dSEcpaaEgUV6G+BcDzIIY0riUxSuFWdzScQoWAJyzbSZq0JoPeuNeoYagNvBuDg9sJYCvOsNWB9rcn08ObD1+jCbIqAg8r7WznSyRbLm+siroiG5pu+OO9G3evvwIawjXsNPHGb96SXdjCBGtwen1yu46d9UCyT/oX0AnLFW1HM4NseHjy2qtLJQLNbvJ8fhsUfQ4BOJe3LKIIb0a+ukJQuStreMdjhWmWtcJKEQo+S29ub7m1HSZPFPXhS36OrMoZqPMSYYJqr+91QfTQJHmaYsikNr1KQVH1G+3pk5PW6UQp82r/jklKhn5ryNmGF/VOP3VPZJX01TGhepN3YiNOe8effU1MnjzTWq3TL420weDhJ3/sWuP2p+4HTnTz5dhwH/4Yx5B/79//ykd/9hf/8SqZSlGzvX/1Xs9M2gftzK6KkvPofeNaL4xim9S7IZTNUdNN2jezYuNAMZJWf8K/cbPRH7QMb6+lui1HkGM1vnVz1Hv97XI8qVsRgDJbLRrDL0i1u6pd0IVS973q7O4DJs9U1evd1mh8UmMlZXzswZ/9XuJNe3t3v/vV+7/+D3/5FwrdX/r+r8Wtlk22O5I1bHjm67/6jM160xszQ3UZxUn2Zq6WXj2YTZ793GePvvLJT39H2Lr+xbdVQFk8G1xaBE564dzC+XPotICBNxcWrixdeuGFi5cWzp27vHDuIkDxuUvw8zYpVPOkQFU+BmAOnfYKVSiXAMAKz1ShVGi6AmIGAJKBzaxIAGhOiOUFETgKHBCzNCpgUwIERgCGCiIbnmfIAMCWCuqnStGqAUJUthUAeMHURVBHbBUoGk9VTd/2bA3AQhOAdpWZKm84SRMBuNnIahkCsMCARiJ5UBxmLYm8MIliF9hoG2TjeHp69frVpoV+gXjpBsrLhn/oiiQpEk4uAfLjFkUftLiB+by+60eBa0qihEOEnCZLmOrajBw3AsBEu9n5aWdQcwz4gBeHUKIwssCozUEjanfbvW6rOei2Wljv4JvEdMEeAvDB8fVrp2d3Hz155dXXXsrw+izyUQKHWXc0Ob527c4Dn9UlPBoHlhkESXt6evPpi5ETtRs4O4JxMyfHR0AD7z98+uLrH37S3yWYIroaujY8Rk423edo5M2NoOcf+EtTESUNDT7h/cBWLAPKAgXaHy1G5E/kAVK2AXpX1uZzSJurq2toRrmC58bzieCFSyvbBfikjaVLC9iHBRV1ZW1tK1+pEphyhsD88R3v8xPreUvWwsLcUPryFQDftdW5J8Pa4rwPa2kjV5zPdgKYYgwVxXACIE8FJDBJIOgWi2jIUcIjaDTDwuTLCo4hCVCYVVvTar39vf29fgJsAvDNnft9wd+2M0/XwuPneTxCAOoSk4FrXtofjWeHOPU7GU1ACO/tDQdDkCi9fq87mPbg3em02k27sEWLetxOKYwiLBLzLioE4I5NUSyJTdgcAHAht7OZ5+E7x1kuHaP1sNffsv0a5rzboaNLHABwqQQaXwEAxkEgTL41TZUUZLJKw8sVgdmBPLYwN8MLMhsvYRiSkTWhSiu2yZU0nqjQ1QJRZSybKxIiP48jLBNQFymOyVcEUK7oz5wGcb+e4H2DIgYDQF6ZTfYboQl7R6gliT836HqeUYsJDO0m/DQYdHujXnc0A1UusxyL2csgOG03bvc6TVixQwTg/nA2jGwHALgKAIzd3I3eeIhJjpOMFniGhEKAVpQWRmBEaDTdA1k9Go32x8PRdHIgnvvWSchcCUORuQBrYXO7wLCVpRUq+OCETTyzdP1Dw1DhfS+RZGkH1G8uz5JoPQRbygUF3PaofCFXwSPoyENvc10SqhUCuI9UrRaYbmIqVIkuMIB68M7DT0k9DtIMtn+cdHvNuqrAg8CTE82phX69UTfcuAEcVa0SsoIBjHE6GM4cgiJIxVAB4IOaBb83Rh+N7vCAWMmVSIx6AY0gUUWcyzaz5wDMl7TQlEhA5QSEFFsFAIalF6cx7Olo3nU+6o1qHg6GCGaUpp29fhd0kgfMRW+0O+PZzQZLYydMUm/02v3Z/gEoYKoKAMyhrUe+VCbYSnltidfRt0UzatPJ6dnJK7Cgdbw9jw7fvy/bmioSskFr2eAsEQzZkhT7evN8rGkm2hZYdpj196YvvrxRYUr07s6qBqC6u53HO+DdvG2Ui/Dl8uXFKrV7BeeARZA1jWYnRgCuUoWt3GqqLJW40vb0aYMqw/pMeexS0DXHTaZdlQPZJF7tsQVeN/ePS5ppePX+7NGgNR54wF37Nw1S1NSzHu8YftS79pmbsH3CJ0NStbtvRGYcD69++IaQPHxidNonX5ypw87ZWz90Orr7mbuRl9x9JfWP7n5YFaRv/p/f98//7f/++xMvkWA57J/e71ph/aif2pLZ7t162zmbAr9EAI5gM4L8SbsIwIeqlcbjyfjto96429Ccva5ZM+2qd9Nzbp+N2y+/Uw73Myt2FDRWf/bmb/ff/ZG9V6Nthb/9Sz/0i1/9G6MclTv4q/v9fm8PuC3THlueNXm74Y+6k5tf/J4f+MN/96f/hrn1m9/8u1E9cZ1hX7RGDc8AAObC7uF9QOmJYYe9yb6rxkf7s73Xf/HbDr/vM9/+FWP44Af/h7eLV9avXFpbPL94GSB4aXX18gKeES4vXljfxgPFtY3Lly8u7m6hylkCRF7cMi2dLlZ5pmL7Js8qHC/PFXCVqJYJQQGqXq2gAsaWUE3E/khgbDJrJSgUbdM0A99Cv7hKuaiYgiiKPFkFdcOjC6Uuq7ZnaSIAcJVSbJwkhvpqWqhPZbR3xPMvitBdE4QrsD1NZCRYSgQHAFx3rBrO29d8X0PDDo7ESGDeMWVdEXW8EgQuDFg46AyPZgcHrQBhE6q0Jkro4atrOCDAM4yIwzgS2m5RXBQ3kqSRAYdOfNNAgJahQsEOsGyMdap3hoMEVCYeMcVocYEvzxABgFVAc1ETKK09SLv9RlQHbTXotPEEvIV90fMk38nh8ezw9NrJ6e3HT5688uYrDct2onjunoOEeXpy/fqdhwGPhns4IQrKJWoOZyd376dojZUl7UEfe7UOjq+ePXzxyWvvvvvh+85GgSjK5hyAQahLBmAsOkLj4G/gOyYOB2NQgKGg6sW0YMPE83eMAuZl4C3wfnwiD/CLlvNLq+sAwJvbq9gIjYZVi88L52WEzMLudnFrZRHnjM5fvnIFsHq7WGWpcmF7Y2t1cd6o9XG9nTdeLcyTHIDjXVnCIIb19fWNzdz6/Fx7YXEtBwKY42TDxDhIqkKyKP1AE3O4p9lvAXCpVCEq5VKxTFKVMr63zwHYUKzmwQzEbILBle4cdudeWDU0vMCEaAdzKRw3dGr12A8zz81G49FkCr9nfzqezGaT6QTzCLudLvpHTIfdXr/VaDWdwiYlmUkrowqFfLFCl58DcGM4cCl0YeYlnpX4ShEAOMfJQHdk1QAAhoeK4SEOpgDoopu4hgzEHfgDy4kqXvFhKi8QBA0AGLttWajIIl4ACCoqYBCQdQcJKOg+xRAJxrBMgbDFSgm4eblMmhZXpiSOlWQej8F5lmbI7SIAQlk0fRBcjb1W5GO6gBgOssjiybDrGbijpCADrAB0xMczDyRsdtotTMbsdDpAC4czwFeZZhka+AJsR9tOeoN2vdXvDCeTAcDptFezXJkAfiQpmhVmDeyy2tsbzBoMUOYyZj3NzdVwP9SbzV57Pgw83JsAT5wcyAvL84+lJRxDWsKRtksLKzu7u2WlvLnGJK/1+JpvV269FutKFdvOq8XtIsf8NwAG7hI2OwFfzecqnKD7EWwXUxNYulIuG7IqVUq7VDcyBKLKlri41UxDnLzLGgjAUS1KG71eI5VlpgoLR5QNB4hQI40EbT78iAAsynqQeH57NLNKVYLEVidYT65eQy/LDi6N/TIAMMUyeARDKdUiyVOk2fTnR9BMXottmSR38mlsily1WAwitODCOyXsOW93hp1BFBgIwFqQ1XuzfqffjF2OlKxGvTE8ut/iOJwIdP241x8f7U1P77xSrVSrIstRxd18qVRgSHJzhdd1QVCcIOzPrl07fiXwItv2AOKP330o6JpK5wQHFPDgRkOx4Yfi30zOh5gnx6u6YsXN0XT07PXN7WJOyi+c08WtrcLutwDYLJcpitjNXyKoneU1iiFY3ccR6CZopS2Cym9e2Whxl0sVcit+0Okwu0SlJlQoCbah6yfTni4BIZRmA6HMivbpSRFEkt8cH97yJD0IQV/tnamEqMrX2pyDCvj65055UQ8etoua1X4tttN4dPz+G1xy5wEA8P7nj+T+5P4nf3TWv/aZs8CN7rwY+MO3PkOW9d/54x/+e7/67/617mdq2gYFfKft15KTcRYmzeuz0/drx2MvQADuxaqqDBpu1vsWAPcnZ0++cr0xGXU0a9JzkppUSM7M+N7ppP3yB4S/HxuRo9DEdvTDn/+Z08999L0/5a1z+Q//xx/967/0Pz/aUNau/3C33zo41Ou1nJXZTaf7aub0OuObX/mT3/+d//XP/pA8/eUf/4rdzwJ20OGMST8L3/y5e1zQvfpwf7LX1YM4AwCWa/vjyfSNX/hw73s/8+1fNtoHX/nh98jza2t4MHT50tIiwC+2sKJPAtTQ9d3N9c3N1cWVhcslcmd1fWlje3FhZRuQiq5UAQctT2NoBRgcvFcFkkazPE6gaTw0lBVRUQVZxWEyQZFNGYii6fg+6jDb0uW5W0dJNXmew+AjeOcEVfcDS5n35oos5s3JrsxjQCyUJ45VTUXGfEGaKCHCaDh1KQkyg930lQK2AUQ6yoswsDSNrZJokgbVu1gFquLOhXWc1jSn3c46o25/cHQ2qM3dOXwL4RbPeLERiUdvQ0XCySkA4CoNGy8IWqA28dTOnWcXKPMxJIx9T5qZ5ye+ZNcCH8D9ecQcGgxizh/8mYLCkUZ/lHY6iZ916lGaZG2cA/YdL+tja8rk4Gh2fOPW8cnNF5++9PI7b3Ud28aIYlQnwImHR2dndx94UOdFXgRgqQVxczA9PHl8L8SUn2ZvOOgO9/cGo6u37969dffpO2+8/36wW6pWVMxohm9Ffq6AQ9/ByRx/Ph8ToKMm2iECDhsY3GQ4AO5oIKCowHIkBGBsy9jZ3V7bhI/tnbXFtZXVNdC6l6/gsO/i4sLS5cWNArzLeZDAC+f/yl95Aduqljd3ciDIQALvbq8vYtoN9mxdWbqyiKkNF/AgGu2gl1ZWltbWVkFWr+XwEBt43cKVjdxukRF5DZ0daYapMjSFqRs4Bkxh+GC1Mm+/KgP6FgrlCvb+wqdRUEdF4BGWajf39yaTYQJV1fKe9z+h1xT2fcNrjubRwMg8anEWeWEz8lN4/rPj/aOjveFwOpvOZuPBaDTojUZt7MHpdzr9Dig4fXsX5GfUSVlQ3dUSWaTQeCvtjgYGzbFoFwIwyFWKOzu5XUGUeA4zrYHxYIN+4LlR0EgU3kkTXeZhucPDAYUIe8DHybAg9G1DJiUVlC6Lk88KZmEYGOPgocNBiRF45BKAd6ovlxnPoimSYwDFdYurcjInKjwHLBXQhGGrOxX4b7qqu/VmEI+bIV416II38UBNSloCX6hUyleDNlBJBODa3Agra2BnLmJwmrVB6fbHiYcALODr4mhKFOPxtN8djNugjxutXnsw9J0aV8Y7YEmxgqzdaPUHvd7gOON4kaIxj1DEZKPA8lJAPvS57HRGaP06BJajXdpaW9ve2VzfWFrc2Vxdubi0dH5pC4OgRaa0RjgPDgTXd4sHH4a6ViVLaAa+UxKYfJGkAPAxKtSO4no3YorVXJHhZTcxNBzUhW1bIhzbl6vFvND0HOyCrnJxv9HKoqSeNephmGWBn+KrBZ2kMBx8+3gEDaQaWLvpeVBhaipblWR4UYEXNDsTp0JgU4Ioa/M31HuepxC298kreaZI5gHAKkCcKkyVY+fDD4aqCWU9dHiOKpUDW+GhThWBZcX1dG56MveCbnb3olDlWFgFsMW7++qwESV2gVXcJIYneaNFC5bq6ArmMGP06NntJ2xll5AYSarubO3my1WysrWse7rB6Z7dGBzdvHPyRi2Fl+w24+jqJ+/IUOrIvKAJent0O+QDIVSN5KhxIdIF2xADQ1eT9ujs4P7ra7tsSTEWdirbuY1SoVzczhO5kmWS5TIHBHelTOSurMFzEsxanNTbSaFa2FVksbix3quuVAp0uTnbv85tVQibB1Yo4GKIp5ku0gSpH3foMqyCs4MSFJ9aMjh52LIsTyVJtXXqkIxhnvXKhmhGw7PPnkkW033cKctG52nNjtqT40+9RvtPHki99uQLU6czuPH2Vw/7tz59PbLCa8+y2t6br5G09I//zQ/80jf++B9aXqjXm/3x1ZupU4tv7YVJbXBndusd+7QXR4ErmK1QkKR+A0T4Lb+cHYhm2hr1jj6YdUfjuuENWi5sQv/4ltl6cNbpPH1W8sc11Tc5IVd49Lvf/DuNWz/5xd94vEyRr//Cd336B//+Fy5y+YOf2BukoGVbQwOgNDaHb8depzO8+8X/9y9/6w/++Pf4k7//ymfS9sDXGi3FGXYbwasfvSh66d1H04NZX3Pr3eHYN6OD/f3Z05/9zOhLn/70F+3+9a9+7a3c+a3LLyyr5cr6xYtrUCs3Lq/sbL/wwsWFpdUlmimxleVL5xbWCsV8eXNn8+LF1UVRU5kKwfBlI3RAsYg0zysUlIBCqVDiRBqoHzB0XRXVuSEjh5Y9qkTrkQpVyQHxZTu6pIhUtVwAhoZnjhxTzlOy5AZQuky0c0Q3LZKSpApt1wwSw8OsoGZzQnVnp0gwREUSCIqsoCsHUcjlC1UoyRXZcA3RAMZmg6qVWTz6FgS2WPXxEijEUyQ8lKoPBu1OozW7dqcLIDZ3xtRAWbOSoUmwqaFS8grOw2IaA09zrpM1krjZaeDcpqmooEUVVoVP0Gw/rjfq2Epqo9FSglGrQOANvFhVcKpTlaCoCu6on8Sd8XDQb4YdqAGNzPXawHc7gyEa6U7HU5DAp9du37tx65VnDdNxwgjTQ4Mani+fnl69e0fn5idmqmnbjp/194+v3rsbor0t2vv0QVoMewen1++/9PTZm2++835tCzBQQiFlG64kVllbN3UT55xNG4MK8Jq9TAqWB8IfINqeexcbePuNPhyyJGEaUqFYyBeKuc1cDm3nd7fWV9fWVwBIFxYxBml5cfHS8m4FkBbU7uplUMAvXARsvxwHjAAAIABJREFUXt3YypWIaqW4u7u7ubyIaL14CdussG3rvzZjXV7GLOCN9c3t9Y1CtbSzPI9nWAXsZjBeUFF5KORlqH48S9J4E4HZv8/NnzF/oVwqV/CDAGFQrfLwYNDXVHU6IGYngxgB2LVMJBqogOezSLVaOD/xxTNpx4UCW0tdJx1OAH1nqJv39/dmh7PJeDodAfa28V5z2AHh1m40zJ0cp3ppv85XgPZXyDItSopb740GOtqsUcz8CBoUMGgIUZI59DU20JTFdbyw5gMGBaLgJQEyymoJd4WiOTWMiEdDMs8yVBrvgBkcfAayCq8EARjnzRwiT7A8TgFQBUKpKQRr6TRNMeQcgEVAJE7SJI4kSABgmq7ulFlK1E2r1mwFQb8RuKDANc7vmaYpi14/MDmKqjBJv5nGaEc6H0PCG+B2B1vze228IgHpnziWTDNoqElSlQprN0D5DsbTdgs+pTPoDQa+7bIlPIKWVauGcz7Yr98Z+DQvMvAXfAAHwZgU13CTer3bazW7g8FgOprORsrF9ZXl1bWVtc2NpY3lpdVLy8Dmt7aKJMhtZtto3ZpxQJYrs2eOqxNUiaiQpc0CxxQraH6sAgAbCMA9AOByrkRjKpWpAb+Q4cuWqZofqFSpID0HYJIUkm5WrwPJSNIsDuIYh/4zAODMUYHT8cCwzTCrJ61OkjRS39RrAB4CXvOEQdIbTSx0YxNldDoDBEYTTDyzD5rD8lq5mkPP1GKJlrEhheBMlBWGqvIlHU8EiXw5cWUGFASBOVwYh4TnVQk88KQ1iHydnZezKGqOmpnrDBO2qLkRPMzWSapqUGAkN03SZnd6fHb7/lOmUqgKDMdXczv5El0tl3ZXRUF3QU+4jcGNuzcPX3ayxNP9VppeffuuYjk2VwYmqDT3HqQgbyJZ8mfZhcTWfFN0OE722t323u2HErtOZGsv7DLFjWJ+dXtrfbeyWzSNaqnMwyZbq5D5K2s0x4jGHIADgNwdSRC2dsn6ziadJ7e912dspUoQNZ7gSEG3allzloE2oVj72oCvypp1Ax2f3Vo6uvrSIKrV5EpFrB8bZUrVT5tFQ7KiwY3P3uA0pf3SkJSt3rPI8tPpyadeY4In9+Ree/qFqdsd33z7rx6P7nx4I3Hi66+n/uiVZ1Rl8I9+/3f/zdmth4bS05J6d3RyI3aC5PYsjty9x1fvvuucduHhuqyS1QRZ6TWCRvemX05ngpFk4/3rX7odjAaZ7vZbbpi2Ovce2/XbN3v919+qhtNU8jzRFla++3f/wx9+7nt/+lMffekSQXzhR978a97f+EfFzcrucafXPjz10rPeg9th4u2/FXr9/uj2d/2Hv/wXf/hn/4i6/ovvfqoWtj2h0RCMbqsevvHRI86t33kwPTroa36zO5nWAID3pgev/vR7gy9+6rNfstq3f+BrL+9eWFneiB4dd7Wtc+cWeVlSJC3dfWHh4sJKjucpgaGKmyurW9s7dCG/ffnC4rKsimSlSjNV7C8BuccCypK7ZapUKVc4CQcuKrSMxnqagm55lChxisQYgTa/HHNAnekAjdhnIZuSLArVYqGQqwiq7NdAlDm2OVfA8I6hnZGtC+hvZ7quJcgsjj1yVQLUqqpJum5oIprh8pwosKoWOIrh+ACIriVzoLxplmWLJNQ737GAJKEdXNoaDDuDLmZotH10hgpCzwAlImiGLtE0i6bvGgIRADBICyHwQP4C1MWB71qOjrG/OHalqgCVfqMJSFoPbRdKWhTVQs/3AM80FX4zjgaDSJFZo9dr9NrdUb+RtToZ5gCnDXSmQ2/38XQf6v/x9WtnN27dv3fv6cuZ4bjAFLIsw16twfj07OzhA5OVsUcWz5KdWtIeH127dw9KShRl6I83xNyAo6Ojm/cfPn752dufjHcApiTHwdtdj6MIyYM3AjutPB8ojGFhfgU81TAOXNsyTUxfBK0M3zXOPOIVsCyJn0CdWSrnt3Z2ttbXNzEYeH19ZWlpGeAUp4YAR5d3CUCUSjm/sXjxwsXzFy8traxtgCpGmVrI7WysXJn7SC/i+NL8wu/jo+hLi8srIKc3N7ZzUHqBq63hqfSlpY1cmWQFvNniKfTeIBiBLJMivAAE3G+Bb+m5J3QBtz687TT2YEnwnUtef386nfQiUcPefW3e9e05eKHqz604grn7cRiAPsamaNttTA9PTvYxqWee/TubDoegoAfjcb8Lvxh1QAf32007X+BUvz5qiVWMBgAA5kXFzYBPGRgGhl1gvMJXCuVCIQ/yFTOgQcTaru25gL644nxRDtLA0gEr0ctABo06HwLCZijHMjVW1QFCaZbH36sa6N8NAjlKLLJQoUUQxVy5QKm2VGVUEaPA6AohGJYMLx0BGG9ksFOapvMVjgMO5UStdlDr1HEw1dC4sKnblsDGe5kjcizJZcNWGvuwWnEMCc2dOp1ef9DHdvpup9nuz1LLAABmYUNTDMPrYWsIqDse9xqd0WgEz2VYcyy6TBIUSBxQIGn8PGSg7zMCOmrieQWnGIZdCzTBTuKk1W4Czjcb7eGo3xZeeL4krqysLi5dWlzFfOk1YNQkXXa9yuh43BHNmkUPD1VPLzPwfpPFjTyL96ysrKki9uxHcQMBuJCv0LwRzAEYiC5Fl9gkDDWaLEoYN8iQFCmlrTjGkXqcQcCWQ9hXKQj2zNXJMprjKnaYZo1ut90fthuJ5zEYiKrD/gibw+nIYBWGUTRVVRS81MYZCADguNku7pRzm1c20BmcUUmmyhYEM655QM4VvmT5psAROSJyZBrbB32vFmdJgKPocQjPPGy0I8ukGFZ00Ep2aOc3BZMnOcAGoDH96zVT5qCk+WjR15yc3Lx5/wloUpAEQDJKu7kSXtvlVhmCxuYzJ+seXz0YP5C90FKs0PVG925gqRSAsIhSuv+wJvBsIPLeSft8aGmOiQN7stIY9p6+c90L1ldT8sILq2yxvLqzubG2W94pmjh+zcN+W6/SxaVVimUEo4Y5UF6eJXZ4js2tEllhhSBKZe6os71WIoiYgXIMzK/WaB+mItR+zr0+FEhVt84OKqZu19Lh1afTdhYIlTKXHipFUtGuZgVdMqPerQ+vibJVf9ItsUr3WQKVe3L0wTOm9vim3G5OvnPsdkY33/7q8eD2p2+mHgBw3W9+8EU2f/ef/dNf+eaXf+brNSfWs+Zg7/qd1Amz20dZzR4/vnbnHfes78eJS/KxL+h6tx42mje8UrrP63FWf+0L338n6vQyAwDYi6JW/9GLVv3u9U7v9ber4STSbIWT6d3P/fLP/dpHP/7zP/XzX97lVz//d37ob739I3/07nqJOr7aTdpTJzvt37vuBM7gncAdjoY3v/M//OXv/Ku/+D358Fe//5201fbZZlPAOeDszb/zkPXadx9Ojo/6etjuzvZrZnIwHc9e/8Zrgy++//kvm/H9H/iBB8wFgNT9x8dRNxWqbGfcjF3/VDl3cXFhDSAP6iFFFnfW17a2RaqUWz23sK0qbKVC0dUqyHBJwYkdbA+poHkcwYksAxKYwuYqtKkUOBroMi+JnIn5NDXPxrhyUwJYpwCAdQGIFQvioFCEWoQLWQPJpgK1hzqr1KBIwR5Qn49X6hy2NqMFEaFZqomNgLalcgzO2wJ6eK5j6aD8ArRmRlt8gWFotsLU/NC3TSSxCRqy9ge9vcn05PRG04vmJ4GeAVUHc2hViqQEHAaZAxEAMEtLSQjcP8Q5gsCzLFjeMrAPDngxdvsA/LaaKQhfNBjyMW6phr3HGvbazAdqRImUWz0A/G6/k2XtVop9p41OuwXFDiracLy3Pzu8enb99u1bd+/fffhay/E8+J5gc0Lxanbb+yfXHz12GeQD2txR0w+z3uz03v10fstWbwKyzw4PZod7e9fu3n/00ivPAbgkzRWv5XMkrfuWNR+9BkEYePjsa36EyY0Yk4ZHZ5jbgBfXAL94eD73gi7mdnYKxd1NbHT+GIHXMJrh4w6siwsXF7cQayuV4tYiOjtfWFjGieEygRkF6My4gvkNV5bhLwTgb90FYwfW0vLK0sbW5vbO9k6pVC1vo8H00pXV7QIBZVazLZGhq0DOeLGSJ0EBz0ORSqB38Ri6iH7Q5SKO5IJGxuEdKKSwOHh/uDeeTLqRIOvzaHsTXzPSC7TCngdAxXNPSngGczOKqHtwcno8nhyeHE6nB8fjvekAjbZBBQ8xIm7eBg3AZOUKnOLVxy2RqBAUQVVoTlC9rD0ZWWiTSeIYksKX8+V8Pq9hwIiEw1y4NDCBByeQPVkOkgCbCaF2EgxOtfjPE5pwuRoqpxkUAjC8lDkA41215yepi/0IwJx0iWEVx5AYTpYFAfcaJ+uGWKkC51QEnqoCBDMUzeRLDCuJmh22O2HQSWsYw6ELcdtxLZ6MJrGFFypMNmjGAazTuQIG+MGZq8Ggj9NC3Q6spcPU1IG6shSIe1Ex0b+80x2MBoN6e29/Mh5PhqFnYnM6jQDsR5gZMkIaGXO8gNYocwUMlC6MTMXPogx7uJqtVrM3GgRd4YVL8E4jHcOsrMs4LH5ptZjfJcpUf8DfvoWtDr7F1UzRNUsMAFixvFVggImwjKjKPCsbFuYMR0whV6gyvBlG8+QyAGCiyMAOBMgsy88BmCWkpJ5EAeyRMGo00zAAKE4y2P2ZqxIF5DsKsIS01W33ppN2sxHY6GumaabrRy3YmgYjsiyICIwGx1m+8PkD67aKu7m11Y2NzXyFBJoCMrkoeHWoW4YMC8H2DXREIH1bYfGAD1YecK04BPGdZfVWpzHoNT2fFVjZyxqN7jRQ+A5Jg/ZQsG28fx1zK7F7rxbB1xrMrp49ekaXCZbb2cSg7TKeClZ3l1h4meg94Kez46PTV+0gsww/coP9h0esIopsmQHgaVx94nOqHMpKdnd0vqZLhqm6IB384aR7/c1bXs1Rop3zV1RprbhdzO1u5VAB61UE4HJ5g2QAgEEBC3oNL8PcOQAzVGlxPWQWy5Wtnb0Tf6+fKxMhSbHw7atOigAs0yTrXB9KVWAtV/fKJtqlDY6f7HUaNa5S4epHUolS9GtpUROMuHfv3bEl6elLtTVSbL0KABwNZ++9SvsPTqV6ffIdQ6fdu/HODxx1zz64gQD8RubtPfxSjvitP/qXP/ybP9l86hsto94eH9y6V7eC+q2rbd/qP7p2+y3nxiBIEqvKJT5vWd00aNTPvHKyx2pxrfnuZ58dD7Ne3QQA9mO/3rl7T2s+Pm22X32jEkyauqN5+s7m7Ne/8ebP//Rbb/zYdE0hPvsHP/ETv9L/7FeJXeXZfrM1nVnpae/s2KtHvbdr7mjUv/3lP/8XP/Tv//QP8nf+8Q/dTHqpSTUbPAJw45W/+YDxunceTk6O+vCCewczAODD6Wj61tefDr/07nd9xfAefN9X70UXNrrR7HTqNg4nTbc7jGu6tu9fPFda2vFEii6Wc7lCbntrJy8yIIEXLtHYyV9GOyI30gVZ5ESOgLJLAletVFiAPbJYpOfu6YqE58sCI2Nrj42Du76L556OxnPzHaaYgoAmqsXCTo7kvACgGeqLgdSeKBetGpr7KZKozAMAFQYtAmjMQNUsWQNUh8+VoVbQPHrThqEga0HghjZ2gHJoZ4jgLIbYjzPviwXKm2Td0fhgdnB6ctaY9+gEoaubmgAFDtQ6FDF1PokzxyGWopR62us2I8xCCDzgjyC7JUVUdFXEI+gsrQOoxmmUxVDnYevGoYsR4byCE/xoawFcsN1rN4doMdzKWhnmD2dtEOLYBY1RMQeHx6dnV2/euXv/3t0XX2+7AOM1d75pw6QRdaYn9x/7uKtwRBb7yKLG4ODq3QcptoVgxndvtA/4ezTbv3b73ouvPHsLj6CpsogmWBpsOIo3bCfE01gs9xivbDrwWz08mK0Bp5gbgFlzvEI7Eg2PoAGAc1vrAL7beAGMiQybayiAFy8/b22ejwEvbZUIkiqVi1tXzp87d/HipVXsl0YAng+87q4tgvhdWl5C26PL8yDDhee3wItLKysrG9sggQGAiwSxu4xt0Isr2yUSyI/hAgAzFFmu8BJRQNOVKoYQIQBjJFKZmJ9Hl+an0FVGQA9DBbveaqPZdH82TPHdwTAqjKPS8YAdr2Mxm+i5KaWPp7/oBZb0Do5PDkeHR4f7e/sHh5PDoymyIRR588QkHA4e9AcmArBbHzf5SqlKAxHlBEn3G93x0GSgHlUpHvCQK+Vy8GIw4QvHqecAjKNPIdDNyBUFO/CBi6GxRgUBGNR5ghZmCMCqzGoGKmCM28MJHsMJMDAwywK0NLUNyzYAFBxs+FcRDGR1PpHGl6vwymVsVMOjKJKmdwskydKyFbbaUdCKgzDyQfJEvdjVxarXqxmYSEwlvTpaICIAzwGl2QJ4/Ti4F8eJjlPMtwfOjJMLCgYO9np9PBnIWnv7w25n0g89Hc9dGViPVpCm7dF0Ot3bP0pA1OH5M4+9Uqbp+2FYS+pxC/B5iLEjx/sjc6ZcuISid3l1+dLK6gpmYV1ZuALCTqCqswPlpZulsiaaJpAJpZWUYQlUd8rbRWD2JYoWEIAV81sAnC9SHAKwAxIV9i0DSyXy0G2zLLc8E73piwK8vDQA9RNHOIkLu6kB/2z2E0sh8tzHANzo9f4/pt4zWJL0ug4EZ6b986+8y6rKSlfps9JUVla6yvL2VdXzr3vam+mZnukegxnMwJIAARIgPAgaEVySIiWIFEmAIEWzIdEEJZDELoNi0O1izQ/GahWKpXa1io3VKjZi760HKrZ70Ojofl2vKvPLe875vnvPaQ/nk3YY2kqOxDBj4OnNaNid1DCJgJPwmgvqylQNNw2ATGd2d9e3d3d2UkWgmqUyQxBUI4R7CQDMEqouAedOF01dhuVRSCMtxySlIAjDsD2YBN3I0wyAba7m+kFvz7FlJ6kKZVWuW7rTP20yvGyoTbXWjDpRf7J3+vj9bIGo0MiHM8BQSbJcTG3ADRLRikM258cnd992mi1JsV3LPX56UK1JVTyTrdW6t96JxEbNFvT+K7NLtgaESbWAAQb9/rj94jFLsenM9z1/mS/ECvlkNrWTzP//tqBXCnhrBcC2B2XGTpP5JCy22M6mwl0tZ8Tt1uNXzuRMrqIDbynCg6u70X4oSnSJMk7HUhEev8NpHphY3esvH02iVh24It3a57KVqnzmFSRa8voPntZtjgteVtdZuf2koRn2YP72q6R594j3g72PD812++ydH120jt85bhqNk9d9o/3arUL6t/7NH/3Vf/pa7ZnYaEpea7h3/aar1oPrp0NLHz66cedN5agLq1/Is55Z0WrdZj2KEICnFbHpeLd+5IfH/mDQqpn9Tt1ptvt3boutR6ftzpNnBWdeF/oC4fil/f/2H9/59u/8+Fc+oceLpcXX3+20lLs/8zj5mz8IZXu50OzT8Y2jeuj337CMYb935yv/4oPf+rN/+x3y9n/zpZnVck3Gcym5A2rv0T+9T9ai07vTg2VfcfsDUMCaB6Vm+NY/fDL97Pt/8EfU+oPPf/7WmMgMjb2Tw6Y364V62LUsRem2M8+L8YzLVphyGXf+0ol4kqUyqdTlq4AuVD4H5ahkOEoVAZgjob6QVGa1BQ3KIE8waOKm4dA5CBUE4CpfU6G+QtE3LcOQqiKPOC3VeBymIArpeIHlVFnUFUowRY5Eu4VCzRR4GYFsZRMh8OjRA5WMJAm5hsfLPO4blwlQ3RWWF2paheEt23AsDCnETTQoOlyFx+gZdJ8HVPNXpj57e3vzg+VJUDvfnDQVQ2aKJYpdHSiC+kX4BRyicRKwHfaiwPEC3zENU4RviHnl8CsraCYAMKhZ+MVx67inW0cFrKy6XlaOFqhZqFq/FwT9cS9qRz6IX5DgfhSAwg3a51GCAMCn+8cv3n94++7rL3uYOY4p8hggGkR+d3Z0+4FVEapo3KNqgJlBb7Z/eOdBgD2sAaL4EPDi8Phw/+TsxfuvPn3zbWM7X1pdfUXhdSrHqJppn2/I6gbqXQkTlrEdybIdjChUVd3GMEIcCcYdC/jg7PtSuwDAyURiYxsFcCwG/7d+dWWDdencQ/LqZiKbTacz6dT2lQsvPH/h4rXtnc3NnSygAbkC4M0rl/8egNeuXsWJJABgDCe8urYJcB7b3Y7FYhnQUgn4y2sXLm/EC0CB4M2pDIkeFAWayaXwxUqrFEDUv7D28itjylwBh4GJMpp10AwPF1xojICGLKcBzp6L4spYRJRXvAJoH/py4MAZns2iLYmm2fXWbDHfm5zuT8aLo+Vkun84n2An1mQync3nizH8Mul3Ii2dBcUbTEKmAIIH3gTG8JnoYCSTIHEKJZqiqnQunYonknKtJkhYsRGA4SYCkgLlM3lGqduYmFfKQb2qCoqum64DBAvfCA9rCbegV2NIyBlUuP1GzWg2DTwNlDEjEwBRMNFWVBKpVcwW6EQmX4JbhXauwFWKJFT0ZK5Spiih5kRRox40AeHrulqt90NdEAijW9cEji3Tbi90GxbuxsPT4Pm4Cd0H8O0PsQENAdhXFZFjWQBgIJFQVdtojA0A3OrtTXvtaBSZhgBcCOC2KtYaQdgdYZjF9MgjAYDpFY+AZ0SxdNsHzAGB2R9NZrPZ/Gx/WD8VXrh65cKFKzG4WhlYW5c2dnYuXUnHyFDOTPfEl08SWZERVSqXqN+a5nOZbCmRiWXIYraAAAwkFKR1w231AYCzuTLDAugAAMPzCJCTpVxDrdJUjossBQE4zWFamNMMAIBdZzWG2woCNxo0sR8NFbAIPLcFinS0N+q0o7qcLVUYNLSre51hZ2qU0K0S4zEEUYGVY668S8JON7O+vbWztpuBlUjkS0U2VyjbLgJwlWeLMtAdnswWTF2owF+nQMmuzOZX3M92w+6g59s2z1OcBhq3uxfIAp9NZpJkSXOc1uTMAZIhlW3VcKOo1Z/M9u48o/N5qor9JEVY9jxF5DO7VUqQVZ4TZWdxenLnWb3uSZLlaObi5WPJ1hWWxMO58Po7Xb4uyZwxeDq/AHVJ1dEenrWc7s3js0WmUMqJsRe+L5sl0iB/Y5uxfCqrfA+Ac9sEGnEA/wUABqke1dPlfJKjyvHYFq9dThM33avlSWJnn1BFzJyjFRzfmgeSRBYqtaOBUIbVezQrqLpR94f7jyattk2XiUo0pzKgdBCAGdHrPnosWgwNUjYmyNHLoJvc4eLdp5R170T2o4NPThrd4OjNL039g/cfOrp9/Lqve08+VN4+/c4f/8v/4+d+4O9Cvil4rcH05KYvW8HJ2dQyevdP77zOL9qWpTHZamCWZbXj1NvdM7OwAuDIfuV3f37ojIZRzRj04CloD+4/UKMHp53uK6/mmgeOJld0ueF96uf+ldu3C5n1WJHNpytbMWr2E+9a429/Lhy60di09wZnRyDAhq9Z5qDbu/OlP/niv/uz3/1fisvvfOa44QSe4Lm00vF9/8k3XqaN9vGd2WLWU5pAZaf1mr8/HXTf+vobi8+//YlPad7DL/zI2UIuj9Xp0cwKpoGr+eOWoejtsfCCkSNctKMolvPpdGJ3N8FWMpnUlQ2JF5hCFqugYkocohxPwTNQrmQL+SIvraaKaKmG/UiglcvwaFYZoO41VdYAfGtoCH0OwOm0hLFFgJXFTKJY5fhCnFkF+kG5gtcg+Bqq4dVJDBRnKCGgrpkKRgVjAo4AT7sECF8qkQzFi7iBWmWh+IG4qMn8yggLKBxZbZg4hmLiRDzgaDNC0j5dzI9DHYVhva7LmkSj4Z/KVrHgCfIKgAHsSVLuttCKL4gi1zTrmgzvnOfgSwUOymwdlmYb0NQHEDdwxwvngHEzFwoxHqbyIkC6OeoB4oYtr+5ErbADRBgqU+D7YWc4HsMjtgAAPjy+cf/BjZuvveQqNcw/NuqoT6LuaIYWHXVyJX0AOE3T9nuA2fcehThDEra6gyEKtvnBweHZ9VuPHr/61gfq29lCgRGBymuixeY4AN+VJ6O5mv+Fe4AbEBgIDxXBQOdqjKCCP0aPEWw+41iKfB/a06VS6UwynUqkMtnsdmxn5d+7DgLmMsjdq1fWtne3NzYSu1vneQyX1na21jfiGSyW5WIuFdvA+IYVAG+uX8Pfo3q+cuHylWvrgOqbsdhuPBZL5sul1AbA+aWrGzugNaHWGQpdYYB+lWg6m8hVKth2gj1XmAmczefxHBgAmEQ3LLKCR7A4cS1IVhfK/GzsVXlx5YYoyiugQtM1UMHmyoZDQzmMTmyyZGjuFBH3eDmdLA6X49lyf28GgAwLA4+E9+C+TIfdKNQyeU4yQQGzxSJJF4t5EoCyBhUaAJgGblBeATCOIaXSim7gUTqaumi1ulnDadu6YwqcZiMA02U8AwYBDRfcxXZAywLVVKVkBfCMprEHC/WXaQNdBG6kkUUSO4+qVTJX5AxgR6DtsxiCIKO9EQAwDj0xSFBKFEWXEgW2ggkBzRUA+03X0RWZs3stjeNyRq+hC+iMumrCsnDM7XvmxK3WaiemiyNY/fHega+p4koBkyCyFNOJ+vDnANCd4WzY6faGga4LpVIeu6DFmhO2+uNBB5TaoV+hWDz/xS0JEQNt0aq83Wq12n0MS5ovjwaTG9XnAIAvbuYL8Uw+lYtd3k7uXFlLbetneno8UV4+zJc4jlPofMF95zCZyyVx9mUFwCWSFQRsqzgHYDKTz5a4qmT72HEBjypdzNKeASKfzLIAwCxVZlN84LVDF21IPd/BcSB0rvE7I2dVktCfvtbwwkGnNcLThy4AMGg5HOG2/U5/MFaLNCwtzCmGtaQZq7Zx3MLuZa9swsJPwoLMZdMlkiZylIEz3Qp89KJsaVALsxlDlys4RKUBR/Hsmogt+WgHW7dteLfZFMXrTc/vTAXa6LRpgkzFedtpjfbtSqnMApVrQAmrd2fz8dmjUjbPSDTLlAq5QlGgivn0dpXieBW3xqPPin6XAAAgAElEQVTjuy/ef+Y0fJDPQb0+e3Qi1q0aT2ITi7N4o8tovMibndf2L2DWiq7XgFIYbntx4+xuIiWPlunvS4vFnZ1kPLW7mSjn8/L5FnQhv0MUU+s7JImW10ErjMw0VUxxdKWwtV1o7FwrTF8ZdQaNx69SPkZ80PANdcebeqJYzlP6QYetwEU7nhPAXExvdAAA3LFRoXVm5TRZYk/dnFyVmq2XHhkqwzXvhDlBDl+y9UYwWL73rGLeP1P8zskPz5q96OjZ58bh8TuHTcM+fuZr0bOPVSra//Cvf+J//b9//++mrCcFndH05HZLqweH1+eW1b51dPd1atxSawqTF6M6I4tRsx5GZxbhTUmx6XY/9U/fGY2CYUvVh0PHtoP2nQd6+8Fxp/fklYxz2JZNOb73oxc417Z+Ylk5PRC3NrfvffHLHwprdeu9f//Np2E37C0ajb3+yalpeZNXTHPQH9z8oT/5xH/37d/8i8Ltbz87dEzPZgKfUbu+H7z1rVdps39ydwbVRGn09oYTW/cWYwDgX/7A/hff/fgntODm5374eMEUJ/ryxp7rzkJfdUahKSqdLntNTuVsCspOppBOpuI7sUy1nE4nr+2IwDnzWWxE5eUqQ0HhlJiVSy1UyLJcE9hSuVTmDQsDdgTEZ/gpKlJNxcYpPGFieKZUIjLZRBLTkFgWNFNiO04UyfQ2aTUsQAGqDBU3L9RkVa3ieYfAVwWeY0CNg/AgC2lOQZsPqDwcYDVUsApAMTwFEgfg4tqGignoFIcZaWXOsRqgKhCFAIMdtz0YQa1eLK93LAyN1c2aJPJ0ucJrBqgmPAYVq+c70CByxJbXArwEqeDbFtJIDbQt+uQKSk23glYL25qBY9uW6zvOKjVQ01ROEHEHmkd2YvR7rU7o+w2jEUEBCFsd11mNGbU6vQlQovn+8dnZjZt379+6+dKTEOMlVAkQGN5r2BnNTm/dvmeT2NojQ23AHZ1otLe499AHPo3ZhoPBCITbbL44vHn7/pOXXnvnQ04sV4BHFieLBECzmm3Ua+db0DUV/ZlWkLsKV9RNnAmDGgaiTMNAcV4DLVllyOL7cukkqNtMDm53HEeSQARvrq2vr127jP4seHp3Efeir+5uXn7h+0D/vnB5A4fV4hnQA5UKFInY1vraKsZhbWNzHYfK0fHq8jkor8MfxeLxRHw3liZK+V14tY2NtWu7JIpHU2Wg2uSIEs2gOynm2OcKRDq3wl1YE+lsnsCe91weEJgUQATyCtRIxR8N+/2ewyIAc4gBGvIxwEIDPSmx/qHDBU7+AMGTDKU5m48mi73lAQ4FzBfLxWy+vzecAieajAaD6WTQQc8UFQHY8EZtDsfaioUCBSWs5vdGQ7XCIjPFACCWyOFFktTaascSj/8BgTQTN7xtnec0y8JOf7JYgK+vSppawxAuGzvmeR7EAyxfhqaY1RkDundhdKZfI1I5GoMt8UhR0dAjW+LSJIMN+LzE5IrARasCmmYXyvBY5HZyDEnzIkindrPRCl3XVkWRBcWrsWTS6Ds6T1WKNAKwY2FuZ2PVExyFPiyz/rDdH4LSne/vAwCjbSZFleHVxRoohH6ni27ZA+xLGwx93ZDIcm5lxAEK2O9j49rectYgKaZUxnFmBmeZjdU4cq8DF3Gwt1wu5pPT0Z0X+eeAal1Jlgsbu8k4kbm6k9y4up3eCR5JuenEeGW/wpU5WigXyMbH9ncKpUQ+k15tQWcJkq5iHJKgIgA3yHQhUwTybYdAJ3FLCigQALAMlSXLtusAwCU2JUVeO3DrdtMNWn696drNdicMemNHFKAEAclgFctpDbrt6Ww02euvABguoAravd2d9PkiVBekvRjOoq7mpoG0BGE/e2lt+3IKmGA2m9otQZVJVzU84wIAZgjBVAGREjHD0kWWKuyi6Qowf7fVxjP2TidwfV6i8ymKAwB2w4EDVbppVwo6ZzTtcHzkUPHdaqJqugZbllp7i8Nbj8r5AiNRVa6YyeRyFAid+DVY87ypQHnpHt598cFrju0aihU4jb1H16HqmgIp1BXJXbyzJ9f1umEHLy8v12uSYDSaomyYYehcv/fk8vPPPXfp+y5ceC6WzSXzUH5zbJmQJSKbY4hCIYZHQzvlUoWWbBAPUS3NkmkWHsmd5BWTv7xmLILZ/f1bJtMlmCLceSDOTW/Pl0WyxFlHHaYCF+14nodqqjUBgMdhp04Wc5X+FHNzqFMvo0iy4z1+1BZYST/q5CQlfGQqRqO/eO8padw7U7zu6Q/P3O7o7PXPz/u3PnLkmgjAau/he2Ri8ud/85m/fvGz/26v3JbC7mhyfCuq2cHB2dK0hvfOHr5R6nqiplUJuevIKt9qmq739wDcaL/3Yx+Y2pNBKGvDEVy4sHXznhbdP+4OX3uScY7qBlfLzP7yxouPb//EN977yK/81XVVvvrBb/3Az//Db772ic/93pcejtxWZ6IZB93loWU1oseGORyOTj/0Rz/7nT//rd/Pnfzx0SQM2g0u8Cg5ajb9t7/5uKQPTu7sjfsdxe4tBmPb8Oajfvetb35o/wsf/IFPqN7Bpz91vOSJiJ+9OG5Ei8C32nMPruTAzW8xG3GN4ggyn05l8undWJYtptKJ9ThUODIHOitLonEDzQMuAcHPEXlYImVFxwNVqszbTUAjWL8ctpjQsirVNAH0LCdCVdFkTDKlEomqgvu+VaB3yVSRjpcZScUwJGDrRDaTtixBqqGlFHY0AajBH4MCLlbK2apcBY1LYSBdOZctAaZXpYZbV3jDNh3T1HCOieKYCuiUatNGcwN0Zqi7vhf2J5PFYn5wdHuIk0WAywa+yUoF+6BlqNu4pwXqFcMY4EH2bD9o4QiBVzeMGhA7AFakHLyCR75B4AdR2PRaGACBYQznRhwoZ9BUUQamonZ63c5wCF8Uhq2wF7W7TavpBej/NxhPxpO9/ZPr12/duvP4ySuvPmnpddClmF6Mk/9R2D248eJdG6iEhAGHIOXgD4fzw7v3m5gj4fitdrsLgHywvzi8fe/BK09ef+8jbpwo5RhZgfcJgkhvmAJ8ehxEMrRVTA9CkQbfYZUvrOKulCjhzNI5BONV5uj35WKx9PfwF4RqIr27uwsK99r6ZVCy53Yal65i/O/2VXiML1/4votXAGQ3YoiOUIkrZC6+gcGE2+ubO/HdzXWc9V1FKZ1n4GztrG/t7G5v72wDYgNWX8PxpKsJiufwGJpE5/lSmWbL+XK5RFaKmUQylUcDyly6SBDFMmjiUi6bg99ReAiMI9xVsY5RMz29CuQQPhHUTQyOFFZRxwhqKP7xVoMcRsZhKI3hdDoDubtAAF4eIhQv9ya90WSMKfKTURcgp+vXkllOrfujPofuyARRAHmtmP5gNpEIBpgfaAS6ypXSmcRuTlp5myB/k4RVD5humCB+eVp3V75sRC5fKrHA8aAo27Ba0I1bkgBkiwR2LzHAMKs6aC3dct1mWyLQtMOARURhorUkqSraw8GHg1skwsMG5JLlqRxUS8w+IdIlDq6GYrrtodUMvWZDl6Acmj1H46lCreMo1Uq5XPGCwEX4xSYsWIMd7AkEYYs5If3xaAIAbGhVpoojzqCAZQAj0LDDUQ/Ub7/X62ELv6VSAD4VhhFrdT8YjYHFTA8XJoXZYRzNcKt2fcwpCVrtAYDOYLacj5cHJwfHN/kXrl69eCURu7q+s7ObuHJha+PyxY3sduO+mp9Exi2PA6olFMqpvPPu/k4llqjE0/EUgWfAmEcIFFyW7UZn6WRT2QLJSVojBGIiV2mWLuRoo1alKpUMHdkqC5czx/uB73uW0QwDD9R40HS8VtQZTDwVgLoKl45WDK/XCVpjjDpuNcRMqVyVNa3WDNvDToCRFACpACGipCi2aWHOWtPrjXYvgmQkyrlUemczDSDN5KpK066p8KwzRaGu8WypkNIDucrBO5ftZtMKLQfuB25gt6PhxDT5QpbilVo97A0bnW67aeTyHMMbTjA8MIk8xYmigS1jAWDL4bN3CSLHmsUqVcwkCzmOLWVTW1RZ0jSekZq945fuHT+ym0DaraCuDl49k6OGAfSiZhjy/FnH8fSGbnWfHb7gQkFQ1Qanqc2g2zt6/Na1Fy5efO7ic1ee2wUdlE7EtrJaGRhwPpenCsX0FlPIXNkELs0qdXjbnVqqVC6wDEvE4/G0mb9Qim/XjJ2sfByWaAp+8rDwgnkgimShoh/3WKrKaNfnJVFlRW+0fDjpBDoIp0p7hjJNOHXzMq84g3svN+HqmvfCssz5j2xNddr7H36tbD84Utvtg88sncHg+rNPL92bHz1ztMbpM99w337E5OU//9uv/s47n/7btubwYWeyOLnZqzWBVEwMZ/jgxduvM5HN6XW5rHZthq6GdSCDN2vZ7pTkPNd7+aufGwWDXqjY7YHXcizn8FQJ7xxHwbOH6eDIUoD5DL7zmRs/9dXfr975za995fbv/eHak1964yd/+Xd/5/O/8HPf+HrbaQ6Gem3RXi5qjte/Y+qjdvTg3Z//pfd+/y/+unzvu4+7XbijXNNltW4QRq996zFjtK4/mO4NW6LeXi5HiuzNh4POK9/6xNEX3/rYpyTr9DOfP10wyY62fzy1WvuRa0bDpiMavVbpBSGTtDimWCZyGeCi29sJns5nEleuFlmOLaTyRCKvaoKoCDJO5hCJApUG8VUzVSibRbqqNDRdBXEJdYqFW4TJeIygmnWogqal8gJbLhJZwD4W8ToXS8YT5TzDcyzIAFjKWQwKVVxL5gVNFdGkX5JYgElAcwTnqioyZUBgYPnY3Qm/52WrVld5HfReHfOA2QrIE4pkKnyzXq+ryrkdHODlcDqb7e8DAA9wIBJPpNUGymxZswCPNExDQghmK8DoS6zvR34Iz2QL0351CY+IqxQvYRuE5kceEKJWGHmdsOE0LQ3PGbH0rjyVQZ2VMKyng3a4HVPUgjFmIaHr0KAXgfLoT0egDpaHJ6c37t2/e+fWvSdPWkbdbGC7bt0ErQvla3ZwcrtO4smavErydYL+eH56+55rWiCRvVa31+3jDvTR2e2Hj1957c4bH3N203mCwfZzVkRb/FUwnqbiwa9Z01Zn8A1AYAOpgiicHykC+kLVFBkMewKpwb4vthPf2Yold/HcATVwDBAYZzivrn0vk/DK5bWNtas7O2uXLmDG0XPojbWJoJ3HLqwiAdVpc3NrZwO9LNFFC38gyqIzxzr8RSyRiMd2thMZopDcXlkiXdkmGBZwRqZQQ5dBYpGg7YCm5eBFc9hhCxwaUJhAKyz4WcJEYGaVYy+JnOyPJ8N+2+YYqsLh/iJGFaAVG1Pl0XvKwr0Oq44fGjFZVxuDyWQ2O0AXz/lifzmdLg+Xe7PBcBXNMBr0u3jTXC0JK80Kxn2uWC7hdB3gAIiN4d6eRnJoQIXH0Ewxk07HczwsU7STFFapxsrqh25bPK02DFms0iAuCBKdomqGXsd+7LqpSgItiETuPFoRIEbDt9rwmm5boQVeUMSaroiY7iDi2XxVZM+FoEQTZQ6qnMgSZYIA3CmX0yUcFpVN0J1m0wdqibuPpNV3NIHKq4GtVmE9034Yeg3sSENfRqBvrRUPHA7RFnU8Apx0VQU0LHzWEgXv1HAQgKGkDKKo2+n12/AY6DJFFPMIwJrl+b3BcG82WS4shmPI7wEwOr7bjhtGODg8mszmOOm1PLh+k37+As4grV1LwNrYvfgcNmJtZTbrd9RyQ+cDoZzKlKsVbifpfnRvp5RMEYlcKlMkUmlYGTxuKKl60+ksGrl0rkgLiu52DFi8PErPHGMYUAoAgNsIwKVKXggD13Esy0WOHCAA+1GnN5z4uMdOVQC2AQIxi3GKJw/dppgiCBaIW60ZdQctn0cbPJYWZJyMU9E/u2E3g2g8S1xNxrP5YiYe20yrwPKZgiA3sOUcVENJatSg4JVTeghKo0CkZGy/tv1GczWPHHa8bk/WRKpIcSD3gu642et3HD1b4Dmp3gz6C6tCA0uWaxoeOYf90d7jN/OlbFlgRIYEoZqjmXIhG8e3JLGM5LQP7t08fGR7dk0yAscYv3pd8Qy9UgIiqzuHr7cMz2jUjM7TfQRgkDZOTRC8AD7u688uPP/8FeDOzz0XS2SzW6nkbr5GUTIPlb6YJTIbsFqvbhAlisVGvE5HTxeyabi3+ez29gbLZ6+mcsmtDe7mslmoVICE8rLR9OeBLJYLlH7Ur5Ico57NioLKSc3B8tG4F1nwKDO9GZEmyvINNyfzqtO/87ghVnnjjl8UueBRXav5/f0PPCbqD49Yr3P2xaXpD0/e+FxLHLy9Z6jO9Td9bfzsgCDFP/i9J18Krv9jwbLFoD1ent3q6k33+t2J0RjdvXn/GQVLoN5QSaVjU1S11bDd5k0z1xmT1Wan/ejt90+73V4oGdHY8+pW8+BECW4ehOHrjzLhUUM15d3D/+ezZx986zem9742f/rur/yPiTu/+8lv/9RPf+OLf/iLv/TlbuQOZqaxaM0XsHqG92yjF3Tuvffbv/2pP/sPf5t9/Ocf6k6abVtyXUbt+EH7rV9/WDGiG/cns2Ekg7TdHyuiNx+Peq/+2vfvf+6t7/9ELTz75I/cOFaIob48mtb/HoDrotLrVC6L2bTNAiHKFXLZbHI3nmHITDq1EeNZHN0tkZmsqFQFRQYmDw9tulDG3ULdkMsUuqcrtopzBbAey+yqewTHaEW0aq/XdDxmrZDZtAagBmKVKWWzu1sJuMVVzHcFcM6h4YLecjRJQGMLARBN4vkKEG2KKpbyQk1aNV4pCkuR+RKFW2ImgC+vGrpto0E7mncwNF2lBDT9AwDG2RvP81v98WQO+Htwo20AMq/cGQB/0LtXO9+ChkIHSFSloeSDAnZxmN9zsXXWW+2po1s0X60Czbc9r9UO7EbgR/BF3mr7GbuJ0c8JB5ZYUDGsCDW92/V0q9Vr4Sv5vtuA0tDEwE8A4INDKPw3bpzdvP/g4atP2zqyE7Nh4dgDMOTRAYCzU8HGXnQJxgOqwWRxdudh5GLGGbbQjKfz5f7R6Y1b91568vSltz/q7iYyeQY9iXk02MSTJzyiXmUR1NRaHQU2Kn9UvajZ8IQL5JW0yneRsQ2aY963k8rG1nfTMbThyKZTaAy9sw1Fcw0zGfDHlStrmxtrsfj2+uULL1y49NyFy1fXAE4TUBrhqhFENgZwjUGGG9s7WxsbGH50bmN5+RyBcQoJRHUsBXR7/co1HC/ezrMgwRVpdYcRgCtEGVtPMul8sVhCAC4h+uK6yGdzBRw5LaONGmY/ciqwy+mgXS9lM+lsMouulcVikS7mcqUKLdQcHAQ38bPjwDPcbNUZjEez+fHx0f58b7G/GI/3D/fG00EXJNtoNGy3293BoOUoiWwVAHcKAFwk4MUKgOdqPRztzXWSgTJPkAzLwndJp5M5TqyeByr8FwBGh1ydpxV7BcBFBGBgC0oNx6LqcPVhOQkULxRwoGvlfs3KMtDHhtvwAIABAqqMrrJclaYVjiyXSoyk4EErKE2mSFY5GgAYd+UroMNxlIWiaQnYfhv+BxQUaq1AWf2mLtF5xW/oUPZLdNBqATjjVCoO8IatVRcf+o6A6h8NR4tDV8FjE4LEB1aUAXaarQ6q3xCdnfvdVgCMmCSgzCIAA9JjQt90Mp+bDMeRJE1jsyU8ROcA3EYTrcl4jLsLi+Pb1/NQ9JFrraW3Nrd3Lr2wvXX58k425t6tFwisGcV0ngMasp5svduLl7KFbCoVzxQLqSyJx9urGV3P7e41CplMgQIA9noGUEiOZSqFLG2aUpWrZNh2Q2WBFxWlVtCoO/Zq8CEKW6ELT1yvP5iGNYGVyiTofMMOw3a7M5lNpnv9phDPY8gRwHp30A8CEe3YGIoTEPc1E3sm6l4bWFn8WiZD5NPx2O42GbFliimLkqWjswFNrQBYoAGAWwDARCEh+5buKpFVd3xsjItag15VFKl8Ge5UoxlN/MGo7+q5oowjX35/YVag+tVERcbBp3A4nT96miMLJBC7SiWfQC/xCpHZ4VehYdWa1z17cPP4sdVs1KSa79Ynr9yuNVSLKkimonWWbw6bnuHUjO6zAwBgFZC9afNSFMwWw1cfXnzh+eeee/755zevrOeIZCIZy6oUBQo4myay5fxWlSpv7pRImkMAbkdavpBM0JyQJ+Pxq7scmd+4li/MP9KZNQoVYGs0L+mOtxeofJmg9cM+DxVfOZ0WeIkTrc7i0aAT1Rn4q8E0nyyQtZtuTpFqTu/OY1fkxPqDsCRW/fu6UguGy3celxqPjuSge/y5vUZ7dPzGVwzSf2Osq/bZW6EaPVyUid2f+eIXvvu5P/knNcmTgtZoeeN2R3fcm/cmZqN/48WXnlZ6eMqiVJR2g6b5Nshe58wqRENabEbB9dM7g1G7HwpqOA3g6/zDEzW8uQxbb76cCw9xPqTg/6sXm7fmv9597xdePL73pX905fRXD37kq1/44M9886f/0ZvtgdPZM8xlOJ03omh4t2F2/N7tj33ty8/++H/7DUH46lvtvtN2ONellbYXtN//a7eJWvvG3dFs2Fbq7b2DqSa6i+lk8uxbH1t+/p2Pf38tOP74Z8726VRXnR9O7dYy8szW0DVkvtOtXON2d/RKOVfMYg2Obe+mAWWTifUdjgbBmy0VE2kJ1puEjcoUBoOAos2XdE2icOa/Klur2V2cB4LSwGIzP6IbekIapsJXmXIRANjQFUWgMNUlnSriaR7HKXWRLRM4aGJFnqVJIFmgmHB4EExhQlGFKBESQDiePasgdekiAWW4KmLeKxpZNu2V0QeCL8XwVLWuGpau1s8BGCcXh4vFPo4hAfiiQz86JoFAMiwL5LymChzmXYs8ThGXq6BGGq7vruKD6gCuoHD4UrnK8xpaC6MAdt1WKwq80AOdDQpaVUCQ8ecATGNWzwgboOG56LQx6SyK0B+v0fA6AMxQu6bL49Pj05OTWy+99PKbb3UBgC3LqOsGSKRGezw7uXHzQRON+NCpSgOMdHqT+cmDxy0bR1tximQy29ubLI4BgF9++vTpex8OkvFMrioJKqbEwD/QLdzsrBmrCMKaXm8YmAepYIOShD7QuGELDFY+D2SUcXSKeh9gXmY3Vchms4UilLt8JhXHwaHU1qob+trVS5cvr21trMcyia2rAMBoXHptYyueApJWRAWM473XNjbXtzY3d6FSba2vktjP+6gBgAGcdzBxOJaIZ4jsJo4hXV2LFQFQWFHEqVbcXuag0KODcj5fIPJozUGssoCLBFq04BxwcYV+NE5u81p7vjcedrX4+sbG+tWN7c31ja3t3XwhnSWB0dUd63wAWkfb65VThjsCYNg/OjpYzGaL/YPx+OBg1B32Qg9jIntwRzu9jm/LiRyUoGCGAJxHL0kQogDAw/kKgIulAu6Cs+V8OhXPVkGLYe8ANhBgKCGuBKB2VUqyDOCVQCXyeMoIfAdv3Uo0wV2tVHmiAOSCXHlxSKKKk6O2F0mFQipDMAq6yyUIsVJAbcLxRYypIjgKFTBTFdhCMZ/DrYBSMs8yHA6NuG078AHFMTqTqQ9cHENS254p06UShZ3JaIN1ngjt4xYKULjRABbjcARi9tBVZZ5lShUWHtiqULPrTgfE8aTnr5xPO4GrixxUhAJFrwA4BAAf4xySQbEMvA2WxbQSSdHqOCQH2N0fjYfDKdDMo+u3j4kra1cuXLi8thnb2d6NXbm4s33pUqyQcw+UQjzLFql8Hh5XvrRWDk4NEGLFBPC+NABwDj3RVgDsuG5vZhOZVL7CAwD3DZGHp4wu5dMU2sgjAHf/CwD7jo1GIS5q/agFZLk36Penkc4zMkXzbFWv+91hvzsaAeXqOEKCKAE4qpbXH3XDtlyhSxUOB/qRmdZXmZZBu9dtb69hStXOZjqbYls87vfwIs4XwNNGF/m6xnN0KVZDBVws7MqepTdqAdxwD66gG3YmQygN5XSZws3paBYNh33fzJc0WbUa3uDQBDEpyoKimlCsWuP5/qNXVz73QrVUysezOGJSSK5jXhssYyPoX79/6/oTw24YiuE51uSVOzVTsqmsDGW51X06tl2zWTP7bx4hAAPtdIHed1vj2eL+M9dxDVtZPH1WSBW2d2LJ3bRcoQS+kAetWy7EZY7eiZE0I9QafhiGCslkU0xVKZGl0tZ6Lg/42X90UhT2vBJdKhYpAQF4Gmg8SBbjoAsAzKinkwI6OhnR/uN+u1WnSzl6OMmn8mXtRSctAwB3bz0OJE5yHkVlRfDv1pSa351/4NVK48GB4beXn54F471bb/6YTc3ev9/UzcM3o9rgtROqnP+9//qv/t8//c9/7OiuEESjxYt3OjXbv31vUm+0D6+/8rQ8QC0kknLH5Ri+EwZh88AsBH1WdUPv1mvvRONevyUqwSx06s3o+KwW3dyPOm8/KbT2AbCYkvBeqNTrnxPCZ4KuLh5tDZ/tD+cn49zJ6eFNv2dFc91dBtN53fd7d+tWv9W7/sXPfZj/rb/5hfTe+5/OAA3CstusyG0/bL/+KzfzWnT97mg6aCmN7t7BTJfcxWS098Y3P7L84ge+/+OSffjJzx4NUxuhAvLYDBGAw6Fn1KqdKH+ltLGpAUoCwU/EYtvr2ymOBOZ3ZQ33dnNpIr+9K5g1VcIZ3zJVAp2CxzWmKmDrDB5gSXh8AgAM8MizPGItthQiJtRVnmdQKAEAAN/jKCS1tKqossgJmg0AXMQgOisKGiYaUJzPVwpVBGAoz6UiqG6exaYdFWobWWSoqqhg/ygKbBdkLSrgClOpwIqt1msA+Xqjie63CMADNG3YP7reAqRrWHg8bDXqqqzXbUwq0CQOWzl5bPEiSSEAAAYO5XlNG0M/FZGX+BItwDfH0zoDR5GcRreNQtmy8SQV6ILCrgAYsBqqmdCLgii01Rrc/ajdjlZm0GEQ9UfD/k33Qz4AACAASURBVATkwfz05u39k5sPXrr/0jtv90CxNh17ZRRs2EFvfHT95gOnSLI8j660UNkaveni5P5LgQHoj42m/ZV5xOzg9Oa9l1595fV33/FSwJR5RZBqUAMQgHUV+x9X5sirLPYaXFDD0Gp1a5XxsIqAAoqtaiID139lnfK+QiabTaby+QzoyGwyQ4AMTSfjqWwisbuBYhYAeH17cyNRSG1fu3zxImLwlbWt3cTmTqqAXv5kMbl+bXNzDQRwIhXbwiyHcwDGJNi19c2NTajAiVQ6m0gRRHzt6pVLl9eSJYahGFGolMgywGuFowDLQfWe+06WgJKVqAp8CSrh4ioUGPQWiy6FwIq0aDYZDnryztVr69cwHBE9MLdylTIt12qWB3AHtxc78BWcuNIsPcB0gIP91Rzw/tHhFL1qol7Xd6PReNDtgjICatWQE1nsgt7rMgjAhVKZO9+CPljq5CrgCNuqeDKfSe5mBE2sVhkG3TFZ3IAAASyqisxCrTWrHFNZbUHTPPbZAo44dWzV59kyWy1g4xr8AAkMD4MBKGM7LS4B4ENyQjGdi8cqYgkocIpgy5lUOpUoqWSuhAAsQl0u5EncHPgeANehrAMAN2D9ALzTdr9pKHxJ73q6xABQB0Hg1ld7IujLBAAc9RCAv4dCo9nC1RTA3koZvbkYVvabXm/YBWLi26YV4DyALgmVXCFfoRkJbdna/fFkNp8tjApNgzRn0E+EXyFWM2y1OsMBvPpwvDfdPz3Zn5QSsbWLL1zEOZ6dWOLyha2NK5diREGx08CheZKKZ0EmUTubVVVBQk7E4hhCn09gszFQRCgdjYbbn9ildLpAAVSGQxO71Fi6nMtQZl0Vq1T2HIArVF4IgDYHePbqYhNUy0cA7vambUNgZLRPYTUTTb07KP17LUdMFcvw2BoNfzCOWn0VCBbJ4WyYiLT3nK+EvW4nHqMIWN0xmipUAZhgrbMyMFxgUyKbZy0VqdauFiosVyJ2NbzRARpSez7813L7A1FTqTTFKI7nteftfrcbWKCAJc12/MGhUamwPIBTzWo0mrjRcv/VDAAXoHpxBcAkvHh6ixfKvKZKmtuenV2/8arpuLqKVW/29JZS4+uVDPYitDtvzDUEYKP3+vLvAVhpWgHc0OOzW42yKnSbNz79WSJG7GYSsH4VipHYfD6VSxGZhMygAq6QPCYztSKFk4gMq/h8gaZzQGoLkr1HXco05l4ZR14qkqw33YmniZUSZ+53eKCH2hkoYFFQrfbRkyECcDHHTMZEulCUr9tJCap85+ZLPqgo+4Ff1ATvDhRivz1/9zXSun/EaOHB52dhf/Hora8O1MfvnQSWefBGZIQPJ+ki/Xu/8S/+p1//P38lYjwu6IzmZ3d6mhXcvTtpNNrL0ydPia5fN0CMAwDzTDUKgtBdgK7tsloz6n7wl7/ZGsBdl9Vg1gIWEp2e6dGt/U7vnVeJ1tJWHKmw/IMPHx5Nf3N/+TMvvXT80W/tPPr6l7/6/h//mf7nv/ThO1Gn0VkanUVrvjQbzcEjwxi22se/+Fe/8wN/9N3/vnjv5z9+6nRCv9J0SKkdtDqv/erdUq11ens86/mS058vZobiLUb92bNf/eDyy+9+5AelxtlnPns4Kuy0tfn+UA8XLd8KBr6uC70wdaEYS1gVPBLIJOPxnc3dDF1KJRLX1suw5lEBx9dZvVZTeVEUyuVivkQU09mSqaD/M3A1AGBJVlVUwFBIQBXourwyNsdEYJkHNCWLWZyaVWSezKWTOVqq4o6yiO5WxSLoHAIA2LXgS1SQptgKzVQoukxi27OkiQILy0yHBU8XS3SlKmt1XdMltKI065aM0zQA1wxX4WyjBkIXraNWW9CY4Nfv7h3eaIHatK0VHbDquqrhpqAGhILHfXCopSRUNt5Hmw0fexWB1AO84hZ0iRMEltNMzW2saqndCZ0GPGkNQG9AM1lbqXVBQrCmq114xhqmCWRrEGDTVisKVxa8ePY2Wy73j05ODs7uPHp8/+Ebb3c03Ww24Vn0bcuBrxwent185OIUBgIwqHvLG80Pzm4/ioBTe00v6oNymc7ny8PTm3fvP3j89O03G8lELi+pHJoIyKtBWE1eJQMZBm46mzV4WJALqaYFiIGSRdJgubI4TgvsgedwCzofj6+8sNI5EGLxNKwAzAdOwULA8IQrOAi8sbO1lSxmME8QBPCFi1dB1MavoZ8GYAmZj1/DRK1r69uJZGwTEHcDYPt7UewgTkGe7iACZ5PJQimzeRkgeDO9sjUWRaqMU0hFimfKFF3BfV8CABgTGRi4oBLPAL0737SlKixTIRkcUNPae1MAYFDAm9vb17YQgNc34oCXqw3fJiYh1ZGgreaCAR+MYLq3t0QAXsyXR6eHe7OD/VFv2G+Fvcl40B/2e71uy3OVeIYFAJ6dAzBRBo3EgyIeHSw0Eo2YQZNTPKxeuC5ZERY1BxRhNX+22k/A5a7QlGKbqIAL6XQO21UwJhjvh44JsmyR5fL4aeDzwHrFvrHVEUrAxpJ5ShB5iqIyqYpSSibzhYpIFpEQlRGAVwG5HAEADJeGLK+2oBkJlnlU94AUNhvYiNjoOzWpSppRA/OYKhU/8B0L/ejO0whDv9NDp8lBH0B4PBnP9poAwNjnWC6RHFtV6hhMgFvJvm2YQSds+fB400CJVufNDb8djfame8v5gQVP5spDulrleBmbFdx2p92Fe4IHMIPp/vW57+W3djfXLz13GW59LJ66dnF768rFWImolDfKdKGSz+6mCqk0sZ6gi+l8pZQrJJOJ3RSRT2bKSFyA2dYa9WZ/bJfTGVDAqhX0cZ+do6kikaXtpi5V6Sy7OgOurJqw8DrYDTfAIYYo8EHtd0EBGxIrsgxPM6rhBr1OhN14vVZTShHFqiTXPa8/9ltDmaDLJXbV+AWSAbfs0UG23R3mM1Qmub1BqNWC1DUqTLnCqg1QXMAPuBxl6Wi5AgAsM4BMuyqeTHXqfguHoTw/aHT6iq6U0yQjA8+KJlE3antGtsDxaMzRX8poQKbIsAbQCW80n957WiCzZYkX4JGC57rM0CXcgiYly1DURmt4duvWU6vpaTK6HyzevCXrokUTglxT3OjpodG03Fqt8+rkBVdSZQRgV64Pp62jm3e7ctfymL3XP1zaAB2USGxlVJKSWYJIZ5OFVFKqEOvbRbLIGS726UGNz6U5cy8gMNSLEI3W4/lanlamThEb8SlJNlxv4tUkslS1DgCAq5wOAAzrV7baB4/7UWCQhSw9HhWzBUK+Xs/IYq3Zv/uKW63w1p1mXuSat2sAwEMMY6i/dLPI+Ydf2mv3Bnde/8LSfeOjR55lH7/RMtrPTuGB+KkvfOXbf/N333aqLh10h7NTAGAjuHd77Njdg5NXXi+EvtMwRFLtNqs0G7pe6C4tIugC6Wl0vvinf9rujCdduRZOQ7/Z8E9u6O27y07v7SfFaGkCbY4d/pvPLp+c/MHw0W+98/Yr3/rT+Hs/euNDX/6v/sEPffqffOWVTuR2lrXuXmt5YNr+3muG1g+i/X/+7379n/3xv/3Xlft/+LEbrTDSqwDAcieIOq998xFjhscvTqZdV3IH872pqXjLcW/67Bsf2v/RD37s42pw/ZM/dLjHpTrKbH9SD+etAAA40ESxH2Uv0PGUDQBczGZT8ChsxbJUMQkAvFZkGZCs5Up2l8exV+zVh4cAFEIhnS3qGKleIQAdDRk7ggV4MMssHqVoGCak4RjMOQBXAHZBoSmaTEEFygGr5mo1hpJrsvw9ALbboVdHmVYV/h6AKWDDJFHggfqi8a6qVFmmXKJwitdUQAGrpumYlolb0CApGJopUkZNwegfGzPB0IxuNJ6PB3uHtzqmZp5XZhM3J2sm8CbcoRREjDPicYuxxAHKoWVsKwDJYsE7U+D7lgDdBCAUCnpbuk0fHu66BbhpK+L5aTe8MR7j5XhJoLlurxeaWgN7QZpegH0fGA0K8mAwGe1h/T88evH23UevvfrKa2+14frU60bd9y0Lqls0PLp+++WwQqGzhwSYWW8Eo739s3uPI8tymg5mhA+G08Vy//Ds9oNHj54++8DbjWQqR0iAqFUeqIwkSqtBHKAWeOqrm/WapJga0CIcpZJFjF2srgy+VjkCeO+qVfZ9yd3d7c3dZDyJs8DxZC6RSK680FK7aBx5+QUE4G0AYCKzvXbl4oXnMfpofWtr6+r6bqaILCm9fQ1toNfgRWDlbOIx8LXzdGAE4O31DdyChiqcyhTJ3NYlkNVbyWwuRwLmAMUqAZ+jqjQ6qZSw3T6XSmFsOyOqhg7Fs1IkAKERnqsMWh/KYnWlgIcDPbOKWdpev3YV3k6CqsIS1MxVFpKORw3WeU6vYQMAo4HYwQEgMADw0f7ycH82ngw77SEoadCDg0Ev9Dw1nmYkK5h2AIALoICJKtyH1b/VSgyJdpiwaDkMC47nUAELDAMcATQTDnYpmgHUhq5ojo4ATGTS8Pk4eEe1lQ00rjW+Slb5wuqMm6xQmB0maEbdUmSPS5YEEf1XeLaYI9QSyF+UphVs+SqC5i5zVfxyoljIleGfl1LY6chKmtnsWCBaXLdpajLv9Osyz5aMFsYBw3sFGeasDGFxDtjDc91uuzsa9+FD98az6WzZVGWWxs3kMrwxHt5iDZQsADBQSKvVC1ueIUs07k/QrGo5fiscL6Z7B4tzAAYGsXLUxD4Mx+t0O71xH7hMFPUW+9cHkpW7uL2xeeW5S6hs48mrl2KxKxcS5XwqvpUmi2QiVsik06n0LvacAGkv5TKZ3e14vpDJVUoVDpuy62692RtYlQxAEa/Wg67C8wJbIbFT2PFMiQUAjuoqS/59F/TqrDuI2kHUCjBerD+cBjVVkFgW7pSiNUDCA4WYjfvtppjIF6ui1PCbvZEbjcQsXSZYHrOdFDzSRmc6zw27k3wsD8t2t6xQOXVYK9MlitaaQKdkoEM5sm5CCSjF9EimGFDAMhqgeh78Swwkht91B2pNKGbKjFSre+1hBETP1fBsQYPi1FsKuNmlgOS2PRwTXi4fPiuQmZJE81Qpm8jnKhxTzm4xFC1bpqo3o8ndR/cBgJuaXHNsZ/n6TdEQVBrPjEGu3tnTHcvTjd5rCMAKngHXbKnen/UOH921xa7v694rz7LrxWImubue1UoVVQAml04Q6bRUKW7uwqJkVTuIokjj2GyGNZZ7VdC7CVLpLU5mu0nBnjoEDXSZkmXTDya+IZWJqn3UBQCuIgDziqDaneWDbsuvlfJZagQKOF+u3bRziljzRg9f86o0b95y8lU+vKepuj85/OAz2nn5FiO0Dr847XS7p298fuqfvP/IMZqnr7fq3ddPypnSp3/8l/7nv/yP311WPcaP+rOzOx1grPduDhv13tHR47cJr+W4DZnUeg5HV1sAwN6BRbR6jOLq4U/+s2+125NFR6xF08BzTef0ttl9NI86bzwmov2Godays++8987Hf+EXqYPf/vq3Xv76d7Y/9KuPPv/jX/nER9/+zZ990gq8aKm1FtHy0GyEy6dGrQ/v4J//3f/1lz/5J3+RffAL994aNNu1qtusKPC0RE++8ZCxWsc3RtOuJ/vDvRkC8P5sNHz9Wx/a+9KHfvDjpr/37qdOZlwqEmcHs8YKgP1BqJBct1O8IMRS9QpI3dz3ADjDlhGA10s0RWYSBJnPyCbUEZaVFA5Eb6kAz0pBVSROoAhOlAyphqYUUDXwCBiNjCWMa1VXCpitAkPMpRUAYF3loJgSBEMJmlbFPcMauwLgIgCwb6O7AZBx7CuGcgvknK4QeU7EpwibsECtVoo0PKCSLpsar5o66otzAGZAAhMVoyZBPTTrtotpDK3ecARMZL5/q2+vpi4N07TRpgEWvY7fC7MEBXRUIkFYcJ7rOy5auTYtoJmiqMnwUVkaPjEPT6a5ejCDpt8AGmrV0MaC5YSVVyW66KBjltjvRJ5lOIGP8rsDFS/A3Sy0KECTIChfJ2c3799/8OTZszfe6mB4b91AI7+6F4bR6Pj6rZcDkuFRTmka6JtgMF2cPnrS0jQgyWG7Bzp6sjdbAAA/fOXpG6+99+EmABnBo7EGt/J2hpoMz6qBZ6CWgXvuGh6J4+XE0RZNk6BwA31Bs5OqilvQCMBbO7trVzfjGNq7G9uF/6BmJndBta5fwpjKF763BR3Pp2Prl1dOHM9duHT50qW1jVgGKhJdSW9vrq2t72xux2Hl7Kz6sM4PgFdpDNtrW7FUGhZVIleimVLsMqA1QDKicRW3oItkuVjBg06GwajXTGJ7fW07U6iwZsOUGIYqsQxZLMMa4EH+cLIiClowQjPnWgoE+ubaFry3rdhOiuZkALp6s4kO5CsfE7jR6Dxi6/50sVguDg4PlovFwdHp8dHRwXw6Hfc6g2GvPx70+sNe4LpaIkUDAE8QgHNErpAH5iXpwd5igdqnCO9y1YSVBYqar0pVTsHRYxn0gGnq2AOtWzpd1h2d41iqiAfqZRobbdGcHA24dUmkRQmAHfBsFbehCKArm3VFaHJpVhULGP1OA+mUizmuBqoEc5LJQpkDAK7iAWW1SIKCLBXzRKrEUaA9NdPr1z2gi45joBd03xLg/emRq4sVKO5oyogAfM5FAaLaGCgI4Dsd9ibz2ezIAz7NsSUSOBC8ZxEHz1vt7qAbOpbdHrRCFzQnhbr/HIB9f7yc7B0ulgYOJ+DsGAKwZtXqDbeDNtL9wXjY6Y7ne8dtrlF5fvvatUvPXQMmB2vi0oVYbP1Sqpy4emUjzQhyMiYW0kQ6kWXiDM0Cp0gm08ndRL6QThcpPIwVQfM2mr2eRWWLxYqoO60eoJ7EUaDKsmzDNQSazQEA4xxwJScEASAf/IIT9wGacIQRsKupq9VkBRg0x8qy4XW7ncneqDtoO0I8V4QS0/CdzsjpTM4BmAM41ACAjQbwb6gfYX+aXU8kSnQyxxbztb5UoIpURW0CwwXWzeZKliWyleKu0VYqVInYUULHbll9KCCtltdw/LA30DAxmOZVvQFSALTYyFOylCgoptXsHynAOTlFNWQTpHNnun/y0qtwSQiJANKZThbyAMBkYZfDSqkqhtce33t871XDaepKzXHcxZMzRsVYSJqXRHt6b8+wTd+sj96YIwBLGjBBo+a3xtPj116yzI6nW+OvfjK/U95JZGIbBbNMGQJZTMRj+VRKJImtWKnIVSXDa4WeRtPZPKtODmpljt3l5GB5d5KiWWfuluhKuUhKkhmE08CUSvlq46QvgETRzyZ5HjQRqNqH/XZQKxN5djwmUvlK/U4jLXBKc/Tg1SZbqRov2jlJG76sq0bYn7/zlHUeHvNy7+zLo8CdXn/vy21Tv3vmAgA/i5rdp0dcpfrJr/31f/7uf/wPU67OemF378W7kWGG9270bbN7tP/SuyW/V3cdmdQHDscKnSBoBfsmEQ24Wuj2f/YLn2t3pwdtTuvM/Kav10/v2YMns7D19KV8e99hTH73+rff+9WHP/WN5sevN37qp7/63eIP/csP/9r+ZyeffeNrP/YYFdyhEe5HiwOzESxeNqxRfzb69f/0v//7H/jmn2cf/8DR18aO5/KeS6m9MAxf+qW7FTM6eXEw6fpqMJwCAMve4WIWvfrND/Q//YFP/lDDab/52ZtjPtVW5gdjAwA4tPx+KOeoqEO+IGULLkVkiUwunUrFt2OZKplKprdiIDor6ViunE+KgF8qx+ByLhNlopBFNxWg8RQme2kiNp3iXH+VoiXDsuyVPeDq5FGgqyxU2Qw2/+g1E9ROKsvAvwESywNiwBqFVyta8Ng0YP1LNHpPAbABMSZKFKhtkNRyFR4hbeVxS+A/FWuqrXGqodUbtiWzHM4Msxxf4Rp1ycAUnAZUHHgM0bxiNp3OrvedBtrE1bBbBjeh9fMsI7SexsOfKkWCxPL9sOk6dajapmmYglCDxxuwQZChAukYBRO1w2Yz9GzX1dGGGF8AY7zRWAo3TDl10mth140LaNmKQNW2PDtq449ub4Q2HKdHy6N7D+/ce/nZO+/vmZaFuSm2jVaBQWt4eHLjoUusTBoALM2G2xpOl9fvP+nawJEdbFCFmjKbLY/PXsQmrEcf+IgTz6SJKtQMqDLYi1szLQNezcY5CkBh+EVW4K6tPmtNBfHIViUcPgIeBPwHz4A5UMDwGMZ2N9d3duOJRBzkSjqTyWUTO9sbVy9feOHi5QvPPb8BQjNTzm9f3dxYQfClSxcvX93Y3E4WGbpUJNKgcrdA+u7GcIQpdm4lfWWVR3h1DQTvBjZCJzLZAk3Da6xduXwVxHK2wIl48kuQ5ZWNGVR1qphMJjEKcWMnXeY9HU1KSRp7gNEFGgMvcICW0Tvj/mA6BQBeu7qbSAL+JlLb8Yq4at1p+rZlrvrBPUM18DjYMltTNODYPzmaTQ9OjpYnR4cn88EEh5DGkzGAea/babdaeiLDSXZ7PKiC1CFywA/gW8K/3d83SJxVL1AMxVL5HJHdTbHANkXsoGcFdTWBhP0FlsGWRMuo8lW6mMfpZoxrwjZEyzZqpokALJeKZIXB7mGR1xWtbqma3WiyDC/mS6U8HovTglAVNalcBCwGnYzhfdk8DXJNrpQBfQCEcysARu9iu9myg57XBBZnybTeq2P/tdVzDIGqEGU/dNETbeWEBSsyasF67GL7VaczgssxP3JqCl+tlHA/GT2/TNsDzhi1+0Gj3uz2vLBZAwVcqsDnYEU0kgvms/FyebgwyQrQJooksdtD1QzDiTqtzqA/HY0HndFotjxtCcvq81evXLx88RLe+VR67VIicfFynCkCSysLInBoprSbADmV2alXMGWISP1/XL1pjGRpdh02ZHdXZlXlFpmRsb6IF2+Jt+9bvBfvxYt9XzNyz6ysfV+7e7pnehnOkEOKM8NtqOE+okSJlCCSIihZpmAZlmXJsA1YJG0KtEDQC2ADpmVYAgwDpiTYf3xvVNOAneipnq4lKjLe991zzvfde85+ajtNFVc217KqKFbVD0DyBIV0Ns/phtvom0By0UePyHB1EKECmxeDqqnQLJXXWvW4Ww9j+Fez9Tb3uNvtjw5aONkL1AXtNYLmoNOZzXr9Sb8m7xVojVO8atgedNpTnSTQ2ItXFR1rR/i2hbNfX+7spdMeSaVpgWy1DBJb1a1G4FqKIAklumZLIkvt+A1HZovEnonGhEG9Dpu/FUeNThi1PEUt58uSCRSlPe4PJ+1Qg6IpWz6ANAAwB6JCt70oCgFeTxePX6eJDGPTbLmYyRYonmLI7J4ka5xasY1weLD84PFrL6y7shtXveH7l1bV8w1G0AXDPnx16KHtmd18c7AWQlm29cjHpqjx4PzLnzemzSDiT37qIz6RT+/n8jsFHZSzQpbS+8liKi2Thd0kybCiGdSb9ZoDAqnAm9OTBsVRaVlrH9w9ytFW+6xBwTMvr/xLonHNVWlWDO4OJUoV3KtBwdQdp9k/ud/vdj2JJEvtIVkgy8q9kIBKH/afvYxgzVoPw6ykLT8JzEptcPTJc85/eVwOehc/1zPqs/uf/OKwenB41LHMqw/DzuTlsiySnzz69X/7B//df+NKDg+CZHnrbtuqtu7dGVWC3vnJo6/Ktg90xuOVbiybMu6F7u0K2x6JQDujX/veHI8W+obXncVREFYvHji9J6C13zzIDyZVL7KLgz999tOXX/l+/CdPcq+++ZO/o7/+buPbzd8ZfeOH/8n3l/0w7B5UusPaxYFbbS5fqu5i1D38+//Tv/4/f/l3/1nxg9/9/Ke6jWrHrYWENai2aq/+6plstk/vzSeduhZP5gdj16yfLoejD/7h59z7P/qjf8nnSO3rt8/2s21lctJxG+Nm22uMAlPWuvXSdX43ZZZJgijls/v7ye2dvMpCFcagZqZcBKmTSyuuqVu6JJuwy0kGrwppw5IwUh2FiW5phimXV063OmiPAKHXsgz0oRTwaC2fBxgFiukoNFEocUJZdWQOmK4Jr0YUyILfa4PydA2OoxVdkGUg5iV0IMK4H11WBYwjhArMrRyGDDewfA2ppR9XDF2EYlAWBbEs+7CDXMsFZYFKFoN4+/Px+PB2t4bNKOiNpNvoROGAnEdjCt3EYQgJB4FZDoRrLar7QRSAqPFXG54FPo7tP2otrLdWl7oYixq6oPyVlQuxhFdHBppXKQJtT4ZxvYqeK00MJGwCI2+0m3WMKm90BjPQYKe3bj16ePvusw8/+2hiow1SgHOaGMbQmhxe3H3WLLBfGHvYfmMwXRxfPHvdw4yXRh2tePujyeLw7Pa9+4+ePXvx8TeayRxBathdpbIqoE/VBXKML1iDH02MLbNDB/R6FZ0pbMcCkEagXrXHQW1CLFYRgFPpDLAuKJRAvlJFiiLzudTu9iZaWgHcXgMFvJvMUqVsIrEFPwEAfO2990AB76SKPM/idO8WyOgdvO4DCN7Z3t68uf52Cmn95sY2/Pd2Ym9/P58jGK6YWLVB39zaz1KKIcHioRhg8XwZbVQoApbe1iYAdCLP26FC5Ip0MQfFGkUj0BIZrQ8N0W5PJtPF1N7f2NzJpJK7u7uZbCLFaStz33CFOuinX/NRm3qB77cxw2J5fHE2Gx+cnJyenxwdLSaz8Xg8AT4zx4CCLnAkL0NIWtCdjSSKBTQkaUnXda+9AmAgjSSJAAybgsgmcwr6ecoyLG0BaaWFjipuUJHLRrUiyyKDicIkwymwwkx4DxXbdh1VKSsqKmAeAyc11TFtzCyu1upI5gCwCYYBAF79Gk/jLBYsSYYWuEKxLMiaUaZopkQxpeIKgDlOlPxau9rs1aIAOKdS9ga+KrJFtxe66ITF1hsh8Eh3tcAwoAe7Alc2lNjMPJ3OT6qwmyUQNWWaESTFqYRAMNvN5rQVRY1uJ2qEQB9AIBcZltPQNrk5n0/n06NDAOByCS+BRUXWMAwK0wS6mAM8HfUmk/nhcVS9rwAAIABJREFUSTe4kNdu3FjfWF/bSwKpyt5YS+7dvJ4TOewg11Wel/liugAEY5dxGKrIZAvp5D4CcGYFwJqqWtiJ3B5UyXyeKGuG1+jiEIaIrfJZrum5Okfl5dDXRGADeaVeA4YBBLmOPdDNZhsUeWcwOmij5Qx6zap2ELeHnfZs3h/M+jUtQ1KKqAJPb3Yb7YlaJBgcBFaBm6OVs1+N6rCFW9P9zHbOhV3BKaV6R6C4Iim7mHxhSBJPUZEjCXQp4QAQs4X8vo3Z3mEDpx9WZ+DwAia62VMc3gE3BwDAnUgvFHVgM1Grf6HRb5uw4BWjRm96cvryywSZpTRe5MlslgC9DQCcYFld1F3TiAaTxbPn70MxcWQnCvzR60vdMRy1VDZ43Z48ntn1qhfYjVfL9xCALbVqmRWvszw4f30x6Pe7A7f78X1qK5fPZ7JbeYUheZ6k08ndYjoplwo7iSL7FoAbscsJRYIzxhcDSSylZaVzcGeRKjmjeYiBZTRwrkqtMY0sjeGk8N5IJhXeveoTuuk69f7pg0GzbbOZXKE5KhEEK9+r/gUAx4Io2Q+CtKIffMUzvHhw+NWnZffZknE7l78wMBuTu5/8Qs8ZjG5P7ejWx2Gt87WDkpJv37X+53/+J38sKhrn+t3DW3e7ZtC4e2fsB93T44dfUSqxW3EdwegEhmDaLKd2H/h0e6b4vin+7b/zaN4aL3ua253Vqn69dXVHaz+9HDQ+e130q17PrFa9ie37usVbncBy+JjVZN4y2fNv/uzv/CO30fZri6A2a1wuPb9+8L5izuaj6a//L3/+h3/1D/9u6fF//Te/PGz2JDIectoojqNX3zkV7WB8dzEAsuZDjRo6eni4GPW++rcuzKef/tSPhXlDOv6wmUo1tclx12mOG00rHmHGYCsk3uN20xZLEiCBAYD3t3dyCpPPJq9v0RzDUVmSzuZ0D3BQ4gEd2WKeInOFPKnYeOuL5k2GhiYCmG5W5gUD6HLVWM1HYq0Hug46KZeRdBHBQgDsLgDpVm2JU1XT4OhSsUgWKp0GSlQdAFjFqBmceERlxJYkUxZgq+PcjLBSxaKi2xW7ommOG4aRq2MYAw91mmclz0avRacaBZVqrdHuDwejo8PD4wvgpAhL/mpC1l41hxkIc/CFoySwshiGi+PV8XM1rkL9rmD+qIzGvTidqQYR7u1WPWrHGDWr4Y2jsgJvtHHH4GBJYdR2v+vBn6+jo1YTnaMbDZQVrXqzPcY2rBNQr0+ePnry7Nnzj8YW4gWqVRDBtVZ7vLy4+6QBChjlNFrs+vX+/OzOoxedsBZH1XpnABtpMDg8PL26//Dx05dvPvlGM0UAAOMglS5ysmYDyWjCt1mrAan2DChiruEaAiNYGFmPgX2ua5qOgx3qOHslwNPivgQFJptJZ7KZbC5P5HNZgkQ3lmwmuf02jfC966BhE6l0sUxlUrvXvwDgawDAiX2A1DJVyidRPe8l0Ulrf39rJ4EDxCsTj/UbG2jSsQp5AOiiy+Tejesbmxs3tzIlVkJv7xLF4n0i/MBRhcz+/u6NG2vXru8WZU+hc5kcUSQ5QD+cbcPgC0kzLdlqYn7C2EveBAaQxcmn5P7WHovxWzh0EwQYcw+6b+W8gj3A3YOjo5PjEwDg0fzo+PTocAEwMcWv2WJ5uJiNVx+sly8qetA7GAkkhQn1AMDa/weAgSbwTD6fTScLumchAKM7poqtsyujz4ons0bgqTjZniuUigDAtgXobFdc08ExbHYFwAwvY/eege5ZmJ1Yq+uCJJMUCxgMwCSKsJZw2KiIV980A1AF2ltQDWyewAbxUilTAgBmadYJW37cCqrYz6AIFQBgqVxwBqGDGSnlet23XQRg0HN4HN3udtGJo98ZTOaT4Xh+EpiaIPEcAD3NowIOm4C/DZBLaAvTito1oKtCqUSWWd6y7ajbnqNz9lsFTJboVRwD+khUahj0B8t7MpsM5/PF0UF/cJdb29hYv7m+BtwOJPDNtcT29npREak0g743vFzOsziEvK5h5BmbL+bSAMA0mSFoCpMBAQqDqNHqBWjFwmqm32jbMnrxlUtEVmhVXI0rEErNxcsjvAMG0G0DaNYb3ZXjV384HAxH86bt4M2MKMhWtdEdtlsIwPNeZORJUuIk26+2eq3OSCoQZeYtAHtOpep5YQNeLx5N8vn1nJ3bz5f5nFkHqljIKE41dGxT5lmqVPNkgab2nBgIT5FI2WEFlG4zWFnWgggPW4NAEcksQGQV9j+ssHGnZhRLsmLbQWtwpiMAG4YD7yJqD4DYPH0/V0jly4LAFjLpLJpk5FMJntegGshatR23lhdXLiwbxQn8cPLyHPaPqVKCJ1caCwBgeFyuHj6ev1cFTmgqFShEQWc2OXxw//3Dg4cNcvTygtpM5+CVtwmVKaJbaWZ3j8rta2xpJ0FiHnAlbjYbgSSRRFkfnQ00hcqrRvfowUmuKDf6HonDAGUFAXgGAMxychUU8BcADMXYjvtnDwf1tsOkCKY/pgCAlfsrAK72nr6IJVFyHwVZVZ9/5OpePDz67JngPVtwTvfur4zt1uTu1391Gi+OLpZmfOvTOOh8bSaohTe/Nf9rv/0H/ywiAsUPekdXd9qmX79zbwbq9OT4wYciwGrN1ct2vyaIXEpVUpVnId09VB3H63z6+78u9fsHXRUAOKr4jdblLbX9ZOhXP31Fe75dsyLfLEAZd21XUQ1JtlTLFA2RI6ff+HxxPoSPojmzq4ctNL6Ml680azLuH/zun//Zf/X7/+vvpZ/+2l/+5qhKCDLXk+RhI24//tYj1mwe3lp0mz3HrU/HQ9cIlwfT3offefjg8Opnf6Zqztrth21ir2HPT4ZePGq2rNooclW1HRFrPAJwMZ8rpPf39nY3NvYVFmTQRgLqIk3s58kkoeOVHMfphsCVciUqRxUI0VGxDRYVsKavAJiHki6gAvZXkTvYnavzFGwylsiIBg7a6SK6FGAWIN4Ba6YG6gfnPX30nzIsBGCQRngHzPCw38oIwJKApkM45sSU0JRQ1m3PdmXddYKoilPCNAPqhAMArti6ZYEwjkIsbS203Vsen52dNhoBSCFs0EFfRtd1TAzzRUNG9GSUxDJLM2U8CW76oEkqsA1dHNHDuSo8MJS1ACcT8HIn9tHWAmdrdYGm0YhJEUGeqYKqs1IM5McLq5VK3EHBgTUPMLsGm388mc6Wh8AFboF4ff362WMAYMsBAAYa7nuVqNmfLC/vPcI7YA291y3HtILO/OLe65cNTHcCKd3rD8bj0fHh8eW9h48ev/rws6/XsyRBrADYwFtoE1MYA0wFx5hZ0D9R1a04IsVAmdRNwArdchzz7QCzrqkanknLX0qmsfM9mczmMIwXEbiQB0xOp7bXV5GC19Y3Nrd29jKFMg2/cePdd9559xr8/MbG9u5+jkYr4WJmP4mRv3iWvZ/cTeIhNDpi4Rn0xtbNzcQe2lvmiQLNFve31m5sbmynKLxBFzBkHplWGWSwSOZQz2KW8GaKFA2KyIAOYHhBBC0A2g+elLjqdrNbU4CCUSV5M5Ehs3h6ntjd3GPdVZBriHTGD4JqCI/BxTP+WtQ7BNl7dn55djDHZujpdNIbLcZoTzmbL48Ol/MJ5ui5QCi1YHA0EEhcjxQtwgL2O9PjY48ROKpYxBl3hsinU3sFA9aZKkt4AILzdwD9nutUXKlsBC4CMLqHgHKU8A7ScHw8DEcLOVWjSBoBGBN20Z7bC3GhamWOp2gBx4N5Dh6JiOcx7Kr5u8SqPHAQ7Pcqg/aFd1UskekiAjDDuWGzUmu+jd1Q5MqgoiAAj2vuytqpHsMyrrg41goMDn3cVgA86I1mszGaQfumLgEHY0DWgJo17GAFwM1BvTkctBqNYcNBAAbCywigJKO4tThYLA9OFy7N0oUiyWNKg2bpDgJwbzgZzadolHW4PJmOD65K725trK394FqGBFaVBgDe2lyjJJ7JCujlVRbLRVizzNaWl+doUNlFIgsADJLvLQDrOnCaaqPZ8QqFlQKuNLumLMpAyEv5NNcKXK1cKMixo5Xh95NyvdVq1apxI250OnUUwMPJbIhWlJgciDcXZhD33gLwcN4JjWyeADiw/LDdB+0u5GFtswKHgt5044pXazfrzfrBMrO/lrZpoJlsRmlwJFkmZKMemhhpChSkHugyy6aduqeWC/k9K8Tn2fSb6Cff7AAn6VkiNrhwRhXoQW84GHdjAGBOcSy/MzjWKAYKme5aQDW6w8ny6NkHBZpgVB6dKDO5bIkoZPYS6HInCVDY4vny9v3HON+ugkqP5y/PZVOz5JKosk5nfq8jhCBItOq96btVDNaSXFPgzSgM+ycPnhzd//lR/uzVKbuTyibz+e2CxhYYusRlkykmnwZqt7NbhEWguhEIf48HAGbV/iKCVUnIVm957yRf5P1RpcBzQOx0zLqZ1FwN6n5wpy+UVN691ScMvHMenj/sNzsOA/S6O6YKRU5/4H8BwM9DSRT9pyGhIQAbXm24/Pyp5L1YSG7vwa8MrfrBgx/51VEwmE/PfO/up3V//mFPVZnf/MnPfvLnv/MLGhThuNY7uLrbsoP63QcHcdw/PX34ugx7oFY1WLtXZxWKiOO8fccrtZeyFdBHv/iLv9rwZ4uO6vbmtUpQC4+v7N6jRW/25Se0DuzYZDW3KmkSbRfsctTRgEQHnj4K6eav/IMCfdFqVrvAaw4b50tA7+Onmj0aDw5/71/+0f/2Z3/yTwsvfuajX+xGmZqU9hSrW28Onn5tqTr64P6s1x64QXc5HblGdLicBp//1ON7Z09//FvidPT8w9FpcateWZyMK8Gw3fPiQVDRjH69sCZspwyg9zkCzygyiZ2sxORzaRAWGs8Suzkql9M8TcCxcJUXmBxJE/D5ipZMl1kAUwMAGI0yOKDFvKBBQXDewi9G1QgUWpgVEIAxckTCG98yr2iWAABsvAVgmg5a6H0BgrhMybqkoQeVpPBMmSxIjgYQiFeugLQltBGSTcBRRzY8248CR5fwFosTAYJl39FtUMBBFGEuaAyboNntLy8uaisvaAdNOGzTWp1CAxLpCmaJYDsV9xcA3AjcIAJ0r7jAKIAOUDjnCWK50sCMUWC3dd9C3wUkE2WKYjleloFyGKqiyKzeaQYGYLfhxL1+v9fp9nvtVhzG3fF0Ml4cHS8Pz25fPnz6/M37r159NMYWWVDAYYReHPXB+ODyzv2YpflVvo9mWV59cHBx74OXMRr2t5s4zTSZL06OTi7vPnj05MUHn3wWZUCr4hSMovK6ZeDltm16UeSD/G83A8s2FcnWhJUhBFekZU13fQxhwLOJFaPRNP1LieTq6jcF+LuyfiSIHIji9B5mImHb8/q1GzuJrT0CT8Ty2c13f+AH3r0G0nbrBgBwli7zZbqAo2uAwXu7u4lEIr2/u7uX3EN/yq3Nze0ECmAMGk7ni6USkUpcW79+M0FwMlAsDid90beYpSmKK4K2TO5gnvDGfknUypkEyCWeRv+JEjZIA48TgGZITmc2nc1GXvLG1h5AdnJ3eze5kxaDlesxAPDbrzAEplRt1MN6rX90en55cXl5hh1YR/MRENnpcrxYLg8woOro8GAOdHVgZ4uy6g+O+zJLF+HJMngE7bfHJyceC8KrUADhx7GFQiqZyOkIwEh8MIxJQzHrupVqRUErSlURWeBF+KbLGgZSuUHFrlR0Tfn/AXDgI0EILEdFm+myLIEexVFjEYevcDqXAd7BalyxxKPLJmZqg/AsloqpgghIrWphvRPAPx6uaU2ujgNUwPasUVEEgebiOAAN5OJhAAb0NRudLgDTaIjuX6tYD1gKUNoB9mnss9Lt6lsAbsfd2aBeb42aDlBq9OqmOPgkAj0GprI8OFy48EHAWxGRm+oWLCk0MOwPBxNsPDk+OjibzA7PibXtzbX1d9cyxUwKAHh9L7GxxgjAwyXsAceZBVh71LoYsxxo+gJGoCYyCMAMzYq44Rw3aLQ6LizGPPz1TmOAO46DlUJkhFbgaWWGEhuehTSgpMT1GJ48gGaj3UDP1k53vBiNZwDAuihjjrQFADzuduYHo/G0G+n7uSI8Nzeo1lv17oDPF+CDFsrwWGzLr1e8uN2EV1wcb26u73n0bp4VCs6QIymhpOj1molz9FypVK8aCgCwEVoSQ2T3rFoV+G8zrDVajVrcHvSGHRMeOK4CH4h9dzQYdesAwKIRVKLB+ERFKaFrtgX8GgD44PTFBwRdYEHfUHkgCAQo7nxyp4zkiGMkP54dPnrw0ghsV3WCauPg9YXhuzZPCLYWTs9eDo1Yt32n+fDg3Srsa0N0PE3yB6PFxeXpvONfNcrHjxelRK6YzWQ38yqUb/gnncoy2bROE1uJXK7EyisnDoPhSYKRu0u3xJYylNTqHwz2i1LtLEYfNprTLBfvgB1QwFJwuy9QKmeddwnMImuOLx52W22jlCKKUR/dXM17NgCwEnSfPK8Cfw6fhUVVX3xcgSrVm33yUHJezAWzc/fnumY0vfVDv9zzesvO3bHx+Cux3/9kofHSP/jRj3//zW/8ih2SbBQ3J1cPWpZfQwCuj04vnr4pO57lNTzO6TQkSWta6CCqFRtz0e1Wvcm3/0VUnc5XABwHfj06unIHD8dR5/YjwJSnULdzh//x+Y+MW/Pzk2z189vTikud/vavF9b/5vd+6HTUj0aV+qJan9dOFpVq++yxaoyPZuNf/7/++//2z//z72597S9//bcGmlVzAOqiDtTnZz83h2V7cGcyHnTNeHI4G1paeDgfxF/9W1fuR1//7rfUWeXDn2n2iI3InR0NnGDY6VfigW/Ler+ef6+8kdSpHABwLpfJpLc30yKdSyc3dkjgx9mtfTKfVTzgoIIEOpOjMoVSoZinVQO9nVlONk3YM6YOgpUSQGlhzw+iL05pyJjXwFJUPi3ogihKikAVCyTLaboNClhf+UsWSYb1Y8BsHHJiSAkAWJPeJsCwCMA6WlPCc5SA99MgFwCA7Yqnmp5VgTKriRhHyOFJt+LbeMQKAjZqoSNsFyc8q+PLS1+DguyiIsAMBhz309EXRFJMBQqfACQA3XPhK448AHXM1LX0FQBzQODgg/XqrfbqDnjQWCX66ZqugHwAZoH+1qqucvDBuMN2xfRD1wpavV63DZK5Efn1Xr/b7vQxKvXw4sGzW4+fv3j14vnrj8aGbnkIwGHF8aJ6dzg/v3U7xFQSQQVtbldqndHi8uGLZ/WwVquGAMDtdn+CYUgXV3cePHn68stfCVLFXB6zGySREXXDjhpR0Oj02qFXgdcNVjOJkY/v1qr4pu1bqm5WHGN1DVzmVkM0xpey6D25l8rkC6CvSsViHh0eUeglNm6sr7137eba9cTe1m6BZQtZIrN57V1QwO+9t37z+mZiP8cIIk0SeSiyKbz/TWxvbe3tbG4mAICxoXoXW6oBsba2EslkBkApn8JL4I1kiRfx3KL8/wJwiaKz6TT8WUwTXt8tSXo5n8pSsHLQdZqiiNx+tgjfpGUIbm82Hk/H3v7Nnd30fiq9t723n8gqVXhqqHtX6hdvwvFjbTRqjbh/dH5xdXl5eQ4f8OUJyN757PBoim3Ry4Oj08PlwWwy7HWtDCEpfv9ooAloj8kxoqabfmt8+haAiwQNa48tFtPJRFbDKTWkl4DCb7OIgdwFnsyZgYMADJwB9D5TVkwDg8p9ULum8sUdMMODFFAME23LfJDp8DRompExPUzjCywsftCvZAlAClhhkTH4QpEX4QsAGGekgSSBAoafsW3Qe0HcjgNgloYixJOqJpUJCwEYQ7tXyXxvAXiV9lFvfwHAoyG2BC4WFdvE7kh0POJAI1aiVgeWeL3VGC4GtXqrX0cALguFAi3AVgvE2tF8vFzMDzwgXSDsRJYFrm3qFUCxVrvT6Q4x3gLYzNn08OSMvrm9s7VzfT2ZxjGkm+vJ3Y0tBj7XImZ3c9hfJvIquV4JVCAYGIGVzyQy9FsARu8nw/KCeqvrEdlUHmDKqg9M+FlU/qU8ArAuCIzQqnjoBU1qQI7rjUa7DRsUw7f73Q4eccxjE6feBUFUAVq6435/cTCZTXo1ZT9fUiTZ9v2o2Wj3OKJIkwwPAKy6blh13ajVqtfD6WL9xnqymk1kynzO6ZZpni0qZjWCN2LoPFmKUQEzSSMweGBc+y566EUoxJuNWq01aAy6nmdBleR1Hz/OYW/QrZtFSraqQTwYnayOoNHdANhyZzA5vHj1Yb6YLkkiD7UyC4BYKpPZPbbIASfj1KDRXTx99rFZsz3VqYaN5YfHCqhhvqBA0WwcPO/odaMSuP0nR++FbwFYNSWzNTk5ubzz6Wdnh0t68eK4lMDU0fQmobEERaXzqUyWzqQNmtjezWVJRgKaUq+bZYEuCcbwbl0S6GyO9qJBN1XgvdutIg7og9pyo/o0gtrIy9W7A7GksOZZO68ZjtManz/oNhs6m6fodpvIE4J5VycUBQD48bMQRFXteVBUtflHFdOt9iaf3FecVwvO6F79TM9vjs5+6Be7lf5Z4/zCefjlOGx9Yymz7Hf/7sWzz/+9/6PBWwyQyPGt+y0Qz1d3p1FtfHr54gPec3WnZTNur8+r5sQKOqORwzZnojeoSBff/x+qzemsrbrdeRxWur3zC6P3aBa2ru5T+sHHERfwB//k8nsf//h3f/mDdPfv/9oPqUbx8q//zY+Z7sD83i9chf2gNfMa09rJzKv1zh4a9uhgNPrNf/d//8s//c2/nnzzyz/9HzTCuaksqmrUbXejF//osSR2n16M5pOmUpssZgNTi47mvdHz/+yZ9Euffuenotrw8fuLdn4rduZHPTcet1p2NAgMQRvUc+8yKwAG+ZPBUJyNm3sym08nb27l0xkyt71fzOYU11SATDIih5fCUGJytG7weBZWli1AK91UYWMBAPMyNn+u1K+hqQLAJseSZC4r66KqoisWArAAREoW0D9CQN9fhnGrJg7AagjAhmLoAMA8SFuGJiVLkbDhCROSOK7EworEZi5XVk0dlKql8szKXpcts5JngLp18GwXu5Y7g0Fv2m9Mr64qgl8NMKUd6qFjgfC2Vhl+oowJZwjAGDfXwEyV0PHCKob9GkAgZBYqIh41ahgW00CTym7NWwHwysgCm7cARFhRkShO5q0OsAg/8v1mDw+fG41GvBrCjLEbbDicnd6+PD5/+Pzlq+fPXn880jVYhiC4oYDi1MPw4OLW3ZjBw3DRMHWnEjU647OHr1+1gir8xTjhCK8zQKeD0/PbDx8/e/Oxv0/kSromQj1mNc+vxK3IU+G/GfiESV6xozrIAuz/tkR0L2NAaAC05gkSyxqxulPkvlTIp/dx8iiLWayAwLj5gYBn04kba9hrdXP9+ubOViJdIFKpTAK7oN+9Brr4JhpvEAzHMyVYDNl0JpVGqE2A5AXdi03Rid1d1MLpNEDWDsjsTCZPktkEmnYkSbQsLeP9BXwBAFOgvdPw8vi3ra+tJUhR5fGkBAp9mqSxabZAwL+h4JsSAvBkPg32N/cyRDaTSoAC3s5IAd56waPzvwDgyK+EcQ2UX613CAB8CyTw5eWtWxfL0+OD49PD+cHx2cnh8vj85OhgOur3uk6GEJVKb9lXebbEANoKaMfUHn9xBE2uAJgpFNP7ibzh25gGDNxMkXBmzIJlZbmOUDYAgGV45wDARZzVxTQI063YNlpx4BgSKGAOaKiKEm/l+u8BOwL6oUqqJqh8nuFBxq5GkEAPs1SBMcRioSxKIh56lgokmm/jHbAomWat3q5EzToILxv2FQKwzBedSewpogQA3Kihx5pf/cIJq97p9TAPeDCC7xZTSjxQwDxwH8BgBOAgarbbsGbbzeF8CJDajl3LkstcieAUyYl9OVoupsvZbOEC04UHw2OPhmqZXhX0HVphDXujyehgPj2Znp6ecRu7+8nU1vVkah840o1ru7ube8DZcdIX1l8R6AlBcMSOqdtikSqWskUit5ulixmCXU3WAKnxA/j+XKg/eU5TzVpnFdMoAF0nBHQPKgtMuWE5ZbQr0VpxiOhXxYZzvK9B1zjgGLEBNQt2Ny8ZwMUGvd5sNpqOuqEAb4Wmy5rr+CBX22X4L7LMlWVZd20MTauiiK3O+ht7a+laOpPjmITdkimBKpWNyMdxD4Uv4BG0wtJ7bmRigm+qUgtBNrcidK2L68DAJy2oICWa4k34hDqjfqvbaVgUI2uuW20PAIA5KD+6baBa6E9P7nz5E5LK0Rq8WC4Fm7BQZArpPQ7HLqFOVeq1yZ2nbwDtK7IdRvHBR0sQuZ5UwlyZ+PSjvlvTPNscPP0CgCXX8M1Kq788fHqxOL314MVg+PH98i5eyKc2CL1coIDZZvIZKp8yy8WdvQJBQRkPoihyeImhZXf+YOjJsNpoozqZFgol+ahGcnQJk3fgs5zVbP2LO+CSwjmX3byKXdDD0/u9Zt0QSEo46ACVF+z7xgqAOwDApiLVXwQlVZ18ALIxGEw/vac6b5aCPbj6yWFjsLz6sV/pOI3laHSvf/lBXD34uMeXc/cfZ+48/Nv/ThFMzg/as4s7bR0A+GpcjaYnF8/fcBWo502Dcpt1XpTCWuy0Z1Uunop203du/dK/gGU8bqlOe1qv+f3B+bnevtuLmy+eGM3vPSpr1dTkD18+efLtf+SkS8mLb/xStazOX/7wv3+H/vizv/effK3WCsdjI542L2ZuvX90x/L6o978H/6r//Ff/dPf/k8zb777S382iwPVWtTUSq/Xbn34e/cYIzq/O5xPGlI4nI77lh4dzvrN5//RU+f7Tx58aNtHR09uT7P7TfvguFOpjxoNM+y6pqD24+y7/GbaovPFQoFECbSbyMllAhTwFhRjppQpsoWcaGrAziROFctknmHy2IRlSYAXFCubFrrSKwyG+nFlAVPvsM8HhLEsoZalSSqweAFMAAAgAElEQVRLaLpkmYoqMlBYeVmzfY1XZH3VhEXSJSuAYgV7jGdIHE83BB5YMmw3qihBedHVldCDvVTCU1/TVE1HFDHyEgAYD6YZfgXALpZDNGQI/Qi3IXowj5dnp64MRBP9JRXnLXxiCzQaSGLiEU5usiWqjM1TjcCpYD6RbxtolUwXaAk5tOoEGOwK9b0KugAdljA9VOTKK2dBKLUi6FbBbIeGWQ0dp97FRsw29kN24kolBv07GI3nx6fL0cX9Jy/evHr14ccjTTUcKMCA9Q5IlXCwvLh60GSxj03STQMUVa01Pnvw5v2m7QD8NtudVqvT7dab/cXJ5d2Hz569+WqYJPKMiVNQsAlqNT+MK6aEKRPo744p7CEggwW4HLtGIUeWRcOx8M3KEkfncaB1P53/Ugp2O7YWpbMggUuAg1kiB1Ca3MRYwbX1m5jGcHMrkUhs3dzaXvuBd6+9+961tbXrm9uJ3RRBs4yAhpH5TBplcya1t7uP2UfbW5vrNzY2t7ADax8tFeEvgf1Os8Tu2o2bN3ZA02Jd4fBIAzkMkDKg/ZnEzRvXAYFv7JEcZ5XzBaiyBUoCiNI5GkQgBuWoitudTucHMz+5sZcr5jKZ3R0A4JSI3hvVMPC+AGBsMK/H1Vp3BcCXV7fOLq8uz+GHk6uz5dnZYjY/PD0BBXx2frqcoRuWlyUEpdI96EksBWWzUOIUzQq7078YQypgWzJNFDLJ3aIV2KqEPeS6hofJSPkQgCXOCl1NLq8EcIHFjCpFMXXLw1sL4Ja6zpRWNpQAwBrSxCqAp2bYwEAVQVEYic/RtCCx2SwrA0oLbImgDbmAHtcSKGCKgqKMW2k1B2yYIPb8WjOq+hVLkbVw5KuKRPvD0FEEAOB6s+b7UOvho0BMqDW7/V6vPxisBoERgF0Tij08gdUdsKD7q8TLdqvV6E/Hg363FVccS6AomuBVzq7bSmU0n+HVuc2UgSKQIqA2FGPPwsTNVVZmfzwZL2bT48n52Rl/HSp9ZvtGJpcEAF5/dyexCQtjP5vfTu4l0YOD2E6QREHUIi5H5skU8MK9LIUADEUEW94NdEBvONlUjiirqhU1LezXgM+EJbiaYQgUcN9I0ylYszklsuFPqKrICgqQfCgt9TZA8KKm2aYiY+axZFUC+N7G6IDWrrC7ZD5LMapl2NW41mQRgDm+jCkommkDisfNelhbNvfJd/K1IkvJbCKeuUgai2rbB9EFNYGkGlVD4ei9IDYFlswn/NCHjVYP0HasAbu1Nuw5loZnyUYVAHnYAYUOAFxWVMsKmv0zuUhzOGGpe0HY7M3OTl9+DESkpALVItLY/QAadWcLjcrKMsfDSjy89fy5U3U8yQKYXHzlHOS6JxZExVOrZ19p6TXN1dXBs+O1CADYlDzVlKuNSnfx6rFV70XWsf/lJ/x+LkcmkzeyKpMv0vt5opClyYReLm4lYGVxKloIBg4nUkXRnZ8NqmIJloddm8/zsA47LilidLQKsqE2rVdUYJLBHVDAmujfGeQ1AOBG7+R+v1U3hXyWXvTIPCG6j2xCVhS//fhpoEtS41WV1tTRa1O1g/74q7dl6/WCd4YX3xq0hourb//G4fDkxe3es1tH79e8/qulmGd+0r784+///J/P0xalqI2Ds6u+XqndvhpVa/Pjs2cvWAdwp+HwrsU5eWA2odccuUV3JJpVsRr+xB9qtYNhU7Gb47he7TSPLqzW+emi+fqO433vhOoZufP/4s7ixe2/8pUnm+nJ82/EQuQ+/8Vf+4ny+y//xo89q45rg6kdLrpXc7fRP7itGd35ePp3/+2f/rv/8u/9EXP5s9/8475Tr6nNplMZduPRy7/zKKnXju8MpuOWDPSi0zb1YDbu9c4/ud15Nrpz26hFta+P1P00ekE3vdqw3rTDlm7ySjfKvCvsZB0G0LdQIDKZ1PZWmqMyeGyUy2aJ7G62lMlwCo6NKrwu0rkcQ+dKBCHaehlJErBxgE5NpJkyLWBUmSCAHgYAtjRR0wV0G2T285omAKVeATCFPbuBzuOdcBm9fsmCFZjYsqLDYlYs3bJEdAsWeSaXkyoA72+7oEWeowCWFdtSbV8RdRsADJ1vKYYRJdhCsmessmlgjWDjSRM4eXMyW8ynpmZUsTnJwtNdZWUeKPMizhEp2Mi8AmC2hrnlURDVA9ANrmOg9R1NyzKGALigZiPMlKnYBpRatFEwVZ5bRQRwaIOJp/PuoG54taoqV1bZq2gyDNuu3+/2xovxYjEeLc6uHjx+/Oz1m/c/QgDWAYD9MLDtCmik9vzk4n6jhGmo6BPpVcLWaHn16OHzhu1EDShx3T4ojF4TWO3VgyfPXj1//7M4RRQoE9ubDUGt+HYQh94A20BbTWwHbXUbYfz2VjRuN6ue4/ge5gE72IQF/1PRf+pLALeAt6lMPo+596Ui/jd2Ricw1+j6je2baAiNjsvraz/43tq1d3/gXbThuL6B5ZTEUwrgYKBo4BESsH5yGWIfJHR6JwlSd3N9c29naw89tlByF0mmlEtcX7uxsZMrAwvgyxyIPJoAMGaJPAkQDL94fe3ae2s3d4uiI8IqkUXBXFmq4dgPxhFajuq2J5PZwcxJbqfzq/6vxG46mRHgY/SDMI4RhBGJq+HKDzyu1frHF7duX51f3To9PgchfHpyfnGymEyPzw7ny9Pz4+V0PJ2Nela6IKl+f9mXaAr7oHEeDBjq6PjAYmWutDq2wdvdVGYfFquhraa/sUHAQu8xGz9cvANGK0ocQyKJssCBPLZ13UXjVFtXOENHtYnhv+ivj2Yhoe/A8i7mynjGLMklokSraDRHsbxY4HjAOV2ArScD9aDRfh2VeYmgBJEXdb/a7kDtjjzPd0xdjHoVSxepCtRGheNoIW7XMf4riFan8lEMy7DdG4+6I3T+6g2nE1/TJDQjQ6NPXtZtwA+gjN0O1MIxztHGgNBimaIpQdHsiqXGs8PFfDadeOUyT2PYhCgppm1aFZyQ7/U7o/FwOp9OR0fnpycH5Obu1m7i+jY8+XRy7/pa4sbm3n4SWwsSCMRAyK4naDJb5IMyrJt0iqByiTRLA90nGAFUq+JUfL8W67lEPsvJih00YN/KHLZtlzhdlQUiv1cygL0XS2VSAuojiCgMSCgsEoBuBbZ/Z1C3LBukslDKc7ZTgQrcCoAr+DaVhBVJkYwgyDbsGpoukqU8sHhJlUQFaDH86aoXHASk8k425rMlnciHA4XGwFMrAIRSNFklyMi3Naa4G8W6IND5bT+KARhDYMFAeOIW4G/s6QxBlQSrUq13APhhS7oUOpa7UWd6qrEUPCfesCPfbQ7Hi5MPXlD5AmHKGltIp0tFBvZEei8PBANqm6gHk8nJ4w8w31LxQAmMX55KruUpBJRKZ3D+pqOHoq/pvZcH71Z01dRUX1V1L663Fy9fpstFprVofPiU2iAL6UzyZlGjQWBnkvksUSb2pXJhL0EXKcFw/Hg1hkQyXPXgrO9IwPbKAD6LHMloraAoMYDBoumDYm/5Glfmw3t9gQRJf9ksyIbjtkfnT6atllrMM9JBm8owkvfIgkfiB52HTwJVNVqvIkYxZy9Nzap0Dj+7L/kvppwxvPr2oN2f3v36bwXao8vTew8/fPo01IYv47JIfzv43r/5s9OfAG3Kq2Z/evKoaXnNO3embnB0efbkJedYoWcrktkG1RJWy7rXGsnZYZ+Gj2n84Df+sdcYjGPBbo/CMPCj01NreHEybb86l4SHc95Q9ejnDurf/OxX3/wVKv3yG7fscnl6/7d+6+HoV37ux7/7JuqGrYVSmQ4u+kY0XZxKlf5wePzT/+Zf/9H//h/+hlY/0wZNL450p+kPPbcdnvxUXzfD3nxWH3a45rw1qLtKtJgMusuffxUfnvXazlFl8K0zm0j1zcXFuOIOB50o7DVERW8PiTU+k0M6WSzSaTK7k9hIyvBYNjYzTJEkM3tZmk6LQEDLgEhymcyBIs7mcyXMKcJJN9F2DYwOwpAyrizrPC17FohWC2Skrgs0QCxL7Kuyho1PMl+mS5xm4GSGqdMgxorFElWQLA2z8tB9SlBNNF5HycMLNFG2LbHMqgqo4zLejlEidozbNsewooUOf/kMQZaAn/K8qFEghxkM28Z+6Gqr26k2m81By9E92BVVxzQwAEkRREUSJBnbaEDGQiXhYY2W42aj3mpF6GJhmIqBeU4svJgmoXSs45ASmr5byLV1gF8QYwKv4Egm7H6GlTTO7DWsAA14K9XWpFVroW90DNUJe1ugyC9OLs6Pr+4/e/369Zc//Xymy4rp+5UAFIwf1jrD6dH5vWjV5I0UAfZV0FneefroWRuRpNlrNUDRTw5wqOrqzoPHz15+/I1mjizkZJyrgs+1Bu+84lXqDuz+uAPCp1mPG9VataZHTT82ZGDoga17ro3BPPrKB0xVpfKXCgC4aXRLyBFFigYlmstmcCJ4f2djc2Njc+fG5iphEHQpGkOvX7u+9t4P/uC1rdTeXrrIgrjggSmViDyRAuW8v5fK57G6ZXZTqZ2trfUbgME7O9uJVA4EN7x+Kb25sX59I1EUZfzLGYCTMqb9UtkMkUknt9auraEGvrmTY0wRxDr2XeGcD0Y/yhxemhlSMJyMl8u+k9xI5oqp3f3k9lZyNyVULBfNCLEJ2vWCoLJyoMCHFg9OAIBvX96+OjvBo+i3ADydY3De4cnp0cFsMhn322oyJyoAwF0gjCT6RfKAO7XB7OLY5RSOLBRJmuOZYm4/ly6YFeRxsoydbIC96LxtrwDYQIs0+F3ARUqwMFQDLcg8zCN0DFUwdPhOMQ0YXWreuoV6thNaZJ7FtS4JxVwR9hd8mqWyWGYkplACRZTPljH8kAGQwKwgppQneZET9UrQavvVRs1D31RFqPV9SxNK3iiG9wEfVaMV+7i8VhaN9VVeUQf1X6/b7aFl86xqGqIgrtwVOABgvGTBy9xWZ7oY9QaAH66FbY84+ilbQaXSwjaG2XjqwjbH1iz4U7DRTBtH7gGAe9PxaDoDAD48PT46IDeyiURi/WYqlwa8vbG+t3k9sbu9i615uwDCydT+zSQNgMnomVS+VCAoNp/MMqVsroR3wHg45LheGJuldDbNiiBg6+gFLUmKxJVE19KkEplmPE8DOs8UpKpjuehUL2nwFCzP1Cp+UEMANgzM8KBKsl+t1ZpB6MXN2HO5fJHIU/AZ8yKUrYjD9CqCBF4jo1s6Ppaq79RGLm29k/XgW+WFfNgXKPSRM6uuJaqaLGWZuKLxxcK+FyiwLsiUH0ZhBHs9bODcdTvuTtomkIK/AOBhHDVbdYMgsYspag0PDSpbBlGj2ECQmp3xxdmnXycKGRaqAlNIJ0E4AxFL75eADAIPley4v7i4/9IECg1qOKovPz5Rfd1SCDnU1f75s1YQypHjDl9M36sYKwA2TDtqN2rdq+dkcWuv96j28hG7U8ildndu5KVCpkABkYS/hcDk990dCgAY/T/jmsuLoIaDxXnfldhSiQFIOywwotcKSImhpLIGD7wz6lQUlhXjBwDAguhctQuybtmt4emjcaulFLIldtKh3wIwsEXb6z59HUDVAQCmVWv+2gK61z389K5QeTETzOGd7wzbw+H9H//WUy538eogvvXl51F3+EgsFDiTkcdNJkvkmTKbry3vPGi4fvPO3VklnN+/fPRlzsKOGb4EHKmsVyu0oDeP1E3B4T3Ylu2PPtfi6aQuOh0AYFhOx8fm8DIMunciLvrebzOuWfB+77TwyT//x1/5lrT+m3/wsxJD//D33/+FO5O/9vGd73/YG+r102Gz07s4rbrV0bls9obDxetf/euf//IrX9WMnF4dDX1FGppVnat5028/1vhatJxC3ZX8/qxbc5R4OR2E/P0j07VM3S5b/HKg7uzG3vJ85IUglaKgWc2XtUa7dD29u1OgcgUixxGl/N7edgqgLp8CbZHCjJJ0NlnEmo0ntjrPFDLYkVmgFADXMghaDnk+wBmLhyro7CjB73ybUy9gsw1ICjq7KyHxhz/CYGegjI5uQHNV7KpAvcCIUAcYXmQpAgPpiDwOpoIQy2VpqGhkHkdDspl8DshzkWKFAiWXuZWRJBA4gI5iCaMQFQc7o0QNa6INCAacvj0Aut+rmnZQiyqmpgFVgMoPTIKTtNUYErxLjHZnWCbEaJmwYqqYloQiRQXKxwItFoBKrK4V641GzQBioNm2oQEN5wSZQ1GCF1Isz5pNX6uD8m03mkO032hWw2YNvSgROafzs/PDo8uLu8/f/+DN+x9/MNB0EOq+B0zfD6K4NV6eX94LSxizimYMpuWG3YPLey9fNjw/anSHve7KhgNUyOHFvScvn7z4yjdaGSKfV93VrbZdwwHlSiW0orgR9rpxrd1YAXBV8WOvqrKmVwkc1XRt7NhePR7MkJC+ROZB8abRiiMHRAij8HI4F5zJ7KKHVWJ3a+etu+S16wDA165hHtK7167jbFGWFkQOAZijEMTRx3IfvrbQkGM7mdzCUaSN9RsbN27c3EllAYELZH53fXP9+uYepZorBY6xBBSe76YzhWxqb+vG+vXr128AAGdpHqOQiBKwfwBrA50sOAaz2iWvP50cLMceADBBZfcAtrd2d1JyBT2FVgAMn0LwdgYYZ6Kb9SEo4Du3b9+5fX4G/z5fAfDB7HC5PDpCi+hDQOBBp6UkCVGtDpZtgaJRAdOAA2Y4WFyeuGUgnYW3ObbFXIrIFnUXGNrKQw0vgDH/0bHsylsAlt4CMOYOgnpXVceu+LbjuX8BwFBPV4HzFqxRt+KDfjSKBM2yjChQRI6g8NPMUTzPKGoBVr0oFvIYEi0zGFhVplgG+C9wHgBgv9XCWZ3AD0ABIwDbukj7g8gFBckKzUZYDX03gM8hrKEvXKff6w96zS4ezHSHs0lomyLHl7AjCgEYE0EwmrHRWxwMQSD34opt4OZlOEEww1p7MBpPF7PRzMOjeLwlZzkRv40AeE6r2++Oh/3RaDSZLI8PAYA384nEzrVre1nYsKkba7vba9vbsKDQM20VXJnc3CuRJEsLqRRRgo+0lE/lKSKTy1N0Gc3gdNOGSm/TuUwK3oDhxT6mhQMbEyglCiylzBFCLXSUcpHMSWhCCY/dcat48F4LvFrcrHcHDUtTOYlFA+MIU469emM4alUDzJOhWF4zdVPn2LrCwQdfKpXQAcRw3zpxgJKtKpx/o+gAayRNotYD9ceVSQP0Kga5KQW+6es8WUxXa4bAU2Sm1mjWa/VWp97Bu/ReqzVqG0BN80VeR5PPbqs1HLQsQHNQf43+9ExiihwlyqZiu36tNrhz+2tfI4opVuUFAN7dbJ4u08TePkMXWFkWZK/ePblz64Hh6waPQVEHH52aVc1QCqIhatPbz2tGRYRl1ns+fM83VwAM1Cge9Nuj/i1BK20xUuvJXWE3BwI4uU3KZJ5m0nvFAsEQWZVHACZL+D6BRHicUKQ5f34xdOUyFG673j8gGDlo+iRGU7Om41W7046jsGW58aCHd4LO3XZB0Syr0T9+MGi31UKGoAYdOsvKlUcmJQpmpff0dRUWfet1SBnW4n3bcIPe0ad3+MrLuWiN7n5n0B4NX39t/tldaf71i+r4s48Xr6ePX6b3+p/0N/cpQ9TLCiuS7YNbV20A4Nt3ppVo8uzq7vO8KJMcDztDwDs1+HbSREhtkUIuj1Op2Q0GeGFDchGAHS86PtQHF77ROnYlInBKkiDslXOFZPvi8ke+Qadjq7yXVBWxWiT6pXTFa3949/Ts2Yuro5NX9w6j8ams9Ef9QaPy6kDsSBmxIKqCLVFMUYH1we7p/lGQoTh2MuhXXNXvzjuRrdSXk14j9+COZ1TfvAwzzZHlpK+t7W0SVH7rxtaNm1Dp1t9dW1tbf+ed9WvvYPDr9fUE1L8bN9Y3E5s3b65fW7/5zo1UDhRmngLOvwoE1gWe3C9QeSJPyjpHYZVkcAYGBCXU0pXFJBQelsVTWYBfWEfUysA2IUmqroq6gAlz2Edla7Ll6TxHF0AulASdL3MUW17dCDMA2flMDqdS0wSHlokszkcldvZTJFXiFNOiKcewalWvYplKGX2DaGzYkio4rq/DGvFsoLHVqIEuzOPxtGObHgKwrlsqvC+WA7VeFiSBFxheVoQylFaqUKk3Qh+1il2F32oa6LRJsWhlZ9h2GEXwcq2mb+iwYwIH+IgMQlpDfY9DIxxsaSOypNag36pH9X672+932u1OAzMZWv3JcDg7PpofXq0U8IuXbz4YGJbrh1CBKxXY8HFzenp1+15IvU1jxCC7Wnd2evfhh28asH+b7S76WaKL0WQBP/vk2ZOXn3yzlQa4VJD7q5IXVSvVqucGZrUBRaDTanQacb1aa9StsBnGtgow4dt4L2/oKw8vRRQkVVO+RBcQfdPpbBbnhIr5bC4PRQ8weW97ewd7mVP7eztbmzdR/b4HX++88946SOIb+/sZkAY8x4IMJjPJfeDWSZAraIqxu7e/k9wG/bwB6hmU8w1Q0du5PF5vbK/fXLu+vVfSHNtEFxc092WoApHOAxHY24ZFt7YGEHxzL5dBd6594m3OlQrwpuMRNHqOxYuD2fLMSaIZdW4/u7+9k0yk5BCT1PHIfXXm7nv+avw1hko8ODq/BPy9c3V+fuvOnbPT04uLk+XiGAH44PAU9Npy2m+31FRB0qr9eVvAhAhYURJI70p3fro0aaEMjLOE/XawLAvZgu4ZpoYtiQqGkOBycyzT9RTBCjCMgSEx2JikJHgwuodWoE5lpYA1TAPm8ORFN/Hu2A3CqBnrZIEsEEWewj5x2AKwtxiWZDQ+C58YL8D+EqEuQIVJ42wKU8gCAHMKAHDzLwAYtOrbI2iJrfbCLwAYj0J9x1/5ctbiOgBSv9vrNkH+9nvd4XQQOHjPg53oeARt+FGzDQK41+wv5qPJfNxvBK4JJZgCVszpYR3RdQq/NK+sXMsYdL1DAPZAYwO+9FZMF5B7vjxaniyprWRif/sHryXT+/upzI33drbWdxIbm9vbid29RGJ3P7m3sZMvspooAa3IJ3ez2BdI5jKrAWpBktHrGl4aFTAAMGe4tUhH+1RNk2i9WbM1UaSlZuiKdJHMSK1WXMMpf2CqwDua9Qi+j3ZvWDexcRPdrLWwXWu1q8PJYj5r1Qzg2zyveUE1ripUSwVgJXCYA2pSJcJjE/gk6r4hCd4NyqPLlOBw/T5LSRxTxJpjGcDZKQ5+h8IUd2sNUywT+bQbRGEFOJVm45WQs0q60ssUDcBm+/VWO6g2Yo9L52lORG/rmcCS5SL8fwXzQs3K8P5XH9PFfFHhyoViNgFLgSllNxMMRZZhoale3D6+Or9veLIlggyuzj44133dVAsY4RRPH7c9T7BUo/VitBYAAOtq4Bia3xuND68uizS9J+iTR5fCbjadA2ZMCIUsSe8nALioXF5DAGYoitdhOYZVt8wVAIBnF30X6BdJG1F3kSfFoB1Q5RInczos5vakYxscp9TvdbAr1rvXJtBxptk/vj9od/RitkCPUAHL3gO9IMlO1H/wuCpLWvt1WDSMxYeW7gX9489AAa8A+N53+q3R8ePPus9+iKt/7V6t/tGr2Q9Xnn6ezQ+/8bBoVDVfpjRFk6aTi3ttw2vdvhq51fnj83svPR5IplpS1EoolktKtSmwPcfuDYWcL3udOusMOwDATntYherYODnU+mdRc7LghMI+KDAqVxbMKOCDTvPpU/cmKbKqKcg0rUd2xGr1Z2/OB/eeP7tov/jwaTRYKPJo2O1SFWoY8bbImouuUiaBuVIkF/caNfeDU8vT6ie9WexpjUmvF5lyvBx3m5lf+Hq3Jf+lH4mD2z/6sLWRT6298847a++uXXv32hpoGQDg9TVQKRvXocomtnc2rq+tQ9nc3oIqCAC8s70HqjNDZEkoOJIoA0sUOCJZZNK5LIkKmKFhx2CogigCkyzLUF5E0bLxrlbEcQsEYADVUnYf72Z11VDYUgnzFAwAYN3AJmmaLNGs4pmWhaVJWRlLqZqI04IsXSjJFhQr9IGms7gseU6CxycyvmnUfLdacQ0RSghL8yxLca6NSUKrNCAPLwFBfaIJ+sHQMrxaLXAdz8KTV0W3FTzf5kWZKuMVcJmjS4QH9BlNsHx4qLZj4yQzALAE78mwrageR1G9HhmaiYMdtmoaIiaXiszKIZACbcLqoaPB3m82G03MYYCS1sQT6G672RnEg+lkdnx568Gjpy9ePH/1/qdz2KheGODME56WtiYnV7cf1Ki394q2a1qVuL+8df+jD1qVENPROv3xZDQcTefHt+4/ePTk5ZvPf6yTIYiVAjZl0UHMqThW7NkulCHQvx0g5NW4FtlB6AU2/JqDft2roRkEYXyeUEi+xBRWCjiNR8QlEgA4n8/hdE9ylWGUziDx2d7c2tzeQF+sa+/dgB+vb2AhxSyGMkg3mgZYyqSyAKOAygCJgObJ9O4uyB3QwNdvbGA+8M29DMBJdn/n5vrN3f2iCg9CYLDNrlSgQXanCNCWO5s3b6yvfKTXriN8b2DgA1EggQWZFZB3HC/hZG2MoXiXSmJzF9QoKODt3VRi//+h6U2bHMmyK7G26srM2BHYAYc7AN/3Hb7AHXDsWwCB2PeI3CurMmvfu5pks7dpkUP2UKSGwxnTjEbGL5RJNpJMX2SmD/oD+lO617MZZFdld2ZGwN2f33POe/eeI0d44hknEU4gxXAzMI5q0MdO9NnZ9e3Dw7On9ze4FX19fXN/d3l2enl+fn56dHZ3eXF+tp6NRgooYK09PZzAx6IxHQt7CYPJ8eWxRUtsHQCYA55G42Z7zQyQxQDBTLUaxiAiAAPw2W0XG4WagL9kg1VAibi+5wOlS3eJAYBxy15CSW+peHqM6VuJ0Ww0iXIN1HytQdFogtVkG8UmT1SaJDB5UMCpMQ08lvcAXMHkAKswyHkAACAASURBVMMKEYDjQcdzPUzqjieepYl0MOsAEZBYodcF3A1cZHjwC1C3s8V0NB5jgz7g8PxwFrZcGVsXQeNyAMB+Gsc+nIxmh+vlej1bDGPfVtF+WpZFM+qOFytQwMeHhz7HYdsjzh/KOubJxwjAk/F8Pl8e4BnJ2dn1BbOfKZK5DzaBvQEt23mc23+Uy+1m8jhxjr7gpdzuXoWUfNtskGQV1hJVLFSxg6CBW654ZwGAvchulmoVDgC41U1M4N0gPUGDDbuOoUiMMga5RjcaVXU0iMMQDVgwNzse9ruDwWg6X/RtXVeZBiuJajhMJqP26hBqwajnwmeXJDNod8Z9R5/pGKbAY5qH67WxdxH1/CB2HEn7kGo1azWFpnuRwkrANN0ORropMksykaMbHLXntUEBgFBoYeMBerBhqHg7Sdq9bmBJUBo01++gK4cTtrRmnhShilqteGHSJRpIVrMmKoLhBoPly5MiQbA2kL1GNVsmKLpJbO/D/YeXRLbayej4+vZjN9As0QqDzsl3N7JrtWTCshy7O3s+7oSaa7mjL/4EwEbkm7LTn8yOb85ZyywL7urZhYi0tlzarclNskkXsyRJMLWqxtf299EOzcSSGbc4nmSE9tHVxJE5EMZ2Z3ZGNuVo1mZRsctowjBMAZhXe8/HIoip9osBZeMY0vzy1WI4MptEg1uN6BKj+C91Stf9wfLFq38FYNs4+hbPCCbnv3whB+9Wsg0APBkcnD/8YfLRv3StX973Rt+/7v9qdPYDWU1+emjanttUVDQcHs+fvuvp3uj5/aIVn7+++ujP/6IVjWKNEEQjZDWz3Rt7vWNf9gdS3uienvR5erw87MnucA7Lozu6Pjdn1+3J/ILnYwuYfNZ0jSi59fr/8bfdVy9AEhCe51dFyRl1YzEYnXx8ODh7dn/be/P2qTdb6trBZLxkQeokQMnD+HA8AqXlJBEXJi/+zxP242MnkFuj+WqeyMnRdBobUvdsvQiNt9+dRb2Tz5eLs6c/3DC1Jkjfnb3M3jaGrT/Z3Phwc3dzY+ODjZ1SqVAuQDXez1bLeVAxlVpheytP1WmyUK5V6qaBYe4sCy95pdCg0WlA1TmQL406bwLgyTKoQbTDME3VwKTdtMFJlVQMCaY5ouKnLkwm/P3UZ9f2LFU3ZS21rm8ysu+2POCOLexwwvFKMQVgmmnIgC+gGEzbEFieq6PXlhVqXGCogWuHHihgEM00DUKJFVqOkSKMY7t4khN34nayOFweTQ076Pa6OI8Rx91OGwcwoWYapp0aCuIsFUe3k16n04+CMAQi61pIBgSKQ2cqIPpo9Bp3o5aB1s+27xk49iypqkCjHoCCxMu0GrddG+rYZDIArdxtQz3AXJTRGOrdeHl0eHz79OHV648//fyLr7/75RquyINv+R6Au+PlyfXD64SRABYxSQr0XLK4fPXpD9+NA+T03d5kid6Jl1cAI88+/vLLrxCAqTqpo7umrgEtANlv2cPElo241x8kw24nAUXYCaO2B1UYk88cnEsFje/aFm5Cq6os/IwmyyVsu6qRFCpgEueA0dYqX8KNaQL/W3Zvby9T3AXkffL4MQAwSOD97H4RcEDEG8eChCWI973UIHcKIFwruUKukNnJ7G6i/sWtlt0dUDnotZXdyRSKpOqBWmMEACsGDZ+rBaJOVXK7u7Ao0Qvr8eMN+Bcafuxmi9Vag8ejAxFdxx3VG8wPL66OpH0AYIooFrJ7+fJ+XvIxhbLTAU7TRgHsR7gniGfA3RSA75/e393e3T88vbm5e7i7Oj+/vMQ54Is7UMKna4AmpUTJemdxPJFZ7AukmyKsjmh+enPu4mksSYE2FQS6VqsVCTNEBqPi5jg8KwdNp0GveSpvepaSAjA8GFgRuqbjRjPaRQF2pAAMlwxCHjsKTRu3NgaDntlosI0yQRTz1UYTXb8aTbqaqxHZSrNaV6ValUvtnEii3BAYjiUrTUWWLFDA/UEQDSIXmwJNAOCWDrjgzrsByEM0Vo2wxyuIMN0aNN1oPh8PMRFpOAIcnq8WkecqQir34VNpthtimi6Az3R1tF4fTpfjbmDLKQArkhlGgxlacB+vVh4LopBsCiy87cAVfbROTpF9Ol8ulicY+nh7xe4XiEb+g81CPpcr1fY28oVH2dxeFqgerBACVGsus18h5dC1oMbXy0Dni7lKnShTiJeajH1qUA8il61SIFMky0u6loYR3YrAOcMOsDdQpNMokLh6o6qN4K1F5owhCr32YNgfo2/cYuAapsbRkiapftIZJj7mIK+SjgeXJSkpAI/87lIFXtXA/gJsgMbt+sF4Mkzgu/H8zwlHImiDaIaRzoksR7c6rgmc32BqfAxlCceQQk3ia9VSHxv+gPV1enG/D9R7sBpbkswQPABwF8hPvz/phyolYNJZlMyvba4miabESWGnu7q6e/n1H/+iyWRZXpGZRiVbLsMSrO/mBBbqi6TZ0WBxevPw1vUVW8Jwh7Pvr3jTagkVS1es6dFdFLVNzwvHX84fgTC3DAMqlewOJtPD5+ewhoqUNrg6l/PAdQCACRnP8KtFkqhxZFFmqpk9pskiAEPFdFmOZMXo+HJs8+g8bnfm51RTSRY+zTVFQVYc+DHHs5bBskrv+QQT08Nng7qDALy4fL3oD98D8LBRpAGAtYYNkHn0+hM8Ax59EdUdbf2dpQfB8PQXz0XvkwPZWiAArw4++UNy+//8H6MvP74+/ert+M+So98r1fF3TyuC4st4wsc24vXtRz3THz1/uvQ6Jx/fP3z1Pwd6p9NmYYH0RL0V+7E/Oe+KIFBJ07y8HtrcYrJ6D8BB0B3dXNjzS1gjbyLG4Q3e5hWdt9/G449//4fPBpNrPaA9OdEC1ZsEri4eXH26Wly/u3o++eTdfTBfatp0MDlz1OUoSMRWrxWEx8t+pLsDzurd/d83vY9XLoi0y3lv2hPas8NJWxW6l6eHkf7Xb6JR+OlvFp3p4ejh4Elua2N3G3eb93Y2t57s5DafIA5v/3y7mM/u75Ryxa3tUh69i0qVzBP4ZYmsFeEtqEPN1nCXWeXrxUK9ARUmBWBQtxQAsOsqaLmB9N5yNcVKQ/Bwm1PFdHB4ixGAga21VE3ENk60DzJhYZm6KjRwD9pspwfVDoIEugxhazPUdpomecdGs0ccAUVERuFqRJ4U2nbcDiMft8mwvxbPdRXfSyUe6pEWNjN24rC3WK1WA9Nrp/N5/WGvPwJo6mJvqI+jxxgr+N6RCeRIMuhi3C+oSOc9ADc41dRkTO1EV8N+7Jg2Rv61Qxd4MFBTmaZACzBpqC0rxZGHYAk/JJkOEYixDbmTDCar05PV4enl5c3Dy1dvPv3807fv8AzYCfAD+iHwgf7kYH1x+6rHpg06cPNAWbWS1e3LH3+Y+EEPxyIG09lkuri4BPx98cmXX37x429HZTz9MA20SbbCduABDY0G7ZbbTUZJpw8/Oe4l3W7SAYXt6/CCupZqYXAzZjAiAGuK9DOKKAEAEwChJOYwwHesYD5DsQCErERA1a8Ucxi0kN9BYHz0+MNHgL97mf1shZFlIFciz+HRKOJHsUqUsvn9Yi5XhD+Q393O7G5g+9Ym/P8u4G6lwXFNIrO7nyckW8euZkWG4gcKGLeg8egrl8tuo8JOQfjRo0dPnoBeLtcobLTXeMxqd1SnHffWJzNxfzdfpUE4wb8RgFuuH4adjoeLIgrRlbOLg2OdpDs7xzGkp/e3dw/wdXv39Nn9FQZjXF2cX15fnx8fnRzNJ1MNcM1IQCDhGXCzDgCsm048P0nPgFmKAECFr0alUivVDD8Nk1b/hL9BgBnMAdR1o2WCXmTRCavG8oKiW14KwF5gW4Zi6XQ6IoCrOc3s7ABWDAcG1EGuThaL8BgaTZy8Iwm498V9ENu0phFlFm1opFq5jA79HFWhFZHXDd9Pel67F7mYOZwCsKFw9dYiBWBO6uIccBs7DHAzHpAVhxWxPQGHdoeTg2UMACyC3E9PczUbvtVwMMCBotXZ8eFyvpqAgpN5DgEYVlc0nOIZ8NHiKGDRHocWGEaAtQrlOAXgUTKaAMzMjtImhUtmt1EpZT54ki3ksoXa3pPc/of7uUwe2VyuUKbqlezefpWUAjyHYJq4esrZcrNWrLGABKosqmju7wQOS1BVBOCg38FRRx3oO9Maxi2MEVdmbV/gyUZNg0ttgxKHJw+vcAhXOZ0uxtPFCB6TJnDAE1WvHSZtb71ani07UUvmGVWzoD6MJ4CNmDrdZPCgCa3DcRhxNBkP2r1+k3tSUaub5VJmr+kojMhwtNsJnch3XKEhJJ6ucVwl7liaTFbyw26EU2UBat9BdzgMhx1FtnSGAcnYmc3Hg+HBDLgWZmQFcbK4AzlhiorqhEB7lkdHl29+91WZ3FMMWcX532qZhaK4l8X9Q16SVa83P7u9feMEqiM78ECPv7mSHMuVKkZgGqPVfTcJ4FG0J98uHwWmCgAcu7rSGs0Wx/enVcMyJC26upH3qtX9fGGnzNYqVJOsECWCqxUklsjsYXaIjtFZXQ8UMCdGRzdTG2owKOB4elprGpOl0+RgcSpAKcPZ2dzWaEbtPx/LtKJ6D+Om9X4LGsMYLJqgmCUAMKMGL/Wmq7ujo1dv2rphjz6PGq6y/sHUwmB89tMz0Xu7lK3ly387GR4evf3dwfjL/+36zScvz19+Pv18Ov/H/1Wf/vhM6HrujGSkBt9Mvn1922953bun6yCaPL+5fPEfbYZXWk3Ub0KdVmVLVIYhvHUs66l+u9/ipicAwM5w3g79zuDqwp4cx53pJ60qiLsGbdldoAgrWOrr84vwuqeMRUb3TMYKWvByrNfn89XF65uHwevP7qPRUtbGo8mB23OieGBqkdTyR6EpqZrblHvLf7rwf3vJkfbodB4lfut4AgCsib3rs1VU+HRhjRoHryp0/6m+7m3k9x/tbD/Z2HwCSnh/aw9qY2Z/e2s7W6IAZrPV/dKTjXyuRJRzhVJmM0PmQWUUCqUsZZkyLAQognSjUqizRK1aVzAfrIG9aiBusUYIIo/TuYpqY89iWuNTx6NmAwe+AUMdF2pDnUT+abcsHESHNwSqHUNbcQDKFw9ecZDIMEQcrwW126RE531yoG5A3cGDOHifQk9yLacdxYFva9iIzYE0EHglCAC804x0HAvFyfje7GC5Xg6xM3GAX92408f2lDS53lQxglUQ0UGEaYZJvz9Mh1eiFppFweeXGBFtME3XjbsgpkddG11qgSm7DiY5yLLCNzkFrhCqmCQYoLymq8X7JEIcC+y1PXgvO/3R/PB4dXhyfgEA/PL1J28//ug1AjCIDgBgEG5BPJwsj86vXyQ8mgDhqDIw+u7k+PbF19/N0GFjgGmEi9l8dXx6/ez1R28+/vzTb389qdRIQtBAh6lyC3uPWgA/XQ9+XruPwSxAxntxgJtzfhCZdui5tvr+DFgGEYYtaKr8M6KCVgm1RgWdOJBOEeVSCX2dMeWAqIFiKRUK5Sqxv7O5ic4cjx493tzO5Iu5Mg6lMiLcPJ6l8PAXTSiLlWK+UixVAUqLu1t724/TpmakeHuZbKkh8M3mPvz1Ko+LQ0l9F2lcQgQOIVdTL+mdjY3NjUcfPnqMmUsbG3uFKkUBGrY0jpUMxwZ0sfzBYiHubmWrLKzPLAJwUfWxGTnqhl0Qfh1kZliMu+iCPE/HkEAB3z99+vBwd//s+QMA8DkA8NXdzfnF8dHpyXK+AJkja/F8PeRBeqQADAspmhzeXgAAc/ABWaAaHFUsEmVSb2E4l4EmaXiS38agSwBglbcCVxSBj4BOruJsnNVKd/5BJmL/v6U3MXtR0U3gnU4LvVZ6MZ4+l3nQrsVKrVCoN9F+o1ooVgulAighRjKJEqsoui1WiwWSqTdTABbSQthNWkHSRu3taHw88UBksxECsKIISmfUh3rajoLwvaoDkByOJqPeaIhTaqPZEpAb3k5e5FiOEzU77A4n41Qery9PMCoqBWCBx1xFxW7HaCR9eHw4O4t4Bhk1vPoyepaj7Vx/PB71APEOprP16frw9OaisS3mt7Y++GCvWMjmqzuPdrcBgPeLtWphd2+/SJDlLCwCUvDMdMS6WqOqRK7CkIUqZrCouOfU8gFgLKZaq3ASiL5BjBkiusaTdAv997kGrcz9FgdavKZiAqePbyh2aWA64mgwGowXkzANcOGxO9MLum3/aDZaniSRIzC8oRp+JxlPB4uJILHN98bWaMzeA0AcLxbz3nxKCxu5em2HztfyzFBsANuknQ4oTV02oF4kIDVpptKOLUOtV/KDLhSWTuADA0gGyWg4GAJbVxmKBQDuzg8mjj+aDhxakM0WPJbhucnUVEnT4M62k/lsfv71v3nRqOW5liAztRKIU7jy+u4e9gPyEs/qcWd9dfGilTg6b/ohAPC1HtquWlNtLz68+WzktE3TCWd/dv7INzDNIvYtxemNZkd316SmOprRuX8mbRaIbB3nyBsUiyODuTJbKSk8uZ8BBQw3KQRt7fMpAK+fLjwMX2CceHJKMs7qpMVKrMhB1XLDxcVcBzKpD54NeFqR7YcpY+iW3Zuev5iNpg5NkPQBArAWvtIbruGODh+etYGsjT6P6ZZy9KOptcP5xS+fi/6na9k6ePU30+HRxfO/Gs1OxqNfPD2+fPPt8GXr6O/+30v1hzeVJJwcMSJHicT4n391lYSt4PLhKAg7xwe3X/6jVWU4q0bQvEYXavBJ+KbeLMtKoWIAWaBy4mKECni0ACraGVye6r1FEo8vRbJO1QmVVJq0/HZ1dnT893enye2iISo1XrDhxVccWx0drE8WJ29ubwevPr1OFgtBAwWUIB5INVWoZXA0X6IFnSvocvv/Goq/sFlamC+X/dg4+HY9n8WG3L8+ng+Ib0+9uf+rB3d0/Oar72aP9wsf7O2BCH6yt7G5D0IDtwc3N7b29nNZgtwvVhtbm4V8tQ7Kp17Z2SkWyvVasUyUSMsUeVEDtUfRZKEuAQBTsp5Wz7rkgvZCpyps/hDgn4Zjvm+0RdEswwKnGQrHkBy4LgmoHY9/JPR1zdRMhcXw1CaHJ5OYqmTiBiwoYHxvUqNCRGldMFUEYI5CxxpFCzzNheIWJQEoKYmr12ko7Qwt+AEGDFgtkEOe54edpD9Zrw6OD6czgEQoLsP0VLYXQX1uwQ+EnwWSHQUwyNhmALq4A/LYg79sgvxVAYA5DDzSXL/V6YSgbuGmSpgRp6tKGpQqQgWTdAkAGBsUgDd5Vm82X0x7nRjUTeQEgL/tzmA8nk3XJ6vj+5fPXjx7/vrtp5998dPatlABY05i6LX749XJ5dXTLm8YQE2gnkcYYXZ0efvJ1weduI9OvmkXzOnF6enNi4/evPns7Te/mdVAtiqGokFlCtMz4Kg/CRg7GXoJAnAXABircNJrt9ua4Tmu76Q22CnNAWWvqMrPqtV0p5lsArAwIEYrVK2QLZbyxcz2bqlWK0MFzOeK+Z1tzGaA5bKxs7u1XajkS9U6w9CcDPWbp2vlSqmCXs7o9l7KlitoQZjN4AjxLjpaggjeAU1MghphS4VckagB+ddknARm5EaFaVQo7LsjUG1nM5sb21sIvx9++OGTrZ1SjazR6L0is5xsWqoMxKGzXHC7+/sESRYquV2imCuoAIIogkAGp+6LIW5ypAwsWVzd3j48vb27v0cvrBv89eXV7enV5enF5SW6cZwcrlcTs0QqZufgvAcA3EB7EPiEZrw4vT22BIUBeGRg/XMUDrbWdRe9YtBrxrQCH768lmsFoSE5bRsAmG1QtRpF8zLoOCfALMgAAxMkUMAMx2ualJI6G71WkmQ4MoqlBqdQZCWbKdUZuEPVIg4AFHMlECqGWS0ysM4MnqqQoFU5gSg2ceocGH4vccPEwyEoU+aTUcsxZDacdX1d5es8LPN2C34y+nMmg0FvmIYNjmejHnLRyfyw61roLIXDXiBmPOCA84PZ5GCI2zXL5fHhuNN2ZaDBGNDUwoMUKEhHB9OjNryadBOtzEDNmXraQtgfDuegOueTg9Pjs/Xx7SlVoHMbjz94sl/MFovFnSfZ/Z/v7uVYsbKT2dqr0bVCfq8ANxxb4Wl0/6mWKgDAzRrVxENy4OcuHmv5aCtMsormJBMQmrh1I9O03et6GsWR1tDDhPBq1Ul8IEGAntFgMhh0euN+t9eLp7NeG1QzdoLKqoNxdKP5Yr46GbdBP8OzcTHhbNCdjxWxSXOKqFieH8RphNlwsliOD7qmvvtzTqqVGZtyXrSx9Ih+OwBlDvqgxg4cU2bISi8MVLVOluMOsOm4C6wb56JHuLXhWiZDSZrtdaezcZxMhi2LxGhrB37yhVameE63gVJaneV8dvbpb18V6VJNLBZUejtfzjb5RnF/G24JbQDdC+J2f3l7pzpQAw3XtSdfLRnXkOmybGhudPKm78eWoxrzX64etXGKS4tbUMLc5ODo4bqq+aGgBe8u6B2SKhIc+uTlVaPRIHJ5uVZR+HougyLIdP04Gni8RLCyf3o3NRW+wdTdzuy4TscHZ0Gd5xRY0m4UTs7Gtg58pHszE2oKp9/2G7phtAbzi4dpb6LDY+QnI74iKfFLrWnZ9mD2+uNIN+31O5/VlKMfFLsVzc5+8ZRvfz4TnOnzvx6N5hcf/bvp6kt3/LvLF8ef/Hr2Jrr7Yap6v3ueIxplwBWDE4nuP/z2bOi4ncvzudcKL49uPv9j13bbXoPTpobVkrA9fnBvCstzko7EhiuyzByoD++tpmEY+/2LldRfxf3pyiCbhtnkTVZnjAtv+smrzz7r63dj0okDgQMKrfpQb1aD6WJ58fbZdf+jH5678ylvDKadnq3AX/UiHihwC3ROR0q6fOxP/+Uq+O+WouqeXQyjrtv7/mw+jUy1f3F0MGj88bt56PyXj4xoML9eMhsZTLnZzuK4x+7u1sb2DsiTre3NzVyh2CBzWbK0s1PJkRSVK9ZLO3vlPEZqF/I5UtJkTYN3T4JqWWgwBKgENKHimEadg1Vk2rohN0QNHYIkA+oNTtPj6LymKgrQaILQHTRpsjRUwLKpOT66u5qmwjUbDZwBsCwUr2jshBpYFxnUlQxFijb2X6uSaqgyR4KuUFTddwT4UzjXB1jC1OuUzPJ8XWbUwFTRodaFuufjcM90Cgp4uZ63o9Gk35+MuzgO3+91QpCDDnpZIQjhGTBHc935eoRhYl3AblTdQCKkBi2KaMzj2kGIb3jHc1rJuB9Ylq3hmKrKF/O0LtF0nZUYybcE4GJOiFZMsWOFvgGiH9S6pAlCq7c4Plqf3hyPRqcPT5+/SBTdjfsIE/De9qZQGe5efTZiNAyTcEwr6kb+4PrjT778xaEPHziB8jibzlYnmEb40Zu3n3/11Xd/PqyQNCkY6XYoqPIwcpwQFEDU6yUDtOgFuR/3QAK2PUx9CAIvjSR0LBtnxkwDhIEu/gzNv4kahSbQDXSEpKqlUrmU29vDsIVqOV8q5/d29nae7KJFxs8fb2xt70ApLRQKNRrtKnAUWGBq8D3gG5WKUEdBCBcwkCG7h15am2hu9T4beK9AiYYlVQv7uVKVgxsvYws1LzINjiEbTJOqVcqw0rL7ezs7m9jvBQj8ZHsrh7ZAONkmMpxiwjMDWhcvZtxePg8AXCpnd6ugstR0y6MTwWUGGMqAvdBtBOB+d3Z1j9h7//AAIvj+AWTw9dn51dnV+cnFFQDw2fnZerWc2pWGbncXJwOJZRvNerPBSdgVfXyz1mmRJsuY/CQJDQIBGLQsyHdFUtKBahOdQhzTxzCGtq3IqICrVRIjDnQLT2c87NBNt6AxSwTWG0q81IqyCw92pOezBC0WisV8tkDUJYku54vo7QlCsVrXUyMOKNs8VSZoFKu1UkMUxdS3OAYAxu1v25SFZBK4msT6046nQU0Vkn4SYvA1thjEsAgwpafXG4xGfaCgg9FkhQAsg7jiMFnJCML+9OBwMZ5NFoCz8Mqsx53QVXkcrxcVOwQWuThcw41aB6gE/xWALd1PU/jG6fnIYro8OT47Prs/I7P7eFjxJJPHsI/djVz2g939kqxVtnEnpFoDBZwrkgrQEkw4A8JC1gpVul4lmwz2veMRlefYns0QmCoLADyOTKwyqkg3rV7saDRXM4e+kj4Rqwusy0PXzf64P+wO4A0fjjqTWc/HsUfMEwUGkQzhApbLk9Np5Go8K6o28vN+bzZS0e8L/SoB8ttJCsDj2cFiPqaFJxu2yXGmxy/+wmrqcpOyQeS2LN1U6lwfPg1fr/TbviSSAMDvo7iTAXA+uL2T/ggAGBQZALAPpHwc92YD16YE3XDgw/QvvToNAOy2gA60l4eLo1e/eVdpVpoqU1WYTKmaU3UREFJByxVLM+Ph0fnD20+CbsvS0EV8+cOaNkSerqhyXR6++Kxjh5LpR5MvBh+GBtRQ1oCnY7b7s/lHr8s8zzFS/OpK3C7msiUG3vF6AQCoXi0UpWpZ4alcBpMuDccDmhJwMsXI7dOHma1yFBT5aHlK863+2mdlUMCi3Yqj6fm0JaJ7/s1UIBXBuO3TJqa3Hdy+XAymJk02+CkCsBy90Ggo5oPZq48SKJnrdx6jqcc/qE6rPT//6ZkQfzEXnemzvxqNl6dXz7QgYexXl4vuyUP3wtO/57bUZydVIA2SKllKi47/5tfnM9vtXF0etNzRcvn87T+t28kwpppCT1V1yQhtyTqzmcmQKOkFRrEJbbg8HPLB9KgTuUlndShFh8PB8MEsKC6AEkUpNfFUjc6+Wcy60tkBE7pNR61Xm3WuWbJPMH3u4ov7u8Un39y5iwWlDvuDwxbcTAVWKBDwcAZCjbWioOMc/vOZ8McboT2Zrlb9SI6/P5qM24baPz+ch9o//4cvjtq//V5zDl+f2PXHu9iEhR1Y+LWJ3TEAxVtPtqHS1on9/VppZ6u8XyXJbB6wOFMuVgioHIH7AAAAIABJREFUitldUgKOqMkyL7HNarHB1Ciyqqvo8kxSvOW1LMewdYZHeaqplufgkIZh4tgSHvPRXKWi2TjPCYu22aAlHe0W0S3aAxrZxCE8Df4wth/hP6GqqTwUPI6F31McdOzRoNpJImpdBODAkeC5AqvpxI7aaLIUVCaWUgTNb1kqpv+AJPEAgAfjzuBgfXQ8b7vt4bgXD5bAjUGddjCZEHBO/9MJMAieBtPujQBbu90O/JblId3WFFpUVVDCmuknCWideLSajmYHsz4AW4AdZWY1s1cTWIpkeAkEuKOjzRaofzv0bWDUrtvy2r4ZwGubDPBk6ngFinx9cn532dYsO+j1PJwCBJG6urh/9frdRLWCdoA5Od3ReLJ++vbd5z8u3W6nN5hPsA16MTk+e78F/e7LH349LlUpSki7xhU3aqMW8vog8XtxPOiAgsZ0GLic9xF9CMCO47agYHtOuoGKMkr9WTqCRJAUSTboJknWKRC/hV0c3a0Rhczubr6Q3U1ZGp7JPt7c29naRjeF0n4lNVwkcQufb9RAvVYwj7CQg4UEnC2X29/D9YWDvZsonTe2d/fLTUlViOzubhZUnJKGa7Bo5M3W4YfXKez+KuABNGYRP0EBDAC8ky3VGpwgmapAc8DSLPjQGmgGdr+EZnrlchYIYzYvw9MJ3wPw+1QkAL0wTk/1p1eAvDeAvw8AxA/Pnz29uzwF+MVRpGsA4PPLi6PVcmZXmpbTma17ElC5OhASAGCzPT26XqkN3BWuwXpU5GYNxCmoGnQQlyThvZuLiQfrpodb0CkA03AlBMWiwSMQU9vBEBDX0BVLqzdZCR01FRXlFn5goEh6MVsmGji8VSxVGUVq4kBXuVyqkFSF0thKTVCArXBkqdLA2GoAYAEUnI6zHG7YDYFRwasjdWaRo8icjwpYExtSr98NHADg9p+ICG48Y5MVCrQhIMyq6yAA4xMAWa23wj4OB88X09Xx0Wq1OlyPI9/BBg4Ae9XBIaX5an10dLzygXKhDQcCsG4ZKY8YID2cLw/mq9OjkxMAYGLryQcfPn68kcnvF4oAwNnM40ympFrkDjw24PZkfitbJFXXNtKRw2qtQRarTRIYZYPmBGxTc2E1hy5H1ACAdaczDE1MWVN5rmkNY3RlqRnDAFs4yZoRt9toRRbH/fGgF/fGqPeTybTX0jVTEdEwxMcR3cXhwQEAcNtRWQBg0+/gjMJsrMoMBkIBALtu0E3QtGQ8nU9mB2xjMxNavNzytOu/tGiZZ2mzF8H9Bq1BCQMLPg1Z6keexBFEuYPdf6CAU/MXQODheGAbFkMJquX3FwsoRPOR51KYgd7qDkbXLnZ7G5YdtZ1gfrg8uv/Nt5VGlTb0Bk8XqiSgZrNW2uY4A/1Ond5keXzz8SdB4jk4UNhe/3TKmbIqULoutubP3wGTB6CP599OPgzgPlmi7TheZ3Z68/D9VxXFMjQ6vr+TN2vlcr4JLLtRho9WB6otlMsKR2b3kEzrGNyVeHWBJIVwddrXxGaNYRxvdUiyUmtoMQrLMaJph8HoZORwDUbq34zZuiKYN33GMjHl+O7V7L0C5gCAi7zUfqGxtmn2Zy9fdXXdWH7s0pp28q1uu+H09McHvv3ZVHEBgMfTw8tmZvtxfedRvpF5sks9Jnd3t9ns42y5SVFFzMfjW43w3/3hpOd43eu7te/Njo9evf6HcTCeJkSD7ai6aoY9qIFnHXmeCGTLXo6Tqp4s1jHr91Z+YoyH65mYLIfR9DO9LJucIpK8K3jDxdPjr55/89S/feV0lpYTVfmo5UZcWWR5ilFbEltweiY1Omk4s7h/ooqhrhAUBpN7IGx1pWW2Yu/4v76R//aV2p51x+NBRx38dDgehYbaOzucx9a//+l2Of7t96a//u5Kbzze2d7c3tvZzuztIvzubO/uYe/pxk4OXvhKZrdW3t2s7FdqtWy2WtnbLZYoPJrLZRrwtHHzj00VcL1JQb3UVYlnmiQlWPDILc3SWZ6RYVEBlUpTSNCJA52w2BSAVQveV1eD+gTcCbEWCK3l+paIBlwNQTdVeO0MbN4yLMuUOZYHZKQZAGATLYBlENIc16QYIMRW5Amgi10AqrYtgYAuVzmGphQggW3PNkw3aLuuH2PPVTxcHR+fLrsR7jf1h5M0uQxQCRtlW7aVpiEhDjTrLPZMT4Ygm5MI8ArKGhRXUGeiarmtsDvs4QvWX83G48kg8l1bEdIcYaohYbK8KEpNAVAdjQnhKloxIIHv+zgmCQt2OV2gUdDxxbO7l69fvXr18VdfHDi6rLotENchWjcNl6e3D6/7ggF1GX2cut1ub37z6fff//o8GnRxz3CJVfH44ur+RTrI9P2v/3pehhqNuW62jUPRtgmcYvBewvfgguEXyajTxeaxBAE4RD7gYL+Qne7ya5hk/DOo9ADA2APdaOK0axUU7NajzSxIj+IuGgiWitlMZncr7YjayuQBjXf3ASGyJcyurNUwB4OnG40y7pPkstnCfokoVmrFQjYDJA8NtOBrY+Mxcr59bMMqAAPM5OpAozQJW6ipJk6+1puAeth8VAPkKWZAO6MCfrSxk8mXAcwk3VBYmtfhiYnwQAaHcy4LAEzVi+XcbjmXLci+B3gWY9dRG/2PwzQIN+l1h+iEBV9P4esB9O+zpw931xeXNxeXJ8eXAMCAxFcnh8uZXqobTmd6GMOaq8ONqHOyakbT9dWhDh+wThAsAKfUJKo1ghIxm1ZCDFbU95NdsP7fhzHY2NJD1dADWBJk27WQg8FKM+BqDanWYEURcEuRrNRD2gcO3dbKhWKhBDS3XCpRoibTAMBpC3qNKFMaV6nSQH0VjoLfpRmaI0p4Ginrtu7FXhinAAxkKpxGFvBjf574ugIA3EcFDAK4A2QE0wiHGBM/Gg4STL0e/mkLWka7E/TaUKB6DScHq4Pl5PBkDUi7Phq34Q+A1sX0Ewcd3QCgj45SK0rhTwCMc9mYw4wKeL44WC0Xh6eA0ac3p9UnGaBdjzdy5b1crrD9OLO7mc0UVKu+nyvBCmlQeew6UeHV5phmnagQ9RoCcLlGN9OQbR3eC5CjHlMGANZ0O8YBfLxQ+Nn2NMEkY9Lst3Wg8/Wa2o4juM/tbqc/HnbCzrAHaAsENnGx0UDE9JYQZ4MnOKd8Mg4dleOBVntdoGezxZ8AGPSCC2wY9+eHo8lsPlxM5Vw+G2k0bznW+TOL5mmJN3tAcoFMiaQytHSZq+aSqKWytWolifEENUlw5DqBezme9g1Vb1Z5QP/BwWI06M+moU3ginG6w8mt3hSh0mlGK/KD6eH64uH3P5XICq3rjSaUszrF8w2yvM0LKpBO0wOmcHD58Vu4I7oM3KR99IsLqWU6Rl0V1bB/9mbQDq2Wbq/+fPFhqJnwG7Gm6q3e6vz2x7dluRVbdHx1y3xIlXOFJt1ssBXRFplapQirS+Fq+3vY96+hMVDSqnK1ChPMV7HM1QmWC4Pjg2KD9ScOq7IcvIiW7/dXPSjbrDy4GtC0zJlXCWvpTphMbl5OkrHeIGoAwFyRldrPVR4AeLB49TpSFABgh1HU4y8NywkmJz/ec8GnY6U1e/7Xk+nh9f23N7X/5fd5ud1rc2vKMKwlndnLMixVryKN4kK69z/8zUnf8ePL+yPPmz47un/37wMHqnqNlgamzhl+J0zidSSNuirTt49PAl6eHSwC0V8cqF1rOL/oSaNp11t+YTCMStUlXrKNwWp9vu60DkbR7M7jRothXBS7oZUYu6WNzb3ck22CeLJTavDzpNaadaZ3Ad1uNYqEJaqsPY07vtP3VK99/J9e9/7quatFy8NwODBGPx5MJpGp9M7WB137P7w9Ojv43ddm9/DrO1/eREsFdEjI7KFF0d6T9xVyaxtN80uZHaK6t0nkKhSR2y9XMtsFuPe1IvCmuoxOrLIsyAxVypINstGkbA2NOBCAHbSC1hXcyAFpCysEj2ZTAJYVCTPEmFpNtxXNdP4VgEHkuq4Fr40uAACDJsYmL91KIwxxTxUBWAAAbjaAzKGoVLCfmmfqDBRGK/b5lqHYgKGmYfJNMldimkxDgVuBDVQAwGjL0MF+xsF0dbhcLwft0TjpzacdPJ3B5pxuBLhnWbaOaQyYSVwXB4PYHyeen8ooHwAePjwDb6oGssvt9+N4NI59NAua9EMn9LFlzDCgCqmGJnFwa5oCKB3LDXAztB35HURsF2h21BmP4+H8YHl8evn07uH29vnrT774YakpRqsd4HBT0h3MD9anDx99ORUU23WgLIcd3D6LDx/efLNwE/Qami7m08XJ9fXdw7PXbz/77LPv/vKvFtVanZRMHAXUzThomZ7toO9lx3G6SQxkrINWlJ0w6vfQpTLwW66HXAmVOxpSwj3Vf4aGFwC/qZlzHcPuSrntJ1v5GkkUM7v7lXoacgQA/GRrB2OOsruZzA7GmlXKtSaQLwYNojCSo1wuFvLwVYKFlC8SxTyaScPCyqD10S5aXGHQL8WUtzc3tzJZEuANKBdUcVgN6H7WaGAPdrVIgALPYyPWk8fpGNI+yIF6UzL/BMC2wil+crAeC9lSvtao58qFvTKobhWtr0ABt9ONQPx3B8+Ak+6wf3B1hRGOzwB6Hx6epp3QV1c3l5enp/AbV7fnF1enawTgBijgySpmGnQD7WA4oCfhZHW5MliRrqEZuqYKdXRjq6OJOVRS3MGxXfjCg3XXBwC2I/dfAbhK87wEmIF7wKGPBqaYdtTkEc8MoIoq0EyMxlQ8tYJH7oDC1UqJFHQZFHC+VK1UQQUXKU2slmkF0JuDJ1NDZ8LyewWsOVY7CfDoH56oIfPhtG1JEufNux4QG0roDxJ0wUJvhXYMAJwCC7ZfpcPRo9k6cS1FTAEYPa10vzcaz+bTyfz4/GR9dHx0PIU3CfEN85vsEDOGFkcnh/PDQEAAZlMLVg2wwQee0x8MFgcHB4v56vjk6Ojs6pT8cH97a+PRRr66l9vPAQDvPNnPlhWrvpfL7GQAabLvAdhAu1ecfaOqhSpNAQDDcsCtfQCRVrvbokvAZDTNjvt+mi+uiQLtzvsGHv6ag8BQuWaDTAHYsYMYmEC/E3TgCrEHetRrYb+/yKUAHM/QcPhweTKJXJWDhwkADH8OGIciAgcBOao5AWrYHtquLw5mi15zu7QfQomTZfVwpDAyKH9zgrmT8Kkb+tjSVYHI4Wgi3yAqPVxzOIeMESz98Wwy62syADArGV5vPh+NOsNZWyvBtVkIwHcmzfCipntu2wuXl5f3b//mL/MkQSsS3WhWS/WmALee2McRKsxGi9rD1d1nn4YRvAe2F3ZPfryQ0Q2GEjm+NX7+zdCU5ZZhzr4fPomwe0UJdQNPby9vfvG8wQmBrIyursXNen6/2AAEFkqEA/K5WmQJQuNqmW3chAQJ3Yn6PilSNT5aXk5sla6xXNS9XpdYdXTdU3So5JLtRtFo3bdVKMSDqyHLiJx12eVM3Q17k9uX097URM/U2YjLs0L7ucIB2x8tP3oTQR09fAMArJ98Ztmt9vT0F08FVMCtxcu/mYLAf/Ff/jPzu+/M1cNnPy1/1XEHJ//fl0UaO/PqBECLyATs8G//cDS0/fDkZmV78xfLi5d/N7B77VGd1yaGyZqt0On465bY6UvcguyvQ1dZjieRpB6f6i2n318mejzutnvvvDrj6UVeV532cD0NV532dL7qL/pEwbqYNDjLUX3dHQhcHFSVzton6Xh0aFLBsDN/GDUVG0SpJeqCN+5MAs0dWa3h1f/0YvL3947k314l456SfDMdz2JT6gCX7bn/7fOz59M/+4UUn3525wmbmd0nTza3dnBAc3NjE4QNTnei/S6885X8XrG6CwBcrhNFKKSZrXyeQgCuFAlRFWVVljWDqwMAN6skVcNdQVgllGi7UE+ApjBQmZT3ChhtCtAnSJJBCPCNBkmaLqheAGYOSi1QZ93Ac9YUgJtNhtVsS1HSPKQ0KsFQBC71eKBJzmq5hqBiXpsAUgTrgRm5QmDqrSDyLUwUpstksyEwstbu9mLAZNt/b7AML9NgDMC1XPTVZN7vjNJerGE/ieNeFISeqaOxpCyLHM3W+f6w6w+SlgvlsuV5CMCSzInvnZNbXcDRyaSDLcbTyQCkRwCfF95MhuMFGWOiAKwFQE7bcdy0JltBHESgPJOk3enHTnc8Wxyuj87v7m9uXn787qsvJhpWtXCYYGTA5PDi5unHn3+3EGUE4CCIFvMFcLPnn37+7UQPATpH/U4ymh8coHvxxd3rTz569+2fD8pEk5SwbU0VjNCPW6HtjUdAwIMAym9/Mul1krATe14MKhxbhUARuVCv0aIbd/xlVVNAAWMPVo2EB1klG/Dc9zaA8hFEKbe3u18EvUdUimiLtrmzt7efy+1n4D+lZh2EMdHA+S8KAJhjUSJWK7hvWisDkcMUYFDDmAdcLL3vx8LRop1Ctbrz6Am2/NUEFZiapmD8PMdQJM5yM3S9hk4BxfzeVtpxDQtzazdHpC0CeCjBa7CglGh1enEyErLFfK1JZUoIwIWKhvsTnW4XBB92vOMEcCcF4EF/dX11efccAPjh/v4hReFbHEKC+3hzdXF1cwYAfLhc2BXacuLJsg8EEf3d6qB4NTTCXQIAN6vFsmCA3qKqlXQLWjc1JIqW47RQ4fqovz2Jd0AOpWfABIH75mhK7uGYGQZxGZIh4/QO2omokq7o7wHYCJRSHm5YsUzUcdgJ6mIpl8M2rGKhWGpoUqUq2rjl+h6AKfgXjaJO9wBAgHO0gxZ+bz6ehhYI2tZBz9dlvi4MBj3gmBjEEKUWbpjQM0ohGHeip8vDFICFNI0q/XaD2XQ2GfSWJxfnx4er5fG86yPDht+VFDuIQDWvz8+PFqsUgJv4lwQRc42x16LX62HQ0nS6XF8cn1xcXTQ/fPLo8eOfb+aKsGZy2xv7ez/fy1Vlndgt7O3k0Igj3YJuAQHhMAGmVqvkifcAzKIbOuJvK4ws+v0ZMABwC923sQuFdmaJxgNrswGANZ5ukBpcI9xJoLPwRkVeu4fm1Et4z1uWpaoinoYGKQADGV+dzjogWTnAeK8D17RYTRTAWFZCAAbWBkRjCPp3sZyN+sVCaVulgPNQ1Dgx6mhD4AyAnNuyorLaCCtEvdyNHVNgAYBx5g1tPN6HOk6nAMCKxZGMDPp1OhuPot44UPMSDjh3+5N7jQFyb+peCGT+7MWLl9//97/P12u0LMD7QBQoAESyWtqFIopHunbodxd3n71r+apteGHUO/3uSgvhFUZDxODoky/7gSG6njv4avaojbVV9gzd9HrLs+s/u26wXNDk+sdLJV8vVIsUEEyhkIXCS9ZKLFlLARhqchMLUtTz6iJJCu31/cIzWJLl7c7lSYVxJk+HksJJoux63e7kqO9qDKsMrsc83pSLDmcYTtCbXL8AADYa1Ro/HzF5VMAKa9vOePnm4xge6vy5wWjW2VvX8eLh0Q+4BT1RWvOX/3Y8mh9+/Ld/kbHierA8/fLgq1aRpp9fEnxTo2tNAs3jmnZj/Me/v4qtsH18u7LDw/uz8+B+bHXNORCKsayzbpC4He/cVzrAllbsdDmx1NlgETfo3nFg251kDLRhNugFn0UZeZiUWK01Oz1cX8XxycmRf3u2OozLhcVcV4Nef9CamZLJ8PVaPA5NrztY23ynF86fDmWar/BNWTCVaBgd+LwxUltJ68fb7n+9l/TOxbrX6xqj7xfDaWSI7fXqYOj87y9m96Nf/SCHx5+8MTNP9jJbmxg6g+b6eAq8sbEBdW57d69MlKtEPlPeeULmilSlkitUM1tY5IhCoZivijpydsu0ZZYo1GmiRpRBQkmY7SmCplJt2zcZWOu4LeWkZ8DpRhJwd1bggNQRlo97daYKLxwtYQMp2mX4LUPAHeimhYFt6DaN/zQwIwGTYoGdUwDAjsYBAJsKRqXznKTabUMIdNNvwdtma/BT60AERFbQ4A2IQNRaHgJOSmeT4WJ5sD7oWW20IABa2h8MBzicG7TgZ6s68AMRylCToxpht+MnQ7TWxV5hC6qaonCcLEMZBQaaJOmJIm5uDfqYTOji2asliWjeLMuSqHCyl7ru4yARALhtW14U4yAQ5vKCAl4dn55dn94+PDx/8fqzL+fYuoO1Gft2O8Pp8e3LV2+Hggr/K2gmeBNmx9cvPvvh179Zme12O8Tz7NnBcnV+c3t+fvfRu7efffNTkq/WqwLgr2PKRjvoh7Ht4xnwoJeMsRek3+sBbHfbeDYa+l46rApXbWMeg2oYOKQt/ayURgVWAYMBWyiQvU8+3IGlkM/sglKpVgq1SnoIvIepSKBmdkHkluFu5faKZJ3mQL6g11mTwhRhBF5A7CpBlgvl6nsfj9SitVYu5jN7e3uFcnH/yQfYEr1XY2WgZ2iorYusyJDo3livU/ghiNQV+jFSQ2CG2RzRxPpo6RLLq5ajtZZ3N+dHYy5XKRANKlvM7RazAMBxjHsJvd77XlRAhF4Hc/gAiA9u7m4fnqMAxhasZw93t9cXF5dX15fXt1eAwWdX18eL5aFNNA07nqz6OFqX5oeIotIaLM5WJgAwUaoKmqLwdbhTFUrS0/5BWKaYwtbycMcElo3EgQLGMIYGSRB1tBE37LQHOkg7/kD1NgDaJXgxNCV9mSwXHkmkluC+lIog9Em4pQDypXy+lA5WlyopAEu2JomATtimTlHFMp06mYftft9vo78bxoYInZHv6DIXzhNPlRCA+wnu5Hgerqa0jX4yHgywFRFQeDg9WHUcCwfrWRz340TZ6g7S88vZ8uRsPZ9MV9OuD7iPY6gShnn2RgfHZ6dHq4MWx73nwSkAO66HR+2DwRTwdzI7PL44Or28uWY/3Hj86PHPt3LFfAEU8EY28/NMtsDwlQxcXJGoVYrYhKV6ji1ieGMNL5fAOeBUW6c70H4QRSZNYhe0anUGqTMddpTQzrhjCAxPu0MAYIFuUHrUxpPZFqYvdsJWCNcxmiz646GtWZigJoK+T7rD0Xg+X6xPph1PZVhZBVk5mM6mB2OgLRwrqPA/AGlPuj3cgJ4vJuM+QVKPeapBNOul4cyuomWYG4eea4ASYeQRmtHWq/2uZfIcUUm671deH2PFoUpMZz1VsQWKVUBYTmbTUTIceGYFHlyrFfcmT1UO1KSj2O22E58+e/3Fj3/8Q75Zayq8zNDVXL3Z5JogglRsRzNUG0jU8tnXn4ex6xiuHybH35zrHSimDc2Sventq07cNmGRjX5YfxgCs3M0TMhyk9X1sx9OCowYcOzk+YreqRQrRYqmKaGcdTW6TFU5sqq+B2CGVkEzhF27zpZJwVvfTEHkUhxv9U5PKg13cN3lRAZ3891OMgUA1llOG16NOFg8rYsOTm+0kknaBa2RxSq3GDN5XoqeywwUtPHB6zcRFNLBjcoaztlHrt2KOouvb9jwUwDg6bM/9HuTyYvff5IV5QKreYPec27XylazkonWQDKLLwzjc4Nf/d3zjt6OTu5WVri8Pj0k1Z7XUY4EglmaYtN2+07kH3pc3DXIBZMMFrIwmy494ag7CUEZPXwSK8pi2H/653FJTRxKYIL7j69nx8PV/eJ4ODtZTw/HNc8VFFfvDK3TKiE+yZH7fIPkDL19aZHtYXT2LoHbUyPJZlEX2v32MlTbPTmI94LZ4D/d89bkZBJHfb//5WI6iUwpWh/MEue/vT58OPj1d6328Sdv64829tCdCENet6Ckwn+2QNzg9uJeenRX2KnsbFC5Almq5gGAN8uFKlUrFQoFAGCcX7Q0WxXr5UYTBHBF11QZ+1UEUK66bXsWwzAclh3Hd3ACGF2mTB04P9ekS1ULZyHNfwVgFYuP6wWekSbNNNBvEk3ONdyE1lQV8BezYmm2IVjYrqzJmg4A3GDT/hOPF3zFCqyg1bZVmuEolkkBOG4nvgHvq5s2YaUzvcODw/XpKkGajpHY2Anahzc0ds2WZykqfFMBt7oZquHFSdCJ8FjOdDDU2lAUiQWtiNZUrajfw92p+WSxmAyhhEWBpWGgsCQKEo7iwNLkFai28H9wXQEeIqOXDwBnGAAqDKFALdbHJ5fnT1+9fvPRx19+OZJVw+0OQIhHUbsz6s5Obp99PFYUGxPcgwgbW5bnTz/6+oepjjMg7cF8uTg4urh8eHZ3//rd5198+8u/7OcrdQIB2AO+2w17bsey4HPi0AlcZhKjdWYvPZTqxm2/5dq2G6Qt1lBB0hExeCd+hi5YiJOlahUIWDm782SzSlehaG7t5EgQtqV8ZmtjYxd07+7m9u7WIzxFkgUiu0vxNG8b2A+Lk5zFcqUCtbVQLlRKlXolB8sGE4BrBLa4N0j0yCpVG00i++SDzS3QtTVaMICiwC1saaIh12kow1iIMbcQ/rG/mc4ubWxuQ82oc4Jm2obM8QpUo/D4/vRgMWILtRJoxnw+t1N4D8AYPI+zvxFqYbjwOLUm7MTz22dPn6U70Hd3D0+f3l1fXZxfXF/dXN/eXZ3fnJ/d3B5ODo7NEqXhmW+XB5Rr0gyD0zAAwBeHFifSZJVE+i804KrKJAAwrDI1NU3BeTc8dQijloAALOEeNEBpg2IUoDnYnY4df66uCKYGHIPBRkZY4BYOg7mtlt81iUo1nytWqkW4IFoVGmglBreiWKhUm6paKfOYHtIky2WKZetUqcICqMhmFA96rbDXiz3L0FQp7rsugHx3FFoCRxNcD+M3vRZ6TqPBYnc6xQbDwWQ2AzAAhFjGiNtS2s3MAjGQ3JYOIhJ3ZY9Wo/5oNuq0TBU9rxheNACbeuiFerCcOYBDAMBMCsDoXQcSuD8azxY4iHR8fnZ4cnl7w/48t7v5+MPtYjmfz+xvPtnf+zCznyHqcGnvoz9KwMYoBXiJwDTq8OzrZIloVAsE9tVLaVubH/US3M0kWVmxOsOWg/MBoMkZZ9ixZGB9raG3fY3xAAAgAElEQVSPk/p1yoyDKPAcvw0A3I18eAX6kzlIsbEpm7osirKstrrwTsxX09nZ4ThKFbBitsL+fD5cjBRYWCC7NcfzQD13+6MJyNfZah1RJfHnhshUJY2anagVVSIqdtJG409brctDS5O4WmmUmAbDVcvA/Tu4AnGDoY/4O+/JksnWWNXxO+PFAu5Qv9VqCLxiu8CuX7gizeiW2gJu3zm4ePnjd3/9b3JNoqHScrNRyUFF5JoVAGABeIFleLCOV8+/eudFrq1DeemdfHuo9nwbFLCpOsndN7PAtQNNX/xymipgS8P0v3B0dHX3y/uyovjd6dt/+JTfrNXypTrLkGKt6Eq1fJ3iyYrC1jK7TQRg04+C2KgzRYpz1rdTS6FJjo0Pzs+oZji87AoyDUTFcjq9+dGgZXKCPrpImlA9ffg9A/C+P714Oh/MDKpICEsEYDl+LtGgZsbzl68j0CjJtSEbzulLS7eD9uzLG7b9xVx2x/e/63RHh/f/+PZRs9Lgqg4ZP+RLTnPPonTFq9Ud7DHkiFhRFx+d9kQvWN/MNW92kfQFdTxJlGuD4K8TQ/RbY6/bmYfcoNuh1/Vgcmwz8/Hc7P3n64EbtoQ//I8u7S1GyT/9XWwLLq+FTPLpd68ml8+/Phm+uFqtb/rJCaMGhm3k1L6zZrZ2srUszQjEXkXqX8Zk77Bz9U7ct4osISi7Khv2w0VoO91ofiXEV8e/v9bNo4fDJBq7xt1oNYltrXt0MO35//L6+Ob4V7+Jg/uvbh5vbe1tPtrceS99013oDUy52dzZ2S1W82WiuF3d26wXCmShWigQma0qlAKyWipVSpzM8wA2kqnIzWq9TlAUoSs8DYKlLoJGtSzV1BjQQoysA0dz0lAEqDFodSEJNF0mnDa88SA5ebR71RTbwx4sbMJimk2glvBfWnoqDaAoK3Ka08400cwcZLcFL5KCQxNQwGhRNY2a5CtOBAAMMhr7MHi+DnigRS0cwlCt9Ewu7na7yWA0Xy5Pll2jN2l7/QkIRNCEwCdDU3dhAQNFRqlNNxoNtt0boG9B1MZjHl2DHykLtAAvMPZUdaGSDyaTWW88HeJoz7DrWpidKHA4zCNI8GIJitfyNBuLng1Fz2t1Yh/eyKA9SOLRaHGwXB8u1xgM8PqjN+++AbELVc2LQyjfQWc0mCzOnr4bI8SguX/bB1G8unh49vVPhx6C6Gg4GOFE1cnV/d3Tjz558+aLn37dy1Xw5AYUv6UovXZkxLrs9QZddCHsjaDKDhIffpkMe1CVcBfUcgMbO7AMWTOhOhiiqP+sALSLolIVUqsW9zZ3dqtMNb/zweOtQr1BVIi9/M6j7ex+LpPZA962tbddpBWlWdwpEZxlK8BcGqCG6tVyKZfLZoo1IpOtUqVcjW2US/VmtYp7WyRFswxBYXIWUc1vPn78ZLNQI3gHwyEc4PcauoniPiRJUdhNXaNq+d39nUx26/H2fiZboVlW/P+Jeg+mSbLrSgxBdPfnytusqqxKn5Xeu8ry3n3eu/bd026mxwADYEgOFqBIYgEuQBIkRSOGgiFptVIoFFJIEdLf073V4KoDPZhp831VWe/dc857955jBBq6Q9q25owP4TmMGAxdqpPFXCqVy6cIvYfRx8i42ph+2+sOuoAZ/U4P74DvHj979vTJ/e311fXN7TWI36uTg/OLq6vz47Obi4ub66P9w4NmiTWx67m3MSCnmI1lhjs6ujlwQPER5QoHixPAsVKtUIquKCqGVpmWBSIO+VYQxb7IWLEP652vk3WAUkHC9HLQoH6AnYEqUFiQ+TTenqqonQ078Px23NMoMo8myZlMCWAeB37LpXK1UinkCgSlsqUCowJmC7VCFeMi+UqJApCH1Q9rMOiNpi2ZgY9SsAdxOzRZs48ujY0a3xkE6GWBJyoIktF42O91uqPV0fHhvBu1h0u07zAVWMAs26jUKLXJ8th87LWG00EEC7cX4LxsvUoLHNuELd3q9budwaztwl5jSKDGeJZu6k3V9kGID/vj0Xg4Ozs6Orw4vnlC/jCfTO88SudypWI+t72VT21nc6DoK/ARA1mrEdlEvliRXRf4N95PUQ2oPlSNoHCqDY/OLB+Ee9emq2SNAyxpjwPb1Xwb+LroY1ACEH+vH1qyBGRHC30gvJ4bxNhw1oVHOp2OprM5oIShNlECa0F3OB7Plov50cEwcmTgy6rqtgeTSW8x0nWWFQCkLd+1/H4L+8Uni+ViPW6kzV1XrUqAScuhUTcATe2O5/uWpolVYRCaHE+Wez1b5+liuYeOOl0cvu/1x4MB8O2WLEsMJcpeGx7bDG+bu2ENWItuhu3R4xbPwQLTgqhtD1eXL7759ne/yDdKHIYLU8UcWRNoslpMQl0xLcGzwuEUz70wBUa34nBw+ONLpQP7py4ZQti7+rIDFM+03f5PFg9auuZYbkvSrPbo4PHtd+9rrKQPF3e/fl5Ll4vZEtnggKERjgqMjuSrVVTASYahOPgg/bjv0XSeFL3l7VBTcTg/Wp6diqpAugZtMFpDkv3BfHTUt3Su6ZyOdVXUheh1h7Qt3Y/XZ/fT4VBjiYp0NBCKrBTeq7Rphr39l/exZsitC51RjLt3muVG3eOvT+nw/Up1F7d/Nu5Pjl/8PnyInvC2E/hPc7tclWQpQg7ZmmdohkbT3aaRb111Zds7OVrb9nJs8w/qkduyT/QCc9kHPuD3/cFw35NhmfP9WtSbBMpoPfK1/3I7ApGifPfPJmfuT+O//8cwElq2MzCD+e2Hk3D8s1PnwDBjb/zqhtUCV2IH//dF44wslNPFPKny6do/fKHeT8nBvHP9Fa+003TDaO+ZdHfkHbQmkdlZjkz79v33Z4Z18mZ/MOq1SgXvZNJRrPZ6Nus5/+X9/v3pn/zlYhT1iAeZ7XQSpcUu2lCmdpK7mLWOP/ZyoHhz6Vq2lEkQmXIlk8/uEondQrFWJ7C3hmhCFeQlVQLQrZRZqCS1elPi2FIuzxiwxTVJBXKKU0NQVIMgsJWmpuumY2IkIU9DKe8YrqEiAAOsSrbquThtFAYGrAaqwTjwJVTL0hS0zwLpSdMMAz/ZBq1YaDsENUsSlSZa9cGTtquK7XktpPi+iYb+9Gbnmp3Q82xD1S34EL2wOxyhLd16PZ9MPZAAI7TnxyvgXqflOkHso+cs9gFxNEVVqXjg+D10DwpwdETRNFZUoepiwrEd9icjzFVYAM2fjrrtTiuw0MlJk9BwUBMoEJOchKO2HlRbNFkAauBH8OdAzXa6eHE8A9g4OL29v7u8fPb5jz/uA2UEodvyHNBI3el6tX9+/37GAQ2xTCeMQTuPVmePX37+cdXqxbGDNkVzkMCHZ5cXV09fvnz94ds/aZfr1ZoI7ARPu1vdGMqs0xuNB13Ymu3JqD/ueV6nGwAIB70IUN0GwgMVFnDYMTamBrKi/QBEa63ewBnc8iYPcC/XINPbsCIKDfhcyEomvZfI5zL5TDqxt+nXyzeafDWbSLMW6BBBBI1CYYhSMZtNJYs1Il8iyWKZYgtVHCtm+DrsbQpqPEbscmyDzOPX2c1W2KblWpjOpElArJhNEzSgb7lYRSPlarlWKJRSu4DCJZLlBN1zVA5nICzVHq0Xy2WfKZRLJajb5Wy6UMzV7B6eAXb7AzTe7OIHjQA8AEEyPLh9/ATwFwTwzdUVCN/Lq6uLk8OT03P8J44hnR/sH+4rFd4yo8lBDyfraCxITVl1h/s3Bx6iX7XGKSqsNFCrRF0GiqhtKCbaUKEEjlpByxNoDTid2EQARksJSTXgtzfdbw6sSlFXG3UMHgG1pWs4ggJ/td3qqhQJ7xWecQ4AilaEBvx7sVQmSoUSQckiUWTxOImrFQl4lnSDqGD4lmG1upNB1B8NHAEAWOPixbALiBmOHV0S2IbUG8etGNYiAIbvh9gICMJuMkNj1tVkON1fh7BHVZEVQHMyFNOEooh/Du8v4BHi2UHgmiKP2cQcWpB5/qavvNsBAKZZGhNINp5V2FXkBhGwnrjbnVycnRxfX9zcVB8ltnYe/DCZLQL+5re3culHmUIO3la1XCnnC0Q5n8iXarLvmAII4EqFrBE5AOBSjUG7bHiwrhfFnQ4q4BoPdaQ1iICqBZ6nSqLXj0yZZuhwHDsAcXXSgNcVo+dnhPP3fRT6oz7w1aFn6AoKdcVuQyWYzNar5fHBIATVLYiy5sXd8Ww4H8JG50TYC2hwEfRAzeNV1Wp90K/nOhlX4tDOfn3j1NCXwup7fmDrepOUhpElCg0CXqTKgg4ZtKIojNsR3n7AMxzP133YagLNN524M5wvFuvDRSeoCRiiDL9w53AcYAbwjNgaHd69/PzHv/tFjiqxuiyxdLmAJ9BQk9ISkAdddtzWZH158+pDKwLWb7f87uqr82bkWTJwQaO1fPZxFLRdS7cGX88ftg3dsezQ8ILu+OT5kzfnVcEMwsGTXz8uJQmiVEIbYbpRthWyUqWb9YrKk+k9zBrRHDQicSm2VG96y+uBJldAiEcWo4l1zhmcDFWRlHXfGHQmJz1fa4jxZY9rCpLlnU9JKCl+vDq/g1WIJUE9HQpFToruZcEygs76zetAVsTWldVsqjdvNbzUO/7xVbP9bqy6yzsE4NPP/nbysEDUSFuTR9/Sj2pMXqjVGJ0u8GJThAUeKVbVvZ6YYXR2uLL9ycnxNFVxYSkM+TJ7GrK84vb9fv/YoDw/FA9IB1SMPRsuXe2/u+x4lq59+zdK3bgehP/8D5bNxarkG7Oz1z99eXd0+Xx++KdPLyZf33828LxI84P/6yx/zj3YrjWIRrHgZH7+P7NPR2R/3rn9RpxMi1SZt9JKOei2D6Ow0xZ988FDe/n2vGmNrubDYadDU63jk6lmtPZX63b/f/wIAPzdjzr5cmZL5rdSye0dzGnd295L7GWSiL/wc+dhKo+mQsVELp0A9M3vJne3i7s7hUKtUUV3BAKUoAqUTVax44CjGgjAoGyLuSJrBbBXQcdwNFojAbWMwgA0AlphmYYMqpln6Hop0kB7YXsz06BEw3RxZhaksy7BF6NZ07HRoFiVge3AZsDZeJxN4+iGbBvYh4AnpiIL4hnKlxd86haOsPll42bHMQLfFA3ARUyc1008bo2wDgMdXR0sB63JZIJp4/3eYDjA00nP9UIPvbsw3AE4MlWj4pHngSAFvQJ/24NvCFQcDfXxQCzsA+5OptgnOhljzkLkW5u0Y0GA16NJmKnKSPjNnc1Rb7Apu4CI2BbUG06ma9yBR8en1/ePb26evfv45b4Fy9B1HOD6AMBQHE5vn75fNOHX4JuHLRQVs+P712/fT/1ubwRvAxj8bLY6Oz+7ePz61dM3n//kj9uleo2SDDSDRoNZUO6hA0wfBLdnhINhfxhbZtxtRf1u1ImDEPQQfDvMdLNt9NlEOmT8AKo82WiQtVIJxOTu9naaqOZ2H2ylUnWBg18vFnb2iGohl8+l93YTIIJ301W2nk2ksoIjNdimBNhbB/CsF3OZRKJUK+IxSq6GbmlocS+yJA0qWeAZEU0/JaFRrBRS6USqAtUbF4iBDE0UGAYvgEu5TCZbwxhglmaJEsikRBITCoCwhaYG/M9yPgHwYtmn8yUoJsDiM8lcMVO1u3je0YdPd+O+DTQLARh02WB0/PjTEfRjlMBXNzd4BH16cnxydnZ8eHJ5c352enh4tC8THADweN1jqjXQdwy8N6jR/dXF2t0AMMkpsijQ6PlFypg1ggAMDzTazFi32l7kS4wROv8OwOQnf/8ApCMe/3sAwIZGUYhbsK4AIzG3zg/iVlcBwZ8vwhPOVyqVhixz2NUNeIQntZQs1cocPCiDrWM2N8eSZeyvbgJ37c5Grd6wZwHxdA1pfDLrQu3qzzbmrLQ0mPe7QCcDXIlRjKnU89VqvhkXWq9Wh2f7IVBXCS1YGZ7jZNOKx6j8VsdzjM4dDMcDzzFEDv1JOTyXwZw+/I1x1GwyLEnhIJKMq0hXQR4HPgBwrzc+PT7YP17vr8o7iZ3E9nYqjZNp+Z3tfOpBtoRDalUcqcgViwUAYFIJHF2gqHoVALiSJ6hqqUIxPPZgAQCjo6hOASvjYT9HvdCxDN+zm1rTH7ctFWR5a9JxFRE4ndVuxRHQBzcA+dsejnttoKGwfYauroP+FUXN644/UfHl0eEwskUG3a8BtUfz8XygKKD9pY1FlRNiDxa2gy/XR+1afp13BUNWnObJd2EFV6k5Qpce3ZBJdRhYkkQR3a6p8lylNurgwHUn7OIYcL83ma6GfugIFN+EbzTA/vL1IvJIBo+6O93hrcGLvOz6eNE9vXjx+t2PfvfLPACw2hRpKPr/PwDLchOKotWCnf/0XdwyPesTAJ8K+EFTmmJHx5+9m/o9y9Wd2cfZw45pOIbla64X9w+ePfsPd3VWD53J81/fldIVopTHJn+ukjWkWqVKCTUC1G1mj6wxeFkdtXtWgy03mu78oqdKZZLm9cSjUokIu42pR5YprKzDwcE01mmDXT4L7RrNOaPDfgOtitqry9v9VZ+jazXxEAFYbd1LnK767eVnb52m0uzeWk1RuX6DzLV//uNzofv5VHPXj38JYuHw9W9vtzPVIidz7Nm3XMGd5cUyzXtkkbUdXlNoh6ltUUex5kdnB3PTnx6dXCtO23PcUbPRWFkM3XQG4aB3bNJuGInDqj/0VGW1XOvGP9+1Y0s3v/29UdcuLO2f/s6yKZeXAuP4/P716ZOz4ctnL396+MVyen4zBxrGTcz//aJ0ziWTO7sVqGTmw8//hXk7rIECvvlaaAclvtbUy0LOC9qzyDX7bOAljcnw5lrvDI4P+r1WUC7ok2lH0uODxaxj//dvDt8d3w23H0gPUyvqUSKxvbO3l0xkE3s7O6mdBGjhTwAMRTaTzKRyyd1KJpfBBJxqIkHkq8BLC7lMCeTexlUG6OAnAK7WRQBgooSGNp4J21DjMTAGyLoXw+aGZ2zpqmr8IeugUcQga1Be2DZBNbGD1JB1L4B/8lACBAAGXdV07MzF22MFW7BYvAcmJc/QsG1Xw6E/GkMXVKvlqh5IxyhqoQLGHipe4GTJaLcjNKrBpBkfu6A7nf5wsjw6GvvjxXI6AFrc7uH1aCdC90CU58iQcQ4YAXgMqjly0YvZwg5dFUeERUxBNm2AyOlkoyCmo+EA/jrAmb5xogRYUVS8RtoAsLPJYnJcvJHCUKUQD7yhJownw9FsDYX+9umLF89fvf3w5drSUS27G5uGqDdYnF5fv5xtenPgxXt20O6PVlfPPns7ARULxAEBeDqerU4vL6/un78AAP6ulUd9omC4nY6N3/CiPCi0w343dNpAM/otx417nfZgEAM1DzEsyQHeggC86TXHCawflIkqiYoTPsgMLIYEUQX9u72VzFMiW6+CWtnN1EmQfaVsYncPrdNSpXo5mSo3BLHRaMoc3t3iLV4xn00kiVouWyql0w2uUgfyxMksgUeuTd3QmlBJZJWvlOhqJptMgmwWFTQDUWWpiS7LjRpRwMnhVIUhaywUO6JUyaMfVwUEtGzBK1aAbLt4BL2/XK/HHCYVk5V8IZ3M55OE2d50Pw+QXyFO9HFuG3uPRpPj+/v7p89fPsc8pJvr29vb64uzs/OTUwDg47Oru/PT05PTk7VYYgwDALjLkFCNKHSnlxRvsDpbOoLEVytVUMAiT2PwIgAwjo8rGwsOPDIB8RPZgS+xZhygXUwd+6koPNF1fA/Hun3XNdSmqeMxgIBmrUytbga2jfW3K5OVbA7kYS4PkFtXNQF9PsuZEij8cl0WiCIAsKrz2AjGsA22lG+g+4cVtidDWCQ9VzMD39RmpzPQYvJgFuB8KiUNFwMMyQ03+AvboD+YwBYYjedo8LN/eLofuEZTEjB7CfaZ4nj9KdDEo8OTg+ViOQeN3LctQwAAhtcs6lDmYPnPl8vFogVUk6mRGDeqwGr18Ag+BiybjOeTyf5stpi2WsNGuVJtVAhYKJlMJr+zlUs+ypaxRaACS6lYhIqyly9VVc9WsRxUq/U6zgHXijWaRQBGP9YobgMAk3VswjJbfXTz9DxDVAVv2rO1JksHw5Yji3yDNNsBZql5bjTYODLHsFvnveFs4GgasCYOtBEo+8l4CgB8cDyOXZkDle21W0FvOgIAlnH0GAHYxXyM8RQPuhbz404tf5q1JFexY+Xut1FF5BnOHnl/AGB96EE9bJT6fQceEwIwyO9OD+8/QEMP57NVzwZ9T4uS09qcifcWc99jWDS27fYnj00ORTj6pBjj85dv3n/z13+WpwlObTYBgPM0szmC3msKsiSa8Prs9dnFk3et0AQFHIeDo28BgKEC0bqsButnn/X9WA2s6PDL6cOOBXzM9OCrh53F/fPvLsq8HbjDZ795QuaqpQKQS1qSqoQpA5escxVio4DrwKiaBl7nm3VQwIIzP41FrggbsZVLAT+UhvlteFUiY+txb3UEL5plHDkciw26KZ6vpabl2FFv/+by4GgAAFxh10MhL6jxvUiratBZvP7MljVldKcxinb9RrdgPV386ITrfwQAPnj6i+FgNH/+Vz+t1tVqf9yzXnxtBOcfaaHGNIMaKYYtTuXpdpN6aFz7rBFeHs10d320PG4ocZ9RO8DyF2GdZI1e0OuctSQn6jflHXUWyNJispaUf72PYt/Tv/l7reEcuuo//7dBBJ+qG4qzfr+7/34+/PF69qR7f+w9+VeKCaP6xPnPp41LcneXEzMP90pW419+x16NyME8vvySsc2GKUWBqNb6PhJbN9KXPenlde/6XvHPnq46/djee8iN1kNZCQ/2D8bS//snF1f13YwxIIlOX/xhAhTwXiKZyKcxE+khhtXs7u1s7YGMSCUz2XI5sVPKFHJoml7Z2S3kqo0aXuPkABnNjfePwNdKzEYBoydsrVIgeNszTd0yRWD3LPw5Lwo8tJNE239DUwCAea5eDkLXtGVHF2koqCDbYHVK6P8sMTS2srsICgZgsLEBYMDszQ++JoP4sdA9V4MCyAJ7g33faikYXhiB8IA9KeAwKnxnWYs7sKsckMBWiNFkAMCjGVDPk2WnA+Vh0B+MoEhvJlSiKLDh5UnaRn9ROE3VmqB/pfdpOMSEYqarImxUSVQN2EPoXgAkejkbj7C9FM0VNHivOA2JbdBiU+EV7Hbd4C/8L4jQbMuPOp2oNRhhnu/qAAD44vbps2fPXrz6am0aGKAXhK0YAXi8Ojk/e76wsTcHwyTQHnp5fPPs9fsFKFi8mRpPMPJ8//z25gb079uP3/1pXCTJOohQoO6GE8WwlwMf0LfTBYYBKh00SauDkzgD/I9W4AM9wDplgW5DB0UTPhrpB5tWZXSRLGZT6AteJXaBpO0kyrBTq9l0JpMsk+UqhX3ReHa8l04XKoVkjgLWw8LTo9HBA8RrOZ/NJFMlIg0oks1zEgn8iWXpapHdZD/b2uaaTSIzeY5Ga49qEdSdoYkswBjakYkUkUvubG3tpasUSaLpIwFSPJUpgAJmMGTatmTQfZ4HCnh/tX84FUBZFTG2IJsliknCbsfxxloQ4BdNF3vjYTtGX/3p9OD6+vb5q1fPH8OTA/17c3N1fnp2fnoOMvj04vr27PQc/mslfwLgVZvD8Waygd24ijtcX6w9Ea2OCFbTZFDA8KwaqqWhEcdGAqP1dDsGcuN7EmvFPgAwhwDcoAGArc1ZSIRzwADAlgGckuWbsiLSBG2HAMAYFSiTRDqTz2Qz6UK+1FAVpgTiPpfBsepiHfRwkTNNYHg4hsRxNb5SYIDP6G4Uj6Ds9tEc1bc1bXI8wZS+DsYCSzwljpbDXhe7oH0f9gJOxI+nM8DYxXyBdyFHh4FrSmjrDADMsrLtdQGcDw/m64OD/dUMFmzHMDUAYBL4T9Nw4bcnE2wPnvisAAoYp1hxBN7E83d88iCv17PxfDRZT4JoYUlAmGWZyaSzGVDAW9nEVq6EjWYE2p0B28vu5ooV2dv0ZNaJCgBwgWhUSyRwaQTgTcYUiEOq2qizkmR1htjX6Dm6LLLOpGerTYH2ur7ZRAC22gC+YeAH/dkU2w7j9mA6hbcLOK3jsRmvOFEHrTnWByBsx20P2+BkKwy99hh0sqrAHoLCtjlm7+AYEQDwfHI6AABOGropR7Hy6q+DWpOhBG+AqakgrElr6Jqy3Cj3eo4p8kRliDK83UX3AdDQI5DQPWCNHC38OwD3l4sw5ARVd/zeaPnSpnlg22YQtfT+0fM3n//ob/+8wFQEDfQ4XS6yXJOpVwu7IvAcLWgqRnzx5Omrd75n4B1wNDz+yYUc+5bMgOwJRtdv41ak+FZ4+NUcFLAJAsKTm0pnOLt99bP7fNMx3M6T3zyv5ytAHxOPfpgp7mRtWHZEY3MEjU1YdIMWdXRTd2iuSAru6jRkqDzwIb34sNykC68Hvf8k1whGtsN4vhz7LYmhHmxJjMTI4tWQ1F3bjodHj49W8zYL1EE8GXIIwHcCq2tBd/Xmjatr0uhWokzj+jNsnm+f/+RSGn/RM5yj5z8fDMezp7/5K90Zy4cvn4Uvvgq6l982GbZG8xUSXhhrNmsdNa7sv/Q5M749XZjR+nh5VmNEoVw3a2Q+kCvlmtRy4nAkFgiSLRdzlFavGevhWuH/9cp3I1/44u+4Svsotv7pbzWR0+QmL1/B9r/6eDe9Wz19e/H4+ZsvfimI3Sltu/+2Kp6HXOMnXxfqmrYg/uYfmFeggKfR+edM3BKVumsxUjlSNEAhi6ZGbfpoDavOxDjT7rAb5VLaan9iGK2D5azf/p+elhK7s2dnnQfekxb/KJna2dlNpB4lN9V0e9OGtbO9lciVc+lcqVirpnbKAMDlTK5Y3dnN5yr1arFYLKSbCmARaD5FEGpliqo3aiQv0FStRpBN14eC7tgiXuMJGgBLEBq60lQ2jocSNhkDkw1QXCqGwqHJkG5bgSMIANAySzagLLAeB5sAACAASURBVPlQokAiKxgSgKfNmESI3VFcQ42AcSqKrkPJazI0w8iqEUWSFwDzxlAFDdtwGYFjJQRggFYoR6oBv4k9sYP+bD6eHaz6o26rM16MYvgVPKxsR3GEkltFOyNMXiIrZDSJ0VPWdV3MLQYANnRR1AFiMSy1g72NQ+yunI6x38JBQxwgBXiuCnxBhm+OAIxxig52QkeYiAd1IeigAoZ6tjw4WC1X6+v7Zy9fvfrs7TcrXQOhjPOjm6zK5eHZ5dWrNWa7WuimBW+tPzu6fvzZ56t40B20u0P0kl8dnh4fHt+//fD23dff/6Jbqtfr6JBoWrrTagHa+gGQA3Tz6XVdK4g7XTwEwL4QHNRwQ0QJH13L7E1aJLZC/6BURhvnShnwcxf78kBO4lVvBtVKfm8nkcwC/6pRVWKDwIlkMpHMJPdyNbJGSaoIe41sNBpkpYxfIJktpNE6q8Q1aZrh+XqJqPM6lFIXc9FlXeNKqRQjUvVygcjmawLACqdhNBC8EK6a2d1+tL2XrTTqDU4U6uVyOZPIFEo1TDVQZNcQ+SaUCNkYrBfrgymb2E1kKpViGZZoKVmyN9GD8CG18bR1YziB0r8/mU3Wl9d3Lz57+fTu+vrm+vrq6uri9OTkFAD45Oj04vIK/g008MqscaYRDhcxh/quhsEHgmxvFDDPM2WiDJUEAZgkq7Ru6xsBjEelGwvMOAAs9WWcA9YBgNHREwFYBzKHv98KHYwPtk1Y0RTO9UgCJfmhhQDcAQAup9P5QjGXLYLGVUFV5QuFTPYPAMyXiwKQD4kji6UGwA1TqbKypJheEA57XnuILt84Izs+HHd9S23P8WQSFPBkNez1oggzojaTupPRcDwBGriYL9cAwCcnkWfDS2V5nK5hJcuJx4v1/qw/3z9az3BsuAULhMO3Qm8UcNQfYVL9bOIxAjwhGh2yBFnT8T1EMUDKbDgdDRfT8cFiOD9racCtVauZz28A+FF272G2kAEAKOJ4MwF0bjdXqEiuhWPAJAJwJVeqV4o1pgG0Dk+wHB/Wr0XBamBEAOCBD+/TtBRJYJ1x19GbEut2PF3kGJJ0OmjHFQbt0XSI1w+b6EV4r10bmAooYEFDBTweTeCtrfeHfwBgzQuj3mQ8GmwAWBAUYKfwpHDxTJfAdU/H5eLZHhQwMQ6bn/2VVxPpBgAwThjiHbAz8ixNpjCOEBQwUR138Qi6G/fRqmcEDAAVsM7UOLwDHkAVGq3mrYAC1AUAnh69d1gB8Ff3o7bZP3754etvf/+XBbqKs248ADDDYEZiNS3yeIpiGO7g4tmLt+/QnkA3Qbnvf32t9SJbpU1HjHqXX8I3N1zdnn29xCNo17J8UzUG0+Xd6+9eliSDM6P7Xz2pZYkqNnj8kGDSVaNZLRNUs1FRMI6Q5RqMZGK8TcDxAMDe/lWboQo1mrFrOwRNP4zPmCuarpfNUO0M5qekqNjbe1tbhp6v+1c9TtFsqzU+ebKYDVossFTpeMDlOTm6FQRTsaPV2zeBpXCDG7wSvnyJ8/G9q5+eCaMvB6Zz/OJP++PJwdP/+BvLnkiru/vwxXu7dfyFWBEIslEhGzWB15sNl57Sh3eO7Lavj2dWe3a0vucVriaROkERSqVKkFLktFuzZk1TWFaDdV0p2Kvp3JT+7Sk+HP7rfxVL8Tpw//EfpDRB0oV8+5uvv/7ZT3/yq+v1j3/99ifPf/Xd61OSlGOyLP8Pi91Jqy3+8cc9sTc9of78H4uP+5X+JDz7gmsPdIP2XYrLapjgwdB0zegy3Zmt83wtz4xA7fToujOb9SStew6EpEmmik781z9tJPOOJjYepVJQZhPpbbTi2EttbZx68UeyTBRK1Uqlkt6rZHOZcrZSqyczpU8AXC6mAGYwglxRm816GT6KOihgnqqDAGJkA+2pNZzoJcscAnAIessA9DJkA+MI2Ua11oTK7+CoIocdH4bttXwTBI2Fzi9QkzwLU5AMdTOaoqsSzgBjdwgr6J6LZ9mWKYmyCFjNg/CIAxHNrmKMXjewiYrjebYpam30QmrhfK9hOgHO1Xemq8VifzGYYkjBZNTtDwbdLkjjqNXyjc0UEqgvENoAwOEY/nqIOYUYIbfJc1JFUCuS6druCArYqN9HAEaryrYDMI2JhAjAaJQJ8o6XfBcPkB3vU0AOKA9MGtwEI/WHi8N9xM/HT1989vbt+49fzRUVrfI/jWp2YM8fX968nssYRQj80G4Frt9fX95/+HIZxFG31Qb1DqXz+Ojo8Pjm9ft3b7/6+S/a+RpJc58uoa0oCLotL+xEAZCMbjtQ9FYPiEYfZ4qhLkSxZ0eeBfQC8wg3BrMYR6j8YDOvWyoVUglYBLAmkjidlsxmM5/iFHZ2M+lkoVYtQ+3MpZOf3CV3dhLZbIHkOcwBrqO3bIOso9tGMlcAGCEw26hBc0ylWAX1FASuzhIYKSjXc9kcq/AU3jmXaxTL4amyoyugpEAc7+J0epaoN+o0y9cLOdDk8F0aXLOJA6cyy8uaHUp6fzkHfkkBXdjOFIpkPl0sJIsmDoFg5HMXP2JgK8NBpwNKGCrs+ubx05evXjzFMCRsw7q6PD87PT27OD8GAL64BDV8fHJyYNU44OqDeYtuUHiFS8P6k+zu/HhmMky9WCJYzN2isVucMd3/CsBegJO2EY4h+bLodXxdRgDGjGu07XMcFIgtoD7ASF1rA8A8Ok2o6KWGR9CdnlQrpwFuS6B/y1VWa1KVQg4txeC/iYYkEqCAjWYTdncZ2BY8VIIReRHUk9PrgoSL2zEoQ/MPAKx1F+HmDlidLge9Pnb0+4Bk8EzGmMAwwdNVEMDrw7OT0LPlJssKLHxRtmk6neXBajLozw+O15PhcNgLFU1l6AZJoWOEZbcH4/F0uZzMAw72eQX4hYjdZBvf16jVhQ3WhWe+nE/X84OLc5eT5aZgyfBGsrmNAn6YK2Wz5VK+DO+0Av8AACYkx8Q4cBItVcubJqwKBYIX7dctDOvsWnSFJBlYJK22D28Fx+55zu6Gli4IlB17BgBwjXRix4ftHHb7se91sflhtpiNR+OuuzFb4wGA26iMB+vj/dVq2PZlDLmX4Yv2hsNOV1UYdFOVLA+fFGaWztarxcFhP1O5TBqqyYeR8Pq3HsGzNOuM/ACKGChgZ4RpUo1Kr2fpeAc8wTzg3hCTkCazcX88nncsGwCYbbqd7hAYwWw1bQc1NLaGVXb60eQwNMYCzDdH528/fvXt3/9lnqqKyN82TVhNQJBaVhZV21IsKxge3z978yFsQZ2046C7+OLO6IWggG3PCPt330y8luea1uDH+w+BEOAdsGPb3cnh89fX66IEQsK+/W9uK7lKlSxk09sNJU9oIpDmulAty9zGinLTBR11hgjANc5dX7U5Ol+luWZxhyjRZNHkmEJeqCqe0RkeLzI78F+VRDqvPcj7V9OGJjt2a3z6HI8H8ZhIXPXRijK4EVhD1oP99y89S+ZGd5Kga+cvVcuxJ/ffHdODr8amffzyT3rT2dGT3/yFoXaY1ell7+1Hr3f+QSwxtQZfJ9marDbhMTITZnXnqG58fTw14+nlyVWOsXtW2aoLTYejG6zRCQb9lcpGoSgo2ZoR8SGwIU/9m+d9B8rd+78zau4ydn/7T05eYmWa6F8drw+PTm4P3/3yu+9/+h9/+puffHUEm7Za4v6Xo9RpFHJfvc2Q9mRK/uofqOfDWn8SnH0pFJkCXVKUrFIxrRD0r+QqZpfpj/yfXBOsP5nh6CdbN/snI0HqXB1NiIymH31x8LMPxG746sRnHyWT21tQP9MpzEBKoB8HxsVBNSsQ+QLGz2UAgAtQawmitJ1IfzqCLuazmmXahi4rSlNqlGkGAZjnKKD6FCbS0wwNeghQsw57EgfqgthXAJPVDQDzjTKBJ26u72syx/AqkLTAhc87im0Z531lD9bLZkwYVDC2B+GX4tD4itMNHUq0Cf8nbQYWxaaqAAALEcJgDIoVU4mwIxMYuQEyCEOC0TzadDAcJxrM0Vl+MRhNxv1OdzBqb46guzF2pziaquP5JwACDW8nGMJvtkOop+jZiO1BOmaKoKW+7Y2nsLEG/elyAiqrC5IHIRoqhYQAbGAnL2xjQE/EXzyVcz8lwQEq4HAglIT14Xp1fP346vruGWYCfzWTNRe0E14QeuimOzs4v345EfH8G8q2jQMV0+O7Fx++XIUAwHEM9XOxXB6c3jy5f/zq86/ef/3991EWe21FQZRl0Qw9r9f2293Qbw+wDUs2e30Uv16A6NuK2q4VuRqObWGuqo7XA5oiiT8gawRRLIB8TexsriaSjx6hL2kqWyplUrnsHkZGl6qFQoUARACRigiM8R157Fgka5seaEBSViDy2UQiX8mmi2hDwTIbj/0Gg9akqtgoVmucxMKXhRIkgKjFm1bAKTzcdDVJtR25nknsbj3cQoMPEjZeo4AasEw0aIys1UKTb/CKYoWyAQC83J+wib2dh3vZAltI5IqpkolevHjrvzFCgI+73wfiMxwAluzfP3/x6sWLZ0+ePH1yd32DKvji/Oz88uLkGFvKzwGJj89ODIJSFK8/azUqtRrgJ6xrAODOBACYZholosJpmI8KVLLCWK4ub4IYDMv9ZIMFjDOwRcHreMYfABgjnDAA2wuxZd7DhlzXxs4GXuBF4BMAKaBtQlgcAMDZXDmbz+UKhTKlCFQln4L3XiyCUmxITaLA4DGMSGK7OpDScobE8YOmrLU7bnuE/UeuZ6vjIwyg1fqL0NoA8GTR6/bbQMmCIGz3BngEDbA0mfx7E9YhlGilySGqcCwrgsY6OJq0e/PJPgAwHhMFiibjaTwDCC0bVqc/HE7Xy+HEY0WKqrEU7Fu8St3E2Le78PX788lwMVktJmd3R1K1QVGcLaeS2EG/s5VLPSxUcpliCdgZgfhbTOSLRNO1Nb5WIfJ5+LV8hW2UK3j6IeGSVp243zWparUG8GgC2e74keWpEkProO4kulHVW57Z5AGA7dDA1EdY6IasRXHkBf3ZEjR817NNGbuwFLvVQ6PKxdF6uR51AgUBWFADvL+PYkXGyF2yaXneBoAHw/n+enm6am3XrlOa5AteW3z5e78AXIUyp7i38Q7YHjggCUhiOnZ1jqvWB6DQox48Baj5szEo4EXHtHSW4mWv2xtOJ5PV/qzfIoF7OeFoefaVAkRD99DASx1cvHn/7tu//4tsAxSwJPFspcyymBJXzQK11uSG43bm509fvPs8BhoNVCnsLj6/M7q+LjGO47ujp18tNFiFvjf47nC7CxCtm74TePHo4t2bp/sksqzo6hc3tWK1BLsq/0NCK1UMuV6rNbhyUeLITJKiGpwGy7Ez8hiuUGXsxWHIkOlSgwub26VGhi5XY/TN4jizF04ubfLBD/9oq/joj35YeVBkruYJqD5ONDp91h+0IxZImzjv8UVW9K4FytSs+PTzZyCumvN7gdaU81c6KIzRk59f8KOPfQsA+Gfd2Xz9+K9/FdgDcX73JH7yo1Zw8b5J0vUqy1SYqmo2FcpWxuLhc0D69t353GqtzpdnFR2kfimiaE5BO2+rC4B7YtGmC5XmUZKNqNbsZB7yX5+3265rnf1Up7zzrvz1n+vlthPEqo/JVJoLarDV8+LBInInt/HSF9Tm/3ZamXbNxp9+nqOV0U3xt/8m3Ezrw2lw+iWfaWT4uunVRcLE2FoGhEG7lR4M7D8/fyh641UM8FKvWLNxWw3mB+L2g8b/+uH09f5XP3qYuXp11Wo+Sia2tnaT+Uzi4XZiL5WAopvAOeDkdqaUSlegdqZ3SmgDnalXSzupVK5K1SulQqZg+l4ApVSSxWa9SNE4hoQpNvVKjUJKL/LYHw0wbBiaDTgkA4Q1dUwXBLrepMvFqA3IBHtegq2r6GoY6jJ8QceSMI9OaSM4A/R46HfzCYBZvikwdd41ZcfVHQNnk7BnsykrTT0Oaa8bhZHv+q7KCxx6yUGNsvrtuBV3I4BOTXfiwajfngLh39+fb04lR6NBG4rRJ5MkjAwGpQwgKgsMDYumEQzaUGRiPM2y9QCvvDUTCKskaZbXHuDJ0nAwX487PezC6kRIqjClCfayrogbAMbGLtf7NJfS7rZhVQZ9nM7v9DGuDfTz4ent7ZOXr1999u7HS9iJLuoTUFBQIOfrk6ubNysgxai//U2WxPTg8v715/ugLKaj9hCnKBbr08vr68evPnv15U9+8R9a+QaLTpACVBkz8rxBN+h3fdtHc0tPtnroR92zPNAFURR1AIAdzcVLahtNdVHgg477AXzM+UIhn8sndx5t76VSW8lcsVSpbdyJsC0qlQAWVsgm80UQxZkE/tjb2U2m8mX47IlanWmQJKghQeNLyWQ2nweNWyiWsfeZQt9GiuclXRcq2QpBCzjvSlANgGdBrLN0pcLLTTTYEDXbUvni9kMMbSiCAq2SNKBQJk8AEvOYp+5oskgzTQPWizJcHiwPJuLOw62H26lSGUo5iG6124k3HpSD4bDfx5+jPs4gzcbDgycvnj0DDfz8/vGzx1dXd/eXJ6cXVxeX56cn2FN+dn56fH5xrBKsqniDmQfgW6PpRoOBZW11ZqdLjeYbRKEkwFIRgKdVSrDDVUnZ4K8H6tMLW6hy40AVHMQACaeaKzQUeR1dRcN2txUGsFoU1+GgzvFCU0IADhzsNALOIJYLoPRBGBIVolJtKiRBFDBGFx5jmWw2awXaNEQJM5fJBojxEiHV64BXohKOonje70Q+KGCpvxq3IsvsLmNTUiRKms1HvUEX4DnEK+AhHsxO5ovpZDqdzueL/ePjjQLGgyaozzyv9uBRAWSPZgeHy9mg2+96miyhEVWNBOZjOXGvP5hiF7Un8CxZQebHS5Js4NvftL9h1uEIm7ymx1dHdApIW8NTskDiiPTDvUJyGzC3VKihti9uOu7TlaJk6SpLkeVMDp3EsfjUyizwbkkF0Rp1RwMLLdYY9HKOW7A1fdzYtO5pKiwlwh9HOoe+3TYmmcpQdeDZG3FoSarfjuN+v4XxSSJOOWh+6MGeWi73gSV0bFnc9E6ajmsZmg+8vskQJRY+X9P18NMCFb04aEdb/MWuoupi5PBf/C7OCxLF+PhZgm7VGb3vAO2myoOui1f65Z7fafVmnf50NJpNB8Pp/mpomq5AMpzdw6dyCE++I1YlyXDtzvr6W4tS8eJUBbDsX79+++H7//SySBGSrek8Uy1RjAZlMV9UNGwI9ePh/PzZu5987XUWQJ/bfu/ow53TaUU6a7Zcb/3mZz2340SGP/1+sd3rTq1AdC2363eunr3/9iYviKQQ3nx3T+eq6DBe2q1JRF0BgUvWuUpaFarJlEA1KMXDZlCX4/MV3hquY54u59maTmaq9UqjWggFtEEnXScanPDFXFbfrhQfVrhH4vYe8cPaIAINcXs37k8xmoJRZ22W4NTonqc82e7Dy8XWwMEzuaFqV6842wq7Rz891FrfdbXw6MUft6fz9We//ZXrdcXVy1X8xY86raOvuQpFVFiuUq+ZltSsxc0OPb/1Aqtzczs34tXxxamh2oro+CprtRVDNa3Yils9XXK0plQTGZqXzXgcqrwWth3ZM8O+2zR6UJQvu+qk3wWkjKPA6X/0A/6SdWTVANDwWsCJBen5eX3kt/jrRZ52/XP+y1/HZ91SexXevJdyfEKQFJnTCAtdYOlAFLpRLhhGX0yausO6nS66cMJqbU+mWipp0fT/89nJ6/Vn0z199fzE47f29rYebWE4TWJvN7GHh467ePSYTGJMCTpg7SVA8RZqZLlcfpAvVDY3NJUsYwDbB0oHxbJZLtEcmvfKmkih1wJUKl1tqpoIxaWu4VGzqWiqBvQERCJNMEylViq1ulAmHEzMrTVV126FGodpDQqGIdUFb9P6CzLYtUCdOYbI85wI9LbB+xiAvTHtwXFRFsuXbIZd0Q49KGB4FijgsV6TY1jRag3QLyC2VQVbM3uD0Xg5OzxbzeeD0aDX/eQJBcKwA9uoFYJatTUQLBIsdabRYKNxtxs7ARo/+rajqoamyzSOH6vA8vvAbaGErcfwRTutDugtvGlGp01JaqoqrzRVXvR8GwqS7USYyhO3UaB3WwB8gy7s68jvzo+v7p4+f/H8+as3H2fYaNICEgEiPoh73vDo7vGLse4hQgKdRPuiwez06et3B3F/gDZcQ9jB49HhzZMnL9+8/fDx25//spsuUQTLqRpULAudv5D09j3N6o56LV1vDyKvhY1o3Xbk45QicmQH288VxTBlFVuQlR/UUI8UsumdjbTdTaQKlSrZoBq1KroulgrbeGCSSaeSGWBj2VR6Zy+dzWaymUyhSqJ1IgXUhRFkxdZYkMzwxzIAJqUKyVIA7YUyCGRekplyOl9l0bZqN1Uq5cp4rknXyqUqRZtqU1SheDY5Aqjh9tZeia4ToISIXCKZLUL9wslJ7HfBQXQMY1B6s/3F/pDffoQnN/DtdnPpQkX7gw1Hrzfo99ALejjqgRoG6jI+evLsMXZBAwrfXV9d395cnAP6Xlx8AuDz07PTo/PLE6PGa4rXm/h4BA0ICu+K5fX29GiuUGy9nC+LOvAsiiRg9WOoFyCwgq0GvrsB4HYQ+arodiMEYJwRaGxGXTwvjjqw0UOMHXBttHb7BMCA3Mg3w1a31yRK2XwpBz8Jogrqtl4tJ5KpQqEAapFsMqVsXYdPmK/DQ6Hh75MVNrO3u5ev1J1+2Fn0saPf0aXJ/iQOda07jzERkZKmsyGs9CjGeKg27oTRZop9uullXh6cnkbYhIUHTSyqB6M7QIvWwWR2eLSYDDqdvq+rQJYbDRwRVUwQCQjA09nS41mWrAG/EHm8G7DdIPpkQYbXrBtHrJOLfSpdqRXpUM3mcul0MkVU9vIkkSpka4VNKzRQ+nSmWpJtUxfg484Xa1VQwHgMXecEVVZUUORhu98zqRoAsAQA3IqHgziwAJ5Iu+3oHJEpuKPIEOClM0BkbctFQmO7rV4nMK1ok8vwCYBZQWoaQYThLPvLXrgYRqYEn0OdFnUHdlsYN+GP0NUKqyAAu62W78D+nkxH/YfcZQJkoeb70md/F9Q0oaHAJgLaD6uQtKehKQpkaTLwFIEiiGWv0+22HDzu7+NNyGgICtiBD0IC9tCdwJNbTId6TQQAdrr7d99pdWD2qq6CCps++fDFN9/++k2FrWImBA87g2bRhaxYVg3LwOyg/uzg5vmHN2ZnAWuu47SOvrq1W66jCXYraB29/smg3fFiK5h9f7DlBgM7dlqWGwXDq2evfvmqpCdJSrn62X0jQ5SrsAe3K02iLnONLIinYkFiq+kkxzRoBfRCp+8wbLYmGvHYYxrFPFUWSskaVaPJgsuX6w22YdhB57C6tfPDdGP7jxp56o8KycQP/yj1wwQzWN0/Hk1HOKsixmubTjGyf8/Tnu51jj7eWSYnLw8lTtOunkOBD+PFV8fK9M3ACo/e/UWrvz548bvfe3GHn11eeS9+rA+O33MVsg6FGT4bTVYYXmdG9OyNG9qdy5sVKOD7QzqTq2CvSrVcq2fKOBSRJ0rldLZaKRI5KF2FXAZ+O5fB9PJCrVAgiFKlQqYzZCNuSTYetjpBMPoPs8MffSMMejicipnicV/LtfXSKpB5g2lW/MEVb3W0kyjfnQfnXyh5PsmLAE1S2cJTUN4KlFBo3g6jH680PbL683bcaZbN9dFRK7MnDC+7xf/zw/x+v5N7qB3f3PSVBzt72492sN1lZ3sXxczmDngHG7KK2CVRIRIp4KiZCtriP8hDBWQqJaKYbGJnr6E1NRCslSqNoye0jElGVaIhoNubqBqywHOUCEAdoDueouHdqCkxokDR1WrcRmgC6dCkRQkkWTt0Q1jrPEtRDKt18cg28DwPbyhNXaTQoxnDDvkg9B1DlxHoRIHj8b4Y779oPQg92Hh45UZBPW/yLCfZrc04PLxOHQC4i3M7y/Hi+Ohof4gOzhiDFEdxZ9MuHGIWktFUmngHTDNkreEOOr2O58NvhZ7lG/AydJkBsS6ZjheNpmMcJlqu4B89xNbQAcKkqSCA0aZa/gTAgW3A67ex7KEJPp78buIA224M2uLw9PL+9umrl8+ff/b51zO8p/b8TUiC3x72FhhHOMMmLgtdojcGf5Oj2/efH0RQG7GHdT5frvaPbx/fP3/95v27H33/fScPjFTkQC+AaLAwBCpsxS1Hc7qDTmjoUTfyQjxvbwOlwNeCXWG+g+NhwI00zVRkHEOChZrPJncebvrxEplKHT8Quk5W8bCQKKeSG4K2u5vcS2QyqUwmB6Izj3CB878oFUEsNnULIL2eT+6BhoZFD2qObpAYbFRtUKzIVdN7uRpTy2SSW9vJxF46XyJ5EnC/WKGbAg/VdjNymt1chhBULZ8vlwsA9nmijvirmbrEK8C0mrppaUp7vFrs91kgkdtbj3ZTGfSCrlp41N/pfjLexLvg0ajbBjU8GY+OHz++e/ry+ZOnL59eX97e3VxeXF1fIPaiF8c5QvHZ1c2FURN1FQA4YChYT2QN9j7DG93F4VylhQZRLAsaOmE1gJfShr0Zl9t068KnFyHGwTrVJL8bAgDzDTwfAoiCCg86pdPvxKENG8I2MXhIbMqKZuG0uYNdpwDAVSJXIHI59OGo1jke9C32wuULpSpBikwpR1l6U242yhUQwDRLlsidrYepYiJr9aLBElQu8HhNmq5HrUCVO7M2SFeuIQMAd3udqIUeGXFnMIZ1+18BeLVCAHaMTRgSzzI03XRbbViqvdFkenQ8A/AAvgyLm2nAagAqoZhWq9sfzBbwl10Wdkud4wSOFTZu0BsJjK7bQzwlmq1Wp2fLRqZC5OigmcoWU6lSnafzvFhNF/PVYi5frqBtSypTLSuObTZpIGpA88lMnhHw4oIGINQ1z0Gfa71RrVRZoJchUNk2bFlVYevBKLKFaq7kB08NzQAAIABJREFUAJTCi+BpoJ4RFE4X001gkw7abbwHnoxiYPMyArDiwI7tTpcHSyda9VxDZgC2Bd0HVd+fj4GviPB9cXF5YdDphH5nMJxNTvcfNq9Spu6CLNJf/ZPbUGlKAukWYfOKTHrAdESOJKYDFxhXtTbWSTmwJEq2QNf6vgXs27IMVBc4thG0+qNIlupZRjQ8p3vw5OcaKTUVSTdkWe+ePnn5/kd/9ZFga0JTgAdSLpANWWCoQllDv3HL9nvz+en1/Rml+6oO8Boef7OvhI6jMpKsmKOzV67b90NZaX+zflAjqRKnGX7Lb01PH9/82V2a4iuNwf43t3SOKBPFYn6nKldpVaCQ3lYqIlXNJnHwXvWgZvYtisnVBNmOTLpWKNYLXGGPqBNklfSUcq1GEnqrPbqqP0xuS+nMo7xffFDYe7BHsNUtZn1wfR8P2hpbLHGzmVLfY7XWNS/aZjy8/vrYthj7MhZk2X184Hmm1z98u2jeXnhm6+DDn7R6+0fPfvtbve2xZ08et998JQ+untCVaoOjqIHEOJJHC77QUYc3rcBunV4dOMHo8rCZqkkitbuVTuHV2U5iNwVghp2k21u76S20d9zdwRi2nUcPtxKPNo6PO1vZcjRnSUZXuDoFn3tNefH07cdzkhag0MCGNmTPYqm33fJw6DQPZ0RNbD0W1l9xR61Cfxwcfqll+DQ62ZliDQMDFNFV5VHNPh0Mf3ni2oPhYdSfDuvbL+7VzKNMdHp4RHH/+c3Vm4vco4fa1clFt4kAvLWLNRWbofc2HVhb8Jq3dlOFfCaLna/pTKaYKoIAKj/IFRoch3nAKREPV6EQmiJPlasUBucwKlRNGr0gQP8KgAMSzzYkSTVRCEK9UQCAVduQQLhyFardsgPPQfcKuikj1+q2u93Ql0WG5ji17QL4bu6BbRugRMHxNxE9shicqwW4sA3AOpbh+U3GjOsqTgB47uPVWpNtsM0maGbJ9GP0pjckQdQ0IF7DQW8yGM3nq+Vogv2OvU67g52K7U7kwtPDbDuab+IYMANry+51+v04BkEaBZ6PrWCazOLIp+X50WgywvE+kMBj1AdAloAWGLoK+0dXNA320gaA4aWaphtjGnCIdRmtg1rYGTmYro7ODg/Orh6/ePHk6esvvhrLumVDjYmASNhBf7J/dvfkswU21aKlT7zpa1md3r77sA7aOEi0kRiz9fri+ubpZ+8/fvGzX3zfKdeqtMQLkiAwanvQGS7nQ3j9XjQcdWIfygv2JfWgCuMJaevT6HMAn6ONV8DqvwMw2qzgSBq6LyeKdYalQNlW8FQ6V8Sw4EImsb31cONfmkqBQC7gjXE2WyxXSJqmKUwRpnjNtS2NKWaSyVQyhSlIRL2GGQzFCtQDtlFK7haLZCOfwBauXQDpbIUEvZwt1hgcM93YfvK1LLyKrd0yhWOx+WS6QNSg9ksKJspxAmY+ikgclPZoMd8fcTtbiR3gkclsupzJEkar1cKu786mzR3ngIedGEQdfOyHd/d3z149fvz02eOb2yf3N5eXV9fnRydnAMAXAMYXGMtwfa5V0TKgPw1oAEAc48WYXKsHAKxxGNxW3FAAqgEUlcIMDzTTRgBGSYTfGuqyJge9EKNL6yQF+C3IsHDcNhr8tyOcB3AAgFmpiV3zpochhn6Ar7lZLecKJSBCpTJgEy/WyUoyXczmc8UKUeU5osgiUZQaZaKBsRdEvppMZEhqJ+WP4vFi1PvU9z9ejuJQlnsbAObr/66AEYBhFQ4mG3+n+Wz2BwA+OQ42AMxSaDjHyd4m1xejRo6OJsNhN+xAZWmydbJebzCCZjoRrEAE4NUfABiBG7iEYTo4S7UBYBwUAABeniAAl4sZOhCS+WyW4FXYo6ZK5KrVWp6o1Or1aiGdTldKMrDNJpD5Cjzwcq6m+4FrsKSIHj6e7cPmMBrwV3hFs0F2tgK86pYEOhj4lszWav4wNAQOKGDUH3bb7XaExitAVKdj+DmZzsdoDgVFg5M0v9cbDefr5cqardqWqXG8KhsBHirNjmbqplFLUDazxy0cJZ7MpsvV45OH2kXSaupSK1be/b1XhTrBSG4bCpmmK4w7DS1YD+Swa8NrIslWy2q17HYngI9748be6fiuRjGcYIatzYjXPO7IBRFN3ToHz35pU4pqaJsk6c7h7cuvvvubb4v1KvZ00mQxS1TRUTxXkBR0ojfd3uL61bsPT9WoZakAlPHJF7NmYFsqTghYw+MXwLTDrm0PvjwkeJEpM7AibMnuTs8PPzugG6xqU8MPN2yhVipViOJuXa5QTbaWr7JshRCxCavBsryBVtgDtQ4AzAmKrdJEsVInxOJeqVqq1wuyTjQwlyyKh7f1B/lH6QcAHsVHj6A0pDOJ/Ba5XNy87o66tpAviKcTsZwRzNmak2Wtu3z1ZctQGP+pTTXFyVtHAyiYP38VaB/PZHt4+u3T7vLg6vPf/1jtGMrh/WT0zeOo/+Ko3qjUWLKyFkiLCcqcIrizx+e+b0eHF8euOzs4Oy9rpuGiueNuIpvcBcaeTqZT6J+xuwWlanPIu5dO7CWTiUTyUSqbAu35SLPOvg3SvECJitwE3T+azI5X79oEz+A0R5VopnLk3oej/MywG96qSlnBRe3pvzQe98r9UWv9jZLm8oBxqs43Yh8NsYeKGVPv7kazn48MtdWdxcGkV47+3NmumH5vuTj06v/H9em7bIbcFS4uD4fmo90E2tw/QgesxCcA3kIA3k2ksa4WicxuFpV9lqhUig+yuQZLV0qlYlYE5eSZhmwCBy1WWArUD69rIgYN0hIoVAlWAnZEgLKysD9f2zjV44WuInEMV6agBqHFlC5ydcVwVb/TidC/FX6B51kpaOHYLACraaiw5DbZwyBNeWxsQsd61/oEwNg0QrNN1eAkBcWnKooCU6s0MJSDxdQMGQgADrlqwC+REU9n8wmenWEWOSblAPp2oVxEAPcbAC5TPJBoYA51ykXjQsCrEONtXDT+gDeIAIwKeDgeAAAPRpNubzToD3qh/ym9SZY3nWmCImkAwICl8MPfDN3iTTDGArTDqD9borcOgPf+1f2zZwDAHz4OZdv3ACPDAOonTgae3D17u7A3x8R4Nt3uT5ZHANefLTFTCTg9fNvR4nBxenX97M2HL7/+6fff90oEQQLrEQSJkTqT4WQxHcIf6/Yn481B7AD+HTAJz8M/nUADZwvgczQ1Bfu7DUXGLuhSPptJJ3ZhKWztFhoCcJFSYRPAsJMEPlYBIMYBJSCUuEq2E4lEKoXBwBlUtwyLuUGNOqvY/x9T79kkSXZliQGpQmvl7hEerj1cq3APrXVkpNaVVV3VJbpUK3QD6MEAGMzugLPDmTXDYowcwdnZXTOuccxIM9KM/MYv/ETbn8DP/Cm81wtYY3Z3WXVVZmRGxHv3nPPeved0W5ZQLeeAjSbSuUKFQttfENGgYOpcvZJOFopUrZhJoQ05bIVsFXMfUpioxKOlA7yMIpHBnyFarKPxVi6Zq1Sx1RbwV2LYhuXBykEvaFUbzjfrs5UYj8CnH8Wi6RSIrKLe6YQAjEQFHSnH4zGaIs2W88nuyWfPX7569uLF0yfwy2dPHx7ub64uLtB/AwD47voONPHNuUHxutoczVsMRVZqNKwH+MmM7my31DmxVs4XhU8AXCXLtApvOR5Bq4bttsIzXpSPga60Rh1Y72J4PiTIuhMETfQ0G4QAbPqOgCkGEjyQ4QN2w3LHNmiZAAZRKpfC7EZS1UFug6zPFuBVLFY4rlJgbUNSG3SxQnMsQ1OFKpAgXkkVh8v+fLEYAwA7prnYLfptXR9t+k1U6uEd8P8fgEGdAtyEF8DHqIBPmq4NCIueX/AqK3Z4Z4OtEmdn8+l81BkFJmb14pwDK2qW0xn9VwDmAJc5TmA5HJ61PTyCHuDB63QCuhM+5+JmV08DceM7jWw5XWQNpHyuWaWgwhF4agIaL59KE3gEbckMrBOyShU4HwjwYmlzsqqEJnnt4chhgRjj6CxafQZe4JmaxDQHjqmJPOPDjyhLwP/6c5wBAgwG7jWeYK/3HAdxF33fxfxgPgTgcLp345yf9EGYSpKpmAGmOM1PZg1VlnhJaADLaLXbaNQDNWN99tnuwL2I24Ytj9vid78PKEUWgOf2um1HNTTOm3q2CmA57jvoUFr1h9ge3cVjOZDrneFqNun4BgtiS0d7j/FqtxiO5awgm023f/ryt01GA5bR9IKmP7l49uGXv/z9n+YpAofP+XqlQFWhmrKAZPASm5blDVdnj198fKZBIdRwKvLyy3OzBfoG4Nxvb558ORg51qA7OP76gpJslWYc2W05/fXF69e/fUwWyq5qTr58YHLAI6GWx6tSsabKtUpV4shyQ6HSufC4Bzj7ZCJVhUIVS6nMAH2mWbmYIOsUy5VFn6SqBMWDnnio7VfKiWwkW0yYpR8XSnvR3P5+Zbl8eNMfjUyciDmdq2lCcu8DWpPM4fbdl6bOy51XzZqgXnwnqUanf/LNSz34cGZ2l3d/sxmdnj371T/fNccN//7F7PpPNr3phxHB1SiGJrZ1ymHbBYtuNozLy6bv9S7urgJ/d366ZRcdzsnEoeREAM8AgzOxTBR4eaYQhT+MReDjKBWPJeH3UcTlbOIwUp3+5d+aKRXWIqwsmReN3bPXu5/wjAYkDF5q05FqdO2bRW4WqPRgW61wnWv+6nfm1ZQaTHvH3zdyQqnBi1AgqD5giKR2lIadOh7Pnv5lvwU6ajP0ls3Gh3WpORjYvYuzrSz9748PP0uInYJ7+Xwx0kMFHI2F5TSVxp8s/IglU9l8NpPJV/PJYqFYK6SBjhcPslkGKDdBVvI6ng+DUHFMXajUZaALjGzpkkhjuydIQAyYBcCs64rh4VgiOtWjmrVsAGBerCBDBCxt6hJf0+ym1gQQDIWmJomyqHc/jc2i+IQ1CQwXagIwTqaqgNB1TOwyBiUNChh/ZUEzAYXTDUPFBmBgSXUR55A4CZsrlDDoDaDf8UF6bs/OtsD71zPEX6jOA8ww73YDzDF3XUMlmLCFiwWeH8yghAzHwwADjTH/2wIprtsmUuMuKOAZulFO+zjcMhl3W6A6QCSD1gYFjAXZBADuBGiiF+AzCTuxeuG9JLpTLZbLzfFqe/vs+ecvX7159/GbuYmuzK4P4N4JerP59vzh+bu1020jTfG7rd5ovjm7ffLqi42P4T7oojAHFX368OzZq7fvP3777Q+/mWFojhJelwtKMASh1UPDrgnIvglgzxgAeDBCCB50cSIK/Zo6OJ4A0tf8AwCrPyJAtuJZDS6ITLnG8wxZzGbiRxiZkC5g4kGxVC5kU4cggyPRI7TCyqYBR3N4Z1mt4bUky3CK6bsa1OVKIZ2IA3iUoaayPIvDOEIDxW0yTTKg3ahsPBYvlHM5EHPVfBoEsiiiF5lq2mIlm0Sgz5EUmhbmSiRFi5hko7B1yQIx0xAVEwOmR6vj9flaih7GYB2ja0g5namY8Nx6eAQ9GIbzSKPBqD+YIQCPj588fwGs5+Xzh4fnn3/2/OmTh7ury8vzy6vLawDgJ7f3j3c31+d2VdBVtz8N6hRZBl5Qg5okaMHoeGnCfqsUioKODQssWSnCAoY3/VMXFpbbTncw6I8HgaqADsEjaARgBmoY+pK2QMn18QjaNj1HYEiCZIFZ6i4AcBMBuNsHAIbXspTP5QuFUkVWCKAf+VS+mMuXCxW2Xs4zltHQJbpYrjLo25gjK5USr5fo2aoH7/Wo1wUAtucn88CR5e627+mazCrrDSwAAODwIKY/mQM1m6Mf9PEWBPDx2fWxFwIwK+GVHbwBDl66TqbT6ckOxPKoN/RNXRWY0DkYKqaFd8B/AGBeoKt1XuQAKlVErT+kT8GuGE1Aea4ubnf1VKGYY1tytpSt1NUW7Cbb5UUcR6RIslqlyoVkmiiptqkrDI13/lXZmy6Xu7OdzwGZRaM8PA91EYBxcqfbC9pNtKvVRABeHB8WGa/fRABmmcF80m33R/3uoN9HCrCcAV3dbJcD0IEyJpiqHtqxL5Ync/fkZOg5hiDokhFgeOB8M1VUYPEK30AnjhYQ3/F4uZitzp+sDtvnCagB8qAlff8PrZrC16XmMPiDF7Q3wZZUpjoZug2pThCzcdNp9bt6Gz0AWt3xYjKELUEDi7OD9mi5ON4uhkOlYsqwDAbnr/+NV2vAnnHxInJ8fv/y+5/92z/LQ7mXxAZU3GKNxjpXKiuKZtiO4482p/dvv/3c7Ae6hma159+cGW3HUnnDc/3l/cdu1zeBx28/3NCaZ/Mi6gcjGB8/ffWTX97qkZrZ2P7knkqUy+hqGAKwpdWrVVhUREOtJAuMwIiW73dHA54SQBkLIKZqxWKFbDSKCapOVKuVepukubrIA9m6pfYLCTodz+9X/e5BTCHj/DYjHa+vHrqzmSoPe067Y6WqcvC2QWhaa7J+91Vgcsr4ZSDI2tn3DVsKFhfffy63L5pub3zxd4PmdHP3y3+edia1zhdPX7z9fuodf/TKbB0WPDWqVl0hqHjyWOhcbYCvjG8fr4LW6m6c5p9tORPVQRpvovKpaD6ShIJwGMknMzEoaYlUIgIwl0nFoLalY/F0NEqoj//X/7Hpbs9ud37DNAT55fs3P7z/S5bVRLbOAEMUKqkCfdUp+5xa1nplSnCO2fZd8XZEdead3XdilikCXSuViFzbc1ua3m2rx4yxOH/4teq6ncnYni1lROuZqbigFO4Pn/3n7Rc3Ea1NbM4/H3apAzxqjIM8j0UTUEZjiXCqBP8HKHcul6cK8VwhDwS1BO/VQS4D8ga2TCmrgy5sAWR4qkiTvIwVRoH3H31sGHSCcBw0hBEZRTHgs0wTABijfeE/7KsXymSnY3tQcyRJrssGaGkQf8N+u20omCxqdMMTWwAsPHEOmoaE5kcSLAIZPZUB53BqRgEFrJkOLNqgC8XPxfMbINcK+vZKDUWWdcvwgVSjZQeAJh6pTZdQcC7P5n2MyUZNOGgjP+00uyhWHdPiJAwlZxmyyrTmIB+hkMDChi/GM0OAKcO1scaEEgL25XI5niymo9Go3/F0VUOj6xCAQbCbouR32phjive6rT/cAmMPFOjm5WS+OsYR3kdA4Fdv3r77amk3m44NL1YLnnd/sj05v318s/Z6oQRutluDyWx5cnX3/sMWXUBmk0/HasfYhPXm3fsvf/bdn/zFslSuVzUo5xxwD3e03o67CMDoOz+fzOfTyXQ8mISFcdD54wceQTtowYxjVuERNPprYCMeLIoUDuHWa2SpkI7i4Ug8mUzBniXxNjeWjEeikSNY1JnQQTyXzWZyINqwFIsSAKXaENg6UUiGAFwqUzQHKoUTdDRwoXPxFFEvF2i2lE4kK9VCnlUllixkSxRfBxAXVFvliCJacSRShQp2JIH+ZVip0ZAVkebwuBzef0V3PEUdrk62ZwsxgkdgR7GjVIbMF0gH+EUXdRisqi4evPdGwzDXZjo+efb8s+d4/vzw9MWLZ88f7+/vri+vzv4AwADLT+5ubq+dmqA13MEMAJgiaYZFdc9rrfFmYQoyQ5QLfAjA8LsibXqhd4iBpvIgADs9vOjvNVW1DaJMVSQat4eoYihIMwgQGloYDObYIkMUy4ymy4oDX4oeGQCOSpUqYhhkuVwpVUieLxeJUqVcwuDcQolhQwWsmA2mUqFqNCjSHFEpF0WdVTCkcj4D5ddxTXt2MjUVQemuB000DNHXoQJG/yhsg55ggzIC8Pp4u9msNyeXJ03HUhqYJslB1Rc1L+j2cYPMd8eLxQyWLQhpgBwsSgC0ptUdhwC8QgDGQRMAYB7eddiGAfYb9oefLkmW883m6mZbS+ZK+bonZ3L5al10fcvrBKyiShTwjEw2m8/nQgUMb6vOAW0r1xjP7Ux3lydTlxZ1xfI8AODRxGUIHF/T3W4v7K9wkFu0pu2mIUqsNwjshgT0rz8Z4ghaD3jQANN8V+HI1WYxaHlQSDhBVt0ByPfZ/GoSbHbjwNEFQVGsDuyM+Wo9h8dUZGwwcJsBPMR0ir7r29O7dbR3kcZeRadrvPgPK1oWaSEY4viiaatVd9J0dblenY3chlgnyG4XBHezGRrAox/ldNQHhKZrvGz7reFiNpiuFxOLwtQLe3j5/q8dAOAm1DAoqrPLh5c//fnf/KsCU+EUTqoD3avSeLheKqtaeJLogwK+efPNc60XwCJ1Pefim22jHTQVWgkB+EOnve60rObuwyOt62pddKym5bUnJ7evPv7qX/7KzbnS7rt7Il7BidJCqi4X66pMlktMKcFJQjFVqssMEAWoNF2OxDtgUWZrNJqhmnYlhjl55TrlpdLFZJb0Wq3T8n58D0eTsjkiR1VSWc7UKXu7u72dHI9Vznd81XLTFan7FV+Ujc548+HLrikw80dQKtLmK8EQgs3ld6/F3gXttyanfz2wh5u77/9h2l2Rk89PPn74MG2ev3eqsPJgvzWKFZVWKgbf4D/85Exzm9PHp+d+Z/10dlRc93kbC1UR+GoCtC4VS6WilfheKgVYlkml0gDHqUwunUikk/lUAqoaJ1Tafc5pKP5sAqV2+vj963d/9Rf/7gTrbm+8Wq93tqOu/8v/+2w1bSn/+jcgLc6fe7/6f367HdDtTev4GyFby0uySVTqmY5rtHTFCfipc/6z2f1fGG2vv5k217b9PNe4mbqqMTk9uYl8+M+TX46S/0FMn56+XAw5bMACtE3lkhiyHj36FHETw8TX0JChnI+mirlCIV2Cj8NCBm0G0YJBh4XSbnXbribRBN+oATFWbIWXOQzMBiGAwUewJeuabmHkrGl8+rAsXZQFhimQ7RamHzkAwLSku6bWGvSHg07bVEHWCtiV1Q1bglvdPqg0B2SnrTWUhigDXgZuE4DWNmQOPhWT0XDHB2GWgGObDaFercMmg88FDhdqXxDfeDSGNoyDxXxxcToKEJjGGJfd6+I/fgsbgk3YSehEzLEcVWWC+QRPl8f4XgRNyzQBVAAZLNNptsJLtMVsulpOZtjdAjW1aWE8hPHJu1rSVAsAuNvxP/lvfOqC7raDQb8L5W91HLpoXJxf3zygBn79xcel7XjtLrCEfhtTkzanF3cAwE34vg6mK7dHyNiv7z982HphPzcaxKOH0d3j4+dfvPv4ww+//u0SJCijyJrGsXVW8afHy8EgbJWGSostqVBKPpkzjgbhpTQSg7Yf3gHbXmi2CQBMlvHkAyA1lU7GkwUQb6CySPTlODqIxOKJTDZP1JgakS1k4/HIUXhcEgNWiVcYqXS+TNQERdMUuaHp6NaUxqti1HJE6NBR57E7Xapl46lUsQzCuJJP52pMMc/CDq8WEmmiXskXKU614F0k8/FIJJ1IF0uZbInA1nbMSpc5WnB0WGXheb+rqv3V6e50IkQOQC4fRg+TKaKQJ8xeF7t9xxOMZUXD795oNEZDrPH04vlzoD0v7q6fvHgBSPzk9u7+9vr67ALNOO5uXtzf3l1d3d46VQBgb7T067V6FckwvA6sEgDd0gSpTpZzLBRDia2TlRKDY0joJIbdgJib18OL/o6n6p0hoJ/6CYAlLJ1oyjIY99B0w1YsEzNeCcGyZMUGkueHCnig1moVzF4DLktRtYZI1plSuUYSxRCABaLImpqsKxwBYERDTSpC5cwLasNeLHrzzWQwGPUAEubnM12WzfFqEBhAhczVGnhiv41u0K3uEKdTFyiAAX2X8Jvt2ZkPWwcH8ETsrACUgJ8Ex3mBsa4WU3jQwDRwFpWmaU42HFAqCMDL1a7JYSoiy2LyqI7Zs/CVSDXDa+DZerbd3VyvqskiVWKacjabwxYPy+ms26TsulQ8iwlsKfjIUBXNUmUL0LxUqkOVsEar1bjt1GVT1iwAnc5o4tDlP44htTqehTtDZv1xy9OFBh/AJzfwVrw7HnYH3X6vP51g/uhyCbxru/4EwKKCY/LuYDzdzqZ3k/52M2m7OvB7xe7iCoHtAutWBgBWTHizeti+PIJls9vebqPdsxTocUcZuIt/eMZKhsh6k2EPFLBj1O1J0NSlOj0fORLPVGuToAevYDAIPWHH0xGUm8Cz2Ronu+0urKLZcjvu2LzcMGxrdPPxb2xasz2cU/O88cXj+1/9+ne/BQDmDVDAdaJYremqyJWKUO8aCnphT07OX3x8VPpdQzKsdnD18VTBaAoWJ2FXD+9branXtIKT19cMCAZJM3VPcYPx2dXnH37tpYQm6a6/va9mqpVcpVhMM1K+aul0vSpTWY2nC6kircHPGUAhavMkk60qokRTDEmUim6bimSJEs1QpQ7XPrt6WnI7vfN6NJuJAOSlc8nkUTx3lBWSXHB89dlNO5BryWTcZHg7nRa6H7gsI7nd46/euiqXm55XbbW+eg8Crru++O4dP/lQ77dObn+16G6vPv/uH8+GF/zlT5/98N2HkT9+34Slhz5nTLmq1uV6UCumuv1tw3Jnzx5P3M7Jw6WYMjRPOYoms6WjSGJvb++wGontHQrkYTKK5PzgCCoW3rhi5H0ifRTJpaMA1PsHh4mDg0h8by96tHdwdITX2JEEqJBMsUJUyKIgsZQvibC6zjRJdnaXd6/++nfBkO+e+ltgFPWC1LCIklYYeKqv8F3FmMmz79eX/43dsbrbcatv3VsHxrprm97s5Pj66Ot/WX6dJv9PM31y9vmiw0eTySiOewIfSKGxUSoJKgePy1N4wEVTpWI0RZXLVAbYTylSyMKWp0q5bMYCaGlhyJ7jSBSnSfUqjQCscCQpgtJ1MTda4oW6ohpOEAYi6CE9dgCAJaZeoFq+gdAIKEpIuiUYLezM7XRAv3ICL3uaqioyz3OK3qALuUK5UquCEqAISgMBDTs97JTgRLR8dNG9cdTBO1zYkaokMHWgcRJHMxroZxfvlbEw2j42Qw7W6+XJ8biPvRkjIOoz2KdQL/ym72MDr5eZAAAgAElEQVQSLc4JNuRwDIkNj6AnE/wsbGtBL1tVFHUTg9p6s/VqsZzPN9PhdDkdTabY+YLfXQnHDKFkqJaEAIx+y/DEekgSeu2m0w6PQ7Gh6nh7dnF+eXn/2eefv3zz/uMaNGhn1G0BlfChFMy2l08++2LjdTwXXj6/7Q/n8+UJiOK36yYeDqC3BFTP7cnt/d3j85dvvv7pL/98UgHdLsNuE7m6JMv2aLlaQ53Ffu8JNm7hPTBO5MBTHqL6DTEYFTCmVQA5UvEOuFZC/E1iy0I8mSsT9TpNlAmylM2j6wbAaSpbqjFElqhW8vk0XtLCEoon4HfRBCBwrlAieYzXU0yzwdeL8UgqDfU1U8KW/2IRswVZnqNzMZDN8PBULRXPkGS+WOe5eikZz5YjkUg8X+O4KsPhTWspmQHumgNJyEggzBqqVKOx04AFxJPRElE2++uT0+1YiB9FYeeABsa7E9rGk2DgPIPJEJ76bILhtaEl1mx2Dgr42ePNw9NnTx6ePL0NP+7u0Afr7v7u7gn83+X13Y2NAOwO501AT7SiLPMCzeqt8WqosQ2hUsrwlqWyFF0hSUa3UdfDf5YDogdJVC9sjnWggAFYQj2maui1j8ez8A5PRx1ga4riO6LAEJyqhQeLoLfwNKbfl8kaVSWx87qOKYb1GlEGQCYJokKAFOdKOQaUnyWyZIlCBwxsiSxUWFNtdCZDeLdhvQI22ZOTkQ9kcLQa+sApOQkDFYAmdgJ0CulhSNZkuliv16fr0I7y4tw3TQ02Dxfe48umDywQZ+RHuzPQzv3huKcpmsChJxgPgOjgpBE+wNYTeZZB/EUTNtU2XdfHKEJA7/FoOFmNT0+vbuZEuVZO8I7A1GhASLoRjBcqbY9cIpHKZrOwPvLosaLbID4ZWCMkBbSnoZnD1ZgWsElNN4xWf9Cz6RJFsKpuBW0XJyQcsyGDCsUkMl0KBgECMCfA9x7gaCCI8BHGHm02S9jux8dtq2kAx8D4NGCws9Xx7qy32U1ariHxMrZT9Scgl2fwKjRUQ8WzXoyuQvjd7Lbzz24SzJkW7QqOPHadf/pVRle5ujcddD0PhHvNHgYBOrP0u77EA3+fd6GitbufDPra/fliNWkDT+BYxfVbg8V2tVn1uy4nwKYzBhfvf+cwkulgW0bgD6+evf3Fr37/55kaIUqahMlkHKNLEkMWNSgutqFYg93Z9f27Zzpa6xuu2774aqt+6oL23Pb67uMQLfD8YPH+QQBNwoMMAnYYjDfXD9/8JHWQI11t/u09mS3naoUymS2ytbKtymfHnlyT6kQukavRdckBAG7KSiFNYEswRUlZiihoLSITo2miThaN8XTp/PYbqzfcSYelSjadBRaezZSj6Wy6oZa6lrfrzpdCAh6OTDB2YUQGU0WutqXe8hZk4cDI5Xi77UwugL7ZwfjmuL37xu2PN0/+6XZ6bQp/9r8uhrv63a9/8ie//aLrrV55AL7wWvASn9UKfFnkhtX44FJ0g9XNi505Pb+/zLj92ohI5yIpPIYW7WFiv1KKZzLpTDKZiybJDKBvLhNLYLhbNIdO86kKI3N5KpUnM8XYPqjldDIFpP+wGE0AHh9Ffxz78d7+/uHBfnR/PwK/2+cS8dj+/t7+3hHA97a9/FLOMnnelKlKQ+o5rk9rvm3J3MOvnj3922ar2R+f9Cbn04iyWi9subk7X11FX/1Pd92j3X9UYpPb7zsTMlaIHRzGkwd4xReLRQ+jMZw+AXEezUSy0Vi+VIykCokM+i0U0vFcukzSZKFUSlnDVrONVv6uwRE0aFqWbliaXIN3TkAX1abfcmBnVlXbbQNQA4XFxFnT9BoiDicRVNACTenasiTWJdsK7E5v0HZ7Q6jaNU5Qphib23bgqwzNwpB2MezzooqU3/SGbTcQbKHCcjUR4IGUTNPyA8/A6CBYnQK8oaIk83VWdx20avNcB2CsFbSHE9iQ0/F6N+8tVqvZdA64hD1JQNmBpwKCWhijAB/wI7Jcd9UfLBcDvNHqur6DDEJ3MFTRaTZbkzma6S7hY7WAzdwb9FsOdnmrmN5imRLIBUn2By34U/j09gB9mfqd/jS8d+4CmgJ+n16en9++/Ozzd6/fvH0/10wX9rvfDjD5FATyyf1nb1YumiZhTR+BWp+urp6/fH8Cmno4na7Wy+V2d3z88Oz+ybPH+2++/umfzVEBs6C0sNHEq1rzHlrgYrvZZLzo+V3sGoPnMxr3euNRAFgBtRItNNEK2jTQ0V8TfgS7vFDIZbKpTDqRzBRLeO5E1GgKgCaXCM+c0/kKVcniqGalkE5GDmHhgDBOJBK4SKCWFoi62MCTeFACxVgUWF0ylQH6hlZaRQKQBUpwKRkLDdjKZCYJJTiVr1KlTAY0cSZ2cBDLk1xDRZ8VFuNuiVIBgJjmMb8Q6m2NkRh4FBEUtoJjAvZgvTs7ngEAx3Bs+DCSLGTTlBH2nAMCA+fCKaQB4BIaccwm07PHZ49PHx8enz1FAA6dsO5ub5/c3T48PsLvr29urq7vrg2K1xRvMHMBPIkqVa1yAHZWZzzum7zElUsZDiohR1EhAMNbj14mJk6iB58EYAdA1ul2fXwaIOarnIiecCA+O/0RZnQB32o7nIj+Mpi8Y4eJXa12Z9DniqVipQSMpUiSJYIKfaIqFL4RpTJQUIxEwg4DuoJD1QxfKSaT6UzVr2TtYXuymQPj6DQdUMDTNizC0WYcqGqDk5eL6bDXCW9D0AprNh1jSsBqvQUMXS+Or898vKoRcbCJR4uTZmcwQMes0fZkPRsPRpMBaHmuTtXrHKCVYfeGQ+Ce69XWg8+vM9g8jW7ZILWaOIcVxm4O8QT4dHd2vkY/4zJr8hyIRb5U4IKFWSX0QKlk0HMEB9CAi+FfKjZH1ahCuc5KmuFPB3q1julipmm3B4OeVStRJKfqdquHFnG2pTVErtn3AYBVqT1uuyrodx6/NwAw5kGP8NYJQHW+Xu9Ouo6P2ciyqvvD8Wy+OTk566yOpx0PqJymuvAVsMcWExVjrTEbG0/TEX/hic5ny8eHHH1rRLpKWxpbzj/+JoddJv6y13FdU9Npd4wAzDK9tgcvYoWadVo4RtqCf4A5DGfz5aj1CYCxnWy+WYMAGDqMgqd248uP/87BTFbfcwE3x3cvv/zlv/673xbqJFAaCa0HmZomiHWioMiNhmr7bcCp89u3T3UH+zeguJ2+OwYAdjVOsS1/eftx1BnCCrNn7+9F2zRF2N2O7fiDzc2Lt39TjOyzf6Vbf3LJpivFAkVm4yRLMC1G6d3cy32VqeSyJNAwyeyMxk0ukxeJisIyTI1PA+0U/Uo+BWuSLtKtQG5q4/cXnn9ROURbWigN6WSynMkcxTQ7WsmlS/GUJaG2y6ehqAyLTTbVino5XuDEvSioNs02jGBqE00DWImWP9xLR7Olcraak7T4/upXsBRy8DNf/fq7YWP9LVdWWFY02IJuaYyhZYk5H5xdAkta3d4N1O3F7W1aIrvterYQjx/GS+dvnl3+wt7PxuHnwgPddJbIxpOHkVQ8nYF6dRADmRlPZbL8sBZ4oorDL40CJ9cKGU4kj7hKrciWcoUcqAYmWyzncvkYCIFihaxEiEj2sJI+TKrj9uVHJc/lBU2uVBzaN13HlJoex2QjDe/yhwAI/+LUvT0rHLTOFyNbsefb7Wfx1//LGRF/9+/57Mn59dxQiFoWBEo2FZ4kop6BVxFfy2KqWkXjr0oxkqXKZKVcIeu5o0wBOHi1VM7HjL7fxPbgVtOWqjWGhD/XLVnG1ErR8LDtCDsiGqLe0OBzOrACTBMkguY2RDTwq1TbHQdD/hRJpAVdc+ygBRjW8S1FZEVRHuBDwIfXaiKo4oAcfLkq80R3OFpP+4BsFiAsaGd8DwNdwptMbIKy9IYA71ODlyRYQmjkAaoE55NaALO4kQCE5ttlH/OAp1icAYBRKwVBEw+r9TCsSRawb6a1AOa6GPb7UE1dINkqtlnblqIApWhP59hHCjJ6MQW+3Qt6Xd82AZxVSdbwDhhTjyV/2Ou5IG28JlDh3mgI+gZHnyarJTaFbM8vLy7unj99/urzd+++XGo4QtnCuSMQqLPN8fmT519sfLSQboc+0qPF6vjq6duPJ+jYPxgvN+v18W67vHm8/+z1F2+++u4Xvx6XCLLOyngzyRsOp2MPDDaA4se838IpHCioUJ3gGYFqaKK/FvpMh4f0po2OlPKPaiSU+hK6/2dTSSC1GdC0FMPWySpN5gHisD8vXypkc0S1WiPRH/rTssEYafyAxZQvURj6ywsNiUpGsbEgkSkTpXIpnQYkJWkQdqU0ML5IHIQxUYa9my5UU2imRRRzsaNoHoquDcxO0XRVFAW+jo5QdQ7jOHimRrFSnaSFhg6AAD+0ZvdXx6fHcyYCJBJA/fAwVsylCB0lPiAhvuBYh4FEdfqYS4gA/PjkaRhFeH9//3B3/xCGIt3f3t4/ub+9eQgB+PpcI7ALejhv1ashANfpWk20QDu2FFEGGVriABc4Ek8H6hpwF1ML21M7oXLEwTZYEF6/56oNSWDpWp2XVMuBvxz1BsMu1GYoiG2TEWDrcwDBOlRLnLzDwX82l899wuDw0Qk05yarIfaWYSfWqkwDwF6qFkpklQIJDnUlnaoZ0T1a1cfHi/m4h6Pyi/NZ1zb10XbcgheKV1ahAO520IurOxzP8SoCFOwWB3WX8+PbkyYsbSmcQQLy2bC99gDwczobbY5X88kIaKOp6wDAdJ0FDWm6vQFaGm/Wxzi6HwIweooohgI7Fxg3njgARI+nm93xye5YZ4plgZV5vRMIqYNkXTWBzXMCkS/h9UQR+70pvNo3NFcAtV8k5WbT1DrTdoOixdBlzEYFbNXxDljT4H3wQoc8VRXYTwAsS91pxw0lPEpvBOABWpEOJ0v4+ecb0Ltdx9MkCQiy2YQXYHl8enLaWa7G8FWCbOrY140nJiM09wNABp3ttTC5bNLvAQovb55mmBthv28NhREA8K9yDKcI7qLdcmGl6mwwCXw0Zum33RCAp902kGeMFsWLkNl8uhgGrhYCcNAdz1dbHMMwa6oFqmFy9fH3NvyF3fTQoH149/rLX/7Z73+Tpkoc35CAhJZYGn5yulLA3hbM3Oov1pcP7z+zfV9TraYXnHyxU2FJqZwCDGhx824AAGwa7vLjvQQ6R7bCEPNguL357Kd/IVTKwT/+m9HHSyZOVFN5kdwvKTXSqBhrgbV0V8zFUiTLsJwG6r1REvxhRxflBlPj8oBG0oxIxEs0TTI8kNIqPbs4dYIb4igDtSIdjyWzkWSqmM6LRSnJRCJ7R2UiAopxL7KfSJf2Swf5XDYXTeQKhdJRvpACcVomFb3lVtl6LraXK6ZLiSg9qO7vR4/Ke/GIUKyisPvFny7bjz93RV0gC5VaDShuYM83Wi/Pb+64ZvPk/qylH19fbpmLmjavxvO5XJIFDZMU7n5B7acBN7OZdP7wKAmCIhrBaJl4tpCJZ6A0QW3zjhtjx5rzvYY6dSe+MtwuurshaQUgIFRflHTJ5fUG4/CSUOUKZJ6pi2SxnC7W1iDZpt+zBTYjqAZBNASr7QUC2xbcXcYJssnKfjIfy+b4PJGt2JPeyles5en6On79nxaJxhf/yTmcr56NCwe5zMHewY/3DkHbHEZAfOO8cjoZPShEgQMUmEKVzJRqFYqG8sMTyUotX0Ej/lKyEdi2B2+qA6qpzsno1KCamMLLMpLRbLW7QdOSRJHRab7tNwfhaTNO8oDkhU+ulal2r4mnn6os0rzWQLOK8bDdawMAc7IotIJOy/VAP6I6A+DWJRUtrjiG7veboGqtFkArx6i64QJHOp4NXBfww9IVA3t/OKkhyLIgmZ+yfmDp9Vo4AzSAirFcL8bLLTrEzbANC3Yp5vb1/CbqcwtvcBGABbrO+IvxoDeHPdzpwEvrhil5QIsRgNudEIAxTWaHiUp4SI0EwFAVSdHhszBhVJZ9qHIdH4+iwoQYbAuZzoad4WrRn2x2u7Ozk7OHZ8/fvHr51Vc/PTZNtKL0sQWrP5gujy+efPZmg+q3hQDcGy62pxf3z794t2l2+8AMpqheNsvV9cPds9dv3776+uc/9EoUyIiGItTrvGUI8mA+Wob4O1/geTtOww476Mg/HLS7TQBgkGu2F7apGbblfAJgADtA1mq1gvYaedSnxQpaYYEQrFVSsThStGQGExkqJF0NTQRTOP+Dw2vwN0DfMhnseoatwitSJR5NwLZMpssEYEoGb4PL2POaSR4haKdLAPc5oM6ZfCpbIslyIRtNljlRVF3X0kAYAp/BzEk8uAZqxwlsjYaCzHMNXYcNgtZSDaO73J4cT5nI3iHeAkcPY4D0pBFOXmM77qCPvwwwlWIYRjOcgMx9/Ozpww1mIF1d39zeYSLDxfnlDU4jPbm5ub26vNgZlGBowXQ9woivGl2HF6VWlyxvoNU4hS1kqoIsiSxRLlUqdEPXdJkTdeB/gReg03a77bd9y+11XczeRABmP8UBw18OR53Ad9EcplHlYaXRIpRVw3BbSDbdZpPO5qEwAGMBdgKPTsBHhaQqBFUBJUySYf6wxApkkWIZmqlUspFUKkETR/upFDNdzxeTLiCgNT2ZdGHrTNbDAPYEr23XqI17uBHCAV9gItPZYrNbrEMAvtkBVQX+zLJQaRCAm53hCAF4soW/nmJHPWxgkaNrNMPiRDPO+k5X282JH2YIs6CZ0NRLU9wAVd9oOsbwMex+2p1t12I6k+OqJNeVydTeXrxcSu0fZchyJgtPMZdGkleuVlnDNVWDQ7olwA5vDdYDETPgGwqgIZ6J92yuVqUloONBx7Us1zE0XeSCIUhLhRe6s7bTEEECDHH0G34+eOMBgKfLJXDuzWKz7ToA0DLgud4cAffYnRyftheLUduGPzUNpzMedYHmTjXtEwBrpgvkt48B3hPY6ZfPYsomsyfVpWLTs/7h+ywjqFV10gIABv3NtqYAhjiG1Gs2JJ6qTWHHt1vdHhKy8Rw7RkYAwDzHNuwAfWSP8UhCr0rYUzW9+fq/M1nNQxeXlm8Pbl99+cvf/P43WZqUgMZzLFXhWVjtdKUI5UUDpmx1l5vrx4/PnVZL1wCAW2fvd0pgWyoHXNCbX30BfN933fb6450EpReenQXPpjWcLxebPlkL7PGfPdl9xiSL1Tz2fACT1iSzCwyk6gdqIZ6n2bqqOG3fVnlr6D47L/ASKJIKRVXESyGZzJHVfDFzlM7LtcYaqvumdLCfTqYL2XiiUARci5altFnJ7f84c5TZowqRlOxVAVP34/uJaDYS29fvnGiqUCxUSlkiFzmCd546VPl4BMRernLIVdLFSja2l00UEixVzsVUTuryoD6PsvlIoUBzhOaC6FKnu+70FurW7mrTcRZv1i7z5VveZONQtGJ0q21xWuv1Nh9NpjP5XBr2FDoWZJLlfDoOIjiVySXjwHPr5u54GZy+6pvmZKuJ/tPnfU1tPW6ahnztsOPibFlbK51NeSWrSzowFYV1W/y6zQ3cHybdYPKnUpYnYBXmCYu0mlxTrnpqtV8/60SBdxwm9o8O9vdj8aOiv1g2ZW1xubtOvvvfHhLO5/+9EdksPr8YxPOFyFEskkgC/oYf0Uj4cQTkJQFEZD8S3T88AgYTPdqLHO5FIwkQ5UDD01LTgjcVmCkaT4mGHjRoPQAA5GB72n7gtUG9yhxT1Yi65/hj0wPQtDERuAEAwdQqRNDxmlD8AVVpEein0x+NArs7snASQuT8fsf3QKLZBqhKHT44WWlAJa5J0xEm7No+OpvTAvA/t4W5ZyhgHcdQdVXmMAygoUgsp3pdjPOz3VYf+Cg68692m/PdaH6yWAMlRa9bAOA+atw2AKhpGpgHL0uSIPA86y5gj8wAo0GU4im4joF9PECV6/ldAGDsIp3PNqNgPOn0u4ENmKAreAcMQlnB2CQA4OG4hw4+eCSGZ2KT+WgGihnj0Lenu5Pd7vz+6asPLz779ic/nJhmmIYE4NrtAEU+vgQA3vp4R4sBcniRudzdPHv3YePBJ/idEeD/ejU7vnu4fXzx6vXL99/+rFdAAJZlHI3WLUYaLnEGEgAYBz5nEzyI7Xk9UOWjEQh2+G4+XhUgRUEPEQv2qNn4EWg9KKVoQVTDUMJEIlsC5UXSGDRI5eKhTxpCMNDYUrVGUSU0zsqmUthNH4klYnGcd0+mc1l0La0k90KjDey4yuYAqrMZ0Mew9KNHIWIncqVSKRePp+CxAGwoPCUiRBnYi9ZoNOQGtgFgVxDDMCiFpYbIykDFQMU01AYmq9ueqPeWu7PjCexfWMkogePlcoay8KgVB5Hw3e2iFG630P4L3ob19fXV/ZMntxdnZ+fn57c3N9eXF2eghi4Qea8ebm5vr64uT1xaMo3O8mQis0wN8KVWY2uluuWbRLbGVXIlghEEiSkXATqAehomB4IIKjcscnhhA88xfE83/JYTskaKRINsRUcIDnp9qLOuocpmoy5wFMVpBhR8A+2SdGzdJ3LhkSxRLBIAuSgOSxhZjwko8G0rhSzB14vFYjpNMEydJch8NJWKk5l4PHZATefT+TgMJJwhAJvaeIlGHDJvbFYz9NbDsCbMxkb8nU7nm916s10vge6d+J8AmBfhV/Rn6o3HmOU32+1AQeIsl2naEjIg2OEaqLj/CsBAMBh0SxNCV03NbbbgJccZJPTxWADGn29m1f14vEgU1HnsIIILBQhbIl8pZvJUDZ4QrAm0w2KtwNY0niqWa6Jq+r3ZVCvk0boCARgYQb9nsTQBf4cADJXB86ECSXwwarnAf/jutGUDADMM3jQNseeihyIeY7vni9Vyc9z3mphtICtaEyBxfbzdnrSmi3HH0RqqYTjd8aAzWOxWpgZrrYFn0MBO/QCbNDHS6PrZQaePau7gQPD1f/w6LzbElDBttzz47kodALgJAEzP+r4qC2R13MZExF7fQ0eT8QR0+KTtaTzLKU4LABi7zyd9ExYZlJP5w0/+3mR1r4k2am1/cv/669/85nd/lq2ToCTgPSHLHANIXCsVGoKqqDaGi8/P7948MQPfBGR1/NP320bTQqc+0LCLqzfo/+e5/vzdjeB6rqQbUN1sv993pHQ8xXWXN6+f7a6ruVyhWgPCXAQukeqI/PksQRtiLpqv1dBRDyqvIk7m+s06Soh1po6RtOJGSOVzJEc3qkcFWd/nd445PinCuwmLE7M5YZ9nAYCLudTBjyMHESJLZTlTmHxcxuPMXqpUzBajWf98koqnY/FcLpUn3ZaSL0eODtIE2lOlEvsHR3sZeIjDSKmSzioHibwos15kv2YAkY8RVagUbGNscnWi00zrjqzuHs/6zTO/yKXd3z4PxDSgbLquEDGm4fEXw1gmk8zks7lkKplOxZNozQcyIJPK5lI5IpckJ3eXhaLdO7kChnp5cvlc2UrlmXb+pLcej/qT9mDea9qLnhNw46YxJB2OAr1yPGsshHcdy7p4Z5JSVeDlAivJATvd1BWjK/dSbJuuHGXiSaAbB7n0UbxCuLOeaw2Pd4+x0/97lDy5/B/MTH98s64eRZKHewC7B7FPyHsYRSl8hDmwiUw6mc0mo9FkIRdPQcVNRCLJSLpcr0LJTcmBY2FjkqOKDFnj6iZLKE00DK+ziouN+ZZriZwoSQTjmK2Zbn86BXFsRVFBEVTIoG07oKEbAl8TLcO1oTo2zXbfVvg6rP/O0Ic9HqA9M2Kwgu03itLgaX4wHU4Xi/6ob/B8tWqpoBl6o/G0jQAcWjFLbJ0TBDTk4GQb/bRsCy9NesPZbDxZbDbXF+Ppbg20fjkfh4dVQJW7ndBIAw0/GiBsJDyFq9vwGcPpaDxsgZDGFmHU8JyOLWbNTgjA2Em9HrWnnwAYljja5UoKFFq8SOZlf9TttZoYkArfv4shSIswHWC23E6PT46h5t/dPn7+5u76y5/+7FjTMA0HH6nV6k6WpzdPX7w/CdCgsBkC8Gg8390++/rbM/j7dqs/nk3hySxO75/cP3v5xfuvPn79wxCEZ5UVARgkXmlWldn8eBwiMI4szWdYEvtAyPt9tMPCg3e8bw48eDouiF8LtrKl/agWllIObf4pBMRYMl/MYwxCpQwyLIv9ebE4IHA8m8NTaMwKIgAw8sVCGs9PIrh28FIyl89nM4mjPYDrZDYJRA/+KJ3OAlFOx2G77eFnoo80SOhUpkTVa1WiXMhns7WGCisA/XgBgnGoWUTo5TiQwlDeG5IKb5EgNXDWCYgOYILR25ye76ZQWaKHEcT1ZKmYpsxPmUR9DHsGdhW0umhR1cYZodXF1RWI3pvL8/OLi4vrq8vzM6BCJ2dXt7fX1/Df7d319c1lwDYss7s+72MaMAAwL8hsReoNy/E0WUoX6WwVfkKegCcOLBpIDIZwGKpq4Cx3G1ajEfiq0ux4Cp5AVykaU/QAgB0f57xBHFkAwJogc2Qd1L6hWwZOtcoCJ2q1chXTTOkqWcO7ZzzpoyiqShFojFUnSapGF7OldCpdItFKn6xk4MVnyHw6nagNZ+MxXvX6zup82gNAH827HpJSY70EAG4HmA3S6oQxFbASZ2gEvV4uVrvzM9jQDRxDAgCGnWP4/clkgD3EZ2dr2CiwTUB4oT0QqF0RMOAPALzFO+A6mpDyGOyEZtBeG/YMWp6G6nN1vD3ZTohINlMR+OlyL5bKJKHGHKVzyCgKlQoOwhTxuL1CG57Z0EUyj+bgTrPdc+sEsOnQ/Qz4SXfQ02tkkeDRTrlrAAB7aDPGYRMWvMoCArAiIQCPB/0hurDi2z9CAF4s8byo57qagqVE88dhC+PmBGrHoOOqMvBlpzPo9ybrzVxTYWlpnwZ+PL8zAO4xnk5mV7cH4/be/uH+wYHsa//0k5Ks1Q7EZaeNCliptaYBKGCOgYINtLFSHQY+LLtO94/xj6v1HwEY5D9uJ8QAACAASURBVMB0udkebycDB8qJDQB8/+3f2RwqYN+DSjS9f/3lr3/9b3+ZrpVYDq0VykW6KokiVcw3eBVQUXF7o8nJ1Yt7KwyQsU1n83ojN01T4TRTcxaXb7r9ru9a7uz9E8ELmpKmg/Qxvf7Q4VPRIsXa65MXb5RYuZojiiQZL1tcnG1rQ1/WK65FRFMVKCOS1Ru2pIKEs+6HBymOo8qJHKU9OtF4iuAYc9bMxbWcPPap/n3qIHqYK2dSBE3lEtlchqTTxWjRTvy4QiYq+1GmFju4cA7ETE4vU4USTevT+6+fB7no4X40qr38+VdfB0e5uJDcS2Qi2VFQPQQ6f1jI7+2Vy1oiFqnYOWPSSBLxdCJPIFvjyp7dUUlGibT4qnDy+bkpX7YKVDrd3uhsopDL13Qtn8nWi5SfLxHFTKFcIbOFLLBYqprIZNIFHNstptKVTLJer/EHWaZgHI88Yx6sLwQ8vyzMLq5OhuPVbtob393MF+PT0+1mvN0ZddXfTW4GV8tr8087ndbVGyuZLaqTYSkuaeb17/7nftpTquuCuh8tRZPRRJbIZ6PREstG923b9Te3lw8l7xeJ+YfV/ygWL90vNpFsNIs20PED7GYF8D08OMLdcRQ9LEIljSSzedAUpUo8fggs4mg/mSxSXA1oeUryET5tG9gjT5WLqVyuKFsSj5xcbbYwMJynKwTXkFi56fbn4QE0jpA7SkMRObpSbbcBk/HGlquiAm52O8Ba+20Xyq8gyoNp4Hb7Teyq0hHPGNzbDZmrMX6n1R2M2/2hwets1ZABtQZjAGC8EwIUkZDFy/BteWxXMMLeL8tBT/XBZDoBEFtfnE2n69XxGodjoQqhOoUKDUIQRKCOuSiiALuZZhhvtRi2/gjAHmYKm3gzJEkW8OJZaKYLCnm7GM6m/X7gWZpuYXAxetWYnwC4hQMniKCeB7IjnIJaosE9QPdktVrtLm4e75999tnV2duf/+xYRwAOHfaC9mARAvCHHcYphWaUYRbD2d3j2y9P4O9xPmQBZRP0/MPjw7MXr99+9e7Dz0cF9KIUBVGBn2IgeevpthfaAMHnTrETC/4NW83xaK4feo01/wDAYSKwBlv5RyTO23CYP0CRJJHDkOhsNpUGDompNflEDBZHPAYYnEpjTgMNn0sVixWCZyvxw6Ojw0g0Bowzn0uBzMW7YVhV8XQ8ni2gKyX8i8PDh4dHh7HIUQQ+M5eFBy7AA8CjFzIZoq6rfK3GiegrDHJKCxviBLzbwCMQUcYsLeyjQVxuqFAjG2Z/BQp4KmdTsYPDI3jUdCGXrppo5BLGAgAAB59ypkJTz253eXFzc3d/d3t9hR+XF+dnp6enZwjA1xeXN3e3Dw/X8NsA+1m6q9MeA9jHoDmFLjHupJ2I50pAPYhMFbQiT1UAPBinFR7wYHKXHYYR4Cvba+l6q+/bBsh2mmbDI2hUx5gIPRpheJZjSgrPyibmbqLhN3BNXbV9oVav0bSAiaaYzQtPncfzXajdmHQlYgQJQ4e5RCROAJeoSqVGS6DPS0WmO8PAy27gueuzScdSpOGi2zRUgQEABh2LLX0YV9z7BMAITCCAF/PVycVFy0HPELz/EXihofs4xDMOvaC3yFQHA6C3HItQy/0BgEdTBDGX5xCAMYJSgPfM9JqdEWhnHMEeTJfr9clmt5uUUwQlu90Hdy+TTsQTqXgEg7Ly8B/81EC7MDGLqDV0RTaoTCZfIAXNG88CiaGrNCPIQA092PZdjSwXSV7RvS7Qd891HZyw8gGAVUkS2iPfbkiwc0ejbnfYQrc3eKGByy7Qknq9XndtC8fIRRDQw+EcMfDEcvxuzwM6pzZMtP6azRcTVZNV1WxoSEq9oD8aYif0dHKxPexOY/syJ2Xblv7P3+UEnTiQ59023gEDAM9aviqx7LTjQp0iqqMA9KwPGhh7zoej6WI1abkaz7AqPJMJbt3VdGgy2B7lze5/8vcOp8Irh1/kju5evv/hz3/36wJP8Zi6US0V69WGKME+UwTFsdmqNjqen16/eHC6LROt0e3VS1DAID9YBQB4fvG6EwYV+qsvH6Vm0JR1HYujO5h1NJCaWV6QZncn0YMyXciTpSxhMQfZgGt2rL7W9AcmcDySk/XWZNZXc5FUjVS0RAJ0eC1b5vRX41TsKEXwzVq7W0zx0lAutq8z+3uH8fjBHtArMhU9PMwWc/V49navUEwcpJKxgxitHmzjeTNVplIpslwYbR4erpwkyL14KWMthxejw8SPc/FoPrlfX148ff3eOUKKn09G8oe5dIwuK511qRDLJ7O5ilCnNUntu7JKpJOX45xy8ezMEnbP2ocRW+IkIZ7PpoogSnvbwOxPDvOVQipbhAJTyRTy8WyKrJfTgMGlbDUfA4nATuxYLFMucKsAI1PWp+e0YquD5fWdX1c3Zz1S3F0MNXpzMffE6YMqssHZzcwbvP1c+RXs9uAMHiaVUixOkhLWrfDqF21Z9o9r//KPAuiRZJqo1GL71WIkkd6Lpivc6GKzsTdF5vuzu7/lrb8wL3i8hotE4pHoYXglhwB8iGeDICOodDmVoirwJKOpTCSzF8tWEvt4H4he6URO8CwLdZMBipGhyulckdI8vQGVuy67TVPiKrlMApiQyCtQB0dNI0y8s21PESWRp8tUuwOCFX36OFDAutPqwbbtD7Ehosbx8nDW9TtdAHnbUCTF0nhshcSUhEYbIAOKmw+E3ZZxKs/xOh3XDjA8GL4BlCuGRbMGBo3EQNMChnutVhP9aSez6XC+2m5WIAjXqwVGso2xR2cABasJKhAbxUBjoeTCO+DWdgnbF1CzFVqOWA5mMBmGjADsfwLg+SQ0+Qc0Q42s64YuS4qhIW7gbXBrMuj3sej52BWOiYRdqGoD7M+cLueL3eX13f3nz188vX71kx9OgccCADcxDKkzXC1Prx9ffDh28QvxqNjyu4PZ7vLmxZs1uuKOPgHw8er8/uH24cnTF2/evP9+UK4ypKAIQqPBy5PWYDtfDOZ/+JjNMZFvNoYq5jUHY8xiaH2Km8IjaIxXtk1Vs4wfETWG5TgOR9Coaq2YziaTmWwqmUpkMFowcRA7OkSD82gE++LLZarGMESJqHOGUksd4d0FwmqhWECfDjxVQX/mZDSWzSBoxxPRvcODfUBpxOFIPJXJ5IokUGw8I4onCjVe0Bjs7mXqaP6t6qBw0H0JKJnQ0DAuHlAZSJusSiAWedAypmL2cEpkohRz+P2jRzGgiumahc8P7/17n95enO/AWOduuz07B6F7E35cAxSDEj49OTk5u7i+vTo7v3ry8PTxCnSxzyqO1VkcD4UaGlnVOQ7UVdCX0pliIU/TiRIDQFWnauVymXVaNvq2w/JzXQtvCPCgdxAoeqfveRaUZfhykI0m4m+nNwVAGKH1KeCFwjd0Ez2kndAZ1McsygZma9c5vg4bIWz9RkwEXSrgHLSsm1JdNg21ztQqxXwhX8xXyRK8CzWFJwpMZ9bDW4zA9Ra7QQvW6nDVC8MYdOSbCMBBaAmDGZrYBL3CGaT5FFbbVcu2VBW4jcDzQOH0Zm8CADxfLS8uAYBH037P1HUWALHGQHFGPTr8IwCHTVj1MEa4IZtNvzMaAvLNZqPhbLVZnW1OzifFbKVm+bPnBSjU2CqbwqKYR78vkijBEsuViqDuJQUeIHuULpfqTnuwHJuyBHK/joMFugtatKeS5UpVVA2v7XtB4GF6isAFo7anKxLv9zHCgwcAHnY6wwANdgajkT8K0wA3u+Ntz7EBgDHNuNXvzpab45NTIDzdUUvlZEvW7WYPe86WFrwODU3WALOsZrvd6/jBYDqbXczS/jm1P+osagtZ/4/fxOsGAPCw13YcU1drrXknCAG47YACJmvT9ifO1w+dV/rj+fIPd8AIwOPVydlyPhs2qqZhuf7y6c/+vcMpgPawPJv28P7V2+//9L/9RZYlgOvgGFKFY0B/1CoVoP+mWqt709nm4ubFvdMJDNV0bXf96ljxLaNBS7buzs8/b3Uw3K17/OWd0vS9BvrEmBbo5kCppPf3KUHhvfRRrpgrlnJUMmUSe4pC6RNHZYyS5TYkAmezc5l0Ph+ncvGCbRSydbYqlIBv63qhFEs21oFVa1yX4vYqWR9f96CI5PZimch+JJkpZ2AbZiqHiSidKBzCt8kdHBZTdZqMJmOHPz5I7RFptt2a7VqAGslIgRIcQzOzB1A7MvH9lE1QqjGSUqnEUTQXLeZih7BiiIbRlOVIPpGmZews8UyzY2JsE6MT4zdvXt7MHr/+nj3wB6wqxYvFdF5Sn394e/vm2xdXiUIxVybgmRbj+WKqkInm84DE2UqcpZL5XCw3eTyM5xN51/Vlraqci+RwK65Z6mZdWGjBebXR0m89uqHcjvOS8MSg0+KTjZJmL+7ptxO7NZulk6RBVLMlp5Raj8Xm3z8Uge4XBv/lN3QtWs5X0tVMmk1n9/aie6Bnc1UKkDpzNWvf/k5OP3/9Lh+NppKHsdQhYnA8lUpCsQT5G5pCZ5NUJMmCLCknAJyZWCQBSJ4pVatUpUSRKbEJwhIAx8CzXqZOEJWSYBlyla5WBdPReCBCsXimVKFrfDNwfA8n+VSAL0/hoXDVSpWgg6EKpgJoLEPVwnjhpt3u4hgSwwiDQQc7fzHXGeilbSlAe1UcS2H9wWTQmwzQaVWRGqLl2s3hpIs3mYCPhgMAXGckkYOirYEaaWrYejrot1EJzTZrqDmLxW4Hv6wW4/F8NkIA7gPSA0ZjIbT+eARdp2l/u5zhKP8AIBHqKFRX4AsN09AteLf+CMCzxWqOo8D9XstGLwZJ0g0FdZqqSZI77MOXd1vAxptNHEYajYBW9qBCjdfHy9XZ1eXVzYsXb94+efb2hzPHRLOQJnp2dAfLzcXt05dfn2CwOOZOtYCEzzaXD0AOj/02wOcQk302q9kJIMj9AwDwx2+/75ZrNULUJU6UeGm8nG3XYwykmYen5cs5mvMOW8OObo3mAEzdNnpsGS6GS+EBNLx7qqH+qIgjIFBmQexgK1YW5ClqFUDIPHrJpOLxWHhEEkcZnMwW6nWeo8oSyIhiMhM/SuHdMFUtl7JZzE1KZmOY8pFIZRLJdAb9WPEKGR8Ak44S2VIZvhMHJSYJa7BQ5YD5VKs0y0taA4QIwE6D4wRgbPCLAOWZ40J2BAghAkkAVmZYQqO7XK42U42qoDMIPGg6l09TNt754oDZuI/eaUE3dL72UQLPd+e3N6e3ePkLAhh+vTjZnZydXN9ent88PDw+e/Z4f3d3H9REz+uurtsCUyUYlmYVqdroumQ6PAqoVEokIzeEWrlYJngXg9TDOxZY04AULS/otVtNw8AMoYYs0jTH1hgRLxVbvfZwMR32O52m4dqCIKh4YKKD1Ap7oFt+15ex5YuiJJBR/x9P79nlOJZtiVVFBD0JgiQI7x0BECABeu9dMLzLyMjMyvLednd1t/o9aWZkZkmjkbSeNFoazcxa+qIP0h/Q/9M5yH4TZTIzIiNIghdn733vOXtLvODURNExaU7Xebkm05qnV1nHccaSY7FwiUm2WipTnKRWBdGg+NUccKeFIzrL47Tvm+bsfDoEoqrU93s0qcTJ1F4cOI27QcBB1xv0idpevn7st9q+rVug6wHFnDDqTxfzxXKzubo6bFez2bjnO66JbiRw3QGAAdwWgK/7846haSDYVZw70G2Ag94YOxvna3jE9f54fnG8uN7RBE85g7sZ8LdiOpetpJM0LqpSqQxVigVBQlG8rEMt8ap5WGqcGETDRc8ybYEXdcBUr9GOBvNRIOZp2XIb3eEQmSPQnZqqDRa9Ji6N3qz74Qx4gs1mbWylmM1Gjfn5dom5icf9CO5QDFVzg8FiuoGnfnOstZajcdNVHdcGjT2dzbcXy4Zbs/y/b0FH7dixdTxfLY7z0vjKS+6tiTGt2f/+j2lTq7Lmotvtho5jSd0tCFxHldbjVt1SBFDAnX4bLXsGrc54Ot9v9gsoMbqk1xqd8QqPgI+LaZNHo9zW9uW3/+jJTfiGXidq9zeP77/90z/806+0UrIcS1Q1porxMrJcLDbswKEFVelsL4+fff4c9tu+W4/C1v7zC7fTbOmehdsuxzfd1aQV9rrzHz9xcTqj5uE0SHeyHrtajSL9ti5I6QzF5+mimAUVyhBSEOo6W4pK+UbL8ZXEWZo8AzV2lu5Y7trIZJkzQMICgGTiLFPKBPvh4PLiavqQK6siJ+doQ5lKiUTyJEl69ZOT3BkNxDuXo8kKkS3TefKsRLEMw5RyiZPUyWmhWq2yhjuMVLgtrNr59cPNXMyVFVnkKdaUKCD7rFbWeDJruDUN9PRZVWYlu5Km8iwty4okql40mrYsgQreas3R9H4DiPDwKfPc57pMni+RJfduO3Mmw+PTtytgBGQZZyupCnC+YqkE8EsQRO6EKSULBfb218xpMnVCRAMj0L2jJj3Noq9b1NV946kV3jhXM2dpRmvxsT67cI6Bp1Ru9sSqNTiY/zDqBncP/jfuZGpVdmyZ+1f7pvFWnfC2cZb6y9sUTVWISpEtJP1CKpPMJYgcuhYVqDRlGcLsv/cS53PiJA/yN5M4SeYIPLkrEJkzUMBpnCvJF/OlUr5MVYvlEpnL8GQyl2NSVJECDsoJfMHsB0FYb3oe+lHJbBUg1QCmbchURfECi6FJKIaZksDWsE2+5Tdcx3Vtt9m0NF1ThCrVB7YftGq2ooqq63fCfgPWTgCrNy4CkxGm1w9H6BCJEQfYCaOh9701Hg+m88W0O+h7DgpjkI3T1WI16Mb6FGqNzDqa7miWaLZbEfaV9qaL2RCwb4qEfrfd3R0uDsebi33cmQRVaTTqfVCCgK2+hXUfCoGkSE342+sxaGQMMcdjulaI7T8BHmU3tuvpeIl+NpvVcgY/AJ5mhD1gAL4O8BIPlLBjzZaTMXyx32216tEAVHIfCtl0vYb7fLda7I7H48XT69effvfFF7/++TGIsOsSSvd40J+sttfP7z75+b4XO2WAaun2JtsLUMVf/7IP+wMc8FhvVhtQuDe3h4t3337zxx+//XVY5kQBKJaOaZ79w2SzPcwOm/Fwvd9uD9jIuRrPJrN5q7OcDUad0ajRHnfwCCpCQyGAgUbTtz+iGRFb2iUR031VJT6F5Dn4YDkGYxqAqWHTcxKBFTebCdFURD1oe3IJnVyK2GwoShyDfUTVSqmIacEEUariTnOZLMRTAHjKkctmC2UWHkLGBFqhmCXwT5LACRJUed3CM0XDNDRgXRr2P2Mzkyxp8OLwA3BYU3BbpG55k8PucL5yRWALZGziliVIqdXrAFEZDsfjIayi2IsbNTA26K6vbu/vLu/+/vEECvj66ury6uHV/e3j8zOGNDw/v3rqg+T2xvtjC1QfCHwN4F+v+RbDsuifWy6xgmIBtOLWudpsNzE1E7egG1GrC4g/mAz6baiFo7AOAIwCWJCBQ/oBcNHhajmdjHpRPWqaFiwTTAn7OwB3O1GvVQP1qyqOrcgGmp8bohGojAa/ajWJNRyOFZVw4EmWViWLRImnK5V4WEnWTFrarPp9VIZNf74fdVzTmO5HvYataz4CMJ469LuYbDmdLNCSfLU93yIAb46v7rCZyLEsDEgEWhB2hhhDAF+6OG6WwFJHXQRgWRaVOFaiPZ5hE9d2e+wCPRJFDd4i3IN2m7iCJxPQjOv1arM/P15dHC42VCaf46YX2mmymDlBmwQO7bQpWB4kWeUYBndbVHy/9WK6mM+Xq6YzbQNnkTUW90NsQI/2cD6KTIbXvSCEux+7B+MtaGOw6IcYotadtkEBG4o6w12mbjzuPBl218ct4N1+f7EfYqI3ALDj9Wbj5X5/uNx749VoFNgyTte2+wDAm/OZB/zZrdnxIHAH2zdxkGg5ejhko4foZFxf+Ctv8P99zZg0XYvQTi5ygZx1Nr0WAvB8ELr/DMAtAGB4O3rTObZ/TNthXRMND+7yyfr8+vJ6vWwJmH/U2r37/f9yxKAFf7UDhWx4+e6Hv/3xf/yporGuA9dEKFdFeIaSSBCOYetAcLlou7n+4qcXs9epmV673Tl8ca2FZuCZWr3eWl9/2pqOO+3eYPPdjdTterVOyx60w1Z/HAroM+aMBy6dyZdUWGFwdSupRMEwmoEfTR+sDGiNwOZ5PUe3VjVCay4PG12rW4ueQaSyHJWgUwl2Nhn0ZvdXL5vuGSvpXbtKynVQr0yFrjPZDFF5+p//9PT4QuSrxWw6Q54RJQp0abWUS8ZnRBkCOWNF1Rma1/1guRiNnGyBTp+dFIqtqOFwuUSeYot5ha8U5VDOpbJnVZEsXn7x8NgYwBpkQdfhYbdjVtk2X3v/1ZeD8OHt53Lw/I6pcakyydKc1+taw2i8vPm0nMwyBIW4W6owNFSj+MCjygA08nxWv7w/JWkykVMiy9G17X73ehS+v+m/e5n/5W5+byxDvaFHq+bTKHrTPzbpSu7qPPj5cLmy/9tp1NxNGT5LNzPqgMlQYSi+TInDkJRLGYk6LeXh5qxKVNLARqvkCaBwplgAnZvJEqfcn3qZ02YiWyLzlCixxeRJInGSyBbSHyexSTGJVhxFuEcEvkwAX0inRTaVLTAnILglGpPBi3IH9KITIACrMQDTnBWA6NM4zqg3amKRBPzO5susakT9KPDiOgM13oW7VJUFhu13mo0afMGEJYAt8uOG7vjNSdszVEMDBTyMdxD76LXV8KEwgDTFPUh5OutD/ehFrY7veoZjevWgMxxN0RYHT+BAjou2adUUtSp/AFXg0svNejKfT2fb4+XD5fnT1XH59+YkzBKczQEjsUK38RzP8dwaCEioJ0qEu3YgNBew2vpwq8MLcG0Haj5w5d56NRliawZaSg9bnsXzsl2vu3XcLPQAfuEVW2Kn1xoAleh3whBHefHkbTaPMxzO4yaQ/eXD688+//Tz91/9/rfnsBWggUnUHkzmC1C2b9+//+kWKHEL9y2HUNJXh5vnT7/89dgeAAUB/bvdHI6bi/vHm9u333z3648//T6pglyAtwC9puTObr5ZbDexwNlsj/v1ajAEorJeL9ut2Xy+6PU6fmsI/KTVwgmu+N1pBu5HZFWQJV5UeJHneVHkcSQJfsfBf2y1HANw3AqdRs/wbL6Y4zSB12uWDvCHp3c0h0GDPBRVhuM5iqxUWbpCVdFIjaqQuPmYz36IvIQKwMmKLsm6ZcqlPEnHjUasjOrWMHGqpeZAxZdEGZ1VEKdR9aL6RQjWlRiAvZo/Oz8cjusaPOEqhRIdB+m4xgBbsEajMeigUXz0GcfSoBPU6gbbru7ubm/vcAjp/ub65ubyeP3w6uH+8dUT8J7Xr9++fW5pjl8HHG0qqgyQBxrcxiMQGQfy8PBVkhUTAbgKCjgEnod6qYkj57iNPMIj9k693h2GmM+lAocQZNOpY/JvcwCUDQ0M663QtK1azfPjhiJ4n3FfuhtZwEokxZFF3UQ/GE3SbIk1a7KgG5Koy1VeEr0QmJaEjikYMF5h4HKDLJIrymbb7+LkfFCbbQAYDGOyH6Kw1Vwgk9MhjpS32z18epj8s17vjsvVfLpYbG+ve63QreP2TwzAEazC5Rz91i4OS2xUxHRFF7NWAIBr9UY0xkxNTBvswfsiiVrcOw+kJWzHDdLzzQrDCA/Hw9Vxd76tQBHKR+0sKIFcDtM+OAkDFnGbjKhwiiSArjFAnZpMNlXIp/Ok1HAZLrArFLpiaS6e+PZGg17TUoHEh63Oh7jSsA68DJUvTjB/AGBd0RYrHEPqtNEBYzDdHTcroNyHi90Q7WQdvOKdyXCxPxzOd0CkR8PAlizbxZ2y6WxzMY+nkGwbXmSI7RjDPppxLOY3W7K5qpPHWrc+mo6eZapeyRTcWb/XjfBeb6+7Ld9RpEkXzxyE+Ay4hYHC3ag7nY3Hq+203awDPXCidtSdnV8czudjn8bOPW/+/Nt/8ED0d9sDbKAf377/7ve//C9/qOqSozG2zVKcyDUCUNw0nhJwnCB3L24eX37+3BtAXXKjqHP5w7M2brc9EQR15+b5225/3GuH/avfnt0gwDPgyHMb/cUqYqlUtixPL/oyWc5WGLJC62o1nSSpbEWRa91R+VRTa2FvMAvk2eHSI1QPgD9PVlL7b35sCZ/80mKGJtucei1QE/MvH3tN3kabiGqg5DOpgqw5WrHRKh6+Pp/0G4kE3P5AvDLZaiFFVipEKpkhCLKYzRZLZCVTLhMkpZjebDMeyYlS7owyqITb1KtEIZdOghgspk9PT61BlkyUvCwrOJPGsosbz9Uqr9kYSGsIzee298XbL/eT62/OC4sfvhx3zByZqxRTZxVJGXZ6vfn19bqTZSt0qQrql2VKJeB3RUDgNEWmKr7LlIle583nr98+2CW15q/W3/7yw7c/vZ9e3HZ/OzR3fKvVna0vdp2O6rSdS4M16ZdV9x9ai1v9nwb1y4vRfiGc9pFJCu2mRbQ+CcmGr+T4SD8pgDxhSjSdd/NnyZMkkUzm85kcwaZyZEWUpFwuqKfyJVAcTNwvk8G4OexjwXO8RDqbJ3IUW6GIEgFVM5UWxFQyWzkpVURNAHFDEzIm1LuYFWhihaJlTnSadcvUMC4MLg3NSqoKNVxXZb8JEgftBER0lbMdx1AkrtKGShF02p5t8hKAaNgLdDfqTnq+qZqGFSfsomse7h9GgWPZQVDD9kxltRnCjdIJfFDfrurqoDjD7vADAPvw4014WKhrrk3L7W7o4+e7IwxAWE6XF7fXzw8Xx/nh/Ajot1kuoPrMEIDxAA4TDl23gWEG8DNA87ThFkUf2dVs0IG7ykb7fxvUrYPx6QsoMACBuzlaVC1mkxCzCB1Dsy3Ukji+Cs9lNh92hj0cUW7icwu7fYz1hbq23AJ2H66vL453n3795ddff//bX59iBdzrAkxgx/Px7vntux9vcHOz1RmABot7iQAAIABJREFUKoZ6uL16fP3+x3O4cuhnCcXv8u7m9vHVq9effP39N9/98pdJGZQEKGADLpQYAXkYLXaLeFZqs19vllGEDz2dhEGnO1r22u1Gp+e3223cPo2dnIJG4H9UwJ7aCo6/UGSxBKyR+rBXWCrjFnQ+l83gtHg6g1NEaL+BCQwVmpcEkgAJXCHLDF1hmA/yt4wIgS1W8D/stfngdZrDLWj8N843lFiQPrpULpRolqYqFC2ik7WCvT7wIbHo0CABDWBlQ0eTJh3IkSiIOI+K0epBzZ+DvDksrSomNcG9m4VVXmC8QTwGDFoM9117/UE39qga9Dvd5e3d1TV2P9/dAf4+ABpfX10ebx6eHgCPHx5e3jw/f/LuVVswwwBUURfIDCsACYg1sG7jFmyswjGKy5LQJMMAAMY85SbaSbaByfUmUxDfXb+OKbqwnlRYT7IKz9YF5AqH6xU2ocPqDwFhrRiAm9iH1cYz+W6koe06wwOs0pwsUOg8x2IYKMPjPDAaQgscXCuWoWiqFL8zVVDAokBXy/pyNcAp+YZfm6w6TVDAk+MYAVi2AYAnGEGJPfXISabL7WG3WW+mC4y9Xl9dD+Dv+zULz5wNE7f44oW62l6eLzE3e9AN6nUTd0U0q1bHPGCgpqv9+XlHRy9oYKyonmugjQHfZ4vldr1arnfnl5uL893FvppMkjkZ1ELxLJ9NnGHbS7GIriupNEFWFaD6klBrAAEgszls0yqypqAHeoViVRxANxz4aERARz3gRZ5TbzTQIK4F8KP/cxe03p/jFrQqaYv1fDIedzDEczieb/creJq7PQAwTkkgO/fa4xE64Rx34WE1GAAAGzjaDIA9XV3OvZpjY1907A7aG+EEPwDw9jCv1gyab/OGbgdsOk9xJJl1N/A0mhgv0l4hAMsAwIFjwpOe45kaSPVBv9UZYyzZbtZqeNgh2mxFncXV5flxMQ1YdMevr9/+6T/UxXqzDcy+FbUXj++//uUP/+bXAkOLVMXQyhi2XbMkjqRqNctA95Vwd/H4+W9vrUbXt92o1b38bqN2LcPhRctpHd/8OO90Me1j/fmd2eyEEjwklKH+6vpyquQyRcobNUeyrciuqvJymcxnS8nUKcWy5eKJ61mC7eg6SfmWBBhVyZzlTk8IJpcQg96nr6KWkqXDebtba7bn7bdjhVdLaVKiJYGiM4WgWY/kTptSvNF4ly8WMIg3S5UzWcwgKhWyeUqQ+CpJYPpGiYbblGEZc7BtuuVc9qQiDqgEASLKk4r5IqtQ+TMim8g0Iqv3TS4xPvBZknNYTaQBvQXF78+noeLtZtbLb79txp91KyX26vmtSab4aimTyqbIagND4DvLjVrMV0mGKpFQj0iqjKEMaFVAVFiiQDlindd++/Wrn767tYSS+fL13fnV01dX7950vxhZK6FGcQqw0VELFl5rqrT81POm9UfRvDD/cWDDQgz/9i5F1exZ3n0/ajW++pPjDT0mz7ClNF2uAuzzhaxXzWRSuUy2jDWOyJazJzk2kzwpjoGOlgB8c7l8sVjE8TyoiekEmlHDr6VygYKbHFhKicin07yQOTmDa0QXOVRCTEHvo+Fzw/M8QwI8ZXAjGQieJnKihXF8uizrbt1SYTF6Db8/Ho9hBfSG/W6z4aM5LtnAzqIotE0AYN/3fFjGLRS8oICBhU/GowHUChyaHA+7DccyA9/ExlC210PHq5rv4ESBXAM89zqj6ayHLdmY/msrSlmzDB/eqm4Pbo16EOGR13oHevDm7vLm5X7VXF3fHtGYANF3sYpTcuGZIRI1Qw9+oqUZsqa2tgfQViAgF8NuDyPXm6iA4cFDlFMTqFuL2WK/QpPJ6XQ6AH4LZQDngAM0UXHqnjmewEOP2lhWQRs1ALjj0UTcvcM0w+s7ANC3n3/x3c8/ffvn+3oTHcQ66BzbHS32V48vb3+8CbENGuNlMIzhcPPw8O7bbasPkn+Gw1jn11c3j8+v333x9ZefffPrX0YlmqdV26nVTE3tbxfT8Qz7VzG5ELXKoL+aj5ez5WQ46o3GoNO6g67XiweloWTHGBwEH8Fdg5O8eHKbThdKlVIxbl5Gj0kCUwoBPhMJDCKMe6w+dFYVKyxP5QvFHFGGJV0tl0h03IC1RVaAG6LRb6mA+hiTg7MfdqDjobd0lihWKyzucVfLNMNU4lhhlqkiW8Uda4BstOKqkESRlhSBV0yo8gqH5uCsiMNmXsOqz47bzXZmAuOsMOUSjj0VClwTz3yRyuBKQvPsLu5BIAIBAN9e3wHaxhL4/hb+dHG8uLwF8EVMfn737vXrN09XPUl3rcb0fGzIIgIwoL2FEjzGXtCmoBVBEqsczbBaIwp8tPNEz/EerOE+CDC4yH69N+kEHp6fqJKK0ZmuH8YAPB31+y0ghyZ2Vnn1ehyV3YRS3gx7TbmYJyl8jXAL0rlsqUyWqiX0CSsV4AXSVCFX4UUhD9eAo9BkGztMOAF4MSPWp5MhxoYEvgsAjC430wsEYEOp7XarCfbdAab0ur3hBH2cNxiJjRvNy93tzbAbur4DFxjbvbxoCMsb8He9vTyCoByP+5h2AgCM9APPgPs4VbA+vzh2DVTmqmbEMZK4PYQ7OKtlvL90uFgfL47Xh2oqgbKnyhE5NABMZSh4QXQplUhniEJJYGEBCbW67Zr5LEEUc2mQxarF58uiILAMWxV0y7C8RrPXtkUd3gbgwdgZ0UEbIL2/GLTqDm5Fd5tQWkR1sZoOB6AA4S0fzuG+Wa33h+3ufDeKcI9ON20MP13v9+cXO3+97PUbrgxLqYm33nh5MUOzjpr+dwBGGod50svl1TrH8flkLneWtdQEX7Ohxmfqqw7w67rvCJ1lp+XbkjTtxQDMznvdQSfCsYYB/tz5ZjsJPUuVdDQwH6xvLw7H5TTgsWo19p/9/n84nO2FCJS9zuTq5Zvff/7Xv+ZZAdSNq5IEQQEnZSvFqllz0OLP7Rwez+8eLup6kxHsdq+/eXpUOMWQBNUCGXv5aqB6Tne8uvjyc8v0PaXhua0wAs06aXAlokwr4WpJaybrWGpNIYnkaSlPngEAF1JnMmPn5YZnicVUOZ9KEvlcGm5rRQoNjq49jUqlZL7ZbftNq+91g8llWE2mc3gOUs4S2STNs9mc4cq5dEZaJNInZ2WoFafZbBp+DDbecaph8SUSGzsBjAokS1GWUKWzhUyFoOx0sWoLcq3d0gpnKRIw+TSdyhaIWrhYkcmCvYbngZYtVarCaTW/2ZvPArEqqOHiYjuYLKlcourCvYQ2kwRwOILQrGC4utu0n4d6guLKJFUpEmVM9SsVyRKVJLhUSmQJHW6q0V8erj75uZktu8Pnq2soAdPbz2efzetLRQM9CEQlABCL9GFdCJV377Z/WO7ftv/tc//8CDfO9Xc1ryOx+dHAWB8EeaCRVvHywkoVQaUUs5ViWiik0h9//DEIfFmQQTwwRYBiieaSGSisoERgscNLijUJBkgkYgg+O0mc5UHYVClsgc2lqxyZOjn7OJc6QcMiliO1bt2P0L8fAVjmWVj3Ljo2C4xoun7D84FDep4DlDiIGu3VYjBBS8Bhe9rCDWVN4HwfqHbNNXRL0qOmH/bQtK0XNixF1DVjOI5D7PsD7Bjuh45h+S4G4Sh6N279qtdraFgl1QCH/eF8Moq7oOHDsRWN0nEakFK6gMpBHWAP2Pp6t92c391d3Ly8vu4NRyP4liFaNKBxPhbo+NsxN7imWyC1bd1QAtC28+1yvgQF3AnqAL0+FFMvaEL16U22W+xQ2Z8vB23cdezhpLDrOMgBmqCl0RNLGQG0L6a479cHedMEKjBCL8jFBxvJ7Wr/+OmX33z3zfd/+PNvf3sVhAE6+QM2DgbTzdX963ef/XobfghFHo3QxeYI6uyzb9et8RAKxXy9g+q4uXr18vzum69ef/btb38elTgRIAqVo2LN9ovpGsPplrvNbr/cbY+b9XY+38RJsPHO7BBQKYxboZvND31YIMU+QgmZL5H5DGrcYpWB5Yr9V8ge0ZwyNlaNbdM+5EZncGOFYHns0kJcpEocz4BorpJVugxoWsUoQZpjqHjcBMA8n8eU33TcaIAqOJcjqVKJomj2g+mxwNIMVYR7Nna4TH8Aa0DqCispql7zoOTywAopBju2DMc3AYChxE60XLoAckkoF3PAIPhwNBrgxM9kOIZ3eogdB7ENcq/bX93c3mLwYIy3d7d3CMCXNw/YkwVo/PLm7Zs3z7cHVzJNvXe4GmsCz8a6zwb8VbFBG/4BODUtx7U1HrSp3gwDv+GjeWHUApDvj6ax55TvdIYRcFQEYFlVDcyqjJqN/moJANxp1lsR6E0jBmDMmg5bwNEarUCEeitYPEWSnCFl89mKplWJQlnRkLOzdYrIFzsbLUsykkIXS6wo0SVaNvgqq/udYX/wAYD9ESgyzzZn+0FUt23dwy3oQe/DQXi3P57vgZHGw7rz+QwB+G7YiWB5m9iCqJuYNzRb4InF+nhYYqDUoNdEAJZ0tBj10dR6sZivD8fLngkAzEsaXI5a7Z8BeLnCwCXQz4fdxeXV7Z7KEmfZbJ6huTy8tWQ6ncsQVCWfOMGIS5LGVjbJ1CVNgncR/kIyX6DEwlmFpTh0OqlKtUZ8uj7pQrUwDQswLArDFgBwXdUGy35UB80GANwwVVlU50vg00jm253RYrbaYHLYdnu+HYYgDHBA0WtPZ+vtFthBbbLsdgGAdfiZ7e5wOF6dT7HD3sYOe0whHeLQNGYqLW9WWdWjTvKF0zOxUfGsgEidndam/XarCbWM7S7bLYAtaQ4AbEhcFQAYrijc+EM0GkAFPGk6usjrlgcsbXF12OwXE48J/KAenH/x+79zWMtpNlvhoNcZH5+//vOf/s1fyprdaNQw/1qUgfBpgqC5uE5CuMLX16v7z375JJB1pz1d7W6evxm4jkTrzcFov7x9dd5pOr35/vjZdxsXs9T1eh2TQVpa/jRHVgWp9bwU1BqtG2KNIYqpBIBiisgDz0tkyxHF+pHblVJCpZDJEPlUjmfoNCHCMh9xmbaSY/2u69me6g/6659aFBBiQYabtkokCLGczdEE7c4dpZY7SWfyZwkikSGShZipl0RNk8l0NpfCXKJsNpdOFJMlp6kyBMdKWjnlTTpNz/VMtpDLkyU6l0tmyrncKcEnOi+sVeQLORZWC4dNWB2/Vm93XAHu+c7UN/av/aKy2niHEZnDsISTVL4gm057sNf5+S8vbUBCAGCCqJAxgleoQqCmq9WzTKbMFenTt2/Wq3aKtwTL8uqOa7CDptgzKKvKc7wLcs42XFUVGdYQtXKFVEqKSpmSzJsNs+fajJDNkkUu7fSXzNbd9hrL77/7RBaz+YpUFaiCVEkThSKZL0JVlHSL5IQSVTyplFIMWcmRxRz2jZar5Vwync+nTk4+/vgUIRgYiCBLKlsBEQISuExXifTZWS6Rw4YPmi2qHa8eAgTD1cJJUPaDQ61typyMe7BeDdQxmucbDTxrnLUjWN3YUzVqgsA0oah5gY1dWaqsSyZUJew0Ggx6UWCpoqbqeErVjwPsESAjF24aG6drZKXp1Vyr5gR1F6qXCgrYDobzIWJtA70u4Wcbil0zBamidHrwsHiwGw1iU7zL+/ubT17dPq+7XjDo4tkqgA/+pRA9zeMGFLTmNawa/lYJRtjOCQ+PON6sW1BhsDOy7ng4NTKfdDoDqLTDLjb7DAZ9eCQoyLhXBkhdR8d6czrt42B9rxXghJLfnm02IDlmyy3mz5yDtj6/enn71bdfffuH3/+LpyBqAt+ejgZxzszF3etPv/r9qYP2+XgZ0BVwd/vy6dffr1uYDzGdrg9bEDGXr9+9evPVF4+fffPTH/sAwLyKPl6abM83s9F+uxyMdufT6Xa7X+12mzXwCQymnw/RIqr/YcAYj9LQB7oBF9D1Pspk8wBvFIkwmS1zPNps4H4yw7LVCojYv+dFJzPZLIpfnOQlyixbAf5McyzLCarECxwn0DxfrbIcrGCMzRPFeGYVILhUKhEFTLyMm6FxUDhbzBdKUIHRbUKSVREWdhHoNBCBbD4DK/Lk5DSVI0lawdSCRqvpKnS5QjMYPGw7ruUvLjar1UQvYmqLoul8CZ6SEACp6kPtxDYs+E0vzlmOt6KH2+vb+8e7V6+eHgGBbx7vb68ur25un+M/3969vHp+++b+sDJ4IGKj/b4nCzwjiJqC5qaaKnHYLyQiopqOV9PhxQpGCArYQz9JdE7qdDH96u8APGo3UAGrGBgUA3DYbAyWGIsAX4hCDCZx6ugiHTQbUH0xLsyXiiSrBRJTpCxfA73L1l3gN4JjC9UKVwtpkuQ312qmLJoGQC8rifBpvSZRvAsPj4u1CY/pDld9PN+ZbXuRaxt6fb8HAMZ+cJzFAojcrufj8Ww+xXCu2Xxzc9eLIq9m4pAgQKzb7ONhCbqoHfe4oTsZ9kO/bqITtG45PmZ7zmNfmwtUwEjt4YW4wMebLZxQmqN7NNxz293heHF9s6HLReBRuVJFKeXSp1BX8+lihUgDjQOBhaPgZVICGBfpTLqQTCfP8tkMmc1S+axSwaWhNtEkrjdaDWOPqqDTB6reCIHduJIyWHR8gCd9uOw3DTlWwDNsnUIfDLiXVuvVaruHW27dg6JhwBKxnNYEcHkDGtSarEHOxZagMQBP1tsxzhTXTBu4XtjGKFFMs1ytNxeznN0UssUyU0x7gukZiVwu68OCaodBw2b7q1bkGoKy6NUtTWSrsy4AMHCECLTEBDB4tRk3bJXnVd1thu3Z5XF/sZn7LLztQXj1/d/+fY0x3TDqtDqt9vT65as//P7f/QqYh6cdNXhtlimhHbuC/BrwIAoGQH0uHl7dvMJm9eXh6ubh/Xc9ujNtd7rz1fHp5elpuZyt5sfbN2/fd8ZXF7iLMeh26sIpIFuZUlquxKlVFHi5HJEjy3kiX8iUipXUKel3dL0Z1XBgp0wUMoUyqxQoJi9KPg1USDVAYtW1Gs+0evp6cP+uO3RkiSGLLE+nCKsgclKF6l2M7FzuhCBOSIpjS1o2gbMPiRwj8mQm3mHFmdezxNkZLZLpk7JCJal8nqOcWtgLDKmcThNZAMkcAbd/8SSTsDtdo99yBS0kivH2dYWp+aHvNT2RlEh6f1S8rU8wPwBJ4gt+wMW54BVRKNNMvWuZ7ccrLVuk0HOgRKJTbgVP0zjZZJNF4LAMX3bmQfRye9U1OEmmSYktUdUiTxUqJK2ZNUMzdFUMiApfVHnl7BSIF2L86Sn8ik7XqZNkOneWKpwkTyoYlHRCnpA5mkkXylyZJ4qaXOYN32y5jDboKpTMJjL5k2zlrHhyRlGVHFS5ApQ6Chui4QMuTfLsLJXLVGi2WiRzRYIsFPLwJ6gEiQRJVCUQBNVqXu0Bd3MAczxb01WBkySt5vs1S+XlWgB4Juu6JAiixKqOZ3fP0fJx0AbtiHu5lqGJdC2sNwM30CVZNLB7qokDOP0uOmEpsjEDjdCLzWz6cA90fDR4tBxblc3xuIfbiZ12BHiomWjyMgLCi4YSvlsHda0rNdOyLZMGAG41Q8xI6kz3uEqvb++ePnu6vF+N2z3c4W61wiYocyD36NyFwlyLDZZqLghgS2sg+naGOI3ccBu4t+wA9gauiZ6Cnfkc94Gnk0EbqEM7jFo4DQgSXUX7L9zoqtf1TsMUFElQRKoEQolVg3gudQ4QuFyvFqvj7fX5bn37/u2br3/6850XNntDFPMIwIv99atPv/nr627/g6HiDJ2n91fPn/7wy74z6WPa2+r8cLi6vnr9ycvLZ1++//TL737pgfqsoj+2X9Oc2XI+2q7Wo9H+MBhuNrvlFqTvdAsPOxkvp7PRZIi91diTg4YG2MCGWVDBRyBIgSAWc7l0MpnHfV/Qs8gZcfIG926IHAYGYlxmHgOQiiyRLTM0KzMyTwssxasa4hWHmXIULQg0g4QNSCueBX8wVcQfk48xOA0CmMjmSxj3i4tFxDAtAdQckcUhJqAC2RP0LcSJpUqV103L70RNV2UQgBletTG8KlhebtfriYUWSTVNBSSiQCoEThC2+qBEQQO3Mdmj3R+N0I2yMwIAfni4fHiIPbCunh9urmBh3L2gNcfd3f2751dvno/TQSRontffXHbgWdEMp+qm6ztq/CQBgeHVSQYCsAz0Qm8043hMt9luwzpogfrqjz9sQU/7DTwDxhSJ+AzYb7ZbozWOIYECBgDW0KAS0zvQ5hQNObpRIAPZUOs8U6Rtk6UzBcHSeLok1QwOtEVoVPPl2rQnpkuiqVOFqqiI1TKngEoWas1mOOlEgEuubfdXg45nAgD3IxfuCXe/30xRFXZbURdD5tGXdLJcjDGqEZuwbtvN0LN0AB9d1wCAex8AeLk97qbYVAU0GAFYkVUdsxjw2Ge22J6fH1qaZmqyJmofABi3bQdxAD2A3G6/O+wOl9drjv8YKFshX6xWs0JnwWbIXLmcS2UJIpvIlfIFspASLVWG0ptFpE4Uc6VcFt0rsauAYtSghbvnw+UAs4zqcJ0xWi0M/VpN0sarrg/P2hhthk0MLNaWm8V00gUA7sObj71iGPN7OF+265i3KCtmDUrGars7Py5ri2235Zqcauh+uzccTbfzngUXwDZrsRUlNmENxhh9Nr+anVVNFneAzrL1ku/TJ4V0IlgOoBI1Q1cYrFohKFxl3vVAqzLVKRAxuKStLlSa4WQCF2vgGTJLqwbmRa1uN8vdfGSXgVPa7uHrv/47g9JrzagTdaPG8PINAPC/+ikHlYM3BI7MlOFNZuF+Yis0XSyTjERLFUPWGoPVuR0EtmkbouFeB4RKCxJgPDDR5hCKrC7LktW+wGi2Rt02QRTIGBuahmufNSNVEWSxpuZL+STIwkyhWADMJVIV6bFZURvBSabAlPMUy5QIniCSRbLgMwCyEk0ZVmDKfC0Ihp32q3dssVgtEgxrBjOLEJKcYJgMX2A5uG0/ziZcm6xQE/kEj4PP0iRNgxJOJrIFRPuPk2XOm25ngFzFCkXkkrkSG3pUIlOpZM8KeHwMnzo5SZ+aV9fdhxe6pVWrDO6hFQoFgq71ulGvpfN8hby9rd3NmbT1c/efvtsIbn/SltPJYlXkac0GjBLdydt1osQU8+VKgSbzhTJwv2JSUvlqMn9KZlPFs2xBn/34xe8/vZ531ofZdrEdY6hYZAusgKET1Sqs0RIH+liXe3qJ5MVyiuh6eqftow8csMhk9uNiOZVNwuJIn6ZOCqcnObjK1ZJUylXJRArHr5LBrp5LF07TWZDnRbgehURGJYt5nAvJk5USuk4WOWCQ5eRJIpcqVUAFQbnNxfuOFa6cRjbCFFgGpAyTV/rNuqO5IAdtDU9+NQ2pPCxvTsQuA9+zZJaXuGoF6ErRWEzCqAcI3B130RscFBpbCwzDNps1RZbMRqPVaw1Xs0GvE7q6IPDaHOkakt5BrzccD5q2g+7opqxoiy02EqHdLCheVbUbUWc6m0zxcK8FC7jhqKwtI+pXlTYAcISzmVEPyODy/Pr6/vnh9eP1FCrgCO4LQJ4Wbo0POqDGAT1NzbThBod66KCXRzjud+A7572ojV43jo/hZw5mIsGt7w7gtt7MR/NhB93qxnimB4oeByFjQyTQzL49nQ1BBLf7/XYUtFqu3ZxuJnDnz7tdzKbdXL//4dd3x+tPP//yl7/89d5tAAeHu3Y8GY0Wh4u7l8+//etTKzYOhAq5WW8vbx/fff3bn6+GswFUzvn2CPr3+vLVJ+/evP/mp8+/+u6XQRWunIOxeL4brja76WYBsme7H8/2y/3mHOB4tprOt9PRfDxpA/hiBAV234IEDvH4u+H5jY/ifeJs8ix5cpouMBIHi4/nKUzGo2i6VCRKBBTGPG7zEgRBUqiPAZ9Bj3IMzwMagdZleBkb6OMUARojBHiRZykQxRQo9HKViXP1CkWySJJFgHGEb8BuDiMPRE5VBVnAsOA8nkSnUmdoQ57MABGnOcyrMx3LEmFNVTgZ23EDqz49325386as6YosAhfkJWyd5rVaOJwMIlAig07Uwv5ShOB2e7C8eHy6u39G/Xv/8OHk9/7x6dXjw+Pzq/vrdw8vz4+j/nlYtWrmYH3VA43LCpIS720AQCk1y9ZUB+e9PL+mm7BaQS/ACm64dVj4oG66GEQ86Y269Xp31MOuelDOHyyNQeE2O+M5xhK1Q78VWWhbhgAcxifIcRd1Sy2QsqGKlTK8CrWSIQS4emWcRBHIoqxQAkHJHVetFlSdIXMsaE+mJJi6WGLgB2HDWbvhwyIdrgfdpmfBL+26oSrOdrcc9AFFsaVgMp2gRI9dGjHzerM9v9u3G3XH0TTRthXd9dz+eDq+Xi3O14fz9XQCYD3uBK4mqdj75qI2nC5AWR72lxG8MlUWJc2qY3wGyEi8H0A1T+brw3633Z8f7jZK8Qxt0pJZgmY6n35FJOANhjVEEPlcIlkpE6VMyTItuZBPJtPxkFseB1gItMoq50lWbYS9fqcNUKtbTd9qDLoNuPFB/9YsxRjOh03FVLXJbhjaAieq2/10NO3NBuG8N5nt5r3WYLXfXl6u2vW6LeA74YT9CRrTXi0bk1UvClROcbSwi3xtNe/ZeL7gGnW/ATd1d9bvbSfw+fVunJPKQvX0lEwTMu+2EyBYTuvb4aiDe3LieBE6oVZSd23f0bkSfwDt7IVOqzUcdfuz5XSxGfmSwfBsHfdJ9g+H6XratGXHcqP29st/+Z80puaF4wiqRTh8fP36x5//9Z/KthU6bk1hKSVQQQyjR59Tq/lOo27MvTAcrHbf1hNyBIRr2urdDQi5WrKA7/ndVuu7iIFC1ZpNH55IWnRtS7JcU1TVYqZawlaeVORxNcEQbaGSKSayoCnh/aDyZipRrRy+coiASWVJioGrX6hSAA+Al2Vm/v7714Pvv//E0oCJ1VScHpmkAAAgAElEQVQdtMfF87yarxbznOGDwkBMs9RAoBKlEsjckzRN0xUiY/lJQI/TxFmOJDEiKZkgTvOFYoUXaUJotMPUGZFioKyUk9XAq5ylSmQuncrD/4rEGayTjN1z/vRTmNebumxUCqlUHoQsrbhRpxPW+QJBqENt6fLl+n/5uHrRCDPqRzUyxwMNEiTONLtGtbVZNJWCUibZcqVaIYtokytIdFVgYB2mKnnJke3Fp4/n08ZSyJylMdGUYWkGkDcHdF5W2+fXuxFQaQ9Y8npTb+8XR904HhpGGLgNz1QKZ6BJUqzdLPjDmZEgNF7LpZVcmaOUakLKnBAnJye7f/E5ATU13vbLwj0MLHCglnkymwWqmUvls+lqMpM7SX58QtLFXJEuCbxAkEQmS2SIUoHRGCKbzJLlEh0H1RFKx2/4Yd31XU1Fh3ZY1zW0o5FZzWmEfmQDa6fKpWKRyicTzHjZCkMMFRjFnR66IQhWYNtuLdAFWTYx2KQNcDvotZsGsEhJHM7Q7Ko/GOARzKTftID3QiVTeBmYJO74gqrBuUQzTtEdYc903BXZhKcjavB5W2KloN+Oi2Kr0272dhfb3dXt/eObzz5ZrDYzdAVCa4zJArj9CF6MZ8BtB/jp1r068mTLbi/iFLtePB2C1QkBtuY36g2MMVisRuPFcj5Enj3th61OC+pBvV4r8K3Aa1qe4wf2bBbLWRzmWMzmq+UYU+IBgTeb7WJ3vLy8fnj+6tPPvvz8k2//+ue96zh1wO7A8xrdwWB5fHh5/8t9hMQCvYV2i9lqf/n8xV//fA/1fbpGU839/nBxeff2s+erp6+/+/rnXwZFIKiaZTk+3KPY/rw6nB+2+/VoDr9sP4RHLJc4eIEXsY8RinEeMLbv1v0gaIa+/RG2PoHKBSKXyebKLP0BRuOIQriZcAuHyMfRv2j3TIHAZRiOY1gQvWy828zxPCfKoGMF3HrmaNS/LMdzksQzvCJSFM3hYe+H9ugqevGA9pV5UUDjY/SAkjhZqpRAIWfjbq0k7nens7kSzfKqV4d3wLQUkNGcjIeRmIw7AyZyvrJBWzMsMAGmUqlyigEkqY3JFnAte90eMCnMwxrCMukvLu7vH+5fP93fAvDGbhyYifTy9Pj6+fb67vXtq1eP0+mlX7Hc2nB53hZYkPSyJluOaVr1TsdXdB2qD3o7A/nURCHmBY3Is/0Q4LeFVpRoczLu1f3euI8JlSAqdc3EmPdGGHXHKD4HLbhJmtgF7fr1eoDdBx+aEMJIAQA2dYuvoAsjnyYkVZVAhWi6VgFk1oxSkR8tN1xRq2l8gRIVKLu8qWu0BIt0EActYSbIcD3qh74zXQ86vqVJ9m69mMBi/eAsHk/qxlkJ68Vqib0MN9sW9hiioZUqg9qP4DmO9uv5Zn1+jAF4OgKGqUmKoiIAt7qDWWwFc35sAiuWRR5UvoPmrz3MugQAnsVxwfvz8+PheLsV0olkGgA4U6CV6bf7VCJulSsQ+UwiW+RYkDy0ZVtqOZvEPHJM9YB/CyQQLYLIgNaPWh8AuGcavmsiALs+5pOaKq/3Rr2mDiK/t+j4hsjzygojzEaTbhcwqh9FzUZ7utnt9stew3eACskYNTGcbbbby3l9OOtHnixpGNEA70JvteoYiiorjh8GDRwhmgARmS4388nFJKEAIT09TSXKrmQ4iXQ6nwkmEbzpka+z7VGrZknl0kCheVUgKw3W6mBOdLPTa4Wtdms7a9uOVCizpt4Yjhazu92y36mLpm/Z/urTv/2fTEW0fXvY9JrN0f27z3/54V/8mQx0pVlzNL4iNXDIGj36HK8WQAWtP909PTy/efffnBdqg+F4+u7l6fsxb0tM1FDt9cvr0R9btb5vn7+/+/4XwfRGjZbfkQW/mkK7SCqbo4hIYXWJYwLgwEQiXy5UyUKhkpdxl3P5l4WmllOFUrlClogiA6K7ksmnC1S03PTrh/XKMy2DsvHMZPhw3+MKRYqTDJmusAINEkDxNY5Q0Ajv5AzbQiupKvcxnipgtn0hm07kikkihf2cJFUmyqBkpcQpSOwicG3RkchU8vQkW6XTp8lkTnB53qgWDHPz0FGkpqCwxcxZIlcqk7myYAftdqiK5XRhqcC31PX/+D9wPwVEFak5W5AcS5JUTWU6faVzs/n6Lp3I4+Q8WcTEVLIUN6ZQlWIpb+6v31w266EntpTB0jWCZt3kCU5h8/mqzIqWFy3vX3767pOrCXqkqYHGR70mTTa7OhDIMgHioJDJnAGroK28LtaMDME2NpXqWbbIAMkostWTU7r3//yjf5qunKbR6SoJ5I01/LBhMHQOKGc6CzI4cVKCwpo8O8sJgHMiVeFUgaWh3pI4XMKIoFB4gFmKY5EYVK1hiGn3zUZdV00MGlN1F5v8VUY0wo7JVEsE3D8EAVQmkxRX4xGOPkC5bzUdAGBLEZ2mg+3+uiCJhu9jDFsLMbhtaRg5Op+P4wy/wRjPgkFdwgPFwW7KdIqz8aBeO77rY0BvGwNLYjdnxBLf1ESlZlhAS4xw2MWDIhxHaDvR7HiNSQxP7z9ZYBjbDMoRlEoMyhl2w3rDR/8N28fQQQBaKGhqdzufTPBsuotG0HUXRTLmrdXqYei3Z0ug+FNMOwKJPplA3YsDiwNGChyn4WGCcW06HeAgVZyMNxhNsQ0NR1NBhV4cL3Hj8/7+1Zsvfvjh2x//9PshiH1pp0OcBJ4u9tePL+9+vmvFg1hddISfrHYXT5/99MvNAHMFsHquV5vD7vj4yftPvvrt++//+Jc5JTJAdIGoebUG4PNuvdvMZuvtEjNylnigtwT5PUVrCpAGYzRLnrRi2hK2mlEYoHL+CMCxXMzHk0ZASQFXJZFlOLYanwRTFFOEJZHLFYoFAufZaTqejWFZTsTMAPgFwDe2KVZwxYgAwHj4C39FxkggzJLG8WDgZiCEMWqvykoAIQDXvCh9MP0QWFmulolc9kM+SBL7sNKZDFllQALrkmJqpsqK8ANjx0TfC6bnAAMrE9ZpmSaLyG9ZLUAh1sNuu9Z8ApDYCtDSE00Ye53lze3D8997nm9vrvFE+NXzy8vj08vTxeXT4/XT4/18c93gQNGN1+c9CQgDiHMF6J7hdPc7n1Mt4JxKHH4LdA/WPu6zNCwriBrNQQc9R8fD3mja9/3+uB82PFvXdBMPrNH3t9Mfz+aw9lphPWxARbXrjQAj6fAD/x+1jSKp1GxPqfC645t5yqzVjCoJZMPhSno9cMoV//runCRqvsaSoqKrTFn2XItTOk23P+jgUYxjW+PddBjVndl20GnYCMDL2WzcbcWOJPHZKAAo9lhhU95mvbnctMMGlCzRUES4wHZ/1m5icPVmAwCMiSWzUeQ5cPnxDNgNgNtguPLmcDw24NoIAqfGecDwFeSHaEU5ma132935+eX28vrAnMB7mAIQzlXF6JY7AcqPfi7wDufi0wqmJOlAbxm0MkWftVy+RNNlslwpEaVileHcFvaxT9d9uxZ4tXDQ8rEj0qvpIq1GHbjrdU2KRqGnyUJVmU6G416n5bdEu+lpGI7SmW2323m3bukqrDQJE8u7s/Vq2691Bp3AgMImqIJk1+qD7bShgG7i0XFFBZ4xAzHdnk7Wk+XdNKMSRLlYrRKEwUhMKnNyQvRnAK9h07GsHvxi8bI/a9RtsVLSsDd62HJGUJ5aGBvneR3NUKUKi2EQ/nANSyRsObzm1wfnb7/7/X8Ki6baAC2xP149vv/6x1//xV//0RDrpms6plASGrYVZ6yYNd8OgoZp3d3cX19dXP1tVTBx0//tp6+/8XhDYELXdCfXn49+6xuttr5+//D6S45Ro0ZQi+SSkUgILfqklEqWy6PBwI6mTSsLXDpRrOBADOhCKXuWywZ/uhsx+WSxRJCFcjYPejSXPSOzhZJQLaYVs6LUVUVlVQdozGJ/lMtcuaTaIoAaI5SAvAhApHI0Or6fJbIkzwmALh+ns5JdzJykk7mzj5PkWTaVTZ0lCcwH1MabGx3AqloskGnZITJAEs7oOptJFUEIUiVQvAWej6K6zTQyZJbMJJK5cqUCSJ4mONO1ymf5s27HsKV8MbLcOXGaqUqSwhSqQFxxNr7sjdzGYTs4FHLwvblsLj51zUOZAJCieLoU1V89Xb2MtvMrhVEZX4KlAByKkUyDL5cZwaqHg8Xu+vr+4XLaMFXBcVmtrndYqdef7y52+3mkEqnUWS4HC1yinH6dodO8MLBOywxBVsVijqkkcvWbKWW1VUlM4dlbFs2CeMtQJDpHwD2QiDE4hcfjibOPz7IESVYYUfZkS2LJNHxHqYzVjwcNwlVBDwlcmdB7DXSTDxo++reL8NNMN6jbpiRqWtAPTAKJCoXHeSXyjF9gBlpsSBQ1gb9plioFnTgi2JRkUcdTne4Hp/xQVxheUOJduiEgDbYO9NAOC9a1ZZmaNp3g5zrtqBPUfYAabM8YT6doJIQHww3bkGQLqhWAcDSA7wt8WCd9+EJr83Cz3Vzevnm/nC7XeAY2jPet2/0+YCeQBwwKbTSBRDgYCaxKvfPFaAxyAYolfh37qBy77tUst9lwWqMP7Sugkecz0OODXgtejmM0QSXhj/HcRujOZ8MJIi7OVMUQPI+P3gbjzdXV5SVOnt69enn75s1n3//hD4dmFMUAjP4jsK6vAZt/vIXLgtbC/VGvP1nvjw+fvP380AMEXyyWG6iOh6tbAJPXz6/fvP/sh1+nVYkTLR+ogue6mNEI/51v4UnO1lfb9fawX05nq/kUKu98vJyiy1h3hAFVKL38JjaxNRofgWKtFPPpJE6IZClZBVAEYcvS8U4zyNe4GxoqI1mu4k4yD8KWw9gGQYptrGQAYBnELAd/4NBZA2UxKGCBEyUeo4YZNv40qGL8OnA8hVPhX54WFAW+h+Z5VpHKeM/HAJz+gMHpFMlwVIUVRUmTDRVwHgAYPYJBDIwPIPTnOgmUoEoSoJVFO+yNO5hBBRe9uxyFvY5txqZEgI3d9vr+5uHl4fbu4fHx7vL86ubu8dXLm7eP9/dPdxdXj7c3Tw/X08NliGe84+1lXwSiIIm8YuOQ2eBy7zGaA8JLNkG6uJoMr0/DOWDbdJqAoHHw0nT6nwG4iwo4jjI2bdy5RTNoYGKD7n8GYOCWftBoRBEexQMP7VokKZm2xRcZ06srBIXnsnRJs2o1Oi/XXZOqRpe7djFvOUKpIEq6wZUlzzOqfGAbHVzy6Ehuzy8W49C1p/tBq26qkrNbA+xjS32cSIgh8cjIVuv5Kgbgi303CmpomgkYbGtmd2Sby+Vht9nGADydwE+ru0asgG0PZ2ZnOIa0P140xPhcHL8AjMhHpoNzrwDZ291qtdtebG4uL+iTZAoUcCKVKVVY5yRBpBGP8ZNlvsLqmmbYIG1tOZWKtz2Q/BEgVmieg8JGslITIxY743nXdn2v3hm0G2HDB55pKJyNzeOWIihRu15TRZbUBmGj6zs1zeLk2D7ctoMBMNBxCJIItDonqDW/EXRGg1HLjkAAa7wgsTInQy1yvGFThUVKi0ypJJi1ehuEdHsY9abtw0SA52mLGlskXMPLZquk1FgCo+k0HdvvTHtAAzhz2m12GlJVm0+j9TpqjYFeNTv9/mi+vDj4NZlinO6g22wuX12dX5wPbaXW7q0uXn78r//v/5crSI1ZqzmeHu5effnzj7/9V//pW65KeboNepLDQ24d/zPDGtQ8W1ldXl1cHC7+tiDMVrcd3r16eGPKpmi4su0ujy/NV0ulMXMWb68+ea0bbmu/8ZyurBeV6Web7EkuVWTt+ny8O+5elUB9JYhyvkDkyDxBw5cI/ovnBzl1QsCfCyVM0y3AX8nnChWRJVKeliZBJRmSClc4vHgblUmuXJaUcgEj02jJwKSUMuBK8uMT+NF5ssSVMrlULiFfXgongMSJZLKcSp8l4/2QIpGt6kbPOANKkCiQp2VerBaSp4mSlAMdCUI2QVbzUAOE8dUiYFBDFtBhkahU0dKqTDM0zZCVRO/54f713ae3yze3flXkyrB8VMOUygRjZBXRCqxw+nxHZJLALmIjA/go5guVSpFk0oynRpxt11vRuzdsWazT6SxZIgmQ2nk0zRKcRgQabbHenl8dF01NlhqWVAdKzFlSYzgZbGZDM5fKA9zly1m6rFCUdSb9b//7//pv5VNQ+CxXyVlEQlcCzdDZGpUANEVPXqLIyHDPmnKeSJ1Bsc0TZySGlBCZdAITL1PpEiNrDDCeUgaeDaggiaPJdLZUISoVslTMZoxhGDZaTTTP0W1LFi1dr9U9QD/RMP1uM6ipIH6gRgamzmSYeP4DvSUnvX/egm5iYnA79AxDMep1zCHAfLyOq0gsKKHxNB4O6nWGmGYPJD5GP0uXdShugGEAqV0AYBvEZgdDTFbo44cPAYVQUaBSGpamNztRC27TerPVjkaTXm//cDG7vHh6v5ouN1A9phha02lF7Vgz1F3LQ1d8H7eaccRJ6R8Wo+EMKHAXQcp369inhUG1bqNRb0MdXcymq2kXCCiUHJTJPmgdz/Pg5vbqdTdoussVNpPFk06AxGhgNZnO5tPhcAGYcbx59fL61dO7zz55/81PP/+0aYTYo9bHXsz+ZHO8vH16+/MdyHqc5QelPl7u9sf7t19+d9HBQPUPaL7FTGF0Vrx5/eazL/sgWAW4mPjo3nI9m62Oh80WyuQEMGoFDzyergcTKL3wm0mnPcSdBMw7jKJW2//gpOh/BHq1jPsWebTZoEDX0lWOo6oczs9VKIalq5iKRFeroHkZVgLlwfLYQMWLqHEFkeHgN9jJDM+F4wRJ5OLPCPHvWJS62EWMnUzwNmM51ERd4xWOEVW0+mdZnpUFkODZGICBGaJFDPyfVTWGpERFwpAgeDhFA10JoGS54/Pz8/1ULZeKRIUk4Z4ymx14Ud246XnQn/Q6I5/jsA0fj4Hbrc3jzcPr+1evnp9fPd5ewa+v0Xry7v7u+urm9ubi9tX9+eji3BZU2x9tL3oS3OPoDQY46NR7+5UjqpYlUhxAqltT4RqwehgBqbQxequDjGkEWrM/HHfrfm/Ywcaf2Fsb6EIjwmOV0XgCOjwK/bCJLX8IwIDAISJwhG7VFpFjZFXjsiQQVSpNSLKqlLKiqmmlNFczTYbQRrMOl5eAiGQJybB5kjYMUCCaJLVHGKuJALy6Xk//f5rerEeSdNsSOukRPs+zzfNsbrO5+Tx7eHjMGZEZkZmRmTVXnVN16pyqM9yhuXTfAQn1vaJbNBLQCIEQT0i8gJBQSwiekJB4o38BghdeEX+AvS3PDakyKzNjcDf7bK+1vm/vtcKBvjyOsK+RTc+A4RJgFsMoNVdMA4GBi23W693u7Pp65NuKwqEJiiCLWpjwygUsns3ZJQLwcr6ZBwNTwSZj2RikbhtrwO/DxZWXAjCTWknKmmVjWvZ4NJ3PN+fn2/V2fX28v7oksjjniD63pVa9liuWXuDJQraADSjZnus4YWCHni0UinU0qsQQjwruaHRb1eJJg1U9D11KkkmoyYpihMP0zBy4sKKq0WToOwCi+shXVY7sNvTINHxLt0XWkA08u4LHOsYUsMCQBAHWHyNohhUOR1GSuMk8tDWeYhhJth3DHfqBJxMMNqwLgjEYeJEfDnzXdWbT2zOnDZdZ4Su5hqOJ/WJThCVmWtE4hu+VeOOBOIjj+RSItOcPzxKoWsHiMF+Okxk67yzHqj33qTleOiBgi/v19hA6+9vF4fXj8ze//ut/+g+/f9xc3797fP3Z11/86ucffve7v/ibn9/AjTSEfp1CiS+m5i8+1G3T1M7Pzw5Xx5t/Mq2po9koeoAV7Ioq5WmXCbm5utv8OGeskbb77uqbO0KnhvfbsTzWYpWZXR1U0J8UXdd3jx8/f/cHsVzKZSv1BsjNcrFYKWZB+F5/eEecZFKZWEsPHJGQlysNEvRUqBUqsSbLNKHgqaLZoqlqg2crlXaj3aMUrktpltKrlfO5TLZSQSAGkK3VyrlT+doql/PZYj1fxYOlMm6OVuuVJjrsZPPZJubgFouAWEDUitViuYpG06UKhuVW2HIPKkTSz6Q2FbliowfPHRQWmmzTvWo23wQS0e0ASVdNSuwUMtlyodJXDKacqes0bUqKc/la6quOQ0noaAvrtVWDBVYrFytZs90V+yTJ9qgPrwqcDZRquhgHIBVdU4I17Y83t3c3j+/ePX/88uPtytI9WYptUSBlM5YomSH6jdNc6ST/Il/P1/v68OWOufnl//6v/5//4qTb7NW6TI7MZVjKZUtNQP5KAUhoqQJ0B6W1oortSva0UKx2SZrvNED5ZNIwpLRRjiM7tWbp9ASKX7PVAllUyJxW63UokP1up69MAt8Byq7DU6nKHCsB7IEcUUSCVTxfhPdME4zmxr4/EAU7mkxABKYDGoEBOlHqE/5olESgLTVNkEx0kE3SNir4bBrK1Ry3oD/lt+ImceyatmWoisTxAMCLyXQ+iSIHbbVMNwLFsVpGf+L2joLNfgDA8EP82A/RYsKFRe+tlkFyfndzfXH/fjNH2r+aY1DOdJq4A3cAJNk24HcbE+EsS1MkVRnuUSmuF2M0lIYSa7pQynRMqQWchncyXy8W+90MBbrnAIw7Bu4TIfTaumHhCeHmsN8uRrgROgbIG2PD1xT06HSyOhwubu4f3757fvvZZ+8+fP+HP/6wc3xUwNM0EXiyubl9eP7ydw9ohIX5wPP5anc4v3r94dsfrnAXcz5Kp5X2lxcXANUPrx4++/Lbb2dtWJEyVBx4AQEU3M3+6ng4nu328/nVer09P+y2Z+cXu+VmOVueo70tsAZgHy7oLw9nKXzP1gGAu60aenAUEYBpkuv3sQ2Y7eNt7wE+9ru459zDWCyC4GSeASUL6EuxmJQDTwQiMZ3+GXf7BDwb5kEoShyqZIZkMeMBIZhFPyuW5mVRkVgOHaAx1Y7tkn2WwG78QhqmlE+HhgvFMqeqRK0FX85zCuIALwgCHtmr1vzqAhQwPEO9NghrhuahuIY+2ncmafjieLnU2h03ns4myWgyHF+8eXp6fvP5Z8/v0o/n53dvoXw9vH64uXm4v7p4+fr+fHa7oymop4vDxUITKHhNPfTdcrxkt7FEVpD61b6gaJYhAoOglDCyNNHw0Ds4QABeLHDOOjTMIegrnAMGuoHK0YaKNZogHxvGvodnQP+4Be2mNpYBphWOjUalz3IyW2mppkrma5ykqL0yZmx2axIQQbpm7m+2nbJgaXytLRsG0+zyHFlvUl16OEsBWFW1/e1uCbx1c0wcXeIYc3e2SoazGf4ATENKN1G22xSCl9vd4e525GjApnhB5BiW12OXH1ydg0I+XKUAvFgDUlkSCwCsmgM/jKfwEKGX9KUDtxGPDhgOAdh0QniPo+FkhSfA+/VyfXt7f3Ug8+gCnAUAzrdqGfQiRSuWIrqKn2bFBMPj/cC3iNMc0i6sQXXUCvVGI1utQ6E1ByGQqjiJbEUSVAcffNMyFLikLrB21xooarTwdZ2HlRQOXS/23diSxo43SDMFowD413QUDBSWZHgZu7hn0xkUDngkY88SYRVixvD8+PL66nIsc5LIuMYAtfx8dr3brK7Pby+OZxeS6biq1M7XSLLdy5cFqUPoNKx2QZMpVWKN5Tr2Irjhrg8QuWT4zdbZz4As4OnOrNGdholOeJYTzaeWGQa7h6XrScDWQaIa/sPP//l/Mh+t/WG8ONtfPtx996tf//zH71eSDQDcYFy0REcJLBs2vE1Nu7y9uHp99/qfzioKkPbg4c3jq4ASeo57szQfH1/e/DBp0Kbgf/7y8/c9rnD/3l4oNj8ftHaxG2RPS1ozb853y/XjX+vlSi5Xxu3nBiButXJaalYW39/nsplKudxuVDHMG2A5W2yUi1W2nXW0QsnBhG7JUjv9+LIhsfUe3ylV2vVOl44G1RZvcd1qKXOSQyCtFbKIJvVy9qS+WZdPci9yucwJoHspm8nka9Vivakej5v+SaFeLmYL8FWFtFegXCwBiBdKuWYN1HJWGDm+Smjm6emLLO7YNshup1Yqt+BuagbP4kzj6Yvciyx2OxHtWr7UqML/NXrNUhuKCidq7PTXhxKAeEtMo7t4oVpOAw/ypS7Dk1Iii4bQiz508tT6+c3D/eO76/s3b26XgdUXrOF6fw6r+NXrtx/ePSyOI0KL/FtFcJyA77GiIJAV0K2FTCZ3Uuib+y9+w5qj70afvz1plLo9oZ5XVkNRHvOnpzhTfYINDqVSuYJdLX2C7PXL+VIRTWrqtWr5JJ/PnGIIBuiPOtfvltvVYh6kfq9LlIHLgDKGt96uIVMSEhcKjuMMfIBQhWM0UMDOAH4lOBWAyp7Cc48J3fCsBpsDaNNxaricTALDMhWJIOApTcJJ6BoaL+iak6YOYLeTLJIUySxwixSPZzE3D3i752Avi6JIDPxhDA/GOPBtUN9oi4FzuEN4OFOR7YAwknXZMEEKD0d+jMdrnh9PPPy61fEeAPjtYjKHkjIbjdEkfT0emANbMqEgeh6y5UEapcCo2hAz/FABjxAGbQxcN0S0TbDT4JQFHgFvd5h2Px/wIZRUPD7WbGzFspCWqOIKMBMPkhezaTqWiq4ioIExc+X8EuTW/avHL7788PrNd7//s5/OvTBEJ4AxKpTFGQDwh69/99ILfT/ETU1MAD7cAGz88io101+gHfT2cHmbuiq+fnr/1S+/3/SBR6k4cWyqAY4/Llez7QZ32ufH3WoaQ9VZL4diX5IFYDKWq7nzNeYVh2EUeQZAgWObv+ii6iilLhjFYpth0PcRMJb+BLroO0HiSFUfW57wlJfC9FCSSh2bEVQ5hgFdS6FnIUtDVYbPx2NhkqfxgJgiEHvhO9AAxCiFKZHHNDsM/MOxNYbqUiTXS2OEP30UsVTnilVeFroY4o7GhJog4FkzJ8It0ez55fnxYn/8A1IAACAASURBVGsIssTjSauGQvNTkAcC8ATwMKAbHdmK4K8AhNc3bwB1P/visw/vP3wE+gMfb0EDPz6+ugci8/L21cPdcfVyTItGOFnsD2eRp4AGxhko0/Pi9VyB55erFTu8qlk6j1dFCiI8nEgdJUMM8ZrNkEgFmhmDrMSBALgeOAcMyjEapyPuyRBg0ndEtBIBAMbca+zWD+Jkuhi0aqQAxbbVHzhSp9jCM1eurTmuRRM2rHChN318s62UNVfj2ryuy/0myVNkp9Nv0skEB99tVVLPbjfzyLVW57FjqTxrbtew4GfjaATPCXpLrNeYB4yG6ACu2/P760iH2kTRoIEZnteHpjE97NcHWMFXe3halotZaJtAjlMF7IUAYHM8BL68GCAA494HL6JHloMd56Nktj8cdrv9Zra9fXl9vaMLaXczHnZVihnA1xoa/hTLUFxPS5IDl8IPBp7ZRJUM/1osV05O8tVGrdkr9Eiqz3iJjw2DQNF1RdRsVQSyC3RXMrxg5A00xTGCKAHeAcvfmEVRHAdBNABZHQ4AgoEcY0feGHDYYKAYm4OU72N38hS7LAcCB/d2mMQjeDiTaWw76E1je8HAjfxgPQln28X6fLM7OhysBIautBqcoLqr48IL12hAq0EtHDSoyQTEdK9HYU81r/Q6x5kjgOYGXqLohndqXinerIGtuZJMipxnSURf5FodVlAVuHira6/vwBvADQie5xl9fNh/GZOWhQDsaQDAMs43GoZnWYp0fnt+cX9x80+Sij5JwvDxzauPYVcm5cNF7F0dji9/PWuLBs+9f378QIvEyxsq8Uw+DKzbxBjksoRYadrTM7/z+t+w+QYAcKXRrHXKPTRqrvRa4V/enWRzgIjNRqXWatTbtVwhWy9XqiJZdvVSzcV2VIoVWXlyKwBOgGqtlasdokMPXK5PBwJQZcTSzEm5AvcYjXQAMnLZ7mm+nHuR6evqSeFFsV6F57pC9sn48kI/qeRzuRp7kgGlXcienp5mTmvtWqWcz2Rf1IJaRjTDEckPCwhOsHBqnVqr3arVq1VjuVX7VK/UKVVPay3A9I7cLsPPKXeIeiZT6LQ7LN2HAqO+3J2U8pnM6YsX8N1P89Xip9i/TEOiuwywa06MrWEnW+IN1bI1BScznYEus6wKAm4yn602u/Obq/1xEnKUNX2jaD5DNOvlPIDv6clJSh3y+WobYLVZKlXy5Xyr3mGaVa5MKL1Kz9GhCHQbZbFVw0NgjHssFSrNHiPUCxiNnu92usBzakA2stnTTKFWKDQBfUvFfAmtBBtEu9Op5vKlXAfnO+vlmjgJIi+ENeoZoiIzPV2WTdfRRJ4UZBugzhmuz7djoJHuZH52MfK9eITRtqMksOGzJIpAxetNAwfQm9d0F8pCjDEyjiQQRLc/Xi/QxxcPghGRQkBFAGB08BjGQG/DZAJyzTAUE9EQJDH8VWopEXiiwMuaZBiuJMInxQMbHm34/PFoOF7M5gBsb95Nk9kK89VGuCU8w7NkS3Pi6JNhM8hgy9R1QVGS/Wa7R6+g6RiIAZ4NG5o8SLcLI/wOaEW52WyW8/XZFhQpSA9nMAAMxlxgzCWUxeXh/LhfzbEX99NU83S2BC273R8uLq5ubm/v7l+9//r7H37zu59/+LNLH02fsTwmo9n67Ory7vmrn24d4O4RAPBsMltsDndvP/vmN/cJXjrc1AYRuz+eHe8en959/vaLb77b9kmW1/BszNLd2Wy9g5cexdPlbDz0JsfHt68v5956SNX6RJvo9ziq1hZoGZOPUE2ynDZwXfcTAJfRhxJP39LuZJw861I07iVjQxZFAuiQvV6PwF1mAnUt1G1sogIAJTic5QV4ZFHqoocziToXD31xGImg+1QKwLgDjT3TfY7gCYKnpHRLmuq3+iCKu/nU5BKtPgrYqlPIlZscT7cBfxs9kkQ3I0bA0R4dbtVgfjw7XO5dxYTahOO0buC5QZIGsk/GgEijiKuUW13ORk/w1WR3/erN09sv3r57//Hzzz++//jh/bs3j69fPb569fTm9ePbx6f7u4vNnSdoZjAcwb0aT1yKFAyofbpterMhhfmJhRN0SVAlotOo1+lBYBtoiz6w/SGOweK2TTLyNSNO/IFtSMg9JMTRIIpxLwS0+WgwsPyBIIrocAosMvwUZYjbOU67TsEzpXQpS26eFOGdK7ZIyLat9num77tqf3j1ctmviabCtRhVJBs1Eue4+kSdHsJDBYtQEtWzm9U0GGjTQ4S9v6yxmWKifRyO05io+WID4hToxe5sDwt5e3y48BVYCZigwUqKoMVOctyuFue7FICXq+VsGtoGD4pDTGVunDYTrvfXFy7NcADAcMsxIHJguoCJk+nycDxbLneb8fbq5fF2xxUwRAsBGMfIi6XTE3Q0LVRKuMfRp4TAc3wrGjSrVXTyxiG3Qp1zDKJSGg8VkpIHwOShJAKzUiXRcA0DPWxl4PdhmKAS9v3YBlrGMVbgTCzfS6O5fdkJjNBNG/wjJ/BsN3Kxb8DCkGXdhpoBNwI4qSsqrmu4ANjeIPTxAQzRlce2FcO3HdfWJv4g8K/enR32Y4wmKRMNUICTdRysdxPceYuHqwujrB0CdzP2XNcKN/Nk2em8Dxl5HI3n6UCHWI2WQsuKTdl2R1N/uvnh7dDWvWHsehigcPHb/2xHbKbBNvE9jB8fX765/+f/8r/WALqFXp2GKitgO5mmRZoiW5r+8tX13auL2382yytQeeKnp7tv/bZC1O72Hen+6fr8a5fxhT715dOvnqzt3SzRLVfnWX+F9tm5mtztNezZ5Q11+XeNXCefq1SrzUq32C+V4LlrlJg/7DO5QquSr9crhVql2iq/OH1RKdaqbLc8kHM1S1ckCZ72Vr5MmTzRqtdqpUaZplqtNmd0mx7dLnd7pyeIR8Us3uOT09OTzGn29bffluv5xsMfvyeyWe9h08pUBrqviJuzYR4U6Qv6SsTjTxDAhdN0I6RaycCLq6vVvKaZSbVuwR9xHyVfLHc6rTLUqGq+QOgMU68WAVizp41Cvs4BthZK+XSGtlxskVSTZtsG729BXtYKxXSuolTtVDE8PF/OQOFRWgxn6mbF2ldOQWaroLQGkmHi7l6HahMsSUui6Uaz85vDdOLRxGwqbbtNES0sDJkFcq+JqiDUQeOSIk00+/0u0W12Qde2a3IvSxaLGsFV8/DWu5TSraP/QS7f6JYyGfTKymF/YupO3Z1+9fPqJJMrFU+zRZDIXcDxYqHawKZthuwBp8lWik20RmqUy0zoOLZjAs4waIlX4xlOBxKr86DCBrPIAtEJshRoqAFP7jQBxEzbe6fDyPU0RqA7GFrqjJG9AgAbvodOWJPR0BJlUEHtEANYFhhKiF3EQ1DZOib1igw7DOA58aNZ4JmaJmJoSTjfraf4bIa+5/kSx0oAwKJO0/HYxaAfH7OCwwmgYDhc3b3+7MMknm/Pzjaz2QpUAW5SwxPqj2KAVhtdAQFEDeyDHh+Wy/12NYcqHgUuFFIFKKhrmxYGEibYl7JFEbrHz5qlTVjYcCNhn5auujg0ugQBcbbdrBbT8XwCJCoZjoFSLDFBCQ36Xj29fff08ZtfAQD/+McjwPpoPhuOAaZBXl9e3DyDAvbjMEz9aNHa4Pzl24+ggOEy4hH5ZIFhrtdnh7vHh9fvv/jld9+u+yRHa55rARSE0+n24ux4cXW4uDq/OM7WF1f7zX63vNjbJNVr9IkuI7B2IHEAoaBTOZKWXcyO+kUXOGOzCoIlWyhX2gCauOUMWhfqO4ONVSQr8CQowj5BUbiXjJuPLEN0BIoA5YRZQayA8Tg4vUoLHHZHs8Dn8aekZ8KfgJcieySdpi1x6CXV63E9QcTUQwqbolslYIVQiIt5ZAFpG1a5SZDdVqfbhi8UdEMBxsCCJDAdzZ1uz47HTSTwOFCbxtsjZxl/aj6fTKcLr1uuQJk3cc5zNl9dv3nzBrD3i48fP3//5hnPgt+8ffv24en5w7vX93evH1/dXN9MaUICZPST2WK753NdURMAmDhGcyweSGYtk6u0Od0QyV61WiesIG3dMwwnHEZ4agKUbYHuMeEkMg0Fz70pTtYMOxgOx8FoMU5GQWx5oQ6qHWidiWNIUIYBgUNYIUqpSoJOk1us2clVS81unXWEtmLrcrNuDiITFvbdy2WrpMRijxBkoV+vdoDpdPp0vjUFNPAsTZKUxW7qe5o+3Y1tTWUY4zgPwxi1YSrR5/MNLNuL434NBBP7lc+vDJnrw82DG8VyoumPNrCy03OPi9ViswhhfQ9MTGtGSzDTG8WLFSD48e7WJTmS6+B2Bo8GyuhrjVmGh8MhnXw7v71eXl7weJifyxWqzWba3547zVWKxR7byuJIRo1HDHJ9s4UNMtiaU6v3hsAQHGNz/5ZqNFlW8uEJtAbBWKTZAXDtERrOWdpgtEwcVTSjeOKKHN2Xx0PXd20V6BNNC7oqGb6e7i5H0TpZ7vf7NgfFcqBZIQBfjFvM87FK4sC16LlDyxz47nQWTROW0ATNkWzLgTosKoY5cIZPG8efcJRA1/NtQ1LPk3Qw2Q1HXrDd7plavJSq06E/GjvmYrhOODsIm7UR1KDFcuwZKm0ESY2f2aZvT5bO2h8n+x2QlQQW7Pbm+bcPjS7gdBRO/eDt/bsvfvnNZy9//Nt/0GmJohp9laFFHoqdbHie2uaiUfj8+duP75/e/fTQlkbz8Qjw+LMt4w+11aQu39zc7RVOElSBvX17cUcP5it/4RqW1OKAHJp2S3V6dCV246vdt//N2zxZrrWraD3XBtioZ8tUifp9M18/LZdzlVYV3mylXD8pNtovqhmKLRpyqeoYPZnnyC5V5w3dYbqtSqsGON3utdvtej3XV5oNp5IUAXZziLxlguoVd7+SqL/8i3/7D9m8OP/ir7onlcRfKyclW3PHpXA67+Vw9/VmhnbIp/nTkxRmcQCiWIK/6vcomTdzDbGG8hUHdwqYFtNudQmWtmYxUesqJsMzhFjvqo0qoPmLfBXzH+hODZ6gUj7HXa5d9BPInuZPXmRPc+1SI/3uhTIpwcPGoEMQ4ymnxbou85rI8ZZlmxINaoPD9JfUe69PcLLucWXa6xW1QuG0xpVz1XKlZ87vP7x7ejgbRbEjNttkpcsQ1X6/WW2BSOkWqXa5JTIMzQM0sWSjWcxVK4UybjkDUajUQPqjMy8QnnJTEUFjYmZjvlJuk0QDzffRRR/n4TvtKryBSpOk6U4uz8SgY2UVHkWVw33GBsv0BVXE29KjtCga+AA5GMciMLzAGglA2HTiDue+bRmIo/02wijOvmgyzVu6MXCSsQ8r35IFUE3UEIdlEIKxdzWO0erPVkxLUnmMFgKtagNGwrNhq6bnJIvRCIeYcBPbhosnKKpi8CydurX7YXo2twTgW05m25s3X3yGJpLLxWKxnI+iKMQ8L7THjV2oHegybcNrBEEvDffrzXa9+DThhHobjfoseOoNewAvdb7Y4lQtfOzWy/kSj/V8R0dHS0VS0M5O1KYXR4w8X42HIzwBRhnxyVZjtVzsr0ABP7xBAP7+h19+88cLDKSYzuIhgPBsDcLh9tW3Pz9hkUBLn8lysdzsLx+//OaHywj+Age0UIBcXO3Wx/vXj4/PH7/55byLOe4GvAXXsDFFfLVdp2mEm1ky287gm6xCgIAAbTw1G4OWggjeXuRYAx9Euwkfn+aAq7BiAYBLxQaRmmugkiU/7SB/crlAizMCz34JIkVg+MDUGp5j6DTGCOdCOdy7pvvpJ3MMme434/fBYSXMOMRxJZalJLpDCDzD07KE6oJhAZwbaERdqpTTAeDUexrJwKexlHaP1bHblUHba920NQcB+HzlMqyFx++fctTjNHoBzU9X47HXLdS6JWIwXc7n88ny+s3TE6jfz96+effmFeLv23QL+in97c3Dq1fXZyu3y8imJpvxYn0YNnPVDqPyoPRpbbgwJKaZB5ra4nXcgW7XW2IYaBLIEwMkbuCHad8cLlpDi8aeZWoig7PRkgH4EYWj0QRY5dDzNNvXBUlKEwwGDlR+PAWORslMb9RJUTelrmzWThulRrPKmWTTdCyp05bNQKVI7/LcLdd5XaVbLMf2MeSAkLsEUeYWI1juOPckDGfRwJYVACh3YImcejYGwuxH+MJwCgkJ7ma3Wa/wIZvN17uDJgGQwg2Al8qKuhPPYJWutwDSu8ViNRpEGCUkkLiRIUiyHUXz9WZ/dn59YYFC4Lo07kHjiHCayhglU+yyxjjg65vj6nJPp8EduUKz30NvHszl6HR7LF09BRFSa4uu58RRKLcblSzuWZYrZWMMZMmLXz+tKq0mK7s4pgWYOTck2ccBCR+Ilm0P98fYBvYTbZahpqiiMUniBAdlDVXgVN8bxL0gUE1bd7xwFDp6N9sXoV71GdVSNbgfcSCL7QYjcTzNU5YJ9UrW3GBoUxyUIYkx7XGYxCAVvGDqzUJnNe8pfL1cYw3WPgt7zeQwt4DXhKFuaWVpM8z3Jh7UIHs13oqc44YyMZiN54vA8MaeKHkrng98P/Emc3NIKm4wkYzI9ozk/bsvf8X3jIECL8j3Vz//6rsvPnz2fPfj3/y9SnEcXaoIABA9CgCGoEWJBgbcmbi2Z+vBm4dSX7UUwQ3cyajdHgyUPdXxNdHrMaLqG514Ej01Kv58F9gyxdRr6urMFbuGrbANXTXj7Vf/sg6kqJRvdUrNVq3R7zdKrW7e+BzUYaZXKnCVWqsMKhNIUrFSy2hCqblnsnXD0wRR6nc7XLxM1C7OqZZLhU6jXKsRjdNWQ+hVNGJmEpR3I53mSt3Z9W/Kldt/Ndw8/Uf/Qz5LkN/9lXB6qmqReFqXSTHKW/OlnwGJXNh87xbKmI17coIAjGo3f5IptmSKFupcodAunqZZQfDyWk00tu3QvVKxJ3DdBkcRaFZCcHy9UcsVq4VSqd7I5IO491f/y3/p3N1droe9Tp9sEjxRa3XrlVq5cJrJlIoZQkJvFigokjox8sWeokg8J7Eq0G2i0yXa2BAp8iwUPhYjN9UOTWQbXCGf5UB3M8U2OxjN9ze3X3z95fs3ry/nZrNQq+aCh3qrXkGL+16hX8+WiHarRWAN7TRAAUNlK1TKlUopX6j0y8AWCo1ssVhsMrLK83zhBC5AqdDotutoNlhvtZqtdgdkMMiiYq1HduoNQkuSwEbHZNmAAqNpAsFLshvYCJ+EYNiG6uEE69DE3UeK0fy0DzkcTlyAJ1kWWaozQI8+A4OvSFpRdECGeOCNhj5IDSALi3U6MTudQBlNANpATQCRl0BkxZEf+tj/5UHFE0AAw0M2TyaYaztEL2lN4HiB4zRJFqMg8NBF49MsbzxbzpZnm+t3H9bT2WINKDgfY+uRiwdCMb5Cz3NsD/Qw+voqihjjFvR6iQAcR4GF00mKrFkGQBzQ3iXA2w4+Ac0tluj8O4wcbOAyMM5Q0Xk8qAr3l3jKtpxgF/NiCei7WODcMEDn7vz6/tXjUwrAv/7x19//+XUQhAl2CcHPm61mZykAvwVegRl601S6bUECf/79FR7joaBewl8ury8ubl49AZS8/+q7WQcUqW4OBrZrelA1cfr3sFuvFpPIWx9WaAkSBciyozh00gCkQXqMD2xBM3F2FO7kL4hOs1kv/+kMuI5eGrj0MIoIt5pJCnQG/QmEU0glAGRp3HVmEVJZ3IiUUAAzOA2MH3zqSMrQLO5Jp01aKWLTac8V/KfxfVIU8WhORqBmOZLs4+NcTGOH8RAkDWQolhvdFIAbXcGyVR4+UcDJnoHuTKHOH5YDTLW0gCbZAxftqFDooSEG8Di/X6q3C4QzmU+n8+H86unx8d3zx4/P77/47P1nz+8/fPz44fn5EVgM3I7H27uXV8tQakoGVPFod3f34NRqja6kSiwvCYPDtSnQlVyu1GH0ASx3sd+lrNiWNNxIgatpYjd5CIs2nIxsLRxhGBIaRjMsxl3j0NcI1C9ggQsAbMkIwKbteq6DAAwycDSae71Gj5VloqXI5VK3UK9VBKPXUQ0TpGBHdMVeR98v6UKrT6hsBXf9m2i4K7Z67aazGmG2laVK0mji24YgxvPY1BSG0RahiWFMafSG/6dIJCAoC7TIHibT5VLFpAmGoPGQgZWNAJgfHrKcrSaj6TTQ4d3ZcK86/T5JI0C74yXGLeyXCkkTDKA/ttTxkgLKAY+0wzEs9t3x6vr6sJqfzchyDpA1X8GdE6LfRRMWwEGhBwW1WK83GUWxvSAQu50SCK/saaGUb2LIlDV8OWVy7ToPQBjByo3GS1vRvNF4NEYvaMebXV0nHrDj0fk80C3XdgHv5gMj8oFGK4NRHO4fLyILvuzmand/thhW25LnBDF83XG/2x9f3p1bWq8lwbPqueb6/ALqw/b66TbRoWh4vjtKrs+vri5vrq/vV7Oru/XdojtQmm3ZkLuDWdzOh9uZHthJLLZIviOO1gzoOs+3zFUyVzRg1A4pJ8k44Cl9CDfFmSlsGIajaLVROFaNzalpjSxPHb1788WuIfiKhtzaHX7xFvjhmze3oIA1xhpYFG1bcAvRy9SfRKPxLAqT908PL+/u3/z2J64W+PP5H759fveBbhoT9WCw73/67luNVKG2Cu//+P1vyOJidxgNI0lrl8nF0eh2+h2u1amRkygKzlaNfoOqgSarN0vFaqueBRE8Os8UstXCabWarbTqxV4912uU8pXMTMqVNmaxZLqSzsgk21YjwF+6XqwVKtV8Dbg3W+sXMsV4dD7ImrY1mjwfQNGqYvQ0zRZ6jPqX/9N/pWTD4S+PdJb3LYXIMnKf87NkHM9OivlcvfX664FFZF58igTC09DT3Emu0qBIYzDysnRC4B40KEY8Pa7VSqUmJYkcCUuSzhYbpdN8JtMxGpliKV8uool0MffFV6v/+N/+f7/2n4AOw5Ij212y22EFolU7AeVZa1aKCrB5YJA8yVEec1LKNuXQc0LNG5i60KuV6h1sK8U9EhkIv6EznMy2OkSjJ94Oq93Hx4vziwuQafHZS7hr764XDlWq5U8374u1WrXRbve6hX7lJN8s508KUMowiqQE8Js/LaYDHvBOsDG8XKoUCid93Ts/I/jSKXpLF2ut1A+w2sTxz04HcLhWwgRXEiqkrLE0SaAvQwddaAHrGE6STEM2FJxIsk1zEKDvny91e5zqxKPAjQEKoQKISC84liL6nmvApw3S6gCLFeDHN+0w9BS2DyJ6vMImLICeSZpz4AE82FBP2m0qirHP34RipsEKw0RYM5yNpuFwGI7gOvgazws8y8mKrmPMADZA4r5b4IVTHMPZXrx6WmAo4HK1nIBAdhwfXWNjNGX0QQTiLI5jIzUQ48P+7Awds4aA4QG2NZuqqAAKpwC8Wi8wR+ZwONthXirUs8jC+VsDP02DCwGiKNltzjbofDGdT5MoQW+IORYmwMTj8Xj9gLufAMA//vTzT78/ul40no7G06E/BJF8uLh8+dWvH4cYb45utLPZYnN2+fLpyx/v4J3iKdtihd/reH13e49GEp9996t5B6DRtIAGOIaDgL3ertAMEPfRN/vVZrNcxEhFAmxm8WyclxrY6BFg4PYpHowZ2i8oKI/NGho1l2B901y6gwzcj2HSYSIGW6twezn9jUmPdDGiHqAZURjbmfEojmHSwSOaQTGceifjoAp+Jkn/CYDxoFjE3GWo2wzFS6pAIwCD8qDb/xjXUELP9tSbsICpD5hM2KdkM7W2EEUB7oZreTOokecrn+dhNeEMNqAcIgxuP8PiiZczpdlolko9PRqPJ7NkefPm8fHt21dv33/+1WfPH94BAn94xj5ouBuP97d3N3c3K1/qs7KuW8nx9cOVUKpUaEXSZNWUnLsrlWfrtS7FSZquCoLMKXYEmgc7EABfPQs0MGAXwlviGkHiO5YGfARoiWbhqJHvTZJglOAMvRd6hiJ/at0K0IIDbSJH81Ui9/rAdhp1jizVGgWgzDRf7zCS1qnWyrzNNWvidtEv19t9kSyRLNOrVds0TVR7bXqyTBL059MMf7eIXUvURqPQ0vgeaYwCbC+0bccydNzrSGefvGCYzj8B9RuZigyXH01Setgp7KSpX+PRYoTG6YENAhjndfpIxLD93B6i49VkNgKpSVI9kqB5geVxWlk3bWzOBJifbvb7s0UyXQ9FtpCvV/OExqQ+LKAHur0+zTSwv65WKVS7bVVQPeAW2P+ayxYKuWqNlLk+a3abzU5NdZJxgoOG06WtaS4s4sS0XKAS47OzEZ6fj2aRB9rbcjFecWAMIzcM+EEysA8v+QYnu4l5d35/vDxr0Dw2/RvJ5W6zWh0e7jeHlUFrHjzxuoKppRdnyf7VZWTETozmoNp6vVkud/uzq+vZ7HL5NG1qcqsLV4qw/KHZ0KbTQWAHE6KBxhTealR3Ys+3zaUHHFgHftsWQBTonGxZJtSsoc5M8Ok7v1Drkumxbmj4rm4OX3/561GV8lSyP1hGzvCLdx/ff3jz9uVPf/f3CqWhQb0qozMQz/IqXFcn8kfj+8/fP71+dXG8+vH3x/VsEr+8v7uvlNp2vPfZ5XZ6lMuy4xnsant8dArWzW4yHEo2pyWro9RqFurDxdJnSfJ8s3jzEjAiX2w1MAayWGlnW93azAEF1s40G/laq5DPg/Rq5WrlXFun2Krs8X3TYExJoaky0MJOw5wst0apVM2Nj4d77qSc6TjeDdUbKlUyehWXM6dU9flskj8lXkY//avfi62/+Hd/9rnceOzR7aKpdCwvT8z3t+4JSN1M3p0t9MKL09wpwGNqXprLF4vlal3VZY+qdgspAGNDfa6AndKNPsWKiqFR1WIm12kVyi2ymclhs1U+V5a++tFlpskX/9v//VfN54XJAdqdZKq502qrmC2UgfrxfKNSFAhKELU23WEaSidTaZCSM7AAfk3XtfheG3211KFJmgAAIABJREFUoNRwFPymwCNPKBSpd0tCu6tS9Zqk+8EEO3Gm0eJ4//bt7UbsgrJtTYf5ar3WbHeIfpGonRQ6mOmbP8lXqrlMoZTNFXMoLLAtsQavCT7yhdNT0E9svcVV8qcFEMmNTgNtr2up30K31Wq3qgDbVdCgvTot9brIZJF5cHAfKaItGbqtIwZDScWBjeF8NQ0dS+8Jouz43nAGzNvAc1xFYNFvoWVhppFt66IAqkq2MC8XGPrAgSrAUfQ49WsCBYxN0IDkpo+WfXKrQkQhYK+HuTIgilVdA7kdzsezAETqcDaJBiKJSoxHb7koiVHXphOWwziZg2xcXFzd3iYojmaLxQzkQugFyQgPg2Lfdy3zUyYf2mGlALzbgnxM8HAZ5ASKfUm3MRN44CXL1Qy37vCga7NaLvD8ZmAOMAFKwxqE79SY7BabJQ7CgBaLnGCymA7h/czQH/76eHa4enjz7u3Hr3/148+///0fDiZetFkyCQbJfLk/HC/uv/rVA+g4DKKZLAGAt8e7p+evfvMSflKQjiGj3+7+6u769uHx1ccvf/X9vE0yDGZGaLZmTWaggPebNWj0M4Tg9XyzW65AEmJcDujqyEPvYW9gqMAVDAvBF7/yF0Sv04ZliRO4pXKH4wEmeY7+1NmMiJoe+5J9dMAiSPyFSP2rqLSvGSAW3aBx1hfFLNOnBBp7pIFCwqekW9X0PwIwdm7BnSJxgpQDQQw8lMFBJorn2pVKGY8/0CUVp6EwtaFYhr+D1YiWhyYOzGAqoGJ5ljc/Xl+dr2NRwDxeeG/pngcIu3HaDDWbD5qFWrNe7/EWIMpotLi8v3v58PL+7fsP71/fPz0/v3///hlHgV+/fn1/e/lwfX29DlQgvJpmxfvb6ylZK5REWYLro3HW9bnK0Y2ehF5p8KHZDsa4A7HCRYKnICNMDfBdJ8SrG42GqQ0Gw6PLC0jcIBxPYz/2DXylUeToWroNAawPYBu93KLpNHFURWbZdqPfLNdzlVa70mrma5RsE41m07C5RkU+nCmtAoXzlj244s16j+H6HUkwNotPAGwEy+Nq6DuGv4YX4ygk68IyjgLXREdrA1enY2C2NbIV10N/rFFo6zyFw9pdIFWiamH3Yhgn09FohskoSQwPKJ4zANfWDNPyUYbimKDnq6CaWZDFogAiDf4JFXDKgtB0ej0bLTfT0azVZrpVcyISaDbaadabzTbF1HN4ulCAklloN1hfJahmG8sTFCbMhslmC6UWx3a6ho3zVSHg78Y2TEwNG+N+v+cMN6vICzAJ1IMf6GjOCsgtUHLf9+yeN1TljdqmNS0cibP9YXdx7PYkoBueOb5ZzOfz/cPD7urcpWXPte2BuVwuVmfrePPyah6MBwmekKlbeFY3+0UyWsfTl+s3C9rSun1JUnQHkLTVHS+A5Q+m2JFDqcFiWlUTL3DspdHnWQUqSkeaJDbLWA4PsmQwDYQxst/NzmoRlknQsenFlhN89nx0bVKxVCYaB874u88/f//2+fnVz3/774s9utMkGKKPW//YHNMjOs1uu13sIJ2l+pS/XvXgaWq5AsXXChQ7P/MFrt2VKFIRbZ/WOTaahtu3+1WktJi6dpwu9eE2Gu0vL67XTqXLXL2Um8Vmvo7pJ41Grd4udJiOmhr/lzqghisYhldqYHJzoV9lYksmacAhjdX8+SLodaqKINrBNC7XO3nPsZNaPpPrkardvrx/ddUTXu46mX0gfnEhVE+ALZ9//Kuk6L/+aUFVNNUiiLJOMDsvVzGTYH2SK2aKL16QulB8kT19kTZbfdpvztTquSplI+pncGwN//40D3KyVm91VUmUVZlsVksZEMyFzOnJSSlD8e3Pf78LxpNF6+Kp9z/+v39e/mltEKf5cr1RPs3XAHyrhXIubxK5Zplr9gB/CJrSaYvNVIudZp/rtinsGW1VStVGjxUwXg7VBs4+ygJedrpPtAttsl0oEMbq4uLm4X53drx79/nz/VHq1YvZarZQh6vZ7BC9IlHPFvrNWqVcyhZrjfxJsZzNVYrpbGUFgDgz/O4i8Ur5k5NCG/C9xZZzmVy+VGm06tVqrVZrdrr9TwE2hZPTUrPRobApBCNHLajYFohRiadbRShJlkwxBCWpIohi1hqu12NPoQl46QCGoHd1IJmWbag4CE0RCMAAVaot8RRuQEVDhDjbG/A0BYx6hBGkeDoF8DWdjQMAZtOU2GaViiNsWbHdMAYQVlJvyHA+mjhp+9RgoDG9HkljfqashVNUtjFOuyYTjA4Ezn44P16COpkCdmEjNAB0iB47IxDpXmrJCPIXhKwFRCE+oHLEWIjI9/6xNcsEUoGbbCkAzxeb3XYDj/x8Po4CHx5izFrUMOdYMhxdjdabOehX+BilY0g4BDzH9qnd8fLieHF9/+b9u8++/uUPP/3ud//kemAN4hlo+cifYNbg5fXjt98/RMloOgMATregz26f3n/2/RVucA7Hk3k6SHK4vLm+e3x6/eHzb7+btAiSlOHnq5Y2AAF8tjs/g1eIptDLzWa+3YMmniGfQNeTJMK2FtvB9l5AXxH3nw1N+QXG/9ZLyD+hNPZwOAi7mLHPqovileylR8EEiXPwdGpzhcUBlW9qJYl1gf10mMvhHLBMYmcVGnNQadMWzfypbYtLhTSJdh6kKNKA3xSoOVhBfZapFzHzMN2ABiaAjf7pdHqxAqqPBf0lMUSv2Wd5nHoxnPnx8njYRILgeH6adwsImE6F437+bOYx9Wql2q63+pwKa8QLp5i/N92eXxzPNpvLyytAXLgbVxdnuy1cqiPQqdgQSFVTVSPeXKxdtl9rKYqowqMuOBcLlWngaheBQLCS4Y7ns9lqAboHJCKOygCK+nY6i24PRxg4ZUmw4AVcFSaCWhJYaOYUWLblRp5uINdD1mY5Xnr8AdoJczFkpos5yV2oGR0ojeUWo3tit8t6A61Vs6+vk15BX9lEuwMMuN+FeyLovpusJpitiTL7sBgBJQgmIH1cQ+b0+XIO1Avto4A9wouFnz2AZ2iYzMfYZD+FtRlaMivgfWLxLNdFOpFMlmgZvVkt0FskMAXkX6JuW44bYcQjPDizZGaxfYoTZUVRgCXDY4TfdgTceb5cr5ar9XJ/tru+l3iTbwV7pUfCWsEzuEaX5RqYRw56JYcmRVxosobF1bKpTSE2ARTrvT4vdtuc6c+ATgRov2XqCMCA+yB4B4NkfxZ6Q5dnZUyislUA4PnUtQE7BwNiNPPMeZORTVcXzcHFzdXxgiNZUPa+NbnBPowNcK393qMlxzEHjrU5O2yW+8XZ1cV8ADrTtgaWtJos1qCyTU1Wpg+zg98D1kPwcIUGkyhqdnCMODZislRnST2YzLtq7IbOYG9UmjRu+TNGEppUX7VFQgqDmSskbjz0oE7wPUD3tuMOQ5Dtv5nXBZIIArYKPMmJPr55//7D68ebH//27zVKVYCgigpDoBOLglExmm3ZynQxnSyWZ8fPLnus4aovr3a3Hx5O65XNmRcuXz6vFNuktEA6fPx6ViTWN4fjwuD4bOX28XYy205A0ScvL7e7+5H33/7PzfzaKBdKjUal1u3VS61+u5qvlTJ2NV9pl9Ah6zQLTBjHXEu2n8w62bJiKbJsOnYouCPQi6Ct3FrutGNKQ11sZ05sSzH65jw22tN1vpK/io2BJpUrNKvNnv9imqe/+XcmRIfnLZYpUfX+VVzqJw9X+9ZJOV+vFk6bzdwJjsKefsJfKEOZRvmk1O+2etq4n/nTv2Rzp7kS2uESsPTwdNZAJ+5Wn3CmnRP5xy+2PTuR6GCiT25+93/9H7/ZXngCmcdh4RenhSz8l89W8wW9kJcIDb3MZZoXTFrVM+VCvyX4EiHJqqEyrUarSeChGo+9o310ltI5SaYEqdnuVgkoUpQ/PRwPN2+fbo+7/d2bx9sp0SmXKq1GsV7HXNc+AHAtm+3Af6VyNl8uo7QBYglVrVSuNeqV7ol0c/bwu9++2wMro1mO4Muw+jE6rF6FN5jK6G6/2+6264WTXLld7EoiI8FD7DoIwCYsXV2XewUJuLQpqlLfiALHs8UWwWle5Mi0iG4isioIaKUmChJcrU8K2MKAI80UWAywsoNooGqWl/gy2ac6vXiB6nc6xmS3KShVz9R8o9duNakwMOGn43GaYdoyxnbqwSwZAYV1AP5sW+PTsRrDFDVvnsRJgmMACaYaYiTYfr073qCsBv47m6IYTCf0EwBpP0iPx1zbQLMNTZNHx916icFJOECIPpNpEtLA0m3H8YbozrxAAAYEXi7m4wD9ryzNSk9SNR3un6LGqznOhOJIKg5/okfwNP3zcrs9XGIf9Jvnz7/+7vvf/PzTn116rjec4VziGF7o5nB19/jtDw/BMDWTAPKwXC5314/Pn/9wFYAqQQqxQoOd4/F4eff68fX7j19+O2mRBCmrqQK2Z4vVBkonjpocjmfr7Xax2YAeR2vtIZCSMC3GcMHgNqD2xRkHPL3+RbNaroIATjd5ygSHk0apbQZLdAlMOuqTFNXvp6ELCKZ0OpMEKjkdSaJxPBcn31m0ioQvlrQ++k+mTknpETL+BoDM86io8byR5ykS9DG2P7M8i13XFFnHwxGMHcbkYezByqZmHLge0QKT6DZqtUqH4gTNGgDVOF4cznY+J0Dtj6MEIxYxljcepi4uQ7PX7DYqrVqjTaSyFoPjLRvWjQHv3PQHA4yvty00NMQuJR9HyHiOxGlfyfJDA3O4aUoS0FlWHEwAm4t5SpaRgfQJTolxDQ1kBefDbc9J9/U1UQBOE2LcR2gLeIjOS7IkayYwTNe2LMvxPeCOGmhTTcboTAl+MfAkAD4DLS1DR6R69W63S9Sr5Xa91CN7guXq/Y4GL7LXCm8uVmTN2QA36LOikJ4DmCDFRnEwsA0nTuLhwvMjuA6TceJriq77O1h7wyDNfPCxTywcYozmaDLDAxJMjJ+sI3egGhILxUxRDScMcVJ/sgCit8GuQQDwoavAzRVw9m/gwSJEoAV2vAISrYIogqfGGqTwiwx3scA2LFhz+81+s7u/CfXQ6nhnRqtLsWy/Xio1+iwJQgGtVrL54mm2K7m2ORwZROlP/qPlKizFBt2vU6I+m5imE6GbN7Zg4xa/l+6oj87PkiBQCM6CC2uauoeNEThMFAQxM4o92y73WDtmSk1ueX2xPpAtJQojXw92x8N+uzk/wvMRYCC5CQ/2+vzqDB+z86sVGmriYZS2nmHqyTyZru3wYv96RooM2p1SjDVMoh43WQVmNPC9cp4xIme8Vc3IjRzncpBvCEMgVoITu6bCyU7Qo5JgrPMxwJXJcbpOuaHb4Qb+wFHD39gVqOt+ELHRKHKSbz774uP7+/vjD3/7L2xxYAM3VvFUX2RoHqqKIelu4L/68unh8eXr85u/uNXmcTB79+7pNiYmxtlZ4A6vnqIu6P9ZRCw/fjXJVt//cByvIkevld/86MdmMgNKtdss3//5P/v3/sV/+L/+dXNxrp2CpESgBXmZLeGeaO8ugyE+udN2qVbPZLLdXrdGx5Y70/IlzeB03tUks9/o8FQXLrDLZ09kW4hrzWyeWvg1Ol+tnpRJzWxWa92CuBK5eqZdLx/e/e0uT1/8MFazvGBJDMhE8nqRb2jb48P2JFMGaMyVCqcn8OvpJ9KdyxerBaKc6/boStfWsyV0mM6mx8M4jVRtMtjyQzbK/cz0tz9uyMmHH28aNEMOBWoiUIlkbqq//T//u8+//YMsGqys8ATPS3S73y+DliacTFtFjSGKsi5KYpfzM7lmo0IqUJIIRlK4bqNF8cArQfYS/Q6wf0nCiTsBhILMknI9n+/AI+0PD0+Pt+erxf54ceaIZKVa7lURgBvtTp8skbWTXBvTfiuFYq1eKOKLz2J7N6aN1Mpl0tIpgp7E26UIdIsTirD2c+VSrYYAjONJn/LYe81SLl9p9USh32EVLBV6qpwkIPsKUZZBEUuMJNAmPH/j6WQ3Vvo9kDkiujHofuCGGA0IqleRAHI7jTaAlYm9ivCNWyStOr6F50euJ5IkS5CjRToCnMSgHacAlKFjRVqj0a5TvgcyeoDHfZploxehrvqz8TRKZ5DQ1clSJEXiDFvSvdUkAQieLyc4ywQcf7U/7s+v7zHgYbZcTmNk0XHq9TEcYaZv4JiogI20H0mdXOx3u/QIFyDLd3HrGbuHoXzDlw3hmyyWi1XahLUCeA1QXFiKruIGDW7oyoI+XiUTdL+Cn7AENQ7VLEzjykE0LbeH4yUg8PPn3wAA//Tbn849z8PhyjFUQ8DK/fXL11//+Docp06WkxnmF+5unt5/+Zvb1GQxBeDlCurI2fH67uHxw4cvvpm2yD6pIJLaqokCBEXyBmD4/ABfvNqsF+vZfDqZJBgZ66SmI+iZpMHDraVpx7gFjSbnaQgCrO8KyVFs6ifJchLdJTmW7FFowoEuHGk3FYUqmObQQxIHlTiBp0HUsujJoaDDnyine2eoiOGT0v5n7MOCJY8N1anBB8/D9+FU3ISW0D8LvmezUsINGpxXL6XBw8VS6oxZQk/KSr1RKVWbtS4guIT9rYvLi8Ph4LK847mBhwI//DRtMx6j2bdHFuvtVrfZBsXOYL+CwMNzxKAXCTxXvMCnHxzOQnOcIKGZOWhrGV6NJCsiQzI8pRt9TYJPYHlY/QxdqmkDYFjwsMAbsU1NE3q9NGzBxsMLoGem5gyDZDH1Xd/hO40u9gcrqdGJC9AwGnpRqIKGVhxLlHgcREo9rYHh4SQxKDzXMxmObPaJVqfdLrdr+R7V0OCOkV3gSw7ZSa52K7rnjG0eyatI9CheGIxtJ9B1RRW1eBI7tjaIxwDBuE/ljqJwjnPyAMBu4P/pI4B/DYdTTGfAA/NkGXih62uAv1DwTQ8PKnAwOYT1N18tsJ0t8XQRQ50seJPeFHsKpyD+JxvXskF9YvvhANE93XWaxGlGyXwx3a1W08XleulMh4S9dxtteLF0q4Jugq18tpJLu6MLJ01ZVpzhNHSkRi5bABFRLFRrhVK33iKB2G89XnWHsec4WqqAk6EN+tK0krP5NFY7fSAmOi/oVgCEYe7Y8LwOp7QlKFyrQ8qGIRNlYXx7s7+n2qCAo9idXJ5jPtgRT4J8GljUQHOBswLd3u4Px5u5HnneAPi4vtrtAK3m+1dDZXh7cT9qm1KvfFqwp6D/fEIKzgI7HoZX/SpcdX81l90IzX9uvWyZXUaexHk6y+sSb0QqAXLc0wLPHxiCZJsS8AiBDtzINaLXUPP6smmNCGMSWv6Ht++fn5/fXP/6b/4Dg9VlxnFY2QCOJosiihRZdwx2eba9uNsel8c/37Ej3569O769y1KOull61vjx2cvXJ7uRzR6/nNKN5tdPg6eVB/9TmM+creol4/VytVi+/vDup7/4w9/996/KygxNiHAj3jM8bWg6nHB55EwBGyVX8fm20+4kF4uLQRi72mAcQ8kgyUgxfaNe63Zk4ARtOtccxOKg3Gxl+GaP6GXbJ3lWUcN2o6y3eyEjl4q9TG/8/J8uCt35P5+wuWpTkJh8pUMe9tkC4R2mD/ZJBseWsqe5Qgqy2AVayFdypZZL5hpOzHSlsJn5tDX9aXs6C1/f4FV4FN785T4vmWFSdgxpRfY7gd8XcAyNq7ni4F//m9+sn+FBa/VIooNpQSAKu4VMzhrnyA6GvAGipu5n2iabqeYbg0DXWDyEJJsgsXup0CD73WYd3hhBc0SjzQ+Gy9j0BvWSES7PVsPJ2eFiv5ivd9ulo8MXnXbKxXqt1up2+lSFbuQKvQb2tWby1VauDAynkMVR5TQUolTsCgStyEyX9hVa63MMGrbmqtVGA73gqo1Wu93GHeh6CXRItdXgqVoP8NdK+42AmuHQId8psZbr6bxIczJQYW9+vj3bTGNHAbXEW8F8PZ5tloCAowgUhiYQzbI0Hnk+pheg2TDF2/7QVRUW7hx2tnWJZDlHI47pJx9k3NizXLHRbecZPLPCXTTTMoAc4jS+7C5mS6C1A28Y2YptSZzAdTVLMv3NbDaK4vl6luDcDrBy9K69fTnDj81uGTpOMJziEesYKLVvDYJ03Al9LDRgPckZGnEAYo0BgEPXUHUH8AoB2LbdMc4Bb1brHTygGG4zBYi2bHhvOC+vp7MlqhKh6etqht24o/ligmI2jtALNnUB3B6uHp4AgH+JAPyHqxDgYzwZReiPt9vu7x5ef/PTu2Q2gSqHjWiAt7ubNx8+/HgXxnAl4c0Auq52lwd4S1f3bz+8/+zLcaPbInFPXjPlwXwJ6vwcBPLZZndx3K7OtsAUdrgBPhtHoA98O02ewLqpabaPOgy3SX+BRtC5tNOhUKo0uyjzUt3aRylMYu5vuwvSleqm8b80izPCaZczk+5AUyhwmE8b0QjFdI/E42NWAlAmO+0eSfE0QjLLE11aEoE+S3yf4KXUwjJVzyzVb9VBhFfrlUq9hmdT1XqjWa/W6/U0A6LVbAAuNfpkr9WTLEv299cX54dt3CVBiXhjUHepu3UcRHjWnyxCsgjEs1Gtd+GFfjqvphlOwN5sDkBfECX8UAQOB30x8AsYNcuj6x/uTWm6AOqVYwR0icJxKUbqF4iBbuA6UVnOih3TVDEt2BnYQYTnwLEXjMfRdLNdJ8HQUYlmDxMyHNfF9n2cSwaRFgNSKmjjquHUWJhE2IeFxv7RKA27srv9Updow3NcaXWqhTbd0+Fnyn0pMFW2m2zXm1YrHqsCSQqUwnYoUrRiL0xcQ5ewpchzWXEQ++5AAwIRj4YjHxawrgFX8JA6GyDWASxtExuW0xTEAOfT3PHakxQVmAVGHmAveRgk6X7yZLkdLheBIYkap5iyasoYb7hCjbuaJSPfna9hGemmDd8b3maMZhIhHoAny/UUaNB0Acv4bKIaR7vaxnmaJo5XdPpZwDIot6XKSUVhdC8e6gPblSrYRlMt5Ms4HFlpsSbvBzIbJr6nsootyR4whgQUsaG5yVnsR+L/z9N7NdlyXWliRFUd733mOem9NyczTx7vTfnrDYB74QGCBEhgQBIEmzCEIdBks9lk00xPc7p7pBhNjyLmQXqQfVAoJM3DqB80ESMToYh50IRCL3qR9Au0VhZ6Dm4V7q06Js3e61vf3mt9H9U1bFPsNgU/2m0Woab5aCROMKzcoLuQ6nBav8AYV88eNjzNmX3LkCanu8X5enn7YnM489rSAC6GJ3uH/Wo9X+4uDgM78EPfVR1rupqhhcl8PZ7MT/dXA0KUqmSdCYyBPx2w2kA1fWmip0gmsGN/vuQdTHqilV52twPR1FlNNns8cISh2gxNx+P7kTtUCY8VeaAH3S6ccWxM3uoUGjXeDSaMM/QGhze/++2X3/zWN1//8Ks/vkNAdoydIzIkPjhDdbiHNq9Q9yB1OLu+dXX5g70VBNro6bP32HSpsZ/PHXH1NC5WC8th122efRsIa3bamj0ahmQ2U3X9aO9Jiuypju3N7nzzR5//7MN//udC7EV9fxiOvXAShsNJuLoVhw7u/UWnsui6L8yvZpPpYMSxpt6nJovNMowgLdJb9Gjh00Ff1VNyj1E6Lb2Qp+t1IJW1FD82udjTiXqmXMhNNbEABLsyfuOf+Zvvf/JpRDUiYSJ2u45IrDcnqay53uyvskfYK57C3uGTZ4Dilo4ymUIpncvSYrHVsyVRdDPpo6PM0XEeBSmfyZTS2RJH1dqiGXpYS6eppKaOg7pliIrgUnXJFhpds/Xev/rO5o+0rpA5Sp3k0s88g39OgN1XkKceMWKbpMmu2GtwVCeXKxVwEZ7UZZgCIlHNtzsUABwntBpthiUBoIhGudKCZB8rWSHL3u52m9Vqs5tP4jCeTYcS1y5lPCP2O5lSIdfp9NJMNpMuA9MtZo+ylUo2dYw13tmTej5XKtbzxXRna5I8yZQFHWhJhycLx5B8FPKNaq6QzxTK6AnZwQamxsnJUblV6RKdOqrqaUA+IOhAqi2KfKfEGqjJBgFUg0ADcLfargGA+RYlhqsxzEUPFWIg2sBs12WZZwe2a8NLLJkneYbADbCBY1qSw7SJJiQF/SUqVU3ns9kQNX1DR2PRvbHVZNx+4MIk9+HjJJR7lCBZh2zbdiwzmIwA3rFfhCUZmbch0RtO4wiY6mIFLHgIkDU/31/fmsMYgxk6nQzjmyIvjBERVloBZbGwNBuYhCREh916uZ4O0cYdUj+AKwPQynMcDcsv0RNiOVlPVtvVfDEdjAc+UmcdGIKUaDJoqiHFSyC7s/l0NF1NIj8cYVsV2h5P1/tEZffW7VsPXnzt9be++913fnzH9W0IvoDlMPDnq9PL6yevvHU3GI8geZjPsOp5fbi8fffptw/2cByhGiXQ6M1ud3pxdXF2ff+5py++1K9X2hQcOQRYzZ2tz05nC8De/Q4lEWZn29Fkhq+KQyCIA4z2fctMNvIVXoDYDIEXQOcbgHnoGQ1JWCabr7TINjagkyTZ6QL6wnfUKaO67cQDCZeXcRcYSCuBAh5t1IC5AWCaTAQsb9avk4Zf3ETB/BGbiQGDGUTtNkHRPEt2gPf2bqqzUKGSaNWqFfTkqsCfVrPZ6hAddGNC90P8RkCKWwc0rpM8hCZnjb4wa6dFamgrjbwO90Gjfhij9tOAz2WKRZQdxsa7bJ7osRCAJB54p8wQzaQcF86l1yE7kCCTXHJavW6nQTCdDk8T8EMIKZ16s0s00H+RbBYyXUxcAMRUlnVCG9vTdB+VmpKdDnS+mkyGs9VyOR6MHJlskLzpo9wR4HN/ulpi+/jEEVTDBT4h6Y5tR8ObhXP8Npqg+Z/ZKDfocrpSyterpXyFYuqcLKgiQLmkc1UHxlS97kcK16xBEtGrVEjawEbzfiJO44UDl+MVp+/bMsswgPt9OFbcBWIpbBJDWWpNhvNH7wSsmUJDO0gz/eFUIxkm6WuQZEgnAcE9C0LNaDZokKHSAAAgAElEQVSbRUNfYSmK7bECxQiMjAMLlTZWq2HoR7OI4zGTEUVR1UzPNvB0fdcP4lGUaJnHwXi9FZWtltSt9qqQXNXJRip3AjQnlTkqdAVadwMf3sBQWplsqYRr00CC29WOalieL4lBaClMl7dVEw0vYhPLMpzhRFB4hqI8yIbYZhcuKe7+40a4FjM9gcwoVU23HdOnatq9sUhrk4uFKTpidHZYHVbL8/3hcBaQysBydBfo9O4ACe3p9fnA7NtePzA9d4MAPFtCGj0b7/ePlrSqdCANCcUxpHZdOdI7fFugss26YUyiyYgLLE4LfbZOtPyhA5ff4A2FlSSY3N3Q820O1V24PK0pljsa8ZwHF0uzbxGZEoRUK5IHDpzTvcfPPXi6W1w9efaHr2lsUvbYozms+YP75hiaLeosqghcX5xe3PlwLXgDdfjKtUGTjc69w8RVZ3fCJtGAyTzktvfOyllm2VFCG8aX5w9NTRfsvgLXmaZEd3n7ubffePW7u9lg//D0+vT8cHp5b0sZojWb7q4Pi9PFlWGPMeLNpl6w9HttOao0hkEU+OzQoNkUOZsolMrzXMq926TIsk7kRnG2Wax1q/yZmW3QVpM0c8fFOc3w+Z4dz7/4J+uW972f9sslyKO6RKnUaA09uNHl+HS6MLLYgITMNtnnzRQAewFoS7lCr5BDz0tNy+WzhZNa6/gon2lX8rmjLP/ld+6U85ouQ3KmKCqlRquYiPqaXOBpkueJUiPOv/8v3ycei1q7XK5V07ke1yyWS6jGnAKYS6UIqgMMV6QYWmnnIfVLH2Vy6VyboTp1yP1LdRKSdJbqQKjAvTZUqajXmj3ZhqkmqcFqt55GwXB9Phu6amJHlD0pV8gcKzSyDaJFthrpViXXKGaK2UIpn8kD6c0Dt8kcNTKZSq2QLWeOyn2T6PImIZmiyPHdZvboKJUtpauNEhJgrORCM/ZquZ7NHpfr1V6nUWIl1YbsWQUuKGpAgZlOVTAdHZI1iVZgwg6H4Wg+HwaOyqEwJBB8HbNtS9cMz4tsQfVCBfJ+dPn10R24H/mWbpuOowahQjdKRRi9AHtxHPkAV1E0CvhyvY2+8I2OE48jFBzEbl0pqfuwPWAOft+zPdR1MzWRhovEQKruDTa7OMSeR1zXnUzH48Vhu728nA3RGQh+BKiGS7KJdWzUd7AdEzcCLQNiqipHWAW9nWPhcBj2DR0/UpZt05KxgnUyXi9WIxTXgaR7OhkkUh2oDqIl7EjVgIPHi+lsiq6Fs9VkEMa49I0fNpouN4s14OLp5e37jx6/8Npr33znJ/fg0FE+EV0WZrPF/vLWC6+/e9+H5AMo8yhC//Tt5f1nX/zOpRehsja87Xy52S7Wh7Ozi9sPHj996eWwWSc7KBYCrMpFR7hgOMUuJMjR1rP1fLJcztaTgY8UJQxxrxPTBLiAGnwBbVZxT+Eb1dKN/QFuuharzU6zgT6E9Uaz02iSnVarCoDYrtfQECmBw1ajUQdWWms16g28Rc12shhNNADYsHigS7Tb2PoJ2IztbO0qvKiDvSXw61q1w7Y7aHXYQbVLVNkgiHbyeVXgu/DGjXZiINzDt0SujebCJE2hvk2uUIVnk6w5v7i6PFuZbTTo9mwUtsaeUd+P4iAcDhvtZrWUPs4eH+P6Vr6lOSHE0gGOCk8mKnlc6ILZWEpVE9MmukuRHUbhm7VsIZMuFU7yhVwO0Y8GLsxBusgUMjnSxDo9wzI4wQturK8CAGB/NMUd/qTofQxZGRYS2nynSckwMoFOBoEXLLbr7XaznfnAf/3YV2XDsRwsNR4lMqRhkJTnT6xmg6bzaZh9jWohV6d75Q4noEMhz+tUXp/N+vmi6UlstUCwHbJSYBkbeNomMCH30vrLhSdoijuZeYqsy34YDT1LEIHKMySF+MuLmqWj4CoQR910+hGWB47i/sDvlrGCER9o7tT3HD/s94ezKbBPk0erC4ZBrxSKMtEG5PzsAJg1i6L5Qk+61WgEb0HzfcuysSoNiPUgHIwni+Uo3p0+lPSNWG73GLZTghjYZIup7EmueFRMHxEGx1pB6HBMR9B6uVShlNhh5cuNFm2IHsQZ2/c1jmYE0/IjmEpjGWVHndgkxY5AM55iaCrRkjRJ7Y9HaMk4c8kmyXUqhA6BwLZESvAbLSUYLkam7Guz+9fnZ9v96fZ6s/VJOcJmMG+6WuwO+83u6izU+yjrDXcW6xcXqx1uZ48Oswu/AQdfLzc9KxrMfUob91VX1wWIro7S98cj3tPRlILritF0HAa2JBU7Rk/UITqQXjRwDR/mppxv6KxhDacC3e+7pq4FdKVRZsLYbwORFwGyNQkT/WiwGum27WBss12UyNUhsuhoCSxtDueX15dXd5//wVZxA3P5zWEFrkTv1sXFZjJbj8fbDUa8YGqN48VhNd8G8RA3uJbACXa7kSF5tyCyBRgDBItuWqJ/JqkUrwm0yntD2R95PCcJgtrnRE8ealzkR+P5hJlZKpGJd+PpkhQNQSwwq+seIamRnlLGQkOWiVbW4fMnZUnLtGwqXyf7VGPcO2YDU7XDdicO3v/by2L7+S//8rVis756YVovseF4WC6WcwIQjQk2Gf37Hd5ULp3J5Z9JZzLHR51CJZ8nmHqzkKrCVM4U06mjXr59/8W57SrjSdZyfXTnUJQuL/eNYq8BPIAlGN2kM9pI+uX/+vPhm57ZOzoC5tv0ItMP/cG4e5KpoFJ1uVSsFXLNZqdLlTMnpVqpTCqyaK6ngc6TtVKpTXUZSSAB96q1Vo+lGOCi8LcWiyXI8XgEyXYIFBDtsRfzyBQgY6cE2jiENWAwzV6v0tFopZwvFru2xTXL2QIa9eaOUs9kM6nCcR4+skU3qozcZDSRZyHAoLJY+hiVr/LVar4BoRIeLWAj6ZOjAopStqqCIgNRtFVZB6ZuahLbKlDoZqDwEgMZsD2YLcbzeYzidQInaTzFy1ySWfMCw1oukPuu4gPHFwwbKCUrzyLPViDPdTXIxW1asK3BYJxUSQWDyTSKl1GvDKG7UGmTAMCRZ8FHAXETYMYDdFiIUm4/6a5BTUCh16V6RqiIjhsvEy3n8XwzQ9G5wfzi8uLOFUDRbDXH958tcYl5lOwVopQkSmmYyUBXNTnaJoblU6A00cAHQLXQZgbirQxsHibbcr4cTc93m/12NpkNANGQ92IrD4IwALDGDxao/QyHMAdCn9RfjQeJX+xqswfcPL+6+/Dxo4cvvPzk6Zvv34YA4w2m6NUKoD3fXd167pV3H6AyLTZNYa3tfHv18PmXvnMrCPuQa6Mb4Wq93u7OLi4vr++88Oobr4cQGcoUy8uCLPZns9V6sUO5gQSA16spGlwsxhE2yUK+4sKgdYEHKdgLpprYZKNIEgBwpZiIMOMKNC77Yh0AjNFCBUhLvVYs5bA0Jo9t5kXID4tF+AMvyOXKhXweOxbQ1BJ+US7gr+F11TI8p1TMVxAyUYcc/gEDP4eF+LkiJIHFcgVSPVRmKxbLNUTzJoB1vVaFgVdvki1EZyCliOtY/9UjSJosZyBLRa2scgMB+OL8sHQISrd9G/UcsKE2HNmGP4zVRl40OlnIqo9SmePjPNdHS65J4vAxCEymnkerh2TFvQX0QuEYWWQlfxJoaiaVPjpJpzNHadKJh8NggLbMLiVV80XCMJKSZoPlYdQD1BgAo0BthpPxBMhsnBS8z8Y4tEy6WUd/4tAPsNMcARgNPGZo6+oEbhJSbWTOuNOBLUxJ4f/E7bLdar5cyLVLtUqh3GyUmzQv1LKEykrNnD4aqvmSavFsrUr0yF6jzjLuHFIyFDRzjPCw8TTXDPf7vmbC/6erzbSvoYM9VnspkCBaWC6Oa8tREOBe7QyGEpYJGrU82goiSPsoHjMeTTdL+N08tDyN7QCXB+YE05gV4sPh9Awu/OnZ+Wo632+0m6V8UVYk0ZrMIaONkyr04RxdQ05P16t7918wnR2Rb3RpugkDpNgWMqlsKpc9Iqst1u2JXhzastwCRpXHPgwYZ8CSqyTEFEMWJLi1KiQOquVANjyI+5Qlm4YVUx2+J1OiqTq6zRMAwPpgDDAXOrFG5U4IpclIEE88T+oJdLsN0B0Op4GjLQ+7/XK62a/Pd9ugJ+NakOXMV7MNlkxc7BzZHwT9yDSNzXI8myw2WM89vrM681lNZ9OpIpCH/sRn1BhIfuCp1bw0NP3+ZKwGwWTCFEvl5sXU78fToZ+vOKxl9x2P9pcbQK7hdusV0hTkP4Mx1xug0u3MkjihJ5n9MROsBkM4+Ai3T4JB7Nu4dzbGqpElPhMmLgQp34n0IZacYBP/IBytV5P5YT9ZQhhcbkaj8XyJRR+T1WZxerGZbbZrTYT0Z70+Oz87XW1OH4xknZNXs/OnLz554cmLr7wmMiPd8uxvvfut7//w45+1h6HRN7kPfvGDL9/76kNZYuRYyZ+9cfvepuEy6rSZ8VeDrU8JlsBmMlG/WhSqfFiWl5l8NQ/TbRynjmmOqArfe3SSFbS2s1GL3rjf3k9hzp7/6m+/5Cp3/vN/uSQa3NlDsdVpOvH2JAO81vUM5+QoC/M0jfobJyffyAJOVfPZSiqVb6c7FUj9M81SNQUB45j6wccXRNFb7i+GrOz3TymSkVXbUJgW05aVGtMWFezbpSihExkv/rd/9/H3/inDqXObE1qpk6OjLMpdAupnCwWc/PliPldFzaliLpMvZDIdq+9gLZAssWSj2W7WGkS7CqGn0ej0aBTN6jWrNToAELl97xxbCB0/noaTzdX9u+u+ohg1GLbFaj11lMdOo5OcxvOFarVQJcl6IZXJpoBm51P5fB3yjRwgMVnFnLZd60qSwBAdlsElxd7zd1ciIDTk4NVardHqACHJpo4L1UKzUq7CZNY1ywWm5egYtaV2ljKCAAXKWIFPvNcgrgAhRqdXE7I/tBWxTdMNYlvgID2IBCOUKQAqE/KsWh2tttBtRmEF1XG0YPz3xb+TaQwAHM1CqskpfBdicN3oO0A4DNu+WfFmJEjyIU3HRWmIvZ4lixxqMvGOLAJSzQFdQ88bzHYLlL9YnV/vz84RFoGWQrTEeTVNFqBRSdpGi1Edd4BVIIVSuEHDVODK2E3Sh5MFAFY01zJFx7Li2XA6Xk5XB5SbmgKvjQPMZTUpgbGkCkvj4+UEmTaqXi4TYZHJPPoagHfwutPru/eee/rC6998GcjuhRe5g2Q3GjerV4db1/efe/tBgJQZLsM0Hs3Wp1d3Hzz91jUSYLgu+KYY2iATvrq6fvjkpVeCeqXdkmRNlxVRiyer/fb0sN5skyXo9QoyESzEhq/REEtMXFx3UFA/2cANpsRdBgC4UQPERJdWHDz53I0hEX5D95B8+uTGHzCDai6ZRCQy+V0un89iyx72b97Q50zmposve1PIfGMyh0/Dzt5sOluG97qxOsqh7lURaGihVG1gz1uHJIEU12vNVqNJINUG1ovoi75LnS4aQRQyWfQqy+cbvDk43Lo43S3cFqnZto7WfthaC6gY9DW6kTMCpZTOZ48g0h9nKSf0kzpgz/Ud4Ex8C1C/kMdjpUWRwTpnTeAtuLGRkU8XcBX+OEt6s0nUj6PRKAB+w7Wb5bYJ0d80HZ1igZg4fiJqAsNvPB2hIgtcYMCuGW6hDQyq0aAUN+z7KPXihkv0CNrsFr4GA8pzIH2F/6MC2vCmZCyaJwszfo9pAf9LpZu5OiSe9VoNlbZrRQbAplWFc5RqLVNj6AbBkhzV7rbaNrJv27AAcfuHlQtjdXC2dxXXsUPEv8COBjBxIM6iWKcTYeqJSjIAj7iMvN4eNofdwmpUOR6XQiRpstmu0G9wv9udnu5gHnmm0CEEReFhrEj6+vSwBwjGx2Z/drH3daAgpoVaZGp/d75b75ZLeM/1/gCjb3d9++zsuaeP3f66UGx2aaperJSLJHeC9c7pGieprN7Tw6FvWDZNKWotlUkXyuViBRJ/Quoxqs5qLi7RwFh1vT7cPFfqabKpO2EdwJvvqLLjqrbGyqbtB7ia5gPzZk7SZYIttGRTtkOxJ1CMPOoPBtZ4aumH9eKwmOyvLs4O25ARPMuwdWt1fnoBk+X87kVoDfuOEzq2Nt0Dji23y/V0PrvaXIVdz5EKJWYg2P7YA25tshRZr+YLhqMDEhu8O+r7TjjpewMPzaHH43yO79qmE/hUfzYdjCf7GeRCQJN91Y4EZgBp8fSMr5MUYVlq1NaWo/loEiX2U6ebcHYYYoNjiDkj8FcsBx3CBA4HMN6wfN8wDM7wsH1i4o8X/iQ23QEAo7naBvNwAC91FvHKY1jJca+Sbazldra5MPWVqyq0tT3dHXbb5wfVgav6lPjuF1/85q//o7/mXEaK+dI/+z//97/7d//9WPclx6gXfv1//+v/96u8I/JatfjL/+N//HeflyTesLPyv/pfHqdrDZpJz/+TO+lMY0anz/66clLVqZJw9+LkxPKq4qCYq0W88PJ5pdZ891e/f9lanP3qnzU7pR4lNCCZzbnnqXz2uKgKut3LHR0ltpXAf1PPABqeQGgoFQGojjNdW2gUs9TZGZE/IVzfHs0Notk1Apg2ys7qezQligLZEimWbvAtpkUSnNwiDDac1T7+t7/vfT5c3fuL62C1NeplopnPZo/TuTS6/6UzJ0cpVMJAxgEQBynAMVDNoxPky8VKBYlvs93CWi0EYEqUBYbuVMqFRrNcY7HSB3ggJ+vhYLS6unMYKfzo7KXH92/df3RYbpbbs2m8uv/o0f0nrzx//2o1csVGEZWFAIZTR8CDIXIeNUvlRpdsET1GUFW6iZZukqgKJBucPdgp+WoieU3SkmlpQHlZtl4uA8NiAfkEXtE4YKGC2C0DmTVUjhFhplhit1VHy4dcsVyqE7IFLDeElEKXNTfwZYZqytuloCotc+vbi5kCcc9wTRddAXVNJBs1oDtIIVVF0XGIqbIqdsqdbgtSgVLVjMLA9YBEazzW3zIC8D3LRwc0wOw4NHn0eqd7XUUQBkM3ns+ng36Itr6z5Ww03W4H4+1ymkjgzlCbcZFUOSMABwkAo5cgkkFeFMLdeg0ImqgQDAIb3YLhVxBsBRj8owV82mK6Xm2BIswnQI8SAFawBloFBowl3vxoBWwWXSXg+42myBSrSRH4ATs3h6t7jx6/9Oobb7397e+8f2EFIbwPFn8DY1/v7wA7/tb9AAWd4CfT4WSxPb++c/fpaxfYHTJCV7sZWqKvd+fXt27fffj8Cy+6pVy5gRt4LNsTo/F8tYSUHmU4NuvVeLEcBdEQE+ohimGhC7yVREy4wCLHJZxdlrVv1JGyFrD6OH+jB/nvHwkAp3LFLKoVFb7uEspl8EloroWKGflCPvs1In+9jp1L8BXVFpJ/5VHbCgcgvEP+62bfAnxUoYxdcZjpdVrJEnQF15/rWG4FjzricqfdqKFraQVGZLmEasI1GFzRdHN99xIAWK+2ETksSUE7KtPUTFuoFDpCaJBAy4FrwR/CchUDtRLhJusyz4kcgaJb6PlQYrlus010URTYiAZRwBNUM5NJHZVYrJ3C2uF4AKRVb5NEsQU0E6DGVru0593sXGCNQ38yiYfJJj8uQgPAxeHAZJtNWnZDHxuEAz9aIQBvd3NX0Qw39HS0tXWHY+CLuOMCjym2l8/sVodqVIrZajNfK+abRLPZ63QYos2SbYnqqj1RrnU0juy1YDbxvTbVaOkjGKpYYuWYwX6BLd7x6dbT+7YTbM4Pa88ZBLpqOP3A1lXFCJfbxRTttDYbgFj0iT49vbrceZ2GIGOBpaZNdwc80v0Wi/zO9ttxEJhkR9I0EWamZO4vz08PwIJPAcEub12djzy8CElvmx4ers9PTze7i8v9DjgynPHlnYvL51+6H46GqXIDEqgihNUKTZxkcoC0Fg3JuMh6cWyrjit3JaMFPy+WIScrVkpttkHJFqMZMLUwN4ZBa0P2xNOQsMuOXyqWFaatir6tGDKvmGFf1zxX1XyLbVQyuQpcNs2U+mNFBQIcjyOXLklzXz69tb91WB+urrejgUnSEE2ALkQboLnDyersELsxTAhLkXv6fr1dzJfTxXQ5n81uxWXIP3pstOkHwcCDsBvBvXPD0QBeuN6upkHkuVHg9ftj+H/k2P2gWSMJtGf1CEh4/TB0/FAQBd51VHsgUMGwPwmW7VSxxa124ahrzuNJPOoPg/4gGoaQaYe4UAfjqo9n7eOmPLYwOJooJkbS3gB5Td8zFAuuHR4UB2moNwaGA1lo39WjoU3pq77uaIIDNEJXIP2khL7qeyQXBX48DGKrFdmQiDdc2/D0LsupnDKlMvp2tnteynC8GA7r2bOPP/+KqXGWMiTTb/13/+J/+mGGgPynJP7d//VfdzJtgy6+/P/9i0yeJruZf/6PmnSt1Wzwy0UqN1nBuEynxNPtC1uVVblnf/Dr50tqc/ojOqxkq75QrRBl+X6QPSk0eZIslU6O65CkY6MOgDBAIWpSPgPZM7uIiCzNVrJn33ztOfFEVXgawpUucP3ZgI3iZhAYfJehRZgajq10iCxD8i1OJ1ir2t6X3vl//kvyP/6D4Z2ePff4ueduP3rhwf1n725NghI4sssyNNGCpBrCSqlcbLSeydfrFWDF3UYBcPiZZ7LpVBaDGoYrrAnr0r1Oq5pPhDMgL6iiTXPiDgAZ/2y7jJVqLlM6ztWy5XKb7vZIipN6nIQKfRB7R5FJlnPFUjZbyhItySCq6cJRQ+RJimkTlRoh2prkjcaxxbPdnqSqph8Uy9UyADTPiFiGKcMcECROExhFlGUa8A8F6HpUt8Migep1eqzqedivf3x0dAx8Pt8kgdgqwJQd3wbC6yh0k6HE6YDuckXlVuzbZp2CQ/eXuzFkdthewObzQjAx0BlAFERUmhZ4kREEulkHIpRnBJ5neUqEi9eo4cI9k9SU+MBE+jD0uWa12SZ7JAP5UH9o96cz3H2dLsbL/XYST3enk/lhPV/OUecWQHAxX8wThA3C0ENdZBNZMNBBmCTRYbdBAB6hpkMf+S/KbMA3Hj8LMDcCXrrA5v3FdBD23WRPFXupNEOHVAX+Pt5AjFvMcBF6NJouFtOkCGs4BIY7255Bvv3ghWdfefWVN7/zznvfu9UPdD8xKEVBnvX+9oOnL75114uSBWigzui8cOv+45dfPY9xbo6nU6xz3ixXu/Nbt+89fP7Fl17u10t13rmRAzHRrAbbnhOtasgiFqvY8iIvAqbvuEAT/L6PfS/onAjIK2HvMzBg9RtoBod2wKVi0gWE6JgQXAROFBHPFPNwX1EkEsUi84VMAtLYQIjNS9kbxE6MBHPFIvwtYb3YdY4lUKjimqAxFljk0aIuWe5O3h6eUMTl6OLNB5dQjhJ/BNMCv2NfeqKMVag0Ei/iNkHxij9eby+uzs/2C75KwHDhgMZKuLWtmt1SoQ7DlGOJWimbymVS6YZoajz6s0oCx+EXB/SlVs7BvKoTCPHAsRlWcYCnJILcRi2TKvrjWeSFE7gxm0UwXgT1XrfYNnCjwkAAxu43wF5IyS3Ln4yjQTAcoUwKyndPh1Fs8u02o6CpVQAY3I8WuzXi2tSSddOPPB3r9dwxvG6QLEBHgzEK0MzsRoftAE/s1YuNYqFDNjtko0l32nStJna7SouXml2ZIrq1brvZI7G4HAB4sfAgKun6YL8Eam0Pd8B7fcsPkZACHtiigr7DBuTsoj1cTJM08EYnbb07Ozu9utgH7RKqXBkwhsa7U7QL3uwO55eX5zB5wtjvEYqpKwakmRY8GznwYXfYry9u374c34hpIkQY4e7i9BSw+/xst4NnbBaLizsXt5+8+HgwV05KkGbVsulSsSGUT9AcjrNpR+yxymAQ2bpvG13RasEggTueTWUqLaZbrmPRl6RC8JEYUZNUACFXYmlJlfp+LVdWWUpQHMPQKFrRAkMCHiFpXhWg+zhP8B5uDkahxfA0FUMOROTJQcyHm9kGhXk246hvUYylKRTb0weOHRh2f7IcJCmcxvBdLUb12BhXomaj9a1TJYNiCl0FWKxpYj1YOBrNt6eH5dkW16L2i9h3VGuAWtSQobkAan1ZiXVtGHfHoQkIOR7opXQzDiI3GvFdGAIDv9+p1eV1pAoe5fqmZwdO6PlY5D3zzBEancehhepjOmbJsgRXAkUGFE0VeUk/RIoMFMUOdN2SZNsQ3L4uGS7chUCzPU9xHZbXXUd2JGAQvht5vskbCjXyGx2Y+TB2hbkC19FqVF3sExdJrUk7bqUh274Yyy3GlDSrWukZilyvd6jIqFeA+varuaJM81R9sTyDVEmzKvRDqq5wulC+aKSaTY0r0Hs+xbf0R8M4fzLaP3elhXyNqVE/e7cjVr/zhx4MXDmol7gqLVxdSql8rVQXbe7k+AiDSxqIMPYbpWnLknJHaXX7xjcfUXU+WxswQrxJMz7ft7Z9ilOD+VKNOV/lRIPjOhJcEJIVe40TWedIw622zXrvvfnpv/3b9p99nutV/HU4jrABdTIZ9Mcjz+57ig0R0Pb7rmG6sqZF8eD00Yuvvfb62x/84N2333z52fvrJdz/0LOxorDv+jHWNgASGI4DuZHv+AOHb5chwmFzLxaNJf1TJycnuZPjbD6TPT5GM0b4LwM/O4ZHAbV1sfmdoim6eJw9TuV5lWrWCCJfaraAUGJpMcvqEJw4hugpT64XodQoVxmux3U5hm/TAD+ubnioOiUB6EJKjGVirASJMUOiUwpH1ktAOrCHBeCR1/EUNcVKlCx0jyt0GH4QdhtEmV9HVgNiSLweuqOhN5zCHIZh36x6C1SniiJI9bCvEOa1zbI8R5HNGu8YELMsG76JaA7SarRonqUZRaBoHkC3Vy0hX+rU4VyMAGIiTDNAr9loc7qdTlb7w/bsdDFfjYez1WqF67JodToEgA1D+DRAYFxd11XsvQ72+w0yZFyBTvSLTNrmuUMAACAASURBVB2Cl6kAAMNxQb4QTcJosQaQBlYZ+A6uQGuQDKiJa4OmKfx4O50DC8WIOkmOYjx2+oMhJNn7GRzK4fzW/edefPnVb3377ffeuRNHkhGtUTtxOllsTq/vvPjad+64g8QMGIPrYn16+/HTV185g0Q6DlEFZLHCktr9+dX1nQdAgV+ZiYLBoxm7ILD6HDj/AlcRUSlzjm1/Q9uJ/EHoo+gwigwOfCxlt2wkwSihCafMy99IEj20P8gmyAljKoOteWncmgEWnDnJY91SBoIjDLrEPR2en8I/yYv+fmkaW/ly+aRfL/O1og1KOqezRycn6VyiRQ5zDFvjcOxm0kfZ5O0SAVh0O8ml4cNOskkt9g2rzmaTY8pgHwuDnbucqMOkWM5XgBGHOdukBRYV41gBzT6IOqSNFMeSXb4LSQC+e7EnMLSEL2VpChJHbAimaQLXhKqk0IPxI6GAy/j04vL66vTi1q1B6ygt3jtHr4fd4fry9vn68mC1mF6JVAXdgoCnkkzoYI1Msh5oBdMJcOfJLAYUHeByNERuXUAAdiHt8Rwv8IPZASFvN7Vhvth9B/FXdcejMITELEYAnk0mk9my3+2286VitZsrtOulVrNKNCH8lYtkrc43G8ASOVG2WJLMVdo00a0WqJ6J/U0uTDFVH52uXMDa4WoRAhH2w+3ZZu0HkSkYYegqoijxjGTFgBt7dBPZ77er1Q7TwfND1MohAKOq3GgP3HWPBPn04urysNlNF0O+p1kW5B2iZJ+dnx3wsd/uNmfXd65idENBKTm4FuEGXrmG9zs9PT1g/re4unt558mTF6JZ86hUrtSquWyt2JazKRgEmQAuvN5lzFEUeXZkO5TidmAYZIvlfLrQMxy6nOt2OYlF4s6RkqUarueaEGUAgUYD6rjIQQCAQexobVJRPVEVCEJ2vWABpNYjGpwgAWXoqaTcVeMl5OlkXV546CneHwf+ZrlfTwGHNMEI3PFhvrwNM+b8ztnIj2NAKt2YR4PlYraYLKf96Xg+nIdUKVvNNmptbHJHdSHI4QS6zQoMK/PAduDi6qYmMzIPabwq9doNvSvGhj6JiJFBa5LWU1Qixzw3uT0NI5HzdMj5mVq3ou1YJhgQAMiBGzq4o+aFBqQ0cGYqsF2RwaU1SdZMFBqQRKxE4UVsPO+bKuTbssaY2ARmiKrrGG5oS5AdmIbgaR7ZmYeaOeQpA3InFFzTrJXf88VczTREmQciK0JE03JFCfXA6A5FNYyw1RAHZmC0em1Hi+1GjZvE626mYdpem/DH46GfzjCc1iaMPsH7tCzQrpgTuj2+mfU6J5msOzkdXihdQb0ddX0G6Pq9Ub2VyZcy/N88rtj0Oz9uFCBpVOlCrVZ1lvM3uJPuxXD2UnwCzBD7ZfGRTWfb12//g1fj4+O1Rdtnq1w1ZeBEOusRAsPYSnQ2sl3WDua23VBkU+AaoqEKdcp01YJIDjjNIa0t4743qP7NP6HXgRF/+81XXn/9pddfevrGK8+9+OKjh0+e3L9999bpbgc0bLbaXhxuXVys9/v5YIgKTW4fjYDC4Tj2+uP5ZDbf3bpzdf3g0ZMnT1588aXXX/nWt1977bvfe/f11157442XH17ff3T/8nA4Oz1fTc4ePHz86M5YFrotopTPFTmL79HNSrNTRm+JY+SmifxzJnec2d+7z5XLRJcRmUqHhDh1kkplcyfpGkl2ekKPVENFCdxuFchmgyIYgiQpClJwQqABazkRfTLhxru26jiQ8amQT5iO56gsmSs2uqykOxoMHM1ygPvahmG5kLmWADXtQb3a6WnDvtxg6LI0g9yNp4cbz7I9xl8CSJi6LGItky7KRiIJB9keS3UpVgtgptuObTowCSmSlFnBG4aONYssQBCg5T2CbNabuEveo8VuT9FQnh8+38euXyB+491yMN/PRnNEr+UMYBHbeLHdsQ9MBpIFFKtXBRjyHko4btazQTAYxr6mQpC1FEi1NQEAeLCcTIYL7BmZzSD4oFxlUoTFSeoNd1eVBICny9UUhS/nwKNRmziIp+gJcXa+257evn8XbujTN995++33P7jlhj7u8mBB9nC+u7y8eP61797x0AFmjEuak/nm/O6zL7z68mnouPEA3ZUWyznqxx/OL4AaP//Ca3NJ0gUNPW0owlzvVsvFBp4D5wlhdjEYjnx/GI+TxurAxkJROF7rZr1R15EBo4DiN1InmRyCZSbJ6TKZr7veTzI36hzw6zwgY/pmORk5bzpbzAM2nySPZBsYHTvxbye4lXPy9evTibBNNneULWL9VWIJgp7s+HR41hGg/DNHRyd5/CfE35NM6kaIHQ4Ht5fTkBUj7a6V2gyq0ysiyikD85ygvMphOXZNmWlVa+1OmyBa9Ua7xwkcOkDwEl0F4lzInBSxhIhBSUlFhjNFw0iOF8RuJp1neQhFvAJcwhycPXjw4P6du2cP7mx7J9UVNhnv0Hj5zvVlvJr0ej34BE6WIRLqEsH0A9fxPaw7t70It0FwCxg7x9GzGQW3mXadlNwgAPoz9u3har3b7vYzC4aqZrmOib2z5mA6GoajccKcpwDAi7XXaDeKNZT9LRbQ5q2Qb7TbnUKm1kI1EVR95CyDJTu1crvcZastuqFj2Re8nWWr/dM1ujIN18sIxrwdLTf7pRt7quLGEQxhttOhBcmd7tbzxWYLHHe7Wm4vzs8ury4HrSpvYZOzYU73Z7vNBl65Pb+6BCjdrjYTidLgiGHE8Orh9tl2hwgM6A0D82II+OtalhfAFApWh/X6NNk73p6erjeL2fm9y8uXX3i0GuVSdXhUcG250ygelQpH1XarzbGUZIdwtVzfd2SgxMe5bLlO5EoERBW+VGN6jEKbhibRgsgKgm05CuqB+Lo/oU5STRGrLlChru3pogSRg6F0V7TJcrNqM/B8S26Zdd+lRutB1DcEgpwLgoO9aqiKMxlr7TbHETTRkxVeHw7ccLW0KFR1I8rZSq/FWUGAJpOx0l8tJ7hx2WoCjcmXSrlsoQhnUq7Wq6VqudFs1uqNeo/qdTrdLsmzBNsjetl8IxiN7w5nATlWG50GSYREkSQ35xKjzmVBgvSslgI+VDTbKqdRItfpwPgiuz2CQNUa7MoTZM8eLSW6x8KgQTUOSeLhrBjBBdLmQXQFTBY92/ONvjfg5b6rB74box6MANTwYMKdd3W72BKAsku4tNePeN/iSiXZd+FHCiUrbVcuFIWh7Paplkx2La3XkoABzVuZOkHoY7LBBH4spYq8b3YbrjMMgQJxnlgnh/Nes0WaUlWeZFI5InbmM75QoLz7F7xIw4XwKaGahxmtePmjUo0sin/1tKb3vvheJ9MhWJtI16ttbRY8jEu0b7G0EHZTqWrhODf69j/4oHfCaxJVJXZBaW6Zi8lFNZUO+kKwGcpdXaUGhOBSRMSrXYiRZEtXbbqKHnZV1EwUupJNzDwi/EAujAY//9/+7t/86//53/zrv/sf/pv/6r/4z/7Tf/G3//Q//Ju/+g/+5q/+8R/+8g9/+Ed/8fvf/e63v/v9b/78d3/5V/Cvv/7Hf/n73/zZL/7kp59/+pOffPKTTz/7/NNPf/rFp5998P733nnrjZdfuH/vzhW2dq6W8ylW7wKK7FHO9u7de/cfPHr87ItPn0d/tacvvf72O++++w++9953vv3O+z/6/ne/9/333nr95afP3Tss5hCsLM4WhZiovflPfvd+bTLtNTqkYIn59HGrlCsXMuVy0w0VlujIdMeMFzwWqyZhMFMo4NZMNlHKajACi6t4HVsGSiEAH3AlipVE4CYwybscYCYjULohaFj+YSm8BlO0W2hRXWNE5YlWz4mlXLNLqf6SZ0SecYYuSjqbiQyArQMXF2ie6YpdttuFPFYwLJmDxJenFIEWBcUwUCFVU7Wor1vxdARpY9CPXFHp1XiJ4bUgRJM3K9nUVYXEe8l0o1EULk430yUgF67NoibHdBxHcegnPgzwfD3RkpSFCAjCcrtZTNCPN/ZsDEzwPoYiKpYfjWdYXx3PJ/iXMZZmG5CBqkkBtAZHCmOBQ1HJxXyKQkLoLQHPiuJ4BJx8uj4/O7+8Bffs/pNXXv/m2+++98MrA+2QYwBrVN9FN8Ln3/jOw37SoomPxWpzef/Rsy998wpr0zBMJ7Wrk+UOxSjvPXz8wreGBIMbAqiR2FbQc32xXIwRqOFI58MQwKHvJ30yKK3fR/cLzQz66LulYNmYroqC9I1CskWR+xqC06lnThBQk76A1NcCcDc6kfmkVgs9e4uF9M3TTxKV1pMbAP57yZqvHzcAnMtlYOSgrQK8uFSCr/wNECdgncH++78XgcXn4yvyhUL+xhO4WC5Vm00YCpKKSsp9bGiGZGWLndir+cRhmvUWqm0wqL0sAP8AjsuKyg0A59NlFpMMBXmCJiUSatjFpjL5XBlX4MVEptKaXty//+D+7Vt3Hj849DKtzfUF0Lj9/nR75ypw106PhQEP4M7LoiDQDRKGqwUArGjYLxvd6G8hAMcjSKYGgWvQrTqpeBDuHfR6Hc4Op9vFEMUIUbjCsh0Yxs5wHEWj0Y0n12iyWC7ndqPTLFZr5WajWGxCcK8U2rVqt10lKBiZKErNs6IAMb7R6lZJutai6+YE94BhkNt6eL51gSaONisglIYTQ4ayQoFqyYTcWOIxg2B4Z7zbYRE96l/DMAeIvby6iokGbxqyqhvWZHeOu8O75QYNt87hAuymEqVYmmpAfqruLiArOaCc1Hp7uLx3OcIzhHyob5lGsIafn+Ly83azP2CRxMW9i4sXnj5eh9lMtdGsFfP5cqHRKBxlc6lcu1Fj2B5v9QPPdj3P0hSPSeMIwQxE9RS+SfI0hHPIakWWZ1iehWDCMRxjq9os5PONWktTu11sR20nPiiSzNGao8qVo0xeYpiWzstlu6BJzH4TO3AdyFbsDdbI7fFxOJ/pmusaePDRGA1Mzq4OI0eXda/vWIMdxFfMM06X59t7Tx/eHlAtCI71PBCZZK0GF2pSmC9ixgnZZ8JtjrB3ppA/Os4zTLE8n54qrjNoTJopeFlTIGq1WuQ0BHvA8l0URspClqoYXdXue/1wEAWJf2pSy4+abrgq7YxX15EGd0ZScA0aQbjPK+Ohxfd1VaY5mRNpXhZ01SIsXIjmGqSjKo7paiGMUo2VHCZX452+5wWeRit2z/HERkOFCx5ZPtWQFHRw4KP+SCwXq5QWOd2OPBw4XiNVaPHxgKRgOAVirckICl2WTceXRYvV+EYjWuRO6ly0i+z+cSbnHC5ORRISRHlodsuQMh8zdR7wIleJ4vxRpdbJ8n94uaYRX33SyzbbtEVmWo2Gcd6/UE+IXjpfTNUUPZ0qnCiXnrnchQ2S50zGHwqeasIY7qVytiUGY5OTY9uad7oKK8RULLu2XC7zgUMUZFuo5WjJYFqMrVWDqBdec+35w09/89GnP//yK3j89Kc//fLLL7748o9/9rPPPvvs8y9++tVXP/nk448+/PCjjz788YcfffzJZ1/9+KOffP4FPOlnP//ZV1/BE3/161/9+ve//83vfve7P//zXwEw/+yPv/z8Jx9//Am86Mc//qMff/ijH3+Eb/DxF59/+vGPP3j/B+//8IMfffD9d99+661vvfHKkwd3Ht6/e+/howd3n3v84M7dR88/efH5Jy+98uJLr7754isPb33z1QVpT9qLiztao1VmeqniYDFHqf+R14Ybx8uqawgQOLrFWq2czxZKlWqpWIeUr1CC+NtkJY6EeN+syixJkADAXQXSNrrXaDTK3W6PF3m6V6tqhmCYAKoAXKZnqVSNpLui1qhQTYLXFOw71O0h0xQ0NYBxz0Jsoxg+6VmS0VlPlS1RQx6rSrqpKTrBiQxNUJD1ChCJITt0NYXnsZxX4hXT0nXZYBs9khc017PcwIHAiEbn/mA4Bsa4GgJYzrfLyXKxXK8X6KeGeluDCMUmE4sJC0vBgEwLXACBabFarZIl6gDLrgF8edwCM70wHqOgJHZZoMECUmjsIQZukHhW4Tq+IvHj2RJdA6cI0cNE0WqEuDkZT5dblOG4fX354LmXXn/zO9/74Md33DAcBVjvOEF/9POrO49efeth3wti7GoZTYHHXjx4/qWnr52HwGHHaOaCarvL9e5wdnF167nnX3pryshasg4Ox69DdoC1lOjUhO7rq0lSfZVsQcMcD9yvN4ITTWjTMBITCZHjv1EpVtCZ7MaICCLKSeL9lU4nCIkwilsdBUDOSq2ePGr1VrNaqVexiD+TxYKrNOJsstORzaRvXnUDv7jPW0601RpNeGW71cQiq1o16VuCt6vlnjlOcDvZTkaIL5UqZdRDrVYr8HnNDkFyKINqOg46DmIJzHy1Xc9xQX/t060exyFLUFA11DTRZ0LSTK6Gm8jFdEXG/M7CHVtTScRSkPardCFfldGoC8v+NHdzdffOvbvXl4+efXjezfZ2ty/Pz7Hn9XD7QnTiLq2pqDqpKrquSjCEVRuinoXyREA2IakJEmXHAQpyjAahb6tsq97V0DEvCtCofrI9XXiWKXOqIktIgnVdx73jeIq+18DKRlghOLY6RLtcKefr9UKpVqwQNZh6HaGZ7blo3AzYLwoMJYidGsG2unSToBvGcDiZupBS2frgAgAYGPBmFVq23R/Mz09jDe0EDMeUmV6v22mRnBatt+sVWlqj3urm7AwZcEw0edRa0nRrvD3bnx42a/T7uHPvCpB6N5E509PhAzTZ2O/Xqy1W1282h4tb9y4nIWqNAGrAHAg2p4BYW8DnzXoH/98sEYCfPHl2bafzpWa7inIE5TZZSKWyJ8fNaoliCQ6SZ+wj7MMdithMuZhFj/gmb/EcLYu8CrArcljnSlFdFQGYYea2veQpzVVQR5wRbE1STdxAEoEpK84qFOutDrCqptdpFwKe7DCb8dANDJckg8l0PcHyDOwMWM/9/mg6BZYbTgBssZ9zfzpzUCB7EE72M+zRRrHsqRdPZxeny4ncJHtlNOOplLGbCgCmVCrWsOWuWM6jC10BVR7yxVyaHugNnlvvbEabx51tLYtKwOl8LlW0ONLq+7Kpt6v1Vq9HyiHF+dN+4A7QsdJ10RsrTBTNh2EAyd1w8uxqBOFqMRvEY8io54uhZti+qUHKE/fH2+VisVpOYRhpChp91POEEfR9py/ohMYYgj8WSg3W0OESmgoNcKzber3Yg6ulC3yr7loC3asyvjfkqukMJ6mh3JXCIJz1S2mdsAcyIQ/GUd/2ARDKQj+eB4VSS3RMmgi8XqFEzu/GqtvVK87mmm9DqnucYUipCjjRVhg5n6+XiKFfTDXaREH5m1cqevtPfk5mGi3KILJEp6mspPunTL2cT6VltsK5xVRZMWWlFngV3WUEeTix4ki73A3FVBWFXkOJ5XTeXrUJmtZiyqAVHdKGng2wKyksWaZttZKiDKriMwWhP33j+rDAshu838tEgXC52kByeAGPq6vr60ePHj58BMz1DXy8+c4P/+iPPvz4J5989EeAq5988smnn3/4yU9+8uWXP/3qk48+/vCjH//4g+99771333kHqO33v//+D38EqP3Zl19+/tmXP//5n/ziT3/5Z7/61W9++xt4/Pa3f/iHv/3Nb3/98y++/OkXnyPW/+xPf/3b3//F737zxRefffzBe9/9ztsvv/ndR9e3p95OTLXJy/n6uVy+8cJ8MV0BrZtOdVQ9YBTL5WjT7lPlSr1WKRXL9XalTAsoT82RrTYlASzKIkcBiZIlVaNYW7BsSGJhjhIoYNSslAplxxJtwzctjFSuzvdQkZMXWw2iygDpOGm0Wwxl0lWGofTAVjheUQQs9WYZdNShWYZT0Xiu0250FMdQdRlQ2HcNDXJ7DStCwklsy4oZRH0TEkPWxN0RRsIiZGB0kgaz2uv3AWiiMJqMITLOp+Plbo3lzxjoJiE6JCQKCB4gMEr5WlgSifSiDwC8xFkKzBWoDJyAbsio3KsD+boxWZjgVuwMERwYtOvCIWFNnKpIIgIwF0+w2AtY9myRADB2EsyAES/RbfDi8vLq9t1Hj5++9uZb7/3RTx7AlBsh2wWGOp6vTy9u3X/52w9QOxpXrifTFTLgZ1948fXzEHnyfJ5UcS+BwBzOr27devz4yZsTVk9IOFZrGAD5UyDnO7ifEwTgGSprR3EflzmBaMVwvr6bFEFrWLdtqah1J3Df6MA8aXc6DQQ9xD2gncnSBzbM4W5uUrdcKlewZBjlHFFAmUUbQhTSqNbqEFrht2hAVMzjLnL2624kwGYAX0DrDpGIq9KJWiW+RY/ERTca9aTLCXPGp2OTcGIE0m4n8g8MakmzkHIlW64QdrDaOB7NV+eABFjqs194bE/QdRvNaA2UVsPGN9wRketwPOXCcUVHgHOBBngWVqqjJiP8ofP5KrB/U8f8zvR3V7evb9+6vH50/96hlaaA+F5cIAZfn+2dsd6xUDkBxoJh+Y4uMrzloByMiHImKPPmYpOTf+NHMAw9x1C4drWLPfIeFrLa3mQ1slTs4JOTxRLdcHTJGY/jMQTasG9jJTVuHTssSWJKU63mS+VMlenU4X16vZZowuSQBF4QGaLDCESd5Do9hugxTR0AeIJ7wKYeXWwdYMLxZunrFgz+xZ293gPMVgyYpzTFCkyH4AR3vgUEXn0NwAe0nT+P2nUEYLgs5hQ47GG/XsKvzm/fv9oAAI8l1oSJ7MDwsnb7zWq3220229359e27Z+NEfwwetmlEu/PD2QEBGL722HF3ee/i6smT59fiUaHYaJbzJUjzSApStEIq06xUOKYt9gPf8dBU2/GGfLaUzTDddL7VY8kedoZpLGdKnKRIKMWiGK4sSszACGa1aoV0bZI3ezatyH5gKpYimDojew5RzpR6gk0x/XY601Oolhh6w4FvBRCmQtu5KZ0LwuluAxNuPIp0tT8M4+VkHI+2V/thhMZoVjBJTFRgik/GfuAC3rluJ1up5TInN1wXWN7xcQa/cMclm70hwlg1WykfVaVWuVgOhkWvO/SpSeP4+OgYGF4xDaw8nA4B1YFvX1wetocZJMyzYTAbhHDzBxArRljT5uJOpOdIljcMFJoVaZbr8LzAcwzNGKwmeaYitAlZVQ0FcBfzbkfTBMq0gXdLw8lwvLT9LgTr3tARq00xms1Wp22K4izedEd8mxvACO2VKyUOCK3coRxeoY/zeU6V+pEgaxTJsCcnTNPQNY4ilC7T1nkvarcFWw3Yat1YPNzw3oDiKPnuRYeS8t06VTfbVD6bzlVFijhOlwAiWloh38q3I62Yane7Jfufv1C2Wr/+fSfTatMmme10Ksbl4OH9OwPtRD688uQq03CJmmWqgeBNRJXnRTEUZSfS9itRTfV00fQHrNrp8syY4Ii60BfkLmvIlXzdwO5LilS6wsTt5Lx5vTvjp7fOTu9t79699eju9R143L516/a9O7evry4vLpIChqQAcZ1IJdwkZBBK9hBPry/P7+CS8oMH9x899+yzT58+eeHVV16Gx0svvv7a66+/8c03v/XWW29/9933vv+D9z/89LPPfvrzX/7mz3/1yz/9xS/+9Bd/+me//NVv/tE//uWf/PEf/+yrzz76+OOPgR9/+vknn/7kk0+++Pmf/uxPfvb5Jx/96Acf/eLTL34OEP/JL370wZvVTtN9i2m0PnluPMOumuXaJzo9tgcILDKSoNO1WqneqhULNaJaYqUey3Z7LM8wIiASQFUPZRwkUSAYG1uTdNVwbR1tIwiUJwxsyTP6QC01GWunBKJLtCWn1yDKrR6v5Nuttij29QZVK4t9V1RND9hCH+aG79pAcwRBtVWRhSjdaNLAeXkBN0A4CN7ogkFBQiwBqYkiLxpGEOZMP8Jy5GBqolCC48fwLqghY0By6YaB4wTDOF5slzNkh1NAu34YJyuGWJzkQI4AYRhYN/o5cOFuAxRhCQQ4HgxcLI82TEXC5mXHc3GFMVF0QHQbxdEg8h08RfQ2kLFRQ1YEOhiMRtN50gqMxk7j8XiKpoiT9enp2fnF+fnVvcfPPXr+1W+++c6PPnuAVSHjRSISAQB8uLj94JW3HvpIWRNr+eXmcH3n9r3Xvn0dIx5jYRVu8C5XW2Agd+/fvf/49SGdIApu66oW8Oz5FDUURiithYrWERI0P0T1hX4fHRYd5IIJ49fRJxLLsPhvyBzPMzSFYlb46NTr5SxWSSH44pIyCm2gI1GChkD0sTQEvXEBULuJUlYi1gxQXCsXkrbfTBpLqfL5fLnaaKH2JMNhH4aEuoUCeiNwDJoJ8zxFtEtf+w7++6ZgkgB8FxUsaIFMAVDFClGCtY9LvdhWvT1c7VeQreACqYe79xYWyAEKQmgNMe+CU1YbZcgec8dVa9D3g4SmWkpymTRNM0wOMEG3DBgjJpoo7K9vX19fXd9/cPf2rplm9gkAX6CEAeTOig6jLFGhNDTHgYGi901VhCiB6pYyLmO6lpOYDUHiNI4ceB7dKJOqjd3CFrBQYzrVepIlsmby+YqiOopgTaaDIRxaAIMsgIESRbEv96hGrZSvlvOVcqYu0LTFNilRsQB5IOUFGtts1Fp0r0uTLRJN7ps6RJCprVuqaQwuNvAXK96ufB0NKnZ3JjzFcqJq6JBicbIu9bosZ0+RwW7WCMC4j3V+eXEatBq4V4MWWTOAWOCuy+Xu7OL61vnm7HA6FmjVRMMxVTE2Z/BrDGBbrMK/tY/hgvdxxvq2Ge8TAMY94B3uHa9XwIBvPX3yZNM9giS+Vio36sUiSR7BkEi3yRal0y0FddjdMEIb5bGUKaSrIpFK1+odoscqDCUCaii4R0DRZEfRHRh17XbHsjLHqcr/T9N7NkmSZdeBY12ZGSlCa/fwcK21jPDQMrVWlaKyqrJUlugSXS1neiQw5IAAQZA7BJZLAEvamq3ZGvFl+WHNYLsGM37YH7J/9JZ6rAAAIABJREFUZe/17PHSWZEeHu7v3XPPe/eeI+usalS9tMBbPk5RzjJZ1TNoSbM9TvTacWlpuRTYlGqHUezYAa37sQ/ZWyuRS+mMhyh63O57TrsN721Dqu4HLTRzTKzSEiIaJVbNcYiZrSMLlkZzDIm6bESzUgWqUUjnsCkAhjl2DSQ7Jg9Sqw8eLDzIriwaTM5WXFcNAuxPFkXLUi1V5mVeszjZxbIpU6QJb7rfgqzRwKVnGEDhvUUVXJlvS0Gn56qM1BpO59MRLqb1hqMW5L4my9n1HKnC4LUgJ7RV2XFowwk4Ml+WFchwOcKmJEXn+4ZM1ChI9jQ7W6kWG00vpspVuh0O5vVUaSWv2qJESQfTne21B19kPJtzBLU73urbpOIKHq7yhIFUSmW4MJ4EBGdra5VCf29Hq3BkliymdavqFR5gbSXPE6l0ukBAuvAgla0TDCVn0rWVettIL9Sb9azzT9dZp/J3/6WxXK/TRj1VKVV5lyotNRcW2KlKk+2z1CpErzbghDkyAGGoSC9FsjnYHdXMJUglmE6r6pF8uxbWldJq05QDgfE8jrNtU2rKJi1Tck8h1pxImz8cPvvw5fvbuzev716/+3T3+vXru1ev39w+ffrkMRyP0Ab8+goJ8PnZ2ekp/O3q6uL84ekxgPTZ6fH56dHxyfH+9vbe9tbO9ubOfDYD4pyoryYHDHxshMfSif2Dk3M4y/n5xaMnty9ev//01aePH7//7lv48c1nIMyI0z/8+FsA4H/9H/7nf/wvf/93f/t3f/y3f/k3v/nuw4evnzy9OL54dn2yvFhcXFxpaIGPYjFR7NYBHWlatlVOVTwus5wtQBDLlshSnpdpyL9JASK1bgLN4zhC5ngakhWKVllca1YNYJMSWYZQXCKani6ZEiAXRGkV1WzqdHWtqlBFtriwwkr5wspqvWlRWbpKmqEnCIobOG7oWthdabkwId0wcExJUiVR90d7CkV7AYy7UBd4hqzVC9kyeswJPK4J4lYmEGCB5V3UYrBtD6NwCIDjdTuo8gdksht359vzMcLXEAhsslvX72AfL7ZQJD2kqgLRVOSiDQgdaLWA6oIBXA0QH1VKANix253EL7GDulX3HNq3IICjcrqQLEIDA2aiOGn7xTXo+4UsbCgcdDojOOs65FlHpw+vL+8B+LdnbhD2emOcdskK9d7p5atPlx7SVvSqiUfz7cODvaPX7w8ReXr3BHgy7Y2ATe8ePzy5ePy2yyCtQ20lFYYsEG00ZEVZByDhAaYIydqWd0/SsGzbcDy4Syh9DVCAqRQHAJz0ESf1SyjxXC8VsyuY1f9pJ3cNTS5JtKxTEm93FO1EtXjUR2rUq+ViuVIE9M2XSvk0tgOj8unyT+bZwH1JlhOkZJFeQA8+GVM3joF8Cv0Oy5n7hWfsPcJWI5JqUFzyellEvpqsT9iOaTq4+9tqd/qT+ShJRSB7jQNcxER8hc/mBX6IrT+B5wRyMYP6mksVE78Onx8BWMdaXzylzqyulXRc+8AiQifeOjwGAD66OD09nFdXmO2T/R0AYMBfYISxHvmugaZ7FkqxGpauuQDhuG0BNEHHPszAxVXowHdb3V4LRrFNV8uc6dgualQAwPchS0O4xn/wDMPxcAPc4bCFanaRi7LMaMMb+wrLVovZdDG3ksulKnxTENkGcF8dRV4AgEkUhS9UCbJRKtdJ9CvTIYPvmXCLLDPem2O+GG/MfB0eeWdzqlICsHTNUHhWEFVDZRuNphbPMJqgVBp6zm9hFXRQq0gwgFCPpr++jjo02KG0t7+zOd/a3OxwTbSOMBRIJOa7m6hxur6xMd+G+zVvOf49APsIwFv34PsnAB7vnu4cPHl8s15fwMWIdL5SyuaoyhepzOqC2GwoFk3omHC7rTaamXal5TTuni6nMnlIunkZ+y94U8Htb1ZiCKB7vIh2ih05s7IiQDyiylRYVDnJNgJNFm2L04L6CjDSYoGhaQq4aorzaMnveq1Qs1jbtyAJScYvDiz0j4AZje6DmEDA8HFtD5PUZHsG96UszOc8QOPOYDJdn63vzAZw77BBemfn4HD/8PzhxePXr188ghj8cDoeIUYCcLchAwYotyE1t7pOJ7CG7W4v7A7RfNkJW0C1B60e/N7y6FxF08fHXUgaW+FPB14JTtSOqwmt/sAJmhUpdHTshoHcruUOVZ6RRMVTsyW1NZ5MZ9PhzMVOeEczBeC1SnuytTHhcZVXEFyNoiqkAdlnp57NpfNVK9Qgi4tg9jup1VSGt3mTrPu00Vn9YmXVtBmXA8jt6OW6KTb4OkMS60fTWjHVnu1v8ObxGG55OR77JdIzF5azy1WTJRYL+bUUpVGFhbVUKksR7OJitlpmG1IBAJgIzMIiydSz3j89LbiVv/tfG6lavWnWFkqFrLF1dHl8sLLq0HWlQ4f84mLF0ps+p9hed2AZLrdosyXjsJu3liRIS22n6JeIFtkmtfQSp4kOQ7Taqt5TrMaatO5olNni+bJhiEfXjx4eb50fPz69fH5zc/Xo0c319fWjm5vHT+B4egsw/Oj6AhD34cX9gWT30c3j169ePH/x8uWLu5fPX97dvbh9cffi2fPbJ89eJhT49vY5fCcMZcTvR3iul69ePnv2/OnV40eXZydHR4e4H3h4dHS8u3dweHR8enZ2fHh4fHpyfHRxAxdw8xiv4MXbd3cfICl4dvPu49ubp7fP3nz/5Ytpa9AieQuikq1LhkKV8gRDswZP8IIvVwrVLPZvovIgQTc4mBSyQPOGIUBqzVMqL0FCx9OsJroauoQ5TqCz9UqpUq8LNiT7gI9YlCQZGlWr8Y21IsMU2NJiwVCrZD2fzlvcKttoCoJpsJITOF6IasWAu6bnY9ORZsmmTDFwHq5aKmmhqgWYzOEaY50STNcFbO13IyziACih6vgamM9aQkhRdV+SfA8+GPA9P/Db67sb0+kYYgvA8Bh9hQYd4M8B/Jdzr0apKgogSrgOnAe3iXqdKIgg5gKn1v7EgBFb0WYwMYwY9iCdRlsciKkiLujKHBZyCWj83m4BAx2OO+itOpquDxNl6Pl8ht0dxw+vry5vXr778M2PvzoN2q1u4iDf6w0m6xsH59evP195HeRDkAH0gKTsHxxfvny3n6xR4RbwTwAMUe7g9PzRiw8DVk2W3uFzixrEgH4UxUi/h8NeB5hv5KPjjuvch5kwgIRZQy0OXRaQyaIUAc//jGdRL5RHJzIKDRLqtXIhn88kBc8omlGEh4rNath2lixeo4I00mDgwXQDDQfJCm4Ml8qlfBZ7hpdSwAoyBVSKRmdg5n6NHgmwen8gfmO5FAVBIp1eA35dgIMg0ZoBXQJ51BcWZEGQIf0xEttEM2k6hegWd6O4123BLWqjXAr+FgYh5FLYbIWCV5YTSIW1PGr713TbulfNcHTpHoAhZVObyysFXLrHvk7F7e4dHezt7x2cH57uT8jVxvbpwe7e/u7WxnT/YGD6tmaqioUFRzpAnWcoqH3pw1iz4J1CfHMnKZ7xvLgTo+qWzVKMgbqf6KGpwYtFB9gGekfLLDpANXlF9+I4IfW4igtMBkHc0RSpVsjmqsWVUjnbEChVraZJQRAIReITQwWOrcOjqBBVkqYqZaJpwTDsm7JiOADAM5g6dmdr7ptwCXHPajIoc6YZqoBev7ou0QQpRWOkv5jVz8aT2dZ2AsBVBbMSGBmdGQAwwO/6dH1vf3M+39jY7PCs6dowYIBmb25tYAcxaidv7B3sr7cTnQhEDFOPgDxvbG+sw0vg22bzBIB3gXNskqulXAZXUAq5KldeWc2kVqVaQ1NpzgTm5/jtOAotuyekCnWZXF5ZqdG6LNGC2GhyCqT2Fgw2lW/IoiJqdnsY6VQ6vcjKvF5fqhgqT8rwPCBeuBavBRJVLsPtI6oE10wvLWY4Q2p5QTvSbUlTSEheqrUaqr6UqqV8qYh1D/kiDFoctTmUgMnnCyUYw0U04cKdkHIJvqFaLKIuUbVSa+IeCm6+NBmGh4ysBZMMAhB6i2H7rR9Brt9vB71eq+MPIsOF6aLb8DqIHaqtu24LBUw9s+2akcsTNbE76Sic3oPAGQQJ5UY9NVTh8YBctDotRaBrXDv2++gB2W+pJHBx3fAkPigWWKvbjYBdTEyWFctAh6syVQSS67ljJbtc4Xij7ygSxUaz8WjDWV3NFkoSsO8ms725ub6df7CQJ61AoLyD9c12M6cxvGn4gtbvzaPl1ZWU2aG0PhfFWraUbW0cs2W+Y68uLq0uZi2yqg6ZShEIrl5fTKVrBNvgiimiUqpTRCP1oFgv8KRUSVfXGq4BAMzWc+E/PS261X/4r42lcpUCBlwuprV+1N3cHeSB3oiu1A1WFwVW7tEK3wAuUzXb9oJkNMWzIGekILZKklEzV1YbYq8JVyGrokJV21Y+TbkRlbH2JU7a2B1dnAPiPj05PTg7vDg8Pz7a3z4829/Hhee9fVx63N7a2oY5vQ7J0jCRCtzc3NgBrguM6OIxkNi7d19+fPP2y/cfPn766qtvv/70+dOnb96/e/3q5fNnt8+AQt8ifD8GFAeo/vKrrz9//fX7ly9eAr2G4+OHL9+9//T1N58+foDveAVADv8DoP7u7d2z2+ev7u5eAZzfXJ4B5B+dXZ2e7l8+Ojg6P7569urZ5+ePT3dmiWv7KKbKmQpbLzNyuVSAqRtFtpr0t2oy9l/ANEiM33FNiOIaAkxwDf2iddVU0LTA9XSZaQAVKlE2xB0Jd241mYOQyzdJgasxCltt5kqSK6WLRHZh2WLSAK3FrGDxqh95fitEDXLPcSNH0hVdMSWVqXNhKJF1juBczxIFd7hx8PDi7Opyfz4MvGHi3GA7fitwUQw6jlDWL8LVpCjCfWDb1hRdFQW4Om84HQ0AXGfr02EfJSK76FKPe6IeJryop6HAqGcCeA3WSQPKwmngP5AjIQCrpm2H9xqRXWDAgHBdSF0D+IiqyGI9j67wCRsfwHfjAjIwtXsgHs/QQgHVDXZh8O8cXz6+vH766t1X3/7w6/OgBT/QtrgLADwHAL589dWVl3yKdhdAezrfPTh7evt6N4JTtfs/FWGNJjB+dg5OHj65+9RjFDkpIwNOq7XDqA03MhGyhM8HvAqLgyIs9rYBmSSsCTexTg37kdAUR1eQjP4MffJommXRN5dBNoxugvViGsuRYeZWgBRT2Mcj4mJ7sgiNttAQdhS0emY5BuhZtQrxCl2kAbjXUivZQq5Qq6CtIUA6zcNLsYSYxwGE3y1gRTIaroliI5/N5ND3qFSCc9TgGyge698FLNEWND3RPwDsxI3gnzSf46RGvAMRqBvhr4T3+sn/wxO1TWDAhUw+nXqwXFcSuUQs5FAE/KuGRFylAIDVezIMZLR3eLi7vbe7c7hzsjOoL1U3/gTAs729UI0F3TENOC1kKyxvBJbuwljH1nQdcjfIGx3Ap/sEJ0aDad8xOFaE2YA3CzivabEO19Q9ibN0mUUHR5KS4XrgMiEzsN3AUfBMkBgZulrLZfP1cpagCFFhbLacI2u5hqCJLOY/kJCQgBblZpOXWKJOK/5oiEIcimab7Z0p9t63N2ceMCY4F8upCttkRLiJHDwsSDfYOiVHY3QSwY2wGWSjuNC+6VcrWuKPJenRdB13xzY3p7Pd/Q1U6tju8qxho3y1KWubyfYvxi4clwcbHdMECMZOYF0N5/PJ+s7G+iaWWW/j6XePd7YeXV9vU7la4i4JaFdni8V8cY2i8lVIvxT0RbSBAYeRbfX4VA0C68rysugEHFelhHqdMy3Z8jE35khJ0nQPRi5NGxwEHlkFIM7wgyYRxx4ukXsmr+NaR6897I6GPa/7xRdLBWLutLm44xqubvh+G+ZlGGCHQQtwLm7DfAqCQd/3OkHca+EiRgtnSmLViF6NFjwVFBzFSj1s3REZWcaAh62RWABRRgE3GOHVQq1arQNLKBcK6VIh14B/UwWCtVyvtQFEn6IpilAoFgY9zANHNEXdYJu6aQ/jftD3ItbWUCkU3tbArTP4zQSqHkdWcwneRfdhygLrcH2dNZo1gVd53yiUGDXuwdz2+nKjKRGQHzUcvija8ajTpxZXV60Kvy6bQp3yJ/3OYCe9kCnkgUCxFDmAwOKTxRr6qEakEPRnVLNhi7QuEAQ7nG61F2Ea93p8+1CbBVSDEsR23Cw6G3NfX0yvsX6DraYypXpZ80lqqUwWKnSdqyzk07l6k2isPsjVcjon1tZqed53sgvVZhUA+KLgNP6P/8Yu5oukUV+uVjlRh3lfP++jxJHsBO0lYewYkBw3qyolZQsjeZWDYQd0206xig2hty5nshmnx0XpRdQ1Z6mxm12lTza46mBzZXFRkCgIs+ON9RPcmzu+PLp6fP306dNn9/z1JfDN28c3wEavgPOenZ0fAWvd3wVI3trdwxUbXFjGY+/w5AgS8eOT87PT8/Pz68fwHUChr87PH14+egz/enTzBAD41Ycffvev/s1f/eE3v/ndn//573718+++/fbb777/7utPP//+m68+fXz/7t2X7+H48t2XHz5//+Ovfvj8469++2e/wxLq9z//OWD0Vx8f3z4/OTvZnW7Ph4Ow5WNHLAxMrVwuNMRKukkXCAbS8UCFsONYiE8IsYoDYOfpWu9sexC3TU/TRBiVsmJrkKeiODUwEMuQaUjwI1OTWfRu0hQeNYpg3pVKjFCj2HSV5ZvlXDG72pwIBQ4t6GiVk93AdgLXRztX3wstBdiDDKfXgHOJnEQ1c0wL4lS0dbS1fnC0NT86v7ndDdEeaBBj/NOBRLC1CGuNkaCiEVKn1eqOJqPRdAx0cDQaY3XmxmQMADzo9HADGJX5fSyC1uVEGxA3tDkAYGAI6zBoMcY7KNmo6VKCGrKuhfeK+6juChQ6RrkQA806ORlLv1RRRY4H749mD62wM+onIs+9ISA6ovp4c2Nze//o5PTi5tnLt5++/vxnDwH+g7CDmW+3P55tHJw9fP7hCuI76q+0+oPx+CcA3sMC227/ngJjEdbGzuHJ2cXtm09dGkW4EFhk0exErW7Y7odRK1EZDhGAUasTuRGwQBPLhRxTTRq0ISTjhqSiCs2fqYiIMsRvSVQTOW9D5iQmv7Kygg6u1XqjVm9yggyBTscVZJWWdUUAOJcs15Dx9gF5Jkk0us6vpnBTbC2Nfg65fBlNDdHqXoQIr2CCgq24vIa3Ew+016KAfxSKuUwW+HIJaB1JAvVJqttxHUUHCulimEeqibqNgd/G/qMkt4EHHicM2IM7huIt97bzQMn4QiaLGpr5crmMl0/AhZBosIT2R0C6l7OlMsmTFAPJg9EZo2rpaDrtb8zV5UVxdztZpZ0NJ1O/FUlmoKEOk8Y3kQABD/OQVXI8irBKDlYbmPdi1IYJOZmnKUy5KfKcpjKcrdOMyFFETfFkyTQg4YBbwZI0LRm6Ad/qJLvylg7nhJhvRRpwsAzVgPurqQDRPC1y9VJNlwWW5UUBHoHYKBcrBCsKdIMVlfZwtDlEmXTDbG/MQsu1AYDR9pUhOBpIY41gJJimrIAkQmUIsenswjCbbkzn6+i3sLO7v7MR1OsCpEc65BAhFkBMN9Yns00sA9/ans5GEuOiCLFlS1ZSAD0H6rA36u+fHOzE+LERrixDD2cAvmj6NMVN5I2t6XjveGfz4vr5vFIslOoE08gX8iTTpFmy6RTLxZpoYr+yYbk+PDkt7DRWyrJWSa02dUOsF3I8ZICcYUD6gsLZEmNC6qP7Lp/GzvNspVCtlxdTGddqSI7u8ILlRpIRuw2JowWDoS2OLzOWSEpBiMUiliv7ro6enXIyBLH+Aa8dbaTxwGLuZHK3MS7A7Mb9pU6y3YRd/71htzMY9ofTfhR24iCI4wFC9nSGytqDpIAjThwRUcAUDtuzDV9ncFlwuunLkoJOjxheJEbRRZrVOKXJtXV/MIg8wwl1QUwmCFr/qlpSpm90u4bXqqbyfFYNOYyGISSRDK9UBdYWbJvNMJA0GY6uOESxLFCQfvuCWMZOTiceLSyksg01cASdlLRO2w3H1cVsLW9YBiTZ/WkUSjC/aUlnOIMbb/byqQdfMBASehvRcDLX1zLpjBv5x1zZNbILC2uLeYdqCnpTLucKBU4nmrmlFFkvCTZbWYRkEcg2SSwUcmmiUueLuUKmxtS19CKVpR21ulCH2d3+Py9Kqnnz8uTJab7YyqaIkij4MGSbMHI4PlAGilASbUGhNBvyDarlFrbpFdU2w0m3pNcyVnGtTfH+4mJOG7HdqqKJctuqRZ1ihTppVdcKTVHmJZ5B51PgAOVSsZDHdY1SqVAkgDlg9SfLwf3VbBdNb2brWzvbALTHDy8vLq4AUZ8+ffLyxYvnuNgMTPjpk5tHj64fI2LjXvEZIDJqy2zMpklImKGm3frh6RW2/T559vTN+7vXX77++PHjp6+//f77H3/8xc/h+OH77xGTv/32668+fvnlp+9/9f0vf/3LH3/54w+/+/XPv/36m2+/+fTh3ZvXwIpxP/r89Pjw/Ozy/OjsaEgSnFLPlWmRKcN1W504dPzQVB0crRZueSmWog8PRJbjfRvTU9Nu2CqlAWGBjDRphkWVJfToQ3qFlalY9SmrjbLRl0mPJrXyIrdxehqYLsN5Up0nytlK1aKrfttvmQEQCgeFdQKACYi9uGgp+uIaz6kE3bK14fHmZLw57wGUbm4/fXk1WvctD4a9k6zzNUpBb9jyO50IZZ7jbtSejUcDpIyTUa/Tn83H3eF8BlF2OOwlDbotLNdxUR8Ze3jQ5bCp0N5kuLc9nYy6uA3bsrGMGwU2IBMwTCkEBAhiAPC43RsNIwtnrgGfPJnUQFAEQZHY7qDrtQcDeMtxNxGlhOk8mk763fEmBK+tvaPzq6ubp7cv3331zY9XfuSGnR5m493uYL5/cnb+/OOVn+ifATGYTKbrO4fnl8/f7Ccmxkikp+Pp5sHOxubeCWRlT19/OWU0TYVbjbffjIB39/ujCLtS8WfLd4EF4z5p0rAaeVh9pVtoCGCiiAo2IkmK/jNsY9IAnnGNH9gePENdk4jMCjYDlbAgGZIqEekvRjCstwZcdIHpQaDRLdeCDIuq5XP5TBHm4SpgdhaPXC6HXrpoLCjBm1goOZYod6qoKKXjRpuuG5baLGI7Uh5blYoVpMBNhpKUJOlR0CXeckP0UozabRS9aLfa/fl0GCeNP14IiSMmG5j84S4wbvZiCPSEYja3trx4L7C1ht1Q6fs67XTi87SM/cW5Ilwh8BaSpYHE0ywa+zCllTU21DULWAkuoViWaoS4V2ip8HyxEIoWIHOReVSCo5usBvhp4pYwrnTbXqcV+wC8q4Rs2LbY4C2uRAJZpZu6g5kqlqABDQIg5zXDDuGJRGhj64Q+LqfHrcgQ1tLwCshMdCcKHUu3Zapeh3e+X5IXZYmplaskxQpMU1CN7qg/biuoQW72djdCTTPj9bGrWmwl32gQPFUnGRG1VkQVRStYSmac7QGwXPixMR5BFrd3sLMZlAuqpSs4Y6MpZKyT+XQ0mW8A+93anG1MZMZ3TABKW3Y2E5eFjc0diEF72zu73aS+wPeAK2rhbBMBeD05RjPA992jnYOr65tho0nmqzWGKpTLDZkjGFk1yVqhzGMxvqwg7gPjsxyqwqLqVUNQeJrPrbI0TXCaqZqGbOi+ypmc6uluqxujSJzvW37LSqeZEt/ktZhRFAgbrD6Qq1iWwNcbYpWpkkbAsgrwB9/zrablmnSDhHSQRAtq9KGGX7gkXU2OWh0XcHIF9AUpl2tEHcct0YRkrZkU46OAGlGFWE7jEhFJiwonSFV4IsmzgfmAxQqQCluOC8QDknYEXdlvD7q+LuL6YLKt7EJa5XiW5aiEoApo96dybLeluPeRzzYdDEiuT/MyZCeOv7pEVQQbaCKEWkXROcoVedHXHJ3N0aqh2aobBkRurQCzRDJNsWH6cWha7eyDByuVvqXzsmDqgeV2JbIhSFxoiJQiQcRsU+XltOrxhFwpD/pd4sHyKsO46/sT3vJCNlvK54Luxowy+jtuY3VtmeoIVH3tQTpXLRV5vd7IfLFQKeURgJey5WKV4xq1hUylDAhYX17O5wmeZCu5UrGphZlVhigWOv98UYlYQxDM4SXkhSv1huR1DFVm4zgUFEPrECJpaJTOWi2hqRV404jZLAT9IPZLPlVSqw2P0cKVdEWM+bhAQCrYqjV6EVGhxmZ5ebkR7z1/8fzZi7tX8MeLFy9fvHz55bs3L29vri7OTg73drY3N7CxtB9jGARmCCSJpKjEtJymkz03wOhk34vD4QgRE7KpuDecbmxtbWO4fvQI8BmI9Ivnr+9ewXF39+ruzeuXz26fPb55cvPw7OwEt3uPDg8PdpJNYPzr4QH8Ojq/uAKUv7l99+HTp09ffQW/ffr44cs3r148f/r4UcLGT09P8NWH+5uT2XzYqIuEIDIqV1nN5EmvGw5HPWBhI5SWwH3RfnvUCeZxtVyv0nLn6CIU1UhrexKMHwM/GNBhRCIBd6w4mmbQuIiB35sMH/T41UyFZ8rW85dXl08fHh8P/WZVLa0uZy2GpiD0eIaL23hJEUJCflQBzslZ9CLEG55rioC/3fnW+s72vDve3To+uTqfQujURkjqrMAoVfvtQb+N/a7tVtDqtDpzVL2dDuJoMh5jXj7oAQpPRmjW28P65E4U+jZWXyUFRRDiJJbU++j4Nx50WlGrbcmKiS2YmJMCy9GxXMJr9fq9yPNwFasXmsnyppzQO2xEEvlmjCaI6C/XirADCVnrqNeOAYsBPtexdurq6vHzu3cfv/725+cOOtZ5yd5Rf7C+uXd2/erteZA0leL3TiEM7l/cPn970On1el1sBcT2152tjc3do9OzR89ev58xOspoop6TbXUGuPTcvy81Gw5RIwJbNfEXVmKhMje2V5vAgrF7WklMOZiSAAAgAElEQVQYgar9DAME3ndIS92kqMm0TLawtlrAfd0qQRFJo70s4y9ctTVRA8p3NWSbhkg3s9gsXqxW83m0SyhXC9jCmy/AtxeAr5ENbH61UT/Zwu1qw8ZiJqQgiJUGU0rnCtjyW8hnK7VioUY166KqqBLHwi0FvDcc5O8OpDtJS3N3vIEPFQu7wzZkGYPxpA8JixdEPxFgrGSVSgDA6AL2Repe1iORq15bufdoQmnWtTVUq4avYetU4g2RXsuuplKrmUJ5ZTWbXcs1eEVyVS7oYrEQtlMqChAsCkilpUkYe0VG8XzIbJxkYTwIQr/T7rRcW8pydtjS6yVep/KMxjck2bYk1cJic7iPIp5E0d343pU6REnK/rDTGXT7plwnVQV3DLx2twUMITRFoMFNmAAM1sCJkkBVKw0KuJxiekG7E7UcHr6oOv1531YVuzfrO5pdy69VSIojEalxbEs6FlXwjMRZGwMA2Nl0fX3Yn23Mt/e3t1r1vGyo6A6txwDAszGWQSfVRrvT2SYCsI+t1IZkz2YbKDO5vjVc396abu223Pt+P8fUFX+2Ocfy6A2U2cJC/OHO0c7+4+dPejSLbs5CM18skwJHcIYm8HS9oUPiDHECLbngtsoKJzvwJjAosCshu9TkGJKHizZ1gBZb4T3NaeMmKZLUTnfcizSJtNt0Q7Cjjq6oges0jWlstWCMxK04yi0urGlTCVAbMjPIQ8UgtHXHx/0L3JO5L3OGAYSbPQFgFBZhYaOb7wKHdJOFCcgsDCvRbNUU00YDMZGVYEAaOraE6S2Dse/pKrq44L4MTn+kWvAFUxKECE7UCzTP0yBNTWx9YXZZGpzPCVnKlflRO+gQlaIdqihCIOFPBXf7BakEd8LvkmJ5sUJRsoTPT5JYvlo3RUJzFMdUgCVBkoYldoWVNKUImiC6TAOzRPjWAornd0Q71k1NwaKrGiUJTQKIEsk3tagfrSwWlpeMQRAczEJny1wp1E21uzcVVdePIOGRGUMa6XmpUCnXS7WS6PAUsfDgQaaWADCx9kWqWsqLDldNZYrFSpNuVGEW5eqNErGwUCgRdF3N5ZbXqoxUWUg3uLz3LzdZs0lVeU18HgrV5XqRMWQaUrqB5sCbGe1Sk3aFmgs4whBSajnHaWxdKFXUdrvul4pSteypTrsiCEyHC0uLdc0Pc96Wnl9cLKIhrh30UF54AuxqNocDWCrWqB4cn5xirfND4LGXN08BQgEugbbeAMO9L4d+fPvy7vVbAMevPn58/+4NMNKnj84Ptmaj/qjfRq0iLYFrhiIJLIyBJIyhUT4P5Z1QPaXbh0RzG+L5k0c3j58+A/B//fru7u71mzev7ruW3t48fQ4nff7q+urq+vL8/CFezcPTg93Nra3N+1QVPXMmk8FkDPF/sjNOLxU4ibDUUmp5tR6EVgDpvG1KP4lVmL4Jk21qMpwp1rnNsESLrOe3I9zqjGPgXsgru502brQANfGCJPGDMSAoLMUSuXytqh3dHpn29PFWeLLeH1EynVkr+BAnWqHVgtmAdf/IYbBKSJU5iL+czS3TtQwtV8zNYT8ajnv94ebuxvbW+fHeZItheWUY6C5clhv2ZlaIvbfddqfthxAKk26v2WTYH4yTJzPvztDraDDujQGXO5GPNcKmjl20ssQzNC0TtD3dGs4Bv9qJkr6pm6os0ApQW0hxNYyUYRgPNsbAdLrweYPE3h5LoJPdRU0GBtyfjieDLmoEop9D3B2Mp+hP3B9O15FX7CMAP3r6EgH415fAfcLAAcaKAhrrG7sXz16/OkpKoON23AOo2d45vHr+/O0hLj/34INMAMY3Dvb39w+PTk6fPH/95YRCTT4ebcsltYWGx+hZOEjkP/A3IId+iJwaEMyzNKTLKNMtoN1FIg0Fx8+SXS+IpgbgKgZVRzPUajqbToyJKlWiXK42WEGEGIBL1SjnhIdhqzA+yUKumEYFRazCAuQtAO0tYUkVVreUi1iHRSZVWDLuSKD5kgEUHCIdBMMY4McSqsCUi4VSpVzIoVYH9horWHibSJ5i65CJ9NmGz4BF0N3BLKmkGE8QJjbWsb2679kudvTg50h+eRKwcPQWXMrUGk2aw37jagWraoq4SIU6gtlCIYP+s5lcOpWIKKytoRXjWgZAGGB5bbUkGLLqy3IXkkPXVCC8ykDgBZoWFGQ5WMClmq241R0kLW1YDRZ04n43dBXSgvHPZItNhaEMW5Igr9YFVYckG+vBJUjTaFF14s5920kHYLQ/aENmN2zzsirauua0YB4BqHgtBwXWIIPlcREa+5HoSqXBmgAbERqZRIEOqM5qfqelcaoeDochXFWjnqs0GJlpAGjj8qZiYP+8wMmiA+wU25DW573uZH28sbO51aHKQKFxI8Hoz0eT2RTdgNe3d/f3dseApSoPYwcmsiZauPkxHQ1H4xG8aLK9hy3WmEDajq4G043JBJfnZkCiUU19uLm3uXn57LrFclX42EpzLVPEtUBFpmswLmqyITTxdvDY9wl3RfHamHC0fNtrWbmVJkcQMFRUE0mwpXAudr7pMnaxSQbFS7qssq4oN1teyJuSEkQ+a0wi01WxAsBtFx8spJoqzVuhbcJNtAXf1c0Y0z7sw7vvDPATPMbCeSyhSwTocfgkRhtYHI3KwK0weQkat8SdOB4O2p1x1+KkfhRdXGO2kViyY9jDZKoPOT0w9B7k7rraMR27Y0tmGLo4PBDq/S6cz/SHA7ndMWjb7vmFGsFjM/i9EgfmBkHgBzXs7p00HW6pwrMWxCjD0UyitFpjqwVH5SFRrlGiBV9WdI9ZXCxwIowyT8L1Ih3e2apFMNdcmxUsWR+ELSebKRP1ph1pdUppK2pHol2a6Pfk07nEa3ZueSUrad2+Tcp0vbSM/c0Li4JAB5mFxVyhWpb1BsmnVhZz5XyB12tk5otVslpSXL6+lq+UywTVKK3k19LNRo1PLeQrRJOUF2DwueN2LseR2dXB/3iRhkfd5F067IbZlRJha5AoyKZa1OACdb9Y4/1myZPUUGbM7MpyPWIqSiXN9OxmP7dGN9nAcFuELlI9uU0tNoO2kfXW49Dw1Wjn5uWzm6ury/OT0/Ozk4fJcX5+8fD89PhgD4cwHDvbs2RlBgXa7ktsIT4Ph/3hDN3pdg9Ozq8fA5X56ptvf/jhhx9/82e///2/+ou//Hf/4Y9//ONf/+Uf/vzXP3739VdffXwL+HxzffHw5OjgYG97e3sD3W6i2IUsiMKGDqDUiRphtUZhpo5Ry7KTXg2YRIf7BycnR8fngMOPn94+e377/Pmzp0+eQkpwfYmtTIenhzvb4+HOBQWfVqrX3fLCwiLZbXfv+ytwkwTN2ZJ2jjDUJK7JaopPyzz86XAurlCjuoNl/zS4k7zYx6Jb3GRxbTcODCxnkOXxTte09OH5vnNyMHnYUqRKram0FCFse5ChJoMd21URIoAooLSjK6UFIcsF4mjL6c0ng7mvHRyePTp7eLC3PjerAqmOTAUARR1stlSlvTHBmNaG6dKKBmh9hB3XAIITVNeYYLie4zpZIpgL8AujVca8U04qhDiKi+bDVh9e3MPwZ+DurwqDJWmKUXVsEWz7QW+ObUrwBvABLVWSFAZlku6dhQS6M8QOoG7ihpTIWQ3HrQ7WQ4+mm1soRfnw6vGjm2d377/+4XfXDtxQmHQAlMBu1zcPLp++ennoQHYetzw/BsI73z29urm9Z8C9EM4xGU/WDw4TDdKr2xdvP8ybEpaA4cIKJ7bun3i7Czy40476wPPbuMecVLjZ6H6MVVim42gY2FQERVyz+Bk2+EQhpjHIAZAJG1wunU9nS/eFVUStRtA8vIekAgKrBor3YwkxX1lbyyLUFqu1YrGYAeQF+C2XyugmWEb7onoFvgKIityPYfD9cKm73YccBw0be3HoqEyNwDdoEBW0vybq1TrvIqBFcZDITCWcB70Y+6jHOcRlgd39/b29fVzp2cGl0rZt4BKe5vxUpeViH3BmdXl1OU3pENosI+EgkGohzcCVCoYkGZooAujDR8TFb2DgcPHFcq2SW1stF+CaecMSdIP3+hY8ZgWZjaIZusQ0GSzyl7GOyjIjFIeNkq1E7APudQb9wGYbdugZ1bUKJEcqcGfAEDiBqqEXBG4HAqICittYqoBrJd1uKx6O4hhytq7EyGbAOX7cg6fmwTB2LSdRoUxWO5F3N6slgnMHI9Rk64/7XQeNwjQv9sUGZ0a9UGUhseLLpToliRQwS5FHANYAY0VBU93pYAIjZDged+LRfIS0NW4Slm3AA5XUzgTy8AGKyEw3d3a2IGOcdHXZd2ys2BGdAQrRoKhpt9sbj6ZbkNzBHUe2aKj+eII7opAhDoZjzMfj4XQ43z3YDA2NbTQZhV7LVDgReLbYyK9kMjmCLBdwiYym4a7QDI+l3LZh2KZqeHatwnOlugIjzbAt14Ax4hkiL/MMqnrzsmVIVCZftlpUIfZduQXRKAQcnqi0zMn4gJzqSqHQ5FV8dA6AosM4viklTz/xDYUf2JAkYAqKOSHSWKzL5zgRpgWnaz/V6quYdxtwZajPh/3WKi/bcq3uD/TeXqSjjA+6XNo4wAy06zWTvkTHlHTVtyFddBRW69o/vStEExYXi1263qPtVqcViPkyS4RwH4F/Y/meZTl+YJsKhXICdZ9K5WpNzBQs3w6IteUiy1QDRQh0tUzKUehEQP+scoaqiarHCbqi4We1SXVV0gM5NLN1UdLadideWFjOVBQv5Ha2laDTdrFv2R2b21eNWjf2jCD22t6w58hmNVssZLP51WVC0Bl1dSWVLlULitkgmQfLX2RLhYJg1MhsKk2Ui5INAFys1wCAmeyDQqbAFCkp9SBTrHO0mp3sj8YHh42lAlkqzP/5PA2kVmgGhu61yHS5q1F66CgdJ6u5NV+384RilDMazzkSyaZSq9UNPi+RJaHfbrRKa4Vc3tJsL1spEa7k15e7M06i5db2zdvPX764uX4E9PLq0aPLh5fXjy6vrh89ugGOe/Pk6bMXr149u729xTos5KGP4UvwP0kX8MnR0dn58TGA9P7BwT72IB7s7WzOp1iWtYkgsbmzd3S0v3t0dJRoeezuH59e3DwG8Hx+9/bjV9/88Ms/+8Nf/vW//+N/+sf//L/813/8T//wn//+H/4e5aX/p7/5i9+i4hVg9eXZ0f7eeIBChL6bbF+RBEmT2F+SzZUSZaImA7mnrGMXIlDYYbe3eUwWDx7VVkWrlFpdpXqQYcf9OL6fdFi05MZRNKQ1vixIRLMtc5ZBaFeH8wEu2mDLo/0TY0lEC5JBrADfMnRM6wWs03H3gNv3uGB2ag6OettPpkK2TOYjn9cAdx0LpdITqUSAcTmRfBAYk19lxDLvcp1hHM2nw+2eOto4uTk+OXv+7OGgQmWbo0QcgZci02SsjXWsBG4FUacVdUfjpN9xCFnPoBdHIe6qeS6GYpEqlxt0FDiGIsGbQHhDcXeSqkVb8GpIddHpVzHkpDiJYxTUxITJAcjYct0eusnMRj10+nZUmMKJagTOYREZMEQwNAuOOokUBiJJtwWoPZsOEv3I04dXt09vX737+O0vfnkB2a0XtYN2jAx4vnV0cXn7+gToUwuBs3sPwJfXz94dIlnqe1EXNaNheByenl/ePH159+XnbR6V/U2s5FHlLjYkDoedAWZ5QIAD5Cc+uvJA4m2hErSZWK4B9KJMRLLyBVnOzzBtR/fi9k8W8Z5nsTDuV7MVGDF1oko1SIrXbcdG5QQLqAJEClNhiFIOxSlL1UqhgAbSSR10DcYYHtjTW6kRtXKlRkHcTPZ+LQwzQQTJyGyCsRpSpUS5EdJHgmyQtWa1QjGNOgQX7K9JWr7iHuSqkxnkPMA10E0eP//W3tHx4cHRyfHR/s7O7vZG7NqJ1aIfIIMAFhWq5Ux2dSW9WlZa7SD408r0vYug46A6FM83AfhJ7AqiKAoIMpZrYJ0WfIh6ncbQzGuOLPY6ehyZPAMMFlcPFGzkxfUZGXfezWjcD6ykpMdyIJuKom4vtNiaBrBQWs2RrCgLFKPz6OEN8T5hewDlAgCwbLVxwx6L8SFQjye93mjUV3hKgogUR9ghjIsELRixENFpQCiRZ7HMgIa5S9uDMbpMD+fjQaAqIkTeTt+kad1vOyxBUIZczFVrNEeLMNRhkqOxLtpqapoeB5jaQcLlBd0+IPhoEtKskuy387LfjdpdrHZr9caotg1Q6ko8bteJMsua7SDRaYIszgl7YTjq/jTJsUzCiDtwye040cP2sYU27HSm8MTGsdKgac7g1rI1TrVVQeFzuVIpVyxCICoUypVKnaxWaiRFNRm6TjTRhEGneZEpNhTDlDTsMvY1JgxMM/IB74Fta5zVcnKppao8HvDudGvoGRA4OH3iMKoMXN8SubWl1Qc1MQo80wgi23JE+D7s18dChvt6DUy40dkInklSo4NLWb4hou2BIOOCMorGSPcKO4oo64bAJf3YkFExvtbuu0ojJyT/qSb19BoCtJqkmDi4LF2Oh51I5Upky0E7YxyAQWDHvt7ySKmb4mZDVRfIQrOKIQlQHGYxFpR7tsLpgtqJvHKDymZKJNCZAMVo+LW1FclhXVVxTK1MKu2250ceXI7dITXTI0sSb5q+33aXlhdXzLapuVzbMYwAYDpbLqZr8IDiscX6ktYSDAlyxPiuRfFStbj0AO14aFtjvCJuzzxYWcnKoivIaeDC9UZBVZoM+2B5MVOqlEW91sinlquFHK8zxEqhXilDcl1bQCGOLCstP8hkKzQjEDAkGjXt34Zr1drq8H/spXVTshUv8rmeuCL3B1LU9lWbrKpWJnSCXE0m1lZoWXNMRV5aLdQ6KsEXCupwTHbM0spSXlFdd2kxRQ/tNpfvbWrx6cnRye7+wenx0TEw0sPdAwgEu/BnQnh3tlFHFhd597DJ6Oz87PzhJRxX1/D3h1fXNzcAy69ev3r58g1uGD979urtT2XLd6/fvL578fz51eUFwPkjwHVAd+CoF5eX52enx5Dv78Ppd4BGnV3AeR5fAtw/ffr46YtXb97COT58/c1333/3zacPn7/5/sff/P4P/+aPf/v3//t//7//5V/+n3/+v/77f/vf/vEf/+Pf/PVf/esfv/n85ZsXj053N+bjYSe0NQAgioBgWWdKK4vaeypT05sET5EAPJJr85IuaNq91oPmmnqUNRQIr4TflZuS0D9kudDwsewWu3IRboCtRIniDNb8+8kCDiq86brjO+OB2cPB2H0Yhs9Pd968cwlO552OJAHwRpGTaGE5TgjTTEX1PYFvGgDAjXyFJYHRAqZG8frQi0Z763tHty9ezWiq5PQsxwMw0Tq2Q0uT7a7fQsFgyBkGkMskGib4SbFedtQL/JaPWpYOKlGgcjOa1DUq6EZSqVTrjaw57c1xwRj7gEMg5bhtR9Z4hWNEXQtx2ToIE13R6bAbd9oOIhhMbOyOxU5XVeEH02F/NO4BrR0maNZCv/U46k4xs9reOzy9QG3J9x8/fv7++zPLtbCQqIWWsP3Z1vHF5YtPV5CBhLh63esO55vbh5e3L98fA+dImHTcnaCA4BEC8JM3bz583mgwDIppoM+eECGvTBahUS+z3/ppEziExMaDQOahDiVaAQNtR/di3LjHnqKfQdhNMPteQQSutmWLZCmdzhPNBgrxAkDRio/wjNtmoQ+jRuaJQjZdphpVCKHAygCCK8VyQnerpUoFq6lq9YQEE40GK6pmIuScXBEE+N5oMBiP4Daj4qeBVUkEvIxo1O/xUI16Cd8dwmMbjAZA/OeJkCgQt8Fwuj6fbe5B0np4dAwEeO9gb3OABdK4PdCC3AuGnBvKxTV0fchU9Xuh+2QlxsTVaURgVC2ROKrWIOoNeO8mxTQbFM2yNF5IrU4xvIHik2oQSno3tCMPoy+a/hkGBlcB5TzgH5CMhG0XvoS1h3BuT3esoB24Yl32Pam6tlyt00y1zrAMFuop2BWfLAlL6M+kmK37pnJsFYtHE7whEdEQbVuKWx7Ka+G2o21anuUIDEAYZLDwtHjsQuXc4TBpGB12IAVEQIxGI5eXVL/b1hiKdaRsngRmwsmmKrBiIqcKlyABC7Y0S7dDMzG2gCkHt9kkOHi+FNukeLvlwyzEu5W0EMDN91W2KXEs0WTrhIxldImPFkygyPEGsYAePU0Wnh+tBCHAAYy2oBv7EZzC8buD8bA/3W6TFZghDr+yWsa2ftlQ66VatZDPLKN36lo6k0mvZrPZQj6by66t5XPA2zhK4tm6qFo29ji3A6D5gUOXqVqlVCyh8Wi+WAVQaXRlofNypigIwCFrTMwyWScpWeE4olZLS66LRaC6ITMar0uCoGI3m5FIser6T6rgCfXFDNbxW53NUaiJoooKQrgmluzrYhyCKZb8FSIS7tqo2rBj2r7RbPKKlpAMNH3BPRlLV1SnM4ZZ3TZr/djzaGCAFraY3G9RQFByrL5c1rRUfX0XXaQIinb9TjeRrB1gR7ujCzSAISs5kDKVCxQd4NqUZbXc7Moi5HLwACxHrzYVyDOtTle3OF6XjU7I1SVg5+NO4K3kags1xXSs9sPIdSFKacv5TCoL2eluByWEfR0+oiIa7bFaJ0tEHWB2KbUIvJox0g++WM5ni2t1VjF5eWE1tVarQMAneH5hbSVTLQEAV8ni6kqtVOBVprGUKxfKNEutZFIL6WotzSwv5bNlhlJlos5ALjnx6Uo5Pfp/71Z0iLamGhulGbcYaB6lMUHLpeucVTK9TrYkpFdXSnqgwSxZWs2u4KrjalrsOI39jdIKFWmaE6TXskrMG41UxZDNs7v371++fvfy5d3rl7dPnt6+ePn89tnz+wNo7w2yYADP09OT4+PDfRQATgzO9vdQXmdrE0UJ91B7dmfn4Ojg8AxCycnZw4tLgFI47t599/WHL9+9e3N3lxRdvXxxi3qUt7dPXsLx6vWbd3dvELA/fvXxw6ePb9+8e/Pk9vYp0O7H14+ePH1yc5UofGBZ1unZxfWTZy9ewsvfAbS//Pj+07fffnjz5umTx38i4wjsx4dwgbsn10/4lUX+CUdarkSLzTItcCTDNwUDk8TE/UuHsCuvyka91SZgdtASZ4Y0DGC01ME8UsJ0UQW0TtpNPQfZH+5qhCEWDrdDZ7fvQWzxtWB7Z/T8KLr85sLU2pEfm3bb1WwT8j/cDoH47qBBCkdzLGXKWYnL5+rEfNiftXutcL4xUMPN9Unn6MXFMF+ttia+5MiaJMeuxQmdnWncb6M9OkDVTuKbhi0RqCEFEW7QanUgkw4D10LgS5aPsJwFQEmCT9BgSBWGPe6YJe4GGgpFwXSukBBhIHS63dCBKdJHTefdrfm0C/wAy80YLkmoRZZhmmQLvR6AfQJ1w0pdlNmI4pZthqP5bP0egG+evHr//t2Hb3710HRtHxEDdfAAog8ePn771VWI63oeYnBvsr59dP3s7uNJF0upEY+G69u7R8D/z68eP33z+v3ndSBxyN8ggSgxbgdgG/enExHMTrvXa+EWQnTvBwwADJ/btlTTMU0LOD32xOL6+8+SpmNcuoco0cM25pYlC+XlTJGkG1gKSgMDUyCxiSPPDSNXlzi6nlvNlCFtK5QIAE40g6zVgAYXgD1WfhI8qFWTstN6tUQ0AYFdAJy4lfR9AAADk50Oxqj5GRqYPlANeJ8qSVarFE0ZYTuEC0Hx0P5wMur2xrPpeAIH/DGeb6xP17f3T2BuHe9vARne3xx32oBH3aQyC9fRbUfIraAdUrqqJkIkySafnRxJoY+BAExTiXwAWavD+xJYFQnQ26xVaLUpmJYo6Fbo8lYIQxbVO5AlIlGRgYXqqAWm6SbcSZ0VsILYSnafdVt3YGzxBOf4SrO0nC9SjRIl1jlgzmj8yDGcCEAgY12yYoTx/YID3PR4NBsB4gHSGb4Reigrp7GsqMOUMxzTU5LqHtyFlnmga4LaGg/hybZbHd+SeU13W8Npz5A8szWdxbhzLWVKIksxgmaokEYD4oi8Cp/Z1OFibSuILdyjso1u3OvFfK4GuQ9Q/xplt4IWyltBltQZTqeT3ihQ6AZwwQbNVioCsFHXSmruLSsIe7MWLwrw4BgOcgK9Fbd7EYBv2O84XQAbPxxtwLMbz40CJDacxaZSBaLE4gaTUIVbXS0sp1ZTKbTGWnqwugpIvJzKwCNbTlW0coWFua/rtqPIqhXHHZtvB9RaNp9H5fFiYXUlX1laW6uo3OjEq6JWJmSHwIDVbLWcTRfTS9kCALvX1lQnchEXHVpUEu6edB8leuF4oBcpHvBXSJ797ngy6rjYco7bNPetezqK1miWqWoWfAXrF2XNc/otT1eMOskqaCOeFGlqiM7YYyfbkaSFXau6O7JbzUajIET3hJsXFEUwFH9Y4EKBKtjTANCfrFBKZDv3e8BYC6ZDGCnYKucaitNILVN1uw33GnLWYWExXanRMPQgr6jSatTpBnHQbABdbdYhY2Z51tRaXrxFNoQ67wmefNIlcN75Bhbuq51g0mFqrEA0Fx6kHiwuL+YtnTCJByvp5bXl1TXZlCWvlPpisZjJpjkm0PhgZSGVI6s5gyvS9IPUcpooFHit1ihnszBzRI1pLmcLmRLNVGrrLXf68FooLaSKRVLkGjynsZrOyLFaraxM/7/fp2xLI+JOR8n12EUHkliraASqVKPaIqu1V8rqWg6uwI802VojmgVHpcV8njP7VD9K12jSUnSfoCkzUlpiibZ5TlFFCUtJLNMJMMbi1hQ8vClSnIOj4yukp4+fPAFQBoi+u3uJOPrq9dt7eH769NHNo4uH1xdnD0+Oz04Pj04RME+SpebDva3NHWwR3t4/2N87xCz/6PBg7wD+dnRfr4xYfYqcGKD11fO37998+P677374xS9+8eNv/uwPiZ/h737361/+4ofvvvn686u+9/gAACAASURBVFefP3/6+PmHX//mz3//m1/+8hfffQC0fv0E1S9PT05ODvd3trc25hN0Bxn0/NZoqBULVHGtQHj06upK1t7xswvYvLGMlTUlIDrFbJ2i8qxeNS3KAoasiiHMPdE2ZBar9ZkmGp9TmHrTJLAmEjf2mqhdi19oUPVo6E4tlPJz/POt6+PO9ecfhBRuujeNtmPgQqGPHTmdwLIBKhS6ybINQ8qKcgGS5Ml0MOz1uj3Png8dr7O1cfH61WW6lOPnrmwpPrcmxJDl+uszCCqDDkSAXrL1jvaDifcRwFKn0+r0QtMOk80WA5stZbRPbMJFEvVavdh0As+QA11F+WkIeMiJWJZALzqYZpoUuGYUmi7ERwh+vtse9BzUrkADCVxBk9Cqu4NFGa2o3YkRcLCtsD/sOIrRHo2xNu/o9OEVrkC/vXv/3e8vgVJ5Aa7XQeYRT6ZbZ7fv3h27MB1NC+YiXPNo9+HNk7sPxzF6EAyBBAKRnu7tHxyf3zx7dXf38fsDQZE5luV4nqXlaNCOuy2vjULQvU477HYcuFTgrGi67Lm2i8hrqei6rAlc4s2naJr6swhVlrtoD9BLbA9boW9xxWwu32RJeHZoi9BUgnZim+aaElMvobRCmSgWUWqSJJD0Vivlyk9Lz+jtADlyEWWga1UgmSTZFGXd7wZ4V6LAbXf6IzQpGU1mwzj2RQDgJjaH4GIwdgQA2LeAmw1hVk3Hg8FwMp2gkdUEqyZQSGJr/xhmw/HJ8fZsA5LbvWF7gr1XvQjlvb0QLpLNAf2FeF42fdu1dBRLNC0dtavgl4ttckBcOaqR6GE2GthrAgBcw2ItQuBrjCSIuutGmuC1IVXXkxZmzdRdB8YGj5XgqM5iCIbAmA6QHiyZhMhoKqrlBhZXFW1Tk6qpTJZkGnWKhsidtHoK2A8KcZoRUR8k6MM9j4E4xmE0n8wnU4cgaAOTJEnXJQYmk8DyaPGUADCHjsgQ4FmG5bR4GIdYkwbhnmKcVmfQtWXVDYebWz0gOm5EVUWxQSk2llKgQjm8HzZ9Y6EGtnR5XgBD2XLG/dH6QKrk0ewQHnPTCdHdOBFi6882Nzc2NodaU/UsUxZltqHi2khSPYx9bsP5rO859214pqz4/SGw8k5iVDJoJyULQ3heo1E/MmCk6SpbxS12BkBVa9aaDeCya2jakVpeTi19sbKyuJIFFoRC4iuZYi7bpEVbcyAv2Q0ciLBm0+1mFxcePHiwsLD4xRdL1lAjGZEf7k6BHogGPFTfYeR1fnEhs/BgZeGLVOqLpbVCIQtvBKOqSdIclzQTsYIicSKu92LuqaLFJQQkrCukHbM1j9q219Uo4Pk2cE5bR6WvRC7zpx2MqItDK3DhiZkhn26QopOolKOgJfZcSqIpak7I0x7hCc15JwrFNbpe8jiZhefgqrjQbXIayekSr4ld1/WWahXS1Bn2vorEFl2Pya1Kq5IQ8EKd4NdKlqCaQSDpvqFqLC/Xad1wFA9ikhAHfXgM0tLKYknu2N7+rE/KLkz6VnY5tcgbsnPQJ4DHAq5Wc8VqtZrJCi5L241KHXByOZtfVHyzLq0+WFjKk9lKibPthln6IrUIoT/DMprDaiuQ6FDluioybDOVTufIWpGXCSa1vNSsrCk8YH8BEvAmQ3J9V7f58Kr14EE1U5cbnEFziq1qrThKV1bO/uNGO6Bb1qTrKmxALbYGFc2sqlObJyXHZbRWqSaniquLom2rYqR4hqoapFFyXGPI9OwsL5KOYNqlfMmS69LJ5/c3F5fAHE+ODvYRv1DZKukmCFCbDmuFTStZ3cCqz6Ti1NCTUiaYMCHWziaiSOvbiSrw0fnFxdWTm8c3j+Dn9c0V/HF9fXP76NHNT9KT15fnp8BkAS6PAXlRbxIB+OL08ADQc3uGniajpA5vCLFsvrODulv7B0CmITy/fv0h6Q7+/rvf/vrHX/zy9//ub//wF3/113/zN3/9l3/+219+//n9m1fPbh6enuJO9N4OfJLZ9OzwZE9fXCh1zMW1zLLVHtUWltPLKw8WUksLC6gMvLr4oJYRpJygNOmsxgp2x6EF1xHcBvZa5jPoIYeeweViqVStoWotHBDXmg2tXONLna435XxIbG3Xe3z8yL9896utzNLiEiEFbfQQxKpvtBfzHR17eoAB86SolBt0fqGwLG34/W7kdc0ong2m8+3ji7u7o1o23+gbACKesFZvKaLV293u9IL+ABUzRvPtzXU/EVoFZgLBAkKUDyEGJk2yDgoPxDMNx7VsBfgQy9GsmihdGr6muj7kvRwvcE2AF4BjQ1KwlsPG00UQdSSRQ1cfDuK70KznS0SlXC/nqFqlyoQhUH/Xi+J+dzyfDHCTDxcag87GLiLnw+tHT65vXrx99+Hr357KFuTUbceDee13JuP904uXd/uhFTgWQKDfduLx+OjuzZvPJ0Hv/6fqLfwcSY9tQW8XSCWWUimlkpk5U8wlFUNXdVdzT+Mw2B7TtX3t++57C+/f3ohPbe9vNdNUoJIS4sQJOGc5XBDQ2p6c3d4/ffby3edvvv3+17/caCZk4abtYCUNMGg+ngwm82E6nMFByAHx4H0mAMBfCtBREno7KUgL8nzXIs3r32ALAQUxxzNcnIaErJ+Geqdea4mQWckSAWDIT7MhfNwzpB5VK1WobodiGbJJ2e5Q2Muju9j3ZbCaD6SSOGN1ySo8D78kxQyHSU6Gq3Ki1IkXLvpGTDITZRZ5tFn6NwAPCQCjMPFysdqQGTqgy9gB325QU+zuHlNRSFevbq8vzrbTMZzcDAX2c7JOGQi1cq1aK5XbtqfqMiqiGpoV7eQyPAzYvmerkq4RcwiZPCB5VAwAPUXtNBhZMdCs1tSSfpJHwIDJJpoXw19NDaDYx8arZwuiAQQrdZAXo12hbjh+EuqsHqapz5ULNUHn2gxEdAuxF6e/DGTAqoFdnRRLDUOU0QS2CMdi7jC8ESUBys/ZOjJeEXvFFrHVJmYW6McJf0MFjjHKqLqyIjMAwIPYUZ3hElXAhzhNZ7KMAC8NTi/Zi9U0dPtFk09gduhGmQRRHjs+/NTt6czXLWxLYIkVyx94GYxH49mKKEavcxtSAtRkdcxksyQScrPZcDIZz46P5+M0AmoItNKwcjQPwiwON+9G5ByPJ+RqmmQRsF4La+ecYKD/FM+g7xpdrRweHhZxFeywfHR4VCoWi5Vy4bDcoqulruiNxsdPTtKR48Tp0BOieW2fGGahZ2VZULuMxHemA19r2oNQdaLUE8ytcLBf3N/f3zvcR8eiYrUAFwFSCPyFq+lEjwuCFMrEoPgk1WhRtTKNJXXfyUfTLAuSkdWsIc9uNFo7ZUq4rLvYScEuNap2ChNv2e9nHsNRQo+3XAMrDLhj5LlpEOhBkshS/6DIOsswVNRGh+vkfQ+9NEPPgXOj9ph6UxdyeXMxEljO6kLevFvRg5MTQEQqN7QDPrOU0BvG9U4e26g155hMz82XXC2z4CRacpfhgQcbQa5TPdZ+Io/vb2UIAY4PP161HNH27GyJMjuKbao1TFwgemupKnrNI7g1mo02VbLDkHeqe8VSp1NpdtQoFOLWo0K5Va2WFdkJRL98VKixrQ6OMQiFcqnK1Jqm1ePQAVzqaQ7PHzXbDUpQ+K4uAvHSRxv6oFWhNUHxDV/w1Xgu93sUNZeZQKMD424Zq6IbMLHfYFMOgVJSUTIirvf48uFBmfP7tuD0TKGRuKzOdqTBnJ2fe6ocDIGmeIo5HCf58eXpyeWGOMtdXT8FWLy9vbl5+Pfj6VOsjD3+Mj0Fn7u+vrq6PEZDwtVyOUWfK7J4lsZ4wGM/jCDJArqXomn7dExM1yEIQs6/OTk9OyGUCZ/n7umz569Re+PdV+8+fPrxh59+/+e//v0f//jPvxMZrF9++e0vP//43bc41fzs6f3dBc5bQ7iC8AVRa45/LlCT+Ob66ubu4SXpKyPnhpeLi8C314DaN7e3t/DWnjw+OX+4mXU7rXKwvLILB0cH5RLasFdqjXq13Sj1yppRYTuM3rRZRotCQ7ctJ6aLtTLRO0ApfkhsD/YOvniz76Ore6H4qFTaE06iWYA7C9pg0r988zJ99+1fn2rVZtvw0RImQTkMJHMKyprwIpARgedMoyuYTKu+L2NFNzRDE5X/htP11fX9wzlXrbTSNeRHsXBIZ7bSU87uiPjEYNgfb3A1DMikGSYhEMDA35k1RKnrfdmrioAUppGNA5iG5XlxlkWoDeFnaH9jGzb6wEL84nnZ0RW4pJN8NIyj+HQWmWYwmGeeAexCFmWmA0DD9ros1VOMyPWIkYRpA6ADEM6nQDkglR6uT2+fPXv67M2Hr7//5fe//9N//Mf/+hhbdgoUDUuk/eny7M2bqydf31sxJAxAoSAlmSwHq2df/fK3d+Ph8vgMs731yeXNzf2z1+8/fXz3/Tc//3qhWYHue4riAdEYQHgEyJ3NgbaNBiPclh3gVFI/Qqu+ZJiiDXAQe4giAAKTfkiGwH+D8nxkKhkNDxcLoMBwVNhGlVY0XOQW0QrNSvsppEmWwtGNSr3e7LBMSyTLPVQLxY6A/HZwBIvBSaw21UL+i2a+OMUlYB4mm36cE/2MPs7/ws9ZouzndNbH5RJZEshaPAKwaGWj4YRUldZLlKjCNXQU1EZY2KyPUYcTUtDbO7gLb28vz07PRk6vp5q4NYJEJYw8vlaulMvVWtvUexxKYYk4POsS20KHpMU4zK+Qy03B9SAJ8wxJ5URNFevlVo9T3DiD4IpSKZEHFNh2fbiKiPuVDSmkhYuzelfyUKgDnkKQVOCnOPAUBKZkRVnq9Kq1jqxQdU4PPANlXC3Ae7IVpJuAh24ywVbJeACUF+7//iwRWqKXQ+YHER2lui0DbR91GyiwI4uaoZEesIw/Y7widphp7CisCBQp1ER3vl1PU7Qy8V04XWxPB2qH6+0o6mkRtw7LhfcQw3uIvWiUO04+nixWkKzFWArCBxxArJdkIxxKmC+X2+3pMsHuNi7YQXY7HBBBlNFgPMbV5dl2gCpermMqej4b9bGkjgA9nw6RbQyJciskn/1hQmTPHNsLXTvwZJ6hOZHGTWxiAX10VC4eHhUO8LfDKsvRdJ3R08l4KXWbFt6V00hO17X9oxL6XZYq9aPi3t5R6bDAAPJ2sKdpwhkx7YEr8nAmkO1CKtVuUk0Az3aH5Tro0AaXaqfHUFS32/6X+Abb6TAMpyeRl+XWZgURGNh2KDQ6iM1NrOFgU4Vq1smjVmOqjZ5n+v56lgd0gW03OJGqVGrESaQKWF+pNmg/tFnDKYtGcp7Y0iDsiVSgVBpNmqlRFE9xTap2dNiWnJqzyM2ubHOqk6JLJ9bhenAD2AXGaVWjntdX9NohhYowKCPnAOPsKjKry6HmeUZX0XFBK3LgfTVbw/j2Sc8WhThxLF8CJFZZQcxioMGhzrSYChznUrnUzTJdckpAp9o9mm43bScUvTpwLKZdq3J65EpR89H+Yb3eKimKCwhaOyrWOaCnGiuwewDgDE3pZq97VGVaVMns83yh0a43OEWAEGjypu7m8kG92VNVQxENLg9HXn2uHbYulNARjYyabnLNlN2OJtepFHMRT1JtIXTiTmQ7dNPhPMON40KJ4j1dsnKazfpiZDRoPkklPn75+tOHT19/fv/y+cu3L1/uuqdYNr67v8MpZmzjPr2/R6p6d/fw8EUag+hNXlzeA8YBXu8WJ+7un6BxwpOngNfwr5vHd9dPsKf38Oz5buYZMf0KW8Ynx+vlbDIcwM1J9tGw8IOt+uWE5Kfbk5vHT569fPvh00+//O7XP8LjH//8LzQU/h//83/885+Azf/x57/8x9//8V//47//+Y///Ouf4fPf/fDzLz9+fv1A1DfgJZ2dn5+uIaldYNzFiRicwQGaldtyOgWueJ61K5Au1QgAV+u1Ur1SFpq2LSj1tl7xZAEXOyGweRF9hBIMxWKphIoHjWoFlyrhUS4dwQ1WO6of1B8Vj0+jmRPHdiyk2+HizV3+8dvffd+vVUpC1PedJNYhPsbY2QocDc2OJNmUdFdiWIHS9RpgYD7te4E9nGtmGI6u7p9982DXRIgpUeKYfLXnmipDHb+eAuuEVH40PX98sQ4UNc6cJO9PZxA0Ij/yVT30gihANcQBHttRYgMtgfcQ6OjPh3uaihsi+mpIGlDHHn4lUThIR+P5YhyjVAXZ10lHKXaPgWQIXVYSeCBaoguRB78Cm0WAwsQviEevP7i/VDcdj4ej2fLs2fv3X717+/LjSa/DiyJ8layS5HV+ef3k3Y0OdFGHHw0UazhJBuc310/Xhp5l/nh1eff4ZBT2z15/eP/5d3/749/+7/91p0jIgPEtmDaW/obj0QwiJVpGDFKiFAjRPQ2xlobrhgH2/oiHohMgAAMh036Dyi+4Q4IghyCMw8kWADDc5gSYRARg4NGJb4jdZq1SpjkE2w7H0G1cO+oQxG216s02kYTutlvk0dxJW3E7ZJX1mKhT5ylWgpACr5HWzvuATtgJELEKCo8vADydzmfLNVpYQWKwQi2Y+WK1PTmGHOTk/OYxOgbiOtLV+fnlJuiUGnTXj4mxAYCCyVQh4pTrqDkMmQLNywqKGpIBfdQXxTUqSK7Q/olDk0tSgObYHnZKOLFTa3V6khUkpun0+0k/RqFP4vyLEhk7ZyTL9CyJ5p3AjUIZyZGM1WVgp7oDaZkbRbbAMIJiSs2WjEu0AJsOEbBUgcAaOwBGHc3JMAIsD23PSnW6JgLZdADfvS9YDXmJBtiZeirguy6bBloLqgYAMNyv0/nxIjE1eGuDUWqb8XiceIBEgaXJhiVLXuxYO+luHaUXcd4B3r+P2hJ+kE36jgX5RDJcLHIHgRoRP0m/+PBBwpiP0EDkbBk5kLNBPqAbPtlSxS11spvYH082KSTNgPEyKyeTnGiYkyIfGh2jFED6r+GjKIzJhn/ej6NBpnW7NMO1IVIgAhMQPkTsBR68XxUdqSnQvD/s+66kSiFqE+WOmB639uvwhcWDg2K5elSoVA+POs4w8VRLDyFhGEKkHGNdBZjHCiIAZAHLzZwkbuvteoULUqgoNBvjsDkZshwNh9N8sJgnNhxfeLWX83wGrzWBay/DTYwwDnbXU+Bh/RmrzLafK8th05tuI7VRKTElzpQFRZd1HTtRKDikSwB5jSxRE0FbhXAujRrPpxoko5AAAPFvdJrVQqHSNG1WyYa2zkHqF9qoWUPh6GK3VRMO6mrvyJL6ESPyNS52cWkaXRBrpZogKGyaQSqsVyWpw4i0l/Z6DVqdXDyzeVlUdLvXZtCA+Gj/oKDwkq+GenGvXKw1Gp12TcoyTXLLe4UCzUFiwnpmINm1vcNat0NVFDMwRLt9WD6s1OgjSfGAAVeLxQYAsK1DPrf36FGZa9X04Xhx8upGr3Tg2hIOCACrigEXtwrxO+6XqkD5JVcXe3y2GEjlWCs1Z+6M1bXAOb6amK5qFGWm2LBDe5Vbgu+3LS+U+/FYUxai7uimh/qxc1/iQykYhV7cOawclkxTik6wjjhdrE8uLs8vLi7JgwDv48cIu/h4CqBK9oCJ6eDLly9foxAVEE60A4Z8HYAa8vZrXGG8JhvCt5dXN9e3d9cXZ2c4NH16jobBJ0Dctqen55fEEhwo6/2THbA/Aby+B5h/9uK7b7797puPX7198fzp48uTzTExD4DUc1eORoF2lFy6ucVEAV7Ay6dPMFxdXV9d4/jsixeQIDwABX7Y2RXfP7n+UoI+3m6XKJw8MxmagTxREMpHFSCyxeLOmK4IbLZXU3qSXqPVfdtTXEfRDcXwE4FIGDTqpNADkEqoMIoPEU/2crHcPCot7ueDERA7LdXV7XD7+HTw6fvv/rHpNOlguh4PJkPfNImusW2pPC+JQHu7LdWVFJVvG5mhOnKcOgbm7eMstv3p+gKOrMyZfLvfN8VuXYBEXOzMXkwneC/CLXiy2lzkBqupqoNDFWHsGXaaBzjUkKOBMGA+WhLYugUJW5b7mGjiDJlhwSWFTnhE2wpwEL4uG41XaEI4Ar7aJxJOaYZCCVkeu4Ygcbwq9IBRWVEKHwsA5rCqtJrjIlC/P8KSxnw0xsI3oONoslxOsMl2uXXN0DFJ3wKHCWbD+cnZ3VUyIBYT/fF8PD/eXNw/fvXqZuClGVzfs83JegLJxGJz/fTZk7cffvzm1DVM4PC+q6m2jZtPQ9TMgvc/Hs7HZCQYkjegwdgcRdtcVJrEITnL8uMAS6uGpgIDJgC8RIkwSDLmqCdmMfVaV1ElWeSQwAoG8EpbYekm5Pl1CJ8NoBK7vV8gGYDACLgUWT5ieiyyDbrVIB/rcgLKMAuSrHgxBuQ8BnaEvRhAV+zxZmQlBHueiPU7AEa/9Ml8tkLFDQicAMQYQY+3pyer+fIERy1wyf78GvJIuEmmYumoWas5cEo8B/sYCg0ZY6VWrbYUke4xvGZZAJSO/2VNzrTRTtB1VOBKHEI+z/bQh7EnYRlcZGrtnogCgrrtDfqAiQhkdkicO+AqQij2URGebhhAigOFZUUU2NBlEUKwht5JfuzwbcE1bM9ggKZBliZrlmPrpB4MDBjVdLxs2gcqGaGhWKBqsid1WkqMTw8nBocCVeICrJiOkwSGDACP3rhYj9QhCYVEfLHejDyAezNerGchJImDNPZNDVs3WLwJI/ScIsx2txnoYwkIhSjCAOXf0SEqSgbzZd/5otTkZ2hK2ycInPTR1fp4O3JdwB3bABId4mdyvKBwbDDJISI6KvBygZN5FV24ybg5djOIopSPTXe0oh5P4FlRaBOu/lHen/WVFsPA9VEHCowVZVQkKxTLR8UqpPAdTe3W2k3agaOuVgEInHQ4GQVGNKruo7AodoCLh/tHrWahbg4DXRmMlueAsVsMeuvzs83J9vjkZLterk+3yyuiaI0OrmiGc35xfbY9Q0oEARwJ0dXN5vzJeWhGjttPt5ssvYQUr5+Mpyfbs/OT09MN/EKDxTNU+DqFb7u9H7dNQ7uYLn29bRw0eVrsb4/hRKx3Y56T2UAzGLrLjyDXSiaOPVRCxeC7aT/tRwEqpo1yr7pffVShTXfupk3NAeQ2fYXomgK8wrE0OvtUtQ1Xm2WOs3YjG7Bdttftsm2IvyVx69uzuyebqK1JOA4OAQ8ogKKP++LClGUnYinxqFU4bJXKNV8OE8EU9/YLj5qA4VRNclJF8Br7pWKH73XaSmAFit3YP6xBclDVHKCdZq/WbbTqDWDAfiw5R3sHtV6zbeqCJAAAV4QOG6J5cxZ9nNTkXKULLbreFDTN8ICkJFoSrqhCtaM6XanaavdXrlx39Vo9sk+AJzn6bDXTtNDb16r7RVFn8sTnByGlDgI58EyG66MwXzCtl2l/bBvJeHSyyvsnty9f3726vdu8/+PvP79+cXd5QSZriebLdrsiefkKYwQR2CCqD9udXvPpGQ4775B6V5FGLYx78ucz9JCEx5sXr94CgX3/9efP33737Xc/4JDzt998/vTp8+fPH99/9fbTh7cvngJ23t3gSNbNHYL8w8PL169RLPr9u3ff//DjTz/99PMvf/nTH//w6x/++Cf4+88/oczz1x/fvX7x8PSejG3d3WM28OrV6zfP7m/OAd9XuBuLJSw0vcUaEVEDGI9GOIszALgYjDeL6WI4isZpPoW7muybu2SZQXY7lnTULrb0fdWmDVMxTBW4Qq90eFCA5HR/D7XSS4WDQmF/v0AQ+Ag1hgpH++EzYGUDP+d925GG4+PLVfrhm+/++43lj/qRafipr9hkcxhOAwYfXeZETXBspkeLXK3bZgZK4jICKVIDTxF1M94u7+VyhyoogSPUSpwfAs9MTkNBA+KKmGuEx/MpoDYESUMVeYmmexJW9UwsCEKEQ7lhtAiF5/QGiRvhcI0HgOxpPEr9yjsVIcMIAsMHhBoCLyTix4DfCJADIlASuhbkwKLCs4aImmHIjgFjIHeOgAigprVnRxm+9zHWNS5u7+4u7958/+OnNy/f/vYJMP8J6r7j0PTqFP3h3r47C1EaD37IdDCYrM+vL68evrrP4cAMIf4NJovV+ckaEsHT9cX57cv3r6aihaoagaPY2MMYYRsDB5LSEVl+Jho/UYgjWAkKKngE7x1UpMJBBdQH+E2SDcn0DE5uIYijbLRB1+odYnTEAQQLkhn6pthp1avlKtr/1hqdbrtNUQi+2AFGT+A2Dj33kERij4+hKQq+vEExXBc+zAk8pzkJrqilGI8B8eGmOd6spgkAMPFhIq1YVC/FNSR0aFysV7MJjkuvUYDk+Jg4oM5WpydnqMRxdXmG+8A3l2f9dqFC1ZpuiiZFwMkcvVurVlBkssKxVK+HloYe0bl2UJrcJgAMlNAyZHitLDy63S6DC7YMB2Bcq7Z6CmZihgsBBxIuXPG2oxQ9MqLIdaIEu8I6W2fgeWKNUbD8bBoyJ6DmlxMFfhKrzTKDSoVKj0f1bF1WcT9UI4NUAMBocJlNB+PZ0OYE2/V1zbBlsWfHgYX9TDIeaKC8CsKtF0UO/gxcA8alVcNBAF6uN/PQ9KMwn28XmYdefceLVIWkqMEwsml6PjEBgEzBJVLEIfEH22mVDAYIoMMEJWJ2ph2oqp31s4Tw1hGOYY2xArHqB+kAHR59xFLSPsNFtD7ZnZpmjoUvVXcsNxskERm0x3F7tDnyUZkizolI3hCYJQqHDlESapoprKKgdwc2WomAWoNq1lvwP1Vv9brA9CB3klzblDsuPH+WhmPfCRKqWAKkBi5QhPy+1KSrTZUr1GvNAlWoVeoNFFJBQ+pWl5U1F+eKdUgQiakgjUki5oIsXKkdojiOtWeGQdUXXjcVyc+T49F0Ow+T+TSPbXQat2wHV3ot/BVGJPtKvFmcp8rJ8WYca4fqfqndYmNcbiADDesN/G1li1isVmxfHRynxkzyeh1Nnp1vr8433c2jSwAAIABJREFUt9vl7PLsTCyUDpoq37/Ihm12qPORkG62x2uCJVOAlvio0pJ5uLIsUecbbhhn8SgdTFOxJ7KTmZ0/zJnAavcEU2EYvoYd7+KBKvsjXWUcp7JfLVDVo+ZRuZ3IsSd48qP9g8MO12ZawLr7Cuc194uFLs+0m5qr+bJe39+rU1SvKkHaqITMYalENerlHQAX9/ZqPYqyDMihIaAfdZtahhNNSrI8cwWH5g5qVBUYsGxFgeInXsr2pWKDB/K8mU/aXhiylB8cNrZDb7+Uxt3F1dRWM2tfqh3t9TS3nwVsZjeM00TwndrhkeBGtsQHVK3CnRpUr9mA7EQ0s9U8XyzOVhfLxeL8+vziFiWWcdAJ8ifgsQRfryA9ukAj6lPCYLdblHfEB0q34eIEtruwkDZfECObMyy+YY/3/OT88vzyFiLJ1S2pTT999hwZK7Gr++V3v/+ePH744as3r189fwoM+B6/5MWrx3cPL9+8+eo9ylw+e/r06eN79BV+8+Y92i4BcL/78Omb7374+be/+93vf/3jn//6t7/+7e//+Oc//v5X+PPvf//LH377/befP7x78/I59oEfX50ek6wBwtt2ATFv3O9P56tRfzoeD2aQs+aDjJRr+qhB0Y/cuiYXK3tFva6YPSBIiibzo7GvW45PilEYQLku3e1QTQoleItAhoE4F9sn6IbgZIkdCLbnLPPrpf30zc9/+7MLkU4RDCAktkqkcm1XRGF8RUQfWc8BDKBUQPD2tBP2HUekqU6XEsxotLx5aqV0Q+RKTUUTqJrg5DJEqTDPdFyXguCnKqYHdDGZzIaYQ0QQn3G7E7Bd4GWZZ4n6EtyhLF3nQk81sU+Gms/Y4gPkxSFh1LJXNVsLgIvOiWBcCOwRwzdkbVmeRSg+guPSqop6tMCPB5FvegQGTF4xCbcNIaoNUfRgc7I5Pnv88PLJk9cfPn7948ffvxv5dhKmKBYxnM02i7Nnbz59+853Y9SfwKmr49PLu4ev3r69nwQZlm1xWWg6WF9dnp5cP3l8++zt998e4xQRJhy2iQtIwIDHcO6mwz7u5qB4GSAHkt4gAdqPI8Em8S4kS6270vVv0nyEg9MzCJbwg+c44BMZnXqtIyoSChfzQF9NVxeYFvDKcqNLo40BwC/uTrM9ulVpYsu32+lhVENJjR7RNxe77Wa12qRwGg+ONctAhpJCRAYuNN5NI0LQWo4TA/KcL+1YstAsu0MkFLPlfL2aTpabzWqzJTcTgvBittziGhKhwDePb29vL08SqlStN3pB6BOTJyuyuSZkCrV6qcLyXQB00w5804ZPmztNIpsoHwDEKgSAeQ59kliuw6N7E4sGjDIaKNpRgu5cHn6lA2lMDqc4tB2ifqzz7ZaO3X6B/zJkrIuKwAmyB+wPkvvqUa0DzF7oSajUj/pNRKBBN4ibowmUPIETNIqVrpqjxjaQXMg3I3QcjnE0xUW3RzKKZUdx7AIAkwI2HibDHcGdCjFkhIvC6WJznLteOl6fny8So1c/KlRqDN5DOE6h7iDY+Zc8DtmDJRM/YZKHAJZwTaQ7S6Ak7idJ3k/THDeB8TECZMaLE7MmILZEqAVX/MkyNy5eo3xj1k++OBvvrIUwLU12QLxrA4/gOhwMcP4RgXgwHnh+AOCmk4wLx/dlXpF5SSJmUwLTbHZopi1DAiIyBlA/0w0dybKBpjp+gCqRUWwDPPqOHQB3cjQpcUxBxIU6UuDXzACnQCaQvC14SKpwxJ1cjzykWdgRwSl9Ct2nm416p1XtBrGsJPFgnG9WnVpTSeD1VUrVWoX8j43dcrGKPTWE/1pT48rA6GYOXVUPCpQod+u1SgFnumoNyADafL1Sqh9JPduvKvO8ynF9jrK0AJXngsQfwjGZmPuPHh0oTaMPkEUFVmegxyc7ynYKgHCyddsV3elpQazVG2LVsDe3l0Dl+vWDg3LNNPo3Y8lyDZ53z1bDRdZplI7Kxa4VuOOqqgb6wd7eo8MKBbkNn5tjVUr0R/v75TZL0XXKU4cAwPW9QgFSYqqmGaonq81iAbKWXq3nG64StIHo1pvNsqZ5Ae+U9g4aXJu2DJplDwr7RbpnRYYdj8xwOHOUsCMc1JqVBi8LkNWKnpdqNS+uNBiNk+BOCK4Sg6GUpN6eMbzAioaY5pPMDLwCTVX3KSVaDXw+sErGJhU9p1wqNhQnmo5GVKkornxrdnl69/zh9fv3nz+/fvnx6c3l9nSF7jaLGfrLoaw+estdkKLx6S1iJzzuHuN/jx8/IdYISFpxbJmYAl+hNsfJyfYYDXrWy8VOdmg4mQyG0wmRTsCp1fF0iirCkPyj0Nx4Q0ofZ2cQZBB6Xzx78fLV67fvP3zzzbff//D9j7/8/tc//OEPv/76h7/+7T9xIOtv/4lDWb/+8iMS6Hdv0TDpDZLfF6gFjRD+9uVT1A/Cl4oa1S/u7smmMnaysTZ+fXkK6cEW8oUxEC2gUbPpCDjUOBtmZJU0BWgeJl3PrNWLeyqjWBrH4W3DeWkAnG0QYRaNN+B0CCgwxDt2TApPs2E/XZ/l69FEH5q5x9ojfRNtTtTVk49//q85nOKOhPMrdhS46PQO0OVhE0zRVdeWuHaz6ah0s5O3pek042kabibDSZYXL58Gg26TFqS2CC+iCxxN53SBjs5Hk0GWp+lwMR0v1+ertD+CJH8MbCOHFAIO/DhH4S5EVk0FHO4x7VLdjTU0tuV7PM9DDg0RgZd0IpUjcawumbhBExP/JCxbezYK9ANdQCE+z0R4CvvjUYhWu7ivAsQoxmCRZPDlXgo/LwFwHM2PjzdnN/fnZ+fX95Br3b/+/PntcpLOVovJbHN2+nC+uby5evL+fj3MkslmNT+GnPrs8v7h9ecfPt309SnuIa1PL+GCevzi9bObr169ff7605v3Y0uyPEP3TezAjWYT4I8juH7mCMcoX5+nkH2gvUoYZWlgm8QTCeMxAWBDJ0Ic2GvF718sZ6NhGgcm06h2RDwmAlYcBEXjqW6DlHVZMmCFDd9uD+6tDgFgtCxv7QQoycCoYliuzOM2UptGrUlGACKteXE+wh1lkoxuTzcn2/kowVIpsftRiTwRMQjE7t16drzFvd/NMbZ+l2tkwBuU4lhvz69Rlubu8fUFHLHTuF0pHzUl3PB0UDTQN3utZqPZadXqoio7juLBWQoDUvCw0V7DJnIMnm9rBPeReKO+BSWKHMNopirxooZTzwAaWToIXN8xnSQJEYCBouLCg6/QrY4TDf2eaLCmQxykgMQChGDHIjB79XKlQrOqLuk2QCAOvdnOF1dBZSeMHY/6WWQxlDYFOmPlaLpghx65WizThUSJaLzoqg1XHQKwKpILFpDVHqIh9WKRuWFgJpvNLLTj8XxzvUzhLbG1UqHaZSDt6ZKmuihJBLdJfgPPoMmSDhesqRJtacuG3whKQ8bqoCYFEOZdz9jzYsdFi8cwQq8CLIT9W2c2zXNAbODJQ7i7cLAOMbmf7Jq+iLZoUoUz3tjLn6LWF7qEAvpO0MuzH+OOdZhCHoCL2Q5WV3A+y7RwJhB4v616cJwlxjWAfEJKYsC/ggxnKMn0RX+UA4Hv59F4kIznw3yUz9fDfAyX+2iAQJ3m02PgEMPjKRbN8wF86RAdSrMRfHCGfqSobgqpbD6Y5Qow5n60GeQTXuXortEfYiKSANAHxEEE+f8XNXyXdz27Kw5WK6Y0WdT3KUaUJVFSJRQA6LFCr8OWCsXGXln21U46iVJBHIqcJ9uNarHcKNfKlaNSndmrHDyifP3SH/oVLqPC2GnUG8RCj6baXb0h0CYapzj59vG6O04yL0izxcS2XMGI1pvjruqmCtOzgccN51m/i7tbmROOUo2J1H3sFrZYhqUZSxxqoi8/qh4ctgS612JCEQDYqT4qlnoc02kAaoaaTlfLvW6DrdO+4soatXdUgPSzrOquyzo1ZMAtytB4gds/PKxwphX6sZNYeZyvDTtgi812nRI1yZcNNfIXvYKUlyo9Xwn4bXcwNEJe4qJWyaUgVpRtT92M+rq7cVr1/aMK1RgnqREFRSkNZS/kNVlQnWAcJJavBpHBB88AlJ4Dz3z3zS9//q8//O//63//n//8j9/+/N1XrwDJcLrq/AR1ycljTszfcGhkTiZLjs/OLi7Rl+j2S3v45YudSvTLV6+wNfzqGalBP3v+9OmL53d3z54BCGJb9vn9U7QfRJU9bMqenKyW88kgRYEKuEzhviC+zZB0ArCRNbvleovqhrc40/Xs5RsckP76m6+//vz9Dz/99OOPP//ye0DoP/7xT3/+E4AyPH747rtvv/n01Yun5NXjHOV4jDnv6Is3CFyl453s7miwWqDv3mh6ul2fzVdA3mfwM1dwC2WMxR2W64cqz+lijTItsUerST8Lvdh3vzwMFQiZY3u7JSzIu4ehf3J6kfSDHChmxAVTYzNIzpX05uov//01CtFi4dnxiFQvkAndixPgc46uxK5uCTyjWfTRocTys8nAiV2R15J8cffm62UybFTLLZYGutxpiJ4s1CRpr2IDD3IDxx/HWTrpHy/GKeTxWDwbwD0/wunRPCaKPmS7xNQB51UhnsIXT8Yp5gA6J6cDWzZkDvWZmHaDbdY7HZbHzXx0T7IBWEfzKRyz1LfRMUUxUDgjngJ5iXwFTabtOHK9ZOfAm0Sx52aooTuars6AvG7Pz0/Obh7f3D15/ertk1c3gHmTxdnl2fnd9WZ7fnby/OLkdHtxhZpXl4Az9xd3D8/fvHl6O1+fnW8BhC7Ottvzy5PlenF2fvvk9v2rqxFQO5W3sX8wmU8H8D+cyhFOdWZ9Ug9P+5EXYCXRI7aD8C4sFEdEeTPL+A18G1ZopoDYiI2zPMsTs1uvd3icLVMkVuA5Hm7FHt2oU0yvW++w6NfW6fKCIHGNcqXRJsobDN1qw6c7KKtm+wAOIvyrUW+3GAHtv1hONKPBeJj34UXicu/m7Px0M08tlEdGYNIwlMmSFKEKGE7uY8XoZIsC3mg1u56hEcBiDe/+Bm6vx9dnl9e4Qnc2EUuFSseMDVHCDUmJ5zqNVrfbbHQoBrdg8bX4nqWaKi7WAle1UXoFVaFN9BFMEIyxPWw6lmYEIXwK7TUsA32IIZWDKIyOV26WA5CrRhy6YWRCFsL4qaOYKsAmidLIWSEn1fzQ0DybKh4VGYRMy9KI1DiKmiL+4SKRAZmPE6WJZwPo950y69gqIrTrBzHAO24eOfAvw/ZNQYGkLvcAuomOpYbt8l0cyHIcbvaj/sR3IBWA04cqkY7KYwmihyUIYrImkdFydCXjOUkWBMgtsd9IbNjYLgvBlcNZdbrLEp8+5IrwIV7EU89LPP4miMBUITPSFElCBCdb8obtWs5OBv6LPmXypcCdENjCqb8cNbKzXXwBXEbSMRkOh+gaCbk6WkjhfgCa8RGZ0Bi1lIEeE6kMuENDstzjRS56m3oeJEIBubdRdcojHpoe+TvOjiA4+6mAdgSTYT6bTcJU9ZKBO4o9wsaRmfezhAx6D4bJqJ/Pw3yQjgNe6Gp2fBbM02K336hzeTIYBjmaeY5xTD2Drx6hwEu8cdTJ0PLmnnGVqPJxxu4zHCvMZ6M+aeDBA75+Ud2rPyoqpSMWnudciOSQCRR/PEoh2+jHwSAJjEcHB5JUSQdZ0q9VHdUNgWyQNTjMAkW23ZUtyvW0+OZ0kNJJRNWw7FRrA3mXa71cl3U30BqCWOm02x2Wqreq9VbopBOjJjnw3IcHFbqt9CjXFqaaGqiFwqNSp91qN1nfitSu03q0/6gDgY1SLcPrag00MOr02pyvu5LTeVQ8alabNclwY9Fs7BWpbkfQrRYn7R8Vi6KeB0k6cCE9H60se8ofNOhWSZF6Ki1z42jULYhxk2uYrEQfV9JZZvKUGDZ7Sr1V2q/F9noxHOhTu1SsHRWO0GU00PyY46yAc0y605VyPfSltKtx1kiX8tNTXI0/XqE1O0qLA8DOV4vlFnDx7IL0dnHnlrj+IZEkOpEXlxAaj4+PUQMBF42IIwKk5Sh/h2P5QGsX6CeyPbu8ggz+5u7m+g4VsF7hYjGqTyJVffXi2ctXQF1fvn4NlPf1WwDspw84M3V3izQaxwrevP/86e396RKi0xoX/4i9VvavR54DjZ6vt6gpfQE/4BWuL334/PnTx3dfvXsPEP3Nx48f33/16vkDMOuby9PVfD7CyZgQR4MhCYYgBVm2SKwvZQ3CRIo7BYTPrqfzsWDxmGUJbcvoVnp6wjcY01lM56M5WvAQ7UXS6/n/XlQOdDA8vc7G88HYU1SWX7r2+Xw95Ufb+Vf/z3cjM+rHtg85Ngr8AyLYmk3sNXGEmNSo8mlsR74Z+Wh1Px1GvjPYnj77+j1QJ7pxUKnTkmYqnOaoPldv94pAQUwvDlJMfUfT5RTF9UhPtT9N4K/jUT4cWjIm/I5DZr40oN/xGNJklL+H1HcyPj2NTVvuRa7kOZwk9poMyxiQqJlmZAsmEVN2wsggNq0ahn0HWPYE2MA4jwHnIaZAxLdxVCuJfFLURtxZzWbr9WK5mR+fbG8Xx2c3J+dX57evXj87mWXL6Wq1wRLJYnl6jMor2XQGVwv6Jz2+vrx9+uTh5YvHp/AhPAub0/Vqu11ux8Afl6P+4OHx862oW3I0GsF3oWcBSmHhPie2rf0QUjec6EThmMCGtw1sbWchTNrjElHCIq4ARMgSV4fzxEAA5nCuSBbRkJClmy0KaF2z04E8vddudiBmQwASe/VKE5U3OjQNYRy1oGm22+FRSNCSAArg5m90eXwGtsepXjocAAADgUPfnVOA1kXu6uShorCShOfcg1sFl6JWSHnxsV6jFsd8l+8en17ekILNGc7SwE1xPpbKJSDmAkPBvV2qEJvBEpDiylGZ0YA4YksS+7CiqBou8n4sREMmRfSsUFTS+bK5j9aS6DtAKLINrAyH7VK4NRxIDP3UBBA3XNeGU2r0mh0hTQwRkgdCDBF/HccQWdHAhUyzXW02WRHAFq5k18Z5eFUzNbQdMCwRVQ6dAHvJKq1maku0VE6wAHdc3Ivz8RXBSwIAdk1RC+IwC1UJLjSNTEarCnHexmEyIjbghRYiEY4jOETlWsHhfcgvUL2OPCxi9m5a2FDRHTL5TrSZdnUHlHLb3e8oio0d8Z1vLvxJMzRkU2SujsXuQgen7DrtLi7yMj2s3uPUGrczHRVxlZr08cnzI0YTlzBcf3J3lNohPmeuolkoMAX024KMG/Igg6QSRM4RQgDuQeOhh0TRS9LQ0jFBgqfANTKPuCPYKN1MsnZ0C3V2cG1Z8NxxGAIlH88gZo89L00g1dp5dyFeA3wjH3DwngwDN/CCLAzQTSCYjudXLSnsso1af2Jlfhr7ZCR8F8NQuCQbeaI7NB27Iyc3I4H1GKpY6rACasYSxT+UAhuMz8W9YmFv5ByMzp1EtIfHqmQ4CfCl9fFsNtuuVWUhUcDpO5DN9buyDNmZHq5JhxKnzs+XZpNNHdZ39HwltCuFMI0nqeer9f29w4PiftUQZUzLKFU+qhZr1Ual1q7X6dgJM5MSA/ugUAAAZhS+F7hCPzA9eb90UOlAYlxnPDtS2YgtU80uxzBNAOCQMZv7hWan1WmxgeHJFv2ogABckSG+ceLR4aNHlaNe1uPZ3qPDSrNn5pD5ZU6aBfkSUgvxoFStUVaUz+wOe+r3KaY6qh2FeqMtrvbTzM1UyUxKNaYB4F0Yv0zGi0wdaDWuUtirB4AKkWBObU/xlcSuHh5UbX3oaOHhwX6VbtEC3KPoAgUhFadFNicAvCdXF+eXV6gkCfiJiffZGQ4Pb4i/Dg7N4ccBlR9fA4tF0ARgffbkMXzoEgU7FnMUEkIHHsjjcL5CxGsI52CI0HIQxTkqFKCdzRaf6fH9yxdAwV+9evP1xw/v3r//+OHrTx+JuQPxe/jqwyf0CP7w/v37t4DXL579a/fp7u7i/Hy7wdmw5XI6GU2myBuwrg3/GJF0Anf14HLA3XkkFesFMHdg78B0F+jkMyT6zVkfe6a2oYjkpsdJPVm07YZiVarlhtbgtEaBYpR2F+7oweR4uRwfk9m0kxPseeNILRn3nwxHi6h/eT5LJBOIg8W1+8s0G6zPPD+/XCx+/e9rFFNFsR2PeAMY6CtM6lAqjujKcH8bOl1pUdIwHsKzDfOw399cP/7q87OeLVcah49KVpKlKq34idilSxTX9zwD7vUcJbWiyfEkAFjF6cz+dBoCt5pBOjvw4U7yyNSziTxI1RMUMsxRTX44ik03MlSVkZk4YnUfGBVjRdEgHA/8cDYnUhKRZyBi7BBYFtr1Nq+HoROkEdzfGDmw14b2ujg2ikl8DikJfKQ/nizgGF1dPr58eIrA+vD89ZuPX9/li+kEMpjhdH12fXvz8OrNy+thTOQYN+dXd8+ev33++sMvv/14Pp7BYcXay/bybH5+ffvw9PHLr589u//wcQ28LRujDOYc3wOulI8whccYApSEMA6CExgEMYw5ZkCEOAz1N2QvF6c4URF6ilPieazvABhDqsBw3U63VW80q6UazXRaFIAvSkYyvR4v0tVaC7ePaJoGHgwozNDw5aysAzBoIkT0DlWnekQXrdcTDD+DDA1+3HK36n68RgAm5x2ldxUij+8M4Eqcz1dkmOL4GA1qUYZjipfUfHlydXN7e4UtndsbFJ65vhrKFI2C1ZrYOCwUD/Z3Q/uHh8W9kgy00wpDDze6RXTNQAFwRRJlHc2GcY+bx+ExItom8RIWeFVRMyE4u5aBJUhiUZ048CE3UExR9G3JQJNKluqZmafJwKH/xX9137GAf4oGHGO13aIpXjEgjISe75gEgLHlLCiGDQkjThVHIW5bSzELJEPqchYaDRC/C4eor9uYH5iyDgl8P0bHEEP98vg3wOn4D7gQiXQxWgeYuDFlYVqJ1k+kHuWh/CgSyQCpAG4Ch7gSj/9FqBkLt4q702R1/B2OWcQfDMcD8Ecaux9HEFveGXzDMdrJsxDhFEFAv9QvuE0eCOT4wG4E22O6//oMMmt0V2URvZFoCzwSbhxExwePRx9OkuZ5u+pZECFxTEYpWQOKsn/1pgcoLooASfrO+TDfjW5ntpoOwnQygGt4vpzGkRvBicGvx09m6Cq4UyPPwlHeT9QoNh13GvKU1p978/mhv26p3YY6tQMvAbSKIzI6jgk02hhmjdoka9UEVo7O4EOzpCPU4SiEuNvlk+p4lHjh1Nx7tLfnrStsZAU1fWjdi6aL2nv9MZDpfKgyMduUxaBirrNI9kRejXzcLx1D9jsbDGYzu1bqdA1FGExcPmhTfS+dB1k/UlvlAqKjrjiQNttdXdw/fFQ8OCxU6Hqll9tO4HKci+x6/6jJ8Azjh/pg5Hri3uGjvQ6Q5VrHdXyp67YLlXKX3wFwzJmtvQLAL93sebonG/SjwyIA8JFsWoHXhyRxcKIWDLPLK8VCqc07OIM1SMZRNsxjIwUArjVYTrF4oyNcx+MKU5s0qHW70VAearqXRzwrpI22VKoctvepKTzZyJ1Y/NpoVsxg4CeZqfodX/dpKYmz2F9ejDUnLx9UWm3IpXG/sYPaelSzSVPNerNNohAnyaqh6JaP0vIoYb9CdzSAy9v7+1uyBQwIeEXWjM5Ryo3MvF+hPwOk6rdfRq0IOr98+eLh4fnL508fXhIxjIvzM5zYmk/GI0y6sUgIiKeReQ1McyGEDoZjSP9RROvx/RP43lev37x9B5D83XfECfhbZLkf0IHp02e0G/wEqI0WxO+AR795+eLV2zfAelE7ZLMTBiEGBahBOEKFQUALJKDYhYXbEO+AAICRyOfuBL58P8Il9I7pdRSmq/eEoFbmJYNXIh2JhYXGQui75WLyCvEeBeuwKo/7nNP7S0tizTwUrSg+mQjp7ZUiPiwex/M//vVVf9qHt5ZEWZ7tRjggDnmuodsEjQGBO3S9VCrUnbw/GKNcxOz49vHTTx/PGrJvtbt0OTRFyxIhtZeoWrnR6WdR1M9mz9+icM9yu54EePtCIJ1MwwQAqj/J+xB67NDcmY7Zmq5oyWSQoFzldDpbhiIwEkkVDNqJIVxaEsN4wBHz2ST1I2D6aT5aLCbjKdIkjFuyzDZbgpeFth3CEzu6rgg8CZi7bp+9S9GdJIpx+mi9WgJxu3h8jVWPr16/eP3Vb1+PN+vRdLXcbmar6+vXb95//fUP6yHRTQMAPn/2/Kt3H15/+u63H04Bklen8ED29+T1zfN3Lz598x3kZz99GiruYIJT7TNA3dFiNRthWy7HrlxGxmLiYGcGFJBXjTo6LhFHxBI0aS8vcfNkDt8O3xXpHSxBY0dWYuHSpzutRrNRq1FdpkM3aQbInYTDzhzfKjfQ+hcNGBoduG9QWhntCzUHuIvMCxLbatTbHNfDOSwOsjDMK3BVbnt6eXm2Wc8Tgr+IwCZqHkOgD0aYEq7QrBrVsjYoyLEgGSMkjMcXZFMe56CfYJfn/vZqZAoqalUFVuuwcLhf6qK+2mGhVNijIYF0cG4OyykQu3CxRxAkkePRFgF3h8R2ab9YOCyUGyjZAC9XQ1crD1e0zIDMDeMSq6cCXdZ1njE8tmM68J1iR/B8y3RQSi2JcfwLRdEtU4YkAyBU4zmGki3UiA7gx6rEy1tGPUTMMBDc0O44UBpHvM/qrqf2ODOOTDPMEtzUJVTRRZ9JTGSSfggHEmvKO8TbCYaJRD8TPkgG3rDMrJJGr4yGTTjchMId+JOsnR0e3FE7DWs0hd+BBt7UZMWVaDGFMbHChXSFbAvDjQz/+bG364ASHN+NcpEnwC4G2XMyDP3L+SMEHX7/Mk6n7HReRTJehRiNvBmuJMjG6DaNEqX4MTKy1yMVlB5ANf5eq5aJPzPOQh0dVakGPIDt4egUhXvn+IFWA2UyWih+yuAEID40Pc3dYX+0nCaj2SpI49hNNcghFaKyIsO97BKZCt4AAAAgAElEQVQXDd+EBNpBj7MwcmOxa0+myVis8KHn9NrUJEmAAYcZWrCGOMeBSTQwXFmYW+VDYSFaa1/VhqqVFHodFtIYjxy2CG8tODJHhcLegRsr04njaenpnA0NM059Mv2mZkm7eVBihKxnTkPcf9RZFUsoeAogRmEk1d3MnfjRNpYSu1QN/OF6Aa9olHCVo1KtBbREtXybVlnCiPf3SnS1zOW64cVGzzH2CoXDCs0ydNsK7HGkeCauB3S6nU6Ndt3MYP3mo8JBl+/12pqlxZzV3DuEY8i0GE9zRALA2LAVgGXnpyd3Z6vzC02QaFnYL+xVFcMzNTdL+57tBYk7EvdLHdaWAJy6Nf/OSJUmnfCC02rTnQvFS3LHMLRRpzE9qO1XCqw8DGYjr293NwmnDRw3TTPRTZuyGnC+x3JYlgpZ2SCKo/C+9gv7e7j6Wq7Va5VavdFqNRtcD/cdm00WXU7hnKO6ClwHJPbwiirj5IkTxGmCQ3gQX1B6g5i24O7RwxNUydopctxc41oaIjcuo90DfJMB6NdvATbfEQT99BFQ9NP7ty+e3FxenKFi8wTCKHrOwX2E4v8y2rYwQEAUDbVyQnR5m+Ga8u2Th3t8sldv3r17TxwiPn/z3ffffv3562/fv3tLfCIAiVFI5AGyAngpwCXO0K+YLFDhlNiCCMTjygFceegh868KkuvAjcyqCpPoHVnjteIhw4lUs81BCi+zioK6O+hcyuPVDrEAYw6u8khBOvKAwsaa6TvxbJEOX7zWyrc/n73n89/++ufpBCB6Ml9MUIZpidPjwOJm49Ek+9KajlG8wbOS+ShDc/BwsLi4fvHTz68oIRnQokYHjhkatBy7Hl9vUr1sBLmul+Bc+vF8Nh9n6CeCI2TpCKCzPxpO8tx34D8sYblEl1HR00k/yole9HgSqUZgCgrEbnuUG4arMh0jzgGgx8M4GIyTcR+QLgSChKLNkBvzitTt2aPJKMAdJeScKdkTRvM/G5gJiwM0QBBwzAtCAaAy5NNRMMwGSdyH3Pj8egyx3gtdt59pemBBxJ9sLoktsu+HaX+2XU6ur6bJ+snjAe7vorZGFmfj1THpigwnq83m8U2iO/ACUUsb8qrxYjnpI+XF19FPiT4UcAkI7pDXk+YZabwTwVTrN9lgSjQ4yADgjNSgQ42uN5ABi5LYw9yTaTcp4LqdDqqMArMB3tPG2Mk2ys2dBnSnA3d6G9hwG4dPRdkKLSCEgsxRVL3BCOj1BwxIcZIh2dtDAL66OFnPIvXLuiq6vRFxyGQywx7xlki54UWJzjxTpOckI7nFVXq4ZZ4QPcr764u5r9sYWD2ldljYK3SFZqFwVCpV92qqI8kBGe5DbzkTS9xYtkBijwPJhqlLvSZE+qNyvd3FhBuouxWSWXigoQFmKySdBAC2IToC6MoUa+nw5jRWDG1UYIpiHNIgQwUonqJxgknckk2ha7hY/LYNGRFfIKttMopZwUuQFWwzu1Kt1DVZNwy0HmvEiW1FQAXIzh+2CZDFyortAazAE7AM0kccSyDSiPhANGNRh62Hg288URwDbomBAQCbfIz0elFtBCFwZ6wh7ATHSLkYGbS2q1Ub+k5A17LQ8wentW3dgeiKB9YljovEuwCw5ovyovvF2sD9kqDvdrvgU1jS+wLVxJt897zGznRbxh0f3KzWVHTo1VAFhLgCQgCBIAqvvYvyKLIO9B/gJnC4OtBrorbOYKECjgN2PzsdGsIv2SZCwy20kuwpaDUyCefDYZpNLuBODfRcoRoA1IDYFNWu1lAqt9ZsN5qtIh1KqhhKrK1T+mw1nnfFTj0JOzV2EJsdGo5omwit4oEWGF4WGIs39WrXO2XtSO4bHkWrh4qgRXALAxsnPe9BP3bco71S5GCNHS4Mg1qjQ0OEOkATYObj4xTruvtVN8u8ZBYsnjwkpp2MxqMcniQkeRKkSKFqLhPZT/u9uufJXdkWOEWiKo1yuYZ+WhDvOgDA6GF0uHfUrpbZTFTDvsuYCvaAi00BEmbTMwYO79qlWqWOPf4a7bmZyQcUYHSXZ7mOYakRZ8M/EYCbLAHgzqPDo3azVRd1SPzS2QwC2qs3US1K248qh9XA8hzdR+sYqhVneqruVxjBRjG4TstYTSe9Ti2QSlWpxtSk7nhiZPA0SfngVa9A7e9LVBRPF26SNBS2ykG6mvuJmAw1yDjlUDkkJasuqwdAgIDdDPLEh7MvsV26BfhbxY3Wo8LhIa6CH0Fmjel1pVaq1BvYwW416/U29kx63U4bxz4pYtpBUWRNkumilw6OLaCDWdKfzFGxZbU9Pb29Qimf27sXZJ3oHsgxIvT1NSo/3xBfQ2TWT9F8/TUKRn94v4PUn378/ptP8JfPH96+fPbk8c3F+cl6DrwFAo2hCBxcMR1s1dDtLosK5HBZRmkfyN0Z6nsA/JMp6Jev3uB28IuHu+uHp3c4s315dnZ+SURBzlCWA0jHnPjBHe+EsqbTUT4e9yU7LbCtiuxwCttxbBXujXKDjVNym+1E43cDrYpClPAUSTKM5aArBL5ixokzWMVpmBll/Q9v3txVsp++/8eDZoSJ5yeoyIjCETixPMSBhtl0Qoy6yBTzMPHoKlCVvb29RwelCqWYSheCBE23JN+yEouSkqhHNQ8KsqvJmtljTQF+vjc9O5kN4WVjDz4Z4MQZmdK0jND3dp5Hpum6BvoYJGlO1ixyk5NskxctjlOWOe8oFgTHAJdXx5Pp+mKKdUQrDNEbBRuFuACkdGl3Pl/mUZIBDqOa12CIGDkYwBuLzCAf5jhNSqYpg3AA3HSzHr968frhAZKhjz9cJmE4WG6n2WQJYDpYH6/PrgeQ+yA5CZM8G2b2w+fvXj/cTR0njqPUc2Kg+aGrz4/DdJTNlqu720h1rRxnQQbDnavgeDDpx/AS4K3jLjB8HzxTCLTLxDUcHyfQCCGw7d8Mx/PlEujlfDHfWeT1s1Bt1xs0CwxG5HsMD0GeblFVQCm60WJ4Mp3GMnDNM916pdXt4mYl3YZ4Rbdw7BlIjiAZwCI1gZd4QOZGm5Qb4Zt4PRzuervbs7MLBOD43/BrEkkmTUsn0/EC276EAOMI9GzyRbljuVpvid/n9d0d2mnf3T++Ol8GGOZsT2UqpVKJUrtNeKUdqlnmXIPXAvSeRGzHlqcGfFAj9BCyQ6y/I2VUBDKlxNVKxVKtLTs74URsC0W+Bxl1lLiQn0M4YG2f5y1LYGXXkRXfIhu2X5R8PSL26BmCgL53XqB1aYPADLGKFFCIRCeb5WiIpIgC/Es1eLraYDte4CpMz0yywIvJKrNNUgDLsx1LkkyvP/BlXDbfNYKknXA1PEhJWCb6i7h1hEvuKFomk9FnMnxFEJgl4Atp8b+BGOvFOPDz5QvI7ywGKsJU8QM7vObg2RSyFA8/FWLYl9K3TgonuPlDPB7Q0J401UmjFZNa0lTzPAP3vTzvX8OZaKAMHDpI4H7GQhfW7sNg52RAwBu9h0zTMfEMaSYaNuWzzSojkpwa/Ebk0tA6ksPZMZYlAmYsZBtEcp7n9dixg1E4T5zh6dnUzOLEnSY97sswODACHPODp2AFUe3qM0jGIjaMA8qcLoOBrjjNpirVFCuJGZSyp3r1Js42NJudBkU3KybVHlR5d2AZuekrWs8TDx1ZYurtNrAzVI3u1CjOirrCsRoG4sIOE85utFMXrf0kVbNdyzcdGdWv90q8j1rv4clm7FpqTCrtQHVMrXO496hYKuyVXVVO3FCshTm9VymUSoePis1OrdLUJN1JLaOji3uH+6i3UO40amzOqUlqs46BPeBiAz0ofF8bZopv7D169AjTlEbXcyK15wEDLnTh+HVNU4l4p3NYbLapbpPxdFfSu3uHR3STqomWLap27HOj+PjxVMom3KPaXiOB86mFo8Wg3y17iRtw+2Valdt8Le9U4/nAN7pUzhTr3UKrKlalLMkU0+93qj/3H5ULxVrPT1drK10xpeJegfKTvpU5oQcUxxR83FBL48yD0AW4CBT17vmLZy+/QiGrV6/fvPkKVS0A6G5vLjarxQSndQJbk+CK5tkOoG+zXinBMSrsNEGrlSYAMs6lEIExim7Dn0CWScLaRlRGCaFmo15l2lSbyABwkqJbKI6DQIlDNPPV9hx1q1CC4/b6GYpcoqswTlPDL7I4dP/wHIefEZoBltES+Meff/6JPH747ptvvv32m88Q3B9uz7drFNfHRBwiKU2TdJAIVtUpCJQCMgJIxoOs30cFWGBAOH2K5jOry7OT081qtV2S+uRyeTxarXJamTeO9g8UjQt6HdzGYOVKtZZMh+MYeXP2ZfSKLOx4O43ZMFmYHcBmM7T8yXI+iNotPlzdbN/n0s3Xzz79dsi1JZHfLUogSRB1Q0WTH9KQgvs5CF0ryBz28NH/gcLSJZSYLhxVm0C8Q0PgLU8WfJ9X/JHBqXrbWsILGGSjs810in7uk3QICSaOPw76kHVOxrg8YWmh/6/RDBOnWfL5EG14h6PxIJVaNdHRFZ1V6PQ0slWdZs2oj9JUI8ifArjXJdVGIoCLPADAuadzvXA9X6GqwWjcz0cExbIoHY6yMMqCdIwSF4MRcYuBg3t8fPr0yfE3v/zy02//+Ovvfv3TWTzpLyA52pxdnl4+efLrX/7ytz9fnq2wn749Ob98/vzpybe//u33f/h8OT2+OFufbTbn56ebzdXs46+fP3/z44+/+/HXb2embvcxYRlNUJIXH8txlg5GAzwbCSJwiArkge8GuE+JHqYIGXCAf0M0/LBrv1zgKNYITRdUoK1tHH8GJsVwvS5D4a5EGzvAu/ANUa/DsjRVr7bQCQmLQ2yn3aGbrS5F43It1vd0Cb6Q7XZarQ5ZDwaeIvtDoLUnp/DOTi4ugNynzo4fAQMziAKjGk/QUxm4L2pvkLLMDCcx1lieWSyxCwMA/Pj26vFuke5u4QCcGabVbQKXbfFoT4X+Nz0W4ojiwVtFnQxtd6Gje7xClLdECaWmFPNLURXu6G4d0uqW4IY71fAwxlaQgyoW2KYQhKboQvrimAwj+75OrP38JPRSZIaE/bkolI/KVoHvdKsUDn73elgg3gEAob5AvRVETngRAAW9RoliDcfVBcFKsoRMHlk78QzXcm3XlkSIYsMQ0neTLI2ZxN9o9yAEE8fy0cQEV3iQyqKX7W6obTcMhYhJ3DINSyN2TDpxhNBQi2bnSo+FYqxnk1jEIgAjBsM5Z7vIoomjxv/vwXFkBIshYM32GEwwsDmM/WF8n9KXaSxlZ/Jj7vDZ/mJS40YDFKKDI+wjfw4Cb8f5cf/JJY5/kIRYxNo+xV2h+QLOAo4+2wSr4eqNcX0JtUECDyv13s6w3PNRPCOPx4NAW277Ql0JR/FoJMi7GWMMLJJCiuIQJjTVVButYWKPUtMPZnloOIznNxmN5uR+JmGBQCDlElz8Egnc946a4zptq5AUhVSaumeHpYHvS52djinKObOQdSrtLoSJoJZEKeT1aSyJrqE1yzVICdv1Up1tdFhVdlLHi2VxnkLmZ+lepV6vVhu1Ck1VC3sHgJjFItwLQCS4Sjqk9ouFer1wWG23a1VaoSXDsnRKFfYAfg8KhxWmVePGnJ46ihT55Xq9XOu0JJ4NfWWaS4G9f1gs4wR1o+tYqSVG9H7piIHcuW2YcsQ53UIRUAoA2FUdQevsHRTpVqskua7e7/enzsiK+oup5AuQGHRsSVB4O5uladRQor7RLh3VPLXLFa/ueqw0zNwWl/DV/5eo9+Bu48y2RNsMyDkWgCqgMipXoZAzwBxEZVHRyiJFypLtbne775275q07b9b73e/sD/QMukXRFEUBha/OPvuEvUupRDIdpgvWHmUpbScbnVqxrbRu9sfmfCQ6M5nCdyxlTAO7S7RG9QSR8tb+dHmw6M9W89lwRCA0o5t9tXd0D/qRT1+8/vDl+z/++P7hxeWLF89fvHp5+fLVmzdvXr24fApQpN8ePnxwDwPQcDcl7ux7DiYuBRZ6irl0qlTIJBPoTUEXCq0NSHcTCjKyQJCMARaUtov0K5eh78cn+UI+gxVKiltQiW/bWInoj5cHx6dPnr18jVrye0wzv3r1mhHox48ebWRBIGGJEa7HT55gN4nA+fMVVDl+//u///X3X3+5ufr85PHDi7Pjo8PldNDB1KQiNykXyKTo34ZlCJ2FQp7AuVjMF+t0Zu+mxBzH033fbuhzt5BKqDxn1LJtV6O0olZOub0+RBDRp5vP4Ww3mTAMwBb+aHg41p02b4z4DAGaPZI7wXg9CVcng/37hxcfrp+7dYoSbdQI2VymsiEKGw9NxA8o+ihcFJcO4pYR+pXKFapcQR90KHa16U5tF5ue4TdqHY4fjGeDXm90fEKp1BFkyjDehIXEftcMZtMZ6LVnsgEU1M2gTKjqHejX9thER9DKxSumQ8/GV7xHh+2OmqtIHrHnwbwjCiLfqPCUJrS9YNMe93yXCE3dmY8WE0L6/hgC02wXklm7dTHHt4Ce4ubyLGD8enJ+9vzi/S/XX7Ec9vn2EeX5J5gYOD/fW168e/Ph+se3R/vQwj+E98/R4cnllx/fbq4+PTtYww3o5Oz0gJjgvceff/vt11++3/7692/XT9yWCQCeTuZs0IRo//QvSV6mIAI2h0Uqz8eEvt02GP5ScCQGzEwT1/uz+aYEPfo/AAyuQRyjwVWqhVSacs0KALhGkaZZo1yuxhVylMhB0AjTEvVioULoyxcwC11XvcDRRPQsq7VqPl+t1ysEwPCexOTE8eHx2fHZ2f58FNqbAigdAY1VRGVvxsjvPr3WPXqw5V8IDYEITxf7J3AOefT00cVTJlzz8uVSrzcVyoirdIrTTb2hGlAaUZuaJdU030az0rQwawcVLChRsYEiCidYgd0UWIkItaVWKZvJ5Gp6H6M9WFcZhDZ4nmPrstyo1tK8bHbMplzhJAd2DBoBQr9jBQwWQPQwXqmIYpv+W8sn63m4UVS5Gja0YIvHYQ+IjS0xyk0RnuPzsbLW1IgtEuPosDcKdkhQtKYfaNiG2Gz74cBX6Llq7N5QNo0eoDDW9piflY7/QNl705FlX6aUg7BZZ3t9GhtENu64qLMpsAPs8BlK3X/pk4B1+gHzzXVMui8MIj3y3b248YwSWFOXjVxxrL4NO8q7WjAbmqHPKncPlASr1RobqmYlcka3RThNUKIAgwnUJTSm0Ak2bWAMgPKEtsokedroryNL7piKahiawlrN9FQxboKNYcQuNmqt6yy3MAVLn5j7ru4dibFkttgM3WDexiqzv8k9vYB97nU7aqfXaBUPM4I/5ybB3D1sEcGdDSkQVpxOh64/0B2TMbZLeSRkfIblZF6vCd0c1xvUAi3/yClGuxTXVFvDG4CHolZy0WRCrLX9oh6oA71I703LlnttZxCgXOK5FiWz9Wyt7zmhul6r5lyCcxHlbZRFYbAgF93CGHUiVOSOJAnp0M9Gf4psbe0S4SjkCk2CXlszlaxQ207E4juR3XQ9n+bnTT2UGrImbQHdshW9WbE0fhbUTX2bHpCZzlUNzZXrbmk7Gq3V6XZWNMmpGZVINJdHD9iS9Lpc2dqNAoAl4h/Leb/em5tEAZa63ohtZwPLbptNszvvdMeZVi8s11rpqFFNl3fOfo6mpXnH4CqqtxutZpIxMxnaw0D3umE2JR+2BN0fl9XOeqx7PTtTEep5YWR3fN0JhbGD0cPlYrBYzxe9/t5ouZzNp+PxHNZehB19ZnHe7bLBEawuHh1COYqNPZ+coKJ7crh/yuyKnj57SphHH579pTUJqaqnjx9dbEamj/aWkHwc9CxMWCqigN5FNZ/JwrglkWRGBgn6HJ8k0hki1sVSoUAxhTHpQhbqerA4SGaZ1WqtXqpRGq1bLrE7Zs9wcfHg4cYr+DU93r5/+/Yt5QnPQeOfP76P1Q1iDqcnWC89PaFnBLi+Bx0u+nD/8ZOHD08P99bzyQRmtxgosOnIKzwWOyuMuRcLXKbaaDbqlJH5pmYoybqiNar0VOMU37B0E7Kdv425LHZKJ5sBr9D024IdKLI16Q5m9Yq82+yYg+W5768Hq6svFzPMJ8OrHTZRfkDUmTlgG2yUU1U0UTFUoRjdjsTgtRSLpDb+3ZlypeIK9HYWsi2VlwzDEzKVoiLZMCMcQRh7TtdlNesRrUUB2Q/tcDSYrSej2SDw7QA1B8QkncJMOMVT9V1Yp4nFRF6hr6nCqOd2ZN8pllveCDokDi9rjUZR1FoN1QtZ+ZHy+ECVWzULe7R03TpwYdsIYIzuRP7GIzbkBO7L5sOPRvur7uW76++fr26vvn67uv58ur93cYgzcn7v9OnNzdXXm88fIY5Dh41432oy+fT1nzffvn5/d4pdpXsnB3QG1/Plr7/f3N58//b7519vv7+lKzaYoEq+GPU7mNjDLhg2KPoYFQUCM0VK22Ii0KqkOVBFBIHCGhJShDkbzCMsHnVdo1XKJHJ1tlMqVKHwTGcxTQQ4X+D4Otsj5QUKrdU8JZMlLCahvFOF7h/7SIgj2oGnQuGIR+E6X+VKDb5WEwStByuRvb2D4/3T4+V8HqIuzHoBuoRdJFHt7a3p2ewfrg6Oj+hlHhAAYwFw72DU3793eAxFmudYnKdc+PXLV69fzMyWRHGcmG+9ZWot3dEVAJPZ1pqCin0reC9g4LsNDw6iwGBmGr1rQHtoXhDcQZ5DySahhNcZj+iunwx7lEi3UJwyTdjzlhMJXjWkuowJaCd0CaDg7ugSRlBCY0Ooifirp7UkywtsmRdk4rzELEWxsRmcam4eQF+IPkHDRtUFQYXvCJbDILvVCQMHoxYmfpZturbU1Jxg7DcquHiQc6Lch/19pqqK+pUsNTeNH0nBBJYiEXETsc+FTpC+EZXWmAAXdMBQXwfWGbZjWn9NdzhE9OkSOEGfSd6xCZA+M87oeK4fMksP1/Kdu2Etj+UbJuE18W3IjLDatIQJB2bd0WreDYpB4rNUZkKfdY6OBVtgwmliWqXwIwKBrpbQMONgBy1qKvrSqiRrvtgbhGx0sOcSHTRVHVUbdE7MNjwh0bJWTPiOqTrhZJuIrExEpd+Z2EZXjmR5LpWTCVvpECibzpgIBVpVQZXAUB27Wiud7aZty24qh253zy8Jy8NxMSMZw8CwiW7jjWUZumF26F9w89FMhSt79WJnrkztmGwkop227Rmod9ibSrurRLd3tvPlqq8hl1Jaw3GnJequBVMHttxd2InGtqPZiaO09h+airgSRNXN5uEjRrCYyeaKRYpv2ZrbbHf0tpq03STm+aO7u6lCMh3jZU6225ZcbNYJapNJAuBSLsMtDLlHYGJoW1v0lRzfrJbajtrrira+s7MVKdN9W62asmvUfW47lcSCWVVut/xkwG1HcpVKsVo1dEWQy1uxRKlQKvCO7oY9XxpOwvPRxYlhSjtbhAiBvdSt7kknnBcafbfR2Enyw3w5t+2+EYrKoGM0mpq0W0zEs2nR0zvzLu92h76Y96uCoNh+3R9OJGdQy5dK+aoXGm5H91upNOX5eWy3NSRKIW3Hp8hF8XK5XKwOjw9P9vZPT+5hLfPs6OCAObwfslWbo4O9/SMIiO2tVnuTxf7hPmxb4Mq7v7fGbiIM0x4/fnL56vUrBIvLF8+fPHx6pzt1+ezpsyePHj9D+ezBBYHfCXL7YZ/RZ7ayAIP4crGcBSInInFMadIv9ns8kcgAiAmNo/FkAkrmsSS61Il0OpbAoEEFBEXR6azSLT1e7BOzglwHm8HGEDRq6ecgXNiNQnsXqlvEl+YbxfQReFMfwseULIRQU0dcgKCEFXQ7bjDZy+zsJNyLKeX4LdNWQIAyIl+jNKpcwaxDPpvNZbN5ynzzkszxkjcOuU7d9Wy+0LUJGY2JXh8MJqPBRT8cnO+/+dQdH7n+dILu74D+5S5cilgE6A7GCAL+aDmSM3QKU6lohA5dIgXvh3wlna82aoX47s7OTqnVEGVeUyolI1ApYE27vTneruVsvex34Cc1hCCUO1gfLIbDycg3MbqIsiHdXy1V0XvzSW/aC8ddr9Mu5rJl0VDq1bh5pBcls8OVNW8aDIY+6JAqFTmJmF27j60eKG24jirU7cUgmI6602mI1lZ/Nof1PCFwvwPfmhVlNuPV/v5iSmx4sdxbzB99ubq+ubmmX1ffPhydEF8/PSAE3l/dv/74+ev17ZfT+QFln9DunsxWr379/sstoezJ+vBgjVNI37k4/PLj5sv7q9tfvt3c/PrKFbUuSu6z6aTfHWHpgTCkD9UmMCuo+WzyeYgcuL6tqqakQvBYkf+GAacVvHfhxoBHzyMAzqYLNbAcIjiY+inl81mKpaVSne0GQ7yRYmchm8qXmO0R1HY3u8DgxuVyVTS7QZuCKh3lKia6qmXKNynOGuMlJFqJyJ+enR6upwFd/g2H0GXWqdV7WIyc0TfRy18u6PXuE1qfHB0cjUdHZ0f3nlN2S7fQ85fP6L66fPHqcu2CpKFuohBhE0G72VS0LAotCp2shIOaJqgK6q8o4hLbFiWV4rEOvzdKQ4hMyZRi5HLSAP2CfsdBt7gFFwXGL3UumeFFpVWXxHpFsHGj2v5mzduB+BVljS6msbSmZPkdFws8+h03ZWkOsdC7cmwbPWjmAGU6suj4qiHUFQJCb9jrdthGk0GxHImoBQDWne7IppurWsogIwfDhJpiFY4peGOgPEZYzvwkIMDBmGZj8zvcnIVmo9FkelhNjEUqlHmwkfP2ppK9wWbmkLhRc4a2ZMi6SHRHEo6EXZZZB96d0F2327mTrgw2Q9N3c9Rw9GZIdLe2a9lsy1cFrVXYCvPdLpOEveON++RGtZTOCKV70SiRj8jubp6ClyZ1rJDVjxAROwMllUyn4bjGHHrpsKFsCGpdr1QadT5b0ErcQOYbVaM/67csLatbMTlb5YN231Ug9MLOwKZcYJIwafwAACAASURBVBgOtrrFVEk4jkWXnApcmcw5tVlWNa6i2eOpF4YUhi022t42LEPRRdtpbe/sxtLFjrs6FjxJLPYLmZ5m2rous2FGSHXbbikW2d5WDbpQY8/pPX/78h7fohOIxRLdFCWtXhIwI2da7nKvbwxHe5ysqzugqdtbW1GCz2iK4nu03FO00JR3k8OQ+2knEons7GaKyWycl+m20v12VaxvTNpj+Uo21Ri3xLmitDRti4JhutiS+Zrtt0edlt0mkhwrFqp0ahzNN+tehQg2XfNysdnWXOLcppTZiXPpqq14GaGwFY0Vs9kk74r9zjSwlp353mB+v9esbDd7ui2GjjKejbvBvMj1AjpfyaSQquYjrUlTlYKBW5ZdNVIuZ+M7WicpjbumbQ32FoXtxO5Wzuo7o+HE6IUxwrB42hh5pqMHVkukNFgS+UqOEvk4I6EAulgcJkBJ+l8il8oQ3+Swq4bVgQD8bgyzzNU+rAbPCNyYny5BGisBnx4f7R9j7eiUIup82B+vDtdLAmaAHVP2OTpaQ8HqDFIc9+49uHzz/s3bD1ffvn/7evP16vNnODN8ev/259cvLp9iyvPB+THcPVarxXQAVQWKJLUqm/IqFvK5HA5lDiaZ6UQ0nYT+fCKTYEZfu7vs1cDEKApmnU4nE6kM/h7KX6KkqKxmRvcQmBJuqNEEMlGYQ+oPAMB0Y2HQkbVZKCiY4Al6OxjpUquiwMavhhHNfDSXj3o9e0BkwEPOaNqYcdRVnmvnC7x/9HgajLtNw67Kcs+dLfWmxdl749MHg/vrD4vR8cubeXh0b6T2OqPhbDkeTGZwPAOJHvUGlJP0u2unEtvZjiQ3HsOwF8ari8ZSiWS2qjgdeg1+m28HHSI7CgUXrzOe9XrLE6K/C0qlGAD36AURVobw6pvMxgGqsWxkBDuQdBN1pqNw2Bssp8NhG6V3xdSFTFzeX7Ylddgsy/Y4GFJmTJm5KomNhqhqdo+J1GP9z9eadWtvNp6u7j9bEEUSDdvozelfHfUH/WCyYiZ/sGRGExO2PuvZ9OHV14/0Zn/8fP319v3hMUHw6dkRHY/9i/efv1x/ufl0vmSj6XvEBZfrV7/+cnvzy6/vTvdPTo+Oj4+IHO/NF+++Xn359PWXb9+uP189MlroAQOADxbTxXzY7WKaCtZymyXIMEApmsJlB8HSJiKBYWhIQv1tsdhIuK3WS/oJ01E/dNVGPpXEHCgkNKoU8sqUV2XQAi7VeJRuCYFrFQLgTDpXAQCXi/l8rkR0pwaphmK5womWTxeGoKHBceVcjuCi3uDKlZo2XqzZDNYp3GoOxp6xWbWDIKWhyapiAYCXC1aBpwu2d7S3t8dSkaPRlBLHB5eXlMpiD+/xg8dPnzx7/nTtwSjIJKJkWJrctig2K0ReBehYo37MvGihs4bN8s0IEf2DiojNWXQpMRCtEFEUC9lSvqiE4D2GJkGUSwQBxmqto5bjyVKZb0kGvSgJs0ZtbAnDXsrGcr+DFVvKc7SWbAZdD9UVtkYKlUq4EJu2a9xJMjN7Q9vUFKctUPgX3WYVA7zeYDQMmTwzdmC9gBIm1xJbbXc4sOqo8VY5VlzAu0E4BBBig57lanWzxoNlsBIbDr5zvC1jLK5cxbdgZ5t9bNC7AKiGLspmHqvBN4QWsw3G9rHBpCj/osbs6VsAWMuiw+Myg8v/q3iF2T4fSWhwpyfNHh7bekPa57MtambmgI2ejs9+BES7sZZDX2cj1FC+Vlt8g1l4lEW3TSSvq497NtZD6epJPbPMcVlmBgxnVAQA4h4wII+CgkSKjfxuTuMVTex2xr7U9WK6v1tX8gUvHNr0PQm4sv3f3ykWJoq1bIKfZRU3Zy3NznB4GLTlltls1SRrNKoXeUlWsHOCDVA31Lu+bzqFnURDjoTj/WFV1TqRvhhz2z69axhxxNXwKF+pUSTOiv6w0TV062Tl2GGxbHYN7BIbJpEi1fQtezxwO90n05ZBIaOsu+0dTEqxB30ST+RTCWFERFzvFzOhW/gpSjFvO5IppvKJllKF0p5YqJfpW3djESLG2Uy132z2qxyvqFsE1RnKkStF3VIGQdM2iHGnqyXclKZCAOxWtqPRYqlaLDTdoDt0Js9Owmy0kufbNbNEDDgSLWbTCcXjh87YCFfe4dwyzhd8dbvjiz1JrzvO6NANV1y1223x5e1cNZFLx3NWuW4ObU8gorVbTya3o54VHxwMJM2mjLIYp9cV462O3pm0zZCZhnF6IDWkphFO98/u33/84sP11y9vX0Fq+eXlk0fokO5TTOoHHVPX+XoRzVGspmEQOhrF9YjAbi+ZSGYwB00Mn+4SYkIeZpyXi9n6CPu/J3vH2A4mAs2E489O95DRM12B9R7EL1aYPJ3OsBi6gtTeERu5ubh4+ODB48uXr169ePGSrQw9YUKVl09ev3r1Cs3f33777fvXD69fPH2IH3tydLgcj2ezIeWmHZSVTIkJ+jV5wto8DALhy5ugrCKViLEcYxfolWBGCQTM+EoyA4sQuj9hU417mU0WYuEeoxob4X6DxUnD6U1qlVKm5ne8gajaVmMHRp7V3Z3EDgbRQMgph8tlK9UUUWDfDl7dyg1KlXtdZd6bDkenHd3ZCZTG0doLss7ZSTgfTjvDk2GulMgkM/l0Mltk/tT0oANLABd25GZL5BK7MTpuMeRHcdZJTyazKboPC5ygmqZrKDAaCIcdj8jncLIYD+d7w+lqMVksR53+AEv43d6QSOuQ6P506BEAe1hAAgJjoKazmIEmE3yN1Vym1JANna9w0uTEq7aGCifbo85wGrQKOQrtApPvVwMH8dej8GsrrZo+n62HOgVmoVKryApnLwny6Ud23eGKCUig+btmvqR0Bmaj83fvP32+uv7y+frbNwbAR6fnJwcEuPfeX3+5+nT98XyPgJaOBCzo91//9u3m6sePtyf7m6Ux1GBWh58pabv+9svXb7efPj8wRGMwganCnALkYEKvErpksEMi7IUqoO+Gg0GHLSxSAKSUyjaxE2lqf2Ote8i1EABPFotxL7AULptKluk8YL8DNcRKIZvNQoWjxDXYNCnRK47+X8jliuj8EQMuEgxzQoPOUalE1KzV9ly1CZElAmVMYfHVBpS3lT5sw/YPj08Jgk/3KBXGQg5TRAEAK6o9gDXmHl79ej5b7h+sIMixWq0OBvPj9cHDJ+jrQOX16UMGwE9Wngap/sBSTVuWLLvKNXWNr3JEhQW4PHus04mOqM7GrCWgKrg/k+LAgDRTVVGFYiZPx0/m2IIq25qCCqOkQpe8nk8mcrm6atLFUdpt1XAtCsthx7Y8CyZZvuMG6K4TnBtBz2cqx85m7p1tgZuWfecK6MDRg06rSYl/neC/3RHrGmFZrz+ZDChT7Ic4VOCXjmeJkun2upYkybgbMb3NTJP5zajURuECQ0CbfZxaFQDMtrLLJfDlIrYyMAuKNlae9ZHyUO6GGUG2cPegfAmjHAKG1/+ancYtKIA444EesAhNE9RvQeNZKrHZB9482Eu9W1Pyof2BDbqASU51emDKBNGdjTAl3RPQhOxBK6+PLgnm8zG3CNGeycg39Lbb7llOB1iPpTnLxSZY4PdHzE067NHfpw9Ezcc9L6R/bdKZOs7B1KjW5dmi78gDIcYPfFsr5sXesIcxaNZ9rqOwiE3kWr1a5JqZndKo1K3nVMLQYXs1lKYDr9CoCO5sWKLQuFl6YQEzSZ/vclYnaVzcSxf9PVdyTp+IAZcKLKuUwp4TkqBKuV4XG8V6i3NMOaSTdXJOV9HyVcPiMMpWqTZqRfp524mt6E6iOPFUz5McTnft7d27x3YsEkkls9mK3S+3p023lzWCxE9JRjsyhXQuIUgV0bbaUrHFE/Yk07FdOpMZYSzJvXyJVzUC0N10odTgKm1bG/mCbVKoh5ccJW6G7Bk1v7aTTBTydIMqPuqaLh98eFtJZOpmsz3weCLVZeKigSdN3IE2mvcO543a9IQYsGm2wto4R1dhPOgd8JWgJzRi22I9TYlQXOeL2rhtSzWjEaE4sZ3UG8rZvGs0reU4yBN5iu4mC/3+YBl4cMlYEi/qyqopKw76jmz4EDWXIeq1J8cnFw8J/968fffrb//+93/9v//9v/+///U//+PPP37/9fb64+tnDyhmzAaho1EE4krFQgb1UDQmd3fjzAaXPqQzyWSKAlMZtaFmC2Yprk+nZgjdqb3DxXIftpRnFEWh03EKOQIYvTAVDmiioIc5m06gPDCfwyd9yaxj9lC2O7t37+XVf/zv//7Hx8svH9++YZ7DLyGx8eyS8PkFplIIs5+/eP7syYOHD++fn5ycYI0Ss9v9YGNEJ7Uwt1+r5pl/byrB1t4T8V0khokk60En00SuE+lMJku8JsWsfrP07ZQcoQ4e2d7Omf1hK1mWdanaTkdUObqzHcUW+A5GlLdi0a2dxNZ2Int66fbqF/9ZywzCkdWIa0MiirVB1zCH4UO/+/N+xfY8veV4vUWzJssU0xtYW2H+YaVKFinPTnR3K+dM7Mx2lBIpOqQ79A9QAkR/ROlEKoUEIkenXraMTi+UiYXlGqW6TWQaTHMOAA56g24XADwZUAK3Xg9HPabSvDElsAxKWeTOcjEejwej/mgkA4Cbmi4Iit5f6Lmar9UUbxz25k4lGc80LCJAiizZFCgx2YTIrii8Mp5M/Wq6KDYpj2kJJbE3pWDaH3S90UbCeLGAmtOCeOZ8QcTu8dXVx49fbm6uv3778fH4BENJx2dnJ3vL+1+/EgBffTg/YI/Do2P6+Oa3X26ufv3x9vTw5BitYfr6/ur8+vb669dv375+/35988xV9N54QJnYHNPs8ymO0Ub6p8uoiuewvWXiaZsOu9MG6IEY/m0yY0PQK+YHPJtinVHm8plssVYnslQXBIrz6AEXORjKQIIQAEUfW81acaPCAdZbqtDXmjx9VigQZNdbrqO2ZKleaYBDVwWpyjMAHsCwk+lgnd07Wow86Deh20+cVMforj06gtknBCgXs8lytYJCDTNjGK2OVwcPHz179vTZs2dPHr98+uz55YsXT1aBxfqSnTbbm2W0tlWptohWSSitbibejbtdVKLvitaGbzBRYFSj74QkdF0uZTEXmcPqQrFY4Tbmxphkbgi1cr6QKRR4+nlyU7Zg2+tRPtcNGQC7NsMXQgnfVFS2zWuzSjKrx4L3opno3j02AOyYlUyyqqtav2OojucGY3qtTHa95xpOBwqYnmdJskVk2IGEtaW3mYamyUaRNO1OUlISNxLRGy8pBBy2lQOpZ0Ayx9UZ6pTuHgTBpQ0QMxQGAOczuSK93eUsvXioXJSKzCiwyDoJVcrM4ZXMcQK946gbM5FaNuW8MZGU75aTNiXtNsvUcVFZWVbVGVY7TMYDen+QREV2gRcIQetuN2QSzVCODSmFsVRF0dye1bVgv9Abdb2gq9kDz+n2fRctHyLbfQRt+tvDjt0dDudW0NLW3aYbtsTBQegbk1RFId4pVavFLmXViKcj4PsURiCjUX/R7a36tXg00StZIW8M2nOrP1TU7klYEAQpGPdMD6NaPcelO4Z4cNOzZKddTEbigmNkdDMwNV0u6+0UBdRyqkgQgKHabCabSqdiidSOJXd11bmY6zWH3pxmS6F4uomr0e3tyFZqN74bKRqi1LWqak3Wja0tuLhSaNuK7ERz2Vyac4K0OGoWxYg5LmxF4Di4lWQKGWJJMNqGXJGaqUIxns2kiwSYUp9rTuoVrk0AHI9mMlyL5wxbHQS8Ze5GopRVIpzalNfU/EY0layXyrVm2zbNqtmRphfhhIsXPFnt9ZpbO/FyOpH0ZIVemrhY0uUs5+zHQibRbvNicR8/d9rv7gllt9eol2OtdCxJRK5qGTWn4zcsRctWnCZf8qqdeb9rcY1wtPZlvq51fCGwul3XlRKRXDLBGQLXVhw7nM5XR8f3zw4Pjk7vXaDFewB8hq/9Ak3JaT/sh4PxZM4Uie7df/SUwO71G2bI++Hj9af379/Rfzwjdnr/7PhoAcMNCnGi1KqVK9VaIZOIRZA8wR13h1nkxohAx1LpPDJUDkxVaWPRf8CGYBBXj6D2DA9pYswUaY8oTJ3u7bGS3BQzMoTLbEvEDQZoVM+I6MwnEOnfOzw9OTq5uH9+/vABMw+GztbLl88vL58TML/EA3JYr54/ffzsMcyPTk/unR4fILTNKe/uBigcqxLdYERh2Bg23ZboNiPDIc5JrJOeegK95216FTlterg/7Gl6IDednDsNtGwintxQbWLAGcLG+K76sHl+1eb3wtfXlcp6ICWanuwteWFayPRzbVeWx3LLlD09GOgWt5tI5wpZAv040xUQWlKW/l0C252f4nxgFXd36N/dIR68CwSOwhg0FqfUoFBKV4q5VLrWyNfrie3t2Pb2dsHoTyhg4wItF/2AYBB3eGdIefX0YH9wB8AbBXibYpuidObjcDodDMLhSC5lqk1eNcWG0O715VLR0GuSN+52x2qpmMtUNbVBrNvw+ouwrRkUEmxTUwV1Nu9J1ZYqQKWxztWq0hRd/WE/wGYXmC+gdzJD8WOxnk3vw7Pqw6er65vbbx+Ojglmjw5OTo/3Vo++XX++/nL9/uzgTgcKdgSvf/t+e/3j+7t7Jzgcx/S+7a/mB28/vPt89e2X2++3X25eBLLWG8HifYoF7jnx3/8DwOikeZ7X9WF344UYAjQ917Du9rz+NmGGu5SwQEIXw2iOKtB9ncnXIG9QbzY4MGBMS2LDnDCZq6DsWavzXD6dQ1AvVVjfl76PyAVRLngycLzaVnEvEAJU6E8aEkdUmMLEdOPsSy/s/Hx/NnDVu16kprSYFqU1PNxbzkdsI248ns2nyCAhXrmcHxytDukuxKThi+eXr7Ca9+Ly0awbIIoD74Wmapq+2VZq+brBpp8pXrk2w3foPgAS0AcEHqtoNoLToWwEhtquAYFycUo+CZmgsARmw3F5IogVyiri2WxNFFuVXJVoi+M5/YAAGIouBP7Q38GsW2BKStsNO5bCCtjyZhaKjf0qdy+TqUfphi5R/MzzitUNXIxcdWeHB8wvbdK1207I9sB9S1ZtN+h1CKA3q7LuZnKZ4TkQ3rKYqDlTvGhvhByMO+1IlmkQeYWYJANotgzVgj0D08/i63ePGtyQsb3N4VVS6oEAwISm6ArQx0ypACUiqA+h1ZCDQAVTHa2yRLlSZ/YPtToToEQ/evN7s9EETAv1Te8ZW9jaZt4dGnSW2UY9gAgy3Im73SBgk4KWqlmqPHLCwLD8znDWJ37qSIZveQMkJAF8HAI4f3b8kC6z1+kSi5vZk4k4nMw0fbA0/LBf59qZBC+W68XhyO+5d1JfKJZvbBnCwUyPx5IpozALOH1fC7szZzYt3gsavCj53dlgNh3N2SIH3UQwYJx4R42iJKfixZXasQxRyZU5Q096Bj3nYWd0N/DoyNndnZ34TmmsCPLplNKqljsq8s6Qqwh1oclLQi2TIB5BcSzSDnTNDyStLre1XQi3obe2TRBM1zlb1MJiq296qZjnV7eIc8QjAOByRlIqBMB6K9+oEK2MEPblyvlss18TRhw9IwLgRIxAmUMJWh1QcmES/qTy2QqRdOwhV71aJBlrlDg4pbYte9ZVe16wtyjkHU5VOjX6+/lYtORIbVNv8ed73VOlllbuSznVFaqN4twLzfDY667Eqj9sCKVYIcoagmnJbRt2V1EcKTvW63JzvyrY61DSest+v7oTj+5GKsHahSS/J9ZbQrHSzKVKiSzhC/0Po2cV3GHI1ui0d2COfnhCpOT00f2Lx4+e3bu4f4+C3ukarSuKVMRXiY+u9w7394/ge3Ry7+GTJwTNEH58+xZ+vO/fQGsK4Pf86QXh4tECuvh0mzOHHQpfhBhJwrXYRgEkymZ7I4x5EidFMRhZpulg9ajbhQg9WAAch7ECeUDEmYjtyRrq/Yen90CrkDdMhqPZtNcdQdeb/sLhbIGB7aOT+0yO68kTtJwfPbh3DhdF/H1Ur0GyjuEwcYKP9KoIkaHCsYIy4WQIgZYA6u1w5muB8udhfZ0pcA3Cp4beErVygUKU4njdbDQOuI4i0yAQjsa8x08Haub8f9rxycnL50LtbKyburzsrD69GX+e186dllgTDUpB2mP/8OcFJSmJGCUpoNCUExKd/mk3GomnM7vxmuXyyZ1YOh2NZTIxYuy4TtkcCHmSsvcKUfNkLlWu1orRCD2BSjAf9iYrpia8t4TGZDccEB+djX1vvJgQIbZ0w7bZHYk2lK2pnenAxxRYt99rVnNcsy6brWaV13WpXtBtrmUTiR5JuXwxx+kKXy0Xii3HkeqigzqOrQhVdbm2aiVwQ67MVyrNcm086g/pR/oTJrRO78f+ejGd4SmtCYAfff32/ZevX75c31x/+XkfI3GY7CNu+Oj66vP11dd3p8ymGVrI9Nvr33799vX29ufzg6Pjk719MGBKud59+nB18+PHL798/vnzM7fVHkwGfda/34yhb6wxIJjbhRUhZP6xh+Ru9m5cizlfUPgmAMYMNOV4g+5wMh4Mg3aLK2SSyRwHAK4J9UqlUspls4UKEalKrS42KiUOozN1aAOgwlkq08dygYgjnFcomNcoqDd43VAlgWC6XOKwnoRRaQAwnVXMqMMuezXt2ps6MCaBWqBzstlZTIddfzAezeYj+MgRnYcdymSKEbSDswePsGxACeaTBw+fPH788HQxn096va4rNaulhmJ48PGo5StKG/LGhsE8dPQNa4T00t0COMUxzdCJbhkwTEF3UuPg6p7GtmAiRXEhzUpAhWIG1vGFfDqKlKTBl/NlGVgItUKCAIJA10XJmC50AOte2XTD0Kgz7N5IKWFttl77S7+qxhaRmkKdOFM6L2EmLgj7o/n6aEn8d9gfeKZB2MJaq7ZCkbI37jL/BR86U3jHmJIZU3Fjr4V5G7MSNxM8NNhwAwaeDebyxNrR+GBsPkWqjab7Rp8Kw1EQlVakJuXfwt2wtrCpRbMyN1euo2xbKbN9yRIyrc2n5fKGUpcqmwIINIfLyM3ozxsCnIvhiy3cVcdZsZwpUm6mwNmodINvSjJlDHjOtu91Og5kUuy+3bPbxmA6shvVmhB2TN2j4A2XkB5IM9vx60HUnkgzwXMjGEX4J/QU1MWSIJ0ziubErdfpPg364Shg+9WQuHVY8zr0ej2vEkvuFBvptRItud1g5rWO7tfNSr3EC8FwYNE1DFybifDSm2Op3WCZSoqUMtQcJ5idHjx+8f3qvprt65Zr2m3oHUDk1HKb9WZLa6keb513BNe0uOn9mmRqW1tRRnDxYBbp0YgdKnrQ0/WmallEKFDa2yG6thUt5DKZstrj9YE1LyY9LbuFlieGsNKlrKxVW/SuKkW+vIXpaPpxxXy+OVPVSY3jdW0rmqQIWSEOZQbWrM+3TYLHFN2tlB+bmq1V3RrBYaXUNNGUh0u2O/dm/omQadcNN6hsRWLpeB72H6EpqU+m3ROlkef3g5LiFKpC8rDt9xYUIvbUemdQ5eM7qVxqOxpPFLh2zzX8dj0ws7NkOtUY0923cNsa3RkjqUAZW64275ZFus/Hjy/vP7+8/+jxg8vL+08uTi/undw72Z8Pu/TG0DFs0lErpjY1WXrdiXg8BWOVXKnWaLXgOTeZLZcHGOA8Pb94/BBGug8eP3r0EMbgkJlk4vCn9zBw/ODeE+hlPCEQfv3mxcuf38Kgd/N4/eoVjBYeP3v55s1LYs/nh0v4JMDlQxa4EhHPBKHzRlEeb8zOLmN+FBWyFOZKUHjv9GDtNZ1BH+jiHtsmOkVfjM1tEQc+BXsmVD3cR8+ZFRhXjOTMN7r76EkCGOCXAFKNuWOkcTDu7KE9A49PePj1+2wkZjlnHsWTTTk1HE09Mbm727A9Nc9JI6cpG4sKHaxUko5XNhtPZCK7laeN+pdHnK7d+7uce3xp75hGQmsVXaEyVxJ9y3xsC6JTqQ0NSw6HF19etmrJ3WicQDyLjSvsW1FigisQieWbSj0T34kQtEfYVD6a16l0Bt+Jj8kShXY6DLl8iq5RVBgv++Fsb7HYI6SbjcIhStDD/nA+79NbSGw4NCnsGnczm3abCXGMu5TtDMNOp1nLcS26beBEWEHpteVwLXfYD/tiJpEp8RA64LNpPhQp8fA7nuNaYiWvLBY8sYVSS6FgSyS4yhOpnvR7oTvCtVuiyb+PcTxUU/cW8ye3v3z58fsv11+/fv7y9oBSon1suNHj4dX156ur67enRywnQoa0t37126+/fL29eX1Mf/douiLyeHx8dH797fYbwfjNt6v3X194zfZwNhrS/zDMTNn7aDIebgrQzMW8E/o+/NadNhOMsO48YogV/m0E4azReDr07e5o0B8Fbb5azKYSOSwt1rkGTwiCSSsIQVc4Cq31UrHWEpGClYvVcn4DwKVKAaljpVKrYre9WK4JdseWqhWhUqQIkMtXN1uxSm/OWiv0NCeTxTSgtFRjY3vElxVRVGXTGg2Izg7nwxnB0cbVaWMFv3dI6e/xBaWTDy7u3X94fnwK0fX1yb17K6IibV4oZrim4vBcQ27SbY/9o7ZmQYQMvhMIk/h37oQbLFNqW21F0SF2jEzMlcvZPCXl8S1261HUjGL8FAGTbr5iKZOu0qvmW1yzqTqW0x2idRX6tgH7DYrw/W6PqBwUOpyw1y6l8wCnIgRrK6wrC3ZZYtiFnnq1UswlEgTAPiYCu7OD4+NZ6Pi+abr0E+lceXjDHLXt2L2R3+Kh6yqKCoa3KSHGMpW6UabajFZjj3Zjq9hW2QuFpxAbMdw4J23EqTZyIYTEDJE9JuDFLgURGBP9XUammXo5/RD2czRN1ixdNWz6lyGkTbjKesOQ7mCjzI36BqaZfxKQtg7DBZnYOeRffact1zAWRu99kfFrBtJoQ5b+Wq+kGz2dTaeyyUSakPgXmwAAIABJREFUk2SxVQt1P3BRguaiiWo1rQaa1hOjCYKmLD0K6SyGolPZFJHYTNPSmtKktkv8j9J7rHB0orbbdnqtmlCoe92uI7NRZgi3I+cmSO0F/sQt53eSmYh8j1NCe9Sf+8KBXk6bTVX0+1hmoNQV9xBS2P5oMtR1ysdrNbnifb18cX466yuaZ8a6uuk53VEvxNY23UqhYYd+GLiadkQ8WWhbwdCrWapNR+mn7Z2fkltEBYulVKxcyEBkYN6T4IPublGER8f5J4LgBAFwqt4OWm6/VawlgiBNBHhnZyuaK6XSiaZcaVJeJRUapa1dIig7u7lKPi30ucaY2JGqb8cT0WyeF7hy21H7AwJgYnnpUpGjY+eYllr26juJaIXTA8d0O1aX8se+GY7OzISu1OxulcA+kZUdmdIMyscug+GhR9nUcpJKqES6036lI8ymw/GeUvMC4t6RWL1GHKlQ0jpta2xWzfZZtRjPxMqKMDLtgaaYw9FqMO33JrP+RGnpskiUhQ7ayHdHrjPtLqejg8PlwSEo7LPL529+xlwMBb/rz+8/fP7y8f3PH35+9/7y8dOH5/vznqVwRAPotODBSFg6nUXfq6nIsu6EFN+JdsKilP5/QbD8APhMnzw7v3//7Oz+BXZvmZHSA2joPXjy/NklhDLef3j/8QvF4euvv/72j3/9+a9//P6P33/98ePH92+f3j5/dO/0+HCBxUybsFmoV0t5Yn2RyF3TnjUOdgFbBHnFIqXZAibevT4lh/PVfHXAVpDgkvQQitSUJpyD+BIuYxwI/kiwvIRoRICBItjkWoZ2p0+BOSUosNtMv5xOr8mWWLCtYHd7ji2lE4LZH4o1wiTRNLouMeBMOkFPD4357dz46KjLpV6/qYT7724S6sPxh+fdm3urT/vLlz/PXzyju7tpNOua1FX1zsLPdF6eizvRFKhzLM5Wo2M7EQbA2zuJhqkVUaHZjWxvo2SAwXysBSfYLFw6lcvEMoU4etDJfDbZGkx7g8WS6OM08HuDcDgkAB4NrO6o36GMIhz0HN1wsEiC0iDMgw0C4B7dauNuEMp8kVcF1W7EKGZyhUSmYtJNOiVMELOJPN8SKBI1OU7r9wxRgYerabbKBXU2kVMxosgNgUdlriK1j9YrYsH+BOVTyDntg9LurZfEawdWOO2f/gzwvP18+/Hk/PR4vT44OSUOdP/25vPVl6s3Z8cwXYALFwHwy99+fPv624+3x7Pp8nC1j6/ur4+//PLtl9tvN59vf7n9/V0oagMIVUBJDV0vogdjVhgLPMfG/FV/0L2TjAAxpKAEEkX/of6tO57BpnWAAZfRhC6SThSXDlqxzBY26wK6iBQzs2Vis5WGLDc4HppCulROUXIKSCmWCFCgRQlXJOwEg/3xZuhpfClTznNiLV/iUeOsCibbL+mNx73hZDIYDDqGZJiS2DYVlRBGbEp2j/ncjBaQNaEnNl12ba8Hy+nRam+52Ds+vDieLU+gYr55nDw4G2LrRa7D9qHVKjewq1tubhq/FjFVx4RlrKJs1HY1UGPX1HnTkmUVXrKYUzYMgW6vXCEbje38tIO8lx5bu9vEM2JbO02ZozdeNWSibKasWG7QZ063YQB5TwsS8F6H0vigLWkm/YmRg95OLp9HyQhVIxTqy8VsrlwuFKrlTLpU45JZOrZq6Oj+ZP9wNe46pmPBPgkjI6iVdtygY6qWPxzbtcKd7jGwm40wM5yjL8AGqtlsYD9YbrVkRZTZZhH0r2AEgkl3825aimk0I/eCAKlpW97GVBd+gSgJb3CX2UCYbKrKgpElsfGNViR8GCmfIazfLHW120SljbaqbVbIMN+GYS1FFiGbYVgdNs1Cb2AgiS2enlyNR3saAoJsioCrILsjHl3NNXL1Mgfjwxq9R02+FcijUHWDge3v7sSzuZQWak6YKnNFdKZL1Sxx8AodzWKdUn3H52vyukR/p0GHeTK2uhOuJnfdgzXP1yvOdKBHMolokuJKNIGhqmg0GU0n49lCMhYVq3HL9UZOrzsT0otGmx94HNx766lsMZvN5QqwMeCIsZejiXwcMX+7MeULeCJS24ymLatTrzORc6wz13IUnYgcRKLRnVqgCKJtDe+vy7plbzGHAYRq+neL+VQ2E7Gsmj7sFOsiBewtVgPdpbwvRmhGZ6ZuOk09bBqjhBnU0tFcOpVMZPPJcqppFZtt021l5NIW/bztyG6+WM7UZjWxLzTrihbJpKKZYrnFFxW7PepyhhWLb8fQzM8U27otZpXa9laiVpStHh0zY2z1iAnNZstpQa9p3qRIkTXecqqGpEqVdPCiO52PeSE/m6fLzVyhkBgKktSjqHLS5r1Bv05PN21ub8ea1V1nqi30RrvdTe0mM7vpZokSSc901EUtRcm5VMq5I0iNWkxwn9gfLF8G/bBDd43rsWF6z/dYvTfs9Zgt6mx1cHz++Pmb95+u//zXn//5H3/++7/++Ofvv9ze3lwRMr989vDifH9/MYDTqKaKTTpOpSLAEbddCjcekYB6i93dwYDO4erg4Pz8glkzPGfyPc8vL188f/ro4f2LC9gbPbw4wzLTOYUVgufHTy8Bz2+xlfT1y/XN9x+///6Pf/zj1x+///nPv//xz3/8uL25ufn4/sPHt8/u3ztcTfqhZ+owiUBZPRbdBI9tetNREI7SocsW8lCOE2DnzISh58v10d7+ycn++gDV0QXMfCkeYn0AqAsdHqSNloHRVCaRv1HSa4nY7GfSci7FMCcMHSjDUZj37xRE0tFsdiuzvX6RGX2UeePxv4zG8sT3pxlnP+71Ez2Re3DQPvp5dqZgQkF0NEkP9u+b3c9ex9tJQ5ckE4kRk43sxreiKdTmIz8VVZmPpVGdjkS2I3cJSISIyXYMe9/0qom7ZOPb25kyZZD+fNIfrA+XqzG9HJv1Olm8wG4H3mQCGl/XA1uHg6usyq6qDCedQXc87XdDS6T8vUlMzMbYTT5HlLzUlNtzP/SapUwFRkdqrdioNAZHdo7vOpptaI1aWliaxXQ6GcvWq81GkzhP3n54NunPB/4chf19KDvtHR6u1ocHy1FHkNqCrjfXv/1xc/Xh5t3Ryd7B/sHpekbZ1sMvH77cfL39GX0CiHIfolH/8tfvt1fffnt/SinVxf1T5m65OP2IujRh8NX1t+8fvJbUhxDWdAAji1GX2PxkNiDC7xim1+nQ7YYCNDOGIkpMkZVtf6AH+rdwQDfVEEvDG490SxMq+WyaCB/bU6FYiT1gfIFSwIaktlswY2jUWUW6Wi5s+G+FWTJAZ5V1hSmaNjTf0xulXLVYl4Qq1yAKUa00dNfDOzAYdKeMCncNSVdbvKyKAhhWo2n3Ol5AiVJ/1OuNJ6PRbBTYHowUB5MF3bnj8YyuIcHwwenJEdoyJ6cnC1hbabDDypW4mkpHFNbzkgZ0MV22W0unWd+IIpqQMCYA1hqmrcGLlu2uQqSynEUJmo7cDktu2WQM6n+RaFEV65rX1lxP5eumbtNtMuizBmEfJimOjwuHlxW0ZZ2YRbedZdlhgkJnnK0JUljIZDOJRCaTyiTjqaqsNOky5Ypq2GGrE8NuYGuaYXk+7A9YUMLKmKI5XhBqpSxwHDNT9CubY+NTGBVjlJLQHT3rYhVV7wpUItm2UQ0yZiCrG3F2BQrL2IA2mD4WYe9GtRJCcGhQa0y9BNdns4HkesTFAcDOnRcLnA0BzdZm35eOE8Tk6FL+Be+YaqTMxmkjaFCgHkKUfD7qONAWIXq6Ub7SNwaHMvaSUYSuc3yTpzsqX6vKks3TsTEHlNUYXZNvarXoVlYsCq6h93ihUaawmi+UAMB03ig9rLYEx1Q4bSXNh35hGgp+fzxeWVKTL/e6JUFq+sPQ51p8ncfSMbNDbGB6v9kUW+V4ROYqvj2e+pSfd+qTRi+ZUjQx6HUbOUyjFdGBwAXP5ZPEYSnu/LS13dDKkq9qvble2837TlDIZLDiySZxIWNFKLoVje80QgUecd6DcU3xXSKWjCttb0eT2SxWanKBWbUmo0ZLEA1nG+UWVqCmv5sjhl8zvZbWbzfNqO7yhSLdealkvkwcWLCKLcM0+bRY2orEIrvRHUrtUtKiLIxUudaSthPJ3Uwpz9fKbU/v2VzbiOeT0XKpVM2VjbYWGlY+kkxVyqoVOq7hQ2Nfs2aT+byhNxTdztMzSLpuZdaYVpvS6FEwW4x5PjtfpPKtYiqSbJopfbE3nh6rfNDryZFUomymolvSNJ3xLb8rGkY/GyWEj2VTvmN36IabEv5vbSW2dypCqdwUWpRIDWf98Xy13js8OTs6OD7FTiX9gubdRvJ4tZ7MFphuGo/YnGsQmkwa3fED+NLPlqv9g6MTYCmmm968//jxyxeCyU8fP/789t27n1+hpHxytJ6OJ1CE1aSmQKkr1CkwGo2uUiZXKFXrWG/QbY/Ix3wFT0NizcTCL5+/fPXy+fOXL9jg1PMXL54/eYqRz8vLS3x49gjit0TXnz1//fbt+/efvt5+/Xrz268/fv3HP//1z3//+a8//vnnf/7Xn39AcfLTh/dvXz17eHa43j9c9Ae+YRF48lw+FcesdmRT3sZxyKYyxWqNp7y1DdNQtiwAYeh+2OszZU22RYASPQR16NYRN3LwTVVuiWa3Y+L7YUFLiWYsSaw0FyPKMFseHw7iq9/GlvbtbbGxXr8y5o/lwyfD65eTD+86Zx8aPO76ZsNQFEs+e3gbxuf7j3hKGLZikWqeYhed+VR656fdrUR0J8mJfJ7CIsVCShLjMeK6GGfDyDkFOAS1bD6dT+8AgPPVDlGnyd5ytRrhJUyY8PvGU5GZuTCRIUXUxZaE+R8C5zrfnY8nA4KvyTTUAcDNpmKKpdTObjoW4WtVwVp0QqfFZXGIaq1qJpOo9AZavgGLRqMtNPLKUs8Tb4/n6pzYqGE3rf3wcjEZTYerwXh5dHq4Wpzt7x8fTF2+LhutOt8yfVU9++cfHz9/fX/v0b2zgxWR5JOj1VMiwDfXN29PToj+7qMZf3K49+L7jx/fb3//eHF2dnJ+sN7slZ+8x3IwseCvBMCfPKFFADybLkbs7Pb7w85g1Cdaz1Y/QgfaR85m7owZBxgY/0a5sf03tsTJBKNxnSzMeNYoshcwBcwRBwANqBYor+SaXIVXVEuuM1cayGMVWX0VQ8NlBC0KipUCUJnu+Xpdsj1DqJToL0G9ELY9lXJNNswAy1GD/gqGHyOrISB/rdaqVYzyVHnobAfo9o163SHCeBj4lEjZHqZhppPhYHF4dHhyfHBwwrrmh0d7U98wHN91lWo6mSlV4YsL7SpRA9+1sHpqQ1RxM3RmMbNZlwGwy4aWCEqYqqhdyRC5yabZHMNP24Bhtouys5VsqQ1YuGj+0Kjxmu71uwPidoM+Kx/Rz+8wETjIvsEujsixnokzCxeWlTIRVeAxHVg2Chuv6rZKDI3neWM4Wy/HvYCeZaulEfX1wU7Z1JATdCxRc93BwChnAbxgZYTBfwFwHioAm68RPBfyKQrtqQzqQdlMDtR74wlT2JTC6e1hrn1sih1LRpSOQxFDVEUZSbUiaX9po20sUC0daldG22albJwZ5pC4aV2ATG88FKC/wZql3qbjTKdKaamd6XRIDJjS+i58+lgFGIU0FMXbxPSRBbXpkw6kUge9XmfUHYVDTRUkvU5vP711XV1Rat3ydiTZqBiB0nMUH9uDdAvbHpugdD3H7WOCsiR0946IGo/nehgM/WGt0ixF85lMXRL9XqfPRv3bZhsr32zcoK0qmukY4liyI5mB2Q960/5hSy56pci0LhjTjoxp7xb0xCl94QnY6tHteBRvX0G32x69Pr3XM+IZ2xnxrY2QCcbcSqk4plCJPuzyXZRLtMLIFtXARTNjZ9PmTUFRPZtodbWs2e9xlB3p7VgiyeYOosQ3EsVcIc1ZPt8MzbqQdu3y9g56INFMOV9OCibzCmlmxMIWlnuiW+lcISWsGs1QoBxWIQCO5qqFWjmvOnrfF0yVWHUaI7/ZsqHL456XiWaThbph+Y7THgTz4UCzJ/3JBDpYPNcqU/YcNP1WYV3ul9Yn/nw1ExqZ0Tqd4ui2yGoNSQ4GveWJJoa+K8eL6brWVEXRsUVJcXucZE4oWBbLBZ4fmKprKs46s1uhA5kiAp/OVAoZrMJCjwKtQ8oUCjWJaaea8H7ujsZTGH6vjk82ghqQbTw6PkN7lWLgeu9OSGE5Zw+2PIk13inTwCLgZtoCBKSEkpcvXr55xywRrq6uvxA8v3/789sXl08enB+jCrmgrNAyVaJ1EIvOpDcik9HExgaT9Y3qvEBnO0CysLd/dHrx8BF2g59jAPTdu7evXr64fPz0yWNC4wcP799jdsOnQHHMWz148Ojp5Sv4Dr798OXrzc3tr7/9/c9///lff/zxT4Lpf/7x+28/vn54TYnC8d56PYbjoIEnkqcbGT4NaSZ4iUcmX4JcHFOvbYrynWaOQmyEgRldN3/Q11k5qMY1RAFVNzoU8ch24mC9SK2fT+rrLwHxqrPLwHsfnr/xDg/llSu+fDY5uDoXmnzLaDUMUxP95WNxOdk/yEycrWgmEYlsYRwB6+nR7Z04UfpoXmzWY9FkOpHMoDvMHgT3eLbpaBzvbi5VyEUj2XKxkDFd3ehM+h4InaPIG79sWPXiYxCYQQc2RtbG0FxsKlJTdjqOTlE06PU9mWfuZ1K7Trl2tpTa5mq8YvWDMcFmNt9oSCBsXL7uus1M0fRRtuPLaXmmoP6RKNQ5oVbNV4WG/PDjwbI7h4bpHht425+vTg6HSr5EGXi9JrVanmE/vP32jQD46cOLQ7Ssj/dXz66/XF1f3bw/P4N06AkRvbPjg5c/6HHz49352fnJ6XqxPCD82Tv6+fbm9vsvt9+uvtz+dt1pKqPZdDaBJjdK0JBTYZqCg4CtAcMyjaEvFPGYBAlzraHP//aXWgQzl8OAsGMKWArfrK0U8mVWPE2lstUGV661ZEttNUWRrwn1UjaDMl2VNTmLIL9gxByzBaOfwGuO0eSwAVmvcjXixFyxWFcMq0OZbTic7O2tZiNfLOHbC7lCucwmaxuaGVDaEA4gz91HF67XI4oedod9hsDT2fHJ4cHRwcHZIabU9vb3533fD3vdnqfXMslMud5SDK1RrOsWM3dzAsJXW1c3brBopzAtCNdUm2g+0IXAaA7w06vnytVSPkvhENt0jP8CgXe3sq16oWGKbcPvaxyRRn/AxCrZxFu3g8lNttgK4TFdNhwCFS0dT7LVk2SC6dYBfmPYvacAvbWT4aUmRxdIqAv2dDmA4GMn8ErNzjh0UTGmd2Ojs2ZRYPOHXQlrBRmWOscTm63BzTY8fngKjVF0R9O5XDqdZUI8AP44u0tSf8WXNGugZlgflZnpgjWj5o7KBdoIJUh9oLq9sdoQYJDSklrNvywdCJ03O8Ds+JgA0I3LwsZ6kCiVjZ4ypTq81FsMB/PFtN9hxQfQaghu4M/xHRbbjLaY7zHhuuIplm8HptQPTb7ElWdOp23RBWm3cyMlndvmCkqo+j78KFjz3ti4qCCHbJcrhWJCEIadZj5lDZygO/J7xx7FHLdQaohNtxt0JWgwU7bQtukcQDo0DDTdN7Vuz/CTqfnUG88m4YEs9ORmaVVv+/0+1uRtz2Zpu23qpqFmo/FobCuynaWYUSvLBlFIdbfkmZ0YeC2Th6BwFIngwkdjid36kA6ca6UdU1ZcewstMza/EqOYWizmY+1ApTAVNnVZ0s18ZWOInMsW06lSrpDhTL/BBxYBlm2ViRwTV9qiPygneQbAtpiTiKxiQGErlStlaitecLk68d1tGKdXSvVyQXP1Qacq6HliXJhNyZQpLfWtsBRNJnIiqhiWMQn3YKtKh3rgNAW5WtF4vmJ7pVJbWicsa7DnL5bzFp/zj4h5pNLJiFHrN9zhcn7epnxIb+wk481auVELduS+0wkgl9BNJ1J0Fjl+GOh0IMxeZie6DS3raDyTY3WyaqNFmEKAQQeNEvdyMQ8DAiwzxZg8RSqTxXhPkXCnJWmGDe4X9jAYDQs1CFkdQbQXShvsw9npGaShMZ/MhlbXhNILrAvN5n0mmoWC92KfUnX6lvP72DB+8+4jkZwff//tjz//43/8P//9v/7rf/zHP3/9dvvtw6ePr4k+nx7uzfuuLolcOctENKKbBywQ6ZEtZItc06CYOhxOFut9SPjfe/iUOPMLAl1Idbx7+/Ob1y+xCfzowf2Ls+PDU7Sfjyhs7bFxLGgg4HH//OzB48cPH6ICDrGPe6wAfnSEp48RWhcsgXJjaNo1iPJQeEQKjQPEthS4IvGNbPyuG70TLaSTWKGslkqFzMmD/pMw9fKdWnz9USz2RrK+MC/edi8v/Uez3HRiRaoHXjnPGQpvmLKsrz8tD94JTftM3MkmttKT+4Fly4qX2UomdmKRnfhOmmhldAeaqLs7mBlHwhiPJXP5dDqfSuXyFFXiuWwskqa4UurN+905ZA7Hw1FoM7wxmUzXRohId82WIIpyE7J4qkrw63YoakjIlE1Hh3QflHtVpVpJR+LJnFZN14NZ4GqtRj7P8zB+azUqlYYm5DKSi55Zq5RWBjzj4pVGnQIrJyiioI4o5HfnM9SRMWB+eHB6OtbqRKIrQq0GE3ldGnz849Pth9NH96FHerB/tLd++vHz56urb58uzvFeoAx9fHT48+/fb2++/3hzfEznjTk0YGXt3Y9v375//+WX66tvv9+GvDREV38xHk8ngwFx4AmRxyFbwMJ+jOczqX9QFpMpHtkOM77Ttb+hPMs0IyCRBZLhGTwhIUrJxGQLeQivZYkAF4rVBjFUFTimq80aC91o+7K51yq821B7LtdwRgi6qzWxrTXrPMFquVDGgE6lUBYpFAdh4IWT9Wq9ng89tcH2jMuIQuUKbJQ6w+moP5jOKX0YwtED+tRTOu0EvpPhaLo8Pdnfo2t6ccSkSg4PMNEw69NL02q5VLYiSJJQTiXrvoNhdyK3oLsqa0waG1cRJmhsqqINADY92HdBIMJqMJUKTAVFYtHd7b8QOLpbqKVTDVmhuBWqDbpy4WhEDA8yrrByhWUh7Bu6vW7HU8U2hltUbEgyDhxn+jc4sbFkEkt6bBUxGU/k4pliJq/1e67tdCfTvl+RexOvbTl3TrseBC411e7AHyRJ6XAGcvAJtvoOvQEGx/gdIvKMXGOzIhHfiW3ixW4SpSL6Kv4WphbpPaTQlkqk8TuwmBXkNtZoQGam9VjIZzfLR6UytiWrhMtMv5lhM7NL2sxJt2B/xCyPJGZOiCE6VVeha9IUvcWyP9gf9wPXbmuqJCtt3Hts35tpSJt3ZNliCmF+YGqEc/Kw3/FMrizPg8Axem1LD5tWPVaLZct1R7NstjzG/CXY7LYGCwmrxpUqiQYv14RYZNALtMGo741VsRn2inlRV+gneU0Zxk+aho4EvBMVxeZbQaPQF4RBNdkdDSfzxeHTuftCcc6HSrk3ddvYuEZ3iu2N6f8/Ve/Z5Ma1bQleVhUK3nsgvUUm0iPhgTIob+lEiRQpkhLlva7c1TXPm77Pds+LiY7o6ZgP82F+5+x1svReDCRWFYtlkMhzzt5r77XXokus7EDJKJsSPUkWByZBPoHja8PBaDdFWGFrh9UTd7dSyIoyuUyqO1NpuUyN6YSThtYWG53EKZkulCuVQmXXcO22584sR+Z0d2uH6Ujs7O7m0jmY1bUNX1DGnt4sq3pzK0P/sLNVbNYaeW5QF63hgAcC3s2zAFxtlvrrZn9Eh9NgsJ3N7pYaDa7XsVwtngwGWiqdL0GCpdw0NMvS43YqmyF4PKSfYq/mhxPV4Sq0XgOur3WkHiGejYfZ/9umrc72QsKVqtgYXPL1diGbSfF77U68Xs9ubGnk2aKkVfgyLUM+BRqEORMMz6dll87upHLRXuRq9gA9muWEMi1FkpBlNCu0gHNstaaxcDH4QxgKtZoGm24DXU/iuy3WXkEVhzBzqYSEM52md6U6ZfgwYxNlTbchPkcgC0q6m2OICV5BkvLswQMCpVfX1+cMlzLnuLOzo8PjY8yhQJkfZq3xeIZ62pzOlP2j85uHT569eOfF+28+/PTLr373C/33+z/8BcXl337z9eefvHr54hkMEU9PNrAqHg0tlQBrkSLfLooTu78GaEzmEKandWl7YTye7u0fHF9c37//NorXbz97+vLly1evX714zgSp6Rky4186BRGVYbMI01WcfEwKfwXVYuQTJ2cwhIOQ5h7j+Mxnidmg74WeDSalY2rMw0bhKLLgBctWs8Lqond6eK2+szkx6g+eTm7eCm+j9Y384En45vHh+x/tSSeXbr3UNHVOEfrt/um7Lxu858+4QXp3uzg9uHJMo6sehui93EvdS2/lhG6ntMvoqVtJhxuMhUyBEi76lZTkU/QtlrPpYqNeLTizUTg7OlzPQ+ZvTqc9wop/V2J13JEj9nptzC9CI7VRa5s219MMWWN+bvSEEut4vdttFjPbObVXqpuuY5gSV2/JBP3aKOw1YddW7g8Nh7Z2p2n6LeCRGn1rrcUM61u5erdvDeazo6PTyytaACdn18cOrDh7HaHVtAcGLzvTh598/vWby4f3H95cnJwTrjt554M3H33yyZdvri8uoDZ+en5+cnT83rdffv75N9++uLi4IQx8ivtxeHz25odvKAJ/Q8H5q99+HnT4mG7g6nBvDsvF2XREAWFGr0QML2JoGCQyRaAEY36UAo/DArDyG9O8ExtK5AUj31HbqHg2WASGxiTmvPKlSoWSh07fgFu8oXDtCuyuaVPVm8l4MEQrIWDRaSXSQASBJVjWtoGj2/StnWa9ZyWyN/Hs4PRwc7ieeKYs0VEOewGR7/UJc1nr1Zxyy/WUwi+UvQhJzRfg0S3W++v5fH0EDcub6+uHqPfc3lxd3t7eXh1NYTvIN6o1Sn74Vr3Cq2oOAAAgAElEQVRc5aC8MfTocl3C9drdge0wynMAmVVdZQF4GCWKYXFsc3StdUL1+fROJksL7+6R3i2WUrlmW9JUwx/qhJgn8A2nRGc2iVA7Zhc0nkZxFLqaZFhRGFEATsIv8w9h+jxZlBqzhXw6lyJEQKFxO5ffLUie5fqjxf4yGEgqpIUTdAnKcgD5Sn0YeL7Jwh2EL+Cy1mWjjEzsCnK0kMihtwirLBKnoZbDMvY0eospfIQ0Yhd0isRNLHkAlWOwn9Xf6FvLRQaPmSMaPsyVS0XMKtcQ+unvCNiUh+EjVMsgQMqGgVvMSgDdCsrKgZmD9XKy2D9gC26gY7ZMNzXaOTgm6A/e6oYGz1+KvvHM1z14DwSHqqiEclEYho6uxpLkr91uOVXPFnptCtb+EP1lhrWZtKhNr40ZKw3wTwd9vlMoj/25EUd0Gy2tMlxJdWFgjSJ3zDSgGZ+FtastU/f5zqCWG1n9cSvjmpv1dLRa2hVdbnSrijKKPRgvwWEJUtbMgMpoZilzSedyPbEN3vdgPonoNHAGk617W3cH0ta9TCqDFy5fymZ6c45XnIlpLTnNBssKAkIY9WVFu0ZWd1yJ0raeJEqGuXVHN9i+l9rK1AAgTZeTY8sS6rJZ3dqmGL+zXWpV6hSAa/xgiBJ0fYui9S5K0I1Se90VphQoDX0LJehmp9uoqLY2CeZ7QS6dz4CiUWmZuj4cxmWK53Umgqe78WIeKrGcV6NRJPZMTuqkdnKnWpNrdGb1h7y8H+/vHZpKxzipQj0jmxPGqZ59EE9uzH5Ex8X5vFyhdK7aqNoda+r5nOSOu6ogc91Ge7JvK5pjeAeH04PN3gZY9eTy8vr29voalb0zQhGb5WoJaT5HT+wPurSaSwXaJolQI0ryqTTUIQADkOR3m/BZa0GKFTobXVr30JGpJxVbWqrMBZiiM603C3NrU8Df/YMrwskUiS/ozLhmIxSYXrq5fXDGJDfOIS0Iy3G4smIaiXALpjhX+3TebE4IYj96DOX55y8+fPPR599+/+NPP//y+z/86a//+q/+4i//4g8///DtV598/ObV87cfPcTlWArfhakhSl5MtAra14Sd6TpKgCVtSmPtoRfhqS3WiLDH9PvPLvCqEOYiwHxxxZA+G0s9SHrh88RcEGb1kIuH7W8A9b2AjvnxKISPxAK9usOjvdXB4Wpv6U3OFgej8elUuHxkuvvjkjco7FWMoBB5hUhMhwq/+ficq5fqhsZJPbnDXT6bO9wTrzcaVDrlo7+ctg1H0ju85+W3ClvZ9O5WttPnuwQq8oViIjyGqg9dHWVRkIil6FDKlKu5dKnVqFadMUys4nAcQ32SArAPcMdGAHFShrPxELQfSZa4DpPVlU2uA9tbVnijDdbFR1K7rcX7QTUnhNN4Ntkca0K/3tGgNdTr9tptnk7qnDw1ZJHrlkuS2SqU8qAp9aBHUa3SbaiZWmTP0eM/g00kwdn1gGni9YR+V+L7ujFYPf7wmy/fv3704OHN5fn55uT49OmHn3z62aefv744vzoHzKUVcrx5/s2XX//2y29f07LB56EQfXR+/MH3X3/y8Wdff/vVl9/88NWop8yg07K/Xs5RrJ2MPMejIBzFlHNgCmn8q1KgB3odoV8EYGtgqL9x3ADzlXeqHfHYt6UWW811hoUq0EGjjZEHuqQYqQwcxxD7oPtA9bDVQlbabDPThhazB0CrkY5kONH1BQoaCNGMS91qKdGMqRPR2j4+2FsvxhSA4VQDYgFYtLpqRuvVjM7vVTxZ7CETXCxp5YWuj1HZQ8xhXdAOevzo9gFm/6DyenVzfXYwj8OBQTcUY1L9Li+JvKQZNtolmIJlc06MEgz4yzrhtq5RImENhqPFfAbXqtjvU0pBp1WpQCEqm0bhMOH7QWAoVy43BdXEJIs3Wu5R4jyibM6i5AU5C0PQ0Xg08hGAKUPVoVgMPEq7MHunkQcxYjapR6dxJocgn82WVd/2UG4Pbc2E7aZhmXdNVkoPoCDs2PB1gpVAYqnLfIETi9/EmxBm9fSOFxR4lNMNat9F58pdLP21Z0MJAKST8wx9MLFFqCggVNNm2t7eZQNXaSaXDA1GCC7jAtjgBw5EdJgLTNUJxueFQpbJKJQKSM6q1VK+VilVu5IimovD8WjvYDIcuoE/UCltkHVdatfhgtRK1FiAshKhLnqefcWQHXsyawsH7sitiHrk6h5hQCtyO1yHfnKvQVE3kiVIh5oDk7loajpsCX25nUvlakppeLKQFGESROOpNb4eVydXTo6S6tEkiDWHzb/7ocv8qlw3mlJunc/J/Zj2QHwwHw2j1ebi9PLssCn1JRUQeOiiYu4klp2arDd2C+BSV2EG3pVlVZLng3bNHix3Upk0eyUJpe4SwKVXLFPO5cVFs2+6fr0+ESlfhUvgdjJRWUDjvpXTXFsZeG6Dl1UKmwmgSKXpJ+SggNO17I7gK61+TfHqEOJIbW+VmqVanh9UesbQEYoifZpOwQxIWMXWHi+NJbGlaVv5Yrba7HbKZTMwJyOjWdtJZzN0JiIAAzJGxa3dey1KTQlv+P585Dpjr9b1x5HWMehMErle3K+2G9l93evZ6/H++tjWusZxeatIeU5KaOV63v5qfqNxsR/NAie9Xcimd1J5n3KUsdsXnLAudvqyopizCXTUVS0cuVGQQDYvZi6fTKiAwtvhBu3d6/sPHzCv+2fPnr989fK9d8F8evr0rfsXpydsVweOrdDC7vVadbCo8tk7scZcodCs1ZD690SovXSgwtdBRthr0AWX/qu+UwEDEuxzNEv7gkzZ32DoRwSBKb3fO9gcnp6cniM3uL1///r6/oP7l0w9+uY+Az9Hm/1kjPdwc3SwdwBL1NXBZnN8fnV1cfvoybuv3n/98adffvP9j7/88o//+E///K//7W//9Dd/81d/+uVnevz4HVxkP3r99uP7JwerMPZNOvW7bYw6goeFK0HPgrLbMoXmdq/LK5qiD8Mg6YkRLgDnbH/NnBiZJgQEkzarFYQRZrNJHPkeHR444BHiRlPCA1HoReHhQgvdOKTEKg4na3MyXiz0cbTYDy9OovOpe6jNjkJnWCs3dZVTuCaXDm8vbricMIwg5GYcR7LQN/tWRzkMs9uUQdASLHR69cwOYm46x551Pp9mh1tisJyj/VGtFzLlTrNSc8aTmA7YYDayBrTnLNA3Pc8zoHkEbXkweiwMahgYyBhqujdyNFngEsnYLgd13T4n9iR1eLzRxbppaaPZJhIJ3LY1WDF0WlKvVKvn0tvSXOuLPQq2otIpVgqlrkALgVButdipZHIDbRjt3cIC6fDo9Pz25nwit+sFuJzLYqsjaGJv/vUf33z55vYR3XqCtpuTzeHbn3z66WcfffIegeYzpjl5cnNx9vqHb7/76cvvPqBFcnFx//IMPYTL0w++/+oTAtDffP3Vtz99M+aNFRKmfeZ+TDcnpqOG0augnws/NOwBhCNnACsAgAjALcP4DcXe2TgM4kS6YzIJbKldLlbb8HcFAq7Qo0jnTLbawaxnT7cGIoT+QarCo9mB1izIWvCv7sJurt2gXJSgfrMjyJJBZ28Xpfluu2NSZjSZzPcwkc6415GjKxp49oqoocaoDRejGV3Bcjmd76FJPMZCjL1hMF8dHJ8eU3Z4dnufEkZm8XmS6HVulvQl0cDQZchPyQKlwKqsov48tG2XDeAQAIBQBYjwLAZ7tkEIGC6CI5CpKH5Oolau0SUMjVk4zJJAuA6whQJwHqocVcn3ocwczQ4PKLFj5VZ1EM6YwhImKMYogkqGTR/rRUBOFuZSWZYqooeUTWcLyPF3d7Yo9pUymUJTD32KCPSaMy0KB7ohv9oEwn2Pjlud3g1QSB8m4tIOG5vCfUwkmW3HpIVN56trwOMIBWFG1tAY+xna98DPAs93eImnbKmfCGlAxbtZR9e4SPl5gfB5JptAZwBnevYE0xlqy6aSQI2SNrrjiNF3te88zsEscH2lUsjkc/lqTxLawWw5nu7NHQiPD3X0kSVd5+sllL2LKMGWmKpWmylhlvOZUtT3xq1DJ8VtCrWox4PmNBFqAkHIga3nmsVG1TMtv4xae4a10nOFXGY3my/lcjvV3DZB4I45jcKpHo38mdMc3I+zajhoCKo8mgUDwqQFUGCRKtSqZdqmtSoataXicuUP1xN/efDq4w8/eLk5Ocl2JdlbxEpPhF80chxEewLm1e1CpdBIFUxHpFWsWlzNG4hV21xtYVQtYcvvZNOFCisU5Erqotp3rahej3h54GxtEz6mx9ZWpkiBIFfNKr6lDQZTJ9Q4zaMXGi/9zu729la+XS1mu7bdEUc6Z7alYWGLEfFTlWaxmhcG5Y4+HPRyfJ3AIS2wFOHDErfX7I5VvijLW7lCuki3tcEv92x/EN///KS9k6ZUrFZuGapjqCNCzlvtgUp7TgxGq7FDiXer4ozp1VJaBApavCK2lGzLHk07wXpysD5xtI52KzW6uVQ2q3rZ5no0Wd1o0tSyx/GyuZ1FJXmnpY7UwONk19pB3rq1XfGmpm9qnh8vVnvz9WI0Gk8WsGhDAI6huhGFkQupmXEcxuPE/Y4pW8D6+5QQ6/23nj5/8erDz776+qtvvv3mm29//OG3X3zx6UfP33r0zv3r8w1h1SnUG6FfDAJorVprUByDIiiCbaUCEil8dBuY1Ou3O2ihMjJis8UOtFL5LpcEb7FYrnc5ToYjCcUyLwSpeLFes9kUeC0lEh+3GCGmdB8qXccnZ+eHR0cH+3SQQeaUAOhkRccWfQ+zWrp58Ba8JV6++eTzL3/5/vd/+/f/8u//8K//8m//4z/+49//+Zcfv/vq808/evP4IR3tBL4X02hoqLLc7xJoqVbb9RpknyH+TLC+Wi3XUVbsASBSqiHDu80csMHHaDybzyHQsXe4v1oCrazhK7E+dffow3gZTQ6C6dqL57E1GTE/2sD2Zv7QmYX6OpQajZ4h9RXB8yfO2ZFsOHN3qDQVw5VUzuzYlmRxw2VrO72V2tre3qFE5j9NQ7a2mTcwQc5cER5QtKGyBQTgdKldL1bc1TrSLU+fLCPwXdEpIMQO4Q02kOQGHtQYhyJP26zPycbA9W3TicMAc86G3O90OL5PKNXol3Sn029YaqWnzz2uLzQ7msyLfC7L86VKPl/Zrg7EgaRgVkOhDVIo9YVWm7JktVvlaum8q0uj5WO6I1dXZzCu3HM6jWY5U+J6gtC2xY5h2B//69ffffLgMSVf9x/entHCevLZx5988uajlzcPrm7u37+9ubl9eHv76e+//+6H73/66MHtg5v7D6/Orx48uD6/+eSn7778+tvvf/zhhx9+/CJsK3PQAU+OD+aTGXoctLTZMAtmvEO8CRgFy3EpAOO9yqZSKADTeotpg4znEM2FjaKr9hr1NvTCmTsHtGFwrmQrjb7KtcDKEfvtROQJspTQe2ozlhXAb7dXq7dYL4d9CScqYrPS5nrtdj1flMbTiKIuLe7FfD5dUngdB5ZqSKosQqOKsLk7Xv4q4YW1BX/aWeQ4QTwKsM7Ad9ysj64vDlfzzZIpVy+ODteUcATOUDZc1ZYdo99RLU3WPJh9YXAGMo2WM9RN22XmjCPY27qaBpNWP6BTYYYwP/f61cRWsQRZVUKAgL7AjLSysvlioWfTOrHD2WYc2bqpiLI2sDFizVhuGGAMwpGnSrrjx6FMCBiwZxdNMdiIIJTTiYkADHPRFMWPTLZY0S1KYg1JuuPjJ9M8UBBxfPeOszBkQtfuXZMe0kzopCCnhLx3yMyLGKuJ3VwscphcGaztih53opjFnL8wDm0qOlotOsD2gC5C4npdjpIWXulDlbLZaHXq1UatVGlVykUGNor5bDrNRmiTRyrpemEqgfWaAaAZ3M/s8FqD4+jORptFRLCT8hHodXCarUmtHUYxZRzKREQnV8nnaD+UlYHmyuLp7q5gD9QpxYDY0lxtN08J1USdd1u7rY4Sq6tuA3YK4I5j6rbd7ZbrLa4ipzMpJd8LF7v5velwtIw2feHdkaQUu1JLHkTTmcu4ZiV4UqDBXSg1KnRgpHYyWbEaHh7H8Wn04qnvYv56PCB85MzGpTSIn7n/bEEge8rkshTI6fb2elI7cuh4qeVdM4ICfsIUIJRwDxTRXLmYboWTajUcRLLlSppqZcsAOxkkMqVsvVquFFVP71J6Uhe6BIG3tlmphcJ4JpXqV6qVju11+PHQDmq6BSUsCrQ7hWa9URatBq/bhlwT69DkJQRcKdcq8qbTcUfTUNVSmWI2X6f8dyjYZmgPT17tB9J2vZGrtfOWYtnqoL21labdZmiK4Ebr0Ijd2KpblFj2B41+q7SV0ho1pZryWxOTjzeLzUlg8sY+13I1nu8FhuHPvOnmXDbCIJr4J/3t9HY2U2rKQ423A2UQSqmdcj5PuSUl5W1BVHXa0BGCBAxPmbQ9fL3RjGWdpdlyOZ+vJncefMxNfkTIFAJQ9CkM2iMyx3CIma3ghHB5dXX/4VtPnj179+mzZ++9eEmg+eV7772gx3vvvXz9/qt3n7798PL+OWY+l6PAteg6+T70g+q1O9Um8IzLzJ2kVm12Wm14njN36harhtKDkFOxWqP4DCcE9KYJlok6tMMowx5Pl/v70KWmuPzk0eO3Hj5+8vjx/dvHbz24jwP79oqe4tEJBlUO1oeb/eV6MVuMIWuFMQk6hkfj+WKPCXSA3X118+DR44cPMXX8mM72h/eh43VyQq/PPuT9VotxxNzRKFzRhhUkGV7gfBvD8816jXJoWtH1Fkuocdi2Wx3EaB0UCy+MAFzG08UKdrOEAtl09XKxXI9XBH3mY6FR7Gq6wgmGv4w8wZ54nuV4owUdj6oocEZkOkKw51vKQJegxdRuVsEgyWXBjqGIzP7bps1RyKQwkJQpFrOpbLWaLwXraTQQNFshMGLSCQe5n8EwGEU+Rn/dgeuaGH0MHKEjDXRZ1yFMYA91jDgGFm4YJxDCUxRCQ8Xcbrojyk4831hcr0W5PEXPXrefBircSgtNvqdrfS2+CGp0Zpf6Ek8xiRPlXrVX6SoDaRy/Ojo7PH9wfXYw0hpdsV6uFMr1tiCLPbnd0dST//7dD68uzh5eXjx8dHl5utm//e03X3793devzqcntzdHm6sLNOhf/Pzz73/+6a8/P9k72w8Js1EA29tsHv32q0+/evHiy2+//vq7D/clO0AjEoWJMWuWwlyH0k0vBAnaY2Y1jAhOF0snsGkrA2gADpTf4JuYFXvM6EiR7w5UyByJMN3hof/SpFMDTcJ6V+A6PUEiYEUpSgOHdZc50rKqM3PSoqWAcgoeNZgidbr9TpP2Yq9JS74zoFC3WNOKIPw7nxNYn05DW9bQDVAkDaMw3hTSV7QhxzECIwFy8KADh/K48Zy28QF9z+L4bDWKp9Pp8mB/QcB4PaNcg2KODvU7M3SEtkQLFoMyo5FvDzyUEQcsADtoRQShH3pDV1UpOXOhb0cpAT1mbg/zn7AfAWUKaLUIQ9KmyLeK2UKpxFOIG9GTiyDAbAqiBTUpyt8DBPEIHeAo9nXVtNxRIBdRltxhJytUYxC2EKcId+XAid1KZRGISpo1NDvNKqzq+8y/lxeYqQL8QlVVu7MIvCMeQz3Dsr2kl8DiMCKyxSyWfh2ywww/nA+GjverG2Ly7/QW3tUu8xdlpQHUQHTMQXuQaqQ7D9EW2J6pCmF7WccYDuxkGCm6D1vJpLhdv7NTYtytQkL1ZiyzbFYUG5I2XsTL1STCKNWA5wSuD8FjtZu+E97dTUjD9BaFhp3dRujxWsc7KHe0IdfyjarlS8o4zKQdudrrpgetXLsjh+q0tJ3OprHVWROKHqVyKlvJlXfTWbluUtCczPz52N1TUsoy7w5jn/ArHZnDXJlwdoni2i7gJ5iDzMixUmgp9pk7PQ1evD0x4+mxpU2tjqAOF+tOnQPRhxkWM/tlZsZZzOaKoSZhqdsm/fRiMRiM0jsw5mWyC/d2t/KwtimXMr1wVG/QS153/RZFpnKrARmVfrdVa+UblUq1oAR6mwBgXeZ0a7C1wybeQGvZSfWrtUrHsLs8JaZiQRnUd/NoJKaKmOHpG3V+EFp8ka9uQ94BAbha6q3aXDiejxWVEHauSBlxf6hYhj1wl9L+s/N6ql5t51qGbOkdVek6E91eu6NIHgV7I2vkjIO8HAROZ9AxahSdhfZur1Ad6EXbHG2Wm2PfUu0Nx00peRttdHc18YP1lam5AYXFZS1Xp1S12lsahJkGPS1UUzuUktCxzIiB6XRCQmR+uCAAVlt9CermPm26+WqPANtmc3x2fPdgnmf7+3sUfhi/EfQPPEBJoo/Wi2UygLRmQrasKMsezLKGQDMUKB89ff7uey9fvX79+v0PPv/sU3p88jG9+fjNy2dvP3v70e3V2dHBbD6bjALPhVA9pWYFROZkECzHJqQwNNzo8GKTTai3Aa+ZkA6AM5v6q8JzDJVSAs0DCLlT8k0XdMyUoq9u0OkGHez+o/u3jx4+eAy9zCtwts+OCIbRobeAU+x4spxPRqHv2BGTSmU1NNqGUQD54Cimc2+Gxi5sednxNIdTGp3wd/W6GNKs4K5QpmaznQxjUbCX6jDMrrMBFnArS2g9AwpJgqhodAiGIz+KJnO3XuzIKsxCDMdypME4ni32V/NlaAeGrIiq78eaGRvOOIRtClKh2VQZTs1x7BNO1TURjUNYGyuYMaVlDU9knG85Y7ZcjRiNvMsTyoUpuErpvgf9Y0JCru/oiiKL+5ulq0mqO/Cni0ngWH5AR7Rjq1yny3PtVlcb9GqUo6d3mrI1JYSv026UZZ1Dk6NdaNG62i0q3V6vLXa64sioNOr5AmVL/WpbkXvFdEMRBaU9tC/jw4P9Jb2I8dgU24VSvdzocYIkCW16cuLopz/+9P50NlpP44BgjBvvPcU0+NMHJ+vJYjmhlzem8/Ly5VuP3354u1kcbA6O0ZgfDU1jNLk42Lu8fPejLz558d5HT/dngQ6HGpHrSwY0bOfLBeaAYc9KAczxUG42KNFgCiRDy5B1lec1Q/0N3V+EOZB4gZUD1AFUFHNFnrnSQWy/16wVC4Vqk/B9q9Pjae32u5ADJsDbv2OztbosDLdYRob2Xg1KWq1mq9qg+9CtlUo9I6DIulovmNYNUjJaipHFyZwg9EHX4nqyP5ujwQFyATOGxmM+DYcEbmjP728Ol6Nwsl56dhBH+FGJSuU48gYapzicrjmTUGlzKlItPwTA1gfw/x16DgIwfHbDKICZjqYM3SEtRYw60fKeTd1uBRZ+1RIjKmd20/DQrguaKRFMo1XND6PxchEwY+Gh2hYnoesyo0cK6jDYIxA8ZgHYjyO1kkWpNGkCE7BB3xWxOBGLQz0apORiUbctnmIJfG5LsOvGiBCcD2ibQ2wZlhd9mCighixLMq1b1VASQQ0zcdMwjYTebWMSCIEXARiPkDlP0ukAzfOAzRUzi14ofIxoE/mOQUBY0d1gPA4xNE4HQgRt9F+dBYGmUQxPxowYd56pbME4EtxnNO9hN0m5WC8xJO5pnYqoj2bRZgyiu2cKYAR0O4JmDIREVAfcDZA4mAn99u72Vl4b6j2luR4Jq0OzRfmhMoyH7nTU4pqdytIrBWa501UDa17Y3knduwcyEzMvyGS3Mlv0f7mSKwl8s7hbn05AjppJ6fqUG3EpZajodHOdVILSd1OF7a10NoVhIizTRqu+fDQcTDefPw3VSBueZ7XliO+LWhQXmJd6FtMxrMOFvj1MW4uFIdendFM2uSEnVIuBOUqjyMGsC/Eb6BxH8zHDhWGHG6iRYFoCJfupXDoRX9hNV/MtysEzYqhULXukhxxvWEjTUmn2BgG4Xu7IJs8NB41CYeh1t+6xpAV2hEXeKHfUYciUsLbQBdipVqpFftXuDmSJV5StdD6dbVJcAI9bFyfT1Yf/ft8vVerNNKdJtlbnZcEeWKYczBRr4u+N3NFwGheEOPAbJlfXnZlYaWTaxR3OL7l8uD/fHLmGah60u74oNLy9UtsPxsHmWpPjVWCMDUqC6Gbu5MaqNrBDSbaMXreNHi0znu+16zDvIIxeYlIljBzItBt32X9pQM16qydTUDaHfjiZLtaHx2fn8CS6AbMyeVxCbuf8bLM+PmbqysfMJp2Z+iZuNRingJIvfX5/j6Dnah8ericXmAxGZD46Pru6vf/wIbhUFJ3f++CDNx99+vkXX/z2x59/+vl3v/zy0/fffvXZm9evHz28vTjeXy3pJNYlgg0gU2FgIOF4FdBfKIEYw8bwKQp36aiDdF4BNMhqs5XO00eNNsEzXpTpjHBDerUIJRwebE7Ozs4ucBmXlxfnF5hrPtocJm7E6xUOuxFEN+LEQdtL2kxeYs+NEt4wkboBkIQmCZvKx8A9ZgpYOZM+S5l5iByakgEcnzjUp5hGjUHYsijiafydWGyrUaUI3arUKz1R0gRB0gYDR9RniqZZhhn5RkTgRBQ93dWNTRyBgsMQUWTEs8ChG+36UTiKA5T9wKtCZwEy1hi9Gc9no3A6BTwiZALgnhjBiBT8ZSXx3TFNyN2JdFy7aqcpRdHy9PxwGtBhiqaVyQmgWbVafVFvZjMFAnCDaH64Wc7lHteVCQH3OUUrlNuZ3UyxIJhyXxoashwacD5v9oVep9/pwR5X1nsdoSY21cXt7emSDurJ8dxoFsrlWoeABSeIlGVYgXX17YNvP3569fSdt95+eP/8+v71kxcvXjD7qncePXjy5OHDt58/uX724XsvP/j80w9fPTk5evD2W2+9887bT548ffbFF5998ebL999///k7zx8AM4ZDY+BBMEKmZ4kGHNimgoSScV/ASCPGRXSZh6EidFmaTTrVf4ObP5uOgvEosYiKgqHGjGfBF0PvgRclEBxqhXKl3BUhIYiI2UanF7lgrQ2BjR79vQXeFeMpYiGnxWkAACAASURBVHYF4QPiHDWYIdHXVhRvRKncYkYHA6SgE4ZzqHeZmKLI9wkiiP5kTF/AJKzHTKB8OlmMfQorvj8MxpRUxF4AJS93FNItH4UjNic8i22x3VZ0jo6LsatwImUaDkVaio5DyzIdAqm+jRI0U8UeUfD2A1WhoEwLPoabDVYYBeAGCpUwmibQAT+QVKEr9Pl2jcJvuyOGMwLUuqpZlPWqLYOeF5vfBcEH6Be7yFFlY0gBWGsgVwYHqsA6lnSGF1iZplJmY0HZHAvAJdPV2yh35pKuKsvC79Q72MYHkwQFWzYiBC2sMuwhGqwzkEggdiHnQehZoJ2kKpQ2qZgL0hjnjBkher8G1CHznEADnGn/OZosUiyndAHVj9lssreajyPYIIbwS/RYu9lh3r5J9eRXORvv7j3TM3HYgWAzYrJim41KX5kE04MRxKz1bpfvYi0Ism4oHVbgpsQcMjVVME/o+jLbuZ7Q7guNlTVrD4uVVaxyKq1U0+wNc7u7o0AVoibH6+5wUdreZqzuFOtCwYognSbItpXZaUnyxG7z8+lgPZ/Gqt7xzU41lfMllQ6C4XYyNbFz7x7AZD6ztVMpgXaczXh77vL4vSs6dkbj0aSuBwtXVO1oRb8Jv4KJU+Eb6W+7OfSc8vAJ8pTBUHW6g2rJ06P0PZYOpJicc7pSyJYJqKaE0OcVjJw7UV+ylS16yvdYE3i3kq+XS+WMGCllyxrpQautWruJS14GNK7dfrWR78iGwFtDOZ/T9dZWmomxlVuVIiHgGme4g15RadGVUzzboWhQ5BZtfsi0VKCfsFuTNB38Jz1Y7tvLiRr7daAgkxLuFoCxaFnyscp7GwrAASHgaYOL3VHdFHgBU7iNXKq20/blPWt6OD8+dlXJPOO7ZqubCY467UEQh/HZUI+mAeWsQ11WbMrEglCxBEsUtGB5drU5hmcRbfDVPNHDjUOUZQDJDSZYoioyHbCwlqN9kE6xGj5uUSadTLQWYbBD61pR9AEljTFFZajynl1eXgJYAutidPYRc0CAfeDlOZMsWu1vGH84EdE/OoTEFtDx7fXF6fERMzs8xp+r8+TfDzbMEfjy+ur2MWSh3//w0y++/u6nX3746fd/+Td/81d/8cuPX3/86vmzZ08eP7i5ONkcTClAwlkNfJV+k1YwZs4yOUojSsjUsigMVcq1OhsUQAeXef1m83fTfVVM8IGOgXTDi1Dfm0J7BKcg0wBbrpbwzZyhjonTPAIaSkZ3WALMlKAhEQtVG5ZzMzV/ZvTGnNCYjCz9cX0m6uAxM6cwmBFijqPRGGNMM4x7gC7qe1K7QWFQFbqcPvQdTlo16qVKqSbLfT8kfKqM/XBg3N8XmijHQaHHn01uN+ZIc4ZhPJosZjie0bZnmrz0pJnhAsEnVLjpTCFcCy75GtxtginRiAnh0ta2kQ5g3EjkuV6rp1v+eDLyXVceBLQPTVSdOvDvapqmJGv0DT5IxaGn9PieJOq8KPT62Vq3XdpOp7u+ZRlD0/GmRrNGMJAXQD3iea6+m+0Wqly9T/FHt1A91PxVQFCqlG30BI7ioUi/ezB3RdtSP/mHjy4eXB0fHh0cHc72n2OK+9333rven+0dHSyXs7kfHD99750XH37y7ul8MqeDfgwD8z365Os3tG4ePn7v2aPTAO5tMz9kPoQR4TzIT6gqBQTKkzS4HFDMhYd7E+kBMs8+Ov697m8CGKJPRz5yLwTgUeRpzMQcYsMEFURCXDKlT2K7Xs43hbYAGhnI4m3mW1mDSxJ0ATu/BuAWhgTwLine0A+Ba12Tc5A4gRI5Xu6zKtNqb282FFv9dr/f4bqI06LD5OyTg/7ORo7SCsN2KJuyGSqDy4/jxdOIcrJgNMMw0HQaKPVcR+EUXRF8U9MAdUM7oBVBS3AcxbR3PB0ImIHV0At9ZyhSAB7C9X3CfCtmi6QE3QAEzjBPL7jNVEpZdI0qxUJJ9jxdVilpomfoaz3MuDGnXzcR+QzDcBTZqkLP1bflDoYlkjmhKsX0arnIxrlqTNKkwCIsxDVMW6nmM6zNmGadxnyOzfXmE+oy2qYF5nud/KWQjPSyKaESNA+KdwIb7FFrAG+A14/Xu5W4GXMQ3WNlbeaCCGPGoaXpzlDr87JsBmhaUJ5DG3O5nMdQ6PWZZS/luQDQyDDYw2eOUYjlQyeJ6CwA0x3xk7ju+4PIaPc4fW4fTKOR7flcuTcQqo065VeKrqsQ2YKghwLgDTqJjEFivqNVevV6IG3QzyXU1o4CegUXbqiU8uom5uO2KBkDc9xm6rr0SKd+/Wh7txPykhwOFXsQm9FycrKYTCJLsVuRmupEsk6ZnJk4iO/u7BRYELyXXU7Ecr1ZqWb9wfLyvUvNpRchHnuDXt0LOkI42a9up8E7yybIeRcRPJ0vozfoKqrIt9uUInBhrhoYcSYZVkNPbPfeTgkd4FwuLQU+rxq2ua/4HGcZ2yyZw+3NN4p1Wgg5NTYaTujWhIZoDhBKGUkP6L5fqee6uiVyjqcVc5rR2spBgnenTJutyA8aom5x3ZJQx0xbOr1dq9RK/Xlb9EEK15gQZlOzTXptFUoQHedoPzJOjEK1XbAkXe+qjh2YsTC5yJ2YfrTnR2MvHvfavjNuKVxlSAC/livv5MvZyL9anl8sjk99ul2Xer1T62W7Q9l0fGd6dt9SgkD2Dc8zRcPTZFU227yoCSJcL4IQhzBGZ2AVtEdvjo+gV3dyDNHJSwqdl8w86PLy/v0bRNBz+OxidMN3BroqcX2kwNiBuMF3msr4CFZ5OVSiaN3qEGsdTxd7hC3PT89Ae7q9f3WdOCLdQt755vqaNZyBkTcHBIyPTlDRTv5QqKZwjJL33mq5OGD+rcsVlHwpEV/sg6CyWC4Pjk6vQM6BKDT8Gr7+9oef//CXf/ePf/7zP//rv/3rv/zzH3/++Yevv/rq8w8/ev/Zk0eXh9NxSBkJbErokMXwCHiOlCGVUNmmDYyMOiFmF5k2DnZxpdposkYzpdMw7YTWOgInC2lxnExELeawZt1boGC4Xq2ASlCLhs0sY/kgR2aoGG8sI5F4sAaJ2ZBt07bHvzgEmJkd+TDA5KRPp7JAWRvfFgaGafT41Xjs014PzYIc6bKszI/WnvboLYNVBUFfEx6NrZmlqzKlcvB2gxiARD+BnQt+NKJYvIQ142q5T/nOZrl3eAAzpAABC+Q7lNaRwgQ+BglNjVWcLZUJ4EL+XlSBkAYEHnsAyFzDUAGE223BCqGMr/W5jsCrPC/RU+p13T1KVmVPd3TKAEcTnRAgQftet1/vqlKvkqlVssVuoy+qLdOy/TD2hqHWrBTKBUKUqIxLLl9NFTRNnKmH7z48CJdxMJ5MQn8PqihvP33n0en+HLYFQTyJxlevn1688/L9t44PNgfnp0e0ZFfz+OL1B6/fvP/B6ycf/PbrN4+Xi8D2IsJktKsmk8lsDqU2AgQYCacEI4gHTHaIsWQVgeNFQk0dyDP/Jowmi+UsZmodLGeKfFpHfI9jrd1WQ1ZRSdD0odKtFKvdDteDPhrPYYaEMDA6vhCibCWNYPCj0XKgn92GVnELmlo1CDsYMP5xwRGiPYomCArfntRoUOht1ppQd2n2FQMdajiDOkxpyU4UGMBft1xvyCQcnCmq2Mi0Zsv1CmNK01BplsqdikKH+hCVZvgFhrP1eoHIQtdF2eOAIWBYCIaYYR+KmuOhWutjio5SNgTgJuNhVAs4e3e2d1JswAQdy51UJtdRNUm13ICedjBU+s4gkRh3oYfMgCGETMwBpC4tCLaKTOwYFA6u1+92+kmGApWSOqjlhIArdVMXm4UMoxmjRE2/BXO624w1nUmAEdO1Yk7bzKUke/fI5VLMgZuF6tyd5lb+V+SclM0wvwuRSto/lCl1W02QKdG9avY0jad0xfTnqxkK0BP0edCDikceveq4KDNhfbHyNdQ2QeTzMSEBfXvmpw3begx1BazCTWnTTOMNwZ65G/qyYTASyrwv5PKVvsBJ7I4mCl8OS+WHLt1VJ5iFglFo5FtGY6C5mXTXmzqs0LbyzbpcGsZqRa5SALatsQ2DkeV8NokIoVugoA+l7swbm8fTmZeq7Nn+fL7Zoxtui3qdk1OToahOxqNhARQyxLftrVx1d6s2P9mPwynBgqP7l7fvHYuBP3f0+bC0MKpuUO9TRMrB64+i9vbdjC/KpvRaVyolm8JDRZO9mOcPjaqnjTL3gMbpC+7t7NxDDxhKfTkpCHu8MfDOOrqkaNbWLv2s7R1C05lqvlai+KL5ZnfoR3WRU1Vzi+nqplMZCsCZfrmW61pDXvCddiFnee2tFN35re0SYYKSMKgLGm0DXq2ioJLOsADML9u8LUuKqW6ldrcKkhG4tm3IzuYg3ISTYLjea7SK1YGoaQStRa0ft7yT1L6pRysnnoajEd9w/FGd1oUlF9rV1E4xvZPtO/H60c304NgzDfXEoBSxmik1FDpQ9p49vJLFxSiX2t3GWHlmtyg7psQPoJJv+1E8g+MNnT+0Oxd0N8YAXayZxIYc43gEmLRkAlUHFOMuMAL04BE9nj9/98Wr999//dHHH7354P0P3nx69/jgxZMH18fzwLWUfqOYvbM6YA/M06VZlkprnbJNQaan4NKROZ4sYbN0cXVzn3kR3b+9vsabCwK/zIeXAPAe6tX7+5s5k+RYQph+taRAvL+a0fm5YGZFUBVEBMR4CF0Eeq4Tis57R+fXt8/epqf74Reff/vdD7//2z//+e//+Z/+/I//8Pd/93d/8ac//ulPf/zDn373yw9ff/HRy1fPnzy8udis5pRgaASCBNQVUbtCKQtznKgFlCv1ZrHCqBVQXSgk/GcUtpvJdAlFJcBnWdNU1mGikxq97DGFiHFSwWOFZwwnjab0D9PZNEmYYTQDG1MdOHDItNt923LHUa9d41TdEHqG2e7IAr8Ix3T6j0N+tzVyZKnnjEe2cvP5QUA7ziMEbkrLuKdZzIRY7XU4nlnvNBqM3laqMAIbBLparMAraRYU7wJCyvSqsXxsvmCGE0tGNYrCAJP5vmsNbROS/PA1pwNVlwWJ8vUBZnW8fj6br9ezZTmczCa+0efaCMCc1Khw/Yp5EivtXuQIdPpS3KTnxNO5xnXBqcPUjZbPVTr1elceHx+u5hNCrPvDDsGpBmQ+RFmR5Dqv1oSBevhkcxneP314gnxxvnz4AfRLP3399Oz65vwIUsfrw9sv/vTjd7/73R+/eXxy8/SGcaOvLy8//sNPX3zx3fefffX9508fno4WEZPsBnMQrTy82pCgMBKOrO2OKRDHgWPR/5RvOBZmVuh2Sr/BXC7jaxE2BUINgqFEK4TAMZvrbXOyYQ7MoWdrHQKDNfi3d0GRZpbuFGj7zFyv0WVznWzWM/HA7cEFrUNvKQ5XKm3JpiDoODh2Q3qKoBTCFaNbqbXrzUYJWLFGEULUDUjJBFEEbhCd2OF/9jbAjR6P4+ns8Gyz2oPr4h7m8pbzxXpu9ZvZcokw3YDRjtDcpS+IQSvSCQ2YjmcnPWDUoMGCdhTDhbgwIWAm3DmdOd0Kxq5qjQpBYAqGBGrgnV7YSe9ubRMurQqUhFCWsh7DxFgywJDCiBtrm6JGjmKtA8UTJ3H+Y7x7ixIGyxwYuqWoEJaTYWcC9WWZ5wTRMVQJfXIkMNhyJWw+5gWWSReYQN9/GZPubm8lmocMLt8VrBlC/vXBIvPdnOTdZ3L5uylgDFHmiyUYHefztT49D92wguliGjLl0jHtiIgC8CR2xT5G4rv9xMdBxp7XVCYTnYiEJKZKLiTTXNRM3LuH6a01LRSCcEGH5TCMfaXed6RcttDp9RRNT178pMvBOIGYrBp4VrNbKOU7Rr3W6qXzjqJP7WAWD1fTYHfIzbhmSyoJ4sB32DTaeEw7d8xKgZQhRLY8FZ1wUljFxeLajghzHa2n3rW5nqWdgxOJV0FUUULm++2FwSxQnKVJNzZNLzG90qn07Iab0FIYUlhQncVgOeJUZ7KsguCU8Ocw64gubzZpAwwVQ+rLkmqU2p5UGSqj3HY6s5VKMyWNzFahlCtAqoD3R8227Q88e9TtO/Y2/aBtgt6Y+85iAKaomRpvWnPekCXe2mZ9cVCq0plsv1TJ9+xhT4xMvr0rmdWtIlQat4vNWi7d0yqcTaesaVV3snCDS1VL1VJ71uJcjPYqWzvpVM02Yze0LHWyMuLp0XTuT8/UWq6tE1jpm0NZ52VheZFreotw5czmo9FUajuxV++avUZqq1Do5bfymX6Gk4+uz8YHJ65hukd+aTdNC6nSm9j23pW7b+mLgOD8DoYEQMWmpHo8i5bzyRq+qmcXZ8ebo8N9WO4drNeHjNUxmcxZCJsy61sQFiNmNUBbnH2CSYJjIIFiynIfY5uX55c3D99+/vLVR59+/bu/+tu/+OUPf/jD73/3808/ffn5px998Or50+vL08PlJPIHpib1Kbss5ylR3v6v6kjydneH8tYy5f+tHiFnSvlGDjhgs8UKwJxg8BHh8MtztJaPWJ0axhCEjSkeL2eAMfsQnaZ3YIgdbvAVR/tr2PhO6UBiLtUBYR66AvSwYRV7fnZxCz3q12/omX/zzfd/89d/8+d//x//x3/83//r//y3P//dX/3p+28///C9dx5c47fuL9BHc5msKx2yLEDTW5FiGCfztAXpA0bR7rQQ3WrQ7sRpCi2oElhh9XolUV3g+hIDpARJGVcTx4+LOI0eLYoSC+Q/9FxDZoAaBny/1tcMQ+A1u1EnPDYx4CoTR91cKYxUscUrutpffr6yRuiv0QUO+nRaq6IqUT5sU57Khrtdpu6qo0YK7A/EUW81Gp1auVWrJQaiTTztZrPNCckYlZPo/EWT1YIQWHynP0GxgA5Q21SZxJ5GmI9XOqDBUPQQMOPsaN1eWxBUSue5Ktct1Gu9YjZjx5IVBLHjKSIvcD1JhkhHtyv0c+kcJTW1fE2a0I3e7G2OLy7CXrlQq2HKmJcliS/37FJFHRjh6O9ms7cuLujOnl7dvPfpl1998cUXH744v8Kw6/nV4+vrq+dffPrNpx9+/tH1+uD08vbBLQvA77x49513P3jz8tX9EV3V0PLx8o6w3GlJg+kGS7swtBLzdSZ7pUl8X5UoPTF1mKDjrhu/oXQJLtAzViMIPC8K9DaGCZmiM0QTBIyVGpYmNgrlfIGuDxWCdgPgjidox7Uo+FLiw9yT+rwIvzz0JimqtCgfwQxAvVqXIhvlBzrmvXBCG3K2Ws3HsW/2G9VmjZJAsGJalBoqwzAaA75TiN0nkDtfMl02SkVXjAC5np/u7R8fUAo9H0/ozfJwtTw42bPbxWK9y6liiOVn+Yvjs/2ZIwswD+FFnSK/SXGdViU4mF4wHNBZ6vvQQRxh6mlKJ4TTKdH6JiBeLYJhlyqkdtLprVQ+naedTX9aGmUz0Xx/NrR03bFBfqAcwXcCRCEs9YBJjYVMHGt05y0VhCPYMVFsDiA2nswgJ7V1SE2OKRlFVDNUdSAZA0rveCxTAWkcxzzWaKMxoUhKfVDLykNoiQXgXML9AbUpEdbIJoj5P4U/Es1olLqTWJzIa1Ao2aVLwYLQrcn+ahxO55MwHI88sKSDUWBLzWKxmC/V4b5UZ5sHSmdIusDG67O5YsogVehQqvSDmBQl/TzBWavWXJ1bZ9HYMiZTWai3bb1eyzbbHdXQBkwMx/cSNQxsQX8UDYPIrNTy+bottSeaWJe4+WLgTwJlNvV2u/HU6anFqiIOAtMCSZvRuxN2GOVY9kD3jaa3lxEWaVkZjTY3m6PpNJp3jM26KrYpU4/iaOzCdxNcFbr9A522gJADIKWYmU1LgTcIRws3Hu9baduIDV5Xo2VlO0WAdjeddHcpD6MICV+rQslVpHqODrlJtDBzJUedVvOVGp3uDWSPtVy1gvtTzHW9cb3uKb4SxqIsDiBHBkE1+nmlXKdTLVToNZN1Z16DTYkH+AvxJwTgXL9YKnYsqyWNJEUvWWE9ladP724XaXfUNSNf5ixZ57TyFua+8ruVUqXcnNS7lir1DRlgvOEaI91VDIW212YVHgTR3rGfq3QVeWhx5lDSFal7HvVFUw/W7ooC8IJvD8fDtrGZSdsUwbzW9m6hK5jTPXoxz68D03SXYbtUSBdzfXE+DK7m8amrTEfZDOEeWmHpfGYnU0g10zU0o7ieYCHPjWaL2dH+3iFUms/Ory/PTi+uIIkMEhUjPFMsW0DxmMnLguMLI1W8XcxgWIhZRDygS+C48PwkfBYzKfg9kLIgHfXWkyfvPCMQ+sGbjz/76rsffvzDzz/98vvf/fTzbz97/d6rF4+vLk8P5rFHJzrXxo7OJAZnFJ+3tn+daN1Np3YhQF1ttPu8pukWJfsUTCfz1f7B4QEmks9PNkwtC/yps+PTy2vY+Z5Bifrk+PDo+HBzcsRkLg83pwmXe3O4gWwkIT4AUeBTym3ZkAkci/YO0aU+hQj040d0AY8IljM9ocvzs6OT4wOUyFEhmI1Dz8UrCYOxRLCBaekOBppEoQa2Xt025iYIUCdTCuBXddp1uJBDl4ENE1frUBZqE8ym3cvJssqM4PzAHVHqI0sNCsAaL/StNqHCVmDPKBuYh/VCZhiqGp3xmtwbfXc4TEic7lAfOkpXdXUd85c+XRSKmGO4NoEDPsF4yShGDXbsubGjh9ikNvxPFHS+oeHEExprsRJgtdrolFuNWgNeE6IKqxxGLaEzMsQcJtCz5WoWxYJoZJjBeO9gohK4o2vo8U2x3uOaBCm2q9m6aethOArmLv2Odq2HmQ1e7nebuUK5XStXSnxMgODwZG9JwUKnvVrPsRNMUVVOlYV012wJ5/wvnywvL85PTw9Ork4prr588d7rV+++fPvB47fun5+dXt7snb336uOPnj199eq928nJJZoc1xeXl9dPXz46cOEaR+cZWvYeAgJkN+hwGxIOBiTz6Vbi2lwjkc4HJ5jpAoLBiomi37iIF+ijJpKVXqAT0q1UG3Sw1HAPCQzJuk7nbbeO2ZNKtdXD7Yekep/HaGaz2qZVIHUSFX+uh4JJq1avdPutVq9VKPZ7lbYzW4BCxUjNi+UKai6rJUhNmtDtU9bCC7yoKJJkTfbglbnZbI5oLa4AdBGM5/RtlIrurZer/QW9W8znkKM6ODk/v9ic355HnVKpXihJYTTUDXe0ODrfj3xdpXxN6dDF6k7gGMyWnSLfyMfrQ7848A0v8MaM8UC52AAmdy2oU0CrBqaEdARv7WZ3mclNJieDSj8aBZJmDCw4PLiMNA6JNTZEwCaSRmMkPRGqDdEoGWNkDR36d0JvIxTg8Dl8giV+sH3Cd+DnYKIBg75uwjtGyxSsQXCfYQWqy7SJFK4NeNqmkAjdbTYSVENJu1ymM6bABvWydzpXybjuLkxqMSzzK3bO5dqq5om0O6ZHM396wKYtCSYO4SpKv97kyplcqZCBwgaa0kU2DpyH6yforCUWb6qUS9KJi+DMYRy82ZP7VqBHljP2D2PXDA64utcW4olQzJS4rmDIzOiYtv+QmRHDcjHyBv5spFaK2XLJ5kQr2hsNRTuO1TjSRcsuRfmmt69VKoJmhsowYmYKtJJ/7UkHLr0YnZ35sKU49abWn20Op6FtekHcKF+eV9qSokGK0h6FXsIpAG3MsoYmwdYUnE6ztZC2Tjij2zVxw0pG67VE3qLYspUDcX1nN5kwQqKTKRQg2+mo9WZRFRRTfzjMFR2QsFLp/5yPTlN6Ws4XiykhmFQ6vqNKUL11BltM0GR3914qX8w0kUlJgSIOfSdfU3q2uYUBYTb2lt7ZFVulfN8VurKv1od52a5mUoV7qcYQJXxvevXOsa3QgaVVUgW63flMg9LF7rTdskVdd8Wd9PaOPYwgNCQ51/vjg+lqn+cnm8NiqW1yiqT03SEld9yNG3cUP4gp0Y39ldS06BBVRU8qFOsZzSrtlgd9d+6sN9HluSva0YlWqfHteqNzMx4cPhwe7g0GoW9koXxdLtDaKrYxQZ4MECAdxAzf3bAZgHOxVKZMnA4IBTNvrg+ci0h0SCHs8PQKrCqoRV6fH5+cEQ7dPzq6My04YKK0B2uYvx0cHq5YqxZvmCbydIn2KEXk5ZwVYyETTwgVlkQPHj95591XH3/2xVff/vDjj7+jsPzDd99++8VnH795+e6TR08fXZ+dbNaLcewamtBqFLKM/UXJC3rO2/eS2HxX4qZrJBjS7QsqxOnYGGNMv44i9OHRyRl8Ea/Orx88uH//0dsPHj28uX7w6NF1wg67uNMJOtocw9fucIPhZ3ruS3hEoFLMyDwwbR+z2jE6u3g/x9Dzaj6ZjVlpbsLc0TGiFI181NsQoCihBFbGMI0AQq0Et1FmLAWPQorQIv2dVw10whRFo3dCt45BZ6jdt6rVernWE8WGMtQlTuhIvabYo382IseO7Fou1w94s82rpq9rzw+h87eMR3NVMV2T403HgAe44YzZ+FQQRugrJa1LPM94Et2J67P0CRVLVD3YVcDtOIjAmxli2BFzTPTotSlDb9crOM8ajXYH0694tKo1QrQ65SAOJdLxwpObTQ7LV+hU691GjhkuF5V4YLhRMA7pEpvtPtzLCB5Wc6VWLVeqFhtmNHNG8XQZ7y1Xcq1UzzUoF+DanKIoLUXI1xWtP+Efv1w/eHz98D7cj05uHj1//vbTF+++/fTJ05dv3z65uABX4eytly+e0yfps1eXR5fH17dnl1fHE1vXB0geKEMM4ojOnthH7cEaONFwiEKzYSCvwNkzRIs9YHYMzM91ADdYVdd+Y1E48SPMiaPUMApttQs2T7GC070B9MMbDkV5hW83q4Vstlius/nfHptj53nCu5Tc9NnHCMAQpiQ82xWgD1yrVFqVUj+gRGa63GNQdgGOBhNFR4/at4Vk+lViVnHBbE0Bdv9gn40EspALOUqwIg7u1F5gJeBDlgAAIABJREFUyjBfrA/Wx9cQ8Ly8fngdd+noK5Y6hu/Ybrw+OlyOHMhUqR0enB+T4qVD+YfFJmJHARCopQu+Z7r+MIqxyCkY2m0YGtebpXKVYgLDl4yMk8qwUm+R0+irdaErYgoITrnIe9DQTChIFHxHgTeCBOqYMsHQhzYHMkQEWTS/pmwVsk+xBvgsSfKncRKPmW4oYjJTTUFUZp1VBPgAFd5hwErcNnolpoEXixmEaqgtQiUarRdRouQ4mcduNiGUi8I+EPSvZWk2QtuE+aBlaQFl22OcXQHEcnTNhGScH7paK0+HKHN5SC6dqe2W8qzznGhrUk6SKTIGWAmyJZSWdXTT0fu2EznjvZHnTceFjm04k7DRyBZ7FIBVZ8ATqIfFkggfRFERdYhKGko5t5MvmBKhD74ztuShQa+c1D1YeoNCrmLQRpQl1VP9aLYCVQZWI6yUOZvO1V6jlrHk/qS2p/Oj88PJaHVy+fD5u0+b4b5elnvSdOpE7ObgdYQcHKK/QJg+vZMr7KRyFpLPiU8JdGBpg/HM6IqmO81voc+YZviXmSTspnO40ELT4VsdjlapKh/5rbyrj9IUPXFSJ6qltDkKIEeJ7qjasWw9ej7qKPp/BuCddKGSbVYpAIu+LNhe2OuJsuGwjv/d/3mhUc12fJ2uWOlKqf6wvr17b4fXNdlRDclFWWgqi+qgdg8KlentCqVFvVmn64kKLxqE8Eoxt4hcyrJXJ/F8vTqe6Yq1f84T6JZ0yeRMqdWvdS6MRTOzWExGU4pCK0cIZ0NFcH0u3yxneK6Q7tsh1x/M94KzM0cwvAMul4Pqc4qf+cehG5/4qrOYlwsgGBZ2d7PFaq3ZwxOATJOdzK6haYhpchEjnRhGwvxdQmRI/zq3xSJ0vpAoOIuyNXBH4+U+zIKZseDl1e0DiEMS1ICW9OnFJWrbh4dgWSdjSPs4UBZ7bDL48Ihi9P6SEvMZm0ycLtC1GjOq8YL1nI8gifTgybOn77788Ivvf/njP/7TP/3b//y//tf//n//n//9P//jv//LP/3+p28///Dl07duL49hEsP3WlWoX5bS2///BxYHHDeKpQqEqusdOv0kGF070WR1sNmnPAKksAcPH8CXEA/4IkFp6eb25uIM4ldrSPHuLbDj6YkC7s8hRphkliEYnd6v8skhSCsjlrSDejWOxvOk4TtdIfGgjP5uvN/GhM+AHQ0azEdUStwlyDrisIaADaizUPtSFcNUJFWV6pymGXy9IzRLdF7IlNJnM41+tZDvhqrb640WriUEU4MSXxj6cJJuDwTRYLr61tDHSTUCBp4nYvpJg5/esj4mO7zQhU4a0TjRHOZE4Nz1AcOACZQGrB/F2LVMKIuugPIFgVBcC7Z0zOYJDbhMuaP0wXLm+7Vmn2+X8iXmbNl3YldSBgQneUVotzkKwBzHC+1KrdOnJVvqh6v1AcTCNgeXF3azVMu1eF6SOFGR+VK3U+ZUriWVF6+vP/zgzesnVxcnJxfn188+eP3qzccfffjq5atHJ6cPzk4OD/Y277x88eLV+6/ff/PF05PNMa3I85NV5FIW69NCwwS3BwAP/U+6NodeIAgvMtL3EPpeGsSEUSnUrMQeCpILrPMAO0LXZ2d/DL240B/waP5CiLIJPayebIELOzRUsd8q57JlDATTZcK+rtPr9THl2+W6DczDdOnBdClbPRFJc6NSrlCObtPqmkOAcj9hPE6mKDmBfb+ehoqmYbQVfpe6FaEAhSElmHzurdHp3VAmjJh8gI22n1h1TRe0gq/uX59f3j64OR4rLcY06pt+OKO9uDdxaDFqusb3Dc9iwhTM5zgxtg3A43VMVfK8AUi8EePoxZHVhhMoyuV1iGFl73QjUsB+JUpHeH0gt8qEEmBB0e0i4cDsj6yxYEiv7sCCtanl3HVHAx+8aHY/kCDGLOmNsGZR8gYlgdIK+sMG6zHnPgYWZZA4ZhsOCHrC+IMR5EJY4kyxJ1nrbGp/BCdnROsgCTEUqh3PSh428+/GEB6dgv1eP+nYU2yuarY+kCLTXB9PR4sFhhLieYDmdIJQAlsoI/NIJ04SDDjjQ4Rkii4MFSd8bCZ2nUTkQs8MzS6HeYDFbOQE80FaJHjrO6V2odTpCrruyFUK1OUqg+zVEtpy7XY1l83Vi6lcThLMMYHKqWv79sINpz1FrQoLOdeqt5qiPBiZgd7GtBolxxS+FTxkq57LpHO1Xn4amn68HC7mxx++f3ro94JoMGlwlqRPp5QasxebEWnumo9hbJXgLJ5Oa6M4oLRpPBzp7RHXDgY1cRhPclvMPXCHTRexGJzKFEqleqaqC1Knr4maa4jiMD/UR9l7yQhNwtUiVE1AOZtVnVGjb9Kr/Hpcp+NuK53osRDObeRq9XK1SAGYH9iRLvU00U2lcwkHfmcnW+xXKzCp0VSrX2gVhUF1K7fFO5rJ9VU6DWeD2c1BbAhy+R6b2NkqESxvRbXWsNeu8V16Dk2PWxAYtuSjY9oHZ1Ol1Benl36+bMgDQS50xXqvU97rx0E7BBcNEFJue6EzUAZWv9RpCtFgpdiDw83QmO2FZxe+qDuHQrFYzOYqxZY3uXCC6ZGhOPG0lGNCyxBJy7IkJGECZjNgMlDaVwABBCNyaEsyo2kIytB7ps6OqTVamXy/06/Xyv8fVe/B5ca5JQlK5eC9B9IgvUNmIhNIeFPe04ueIilRIinRyL5+rvu9djOnT+9Oz/Tsnj37c/fGl6BeLyRSJbLIQgGZX9y4N24EVq5Tyb0kEoZ2oTnMQuZfqkPnWUf0lU3sYQDzjv3Do/1D/Dg+Pzsn7nzj5s2rcwbRl8iOOzk6gqHH4f5quaZjBLPaKYwT8H2i2432MhINIFZ1PNfH5sxqtX98cfPOvedfvfn4d//wj//0L//0r//+n4TI/+Pf/vp3H7978/rbr54/f/bwDoIK19OB7zmmInQa+QRrZ+9ub7G9uF3W0GZlRZrtIRXLsSiMySecYDyHZSUyFY/ZltTxCXym6UBc7Y9gnkRPieXWb8Ji2CArXsW3PiEUli/Cvtdna8Hw1WFludPDp2NbKTbzGA6p4mQky4f3uR+MPN+10PzELSMSDncatUqxygmdCq+otlBs8cVMoViSha6qaZZSq2QrPdWjs57rqHLHbeeYBQQ22wxDkgxLBv/AyBMRe0N2BCE3ZzVlDg6TGWv8MU+J2NW6H2eS6hYTx8agg+ejxz1JFxnikNtiofGTmx9RfCWu39rNEpu/CT36EOK1FoaWaDTrityqSD0jsHsBUXmBbzVaPB11aMzzRJ8L5VI6ZwwNb+jN4Wt+eu62ysSAYSXFdyWCp2473+p2xG5TOpm9+uHHd4/QdV0frc8fPH746AkLmLx7dna5Xu8vh+H5w/sPnjx/+dXXPzxbLUer0dgLQxZJ5dC7whZCmJew3YerKkNjQh0iwKZnqrrtWPDwR64r3IGhUpPabeabwn02hP5mGB/14yikv9PoolbiEE4h0l1iBbD9xhq4KrZrlWoxmys3EATX6sCBgf6OBj7ssB2kRoN+vQ0lVrVRK+BFKEh4VYer+T675FbAX3SLWKN5NfaZFzTaz1ByBpP5mkpZujDXcwA0VbXHUHPQp8IRfR+LBFT6zVaEv9fnx2fXlwdDU5QUsd0SO6I7JaCehjYSaOk2V7luP2J2UQhkYPE78RvserYuKfSSQdELpxmqKIcW9pqb5WqzXs7hDIhvJ2IlOVTvuaKkStX0XrqQytJ5kc2mP2XrlmJnO8xJ6/jWm20CZhGO/VRtqhuaaoAyI2fB3vhjYEgMVcRw2A/hmg62zErIYRRrEnBhMyCGiH84ZqkoU5jUggFO4hb3kKnSInh5TabghVFsZoY/O4hJNAqB2AONLhHbpjtAsTTFsnxldLJPFddk2p+NB6HGqzD8kHXbDTy1gRkEvu8c8sEzmzVlHLV/i3Bgk0t40CErbjdDANxt9gYA4GFk9SKlJA6JWNmNWhkZzarpyPkE3GOZTgmCsHI+V6oSFFeq9GrDwruwVzDk0LOGnjXL7c1H3eHQFepSRZB7oRm097BVycbYm5ypfBoZ9wmRrwT989FgPrl682LQVrvcUpf5Jl1OOhWWDgxN0NuqIuUMcccCFcipBATjCUJoH3Z9w0jjJ0NeN9u80Y/ScOrejZXQSN2lr7JHz7mwm9NkqVXvCtbAyUlnBMDDFNJ68YC9RBKO05lcNq24w2rH7Gn5sdNu68Y2y6NK0FNN1tKFUqGUF/sSZ1pBu9tUBGcnmdkItfdSGY7gq2qoImcb4WwSWKWtREXqio4u+7I224/Ont04cLlObgvRDTtbUO01B9WmL3LVhuQaKn1ij24oSTg/n85WZ5yU53jvYJqtmB1F0pMluV5v5Ec1c9B15v3BfL48XFqtgC5+URwFQr4ueW1D8FvZuS9O18PTG4GiuJeWSldQ35O9/ZemHBydqaofhMksQgSpkkrnoJnAUjZm0PRjZ4sqAdbFjcWDCdbJzSB6kBVgldioh+9QLSV2Fd9l6zNEFXo9w7AMEb2cDtfBfYUeHLzZE78ZoSYS2VycoMkknnSSEfwMEL8zW7FUwqvrq+sbNy4vry6vkLB7fXkGWRUdPPPVPjaOwAHY8i3aaWvWT4vDWFiviRha4GMkh5tsQch8dX3r9hdPv3r17euPP/76x7/+67/9+//8v//f/+d//+///M9/+7f/9o9//v3PH999++WDuzfODgeBo3Rq5RIcR+KOSGzPktnEj8E1maVDVOotIvyy1WMjrGCMzVGiwTF/jCKfSORwMok+qZMGYaxcDELPIRyGwX8Q08u48+Z8knsiYZsgDeYdCO5WJdkwdWc4nsBqeLKpQaaQp9MR7Gu1imIqarfd6ORyhWKuK3P1UqnNlcuZSs9yu22xacqq4AeSpcPO3UEUqCBYPiQrhqXy2U3aBRohpUqtwbOQ0q7kxJHrPaZ2jsaTWAM/ncZYPWSt69hTF9sQFp6uSbTdYCGjROChLGHcATuLpqEZTK3kRVhRw8CYuKug2XwadXGqReVIOBkNBo6IsGnC1bbEcZLULuWKTb5es/uCrHZVXXVMM6Cbt5mrEo8WCYA7tbrUSNc4BNWXDOfed9+/ezAbLhfDWTBYHR6sZtAsnK6n0+VksZgF7vLG9fWte1/cvX19EA4QLaEZNhY2PKuP0EVopyD27OO1niPnBJc1otgCSzP9fo/5YDHLMgVOh5LUgd5H7HY/Yz3PkGHBAO9sj1i1TjhN14gkirIm2+jeoxUCv0e526oWoJgnCtNgUbEdlmrT5JhtH7aM680GW1Bq1Ir0SQXBcQ2qmMfLgyM0j5YTeEgenZwcHh0fHS4HNgac9KUwzJA1fwaTOTYEok86IOTFRIjZ3qwOT5CgBLH4cv8YQdjnJ+dnM5tO2k6j0eEFXqc6J7QcTTE9z9Jt3xG7vRByd4I/XI+AQRSPLpUTuqSha+P4TCEB7NKReN0mDK1isT6djEemadzr2XQ6X5ZksZ5NpXPJNPNfTH1KBfnkbwy3HPi7x7YZBYRUs+OGGcMxeG6wuHs4vQhsbKPSdYeuhBGH2m+W5+NbC5oGlEURa6OhXw06jA/g2T1lkVebJnZsFzaLmJqbCU3jNjdj0WG4EUuw93cQDXxXpne2Jxsnh5PJchTOR/ORa3AtGcahHdnuD4KeBt7MCSLPGttsNb7ZqsEApFop5xgsI8Fhk5ME9Vees3qGNaWLR58GoekO6Qb2NEPSpVqjWOZF2baUQoIwD2HIaYQ0FUCvCZETiVJqL6s5Ujmbrlla3/Edd7hI702P+l3OrtDLJwjEJiftVL5Uoj+WL7P1DahA6ZKjS6zjaMbxvj+OVs+f9qTAXl9Pi/7CLfOC2Y/G8g6TlFOpsBtLyBNsdpQp5tO5tBYNeoMo6E0jv2/OfHQ1bG+U3UrEDs+bBWL4QWcLxUSu5MpNSWgIdCBVegcxAG+OWaaHK+ZzxWy2kBScsNS0elqRLuyWpW+zJeDfALhUyXcDhTddL80LXcXeBgCzFyOdSImNUqrq21zDm75/cjnuEQP2Bc2VekPJHk77ThAYo9CWslu7n8MopJAvFrhhpenxXKN6eGm2rH5HiUbtsnHnzJ4f7dd5u8oZ01W2bHUkzS03uWIl2eo31GqiNw2ixWx5tG9Ve4NQUgbLhZUTObFeac+l4jr0p/ujo2tf6fau5LaGw1zWnYeFcDm5CnR3Os+zMcXu9nYisc38+aE5TmB9l1l3xWt1u7FLyX957CWJM8IMDZ/Auu6QtxVKRQLUFgdbcqrHiW2pyGYxmDqn32d2qoQqxOG6Aizo6Y0vx0ZVmUwqViIm99jtSLBQxPanxnQawTAaENLCiuoUXtLnsMY6Oz09vzg/PSRghpJqP34cHMGkGqCMKfN8uYZNwXI+wR03RbbreBKvT0VzwvmLW3efvPjm7fuffvfrP//zv/z3f/+P//y//sd//K//9X/+93/6y1/+/o+/fnz77TfPv3r14v7V6cl8HPZMOu+LuXgZIZ9J7u4kUpl4bQGqgdieusnusna7qxFZsmwjdtIYxeU1PaHxNEJdMEU/F0cEo70xOyYgg26JiRPBKG2W8Y6cFllHqxeOVYM+gmDZIQGNayg2K0pPxRveTNLXz9OhSTxgbOezmWboW2Kd6/YkoaX7ktgs1+lpybJuCG3Nd+idsGyV4yUwVBYlS8AoCCwzkn7A/KDMtpLKLJ22RbwUgMOM9aBbDZhzB7MEQZHB9l/RiUZGuAXjSvj8aQhCwbQZvvWqjPlau1Fvd7pKRyUiKHYFBYlJguWZIVz4HQlzY0HkOhL9q3RKGb3Jm4roLcZBj+MMVeb1ZqXaLlMdLojELzFJzqTbnQrRppp1cOP2+Ulk2q5tuN4ISQUBlSojD2uwOtUpjr8PGnh8tJr1VEXvO6bs6irxGTey/DCgKw2yZ88NhujBY1HDMxFlZ0Iv5LtE9/B9USlB5AdpGqzkMNAY0D7zWaTtcOgHgxBbxNFiEeoSsnQUmaX69RlCjdiYwu/pXR4hcsU86yViz4hKik61gtVfpDIwAw6EeJZzUBW3VCjv6BIYrQ9Qie5DQLU8OD4+xAVPAGzFACx3VeIXijtlLq9IXVgdnTDWS//LKtj10ekxMWN0lBaHCPO8vDg+XE8JqJTMXqFSKNSlHrCD7j2blYQ9onUu1nXhRGqwkFfW/bDg3KZJ0AFrluuFTLEcBlId1QRMu4p0HqTZYb27l8pliWWkM4WaKHbKaSSnJ+KSNrXZBkr/1we6sXFzNr0xtMptvOziejGXhWUGBMZliA5YaEV831ElKiBnnKXRYmpNNe8AuAkG71FthQuV3qYBYHcS+2dimo7+6oTlaEznWLebzeAowAy1p9N4XjSNlfFsNXMU2EJX443u+GI6WOwPvMliYCs8PL0bzVqjo0L1CJUatBWeywI8LKY/gSATPigsbAkXh4S1g1az06xV6rzuOYPlRHY8dea59nDU5QydCwyOq4jlPN2BjiFgoQurm3vxivNetpDe3dre3c7u7mYls+24nWI/tIKp751Mc/WWfuuw51TETrHFU/20qu1CqRTvXzFCns7UO812qZmv3Jr17OH69rePfNFxuO6Nie7OhyObNwbTWTeRYbvTrK2JxiZsBWNOn85ZdMVHQ52PwvGoElxP1U7L9qLM9tbn2zufMysstuG7s0vgW0nns7bSMcVOU5ZMOgCyrk4AHPcdGU9OFKkyzWTKKaE3KDURdRnIkmTo28lEigB4N5HK1jKYleSlUBEMz9lrdjuasQ13a3xHufTuHt8gBmybEmfbGixM0tmeSW+CGrh1fxbYg0k0dkdjM71FuLa1uwVdXDss1Ux694ibvHhBb4obHfTbweW+N10dBcl+qanMjvIZU9DFTr5dI8iq6k1Jzldmo9F0PDs4Non8E0QdaKbSVJtNWSzq7dFKCWaH04MrKsWd8/Iu/J2307vpbiLQpNAxrX6EeDHD1GRN5Nv1MnIu8PawLaDdv+XmxNAcQ+8eM/FPQIIOvp+Ng2UT6c2kA6ZYWxj3xUCazQCVqZgtVukO4ZhqFHoOE/W0Yxtq7BDl2LgwdUXGugPXxgiMzibmuJ76JFpgC3splhfckVQ65r0InhYHB4dnkGdfw7jj5q1zuITcvn2Hfr4+Pzk5PYWIijjD/gHSI44QzM4WlNiK0no1g9ECdCyYYBEFn673CeIvLq+/ePj05bfff/zph7/767/8C7D5P/7nfxJj/l//x3/7y+9/fPvq67u3Lg4XREoJY5mUqoWETszJY+vmPJYFYwvU2HEnBrN6nccSj9KVDZttXaDjjKYz1Fmw7Rgx5Qh97MWJ5wFr9Bl2sJqhdTYcsglWzKuHo+VY71ZEWxfrVZ5L5jPFrNGnPxqMjGy11PJtSWwVtVK90+KbiUpvMgp0rdGiKrklEDbK9BxMFQ3hBopyOvWxB8UccwmLVUnAhyLPo1EsigBmRFGxmTlLcP4UnccRvdMNLE1htQHDOjxiGy80omPdd481sDHl7fBdodPmeUnmOs7+fDKeT8PhgkqK+TrSuwLUoGgt8G2eq6Z3hUJdE9u91eUIS+fBejKTquVWVeCg+CUAbtcbuUytTq97qijeuHl2GJr9cd+dLK5ffPP8yxdf3rtz79bRan89XaznB7cfv3338ceffv7pw5s7h+v9ezevD5eOKBuGakBANQgGE8Jhuhh9exQwCxSXaT6pmNRNx9a6En0Him7iZxnGYjrS9NjaGQEwM9sescJkNJ3vH8497JeoxH95Tui6I7hdzKcLOF+M+5aGXQ6uUS8Xc7lSrdEkdtdq1PCy0ivdZLvZyOgo5XO1riyoVES4QeB4C3jSHBysIaVBatchFIJHq6HNZsDw61ZEQaFTI+5AIwOTbRKugNPwez08Ri9pn57GZH5wxhzoCKAPT06nSjGdTe8k8zVO7MoaIb5Br0rfskTe7psahAlwh2GGidannwxsilu6hc1dSB56lkzVN9/lWHwA12lUS8xarlTGfm42W6xLUqeURmQusy3aHBr4sYPSf2c73v5JJP4L/LKKfPNBHKSbjgeojDNvgDkXh/Zmc+V6g03NcFmaLEQT5hgB1XtU6wkdqSsio0Fjq7joNzlxRFJAFy7acMxjbgTv9knMlyds9jmLoZktflEFP/I1QVQl2T06HkfLeTiYEBhwFaL+4BXVGqfYKLHZLY1aLhpsOkdU1QWsFRJguO3BEJaVrU7f1hCU7Pa85Ui0FTsiCht5XcVTzZneqje0KgGw4GgcPCiIsSEILkOv3hZbB8l3a51qvasZFWMYlM2+NuhHo7Vb9GbOzBoMCT5KLd7znHV6l4l34vglrGnvZbcTO6lEZje/CHqz+fWrG7o46Gmz6OBKsnsr2+zAZ5PfjLJTqb0UG1oz7pHNIPCq4FM9Mxqo6mSwiPic1hNqHXscZLZZgsbu3hZWfD8HiUtki5ViOoXKo2a3bCq4W8WcZwxT24nfAHg3UaDyKpMpZmR3UO2YRt+2HJ7usw0A7+2m8tV0tVAs57qhKhg9u9DstrpaIvZawZB9L9GpUV2mKLKg85Jo2lqmajUmPX1Ipc105ttUZIf90dQv72CdO5co0vXEjRotpy3KPbvVX5oKf9geXunTw7nTG65OS7JR607Pa2mDl/ROvlnI71WTSps7tApYvZvOVydKJ3ImY6/d0T07l0mXO3mu5trcaH68WF96lubcKO9mUrl8KZ2bOhUNQY2WrZvhdLWGkwWsmzGEPYl55OExtL5U78GzH84TArClSEUPS9Daodtla+u3RSDs6X4C6iTe4EQ6kd4YzWD7AFvt0BykmBUN0i8h/sNSNjwrEGpJBSBa2bJqwIOXcSeqwCH4YWJUKrKBBZgd0omFJYF0cuPczVTcJSxBNgAfIoTmdBYMRtPl+pBOpytEG13fvnP37t07N+mD+HHr1u1bN2/cvHPr+ur66oKJnc/O4FCNDCR6AY4vVkScoTadxgLt2ZIJpi8u7925++DR4ydPn3354uWLL588uvfF/S/u3jw/Pr84O9pfL2ejKJYuMd9nKnKJ7DP7ZoSHYjsSHXwqLfKoJKF/ZAVlCUvBQDQW5sI6VnROKCpTSWgsE80nWMANzAynp/PZeLm/WqwiRayIli5XMhyXKqayOXdFiDadWYVWteWoDa5uzoqlmi0POGGyCH1DL5ZEW213iEq2BcWwnSm0OITn0AfBZbTbRYgn1+FbdZZHDsEJ6Bg6FnhiIpvJKQoLSKNHE85ExNViugzFEbNw6ggxfgtwc8MMFUQRrJ7t0tKronQl06TfHoyD/tg36DTyhvtTU0ajrs1RkSZ0uE4lkyrlq+1as9sd96Kz8/mE3iOjWetUOjy2dSQizLzUKJTy5WIjVzW++f2v3z24uPXw1vXD+y9++es//Pkvf/2HP/zxl2+e3r86v7x9697DJ28JgX/44ceP379/fHlx587Ni1tri2sKsuL3/CjyAypxQsy9vVgHjQc9Z1XRLDhC47kTc4b4G811A113VWHi2c+YRoj1KeEsRVfPauIS65d0iV4IggN7uIAaeQajmNUycnQ4alC9WSogerNcpOKsXCYchjM0lToVBIZUa8V0gbfjIrUHa+FwcXh0dAAAXi/nq8PT01iivxpYDIA1XVO6vGAMFitYxCECG+Kr9dHBkv4YNpD2T04O6Uo+mB2u5ouji+vrq7PjU3blD5BosE13bgHxw10VuQSBp3eJ79M96NsuvI2DkC1jsRShXvwC0bNihkwYl9NZ4WgYChs62gQQOoPp4TUiVioLfJdeRlVo1eFlXCamUyrCX57YVBqVPPyek5s9nxTbzP3NySodu1kxwVKGHQCpOIp7YzWZyzNz6GSq3KC7jePoKDXjNfp4jx6iOOx/ZZDFgrUwFJT1RqvTgBs01Z3Yx4UwAm4fuo0IYY85yPp+ny0GRKysIg48Q1LbqhwmAAAgAElEQVR0SGVJm9jQ/OSImDEVkAu52u7kS0K7CtOUWke2PELcIR3PcHGNmE0Cq5qnI7ZZANvKURT4cWMLz89WVcsjoiYEY8NuD/yQXmRN7tvqaCqIbcWs5eh26tHbC11Ft6NKPIhzo0OlTaFin/SH/cXhJGgn+TNHDfxJMJkNj3vqmdfjXQ+xM0KHjqSDJPEnHNnMD5ro37YRpXI7yWxyJ9d3o9mzF2e6Mzb8pT/ho2FLVJodvt/rz4Wt+LSNfZ3pjN9J0sdU8RRyqWKAkZTcsUe9sRfYjUaZqizLz2erlQo8u+n8z2USzH4sVywXUxVL0xslqeWqgssX8j4D4OQGgonVAYCzdEAqdr/eUfRxPhO2BUPfoqIsuZfc207mi8lqNl/KioHC6a6nCRInmAm20ptO0JfLZvlGK1uztU7LskXdFJS20g0PAj/qd9xx4AXRAIsf47lZa5TosCpUCZYag3rTakrGXKNyp1ld30qr562Dq4k13PdnYTGsC6MLIas384sDo50p76STLsdNhGEwGo7W6+WRVx2uDuhtsfavjraLhVQ+VW9WPDuaHM7mZw4VsDeKu+mdxE56J+/neFf3TJcoJN1UIVbpohncngfj2ZQt6xOirxaL5f4B1MxHzHuZrf8SnzxnHn4EUggZHQae3bOJS/FNdMzgmRw7Z/yGxztE8mPv77i3vY3whkIhk0I4BsI4NtqEVHYzDcrnMrlCqVpv1io1Fs6GYrbbFTF3Yt5DTCnjWMwHkc4JOCdBz5IvFJi4IO5kp9g8G+9qGknzeQKhWpMIk4ZV8n5EcDo/JMi8vHkXCudHT7989uzp0yePHz24f+/u3S/uXCOpkJCZvmfYbp1SaXJxQd84FSZ0+tF5h/VLLFFiyRLqbOxjglHvs9Qn7IjMp7PFdDhkQQqod+HxAxGHRWcU3UC6QlgHN+AWEdBGEzI1FqRYrzD5aCFXLRWq9JLi43wJ7sH5dBbN+jx8geGIQRDZ0npas645mlJLFerJcrpQHp8siSMtDKpJ2oFdrSQzBtfIDrmHc70/Gs2MSiHfNpQOr2lcC5Ym3mIS4/kCTiVLZlbCZOkrGJhMIja29NCJNJSuAJMOVEFtDk5gzVarw+IQCI9lmZ24qoF1S4Qr0SfG8S7lSrNdLdfQxmbcjmEzh4S2TqdTL6UrqV3i1dVCvVRQB67MxQl+nMzzskxsWK7W+Wa5Wmn2TLmrhUZ/KDTaYqUhEE0TZUXgYZ/cymdz1VRe+eoPH359e//q5u3rq6vTWy/fvHnz7dtXb99++fDW/o3zy7Pj1eL69fcf3hMGf/j19d3b5zcu6cdZZFmmInH0mvCCZjGfpj7yIzHGs2PrX8ejy0+XuzqBCyO9BCn0TcIVXSZsoW/6MzD/IXoU4xluoPV6HnmYGEOwju0WL4JBG4uSXK8X40Fsuahr7VYDxsaoy2A0U4evGkKwUKIWMumcOKS6wEUsIF248wPWPob04WC1OoTfDEjt4dJXJMNmUfL0osjmkMrGjQqa0WCmw9pfzhcHJ6eIFTlBHtR4cnTjBrbh2V7C0Wo97WbhO1Ei8khP3O6HfUeTHaY78lkqckBMkvXZkdITxvs9sXTYZ2tE8DwOmbWLFy8A9OPdFbR1vE/BBGiKUBlmoR3CMgOZXISP/cDQRaJvvgiOl2fukGzimdp0TZNxji7akMxnOnaywk9EhdG4TjeICtbqfEs2LG/gaQY2xgKCwcEs6km1QtzCZh1UxpfpZCgV83kqdpBbChM7mEDDD7TJZGA816VClYoHQbZ9SH3DcZ/pHjyxJWqitX898qeDaLo0Kq1esdYwumzfsdloib5rj+eYg4zCIJqMh4hFw9T5twdbOgA3Ho3oR7cledJUdxW1rziaGTiW56ma7ynOvtQkVtHMFiVdllSx3zfcvtvzsYwLy9QB/f1G35L7+lJQ53pCDZRg7gzH/Qm9X2ORt2c9PSc3qqJkeIHLwVkTAq7Mzm5ud7d2/HgRzKbBYDld3j47eflhqbMgqF5/mapESmXkWYocRgtli0UfJpi99048ktzay0LmnuX77pHFG7w8iazhNNRb5apom4N8MksVVDY+3hN7Oaqw6NRPVyp5RdQreYMTjFOby5d9KgEghvo0At4ppLOJdCmVVt2wzhlmVOrogqJ6W0QgP99OZyCoz+ZAZuRAbujwwq0XdYOZcBAKM0lbE70jxWlyrmEKyDqQ+dU8mE58cTyK7Nkgmgz6k3CysGSP3s5JNZlNNefFltpp9AbGYGy25Ss7lTHkm+eDYDzqj2Y1S+KcczWlrkw37GupUmo3w3ca1t58MBtO15P5Ua8zmK3UrhAdzG40djPb9HJVOPcgHB3PJzcdSzRv1/eIae8lQou4eXdj9B+yNDKABTbCIubnCnd+1nyJYKmBYxjqIiZMmNLpMV9S/b3aj9OBzi+vbzALius78Ii8ury4vmQhQQeHqxld9X4P2l1NRDJOhcnt2DD+bz7gG7+rxEamn86wcVAmm018amFvJApJBtxUu8I4qkb1HCY9hmkSprJOEswa0QS1WE4rXBJwX7eb7XajghxCNrBAphnTxMeZEbAhA5ThrzItN4zG08VydXByfnF9+9adew8eP354//Hjx0+fPX10//7dO0Sh2XYwK0SOmEX1/nJC4DVlFgfxWtFoGAswfdZLZnaNzIFqAJugiA1MI5j8IzOHrvTQhrOwZtpUxoh0lIs8UuylLnYziC5oCtXiKlYwIx8zW41nBlssDalaypU6olCRdU7gC4JYyyVznUa1Ikhtza42s5xnU9VZkRuNtqoMDyv28nimVmqZmqJxNblT5VtNVXchDMUGc7yuPBpNWccNtvpY71jQKT0DJDNKt6bKC8FP+BYIm320lXWVBRqCj4J5iMQpcGxxXWbzoxL+qAymxC4Lg4MUhTncY7MSjAXaDnorkqmdRs8JB5tFK66tiFQviZIuFrK5dCaXTJUGUxPSOrvb4ZAbxHWxHKIgI7dSyJUy9VSl9/rtm+9eP6HL8erG+cnx86/fvPvw4d3bN6/uXWBJ/fTi5Ojh+48//vTLLz99+PDVzRu3rmE9fhj2WZb8oAcnLFuX2LOk70KUCDpB4TDDdlhrBgHsapfKOK3dJWwVZfZLmL1+FoTgwIEbL59igOwxy2gkOeC16GPTizUzAcNTeqmHgWvqBr04Qotq1810M/+pm5oEPOQKVXk0HYwjf+j3h9ATnrDwTkx+Dw6O6Ro8YD7py8BQDFxHBj0nVTbCxXoG+fMqzkvCf04PlkvosQ73949gNLOejuYnxH8ZABORvjg9nUsZusuyVYFuB81GfStD8exCXBZ5zKOFRYIwso/RCf0ziFM4ockL2PQBGiX8xog5ZozGmx2gzTp5rCoONr7HQeAx3sxigAws32mxWICAWWEr5iwrE5Y18e4PoWO5VMixdCOWxYCU1E9bPDCDLktco0PXhmy5PtU/zHA5HE3Y6da3uvU8VkwhWEkzypzNs6wl9hfmc5vkJBRD9O8mPonqX6T3Futmb9CTCM1dInB+YMudriz2T87dYBFNJkGt0gvzRXWsZcvErCGZIKIwnvjYh/IxIO8PYiX25jGC0hoGuTAwHVN1UGuIujbkZdEcoBNlmw59IcshZJu0hYCQs1ASFFnVlWgSDMeDuNlC2Av/tZETEjG2J82COWzwvmPRTR2N1sNBODacdl1Xhr5f4hViLf0eW4tkTqJUVrlKK0+1LG+abcniS/demLzj+/ic4bSSFGf6bK2Ikh/M5K3dOKsIfeLNvu5OAhXibqIZ2FErb4hqFOiuc6knWl2OqjcYdcTunwyvAdmgwblcWlGdTks1B87hQK8WXDNKbiV3P3U0k4lyOpvKFNJpxQ1qbd12OrYlipaylYEE9nP6W4rlQrGWq5alYU/WDbvb5fP1wdYetOSpNOufNErVTE7ri7JHOECnadd0V1TmLO3+auSvPMeLop4/CUa1VC6RyuRz9BdXR4W6LndGfU0Ppbp2Q+hrWeX63KeiaTCet3W55V66Gck3NI8AmM6stDw4bmfNcBKOV5PFkdcJZ0tVM+fz8Rm3m8ns5pKlurwej/bH4xs9QvrbtV264FL1A7/ruL2RHzDxzASiSIQdwCdjMZ2yjiSgZAEDZZZgO2Vn8nKG0dUEntBQLCyxqsJ0CnSg4Ghm0yZYOJ5jq+jW7Zu3795/+OTZc+KWL16+ePn1q69fvqD/efLFvVuI811NRqFr0imLirdER/Fu7G619WnwvAvHq+2dbQwF0FyIO05pbI2y/0KUnc0hBRiuQsXippMNUgZRnN5GUwnXKztBYXChsRC9ntpVDA3WehwaYWX6KzCR2mWBTizNiZl6E+rnChVCk64k69AsE6M4xGYw2tewvbp56wbSgU9OTo+xycwY8ZjOHBbuO9rsJEbMdTVg/uzYYaTfYQOp2C14SIfXYLTZX2SWHiEBd+xKYMZbJSJjBTXmpFcsVRq1EltRoQdP/JXwTWnWLUdx7ZahhEbXEn1EUadrYqlVaPXMSodrStVqq9vRzjiWH1CvZhuazjVkodautgjd2QQQjg0syJkOZyx/zcYYr7Nh898qCzRXWXbSGOYPeNv3j07OmNqWtUUh62G9tRFzmbXpVSbO3GaPVpt1M9gzZ51sXug0a/EwIR0fc0VnNXRdgjyOZQTJHGg2L+US6RyUjSV5tR/a1sAyCOw5KsC6siJRFdYhwG8WS43idvPO279+/ebH9y/uUaV06/ri4ps337179/a779+9fXTz7vXl1fn50cGD799/eP/xh4/ff/zq9q3b17dv3rp1TKwVzlfDwHYHYRwK4NiIBMYTYdqeTquJJy3QxdDVTd1xIflWdUaKu/AH4/nPWAIOvm+qBiG3YZHsMgLhwZEVzYXojo37Q2bqhE+34zgsjW/CsRD+4bkcJqawEacP8qVStWNO5uPFYrqk4hBBYYeL1RKiZgbAJ2CuaEEvQhPdZ6oMul1FlfX+bIV+DJjvEp1v+u/xAdWWh+sFE6EdHB7PR6P1ORWT6GxRRXlyeXGxkHLpVD5b5iRF7XbarTreK9YCgIqN6QFdOEJi3gsGj41ZJmSIC82AVZxotQJnYIxFl88snqWyPOJPrnibB6xVqdAbM0ur2OcKdwZDaDjDfFImQmBv9ZyNKwFClulFJ87MU83XqDWZ0XqlWMY+Tq2t1BqYKMDkzTWtPjF2RBUPRzMsB/ekcpp1tZn5PPMz+G3MzBrYG2PoNBuTYeODVX+FYjZTUnzNUbgoRMlv+MOe1ubF7uzGvjlcRvOpmWsPlVwjmLTyrW6z2urUOdPxx31VRUtbNehnC+PmeOcBjyGVMUPA8HwahNO+UGwTLXKKtW4w7nV1UdVc+DapXdEJ284q6gmVCt4XVR7OcJONIe3EveYO6DvUe1U17S14eT5LqE5DXe/v091L9arDOatidLwfOqW25NiaN8A+GdoTLl3v/kjLpPf24PW7tZPd3RuOlYgBsOcFB1G7oNsnkSAorj+VtwCksSdYrFhGFC3x6Gwu1Zn4o2rWlbuERVbV72X5RrPvRcwpa2dre2frNw1vEnVOJqUoeq3RFp1GV2rXcz1jTAC8gXawomoKCRiZDAFwpaXZUjew+LpjbCHvKoPToFgu5ovNRkYMFUFDYMjY5c2tHaYJTjJpcLNSzRZUq9HWOcyNpLbiXa8PggU3HS+8fn8yjMQ2P94/M/d2tlO7n+cTmURtVK4ZRmPu2fVWU+xp6eCEz04f29NoPBxMJcFv2gf+nkAXgdc3CuliYVcylN2aOZoG0Xw03fda4XypGH40Xs5looglqSlo3iqkt2t2wzW6vfNGBhv9Ga8AG7QWFbdsn64/AK9d7UcT3KbMvA5uyqf7+1Qqr4jsMvvkfXRWF0viQkjxXc3nTLq0YJZW6Kqxrf/4sR+LLXEwHKJle3xycn518+adO3e/ePjk6dNHj588e/H1t2/e4GR8/4EeH9+/e4s13acP7t2+urg+hXXWwMe2a7NeKaPI/f8psLfhFL2zvRHD7wGJqa5KMjV/mt1c8InLprIFOk2okMqyJJMC8s0bhM9Cs9YGG1OwJkOcUrFtVet5aIohrEaHUrfNJKgFVhPjAo1Ls91YqJnJw+wewKyadKCOxsQ09g9PMG2DQSXOOwSlH6xjJ04mtmSWnBHS/IZx82kQuD0YZqIYhfk/Yr6ZlTYiyWNNFtuWGPYHscgY3prwgqMjW8OYllMIpFo81ftVQlVRbgvy0LUsbnBgyVSg+51WteVqvEKHcqslGzx/qPOVUkvny9mWZghNqd1olupO3220CVYUw7Ectw9DETbBpDeRjnpcCYgMwmLYyRItdrSql9DfTkasQKNnhtY7ZKH0zdKHMyQbEuOKF8SYnGCfgJk+E9+T17MwFicSz8XdxmariYUTrDW2/cPVYOAT+UQN1WlLHCEr/CYJbuvVRkOPTo6Wnhz07G4bBp4EwISRkowPW7VKPlm/89ff/e7Nxw9vHxMBPj25vrh6+/333719+fW33715cH376vL6/IIAmPD3+/cfP77/+OrOrZuXt27euCCSH2GZNAoJYCyozGPbsth9ni2eUi3RYupkem703DsdeKKAlTUaHBf7Dn9GaBJh/81iG9JIjFOxMMyyO6FQZktZqs54NEsmsnC9YTtLk/gWS2CI/cDxlQj1a1D1VZuiM56N51i128iq5rPFgi0Urfdxix1RBXi4mvqmqquyomvIjJWM/oSt/7KLkd2eMICmmxl38JreW7q7p8PRwfnp8ekFa+gQAp+dLdRqPlPMVzgiDc0sjolKqQAvaij7622OeV12sNysxIovpnSnbyEeljux7UwYl5oBvLFi8ru5DeJln08VPivwJ3HJH5tqfPKtjftE8V7uiLVno8Fo/htG9+NQPxaz28O7Q8+Bvnf61ruq3GlV2nXVMenOsp0BgVzkBYTxwwioNRnaXJkZQmZSn6yEEkwLnEhu1nJZ/w2jMNZ7AwmmFySTSxekYSBLWn/h8k1j4msWTM0F9eDmqBdNovlYq8hepSMbSrFlmJ1qh6u0FTuMrCZ8Oes15FrBAppKuu7mwdaaMW92e5rhqpWKqAkDfi9vzid93hboUDJVU+10DNfvTtae1i5XEUDNKwGG0ONNw2o8nq4myykv54t1vUX819K7NWE5M+llsqRweXJ4u1fZH4pHfr1JnFyzmeM2avwes3Lve+Pqdiq9tVtIpHZbkTk2bHhZ02U/aQ+OismwynUN3yUAxkpR4jf7JcaAd0FVc8nGwBuVE7aiDOcjM29xSV5qOL1RGmf0LhgUC6vFn0kR/lZyaV0Rs3lDdRXB4YyCa4xT28kYfzGrTFQS2QI4GQNg3dSqmt2p2P7WHnhSemdrK1XIgYHuiWObfnv66ts7l2N9C5pgOG4BATr1Rraimy2BSB4vq8Tio/PlOhgLZ+v1oD9xfNMxRXk0GKHJlEkUqMJvjBo1w6qthn6jovUmhcyetsj2H/BTnLwjuxHWrNU06/RNdRAYjWQxvaOarXw6GM/8wWI82+81w+VSNoLx0aUpWS58pLvBwcSm8m99o6/y7mEtS0QjnbeSmQQV2sidgKphb6NFL7AkHGhoEEWvUH2PM6LH/Alx4SMCZ7GEmeQRY7nndMcip4j5NTIPjbOzeEaMWfHJMRRLiDGKrR3v3Lh149atO3fu3YEB782bt29/QQ+iKncePnjw4OHjZ19++ezLr17Tifme/v3p19/9+off//rzjz/88MP3371+9fLLp4+vL45XkwEi0QyFbzfrqFcTcVrD1t/k2lRt7exAdUeFEHTzWbbPi9tqLw4lS7MfbDQRR4Jmi0Q0qnVYG9JdIWmyrFku2xlAuY/0dRmub6KEFNh6tcq0lvTFN7YtdMUkCfeT2dizuQGfYx3LDziMqPaesUOGuW3C+W++ZC4A8aY/mlPY70eiiR0bHWC7Mt5L6m1kxaiaccsMomHfC6IRpgaTg6MVolens3GvVZEtReVqJbXLCdW2ttZb7Y4k1ZqNltvlOg2uU66ISqsiiHQsKXKplG+rWrchNJrtSkno+XTMV0rFUnkTsJhDNgSTxpUrdcLmLtuUhV0vles4yGdYv94/WMe8FwgQb5iyLvWKCg+YPLBJ5xLf8XjG+ifzOVv/mm88FOkxDEChqA6H15Sp61I41HXfZElvbdAbuEE1W0KrmM0VK1QO1e3ZwczxQl9tIxFOgLeFJEscwlplLp2pHP78Tx8+/N1P3z+5devm+cnF2cXb9+/evfv6q1dvX987v766uDy/Ojt+9PHjh3fvf/zpx59e379z8+LmzVsnk+F0DDfRydAxLQ0sDA3VQTQGQxshqGo46HtDaOvoKfd0DkcpNrY4QsgmLP4xGvlsOp+NBrCHsuPABnhHQK3W7bI5MdZWWUIFz8dKc2QF8yLzP+SZCgiqNqL0hMAwQ5SbGJK32qIdDNgmK2tFwPyKmUBDIgjJwRIT4ekocDQFBST8uLWu7AyRIxqLESAlXMDLhvgva3TswwZntRyH0T7dsBdXECCCBJ+crS0ETRVrfFcS6jBQzMS0MA2lYDpHxDxXKODtgGsyTBnqbPGng7cr3h6XIbjSYr9sLBCy6Fufrc4xXIZXVqxTQ/8MumLs++CWmLDLAhcKAxa2HxRPv8Z0DRHMfAKdQWyaMYkX0mPHDLS//UHfMQRcGZw7DMd9x/RGkeciHwY9PDR0xqPAlKBhYFrOEpNjwWESxTvTXKfYTlSKdcE+AXIim9rZS9Q8V9NE79CtVVr+wmm2FbnZFOzTCw9TvPlA5VWXD+RKtSE7VqtCANwUjDAyq5kc221GR5u+EGZo8YP57+EVrKP0ateLZU4SBpW9cm8eDbq+QKcInSPdlgQzsllA10+l0ukqsmB64zEM17CYz0wTjtYHg1x+d6eqtvhh0QkVa0K0eBiev3j55ssn918Wyp6Wb40aLd5xNae/8RYJop4ziFynr+R3CQWoEKnuNtfhQO4FPsy0PWukNEqK0eEVK3AnBMAx891l3ofsA6QLEgQnGoE3q+zxijcJTIszuhxVkz0vTG+DtTAHLIQxAIiTVNYUMxlb72bznGD0pLEglQmA07up3U8MeCtR3iM0ymZTMgFw07DCZNXmmpa9tZfI5pNb6Xxbty3N0AO+o9HRrGqRVqVze4uJA7a2EqisOvVqpm714PNjCSYVi9Lh0WoS9bSL9bQ/jZyRoPNNcTo7qhSb1Rq/t5XYrYX1um43932x2uzzs1a21Z8Lq/vyZDAah+NBddDqrVdJXpWt8cDq0BNOyFbopanM7AWL2erEbfZnS82dPvryXiWRyybyiVyCP4ZZw2hxFhqyPS6lcW3luF2m5WZm4/QyxlLC9CZqK5eneyvPUIpJfrL59Gbzq1TZAHSzQ/enIiNbwAZaBNhKnU7X66OTC2K619c3b927//jp08ePHj588MXdB48e3L374CH9c58ehLn3vnjw8NGjR7fvfnGf/nlAnwYEfvzls6f0ePzw2bNnTx8/fvyEMJfI8pfPv/rq66+/fvXq1ffffffu3cePP9Kh+v27Dz/+9Pbt69evvnrx7PbtW9cXBPyraejZuixWitkYmbe3/4bLe8k9Bpa4anZwg6ULmc1wmZA5g1lQapNXCnE9ztR8AUQXeTRYWO50CIaRf6ZgWIUgbDTGdEUQULHUi8Uq4Gszz2RD7gTrnRNfzkNOks8j/Aa6WRgI0ekeIXh8jEMnPohmEQvcHUU9r4+c894Qa9NUBbibHWHAcICo22HgOH3fQuboIBqY9Sqa5EKtbnHler3NB4P1+eHEApdy+GY1Uy3lix2uWWp22rJEmFEscLIiNjsmHdVS1+pFnqbCI5H5StJRySyqibvpShciSyzDIL+pjFcEZxXoqYCCRNFM+OjDFXBCBzwqMyLK5yeAZERSQaB7csTCmufT2STmLxDoxMFroyGbBfoDL9bl0E2pWtAMiwyqIEmFaFatV3J0O4IkGwcnJ4sBA2Ainujs0qcKRB55iZhPpzu3n/3xhw+/vn92586dKwLby+8/fPjww8fv3rx//5hqvsuL8xuXpwDg9x9/+vmn333/8N6ty5s3751Notl4OIalIUYAbE5JD9BfqI2YCWJsI8x6rbNAVexer9/DTpIpc+iz81y7+dkMFm2DPlELXBpGbN3E5pjQpQkwjiBcY44M2Oyi4xYkusMC64ROh9nNfXoA0RrsE6kGksGk0cVkZNOKM4B8H4PmAXKB4FGGHCCiwIpMB5MsKj34trAh/hwL8Sw/m6jz8pDIMlSER/tLxIDtw3L98pwt1J+hQeAS7GbzNaoLhBpDXrZcyPJ/0glWuGZSm8DcNNv+AXyxCQISvcqVClygq/Fabov17rHDxhwzcO+o2G+AqB9GpgifxjWB7ejoE0WmG+GTI8Zv1hi/1R3M/XoyhhR5MsMYHXYZzLIWmdv+ODL5RlPkZT2YRAO3N4hCzK2hbImdazAa6vewph6r19mOQRdLYnB3YgVfHcnMVQSAwbUYPhmZVJbOzWI3kAVDCpaNVFYaBEqzo6pcSw6P961RECwnviSarhkJtTYnakqz2uGb9bYWjNxWOhO7jOSZ7SQmW5sHnMDgDJZlyEwHbI2Xg3pBcIb9SPd53dY015NFS+iIsie0JbVeagqypsFVQVFNTdEslh4e9sKBhXdkp9nL95xQGM5DzT85ffTF7eW459HTqtvDzl5A8G3ZejBmFSYMaOHIh2RoTddbGYLUdHpPi8K5H7q2h16Y0Dasoa1wkh64I3ELyVZ7LItoEzJIJ1w6m84nU51osG4miLKPXd21272hWOQsw0vC7nd3YyOxsw1HpyQjLxnbkHL5tuJY6tqXyp5JAJzc/UStd5MVGGYRsnd7/XLTNEeJot7umPpWKp3YTle80Xp/Nj28+f7l2XQotXp9R+DdvqJvbTPPj+09RN22CMXqms+5WpQAACAASURBVNFqqRa9hLomiger/WAs9Q/m7toxppbX4CqiOl71raHrTqqZYqER1puy3Jro1VxWbUwbxWZgiNygi2pvGE0rI8GerfYIo+ls6FlNvq6MpI4yMUYTAPDisN/2onmP7qmLcwmGpXyJr0jHy+PxMIzmA9cdHiICezzwhrpDJ53SabHlEZZ8DDkyhqCYs+4mIPPPF5ismC6OYqHI4rTyRezKlKqIz8vH3hnZGKA3SsIifJQaCHiXFQMpHf1oTqfyGRIa7nxx//6DR0+ff/Xq1Zu3b797++bbb759Sz8Ttr786quvXj5/9uSL+w8JcJ88efyUyPCz51+9JNr7hH7hER6EyM+/fPro4f0vvnjylMmVH3355ZfPX7x88fzbN4Dit99//OGnX//u97/7+U+//+WHd2++QdLhF3cJmxfLaWirXKNSLubSyVgARj9+A+c9+hc/0rHNV74Uy8BYA5stHseGPaiOMxCqMhEynS+lUrWBTFeBpfuqBk5dyzB0B8NPgAcLW6lVwbLxF8RqBNYlYbZi7F6kqgahoZ2OIFkG9Nl9H3GIECHDuge7hywsAXvBQOwB0UU64f0hi2fq2f3ArFjrQMC8UlRzhW6pASlqf2g3uTbnKDxXbtB7R0dLibNHJ4eRwBfLfFeWWh1L04LAMqWWqMpUsnJ0YqLU6DAcICYmMSrP4mRgpaKgGUAnvMQjBYHIGYuPh8kZ0QjkyCClnK46dNawPUrIOhrNsOAWDyMBAawVjZYjmKIdb4hgA9IDgtAPx1Ekk2m1ROA7QYkkaw1B4vl2k1M74XIwO1iNQw0kmUNnF/rZTr3S4csVbcrtK2cvl3/48e0jQtuLsxvnF999oJLtp3dvP75/eHF95/ry/MbFycOPP/7IVFi/vP3i9o2z68ubJ9PxcjaMxoPxdETPLt7GRtR94Ln9kMqcEG0XG5ohHEvDnqJ7PdPGko2uKyL8KagY6H7GskSigHlXmAhsU9n4V8LeKbRECE1CxSAwvkvvFx93sZnl4m/g224LeIHRh8aIgedF9C5bbQ57eqzbzeIg6W+kr6pBJqVoyMdl6bhyDPaiYiIygu2YY6gQxa77URjNlthDXq2JMyNCcnl6fX15cnR4dEoE+Pr04qRXTuezhRa9AVwFKz2ZTHIPK4SxY0ZsNMQ4MdpIqc0GwyauL8eSbvJFnAvM5Sn3m3EGMUDcOOUSAi1x97SQhMwJTAWtMViG66UZe3tYseHjINZMsKWdaCNBQNJJjMTT2YJt5n6yVKffGbtis8VrXcUfEdexo+kEiu3BkO6bWF6BApd5xbLKL2QBDWg2wQkNvvesnY3MSS2eG2C/TOyyGklznS7dN6MgnytafVjI2I7C6ZODkT2ikjfoKYKpe4Go2JIgK3yTWEqzrXpRKCTTn2IXMmzRIy5c2PGJRjg8j+l1pFOmWuuoDr2vPdcJTbsb9DWt51CxIhDp6lYlX6/mG0JXswjea8VKo4xJGbJbk7v0uhPm5HZ3mw2+Zc+nqrOYrq/uzjzIFAslMx95jmsWeCScejbmv0yCRaeJ0/MHIR0orcROsrBbSGjroe1SDd6n18pRRo0mvRO8qARexAB4b4+p0JnfMp1hu9uEFIXEXjP0xu1CoOmTkeMaJp/31S6n9hJbid3NrPjT5DhdgLQ9a6pSnhiw01HskMu71iRJn/oJgJPJcgKgxAC4WDdMryJITd40ttOZ7e02lEiB3ZscT8LJZNGraLrDc5qs9rc+3465D2hwq1pOlyVLkqNj1Wx19Y69ckItFA+OT8xzS/ErvbBVEeT52CTozdcyiUy6FVZ4oc15cqeUbQizxjojTA9USw9RIA4WpUBUp+el7tofSrrbtwJhecOplm/I47HTX0zn+wHXj1bBdHF6euP0eDlfnh6crmdHCyZIDIf9vj0dISZ3/+rs6vLk6vicrb+en51cnJ8cLJl8iA2wiN5JArqSsSSTVSwof/cYEKUgHqRyrVwuwfG1QmjUYpUjXXGoIZvNRq1SBWOqAKbxF6D4I2zGdmObFXCWG06ILx2dXd+99/DJ86+/ff3m7Zs3r79//+HDu++++/6nn354/92b12+++fabb77+6vnzl18R9D4hNv2QeDMB8j1i0I+ePH1Gv/IYYAxyTaD9/OGjJ8SdHz2gn758SZyZUP7tu/fv6QT++edffv315x8+IoH41devXj57+MXtq7PDg/ViMgx8je6wWi6V/i+AHEccxsZge1vb0IDRocJsVmL79FR8DuGj7MZVNYFrsUBsMUc3B+EQSItBFNGjUsRjsTnwU2JGwnIX49t6o1rA37SLXazUxrM+FjewVUd6wTBnFJnINBpPBqPJbLm/XmDxaT5fQuS6Wu6P1Hpw5+46UOV6sZVKNzPZjhMNxsteqdvpuj1Jbdby+XSpWMm2rWga+TWxWKEKSeV5YvaGrepNrrd/cXp0enV8fLS/IAjCdgliISBvxmpILXbDwiiw1iCAxvgPXlDQ0GMOx5wo6YHjn60oITqxXqsQI4LdHWw76hzBgm7ajPMAxpj5EBT20SCCtBaKcC8Me6alYwzAXOKFjWi6Y3neMBrA02oULk5vrsYGhNQtabPD0uFLpWY+LfCVUW/6evjl7z4+gw3L9Y2zi+8/fP/d+w/ffffhzc318c3rq7OL05MnH3786edffvnxw0/f3KJfoZvgaBTNF3BJGxMRHg78gB38CGj06aTuD4cBNmx6nyxGBy7VSWZXVQyb+XOoqBIMQ/sMDpRh6JqgV/RGM/wFyVLi3BpREZE6CYV33HDGRBAxhEyk1uGFuPjhqBhqb1gwA2OhTQjd6iACp8Ngmj4Noi+GxljfESVmmdIFo2b+1DAs6yoI1WJh93FohIMMMLDOCJmJodsjIApGq5NDtj13eHJ8RAfGkZ3P1ks1gWhhp5xL72FNIAXCg/CSRJzNhx1DNgrcYSuESXR5sP6XzbF9XGiXNr0lZPzQFY76E7VrNrbJ+M0xI89OCKrqoaAk3olkKCo0UAxi5MOKDBhmEGxYdA24lsOGMX3IrfFaD1mlFCFhHkKucDmUqk36c6o+JXJse9NBQOWQN2IRVhbyO8PRZNT3hnE9MsKcn71nLDKlH3c64JGBJTQqe614/4q+sG33hgOJ4yr6gZ3N865jOkLdDOyutVr23VE4XNo9s9sVJlNJH/rwaeFqTaHDKb0wFIjb7QB8IA6K9Z3xI8H+LxX7S2FO1qi30cVo9m3Tpatnf6hrlm5aimb6WrtoL5RSrkVll64RQ0vnSnGOAzHo8m41VeGr+VqxLJtqMJqG/my0fvp0Te/5cL6yuPZebxW1qyUsUvl6BXrxDFtFSuNdoTeukE0QzU9WillvPgscKp6jqO8tKmFrch61RUEJg6i7s5njMvbARDl7O1sYXeYS9YETiaqvWOspnRqCtNdvCqrf290AMJsBx8w5nYchWt5UtXK52wrEfqNXz7rOZGeLZfrsxc5opSQr3NJSr18gxqlbRHT5nplI7yQ74TQkAkKV5Mrbv7L9A7ljGXRrGZG09Tnj2zuf7+1+vss16+mS3JM62vDVM1nzxMnS6qt98Wx14BjDwTJKRAZX5gcra5eO+K18Jp+q+QWRa8pevVJuZyuu6rnL+eHjE3m4nIwnw4OKr6mz80xG08x8t2dQTXAQqb2sRgea7i7m6xOPCyeHw4heveE4ZJFe3mw8WuquP6Qy3nMGs3Dqo543xoEf+YjwGc/mEM0s9w9Pz88hvML09gLxCFewX766vEDC/eEaepsRXNVgAMTzRO+rtQqo80bKEK9AZ+P0giqziG412elCB4ss8CLfJLKIE7xaYaQ7Ey/n5mHPQYd7td7sUG3XCwaj+fro6PTyzoMnT588f/Xm3fffv333/TvCUQbOb14TKH/37cunjx4xeTW48JNnjwmBH96/RyT5EetlM5jGZPnBQzDnh8SbHzwmWH72/CXA/vWHX375+dc//sOf/vTnP//5T3/4wz/85e//8LtfGOp/8+WDu3evzyBp0SXYZhTzmdSnVvZms3l3M2veTe5t46JKY+04mYMX60bUkYwdBH6719Lx5mEdEjBO1ngJmhHNIM6MtWYf5b7vuxaxTVMjitSG/0WxUCxm2MpdcuNAhnCLVDpfrBDTpPNWtZEKNphHKpet2JO+rOXzsKYpJFPBzbPF3G/zDcntC91KPZPdy+cr6YoxmwRBuZuviKKsS92OLBPpdmVF1vzFwXIEjwY4sByxgIkT9CXPz84urtChxK+s56OAjh4DCYlE7uvM/4/4DMJsBUkj0LG8MBriHBuMJ5MoGIaOBZtgpChyjSpmy+jFV1jCcb3V4CTCKMPyWSZpOJr1+0RBBwGcLyBhYj8sReCIn3e7TXhDtEWpya0nBMCtRkthJIWQyKonO916p1Sumo3DyTcEwLdu3bq+vnF+9eGnD+/QcP759fls//Ly6uzs6OT5d+9/+PGnH969/vnb2zduXt28vjyO+qMZ3Qmj+f6C6lAffAm2mgG8kCK2MhPCPzKKD/wIifC6xFJmLUvrmmzwqsqfacqnvWARY12ETLLmKwteJ2CAC1OnKwJuMT/eZDgw0G2ztVM28+Zi2TjGgu24IYExa+yyyLyPRYBut4txMfsaXJvBNv1umw1kuS7fbnXi2gUI3e7yRN3oTxIwYyNKAjdn4jDNQTpTb4D3C6l+s4kvtwjnBayod1rYR2a76WX2zhXo2IdffCqTisekSZa+StUii/yhaxU/E6AkYtVFismZUlgLgW0Vq1gxDc2mGfVLZ3ZgoZFNJ8AFMSDNsAXV7G8GPfkSfeUScBl1X7NB3w4iLgWWy6AZdGWhlQ1o7RHx6g1dt8qJTV1vzPYnK8WdjwZwtXIN2TQMh94nw/GHTMxIbys49DzevJtiO2gwZo2Z0SfV2IhtDAHXCcUnQ7h66w2h7h50s13fH9u1Etdfq6o/m5jeJJjR17d1UZhPtV7f9cYjvdXk+Cav9gZ9uYT2fCFHt2YuwxyI4nMiwcApwdq5W7uJnd2CUqlIuqp0epbHOerg1AcXMm2R6m+51pwHarfakulGsxqJVDmfTKFtDXlpspEoNVrEn1u5qnMypFdiMj19emfA4kIkJ3Ilf7o8ags1jutZhl9MF+hdSGWTn0z5t7fTiQT9QipfSfan86EbhL4x8LBlmDVPDpuiqBCmiKghmBx2i7lb7W0nCOqyKbD7dtTrN6nQtCZDR7msNIfjaptIIlTQmOsy2szkzVj4yVYy2Z7SLZQ4XfBGnJbN982ITlE0YOHCQX+iisKCGLDq+4UGlH4qV2lp1k5lpzPD9mxoOKfHdnS4+OafXy4MKeyKquKqdDZvY8X1cyQY5JuVQssyeV+3woHZVcayrnYmGvfoaNEbDybDYzc5rXFV92RJn/z5VpowqeLV83JeMJuVerVUaI+Nh6O0enSlu5PJNJysqQLQ+qfpXcPwCoIptyrcpJ9vdtdm2As9d7Lcjxr92SQNy8NSqVYtlOuNfHVyNrLgQT5AUdcPouliMVvOJnGULTEQOvAQXI/m2SCK3YonTNtKn7EYj0AMFqvD4+PT89NDQmOs/V7B8PHGNSF0vA57drC/nI2oKjE0RRI6jRqrrTKp+M3CatZOktAjgUZ1rlButmottp3L8yAAiDpt1av1SqGM2gjkmjV+cwUWDVBHSgNmjf1oMpodnGG/Kea7L79ms+GvX33z5u1bCKq/+/abV69fv3rB/KmeQWyN4TKR5Hv3H6Jz/cX9e3fuEyQ/e/TowePHTx7ef/7ixYvn6GJ/+/rb16DKP/7u97///R///k9//vu//PUvf/7jv/7jn+nDv//T3//hlx8+vHvz7bNHd66OF1HfUtrVQi4FE7ctKMC2mSHY9i6DaLbkjEIslYn3mjPZTcFLp1as40dCOXPOpvOpWCJ2WirmK0Q0W5zEGJNpE1UZRONegHTvPjqJvk1nJg5ZpMWV6PBCrMUe3c2pVFVtNkR56HGH81a2kEqVy2J/frZS+kSZeNNWuWqlsJtNbZd20+7h4jjMC9UaUVVDqFs1xfIti5MNY7oazibRkGg2eq+TOPd3zMLumC3Han1AgHwGA+4rQNb11fn51TlWUFfzyaCPkDpd7soS650CCsDrEE0r02HP0pM8NmDGtNLps1A7U5dErgXUqTXKRbriYUxEVwXDMAy3LCLZhBOKWIdvYRqzDjo2CqUk5+jtdr3UESRZhDKuSV+wK1Sy5Vy5XihFr/784endO9fnN26d3Xr79uMPP/7w/v0Pr68n4+OLGxfEgB/98OHDjz9+/PDhT9/cOru8eev2jf3xZD4dT1aQcW8CPYg4seC78XiIqMJR6PcRtBMgcg+JyYHRlSFnhnAeWe+w9P0MtpxUYFab9QqMNJAdEw9DYbgEKzGM5QlJwWIxnthQXyLCHUaBWwiJQiJw3IluY6+afcS4MD4Jf65Dv852xDeTAkaEgcN0M+FvIJTiY4oMjgwApv/FmBO/wqzJYAqCj3nizixQQkTsNEsDVJlLI2Aa5iEizKHiNgQrFNgzaDOfJywJVMqQxhXKiE3LZ3IFNiOGSzFLbUmnNnk/yVjPtLfLdkTie4H1sJkgko1Y08xaMtahxBaTOYhTWbpaZsOrs0yokWW7uehls0Ez83api80mL7Rls1uhAkbnzOXh3On3xtMIfRVsb0tdKhqp/DBcpkAazZgQMn6/N8qu6RxkJM4HXcQ6QSbYJlwO52OqETWu2qgHy065F/VcsVCR3Uizp8cjdTAeTkPHMW2d813BDAez2UCrV1pSm5etIHRkdpXA0w6A2GnWO3DAL8LPFUosSESK+dRejuMLFdw/FT8yubEyvHIgqrNdxSJybViBNjAqjW5Xs7TSzk46lm4jtD2T39pqZ4heZtCDnvgEB8t7D/atNq+imTzcPxzt+301Om5IEt1+YYkqAaoFCpn8pseZhh6G/jeXK6TCySTQo4klDod9z5nwpbrSlgmA+5GwRV9vd5tQNM4IAKXd3qN6Ip1O1l1ravXbshrtG5WTKKubnbZquymsIW3skOI4JOIr6UwpnXNUKV9qmmYoS4N8vm8M07g64NZB/9naLdMbTldVWuv7+bpMaK3IrbbcS+40e8GoF/ieMTz3pmeTs9en/ZMpfCoNta9v7zFi/jnsunbLfCtb0zXONx2j0hX8oDKZ1Ey7f+t46g+JHCyCgmXUW9psTfi0R2dpOl3scZVOijNy5Womna+ZvOK1dH1o9ggOw9mB2He0/nl+TzWovtLacj0/tq1y1UHine7M5guvFYTLbmcHkYPZTDKdSO2V/Cl0uPMVlhbg53Tz7hdfPLx/986dO7fp5Lkg+Dy/gPzx6GA5Q8boigkml7GMdRHHh87Z2skoxAb5iKV1xYt99CWRKnh04+btO/fogcEs6OfzZ08AffdvM3UUVDgHdIkO+jbxu1aJXun0/0fVe365cS/bYtIMZpBzagCNbnREd6MDck6TEzMpkZIoMUdR+aR73r3Pfh+e1/Kyfe0P9v/r2tWgznsgORySM0MMun9Vtat27R1jI150+3HmMHzFvmMxXHgvg/GE5ddcGSOOfIVbVYlEeDzptuOyD7q5oqQQRHJH4xmrdVFeuPfgITO8vnn67MXLd+8IML958/bZ85eUrF+8eg5uF8Fi6GpQiqanSDAaqRp///S7J6/ow57T49WLZ99zgn/19sdffvvl57//9a9/+7d//tvf/9f/+l//23//7//tP/6Xf/+3v/7+y48f3r76/qu712ebOQFDS5FEirm5NNDADiMfHBz8yQH70+ojCjfQsPZMxUAoBIw+5NEwN/Z27srAFHEqQvKlSrUswARBb0MbH7kZGjiB5w981+t6bUrMDSvYrCT1Qs3Ti9IUZpPtfFxu1ZWGbDt6s5xIRQ6z+XisqExG0369kSs2G02qrYUMQXHNtRVNH2yPN7M1LzJPdjsioL0wM3UZ2sJAUY/+CNXsxWq7nk9nSMun8HG/oax86yo0k6QiDcTczWI2Hwz7sN5DT1naJRCRZaZDv2mXvxd6jKjO6AVwqjdVieM7JWJAwloFBpeYRFJlRkApk41HS966N9SoYCvCE5kSMGUdCD0W0vloPFdKJ5X165/e3OcS4eTeL7/+8cvPv/32269v7p3fvr515/r64vybv//1jz9+/+0v//jj5cPbty6PNxfbxeZoOeoj5gLxYDej3xvNdzY4cJWFkWx/MN451xEycA2F864JN0Y9lKj8Ip8r5HMpuolZ+hzBFbgxQ/d2Lg/17CKh/1Iu3DVA8ijtHqF0Z71RqbKNR7iNxDvTTGFqhI1pfiCnNhhWS7vUy1RqfllF/AR/DcwnZGfmeCEPMxDGP7KQKMuZ8QOTZlwUvMV+UZjKWzz5VDT2NsQQW9dhOATMzENt1YSsJCVm6Fhhro2nI9YaMtXTDbCYIMtdQJ8D7HB0EjmJxmOJUOQ59vkAhNs/8VBCP9wCClWgOTszYubWLBO+whScTjOZiVnnGc7T+OtSJlrO5RS1UigXRVVYrU5G6hw6j8N+4Biq3uTmAeZChtMdTnqjyTCgCquP8cIA4x26zrtxMhiRvMw+Do/BbL5cTrcjTXOUYjFXGw6rjdnQ0KopESLh/fXFSB8PpxPX9ZxhILXbDcpey7Fv1HJVtdlUnC7WCkPDbH8IFwh2ZABVxGTREXRMWpDEEyS3ls6LtXI53+21/aWxObNg7Ox6hmRJWltXrYWdr9AHW1oaS5hJvEY8Nt1LSFb6IBk/SBwc5ALHG588fDCjrAnad+B01+tWtd41h0ZJUenO7acOOWmmdhYYkHekjEEVFLoP49m4O5oN9cZo6C1UG9YoVUVWCQE3wYJGKGOhf17spR/JDJoZAiVguaHY7clKicquI5ZFof1nAmZm+cFuCoxBXSLtUgLOirrp0YFOZLrmgJ48P6sYf08FuiPSyUxC9/2soJnwbVPkph2NBOPOkMKG4V2sg8vefL1qK1QQt+umpXrtw92dlEnFD2NZwtllU1eGQaDrTXWez7ZUyWjMLm/oLE+8yXyuF4YFsdm/KCE80/+dKtlys5WVpDRFy3imaEitobzu2T1vNBghAfvdzvA8d6g7bqPUiOXLUUvwNH/cXQTe/M6txborDrorTz1M03fCFWQiEs/FDyE7nCuWi4VKWDHWmixT0W5jsoVFVOz3H52cnR8fH59eIIJeQDWI0O2tW6dwGz07P2P7Ud5BpJyMHV8YDfGSALSi4eeOIA1i/ASrG/Pl5uTi6uL67sPHT548fvXh99/+y3/+3//Xf/6f//n//n//z//xv//7f/nt1bNXz79+9NW9c0IdBLx8u602JRXTxnwq8VmfPY42F+z/MIfOQoOixEPIGr1TLuRZPQ7FcCqRzGZTzChMQZID9iiAUi1QiAh5LXYizlQowAj29ctXr9CIfvP+/fuPP3589xp5+t2H929ePkfeff78MafvV68JSb948frNu7dv3xLAfvf2w9vXb96/ffYEJDEQtJ98++13P7x6/erZDz+w0AhURr57/PDe5cXZdokleGQfXVXKRRhcoFkX5R3m/f1wk3nvf2pp74fqAFSSICOj7c33ImdzQO39MFvTJ8fRx0nSYa2WCWq2dKkkt5xVV5WSiUIuWypkSovRmaM0tYbsOLokHOQKe9HUXsWGxbHQEEtlyoe6pghFlbKj0xHU3mB6fHKGFdGj47OrEza7Cze/F7MwBrHq5nK1gLTCdLaCCuKGVVym8+WUd0cWLJe1oZsD/euzUxRmtykx31zT44qVwyDwQV8J61Q2TDeQmSk7VFFKqYAI8DtwIXGBuWWbFRxbUkMogfuXy8SSmYpsOP1pX64QhhDBgaYM0KzWlbaSiybhtxNLyf2Lpy8eok1ztb358dPPn3759NNPP797cvcRPZMzehKPfyUI/OOPP//x+8sHt24IEl8dzecr6GfDDWdEyJ/uY5Z6YmGJ0WTQZ+wL3RrsjrEEFISXkYGRgNkh2DDMLyCUUsgX4HAE1jjY42z1xWtdlIDzGHhSKmYXn0Ix7MnjH0NrC6jLQ0m7XMiHW2DZXBGKiFht471gzs6sacLNac7IUkiJ48yMBV0wyCu1RmhBvOuAi7uE3eT028JEmt+y6FqIppu8ANVE74IQM7fNJUbKdAGalCKQgVVwvoCO21RyYNmIyUoQCYNJuNm2oXgDyRsDl5YqAi4ICDmjuw7GHpvJQmMTSiNgTwPJ5jKp3L+8ddjziP3IE6FRYWhOHrIhQ+3/RCp0Xovz2BlD5XgqG88eVIJmMV8URNE8na+szngO8RsfB0AoCbVyXaZ6RmwZncF0NOq2qQw06HXQuJkNe3NWjXaZs8WqIKOdZBVFtuXarVSVZqmUF3vtirny9baQqjuW3R9MTqf2pDcftv2+vxlScmy0eiPXbhNcFlpNSfPo3uGWIuLjZ3tDXp0Cm2+314wZBxV1XTmdlerFcs1u+EfDzvWwDWEVx9b0jm5WKtJgoGaqhqKaSjaVjibz3MqPxw4jucUF4V7TaBM0HF4c37q5f9MXZcLRbXc49glm1hNmZ9JTcy3VtZ0gtne4dxjZi0Z2M7NoBAQoiiiU/wr0VPvHrqwog8BfecF0ZBZLTZGQc09kxf+DSLjqyWHr4CDCffWE0PPGhajZlPtBYFqTebdZ7Ai+n9hneaud6VXovQGH+ETaUVvZfEtSrUS+dZiGFvRBPOyIcNQrxaPRZDwVU10/Xze042+e3D2b2kqkMhx1bd8P9NUD9+LEORm5k57XnXbpukqazZgHxcEeVqrqJQKxmjEZ9DSv7lweCHVK+7nLq9vd0XDWHRGwiI9r9UZwJR0kU+yQXGy3HbXYFGCrnErk7Ibi6vdu+kFv3B/1ZxvJGnTHx5lDa+DnS9lUMpeoq+0+XbnByYMHNxP3eNAYDqa21SrSkc+yunsql4/F6YbH6lm4LICLxstuDD+5dUqj0gAAIABJREFUUcR7wLiZoUOMuVNLs6DJOF4enRwdnV5AqZ3y8vUNfuERLu2fnYLCdX5KyBp/PN5ueBuUUvR2vZwRVmDFOtiiEr6xna5j9Oh6QouWMuGdr549//bBN0+fPHn28sUPz589e/323Y+vnj2l/Pfsh5fPvn1459bNzcUJEsDA73mmTEG4kGUO884cMZRix/HLFHO5UjmfLyMv0ymvgjTEXbFwi2DnO51I5HfgA7sRVApT9TFebE9Ozwg4P3zyw4vXv/z86cdPP/38y0+/MA3s/U+fPr5/9+HTzx8/fPj48eOHd89+ePbyzdtXz8AAAyfswcP7t2/dunV1c31xyUTSs7Pzy6vzk2tOOaB+c6f++sE9+m6orIEfPHYcPY/ynlgTEIgymKchG/8PW1P7O6wMsRH6bvd2N3AMtEMe2URiKdipQiU3EilozZKu1P2BRvd1MZPM5mOlRedo224pdYkQsCzWKcRVY8mLf7hlodSQtEpNlxpqS1SadB4VQy2r3Tr6u/CQk1p6u+NBug+bulS6HJ+eHeMGoKrs7BIaoxAxPGI/ZihBQMKUWWHLRfgbZVjotaCFwnu/WA0O5TiwLnxCt9PVyeX17Vt37uFlucS9Qy/Msuf7bc91TE1mWnCtHr5BI6Qs1/MUirkhKU6WFBFdim6VUk1j6pHUKFUExWxQGAYiqna2y7M7jx7dXN2/e3qDxbVfP3388NNPT69Pry/Pj+mO/vr3X3/7/ffffvvjLy9uX0BH9eZoMp4Ssp/Tzwms2QdsqcDDbKzY8Vpw4IERDQdG1noa2ooGIQ2IaEDumbKT8QVE4HkuB+VxugFTaGHQj+wuA+MU5pCdi3necuF/xEIoS2Dl8mmuHvO5fz3oH7PJxOccncM5LrDfBeNm/EByhnIJUnONUgzaB9V6g7vTLAgqNjmVgqTV4KVjtKBlhUEuOOScpiV2/2iGXW18CkjbIhIwPoTdg9jqkGllOidZZhOylo2B5SjH85y2DYHnDlye2E5l580EY2iQwYGaw5Y2J3YejBOCFtFzx8Yz2+XimjP+B7sA+o/Y4WNNaB4fs9j7jvsVxe5FWNrmCXPojlDJ5akImR0tPHPcnYTwV6zkUwWxka+IeK3qTZ2S0tBVKvlcEQgdnl5MEKWXrUb/O0oUdmTA9rtlMzW674m5ImTbco12o+pObLsrJgqSQohoejXtTLuzbssbdo8GlBwrFduTIH1IQEeSNDfojVgiD1UqYDWQNazLZyHW5iVE7DosZ8Oxk8s0KpmiJOb7K7d/5uIVbDttdWTKSla0+p1mpma01LZWa7aEhhK2R+gFUzVZcjuG3wYhsu+dPJ1rqh30XExM+rZUtxvVsTnT5byienanG2fCcSQaOdy15SJfHkRidPfFktHKmOJ2UM4rej+gr2Wam1GuWGuoPa8nR+l1pyIpxsIlDGopjSTp0mSihSCYFNOBbq3QMdpKsa4g+qafOIjvWKV/anjHUtA3T1utVr5YF6E+qsdTgT1ORHYiKOyyWKarnctSAu54BVFvdE82Q99pV6N9AoxeMHS697fB3fHZbLyZeP3pYKFV5VrNjYZ8pAMOl5mqkC7aqjHudbyGOL6XqnuiVG1+c3ltw0uyOx+ucoEjNP0jKIzEMlmKHu1BX4gV63k0X6JxdaFWK4I7DwaUgAfzrWwN3OGmELOCsZjcL2b204diY9hzfP3iXs8ZDJZdgcoqb7Bu5HKFdCKVOqCypkJ3HLh8LlQ/Yc4R9NjpFInRdy0FhAswLjA1qoDygH3L3QMtCqzlYLcPLj1yGJy7QMwnlGood11cUSS9vr51izLRzS22Hbq6OOGAfXmJ5jMUlI5X283maLE+gpjPdLaFpwiKwuFiPZsslrMlwWC6RyGstaGMD2Xa69v3Hz2+//iHF89fvv/p1ZuPP4cM5pfYVnpy/zbEE+k1DDptRRSqRXRBmKLJqrApCI6CY8nSjWWhwR0/oSZw8CoUyii6kyEpMxkSRdK85ZwvCYTETFjxdkfLk8vb9x6BbP301au373/85fc/fv31t19/+fnnXyghv3/39vVLmCDdh8MSvnEqUaAQBr176IUxZITR4XIJjW14NmzYN/3o6Oji7OTsil4xiB+gcNnMCEgOe32sPsCmLwtTCRT4dESih396Qf7Zz47GCFNRJM/kS7nYQclSKrpZs+d9uw6URY/GwJ1f2YZWb1qW0hS1epJenFJwTyxTMBXqZUFvYbGBQi+4fC3ZHsqFaq7I64ows0BTih7MhSmUKrAilAkDmQ7WWsYzqDDR9b+ma3uK7wTfF0SzTtlHarNiDzzCuuwZsCB0iT/QixIupbJuBF6gGaXxDSX4i6tT3EsXx+udcjGiEyiq7GWImG7A3EGWCcY0Xd8bzb0mFZXFhqEgYdQoThcrrVYZhlhis9U72yzWt7+6Ob25e36PLtePP//lV8LBT87Wp3RtNsvVo99/+fnX33/75Zc/nt2cX91cnl8eQVqKwiC9GQ2GE07AINdOxuxEQadq3Pf9Hux/ugPYrnmOo8laiIBNQ6H3dEWzvsD4geWIoWMaD1Vfdiuz4fgENLlsFmJAWLJIcYcaV5tHcZSzAY3p2nPizXHeBnsHxrf83k41IhvqpPz5KNCrgXsb0DI0b6bEVSyzeFW1gppaFEHuglo3Nx2AesWd+zNyr4i+swqOFlKyoqArqrRUJGuWCVE+D4Y1FvbSWdgLSRV/breh1+N43QCDEYjGeKYNxUgTJDoW/WIWjQaRLt4CNkIBOsdxsbZnUophAyIod3BHwQgfmqbopt4K5VZQB2BrC9sDjc9dekLpjUoxly3ma9mk0q8XhUxebuhnq5U6oOgwAHXdlIrpdE1v5gtlXteot+xgMOwaQjYB+3YG1vwGrmRcz0OLO9TKoKzMGx6ikEmj55ZKVuVyxXVVu9vMFBt6z9K290bOojd26s7Qnw/0lpbPtzuKJNar1Qa9aoAyYzYynIX5loXA2ZBjxksM2DecL7YbjJ+PglKykEmVmuW667jjUdewTb3j22ZfbjXzmudYzaygybpjmkHf9Xoukyn8waR6ENbq0YM9VOnq0pTtUGi7C7G9cWC6PceThYKieLYdJA7jlBDBzWY0u8+pOF5IZ+K5qEB4Z1BKCW2l2/N7/WLq4qpepBzR94Zqgu+uAgcZzP1zSap+0K9IRfNeZ5BL2kbDDdzR3fNMTKqLit9BAo4xfMCmSBQWStgDzqYybVkhqK92BGdk51KBM0nyYBl8Vnw8JeBkFpLRHS9fIxwqyw2h5RUb896oMwkG2vFXzvnp5Gow2fa8ydBfdQSq3TywmbC1FniBo8qSkCk6ijkKNEtpbE/zXbOeKNpnJ9c6lJT729GZ1BgJcndrY0CYzmWyJcvrFBOZMgyF6WlXDH8y1Sfrdn/cn1BC0Py+1t1W4qbnmfTvKXq2QsHc+NZoOVT90828Vx/DLutIzhcq2XQ+A3J/ud6olsroYDWa9abKm+cocNnK1La0Jnzf2FxON7tsijUcjPpBx6LDYyngnQoNnHtkrBgrn/P+Ku+x8c6ArOourLipsCOkc0J45uLW3bv37ty+c/c+vYXIztXxxTVlqDvg8JwfH19AwvZ4uTpZHlFIPD6mTzo9ubg4vz6lCL5drraQMGTxQh5EjidbNJDPTrZ36Es+evTw/g/oFL948fzDjz//9pe///Pf/+O/gMT8228vn3//zYPr87OTzXIxck2z2SjnIB4aSlSyCSKvNUNhBGGM3qUzJtTQLszTmQMySYG0ybtoDJoxfs6zuWiLogZFmf54dQzFIJgjPWJ7hocPvvn60YO7N1c3d29T/XFzfXUNaxn6DgAHl7P5jM8YSLa8xDgar6bQ7fGxKttDg2oygF94v8cT9vGwjwM7BgdzGPge5VFFbmKhGC14kLJ56yMcJOOeTtVahZrWNEf9+RhKTVSvzU9uLk60pkEIuI21F1NKROJlSYhS8dmS1XpdkxoUPquq5Go1Sc0rXUtStA66iA73Ey0qvYGeatVwkofNvXQ2weJ8WJBHtC8V4f3YbOkWNjdAGGUhU7qGsM46v7oCof7i4uzsAlYBx0fcIThhbWJgYsrSCxYo3qxPCEovZqjFQvFxllvA77MZS3mGfunQXCAw6truwNVbIqwr5SYaqXJJlJs8BM4VKsW86NNX2dy5f312c3Lz9u2nTz/99tPHH9/cu7h1dkqVz9HJ07//AQj8+1/+8eLmBC5Xt8+pNliwrPlshGxLeZcAcGgxgC7OAOoNIHj36NVFy9DrdFRIVYW6kkjAqqyaX4TUFKxHHvK2dyyk3YVLGKEFK9vrhYU+91fRhYolQm/bzG7IGQ8tAMJFexbZyjCPlqFglt+Dbw/jYbwp8EfQo8BdLrhv8ydg7MwLPrlipQTRpVCJlbMyu9dDCLTGzhcAwjKztaVdGpZCsNqUWvyXUitc+VJYWUQJEzDlTdNyIWHKY/Mu5WAHrGTotrm2aaBTjdYAw2Sq+Az06inbwgu849o2XFos0+rY7bbNYwf6Wyy0wYW5g+Rsd3h977P3MJJ6W+evgM63DZtUPBs8J7nnV/KVbKUmzc7WPWfWJfwGFmNbrBQbtiMidzDHTW57PcIpzTwlD7Zf20k/oyRKsrVhcrcrtbMcTmfokiTyxWw6kay0KkWqXNue2lJFw9LUzVU/mA36umCNg2HfVPRikcAOHTGhXDdQs3bHIM/sWDMT6HrBJIHZFUtWCYWk+naNvLy1SxRla6ZJn2n4hJHa9AJ1+y70m1uSY8u6mK1AaMUZwL2BkggrakwXx4tjNRFLMfg7jCU7LavXbTv9od2nUO6qZcny69mDmlqSZNcy/WQkFiLgz1pf6LXFYDRbOqx0g34vkRJtqTfw5is1Ne0WilSUdf2RGsWdx0IIuLXoxsI0PpuMpWKxStDppw8Evb1ddaX82VG1LguK3UlE2UKS73aw8JA88MomM3ZLK1dE1S43fF1gBMzW8uxjxwkY4u8pJOBCTXYM3bapHGvQSzx2poHbuX/uP5yDazKfLibD3nigVqtNJ5lBNVouNRrYyKvm03lHag87jaJROfWLF2IiITQ6VyftwXg9nJzMrjrpoSgGR/1yrUxlbjzRMGRKiIS8k1nsZ9fTJSrgtnNrMBnOp6tToz/U+8tSrNM3bbmWLNZTmmMbQadztd0sp6PBpt8YD4aLyVLOFRsUHis56GtEo3vh7hklFnbSjEZBiOCWZizJnPhwXz6ZIATYECVMRehYBf1hL7QPYL3RIWSX+l3PMXUVSxPlYi6HABH7zGxkngTFC0pp9SaVro7f7w4mC7Qwby5v31zfurl/H5a89yFGef/e3dt3HsBCCYtOkMK7IiByQnmWcvHZ9vjsEgvKlyeb48uby9OTI0Am4KjVmr5Vjs+4m+mpMbQ8ps++oa/66OvvXrz9+Mtffv3pl7/87S9//ee//ds//vaXP/74y/s3z58+vn9DaHM969om1RaqWIXFHwSIY5G96P4+L8pDVy3F9xe9EkI5L5SpKspjnzlEKtAmASkznkjzXjOyc6Fcq0uSCjP30U5ob0xHa30Eh9Wzc8pGlI7OeKS6xuwcQtlLnqcuF9MJjxp7iDIeBKg6VK/ClBe6UHCg8TxMh3qcCXgmCaO3Loc3UDtdyLBRBpRrTdsUK5kDGJ2ms9VavaKqclvV601KwHUKBkbQq9cfb6Va+qCCeZ8uiWqrIbYbtloVWzWr6zfom6LStFAqVTkiyzBmDk2mdqQRi/eJMFWsN5u1SjGbCjfEk+koF2UJXivLFstF8H5kwjwd28VK7RjDYxRn3M+mjIeJBkRLLy6whX56AveHzWq+CqX4IZvQZ6+KXcOXciI77XTnA9+hG7MD0xzYEYuirBGaskSVwnuzim51MZutNoeUgU/v3SFYff38+aeffn7z4vWnd3dOb66ubt+6dX71+p///Oe//f0vf/vnHz9cEQK/vH3rbDEaEzYHw4wqnyHcjEbz+YQuQzCErwReec/rUgIOgIC7mAlbWO3RmDhsstyGZn4RbiEi2/KvP5PvThrtAPcaBm68lREK2+OjODGHuZtdR0LkHEMrLaTkJdgVLMFLO3QTQjqHbsAMgWmm0Oa5mU2xMZ/hS5DnMBmKU2G8mo9luOUd5ndk9BycL3KIoQUoz5arlWKxUi0x66spSeE6cqPB7GdcTLmJpnQLnDfsW5nh7DfsPXuu5QT9bmhE6HtQLOn60HLrsBWFCmEQqvZDrWYgYNPkfpxrIZPaBPLMEPiaFtg2cI122EnbsqDyRPncskCjd9nI0KffqSwF8uuP6L9ApOq5XpsSjVinArpR0m62Ww0KHCPKs31TKNZa9sglgFQqovqoiroDI3apkCtiVJBDPsAGM5zlE+GWfzhgjsdTqHY5shEmKlBcTglGI1evKZ3A6Xu1RkNvT2a96bjvK4JFadjTlXat1uuM9bokFmu2ivw7GzpolNjsHNjDMWZpd7BZQ6IXGkOTyXI1najlVDzXmfcNo+kH/qzd6fud4dgnZDdT+1OzLNUyFbQGKDOCLLmczFcbGJZPN/PUQWQ/HqH0G01lvW4HAcVrB8MBoWAlne4OO3JCN+jsU13kZyNMSY6GrnSY5+1H9mJ5eh1KB6WgN+wlo2VdpKzW72lJp5EuapLkeSN5L7xPD6PxaCjyS7dqkrBiej9eC9xFLWWoas9aTWOTSVHM2e2On4olwYHHwBMpH7d4jO3tso6qVyqi6LmS11JTBCIpGyE3wWOIUHyJPiqXiceVjl+st3THVmQ64s6oP5wMumN3/bR/djU7Wc6OtsOOt5gGU79SVcGC5kcSz7EgVBIZSzR6ZqkhKNeNYq+UbhbTwTcDfzo+DubL0fEs1derzqafLuTA3srkZVFX5Gy2GIunEpGkc53sb4enm/ZoNllOVydGd9qZztKHQ5fuWaElKlaztLq2/ekFIWq6qOug1B30hv2jVrYklvJCqUqnkr5jHOUD+s4+SyTuQy5kn/5mx8qNMbON3by4A5kO3YXyxQos2essjS/LFOyg+wN9ZLbjpTNA71NVCscbuVGvCtVSAcZEVBgRSELYYOCJXkK+WixQnkKNrTteJyC8NFtvV6fHR6dwM7y8dQMBy7t3bt3GYPAO3A3vEoq+CxY1/d2t24Sp74Iuc0ZQ+uqcojgmh5dsAnN8fDKjnLZYL0fLJZYKZuvZeETV5ZpgGFsl3vv68eNvv/v+u29fvHj1+tWrd5/eglX189/+/d///tsvv/z44psnd062q6Gjy816pURBLBPHqjlLjfNiBTR+wu+MbXhLRYr1ZYKA1VoNzqElVixJQfGVyZlZ4ENI5LJCv4ppWdvxeqGyPJz9VqA3raGTD7o5Ybs5Op9D1uRBcuWX1/V8LDhStnEYE1DGbbOTfdsIGS9227Esz6cLYGoNSSoX6LY5iIDLfwAts5glUHKlslmU4hlV6pqZ23cIJFKVJ9XqdJvpzYpqZlW13qxXZdkz85lY6MecZL0E6OWxED30RylGCxSUW5gd6mZbtwibeIi3nkPJECJZhHQUitu1Mvu4Zv7cd+S8zFkhC4dnCEw0m1obmv2UWFnDcrGaEiQ+Pd6cX4CmRZCYG3QT9isHBXnErhSUhH1/0O/4XZCepLrUosJH0VW0+eib0HRnMpovCLqOqb5dL7ZQOL569OnT3/749OLpyz9+u49RG9Vw49lX3z1/+/b5t989e/HofDOnOEb4A+AXAmRgL8CcFZPgLuVbVvEfIAOz0WDXB20WhQJmwLx/ZBqqqdDhMO3OF/EQ4UYS0ZCpwAkV99IBThj9IfTBjEb+zMtY2uGP49zNn4NiNoZPhDotMwJ4qTxseESjoV4xkxqSmJ6Ekhdo6mR4WyALrgRQcpbl6hgSI9FAwDm7IzvlAZDxb7FENpMIXfeAovOQGy0U8xksMpYqFbqNYTstCMUC9qvKNcg7oZvNrQ/DgbuPZbk9dgcOoODf73l0s9J9TOV74AeWriqy2sa4mO6bNgolLQwhFDkcC6Ni3QgnxsDFoWiIye6iGL86hIBdjGFtCNp4LuQyOrYdUE3o0O3QM5WGOlr2LWcw6XVspVYoFKu59eZ4bC+xRBPMxq5crrSojHJq1WajWhAaDaHUcFyq65xmTa6LMERjGaFQ1K1cKeSYvM5NhAwcyzMElKOQxcmmCcUVVDmXE22fvrytNCxFGyzndEMEctOfdzVPc8dCxZ7N20arKqpt27CpGPREDJhxgLidwE6WcJfC4lLoCAtHhGDQ1Q05UddPp8Gk44xHjkV/B83rQRDMOp3tsKlX89mmohCGXW7mq9V0DDHw9WoxW8z9cqpU3KObg55kwhy0XT/o+T1r0B/2fSennjnDYnNRzzabrmO4acxuUfrFdr4KlIH3EhThKM4VBl17pMTKgeqPR71Ws1iHdgGlQG9cxY4lPfa+3Avf8tolumqZWCPwh7WUqeqTkdvJm0G1JOm664H5HkvFeSWcQF+CDkaUqptsLGdprQrlO9tLFvuHya45zH+Zgvwxz2ziyTysdSgBa51OpiK3nZYEsd1Rv7scT7zAufewd/vscjM7WR0vh0usbA9qDc3bjxziOUJJKRrLC7lScag6llysScJlVfDHZr9oHG3nk+GCwsTRcnOeGit1YztJ7EUj+yi2zHJvdGMcJDOgAEf89WHq4fGDsTGgwDJeXir9uTcdpdVux0kcJGK5g3jxQNyY9v2V5XWt/mrWl+BvOF4pGYlCXaEiFimQUhBECAhp/ofRZCwCFbGwE4aZKdbzDjkc7MVQo0T2d5rbe3sxihWfjTaTqJvTOTqJlJGFuqI2ZTi5YJrTNtounxMkCsoTpgOf7Z3MnlDMw40IVze2G7LvKEVJVpoGQbtaxSmv1zFtMhy/1x2P+hNGTUfHlERvEUa5c//OrfsPv3r85DHUKr+BdvTjx/cfoQX84N7t23fvEsa+vsJE+jbkBuHrcob8DCov20dAgB4C9scX2F2+uL5z7/69e4++hTLH+99+/unXv/7j73//x9/+9o+/g6Hzy8eXT+5enm1mPbdN32JTFHIsEZBGQ5vuIYTLHasvlobYU4GARFWooLknVIsCS1SUi5/5NIkMlCdy6WI6XShCjwNzuWZLwWoRwCVwLw9sYOsG2Qf88mGNO2TEC3F/5Dk25YGrGYV+zWDzJp6XtcSGJFbrCjh3qWwekjbxfL5da9bVcadlCyVLyrd0yQ5iZi3WwrZIS1PUVq3UqLcEsVwuEmDOxZI7zinkMePpTCKfTKdyBVAWoUfK7FT0n3OFUr5AoKlQqpYFlsiuYUnKoFjctunqW17P4dqMKoNOx4RfEZVx1RrKsxxzXpNMc2Vp4ZAcV8ZSZLkmVkVZUdR2x+0OUKks5ws07Wbcf4YIGBWtE6qBez3PUmEQC9oOaL/sByhphou1JgLcwzUVOdvb28n8/JvXr5/zuvd3Xz+4S3AbAtWX0GmB3vizV999ff/O7ZNbp2NCI1S+bVarkTecYiIPFdCgFy4gwYBx3Gf1ZQK/gd/BtdJFGRZ90LyiOoCvxBf0qhQLRcp1MDGgcJLBTms0ujPdOQxhb2jfEb4X2SHfUOSe+9W8Hgs9gijkk/ZRKu8EciO8d85ZPZR7icY+uwWEhTQj62iogcG2ert2Ku/PUnRlZXdgvRyqSbSsU+kidGa5r82rUhC2K9A5x4SvsHMMIJgMvEwfiIScyxTgUCYoNrrCgFqgqaFngSYB360e9uPQu/EJ5VJtLvFGMra2oZSJugUaJpSUldArSuNtnJC0pfKuU8gqt3guzK8yt2LCzjTdZV7bgfWCKQrq/GTQLFIl51l6S6pQodg4OTuxBqveqOsPpiNfE6qKtxhaqqGKIhrwtWrdCIbj8cAxOkiC8DmEgThOkqIbAOwhhZsXs8R6QygL4HWWyplIOlFoSbmiZHdHfbPV7ju6NVovkIBNK7A03/eGk1rdHvY0U6NDRoHRG83nTjHBHrjZLDu/pLMFHgEIcBUNN8HFhqxIWttwhGTVnQYa7rWOYbroQPZ8+pZVbbAZKA26WE2l1TZ7k+kI0xl0r5nOtVovVsdBbv/wME6FnOLrEP3yex7sKWyndlPoeI1LpZGTZLfT9jKwQj+E6n007F8eEuZEh4XujuKg1xkJSdWVBp5v1d1qa2LmGy2j409qe6EZ8AE70OxB8iIa2YtDWCXaoKBdSxq6Shl/PW5asixIVJ7xLZk4DNe+Y4cEcQ8oYSfT0YyhyqVsS7GDUn1UTRjGMP3ln4IJlG5yiVgmnU0ldM/LCQq9nLpF8Hru+ZPeyGv7312Ov759fnS8uJzJdW0xH/enrZri7rPEAvbQ96J7NVHI5nuqY4gFIWdeJ6tdNSLOpO2lMRgs6ECv54vjVFcV2pu5WFebRfovE5NbR4EtZRK5dPIwsm+NbPVwdm/S7REWmG6v9e5QmqwUy7X1aCSeKKYSqQPVk06uTLpizmA460rjCb3waylVL9covJapps3GDhn/8yI8vWLJGJ9S3ruL7B/wal6EDu1BBP/EzlyJcB8vxoEDunP0XfHaDF2msG0ROUCfDNP3LGu7CiJLAzTYoRVdubbdYY9txm4uil0qb5nDAf5GvS5AaSSTSOV57Sj9ueUTD0ugw0QcsuChMScIEfgvKuVaiy6DBT09mD/MVtvNyTml5zt37j949BVWep9iDfnxV4+efPXgwcNHD+49enT/7u07t67pF6Xw23dv7t6/c3l2fnnD3k1XlzALoIB8dbTdHNH7Z1eX13fu0sd99fi7Zy/ffvjxl08/fvrxw/v3Hz/9+O7t+/dvXr58/u3Xjx7ev3/r6mw9DVxFEcv4NlivHoqsAC+UqFE8g6YASgzmbsjN0IyqlEpChaIdZLVTPFtChZjJI9YhxJWZMFOvybsRvWHTa+gGPcgl+13Yk4Sajx4hiHabUKgVitZSADFkqnTyaSo2k1m4fWUoyTOxAAAgAElEQVRrDV+S6jJ9lG5qrpSlL2o7laAcaegW1LjoOogElsRyMZEulFS9yEq14YWIpaKpdBzL+sznzaCjmWWj2jAL87wsyoLhyQTOEyI7Ijw6eoQgyoUCxH6RmTEjNgDc0cN2CR3BEZVKNswHdZWn2w0RTQQK9Ex/4eWTcCMxl4HWNlVxOjfwKAJ3veF4slqs2dsw6NCrAbVMSUPIFKvFZKZYofukmClmBLnWf3L36uLW3XsPvsa98cMP33//+tXLZ0+/+/6H7779Flqlr16+ffPjB8rQF8fT5XJMh5gAxQSilyPmXsFIHYN4eDaxd3PoJRGwCW7PamEA7NhmCIMx4vwCF4TNF0Acwg5Og+I9vRToImQ50TGbN85ct3jYh8bJjOxW0g4i7OcSzotxzMCsiWC3Yj9cX9tHNj7YD+F12LQOJXnZKJ39syNoLoZ1Lv4H/nLhCC78BTiSZPXmRCKbSAIIZ5KpUMRut14Lw6N0KlRvQ+eH1wnwd7l8CTT7CuwK21RlAaEGmLpA6havE6TKQx8xEBzopfItuQJvgyKPdbhCrbHrRD38JfFGFNjQCi86sW2yqYUJ2ESnh4IJEiWVoLbbRtKnYOJp/iQI3Ea9ObyaVNLVYeDahiwrcG42Ts4X7fWyO3GDxazvdwxZ68BIo+uaJryrCPFKLgJIz/UxdeZuNz/Q6UbQ6nBahjR1m/5E3w6VXJSg1XI0Fcs2pVKl5Y/6alX0F267M1vPBoNuz3G7qjzuTZdjgQ6Y1TL1RkPuqDYU4cx0GNsYy8QTf+5YJXimgEcW8/+MIBn5YtVV1EZ30DVkBZ7TVMaqiqZW7ZNlYFRz2ayoymabvi2XvZjRlaGqEC2a4VABWiIETLBR9+jfXJ8q+nGvE1i9QnwyaqbLhZbsuZaX3j8ME/DBwc7WiAq+JFWNVJ+V6QYfSvW+IYxdAtKuIVeNtiBRRp8InHO5buTfDg73DvYiSeijHdSC7qSeaijKYNSZzJRgNBSavmtj7ZcRcIzLTxAjoulMKhvPUPlVztcpyuVi5Uy+YYyzlGo+SwlGYqD+gw5hcAImyKFQKT9cGsEg6HdbZ++nJ0/vrFcnw241Way3l9PuwizLzn4UWJFe2HwsuSeU06lsRzZa1VwhV9UjmcbJPFNSrB/a0/5iMpts5suLUtAROsulKChSIZ0uJktWs95oFelroIlnGOurZOui5/cJY8+PbzRv0+pO55veJChm8qlcqpRNavboq+OCs+wPZoN1UJ9BVXcjJylblctNAjf1chyeg+H+O2rmVGx/N3mnxIrBMJIeD7+je4nY4W4NK/SbSvLwA35TCBqJVCwUnQs36OnX/m6KHyrDRplQjEEg/AzKEP+hnwKhGowtgPUMNiZvtXi2iFjFZP+QIQl+By9B1ChN4Wc+lMLCNhH2s5GqdgMxjv08rAFnlI4393Y00+kF3eF8ud6eQkfx5uYaqln3v/r6awyeHzx6/OTuw8eEg+7ev3eXu9y3b9+CttflJe8K8ePm9m1etLrhvdWry6vbd+kDr2/fvXf/wf27Xz357inMJF69fvvx0y+//Pzp04fXz5/98PTRgztXJxt40fccQ2EL41yoBpbk5BwPlTpTlKF44YSdKwrlKvgClKuqzLkslCph6yuVwJIKxgDJLLqJxSoaWDXoL8AWB01oHE0KCwSTfdglYkufMpCgKLU0xihRKoySCVWWGrrZ9aoEtQX6Xyo1tdG3so2WJIhGmyohqpgqrUo2lszlmnopHud+JpO7krEU5fBUhjIqXcpsGImZIZojBAs11zS2+OMwWaOrlAKBFAkYV59uXKol0+lEohBll8t0lp5Ojg5DsUzfGGaOEEKWCWQA0ziY8qED0HUtWEDBRYjKD0VqyiriNeHzfIoHmpST6dXIU/lCyKEuteQmzAfg16CCIyQWkyHnmJ5CPRVLHja/fnTv3ldPvvn+xXfff4+17jf049WLF6/fUSJ+AWmWN29efvjw6uPPj2+gMzOfjhfz9bwH3Y0ROtAuEO+QsK9LaYYi3IQtatGLBrfUUXTIicBTB7veGt3DX0DAEP8eUMFE18VmcX/LskMKktxqYlYjNgDECASV0exNs1Z6qFPxJ5mCUUkIjbkbFe5eUsCDCOBnXtcBzODoX+CG+XmiHPJcDnfDvd02207aBeQWFkgNiS5MjMGoIrr7gViwywup0LUnwfYKlIBTWLNnsnaW9TWyVR0p0QL3ecSjgh5GKN0ev2wdpDDYNQEEu1ott1O0SlFFhb19+gp5Jm0XwulGtVog4NqoVysSPImarALNPC8sOcFAGYNjepktiBdY3I8ejV1TEVruyXEzGmuiPaRiW6pWr/rb42531e9P3MnxoOMO+paiNHvzEWEUsyEUS4260GAaVpeDkGX/mYBtKwTZMDX2WLrN6w8gOXx6vBoPR91WPn6YEjVJMrtDI5Nq9Qae5U2WWFGZ+XbXUtzxajEktK8YsqGJdTnQrP50OjZ4+RHMYWaSoLj87O2SYBeLeBrBOVGq1Mt6yyg0FD+wZUmnQptq1FZTMuTm9HJgaBQosqIm61YgCw2srWCXC72FEmtcpuN0DukwpoyuTeWJ71CS7o+pfLd9tbpaGGKzpLY6nbab+JJHspxDwzUkej8JYkE6VcLynaj7LWHcm3RqfQrX0V5Z1NxgVNn7MtTEjezvfNm/jHzJretcTHD9STNLoWY4oUtmzZbDsuB0POTDaCK695l9GCZgiggZw9JL+YaujU5Obj+8T+XUHnMXD7mGjMRyFGVQ3+udTk5oOYamGIp2NG72+3T65DdvOt88PZ+uJmfTvlOrl7uj7tQqSu29nRbhlwdUhlZr1WReF9V6MV8Uy2awPmjMEoWOP1UHSMDT7er4uuEOav58m9yDl8VhPpNv+XJDrSUSmRwdwurI7PnK+RBSkqP55lJ1ts50NT2ebTf9MYHoSa+7mZx8fyxHe2Nv2Osve8LInq3nR3qh0ZCqVfjOVSs7zU90tlAJJ2P7h+EpT8TiYdvrMBM/jKayicMkTwYOws7gblUYcq+HYSRNHR7EwwYixWWoAoZmHtFQb25nn4nTzoMrCgNh0xnnGkAvl8cePmamxTI0aRQVNm6yalo4azoWEUBypGIH/ShLU9po0mI7UVKxosgyO6EMAdR2CDTyigbFiR3XBZA+Ejbj4qxkybbGlOOD0Mxgtllvzq4p2967d//h19989/Txk+/YTemrrx+zHyLrg93BPhVl7nsPv3pwjxLv/fsPIWX5+OuH92/fu3f7+vLiFIxsLBBgvfXoBMtYF1fXBLF5Wfbm1i0sFx1t1usZnb4R/K7BR5EaYkUoZ9NMKN8BfnZfiseYcpmBPgM3+biPiciUKxSZBZZMh9RW9pih01vIl0qUxTPYxcFIuik167w5iS3+fKaYoIydjOttqaG5fbdSFgq8XpopJVqzka0pNandVhRdrVVyZYK5xUxKaBViu+KR3Vqw7gepzBR0jJIhCsJiGwNh1vKlshaOYSkQDzEpzpcKWfrJ/AH6gtlMPJ7lNWcmtVAxgaKSQnsoKMyLX2le5E6jiVIpwxIV4ReYCA7vmHZDG8uGGP7OU7bt6G1D1ZU68nIZdq6Yt2fi+TQCWXQ/BW5hLJnaS0Vzm1cf3r14+fbD+9cvX7958/o1vXnz/OWbVy9fv/v4/v2HD+9e/fDdu/ev375+/vGn94+Xk+lks6EcvF4SnAPWHU8gA0oJeDoZhLP5/hBKHEDCfQLfA1fVws4ztnJAMzLNL5awtoVdHrAyOrNs39DHQIEdd7ArC3FsAldouraozmC5dBarqmGBF73JSgV7qZSleJwOPhUv7sMUgaWDQ0U/3PJ7TPqKfF6NP/yT7RX57OrxGeKEs77Y5z8d7IekbCrO8aXCgeBOVunwMPrn76EyTDKaYMlI8LWpKksm6prbdQzDsr0+yziCfThk/tyILTRd12M+FjT6HLW6s7HMsi5Jnm3VclnoMBa4uMsVQqZBPhuGhzJ7JWGxGTwK1qtld0pCynB8oipen1D+bZRkbXraL0YTOantmTK2biWxNl6v7cHY7XVHm5FmBIuJWa+ro9UIH1GtFMv1utDUPKqrulbbsXjs7DD8pcIWg2k2TQHNxe/1gV83J+c3t8+Ws/moXScoUNMo/3mWkEyJjkf3wWQ2pKJ/07dcUxTH88HQ0ptUDOhUiDf9tulPZwNLZP1ulv4Et43qxzLrrZR4lyDs8mdzNUmo6l27VVGctqaobYzANexJG4HYHk9sFWs1uboua067kOBl0TS3VFLpWAS8qEyOTiZ4pdqIqnO3G3QtdzDw/bZoidNOpBWIBUV2bNONcwKGxg+gKbAw3UUJyqN0QsuD3jjItSRV7Q16mjhUsk2xL4iqGwzLPALG7fXll+ARRfYh4RGjcJaP171gIqZlVRrM7bbeOxo7lZrhB1jmOYju4847jHMCOjxkMfCU2tbyWULWV7//9v2je/3A3+P2avjYi+YosCBH6Y6TqbZAJ7cUc+M1sKBjm3+96fzt+6PVyWBpdJadpqB2hyO7KlsIp9w8ImieiBdK6WKzKpZzhWRR0iMrMVHseKPtsrUaLceUgNfnxzWtL3Tnp/mDRC4dP0zEi7LXLFvlWCyZjETyTS9d9c/G495ohh3Fc6Xbt06O0nSb1gRZk5S2oXcF9c44kzoZ+LNgte6Kw/ZsOds00qVyjc6vkE4WCon/wRSXDhuSLN77LNOKLBDhdxPpJFfByUx0JwpHUTOZDmXTE6xSEk1kWIk9kcSCcHQnUJPcob1kuDcRdimRe6HvGg+L+f3P6k77+zvKJ4D3Tt0mC2fqilCDci6mNFKzIamybFAmBmjW6ALI9BbecwoYmJSjVV1Xdl45Ox0+OlhijaIXNvfZYDuVivLWFLdMOJhwg5ZyGRUAtYbUUtq2xyF1e3J+cXl95wE62Y+/+eab779/ii7l0ydff/3kGzZChKr0V189esxvH0Bg8+KcDcxPT46Ojo6PN6v5mOrgccjjDclWkKBAit5s1ovlEaHy8/PLs/Vyu11ultPJhP34sBFJiVCAdl82GzqC8xgWryRlqbAtDL11dAZZggG2RJlCkVJPhpdN6BMLyJb07R1kcxmqtKt0xxWSaYrvtbpj651WDeA0nc/WE+XJylFNUTIMuWXoNbFciNH/kU1WxBxIErHPukOY+UImPw3mdzJcQ2VQnuJNDZbkj0bT2UwSWtep0OcmBvl8Qkp59p5gg1O6DPQ94XkiR6YTMa4guBHLs8lQXoEHpTE05FIcVZLs8JJjKlGeV2eggSwriqlQwnMs0H06WEj30S00FYhlUUWGaSbrW1QyydL81/94B/WU1y/QsoBi+Nt3rHv25t3H12/evf/w9tXzp/Q379/ShzxYzpez5XS2mK5WE2hh9WCbA9mi4YgS8Qi2dV1OwGGa6Xm9kc/9G0Nnh1vgYN38gvebw82SOdTgILE+mYwGdG+grR10kYuBj6GIDUcdBshttuaApRIv+NAvCXEXOYcDNsyT6oDMJd73xYXYWf3xkAYH7LOE6a5DuAO9UEKNsB4qgWc0skPdQv4TJ+dYJOxF/pluwciGaw9a4WHWPtiHVeduSA38vL+fqhAObUOF0++N53BRC83+BkP4CXWpWnG9oM8ye3jdOnIZPTE6d6UC4We6h/Pw26X3c+UiNg4KYWuEqg76VeAbPB+uM9O/1CgqVNgTgqoTiE4IFUHUl325Wcro6nqrpKLJdMvttSHkpajN5nQxNweTXq8zHVab1nQzVGuNHr3ubpMAJr2IVL5LLXc4mfQJSaPQM/HNtFl4g0C9w8xrJl1T3T4aT7enl3fvX64X8zGB+XQs19Ccnq+JtVKu4fWC/mw6GFGp3e1Yrbpg+3ava0ueKqpGu1W3bcOdgkfCwIJV07DqrKPTDrcvkMp5j44CmNjQ6DwSvBcVrS2LsgOR2Ta0PrXOSLY6bcNoVQuVnKC3NNfMRMHYiPJaKP3IJdMo1kDmzlCwNoegwdG92jKHQ3/Q0dzRpn8Q6+gZSbTstpeIxDCmQD0WJmCUYTGcy3SsOuhNO3W9qhvuKHCDzjQWXVIFoXm9cWXvz/ouNPlFAoYmUDoTa/QHs1qcbtjhshvovUVHr0nWwKE8H49isxONOdBZKRdwSklrtpbPC5I2PB5L1aZA/8/BXmg5w2YPBDZgGJFgBKyahqwrYnepin3P0ZujP/rr/+0xBd55X47VZnZTdGZDrylZTL6n2y5w+7pPgCRDRU69kCrk9iu9g9U0KTSyTf+hPpouR9PJenl6IiqDuj89rcQgi53Mpguthumca0L8IFYQB4FXbPQvgok3mM5n8+WZPuwZy+MUtmVi0Gegw0DPt3dVjQ6aotFwLccYWr4bjAc2xQ+v5/dsyw/MZq2MEQyFxmh0/4Dh6QHO1Z/uPn++91mK6fCzFvHhPlM6wlUuZOAExVBYmkCeI81eoMAyO7245J/0zN0nfSZvMrk6JERj8om1urDVz1V36MsLrUWuEVB/U0igjwjHpAjjRYJ1GKBCwortXWoNWVVC11ippcmtnTGs2FR4HggFASo4eVOUqs7PNEc2PoZ70c6jknmn7JGFZ51MQ3cZusKKbtidoDfYbk+uYNl4/94DAsw/vHj6w7Pvv/3myVffQAjrq4cP7hJavr5gCU/QmlebJVb7FktW5aRHL9xLgnr/cNinsATr+vF4MJ9iZ5YqpSU2YVfzs9Pj7Yqw03o5hQfCAG5AlqEq0OsXhDIBBEbNsc9KuqkEd4c/t7jjFIgzOcqjxWq5APScLaaryTSVLzXBVuShWUAHPx6PVopNn6patSHpuiTrasNQ6qlc7CCbqdZT4Q5GOANmcW4Mp+muzHA7nUXF0jt/V+y3pGFug+eQQiXAKTYJQW+Qd2JsbZOJM26nz81n0tCXIKjNTqg5NrXka8vigzxyxLIl0jz9HbSNMvkCrMozLHOUZFIQlef0nOiQZA/jabTs0QAoVevVEiXoWoXu8XC7DhPkzdtX73968+LVm7evX71+9wqWHZR0wX5/TX94R4j4zdt3757Blfrtx1ff3x6P6dJN5pyA5xMwrnowxAEbmpInVoEp747DFjQWJenm6FCgpGAK+UyIUkLS9wuwUikFz2FiQb/mE+jNzGY7AULC1vAW7lHhwHw7D3tnLrrwFg/zDcNmdnv4aGPKb4Ybr+ZOzF+DHonEolEwRoB2dBVyWJDJAlcqBzcTEL9CQaCDHUeLAmwshDzceUTWjTBaZsbKAYeRg/A8HISo+SAScr0g/ht+KFvVcP6N1SyCaAQEHYcJctyV567BoB8q3wWdjr9TwAOdsC1lE1FQDLJcleWyKXAeQNIuhBKcxbAzVi5T9i2X6Buiq19CrsZ8popWEDd6SmWhVKxS2pY7kw5oUaqzHRSgrkqVQEeTmw3FUfTpbGQOxr1+MGrmLX80CdRGLaB8ZIsU5+lAYQJN6W1AUZKVELD1ZFm7F900wj9wL9r1CccPF8dnt26drmbTYddt5eMZQbU8x3Y7UhEJeDif9obrxahr65ZWFEyjO+g0fV1syJZWt00zmEyGgc1SnfRlYXqM/S1ccVReBid/JpsZhC8aTYIVtZZMSL8NtTwMwnXN9AbYhDDaWrVaz1UNRfPsTBREiSjDG0TmyAEF5CyODsbJbh/W1QPPktXRqNvvT5Yzu2MkUyolYLqrPJgP7PMtgLsE/Hw2I0B/K1Yb9ua2ptZUDLoXOW2p6dUilTZuf1L9MrJrQIe9a34nwqnrsN4fziqHDbE1nvpdmep7vVi3PSTgRDyd4FyAFmyYgKlMyOodLV/UKA5V66pntIPJ4Zf7h5/nJv9zAm7otlVXhNpiUm85dNqEW2/bT/7jfLudby4e2lkrkCRtPhyqVUPAuk5T1huKKbeFYjFTyeVrmVgmfVjpRqKG4hzI9vHVfDhbDmez7fLkWjWnsjc7K8USMUKIqf1EoBnB1BuKeUHztt51LT/orWYWzFOX63PNmpnDs8mwSkAFWSNFRYXY2ZxViraq6DLdSnQfulYw3MzX65PV6Wp7dHp9h5IEP26uLm7fJsx2tNjMFvMZiIugFhiUsKQGJlJ5XEHMEGNI0GFS5MQY/qD8iII5EtlZWFENkPiccXfcgp1A2WFI8Qo73Bh+xtDYpAgbutvHY+EQhE2o0dlKhfrs4RCZjcwSIMzF4pj5A7zuUZaOJcOy/rNXAXaDstC7TmVY4AoHWCiXBaqQKxSVYXIuVhqUoFXdAPcS2VojAN2i4weV+gZrBAlVnHxem6Enwe0Veg4HIVE7RndYLIxlUargi5VGS7c6FJmnSyy0XlzeXN/cvX/v/qOHDx/cv3v71s0ZZeLj9XK9PVpDCno0X4SCEqCpzKDDwd5mgYewRCHBh64HIEM/fID93B9NQ7WoULmR8jLFc17CwfpLP3BtCvVtgkf09Av0/IEdilm0jKmI5d421UjRbEY4iFREibCCIpkmmMepZDRyUKA7xGmaNTro9MJI8WKlms7h1ArVeCwFgT8eTsUPUzFKdtkCsmK6kGdFAi6gUuHMFx1oOsJROIhQNEVNhVTLG2y7TVNAXna3Av8zmWQ2Tx5ZHl+ZRXwzGd4cZ2GPNJ9+4G4WD01xczsZYz0z/CWWZsAsoOtN5zn0nI1FkjxLi6N5wzoUZVg35ErVUmLz+x8/f3j15v1HqKc9e/vmNQb3b3h6Tyn4x/dv6J33H37+9cOH9+9//vTm/qg/pXJoygl4BsnekFWEBeQhNCnB8e31Q3MGpBWC4IYEJSwdwox0c6lsR7hdL5frNRbVl8jC0yFdONBV4WFIGHhCX2g86gY9nwl1hN8pxrvhJJwJxfSbgwGk8y9qkAuaF7ZnKV63wRbmRVps7JgsBalBDkPRNIX1Jhuh5lVdoJRWwIwiz5yDBHtyp5hlimZyYifLG+VuNRMrd4g5gj1l7CuHfezPsx3Mig+iyTihlETZ7IX6VrZ7tMRC/rDXp5JiBPFZiC/T84f9FbhBUJrvU26spLiiD9Wdwd9jEVw4mXI9TjdZDrZKaVYCo6qKijiWXGLPCjrXhUq9Vi6WhUq+QPVo3e531WK2LMqTlZIolTNVp+N3O2pNaA8sdz4dWT3PHsy6BXXkW23baBT0/rTbhlWE3AAFrA5twNHQoXiAel1FacO8L8vQKSWblm6wf7KLAmI8X50erWDr0A006ERSMpS8ac/QbLqEw/kk6C2W84HaGvuHWdPujT3J64ilqqaJrmoN0KA32UCbVUuwZAUqWZtBN8REeK+BbqWWpGqEfltgpplut0NPxYWsZ9sJ+kG7N9JbaqUm5sr0xfx2moJiNHUQj+5KJsKze/DzgS52ItXpd2ChpgqGPp64bnDkbxRfP5DbeUWi+8g53CO4iUlraPAcS0JEK8W748nGuL9sF7JVWRr0ukas3Om5Uah6d/qTCifg3RgY49oveXacjseSh0JACPmw0dRGgTMytLoSlMS+2wfSglHc4SFMlGKsc0UZO57OqLaSLgiiY6ttCzTNHt1fe4ef+f4xijFZ3C2a08nVNM2qm7XaulNVdMIOwvMn+rsfJ9uj+dHs8qqUGRiaNBtM9Zwa2mNGE9Fc8pDCVzVdTuWEdDRZiJXsWGQYaHXz6OJsOJ7Oh4vVyfrsSjUnWrC8Vpu6lEtEE/mobogz96wtm1Q0HQ38VG09m9ldaAGt1meKsVT7i7EZSWQy0XiaIlk8Utxc6BXZDDzHsz2XYO9wuJjOsVQxPZqst9sVxA/WGwhCnp5cnB8fnWxX2/UWmQKmrxTkjzbb7dnl2Wa1PWMx39l0OZ3CLMRz0VhrQam1TuG+RDGQzu/+XmjxE+LVEDL/2eP+LFYc49QaCzuMqdA1mJmW/F40XJDg5hmmgJnPin2h8ximGak4Ybw4IyQ6okmK7ekstylZIhGb4Pt70QTfCJEIb3lgyRuvPf8fjMQImRVAPa5WqIgGtq2J5VKjJdXpnVAFty5TcpakpsITGha2Z9U+iNLCVq6Cxi89JXiKxz6vb+6Iq7DPSFJ2wuJDs6XbPsXX1XyxOYLSBqQZId51irVWVn1arY+pLFoADE1mvRFlYroNJtNx33O7I0w5KaS7SMsUkOmUhmoEvMrjeL4H7yO2BuiD/j2f9CkXzBZoc89GfYrybDbp2z6V7y1VqwtNwSzmRVEoN4SmXPOaYgkgslCUxrOpW1EEUTNaLUXMlCu1VCKei6WrJaox2F6dZwixTDyeg8p6JiRY7WzUWYyX+89U9IJelS9kkVtZmonAazEHUhbB3mQylyVETqcIaLmQDjEulEzyORAcGM7GYzutbgBp2GHlwk+HyyLVE7FQlj+e3NngZAqldA4j5HwmT6VcKhyY8K3EizpR+rtMga1ra4XV83e//gTAC6AL1PsC1pUAviCzv3/H7hof3759+fHHdz9++vhoOpjOVlPMgFfj6QiOg/BOpMJ3BM0Nbkr7FI+x5DThle3A1Vom1mewSGNSJCdUSAl4E7qIUQm1hO4g4WD0nvuhveNwCNIqPzBd9nxwzpB4ofaE3Vg6weDg2oyXoEcWUrh41QmQmAEy2qaOjY532wl30nTWgmwbIWDiTQNdU1RTa0IoTJKbghzKL0sN0ICFSq5cKWZzpQq456iYMqFzL9YwmSsN27nDfz1Csg7oXlSXR8umYzTsht1pTRaTozVVKD0v6LKrFUbdXR/1gY2RfdBlp6FRz1EKLATMbRhWJUTn9F8EMfrf9iOJVDwS2hOCMcK3GUYr+TTraYPEAMRMz7go6n21kksni63JQCzJxULQHQ0mgWa2pzO7N1857W6X8kWz2Bl2WkYg5QW1Qym5rdRkQWjUoRDZ7g0GA7sKpmiFMHYltFEWBREmzXCigDUjXk7DhrpIr9MddTuup4JG5wxaVS8wHN9Svd50NuyNFvTW8uhJ+Z5K1YfU8cVsrk6FUcvyB7ORY/DWPrt0UJIAACAASURBVFae6dKEu88oplgXzKB8buEqaoSFmk1FrCm6axuqbncsjRekLBcM7sFQtEutWrpKULnTpluecBLzmvb24b0H1lEsiyOaSlQ6Xbc/toSqrLcnVAUNxvZc6RtJR07KNYDtxP6/up37gLFfIoXDSbwcFfrdfieWFBV51JuoatOXJy1bkxR/NK1GON0jc+MN/hSDGTTmzgJBiUZG0uvdgVMYdU1HEVrm0Dk4SKSL+VL6AJNggnWp+JeHYGnG0qppZDOKaDmGrrY1vdPHig3j3wMwDQtxKr/zBylVVxI1WTdbSmMW6K7rSDVZ+Xjaf3vrfDs83myOjlcxc2Q26cg6VSsSZ55XJJLYj8eLZQoZOSpI8qlUNDJNJiZmzz7MHJ1P+6PZarU+Oj66bktbNZieiOlyGV3FUtxLlYKeXUi1FrXSqmOlosvhYNwdzufjxdGl3Bm3F5tJJ4eeQZIQ8EEuHpt4ZZdwuRd0vAGcrwb0tRehGP5isdpQOiAcfHzEm7CUi483qzXapUtIDqx4XLVYrFm9eDGDwj79ZDFj1uTdsHIT5Y/j06P15pRQ2XY5m0wW01HPdzv0/0JHVgDDD36BQI77+3SY9iOht8Dhn8PnMD1/pnV8Rs1hDzKZDBFWHNKsqMdQyKE6ZoCDDB3bZWjm2IKxHzayU59bmPiqu7HzZ3gcS+SzvOh2wJUeEzyjO6VXrLJiK6gEdnEVSiPwloH8PzSAWnINfAnKxposN2v0r5U6oUU4qjakOswBK4UsDJji6bDZTvcMc2RiB4egBVPOKeaLNXifw4uJCufBcIJdvfUJvZrbY367XdPrvmLFSQK+I6b29IIB7AW7fafX7Xodh+mZDu8pUpCF2jDOMAI+RlV0arFuSzCkY3s7F5duf8gt0+liNuhTVu4Zw6PxfOMWhabUqIlqra6PBk7dlkTLarbtfL5UrmEnNJZvJiKQrIHFBdPe6buDfg0FQshSoxkMlBLatqZyYSecPjqfBw+6iol7GvIjPKFMJTIppOYs1qKwpAXIigycZKW0dDKeysJdMlNI7sbd6RTLSCRCFSJEkWSoGprE6DAVQ5agrwCdXIbUGTaGz5e4sU7XfW8P63T0GRCIFvJFITv7+AfsIl+8ePP21at3r16+evP6+Xffftwh33dv3ryjJPzuJf/2/uOHJ5vhdDZboV0B1cvxeAzDQZfzLTede8NRWP5QcTvsdVEAdShi7twINZZGVrUvuAFNb2bc+4CX7BS2OvDxZGclyr8QIQXnG+50QbimF4Jfdpj0kIs7ISUInVDoUYT9aPxysBqD4owrNN6ToURNMZwFpACxdg+0tC27rVmU1MM2a5s/ybRZaBmiGCbUMzFvhilDAxKNMMGoCTAtxnWEmlaaSY6hkGCct5miiVLLMJRWU3e1ztFitZ2jNAmG3IMe9Iaszi61QA+nigKbSPQvXbddTwNF40Jzque7J2w3HjDni9tmIScoTMr8fyaT6LHwACvU8GOebkbQfKVIRVxF7buqquQrvd5yNfXag8XQd9zFxuxAGsSrNSajju/ZqtoQIezoqrVSXZFrYkuUTbqEA7tSrgqhd0uJrZurxQov/BLYRnO/KtRYP6MuSCpVPa6rakOraQzGnUpTMnpd0wgG4zGdb9wybm9oyiO35QYdudOrpCVLkpyWRUXc0Atb0GZI2cMB1ozPNlIQ6tShFSa3MDYTpYbsdDydyiuUVBhSExT3dUXt+pLVbFXSNV3WbCMJJi0z4sGugbXCARJwhpkBQtBxAreeKauyOe4RSl9vjc7QGK5zlPE6dCdl2eMxyu5rhwjSSKR0VHOJcqJOlaKXzCtqc9ztjeyu1y9ETV1SvMGouIfRxGfmH6dgrC/xjKlBdWY9IzZbU9vvKlqwtcuaH3SbznQ2Cfrj+e2vHn91IsT39vI5Ot3ZWIZOT54wQttUTF1vU6ECaBdBHcGkhRw3uhJZ3bKy8Iex64mg3R28ud+3hebvk8nTo/NzuOVut9tsc6iJncnYq1pyCyEaOjHlWo3yfi0XTRCEikQzOS2hrHoN161cHV8TeFnCr+/sxpaP1GC4Kh3EM5A9S2RNq9yRW5V4spE1J/fuGJlJ79xvo+xebM7l7sScdQ1biSMyJeOZqHh21G9pHRxJSJsHdLz7E0qoULXf4NkdQSjq5Oz0FGF/A+ElfiABb9aL1f/P1Xu2t5EmS6I9NPDe20J5lC8ABQ8Q9FYS1VK7mTMzLdst32PO7O7Z3efZD/fz/bQ/5P7Gm5FvUX122S2JIikaoOqNjMzICDZ4PGY3M55dwSyfgOGYnR855IZN9U/pEx1x6g3B9hbqIvwzInpnp6eg0DdXoNLn58BuuB+voCB1LBPBAq1mvVaF0abw+flPeBzzZm4zH7AQkzXTuUIxIbRh2djNPhNHeAveDKsulnylk8IKMR4ti/lkTmx00N9rNejY+ZZPJzPoZYoWeYqdv3ijElADwTQsnzH/rdRqlWqjUcF4DZMiJB+2e/0eYXQHEat9ddAfyNJAl9G0kmBeP5BgB9EhKtltlkS4WoFIHH0h+nkhW6X/ASYIp6ojDg1yb58XS+dwP6SH7PSUC6aTY2TCL3Hi86kPH4MAAuDAp2rHCwKsXVp8utomKmjTVhFLA0Nv9CHxdmxLIsEM/mQ4f2VnbPvzAJ28GqzlS81gPlPtdl11JNXqYX+rkEsWEtl6+oAqzlSsvkNrEEpnwYvocWaDYmKuBXSIc8W4qZEkwMvzTDf3VVSV5/+QZIIddOHDJJyJi3m0pLl0KhWyoMZirRjWEKziynHzGowsF4v5IL4GuCOZnf5P4VWsacXLRvk0zAMg8OABUypTpB+03YJr/u7Lv/7526dfX2PT6NUvr16+fPPm9cuXyJV89/7Dh18IgN8RFr/7+Pnzp0+fv7x9tkarEImKUMfNWWkF9TIGAkvYd9PfZvM5ti0xRwgIkSe2orIPDZ0fna6k0REy/wZD4tlsvkQTG6tMUWyihU/GibDCVpQ4FfGqEH4VnDfhQiLt+q7tCa8Jl0EX2zzCgcIRFZclXnfYNtkRlHjIqzSG0I2bArU55IAtHG0Ph7+DWTN/JezQ+w4MEal+pq/rseLXEYANFu7YpkU3LtthaDJ0Fmh/QXvBW4XVatuwiA4NenQhrqmQ3NKPOPJRoozGQGLXMmREEBK001XoBpNphHrD0xsZBMHiVoaTeSYtXAkS8bbUXoINFBLMrxLCGYiBmHCGAOZAqLFhaoh7uSGbbaina9LE8QK50p9OCXq96ORoSUz3dKf4XhhNjK65nXrbkW4tZXSoRiPHrMi23JS0njIcUaXqwkmmDZEFNMkQelUhDoMcG7owvmuq3FKpdWTVdK1BsJHqs6MxEdz8YOLp7owD36a4akICdGdpdd2JK9uzQdf32m0C4NF0jhgfbmqhpeHg3o0BmXerdNNQOkLw3W7SK/XByLNkjZ9XQuAhnk+v3ZIDne52qZLvypI51LNoHOwJxoiqhTsWKSwD0s3ZHgejmVPNtDzZjGYe1fQrwypWl1q5ZEgusYJKHaGunbZgHfQIgCmiZ5UpJ9uzaOylCrLcX01Hkfd4FVVKnUGv701mtT1mvnvwsDxgeR4Rrr1cuVCoFDrj2ayd7fS0jRueNEvK0igNfGfkjKeBqfmLx0/Ol5Po/NbZ28tkE8V8qqgZWqnakixtYFt0E3lTLJcmxBosVQWVDB0SdG4qQ6cs9f2BYchbY/7o/xk37KOTd9r1Xzm3Zbs+3p2r5cDs64vZqDlczWfb5WzpUQ0oKflKoVlK50rZRDq1fzgwRrqWXixOo9v1bL3ebrbHZ2f3nnJOBdW6k0xBfpKrlDW9EJYrdczFWgN7PZlu9Gi4gHvoZntOlZV5MleHVoZOM/hhZ6XHx4O2Y9h+GIwXa6Slr7cnyGJls8ZL+v3y6voWMYLwb7y+RGTN2Qmd+Sc7pNbQz8CKTQAwcgMIayEjOYZHOJB0Q4BMkLsmvCU83x2jqwaOHGfLXWDaCZUvUm9Asc9Ozy4v8Ba8++LyEpHCUAo/vru9vabv6ZTzZRfz9TIKLJkK7gYSBlH/HjzE8Qmd9MNfhFMQbxunYn0wDmeGY6zv5OLUptSDM1+sSYCDZL6AXGGBC9zHzLILKYZPZSiCCBOYe6XBoDFbPuA9cO7CxebZaW6+FmBAABuFcqXRqLVaDehA6q1Opdzudrt033R1RZJUXe5wWDmdXbaBkDWqZrvNerNWaeR4wsl2s5kHA60cSxGwFttqIfwM5180h2RndYTkJDQethixQc/Fpsg8ewxYnukBii3HdGBGr6nYqcZaC8SzBPCGLKiZIUu6pZvBxDII9Q1V0bptOxzLptx3ArlvDDLtntGrZFuFmtxKsxcbfuhsHkJYHtt/HSHQ45RMC3N6qlo4Lj2ZOCjSQ0Mfni087OmyaQekyBAElTGxjUMDIK/iTWKh4coJrTxU1RkhtobxA2t0xFfLiXkFy67FK2iMi1fzsKzDU5kCL0/Hoe4A4Eql1qQip15p3f79718+vCb2+8vbVy/fvH7xAlLoX95CCf3+3Tug8Lu3GBEzAH9+cTeLNpvlDrZCyDtezZCABCk0YHeGrsJ4PFtgkAst1pJgdDK2Fez+QsWuK87y8sn9o5tvNIOTcjnNAvopHvtZYLHcZ3YEgbXQY2YzRlfobR3fDwCsQwG3AoA5hMARr6EVEpNhxuSHRXo+zdHANGPeawnq7FlDl37ZSANyCHAxk8WV42F73HHDcYiWdwzJVNnhPWz1CK9HOLKNBEPn6oDA2wM4078AguhSf9A2lMHqbHG+XoxGU3posKZFBYWH1HSJsw/pD+ItTog1rGgSOP0Cx7I/rDU9LDOLcSLrgDCG5mI8DgN/QFxot2NqzGk6h6m6otRwadR6c3c8GXSdKIzMgR4dRXMviq7mmj9yw0DXgmkYbiwjOlVV23dH8/lIspxeTR7Ksgk3XKdR5k5YtcT9MAyr0BZrIEmq1Qb3xf1Nf/banYHlm4o2dQutTWTNjUKqNdS08ZJFAXMq0lYExIQ2csdbBIZLpYiv1Du2YgbT2czXsdZMNJcV86C/7DNCNQ7bFilNIWsvcApWvkP4qxrssYbCip/wTms4Gpiy0y3kewPJMjRwk+R+SvQPfgdgaCGymdbYdSde+YDonDVaBlO1MZkYqdaoaxYNyaGToYibPB4cIYa63uw06G90yxeSrenE91KpjtJfzSZhNmed7xRFAHB9LyUMYpK8VsJ+iod7CC0qZhrhbN7JdgbKbO2N1HrLMhs9jpEhImNtbo+PrpaPLofbm6iYQlh9qqQpUq7UlWxdpZpE190I582DFWU2U0MbjQ6HwdAp9rqOorjBuel++z+6Pf/6337o//Tn06Pl8Sl0rFeLtBlo8nI6bhh0FkvKeE41VaPeKpS46s9lEvT9FVuq18nlakqw3axn8xXHwOyeuMqpuVhvpXS6VMolM+WMn06a9C8OK6VCZtrUvN1o5PqwgJ9vN2eyG+pnR0NjkCiWCpDr52Uf8mAqZ3p9ZQhJBx3UsL7fAhrPTgmAr2/untxf38Fa+dl38JsAKJ6DEJ+eHAGIwXUxqIwj4pCOtQXrxRuQNgGAFVnsGBCDsuFDQBZWC+bJaHjvTvApj8+OTy4vz9DxxmrOOQgyAfHFBf31HN/LrUjIuby8vGaT5qfIa4c67Ory/OQIdeRsBjMGVcZaZLOWEXLq3+GZxWAH+wnh97PPJiIClrGzU8w+JJkg84rAgPvX2dQhQAMt6Kw4+6HXFcYD7DuRFmbFVDyKLBTQYki8OHb0QWcYO6Tx/3QJ4cp9AAl6mit1IReBLBfRSe029lkVHTM7Q9ZY6Tg0dJVpBa+YQMTa4rVIQid2TEb6I1aO8tkiG0nTZ9CJ33rBeIQEWiCBSAZaiokibGLRAOOVHDiAGoZF3EXhVUl1INFvPYW4sEXnAn0K/KvVYraKxqrT6tlWT7G1aq/vjx0pkFXXk5CdjYYE3Vs51J6iW8gPkoA9qN3FNJapK8F1IQObzWohzo4BhKKbUGQWi6cC6u0iBrwZjslN5eixghI9T+VtKsPrxHhXlq1KC78DMJcqGYH9qF6gH2JPCHxn9MTmGIHxImYXPFfM5mqlRpfuhXpd+eFfXz69+/nXt29/wRoSseDXb169ev2WW86/Ev0lAvz67ft37z8i6vnTm6fL8fpotZpTBUtn6mKzYGfjAE1ncNdwtoigngKvncAOPppEYMAYEwJlw+XF40dnM++bSr3RoCsBk0W0NGvNBnHHFlJm4ZrZ7XLMMXaqur2BDAm/yB5SZZjRYBeJ9c5fV1YYcuPNGPZnsv6vlyHcKUR81VdDCbwOAIaJOJR+RLQDZAQCgMe+N56EAUa18Dj0piPoCwKsvWLC7bOBSCC0y4Kq8/rVjLenWNI/NnodunaHkn1xujymqjAYw8McXsa+4xqqBGtQDlfqIifNDlA5+qPQbKL9gco3I6z2YgDmDQxIvg5g1r/HviLJWBKGSVKaiulM3JtOpHDsJzNVqV+FI0utF7nhyHSjwAmUVmc4I+jwV1ceFRG272uGb9tjv+OsFkrfHQXjo5XnO3qngQJUtYNJZJZTvFmfTWFLmdst2E+GWQjs/cRkuN1sdXv1zsCwlJ7mdgtqqLg3Vr3YkqQhsdvZAmOL9WpDNZozddrdcBV4VME4Sqvet1TNm86XfqeBJX2kQzZjM0x+gU602+3UcwdsCMluSLl0jQ54WzydcH+HYMsY9INoMFR9ehB7fWKNOk/dDlMirCP1tQWNBQDMYz2q5fvJnGwPRyt/qpYXctdzgqNhQes5dAal4YWBe43DtXDwUc1Md22JjtDeYhZMismWPqBTYxFkSpNllioFjZ7Iyl5s0/RVIHBAXzeN+VKmMZovu7l2XxttwuF0GkyXVH0okjaQh6Pjx1fHk7O7Y8O2zLl+cNDOZJMVXennyoP+cKhjsDJ0Jpx2/vCpU1V4nmfTOc1xCz2pH6p6z1K065f15tx98aP+4tHudEOkcLPbXl5kujN7MIuirs7eMfKoWynTyVADAJeI20JikKy0uvPNpNiWH2+OYaPIkHdnS0faYrNpgF2k9jL7uUkBthlpiGBSJ8feNHJW/sQcBaPFbnOujqbaMjKNXorOoHK9Wsv7ARSNnEKKxyFO7sABCV/1ChuOdnqSZjpUwwYh1WorTsEClB4drcGzkE+D9vEZAuO4o8xLNaC2OxjjHxHppd+JA4MeI8lyu4HO6BQtgB3Q+uhoCV68Xa929LGEx8foeKNtTX8Cf4mSXzL8Anmvb65ByG+wQovd2NtHj8DQ4Qx5C602/Kjg64xXHyN/gT7B2algzuPANgZdJOQBHnDZfSXNv3e2/7C3d8gbz3x1CpKEJQg655nXpXP5uG0do3WhyFJtDj/hSDgIPwqw+cAkknec07GZaRprHIkUNsASccgUCnt2QKMPyWfj9DLwPjhBg5LVStzfqjU7UqfHubq6cLi1bCIfnLpG9BQ6sF6r26x1GsUq7gogHQzAsoIRQttUqLNFQacL8SRTJ8wpoxksHzhcZTIZMxUhONY55FnTLd8yfBk+YXAc8MNpECr2YGDaqmqaulxVxyNt5JvDedjMMOPN8E1wuH8oJBpfJ3Ui51ZQEyGWSybyuWollasUY7JaZEZL6PowDsgjMKtQgLCGt4UzDMBUaeSKDwDMKXzoTGOpWYi8GIDzPBfIYbmimC+zWyL902KJp8WlXJqPGqQ5ZwnfhbAnl6+UWj2I32vGn/715bcvb4nx/vrLG7GL9PbVzz/Ta8x+36Ih/eLtBwLfjx8+fvj04cflMJiNXSS7rWazJRSvcOVmfkMcjg4XAuD5mI04MNONxmDAqiG8Yyzu8g515Zs8x/byLJyTAOn/ahnJzXXYPpXL7IeCWXmlysut8P/HvLFONVuryzqgXk9Y9iMMMLaYxriB/he+jHEEMZuwc4IQuzlZrNoVIX4ORhGOi2BA33X8AP1oF/keSGv3Q5iLR4BTQubphHA5RPAH/T+iYwZaPs8P2TgEVofC7XAiGufQo3kDEEJVto5Pj06m4WwSANHpfSPkZnK6YbfXZl+Rdrev6LYfzcbeJAq0HgBH7DNjKlUucjnF/gKZGF6xfHzAXkZxPAWGU384QAss+eArQuBcbLagxsuVOiD7o9l4OPXajb5FX8gPLo6NyKWiMxhIpmGF/Ya/chTddQx3vfYDU+51ZbU/0OwgmppFJuBU4KdiU212vo/VoizmFMBcyff7SFOWzEZBdYaLG6Pflwd6QLfeFEbl2BKlmtiPtJYajs1geeT2qdrqW5ri0pnrY4uZOBlWqmCwUyk+uGzXqpjQ0A2SEOtf8ASu0hONxAl6AofMgIkg9np+MNBUt1rId2V5qBsCgNNxWpbY3iYAhp4xm22NRt5iZ5XKiq5N5/bYk6J6dWc1j5SC2nUMXTk8YNnioVAdE7vZg/sdvF+LeWk+8xetZGMoR1jMqGe0M7mnDbRwHFX3uPUojj0cCam9BwDONkazeSvTbdozf7bYnlyfbwNd7w10xQzXl6fHi7Mnm6vX/3pzebxuUZGRTZYNdVCoyT3D1GD4PbRHbLn6cI4nqsIqKqd5dr4jq07DNzodf/dvUno3/OXSfH1+vFvsLjBJPb2tlWeuRLemZnDg2CHWNpKpw0ahUK5IpQQdNfXkfls6aNmhp1+s7sbMUHfEGu88GQC87pZrrU6jJrdNVW8dpBLYF9jfz+3WZ+7Yc3xnFI6Xx0eXqj0bLkb2yM3RjU3PXaVgRWXO6QF2pFI8OAOl4IIqzajBmz0pgR9p7HoxpuAIwL4dqjK6Ycw4d47uucmUytyYQZ+xfuvk7PpMxK2fnSPUlVCTG6Qnx7uLU5E9fwwKfbQ7vgRyE6ajg41FHYAwJxYRrJ8Qul9dwr6COfDV1fXVNeITrtAmv4E58+MnNxxRd3OLqCNg8j2Q+O7RoydPHrNZJD7o6bPnz4k53zKEI6Zwu14irADqhg5CiuixQaW8n2D9uwjs2MOuMdTwsXV9kskvR1WKBKMC21FnYmsqtv2BwQgbkWQyRbaMYPcJgHQpkyaynE3l44XnpID6pDCKAUEWCRaHvP4MxOfV80qjGudZV3EGNTuciw7XPTY0HCLaiA5MFxkGDq+BEsNht2T6uThanbN5Cd0gRoMHDjd1SwixqTUg88b5jZh4J54twuph5Noj7NZCUlMuFyqtIVHfvuKYfdnsN/Oy79Hzr5mLoFRAA45loWjLwSVT6JvxU+MBSQu/f6Az++Ds7RGg5mBMHBuesRUk7MHZbQPfYJ4XkTCaKgjviLjDnBV7RIWvDDfDzQnxrGQ5ZbTIIJxK89Q5UyhzEgbGylSqZhjP6fbMpjDdZ3tjXNfFMqNYs2L88Z8fv3x5+wajXrBgiLBe/fzXFy9fv3nz9t2HX4gOv3z166cPgOBPHz+/vfc6imepQRCtVrPpAjGrhDh0vjIATyazaeiPqK4fRRz7AwCeYAIv8NHGDrBm2t43bIwCJTan/LHHUQVBBrX4eef9LDZYLeJXHHdAr5ZrrHtiZyQkacHXjP1H2QgKlJIzAVUg80BRBkQzB7KmGbqOvVIxSyRcfrBUpJuZORQ6ylh24r42yjXAKqHrdMTBQmPuS9PVhkuF43NGY45U4BBMlt2POIICf8BAZB5qbVSAymBzfXS0gu3BaBL642jku7bWa2SrvR5PjLsweu72ZW3ojQnl0YWGuXJcP0ARDPPZQa/bI0zmJQuMX/MVDFyLbL2GewbSyRRS25LC6utQhE7kq5UsJDP5lmqqwxmxo6VZ6bjRnH6a+aPIGNu2N3b6bVn37brkTmV9ZPV7znIR0FeVe7ImqaY3ni+s0j4qeOydPoRXCYPOtLAxSDG75FFUp16gJ6WvNosa5kFD3XLMYB4tFgskd0HDQbxmugytaWR3w+MTu9MfdPpDTXEIosO6mDW3oPmkG4ztVCAXYbZdpOsiI1LoiVOkMzWDimtELPtU0yE0iRhwr4M8PtMslfNtVaHLjlXQh2wmHscacQuabhm6p9ojzyE4qrYUQ11M7XCizWxtqWckp6i2bcNQcBoKw4u4xN5L7O3jZKObrDeZOOtOsqH3Z/PI7VhBWR70+12Jrv/6HsA3xbZWDwB8uJdmfWSTbo9mqtvQNsbsgqjlyhuqal9WBvb0/OnR+sl1dPXiO19xx8cnncNiLlMmelCoSX1TlW1LNw17gps6HddByXQtxZV7VnGsXFv2+rnxym6GRz9vlKvtL7bzy9luNd9dEe073d6YmYmn+ou5rR1msBmEjZl8Jluj+r9g9xNEFvbyibyZzGe7weo8Oh4d01OGFvT5baCf6OujjSnrJrGWKAp6ptqmg6iUaxTTh8bpVAm9sWWHo2h5dHylGJG9XYzWiyIsYiqFSk228lmqsUUDlT0P0OLLi0Yekzuu4MoIJ8N8XvT4sCrGiuIHT9I49gBmRYU40hsb8C1CCEVTDbqRuWlF1+wKudEb4DAwGWNmpN1ixens7IJb21jBuRQpgefs1Ig0XPr/4vrmCo1posZgyEy5wb+xrgOQpk95CQBGg5pT7QltkWl0w2+8vrl7xCB8gzk28ozAmh/f8fsvn3Ku8M31k/snzKEJ5K9Ozs/p1lhEPpFBqY1AtTK2qA5jJ1PmzKj+HjzCOLGDo35zYHiATI6hZ21u5iGqm94N4ygq4lJZbJ+ipQ3mCERgPAePLqR4xZGF1/A0iM24IB88TAinR4YQAGkRCYcVUFs6bGFU3+5KfWyMDBTNUBQ61h3PHYljMICJA+ZxvJNiDankUHAyd2Ahjee+jNYAD0fFHm2twAksJWa26WS6kDs8LOia3+ipiiTrGj3Fjm/3uoMB3aKZTA1NKQKQOqr0MkYbzRbPxjjigGqGMjE5nJF5YU2ZzZWLmd8XVmL3wyQmd9xFTPBanujwc3HICjohjMsAw+52hAAAIABJREFUT3ksns99nTXHAJzFUhKrp9NiKQUGZlm4geex8ZxNxmYvaU4cyrD8HYVUuUDQRRSrXdf/+M9Pnz++eC0AmA2gwYB/RgADvfHXt3CGfkcA/J4A+POnN5dqY2CgpeyD/s6j6CGBGCE/EC+PQqKPEb+MQfgQxgCfNt4ocTCZx/jzG/45CnzNsHlKHnLwUrFSYGSu1tCkp3eUq8KFEYS4glfyJXZ9qpUEHovBBI5nVgXVmpU6tmFbeA64CwJxLlVb7NDYp6ILwKxAiWeIJrZhWZCWIvjPpVPc4VRnPwwc5COMo7HvBZOILioQY0ixCJcRnxMG7GAVMkFG7x2TYPqwYMKp1IF35Hfpi3ekpnl3fnRi0Xv88dT3l4sxAb7ayOe7pt6p1SA25HQWRmD6HPRo8kSdY77AsnnYHIhcX+5/u2DxBmbohqHK6qDXkwbdJldT9SYddmU8NKyjoKuuXoI9fbrY0YaSEuk1zZeb5mQ0Gdnq8pFFDIVov0mEVR2bVdsO+1aktuTJamxJ+lDpyFj58ekwGxbZFwwWfUIPljhIcZ+HfttDimviIa+1VKG7o5jvN9pNf+f25BD8dLadYiR3fEQs7Ox8d3Z9fHJxdLMdtiaXI4Puy45sa4o3nSzHLbpxGrB9rzYgu67B4LwGrWC53qzT9YGQNWxR5rJ0w9ToIcM2eECXFLSV6EQrA0JjxRvmq/mWoRJnzHC8ZQouGqxezXDkRqxgbAXBZDFWuprjqouJH47a22g+VQtFpyi3TN2QD1g+HSuZhUPiHma5dG/le+ORve1mWkprtgjlwTDIL0YGAbAbjCsAYHZKE5HXrMEWM+BcZzKft7PdbvPICc5Or29syaADjIrB2fb2+ezi+O7mdrtyLG84HFuFQwJgTZVyxc7AGkieq9qWNwOCwZ+Fc7kK1QScazMEwC4xYFMq9pxpa/Dtcefo/KfP1vwdne0Yjh5vztbX0/TYN9z13Bkc5pPJfK3b6lWkZpfqucrBoJ8upvcy5WRukkwpBDGrzW52NJ+vj093292lxwC81lVNsx0zdNt2R5uUen1L9oyWpcxUL5p4GpWq08XRyZU8nuvL+WizKpTLtWa5UG3RM1HMJTJp4sCpQhFpUljsKwlRah5AG7vWiW1NRJqg9QHTN1GHs39BQcSHInSswAHepYKQuZbQTyQiT/8YYhliKZWqIHAt5JjIqkkXItKiIQjfYuWYcPT6+gIAiZbzY8ZR+tvNzdXV7R147i2/T7xcn55fXV1cXN9xYj1B9NmZaIafMpIT4b64hnyM6DJoMtHmG2LBxJTvbm9u0KQmFnzz6Al/FXrro1tCY8QcPbq6fXx38+T+6vbRPUbfP/74/LvviDnfP7unjzk/PYarDZXsQyqH4TOVRzDUAY+YCZYT+w/7zfw3urqR5pHNIMcC8uBUIkMQDWds7vwzBaZDF7uLHBJENyz9mUqynWMO2cIobglR0oe8HJ063M+kkEOVTu8fit5RIjYNyxDCQCLG5VKp1qDnBdhc41FCF0m6HMdg6NgSJdLiAhNmPBdeTKfz1QQAHSADTh0Qc+rWC8VaKQMmyZo19KwyBbmrOGfn9sC1cZbqxD9ktV0LJ/VcssCuIymY8YNaopfOTleZMqwy640KkWP00VotDm1q1LrNaotOSG6m0tWDviL69WCpIBCHMFXbP0hyEDf8legXapMk941Rt0CMxqPgLKa6YjucjSnxHYAn4yHDyjv+igMikSBczrFeO1tIUy1JBCkLbgQfswIx906r3m0af/qvf//7l9evgLVw30D2wsuff37z6/v3v7795Vc4Qv/yy6/vPn0i+P3tt799vla7mtJVpYExXs5nS4IIOk+iEZqxMQLTIxtOkJEEQxQvIAJpDJgCG4blogXtEa37Zu9Q7HdgpxbbMxluDYiUQOzAZoUlXC7NA+0iG3di9sYMGXwZFoxwxq4UUeyUhE9UtVpuNKtUEBXF38QL3tcsV1sol1qdbqsjSe0elANwTZcVgB+/sMEEsE2HyQSYlWux0THdAqJPgvmwD6RF430aEUTPw2g+oqo7DKdjb7pwxhD7BqPVTC2160WpK53frC49Mwq82dTyVzN7HHi+XMhQPacNOlSx0XPQknnMrdEX86BXmIxDTmgIeTA9epgz8woxmDY3vekbwbsg//ewEy2iAm0HhmAGsaV+tyvJch9pTqnDfKvXGs6G1YapVbsmYZ0hS6dR3/P8oRdaXckZTVsVLTSkqav1lxdnQ5WIq9bXbNNw/fFqa5UPxRIUB7SylwBsOPf24x1lduRhgX0ZCwH5craUaU+iXsscO+FiNtusWQGz2WxO7xBc/vTZzf3l0ujYM9uUJLnV8RXdmS+XXrxFkM3y2nURzjX8HxMnvJPFLPCoydF5LtOz5Tu2b+uu2Bez3VAOxl17Lff7ubYxGGpmDo79cSylcPRLHO6nqdpDV6wf2POx126GA9XCbqNTL8vtcNFs6mWprxnagDvQYMB/YB8FgvJ0cj/DuwrZ/mQSraqpltJBFLcxDbTzWdjrSt5kXtsTX+3wwWOcgwPQI8zlOu7spJvptvTl2F3M1l5/YKsDbxi60dO75e3F49vT+XQThb7uqP5xLpnLSD0lW21Jw75hBqYz9NaHyb10rNNLHpSKmVImWc6kdVfO6apqjHvt5cV3Rk9Znv7phXLz08VufnR2fHa6Od6erdJBFLjRwuvj6M2mqVqHaQ92YzMNl1gxYhCTSr9Ihd9uvR3PtustS5/OHruDq2G0O+qVKwO11TFVHcGELWXYk1Ul4A27cWANXSq6j5ZHV/1gYi1W3mJKFzhK4VLZ0wkOEgfYgjzYF8t6bDkjTPWzYm8zwzyOBTFw8GalqnipFIlLE/zWiuyoX+EJVokDQNlXl210yvVWnX3uuF9WgsGF8KOlZwsdxhzcz/KIEag2akRAuv3OgApfSEAm89lqd3J6S+T49tFjYqeEkk+Ipj59+oQI7RNOBQR1JWpL7+WYg4urx+hDg/de3wCt0awWNPsc4b5ICL64YBUZpNjob5+xwAsf/+T28vKWZ8ePntw/fnzPrJnQWjiB4e30Re+ePP+WXp49/+77++9/+vGHH39AovCj26vz091mEbHCWCPu34IFPrjr/j5HuO4/mI7s76f29zjQgh5o+vm5FQRszibohIU1TL6QOTxgtM4m9zmmlVkaF9f4nGn2hOGFDHRP08K/BKMCXNrCqfsrn+SZK/sk0/OHwWK1wT6MsHHnsMMmiEJPQhfUNDRZHXpY/kB8oRDYGFK2UiMaRtherKRykmb0gu9/PF5OHMlot6R2rdzMtlTHzBzS1yF+htONCGgynRdrudhPAjpi8xm1WSZdKgnVMwFIvtpELgY7nrRbLdEGx1oWyBpVDZ1asdwsQ4qFdnJKWBELaI69waGQ4OY2yyOxY5RDnj2aMoIR8/4Yy+bisJ5MvJ2WyQl304zoWmVzaNt2u+1m2fz+3//+t3+8ewfFFXHen9++e/vqNTFhGFBiFenlzy/ffvry7tOX93//8uuXX949cqWBin5C36CHjXdLCAX8WII0mxCloF/RZDoduW5AjyuBhdrtxpF5Q93CiNU2vuHwkgQ/ldi6O+AENvxo8Z/JOGeMfzh2pUrz0hxbxLERDccQ5Tg1h/MLimzzViNyXAJlgl1jpdZ4wOAaFWjwT0ZGUblezbO9PxZoGtitgRqQ1XxEJ4kmA5IRx6spsmGxshndZ5c3lKB9RnGBTtdoSrXHZD7xPIu4JCqPEXtxLrY7T6YyoNbvjx7tzjdmGMBt0iFqSS/ToJ5pmNidUbvtaq3TbEs9mViwYkLjPY6IAQfQfMNyJngI2ADs8ltCQYlBtGFqKeCZSp6420APfuhBKR74jhvYcpFdAfL1pjSaGc1mt9AcKIbvqj156Q8QKei6akuyg2GvIw1tzTfdzdGpDXsrR5MIgHU3nKxWRkHERkH7xX4U+/zkHBzGI844WgqVMd22iTRmH3VN68jhyBsvFiuC3iVdE6vjM6rv6ZC6ujw+mU+sARXHBhUKrZ6nGu58tfBzCU6G5EKMzQG/2hXECazsUMb9NYLBwdCxAsdwHN77pvrDRczjoDWeK6ZR7SltwzZyEI3vi9SM/cN9cepnitkSTIO6Iy+MtI45bJv2ZDTxgkFZtWYzVW9W5YFpapIItYxtnXkMnDrcg+0RVYxdegaWjUxb7c6mkeEvjP7q6rrfU6gkq+89NLpYQ0fkGfczp/+VuvZk28n2uvp84k7Ghq6oLhV4Yye6vT+5uHl0c3KyXmwmhGSham7sTKJEZCJXbnd1wxroZr9rBuUCZlA8Nz04LGTT5UISaUiOlpM6mr2o+sbJ+2wiM3//7qfi/Q/Hm2iDPuzubHd+lNNC154sx1oqUyzDmCtVyB0mSpVM8aA8LSaS1exB4aDmhIo19L3ldLqEiHh3fHp64/QuzOh4B4kkm9YYtqlZertOx2l3EI3pofegr6AbHlWW7fj6aKT7DkRCxEYLddvIE7ofHjL0cr39kHGeieN1OcZEmNzAYIY3dRK5h5xuZkfwFUwTLJfqkI8Aeel4x7AtW8ccC1QZ2WH0lzJn9RDb4flWuVZt1irEpeGkXuGUvSL7L0CJx6M9otOE8JAUNmA+pSFLz/YCxIxM55ujLQHr9S0hJFCSBVi3T+7unj56QjhJL/dPAdBgzY/u0Fe+uWYJ9xW3pIk6X12dX1wxTtOfINTXN9e8gHV9xo1wvPfmNmbjGCXfXV1egDnfc8ea3nL7mF67v3/89P5exB49f/YM4Pz8+bPnMJcUg+bzc6p2Fwu61WxD7jYrdHEkhCeqkAzsf02ZAHLuJzKi/ZwrYLc7CSA+iNVaML7ntL90LCfkoEIRJxXHQCZjlxLekhcj5ofEMPag2d9/iAKL564c2sDa4HieCDl2q9WAyUiDJXgSUedmDsNUkNnCQDP7Te1oPTQUyZXQAofnc7elRbXsYSrOahLPH3rwiOYt8C4W6705nk6kXtF9nxJq6SzncRRgZIVNxAJWkBiPISNttfsDuryJu2CjtAt1DmdPiJYiD4DTKdH6exDTJWG6xNKS5EOtnWEyGQNv7Hz6NXke3mRZIpTExLG63aqaz//2+dNvvxD8/gIXrBevoYV+++YVEPiXt29f//Wvr95++u3jx88fPn/58q9/fbjQurICP0fVJqSYI49wMvI8wdF402YKSywEKhBmeDrSbuk8FyNNOiQ98LjA/YZ9fNCaE4F//KQJjUCs8BTn7oOZ2gGDNdZd4427B5WbOJTTYieD1WxUOVPxky2y3XPloVBm8C1XizCQqDdrRb5dCbARpMRCwKog1SXO/avWEfVZbTQa9JRIAEdovbDOzAp6y3J023VtbzyLqA51LZNFIQTC8zlSTje7mQSJYLujnF1vzr3hxBuNPHe8XECENbPKJd3WTM81lX6jikWANr6IpA4dz59gtxpGIyGEXgy3eBkJLOYIYfdhRM2aL0GQuW+NdngwmkA9NprP4XGsVHNCdUfEyzfUbimhDWV/bKhtMxjqfmh7jtlrSJZrqzLBmayG08uLY101RvQORR/qujueLmdaQUwcuVY64KcOHrxwhWIfTkIYJM7jt0SW0DefTRaaxDCGk8lyuVivF8tVFI7mJ4++/fHJyVxcHF5gqZYemn1J6fXo4RAAfChkIomvWboPlnpxRYbLA9wtA348MKnQsHXLtbCSTReZE4y240pv4RtjqyZpHd2jYx8AnPy/GHAhjQjRZHcSOPOeNOs3rSEhnkPo1OpGK2Os53oSAfBAhMY92Dnjh6d6EUHmhWJugDCZRqoxaCP52tBMydyG/a5Mz0Vl/2HaJOqTZOIrABd7zmTZzHUlNZqhx2LbjjdbjCN99+PV7Nnd/flyt1utx8E4cCw7Oqof1mWpVyy32qpu9AZav+/BMIRjPOiZdhyjlMgWMvl0VhkOC91OX5+3p9LpKyNxPg3ur6Xn9+vVfHN2cXZ+cnZ8flzs0AM/nbutfJqqEAKidLGQIvQq1jOpZvJgP5Xdz+2njSPfoCtwu4iW2/VqQ1Tu9PFIOh+Od1vZNAf0Sx4qWidX65drSqtbq00jezwNsZbvjr3pbHXiBmN7OrXHfo1Dswu5uiIX6PlkIcGhwAN+Jh5EWOioAIRT2SwLjxIcdpT+XWnAEE3om03nsHqT5MQjJDiyJh+dP0yvML4SZlfMgwGrKM5LlZIQ8tU4PA/WjQTTBNYFIlX80mognD2Xr5Q5OCCbFPGinPWNrDoo/TtEWejgw+abG46Ws9kaK08Qb13d3j5+8pTwkPHxW34FVPYJoTR47c0tcWZALObDotn96DHmxnePRK7vY3onPuyWG9P0/ic3BMlX52eCLxOwE/uG3Jpenjwl+AUvfv7dd9/dPX76FGwZXxGlwI/IK/yBfvuBPubpE2Lrt9eXl+fHu83cQw54DdUbshJEavpXa84DRGbsieSZQxYSC/KDm5FD2QE9YulJZHXHa1UQGCVFtYRRcT5+V4ppNP2730E5yUtabF8g1rXYuPdBawfUBLGqNJulAmJYiQaXJWUodWv+0rO6tpbL1or5QjWXanb03axxeFgqQC6e4qhfsazLzhq42tBSh46Lzf75Ikrw7ENkHWfTDMZoILN4htfC8JtQHaGXXsFKR7/X7SIiA9HPCLHqS3248xJvbbahT0EvtsDqhKQ4n+DTgCJnj6cD+1BKitNrf5+zE+mbSYgEBtgnIM6vVXN+/Odvn397K17evHnNm8CvX79+K9aQXv315dtfP/6GBvT7z7+9//DnnWUYUrevqcqQIABgO5sSu+Od2Ml0gWHwdD6fRUQKpnOYfxJAmZoN5ZMOl1+LfTOsbx5i/LhISohj/WsWYOKrjblYemV1wO/vS4j7mAE7XoU/4E1YZihCfyqaXEzIuOwhZIZdaEYsqhdzZV6jqVTRvsJty2If1MbVcoGeuTJVy2XesKk3WOwFdw1sSkGy3Ot0ejVJl/uqOw4if2hqWuAvItv1R+uJP51P1ku9VWsWGv22d7k+nWoTO6TzNFxtohFBtiW1uqrUNf2hYQ66LUnqdYmWogmtmnYwhffqJLY3GY+EuIvQnUMpRmPRlyYgxhoy3hS/jEPovIj9Ov4oGEUw1vL8cTDslBJYbEgnq7Jh+0qm5AbWbOHoXQIu2w1t19Y6td7QGssDe2y2lcVseTsb9ow5QZNuDHXNjWbz2RATFRHMBEEUq7/g/sByg1RKpFkkYI+dTBdLXAXV+5KkOuPpbksAHM0m0Wx7cf/8+4tNaDtB4GpWMDEVKlosfWj0+5ZKALxcuNgzSiVT/8mpL7bTf8h+JNSH/oRup0yhIZvIWh7Cf9S1IH53wunSrWpL05wo+TZVEJaRT/LEmmu6RGxxtJ/K5yuFYjZFAOwuB/KoM7CNaBRYQTRq9Venumtm2j24hh+CAnMnmQUxdLWlU4c5eMhW88psMp41Mw2pHY2D9arjRUNXkTvSaDoq7f0nf9KkGDIBgCHe6NJT3Mi2JDmE+fTItMf07Aa+9fjRcvvXp9cni+3RakVEPlDckXfqJkraQCpU6pIm9QeDjmR4vustptPZfEnEbHUSNRMpqs2TecWwC72Boentcn1xNBu92JUW97lnZ4vNdnd2gSXZ3elZtT11jWiztptoCqLgzBfgkks1RS6foiOQbshMi5hHd7pYnswnRzCLPSIGfD+Xzq3xyRFdEeZQU02z3+9kDxL7hxn8qANjNFtGsIt1JgROwciiC365jlaLDcqv+YwqxKmn6paOWD46wep54bWMwoZqHCJJhzwmxyc7ELafB0LXxwCd4ql/EuB8kOBFEdG7xmITi7OElkfEEWaFHZUY0vGJDCVuiZ7yShlxnuiJIskEvqp1MWEulxuNCpHkYkWkfNbq1WZbHLE1MGgwZm56F3mTlz5JJkuPHJXrfEqwPlvCqrpOdyV7IJ+cELW9vL55zAz5yT2ye++fPr0HYyZkvr++e/LoliAVuHzDU2hm0HeCXV9fE4u+Y5HWDaMv3sZj5Vu8AeNlAmJ0yu+fPX+GNjYhP7/gc4AxC+JM/5QQ+PbR7cXFFbD/6fPHj4h7n5+e7ZYgynQv6rLUpZ8AEQmc7REbgP2fzpx7e3xLpkV7MiXk6kJSLQYt8W7E7xf9A4CL1dfkA29OPmwjiNt5fx9C7wNs6vPNmc7uZ5Hm1oDQp1aVpOHANMP13JGMAaI8D4GYmYGtbof5dImX+dO4NOB0wvrwzIMdR5oYGBoAD9vRUOBDJpBlgpzLQ07EOQwcxZArPLiUcQcmX0AKA8uk8YI5BkbHmCkLQ542gTN66RICrADJ3NMGokK+UilyTgN2VoQ49SuwcW3DlQrwF6E5NeeP//Ufv315zfj7yy+/Eud98defX7x8/cv7jx8Igd+8fPv+3YdPHz9+/Nv73z492lHpPQ4d26OvrfnR6mw35yzfxQh7XV4wQoMZ6qTxyHdceuNkud0dTTFQBU8c2mzpqKrKNzHGskcv3YBixv81mlcIfZKcxcoM4lB8sPCZ4FcecnzFJ0o8PP37CbEoylpXcW7zx+PqSbCvxYOFTPp32szb2YDifJZqZOwl0l1Ya4gZQbyQyumfWHZlgW6r02lVG8QXrZFP1Gs4WcxMhY7TuWdPpt5kTIVbo9pG7O3RuW5PrGDkB8vjxWi2mPmKpBtSu6Pqiu3rqmTog15TUhFZRoDhT2azKbb8ZxwMhQhQESEcscFnxMte4mU6hbcUS8AmUG6hdw035ghWWxEsyEbhyGhnMN/J5BuaG4Rqrq2548U6VJW5pTtW6Axts9+QhqbRITSUm1ZgTy6dVme8Xkx9wxzqhh/he1Y5CtLQDR1mokgFVJV+H/6zLfbkQMu/wrL2PLv2ZMu1rsYRpseb2Wo5mdO1cvfs6d3VYkLMnX4WdRiMBv1oNbYtR+0MHNVwqGCzMwdxDlXi/0bgZPwM01mAqhZRI31YiBlD39ZUw7ewhuSN5zO3Zy+HPa2aaZkqUew88qz22D0M/Te+dvYzVGDnirlMf2IHM7PbaQ0dYzEZOf6MvlPbtzy90O+ritQXM+AEX4W87gUPZdzrGfrH0Xg862Rbcnc+HY3uOqrbzPX0vjyZT8p7ooMe33jYg2DHHmIKyZYfzau5FsH+3HMD0xhvt0ebkbH5aTv/9i/32+PtdrlYueFqqTmj4e44l9IHSrbSoCtEklrlrm+5BRj4oz3TarfkXjmVRmusYgytXFehC0orNA3z7PH9unf2rfzjEV2Cu9Pz4+OT7e74qlGOnOFiFUnlelfqNNoDpd8b9OuFQrJiDrv7++n9bCl0vUq6PhrN1uPREawy1pvd6fW8e0qXxqkp9c2hPLDa3UatUS51S/kKfRfmBvWhpSiGGVhDtGgsgmJ6MBfL2QreVcsdFnrp27i6PIcj5BFLi0+ONsSw4Z805V1uXUVcarPVJFoKakG04SHU8TD5YEVzyNMqAmvM9cVsIZ3lAG7cy/iN2E8ldpzKicw6LuEOqHZKxLOrtBAiQRVXxg4s3fSYUZUanHBCL8VqXcyzaqg8qywwYtUJNDxUw9cr9XKVHgDh/8bRdJCFlUEXEdXBArAW3NIJl+mpCaDmnM3n293JGcCQEPQxAPPp/VOC0GffMTA/uX+K/jOgk0nz5RVSjG7xl/tHYkp8jw8jdGUujTcwOIv2N5rXcUf8/vnzZ0SKv/32DhPmp/dMr+ExdoXG9wVRb4L8q8vL09uL84uz3e6UnmWEIkVY9nBsQ2NfHYII7romD/7P/eU93l9mVaPAVt4xEO7ZfMGnxDayAGI+oQVgo2txKELnMLVOwJQaR3nyEMSRaq7MQRYFUBNKzFZ10Bv2u643nStGbxn1CAYr2Wa7oE4Mf97KsOGGWMiFIgSND1ZWo/0MeW86nS0Uebghxh28dpRlZ27eV8YAPA+ygHBB/CNI8aE/yMHqLcNtlywzOXyvwulDeIyioIP0HBcOXRy1VrvJuxv00u+gsYyQHwaKuhiAlstYlOZuPfhQHvEC7OVbrVo//PPLp09vOAXpNdKAX7/8619evH755t2Hd8hEevn2w7t3H95/+fi3j//4cjQYBrxLM5lOfctU+soE1MVD4vA4ZFUQgqqmk3A2m/iIIZ7M5/NlZJsOG6CYQwWh1aahfXPI+tLDfUFUHzqEcb8uzsDkSiqZfHBhxG/78ROdjCXlh6KiEvO2uNrAYjurXpOp+J8e8tGbPICDHyNyJrsnjvjfhxqYqlOBnSnkktkikjXy5RoqHjpn2tj+4Sq31+t3eUbQH7TrbWuKSfBQ0b1os1KKvTCwvdALPN20Bj0qslstZTm7m2mRPXYDf7pbhyGRSdXywtA2lF57EIxtg9iWIrX7AzhNE4mhB3e23KyRCrVcrdbr5RJ+MsvlHC/86oJfhNHMQkQxw9NzMUM883ROzAVu6ZNgNJ+PqSKSK9z8KHXc6djTmrWqTpDt9b0FfB08x7QsuaM6w2bXHTm9puX0woVdkudzYmFgwFQRRPPF2IVEAq1wBExjdAxXGz9w4UrHyb2aYbJ1M/I8odsv5kuSv8AAcY2aYX58+eT50+vtDP5oi1kUGaphVOteOCFc7zVlT9FtKjbsdJyB/hWAE7+/EveyDgDASDXI67puObrl6n3F9IaG41q2P114arhy4C3XViXZ13K4HvYOOZSIDhEm0fsEWRDiZvtTw5/YtVTTsdTVZOTa4XptNOXZ3CtLfQS3xjlXPO7G+OwQppZpNnTPcgu6nW3KHbQszN5y1Ou7iqQS8DAAc4Jw3DiP0+4IEVINdzKp5jp9dRI5nqcEq9Xu8dVk+PT5/PSPj87mu92GbhlnvJipTjQMznpJWVZSpW5fdrVWoVAP7AU+9z4VlCCJ+2mq8kulbLpoWEZO0qiGCyJ/fH08v7g1VmHnL5sFUeDT85Pj083J6V0vO3GczWLcr2WwnkUjfKtLAAAgAElEQVSHDPs6F1L5/mpq59OJnGqfNMZ+1YiMyXI8WS7ggrE+Or1atnf26PSI21imaSpOS0g3Duh4PiyEY3rwjYFMz4IFlzof+22w259jUXEGkOWwM76CYaO3hBx5F+/lwiYS8iTigo+uzs4vTjeLsx3b3S6xO05X/wyBR3Acxf5sBcM/MZIU801OZ4wnFjFMi6qN29R8cLK8N8PWhHxGpKAfTGZS+ylhUYTOC0SxBU5Kz6bhUgh1J50CiNuu1kTKZwNLk+haV4vVQqUJhgw+zfHjIMmVOueFVmtsnobN9aJQiuVzaIQL4SgsR2SZnRh1bFPgcTpmA66bW9hxEl9++uzZs+ff3t8//5b+fI4pL6Hzt0/u7599i/2l25sn4oVIMLrSWDzGf48Ire8IaR/dXV5d3Vzf3j25wbse0duuL2EkwntP15eX1+dUBpydX56fnEDefYolapB2/u34CKEXR9vNaj7FL8QQwklfNzQZru91+rHpid//T5acQvLFXUz2ABPrinH3SOh90ORMpsSxTqc/tCKJdE5kp2OdmYCA2FO6UMPyCtIL2xWlZ7Trbk/fOVZvPdO7XUnqdDrawFwOZ2o+TfVTgXscWezlo5gqwdK5gAhX7n+wki/LDt30rcD2JZuJo31ziAymf5LhqMEsIqwgByiw1FfYPhfFmpzY84RLCjdboHaGzCvWLwjlAnY9hR1WQfh8cFVX5VVZIQPG2IPFB9wjh68nmorEqq1nn9+///wroe3rly9+/vnFi5evXr54+ebFm/cf3xMmv/zLq/cEwB/+9vHL53/+85kZhI4kh1PMJMORZ+gAYYsgBK7GcDSDLZUD00bEfdPLdDEdT8euCRETzDAMi5d8vG9SAkQPeCMcOedxizDuayQEz02kWI2DJiIrw8V5+PCUcoNavAiNUIJzCvBK6oFCP7ykcGLxmwVCx02TNLbAqJyOmTQdzunkXoI9VjEshxgT6xAlvntqELHDe41uoHqtY89XI3tkDqRhtFkahWwfK+pR6GiIu5da1VajYU83t/ZwakX0Q2+2gR2O7Y4yXRKPDWyprdiuYwwDS5M7PUnIvkwijYv1ZoF/EE44WHPKnBeZj3PiouDEdEBzjPacoRivIFQZacrEm2dLyJ0mCIlkWy6rU4AuMd8wR6GrNXNlhSrcobKeDQ3X8dyhbakDO7Sakj/yjZ45bOq2VtX9cLkJZN3WbX80mS0msZcN3MAgNYtb3lR+RLz4PMKTDQ9Pt0BlDh44ujIb3vZke0Tf1GSy3lG5f3e2mcP0G6Z0Y5RipZLj+Ipq9pqKYMAEwAdMG4UJ7dcRBNfV4nlO7jEAcyrnUFURkWW02mDCuuMY+jBcKsYqGlbz+Up7QJeqkadnPcOuJHwKJHinN5XPFDEL6s8Isp1SqkPgsQgCz7TCbt1zZ8NBvtNRiO+n4sKP6W8MwAeZfDZbrRYUqiMW9VRDak6iiZ6oDEfj5bjd06kILe+Jqjux94C8SSFVyRVSDW8yKec6bTUKh4FHcO3Pz1bm+sXm6Pmz3XqzXW2W86UXjcOhG7nG1C91DClfpJLPIabaKJrahpeZYx0M/SjZVL6SS2U0S8sNBhPTtRab3dPv7zd33uSJ9eflarHdEd/cna7Ozp9KhblpLDc3Fzu3VWv3mmXMN6vNWqE9mAWRbvflkbeqjXbRam0s1pg+LJF9cHx6fdTZ2f5ubfu+ZfneUHEcTR9q/abUINrRGY/9IdIyCCTZmIEKNiydzJZbmPYvN8vl0Wa+3cxXHKpwfHKGTAW2yDil7+386u72/tl3P/35r3/56bvnP/zw7PEdI8TF2RnCFuAoCWONM6LxrCK+ub6GeeQxG2msJj6+pDHodoixYduVE/m4r7b/FST2+H+MqsR5kMGzg0klBnNZPkfTxHoKdI6IYV0K9TrhdibP0WdY5IRhIa9LQZ2P079RaeCsZa+gajVWFnGAXaHOdgXMplkcVmMKXa7wAhkr+oWrBiLwwJaFI1W1Br8L9Ah13XTDyXy1wwN0cXlJYPvtt/dPn//4w/c//PDjD999H79891yosbixTfSXAPv+/ttn9/jzMfrU4MlYqrrB1jIh74VI7j0/4d1mWGGfnhDkIuUCgRZsarLbwU+MHcM2SL2glzmqIDp96C90R0+x5ht4rmVpiqwog34H6yjZlFA7Jg9/Z8uxDOshs1VsBcTyH/Qz/0C31R/YrPMA6RblVKHWEkE3tVZR65ltyW+2dktroNXLLTp+W/l8t1wLzMCvJ3IlqI7R0cDOag66aPbjIAAuIMYI3FZ0vqlURXQVu2hgDbmQFburpSKUuBhKFkQMA69eINuQ3TlY1sU5vil0rrlZWizGG9diDalQKRGIZ7krB5VZKilU2EJyxWFNwscM76QPEtow7FTXm61GtdJ0vv/t48ffiOP+8ubVy5cvX/388+u3r1/+/OLtR0QBv3n15xfvP7z/9OnLp89fPv/7h2PTkBp9f0Y0ZjZbEQt2/SCMltOAOEDo2lQYU7kuEyFRcAXZltn3V7vTdWDBBBT7R5pFXJmevW8qJU5YTItVZxg8cWTcYTypi7EzyUURntMDQXIP4h4HP5+cp4Z/dHAYNzoe+stf+9KpePCXyBwimFNA9wNHZg84bmk9NBqprsuk6LMdHgjTznTsN5NKph905awZLJazZckf+65ndPvD8XY1zKarcn9gEgFQJTr4LWXQ6jU6UXS51Wxv5I29yfFSN0aO0nW2K6JOnqcP1EHf0qxwqCi9rqTqGmzYqCCeLef0Nngfs2xNpEpg3TVkrIMuc4bQXcRdIA+D54FEkZcrTsdYLAHVy9U8mhJ/mIZaM0/fcrrYIcDtpTJtXVeJbl5Oh0MfOVaupWphZEsdbbyZGY7U6tuVet+051tf0hzD8YPJbDZy2Fk9CEKXiXAQIkZoHIjGB/7qwXh97NuVjFDL0LVXc45OFotwPJ+srp98+/hqO53M19sFlQtE0W0Cn2oliKy+Qo+JYmgmANhK8TPyYCAVV1xCmydITZJb0HTJ54sVW1ZgDi4Vmo7jGabrEq32oqp54Uj9GsGKrCq+XUpn8sU4zZWTLZgBF7PlQjGT6M0nwdotV6ShOVjQgzsc2tX+UaddrRe6HdXQBweiAfNVTHW4h1QjLo0zvfE4WjQyzUErms2oFDkcnc3det+mZ6bGEAkAjuc/POE8TBFvPmyEi3k526zLkWdOApuet9Njb/DtB+v2xfXm6HwdUf0194PRfObYI99cdhtur1pqUXlWbrTkhqGuqErcgxUpvqO9dDGXzOSSuZRqq5lePeyOx+5az1XW3069s938h2i9OjkjJDs6WZ2fPx2kpl6wHs9HElFl+mn9eej6VKPl9YY3CvIdJQzby83aHy+X5m4bIad7td0RUF4ctY7d8GyDBojvuU5kWq4sqb2G05dN2XdD3+j3VUOzddezXS8MfHainU/GsxVsa8e7zYwAeHd6souPejg2H+3Or64vjndnl6eXNzd30CzdPX727AlRtcuL6+sL7C8jLmm32ywJu9er7Qr0majx9vj0eLM9ubp5JBaD4AhJtPHbZ98+xaQVSuXby1OC7uUUuSdab0A1c4GYDvqpLJLZP9xndxnwtYN9CMNwmgi+lExiSzaNAzybz8QdMvZQiM9VokMFHAq/W8FlCyILlPNAq1XxR62OXASEC4m3setQbFAgPHhBgxqwjBDN7cpDulq5kBXJ7fwJIOOut1qNtoTQXcLlFT2Cp+c3t48fiS729z/98AOg+Yfvf/zh2bPvvmdtNIRaTx8/vn9yc/MIE+UbLEpdnLPr5hlCFE6pLDs7Xi2PTnbHGzbRJgA+p0dtx9mOp3AiEV7b2+0xYHt3tFxtGJNX3JMjQKaif44MWvEygc2gM9RkQ+7QD1jmUgMOGHvxFsX/+fKHP6Av9YeDQ8R2ooeRKqBWadGP2qm3C7o0HPTMQcuJ6LJqZQqVGiFsK53qKq4zldL5UibPa2q8BgzP61IODzP0tmL7qFDi2OAMW1ezpQb+BQC4IFodObG/hgF/AfFFVGbly2WkNBfRfM8CjdlzMgNpF7xC0HymX+wlD+1FFmmFuVRWiNK4zy02rfF7Oif6XmD4DzNz4vuFMropdAmUClX7x3//2+fPyP395e0vv/7664u/vH739q9//Ovr9x9/ff3q1dufX3349PHz54+fv/z29m//7Ynru/pAhwzYNP3ANm3iweF8iV2k6WyxXp0R4xlZ1si1DcPyfUe2HUPpd3uq3OsNBr2ObDg40CffDDlDFuJiqQ/rxS7aOZXSV7NsftwwQEcnj+4NgDQ7EQlw5sBpVtLFJZXYaBKz4oeBf0IYNsUZYYkHNe1DR5OptBglc/gYm+fjATpkqeYhB4PFVk8PJGyPFSL48l06h3xLr/ZVd73x+ulEtt6QHdPWOm36mTRD7rY6Wrg5G+qh544C/2iuyLqm9mQTw6DFaub2O4raUGzbDqy+hOndQNZ0B66Ns2DQQvhus813arPdacEUG4YCA1nV4sz6oUWoLMKbwhDGfJwmxX5k0WyyWE3mo+1iMnVaGWxb56qKLVdLPcNSWlJvd+RqbjRCiAUx4fHY6XWtzVGgm/1yU2lWOz1jszGwamI5YTQDzcUqFCbMyKWCCDt8gGTOiww5134S6PVitohsr0Kh3LaXm8VyMZmd0eF4ezyP5nTXgruPJ/NZ6CyDruq7iq06TkvyjKE/XS/1NGdKpNizWbBelMsY/R6ImgtyL5Y8FrItTTUd4qzNTL0nh1T7IA3asuvW0rS8br4gqZLqqGXkxHCnib1ZIbPBgijMF7PZ7tid7uxkruYN3HEUWVO/V3XDrjSoFboN4tP9/WQiht8YhqFGQUOhkMurUTBeVHLtXi9chPp0nknYk6jeMBb+tLQXF4pJkQKR2EfDBvdkJtcPxuNiWmpIU2th2Jtvf/zX//e/JPd/nQZ//OlsdnqyjI5200BylcmCoJQe6GFH6RfK3b4elttjQ554YX4vSQfXH9h59CBTLmEt8bAia2qlZ0T9O+vadtRU6uZbp7penwVrOlVvLk/OTo9Ozp5YmVXgbRbThqQVGnRhNeu9ZkerpRtGta01k/tlTWnbUuBORuFiNx/N1usR4d7ZbnO+7Bxb/uluZFMdOIyoqBwFLMcf6tJkQgxYaqmOrnLyjQdtt8fTqEk0mkZTaLEWnF+KCJf5mhjtMQEx0BhKpevrq5vH19ePnz599iNh77Ofvr/ZYoMWmb/bNeB2sdquMYvZbJbxFIZN/+kgmU1GIyg+sT8fzVYw3ESuwgUSFMAHIRX+4Y9//vnnFy9fvX795s2//enHH79/Tozx0fXpdhGNbMc2pE63h/M3lxJJChBpHx7Q44sDBpowuvxAntEYAzCnHnwI4TGX5Ulzlg0H00INxl4SaQ7QEQ7OJWK4ILqlfK5WAUsv5WsCf6uQ86E9CZEjBoYAcOA0+ysSOmCPElYHVXTiCDrYkxj9UAAPselqnbMQFHPowkx+utqC1GLK/OTZDz/96U9//OMff/qRcBkTYQLju0c3T64eX96y2cjF2fnl2c3FJeTxx4THR6vlKooW291mhdgpetTXq/mCEJdKJkLl4+PtliPcOXtqOUPbbT5H8A7d00yM6Vjj/AViZ+wIMQk54gaBwHRkqcpAVvq9XrvBPXr05VLsbvN78ON+IpMtVlttfjBqfUXWWg3TqFe3K1NrF/K1SpZtYCvd4XAyTVepSKnG7s6gt3iMi7limYgxPLjpoSqWWKGXEskMeT4CipzmgqhlAhvMZqE/LOfQuC4JCxj4TuS5tVHMxwIhEGPAfIbnw/TJSkg6LGQeluQehETs6gX0ymfjDbtsKpEV+mtkWBzACSWTLYF6V6qtZrk6/NM/Pn3+9OsbAl/4Ub7+9cOHX169+Pnjh/e/sirr/YcPn758+fT3v3/+9F/++693UeBZmjYc6sLqcQADfB4P0H0ZEvnabZHtO7Imq9MLKq02S7pBApvYIL90e7LheuPFLPyG45ImY6xfg955FhLYofnu4+M6HVEhNhowg66UShW0CPCzscgiwz2htMDaQ95cIe58GE+PmfKyZEtosbj7d3j4n4U9MTrzSJGJ1iHbBnJvOvHVTTkVryhmMnEkoGiJ8qAjpwYOnT3tlmoFy5leSRJcVwe2RaxJ1onKmqbc6jmL7cowCK9GrrOYEGgqHGBvjTaXpwt76Ov1iqTbfmBK9MjouiLT+1xkKY/0bqvba3d66Ha34FkGa2jEHDbjB6bNCXk9pFQMZHpRRKLUELlRLrFld+KP/CAKJ2PEKyUy6UK1L7drPUU2h93W5MIzzYD4F1KhTCd0dQLDWairllGvtFrdQW8U+TKV230GYLBt7mnTK2E4FnIwXoGC/ktYg4xDzx+HQ61H31QH4/K+FixXs9lmd3H/5OpkgQW1JWK9F+DAY9e1J4rdloeePXY7gyG463Khsr7mMA5ZS4qZBC+mPQjzWKmBa5wAWFdNy3Dsar7aMAPDgKcoMqj8oTTatLL5jiTpjl5OcbeIW0jCSUm0/0qVSjbTmzr+zKPbSpUNgrthWE3ai3R9rCn5bsvUzcF+6kHmF0v+DjieDWnLBMDhZFHJ0hM1WoxMJ2rlWsqs29JWs2Vh7yEo7qukH+7VMDPIEgBPyhmp1Q+tmen98OXf/9///WPnu98mq3f/drY9nS6OrlZyp9aTNSNauJYfWnQ1lco5S9LDqV7N6took8hlDuGWR88rtERpKvSJkBMJlfz+4sKOzJvldbX73XHn6Z/PwjWRxZsrIjZHJ6ePh4XdyJuF45aqEWoTnBAXKGarrSo97WU8PpVGQS+1u3boTXer0WS1C8bbk93m7HLVObH8k21YTVA534ACDLEp/YFuy8FMn04c0x1hx12sp09DKjLnOKPncKyNhJAB/Uuk1lFZBiK73R2tjwmBYd+IeeWzn/7tL99//+Mf//T93dn15fmOXUDogsE/WvGv9Woj4o3WxzykXC/BxDCGQTBtNF1uxSWJCUxsC8RjnNkc7A4tbyKNT5//8BN9pRdv3n3+29//9V//4z/+23/77//zf/3P//iP//K3j0RE3r7665//7S/fffft46vdLNTkZj6F+D+saQgvhq9TTzHvhEfpvgjfoCstIQr+OM4seZCNoXqft3kKxMBhLoQOJ5o4dA5XkfBZq9HJX61SRYTXq7VqHO5Z4dDPCrymQJGreA9b8BJ9AtPjfjdzwCybecLNkf8oQTDa6/clnK2QPS6WayrAzs6p1rm6u+aR8dXp0WZzckuYfHnHDWoIBY533C+5PD2j+odg+ZS9s+lpYLyFkft8xqUQgS8Sd6ZTNKZxlmNUhtcw+Ednjn7HIS+yaSbCOoht9tl+3+WAdl2lQ0+Fmx8CVxrsfV9vIXOdeHBbVgeq3NGsTmdOz/XUUlRNkbqEzG1zOtrsmolCKVOMAyDyIiuFhVRUS6HNn4+hM5N6SEAoAEGFBKvAH4fVGFbu5YVhR0GYbRMNF5kN+YeQI5DfPHs9CxE1hsXEhNMihpB9KXhYnOdEJk5ai8s0+GLlHkIo03QMpLLwbKtQ8dvE0MT86R+ff/vynl5+efmXP//lLy+xBPzyFSHvx48f3739lfjvp99+++3NP/7Hf//H28fzLYGnoeqaCx8J09AQ3agaHGlAxc5owRKiTeSMozmmv3TXLNbbdRQgUk5TqKJBysVqGX1zzAsOm40IEZ7N+UCHrseHvQv8IVUFuAJfZzhJdgHLbeET3IDNZ5V1D2UOQUbRkos7xCx6jHXfD8tZhNGH8ZKTyIVNCN1XfLoDvFNi4Mh5Qmnh4Jvk7XKe/qQORdObl0F5sbs19IwBXQwdzQtHVj2JHZOmZrs6Uhb77Z7hGH1lvFl5mhV6wcidRLaiY++o3+3Io7Mn5wt3PBsUWwPZGdkKPFUVwu4BAfBoEi0iW+pKeGNXgr+wJMGvktMnILEjDMYSGacQifUgvEZvRig3woPoYJT0rkFYa3qO3sgkM0gn6VC5MECqTrd/u1N0dxR66EJahuXaug7XjsEw1LRuuW4EbjRUpIHlDizHn8yQbIXDjFA4GouYDXYgRehEJJ65EZK4w8B1kS2pafDaph9wNol2V7f31+sJE5b5arPA5Ho5dYeOGZlywUDet9mSDVn3p4uZAiu43588xr3/NMhnMcABx+jkigBgw9I8DToYKiF0LCN5oWHZ3f54ZdQqXQUMuYxyK81ua+gRFZifl8qQrKbT3enYm8y7hWxfMxYzbzRJ//9cvfmTZOl1HTboWnLf98yXL/Pta758ue9ZlbX1OktPA5gFM9P7Mt09GzgECJAEKAZ3UjYpWqJkylbQFC1SliXTpn6QwhEORzjsf8v33O9lA1I2plBdXV1dlfned+6599xzYoOwnkpajUy7aetGh+cYEQDDyx1WYDG4HdI91h2Ek1kl05SkYOzP+tPQceyl1pQIepJvOi3XhHdfQkhNkonDuNQLiQG3Jbnnj8zRp5/ffWeltZ584L375T24JK7Gk9FkPe6osuYFIWo3q6UV841mx8h33Wzcchf0UxSSVNxj1wJ28PFMLp6Om4O2VrPN65q6u/tOS/fzu199fr7dhXTInt+4OjvfbU9Pb5q53XQw9fsttXsUZ35OxC6WKWeLxWrigPAhmUvQy2FPPHe4XQ/C2WroTk+Xqx0B8InlbRZuOxk/TBSwYcFBADBVqpq1ooVk0GAQejCOQ622WIm0wNXpdrvbnKxESOBmBSJFH19u2R9zs94yY7s8u3nn5q2737v3wUcff/TB3bdv3byJ5dXNyelqhpzfFQAbIYC/JEPkd6K4wQUGMOPxjKgZZpYLiLdYH8HIPcVSfFQt7mtGxHKPWb6IrPnN+cWNd7//8af3X77+6ld+7We/8wd/8Zd/9Xf//n/79//u//iHv/9f/vX/+M//6W/+2jcvH3107/3rl2fb5XTYp4NPblaLOQ4LjMf+697qNR5pYQgRPbJsZo1uKIIAWIYdiYapoqQrGkNMfJQj3bOCooGFsa6LDrtsUaiweWcKYFyGbLtarlfLCBcs4jRgiZcQ/eTZzBMCI5hU5BH1Q/ywzEGiDaJDsqKZkOME3mS2nI2XixMMm88uOHwCG1CX1xmTL5ACiVdud8Kx0ghS5lzILS5VPPU8yj/ZjsZTFEMT7kuPENTosVMfxJoBO/rhBRBO0YiRw8gq6HkOITL8dukzEONqWyZ4GJ38Eh15SleSlLpstCR9HI6mo6A3mHEC/Xh5utndXCYKhUREbJMpkQVF4MY2HNxUjvaSWMLMNs/0J4koM1jEFPKaEQMI/KJTIuoxK/KXo/CFKJUhK7xQI5sP4E2eAJhHYZAEwrGRyW9kH51iixNkEMKKOx35RNMZdHwNJL+QLVSxT9OslY3vffX6y9dPnz97/uQ+AfCnCGEgOkwATMT4xdPnr16/fP3DH37z6z99/f7cNXRiOgO/Nxxx1L2pq67eVRDi7lsOJCwhDBvpU/rw5QiCcIxDd72aDnwfbQisiwzH2Ax8ax1N92dI5p6Nh3y3jHnrhglVD3+B6JnhOIgfFL7N0QP0u9tF85qwqS2AmfeDqIAqFiE3E537tMiC3O+Ms3vam93MqA39X+w9gQFHng8MxmnEV7AIXSw0QS8ghtExyTTkVr1UklU/tOoZKFGrmqG5tu8orXJFsh1LtYfToar5IVWg3qyndAxCM8Xo1Nqj88sJPUFGrWF0ZbunNDvdDpFmo9PRiAGPxouJK1UrvKeIREN2sobpORWL3SibUeJeQVsW8SPiCRBRfmK/rNIsEdya0BinE4VGw1cbsqM1ahXF60rDWz0i7oEPbbqLBVrP8eHRbfqjXqjmmqPlMFRVgyDAsJzeYDKf8smF7vYUBS6WosT6k9iGorf0cvd6nss5kYamceQUFR796RlRmXnYo8KMTsQFGDABzMgNNTv062XH9wb9drlrKUYwnk7U+LWjqP9w/AtXHZbbio8cAjFEWy/TMOkQ0V2VSmZl7OoGVRK9wNFco9G2wkW30jE0KoNywsBWrDtEUiye0GQIbZrhOBwu1VK23TVng17gJjpL180fW818p+VQucRbvMfcF4++AUJisYOQkfuD6bSSabSkYOSNAjp8lpPltKcT30i8MecT609iFZCD2BMNrxdmj4mehH1HWTz+1Rfv+63JD1fjJw8vZpv1ZHX+7ttXl9ul1zVVdRK6/V6/oZcKOUl3K3BmdIIwfsBGCYdQehCH5WZeLO3LiXq7Yt6qee/dt1PxKzsRfjc3ORltlgzACLc/vWllTxfz7SCUVDWR4aegkEyUM1m9lkUAAE6qw5YWbJZGb7ZZDekHXPeG29UJ0fLWie1v5k7o2JlMPl5CDgharVTb5rqVOHZ0wcaZCQgXd1TJFey5K7qiQ8SAacVoQjR2QYXYktN5GX9Pz4gF334bbk/v3IQvBfEzeHdBjnu6Qacapz/QWrBfgCxgE6c/kWk0VfAhOkHmc3AyHCVQTy+w4sS7AlOxUsBUGoEg4usQZs+ZVK/nU+7IDeDlDnGR33O8/gh/6eTyne999INPP+Nompevv/jmmx/+8Fe+/fbb3/iNX//pT3/ykx//2o9++OXLpw8+vf+D7717+/r56XwS+rbRlcrFbDJ2IOwg9w+o1o94m/zwWkz4CB3lsyJkguE6GS0x08UulCdgbpDd0hNNWJwtFPOcFVeMEmtgT4A58pt9F0QNgZoU8uIkqNWEXQQdThgws7l2upguQkSWxjJbLlUsVkqFWqWOLNF2V0PHGK8UorvRsdhAl0UvD8bBGAvjf2tOelyjeNotUGRhRr+EyTaebyHaGrM0JTrVISLlbsSAzYUg1+QUJJgicjQdmmfYsBAEDD1r3zcVDfSrJXXqckk5iqVL5UK5KXVUKvCVrmOMzqooLwCiGaaaHPObBHay+JxNSNOiD5xECyzDQf99F1EAACAASURBVFFpMeUUc3t6D9tHhUKW05oEg84KW5CopRxpoqNGA28+cXGULmJokcdYC9KsDGu20F5m4VekHkqnOQsDg8wIgGPY2s+XCtlyHY5Qlar5/a+//PrVo2dPnz5GFPCjx9gHpkvt8xeIAn7x8vWrz7/89usn9+6cjjw3HCOn3g+GoScCda2eZTqWorLFVc+yfSqBTZ1wBgUQQaiN7D76bANBNZj4Gr0RhgqLt2Zcms5n9EIvV4vpZMUl6xxL+zzEHHHOH70kYeiLoEAHQfc2lLtMvy1kASOAEPlGeGgGpgxtpOzKCI9tcr4wxgllYUiKHn9GuIdnM/t9/TdL4fvZMMaMIuPvmH2o94uE9HthmolHPNPVO1iTq3Q6/qCbz9ekRq3raTJahq1SqWWPegRnVIlIOryjQ6/XaSgEyoYVWPXOeOGrWt+tSL7dbFme3OgoCgBY6WimSwA8G1olthDhzhIXdOXoAfILmWAt2ooSVQhSGblRIP5DF7/VqMlyENrdWqkqG86yb/gTv5YtGT3dvZxqdi8MfHZOQMMBkX7hdOi4g7N+peSuJv6AqgVZNlUTKYbzsShghTkIEeFQ5D8ThRhFMm1Usa4u1WWEXrRlFU7smqabk93ZnG47wrkR1dqrNd2SyKwcTOtdAvlGQzOGvUZJtlWTmPZYTUaGLHt/2eMDIcQ6PBYvCgLO48I7MNuydMuxbK1VU4KeQ6WCSZdby+6bcqsz2bQykt7pOnrmGnc2xAT5OPLTjCfpNqWrQWI/0Va+0JT9eTB0u7VFxgoTk2mxIDdsy1WOuZvIlpi85pbArAKsIplJSwTAk0Ky0mwP5qE92KwWxPUud5PxYJa6tvfx4hnXEZPnY/Sgk/EyXRfZ41pTHodSa7Fdn2xC9fZj5frrO6sFQGaz0bI1a7OBDi8ceP3eUNILOXSDStW63DF8u5qvQT6SLceT2Vo8nstS+ZfMqqnjci/p3Eou718mc9Xth1vjqhQuJieL0/OrSyIuJ7vTW07udL44HYWSYWbysDHIFOIHqUx9WoI9Z/wI05aUGpwGymi9WoyJzJ+MZ9vFZnt9Ke3c4GTRc51x6eAwneNls1Tq8CARO4A1P2pddhpkh9xkJFpMQc4YT8YSh2xCiVOJg0hzuHyxzbd3YbcI8QIvGGH7DowUSmkkAxLGYjnmDB9CiMKSYXTG6EqoCWwF5AJ5JwTFY4JhXgfA2hOBs8AAEY3E7e85vjw9GHfX282c/j3MNLf0ICq3FX+82fAyDg6o6Rix4FRw0hcccWub/jl2B2Nvi7v3Pvj0EZ2XX3355de/+pNf//Xf/q2f/eznP//Zb/7aj7/94ddffP780YNPP3z/7ZvXz06WM+hUFVlqEObGIpfGCJhF6KXIV4DgBV7N0PHmcrCTIqgsYocDJodptqKAdQSxWgyDQcuweMyj4yJ3BUslTupg8RaLvOg/tMr4UctXsuV8sckxcuViuQ5DfYwg2IuolBMWkaVimQMga016jRRV1XoBjAUm9CxjFLDeQgy3WvNTtsE1i1k9nlV6fheoeLDExMJp1qQMR/x2EHhsbT8cT4R/3wBptSF7/PUYkeHwB/pFv1xkHDo6HPPlbCWFVs2RUP6w5ucoI1dTyTzT3azQMOeI5GOlN5MvZPmcFwAKEvUGgIW7WUakDvJICvG9eaRmsiqaW9hRJOHe2UPEhQiAj1rTewAuiCynjID7bL4EgQjHfgsRUwrqLAxORdgSgCSTS2eLxVy5Voe3U9n4PlV0Xzx+8ezpo4cPHz15xBj89Nnnn7948vDRs5evvnj16uuvPz5py4rlIZvAtglaew5Yjm7Sbwh0XcPwDB+BBX2oYj2QVSJX9DsXGl466W1V05DiLLVkoz9d0r301mS24CYRlmlY2SheuyWv1Yz5VUP6AJ3dffHS9AjRETvAvsyO7XuMx7bDIdEWUn6pIDCEQAmQrMExQlF0NDSQzLGnzAjgRXQQ2GKlHOkOiwWevkOWDaoci/GWOJ7LDNefVMDw1hOgADqseFFTG1SK5kty2w+a+aZGcKz6ptnv941mo+PN1gPLQjndNnn44VnlXANjXitwWrJnlustS607o3ZF7g0w3FC7imFoiqrbuM5DPR87ZPu2eAKcHAuXwlsU342o90QzivtSZcyE69U6Igtb3KnuIBjP7AwGdqWo2KraXxAsLJxSqm72BusbhuXBAT0g2PL6fY+KI3hXeoo93bRy6ijwhwGVN11FbzMAz0KTT0lO5zYxcMAYp8c+1eyW6XNUo97IQoVYYtUn54FVGv3VaoSIOshk5kRaqMgaDZfbhVHtnjpOOdtSRz250bZVwwvHYzXBMHnt8L9iwHtnSuEsi5+filzJpmPbsbVOSw81yMUgDSTY1K1OJ+znYw21rXgqAXBcNDd45C9cWjD4TNON1u554+Gwnq+0Wt6sN+tpnh8rDsNJXsq367bta+JZF17FvJEfw+ZKGo46aTkcjCfFFAFwOAtmm4sb9Li+Xk/n4SL7ne8ciiP26OA71w6Prn3nkK4bNm+KUQk0zMdqsjnv1+XJ/OZH21bzsw87n704W4JaXL9xMfOVbONs3jUUddrrBwNNpRPY0mU9kK1Q84PJeBXO+pP+oGVM7MyBcO1JddPJmJ2a34zf+5F1nJFX79/qnJ5MRuPT+cnu4hKJAGdnt73SKQFq2JN0M1vgfIN8MR2rOl4OOzdJkLJcrG5PHWNxslhQqbScDlab0fT0ct48cfzN1LWsvlyulSMX53gWZX2CqhliAYUMsxHxJiOYcD4DV0GkHvH5BatCFi9FDt/p/dwoGU9kiT4UcJoRfc5LTVY4dDsaIme9/gCSK3TTlgJKIaRGJ/QEomqEXK7mq+0pYSbGwhAH8XYeptCAYubBc6gP0MeGlAG/m4pfBLnLpcB3KoGwB7vdbLF+JaKET3a73fnV6fnlBaak1y8vTrfrDaTZG259T2fcdF3MeUNwPJ7OVtuz84u333kP7fSPP/n04dPPX3/19Y9//Gu/8Vu/8zu/88d/9Ed//Hu///u/94d/9Pu/9ZNvv3jx5MEPvvv25XbhOUanUURe7H/peHGAOfPBYZSiCR+EIyzUpA8OYdTJKluoszOxyJmZzb+APBzVSIQjJ4Iei/xAU6JAv4pljn6ks69aQ+JcOUPIzdmwvMGKMTTAgXXZJV6kSovkxxIvMbfaMlMgOnShxUQQDxc+BMJb7IytlqvIpwAnPMLkQnYVGg1EtAws6zlbPegPoSoJw8hyF6kyjMM95MOGxJNdV61VW6WyXU/nEFebSnIOAkc3EZkXsZbZXLGUZyeNAuMnoS8v3ebAaAHAqaywjE5n2LcD0cQFdiDOiayObIoBGBtFb3rNGeEvvXdq2uusIghP8yoE0mAFk+YOdrZQSkUBw6zNApak4BCTTB0zKcZlTz8D3SGFMlywq5WCcu+rL7/5AilIDyATJBB+DABGF/rx4+cvX37xxRffvDhrUQkT9ujYtYgSOUHfQxdY0fk8tgxVd4yg7zjheOD3MAQk1CWmilKGl1MCU+ky+EntRscezDenZ2+hPMXtwQNgYr6gv1y5TsVMn6gW8SwgMJ/vaGgTFoe8zURvwIOZCyPP1zLZiR9+EIYwnQYrhuWHpomWqMqojEQIAc14aJyzC1iGjKnZhodJU5Ql7BeLS68ULVDnsvAhzcSPYyKINdtQpCIG96VGJ/DqDUNtlGqaSxDie6rsjBbr+dD1RrOhrfoYbfuBXkiXWqqh6Kbe7WrtclNRu2Zo12vOZBzYGr4nuHWqmtXrh5OBlWePETFgQsUHn2UO3j06OIpssIVFY/RJeLnTnEnBztcl4vtNXbUtKV9QrG7XwThsqhXSVbM/O5kaiHMYDWE33BsMerZpTWdjvyu7M7tcD/qmN7Y8R+1oBvwrw8nEk0WfXxImJJ0OEXYFoxrUODyzUTtyt5Xfb2qhbYZ30nl/Og2H8PUSGtgFBsCTzXZcatpL3aoQOQ9NWW5Ziu4NZ1OVRW5H1w5ZHHe4tynF/PWQ0ffo8DuHcVFjZsCAqUZudy3LVW2qCxzblNt61/M7akdKp5td7FExAz5kHyWRpoinMo68sFwq1er3pqOpVKhLje7QHfiaFeY762G9XM/LTcdylFhkOB6L8nfhQnyUpBuT/tcdD8bTaqbelPpDhyjU6cXVbjLqBYTGOSGh3ZMcbjp+5xpL+eN1pz/MJxqaP3UaVLkuzrza5mtv9PmHJyxsuTw7ffuTm420tQp1SeakT7+TLikNU8uafdftuoOAboexbpt+rmZTpcYc/TjuNHOJRmo+rT7/Mnucr9778KRp3LrhDk+m2x1T4N05APhkPD8J/JZiFhv1RluqS7rWdUKzlEgeHtCPeHCQPko7ltEjpFoO/dnSDyGlO4ERh+UtR/B0609njWypUsCRl0sdoSASDlP7PiCzYaEPzaXBSDKi74TjCqcexwgigzjDRC0vgn1ZRRMt+8FohfNY2Ww/BUbBOzlFNtAlDKB7VsXNHlmy9saTqI4X3dEN96zpDf+e/iPIpvoGWmpcias12tWQ+oIW4z8Mi1fbDVzL0aRGe/UERiBrMPDNYrE9JajfrhaQchFIn58hinB3DrH27jTan0XYET1g8LUCC5xFBjoQaePCJ8K9vrx8+7sffPb02Te/+tOf/e6f/Nk/+cu//Jf/6q/++q//+t/87d/+3d/+m7/51//yL/7sj3/3Zz/+4ePPPrx75/JkFfbdbqNaKqS4exI7Pt4Ds8hE2Qf4xiIP5n34DjcicJ8gdY/V2GwnAS+JDD23uQxAFU85QXG+mC+lUSahw4asCuxKIZ0dD9AUEOpCpVrOs7d2tG4FnMPvs8JgRERg4KVptRXDdpAiB9u+CQQkEERzp4xLFLQRRgOOdwvDHluEDcUuBb2YnshcBQD7gWfBKpeOh3a9mWXLScSJIQg6rShlor8VuFnl8xB1AIiJy2YFhY3iHvJ5ns2iNc2pxgTGmOpyf4B+FDrYy4UsmxEXBIVO5SItlpBwpSNpFV/QLKTO8AYEYy++aiSBxjeGdOUsX+i8ic6qeKorqSxGzbBPkzqOpRm56UmusaOJ+v7Lz1+/fHz/s4eP2Qz6MS8jIRpY6LC+JHx+sa3IFsFeb4DUsR6BmEK3KBLQXbismQYvqwzoOKLaMvSgm+3Tk4jAPEzMJwNHZTZKRK/T1f3x6vT8rRn3J2YLoC8VSUMqUOl2mI3E1ICHi+h3DieIGIacN/AjB2QM7LGMSi8VVsGJAaMSc0Teg8GjYvo/ZsFAXY1dqDk9F7s70SBZ9K0JgoHUSCuGPZdGHNTUoLXrdOAMidCXDoav7WZdgngBjRlcpPma3qykk3R21OvG0Gnq/U6p1La82aLnWl1tenayIubSn20GshPSUxD0hp0ckT3LbGuKZpmI8fU1ZdRrStJg1vfBNXUk2lItY/n9wWzq546OwMI5TlZkU+w9fJC/m0Dde4is+GuH+7CCw4PjePxwv3QVSxy3FEtt50uVapPI9WpKt4CWT2bN4WRhYmuIvjFOfBj0kSoxmgwdw/Y8tWmE9NIZxmSktWRVYwAe23RUtxq4uTjuGs0p2HLW6zUEmtCRWGsi4gJ3d1KEFqX4QEgXwtk4nK7mo/FULBDS6z6ZbeZuWbY111UUw/HbUqdhK0ZvvFqovPUjAFgk8OKU+U7kboRGHYwSoizppqWbju7WOyPXsCz6QsSGGy3d23gVtVbMVtpYTLVzBMB0Tgk3FjQVoHeHhqpQSKbaE3/Un8m5ct3Ul8MwtFq2sT0+1rRsSZU9w2hjWRTz50OeTlzDFO/atWQ2cUyUTpsORvNqukYAPHKt9XYymM2sbeAvgknuOwcRYf+O+AGOQYKJOhPRawcQYdV0v9+tWx3DM/XazW9al0/PN8vJcnl+dXZ+fvXuzXrK3Vmqro6pCh3J6UqNyjbXyrUVJRhVqHLwqh1nVU4X0xx5hpubChm9llg35E8+Tsby9bN37627y1t6nwD49Pz6FbLwCICzm9n6PPSlrttUu3JXbqmtduCrXhMxs7F4IX1MZ/FEc6eL8Xwb2gTAdDsSwtxaSzu3tx7TbegNh5N6Il8GhCaRP8nZiJhv8SXK6TiJCAASRJ1SUIuJhjQdShm0TkHM6B3AawoWQwS4eViIF+BQACvdHOcdZ9PJcp7ZRzYpRn1pfGUcjSmeNqfZQ79SJf6DJPZqXWrJ2KC3YH7rsQphOGGyy7NfornnZ7zhCvQkDrtZE0hjHflkA1yl+5YoL1G4DeRf2EA+3SEMarvhJZzN6e5kRW9OITs6Be6eYmeWl2dP8CXp/+m55thBSIrRREcQIYKDd1tsPxNpns2ngkg4poX5DzpMi/X67Or2+x9++uDR19/8yk9+8+e/+dPf+Uc//63f/r0/+IM/+W/+8R/+/h/+0R/+yZ/86Z//6R/83h/89EdfPX/48b13b50tp0NP69bLWXriD3+JNR/tXSKF1AWXfVJ0b3BvphKZRA7epSLXMx0XkIaNS1hUIOU+w47YFUKHsjDeRHebCq5SgYd4GWyxEjxn6Smv8PYyrBZhVwRcK7HBAzOBYiTkrtabdKHx+qTFo1+iUiweQfIqEIPeoBs9gnoPU0ciej79QgvacyzT8SVbquTphuV5aiqeIAisFZLFTDyPlUSOk8+ls6VSNlviKB7OmY4YLC4sOiw5yhe7QWzkTt8+oJoobzGD2B6uCvFjF/LsVsU506KLE82LIwDOCrssHD8i3BJdCIST4cvRP5yI1pC4bsTVncjALz+W4GBgCPCOk/QvZRL0BNdRWDXt7716/urV04ePnr34/PmTh084hvDxo5fPHhH/ff3q1ddfvv7m9c1uSyVQ8/u90XAcqIRMTB7pgRHnEOE7k83ZGRzMTuFmdoL2EJbnMXJZb5ejHk9psSZj6E443xIDRnG4gLpnDAieCi0jdv6mELdP+iiSRNwPqiN0JYb0lrAYpkwelnDp9XG9HnJwUQHYlgg8BPoSvOLVAx5DKUYwIpA5IsgMz/hlGpZuaMyLwZ8xTkZFwdF2pmG7JjIkGNB1C5EL9NcVpdXpak4XgYdFXIOOr9lDt6GqXb0/DxWrUzfXy/7QGI3C+dw3Ag5r7Hu1YkWjr0ffsqYGoaV30MhvNgIewJpaV6PaxLbh0+n3x6upmYkdHiEfWchwOXXo6BfmXmKNKh6PrCpgNixihDAzZcnPNWLp3XaFDq5Cvq5p3klouT1TqpU74Xzk+JNxH80J4baFynSGdOehY9rNwXiw8JT+ZGw0upZqYO9zEqJJrqKM4oFzFwptLHBLbfS+MZNmg71aMY/tdVjuCnaeKvVG4Xgxmc8G691qulrPB4sZnTdzu2U31KnRCiyz0bHaMr0mvdFiqiX3duDX3qRgAYUPcaocHkdJCriVitmMpKuW67Sa3sSlCoNqF89slnXP9lVDatFR0exIumsiLABOOG8MeKiCOY7jgEhnU2oA7+1WudIxVGLqvuEOpm4zpXilkiSbittF/4+f7RibWR5xtBpLOlLJDqTg9WKrhfiFkJ7PIZ2t4XA8ns8yUaoMEfYDMQzGX46xGqMYhPPscV0Z9zMNtUsUvlv76fXm84+2k81mub04O7s4Pz2/eZKurobtJoyyRlM5k5Mko2u1Yy3V7YfHRxlp6PvNrhY7iOXyiKhJJXPV0OjUUkrJ//Be/Dgz2O2+eyY3lsZkFa5Pr65fXO625xe3ncL2ZHEyteuq4QYery70Bj2tS2BcSFdbbdNuh1fORu/Tvbua9eGmAaHw+uRiV77huNtxMAjGwfC0lSgVE5lqlaeGWTplsIxztBfPUal/EMWVcWo6mqVH6DKnEkfcv+BcUc7WSaTEvA2SlaibB8+/dDGTzpd4/RD9pxwnpwg4INwvF8CC6MzPo5HBLFnkhhPBSYo17USejlY6qIkMwfyxWqy3JZnKXEO3qYQgYtWHpn88H02x64T1mx3cwq4IRc/Qar48Z0J7eV04V5whwAAACxcLOFOdnMHC8WwHlKXXDMs66zXRZMzaAdzrk7OLsxP2+ToDAm/Oznc7+nsgyjvozs6EyxdMRjBsXi6Q7+t5rMiAs6+ItZkTy77x9t179z6+/+Lrb3/0sz/483/23//L/+lv/93/+vf/8J/+83/6T//5//z7//Bv/+ov/vHv/vaPv3ry6Uf3bu6Ws1HYsxWpUSbum6LbiIVgdPNEOrC9tzY3rrknKibzYtQCta5YvUwkhRopmeGeWlY01fAWK1JRECSHWnD4VD5bKmbR4aZXqZTP5PGWKygxWy3gXaEkpuqrWEXWBR4YMqiEDCZ+bDcY8LR4CKO9qBUNh3AT+5n1TkepQeUHd0m4XWEREbNZepFxN+YwEKfvNAkFFgFoildjCmUBjFn210A+dLZQoZ8lU+R136jdjAcroHNM7AtEsdAkRiWYKeJpTONiEhGGSb5GU/G4iF1CrxqUN1PgnW8ONYFhWjEdzZ7ZUZEuykPuUWB1IFssUIGQzSMNpFTIdj/60RevXj159uDRkwcPHj548OzZowePHn76+OGjT979/rNXP/z6ix/+6hd3qlLgdzRdw7SQcJRIo4YerlzTYKrv98LldLY5WS/Xyw2GMpstrmE0a3Ynux1dXqM+0Vjf1F1LVb3BZHX+Fvs2zZFMh+J0LlQSBOBC+DCdDUaiET1m6XrgD8B7qVx0owdBJDaQbR8AbJqOxfpb7JYx+dXAfjG3xFYQqK0ePYSM+pd/x1RYE9QZUi6TBV6uBVB3fvGA8ovfQbai20WYKGYOTdOUjcBRdUUPhoHRbbca+jCwfZ++/cXUd9DopaLBLDSVbtd0XVPVemNbavpBT6tW9b6tE+kl2m0RtFuWouhWj46FoZrmQE4RYxeLPK/f7JUe721F9qj8Zld2/zg4iKUrjXqBbqdMtqGr3tw3fV9tNqveNDA99HzoQWjBs3fMxyb0MVPzXG02Ced2NxgNjZbmaKZD5eq03+YONGbnbDDf6bRlTBXkDkRf7Q4sWlstqVkrwZw1eczTRLqd0+V2bzBbzRcQrmy260ngzSaz5XrhKIbkzbqNnmHTF6tInk4MeDHTOdaMhedRiEos6gCI1bDjA/rF5jYFBmDbdWWjp8uqiqvBM1t1xXF6hiW36NJudZqqZSSu8YZ3TLiUss0KvcnRPZLJpbRBMJlNW+VyWzdXQdhTpNmytS7J3WJBki3V6x7Ej0UgYbQAjkroGJIOuuFlSMHLuSYDMJYtJ4tJn1evBvSPCm9iISmL+t+QQx4nmuNwnEnWPVtr15q6rZm18Dd69rPv7xbcOyU+dbq7vHWnnTVHltryiC+NVTo5NE8uSVltqnXDLAFsPZc+LHfisQNgTyqRunacdwy1dCSX3Lu7eNo+3d25fndnXh9dXI4JBy6IWRMA3/ELq8VoOfHbVF66sMygYz6w6fprdVtlKqCKlXzTMYZqfwVXNarPUKBNZovV2Un50nJWw8GwRz/kopqulAkI8ziasqlj+rHY9B7GN2+cr+MiJlV4icWx7hRnm7mEyJOlz+C8FCFy49Zpiq2EWMCVxWAZvAEaG4Ja2PdB3MrErF7FpJKzgPf+jwXCB2zNVos5nlamqDLAni1oN3OYHOcMYhyXEzQOI88Spk08jKs16WKmc4IVJ/2ghwnxfLne7nbMl9FxJvi8fpPTfG/cuLkDOtODXR6xvHP98oJKJyxUwTTz/BTQS+h5IsRdu/XJjt6B4TJwXez4MIKDsGw36x0/mDlvWfDN9yUm1tzJnvHqDpXvcNuY0VG5Prv53vc+fvDki29+/PPf/ZM/++/+2z/9J//sX/yLf/pnf/Znf/7P/9Xf/O3f/cM//O//4d/+zf/wz//od3/2q68ef/Lheze2Y7fbqBWyyTcRr7/8iAmf9X10byoucrljwm4hdojRvYDmFNs95tihC/smvPGTL1SKrKrOCxoJHVgeIzyw4yIIc45FYkXxh3lWl2YzLF7Alj4kT8yYy9xck9poY+B8N3X2a5Ir9ZpUxQAXSE48u5SFWQa8rLJUSecz+7UrNlqOtqPFXrTQPKNDnUnDGYs+t8QjYLH0KyIIiyLLkv8mVRlYVWQTLGA6HCm5a8PrS3nG4QQ3u6OZMCA3G8mmCacJF5IJTl8SY4F9ZCMDMBHmPKYC9CywGXRRfe/Fw8/uP3j64PHTB5999smnDx89fPT8+eNHT58//OCjR88+/farTx789MuRqprE0xRFhei5a3h4WgzwRFXRta5iKrLi0OGznEKcSLfsaIaGz3qxWZ3AfJSO3L7b87zQd4IpHTGXb40mPB0Z8UiGdXMY2i9XC57bT2YhClRMC5Dwg3EB/O8cH5mjHi/PsEejbbE8GrhrvZn+vkFYFg6JHjPeZw63/xPxEV2nioJ1mGhLC42RCQQ2e5guu3Ddw1CCG974LZojPcd0OliOpyug2CLqCg8mA1m0jtopNTtUZpiEM8PpcugF4zEA2FHrmqtr/nDQl7thINXknheo+YbvBpZuI0TQdw3NMtkNOhyMeu1UXMQ/7R2R41Ebep9oFZ1rx4d7YnwEO9VDARLIF4lRqZVPx1OxRKahdN2p1bV9o90mZm5o/Ung4ufqTxanmxk2vxBX7FutztBxpn3XlyXH95WW7qim5fdHU7ca7brnha9Pmcc91UqtgTCkhtSocBhXpYgIznR6HygYT2ULzggztuFysT5dDSzN4nNt4diaPh83W71eoKtSse2ruj9ezk1e+0rw/JCNzhPxSOwTidGPuaCECCvDAOxZar9XrVLZBU8RXe4Ynt+3OQuj0OpA9ha/xhpoNJ65huEAy0QumS/nsklt1J/Mp61CkcqmbTgMpexmUQ2ONKdVaMmOTgCcirPH/JHIe2Ekhgqa7v6kjAu0mG20OuGk74dULE5GWNPr9Xz8o78AYNgcHnLIKuJuG4HjJuNyv28161pDls3ivR8Vl0/fDTEoTQAAIABJREFU263msIjabFarzdnFu7N0aTiwGtps4I30bL6uypWUqU6Wmj5NHBylU8dH1woybvg0p7EmMu2eY5RSw5r3+Hvx9NXJaHv37bPPvz+8uggJAS7PiAGf7W4HpfViSNRWUW16wfvE2+n70E2jK7XLcCMo5gpVe+hYp1Mh/w2wVgs36N22uXPcJQKnx+FoVksWSoVyBadprlhI06n+S+p1VotHmwWYl8DTHf1peiEOIykoH0dJUW2xvm3vXxd5WERLG8lsDA67yVRk9yjmyjhn+ewsFLLCcRkjyGIRKecl6GqIl0cBoyVWWKKxSJ+QY9EruzHnhJRVvAUtS6QzSZCcbKSygclUqYqhi8waEQIC23VcH8MxNAWY5gJuRYjEzeu3biPeCPGC16/fuHWLcJrI8sX5Dfr/S+LNV9evX5wxNrOo+5yw9+Lq6hzYjA/wl8PXO4fD9Sm64+zGjNHzFsKmcyLNdJLu1miIr1dz+tPllCerWLr1/Qn2Obe7y5u379z93qcPn337k9/903/xr/7m7/7u3/39f/zP/9f/8//9v//3f/yf//LP//j3fuMn33718sn9T969c+vilOgynZddmarrIlgi106RcEG0s4/ZQ5tekyhp4TjFrxq0kQKpxZYI1qS4EEzs3bCRWgoLJfhfY8oPTxHBlSH9ysIII18sZtGPpX8ZM34szQrnZLwweI/99KAzxdg2nymXsRECM4x8CRZiRZg+52EQliuwDFysD+Eyxo4AXx6Q9OUjMMYkA3MOOpQwA8mydjwC3oKwgmbg5tpCqBLyyCbGSIS+IozIIGnDBJjgGPRLLBTzpSma1dmcWFPK5XlAAsl6gp2juBvNmSBUwHC7HyUjWgj6O58///T7P3hOiPv44YPPPrn/8OGTz18+f/jixRPiw09efvHFt7/y45//+ooOO7mldqWuKteqkkYHs66oOqEyNE6m6/Gmrh2MsQMA1+7JKAynq81qTHi7XtBV4mhaV3X7wXCJxstbaLNA/AZsRaMZFzbb1kDmPxpN+kP2UMEmN371sdjkecEAfQnsQAn/LNcR61BoN5uMwYLvMvuFCmtPdZmyo4WqRQ+hxYJIS2NvRwZe2/F4ok1v+Ou6LgS/DPn0rzm8KU5VqG1aUgE6Q7qG6h08CVagE7m1A0cqSgYsdofLQThf9Gw6lgdBv+9oYBt95BB0tIFeadLX8bSGEvh0dI+WdCv1CYktgwDY8IJe35FwuaC1FjWE4vscTUS/iJhjQYY59plw90CMSZkxs/khjGthvES8q1yvG33HMOj5caYBFRew4ECja7TYLieBAwaOCbja6Axtu2fpREnp5ZRbutVFYTGaWPkjkagdj4ISOFovFakD6bJPZiLRAo9pkiwj5wI656O2Wo7Xp2crrEJ7vJC5cG2lt3VrWn86JO5fl00F2oC5mdpLORNilML4mxLefnx3IhYcN2qGAdjxNaev5auWq4nhg4eUCFvvtGuVgtRpKoaegHUGe4xG+2bIxUrgvs2kCYDD6Wxcz+VbVW1NZFBr9FqGkho4pXxTdk2/e5A4hvNo/HifzATLtSQvOqQ7WG4s5wiAB0RTR2M4DvRgheuHaZHnEX9jbC2eNfCHWNUPw2zKtUZjo9GWKpLW+Op+9s7jm2uqXrfLBTZj1qfbi6t2xpmacmc8dMdmOt/omlrD9E/aNXsV52Sv5FE6f0xPOL63o1jiWqJpueWk3xnc+riSXYwmt4L5/PZd9+w0ODm/uHV2ebbdndwKy9v19GTZ7+BWpOfKpgsfN0BX7bTanXazRXfIyaShnE4Wq9kg8D3oaOZUIJ+slW2vv5oMh+FkOFmoxzCih9tfBoPEBDRmh0fRvnOc59LipWM3G7SI46IFvW/i7JGWt284Kzkpcn0jQI7M3FNRwlnsjRA9apDGRb80LjZLhG41JVLiMjzgx5mdzZX2aUQ5BAcSQOeFX39OmPmUSmxvQdAMpSVEZcga5HhCkc5e5FleUiySwvOH/zE6p0si2Kje5BwVw3LpxYdFDfRfBJUXiPm9dfsOwgQ5pejy+nVOQ4Bq6wy6ajSyL862l/seNX8Y8AwrTYyZd/sH/enFBfahT9mnij/3lBn41c3bIpyC0P8W0Pzs6vR0s8KeEK/fUkk4m/Fkb3Pn3XffufvhDz56RI+Hn/3gw4d0ut//7JMf3L//6Q8++N69e/fef4+Kh8sL3rsKg55l6kq7Wa8T4UvE98Eo0d6U0GOI9wDMKJKwmC5CXtkSmfsZQvYl8h+5/8wQxdtRIpMAkwVG0Tz7QFJdy5QapoccU8HuJCmgMZK086VMjqMSMvlKvUSvLxrQedyKOTSLhTgsy6qsfX4zE2Ke6rLDFfaEinkCzyTv+QKAc2IrNcPq/bzY6GKJluhYiwY6vl4mVwQA772/E2wAxelJHNDAPx4sMbmCyBf5dKRP4YgGFqYm41FyEo+Ui0WRklTU33n11aMPPnvx+NmLJ4+ePLr/+OmTJ89fvHj4/NH9Zy+efv75l198+6Nf++k3F76qtlqKqcktKgo7XVmzqHLiVOIuHBQDIokuDGJHMBBdLHfbaeAPlye76YRQeD6mC3M+cNzxHPMkuozearba9BfZRlEhdNQs0e514SULL0XXZ8dhiOTAeB2QUGChz8urjt3zsILE28EcVmCKzjHcuTDogZRK4Gy0lmQS3tI/QwCsi18CkTU4YGr7VjT2bCzsFhtYsWKlvctk23YwGjYtDHFVC+4WOXQZ6BKqyMS9VL2va522GViNRpcIuUu3oh8sJo7Vn4yxSeViFhxi96GnuWG30ib8NbuGbk8Xo/H6fDsduEgS0DodAjyI8BX4ssF+Li8erMrj2X5SNNUySSGxiCjvEW+bHkXpecAbESh0HD9COFFWtoK+rZjhdGjrPsEvMflgNKfTIqR/lx5U4WNxqeubKoC4jKZ9p23QX7HcYDw1M0d7ENk/kLws3Hyi+05ELCPjDcDPVx3diIUAU/31bLFZEq82ggA979XSVzv9pVSCC47tKo2uoui9yXKmJfYjKN7/wd0cPaJ6m2OWhANrpg0A1kdevVxrW7pj06vnj0YhCohOp14ttruS7pgpAGFkY8nPy9FBPJaEBpSAQ6XXZDaq5oqdjrbo+UFvvCq6Mz+0pXxD8kyvcwDnBPy08dg++PLwKCUiU9QJ1YjlXL3RDiehEw57uCDRnQkn2ZjwPUoxEO2TU7gEPqgFAycZV9eb3nZL7KpVdn6+rn/y8BKVyWYB4JthC/XmKCXNCRn7w97EShdrktOWqg1p6zrjo8P4dw4JylOpo1Q8jUZcrpTL1FRTKhQCye99quQuR8OFd+vG1Y3+5eVod3l54/L6xenZyc1BabOabBd9xUaxYKsSFBJquyU1U8epVPyInqnsxFAWt5ebzSSAQQKm2lROz2fmohcuJ9iDHYzngWooitqROrU6GEo2eRgZ+saiRPc9h8L/s2Hjd9CJSERpscnkwWGUtJqMYt32l1W0lY9zjJ71JEePHkdS9Fg8sc91P45HTlLc6o69cbznJnOcEZ+e8FQuylnPRs6C7ANApz1R5HwuWp7F+Z+v5HJE6AsVFn/hw9GNB4VvgXuTeX6HvZpzkVJW6LpT3OAkupVF+1X4Y9QrjbasGqaKcDgs20yn2GvanZ2eX91AcO/FFXrXN29dghdfXr8JQ2wsOu0IlnebE6GvPjs9AWZDxIU+9xV9CpFk+qu3bl0SwSYsJvglHn0O90hi2Rfnu9u3bt+4cXX9BsEp8PQKjfJzAuvN7nQNlStHGdEZjYUptLb30nH22SDyDQJPX/Lqkv8x6LzPT9YbDm0eoSALEH1Xr9JzkWXu+2bmdSRsOa8Ja05sG0RFU2K/EsuCuT0dxFOYAiNFuI0YD0PaVMiLLD9+cUBnQZ6hVyZoK5UJJrmzUao2S1xsZZI5rrMK+NRskeXaWEAqcBoDyCwaxvlCJvlLryiaXwXBU/MMsdxNEc6gmUyk0o/0BVl4VeIPidrmfuH5nKUbnNXlHMyAPWL+y3QdxJH2QDQhG+UTxtlwIiHykdkbWnhXY1UTcYQl9ebTlw8/evzy8ZMnDx48fowY4MePnz5//uwHHz55/fKLl189ffblqw/mQc/UbEO1jU6jLnW7crMNCRahcVNCeha0S4SCXuD3h7x+tz09wcrnYj0ar1aLSd8eTEeBpnrEcTHqWr8l5gQwQOUckAoSB+ChWK81eEMf8NxVhB0lYFTRGFk1g+NILZbHcVaQ2EdyeQsJdNXlcbCucvNZhNTiAWqsM9vV9l1olTFaVSIANkQX2hQaac1khw/VtkRzWxdGXBoBMJTVjQLr3DLZkowYQTPUylnJVFt1TXdtndDOt/qzvuWGszH8rl3LW2wG/mQ56TmOVqvIttmzbV/tThaz1eX1NSG0oXRURZYty0fVYUKA3aYiBaNXuF012ICyXOSESSiOhTSF+x9MHdjuJRoRR0DJ/iEw2UymWwTqpjsc9XXb9xDj0OtP1qcnixHk7Jbr+QOn3WgjzknumFpTtgmU5bZuKbbt9cczKxcJKiOHbc5bxlQP46QEwqbiYvDHGdy8rBwtI+UD3OLb+WLsSA3FIRK1mNFB0JNbvWGpFHpdzbRbpa7R1fzJYqqIqOc3HspxznEVs2+OxEikuTcJ+X9W1hXbNydmlaibY+AHMazAs8yuKqlqs1YiADY8PUk1yLFQJKMzz2w4noKOJJGKq1SFLCa1QlmROvNB4LqzTbsQtopyLV9veaaLMAbu+x9G8X/Yzj5Mwn4nSwA8GA6KmVpd6o9Dxe33USj2PMftD1PXkhFUvGmyipcjETtsea5et8PLs6sPPnDaAzO7+m3Jff7R+Wy1WS/ZYAKG+hc3TnOFCV2wzjgcOpl8SXFK5uwHz78/scIjqn0KhVQ8X0hl6dipNqqlWq2th/1Crrwo973P3NTb91brV5/Zy/eHF1ej1enFDpb7Z5sbQXmzHFFB7NAdo3c7ihpYhqVL9aaWIdJ+lKRDK61WnNVot571Hacn/JTptA4HLlWSk+FoOBnRPT5artnVe7ZYL9abxXoGDSV8ApHD4Fi6wrOJKvHMfJrTaOJElDh5aB9TJ5a6D/aTSPEMsY0yb2zuD+/9/jt3peMQtUQvBGNxAhiN60880ZyQLMrCZDzKTkDXJMEsDMVbgqPiCTqiVjNqaHCZfD6RLBRTrBli6lsqCeObgqAqZcQeICKAM11zHE7K1j5VViERY0ZrFE3PyMUhmUVEbS7JpE8ohFlUXKOTE4pGy8M2x2DM/BQCMG5l37pz4/Y7b9++defdGzcIpwlDb/CI+erynHAUYHr9xvULvH8phtE3rwReEtZeXr915zYcxC7x8VvXb9x5B/T75o0ryLJ3F/i0qwu4PkM7dgG12AZm2mzHMB8KW7sR1kzCcDAQ0Q6TyYDNDJcz3rbewLoEWjOqGThAmIj46XaJLRYdjRS5KVXZ7yjFLFiY2B1F+4MiP5hd0Q855Y4l84moqxEXJs1iwSHL/WFhnMRd5ywAs1LN7pefSg1o8HnYiwEwutAiNhaVEGM4t5eJtZYg1ClmE8xkC6wmyxVKSew9F8RLKQquvJhN5BmA8aLRSwrhfT4DhT4xb7DbJOf98uZRPBPZH6fS0b6S8A/lLWz6ELRb4lwWHTwBwCnkGmJsTV+4xHbCReXtl68ef/Lgi2dPCYCfPHn64iUGwC9ePfv4gwevXr3+9tXTb19fUNkz6juhryMzQW4gRaVWKVcb9SrgQepoJpaCAVSw6oeZJLGrFfawR4PpcjbqaT063HoOwaAVjOfEid6KgidyBdEryAmDHH4euFYpojkEtKF3YPtegt9aq9WqNxqAZ0QQYB1VZfpsEntklAWAcswSd58BtmLjF+8AaDVFVd90oLlZrTENZin0myEyoFrhK0rX9tCsAY4NRJ5qptrRmsWMqNwKbbnRNtx+JxMrNau1rm24vqaBjoVj1woxXw2ocPT6i0UPi9KBrzZqja5n+/2eWu+OlqvzOzfnNhUY3Y6mEvpZWGAKbBQG6JjLstxVu21J5kcLzpT0bLThT9lswEyULaExTMCRUIjK+nxUQeLkS8WShbIaWro3mfY0uIbqBPLDMR3105AXqTlT0pQUpIj5ph3YumMQN5MlAcBoQeciDVM8ItjxmEiaYsvsuIh1FDPSY9F65J4iXXllf7Zar9bz0GjW27rthJDXbhaO0rR7pdrAlOSOWiuphqz648W0G0NDfR+ogWP2iPE4spA85BzopOh8RwDs65KidF3NMnUD5u1ttWPImt5ulqROU3PVxFFMyJAPhaMlh3ekishMycTV/mC+nNaJAVel+Sh0tN5ypp/osicV6i3XsCW0q1mvchy1kwUDTiXpLusMw+GokEELehLKVj/woRNwbXoFk9cSYp4mnMdZw32EkyceP2gSQC8+2A3MH327lQfuzn7nR+nl87d389VuRdwE23jL9enF5Y1m2u8rijmjCq6UaUgt86PPLjpKUxlDIVypIRyGjhmo3qhMSR0TtSZU9mvb5ugk1b4v5W9+cqk9GJ9cDIbrqzWMHc+3N4LSdj1ezcaeY6h0S1jhZECQCVWl1NZkqVWVmlVJm+zmp1N43vQGbJ/vC4sdOpIHk/EUqVuj/mjQCyHJGkBOPMOeN7ztFlRErOFRsYHhM2IMz8ROxHqxmBGaB2I5QVXqrUalVCR+sTcIOj76LwwoDqMwWS68wIxjSZEHmOBRY+o4/ka7lYhH+09ok6AhCmkvZzAfx9M44rmDzQ1AVrCzuTuf+/E3v+AvlUnF4hlRyKaSewMGTPlwL9Hv2Z2hXGRaXI7iZCMVrbAeznOGgrB+LNZqRfrTVIkpdQ4Dj+y+P47PjzqRuSgXpARto0S3ukWUoheGQ9gTYRf5giVft9+++/7dd95+h8D5zm0O9wVfZpXXBaEzseUbl2fQaF8SWl8n2KU/vn7nzvUrIRCjz0Qb+2yL/ebdxdXljmOWsUoFwRcbaC+E+nUh7MIg/JoM+z1/hEijPo6kIEQ8NIEtu+ChXYTVIbS54SV2SZz5xsXpxW1C+Ivddk2MGZ3snk9MyVDlVrmExZ5E/I39V/SIHV6LeiUHCA27Fm1bxg+PhF0wV08w0kglStV8QTj/Zwr1SjYNkMhHAMwvxy+tk/OgAb8p52E4ks8Uo9DBQrFCbxMZbFJFXh1iSBE9uLGBZgmsPQoFMdEVFlm8US0mwEQtQODZaZrDj9L78AbsKSXThbLIceBAPwinha4UrUHopCEIw5oWuivK+1+9evbw09dPnz599OgZMd9nz54+ffb85ZP7n91/8erFi6+//vb+WHMH4xCtWMjjnW5L6rbbLQ7p4Z8CTZd6Q+oShnH2Br9agz7UO4PJajkaBnrPVVUHag8nmKy22/VbpUIBNlQVMZgXigpczflc9I54mxF5H+lUvlTk1X18SuQBxWEEYv2vXoHBVQsw1WbVBIyT2WKDUJRnvLCa0vad6UihBdTFoPgNDEMHDfZM7yuEwd1IPW2IlSX8PTrdLQdHPCLQWf3WkmrdXthrZo8T6ULbcUwv0KFpNodD0xnP+lib6vX60z57dXmIY9C0rjXw+2Y2ay3Xm+vvXh/pXVh2GTxW9wmxPUgj4HKhyjJ920q33eXUI7mtKl1gckdSDK3dlBSZba/op5aQSia3CZ0RJtKA01elkEE8ZbIgdegL+rMpmtDEtYnUDpfLxSREd9+nW8QmNi433bGjOtPRdB4EI4VVzqZLL6njhyMzeySoqJBGCjKK8y7J2LhfOIzwF02nBMe9pJKNAJ5nq5lSLTY03e4N2bNuoltNvVdvDzWd6pdqjcq6rjdeTLqxo4i/Qy1LlOzwKPK63+s26Z9D4ZMUAGx5SO1oNdpdjeo/W6PqpK4qLp7JVkWS64qtJ2Oif8yKNebUEKgV6B7JZePqICDeXc/mm7Iyh195OBvPTlwrcOlEdHWzdQDRLu8mx/bz3KMYe7KnklKfqGA+I3X0yXyoOYHvuEEPY5FglEuKyC5EgbP/BwLueC8rG6PKw3V2rWX7m29HzVXl43c+/Dxx+XC3na/PZgGstnFKXqzP7rgpdU6X2jL0Ro1k2ejKer2qKabdL7VbjUK71e7U63K3mkBtkErnj9r2Ub4+Kq1LtTvJ2JWUXrS98482u5vjcHPn5Orq/OLm+Z1hbr2ersaB6pmW75n+bDId9YIR4WlId6nlqj26/GeD6WbVMxysVrFVYBAO+8PZaEyH6hxuhNPhaLZZjqczJABO59PhfMoh1cSJ4dm4EB1LfP5kOIZh5JIO+dVqQf+H7ViCAkIB3u9hJKA/JO4c9uAkrisy/XQ1rBsl2RbqjZEyrNg5hegA85bjBG9XRqszjLc47tgjCTQZkSoH2IXCH8Z4KZO1qLhs6fm6xoUV3EGhzsNSvehnp2L7oQc3x+NxluWLlgv2o3jnBM6D2f2QmD2ZS2hNYbSZFdrgYjFdKtF5Vdx3sStwcSrko4QA3nbOizUfNhgRKyz4KTLJGExm2JGJ9Uo4W+utdldVdTscDeagy0SDb9++/fa7d+/eff/evXvvvXPnDv3uPWK8N27dICAk2L15/fqty9MdkPjqOrNe4s273RVbop1iPWUDh5LVbM4WwMIqm529xGPGUUcTehUH/RCbolO2nB3MJoM+74XiEf0/QsrhZUtEeCZcxxaLNavITk6jWTeLvZEFDdfoxWQA31o6zeigQtMfCcyRYQ32/g4iTD54Y9TJ61MEpnTboqucKUtl6KFz+RSmwiDI6XwZdWkZBRKe3BzvEWVTeZ4O53IQNuMdKpBSqXy2ynKwqANbjMA3x+NnXk/KJ+G7VcgLdyMCpzQ7r2J5kSlsPlPIRtdEKiuuC04rjIuQSuG5ygF+nEsJi5o0E5LjJC9b5yMHxmJRfvvZZw8e3396/8GTR49fvHj57PETQuGnzx8RI372+tmXX73+0Yu1HfZNl9iT71g2wSjsGXwMZzF5NTW5WSnWq6UCkdQaoQH9oUcEj8iy6fXM3jAgRoBdXXSPfTrO+2hCv8XfUFbYj2AcnswWcqlElp6yZIqn71j1ptKlKHxzCpm9ThyK9oJwaeHg6pzY3iojnItgu4rrtYx2UZVznSV608KKARIMZKQrqUoHRsWKwpjK7hfc3wbWWk6niykxYS8PiUGvuUmNrjSWig0Fs2RDkSp5aErSqSyd1JofehWqkRIlw7EDgjjLsVV3NNatxXDg+o7t+vNB39EJZh2jW5cdveOEli2nKq47IwK8dJU2GDbBkKwRNYY5ZGTXBb8u+naVLvInVGbw4qEwIisKEUj6FDqc1Y5CAN3tMF3utFv0TgNPVaWSL0mG7Y/mQ7Ore1QEeUE43aBtNEBUudPziAzZmk0HplXrLZB8NO3L9Ox0W12LDnx4GdgF5PLGRUMblCLB9PcoFv+Fn3ZEgcU8DtG36UT2KGs54/l8exJWSrV2W7Hc0Zw7VsNAcby25/V7stRpN7tWRyNyPOvGxDA5vg/LOI7WrOLHIkISAMweM3SbNHWNaL3bKiCfDDEqutFtNiXJCzXVkuVSsyupjpHmLQoRCMjfIifz5ukXXXfysD/bjqrVckuylsOR70/gXkoXd1Aqt1w7kIT4SuRcIjJabDfTnZ5N5brDcdjPZhrVejAJVdMMCLd7ttszer6KAQZRck3n1QGNLjlZVTEeP0rWvb7VVTKr4u7+LPGx1bFfX6Xfe/tyNdtsZgPIELGZenJ2cnGeaq1sU4HFjZysSVRkdVTVUi07fggA4bgdoFDiGkJ5cgm5FctlHMkpZT5IJOwHg5efp+cPT7a74Wx58d7VjesXF5urXvF0MV5Np3QN9NyAyuOT0/V2vFlO5nhRiHm5RrD1BrPZxHcCyCDp1ccGYDjB90WcCRkIq83p+Xy5mhMbprfT+Wq9nNE3zTZTC5hCTmdLkdsrgumge18u2YV5CxuqFecILjnIaLdhm6rlbLHhnVnojC7gYsHuF4vRBFuhfd/VlY7UbFTKrFimIooOafijXYt+HYgZwzFXPGgxM2Fm7YvQ7XIDGziLxRqOGWdfwDguanwI5xEk21hZRkMhgRc9nsYQPynMbYSVSCxyumEnEP7yCKoD9Gd5a4W9rgtC0ZUX8+BKIVsoNcrFCpfFeMPvVNjDAmkJLNWmv4SOJCE5fsgsztMyjCyYcfByqWgWsAQkm+VFhAaSgOnECEcj3mY+J7S9/e47QOY773/37nt333uboPk2AfINMFTmyuen29Oz083JikOmwH6x8ARlBkEwwet4jjExHDwZSjkhh64N+APDbAzl14heFbj1E9MKkWnkI+7NcWFl1Xd9j3vYEJ/2gsEY8MwxDAOqx5BDOYeLKOxOTqENJyp/yb3sFf2zA951sYkwS/RK0/mfYvHGm02pTC7FjmupVEUtYfmIkQH65FwCUohCQajjmQFXK9lMqZJnrRcBHYoZDgAW6uxCJZ8tV4r5EnhoQXh0cimVo1eAddpsY5krphKFZCKbyLKSEARWgCvqMk4iFCtOvB0i3CpFKzrD3tM4pxJY0s8UhMIBW6HwE0lmUsivgrWTcvf1syeP7j9jBvyY3n3w8Mnnr7+EVu7py1eff/nq1Y+fzt1RfzwIArvT7loErHTYoz1KJz86uiYPYzXVgJFiV2pIyAWg8x8eVLaO+azWasmK0iLSBq8MdzBZrt/CdZxIw9ZEDHs4wSkhrK1TYjWMR/P7kiQtEim4jgQq8xoatgvw1IquD0oYbIJjO5BNyfFR7J3RM1opFkU6C1ZoCJ+xNtNsNjlIqNVoclsba63AVzoyO4RmMO/SxMKzzmNhgzVeUHmZutypZLiVRd9jqe24ZrPZrueq9LcNPyRcs9TBbGS5i5FnuDDlmWzHFuE2EuI7lqt0PfpnpIJEXOv0zllAh75GZYBOvJMAMQLgPQQr3GlnAN5/CKopAl/AsxI96Iynx/LGAAAgAElEQVTvCk0bvLs6Mv21BrbiEY9S13vBbOBoXQWGYBgCzOdUxUJZ7kLchi60703HntYZjOhjvUEfOjZZ0mw68XvE86wC5NXESIX0JWLCAnv57dGbwMBjPvawk5BOZOJl1xkuFicrv5ov1SXN9SewHJhNh3rbnbTb1iJUWu1mvWPKmjdcjOXI+TH+izzCaKYdLZSCUCaFPQ0BsGoZttWgS6KimlDC612pqhhUFzqaIZckualZBlxymfripD0+voZEhlgqly3CuUGZTkfzcb2QlWVzFg6pDGGnNdfSi6W6bQWNa2IZLMZtbG6JYxUjjRZUutWfTPuZTL3eHExD+tcHrqu7vZ7vDEd2yAYyYAewt8WunNdz0U9PJMumrzdrhW5p+ZkV671rN39lV7n34XZJ9HA65pw9Ohp3p8QR0+W519UGfdNzjVqTLZ6o1nLHrWqR21vixTiAGxWarR3pKJVSdDWd/Sidqnw0cH/o3Xx6eX45HI/WRI2uX16d3ghKp8vpdrlwHDjbBIbakehC7zgIg6OzNByOhvNTZbAY9zxfpE8ORwiqQVtrQK/d8ux0y37MRMTO4MPPe670ZrmGocRqscHSw3y2gKMOkHclnJrXOM1x9IpY3pMTrNVifnlxdnZ18+atO8sVfJ2RfgTLyMUE0e8r7DFy7O9iBeOKi0tIg86Juy0mOO1trduRiC5jDAuYRbEGBAZ9OoR6jn4dxaI5PPYx6WhMiEaOSKnjAbOQ6187YhEv3JbR64hlxS7sMfPwGD3JnKaG/keMw9V5kXlvFI7WNoQPIm6CET4lzmVIqllVWwWXZaZcKVeQ21av1dm/PcpKQN8K+8h0NkHiVGk1MHjDZxDS0qfDghkxo2I4XakUs2LcGTlcJbg+oNsiX6rCE76lW3RvQ/wFQQE93xeYMbO4iijpjRsQWLFyCz5ep5v1ZoFUiiWnKyPXYspGmlNivJxvNJ9h+QqfMYRD0mjKNlbodohg8MEQ2yujMOhzSNpgMOC4cPo40+UQt8MgSmoecg4Drid6fzKGVzS9M58s4Oa9EUtY2y2EQnQdUC3A0YaOJEnoybUkwqxcrqYU0P6lJz7LaVLxA0yWUsRnEV2BXeR8tEFETxVr54DCedFrFU1l4m4loniZPCNFQbQbctlSlQOkCrx+nkHftZzLlbORNA+JR8LUjV57AvtUggOHk0lRIEWbIWmhOwB5TueS2GdPsPKMjbpzRZb9pQFRBF6l7nuvXzx7/PAFZsCfPWT/yVevXn7++NGD+0+++Oabrz5/8urjuR84yCXq+z3C1rbhWejvdhXiWTIHAkodEErLgk0/Joye5TiW1u2qBqFxR5WBdm14J0k1Ijv98Wz+Fm90sGYHk5xjqHhiIjhQJGUeMyxjFvOmI8RzGZArzo7CZKbA7QFhtcJbXOzBjVZQMS/a+7zWlU1l82L5QOyEiQ3sLDr7+MXPPGE2LxbU+YEoJYZlesWZPsvEOIF4CiCPz8FqKg6pJbTzsuMapuPpDUkjAu3PZoFlactlYPemA9vwER8x3o0d2yC2Z3f1ntXu2pJmKR1dbZjrGytTRmmi0knY7pguZ2PaYoGZJ8FChYaBsMHSbTHSRm2AubGGl4LDLrriRUGnmph0twGzGOjcCg0rCHoWOur019zRYr0cw78s9Al5+yDoUO4G06HZUQd9gn6igI5DLL9tOopuo461ciCOiWgJiX0xwIax2nm098gUfPXaURwXXBLS63gq2QyI2K63C69RyFclo9cDABPfGSn+aFiqOoOh1mrXCYAlHRy9HY9mfhEAR/sPsSjMmQlxLCkW7jMNWJdYjkQvfxm+5NDZqZLVH5p6z3TqxbZUN2w9jW9YTAZFrC971xczRZjCdifTwWRQyWW7XWs+nAe2Ox7SuU4FTUdq27rPAMwzaAG/9AODP2O/r0Q/22gdZNKNens8DxXD7Flubx66tj8M2rxyThWbLbT7nkMEwM/CReuoaAeOXIv3iubd+XH2+cPTl9nug0siiZvFZCYywYhirs92t8vZybDZHY388eY0tPn1Mz3dHlpeT8TGIE/VgD811h3jmnp0nKwO86ncNnnkfv/ju5fTjz87OzmjI29588bNq8vrZzd7ZeIau9XCCXCstVNHiUQhlY0JO0gsUBRT0sp0x0vPD8cj9NhBgSCZZc927OiPJwyrmxMODFojGZZe4RUnC56c8Lm5Wi1PRIbvBvOHJSP2mp0YhcpsMV8DiXfYh728fuv2nbfvvv/+vfffe+8djgK+cXm+PaUvBRcf4exzMhOGAfTVQMB3J6cws7i6cfs25p1XV9exuYNIHjrbA9+xjGazAUUExKgYIbAZ+EHU5UQ/Wwwg48kDXldHbB1qf0EwU/R6I0OdDiSxgBZPxUV6eHzf8dl77KcjoV0yKkWFl1RyvzGVTO7ryLj4T0yYMyzBZRUq/SJILlfRsyNsrSFREBBNPAxmwRXAcr2F2FHiCoRCxHobwGYZI0CpXmHi0CLMJjoNsOGVn0w62nxLUfnJNKZQAY4TY4ZQ1SdMBI0FytLLdsZBHYhtPjs/A+qhOwFr7NUSqVKw5x8PRYd6DlMd2AePRV7OaMwwSigsiDKxXO5eI/aCPYaFzR79Zh492GkYrpP9/oCtDsfs9zAMg+EInpTAawD0EB5s9KlLkT65QGIGmDm+n8lgNIeNPe74dhvROtUSXrMEtoXZnzRBBVQC7hmMgsTLKtgcLEAmU0GTulRFtxQWlCneWOZMB2Ju7PhVFJ1/Am4MD7KFbL7M3Q1muDwX5aEvoDudFI4FmIqJTYekCDFMczsaO/owzuR8MPYPjkOULXxJCmJ623nn5fNnj+8/RxrDZw8eP3n+6ssvXxMCv3j46cNX33z98sXnP/x0FToOPOuC3sDsNFq67wKGDFPpoiOqKV3dsXQMKXRLtXTFCAc+x/naeKmptNZq8AStVEusrqp13eHsrYgyHUXy1mOWMtIJf43HieK6Z+rzCxIUiTF48YWLz2gtR1BmoZkQuwEQkfOyAM+WS1gU4219FsIxrUZrJ78XwbGXWEa8KyJc0OPmPf4yf+eVUh4DZ+Tt1mpVJKk1K3meriNIu9T1es5wMnIIAVtNpTcdUQFiny3p9B32XZeAznNGE2IchNCEsVZgdFS14YWu77YKymg9NDVFMi0da0jwRkaGha1FgU4w/exqIttJ07U3j+iZ72i8y0W/w1uwZNiEypIsN8twPkWTIV3EPpGKWbZp9WZ0zg/7HsJPQcx8WNJ6ru2FhMeddn/oWmqLqK9nqQBg1bD9XkgAjBcKzEAsN4kN17j4wBuIOooAOCMuxCzRgnbfGdBZu+h3qqW6bNITMV9Mp8vFJJj13VzRcYZ0CzUaXVPWvSEBMPt/xfdbz/vdW15tFjAPS5mo1dMg1LQdXyFiUdUwT1BNx9XNwUxtOL6Wy3Xkhu0oSZx6R/E9ALP4kgA4kUsX8hk5DMczr1Att1vaOJz4ds+wHD+cnpxPQ8fX/dbBcZRhyB1fkUkZg6I2XknKw/4mJABudCbLUCEK7g7HA73b7Q3NZPKQK5NEMgqjThwcpdLXrmECXfFDT5eb/Zjy4MNc8+m7w4eJ0ePFZLlZg4Twg1jJard5R0mO5mp3MAr6dqfWkKng7ZiqrHpU3TJfRRKNZx0kc1QPZDNxzYkfZQr9UvaodRwrjl991zde3F+tdqPxYHmLuObF9bMbfvF0NdnOZ04v8IOB167SK3VI9Wkyxw7yieTRYcrptyUHc18iwDBsR2T9iv0gsEB4st4IqyaBqPs1FtFUXs73Obwc60cEhoMDlwKAcbYvxYM/tt4Qjp7tOMKA/sOa7OV7b9+ix83rp+fEdAkSsA/LfspncKsA4G8QhIQ84bWoAnacgQDp0e07t2/fvfe97333fULze++/+/adO3du3ySSTax9PAx7rk0HdqtJ7DERSyVYmHcQiXQjHRCDNF9xeTBfOB9CmZ3MoP0onKESkUebiMc8YgkY98JivHESE9Zeb2Yz0c3CljrYwDrivWf+R5LcACQmhZNdHGjZghBRIyCBHZnLgGXCZcR9V0CZ2fi1Ae9XrCFXCvDxYievRpNjgSUJweiVfB1sG4O8oggLEstYhSKXDcIlGYHABbANuLyzFsayTBRaGAjPOd2I+xcwAuFIC4RWbOljRIoFASbkHURetuzdT/jLAeH0NWAgPBz2e5wpKygw3g6EB/QUSj5w5TEMl/DemN70A4Jh5sgMwvwO1qvxT/SJNPve/8/We/g5cl5XomQ3GjmjkYECqlABVahCzrlznJyHkzjkkMMkiqaynyVLFhVsWbJlPXvXu16/tfR7u3/mu+d+hZ6R3zbJme6e7h4QqPrOPfeee47TtumyRfZpn39Or8dNbWRBI+Oqg5m00yDuJ5VyUAYlWQ0dYRtnwVDDIiMhmBTDzHhMtE9RgEYSdNrD49RtSzMyJ9kni6qkXfTEGeA5AAnbZxEIC/iJBLETZps8QI2DAeIUDEANiH2psCspQHkG5XEUQj6YuqUq1z75+NXLp3DdeP78/Q9ff/IpvX32xZeffvDes9eff/bRR1/+6MW807Q7TSq7G806cTycycTQrEbdsKjKr2s1vdFgz2WFQETVGv0Jz/B7LVOvN1vdYVutqFKxXCrkCtndRDJfc3rvuMZ+8Pp18x2FjZPY9xCiGZ74uaf7psUpJo5+0ZKkb/a7Ox6MykT1A7wEzsmkfM1hJkNPWEzERkaETXicERota966Z9+xuLDMiYv9M66beMJAyExfEXYDNlPumlpcWG1DDRTPyI1WazDsWpqUjcclu2kRMeuejFQTZLY17DZMvdWkZ02VFKMqW46maaVqp2s1G6VMqdG1iNmUVaRbwIgDK/1Uw4sWNGRYgFQOHBLZQyJXkVOAwXzxEUgvAbDMAIx0IqlULhdgyhfhvn0iW1Y46xBJVIuRY1K1aYOZ0S/CacSy6n1Dbcv53qTf0bPJomoZarmkmqoLwNEdnsuK/WJ3LsrgGHC1SVdOSF6Ov8R1GQ2EQ1LT6hEvmQ/lXFaCX2RnPB30J7NR35Kd3Uit3agihqqqVmpmZ9IvC4sGfoWvuO+VtyGH/vDBxRtgBblKP9BWAMBVSN8Jf+ua0WzlU1q9FI7IUt4wqkGvAGAsE4ltJgSrRl0AbrUH02Yqs1sq6eN2x7R64/kKG3TD1ajV0h1JjKDoYPYKEN7GviusKIkB68PGuBuN5AvVwaTVruuNfluDMr3Zq+9sufebqEz44A4Hqbqg+jJHB4RhXNjJ4v5g/OK6ZT2Kjx7B7ZEj3OikW4EZrvfmN9sBe6JXHTp6qjG9UpToGqmVyorVNnVejsfSXUPfDkTZVnlbakQJgAuldMCOef3xxXnzxjcX8/nBaNgeHWNblAC4kdyb96f9Eb2orc6IztG9Ttzni2xvB9z9WmLTPj2BNlM0iWYmVuYNjChw8BGczjiKb+9gBZ/jI3g9HRwen54en7J58h6LewgjiesQKE+Gfcx+OfZewPAUDWnE1eFXAeUwyhQy3SNisuhrA+hX+4drCHVhnIyfy7JdgQSAhDl4MX7Q2M0vpSphAaym78PC7Bm9XVxc3rh16+bN2/cePHz4+L0nT589f/H+0yePHz96cPcWhEuXl2cnq+UMPY8q3S+pRIxDCnw7V0vM9HrxO168/qxuQLQBT8iC7M0YfKNZ4CtrS+y8Bq7CDxiYgwGvIMlsCIbDbkuECgbF+I2NCrnh5/qQBEM8gItGYiLFiD2J42yGTZQZZDnnvu1iOWo3k8vmeVGRPswCk7PpZIrgOcluAtAjxYQyOAmGB9UYK4sI2+GJHBIJf25EFcgfVaTlUlmSEdFW51qPgROQPJkv58u9FZoaE/qFEx2RxDiEeAQMGMjc6Qg2PHCBGQy5x4AtZsJdzhUHCKOjDcfDfhceroNeUzDgDnewW44t0gs7bZdwD8f9NhC9C3fCFjuwIwyx2xlNFwtkQ4pOy5IuQrEn12UvJ6eBpiWkueDLeSpmYq4xCK8QYfoP/KFXjP1O0VDlyWVyN4EpJnaXxHqTcPICULBNZSyajPEqcMj1lY6x4wj2z0TecBgGH+Eg0uoERQ4KhheHYAwcO10lBvzq/ScfvHj+gt5efvbpp68/fv3p5198BgD+7OOPn7//5bNpZ9Dutpq9fgtmxzLMkUxNhT2FTZW4DTtKxBFxAImu2+3uAOXwfD7uOHoTbkv0/DbpmCeOwGJkOijfgSmC2OvwCOQV88OrAaDIGMDSCE73zfHuJabMvNnvns48kuE1cK/gKG+y3Lnq5OgbtuARzWxRA/FOAe/lx5CWgYw0IVKPRd1dKJSOYjjAXmhiRIArN8HbB3j2oREIBH3BWEai/8tmq1FX85FwRu84CtHN1XFH4yxjq+uYplpvVSuQgBOltCxNU/KtYVMleJDKdVsj2ovtYlVXKxUAMAJBhPSaA5zAXCHmJgosABcLSQj8xTYW++TRb4iHVLgbLSPCqVSrlGDPXMxgg7hQqWlKVWuOV3vTntNo9XstbE43EKrMOmj6tado/VplOp8O6+kkUWBDqxQUepmNhtMZGFGMBIhDBna4/hHrQXjCA0Jf7Ns0KfiAYg1WIEwgV2k0BovJbDkqF8o4yQllp4PBZNo3NMNJJaumRqVELkcPv1bvTAfl7Y3/80bb5duovFwA3mEnSPYPLCgKHFkUUAFJhom3rpQ1x5YzJbOSjkSrlTzBR0i0oL2ul6RPrLRERAtaHgx7k0E2Fq2W6jOqSrqrGZZoJlSgt51WvVUmwN1mfiR8PlETEgAjPiYero/tXjcWLRQq/XGrrahmPVNsEP1odW3fjqvf3BijeLFTE0JJvJMzKpXmYHSj7fNJ/cfXx9cPffO7beKM0A7DfpiN+g/3VtdnAXmilq1Op+/UcmW5WirmMlZ3sX9iZzOc/FyuSHbNE/D5QtFQ2Few0ju+nVoqHZHGQX+48eH45sdH89n+aNwZHh0dH4gW9MGCAHhMJ2qn1W46rYW+7fVHd6IMBDz68W3pUU/QJwod/6a5xObJu5lsKlOAw0S9RpUZ/QCbDlaO9l4yLB8e7K3Wa1g1HboGTwfobS6J6YrUPrgqwvGa29TcyabPrPb31zCAwv/3/h4T7dV0uRZzwClUWwjRYtnWFE2C+XpvDbtaNEnZz7YL1Y+I/4W9hLBPBiGfoyW+3CeAPyKGfHn95u27d+7ce/zs/ZdPn7348PXnX3zr+z/8wXe/8/VffPnFt7789rc+e/3RkycPb9+4fu3ixsX58bRjyeVcJhnCujFXUpzOxb9frUpt7bg1ojtpFjPnoHupBTi/N8CXryheRf4B5tBCHcvLzNveMJskBYXBSCAUcgNH/Zz+DTW2GzAI0Ef+z2bfOC6MsLNIL0qBpeHD3Uwmibi7TCYf5chwIDGhM71+wpAiGkErkDhgvAAxGAE4WoQYl7o7JgiaF/pYYTMmNMKQZO9C01opQ/hj0tGBnSQ884R/M+xNTd2eMQEmbLiAzX1eVkLXuYm+s1BH4CUD0W2L0B2ieK0OLkoxK+b/WEfBX008hu1y6f0+WDV4TafDzNqhUhJmMe3ecIBwDe5cg/5NJoPeCDNtlA2oFcR8Gw9rOIA5klBw896goVZLBSpecvkCVuPCLrMVqqRgNOQNckgIngq31RqC8A5PIC+ahEN+lwVvVMXhQESwPeQE4+eERWUW5GgILC5HIbKLRzLKTbrqXj774P33X7588ez5hx+++vhTuhi/9flHT5+/fv3+B4/ufPxqibXRNiQndqOarxoIZWe/CpzhrVYDLhVmw8RR3jbNdsfB/n53NKN6dYw+0RiBfAQr+MWG16NRf8crnIlc4PVe+fUFNjYMQGWiw9uum657jnmZanl2+FjGxyJ9S2xZboFHe/nTeJ/rTBeVN00hRLeFhNlsgJdkhclhmJ8oVwEm5BPCukzMmMUygVh+gmwdTmfYwOSfGI5nJd3RdaKp6UiajkujVFDs45Vp0MXS0GS4KRPG5iXN6AxMevIMQ5Zq435d0euczKSosNSuwVW7UlXrNl1QjqmqPHDm/WPMflWMfRX6CvdNFmorCcQXojGoshSkFMlyqSTLZaHXqgGw6Q80Q1Gt3mJ/OXGwLkA1AbSL/Ca8tRstW+0OlTpxv04tW9AbBlUDhZoJm1GnOzQiDMBebxBlk9fn2wRDvBnRet8wYDRl6ImNBiOhimUP55PFvJ0vKrqqmo0e3Rij2dAq13tmvKoW6X9IymYkVapZxIBL3g0R29jf8ZnmE96aohniC7kuviUNAremkkpnc1IVpqKyVLRataJk2iU6UKRqvqK6M2DfxszZz2ZdVH8lseGpDPsEwJlYVM4ow2bLbK/2l/Nxnypm07ZbhlPachnwRooJy204YWEHoTbsdlrRaLEg9cZttYIsouoiXyp2ek3f1ta7MAjlHI0d1yJ0O0jXasCTMWVtMOr8+F42fHs8fNq7HESuXfaJjE4JXZYzoVJa7y8OLtaB/MyU7VbD1solVcmktIN7t8+GNS2yExHB6/EEMd9YgA6DSDKYtauBHY+BhcU7w12/X3m0tHvT8Wow7o5O948OD4/Xp072YDZYjCd0FbSanTaxWnsXWzleRBDhhgDdkpORvNhoZQMpjDJQwIqUBG6qe0UHFbHkYicwlc0V2ZKxbkL70+sBA6dzKHy4gYwQIVgs7h0wynJMnzBBXq8QCTTn3RhC5zU7Mi0XIFqQSzNUE1a7v0/mUFwT2ULokEDxKVR9A4TBY0gpQHs2W0L5Rd+2WoBzw2+Cp+vT9WKCjvqULaSIKJ+e37h1//GTJ08/+OzrH/zlX/3kp9/84pe//oc//OFf/9sf/9ef/vT//um//v7vf/F/fferT5+/d//W5dFy2ms2dE2WSik0zOjpcaM2qE4Tamy/F4utIMxuUKhv424t8kk8mzYekQIsQfNkEHEhPtdIDmUmC7mEKlVMkv2+sLBhDfg2w2URWyH4dZCZMpaMYTQMHXbEHbIlYgTEkHbFOdl8F1M0+HTBn5nNksNsuQyn7AR7fl3NPgmOiVtzZAX9LF5nZitJZACFRRABGyzDkhfmVPCGKJQkvgAg5+O1NMybhBJvY/fv5ts12WLYcagERHKt47Rhot4kdst4iy1jjDzFDidIs/gsLIFhkGibDcc2qZ6v09FlI3wedm19rEuNxZAZgnxMOTAlGbFeDKR70y/vtNlfdSja1+PJqAfBF+9fDaAbcyy4DtOBUimW0qV8PL0rYq7DIgITSedukyMUFHrUgHDiYMgA5rrFS1i0S0KBTc41hxlHuP1Ar0Yqmqre/OzjVx+8ePn+y1cfvXz+9NnTZx98+q0vv/zii1fvPf/41ZOnzx5+9PFKMzu9ltPp2I22nK3U61qtzvEDFtVBRISxoQMXZYJgeloH8Ain8qM3ZDldrzvsOXbd5mGAQ2iNzR/zHXSekXbrcXc82OyADkm/zzXPxYWKC1lwlqukH9iosLG+uxW6JZYRdhiAPezIiE+/6+FY2S36AdsMC+75SUcNLzHgHvC7Y2fk+vkjIdeCmAc44vniSz/ALmoYy2DNGgv1EZEkyVvWAQiOYrslpSYXS6VkyhhgXpc1Z6djxRz1HLOSL9daQ0PaTVUtszuyHEuzbLnaHTQU1e7QKy0XJN0sJxRVrsKSV7NabaoHzXKpkIfpZ0lsNpcIccF25ZLEe84VYj/CIWyjgoa/DkFyUVYKxZpWrkCVLlfK0IzBVpPgbb2edW2L8N0x6i0Tel2HKkdcvfReq1Y/GMutYadpSdlau2tgXKaaNUUzGYC3RTuVGDD0hj633+Dj2AfXEdMrXhF/WIxHQjE6RcqWPZpPltN6rqSZStWw+3RRTBYdIupNM2tpZY1IfTaLGbDdHXVLvjfCalEysaGOaP8idxz0IOp21ss6AXDdqeL0l9S6qVarito2M3mrWS9Gd2HEUTFqIVxAeNzugwQkegPhYBzGCtWeM5i3ErtppUwMuNtozY16g6rjhuHQQaDZpe3N/xVKOb7A6B/XG7jUm3QakQgRgu6kI6v1XDZV1TOlcn/Q9b3LTckdRuxNLMO7YR+h5k7O0esta/7yoRGwhycr80EvcmPZGnR60+lgeohGKwJrF+Oj071Adm3KTTowjJKcDCl3v3roVFRN7Wc9bqN+ZyfqDyd80XB0J+JPNhu7IQL56I1bp81mLJBpWMb+crzoDdvD4xX8CpfHdnZv0l/PxobdbFh0kLVay47fH47HhFGFP7AVDvq28orWhM+602wi9Bs+4XmYvxDrzmXS6SzsjhKiQPVxNlswvHGJxGnDXrfElFi8SFS5QacsMdTxjEgyeoPoIe+5mfYExivYdDFZ5uVUegaIIdPTMBftZm42u5x5gsb2FDLpEU+b5yt8dkwkGKNqRtgJz9HHiEZdLpZ7KzRMD0WIATj6Gr/uUZWFr5ou9ybMxKfj/hizzvUBJGHX7z188N7TV59+9tWP/uqX3/zqN7/53e9/9w+/+90//v73v/v7v/vlX//l97/7nb/49hefffr6g+fPHz+4fXm8v1oN+20L+xFSIR0Pb6KhBFfe2fozhxFcFN4d3vjg4aBIzPHzGMGP9SnUmjvspux+ErtRPq6A4LkcRjQJQoAD4UjILyJq2TuEFdgRtDvhzhIK+ZCcLUS59JWcQZFIMV9Op2LpbDadQbhZNssj5Gw6wf7HwGz6mcIjezedZlfOFOK+IdZOpaD2SiZTceERlohzMzvKu60RnJKovvkvRbgREebULvT7qua4qMwbx6KWmowH/UGv3yPM6MA1otVo0EWJ3jJi3xl52fjfglOQjXYiiELTaTT4T20Dmw+EyFjj4Hzz0agvJGHwL2+3x7NhDyKEEQHzZOI6fo3EXztqQzYGeKK7azAe8eB7zLn0w8EQoOyGBK2WdF+2em3oyXodrKqrzHMKufQuO8lEI0HeU/aJitxa/foAACAASURBVCkgnDdDCd6nZRsvSJV2uHuBzmtMbJCHE8loMptNxKTrn7yC5Pn5y49fv3r/2QfPnzz78JPPPn310YtHT1+/fv70s/fffzqsOjZyU+iZskq7ZZgzaJalG03HwHOCQAbdMg3dajU1q4lmAEIdu6PJqD+d9PvjnoG4OGT0GlimNU1De8fnFQeTZ0OEBUC6b+JP6Drc8gkC4d20rDf5ez5XeUvY6254bpIud1z7MzovkYaOn8ZLgxt/JV7l97oprR7XSMLNHhJMC7Mc0Qj3ii0GzptxLdPY145KTboBIvHwDovhwzlFLkAyUaFLSC3nSq3jA03vNdudaqagGA3bVNMl3WZdgllvO5qzMso1XFKGVc6WpXQqpygVWVOlqmZaBMBtOROLw/4uFccoJ5bKZtKZXL5At0pe6CHThVK5UCjw8lQJHiTYb64gJlCSsAqMw7JUKvOoGBvE+mJvOmoYVAq2OOAJTniYv/AlT9e1VWtNbKUxbJpaQ1YmvVKRfrBWV+j4bDT79cSGzG1MIt1hqt/NX/Lwqo/P825wB3a8KAIx9YzJLUK42WpqVooNJyN1TcyAR9N2ta4almRrikHXRiGvaUXZ7I47he3AxuJX2GxtCak8/V28ocmq63CMzpdYNF6WFauu2Woin85jqVs3arKm1+LZvlHPJBPxQqmoqlJwGy/xjl8UDTvCbDgQxkETD1ad9nBm7saSlaI5bPeoOLHpnsZN3myatWo7556a777rca9XtuwJUn0Rj1Q7vZEZjxXyUn/SyvbMRKNC/5tFqdmr+zzi/N3a2gQEYUyCTa6gJ2WpWW+4Uzbk/HtOrpR5oMXujtvdvqtPWu/vHR2DJB5duwimVo5CD6Urh8OlO998rkep8tW1QcbDDvk4o3eC8bCPiJgna2im/qq169s9/Oqy79w6Wi0dfdBbrw9bvV7/4OBwtT5cn5jp9agzG09MEwYspt2qD5p+GOqK+IKIP4DEFz6ok+kcXT+SotIlYBFgI5S72Wq06AKy6hY6N9WqXBW6fE1XJLoss7vJfAaL+5FwQAiWfJD8MlOKJjLFEl2MdJnKulaxoQ+HtqTbx6rwGMi7ImjcXxApPlrtTeb7+8Sf52vsNo2nK8SUTme8wsa8ZTQUMlsC39FsNuzyhHAw5JjxMY+Y8ct8NeUuN12Cc/j/IPh3MWO59nJxcLi/XO2vqBZY7x2uORUQw0MgPFRIIlJmPBgv6EtOTk4vb925c+/+4/eevnj/5cuXr19/9q2vv//DH/34b37997/7w7/96T/++D//yx9+/w+//sUvfva9b3/x+SdPHt2/e/N03m0RW1MrxXyBTusYIeWb1vUW5FjIBuHGHagCWIFoVfp8Eea7Yn8ZdwJvQ6FtHQvDKNsnVLVUh7KpFzRBvMsJASTnOqHvSa+qX6xFcRsbmuwdsUQT8HMXCUrsOOyPsRrDjpnJCOQxUQJSoQ6O8YJJnMMf0Z9OszEneiM8wsSIjrd3IuxqkdxYWiRTvOqTYMUN8xbU5DB7TsXoMMvmkWBBtV3DtpwW0ne69HQP0TMBIkJRDbDG2BjxPEBop4WTqlF3RAqPLRIDoAxuOpZpWm6LutMTrW5crK1Ot+XwQJousg4HDXcHI15sxtgaNjLYd3aNR2A7Qr/3XDE3a/6hLoCMkKoGIpIj3nN3PcNY0zAZ9OkvgoIGPskKHch0OMMkOBLl1gS9YOGAO73g6jTMudeQWkcSafrCZDqhnr16/fLFixdPn334+vXH9M8nrz96+fTxy/ffu3f/6fvPn714/uGDedPo0L3S7rT6TaWsGjVFxBVgy8I06qDryCqwWt2u3ewMCXfb7S774oxxS0zaVKHoVcIWE3b1dEyqxjtvMQvvG9h9q5UpoPltAPa+DcDuTM+tJ/8Pb+63CIC/+sQboHY5m29HSHOuHggjsNcjJpy8f8pwv2m3CoIcCHhD0SASXjn6JZzKl4uZRCJXa1iSUstJw5OhavZarWZVUvQ6AFiHJrw9oNdt2HS6vaZUtnrtpm2YZeJMuaIG9quraEGbbahu0tFoMo5sSV62iosrPRmLJK4sVGAiBv945I3nclj4301Do53ezaY3bfNEIgPRJOG0Np60MFBp0GFqNgh/EUPVo4fQgLjObtmK7uhqa9xpd4em3qunCOFLNaNWMxyIsOKbV2XTcOb38JK4gbebrgWRTax+YIpF1Xi0atsEwMuRVlD0ar7mNNpD5HEMzJZat1Te5KxoUqaqleR6Z9wtCcNk+E2K9EGhkffxSgjiVjB+5gh3emKkWs22dLtGAFyQFZWuyZqqmfZuvalLeSrOi+WCIsshr9CgitEGnXSYSwTYYzAWkp3mcN7IpdJK0Rw0u412t0EA3GxzZ8yoWJkdj3B5uGIxdGh6kY2I9nqr1TOSSalYbg+bUmtQtAe9uixJdlvdfndzmQWwquURPpg4DbdTiYZUSOVS/sL57SdKMNZ7nio+tjtUv0M/spgSU+OE9/X++UU0tW7IjenE0iaffu+zdblgNA0i/aPcDis6RG5uKBakp8RWpWGn82/n0VTx42enPx7dpbPM7g5my4OjZn/YPzo92VvtL47quYNJd9If6JYFBzTLtjoW/HCSsQSdDYndJJ3pQtcpRlgsIEWCrljTy+Tg/ACrVhVWI4bJeSjcBawTITH0msE2sEoNQS059DBxPrPYws/AwoIlQotoKB6Nsm/Rbi7PO65FOpSrVQv7qx0cnsNRbzSjJ2WBrvQeD5L39sGgF1BGc6t5zu4RvDnTEy3IMW9LYYdmOpmyrbbgzjMw4sV8umByTQDMWzfr1R4BMP/8Q3oDIT84EE3y40M0zg/2IQkDMs9Zez1bCMfN8ZhV4PQ4TmFBdefB42fPX3706RdffvX1977//R/++G+++fWv/+63//gPv/nlX//kr35EjPnrzz95/frDZ48ePrxz7fr149XBHt1pLaOcpluaavltKjRdIbbrysgSMN/GLNnvDbp7mL4ggWMgFBdSrVAwwkkTQdfkKxTmwT29Fwv5XTftMGphP7+oUd7aCIuZpEvXmHczC8cMOig2bKI4eoRGiW3fovwSQnEaQaIjD5/Zyl8cRQkRMRWHXFjsf2LVhjeWo0JGkxA9bMiv2RoltNmnjXK/LEYnGcq9cgWaPzTskJXZ7bHcmt5G0w7IMqTOPZ4NdyCUQQ3ZdcxGp9eymPdymxmaK7S04QeC3Vl+B1IsLtKQwAd8JpRFYB+ruIG1AyGrBvjy5hTXc/ibRxzHTOQaNrEjOJawVyfrCakexPL6crWar1jcMJszOhOqoxZo4TQo5fLZNDr8cbzQPqHFwpMsGvgJ7fKTb7169vjVBx9+9NEHLz98ziFVjx89ffrwzr1n9In3n7283ScqR+UDndbtoVGuKFXFFGFE6F6iP9/QDYTn0pNElQL0EAMO26A6Fe6hQ0ens1HR6G7Hc6urRH7e8e78Ofi+LZ9yT3gGYPpve8c19fZuUNTLBz8fcL6rzvSG/+78GRv2vA3Jb/9+xYgFBfd43hpIs2kwa7ADbz9GPMwdwgKPLwz7mgj3rCNse5MolHPRaMkw1ZKqlponB4bRJHpp8liMKiS9Cb8pAqPRetHtTnvVnDqcdSyEsucVuSSpak2u1bWqrBIDBgBnkHcZFZKJRMI1K4V4QphlR4VFJ2zYeEqNzgZKqzjiO1gdxu6jwjYHPvBVIrlOD4IwOjCb8HHFJdZrw3fDBgjLVDmY3UGbmJitmVIqUyyXanWVcLnVHeixbSGGe/sJ9ImUP0GNd9ydoR1PMBEL8wZHKBogAG4QAM8GiuRoWUk3bCyWjqfjbktCJLwu5XJlS0mVtWrN7Ix6ktig9Af8rorY1aK4Q2E/R54Jg/toXJIVugoJgEu5AqFCXa/qTdPu1npOtVCiJ68kEQOuRdhgwRV18TWEYw23fSgRrrXr3YmVie/KJbPvtK1mx9AIw9EvowJbNisFJJZw8HgULSTek8O5hWdeG3QHDtUBpXJ71MlWO/lCS5WIFrb6VsC36aQH3G66j/3mQ4H4Tq5Rbx32l/uzY9yzxdxBvnQbUXZjdqwATGBQul7vnVzGEsuRXrO77cMfXWsmoyVVqxmW1RjnfaKzyKm5yYTPnzcbhamxq79IJQvS6SPz6bC/HHfmq9F8cXDUGAx7x0eHq8Xe8tTJH866o04XjY0G6mHbMYjzxrJRzpwR1/QmKhCkK4rjPsJjLcByDKclb8/DswlW8AXOUCkxHFviJ2JqB6UMhnstUECDZS6lcjGfoy/NZfO5VDyciAaj3KwEIggbSSJJcXo0iXQCsQVZOpORvcZ7AAhJgxp34DIWHIDIxCV8XhHSzods/TFdbBgLpFtIs5/yb3yGjtF7FBtTCOlj7yjCYDg/rA9EFCAyhXgb6sjNATw4Obs4PTk+xAj9cG+5WJ2eiFzBsxOEIxweAN5Z1z2gh0QPa84ipOlib//47PqNmzefP33vMbHmp69evf7iq6+++osf//D7f/2rn//8t7/82U//9g///A+//sff/uqnP/z26w+ePrqDv+iAQMLRpUI2QQjqFYF/2BIRE2YIAKmARBCKiCCDOx22Dvw+13fY7wnyRCAYhVNTIBAJCzldXGizfV4P04dQxG1Zs+01lEFiZ87N/GLHCPT4eNVSWMtytEpoEwgU4jgSdrbGQkk0xnl/QGR2YOAVT+QmJKHdw+2DhSCsj6RTjNjJ7G4yHnNFrmDKQU6sCkGxIeKGomLihzgAJFio8HACccBeUo/RZYyXHDCNzke3P+JFZZ5EEHPdMFsmsQPs5DAswc4a4NSDEQiScNlHpMVrTVzD8T4zfY0wchuwsg+/0vvwJGEABgJPuPbjX9j8fL1EPUa/7+0fITfjGJtxx6fnZ2fIyTjaR/IFMdMu3SKcNlAu5AulfDqeVPaef0Qo++rVR69ePnv2/sMH9+/d5bfbN27ee3Dv8f07j84cewhDOrqVWsN6VTPUmo7kPrvTbdpNB3FbDtN/eogEufgfJMoPP3F2gh0NGqqhqohLqiOSVgNav3PFN9965y3y6nUBd8ulvBsAfoOeQoO143OR9v8AwJ4/h+P/H0H2XlkdvoEUn7vO6rYQd1w8dtehADXbHl8kXdFq1TwyQyOpQrVayKSSebkciZT1mmwYZe34eq8GAX3TkCsQ8tuNuqlVSmW1ORjO6JUYGPmCs1y0DQUKYEMrl6rIe9K1SlVv2NApyCmcReFo1CWyvALFkQtJEc8CqQQLIJMcJs0h1BGYxkdDaJCGXfwKCL4eDOcLRrfdsJtoPzc7HewC4DIU/RwEOirlit7qttqt3rAhKxUEPhAAU93ktHt9PcY9f7/PpcA7IiphA7uu0EjMvIJYgSOURL8lWnUa/dl0PqgZrVq2qmuNHnd1Bn0ro1pdU86mMlJDyVQNqs+6w25JLHW4JfkmSujNRjjihJi+wgi2JMtW3bSVRClfrOmKrknWwOLAi6wk5ZKxklRQdQJgHCvezWvsInkQDbFEWGlprXE9HU1WiQE77bqNcGTMxO2Wadq1Rh0L7YQfVJIjfUuryXB32/X64nTeKT3izJFoqVjujNqS09OKpoRdvFZL3WTAeFwhtNfn2doBePsjcq7evnXtbPXg9uXZ4dmBHu7fyd02On1kRPEOxXy+d7h/uLfeP76eiE4t1Wq3Tam2SyS/KpvduuU4o2IgEnCfmS1/1LsdkhuVaH8nYOu+SDTzaBBIjsuPxu2L5Xw8PTi0BqPeCdqtB+vzTmZ/2hu1e/Q/ZNvsAd6oo8xLR5nhxjbGTsL+2sdOKzvIMQq5Oa+8eSPaQGwAImJPsRUZYrPjBGeb5UTaqIzlOrwhy1NH6efAyrZWkyVNMZSShFFJPp9BQE1SMKkEVmETwvUdZoOCNXH0Nu/PcEcnn8sRJuucRAoqRDWiOEp7A7GFslzPsYsCdrLeWy8Wa+Tcg6Rgs0nYL/Lwl2fILMter4Vd8WLBuuwV0BguxvDFPDg+4riiAzpcD8TbIVTd0JGJjF/6Eoy0V8u9oz3+C/dQTC14oQo/fP8Q9hZzIt1nJ8eXt25ev3/v4bOPPv/219/59lff/dFP/uabX/7y5z/92S9+87vf/fYf/+kf/+6bn/7kB19/9uGzJ0+eXpyfHq3ndJK2LBQxuRi9FtyT3naNsUXCkJ9TeoXbIU+O0aMJcwAPCLJvZ2M2jQ+FW4iQcnlccarInQj42f8rEgly+A8BbMBtXru5tiKNj/MIAMrBzbpnCIHgyO2LuwEV8FugCyIVRrmWwIyDIxsTuFKiro0wet9hfDYWCVGVG4+wGDbCitckhxFyYBW+MeVqwJk6sjIMkXD5Ql41YGWPxEee4UBRxXfRiHnoaDJ0HWSwYYApMCMqoS3GHugoD4V1NWo1TIiHmPUOWVPQ5+51X8TUD1woH20MRVjSxwvvbBXG7enxBMjPtp6jfZYILveWe3t04x3AOgZi/D1Ol6Q6DxZwB3uLSX+4d35+dnF+7dqNa5cXF5ecVQWx4jHysE4OT05Pr60bFpGgjtNsdsYDi2pwwlEiaqbdaRJbsOv1Nj9Y3rNudZFd1WtzS38yHvZgaGZrLCrjzHts29B9/86bgS+/c7Wu8TYAX+Xbev8TjRXnMZ9yolP95wAs9po2X311Cr7BZc9bx+Pbo+erR7P5lNiweTtpN+jxxJQ2tnjkTCSeq1RNp14p5LJFtRqLFGrlqqNVZzdXqtntOO2mrhQkRacz01Llci5b1p3hdLXoG+VctbeaNPVquSrJmlqtqpsWtEEATM+lHIFPvHB1ZKEiO4nTSYkkjSjr3+E0yxw56b7BWicJrRi2qVy7AHdyTWw0U+/QYd4CALcI4TFd6dq6bKIDDTaklYp6u2V3rfawJZd1vVoqFNW6rGoWVZx6IuDuN26syngIfFVB4flBywyd2hAW39FbisQCUbll9yeTxZjKkjzxfLPRxwyGrlM1pXcmdiWZzElaOVerV9VGDyIs129FLFi+ifLzb8yEsAcM8ze6q9GCJphU4qVcsWbAGMbuKIo9ahu5akUvpqRSplJTwsBsn5BxiUKKZ9co/KMhuVnvThuZeKpaMKnIrJum08CR3mp16XfVgtNYrYaK0eAlOx46GWmflx6BT+4SACfjpUKp3TPVkVzXlFpDqirNdiNTEVP4YhG7IBC0JEOxhG8rlDUL8vykOFnM1gfHN88vnx1WFlpnv64OYaJMRwc2XekoP1zTyX8zHZ4O9Ga3szeTZb1WKNUtGWEnw1I0zuny+Ln0bCeqaqGsVHwRX3Q34o/Me77U9fmL6fB4tj+erg6IAfdPT472949Wp63d9bg3bvcaWCGxcHTZdjSS3E2INmIiwbbx/o0CgkdXbt6QT6TVXGVdBrm087n2i2LBL8RyxQgCybHlFY5hsAzTgfRuplAsZPPlCjvIqDX0hAwHId9cANrQkeiqIpeLUiFfyuTTyV2IfWLwoSBIjoteaDiKPCOIioIBdpJHqzRJeF8gRlFk/QNW5mXeeEPmJsw1wX0At8ilR6D90eHx6RmvTMHfg4gvYgIAl3MBmuw3IjaU8R4dnaA0cAo5PDrd51whAbpYXF4JXfcRr1Id0bO8Wu4f7h+cQFK2Xu8fblTgp8f81x0s91dzqotGo9liiq2zFf/50fHF+dm12w8eP37x/ssXL15+/Pn3vvud73zvh3/11998883P/+anP/nJr7752c9+/otvfv6r3/zqh5+8ePr03p2bZ3tUQjimVs2nolHoIzxu1BD8sLep5vMEAp6Az4MdZEgRQWKjiG/0QSvn3lhMbFk8F3TdEv1wcAqwy4TI+xHJUhvPS5HrE3AzfsOu+svPjeVweBP9G3KDcyNskUzAHI2LvFyEN7IcLC7+2WUXyHQWE2c6uThlFftOYv0pJpi0sF7API49EIX7o3jE4SAV5NFQAN4lqUw2y5IXuaaJFC/kjLA2GqI9dm6ZcOMEO1Owvh6NB+6eFIuv6IM5b6xP2HgNw4YB96aZFfdFU5pnqyMXgKfCdGY8FEpvd9mdPqACb7EYD/ojdKUXS3ZQxyyDJZZ0HbCFK10QZwfrBfox2I1H6bfg63CGdes1zNH3iEqvel2n028DgCeLjkGXdqNDR6nVHPQdw+l0CGSHMw4DFUvVGG2LimGICfBkaKt1JM1wPi8hDXyV33Ghb1uAncez4/nPhNXlDm/1jnc2PEZQ5p1tnPpb/wcAFppVj8BuEUbpvQJ4D4eRbmTRnjejZ/GAXADe5tVR7xUAbx6cN5ypQUDc1guptKTTOdJtyPC+NtTdaEYqaQ29e+PEVNr9tt2y1Upeqhk23IWVUprYXs3qdOvwNK0RD2noilKVKjUOQGQAlip6o9HttlvVIOuF/JzqwilsfmExItaogjyog/JC7ExxvBWipKLgzdgO2diTiLWRQMhX0CqS0WpBu9CEdVyv027UpLLVbLV4G0nLpmtEJgDAHaWgNzWpUDYs4pVWs9PVUyJ7POy2oDjilfe4Au5ZjZChAJtFh+JhKMcBwMGo2m4yAJulcFwqKY7dG8LCfzKoprTuwJZSmVKpks9puqRYvXGvuMlcD4Rc2b7P1aS7i0k8QYRfAt2vZcI7s04AXMgV6enT6rqp5SSj0S6WyrV6PlEmANYwA0afxCdAxc+ZEpCSBmHnXOvY/ZmdT6WkXH3U6dGh3WR5WrPdJFDQzLTv3XeFdBXyepQYcLaBbREdPUq3M3TisWK+TN+ptiNaveQ0ylLVbrcUBE1Zog3r2A7MoBWjFtxO1NTUchbvdhLecNlZ7w0PDjpKRT0vNxmA6R5dLKZzolJUNh/u385FV/vW+GB2ukRUnaoZjZZjt1qDajrPAjupXNbLlbptaaWckc2Ed0IhbyRhp83MyaPlbH+5Xg/Hg4VDtyRBCBXVq5NOej0eTAmALXcFzWq2UwTAMU4lwzZ8OByLB6/W8b0c+exlORBmuDuuboNn/ztsC+461HFP5OrG9bmsKRJyVbjBMGzzo26oCiJjieNkdnezmVyRSpWySPk2dNvEM48RV4PVLQhCqVUlCS4z2LrLQYSYzeXTCQhxowk31zeEtHTktqbZryiZhAIVCe2YW7OXY0UqV2qQ/GGCXTexKwWFLJZV0EKEzzS6hgJpj444q28N9F0vMSXew8LUkmfFokdNEEz4e0QYewAEPTw92YN67pjQ92CfkR085nBf+HwdrPHOyfHh+vT06Ozy7JgqosPjM6I4h/s4kQ+P4DUyG4+It4vYihVWly8uL6/funP/4ZOnn3zy2bd/8JOf//Kf/+f//tP/8x9//I//+NMf/8e//OFf/vW//Mv//fu//emPfvDZ55+8fPrk8b1rxLX7lqwUylk6HILbm0CpnZ1NqBTX5aK6DQZD/o2TEb20eCm3sYMP4suqLq6qgn53WsyZUu6bO8LFDFqYPAXefguGhGcY98ADjObg17geuJsNjQg0fwhMw2pPPIFiDQbO3NhL7WYRIiiafXDvRz4F0v4iwk8kCrId44OOkw8iok+OHVuxdRsMb+wReeEnnc2VkUSgalR3NhHuNGKEhH3qSiAeL73RuzzDFXGM7KnJ3rBCpSVMOfsi9Yst4vDJITtnY++OV9O5RU2FNF1YC7pe1rDQFDjN4m/ekQZFF02Y1f58Mp3zbQ+RAtgyyjW6eNhMBG40h7gOD+bTxXxKIDubdBB6arc0Q6vpdotNSVAYYM4y4g46GkHDMaRsEJNhLWBgYbIpmt8AYOQMvSMQb/td3xsG/J/7xx6hrxIU1yM2g980kAHAUBCK3Xiv5+2On6v/pw+2XLzdEfjq9bl/7HE7zGI/VAiL3gDw2yR4g8LuB1tJ1awRXWtIibTatmWz2azT/1BVrWvZaKIo183m3nmnanfahGZ1pVggALboHLZqyGXKF4qylE6XlbJsO3VDUy0Cb4meFQTo1TYMuNsBAKPJ7krB3ARA8T63UAMbf9mNFzuGruwARuCETlJgs88j2GMgkMsmJPYIpSOcpYW2WSPCQADswAvLUVNJrYsV5EGvqRW1jikLK0rdbHUJgDcr0m4edZTVliFhByoAk+8rXzBAbIXt7gDAMQLgwXS6GBmpYFKqaE2nTRfraDHtSLsVSzNKWUXKS/kM8oAJgIkB80/xb9bmAsIlCPeUUBX6BADT7RoRLei6XYvnM0UNu84IY1DL1QZxLVVJhgrljFxnAMbLzPIunyuyDkVDkXg0FlJ7Tn9qZpKJYs4YtHt4Hhomb2XV4arVzGxttFtXsSzvvuthEhHyS06zq0djxaLUHTqDQXlUL6y7yCY2ZX+EfQuSu7v0ioOYUWXWswLbWVUyjrLmRJbpRyS6t/bb5fJ01elXl8SIoOuB2+Ly6AD34fH6ViF2dNqanBydzOn7zEpJrest4ueDWrW20bfXFKttwOInFw0nl7olpfZbEaOdOW0uTvaOFoOxPelQEUR0b7l3uDobAIDn3R5kUw3e9HC6hXicHVd3oQiikzCRinDtJwohvxgaejdPoFg+DfBGmNhcEi+WEIUF3BNaiBYxpXSDKjnUD8J4ob4JxUKExwDLq/R1doIgwpslVN7NS8WKIpUqFUz+INcmqszTEiStYS3KqClYlVeVSrlYRDB5Fosyu4Iuo+WZTGK7lXVCkAMlML2hH8/x2Zl0CpRsN4+hNJVMNVXRjToRi4YjxNSjIQynsSPFcX4Cbk+ODw6OsCKGBWbeoNpfrw45lRf0lwCUvp7OUrbvEgBMEHxw1bTe34NNCSohbF4drNcE2gdnGBIewUuM/iOKTah8cUGfwimMpaw9ZPix/ZhQoa33j85v3r1z8+GTlx998q3v/ugHf/nTX/7t3/39737997/9zW//8M9/wLrUP/3zf/3v//t//Y9/+s2vf/aDz7787ve/enljb9BtNup6rVouZlORoA+LywzJbi97O7DpMdFL5o/EOeYH8EX3Osux2fJ4jtZ66AAAIABJREFUYxm+4cIBkQolFmJF5q0gwUyOAZARWIr4Ya/tZwYedufKCJni0wR/CFyPAYFBK0DTI8K7H+AaFtoA3LCcL4VOIPp/YNQgHrjTglT0h3ifWbj887qy6MiwFzecCegO9ovtQZGblEmlUMQitlalaqw9QJrEcDJZipbEvlhbX++7lBaL5EgYYYcXsdMkJswjTquAFn/Ii0vc8iZsXkwGxEdBjOHJxbp8tj9nistUdw5YpmqLfdQxgJpwE2wqhhfsuwpkXk0X6/UxxiCHx0cHR+enZ5eX5+fX7t6+drzCj+hBXNYb9ZF/0W53OTmSHsCM7V7BxKmasGu6CSFGXRf4S2/vCJs+rK/wfpHH5/O+1W1+0xt+G4Dxn4vBXi66sQbMQLuDK8rjsmY+KoW1JX2FyC17q7vMkOrZOExvjCVchBWSB/d913+LN5Q3wB5K5BDUq+TTuyWrqWXpxDaIgqh1U8tH40WjbvT3B5XakA7KrqNXsnmqvCw432tSWa4WdjEvzpSlomTWVb1Wc5xaLiNplqnBj0MjAHYcDLPkIDakIAPj/w/PFhNxj4gE8oqVVl6R3jiYYJlqG6cdkJB+9V3FGYiBXSgRDGuDFlboIDDEqivxX8WqO0Q2TNN0lETKHvU63f7EMRtyvW2q5aJcI2ZitXpdLSnmfu4xi1oTtyf8Jl2P1aBrshrwh+OoS+HNFAnG9XZzSKXbUE3u5quaaTcIgLvDxbhRyRXUQq0sOXKuSkxVl7VGb9QpskEuUjU3019RcxPdRtcYHlw7SEMKh+lmlJSabeoEwLl0USOepFANY9lpqSYn8zUpGiyW6ZkVKmi6VlwG7Gfu5qeHSOQpUG23+uN6LpEoZPV+q0uclbgqYKlNpbKhdotbXNxto/UK21SvB/tIOETCiYjc7gzr8STRs1a/Oey01ungwiyU5U5X23536128bW2962abesuzXjJRb1eejLVRbThe9aO+oL1clItds9es9GZUi8/YOGK+d4KVocPT5Y1C9GS/3V+dnvUVmF0rsma2nVZzYBjsRAnnm3qzRSS4msvKFSnhROdfP61Ei93LRJNY9Ml6Pp1b81GvPTk5IVDfmx5308vRaNEf4DpwbNTPjV41HUtlCLOiSTgiRSLJVMRdxsN1v+2hIxkRQRwA5NsWe/tiH5xepO1NQ2pTJjLS+r0h93UT1wxscXnnHt8KJ5Rg2B8OeMNBoe5lhQ+ftHTUwpguTA8nsYuguQR3IFO5Yj6dzhdKJTieIyO7VpFqumY0YPwAaDYtE+IWuqeqskqFWKVGl3elnMtkMuyRnMpkUolkFPvj8VQqFk0l4+FIQqA1kufigP9srpjmdb9SOVeq4Dmv1/W6gwUYOp7BicZIiuQhHoEywnWPDyCl3lsdrZfr1WwOqjyHLmyNtWP8shRd7eVyPpmtiQof7BGtWR5i93kF60xQ4wMEFZ2cIcoX9iCnZ2enFxeA47PLCyTcExc+PQVnJhRfr/eX09Ux+3LO2aqZKNPJxfXbt6/fvP/w/uOXH3/0yV/85Y9/+evf/cu//8e//7d//e///sc//ts//eabv/7R977z1RefvHj+5PHDe3du0Q+CKXwbRSs9tyluRPs8Lk1G+pePX1/U9awhxG+BoN9tPm86VIFNK5tfQMSAv4Fn0YqOhALcjQCSRpgkYKom/pDqtwhE27yf4/W5wXjI2g7xpcCVPphyKMDhtQSdLMymqo3jbOnvZDtDBl13sMz6L/oIaQmI4RFyrhCTZsTzin0uH5IFuUfjvqG3HUvhxS+Wy3SV0SXltOHxBb+1BSHjfEZIuBgvxSvKNjEsg2aDkWEf/Wf+GvbMHo+WM0btGRHT+XQ4RDDJ1F1TZwifu05wswn8d2aI8ZyOp4zKPGHus3wQP3I4nyEicjzo0feBKC8Wq+Nr1wiGD+dUMIzH6336dvTW52PMsmFLw3tTfV7To09M20QLLSpXtbrJHSBV09/JZbGksJuGCyQnJESCVxFhfhGzg7PP79k0tTzbQmzFja5NAo8wh2PC6/rO/PkIWZBc0UXexNoJWy3X/tLnzos9GyH2lkfg8GbM7HNV0qJFDvVOIl+WCploNFUqlwhdG612s0FoOjCTiXROKQwOhprZG2Mg7mjlTFWqqNAZN/VKWdYtR0UAVq6cLxOIq4raGKjZnFJnAFbqdaWi1Z1Wp9+sRHc4fndr06HHWvSVStwn1NtYgHZxlt4J+lxG79topHzeQNQvWj5QZSQ0y7Bt+Lq128R669g8NuoN5PXYtlPZzWqdfnvc7DumqdQHDVUuVzStqtFZ3apF/e5GUMDn2WIAwlQowGYbiJX0Q2LvD7rW5BjRROIIFa/ZTRhxDOTcbq4s1QwDGvnpbODYaa0st3LVDqy8spJGYNoedAtXgybs2iI1QaTOBIJiq47T01HsxmPhJLr7qmZXk+l8icDdgFuYqacreiJeU7P5eKmaLde0EE4PiLeE5y6brMGIIxql80RpdgaLeiKWyPEeMCCNuKFtmk3DsUzFzG8Jm/4dNtTYYav+LU/It4WHWHHsvrGbKBdq/WYnJx337ZlcqVZqPctguwW8aNt4LbbfJQSLasdmum+1nuqjWmPx/PTuftrvix8dynunjlml+nu5WE2Wk9VitqIDmmjS4cnJbur4oLO42D9ZFSugaVW6lJoOwg9Ns9W0m8hT7ttVRDcV5Xwio0bT79/X/dnmfm96eEK07OC8b/I2x9kpUg+O9oe5yawzm+KiZf2kY/Xa1SgdkSn0h5PRYDKC3kDQH/bt+EV/UtjVcNvF79v2eYUJiNfn3zRhRDQBvWQen5gJ8x9yRh9Q1x3ji1wKYdru84d3NvIEfIvQxQWRiMZkWXgpuzEWuHwjSEZPEGQiIxebTYlciiA1nS3BrIbDSGoai+RAjgmYLdvS2XLAhlmQTmUkFbg14jvEetinH31vBBekMmJNBOEGoM+ibyGyYXdT8Sj0jnmpnCsgJzCXyWJXqiKrJjskt/sjTp1YrPYO4KxFIHl8gn8PVgSr+xwUAcuuJRuLsMkI0VpC8L3lGpJqKrb2sZy8nI3mcL8+OthHvxqtayAxePf+0RF9QPhLoMxknKj46dkJgfQ5oBk+3PT+0epoD1qvvdV0Rdx6tZwLSdneHv3p+fXbd+48w27Lowd3Hjx4+Ogh3h49hjn28xfPnz8lSH5w9xYd6WcHS6r+nXpNUcq53WQMLWqXDXnFltSWYD8+vqVg0+UGSIXdznMEEkk+Edw3V8MSw6g5GA54RB8t5O4h8TqUOyUTo7ar0AK3gxdwtzkC7nXDtVqILZWZowtHsKCrCYsmAoS99LrxNhRwJZmm/2LBWDIOJX8kGQjHBLUnPh1mf0nxFhJLDqLBwxbInFkZwqYQTMFyhXIV9ZjVgNEF26KylTmr8Var9WLhlkRUaRHyDkVMGCExe3TO5sMJlWXz8QAx2gMiyjw7norgKaxZjVjX1e+x1BoYPBoMESo2gvcbBtfzKW9DYbOo2xWBzJhMoy89Ak6za81iuZlhTxFQQT8Kqy7cNIfdF9Yr7VYHXdB3EK2LwD2EDVSQa1hCzgd8dtJQnmMkFXPtTgXH8ruGSxuvJHaI3rScPR4kmWxtv5kFu+otL4YfHrgguMzadY7zbPrZG8GW96014A07BlP2Ct8n10YJi8mx3V2upGOJdFGq6M2eUzdt2xo2imUpm+uOBw2rM+z22k7D1OWyJFV1Ou5aVk2qNYejQb2U3qXbPUsoXlUJdbpasVzTDUPRajVDl6uG6bTaRIki7obVVdrQVQOeD/Yt9yFf6cfYC1sMyV3yz0ekUMZwRFkwpRLfxeK43YKfniJVauznijxgkwhvvqRCjd9tNpW82TWVSlmp61Wl3mh1alGvqHr8bFqO85KrHV/QL9zw/Jv9aLp1RN8I1WsoolnOaDaeD2vJKBUuqmX1Bn3iEqOOIRmqbafrrXJZknOyUZHtzqhXvGpibs7eEKdYswjEzeDgHd5YPJIqVuGI2pCSqXxZUZEmRU+oJNXyoYKtZIu7pUq6XFNDPjji4+FivSnErpYerCjH6GhQiQHP6qlUTirUBy0AcKNRJ1pJz4it6YqV3fJ5fW/r/zwesHIY2wS8kmUPzHi8nFOGnY40bIwHtqXl89WebbK3wo57rdFTRsQxPbvXzdbS1wfZmrNQ7YP59T2/v+IrdJ6th7XmhAB4vpysiSoJACZadXycShzsN6dnh6frUq2mVCqK2ezA0r6hWyYVfVh2bPVtRVWJrZXT+WIuLJvWfs8cDhfr62d7p0fTuVwoQaFE365bdqfXNNdLKqm77DQw7PfhFWRKBbrxEhzcGYkEcbASniJMl80VUXR44WstWJCrSOdDkeP4mL1CPstrK+zZTS8/f63fj2/j/VSfi8NQFdLLgbObb+NomCmWjy39PH63x+IXjW/6yAedBlEyUKmg6zPk7i4xaUZnUnQexeZ7WsQDoS2dI8JcKlcVeuYkSYdZH135RJhNgy57OAJxgKWGzUhgN0bMpZJUhN1TvkjMmY1FYAmVzuwmkhFmVFFOkUukMrtIQciCk9MFXK0qJcL3msG8qQM3EPgir/fYEvuAQyZEH5rXm4DLyJqASxeR6DVyHXHGQvPFwrADTu0luD09PeCdlpNjnkzTJ7ADdQI6fIb0p8vLI4Dz+cXZyTGm08cnh8Bo+jrYX+P3fd6uOjiCx8kRgfgh2t2E3/Tb+eW16zduXz+/vHX3zvV79+/do//uPnr44N7du3fu3L93/8Hd6xcXB3ur+XTU7zo2VjbSKcTsuUoAMTf2iePUL14zbB+yJM8dMYfiME3mCRnLn6MbCZ84LUJXGmtXsYLOV9Dvhr24EfZc5IXEERNgmsS0C5pAnI+cRRV2JWT8HkTcoaB7rfAaM8vAoM1Oo78tTCN59hF2I3qiXC2Irjh39KA5ccM0WHvNM206RfjiDvP3QPxXqsg1uOX3CPY4jxOTC9bI04u6XK73F+y7xunWbit7DEe4xdANWuZ5ByGou248FDYfo9FsCgl3dyjwlBve4wlhPG9HDUXONn4iXLtcaTYG0ryB5Waqjd8KIlvgW6aA9gGdx4T874xEgCRyMVoIMbcb4jZQEcFH90KVboZSibMrcggBTHNBKvZeRRSUcOFkuxjfxpjS1Sp7tjbzYHxye8vl0Igf83Fr+Y0IevvN5NgNhXiz6QpId/VbXrEJRV8STmeTUSgHQsFYsVJWG46hEoPtznoqQZq56JtGezJqdZtouiMizyECMuipUl7prZbThlnJJJNxiELLVLhbFm58Kq5ktM/UqmJYxE97zWqYI0zf2Cy7ZohXgnAXgK8Kh213o9k99tkVG3jFSwM8wA3Gq4jaY4+3OiIbSlV4qbAa1qRDSCnlK41Ba2g3u/lMe+BoUqmmVWpqHVaU8R2RhhrY7B5xfxx9KmDblYGkSBqC2ziVvPFkKFyvN4ZT+kdPRWKZsmpa3dGg3RmPujIdiD0j13WKuVw5U9Ek2emNezlXusEVMJvTBzlsVaTIsITKG4gIXWWqJOtW3bArqUxRogtHlnVVKlfq+m5EduSCUq5I2ZKsBHkZN8AyLPSieQyBSpoeZEhu9Ydzczedk3L6oNXFxralNJpms960azrygHfEZbPtcfX2uLL8Qda2VRrOoB5NSNnqsN3szHySlJWkYl7uNPStLa+7ohX2iXZLe3bvprpbKXd2td74YNKspg9fWc5TJdjsp4Zys9vvr2azEQIL5qvDveUB3bvHJ7vxvYP2+OT4Yl1SDa1ahflrm+7NrtMc9GBVQVeZrdNTqWlKuaAohbRTkw/6Y/Pa+uz2yeGNPbs16PZbqAebzW7XoeLX7LSIuzUcTqPpdvsdbOqjyB7zDYn8806HikdVrlbLuUwBuIaCysfPAbBYcCHPxpjELVg5B5VO56i7jwoADohYjnDQf8V2hSEyvRTsqUvHo2uWHBT59uEohvxX0boCsPEDQ156CDvQIPIskYcd+Ishi8OP93EGOo8T+RSNCj8J+ieZAYzuEtNFnh+00sUiTDIVeBchwM3AcMwSuwB0azR46wxxoLAaqVVlulOkUrGUzWSJNRfglcwcHLY4UbHrCi+cOKF0nIA5DnV6ll1kETtjYAULVopdrLBAW7XP20xnZ5enh6cXZ6es5zomtgul1sGBkGxhHdkdHZ+dn58Cby+JAB8TQz46BDyfnIAPA3LPLy8xPiY0vgAvPmddFz6m7zsj2kwge3l2cnZx7ZL+6PLyHOiOkTZ30PELxHn0xUfiq28Qqz69QBjFjRu3bt24defu3fsPHz16eP+9J0/ee+/x48cP792+c/fendv016ynHVOTK2V0EBJ8f77Rw745f6kCC0YRjCskm2HXTBmJB7CZpY/YcWeTS4EmIzPqoDC/3kSCc2nH14b4xCZH0usVLsysDmVxFxTZ/uAmJpKb4/iXBTIRztFh5MUmMxUHUaHi4+jaWDSe4lh5Zn38U4OCGgdDMfZ4DrqMPSSu8jdjF37QEeLcuZIEF2AdYuTecIogGgwjuA6iJ/ryEOaoY6qQV4BlqsBgD0MY6tqaAy2hp6IrhWBy2B3AzhkxLbzUPuj3WBmGPx2xUReCbaDnEh/2kX8hFq94X544tpBtj8eusdeg2+6NiVXP3tlbwtFmCd/0CfPtPvKnmg67fxIumAZKVAOKaRVN65qM1B+pgtWOApPlLFrYuyK1iCN92Vs16D4xbzk3cbPWbVVvZs2eP99D4vkeqzvfEnIJniz0W1fQvBNOpmJBLs7DibxUUtHfotJhOW/VFK25bFqN9nDU7wDTYFZq9VYHh8thq5LPSC06Yq2mnEokY4ndbC5fLleIt1VL6URe1pEppSKNsEkldEsO8fjX9/bj4avbt3EkuQLgHXdgjQmx13O1KS0GxjCrAwCjPoxXjEabUzEsabdYkiTFoCfYcmzE2tl6VVLYsVvrdQlSRk0AsFpQVLPZG5qpnY0jlSh4RGKCj+XF7DjP03Te9gkJPTa86MKRumENJ8PJyCoQzSzTYYcZcH/SM8s1gk/VnDjFbLaYLityrdUbdTNeV90R2ABwQCitxY0oHoLwtAsli1W1XjdtKZUmAFaI/SLCWDXVkqRbDbNlGyqak8hUx3fvbMbnoHP+CKSZsWCVXqt5fTdFD0EbtduaQbRSdVomvacRqJsZN+vGd7UK7uWWrM9L97Paafe12G41Uxk0ifpELFnPVSslrePosEyA8lQAFf3uN3oXk1ymJOez+sTuXM9H0s27dx6+7CSGUf+oaOz3h3uL6WC1XiwXa7pJD5Z7B6dnmcTeyWB+enK6kIjhS5W60yDQbVimM+i32oOeY5m9ftvp9HttE2Y/HWcwXRhdY3336PrF6eX5QLN5vNAmotxHtU03aq/X7w2wXsEmPxOY8o1mk6HwX0Q7FFlDy+XZydHx4XpNhz0WaCAWpS+iAwAtAgKuGmyukG3Ocfdvbz1vM1J72MGOc6jE+SnE0OGocAGKRDfbZsLOHk6jcH5wE+uxw8paAJ+P7RrdAAM/O7WLtSgf78uI+F13J4XfCQdYbBO8KuQEMkcC0WjICwM7YVQch0KLUwcQY0/3Yr5QJC5bqQKSNdgG6QZbigCZLbgMWXV2P9RRVcuyXCpLpUI+C+kXZF0E7rkUBF/EmJE4Htskk7MCDPl+xKqJjtP3sUG2rtuW0ex3m4iQOjw6Pb9+eXlxee3atfOLa9eQa3x26jahxZ4x9pPXh+wBwqLq/dNTzIovrx0enZycnF+7cf3atcsLQmEQYno7QhTy+dk5IzN9fH5KgHx+/cYN+hDrpuc3blwnmD0/O728dn58dHp5cY2/noD3+s3bd27fvokvuHHn/l2C23v0661bt+nt7r1HDx48evb++5wc/+WXX3774w9fPH3v4b27z58+vnv99Gj/cDUZ9NoNQyoX0vEIJ01cXR0s9hFXh59Doui1xtnBgq0gm3+ITnDA75rweD1XS28BPgpCb9ER1ys4yM4wQiUNmPVhT3rTEg+FdkIRKux8bpM7EHGTalkqHQ4F3U45B7wgpYhj7niujMloJJx0s+OjbnY8my4wY2bL8wgvS0fCbncmHN7xCsU45nF4REipgMcbpiLITZxPxuhW74MFLzEjgCsqYe5MzH7BoxeEwkvsRGCNH+g4ETboTHJ5E4oH03OeQndY/SXewIBZCAabTUi22ayVoRi2Jfzd7UaTzol+9x0q5g5Q0q1ZsL9Cdii+pdcX1iSYUWHFvsGJPfCgNeumqesGVBEbXEYWPZRs5TLIMt1CRXEs8EoFT+TFygxKbd9Vji03krc2XepNg9Hn2yi9PG9myG9bYLmqaUY0EDN6L5bIVer0iJSy0lx3a1qHSgzN7ExGdOCpdJYbdacz2Ts73Z+09Fw2L5m9HjEWKZnJ08lFN2W+UNZURS4kolmtWa9UdE2uGSYAuC0Hd3YCXs+fGYZctaCvLLSFM9gGiLkpcxVKxN8TiHJKCl3TkVAkUzVbXfimOFo2ki5U6aQxdKMBd3O7QURKqWP6WVFmvWpr1LNkSdL0clnGxoae9InxqY/3CL2b5RMex/tcABazePyddFES9UGGhWwSA6aLoill03lJrevt/qA3nHTUqlSUivpi5pSKuVJWrtXUZnfYyfiulB0uDm8AWNxAvB/MJW00mChWZL1uWqVEKldSatgypxrCInbX7/cI9Ad0xFWrcoATs/C6+q6y0X3QitOtFqz1ur2xRrVBKVEbtlu1eqPumI6t16vZXE6R1LT3yh7QFVPxewFe0ah1Wj01TgAsEQDLurasDxuDUrHebes+ng3w9GPL7w36tjxFbSxH06l0KJsf5pV7Rd/o5OLxiVmpHKUCC6k+6/T3FvPBcjmjcpkAb59uztPzbHLveLI6PzmYVOuGUijqTUJ6HT0v+jusjqmY3Tk7B/TbnckEUyFnPOiOZ+8dXdy4vHk5wX63ZbWbCJhwWnzjdUwHlriuKf58fniA5cSFyF3HaiLSBKHwJSaOw4H7alhoPT4+3CMIOMYqDX3ujP2gDtA9nXM27LAH9X7TrqNTGccYIrBx02HPdR/7RmwxgWbFhdDvBNnIQ8wKWcfDGkL/xo3Lx/sl6ORA90N0xifk2BDViWg/VzHv9g4DEb/QXYtldR4n8xnuCWE0GXKvKzqXgcZ+b8DVFIZ9rmw3zrkCHAYE164S9pap9qc6my5RHW4iMN+EprSOKRrqb6UqlaUqUUEsIVdkWUJxmy8QPMM5Z3eXN2uEDUWS09RSiAvMZVL5SjGbySNaparA35PqRoc4zwTbMWCzF9euEy5fv3mL3u7evnn92vnJIUa/cOE6cqkzi7botbgg9CV8vQSIX7958zqAF4nHcHegT11AbX2K965dXsPXXrt+7caNmzdvXL917/bF6cUNwOutm9cubt2+A7C9e+vO/fv3bt+4Rp+8SYh869Gjx48e3L//4Ol7GB4/efzsyZNnz5/j3/cePbh3B7tSj58+f/nhBx9+9PrTzz7//ItvffH5Z5+8fv306XsPbhF9P1pPBy1DyibjYElCX4MLwuuavOI3aA2Eab+7XR4Sxo2bAhwudEGRAYCVQOF+6AuinEJEk0uuvVu8PedzX2lfKErFtpcdMEX3RDTVxJ9GcC2EN4scKOnEkiUijLDCHIyIB8HjZlEeCAYspsfRaNCdIzNvjmKvisk4h2yEgm4Eqs8nRN+hkI8YOB39WSlfolddNeptWOAthAk5EHkOZd764Bh7UaslJ3zRHT4EA+Yp8VSsMk0n7tsUyun5fM4AjLhF5sBEnocjYZcOfTZbH8Fjs9cbdbqYH7c3AIwC7gg7EvMZCnJO9GQU7rOrZ9Nuik2nHt3bhBQIo0KWAItAwTENsT0IeTX6SXKVI+sryKsXLjtYGsxlMjmByxz7yz3sEIv6RJUs8grdPrX7i5vmKsLYYTEBAQ7B3kY1h4lkIJiSDNPRcyl52LIag+mwaTRb3dHAoVqhTvep3Z8fnR4v+o5eiaaLMMPWrLqUk7VKNorAzlyhRmVEKZMqO526JBELVnUC4O6gVQ16dgI+z45ns/+0gdzNfvOm0+zOr11VNAB4520AjoUifOkFwgRYstlCJWOZSiYWy1aQM4zwjCYfKXWNmXw5qa4HFrHUehUuFOUyQVqzrSVd/ZJXhCNwEDNzdHc3N3AFwIj6AwBH4nDdqdj2cA4dXimdLkiqZWJPbTBsGzq9PGlzf2wWS/lSVtFkxekMuzn/lQiLLQFcyiNSkfgTYXe0EwsliU9gR6WcyhaIq6PhINec8ZIoHKHHoN+p62qhVAEAe7bc8T+ePmKnO9h9oBohqHQ7vYmWTKYLMZk4pWY2iFXT9SRLiUxBU+qVbKnEQ5BMgq8dKr58/rDwMfBJjUZXiyfLxIDbtt2uYSneymTr7WZFeAhu88HiAwNONdrNRCCVSOWrzmU56SSCs2v3HzfidfmsHeiXnUazu14shsvlZAEQXBLn3Ds5yybXe6Pl2dFqSNeFCYWRUlDM1mjoGC1i69Vqe9puOK1Gs2UhqqxptJ1efTB7fu305PLu/T2r0anT/dLt1JudSa+LKHObvh7ePkhx5cR0+h239wLuyRhQzdircbo4hD8jj7J4hHhycHx6cnh8ep3O9Ytz+oUPflCtY3Cr4+NrIFs49c/P8cfnxKvoxt4/JHge9Zp2A1mR5WI+ixRtQCtvG7iiW/gsilsOsi2Pz82n5652GEkDVENGMYsLEL7yiRkSjhEBtyGN9RfuGIZDEb9bZXGxHRQZ4AGqo3Y2wrFN0rTfNZW58qpBU9QXdNdXXGFPEMNl4XycTCR302y8TpSmJCuyQkeOzHMzAk8YDZlEmHnfg24oAzRBVTV8VbVSrWFnTCoVi8UchtS7ydhuko4AmH3B9IkT/RJYeKW/I5vJFTBbJuyvqcS9seg5Goxn6yN6fs8urgsyeufOXYIQL1ThAAAgAElEQVTK2/cJ++7cvHZ+SYyY/vSY+O7h4cnZGb9MpycnN4DHN65f0NcT4OJfcGUgM6E74JhwGlz47r37Dx5CHn3n3r07d+49uPfw8SPYIt65c5s+evT4zl1YJN57ABB++Ojx4xfPn73/8sMPP3r14YcfIMzn2VPWcj24ffc+4fFtwuP3nr744NVH3/76+z/43ve+/8Ovv/r2X3z91WeffPLh8/ceP75/58a1s4PFqNcxqH4pFTLpFOzzdrh/wgZfbxQ+Gw9Cbj9FfEKM4tscgkSKWQUdFVZF9It/G+WZV+zIIV4KtBgZUqzPhh8sLNyE5joS47lFKCgcE/icCQnRl/AWYY8SmLEKuOUTYNOxZqN0jmuE8QLmYuDQSRFikYwEwdUinKMMaYXblEH1waczPA6CrhE2Fp/pLV+UKjB05V3lyWg0Jx6MFK/FYu9of80mHXOO7uLhrpjyjkB4B8OBCCqBsQgbcDAtHg44jbDf58obIZCNRtuC7/yg/44rRYDyjxB/iZhPNhtBeDMHMvcEFW53hCv2kBC8S1jscK6Vw3aBjc0bXfA616MqT3R0vKexxquGXUFVrvJtwKjMk+UcgTLStnZ505vjK9heRVCuzRvHWIiJBs/+3oi+2LSS6qx4tqLX5Xyp3jWc8bxHD6TfaRJvRzSj0+qO5+uD/alTqxQy8Wy5ouiGatVklZ6FIrz30rsZXkQrFrW2o0tVQ8NktNXp9p1yCF3xHa9ng7OIwvNyruwbR5KNksxFYVdzdmUDxtm5oYgwqwkGUpJitp0mOglyNhlOFiRYoti8BwxHfVOtSJqdimtjerW6g3oV8UplCG/bPT3BHrEbyTX+Ap79+qhK2HFFFW4L2h9NxHnHPh6m46XWcgYzulzaxUymKNVMqwc31l67ZSlKKWf02mqxXCylq0pFcbojdwbsqmKFCnbDfAWZwe8iHyCUlGTFsP4/ut6DWZI0uw6bee+V995mZlVWuvLe+3retPfe9/TMzqybBbBYYEFgl1h4y8VSWBIgJAARAJYgpQCCBAmEBEpiMBSUFPxJuud+Wa9nGaua6dfdz1ZXfnnPNeeeQwCcyOQkjUVOS5Xh/uHBYjoZtCqET4qclGVKFz7cE61nx+6HH4rZpdMH5rbXW2y0+1MrGo5lomqn0aajI2fBO8ukk1m5oldN3WSKjqGXxUxBqxplM44Ky+uSAMDRSD5Z6DWbRleTe5ZGJY1ZrcjesNe+rSlFQew383rB50/FQlFv4mhclN2Vtnb4oKvpqdFhqZJpTVsdKiX78zmUGCApu1ytj8/Ssc1yuDg+XPTpCVQrRlGRW51GuV7VVJ0uT74y6cGeqN7qNDuNWrNTHvXbg8qtm+cXZ1funzQrjWrFapQbjUqnxUPgdq/bqNfRg+pAiLQLtx+6melWFQryYHCA0UHRnrVuYWIACR/hYAC7Pmy78ibsEXi5oAFdobrr2rWrBLsU0a/f4rhO70WH9ByjyPMLxPsrN2+i53l2wqPK0+MDlkCgcNLGQpxKRWM6HmbP2z2xAPN+irjLNyBTtrYiEKLCsCkgYjmd8zJwwXhjxs30a7cQhPB6L8eIqIzFkMpjq9QwLGOGvJWjcMHRwO0Qa1QUJ7Ha7uTGDGssi1oJwdbPGy/cw8byCsCVkkqVh8d6ibNZw6Iw0IB6Wku3A5ShoVlTUqAsUpRQJ6fBuY4lINdPsVuEoxB934h4B2EzFc2JKOja8KyQYG0GPYnOYMp+EvunV65cu0FgSQB6F0Sqmzdu37vP1e0VSonOTgV/+hRIe4PQ+uZ1LqlvUGlLV4pK4/Mr165eMCXr6rXrt+/cp2L30ZMHjx7df/DkxYs3L58/par3/rPnz588IPC9TZXuo6cvXj159IhJ1G/fvnn75s2rly9fEQ6/eP6cYPclqmCC5KePCWoJve8TLt97/Ojx0ycP6deDe49evXv39tNPPv7oDX0JAfhbOAB9/NGrZ/dv37x5gtlyr91UpGwqRpXtVmfPZZMOHHsf7rAL7TbquTj3QtOYM+RQyItSQfgkIy6BAMZ7jS5BDrPbaza/WrAJ7FU4n+2/vBXi2/4ZxEFbVtBrz3t9zJIOhMKCA84OFehVB5gTyMpImJNF4CPM0tZ4cuFINIa1N9C/CHXRmmTel8fGG48YpXBNjf2qMOV7mIwoBAu1aqXRHk54lxiuYULndLWar7DKtlqy6YhwAeMt5ZE9GKZSGMvJLCfS7xDMFDVK6XqdD2zxc+zFzaaL1QIqMINBb4u/7XqrBVmIdguhAtNlFMWdFvs5t9tNOtZ4sN4YLCOhM1s2dIRhC573opzDgzDZwEiHYBhYzJBcKMgUzGC1m6XsVJFz2VQWmrTJeDyTSuDg8/ohOvzQgREyP7xf4WC9J7q6cCV2E85kiiWp1OpW+v1Rt2w1u81GnfPfSrU1nK8361G/Xkgnwr5csagUzFq1XNTq7V49T3lujO6xdCqVp1LTaJR1RTW1omFC96Jbzfn3PrT1P34MgF3ClVZg8O7uewD+cM8WK9njJs4eNKsBmmJMgfOUKBm1brNslht1LR3zBaOZIhKCeqPKrhpVs5iXzWYoZlA8rw7a9M9SC8jzzWqrq9trSC5bn4FJqmzV4mV2sWBieZgWGQgDgENQuvH6tGa9N6Esralksxg6m832aDYiPKjomiSX1IopqZKUUIqK2uyNuqld96X3grgFvPb8h4GYTY3cPnYR90YohplV08hEUxnM0EsU2BqL1Xg4aJiGWSoYiiyldIkSpQ+FUIvds0Jf3xP04Nl5S/V6Z1KOxdNKRm/XO2VN1nOWpFjhIIVUQ9HxPU12GmEU1rWSnDcr8V0n0Ftt1jtaIppPFTr1ZtQy3VVJnmaSVJVbSgNKF5CPLlc7JSnmUgvltMMDd0m/d3qgyK7CVBuf71/tpxPGpF8nJO0vZ5PudDSYEcwt51CpOznPJA4348Xp8bLHAu5FtdzWLWRpakFSjJK5fzEatfvDZr1dqzSajZYxbDRbV56f3rx66/qtnkZHr9UY0K3SGtZ6La6AW5D5opR23Op2QcNqQzJ2SDfXiCVCh0N6J2B4ynbm09mcnQUW8+lyMVtu9g/W+yzWw6JQK+g0HoDjuVgz2Xd/udys9o+OCWHPrpyfX7125eIqMPpczCGpVD49QceLAHh/I+Qcha7UZrOE7jLEGo8Wo8l00O0266BHUL6cAiJhh8Vtb8aLOYxbtKlce4K0E/DZEv5iRoy1NZEBiW62L+iFyL9bdGtwQ3txoN1bvjWGhizYwIYFLo+NtG63k5vWaE9iNOmHcpOQCfOJTVduS/If0LAUstWReDIOLhY2kLPxdEbwsWWMl1UCZvhglJHZVeplSrfpDbrPtq13AS5S2XQ2hxIBJJdkNIz7KQj1iBC/DbPUJ5v+UfnA3zubU4qaiZy/3Z+s4ANxdv0GatH79x88QmV6/8H1W7dvYqx7HdnSNeAvl9E3UfDeuHHn/s279+/duXP/8R2wrh4+fHDn4ZPHhMG3Hz16/OTpU/oe6DvTN3vyDNXu85fPnj57ReXvm5cvYc4I4MVn0VfcpwL50ePHz56/fPPRx1/69JN3H719+/r542cvXr169uj5u7f0ma/evsSnUol9/97t2zeRCly7BeB/9Ozl8xevP/ro408+/ezTT96+eHz/zu1b1y5ODgkqxq1GzSjkUnHQqt0OMdDYtZ140QIJhoOsD8gbcO+F83xuutYOb0DMsDzbhThO5DzOHSYawHHZVtmz+aTcj3bb6xgeXrDcSo+Ih80BdgkZTnEOUOsIzg3rmIdwCLk2DwqJEPC9fOEYFDX9/nAU+pwRUMEIvsMCssX3wYzNRQfU7RW7Alu6A9X60RBnYjmpyGkY1VP1NswTuyz0gfnVnOXPlyxDTig96nbRl56wQCVVPnXTqNI5qX/AaTTdtbMNVSxYX5pS9t7pDVswaO60mz1h64j6t8e9bdgh1xrtJqhaVPvSG0ixwyKlXqtYBtyZCPeqKFTwKFPKaelWxYQAmUYVA37TNSZQaIBlCmiEx7paEv9hu09VZYnwOJ+jIw2P6jT+SySTSYjAxwRPLsJipB64h6GPEI3lNezptMftsm5W63XsOBi6VWv0Ies76FLKkU+Ewuks4X21Wa7olVav39IlJRWilz1BN6dUlNJUbZVkxbRKxXIFs7qq5HaKSe92CsxyI18gu2xH1HvvPZz4g07H3vsxNkcfD+dY7pCka0a1VqlSQaSrii8STxfgi0F/Bw263Kql41a/GQ6Vy/Vad1nP6wZ2X/KaWWu2yxEuf93v+W3bg2h3yN3iAMM9yg9GBBWYBMG+oFWrQPF82shn0yBN1RD1YfrVVgq6FUvrDUJ9Oa8W8qV6f9zK7NokG/gWeLa4yzMgFy8YcuzjrDIYoaIDACcns3lUwJS+6M0J9r3Q5ZBUqjIKxULWu7N9wZxMZ4aqyZ4ngA60z1dotwZjKxlNqgm106rV1byU1dVaA8FTMYpmwhPGyI5KHCyc5uSikk0rOa+L7aby5XrPCCflTKHTbScDQ2e2Xc3F4ioq5XrVsAyt1ijW8q5AyBWJZ5JeRzANA1BX+lo14eqcjbrLs4F1ooW6wwoV/7Xppttm3VhuQa9Wq+PzdGS2GW8OVwedRDqTL2hU42OMUdJgP5rXpqsp3UQHh+hXbw6ODjZ0Uy1O3i1v3z6/endeqTWrlSbuNhhPQnN+QDcVvfwtKnt7U/jmjgYdqOt1mLKJ7cLRpGfTJwez+XA4n7N4ANSd5nbKvYRwIqs8HRwdbjj95rWL5doWVQatBE0z1olarQHOWKkBPwf6i8dnVy7OjkHS5dLshEowLM8SZJweQlUZLF9Wl6Kfs7+/gQMhRZM5VmF6w1G/06BUyKJAnExEA8IT17MVqrtsV4nbY1uxeP1btTYhFcfiik5U0Qi9WJ7yUZB2e11OdCo9ENj0uBw+j8vuWbPKm9NlN2L8NgfWzYUyFMHEFMu7FUkGvLMEZ8Dm+/oC7AoEwnQ0nkhEEpAUyWfzmbSkKFqRjUrLeINeHpvLEz5jFZeuckHhNwUpLUlguCRAwmbhBEh9weIORr5CHhnEoYAvyvpQ0VSUzizBctEs19GIW+8fn55cuXXzyu1rN2/fvPfgxh163L5978GDO3ceUqH6mIpcKnwf3nuOMpUer54/ffby1fMnj+lB2Prs2ZMnL57du3Wb6uEnz14Adp89fUkF7EevX1Ct++LtixfPnz1/QX+mv1Fp/IJwmz6RoBYATdUxYPrliycP6GNPHz189OwWFcOE2M8ePbxLCcAtfja3bly/eu0aOuRXb92lavshgfQzqqrpZz16+vAhof6TpwTu9BXXL86PNuvZsNMpo4ct5XOpKKT3sObkFKnZzuV/mHZ4HLagrYslVaFXhAEDxS+W9vX46EB4maUtsjb3Fm63O6n2TjrOiwM7UdgHYMkZG7DB8hQ+bja2ewQvgXflxCaKX5jIsBOzkH+DZkgoTJVwOA4ADgSDwswxhMp6K+LKNO0Q/000BMWmnnA2DPhtse1QJAbFmbRSLOlYZQWjajhZrCbQ1xv2J3TzY4rbAEyCRfkBUnzcsfP1PqTPJzNEBOhpEkx3oZ/O/edWGwNgkLswBK43mrA5w/chJN4Wv9UqnB7o/woU8xmAsVgA/r+hm6IbDf8mxtwSAy/kQDDAEQ/OTEvITjW1KGMJiqpVVRXvLigK1cuyUuABTjZN2UcuHaEEBWXanjeSkVXNopqiQk8BBNEa/WDDavQns9logGVgwoVsNJLMKzm5XDMr5eZg2Ktrkhr3x7KZWCQSS0u5tGxoJSqQzaJiYVW3XZXdjr0vbBs5nT/J9Pg9AG81wL5g8MTWPx7R0kCUCdPPMMSmBT0pNZJIZTULAFxnj+taoyIrrUElFbeMRn86U4utcqaoqTKlFY12NSYg1nOpq/DFbWn+gMP2S3LB3S7kpSydau+wVa9SBB9Om/ksEKRc5wVyCvpVqvfVRKHZUUsWJSCyXKr1Rq00BLCxXbK347zkXok9YCbfuIWKEmgOgXBeUXDhpVgqky2inY6lzoKcY2kGuvKqLEty2v3h3hfUxIWsmMPDOarfX2i1+hMzGU0UM+awpWPqawwqVj2bSSXzulpOuHaF/KcHnN49KBA4vV56Csi6pWqtq0XTSrbY7Xdd0VVIHQ6q0XipWi2l0vlssZhM62UfxB3DVLHEw+5IIpmTgw7neOhzTjc1Skuk4sKobwZWf9AuD9f9/mo+BN11PoVpwMlZKn5wNFzsb47asaJaMmD3p1to9ED2yzJykWAwGgn4QulMIpXK4t+tpE4+P7i4ceX+fgdiytUmK8jDeINN27odiNQ3YfcBkiNYFk3hkIrfms12Z+u/BlvvMYSJx9zMgpYeJJcOCGGx13rIYozQ7FvNJ5P5/smCkVdk1aCR4DfsXyzY7W8tlP1Ezs2AvF1r5b1UGL/QA/3qM2zDnJ5ggEw/5oBRnevttdDI5W9D7wA4LyB6MB1jvkWBha4/3dIZAilIooNr4xRmLfYCor3877xUXBKDX1CuWVNYuIiJvdKtrJsvIHSaAkFbosHl/qLGOn0pyhOXP+CxM1Gn3yZzMwFs2y6i20JEXQJHP+yeEC8j4Xgino7Ho/hLLMpTwFQaoUaRMI6i6sHibF6F8L5pQmgE/HON3aQkQmT0r9NZm+WSBB+bvhmzgcH4otcgIASU8WKEqGBOZPNZmdI4s95p9YeT2XJzeHJ8euXaxfnVWzdv3Lz74MFdbBjduU8Y/BKN5I8++uj5y9evCWufEoK+ffvi+as3b16/xq8Xr16+/Oij1x+9fPn6HX3aJ5988vG7t6+eQt2DHsDi54TZ9IdnKHYfUekM6H38AO+gSvrp/adPqaZ+8Oj5s8cP0D1nD747N6kcvn3vLhXmV69cXLl289atWyjJ7927BS7Y1XNsUl25duPm9Sv0/3V6zrdv4UFfRZh8ghWfKaVqHYqgpi5nk1EIq/i9jktmz/sxopgxehAIuBmy67YNHoG1vN8uFM5Fq9oXcNj7dvyL8jq0SOirdm22ttPv27JGxWjEXpdyem1nmR9TyhY0A7D+bM3qQJBtIelMRRiUgyF/gLvaoUv5X1vCdcs1E7stHmERRR/Y0sK37glowlOkDFC+pxCk9Fl7GMdJw1qdLH+wWKyxoTwVdOzZEHogvEaMJnSrCfPDOoxFG00eB/eg4gH8rTfgutSBmT0Y0tWyeFiEu6Bl2dQsdl5iFgQdWnCNNKZNl1Q7rywCb9WiWqAHaBIMx6pwUqEHqFGgWGOVD0wI+h+fBhFrRdULmbAPLSj650dycsliO3IsI9GPBaZV6u3RYj4bdZqgcZulQjYRz9BdpVKGUK13hr1G2ShZGaqdC6lYOJbMZPNUq6kFBbZIoCU3UQH/OAA7fhIAv6dg2VYWW3eirbC22/YnwW4cAFhn9cJaq1PTstmcbFi62IAEtbNa1fV6Q5dyeqEymnbVck9PqYbMT6hdiwtKg1gJuOzDbJFY2NaxIKbTBSeysB9uikFf0GxUKXgPZy0pm5WKermOS9kbDLr1Ss3QJGvQ1Kx6IaOoUqnaHTTTTqY9OxmA3/88PtQsBIIFeUFdCISlQgGVQ55ewUwBqESHC4EJzb4ifOGVvFTM+URTYPuCiQ1pTxCLKT6vQkdzbCaiiUKi2GlQ/tbu1q2gJ59NpJM5TatGd702xxb0Rq8/SLWSi+6+kJ9SZLlW7+rRlJymCrilKeNmLZevR2OKVVW8noAD3flAIuSLe3xJypg9YXcuRVlI2uvM1h2Zw3rBqGTdxZG1uhhpo1G3MtifDAnvsIc0p7x1DSWs+Ol+Z7K/f9jLm8J/uwzTXSyYW5pVcIFbTJhByfiOa2+XW1Zu88HZtdv373bq5RpEvus1uofoqreY01ipdECraHd7WD6jrKvVoJup3RL3FLR1uOXE/m1jtKbbI+H5AhiGRO18LaRybUTdP1jun5wcUF3MRrpUuy6BzLz0yAC9PtinqEgfXe8fMXgLeYL9rfH9/pr3UlH2sqayEFberFZHByyfvMLWLHZjN7BX5QVY1M1nFwfodEOdEfZtXDnzM2IN5hXuPkjTUxZfsXTocMjRaCzCVvQ2WfCS/8V8OToX9ALSEcc6ip+Hx3a3xesRQ2KeErqdu14beb1e0eJ0B7y7u94Ap6bebRks6GH257wnEWEG4nEKBh+VzBAf8YXDAa/Ht1UyhpRILB6hCpbwGapfsWwul8nkZaVYKHCZAFICBTu9iokbhTqpQEGMghUUE6g0SFGdgAUpfFmC6u0YK2HDaJI1Y/1Bp4/3NenmjLC3I6WEMnw+uP1B4HW4D13LG3du33346MGjZ69effSlzz777Ctf/eqnX/r0SwS07z7m4e3LV2/fvHn3FjD9EX3gS5/hr59+9qWPX715+/b1q5cvngJx6fH6FUrYV68YleE1/xhLS3fv37p/9+atm1evoey9jnb4DfqPkPTi4vrtW9euYix9jr2o03NWPz6/duv2DZANzihluLhygTVqkeGtOEGbL2CTcXB0cv3GjasXZ1eu3UINffMK5MIOVvPZjPCHIrEkWXohR1E35PW436/POdDJEPMNrnqht4NuB86C155A2oDtgLnaFySbdjCb9NoWnnv2WNoliDFuuz3z30VMQSkVjp5cPovK3NZ+s4fKHl7K4rV2TIRt/RmWTuf1Hsh6YYjMwYkOq62P4WVZGkFS5MzB6fEEM4pRZa0Hgsl6hVeISh/wfT2BCMgECpa9IZjP4Eq3Wt1Os9G2R7wNm43V7rYYkWtbAG7UBf0K9S/ww0T1S9CLapjF5wjsWehGs/lYXP8yzBbByYJ8XYnlhRiEhdcK9vMhzAUMhh6I4FTji0oKf3qxqGlKKiyEQHzBqAzKWr1W1os26dEsWfXeZLZYsKIBVfI1XUrFYpmiXixYdSEFWTURRYs5Gd87lU4lUvDepZ+qa0XVYgCufAGABfb+pBb0JQbz+NduQX+hIAahRJgo0OW4rICrtXavVshTzWkZQgoLFCyz3KrrJdPM5QpyqdmCfVU+rZtZAcDVuNA7cG+Hs/ZxZH8EocvB3EQct2A0yGKUOCRBvVUjAB7N23kBwLU2S6j1Gl2MynWr2Sg32lpeKUmlSrvfSDt9wr13z3G56eTazuLscZ3HL3b2wvmCYqiogNNZqcR1oV4qckKFOT+9nlRJaHk/t54/FC8JdoDxYnn8HmxmeaVaqzcy49F4QSkRTpnZlFbQEuFSiSpgAuByROwf7e5AUtyJhSSXYxfkWjwlqVbvW9GklCm02w0QE2rlRscolsya7HbFvRC4DUeC8B8IUIz2hR2lrJo2jLArVfbU2gmj1Gy70mZRW/ZK40W30lsvJtPReLGYr+fT6ZSQ7SgeP1u2lserZd/ieQsulDjwlqpWzHTAQyk4czgcnJAjA4pcPL1org8AjhArnmOcTBgGMiUs63vw7m62ekgOa1W+vxiAO50eUx97tm7dYDCaT0fDcc/2QmWhADgHCbn4KbwCRPRDCSyWlaDkJCSQV6hY2c3g6AhST1Q5U7FFAH0IEwN+ZpgAb2BMAJu/gw3WXtlFaF/AsgD6NfaPma9lj7QWcxZYxqT5BKPm41MMmK9e46kmRfDb10HapcdVLNncuH7j2pXzk6MDsT27nE3G0xFacTWqBigoUIrGLVwKV6B9UTpj4zKrLdrNRU5iPT5hDGRzo30+sf1EiW3A63TyohRTIgRTTGA2L1ZsA/HWTty144JUlGvP7eI1B5dwHBH9Sw7CqIR8ELNBIRQmnARLOojNSoLSBBW8Scxc8pj8yuj0WOB6cdMPWTQa1hSnFMpOJfol5/O8nJmUM8lULBiMJ/LpCFykwmxAidDucvmjQUg7wvQvFI8lMnlJUeEXXa23e3MCtqOzG/fu33vw/PXbT778pS9/7etf++pXv/bZV7/ylc+/9uln7968+ejdu08++/K718Detx9TKfwRoe67j97S+9++fsmPV6+pEH6CfvZTpnQ9eHiXAPj+/bt36QJdBW3vyjnWoC/Ob1yja3YVZG3sJZ9gxYqewNaX+fTkgtn2x0fXr2CEcXQI7tGYOzRz5gn2WAlqMm31p0j+eBSC7glLiB0eHfFPOTvGvAbijqN23SwSIkMK2XOpwgQ9CHuRYVeIEtvLyD6/01768NidDVEb7Oy42BAMIzjX+6zLFqEQ5D4ui51bPVbnZWImbA2ctq4rfqBrW9dA4IY5h16WE/FC0tMnnJvFKpQ/6MfWHD15sdvMBrY+Xoi22dzoqAdTeaoedcMS1GU6JYb6AWJJDRCLjd9ao8mtMCTnjQb/atgPztxb3HaGfwuXwTBharDdI8zeeE++YnOu9G39y0qXHJPZ/qG0fYDaWyQMllHd0kPBA0mgcDuj36BMJcmi+cwATH8ssIcpHeu8piSwZQOV+EA4rTV6TatULOlWie8EQqv2aL5aTIYtdmXstSqlTCySlHQKzNUa3SNmGY0A01CVXFbSynTDZCORVDqRU2AKXFQrFqgUlbzbVrd+b+70/wfAji3w8u+7X/SUQrUozEn8npCk64T/qIGbTSObgw60ptILVsHcnGJ7owlJr6RUKBX0slaxlFxeM/KybtXo+UScAnz5FPq8ttuN631LTkQZBmAss7OJCcUQAmCYVRMAZzJSUSMw71CmNWhbVdOoGZJkjHqdhprOFWUG4IzTXvPb+j4JiUs3t3I8NlHCxzpyVAEXFb3IAEzPEmMGDA0kXFhVA/O9SC+xknZfOmrYAMwZLx1TqoD9SrPVHRrJSFTOKZSamMlAXGqUc1Ihl6BrplqRHTuhwTIxiGa8tShWHJxSpdq1oulCXutRnlXXO/3ZZrnqN2otxeXeEd5vnr1IRslSHaNI6b1iulbSmxG/KsenzZIe0+cluTaR5z2jP2qatQHE2EfTCfxiIdx/fpaKn+z3VzQczpcAACAASURBVMeLSVuviPXTCkx88VuN4HLYMc2Mf2eHbmBh08GzePX8NJRGk0ejy201Ib7d64+mLI242VDMohLy9Oo+2FD7BwA9As71/mrJCjyIXeg4jwmqVqvpFBvCrA/PEvP8QfiWAmmXUNcbsR3qVJjoQgoX7WJ2oWfDl9kMY2E4CC227ekNbIGoIt6wUR8vs2Ll9RgCice80ooW9dGajXSxH8GAP4Ou7ngiNP0gs0vvm0zoJ/DEecbV+QJObliNxWbjjesUyenNHd6aefT4AVhCT5+gAsPjIe+3XqNQTAX8Al6qvSYFEUrfZNSS6RT0JiNBn3fv0uFUpLTbWwuGBRgOB7Ew6uc9Ueb+8zoU8x6FT59Q1rTLJdZB9WLlws0ERtcu/cfheMdeMHD5hPcjvgZhGet4TP/xCctlH5Y1IL8JwlcwSuBMoBmKQE2E5UQyRfY31eniIxDqqsnk6xIqCL0kF6xcMZ+WpVQumUwlIX+dSkZBTIA5JJOFAP5CaVAMIOHCG4oks/FECvdvmZWQJ4vV8dnZBVWsdz775JNPP/vy5z/ztS8R3r77mIrkj6gYfvvR21cvX7549vjBC8x/nz198uo5vfoPHz65D63LW9D0uHENS008+L04hSgYASu9OWI9MORq9A6QBjCt2N9QyrY+OD2FRieaHdh/pgt9AD2nGc72fArNxhFcgAiK6VzCv4iyxuFI6Euhq4Pd9/5wMsd9wDt09CCUp/wNamGH6MGsRoNuw1LlfCoRi2IswVR4oa54ua+8Y0sAi2LEZZfDvJzuZbk+596OTb13ipa0UzQnhRuM3cfe6lIIsHWw4an9cfp0rz1/dm8XsOyax5bo9W/Xmvha8Q6UEG7GUWGdELGWF/SHI7G8TuGWQRE7ThUIaqgfYHKRxV4Qpqt5WVVU1Jcl1KoGU5kBp6bgUyHtN5GR1RptVMBN9Ka5P12/7EJDngMrI3b7GRjHzsM6D35L25EuxicKluYvgdcGXAZgULDoz9ir54KYHsBr+oVqGO9TpFSAcxL6NwaiObNZMehpq0YFFGuDqrkZ5lKUZQ8okg67NcMoZhOJjKJrig6BL7ojKGcoa0o+m5GNWqPeqiiJaDIZzdOTUIuSgnEsANjz3wHwT2xBM+nKVuawW9CcuG1nwA6GSx8LBAUlgyJyHSV71VCyOZ1qAA0k3zL7slfQn65QVVXS65pR0XIq/bsLmirpVr3VLoed21rUJiN4bCNgsdbB5AOekREAiy0kAuFwKGxSBcwAnAMAl+gqdlBTNTSlVG7J8aQx6dX0fCpXkkvVTr+RdV4uatp/8Hu3XC+WXcCPZHJDIBiR1aKlG2YulspCCQuKCHQxRUdDxSUvSHkp6dr94gDdlspzQ+Q14PUXWs3OQCcAlmIS5YH1Yp7SoixUGOLJvF40wszg4uQH7C2sYxMMe3lc6JIr5ZYeTSn5UrdZqXbap8d0Z0+7tUpL2kFPeMdBcJ+qo+cwLKeLOYcca1jZVjxYTeQXhwf0b80MrPpp+ajX6rc7NavS6BPMEcBAGXi82D89T8cODtsQiO5prNdNF6+BeQHdCOWWWaBMapwNIErvOaE+Db9iqqs6pwEoSXnAVuM2qo/F8dHgjEbhiEk3XQlc3Bplv2w+Pp4vAFoHRycESKcoEq5SKDw/obi3EYvAG9TP4y+ovVNhREX2asbuQOv5hAe/hIVYV8QtINYhhgN7YxHuLzNsTUwW6xWKWgZYCHxwxYvKGJXy5gDULfDQDkRmAFgXBjQzYaUOHJ6xcAgi7nSyRIYAyxk4HbDrEAPyeM4G5+zoxlX20bGQprgLwQjCgrcffYLG6le+/o2f/ulvfP755598+sm7Tz5+++7NiyeP0CW9RQh9fkD/kEG7ZoIbIudScE8UxCovlaxCmxOrCFiVcrvfW1Nse9G+rUmBx+2281W6X/yAaWzZgYXrshftXF57Ku13i4PuFxYFIozvubaO2G6HUP5iojZEjyELhJDLw94Ar0L7QJgOw9sxEQsnqFxm2c1iqVwxrbph6TplcXS7GxyS6WMcEfPZFDjXKRAOk/jyqIjoQsbRJfbzmZHLFkeQhIokU6mMLKsG3JUno+n+ycnZ1Rs3b9+59/AJmFNvPqbHy9eog9+8BT3r8cNHT589e/b08cOH9x88vnfr7t1bt67fuEUQfO0qOs7n2F9DR+Ps+JiOwuHxCaEuy3Ni4D+bsHg26lw6StwjWU4GcGukB1yUxzNceCSE42FvDpMCeswgMEMHY8NyT/TBATiHbDk5FnrKMJ5cLjE0Odg/wCnhFenrV9nrYjNDGG+32jD6oPorFw8zx16YOG6VeXaE2QCOgtPuE4o2im0b696WKtv9Vo/XKU4L87XFfonzUt3LJVjW7stVWNdl/4QpqphCu7Z4LHrYPmH+KZjel50Y+txAumg2OwSZlbKhQUnG0ot0zdUP4pRixuFLALflWCKV4EcqBbnWTC6XZRloVrkCOvLMlqpo09LNik26AjKL+a8N04TvZSAw4y9YsWA76zYJ630FXOCH3XMG3woKl8BWWYI/JGUDiiTbnwWolviDbIAuFdR01Gc3693eSE6zCkXNMtHppl+V9mi2Xs+HWHWdzngZtaQVc+lUvqgVFbNGyYFaqnZ77apekDJypW5arW5Dk3LpeDhNCKUU8nLFKFcbBMBeBuBtObu395MAeG8LvWLNhgGYi2Ch/LSHIbCQyqcEOiSbOljQlMgYUq4gWeUi9Kc0k1/AqqVq4HCraqveMet1OUkpkSprqmLAnqkSFdtXdhUsRNK3TWGxyyF0iehWRQXMVp6BSDhaJgAejId2C1ozK41uv0MArNK/vpmJp8wapZtSLl+SNcyAs87LNQEb7/1Ct2abKroZgHlkFlWKCl1uKxdNZvLosOAWkTHJL4gyGHMFKene4VfF8X4ShwON8sPn8SqteruvJ2MxKVceNis1NZdJRTO6qVB1kC2pVniHzbf2Lve8eBXG53WA5qjWKs1SPCVliu1GuUG59NGV81Gdolw7v0M57Ic79AMjLTgnNMuZtJZ1ZcNVPdf0uRq5hHm0LNI3Lg8pDp4PBuAn163qYDyYLefz9WI6HUzXx6fJ6MGmNVwsDqag++PRgP9CG5Spfr/dalQrMCpw7Di8W0a6LxE7G3iCcUGO9Qsmpu2tLAK4TeMVipAh9haIxpMJsP6zkqLpFl2ZTpcF3+cbtG6PsCl6/Tqv+1JguoDSxtn+0cnhyfn54dnRej6drw+YAr1eLmB5i6AIgawZZGZtPXiM6ZZrVtZiPze2CaI/blYCY1lWayU8eIHEa57kzuaQnYdvDPe9sRYFZb7JZMgbjxRvqQ6muDtfXioDwX91ynIFaCXM4K6KYhk1Mv42ZhyfzUZTFMybzcWV66zi9Ordu0+++vWvfeNbP/cL3/nV3/zt3/6DP/j+H3z/d37jN3/9l3/xWz/1ta985fnzZw9unJ+ebmAaOR50mq2qVlQLdOvSKwj5LC6F2DliVzievidKXq4weyFmzTrV7D7h94rupOhSijBs7zG7hPQT24FBTcQnKiGwdj3bHjcfZvYQtDm6vCbvYdVjDDB5GwYCx0zr4QFiIAx/+3g6k6SKg7ml0N4zdTqhXPJYFUzsSlR0yJda/BgnJ+NYBgFLDH7LAeFD5PH78LzYHTToFb+jT55MpnP0rbEd0u2v0Wo5vXLt3p27D+7fffD0sU2rfvL88f2HD+/dO78GhY8796APgu4zBL1QEYONh3bIAYtfH+4vefhAR2sCeutwgoX1KYEyV8AEu5SIjcaErtCjGAzG9JcpkHfKXRt6AHCFeAV7H7AZLx+XqVjgoUwNzZvNCv0aYagAFuDhkYDk69AJo0KZEoQTyjyXs9l4QGm3qVP5SK9JKChclPbstvXurtOxK6yj9niadtmYtndGvA67/cy9Eff7rRJu0/HKMlsA2e1o5/vsjiAXWjU77Oxpt83pC7bihDZ1+1K315PVK/W6qVfLRgl9aKlQzKap2kMFnMpkkrF4FHc/9NoEGTCSSMA4O0oREALqmXSKmysQdgM2pzJ5hflRquADqmI/UwffuQTtc0x/Uf9qggNd4tGgAGAmWeUZbAkQC9x3Lm7/A/mQKl8FACznJQZcGbWwAGBMiSn/ySuZeMjWm3Z7g4lMlsnWVAIX9UpnxA2yUac9wLXuNywwwIrZZCJX1AoFZJ+VotUeDtu1iiXn9E4lLXebVV2V05FgMhlP0rFX6F9Qqb8H4B0BsTs7P6kF/V6r6z0VWjRbUQkDdDw+YcKJGTC+tZiaq+mcoZT1XI6wShddhqpp1GHZXarNOh2zU09mTUUqKLqslsvVZru6JWFtr7JXmDu6PVtlDltaiAJAOGILs/moArZatSEB8IwAOC+plD0RcHSo1FVLzXoZ5KmCQu+Xs5Ks1bpDALBYrXN67B/lE2QFF+seISJhr4TgIxiKwuVes8p5BmAw2HEw8kip6JoREitKQc5EdkGTsL8Zt3TERr0vQPHDX2zXW109EY1LSb1HpauWtmoFpWzJyVQsVVSrkR0ugHdgxwZvSOfeh86dvWDQ7aPvorZq9AUZkLBatSWFiHGvWW42qvVBcdf3oROmQjHKrxqNuhmL9QaZvXi4qgXaSW/e7ygclRsxl7P08jTffbw/oBSnRbnAbNajEpPAazTqzzYnp8nEybq/3Mw281aj1ekI9mF7AEOyXq3ZbvQnDTkX83O/khNhj9Oz57onu5VQBtxYqnbBj41DohhKD9hEjMRCME2IBC9F9ZjfIaQmvD57EVEYxsAkl0JvKpPNKpRoYlGm22l1elhNoli4f3Z2xEJYJ6cXkMfCxu8ZFDhOjvb3Ud5S9SJmtwtUu9yFPtwIv3PUvQhyyxXqX8Q60K42+9BGRhRk9z4CT/pBhOXz1Wi2WsLGRVQtowFuMTBehwNo1U/mopjZAi5rWnMz6r3I/RwlMk+QeVa9YgHcKSH6oE8Rmb4JVekE9DOqyim1uHnz3tNXb7/05W/+7M//4ne/9yvf+96v//Zv/sov/dJ3vvPtb/70T//UVz/5+NNP3rx+8/zB/Xs3L87OT+h7UfTvdjpwQMtRcAuzDRAmrE6xsbojhhJ7Djp5WEtmAGbyD/vsBry2LoSbN469woHXDSN5Dy+purb6jGIbwSv8eVkfDr/bKl9eh5tJFDv0cSbu20QKp9/nYg1Xp8Mf9ARiIb9Qqo7FgkGOwbkcRH0LqmDKqHYTkaIbtLxKakGF4KYkUejG5+VziVQyQclqHMvKIH2gO+CnmmTbchO/+fwi34vEk7FELp9TDJBlG93huE9XZn1IWdzp1WvnJ6fnDMA3bt6kcvgWFL5uXIdG18WVM/Sk2Zdxc7Cez/eXk/GC8rv5ECJQVPcO4FsgHPtwqen6T/qt1pBuIxj0iivOEhVAWvplGwcJ7WU6MJCDgboFuBLL6VRkgwTBgnW4WMA7gSrqMc839jkbRY1O+cHZBXgGkCS7eePaVeiD0hMc9zpwWkcrjpAC0k58/W1XMVv2DTLxuw5b3csBcznHjt0gcXjtnrZ762bgBOKy5JfL9uNmYzK3lyna2wmZ247DUChBoeAWlFg6KTmjDDv6sqHylZP1sl6ksvCDDGRd6KByoEgK+bWMkDaPs7x5MsGunIgdsVA4BpXzqCD08Qo6pWPxZCaborgu0eGRVd4nKhYw7wXSowNZVDVdLaqojagappNFp4nZWKiS6NMBvLA6AczC9IRlsuiQAXKVTBZ9GdGglrhYlqgkp6OXoh8f8gYjsWAopZRks2phCbXWHsw2B8tpv9eDXsm0225UmIVdzKfTMlXJdVMlqK62lvNOs6aVMrlWKxYqmlY2o6q5OCFWJI2F+pKiVxuNssqiE3s7XAOLGmxLtxIPYc3k4G1haB2Ku1t8iLLwD90s4MHapiLK+tWySklp2aqZ6UxRqWpsa04vFZoJ5arVbE/6Ja06aDT6w3qRLptpFGRdkTW91myaYd7P9WJPTpwQW4/AYzP87NkF2mfiXqR0mN4mCdSGo+F01JCxB6xSMdgZ9Nrdbk2vlEEEyxJkloopSc2VKt1hPWXncHTkPC4uM4Wkr8cjdFCA8y6m/gV8ccqKdEvTcslsJkOJFqa+KtPpMEbAVllBKUUdMKhgkwrbHHpvh74lXPSCfo9L67S6AyMZi0ops9GtGLVMsSR3tVgsF01lpUIttiPCl3j9ORXa+9Dho2BGzyJrNVq6Ek/ntMGgMupUrFq7Vav0u0Yj5Q05HEGHw2dWqCw36VVNu9Ipbzyh5XztZDAbCgYbkyPVFex/Zz9+59PRDCYYtUqtM6QSeAYRdoonB0dn6fT+4WhyPF4vOnSu4B7Whl56G2PdnuiirQ4re3RNwn6begudsFA6L6GMoQREylLYSyVT6Vw2k4SrKYxuU7lsClZ6mVQ8mkynhakJOLcEuFFhzOa3Fw5dAV/Q5XchVIf8vhBhtz8IX95QMsKVTgbNBghJ1OnZd1s9nrGtYS5w9eL84trVc/jwUAVxBjYUZJcujqmogPk8OM1Hh4dw+jk6QLsRJnlAYYJjKoVnkOYZ2+4whIuL0WAy6Q0wC2bDFyppJkOudGDdNpoAnWGairp4uVpMV9MxovGCVXaphhYBeoqYTAF1yvU49pnQYqfcYM5bVIT+C25jz+Ai04N47nTY642m3MneHBxfXL9599Gjh4+ev/nky59/89vf/Y3f/x9++C/+6I/++I/+6Pu/9Wu/9ss/91Pf+MbnX3739vXDq8dHG0oBxiypC7ENnarlJColeu2ChJHoW7IO8of43+He8Xj3dtxeXnGh8jgspBDB/kIGzYZeOzteJLzbUG275QpxHLvz7XJ60a/2e7dr+fbqlMsFb3UUWtzwdrp9rIAd4FkKtmyCQkgkFIwGRQs7QsVFhlM426GC/sewytDoVlNZvJq9pLR8rqhkMkUpk6PwJbFXDjbBEhF0sQNhiNHDS8j2yPII8XhWNvPDAYmgO44EL52VsEpogCQC/vpgNFmBBQ/dtBMWxj6nUvR4tQ8u1v76cM0zEUqa5kICCoLKYGPx3IHej840fwSWP8J9mWmIUE7mTrXAYUFp4JYIeP8TFnucUwZM32PG3RUmAU766JiIcciS00PWu6W8cgN6PiUShMuUQNy6c/vew4f374q9qptUMZ8ebeZ0UPvdGry38slUBB1JKHv9eBMbD7qqBM6C/iJY+E6nveW0rZ733nO37HeKFVCfFwMyDlEIT05wvLGa4g5LZWzpGLJaKiol0wL8QfLigxR0YpBFiS22VAySMfSgQAELQjzg60mQnKI4kchgPAGTbPYLjsfwHwWFKNxGoAWXirF+OiN3mtVhIL5K6EkhmdEY5mM4OmIQvF39ZfloFMJFgCzGvQS+iClygWJ4UcorPCPmVWBMhkuGWgAfIcngn8zQe0B4KNdbnfFqf7OcDLs9ys0pGW5ROWnAxqmYS6XlEkEcKE5WuT8Z1IwiBca8pUdjkpIMhdNyUU5ipEL/+oIqFyu1uimBVym4cUL58r/zh3BdNqAdX7T/2opw2GwsKAD5+Q7z+P1qBYO/SrWuxtIlzaKaHC0ETWcArpSpbu9ZtU6r0WjXipmUVTFNtWDIsmE2Wk0rerkOdNmCFqXwljJyaUjILWi2+aKbL1G26v3hcDZpyRkCYPZ66vbavW7NsHRZUrUiwXypkJGL2VKlM6glXEJ6HewCfOvL1sx2MuxmAPah3cUATDlNNkGJEda8+WpiWg9/dtg7UooR2hPMlx17adnt2PsQTWR2tPW4tWazPTSS0XgxW653G1YlU9IkKx+IKYmcXCrV4g42LPVs62a3G7YB7Kvj8ebL1VbLVPLxXLNTpyNQo7/35vNhZ5wPpl30OcnFIB4uFsyWldsLZuMEY0U5VA64ctFkuHWwaSUip59WlCd3j8eNVqNeJQgbjNCrXc6n8/Fk/+Akkdrs94f7g8WsCcAdsp8Ju46xExl4JZN1eY8AMeK1fQ0IQ+G0lTJ5tazeKFeb9Oj0NAt0x3qlYpkg+mdl7u8IF5MU5bppjrfpTC4DWUWxySIMf7KxdDybjTBFJ4zJIMGIH2ydAMxWg+IRjlAlBXVV3JAJLr7zeaiNg7vR6PT7qE4ohC2Pj04urhIWXwMHCpIL+J0KCYgownrn2tUL9t+jAnUxE+p6whCGMHYx6g3aVNxAXo9Knwl2pdCPZtcYbihSecSi9rMpFTYLtBKpsgE9m0twYK1dA69RHHHgnQt6GLPG6P0L/utyIfaVsTVFARrQzHIgsylqJzi6Qp1zuT442qcS7ubdBw/fvn73+c/+3Ld/6Xu/8Tu//c9+8IPf+8EPfv9Xf/Hnf+bzr3z503evXz5/+vDB/TuQojo4WKNTUqtVzJKSTYSzCb9gGu6BYeBklh9kdzjuOnb3PJfmYGF6veEE5mc3FHSBbbc+t03AoD/COorntZ6taZSHXQaYD8te22w6D59lrpj2duxwwqWyS7hIsnGAw8NzCjC+hIxTiENtLENRj8JzvsjLBqZlQv1XN8pGiYplwzR4WxMLn7JUUHI5ZIBZCsqxPCQGqcyI8cgxEo5DNZLO69bwXExJsPeFgg524oEwVqPzWUH5VkpGudnrU4o6ous9XdAVQdZ2jKuFnsoM13nBVxtmXkuQ8iABs7H31JijT9g54mxtBXIAmHwLuwM9WaBInoi29Ww+Ha7moonCIxMMj8dM/lvPFuIELbBEi2+IRG5JaIz3ExbjaR1iUwrc/KtXr8JLCoJkjx/cvn3n7u0b10DK318tWRejVrZUhUVYvcJl2S6Q92yh9C0yUwnBCZtzawz2nmjNMsDg4XsESZWdc6EUbAOwL6mCGqXqul5UQaeySjLMMj+I8IJaFJLIlHmHo1CJASYDkIG9kPXA75gKp5PpfCJNVzDJ1sD0SGLxPBaLR8N0NYWcMzj7kXAYb+HPCVFzwnfCSsI1+m55plrZTOciJr8YEqqiL62qNksLG0e8eFTgXWC0qMWWkkpfRvU0vE8odOWpEmYKlywZmkplbXcwXR/uz9n8aTQadFEKQRkA/+xcOiPrlRo2BapVvV4pE/LIuQQVpOl8oRDzhyWtKKVTMcjkZBWJPrlc1rJBj8tu9nIO67W5dtu0x+X4Ig36CyQj26BB4LKLx6Vs8OYPlCoavAtqZTme4/JI5QG5wQP0itmq11v1TgeDRktTJGiKlVQjp5jlVrtVjnsu1ylsCQPPjwHwZWuaADgMO1bctEF/3NSrXapVxlQBZ/KUv1hN9FL73YpWUiS1XC3X6kZJzhaVvFbtDKpxJ+sYQLrV53Z4PO+nGpfDZ5cA4GAgLhVVw6yY6QhlzybPGezdbQj+qbpRyitqaA/uTcJNUKzyOTHFJRR1YTCuNxudoU75upah3KBpyDGjpiZjoXQ2kZb1khlm5yz2WrZJYTBk9GOF0+HVmlajP+zoSaXXbSLPBGV/2C0bLSmlu3d35em9w3L2aNku+QP5nJKgXChXCBlBTykU9/dWs3omevNNtvv61nGn3mo2qpV6ZzCcLbmKW4yw/htPHRyNJ4fj/TWr0mBJqNmGqwksLTqsadKfVfZiQdgCuhEqw7ZOPIbkWBUMEWZigSWeoBcJrR4VGq0Vlq/Bmxr/T2/sXT14JsDuM5HLQoUWWg+5VDaZzbCUaDqdFzidTtCfM4l4ErUzpPVAoY3GII0cEZMkugWhlhiB10CUbl4Gd+4wKRgXqIYFzl+11u1j+X80XS/Xh1QZn129dnF8dIZlEyp82HLp+AhrROul6EmjroUhKuRtKSOhdHdIx2vILeaJEKm3m4xwipmOmDqNzvRkvO1QIzYvBB6v1xOOwNPpgtdJgclc4syXzMHG72sW44LxE4XxOUCZN6RWrJM/EzvSuOd7YyDzALzvo9PTK7fuP3z07PW719Bj/PLnP/Mz3/qF7/zKb/3+H/zoRz/6q7/6qx/96A9/8Lu//t1v/8znz549vnP9ytFyMx32W4acU7IxNlcVw2HHnu3E5eB6yeX07WDdm9IevkkCwlcGawkcl1nRWPgvQ16CknDntqVk67i7YUAkYrgQxWbWEHc6RZLrFM1ur80k40rZJzav/D7xA9n8h7dkgxx1wxHC1DRVzMlMDg5SskLxlPL3StWyagYFGMMw0ZBUxO4Uj5YzMmaQ6MlQiE/SgcEUEkZJPPrw2x7SeArs73dpAwxp3SAdL4yZqfgxzDo2Zzq9fm844WvFumyHR8ydhuAay7lg7Y1ZCoSX++sJ1UrQc4Oq6mZ7DuY8wJivoOgGN+Y5sJzOwmxFSRg92AtwNJmJteOZmHgQ9jIpDLkYc/03WInHeINq9zWo3PtYmcOPP0LX5+SccBn7VlevQR8bLlI3bly/en5yfAhYhidRq17WoEeaSiUiAVZwE3IyvGbMdC/hGbQFZGwtOXdd3Blx7jhAu3bAN5vl6t0evzOq4FazSsV8Nl+kiF6S0TBWPvC/l/jgJmlwezEpXESgfxqJxDGcSCTxXzIbBeZmMlnmaeFu5kcqQfk7VmnjPCtG1xr+X5RmsaQ5/EVQGLPaOXra8QS7mVCRnYIBaF6yuc686C4WkYpwFCsVCpphtzRV5iopICuUqLCisotAWOG+DIG1oZU749FgSJdyAl8ZOK5CXojwFtIcdPQoByzSOSlXq0alViJk0AqGkY2WW9iI1pPhXL2SS0tSmp5yNJlNpaguLBUzYeYzIrUNBLyXfuZMBMaMx/XeXvGSZsePrUOS4Lx7hHU0oZo/oFWhHkrPQsqrMgS4isLLmGfAFaNhUqnbqYOTXuSqvlJWi4ZUtLDJUo7wXbC18YIf7hYcmZ651YjGB+GpiSVG3EcJ06z1KEKO6hAIwB0DabNOv23kc/liuVGj+rpcymcUSTaq3WEt4bDNDgnY7aX494IfbjEb5kVJCkFxsKqpkE6Fk5m8ASUUjF54FIHS3jJLuaIWD0c32wAAIABJREFUcgopb9eevTJNIcfjdCDjxKqI3mj1hlo0nFRTernW0uM+1dAlHXlfMks1tH9n2/9x2LtMH9Lxh9yX1+Ev98vlRqOtxUuDRhnKqI1Os4KV96aWzXsz69NepHxjOE0lpXiAji20EFKqt5x0WV53INk7a07PXl5JHrx81oZHc7NeafZHEEMYU8k3H08P9g9jqaP9QX/VXy+qA9GD7re7ovwd8GM47E/qe9FgNADzFQQusFPhwILsFvrvURb356uB/f6Qn9f5w8KpE7rFdENQFMxsJVnLWCrAagGysgodeUpECS+Lch4VDXzm5WxOkXMS3XYgUKLlmBXdqgyS3RTdfLghw2JkhCESs4EitiJECkNlulOjMXS+U5kUI3qWjn9GpjuPKuaKbjTaTWwfU3U7hMomdoPPL86Ojs6vXrlysuHQScXLbDxfEe6OYdG2tl3JhWkqSmMUztPx0MZXW3IA5CymaXEEnQkgZunMFZXcVMksuFomrBc7UCijYXiwXFExtAL24nMB1Ii07wVJ1qsT6JBAU+jgEApdizFlUvScFmOUWksKyICDi+s3Hz198+Vvfvc3fu9P//TP/vwvf/Rv/u2f/y9///f/8X/9T//pH/7xf/t3//Yv//j3vvdPf+6TO6fHZ0cHq9mw22yMBu2qJqViUjRMl4vNkbky2pJ9gM57QjrRa4/xWXozxI0vVi/02ByBSzMLfO77NXtb4ssmWdqzZDFTFibMNkHbbVs/ij/ZSolbugDFcMq6A0G/cA0KR4Ls8hOJJeNpyuEw4sM2iq6bzDkxTWgZmwbaVth+KYg2JN2/6RzBt5LPYDwCY6F8mguoBI4zfoxgBrt8LCnpg2ayl58D937oLMvQYjSsMtQi2nTH8AU8ODq5cgGa9cXFwfHRakEIy4UrrLeRZsHeYAEL3vkcq4DzBc8lWNmN4HPDqm5A3dml7gf3v0HrR1lN52FNiMvsgq1rEZfYdMqE4e9iOUULnJ4LNCIWBNBCwfVgf31wcnZ+cfW6GIHfuHH3zm0sad2i8vn85PDgkGq6DvQwTE1VculELBDwbf2CnGJXWRTO3J3eY/tkqIjgXWwH5onL4Kdi7TVNSYuSz6H+zec/8NqRlPWnhYcxnyGW94DOhy8Aj0cv63KFMJSIMhpHRBuaKVowTyC4TSTRF6GbnpA6zlNkqPeiU51I0VOOxtmIkCNRKLpVhomI6ICPJiCczn1s1NwIJ1helxX6JedFxUz5m2YZBUoiCrKi6RQpxHoxBSers1hTPo7doy4CIgSvq7UGBIENMIw1Clhqpdms1mq6VdXMcr1qNcoxudk0qnVNTaS1mpYv6JqchmpNPJKUFEpQcoloCFqlTgCwz2OLdAtLy62Hmq254+HMl2tlViR1XfZs2erSJ1iR/oBe1U0Kr3WTjnnSH0qiIEXXSFTA5bpuNttNPZOneker1mSrbCqyIWumWW+3zYC4A20DR+G3+mMAvBXncHvD0QC3JrE3nrLKDQqG80mTsl76V5pmr40tgIZKoduo14o5uVbVswlKhAiAB9XYrjBsBgY7HeyqKxotXnsPycFKWNiDCCakgkbPX0tFKYDrlg6qCFX1UE2BWJ+hFzKyFtoVDoRusVnMnXyvc48FBgmLC9VWp6dGY6lilnKkXjniTmXL7VEmlKe6T9OtwI4gn7ouPaFZYMyFEbjf6NbKptlqyDoFyjLLokLSsVI2pLS6nK/7tVTecAWd+ZTHHWHFmmDS9FTSDivoCKpmo3v/4qifefb6rt6sN9uter1NhRwzisZDCtz7mwMC4E2/t+jvL1hgxqBkaesBVsdCfLvdavfKrpA3yIuoYNs5edzNhCzbbBwCiBTJIugXBQPJOKpTWOGJGykSYf+0iHBtwewgFAjS+7LiAbdadt1WTUwv6OxC86ZaK9corzYILZFNi8xVziViyXw2TcUJ3T8ZCeR2TnFzyJTRkUqLoRI6ViH8aPYWiMZjbGMfA+8ymoikUvFEnuqjbCYrAei50DH0okn/5nar1u92qfbt1AeDUb87XozXQgjrBLJI3Eq2SdCMx1SaMheboiX8FsG24d0Ue3aIfWax24RJ3wx9Zt5UFi3oDctybU0npuBwc+eRaWMbW99hnzvYlCJgioz9ZkwcUTuJLau1UBRZzqfgAoETjt4FxD/poPRGc/pW5xRtH7/50ld+lgrk7//z7//+v/iTH/7Wd7/7q//kn/zCL3z753/uW1+jx9e//vnnX3r9+PTk+tkhpR39Vo1iEYFUMhbhTAq82C9ME3HvgOjDNC7hAeS1N/g9oNlxc3u7wWo7nzCJw2mTLPjes0vmHbskdjtFrezYArcgR+xS0Pd49vacXhdTrwVFG7RcppSJDAAuUlsbV5vHE0ukRS2MUSGzd4oQBapU2S5HBwNM7LaoCMGgD6F6huU74QidsSwYC7AwsD0OAqxO4BKaVW6hw8zaIuxBREcP/DLEuka90e12ehNcu/Xm6PzoCEwEaLGtGTnpkqCDvQQ2otTFVhskT8HcY7AVl5tOAJMLF+sl0wtZ4g1/X7BHEbdrYDHES3G8uM5/Ro29nmOswu0c+hzs0KOXsra5ifSGnZ6PT7EWfY4JDT1u3IK31QW9h4Ve6SBiBYJinkpIlUTrwMviWyy7atfITMh2uAKZAuFOA6IzuZxULOTFnrsA4Mv/3J6tuacYV7Ds5RaTee/YF7B/2V7IBM7cbOMsn5E0wuPgaIyHxASqYsYcx7vpVxLULp4Xc00tjLK5cc2OjREuvgmVQ8z7QhqfhEmjaIvTQykqeQowOSmHQ5BXxEZTUdOq/TkW+fuwVx31O9hTblD9gICJGsIqSZls0SaiWWWt3GjXq00j0WvrSrVRkvJapZjV6MVU87BIjARjuVwqp0gUsiCJJxzTXB5hUIq/eOzXSGifeHkfSNg/8989diYsrFrgOckTIPoUrQotFLNZLckZSkBSkqQabLfHT9Qsq1bTVPOSaeYSSqWeo6QpLxlU+Ou1Vtvwu+272f1jyhvvW9CerY2jJxylq+RBSeYLpi2t2huOZpNmGgNuCqI9Vv2vFxNJuVLX0tFsuWrkCYDzpXKrb4F1zEaL2LrdA9/eNjr2MpkfiIy+OvA3EMvRyaLkLhunb22acMulkhgAzK11aHDLpQh3nxEf7Pwf/DH3ro81BAHAVPUXosl0MWd02+1a1BGrDPRSNprLpzIloxzYYfMkLMnbuQBBOaDb73N75XqtanUX+02z1RrQ5a3UO902FfS1sm5NDxZWSdZyMt0LWhKXBwxxf8TylhSHpTocHdmZH+fb48ovfWXYaNOXthq1DqHvYDSczEf9yXCyWRMAH+wPB8vRyVovc8e4CgUnsAhFmU8Pq676AsLMXtjYCn0eH3uq2gI8HAvtZSS8hYC02/byER6nobDoHcVx5qN0GwQvH+FAJBimOIrRfiQawmJCOpPNynm6I+SSik4jVp3L1WpFN6st7qng2GMrDOY+UGPKZhIYLEsUASjcKgToaXAvKCeTY/aCC/eroVQfwgQj6Md6FIZTCZgKoGlJJRLOq1KCKFi9TQfWMirNqo4rSAnMoNeBlz3vdo6HvS43kVebQ5ttfbgW2LnPxS/40TObHw3yDoSugcIg6TAwz0V8nHPgRFReU9UC6S+0HHkmLLaOIXLNGpqrA/txCLru8eHh6QEiPGHxAvStJYKw6HyzSCd6pTM0y4ejARthtFvVapMy9Fa1PV4dnl69cevOvUdPX756+7Vv/Ox3fudf/sVf/9//z3/563/1Z3/yx//mX//ln/+rH/7g+7/6y7/wjU+eP7hzCt45PYNer9ME409ib12vM+DjPX3HDqZVrK64y14qnMPTG1tYx54keX08W2FtRL7PdrdGyVuzAmjA+uibgtzPwjhCddNNPyYYpPvBTWU4lV6OSzdR7nrv7flYvtG2H9oGJ1FN2G6j9mYx3HaBlSwsAo4P8rVMmhdeMBQUGoZqoQhtBhnHR4bmO6QZCE/Qickgt0PfBaUzqnIRMT2iyLdRhWIT6LNx5iBl5GK1VqccfDDkq4lzgm41gTIzr4+OD9Hh2PAYeX+z5PW5fVusTcjNcNm7WPIaPKBZWJNsIEWHicWC0ZItRSCeDmbCEhIhoymmIlMkihNohkxA/hL+Y3Q2x0PoeY0of+R3APMXjPwbKMCdX1y5du3k+BiZAxRZeUt62Gl1uq1aRVfkYiGTymIPBfune25/NJVB+0rKp5LpfD4TQ74d/WDLtfGwJozLYytW2+92X6KzSzAMXG7bb2crbI2YxkKYbOTrF1ZQQoccjwiab6h804k465RT5o/SOMlXFXk43fSE1AkQ6blnjTqZTb4YhyNxnAPRx+ZVSUrMIX0f53Ka3iIKpRNpSbE6wxHvhXS7rKZTZYddC8vK3MTT5ExWKTdadaNUrlm6WW9gPGyNarJsWaVSRS/mclQSlzWFioU06IeJeK5AsSkTfd9t8Hi3amj483ucZa4kA7AtmWcvAfhEg4h91oJs4OLlFjSV5I2yVsrFkpFkFvNdQzSECJgNtVrNJjJqrZyJZiloanQvy4ZUMKwGWNAue9/BZiNd+phvSVg2Pcvj9ESwF8MXxx9K0T+6M0ALGqx3heo3vFBUAZcyuWK1qubSVGlbSlpWYDTfs8I79gh7d3fvQwAw61iBk7BnGyA7eLCNyi6WVXSLsDZL1yJfNtQiDCcN+K3q0OSm9DAvqTFO5h08I3EKzeo9j3MXLyzShCIhX68QiaXkbKnXqNQSe/FBNxIxsmhB03cL7Njn0bXdyN5x7GBOjRdcRjnYH0zrJbrkHbqETbr+eqMzHS7Hk26nQPdBKJeWPGlAIpzSHD6fGkyXvdIoHkjHPN5U/bR9+Esfmf12pULQXWsP0UQdTqaDHt16m9VhPLU/77QnvcOZDAICZhoQfrOMUlG1yS4FU06Ggj5YqnB/GaJYsOlz2c/bXv8FGYelSYXwrMvh51Yhc6nYJgBvMTz2omiIJWIIh/h4JB6is0J3UyLJJMhgmCpp+Jz6giC5Cid0VM4QgqJPEkUN2kQQRa/XWWocRso4abBs1g0Not0sActCc/hNAW0dUx3QKiiUZjNJlMp0swVtbSm4tflhYZCkNDVBBzQrgRhJiRvhvWWUy2zG1+1jFN+omRrutDpdElbTI4ybYc9zOt8ssXcCcQ6YQaDwOTg6hNz0kVh+mgleFgRFmFazxlgYMdAuWMDUwt/xXpB8NhNWylzy7BAim8cHKIxXy9VsujzYF3rWK4qua2ZxcYnEXy3qZ/qC1erwmOrno+V8vZrMD/eXE2zYDBCNxwKhh2Mqy45uv3n9+t2zhz/1s7/4a7//wz/507/523//9//4f/6X/+vv/v3f/PWf/csffP/Xf/1XvvOtz7/86dvXL549unfz6vnJ/rRbs8y8nI/D0NDn3rO9geylKLrTMD+010aF0zbWmS4ldmxxfxe41SyALPxAccRYEsKWjxAmKYBvBGhbD8Ll3hqnQa98j77c4XS5vrDGCIqXbYthlw729pKNkx7xXd22+3MAypwx7lFm6W7P5QpbrgfesG+qINXSH5makwfNh6rDXD4nEkY0erB554MKNyXl4l/r8WKZlpmEIA9m8zlVt6wKHaFOfwgzIbD3WOgcvQx0QPbt/fU5b7qxvsd6tVjtc56G/TZQ+ObTKYTPUVNvBAIvGUbpA/QVizl9ClrRolM9mYLWhU4N+Ag9DJrpW7GZ76DfA6doOBhsJ05DjGbAaxBaIqMxFuLp586Q98GMAqkC/Uiu3tEEGsA1wdKKFiwBKZnJ56jKi8aSH/BSp4sDgzBb99qeYV9U++f2BXw4vbZuiNvJazD0CHqZXWPPKLw8LxU0P/SvvWxZB6EBMO0gXRgLEXrG4C0XA9bGwmFkS1Qipyh/AsWaa2N6YKAMpI4CwiMhUVfT5yMihZg3D7SnlDBIfw0lslq90x9064NBh272itmo1+qQ2RVTNEJgXc7mi5Vmq15Uai1LLzcoIpXMaVnOFkqKWmunwzkQYOg1KhIywk0sEssXs2m5mE9G/J49wUTfKjO6dxzOH9f1ZrdSn5enMqKlL2bFblHhULkTQsvWSxUwGM+1iqrVtWQsGE2mJLNC1a+QkbVMvV2NRaVGp5LLaWpC0eRcpmDkJL3abNStuNMlROjt+/USgLdrSLZ7L1XcsUSQ+5+gACU1s04naDqq5eHGYFQqrRYylZYhy1qtqhV1rVIuq3lFyVIF3BPSjy4h/oItxg+xLwfjY5Ya+fBD6Gm4Od3w+SIZGVtIWjaaSGQxrDSNgqKy3oupl+CySmVTxIk94J3dvV17EZN+39vdoefHnJWi2eiP1FAwkssW+zW9lnVES1JM6WbS8VS+WNADO+9J6DYhnWKP3wcpfW+poRuVBoV6azCo1dqduqlp+uxspuWGfV0tFWJyPBRU6uHQDr9oXt+e36vEQ3Wv96Df7O05/bH5vHjr9RWrVa/XAMCtwaDH0jzDPuXCm81xMn2w7Pfmw9MlBDLY8INVVZV8SmaSvyRJhlKMRrxRtgKHgzVSMrr4O6KnuL1QWLvizVSXL+T3eANhYT4q2kgQUASLKgTFhngcO6JeKBGztlLYF/VHme8coV9xQHLEH2CuNfLVBPJS+mS+5KxAilIGTaQIvl8gzO0kKmjSVP3KhSIYmSUIxfKhMzR4Z1tmSSkaRoFAOFdiV9xiSWFUVgos762A84jCmUpp1ncCIRgKxl6PQ/T2Y/5wIpVM5bCyrxklJaMXS3SflapbnwlNM6tlzahRsW5B3hxGFJCZH01RxKz3T7EedXZ6BsoOFbX7rEzNi0oscb1YLZioZY/8UJJg3Wk+QUnL6l+wkNjsH4J9g08DzYdtKNhTcf9wJUaBYtsJ5FnmlE0n68XyYDNbHLOhwHI+5h4mf4z3lVeYF6K9Oez2OoNpt0HwAEOzRrs3Wh5d3Lj95MW7r3zjm9/+xX/6q7/zB3/4R//jn/7lv/6f/+bf/d1//Id/+Mf//L//3V/88Hd/4ze/982vfPLu1f0bx1QlNSqaJiepRIRylg9wubd3KX/tgLjDjtOW+RAtI3BQ/GzXh0CM5jXdOeBFed1Cy2mXubauHY+T+9OOramAbQcJYQAqkrl+YJsD9/s4hvVVl2NLK8X+hqCX7jkEt1uQTyG87nLTk3Bx7Y3IRic3LNaoAhTXQgjooNtiYyaVswlCGI0orKxY4pmwLU1s6FpBknKZRCGfzWWTiO8R9s7yCFtnD8tXUdgMRQkskqlEHi45RaPM54XQkcVaF4zM6yXlYNAK2UeNfMDt4/0VHQHormJ3HYWyzfFiDzHOxVZLSKiOx5S3QfxVSGhORkJPhJnYSL2w6T7EGKXPriiDPo9O2KkMQww6twzPvW6rS/G03wOxBh8eDaeTwYDSRzp3+LnLgxWW8Oez1XQEx98ewXkPYj4fcGqDPokteSR859xOn7DDcW5bnK6tgAJMPwX4wE9kiwIu1uXCZqdPFIW2+KKHS2XbcixgOzdxbECgwt44SuVgCKVvlGvlOLeuk0yqRgckjlQ7GucJMkUTSiMjlEluFeOgzQq3smAkrVWprpv0Ow141RjVOiQN67UKbnTYTyhyJlcyms1K0ei0DJgcWJV2t1nT5UxGKXdLQW+KkrhqmdU8UgkljdZbPFmQMpQNxAI+MQPd4wmNkEUW2ipCo8y9A+a5x/uelm4npbB9cUIAy+ZJ+iJKxSgSYMDjzJBBFU9JuskmjoTLFc3qGZlMSm/1DMkyczlOI1UNbepGu2UE2AiQEyL6nbJXuwj2ObYKANtUiOI8K9XjZfbHzUoTh2Lc4NUF+jkUD7vjbtlgbXD2r6rClUFVSvVWtxz48NJOUXCeHLt7tocgBhqQ4N3BBkYAMpf5DNW6psEVMCV4WAgrabVS2SyaplrG3ls+bwiKt4YRJYZOmXgyGQ4lo7t7LsQFnUrXVjEUzkrZUrNTs+SIli+pUi5BV1/O6jrFCZvvIMzJsJK940SdQEcNEV2vN8BfrjXrlZKi9w+vXu1lQglJytTUbCKWjiF0gJdIgEGVs8uVU5xGyqXsrxdRCmXGyeRk2m60Whb99FajPR53hEwPFHuWR2fx/P5hd7ye7i/krZuIIcjesgrRTZSRqqFGfaFYgGnP/mCIawfbsxn+pT6bY8O24j7YSKDv5+MhcYBXe8X5CEbDINLY3rJckgSYSc2a72Ev3zlUIENeglIryB2L0hfO48wU5ByQ42IwQoDITAs0dMLBSCTAFFoKdlGeFyWSsLBC9otRbwHzPwtnotKALy6SVxNpocmLBLBAMTXuQyp5lomlehmyORCQxdAZSQDImxiF+WzhL8QBziGoZE9mJboJi5Dm0WvVarnWatbL9SbaMU16UUHgMwxDtapWo2HV2vAFmnBPGi3FzfHZCZcXB6L3uFztr2ezlRgKzsbAZeAsWNGoWKnQ3lAVMkf/ecGSSXMGUjFZZBUwgt/NEZXjsyV9zppiIxXMGwwMV4uZqJBXLPvERbWA7NUGJlPLzXIw47UZTL163Lu+FNKnLGMwWW6OL24/fPLyy9/6+e/+9h/+Tz/62//wj//5v/6//+2//df/4z/87V/88J/97q98++ufffT65dP7ty/OjlbTYb/bqBqqWsxG0nGkW+B47tmSAsIoinW96CDR77aNI+w43Q4e9G5TPKF8696GIS6AXTwI9rBck4jyzvfLq7bYBNhUto2f3eHz2iBrq8FfWp5e0qBFVoBpM6cEEJV1ICX3MhNL+KRhQwse90gWKWzHEpT80c3PO6OyWqVQXKqZ6E6C+2LqzOaRCyryO0rwUgmqlr1B9rN08uzP4/TYPPAAqrhwNCPlJBUrdnU6Sq0+7lZcnuXm8AhAe3hweLgVPT85wR9BHNjgQwIVFxgFrxaT8XTBGuvDXg8qbozuVOOOsbeOBvR4JPQ0UflCLQ9WKZ12DzA87FCoGAwmoGMK8i/TNFkeYAT6w3A4nvFGNKYsy/V4RlcbkM4ciMn0A8G7Qm4lZhLCNtF9qZspGp1bBT1hR4f8yim6sB67o8HahPZOzBetk222rl1L2/qb+G5+qqftaTJ+D3qF6DhzVZDJY6wsHmCHhKNRJlUTEgtutnerqcQCjyg6w7lyl/7twt6NUBeaCnSDs6t2uaxrcj6V1a1mq6KXm41KpaprMHVtNstySiY4zAf9aY0gomYVFE2VJSWXREIQT8GETKbbwgMGrvtSiGO7lu0Wi0jitdqqhV4ebez/ofEqmrV4rv5IsWaVCP9Zu1NNgrpWQAXM5hAEU+2uklFLtcG0rjdqclbK5XPZgppXDaveagKAxetu7xV7bVken/Di4msnHK8R0gkIvDymT5ZRAQ8nw6qcz+YVzTBgxdNvEm6ayCnBIurQm3q5ZP5/bL1nm+PIliZWnUnC0XsPEh4gQW/Sm6rqqu47997d0Rg9j3alXe18Wa3+/w/Qec+JAFkzyu5Kn0wmEBHHvWa7P60apcJekTkYwBQwqYoV/vAZdICrEhymE8oc4nDYHgzHCRtf+X64WCyTeRQtEmlJZZsl6tIwpHvDfkIBbtDOc6C6a1rh5nA8BN2+uxinhzXFc6+3OO3ng8GsM5xM/GnFRvlNxTPLYeFfq1NXvavy8pBRAF/GKWUo6yhcffzTP3/djMbTMZB0vZE7BBmr0q7c3YFgbzR7rftSdVanSPjw+vqQUe7S376+XLZp6IWr/X672V8uh2fQZsCnefz48Wd3+vvn5vT2+PEySZTkWyjuXpE3h+uiH8zn/rytujxYxbJCBcpm6jaFrVwt2FBcArAavzklq9JoNWo8hasy1aSqTUoR0tnwG69kj2ioVlXpZ7HBeKNRpUK3Aexrq8VMFap9KUYDVkGBu84ofNZdajNEu93ikriraPvAUrY7DNfGWTkU+iEmxRDH8UMWZYIFIzeUUpj+JGmOjpqIvYNsHwQihxf6TG+eojc9Bi+iL4LGMpSpMWS3BimROn1pBGEd2nEc/TPaHGmYJUBrsHd4kkYQ9BED7e0J7T7M4ygW//jjx48/cLp+//nj+58/f2hzZJ4cY9RHNe/HV4wMP74iMnPx+/Vd3Hr4u5g0xa1uiuRvjKV9+3h+obrp8xnx+vOVXS+eRT9biXdRIP72cYa+Np4KZpBfKap/lZL8g6U56Sfg6XpY55swYcjAZs0UyW/vUPj+1//+b//9f/0///N//i9Y9/7bv/2P//u//V//57/86z//43/+x7//hQo41iyDZ2XiuRP4KreajYZILJa18t69wHvMe+Oe7S8txvtpZ1uHZ8DFoQtvgbLxi4epXXSdBc4p8yXzekybUj0Uy5Y/YyglWqXMCNHlqgTqkjIlKikWpCOPC/sZsfIT0DcdS0p8tcZc9tZwMJqw8FfCoIWMbT6xvOiawdgHWhWQ/nJHIER0e0PlVVHXwq6IWTjwaqDfdTr9/ngymXroU0Gw/UCVJqSpX9Es+UQLG9SmH3/5yx/Ql6ZPffudpd9+/50139646n3k2IjxL0VTFZBBcOcQfThfTlyAixLP6Xyiovi03x1ZDODljdvN9POPIq/5rOP56bClgxVEP4hjPz5JO/t8/lIYXHNSpQ70W5vZ4oJKL9pWEJ8Sl2KWrbG+7IPH7jziOWFrSaYbaQh164Q+o23l2TZMZsxMXxXHTyHS8VXGiYTkn713qgB70fZ1tAsFWwJhITVn+emwyeDJBKHHLEc2uqVIHEXZMgZpoz+hOnCX0r1dgn4fptHcz/PYnS8Pm2BYrw3CzSZOwuk0CNwFsCnDbqvZ7Q5nvu+Oew30321tC6yFOJTaLP29+JPv7rQfuI7TZc5OHW37TH9WY7FMg4SeIFWceTKhc27iU+BXATiJT7vxbEfZ1YmiyhL6YLQH5wjACWV5cd2U5JchE5R8VkUYS1Ik3eXkHYUhIrsx4EwfLuP15enx5bKk5HK/e5HhAAAgAElEQVTs0qm2Q8jNqe5e01vA1h6wbk675Xq/P+ctFhLhDW+owKuIzmLzVFIjWCz8putya2nUoT8FdBkulSiHiD26wpRAzOHHlmZIheLIi7iDS9UOlVLBsFSBJpAZ7DeHvd/tz9zh6pB5ceLlfuiHy0W3M5l44WyR5EsMLBd0tC/oZtBOnDbv7tD8KJejbRIB3M6o5NP7X/72HHQaraqF4Wl70O000JOt9NsId4Zdp4hBK65eNpb/+i+X0D/l2fHp6fy0g7pQstlv1xvktC9w/HuCnvzb99/b058fawrAn2+upqmz69OCzocF1soCQMB5v91CT5mDcLOircClXWJeRwWs1l3RbvSOmt1bGkQvBmaaqKK8zBA8q4yH5JFOraJimFaxVAeeU2enHg7QHLDRD69KMQzbsJbObuUUozftJqbJLXzQxoJRMjpoMPO7HQXHqAGRg9YUrR86M73ZdLZAFZyw5iyUfQIYkbHoHOwFAlHCi9M0Ft9v8OziCKAdXhNAZg7Hw167VkNd3lKGq/VOp95u15r1Dqj4o+mcEjU23A1Zg365XaEqF/xbkK7XGcj+52fcKVBDYUYLW6c//lAKmz9e0fd7l1Yz1KM/RCxTs6FeAX6lT79eqHLBmO/r1+fHF6pnnoDOeX1+0K5P4jHx9vKBkePH6wGqXvQIr3TeQqrpERPtV8iFIZpj8UDZib4KYDdO9NPxAOXwDby+UnjaLHM0bTb74wVYoIcPKvJByXmnOpyK82+/81+B6Ti34L/BVJnKiQwaNwjLw163YQMKog2VxQCGB8umduTiNqWUAGgAMYRa1Ua3PuLqaOYdLmu2fG9KhC4Uv4o4rEK4VnS3rcLMD0HgTrf+hNMMcwJLGQnxyjcc9avZBthC/t5kwQistr7oxszmrN8T0XZcArCzRHcOZPVVtlonPAuBW4DnuePhsNvvoSBrsNSgaTomJ7Rqjl2ptzCiQSd85tOxk+ZbuOgeLw9nLkgxy/j8zpJwMP+iJA2Om6/KdUyCsWhmohP9iHYz1a4XGPNiBnw6nB6OrNR22EANAPxEFW+1ldmTVM1Pr+9PVB8/oZXN6tfSyKaf/cLtTOlWSH9M6l9bJsFmMaxXM0dLB+A74wYKz3KXJtoQlpp52QxGv3mxTI31umoBFwmZ2Dspe0a9KqRSNtFltBi0Ak8xu4pZCHjpGmGs3lT74TL1/UjZtaaIv+hwiWabN56Mp/1JRsVenOYxlAlTurlB6McLb3XaZcG0VR96K9S/4CLNZhQoEn/crvc63SGLhwx6rQoX/DIGV46/hphWIVgZaAHZN/7ARmEYLZ7OXLLYFICTIMlS8GXWyzlVGRMfktkwsUBBelxOEliwZ/Mg86j2pdRhNA/QgqbVEzdYBB6TT6Q7QBKrWyNshquDkVkFB5BKYJzV9UGWgob0+phzAI7S5Y5W0XFNCQkdAPDKkePo+eFwOFEF3GRjCVMbF5VK2g1KzCaoBjXuDHYwbzQ6C5f1akfd4WiaBAzt8TDo9oNkPp27VBrOg/FgvAjgyB5n0JzACHC93W68us2spuBIpaffao9nwxgnrNvbxtF0HMy6rUFn4Y2yYwqrqC2dv4lPB/iEEpM6zD9RQA/payiQcirINj+f90t/OJyNmtWKWXa6w6rlNHody6g265Q19pfpJrpMm3Tpkv/yP3bnYP315z/++HxOLoAppSlQ8tvTAyjAj8xVfXx8+/qtOf3zfXN+f/r26WdL7QicgO+MCg+8jBHFFQAHqq06sCS1ZoM1jsqGuimGqe0y1I5x1AdaSIUlHyzL/KXmEHiqUjuTI0WB8G3WX2JVYQT8qrSh6TTTyD8AJKjSdOrNOm+WGouCNBqahiIFtmNDc6EFvz+nyqNnfBY1eLMpTSjWoaXTsQmiUq/bxWfRUuxK5TxAKY3xMovmTZWFmQckHjr1UcISdeiI+BGPOoACowAaZ6rxuGSleKqvA/ZlmY8m/fF4MBlWGm2GjTjs8UZpHkSCKFdgStUMyqxhkGw2GUgQATSGUJBThR6gIbnZbiFheaETD1XP7z///Nuff/mHfwABFW53CGmQHkYUZvAr+0SyuBZtAwCvLhR4YcX89HhiI+YHtBlZ5guOixSFj+g0QgSNvgrj5ouUNU8vD+JW8fJApzNqnCNe06OiUHqgI5u22YXKpgOMYiDikm+2e4rLG9iBpyml5GgRUfVw2G9h9wFMKfxUH9+ESQNR7WdUZ08Pj3T4U+21WbMwJcDHnWa9dpVy4u41axsb4EKhUhbTAFMVWrymFBuqbLN+YvneUTI/QHfBe1WfctaNAJClHQkwkzZ0vJW2n1kgR0TK8U6VKKJXId/F6G+bx9NlpbJgVaT/yXNLcCfrVSogupRmgAo3ZUcKaEGES/b8oSUTpvkyDLGGeEzCjre0fsaQd0XToNlEx8VU2wcsFPbxBfIYiWV/OGEOKxUG2wOFUHiLoQfyxsThr19Z4IPhd9w9Zgcy3Ff2lHjF8BhhlO73E92GZ4hvXiCQd0TTGZYl8KLAHccnoQr18sTgrcuRx9ePF35c+toXRtVaLEiEobetGtDKBvEXn1nVu+AYZGMSzKYgV886ZEEwiBAEvaB0HS2edMfwO7OgxppaVEmpDAsBnQP5dcqAx1fuTtJvdLhatkShUwOB+dJW2pPZsO8umXNEL3BL3Kwpe0bK5LkTypkGUwTgJFtRwu5n+TqLwsXUi/PNJqdSrdOZo6k4X1DSHbmun+Z56o+73WarM4CryHg0qFedUsHXMwpfDF5WJQVH/PfXC1IcGJYLF7RWr7SDVRpyOEEAXoxgD0gFAyZtKIA3h8TfPr8+HkIvXw46XuTNJxSAXT9J1xKAHQ7A0BmtQDHOLsbOKs9RvXEKwBQhYZNGxU4/zjaYAbMQx9Sl7HJDOdx5tzlensVPjhGln+8v5+N5f1w2dLw10H3+xXhC2y/emaxg22i2F24CLv+gCR4wu1hCrxasbbcHobLAXcRtmWSZDltTIJExbLAG7617gPj8/ep4DlvNyWIcxMs8mtDuWAbTab/e63f8ABLTqBq2ybBRo6p24nr+uMakipJjdXGWb8KJu/r4+z///UKXtNtq9AFpstAhaPQpSabir0mJWy97fFgvvsY1y/GO/3Y6/tf185+vP075DiyITexGu+0qWx+hbUzHMQIwoK9fm7M/31ABf/0MYIO9o3/sgk2JxIEHHbRWssQFh65d53qzWXPkRBNzs5t9pHTsbEE/ij8FXHbg313nkSmP8TX60S62CAMdbUclsfxdjIy0NYGfw6pydqg5otDgcNxGyVwVFovqWCNY84y5pobNHMMBBpNJUBGnFaTDEZM9+GsBq91ED7sJWkJPGeD2usL377TVAddnzAZM+EB/mjCmSzCzQOEkyNMiHlaEfogCd+7iW3x3MVv4iwha8nC1RECfjCdsGTMe0CNC2xxCQXUwIyAuRr+z3x/2YadKeZlHB+tsTg8EnBwK8BmEXqOM7hCIiYfj27twQf/AgJCKZBbSYlem10cE4SMkBPabPYVefPsBlSc0z85oPNLBCfXNl8+vKG0YfwPB2/P5UdS/hH3FYpzvL2wwKRgdiqFHyuoQOFcbRqPBSuNIkRcBlo3WzxRx8QWAx1EqH9G9Q9cdcHsoF2agf8O2/YBZEeq40+HyeEQZhV4mtz7pSR72OzjErqH7u5hORt0OmrboUfMWvqEplwVnaYjBvSUi1qz0V+BMLPhnOrqZyYH2XviIhq6ZxX+GtbHlrfj66R6haqGVBcLJ4yvYGtDvq9SYR6VzUskuLZPWr4H4XGXNziq903DsWoO5NaJEATW54ZDicRjM/QStJ1+6bhGPQfgchfpSGCBVl9UzHEEJDp7NKoPVpZulGPoNjEJmHj0Q5Ybr/fG0h9A7Uqcn1h//KjeWbzIk0Z8+QVdCa+PxcjhChA2eE0jg8O6zFm59hOImqLH7Iw+PaUFhPEwVuNKqefiiuCuSESkTQ0uVo+YNEFoJTJhiu2NKQVyxiw4zg+/YJlM62tpP0ValblnZRGhwkqkl1xS02FBGeuqzhdY5SmBbfx0oX66WBQio++ZVJefV6C7YsxhZUs4mxUBaRnDFg7XhcAZDISrAMBM+rJbrbD6ZB9t97KWraNafZukCSlyzeUDHQIhmdhYuALsf9AdjupXTbqvOeor4M4yrp7NgBm0oe1vl6zkrx26Z17gQRFEFO+2ASu8URVu+XC9djEBA2kmQyFFZtVl6yf7l+3vsLS+rbtsL6VyRAJytN+u4qQOwYCAtyT1VUqqvOE5qo9KgICCrtl7rxen6dKG0OacFOVvQ6ZfTBj7Rvn8W8V3F+6C4c6SDJ6vfybaRv0KaU2orybtlBOAqjuVGaz7HnxMNWlQBoyFJ9Ty0nNLIn3S88XS8mM6Tisk8RmCPZNJBO76EMbJloM3hbfITBeDW1JvQoZl53sEb033IprV+qxOE02FrMJtSztozu53+1FtMp9065RgVy7kvl3u7YJEE69e//m9/fdlOx4NBG0weG5N3s9RsDiaDbrczcofNAQjLS2/2GlZrs/DwL+fP/zd6+Qd/DdAzrZXEm8ebzRJK0nSpsJ+YfvL28a09+/m2Pr9TAA4ZU8/ijfDCpkUGLY71Kt/vt0GrTgGhpvwvHAGS8kW0ClUWg+l+bBdpam9wbCzwPxm0yFQ2dqlV+ipKMkkrgSKMWnKfHZUlc4C+l3RQqdSykxWPJUzF9+QFqNRgpNhQn1H9bN5ClWq9You1ZU2ElbibjcjbYJklTWLmt/wMakqiGIcYcDaipDMAeRSsQ3nTG457YnnaH7I6wJC2E1QdZhQyvRlcupVreOLHPoXONAA1CurGGDmAFgX6KW1k+KGiUoY6PAt0UpU0RKccBgZUmPdE1oQqcioJoaZL1TLgs4WmBGhZOCTotKZ0fH+m6PnEZhEfgs76xEjw/fUTrvJU0p44QFLAexD2CcVTWhOvr6cn7jM+Xigsn/bb08MjymGgYhEH6dy+QKf6BSNm2CSfz88oj7abHUqlI9UGHITpFcoEqth3p916CxgGtE4pxG5z1nbc76BUvOKOC78soyRlYmW+ovNts80kYEN2BiE6B7DiwOg1aaBCIZQOeyq5d2jlB94Yzet2p8WUvhsXApVm39nXPJETQz0NVok+zmtbN0INw7xK/yHVLKlZs8mhgAdwmjZoC0TGYo8/ulnAKFBQbQgnmb+bhUcUiMUCqIXrQDk2bMwiqwVBSiieQMKwegy9TKmQWSzc2YgyMbrbHJEDoG+5PI4TdEzCOPQAIoQUBp2qvCIF6YgHFI9lKlhYkgIKFGMuu306m1f5QfhGD28fQnz6fHtmFruqix/EThH6PU8qALPcG+OwuMfC4OfzA3c/6MA5cv/kfPpyO+tlgrjagAX96EbsoYgseopwY00rktNaN1g32nD2qF5E0a2WjoYKwDIgU29V8DaLwCZ2UPwlg++dWXaUIBP/Hj5QKMjQ5avTHav1FikKkyV8/eh4pPhLibQ3gfrxfDwZuVl+3O7XWMcbWrGreL6g1YyGaRSOp8kmgS/xfEIHPHvWU8qZLqpOFVqcwzHdX9rSHfEbNQ1tL6+HvZyA3LaeBTQsHD2rWteAGbvlJSEF4CWGopulC1kyP0piHgEvV1nqz9LV8XM/CY7noNWl4p1b0FSRcwBu6Ra0TFYM45omqR60GiEICIsKHB749dJkfaLdeFlRMjhdQLuVtvdxt39gExKqCB5ZQJDWx+FA16ZZUqH32tQWRwppMYGTdW+yyy2deqiA02U8bI8gHyKwGTCB6XjsTF3PjebhrnZXRqVb4o6UySMIp0Y3lRI2sJXDTb7fea3ObDGm/bIM/EMwpYM2SbN5o0NZbANXttKkdH46pOO9A9Q+NivAJOX2IV0e/+Hvf/v9Eo/h0UXlGWzmqmapXOt5g3a33aNDh56NF7rjcbczjobNznz++X3ZyLPHv3j5jjbDZhXBZoYVrraXyxFilG+0my6Pb5/fu+7vH9uHj6dvX2MR4qCQu1qxgTMC8BaFynrl1pyaw+6/VaTsGMSXlPeTEm6nJexwALYqhpxxYFMJ85NHNtZ1lK860baug1UZXJG7XVFx1yyANZWqEsuRrrX6mmmzjbvqzGhOAzJYNWGScwwVkMXGxKqOrmgEmLhQssVtpcDt0AmqnpNh6/rIEqKDLVCgivgoQgG7BQWkEWOuB5j6olQeTlmnpz/oQbQBDIg+cxE7veEUQ+ZpD8N1l07U+cL3WFIcAOkwWXpwVaMUCCw3WmZznsjTaesHwQLzANgAIfTy/LoJmxgsh3qdvQcgwTkSXbAQAhLsOz6j0jzMMGHGER1TZrWnmoZRN28vT8I+/njncgUeTtC6fn87XdiU43J6fnqm+Pbw+IKv0xHNxe4Z8RhulfsDHbIPMj2EOP3TG4XUI1XMj+fjkerePcLwFiH3sKHaGKUv/lERiznjfrvGSuPgy+brQBatt6B3bOKIosKewjbCMy1EhGnox4N9DRgT/SU4YbhNQ/F9jyCPmo7ZrCyhej7uNgjemyyYAeoFhUmHVbXAUqY3zFdWHgQW289zeSv1o9QXTvUagU1TPCiKhhz7Kxs3nuklZcuLCphnjoZVU7JG2qnULIkMWNm849ahpQO09oXk5gybsVQV8MUUGBb3jkDsg/pEuwUSK85W9pGnRTSH+Q+VxStcxRggLXmBd0WA7A7Ya3De24As1vixqlVW2OQeEXo+tICBzh7PoyTh8T13NfBPSZ2zzaIy3hZTzmeWQqcD9kHl8/AcB2wLZTFevti6EBU9Sos1+NXuNLS7MBvMqlJWec4aVkHq5k19B/0tS8z3DNEyla1+rdBuoV24j6Y6ekzVceNwq5xDjOJoQVqlLXDo8xUG2lt3gg4DLKXGWBScGfV+sEnAnqDoS8t5k2fBHO5jvTFFsCHYRuvL+rShXHh5TvI8XET5fjvqBMvFLBz5m7XPStSuG+CdOM+3m2hMt7nerEMBewxv4hFFNfvaedbWSPSU8ORL5du/UcEdUMPXGiyYjkyh42fwA0YAzncrtz+mqpuVOTgAL2NvsQzT/WC6fjkOaj3K893J2IvmaEGv87glRT9d12qNuw4CwOLE1NZ0fMzgHarGJACjdBkuEwZhPaxAN4H94Q79r/0BKwVHyvOBbX4eTkf44a7a6qZx1DUUBVfnS5Ju3JlVzIBbzc5iBmWKcNAajKZhEvhRGnvzMOwbTq9WnXkzf+rl1h1DN0EeMstwVTDE+Av8Rjr6s/1mm887w8ViSCnrNp26CaRT1/vzq08Hq9+2e1W74pSteqcGWgtdyE6bvTitpl09vvz42+Nhlab+qFWH4xrIsxXTaLiLaQ/Qo84Agnt+7M6CoGq169Vm0xk9fc5N49R9ePmn/eZ5GazyBNi4FZ1v+6cnzA+hIft6pgr495777WNzQQUcwUcVlYYCcy9psVEJA0jN2qMYAw0OqFHiWdBC4YaBoagekkaW7spGyZDWBbKIEiTb0ZGHmTzg7JgtOLrjJLmoGivgplS4gVCpWeqAU+KnkNQ2Ve+QF4Bj6aaRbDYlmeqoaK4qGktI/HQg0tPkyK01iVm/x+G/hdFetIYZTmBVGzUqq1E3IIwboNeJ9iDnaFzhaGS3VNqy8psiVegwHKzRgn0aInNv1GkPJ8PBmPKqMRyg2kOoxQ9b1QaEdgbDDoxS+6CjUc08gQk5+536Cf2fRZ6XURQOIZ8TAKQdzlWrG/og3hwNLdhNTcdTuLrBPAZQMpyxvTZzo1rddrffbQ0ADFvMJ7NFnPjgV7Egshcx5j1dUfB6YN7pNwCtv3//4y+fsDhGJQTk1dsbVT4Y6lHWdmFwzeXh8QSXjhP0tUBXOR0PJ4yNKaMTBw8UpehtowSmmJnTaYU30CuhT6C7smIXrT37c2UZXq+45JWuyx5vNrsVBVDIn1PqjgKfZf/4FcvLJ2iqZTxip0+l+FvwWTDM6LE5Ih9QLVOQYIHOB8y1Dxsg3KfDTgN3Fm3hq8MbqPwC+ZKEDrjnkk4FwYtSA0XLvjdEMZPXabmsG6B8lIA2Stu52bDMqs3uEo5CauEgdbiDTRlqhQfRMN2lxB06Yli5oGMpUr1pwhKNXmORIvQ26o02azE4BS7VkAZOvdno0t0fsLIMJJjdiQsBYCpvaBnhJq9z7m1lPBvMl/RJeOUCkDCEaixY+jxCBG+/AtozYxlb/ekA5Do/CeIljwdYOguQQNGRefn8/ISum/gbswUnK7NiZICVcPmiylCOr+gCMLSjYpXsW68l1WMwRf+BL6jF6CgIX8pFLXMFKxguQyhJHGQ1SK4I1ZYOIVaR4Ftl02HXXfrpMkdj5TIEY+ur5ikP7ct8qtgMrWd3Ic3DoAOjMQmTpWCgs+16Cd3s+Xg4mk1Hk4UHHY6YcsYtFWTrdeDF/nx5Wvv17nyZR9OhG+WraD5zF6ALB/M5EBHLdTK2uH3c7LX6k/GE8qn+sE3FTdnkUs4oldTCYgvmIlbd5BmiCe1AQ4FOLqtcrbtUlq/yOKOaabf2XVYtx+CCSRhJsAl7o/FwkR728bjZjRdgzs4DLwopAK/9Frcn0c/lU6/Mq5FF24s2hRKrqIDXXkUB3HBq4yxcU337+rieUSiax9Eyp+yb8u8zZ+eAkqInQivi4XTItyuWopSRLzbN/bWyL9yflMVTxenO50EWp0G/2enTDfCjVbQIU39dM2uVoTMOgJhJKF4Dv3VXZpMvTSYq2xR9KYk2gu06Oab94TgYYoZP9XO4e3m97A+Xp5UXBoFzj1Vlgz+OYRByUge6s1iApUpzmYd0Gk+GnXa/1QKcid0yeufzvDWcTifzJPZESHw2nlQH9Tr6Ne1NEpXLD8unP582D/v9jq5JEq8Oy81qt9+czo+Xl8/X57e3w9PDy7fJ7P09e/q++/jTQ4WRr6QdiBEd3UZRfNnlbguoYwk5zR7VqNyRU0g9FSiLUUzJdKwr3tDW/HvVgWK8s20WIENWPivyOtpz9+onzSJRNUCLNsDzMMuI/axocAVzKK7gnbSsxE7SNpXrpNYfxsZCDKd9y/xOnv9IRc0aTcIxZgIhDgnsbxvnm1VSGDNHihWnXnXkiLXrjFy80qo03ZmZKKoTDjQYQ7JrDWVr2mMN+T5F3iEVZ/BH5vY2Rc1Wo9du99r9DsXr8Xg88WCJJjE5YF4YYg1FmWXM42UXgiIwVAtplVIZlATzqbuATNNUXB6H4s4HziMVza0mPoL2Zr0z6PbHww7bQc7GAxdWqW68oa1Iufs69HlWeDq9vLL5z9fvP/74+f33P//2DQLVFJdR/0CK8+G03+532zUgoZvd6bJHo/rygM123O+OlyWjRfcHOrupptqueFhNUXUHVjsFWfoxhIY0Vy8ohSlJhLcsnU/bLR4FTscUs+mzq02GmTFYYttluMw4KwHyLWI8ehQx2zaG6m0csqkcY+WCCN4l+H3b/RY6ZvQkoedLWTna73SUxmyhNB11udqB1jFjM0v3AsI2yvd3hkMrDxgghgk5JlvYwy/dKENM72oZx8OWaoPqA1U4IMhzpmqioFCIXs3m5IljFdKVbMhkcLFol60rr5UzSAV5sMXdpKYwiXXQW0GVr1oqJnPyzoKxLSr6OyN4CAmwzwXA3AsWcxDrYFIBWYaVanjlQZwlOKyhhj2BVnELJ43qF4F+IBOcagc+vBNQ40Nwqlg1BCFZuSKLAwnMtJ+Er/SlYOeKjAOPgBBYbyit5g25tXDgs/j7rEIOSrWRjWKCyyeFWbIKmJKpZsBXeRXdQaMoZZcF4m6VyvIL5PdYtmbZ6gCstdkKJxD1gvS6NQlV+OWZSRLM+nArhyMqJTMUhRGAV7QaV0tvRrs1Xy96jQnFairbKMiFHhCcFKiDwJ0nKXT207HkWhTN2pArmA4HtAg7NS2NbIhBvKGm2baa/fLMW4dj1smotpxKg8U6m946iSA7RHd2l9NxANAo+mmRcNLzWbM/mlAyv0k7g3A+9lfJzKWKMsK4x2/ioDZptResQEH4V/TMQDqbdGBXmw0+5KBSUxsl4Rrcmod8REeaG3oxJkyMBjlDZu18QABG8wzcrcOmVbSgy2Vd5PN/xr12Oy4CcI8DcOIPO/3RNFgH0Sqmg67Xa1Zao4bdmS8Cd5HWEYBpy6qmrJIqNyt0PtfpAke7bHUI+qPxYpxRUPOzzfn19x8fD/ut587jIKrcAXVfMhqDbkvgFLXWoA0tDoPqGHOa5nE861JR0+LgjAbtbLk57dwOQ4HazVZ/EXp09C4a847dgR2xs5iO6930r98/z6fL7rJJUjom19vlBsKN5zPlqG9PIO29Pn/77Ez/+rZ9/Pr6+9c5W1Zl1xeIvQCMRSXJogMZCqbp1pttGDLwJijzpFcry2lpQWj5agAFt4kFfGgo4ylFzueWsuZqqpGQ1hjkRvPNwEfqZqfgK0io1nBG2Z9mWTmLm+KpUWBgrihXblBTEWEwvZRPO6vQIyxGTaYCxJZN7EHz7ir2hWQQEzs8G5jk2FCwrimyAlc7CjUp07ya0hvB4cXrtS7WfgVxj/ZNC5J4fB9bzW572OsOu0PEY3ihDvqQ6hkNxRqGzj6Kq5RmzcARQzEsXi20uUCP8oNYO5yCJBV4fsSm5OJM7nloYY9RcPd61VYbppIOl8lQNW73YE8x6E9oA/X7NTwbNtJgvfoR1eY+hbF8czw/vX98fv8Jhukff/nr33/+/PnHHz++vqMnCc0O2oVHBMwjIFi0Bbkc3qPk3UDGY5NfX6TBkktjORVBXYQEDIBTOeZWucKcgqgDCQTKBlEqr7JovYyZ7cQae+kylHgbJVIZs2sZtGSgUCXMsYjpY+rrEKdHExvIdX4K3C897PdAbmNQDcsVqJWiZ4uq0LjH6SzYLiWyyXgttlUuI62TCR19g4UKmMViELhgK+SYhgobhpYQ0UMYKbqk5WpYGgu1CNEAACAASURBVJrE4NzruhX5TQ5Ptn3LdrZtZeOIpQWINVMUmNJaa7bqlVqL++lV2C822atgBOmHfm8Ez1zI6/ArvDBwNpWLDbgOY41WOa2aBcZiHeiMQnhfGkymgwVNv7fT6bFx73A0mft0iTPKkza7I9OGgX39YhcgZu0jq2m95avprRAqTC2iYjAKS3RGy2V1oAiYSmOnVEQXYnbRgUYfQahmtwGY+14Sp9TJoi5ruWwWb4oALJige8R61vDibSsJdmMUQIuemcAA4waTTg37dEQH72w8pAp4fTimyTLOsvkMWllhr9pbZJgVR+yfCSbEnDYvnfoURzbrVTTCMUmXpVZp0G6jjT5yZ6NRB7BCg3sjEqNMxXUrrphpaCkOPjephnYqYGDSjl6sqJqNmK98yNkXmQ2O4yhZ5fTJdNwejl1KE1Zh11u5brJb0RKY+THthG1QV/M9vi53quVtcjkjNmUFLLraYjwQ2jNObRhGa5DfzstxH52AIKFttNsjKWcz29MBXp4YDWEyfFw3flPSdJxe3Px3tT8um7K0nf5iHsBefgShmzAKYqrwI1haNBo9iEtOA3cWt+6gnnVPFbDEb2ZJYC7sAH/kROtwvXMHs8l8Ei+zhX95/8uPt/MmWUyAqZjMHcjlUrxtTqEb3m23u0OKtrTNSk6VNhDdseGw02jWbatZQyFYG2SnA60Fb9Rp1KkOs+uTKJmN3PnQGZU6m8Wqu79c/Hpl3Pz++Xx8ftkeYcGwo3iabOi0Ozydnx9fPyCu9Pz2+v2t7f6n59Pl+e37c7hFyxBlCpUgrPlCFXG2gh/Bet5td3ttOMGhEnYwH8Mywby7wIWWC0SpJXJFbBqj9p0IsttXadEi0loF78MspmLWLa+pAE7TSUgn1Z2pEBgaTCP+slqKAUFStU6sQm5HGAVl+faypMMWa4yLyJ0qlNU+VD9EAZh2nlXiTwqslnemVVdDZMsCNboqYDLsV2VXUquqT9QkBAuypiotSfpRRl0DV8Uq1w63xLHH61UqPBpOnS0DYC7VYMXNFmIjAjBAsh0K2SwgD+5ynwJqdzBE/Qb/W4QbyKgwbSWIV+z5QwGHrTNxzgq92wXNlF7GkyGrK44p5+v1oLpNZVOn0RD9AUUnAwzFVHBzcE+bjTYkShdemCw3+wvsaj8pGP/1H/784wfUtCBRDaml0+UE84o9BeAVKk9KADcc3SCTy7PezQ5DXIZBM+4vX2638HjboPnCqR/IXRQmczaUxqgYrylERPQPehY4Upbsn0VfzEHFZyFI/i+OggUuBAIzux+FQh8TffMQ+nah5nnjMuEL3MKmYpmB2JRCnE9yjmQxY9oDDAwoE66VcTjelwz2g9JIr3s6uJkdXKuz/pvFRUmVKXWSLUqHCMYRZQ02Uo4SCOLID1mLwlAcGs4CCxLOTaPV+sU9VZaacjzgUauisVa4iEUPW0a+FJHrNcgmN7QHCnPwACMcATCA8pjzOVBYQ1wTDArSKIxXFJLpwgB7zb4U/cFw2G01WgIZQ6vJAicUpL9GvYFpMrTaF94XG8U+/334a2A4LFieombVNBuJfKhjyloBSsrha1CWU0Y2oup8FRVyuWAgFa3n//CCzpnquVWuAfjXFrRU2RL0eRqmAjD2bWPoISFE22DJ+d58CL+tARrQk9Fo5ifr4wEIyGzlhuv9fjXrdBbggq1TmLVNFqyTPXODBWU/4WqzysJRRUCAFMQabNo6nIwH41GvW3UsuGyrq8K3n+PTtVtQdPAlAANhyppfbuKHTCzPsu3KZWU2RuvFoAImaYSScZ4npy2l72GaUyUPoSUvWWXLXVgzldgV9yFLhqWbzhXVSwRCgW9ABRUwm2PQTR8G8eYBATibDqauTyU4ZbJU665zDsBcATMq73I5Hta7tH6val4NNLtpQRcaldz+r1YGi7mvA7AbUWITelk8qPcqdMEAbhstWMyZG9l3ikdcKv1GEfiuJKNRx4lW0W7tTmfj+STM0tni4fm0iRntGsXhYjhz7m1aeFa93YWLJRXBvWZ72DZLkNEya4PI77ZaoMhUqk10UFuLzWWbpJvVtNmFz16zO4mjxXi6mHaySfOw9P+P//b190M8HXjV7Pnt9Px+Ph7y/Xm3TKJws9mfLi90KZ7fnp/fXujN50vf++PleH68vL/A6BAjOsGewj14y0VLlm+yWbvG2qrS/GKVhGIgoH3WTQ1DVDmbYSjSnS0KNJZWDDKtQo7uFtiipfQdp3C7URuNzyIquu/vTYdNHxkaoEAcKkHWGCzlqHI9oqxC804dYYYtMsO61NX5tqYdlottyWawZUtsAQyYVFlcr5hCeHCYclixtetTRfnhsGejUyl6WCL+zwH4JqXGSYgujmNjIMl8kSrF84bNrhONRr2qD0ptS8bdZCpnFOiKdbZGo/G0PxwOhuPxEMBsFCR99ksdTGBGPqPQrJS+UpYtpuwdOAnAZuHATEflfAFZL3pv5E6g2jXu98GK7vXw6xr0/DAkxB7EE7cVbFgj41iesdFsd+nJUO2NMnX3+PxIKd3z+flFOSVDqf18fuSWL1bUBm/Xa8yBgXJeiwslN8nSbJXlKwnNy5xhWOj8oSmdo/rFKIuJ1gkrwAKVSpEZQy7IMAsgPBID1ETqYaQj6h1wISGJy4KyoQcgOhITHFe4QmgXgKgAUi5E71AwY+q830leCnLz6UglPZ0uK0oMcPAOe23owVBELt0r+QeHMpUGpd6NqnDn7BJSbOhL3JcLVCluqSAJbZMlkOHKCFH6uztTz27KhQ7IL5WeeasWIjmkpYjKSrFLEBAsYIMkirVeqwLNrti2putVRYmO+zKsINdkszL4b89mYL3P53CHgnW8H1FA9iCDnGRJiIEyLnfIiQlc9eD6R4u4VlfuUNIC+oIuqi7WlB4ZXtvXcldepOnPcY81KIpxp3qnqIRVT1ajRsxfLsx1BnwjxCLKHpLtaLCVrbvUuhBT7yokkNTcGEdVlOYPXbxmdxxkCYsap0kArn/koi86dsPQHSO+ZpvjdkUJS75ebI7H3B+Oqd4K0UGd+e4YYimU/ULgdjr34/U2X8ZTxwAcj53lKrgF8DyGoUGLyi3TuOEhKa02nYXdXFRmIdXFhJ1iiJeFCXATlI3mmUtnA4OwaO1n6w2VUlGSrzwv3z2fE38R7fdpFPuuTzthyQEY5yKqbq5PVLJjKfirUEuV6IwEYBEVro/CZPvweKEAPOmNRm4YZGgkAWUJzsOR0liA7E8nvLff7LKmRF+R4WARyn+v8MUBGIsTARgVsDdo98cugKqRF/mD3rQ7o1/ju4tp4Hlx854Pb8NS2iVGyVB9EguiEkGS7rIgdCeLabTZePNlyOS+kBGw0dx37pEb1iFez+aXAPH02uadVTGcAVQPB70WvAkrDco1+zGYlHmaZKsATtXt7sgNgtloMp+709wuzYat87f3c9XpTfJk+/HxCCr0eZUfL/tkGlLtsTu/nh+fPr/CfOfh8fXrU2f+8311fH/69jbDaIhlkhlbCp4IcK1AsO3CEXBFdW5BNxqWUu6T3EWmX+bV31Xx5pm2wZ+2boY1fH+lzaF96rSCnMDfDcu8aVzxewAsYzqHYF+xsak5AEv9wJw1LmTVktSFQWESoR/OKSiH+HHT1och/YjDOK+CcK5CO2eDd4aCblgqAFO6xbwAAzDqe1NU82zrmohoW09b8UoURqyi2FG6EaCOwXpTRntYz036qMJahPVGTU+Rq3gX0jOwaGHddY57FYcqZyyZOtI2SqDZDbmPV6AvD2DQhkjdRuEMPDYk1gCSFo8oiUvALslhSmeKC4Cm600Zas3+blTxUdkkj9Ko95qwZUWRzA5VnA2wCQs7xjWaFZvVvJt1yNuPqcSm2E4pdwQXzQ062BcWKXw8Qun/SEEsFybwmpvRywwcdGhOM4sijVMueDNYVKMhvdlwAGZxCqrIMPeNWWU+SllALEoiKeG4Do5pISeC2kpEYhRuWWhGUykHTXC2kGd9oBimKjG7f/ns9J0wPg3RBaN39kHir0Hfjn4/mDtonW/PkIe6HPcnqpSpvkjoZ30AMgadTr9TrXXRgEbhp8fJ/37qyYgrCMBhvAYPJYgqmFbNVvDEgoOpoGAqiihBBNWL5NGLrUgAltJr4FP6HhbO+MUMexQJbJnnKKCCoyFGmPBCcasioEIqntk5F+R3ysUGs/F0BpNkz4P3RMjpiXRbogS8zCyRlj9wvnM0rUGUb7VaX3T1auGJGGy4jggrBT3j3vTxIfhm+ayh+YamGkVeo7Ah0lDWlST2y4ypaD1Lf6zoHwim2izGwyp1t+XtNQALr5a/me139cidLlNrAMFGBGD6a70wXW9SdwB90BmlseOx60XZ5rBZp9Fym8eH88YfD/3j/rBNYFybBq4b0KryvenMpwo4jPPNigJwRfrxLB8DhlhnOByCGTQa9euOdke6usUXAfgX+g7LcDSaNbjbdMJ1kuYxbbd1tobWpGpBRxG8EmmvLPcrL9g8bE95b7KD3+pyMVqkfkz7ahs2lFOkqQOuNJ4ZblOp2AUqwbLqrQZIQlxANMZRsgUL4pJOOoPhNPBTaD9DQYLxH2zmcUEAhuzA4ZDVZVR7jzuNJVAqXROxAoTFOkz1CmbASyoZeq3eiOpfz0spAi+3cTLNthWrS5d1Ook6KgCbVw1PSyk90ZFkz6nWD5IlRdt5ukwX8xS4cPhcB3RieNOFc39XttnZu8oSx7Tw66wDa3X6kT9pAfxMOwQNkm4IIMlue9zFycPRHVDmOUA/cTpbzEbTqDYYx269c3x9qFdq/f33l+eHj4+nl4fD8fntkCymu9Nme7i8vz69fvv+8fHx8vr48vtjc/H392T/+7c/npowYgNog15DJGLm4eChc4qerj/qtHtt6fvXO44g4M2brAWvFIRC3pFEzVYKcVInG0VKzyeHqoYdyfGVAAL3gPQ6U9sMv4s3EhecJUttRqvIB2UOLEx89aMqAFt2oSxoVqQSriiSYZEoS0ltckVrGUWCzXPoinUnTxidL9nahqn1AIXzrxrhqgjXCrc3FEelt1O8KHY/io+quKwpzgmIWFXTUvteQbiElIJvrVdsbjRVEIjZ2LjK9lRNaWFX1COxTTba4I2GaHuhQm1R5IRSNoocNkOFFjx6ibTdaZ+CgewnOW1ESjJj1l5ChIIpNI7d+YwWxXjYZfvkJmbSwB7gyEBwxtoFg4IFxmpwRWPhzV6t2WmhYAd5ptXsAmiCgtuHkzaGYOCKHrjfy3odYLwpFPT2eNxt94zFQmUMWhwPiBkOHVMEzbOMCmKAFpBApLCFW64RTTlmRtxCTRVehr3Y4LkRMzArimk3pkg1kW+ydBlKvCSGXjdE3RNfa7L6ElHnHhsSBmCQBJCLpGuFIIRMBtN2lM0r5kIJ//kIEsYGbFCuu0MY2lNEajhsOVq6x5JkmJee69FyxhhKiz8UnFZTj2QwFbBMzY8vkBG65+OIOLtSUNaShuUCA6H0La4NTIVZUi/gdOK8syvceHGAImtyliUdlzqMURotYPybsFEesJj6ZATdI8A/fZl1pFBsTZcJ53Zo6X8pjkOOqxKAWVnxRlNRv76pf4xf+a6CYSsCsOphY7/pVnZh7iDDous/pCg2t6wQWm3dkjNudbiu/TdlgCkG55BYrrGETx37rj1yvSDj5QQQwWq7Wy2GPco1R1PsDdenNbnfrPz4vE/Xh0M6Hc1SSs+OGyoy03WCwW+cht5kgvFPEKOlE43QKZOZA/ZvvdkCyX86Gs7dMSW+FYG8mLpHeyWmF2U/uBlKLp/ydgdKWFGyDDHEWW2XGHGiqEJCudxQ2Rb5cZ4sguVhtZxVxzugpaPpNODse7UO2qbMM5yK8NWNmiNPUKQ7bcblsNKSBGBMyCjqjxPdgh53AMLyk+3+eECva7sHWeLMZAmo68Fu7ZDVytqRDLhdU1CP/F+pAGEZPANuVDqUrWRxTBUwBeAIAKwoXO3HU7fhp+VyZTTzJtOocc/2ZvdK0pJTOOEcMKd/HntxAAFRb0g50MJf5Z4cd6s0XMxHU4eK3XqjYgEMSQGb8i3LaVTKZmc6H84G/WoNbmnVqmHUJ/nTKY3Xp/z4eDx/PbWmvfbQx1CaTgUKwP406k3pvDjHuyz38vfP5/Plx+fj2+7w9O11yd3/0XROFyjL6Yw4Xo4vTy8fL/P1z7fd+ePr90cX9JQZ1T/DMRMUun1xXxsACAR1+WZd+lZNEb0tqQBcVsbpt1KluAhlJThpayrH1bbBFEki4zoIEo11s1youarkv8AxlznycS6oKGTSdFPidHoSJCp0/IWbUlqtWqOsHqHAaegf4d/iKGKdIfsYd8SuWriz6vnJrAhTaDySwcgZ+wak/+9PyOuISYjFfIRWKkXlLSypmhLbgf0h5BvEt1awNXwa2oznqnLsZRNOCGbR4agr5A4CMtpkzbo4vgCKU9UFdK0G+hVnTqJAUkMzA9grRmNTaOi2W1zq9AYt+njExTJiMywapy60H+KQFmwIyHLA4ciH8qo7g07poNMCBarf6zQpGLOxOa2Vdotp9G0E4A7rgcJ/ssKmuB2cNcCvoG89dX0W2oYZBiN4dvvjbr0Bk/iEiQikLDf7/Zr1OlD9UlBbBUmeLfOUIVnL1Voq2VR3RnkCzBFYql+oeHNQjlXNP/cpiPqoevGNoFqjI5/AR5oDOA9C6fHoyA19VjDz4CO9QNMe5h14MLxHh5vPqDdcEA/Ebq4RfZ4sJ3Eodu2r5f58yFebPIGuJp4J5vWgn9WYuylAQFpX9wp2fVcUyKoXrf2ZLDGYKFI5bdtkCkvzyqWUpFXlnuJNgENeo3ls+9aYwjAqSllZk3SvhH1WkKvjbKrWRG+dAnGTUcEIz7Awa7cawPBDkIZytIlLBaFg9pPki2o5q0kVk09+CbPlG70JyIkVp0dZWeUUiseYD9+XdRHIYsmsISyh1NEnQll7SJtaUxQBuCz5iGFrsNcNPqRQxTJMLXIpeC+08GtaDdep9WZ0u4EzQDclX+Xb3TpeuL1mZ0jRgAMwBeVNOsve98Fxv4vGs2C5fzrSEl4l4TKkYmniRbE3HiMAR+lmt1nHI5XxWyyYADQzlTgUw+BETle0VRXWlZqRq96GqbvwQtcybD4m6B7h+Oj6aZBul0hVs00y0DQkWngrSNv6briMoXm6c+3qlJKldTYbBumCVn6W50EX3Gn2Y7aZFWaICqFTmJBYuodfZx0OgbBUx2kEvafHczqiq+EGi2i7Px0hdrdD6H18PEOc9gLRnP1us8s6jIzBQq7IyvwPNCQEYByKTac9owAcxt4QWtDBIskjL1uHZd+drCM64sYT34tS9JABwbiX5cMrjtXY2aPUCdfpGupEy04tpEqfzgcv4NHJbDpd0E10TEo46xXeSFw5lh30OLt+3K3SydjoUP0LXlw3po2cJdvT/oFSifVhM5m1mi4VB3S5EzoIfHc+b3mDfgyWWu5//m37+v7t58PTz8PrabdZZkvwsdebbBn7dLmXh6eHw/PT8f3p7fz+9Z0tt6EjDM9YeOk8nCCbAL5IvkRyO+v3+uw2DptjWufsWPPrC1QN+E83WRgfFWXRQhFjORWphEUACg9rxfI0mTl4QkGwCr1o3VtizRvDoTIBtTCoxfjpkqUYHRLpLT0yQ7gGb+5Obad7+yrhpkbCSHMxcJNMWSvaIQU2dDGP761IBVzWUzlxkDbMSqV8R6sHz8uwHdUfQiUvuAXlAONYt0o/tta6Fh0vVk4zVS/d4Bq8UqUK2K4allAiHTZDw0jRYG6UAyXuGlgLVqUOu2qALtg2rGnb9TYLDPPghNkBdGa06sqwnKMyVdA47tkEUjnSg3DVaLebXXrkVrtR73TpQG20HMYOKUeLJkJ9Cy5S/XFvOJkMusMpohX3YdOQWYbLBMqac/CfBv3ReNCt1/vDFoyrUGj3Bs0u7CK7XbhRsS19F/m96JmIJjYgZ8BA9CZTYK7nCyCB0hz2IXnOfKXt4bjfCJt4tQkiKn4zSP4wAGvDwpZLBGAO5Dz14h5zyK1SQT+nKaQdQyBCIeaYoCKOFEyL8dIRRMUCGZgLcItOroiHwTEMNxjBhWDvc28gjBcB5SWBBHX8Lj9krJY09NPYRz1OL94iSTwvy3yUT5h2M9Iip5hMpzMMPQCIcenStrtAp9esG7SNIWXyvRhNXDtFDCsS2D8HYFljLONh0snjMKRJF3eKEWAX/ByZ5ImveyGK4VRvmuP396bqFGE+w+1wmwWCTeXFW4HycJMlXBGpsFPqSp+mCdA1BeXBF8WkuVdTOR7zYgZsSACFywZLAouuk5C/dGxWzC6GtN7rSaGInnCCj5PWNu5YHpoh4hbcMixdA5tXXDXY1rYMlNVXdGRX3yQBulS+qTChSsCwylrN5rR4ENKtZf4RLfgUK3KTUVjtdnrT+Qhkr0W63aMXswKIL4WKfnC4HE/nLZXDVML1Wz2XFvVsxnwwyh2TNOjbatIgN9xGC4J2DbCVo8mw38dc3WYJStU/FzYcSw6KBiq3ExmFwYP8ai9aBTHbJGbrXTqbUqJMFRpyBh7fUMEXQuU/S4d2ZTAPz6k/Gy7SYI7vWEVNjXwFYA3XTIskqakZO+qwNRnl+tz3hvxHbZIGOdX6D+fVsNsduQs/os162EDvjolq0Ie/PDw8Px8eD7vjPgUCdDYesHjBoM9GkOqoEggBOMgUE6v1bq3WnXlJSlXrkEL7hBP1MPE7/ZjKRKBXR33wkLp3YATelQ28BY//N7rnjnUHEbqaY0332Spzp0G+ianSD+HZEC3Y1J128Ww6692bPJ5hnUZ+ubuvTZLE7fbHEOSgZ1Q37El+Xq83AGVS+ft6WEeu12tMKZBSZN3C3JZOgDSfD/vhPN/s/OQ//yX/+v37x/Pz++vjChCVIMRtYNTL+QCZAqo1DmdIBq1OjBo/HNfcRDscWTeQLeYP5wuMy95gHvv+9vnCxinQWdiuksCDlvGoh14J7IhFJv9GkPfu7rfiPR62X7VuDFGfsRXfRzWGHGZlWBXcANAFCwyFMuS4ESIyTMUaUFMlPFJZlQF2ARmVMbGjd5uSwHS0lEyxB4uRk5DeReraUFWt+iaDE04FyC7S5IqjoBC2GkMwK0rDu21luOIwgtC5OQivcVlbUYhtKg45HvHagl2rcKDVM+UKUjGWV0O5bNEBUWEbF54w28BDovZtomcIQgqmzBSkm5UqGy5jc7dQJNPGEXcYIVuq6qpah+ZevWY6VaFVVR3xwxC+AYCgjMrudIWFWq+DJEX5/5xrQYrF4iWAmSDVkXQ6TVDp9TptjJApEPdr7eaw2QefvdlU+p70Dv6n9KDW7CiMKiBpVDpX4VExpMMNRWUQIRyDzbQVeMKWFjIYTus8RY8NzeZkmcbJEgrTXBevMNyOMbON2IoNmCHG93oQAfU9AYwjckqgpI99wNP8UMJ2GHCdC/Q4f5VOUcZuhEECDxw/iFcxE3h4/oxJtVS4FIw9RGSPEm15KF/xwRYhxoAokOnZoN2Nxh89XWjNsQz2hmLzMlvD5Q6QnSmUNZvNDtItvKgGnam16zG7wTrhBWAyap3jqiFj0DuTWcjKa1FXfKbyHBKdOm1QYJlX2r6KYkx6llERIyCV7OOVP2ReXVRsEOpaskBAUEEj26l8KalZb0nwV0DWGip+6nEvlyxlmQdL1Vv+pffMQ2DtF8sfqqjKTWVl6cwILin95ambOrdW54NSljKM/4j7VCk7Hyci7GdqUw1uPwP3QgFnHCVByPw4jDSoLKGML6Ib1OlO5hMo0HkZFXcJXCfz3XIVz8Zjf4vC73DYLtercNyfhstlxChoj05qyrwoAFtX3UwR52VEY2tMi342c8cjSn8d0ywQZ4YlYJdCv5zHFFUlZU/HQSfOwxiAQbj7ZPOJ50MuHlU7AnASwbx+TrlC6nbb3WmyDT137KUe/Pzyddyw1UHDnsAOVYJ2QV/RdBRBucKMoSolcKU+Tvz88kAVcDbqd4b01yVrjGDWW8QQiOadzhfILj4eT5t8f8gjaJrTpgh9QO/RUYMt4ng8mQwp6xgMemySQxl6kwNwnCAAt/qDoce66OGsUR925n2n3G6509nMCx1DsitL8YgFd1BmdzIKwKNlGgTr5+8/f543SELCnHUz5gsvdnsdd5n0+EiGhnSF1ZvuW5MomrRxOtWBK6zZ9S7K6NPueMiz9eH4tAegfdKfRdAkhWE3J9RLSD2vfODZ4r/+PPz++vb1/fL49rDCX+vN52iV8bAmFwPa9X5/AFWTcjQZXbEQPoVdluo9HM8sHUiHHqXq0OZds8Dr6XRmSfYnisuwn/14e31/eXt7en55RGaPMxF+elC/Y0CHOKULf7J4uSr1llnmhQtIy2BepWEVcEfpRonSQan0m7jOFJ01DsAsAqpaWLqPUWDBCndNZPJ48Fv/9RtPL/PXUGzLb7cE2AzDHVWk6ope/RQ9NB7X0DzngsdsFgW3FN26bJFp9q9TPM2Ndmxbeccwtlj7X4u05vVFt685MdVuaaqRqRzUKloBBM478K2rVgVQrc6TKlt52OJLwz06VmGsA1lVa7YsR7ky1zTgUjfSlWBxBTNd/tcQCTDKvdtdcDLGY6h/DMCvC1idKmEBJmhezxj/NRi32o4DaUh0XztAj6EkZoXFdpuNM6h8qrKNX7NRkSYgp9miyt3o0D4EHZoi3yrncgSyHbTm0O4V1jr9XoCi6c0yU94FAorWPOBYIESw8GaKNBM0aTtCR5c1u/XXfc4sEK1l32joEWjY/DUR8Ob3C1gSG2mjBR0g/LN7AsVnds9AAk+ldBJIwa1+Cx+QSay8qDMAy0DBp423Yj0cKqyEJZ1TMe1O6KDq96hkoAiHbtmNl4ypN1eFEYpO9Sp2qa1cLT0LtpTEMudf92rCo1e1qbpACj5RNgWc5PsCXwAAIABJREFUpEsuvc3usS9pT5aVEa+uxIHp5XTwCwtflMqF+EXpBidSNrWhmtS1DIktZlhqFFi+9qt5UlguTgYOwCWN/zSurWt8SkQrNcOlrAN9+TqDvsGuiBwEg0h1eBeHA4dy0iavukqjPY5TGHczUB/RjM7IdTodDnq9yYKC7XjqZ3RQpgDZ53RgprPJPFztHx4v58N2e9yknp9uj7tkNg8pLEYJatSw51zxY4poydzFKnTyBqPp2O12B00HfQc90ZYzxiioSKgBIPojiBGzFa/DCCGBcoRtthjDui3i9ZVBAi0ej5NkNKS9Gbn91jDNFgt6Nslini43m01c19JHwh41y7/SRbm+ECYwlARER5AC8CgJcgjEnxIJwOCDQ+RuC5eOR6i2U8h4PJ3P+2WcUtbMgA6ohSQ+ivOEU1gf+S73mChMzYN5v8Y6oL2ZF8W0+0ZtyvUjDx5fkdtojDsTd9NrDqfD6cjLHCrwSqj2FC8Ha8UslR2qJSzaJqMwj9bf/tPvx2wZBtkqTVahPxvPPG9KRfXu/dumfq9EE+/sOgXx+pQOhEmfyhg6gWoVw0BjYbel3D4/Hjfrw37lDQazKJx74FMybEXUCrINVsbiuJ6u/v7j+eP8+9PrO0XGbUgBGGcGKzLQEZNGKfoRqw27qW/XK8Y771knHzXGnuEkglwDchxqCqxtst5Br4DymA2XIUC67VCTnyD7R/+LB8rDw7O4kV1AQXmmyIwov0c0X6eBO+y2WAASi8+A+B7UeSUaS2S+u79T9lJaI6WgE4HEe6cD6RXKzuB5ZXdoMd3QLCKk0jlAc84Q4/aC2GHe6GiJGL+pUNiK7cDIJgpRejalCvWy1hFgRqKhW9hXOS89gpISnXFZZaH1mbcG4oWsawEGs5wi01R+MOzjU4C3uIS2b2wdJXQ7amhXCGujd0bZ3NWSQmpWFX+rovrlWAqTwjW+RSVMu96stjuWBeEGuChreXsDNBo1sdf1Ml4rSLdmf6CBBjhPjXJyyMVUxFuq06WoDNTOmHZWFFPYTMFSTqJgSokvoPxduEx1mrU2qDDw2qMP6p0mpQQtrpIZpQtaFptMgmQrfzMAYc3uYNLqjybj6RwMKwpxqSj20iLeKEKxDI8jbhwDVpWhRKYnIXEwDMFpwo9CmcKHNoXWBMV+CfhD7j2r98JYwmkQ8/CYydUeHxwet5yDcIGa2I9VWI64c4YiHoJdiMaJcKb498LfBboO9HVP8NipsHEhHIKO5nKV0PGIiRpLaG/hY4XzLc+TzSaB3vN0POwxC4jvLCakSlNTY1pKt8oeSs+mfH9nalykgBzNqi6lpU9bxE1RAqmIV1HR3qV9VgbdspCT0sinsuwou/qlfIVHqQGt1vvFEWnpslRi760Q4RUVq/xxlOC2wk1zyWzIVPjqTXUdMd8U0PIlibL6YLj5TeqbeJp8S4viAAxtsSqMfyqNzoSOzTgTje0EM+DDYZ3OMPZ24aMwnAbAZTFRKc/3q8U0ogxw+3jen3ab82m3Wm4uz6+nZDqPqOaMY3jehH1HIenUGWQwqRfjdoAbh9PJfDSZDdpNRu/hyjpwmrtBQ/Mor8LYDnGTaQarMIEvd4YKeDFaqAAcxykCcDidRovOIKAEwe13Rkk8m8/H9IzmSUqZXlQrxhwCxjF/ETISsA0ncTZt1brooCIAp5CiRAAeQpeEtvaWWcCbLYTjEQkOu+OJAsBy7iXbfZ4xcDJGNsooyCRhJVnI4QuUg0JkMgD6lAIwFdRoTCEAz9IA3alw2pjvtqPuygt2/igYDz1JSNDB0Av+t5J5V67VSqB+V6dxHqXHy5ruXxjmm3g+HcV5OBm78/z551u2mHbKzIihvXN3bzbGXuh2q5VOr+k0HZPSn85kfVrFcbRcHg+b5TJP/GC+Bjdqtd+g25YCbMIZfhQt03WWzoJ/+rn/eHv6fHn5/PGxgzIQHwwhk0GzVa4DMLM+WKF3K9IDzAORPjRKYCqJj6A+QtAI0r4omNGiFsn78xnNaHzxAvPWy+MFP4eflPh9Oq3QqNlAjf/AMv707/JMZTM06yDPe6SAvwUjPfRdcF/4ALGKy/hLN1t1skuUcWMOaypWPppaCNt39yVTIwXL2sVMJ4yye8uGqN5onHS5ZBcwLAnA94IEMfWeBiKQjp2yUt83tOyvfFlRzQzRpr4dO2nhBYWKsa+yIL+yn68BWKKpjsTcTzNKlqPLU27DM+yGA7AKxLYe5hkq/snZajtGpcpKXbcBunJ1jaox8APtbqX8I7zHGmIuHTWAWDQ6kJPWUB0RwWa0omEW6HaRxFbVNg+pRSrHqdrVRtXGSMXRfldCU2K2ElW6sNCbuq6LaLgAJ4q1VL05W0hQVO70+51WuwlUGQS2HQrLLSqWmTaNibR2sRKHu0rDEXxaXayt2v1Of8jSfhDqRCjTPuqcqcKwe8X9uCCRhjGPbxFbEfIQHUNuNAO0xTUtV8B4JJ870ozXAjPWRZ8YoRpQaYrmnjS4vUW4wDx47qs6WyBggYDA0PdmcXw6b2JNBQO0m157SQatn0TQ3AGjUxHroRoCIi463Rh7L9HBQgseLoDny+XlFQ2phwfEZxhX4Nd67njY5pma1LFcZFJMVW7KokzjOFq7hu/0PcpZ7jgJze4OEQ4fQ+WLo6JS9LK0tpdREnxyIa7JcyDtVvGFV2NFZocKLCXEH6647WuUV8wJFRtLRQBWofdqeaEGwWVBeSoXu9JvpauQg54kX8Fe1yirC/grAluX86VC+lF9HRCMqg0Dl3qj5iAAJ5A5FU1tOoV3hy0lbFOKYMECpqHTcIVWBaP1s0PmJYdtFGxOW0D1DxSN9k8fn5+neDKP5pMAbiOrZTjUAdgqEKci4FOvNdtNWOxMFy6F+C7KFZwxjtwYrb8gpA9HIiFHYLghAYTFUq6pqypgqMCxEAet1vmwNfSyXe6xZAY9/ZEbUVxMgGWsmVpbgZOlG0XUG1I1K/TAjIF92OmZ1cZZvAEI65T2+4PxgtYsfFfWEH2CAAfSRcqHKU65fXe52yHP9UPQCFi4Txa6SO1G7OoGwHLSB5ujXu0K78DvNzr9MQiG4WI+rDXGGaUno3jpDqP5LK4B/4zSrawHkhQNSiC9wIm6Ns+QAjOTMYlW68RbeN6kO918/vntGPT7iymdHnQZa07ZqbbHfriYdJpMOKlh5dbme4pkbpzHu7d/fM8j3tExXb9w+XTZQ9+WbSkFvxkDejKI/vff18e357fnz+8/3naUV2C4hfqX/l7uxinEKBTWab+udxwnWS5wfzgoGSCuhenhwQTecBTdbS7soA7RPhkR78X+9XA6nM4UW48Ix2IJyt52sOd+wNAYURyR+fHEYn+brTBPKLrju2E7C3fZx8s7i+Y/PED+d5MnwWI+BRq7w96/8F6/BuI7XTLfK+UxyNJxRxua61rPDPeFvtm+BtDrvisLvKWQ0lcdMfhJ6B0LYegKy3DwMWGUNGBT/UBZ9b0dDcfWGl2aaGUVxuNa1F8bu6tP27fOqEr5SNf6FH/LJcu+RaMVmgNKhc6+0hpvUOaO4Tiw0/r/szxn2BezVSq2Rh8qpexq3ak2KrUW0DS1ZqNWayjUuCnMyHJJWXeWdAV8M0vDcV5ltiDVwZg9cmscVhZXJULAu4upl1D8xT6SCcyw6ESVyHKIdMTFUUpxzJ24UyBCe11I1FChDMazYFMbDQe8mIbqg2Nc7oi/H+P5BLeJyh/QbhDsJoieEZcoQFPsD2gewYkpE7B0Ekgoxj5CbSscLGksh2owLAGUcneK3pA4YNA0xrsexTwN+gq8kAK0J4NkXTAnKIIZZ+2rsLpQHetQ6mDYGCWAboecTiepEJ7pKF2yNxklBkraTDhSnhd5iwgiR5g7Ih6z2BDtn4+3Z953L08XZnoxdzXw5nQZ242K3LhSqdg799wkNiXxY/UORWzCbcTesRiI61i6a1tgVW+4QwJkuo2D5fIXNnfgLIBxDTVRVKKViWWAUaP1i5WRqfpT5WtzWELv9R3160wtlFw2NCKLC2JE3vvfYM18y48slXXb+ma2ZdwUz0oR4jZAm7B0r/DYhhYaBeAICJ6MVWEgi4pZ5sJzwUebDyjwuOFye1hBsAUT/Xx9umTuAnaEVL5R9pef4Ci1iyazYD4NYBcKJSxH7w05IJQ1MQV+kxZuo9fvjOeTobsYtltg+SkLJNO09diM+c2OkCJYLqQtAZitwrbJbOIxSh+gA1a5oVg2HfQn83i/S9OcFoUrAdjHJGcT18tK/tlgSc9ySfv1Xifm6kaD0kCnY70mAThZU5ylCrg/HE4AbWLFd669QPenqwFk5GLS78xWh004grZfF+6ukBKCXNBkPJ0uFv6Cbb2YxuB1Wb+30pt7jMno09UY+shiFwt3MAj2s+1qFfWGg/ksyKrmzY1FAL7/rcTLsVKBeP9sFS2hvpfNl2G4pNu2GMxXD9++X1L69cPhfN53Gi3K5qvN1iyLx81mt9lq1S2q80FHqvggli2358Pz17fVZDQaUJU/nY3c9eXr6yNa7OdjrmZf281yFyf5v/zV3729vJ/f//z7j40fLbHn6YAIwKVgiCc0dEGrhKJQkkgrGiGYcWtb0cLCQkIFfIAc/pYt1venA6zST+y7jdjJqgl4AVmEwjUFV9hyH/dSCO/oPIAvGZPA+AWVNP3gRX1iy13s7X692ysK5Q6u7LtHRn6ddk9ixH5ENAeJe7fN05gqpclkPOi1Wy3lxH4v+mPAVErRrLLkslKhdBRbwdDOKaWrFulV6E5JrKoDhr1AWDiyMF4sq/ECArep/TIN8SdRkumWrZ00RUnhOi82rtak11aXPnfKSpFB8CCWAKOwz6RMMBQjX1OzisK9MLK1rtKw/CTAr7uCsG91wUwFPFfN80JeB/u+bteo6mw5PIoFksYq35u2+vOkkac78LdEzuIg0xU8wh5Cb1kGU9WaMqWFxgRF6TqYLVVYWiuRnYqhYzgboTXq/XZnNO73xz4zgoTUgyYxsAWz8XgK318IPdQhnV51IFLDiEyr0mw1qqyaiZq88u9t36tqkgyzAeh4sk4BPaYoUK7gHcFCrLBZgmB0hjgZhmEhyxFILYsoyhGVviNarmALAZQ064yhTAr8OAgz4RNzki90euC7MIcOWROU8mGNnkbsTeJgoeREvGJGzT7SPCNjGBnLdgJmy2kDfRx4AJ4x2xiZAxrhaqbMCb/o6JyhSPb6Ri/i6vvwcD4DRBn62EcD2knIXbjwFNEQCHgY6D9xgKY3ZsmUZakaxHqAa9xEZE7BmADIDAnea19Ef0utJ2jMVNHkgn5wFThCeM4pczFulFjiAn6LtjSKlrRpmQWsSvBhN0NdqZfvFbr6F1klpfihZ8DlW6axjr9CajJK+gHpAw7AHH0pg1MBOFmpF1TAKIDnLqwVIB03dMN0fdjsD2usovxAh1swW/jjwZgNctN8T+XKYRVNJ4u5S/efIkIaTpVCl7ZptLVFR7UCE3Lw9Oi8n8yno2GfecGGSs4NpVmEAGyriwxVyGonWoYxxhXgBSRAQUMNk1IH1vhf0tqC2bibcheFlt1ssaBwvKAKGOLVFe2siR68VZbLpvv+cp25t1A2uDdfqUF9vFofJVF+OlMFHPchZy0BGCUwPSYf2RR/omRBtdRonu13YQt4WO6pyRRZCOctADX7A/ic0w7v1SssGUgBmKkJvQYFSzSawgWlttnL1raq7mwaTGfjkWvd3/3222/SIP2NXww6xNjL06IyeLzK8mUYrfJsTZsl9Vwvf/75uZ52OnB3nfqzmlnvNiynN/Nmw163VXUa0F7h4qBVMWfbNAaA7HRINin4Q2zMtlrFkCJAY4GhKJDITcNs9bpd/9N/me52X7+ef3z92x+XxOcGO5QG2HeWK3zW6s5XcGZArrJbcQSmtwjDbFnDpnGbrQgj5Bt2jhNLVzZWxwsFapSvMKM7UCSlGI2iFhH2qPy9H9DFRgCWsIvPgY19eTifpUZmjzhAv4C3plRph9hNxTQ8mPZSiTMqe8e/EDX28QjP0Zcn/Nzx8Px8YXlhWJ9SQTCDUG8VvdKyGir/Vrzc4dYUIx4FlbvSAo0b0KQKKLTUxEzOBLpdNqvJ/XHjJoIqaLckjioSXv0VreLEYJ1pka++0t4U29kqK0lMaSqZFQReUxQ/bOvGNlVHW63Jr5HhCixzr6twrnDZV1s8VH6NxOBN8aC6LABZ9QypcqUwRkeNA99ntHobduleVPyU94oWGdO/xtTO9vINhlZK4E6mwR0LVRzpJ1Cl/xyFtXWqSnjH5vBMX23WuaftmCI+XRGBFCg7cj7Qnoyhj+iBRpcicdSJ53w+xzS5DyRXU7RsIChhd0Fcr7OkJ0uU2Kx3VipVNNgT3BvRWoBjVHMwdSdIyblEpVi54nonS2XbpDKoopCJljRls6FHe4o2lUeBOPBDiHiEyu0hCxGAWf4jilN021BYB0psWajGIZexcNUQLlTgw8sXYVrUREK4aeBjpj4lseJKxQKqYWBNrEyfWIFTsZ7p+2aLAOlBoDCXCTpfYqAMk2aodz08ISR//fxASH44P1wOW7gDwISak9smMiQGLfD4Hw6rJYNuJpfNxS65KRh5+lFRxFttPPGlUq0rBGBDjMQbsFmimrjZgCK62UCexELVYssiQnEKUSCUerXABd8gCSfPKWWQbEAC1FBCW5ahRGNRK0q3WopbpOilm4paN7WL+AsVlPtSuRgyl3gIDCk6lgBuOc3OlAIwG6pjmJHEab4MXHfihsFkMqeSbDT3o/xAYZluO0XghxMaeP643hpO2aZ5tV0DbRTNxq7rehSANxyAFWe5qvHmguKw4MdmO2At9GlZQ0+Wp/yOSUkyOl1l1Tyz2TaowTwFXtSdbBuGXIJnq3UC82Hmuwcs3koHfzijRCFwgZKm/CH0ZyC5xws3ilfrta9bHGVoIxvsLsQFR7kQyBCs3F3ZadISacCEqVVrDKNgebqcH4/hcAy2bhSgLNtSpELPPgQAcxYmMxAmvGSzixt3PK69ol6L1rbFo7JavQ38JauLdxCAY3farPbGk4B2mT+d+fP1umXTLRkHwcCdj3za/WMw67sdaAXWK1ZtNB33nXKVDsKaVR7l8fa0X9LGoODrJ+unn5/7Od2yCRR4x6OF26ZvstqzxYwtaOgvAySa0gOYUFbsxeP5cKbUKp62cTCAuLDKw03UABIcC7zWBNIVqVqrX+tVu//1cbl9eXr68cdf/mEfJHmMUZc/p13usSxfCt4wi9ivdmuMCvKM1e5BcZIZ8FZoHhtuQyMIb9cY1eZ7IA/A/6APmai0E6rSDmKfAGEh2GJ77w9cAx/ZBZI+ydhpDsWoYy9PRypwn5+fHp8fYaJ+OW3ZsBkOdvRd59P+fOGC9/TA9e/xINSn8wV+s5eH0+HhfAC1mx71CJw7REZPsH59gG0tPn1iONk6ZSoHBoo1WwIDD5FvXsq6FS1DKJXf8ba9p2UmI+miLaNSQVPDPcoAd9+2tg15jFszFqUaiEe4Y39T07wZNemalU3wypYgHxwNwuJId/XhptB1D6MpQ2nCGfo4umpyqxLZuLcqFfFSVe46/F33qpK+Vwg2nSkIwgyucwDcO1atAo/2RtMGG1SG4pi9i1QnHcFCzbIcrdRjK1VEpQVhlIUt4aiEpGwKTvXOuDNLVRP+joZSTZbSh5FmDgx0GYdiw+4RBRLsxDDNxjhZ6FcgCdrwOWjQLmUT1TBdrXenR8wwnl+fz1s4C7NV/XTQ7jSryigS4trNpsOVgqMMhGo1EfQU7W88pxJoO0z3Qu3ThC3KFBBnlv5FdirK1DnsIjJKqSmThQniYpGkUNTVrKYgS1dU1iLiBh60suAiTqUIK097tIk9dongGTR8AVdzJhmHUYpHo5DO7E0O0CHgWqEfs/FxoIBkXqo2MLSGUX1zvRwJqwocZ+h44l08nZCRo4F4YvGkjX2heJaJXvzueNyfHp6ent/e3z8+3j8+Pz/eP1+fLgfmVdDxOZtOBx2ondVs5TRjKNY/Vcgy9LkXQrJhQ/2ybFhatPALGzTV602HMXQVpyk+EMrLpN6yOTajewpTxkpF0HYNNnTCuF8E4SpynwTJwLgDbfldvho6wKZG+TkU7lMKm2VgxWGXSwDBM2TeUllmV1zwyehYoa3LrAEAaTB64nhWlJ+NcBugqIoRSUQ1Y+S6URAtBhQCppNed4KFeFhnaD2s9/vNMo08t1nteMt8STlYftxNh/k6GLvRYjzjeLcO2oINscqFk4S4JIp2UYUTx2qj3Rt2p95sQjGlRvGAkdOlEraYYNxrVbvJ+Q3g0+EyQAVM1RiVaHPKENCEZvA/5tPxYk7p4Kifx4iKi8jl7nQwnQTZcruZApl3fwXDwSLojg3icGqWpFHAFcSdxfem2aAr49QnQbo7H+hYTydDgMKjmM3P1rRmw2TpdgbD2dgLxvS6P98ctp5taGONOw7oGlXGF/+eq5WS3WhV7Eq9OQRzn7YggCPTCIAR9APmXq/eGfQmu9nA70yC1Xp1ftrszjlVadvEpQx67vVHuE7QMC53Vhls1JJ4Rdth+frXj6zTn7ju1MVFcBezfsP6/9h67y9n0vNKbKYbQBWqkHOqABRyDp37C/NNHk4kRXJIccQgKlESKeYgipKVKFJpd2UdkVoF6qyt1e7a3rNHtjeclTf4+Acf/1V+7n3eKuAbqme+jEajgcJ7n3BDoS3vyl7baxRYpVfkaChWC3bOqZed2ZPtg5vtOAhG83j+MRvvNyW5eNJZRKXZRV6FYOueF+3z9IP14u7iuQ+8/M6r6zkAe4YBGQYRC8ydpXjT7Bmp7FfYgaGHWBgiNWYXAsTz1Xazgrcen8gN1InIBV7v4+6X0KtjY7DNN+YD22FA9J5jafTE28MV0BJ4eXmxvxAYvblGhvvt4WZ/iQGZvPUPWyRWocXfo82We0ArjCzY6/0ORDDyt+hpdimfK/eHyTT+EotjbJkRGC/d8fUtNl/QfbMt3++vCMZyuyu1PIRDyWjY91utVrVAWzU9Ss5PdcvPMmsOV5tF22XtYhmOZqWeQTVoqWwjbQZtFi7UNDa2qkYzhiIZK8lHJopnBIA0Y9M2zCcr3i8nK5anxFDK5CIZjOeJTfYVOleTemxljGNYxo4TMYzx54kHF26TzmholXEQtpP4ePXWTauGCwMhuN4i9KhAoxonDeEBKpPzOEObb79kEKirXPs8JrdlYmc5/Pn8PDY9sxCZgyYfYI7nMc2WI54dxqEeVjamDJmEAfnGXFu9thG7zAOYiZyMjUeKjLHwxAJaTu1asxcOdHcrhe7FzeX9g5vDATbNw768+yuNZgNzrooJSXA0V1IKiXwRfta2+nlK6auBXJarTDd5CDnsxEuckbV7vkf3jSmTIQDLc2xgmSghxw5kURgiyd+z4dWHw84VOcVj6pExVx5HU7YIkDYipXc6Dg1EDhUto0B6YcFiDrAENgdsdWEgMhyBRbucch2NkLYx5s5EcTJBJnAu6w+mvKeh6dthmamdtt4uGiEulk+XHw6jINQuejpfzXXztF5KKXzYmjmWvLeRkDHF2e116pg1FED7s89j9aVteJJ6XMuF9YyJ3sxnNZTJoWaN8wgw2hnLxKSmLPeYlKa5LJI0x6mQM3Fi6riajFrzSid0jT5PuWT20eHLjpfSieQ4njhxDZxKBmHxIzfNcpwETa6hS2vXHGw45XEUBYCH0/lyxbh0r9MJhoz26FbrXtDzWk1PAHhzWOF4Xawu9pjOTAaViieXyEo6lt1+EYSbZdTxhmHXH4xg3xDVrUwieYgFwbRiUh+urJWjQXSjUWlLj9fttmp1eTgOv8HYwFfq5oISLFG2VIfL4RjD36l0VQLAXiDl33AyUpGbFI3T+VBayAl8z6PJQmoGuYxmUTCaztabMGfFxv5xUU6NRDrOjzT7Bvkvj9WPWgQIAA+Ha6nibvaTdqMmAByNwPBZz4cB+u22W+nKFxi12163E662675jpidp5P/qto9XzPlZvC2w0hlUWVKctYIQTrFhsdCodSLKd3sCxb1Go9UKDn6jPmh1g/ESpe54NV8EjVoTTtpNv9PLZ81EobFBktdEyoHhzauvvfhwjUhXH/6hiGj1uq1qoxcNO+VSlVqRYt5NZfPmvZ8vlLcv3qyng/6YAYGYiM1m++lyHTQa+XOBXGmSzwxrR9ptRAVsnn/u7vbJq2+9epjAQBC7pohSRVDv4GZPHRbmzCtdlW94ijAKac0hy2y+pPEuFsEUQGx2uk7Hm5GtL2B2u+MOGI3ugS7bWPzSZf+COLw78F8vlERNNpzAqDS48jc3u+uLW+AjjMpI7DowxV1dFpRNLQB62B1jWnc8Bi4v2Rxzs3yj8HrJ/vf2+vYB8Fda6ztwQiFVvla69pXql9FcYzYO9rayxG4vt8vZaODLhSq1W6WM8xjXWIzHmL+haTW8r2fj3I7z9GlwVswNTZ0bCmYmkU4YdmgcMu6oeiONdjyNTlKdN5OJWCx/ysRt7XFVZcw4k8TxI3mFzmIJyYudiKsWdpl8Lvbft+NU1ZNslSOdTLt5WmA63P4yiF3e6mfsFlDb6QotbvxPjEsMvyWOZ4kdAmyOxOMUF9t+KthF5+3xyD5mpp+uzU2MewzA4JnFSisaqVBWptFpalFreqIjY41VRJl4Gc70gl+MNQxJ/gMrwuvC5QI0LvZpoHLBFKSQz8fNltHskOQObyhjMu6ojRQPRwF0OFyDqzmMBMcEv7Cx2dIvZGXk+SZycTanVCEaTCfqvomWdUp3kAh9an9kwHdoRtVwOAmxOObwOhooWQtEUPC35LsZYkSNnhqQDgCGaagcWPyLMTMlRiqMIkkzigyHO9IUYNw3PoLRBLvCAHx0WIwKQOh8POamyr1LIzflZExOCamVN2Cxrai6kVPGh7NmvQLpvfO3AAAgAElEQVT7DVtrU06aniEJHgp/I5wDCDO8mG4rAjHkADBdTQE499RHXtebMMlHAGchD4kaemNdzRYLefNB31XpBQu8/xiXjecrLjgBLP6wlTeZ1rwlK2Zk6txZodkooiy8BTRzD46bAsCj0Wym8ZmTdrPeHi4Xo2HQKtX9oOv3usFwtsaSdzQH+3ezXEof06/W/dFoutkfru5vFtPVZjbo9KLQCwfjhUDkqMPhuhWbf6uZLs4EXb3ggkfaSqVcrjXqLWmBe51auVKkeR7nRnjDIL2Ukn88zPp4NZpIU4SsLgCwjxXwaKrsYlZX00EvnA3Rms7lKkXLs1ljnTldb6Ny5n1ph+qTz+bu6Y9cqcT9rVQmbtkfR6v97lIAGPIGbzAag+O4EVyH70fNKg2no9m43fI9fyCdf9+1Ta5kWpXb1JTjTD1PrFjOMw6nJ8Vm0JeHP+wXC3UAcL8fCmjCh7zd6/U3vXaj1+p4k8NGIGoW9tx8WcC525NLslHRiaCbTVdXUh3J67B/8uorj1eC4R1YEgj2Si/N88EHqGN87Rhz2HLbaxXx0kijUIjWoGjwBNHM8tlsK02+YGnU9Ntu2s6mXXNeWPZZJpcqrp7cXUXBxcMH15fEru2GW/nFakb6hkAtFr0CuoLjq7m8VDM0xLTmoChpjR06gNDQsVaLNVvaBdFRSv0NEi7WG+1Y5R9MU7w1VCvwpAWG6aiFPKoL4Kdg9GbLdnZ72OxvdvePX3n+7prN7QVRHeQukrQEpw9qDII2GLxs3hmK8L0OtfeE4ItL8rG1d8ZqmOE07Hjl40YA+AE/7u/5B0FlUkPB7Lo4ALHVH5wd8xU/5I9o6Vc4GiEnCTr1aqWQPVf+oRK+pF1+9gzkammbaSHCqHaoGuUtkXBEY3eEzGmGWhqbKrxl0mwQrCwteqxT48FMnC91NJ43mTfJdjlJFH/Kbs/QvhLtlYKQPnDyV9NJyIUhbJ96BrG1VUMlOXfskpvN5223mj3LnGXsFO4Tu78zFVtacf780QAhHj1nlDr5vkY+Y8d6YzK/bM2oV99ONfKO9ZqxSa9hqMlXz2bScbrlUS9NhVhMFzdaGldjK1BE5GPBlTLc5PnmWM9xS1jxSBuMxm/MBHqdKU0mcla04ZSJyARYiZWKancsR7tUImVt4QpxkhY07DoPAN9A71+PfGTKVWtyQHQ7HQYVSHNK+2pIeaHwo2cO84shRcZKSNCQkU8Ma8KH5hczv9mkF/cjDTcwTl6Q8mOAvJlRM0V85dIY62KAOv1/IToeU504NGKnIe3yjGACumRlkw1Hw9liPJqo0Rdn3siXkkZd3gEhCWMDZOpgnI60o2iCgkFa8smCB9JqJd0OhrOzrR4si+Ggj/iOzjNawHB3oF6sWSOLM9v/c4v2ba7S4SE6yLlJWCJYyGyE0QmjA87nSHhHm1JMPtRgJgejes4v2FsbvXvSQLscRtquc6QiavqveVulk1A8dQgjAAukF5l7kndgTqUdsAJwr9nojaZRD2lh7cBve3JBDWcrAZ2RdJIIUV9KzzvtNertYCT98PXDlx9v9xcrjJ8FgIPhZCG3GbWZ/3yiVThLm02oYwwhmVpJe89yTVBHvlSz3YAfLT2xVMPoYhZcYAyKAPB6PMH4Eiv/kZIMoRQ3VjRzrCsGSAhGIig4evR22IFJtN70K+dpWwWxiTGBbSwpdXAW17gZlyNoLJ8LTiWcjjYXF9d3F7NOu90NIgzY5Z6lA+4Fi1El15hJqz1qtgI/6Mt1EuUTvrsRk8ax1wmhXR5HTiPhmsFgPJeGvVRo1r0hAVjeWp2g1wrXh02v02i0scUdRIt96GSL5UbPl89o1nPgEubB1M6my6vxwJ/cv/raa5dLr96JhlhKA8dxT4K/YditFWHJWyghg8op1WlYO+x741E/mKyW88mSprFogZfMbRtNV9KWrpe7ZSN1ZjkpHfucnaFSyaac5m5bybWiKWFXCjI0fdIRPrgRTLq/f/QIskFYZiCrcc/IqN1aJ9GweFlv+L6S0n27UYHwDtPfy/2G7GeYAOzYDm8v1DsrFhFvVaG03WASTWg8HEzWjZbOW3TA0iBv99eH5197++Xba/bKAF18odXe6Igxfka3zUwcuY9LA8x7pXjtsTBmc4z/pLFVNN5t2J9vj/vnK8yoBWdv7+7hb33/6CHg+O4O3BN5Fu7vyQ59wH5Z8FieJN786sH9rfz26oJqjovdeo3Jm5x+YOfVGtWC+mMl1kMEpqc2y0/LNDhugV7ZNoa0VILEFiNP00LSR5nHUS2R1XiIrG3/4z2yGRulT1FPnTiPQAmAPUk2N+358cDh0AsNRCFnkyHj5qsOANg6w8MnAONxwnz3qejO2AbO+H8nbkkntQFlyxkyH21LXTszxg7FOuWKxy752XipfYbp/pFnnXx7xoQ05oBrWotrzg03z6lkFulXxOicw2wox9U7z9JpkUtnnCNOsVaXOnggHWmcXsiNqfSC3RbiGBH3yx0ml5RqWJalSUieQ1PiBIRf6exJj6CTCXR2XKdX5Gt0ul4I1hVEH9ANLLe0sVmvpiozGqvLw2RMnbKAJS2CQIY2fgUTI0yGp04YRiPN5pELUxtmYjPCKDjIBuKO1AlMPxkOgDDLHkaMn5RWOCI1OxrNpG+bS4MHzB/j9uOJnDHy17pUHlNMpX00ZuVzULYx9o6URYZ0KwpbRyP1PqOQQmr6ZyyLfhaukSFhoUMSX86Yw1GvxqRE4q+lvi6xdN3JKkVAAZnLOXM/SqtThjU51iTDuDQwB1wVzR4ZPmt5dtDG3M2MxONyAFNsM6OJaUDGaycjCJAnKwK9tQJwJLCJqN35JGi1BiOvXi1UG62O73WQxQD/p9VsutpvpcFcIBJrJGgZRJP93e3dcy8/2O73k740y1HY9eXpkvsZVBPfnVNbnowpnLHC5JZEucLlerMpTbBgj1yS+ay5iQUdMFJYGFycr09WozEaLlSXQwGjkGMMMApRs8HBnDkN3PGxzaEZIhYoq2VQsowLfdL+ojl3sulsUvUbj5V8seDqmMzNFv3pZHt1dXMPHXCr3QujIRPBZgOvHSz9Qr07mk2mg0Yr9L1QnqRh3naySdp7Js7VOx4rrNQNA6AlcDqbBH6h2Gr0YHiDDrhTavdHs9UQptmtwGsU046Va5fSubBdb/t+u0brGMeWN7yTz6brgnM3z732eNZpdoJ+BFoEysNWu8NxT7eFcPUK4mIwcii1w6EX+H3wNqAAlLfnfD2fzJYbNLDmQ+qImdTVy2EzZ8cDeoxO5Vs5K9gZ535ky1OU4StXrtZrUpQjqASvBziViwVfAeh16Sl5B3WCQM+NtMyHy2saZAB1aBm/pNUfTPCXa7bEW1ryboHAO2U8G8C7IGOKAiSgupR8wFVpmWl1uSFiA/Ih2r566dVXBN4Oe3W/JE6zR9jEXr8bFBjypVAfEMQ3cBilSXXMrla7D6SxwtX6crelQOrq5kJH01eEYPlZvsN7OKI9MB/XN2iHb+4eP3r8+LEAMegnjx8/fCT/RCrKAwHpe0FhaZcFoR89JnDf3QiQ3xzkC+2wU8a0fApvNMwyW9IpU2CpXtI//iGNs2EFo8YzSuZU2qycFG8JmEfgOtH4WMbxT7vDk475mIeq7r8JYNs/ZrQJkEpnYv+6k69wDt+DlDHedHOlaolwgymfS8LKWcYy7kJKOMvYT8koWVScoyg4t9Uu2IS2GiK4bR7y+bl9SnhMxuDWSdhpTMg2pAxMv00U5FN53Um8RxxORxBPnauoJTHXdji4FgBWW6NsTlMgc44e2242ZYinsfwGAwpgJuKUpTjuhkHQB4sKnZ/XppS43aiWy2ov5jpFhl84junCXCXzCiQ7ukKMB+Jpfe3o7oChqvRrdaQ79rxwALvKJfV/pEBC/8c1I7QL2BZJIzpFtBA6WS5wB+xgxtAXmxSIONh5PNGI3hl7YQDxkAnJhn5tfADGzAqk5/XApJJPBqBoDuLRdAif6/FggM/nBDtk3z2e4vZcakEYMuh7I/OAYs+wYTw7J3CPx8/oQMWE2WUpBIZfS7bgGIUYDVQR7eDGQdlGYaf0AbPTJTsan5+kmtARLeuahtktszoqlF0kgTE4kT1yocQeTV6mcjmHH9w05AvlOJ6EoSXqn02si4kTlrq64ZWCVSr4yB0OCrBQkGo8aHdHo2YhX6xBwN7tdtD2zQWAMdddRN5oc325Ww27jWA+HS6v729urzfTxSIKAs8fBF154sBJBwnLNjHNWWMtl7WMh4B+/8aeEsxgKQKkimu0BXAarXopr/m8IEeQ4KaBabXJajjaKADPom7P5wwjIgAL8gbRTM7zLYWkl9d6YHPcCNHQPKhirM9MPi2BsiyQ7MxZ7HFkshxRnZDemJPXzhYAHm8uL69v92MDwCN0T9vFeND2l52S78sFNQzq7bDXC+RJGuYskltpPaWGMNxQxT+pzQ9dseWtGPSlgRcALnXanlSdgM5ur1rqjAetWm08COVN2nLgii5FSaPTlCqlmpceFsMuVtuOnSpEL7x4O+3U2zTVwVw+7Alyd/yhh1yyWjmPFzlH78Ei6Fke1jQQMYwWArVQC0F6JK0sVYDyIbg8Xy9n443nnIPCopIpuQYtq3TmFNLtl8OMIK/rxBe1mhaRKYcBmxwAuHJanueDTjKcY/QsxTg6Wul2bwR77iAcJKdYQAw7H8yi9ztyogmVBhH3mzVJWNutWd3yRcXEGXAoyHh5dcHNMMbHa/kF4+Lri5ubl198ggWtqpDQt3JGrfCqpxHFSLHSmLzsrcFfsr/4Rff0BcE+yjTzNN0i51ouMS6CdSFMRfENfr25vrm+vb+/ubm9k3LgCqMBVA8AZdQi0hXfSVcM2H306Lnnnxdcfu6ll156+ZVXXn7phReePH7y4ksv3mGScHt7/0gdiC5Rt0gZsMHTs5IzE4Yznry0alDjOOSM6v8AXnXTTKcTU8vzcyatWbF/iDHoS5945sV6S+PzcdphaqKKekVqd2yfZK5pr0wyVuZ9KTFG83yuRn2opBUe4Eopl4mgiwKweZwEYCvzlBVJDIuMqzmHYlpJZScGH/bRNv6kHlDv3WOHb2TVicu3Tt0NAJsVcfbIpVGMN6nQ1HfpmjZ1jt0A/Uzl9/qMnJnHDfq19jiwbcHAvSQlcqEE63mGPGbVtCzrnBsNCyZYaKiQflzMl2o9j15dHmBpEGD+VaWdNQw0i8VSybRj+UqRM1PNmWTSLsXQjop1surMRs4PzX8LlTIG442mpyPDiH3kXFoYObSnkzlYrciPnYCeQT00yM3AvNFYw5zY+cZZE+o4zV+mE4AlDTFHlDGhx1VjanTL6I0A5EM54oLhMFAhlQD/WN20oWlWJy7e9RguKXAIQTkgp9MgUtL3ANVBNIhi+B2NDdf6GVfnEk5Md8+ZZVne0QU+YcYli8gEhT0FwEnuous+DcBZIyCPLd6IswKpJ+tjUxRx56xZBXBJg3cT5FA5jq3xK+WzhvmVU/N3h5QwyNNQhsKXKk8WdEQ3CwHgibRy42G7LMdoXRBHPqREGS02aD3Bjw+XF1fb2aTfrfWXEz/CwT0aQMYudVxPTgZvjJdyOWqc+LvTC14pG1ARaO6kmvVkDcewUKrUa/VOt9XpgbJSRG4tjW8KTC3Ff/XpajhGPztTAA5CuE5FqqSfTMLp7rDbX91dXl9j+XZ5DfTFmQ5n03kkNWELF2IdKd+IRCgXBZEx48kpYzGnBWfWDIiZeeqUw9lwJX3P7W7UEFjzpHdcKitx1uktevXIC/p+2Kt1+p2edMCrgZuODbDto1LEin8y0kZkU5ecfLPPGOWgUOy0/UgayNDzen5UrYeev7pbDYew1HOz+awFOlirUcnZ2UqvVHOK5Yari46UVfKkDhlLiSnoi+GRjxUy3mvtehlWAki8gNG9Vaw0Oi15UxdoOe+Ffn+A6IzhGFR2KIrMLl3eFpPVZjHbTnuVcq1WziTuSZmqY+VTlWW/UoObaJM54Fic6AzGZLy7cfwsr7Uc4nFKSBCjYa88MvhkCbgyxPHq+vaBtIl3t9JCso0U5DLioqs9BT9x7b5hw4weGZ6VBywYELqEbpGj5YsrBeDd1cXu6vr5Bw9uVKXEf9xiB8w58+5wQRkZdFDA8TVDNUhiJid7S5HTjua4WyNJJicMo29+3mqnRK4DjbvMThiErHtpZG+wBb7lCP4G82iB5Fvpee/o2cXMymvytq4geIKVqWCy/BXYXbfSIj967snzL7z26gfefPP1N95+FR+vvPLKB1579WXBZkyz75HkCK8DKT7WXCvvUWBs6IA8DHvtegk0O4wqFInfN7pOnSUtcTpx2U9nkrQWhdjT+Ez6kDBLNWWQ0jKTYTvZJj/VUR9xOGVsc5VZxRKa5EsXaQhSDWfPMtRwpMlW5Aj65J7e5/YXC4WPwGwl/bxJUE9b6uGVolu6dWZWu+eGnZ2JaWRnsao6hQSAONXqGGKRFBCmyzY3V0tY6+jRBaGM5k7H/bgDMDDv+dR5NnN2Jq35mUX7eTcL4Qmt5l03noTivHE1D8bJs5VjgwVrzEZTOgxfTt+u/NTBR70Jn5xmq8qPSkUdetX9o4wgKtOwVdC/cCSeVQ8kW2M4EDntGCo6PqPZ8VCvD6bGGWvCAny5mkBJuFjMhhPG7yi5WoB1aFy3NBVZPmZTQY2J6qOQojfRAAimEuP2YHwhrQmH03joh+q0KcBM8fFIPfNo1asemsZKk96GU01+4lgcgRbG9xp6F6odBZSfoT8pvEINgibWqMzeA5euwOfaNAoaHMHOmL2DtqYq4HaVaafAS3ar4+ZiAJbqsYD1nY4gsrYhASCwE8jlIOeLP3CJywspoJ9HFKdyr4nJXDEYYhe80GG1CHNTagJKpXI7GoSIvpInfjYJ8ewEDbDw2l7gdXxMBRZyMME1Qaqk3eVu0h/4rVY4GXTDqNfutHrz2WDc73sd6br8aDyfCa50HE3ASwAYCj4pM9JKjeD3qEBsazBzuVouN1pNGLZ2280agpnjCXUByaS5BgAY2w0pFOaRdJzI4ME1QCeb0XS1pxvD9e01xJ1yOAF4oUUFW3CMDavPLQnW/cgCb7c67WYLmRO1GjOK4GFTgp6bG3fAMEbQ0eogALwf1+uNVjccTWlwvJhPO82Z15A+OPACAHDL72PS7eg87jjSNmQUK67rbeR4sSYqtuEhMuz7ObfR6AqOCwD35E3Rnlxd7Wa9VtWTLxhY51L5g1NfRaipPEf1drHe6LgpLIsK+azTG8CwzOfYR3ojv+v1x+OgXe/VCzo0IfkqX8OIQWAQMectKXSq8uZut3xEGfUxEwqimJW4WODCX4yWm9VmP2url4xcl8VMrmBX7UKuVqs0m90ucmPgvIIARvm9oHujDuf7sgrycnzVHNaCSmLRSlBPjEpNrsNardkLfOgj5O0rldLhik3iPRS8D24wwr6/veZi1bSZkPASMaEX3nBLq96TgsVrGGgd9tf7zeXV7XZ/CfDFFncHdTF2x3v6fexjU2qA9mG12sE/AJIoUr6ksaZDJvXKWzjwwZ5L2k9ws3bswOMlsGqPLy9jfTIm0piVYNCOlA4yr27u1P/y9v4BYPnW/HQN8TG+Heng0cTTN3O3w1UrF+/lzc3l5c1DyCYFkF969fU333jjrQ9+6IMf/PC7H3/3I++888F33nnrzTdef/0Dr73y0osvSB/9QO5dChhYk1/fy6O8lmfr/oDvczHqy6tVgnsywPDHzK/J1kwpzwsdcOosc4wzTZyCOM02NrgnnWnajJ51pWxYy6eURivRMMsZhoEhLKXyWbdczuWrtvTraTtlm8CYlMa+ZVKnHvnpE1ROxdZg8arW/AsWyRhkp+CmlLIcmpEg3dSmOvncIGrCrk6ZjtYm4cvE46VOuGqJ85Ym0RsGmObn6tjbWEJocvvR+t9YgZrMlDNYCeEnuZvzdCaxEz3KMnVr7MBEy7VBjHUddenXaCCYhskBiFBFsq+aPR98HGmI5O0eDEI5m5FD0cb5VUfmRJE8a7ZlMABCmj1DzaUnlFeCxXGWIZaMFIIfE+GKrUexki9V5bzp+fAjCWF4OZ0TgKn6nM0WzLyZwelO58xy9oIsFZnV8UiznYwMaUBmV59sZ88HD3pA0y7M2wd9H8GxEAgMoH+NwsFkPh3R80NdvPp9LpmV+zUbSzOOGXniRIJOYTIRALYRqGtcR+XbzqrRogkPYb8rl12G4dQu7cOzmN/nMPhwkLWtQZva8sYdcBbB1oRyxDSiPpLaSboJN8u5bNZN8jvzGuFFBj1X98pqouxJU0lUJ+6QR+3a+XhPDDVyUQXLyLrP5yqenN3zKdhK8+nQH8HYsFGW474l5Vcbm8UZtCK04hYAXoTtbui3itHM743GYbnob5cCI9Mo8HsdJOyBBT2oOQzPYP0BLHKYAa4+JKRAM6JUvUFtVRoVBIAbVc69u51mDXyUYpHxj3J0u/nGdDmc7nesAqYDaYBDsuiU7TccTtYXZKlekCvLSA/o5leXW+mbZmNeD+DVs47j+mHAKE34mPrSekKB5nnthteuMRte6piSWxxMhuuLw9XdbtBqClrLpbJarHeryXg+HAS9Vjuc9Jr+oNPutb1out4E7nlWczHjxZl9kgjLTU2agTKYT1RDpJz6UtM22r0gQE5CayoodLHwpVVshT1sA1BDywlTatGytoKmFK6r2bNYZdHqR8h0GMxGgt++gLDgeKOEd5+cdTAasKx8o9eR5r9aE5Ds1FutRqtHBK43B0NvaASFmjAOliMy0bxO2Kl3el2v4jrVsuVUjYdrtujkq81apT3odeVOGlUpCqQu7zWqKFDwBg48L+z7fTytmJTKM9NgecMIHNQDmjNrKY8wVtOXqwXYhQkgg8Dd6UsJB8+f9Qo+orDYIS4Jjt3fPb5/eHf1AN3gLWDs4nC5X60Ol4I32PlfbOHEcX+jfpYHMPEAouCCgV5Nx0smOnDiLMUZxMYCyxuVKaET3lEnjNk1qdNkWzMBguC/2WlvfbPbXFDKRB3x1e0lQfUaMExfLvwZZDQYA91eXd3e0B4EPTDWvVdXxgeEodLyzWGfDBnyVu4cy+kLXXbvDzdX6N4vr0HxevD4yQsvv/Ty62++887b7378J3/yE5/8lPz3yU9/9rOf+dR7n/zJjwk+v/v2W2984NWXnjx6+Oi55x4/vL/njFxKGSzDsb2ZRHKld5vVcs620j9mgH1K9ILfdSb2w1drKmIQQsjl/LKM1TVwMZa8q0c2ucqpOEQGHL5sgZFDmDkhhKicd4oOpRlpS5XNqWdNCZDOGC9CizEzlntkjzGXNWtYUmnrqfxH4x1PH+K0IYlZZkX89HRcm/zYxuMY4pqOczRMoWzpSZWxE2Uzd+1IOIcpkpPWcI2kZ8dq1iEnLJmRsyfD3l7u+TxOAjJG25xWw4skc2JMn6RRwcMp62SNmSJ/1ZEq4iPgPFFp1uG2Q5suhJ122iBxygmM2NNatVYplOHYVYQ1ZlGNdJCMjENBnnyIXRHnDCQGFdsQy/SrcEvnOkU4fwHTq80OpI0BsxHhNyCdKWw2ppP5HAFRGpcMK/shWtw+VlxQPaEjwF4sHDAfVV23QK7CqG7gM48x4r+iNaaTCKOP1cgrjK09uACWjymdseWkms/RcM+e4RhBGen6nJngLldHDbbZ6FomVDhrVGex0xvNVh26dBCKk0Y5HtHmdRCdjQHY1gRRDdcG0iJNO+8aMlf8Mww2lNml/TMcg10jjFKHkELuOCvM09y02A2D/mQKQ2V5ShFmNA67rUK50ugIpMKebbHVwwomofNB1x9PvZI3GnT780m/1R7vF/1oMenD1MoLGUe4GDbiybyR2CkrDJR+0sURqcJRfdr4xSEfCJPKSr3RRgRxt92qc7JC/SBMxhrjeTTersG+nSN6HvFeI2OdJh3wbMtu5LBXTySsFEnT3WN3Nsct8PJOhpqfNIPmTfNJxiTiIQW7j3Zw5FXADs+jd3OK/fFoK23J3a7fBAD3J/MFKUuzVX8w94udeb/tzSbNqpQq0WyzDnKpuEKO9YZpZafSPAEFyRn24ZzZ1kKUdoMeGBi9oOsPQm98uB6EAkC9dq3Xqcg/RFlKR/ONmvSL9UazgTm69LIFW4prkgu6UoUOh6EAl89MQOx7alxAYIZgO3gLSaHcbDbkBa2Xq9V6o9H25Aj2/XZ3OO6z8x3HmSpc3CAaVPpj+bRmp2y71WquVHULnNLn8T4uVVqjPQwfBYA2F7sLAa3JBMwJsLgbXF7V6gylkSMB4j/w5XjHA3T5OC5wSlQxITd8/mIJU4ccX3GU7+UGvPBr7XaN/gQdqRakMEPVNV8v1yt5qtV+8ub24f3Dh3cPHj8Euenu7ub6AKP4B7fslhGwdrgEj2u3grpwC99Lzpl3B+avY+l7IGvgUkH2oJNmAi053NpfA8A1SmIXN7/X+y3sK690zn24wGO5Ue8OCpK4+RXQvb+75TD6HsWDYLT8uLtn/2va6Qt6Wl+q7vjiQu/gSq9lFBS6kGZhcNCsCpYWcve4p7snL77ygTfeevvtT3zypz71Mz//87/0y5//4le+9o1vfesb3/zWN7/+lS998Zc/99n3PvLWa6+88fqrLz73EMqpW3p63V/zbXJxfbldjOWak0JQiqk884neD8jGA4Gi+XPjUx376p0bslQqAcQU00PO4zhVWA1mUH+z/M/m9dosZ4nllnbQaeRUqFWBcQxLO1baxLSeePwdVVfxzjoGYMuootJHk9+n1YXJetqk6eg78qi4su1j0nps7m1pzGOSk6cKJgJw1hC0LX6nCvj0a0hGXfFKWSnZmae+kM7Hjm5llq2iTSRk2AlC2HGAswIEYEHehkoUysUsuUJe82qkhpXzodWSczGA+Qb7CXnr1RqIm6jXWg0U8AKp1VK+mO4bXKsAACAASURBVAcV3SzdHHXvMmHPijBSSKRjK39Tn6gOpwDdaA3Y7/e8EAtAbUins2i8oNXsbLWcSb8zGymNi9rhEafR5JwxCpl8ahr4DPraP/NG5FqNVB4VcdasSWsaPAHbwOl0NppNhpPpaPQMV7lOrpiLBUhkM+vTxQmDpnaojJu35cnsZjQTwuFSHiZZBoBzZhCto1nbxiSfvOanAJg4bZhV+pP+SzLmPuaDmbwui7HbkENpy53TJ50InC9hEF3uDfoReEwQei9AlIP8WWonHNRSZPXHK/QMRODpBOaOy5lXmY88b7IcBf58uxj2J9tZBM8BacHG0qOuxk0nLiWMJ6u6b+J5whigWDD4m1LKEr4ZPYgFJkiq76HBEsRAJoJcYm6uPhEA3iypPJcOuCcXlyEKEIMX2/jwxFkJ9pUKUjcbOjNhl4+JyoQuqrPpRHcJJjSTKw34OU7ni6DMlI2sXNhOoT8eb68vr++2fQGWdq8/mkpbvV7PZ8vBdO9lgwuvFczHtarndQbzzSooOVp0aACFrZ4AOoszFlkZwBh3pnUB4MkIgd0YPQu2dBu9EOP3es/v1jCD7tZ70HVabrnIjrFAab8AVCWvkxbLdjoIIpR2XIpMyI+ajYqUrSh9XfnKLuYYcLJsNjvterMHZbHvEwBb8nM3jOK87yihOWDpAveIXsvrtHr1LJa4lVKu4PKNivuGGK7qcmYlxZI3ma6ur+/vHz5+BGXNoyePEF204Siq3xPkb4KT1a7WWqijQ0oOpD1WLuNoDMqJh5lHuy7AXcwVsm65WirWKtVKsVyvwYJXt15V+fd6vVquS2FQ73bwpXvyrEUYZEnDvFQKl8DUJbDp8h7O8NKEbvdqt3ElrSzEveCCbUm83qy4W17Ho2nNa2JfKhDHmhO4t+ZQen2hOHuhGQ8gge0Q03SNLyOwe6kdMNbYNwC4W5UF394+vEFyzA3lwrzpFR0ygbW8Rzw4zMm5rZbqYU++9W6z0+wJuINArwRRMyY74IbROmSjeVKbOVv8/WEtnyjf8L0A8mtvvP2hD7/7k5/67M9/7pc+/5Wvfv0b3/r2r/3aN776pS99+Stf+cov/sLPfPq9j7/70Y+888YHXn7+8eNHD+8fPXnh+SdXt8y3udqqId5crgOvLcUc10Q6vRZkPKPz9Rk0y6lYscQJ8pkaWSUomUk2zKBB2cgfB1JIXVuAwV2+Yms0lM0eGW1i2jh2po8h6bAYOQHgdPrE2SCJZUzYznGGRRxYl6TYWfHA+mTKbEhkT33EqquMCaKK/bVVtmhsT2ifJ8dWDMBpkN4YemGkGwa+6fyXYt68qQriOPY4TiPuxJU6/rRqxDK0ULPIxQhRuzM1gpCvqAa9XCgTQCz1vaZ4A/JSVMEo2VseMhkHfeyRQenx+kHPB1GzBk9rsK1pbm0yDfIcUhnCNU8YjMdVoczj201qCBUoO4yMKldqzQ4WgtKv0k96eiKrMPqaJaREs9UY9lyncYw4eKRFjhXKY2NQbeTF1CyTBM0h9hCJ48OZNFTPGHBxYzmR0Wc7tkFd2zxqfehZxGrgmc3bhmDFYBGQpA3qxi1qPqfr5JyrMGsAWIXGsKpMPsxXNgBs8DaRN7mK1FnX6KP0HsxnQuOKE71UyJeLtWAIB/Ip2bBLikNmUYCVbLvn+WF/OBMUW7EHngOrZstZPxgsoq4vaByOr7d+MF+tkMQDav1wskBEUNs0+YqutvkZtHzHydjFsn4ftmok4rrDJTesXKvXmzQul2O2ibQkPLP55nQRTbcrrOFn0wh+E0F/NDZW4dPJYoODdLXUOPf9zgi3l7A6XC6nvDiMapw/CMBSUKhC3WSijAVfg4o8L3mpNUF9CkcjAPDtJqxD0BcOx+DPrmdyB5tduzC5Clvdfrfa8usCwOtlH6YtKDlrHLoW1XSUL4WjLHCnVCvnuGJGHvBoMgwG4Pz1B14oaOX5jQ65F71uz+v0uw2/bp1ZxQJWFjF9myNsqj4gQ8/XB+NBJBfqOAo6dekf62Wmo5dw+eSr3UEdACyPXZC5LjVNu4zH1wAsynfUC0h4RBEwMCCsAOxhRRx0216jWM6DuEojGNTIdjZfKuWdrLxSGlOVK2GPAo1JFVnPTXmb9yeL2ZZWkQe+HNiuLtfLhVQbYVdHZh3kuMkHyCb9wXAyG/PZX0zXU3lSvBaa9JY8ajyRVezo6/KAicNN+WOphmFJlf9SKtcq9UZVjoFKDYVGDx6c/ZApjUtND2Y+Azey9/dYwF4dqF1aawCEIqqGF9Mkc8sgRVw/q8V8j9E2tFMrWFpvN7TruLy6gUG1oOKN+mVdXhhd8LWhRSssg5x1c30L5GWOoqAw3KUxVTadMx02BYrVV2SPHTDdP7Zrk5xMWZQ8RK5V8GANDfsCHTQswJTrv9setiglduC0ziiGV2f8m/tHL7zy+ptvfeQjH/nYJz7905/95c9//vO//IUvfOkrX/rSV78u2Cx98te/8Y2vffVb3/72V3/h0+/91E9//K0PvP6BFx8KMJNNhmwKzBLkrRL1vXaz1agUoFQ2xtcGmhN9slK7MulYrmQ9C2dIO6chQiymUYM7pSxH0CkrCS3XTjpj7sgyd2S9Lx7J/BAENDvUUw3RUzRs0yH+Y10wnUpOfLGe8hwxumM1CSWwsgmMbXXgqWtTNGU9nZjDHBkrES/batoEt5F4r07FFUfumdimJ95np87tpGY/yZk0BbxZYKmbUUIW0+csbvrIgsSIs6jWTcavKZc2Shyc9ph+NXvtZlsqq640OdjH+T7N2noC1ZhK1QSPSfutVcC/LmCMxoFqzvR4aqhpWfwJFRJfIZ30sdESAJf3Zacp5w7Kc6bMwIsaqIn+ZcmYl8VwaORNEyRRGCDWIVmAbqTPzgAaJu0MpmM9uRFkPJ2Np4wjhEFQTKYyMrBsDDW0fcDWW9nhDk3AQYJzjFE4+15aqgB9c2hTc7SIzJ5YiTsJAPP7Bt46OuQ2rGbXzRqaTJxQbQCYJ7X8KORdM9d248KArwaFI3DgKlS8CDQYhmbJ2xdeo4tR2KhWGx1sGeC5sNIuYAmi+my1GoejzUya39AL5vtd2BrCsnQo7Y20wKMp/MTHLf02jfFV9tgHw+cqWyxkVciWYeBE1klU0JRclcpVuUSkw5GDGucsyQTNySKa7cCsknN6FIC2jzAhICfAdLmhwHRlTDgIxpDVyKkkNdjYB2Gh08VnYXgNAVPEpUIU52ab62HcK8ulmmMgsFOQ2mRzJcetADCc58JotMIUczbww82sG243Y+klG5WOADBkUMMgoik6htlwlux1u16XM2MBvapcmcCbJrBMnv+6h1VnOJanezKUcmYQdLyw0/GDLsa3njziZm8Ypu1iUeo2XdyDUIVZfSmHwBd5ZTNWawDKftjH+EnORoqBwE+w3apgURhVsTPGglaAq90EaAlKKSqD5KWDIDINdevCPwW9dqdZkztsSzVUKlTr8GpzOUjJKou7mCf7Ga9ZJe/IRSSPCsumco0mrCynCmCNVevSqyIvVS1u4eUCU2ggHb1PkQInUIuHhLSoVs/zApjTyqVIay4MJ+BmqaxtMDg63WalVm6C8lUpFaulSqVQIokOaROVYqlcKMpvCiWO5DoG77t97B4mqMMXAF61uxJE1Ayla4PRl5dbNcZkd4ncq80KdtXrJbhSTIfYafIDUfBwcbVBxNIBBOcbQi49pOWDwiO2w3cP7q6vbi7593f318DqK0PRpuR4Ry9rbp7VE5NWnByI73SogwfAgQ7mOWCQgTmmUvfNQbMjLg/YJF8c0HhfIZVip1uYpRbO0wlMyjBA54r80fMvvPTiK29+6KMff+8zP/u5L3zlm9/5re9993v/9C9+9Jd/9sM/+YPv/8Effv+7f/Dd/+HXvvGlz332Ex9969WXnn/8gC6c9w8e3slTdXd/A42X1KFyPIadelXaoPQp2/rZIws7Le9vy8ECGMZ7BSnmSiW5fS1r8hqM0UeMb+lnU0kbTQHtUxpd6yT17cfS4ZRJlUqd+I5k/pExdJx/kTkRMp2aXGhOYyZ2yEupLNj04JgVIxf+7GhpkjE0chjoahrViaGHPMwkyzn2BrD1GznafR2tQhMbTqNYjBkklrp+HONts9nYnDveH8eTT/piZ02rRXlHgUexcrgpR7EgG6REAUL+Bs9FH2/9fhD2u1HU7fQHvU67hUgXKdlxVNSktkeoW9FltBNK73wSBkn8U4oLOn4S+9I2d/pEuJzaLQm6V6F0gaERwp5QIs/USVNOhBFIXnKFm1QoOHsClvvsgZGdDIeQaDjmJ0oT/Iyjq3KLuZ7KUnbV+CrnxpR3BWCzDZZeXl5UkqtocaYSHVsB2E0AGK4yuRPqdDyC5sIZZkZq+mHFmqQYds1+OJ5Cu3GbrFFCbl6DEV3aHEM3ltOpQ76YL3XBT2L/K0/FmvOCcdSq1ZoCH4E/oJYbXFJ49jBiA0qSxSLqtXujw4WXb0kfOV8JAA8CzxOAXq9Wo4ZeDiCOOYlgVEfxWF5nU8av0WY8osP+nN8hWWKFsmCGXBftFs7mZr1ULBWa4xk6YKkCAMB+l2y9EVnQAGAoSiBYiZ2TAMBAYHnkUkAMG0q/L0F9VMEitNVEkHa7DemPJ/+BETAEEjWVSAgBLQC4D6+n63XYAAALvrIPmve77UkUrjejidSSrXIz6HaH0+VqOpLnZUYevVlNj0EQwwU1iPxmDbHd/QZTRZ1c3QvHU7nDzZqWp0EfMUYNEpcQNSHdRrfvNc6ytYKF1EhCcBEZEfIeyFkFcBvlYgkwnJGOEQxkvC+04c6VG61e0JPqoGw+qgJQjWqhzOcT7hnSAQsA94NAsRcqAfjF8fd+p+VhB9zusa1tANkJtnx/n+uKMJ1RtXpJeZV5NTkvSXdTxZeSbhzXGWzmEXauLKxCqQGmtHSumLr70mhDUzhfbneCDwu8lNFIANnrwdxDXv827Telqe1QmI9KSW4x6o/UxS6A10i7Va1i8qDyDCktUG/UoWuTxw51m0B1vVWsyleWHrlNlp88N/yQ63U0nMwxkt6o7AjQiPXyJXtmQCUDhi/06lohT0KpWjtaveyRtrTfX95cmg9dTd/cXatn5S00RjfIbKBtB4hWAGAOlfmBJTJ5XHTa4hh8I49GxU4Cw+oAdjis1Svb7KJ3enMOevDQBaH3mzXweEPvTVp18pFcXqhfNexE0C5TSyWVtnwKduGIGYX39e3DR09efefDH3zzE5/67M/+3Oe++PVv/ep3fvv7f/gH3/ve7/zGt7725S/+ype/+Plf+OynP/Xpn//sZz7705/40Os/8dF3P/L2q88/fu7hLV2yHz24uRRMXkg3JZVjo26CJgz1Op0mJz4nxbfUtqV8roQMOpzVZ3EQlIk3Tx97SmVfx2pgBqEzZcEknJ8AcAzOT3tcn7K5UzEAp9NxgvPTjlpWnH1nPsnWRpvJZqgIstrqWWlGLZ4f5+Kpc2WSZYzzpXnsqZT2z6mYHW0lkY/cENtW4pVtnVh2JVVDKpZcxy5eSaNtZFfE7/PzWNt89Ay1+bWcJDID5pxO0qPJP0BBwXQC1WEBPKCIUb+IfL2ez9fqxbacE204hvgQkAR9OSaDfuh1WlImY3pGD64qKSHEYzB4KnoAOTnphx01PnStZDSizwBcxMhGVrJSHocxdspeAICFDnlKTJ5OdDeo4YgjOi6NEOo0m8H+fv6MMbhQHpaOx3XpG6duZE0OsJkFkP+NXbsBRtOw225CwjI5knYsDXa0uY53wKBS0XfSfBgEVhdMM8FNBtluAsU59tluwcx5DQGLOiQaXJTypR4sHOfYf0oDrFznyahVqQKAw2CAPN0tG2AopXFITxBts4o6vdFqNy643fFwIhjngyAfoAMWAK5ndaPvxu0+LwVH9cB0fLbimo9GOWYQIK0h5qpuXgCj1mg2IHcBJalWK7cnAODlajGR10CqNFhxDJWEBbhb08KBGQDrNc3/aVe+XO+3s+U6LKWtJJRJh/+EC3qZQKha4WC23WY0YlZQTkfQ6IAh4lwDHAnA8MNez4JmZyClWNCLei2vV60HfkcKlfV8tl7AbIbzfP4y06nCTJ6ivqArpgZlCPXlGGr64XjSH8+k2hHI8zt+2OuFfSk9O+Gw3wMz2+802ng65JlMJSt+XjA22wSn0pX3hFy8tWKlVSu6eA6Rdlistv3Io3zQI+VJ3kxFwb16pVCFWUtNK5B6owf7FEXgPjIV+gMapYd+p+n3IFkKWvVipSFvEldjr93M2Tm53TocPDs/w1bFymVz+hZwsgXXCA/VVCYHj1VUffJ/sVJvtiD3QrtKsC6BmomSGo2yIKO82ekxCyXiAv4A0+mCicTjSLCyAwuhpvzndUN55NA/9brjAezxRuEgkjfwCJMEQQCEIYNKX683mzXQUBrtRqfbYrXfauDPLX1egM019MndJkTvcv/GVH48X9KYayMNIybKd1ekMd/eXhNIr66pKhZMUxnx/kLTHEw4A8XoisXX5i9UtivdKqhVlC4ZIRPDEdWHE2vgGwP6JhyKGEvzfdVHrYnSGgiFTn4N40wMfLZgmW2wEN6DO7ahVyfJ3JqYrL5i3ChzVq4RUPFX3u2mq+0GsfFzeQctFmsB8svbh4+fe/LSK6+98dYHP/yRT376Z37+l37lq9/8zq//zh//6Q9++M//2Q/+6m9+9Bc//LN/8oe/+2tf/fznfuGnP/OpT773sQ+99carzz+UBnl/f3MBfRdmjfAYDFsNDie0SbDtnJ1mjpt0vKlz6Iw1tu2ogTpPH50n43YYvuoc2KYM1hoANh0k02hOQesoWVIEVrCiS3bG/Db1dP9L1ZVal6TJy2ZfnU4ZOw4Qypi8mDZjcxVUG98R207cwI6feKaJGmfWMdeRIEx+l63OhFjyktGhzXYmndC+QPlKOnOLOiwNn0hyJGPPzXjlaFE9JZ2eWv469MCWypmMLxUhpWz2fdQdl7LZJPVJT2o39ig0kU7Qs8IuGBkx0guDnIOaGINrD5Gn8qaUorZZwhSK+2CYROWogATYFOmX7OZjNxKObG3r3OQ2O+phzvRkmjJVOLIT7EcHLm/xaGhWjHJxSru8AuNrORnPn8EE0Mpk88bIyrWRnSe9Hb6GwyciF7tC4mu76nxoZc9VOMR5HlN+XEWfXM7Ij/RXA59opxWAXW1vlazl5ovGroOcnxhQEmQ2+2mVR2kAryZw6NLa0dQlrlyLuWIXq/PFBMG6yy2Yw0vBhEa50gIAI9sAZkaH/RaF8zQEMxzxOYtBO9pu5q1CNYgWOzSF/qAf+MMJO+CmrQVJzjaVhBpBCwCzHsMcmrEqKtpB9J1NYzEnbyFsHquMYhVCUcFgQbeO1+jMFsOpnEOLqTxQwT0MWEG1Ywc8nWLXCwbZahUb/6/U738vZ8o6zGVMcin1d6Yu1VQg/gbPThZG2zoayOVhLpcthKNoi63hKpCrr+0JABPXJ35jMJhP6oV2OJDDuy5wJQC82iIccM3h91yvF85XVqv5MPD7fqsuV1Snmc/gvp1C0w9GY0xjehw0CL4LtnTbmMGGfrcvLXCt3LtaF85sV7DWTJoyqu6CS1i55WFkVK802kWn5JraKpPJt/ow5Gg2ehP4vsprZjxco8jrBgMf6+Vms9FuN1rBIECmI/FXAViXMNIBd7voqr12KAVqsdzAEKlYQnoAvQUzyaAwa2McrjHsDvJPsa8uFh0bF1cuX0RrLMhdNjFtNsteXtVw9IHFDPAXFKuy3H+lWC6U6tVCoV6tCWRKMSJveA/awIjjhNliMpOaK5oYERnU5+B2+U2P/azXg5sdNImghIfgyUuP78uFLICMl1CQmBP5Nnb1UC5LTQCFWUeqcLRuzUoNhX+rBS9QYrIUBaA29BWSN5q/dKWi20cP75+D7/ODB/cmpOFeQ4MvLxVIr68fXCtD+pKyI4Hkg1pP6xTawB+w8aAEMnhToyPm5pXAabKglPtFJ08QyzbGlBM3EUiWTnzDHTDRmtoqRXDYhuHvrg/b3QHGJYLJAu9rKKGuIadCDrIgMQfX8pgENw/y76v17rCDKTj01uyaN+yo5Tt8/NJrb3z4vV/4wjd+47d/7/f/6E/+9M9+8MM//4u/+tHf/E9/92/+9f/8o7/+wR/9zq99/Vd+6Wc/8967H/7Q229+4PknLz3/3IPb2ysE+MylkQmllGp7pZwcagJPKeqQz549e/ZZ+GjK//hN6twYQKeeNopMp2JBkpEmGy52KpUxjbQG2Jmr87iUJlYrIseRUqn0qaqZqMuGAJ5i3Oayi8QwFWCaMjRKBeDEaSudiUEYQHp2pq2sjshNpcBkh1Tc3KZNrAV4a5oIkzGGwU9RwrDBlDdTNnYwxEgcPF4gF97/seE2yWHE5tgSlMYkJ2aiXIFa5/wDkRYJGGlLrZDk/kz7owzirJXDmjRj5S3DFnKySo5LmzsDqsODmnMl6Vc82HfJ/2EghW+n5/e8drMj/zdor1DMkRNaKJZL1XrZtd0ijZWhMlELSCUHy7Nh6VjdUd41Kvas9ov0u61BnoqvgiyGSE602TMgKbvUt9JuwNYVMJBel7PxElwBWnOuVLKruQoqQkJeITo+J3ckMGtLTSdJSpXoyp3N5RLOuHbKWTaNrgqOEspxVntJnHR0RClYWTNbOIqYYLNYyObo8igHYLU3ArGM4VarzWKzXc6mk0jqkBbYLPI9I6pwvWFi9EzQb+R3w/F0HbX7h+vFoFktVqPdZuT5csugIwCMRjBqnRDFVOtr3Djzyjqz1aXDysQOYHFFlzPfIw04SpUaeiPsbrvYdc63a8RXz6bDULrJEB0w0viQBLZa0XhjgWNSHi7MBQ8CiOvdAqxlv8Ta1Ox/SB6wT1iHFvI51WfWdpiO4WZLpYJdkIN3jVnkaiAnd0uejrGg7GI36/WG06hbz1egYhq0Wv0aAHi3nMwRgotRATJxQSvaLOm1H/b6Qb3abgvEYAQvAO/WpfccjULBSk9QwwuCdqUlV7Hfa/vS8PmdenP+6me//Hb1TDMiXHkTuzTIlPMgX216/ZDjvnK5lIVk2aGneLbmRYKx3S6MpqeTQTCAvYe0ikBX5pmCYDiVZ3CCucV8GBPBB8r+HxCAcb+1Wr1aqvt+vYymVbVrpZJlKzPGTmaGUmNZ8IuhyCqbUQk8TpUsrky7QA/+fKFa1qCvsuA1E1Bz6nGp2dhY3mQLKKFh31WGrwAI39IzwzcG85B8DVyylhTcAorNNhQWkDaEVCXOJ0N6zEbRGBRr3+9LJyzNfT/oDA2Nsj8Yw14ZDMzRRECgH6jFUK9VBzel3pbLrFFtNDv1egc/SFKrVlpSqOB37XqjQ2+iUMq+KS1wkRsDpxe1vT+st7f3V1eazIB1KcW+t3cgZ2lmMJ2p9/TSlA53Tdvp7ZoAyuWsfiilS1AXcanqhMk8qLXGF18DgXe7g7bfe3pWqzhJgynknnaUPR94t/uN5ivvk6xlWIysl+s94yKljdZ19uGC+cbyuA6XCHSiyRjNXG9ur2myfX3BoMg1PGmxZuGYYr27uLoFyeudD//ku+/94le+9u3f/s3f/t3v/u53v/cH3//+97/3vd//wz/6ve/+1ne+/e1v/+o3vvDeJ3/205/5zGd+8p2Xn8AV+/awmcuVGEU+jutis4SD2MyrBYQz8r+0x/KLYJf8Hd6bKfnDs+w1pYKGvjhlJtWZ1DPpU7q0+ncxwtGkSKWSBHUdbZOznD4zf+SIN4mtSesomn8+o1mmaTS5M0sDOM/PTqsC/uYc8UWZbNyxnjE84vzMOgdxOqXAf7TLThDSeopAdiwIYnq0ccPkyZVJLOZN/xwLmtPJ0D1OoUpnkuX0SRaFpliZzpm2/JqxgpWmpW9ZYyN0TK2xk7Wz8rDNLjoVJ83YMf8JXkrFYlUKVylmIVIJ1Fqh1UXMCA3qO61Gsw5WT6lA8y6kLmKCDctlWD7CS8pQoGwjuDWaXtsxPKFCpYA9dAVe0MWia8bM8nkFqtzgZEXushvLgnIMPWJ6prGojOMY6KrhaoeaCIiceIBsSNXZWJxlZL5uchOct27OFAquo74mbi6W/5hbucbuIhsDMAOn3VwR7R5n2IUKDqnJfEYa1nK52Sxms/EAdN6OQEQYTRa086auVm4ziRjF6w9n25uLWdRrlGv+eCj44QXDoBeOJ0t5iw5b8euWbLN15W05x1BvPuKjBefRvNKQyqG7qVTApcFEIpRubbqY0vl5PgqbcsL2BYC1c5/ON3QUxmicPQANBZebrZlF9x0dN6WSGOWU+Xhq/MSk7IL6x0it5hT8/mQHwsmy32g1Wl4ITfRqtZ3ItzuMvFa5OVssZ6N6RU7zaLZaT+QGqiUfwtF8MltuObcfR2FHALaJdSWMyOSid9yqj5WrL1dpEEXhoF7vj0JkI6OVC8JmdP2Bj7yxb1fPsnXBrHwa0VAFReFCLZj2gqCDfWopB5eSSpFGJ7XxrhciKjHok8EgWNo3OlxIf6STG/gDxo/0J3R605AUMzGfyQs/mc24vYa3B2Ty4261wq+C5U6uWEzbJugpBmDYD6Qx2yGfnx5wLDgzGZiJFdwc3GzLRdINBHcRhFzirKqgyKspqYWi4QQWdDKT17+X92exIpV0s1ETLK7C1rZUb9bwJsf1qcToGpy9GgG+SwSFT8ilM9/QYmL2AfPRIIgEeAO1nI+Mcy0j2xh86ne8oNf1vU6zATGzwG611qyVpRGWer7JoXZbKnwP3TP4nXQnkK/nBbRX60sBMJ2NR9M+X/bNTgfOFyaO8PISnOKry4QzfbPXbAlmu6xpAWJ2yiYxYoMUCbWv3icxFIR66JjXy01M4dYQp0MSday+0RtOYkDgIi8RexmyvvdrRlisgeyQX+3Mx1YzpnbxuJrkapVGMSLqoN37bnWJ/l86ZuykEPSMdx3WLNvl0O3SGwAAIABJREFUAonxqz38zB4+fgILr7d/4mPv/dznPv+lb/6mQPEf/94f//AHf/nX//Jf/t3f/e2/+NFf//kPf/jnf/K93/j13/qNr/7cex9766UXH9/f3l5Q5j9s11pBRQ6K1LOZ7Pmzz6IlTj9LJD5/Np2JBU9MetMe+BjzlI6H1cfciVT8j0/lIhmTEMvYe50Mq9OJ56aJenhKHqVraiu5tyQZUmeqWcPwshSA02eZsxQdxjBVT3bNZGtZ2rQfvbiPlpsZ68jitu1E5Hx03+QGmRPEUxUWvoHE8jquK94HwMfRtUKpGhPKH88py34qtNU+idew404Kv7XZuboJYsnPKeWuoWsHQzjnqiFXWer3RgPkiybtDvpMf+/yJ5S/Hk0DapVSo16lbgSfA/aIWp0zdlc7VTNjR5oGqHDPMEcha9pakoe4jFUmVmJ0bNAFd+BknyIjObHniGkTczFCOqe7XCd2unSNi3Ssm2aUoFEP82sqnCEuS79erBPOGpHwiTxYU5Ncmh7LqVftjobRdA5Pk8Vijgzd+XwcEICxIDwFYCyK5cTqQ7i5vru9XI3Hgx5dRT3YIEahH03k5ovlqGXZT6chxXy9bBLOpE+NXrf2Cf7adrL/xoCyDM5Oo1Xveh0vGg3GNK4e9qAFBwsa1iGwseZobkutCLUb+8N6Ot9upf1dzxebQdbMpFKW5o4mNnkm5Cwdy/MtiKOLJRcUrFzBC2cHKEOW1AGjA57jhBz7g440U91Kcypd77Bekl5UAHg5aDUAqF0UgJ2OPBlzGOhPRnK8Vzu+sb2slSCmyzlVPxpFuLkvfZsvuNuqtxEgGHQbjWj/+M2feH5ULtQa8lzIRY1VRRbDX6vkYYrXazTIN0aQpfQOruXkyq3++rCSF8MDvVrQU5C3D6dIRjeS3E92dh8e2kg3mYzCyCyssWvF3pUgrMEcc6Z9j7q1urSAFTKwpXPlgCsd2yzIc+lk9T1JeqEmxvCCPEu7FJxkS2XpnIvZYhEsDVh94n1WUn8eAWW10CuXSa7EH0H7Qs9dMqkjeSmGkaJaKkmJXK7kKpV8vlorcI/dFGQGhaPXaUORVJMKp93iSreD51VA2VeOwHQmZSV28fL9qfiBhnowD0ORGXi9UdCXfnoQgO7BDDZ55iL5gewa0rMB9tA5tcGnb1HIJddEjSYn8u9Nkr2lmPIDPtXyNMNkEwUZClvQKygM2rPDvID9M5Oi7m7Q8FJnDEgD4RmATIoUAHilhIb1peLxGhc4bkkStMCiiZPYa2AFWlm4fqEhp7hqtTX+Iri9gPql5sau45xH6gVou2myH0HBVuzn3fH+d4rIcM7cYbyET1JxlNpzmi77EjfQFFdAM/y71T7k4ka+2efuHr78xsd/6hd+6Ytf/87v/P4f/+DP//pv/5f/7d/9/b//h//23/7rP/z93/3Vn//Z//hPvvfbv/mlr37z1771Kz/zyS99/nOffueVl5688PAwn0zCVqMAsEh8QQDL/IkDa46ItaDWEXQqfXaePqd02YyI8TPyHeUTzvG7WJV7fm6yC05wPNEx41pXK07VVkmJrqtdK6tOXwrAtN00e9t4rJ3KqBDJ1sglVQ2n2QrH/e8/wtM2+RcnOqqMUQO/7zZGMWXCnU9iF+33Jzkfods+wioH3pquYT7Ulct+eg5un9xRrI5S/xIn/jf3KHIh9cPSpETHih1NUshXttW8PpsrAWGxcoJGmSKFrqByPxBAQdsR+PI2gmtQHaxK0EXUBKCYr6g/Yc7OOUwWfMbhrltn2OpYpZNV6JjxbJj5q7b88qOgjxQrMi5DY9OvnNEP5eIZs8FelTm5xq3ENTc7krCyrqYY5ozlhkkkdmMR8JGwk3Odk3CHrGOwmfaP2NLVetKxoYvEqFkqa8yYRn6jXmu0PTS72AFvFH+RnCO3HLRb3dXdg91sPGEyrhw6UWgAeDxeyAkybLz/CrDjkXMy+82aEO9swlnLnhDrNWSHNCl5yaq1cl1ak0BabLDAhgie73kwPBuRcjydctGl73nG2W3IKZlP1sii3Qxo9WklUsCj+D72oFVVW+oslS+5brGck2ZNLhZvMNkhjmYdyRUBeByjGlmNgqARziatXDncjoNBu95rtfvT5dyrFBU8ypCptsPRVBrkYdhrlPO5Vtiu1pv1VgMaaBi4VEHi9mCpCSDuDzo1bzoO/Hqpd3j1Qx/+4E2vWPWCbjuftfNluWjOU7ZTbEBT73cacm2WCtzh43qznEK5PZhPwvFm24R3mRQpSCjuI2IJ8CJfpefTjRVMZ6aZDPtwYh0Z+J2y85Uf48VMeYcQzE/mY79bR4hDrcQXolx2NCBWyTAsaNSCj/6qFlO+1EovnUEEIjYhOcuC7JkVKA2h4b5W0cjNIo1FykBhOMSXKvUCud7FIobQyDBv1yErqiEzhqlZZbCpyyUzziGRn3VIuVYvV5udZksQstPGaLmBptUD5dmjK1AY9rq9EGJn2vNMSPRajGkBN5khMjyEc6388MKgF8FD3qSfRvSDHzIahowEKa/UzqtWRSgFoL8Bv5NWpyWFQAORcy0wvdqYYGOBEvQhWw9DKVQjdR8AJmOxA1kbCFvL1e5wfffwEcVL19QNk9ClI2IkQiirkENktqTw+cI6eGu8PHSCvd6iO16riNgwqxldwTvYMH1iB8oW8XZDdzBkZ+uttFneMkUqaYC32DcfTJjFVpvp9ZI8C3bhZI3vYC1ydbGm9ur6Yqcss4vLA9bOAPiLca8XIOO9r9Y+2+3F7eOXXnvrQ+9+8nNf/fZ3/uD3//Cf/smf/tmf/+U//8u//Xf/8T//w3/6r//v//f//N//1//+X/7Lf/i3/+Zf/ehPvvfrX/iZj7/9wqPb68N6Ph54rWqpgH7s7MdDJ7S51SVpNmX2wEppxvV6RD8QgIzgCSTrVCqxEZFeO5XgY8zhMq7XJEXb59wrp6141psynfIRgDkHTgA47sfj1lRlOyrDOllFJ789zqrVrePHgDpx9jnBZPbO2lIn565lJflVRzdqTvsgpjqLIy7Oz2lPzUb96GltZY4jAcuME84QUGXlVaqjBQI31iZuWWVQ2SRvJ+6/sjDPxiJed8tp0zGmVf6T0xS1bgcmQEhSxB4MCkKMm6T4raB5qQomYZdVliPgGfa52RzYXfDOMKTnrGufpBlRIK1DYjbGwAClgmmSg5vVOEIg6AkAq4iSLpMIe+C/kISaSyhWmJED9eONsWqB45AN98Se0tWgyvwR2Zkul+dv0eUXqp1o0FcV8JwGQXI2jLxGvYoO2AujKRWEHDRRtbWY+i1venu79PzRfDkaSHcl2CutXIDVWjSSM2IVVU/2I3FAd8aYwmhCPY3X0sYLJpM5dspxiH1W7cXypCpzFNno9TotOi7CPMpHUnFEN7QpdcBbKDKY+7rlWbVaTCbz9WQ0W62jilsoF11YuRk7MYV6i8Mly04nduxnblEQr0h9TS7nDUcbCDnWAylI2tLZjNeCwMtx36v780k1k+sKZI56zV69GU4Wsy68QfUVldKo5g1Gk9BvVvK4VDr9mluqVdrVHJal8o01BBEjP8DOVaBSCoogqBYazcXLH/vURx/P5KqD2eughhrEhdqt0pUmbea1URgWCxXsUQu6nZC7Wmzn0XBxuQ196b1gCkndXIBUUHyBUPe/mEf3x7Mp5rCCA2PpcDUDaZIA8HJmzD2n48FoMZHWnRyIIlM9ymXX2N8mACyvnOtYif1PxkyKHMsullAecj3kIiaTdV+ODtVOvkjpfK5Q4qIB6yD5J6aLU6QEwMVvBHaL5ao04C4cbkGbalXLtYb8WxfyRBpkV5mjgeLYQRhQAaVJvtQoS9VWqTSQudGFGtiT6k2qEHl3h7Da8ZjPMhyrb3w05vBzuZ4usIJZr2eRPBfSLM/A9hrI24BzfEHQ8Ww2xLY51iti0CAXY7/rey0p6mn1CRonjotGk/7dLPerOjGvUP4mwIx9mEC1QHcHnjJyDQzGtM/QaTNVRyBWw1cLmmLsZ5HLhSE13HLWsLVeqwIJpeeCHq2L5faA4IntBabYWw6L95xN62SZFthEUtPjIvhxzaF03BKT7LVTMb38lslTG8ZSEPpJ48LdKLuL/4ioqi3VWBcriKMgpMbcGoGM6ItvYMb55ArD8yXiJxfT8ZBx78O+1Jzy7PpBIG/k2Wp3/eDJc889/8o7n/78177zhz/8m3/9r370t//r3/8f/+m///f//B//w7//P//tv/jBP4Ms6su/+NOf/MSH33n9hece391d79eLSRTCZxFvh/SPe2iyxE6ZwXTcD6czR9I1EVhtqxNm1bmZOaczyXRYAdr8em7m38ktaJGV1e1y2iySAfrgeONHbKttZtZGN0uzrPTJqpYOlUcJUjq2x0wsrY2bJjuY45RYb2dTPsU35umSOW5GEy0wUqLIi00gXxDYzp5nDACfunY+NRo35LKzswzqaBdb+3NzdLMIsM2QmjFXZ2oWZGvohLpTxCNRJ5UxnG82zk5OQyHNTeR8oPU95IpIfZH3Xotrn06n3oFUs9V6Rj0xsCvOFXJywDpsPx3XcLlZH5BSxTa3UDQmBpaZrjoGgB2TtHwyglYmVpF3BgBWOvfp9JkmG466f8QWkzrFdXMx/prRs2OyGRIA5tjamEHjBHSKta4cMjOIkKbTxWq5XsrbGB1wFTvgYwe8pq2Y9L/jfs+fXe7nnVooYAyd6yAIQgXgntQuy912OaicVo6G3q9DEwgOUvESRYE4Jh0kL6RtmSClXA4tEpNEEQnSaDVrbR6FfaATRtCDMZxIZ4K0O6ygTNaN/G4uHel4vp8PovlaOvJcET1UuWaE5Cbm2mWOs+q3cTlZCPHMuUVYYSHBxRuMt1dyhCwDAeCOfJOjzXy5WUxGQbU7G5czBTl6x7Nu1Wt3sKBu5yiQd1RvlofMvYiNr3y/2WbHPbdd+Q9FIGqnGkoJOJMj3CRqjcd+pzl8+NGf+tjjqQ8Lkp7Xk6bKh1dLrhagBZMeWpCwUKlV8jZl3IWc5UrbJ23afDBezEeTGaysQLcKkeceSXNtHDZo/4gAZUxghyAszWbj2WoB2zhmfCkA6wh6pnXWaLqa9XtV5D/UiuU8zdyz5/pKppIdcPL+UhKWsaGR11WuLel8bTsHCleRo4EiWPd4O+Q54UEXTH02a0J5hYu08KF6ASEweK2gKZZXvSy/1pAk2a6UW21pPAXToCBqMpwCWl/QLgXjSrVWs1KUThqvq6vG5+iSIQCvyv3AXa3R7HqIxOp0etqXBmEEKrqUj8FIOn/8GK/WIDNgar3irwt9ZjDCh+VM33ygBATDa7JYzuB1yjpHXgFINfDRbDXYIsMkjHzrBnI+61x8VVDNS5VRkCYe9YRASKHLz2PUFHr12XSm5lzIa7i8vHlw9+DRY2QFX1zfQBJ1hw4YQchwiAbMrrbyFl7NVwhbXG33u+tLBWDFc7kZYyYwZTaZilxV73fxDlm5WnQhgVnYassR+Ga7XKkhPEZhyHjfG8MQXRUj9ELu+PrmUs3Y9QN3poFRAtZXq/n24uYCJA25j4VGbOxWk/nuAqKo7QqW/tMF4mWHSCxDCsxqPdlcPXj84ps/8eGf+sznvviVL3/5q7/6zW/+6q9+8+tf++Iv//LnP/fzP/upT7z7E++8/eZrL7/wwpNH9zdXl/LIIfobdFugLuSdlEmBSptfUymNgXr2DJQu/RMm17F1Zkqn0aeGHuRunZv+OJV6VvrmFJtnkp8VkM9jk2omUaT1741U6fw8IXA/1cBi3qZirH8EgFNxo6zxxsdQCdOZ6oLYsk+NNPFT1raONzOz66eI0VYc05Y9nVxnwJM+P7cyJyEXlv2UwthAvSZiqc2TbZkWysrYlok+NGSf2Ok6zuzImKY7+T6z6qXLXTR9m1lPOMaZOKvmmrijNHObmKGIDxAmpS9+xvCGMoxbVpIv0weV0KmRg+iu9WddyqpMy0AsQ5Kyaufpuic2zjpbg2VqXuVDjOWLd8CxH7St7pWOpjrQyIOQmgifYqoXOWqGksX4KTWZNo110S3Ve8MoQnM7pRSY9hXYAVcbXTmb0DEt4xm0YPR83A+Gi+12HDQ70/Wkj95qMIwQpudHgTcYjOUImIfVE0JDTF/IxA6vqdRx15JOZ/6x25nrh9FN6vBAuUqtDi0pOLCtrg//xAHIvpgiLrABxm5rtVisEISEb0gOr0F/tNjsxjWzTq7oqxj/CoOKii4g5WeAcaFEIZt0Um7eKQbhZAtZ5jJoNuqdvtcbrWerrcD9pNkajapuI5SnZ1Qved02/Bd7BceQ9lIcxMTkCIsqbotVNuLJAfzZYjsYDKQhg7/LdLreRYPnPvbxd1+/7VcbgaBlDz4U7V7LygvCjgY+B8+lQrOax50V8MrmiwWn1R9NN7MgWMmR741mIzKKBFYFhhH6NVd285DhYBC5b+DyC9WZMq+muqCcTRVe+POClwDckxaTvl8vyzNeL1aAYaVC9kz9ixIAthxGe5nBTzbmPkA4Aah1My65Vw7ds3I0gcfvXKU+K0ByAoVxdIFZsWVMn8mOREMM7wZaenJdXK2X5SKQPrPAdXGjCR0RdrDyOgLn6izSKrVWm1IrJKhCTt5sUdfWqBZqAnrsvMmyp0YYDXcDTrndAOwG2IB6vU6f03qK7saj0cz42qrMje0mRQHTPuTvvj/oUJkcyh/RX8/mCBaH91dEK5+Qgwi/2wIbtKmra6zA4PxdJz+F3XwN82v8XG+WoZquNeEI14bACg271FQj5MRhdL5HgwvWMgIVbq4vb+6Ql/Tw8e2D+7uH99e3l0jkvGCLy7nyynxozpOql5n3cDiciJ2w/UX/u8FYGo245jRC5gQfrT06ZeYzb3Qctljh0ACjGntsFArEZeRL7WhjfXNl3K8fPt7K45bbIYRZbnNxEDC/uIL8aiXgvsfP8rG52i621zcXu+sdqujtEvEg8Cod0RBpNJ+Op6v95e39i8+//Prrb7356oc++M7b77zzwQ/i1zfffP31l19+6cXnHz988OQREiCZFyK1+HjIhLVSztFDR7nWCswp0yhrr/zss8ZWM/UsATQ2/DDDY2N3nY45nKkkKALE6DhAmY0ifm9Y2Gn9mifBTHbcUROAM1bq/Qtho5Liwtk6iXmMSVj811TaOlU8A+acxO0jET4fAfhkoXuWMYbZJkTSmFmn435Zb3U8m49xFeyPmJ8jx8/RQ8QQyiy6g2TOXT0AM3TXlAMvpobpfMy4UCX06ji91aRDSR3AnWtOF6gJN8hmeg+aWOeZgvS90jmTRCV9bVH72Fi+my86CuzsXHMaSqQOYspKxmeqbsRROtb7ABi5gkW5E0p6AUQnE+qsIrlpNfTky6nBleuqBzVcV5n1YBlrLjsGYBvcGCYcFPDtlbKFWleubGkX6RohJzFO30kIAO5hhRjBPxDvSUE11KjDYLC+2gz6fm+4Ww+64MCE41EY9aWP8/0hytbFNKydUgqVbZxOVhexdB0swfQJIBtBPaO/NK3ELWRjvxOc4wXsVstlZstTiSKVMqiss/mUZBX5gPp2jmX1Yj6ZLaeD7mC62BymZajPBFvzaphYrQFx4QiBFT8AGA12WcMO8pB2FSvyhNYG/mQL895VKADcEwAeLqeb/WyyWnidQdQo9wbLxcgrlb1mIxgvZl6llKXuwDJDpqRsyhXtc2ig9fXnn526F/U7cn6P5Qle7efhxUc/uOvX5VkfgK4Mw3QpNaJ6OJLb1SEKEohyCGOOWuuWqiVnPIv60rAtwnC6pCnFWM6q4WgyjobTqQCIRlsPEaq5gJWZoP1iDgvtIfq86ZrMd3ll18iOooZ5uaKL5xxLiVHgV4u1ZquWK7l5AeCi0Rmmz2IATrkgAwouu/R4M/mcECCB6Jd3bXkikVhdJNu5VDGp1KTgwz8H8x08HSDc5Zx8pUh5sEBjjcLgWqMM3IQVmhQA+WK1VCZrC/z4CnpkvJZVTHmR4lGrNREZRUzrtOuNdqsGtw0gXLEuYId/a1FeDFGwPKPyaSX9ryC9tvwoEsgFAQuC2j6IVJ6POLVRFwuPYT+YjDA74OSeF9piJtXoYr6G1eNyIpXZFKIzDBsQvBYOfNraQmE9xAp5MJtN1KwUwAymF9KwEI5hPjqtGobndYqxED1TU3dxzts53YYhQi8Y+q22Hw0QNtUfITZmwujW1VpQ9Opih1BigePHDx/CTePJ44eQRdHgY6MKYkyut0Y1HFt7rOHDiQXxxWZJi2oYdFFtLH+FT6QOiTLjJVbQUCTDMRv+oru11O7r7YF+YRARG3kUjMJYKNzJY5I/4Ga7/Wax36+AxwsajC2RWoaOewnQ3QOj14sNvuIGTfsBBK8DVkyrzW4Jh5vZcgZ74dUGsge5o/VW07GuYQHKBGmEMt/ePHj43MOH9/jmb5FLBbRHjT4dDbq+18Q1xphX8LXeP7k+ezZFT0XDlo47aBKtAKbvU1Ggj81mzN+kUgTgc65qDJaSuWgZXvYx7hgAfI6t6nHZehQWaV6zZR8zJdLxtNDYYR0jGc2nqAZQx4qcFVM2lUlumPCpkUbJJlf/nVzrLFRUtglzMoFNT1lxp1K2cbzG0jUX+1xlEmoXdtfnasmZtlTLxIWziWjNunTzggWEOlEhqhjxAGe2+kJkFItNkg0niaqeUYtmQWDk/kr58kzW8K+tLIE4TiO0485TXSfytIA0siFOhPMmRpDdglKoEukQZuGmODCTYzgWwIVXdU0wVUVKAw60Y3iDul4V8Ehc5KzS6jmv428nmzdelAUTLgm9JZJtSjnokNAKVwNpkMYCvXJhz1ew4YAMqVUVmMNicjiDFzTeZNCoTKNouj0sR5HXHaw3EewO681Ajvio7wURZEjMowoKaV2vnhRGsUAgnuucroj17yHsSxmdvaaByqMvFEyWe8vjDl7O3Nz/z9Z7KDZuZduCtiQmEJEIJAgCIBGZqVTRZbv73jdv/v+PZq+1Dyi5e9TtKpWySOCsHVYI0Ois15gjZjX4vF0r97C0wFgsnZpzLw0IrUS3xUZARn70SCk7rGjQVrtMXxoSQO483AD9kTRetuUFNjrgor69fvnyfMrl7E6l525eLlgCH3pQmcp13h3O3coP03RdtMc+jwN1h5/OTZEqVxBiCrSvo1Qt8PTHmFmL9bbpzxR+HU/yFHz71ykM81y+LpYeG7igdFB9wWkmQZ3AZGfde0AejkwlC41+x0BsNbU+qAtm3xpLVfpc13XNZIpT3x61ddEXKbVomC2vyvN+QNAf9nnQUguWAILbXRjI6Z9AOo9k8OmHjMLM0VTOMNV0ROZRz7gNnrm+C6YCfHEsJ5C2l9I5PgjybA4drktzVBuxiZoXizksPwXb34VDKRqn1zYMSiMa5YRmHSHAm2I67TpSRIVSQQU+KXDypSMnziMnFMhartfJMotS2OhtCiQ+x9LjrkCOytLlRgpIwT3B5aU0pcma7XAMnIcaAhIvDapO4zhdr9ZlLp+1TLe7vNut8t22ZhAGc8r3R3kApe093q7H0/Nlf5KCFukuAslVJTVVSZP5fFcVSGSETHJXVzksRhAKAqs9qZp2zQ707TzL1/EiyTcwLIuSFRRsK5h7reJNnoLsRcSGCVG2gYH2Zg119BqSeSao7JDTeuia5sCe9eX169vbt58/v3//8v3H9x+wdIZptaDSN+mfMY5WTpbc/i8XgUUImW4EWLCnqTBGEPIbnbyMbOkZlO3jq8lRFri8vL4hjuqFZK+rRl28DP5b3399vRLgkQ96VcIX+FyatPz6IngrYH57wfAKKv4L90hst+lsxy8IGRUSq6S/ZnKGFI8vZ1IIYZC3B4lFfm9URhf0C7imr9rwU+n87cv72zd4Z8s/vsNs9F1++ffX95fjXu4/OSzkegiRNAJYGlrkTy+Pj2gMwKUeTzi/BtA+klZ9h2Lz92SY9D2q3kjbX1U3yTE3tQbiNSRKA6OKH2ZkTcP6FbtSBEcZJ0xY91JDNeyiKUV6ulNYJgMr+mHMBvRholHO0wG9TajibKBDD9NlhDohC2NQGQ6AP4El2cQy7DK2TsjQmJGSNBsPRmGfKdrGWYFVwMOjWmY+0KwT3iL3AGdaI7LWmCogD3wzM2GXt+GXNx28WXg/zYy49TdDupLm12bY5WyYKw85vhApGWtKFfSqS8aQaqTLYQu/iDP/xJmyrM+5gpalHlm6w6aLsuYIW/PPth30jMZHKntI2c6G3mUWx2ZEDpo0o+XYB/MoXOTIO+bwEQAMK0UAcBzKcQUvsD0MKq8wYZZGU06L0+XcbYu0PFyPO0h/k2QNJ2UCcC7VONKnquBRRxnTkRlp/Kc7+tPoP0bUhpEwxJNx68HfCApt1/fDsi3yXPoDORgXERaCcZLl2bqscdr08NFEF7/fX9pDswcPGOTTXdH28tP3i5kmUFm28sCnCsczjjf1xfztaKyIIz2ZtZDjEQD8cgYKptJyN8QswThpME/dtoI38Qod+SpvT/siWThQsWK1rJ7MjoMJLsIY5AiF22WQhFRwyw/jZlLcvFyOhxZmq/Ic7DdpV+dFDjuTrGyO+91aUIY8fCh3fIhlJxMaqIH39ziVa4xBvjVjngZCM5WwR8XVI1jiRyaCwU7lfPyMvXiRg0z/RuPCE5h6akHfy+V4uXR5EAgCxHNEeUt9MtOQF5Tuj5yoP0x0FaVDoslYL2tUl3PMiOw5wyEcHzkSGJk7DnDVZfmj16v98QQIypKQ5ZLyJYDszJgqjrYXAO1wOYz1MJQM8qhg5gyqRrKKzAt8RcHW8r1F6C9CD+9HA71IsH2VVjjO18sNaBykJxewVENDnJebNYy0wK6XtnSdpvK0IRCTCCjX2mIRx8EiDuXXcIJg7kTRIsbwO5MKdJnmu3KHeFRS9OFdU1VS+xy60zMfc3ITEFO0F1hEjHm9g2+qEFrwAAAgAElEQVTrtqRBCsxCYCYD/fWJgvyDpkPJlYE48+0WgirMewr5CctUKmMpA5AWhdaZdL1sU2bS9CfLEL+k/Gb0EFM+eJZlmI3D1a7pWjz58tRy54s8ii8//vz5x19//YGoBUyx//7jz1/f//rz3ZhXqzjqAotaDkmeFQk1yfFVUxEharoIZktni+AI4C99M/mqqgLf37+/y/VFuTH5ZWjAmRch3S5tvmhceTm/C7S+MPZRm2/dRd+u/Eh51xXj8cvxzNjEM9PbrtJVnyAzg5PQQR87JRLKXxgGwTAP2VhyQEjrDK9c2GZTA/1+M2Q0tUB5xz6aU3S5LRt5BBHIFXgOInJNlzw0y0/D7FqhCccW/mUg9nEYMUMnhbWTvOWJn6QT6qG3xAeMFEBN68tPG9KlAORjhj3emVBmUHifLj5wuDj7PGSeDEtiVRRPx6MP4497Gz0Z6K/jyT9DKT7ZZONDH2GnCUdNvt04mUwN2k2UzjP6PCFX6pfpeUd3a2byXMdPZrk8uUdWkBIzGd744X9tPmhidtjTf0ZHTn4zDeZMp8y2M3Sk9pBCOLf4K2ofa5w33PnkLnLlXng+U/oPZEYqXBpG0B8ArKlHdKuczYb0pDvTaphMY/4MxeSQsjxTZ6S5CXmYU+lE7y9ugPE9YcAlZ1yQVVV9GACYXsaHdreKIzmUpEwXkIBGAY3x6dht4SvV19JF1NdTVTb7upTeYFUIAG/KeotxGO6JOhyrgn1qrpXJp/StAYDHny6tkZG6o2Om6auKCMBOR+Pn+W7cyKHWIWE2kcPXk5bHCzBvzDbrDJZYHYaux04wp253cEPKlstczp22kxuu85gHOFHrUA4nbI5ymbtgMHeOzD0aj2GeLwBsh3XVPrMDLlYcepcd5gFyh++r7ng9yTFaVCVzg+JNdz5sV7EP//+Fx+wQYEEs7UmWZnBMlGNf2pfN0oP5inRtUXV9ez339a6EHLVuqjxJpaveIHq67ZptFkfSoEV0U5VKyeU14gbLLJe6YxUJxMh34iJyj6fvdDaLSWOBeSSfuW57/MgX7nYv/Jt5rwTgy3+8CPTS6xpmYmdITS792hfQiSJkEC7kd7IGf7/p+HeOmp6malhjW1pr2wLHMN1XYoXlGA6g4Cui0uwZjKHR6vJBR2yiiuFQ/tCpA8QZGJFSjiS1lvwbK9tAGmp5DyIyDC2eSmIypQNoh0GHJtuYQahIZYjdKFtJ08x9a7KArjCUj/KSaCGHKrS8CPxIIumQN+Wm2ObY4sK4EsqtsiJ1HG/cwiql3FKclBU78KPKchUiAzGUr5mADBalEQjXaRqv8wyvLgXlpTNdbbYUJLfHxqRugZ5/fb4e6aZxljuKTuZ7TjEEKBpwrTG65kUgPw2fR41i01pLbjhkvNJgEz/IEvXdEt8wXq+XieqSl9wt635ZfkC8nzYmTFHGSln/hFQt34Eu0OC6wKTr9euLoB9yFf/49cfPHz/+kJdff/6FOKQfP799/0lY5HaYSiSEWl14IT3fBJwxznkGzl4pBAQwM+ZR4PXb+/UGm2riMgs/aKB0vfWCuEVYdn77Qmq3oPwbtM1nSBpvDHB+vWpU6pt8xButr+VbyuefQLy8gLMA2seJAxzMgBpasBxO+vjB6U0Tr4+EZuX5g77ZnaWxkDPtSAeB11dgOm4DrM6v7z+ofX6+8ljkcwQmXbzwPQwkx//VI48oi3o0diAm2QhGm48659NVKyD205SZjabuoZ+MZ7Qx+PgUx2ha6JEiN0Ns7jHJnDQ+fY5yGCy2TIbDMCT+j/DjT8fx5xyLDyct5kLql/9n4zSZfQAwP8poqSZ3GfJ0cMKcmZZWNVNP0w+J82Rs6gQpbx7Mxu6DUDY2diTjj4304CWCNfNvJlRIo4ssDWZiCpGlnRU0yVjuuqqkIT7LuTIbYy6tIb4M/51rXsPc5PpO/3MXrIkzc1vtopmITPesYRc8QDU+aMZ19wedWnF2PuiS+NddBIw98AyyEACw6oD3/YHLPwFgxBECgAsAMFT1IDYdpTOWm0Ou6HIZt5emkLq9rTZxmJRdAwDeldUeaUinKpwarh3m//xjavxbPjzcxuPRp5E0KIHDjPrpyQCwHM/BAo26b8fduZYms6urXG4BV1fCiwAm/itAUlluyk7uO2l9YWYhpf8yLaS1bBupGXp/Zkb8Q46F1i62Y1It5pqlOZ8ZgyY58uXPsNr1yH29HtaAUjmakUxxPVH4dEQuMkho+SbfLAWAL0dwL+XjpHiJGWAb4STeZKoFzWlzlZcpDNTwHYNNf8Raka6KiNqjSkgewg5ukmsEQ9CQEULoQPcIQVhWLWnLcFN4ebme4Dh4U68GvpgMbM4C0AMMO16C80lf8CFE4E/Yy88D8F54BN1o7Skd8FrO7WARAf4E8sLZvcrm9AkxbOq1SotqmnzzTeiKcRk69r3FtcE6mPp0THd9AKyLR5nrhTn9x7An9j1NyPA4oMZA2QCwzSC7JdNXPBPEIv8TAJaO1LcpR8J8OjKOOquFtViFnnxAAA05o5KkX14uBHgzwSfBpSCIYKu1lI5Smkh42K4yTHXTFClZgm7QIhLsqqbYSDVXmsCMXEBSPiOKs7UdS3WVJqnckwy7dZRC5kRSbbgBNkRgLzBtYg3RN1pZtLwCr2B5tRr+cr7i2bhelSuFxeYBxIamv9ITRJtksKtBt0C2Y033GZRJrIv7oxSCUsOhRmAaUQLrLnS/kCsnci1uMMOW/yfkpC0T87LMklWGtzGuEzafUiLmG/CeOk5KOB2BjfQ7lMnfIFL+jl6ZcYs/vn9jvpNg5/UN4RAn5E0Kgp4PLOc4/KZhx9vr9y+wyTSu1pg96xhax8sXkqjf6RkGvdXL9cvL69evz7e3m6ZPXd6fzzR3R660XJn4PPnK1yP5gvJAnEglZBWq2zTUm0hWRbBOv2cBBNQ9gfLfmZBZaMx6rLB6hmFzhQP3dsRgtvJh55frnvYIVxoM4Mc22mr+0PjK1XazQn45xG+8J2Ar/fARx2i65PsEkNNqbZ/1tSfleyn2mAb4c6SisqdHD8ruejLeXB/5jWaDp2PDTzvpwWPz7lynPe30s73VP6MaTejDZ2CWT3zQhn1QbRm8ZxofgHOkhl73lIhP+mMtA3RrfYfWoQgY667XSE8Z/jT9XB4MUT0fqVHGmNP07b8NeluFO40FxJpxbHmIpUFXgIPGNTxkDH5duAbCgAOWgvRolrezr6GOYzr7/wNgI961TXowkBhdtm3Mn4ePxyJuzgXhwG/mrtmefcyhDWBr4sUc8745jBEczQNWB8I9B5fHQ1smITvgIq/3eqMLrMIsC4Oi63kneNOX28NJAK9Yhknet7tNIdhXaSxCFVmm9FGR9tRYrIz/QZn/XHlh0cEdA4mHpvyDo78fYKLr2snh2u5vaMSbcrsJ0CThEF+wzJcXnB11k9doUXZFmgrurZG2VzfH2+2wMFP+oUKxueJXI7L5UKg4nj2FQ7YGBUjdFFbbDisqAWA3jNOy3PU8BPZdh01q16DpRvxgBQPn81GwGAxdQYFliLZLp898wcxwTbOkpStPjYvCLSxgyYARI7g0xaZs+/rS1TuBgjVTAANnBucYjzmUTrAqmp6NUIfYvh597PlF4fdmIHR4oaoVf9OCQR61m7LYTdtLoGZwxLNu2UyAxZWaTgwOr5jsSQecR1HiB5jsuiAhzwYlA8p8VvlT5V2qNkLN4/GQjsfqca42sS7sx925chtckg80UNTlJlh+QV/zFl2OlwVcsQpGs6vAvCA/LpDeFkOFUNnrpM9h0LBYLsNhBD10wMEqdKMoiNwoAbkqAvF9EUGHvYpC6Rbx8CIUCelq8qq/TBHbjLBk8JClu01QR8krSMVcSqecaEJLWUixVNb1ehGvwjjfTLw43ayTlc29H44IO8InOvPFYiFNaQLmVEDOAYVvAfn3i4Cs53iVLRGWLP13CTDumHVKArU8C7fL6fk7FrG368vXm1mHoi3egVrHRq6p5P8dxHgHuSgP+5p9Hml3tYD9dluVhPwc5Guag8AAMJWLEnaaK8zh5ceXyxJ9HfMp4mUgHf0aI32ys1E2IhsSwSwwdpGv3p+AyG9MO/zxHZynP/78++fff/789cf3HwiPkj+/mPgITW+Utvjrrx+w5XjTSw2jaoDv6xd143p+uRkFMjRMdM6+XN/lnTQhYUzkK+liL4fz8SiX6I3UL1zSaE0PIIDcKGE/UGDMscKBqo2jupJy7CM1C+cNx8FtBunddS/nGqgU2MPDD53S76Zqm13TVXhKsFw+nG8Yit96Ix1AHiR+sXf+9cI8Z/y7qRFQtl4voKmYjrEwfrx7d+Hl8RE6polhUGBIyG53cOsyg97HD3b174/Gy1p76NEQUDwYbX7oRijw/Oytq4D6YYb18Z7H//LgUlxjzsMgDeW3xFra+I18QP54PAAwyFxcEw89971AR6LVo+ljBw+ue2c8GQ174MFxa/JPSZXp1kZ3k1BDDhs6+98sIzjScTBwcUp5yHiOKJiZyfs1i122ylAmzi3XGo/BQlbOymyiWQpqiHV30NBO1eyEDbLPNDfYNh7SukgeUgfNbtc2UUfor6QdBrlFPbdgyju/5yOoGaULgpMcCgsBTqhpUSDu2QGfjm0hZV0KU71teyQ7FimifXe8wuPiWQC4aauykZ6vhTo1Ktq+UgDuu5MAcL2c/kN1phZt0+HRHsjrn+YilG9P7jYyLKumSIyQ05mGR8vjpd7fcMcdBKdWSmL26ZOF15Gdsyk2q22+zPKmlOOiEACudkXdHq+3Q6hpTBSwEURM0TIbkqfoTmZbY3LDGashj1BUbRs5E14vh8yXDkYejY63/L5tOdjCnX/FaqxDKX3c12UJ+s4C3hEDJIRqKIFzOMHxnsY0V5TG3vK3p5Pc8VIl5PCIKNdlu2uLbBUg/Cuw5y49khmqPF+usi3SekmhbaRSwsStPz+TKnXmjnfItmYfbHyKaABMV0KqOrVLvg0vzyqbVuRFoPLz60U/6/KMhfDt+VhAErOIQSQLfT+eD4XU7086SwODQhX+2JNNrTEdzuRvBeChfpxP1LrN/Y80TfqhenJYMasBYIu8ZtpHA5jZB/MRjaTkYkiDAWBPXpHHFbwrTEFitaxbEJhZASF2MAxXC0HWMEpS+WjshqPIi3wH82ojX0pA5lqlC3bA2KhiryrQI190GWKdEGF5HLHGw5dcRyHjhvGMQjQ0c/1IPmXtwk73YTyZT6Yh8h1G7mYdLzd9V8NxjIHiCM9YC4onIV0jMIR3F66rGjhbfm+8CEiuqABfZVJSSrtdFLtqKzjbgEPdNPsWVqyn0wUOFzqxZcTD8XqWt+4Plcq+6z3U3qarA9AwN0xgeyf4DRubvKDcGGtjYDPNDeABmG3kMpXfYJUoIGuY5WpFO99IGedQNAORc6kckDzV70+XZyQ4ffny7esP4PFff8I+BNPrbzDGkj9evr4zQRFrXyqOBH8xMr5ezRWqyihUixdwv74gVxHe0i/GJpuuXddnRD7hymSq8en6csR2mk2wlOa4GXT1su8FS2H0jXaY79N40L1O/LEapgyv76rmeOr3F9ihdTCnQTkjZQYqd/nVtnCxoaVc3ZHuaJBcQ190bISd9OF4ecYW+Svl1V8YbQEJGGrbY1eVRUIfFs8eBtePAzR/MLCNvEnNNB/vTiBK1hob6dOUQWTj6SfW9PgTBv+Xu+UAwP/59v/6tzmRTe7DHYD/MYIefThs6Qxa/ZQeB5nSJ0nU4Hd5D5UYnAeHt5lYxgEkxp80zR9tmmqJTRoj4RjDAFQIHEFTsALgwwqMm13H1XZXOgFzvg9OVoRZGG5QiYQ4JphRIX2JQUeuyc/95AU9JAqaUAfTvBl0ng4mGwNg42eZqxfI8IVo5Wgo1Y6JfBgAeKaRDK5NAK4AwD0lfTCcPJ8UgAs5MrYdpfPPVCHtz9i6PL8cd1lfA5t75MxslqtSWrIPAL6dquWQxajeVhxAUzj1D0fSTy8TdXaZaCjRxBo/PYLo7pOUg59zuT9uO1zpUugeGkhKUNJjEskXmotK87ICxaaWs2G7zTZVUxZNK5jUh59iPfhDzE0849TIvScY7s9mYzZmmCRIeeJFu6KFPe65T32kQ23KHvQl7ICpgtTt1o2kJaleuma3DfDDODA7hnGUHq4sFehrKqdXEuLpEaQRsN8dum0FegyOxLqWEiKJvID4QgqulB6oQvyk0CVgXWSwKu7kp7iCOVtLK7RX9S5lzziBkP4EACa9+gaDJ9ib3c7X+6haffzV3P/5DsgA4Ovt7WpmfvQPFDzOFhFML/w4Eszxo7na+Knsj8wK7oA1i9TcamPVN1Bxbq5O1caBv085AWpFZWHZytq3EU+Nh97lwt+jTzSHuYRfjKJd20UHy9eDMHQ5nxZY9YHLgS/voWF0iPJHHvhYPtjnMxCoqVaypIwnWaTJQteky4R7Y7lqsjxZZhjBLtdMPRV8iVcpGtklwh7gXgWjD3z0Jgb1KnJDwWeB4HDu+aE0kKmHGlKKErm7PIiIJk6+lm8IE+4dJhaceNYIwWh2IGA1W2xKtnXKFxDEYrhzLHmxRPLr8oJZ+GRfJxENNrHA1UiNpt11lL6zpnp+f3/b00P6hn6RCSQnLRABNQ0jJ1i7VS2pSYiEAqADqOEGttsV0Clz+7yTbneVo9unATZrSMVebtFTIjMrH3D7fe4RQnpyhlLPbDZQPNOXRAMM0SX/+PnHrz//99+//vrXv/79J+yvvyNh7Iv0jtfzx+CGF+BZfUDe3n9+QxyTXqPcG3PhIpf1DVNo2Lwz9OzleH25YcUCExQ4r8MADwhpQr66TiuPjqGlPfyGTmh9BU/ZLhtj8G4I7TjAWA9dvjxqIK/nLScK2GtpVCcM5mooshvOolocl7froUUhfuzbFl05ptychl+YzMb7Tf1Krid5dqSA72Coz/xMuQ1mSCkfLK5pVs0umcNe4zjH7heIzdhF3fkOlloCgE9Pv39C4NE/AVjFT/jk0ecwiP8GYCx0TdbKx1ebGvvNR2PjMNa59qMxtgJuGheSD1ePIQZxWOqOB0OmyR3lVVs0nd5Npscfk+eJMeCcmNCq8V09dU95mk5/mxlk5UYLJ4vDID3bs1VThP0u04pMYhE3rq49A0WFKKqBEVwScX82ZzTw3HhHWqQImUUzl7bgDcEVaW7RfZfy4LnjTc0RR+bpeB4Y0Oa6U2DGG1B8gi2nw8bZkmZ8Ck4Pfh7X5Qi6U+7lCdNKKRg7HUHnGwGxHl4819uJLh3Pp8P59eUoF2WZ73BH76qq2OTN6WAAGF3Z9bhVL0G4wzncjxud8uwOg6PJcGQrBDIgcIQOgqw8W663CXTKsMcAE9pNDwBgAV9YNFUREtU3RZHla+XdeLZDA2Y5CKQN3uTLghYJ603byc/dLeiaMkFeswZRmWgI6w4c8ibQ8aQ39fHIWHBvCsts//ryejs0sbSsofTA8r3Pl33bnyGgwNQJkeroQJ5PPbRYVeCDYWQ7XF3iNdKF/FBhxHOCOMRT6uJZD5v9FgBcFPJgrotSfqF4weRdZ6bF3dxz4wLmwbum2tKDAWE7GJed9vvTiaZNTIfrsNVF+9vC3BiU55OystQ+Qt5LnvPFrOaGY02zd2i6f4OH/zPOvJvqvhGB93qBxkpqHU9ax4XvhdbgLYLCHYv7B5NDrregKaTlNpmp7bdmgE0xc1edPNJEMYMG7Yp7d19jMW01sWFaKATDPv6Tj8E42qdSl4NoaXwxpI6WfoAm0g8j11nEAtNL1GIBoEsLnVRwMoiW3jqCS7TjwDkLOBH4qySArjZRWW0iHXKUrqXMgOVFshY0T6RTBgd6qRZbEQIJEywTYkStreR5ko7bTyMnlKbZkg44W0cLV35l5N08TOZekqW+ZUPGHcZZmm4KOWuNGLjew9nj0Nf7Gk6kMIYGQLRwBt3BFZw5xkWer7MVXLjDBN4/iNvArlyqDv4W8XIdxismM8oXlz653GzkPhT0VPWZYAuoSFByw9sb6RpgBQgWHfoWwy6EdeHbN02/k9erelubOMq+3yJCAs468iFb0KdhtVmklCunmcqqVysw2uJFuIRn9wLO5JxGuYuZAyfQQLnpCLFAhJSUDO3pACX69f3r959/Sof877///t//+//+71//+z///vvPX3/AxOrb92/oeZ9fbsz8Ph6vbyZS6h35x+/vL6B6SYHx9oLx/AmQfJR2gMrg6w1BLOd+4BgytbQ/XHSPrSNn1KpYrWNr3tH6rUc8J7bd+rjtweAkd0Ia6P7Yn640Cu97szOWR2zX9hxWE4DhOycPUStfi/+WkgfTB76rY6YYG+09cyu5yYMDGI6Mtx9f319MnpXckqeeX3NX5tJT+NhQKkX1H8Jk8z8wWx8Ech8ewcv6HWaXZhh1N/AgVJFLPVZvLuOqOYFX5uMTwPRx9JFhOPhvys08U1Xww5Nx2BzL98HHoyPnTS//Q8P7qHzjCb43uGUTw6IyDlyT6ePIULmMk7USsSmJ4smPsTVNH9h40dKWwDvYcSP3GF98NLTnWog8DHvg3z5lr7FbnU/hsT+FyJFNrryXH6t2GyQus96n1SWsO9iY4hUByrE2yjiqXKVzmVg+aa3vobrWIBfGwHoyjPImauk1MQ5Y89k9jUEQ23XYN6P70I9BapxhdVEQ63iBFxVVWXZH7Z6464UwRk4bpP9sqwbq/ismP4DmKy6jowAQLsGmKtZ5vy+yWvqvclP3VbGF+5R8AMzkCuTqydmDPMgYjhdYzcGJAT+YWhaagQMqLUjBMB2mOSg74dEEqQik5sjPuurl5hCwuQj09DscBxskwkIphUzXQD5Ojms0TNESM0B0DEW5EfiSW2kLFISaAGQhDBAmg1MVaLtSFs31X/KHu3Cwr/Shvl6WRSu/+etlJ/eF9ETrssVACwYWr8yVY3Yrk2hgcgGS6sKx0Nr5dhDYluOo9/YcMhxPvRXll5kqDWwWSMkCw4YtQnQ2DNwJQs+THnDuYEZuB6uiljOk6Y9HKcpp180u9wDLlJ45FEhoxlSer+0PKL/3e5UhIbvqfOdd0WgFpgWDmZGyTy+v7EV0AmhaYzUjRBj7+znyHJiPRdRBBd4Ut8SdrWkkhbj/lBQKvsboaTp5Yn4ZZlCaRTIe2VoQ369UWH6idFXKghQ7MOJwPHCyfEYhOdwuBKi+5I0ByADoZwGzoB0vFjzjY6kM/EDwQNDZWyRJsIRRBSyWuYxf+KAqI+ksCc34NFbzyjV0RStsfQV2QZZDd0xYloY3QqA4HCQxbY6CMFlFiFzCl1xH8hmbLJpLc+jFYWrPwyhfrlcBHxmstmZwsHIsO1oLWguIZrCjHkKVSMpDWlMu121O426prAQLjy3BGEd9e5Qb6ITYgm2la8oKnqVgheVZkgL7IrT7fKSQ0RTJ45Kw+gzpo01kVsIBtHglSWQC7ui7BD5g1LWHKxqAoSFwsAZAY90hObmWLh1ccNzEAs413Ga3ZCrIZZozXyvH/AnmvCkeWD52hOKIBmNgr3OXsIBzPo1fAzuIPS+Yha4TYwW9wlBHrt/nL9//+PX3//zPX//+P/8XLwLI//rX33///ddPuIDczqwaaXn5TCkkruKz9NY3RDnKkbQ3s+DTHilsFyi+rocOmCtwDyWY3BPHfn/mfEg/GzRTOeJayK8p15NbtwMCwrdGHiSpkDjOklr3dCWlGkYntLztaxjHYVp93ANv5RFFsJiUVi2fxobkeamlcjrQKW2d4ZecQchrfSc3M/fT8vNidm/iKNUNFJN4OUrkwMXtjHVTkmAg5oIeBJkuKdYYXVOl/Pvg2/VkjDJpYUlq64OqUOjLMeiOJqb/BfY9sOUlqQp8sLFyKjkbHg9px7pzNnNwdNqUQKOZnmg+0BQenPLHkN4gCD2QrUZDsNPEzMhH9+wIsroGIRKLAzkQB0/Ef4RRyA8wG1y/zOxbflS+6zclPn9KRBQAthzBy7lG/1pYicmpDv4QpBZq52QPkQqOynVn04GyPBs2wCY9yUQGTIfB8dx84mD5N/uUdmiIztbACiPOzHTCqh4eGqtkIpZYCxj/Xdtzo1LuOd2QHHk1H+X2LOVQWiEfaoc4Qtq9c7SDfIMzLhwMYdttnrXHY7XtL+f9NpfyPd92+HCBKNy0coAwubxBzhvFHYLHaZoiNi4hGi/ojITpAQhjSJvX9bAZXMtb1ahffvS0P8G2AvYCXb9bJ6t0g6lQzas+z6Cgn8tt7ppZL0zxl0i7qruq3BWggkaMw2NnORnz0UHJJAA8JwCzvpk+2T6Z7AGGoauy2D+/XJ/PO2mC5Kdeb/cwIzweru9Yd33RsBkmQMAeCR1EYNGWxZbWTn4pdz74gFrmNUw9GEMgTX2861hUb+GjkGoIve/48rOM5dPDdCsVTt2jx6U2DPRMspdZ4e/pHHomweSAw4FsFBhrmATcTzxnFSiBFkrnoOsgOiKrUw4yg7sAYE24wcv15SYAnCGDRI545DwFMPqafNzERpBAHcGMXELkjE74fxMgahknG/WKxSZFFfFTdc5SI3YwEjRj1LE89ai01NfNHkRMjv7puItAQwqRabaIQGyWFneZLMgJEFxOAuh1g3hIU3K9aI0hCTpHLHQXC0rIAQL0sqBGSVq1gb6VxdIMS71hSMIr2kYKRsM0UprlBbRhy3UaOql8m2W4mttxUgoSuRNq3lH+Swu98ix3tUliAV72v5s1wqSlUU2pIcs2GdtIdIgCzPhPqlU4r8P+koFJddWAHHSo9STvQI0HQMo9isYK/6+wuSjhnJllGX/aBJqsTy9czqjfG3zJ8S0TbHrl+5PlXZiUjqYdsiUEGQ6c2w4v6Isr9u46gW3453Y7sJUoogPZGtxrkNWwOl7iN8eEQQoF3HVy5cQBdwTOwoHTuhM4NF5ZRA7eKb0yAr+CrDcAACAASURBVNx3DXrkly8/fv31r38LDv/7f/7P//M/5uXXr5/fYbmJ4Ahc13CPA92TzSXm3VC5y53KkfDz7XrC3SG3BXIg1cv7bMzsIQrgUhht8pmDaLCl5U0wiOvQinYIi8CCuGuNTzolYlIvIEXroPtkKpkwsj6g4OWHAGUBxi0fm6o2f3G8X+kjVsOjHZ6iNSI9aj7UhH+kVqKaxo+m9ji8SW+qzT9elW/W7ZDdt0pi3AM0A3gaUqA+0ieQOvFgopmGyGHdJA+O12MTckyJMqPMyLZGjOODyY4a2FoUMj8N+aPGMmSiTF5roqZJtNYkwj8OURJGgjU1ADxSL5AhZWo0tN6jO2frU5nwH/Rstu7gc6HzfVCHiMlv45maWQ8dMHKOZs7MnhpLaPx0AiA2u53B3UFOX2NMwjk0JsMg/aAdHVPea5nN5OBqOb9vbnVnNlevZ2tuDQm6gxwYfbbD5sphATBlPiv5WsYNxFhgciA+KF/ResRlUzXMYZfKWI049nUhPSQAWArn/sg9BmVI6PI6tF+H9nDuyyyvrpdeyrrjqd2WTUMjDkQKH8loMDc1LtB9p3p43tHs+nDfwggBjseY8SVsaji+BQnZURN9W5tIeVl1x2YvhS6+Wl9vBA2R9FMpmVGu+zR03Th2MELm3tXXHOE0L7DdA2VkDWb0YrlcOJz7q48J8iHvgAGpsIAmMvRcRwr3ZZFj2XQ7V3mOxNf1Frut8/H8+v37958/vsHHFrJ+gThVCTZ1gA0B46k47p9pUhbTshjGiIkH3ZUECNbSalQlmhVoSdEpOA6DKx13uS6aZluU1fVI0iYOAlpqkMtJPwdV9p74hB3NwYIhxkmB+kj0NQ7GbIKxGz5Sa3Q+3dkv0gMfEWRhnIk+xeKAL/N2WGMkG8Vyei5CAWBrmDLd626GoNxjJmcjzqFGd6u5Qb13d2m9R3Vh0DGjso7IKxcsiIrY5FC35NBYSy4EXKOuvkkAmMahuEpcZBOSLY0hP1xCsBQOYzpwBAmXvwLIAFVGKgXKg/Y1YjTy0EeHjHoCHStWZQ4Ww9IeK8+I01a8hcvhVSzNqwCxvEdALHJSuWKllJxZyWqbZmvbpM7JIyFgnwaWvy6WcbpeZoVga5YCXmlsUxYZtLiIjAY0S4OKsMQMk1qQmtIsS5cp4xjQ8GYIUkT8CGLaoLLH7lLdoFVws2919om4RNW0FSAurwnHUq0oOS1QqxM8ZPByxSg+VLBGI4vdMiJn5DsgLxFjL4PAXUe9lPTEQyfHvkwQu+Ko3GxG5UWzJ+SHhZs2mvwUdYU8blJ8wMIrjn2H1QDIjaj7SZdDGEUY+AtmOIaQalHTABBP8eWqFqZWEC/RVvOvv/+W9vjPX3/+/a+//v7rD8QeQpKMqvKF0roryk8EiXRUKwgYH+kUrzGq+O9Isz9BNIr59uoZTyU9dXcMxTrC1ww3lCawkvcsTQlYXQ3Ss2BEiueh7Q8AcPBBerLXBYA5sZZPxuiCBUylD5w8pnzggMgVQkURykXGHHcTFZ9jefuWtLlO59nyo1MiDt9TjLPOyGsHzevLV3Il5QLYkduXrR3uHRGo8Hi37cLr9MPEyMrMnLkLHn0EGD6NtJceItE/uVsOVpgkhz2aZAlD3VYbx9n44UFRdKJmXAYdP3l5jCcfymSNrXgaf7alNn7XD0NalElgmnzybWJf/DgyPG3toCe/zRzHeEuZGfEYK9eJxhGCQzvXde/EROpxtCzHiGFX2XokCWZr62rDD4RSTwKy4+o/Xc8Qok0HbDFRD87+d4A28iJ0XYgiVgbWTClb5vuxI7Y07Ec7YLWqnNNoKi7kjutY7+lFJ9cbOmACcAkAhkQRT7Y0n1K5CVpjaLPvt+tNc3k9NeRBthhclUWFqcr1csRGA4LVA3mYUjve72iMbLq9LlVqDsC0qC5xHMFsj/yPTDURcuLD89uTo3fZ7KUZP6JC7/dNLgdWydQffWmadST37DqceoiZoXpWujYvXEdoiaToL8v1ersrlnmB0zYiwxZjf0Pi5YYCBk7Y6M/puSQwWBQHKCbOUjOwj9nUFAmeXr6S6fhypkbwSg6y6gsFohisOdJAJ9L69cJCKSjX0Fz1raCWbna7IiUTKCCXzKGpmrRqWYERQrkp+tevF5pJ8o9W7sFOJ8ydMeA4nJT9fGaowslQNImydMk9nO4z6IsBYEVkboCfX15ZZb++3owc8zpQXm7Ytt1e9isBI8ErDHgF1/z5R22sEkUa8d313GPmosKrbmJq2qkR0WsxaaIa5HUHdpyTmcYSYsMJjR5G0nRSl1aJziieTx29EvbdQSHssVTxmGoV2BbGnUiKCBfS7mLTjtk056GCpdLzYSvgL7BIZp4wRUqBQDIe9mCJcfUq+ZAxQYwUxBmDwTVgCQgFUjKspzIk/GJv7KyiZbyO4qkVJcUyy+Zy9agYY7KIo3Qxc1c5QwcFWBGHCGYzAkRyAeC1Bj7kuOAFkLUOLeRikC4Y7h+4sLEIZiYW7gl5QRWAhKxkhaCkHc5wHvBgWXOPjFmsdEgqYz0eiJJyZ7EZ2yIWOYXiKo0wvVd2IHpQnRdLDSOPEE1A2ZEmZHyl6mspP3NR1loGCFAwW7lEN94iRqQgjtQNuMJAf5DEQBzOUW5sy5L9ufzyWbFcSEmwjkkN8RcO052hlfboQcf6SZ5WrvsXOnABd8JxA5TR6ZJKqHLHoK7r6/vr+9fvyGn89euPH9/A9Pry5evb+9e32+vby1nuB4AiMPGiDh39SaNUVW0td8BF1zIHVqnqkQ7i1ElHgZCEUH55VW4MSI99S/Y0D6ymQ5w2bkgu3A99QwYrcL3XCgUbKbyrrs36GCEpcpjqTLqBOzsHHcM7sbKTCqspGNuxLdk2l2XRAvQbbqGxNGAr3tLY63hG4a+DK41oRh5l3SiHIKSrvaW2FcTjz4aapHsRigf2siFf392BVRj18HjPnTAU7SGGeELXijsoK2pilTj5nOD4yUd6MtFy/fFxMmQkje/hyB/UsPuoejTE2GqjPvmnOnn8mwVZo3puWCblQKDyPhm2aC2Nhsfx1OXHGCxpKqp1t5vU0Z1lM8UOQEpSKcfEZqdrqX8Gm2EBUkTaYl57V3igP7QGsdOMHDCmPEw1SGn+EYo0MyHIsJ2YcoiPEJok3+0EZdFi7bXqIwDrDrjcNnuOMm8Ema4G+7k7HXEt7orq+HrrsTLR1qwti20nDfP1fNALBhc9Lk+BdkzNtCTEFQT2EFPwEPxuzIvBaEC+YN1i/VKWcv1loaazwzdz2fQAYLm1UH9KF4G8tpqcB17dSVRsizSeR5j3ReRB+fKwx0AOcF2zdSLgu84KwW75ylJfJHoSMxdA0YEPmk0XMceVz17tdgdBopdzvUO8XyV3CGZ0cqs902Pvduw0KOrEmTABeE6GmTVorR6U3KAohMrMxygTokxOHmMSWOQwstQcxcvSAoTovi2y6vT6/uXccft0JtoKtBrS5l6t9uB2iO2wHht4v7pcge6hJ8zJaCX03x9OHEb6e8OJ9AIiyOV6n0trmjKS5567FO0vhpnuYuH6PmRIU9yud0ng0ycvAIywqGL8fVBNPA0W8ihgZ1QmKBHewZZlMnX5kFNaR8KiNajeTSiYo5c1h0SD1zRfiMHygh11JEe2D28OaZBtaW69OHbNSjT0I8g/dAQN8ZE2wODqURQWpzTKigMWfNgAL7yFEq6MIlhTBJOIpGlB52iV4tpxEvmS68XCsqJok2w22GGMn2CGP11E4Sqw3BiBD4npBzcrpiVJpwswkreA4IgXwd50Lai8LrZb1ngZZME5g8kLbm3Y0mbooI2jC/6NrwJghg8c3kBUhNKp0nkyKt2WLGiOiBDYofYTGEWhnc2ZeihXoGAbfktIpUloxuUYqEiKrCrOkvCgxao7WNLDcxOwNMGWmcBbgh28U9PMHbfJ2K3I8bHl+LXa5bssydKEq2+MUPM09BerLCODK4Askx4sOhmUymvB1RN6HOMliALMG6bqIY6nDb6rGr1BmfT89vL2/vLG+KVvP8CNRCITZB3QLch/R51GU03UnPZw0mkrDN2lx34+Krj155OOtHvWuWx2yaO6KPuiQyNNJy1GnujL4Xw0Hh6UIuDLMx+DvYd5wddBpUIyHt7DqolDb/pm8uiTs4/eoyWW/5zrwegHcaUVGANS2RS6Vm5Y/GDjZMqK80mXS1elXp8v3Ck/Y2neVeisYSO+kAeYaGd0xv/w8HpSOy1SrXWXwp7BCKGm/4hGktOMrZ+yp+iuOR3rV0D9bZrlf4qi7v0sB9yPo8+iYpM8PGy2Pu+rBwCeTsafMvVGMOIw5pGGRuLOIEaamtRBdKQ40KdjOi6T3qlLLQygsRMDbOKQYYjqWLlW1h2A797Qtso3ZuZYsrirNIFKw49gq8WB8TbmcMC2vLluo+dKAVNDSjp1WbYKoxzttb2kgKkD9euHw/k0dMCGhLVrD6c7N2sPAC7KFixC1oGYzOwaYC7s2g9VuW2RXnhRLR7EAEjVwRrFFHotpDNSwAkO7/e9MZXAiJqcBvm4DgYTuPRxwWaBzRsRG1N2wOeLtHzyYTt4FZVN27XGd6Ark6Qo1nLWbuDllwZ0DcYx4oH35S2gIQ0TaVrAiSmKFEbX6EHWyzSNkgSGwSbGQneP8E60k+3uBPn/sYbR73Ff83el2JCOgrfzQdfmKj2Q+6lagO42GlsDsZ4h1+B9OWY7vWSydIrDHhoaUKXhJIpv6sqJJCCfbSo51sr68nqBEqIlecSMnnsjqtjXtf7iWFztwbfCew6cmHEBrH8ePnIXDsrFHFrkAYrRKp/u9608vkdtko8wMzrfuhQq5jCSU1kA2PPm6rE+VMIfoRoTcw89IUfj6VFzYSaDgFHDy8eDU4/8PUOU8NNI5/K8vae0OjeV5PRuxsopBWtGtZOz6c9hD3lKCwcsLYypQdZz/SlMwxbBzGfH62MgDQmrPPPoh6PEI5rES8IOrZ51d2qmzeC8hARqpj4gYAmgGyWR9GTxMl5Ei2QpF1JsJ4s4TIPAnUdRvspzKShgAvZkGQB23DiVrxeu6XKRbtYbhU2QsADAoCgSNgVs0f2uMr4fm1nBsl2uDV++xtAaGFzqvFobzJwWORn9MVK22GsWdFlG/MYLPwgLQ/atux2uGZS6baOtKxWxe5pcQhFVKWkSJfcmTeW0JglNetUoGAK02S9LVQuZF21S8BAlVF1jp84OfZ0tkxU8qDHNxm+4kd8FPl67XjpIuVt77EKp5imzVYpfMGPWyCLGMxSSPEcVWugD/2EkZESVtkoa6YNO4yPlo1pyn6vmfgWvkE1b7Rq52LtnBCW/fZU2+ce3b9+/vTNrEVYgGl+MfgJcFUO2wutHHkeapna69ognkZtLVdQCxOgsziRB8n66HHsStzq51Y7X5/MAtIMZV68b9d6Qpyscaz39v0F2Z9uAEUWl9zFY01ItYbzIgXXTm+MShistKuyGQcn1FvUXpOFa9KjvSqdkuk6lT+iHLxpudrue0R2glaeh5tl0+BBB5ZsUlbVtkngHNB4//XcExcPjaMqK+wMUJ47NofdEjbFw2w9jsKc7qhqEHX9YhtzR+Gn0Ye2B7zpYi4z+U0f1NITk6ReYDpl6v/nYY1hzXzvKORW+UP8OfhcKckgNpBxprvnvMzpfAfcIgLN7kOp8IGG58wFYNUh4ShydDQaT86naWd3Xv1gv0s/ygyvNM8ydm3Wveds9H1jlwzTJ55DaT3LBxKPS9I8Qs8gzRBIWO+CyOdCM7mLMUJuqKLvzsRkqOG4qLsgBfX+9kk2I0cjpAMII7u6eV3B3ULiQ/xD6In3broZbD2dnpP0fOpXGA4wPneJytfZnHBzAsnDZHurufKW1Tb+FqW1eDfMb+crSN+arNEvzqt5WTRn7C2zyktjxNEuHslzoQ7WrATkGe6+ykN8y25RpIji8gH8kvB5wSFP6VG2PmO6Ag4zEFYKdtPdS5iKvBcpEzrQup9PeLKPz0KRp6BxjBkjHEcGtYor9IRbeccQpoAuOgFZwvnzAOt91W/m58gr+Bvtjm60yPMhI993jwQM1B/Sbhjs4/uJciZMRgoeMHpl8KvnId71+mtzs+i/zYpjUQwoSXj3SzIMAzINGjgvpBZ67xKXZWABOK2Ki6KnyKWeSJj1PT/fo0aeJwWCzFHpSOYLhSP7++0TJlSi18Ybx8E75RA3nHqtdupFnT4dBDwpMlkauRyT47LmqymKXdRrxGSpiLj09T4ocy/KMY/SCO+AFLC1BOKB3JQ2i4oSkLnlOQI1euMGShzpRAbArpZsAszx7C7TC6KfnghmLVRB68zAq0nztqBWfVBXTMEYH7MTrpXw6+M/SNkrHu6bFBoiBzGGCogm9NQypMs6a12s5XMG2RoGGgXS+LYCnOSpFtLuCj1suj/PCpCuR1ihIB2gnP5lzbW5jN2sdfuNd6quJKXHFJSZ4Xo3pwJAMIQc+rxPedQLPcu7v2K3Jl84xQ+ZKd5nEyLXQ0cM9E5NrLDDVNTXDc/0o9JBORZI6RcO4qxJWuUyDRDaE/BQce+1QkmMgi98XDwzcucCuxoMexwt3oeIJiND1u5pzUI3+HN9SUcfclQ7alcJA9eKBw/2/PGGsWaQmP5+VavgFlprfv319fX3/+uXt/dvLTb2jybHAixxKJEkBlBGfgY6W9xy2dPsTxwqYN+vI6Sit9X5/vqqVvnwwcFIe0sbUvntd6CKnw3BV6KbTVOqq0xj1V11pH1xXnDFLSaA53pwbcrvPubY8TNKh9/Am1T2xisvr2pwH8vRR1EY5mfLDdbIFxhpjL95oeiKHOebW4BCovwOj49h6QwXlkHKt0mOVH5sZtvzHkMXR6JGjVRMeMTJxigq4j6MPedNHBA/t/e8LYpOmBmtMg9wT099+arLHQ8zwsEn+lCE/+c1hHOLEvSPhBIROskruQCg/4SN5UOr4bytJGYEylksxkolOxYWs6UUfQOmaTniKpa95szE0MJE++gZX4XuqnNIZDYeg/wXRC8bTarhoqQe0Pb/j80xz/jwnSHJcbqaQOpNSK21urDvgoqgPuHZfUTyhUpP2cre/HOsDdxz7/en59RmurFDFvt7OF3J/BKPWOW53rIxxgbVk+WEe3cmlCP8IFbz3x71a14BEvJe/oQjoUPMB2ZssmNtDVoJ0wLvmdN1zw1WlIKygwq/NkqVo2k1ctHJhVvm2q1OIUZJNWcihEaWbRE9jKCl9+jssEVIXw21omVebosrkY9mKbDEwlANATuUwLrsKzIergJG0hLdz36Ct59j8xnD28x6xMFd2oJQpdO1Scx4x/kbvgAUqYuMwrlvTGD9m/LCr/DKMLqCaDJYbNUlods2u3rena40DtzmDa76T8xCL8kptjjDU2w2r75Yq4arujZLChCHpkKxiFgzl2ubA7fbaQJPbyefjxOn0wcCu0qbZ5Pfyx8shlWNNzrU5rE7kfLVZsA5GAE8MSsW9OsgfwK8kBmtXTNkiXx6eRp9M4qez4a4ajAJgdgsH3cmYLrkMluENiuE1+2S93scTshDJnuZMx/GIvNC0w4Qu4qzcizTlSp5yKXOkBkN7TJ40mT9uEPnS80JRRBkS+M2mA15FYYwIKnWbiFQKjKxh9MxSiqSCmFLACQBLl7wMItcKBICzxBmTfoadWogd8GSerJMEztLrXFAFxCteVlzGCtoCf3GV4XWmCeYZ9sxrxBUKEpdVmUYJFsbcFpPeBIvz5Y4dsAAwx72bbAsKtCAXuVpYJedKhhLIFtTNMC5m2jAbTQiTYH0plQE6czTl+bbalcWu2WqrXIHpK+dBByIWLp2ShXLbt+T477aMIMaOFyKrVbygLVkAWaEJhZm7Cx+WBxq44dIuBUx1LwxtD4WcFEneAgUylu9LJioWZc7rWlOTBUB2JYVPYKGhWEnCAJWxQLGvfiAokCErVBMXnKA+hX06CURfAfaAw1hLjNTDUDp41lT4tfFI7s83uYWfv3359sevX398+/JVJYWCx2dEG/aGfN5hWIRqlhIxqYopBpT7HzCLzqM/nzs5FVqDg3KAYR936HX61NNQm/xJ6JTkAysovaD4rbXQMUvl6qgs9xbzbTlka7OL7onh0ImbgomPEDg3LWfUWyZZQt6kxiP9jiu+ptlpd9zw5+wZU8od1c0Y7chxBjbXG225GdHIVMg3qUrkMIe19qGtMHZJwkUodTc8sZ6eDK/rEbnIclcSoR+xKKY8SrD0UTlUjw9Dgf4BqCMdPStkT4bF8Sdx1GgIdBw96dmAL69CJbX9AVmLPLLRZPrbRPMTGBs8Y1rRTEt22lbNzQ5rPje9sDTIzD5QA2fshoeOlUNk255+KIVmH3peAcqpeo4o28rxjezIMutcV+Ee312B2rXUARN56MN62tIwYlMYWIOEmJthTzrgsqwPbCOPpytJWP1us17IO7bbPK90jSg1njzXagyPi5HzZww5bvRzeL5RU367HOnX0a1g/Ac9Lv3+5C4DWiqEGA8ZUBjk4jKmrF2vO+Hu1GOwLJc1Xs28uUb2SmEbNvt6f0ReqIBzJa1FrhMYTKG7tjqUcsBsTzfUlf2ll5Jb7lw5xpbbWgBsm8A1C7Mtzi+JjR49qgIkva5gxrCBEKTcyP/z3W6DPdy6JOWRgFUJ9mOMVPNeBAvqcgXDsuEeZm/ug6YpV1J4U1KKozZV4JUfbZMs2GKFri67aAQ+tQQbImnGaR0En88W+Tv9qSv9pMQX1YK4rhuNpavqvN1t6maLG8wIHZSdykK573QtJfdapVU72SR44UACjzl2VW3T1Wyfj9zNo/w/kN12OJuJNffOL8/nLvMdTO89Gz+5H8xmgpGTp9HMGNVNFHcp2wbWfkjuSf8YPc1oQgqBLOhoM2cgOg5haCOlScvtLe0jJkz8crSfu2+D4CWA+vvp4Wk05EdPNNSUkWMmXIynMVXXNLV0bOYLY5KhtRf/h0mIj3BDhN7DlwwGHnKwczcMgW0sJ44gQ7hKY2nYFro5ph6Ya2GGEMu/3YUitGMFWRYnuT+dT8H9hhMWPCimM4T4UmcEdnMJJ2kwqoh6bPUS7IFzdqrFZpkgPrDIMYiG6RWI0Jgpr8FiAmxykbzJMlCPq12eYvGKOGyisHw9cKkx1E1X+MQN5ijy5Yp8m2121SZdL8tULpxMqtNyLR33CjtlqToSaZ4Rp8nqA2iYYtgtrXTDjS4q3HK7b7ckGO52zQF1IE72jqNsTEwFldGCY/4rFY3rBPOZ5/hkn0wtl/swsEblCYJrGttmx6XZOpM7EbcSyCeAFxfF4TpOCxYQ5U7FUYo8fUXnsE0qP3pMcy7AcIDqCisDH4wN0wnTZABWa8iUntFt3EjZkMpOsaJn2xN4zUrlIM+lPDt9jQzh5+fXL2AYI4iR6njpktFbYP97k1sC5ik7DBpquS33fQ292Llv9/S7kapVbjZBLS2kMfUDzZodcddUqgnudBWvt6xWG6ej4Lo8mtqJSMGzl4OlKavj7YQJIhjoe6ggjjAQgXoZk+oW3wgiKGiV0bSokWGPtMm9rqhIqanromwOh0an3iidGtZT/GZYRUGlJYX3lSpk+X2/vLzLb/71j79Bbfv+88eXnwjceHtGHORpj9Ofocmoo5BroOnIHwQvDpPJoXpQmZORS2ja8JQAPNZ8CQ3j0c539PSbgeipmZjdN1t38DZ/kzkGEpYxxphNprNPM+OZCnStwXSRI2hQau2ZrnAZBMtDw+yPBy2vOkjOrCEKmCO1uWUSGD5sKo06Z2BB22ojZOw5dDusID/TOGLMmR1nPvvHi0qB8T3hBb3Z1Z2mdKmroTzFTbFYrPItWQ5HeqndsBrGKc+6Ta4bUqMBvMqn5c4fCSFgUl+65fAtfGoPOJCiFzK0+zh/qEBE2VvXZtTCXXBPmRP2mfIt+rUzNaNE1w27g/yYUqGCil0hHJAVO44AAeBaDoF0+/y2L7ZyST4fc4gd18Uuz6SC3597HFYbLsoSaJ3Qo84dOhVCBoF9l9zTq00apXkBUkzG5qOQehIHDO79WsdGRSWFYSnX4Q6rtLrd1q0CJEUETY2dHIaIW55vMPHniJObLfS9Hs4CPF94Rn2Qs7dw0sDWRh7/tqiOz/tN5PtNK89Foz3vVpsTChryZrupqpLuwvJz1LtqWCI1OuX6IJvzRmyNGoyMEN7KaIo5SOM/VYAot/6wLDYOfXvqMA6HPFpg8hjYnhxbwcK2jKR3kBnMjJvK9NMi2MSU8o4bP1HyP1Nr2Kk1+H+qTFBusCkjUhSA5U/LmKVp/Lg1vzunGWR/0qp5YsjlU8OUvIv1aXCHBYAR8HF9KReQsb2ck0+GntmHybjmGtJeK6DOGbNO+Q99FpXjMcVsiV4f2IuqU/QysRdJBAGrNXOSTNpjTx4JOvuMJi4Ex5YlDxvMtaSvBaRyPwuOlQIwlqUMd0BxilJN6jWqgTChhTIY3TAkSZsVjC7Xy1zflZGEDFKxzqLXBUfNG03bAmtZ4Fzek5HjJV9b0DiH8CnbbbabMi0K/URBMsyrC5hPFummWGslMMytN5kpE+SV1arcrAoNDNHtJa62HW5ggWedecuXl6txA551svKcKKTRWEyZNln+voteQ0DvCRY4TLHEUhcUCTXh5aAL2VeWEzhUyfsm8Rnq4k2+xcx6D9UVFT2UTGHLzOp+FWk5JJ2xo7PwIADWgmfjOMRfnHrImJaaAIGXngUhCDLb5aeajOwprVD9JAPlGsO1lnflM42dv/3448+v7+/fBJi//xBcFiQqG93NglnV0nuanJfj8YL2uG/VWRCIzBsMrYuWLrXSrQ8UYLdkePFeRDUjt/yxhqGZYK40yw2GApRm02qzp4HKnnNtdspy5nRnxmntMXrW9DNjhbZXd5VeDlE8WRXpMvgBdg1aFHbPZoHc1lJY0UEMhg/kg68WAQAAIABJREFUb56vL/AZ+vr9+zd6if78+fML//0DePz1izwGl4sAMuzJy2wJhxts5nErD2hMe8qHIZxxPDZpjUNZrUm0Tw+Pvz/+/nRfDCN7QuOWnlRbof/hXcyxuOckj0a/mZUt7JdNBrD+QZIUDgB1WITTFXcmCIPhlTYdzLgUgWlkCfaJ0Sep/SRJJuRWucRJmNajc7Jnjgoibc1Lgp2z45gUebwRu2XUejPNf7Ahc5Jvbd3p2Xfs1xPJ893FBvuDA0eoHEBj+Fv6AsAgMUrRe2Z8yUnjQo6asXkeLITJtSOHVi0PTwcpqa5tPDO5C1P9hkYHCl8juO77PvIG5B5dGbFDzoGyXBNwPYe1DKxndkvH4mYJq73ocKyagzRlUvs1VSoAzE9Q67emwunTvJxW653g7+uxzFLM18rNZgdW2LElN5Hc/nwDd30of1yHNpdzm2ev54Vx6C3iFZz8tXFd02BALX/W+JabZSxHH/IPoVOEGWbKyLe1Zp/LMYixNgzuN+sErK9VQLWq53/w8Ch1hdfozMk62uWp1h7Kke2m3S59P+tfDtyQbVWflXOBR+klQ5flDAKXpSyr1kzKuoY7oLb9WItrK2wsa1vNfmnJMAdBXfWFfcv7X3dVvXoPqA5xT/eB/rCRXj5EpYLdqwAwC03LnpsrlJfjfGZ2JLrqULdtk8Q9VTf1iWXSwS1jwz423Ctyo+XjcONMpIu86w8nGtWt0dzslEdwK9O+ezqdDr33RIvsh8d/aPhhrTYkrKh5vM6nzMqdTTGCHiKLwcPov8jack3OAxzJwoXrRkikXiyk9lB/F58pRtHCt4I4dB0/ljYrAla6Y/yA2GVN/OUqXljTJMGigyOQFCbJKM3WSxUVyRu4/YXr9IbXmfxLh9IruKsuN+qYJQCKa0suqY2JSaSGmCiZgv6cFdL2bsiu3qw3ZZmV4FCXgrQ5EXm94XcQaN2hKQZBSofe5E5v4MAmwFkUKUyu8HWKwgDxmjokeZFSVrp13gIZhzrAZ/w0CPjKzehVLtWcjOplnMxnvh9hhbWMAj9f4wFYhqkzx+AglPs+dOdwGWQlNobF4cRYtsyYj+64coE5FucYoEXzdPNmFKK5AUhzKWYKnLnvdNJagSVcKKVNagu4ci0dN/L5RXw8wdIFoxWCRsTBq+5sYKg6tj+berAMRKtuawPk+jABkirAieQ3wQp/2+yZtPr28uUHRE9MXhBg+vn9/R2W1pgWn6UJPkKFBPUmEuawtjoqHYMdr9yo1HnKQQoVL94joMge9gi83R8P8lZ2yHLctvvT6VCrTQr3yqhBNHKF1h8HJKCjqgY7G7c09noIuIQ6kemMOg5jIBSqArgibc35wAmHfPPWFAY8R7BE69UapOZYTHpjhrq8vLzBFPSL/OIIpZSSBHGUmBT89euH1Cbvb0iKwjZ9ywzPVYLy1ppReoTB9YN6esDl+nfqnWBxCSyeWxPOmo2SYjT55MlxXyKPRg/jz0tl+Vq/ze/B9yYhwbSwxqlqqlNjSB1t9eDQDDZbowkMgQpyXVwV0AXrOvje4dr3QbFCLanAnm2ZQl6Dba05Fav4BI+GUo7H6xYfoSGr+KLkpgykUg1nMHIOfs0oh2UVaU+wEOaTu9usAn+1rbdSeWLrgdKIcSH7K81Zbi/G0x8LBZpDKnzDchZyuDqczYboxs/pFmpwRVcKFUlhVccAuoCNxmqlK9hsI5dHkXJ1h72tKwDcH+r28HI9UYwMYmkBRr8hIuzKFWwtinDTnc632x6eeRhjyaFSH8BsJNtXL0p6CEmHukYz7BFafLClXf4RwLBH/oBeNIxI1VlE9CWUfgeu/yua70WM1okSTX8HCzPmaAz/9rHj8mhf7A2hPyC93SekmGC49tSvb5crrbVwc1AtUMZxWt/ejkUNsb5UrhB55LkJZKnhd4cN8A5kjlruIGWgse9t7q91H5Vwr5p+Qy/RmTU+cP8xoTZSCvPhwwf3arO338j5sxAAjpls4M2fYO+M2a56VDnqkKExRiiutOG05zw9bUraEc/Jhh/QbE1MRunYgLN5sSYgGILD/6Hjm5okFOKuYPFE6luTpWX+N1LzPF5SnwPHCd6TjyyWexqLvi4XvxbBUBXoHp7Rh1KQYWQtl6MbIfHQD0AUjeIQ8cVAYN/j9YBsiCDy0EfL3RXB4MUboat/GslP6a3SyJ9MBbeyVFetVB7BFjmNWa0xHHDN3W2GzpPyd8IxgpWKjQBwulaoxvxZMBUEArV+1D54YGeBuUBABLTKTbPOQKfOc+QZ0/UDS2RA/IrfZrWhHc1yucHCGF9Mv36WUCyFSMxCfhTB5w1VUpsNv0AGDGdjbEqAtXLI6LXJl1iAeiEFx0Le5FiLRYy07lBuqfUySqQKiNbzWQTJO8qOYM5d3ngqFwiYreoPbuvxJP98fJzwOeJIEGIkxLI4rJg82uz7C59qDkrqqZBKlJGGO6Jr2sOx77e7rpaqlYv9mFUk1s9Y0Vk0x7HM95tO7OnEgxTdRyWp5AyXgnOczDi8cVZOHDoLyHdeIJZlDTxFmyun4evr6xfpjr99ByZ9eXv7gn0qF8UCjhc4i0F9uVXTEg2A3sMLgQXu7STnJSKJwYKBVhjj5X1XCyAr7cuslDB/xO1r5IanY98dz8furgruP3Z5+Ijz4BNQNT3NN3VArR7VKL7ZTfFUYPxlRxRuVdzCrVfbGdZsS/aJmWzvKYi5XJ9Rf2BW/wY9trTFP6Q5/iGAzJDor++vX2GRL70ZfnXMVOSotS21iWdj/M+8ZM2AQq1tmNcPDIp60v+gWv5wHrh3wJwLz3Q4PL/jpd7Pww7Yng/hRIOjpDEF+o+Z8GzAcfPR9/Rem3/wX5rOYEB5ZjIa5mx9se+iib3rq22fbc/M99ZD0g/s+V0RjMmza5pg17LDXC7blnZ3WAggqqPdbtIFAXhTd0ZnBxtWMgMVgAczf5BneWxzAMMg8fPlXAWTyX3aoBlUQ2FjIgh1Dj8dYpFmc+PHAMYy5IiQcMBAmVIinO66A75h4Yo4QnQKgCVCTYsE+y2GKUUhl+X10gp8o3GUwrhsz9fz8XRjWMz1cjJKZ2AU5rgs9ZOFzg0sx+eGFoJXj7NKhgF4GhbvcVy5UPd52miSYa25RwzpwZiZc2b4UkMFRaYoN1B0k7DIfLMF5vl0Jqe32yvMe+Tnl+OUXgY93XbqikteAC1HzdvKWALXFS16d9tNKe/G203H2t/Zzzp6UhTt7pC803C6vjLJ5JhCUdmvt3h/7M2d15jZVaesjyIKIYcNpKRFk2jD93Vqe4YxaBsgdj1vYLnp+aVjHDkfHehzpZv0jOGDp6lHzkyDMmezT1gqpy5xkbsbbaFnQ+zmhLyr2Ud2qDIdhoTuCY7pj7eb8o8H7HQAcl5r1OffPeJH7MQmo/E9k4uZ0fZ8Kk886jEP1RRjHjhOXQQcdIZRjMINVIKJ5SFEeBlwmT0aW6ORFS1DfzpdZas12kT1cAZGYoEJLIYpFvvQDZtODFFIkKIDTZrCdS3F+BhxCwgMXgFWKfqFnRu/pvGd0tEzOFgA4GxbSIMIntVGx8eYRVNVvALbaZlBfJcX281yxTBCSIhL+Uj51iBlLTHyhisb/KvzjdEpG/kUVsM5eBGZ+ZYrNdFknrG8Iv2+v1iCW5XMLdAdQIeGE2VEAXG8siwBwShh0uZ8/ICiajLTNBxogPGx8POOdQThzQy9XZ9kywbfj6OVGd30bY4wpFJG5QQnNVTzkO9bgGnptJGBkUHMV1fcVOdGKZ2v4hV+R2aEBu48dGeeVMNQp2AQ6dvsiRCSo9xPy7gpjOb0Lpq5MDGau7rJRukJBfmKjzl8NKTDvSLb5B0r1O+CyeoWjyAkZTdi4cM+gCKE4wWrtmN/uEofTAQ2+6HDWc0EG+pD5Q1Ua+IGhtNHuz/fMDCTHpl3aneABwtyJloddHEEDe+sCzpfDYfQva+OvA+9UU/s5cEBzg+W4J0hXVfEZ1VRkbqto3N6acPK86LJp+fz7fmNvyHDoQV85S8A8nfMq3/8/PXXrz///PXj+w8+Dq8vtyvmm2C7xhHY1nS2NXvkTy9jcj4QQPFgcpueBkLXYKb5G/NJbAIwcwh9pUD5ljpRWkMHzPHznEA6OGBR1WhIVjZ5znLAOBptaN0B3XhMUufL74E/bM/Ex1sa8TA3/pVzy6TJwLqP0KphwCp3wufZ90ZdVa4aG+y4czeWe2vbqJnO0WBTtYmilK42TQdm7O2FAAxeDvpe7H6pDD4eeEXgyMYFhUuAernKv88LPujjxnrUJD+T3ToZ3/OAp4NLw8zs8JieZHlKmnL9sO6b4xFcMPme1ZJjIWndW+UetUWz3xVtLwB87C4XuM5U5aaoynzbnpgcSpenm1pNXJQ1AZMc9oDVMmBse+g52p+SreNydmEgVJtXY4/JGb9jqB3wzkSRoMoXm3ZNrhFb00hThxoQNcpThGGEwLOAmO1k1/fL+QDn+0LNYtHhdgfEw+0aesai2eWut1JjnG1VoaqAtEKNsO94qeXq4P45FMM9S9qasiVdDmP/o/KxTt3kje/doW/5xXRXrMYoAPBi4aHX9xfoCILQ1dJpNvU40EGAAnXarmE5mb7YtbE2wB6PvYSDaR4sj2B+5PkaHMjhhmcoDAzIhHf2hKkOZkszZHB/JEkrUsrdMFYnuYk1JG9aqttTBzncN9PxbG4N7fJkSN3SnJOpiTrRlEwkRJisbx3Y4EeYUalM01z5KNPw25baUvsLW//yx1MvJnmaDrhPY/ksCxtQy0qShbw9w5oVijcYBkpXaoRBmeIjbFdAuFonkNXl6I7Zd6JhxfJjXRCAU0yogd8U/BKqiY4oHjP4c2zKFOpbmHUtBYxTemgRq1eIfcAXLfIV3pFCEAWyls6zs1JadOnG07UJjFiBMw02Nh2e0ffmufwSNLABeUsXMqtlSooY0oO5hF1yYb5KQgEkayYVF8Ym8E5TQxMBqbm9gp0XuvzYZUwHNnW6upeDE5saavXRqC5CW9pWuo5KF41xihyv5MOgviKXwNABRmpa6ngaJs09gqNnsjOfItTMgQAfmdEoHKSlALNMbp6cllNIIQvTZbiCmYtnzHvk4z2bNSSY1pztuL6trO65lGh0bFPBm41YWbbRFhsdT64Ln57jUbTMCuxW6UtHf9fXtyG+RYAINj4QG1C8f7y9g4GJ4fLb6xUzaoTjnHTdp1BZw1hQ/g1N4nbLRrjbls0Z2Nw0GvgE/bPmGnf7+wvm1Uyl3lMxCRgHytM+/khjfeRI6yeoSmJ/BM0LCWzSicNF2Jwf/ASyQ2D2uTeG2L0GPlISo+64yseVKoRSry8gmCssCzy///jjz59gun2X19/eXq7yo+wQsUWXkLlukQf18eMQ0fhEWcSDmocoEv82EJOHxvWT1STmJXPNOeWzNDcsZLTHLoEYDj+mE7Xu0eQDj3N43QSX08EfR7ke+EP2g2atGphGuuFMWVgcaM9to/V18MpcsdkeshrmQ2XAo9IXAJarsWOw7PHMjX5f5QrAAgutUXfjGd6fX98QFHs5X3llGOo7/Kx6AiMuAQDwLtADbUIzcDxij4Oh2T8FYiPTnQz8HchB1TZ0rCWLWXDLZc0O+HqRC0pgJIHLMwBY2kXykuWKyde7KsmO++Z6BTGqrbOcIfec2GBBDembrq6v11dDtocFxbXPqRnZJJ6Jj5/PXaYSBQFuKghhwZr29YYkmDrKquUeFP/TR1NByIFAgiLrINQlFFPllQ+EBtmHRbjlZudrzxTWvKzBzMDkB65F0v7mtUFY9elEmg2Cg8uq3myboqy3yg41Vu7YMalFXvuBvyaBXYdKxqnWGP3LwwMQNq9jiN8N+K06QkIz3txvAheMU0zUXTuI3Nk960SfNV6zvERVbYe7AeBkfluBXTN7d4wdsaYdBXQoJoEVcwU/XKDRXMTMDXBJXXVMbCcdbegvM1cxEuZMluY4zGf/2NTIi9HV22ykCdAmNnTY+airqz0yIG9buvubzBDfCU6HITCqXR3br+lo6kz/kRU+nY1ZKEqhO3FW8KeM4aU7BgCPbfhfzqZxvECsYb7bwkojL7fSRm536oy1JulJ2ktMr0nTQjuaAzVzqJBywCcAFLmEYG6pM+QaXC0mH1AryyRhOreuc/4TjAr5COjh5WvCOnO9ymg5jT58mQtYJksIqQi0MPiKM4AiWt7UJDatqUnW9pdteJ5LrStFQoZU4pUWCPja4HWnutHGTwDvMFiaL9e+AzdYs4NZaa5jvJhZtMuQyjkJplgKshGZPWhqpR50cqWEkGsnywDmKLgYMsqPonBFQPZcXB6YPmho92z2+CRH9ugjZZzDa/nKvhP4NhyBuf1zseKjK77qvRcxnHzQeXS7DTKicHRdzwJlhZLK16goEN8S0gmI+2gUkoLJwcKBuZIevs7M0R2ZSWrnRSlFu7FYVV9zubxjDOJhEgYgg3rkfH1+A6lJesVnrMeeGUH2fNsfzjf4s2M+jSwJwTJwbK49+c8cNaNHPtT786XHnvkw9LKqM4KVA/bEF7qBCIzCvR7pOATIk7yxo9egOmipdRetQ/ivvXIvTwd4+7Qa2Qg4HpgkPF6QAXO+aiN2G5JdzCKL1pzIwYDIGAiNvJoXmqAIICPkFOD88vKKHPVnOYORGf1F/sNpDPtONAK7YrOi16xjQQ+B7vfx6ZPFNYDkN8w9TAIgsXjG4FfNSiAADzjHA8R2UUXTp8Pk+A6VO8gFYGLpseD65nwAVnML4aojpQaWO/bsI+NcZ3S6SCXNjy00TbH0vJla+CHnxtreALD55Lu5tOsEa+wUdQN8varfUrVJQz8u4SHODvhKAG6788ubPOqXg4rRNcIaMl7UcRCtX16OAOBLFTyqvdhYLbpHk8eB62aSpB+1Jb5v1acfI2pEA6MzfkJZKdeyh9vIS+Si6/bycxz7ut1hX7xhB1xBqFjV+zzNy3ITZfLu6xVKqX2dZdtyvesY1H2kV+vpQE4BIr8hW77AYvN0vR22abLKt1no2Oh7HdPtzH3KNAvI4XJOENcpxP1Y9C55sJjNb6RwAq+HZBk62Cj6pHV5fkSDfxbFyJsIHHgVSHEuz6uz7sBZqKTWbI+apULJAmxma9q+32W+TVsqNLdtvut2VV9DN9gMGTaDUWxn5skoj1tlOOrmR74RzXtBgGx3YELqCgp6bF3uQKNI0xS498ApCR528nMVsH5axqG7kN/LD+0ZlrcPj+rCDs4jcwdBc9bdvuHx34EOzgyY2cILJYCZgo3BLifWaICDAYDhVuZiwxZiMb+IwZJbyIlPNwZ3sQRVLsDlyo6He5nJZD7Y3rD7nWMKPbNUIzylHl5Jh5YJCUPzOzeSApeiBAcIChcceyy3D/w8yM5lLofl4H3Yi1ijiZlIzaZDgPjDaALpslSM0yRbCa5wQfUwmgoAI5XpcRwJmK3SUO6uclfX2XaXZ3LF0i+SOpss3WzLTK4vdLFKfUqzYlnukJyEtjYDv2qQISnDKEvX0lEDYXUhDFBeQUJEXS97VwiW0zWkdehToduBAFj+yqNNRIRepsU6wlAa1zOohYLW+RImk4Ks8ZrVwJqGGHTf2GziZRauS2RLwBBEndywywaMQ1sA7M2gcA/DZZik8xnQ16MH2SIx6Qqp64I9HoI44c9oiz4ZyfPzxDgt6JOGQQeC5dxZwFZ0EUlj5DFQMjRXROR78kXchCR1RJqEvLRsI+ucM5tLvvrD2JbCyTbRNWOOslxr4sHu3bamRnEijdBEymWOybHxrrYNIkI7xDqcCELNFg4pZRoG8GSFiBwkasMN9SJYEs9xzs50JKpHLC57cHEGbYuc/4bzYhiAvu9D7LZagQ29v1xPAo63dwHj93fwj99e3q801DoSgKVJeD71JvABO74LZaFKrjocaGXNofLx2u5P9EyCPyXZ03BeOMm5ftjDxqe9nhGeA9khR+FgZ0tvfb6ezUgQIhSTIE7c7TjZBM+rZ3ykyke1fz7TOw9WvPDaPsJ66/liEtekE+vQjtFVRDACDRtDBc7n2+vXd8CuoPLr7SYn8YtKWOVPdHfPAtYv8Az58uX1JICMrDv41qHqsqaD5Ok3blhhgMEzwPa40bK4jtXRNA5wl7Q7dsEfeTDshaczfx54ljc3mQCOxxYC8wxGKenIk0ExhsRjq3DGdfE9bd0pDtm/GL1xAGdNLZVH2cOKTW1jjGclziSbnBnbeO7OfddfYVkKJyrYUB57pFPXmdxOKXRj8FqlYf+VZoanG6omMmYVfsH+Q9lldN5Uqh1PpatrtsloaBtGbHb5byYwzxhTNRqbDtlQpuWWUdG1nGNy1tHrZj4PF/JYJ/W+6WGu1gvulFGSrtY7cKah+wVqbXZrwZUglR/t7VLtq+M5C/NOzr5tD1bYbksPmhZXw/nl6/e/v2GRzTCFy0HqDegjlxQpOUas6M6nIcIeeirvO7aJVcH0EeknyOonG4pqyV0Bz1Y5aLsigfU0oZnmuQjTIZmavJU0XyF4B6SuJC0goqxaY1ZFHVaD4bBc+NTT42fW0bQAZr1rMBsqIcKgkoBzJQj/8WzQobbTSDPOnfeczffsgBsajbVm+ztsePkte5MG24O1eTx1dNghZNdIwpGGQM4mN0jsRM45J4ptjmilJxwYTQ8PUzBIZxqnrOx/sqFhcM4GU5HYzPFnDJb3nblqTeSMnUu/ZNuhP4QkUCIq7/G1iULWIFpjhGXJkbVexuqcARdteSN2ypgbDmWlNUafPLMmtIKdspOlleVQcQ75hh5vLtyhODiduaMJYjPbzKgFm9lhw0V0xvAS2i+NcXXMOLKeGLmUlUj1VqRPv0sL/DB+mkhpMnWn2mHLi4/rIF1B7Y1RML2AdxqCU8p9RxGtNJUlOPtFnkdpztAH8Ojloom5Ot6sl4WmIBQEzfUqAtU+y5kZEUNAhxYL9KkNA5GRDLiid7XafSwpaRLUhKQHlCqYb1FQZTrdtMQeekm9FIbQyvUSSFqs0KILxuJT0jJPlHuFQIo1G2TC8DIsVshXRm0qDaLgZmTPw9j3IT2kgXRk2St4eCJcOraepiPDRcWxJYAp8IvrwjJrOHXWx4nIP+X4JCCjC4Etqs9EBy+IYP3NFDU/CtF1+24cMn/Y4YlrTUaDs78cMkijpz8RdoUerfldcxJaNDKiGlSuWWl2UQwGcbZJ4TiP1KMv6NtudCnoMTRVPTIm69Qxy08XOF4MVSMmOAL1HIM5xi+MnB3wY725H7jorZgEL6f9gqsax04W8l2lWkcR0EG4cX15A7v4+R2xa1/eBaeeL2ratVfwRB8qwLdvmsPLywWewFV/fTuyoT3R34o+DVdOi3ta+h/aHcbYpz3nXw1RGKL/ujXhadcbgygO5+uRCfAneSekqfuq1ROfSXhQIh/os3U6XuVHQDeM1DbgB+wBQcQ18aY3tek1iRaHvXbPV+CsknilvMA4Xv+Nj7+8vN1u0hspy/flKxbM8n500C/y1dCYNHW++m1m9rWspC1riCxCs8atF5IoZlAf4X6fT+H/TOmFrRsLeybo68ywK9TFmeuY48Ewp3QOfZ9IO9pVoH7i3tmZ6qzDWFHbztTIiueat2qyik3dL695/EGltLR0szl8A88L0xzi2d4EvhsATlax1O6FjqDx1DDRHTtT2rdon8UgELVVorCbACxXz7VeGI3JMLkbT1hXaAog8ninSnyxFI4Hnef4aapyT8pHJnC5hu+vPKreqj1IA/wsF50gSpEkYErvqEvU4WrZ1Ydm66Vyh1wP2/bU7dLVrloWVdlIqbhZJtiWbbZrQcn9y7c/frxfwIKA7rmH5Qu88Dnti10Lt6fckvNZjMbyLJcUmVtyBfdNp1GthhtB7yu43RypC9wfD5c6ZcIdDx7OCHGAGsYMXYDBNc2J2lWrRSZlPyRNNvWhozF7ZYR6FNODPbXH5Ge/2yh1kaAKzXSv3Ahmlna6hlE54L5TuNVcyIENrQOsrjc2dmRq9IrR2krXe8OgRgBT3fU7KXVWQbxyIZH1wkgBeDq5+7JPxiSWTj/MI0mbslknDtfh/GO9YspLixP7OZfIi2A+0w065/Wae0RfQ5NaBOsLhLsH6KkEjJcMKUIsAM5+cOcRcKUvjPpxBdcZy0l+hTWY06FLv+vu2UTbNEzipGkOAqM3H2RKA4VCG7TZlAc6vqhSu+Ymb1xe5lHsL5YROmApJx+kJZ7PXV1eyyPyQIc8qa+R8+O5DqszvTgyRCBhQ0xX3y2MX4sC/sgYVVM9jP/QBQtMZ6RowWKDSJ3Bk6IQ8I6pckLbm0ilIk+WIPGKfGoALJa7GyL68q5ITpMkVdY117gUF63TJaMVNjkYWOhplyu9dCNMqOWTE/DAkvXyA4Dx6CPRmF9X3mBih6PQcaRRjJHQLLDEj0e7ajnLRKop7B78yYP6oQnwPY2matgxwjMyng7kUh6J3Gdwiza11Qnc0jhP7IcQs25P5+Roegwh9YzmG4iojjs8SGmDgOcMAa3TgVnwBES2pBTgKo/Hr/xFwYV6F+qhrqEUkOBJ9SeFN9nPe42ckr4UmHDq/z+u3kO5kSxLFswhCSB0AAhorbWgSlE1Pd0982zsvdm1XbP9/5/Z4+7nglnN7krBJEGIwPUjXCAqYTjudgZVh1dvSv9Zqp9SGKOCBCGWtxV0CLAPgfBJWgPrBY+IHsR5iZUHvEKwpIGWawqxP9pakK0/Pj8kxP38fFeCKM5DKJL2NzsXYfRBU8zTBUnJANL7DbvmM/DXumb7Ipr7Q61ylCOItV7321Guwei1YPyFpZUd+keax9uNnOE5RH4QfYAPcou/At3RWl+gRoXPJYhC+/Odic3Wzr7eXz9+WIfL41PUG/BfjyeY99Kz+qrUttv9phwYtM+n6/VI3YpCJvidBsTUQhmkf3ynsffHt+AaT/eLLGmEcED/MZL9AAAgAElEQVTqcaUCgkteUgTOThLWE5IkxTlGXPCJduoKfkt1waC9Ddib519rYZ5kzHNPsGwDxSeSQimNQ+o7J2vB7SoT/pJ9zWKf22Erw9JcjlBYj1Sj6XTBvhVF028APLQafSUvaNiiCoBp4EwA5tYeHRjI8qeLAuDttcaKY1OJ6hwlNQ98bCQoNnOcrzjv0ly7VtJlE+qptbP7ipYlAJdUMdvDLXqbw2Z3uZ4uZ+v8ZoMOxPnz+YbgtAfL3x7AatoaG7Ic1tP1YWaH1Xo1nCDs+LTt5jR8rLpdw+H1+e0Tk/Q95VdQ6G2QUcwwl2UPE7A84Syys0L02Q9saWBwfoVGT8lvt0NgBJ5VO3IYdLme77sJMnVGbHsgKvGgmikG2TQIhJvfSk6c2MUSGMWaYMygQb49vZsrKhmMcCRbOLzfdlgUHMLQeffQ+X4ZSz6iwjksCs2us6PDCkcrYQKwG8HvgkUHtAeBxAX3WgPg1cweTNUfgIbeBgAzz/q3zOyoDge25GFMnmnJwjRkvjXogY7CLxWHIdMuBbwte/FbJGk5PEvDrkudjBhYJFHiBN049sPWmKArBtWGYYPdPm0JKw74Geg76vcRPjvuDa2ls2YQWlSYgYOjTpqNR2E79zERZxHWrxhLFbmHLAU2GQx0+M5qeeDJgzTm7y77zsGw2xs1G1Ht3+DZFdWTstlm/0XEKLHqtncTHSlcbmxVhDaHtIJhcvUAQ2PAJs0w5nNyt8gPAD72u0oPpoIXbWqP8qMx0g7nKB0l3xuOOLoGB5rIaJ20yF2EZG1t4SRCAKawd6Iqceii39GoqwTfQY8T5tEEWchg+XaHPeu7+x1XHw1CwTME8tuPhm9J1WLeSZPKaUPfZtV+AHAvzXu9tj1MsJ3jF87ErHsh/KAziBuIc63HOudkMOlhSKToBWCOGuxCyhCbBW+X36gzGZlQ9mIprBL6bsoR8tIhES8tSqrUCfIN/AkCdEw7GnHuu92kyVVUkoHU6t75eSLiXpwU4ItZEWhP9VZaAkO//Xp9OlxU0u73ExoBlBlXU808pV8DuJ3NEiviFp36wa/FsSjWLsctuegUqfLv8HihaQdjpInLqG8lgJ3IdB58+/j+x7//+be//QFZLg0k7aR+vcCvYX/EhvZqve0Rnez1fETBfmTEGVQrh4vB+SusruEEbq3zBVwt7KRgfQ+PaDgUoCs4YhV9vBwx0T45SZcJVIJgbvHQyKKpvV3fftzDB/D4dn83DP6BJIw3b4mtQLCO2dpy+1UJU4xRPSoOFenq1xsAGHcO6+2w6JS19fVq32Y98/3tWxgnc96rhAW+I8VdR1WVNTudJgGZijK82HZ5cczBl5bMzzQwadGLkldKw4YvAC48oScPBR3AHLxAlnZZUqhArLPRZn4bewyZv2V+H1MIKMnaw0kIE7imfmZWJLkB8GRODRKDqwMA96rhYjFbzjdnFikXCttghLzjylf5PAqKhp/Z+eShs1g/XJZNmnzWoySYCUZJ7k9FwfdGS7aQWpWkQVIKG3BOMBO9N1AoNttJ1i7z3nq/2uBnnAxCZr3KThA7lLDZZDTidLI5bWejzgwJI/PJEjH3w/l6NjKgOZ43LeySsRRo2zk3XUNxvl3ZKTWBueYaC2OFHKw3favH7XltQmpdTqybf/98v5w4hr+e9pvF5sChypbhQ/CNOZ08DVhxKetJH+xVtAWMXZ9Lwjull9Dcyc7U5APjHmtcQCYCmU8w47X+FZ6eBvhWXiCp5bjb7v76Edw7pdsW/1BpLWE5L4qcvux4/Pq+zaPdDephFVNSFAqP2V0jCHENe0E7demxb11ATpbyQ1aLGTSrSLeiiRrIxuQ2uNGgazm9mpPfKOSBFM4WpWxTYoaLgQ1M2aSdEWjSZS54KvRtKbxMyjwRFw7vo0J7OBKqkVmsSF/kWBvaTMQZHhOvhhSxyj4C6AGCD4AQh6vCr1BCIB2RxrHUK3vTnkKTgolWk/fXSV+x7ENipsEkFQqBFgJl6rV6HL9E9lyVmlDZ/Wz2cAesj4RUnB7T9GyCmWKHfQ6FxVWnxTZfKN2uWj0tT/sQ9SIXdqoJNK4meExOZspCGjEUyWW56FjhrjEZskNlp9qnKQx2v/gaJALjWYGyiWSuUY/fp856hH0JsXo0HpBSDX9W0MGms561vxAyKUECv3pS8sBHEF1tZbu9joFKC6xhbPKb1o/3abOdZP0+bLaxUMjcRS1LGi4bw+I3weY+DY0GZdyZsyJxXAqRIM3F1lWXVJpFGgNKdKZYMXjrNByOC/YrOmMLJUnjiiEj0g/Ygjb6NeyeQbhza9MkovAtK4mTuReSub65VeR+v1QtwEQLru/jIch2CBHEmbI9cISLU2UJ1TWuuzZecMQu0hM7BWlXPO0ctUHKDLZU42oOQPOEKWBxVItl5l9XcDxmR7C0H+kEPFnf+QFh7i+YZPz6/v0Hge9+3O3PdnQbRvKgMhBFI3rGJhHRhXacXnmwn7i1xWEBcMVBvj8R7uhNi2PBOV4XdNxcgIExLXoQKDXvjMA7v//8+fnKRNMLQk4Nba9Y8to9wzwdI3XMk8HkRTQEhtw4Sw1dd+p076/vdlu32+v1+xsUozzMdl8CZ8ol8ZCO31I3wlCnmRf+coSJMEAFPUPOND2rbTiuUw6CZ97ljFgLHa7iXOR8nBN38wcd2o8v0qzzMoWbT1PXW5a3CdtpXLjupWDBFswmNWljXCIEbrld+40G5uSF4zVkSOPZdLHzDe7+dwDGCHq5Q7iR/XdR0h2zqvck5JE2h1cPyVceQ3u7AQnO8/ypJrFHcCLiw1DzIRfMBFSlouXdRh6UPgpKzMJv9g4sW/ZMFuiA11s4pSObZMZAo1nQTxkAg0kM0J1DWzAezwbT+bA7XY76K3TA66bb4NgzZIUkdCA92FuOV8ShPXVzYiGN+J7IWvAwyXqw9Xi7IalAAIx31ZV4KEEfBe/MQcEAx67o3QrxNPMlA1INaam+tzfJcq3kTwAmh752re/Y0KpX9QZ4B8vZLX51SOYYyMBxvtyo5/XYKtCnwH+DZoFreAIwA44erbB3ycdTMMVh6svOwxi+zCf1c4NueOdBanY/9of1ABH2dqiWrU4LeBlLJhT9BsAs2KPEZbuRW2WJn5Bx8mF/bmmy/2hWClyouUyK7CiR8WBTdHGKrOFfCHxqlZQQNyW7Vv/bLHMdhpRsoynukGnepJUVtC8VaDuYS2vUCr8J+lbQQgkSG7aPPVoYkkWX5p0+Ymn9HZjrUkwAymRUiNCqjFwZ2knHXq8nBpa9Yf+FZj/26ecoL9plTalOCShZyDiEcWW7q3ygjv0ZlGJUBVOsPSD2mYwmhpbU9/SHPaY3URvrLtW8n5CcjoiHsyGpWzRYHQJN6esxABlrNB4iS3RIcjIaVHTWIyIwh9PkWPVJxibayvMqdMFokDkhJxMYvCzlGY+mA4PsxUzULBES8fV9OXN26VNjDxJ7Wes9Cnv1KusAIZKGYgEA3AMAowOusqcnWp1Z/fJEw9Esi2qgu2CX4XJMrfRKT1LNgjNChtoIV1vGFHQBYwinUQ3IhijzSj6jtBwgph1vIm8YDl0KJwOCMZaIeuCzYft+RmQiI7NBaTq5DfbyRxxZJhEuSpSMkOdpd9FKE3LwWS/gjhVVv9+FwzcET/LLOB7oQmU95ximYR2mPKFFLsAwwgPRHgbdOw9J3CIEqrQxrhsIIzuZQyY8uAYtWzUDKJpYQAwXqy3PY/CaPr7/+vP9+0+EPv2ynhnTOmzUvn/cTgDGN7TRmOuhtSV95Aid8JHGS2dsZt9fL++GryfV72DPXGnDtVW8rB1AAHcA7u181YD51XPS94fz/ePjbuf16fL68fkB2hU/rEYA6/nHJ+7Vd3h1nN0B1+7bq4H22wcm6/jsGXaXB+2Nw2jvgprCPv3Nt6/UikpvK7gU4xjIIvUQTp8InqcyCZCqF3uNBK7AKnRUaf8mNtUkOvsd0tVgY2jMvrnECxB5882FCRJnue/QFczSklAsC8SSKlRYMDXkbKk8YLv6ulZhL2FJSFbciU7AAODeZL22S2cP8CVDjoe45pT7o/qqw/7MnGpan4nkhhH/ZZ7W3NLIbYkaHv3EGQ87JSFs4YyzIjx6RtsU6oug6CuV55dn7IDRam/tDsyw7OobzC11fzarzWIy7bFbmFFkCdlEf7UZDOzaP5+3VaKAZg4J0HHZ+7hlrfAujNJF+9/ut0MOHxB4Z09kb3did3995XjdngI6yYlrf/TeF6UI4gi5JNlvaFC/DiIhKYP2h40Q2y5IbHMNyQn3h50T2RxwD4DeIwfRNMrA2uZAge6B4UaIjRTXilwJzIOoI1Tkr1KNlPh79laYL8xjlAMruwcj4uhwLWA+ckG83v2mLFtvt3OcqYBGQ8AyKVqc3DXqX0PopI4OmFFcJPrJeTROPHiL2nhc1FXBN0PC4XNwdbPXVWpga5o4KC7krAVvyDZYX3RppnCkRwDqD5rM9604hiZNqynpZukITAONdjvvAa/tsMdSEjGTXW41h8Mu2UPM7mMc9NQ/ZuPpdDicErXgRGo/D46GHZIpM1i6kmSZfdm2i/RoXVrboHDeh2dA/Sk2YCnbZbvgqY+pTouteZs8XusSW+pyq8qKBtQHPTL17CfjHsHuAhncaxWRiObF5BlLXoIcW+cOnZ/YcfZCipMhnH0/MwiHxMZRkBFNtKmF/Ahz54lWw0ORqAdKiMCXDwYOq5ps9zCgZmITN9HYD3fxQ4YBgNF5S8hET2vUMkj/tErBOmCrlLqtZqfbKpvtHofrBsBpf4CVAb7QABirDFxKkCFhGVCrodNswDyfkm7s5pjrJs88NZskNMfBzSBnSpxWGunDPdCVHtj3YkKdpy761ts/FjcVt+9buzi49WdF26rElv2CM5xMfU7s1CI0OYDmfeYdgus4rYfBbqGnflWSeeDLRG0UKTGn3x8H17C1ZALmaCpGBlx1EW81sSsPgwJQDeGllCUUWmmlqZERIzabZdTwEAFRaqMSgjy9/TRIINs3a6Grble94VLy4dPljqiJH59MPaKZg0hSn59vF55iIlXxRDgZfmMSfb3fr/fL/X488HDgl6gP1X88zpwy/XpVzDhC4ph0CA0V2NoGncrsoRrp/fPnHz8/7ddfn1AJ//j8+eO7Ae79jUIV2G+f8bPv5AMrWfnwdWDhsEKwjB2HdMLCWR6sIYM1H55AVP8YEWOrEcm3oJFwpJLAwEGr2sjOpTLxBjj1rUdYgIT29wHsuXtUFjEnx6ncJeMQyUDSS94kbKc5FiUAvfjB0SIQ59BVkGHgPIGMErlqPJ/P1zzUgSkOwFbOTjd0Zj5q9k55EnO3FEPrHwGA8SVoE08Y7p8n8sL+zR3QDa808rPnq+mG1uH6wpAIZtdNucChumw3M1UUkN2mnaV1kSi54M4y7VaDXn9m9xs5mTQanw/G3dV6sZbF7RSnx3i1mY6Xy72Bdt8Ofzz/yeMtXA7WB9pX+CXFntR6/x4tCQtULHnRP4A8f7VripsKmK1f5JEsMiLhk4MZXG+YBhzY0j52tZotUwxPi9YLtuzI5t6x81SuqMzhttZtn0i2smf1oIHC/RVkCrTKmz3qwd3aV7q6JImyR1IijrpetYrHEMn+jS2xAHjvwvkDmWd8nwm3yb3Ay75nJ/xoi0EL22w3M4QCGX50rMBu5c12mkIh9lcAJsWFUztZrPIEDaSsNBPdgEO7h/940cy4oiuyVqHFLx1JS4QeMrG5x/BmnzETbfO82URrCd9u6k/g08A2sRP2wPB7YESOfSdmjOCmyjiypS9gdB6BsN8FoA2UPgswWkFOM1ky7JG8KNRyUJ+BQwyxDsaHdtMcmIr7kVDpZAhsd6jTerZ+rv4EtmW7KtutRD7ETUTh4QlkH1s5BQs/GhbDYMN3xdbrsbcdzwbS4Y6Xs8kcBGlw6MEh8NQj/IWaXTxNiCpoknHUbJUVlW64XZp2cEw8BFWN/KxxpzsABxoIjfRF7YT7cPiApnegDniAkTfTEQecTxNZe1AuWVeOzLBBR7NsRhhj+Nx1eGV9gJioVreL5KwOhTZdZvLiee72ktQuJbvXg36nU9RfoHqIuX5FJWN1Ww2I2fDLht7x2Kw12O1qF8zjInq4C9LlJo+00vuaP+LAiD3mNeNgm9hbFHYUY5WrtVzEr04eTnycPeP15EaMbUxOq8sHLQEXLq4qP6Fp54CeVbq3+PnZbsBgNvd+imnFeZnHNALO5GudNGoYJtu9K1gT2BVicDye04t5RWr8ajW3nnmsmQKmOaXH8MBWz35whf0MXW/kMNDKtE1mLUFHOO6SsxqBRjZP/Omwk7XXejOfzjeHy/3z4x1d6ef1/cfPHx+XLRASvSwp1oh0x9zzCteF0wnRT1jXogU5+ckvgtTF4PmKQ/EAZ2u72TesboH2zDQ9np17dUXIA/MCKDJ6e/+ATyXKAHhqf7c7Ynfi3Zrh0xVzxOvrhbRo+947Q5n3u7M2nHYUK/DnmxtnFBIppNIXUuLj0zfEx4hzFzGcAQlN9ZjQicMmbhi8NGO3U8oMsIOoKPkNeNXUugyJcNSgz5AkZ+qXObrOiijKYRrDq0dTEzYjhRuqPtZwmaY8GXNUYczUHE5nU9pVWP91CQBs76XJZj1bgPELBA7LxZPMT+hrxnaLI2crme58pi9HA+Drof+cxfKf9LtSB9kBci0yU3MSE/lY5ThDTwt2QjqQ5c7MWUEzi8s8KbNqtVttDKJo3DjtN2EAN5nBp2IJJtF0YmcPYjrt9Jwu1/MZbG5HdlrNp7vzYd1vtwsGvtP90m56vtxYv7fmDnS7Z7LXlrSoPuhGzWbSyuOiHCB+2Mo85tWjuLuRMQDZVUCwQ0BDXIbHiwvm9WWk+R+OVObx+Tpfd8hLQQN7gsoPQEkd/RFqgct5tzzs7Lb5f9AazlzP8InlpgY6bf3Ys3/cscmxz/PqtKv9ojt6vsNk5I7680hMPjhcE38v3ikffQ4NGdIOAHy8flG5rFg4Hpbj6RCNTZ9mgZ1OlpEEXX9YQNaxazAATlWQo0XAkCeh07JU7LGsM5h53cQiBC5CUQGObBY3GTIiJ2nU7E0BKzvGLmk9kFiXZacoOpX9B1sj+8ib9PBoVjQSpx8oJ9CtHrKt0Cd23YFJKpWCqbV2QelUg6mv/bUNpwX6ePfazc7QYKgzkmkFMndhw71gej2UJzT9n0/Qrkzmc8ThGowZftpt4xDIamn8ItusPE+abfRJaOaTEoPBHnnbXWhlWDG0mj1CsuoGdsF2e8ighxoYneh6BpIzUgdkijF3DtaILOnppE8SFYgFM8M15Br3MMwsq4KD/SKMrkvouAx8q+4AKQVDxZH1u4aiDFjEjhZBTxwM2CenYxYceGg9umKJHDa2/01no0kvALCT3nrQ/9IYHV5GIAkgMct+ydutrOz37Vm1u9e3xtcAeAStMMJ9c4bCviDB8UWjXdCD7XisiwpFq12OT3hcJdSTcYaW2fmXNDR+5YQxDtRTb0YaCRkzZT3S0JrEG+tTqUuyW2fXQZ9yCcLr9A6GkrdR5wAZkhW7qhupVOCN2AOHwVP2jSE74tJbVJ3XWWktUJyz14oelpn2PnlBLizkVK6agcAO5ujAZftUUYNYCmGdKRgPLVALu8PZbMSQYOYlzGFlOoHUi7NqMYZSP/9RleAyayfac+c00sQAQAQ1DOrxOPAUQQhqBXPDnlRDH6zo7XXElb444PCA6Of949cvjIg/v2OF+/52s9PqfNrtYWSEleNhxyk2zhl1ZYePdzt67rfjl5EHTpfd9vL6+XG/vX3a7+8Go+/ITQfZ+S710f3+/okt7x2B8toLI+bh8+MGj4nz/RoMOxyp9QH/BuuPP+xbvxWaC4fm7XcenuI7CjuUyjJjFI7Yl0438h0odsBFIZ6RFk8UECvGumyGta/3h0GklIXXHRHCwNywQ7bnvep18ojFIi62l0ZKjwHdNmFNNxHFzOYJ6YdlqzedLdAZWQlzxPNrkLIZ2ntquiRB+MCcKmDBfrs7McQdrFrkTttTzhbrfHs7Xl9fr5f7x9VQ5fNevaRx/amO/PTgIJRIeidyaJK0SG2m5ZtIZlCkxFlLzwes32RmmAUz5d5qu95fUCbYfZq2yw7mYEvymSBrXXSK3ny9Pa6Ws9Fiv0YIa38wt7/M1gZs62GnlcGbkEV12R7MFUO+WcLEA1sZBI9bM73b2lEGUcZ40G51e5Mds5Av50PYeQsST4eNGFBEXyLiCRXgBYSFs4To/LzGztDLqRndk10vED+R5WfFDFYcePqhpOMifn/CGAc/6mq3hnJzT5y1r1PdCeG8HGju8Am9gVGBYvTqcjo4fhGOzzKqud1PIhFew/ehbsVfVEVd9OkL/6Ta6rixV/k8H3J+2i3aRbdftHsRQhFwQDkHOnlCUYlpH2ZjNJuhZ4x0lTEVwpzGJeE69LcImFe8rAvp4LXzJcWKmArb5X6vlWu03KLNCb5AVKsOgFoIRsMkuy1YelQc8RKy1W5aJ91lGNG4U3WpH7Z+k/pYGjp31Txj2GzQZZjYsoO11e2UWY7DCQhl7eNwoui/yXyz2173l9fd7v5hdSYq+DfrFY5beDdQRl7hUXFdjHdhDKMwNC9U5DThqNbsMAVMm2d6bPMvreagXQ36ZWEAzdV1D0UExrtIUYIOCM6QsLNkgz6dToe98Wyy3IwQzjVeTLsYWWNiDQnvENtFVC2tltx8wAgtCqx0CozkK9ghgxJkT7KvlWEV3e0j8QuUZbRlsNeAlmkyqOCTObQ+mc4ginHqKcyMKM2Z9KCDNDFrdjvdEowkTDlQSeHhYU3cTmKQqMFKbzdTu34wj7JjC+HPlEvgGop1OsCOWY6jUR1TxJQSIknNU3cJl9NUnMgjnPI2akHEMQEQp8HXl8O4OnveohWF+FjYlIpsjH4WA2UNjflddjOY9mZZnffLjq+0UU9CgNIjPpGT4ZKnu7U6eVS0IxSUZfawh9EAFHe+/hJxLwgrFxjG+CgbAJpT9tx4YdoXCI0GxxH8N1GNoiSbLdYzWsBvdpPVfLqaDSb0LGhqPu5jd6snW4WrsshaA+ZzmJB+mS89duXxw5iCBGJon+1yH8ymszUiYXeH6/snDDM+P7mv/aQh15VVvgbYoFChF0WHKg4KeEJbO6+sSdIhBS0SQNPa7U86bx5JHrq9kreFY8v6Z512P79jPv0JY+lXmC7eyRk7HfDz8NXWOkNS9Qot1qeh8Lci7GxdrRuAMNCaOcVo0pdUrKoAwJ7vmyUERYh6g+KXX8jiTLzP9HclcOqGBkHgFqmASwP4h2mu1EZRvfYEoowoDFhThwUJvpKDFVGcwDKt7PRYCg/wq9Uvh83IjocJfIiXW5KsrldM3xnYLv0rGEg0cAOYnLgusG+9f0CVYwBckx9N/BVQIwFomBUl0BehnAgAzGo3Ldry9XLa4WM6XeRpb71d7Qw3AgCDBj1lqjAkuOtFt6gmq+1xBsrxZonA4dlis56O5wbb580ECXJ4e9oZZCfc2P6RFsu00dDsB5tb+047b5BVM5sO7fCbM1bkLCS9XF1VzmhDzAGOp0NYwHIBDJqWW5RQG82pteIfzoK5s48N9r6rZWUJ7d1G9MOznu77GzX3APkTE5ZRVjLs8XcAxtjIumMYcwOE7/gNv3B4c8OFi99lo3LzP8kM2/8ieR4l75ff/hHLoBtmQZf7BmQAQ4R2VVTtpNlFMA0DBWGqQntWtBoUqGPNAg8jLIQz96GKsNQjKaXwXZqOLei7PTQkIQQnokEzzIKYCzN/69+SFvMcneyMsSaGyfDk6ABgOh1+wlp0UH5aXJBq5NxSa2vFAw3LALoDylsBMEQ4CWQg8QEQDQjqPb+RdsV7Ye81uB8Bpq25A4W5MzbgG47QlSDLerM7a1ZnLwK9Aj7QJmCWD74XTEO6YEnibcipKAeqTqvMGQKGU5bjZHCYDGhJtbLCgH4a3apyuRXpU4BW+WPMl/BRnMym/QlV5fMx98D2OAcIwrT7P/RHCAMpVDpYx7YQVtXUM1xwR9jp4Ga59MWTY10WVE9UCyPyYdSvwKVAJgNTOrsVx+bUXdN/cjRok1bW7dq/oRBq9TvdPIEQqdXitloca3sN8mTYBQB3q247JwAzHdpTqZIAwLHWsmnsgeWclFHp6dpt0UpJxHIWdCRecBqipCnwliCTFt/uyiZjhIchEmE9dZ8YqP6Va+Pja94uxMfi1KRMhn0Aa/yFXcE0GEPtCNQc8nJSV/nKGQL3q4hVsfpH3HBHoqTxEqcCQ96KlwfwR4AmM64x3zbNyL22p7W053Q8m2/GUxrEr5EBNYPHAOrKZhYVrn5hmq3cjnF3ikTsyVqwbE3SYMWUKm9K7MnYV+isjPGmoyjdDkkxfHBUQP6EsbF8rd/A1YLMCDtj++cLshlP+7Mmz1ca/yInnmRR0lSRVvH988bPKZfCOt43aJYwjya+GsoiQAejv5NbhJyuEDDRwx+Nxenbw6FfI97c818eJlZ4GXG0JIknWypeAzMVyQnBcMcwQF/PUIeH7/9vztCPxVkuJmD4mZghY2zN7iJ1EKPRBqRjoGRa2xkXHNCAtUcuCTuRNEXPIfIXCHyt3mw2235NTWHnvBlZ+zCCDHG5ES39rGX4JbBwMULd7U53Qo89RSCzYfZvjdXt81ahXozBTwgILJsS6vAkQU7yEtvdoPvMdTXkie6mHmcugxKMEJLeZr/cXG6n894uuwkiArAPm6wUL72aDlrt4WKNrAJODZe0gN4aDq8N7LazAZd4iB6scFaNeyMEtNLsB/QXTGKmVmUux90WGiKMDWEftHGXkRMZB9eLspSOYCqLhnzRk8a2FiUgDewwqceexNHSN7EiKejvYVOL0TKa3oMPFPaUteMS4xD4fFDji0An9LAXigO4TlVvqeQAACAASURBVFFji3gJXuQfb7zUP/gr+I34Tb8HjIXQ7nrzCRClzbC48w+h8s2RGksFqz8v9/UYU1xrLFvWQCVlxS4Eco2HDLiOPgJrhcYz06+Z9UuTOAIwpLYoJktnHXxpbDGINjzACVfCWEFxhk03VIC7EPgUoIDRbPAhINFWVwAMLhMGd60mgiAh4GFjZ5jVqjSDVhwd20yOSgkgIzoUU4AzoZWjYRV8ksHTZf9Hm1H8sc21sf146y+arKGtn7VaJCMsV12Ki+AbNVmsabjNeDori6zq//j88fPnrx9w2nt7A9l+vljOOwZUnHI5FyJy/TTENRljKgzxMZlWg97x9WoXy2NSnjip7g3tH6AL6pODbJcqGFQQ7lb98RCj7F4bQ3rwvKDPRbYiqWv0R8V5gGMJFFKZI6Ypi5sKNs589IMuG+DhsIMRALIgaEdttSn2yz206eqA8eV4/F0fJ9iPSZJ2q4O6ooKPmbvR9Mt0bFcSRtf9TtF4kqELeMaxA6NnV6XuQIbAbKVYcoqggUqszA0gBMctBBDukUWIUdiGptXSiEYuCMncpTn+8kigFYsn0VEPLnOWRJaRxObA708L93ZORSX9rXmMZYIKhxDKmRvu4EVhm9yH8TgwDoEBJxff7ImZzBVl9Wf6ZYJLgFLCA74aYXVTjwKdRg11qVrFTnrJBfoMx7K2lWktMBqQO7fq1ibS3Qq8B+nS6KxvBoV63qcn2UeBoVooNjQJzR+itFGkNGBSYh+udZuKk3W7ff8Ao+rnD9iDIHPhx8/vP359vP3EYvdDHtBvNx2Zh6NjOBDb27gDDBbOmFOTk80P+I284zxTA6HcWxhk4yTUEXa7fguC/LAL/i1BIRMfJUAxd+3NoOAvgow/Skt4QGt1nMVKis3/Esjw1VdjTepMfLeKLrxrDjb04ha7U741J0w0SIpQboscABqWiAjEYmBdlLcHs/EsrC3h+3mwDnhoh8BosSIAk+eGnTpT3Hdi4RoAWzd3faX1swEBGEN4Yk7n+/3zUnGU0hCLn0FwiQA4T0MTFKdFiJjAo2iKlx1r4YL7K/oDF9WI1e1v94s1esadNaoTe5/jQpiN2Ybstyu0C/3ZbGTN/H6/2d/ON1jHHRaI0ToetovJbNLHEd0EvoKsgxOk19MAbkDHXOIx+L7YGhSg4DZbE9Hvj6cHcLKdvVzhmoyBgcTTdIYjC1k1m2TreEaVQ3yWZYd1s9cwCCYsY95LY5kziz27PaLnhSERDI+4X7BhOYYG9frVqGqc/OYX6YescfSLfZIbFINnebxxIH1XhCTxFmr2B+pyyPMql2zvgS9wcz+e7utRB+yeLham1gW2GGAFDwXxsCIm9aYM+q3Xy/g5xeoD9XQaSFh0GQrRrtlv0joAcLPZaaIyxPsjb8qlRUFJHRlfiQPdls+R/qwOuMkml7+BdFVUmE7T/B8vag+mUGQg9aWn7RGXuW+lbLUv5Sx1wegAMWCd2YXQMRjrdeHuBFhDu4Y5tooQRMH2S0brVBrLWBPbq1rUAXdoQNUfaSbb66CPnKzWC1S0sCr488+//e3XH//xt3//89f3d7jAcMSx28LgeQBQbjUZoeYNUCxOiOtgwecmydhA2e45AmmHU/sZA9psWynS7mMmAIBtd+mnWvVbLSsnqoFIalXV9bl3ly6OueLtU1qV6QhBw8D3XQ6SXNlmRLY96iFGz/asTIZMPJzAxJoK4wF54miAdbMqjvJmJ47sD2iwW3YzlQ+pe0U27sHHA4Zdef3FARjOJey8HHdg1IztblSPHsKhBwADIEP7WSRCOk6sY15vVHk4ySr0lKQnJc4OFhch+QpZJ8o+htK8H1JIpt4dxRnIKylJW7Ssxo71McTU6DEC3SkmySFBGlcaigXebF0sM9xOgqGgQF/eHpgSQ+5EG5taLarDv9o3dlCYC47VmDb8XoJOXYtzPWUvL89B+ARf66JZdcEgnCvwiTY7U1D5rFUhk8LeifKjSVMKoYkaPp2EKDAnTjEtKHEnxVyKwazOYGZ5ebEGiGX52Cd7YDSYLSkOhkrk7fvrHWGM9vHjB7a4iK99B8/qO7a96IevF8TDvjroYhSN+GCcWcDe7whKeteYGxCOsTP8sfEZB/X3bzLQSUJ4ThBlcyShuuj3JlZLXD3pPraO0iZcCsRFzpnXjh1w9pePr52ZslfyPBh3kOcir+g8SGhpf2lPaJIniDuvGwDHfqUUzu/KE8bnxT7mBt037cHJWOZqJ9B594fzblA126Ml0mcJwKg82APvZUbqrlfYCB+pGHszwKPn2NkA+OPSbmiDowi5umfYeXoUPwo+Qbk79EoVjbVvGYbpVFcz5xh8hbTor7aLraHVcbNar8ZtDMJG0/ksWFEOx4NOdzId7Zar0/V8/cDr9vF+Bbt4f9htVrPZuFOSNdvt+HQSp7HO6S4VEn1QY7HQYYnEX8oRHUoIqAJRLnYPiBE7cKwcSjuq3MGSPtOv5ORAfPKGWf3tMTi/nGWkan+0NvTmucp0lvFelbz9u/4hALBPjm9XNb1sx6+sErmTwbX9ijUJKo/bu8JVrsFmlVUS/uV3GCZYPzxq3PJN/3T9eHu/v37fTzoddHn0xrX/IwwOABwzTffpCZ6CbDjszGgPi7gTv0D5IRZ04iqPTBNYvqSuT0+1Ji2KhCxRhCNkWqblVAI3WxpF+woY8lKFXRCCDZHRAACA+RvkLyCUsnnkCLdDvIETVleqHWvWREAWtILlKymO/XFivxB9+2M4HmPJ2WP/W2E9jMYTtKQ+6EjWEQ4Q6dOBdzWwrA2nmLI0pENpZ63oiBzlNtek/R79NbAEHY9my/mKrgKs6UQ8+fwg2cTOIfjr3e1y2ICPYI2MfTvNm3x9F5G8Y6AQ5/aoq96o1282R6BewRayM5gCEVFssCO1WsEQeTDstHu+PichCx+QBiGlSHOEZlmJNt4uld2WN8kciyPNqTPmnNoLVlr5VVjZ2iLzSmHGlA2z2sBEokX7bvS8ScMOKGYL2i+YEmAG3c0NgO0Ztha420o9dwUypJr8qDxmUoxoNI7qVB9AGegzwc2b7XHmMetpQgDGuIyFPmoL1xgpNjri6ZnoZ8RBhuTjZk1edRLFqbupZri5JGvSeCtzpi3mPHG4jvWBmTXmmSwwE4Z5uAWqqim2ukJT/KR65u7AhIOUoRBUFSRYC9caOaVNfAboY/0S1sh1D8BOanA11DrNzcHQedWl0Erz2kvtRRp09cgTl6Mt3HOcvqOyBFFNy/S2ViWLMLg0KSo0Sn77IJHYHlctcssdhJqInlSTiX/cgMwfqsFmszvudyYQEuADC963z59/oj3++ePH95+/ftnvP39+ggv9/nrznW7YfsFV+u3jO4hbV2qZnbT1+vGmaTaNoe0N8y2QAFTpMCDhC4hVeRVkYkgQxo0X+MqweafXbZo3eeb4EjRXRkIigl6SON8uOJoWAqSy/Fo965bJ6aOjBeNJuQG2d1EE1Uecl27gAZtz6ZWxZIZ3R0KtK/wAi8FiOlqeg5IX287rYWQAPFxuAMCcpMKk87B32jPaQG2Bj+DPcdeIJAsYdtgZcn0/txvaFNYfKiQPWI8koYyigom4WeQbCZUWZZ4UykIofHAkJzAUKJ3FZgkS1sEAeDlqoeFA/hEMk6EDnk2HnZ61HIft4fU7Uq5gqWK1F4zHkaSwXk2qAkeEJ38zDK9bNWlPhC7C9S/BIIc7/LQ5hRn0RYtuUpUutEOleIdpJSHB6yJTrAtzk4803JC1SQjNPMi8RCrdMJc+n70NvV/oDMNuFrOEV252EVsG73IDYZ8639T73gIr8JUaO1yoZA2+Xhx4qbwj+D7g1fPDhL+cT2NY+q7C8y3gsZMN3zhE+vHrOK6wGO0wBwYef9olEYCZH4kRFc6zxks+nfd7sxa2DRFH0C4GVtxfJgZE/jXhEQBHqYpMjkMYqV5wN8qZM8ywdEw06Y7FeXOgYzFvp2K4XEemHTDCAo+0x1YR6Q0gUQGHu3BoqhhIBVUO5h5Usw4gkBmB+AuzqK79SriQiyMG1UPOeLHi7MHRot/pjgZMx2tVHFDD/Lc3Ggxm3fQF/op1+qsb6IlE1enICQQ3NKQKCKqj4UhGVlM7pZBChQqOb5zT6YaYGA6vf/3xE30AGAGn/WpmVVC3skeMg5bW6kz1SQt2ePYctkj85ugReiE4a1kHrFIT21kwpMmzZQgGd7T+zIJYC9NP8tAxoialHINyeY0B+csONJVWDiBegGe7MiVJpKaN9KACjcduszPI42YJ7AUTTLbXELgaAFuZ2xsgXDqBZ2edvS87YHWh1HV5Rxp7MxP/DsDshFW/wVlQq2AdFHEYHrg7Q+bXHUbA/IYae9g4ZFdKn+PjY3aYcr3UPhYtK3fPSR7SXOvcpJBGpbzXRw61Q3wa1a07TDFiDpMMYEOp9A5YTtfBN9MqOg6xmlQP0JKk3pC4OCEf21fWcQgHcXWWAS3A+Ln+JKfxxLN2JG7mVh1tNbNQGpLmy/+8wVVoE4MQeZ+5sdpClqRDbGX6mI6kMjZJNIcqsBgROU3FT/m1AtdInLYk2JnrBcytlY8zwHEangHEVVRdXvCz1WaDxuVys073ExPrn5+f33/BTfONHRMWNx/vGl5rHB1Gfnet+G6vWqVdvrm5e+QPsO5A/HX3ZL/CvtTbTdp+4nlQZwfnseajyXUrRpKw2BG6oUfIOEdADHtW76gTEqjo5chGVjOWBFUgO+oWSE5Fs/htlJ0Hb0sGScub1xCvGs16fVhcaFgKq5OTNT7N1nABh/g1t5/2+BE0eL2IwHs+U4h05iQVjNvL5/udaiQD4fPrqeWx7SIbcAec+OTGNygMYHUqhbOjSJpQ4ZjlQX4fyDtZDx2w4RfC8hajVhNHm9VZqyUibtd06wPh2fDqwwAYKRtYkF7O+53cu7azrgEwJJqk2rLFsqMGRTsnmk16MbVK6RTos2OX4RQhjWqAiZvXO0w3wXje7SmplQMY8fRyPhwhhIbP5Q5m54wF9HBe2GfL10pSd/+ui5RDNxfG3y6Bcg9dwJW/38ndv8qx3Ne0d5fSv71dwLuC7+o7s7xuwlECuZorjxrRp+83jamhAvjAfOcervS3LySmt9z9u70ZfvzcjQ1LsAltdiADbhVarEk/2eC+l7VW1mj0lkNk6qQNvi253eTwL3O9eVH8tldJSX7OfR2F2QeiBtkIk8bZpIaWW19BbjDaoKY3tMg+hqYsiUUCOsBuUMh0fG9K0hXC8qwlxb/SbFE74D7HtPCP7nYGMKPoyNkJO1Cthim5wRSgR/pWh0LbTnvkLWTb3mfdUa83HZeoMp+fcRRjMWcFNkwXhnKeNMS3H2zfUfDe+VQcsxeMjOnXNbYTcb5YTMAOXKy3qz2Jf8fb/f3n3/7+j7///W9/+8ff//3v/+vf//z5ieHHbrVa9DESb5UoXCNX06iORUlCeneHjpdQH7fkJNYC6aOVw6iKB0pBU8bSOmV6U6uOt4dFUVFp+JnDWBLqQDtsMKAqoCNQ1EQd8hbKrUqUZ5m8DJJmEhdlD0mcmJs7BwujpWl/iKFAv9t6AHDUeKlHOstFw7JzoU4f8dg7Vz0ueOnzwqP3sxN4Of5j+q6oNDxZfCxcjyRTengNusaodEWJmtAwpsaOkwPulIaYbJjcbCViR54l9VgK2/Qxsn5k2/GjnhnyGIzXqWD+YmulPtu2dwnn7pHG4VomilnLsTpCmzwtro52+VlKvzg4KbgLSYSBAVbWYW7wXBONTXDMc1MRU24OG1YaWmDqe7Qtj9mzcmLS7+J1gj6N3t8w+G4zfgo8nZTOFdI9p9q2Kvk79d29QiT5tOMZhpkSKOVhneLDDTw2e6PX6RHWatslY9XxeIIwRJyi1Ae/MoTwO1AYrpU0rQwjuissCeUyDZvrbzyC7CnNkOeRyB8XP+hFs5UYaT8AYU74HwEfSVR8uWwk1qFizUM1l5REZfBqDNqmQnicPeYNLX552Yz0vGAu5U4cIDQnsMhVyAuW+on7iua+WyVPK5YWTjhvnXg2WE6Hi+OZJqHH3eF82u42006rNZgtZ2NwmACsZ3KutAnG/twww5rly10eKpcz/BoxD4VmFgAMhxh7/LmijUixgCojV/2IkXpKiNOaJ4MeLnrMLREfJ28bRjdQo9Xf7uYreKUBgIetrN0DTXnKtPr1cj6Bl8jpekcF9XpXEwhxOJzHj4zjm3WgwijaHFvC+rDJ3BSd4007xzJ0eBDaZy3wbXC5NScnulacrzdvWYG/V6ilkUFi3TH1t1fRm+3nXCkuPuy3Z6Rh80PpRR50v3eLZsmTHFJB3Hmlrfn7x0MnZ/ALAL3apQeFFx4SQPUBwALS2w0Ef4yesTR5fw/j5bsz/Z2LpU++hZGz/f3zx/c3GL8xKFt7FRq1Wv9FHsQNl//37+updXsGW52sDQJmkb1A36iCs1EHDRoAXI8NAcbzVn9eLQp6QCdBhkRDBTLck0B85tHG+Jc0eNAkjZLa9qzlEF3wes6RUNSUnlXQW7mfBQ054HKvTswat04HphftHgcaXTayWPYjMdY63wFExR0uGSjUGSjSfmDIi/yA3mgEISsy9xCsZDArFc6AWMnvtAYZTWXXkHTSr2asA0q77TTtjar2oJ/Bn7Neh3sS0t5bWTkYVQg6YYLiGO21nTd9rTzCBgRCZ4TddrrNASIkJj0YU6HX7o0nA4iQZlYW2Jtwswfh+vr+x7//+cevP//jP//X//7v/+f//a9//t//33/+199//frzu9XNuxlWra2miEBsfeT1wN059vjWk1dA/L49EHHFu90mN75VF6TzqollM7fqCGa2Z7IAL8y+q6ia1s+2igLBzpROsPFxi0i8xWG1+2yoYSUI2jP8UGwGqp7qn+GgWc4GQ8wgBv0qrb+86MCsPxGAI9KP6FMEBh/6SflwxBIhpbRbA0Q2nCaN8ytC10i4zGRnBaMObrqiOpsfkFDIcW405GQWWlM4bFF9HFrsnKAZGLVcfUrhC+kitMHcCOOyzDzG4yuImj14vUyfrPVL8Djwk4MHEh4Tshfh+KUMZHJj8obkzixi0Xbbgflib6pGzOIG8w1SxCU4sNvCMJGvadqo2T8kYW4QBbkTA9XxflRUvKdxgiFOhXPwygqj+YZ+shOxuD3Hrgd5D3b1j4YzeGVaz0r/cCw2sN6oSHxsEoDZJebQtlE0m5RWpZPHBIlWqjKDxktsrzTo9NU8Y0Pr2JE2GC9uvViJLhmEsiniH627O54vCFP6Jf9K2GXdPz7f3zDX/EDv8A1zg2fwTWi1+PLsDrl1uT416j77fxHwoIJh7VNXSEySxiGkzXed7LuaZRHYyqplm2B7NIskJzWIboAu3FEJEsellH54rSF6grsQet/oy0Zaq2gPcsnpAV7SWA2za7iBjBbTCWKYGUbIOfPlMLG32mC5XcxWayRZwTPCsNl6vPOJ8fanByP4pO7wdny9fR6OB0Pyy/t16G+oGLmoUUI6lsd/FKpUlcuYBw19HNYzfD8yxkEDo6bsCZt5tTqul4fzeYsVcNXslK0h/PqoBtmu57PtlRBjGMIlPbSzW4qEaFxlbf0S7jxFVBZR0m5F8nNQIgTqHjbaRbNVuCEIZl55UqxIr7qhGb1qCHKWEgnlCBhrZ8/VOiPMYLNabJgztDsgaYhRgkpe2G88c0i+zNgJi8b8RsG7AeX5gnnLu7P+0NMKNN+05EWsGLI2Qdi/A2jfSVP4AEijm2UL660sEBWqmK9Pvr7eArJTNoB8TWczfMgf3R1qPn/yli/LFX7I58/d0PpG66bKrA2uT8uePLyv65i4MVAS2y2rg5/Tp3La6i27i/Q5Tp+fM/f7A0MlTiRwZ8mZgfecuxI9BLJiVJMHI/QCBDg496A4KojCLel1rHDOALbtfg/zChDqBhQNWZfH+LZ2h94WXLtSftOsmm1DgTYiFTWLDu0xKn12uewRu8MKPk3WHPcYcDuawhvKTqAJ57qQKw20Eq5oUFT1WuWgU4Dtm6cYqlRVpolAzR522emNi6Qc9qveqAVSMcij43Hf0HUkC+XJtDs09B/Kbsp+YofOR0qUAK2p6iHkd2xg1cc8maG+UBhBerecz6xz2Oztwrx///z89R//+Md//vd//+//+Z//83/+5//648fPP3++vf24Xo9ryIisarKuL6mLYRuBbI06uCCn1V7YxNp1OnayozcERqucFW2S4No+ZUAv21VTrDyDdieVdXJCSk8iVyksJdB6PL2IIm9Q1DHMHUHi1cuT8WDU6YyRC5W+1P+tweyDhO2LHYYNZxcX2utm7myayFFXyeisyQHNzGzRVhdlAHTorg12Y0BOYqVjUqeb+U4k91Wz1qqcPIM0gzZXrSNtnB82qplm4igMnCGtPtNOzZSp7oWv6KMiMWyNY3eE4/Q8YomBe855EUGWg2EUSDzg7A8EWz5bIFfoGgJ+BHa8/e35mfNEfAHutPyNyKup1170Z/wkfkXji7QlAIwixS4/E74J9fh8HnHInsFpTF7c+nH1WImdjWDuiM0OfGI6yJGes8bjDBtlKiaHSYFmJYs0vwVOKaIbhjksoP19HScPT0fUJ6wNXjQdJ+ssfrErIXABsKKkGKXTwaYGNvjM5ANF6/P75/efP79/e3nm+O356en5BfNVVSQqWIQnvPXoiZ8CHykYMsoXKvb5RRqH9agvt2UrFrsw2B1001IA3IJLFLNTg0dHEYxAfFbvHXbqsWpOOYbmOA+jcPDl0kz4j1yGwXw83mqjeWK64PG8n7Ssb1hsFjPEwGvMDDOKwxZfgN4NdmWvr5cj57NXQ779fnM5vn8uz7fLfd9huC+3gcERSwVs7pcVL348L4Xo2KlPRhIf38uATnmJknB1V8fN+niBW8ZygkwV60Wq4Xq+FADPKQARfR0jcfS9yOcNuuXdbt7mZqewa69Zxs6Ji8Og5LG9l8o+zcACTVsrLn7Rjt7U7B7kSQnsvVw5fsZs+HRklhKigj3Bd7XmxwoBSwy+D7aUB7eS1CLY00TAerq9vRu0vr1JWccWXgsP6ZJIx3Lu8uvbXU4x1v7+DsAAXu9xwT4MHa+TrX7/dyGzt77vvBGxDT9e3yAJOJ4+v3/c3z/X0y72Rugu8V+zwMAZABx74i0uZhSW8XPWK6tJt0pegNE+MMRWDFTbjIHUjM9mIoM9tQ+DGLlx5I+PgqQG7hkVW8MAhhbeAO2KExGMwj2woQNeljV44kfDlqMjq2Wxgit0nD2wgzvkPfcDAKOuN7y2bhTw3e0j95abWg8hoLcEUwSCjpWUrtEET4YB/KBZ9DolRtNFjuKgVRUaFmJraGA1KuNi0DMArsC17nUnjEUAawkxRHCYAu+e8dCMOugrqkn7YvCpRqgMOr2h3RYYZZygY5eNsTnuSI9Wlr2hvJ8ny+liw7HK9XL//vPHr7//53/91z//8c9//v2Pv//9l10e1zWqw8W424Soq0lDeSprdUxAc63njwZdzXbHnm0u1ZnBbN+DMDWE6aVFWwEZTkvnQZ0HZ9wk4fs+LUqAQlyPW317n2Ki38/TUX8IqbG9BPlL7QVfwBmiG6t5WwnJf+L9mmZ2GKdGdc5YU8W/YrwSUB+nWRZFmfekmu+qyU1k3OE0LR81SwHLN7wrjFNUJfnDtUNsJqfUJokbYcby0ZLnqqfOgdCTxcGDOS1Sq76K2BHbMxkaHhDRCNnovsKR9ir18TSy0OmYr69hokeIO4mYkM7pin8o3oYAbD1k/fcPH2SjuxQ5CpMJYnKNXfVXWQzZMmoBB+jYB9mNsNgODDW9lfH4oFUrU7m3tSsGZ07ni6HCTYaq1yA/w+QK8lYlpmiTbIVamWOxhFWjdYrW+KVubha2to0XjE+eOc62p5kjEm9nFaGAuq9qjRGQvNmuvxlmo3ioJV7YPOFMqvHyw/PyHMYCjcQVQuQnxxKgybJPXigsSRTo9tUI8olIPVk1065D12P2FdqQOiFa/vW5TKWsJIPPvUztw8JY+7dgGy0TLvKMMPUrBosJAZhmJgDgw2k7ssahN18v5ovtkVZXIGGhj4RNExi1H0yfPO0p7cK/nT++//l+2azAF9q0cdHglaUfB64MlrGQVfBOO+bGyhFzjZuL6/CEIBcF6jWZBGNPaAB82GxOlz01v3AsaCGQczYF3X67mi9PyH/+wBr1fOT+1TBPZs10VtweVhWvI5bQ2aPgCYCvjQl3GaRdQwBSpuX8rIEvvK3IgyYni0GMmLxDlwy9zm4DVfyGgYYrKvKWbu4KFGYCiufx6jdkHRxpRUl5sVRCROKwkg00fFL438luvmHOfBcAC1ANPD2n+1V//fx8F2//zRfAr1/8KkHvu8+cNXhGs4yvVtfM8f3rxyca67df39/v7x+rWQf2zHCAbINakzcw1Ymo/xW/vaEK297BWVpWTbbHGeNVXc+ZSUHJ8XNaKCisKAKjX8aAuSu+izJ7eHXIB1+0KwxK7a1cdd3mmQNomHE0SS5qYpfPySlQiy66yDqAohcqGPS+wGNr5EpqggmwBr3dwRCMvKrTH0nOOugCIymtoGLVmlYlGII13Qevqyd17rCZdds5chDtWCitNScAK2Q+t3+eteK8DwDuGJii5VWvO56NFEPUp/gNrstMTBgPp0oHHP326xjbuJ6iFipq58DmVu7QYNzHWLBDO2sAsdUadKQyXEa+0gLhTwtD3Q082Ozq+eMf//jzz3/+HbFw7/fLYXM8HdbzydAQPi9co63JHNIzrJ5g9WNHLY1OqMLqcfoMRjyG1wxXtm/Ti9FusQWu002DoNGQL2l7gA4YFUWRjXrDHpXL/fzZAAds3fpLTX96YQ8Xjlt1Qmyacq1m64lrd8QkieMgNyIAe4frOYIaCit/IXEtcBzYyUmgSGmnF/vo26lUNIyESrpUvizUkjwvE3bGIoHJoj/tuQAAIABJREFU3cjZ/aL6kxSmWXqYAMesDyJRsgJnIhi4RnT0ItDFRNKnmvDXnwOwsRhio0ymB+p+/TGkkXkm2ePfgeS159rjy2ovL3wttApkBJXqAUyB5VQYvILFYYp0bgc8ethmpTl2SFwsYYLNXPmskDO7XZFQP8ESZsSP8VhUSJrS0bu6mSccTWNHjGcV7jAGxEnDbVEKMutwYLxwap54Y4o7+IKPeoOyLKsnuIX41rBL5+kJF9ALad8vJKPgidNz7E2wj9nVBao+8dpG9K2MgdQJXYRYXEVOqhPTQAFKaJQbsi2PvlbrqgkL74MDwyWF127GvEyalCUiVGt6k2p8QgkmqVvwuC+Hy9kMq18m2gGA98fN0A6swWI1n83Xe1pdyYCYbfKV01hwkmihdNjuT/YO//z+djtsluuz4cmu43HnCUk6GM9zyfFS0yrDHrqcashiZPPZcH4hC0KMSlIFFqrJt5O6u9qvN0gx2CyRWTPpwKRt2J+iHtosZ+sLdqX300HpfltmDTEq0MMFTpsO9PGpo60A39+cD6F7o8FgE9jL2VuwSIvZlXzi21lULCqyZIZ1EuuZDOf1auE4i6ixJUyEAwDLaGu10kh6s+XvzCajsUnQD58F59dz8M0gbrqhBtp6YioBFuxljo3ZtGJYDcq3mllQF4Swr54+EkgMwU5V//r2APpXDsAN8HHzaJpv7x+vr58f7z/sh39830wqNEJVQd4TABiMTrtcqQOu1UXI5bOnpX9dyUgNT59hqE3Gdx7NiXKnu3OKkzP3miOO3HnwzYfxjHb/mThYTYYylO0usuwNRptdqZFkkSWvKnKiKk1x8a63zp1+k/TcEOEKElpKV4GJA2hqhxW/BuRc7HwN6DxHl6FBg353qBjdQcfZXdjYWuc8aBUGwHaVVFlhEGY9QSpeuJ1vsLEkAAP9u6NBB+gNF8fJcDyfMKpoOlMUAnJ5R3SU8kjfIYxB2AkPJ/M5kwpBHx32PDVp5DaS/dkI/NWBAS9a/KotrU+nUlJDW46XEP2A443bMzgfMjvM3q0fP/+AHuTXn3/8/PPz/cePt8vZ3jJL6EWRfmX9cYQQeRw8HLYVnlJVgtkNOVqnV7bIWMxbSITELwXYvJws1iKHvrQRV2NmEVoHXOQTa39HdJEGAMMM2g7PGl2hX16eX3A51RrPNQcVdG7C4oZ3JU4Z0E4xUJ61y02K9NFeyFgD1b4zh2g5GYt5FDljSZInuVu60Mehh4PtOA8AHAlLAwAnSgJOwwSRMg7SrshJExmX60UtYUU9Zcqw0CCIQjzmMMaiN2br9qXZjMNBGGl62gjA60D6BcBfkN74SujGOr72AJyA2nqzvpAJxnOYTrLOXWqEuW3DwSkKm0FadEjEEj1k2ABme1ajZ9prxinl0yxp8o5bu5L8iKtWE+s+Fzgwk4OcvsmuCk7E6JFbGGpJV0+7YrF/QkWD8UMjShrRg+DMgcO3DvxksmapYxvVXo0eGLis8BB0HUVadqNwih/j7chdUjgSkEDbn/pQ9tG6jvvzKDRnIrbpRWTv7H9OwjWlO2wnn5y605Cy5GmGitWSYVfuhFQdfuXQcHa3PcpzkVE9h429sbvD1doazPWOEAHZKv0YT9wWnw/nO5Mcd0Df97e7vYWt+pnvrLQ+3w8d6dVZYbpnZqrC6+tCCte93g91r34britLJFtWNCv2gl2kIR32hnVgz8+wELOTxep8DCQWs835djpYVc+FK0a8jOs7SbZrSLw9rHsK2GShROJIFC7ymhdOvuBJmICYpc28nEudxiU429XzhREG8Em7ENgZB7FaMdyeU2j8bTkn5tovi6U+OJK2Zp2ftA9mDyKV4Sg+NOYM8DY5u0qYflfEZJqvQX8kMHazmPfApgJ8Gg5/aKT8EYbOjP/6+Hj/Yji/B57zm7Oh//IhxObvbzfEYn/cAMDbcRcmhJXH9DYLe85eyEZFDsNTHZZGvAYxQ4rjl3pwtPsCYDmaMUGIrEDRPTRoLnwEnZe6TDxdLJd3ecGo1abW9djPtyoAMTW/BrptdmqGzuAxNbkMll64kvKmgyRF1uEGzvCNAJqS/wREwqrXsGroWfZQ/ipXXiHCkGVgatx1OrQsPODygU2wIUqz3ykrqwaSskrTqipxEjFANi3tZwybcWZfZN80Hlh/jRl2b2jtLDphOsjIAsY6bIYRDdS+DjmN5o9EBgZyfhFWxHugwmDUGcB8ctgfD8gjgzXGBOpOyqpIPOugRgAsdzCd75P93a3k+DWaLaaynIGCYGGX4353uF6Pu8O71XZXuwJflapyOuy3eKfN7I7TusEpPCX6NuUN5bJVwouGbXvJs5Phq9j5c4QXxdWAgQ/WrhcFkrXwmDudjBjB1oW/BsTQ8O/R1dF0/KWu9kfNi7fGIIg4BYzc6bT0aODMbYk4bqTHRMJ0hxgr2uRhh4X9lzfbPvsO1gOpj7EZ1sbzIW64UopHbEHfVbCy5ZglbjI+Z48ZU1Gf4zGUyWsF+4qap3hGyRd1i0tmOtkkHDPrQHyc8OpGPVYnrvsB2fgrAD/w96s9FrZqRYwpf2iQOXB48SjRiM0yzt26OsiA3753jsPYPECy2u2ILHCSLKMoR6xASv56QyaaEbxWST9nmEbiCX44O6S/H4wg7APtASsiqxO7SU6/ZnwNGciJrFSyFmPCDV+pTkxzBQlhX8CV+fM3pJVvtvvNxi7TERK32qJtatKW/BbDV7eiLqJ7QUMXlzwqONj3vityvbZqpiAVi0RZV5AuLutML0zywHLPzgwtN0Ob05y2pEGqpaiquGHlArl9qlNyz6vE2VgMVrMpbBWpat0zYWAzalad0Xo9na2gA5b6CABsLTKy6M/Q/p7hDX252tl/XiM7ZmvnAEJ1jtdtq05tOymuIXKTzWzpo/Oy4Z5sTEuuIUxVL3g9tKTuMVK4sKLoWj++PhjeLWfz5ZJB5DiAeIxYBbHe2ZFhf1istuQYH5VST87TjpypzbjKRPSgRi5+CB1+q2p8nUVT7gwj6AUG7Ew5BhvL6g9lECKu64KUas2c15vtxpvftTe+AYC/PvhX3wyvVlQo7WDogRBMhCWc3bBScqcrF8R0zuKmWDAMbdJNm+DX4J1xJzHLjbDeXJ30xg75Dfj8FibPv6HwqwAbLjT/AsQfYFq/vl1f3w2A3z42IwPgisG7Lf7WIAkaa14V2GhURCfB2gTVDYc3RRhBB/KFm+q6CyU9r0IXTAsWd6BRHVxAH68lY+5SJGYJNAnALfoaQ8QNhhWmzeDvtjR6pspb2teO2zmyKebqswr0Y6qLMNrtjij3HfTHNF/uK6XPPwYOvABgQBywPEByVUBEbj8gaXaiyN75XwDc7HercTtOkSTUHVj3CrExLZR7/VGP3oy06xqOKTdmxi7dorQfpt1kf0K7ZayNR4wshHIZt6GoosFgwlgiMGMYhjScuJXbEIKm2Ww6hJwEVl5WtiACENMAjLsqWMjBthL+z31FHvFe0Bx9Dk0Bki9vr+7w8v375ztGI6fTYTOfTudss60QQ/ubQiLMEirx8WWsa0FR9kDJCiY3VmX0ewbAwxH8Y/tVlbP1xeg5qgElNEzR7DPsNRpfvZsBcMTvCMvSOvKD1Bpia5Q04rweuQrKEwk1go4fI+iEKpg00dYvfJaUfrl7aNAGIyBCgJP1qQj2AzjWjJ6hspFksHFw0IrYszWCl7KvDhPZTVsNUGNlUXfdsXJMxFZvBD204DWJHxBL7IycEl337vZfALjx2P3+y0fDEV9f4u/WsDNWjxjm2TUEYjw9sRB6bJj5TDe+GpPQOjYwo+DrUwexSUzteujVCUhCMM6EQwkRTAGyJl1rOhWcCMH+pw8drueKoyka/pC85Q6OiYp1VOvI/C5cpV7m3+AgyHN97xno2/V2a43Nfrc2dMBcadDD2VCweOSqIdZAxecBPLl0aHlWX5z8PhL1v+G5w0iH2yW0/XFwHVdrLIY3LxRcRnFom0P14uuHeuzCXA5bYQGrIYABnAHwfLo9sMGF1RXid7YTNA3rlb0rtyc6UR73iEk6XinrQUQuhLCv33/98X5YIKllsxhvptPZYQeUXjcbjWDMmogN+FWuuU2b6P7O4Y6DQU3ks6CG6PzMvRR5rLNYzrfIf9gt7ZyYbReTiX1muJjN1xsr1Q3ytlsYsMHYgBG/St4NucUI25u1yG5jpryTMWLXE3jZBxMTaiwKAEaeFIsrZbpXRXMcjmfaTxoYWu+LBe9q7bPlNXrfxWIp+EXEAxrh5ZINMj8Lt1Ya+G/EkyYn66RYa3g/I8rheAke0XLduF6o/1UiIT91OVF2fXVdMCnYkH+9upMVGdTvcldCVIMbW/km+H4XEr+9QWyHr5NKSf9MkZ2dvUgPu79DtfS2nkIEDPPCknYXLbq2U1DxeKcq1zVoOTXcywIJK3lkPiNxRRp4cq6KoI+n2iyo3Klr5/6XCUKYRNAZtF1Avtqs5JJVcQyKAAMGKbTdF5ohDeAog1AME4huR6lDWKDC3bnnRtE9KI/styHnzPw3an8IbyJd9Vwr3HfOFjXFQyAJAbnTyqp2CTpW0u41GiXC6yIpIZKWtaGTThx3pDrGItdwCEA3EIcUzSnnwgDk4ZgAPBiEYR0mx2BgDxCG0OUsvG8AagDcx+pXhtDgbMOlCx20oTSqCO2I2b/bXxHfBCBewgBpBEWJaF7wBunS1r9NV9b+aFjBlrVHy4whODUsRWggaViOEMbN/nhEoMf9BnO5Iy/2/XYN9/Q5c4CR68yUVWYVgbtRxHht46TDBz6e9gdFPrH+vYvldSdvvDREw6oHpBE6NKIaMechgI2ctit/xt8WnQYaHF7Hdo4agsSPDtJR8WGU5G1usHKsRxo7p/TPikTFZlOn1TCtFXLoQz3FBl4KktBwmfIwrnToTR2ec7vnBlNPsac4+WSzoQG0Uhi0pGEmgsNbI2BU9OIVhdD5C121Iq7Hjow1DwENBMgwca4Fkq8vgGsqYYI3cRT9haz1/PwSvrUh08vohRuBOvtkVUcC9Zr/Q6324sz2xsOdGl5drnaJ1eiHDV/UkEVn0tBcQfGkXLemxLxEU90kCWw3jK36Y74Lh5z08GrudoP2v0WbrVbF+Ck7GawD3u7W2wNgF+b/C/vD0briG2WeO01099aMbZnHvl8ZMsBibjYgubrd5AWba+JqTwjY1HWfHWhEQKTgc0iaKclhjTgPAOwuJ3UfuTCwC2x68Okjhl5oM8dBN8sqvni8ShFRqDTNIrFWY7RZzHdnpkodrfuFn8RuYmfccLmar6Yb6/r2pxukR/v1GuPc+yuQ4nJ9//F52SJ8aLueDWeD7na5GG8xgr6sKrEMIShqJKryglbNr5yIDkpx7sOYKBiniMOmt2WcF4HxnWQGwIvt5WgljpUF6/ViczhsrNQxNLa/zGbzydwAeLFGpPx+Z088wM36+h0jhfa70+5w2VRcasEppuH2Mj6LVsUZxmd8SulW0lzfNAembbPdpuEkAfCCldlkiY4bJvxLUMEMgJfE2DkC1Dl7XiwY8M5FMAEY/w5CNP+zS+ioxfL5fD0crvafXLfwd3lGWwt8JzjfDXkBvtaFA60vJ0aFwBIL+mHNDWHednFa9c2jGkIOg+NrMLq8sQ2+B2Hw+weFT2iuEaZ9/4D+GLKkzaoPf+FuKysrWg6KBV3zeqr+lDae4VGABgF2PzrO4vjBt/R0EuZkl0UqBp6vfF3xLspV8cUkzILRjMIXCMCwjLBeDo5czWanA/dE6mjZ9fY6bIxBxKRpcqddYgqLLGB6IFfNAjIkQPTXLtfK8NFo2NVw2EfEHEPTIcs9wuFVSfOgh3gX348ZLzvgdtWJ2/0I2d4xxf9Pdhq3+lVr0I/jFhAfVOZB277YINNuvEu/SPuhI8J4f9KWL0hfn+/KTBLzcfbgoxmkyINhDw5TWOjOfJvdm3QrKpmaXZCn+x3O99Cly22TwiUAO8OOxuPZaDbrdUaT4WTIxOHxdDqGDGrU6tsLPBi0EYlI0jme26rPf1NPzh01N85qrpF2sl7auRb89cF6PO7XdsUvRqgTuiiSEN9TJimjgrEyH5VgQTPfsdstG0924tt7DzKahkwaAmNG/UTNd6bW+j2DVl+Po79MYH1PbN8AhPg3OKJql/zy8mTNnCGGJq4vpCbYf/UYqX9xWtdkmnIj6DBgBRQTh5xWQ0fsrBkS6ergGqFRovNWljc4XM5KcWwSCFEjfAdDwR49Rv1ZvlTQ4EH3G+bn/Pn8FxauEPR6gxIAuK65Med0VDFhovxUi8LB+S8AXPvXDlh0qihUK3yTvoSOVyBtP5VTf0Jzra5dceQjhxf/u7fZQul6ML2r++81RifixsHIrGPzGXvZoQaqLoqtvc51NX4F85ihuKbESaS5yEW5MpeOkiKLRKqH4LxHoj+KRhifgrc4Ho5mNDW399G37XIF8F3aKbrmeHGLoSLBeLWa20VqXZG8j+DQcDpsTldk0O0uZ0ba74Fm9sXz+WxME1dYyeAl1WqSKFSr/zbbD8ytJNacgwl+atowuMhC0RjaY85WQIwX/tkFhBF2g/EjUq2L+ZgUrYFVyUjeOSFMfrs723m/HbU7PQPg6XS5O0nri8RbAAbIxafL9fVuf9qfLvP1fjnoT+yk6B6Wo8lyub+eLvvmMwZD8LTJXGdVczqa7l6jljEZmqUQDy/fdYT1R0Q7gbxVcbUEpmw1gS3myp7Y+XSxgbEF7tCaLCcD4M0SB8PugH9Ax2tPvr0Au83BfjM03mDSu+vBgEtLfLLvEFIR1Sj9Yrlq74miXUZRs0nFdBaV6xMEQtfrG52b7aVjVJB9rBbTmaEuQZetrve5c/a+y0XY+wqG9bEUADsZCxYwO/GhQxAVMFa/XegajcjhPRTH9r+jnXRcwR/pDM2vM5A9Mh/pdHQzrvvx8oqNPL7qxnxg5ChBofUmJ607g4kRxAlkv7LNfadtmE+q333HbP/yef08jQYQ83SbSd4qs1bbzqyXUMirbGk845rLH3ICBY+TDYtVSIBZ7ApptZqHwOwykyo9sbM6T3zwnxa5gqDhmoKBqdjNrIFbIuaifWPsANpgTLGAsxgNc9jcZCcMDQ3uN7vbCr2wIVHV7beQBmzvNcTWqrXtTnutYa815qYYdlfKGWhxPo1MTqxn+4Nxd9BrtfojuBn3kXEI2lMLRXneGZYYg2ZhzVT2h9gTx3HVrcg6QUsLPS/9POzmx3Z7095oOurY/bBbxg8lO5vdOfnXUOuAay1g1WS82RpUZX/MEKSBZE00duyhB7aHNcJt9b3LHqK/R9TiFFRq66I53safrcvHiTaFpHg2GcFBjjNAQm2Hi3N7QrvYwCEGCgOGrjw1+2Bt93kPB9pYT2bzATNBNxDB0xMWbu32Dlyy8x5Uxahb4RAddsrcPtHpz3vVoJuCnvv0QqsiCUWYCIA+IccMz5onAgQWsGK+ep3srGD3GucbtlGjUqdBEwpHmXro5QybQQp+4ZqTDlMef5iGCWLjMV9WB1yra+eaelRhIotpt/GTwSUu7hAqUlLRgapddtES/fKNoQVhiljhOAYG1p2zo+o1Dm6O/KgZyAIbxY5BY8WHHYUOmTcZPyjRdGSvhdP0t/YWG8/GQyOoyoYA+9jxWeUT1eUX9UWr1h6g0QiFTwO0bOdwuUMXBD727KitrvnuHg/r+bmhfOd6GLuK0+PLaV+9ilFlOEAvkrrAK5Y+FQ6OEccRDWcsK4MJHWcGJ8tm2e7BLac/nI7G89loNP1m7e/OgHfh+72tge96xSN3d4JYFQc/ul+RguyYBXxdroyWRaSBMnWu4japHWJXhON6PlO8I7LQYBjkExg8I08RRw5PT/W675M592NMFgVPf5H1RI9HFJFnh1JIRV7ms90kycu+vVn2Z5o9AxJkRVl1usPFcjafWy9/RD9m/7qZL9aH4/3j835GCMPlsJ4OZpvLaT6ejg2Aj8vJbL3aXww0miL8UUGmYVLd16xRaIVle8V4z6QR+s8o3Fu+0HZJS00G3nZlt73Zr2B7tdpwcIuedMNA3+V8tuL2CnYXdH7c2l/Qm67tZdlgPYxSfd+NaTknoqNGpFkkSA4EfFHw0KQh76K1QkyRYdgNhDMgI+p9VFCcN9urHWbNa/+w129OEA7j6AcA+yCaA2gKligN5p6awTgyyNJO47CTeGq/Px8gD9s78loNdxTyituNnTT402KoIy34lUIse7CIL0aCocd3hQxgDLTdvMv+/XLzjG18Ho30NaQ0QO/0fv44jGGgRPBrFak1onH0xezX+Ou5jkbXLW5QONXlq4u8uCxWNols25jiVeTZQ8rubEBsQ5qaTKd0ILZ/7RgCwKlclsXNlmIZEGGLkLtum5xKVMlkGzFmsCMGdOUcLA6hOzKR4NzW8LXVb5OXJQ4T2sPOpFeN+u1RFxvj3gAoCZ7IIIQ2QMpE0OEsGjzqVovBhs2qS9OopLT+tChBv7EHmdcBwAaD7ShGCDEm14D1Lv21oOnF3JzelPr5vSGS/Xql5+aqDZZ7FPfRDE/sWsM8QCPZAwAPYZ1ZYfgMZjNTm4Zju6FuZ9Abq3NVzCJuUJyrYV9ZX/w3hS/KCmwkn6rRZIBzbTCcWEnSB2+Md4Dmmxz0o47Awy06rHrkR8anpifHTisxmi1rTSrD2/FiPYfqeDEbDwDAWDd3rQMejjujmT2YqsjKCn4sefB+tgP/SV1axPM62FAAY5wFy5Eq5ZuUuXJ8alfhk119Br+pGrWGL0kboVuD1glQ8vzEj5fai09sA0IFj0LPL5Q3ZJoGfS/53NxUiQjcCN7UIVRGFBc6dhCA/W8exUC6ooGNd8D1IC/63RVCM6MG0TbVdDfmkoer24d+OHpIjTwviUj64ED/dQH8tSUOs+n619hA2gV9U63hs+iX+sO430XJFCC7tPjL1L8RRt61MPrWSvXFvynMJ8iHIMer5p9161qGMlLX/TsrWTprWT9AK5xGZJ5z/+0UKOjNDK3gSG8HwbcLD8HTYScvdehT7fC17gbTSOuJd+xxNiwLAcAbhNQejvJj2MuSYWcIHcShG5or4zRFss4exy6ShwzY7RapdYZ8sNfRqKgsgtmHyqGnp6DzcvBVQRk4/FI0cfyAJ83akjgPOo+i6G+WMwTEHz1H3tquw8zeXZAhLVd7Ko4McdGpXe1gvpwoZlhPIWtcrHev97VV1PNR/7SczDfrw8W6+7aozJGW9+JYRPFXNjADdSj4Jfg93g6hQxaZBxeyADgrs84Sy6jVBgRiWEMCQ467tQB4MSccrrgQQDFO8MV/WLeCkoW16qFH3V54gzQUrBWm0Xpn55A2JvB3wXnaXsGN+e12EmxBhHvB8nc+p94XCzLxq9ahDV6vFphALx1zlwGAAw96u9tugmQJHTsDkqyT10R6j5xhhD5u9VrstntYn5w2u9sZ0LwXMDPYGg6Z5/PeZVa4BvFh+HsmSewiXGbEEqxCHiHCv33gHymmQtrDCe6iJ02ub7fX++v19fS+m8CEsCzhBdnMi3Yz0Nb8hMMqro6GN3IPoFRFLQC43oCjqH/kcvxWO1GWkgJnnpIt6hv4kGlTDKyyBdvQ3DrjUikBSg4padgNLQzbXyAD0/awDlXCFaL95H/cZruMxCsshZH1a2A3hIkGN79MD7JPjrD/bQ/VD4MNLTM+6hgNXdogFHftzQDJbdXujXpM/Ot2yyb41s0qTgeToYG4tY8lbPKTFoIXJmUjqkACgS7ZwLMNa2oId7st8bURwUXJ8RDuf8N2L0QnqpowsB0RQivgbadvveN40B1NunTq7fVH1ovi3oyZ0gQvjv4YabsToCkOiilJisriZUAiFmuGwT0FMY64Z6Yemqpnxj5Xdles0x9Oh7L/QgkAfTKEnZRL4ZnD0wsDFI8fLGkn12zTZYznU7ey5jnHk2lN9VQAbM9okdjD7CD30Z6Wdh8kSoz3VTi1W5RXV8iuxftOnalH5XGGhpGnwUVSd6qwj2PrbtHop/8DgCJsLH2tCbz+t4ZoXg1qn5x4TRzxkXWt/hjsfrk7ytIx9mRhHq0hRekRFOTHK6m7hhiZ5zu643RCu/tIBpHs2IPWNwyIffQHU+yGKD8NFRZ8oz30vjI7ftCrfHX7F/mRr8cb/yIbrokR3fjrRxS0Xo6qBOAvPrUPHOqh0Hl8aY3dL971PqP1J+5rB63nNbWSytrxJwfmxkOjzNF3UMLUWSI8FtE0GPdBPqp6e7ULKXlo6MNJmyqc9NtkPF9MZ8s5+1vrx6AL5SF9RP7d8ciDdI+DFQs/dmSY0CwZ3mN/wOxxw47JO6f17gHIwGSOqc+Iq7td3YYY/v7Qt24ldkH+MuwBsNBqOZ561AceTk1l319G2LAoa9Sek1YTU11nYRX97Xq+ZyY8CMMgD5/3U8iQltjr7BSCezmoaTPs2O9W0wmyiMCbPJ/fboveYDIf94+LyXy7PlytgW41KPNuNJKvpc2DZa+9vej3zwoTazzWJw82eEzv4JxxEuD4d1ebxWqHvvZgXeiNk4Ptitgm2pNhrfXGoRPduDXVjsHR/hD65EgqxzsLpnMajQTuF3aReVK0S/i7p+3t6+vl9f12frvcXj8+3u/X4x689/l8+/hJAuKAtKgIrBxYYSPGsiB8rHCPUBMIgFF2gYpF2LU/BgA2MObkRMZZ9sn1fou6AyQyQ18OU3YBdSGDwpUSANguloNw2MlcjFCkwcrxdPEkYnx4LjHdqPUZEbuuoWO2q84e+Pljh11jp9nsZEnZAafwywDA908RHDhUwKaeuiqrgpjr/6DrpX6SJjBwGXsAsFjumsdAfU35ASjQRVqAes3dMLW+TW6Jc8TxcvELmUJVUfoLAJZFNKyp6NDhXXC71eOEGuaUBmOjzkjm82IaM6TQQMBwQ8SrHqXBfU906D4404p2sB66TbdKOHjFU2nQAAAgAElEQVR0m2CEVa1BkvSs/WzjaSrBCS1wi/1RGwxgSWZ7asTR9vaVimg3PBAtujJQsl571AkFhDbEfRKimCKE+XW3N6qq8bg7GFcjz2rqsdPtNrsIWRqPYR5tfWx/RK9rPKYBOl4OnEEDGwVApQXXcDyV6Ra+lVvu7mSgkTfu5JirarTvYnyTkYaOGdtk54/z/lZ4ATigaNNjv8hitMl52c65yoMZSnhKiwQd8BjUMyy0x+BdL7nAWaJiXc0NkRnjCO52p2IiBwiaOd15EzJ6rAPmMQ2DNZ9BU0ebQA0nS0an/oKDW6e4WNfoS/3l6aXuKIzTKECwwTQAuIHmmINqjrID21oTYRxXARjJuubf1aUHkfIjpk9z5Yb7HCrKMKo9NthxHD2yTLyW5V+xfK0DgF1w5ePnevS1jPUEDPlm/BaI0mh8uXU0aoHY5mtb19vU6o995u82HtzB/06rroX7I2nSYyH8APAa589YRPmImhuAehzOb80d8IkXvgT0Z/Z1M/H6pYaHSB8Bb6RF82IVpHEF/7MvUuyalI1gQOHljjM6l6Xf2CSVrWY3OMtOZnONGUHD3a5kObjbKv3meNofuec7+IryQDSzf1+ut7sAuvb7QU3c7gBTQ2fKKvPu8PAyZADeCdJcO2av4OZaUwY5DM5+BHViq1w1aZruOiU9yc/P9qQYKjfgEf5lBdjbrGe7C8wVCcAnQ6vdsKi6o81mPp+swXm2PvC4AY9ocQDUzOCoN7emfja9395vi/5gMhv3D/OxAfDxdsQOOMWmJsjQwJVw0yTX3zbSSACsCVQU7FID3ZGXNS1rmc+blXlvuZouAEibk+EpJg4b0J0Wan2Xs/kKU6+g+EGBwj6TNJEr5T2XwyDNKb0qPHj5ERQpeRZ+uMFA6hm19slqD6Xt+/VCxvDr9bCdL2aLZWA+A0nXLkNy32erSZZEX/Xlyy8VEm063CF6u3sAMP+20w7NXvLzcUcAduOs3X69X693693Wg2R3D2Tehj9C93zkFWEPc0NXb6Yn+mdg8M0BNcnVZyVYoXtGf3xh3KLh75mph7K9BGXLcPh8v37uh4x3r9p5KgCuf1XQYkk2WGnhVEyDIlKW9okyARIRrYrMsxdwybEAlBadBRaYWU4/b9GeGw4x6DAN+0vGEyInj4x5BlmR7azAO3Wq2FxqLqrpc9Ukij4ygdDJdlvYAVey4Rj0XGk0IPx0B7INsJ83GHU7w1E3UKD7HqcEJjLCHCCfgPFl124XTfg4T7sgVqaNpEhwgJa9AYfOacqesjSolckjQxf6mOVWnkwMkINLtcEwEi+I9QBpsr4coLsar/c6rf60V/Uq7l/tfttPgBS+38VDGY2t/x0Oxgsmyw2Yckzu1WhIT68u84/7YkhPISwGUXoIjw63Sehhzo0vBebabUzwmPCjUUHgaRgNZZNJw05KoDQwx0Yc2+JBr1WUVa8PEnFaIrzZDh87I1sdGaF0msVsNuvBl6PHMWLLenvcQ8iaDYupn4diYGE9tx1h3Ez3v7TYpT3dWF/QFDDP5GNB9maRcXzbiNxPmb0a18bs1Nj0AuFq3uE5kDj8/iZy9eWqKEtPJHTV6k8wtnbVMnCCG2j5CDzcreKvlrnhcuZEMQoIe0CzUYu+RLXRl+MXUwz5kTZe0OWnUbAD8blcncb4PErV2atJf5g0RqFb/dcJdGBofAEwC5SaFxeP1rr2GA2rq/YNbFRzV8swVYgeT5s64Je6D7MJqPX40XmH5/PxZLsFtv9zDZ3+C0lldd8HgD737LDrzla1JzhqsBhCPQSIyKh8xAiijqX6txQlWcrYB5eUkdyWQ1jTtGNgjpTv0WSq2eOG/fAOqzylwd6OPDWtRd7uNfYVhUujaUwmibkco7IP2vK/3QHoskXGvE7hzQEHuN0EcgRxCB/4q4HmgX3Ueok2ecQDB/q9nAHSzNzNZHNRFoPdZnG4YWDJuScAeDMo2t2xAfBsvj2RlYvObH+0Bnhsh95wsbluZ+PRdHu/3t5fNwb60+ngMBsvDIDv5+uh+ewhl/IwBfuv/rD/8mEvOcipLwdEwIofUnSppSD64kYgK4vefDlZ7HfAVKxMJe/R6Hkjdw6sghcPp4vl6v+n6z2U3MiapbHdGZj2vmEa3ntgZsjluvubCEkRUugR9P7vocqsOg2QX1zskpyBN42TJ6uyMnUe+KzeVXjfT02SogGZwkTccoYtrQxBtJzFjjQAlZOrUVAcPn/8gVjh7z++bqcd6w4rfgQKpxvlwQbGrGQslpvtarlZYjVZrjftadsC8IYArPuuPUKTdta33inAyi/oXatl5WGzX692awRKHPZ6O5629sPBrKW5u4PYjOJUjSI+Anxh8i2/q1b1QkNrviG4/KIu38DmI4oKpysAGDD8cb6h7v59L4dNmlVligEguC66RaevXxR+wK2RaDtrB+ob6CiaQXAYmOUZWr0pG8F843OXSpjYQD5n6eO0BAYnhcsD4Iw9s3+zlC7QDPmDknnATKHMXLCYhATgxdCRiqSZUTgskQM0zAacyB0ymMGausx6GbkcwwLV2DGS7h35G4C6DgR8i2I4rrEdGdTwwaprZDBMkrgGQyyh6IcvifxK1VUQlKDeKaZ+ICSXOyrSvC4YrgTtlJs8yuVBhYJjQkquxDo1gmEgwgJDll/wFOU603FFX3wy10VTJOlwtmBYovDJ2UCuO5MFh/bS8ju24aPJFEQZg8QsuNPbGoAMRxBYczUsTAPpMkJp3eDFCNgu3PiVbDU4eTxp1LqEBtlsL48Y6zRU7VshW5c4ZrBnlvhRFssbDzNX5GWwT5zH8Ww6rbDRqTMIlrivKuirgsykotT5bKROyIaiWcymDUrYizn/nY8mSJQdVfzssN/KmAuhjqX0zGejkEIus9sn3wUYo0FnrNFz+l4HVh3z4jK5kJWGidpq1YUmsg3JdjrKzX6p5/7sReW5lCLrbjMSr+tMn5/dV7uZaw32AEwoJPXbOjhx1QHws8rc6oH62gzXO+y+68kUzF3PsdZer9d7nRd22w4n/urpQ3bcK1EgdAMz7RvFl9jVFjvU51ZOdizYd860bnvRYfRTe0Zf26HWj+6QGPeNLPd18IlALMiLikTnDSaaPcjbUbYXIAgT7Qnz0eW9+S1QeyzXduaS9N6T83yv2/EQ1qXpG8yHlh0zK1zQEaJBSHar+Er0PJ7p9KAuw3CjQlFRPQ63m1c/B4h+GP+DWDuovlZbQZotvf63qGMeN1jjZWG+MP79cn5QL4sRXpCqrazl6+1ygDBQuu/Cz0YAeAWKhCL0CfZMp/N2lJYE4MVyT6p0vF0O8nBN0esFshffXXfsbB6/Hh9ft/V8IfvY5jifrvabozDgY8HDv+8GRvvqdPV019bxcry1ninnvdYE1ncGWUEs71sSWDRCvVjN18cdm6i7LeFNi76wYF4tFvM5xMdL+k0J22RQEbRI8udCB5HL7TLNVEJSVUVMqY86YkdIj4qZyxMi8SWnrY8vZxfbb8iW+fr4uJ931FXtlKyykQAUfoqvtMkr19pul6vtiv3hzc4cKC2aEB+Ncl4nujtZYjCqDyiOUMUt2wsny9qt5SDYrTTU0BjwwVD3eNS/cToz9Fju78RiNbZROIrkD2X3J91dndqO8RFCayYRP64XXHRRM3A73c+32/F2/tpgqAT9VGS6R1kRmT0Avo1dGqbDZCBUERulBkoGQk5lwAu8zaexmaMgTBEKj8RMtH9Tc2iJ3UQwtoRyRUH7LArStFQARnk6oaAqyywxQGVYlfrNAn/1FwIY0utLzREEq2RSMATMNORBuzMDTjNOHuqoAXMHeWq0BMruMqG8rgtGGdIogFnAMHbKasxFF2U+imKA23gAAW+Y+e+xCpgEkAtaVZcshWe4NWRhFSVdgqyGwILrQs8H+vCVG5Kypzkc2bWZxiCPUw+NOpvH36CgSgw7fWHtdTPG8K9gL+VWaPGCTdJl+im6QgO8MQdMAdbJhC95QIdL2X0M6cs5teLzsDQVNDKRR9pA5mgynzBsqa3lnnP3k/ITDFIBWU7T5nThwlssH6Y8i1wQvqoLZg/pySokbO7ndDbLEnzCSGXS8juGUWQHAGK8mI0maG7LC5rhaQ+qopHjs4ZbFwab6QwO/TZduUINU1Bvq15PcZSlm+dITbclbH06bhko9/puuIdYB+tGKwOrL7Gbvm0VXa3/o4bt9DjyShstjwAcvbh7tUPNpo6i3EqQh5rudhK1r6or72XqqvditwF9mme+GnZhlyDcfRU3txfiDxRonb5uNlr5VtfTwIaua6zDEwn3zUX5Wc+2Ev+zPtlX8vrW954CnmeYkedGl547FA0gNDzuqHyJc1D8T+/szVKQoUnDs32XReZdsDxKAgT7eu9dv6eDZL8FeLeQnmdc320remGC8/0O5336PfVL0RxcjORwFEqOtkRlBwMOOc2WYLeCFac9rBhg9H9R6yNZFbXnR82sUD0BcGKNMsDV2i3ke8UCy+IBHO8PNqmDhqM2GQXzL6fLfVcFSKdgJVbocL1ezljolntRPDjvxnlVN+vNctmsDicV1CLZfjmGC06cTw7LOUZcD7Ah3svzl+/95DSfrw/oAV9OJRrsnV4Y9JxM3o2Nu1zL2KfKvtdqrkxnoR8tPzcfMykJ7VcBwMvNanvcLXfC6tdreXAqm5YL1PC3gs3ypkAYpd3Ww1FgBVO0F6buysZGeN79Mstz9WIocyyHGaQ8+MILIQ5i1eaOYiHBUVwmofybFOuvP7+dbx+XA99tjPyq0+WB/QF55x3/3Zqs6rhZYZeE1gLe+YM738w6trjpFgBMkTzngYG4yoBRAFEFwP6swcH7wxYgupF/1+sde77aAQYC4zYGqLhXpi/uUE3ZgzAjsfiMUoo8j8OV/mBHg/U9+8lHOdhOaompw8j4oxh8gdD6cD19rGdlUg1leQ2TMhOGQxXq+1vPStB9OCq8eSp2Z/Zaz2cpwe8HGoDnxpA0dCFB7EyWy74vNgDGv2p1hqp0DLNoAHBUpEWZJpA50ZIugRUIogiFMskKjvVa27M03wCMFZzRBQBjzIi5CQwUAmHlODB8nlPUrAVvh6VVXuUqCDxoaHMBLJ8KpgrTpLEFisaoZkH0NcIUhNxU4KjEoCxCGBDuUAfhAB5VE3mpfpD0egkmngTz/UAgv0SpPMOcsoAxfLgGVBSPR6q5HiIjQl5PJsRaeXkBvgieSY2YAKJORdWjvKny0QQMWeCQz02uN52AKDOqcDJZCQaP5hNyxvHIKsdjKKHmcsKqMYfX1YyiqgYwSmcQ7ldgip0IWS8SWOvLhmVQqeWWkOohR6LROEZ+EwF4yHkpzlIzJ6rM0yGb72gUQL7IcW2K1keYAhsPMqqgm3I0g6hPh9n66npMN3jm/FLLxGMiDlwoBxyQ8FkjeaNqoFiTZyD7B9lmcGch+41mgO7+AFPRmCsj269qtiKKHBvrLE+ChEnfIdvJnvVKKUi1ajQbq1q77naeTlHArY7wyqBjqoffu73Oe0+e/hN/jSmr5Ov3d0Xo3ztOBAaXizf/9zdWtHXcg3vUtqSswb/a3G6h7M0ZOCvFsy1D33/R9LQA/IxkEAzrqfeiPhgnpcE4O33dO6h42sRdoJx6edcZQqP2zMnebpdf8h7U6Z73tKOWR3jH/ZqxMAbfOR/V+9mgq+8MVCDvslJ5j+NPeKVh0A08a1kL43VvDCbKwH5R9P+d6Ct4C3j2EPKH0dt+L5CHlpXF++3N+gddemr2u2rv6dmAl7lk4H4hSVG5PZ8ipl41dUDWeTqYxVkShgl0nehgYYRBQHaGbub+ok6Fl9Pt8YfAyOEIbnIXqrrfwPcQdAwTUEILj3N2UOYz4YUYh9rNhCCfT+vdhq3h9cYVK7fr82GbpjTeBAALEA/Wi9kJdUqgypll280gkq/NWoBtKcuwrM/CareCzuvpuCjka1DN17N1M7vfvv8ti7jQ6uaxGZ23C3nWaDiusq7X000ZlRPYyPlqABeoCRvfL5vrsyq1er7oEeQFbwh9D0mHOIaUF8vVRHjh1vwcibOyIxEA3h4OG3nhW+HBy9V8y/rryVlX3zXb4PF5ExidwZQWbT8KTivLeYOqPbXwnSQzR4gYWvOwWP/7Kcx5jw8DucIARex1ttv9L6eD5RyhILFebU9KktWnBVBrjJm9X5QrttZFQFQhUXGz2T97vARaLTfLo2In5S68HHDjHT4q+I1gjAmllC106qC7LcdFYBPHlEB/zxeUXLCV2x2sxWH8+KTd4MPFyavdPNPthL3aejFKQYqiMg+TNFDvc26pnH0J6lWh33HxNQFG0SFehILEjxhLjv8p+UMICAuHmqqZYuODKgSyL2g1Jzgli7j8WCIdHAsvbOfgwSEQPKzidJQjAqks0jKOByOAGqq76E6r1kowUt04eHPKiBSowRaRRT8etTaTdgQwHWmEuEIMzpbDAbLW0JedMAMIQIe5YPwwoKqasYBZhIiotByk/mjcFPU0oR/DWz+q6CRdel5B9kbjDrJFYiwrrQPsCYAl8o8A12CskUdoeJZIGmRXuVaWOeQrrNWha1CZd+SI1taChA0HsVAoT8vRZFzPkQ0H4JWLpyD2mJyczZs52S9dReA8PR1iEHkyaxbw1gJKyzVhepnV8mLh/SzsXl6+vBHs9yoaA7DhyNHAs6RgO3tU1GiI17RJE5wUGK/iENXlNMaSJjuEGkYheeJPQOXl5QkqdpSKejYJQXehANKLHKORqmrCQEpaMK4UezOTWycUkWNjBIHdUF5xOaCRJzYtzbiWzZNgfjWdo0zeNBUYMkbFUQMp2dGIqfejn7Xn2pWqwQUleOtjAFeWqZbb6gwHURVwKuTud/WMegfuykH+5qEl2mXIAU26qMAWLtoV8qZtTsrB0C196wmao3zcc+kM6hPY7TsNlfZlQ8NEDNiCGLoCa/ise2v32eaeO69mlF2jkkqwncpLkUrRqtN71gC6ysD5atF7tZjDl8fRorPrN2sR2+mKPLiEBNRm4TnimaJn63XamoLOS3XdsLFj0p7lGNvGoWNKdFfn7zyrFH3zkw9YH7CK82/m3GDW1p6p459tcGPkfteNOrmZLlpkaP8dXhQm/A1i80bUvEDEwSD/tywgpoDCazZZgqCixniU9RhkhxMmmPVEpw9IDbGWUEIwwiUGkffb5cIJgFQsBIQ4H/dZ5KsRICtGQ7ma3AnR5YDFf3fYjIT3TODxSH305Xq+YNmWawgEj6s4LtebxXx9/vq8bdfztfDSj60AsDC/LQZT9+OM+eueSiNkG/VmlZH30HVBSIBpMs73J9I0atk4yWqN8qa83VaP1Cp+tVzOUZgF+m3gtQxV00aHsPdrFN5ms8V6e7yqa5XBiRoow6RRAPg0G2h/jhtllvtYgWSXkBOPSNTJ1IKJfcd68+2CXc6aDfWt9uJ3/wHAAnVOFAVSC0n7Tud8zZ5FziZM8kx29Tk5vjfBu/xL9y4BRBp5GeBS9uyQeLdvJ9hw1TNufnCyaC09Hw6qioboz8R6PPvIPORje9aRYRUtAPNKT121yrPkGcDLYz2ro7zIqjAu0ajNI5cf4wwCexrB5/JqEDRODZbajbnQD5f9EbuUELRl6OkKB3X8UXNKdYkGSBd2gqgWVU2hnYORgGtuUb8oYFjkICBxWECbXFVgxGXtRoKphraTFlAHmoY0GDwLvgTgAUdaKUuW5RvmzVA6V2xz0nFLb1aXNKVAJHBSVxmmZ2JPIDGvJkKy5Fj13qN6zPSkvle4B6MXh8sTNMBX5SZM5AfwnRrSKRpBRiByMIAm4GsPGq/XxoZMPDbSfYQ8FzXvE0BEjRhBhmPEM0xn2D0gdmkwmU2ELjYCyLC4ykrg4aiZjYfNVNaVZkq7r2YyKmBbUg1kzUHucpEJi8TAtLmA1TTygAhao20q5CdXGMjiFgimlhCFo0EwyMOsLrIixWa20Ib2oKzycEZxWCM8P1Z3hr46MVADIgcRkx0AtzEVkCqat8aFCgVi2QPSLhw78jSRfViOMWW6scBuRdsGOAzGaDhg/4Cxp7Hq0LR1zf5CrR7iOQvlGD+X1ZiuCGHXRnaIigQDG3J14zYKsBanSCh6E/hR0bBT9Wqv1V1fq8N0zxS0MrHR+3uHBeO+2S7bbJQVwfu+A05C7wv8tSXz19buryPArMi6Xnc7vqsbCO1pd1+mlIjtLMe7BnjvOeHk9V/Ginsm1uo7UZYKzF/GpTpufrmjtlqvw1D20p9le31r3p8lfJNFP/EX4uhO15dVAoJZ/2Wg5jc3d2vP5jWMgvehouq+56h1q2JTJxc/VM1RaIuZM0Xp0usK7wWkfmh/kkDEie8l0HQmKB0hyQRggxMKjRglOV/UUkEA+fYhdBV6ZiFKayuQ7kiEoVdaCHrlmgrHmZwkGwt1BAAD2QW1zydB7qnshAWAF7MFiqEKz0LgTjcIJwvhG+N1szsfvt93y0G12c0f59XoKHx5t2ViwWoxs9llfGvHsohBjq+WmB3to/ettWDvYaBfRbihgAX7aer1okQlUvgOZsPFYrFRexMwXy3tMvBeqLAQ4cVsDjcyyMXgAg2REgaQdIAXxsmPj8O4JllwXgfQgUIPisnJKaYgRlDZVHQQBh7XZbNHwuJmtSbF3QP+DWld71V57PG0tYRB1PBlt2PnHvdw2bAfyYEdZqsZ9A7jaKw1M70JgKhpxoaIl+veAbA2flt6zH7B9XalUvrgLj4onSXw71mMNjnBARuCw9GmmLDNMgB2yNuONtn5e/x3uK3nw1SW1UEWVAW6sGGbaupmHXo2qmmzkT3N/6UPZceLWssCDWHAMR1qdRGm6+A1OeXNMdZrWVOTAiVnjNq7ExgxHaAR9pvJootuYzVIBqNCjlEQyppFTmDZqEZxFMM29dCqHOxlAjQHCltUZQ0G7dgvdVZKQNWxCnszuaOmZjdUZ5NqHjVqywEfSgHEQVqhmDoSAK4xxjtOOLIcdpLRBL5TlecXeHTAgoBrxYI3UHfI4vGYVBJzwJjyFfLG6MDRyHlGj82OegzKPgAEMoxhNGFO8ciJqTSdAUewTlUJq5UrYRJiXINiNzOMCmP0hzXnyWKGABOAtPwyGTKcBjNKOPDlkC8sXQqvbzoB8o64aYDqSYu/zDHmrmQM8lljwlkeSC6tS41krweRX4yYiiEfI6oQNWev8nCKwd8hTDni3ntP8wA9Vcj2vXdPkFU2cqhDCxCjhIJ6CocRU9u4qWKSUQlQEUTUWYMVx2lZxrFsipIipUoAdZAhTEFst1KXam3CGWmUP3QamjoyNARytrCx/VY9YMKhda/32jrrmrhYdbzaSaZ1CAGYrBbrvraOO66Z3DODzHf9zal9AcmgJTYuauM3L+DkxqQIwt3WcvL9CVxE/I5uBF46zNZ07bhZqn7bIXaP4LTQWvnl+e9d64f3Wtr59N3oOYEavvHdXiv2fmrHvb5bCqyU/WL3oXstzW355TX2VDz23wOw8mIY+uDzDrWITIWYAHDvJbWj7Y97gUtv5KZG4Bv1jP5bx3Oq955Vpi080zdFeuBCBz0dHNKk+EDHevFjHIRJoEYtTPgNojS3ZJi6wVCdDkFtLwKhaPWd95fb6f6dFkgwZWCpEgNLAgGbQRoHsdZ24rwYb5ZzlKCVTjGOcD9Pq0EDK8oFKPf5csFs1WZ7uu0W04mgaRYPp+f7+eN+mg+Hm8Pu23Y+Oi5hxAHR9Gm3V466ZTPyQD3vjmNMw5Hsx2XBwWIbeX0TB0K+BwVpIh9Itx/EdbMceG9eFCTm+BYks8ViTX9J1mS3ygS3eIwNqP5KKOVZR6XR/cbVUIG90jnyen/APHM3rug+iAYWw1XlfUMQDIUq8j9El9w2TGEz34xn0/kBnVc4fh/YVz22IqjjCwIb92XV1yjxae+k7HZei8JaAdYcBgqnSEoPl8P+1AKwMVP8qy9nr/O+ewNO5cKX64Voas9CW8OwJwECnxmrcXINY+gH4AjG+jU+jBaAFbexj1MmjOcBBo6oyf1lNW/KYV2OqwhqqLQMXZyqR/MX/XpS6GKNl0B9yRPsKTt9nY4MNQGL00aWPAMRFu37Uw21i4sEQ30JAt7ZmscwAQuZOeOOqlgWelyCfjQ8l+JqVFXjMfONkPCDqu0YwXeGvK2vlE0SUVlFhKvUcJIrc0N3CRUoaXUVthgo8E6HaFcMCr0XnYbhpowALHeLAiv001kwGjXVeBiHKSbaOgkgRu7ABwAPBjkwbDyu9OmQ0zJLgVVnnCeMECRtYADMEakaqMBZ4EaHfhoF3IEC8IhjVGoHiUYxrB7ZOBYAnmj7GA8DQtwMYX2BxjJYoQDwDAc3tpxyIUrd0GJhHwD2W9NgA5qpMq2RtTRG13nAIgBK3+gdj9yJe5paPpVBWYI3MwcS1Yky8mXDBqUcagSFmvqWVRZMOBCMMnqkAAwC7DsjHJerSwYc+okWnhPmk9HhwOVEc2Q8CxII+ODJDOIqR1MQZFkYZlZHyQSPMaqNwEjkdeQailXb9hvjUypkkze7GVdFhRFoxkzWNEzJOcGWJcq3IyTRK1MnUVA0JlHUSdi+M0zWUFoKiFRHbeKn3jstMY3h2jAQ/iPtfVeEtXhGloLN1frNtMbvBlTdllCaAdVTSdy2RBX7Hbg+3at6L//03Lzuk2tqrbz3C0Ntr2yc++np9ZRYa/hhV6e9nikRL5Zc7DLz4X4l7Oam57KYXN/cnier+fDUxvKhcVOqEOv+RlRgfFSr26X9lNWldUaLVLij6i63uYAsXt8E1Z91W7cxs0RxCRnqnmlVmDDFzJMcchYu3beoZ1epYYQbjIIyutJAnjFbTNeYD1bN7lGdL2+H68fncRwTxGEPmBT5YLVcnC8nrWdStnPeN1k5aNYrwaHtkXpq+iLCgWq/2U0TWY6Hx8v18/HHYz5fba73zw0xSCsAACAASURBVOV0fNkslpvN5QYt2YFiYeh9jyiMq93TDpXXwwVuFkeQ0tNO9glyJcHRJRa2GIKeZLjYwpR63HvzQme5KjvdzXyOIRuolfa79ZI91+1mtViR36M8reIjINGRZigcfHUAfLl/PrZj7baZL98EwItRB0DuVNBWXq3sG1Zrjo5hAmyzQecbuYPHK6FqZw5VTy3T4eAQGZ7fmPOmo+RxT1+TF7HygWcf9mo2dtAe7VGvDa5L2uvwEhjYPgYLxM6W43RQAguzq5PsadxWYH9o+SuryArAOJvd4ZNJofEYbCX8BMAnB8Av5ysAryfDYlBlA6GgUVamReKio5gh7gDYdwTY9xKGEOJwTcK+l2jYBvLLIzO+cmw40sTfxJ1C+HNAlZ+13hsY7c20Z5ym9VAoleAKun8wPYTB1YABuFxUc5SQq2Kg9VHjuKxF6wwu4InU00ROzxIvTSaQN4Bez4TiZAGsMQRadZ1qERrFa1a02QOGkWQVCbgI9oxyAWBUOtM4Q628EwCjhXGFjOIbFmx8KiXXdq2bbrITgLaumoH6cw34ZEhyaTE5rtVJY9hYbvFIB4cYYawpwExuGDtAZjRDzRHbyUSObKQuoGmLgrIgDCTaDbeawgXB8OHJ2QjEVxzgGoyoyBpVyFjGPPBE56BHY33wccPnLz9V6vRZYlCqGkK+Qm16IQiehrKNKvI4qeosLSo1C63zYMqXhr53ZBl8vte3hpyvqbyQXXKsKCXbhUIvaWPM2xMEfQFk8fIQsfkzk5hgo46yIVwLQ4S8Y+pQrUxLhkrnlF2SlsO/pShzFPhL5kLBxYWC9AH6BeMBOhFVZhlbA1WJoBQat5nBLCprBbTbs28DJ3T6LYHlOBDoZIdN446lEHUUIAkOMGfosKH8/t5xFssKvATxN96U0zk/Ka/dFK060nW0/9x3HpGv1zWHC82rb43AfkpSagOa/5tT54nFP5+exh8KwMx1eGZmwF/ERUyQe78g7xPhHQA7WxR7jrjorfPW9WRv/h8AHGpgZKDSOo7VBv7TGLsVqbhAS75Jb7g7dcfsaP6HPmu/3zpphlq0hrWIH2lKgFqedT3s9AIMx3BuldyYylHE9wQWugiBP49c1G0Dsg4cOfDjaQRf5nMAzLDQNA+YI8SIul+vYUfM2ucZC/p5O8zKerJeL1YLANsR+LBnasBxuztum8lmtbrvdt++/sdlvNxtBJbn09GZ2UDXu9Dt/QFSWvzHkL0zonxkRb+eaTOBWjYiHQSlbgh5QELAN0GNedAvlwciy3JXd7txgvgqkKbAj4+z6Ym6YZw2VDzDAWu2ANNeIwYY47fqrQy91EFjMFwJGoaSu0kzHXP6H6kucwS2TRcA3Tn8PJyFx05l5HxDdkcNtUJEFGrFCpZPWxQ1wThfYB9Kw04dpQb+MoQJI2bIxeIfVSHjb9h+npmRaG4bUE/t25Iwft0fnuXgFii1B4wrXYGrFAVo8XnvSPPeEPVIZD8YALtnfTxAXQ0Tk5f7fUHuw143YvL4wOrTfTOu0xqSpyKDE3SRWcSVs/BR7T/TpZQBR/1+JCgth1YSwNiTMlc5YFGnRhM4Ne1BgqMzoeYNCxvmRiCNgWSVeaCZcWOgGlZQBixAastVtKybik7P5UgdHiGWAMkds0AqGOO8rDhrQBRDtD3GjFhprq30PKps3FcrwuPGTJrhlgyrispEXIOR5gBjHpjeGHWMBVvQKgvkvGrS5ELg5dV1ghzgWdRhwOgFkxyMyb4HoMND8+DSGjgBuHoCcM2nN1SJtvZ6xwgCnliaofJ2nculLJkZwqqWbjSHAdwVEQuj0WQ+VwdoXBUzwRO6aOH3uew+mQsB15ARbk/z+WokbHDIfNaqRoGcmC8kWSvR9UBDGkejXNuuSFqUN4FkH+4bKUhvhM1JHsfw3VQFnHwIadDw5cotylhNGZm1oJ0nzVNF3VdIhhwnhaXy0h0teplTC1xDQ3ZrwkhKpL3KTVCLZuB0JktFIrgeaT6rF2m6FlSnGnPJgwsSD55S1p3zskoyasqKrOKMuOycZJc3NACGtL5CsUW4fs7pMojb8yQIU3hn9HV6w2/DIgxsCDhu1Kbvar49M5zAMg9AVs1WxwiqAhEq1q4r/MbLezof254Ekym4tlItPJa6r5D2HwBsdFTR3BgynbBYlHYBhP3ufwD3CwCThf8Mw91nCpNWqbs60PS0uNR5YAfA7vQsd7+/VKbdDqBjk9d6lnyI2X+UoFXzSYcBMzVUD0jnjG3xG0zu6KtDl4Zl6VP0uv12dIoBgm5oKrQkC743BHLlw34/gH2GhpyHoe8yjxh9bdaN2AJSwhLTYijEeDppSSBronLeKMuCuB+FeaLpM1GUxtV6u2LpkYv2QbD4tB3lBsDLDQqvxzMZJzw377f9UkDrfN410/PXH6vpanN87GbzyWBPkygBW5hqcf1XLybc6kQZEUIRKD06XjASi8UfAHm/I1Zhf14ON3/ePh7n/WbRbMtuN41hcU8LYS+6T5sr1MRm46jhfuvVYs0ZoI3cNcTfWtilfQkfH+NHBODb4+O2E6BFrZ4TGWodudjQvhlzu+gt7/ZbrV8fdxidFlBkRtThcmXx+Hi+WwjC2XquhF9uNug0hTEeWDHjhnC6OKJ/rkFKarYNeDuqKRovbRn19ScdFJzTTucWGTk0pJnG/P0IkRZe4uXWdn8PToalui0l5tgMwMb7dNnppLEGgyAH0fV6Xx9WLruQYcs/J0DwfT0b5XWVD9Iol51cmKcqnHFThGa8HgU09bYuSkj7Vh894Dh0rMWn7ViSOOMNKlqjBGiLXCQgsZlc0WIhoxIdh3EYpige4lxm5uXI/+UEqqBEltX06SrgUgWQVIOmIUIFtBStZsgjKn+ngk8CwqTBbjLWCCnmjpB61LDuO9JQ3WEzb+qaDpJ1w9IvTZohRa6HKZZj+SEN5Bpl0+R4/knUj+uGDlW+z4QmSr/q4Uyr2DbCq4BPtjpqSCdZnlXPRjhCDtW2ijVmlIhHjbo6m0cltVZaNFcAbmZ2fyM1wmpmYyQTjuH9TLLcIKBw1Mwniyk02sPRFG/HWABYK/Jws6zpaMU5Z2Q0IZRh0DCFEK1T+mqpBRbusRgITy5hjV0X5RDvxIC2lMI1ZXMP0pil6NebCAsq6AZUeDCWty+xcHKmDrxrZp7HtKzQ16JeYuI9Tc6y0A4GBDouLHibwPYIpjk60w8JV0SPOzn4Yo4chX01m2ULT/V/aLtx/hxlFnRVMO1WyAJPuxd50jUPpwqzEaWlceXq+4IPXmMuKyDysExRa49layq7RxRJGeYQaG+b+jICr1lkGvC08MUNbOdFRsXWqQPiZxCvc67udF4pKoajOj/93nGeIjzvvdN1QNw6ZlgOcVddrBwQcgLZirI971cS3Hvlyp2fiPNPVW0nwuqr+MzNSViUg2ss/9ID/mWeGk++9zLahX/VT4LZzLSZd+8cVNBsz9KF3jf7k8Brh45dzDQHleWNdmPKmp2Fd96DLabPOrTv9Tz3ctkAgIeyeni/93zNjuzZzDafkUcvMZCRoPeOkcueBk7LExVoB2vsJ6EnG0OwXJbGSddZu+5nUe4HOTaMOLYh9d1C3kSdrsDM7Xo87iayKZysltMFARi+DvBI3ApB/nwsx8vt/HCR7+D68zDfHzZf3xeT9UwAeLnZrAQmUP48K8TA7+FwJAtGJfgOj0Q4Q14+ryiino+PGyxFVrPZfj9O6/33JeIPj5v5oep05KnHngPgx7QRtMGVGbawtQHcHfRF4H8HNjnZfBU0PdB+Efm2Lrb+8XE9LBeIl4Bd80KHmdYruGVAZLXckvqfCVTYIBzYTCeeowcOM4/j7nA9mutja4DBVCYL8uXwDqZ3rkdO1R41QQkv+qBE+IopLwAwKgKo1bMyIKfbyZjyWa+nZWGNd3otQbOcsDc/y8N+szdW/lRoGZYq276okPp03WoV+qg5rsh4bgFYcx3sPgy+T8qBr/NlU2A6Ne+VpWzn8oQALAcbxwzeu3QoQI5noCOdwk48N7bn9/w0Io3FQEkO6MU0JiU0ESSzcniWKTXOfkDGGyN5LEbfLWJDRU5ljC6JXJTXcJLCHC/zieEDncEXsmIicIPuJcDS0pFq6wVXHJphSVE7rADhMbu0xCW1qJDzZg2RW5kkL2yGxWCifFpoM5CK1pekcGU5yjBMLnRJALioy8mYTzkJu8lwKnDVlJ6P5nkp1BHTqwtqnocDi4Bgb5eP3WBot3wCMGRKAFyrjGPOV9C3mQNM8fx1Emgyr4asPE8VE5s5+8TD8WQxoRV0DbzlTRg80UxHZPTIA6b5pFynoQhryn6wKpUqQiXlw6iLy2XDKe9+aM1pMvdaPTpq7nkqBWDhwBVVWHmYl0EnqkAtgZ3lkIxacCsN5L7k5eCGcV+D3LFivr+9WwopQ1IJt6ghoz2GHQ2hFfQ2MOxNOBgBHpLnQjiKImGNBFSi78V0lhUoTJjFG/nqj6+cJdRSNo3XeH9y715KzuxDkhAEWcHaS5Yl9NKEMUhGZ9SC2j3Q+SLnZBiAuExz+QTqscBwRk01OLZsCEKO1iXIUOr5hhMocqphhA4b9znRRB8MT8ec2Er+/c0ct9rqKe01Ot3ff/+pB2xzvl2rKLf8riPX4yTy74RnA3GTP7MXLff3Ozm5Wm1iZKlj1s6o/lqd+ycY1omi9pc2ccEBcK8FYIxl6esz/VrXzC67DoBfRGQKpQTlztsL8PfarrXsMlhIkCMDBV2n2AO4/pb4jJGKfMsUdhmAFNf3OffEkrbeV99LQ4bveZlgJtYgF7vhApFh5xUAk20ojS67lmxk8ecW0WVKbJ/j256KAPw2RciMVtRLWZOPA6tOw1sqRYSVD0telHfkHzlYBqvFdHe/0MxhL0ApyLMeJGkxFSI6n632l9vlCBGRLPfbw+N63C6m8/VljvHE2WHz2N/+WteLBbygm9nquDk8btv9x11wmB7D+73g0fVxh72wsFDhopczfYflwq/vf3xc94gObebXddmLT6fJ5vpxWY+rLtpCaIHDoE3e3WK3nFwOU3WfYHtZ+O9274qrsAVjAIOb/9nTCOvxeUcGPfrN5+vlsFrSvmTNFGGYV21bg23iJUrLJ/lXiPTBGUydmTx0wd3BsQK0ln/Z6aEBuxe1V5aHpMnj6YJrXViaPpEj31iSP+5dSMLhfLszrYh4fGIH2VrAnCuzQaoTcztOEJ3tiKXyfq1ppAYWez0dXfF4r/NLeyYTyq+YXqYADhSdFW+0EEz0JRsI2m4d1Gn8cLzcdRIJCqyLlbLlrvaXzUTbngkWFVh0Yn/vvatTDgb+37BtDplGD+fnxCMB8amEVlliqIlilNnIF4mez3AbY8ov/uQqd07RQsxYjxaaq9qsFO5bRSZIi1yholTjw5xLonkVo1Mna3wK96RWplyUkxz5vXI/6BYzZhedzlE1QITfGCVhRggNdOxn0lRD2g8L4sCTA0pmjK/Kv9T8VhXtMMCKEQ9Ily3GMMnq20+RNjwogBqBFwgnr8B5A7/APbGGPUQAAhU/ueqnhpWOrg4R2kuMm+MaVT2aWDOaJ8HaqbDZ2Xg0wWARzClHIJFyG7lHWjYqEx5PtRcMMJ3MGnWgbKBuGGEqCULoGsKQZjpSQ6zGespjSrDqwSiHGzQmaU3BpYx6OGjI07Fh0ARgjhEPaM2J8b1SLcjqkbDgKK/zeFgnuQfJunDLKstZwGftPE7ptYUecBn1e44COw9HOb4C5iB5HACJCJbsSehJozq0/syoDnaIUxqaymWo8IVJnkauZeFrT7iPu8mKrM3dQvcux9HM0BWyYgB6AD6SqAcIgwXpcok+CV9LnMF6VDZ6mWwhckSBwOQU3RA6kpeV+nGipo29pcm2IkZSRJqLhKQKtrlDGjT7ahTR6TsbBLR7mW6M6aeeZzkSOgzVaZkiK9G0aUTWBMBZkdk0w+/vXQ4gY8RJwZezTsaIUaru6b8CqHDYUMbd6XR/dfbqv6i1XMv2pyIxaOJPqmZngWl5R+78N6fe4jM3J+ku+KZqpjvqQOm90l7ThuN1/N75HVKggKKl0Ou3CPcbgIHc1c1Et0m3vJJn+4D2/tQ93OtbvqTvEq1S2lHJv6FBcqhF6J+MRp/ZW70gcPNK+qhdNQ7znpGMukN48Qp3TlTMDqa2Oo78lEQkzmNZpjbL2V4HjXbkW7vjrhGKMVkvJovlemc6XR1e/TqthRgvD+c5PeyXwo/v55lQ3/novJqvdpvDVXjt9fN+ofHw/XG5COxeHxyQAjQJGgkYP86fX7fPf74fVmpotVzt1km3mKMSvJkMUBKSr4K8H0mowtp4v50cz5sT54E0C1AYL6xJOP4Mn0yGGuzNQvmAmFwB4M9PTcPF/8eNWSzLPRz3L+EWYOdXeHGeQFoRBsjpWTZyHQCfVNSlFeSTZlDi5Tnzxgsvv1x1jvZCNFZzUQXmK0H66K6uhewnAN8sPNBdSgBWSkyMJWW9fXwiQwvmHappP+51AgnadgfYe7XjuKiu6sgsj4OVni3+UE4q/kKJmtB8vrgB4Odc8P1yuG6m4HlViVpKLIsRHVY97Yt4bs6R2n9mevZDjx0Zyll9NVeh70yfsQxy5GkMFdQ2bIEEGjJIHKYHB3tyRVkqA87zSOOBMzwNJBOrwVE1YiIDhjmJBJUKeOXEejGaeImsl6OqKpBtj/7lkOF7zCuEXmuipdUGxJDdU8CeoC6G7iEUkIuELI5nyqTlMZjyCykTSsoI31XV8LgMcuHHqGpzA5FB0Cx324RBCSqK1isL4OzP1gXJJaByrEmAGAhCT1pYKiLG7FmRdI41B7BhAtF0NiX7nTDal03dEYKNKN9nSdqAdSQALE/drCZNxCWvCzS4ofiZ+iwdx8HgFm028D6w0qwZCLB/1Md32i+t5GPciV3mYa3yt1qhpx4VA8RnZGklyOsnsl3KsqrKOIZEXRsBmDZfCsC9NlTQipc+RSlBqkstU7NQ+tLOb2jDSJqfEj0FWSH9XUA+VR6tvyfIZ5Yb0VlNzdZik6tSSS0PY8bk1FwLX6XVMHNB9DoaCoxeCvt5AOeMbV+IuXjcFWZ9aSbkPHwxxmQeb0BhVMcTzXqJ5S1hEDYaORB8h6HmJlFRC3MIBiT45hrleU5d/BQtmRC5+64iL04vdd+tvtxxHNhgoFVomXNmry1Ov5umq0NN0tuvANxxEUWvquhfS8UvSP3KhDvPKvNPfLb7xOR2FKrTdebanBb6Dw2YabL6atbF/LqQvS8HwPQj6HZb8HXO154tSm2sUjvPpUJRj63agKIV1CaiUO3q81jlKqTa3a55mLy6duqPrkSuAhg37t3vBiqffnqZmQzM5SF7/TbnACPvYYZQETlYIlkyVotmi7IxAHi7Y6N2KgvceL2abxaw2xLm53q3H9v5UoD2dFnJSpaW48Pu/jUd7hcCwEcA8OL8cT4I8fv8+MD/3//49v3HH5+f3y9wsxQIQs7718ftcjh+/HFbTparxQz+2HLDbZ7Mm8V2rd48E1nwQi8iAFPkdjzPd5f9gTXnNZKXd4eTNlY1YXejQY8H82rUdMj7x9fn58fjgXyfj/uZLVS8nMMBZWNQUkKvxfRdtHFLYw1nW6EEEkkONGlUnCJjPTHu/oSS+k37vAKfZxijXM6XGxu9ZzLfswI3gzjaE+6CgYCM40W01Yl3pfmA5xOuzH+JzOfbScBeNjWHTdu01SYzX+1hu7azLw6AD0pnTyoGgw0p4zS0F80SdeuYBbp71Nd3cegrH2ELwNjbx1iC4Olnon8HwF4b7YyD1+t4DoBjGL4hOgxtmiTqs4MXRikl0SwCci9IqhypzhVQGxZKiHMVQqsUmsxC1rVQ+AldkLJyVKr7L6qE7NQxlRNWcmraDEpHl4qhdi2pxR01lj0oGEkrYSDamEjFWD5N3+FIeAP6OK4BwANaKjHFcFiXzGiQey2LmnIsAeBiVBPDSG2FhYMkVk3gVxOQSnDV8chy6wHIer2pY7mkp1pWnk0wNg9d/pSMVkfjNDi3UZgdzGfKetn5FWiez9STcaq3m7QMeNx6Pasgmilp4wnp7Fh9JRVSyYC1UzxBzXnIqKShjQpQ+yW/ko6zMF+zhE+HamwmBlA/V4OiyhJWbtNSkFPwKM3rmiNl7CkP6zjFzWQfM0AJ2hwZ3bwH1rV+COeejI7sEbNIYS3W4mSkUudM3dvTVxSGtipMGKaVpJptqRUbjWil2jRLFHwD4qnwHdZjOF6sFDt4Np5dWBrvKouRBpMgfAeiLg1QMylXqpqGxMo1KTOzEyq+HABnarCXsjQdkdLrxkF7Mzzy8Y3whffLN6YXOIbl3JPdVoW8UXHurUMnDRJjz2TVz+5v5ycAdOJpFWoBtg2ANWOi6yafWsb6prf6Dxn0z83hNlbpZbQJz6rffQLrU6jlDE1+0lrpnqBv0rO3zqvmC0+ALxDiqE4fsBjQ0Lu1jvhN6yeexQd4vvPj9PovzWUXkIz3jjr7IERIOcoQnM5g7Zru0rgPtCl8l8mnsjXP1zElg2G5PXNXQ7W6VB8zi2m0qrqBr/ok+M9ytG9hBzQuyjNs7DBv7ocpStDNjsJdOh1DGbQdyb5uvBJEna0PHEAifcJpNacy67qdjvIoreebj+/T4Wa8mg5O68Vqu7w8TrvDeiwwDZi0eRk4Ytzvj8+vb1/fvn17CDL+/X/9r0OzXMEKW2B7t5/P1838gCQ/Id1ocC62c+HpjCrEliU/fghTFRIOgxHBWgRYAPYgx4LF7d7iDqBoYr/5pvF6sgn4/BIUFhi+HXdmLQVaiEYoibGeHP27GrU8M8mPuVJnALAm7BrwKZMFkB0sXpdZGjcA8BU97uudwH3WEF5yWsLpWXGVaC8ozQa1/gqYZRiv/n62bYHh5fUm7BfV5+X+pA98JBF3nNVKx09nq5NzpTQ19p5ysv3p6nrz1mw+MWeaY2bGgPUvjhSjBN0UGKEUABbwk1Ul8VyWiyWy+DQO9WklE8HaO9DjnAdzFBNvUczgOGcU53CgpGe+WX5Sa6VQ7NgCf9XeXxyXDF4oMpSgIelB4VeI1bCiHxaJCBFYln+4RQzJR1gTHQzgx8BxoyGaw7VGHwmIqcEEHZ4qTbcdOdUxp4PNJQMTuoTpoXpNsffJPmiNVmBJf4lJFZYNppTYQoY6WMOVRr5XgbSW4L7j4aDk0CnkUVNMOA1mOgU3G1OTP4O3MRCWI7ozOZ5xKYxsJnOkjk1ZqZ5Mm4GmHDlwBgDL9ebTMdB1Op+B++J/FWhhzG6sKAvERldYswThxMGrYAq+GTrptWwUCLAAdxpOchYYYD2caADhkAFKDFRSUy9UBdTwE2GVcSnLSRwHsjdP0pKmKYUy4CpK5cExTqxjSA6AHbEI+2jBeRqhICCIhi3mxn1VqkTKGAMhDjHSpDNKqbApc+KsmAlbKElzEhg6Atqe2sUZa9UxDR3AjTMEoaWRb0DLAw9YGuj4sYtKS8OE1XBornEwe5rhZdPKEHdFzq5B7wh2Irw2mtLQc5ujNXm2fAecKhFPLbUTwDsUSA4YIsYvQx8vF2k+ljus4UY6h0vDSPZsFTJZxYXb5aue+Ffk7Fl6WTu3pDj4H6rnNye9fhLRTvdF3PVaWnbDzy5JGaXkt65Jz9p5ZB1G7jyfSzt8bFBrVehX1bWRdVh5MlMAFt5gwJrxQwA2J/HAENl7xk4Y1zb+3W1jNYw9BxZVb1Q1YjmaeBkELykZbNRTPq1zwmomLTtEKATkIPCMyaqLqt/uI7Ua3W29RclQ+i5OmuI8aGSChD0O4ZhZNtwsF0jTQTgiBoYFijfDvBpMBJiFkpIunel/uF/PV9v1fL4BFq7n8OId7q633XQ5W05HF9hhbEGptsMIrsryCLIRxtqHuYgFnKK3gE5hv//8f//vo2n2h/liiSnecZXIxYfdHsYasgcQnF0dVmE/9rjjQIVgrvPDSGLcslVN8ROSDRhKsde8gx2ERpY9T3314/Pb9+/fvoQJP64AYIXTy9VicB9EX0YRnIm5QooBlUct1LKMzISCE0vURy0tQzSlTPUMkGQ5+aJEGMNWJLW354nwSn/Ms1as5TxSW/vlSguzm+wWHsiNYOWaaRyYYT65ieYzaspXWoOzgauM9+xq2TaD5ORULJ2fzH3leHQhhcZ/rQ59Jl1nucBxau4EeFP0gK+7oTAZATrZsiOmMYu56evaRtMMc2TV4OoppDdyAKyy6JD1C3TCyGSCKC0IvRjsTa0HTCIRk0ek8FJwvIbrJsf8UJpE4S+TvQALgHLYwTCiQroQ51dh/oygv8FEh4YQfC+srKjSUo2d8lKDgctiPIZlRG2l2YEzRcP90JFSifHYGT7Skko9GzSfjzy7gsMDYxrmdVDO2FoFco1HqikWxhp4ApbCHKczANlwoJ5TMMYYD8dWMhYIHWmzFt52zdhKyTSGIT4rAOMPLp4u5o1mGzVTTq/PJihNNwReKLfmszESCQXCcT/jqaI1AZgldjyQnjgbTIFao3+NGs1MmlH+NagUoDF/PGZxXuEaTFhnjysd0IKibajabnlH6KcC07uKceT8jNSabFSEyQgMuBwUWRbAd+c1LNbr49hBvqsWCiMeR2TAOofIsrBO/Gq3mAoXorDySB39iPxE0TRJ1QU1yjRdy3BTqGzKvAfmUDMNjmAKII3ImVnmtlvjwPV4DHphmRJOo7wNUVNXtxDCCIignWMBIovhk0QdFkXXkba0E11yTVTmjnEHwSgeyLPDfdLLlQFiwpEi3Xfg/cDItPxLI4hI453ena6pjTe2fm2/HVfqdc0J4+fSMHy43v5zWqmF2l+u/x/A7gD4OSjMmSOEUPzkj6nYDGeuVuVMddR7x1rMHd7ivb28LWFT5U3BWJ9FNXkbPbbEuRH5zXZuvvPFbhMp+po1/FSdu8J6X/XfMO6JcQAAIABJREFUNvj1MkfVt6Rmc1ZR9PWePWBGNzCm2RXvZPVDM0Q+1YBnxLGqChIdk/PJGrlv6obm9tbtufSrPgMh4sR2hLJlFQqJYRWaTe72AsAn5gE3m9V0umFYwPnG4dFVU85328nkgECIw3YxrKvtfbs5rmZz2YRf1vPFRkDget/VfqxPJiDTT1SXgDJjWY0ms9Xtn//nON5dFrPzebcYZUG3E2zW29PmuNkzvQlzRKd1IvvANLLtZTy7X0HPmUFw1KB55OtCVgUzSsKv2lyQWt7VAvrb9z9+/PHt4/H96+OOgL6jsdULho8tquHOEjBpKQjhhbJmQtbZys6XK5in4O/d6rQXLXLfHxB440dagQpqnnVS2KjvjUbUKCtfFE4vHBcGdAujvQOZSYMfD8VfE3SxNK0A/ACaOybMvjYf/6w8nK6bnFhyI706P4xzVBd2NODFyLFZY56dihsgfWLJ4ELtFsepXgH4cNsLpRwQgLHvyzJMWnAYAI1gzzxnAcBUJGJhpKNRGNGTBtqrMFYI1fJeZhVCuiigxGyVOxpwp0na9oMTq9CFgXoDw7oNXeSU5pWQ32RFnmAKCUXqPB9qgt9Qx3YBq5Us95giwgw8IZoJOblgJAOKDBro5wRLxQEtLCv2aumZSN8p5ugiU6Eo0fUEu2bCMAFYfhlOyyAXBgyjD+R8DG2MuJ4FXg1fSFag2XYlsg1Z+21UL0UoFPaL8N4hXDNmk4YpPySraEbToQ0MebqYYYporggKu7Y5kwflMsi0BKSFmo5ns2YhfFgoNAvVfOiGUD6j4dtc7sCItRXAG/fDCA/OaSPt/OpM01hzDjgvxazeIfTloPLmfzIqMPwlBL8eVnmJzIy4EOQodJosw1tVs3pfhgndTGrULn7tAVMmy1iOSMc1AGQ0ofVNROpTS49SrRm+aAMPrhvGXuEfHSujpcOf4iFEWalhoQqkMyEfGjKOKwWswFibFgCMVm2r2Ar1jmNZxVI0pIMkTpRsa3VbcN6P8wyzU+3xqn7+9EnCjhMtGU3BCxFQgpI0n4vzuWYRSO4KtWvwZWX2alRDApPQbYJiCZhAtGNagQYOR1o2dczNVYVfuradp7ej1pYZeK+65s6bstEnEKss+lfAfTpldbo/IzPbyHI5AbXT6ZrW693tCp5jTO3v3BO8d571aaKw+WE/1WbvxHS5oO9T1ynvuq/umw6Ae+YHTeVzO2LdJ1HuWrPWa109zLFLwyYJ/ZxupmrcMqcYyqwqqo6+pyaewkgHDLnY4uBb7mNfhyMR4ItqiDPtcP00U/z55uQY0C1BXgpiEjGcFHBsLk7CNKmXizmcnpCGdEDmEQA4zqvxZrNcbhi/hxKlEM/VOBvNV/PVWfDmuF3J1372cZ1MhcJO59PRaT6eb6EXuh+GgTrLBX08PoqOEBTimcoqPhhPd48Z7ZVXzaAI2GcPtmcEDh20lLzfb06XdeZ5MGIIORzYH5yPO47Rqr0U1EhmxiEAvGfgxE5R6HJ7sO37+fX19ePHjz++f31+/PENFPjQWkXdHPReFYC19HuxgvOZTd4XAL4cVUbFKwl0GclVNTd+AmpegONnremyB30hSINmGxqzVcx7+UBXWk4I1MBztfBJtQ2Rn+Dghce6cyNxuzHY6XY63AnzulngMzlZ3LPi7oXKK75LwObTlWNU5vmBT7itURsyU7NmsQ0XjkZdLFRpfwEDbphOl8dhSgDGWBg32X7ftpqs3egcnuwMQ936hRyJxMaRM0ey5uS6yGV+iDphVsSJBdyoCAvjvdDPJFpRztUMGr1fG0cqEOEp6xGrzvJUKrhEIz3JVNQp9S9xhGFOzKPWQwTxzFRPBGCGhBixvvSEqtosBjZss2KoDsxDHdflD+j0jgdGkkecOyaKo8Q8KPkjLLIEgAclxEx4JIbfwu+/nPn9ajpmjRvNZ+AkDIgH05n2fOkFI8A7X8zJZgcTaCFmEzmcF7gAwAmcnalJqqBtg9TfCSvOchvcerYAO56NR1OWqUcjwd4lotTmy8WUarIGwUgkuwB5AeCpCrCU/QJr0TY2Py24REOqNYMRqxbjMapE6TKwF38NNMKktbUe5TXyBmu4gkH2nOC996KcM8GpbI0s62JQR4lOUI/lzU/ZP7OT9sbeei60I6HuUvO64UXLmnSLS0xlD/2eTQMrM6aBB+aWiIrc8YHUQlhlQ0GWuiCLJvwRsBBhQiR0DDRNWwDG3/KfHXcpJtXTOEh0rjgJuWqmWlimJSan6KwvrBvGWDvPYO++petgSoXDHAjdibhiu9fFfYDsN0B5eYnJwIzIp6Yei1sXMCtho1Ku0jR1KvK1e2yhCa0UqPdTBAKYqwGwVrA6CoA/AfAvDPi/t8cyzHw2dNurCnF1lWT2fyHY7r3KvDzrEvfNaRPjV73/eCzF5z4nUQEf/V6vBWDnAtRT+5C+SxXWjB+v6+tj9bXebo1gWL90OhCr0HykwzBIn6lNwOU+5dndp7W0BWK4jEOdQULND7mrIdGWpmhyEfK1sA9jaQYieDIHbgvRSsHBKQdKnIcqCYi9tAC2BXKAPRkwBl4O59PuuIHhwHi5nE2XG+0e0sNqN6uKero5Xg/bx3E+qJvV/mORDTfH03y9mJzn46VQLAGxwxjOXJ4ctn4CMQ4qkYxC9rHTG84W6+NyvZDNeMkeN7YlwfI+XV5WZ+d5vDid53m/pxRIlvEyGmPaFtEQJMGCv4x5AgNeC02nwdaWJhInYbfCJll8/v7nj+/fvr59/yYMGAB84HAUgFL+QNZ0UQS+Kvc8C7U+6WwOUhSOFo4rAHw3qbNWok/XLwF1B6soQ4M66l0CPi8gtA+OIBNh+RCYRkZRnH1p0N+7ATCf7gfqz3e5T1z/dnnctPqNzQQK6XIWf7y5vEBgJQeZUEU+7HDeQU2sdI4Iiuf94XqyCGDdt5gaGuNKF+ra2XSQLdf24MRdF2cLvT/JLmg9F6yBJgqLWyKcs6djiz3POcJDJGG2MFHQ9xwAs4VlBZAojf081gmSOAOaR7GOIcGtl4ALdTNcHKo0ZzwDlawYTFLPIsxZFhXiGGC/hNLxBDEH8jMtEAHOiA9GGECqTjQC8WUWj/IKfUiaApcEYJgtMvEPwMSsvKaRB9XhYSDEiONChOtKnYMh6WqU55WEHUH0vC5VBzwZ5YNh2cwL0GW5tCgH9I2eep1SSCnHb5GZywGmCVuwcEOnGZvALOeLgLwNaswzRPbSo03ze+UaK5i1TaZL+ZkACr3VfDFtUHOaLeQ7tFyMh0ipn8/HAsCzleaFL6e4V6T/ThfL1RJZYWDS05EWoCcqr9YpaC15Q1Q9nwyHzUypsPpvTNkLZ1cYGD2sNT1pWNo2BPNUjFRO6yIpB3lU1Xnp5UWNiVjo4wbMw5B9SJxAMw03zAJOWG4MKTQY7kdZ5IdZjjUt0io0+QFwFTt4VFOwFAgF6XtJ2FMxlEPhGAPnnDBXV7UoDTBzCfWyJtpAD0WUDPCTQKky2DgJQtMAsvMbZyaZYlorDibtAcvhmuQF+A/CQnCE+lr+TpXpxFqUBu/x0azBnF2CCnrcWunSztCPUUvFvLs8EBkw7f01hAKUGUoIrpig3qr6ZpHcBwsHw4+dJyc2GO3zBQqzAOpbml6svnS6wVG/fR0v7mhzE0NIfRtJYmLEf6u4em3+vta6bT7Y9YAte9CCHHrOE4TzUBgnenMemGwv97zfCc7WmO5ZJ/gXcP/999878kyxmeCb4cP70wFwlw1XeT1atvYJrVSj+J6JVLTEbXdnpmHq9dXru0J5p6vGHL2OH9Im7Fmb9n1GNZq5JqTRqJ6zaCM/UgEg0NundCGOwNMDliQC68JxykMIBz5EX8UNGkXDLRfMKuEkEyMPeDVHkIEs0du1VqG3AzphLeQ7v1OVLCW0x1kZlcXysP+83RdlvVhuP9aDvB4vD4ddMzhtJ4Pd+nC73M+lh0IlDEI81CCxK5O/QdxjWGWWw1oO7gB+JOb05SXL1eJ83h6RxgQ0vW33C6+X8EiC12cUDO8f+w0ak9BBQ/G8WQE/Vvh/v0M9GgbQasDx8Un6SwT++vzrj4dQ4S+hqHQUMarLNuv9KLgo2PhhEilO5KBOfNSK7Pl4vnLU90pN8+loJWK5EaMevoCiRoNZkr5bU/cD8AuE/Tjd7teHIDgA+/H1wDT0g4Vp3OID8jCcBHBRiD7jJvcHFORyt7ePr4/rx7cP8GGUrG/X9pFuVjDX5/tUZdP484bZ3jP1ZmftDB916EgYMsy594cLDbjouaEbmg3TnE7tgPMWrpWXx1ZYH3TQsnOLQGkybi+hYtAkuQDfYe+p3PR6ZkvjU4OFCb6EehaUARE8WGjYnWBpIuwmHiRJCelOnsC1MEeebEa9DMc6hBTTlAj4S5NK9BWLkmHvgxFD2nNIcIfM26XgdqBRhHWBJ5ukReIoNsrdYVbL/3WRVbSMHgKSICeCE6PlMzCkt6ppI8kYAosPtAiGsY5JISCemWCjSeXnjTyDCfVFZUnjKgHsYRyUgldw2kLuUDmA68VwNLWc+6EODSmbnS5m4xkRc65aLPlpORN2CtM24KYg6Yid4smY/m1zlKSnAsRzlqIBrvhR7c1nyqln2kam7KsRor2cU7Q1ZcsZemg8zqQZ2mCw9oCRXagceTDS8Sa0gadTVgLAeDlKBQ8yjifB+3OoDDfjBgobpjzxgqLgu19R/FZTFhcmIwjAy9GwLFPv/Z0WRj5WwjDs9YTTBhlWCLVtIUUkksiChiFhK/y5KC00WUMiEtYXipgj1v10caOPJe8i5sVs23IIKaH+KSZ5YY8s498G5TEF045kBg6gsQcoYbSSqEM1cF1dFKzzbPqFBFsFFtJj0uLYhqmwDCs/Jb5Cw+0nZvVm8U5xX0sCQYcbE+T+YoAABl7YyoZs6PGWlgCgAgmMVPFFoT0TRs/gsQgi7AJfvVD75jpEHTCTHdIi3UCra4ZGJBGa+k8jDtNDm4aLgCtEtt+lpfW71zPK29G7cNEHLO7KTQ3b37vmB/JGeFYLSmcawsu69GM2oHdbAcece5r1IusHFgXMaZnTswCwlbUt4wEjj2oe2fNeZpHVg6T7c1qyixrutaotbBn8gADcd55k8pJQoXeWInx3+qaRZmyfiqPV8gzvKd9ZVVazJOirmpDg5eo9sI9WAV+cseUfZ2UxPuzWF51GQT48KpfbkSx1o/VKvuRblRgh+e+wnZRFs14sTh/fbqvRbLtY3ddlLjv+xfG8bE6b2VgQ7na6HHKMD/lwRVJ3LtIjGooFGEOXb4885XfmQfWxI+y/55vd6rhfbre0i8A81PVUBJk6ycmankQjeRK7oxlIwHGD/He32u7WmOqFU+ZJgVPwV6VXn1/f/vjzx49//v7x468/PwBSN1cCPqtPBnqwmBy6s6Qr8Knq5YthHKysiXh36rGEHz6snowJIZ6vYiqTW93ZzL0TZAViQXW/P74+798+CbSoNcu5nw9e9NGeoBAn9QVD5m8ffI4Qj1/vn+wIa4nawe/Nqav1dZx1Fso0Vmf+pPqsq3N5duEOO3PAwliZBjMcLNL4WZoWFi07msvx9NiOQVDrOpcVDk29mF/hHpza1FOVmgvTbnKTj22hU/jrTjDgDHGogyEEUhahQW8TgeI6g4FwUqSl/A9/KchjXBihunNkMN8tKKhV3iznV/TlgFcWCXRNe0r2HBnYDnaKsjP5tVxf3foDZB1q2KFlMSGpvRpyXBZzPPMRFMSs186s+kvvqgEoMKKCNFVwiAijGtGBkzrIG7n1lA4drMw2jAgMe+l0Oqgwt8vasgqOp1r4nehdgwUDP8FxOXls5wgBnllMCIrGGu2JVPDFkrx2KbvVuZ5pveCpWj6jXTyjMJqNXoQuYEJJQHg5A3EWgBWOPWlmq7GGNQBjCdeK2NpiZlGa0isqplGZrjnVJDsIGG+zMsAOuhlII26oLAHAuex5Mj/CDgk8T7Y6PMmHEsaD8RDm3XWB1JV3j7aBPSTx+gbAEdXz0G/C4yp0FWlMjSMvulUrRwRgmkpGBmtueNczzz+7NJLNgJHo6JlnmFjL11QwP/0S21iTQnKchCayyRHcmqrRVghaoy28qOXPsmAi3dpZZ6bWKsbjhs4oXZ4qxdWJ6zGHuqGgMZP6WNrMC62T1N6GrzC0iXraKeHpovKJQpO29WA63L5jWqLWZxdn3HxogZzeI5plgaehozROa9RT9bJTaGlOL3IKX6yrHHKZ6SUHj96eVWr+g5u6WabWUPJpytVtCWmnDYV48dBsxWLOSgRnegJjKFigD/uuBthdVUHTfNt6wb6nyikzvuj33ZhUm+XU+xmOOy4SAkJrobYBkyo0gxI39nyOQbsX0aYfvlhsGPIrAFPuHDhnEDWQDiPEjeCTtDEmNI1xtMQRvdvk84vjwWY53Z3O9PUXKnm9HI6bYQpx1kbWgrX6/CNBYb+Zjyebx7jYHb9mo+H6fDj/fRmUq+V4drju5sfVfCI8+SoAXPg2OOBpOiyHRL0kCzkw2uO+wWNzHez/vevFzW633KznazWYXK/229MiePf92Lzj4qRh8t96R8soEHUd/l0KA94d1amaewUBP0G77398/yYs+Nvff/7zX3///e/ff/0pZPWhcHUx5bH1Wy+0ZoQiGDZdKsO6q4UlLLzUtIvGmfIX54pZZr7B2+umQ0W3DwNgwCd9L4HTJMDfP7993L6xBC4IjPryJ64jl3yiiq2Pw07xQ2vV7Po+2BDG+Yh3PhOAX4Ce/Wae2BO+PHHZFOD3ttt8VnnVTUvsHCmzBjFmsQ58My3KAW/whfNo1+sB+dDHx3YCwW9Z5fAEyiHCwt6PTvqqo+nQITWMHABzh00bIqwhELaGFDAmzttIIDBPGac+AJPNs4Fw36zEH2HA2UD4KXw3bAgYDJc9XqbD5dVIp34ZZJPXozpDEq0AcE0tNKBYp5NSkuICafFawi5IW+UMqqdAuBXgUyHm2BfKMZbT+BfyLAAsrRedJeR4PFfd8ERr0sKiK7SVq6qpg2xcIeSBNe0RYQk166CXzRdjYX+DseCc3B5TQY1lI0wxvssyNIB4tliQ+ALzTGM1symkRsMxpxNhwqSqwF0UqFGhFqo7sVL0fKy3JId+niYTEF/ZUcxXzXi5kl+ni5UBMHvCqH8zmIStZ7SVl0vQbk4kT2j3MQZOjyea/UBGL7x2zH1IjSKExtsXnEPK5bMr8jDOU25zioIxSdCl12EyYMkfNo6RLHL0tRcQ6ffYrPJ6fgrCaF1hz9iuNXiTPE1dHMNLLzR2mi0CNVXQARc3Zc/w4NCwuNBAOQh1HDhOHJg7zHq59zgx+1QH9mpGjcwHLVwb6YyUiRoHxtiHHNuxjc+lZrvxBGDGzHpAvjByIq5QZV401tSvj3k+2OioaWlbp0U1JQIS9zVBytdvFzcYrBXaa8f9+p4zzlYRudu4wBcWXW/MWUcmM4+ZSd9XR1mv39pEvrUA7Kyoe/Tm6nfUGfONGA0Dro6ztnRjxJ03G5ByjJZ5Ed1O9yf/6t4vde+nAYj+igK2J0wuQWle+KhDQxhxwFQsALr1rPdNb9OnXeTrxqH1o3aqMEt57vUZ79zxsJB1fypBM9rpWYK35roLMva01m2YTDU2NjC+yeHgvAWC4hOA4dplAOzxI88S6O4zWX3CNBnu1jMCMINij0hPWAu1EAa8WUCFxQBedBD3SC44nopwtNzLd34ja/bX56RabmaTxX47l/Omm+Xudn2c864x7jD2ff0iyfGQZph6Dlh7cpl2snh7/Wi8W+/XU3m0rctY2G82Y79vnmFY9eMJCqQM+cVTZRYhEHixEhp83NGAgxLo+8fX1+cD88bfvv/4898f//z7/ce/f/348YmcB3o2I5yBnVaVKNOeC74ZFwqV9Rrs7pLQAhYxpEti+6meHjyhkavV5xtpK08GwJ/EVfhvft4/HtcvXhewC22Y3CloryBwezOFZL1ryq6eD3ADy7Z54ifz1Y3Elc+KY01EXl6dtW86bF3N6IPyL04rHeRfTiTfrzQmO5xNjeWyjdWIBCLqIwF4WqGFiuSZFLXXBIsAFTQqEKSn+VvPrFXptcYKWqQfP+cxqWg1PwKAK5bmMg+zCjYGeQaXSaFNZS7LeZ1zaUrVWxeTPk+ryhzVaw0FLEl3c8HADJH08PvPOWTEsVNclFusQ6bGliBpBa2r0OuFN7GlGnCAFy5anC3KabCQGF1Qnpwg3lOjY8e0YqRH1IQBdmU9mAzDbFSydcx8Xw0dHo4HkV+iK1zXY5pYsXdKu2coizmVi3+nFCmD6TqkVYJMLJ0RhJXgouCMevTCXXE2J1SS78pFY0q25ouZ1rJnvJn8vFyQ2c4Xgt3L6VTuQseTiNcqiuZpvWTfebbESe7FkoNnOrsEAKa51pjhElWt01nyKQwtV5ftgCKnUCCK86RkhkFJgMb7BwYMH5QBDMPCDsUvqMZpMKEAQM9nuxbARP0Am6xYNnxs4NM4eckjfI7uOvYK7FZ6Gqs7pcPSFrC1HGwAzHlf2zL+xB0DxU+Kn18AWCXYjM+MVR7WiqESVrwTZaJJ1kYuRaobcyXodjRes415JetfGxlVlY+L21bARQCPZlZQTeEzd4DaKo2Q93vMIZPLbU46sNfKfrJHrXfbdQxNIM6pQEzWugAL8H7f3KawX+B9qFGUmjBy3EcHkF1bVK0nu4xTfKfGqt92WF/GcHvW4n13WmTnu+Gss/rdnwH5ZXzKWXr0A/a+IwKwMwb7zYOdOFqyHM/yumbWHJhuqvs6iGwG0850zcaO9GJ6dwCADaPf1eSz11Em/+Ye0AGws8QyBt63maaXu3dVbTv5ZMM28A72SWISsSmXQNaXjHar6fZ8OaP+zH7h8bypk6Iarxbz1WprebE7hBysBKhHshmZztaHzfIggHGeTWawmJNN/H6xnK7Xh/vtcUw72tFAecVHqyRL4A4jazGDJrxQW8QheVQ8ms8byEZkc77gVC+sKVcbLCqIQavwvc7LOUZnL58P6pB3B9hBw9Z5uRLWfdofNWn+KAAM4w2Q3+9//Pjrn//6859/vv34H//+89cN5F4JJxjq42GqY1JITi7RdUrVVBfFVWiqCMAsPT8eWmEGBt9ZOL7f0JgF0JrU6q4laHZyCaIfX2jkfv94fBJ3vxRWH18oQH99fT2r0Nr3/bSKNG8u1xTe+/FxvX6YRcfNOXdclDA/HnyWxqKvJO8cJeZ08uXmpozV0wN/GbM+63CVGli70abzuZ0ThvelbMTuu0mJbie2y/gMq8w3ebNZ43VhTPvW80O3aoSaUsL1gtSEBbI4JJYJFsLJlyKUIIWqOS4yobxFii5wITCYQhOAxUqBt1CDXQ4MV7hiXSgBdliLQWBaARI/UYquqdMdxOoVyLEmTgALKWN3mLHs0EEP2PaEc9RYkIjDN0OaaDF0oRAcLoDI6hcSp7FFvYNAszM8gIJ6MhpGOTqkGtM3tMzhUVNHfg6PigZN9HpE6TOK1gNLLTJnqbH5YjSMF9QJJOC8kdzFUpMzZzNUsIHA7OwK5QWm4ho6xjSfjcZTmmGh5jyRL6PlbU5nCyfrmkMcPZuzlD1jVjB6x674vKSw2gBZ7koNPhSUYYw1UfOs8WTIyd+RRTyO2UyXnwsOZtGdMQuEAZMO5sjN0E+k9IMKM9SoQJdhz2vtgbiOUVcve3U6RKVmTMVB8AJCaCE70S/4a83X2PFkv+3bqggpMTFxi6MRNPxago7N7IVTIwx2oHE0b8qG8stjxU8WHFvXlrEiSijd3bMGHPFI12D2pA1uUuYdaWBt6KrdyRMoKZV10RSeg99Q3SFaMbOaPunvqAloX7L3bpd3vCd0q6gtwMQWhhH0mbb19sQS5APbN/DFh6rotTaympKEvBW2EniZCXvfwLcePzCvZYrvb/KfCpS6bRe46xqwnRfjjxfTyk77r/aUO78CsCYsYgxYWG7MjzkOntZbnd8CDWW2hisQzmtdMzzLV+g/Abjb+9nfWUvEBGC19HMuzqD4GEfCpLM8+Y75gfZdCdp74riao2ispLv3trfcQj6zHCxsyegyhDEckIupxB9slpO1LMS0giYVuuxqjCHJ5nk5WzPX74Ic3+1yfbweMAUyGc13m8Xx2x/fdofTWvgE1JXHlQD5anc+3s6DSCs/GoSDCiIUtNApylMBAGsBOkArOy6hqkTNT5hCCUUJ/psvpsPRYsUZXwbrbY+YK3p8/7jSigJF5+1qud5hh3C+QJclRFi2EdfH57dvX5/f/vjx559//vX3v3//88+f//zP//Ff/34h/uBhdPPhZoJomsUiM3XQZwwoUc9sVPPjoYZa3z8/6JPRMl1F2PuXAa3hoU4NETy17fv1dQUAQ5L9BREW1WGfX98J4XIFvd7X15NY2x3rQ5ALX++cUiKwu+dlj/e42CWuSXxrS9Uv0KyjTCTgAF9mNLMufbfb366cJrY6Np297heB4Me+yWHEgUHgJA6SMuuZ9MBt9DoEYK/NrVazBBpiccfv65qjzggcE2HeDGzzkb4q94hAwazOCMBVauGbYaq93pxMCqVhIbAwg6YJRlFqoxeyK7YfCxhPwquXLV9AbJpTlYUqKFTVCTz0gQT4H54balGMLF78Px5qLjBGgKFSmtJYEiF+OkMsUKJCsNQ177SFjHGbIIOZs3o6jwYcXhJkqvxOPF1M1B9zMORc76geMqJIrSCnUD6pEwZTBLXWrTNBnFHCNNCi/ZGxRZN2DphnA4wNTEcTrWmjmSy0d2KYO5sAQlUYPZuvoanGX/OVtbgbw+n2flunjolRc/5RmAe2T/hSmeg0Vh9P7FoGQ9nZ4NPBG4LZWJQecvpAa45wLSsCivY59tNFpOskSlsMIqC0JgDZ1WJt6IxYojALA0HjII1eys8tALMUbKokxcLATe04FE2edFjlUfy3dc4hsntlAAAgAElEQVSIzLAjNlePKAh/IdrP6SgVeQWynsXaUwbgymKK4aYA0v4ktdIJNxH6SA6AA3XWQKkaA31p1Cq9Et1AuOrRM1jAb/GELUXFF18LmUHXNI/aIvZs8EiFzbro+8aUXSFbS5GhKdy0WICGNN8e7JmjUIcGqddVGxJ1DVEmz1eT8KuNeZpIJ59YE/f5BPqqZTZ+/E6R9FvrU+nw+NekYQe7vyCwSabfObOEtwl6pu4zrfA38/TUQopHFyAO2loVoW+pSr1f8dc2fgrAmoPh5tG91xQGnxf4z9RjlwTVWmxp3AONAHvthqTbZlfoEJN8QnQt8t2jQ6lFk1JTQadF0Ry2C4DYESVoJOdhDCnOyvFqLkvIiqG3QOfjfr27XHdjxmyv4AyNOZ3H57EZoqI2Oa7mzWa5OR1v13HGAxyqDCyK8tVM0NpD4Bd3rUnEYItuPyxkb12Xw0nOJGykzZGCCEXIfV++w8h+mc6Xq/1ycxfGKHCoc7qg5DsEMCB68HxGRANEWADgr++sPv/1N0///v3Xv//8+df//N9/f30+Li/GGOoBpX5X16u8EhhVqT+kKpr5A7McBD7BTVVXpVQX4Ik/X65W/FAYJno+YEGtqiswYIHpx9fXN3SBhQejRP71HS1kV8kGAuNuP1WdpQTYkPh2/zQAbvVatocwMq+Q/3G+3uwZaDFbp5+40eArUusOUOcbnT1O2mH+cHou1W5dW/+Qs9zD5fIhAJyywYfJSQHgtKPbzL4L/9L0T/8JwMgD5tCjJlTTh8CSbfBH1cyYLUrzusQsLyhsKrwIY6RFrPv4IGQDERQYMKxN35r+zyj9Qo2FgwoLviXRsPObs+erPWLLDmafVxYRXAjXYhpw6AAw3Z2nAJHxuFIfSsCgDt0wEgHKI8sNHjHOcOBan0WKCh6UZVmQCRAxLZAAzLggjAf349F0IgjeGK0Fg2zog8GABa030/p5gpzAUWuCyRMZMf04lPRuV4uZnaiSAj0lMKJ/DIUWzTdmS0wkTZdzeEQTPBuBbsilF4RzYc6LzXoOAAbsCni7iSeFXtS1Ffkn6nU54zOF/TsL1hxLAmcfyNOm5gwkGLQfwUgAYLw1QYyCV8oNj57kjZONPnyjy1GV5ZEGnUOVi7UMP/R6DOpwYzZtTRgmzPj4ol9Oz/qtjclqpSVycmZDmEjHf2N1k9ap3Dhxt3/FdEXgyMZ4WrxPY/OQJvwooJJVmMgpUJVWkEeccLe7TZh2jaRrV4LWErEfUDutccSxUW76/2NdxvvhtT6vVls1C8aARVPiC3DjXeMcfTaD+kpMeXq3lZ9OxBotr5OeFqjXV0fjwErSWi3QPSUBuKX/pMZti9xmC0N7t1WZhjjHKKP5Z6jbB4h7PMKUxhB6OqnU/8kd6/U3FrU7TlmloNuqtRT1Oh24hLMq3kZM9Hq/qQw9gvNAJGjCvCRI31Xv1O8+AdgmgJ8nkmbPMdaALqh9fTu73UD+IJcwkFWtRwMrTRcO+i742DXINaRQNgVYEn1np+kCkXwzR4FkBjp2q09QshVlCQM35V3MEUcoDHizO12ObKOeLvv1dlUnWdFsNvK93dGV4nJAfXqzu1w2W2HHQVaPF4fzdvfx7Xbez5pmMB2PD8vJaL05Cs08V/RvTnIudohFHcAmJ8/jqIZda1akOV0YqomTu5YC6rHQbmJ2VlTpoAxwbFHEiPfMy3YCg3c8Q/SBIRkDAG+EBMtOYEO7RaQLXWF+9ccf3/74659/5fTnf/31498/74//8//4CxZPj6vVaq8a04tQBNzddY9Bo6tpoJQZGsfkQJPQ5w8rIevpqkT1+gmo/FIABuJ+UlwFhvvBLGKh7F8f169PNobleo/r5YarCC/+/u3zBYRx+efDWCtZL4vbVwDwBwH4RTZtUCtX/fxQPRiVZ5R+cQjrAcB+UFxNToxcKu0NPx7XszyI/IH95A2F+J+dMznHdL88MJ71sZ/mcYZkOUhQwrRM+yF1BEFrrYp2ivaKtDzm9RmeQUWH6f0oo0G+QpahlItPPq3qOBCCOspj1JiTSrZoco3Uf+vqN1mOHQJtmatnJSKPIKLKqPbJinGZZvWgTFPEFcvSz9iGUthspSNJwxGiAMoShIOFaVps1Ohn5OqiWLFpK6wUOuHaFVORcYtrlgg9qgYjjWhACIHghzwhiwgaTFmKFdAZpPUM4NugMDui6Qe9plNVn+JpydPD/CxNL8xkY0ZgVRtIAPBcURlZiRN6ddD9Qva6VCML5FUlMJ5FYNan2RKeL9cLIuYUgYVwg17QlnIxG7RjSDM0fQVhR6P5cjJZApWXi+mY6mmA99SK1SbpWi/NXVp/X6CCrWcoAA+nc2xYmJWEHQffVtkCjQYlTUJhCooRC1bwaf9JL6xhFYQlULqQdyaNem9Ynymf6TOyUgAYy3niP7uyyoTLlH5DfvgLM43ciI9Zlnoa6mElVKIpBo5cu9isJrUVqv8qoviuaG0e1LAp10AlRaXMAXCcqG0V55uSNDfddaLYHqchFc6xNpSBwNbjswEqPBS0E0mAaIEwcbSTPquAdUoXQyd37vMFAMd89sn7yrBsZtNWcuCtwbKVpIzNAel7GiSPVHn0igK9xHNBSwZEQUcj8nzmRQU2/WXbmth2Du3HobPKuChVzyco0zTRm61vFXnRcgTRgdiFt6phS9F1FWJ3eqMP1hsVWk8rSmi+3jhAjJ/6oRJ3pPW+qZu0ADBqqNZjt54XWwVgw3hrVCT2/va0gjZ1n2dPh1uYMDbRmV0cRJam0G9dYpRVt74mzESUN7crjyKw2qX9Mxy3+hZ9RGlT1xlT97RV3e17JmPng2AOOKLxaRLl2XC3XR6ulBbDqBk5BQLAsmNdLeU7u6a3xZWyp93lQwB2OaiSKC1X3/ebPw/Cki6TkXzph8OdrCyr5f52uZ6GWSSfeZanUaVOOKAvsDHyEgwnWBAs1TY4A666nA2tK+vYyXc3liMaBoSxthWjePz5/bS7MFD4sD3uN8vVdodx4P31vN1e9xuw9+vj+18/vr4J/f3rjz9+/Pjx/cd//c9//vz+5//6v/+9MaX+blZVwN7zWWMFhfpfzkIGBb4fFECripkMEwESwl3vDvZuVnD+YsgSofOLJ/wuF6A2DOtp5DChH2xE+UMvlr++fRNo4/3JDdv7/by/Aqs8Lki1lqjtCvrXnTNWH6yKkzA/2tq39aD5KPfbz8+XZ9EaBNV1jhijDn173Fq5tbPiJPLLBVCkPR6nCs29uoaDkDDXCs39QLPF5djy5VvwBhUWLLvVK5UzExFH3FSNJYuWMNJBzNA4+HBggyWHgw0Fl7R3Ro5ClXhBgmG8zvvvnT4eVtAVc0TD8YAMl71eRL/nST0otJU7oNBnNCxokyGsl9jKBjGDgZU+wxmLps9VMYDR1RBZvwTlYTMd1cLoZiCeEOhSAYXRISimBGZIjSeoRQOga9ZTSYKRcY+RX0QOLqZoKY9ZjR0xXGjQVFj80yJS2SrDKLCqY4MpgDxk0sFoutRpWyGfQ4z4NMPZWNXUE5Lw6cyGhKZLFoxHw0k9mgxGk3qC2MHpXM6CieR0sQHFBUNF+0YQFkoqWmjBFAvQiSIyDGPhvSV32LBZPAEQo7jcrGDKJdeCGnpGNJZf4bC1WM6YKDydcVbY9gPIZJAtx4g0WI2w4SeGj6MuwhhuKol8tnkM70oE15dBgsZ7hYk2AeA+MyzhQqSoIgSYVKaf9Ptp0u+6+MCYHoQhoZT6YRaA0a6MORXrab/DdVTDqAtQkN169JRokYOaQWVKn+ew1XEFqaYvRTq+FEXOMMs3OhzEFo2koxipr0b6NnUcaa86oZKe2Ex7SNZvaV0dZ9Y7pSKG8YmwVEfzL08F7ry2z0wnQ0vP8Z872rD3hr5w5GC3z7vyenGoRU0XTWaBDT/1Qa0GzWEZHY6BPYOG/PhqVGHZAT1Bcn3Q9z7nR/s2/xlyBBnjS65Hbt0BTwvabWpUoGaceH9SOprIRizmZocBjEgBpKOyPe3+G/yvVGXtpMZoCP/egS3le8fruJwHsEhZ/rEl8CjGfgMy937Lk5COZNZjCPPUgqpCrSK4YSP2p7vMelRREuwyQF/5xvQdJNvLR3/0KYMj+jIs0oT5wbPRznM5KeZyrT33h7mrmsXKXwMdUsLLQJ/F5xC3tUayMEsG281iLxQXTdTbYQ8euakFGgfLpXybAcACUufdao0p0uP5toSf/Wh+36wfgs27q5wBFcjoIJvuzVrg8HYSwoRdQlQMZVH5/8l6D+VGtixJMIcCIYGA1lprElSZ+bqqe6xnps3Wpnemzfb//2WPu58bYFax6qVgUgAgEH79HBeQlNhlrtOwC27EUruCcYR12kElOqVzEF4RLNbqUMnb8zMtmvUsvLRq1d71bb95fXu7YnG7pTF5tz7u15vjgRmUbCY4vhr7ffv4uJEF//1//fXr9vbXv/z6iXwnrHtl8oVaST1Aux1l3+cdY5zP15OETlfNoA1oKZdCq7AA7u32jYje7m8B5oDMBsDveg88R/qwNwKxwfAbJ9Hl++473z/I7QsCPm5vr/dBddgPy710Ifi/3oFWUHzH8O/7ZGrBXhk7fQ0Oq7ORX0RZayIdiiE8ZQSaNMi3rgTgplFGpGbYj6ZVc6EhZRhPUfwEFb+9jNMwYJFIRNcfOkkKxvq1PXiyGjTNzHBGsRHosJ286q1uA3r9mGa8SiI1M0bNSBtmBDOzOVpde04VnZ46F3o9nNa67OnlINQzJoWSoLt2+S0A9x2qowYDAnC/N6CqGZTScNZAZAyY5r4Ds1WoqHwmjCWwoWWXk1btdxmMbN8CnQrGZO2ZPRhRlNSDLQfVR/iQrmRiAH9PAmFCIYWnSiOscxyPSEv7RiO2GM0mU4M6joon1D/Jk8tmxR6jMrBERt8CahlQz4tVNW7umK1FdtvH9BUjUHI6X6xWjOWYzibz5XIGWJVaGpmW07HkzWMeOWYTct6x8HdK15ThrLHnMRhvnx6qYb/d9xgROqrspT1UhmcfAFxvt/jChQ8Ym/56q1XvG3XvwCZGAMYPpllvVGVD0qiSc9WIQnojwrVUeVDVYBGSz1WtRgpPpjxIuFeE9oRSN5VJwVwLu9wk8LoqnMlZfMfevPqn3Mql0mHx6+NtbT6rDBDEJ5S3Rj6k6j/MsdNatdRlkWwzkQvMOA3GKhLpDP6oJA2lDCDJnIxGHshRIkDOpIcoADI2kwQy97qGOr6KbE73Twxi34oX4TlxTksCCth99jUlNpr8wyOh+tlXTPjMR30/2sIo1cq+32PvUqQ8EaODqjbhHD7UQqY176RCtvMk7AFUaKp7UVHFEXuOH9ij8BBpIP3AnI4Ky4jksA0y6x89iv4ajbZqURRla2+tahpHHj2J+TEBmJGT4UeAGyBSjxOJe6uzRNFh/vfAlvmIhd5mKtVjz9OIGYoKo609cXP5uFMmwKjPOlEWsz5VAneeye67eIXjo45wtZxtLzLX7oG2++O6Zzy1O5tPh9MVFFDGGDeL1WaznJ/2B3v1D4bTy7Exvsw2++X2MG13RwTgyXhjGH6+XbrY6NuLqjMbwBOBF75dRZrtehxSabJv+v5MQsQ8vMaoqygKVGTXEp952Ad0r5+Yub5d0XUAG9L2sAMD3qDBaLZmdtXxcnt/w9T419vb73//n39d378+P75e1vPJ4gD0udBjczxs5Xu1e8ug6/1x742/DHpkDSFFS6/OdGX+vQJQX9wzpBCrAL0YIAMQ3z6Avi9vH7crlr1kviTRhtxv74BvAOjtPexz78ajq2OnM1etls/fPE8URqtdUWXLYNDlAUDDcn4HraKD4NtPDhJrY7QNKH49Hq44VJwu5+CLDrWIqkPErP5kAAxpcb1pz+oaxHSdhjdaUhZir46nGIfLSpJ8O3XHZQ40XqwFCURDybqI1qW8qtYUnja55eVApNtOHuDze0Q+T8oSLWSANCGeMhrcbSu1stXo92rtrq8WAbssMGKbYJeZWOU/YWOLXW2738Xul+mT8CH1UNQg11DHnpZ9GqGq1QaGvBM3v/bD7hdSI4DPgN+hx4hGA51Ru4loqyGDr7r9MTVcHXqc+gq7AmZ3OuxysFvTlFa7pViRgv6oIr+PW9HTg2adngEWd8FDyZyZurGYzz3Ig4WFSNbA1nkwRAsSZ89DxiwPeH4ADPe9BEFnjDEZL6Mp9dXmiwkn2LNJUENjIo7xNVXS8B2DMo9nVF5j3QyaPp2PmRlN0TbDOighAwRjd44TDHbyDXvx1jIkNxobtutkB9avVlrtdjmYaNWbtUjxfpCo+GLzOWFjQWw8MkiBXKybp1kQNGdZuZSU57WqlsGaOgilRgaNraWhhci3manneNT+SKtQPWAI4VDRwn03jBUu1nR5rY4w6NwFSXSqpQGAtStm9hYjV0GwU66tleTB2Is8iJZKTVfWNqzOkmo9IL8YVsjIjiO/3KN/Nks1EA0LTHXzlJoevfBC42zFG/R8qFpxW2ykMvuIjC0JjQNRKT+Kg6IZZyIQY49/MorqS9yyOSPhLFpzSeR2x7zPDIDN8uAGywqZ/vWDSjGppmyRASZ2CicIpD5axps03oBe3MgH9Byjrwm9wCSreIxjD4/GLfwBJZvrQ9jHgv1TD4Z0ewZIVq/Vb5h1E3UpNctKezQ2AB5xmjPrNMjjefXyE4eONamXgsBcjbZzWInY1AeTMv6T6QMMPFX4t+vvgmqO91Y/XtITjfjzAjtgOxxvUXx72CyXe+5Y172s3uxMF9PhbKWC+40CIHe71Wpsr9L5/qNbHc52x5N9joHvYNztbcbj8Xq1MxC69jLQoChuIop2yqo1VM30OkyW5DAicROeR5Yq8SV1ewCPCamebOXhtG+o+nF4eX9BWSC6GLCVXm22h+tps8GuGjJng7fr1ejvX3/9+vr8/Pr1ftshuG+zPxnaYMHNaoLtKkQxsnvhQN6PMCgcNtiYexBe+eYWTFOjaXcxCfQM1W5BAE1gfQXyImmDqipBpUKpgb+AR0PeD/vvXcmSgaj+I5MF834ttViEet6MknS/Mubr/VbSXh4EILUmFL8EcZVovP1y5P1xsTTEV6eXNwAwgVl2JgWJvOJfr+dXeIpfXk8dAnDTjuxVhmZE0ZP3fqUpLW3QAUapv+CD+xsvKHclYoKXph55T/CphzAqipzbWD4gDKvdzR/dG2gvdkisQB/b7AOm8xcEF1Pm4aAO3BTPBf8cdDsMvzAaNpDiB8y4oxVvozBg7WoLbNytDYTrsJ2X1YIGIZ0aVZbVptHKroKQKcwaDl2VDOiD7NdQr6WNcK876VOUhRUyvHIST9GFxGp7REcbhSQKU9xFWB66rsowcTZU9CWwlovpertdwCrg13JIrmsQMPLcQEUUOet0NR2vFpMFlr8jTJxVrsC0DUIv87BoemJj74AG5eEQX+XeRDiSnho1h8ylVhsS6g6ZUg2BNMVpRqiHfayhcdtBpMsWJUN2DqEHPJrgnvSowkJVcoayP3vOVA2AUdMA5ttMq8jurrfIgJEa6EsxafjiB9YV5EEHFTRAGV3AYE5Z4Axuak0yXL/q7vbJApmtIwGyWsTVkGUpWS8BEPV+NcfXVNkctSwAtXqrS/n1d17tvTUhEghxbmkYQZd4XTArLgvZ1CHWA8bgqiGCWq+z0tbUrBatmvSJYuoedh3F8vXeqypU4uBXSWqy8KBR7qhtJlHYW2vtPKyS+FAjHLvUKPEPrURxUsZ9uJqIk2zNqSHjRWFu7P25lcfKP76JdquPPskUROYL9G8TBPm0ch2fKI8SVU5Akuv1TNLIWl6vB6NfTh12TOGd7jQDIFlyn3DVED0/PrCryYD6B3P4eJdhZo0xK2e3S87zSbArPT6WzuE4V8EL2099ly3vs455Un37gSBI8aE9pZg0K1zuh70oAJj4iXKNWBDsanz7cNivHdrw5V2NipkNY4zSzL8vtGv25QsC8E6j2PXmaAC13a+6WaPVna5mKGNQwQ7mz6v1fmHvnMxnu/dttei2D6+7/Wa1Pa5no257aa/S5XRzPV/3Lf68K1HWmMzRWbSYj+y0bpesuvI34vLplXMSgFQT/CyzWrnzJwZnniTH3cz44+fL7XL7uMEMdNgb8q83K/D1y2422yGd+XQ+kRp+/vr9Ymj3cr19bBb97sLQV+V9h6P+v1vfi+lVXcCigj1+py4aY1lahSF+ur1czmpWeHkJ6Ov5zac/8fcGhL1i0Hx5ASvV6vf2/v6hna8Bp4Hvu90wQebb+6t/tZtHY4WdLvfDt3KAjZ3yXbP1yvE1vt5LQOB3fft3Z+gKu7wRToM/CswePmDIpbmFvlyMYXtg17Wk40a+7RBzs/t5vb1f+k04cNDhBrlnq4hcxf9slIUH8wqF+OEV7xmoaRYHKK5VmbjGTOa6NxfVm+2qXg3tal31Rd1ao1MgpoXP9jSVzchgqSUELurAYLQJNofDJhKqOurlgWLe/utwBIzfGZXRb2BCjJgNIq2hQ0erSuiNQR977CiixLdtRARL7Fp/3G+ivVdAxuEvxtOM7EDEJCIZBbEDia4MfZgojcBkTmQD2vLWAYa7sgf3eqwYtBuj/KvJaEpiDZK7mON/s+lyiZwMaanZrdhUXWP5hpN+q2kHCLsdE8ioxpP5dKLmhtkc/59gjSvzkPp+R9JfD4ZaNA/d5kQVFXK+Bj3OkPFQYeU7nzPCA1viGVkzdszI1XSBmE4XfGP7Eo4YUkHDFsYs6KJo1tOqHbCaxnLabQjgQIC7rTSHAq7e7thdyuG/pGggScKlPlaPX4446Ix+JPEjXKVgC8408FVJA8zBVSxSi+ofcRvYqdXqGuxV3V4UvMCgX4i0vY9Qs0C1syz3oz6K1/BdXI1dLfReqKBBbaH5pawhUzoW8gSZnGXUl22BzpyLWukeRgJvRrU0wy2qPvw28o7KzVhBl9Vq5EzDXzX5d80uL9tpGHxmtL0qSPKe2VFhhrRG1CX8asJLgE49v6PinNg1RZXovi2ueJwivaL3Laj7nfxNgJ8m4sU6RMXfxV+Jp4FK1qaCRW9XrEpLjZVAQspsDwOF43anlPaO9Hasp+pN6NgLLR7SsBJX+CN1ydGPqOI9wBxLR2nlGeGVkUwZODl4pmaFmZqIyy0YdadBWqOu0jUlBbAHlT8IWINCwQfVfUCkvHpXDVSl/cOEWVH31Tjmf95ulRLbM2Y+80gVtObaZmT3yq9w4KvXOmDAZx9BHxFHuVt2a3YBmS/shQgANuZ42cyXxjrtDLw04FtdX3L7VkVntzLYvty208Wwu7RX9WK+M5q1qUfU5UVpbYaG3+UCoQITe5k3XCOQloN2Cetj7j/A6H3djdW76x8yjdbz8eevV7C+K5KW7ZiwpAAay93tEi0LaAK6vLKD4e3FiK3RvGW/v9ieby/H44b76+N+g/PF6bjhABpceK9wxq0ikPcqYTifg8NHkig6lzyawxVNSuhw0dMLV7PguoawXAOfrjIVuYz6diVwYxf7SnJLfLSbyl/fhOgMEHFwvzBK5P31vmP+HtvhsM/b8OpKsJvzYM+zlBX51W+xcVpj98frG0ofsDzG10IHFO8d/cY+DYfi2vg7ZN12iLkOW3QCYWlll412gR8SFfbPEYJpuC2yp79GZiFE7xsXxoWLDXCKliIAY2EkBtxsFxBlNRqNflF0mva8xk4HAo4wcgbqYsdTNBR/1e01uuChgVd2EG6BjiMmQCqXCYDZkUGm3WGE8WCEP4xHgx4o3QhCp4Fqeu3XepQ3oqzymHbQFoThL+VLWr+O9H1AKkFd+VfgWm8yhXqrz3QrLFFDby6+O/zEIL8YZfvbiJZZuyX2LvsTgHmIzSkMwQimHA2mk+HQ2C1mxLM5/r9Ai5Hopt1PhFnA3YNQGvu1mtXswRhqJDwST1dhIR3CU/l46S9CWscUuA/wn9H+y9vbh5RqKPcx+oI1e1ZI9XAxnc2RhzXGF4Udyb6PPc5DUX3P3RxQCI1gaGzhMNBAXHYjo7IdeNws0I/RarZ77Sxrd9Fh0bYff1YJeOGiIWN0fuzOorQo0jjTCNDXjFWV+DkA84pW+6M3If9mXSKvKEfMAW/DwteDK3OFZcjZG6ZsBMBSAsx4rTpzppOsRtNZws6lEMpV9ek3R62oaQomHgZBh0gsKbgLEnaooYNoCba+oh7roEAA5hVcrxp20IQptA8xPYcyDVvKu+bCR8+CVQxP+UHc7VbEp2U/LWlyiIMq98VR5PmTdOF4/cDzN3SO7stlXcArlZD6JPJ858faYscKzUzLvAwOcakPCcUamNaKWCKk3X3T6J81HG7gYUX2Heut7LmUe2qXeqDj+AfZtmtN9ANMVUBOUVol9lyN8paFOE58uRZj41ucseEPjPaxb4YnBQK/8VMtvdyKL6iG3YVk1/RsMcT7G2NMNWohC9Zamc9oZbJkCn2paqEiKWBBH1etbQffzfUAoFxtkdK/3i67RbM1sGP5fLoCIB/Op/V8tdssxsP2aGa49zKDfrBe7c2PKI5dLE7L8cZe0ovV/sUYcIMVsfZ4EICXdjafTRezEfoHNXjKFEXparQ4Sb8lePFPONTknk/Deq04HX3+9f7z/QYR8Xm32u3WixXqEzcbOzsc1YV0AUoZphwxUl4O+5PN9vp6Pmx2LwawGKXvNvvtytB3zfYGWJl26Hk6HLZ72IBPRy9jOHqVr0KZJcwKviSYaz0IIwRWvbgx2PAVCAsCWeqTX8IHAHlfBZnXkxD4JsPwzW1IrsrCXy8slHgrxVRv3/bN3AdTgqXky9fXf7QoBTorsRZtUzCTnW+fQuzr9cYuYzBgTrq9HvkK+fXlDFE2Tjm3t/Ow2WA9r531DUC7Te2YKijAjitywkUPlTRKgrNOWylfA/NKh344lRJpCt3gLlglg4hKauHP3Xqjw0EsrCqYEXvgJOK72coAACAASURBVBws0GN13L9bdOAiGrCtCNf+pqbPvdZw3G0Phnq3QIJpiU24hXp99NqO2LmHxe2gp0ZcyKGLZjOKsue08pB0jAVOUcUAAPbWvumQE2M6gPA1gKKa+g4JzQZtfWOPk5IZgk7a91X0JE2zDqEUNU8HQw/iQNNQu9maem2CIeKohyMCMLrfG2kHTOzEGniOCdQKr0f7WPtanaGR/3qtnttPp4bBaoMu3Earzwbi3kBRGgyVJgiPZCiejBQpPcCY2fAVs2TQZh0gjNf2aGjGfQDr72HZDkY+YIomZtIDhUL3OcLvOcHvtHptJofCydW0y2qVXm/K67DBt2NSJhsSOoOLnCH2sWoslaxEV5AGseKmvqHy3KZqJhtQLhduCb1J2X5UqnFzlqcl3jNICZXBkdxwRUOT0pxG3Fr1rrfyAMoi9DIo54q5llQWuRg0r7mjPRT2CoCrvkiu1QO5dut7Xq96IA1VMaUIiP3Cdp/SmqdFBud8OHeE3WhVoEtkznLprGigDlQ01BtVXI+VBC2Rm2tcWp2ETTFznqJ7xkeAVIflFF4f/3OFnd/qFQq2VoGsTL7i1LIjOiTLb3MPnKLAixvZRyYw2QErxlo1Y3FQqV9P08CzcPRAZQRjQ6kWx+ynrRMdJgfU0mX5D8mL4euqRNxGEBtTtACl9wWn0NAJ/NMzZ3WRtFExC7EwuAYbaEDAwQwKCgjrukAVNTXIFCERL4NviXWWtJ3ZjzKIsHjmyME7GdFd48/SPrLC9TUm2RplqHQjrzZU1GUX1mp7NhuvGYOFcnaqm5Y9+6eevf6XEwPg9fZ4MVTe79bzea/WGi7Wq3Nr0hpO2v3GZLNebpfLy/t+ebAX+Wq5OR4uh6YdnxK8hvLR3L7ger0aGwDbtaQnaViaqzEqqshJXlEkCXqBXYn/zATQ2Bvdqfcff/5+/4mQi8+3/XRmSLre2LfC8nq7WB93+9P5dP14uezs3afDctTtz7aGp3aiOJ8NfY9HO0gYBT4d1gLgLZvo7c+bpdFiGLCQtsmyJaVv0nsLA62xxmMAsj8Wvi+0+WASfAXjBRqjdfBmZ5AbewexQwaeMtGKLBVhmPaPR86f328aHQsriamhLxhMv9wB23s/NJL2STWG3Bixv76fvcihVFGLLvt3w25ZiSC6G+ggfntjCDbTPV4vpRDbrUjX9/frmUZifvPDENkKxlITTI0M/fDahi09e674mgGSiSToLhMP1KNmAbXqaCwlP/CAPhxA20bl0P/b0DgaxKmNDsBmywDVTqIIvWrRPQtFEhP86TOFT62GTsDhpCPVcafT6Pa7YKLN8aTTGoy7gsGBi6aM3mLdax8rzy06eQd9dBx0umLEo6zaTZ/smvTwkHQn4x4tsqCKI21MJ5AaAbaZ/6QuekRm9ZpoADbUH4/7fayIPVcSm1GMkScgp4NBCcBCfCidJ9OQxmFfdqYZ8XA4Iyu1G+bNveCe+Pg+F8dg6kiHnMxng8l8PFvPljOksK4XBqmwAKHfotnAkAGaIUByUePj2u/0MHoeL+E9sm80ZczkZOwAbF99spgPu12YkUaD8WIAJRYOK1BZG9CTJ3ftPtH3DFEZRc+9AUDZHlYA8AAtg23oYVptux127UGfsx2o8hq9YIj37AKAuxBiNhHE8cQdsNABF1KIsVhfGSOWWGVHvIoWdPNW6yHSKnEJMusH4eRBqFpea0jSWdQzVP3ZR8XyEaUkKlnqG9009vjFIPJKSjEWRqa5Aj8AkAB90N1OQQIE+puy4LdaZZRqjYqiahHoTAHuXC2BvKHddIaedqArR35sx9FisWhledOIclKV7Mf1P1kup8y9XQw7RhBvAbALa/V/nXOxuiPSZpIJBbkz/5Rkj08cOOZBwoXYxKcnbAEF0WFuxRORfT0W5VTzyK1K8BhSiiX5sWAbnPcbe/7+hyjydiAir6xOzJFOKbF6jOKHhxgeZaq82F1AvkzrVsaqKISE6ImR8kfCab5HqNjPt8Yk0OIHkkoyu2H+HFJwFd4Xs18iAmXzLAKFMqZ3P1DsKjRNr3WAiOLQpeyrMrvstVE4zqg9BCkjEbloVAtEQSL0W60baB4B4CI3BbP11LkxnnQKH/eAb542s6oBcshgYcGlvUwxblLFn8HPGqrnw7pnLKQznqMcBTPkzXG7Wu8Pm+mw3Vsup8eX+WS5mk2W69Vxt17vT5fz9XQ8rBGxsz1tDse2zGx2DZ7sj2iGX2MRvNith4zhTOJnsd4oq/BhwUPHPK/H2PXjz7HPgQp7LdlJ306Tw4+/fX18fX2+X467rX27jWbKm6OB7goBHfDU2O+b5QIOiiWFVazg23GMjruI0TPL9zbLtVFhBFpu94rV2gTs3av1gUtj7b93B7UhXBRWxUjH14+PNyZdaMb7/op/xfL3eJHn9sYQrdur8ilRGqzsaEO386XMfP62e8VOFsCL6a9RX9iP5R8G3l9fFASCXbAamS4EWWx0+T1uVFrjJhBigb0vwNuXF219GdBxPfNWhaaI1+urfgfppWWYHmGcJT4A8MaGB0h7bLaaGQOsWh2a/mGvq+gaEEZRz0ppKz3vFeTPY3rYqKN1Oo+VVd/kRAn7HvoW6i2UnRt1q7LlvGgoe6PBGkHmW1HajIIi/NHOqAbHyMqgjAoeXe/WNaTrMfChOxoDkA0RWq1+rz00Esb8x74xZ8qH0Q6IViPDbRhtlq3HKEWk/EOc1DmiNYI5RGaF9EpsUgCX5RbUoAcxlQZlHEXb9xx6rrOykoHSkmW3Wf9rSIosLPJa+2dQcQY2GwgOuwOkrWoQPhy2RlP4ivvD7qwLdxDn2iN2RaCa1wfuZNjMDjG8xKZ2iaRnligg4EP2KDx+7a6hsbFN9N1y1wSjRqfvRRBIuprZZ8wWc4PiYcfgf8C64OEYLJyr41F3POmPejogIBGM+SPdnoTeA7tfHbQi9an1sq/eYU4JBhd2kex0CkjIYBGDlB3S6HrcYUyoPQMamewlnuvPi/1DJQ4CJg75EqiakqxQ418awTxLN0SahDgrpS+7nKWuUIFaleuSImvi3IeaJcmjc5Q0GXgzkxkoiWsKQFrtfj5TxqSTYq2ikWtlm4AiSeIl45N7NWKSZaihuQnmoYCIzjOmAa+hK29nii52p2UpI6vtZjTyp3o1vQ++7WJd4VA29+UN1Tv2AKCiMcnUIYde9UQAnapgmBlFHPfmRVDXRmLCudtZcZGNSb+x3pP1S3Dg+2XNI9MKlDgeEEp7bCStdFIKrMV+ASYV9shW0ozj5xBrFRPNHjyFymOoCIrOmCOZJyr3WkMWmuJZwLwoEtogwcWwnvcw5kohRH1nLo4rih+sbvLkSC26dcKhOxefp9WxS6qoZuYquVaGoqUESxmU0Umt0OeQvxED/bO0pix6e/YheK/V6fF3LFZwnGxhRm54bIdenRBz75us5aypkuUnKzX24Mgu2K/5yc3uTs9ehDsC8AZl95A1bQZFu9ObYhM1X26xJUVO5XZpr/btdrk52Al8u13MVusllqaY0yLhyYBxt9qdjHc2Ip9CppPdaQfN8gZarM2iqyHG85N+0lEaRvU8gNnx7F4GpZJZO2okKcz31ero829fX8YEDXwOQEuA6sHOBSiYR6HR+Xzc2X2YU4ACkN2ytXDrH4c/IDSLkLy1+2P/B36jiB5VEwji3G3ddGXMGPW/9lBAo3U6nZRaiap7hHjQsQSr0it1WhBNvSrpAjEbAMSgQg4Fg6/e2WAsU//5Utmjo0Mix82DM26KzVB/EgFYM+3r2UNC3lRtePUELjDiW2mMUn8EMiVfr+UU/EzNdRnccaGwO/iEie8GvPr99QaRFsxUL+M2RtBFrn6XeltaSsawcYPgr6MnH01XdPJGgg8ckDXmnWJslGpQV6hjEOsWtiKx2aDL9gM801ttlSoE26+q/5gc2XYhM8oCkT6sivi27LoYQ/sbqwIwMGXsFUTPHSiSJUUacTLMCap9Cjv2GnaSYNR6lndmBkzcmY7YY0/B8Jj9wJMwSYaACuNn1teDShNQR/iaJNgURSOaYz4fY0E67oGxa+SMabLLiLFCBeyNe5KCjdsD2YFG3Ul7pBQOqpXxVQcGwGPHf8yfDZHt+6rdUCNgYPeImR12zp1ypG0AO+AqGhprCltCJ6zCfet89Js9A/P+ZDkbGTVezIwTA83BjqcDmJHZXkz9GEf2dvcQFNbtDvHDwdkI2nRKtXHooC2zVU+rYA6Yb9SqLRVg2E837iDKDKqXVtXjhniYYz4idhjsww2+lARWJmRaYvwHO1BVmY1lUqK3+wYvr96dJuoqqrH+Mk9LC4UEUlVKWkNrQ5bm5bo3LHaTWgiBUnVCXmNYc00VvlI9K4UY50nQ26qWhH96isl8ZXypARhSFQLbf82GnUWLWlynuIe3kgvCSDCZPMKVRXtPglkA70eNm09OMfMkJIV5cSB5Tqm7SFOfzGYaLceJMn8lfOX/y9IUz46IxUUT4W8SJFohMMqHlGXIxH3sjL1zElW+Y6BzYSYk+wY2Ch0HkXPeSlTulSWiUtVhGa3s+mx332qzmgebapaHpLQfma8vgvNRABxDR45YtETBJkmW3PXkWEsnPGG5MtuVypnvF/iQBG3bM56WUSW7q7/9S/D8ViuQBMQibAIzk4ToiJJ2wA6BlC6kWlG7GMuhWNuQKuuooBToTafz42G3wdtqj9rBw7pftLv92QJWwcX2wHdu1sv5YnV4Pawuh9nSkGmz3u02dOXY1f56PJyNchkEn/bnbT0KIpxxAODlarXaLroeQ1a2OZVZoWEdUarGUzzvahlHUkymGX/+7fPzA+nIt+Nq7UV6bLXd7I4fZ8P4yZBtM9PN6UKia+C6JvDu9/Y7sBZAu+b7Vhv8f6O/bdaavzOMEwR4tz2cUVF4AOI67H5/Y0HUdnu8hOaDKyI+jqcTmeZL6QEKURjMlSYWq9lXvcPHU5ggv7hN9xoyotW98HK7BuSlZ+mi0Eh5iS5/ZHe8vcOL/PZCH5adAcjZjZBfQ4a1tz8odPr2SgB+vQX6jUMUdGNI6QIKA82vt7fLECUJ7YYC/6r1ph9XK7KPRA+etxpKT+55r3HCyLXEK2ZcA1iFe94twACGJpgvqHFLG2FAblMCCXhGe30+ze2a32ujiAEAzDEwxp4A4GALYiEA5EBMyUBChT4USRgQQI8h28U4lZ0+9vE9iLEMAOeD+PHhIU2eH5OkPuQeFnLBnuBVUc0GxlNFUEJABQAfemeCWDKgkZEZfZ4F1HNo8Ig/jPpsDRotIBpG/a5/PIxLI+CZ4qXGDNMwUJ4OF13UNNiHDmhSAgm2D3e70cD497Bn8DufkJwPJuPAzQcBtCHIGgyny/mwb8cAQ+QJRtl9ktUepeXMKqqGYp4aoiORom0ctk3bPmn1aL4Yz6mzns/GwxnPJaMhePqg3eaNGjCt0z6r0aZmDmcn+yE1slq7VZPYhRcltiE1ki7DRZEZnVXKACFYJdLKMyxtSjKgRRIUr4CYqq6njRCW5Qxeg5SoSVcBY/Cd1qRarXnZr28Ua55bHDRT1bsIGrUK97bCcB2WPMb30NDipHQcheAN2oskmZWINXHmWwi50zJso6qXTFYgsIFWFjJbVGoDX+uFRphpUPRQQJQkT5GWuNyJ4xOY6yAviKt6wjaYF0y9y2WPwuJUGiCJt3JvFHQNViVoNaRuZn83dTjuKi7jGhMtlKKQ0phETpFCTQQ0IHZ0TTy7OpwBQoFTJYCy4/iTmnOfGZ0cVQIhBvjqv7LiUAHQQXRtz42kStGaHKtB8/RDXujSUZN6PW8sTp/rOPftcKKAIJ/dk2HnOK1EAYhdWiC+bD/ECh7uOK5KJZykoRzDW47ixH/UXHxgl8YrG+QOSqbH87zpZit8bR/cVN3EzlRtr14dLBer82EHsrhZ0m60W/Ua9gqbzUd2OVpsSAw3S3tboZZofT6sdkfolYxzAlKQHsX6u+N2jWXrZVsPo5RsuOEIerNaGNztVwN/PiSRzr/eZvwNeX2kafcZI5gGNygMfsuHH//y/vZ5u76+347L/enCGfF5v0NV4OX3YWBXl1Z3PIeSzDB5LZzlscL+uNsSbFebtR0EVvYONBku1wv8HR9KTRbvKMtxmUcCJD4zX/oI0sseXdFWvveI2XSA5iNzLeEphoprvzuHomAmNV/Zech3IJaZ4cx8z1XK6pdXL2RitfBF+i9ug89lTDOB+8hkZ0NmREpey630KyxD3Edz72y/v754qDU7nM6YXr/LWuxbbIqfjWl7e6KT6Zfzy411Dm+Qktk/DxoFLp81O7YTNnk+TpOKamzi4M4vf34PDywe0Ys8FY3Qc1pLusyecWwRqkN42NSp0d46LZUPQp+oOGdy4x5VPO1u8P32PCFy6M201Dyz1SikX2Ba2jdm2ewNjXu27KiKbXG/0weVHY578K8Oeq3uCAA8HM9ndbuQQG5pt2E6ng28FZBiKQfgPrBRxNUOAsi66o8HrooOvlgEJhOUO40W2HcbN7A/olQL9Q5zLlEHPRchg9n2eUpQjdJg3Kw1m0XRHPRWBsxDI6TSXQ8GWrryVGFvaEcwdB0xuJkkXbXGA9dbY+9NFIZYbDIOpQ/jyWyxtKf8ZuJVR3rouli8N5FPUdQN3OwFBzLXQKaznW36bdQQYmY/tvsHajxlNtdoQFrcxdR5wChoQGvDo0YAwEgFlcuDy/xOb2AMuMvZXa/TaKQPz1EITnx4TpOnJ7fHMK5ImUUZzZq1RA6h1H2l9wzJYNBV9FK1EfwkNC2lVS8ZqIX4jKZ6FOr5ve+XdqbMpdY0clJvJR8wVaqwO6XM1srdjlSvKT4I0ZjMn0zLdiatnDPXZXm5EnaP4NU5d7VGKmJFiqRem1RVRmaWsDc9iTxlKYpgamJPsE8Stf5lhD8/yqMRJZJOynJj9gXrF8ZBYDPpQMToxDhNyiUoPw9zWvtjVomCwdBdYeUWWAiaKDxUVbpYrmKobHibKVr6QbHJlcjl7d+u7AJkqbZU9xeUWfr7Mz8p+laoqx5g9S4kTw92H/Im1qVsiXaJ2o/wKQ7yJf/GLAVaMs+aSMJwIL4XLstLnecuiErLgKskxGHZDy9yAK4xQgTBOZLLuTk7CZilQDIOGWjBYrgfov4anFP3FFyLk6hUXQX/Tx+6/GrVwgB4sTcANgReL/eGQpvDetDoEYAHw5nWo4c1gu1Wy4Xxy43BHpGGde+MD74h3BCbXvvk43XXTAMADzYnI6m77RpKp/16lPpIJABw8v0HrcZEHruenyJ7VaR19W5gvZP23//++fb5/vb28XbeIcpYmVa7y/vHx8fnotkcjKfzjQGnwf1szTcj3Q7BO0NaNAjbf3Z3l8vN0jB4tbH/2bFiTZCGFxiFyMzowD54fzwhGpuYql57NjEhKMrexd6C3VFseK9epfNFS+TtJlBlxU4TxFm+ROhG7fBJEVTsXSIDBhs+HYDNxPCzm5/uLQlnMuaQaeWqqaB4RunhNVQo0X70yvgr5WyB7GJGrTpFfGYJwKpTov5LJRM3b2KyP7x/vo7aKB4qsJNDvVzLbRFxqKf+JsMoLQ1h7OTx41rquP88ERBz9lLnHBpJ0M1Gj4NMhoCzbleZ4PgbfaSs3wUuu9N2iDRnpDB2BU/eWuRRjYiI6gxGnU4PSi6+ApyujiiKBnMbYGw7HHcmgPSxsedRb4C6XBXuTsIIeKgGhPEoYC2CJmluok/JQy3g/iEj7GH3a4x9MiDeDxncaJ8y9gn4WPpqe5uCNfcDZ+738yivIlGwWAyGXSOaiu0gqCN3qudqrCksQWMmU2FgPeWdly0IN3s6UqLk0ADfgHPYE1FnTIeWu/6G3Gj0C87Avo1RDwb2kPSwpcXlpprWGljCQkyVV+EAw08FJ44eEjCNHmsXPh1NaMxiFBmjQ+1nVQd7VeYX92cQR3e5A8bMA5burEKzC545jw9PzLIP18osoI1HAVCZlYZIKV0EWSSv5N8q4zWQTaWkqqpEW9SX/jEVrtOEmhfZPbEyLyebrE3ioJcOT6jKnWknCCvCMDFVh0OjFlKycs+nrirjqe5xmX4r6hR1U5WLtSRbDYiKSe4JIRmn59XEk7oQxAnQ9QisjCvCauZelqwqAp2GV1MS4BeiKhmqw+Y01iLUoyzKCSh3wFloJEiytBROxiGnw4eQrlHygr6yVj4AsMd4VziurhC+GQySxKFxKQCim4T5q4xn9nEaekff85bLFr+wh1XlIDsZ4ieIuCDga9V0iBCe/iBoxx7jEhI8E4Y0J7g/wsPk7opUvlWkPDI8Sip4UoNqlriCPARDJRRVpeplZv6JP5IukctdSZ1G94ywOOy7aXvC1l4EGfu2ho/91JLaqCqZvOBocLBaUFMMyrjaGhc0puojaHuFLfd7uG1Pm8Vys17MloPlcXN8O3mZ30mQcDoYQm1Xy9VyTRV0W8WedoNHh6sB0x6oftpvV5MmhgNsY5QoLdx+tSpH5Q7g+VmZKVJI2AEkS7vv//rry6D28+vjxi9qqHbZn15AMt9el/0R0NZwdQVFM5e/BrrcAcPCsZjPVwa+3wB4Y1wZ7wrr4SDCciHWHrpqw3fc+sMpAOnh2+/A0/O3f1Cd/TGMqP/5TZ27xyPa//g5R1YEutGYDcX85XR9RWmvvfNYoi9OOPvTlYnNboti9VHwD2nGfGFdw9sNPmL3BjOm4xNK7bK+8IJRuY+gHXrZC4H6Q5+Z32Caev946dvlEynG3B8aR7Vnr2yFUkOXJSc+inKbgnuV7P9PT5WQr5eEVLbUo888XrAKVytGo3DJt1te9NuCA6bZ1G7XOLjCJ5k3hyZfQ9QutqtMxejLcoR9qna1o7EWwX2P6sD7MTfuKxAamGt/MRybGuuFBxdz3U7HflFWFDfF/DojhjQa7gWu2/cIi6FKBsVLwaVHBFx6o7p9fhb9OoSn/rA7mPi62OVdE+yThwOcLPDNOlnSaGZRXKktRyOprMSo1bxLJTRG0ARg1P6O1azggD4KFb49p+UaS1NUhnKGieJBKBiT4QgxGlga9zBVl9N3NmUK1lBhnK1uu9ZsdNCJgb6q4MNoNIua4TGDToZ2iOm2Wl1ZsBm3bT+UJqMoKSZtd+yH20YARxBh1Y1wF1nlySlR8vhYcZzQbFBxBt69AzSCL4UJu6WURQ4hF2FpRJvXQyR0SGr2WKQyaUqVheh18KJhlSfUylQOp8SAYU+e9lBoiLCqjCUrlHDliC0PsCdiuUkqrwU7lN9a+7SslsV0F3F2TPaT4k7xJFpNdN9oX4VH1Ve5mbc6pSpqgn1UCujIj7KBznm5XnkGNmhhkSHF0RRtUXEVpdI4/VOrwJPjamkoDo1B/ktZlcvcZDcUA54iTn0rxONMpcAhiCf6vhd2ZyLbhyL0B0XeuOiQxf+CWene3xua/SrIvYrSotNuFernZYKLAbCsV/z2aRkpkXAqD3wnv4Mh+N5ByFTPWJFjTpfpVwYpSIPjleM69iTB06tzk++hE+newqxfz8jgGFMdIvXm+FFnPMSAyVfcDgbSjVR41bJ6ayUvq30Dp+0u7EYxjN0t4LbsTefT6WSNeChDFSAWGOXudDmdX3jxV3s9Og22K7gUZwbAy+1pfzn13JacZuMjpqXkhOfdejWdtTIXCTBSPNWRCTdYfcqBREWJLNA++kH95uDj779+f319fv38fH+FLOr0gpXl7XpYbY6nrcHpfrMEBhukYq5M6F1vBMFrg13782qzJv6uV/Plyo4U/MiNC6WZQQKpNAfRAGA7M0CThZAOqaEPQYSFbLAdeayD656Yu7VDwYGFUpRunXAyOaE3ec+3w/l0fcGw+ayvuneJ1+kkhmsE2SfXZ46qWVvMQ46XJYTRNVfPniLt+RlcH2szDB8SzErv78Gb9H57OZ/uSI9BtouwiNZA4gC9/JtU0K+3c78o2BeIrpFq0WxlTOJJkhCNVwKwO985go78r3aKfUI6jfvzoc8IL1H87FUGJ2YTfJQFYirpFlbTbx8rFSyGMYmG4RR0lq27AGJZUbvBj4qEJ+iShuNhG2EYhjOYjnawwx2ouZadBQDjqcEuDEFzBEzAgzPt9SckmLAI9Z39TqCnB1sceoIUV8wGXZ7PqHUwFsbAV7DCbqOJjTUXwfalvEcY0VETSJkmHgfZG4/YeIR7AdNur8jqTaMpcbGw00NvwDQrg25KyvrQYWnfPOE3wUgYcjAkQ+usgFstaTbbkyagzdg681wwGqucEDWGjtQ9lTiMJnYU8aQQ+K2GLGfAuHk2nIx7mlYjShKSTxbOcJlfrSPkyBhb0mSsCsVVsI91sVXIq01MS1CEgfYnZKnUm86AG52modPDg0fxJ4+V0Pem0Z8nA2ppylQJaoLDeT7XnJeaFv4NSi0Ubgj2hIcUVRXEytQTjmD3AIbW1BRIPVWdSVaUVIWdb7kUrqaBYme0HOXYm0CswNgr1BUWDKDWajp1wVealpSbq2mo/ptIR6yFhOHUEw1rIZUSGi9c1skdMepmiL/vdjMCMPzDmUynHveQ3R8fT8YuYYYIajijzXCae+7kUxhBBz4omRNXpFkWB6parkvjktRFYeL6rQSIS95EiZUV7UOjkKHpgF35JwBWbS6n23fC+/ygbiYJtOLQtaA2I+Ix037spGQPZVam/KTpD2qg7cY8qG4iTFJjtPkyG5elMdFzeU8AN8yc1plFyBo/4+eS0SruTjHPPoEpna4iQW0W6qd85E8/M1O6U5Y6wNmMOQXEVzXWDIpfc8YPdbZ3FVK3luSeQK4Y856RQwLwarXZ7bH8PCy7mF9P4Nw1TsyxLsjkZnfc3F6OL9fDi3aL19tpj0xmY8mr2WhqpHK5O+/O5z41BUDg0REGpd1uvUan8Hqx6aasK8YTSXJ5pWgmUWj90Ir7WanZKszMq420Vpu8//X1+19+fX39/HpDRVLSjQAAIABJREFUKeHp5e31/H61m2uMdbkyPF2vl4arQFTRX6AwB9HLJZbCG6qi14jyWq8Wq/ViJdrPFCyQX/t3O25wGE2fMEbLB4RTKsRjuyVv/cZud1vAMqqYoNMyuLXzCaK58LF7IivcyXt7ADfC3+v+fCUoHxyA9/4GVN+h9nErMn0i3B8c909cPxsMH7iBPmvADGsTcJTm4FfD7ruIC/WGXCrLYnxGDdT5iipgrZevwYZ0htgKYM5pNaGbNiT8+eX2dpm2C1Qm4OxXw5ZP5abUOuMnF164ytoN0syoErkXEJOkKELZ55PUCyH1LMSnum7EA35xQYSZpGi4vKHooE2hTq1ho9Ud9NGNZGdDtAC22t7di0xoVSQYTIxG3Y6BcH/SN0Lb6jfwRDbCjBEtuaphoJFPA8tBDyZfg6jpuD+hA6c/HbMbdzpbLGTFGU0YzDFkCoV6gbH7tO8pLjudTxSmPJbGC63BdvtgzwHlNlBmWx8mtP2hCu+xuAUqzudYEA+R70ildQGlynP8GA+7gEB6mbG6HbM4kLRUgR3M7BiMccxQXhcQtxwt48/YOy/n2DY72x7NlnOcItBKpi88kjWrO7CTypgpXShG6ndgU6b5qjvoDIfdybTRZuXCWOtfg/tGazSo14fNGvyw1YaSpFAQa9cszEzh4sybENehgENtzS2jxS7CKproCo6eUuUbRo+xrqPSEknZIj8sKV+Gi7pdzWJ5hv0ZhidQKjeJUUN4g+pBy8reXrne6AoJdYN5o05LRYh6Bq/XDlcMVmu5HP4iZhQlAkaMCLFehrirqCsIug6LNSxLGEI32PxbrTMwE9Nxvx3aCBv/LTDfRCGfZj9x4qTcyVPqn8E4BImYM/lpqJUlBycA19jul7FGWAMkKr5km8qzYEOqKOao8qQoKmmiU+xqkTJ4tyGViM3rLpAx9m4HrYGd/0oDnXCrzK9W0Wgbn5G6yJlH8Ken+J+twbA5hcwt8VteNji2dsJbERl/LAE4yIA8J4JVgmhFLNqtep6Wo/YfiR3m8QgIWNPoew2U9w+rZguE9FsmifIm4JpiQVIaTLpBWeVBJiK6BtBBmBXUa9q08wfG3C00LuOGesyX8lRQZZ/RSZZQRUwnmj2REp01U/mDma5WQxDHdAo+t98uDcPAA5cDlEv0aZzA1nRlwAsjkcHaiSTscoVL9QLv71oqp8V8gWhmhFMdjpsefGtxXk/rqw3mpvsNJEq73Wa5GOVPcW6vH8qgs6o9jryIw64MA9qzJHlSn4fMbC5dsu7Hv/76+8+fWPhC8cu0CEzC96vpoDtFObBB73y7XhjdPeDWMNQL3HaD7fUSbU4Le4MAa7NYSnwl3dXxJAUWxNEbLI7XiO3g0aMkqhozyxfsIuhtQOPTGe+iWWlPLs3Pot1pz//8Cx3OAXCNEpPEn1VJfNIsm9IufK8z2DW++Omgr7vl9zxeML42FD1dvEDpIib8errIsSTGfPaeX6ZvSP1FURb0zZ6MBfUcVdIKig77Y+V3+BLYoLlfAHebRVX+XU+Oo3OEE6Us4QYHwSls96ropFvhCRNg/BTF1edTs8AhE32j/lZ5fHjEU/4hfbQPqiXcpiB1n/bHnKIaXBS9wgE1d81up1nnrWmiArjT7o2GCORAERDsOUZlO5BDoyN+wAQPFBX6m+uEqWsy7JnYJ0OgPID3Z+BqY0Aa0JQdugqQmgMzUQs4YITzEClYKDCcYPQNTJyTig66sylDpga05RjiKIgZdNlOCnYbDevBpEet8Rx5FwsqqOwLkrgOJnN7mPM0eoiea94s2OvZ16YYDPDewy0bDMbTgcImJ2CpE0/0wLgZH0scxq3paz4OBSW10ka/oWtGMSEtUNghc3oOqy9uuH3d6ZzpW5oAMDaaE/XZiP5mScEB9oimvK+3aXKSURINBdUI7ooExJc2s6LeqReNdqPe7BZJZ1Bn+3O9Lm8M55CY0Nn14MlhIeHBTLWpioPWRjgX0MPzirSOtBplNV4Aaxx+sg4g4wFOBwLsjlkjaNyyblcZHzQnUe4FRmChsJ6nQd8Mv1OVB7/QxMAtcsr74jpqO1WUYmrUScI67KnPQZ3dMJxGx04YmmMPDBg36pskjG/IYE7OXRqlC5ynTsJ8FE4h5WXfw4TL1Y1PSmt8oJLI10HcFXvDRJJ86xPOXZP1D2+a43o/IUFBOcBY7aaBDAd8TlzXDMwLEZMIf8IPMUuT++w6zZIyotLLWexOEApjMcGIg/G48hCV9aU+fhaXjpX0/IxWQgU1PSNRIKlSc54E+VBa/ZGU3Jw34Pl7/FbI24xpaQ5LaX1kJP+wp2MERltO4BNRAs1k3JlcrpCT9B/ewBslOo+CFD38DgYe52nFBQ24DSDVobeCKeaSCxSdxXwK5RJwCglR69V8wKZFzLVEKHeHDQklVb8nZD9RdLWaT8kyN2F8vZwDwA/bQZJV0lojSwfw5pwxyd2yzWE5HtXxo0bENrfgavrwjTkf3WdFkzKYBAbsoHrIOrd/+fr98/Pj7ePX718Q+yK/+rC2S8J4sV4CYg1kl4gNWa/3rqxaSYK1xD/bLV1CCrpZL6An48lhw43vVuak1XIxt0MGYJcuYyy/jwdy451ve9VjSM7LNwIwsFGdUWpYWrvVWCC82TrH1S/+DwDgg5D9EFzG8BiV2i3akE/6+6mUcxkFPqJBYu8b6PPRN9FHtybRmMwxNvXQF8VWU+KF5fJJEutLGaDF05QYsSdRam9sLPjy8nE7D42zNJqNKodAyKDJsm/SQqhkmGmGlxVfy1I1emMhXqBZozPY/L8fPC7Zm51qFjO7krfrGJwhUyt5fJS0OmZGD37uxn3ZrXk3eWZlJUGh9jFM+Ortdt1VW13kTHRFhIfIrKJptxu6CeGd5fIX4VVcjhqxcwDWqpXi4gnR1CB3PhuF4EplR4IjjydTjXkHEjMxbIvKJgNIrmj5C/xRbESiFBkDaJwRxnQIkzoz3WPML4guXuRozOaN5zT5b0/PD4/FaIb3gp3iQ1CxwPIGwqK9IDE3pyMIxb/kpYTMqQue6SGye8CoLdd7aXxNPxXUX7jLXV8Rc17NVK4hcqf7Pe22WXHIj57QsszILrYxTEdscWwPqczmfp4it2aj3W52+x2YyahIxurCUNjAt4ETU62JxJVelTWMaeWhvF5WIhf3CIB1fYyzMh4qkwIKAmW9S1UzkCylxn01mNUULWOWUhghZwyHYh+XoWWk55XHFwWMzZUXiXAMzoyLejXUGJUcVUPnjH9AATFzJz22I1cnfFkCLCgPJUmyGdWYAR2lYB0cd8P+lPk2MQ3eF3qUapo+3wtrE54cRKqodE7cU5DmvgPKiYBRxU1dyfcYWD4mDsClBqPsunUFtduEcKphyXd8HyPTVhR+Tgndh+kzhdoZxGPlt9MtDdHUyV2jrXuTybLo9JP1k3ElgGXqkeCldERq3Ac7oMOX9GjwzCEIxxN0rSnh64eXAzPP5b64/KYEVdjVs5RFAmAHFk2aXcisqouknAuoFSjcs/tJ5r481wPHZ2PqmnO3O+GbOHVOwE3sZkchxdtbk0oArnoHpj2D2nZ63iLqCiC0RGLVcjbuNmrNoV0aDNaAqZv9GnPb3eVml+zb2ws0vfvNYjJa+pgXMLMzgKMGajPMi6gY2okXG2BOW6lyMgCejuocOPpGQ9Y/1VppxuSzC3smVNGKEp7eRb3Wu/3t91/vXz9//f7980Pwu9kupnZ+X9hNRJL1Wpx3DfIqEfRKvy0X+qPdPvL0BUJHyHk37EBaL4nAdoCgc2lHGotBsgGwhFnQVxFoiYTkzQ693AZ7emXQcO0AyK6n9gLEnT5uq08Un96S15ZjbXDXwyGshQ8slygn0b5thoJ6r4+HBI5v0mZjiXz28oiLlwy6E4lGJGPHJ2C1b5BP3DEf5GMumyXwG+slzu9v58vnx3nUhkO0CTskw6oUfw7RnNT89lrCHifxDUzkynyJHzAqjPN68fL/fX7+/PXr58+fv/7+t3/567f96a+vj/c3Oxxslrt6WkNknLhMAlVn5ekx9iw1EAlcG9VCntY8cL/eYlalXfNbsNIxe7jVMe4LBmx418KmuMuCXpQK98fa1bJkHg3zSKYay9qjfiBoufAxxhOBX0v8zsJ5Vd4OWLo7ktdX02lXE7PVz924+PuQAV3ySqGfkEvjXgtTbNyCsXIe9TUmk6GGu5Np/zFJ/1tcix6L8dxDN4bMbh4phRnxH3YAEDxOVEMI9KSmyz4aSZOMxJqwgGE8dQSW2nk8UMviQDWEKJ1QKDT34b4hnnj1IoE6lE+M9XmM19T8AIgLu5fXMMCbjRk7CjHaffi2uwzhgHSLda1IEG03mrW40QEm4105amb9Io8kpOen0kmCCzz6oCt+MRWwpg5YjipAH0ivoPWiWJgqGoYZhjc1o2OzUbcPr9KGGSTP1bzs/81pKCIAh1q82jc8zUPGBz4VjFiXoxoD+0F6awLu8ktWBb8sQGJDLhO9cDDFbYjSIlNZYag9TxnMVCW5k+NKWqIkdzUQe3PFJMXxvVZeO2CRW2CbCg+iUDcYxYlXHui6WrbflCrqoDv3iIokmHjiMJG9j6q137WfRSLtjqzI0oLEbkRW7Z6XoSVlnyK8wh75IR6a/GFOkgwr+o6fws0nFSE+PoAfJxyM6Ob6xjf9IWaLLW5E4dM/2DAqoWrRDc0+eY7CvUtK1VgIBfPnoxu7/JCSZX9ODpLER9lx6j+oSBv71JM73Vac+ZMvd70pT0yA5LI7ogzmqNU6BmKbkwHwlp6c1XK9264mvUazP0UMPEa3m/V+tYDJ6PUDucaXw4Z0bwNVMTVOBloH5jqis3C3HuTNDGb9CUw1tMcyNMPI9WqYVqpF/IzjgXaASnhJZTzA7ZRur5LUG8gyp1uFSf6D27/+/a+fv3//+vq8ATvw1VaYkRN2scGG43i53S82hzVNv6tgRsLWl29LAvCS4mgi5ZqzZ9qUNjhCUIS14eiadUnSRB+8kPFw2Drkbh0YZSz6thXeuSRrJ97rcSH+aY7bQRKN+fhO7z6UX9a/gj72pHn3LiD9Vkx8v5N++nyhDO7IBicaw3iLaFAyWDbwdRG1oBnm4YtHeZD5no+c49ubOpQ4sb5wvY8p9fvbZcAYwYadf+wy1mh30lBmUmoJwXn15E3VPwohYh58/oaZ1ejzP08vqC9+e3u/ej0UGqM+Pt6/fv/+26KRpvXTGTq902U1h2MHsJp5jLxeUdo6J6VPPrj2mMuKrZyaHhooNalTFAQZF92pMKLSNAwMlGqaBUBIyghNCRpVG7xI7Ixt7dSo52zBPGhXRgOuJThWlxKoMkfQM8q5+DHDPqfiWBdTJSwxdq/Dbw4QZbiyx3wYfk7ENUddu9g84NFrgHQiNmTEYTHhcKIOBQZ+cEM7GszEfKnAhmhMu+vZnO+eDPsTqb0miwlaBrGihkxMY3QahIc+ZMbt5HdBmmd/NADP5yllUJYYU4xtjJxIzn7GsBFn/AYlcP1Wp2dndkaWedYZ2zYwiG50O41ONe70axhY2E+lahTnWcIchhQChEshb8IpZaVSRiaFSp6SvKUe62hH9wjns4wLW/GKezMS62bt93pUTQuuejPtScs8BKmhXVUtquv23DIv7FvRoSA6GEtq3AUbEgNmNbBWPIddtBq1xDVhGKDXaCLmOjlKqqrFreYhsaPIJfJ2N6+bV1HPGmYAWdmbzt142ZakFwKQBRf9/FvohL0mn77Jqe59ht8fxCiIg72PXgQvD+90q2vk6dIMsCBLjsOUtexxJ4+WPqxM2oq+/TQ9c8lbl5I/qGqZ/BD8EyxhMgCOyrBKxU/7eSCh6Nnefjz70Dsns3z+0wcZh+Yn3VF4ncuTxLdbiMe6okTLtLRV+okkeJfC3fCFQFoWKmt3qgAQ0Vz+IdQSxl7A4Q2tWYVq8eBmyr3nz54VjXp/vZjsjugh2Czn2lUaLk2ReDddTGDegcxqtVgt59tX2o+getp5nZAGuBirAn8NoAwF14NarztuNzeYjapfl0EVoJkBgGkf8D0PQllZUpzoZaVtN8zPqHpRcGG9GJz/+puRqE8aXE+H7WphF5xdmH4DVQGkhseLzX618SQOjcfLN+O62PJu9rztUj4rLRrvBAaIrG8OLo9yQDwqpvJwFvDupLPalaYktgs7qVWQlr+5SnrnUR27MrJDuOqwCqkX2fLGRdsBiAW+gTfv/N1+m0CBWeF08GG0fTv+E0zSR9VJXGRgPh8AvVBbe3KXh2sh19LXxidBOofXV8iukXP92msYealWkSmc5kYyBcD0GXoYnOsbK5EmOcTgJK84FMf4zP/1f5AD8gEA/vzA2+fnxzvw9/3r7dfnvPE0Ovz++X672bu/vvQBHyhOtMeLq9VepyUxDZ8g0XctBFybEPvgCYLrZqsFxx1S05sueaWJikE1hhX9Dmsc5CRSiqXyKyQaBih36VTqK4RjVgKwtyNJ7qxQDo9xHsrPMwkgTevtQA1KYIedLpNCyuAsHwUTgMdBPtWvxw9pLarXuuMRGguxf2XxIT4GtbxD5VNi+ztVJAY0zUMOpZHKMZn4SBrvn4zwB7wtFnOeEqb8rMlstWC9xMAJPA4a3Dl3O71hF7kZfeC3z67JvnVPeWSZDLuQrNkDyBhK6N+6zAe1IxPyuxvdYZteI46gyXYBwM1ut1k0q7Vmu1fjDjir3AE4VsCfaoCycP1Kgl/N52ERBQaS75SGE4wyE8UVFrRdenmSxrZZWF5ERbXh/YJBUBIaEETdgvrZC2i9totthTXnttI+1wrP4Me/N1Rfp+AsvaumCMJWE35hRWMWaqOvqZWJ5mB+wVS3VK0PSuCQ0NvTI8IOPA21nn7mDTYk1/KwZQGPA8ONS1pLO5K6g+813XcWd28EDsYjll9IRC2jjoa05SwXPwDKnSqUiWUl4ZSZLA39xU//sGpmLa1Pf6M7D+bIvPQh35OzJOsC7kIq/fiM0jWVIwaNAI8b9tP78RDSOkKO5R3D9cHa8YaRwN2OFP8xp47/CYC/nUDuvaplpkdcCUcB+57eblT+fMLjX54UsRXRSCDjFVMh3ihJZ6M009SKoruaT7bYAe/Wi/meCYnHPaoH+4PxbDKnX/YAcjyfrU9b9fhxbovyBtG9zeYoArzHLHq37NtLb1Arzl+0vpx9SgoAXozrWukxsVUZpzgEUsOQ4geZ4EAD6Rs+og43ISwOnVZ7fPz1++2ALef5uMWoHPtpCqzIwrF5XS0xSWfE5EY304M4NmFPTQC2g4Lj3ObE/GgiMOj70nH3dICaeX/3/DrfvTgj3R4dgMOEeL8L2MiJ+x8+YJimz4TL40Ej48PekZsHk5193a1otjPnUgG99YVzSZzxJzQLunL6SPk0fmLnu0HKoz/obLqQCV8uBy6Bkf5xZGo2Uz8Op+vppBPSWdPss4Ra18vr8fj6crrcxnZFLSBmyRnkXA/hO4axrBR7VMbrs5KM9PKy53MWnsoPlSJv/ef/9nbi0Kh4uxn4vr+93t6vX6+jRvTyb29vry+323kHpmwwjVU/afLPL4Ps97fbG+Rmp+0SkiLMOLmOtutVJHEHL+Iy4lUbzXqeVOtQjhEEgMxVhnrYW5dJl8iLQJJrq6N2o24Xdbdd+GEZ2uwJyBj2ClvHcsgOEMxMBbHvUEccNY/KeI1xl1mXwwlpNObN8h4rKYOzYNBWLGIBwxNj5MOJAelgvuwX00lj1nc/r+xOornj8aDL3A1WKY1IdsfY9mLdq5kz5duAavx9vpiRm1NwTbUXGocns6l9DlfEE+RpCKDtq0xHw8m82+oO+9UkT+t0QE0gVGMcJvi6g7/djjZLofp9LH57w2GvzbJBcOEWR9ADdljZD8fgSeNm7QZajXpabzdaBSOpU5bkUKj6CHKjNjce4HQxqLnZxjuC7ZxVVbhTGkyn5YpOm8QadDW5B//iswpqqNkrm9hprBaag2s+Ya56+q9KWmtVAbf6g2vfkp2lOwDbpRBFWUa8MjWUalQT3Vb3ob5CveFzabvQNbwdTwnEaPrJQrM7t5o6FSRRmcPEQoEkLQE4TZI/UCDN5JBWYHPMhkKDhSwYqf2RgUgrVdjTHWbjPyIrv3HGisc0ps53ufuN7xCMETqCr+68NniHfR6bh4hKd1up/Deu+JeJ75vkP6RSTlQ9EtozpUqH0sNTJX729OiwWfYpWPKD411S7uhZ2uIyhOB7CEhIlRZftjvhnqvkW26In1C+n0iSNCzD0/R+EsRXD+CagQFjwu1nprKf2Q8A0gLCyMPRs45jCVRrAOCaa/dQ6ZG37CW4QRS00cg1XUh2hTY8XUH+MVswXYM2n+l0qUhKg7K9+2WdkO0cOnaGb7vtctyvZe16sX3Zc9AJOw7AAgxu1UPPcrfJ2nU/BSBKrsb481oSqFVeoMydc0XWNba74/3Xz+tqb8ixt5PCfKFIZ9xkQ3bGballYbUPMqgdS57YyID/kxGvBMD6AANghmDL+AuwVgDlXj7dEzRPR5dBKfvr6JDru+H9zgOpdwzRCqGU5Sb3TKXzhQSVNFWJWPhCR6qg9zjt7MGs96TGguT9Tt9HNqeA//4nBnJJmq1vRWQPjLs8MDCnzG/1+Rg4rqP+4fBN3q2kLu8jvKgC+ap8kNdxG3GRddS/+Q44LUUcYB92JWCrjbdayQP4XAkJb/ahrXz6X/9TU2f8Yiz4/ePz68ZGx9vHx8+PdqN4+bp9/PXX71+fb2x6fHnBR76DKL+o0PEVIPxiZwZUQUGnfd4hTnQ2xaUf9pCY5Ac8CR2IWQxaA2aMOFbIgvqsHa6z3KTZCrE0TWZFt9U93GwYn4PPSH4l7VDhBCJacjdKN/FQqcuaQQ9p/PH8rOl0pryLgbjymDNpd9yOWezQG09HqPwjOx6OBo1WzxB1hJlzfzppM4uLQVcoLbZ/UC6zT7jxLeA0GvnBwKB24tNyovF0OtcSGPyYG+FxkEND1j0xRj8kTYbxSsos0ff5atAoer1qnFaqfc7TES424lSAEdrwUfdGsDWznWnY6XY6BGCUtdHphWDuTo/dgx07+iAGCwBsjLeB4043izqDatGGMAsMOOzp6Bpntrh2gxzD1qpltBPg1lArVpt7XnXLrmt/4KLwKyCksXlaCoAkc0LyVYY4S1c3S9QJbK17pEbVaw5DhPO3xa9ysu4dgx4U7YEb2B1Xa2WctAeEVJsabrtmywgxSL1dzfwqnCqlI3Q+eR1iFuhvYLEhkInpHe68EhBoEurW6T8o7V2ElQTMAJOVquafGfB3/guiKAES5//xHZyCXCl5ZgYIR+OKXHYAxhwzDLohCvbbnYakLQGw+hs82CP5dh6In5XeEwVVFrZZT0/oB31GRwOfKJFWv+qN93PBj/kCVd09RGRhFZ+mnlytcocnZiqqZjBEbqAMMnnOGaUZHj7UWzB0I86y8l389TkULPtp6Nsomn+u8kDynDx71XIILwlpQ9ylpgrzxo/eo6RjBatWuYvgc7FabUGEBYvsGlPYwx4iJKLBbjUbL+azOQB3vlrPJ9PFcruANVhgtg2xUYY99lekYe3X0C2BiQ7Xm+nOsAIX/uPpAlsNLvvvBztFY3KFl2q7bRdfzJhrNQlsq4WHB+dZs5UnRT3HGRMX0la9NVy/f51er/vleLoE6ho8rVYHJ6pGvDmn3Z7AYpGF5aGQvKkbQLIdHUI49PaoG6/wDcRvrATSWyZmoCnJHgicQ2QKMgbp5PLi8CkEA0AKNvdkvcezv58Hk0D/z2cRVC5qBZlHpkEbIWalIkjunvR2s/NDgz2I63IUTZa801+3O0Z9bJWZycCuw9FjQHZhD70jgO84Oj/o07GLtwftLL4csq13YuT7ncbPp5NT4wM0W+eX19dejS5cWjIQuEA7CJ6zYQucxg8Pkc7tXgsG2UOmthuII1rp6r/+uzdG3N5UDXG9ouzh9fpiqPqZZW275G/ssHK5Iefsy1jv56fB70/7wxeYMOolXhmk+QLt2Juh8dfr9YaZ9scrSzCOy81mOZsODQhajAv0TUyCPrcqCYwRqxbHho2WPflwpzCUNmwWIDfV+1lH6yHTE9H+q/I+sG4yyaH8OQDPocdvQCVhkDoQ2ZzNJiCIwzCYHgy6BO1eZ+B64h5SLidwA7HmHhtj1tz3O0BLJmeA5vaQf2FA5ykciOuiB5kBHFPosUBPR7PlYka2OwdKA4AXc8EuQHcm7OatVPLkGNIySLS7NAlL3DXAGWOUVwylkvy5GM5mI/ccg+yzERnfzu7zZILFdm8wGjTRumg8vW2PFKfUqMJoD4YtCqJxxmkIgDv1Ap2qnWarakDcU2tgVnlgGgOMoc/Pdg2kGwQiJOQnUBOU3hkFlPLPkMNUKmmR0+SUx2ycCRYl1Aij76iaeQ91nkeQHAPVs6T+FEXNRPCtVIW86rgLW2+hba0+O/Q0JAGAs5Bd6ZnRjGgA40VXBEsY1GnRQpw4JFkIv6g27HrrffJQYSVZPSkKKKGxDKYGOvsuxcmAycr/qskdEth86nCaeKwCZ+/cw1Zhjo7DpDT1B+s+hUZ6SZzkEeMW4ihw6OibEclVyLKE8UsYoKhXIQq09dFn/s8kyDIvcdigggLEbinRIlE4ngKhVXsUMWxaJ6ukDIwM0g7fzyb3gzvuAharyAxgZLS3M0gcLV+x8lsqTz+cd4QR53a5WNg5tseSQHRBVr38N488CYjkVN8gkjE5YfoEZV/sfUgQih3rXb7qdpEYsZQhmg9IrqimZQZ1TOsURMSe4akdfpyF4YJSTzjfxiGsosk0jofIj2HQ63i3HK8Bu3YnwGxlqFkfPz/38+VwuuAgl07apbKVCQSbtca2EhghAposcH08XM/70w4+0v36ejkZV9ldXw7Xw85ACJGWM26WegOcobvNtr+Forp2p44XRxFnXJnU7HeIcJEv2dvNAAAgAElEQVQXsr59vR7m9kDbMWFDYZP970jQ2gU43So25HBZcwu7XTtu7ZkxQuprH47f7IwAlfMuLIGPGPdihy1V8t6Q6GR/RBwWf9AHDo6PPmX2SfF2K9J6oG0Xht6j52aF+GaHRdmg7Q9ro7y7jVc92OmkpK/n835rhx/8an/04XcZS73BowzkPZdaLwzBD+dwe1QZEf7JIMmH338Iv3xesS0n3MczPxwMmSvj4w5LY1iTzkgQOV3suIQcbiyY7AfR6bQTHBbzOIQUJVRNGPg+PMRkJnICPj9ISoKnbiO+/te/XT/e0ZKoKghw3AsyzOzt8+db1qjbaRZl93YpN/xY2HFpARJuH/H+y5D451+/f/78xGL49sIWCvvJ3Oxox3DOE/XchuUXpHee3m+XvT0FTovlAvCBHK1WvVpFjg4vQHalQVkdenoanUEfqIuYrQGiiwvDCpQ/dIGOzUZ3OOiQFbda9p4OY6V7ElZ3hx2lVmI0Df4KXBzTTzsawo3cQqGC0VfUEA2ZxmFsd6Qwi7EyrEY95EvV0d9kIAd5dY9rY6U2G0XtdoZjdU6w7xgr6in2s/P5eGzH4sUMS1/g7FyKLEq1FvYqpZMKRWZj/COw17B4BkIMtTTSOpC5qQARkOl+pz8bR/mg9mDXu8zuCL40PtgOErOpepi6HLsjMRsPQm/YZThWu0nTtSxXbbx8se5u2am6UWUaJPAWs4Zmp0gMg9u9hj3I9VRSG+YsKNL3OfVUwjz1DR6RMiQGgmaFCOJYduGUamPUHFA/LJ1TnlaY75IhxBkhD5VMJlrmEgKQgqvTGamdzvDEqDVIhWVUKrDfqDXYDazNi30jvrNKwR/zqBNhteqF0cbEbW5NeZcgyniWFVmEEN04ymq82tuNK+BMYca09/6GNiYeQORWsa/KBGmqZFQXUSToYWDkBMebWdgE2bkhCUajcGTBfxoNxFHqsdDcoZfuhfQ+PHZq9xzq6rXDBOooX7JUS2k8HJeTWddDBhePdpxx5mFbQePEZOY4r1ENLR9wufaVYUIzZrtg2FEsefCROCYjT8/Aeax5H57jSpqTcqbeefTDNT0s18EuEtlFYCO7zWoxX6w3CwyDxv0eT4LwNcIFzqA+7354VqM5TwgJd1k8pIXao8jl20juwl2LUuWjKm8jFqVn4EHC00vi5wPPhE7KTJLEz0McQD8/SMWeCoDtSVI0isFm1p8aIG3W89nC0zj27KQ77zfTuXGLHWr9lgsoovkGCy19tWsKl5gYpdhGQ1kMbw1xjfauVyxpIAN8PSPOcrV+W3dbPYzlYJG0V7TclEzaV+ov+EcdL4KGPYceH/lzt1vcqNU648VksLTvjYjIIJA6+uh77xPhHf2720Pw9x5cwEQUw4JafiB4fLfQZgcWD8pIAN5qJnvGxnp7PPvOlktbICsRjGcNAbBXIDG3Uih9YGeCpE7lOPq4Z83hkbiGHfP5WK5xqckiQwVH3TCz4xAAWF7h/e7lotnxHWUl+CL4ljqwwz+kVQdee6KVGHfzdCqdxaXcGg/IhUNrjqwl69ofzobf+2EbM0Po4bgLa8QYm2XBbRgnIQ9duxeINzBUlP+dfs2kkf/8v/929Q6mex8xtsJvt9vL++G53pwiD7KFImC7etdbyHrEbHc6W2wZ7b3fvSFP8+PjDazYSPG75N8nlCtzdY0By5GKs6t0ZZR7+6OMicaCqqQxDMN1hfdS0WWvgjoMTRyX2nMQuV+Iu+w26y3YmcAW8dxsFvBBNzi2xkcYgrPvh728o8kCVBNARGI6GfdYTIy8S/wBkmEoj32WjJn1gK7awRBmqeFkhr5huopo2IX6CTtpY5uTEALdlzjMABilwpPRxI1HcztqYPrMZbCB5wTIPJkY+CJ3EtleNBtP6HAeuQt60Bsr24pdiMP+aDaJk07+8Pz0FPWHfczcp+pOnGjYjZm3VFsDEOABElB6PTub8DfwdLD5DqqCAcBGclE4XLQGmDToEJS2OlVkSgOAmUXI65dLnaNQbZuLw8VB0FKGiCN4LUiFVf/KZahH48OBBKcQB2iEF7ao5UwRZDqjtnxusFUfMJJ+6P2Rk5U72npNCZTc6jq4ZlVGT7K/VdrqRBHOea20PVUpr3J/UdnUpMhMDD/DCJWtRmH3mwYzEhXGBOAK65LSOAn7aX1AkKal97ymIMUgMGmCGgKsUrFKKZxdPeXQGlavwdAaJg1RHP4YzLmElOwecemLzru2Og2SdTDnVNlccRL/sXJWQK3PtYlX3hzM0jS7l2UHQ8pgrYfI+03tnx+fY15iEPiYPkNuZpcZw2Le1R+y3M3mqyXTlQx0F8ggXgN8QQ95+Ud5gbIP53TUj/odeBftJVzzJPsoi7UGCdYlif0UxeYTB04LHvgoalYfxaH1CWkbMcvP/SHhExlDm7BfD/ZiilUxx4lkSeegF1SzyLurSWewQ1PffLZc2x3aGP07315PJxbveq3fmqLjJe4n30cNlFI4dqCAXMQaAJwP55Mh1GaPeMi3zxtCm46H0+r49n5a2tcft+u1equHF6Ux4Dab1rt95uzirTOAVxKGkH6vzT5FOd8QW9mywz9nzwRgSZaIfQ7HXAHvdME9+ErYE5yNOJIA72DtRbIkCenpuAsOXrvdwuDQqiDR1B4LbCLvUe0TPGVRN3W8oytKmfYEUtFau/QrJeOo8oVAi5G0QfwF3HK2fNoJ2e3bk0OfmBfNv+rTwor3chZg/mF6CuTWv8eOCVqHb0B8QOzl+WQf+A1xfVd8/P6Bu+tptwujdTxABGA7L4y7DUwmmoyKzOutPwA4FgDruYhXVprfeyW9Jzsu6v/+n/9GN/IL4i39zUugXs5f56TVWaxGKNMh0HPrr7UD1FJtf3agW3cCFYIdPDaH8+vb56+Pt/dfX5/v0FN/wNRkLPvKLTZoPE599mO5XZl7faUlmt8Q55vNCoNc7C178Klitw3DiF0/ETUIM02jqNap0Wqxeb4NcIH8t1DCE0KeKD4aoCfIUAirT/xudLIzGA/sn5AXjZUuDhP9fqtfhkkpZBo248lsbhy9h7gNFf2pV5gMmOLpbge4OaYd1026MCXBn0wXsObOWvkqQcS+FvjreK4dMP8dSivuhMGCeWvoMR5j9zyfkHUPpkmlFiMwNO6NYCrGpnngtQ5YFs+874l67AGbFzrsWevICkxzsB2r0WQFAMZvtbTKBi1MuIo8abZzNrs1GwjiKEU3caUSWnjU5qNYg0DoOGtBpK+cp5764KPZcvuZJsSpau6qGe/3zThwxsRXHcEJlXqSRzESsuoxHglqldACVVcpEp7kKUuUyKcRkyXBPdtfUfJAoC5cP41aJkiai3uEB5OyWekr/62LfUh+YJxi8ZIwNhMAs0HwEbpaY++JRP4elOVVDol2oNoFeySOcDOS6CnJQsZGAHypzD0w4g6oUfqHJycu9VuaOKT01dpH5KWZKPm2aXZbEM85nvMkQn//EpHzZmJQljy7Dbm8XCg5PtIkhFeLJC7jKRUHzekItdy4JQxaVvcSdqg/5ng2E3UXAmBIDw2Qp3NsGxcz4rH923yzXS1gPWX+EaTDK/uXObz06OTst1tSs1czPW6PT488HeK8oBhMPcukTsjwkyEV/+6S0wlGY3Z3gpT+YQWCooUiSNEqscTwGdXQdlDrLKe96QFSpcVitVhtj5cXow+3t/P57fUQJMQQF+OUQfzdUHC8ZrIyBUxbTHh3h/PL9Xg9XY6b3Wprl7/15uMLw0YUxH/ddpNOezDpqcB7wAUwW19hDhkMGYQA36FdV/CN4GrEA0ieae+wh3YJ6rtjxDIA34mnW3VdU7XxzehRAHyftbqf9+iElePe3em4Cbbbo50SLshbvgSIO56NddqHnAJ6eu8RbsHB+34DYHkLkt0MT8bYHx2g3SC0Ox3DDlkqL94co2vbnRI1LoBRuJYAmFBhH0qABwBjZ83vcD5+PyMEcXZ5Gjju7l1NfwD1yWfh5f391uCENy5+wxcxvo4Q6yMYcAe2njpKMdCP3op5FSsTZZPIM1yRie4pbnodedFVEte6/89//PdLqCF+ecEo+qXsOd5/nY31tCc9qJPr9UaGNlqVleMbt2r1RgsrWTQadI15NbtDbFwX/eF0Nh5OVzt1YpxewI/f324f6KD4/Px8fX+HVuv0Bqg/h4CT/f5qWGzvR04YZNVniOCxSAXlHg46LWwua416DRHGTYynwePauAkMoe6zGxjg2GFBcRPJHy37OAR1YpwNltzuNGsdjHn64z6TPMCAsUe1J7FSL8YzGHKHoKddg+bJZL6cjWWwpczL/qnb7mGC3lcv8UTKrMkMWR4Tz8nEfwRICa+oq5raaxSQTYUzpNIE3vmSJmF7g6Ab9YieoDWcK+J5MMseK89PFSMdxq6hsZ4ibXoyhVR7MvbkkX6nzYAOnA4gJ7cXsCZXrCMEEmMnjHNzDVnRWKuHFVOzSIpG1kCxAQHYq97jAMBBPx+SAX016IxOkYeIa/kWGEigLZmWh+y6iSSnVTxFIGAmPspLHes/lNNheFtFDoYSiVT/V0g8xVxzB+BUfFiZy9SuUhNdsASxqOYBgAtVEabBQJwrHJ2SicxTNIPtljnASgFMfLlcVvjyUk5WHo4OPCFUPV8pLWXevjSOXa8V7ncAutQ7kp7LITO+HwHa0ycqlT9ymz0FI+Ct0jOQAvkPIZZ3pZJvSbX6TJN/zLrUhSBNQQfTJPOfa+RB07oFz8oQAOA9sz0hjRyB7/3wrF17ZsVQ+U3S/MdS+RRgtx4wrJq77WY5n0GxZG8AK7jgRzNDlBXjkoFaiIKYn3ANBoHEBNsQeT5hUrydIBv1mgtdcEJ4fHR7MvxOdluetYd+5pzCbi3DP+8G4rBhTkK4dggzcL905NwlksQAS42iv5oOl3skOM7nq+3uiFqc89fHzVgcmwm2CNBYGqdfy/vj9UJUE5NOQFt8Bp+53ezX/Xa9NICz695m//H+8vb28vL+dj6Mi6zoD7oIjsSdVYLtcOQOypEmaJPx3MB2tZzjwTRQ17cHWmHiyOCJE9sIzntfnu6/yXlLJ9D+T7bnkl9PdzwdFLMsAA4odL7CsnMAW6J3+XJUncJWiH0ILcG+8/3eMOhk2OuOCLh3H7BD445SLWewiOY8e8EhqTUE0Wh62G5lSjoIlp06k3xvaSZyqusOJkqry28E/JZi6zsCa+R8KnfTbh8+3RM/9D48KlRDq2XSuO8ZaVqHYbtOvRJFnnZORKApJ4Th6aZkcwNg1we62CJ1tWCW1Ob/+9//x8UPLIj5QDomYrckxvrYYtxT1NVjU6Qa5TVZhQXfZUFcbirloAZLC2qBBX/t/hgCXGLEdLaAIn692V9ub1Bo/fz566/fP//6+QlR1xcjrvGg2yHRDhsGxKfQ7KhsMDRdMAt8Ncfe006E3Rbsb5Bp2Q1jrIcdHLGn7hse80BgsAP9dBNCX/tbq9VsF0207yGCsdWqtzsUNtQJRB0WFBGAURCIsfHczu3D/mRux0tlQqMlWIHV416nPxq0C2SFsBEYmc6D8UwEeTyZu+KZODpFZrVwcoHJnFTZdCsrfGMyd9MR0bbT7AznGMiNJjPGRk9mi0nt6ZHxVIlRderEEDEHZxNnfRNtpjEZZ8FxB/2sdh5D8FV/QGA2Umzvxk8GWjd4+DGjb/OMDbFbVm9WUTdcq2MEHXS2kef/+zC0TCViQ5/SiypKP+SVPA/ynWDL8cjk+MFXln7pjMOAlJe7zMMcSYyZXQXZLAEYa7g0VwQlx9PeOsw4qzxjggdmzoqryDwjE9SUXYSh3RqlDXhHGkK0kM7BuNSqwDwhjoDGM68rIz2W2pmEWwDMqXoGx70CEpR+BQbO5qNUfb+hbN7N0PzikjOpC6CU7HLHic+oPHtVQPK9vNu3vvfqI0Va/kGHk++Vunf1dIqdvL1wK+XPw7Mt/OcYWt69IBe1gc8a+bra/aFsLfVt8MMztsWpr4DLtzC69oNa9Ej/Y+X5BwjuhvHDBOClPHnTORcyQFr8YcZ04ulkjhH1kgQSsskFohERjjhHMLGSGw4MT1wZ49suIWUEFbQTZ4vkmAaLCgzHD9ivPRkal0q2ZyqxkjBy0LM29DsmaThn4sWFn2nkfRvafFSLeqs5WE6Ga2PAlAkjq+EVVpHLHo6jDeIt9ju7YVA+8azg7fXUY4H82ica+n5QZQOCav+8tPfaVW17+Hx7/fywdy56Wc1O+vaanyvVQN0sk+kCNidkMHOYgEfSrn8r7KNZlLBZS9J7vmDavbWrJ7MkDm5ZxXRVOEyiqfq/I8IfaZc9H8M2lFjD7SuVzZT7GkvFsDfEMF8EwCoFvPNgu/cnT1y+I9+3Xas3FNKVtFci1fluCrpjoR8SYD86Q0wl/62yL74DJmTLd16t/TB+vcjQez2WiVc+SvYaJc66Hfi/IbACLE9lxvQ+fN2Avri9AarxefQ44UYdCErHURuWx04P1yQM3yIe0uM0jKJCD6EnsSWlnV16TbsgVK//8W//ccJhjYcldiDzh8ffbptO3mo3EP7slxpO+NAbxqN/6mWuKnutY4fIkXGrjo+kZIqxjyRine4Imc84zSHUG4cxLJthaUKA6a9fv36//fzrN1IwKaw2Ln7AyeuI5ypOZZhJXNET9QKBGIoj7RnJJWrXkATSHAp8aSLFDcHo2U6V7S5CtRC50UOjw7Db6XNJ3Os3IfEiCFfzepvNQBisQ7qEkqIpdrVTBGWMpwtcMOYYRoN/ckNsADxyx/FAUc5EQ0y1DbExJlpA/+y+YPmBJ9oyT/iu8WiKdE14gBXMIYtRuzvCMBqA3hfIzkftFDl6Bg0D+yJDo+5TTqtHLtbS7ng8QSMkZWvdRpYVzOGG/rk56LVlRzJ0bjMmtNezn2qD/msD4Fo9b3frzVqzqNbrWfR83y3KE+Lh/Gm5hgxBiX75ZSKwJnyeV1jWvBKHKomCbbMQ0BTrFBgKt4TXQcys/+NEh2pezJYR2PL/0/Ud2m1kSbI6FInyBt57X/AEjVxL3TNtZmaf2d3//5iXEZm3AM2ex25JNCAIgFUVacIYCYt6XyIoLLaScqeLLwXa92DFzB1zbFkJmFkzNdW9oTlmtZHo3JxuTGAiRZpTZ9PoWFGfJFvugKGKTmHxrABt3ptJqiTxwEu5zC5V0i43QHVZxjRTQw/fhIEaG8xFdOhOzNBiYMl2LpWFvgtnKIfSvneHwt59HxwK8AgKP4Wm1XLmUs4p3vlVPFSMyqQSXbOILwE4qJjyl/AK6oghMGa86u7DrXHZYWtpH4YfxuPp3RtxGMzEOfo2aRXHmDNzSzzkmTHtwyVdQBh/pnN2y4uFNM5AZSDvEsvXOdfI0kaDSoREutVSoIxQPqLAoVFFLg1MK8z4g6lNMBzR58HjDkexxUsFtrSHVZiGMqmVNSVxeOlQqrZmo/4cTlir+WLN9kQuTOu5+lxA10sLyaXgr659wTybaez9CgLc3RnGRghH2m2k+V1hAbxYC9gtt9fT5bSd9Lutan+2mnY7oxkIJ616d4qyezQYTkEimXORrgSvsbwnjUhBFw26eyjmO6oSOjWE/u2sozIEsQ93SLTfblQZtDOTCeIRoJlL1r1OeRkKuL+te4HWu2Lj5rK7dQEBszbO7Du50lU5r6Du3vBzvzYZkqqTdrcf6ljGlprw03LZcNW8L5RjrXcPVw3UAAftQ91IWAB4zyXw3gD4YPta/IC9FgR6W5KpDndK5LIAcKwuHcHzCe2t8ijDHzTXAc/hsEXu86Ho1DPdAWMOJu96CZO/onIUFagNjVmth547CvVUg9vtl9++/2MNbZtzGsE/u0InBvP4MUhqVSaqJzTbanVbeeiph60LHfaV4hGBacNAODQxHFFnGPhWkTfU7jRr9TZgEM0mSEEg+vV67DNh5iYv+OGE+MXLy8vlhZSu59fnl7frsxy8W7TmUhSs8HuhF+f+pPnIF0iWUV4e5ZAucLJPBdC0BUy0T4LjA9wmBGqQs4tcJWiYyGIeSBmNEqEpD0q6WyYUYKKQQg9VTbk5lRay0wdbSs4QNsOjCewrIfdhqCDzG2hNPWJzCzzFEwPTeTQyntTQtsHqvSGXJ90NIzMR7tYE6glm0TD7tHRB+eIYyU99qI20m60jYnEw7pGqjYUvWnNwtxgaPMDjkj5XWvqalBT1KhhqoIYDdpsEYLDG5fllILbVu01Ly4jTqN7MaBFFGVLFQSitdAPb/jnulTPp9UierahjFprIJ+1zy/F16aVkHFaqSHT4Yjl6xl4i5t2Ch9iFAoJDc0lQIzW1cxYgrSLZFwCcq1ckxJIZ5RmppifQByJyCe4B44FsRq0lY6jBiNQmm+kWVTmE1dBsk4Nb6oK5UT267Ha1V4pUJMyBOp9CYnGHUcme1j7XWmI/NAAONI2QM2XaQisp2g9MqFWx2MEyxdfIuorhJRnLmVAFnuNBu8QF38UM3dag9w1z6QjJnbziMXOMXBd8ixL3y7xwy3DB5yOjMHmcYSPtj8/fVwuwtPrBmt85VsE4KQWi0L6p87+c8WPphcFGHPb6U0DIEB0vOl9oLDisXmLnivAeIg9XygLGw8lEYEkaTvoyL1ekGkOnCl4uOsL5ZL4AbI2lSK7Dbg+DESYjf/z4oDNrX95VS47Q6DIec689P0ob1Zg1iP6C41yeVG06Gcyx0xWAXcHvYL+ejWZM+QUHVRlYcHucjNX8Ao8N1slkIB+u718+XQqEIwBADid0ZAJyx81qvrkejgsQJvtTPL/5atqTfmKMSh9gPsWad64kThcPuKAZBsjA6GM3awF+WlXMl+xRNvsd+cIHBzAb3ZmWG1PBTfnZcrG0nAJLLCh29NXYc7IKkc2RNhvrrXasRbHZbVWJZAtaJVaVXy5u0QuCSivKgUm4ovLIRs9QEu1sFl2UY2HqiI93ffHa1r7YZKv/BibAB3bmQM/DFuom3oTPyjwsDyZBZgt/oL3k1r6LjbA+e/lmqR2KtZMhsdrgWJ6cMnhI7515JZDXaGqFWmYC+FEYyOsMhN8dtlDfNAQQU/qWxRkA2MgZngPgR6VWqCdd6Jn1qpnChOnfv3//10KdQJTDBk54YUOBafCUSR2YOjUmXVewY1MAtnrapW2bWTzJHRE9AJNqvQGpqfTp0pc1ulm9zRSkDrLuBSsQdw87CXVSHnBoC14GDqftenc+P1+vb5/fYfvx9v5yKs5YEB8Pu+cTjLSNQ44yCfTqM1fMcoacnw/n5xOYd/OxOlRKawu1VlhH9HsuhUHWaFSb3XYNPaEc8sgw7GHGPFBTZ1K3mrUUabYgBzNxIqsySgK86E6/3+5NRm0OrNV6ErkIA81AlCtMr4vIIyNhDYfTiba+M+y+xoDwCdrh/qjbAXRjDI1kRQHgIRwMBjPO5EZy30g2HHYnq6Vcf0aT+UCuBsO+nJiokSdT3kDe0VQo+UYmMXVqiTxfwdgqJ8/yFLHnRkyS6oBrNSnc6BEKAAaySw8n3WANLKxqNXx6sHho3a5VwCPlJo0+PBh9KEfIY66lzyE0tR0VFY2UJka2U+R3Qw5HLBPoedRlSOXRCUFwYHqB7mPJaaIEKaH1ZZzGXqZ+kTjEaWKFVJyEIl414NCYYOfLQfQG/vmZQ+QQTVGc/BRggHGpwrXUH57ueEOuhT1LcUoD22hb+ptyfuUBJerCobYb8iVSupw/VlS6JPr0eQBtyxKCNbXR9z9SgIQyAv8odwnSV2po1DkOmBw7lZFn5Y4CNcMX+FG5Xy7Z0u4TxkYvec86CnfSG5cwGJjbN+9M3tU2kL9Dao0MiCkNUoxWElZizHc/1qBasuBDTavFlz50p4uJoIZg0mA1mk/XiIJfSLO6XQrWEG4ozhsJ+gpAT7BFFcycrRdzDJ2WxXSma04BuTmQeoTCWs61+RQXiOUUZAogcn+I75uQYs3R72wBd4mtXbylX1nO18vpbNwHOaJZgxgcNdaTj4H108OD7z8gZerjw1PYGI7HrWrwWJFDLdDAhrBeww64vxwvt6vpeCHd5Yzba+ipOPbVrIJ5IcAvP/aAaTEW2oDKrVyFfvl8hUERJMGqBIbad3O8gsiz2R0OGKjPOK7nlWG0hMoJsYXwZdaUIjTVCFKSe5b6YqH20mpAvV6a2QSI2QIR+xMNFMve1Zk+YWmqg9uD8YfpuKgaFd5uBy+N3WG/gjeI9LvUk0q7v9UYQHOqKsqVrk6M1cpq82/Wkvw6B7W7HfYHG0VJbGj3lIav1Jyk2P3MmFLI0W2w622LW9JgUZiKd0/M3tuIWBW+++IkuL86HEEUs1ExgBi0MfzstfO8whcA4+vV4YRndzhs73e9XDkLmLhWfL21mTYW7NQZryl+ZnKSPKNRq5nnNVAQSRPOUiZWea7ORuDv45NvLMjASBZy0jlSZBDWf/3Hr//cbSHU5ShcAxlRVR52m/3C86q0QIBnvVyi6mnaaOZZAx/JZTkJNFJcV3ByMXmU4/mBykDrcXiJinO5RtEwPEc7nGcdUIRa2Eo2lMkML2awm4ZMXuhNQOubw261M5yDTI4OeXc4Hi9XCo4xtcak+uX6+noBKGO+Ayr17kijzuvL9Qqrrrfr6xUuX9Tbrbeb6Vjayh6o/TSYyatRjh1xvQ3KIbC10dZUIsFGqRPa3abGN3SVxQRTLo0yqCI5t0GdD1rknuYSjueQ9gIpOYCWS4a0zWh9J8hdwKWDjfBgREboGCuxychMtAa4lEDdxYl3n7NlAdbJpD+ajQdmrTWiDkrKFThUDoDINPaANabmLupmudNilSGPrSvPrDvstShjJhrDKFRqiXqOHWi13YAXdLNaT+Mcu3Lp+wXNHiqPj3IZlr/UY8HRX1WZCdEvRpDhLbo94IhZ2y4eZoGHEbDzL4qrLYFTzzOSqso9KOo030GzjTEzx9hClayJZEtKq+YQJrmQG8VKkKse49MAACAASURBVAG2kSuTRZq1pNZV8LjCBiQDiMNPIVPxMb4Dt9HUJpptlCaSOsHF3YSWeheWW2xL/RL4TSIzOVeyGGnY+KFVFVO59CEaKpUjexvlR7d0o1KWW4mdQ6slyoMKjQXu3UxZXRvNIKN0uQvKlYDLJwwI3SAGh8aau6mN1NM7iBH6TdmQp4Ky6MmM4iNdVgVGHg7UoMOnPtlXAAbtWSe5Tx7SOKiJrmjrXdHxORtKyng+CBox2l2gbztbLbaYLUObI0c+OuIx+UrAHdpDLLfQC08ns/VgTDaTAA/T4WekURPy1DZ9CaSSzzG8Vk6soTS73JWO5J0JCEozxtsul4Q1+AdJt7Lh5BDWEfg+zL47PZy9cvgHeRY9VJ7a/dlyJqdwq54FtOSwxCQ5S7qLUW/K+xN0XZq6WUVVcmeam7tgVPBMSuOpxhbK5ep4kabhctqpHGjDfaNJYE/P2PEBkZeOejbXFS85aAgEpIJJ/kipsdyuZ7SM1JAEZ1Gl2boLZXqREgV4scyAg45sD4V6HUM1s7dmkcqbAw0bDhpBUCjzCSBegGx1dNbH2iFam0uDB/2IoEZgPpKpU068y2G0G10bqUv9lAvdBWtEBXnaxQqSLnTXBsDqDFZOtPc3Yy3bBa9dpJGxps1Ocrs+gEJ9KhSTbUld7N0dlfIj5V6j3OAfSsRs6U2Pav36rpyF2+tmGQ34eRik78n8kpekLxVaVosyXhWSLFfbG+82cgq9x4fHSpnvmUb+7QOSYoa///H9z2Kz53LZnj1eAGQvbg5Lr5JGdNFNaD0gsFOvo4iM1FBGVQ6BBdaQf00d/WOlDAfjekwLAg1TzZIYROqMKQ3SwYNMRW8rjHth5tztdLnZ7LcY4AM9OhQ6GN+OZ9z6FwxnPJ6ej8+Cx5+wPoYVyPVKcjWCpfaaoLyz2ArB6ufj6XKA17VUN/sz1hdSw2J228JOFC7C8iQpHpafCeo/3Ko6zCjujwYay6s5gNLqttpNmLVWI80GgF0XSMZNdZ5WwTBYFLMxxcXkUwgAjzTwiMyqCSZWGCRjPj2RqwnMSXCVgcwXE2maTFIhCdGwcrRKVdN4BIimMTRb337fcgs1wBHEcMoXUEbA7xppUnyFCcBZLn9JIdEgR7zVblXhZSGflYMpzdOPnCHjYq4X5CAEUYe5seayqOPSwHPg+aTux55bSsCc2I88F7YexyTS0nqRx0PgRrJRdPPULzPtIxtNh6HTDYUaOOyCDSONilPmFeUnpsl1tpWh4W1AKlcawtoSx6eNsTl+5o0iYykrwdjiBMPgJ29jdrchTTcdvTug0CiG/wEFUH5oimHlSkQlrrvWVOuLoJw8lVBcVsYu7IDpfMH95Jin2l0qveqM7xe/nrKw1T8rME61b3pkrRl44ms4BkITuI1GVlGgkc/qwRGUBlJkOmMkba4docYGk7QlxRlpFiGcKn11wjIT8NDShD5IDT8ek0Y1WU3n0xUGqagiWy0a1gzA+ceceYg+dzoie0mAc0Fy78oWvgLAI90f800DawVASdoiKYO99NBJ7rltnpJv7XbPUyiBFovtTGMBV4XRW3ZHaHaKleB2dz6Th7jeLoZyCnVyapljnb3wiOksxv3ZZoGfOuqxtV2tluMpw4XmKjuin7K8Px6S7b3Y7J+h+ricjmsmEZbz1sISaI/YH27XiynY1Wh5qI6GpQd8IeW9mQ2zV3S2Ws4ZqLRcbuxtvcJGVvpaGi2za1ptOA/c0rRCO0DgDNlTB+xE95ani87NYvfwr+XxESjlc2e5uEq7skP0HnpkdUAmxOJdxtlj/es+p7rSg+GyY/OqpzNLAP1UsWFbvHUpSjSXFsRRAObIlV8pdqorLhye6yun9QuekpK1C0f3Uk42PgGnp+2BI/Atevu9444VzmQaz9yEx3t6Z67Wh5VOzQ/mOLnW0fe2cAWFc6g248yCtQdKBqnm5FEfBvW6oFdcDVVtkXN2dEfGgBf0wxMKVt35Kt2RsjjQAeVKtf/n9x9/FFtNgSj2qseC2rnYLpf7eaWShpBZJrzohbSFVD8DNMFwMLBTTlmquHcQDz9WfBe9xCuGeerS2QY9RsrYWOhAVIIiDx2GELWcab3NGvhS0o/mtW6/1RoM29AgUDEEljFGukz3w9CHBZZUm9fr5fz8ApvMt9frRRrkt0/v77pDvlzliLqcit2Jr+cGDi5y9JyklX65QH582CFuCxV2r13nEhjpTFiPQryDR6TRStLGjvoUIk3RgQ5ptIVmuaPdfJ7WVdVTBxWqhVBj6XKH0h+rpmnA1fBkYNIl+eREWVl97HnQ1Y5VMIz9MfhecppPIRxGu6w21GPVFqvIadBVNZNFH9L8g/AvFxIojppN6YabzXangdinBuVi7Rb1+7UqBhJq71lrNLM4BNNJvlLL8vTJMx0oZTJy2Y4qNpU0Y93YAbDl07Kz9e+IuAG2hKH6C8KNXNpqjzIl5qOjIFNDDiMFuYbRHFQjpR87bjQAWA+wUGHTUpmgLE7MFFIDGyIuavFhbOBjo2y1gsYxHEAjHHL/G2mCb+SiAuWMiPnwIndYhzqYDtwOJ7w5VGnFECsbLYSzJt1G9PGmfnh74+rWXhjd7d7mwhWjo5WMjbI0LuVCfKErJvY1nw/fmXSUcmz70Hd57UFwlyzktsK3plxdabUolutBxI8rVnCZBZYFMVBU+6DxaaHp0uh7GaSQRTuIVmM0N1H4gORZjZadLyhDmk/kNKFET7XBpBbNlxDUSEsq+CxAJp9H4tBMwIgMaaLuSuEYgfcCTlKqAonnFO2RMD22jlpXpBxFk4SsJhgzmk+sinXB2eN6oRE960WxgZ3g5nBej98va+mfFmOcPO3w4SHOY80thHY8TxtysqvTlYA9IgnBIF0wlX7hcnTnAprj0ZyyX8EU6X1fn087AOdqudG2Zq/TYfNewuYWgQ6Mj99sdpjHblQqS1Mqp9udrbab+XS5pb/VFvpXRTB4JNPUYuf0rrjjnWlpOPXVker+YJIcCxvQn18CDFXI58tlr8B6Ol4Ou9NZQ+ehBqUWRgPsWTtwas2drQL6Ya+fPNqbofDt/vkppWMDkk3lQ4MNpznebNUZ0ibQRenKUU6oIavSp7o3HpTrkB1MC/YW++NaywvEDFrlcCQkHwjENK02A0wOsGGwacFIunQu7vyp3V07+pp+Re6wwIhAKWjb3ahZ5yA1Ih80rZIUoeeJykiw5OGJzgtBbPmdnvIw4iz03v769vtfmO0zj2NFc26kfsif+aIYPfrIjoHqg1eitFZD26rZMkrvtMsFNJxR6n38iNElimR6Xrrtk+PDBnIhxrwvjXQMCJEJ1nns35n6kSeJ/IyUA1RYXbXrdQEQiIxhyyjYhziFZpuxvl147XAGO1LjtzWIXJdnrIERcHy9vrwjn/rt/Xp9ezlfXi5w+DofjvJ1wWLI4qU8vLzQf4S/s+czf0NbvAYTsK4g86pX4beK1rgOoO0OoHHucN/a04QjMqwgQFaTDgFteKlLb5mSNp7mGgrY7UFwDG8N4CvoVXTlMKdKTLE1Nxj+1f2xcligURqMh0oWZWShI0zTTFpXzEO1zxyVTC9YfLU7rQZUUqho6BoilUG3CxaWtPt0VQkzzB/SXGqqiAAMD5OUAPxoOTeaBkcLU/rkcp0bpuboFLi09sAIv8quQmxajHj40Hw6vPakTT8LXUsynjW6IQY4TW60SqFbYIPnwKUORZqJpJrdWyyi4SdIzkyojojhctdZbLk/xld2MeuWWeRZvKpqluRgdrtUHcy6zAXcnxaOBkdlx+k0oyVe0hYsTkPjdPn3COzwnWiqgumyQL6RxcvblQXJjdMcuFwg/ycJUhkKodyLgGZkNIC2Gz25wO4nG7B7pHGFvgsAVimSHxg107OFQ8U3Hp2ZPlceHrgxNu4VR89yFCTMxsM9OQa36+w/0FIQTkYaFrem1/8MMXdMggc+kuoMdtNsOp5THIxumDvQuTp1yFdWSnXC6lP+WW0X6py4UlieTFYLkoDRIa4sQJ4bxiXz63BFBUN2WwhCMiAXK1R86wS+++vT6dybvv4yG8vNlrNxv91s5rXhtJN4KNWoZcuT+mQyXlEDBVIYLK4WzPfl7ndhz0YeAEfuy+LyJh3A86HYCBqviSXacR5PuJpvjKZbGP8Hyh+m/kDu4Ui53Otqo7jaHXfrBQytdhzs7d1N1hoyYOqe3WZ33DuAB8Bt1M+Ck2d6LxtbysmTCh1UHwiqtD6k9vS8v5wAX+fLERERxFRgMX0i7gFYG1t+ArC7Kx2cXL4iODlnudlZAZgCZcppFYC3zHQ0BN6WZORt2akXFoxkK2i2xNBY6RNURL0H4TUIboXWEQBcQ2ADYJNN3RAYcwEaQhlNyxVGLBmOh9sQvVCDy4OLQzoeiwKTVasOhnVk24c5G4Q4q3o4IYKoTLxUYgSL3IhUF1zBSJIyAPZ/+ePLn/9Y4XTgWoWrFuktpyxBNyMvyGHzx/I+gY99NU1rVZi0JfGdHwBJHyDZYAr59Egp3uOTZ3V2qfeMnpIEN0to2g9BCUNworLDke4kCED5SjkUTuEMwZgJATRpSRs1yIyli4PtlMBjv6dGFEOXC9wdsEJe0RldToA5Kt/j5fnt+vp6ff90lQYZA+vPn7+8S8N8YY10wpmBg+2wQ1kK7sGRriFS/n1+lYNPjkm5LoyQW4QkA+QZd0Gjhk0r4g4H4+lgPCNnhOgnD4w2k1InoBkVYG6zjW53OuyMuW9WAbGmGlJ9hMCksS68sNsit0tgtw/DzGEJ0iPV/WpOsRpscS08pOq4b5aXA/lZAvI9pEz06ZPZpKEOWOjtJmf+aPOTahMqaUwe4kh6X0HfNE+y9GOFS2CTd+ICHhsAA5CkHYuCW6orQdew2KmVpMVFEruvRCX/qdKadCMaZoUK1KGvnr3qqcWYU7dzJUy6EbSbn8ZGQ4jM50KXxBpaw5GzfBVXTCaXE6rJYI5d6pfrEU30q0Za3AGTMZ0qhsbmkxm4vPgbMN4yZ11IQsVmr3wdOOAtragsZOg+p1DLCcY1BszntdQ8J1Ty/z2R/n4EfbN9vhlqeHbi+TfnK5f7CxImhwl3OmJ13ILHJb0zGOpQpv0qU85l8DoAZhtMAH6qALe56xcsl/M6SEO1Iwl0tP0ER22GMBlL78MQlvHzpQDiZrFZI1ZG94gAEGDHhlxPxNMvYe+4Uv7z3NAMu1A2ljO6IzIgb7sWALa2aDUjKOPrc2NfWcIesZ6JCapjgXB0v9MPMeNdrHUjuTsLSC2P56U//bzsvr4u1otxR87X8aw4rxucPnPPH6RpQ0rlqeAzSGRjMK+RrcCdrPxgNvPsumcCvvsdMuKeT4hAgDLpcIIXFWCHAAig5Sa1wBKWA1IV/hxOO8HnnW5wgUbaCe6wYwUowPJxrwDsWll2ueulsmaL3RIogqpn70bNKgDGfeI9xW5uYomj2gmzU+Q30PxhL4/jghZkf77AH/MAdGU+rfx3Oqpb4dEgm1vAs7oXO8BzfSdaYObplQB85LM7HJx3lZKPt7aRLkoBEo28bg1o2UhvrWI57AoFYA70jY7FG+zJUT6yWT9s3SMh6Yz/OjKZgTTm1Mf9mmTpYrs+7Hd35hy77c9WIjdPaHsHRxh37wOIOBtpg+rJJKsGdoG70SIfPz6aH7QqL1XtprHAcjXK/v63b3/8BdLDVKBrQt7DdDJdLSYTnBcTP0gFEEl7weguyXOkiwWQ2kWUV/iYvqUWoo60GJyrT0rdUNd4BnxbN1OJ2RapoUHMjBvOelS7wZEhfKCZJoPLoQAwGDX1MoYdAcKCw/V6C40mmro28o3gUAUbyVYP+NcjkwncSPl7Rt4CgjwPR/6WLuiPkev06cvXT5+/fvv6+e1FwxWfL0h3AuEaFprymdd3KWaxV+ZCR4635/Npv10KGIMMTReLKguERgedb3cwMb3eAFmIAEoQutAWM6dJKoa2emIydFGaaxC7mhBKd9irduhoNaCOeEQxPmQJw17f2XdoSqHcex+9bLtnMicagcALhEmNgNwuBIWQQXND3Op3qchuAvFbjRwJ9nktSxFlmQkKN6pxDDeVaiIVfxo/VDyysBjHUIbG6aI0ZJ5HeGdNDBN7y4AvYSuCoCX0NDhdasC4WeN+kfgD8IQ2M1ZHScQBegrALlzIswbXdcFqjw8yIDKL4sjij5w7h7oWyRUzCVXAGYIClsLgyaBPR9lKqTbFMTE8dJJdHr6hi9z17neuHI2TyhA6G+bQIhc17wRoxtek8mCynSdLC7z5Q+ptNdKQI3h9wZgLHDktQaVSAvHtnZ9m0pGbJN/Bp3XDwZ0RVuyoWTcSFpfDpD1XLDKJIVeBxQFZkJFpjiqB/mhMQfTLisg8lx+f/FAqd/7eyBiTg8SRyDzNgQg/1BoIGoMv+ag16IPVu2R5jxAC4jDdfo6n4khC0HGtOerAmiUIxFhrrpmFR64R+UZsg7e05GD3jHGdSoOZOa8GVLg0brYrTQPAGlS6s8N2x0z5FTwgt4Si1UZwf7JaDqLJol47bKHoGc+3Z7n1ZZExbQu0VrnSpfXxuD8h6Xk2nSBMCP58S5s9O/PJjVwsD88vr5+u+zUYVWqluNuzdtCQACU+W9sJRhKmqvKfQO/hvMda+HSCUcb+BkBoDvDpw+6E3ktHo8p72isIA3bZLjsBL1vkwpGoFI+x0tWG1f7CjzyqBbAOmLHbVeaMgObpxDX10XW1p4s0K2dC9OF8yws4Ma+Hxol2N2wQOZSW+8d3YYp9wuJY83Plk7qa3Tn1SqG0tF05IrfK4zZddvpifTZHDR42XnaZImzrX+ifDkz9uXHA7e2wv3PGcnxqAdRCbbVWO2ccrRGMZQaF+zQKKq4aVgskU2rmlZR1wxo6qqxpbgS5mdoHjgEp5wbOl9AZ+2qSSRDZNSYMO3/99v23vxy3wRmuzJjmIXXoGGHqCDsk6wV6TPSlcUCf3oBWeF6E8HN1RNAuQ0A+ZTR6NdcYOZJSWFyD9hH6jyR3RLpDc2CsnY5geJZayAwV9RR14sIq8JDX4ow+von6fsVJToDOaur5Iee7wBw6TbNJ7s9G7CQHYyhv5fRbQjcHE23M8Tdy9h9gBHJGx4v/2B6/vb/jb/nn/e0KyvXl+cq4RkFt0K8Fl1/wyYscXWBCwD0AtCq2t+QZo0sHBAIZe2B9zvtDxh12J3ANIZkLgYZNarK4M0YxUc01+5hW67h1F16UPRhaDgx6e4rPFBx3BYBH5mkJgO/1NRG5p98tsFuvdfTlaI8GFGA3oUZqN/Ioz+ia0siqyD9qNqtJDG0WgqnQAXtKg1bLwTt9qe5Btdm7Myr2nkyiU4bZhnAtRIqrcvJIecZklJO9KDI3ywByyzhSa96fWsZyB+yG0Jb4l6pxFWfScbkLDoIkNNkQKkw51tKAgiHV6Or9QMeUOkTXGFjgtHXYWCFj0mvWxhx73z1HqoLc7tWiNJWzzebyyVOCxdOtjTTvKmtVK7cUet/YZzbsLqXVN7gPHY3Ds82s/z87Y/u627ubx13FjDrC8vvuQhc0roB2G/i1IN4vtsEF4Zi0DRs9OzFxoPpf7+Gp4goxwHFsY4WoQi8p97C1JuAOuJrDFQ8Mg2acp806Ar9rzW6/DmbgAGJ2RAcJKgM7ig2mmgIzx+cT5pb0HlRCDgUrcqFbQK4jl0AolWbzNXU9mEovyQZmZjxksZsZgun43ZrBt4CHwkZln+o4ATHNYi4l7XJXHNZShPa3zfpcGty1PILtuSjO2wZCLSkVT9Jqmg/Ho/losVmO+lOu6qQ40Ax7Gm5QJrRazdfPn98EQDGJxmPmrHmzsr3YAdCKRSg6OPgYoI8DDh7xF9pA6dp2AsBrbQ8P1u4eN4Bf+Y4LbiiYuN/rppWMKzNywudUk6kNcEEVka6IUe7IlwnAB4bsnBmSc+QLfTyzjb1cIOtkr3q6nA6XZyDpRfPxNKgWU0A+bu15dd+L7zxrI3xinvxFMfcg32tNMlyTdE59IN/rVO6QMeE+sPji+PF+R62Fg9Ks1UPaXEN2h5OOT7Y2iD5qjjJKrVWBRf5Brapu5lm2r9AqTo6XPeRp6GQLM8OWz2kk1NK0ryzkbAe/Wkm5B6uztcVMahwU/tlspSZbbfp5VTqpgBlsyFmLPZqzkp5oVhv0xCHDMgiUYe8pWZJXnOG/fvv1t38ux/MF/CtI5p8qnX86HY1XfYFXgb4oVZZpQhFpTsILdUn0mZXeiXNkucAF3BAmvmby9JC3Sw+mek1jaLPgyQMfxzLLleNJiwbVn8BliA1wosLPuJqHYbXKfCSorDRGTgAffh8wak0SRAi3kgwGWBk8JupNJgUTh9r9FlplRB4NB53+ZNRF5NFouhyO5qv5aIoTZAXrliPFAZfrZv/89vYmne+bNMif5O9PXz6/Xl/f6SR3FvBFIyw3BgP7+Xx+eXl9Axy/vuG7ng+FRrww4QFJJrUGUyDafakIpP2FZweMwAZDTTnq4mNGWUAajQzfXqdRAy0Zc416Xm3k3U693Ws3YCA2UPssly8MtvSYqiOiMgbaPdQf7IBJesbevNeq6yuAH9EVGG51Os0skodWr2dps9po1eCkVk00CkleUu6AH+Gx+/T4gKkiKraAglGOOJkCr7sFlFNGfw10nhoaryfyGXOPjDkXaBg+eVHF0n/cotX3HysAgtCM2mzjGxuVCla+VoAZ1S8HiSqykIRbvnqQsu8VfDZqFZgQAS32I8Yu8C/L8Q2T2GF7CHIZfuAT6PnII5YvAoY1W0KeR6QR93K34Pz7ZgEd3sjNCGeIyl1MZBZf1PtV3EjX8588S3HkoNaqDz9KzTIjdgWISaF8Z4URkhV2I0A7ffUTHnbgm12Kpy4p8nEclE5ZZdKPM0LBhSFQojXLpeAB6iEmX8HjiiozV11VLA4rsDTeCn8eLEp5OMQ+an35zJO21XekbZ05fECkdxonoBuA6AfZvXyY1+lWl1VraUv+7zRhgNNlSTmckKgMZJLCGC5DhBAa4cHRQnBsgyAiRjbMJkRlinHhAblcLzbQ2kijKHh7PGmkLIQlK/kUHZIOxWJ9OhfnczHttjrD0Uyu48V2FvtZtzucT4FJR+hc5Z11Q+MJGWgpbUd3MlwJsM9Hw+l6gg3zkpPx5VSzziZ45Iv1/vJy3szAxlqipFAy6xJjad1qASN36qYsoFScL1g+AmcxFL4Nl/dEXpdJd9prK6qiDrCbsMHc3TpEWAVym2tbX9zbSVtKOhYddc58NvL14Qpm1elYQuvmJFe0y/OZMMwul7LN0+n55Qp0FjQ+cp0rffD1ej5cDH7xOcDr9Qzv/vOrlAfIldhDayL3cXi+aLK8MxR28XcHW9KqxEh9nl1sg9KW1exxDTuPvTplqc7XrYi5fXVJgZpmjE4V5hxoUF24LztXB6PLlUVmzFZLTd+jiBpL+rWyB6DTlqNmSRyWD6GtBuQuVrPVZr6ayucX8umZIvFawyLkFR838yp8JehMnyV55NZUdir52sqAiGVzJl3ylI5159+//fbHPxYDar5BgaCmfQ7dPLzjenIJgIpX/k/kqHyM00Y9CtmEwmr+KUZ0WiOvQX8c05wIV+DKU4s+G/W2IEG1L3CoGp22koORatni3FXAGW68cEKit0CQkPIjnUlEzmpqdoXo2NhzVHUaDltCGknAi5rMIWQxoudOKW+qJ9V6s07MBwI262gne5zTIvcXIfYDhAk1mz2svKXphxOYnH1MtJISfLUuLm+fXp/lALt8fn/5Js2wAvOrYC2wGUPrK3rm6+n4fJUS8oV+c+/XyyuZ2M+nU7FYbCZwyMOyuA6f7FrakKfcGgxabVC4GD+IkBNBZdCi5XzGGB1hYwgohn9zFxgumCzPEwZXGcMDGy1sv5ud0ZhaJ2AvDag1IGmIRKROQ/poeZHxGoDOJi12vS1/S1eMMKQ6/cryKhyx4MTRqid+NW0xeSZJw8rHx8dHXpgfNfjm40PFLxejjlTrGTG34gf3X9COLLz/jDo7kafnWlDwlPBHZ7JO7sMRsMdeWhGrJGKZRWWg++DAZLo8SpRhhXlzEBFn5ZGlAQq8MI8tZ0j+46fkuVXMGTh2tweiszDFDVhAQORKmw61nwjD2DrX0rA/MTmzWy5ri2o7WJKSAHk0YLIRsvfkex8JaH7pbwL2lBTMXLSq89Tdi0Yx0Z3HM5vVCPoCPihtseHhJO9rIgHyAJ8IsJYJXJK67kcLJta2BHtN+Ass2hmpCiGFFLxt8DGkArhiJGlPlWiPNJZXkpo7DlAA4GkFnKkHHzLKsRFNBgYHiH4slqtMspUDL8zBwM/SesPGRnBvlyO91+lDNTA0UdF8C63NDjJX3Zpulfpb+hnyyrpAR6LCTJ2xlhbB6xXISdK7yb+CFqfNfDrqtXuzDWbHy/1ulmc9uWxzrYkRb4ExadHU4478ArnWDZdjiILAz15M1SFjZamDc0apLJAAhLZuswRpm2H3pCZvCMZ0MGBWQmE7WZQKZ3VsUiITySiEK6Atml3gL6bO+FD+HI2OvDsScHcl6xirWwHhgyEv20z54IKQBwFW9J/obq/PRM7D84k4XIbP7s8ClZeLWv8iBccBMGQl2O5ertjYnZkOj2Uwv0v/oh8wOVcHbXPlR203B3mwcC/UBtpm4EcSp0lucoYX+6I0PjYBcSkXoqx3T0GvToDL8AanIV4bonIPzzE/ghrYoHJuvGaju93eJUEpq3zjAJgiL2ItCrlVOXkmhK81tpHirgUo5/Ch2Fj0rrL8bMUxblZJp4kFn6R/qUU3r3VQH0Nd3XhkRmvQmO2XjCcSXf/4+uvf/lwM53OEbMxoQDOZzRFFgPTLgZfkaT3O0pAELg9hOTEcJzkFluvhk/cU1HKgaJRwSs1UMq/eov0hIhGyDpJ7AYPU+XI62gMCUYyPRacABw0rH456MwAAIABJREFUq0ktUT8Pzvp8NyZ3hFaOvfEV/ihOoH24IMmXEIhMd0I04vIgcxoTRkGKHOFalYkVADIkfDWlB0SWEBykaECpUYLMHoHdM6QN8iLvzvTUOh7O+/Vxe3yW954/SWX4hj3xp1fpegWBv377+un9y9cv7/JJHMhfBaFf5NsQv4gl8qe365m86wLUSzzZrtT8rVq7kSNAvtpRbhZkVr2BOjq3GxQGtRCm2Okw0KiBTTFMS+CaKYVFvQn2lLzGGSIXIdjCDhlmIFADE4AxBOByXOW/3b58IADcQRYDWNlQYkvlRgYW3pKgmjRwjYTIGw66TxZ5Y/nrXunmHxj5ytldleSrO+tD738MTG3WcQ8EJmExdpRCWaK8KuuACWQq90EGQ6ITY/N5NBqWbilC0OoZemhTa/VsNmgMvBCrFOnUaMNRKniCWE+D2wNzlo9PnhNEmZ5XHTaCezJU8FOHqS26sQ4jowTfbqAOGNoBm9tj6ZdtBbF6Mfs2Jf43d2cD4DTUIsHtqVULptps0jpMuO3dpzr4JRD79hQ85xPgtsxm3qEyKYYq8BECgNXa237JRGLqw73STUC3yxrEq/GKAsAxRlmZZrTgVCSJAyepOtXmcVqv53LdANcSZSU0lAhUqVXhGU9ZH8L3MCDqDgbdznCyYL4Q1r3rwlz96YaH1aRAq8IC9LXq3asGhSuMQPEu4AMWkoxy4aVnKY32bjaYFOddcdLRKMhIgm2bBqsX8lLkOlKd7fVaT2+u1QzuOTNEAkrHMoISaqWqVR1fIvdXI+M3a8hKYMW4wwwW9JPdBpJc6JekJ7ZVJlere5vpnnRyCyEQCoL90Zaxx7OxnoBlOx01O7xml7ndqVmvpboeMLKjA9EZrSrs8/lKSZt6Ajf5pCa+59Mz8fZ8oRZJ6VYE4DM5VABg3NGFH56OF9vFsVk+wSNYf6gtgA+I0QPoUsR01F23UytxF22lk5ZJavShAFySoB3QorkvVDOmTCjd2SrX7tbblrtaALBS7h0Gr++a5NXKKagBwJutTpnLdna12Gqj7PIIoQPbMLeqWG228D/ZgJyw2lhS4tpiHbejBg2d5FiPAjnGGzrXK+1bQ/d+xVK/zazIdzKS6uvfv/347R+L4WIOc1ZMU2bj0WQOCtN4vNi0PwZxzP4aaa7IbUUwUkpBJpWUTxUFYI1O1wB2uXsQe9ABNzvdrC1QXDPhEJMZusgV6w0RajLud8AW6vWG6Ps6PbaLLZ6IOSbd5QCNPv6+JwhM0w8ly4apFwKAo4T1NfRSMZ3mklqKzCZomjhXlY4dNXgaYoyd12p5LY6k/cs7cIgWIKsx0BiJClizSmuq4aXj0RxUTsHjMTzx1vvLpji/vr/guOXq+CA9MJrfly+f3z9JX/zp6+fPnwWD358/YXL9cny7nrBWKUhNANnkoLo95IVCYsRJdFtje2GuJRehFlfDnTZGc6M+1Ffy2HSz3OmrFWaXdOZWt1VNeTmr1jRgoakMa0Z5k2HdbTMTqiV1hvyR5hufaFazXL4zTtmE4K2ayevVSOTna6pGUHmsGBHaZqHukNFmyv5W9KJwJQpLgl+JH77vhz8B8M+A9VOkjzV5RFQ6alhqUmSj50BJDiY/cvSrOHFvUcrIQjKhwYOWEiBlQoIxsOTwTANHZb6RkxNPvbcSG2UD3uRJyOdVM++FFhTsrCjLPtgl69w63iC8u+uKGWeX3GKQzqj+8Wwh65cvKXvQW+agDpQ9eknelsl05May3AoGqxzQppqsyRHHlAPivtHtou3NvCw/VkozEC3YLWYSz1XJk6ZK0gk1xP1Gp/Q4uwhuO259kBQ3YTSuABx+oIqWdieRJqgxTU1dVfB3HleroRxxjBZnBoo0xphppViFVJEjIp+q1zWtS04M1I7tTpMkB+j3qBFeF5sNRqpnLiCxhkS8ODFNR7jAnPMV5+alWE8Hgwl8sGghsD5s5wvpcWA7wQgh9XAESWpd890xJpe6rDY+FOi0mfcrVwMBYEbxIuNpvN6o6SIG3mupDtYbtRLE/+sdrKOgdRGsFPAtToeNPCTqXKX3pPXjXrPnDtrMEnhZSzhpUMl3Ouvfe605AGwA4N3epryWt0A5kLwQz65TBagCgJV6RWwHduImV+xtX+VaJqh6Je4+c5OL7waDigtdUGQuXALjw/OzG12z3cWEm9vpo2IwP3M+F9uSjL1nmAIdJgoIrlRMtL/Rpf8dgNUcWmCQKQqr7W2b64DYoPinOEGXerSypvdGvrLGd+X00Vv4may2sO9cuz0wO+C1Wqa4b1YAXs5WBRF7CfTdMqXRchdNtDxqoAOuCizGQZrl/w7ANlfCDso2rqVts8dquHn97Zdff/vHaoD2d4Zczin9H3B4C/xsel6cJbU4i7IwkAtzDFwTSEvM+MeP5BSNsOhJdI3nRnh1uehLK9dodAd5Gy0fBtJED7BxlayL8euYXhaDXm/UbzPGvqM3oe1Ut9VQonOrDe4X2qIkVLdcajjJuIwtgU55WTiDuY7GQhBmhJiWp1wfy3lOTVOKK4E8j2o1CpHYniFRkQvqOrP72rarBWu522GO4BCOkSNY9ci7q+1qPj/hwDyZ8RtY/fuTlojgTMMP5POXz1++//jl/f31ClH+C2nUmA4dzxccpBcMaeA1g8JqPqc9HohcLbpdYmKMAbrUBohXaOgWt4dwJnbJ3dGoj+yFrvPh6Mo3cgFehag3y9Whi+lUVezf291WU54aLaHbYD5jAC23RcwzADhL4kaMf1CwJP4TKViPFZr73ne0DsE864Gd4TPIf1j4/gzA4f8PgO85XHfrT3O/CJ3mx70fgW0bRmamof4asV7Z1dcqhS5OMFiOUg1ZAAMaDm3migUBE/ISAhMsR7bZUD41iztNidCOUo5z3FLjf5gVqx1wcJfv5Jt9lsmJlEvll8lFFl4QGPGxwihBj7e60wEjvpbTqTJEwRlLWmaFVzpkqXWOV/moMUU2yrIUB7XJoMuJfyuQ/J8YYTdqGEbWRq9WrZLLGSbzTZldmCf4yoInEx5GlGxzA6PH6breHME9ixO2iI0w/BAor9wvHVOMrq7O3FIiyeXKA3cFhHyUx+iP5ZdVy6pVTLDANeHgCrRPOSzDrJZJ94wyWg7YnABdR2pZt8sFMkVJc7pVgNykCCMlMBgan759+7JbImppXsA6fbTY7qTPaGWtxXaxocXizvAAbg6ndSPMeGhBWRJlWZNjy+VsNBzPJqCmLucrhhStCjaAQFSYWNFZZKGc7A1o3IV2fbSegnnS5Wwej/vDmaZAIJMQT7XdPf3PtzKoXSe8KCz4r974qJxogLfykI/MppFrELte5MlKBwxSMwuUM4RG6GvVJOFaAvDl5VJCMgsZDKbZxjoOFv55Zjut6EuHDXhOH5CbtFvTYpPBD1vmFOxvLGwiLjjg2BI4o8V98TNPWeW5e6VQmVMGnB9/4jJrsOF2fRd3aIi72juj6J9jjrfWrlrW3wbdLAFYRcgImKCV2Ha1dlvjEr4LEvn4DVJPSe8tD941vlvzDCnGLWpy0gT5anlWN7qGd+c3yQvpQ0WJH7ecGuWBDC6//vrbr/9YDGZc+mLvO6admxxF4+F01feSPJEGO8kVgKVFyuhESU/dwA8JwDhJInXxCRjN+REj6JYAcK3dzdvyQZUA3CI1CAZR6IJBRXIs3q50wDBU7DSVQ9VDp9zvtlV1Mxxx0NputZvwqBIglY6Nak+QfHhlpNN9rKc97GswkY5sWAnYRb9EIEYUrnwR/bDcwo+RckzHflwKEISU8y9LcGpjnQqeiPTKeDxdEqz7QynDuYHVVdByxfEOXD0w8zldwceSY+/08vbp8/sboha/fP0Kw8wXgeMX3OKZIU6vKCsPKEhPdBjdr+BJr/aS3TYxVf7HyLiaZrWmvJxtJBAzBLHTYyiwBnfT5gNts1Qv8NnOcr5lwFP5O5ICTbr/BERyuT/0IHktT7KG7ojrtSQM6wFfHrlJ7FHD/fDwSD8OAoUl0bmE34plLtgYk9fw0A6BWwZPaS7hlYvHfwuuvUNnl9LjZLs6D1ajrTBDhRdpvi93wBoUGLs0wogOlCH9ohk8SE+qOFWrSuQ2wF0w1cyeADnCKe8nUS9VD9bmznoLwIr7DRRfPWpq/Tt1X3BztiqrCk+dsiueU77Tcr3ihLU+99CqpHYAjDt+8rkFtoImCMroqLJ+NhqXC+ctK2u954Cec94Dygrd1Gqeb1gSqz3vfhz9pFBrKUeslCpm+K2cENJENF7DN/s8kujgS0pZEp+U3asWYrfHSs8fDgM+VMK4NNXWqGedcbvoZyRRRKEFV5EcACueKmNMk0yO0YxWtTxZcd7Sjg/FZU4BnxylejY3athN5FzICCD3hjB5lf6UQfVIToMN8q5YTceTBZa4g+GYaYeNTIqB3no7Wy0Xxd7IQPI3KMvLWpDpABqyDMHivpzkAsDjwRhBxQL2E6YQSkuLqrqA7mi5RPAEJCpQJdMuF/2Y+m4UAr4YEQugFRugDE0quBrVCa50qMf7frdseW0RfDwdzDMDromFfkq/yD9sbGmkASLKM2RDSKUhXh7ZxxJ00TIAS5/tTd69crd74T8EaV336nxa3rhYO18I6M/PBPqzMlalhIAnshpUbdDlshOFwcn+qI5XhbNz3nGhW6gXyNZkWRa7YB2skq8OzgJ6TzXR/uTyfdXYsih05rwt83rLEfRPE+xCHa7uOmHnggn6MgfJOkleIdBR18pbWxfrvWkuESj62OTvNkscROiQN5u76IbdbtigpQLKf4xh6y42vVIOnipwxGApH+iMUJdQFku6eP71b7/9+GsOAAYJSw4jOYoWNIsbDSeL9kdcuHwQoWEeGDWSNE8AdljIhfRYeAqhQspidaAGMsuZi3BdQYKWnBPVrmAZKESAtA4RpM+0ASCvboQRIYQpdGdAXwoBFB20YgHEv3oM56OvY19T7gUL+712s11H6nCjFsKknyxcrcVDGAHTZkGtAWN1+U/ZREUcqsMwSJ5HRg0zngFynnSKjVknUTmRUrsaZ3VQleTcrzV6HcByd9hud2H4PGqzX+72x8pPnqLyXRfn57cjYlyWxVoqVNIyQbEGeQsj6rdXyJvA5gJ7+orj/wVrFzlFLhyanc5URa7BqIaXdN8kTjU0CyBVqZWHAO5A0x9GHTWCxmuHmXaHrOhOs9ZChEQVZXyIPR+8Eplfg1fD96IG2+xGo4EOOBJ0RohzNfYeBHwf5a8n/FEylqfRRuYH9WSEAuYDqKMSjZS90kFREZj9pd0uuIsyvEdde9dlFTCENyhTfvQtUWuN2JmeclLuwBdvDENyjtAuRdD2eIK2pOwmGSOswb3icUpHLLbMGlfkbDcAJGk1qXwE3zcOnP7XqEsqSjKSVLmrJYEquLHRjLXk1ugepAkV26wqsLFk4eY0cCQuyJXKEISKW9R6bqigPpHmtl4SrNkUq9RImcueudHqyDn4iYP15FtCIvt3A+AgKO3xntQI60Glv37oe/eCJqqPHx495WVVDIQDJ4eSq4HlLIYfjI4eqN468O28LAGYe30UQBb3SG1FDCMfNW/R4gqueORs1Um6TPM649ikLW4QiuWKh8F1mtVT0jDrjZxOOXRHQP51G9ecMS6zCyQSjwbSXkyGrTTynrwoHxfb6XazkCssRo6qHZZr8rxejtaiOJCDpgd3rsUcK7PFYjJCp7JVT0VBlA01wds1AxSW4Iwxyl56wZVLAkJbvoW5BXSsO6ApdD3W+qpp/fEn7AX4nZ21FN74j86cMZs9Otb0XkEYJh4ndqqv12di55WprmhaCeUX+VkXGuUL7ILgrNPms1yVQFlRBZHuhY0PzW8DDYYc6cuBD5HtOt2wjtxcm5kHjTHUXOtE1thhv9n+GwDvyPa+OWzsitJr0oUgKYNZ7Z8LrMyLNc2XFY5V8bu2r2//59sNhdWb03rbMu9XR9bSoeP/jeNYkQWN+bIpluyvtdswGwCvsAOeLzWud4P1vnpqDlAqVvPUNLo3ALZGF/j7ZKUxJ4Jli6IjvuL5+2+/fucOeCr/zxHzoYEh2AFP5z0vzaXtlQYKMss4EACuJoyLIwBHBOBakgaJu6wj27TipQJYcnVvNqr1aq9abytotIyHxagfdm4AX0bY97rDSbc5aEOWAH+pDmbADBkY0IRZcwZ66iw1GCFbFOElZsQIs2iwvtAvghsdGLnW17zXKNYNNag66IbgmwQat+AruZkpx02UHVPTnCV5vVG1yFkpP6oR+mZU6Ky7E1o24hli0N5DIC/yeLv90QSPvj0YTdAsyz/TBekCOK0XDPacrzfSLsspeHp+EdA9fvry7Sskx68gdb2/gXh9waCIHTVUAzgTjhx1Y8y1xJPut1HcYNcrL3BdUyyGitMDZZOBu4JNcrsGF452q17r9wWMm7VmrsMA/rak9apy0gff6zxpJvWqHE3yqdQHCZpvDx9JgsY6mBfdJ02jM0dT08W4uF9YHfo/k7DKvain+XulX4PG6oXmV2G2xPqBUrDsfuzNC1zsLlpcubgTgKMSgWMMM+PQdcSJIW/Aakp+tWixBIDpj8XLKkoRZVPzrlwMhC6n5eHJ9+eN+CPi9sCG/vftsXbAYfRoMZylBckNMnU77oCSCfYfre2s2HbW8uGDG43cNbvmyOXa7EopKiLY/zRPJq4/VUrNkyp8ywfxMw1an4jbIAjgY+cLp1qbe5PL7D09EVMJtB4gt0yHRnXCrxgC++bU4dMF1H/yLdjhA0RIsVTl+nvwnaNooOcjOCSwV/M0LJLBVop3obS6MfVeOCKiKEcKFr+Vpj25K7tS+a68jl1YBiVFhjVKA3bs9WYdxgBkfMmbVP39WXG+FKvJcCJX7/monUIURhO+zmLd32wWgs47rgqlpz1sl9tVy+eIhV71gdxuZLYb88lgPh+PQN/SjHhpptjzIhVhTbNLADBYV7TdQMpuoTFCh+3++rzbqn4HRKnLBVyoExW5QGSOeeXTynFSc1x6QxJtz86bw0jSd24Y8Mjab9c7SHGlglcAFXg/CbReXi66zuW8GQAsf0kncD1qbo38tNc3ELBO11LHqwBMmdHp8nKCj+DpoEZZcOwyBD7q+rmgQ9duT/mvfM8zPkTkhC16TWAEecl9thLTGVyegsGjArCzmloho2g1h2C3MFQmAB8M+N0GuQwzZP4kO1miM38j8vu0CfRqo9phZGMd5R3+cMyc7VupRwIII8nC1WI2gl4vZ0BrrBUQ/0hkXxn+7sCCRgcI/q/Uhk27irEg51XRZEh20nnlwMyna2S8v/zy6/cf/7GZIAZrrvarjKLVGO1582MYh0mQVLGHk8ahGicCwHEKyz+mrGEE3chzTJzCWEPbcGaiQhW0qtUE6rpp1qgpkbehLOg+FDPMDeqzW+s25d/hpFXrD+HxKM0vVTiCaZDtg+GrWsF+bwxTxv4Qw6D5WPAYfMax9J7z5XI8ni8Q9zcYj/sNuR85G6tpxvBP5zwUaLKcXKLkOVRTr5JkiRTlchrn3AbHkTxH5DTlsAOR008KD3lfrsStPIxyaSU1PAKEEtByUZBX5VnVSKICdazb79ZRbDS7gsDDXtPsNLoonkE6myyW42kBmiLl8pflFlzC64ucdVdYcX16vb5Km/z1en2BEdfr60VZEFK+XsD2VyOQl+ftcsr8Q2mNG1IGtPjDaw1wsPCCIZKwM5gMmcQAYXCny19Bq9cG37zaINElClNETmDmXs/CWsQiQz5IA7Zu5YWbAR6+9/RQMXjwvfKKTJas6sErnsPj24VfN5N0TaPkhvhboes/5riRMYl8TRBSfFZib8W7i0jy2RbHYZn8YXJcS0sSiK3Sr5z7X/yOYuVoOXsXHJmBJ4ct9xAJ5Z1RaLTqQA05qGrybAcsqBbPL1P/MaDBSAXIzfQR8+CwEIqoorHY6jxl7jeqSyIAl4mCYLGh/1MZkpmb4OsQVwfKwronLusMuyRnVQLHGS8jMDSbl2HMJFVx2PWg4+6wcmcF8tMM2vRCD2WIBjx6wrBiu/zAre1DFgoPD2yRHx893QJXHGfsyVUWNIuG1Rkf/tMD197yRzpg7narOccqcaQ73pT5zTgn1YkE4Zaxr/sjCKpjn4tgtRRCtmriqz0PrD9IMoiVSV2NGX4R0SsDd02NQx3zaNSQGX66XBHRCXentOhfrg6X7aitVDY2D0HaW7KtkXNpxnAIDJrni/W4LkdHijBLNuJJbQSnyyVyiXu8DK+2R6YBrOYTa6BmqLCx+wUlemsZRdCS7mipjCnYsdgKEF922wNWq6/X84H9KwlMZDlDnsvR8fVy2hsAH1VMu9vQBQv3o7Pnc2lRddYemNa5Z918X7nOvSCQ6eVoXS2i0qXxvb5JayyXm4Pues9HjN0wtd7T1+By1d3v+Uh2FcD+cjngCfDhQuCrXCsldeGGN7IbMRoGIfDf4O0Ou60Ozg9qxYnE4psLJYwpYQWpRhyCt4jvdWGCe5dyVDhDDR0iF5vdbrWGEQl1xVvIm8h61xzB9W2xrEZo5Ux6pYSuu/wGBBvuS92wcriK/Rqr++2Czp7WJeNnq/RXagLGP2NRrNaqvWpep2kyLkJZrYFcca6uTMrPHphRcHTV9ys0CArjJzqyJ/np8uvffvz4az1cSrc2mY2ZJT2Ta/tiRh70wA8zDJNyOAdJI1FlPghGtioJwbU0z8IorcZ5mNFeiCdwXEsC6URrcU2u9dJONrO00apm1gdDYUAqFlwoGFJAnFUeNMG3WW/1GcfH7rIHuIbX06DbH0+kA56ONLlggsh7xBOMkBGK7LMxAgsXPJ/g6z4bU27b64JEXKWZpdoOBjeSEKZlsSUau1QnKa+R+WTB7lLKR1RB5SHDm5Dkh1eB9GpKkkn1ks9hb5VxrMvBWbVtMYCdNny6pO4Y4+HCnXKIGNDVZLPbbE/Xq/xiOSM67g7y1+F8/YQz5O3y9untfHn7/P56fvv88vblBZsY6J9eUSLvD3JuHYqdHPvylCfyPOXntJCtmFaZ7yivba3RrreH7TxvSD9cw0Np1pCTVEtyqZs60ktnjbQmHUOawxMrifMoq0nb+/REsadn+zs1hvSlY1GPiooNYyvUl/uBefZX/Kfw41OM4FjkxbKDYj1oZosVEosquOa7xji4d2KsWAZCXAphk5C+FvTeMPkvVv5kW2EtHBmtNvBjJiAl0rPiUbKDQXow/sSg8cg9BVJqYeIcgq2fxKo0YimF3z7uj9JWyJa8StoedGoB0xxCMrgiaosJrSG9VQ1nKZeKouA+YtCiDkLzw/ACyx16UrbUkyM+h24rrE8fgEoCcqCvXaQ72jD8yAGCTgxc1LbuZt0qXtth2jZXvJi5y4H/oOlLZpUBYw+lTIWkZkbBU9l5+5oL6Z6CkqtsxP2Exx2C4VyxvXBAk2hH07YBSAivb3ifybsfMhIfS+5F2tCTTwmRDCNl/mfKVUBspM44LonjMcyoEOqhrp8wT6HbqK4B4KKnaUXyH6E+yXSURe5iDtKDnLNMxa7WJ6f3t/16MW2RTE8kpxlLdTBbTIeI+hyx6UDHMZNCuZcgOpl1QIJrQt6HA7S0vnKRoX8k4kyLNaN4ybgSAFZNKnB6yX64BAHV3uzVkhFYeb68vJwKlNUnJVUdDw5rtbXFNndf9rdHx7ZSTZIxryAOZp+scEzeFFtXkDyx30JHyyUvv4aguGdBV9hrEKOfgfboi5X8jBtA93t+vhgAH3YnfHhy2iY6V4Groj/ybIZWR/cgMUunZAoP41AcTs6a0gyijxphuNOZOsIQNF1IRWN7mEcemNJrqHuTBheuyd2RPg5VOGogYON2w050a4SokttV/LsRpSHsDW23JWWrTFy4eT8DnDeaiLFybGelZvOz0JohPpBGMYNaXkOVSSvmJK8RgL07APZsYljR3YrKCwJY92C52zqdvv/2/cefy1EJwKgEJ2OGwI9G044XpNicYqiLPG9sSEmVjUKLCH94kPNNDvhIrtxMN9IzPQJII0c9pbF5TW5RpRQo49iTHsitVotsI0VhEHS7cC/utqjO7RN1e10DYIHaviDvgH1zD3kmkMAPkAg0Hg0Y1i0PG451CyZyzxczZpTAsG69XWtgJ3t7ZOn2e60GGB001AyDO+t9dksqcYEMkC10lMBPADZRpH6FFEIbOwS1T5JpGl4Saaoww46xTYWuCE9XnrAgY609aKEhHvSGY5Qa0tdjYDyYTMezwUgK8NUKWie6bL3JiXH99PKshIjr2+Xl7fnt66f3N/AVP319f3v//Pnt9Q3jKznm9wiOAD0DJjkYjcEmazjotnpwCq81ci7EWlAYoylotqRfbjSSIKlVm7n8B0Zalb7bWUPae+XacI7JtYIAFo3IklgXu3Rk5gEA8yg0MGWM3cfg4xOOsifSi8yc0HvSrNqSGlgORtXASWMJb/vKMHLiYMKC3D/KnIhbFAsAiiCWChITBUeMYGARKg/pKbarsypQXeoRnbLgEZ2YXjyOU6cljsjeiswTlT1/iLFmYHR/HBNJWG6JQ400VlpzQGfJ+PYUSiNmRUkHkdzxalVc8f7dVNJp3n11XFa89EKlXQUGiBpSpDwpTXpU+K94jglVeeBQGZZjPi0y/8260tKP/AqfoT4c77bL1cUzyVqaxeHygTGUfkQ6pQGw+ZaVhRP9zZBDGoaMxvqQJbSSDfnCysED9TkqQ1SogEiq8zF5Ia+KkWE4vmLisza3nF5jhh0QD9UYHDgs/WuqOR9UCuk+iV6ACX+5DH3WO0vr/V5n8fYuvW+e4KEp0Edg34W5VKMDrsEGjAElLUXOx1ak8rXAJiVpdwKONRgexU79HQ9qTYhkJ7Cu5ho3vIQxB0g06xWsIJl3uz+fsHc8cWl6vBwvJ6mxpeF8eX9/uYAiRarxQYHsdCEO27S5RGV5U0g70epxD0vGqncpAAAgAElEQVRH2kByVYWe+UXFRmc3wba30/Hi5EWvz1josjc+n7H/4l0oOoPhDEHl2Tx3sYM+nCHpKsi5VqkUXSjPZ/OhtHggNwt31tLgc8NOWlfcZZThSTth+ZrRydR42lKK4AeNPa9m7bILdo2q5vo6mzBLqNhtGZK1cnSrnQEuYwVd5oLje6kSWQnW2/3PkGwhEPjW4hbHpA+CNik3XZLqyuFxBjzBQ4Fb+WZQwyFdreLYC+O84QDYmKgEYCz0QGClB747USM/yPxgcDphBP37gh3wlGEMzEOCFYf8t+x6AbE9dgCMyIcsr+n6zIcV7KOcC7kfB7n0wJjm6jQySOHq71MsIg+tXNgxx5CEMbkXADGURuA3y8nQbAIw+sN2E40wrbLooCwnSE8wC5KliQAX4vomkC4hnl79q8dw7ZrNJoPNkmlhS+aT0Gt2vqRdHRza5ZUrWLZsl2BlIDEJwX/wvgAdGIpadecPg1TO/Czj48f8E50UabQwF8CUS0/7KCRxKyGRWnqtPGMPpVcRcKnZB5COXEUKb72d1mgI0uw0a3UIskbdZoc2zp0eOF0QF8nFYLqab+er9fpQHItCTr7ieAST8vByxRD6dHoGeevTO3Y8r/Csfn0mWZGMiwv9Mj+9IMBkt0Ku4ng6G3Xp+tXikDkmhw6c70anVm9Vm/UmZna1WhpnVWmCk+TxQR0dQrLd0d3FFpobKqXcZyESI5AeDhMxd6nUzVRggWHI6t+Eqa4DVlOlkoYVulVyFLjIWps7KzUnVK+sMLbGlxxnYiUAMQrCMkwhtH0w7S91tsyHjgYrROuqgQtcIYOER+5VkuqAOoq0z42MpKXjdPzalRIWBpS2xc4EhKxdMvxspUk7S0cwcwN4hjvYnKVcmbudro2XH82d0kxNXE9ZMTvm0DNjDPW6wCL+AefcR2ctbRxkr/Sg5mjfj3TDHlQcSjtKiOu0tRryK34pdFLWmENsWzWEJd9LEPnRC578m36pzHzSztq/ZTbCiIMqa+Aifgex4mMKhRzZjrhkYeuDS0CVsoN6LkVinlY1ciWRIxG+5GnEibWyJyNbX6MjjimTDlAZUshkYqYsc6oH3RrLr7jZrnfGHaqrwLNmxhYqLTmtq416BukA877VNL0DfQbmRUmqImbcTd6ZzGcrs0FU+eiGPg5wCODyeDGjKbWU+J3BjF0TvZhx0h7PR2mqDmfWyfsLpBKw+Hl5+/x+PWH2TJrU4aIj6IvlHx3dsvSkTpNEYTaSCl9nTSWCQ8fl2RhUFlyk7wpeMpZVqc3S8iojS7tfeXt94T/nq3XJgGlcOtRoQwD5RE11cUE6xdEZd6AzV+6VhTUcS7K2PR5UGgL8l5OmBx/1IR/PRuI+Ko8Lz4XPq9hbrPGxYNq9RhW5lMHilja4s/hEzB92BS20CjW+hha49Km8rZhJCSNzi3lPmklYWn4C4YvCpQ5CBlWY5aWtrrHgRarStuRuMc8Ytiobar+3zGQQAM5QQVbB5k3SejtUAL5zqQEL6wkesXqR840FnfhB7gXz5/Mvv/749Y+lA2BNuZ5O53NECY3X7IBRWzJiRtpYiiyrNQ2qQadLdnTihUFVuo8SgNMwy8OkyosVKlIYJXAgSLoT7wdNVY7mJaEQv0E2ULfR6MB4AqKCeqfT6ndo64y+l2QryIcHg+lqDLiazKYOgDE+AtpuVnPFXkaUSY20VjNuiPLARUThtJHiZW/6XfxK1dF8hcH1FORhaGqrGQqN0E+MPs3rrE0iY02J4NMykiflT3iivMzDUJlNsMIv6dUJ4oZq1RhUzjTBl3DdaXbypNFtowLpDTqdvgAxJvP9cXsAIvNkCG3DdDSawmR6vb88Lwso+yDG11ARTJygm3+HQeYbXKnx5wW7HKlyL0dzsZGzCdyN/bZYQ+c06DVrcnGTlx/DaLhC5wBgmCDgIpWDBQ0iNLgqlGkh9IIaagCvPFVNt5TjiR2wyjv1ehVG6lOmLpKRk4Gqo1TpPuHf5+FiKRcYJalMDbJsYGPFll7JpuuNMzLo4sABqO0PYn0oSRZTcBRGXkQHGaYoCop6/IWRjGe5SZETpprAir9qKSN0J5wGoclXbSTi3gILGHbPDj/Md7pakp4VeR0AK7ZWXEaK2+8GlZ96YGdroQAc+DdnKseSNg7UR6f+cvNl47ZVjGoZmmeKx5WtxiveueCBd6VcjfKtUmqcSitMu4Kwgoc9RwV4fLPAUo8901yFzphFP+N/8FF3J3KE0bY2ZHphqNZY7FAzS1TJsQzAuZBnAocs/yjsBjjKIZlg5wUedAqBv2ZmwBk8DWmYF/h6jmVsevFL4mRb7hjlT8z9ss/x+WMgp7MXZBYDjfKg2uq0OzoaIjuUljVy8reb1Uan0WGIZzOWIqE1mANC4QtV7DZr5Cgud2vSVefW+S5o1Q/RwhyX9d3BXdkpGyoO5+uZ6acCwseXV+lqaR2/gz8moFc7YPCaDIBPrgU+wUp6x73qQdvOIzeupB+fry8nXfGebHRsQl0ymLnQNXHR80X6W+lxX9ACw+XZrYtVDwm+FlfIV94D7ktKfcqDAcCCs6ai2pvB1UE30BeLZuDcnA/4JJ31+bgzuMXjVc9og9/T0TRMO4eLLoWX7e/BJTCU8YR3AMwgqe1hi2yEg7pGlw4eq63lH5UAWzAFEVf2Ep4LDVcqAXhPzDcTrz1lT1tzTNrC+RTA7jp3o3Dtts44c0N7j+2gntcFt6rovuQa2gIAV+4BWGeJXsQYboyK2JpUAgHLqh/vz+dv0gE7ACbRfgI36MkEfdNo0axgBJ2wogRzNCOHVs6jWD0vH4JQBfgEYGj7lAWaCix7UTXSVFcwiSnvCQKmJqYIpklsecO2mBtU5P9KL5a32/UM8mbE6DbqSOvrdZhtNhoTh3uD8QAJuOMxU3NH0sZyd42UKNvJmFMoXcsKaqo3WxzKsGfflhQ6/hIoaaP12pV2GZzcrDXrZDoaDqQ/prE8BaSOT2qk2UhbIiY3YRwdO/JlFqsjkw2q06pAF5S3aP3xFOMkz+WKlMEMpJrAkK8BKWMDPiBUOvVb3a6UH335+QhyYLRCH5KjMa3fWV3LqcKDgAeFHn/0yeQwCazqT59fpEH+9Am2XM9S8sLeGvGKGF5harRqVJvy5Bq1rJYmcHRpyEGUp3kzwfHz8eMjTIbJxrJJYg4EpG4ae3O55FF7hA8YB8+GOcZGHb9WMmvMSMOy/4LYJsj3WiVP5S5ecPN3VK9ETXsgoGhD7HuxQW0gD1dgNYtc45uwFUqzxOS9GFhQ1wq4jWH6jB/gADixprfUEwfK6grs7kILV7AUpvjua/oA2A2jV9ZYYU2G8G4655j+GnTmIPlbN5mqxfJNGO1muIHbgXs33a/bIFV+dqS8Ux+7obN0w3anrrf1TZ6EllZ1h5b3e2tZvUB9vMqUNCsOShWZc6vWK4gAMOwn/aCUAFtStFZMJVvdcp7lrw+q84qgmKBgn5kY8mKzgufviid+Bk0Fe1jMlhJnVFmtaUxXLaunMSSN4C3Uae0OshUm1vI/lMJ4y9XCPJWjIUJ9q0cnCiP/ySincensEtHe2pNjvY3Cl07p3Q6ccklNkeIbjh/1nJ9syRWo0xvOC4G664kz0A1kRivwTOZKNnHXGmyCJ2OkHW42u5MugwrOKvfHCzevmC+/HA4vz5vVXs7Ro1vrgtuEv/dwwtRt78kBhfbDJG3uYKmhkQp7HT2r9JfEZbe8dYIiroDpaKXmGtLqPkvXizg3uSa8aFcsn+dfmEg/q/DX+ugTco8O0vuej3p5JCMbxleu4z2YUEltvDAQh5/mgd+g4Ut41ARgrMfuWNsHjQZWiZULOeYCuDhYaGJRNr/sYA/OuVIA8FSsDrvNmZXIgUtfsp71ZsbfuvXOO+5qdXANHfH6fvy8tdtZPgQH4rbx3hZHCrVd426tMw3HuAfg4lnuu1dFNJA0ZOQXZlUwrCqm3FcJX3ka+Tdhn8ftWRrkchH++v3bt99XAOAlDE61A6Yn1mw8XnT9SJOO4EAnV5E6LAyRSB/r2fqk1C6Mu2ppyrQ5u0BQlenHmnEuYEyhZsDAdFy/mSEMfkxEa+lY93VRCLPbWh1Ilme1nGJ8WN4g2qzRlva33epPJn3n49FVSKJiCoHGC6aDLhYzg+A1MkQRJIqIEozzEQe+PZRrFmjGDwf1eiH+fv70/g6t7pevX79++fL1mxyziADe7LfLBdhfiEpo4kpQhdVD2eCBeKKX9lCJk3JdwUUgjZ1bYl4lJofwAMmSaiQAArF/NU1rgsZ1pC3KC5tkSk6JG0257GT1aqvfazV73VYLrOZ+d0h5NEydEXokuDxFoTRbkH8PCTJjRnkAocCQOvcNftQv759e3z5/ur5/f7lq3ft2fX29fnnuIRE4azeqVdJW8noir3aYrwusvIa9bgc2IAQku+66vGlKeDCLjvnLzIydLM9WmmYfUxHNtwpNiG2mKGX4btl3/k/TaN/IPxrEa8NOrmIxbQk1LohRWbB2NsfA2Eg6GZVmQYrxIxN/zOdK+VIcNPNwxh+wfzTNIU7Uv0NldJxm2JYziax+YOqRxTSFNCXHnYQGwLEWD1C2urhDS0VyABxafqExmUv5FVtW898InHOY6qptj8w/+gswtKRcSgE40GF/yZb2SosNZ0VZcWN/Q3jHn8Y9hMmdK+bPG2kbXpc6qscnlTV7d22yKw68J1VjhZFJzQSAtZ5RG1BKsbMEau7QOYhGNhyr4qzAjBr+thw38HTRSha+sTF4nHmNbpUCw0w9k/o2rzVohpVpUDg0DDWpItNQS2GMouFd//jwpMzvxP9YkUsZndDkQEhaAr4NgXhMv9u9DidusPqRgjRDuRByW51ntISdFc+CItSgwskficWTyXxdbOcjgeGl7oGx0ppO1Xap0Jg9y4YAuZlGeXLhvkILvFqBSLRT/0k6Put0Fo3u0RJ/byNojp9dR3xwjlckTR0KA/CL292qvxUBmKIi1+We5eL2/vr8oh5YL69XboHBNtEZNUGa62iNPnpmkILcv9lhXe3+tN8+uXSl/dnNlDXJ4bA/oc0/XqxLRt4hc5PUGvMmJt4fSobZkXEN8rlCKVsMkCghce9IXNoEb6UX//S604EAV8QWcqyD40L/houWapRcgy2AfyiFx7rp5ZLXNds//TSQxIwc50bYVhHt7LdhYY+7YlBNaaBPIkKaA4ADxIE7wxxSsFTPFwS3wRHxIgza5/3x2/evX3/fKAAvYBLDgK3xQjBYqrt+gGkfdy5oI5KGXI/zZiMNrQyvIOZVryoA4NgBsE8+RBjkiV7oFKswy0thaxSHZqRAwV2KoRKtY3Gy+mFqrG6uf/gRLKgzuGE086zZH3RbAGAoiWHLMQIRC0A81vG5RWTP51KiUhe/WqxAgAd70aV+c3qLwu6MKvFmDPOCt1c2jUDhbz9+fP/x22+/fv/z77/++OXL56/vb69kEGIYshDw67Ub9K2mqiL0PUuXTbIwBP0staVhEmsushQiyJIKdfqGUTXel+eIMUOoDpKp2mXKqwSKkzkt5k00qmmt1uwN+p1GDVESvR48xhAj0xnAnhIeHCPswqXkUCea/XEuz1eKB3OAw/hL0xN/fPnycvr0OkgaeT3tNmtVlggJ45bC6vkZCiiYg0j5gSiaxWjYgyVmTYovmo6qHtSvGDCGpe1F4klbHLvhszGc4AwaOm8hmmikziCUe9UQxC5ncxzcRdIHNoF9YlYtrqlsY5gLDAAMXAcMFy48qMjDz/ZThVF9dJanAPAlCcsCqtEjRU4fHqhlSKTy+MBT9FDerRYR3DIH9gyA5GzmIvuFuyBF831yqubQTK9D30bq9kF8s8u66XRty87vjFTTpMh7B8CadhiGJe855EK4bGMDM7sk5007YVM9BRqe5N8RzjUG8Q52XXfuBxaCEpVz8UezhabdlVf5uWgqLTsZcIHX9kOqXvGBrWl0IJGlasTBE18N3knUpDlZGnKXgRWxfLNaYOEKgEF0XE1sd5zUGykEFSDtpxQP8jBKOKmG+gjxrHSbxQAmMDGdpWpIpcMBTd5swy6uQQ91KfRbdRSitQZU9dJiMFiGLUEc8Oud+Z4UEvCaV6oJRVwcApJWzESUGljNoTGURhW8li6Q8pojqE9Yph4vR/hPFnu54hy2q25/vNwdoEplWt+Bs82dtr6KyRqORM6TRjbA4MLaRRpskP1ctsHlm3YSZ+M/Q86IidhFTuhPr5crQo4E415I4YLE8dkyGCx9gc5ZKBTkQ7KgoQI+K90ad6a6J0uGAFdaVbnK5AZWgzgtHTAREvd55r/EcSKZhRLTPNpQGLUKKOJ7EM0Kx7t2O2T921INj8j8/f51tyX4klRF1pZjcykA09pSwfZgALyCWNr1x4rY2+JQflzwZ+OqvneOXFIUSCmwV/C3pEiEWaBe2CzXjKvermct6aSk9sPRggwdADBUehU3g3riCpgekYFz5oFYLwLBZHDdnX758eXrH8VAAXi2VMOX0XA+6Q8m03njI7oJDI9BpKjKUS/nlPy4igWcVmBSEGFnJgCc0bBIz+FMroLSCmWhx/VvYtesWMlKCcCcIyr4N3PkF1LZl6iqBMYfGFbXOPlEYR0r0RFPE5MqkqEyJOd2pSXsdYeD/niKJa78zyH6AmHZq9VE4Ajr09USKdlrHXLIce8U4bsjMzClUKTs9uXtHcGDnz5/+Sx/pAf+7ccv33/8+uuPH7/8Iv/89vfff//9jz/l7fe//vWP3//2+58/vr7j+D5tt0vpy1s1aY9z7o09j/tLzjFxJZKXRJuAGIrHCMZUFBRjr6X+mHLRqcUk9IB9DbP6OEelAp/IJG3kST2PsE+GqqbBvVizhQUWVsjQcOG/dg6D3F4fCq/eEOtjgPFyir2VVCG7FRz01huoIuUs+fQ2SNtyQRMArmdZvZ4jzjGqxs0jROmHC0UKtMK5OE0EIkdQ6w+H3WYDzYL6EH80o2T5JXpp5qeR70yplIQc2cq0nBdT1QUSDmPr4jDjkRVaj1kCjE9Vqa8ZfHIUf1QvqhBOZam0n9J5K+JRHiXHYhYgA+kxTLVHpo9VTKvmSB4U4IDkLT9URFYJsM+2l0NmlSH5ntGvEysbA1/jED1n/ZHCQ02+Ncfhz2acS2BP6xA1kiiZWIyB0qQDRVjohqnqevTKiGAn6dERPWMUuVwuAZhojbhOZhDaypiMLD+45RKZ2NelknJBrPpscKUj19AG2su6h2kkL8+o1eQ9RDdTa/nWR6kJnjgSh+a3YhyuJ7t1UCn9srBxD5IPoV4UIjPujEzplZo/aeSpIQ6rUsoOSGqT64npf2LlUIG9iVVVlVoDeKqSUQFiRUY9YJhKK4zJNOpz+beVp/WmtNWZDb9z1JWIj+FWKIZhS73ZYEZnA7NDfE89qzarHHHXGghQRInpKfEa4eN5Wh0ftpyhkYCDle8CNneFXC+p759Nx1NcbbABk/9Ik1ZrWc4zmU9/kY5TkLN4vh5Wwx4s5eX6vSntmuBQqV1e4fhXJcwJ/m1PB8Yd7XcMHHoGARpMpjPeRwdc7oJPl5crZb9SRD8/v3A/K10vBEhIaIP0F93vy/PdFBrEKZhNyj2irYahxrNjO4PMdTkWcJ4kknL2TPYVDCyPR1s6sw7gcJlk6KOOo88Hqwr2nFCrwOms4U9nzLUF4M7odmE2JEWIXp7lu7e0vzqa2ZYqjhWUi+3+cj1bCpT8JMyJuXNXFD0AZYviBCBHI304qMmlRkDgJnKDI8w4+EpTTYUUSlDMpU2+8GFI/7vWnXKh4cP7w+7ut8JJNPvnohg3QHCq11KuIav1iAa0QQwbfRa+ymtkGLCGivoqMOEIsX857z5/ffvy13o84wRlTG0PFbWo6BarWhhKl5bXkRiTSTUoPw+zU+oCuAQKdfSaVuKG4GWUqMttRR0D5TySi16OxoUiyyh4whhKGuo8Cshu5PKQUvssqQSJZ01TYsGGsVu04lIv55DAUg3dMy5zcl6Gfgbf/CSHZYZ0h61uA9rX4XgCUTyjIqfT5WY1xxtPELTGRGQEeMrveXOUWuz5sj9qG3xVPyqBYEHfz5+/ff/642+//fjxQxBYkPiXHz/+9rff5O1vf/vzj9//+OPPv/78F9/+4z/++a9//vH7n3/+/fu3L5+RBUzLqq4AJAIW0ZHQnkCuMOoFknA/6VNUy+sNXelj1iPgqiSsWVi3qN6J2668Cqe9FHy7uoCy3KrKVTqsCGqtdqtRqzN0ilgMFXC72ZHXhJYg/f5oNp9AfLxcF/vTdlXsV+u5tL5ZvdWq581q2K5msS84HKT14lVOmZ2cPlrIHsxbfQ87Lhyrp4tLM5HPLCHs6jQhhsPyTT38Q8UED08QbmO8mOIhk9Ec0WWMrt2q5CRDAMdvAi52tQaPI7nSQnSeJ3RsAHjwwh8IFjzepTrYMDdlRHScJcbdIsCR9s+LPOWkkDUzCVE5hfDzCEJb6irN2q1x9U6gg2aLzFG66ZQ4z/ZtwKqiYEcIiOOyu2aYUeh/1A4YtLQwcGabOoW2zbG2/B5hFjeKzDcZtsnYYKKOrliMoENK4rVtgxld9PFJ59Yq72Urjil2EDyhPsK8yzJYPD0UgcjYTZWz64oS0oKKs8yidWac0AibOlzjjrhoJONvSXXvW3wjYT32bd31AfYidB7R1GQ3hghtFctfiPMls3c0iNTcv3XiALkQ8TrR34dSnMEcMTUCbCk5g8ZaSCrItJNLS53VG8j6kkMp4C3wbpVhDtU6BO+5FH451YF1nFaIHITLHeUdieZxhUYqBAEmro4YUEf5KaNjmbCzXkHziEEbh9A04oCvNEIEitWG1lTn3Ukj7J+PSCU+HZaraX8wmu/Wev1Wm6ede9OLPlwbdYeEHfFBYGK30q8fTsyAIdByLn3aI9sFtloaP0H6h6AxI2FeXLyC6owoDAZc0/CZfSiR9IrbnTWjwbwoga1G6gKym8b3dOGuWqlUCrD0sXbxDLhS0Epa7t+Q93jUgfKWVGh1zqI82Fa73AGyg0ZfVHB3fKC1iA2XBZPBXitM0LS3h4Vhwp5WCLtCSdNuUu3CL7Zgkh8U0TFfIIkM2RHyGBAxay31gQsAgDUWk8eLcczK0bfukiFQduESagNKoJff0LQFVo80SVT5CFDeFmhaUWuwunoZ+aWJOkdiYW3xejr98v3rtz+XwymiPOZTGljMwYGmGGnRhPubwBtHQ9VafSSNTzUMEuXVRARhnFLRx6ghCA3hANnRoYWAUlua6OCPbAxcg1EQRzznOJjVZO9U0DdjPEpOvqM6/rr4Mh01hn5azSENDInSWBrLSY8JokUiKZSlOc2dIG8a9odoilFOUKq3oEX7fr/eaVTlBi6l8juhIu7l9dP19fXt9f398+cvX7AC/uXL9x/fv3375dtvf/v7bwLAv/5d3qQL/v2vPwV///zrr3/845+Cvf/6x3/8n//9v/7Xf/7Xf/73f/3Xf//3f/7f//w///s//vnn3wW7v72jflyPhr2WzsZoUR0wrCdM3Jg2U0eKGHpifkk3mlqAxAxvUsdF86qOVKqRV1F4IETQNqHszmJU8fhtQeGFoRouO8yWaDXUCaXd6bUH48Fk0kZ535TPS6XUrtJosx7l9cUOTh8sls/UPPA4xTmKaREqQiMlHi8nW/Fg4raFCGzMvCb4Aca8AP8/tr5DsW0s2dJPEokMAsxBkRJzJhVsy5YtJzl3T4eZefPC/v9fbJ1TdSH17LLbtgJFkSBwz62qExijow1Xn5sKYh2HEPwv0jZAZDaSslQm4LymNDvJUd9AS42hLlVgPHM8WHV57O4c7LG/cwBgZm+Hw4CyFqIhdjnmthJZLKHBHFf9SJUtIQEi1PlJ8MQ52VKfzB6TM2g9FUMHwDq5dZZdFJCzlvNUicy6OnBBQyakYRf50TPLDEnUHJaXLtvOZQQt+GERW2Hhy6phKDYgkaU6qLwfgQ+64VYhmbcfmuk0UZJaIQNg85oulY3uZgZ61pyOHotpi30quz62GU5jzgV+VsmzqGfCZqyKKD98hiY6MwpDtTIxlT33RWam7WzO7I961ReXeqgBzCrRth1UCBmRTTWULV3BgpMw7Rtpa1WkDAuWIrKlllMsaFIEUq9T0mUwcq4kjoQQK2HeDyKzNLOZEXliYAnIR/nRiKreyfBiDCBWA2GEmJ3QPwtqYMbYXAwnmjm6msK2DtXkasuw+y0ISdPB6dHx4dFggu9TQjOluTCMJ2YgiiIySD9HrhOIoyiRWSszRwmPRr6xWmEBGVaaLsgaVMBS1UXbKwfATgbMmnat6LxRuytqgOkMvWEM8IrmIGrqAVjXgAdLeQAOo3u9tt6zcpuV3LxePvKztR8N0z4jZW8YhjhVQywlHz+dcpvuaKG5hTPXbV8Z3jLHFY8zNxI4dhP41kaWb3mSM7pu0e9D29WLzXo6WS7gvc2dy9J+sVXWM8yolwtWurT2QrNiMTdLbrDOsFGQOtpB8GS+sKfySIvjg4HBLg931oTXmxZCUZTVre9s+ellLYRlq4tJMKmNxtWQrWXg1Uar6fj5y+cv34FMAADuH5PRxLZKH4SmRhRWlD0VwfAq7zbrtRRsisSmYV454BTQrzQE+QIUcMqvtLg41QFjYJZYGhlVJDabM3ZOxBIZ1IdciihZbkMFFM2GpbgloQwBxaHvsTCkGgVyXZRdgbUK6cTjFTk8GuUue4BqA2nE7Y4UxzSgGh9fICBDpeJL5SJgh7fliFTq3xfPn794jbL3rZS87z98fHv/TgD47h59aCmA3wkGf/r48PDl4Qsq4C9fvv348ePnb7///vPnL7/98fsff/7+xx9//P7nn3/+659//vH7b7/8+Prt66d3b1+92K2Xk4uTQzhC1gRkfYVjX/2OojTjksQrXyWmOAK6saD1VgJzD+zVfaRjkMzqeusAACAASURBVDsKVZMUgInLofdhcJa5LIoELXua2jebGHIBkpkcLHVvvd1rNjQNKa+kQRvmoUmURWna6rYPj/tjuHKtZlOo6tGkurq5vsQueq1FsVnFICZzPHBiARCsUTZzLoYz6fhIXmwtl1/DmEh9w0M/U3EXprR8BZBlVTOMj2kwFlHFlSSZT5PnLG9ItVLJ5HEq9awCW1BQ/yElTZTK5alxk+bneWT9s2KjPUpMYw/quTn1iDRdmmZKgVpxsets7Ge/cGZRnyurh/mvUqcpSyoYz+5M04gBGmZFWs1h8OnRBVUNKVQ5YwDMFgErW7k7/TVCy0dQEw2KFSJNvCj7f4le8qMCgAP7XO9X0gQmcDbQtyc323fdL/PoDswu3vMLQxTkGSsb23jU2LhEMKnUlrf6T2KvbR6lGk/oqW005+8eMl9KB2yyyct7huynQEr4x4I+eDIdD1XUHbqefBC6oHI7YMWB5TojiwHfLFkFONCJVX0QaW6KbOeqtazerDfarWraQOR1nmDfaTYtJmFXCnhZcx4DPdZYCUO1KbddkErQddIAHy+ejvVjdTKeDM9hyM6xr9S//eEQxr0graJ7eHJ6MZ5egGoxm6ExDBbQGHNEYLEs8ZP+EU1zJ5uNBtNr8jzdmcaMFBIE1u6cbGVH/HxC4yXcgyNitEln9F5281MlPilBCnUqABhmk+p3tdVGs9xQOS/XynqWOnmHL19emkU0OahbddlYKQCrEbWynKlBZuTyqqiA4cGnKGw9aAfMK3UIQb3LFjQBGOxph82KYo+j3b8AsOKeGnDivlNGL81ZahN5VeSMGhidfQHglTLTih/i716SZi2HaL6ypAsEsaPinQHR5QEtwBh1g/LF9H5rFVkvrF1NANYkyOVj+AVrj7kW6f0mBmkohNCwy5uq/ivr5VEuoShAHGFQDIU1NcWDx7jXxu9EpfdhenYhK6aUiTCnwMnEYarc2mDz0nMiqeZRnDcqEYrQIFU1nc+GKV11ay2pn4Aa2m5VY+iIZgBgQyfqsG8cjFT7TWHsuDk0LAoReagGOm5W6IwWMPUBChF4EzrKopOt4QpIC+UslUxrNY1UGYwtjkHowgISOlNBnN+DkPhMNqByvSw2grtyMl7dQIi0ZWwRZsC3r26k+r2Vyvde/hMQfvfebu8ElB8+C6x+dU3o79++f0fd+/X7j+8/fvkuePzrb3/8+c9//uMf//mv//zPf/33//y3/P+v//mvf/7xy7fPD5/evX/7/OpyvRgjoqXTRDI5DpjyVCOzhYii1DyNzQxZ836QFoSXnpBRzWIvR6cbJRxwBnQU2S6VkGTkRawB/JjWmWiysWWCUjiTbQkAuCoFs7y5nSyhmiNhI5mxS7UOMpuRtISo8RnPSTlUSDEjexIXprbR0F6A6svFjsznlgSKLfB02B9PIJI8OUG6YxOJxHwxgaXH+h7n/qjzK1nCvZZ6bqeRLYRVmKQIOOdpLctq4ONUeUP2Ii1UMnt9iblbKlnXSA8swoEcEQPySL4yTiBFclrOstnPzeMjPcoFFPuKwrRaBQo7OZXhRGQpjXzbsKrz9Da7KvPhYqrSv8chu+zjcuHnaB3qiAkPHLED+1zOcETJbxC7TAhtZ5nDBgysaP0uu+WQzLWyxiJ6f5FfPyWeawO8XI7tJTpyGH4H+CRpZAdB/eU9bucDwllJWdZkOAUq5IYoQqXKz1D+htosp1DCM2R37C4zUws0STR4sofxfMeb08qXeVUJWezWvnYHWhePFN70uekWG/KnVmt3Owj3blT8/Ue2tjLN0TNXE8+Sp8xJArAFmTsnVK0TUh2dpGnjBAaUUqNe9EHAGmJ7ORqdnQ2HhF60DTWNeDofwCtrPGJ/eUbrRUpW56PRxdnRyWA2YYt6CnEwp4xjqlngkijoW1gPMweA8AtHYmD0wiaW0zEcpRdbgPGSAIyoBgqC6Cdvvhuu8MXCBmklaNE0wGJcofy/NgtKIq5g8prG0E9uSvFaQywFRJquNmwbL9UKGmQtNMUWxc88GnPQR2vB9rMOsNC11QxDrZm1WuY82fq96FJTKDRzlefcuE8TQDfoo2oxslT76q2lxi2LbvHUZUqxJ0AzLjTbi4Apx+eSJ4Iadj03Y46lqlDdlmM1X7jgZSudi9a2OmNai1ur7tl8OWgLoNSROoC4+byptrJwAlQAxr50/z8OWAwDj9UJHyeenLfHsitav3hx++LN6GJEs8YL6HYGo/MTbuykGG7FqikMS4gOL3lgy9ZrFXIaKeFATxk78KjaBCsndFOqJNdw9yyB6lKnOoIkmVraQLGRKCVaB3BWGPlRQdTRzatphDW8KK7UOAWqqN8c2LUsbGifoA/JVreVx7hPzuFirBlp8iuc5ySNJStpJFWfFILI2R6OGRkIa6nrm+uXr+7uXr+6e3t79+b1y1ev797evXotte+bdxgCv3375j24WA9fvn37KmAq//7EDV3on7/8+quUwX/726+//PLr33CTuvj3336Vv//857/+9b//+z//I1D83//7P//n//zrX//1z3/89uPL54f3b189v9ouBv3Twy5dQBLdOfhOjBOrKDWOPeuXkgSk4jMiCao6N2cMWPSnYXmv5O2VAk6RsZ6GCuDKcUsYv9hIMXitI2FZKuAMWVIJtjoJwCLwSgFNeMOI9tYYLHcxStbcNbaSrq52TAqlMe1CneCmjG5CANQFOv5jG3Kp4ep0dH4xHsOd6/zs8PAQqU11eILE2jFOSIhn1xJPpIKuvZTGMejZIGrlcgZJEZyTE5uZClQjFWt5ltc0zDm1tCsMeQtdDa4GJw/QYSc3i6EJupEiLRuXyADYt3RC5QT7OhuW445cpZQchDB4dKZ0DRee5v6Bco+0xNZ3UU9AN7AOIwfCjvbtsJz7SiIBzaBDc+Ishr6hw1D7gXKRB+g71SFnsZGfNBq1cO9JqJSpupwZiuf/m7zYe2yK+wJcupKEKiwMHSMLkU7oRAees7U2MLQQDcuHDp4h9ggbFeK62qKR5O4ZCSv21c0UQBwVIZUBF4JYWdI8mnvM7WDwN/VaLg3EhhpgxyFWo1prMmkc+S31WpNxYM1mNXb2Jn7hyBYQev/yYnnAveJA0O1NZRmpZkPUTgiSYw1dkI0muM5DBAMfE4BxPajtwMhVwAKrKMZm6oA4wL1o8D9bzgVoh/Ox5e2o0/B41B+QXj2gnhB9aMu90/h3xBiCtTIda5W4XM9p/7iYLRWA1QoDpOM1w03ZTkZVS8Ddkg69215eX11fXZpttLrncWaLuELtF28f8ddoXWwBy6UNNrQZaijnekmPDTPOWi+sdWya3bkBs2IYMHSuOcL4kaWKs1gAOxBecSI4nTlIdvJfkrQMf6lvxnIDSy7W4VKxMoWJQMkKFhS1zXJ1uZF7UeJir2WO0BstoVmYz+w3rxZGy9ZIKk19mqtjpj03rdwfq3Uaiah3x3x50UJMbS1HdYh0nlCzFyBFslWnVOLCw3HZ3oEvy9CeXLUHB/Lt+tnJeH798u3r+8XFaDJCl2MxGY3kNAFXFtmYg9OmICgu+31cCfv7bGWShwjnDKx0DC2IvBg6PRigU83o+Wk1w8gF303o3kFxvE5k6IavYmAd8EIdgKXej0nLiWMt/NjE1mFPqPyLirp3cELKO0by7ODElZiHJD3lwSEJzaWQ9omhp7L/OCpkIrz4Q8uEiRL57RV0Zrsoi8/6F6MpJOzXL1/AKOydgK3UvJ8eHj65CljK34dPnz59/vL508dPD5+/fPsqBbAUwj++f/uBP78K/goC/yr///q33+QmGPy3P/788w/0p//+d/n3H/+U+vjv//tf//rnf/7zH3//h3zptx9fv75/e/f6xeVGrt/x+XG3mddQnqaJllPwdYjZyfcrfhmEt9glyPuPKzpXbClmI3nvoU/mGs+YIFqdUDcJn5RIDmYNJXENUW5J0BIYq8m7DYfstKwdg8wDAMvB0UWTsdPyENWm7FuYR3x8ilDIPvJmKGtkI0H+gLChzR4thF1uNoSUyEyeyLZ6gYEMuIhw6j5lZFOv1axnNELimRCwssLim0QpONqVGgjwNfgkqeu+RuNUaHGdo0ctKJzX1GtYzr4qc6Ign6KfV5yoVbnn7ytr+MBJ5BUW4eeqnUrHq3K0KS3XHKMojlzb2YUIOwRh16es3COcYoQundGqM5YKqazWcgWnX9bqM4zc/XxmFJY1xj58NJNWGdNT6CT5Kiy7XCp1yRBcq3RPTtvhU321+1FneOn/f25MDPejpIQxsAamUREVOsgLTA+u7GivZKlQGhXtuRCt6BmgF5I7F99kraxHPRZ2F5rd4OTPTubMB1HHjyDaow81gobtCHuPZl3mLEKv9mYTSghEm8LFttE8Pmw3ZEuWcrtlKVuM4Aop5ir7JocOlSzou4BNPGJcoY6YQ2ZK3PJjmjDAnWc4KDx+0DLERItkmcKNY0q1ypX6LcIzcTzAbG84nMiqPrkYw+5wMpwM1SYICv4xjT3Urm/IEL0xs+AtjWdCFBqr+yIihGYkGQHrltABa390ZTxh9I23l9ulA2B2qnZX14hwkeKC6sIN9cIojLe7652Wk3Og2hMvaKM32wQWLGkdMz9WwKh+C/nx2urb9dbcqB0AW99Y0RoAzMZ0IdydO4yj4McEvRyu2rc3a8AcLLkeWV3sTrPiXW8ZzATnaXWrpk3gyrzFQFHRcGPkv1KIvQbNCuXx3FrWdK9eKNnNNhQrOovwWC7mrsRWMFZP67k5kWE7ddbMc4pHQnCXKnmoNuvFiEbFe2UCcImp6mUErYOisYeElbhSbRyfDJpdJOuenZ+TEiBvNCyokWY5G5z34VOOvATSbGWTSbItgt5hlFHN6SIcVJsYuiSJ6TrLUgHT7j7Uzl4O3A1JaUgAyzbrUwAmAycMs9gn88EQOLZucqEeZaAZB0KRzWnAjI4QcZNWLCeUKs8Q9b1aD6n0ODHT4MA3ehd5FxpslFA0abVMVHJSkCjNa/CeOhsMIcqWKliA+MMnKXwfvgjYCvR+eXj4/O3LZ94ePn96+CrFsADx95+/oBj+ifr3t9+Awn/77Y8/f8OH8td//vPvf/+HoO0///zHP3777c/fWSnLfeQDqZN///Pvf/z+5x8C2z9+fn94/+b2GqcuUs9kOWk0Gxlmnyk2LMZdizXZwOXTQg5CMgsq/IhR0Kb+tvm4+iAIClWySA5dCCsDQbI0rlX8FhLjKrGfwUkDGxvNqdXWZ2zdDhO+kpWdajKc3ED3qre6h0dHAzPn456VMsWt7MeXs7XOauYgkQ4uBiPUxrLqkAOKSwn9LUghkQk2OB8Mj3udbrtRtdCphGwpVKFZBDUcsqpsK4CJQp4ljFiUgpmu1lm9QYorK2NQ0GpZq1pttFtSFMKNGJwGnek6s4vQGBOBw7DIMZZdUHGU6Nw11DgoG/iGntENHAxHNuPEGWblN4kI2lYOfRcyUTCzitovDAqvaL5XnFtGTzS6DoCj+C8ITPaAzsCdjVZJILQsW+J2q+Lmxt5j/oU+/l+a4V65eC4qitImb2zcJDc3dhPcR2JYyeDQ3MLi2P2GZ4jigFWzip89NUqDDpe6KoiUGNsUhUoR85z3GKQSGFqrZNKHdxl4XVy6vHLZYaT2COQeacRzNKzV2qenh0enZz25aDudo3bvqNeSfRd3DtpThymlXOBQI/j7By4WnaUK96mFChpTG5Kj2X+DYd0JVukZxiuETSlSOXKBIA+ha2fn9NxDzTpT4wnyr+gbPDo/6p0MZ6DgjmUpmU6RWDiejVnpDi/Ukwn5sloOT7XqHQ3G8usG8CyQnepkNB1OtEBkTB6uEzoIreZOpwA0RPcZheFGrjimC263q2sOhbe73fXNFUKSuD02Iw4Uy+RGo7Dcqj+l5jM4U631eoR0tjmUwPLrtstJYZ5BeFwvHmVIBo9LVQ3ZfHhuaDunkTR+YO4AWCtgx24yaytt/2qQg+qPFvP15fVu7QB4TkBdbxQO5fWyciXpmoYk8roB+POV1AOCqEsqqjgaXs5gwo0HFFDXnYrcuK0A3iLteLNZqVP2cgZJ9JZFf8GLns6dD9lULbpmAOA28lwzUIzBSsljHel4TFTHhhKLsCKy53lPxj8IEvUQiCKglHZTWNPHGKRVYcrW7h4dHZ1gJnxydCrn2ODiTNbMszNQajryzcNOA+kJTaTgVsK01arETalfZOPJsQ4cgip1VsB5LGczNUNg08QV51vEoTDjT9RUuSI1fB57LGsxLibjCBnHas0eqWYlVSsj7ky1BvZllRMMVR0nJksUtihvmothgliWONQeOGURjBVFSciUOcihYYCRxFo3VjhqTS32THb4GMSCHNzudY/6EzlPr58LGH98APn5x69S8/788f3rl2/yyU9BX6mEBX0FPr//QCX87Zdf8OEvf8PdfpEy+Be0p6Ua/vvvf/z+8+evPwWTf0Xr+rdfvguYf0EVzcd5+IZJ8s9vgvOfHz7cv317e3N9vZsiLeO426rnSQ1yrDzTmXol0xmdH+6jJ6kiihAsYRonBNytAMA4K0dIhmzVgkocNur0FxKgSr0mzqNqJagnCXLVS3uYIsYuJYjUpRgcGJPcmjEzXY3CECZEFZCvZUsGtlsDmZK9wyPZO5wNp5yzQAiBTeh2PZvJ1YB93nwFjidd4YaDkWacz9lhM77JYjAcyVl3enrcke2HlLYY3sZZqCrjNMupEc1hTAg5Z1ajo6/ArGwOZZtYzWB1EskZVE+TDInNsmuUC6YiH9NQKWWqNYeKaq1IMStyAEOdmnpmgVHSJHnIiSlfdaBbLlqqxkCnSAmDxQPd7Ji1RmSA72YKkc5qIoXjMHJ9b7WNMEcXeYzQ7QQeHUp0yGrgaTPOfXSXywq+uNRBFE+zWi0uiFtO12sA7FKbyua+/egIwjuWExDAdF6uO2p98qFOoOPIAXDgG3tMH5FMKYDjM1dwl8wFI3FdA98zHrq5o1CcbIpGzJNc2rF1ykvaeC6TRcq5eFk9S5Us515InDdgQnN0eHbcg118l73oZj3k3YH26nUdWHu/rP30IHbmRAdsIYQIaJS9C8cXOutCndA4pThoMRsP0BuczMb9U+h+B0h9ESQGDI8ArRcjhgAsNzswdWTnfN7pHh6fm0PxjCb0lsLDQL2RJuwxML4AYGL5fD4+74+5MdXcvMVKswSkqEb3FCDGUphmj2ydmpcVEZKl6ort5TVIVhsjZalJPAfDCBbfbZyhBy2gmcdAOJ5oPYt2ryp4FbL4G6CJXawLSFQV0uVG7ztX94qCnKV7A/WzWBY1rM51nY0VvqDT37l2m9mqdiNi1QDjseWZTNzDzFey+ZBNw+WaUE0REejnmuQEYa9qr+gsPF/tLK1xo2IOAjJZZmu10d7A+nplU2WgrLyJZKRNtb+9nC032xWctpZr2x5MaR96VIddGyORUuTu0sFVeSclJSmi8AUga3+HHdnYL6UWrxkq0zgJLdlLQ85ReSZa4FQbMIKry5raRkDgIW2nTk4PW8cnR916r4Y4+rzeanaqlUa9UmMKjYBlOc27TUjjsTbKgiercyWpNTOa1rA3nTGYVxZKhgWhNYrGNup4zC8ht6FlEhvHccXLGrk6EWHQFBOUufazwk3hSsTLH+b7Efa9qHArcIF37oI6eI4t14w620DlhTFWYVSSCGyBOjlNacEAo0VWWmCooCDROVcQSG3R6R4henu+vX75+s27h2+fvwry/u3Xn19//PKLQOePb2Bh/VQQJqr+QE38C/7nuBitadx+fH2AkOkHOtiopr9JKf0ZEqcHKavln3cfBH3f3b/5+Pb269tXP+eXt6+ud1eXaG4Nz5GI3GlgB1aVI6qOBhkibKjyyPfKJdg5c4XatxXeQu9kTaKbYb3doP9AFRI2+ScBBKcVP9iT4rrk+3tG7vH0h+hMFvNNCeiur/bOykOympzy7wo5dbDCriNgslltwxzkuD+QBWY4ks37lnYCsi/fmjCQU+LRYIrccvlgoiOwISbzIDByWRoMxrLaHR9KbSNIW03SvKa/1dXleQ1U6hzD7KacuFmdVC2W0TTzZ3AJ5yZZI6lmQeo7uZK8MjmtNNwBi7wCnRutwlimvBcEJQtt8oPEP/C1J627O4OumKQe2Q8eaN11UFC1IjP4MOCLaCeJn9RTEzwKONWULcUoMrwtO/dmawA/ekGH+utJWA40EKlUDsyJshyY9aZ7x4taF8m/ZoQZ6tDZPaJcJvD0CBDE66bEqjBSRy7S1iP1BAlLRHQlh+Gg6euF2TaDfP1nhrd+ZHNWi20IHsVXtgMoUStuXLXAxSW6MEfXajZrIZpXlwteld7bC2ErV+ueSIVwgjwEqR4Oj46OD7uH7cRxUsjh8nxz0NVHKx+U3fHShMWA8rbACCTQGpNkn9RP52QdCVqi1BUAhu+8dpHhn4D4F0xvkdo+hVpWFurZeNg/6vWOz8ckT6nECC1l6InBvqK4aGotxzm+T69j7UFPUPGivDVO42I8p5iVDAuwu0hams2pvzWrRw47tYXrqEeoFhHEsiwyCtWmEmUvrIcu4VJJzN4oMC4X1uWdm7xIJ6+wwmILa2FO1Kv54mnhu1io49VScW9p0iR5chaSuFwWgGyoqoPVZQHIS+eptVbq1kIL4I0Oqm03sJiuDZnpsCHwudM7L+2BTNvM/YhCLn/ncrN+YtgJJy+r8i1/ebW2o7S+NAr4StOpttaSLmysrTWuGwo5COedKhYVUpJgba4W6gUAE4pRA/sUDAjgBG5UqHOooEhyU0uHRE2ZkTTDpm9AEga9B5X/r+Sdar2C6JBar83etPzfraEd2E5UVOf51eZhp9qsMfe3AeuZahpltVQrYBj+52plg0wySOpTjWeQFRMd6hjMmoySe3C+ZIOQVUF2jOk7hOI51RKXpXBM4xv14InIEmYSGqt69qql8kOt4wVWqSQVDUmEh68WNoRlprpgjhxTW5XQOiem5l99gJWIDCA3j9yAI9RGq3suF8zm+ubq/sODVMbffn4BoAJZf4AZ/QWz4W9fvzx8+i41shS1nz99ZumMqvfb96+fP3/8+PDpI/TFH95/lH8/3QvyYtb85v7t61d3r2/f3L24f/H6x+Tl67vbl69un9++uLm5utxeoq8yHfT7J6cIa+y2ai05cAFzb9M9Hx2/oGwZPMHj5A8tVpLOm1WNK84rcVqlaVAEBS5mirKc44/5+jsjB7NgKDP1NVB6EphaNqtPqfKBbly1aKEPp7NaDfFzlTSvN/IGhnXHR7CwPr8Ygi2qW2S5RkATgdnP1PzVsUCNYDgH5ceQC55xUyZTADlcvkEh77Zb9Rb2ibA0lTdcTq1GVIkEcWvc3dFvH6egnHI2UpcTRmqyAAUyWN/yrkNMnUZm0Ro4Z2MzlJSFOSnvRcGeGrrCqpIEX3YCAFGxo/NgXwLCmx88anwLunHwSLci6BCG1RBbBwSQCehgVKfJzhu6iBP0H9lKhk6e/e9p7Vgu7GZVF/z/0J7hJOmXvIJypJuAqLDGDFSPq5oFgrTW7pH6zUZ+kbYUPDK5Ahc7iePH+v+Za3MrfQGCY/0NGgtRPH24dceBemY7WA4eXcRwQfqFUJnxUV7BI3MBl7627jonEHAwKBzOtMdyavTaiQ4XPEuR8iJzSeDp/OS09lgVy8UivwD9L+zYEvJUsApUCcCLsWwHAcDj6XhAliGCUEagP9OZA3qKma7Pq82k3+t0joZzGA2M5K8BAZr3g1X0bMRQtqHjRqAeZoCekq4m08GU9KH5cKxjUtXFmHHFFGisRlvmDj2z6ezKZDwrzWpYb1dLRzIyn8qN1a6bIkWJZZ/L6WUI32y5JchQAOToT4SfmRaJK0d/3mji4JJF7tJtBAiES2eMYZBqlevC6NBLh9faQtfHtU3AYmnqIxfopKQvsqkNxNE2Rit6o3qs1dK5hukE2Ly50GImW01n2hv3si3DccP7u0Jf4HZXGHvu1BmbTTu4ge3WKoFyVCy6hs4Wm1PwWFkBYyaWVdE1Lav+t0TXGmaZKAX6ALLCUCkRZTc84kBG/emBLhXaSoN96sJlKA/SBK9AdvQWZBMc8OonmoJ3mgElk6yVsJiQCx8O5412DSlfSDKSs7GeNdp1Un5yGtWwNFESKzL6sELL2g9CruwmMi7bTCyUf+NIKhv0QZmfkiVh2YT0TtUZoACOK4k5IHIB4V6/CAHQzbua9UolpAGCKPSxCCbOqZru/fItT0mcIY1sk8SyfBAzCpEqQxTYcEzd5v7goMTWWlZttNu9w5PBbLO7enH3XgD588Pn77+iIy3l8HcAMW6fHgSeBW3lv08PQN4PH969u3/3/v27d+/l3w9v7+/pwHX35s3d6zd3d7dvXry+uf88vb1FXMT1tYYage8If1Y6xzDp6eLiuH/IDCA/8aQMZPYbuOgkhyfKNeZimWIhBXe4WpM3uxZLRQgHjBCOmAAE4C/k47KRQ7B7CXBa3nOKFAv3UO4NPYWV5W7GyQwv8BhUmUaM3dUY35DKZExhU+7NmrU64h+RbNUfQOpBQzv08Gz7uthcbuE0N9NW3WQ2Gs3moxH8Ccaz5Xy0gmXQYkrW6EVfVt3+UafTyGt5HQT4io405AxtyCmKF4qBhJxBcb2FtOeEdpXoG4NoK3uPiBI3zLo5GEkzC0OKgizyK6kfhJroxU5oubQvG5HSvlfwg7DRDRmBpxStKHYEact0Ut6zlrSqwrOwKN8UxAQwo15pt9R/dM9ylMHwyRiWzCvEDqrhiLN+3jM+sv1wEW8YhKzqA41bCDS2MNTy3Hd0gsgC6VWB9FcADlTAZSOPAtpp56zjWH7tmWMGKsE4VGuywC+8MZ3uKGaaReRHNmvWqhz7QwoqS3xMmHzr/sWZa0dPsjtCTYLrHMNECG72mJ+dID/8sJ3yfTkoK9rq5tF2lPrbqsHr+wAAIABJREFUDIA5gKD/qKcWfTFpi3HIbBQBYHBeZTs4H3ECPBqO1dJ/dj4g2/+CBq9ynyFidCaDs2b7ZKz5PePzs4vRGOmorJ6ZTD7WPrNZatHackgfjqkB8HjIVvaSytOV6l+JT3M3XEWPdLFYOweKgp2rw9EVLDuAwqsC+1Ya+eZs7+HSrKPYx9ReqyblgtsYG9lVqXOnGLIIBUXYuXNrprpIZUtWQNOzUr6iRh2uaOR4aakZhXMzolzMF8UTWW/XTx5XSWFmtWVkLldKb7F3WCy3FERrhW2Fv+0YNNxptWN5qyFPG4tnXBvbG3plMMCNqgUTz42GJW42NCeRDYx19NGjXxDB+TQWKlaeLzYnNTr4UcsJo7XQJBcOgKlFOoA8EEupCQLtQiPbCFcE8mMKWZ0NtOCzJEhXU6OGquaEJRGBOaL5q5zW+0Xu0oEKOmLffA2CRqPVaB82MVFuIkpQiuRqq9OUIqgB25oc6SZ5lquPa71ayREzVmuAy0rrxTiu1gTuMucFS55ZGmsBA59py922BAe1yWEblt7vTuUYWtEbWCJ7ZG7+ZnGpw2UkjLJLGHE94IgPXWxgsIbpaHlCBy7rFOgPM/6O/6dca/39fUqv/YMD2hkkUu6dyvU33V7evHz9Bl7SHz99/vr9x6dPKHTfv//0HrYe7z+8fftWYBaWl3dvXt++gvXlm1dyu4UjJhKaXl6/uHxzO3p1A/aEsQNAosdFbv6r3L7OR/NBWMJAKw6OBmenJ0e9NqKVG+Dq6UxL+T1QVpbrbY0DjuphXMvhZx/BiMrbT3wzdPHo4FJiaC/sCd2k0YalZZV4OhJpkXZrgIvdC90r6FyRmBcHSz76mEVmaYZouWqt2WwcdjqHh73DM9ikYCI8Yf7Z9lK9YiGul83/aDRFGvZ4NkU0KDyCgMLUD9DQdS44Pb0Y9I/PjsCIBUOsoiphpmsBiJHcLFsNNfiULV2tmnKDQIdneXKYzcQBbSA4CMnkZMyqsEDB8wVPnGnQsefy/1z6kNo7eo9OV8Zc4uw1jooQQs1CsFh5aAB4jIww5GIZNVzB1ZjAprL3tIOrj2NGWHDQLgrTsudw3g2OjSsW+84NS7vbls9k8BwZP9vAUwllT1vQ1hAgOuvv0KfHWXfBXAMA29bC5Typ7Ltg9TkFF527oM+OQkesVrlvos+rbA5ZBOBQW/dhIU1m7FQAzlSU1DrH5xcAYNmHwW7n5LR/fHJY536jVHbtmkcBFoXMSlGkaTZ3E0EE0gcM67Xdh3NWELh6MlPvN/BStWKdMFpnPD6+GF0gC5UaEqVWDc567Wb/Yrpez0C4wr0HZyPrWFsVfDEZq+UGRE1o6rgpsNXDGBAPBmO1fMBvXmtvee2MkU3Zu3maGqQWGYoY2MMCAl1woBXAGwfBoF+hKzszvb6RnwR5pyyBXeyganbVlEKtKrQl61yvjC+90Yb3Rh20VgTgpcqaKN9d/jsAb5ZOoeQqYwL5xrWi54tHk0ui8dppn1h7E+dhSEJA1Ba1kdBIIlu5AfXlRl/02hhnS1JRtlvXA9iaQpr2JVe7tbWm17TAx2x4sbKhMW9bq9rnFgy5HrYqEF4wxE4WmDx0y2JJW9EOgEsui0w5n2W9lKRqDD0joYTOn56NIWaryTczhhxmsFxmzggjEBAckgE6YWuRxWoty8vZUR6CMj1585B59HXEzrZaTTgvtTpt+aDbQ9q1PEJLrRFbTOeERQPZ1dVaPasghSyroyDOYbUOolZO2haqZZbL8i/sGyjbiy3G4amK2KW3FiaNarVLT1z1uohR+WCliU2xCcs7XNURAdiPnvBrOK0DauC6pxFmZDm3mtjOB2esAvVSaslZMmQ6AOJktQbSfGVzu3z+8tWbe9S8CHt48+beAPj+9vbV61v5Hr549+r13R0gGDXvbnOzu50Nrpl3zZ0t97Y0dMf0lGMlXuvLSQUUu/3AP4Xc4QLO3mdH7SrZ08XCHaTwj2o0EeVRr2bVKK7XBFmqMYjN5X0oNnyQ5THT8Ep7T1LY6TZVKuKmPTo0lKzZqeYXXnmvsGLDiaFOw1RsuikAQ5FiBnWwzWdHGUueHFqQs+t1WGZ2e0fgmE6wskmRAS7Kgq2klXpkrkATZ+TzhGQWQW6sUbMletewXMf4+OL87AwdyW6vyVZ1HGd4LzPq1+hsWGcqRFbBeBjsNqQ358yorlBwDF9hXAc11ESyWcHFAKqssw4uov40FggA7BxhTTmjg1k3dHTAyZPSty4wScS+u1CLNMbgiRPWE0MsJWYRfSNz7UL+QfCUvm2hFn7o8I46JhhUuQJVW8VmA+I7yxFu0snccwBslCnLObQ5rANg0wdpzR0oCct0vIXIWLvU0WPxblMwpgyHTopbBCSHhS+3EcdVcRw5MpqV0OxaUR9R755CC4S5xNmJIKJcaGdnh839fVb/0VPZVln1VlwTDfSdz2dwgF+BkVNCmn3MnWJ+MluQpDAZodkyduUucknG4/7J+RjJY8gQGJ+BoNrtj7fz4Xm/P5wBbEfT0QXcKx0A4yodw6F+6ADXaYKHriYeKOWBre7xEL+O+1H0oCfEME0OXK4tUV4x1jqxCsAmamUDGv1VhUKypd3sdrPdrc31kd3o5UxTDACiLohIW9yazsQZ8NqCjoi8myfQzkfaGHAbcjpJU3FzLeit1tDq1WHcMaY9mXGkmxgTEBkLtSkeq6B+oYB2s18jU9k+YOXineCNDd6Zy54AAKOv7D6HIwlswcCWhl5jY5Nt5lOYY+dus5rP14UMmc8ZjtwYIV8gHCEnMBKA2YIuawWsV4q2oHERl9AeYxKhALCJ4yNtlUXBk5x5lxSGWyXWKFMaElfQsgMQwhewXmt0YP/WrMNZqYlhWpZT9Cv7+LgceXLqBxZCDCRL8wp9EmDC1Gi269VGq9XqAXGxzLY78qcFIjXGdfUmyxaUxtCXQMxJ3yOqAwC/WU3djyoVTQDAaprGLuWbYSqgcYUhnLUipq1YCK3Fk2qFBqcuDYuNLLIVAOyT+czs2cicMgMl6iRFaKxr+elDhupkTNdHHSFiFo6npKTq0ASkQUifIuTPxrBgBlu31sQmxEjlLTUBvUDoGa44XEDwjLsWAH5+cz9eXF/tVIyH2S8YxKBtTEfn2E5jGnU+vJgP43LI3IKTycUp218nh5WYXN6SAiS4OBhTevVmVc3psyilfbP8KwAMy19ZoiDAxAlVKu2pktymwSClmrPBwYEKYBRX1IUBALOnvRZo0svG+KEg1BnF4NiRVGcbQNsksWEdc4ZMC35mbWLj10TERKd31Do+PT6+GF6gQhjCp/3q5nqj8SzMkpnD3HU8GI1mYxjJzlxuOQPDLU9mhHHyKWxA4OAPRbvyyPS8SLUlgmDkao6kyZx34i3xa0lcrcZJjTYocAlGeA72LXYipJhWhlrZ/mXyWjYPZdvF+G52a0BkVm2Bs4DSWM8gLADYZEph+EhXVjKdjpMt6Fv9RfzQQgwVd8psixtK4lz3zRxa4x79R6do3wrNx3Fz0YLWBrF5c1Ly9FSPZD9lltLIAy4oVCZdcjTpwDluGQBjyOP7Jsh/oo1+otNyB0Il/q478Fgx0EIlbfT6QDakJvRhTXV6Pro469X4VNlrtz2SEw/rENkrGQAH6uELYbNb8Bi/RLuhyjHktzMEik9GZFNhBDtFkSqIfA6Ws2CXgNRsXG0cng3kLhdgZQ2g7ZXNH6jTRNURIJYRSIPhoN+Xv2hYA6guiuMBi2J2pGczFsb0r4dln4XXFo7EU+bYE4A3hXmk68bqP/OV0rDmVskxk0BlOeRNk3PEim9pI2Ci8WKhhfecUKySHYVghWYnPto+TUMy+pe2qPVmNtHLJ3xpe742AzYTaRMfuTrZSGPrp1BrtacD4N2OQRFzK38t9kG1RWa5yZRjwvD2mrlP+inHv/y+BlWgJL5ckgK+MTsSaKOVAKYPoxU2JFpuF7BVhvn2NIuy6uM0tepY0MVKaSQs+RDZ1KFvNA2L83b+b1HRglKTXBCEaYOhZCfQatALDgPodNARjgPBWqkDIpSj1VqtI2tVmjehBobUUmo9WBfVMlmJoOkol/fL3gH+P9CWHeyLpY5u4YcbkI6AyNVqaiy24FGt1a6jKBa4rjc7bcTuNVkRw24L5l/Kns5ytt4rMUk+sgvR8Ad6VaIIjVQummjFxYk2W4pJQPYWZsVkgltsfBLTkFq+GTIwLyCZF+sOd9/UEwck95LqKzW40asjXR1c7KhW1NqyDYrqwfE7sQrs80M5Kgc6S93f2+ftAD1sq4FgfSsvrgEvyP55fzB+fTxd7S6xu1PLKblEkdCCDhdJSufnF+ejwaQfwmVPHv14gqlY/6ge7Jd0AmHWjKhrUbSWq+CwA4LkCNJHpRLBYSUIrF2PAI1ISyilXx3oba9sTU+gMmQv1og1AGbyk+3ltAI0RCizVtvfV0MjbgBDNVaOdCygyBUGfJOspZGQEAdQTHO0G9ECRvRms3N4dHx6wRBK+rwqm3ODsLXVdoUINqgJSH6kjx8TVyz+bbiazVaTJQuT87OTnmwF65UoUAd+4g0vDHMuoeBZ/gvUQa2CzSaGyrD8ZC+G90HaHfzJ1eAt0vGFzYC12Vl2FbE280nYYB1q/sz+XwD40SzDM58zB2c2XuE2KlRtgx5gnqm+xTSR6EVjyWJk6qOTE/jREyMObpAdXSxWlnORvvTvAKyJjaErxgO3F4g09TckgUwK/WdmoWWm7BFbuwb2fLlWvfIZImhB4ZcSKM9zL09FBzibYgVgZb6ZrtCcS6BpyKQgODxHG0hQ8oJhbmfD2bjfq+Yxld1O5eU5w2f0BdnesV1lQB9rAHEZZqK8liPyJxA3d4Tg+wUyA8egUE0mc2sUTy6Gg/PhfDacj/oX08V0eHo+nLAwVtbg8AxlLKJRdQY80dkvSdPgZWH8qzeOgpmsRP+4CUS/2C6y8J5OF6BCTxkwzyLYrImxxTS2E2ZR7AATwrQVvFrBKgvdaMp7aDmhIIiNvPpH69CToj+Bwelys8BuY21ejGrNuLJZ6IoOUtrUXrpGMWMFibsCZgapK20Ub7amIbp0FbBKgNTiY+Fa2GhjLRzPGni92WlRDGOrhVppyIfThQ3C8eNStEIpNIUJB0yTWMEjuRF97S38N1HhrtfcgG9vdtp0ZijUmqEVjhK9YiDFkvlPm/U1rYS2m532DHhn/MyOSC2PsrFH2tBC+3JQT+EkqI0yAWID4JKte2aEBQ6N59Z/euJqaypMNBE0MkZTHCsLNIz2/CSR87CcaCRXhYRpdShH9HU9j9MgylCpxMA/8ELlC3narjGHJK/VKlJdAU4bgpr1CiyXpExVt0S0wLGmkMET4AHAdwaYwuGo3ZaiOO/2mvUO5MZSMHc7jSxHrd1oS/Us+w0poJHjCXo1RFDyNcI+ZnmZ5gVX6C2c5hwwgukLiiy4NGx5pomfkDPrJSCMCdbkJjcyAK74armchMoRV02n1PZGmvYrzIaX7zPvFuqllHl1oWWpsYrGwss2Xhh7XH9QieiuKGSRCd0U5vJB7FvtY2uM8xsI/dKBoJ7gdOCXonHYrLSODo/PB/0pKmS5SmV73JeFZ8TLW67o02F/dCqrHfwG9g+HpyfdaqztRvUtUII8htRlbMdAwaIXBwAYHf0syZHNFDYbsIxOI3mrGc2MEby8Os9KElJKy2Dm4PySTUTJNUm18UrrF+77Sm6hJ9OUwSBM+FXCC49BYIQYkgPVHilQFbhWwfj9kKsZLRVUu1S3P2wQ04Kt2eocHh4dSvVxMZxAw7HBVmW7vLQbN7zrxfRyNRnPFnM5bBupkUeqRmBwqKpA5Dj2Tw47zU5d58Om8Y1oxZbVkrBSCWQXSnti2UFm8BdDGKgzJgH6gppAo1YjCqo8y+IQ3dS0pHlHob0t8n6EPBd8805UrI2MIRT4j61XdmG0eVwuORlSoKgR7Ft3AXvGiPBmEU+OeByx6o7Vmdk3OphcvW4kZQDMECLdGPylBW1t4XIYBoUjFdcNUB5B/pZLC2raZ74FRkUxasqKziBC0zWT9swDgwo0UFNu1UkHGhipftxPtgkx6Pxln0HJDClRhS+fXILLv3k0gMHaGLRkeRMJf/3Dugqz2WsGtseeXI/cLQZy8NjjKVRJeivBUiHJXHgmwreSxvn2CipQXHKW8juQevTiYsx98OD89OR0gAp4Pjq/GGpgMCCVFS1AVfXCZF05LvQ5kPm8sNUawAcLianQ/EKHNIP4bjJVshdOWohb51PEgaJwZB2Mf3WGO9/CDAuEpIXWkxZNtNiqMHi73DCp8PJqR69K6o/YgoY0X7asMys9F1obr9VxQilgaGmzxy33t9gG58y4dM5YAEHMqXd0aYZOmS7VTIVCpQjn6gVZ2UuSj9eG/OMlRrCLCQMN5UkgvQIJxYvNjvOlhTXCFX7J5yIbGTZjc4FdfbabDeOXtEKm6Hm1VO+rFUa/O47L0WO+1GgK52QvawLus7uU9/fyEpbYelSomt6h2bjdaq0MMuhC7rfWhHT51qUczuX2vMaBLEbAFQZwhWRBl/4DPjPQBbIElrLqgPUPcz3VnT4wcwrbzprSX1nScprLhjAiCwHU1TjXdTDNNKOISw2NeDV1RwlN4EKkqfo0h0p5gSJTIFEqXZSyjSoZL4KGiSxdgbEwVcynbFqfDlly6WakltUarXqj04ODEfxd281mBlyvNWrNKji0zbiG8Nu69gphvSDLoWByxtUZBK6cuXYwlgM+0xqT09tKgFBdWTYDH68s03U2Sbgfp0JYMDEBbiYKrGEeJJ6UgxxlUpDseSBrRZmfyHoWaAkQmGlXgtIpEzRHBGOCx4v4uG4MVaIVnnpFYt2SHVMcwfXD8y0m3ScWK2kHzCWB6ZIfl/ZZxWLPkOSNzvGpFL3ciwOC0dsaXpydHVfg4RyUD2RROdgXGNwrkyyEjY+tNfKLsfn3MzmgmLZm7UrKvNRKDuJyUGocdpugrjeQYQiyXEPwWe4X1eVoJnmMrYisopVIbSpKoTxYaa9UsTY3CuxSiRxTR66h1QJeqpZsNuMr4jE9F1ZjSptQU+vY+kcYIRxHqT4D1Y50qViNyGHLlaU49dO80Ugb3bacDa3u0Rljr87Ozkecz23oSQ+PXGxlL1W2uFpP5pPRbD6ZIBRltZkjlIZLHfg1qKX6Z0c9nHeyl0y1lsOWMwmYJMyQCDqqgTCt2wHQrFOyq6nbY3M5jumBmKIzTcm9GnFZz9gHbY/tD45DtXPlOQsybmi8fbVBhr+GWj8qGvpqI+J6D9johWRER6GSlCMlZzAMGd1+SydhXgV33b7zqLZOr5vtqoiAXtnWIoMjc+jeTnkiUOqpRO2xc07yGUh30TO2EpTW5CEvlNv3kKQpP1AylZlxc49RskBmNdcwDROeZIoNchqWY+7TeKKwtA90mEYSW8yo7OMBUv2Ih1Juwl5KALiRJUVTGy8zwjHmJlDTmsqBG9G7416GgQDs+9CBrqgqpHaKCSUDsdmbFdRl/TudDOdTAfzBBMw/GD6fDpXuPC6AdUCV0sBmv2PgMIe8AODhYOxmv46fdT5AF53Gk0xA1Bv22ohhWC7UGGI2Xy8d83nJmACEEjKYkJocqnEYt7d2yb0oX7dEXkHhy8trlHqXl1cbfHK5WWjLF8RineFuTK+jdaxsZgFLO9z5Cj+qAE7dMfF5PbdBrvp6wKxiTi/IpQUSLhUq4RkplerCOWeiLTWZLNarGUeq8vJW9LN0MK1T6AV0xks2ol0eMF7eEtNbe5Yq8tW2+8ZIVlvtNpOc5W66F9f+NsCZFKydHAo5EDDmNLjla75kaAVSo65ubGRsfWu55/ZSgHt7c17NkSqtYdLVWvXRMN1XrqpyYjxjZjEWyeRJ5X/r9Kj/HCWFnpdFSthiInUYVXRsmiTqKaAZbzayY0uaq5Aqc6wQ4McZlLwpzXplpyDQCNP8eqOeY9WXD6uER6K2Njn3ylqn2cwozLETlZW1AgaTQHir0e40m/BhkH/brQwELtg5oRpGIxtlMZjbaGvXYSGSMScq0kZiEmVqoBjnshyGQN4EQ78I34QPQhrqS7A4IoYXUPkQBSmA1uypgT+4O7f8UjXEChXqeES2ta9KCqYeR7EVx1FksYnqSUheDtevsi6gGN37Ftqqy2LkTBgQKyUA7DlCj6fNswCyJ1hAgmXerKEBLy8UkS/y01I7YxAfRrBhoS+aYLI2oJU6JQDcyKSAq8mBChPEFFazPI3lE/9sLNXzUbfT6R12MRvANqfebNUrTcw76hVdqT2cAhlCDAMuyH5J7Za8khoAeweahsd1WkHFoxwz0IaMPR/tnZbdHNBi7gkTdMKgCoUByuoDKYeHzjHkcYU0tKJcExFQaRUWVxmZZZVqs1FrQKje7fUOTxDciiEa2tJoH8ERSDaxc1AdL7crS0ChYxGIXOR7qlHQCiTNyUX/7PjkuNdqtZuY/OrcWFuqxviGvh1MjEpC49UQLm2E3RJE5fgIGzpsZo3UFjhVa2QyGb3qyOPw3FuNUYWqzqPY1Au4Ny5VbLLJTzJFbFBmBrMXuk63OqPrPNhiHvynimLHgnZumk7qFFpl7O6nDnea9kGOQwCbDzWsDoIDzwGw/rLAf5ZzOk4wk3cqj5R64XuRe3jz0nY08UiPYwHAGgNMp5PI94p1KiIKB0UuUqQe3gLAjeMB+BDyB0SswRwUqf5hu91IVchk8q0SDRF0CBd4JTtMgYuLEnSGv60f0q4kZCqYvKlHWp4pP3eqiV9jqUpnI1SsgMrz/nG3d4JQBvSbh+ML5w5Nb9YRy2LMgM8HSnBmquF4CGMPfg4E5lZ6NNGcwqnmfWoLGoZxU3pxTc22ptCkUvs7nTBQHr1iRUU4UWrQkRpNMEmQyb9qeLUGhpIODEzdredXGpO0M4MOVoDbrTKGgUD4qkDvjfx5LrcblIfMC9T8Im05r1fc19J1GVUzvZxh7MhJkJK3loVp9Uodq0jghqXIdLpyeRKrhbPYdAJkDXxYbguWsqp0i+wIHRg7RzAqi7h32BXRE5r+tNttHg1ENttLoi0BeEcA1vAKDH8ZDX/F47Bh6S+rxUoPinzlci0VugBwn4a3lZwAIxBsg18vDjw6YJWNAG2NR9/1IV1qkRrKK5cBwJBC+y4LqcbLwsNWm0OEp0RlOOpmpVNTjceWzzQiIQ3o2whnKlTM6AIjHz4NUjSB5fmldA6usVptNhuCxfK3QKZ66+c5h82sqm18WDY1IfxuUPaleV1AVl5zuy1wXEPKvPxp51WMicG1Vjyu0p640SAuN9m3rpo9MIee9TiXiyvCCLsCcycdNyZZqv7QEdKGkjDOYwNP+dhPoiRkS0AqGBsSwZRDAFjrwSgsIiAi2vGHQaLUTVjxpTQ70IlxrHpc303vQAPlilo6MPKSVo0a3sLGhXy6VyaJyVODJN2zC8Da1p33LO2V9wX0Dg607yaLI1ZoTGmVA+Q2XlzCEZlRhxIMYBVVpMYFqS1N5F0IDi/OT46PBX0PBYV7vQ54cjy0nYaUxO16XMarLMdZjti3KpIMU/hZVmjgF9mKF7DtR1upRzKw68CiTj5w6h3jJri8ajOR8YI9opH1UD01Q9IALIpsY/Mep90ZPaMTJcqHtBql/SmNu/KUJi8592rtTpsRNghanY3H6Gtxl3x5fcOOE1tca52COcIniubVUtaBFQyJJvAA6XW6R60mLdGhSQoK5wvZ+6SMdNfMWsjFySmQU8ljvIRed7pZA7cgDtQsNTBbR/8xKEGPWcn3nQGU74Js1V3FV89kCyYMy2QKeyx2feWCBIWoyADYJRh6OuMNLQrYnB1NSqQDbDfn9QrZj3KvQeSivbKnrzp4NPjRt/AZUqlypLbUcIlVSVSmfV2kvgNBZJjMfW6ins18Z/WtTpRD4JchzioHSVD8Cj0BHm07Igq986YAMGKG5jB5nMDTcTS4ODs67VWjR9sRG+2gCcDNQyl0gmBTx4elA6x2YeKniD3PNB01O2YANtq9E6ZvzuaTxUpOndl8CGPmi6NOvd3pnQzGE9pCG/SyD33B2e+I5CqkJV2QaKXZC9aaHhoAA2dBfAL04reQiKlxn2O2nueQB1tegVlezcybCtsDaoMpEp4vnTeykysBUi53q7nZVKxcEcizHR3WnVZ3Ar6CsNda6AJxWe/i0xu5PX+OsLhr+XdL/JUrASGl+Mvl8RofWzvVkNYiQHypycJMPwK0gt9FMfNUfTNBvV5MJuudFd4ray2vFpovbg5ZxrrGnS6p6V0tlFymr5YzbZ3brpSYxXp17Zw5GH281nKYZGmAru4wAMCXKIhtBAwAZjDeJTyz5flcb3kMr3asouWILmWTcrW+7DP9pYI4wgr0OgFHb1gDyDIgaQZNQUYxGAmfZvOBpXQ9uf4AKAmSuCNa5WBRS60jqFJOCHC51IWq4owVgGO1g6RBhdoVRqw06eiBHWS1EsQZ05Ey3B2zWoA4KM2Um8j6D7lwq93tteBr1GrBtpeQzD4fW2BmuLdPkSlpOgLwOuFF0HyzBbFxi2xieSSALQROeHjKmvCLGgilx+NmaaNSz9NaXjUZE4Z6GWLsKlZN4ekJsFZolyUldCXRzGLtLEbsgqkVI/tv3l/0xsxywP2jCmglPGKRY9oqAEdPBMlkeKrc0RVGYVEhaUZApK3KQtlZ+AgoXO3t7YFmVfal1ALFVRnGqm88oAdRMQAuW22Fqa3nxWgsIz6onuQNWNdj85FloVftHUplfXjcOZIionfUluVF3hg5sr1Wt9PqtRMPL9eLO2oIDj8N2l0BwumzzCxKyqwdz099j73CaBAQfODY+k5Lq/omtVAtK1PYurCP7OHCRulRj8PqKWbDwrZS3AdmuVJZLWE4oiMausUV8JrhAdbodjvHp8dnR/3hRIlavPpZGHAjzWGYLBR0xjHbAAAgAElEQVQLjVyd0wR2zdJiwRRTKENR9ZwgObmT0o8r8i03iEpecKAQ3yznTartFRp0RJGZS6DStEIw0rr2MQ+36C4/SfT1dAPNXxAFha8ijWDK7J6UQ9/ZTZu+1TGKXf6wIxmb71b0uCF3TjuqjHAxi0VYsKMz2wbRY9u5aEG7lET/GUWC4F7UkR+SxxxkmDEosBkcDB03KX08VisC35w9y9yVynNIgn0vrsT/lsfomUcJDq8CcEUqYDCwQLMbS02KpAMB4JPTo0biqIHq5GGCZfp5lSLjZ3nF0ZUrSHbmFYybAnbyZCHITjfzKSgWE0XhOYBvMRmOpvP5qH/Y7TSbPUSoX/RPz0Bthhph4Aw2XHtZBb7Wmh4bTJ9bCiHDHKzwpQ/HzHrPE+UmzNhrnglAz5VtaO1nTfWhvlZhioqh+aL4uplNLS0VaGk+FFsDItabrOnWjhW9IYOJeHvz/MWL5wrEwGJ8/hyBSlc3N9eWqgSuMDrfTo3s5E1SbstPvLx9+fL21cvnz1/gp2zwzIxDkqll37Ckvmq5HmMPLJW4Q/GtlqlOj7yczc0QxMKOSJnaqB+l2kkSng34md7EAGSFa4tLJvACbs2RA8IjnfYCgHcAYOsDEKyx8dBOAHsA8CPA/hwWSKvNWrD5ZnutAJzpYDXJaoFH3ZuPUofkmAOFYNjBHJS1/PAKx5yyE/2xutAdr+k7Pb3wjBSdBBpvmjj2Ilc4JUpzrYt0EFyQNZ0IFwxbCoJ0ZUpIuHJ94Bgfom6XirSmQiMKkKRghdElbnJuw6SjBc1wLZPlnBESHrzVYf6BP1y4SEKDPJi+g0aphgtXG9b8IHeBb11vEJDlbs1cHrLZaJJFLccOfiMY8+Wc+4A+nbGtiKIKXc1E2+oax4S+Z6gtUap/UcXQpgPe0kbu5PICi0ZrnmpIEWRRShc13Yna0kN7XASNh5oX66mwUwE4NBpxXH4Uijp+TvAocIQ3WVjGBBD7B1Bf99TtTNl4JfMJZ2UkNWjJSxwA51ECX5QceUdZJfBaJ4etdqd72Ds+7AoQdzrd3mGvK2Vwr9nttQ+7cRnPtOQfy7cgoGq32s1aVm+raqyWQ0ZWQ8oSVDqxLmTqC6rniMpBzMXFKYxtd2A2CaUnPN2C1G/MfttEKMHVTUvZSrWYWRxETCETDdGqkKEQw2+T2wR1OQUxEDaZaVqtyBmHTaC81qOj49P+OQbqU8yruCbZVnqzmy2hZpqrf+YaNQeTkDUgBla+MwbNnZ90W/VqmuYwiQ1UpcOm54HlBNPgI2ZbiZszoDMbBQbARWPAXKNKCI33WAjyUMW2V6NAiRfs/r5JkPEeR05lG7stnPMD+becaQfAkRl1ubrSeuFmiOn6Y7LxNgaTRkaA/Y+N1H5RITv10jNSKvFXA5dYNWkwHbKmlD9c6IieZvNMWSWoHxBUKlcYL5iYu0j0DPZhS+c7r0/bcZgbtqnVcNE2TxkYNGdBhoEpJPAnR0e9BsKtncembzsIuJb4kVeKPaO9PMZNwX8lTMAwxP8kZ6IChgAYjVKX1T4fXowElY97TTAOoEG+6PfPTuQfNldcCUzXDal9z7XqRXcc6Tbj84GyszgBHkDjoNZaEzqtkpSA5vN4aiUvHVqnM2VWoR+OPvRcZUKmm1XZr+XbutCBlbokg5Q1m0yXO0vVtUoQ6LK7vrmkgxUtLDbO0YKJDVfXCG3YCfpqTjpqYNxevHhx8xz/ye3lixspiVk57rRylBr69vrl3d3rN/fv7u7e3r+Fmd9r+ArJfekrdH31HACuetsF+tiqVuDzX64slBeVsmNPq9Z5Pip0yEB9aKfWGkSudTNAmHsJ87DeKGmscMDCzhn4q+kUBrWCwvghoOu1fkGb80RmN/ldX11L2b1bWrryGjEQ60u2oEHCqiYMHogTQV5BAbB7yPFRGTDykADAj60tFeiWvCJNNvQsKcR2yyQCyS6UzekoSdQ6NaTxMi6Z0FL9YosFjG0Upk6HNieOEWCeohxMQ5pl0tlNA33jNKerhzoRpZlyWFDPZpwVo65qNhsdJLY3KRju9joIi5XFPEF6D63iIhsWPnYyfY6mM1o4y4MRh6UqbtMQqcE6WxbaRqvWadVghNiss0aGIxRm03UOQqVokoU55XAduucKKsMsVKdOkLg0sJjOEl4SVVjoaSXhSgbKPTwlliCFDcy2ODJ5knFPVIQcmT+Rcl048yqVCg8irQC9UsiubaiyRZeO45nojEssWo4HB+BeyR4B+x7MSkF1LmCXAKzmIPQxKnlZnRm6AsNRTBZbKpucPAvKR/0Twdyu/N/pdtCBbrfxqXzW6PZah92ERoblsIMJdK/dPJS36hj3lzdMKsFmu8nhPFRjwLtqSlYcuHHsfMTaO1ZTEzWULmabVCoHnm4Y4Mbla66X4yyxl144T3hFLoFHHS3D5nTuGcVg90ZMKArUdDJR91LKS3DmVaMcUcFJNbGtVaraNlTzdUzXEdLZvzg/pw/IaLLQ0BSyQNe73UapljRAQNzabAaOl1z860sM5obDCTSpMOlutuqyzUEGlTxTuSRtiMsAHjxxa01H6hT717hegB/s6qDGcbNWKNjwEDo1JijiLCh56i8RldXEG2Qp66kUAl+1BDA1TpEgbToodwLz3PSD6ElcIjdPaahPGCUyS1U6TGman/mQ8INnGg+Tytaa/iVsNMk2N6vQkjtjTiQZmbnujEmixF+4o9y7SjfQiJkfct4nLpcpIkfaM9JFRA9UGBPUDgcI0wIo0bJKkAvepLJtbKB8LisFK/Kt80cKW+yV1XLTPKG1tEcki03SOA6DEcfRhCLzBUW1a/CGZiPB0WG/12p1DvuIZKAJFzS8F8gHPv+rvGgwhE21AjKBeUAAtuJYJ8JTpB7NybxiKMMUDm+argTyF2pvALC+xKnqdOnczPG0RgOsFpulzoKXNhV1YQwzEv2XqAAfDRkx6NxdPn9O/i9qw83aNppXayMbqYOU1MSXLIKfP78BDj8n9r5AeWu325fPX9zeCrq+eHl7++rN/av3H9+/paHf/fv7u1ev392/eSNQ/Ebw+M3dm7tXAs+vbuX2/Pnt7c12e/X6GsXl5cur3fYS6U2s+KfTeQHAnGwj/5gXH7ynEbdAyjSd5Dfac2dvCnsJfrZ2DKyNDYZXxFO03lkHo0zeXILP7AB4a/pgG4ETg6n7ZYzjZr27NEWxHMqlwDIAuNbIa8y7x/mI7WK5ZAs0SS6ofKUSKh+U0Nl0ozjdqoYuaoXb74hxndRMcJurvEm1oHEe8o/WdrwYErN4s6XU8SKCwkQ5pgWzMUXBacBUBfM5jfeFeDkjm5qNKQ6OqmBP1Wp5FfGtGO226lm3CTmwIGSlWq3UDo86jfZhW4qW3JpamiKcJM49T+oBz/k/IF9bt901zI8J6M1qp1VtVOvtBvwwMMcEF6nVln/qTfLFGg0li6GBncNjpJoIPIHcDZp3zHoK2UmefIwdBlIOMVXWJcyPuVKp2gIMaF7zZvVXOAKb9tVnNBF/TuAGdOhyzOqoMELCsGoPseRuUT4wVI0s40gn/ChtgUCyu6nQBR+N0L0DKxc5dXVuEB4BuFavVNhbqKE4ZG82Tap5UBY07RyeCKI2W93DVrN92Gq0e0Dhbr3Ta/U6aZk6sgjRlb1Oq9GVGvn49LhzcsKS+ahVb7TgrtJodVp1kNlln6NzANTcUmzDPxwekAwAsXEgSEaFYZFL84LPaclXdjgLM6YGOvJSsaM0y8LIct6tfUodq3rB6NAdbwb0nYonEWYNOAer5oiZaVgXmQC6ZYAJlpwLGTkG7R7SwE765+e0SYAkEb1qtvJgDCAr81yXQ1kT0Jpj/Nl8isB0+dZsPBuenZzIyVuzPGftRFknQJ04ig1GYTfp6d5WI/tsVuvZJF9z5stlF26svdlyWHItgtIBR72eibmdDK5oZtujuBm9SXc1JiKAfK6QcqsjJLUBmm2AJwSvzJC+M3pSm6EHnLAsiAyunUkVBzTDm59iH4KpVEZufYNDdPaqM3WnpZ6jLld5jIDVCkLGmfatUVspl5JYldraEfHjarPd7pzPZmpew/JwOoIfy/nZ4fFREwEM+0wDxjhAWdSxVCm+rJZgpOtERtsNsucDFSSQTbWGeKbwQqgeTebmCsnR5WQ4kHPgWBalHN3jyXhwBg9qQd3zswvoyk9PHf5CAAwaFsthpUNrZawipD6dNuShYaw6GgKA6YoFIx4B4LEVxvLZGEFh8sUJvzG1Cnih/enlWnB6Ml+tZiuz03AGWWYttZxB7kOWFqvarQrzBFZ3JAZfXZLvC/EevnF5syNL64plMNvHNvxFZ/ZKMZhYe3srIPz6Nfz7bl8LqErVe3//9u397bsP74G47959/PjhzevX7wV78Z27t+8Eid/cvr2H8/2HD+/lzq/vPv3t05tX929e3t6/Egh/vqPy9nIrhezK5MFzKX9hkDnX1IX1jozvpQCu6nJXat18uWAKEn5YW87KeaZ8ik4aO1ULo06/1NJW6to16dBsQRsLer2zm7G3ds/xrdWamcroD6yWVztsU87BX2pW6+oWAJ5vGJT+o5wrL9NnIxpDQLkMIT05sGAvZbiEj553OA1JPgz1CqQ+FiOlWLmnqbIgiwhxJ8nQvbImEnGPrZF1FHfqDxipkT5VaaxqpjTWRZdjuty1CAFtELkAqCsg5EolDPsNAeJqp85P0WOuRJV2r14/7B/JQk+XaSlUapZr22xUUxr6xoxj8KJCA0M1RkJ5VFYTZO+26k2MnwWDs1q3JjVbjvEljUAEMWrVZgsZE3QJqVcb9aSed6pVal7iNIuQb5BncTXz87ji0z26Eqe12JLxohT+8lHmq682+/ih78fmPGaD0SgOLB1Dm/mREs/DKKUTcRz7LvzUT/0SqF2RDeKiyKW8aUM21tCjgN8LYTsGvWM52EMzRMC7ZELHA9OD0zzywKs3ZHWBGXSGFnSF2l9UwAcNKX1P+ked43b75LTT6p62m52jQymGAcDNbicpoTSVCriFW7td6x01aq1us9eTcrjVO+m1Mc1vdxqdwx7wW+3AEZwFaG7VYeVYqypHXdsK9NxILQmuwpm4nDAeKYFegsFmSZnTe3uFmliNLDzLiqUxP8VPnoaNSOHkQCpUE6dHulGkh1J+I1QuHK/AECsl654NfCjIokwjqyPanGnodpoZn6DVOT7tHp1dgLg6V+7JZqlsFgHduYDvdLGaLdYz2bYjvUV24NvrtWD2aiblGWhgx0fdLhxYa5UYklS6Nilf/UCHRWVHRAzKeyUVEWs2QdlXpZDiZxhThw3WOHgGgRc8scH01XUFg+OgbKpj63QpcVonHAbglp0V8Oj6oaNBo+oFK0JOqTRhKa53g+wJAUuhI0+z7xWEz4xhxlWACwI2x9xuJcTYmg6DGc2CvTY/z3Q+zG50Ja7U8ziGFy18Tqq56ikiE9yze45evdTVraPD5un5aDqZacQso4YQMD08O24fNdjpU6Y9ZcRoiaj2XF71QZBofpPnFJFyDkhl7MtmG2JEXBJZ9YgS3NEY9g86Y7g4blVrnT7ax/JGAnuHQ1fZnlk8kv59gZCmsws0ngcU/vYFvM8G4+H5iJSsERRGZHBj4DtU+vNkQN3RdLaiHHiiWiSKk+CQLh9M5FvT2XqJTMM5RcLy6UqAdjmD+Yb5O6qr1Wrl9Lyr2RrhLesdlEbMI7Tber27ud5dvbRPL7cAXow5pUi9fn5zidoWxvS319ev7l6+vHt+8+LFy+fPr+UraEe/uL55cfuat1cA4XeIckPUjH744ePd27fv3t6/+/Du/k6KYimC33+4h/n9x/d3dw9//P3X95+/ffvy8ePHN8iB+/D+3d27d69vpVSWqhpEqKst3SaXGxb/8txVqrRduwY1NhBU/bJnvLb0X3hMow6+vF5pSb+xXr1qmShR1lnwFcRIUonzxcM44PpqoxItHiMdX6/VuZJe05RU724uGg04Tvl5HpMxD50GiDcwWEIbD8NgKSCw5O6VIYdg2yiiJ5asQDFRV87LA+VxQNLvYdKIkDCcqTH5V9b60nxPbZZZb0xRtrxPKaFccZ7p6gvSItmOsqV0MyheOExMIoEx56AojWo6EEJlVG20qwFnunI51pGRV2vWWZk2Gy3kBQAxBDpBuOo18Xen3am1u/LdbhctZnStWxz9SsWbsjrWwFEuJuV9n80oFp0+ikUW3FWBDwQ2wdxDHoRULTwJNlGzhnKs67pOgEnNXLsKAhazLEmrxHVBvZw7CJDiUA8ngc491X8kIisYjcakopQ3yz/ncB1xTiXfEWQow2SU4F7kaVgsBUsuGsdago8kHUIxZGZoV2cJhuEh6XhoOJbKpWLaqvqniD8SVhpV5OZKfZeEDQGcaphkSVYp+1kSJTYWbbW7RycCp50u2NC9o8OelMLR3h7mGOlRh5PiTlvJb63in2ZTfgLQ3CY5rg62OvjTXchqG40u+gttDBWgIKtWWg3w22sp7cYzdHSwhUxSn/6fcCiDU3KQYAyCXiyLFTDDiSxSmGGVpb8v0bgwbCzxzQ6VoKwK7MBCe8xqUQVhJlIxQ6coyuE8GoWQIMNmKcyV2ZWz/QGDDjp1qQK51qrBXFUOT693ckY/pslsrm56lChSm8jAqiX5qEupiTerMb32kTI3na8Wg1rpoNLuQK6Xwzf0QF8Y39Qyu1PQrJZ0YglWdCjAEaS0rmDIYDl0Gzxyq0xVyGZVRJzkJrQc0Bpgj0dPTw8FWvXw9qyNZUYdHmWLWEmi0p5nWfZFSjDuEEXlkkoXnZk0jrBfflbSuQEeHP8KxCehPicAecow8JiWAQkoIbnGYmDbnaumUi6hep5k9WoFmzV2TTinyonIadXuJZduR/YxDYxnZ9qmncMiDo5no/OTw/ZJN1W/d3avmfHghsdsOanpmW8XKLw6qlXZW9NfiDgvm8PKIeLjCWBI/x30jzv1ZvfkjH1l5gFfaNNZ0HVAz2dQnkkDczgs9+or6VkB+GzQPxuMlHwld7wwV+jJyBW84HuhBz2kE/SSciQMhGeq+1H9D7vRoIXN5NxaTmesFKGtnVJVKz+yYBgfqYRLFwm4pHUl7aIKfSyq3R1NK4hAVvEKQt88vwED+uVzKX9fvHzx6sWLV0hEvXt1+1L+fgO/et7eyFde3d6+fiNF79u39LK/u5PK9/0HhM18fP/xw0fEzkgRfH///v27Tx/vEU0jtfHn33/79O7h48eHB7nLJ8HgT58eHj5/fPj8gD8Pn97fwyVffh1yaW5fvUAUnJKiluZzpZ6XCydfZg/ZDKnVpna13tp1uHTIrHWu2nDijlLXKhfLHZCrKxThlwR060XjI1VrXaFXjRbB9Rl6ZJWGlIygumSyjoJws7+PeSCXJJoRYSEv7R3Ay4EOPN6ex/6kZ8J8eqZTBIGuaRB52hoLlCvoWtUkbJHyKGdpQdS0PNPH6NPgL7cnfrjgK9ITmYEHSkWh2laqvSpVCim3uTlEMUpHRq+3CoSusTNda3BeRH8s1CDtw7bdmp0Olvw2UKKHUSWUn8en/ZPD42Mpveo9Js9j6AxJEdnh5cfWn++Rak03BbTD6kR11DjYmtcFpASW2esGWQwtM/JJ6mitVrEmMGEnI7tbebZIKJXVAsosBjOwAVBJYztegZNR0MpSnkEi/wWJH5mc2CWuA3UiFZsya7XoYHuWtBOpt63njM+ou5VXiHzf0GmOCp8Bx3qSRZNxerADZRFSlZ1bO8vQp6jEBGDKnwMvVqUvdijUccP3BLVtDKm5PLgcarnhbwiR+V8DeyJUv+hNdDvkw4GlDpdvIFWTyrCavIeyedQJf73ay/NGK8ubWUYNGT3D8Z6T9gZCdcSg4UqcVGA/lSYGNdj+cQKuM+MDm7AEVhRze0j5lVXM8tbDXSZy5+WjGsCGmGz2BoFafqMi5vkZ5dqaziN1MqURKdfmED3KJAstEBmMPpwssk05PDo9H8C2X8kyTDNd7TaaL7PY7Dbg9QzRcMTivp23gux8syCZazy4ODs+bCHpG8TDAMljB5iq7DuW/MEelVocxoYarcQegbNJJr/SCIGq77Wq10l9oUzjUSkZ8822Z48eto5tYKkQ9D7TxCDglPLZAekl7AtsiK+OA4LIz3xlHHAwjS3EHi0/6BpO88iyp3BM3kgU6chKVRO0OKvV5FTIK7hoMxUxmI4Q+edVXnA8ISu13slh8whzU3KGgVLwawZwDc9OjrsnnQqFTBYixdJddZdFiiRmPUERAJnWkHwaw+iMTUWsrL3p1fV2gb7F+WTeryW1w8Pj/gWq2/NzgPBgAPdLsKrOleN83meUwqCvpGcjPA/RjoZO+KI/mg7PhyM4UjKb4cIZcRBxR2PGNEzRSeeLmi+MdbWgBgq7DSDxcj6e2SZuAV/oGfZ4IGXNJprmu1BiloX+gjjNOB85E0kv2m0Lu2Vk4a6UlrWj6khp0Dc3UtpKhfvyxY0UxM9f4nb76tXti9ev5COpdaXuBfoCbl8TfJGn+u7NHbJl8CWEzPAb+Kp8+TWSZ+7v7z9+fHt39+7+7adf/vj9x+ePHz4jH+7T568P+OfhyzfB4K9fPn/+8vXrZ/z97ef3799/fP32/ZsAMorot29fY94MljakQTuGU6D3vNbEpo2mPGxXltRkr9TF/q4UVDUcGb0BNOhXOvvlAUA/XmniqlPSpvVOW9qqkeBxOpftYDVtZOiVVWuVjBMNzR4E9aoUqBKhTOcjMBBo0hvSCIa7Y+r+4cqm5SpIgJS1Rpr8Sc6DMXQZCRRT6B84AHYMScOLIkktNNlA7FLFVFIYmkA0NtUT2UjoWjGCk4tsqNYeypPGpzDzCOFQjCuuSsoGWscohJu6zqO46rQazW6n0bEbCy9B46PD0/7x8enJ+enx8bEsij1k4rQ0wbiaouXpjHC0Icdhl1x8sMKRS1AQoyqgi044RqXVvFZTiw/U4IyHqFWTtFZHwCJ65HnF2fanlSqlL3AaQYRj7KIiNM8hMQcHHlNagoWeFMGhb1saTtw88DFDj5b7Wl74BQDbjeWs5z3aBnPilwa5AHBM1HYajGIMrCzoEhZgH8Ea7AEKqLUrGXMBpYr3dL5m82eXloNSkaYX8KxU44h95GdQP8ZND8XCLRx7JGvIN7paQ7cgEgMTTtsIKJEbnS7k2XzvWg0pImudVp53OWuVTQ+8nrm3gc+k7InIh+FwFi6nqJaUBkfnZmvGe0r+c6EAHCHrhLVsbPLinC/2hlHg+DdGK1cHkcC4wYUTFEYEUaD50LTkqqjDeMbhQ6RN0wq0o3p/TFmkdG6AgN+UQ9Q7OT5GI5Keg5P5YjxbX8JudkEB5Xo9v7wcn5xNlgsNrlkxE1UwewzL4Iv+6dFxt45OES1PDg72bZAAgxXCXongxq2G+p2YgNfS5iPVvlmbmRsRmsR7sC8rmxTsCfQWtOCyr76juiOHM5srFHUOX1KLR9/F6pZVWRw8M8s9cx4vlw6sGRPYptex3Z2jZZHdoF0yhl3IAUZwJDeAzKvkRYcLrcZeNQA4a3S7jdbgkpXkhCLaCVyWMXc9Ry7heTcJbeiD1x+rhjhyiYhqLBaaRTQWM7lwI3jNYj1NlTuaHs5Xm+VEYP3s/LBe655eXIwpNroYwOUZAAvjtX7frCWHg7OBsZz10/O+CpHGI7C0QI2eLsYDwdmRVLuMV3L5wHjyUA3DslK+OSDSwuLa1EhTpgZzxjudr5YTjS/A0HsyY1daP8WPTBkZvCyyFEjbMnsOBZrtk7gD5CpsyXkmBBkAX7+8uXnx/Er+gRLp5sVLYvCr2+coRl8JCGvn+e7ulfz1Virdj4gzv/+A6S7Czd99QOqqgPJbvd1jRvzm7s3b1/fv39y+/vD1jz9/vP/w7dsHqXcFeD9/Rkrrh0+fvzy8//hFPvn85fOXL99+/Pz54/vX79++fhEQ/gRU/vGFP4D7y6NLWS31uGwS5Alew+Bru9rSgxMVsOYzaANZXzInzKhjSd+gXhk5R/OF4Lg2oC8v15rcoIZYOzqB0ZVkpT4mqx1DGnZXo0qlKhsy0pAazRT63zIkvy5WE7KdvTL6zyDgSFW8B2kSGlYBDYZcEH2sABx7UBgGXhSY3D+yUk2dsKD3BfPZtaQxw1Q9oTt7oydife1UaZUSOQ/5QD0UnAmmCv4Ln3n0qVAWV6LIPLVo0J9GKM04IcJSl2eaPZFVWT+Bx1FvMdu9odYbKNKgW21JFds76sjqd9TrHR0fn5ydnPfPzo57R/2T08G5wPHx0WEH5RlN9WHVowqXsue8DmIWYHmqMqcqjSes1Ur2SB0zamhhG+B3QdJTBZ2rmtfbTRTMFGPkBOPEuFtgeWaqR0p0PYcPgUZhqEEDnSi1QV0OS1FZ88pNxlikyuhyS0pc5MyN2NcQPKgllVrsW7/Q80qPgp4inocVcCJ7iKxWR9xtXZ4c+ntRlns+KVxl14IsuFul4An1xwv9fe0Y1EiV44wXACwHv024bff0cwyEpRYWEO4o4Mrb1W7LG8YIKCBuVm9WZZtTsxAstflGidzAXWDcUuWfCpCZQRw4khHk1vSAUU5sWnHaOE1+ltpsD1YefqyUoSe5vVbpmbOinrx4yQDgMvStfw3Os9g6P9HhtI01Y9kdwuJcztdYx9gp2YCJzrIjhkiYAKqS0mpM4LgHpdPR6WA0nDASFYsjKaA32+kMOeqgozpTA8tZRTNyjAnhZDzsH3Wa6AOEcWiFa2l/r0x70bJnSQZOqKbxSUFSNnm1jXk5qkDxCwDmkOJAYyZNBqYbMN/Sn8vaYsGWzAbITPFlugYNpTwbSsGYQ7HsGb1vLXsrsHrb4wlkGE+7Uppfl/h1837WfCK1bkEwgnq7apZKppcSPPHyjJ569WqrUUmbZ4zkJF2JTVt2dsfjCwHg4egIu2LdtOk5wwG/KZBdSp43T+IAACAASURBVIWjZcimN61Rt5hVqtihY+2Lq2cQhE+GgxM5RWu94XyMwCUVGg0eb5AaSdmL75yh2KUHFvwnR5AfMappMqTZlTzJyfBiMmfAEYe/5kk5xvMfQ1o+1gROJhUK+uLdRzFMz3IB4MkCpKTV3Jkyz8byrblypM20i7aqS+fXvLSYXRXgmOvV5vEmmLMCAKnMZnt1ec3bzeXl9dV2d0MC9HOynAVyX4F5RSLzS05+pdgFugoSfngHdtVHjTvH+Fdg9aOAsbWWH+7low+YCb9/+Pj+4Zc/f757/eHz+7fvPvIG4P7Ae34B+H56+Cqg+1VuXz7jh+Ub8vVPX759//H9u3zxq/z745dffvn5/ZvUyZ8fPnx8+Pju7dt393fgY99cG8KatQdjjVRWpGENtPxyBpOXoFhd71xDflPc8fLSuWjxa8reYlCDHLDrMRqmUZ5EsjNstnJ6RATqe38gxW4SlWHTgHg4rhnYwkblvX35kuKxrqw+nW1AjPUQ5BvTEMt3WZyBdp4JqgrAYWLUrbgoHVRcFzsloGtJWzA4h3BR6Hz7ijhu5/2qdR8uCFQZjEdgJpz8OmgCK5FyuNB/1A0x5nFoVGVQFGJsVmvINQnPaNkmCxYgvQ7zx27n6LjdOuz1tE/aa6Av2ml2e53D/vkJrGvGI8jmh2e9NlZGOoDkcViDG7sADxutIDNpba/65pSOAuiBQ27TBvTLbwNZC2U5/bcwsq5XcjRfSb9uILQJGEKrCng/quyK1T6sCpjDx/wfRpO7IXroxV7iReqx+wjAgeGLT3cVOvQ9yaOVugHyosiV9CQT6wS0KDXYbQxBwaqAWI4xfITGubylSQp2NVsjTjZZclYYvlkUwpoJfG0aEmNjFmsNaKKSpoCnHJEWauGeHO9GmxVwW11SWrW8KZBdVR8zbF8amVTD9U67is8VeuvsVFfVkqXC9kOdRHaB7qYOBJECCy9RuIqmqmvCIbRNDY+rbehi13oNVCUXmCy65D0J2tXXqXWwr5PjMCimm771calBZYkYkiMBI7UwNmcrNajBEm86eaiuwA3AicMuDzOG6VEO9XlLzsnDk7Oz04HURhfj2XSxVRtAprBIXXJFgwRaEizMIwR+govVbrcEWRYxx912o5aABBJa/C9a8UYqsn1xXDi3GH3albsB4rgEbQ9MqEYuwcHenpK1vMKfIgQtHbGU1lvDpp41LRNVyuaLoZ0HHNVnXFlY8epHIafaSmb3zLqLw20S6Wib6j2txPd8Gm0WG8bQdlVkyKEgrtbgLy+QXEn/L1vvwdbmliwL72Mj6c3KCYRyQFmARDIYTM72nnOf+/9/ytdV3Ut47vNpZmMMmCCkt1Z1V6j2x0O0QjPFYjQAbB1g0DDqI2eqiRNc2RmQETJPWp3ETjBJy3Eu4VMK2ew6zGDnVq6INXW+0j86PTxo78pn2RNOOoTPqNf/UloNkNExYtMgxM20GPUBtf2elhCOyMj5GgsdUGs0HgIyWaBoo3NQW7RagxLjnSC7AzL7MWrPmE051Z9yOnJrYLLd2XyleY4TnOgA0GpTmmtHIHB3aaVJ4H+WC/V3RjIx57+WwtwCmwr69GIj6HvKLfD5hbDdq+ufQn9/XP1UH5Ih8M0NOs0BomTAmEf/xPD5180NR8uPD/fyXoHX55e3N2G2n78/7u4eX16eHp/Afp/l/dgXA71fBG0xhn59xkc/P368vso/eX17l498k1cFc4URy3/vpMdv8udvoPGLfFqB40f5Io8Pd2DbV3JMODulWfl0DQ33sT2JlBEfq/WXCRuKtToCOGZzw8bNCXjX4D7ZuGTKQ/iQznoQAsWF2Ku19xuN/Xa7sQthZVmwAC4fFgB/+y7/pTlBxsgsz+inCtapGJUyQy/jW1506hsOut+hHmaqEMbDnL8Fri8VOizPXEdBYHW5nrP/Opequ6UpH/LoiNVCeIuc1sl1lHHR7xRQRzoogirYDFIRMqXYDoirGo24TN0ECiJCI1K3SC7MF7OocDU+Vk10YFWuCtZWcJkDFgv2ClwKWpbRdSj3k6Bzqy23TnfUa7d7g353fx99vO1mt9XAMrlW2K3lsbn1fOfWz3z/rpJiTvVi+GejpJTFPKxaQs5WES3JXFdli9USAzfRZ6sZXJSPFQuqJGPZLGdpeflJUAkYaS4fYdgK7SKgKy93StLUiWLMLHDw4EaGBOC4WBDkqkRfDbRElgATQ2+LMJiBZJ0dSDChgi5HedSE2WyGO1Qf5RSaoJXK2CRSO7Qi/xuLM2K2ObGXR/OGMfGgfFiuX8z8RJsv9uegvXImQq2v/CLwO9jD/r5sgSnVarFYFZyu4PAk+Iq9P1bGcoLBLrBUtOxwvqztVotWFl0osyM6jmAvTzSOXOMfKaamf8XJmLlWgRhX26o8F4n595LczChUJaFfKLRo44xzZbMpw8/sGHH2+SEYJoWMVIz0WKlPFSjubX3DJSf2KeqnQbFnYPHLIRUDifyMhZLcQbvyiOx2uwhAQknL2QnmXCcn0IIeubJz4PD65EjzjVYsghc63YMFDCe+vIbAcH+gSaUuuwS6TC6PvZ20p2yTf09bUmnaSQR2XHKa9oZQaM7HgKIwM9sRdQt5yY58eMbccJaT6Uf/KKFNpQJr5+CcWm3K292yHQLwvUCSQcOk+z6A7sIKAkjDqLi3CU6GXeUBpxA0b+fkKdYYLSeEsckYJdmw6mD5Dixstne11VQehUUmxesxHZMpHIGRGI5IECZXa0KdzspBirHSx0q61JwMmnDatQ+mw/4An3mq+VUHrsR3pAPkCTe/8ua+8tw+O7rlhmVwn4KqCQFYEFMI8Ghk2VeT2VSXvdZ+xE0vua6qr8bK8a0cWH44ND8BiMcQRcu/RC2SMOAJVhfQQU/ZVYSo85mGc2ip0Wq79VxZUoWTF62o+d0cWQQU+KFS4NOTk7MfPzZ85fTs8vTk/Mf5xdWPCxBi4cKCwxhHCyO+xgr4muvem2tMoIHAQoeF0woa8g2wJd3ePwrWCnoKvX2+e/j8/fT4+e/786twWgFPAPHTM18KDRZofrh/fBEC/CJo/CKA/P7y9Prx8fb6+0OAV2BXKDLw+E3I8OfH29tv+Zugsbzj8/P37w+841n+3f2t8G3h47+uhbzDw3x+wjaKYx4v8CdHyocAWt7gNcJ9srGp9eGak2jA99H29HJ4uD5rJ1m5aFaTfHeM3/lkLA8C+e33+avq7dcEaSByzWn4Thjm/QCdQLn+VH7/yzkcbT3BmwYufvIILYUeas2+fdeiE3hKLeNJM5AjlokGiJQPnAQrtBH1X2GxvpMRBdaepmiiPd6WwuiGrQFTl0kwQ5dhRDsUn+8h7BboSAi3wbFq+KUCNcu6QUyjoUWOcuZkYMewRnBQW1veJfGqVesNDEd363Ktr8JVTEWQUCpIfJvCQxr1XTnEaDyregrH85Egcmt/X041RficcFLWvF1eKr7vqMMSkpJI25YwIkcZBMxMNdZECHCU6VwxBCHwqqSES228oSg/QVSIeT2W91HpE8ZZwbhYK9fVbmJAEFi5gWe9MZn/2gGDAct3EKa/drmZ/6qH97SdLePHPArIXSZ3aDkpwIKUj3PZDIoDKKPPuCZ5pjzoChlxgWkXVWQI4+a0rm2P0nqd7waxUmMWcmSBx0JxBXp3hRWXqzqEBvGtV8ulmvzimDmN39eu4HW1itarKuYIyBElCFf36hrzjZBRLCLoZ+KOsJhkLWYt1ojDUIOWNNIMB8lEAdh2ubErH/C+tuQaJaE1kX/lMWc8cx/TvutrxYQAMp4v6XA72jY1te4JmCBHbKZ2QnNqmNzkEXohZNbFA3RI+WKCh3uUyA8EKX99b68KhS0SmCC5WR3rJRGsBMMxUBbEBS2EEXOquFod0TIpF+p+C5EopSJ9XkkUqBg+lfJRHpn6nlLGC23XjsNe3nZ0xpxx2eEOlAWmcSILnTTL5FsMu02nbcHLOyTF4od/OM/WXkTftQ4KdFN976V2dNid1qSgFGJWcZezMVw1ClRryYGRUpa05c1wq2+DdV/1oXU5bNZ2u0L7CGWjOfRHgsKw7wzbe7v7zSrS9TBxqcjZuFav0tBQZXcLRmRlOYpXilBZU+UhT2DeWd98mji/eTyJljvl0h5o9YxNgv3RGEbe8cG2xAgWpH5PQLc7ZIfCmHgsJHjsWo6YiQXF3USDnuXSO5Z3ThjdJSg6Hav1l1x1sQTcouxhqr2/s7FmfAlB5mcQSjwYTw/Q8iAfiek2AH+2kH81o79muS30naGv99BEwUdruHeOrW5++QXAp8fHJycqw2LuswKwgO75+Xp9dn7G+qT1yfnl5viUO+HTs4sfEEJfkhNDb/Xz6ifw9Rp/3mAxy9vNjUDyA4D0XojtLRbCwOObe0yUBYgfbh+fHx5fn17e316e3z7kBjr7/ibw+v7784Wo/PbyJAD8IjD89vL4+CrI+v75/v779/vbB8bPYMEfn3/+fLy8vMtNIPdVyDJg+e3tA++TN32+kRq/vj5hAH5/+/P65vrq4uKC0SLI2jw6ws+/chSY6XbzBXOi+eQ6dhEcYMYsIzyUe+q0l8+Fufxufl/OXpPZZCBsbngwQvFzfwAFHQ5MvV6/Nex15Hzc2N8vsMs+25RTHGK14GVe46tj4iW/selQuGCnXq8WQDPRL8rct4wOmHzWibHH3vldTYsVaq6RZxubYAvAzNGKfNdSoL7AaCuaVkIQUloJfwLMFQHbiHhZRG9wJo1M1kB7iWAOxaqNDaJhlI1c7i8CdPK5OG83t5YsQU2Lpx83jcJRhZvWhG6V64Ko8v69GvMq69TsVmt1QAGq3muNtnDgVu9g0mtP5K5fTbrtbr/TbHfarf293fr+boXBEn6S9TOqTkXm53c/QwOYhwOBcMAcQALfCjCYBBD3PhbHeVQogvYoquQrQluzZQ3wy8GbUchFYbaY5KN8kIfjmEq3yGJRsFskOjDE3qV4BKp+RddxFOULyKF0ZbsmUgoC1y+raZQC1dSbwvpSDPOs3JVf33e0paaQXWB8MCL8sBVK/hW/kyTGEHpbYkkUTqftd59JtKYuE1p7hGcp+vBiU6+PuuU80kBx7CtXcnuNcr5aF0aMmLL6Xg3Zo7hjytCjl3NlhJqh5EpOMtXGLgqgaRSjhFtexekIndC8S+UU4QozIySL5LL0noMFxznsTvmAtD0gV8Y5tSHRq81zIKlaFCJe21NgsamH5zIfLbNbONo3uLrUBpZiG33afLiZrwIFev6wLbY6X+5v42ysYmU4njwWgEYaXUq1XYhDJarA5KfG+mRfuHG7N17w+A3FzKFA8qlQ5M3x8nCxPD5C7asVv5wcM2J/xWD/UR9n7F10OOUwXpIfYSfDgIBvJlX2U5pZS3MAMFHhDikeeohKBRGnKB4Tt1HOpbNnrJ7hitDJNGJfvpFV/6O5JzZa0Bk2y1C3k5q0zaidMZ1mqJ2MakeRWoDzno7GM8q900xGU3y2TgrPh0ms0Bwv+oPJciGYBe2wUMADgatRq0ZroXBkeX5pSjxUmpWS7YkQYq4jGGSdV+q5SgHeB0hJqhpbLQ8gjKzLtT1NjcQLENvhmBnO6BFELzfAmONjtDHxjZBVDYZc7WKkLK8IP5owpUt31SONlp5qrxKODmNQWSYjc6ysDqOJJlIKY+ZcWU4XyIeaw9M2YRgMvrzA7xTE2HoiuBJ27U1zxnSslmip14xjAu9ybbGRh8fIhFyfHmv05EY+BtEyK6ZwAIpBe89PN4yQPDs/BxuWF0yxupA30ZYkICz/v7iCzPma6Ve/bh8erq9ugMLX1/AcYRx9i+nyr5t7sFthpdgPPz5zziwACWT9eHt+FaAVAsxp8zvhmAD78cpRs2Dw++ur/PmGxe/LixBijqGF9n5+vAr8vryBHgu7fsKg++3j8/n94xXsWj6bMmOwZuHYL/f3L6+P94/X3Fzf3Nz9upIf5UwOGufnp2ugMU4ch0sN6GBMyRHLGyxGTIf169NRkpTh4RwN+6g/5aOhLwc0HLYG3d4B3GaDbneAuYgcwpiY1u12m8hv4S7/YIqeJYRcLzYbRnEj0keeyShqlINea2+vgQhItBEENmRKZWC410A4a9pO6zFeZ9O2Z8NZnwAchnpqZRKUry0EJpvWPrE4MTqNKyAGdJqEmUQarMOoRprvY09rl/RDfSbGwdzj8WoKUmwSamsEzuqzrJAvm980j2KkcoUBH7kSSRWNNagEkideXmhZNV+o8oBcofxZFVf1PYio91s8yI6mi7Nlp9GXY26nvVsq12t5zv3Q/pqQG6mWy3IGvRA97uqvEL5XAdjjOA79SDVbqhWKtVIZXlzBXjBiEDqh7owKQvADhu25IOTkQlVtbNaxJAEIT5EqH2ZSAepdgTIF4f21gibPs/9vxznEdhSO05xGyutlKJ+Bwrm4XEAlsLYx+oHphl1kkkfcpQ9VHwYaRhgzZMqjepv7feRVy6EK42tWInmgnNvoJQFyhAJ6kcdchijys3RpxXn4znIcw1IojYZnjGSqCEvCPJr5oRjly9WzWqk1MZ6Wu6eiLYxYqBa4ZdeVupxlbLcdMd0qyQbZPFtAqOZBiGqc1UpaJKvEsFuFTKuMaYzxI+3OCLVyD/Fbll2jdjAv5fK6tv9psnqY1n17Ztvr+w1yx8w3x5DV3YuyEzu6OPNxoAlU8tvLZL4C6jBpiNhhqAmsUVKuFUt7+7v9drPVQfLheA5V54b6ks3x4gKBgUjzW8JsgT0VWuGWJ5ZSsJoc9NudbrO6WytlydUFjNPfBTVT33a+7YQ6kFYL0g77pFMKkhRsZagOSe1AmZFEX6c+n90NXP/abzrzj0VI+7xuyKupjLcNuf5LEOhG/iqnTjO2K0MPcSqTcfVdTk2Nb0RX0C5/BoVX+WyxOVlMpyivn69UezSdzEYdHrFLOuPJ2sipYCaKkrNL7PLWaFT2Gu1Ga78tp+tGc7/VbbfaCNiAcJ3+XFYDooJw/JVNxavt0JBYZ9AHLAEGVNPQO2IZw+hgu+OdOAAGbKquSl8D+MIRPlHCC48RywrGdLHNXecRXMD8T39OZpIDm2c2qcYgHt/aSCMtJ2NVYqGeHsvfbZnfoUutYCvh4dGW6bEkGNFYyJ60SiRYgSGAhiPpQmVYlwichBX4x8UlEibhBxa4vb4SYnl9cyOw+wu5G3ccR/8SwslcDgiy7u4en7jz5ZT5/hGmo9fXlzdB4pc3wUqhr69PwojhPlIa+4qXgE9huf++fb5//Offzz+CzK8AYEylia3yd0yx5ZMIcyYvhnjr7elVPg6o/K437I5fHx8eXuT/rw/38mWwLn5+5s76FwzMv25+4ic719DNzRF6gnXxq0qslStswh14vFco58P83shqoHmDgH2g6WeQIaACSzB4OBQcxkQL2vlOt9OBI60PoizUWTAF8WVTbZOCalswGFYnyM/XrJicjIa9blsueCUskTPbRhqemL/xiRRyfeuswXwuhS6AQ7PyGKwljCOrG0P2jG6vZZo/y3T4NKfTEAcH2hmzXc6oHhhqabQNhUa/fZr8VVVMehZyDEm5Bq7ITJqlZ7dYgpK5lKWakiKqKlS1dukv1irgx9WKNjrg8k7fTAUzbUiuaxxb1eud1u5efzyVM/eIboF2q9lst9stOUILYuBrZiO5hnD2lvZMLa53UUi7IzqLi7lCNV+u5TEwFoZcYkS9xnEWGZoLnQ67nAqCvAykYI6ytv6Q/GtkJb0VXPHhqJMJoVQr5hnU69IWnOFZHSYpTQwM6brO52iPLmTDXJjlPejtxMwbTv+VSGyqWovuguwmSUjUyGtdpHCwDZvyde8XuCZ1PXcxnToDgGZxlK/R2Gi9SHh2CFRlA3d7kc3RnOUXihRmlYoCyzBlV1uMoippKgoRVnE2B/Mw8/PZgaRtwejcwmdEsDdd2nSWZHWREasiVtsRUDipyTGBqvN95wLwfFdlQFa349bFqRTrZTOWyJ3W48g26sMTRMa24tt2vbrNpvK2Bm4aAdl5BRmiZtdo/y66+zhXinzX08Emvygo5qE+qOwKORNq3OkhBmI0nQxXsynGiDpo1HUez9P6rF7MEYMk53nEM0CRO+w1avKILRbjrPDY7+lvOyltolIAzqBLi5hqRzkYZH3sJyIERUG1llZnQ1qDTtIqSEin/mFJmgkrcUcz09lm/d5XQEBm21BMpQjF0F56G6SZ2a6wuRLbSVmeeYYnA8wn5PiYr/Xmy6llVQiRlCPHZFTOyfFQM8t0VaGyC4RuVaHI3+et2Wq2Wm1ALVwRgw6irOQSORhNHMyODDuZME1oJFKiLUFHyYKeU+Z+a92RCZ+HyJDEFtDh75RASaR0O1/C74gc+UBOENr06/B3QmSdqokck+SF9gZpDMd8um1DWrjeTMKzDqonkwOX2kHJtKVSaBiF6epVhLTWVAsT/qGQiJC8Xp+swYDXJ4rA8CNdwuVz/vNCI6BdCvQVEMvSr4Ts/mTis9yurn7+uhP+CwCGLFkoMBmvgLCqlYWECtV9ABg/v7xivIwbQPdNwBiv0gX8RgR+EWwG3P7+9/33x8e//37+fv9QSJYPF2r8+SkMWND196fgL7gz3MP4jK8PAukCymDLiuaC8zAYy5+CzrpmxnfAA8Hjw90jlGL39w+/GCzy89cP+XHl5z45PVlvTk9hD+Y9tbSmx3VTrp2V/vbYRLHcBOvgPunuoNPpj6BFaHVG4153CDwWwBh2e13B4Fa7K7xZDn7dZpd6ge6ob61YchJbHdlvCeVOphpj09N8ejAU4Ol39uvVYgGGTD6t2BquT0fa7UiSnW8y0CBpnzmVwjVoYeLYmn8PNZI/iJw6ejuKC8LoK/1SAZfLUAS0xzrvDJyngBdSFgZm/VCvvmryoUUzx/AqeU5m42w5YnoG17P0+gOWWSGMKOgSB5rqV63APFIq27m5VAcZ3qsh6BjW49re3n67I+CLBhS4EJpDqCWGw3Z7HzvOPXm+lyJ/K84J3KpRM3Q9ud7LpS/QZoAcvrmCfiXnssgWy8zYLMVZ5FLkmaCdM1ekirhA99HFoXcBzjAhMqqzCb5IsE37zTgVsLvoo2ojF2ECDeqYxOWi8GBKUeQAFAeu7sCujkxMYyQIVUgZA2C9qCK6xZk5dOyorMhPu6bLwMTvPuM0oy1IaQKM77pn09SK6eMi5kgDyf1ZXe7nWfpVkN9VtQlmwxyGrJbcZYnAIL2MFs/a/cRcUxzE2MXDoolEp9M6Ikm0WgM+PH5cqN1EUQLJoEavaro3Fyc8E4aWLKUbFsMnDXDMpL55ehbJOM9TyKpnL7X1QBnp21F6p+kg2qZh9lju7CkuBvaqXiJkWxZbG7TnJMjoQCnRGNiE9vjybr3a2KsLHNNhigv6ArYmyxKwXN81PaB4PuOpvDlkofvsYD4eyiEyMb9R2mK4U6q+ymhEbcYLfUuWlMdYgCG2JTyGGZ2A+bGdCv9hqDNUcWGg0SUcXG1vodUu0fDI0B/k8yA61p4gmb98UxlVIeI4oMUcKpfLpL7veJAR1geLxWgKbJmP0Vw3bFYK0EpX9xrkt1wvVTWkp9FoQO0hp+VWCyRX0LeH26h/0Oo3B30NpBqNBwqouNAJmYUn2+JUgG/zGSBVhVKUiqhZF4iqpJYqKeif4SHC+nZOYbKz6CoTltvBiHh9MJmuoGFeaM2R1mrNSHLd26b8d/IN2KeZ222q7YTmMWIlH41HWhjMOkJEHx9ppDLfoeBBJof0RQYxmh3n6Pjw2KKeQH/Ra6Qz6PPTi0sA0QVGzTAi/SAAX0F5dfPzAtNnQazLa1QucAp9+/Pn7T34pNDjX3d3N5hKU4+lgix4fgX5Hp8BrgKOyNp401f5iv4NiEl+a69zqfv68i681kbTn1RBC/B+fn58EIlBfl9fnqDZAnF+AZw/E86fEKz1dH/3hHAPLoqfwcQpz6YIGyps/v3hAY4nOT88wCGFTGvuuOUnPFd39JrHEzm+nHbDqDE9xAENW4ZeF8sIIav9MWUBsIojEQ2vHEyQDQOPGg6+0Mn3GaTW7+w1O61Ov9sSRO7DEtHudjtqKu/1EDRKPzP8iodajbjZRogesRAKj8lWq8G+WKZRCxbbE+h7xlyWDNlQJwa3cRlKntkCpDdtbYg8Y0phsG17JTkxvWgcuvZ1Vt7qk12xV9VZEa2gSc5X1Y26MNHvm+U1N2K3URgXkQkPSM5ixVNgFAVjaItZen2zBbuVLfqD9uIKm28RBiVUWdC1VoEEZBc6Dj655em9J/ffEIOqfrM1mo37w/Fy3tmFGQqdQRVEgGRxQuCOMZ3KfP/GTVugVlQEOCiiJIirxnGgLheRxn6zwCa9PHufib0FZhbGDMAWFEaSI6AHKRkCPCEoH6o0kN0YYFebyViqdEZpGo0hHpRRAkmFUhIEUBNgns9M5Nh06W50nXYAzChN2mSByZGjvrbZ03xeJAYTgAOTxCP3wHrqQIV8HJ+UGOun2cr2PHNXOZm3dVsoj+LvG+1USR6rvYRRwnZTLTnBl2+2PBScvPjvCoIAcCyh3QozaMsrAxOmSIn+odgk08KRA/2LVjaEbP+KNIyGMkA3gVBmarQ13JYdf41NvRS5W3qr5rJJhKZTZPxvaY4k/LS1l6VcV6RavD1TU/B3EQibDlhJhnsRPw7TlfnMYFiI/miYfuDoWK83Gvu7IMfj2XiOHSDiazXelqNFnKl15yQX49NjOdXPKq5j2tnX0KWV2RZkIDJKuwzkfqPwjOdjed7qD57eliz9g7MtHpll7uSTMOYROJ91d5xK/SEN15kKCz79TOSaiWxgs/UleWzzygRbkZjegR7qJiudCUEKKSbjQasiNLdYhb2rvd9o7e/u7jebILttXtX0+taW/ysAM8dZLoPtQXPQ1okyqOsACd8gkNjownBLTJyhbYOBlxjvonlj+NPlsQAAIABJREFUbPbc5VxXtyvnh5pQj61BkRAmI3B0hcWethhNtHuQzQvY5aKrSD+dvnuqfHi+sNYjBqgxv9j1IbIGacJ3mxuYHcBaCzxXTJ7OtAf3eM0sLCvTpcHNyvsQlYxOETUDCyBDY4Qu381GVVfn2rpwCgZMFxL7fa8wfQYIXwkHvrq6uacr+AoAfM1YrKfbG9BITqOpi0b7gkDww93tPexBAD0mbrwQdrnyBdq+voGeCr99g/TZUFdexUIYGqrX95fnt5fH57dX+3fKkV/wrhd6kD7woVRzYYGM9fEL3MTPOmx+ecTYmclbz/iTemsBXczD6USmZPsB39mz4PDrk3y4vOnul5wZIOTm6QJL7x/nJydyd+yV+8vV/GCuqaHDIXYGWN7ibIWYMy4iMJNGVdZwiAl0B0logFjWd/RHg3Z3IG/qIKlH3tRtyuO1gYAKeQLvNeq7+zgsDoZU8fVw6BuPWUQ+W2A/rQONFTTdR/IgkcfGdDzstXZ3a5Ui5pnBNmPI6lwpnY252wrjnGvkRvIU25w0icgRDE2t0fYGirVshQeg5rpSK2bJ9UzaCo0pS+ji2BqS8DJR51+YRW5DFIFUofYsy8Wq1hIzhRbTYyFesV3MLX6joF1KxQIDORAGkSuVysiVQAB1vVzeg7sY7UyCykU5a/N53+y15fo3mXSana48TYe4Z/f39/eqrCku5IqFLNqVkIwJimz7WoOeGIZrOTDki9WqfKZ8FBew6dSARv2GQAt1ryVkMIdeQfwISNUo56pCiOSgkc2BlMhns5Any1BmWHAksADBFwTlxdhXALYaZx+nBJrO/K8FgSUVEAb8OGbplWcpyy5slNnggeeiCrkiDmhNtwZjqAUygfZg0lGc9lzGsPpyvlTUvqmJqf1yNSBslvJJjOW34XbrliEKzW9WIxc02lSzDWkIZjtwIaeAHFPeBB8x1t4J25CcKMu1hnBVrNJ7jb78K0VUk7HI7mLF59AQmmMab1tf6ytDTvlOWpxKbweqwI9vab1vzA7lTMluzenWpYxTRtVoxHaKjKcqdYraQp5ttR9UftsJDkFZfrP4+aH3K1VK8gDd22+25ek+ASVamf1Cz9Nrwd5jEMhJwbKh1XcOR5senXBg0BGO/r4xwXflWtztuywrPUdl0v/s7Wo+OGPCBYTVGl/Ou3ORem2TRJ9mOBqjisNP7DRN32MYbJNjMhwqpLzI3Ucp3jkYduVyle50cSi4Mxl0uziblurtfqPZbu0L3W03d/cc3WVWVbetr3S540VEM1Oce72BsBZIpbg7PbCJIgbEHCaT8IKZLpZTqyPSNOY5ywlxRQSrPUA7Av46mmmLDxe42ueLmObJ/C8EhkiWlPpArcETuXQaAusL+QpTDcCaoYZ6jkJ6rVfQobN8BEsw5bZwgRyaWDlVBJ7PdfJ8+F+hG+C+S24yD49YqjlbHjIwCv5YirH4AgC8sfANAeCLc6RgnZ1fXlGJpamUP9CC9OPi6gYVhL9ulP8imvL2hsbgX4a9Sn+hu7qlMfj29v6JkEfm+azzYSxxX8BeX6FcfuPqVwfTz0/vb0Db948XeYulYmFu/YSPAUH+ACKD476QPr/Y4vidmI68jncl2C9PgFYMmh9xBLhTd/LdLcJC7uS7YRDmC6Kp5SUm1fdCmhFj/QCCrKEiui2+vrwU7t8+OFtPFxb8KRSVf4IO43A1mQMuKZI/wOOt128J9rbwsGs3+eDrd/ujUbc/FABuNanPGvQAE/VWE5acVrMN5ZGwW8iEsTpp7LcERLpDp7Jn3NfRWjNDMKXm/xZziEJm8sDqd1H5UmdyQszlmoYXf+MVJ7Bou5DVPyH3uJaZDrlsBB2WzgTZThpHOHHTuuyFuNKEWe1iYpj+VtMqAOyBEONpHZNnZwvu0J2EPuHcVRpjRqlXW+2TKmDJGud0bmnDSiAwFV0IjS8gUbog1DSfxUA4rwGVjF+sV6vlRhNdQbV6sd4QeG7sVSr1WqGIiA+5F/dQL8vTeLvX3W90u83WLtr7KqXdCtoImBrBCCpuub5zCUdfZQL1Gc4WlqqUtXZFuJsgDC67iM4KpMDFWqUsV7xsBDWSHC6iOO/wKOEXiTVA0VPeh5NJPo5QhZCjgUd+R4UkCr9QjyFRWtjO5I0wsyP3FBI1/yt2yfVwoM4yjAK1HutBSvPOwLsBwAjw0K2m74R8noVAWlaa66l1fls3E+H34KVN1Bx6BnkRfqUwvguHj+0H5e/V1QtyLB1li1Y4mGXjTuL6B2P+1GpZMgBObCStNVWos1WHdmijGsPjrb9YT3+xqvWDLRpjdiwYm3LNVeZz9VwwdzrjSvU8V1REAdQ30OBvKXsPdsgZ7e/GA16rEDQlxRq11KYfxX6Sx8ktC5k1DcgWap2N8NMlEK5RYcigdCHHGFSDNC2P5OJxsu4EZljTX7XHyFT73VJmRfar0rVEU1SNoNqaw7SUwT/7QD+56Vxot7on/yE9rlpm8kpJ5ep4zHINVM5hpZBLeKDEXiur04tANyu6gPc5A9fDoFm+/FjOsbX+8vhoejDu1wr5an0f1NagFmE7cuvoDWu3DklGj8NBhEiywnfACI3ZwRRWXuEwc1QboHRoOKSdVjDWcFCoqNZLasnffGqpoXA9TeCFQpQ3qOp4oQXwJJ2CjiuyVvwTXfQuDFrh4gbSHjDjajKaOuOvabOAxIbYFFEvVIa10KUjKnL5yoSceOESTOczRd5DlPKxf2B1uO0p0PAJ9uoxWWJ9hDpcFhMcrTUJ+fhwzaRGlDJg5nomPFhe/rg8R/vgj/OLS8qgsQJGSYK8D+z3Dqh7/fMKymIYk37e2BJYoPlBke6e6RzQSBPooLzibFgnxAKbiOV4en03zRToq92I028CvQK2H68f77rqfaFEWv7yCe0zABOfVKBdP937h8DzC8RZCsDQW0Py9ayf7vnp4VkdyvcAYQDw44NS4IcnCKkfn+4FeeV7/XWvSV2cn9/jo2Gperg+WS43y9nxaqyJ3Rjxm1xuPp8coJpqNkHa92Dc76Gakgy4A6RFZdZA3tbp9/Aw7fRa8sDdb++3O/v7iDDvNOX0CPeCHJzxXNrbFRBpNOiwrTf263tNHiCtiqs/pllxxh4snKWO7Je9pvJO01nGw8Gw1WCMUUF1WpZNzExj380ctRzWD9xZWItTNbeJHZ3YOetiOUxc7XDAPsMksZpeF2RpGhv4XG1YbYSBpBsMR1tZstp7AqaTzcLd9BWur0NNSKJItbJk46giFBJcrGRzmlKt5RDFfLlWLlbrtZpgbrW612zu1eo1iLpiOIOFH+8yoHpfLn9yjOm2u/vdVrPb3O3utTqNCtK7hEdDApxPdKUrlyAGpaCN7vs3JUYZy+PiMjhBUVuumCuC6ZQhMinkSvA71cqkPwVdK0PPhEscp7P5gu7nEo5iNXTb93PZIMeqOCBrIdZwR3dT8bWPY4CHhogMICwKE6KtMr7A1UFTCI0GA8u5Zkud+ZSEIws0x/BTBWq2Mae5tfp4KncPfKsBMNNUhnm9igLM089RbU6tkufQOXDfMCCUDwN9KOBb4k5YF798paAELB+gZjAOPDxQoizaKuNQQ7vVP+zmpSqvl0cHyzID7WjiKc7m0jYj545Wk1s1aQZfXc4jW0ZsBwuzG6dMYZQJiM/ItqDmeOfbX95cTajCVCGT+fZtR3uGyEjl/nQpKM4fjkdMRL9Vlrkkqk6EZpmHroR3B3wHqI2QB0OxXKzIQbGNtOLxvBupuxb1Ujp2sN9rYHVRFlUeJvUeqgg6+7tMCsXiiXzV6fb+4VGz1caot91q7sFFBSvV7j7GakhH29XnAsWNZRrQaruVIl1otWpZHd/YsaioLmbyJ9PqVXduYrVMJE++Wn91cjxqt/dLRYHfDvdugFmMmfdRBCgXO+Yy93CxGwz6uGpRs0qYo2p5thjOBosxKOZ4PJ8zCQPWELQfONqKqfACY+TD1UQwDTt0YaDMmwKMYsQ810nvaqmtRCsN9FccZjuAbWtZiuCWuZgZHyC0ajEbb5Ocp2O4i7jzxaYZLiVwLJTUC1TPJ9R1LVfwEC8ohGam+GruiPeCxHeDTGMA8EL7Mld0uSJwQ5AX2U8mwtJ9onz8oVXco+0HAHyIdTB6GE5PTs4vL8+vL89VAE0A/ok8rCtMZJEGfY19L/jvr/v7q9v7m+vbu18CwteA5jtNmgQRvvt1fffyxgEvMPb9hTHQj3cYB788vKiNlxLoV46WVZcFKfP76/MbRtBvz/rWdxNtvXEy/fry+Pjy/Kpiqz+I5eCW+B1hlk8CupR7/fn8/Hx7fnxWfH+Tv2NHDD0W47vuH+9vfwGOMSAH6N79un+SP38xw0t+AAZ64A1Cgx8eL5enM4z05VyGsM/ZZDzDwUt+hYKAszEbw5dYj4ynCJIdTUaUPsszp98bIqmtiyPhvlz89zuthjxDmnVBhqY8rzCGbrSQrtVst5ut7rDf2W/ySLuPFq4WHsedvd2agDOCbRudZhOgPjxg8cegP0d4KUT0Gj56qFlneDCs+P3JWa+PZ29jr1rK4SrhZ7YDNzy/oO8JGTzBgCxclb0giTNxpADMP0ObQWvkAi+K2SxJSBJwwRfnhDQy5imbtdh+jnZjxWFhyrGmCGuyoxzsMxBFwYWijDhmHywqDSFr1v01rmug2bjIZxPUGAhphh5K6GYkR/moUKnU6pV8UmrU86U8qoXzUQluVo2UKKOYQCMx63LYkTu9VtytdQ96e3udITpVsJdq7wlrriHcModIWvz0GBkjGCjFK/SOSzeCaFzunUJRaCy0SOVapVYr1Butei5XLedQelypVvNCOuSdJRwk2GzEUV0JY3CheSDzUamQFJCMxjTTRAcP8V9eWSrpIjQ84XKYTVgYw818aOkqIMouBEonF+YiBb4y3Ro/gfxSY8yuGeUBvS1MUboLtjzDgDVd1ElbSc22lgeYFXg7qUDLZjOm+nIxEN42Zo09FcwsD6kEwko3F2coskZWChgx2zA5o2a1UZKL0H7IzDX96RONW8JDgDw68lWbbxr7WB+NMZvrbOPhq6Nd8TfSc0aS2+6MqVkPAi2I1qKmlHrCdnZM/8SOIiccT2sfITKXYYL9nlEHLbxNO//zjStmgjGHtKnvTA/xsdQIQOkDBGWy+k++XJJFtFNgxmMNYvRRdBKg2w9NY9lakZt5+a7MDBVmnA8wYG2f2s/ln6crk2OoM4+R9j8fD0dCKVvCcQH7eAT9wx7cDnasvU6rhSWXXGS6PXULCCdtt/bqgsb1ZkvguLFX27Pb7i7+Wq/t7tWrCI2FZQ8q5mypgAedp+c/P8z5XpKVR1WxkGTrk8PDjlzA9prd3gGDMoZy2OdsWfuJ0A4ISXKni7/BJNQd94bCd8fGXOZylRzPj1eL47mV3S8nEzhuFyvA8GSyZIwUO4WweTvkDhXcdr2cLa3DnVU784XG+DNBdLlCxBQ/jjgobx+vjjAfXKx4IVwcznWpO1vNGceB+fFS3jEB057OZyM0Hh0IeVnMzMKkbQtTbpqxoubpYHmkEixhXKDZ+BTauHB0JJdflGEul2ajAfk93awQZIzXjtdE2GMtQqJufoObRrAJO94gCfoM6S8nwoI3F+fnQN/L7Y0RWD8vHd/Ff3c31zdnV7d3N1c/WU54/etWMBhBz4/Pwn05ziX7fdK2IyRTPgIFOYRWpvr4Anh8tjXwO5IogazvTo2Fj4TVCO+TlzAlvQJsH18/fwukP77BkfTx/uDUXK/8ckT254fbR3xu2IYhfn55F1B+fP/z+fr09vnomC9w9h7q7Ts7ONwhSotR19hqC/99vEN7w4qb9RUWDEueshaH+M1Rjz6dH4IEjydstWLhRtdUWSMKszB/GQ1QaNkRWO0I5HI70mkJrAKB93bxhNkXbG225BjbQAE5THK93qBLlxyqDQTMW3vyRnm0dxSjAdO9YaclB07ms00pH+QD7YgBIiyV4GRkjQ2EPI5G8glbeyiPSSLNxLfOAKRAyBUyHcnVkZXgmEIGFpEJd0MCcpIojEZBEYd+4SkhqTAvjHKNCSnFZKpBolhil0vAaYSxNAd4MMCyBSIOXMAIL5PI0vU1C4x1TXLRSsCUoHnCy0hz8fD5BdSL2TJ7Sulryms/Ekw10HAVdys42lf3MU/YY3ff7m6N8Yqsc8J9vI/carm/GxxU7wtD7neh5qwji6tczuJiDj8wLrty1f4e7gTUuiG7CRiHeA3sgcsIzIW1SaiEsOocaW8BuudKIZswE6QUCG0uyj0UFaJQaHQILxLukqAg5DAXgfVzJA3eyZ8Y0wK5OxOfiblxUECLIkA5oKZdVUu2tNVtsOqqEJqCOkGXQUoxsU43yFB1c+oZT2SfrQV8uCLqjPUGaiRoOh+nhUj7tK74bOkxoYHrS1YBn8ty1klsFGdMMx9oXEyGzFYOCk5HjwcbYDVkzpeNnYnf8AtTNEChH03uMfOndUAQKAdWKUKcVW9VJsWNQsZ24yy694DKoZVt8G34hjLaKbjtMTYlksVUpXaceOs7/Utpqz32PDuFqWVbX/CV77addRZstVcFej7wyIhDna7HtvIJk1hA2lrEcWIKIfrSRUGoeoyv6qggKAwEWoQw8fq8Xhwv5+iTQTjTEPmMAsBsomf5DxySQkRbbTm0Yy7cJTHGhURO8p2WEOUWLEH7VJ804A3a35PrDVZgECBimr1XkadJsVJV5T9kGhGDPqOsPMrrg+mEPbuD0Yidf30WCvU1JLInVHdEBgyfwhROXWG+s9F4odbbifls50v5AZYqb5K3jBmMoQPdyQwVVSvXaHdkSd1AZLTSWrwjkk+W5Ji4yhFuD/mREDYtOZFeLZaWwYz3sRFeG2kX5MdUSGkHB/+kiHkOSxJ9v1PVfrGcwXqALQ8aaZP671WKxYxJBVD5gvIdbItyWbOHpOPDFT9Cvb+0ArsqYCj0Ts5PuQ7eQDyPNzCGA2vgs/MfP86RgqW3S/Lgq0sosQC+N9fXbCMEHmMcjXTKm7u7X7f3Krq6vRcMu8f+9eHBvMCcRj89qfP3XZOwPoUdU0aleujXd6q13t4+Gbvx9vL6SYWVgC8BGAiMWobPdx1MC0t+F5r8+c6MaViVAMoI2iL0Pzy9a5D0Cybgz6/vn7+VX6v1+JX/yYf9+vlT2DbFWdfYZmvZBO3OKKC4mh0fuoTK2ZyT5/nRgssCuccpjZ9jYYBxBgR3eDTqb4/ZKxAYqA0NoSx4tOL50kddNGbUPTxP2vvml9sDGgtqtLFGkedNb9DvwFqsLVwQcMk/Egy1bYuAb6/ZaLb2dQMjINLp9HAIRWc2j3CUEnDxzxsDsY8xlpGjnXw/DUQ/sgoM48j0d99KcUMdqWW5aRNgJuPCRYwylAjtrAlEVLjcB9tIYE6ZOUTUS29EtW7IkGlkPwXMmQq4NsQIMvRtqujaGCO38eNSUIfZjBJMyH8Fw9kcQVakO9Xsdl2bYLEaJoiUKBYqwn8FcCsoikA6cpFtP6UiKo3BjTF/Q5NBgaU5jXpdOAEyQCgj4Z0p2F2v1AolSq6yAlVRJmShupvmU8KK66l6uIII22ssrmmKZDKX/K+OYItyiDE2sgxyIchtHOZQb8vFdrlYFsixWkgs4XnCYMCxEEi58iUutB6TWPkMWDLr6Fbr3wILqtRIC04QwQwtwtT6z0OX5eAiLG2SnXGlEbZdDg2OTeWU8ZKYeJzR/iet4vkqTQgs8dpyuvyt+tj7knnxd6gbCX3w4KESRtvmSJX3BXpY0992nNWaSnXQqb5P1byO4apryYT5WJXYIN91E2loWODM0qH7cPh8AqibbewburIS+7ZdCYKhbVorD9TB41RdXx9nfaSp77xp6OSOhjtq77e5iQNVknmoH+P9FmmVC13liFWz8cK2vnob8x7k+8ID16hvOzw6WS83h0sEHM64clrOp/9gDMblqrbvAQDl7D9oq/2iw/mwltN3OfXhirbDh3jbbELgymgwgzGj3eBOeX9fLkS7DLKpaLE0AuYawid6QwRCMfmPFzRoT8FvNShDOxPgK5pPBKPH8AVhfaquHFLUo5WwA1xCGeKIXSvWwCtEOcpVifU35pM9/rtECEryIwIwmQVb6wDA5JqHCsD4MOaXCeTCBSaISM8P5McEa/mguX7YkWZlyMVQSPFqtjheaIgz97tzDsGnTIrWpCvufCmHntkSGExnxUEjqI78clCRe3i80kRj+ezrNWOf9fvTs8JX/wJk8pTnbSygUV6cnp+drDeQPV9A+nx+/uP89OT8wm7oQ0I5gwCxvLikFPoGdJh5WNdXv6BXouwKEixhjQ8P9AOrLfgJFUcUHlOnLPD39Ax2+/bOgoU37UJSjfQH9rfMmoQ+6/fHG0MqqcHSqTPfo/kcyIZ+e3lDdBY58ucf+fTUVgNvAejv9ok+P96eH4Ru/37H53h+VLPw27uQ5VeYlgWVoZ1+Md/y/dM9fpifV79+3Vz+kGMcjj1Hm7PzzcnpZn28OT1eYEghv9cFhXYHdnLS5DM+NPsWzjLhUYpwLY9bBrwgZ3SEEfVopOS209lDd5qAL14AibvUT3cazUGv1Rz0qeTgM6inlJhPJMiphwDgfSgv5YkFAKH8qAEc6eqZmN/FaKw2cSjy5HcvT2kex5h9DYvTAKoxqrgAN8JEoIuV64nJTlBGh+t+VhEx5AwUq6EAQpx8scgSQMT1x1+GJQCyrxPr2GeFXJQNNVcrUgCOtm1NWt6EXbO9IeRU3K2q/URXgQnSBMGgkyDr5/0Y+ZtWfsPvD/yJiREFuWBUOP3V9P0yo7YqpapanEroD0KZcYUwXGb1T6W212DPLqbSaNxogj/v72rXULVeqlVqVIrladPCiUVj/na+p1LfGL6f0RYBObmgPQbWK8iky2UUJGbjfCmbD5GeiZZdAHCxIt94MV/MZrVDRqf4DOygXznOcscoJD+EsUfuA+e/1aKMr5QQrvEt7ClUye5XfCkBmB0eoRYT+L5jk+o9Uo0WmGroNpGgjZGXwiOBFmcIvPz0lwvZQi9tfex8zNplQcm2mXTdL1F3HLGn6gLa1PGQyXPFHbklcKiPriiLCC/1AvPdWZ1Th84t7CsrDraAbGisOw75zBnw3yhM26ScixYIwVmyTYG37d31R7FAG5PIp4mIrmJX9QAuEyrjipDcbYcovPONW2NmTP6l+GJMihMy4Y7Kh9q0FTjBO6b7EOWzjZKRo/oduYq0eI+dteBey/V6dbxiy6waWARZ/rEIZFx3NC+ZINhvI6BgoCV+GMAxDoiOSMhT6MPo6rWEFt0uBStUVbWanU4TiQWoTZH/+gNB8H5vv9vv9kas79OV7tgubDPXlMuY5aGpjsfKeGdTzIohjTJcPZwdASN1UAdEIz1AgglNmHK4cHZqeGbp3dLboUVIAdAY4W8YSv7Jjp0tOh8DoOngRPmdQa2qk1EnzwHwZkXaeoj0hRUznI1ps3aD3xL+NmMG+NJZixaziSVzgDLjN4EfDLGkS8Q7yxc/1AwstshzvWs/D0bkbAXSGCxEUWoB7hm6F9DFsDm5ON+sTy+U7V5cUoR15vD34orzaALwJcD5AmVJ8gYqouUFVsDy4hdjom+5PsWm9RHjXPBgNQcJ7EJtJch4D/mxvMaZ8itVzsTWP2C3gp4WUIk6wpcnRm3YRFqzJgVIX5g8CefRG9Ra/NiPzycMmt+pvSKaA4PBtOW9zw8PLx+frzqS5rRaPi9yqrF31hLFRyXS8v3AO/z6dP/rUVj9RbNRF3Iqj7/JVB9ImzM52RwjtQO/P/zep2C7ArwTdD/jxUgl76Chmjc6nS2Xs+lcc10OUNCBm06iO12cSKHblcc/dr8YHzXlT3Tco7ZgnyZ2eQJh2SNPpkGbNzw18M9bqFrrcxglT6cmQbzRgCOvbR8ICReengB/qrjsNrOTqU5r5IE2kXcfDAZIYsZSSC+2mbQ7kIO2MkNJcCJOsiGyKO3yz1tsaBDaUi+0QjJfuA34KebQFAupfit0Qda6+QwTvZJqGpHnaxwBgNo1mlHikkBcJKDMOIeYDYrKh6MYehL2AFMMVChr4BUCnopFnuPLlIMWtIQP/fWVAurWCmhwKKFXt8Jyv0RYbL1WrtR3d5FYKwBcR3gXsmx3CdwavVdgubFvY0nMLTHN/I4MYI019mJcerNhPsu0rRi5QeyH0WVoKV9KSkmloKcAZHQhSQz1x/L10cmM8T4c1GHCnL+CektyzMzI6oY02oKQZyvQr/TlwLdIzcCWpVrbweAWW8rrHtlRVpVF+2pXgqgqE2U5fGY2uRvd6m9H/chq3jFRkI1OXTix56LIrW/QD1xQiJNl4yAWoBU+VjmzmpJCk2DFkWr0Yys5CXx3PstmVfe3pbb8uTjiJrSrhjiwAwUVZB6BUUfQiraB/qA4M3G+k9FEViu8SGvqh0VvsThoO/uwUj+7wf+U2nGvKptmpYbRZj2d8aDCIOxtzRamCsxX8+WUw1266s89d3SSHwYHtCr0DDDctuQQLs/j8Ww8YwT14T/jA420GDA7+WByoM19fQYla3wjiHHXGv30RD7o9zixFih2VbsHGLO1u/1Rl3x52IKSdDDq98cT+WTjEebLWOUeMIoZAYyIpLT8Ro7ayBBn6pOlRQfOV6G1h0j70w2evGUqALwSBqyi5cWKc10uylaqS7KU/iONjVKzjryUyy3rMTZcnh4fWpY//Dwn6IYHwUSeFLEN+Q1np0dHp0gbZgkesXyNaf6awQ5n+GB8gZXy54WybPV6Llkwf6gJ/pbFxAWkeX+ZS8mDEIivDsEFiVExQDTGZzpmjceR1iJpw8CRqrAUgbWP/nh9qokTp2eb9dnZyekFJNBAXsFeFCC5CTTagNlGiAoGZEchEpqhFTdoYfh1x3As+RtqCnFj6oWgG/9U7OVU+J5AB7b5ys0u/oIqIy7sbttRAAAgAElEQVR+33XezOANZbofFsvxhoaFd/QifWgUBzAWs2X6kD4+zEUs0P7xB9j8wlQt+VhQaUA0cjAFev+8OtHXmzqQMRPnuzgkv4d0jJPzh9ubu4e7m+v767vHK3aY4woO5SAHxMi5miAQZr442iA8i2Z7uW3YtjCnVm5JAxmeEtBJTbk9ns/cw/fgwJ46fGIgY1rlzi1ICeXsidCOfm/YgQq6w1RLKKtb3Aj3+wTVDs6qcNvJH62WfgCpcQ9n3E6LVvjtsLqJNDiMuTs9rdbEUxEj9aWVksP2drxareVnWM/oV1vMxoj76nfbdQRJ6taOkh1uqsIkDJzaBiIqAp/6URw5y7AVACPoAFaLSM0jWwCOwu3uL3LDVBupaiqhAnDoO62wT0027Mle6EUK0GqbiZ0rJaSYi6EPuWKOVhhoqNF+ZLX2auRlj2IWs2k5aQg4wmpUpc8JjkoWtxRYWI/4ajQ84AOLbHeqNfYElsu0RNHrAYdwMRbimwRK/QSC03j5jaXQXgbZUrlinncDrTmQJgGBK7lyUhR6SxF1MUu7E74XpELK0YAe6nwuLmgBY1md0vmCxX7m7XzD+xikWucP7jiEE1GkhQ4q1wrVMSxM1+TSkW86X1cHa3gVWsOWAHDez1jLEDKpBUIyKY//PFBfqvdlInUREe5NviWvpdOuRc/VVFgeiJLFDF1EViSm8izdiBu2BlGSsbAQk6mFfx07eLKIddmq/iyPqjBTZlkptinHEVgJpEtnzFAbkPWq+Djz5Qp2EY1w5nI7bBW6DoC/+K8OrNM2uLbsUU+jw60dY0ufIe7zzY6t+ReqTmfCigIwl9Z+5M67MHuhWkpFaHQIyAO3Uq/UGph59f6ZqL4YFQQIph8TZwWHJ7DUTiYzdvowg2JyQEgesrieTTK4DGBipwUIHNodTEZa9NfFJQn0eYQC5YMhLBhsRBjDZKHsAVzDKOEMyiYmKWsZ3yEpIyfHxwJS60OX0ggGzMoCwt3hsVW4b6fLbkF6pCs/RvXjjzVyGpGVrDFjXJlyaYoYR4x0CcxrEmdC7enJ6vD0FMHM7EGQ98MJdMzw/5PTc6C2EOFT+Zjj45PNUsfYun7WAwHF1Jww46izUBwm38ILpCVh+MzsUdh9AdrYSJo4TD4IM3Aun5c4JrBiXovrj/Sb3XD4LD+UATC+rcuNcOAL5ECdnHESfbW9/SQCYymKeKyry59EXkiybm5u7wnMwGP0EmLaDCcPOxieOIDWDCoFYPQQoilYAXjrFzKds4qwGLdhgipL6Hj7+PNJ0y9gGpIutCfRw/TJxkKKuP78+QMD07/vqtb6eLcw6Zc3TrQp7gL8vpIBy2eXb+UVn+flSRg7rMPyvcv3gsJiKLSe7h7ff+3iUg1ZQgE5SHCZILK+XNvbre23oLPqjxbTyVwjPzcncno5QcsUUlEWM9Z3cWWvIgAQ4gnbJjG6nphVfMZEjwFUjn05zvZQrSIH0OGk2x6OOt2DQbctxLfb5hSa8EoE7jbbqr8YqFGJ4dO6LxYOLaDcY9gW3gIi3O02GkhE3xdijXhWRjvyNlCzwHjQR83nFCdUQrLqzeZTBs+MBv29xl61jLBnAVmfg2psd7EMJvLprjJWNTQQ2Q8i3QknAepteYUMKXHmZVZbFJmC5DJBfM1jCpgHRAWLY0rYDpp5yosTL8nEHi2uoFUZ7Z6Ag1FzEiDZUh9uxOr2kIblLL9H+d6Y2JVHPzCgDmtwVhQUGe+E/OgKegYKVfqKiuVasVwv1ar1EsIWcvlSrcQATe32w3C7BB9yNl+RUwqzGpFGIUQ9nRFOk/mONqosIqXwfWQL7NQ1gVpWWDDioyjjKsr3JF8vDzEX631LIevKk5AS1aK2HqOZKIf4XbU+EYhz6rXNqWA4cQHBWMmDYCZot6L4yUbQJs7S6EMd7PoWWerkXQFFQxnBAAA3FNMBZv4RGxD97QhaZ6mRHoS87RLY346ptx2OGUf8lGkGW2G1w2PWOfKIFakD2EvpasJ2tup00seEBkYHzj+X2HjaOhu9GHe5Z3XXOl2HKN8A+KtK2+2qUxkdmbsI5JQFQXkZF5q1LbJ3oY0WlQwU/v4/qZSmObOxl9UdaWZaeIzzUHNySlE/8/17JnRaAhc49Vd1Ah1gTmQOZUPIzQvliLHuPtDSgAlTvvDPxBAY8uORxgYcMEAKAIwWH9byTSdDvMXO/Acs8htrQsUBy4cm2hY0tjfgNkW0wVg3WEPbZsnnl4/uA7jtcw3VYjTiYng8ZWYygxq5JFUAXhyuV7bHXaHAD/rk5SHXoseHrnnOIIq0kOmMWteHFSlTks8Epc5Pj89OgKQncM1qZyTxeMOPwzZN0VmB+HhzvOSn3WyOzAZEOs3qXdDmDRr/LItKC4zWrg3giAXQK3OWrChuxve7Yh0lDwp8lzHgpRNhqXiM/wS5lJSAMS78yA2gnUiaKugT1/97gh8AyGFW4C0AM4jy6gpNhHj1EpgshPjmGqUM3PwK5sofPwnItyxjwO1OewghwkIe5QOTmAGzTOQAAsPIS0k0cNbFUgImVagFyzCzIzWJA9bg3x/PHEITU1m98PKuo+pPTar88x8kVL5//vu/bEsSFNZNMnsbkF35yhrEFyqyyZifnl8sQOvh7v7x5Q0A/ATkf0Rb0909ckZ+tOvYJYIxlfM6xKwUYf0sV7cBDbuVSh24BuEBflfLIz4ucM5CldlmZeciocnsPzrQHBisiJmWNp3ow1jDWjgnHrPmEodTiPyxMh7q3AijI6a99YTyUn4xxIyI7+BEm1y3BytCm/NtXfl0NaBGkLrVITVud1oq/pKPByh3NLOmNzjA0wqVYJODmXLjha1CFlpMPp/KaaHXbKJ8rVrOUYmqG8dENc9+rK+YCxbCKWi5QlNVJw6AbZ0cGAw4dasT0MbqVEYAg1les4GHdleEgDDPUBkzqu3B7vxQKXEmjQgh4AY+FgTR7MaJb/vGUEP4o2IhJyAlMBbHyKlOOLFG8HMuiQT5NLpa/h8nxTCfLcVa+gQIJECylAC1h0VWUOSKyK2uVuWBIShaLMv7y2ikQBAZKvsKMEILAKMyiCJwuTYDgfNsEWKURxQzAkxOBqhXLflJgSy3hloiFC4Cf4uafY+XJdZLgxrni+WiKVflhUZBJtlQvjaxlyFT0dbTwwQuo5NR+Bdj/qq+VECUX20OKmgCsGft1IGuMQkevumpAcAa0BwYs/T/KxZSia+LH9ZuH7fqNNcue2+1sTqlAVGpjAtKtZUpQA3qBOZ/+b4TjXlOS+Vbppb7z8rB4m1HJHQLgdqqPM0MJzgihyVN/ZTTW3kuPFqzGf+fHbBnxFp5vKAvSgczFDbTRMt/kt4BrtPvZEkajCSjwFpH925ioHYE30sFSLDztgl1fsTDU2KefT9Arhz7QbUXI/sPoyS4lYXQZAzuO5sL1k6sxA9DafDbPv6qH0hL0FSjk6ErWkxROo9Eqbn1CuhidzUHoE4YBAnxCi2zg9FERViQl44GZAkQfOkoD125M7S7TZj4yEjkw9VMIFfpI5I15lhkn84w+2WgEGaHx0coxNlYCbMKhDEoBhYBp1BPgKagk8OzDS6op1YvuzEyfHKmo1zwYfDJzfEPNOyeHCsQn2zk36HG+XiNzncMn5Upyec8OtrIlzrHTlGg+pQXbFBlQPXR4VJLaimxxidY80+GqRxSWnXEREn5GvIOALAhOLImj4USb47Wh3P5WV27vCqxuK9Wjr82AF6fnQkAn20uhP6esJTwjDakLQD/+Km2JHlFbtcA3F+gu7+ub+5g44Eq+heCpm5ZSXh3eycA/MD2ofsHzpyZg/Wi0dAaj6G0WP54fvtULRY/Rojqh3YsvCjjlfc9I+nq8/2RjYS/IYqWP35/fjgxlQZE//lXaO3bv//nP39eIZWGQvqFOR2fVFDLv/jDL/T8oAFayJgWlgxR2BNUY7e31zhd/Lw8x6Frc7hYsCu+tZ/VQMKc5vjL1TfBpq5QyNbL9L1U5M9yrVbdLXFfiP0rSgtRrTGdQ7bIB4L8Alfr9QoKZE6nD1BmOLGkUvWqMz8cDQxjeRZpwyVKHxD7TmzWk+jIRkk4uw76nXaPTwIwY8qjsVPuKBq3OZpWHtztYMssqNyGwELDoqCobhKDqd3i8ni/29lrtxv1vY4QcmaYYyylFYxjbfCiU36O+mlktw4GY+TR7dYQgQeDIouVdJuoqlfUAIW5LDAm4biP+b9JdisgQugRuKmFQtFVCX5DL3AUqVwatXpeBh5LqLo8QS0BBxY5EWZVQcukiJiRyvK5skwayeY8k2r7BkSwxaCe18dXFeAtyifMF5IYTeFcKMsPIrAYo+UW1RL5QiUs5KtsVioUkoBZlIDdonxEAqdvjrIrLJ1xkeTgulKr7dYKtb1qBSGO2SCRj0BCWJzkud0M0t++/U/qfzLfMiwFFnhD4S3V1HIPFbBzzsTFfBRkOYLJFYowV4EGowCuyjpBCzqqlYuVaiWPStYc9iXVMvsT8l6ugAYJIcGQqwvuqqUH9xtHA7SchYGGSQsOGACjXQtRKfIG389n2RKAhFK006bRsUvtF7K2tb3aJ8bARuYZBXWj2MCZllxDsm9iau5ewwxVW9rC52m5BJOomElsy1rdlVKPrCtcWKLM9oRGHxwOUinb5noaeA4Tq8e+RhX30d6GWAnmZ6jW331TJplKIxItraRX3d+ptNrBLdgy8/cO2BJDGUQjnyxlM+odT/t74VXz2bHtpb6lLVTZ1xG956e/2fzdt9YmLx3G4OvfYEtCWEqGRwlud/zvHvYpmC7JQ1KnQ75KI0L/H+3BJaHlhWQ8h/txOtW3Hdi7xgx6HAs9kI+YccSlwRRz01BxeIw/2Q405zBVCOxytlocHaF3XkOH5lPz6zIk92AwmrLg3hTRIMhgAhB99vQ6BUnMGNZM+ecC8/MpR7eHqmHGQPBIieX6RCjk5pTlfIer9dkFdEkA2TM2FZyhpoCQqW8/A3M9Jf9VTnum02pomQybNezx6Mxm1vKpKdpxtw0+85F8WcDv2cU51rTyr4/OQaw3x0ccmCuOQs18csiZJhVkS7mIH3JqbkpW1MofWQbl2qD2mH3yoNTGehfzQ80x3HA9zJbgY2QLH2/OT45Oj9QazEE7KTB00GcXKAC++Hl1ea1xWD+vf/z8dXPFZA68uLlnRyGCKe+eHm9vbh9IgQHF0F4h4OL+QYuHHjFifhaERkzW4+uzQbJKnp4t75kNvy/0BT8/am0hR9Kv8rb3T+HLj6DLoMqf71rp8M5WBtqUfv/vf96fHt4+//zvv7//gwk0xs/y7t9//v3z+88feeX3b2yI5WvIt3V3xxH65cUp+4Chploi3BmP0R6bO8gxBc2Ee6LdJUuXqQY2UbGKsP4cEhML5XKuXsAVMSmXodUpl3b34HFv7FbqGmSFckL0RM8W8puFdOBI4B2/2eWcD2A8PQSLD/rTUR9YO8EH45Q5HvKoSYLMZxQAUT4Vxt4YOWFmLPg4Ik4KF+5gDQz/AVx/nRbMfR2shuUt3cGwy3jWNuG2LX92EY+JhuPuoNOiS7Cz32g2G/tAcc6vGcTVbu71geLt7gE3Pwe6+UE5GE7Sk7k2iciTEgVO+OL7u839arGYowQ6YlWQr1m21HHBYIIYLBTGs87BVxdwnHhUvZIJx4zgN4+qACIDgU25G6BKN8nGPl3FCcOsMQwPIhvTqWGYn5RDSg3xjUzfi9GqFyUAevXDxIlTLWVZrMgtLQ5cnK/TxKpJWKgaiAWBY7pVhSbniznBU5ZVAaZdN4Fem9mfixwkQVwMk2O09+ZhssEpIha4wuByZ8fZWTDOTLE0Ikj7uSTt5b2AmudcpV6r7e3K4a5aLAmql/FpuZ8uaQG6/L2E1QD2I0KVSzWh63IoqCJIrCj/weONYwVSB8ME/mr5I/CFlvuMNc6yJyEKbOuqjZfMWPS9uJjNcAzBsgf/L5muAAFZWhRY3FpKR8e+2m8DYXQ2Zeau2RPgcaAqjwl0HMnBI/NtJ53x3E7WAMkGwynfWgVNUpxyAmPXdoFTFvisc/WG+vGe/uL9NI41COVQuNWfLlI2T3+RwDnlU4DD1F+luPJ7MUGzNvXtKAxntJYITJ2UPsgYBU5Z7T0OUtj+Rpob54eWbeIr4f1afHtfynE8O9BPmNYDBHWPoYrFkzAbssCIw+xIR+Z4JOPHwZPrH8Ytqi/V+m0F8UZaNjCZWKku0XnCsKkxrUGzbTyU4q/OudRhydcPQfpg4BH6quvNpUvIUN/tesUNlXX0LRbb4oIpv9i433eybCi/ej1cZnpYUWPMPVaNDJBebbPrjUIW58MbAuapjp8vzhSJz0iQT08ITgBgdtifbIDLp3wjimXlH/MjTznH5dgaiE1SvGYc5Ind1kpzN9gPE4R1sr1WFfNyfminBIi/ML0+0k5fqrOpQKfP99iZjZcKxSsUyEOmvTkyG5UDYEFcTMY3x9aGdGxzbsHyI2HTG1t5648NUxKyoeW/S0Han5cXVwykpO75itKra6DwFQOxwIVvr26skBB50HeYQJv6imz38fFe/3LHhMe7xxcbSb/c3j0+PD6gJhAfhZmwZjg/qXKLpYLwFb083N1e/bz5eXXz+Eq9M0uSPj5+//73z79CbP/3//zvf/7z++3lf/+vvPL59ikgDLXWG4oR7+Favrrkbhv3ity9U8ZIDWBlN/WTdXbARDfsCf6q46eLDMn+IA7Jd3O8TjNTsMSw/jxqZPOlaqVYTsBRYhheSjX5K66OZQh0YETd3a3u1feQVd7e77Q78lWnY3k8yy8E4j65ozdHOolZzeZYxmASjUTJ/pDQTGH1WHUPrOKSYy6GTVRcQ5p4MLJSTbRuUejYp2ZasLjd0uQO1G8Oh92WDqQ7nSaM941mT+kxYnQsxrXZBFcGJmsSF/0KXWAzgRnTbfybdo/zLHxzug7CRB1ZcXhaTfmEnDGUZNDrtBpVLCxzGDrrRTaTSQCAScK+HmiYLYA4YN5HonjIeFoNatCaU6h4zTiCHSbQzGKCfR1tU3azFSG5kEnG5bu8zZAEMLGIYXOp+to2F4XKmGig4scSfpm8yRimOIdohSAntJcxGcRpbF8ZV8AWKDXtguImrB/gVpwZnOqQDjO5OIe8CQHgkBd2N59Nw8SSARp/30kxa/D7N6V02LHKd5Qv5Kn3IgvGTf4E+OJVjMRpei7E+Uq1mKvIw7Kcz2GZjIFNtcQHrOb+yneKCt8oh7IMt7NPNAlYd/lq/QJp5FEpl2R4enFNHMZxOYalC9izPkWtI8rQIUwQ3tbQWr6i76IiETQVCP9LeYaqf2u3trfUjrfdudLkpIFU6W2LEHv0oD23x1U60He5WqEMIys9zVs2+5S6iDQSC8iOM0+aCmZnAXa5lG4CzSE0//O+7ZgFHENjNn/qXNwAOJ3SPE8qxAmgJtHObKHX977KnzNftU3eV36mv+0SlH+J+X9gDNpL79hkKbT0TQHghUNG68FbHswWs+WYTtWZFvjMXWOeI7vz+XIx/39uLCifz7TQeOVWlYeHqkSamY0IccYs0dscMhDj0GKdjt3ulIlFi8W2ctft1oZMyUJK0Ui3yqODbTwWhEuzFcxDRwS3zSk0V4DQcxUkCeD+IBydnZ7bjUxXPuLidL0WoMXHE2vPf/w4PTrcnEPKhHohvOni4kxR7f/npqh6dAgpFrt5TeSlLXTcJa5J2XVVTWsTwJp0+FhjFRguqUvhw2OluVR9ubfjJqQaAqGNU0Of6Nc42pwcHwvxtsE7h+jG0LnjPj2/PJef/fQCImjkUv7EEvjn9fWvn5fIgwYRZlcw87FsHXx7//j0oPJnMGAkTN09avryAysKFV9hDb6DPgtL4ocnJEw+vxGF5QV3w88vb8+YTAuUfsoH39493N4+v/9G7DN0XLZPBkQ/v76/Pt+hOuHXzx8/zpGoidYgVi1DPNTra/QU9cFEHARg9PoDRmKgrhfp4QJdXRvYKv9tt+SdYMBBVSC1WkKIrTa2aNUL45fQTp6r5jAlzJWLcsGrCkspVFSeAyZc36tXmMe6t7dbk7839oQbt1rNrsAfAJYOXZXJr5xvnE+G6WxxgJyYwXAyUNvwiEOl0cEUURqEONVNTBgrLo/nEYUSAz68sRaWHwZ4jBpieUdfNdJ9aKxb7XYLIi4Q3H0Eq9OJLwjL+6hlRmT9j4PqNkbbIM+QfzU6WneyDQXpgUgPpwdTzKYWq/lf62NhykLlSY07uAto4Qmomvq+bekBZZGDTSaw7Z1FDDLxEmgQM+kv3gY5mFzXNn6hH1iDD7AcOKqq2sTZVNiyoyW73Hn6SGVO0GWg8csu3P6rUMiicBHMFMImw45Gzi99DNKhzEa6F5xW+RzWrVBC6ZKVoSNhNg/GyXpW9iUDkOWjFYDlJxEAJuH1zB5ECFHJjlzHUS7Pgvkd1fZ46e+0pzKsEOVNGD3nCzXKEOSox1utpgH8JQAuVtRZSLpyBStexhgbo3WssAtodcqWQdFRHUlZdqAy6khN3TZklh8ZQ3X6hRC+HP5VNhu6Nsu0o8Sc7DLBw9KnXTQzoU9It/2cGuzhhentWngr1drW1AKwHGIqsU1vW/Nc7ZfHPEk/8xegbaVdZNK+t1Vdq2Fqu8wl7huuqviKXiKLHrWXavSl1hkf4qk4y6VmB861lbH63PS3zJeinFMDBquY7dg+WnflX/i77WLS75f/MHLe7kLW+4pw5/2hwi0sBOTH/0f573KLv4slOv2W5jPEvFijpZb4c8E0ZaqkeAFBeYE+Q9mFqmkXdM0yO4KzVAZQrVjRx9KBY6FsghprA9yNIYbjdc7H6xw3R1Q7a1GCzrmZcDHRgILhiMd3nN5ncI0sVDd9RsXVGVKRQV7BBrWZ4OLUbLFoDrpghd+JaqE13uIE7xeWxQALAvgpynUvkC/FnfEWhTGvBsapFmp9fAaBtCD3idss2w+FM4XVCCr+LimuOja7EyXWwFRd/OrYGVdyvnCabsVyd0dxxwyAwt9O4D86OT5R4JfvRxXSKjDTrMoTuSfkXPHD/MAXcAj/+HV1ef3rBspoeTv7gnUSTQC+ZSQ0yoRuzYYEUTQA9OERvuAH1AUDhB/unhDKDNL8QKU0E6LhP/qNBe87VM3/guT+hl9JPuUlfgfHLKzXX6r2USzYo4whbX+E/OXuoKtC4RaBtGttlNDcU8w36COcagi6OBioXb3PmXPXBMbtPuss2y3YcdvdKEAhQFWuaJFG6PGqEajaF9QnruRwhctRlFopYwZYr1ZgU6GZFBaWSgVXyXqjXhMIqsmflfpurcY8yVZvwHLvKVuBDylxt3Ml3d7y9GBbF2QP2o50MGdP12SylXKNdRcklH4yFaLMgGh1GmARg2On0ORhb8S6w34XjBjT57Y68VEOATt+2zFkhGVqck6riVf7dnjhPYT7c8ChtQA2VFzoIGo1UcG9z0/YHQw7bUg/ppST2WALh2KOueRs0G33Oru13d06GFoSfo01cZ2Kdaap0k/XCavaKeuBibRpXGlAsI19AoNOfM+ZTP0w3iK5tpT7gX02qHkV3RnZG7GQEfpS1c3y+gpnaGA9T4FanaOAmVUIBtHaZBJvAVldHDv7Vewqk5HPyY8gAaaMLJNFvAayqpIQu0bPJSCFkTOxAgqR4MBKQJ29eoEAcOqbvMCuMq3eIUZGQ2uVK5SU6cqjtF7NZ4t7xUqlhKVwvgIbc6UIN3ER1bFFli8XC2WElOTLWflLTjsTsmptQgBXLmdtGzGkw7Fw7tBmqtaZE8RuyKAvTFvtBxbkn3GWI9+5cizCY9uBqw14EcsQrRrIcNIIoRqKXZWIgdVXba1CV0qtT74bS+vnSBuZ9h3s6r28jZr8C8EJrMbA05aClVHo/VJgfZmN0hrEqRarQCflCsAq0JI/KR6z75uqbgKvzQ8iF35i+Jt2FiXTZHmu7Coxf3e2EGPLbZoxcmHuy/mgkH/3z1wLZ+dL47Qz6IzlhbJaIvI2YkJDdBeKxuZw0HfwyL9ixIUlOa00ZUL+OzoWzLEoC3kdo9cNOgY4md0oqxMmt96qjNdW9aMYTPPNMdtiSB+B6/ItM8IXFzRTXuNShmgjocSLw/Wa3wpET0cczJ4TQkGtXDDFuZYDnZ7o6PmMX3FDGnyKGgMhyQJdWKIqgz7jZvjEXgVurw1sKf+CjwmQ6sRdJ5yIk+6uBW8h47ZeIzkfwKupPBiGZAqoHQAbwz0+Xh6q2ejIAFj/qgJtKJ65jmbwM8btTMVamy6as3awfYZkyfcvP8PFGffg8gKthPLDXaGb8PpSaTEDOtSy9PNaoymRqnyrmRxURf+6f2DQ8vPj3SOh9pGdCW8PKtKC5PhJZc8oAxRWfAc6jawtFiGeXcgdtlrNh5MhQILMq4u8U42H6ra51JQ/e0N4y1FBNDSTLQbN48mBGnJx4qIRHTImzGmZKM4Atz6ro3Ug2+kMupQQCzjtCwDHAaE1my+p69LSE+UiQmktLl0IZ5QLa7aIMOCkgEtZAYwElSOwlsqNNEVwWfB4l40ku/W9UhXhk/Uaum1x220g2bnPGA9qHpDlbasFNdepdIJ5HhNEpc1pjFczoDDk0cFsPpnM0VGtU2vmgTA5FhtktRmMYMHvDkZD01TLUQO0eDDoNrtDGpr2GYXZ69Gv1O02O8qQmz1NwsQ3Ccc+7ib5SEA0qrhbjJht4+Czv4fh9cBcU10oNPAdzy2TDkfu0WR1tJzCY9hu7cv9Af0Ss4EoBuIlWBe2MTKTodlKzDUcWnF7nFidscc3JKzDQccvpVdEKJtFx45SOHqH1Sdr7TjETkID5oy2CgRfUYUugkSJdsgFBEKtA5cj4muepqs0MijN59C0sMPCAUZ/oZAYC9I0ARh+pCRK7XzNXLXUJ6MOaZw00B2ZRKbW9thMZb5buWso7EGA0hrhQpMAACAASURBVNfsFvCXzSOME8bnYilfrFXkNCgPu3od6ZxqpcMoWtA6X5ZXCzlWW0DEVWD7chHChgIK3rP5HHAd7VRC84tlzRrVR3uiBUyBBlC7gl4zLyFpKvRSrtZBpceeuy+JdC7zUj4mcmWJ2zBLV3gcWMKl6633Mt5/jaiVN5KSptKZ9HZInVYANuH1dshrsJ+26bVbJafMZWRYnHZ7YOW7GVZYECFV5JxO+W5ZDLFyOqOPD891LWW4I8bf7XEQf/mrVYIW/hUHiqWv96W5JvDawWprr4rzUVoTPcC/zVSdducyL/PPYqFhxrqLnS8mAsDyQv+y0AzaQ02S0NI+BtPyHZw2K0M2ZS4i/pT3aoLEAsX0RwI+xggFs9wIen16dqI+XVaUbwEY4HJspTB4A+IxILM5xfpVQIYoCL3yCR0ixwvNp2L9EFZXB1N8b6iYgRobOy1wSRhJsBbFDpgT6AvMleH/3ZxdnJ9AnUXEEugVbvxDmTJH0MhzxBc8N520A2A7H6yxYmaQB4FePw1A2TFXTMWPNJmaU2erXsDHkwWvNHP60Gmt7I9DB8AuhAMbYHz8xsxV6p/CHbLmQMFNyM/PVd2tS+wT+fGE/p5uTlWddX6+IaE/x7niB9jwJTqTBHUtp+PnJVKhb2+u1Y30gK4hbfh7fgHmPmjZLvsAtTIJU2O4mS4vzuVIw4RTitUngKCDYYtqoE7rgEtJaoy66PcDozNJPURMWHxybYpElylKQwakgzCwAYwPOrYYZWKb0F34bECBIXo6gMoYHBhQjng2NBmB3wHc202hf9kYtV25bL5sjeG0uMBtD7dqQnViDlabKMRIOo5xcUOZXpDgqsawB8Qo1VAtD1iu1XfLeUHiOjMQuS6WK2W5LHSltotU4r29BtJZW4NeD2Nn7QNGwApHGGut/Fjw5EsphQZ78M4wFyBDqZ2MmrsXrmrp/qPnuD+CmWCkB5LucNTr9vvdBrhupzfsYoGsxxz4j1tmJrYMasvvQuY7JukYVrf29+UVhL2TSaPfmJprKMHkxik1C8og+xoezPBlZ8spjuoYWi/nHKEjRwAHod0qB6jskoFWN5P19WpnE+WEOzBGZEUEqUQDtNzuLLaYLU9/W6FmKJlJFEiZDXz57XiRqoK/4qLSns5RecEEcGpGvvmRfU1WClH15IeM69TtojYQYE0dGEOHoDuJ0gBsjVqMSYUBwFHWNwDmGNTg3eog+VkDqNVQ9JvY1TjRwbmHNH+fE16LCnMulm1bDxHIZ6eOHyNMn9wX4+cSzn8FRlML962WIN3O0/eMqQ08VKUCuDSNTrl8Vh7FRbQ6CRsuVTVtBTp2FkVqPDPTjeFA80mJqclCeAoiRt0EwdXsEaEzqUB9vPhIdTaFCsD2m4mc3Sjyuen102YqdjvSr5vteWnl8dKGaCkHrYa0FDVnWHSvu+MdJjundzImS/bZSpgy8pvxv3a+OpPWxW4q5QB42y+M8xGSWv3/AmA9FwgM67yZs2MOy9wO2Dfqvm2CsMOBFm5BTY47wncZ6RFT36I0duEpR/1RBkIzkwKwkl3D3+V0iV6YFWfNSn4tSnkx1+IBVvgsl0aMNTiRvQaqy1URr9ba8v1LsNCTtRE0zVcUEDlSA5DSOANgQNaJBkytzUx0snbKIkD2KTe7HKcq1iHbF7AKdZIuWcF+FzMESbMKgWH2jPQ4svog0ENAkcAQEpBAjoGYl6guEHp4/RNBjmenPzRTGdSZ5FdwjDotdwN3x2r2TMnoydHZhVBNQSC6o3CN1ZsGbiyXa/UjYQd+yLUwIy9t4qwnDiLxSjOp7VCDeErdBi+PeVyg1OtkO2CG8Wl9uDldr10kJfF/A5/yyYktuaHXdvh7jnk8DMJnp/QJMyrr8oqhWOgtuEZJ8C9EU97QIAwWDF0WgiqvLq8uz7kOp81Jfk+0lEI/i7glJpW2e4N+u9UW1IMoSpjUPhIa23Lh3292mt3RsKd22B5jWwRS+qqmUh4LRtbv9g4OBvDtaMSUbvwHHcSpDUdjJ8uDZJ7j6D6aEXq6zUQQFbIs+n2Ls4CAuCUAHEe4TIEuWAR+lNZjOltjOfiMS9kkF+VDCHDyWRg2E3naf99R52BGBT3ZXKlaLqLFvdGsl+u71SrLd8r1PbTmCS7v7oILCzwjjgkuFiHJ+82G/OxyJ+CnAZzKQ3IGAMbThFY7Ez5w6TOfOf0jhQ8qndbwGwyi9e9jSrjGsyntAwiS7Y1GPTmkIANT6OoQYSCgrQj5kLtS7tYR4nEGlh6L8TRm0819Ib4dxse2mOauQZodjvyZ/tFE2gdrWBp7aDvm2FpuBzjvDA96/FUMLKx6wYnYfAZjImn7oN9CJjyajfXI49L+rcEeiMtZXaztTZ6fQ7W45xnbDfzAGgl0fEeKxRzEyIVO2HA6o90CTNpyoiFPc/Rttk0Tiwb7wpjpe+4b8N0EGauJwEyxZO5/lQcorUV2JgE4YtVUZMNRJ25isgTFxojOZn2viyQUju6FgjNUeMehZzVT1mlAkRp73L/LI837nvYzhsmauuQzhgTqfQi2oczOlUv5UhkMFzmcFruljqYiU7tAo/MoNabeuq6dFHnVlCWc+aBhMLbpvk+xm+66IU5L+JwIPc8SQUIXgWUF1OyZ5ape1VlsacpkmAClggDfMVqLcNxGZH4BMRklvMXWkQHk9d1W1dTLKfiZKJ/mhtfR3BTXv7DbEte+8iVJNbUsWF/7S56eVvWzDdF5wPCV0G+TrkjB6aNilHpqJ9QIaMfu3Sg9/dfOmt8suy/xKfQOsVFNknjIjhGurTEzW3kZjVc4HvyzpNd2uVJTkfy5OJjJ02imm9eV1fktFocIT2QV7kyTE5eHFv2o+GzoYZteVvjwhkghgb7VWqkfxUobiHsxTj0/2yqwLLAKY2kYes43qj4+M8g82wiKYybM1nnWDoCMnl+cnBEvT84vVFz18+r8kJtrVh+MR1heMYF5vtDILFuRXoDmnpyeU5sElniu3h2t0EV1LnalF2dKlwnA+BpbERdG1xs4ioWDyue5OPl5fS4ATFuufG/goXq4IAEW2FwTl49X8P2enOoIen280p2uvLJyIjSmdBypNpoxX/zb4lh3xgzxpsQKxxkhxnLPyB2zObfDAWVhcqzA3UvajkYGkGAj71fn8s3Kz3Whc3augM81MQs9DT91K4yfUAFdS5Lnc1QvIo8FqChX+oOOk9+228wJtx3tqMeuICaJD8FduwMis3yooEO3b/9MJ8YQUfUGGnI6AJ0DpzuQ67rgRqfPLzXs9rSWEkNd+MUNlHnJB+hbrW6fSCPvxhi208P8mVIlwXOkVsRhEjPmKWu5BZG6Mrw0S8FxYA8KyDlGem+2XCmVk2I5D88k9BvQZqQpz00ov9EKnGKhUi0IVCMIUa5wKOWs1psNrOyEL+836mjt2a3W9gSBGu26RiSW6ruNRlP4JjX9FBHOpoujw4WK+HESPQaK0Q+EIwhE1EJ3+0p6URQBafII2q7JeIr5LxGwN5hMMBYYjA/kj8m4jyCuPqzHI4gXR8KQ5e6DpqvHKpVOqzcgwvYg2sIYmsnuKCQdHcg7ek0F4BYG0NCXy0cjiovJWy1B49p+r9toyW9YvV6C+SM5NxwMQd9nrvd6gSz3OZdFOER09+r79Vq5QMHuVp2j3fIJncPyO/IRkoXSGVVPAznB1LDPtGkuqlm1iS9JAvWtIlaTaSFZfCZ8Ol4DQ2vak4+klSQKtwlKpKZekFibnwerVcbT3R45dioVxUL4AtvwmgEmcQCM40AUWpyS2UpNIqzNw2ghihNl5vheYuYcZ12DED4lvmMdCudytG/hEIAOvNjb4TyYwIC6u+/gS7TcYp2IuXGQo/QqifNljb1koEelijF1Fs5oBGwVIbvGvLpQ3q2WaIVH1nacLRTVc5WNuTbmchjfFXzGiJEA24/ykL1nrUDSj9jMx7GEjakRVeUzF5OZo7b1dloul1+l9t6MreZdhCWzWwjMhC/yWD4UAu1NQOAVKaXRWI6SHcgRujxOlVM+M5szZOoAXwjgCMAZVVZtpVLIc1bllo6M5eCNVQRGGPyXaRcdDVl2yg6JVBhonIh+eacu81y2iPLkvzfY+K0FkR3pYq4ygjDRFujApUhzSiNfxv9nDlxl7jI3t1oa4FCU8Yns4qN+Sq4MR2hCW/1/ZP2HYhtZsgSI6kokTKEMvPfee3qpZ/a9//+nzYjIA6pn0S0aEB6FEyczwygyQMXb+XiBQcHF/avkuAiLKmT53K+v7ux4vkq4c7lpdPqmGer9+vZ2vaKjy9Hm67tznMTjtQuxoLPfiYTvagXD7AlhAr8/3oUgwJJPpu19Bi8NKxihE8HAGCsV2nzBMZegJiMNhfehJ/vnU1Ux62o7wcoBiiSeBWbW55///PP1/mqP9A0l87sXw3cUlobgVhxSaPz6qg0C7oEQy7qeWQ0wHUb9/3L1PCUSzAxUbXPyAuY4kPYdWxOGJF1OsMDimwE0RpMfl6Cb9e0iCfNLMNoE74yIeX+9XWH0xWE2575E5neSsLiZ0DSbjfVXErSdAU8qwC7wzmEygSIHiRoaM1INu5h4LBbQkPaijn5T+kbMAZhE1PlmPZ3tNjPGCgmBR/P1Eh1MXkG+xzNcD1fB746khidW4O03TgYmA8keEMAHnuWU4xjIwm95PtEAFGbLc7GwRmNyjMJpMoMX8zwpIKWmWquQe5PQmobdx+cIOQW2oZUSJlZ3rlKNbZ2qxjkoDmleUED0J5SWDOyxhSxioxrzYtBSq7BCbFop3GvZKtjttWBMjATbFqg0Br0DBIMhSg+iJoRpT5HgCYURNxRW3e/gVoOcaOjH7284SE8He//xCdyBlyUtwFxqAHAeMJNdky+NEAmOiVeKTJSonu46qzBbXiv0E3XxeiXHS8PdJcrh0WCyBIoimWm+sgeF6bm9uFAbz8XpmiHceDoZDqhNnozt0Q8ng/5oQRMQxFAgGHk06E1Q6UMHBV9a7jCUXgGaHYZYO1p3rvAOTsa9Zq1mmyLDm0dAIC21IFCCc0GqLAiP56Pkt8Rfoc+E52HJa9cSvQxhlfmXF7UXn2imFhUkAIZXQElOKaM09xhUFoKRhNtOhNGxWomiZ5VgTBinIS6qVHhSPQ/rRbpsJt7MTnzYXUAvHTGMZXR7DZY5i+U8GKmMmeIiY5T9iIjKtI1gcFJaTrE59IUbU1aDiJ95UYmfgwMT+qiw0Y4rFVSzJXhio1VdqXE2Um97TMWwC4uRGsYpjVqlUn+Uy1A+0+xLmZAYIlcS9dvTsjjV2OGI04WBQsowjdQ/MNj5ALJZUNrP2HwQrhRbEAe+dchUCsN2idYKCgkxcIsNjqA79plx3k2peGBoWq5OsVOYn/MaFv905Cv8VHkbZEKR93rzdLcyHH4q0HUy92Bpy8S6xJl2lH/6+YR695lYS4WTQ3AY0aszbY/J/1CQ0UikDUa+gN1AQWw1sgvxnDE+KGVxLu/nlZRLxmzDkHL140JLjRNNLUCqckY0QpM4zQ1F7ZkpP2c3WHwUu+ebmzB7aND5EUbEqDQkIQZFkoKJXl7FJw6ezHSBeoVHM/H49cExJrvp9eVdI9hXx8l3DjA/iZzkMv/3H2T+/Iaa9Z/fH693+kDZ6YtA8/7BxBt7OGzuehwggojcQvrCxrjd3SdhXA1nVoqfBHpWxno0ZGu9Esuscvwgl9guDnntP3++BIB8bqxkXuTLddeoFs4NrHSvzrO6ehcZJCqrbc+e32SvF8aEZEUzuljCaYEv5+gQHKkbzQL77QpIxkScTLA7PDNtk8Lx8l1FM105xSkn2B4PD5nXLqTfAiLnAlo/sZ40PESRZL+glwnS8ZL+ibRMEXRYDStuLWKcZwudIGhBd5lGT2gUQy5kV9/Qk5RXA+ACElCjAotnYhMxcwtIsaEidrFkZ5rDYGCKbp4AvAT6otssySznmnZ1ioHRBBc9GLocq/biAuoCsKvI4eEHgDvZ52LQJHififLUWqNsq1Qjsc8nbX/so4amFHAB4kB272DnC2kxDD7KzJiD3wPSXitwMzIAhrMHRJ7tDmLykJE3QKe60+4yNLjdG/R7vSH0uePJFJ6ToELNuM0AoXBnuIsYsHAcuNXNEUpjmNKt2FKmATtNZFcBozked061u+gs5hooYwezWMOCbmm7HKQUGxRTf0Q7+M3GXtTxaoMKeTpncATHx4ggnXKrMzWw7QOFQXgDeRqzZLhyjYfURcGMazi2P2gCQfK68l8YrayKmKYf262qfPDqpuMJPZJh6agF+Dn385cM/zgBLMZBG1xEHJMBDQnMMvWHLzRmsnR6cvVvHLCT5g2xOFlqOcs3OfCmQj0ThEshWjZwh1x1Ugp+1zElvd8A/KicolJoY5fcdVBZCmKc0RZMFiUCcnhWghSFlEO6XMWZVeMxdgqFEtAO+ZG0BovFzqYLVibSkz3/nPqgit3DA1bQM/EdV9BsmH7TDIdoaIbcABxX6Ieu9Aj5w+Fglhs1Js4A4CoP6MzJvMrIYvOoTPVx7NEZMnTCc7NtBh88DJthLVmk0iYKOcXBYSvEV+bz7mUdSzsWfUcQPyhXBsDP+b+KTgBvaJwUPTgxlJ7P+YLjbaEQVL0BO1G5PsFXEgibf3QtsKlJ+ANMPUTgQmf758+fucejEEvatcF/qY7yzvN+JBdyGIEUJaQ1KIYC2/VSOfZ3KucThULw4CIR7sf1sN1TaMSF+bB3xvNJkCo281E1MBVI+6PDrGMwfBWl8IVs8+QeEaz6iMI+2tSck6yrN+YYsHTTzFdT2VdUc5hm8jKs5gihb4F5/PGoTjHntIIVOPz1m4bH//3//ffPB6DHfrOrfLy9//mwovT97Q+z+RCPa7f1EkJ9rU6nN66taXJ1vMKfkhDKchdz0U+yhgXALw6n9FxGzu7770AqfuPlP991idcXUrvu6LPTE+T26pEPbwpZurhE+OpipdvLy/n88hJSEy8ndO/xGlwUqHj2hMTr+apdCTcsD6HxXSJjOmZrA4QndL/CZFDvJ3ucW55YDylFZzEP1oealloNJOul6fgRBUCZ7UwAN6eT8ZJiVlVs0KcCWOf/c1q637GKME5rKROaAn2BDKQIL6YkFUHXSuSeDFXJuj/yDPjKKy6xC8A98/bovYFIkMXMLjCdz8Yhu2CGtR5XnnjOQQBgQwYDk1KhhtR6W17IqC1jxiVPPOW2FcXP4A7X9vDVOjyCG0muCLUFO0zY7dLtQGVwyX0taXBZA0+rRk0x/ZfQ66vB5bCGOoPcmQ6zsVvdfgdkLsPiTrPVG/QwLG53+lZp9rqdjp3R6pP6BNITXvQF7NS3TJRG+Yhj12O30K3Y7bcrUaXJFZdW3jsF3FmhCsZAWfbrpLWtQE/cwhJzhcG9q+v96hgcL+anKybx8yWT0wDDM1W0FF6PxKoezw1xAbBEZRHPVSuD4z4Cn9ozFQfDwZBvEEhxsxk3UXhYq+WW/C0a5x12eD7YDmL3RIPqCvKZSqViELWE6ZliD9XD5WiXCzrktYiKjVw7UwrEoXxR3tby/S38xZaSTCjkRwQLZMfhgoyJQwJvkgaxVIIWebC6iPJPwWDYgfoRbKvyGdRpNlbKQFx0ee1XssLdYjtRSjLKd2w+YjmKpEmUst+rASwAGDsP2ILQmixD5SxeGseJcHp6emahGGahCjpImFps0Fql1Anu06023LekKwahi86stpGUVWuGzDDIvGtu3UrzD0PzhAYlhr6IMU7gFEliGnMkUeUrIjhOae8EL/GiJN2h8hXeYgZfVANCLeqiZ2FFoYf/LcKVvClPosZDzfUszS5tl59xvZy3fnPaKjvmPv/U/DlHoMYb9AR/MnuVHtpdEb2KeU9syLtuiQMnB1PPFc7/zcV+sLXd4loGm/nco4nNnUachNSnuJoWpHd+dl72s9f3+voDFBBQrNh9Pp2O58ccV+JTlxOdXWp0PHjBe/Ohr3yJERkoU+ZLqHY9FVDa3ivBViEJMkmWafPt9qnB5Stb0oagd5W+Svjxlqm3hgV4hOPXO8UtVom+f3z9+c9//vmDOTDaxL850rTroTtttfEXqEMyRFa3GpyrmzwgH/FF9niPzD263khVImCjOf3x5pBPUrE9ok/BP4tzeFx+Ko3o7UV18v0G8VJw4UL1rR4x5Lh0pbyCLHYLjCy+YueTalW+Uueb0g/5moGPdnFyNPqSMMk6e3yhq7ZlWAR/MpSzMDaCt6HcldhznIofPAshAHNVtrOVV72gRbl1FLvAAUiDrhZAbSg3Q1MSY0GftS54cS7KcyItG82L+YRtTrKrsNbOydblPFh8XY4kmRa04qMbw8wKHeiFVvIZ79p2BbgW6uQpHdEWM98GzObC35nVbeBbzQKr18MKpIW1tX4oU+VR36q54TSOsrLsz9Wuy8AIUvQ4NuOwpefm95msDxjrYy1Kc3AC0oJchF8wHQPBZElKNVuNUqsHZOUPy3+D4wZS8ZBca+AL2RN6e8jIqSAjhym2TRgtNJqtdgsRPehGt1oA3b4hdLc/6He7vV63i+zQfp/KLGQsqK3Pue9ha1hMzxl+DC+HC11e9wc4syORab36do8Va0ttab4NLJAxRF7v9D5s9nTKREAZYBg9jPXycgeHC6JjuwG8wRA4zRyA6TEGFsBkrNec+54p58T+Kxogc7SrYfphzwK6JuFxn27V9gO51WMyqu1+Vvv9ZhdOSgff7Ter5XRkEN6xF8heOeUvFEIuetHnw+7SAcqQOrmi6H5zoughHBGoPDpHJ0/l8ZhatkS9D+25utG3dgldj0c6IJ0fZcflAMzlXAQbZsEWlZmgywtmYSWdGnRzT8ENHMlQHg2Ff3Y4ZeiwUMPL4GVwxb8hDI8Ucma4gaDsZ44zrUVEYqNbKH2cCt8yWz0yr5k5QE/SWr1MJiEGw82GO3KhPkZkBaC3onZOpcLEx7KfUlbJlRordtsgkFGR0iiMUxlNyCu1SI8HNpn2bEt/RSvqJzXU87lH+JF2PdHfe6PoMUYOYUehU+HanWeSpwpR9NAcBwAueMZD4FAXCoGJVYAE6dkBOCfAfHrKsWUOfTF+oWUlr/4cANjr5ZzqaM6iCw8AzheCFzWVzGqFgE5X+u4Y1CqY9ip84jmU6/Y4fJD8Ax4RqHhVF56d9ixqFAtGhuuhUpQQWAYbjwD7k8t+L3QfeHhnyGeDQhxG6CG/1qMBJf69+6D3Hri9AYCVLs+wBALvF1vOn59um/Eu3u7Hm53/RQsJtJ4/DRLfv9CDfqPjosHt559/0Bq24vQ3+UWfzq+yX6A0Ilk4RBjh6dK7CBFLV4/6e9V0WJD/8fHqkIo0+08nY31+/f5D4e8bKvLX4L+hXjotLV/e/gJgZSfw1bgHyg2j4W9wlLy5cFhF+pEDeO59rpfj/sjt0XG3P6EFiciLrVI0OBVEzrIyJYFaVj3aOVwuUePOV6EonYfi11blhWws2HkkBi6U8+yD2NlMElMA8JyU2RmxkPBKACbBdjF/wDZrMBSmvCnbCBhEgoqlW1wsNh4lHU50kUBa1tqTp717vVR/W7Wubh07BW8wz3RvKLQWEwhYJVKVWQeKX4Avx5IQ0IxHhmzj0XQ0QSRnSm9gqDlLCbmXolLi44BPCD7BGOMgENQA2FabZlZIIpKvbFmNWkwe6g37vU7H1q92w8C0UkElwUYeSp2kWk0EwMBdefrCbR8smLTW7nWaEHPS+xf+RjVYH2FI3Ol124LfPrrSaFD3+j3GKjBjYaQoBjpvgEoNs1hUs/DqULzR9eWkhlMw1TlRbKxp69y9S+bq4SMndLndr8lC3y0Cqcvq4hVr0/n+NJujTGZSGfxFFrPlBpN3Nvv5Js5GKJ5nIyUwsfQdjeS6NZoAe9GfRgU8mCjReICIJwiN0X7HnyaCYnt/JuhjjzE6wDsMft0Gtf1uhyCM/fkAu3gcaZNRH68W4o8izIRLYe3jileiH3XEET+dK/0UiW0XFx+Rsv+C1igYHHplVghBP49ZoZO8Sl5yqwIOlsu5X8H9UMHvCnOnIDiRyb8bh5TSSlYsADHZmUQFTBkQ2ynk6mBknIIrnhDZKNdNkpAVHGcxOWqR/LxiV0fZxpLt5nLWKCPAUXnCAGVuItw5ivvMQCtGI0BBVATxMgAXfWoriuutThsFcF2HMLRPTc1ZtHnlF7R3KrpiOWOeMVObEu0D0iS4rmhsTr4ZLc1IKU9Ssa6LhWADEsmT0XOCyS8rPaRPkhsThEk+w2y3+IDdop6Xm14+lMZCwZ/KDiwVgiGWAzA7zU9WCXuAAwBYGE22ZR5kPE+RCMRs0cT4vhYf5CsAKMTEIQziwdHClX2DiDcugmecFEjFYj7U69jp6wD7gdDZ/dEqK7adwxTX+5vXM1qZqGvRW5ZXsXtWMY0XAHyV/RUtJWA0IdOml4sHCkis+vIq8hVdG68CYE5IX9zC+J2kW+mCWUF+kONMoCWRyPH3/VPqoDeQsKy0teLX0JjZex+A5D/i8/758/HPP19f//mHbF8BMK5Hwi/ozX807tWOACeaUiOn118AgC1NKz7lqfzmo2tc78uA/ZN5ur+/DIDxgAmwzk3G89SLcb7eg9AKc2B32rg9PK4gS7rTfdNff2XFHaysRewsT/sj0qF2zkHeyTiJlv5EVhWc0oISMu3bBjIe1aaCM8Y2s3m7ZpfS1tLQ0p0tZLo942h1NvEh6wMQF16aavFdracshgT2qIB1z6iiqS6arLXgL1AB4+EFAN6vHX7FJEJKD/IItov1UmnSPCmTwyMurTif8obn6DWTvaWCdwyYnY56GDtKMzPRyg9a9lgVsPKB6C0xHk4Tq4CZHgv9KQsafX64KqHvTACGsIEK/WoDq0sjycfF57zMCfLN6QTQgWIOGA9xTr/b6UEcDJcspc1VUhoGWomLmMNWAxaCCFuy7zjTO8HpeAAAIABJREFUYLYOe61202qOBnRLNRhsAdHbnV6v1Wh2+1YAQ+9jSEyDKmUTcr7KzCNYVo3Y87Xdh72Sm81uY+/H1g4RutddnASp7Rs71R4TqhExWVm4/Gy64ER4s10xF4J21YbGu/l6Z3UpwyUM+xar7RbhEXjvyYDnnm0y5HyCeQ/yUSE1T1XybKLmM2v46QLSJ4w4xtCjTQYDkuPA2gJGj5B60bHtxshJc3gHZ3Z0jidzMsh2HtxyptH8fo8HAUlbz5XGZTpViWyLuoQFkGREkbw9WGfFJTGzQnwxI5hC21jm+Sq+yKwJxsjU6TrLOnC6QML6BuCfIYbhoQQN4lB6ghXZiMVIGqWrHDeJSpFESCXCLUC4gl+yCmERwBVDyJuyvCRGQxGM2GZKpGVpTgBDghOgvooM4zRl9CHmIJT9ZmD/k+DsTt3BuUlbi4IbcahJjlAoxSM2nLzAwbHHNkFHj01lqIipabIvqeNypp56XKXXSlqG+yf46hwkxDQUY9605Fd8N2iUFlzOWOpHhdzDJVMKbYwV+A7k0axGK1qpSIWEicZQYwsUn/92+Mg/zLgeKcYA4ND4ZbXL/jQPHF7hmdEN+QJDGYuPoUcx5z3jwl+Wz39ZiZTUNvPUpUCEzocuCGRIaZESYGAvcN47E0/yyHz+gai14yV4QF7Ozs9lj/R+I6tZE123TJRu6MokGAIzCmJkDng6AP/IcIQrmqo3p+m+IrweQ1hh0132GjCsgGoHDWN0bVEgSqj7FuIRwgz4Q4hM2ET9+vvrNzrP/xgWv78x4xbJC//8/z/o6oTUPcYPfCmS7+sThbG8NVi5/iNjxq9P7xZ7iAJ2FeKRqZR9E+x/BPrwx9c7NgSG39TOfqn6Ra8YciJ7sGxFy1rkEkxMGO4b3DyDvMgNhY4bA1pbWk6QfmJcu9mzn7yh+cJqtXmEYaw2CJjdsNiFZ/9K6cy82FLrovQ5TmBazB7nfYNpyLeYiy5FQS4Bcc3fFsvvInW++P55MefEmEXpjI3KpXwe5lO3S+QVF1NU32p4ezXNm4Fgl5wgg1pZSvCJrcT8WaoCFuyuye5SXB8HyHMOnm1fwW0Des5apYczSGKGrHipTUXTWYWUrBkdgMej/nAwxUYU7JIsEXczKxe0H+Xs171sinn7DNrHKQIAl9NSNX5SMgrank+1Qa/V7XVYnaK0U1uVaNntWiXXY4CSLLM6nQ4SDq3kbdStrmg14NCBnl+72wRiWx1nX3uDbrvJ7MNuCwZb7Va90eq1mwhEtHvq4OtgaIAM/e2g7+f0AcvYBQxpMQlc08xYtLb1lhbqR02N2UkR6w45oTDM2GMmvNnbe7Xcbpd0MeFmCHKv5Wq7OqA/jb6wvWG4KN6qFTZM640o1QumRBisYrKwkgBsOn70RZCFge1RUBRzmDFRF9r2E0Mack3GffC07E0SBWGC84c0/gBMM9dpNBnj3wiTBqCxHSA7qAvZCQJFHH5iVp7bndsLWWvWKjVMKD0tuOB8n1hG0aVQw0Zu01vw2NyCsMCrXqhi5ENMbC4qLxbsu0cUQT4PRhVvFgD8MwAw6bo0qvAgWud9afYbKXqi6CPixGtQ5zdZ4chSslJNMo02slghEenDxZMaXYxaUyiCAc4Mkshoq4HZq6uW3cvagBmsf4xGGAfFzjeoXLAMg2X1Xw5POeUPFfRKSeiLCTCa0Y/gCAidkNqkP4BDTT0y7oQ7z0wy41qGR2c7hWolRkeIOM14i79O8NpOPC0ouCa7MC20+tNIyuiSHCCTojtXh9k/mOT0Oo0VRR28PgLwsm2lpgTfuOeokMsHs0gy13JwnZTRh537JC9KSuISjKfUe3ZRU+45zG0d1ot/3VWe9pd6/wtSWEWxWvFJUsgytsvdMbvoMnjR8+2+fkgfczu9+Gz2+oh8vxCAj+IEvV3hPqw8XOTTn97kvYj0gNOZYiQOJ50LdL37CPn26taJd5+bfmjge6NW6IU5ttfb+/sNTWT8SZE+7xzBfpCZxbQiTWI/WblCwfr5z58//zH0RWVKJH0HxMI4g0l7KIU/WQNT3frHG9mGo4BlYLLg3Otpph5hm4DdyNGVP7L24uCanW8kOXz9MfAF6/r3//PPF5/JG4KVuLWwV8i+vcsiEoRnvICXowfLkHO8tTVQU1v9jOHdEQC8RqC7LI8YYLdSX3kN0EW/0OAXk7LlHFZIa+brWFWzdwf/zea7tQtuK74tpbD9F/6iKvbR8EJwB+TerLD4eutYuZAz0GI122XE/Aot40Uoe2dOeuZoEkW2PdgVgJyReQR2D8/gja7omGFL6G5txfkOuwi4HC+gNlqSwwsxqwB4Cesr0qCXnAHPVbsvaJDFmfGKYqfF3Fb8KUowtmgNdWewjBgNDJ8oilHv1s6ajAy/JnERxM0MRQVWLqtHyEvMU0eIPbBsE1HOPNk2u1xDGVKN83GJ6iOsBPV+p9UfdCknMhhs94e9TrfTaHWBjP1Rr921shsCHUNoKIKbre7AqrQW571gvBjWNisxtEro8BnQEme7fXsO9ku3iQaglcgom2G71cBXNKcpX4IHFytozYn7PdTfViMDxHtDVaATkpY5Ydgo5HOz1UwVYHzSjs8+unYAHk6X/XZ3QFsCm7n1CoYafPknO0Ph9YZvIbRLO3vpd1vOKZS6uF7Qyuy0WdAbM1iiLJ1nMJL0eqYQR3iLsotCVjoKZuwcwMaylwqJEjjDgBaRixogc5Iwxe4Ce6cBHb0RsTjG+JjYbY9zsUKQBWKNEcumAKfjbrNdQnXW67Qa0NaAGg3aT+7Ba4YekwYMcRTClorO9imJTfw/dBsah2AhZgoUS+piLgcQSwhVqIDVgX7WjDD3XPyX4xMBnihSYs8yKiu2UXr0QMACVcugq5ZVasB2RETUUCZn1UrsntRgaaHnXMwQo5iSOZ2CiU/TjLjSKJZZezoExyUUnGgTpwbqMYI3+ecstVusVqFHTtQURl2JJ/6TcQyICGJ8FXcescIqMNutMgPCDtw2iuMWmzdE5AyCeM6OKWlKq1QCxEm5XoniRi3Cg6xAA4hWNtgTSUrqVi2L6QeOc6DHwvOR5adOyIxOGY4VM2ILsdFJWsonmmWXgnlKGW4hoODJgAV5isRsJ3WVcm6omcf2x96NvLOy7R3PgftRcG6zwpCsAlbuYUQDLXtjPawi7x7SbvQV9OIqr6VdephlFuk9TvWWvZDVCgt5uZ7a0wqm6e4c9sPqVxKFXm/SHcmuSpLTs1qoN3ZO7/fA33011L1cKKrhPPPiXsecGb/Qvfl6OdGCEUXyVaNe93d+cY6zz0qVbnCnmwVy/R5WU5ypImgeal0D13emI7wjVMFQ9J///veL+Iw2MfvL72g0f8JZQif4GvMHMLVgfPz5/kmv49+0gf6g6MhuUbSsDzWp0Qe/K2o4zLjt2V1e3uD1aFf/eoeJ9afh7x/0xEHUtgd+Y7rT28c7dhn0oFYalBW7p70cxkKwlBW4qyUcGteCW8PTtQrdPWQZBrfbHTQkYKUgKXm1gUkhT1gP7Rq7tZsCoz+Imph8V1UpVPmQzarvKFLgcIG/0c7/rymsy4FE0QHreBnme+G0gqMFSmvUrUtoTxcuHVpSaCSCNNbZBZJmZ0un4ZIpPUPrkdV1aGQvia5TPnHpUz1qwP2OpWMFGuBBLdcGJcjXXTDuljAMORTlSmw0z6bD0Xw2XEwo4oEWZsxFW5g8FBJD52Pl4ySNaxUJVlz2kaZ5Kv+e/xYsKBA8jn5FVWg6skpSzAdG7FN1MOgYHrag4jWIhaDIMJNtYxhwNA0H+9AbdRFcaIXrAPduBV2PVhwwkK5WW51Wu9Kq1jtlq4CbWMg6rRacLFvdYQdI3e4Zurc7BqzjPsylrSbuNmuNNlG82W3ACbiJbUC/1zaAH/WtgMa81e6s2+5bXdlpD8ZT1MZw1ga5bbtmb5lqYZCutiuDqp0B8WFnH9qjbTivN/v4Xi771Qo7uh31Syu82qvDYW3vISce8/VsgZTFFUVPq/X2tJ2jh73YcPu0WM9XO9tgLbfktqNdslqBjjWS4/R6b1BNW8zRlJw/z24CRb3fB5/avvf6dg6tvIZjbCRmk7FHPk1H/emQM+X+wLYsQy+ubfO4w8bNPis038LeFhba9jxI8geJq9XAgL6EyhZhgRGGf0+FyHW+ymKIYOHEaQSEqfbrM3NiVSH+TJJfsNzw2aP7VorUlf/1U1k7IvU8P3/7cnBkyEu6DKeoiL+YJLLIdT2JOsToLDP6IZbhmkhWqGLLylFkTjJa1WWNWRNqi1HWRnStSsq1jOFeIEin/JfgVxqT0BCUecFZpqa2lavVBjTsCVIcarUUEF2J+TD/ssjksymVELyAPAHer8FpWqo0ykiGMNBtVHvdWp27TPasIXIixzrNmvWk0gK3DJmfDJPAHwxtq7VyWkaZbY+jUozLrPPhs41CHcakbE7g2ZXQwLeNhG2Dy6nyIpICkDjvInAS6NDgT4o+rX9kLhZkjfZEnx2MmbAXo6klyVv2TOPIwPKZsR/55/97ggy4mLiO3DdeCoB4ZmaxuF7Rcx7d8biQ/3b64soByVQhX1SWBBIgqZCO8pWsENn7l9AADXrxkP+lvssPMaSuVxVst0cyURC53P2HUBnfLggIeL3fvqm8mvb+ldxz89C9C42QlaMgPaxmvjipAf0WAmxVHpOE9fb+EZKKqENS2/nd+dC/mZ/3n/9+vjGx6DfP+fpgxA9UwuA6A0v/yNrp888Xh8UA4C8iMvD3t/ek2Zam/TOwm0qlT3pYcVZNQje68HAVUWMcVo96cK9y7Xq7kj6GxvrtcjqePOUHkRXMm9uw9WdQCkMgeHIBg7HO0ZDAcNmtBlECUj2Cy64NXDfsR28eNe7WUXhDAMaiQx7Wmn9Zy0mYpSoZOkvCIfrLqCf5RWC4/N+TnwNSljq+j/NXMp7CYszmMZyoFuEmQpm7lNvhdLIK8TzkzM7hXIXqNbTB4eVs2Io8BclmHtjr+tSNpwEtpZexip8yYsqScB6VUCjE58FycjIczWajxURz4CHZV173DjGCJIup17WiuDdOSnQAiuUDiCZTQsZVPvd3nqdcZEvFX1aoZBEHTFqNsGu1BQW85hp4Uy0GM8BWo9dEGdBownvS7oiqoo5+sVLVClaYUbbsct1Bv90CfLQMPYedDmZsqIERcYg2tGEsbSwbnXarY5fDDJXRf912vQUAxp21ak2Z8jda3hqsG4KzBre7xD0aPA1wx1aTcxw+JNYZrMFIY2bF7HK22iKV+H7aw9f9eD2RPnm8XY4wjb0o1dv2jFuMgA2u9zuOBQxcbRdmgL6lrHhO52o73rY8fNeom3dWT281GlkjGAp5igv3s96vly4xJ1HuoR5DjTzWXL2PfQvaz7DemqD5wdwmzsCHgym62OhywKN6MBhgDI7v6mgj3QkTkEX4bKwUc0HJFejdE/Cuu/UM5ggxSdFkuT7lVAwxhb3E0TEGkc80clDz8tkOFVs+Cx5IpzZ2FMlBK+9Zd4/4nijnDhBA9dxffVGyoIr0qAa4RSH0gQEIYiAppkISliLoVAhpAjKnIc84TbMAwNTrgltNVhQKfo4coSVGg7fcJKsrZgQGINkwmjhHIR2qad1+Ck60/atiWGswXmOjmp1d9wZ9BCwohRA0qUKcRJIb25Xq9Qw0Lh2P+CzYF9Ad6p1uxcpgqI1xqpFDXa3WoXACfNfKVtSXvVWBfrpoaRwWJ3QwwXQ+E7OsVE7kMFpAqkVSiZn3zPpdYqVHhkYwLpFDdSHKFUvui1kUc1pPiLwqsMNd8635wTP8eAruWFVwMVLeO8gewvScD8Ikcdo8pCFnmxRNmz2Ji0Nuu7ksLfq+wN9sjcCd11ckANMm8gLjqsBjpicicubP1wDKrIMhRL3BgREUo4s8oFEm386vdylnvPMsn8TL/VXy1+vDh9nTal8+3l6Cy7NnyD9+lX2TdEciQrkBJYD5j0rbLzhDAooJpKhyydbyqJ8PJ2tRz0sA/vrzSc0w/sjwHxTDOH2K0/zllwe4shvtIHy+keUN78wL/LPoES1psJTORyb4KhIK0Y4GuIjXQ3sZvgMbug7st5ujT+KUhbOH6NGwc4/UG1opM5p9uTlo+ZLVglx/t8ytUzryZhO0Gnsh9VrpOOtgGWw1zsFuDhwnDlslMFGp+fjCH3wIu3CT/0dBGljKGv0uWQ0RurGELlZhNLzyGXQIA1gjiZesLwHwZM6i++/BM1vcoYIO8Bucm/66+wU5QbogbSltPzF2AIbp5diKu/l4KgCG6SSXdNJ3xhoAc01nus/Iqs9+b1SKyuK6KAYGWsu8zOpyoj+6OuA59wRGVjEtpm7Z4AYNoNrGKSwKrFTIRAUlXQWZcY1Wq2kICqxlYxlCIuBnF1UyMxpanYaVsIakjRaCHJqtKrAVHBdIjoCeuAyQmv1mQ17cGm6s1bMr2LktxBK36nYWcugwWoaEs4GhHJLr0A9sg1BNOfGw37XyGPuR/sgwvzcYT4a0yTDkG80oPMM2zY6Vkx1wdsBeDrCoxoSVjEtQ713nBhA2bN1a2XzYUwA2B0sZPC3OEYB3IAmi0MZsmYe1HYn75XK7pf8HKYPb79EHOxprtsynMsckt47caUx/2ZoeMfZ5PKaD2hBW1ZA52Y/TIYhp6Emz1zGATTXFTfbW27ZF8u8ZyITrPUbEzCrdbTzEgg4ldoRiaoxU43IlYePy16/8L/KTfqoNEsUPK0KNcgML1j2yIG/Covr8f0EHHBbqnAAhjzCCXOE7h0maVhlQfCcWwwuCLsGROuLBnqFIEwsMfksqkqFIyrx/K+9sEpyyBC4wVl/6wW0XVqpxuQ4xU5JV0PUBcBtaww9EnDXgcCqAr2awPk9hC13Ssc3hMyImaYeF1OW0yM6s8upzjDzOafJqX9FBjqNMZXWtnmbVutXWjVal0WtUaozx5KmBV7tahS04gpug5yuDNVaR6In2X0lWpc0cRAVVqLKSDJRzeyLSIXOiXUEfwJ8GXiD0niO3ZVHfV/KmiKStotIjoqDv/nZhUUpvFAydoQF+UrS1W6OFjCN1tn0TgjwoWy4enC+mfoFfxUzlb1OXiFNuirhjK5fTosItCtKdUVVGjP7h6Ty3m2uHbh7MK0/iq2cYeNSdAdOH/XR7eaXJI52kdOWT8l04+wVcvSoMFwD8t8WkzJwBsUA4t+WQKRTDAN8VIEAvxXf96Pl5Ls8loxkA6FkJQFec8/ElAP7N2THy78CY+i3pLwH3C3HAEjcBaGl67AXxp/IJWBi/eiKhFcOwvzh53X+jWeP15S0EAt89duJAcdZhz4BG1LwMWCZhcwuoxXnw4PKwR459aULFoe+OkywrjDeMqLNrbDi+A2ZqN7/y0TDRGssbOtl7KDR2YbFjmOya9GhqRTUUJsISwuFauHHA2zwck1RQz534tFg4NSr82cVA/lUcK0p7F3+h+JIVjvwipXJBjcziZTx1+rP0T0uFCYaMweUymCSuXRf8fb+8Mx8Ee62N/NuFxMlzny5ypAjdL4Pmh8PJ1KnBzpN2O6wRi0kD4Ixm0CCvYFCG3tDTswJE6fZcEBPy588nSOZRDFFeWngq+gwI66atdklkaxVlF8RjWztqdWg4atD1oqnMsraL4W6HAYadBqOF6yhhWyh8u9V2p96DxoMXBUELNNOW+FodiJQYQwzaFSpj9Jo77W7TQL3bNADudltQi7AKb3f74B4ByXFzjVqjU61U6wovRmncRze71x9SozsBDWo8nNAsmypee1dW0xmOGmx6tqRp8dg8nHZHbDupdDieaEJ+AkxLpEsOA8xKQVcgwLLYtSNqR+NQA7m1tlE8/sBq2MkKxsCbh/t2RbKe5saY8StAQzNgQ93RlHYfYwjAYZk55aQfcZPj0ZTJkxgOU4SGf2M5ZE5GCDZGH2QAuxAQ1EDZw74Q3APEKaLvZNvkHXfA9kANi3u2x6nUM3odG2z++gltUSBX5WMwY7HIu7s/SiNURCQ55/7P2axPISWeRkhyB2Yz9xF8/+2OyRCAogwx3Z/iWwLrRllkj8WIlkjoPEI3kOBLxTxkJ3cp4yiNWSSjpytgwzFKkzb+1UC7UcaENXPZbpoSeUGYkhWIXUoKLlGkKDRC6RyjLoZHVkrydYLUiLSURyX8zRSO/VcMORkpjDjcKK1K/s6ZMTo+yoyoy6AroxtIWZmJFRiMgCZZbSToWNdr5Vqjipqfta49hipG43x+pHnZM4mlgMZ+AR7WJUm8SMFOEhHfXTZe0E4mKoZcDpXybHI8xxQSoc+cw+bbs7ZKHrygeS+EvM7RwxapYFV1zvXKTpV//gkWHi6R95FVQjqgVd9ZBieR5GHPEj30cKQh/LgSRq/3AMB3982QHYRVtPeHZJe9ZQfgq9rU17OrhW+Xy0NCTAA+e5werZmRt3v/K9nI0FF/fLkH60eA9KeQlrRkfAeIEoCVJi+Jr+rhN56lpjNS9eTk/CXgBZSihsZl8D8Hwri2mNS8KhvUrJA/icIuNnqVlMju9YOT6htfD9qQyBxMERWXYIVxUlCULVh7+k5tmb6EQhdoezx7ptTRQXcHVGYBezgc/WIyhjzIgGCzF0wz3I2lcShVhZirpROjbS1kR3u/FRnF4Xnr4PvNn3YW6wNzQ+HptyscZqouZ7HfjoaivCp/d7n2gth1RKRML9zxigAsCtdq4dg9X9O2eTJdhc73wm0g1uvVv04C4GnI4pMoGbPeoBdGjxsdaTfKlOZ3TMdJNDFZ77BCYmxPmAGPVPL1h8OercalEiIAZOqHHpt9RPMK6ZYJfLHIItgQGBvhHB0pSxwFhWBxn91EmJpxSuf53HAGsvUK47lqlU026I8MWLHrN1Q10ERqUg3i3xboQa2s2aoPOpJ5NOiFgAq21aJiSVcDCLeV3tDutltWLfdb6G+3Gi3cWNsK5G4HlCx0rQXtTd8AwN4I3UArQ8oG11VSsrvoA8hiazwYG4YZNMFq0l7E+cSwknHC0m/j/aQmeCuvrQMSRREsetnvz8c9WR22AQQLmVMUAisaMKsFJU7of9AKE4fubmfAyxpaBShYDdvj+eTebBtt/bh1Q6QV8zyo9abny2wxnS0n6kKPvdU8IQdvKe0TimBSvcBEQO/aStt5UIZPiNf+ZYLniqCuPgxEcBCyjwQC14F9q93Odnm2oxvbfqdh1SNrX1uXf/4s/PyZf44KSsfJI8cXLg3YlFFH/uRB727YUPjlVVNOiU8POYyoQzQJDojLaFn34ig+1Mk+HizCa5lflUBhtxR7MpEarUxsTNyHQ1G/7OKWSgmUu7FK4ogSIThnlYCqsIv2WrkMcC2l1TKFvNiYUgCV6Ja4ySSfCvBbqWZylbHDO06rGdlZAj6mGBcJwOIQkwWMHMmYL0CmwrVKeZ4dl5U69petBppF4BlWaJNZLdfUq67R57UGOnXZMNruGBFmWVLNMOCGJ3VsxXrVHkOayr+TdmExDTtj9+EUaTwJ+xiCb6Kmb6noPh/P4FkXOJMH9+wpF+Ig5dfsJCvyqWBcVig5eQp7jDyG0G5W6r4fTznaY+aVXRjJxBvkzXylUsyLv8e3LWzDFMqWpD9k/YDGk1rQ8m5GDi+arzeSpe7+hV7OwOn7mwbAbEBDkHR7DamFFxlhvZycwAVpEapbxtHf/gXoL2+iHnsT+u0tWE1K7/shRyrZYJE3FVS5qG2BziBFe6DPJ7N8f3+J2QwW9Jeay1+etycA/lCd+/U4F8QttKaVVMC8YOX5BdXThwwshb5nz240hDwdZXVASZGhLhKYjhjuYn3BooNimE5VZGCxGsZHfnc4CmoFvLsTWVpH2GsAwreqdxlKt91vvwtfnr96NH8NYjeHgwB3Kzq1HhcutdqyDFblLFR1JP4++VmPslcyz9U6GAg/YJhpgOug1P1uG3ttKqh2q8iVVTZrscGwuMp8yS+Iq8CG0rHd0wK2qrIxK145VgOAZ2M1qkWxhZsIWV/oVjIKgjbF6DXOFZo3nv4vAKtiGvRGQ/t/VIrrFdAgyqRica9fEAHL53cFtg6xxBaZ3Um7Hqx8BW8XFiICN0oNfr4Rnwq1IlyL4LkHAwU08VBc2Pa9WXUrXkQJozyF8xCy1O0vtoxZKYuFHjmuDaBlnbaAYLA04bcFXIY5AvC6bUWzYXB70Gt3SdSyS7QheWrR0IOU6E7XEL2OHjZsLrsw1eq0atWGATAr4wZSchpNJBr3O70hhU3o3IMs3p8ia2rhJGoO8RHywL7tarNf8BDEcb3enA/byxYGkofLXexjO37RjjH8At0fu0aOVuxAXUOevFnPyVRAowMMALZ9YNm135E5BR6Dbdpm0oUv3Kyabhwzt1qbhqn/1L3amHqJKnmiN3wsFfjQoHlE1THjm6aBFT5nnHG/by/ZgHYm7hOOfyTZo0eOUdEOSXCnA7WIe8ikrZzuNpuVVpLFhTLTiHCoPCPKNa982hxUSBoCe7lcKOhwImNLP4WcB7Ugi6EQK0gAG3v6sBO2VCd7wATQl3ND2Csj/Q9jUHc4LLqDluAUJtHyxAL7OYEqSPhox3sm2VC+ZD/bGQm50yxtY4QhoV4GaGnSbJdwy0n5rqZlej9XICfioDmzrWYlw6zY/lUMTVO7sWo5QWHN4IUEgEzOREwDyfD0I4mB0yhhfmJWZ2REswU6NU5Nkv9hS6P8pqwGCZTdIaA7S0CyxqzbcLleLlv9jH627RKg26LOOA3O1e4FQrNtdAjUSY80eQXXS8PXgmzEBMtFkaAhM4o0i3/EZhW8ZvYONnra0CQHx7R8sAxHDw1EgsAd4MbJ7sIAOJ8rKV0ZK4xkVQyWprztBzNnzzC3EwlLLejrzfX8l7tPhT3eFgF4Bs4vN7WYIUuSbcfFT278fFPv+v5IsT2Tn/XyJo/j29V7uffQ3H4EMDxsn8VT/uTI1Sn5JK09AAAgAElEQVRYBEiBKNvVBsBvNMT6YHMZKB3w9Z/fuNTnO4tmkKK/yJamPhiNazam/zEE/jQcp1T4i13srw95Sr55rNEXuM141lf3NeAkd789w7bjSGN5DMpOSDkgpB5V7W5Qlto/RLLt1ZfmjHjH/hdjh5QLwYurOY3fhY3bw5ZgiopaN0vDXKyFXMJs4aLiaLER6QVgK9dnTZh5O4RsZdFs9upHb/4FwsJZAS6Z1bZsroOD/3fJjJp6/VDpBrnQ4wuRc049CyrVlXOyF8TgbWgib8HEns1cVaRWM+5irso4OHHN2H6GVWYw9KDx83g8h+vVZDzRCBiWk1yQF5MxRbE0Ix6PwvwXcKwKeDzsjYdDoiP4KFV8FgXAuWCA43aCqlRyxdxzlP8lESIbWHnPUIuJrVKSlgolJraVojI5XTGdA2OtqYyXS9w5KGUuXKUKE0v4GXTbPagpa1Zu1CACZggBBroIk2s3ys0a4mpAfG6CcG3fwLiqtes062g02LNutEm7asPGkmIkA+R2q9tHPUy1Uqc9GKBV3WnDUQHDZ2ep1juGw/UGLtEZDHv9Ua/ZtRfMAXiGyEgB3xpHl9Wwyw16tufD8rBaXg5LO3rRxt1tD76hPHoBSVdaWtkwfmwjBfF2A+ym9SVNqJlzDE4DzUFwQ6BoazOGRvZmzTdcIrTpbLUYhx0f86LRrEYfhIXwVP1qYekUGUz9/mSJ5sjQfpiqZJ6ih20XHttB1DcInmEyDik36FtjmVnb88azX4BtuOTHyD65TC2xB388LnbL6br869ezaM5W/cCvBSu2pr3PmFz8DBHwuRCj437939bTTEOiqRrW4wKNo1Emaqj8wN04eF5S6+TGjsWiIijo7sHajuWdyjM2ZOTNiR1gwkFvgiSjDKQqznQrXhvX6GzFFrABZyWrkL3FYpcKaiRu8uQVJT01Q32Nm8AFY0NAVqq2p0zr1RQVa5VN61TqZFhel0swy4gfNCafqOYk9rUXhtPqpFWnhzojmTQwboHMVQfJulHP0gyeXOW0xg+f7QLatYbhfprBSa5qfxWnmruDiprvasWTilbJIpXGsbKswDfnk7KNM4MuPJSZccOKGbYrIbKFuuPIO8xsWStMIh8jiDEfFRyYiz4CRjpSoVR4dkcYOK+V2KEoZCn+WqSlNXRQHkgRwj9+EGXP19cgQ/J83wsb0QY8bMGG+Dz2m+8viGAwjGKFjE60/XgMLWj2o5HqExygfAYM9bAA+E5HrHfpfW4KMWAB/KoxsFjRr28+1mWa3sfnpzwvbk60gvPV65ud641rO+eVVKoPtapR2X7CKoMA/BUA+OsfSoxxSVKxPj//fHBW/Cdg/fubQv5ePa3p9QZp1g1yZzScr7LF3u/FzbKaYLM/w8rEqmNFDvMb6M9npiGQDH2+XuVydb4YALMNzfGw3Z63pnfATMNUGTtvraI+KPtmK3Pcw46pqii1wZaxymO73lm5SRY1Gn7iP4MKw/HzxgF4uaUNksgxfwPwPtCryU2RuBhOB+tHBayu9w6EVgdg5uo8wFjnGEiixF5OFmDBuraJALzabhbzoDLScm5Vu+pop37D42ohHpduHZ3quS2v5D2jHkNgD/LlJ3DFmo4Gw/lkOJqoET2fSatiK+549v9tQdPqsDcadA2AI1uY5D6bCIBTOM7ZyvmrAP91rpqK+X6GT23hZw5TpohxaYFsEYVxHtp3JYbSwdEIEpbYdujaS6MLlsKoCFZHJQo+uezFBtQ0PYojW60aJag4Ghgf05ajjjGwbfo7bfjlNxqG1VhPOEBDlE0lYzyTrU3VlhULzWqlXm3C7IPpDtI/IWi4225Ph1BJtUHpamKmDE1yA8rlrnraHauwMbTugbldb3SH9XoXFXGHcU0UTpHiBBkTJERs5hqATe0gOG8mGztKtxdQK6+n7XK1v27XFMxha2gF8eFMCKa5+uFin5o3z9+6SAVPsRm0UDNOku3gXur4xfYPucWLGZnyi9lqt1ssd3aHSu1Ygla/WijuYz6VNSbkTJoHM9IJ/WimGI8Ho8ekojeAaRd5A2yZ2PZtPgWriywBq41H1EH1oWODDoodbDK0VbLvtlP7vN/rcAO2RfZnPo7zP59zT8Xc089Ca7adjvvwWKnEnin7k6dnqoIZ+MEFnAYeWIUZpyu3JSGu0iVgncyDp5T5lBfe1iUUvhH1v0lWUswBdcF2FGUlMrsgi0UDxmAho4ZYNC6YS1eg4ymyRWtnVm3PWG9XinKVrNYNNA2fYk2FEVLCIE62qjFsjTU5jktlJEIC151tbfCeWmFc5J/t78UsgeYmrobwBkQ+lO34rMZxtZQv+64CrmHU/5Rims3BfZubXo969OwgK7aR34QGUNOO9bbtWNEhqlQQuo0GUtawnUO1Wa607ONiIFzFhyvDyBphZxxqc2RdBQCXa5WInp5xWpU7pl0Z1LQ0LjZKObSfoyoSSgvPTzKSLBZBabTSviKJdCEXrKztU44GAYKl42K+6Dy6Qv6RBfEXAFstnBToQVbMc5SAfRg8LrEFC37Wkl0//3ikL7gJ5d7DfvnbTdwsFKohwJbkZtvrUrKE6hnUK5CoKX69KETJzqcDNKD3xrS9dzCh7Zezes/vH7JlRIUs84/bm11SnspsA7MUxrgYlaqhIyEZeIsxr/1DsPzX749XTm8xE35/+/ht5axcnz8/xJUG84rn/LbC9g3Wlrh5Gne4q5YB8z+4Ldyf/R2RR59fFBm90l2SA3J7jPvjYbO1mnfv1gYI60WUI8tiADMHwghNOGvkC1hGsLrSDy+hd305otV1Oe9hhmA3x5A5ORRhBdvsVlvcIFPMMeU9PnTEgOSdygYrOricAZXtcWFYfABS7pfDzZJqE2AwcJ7Ii1avFcKHwzbAHECZmqctKTJoeW8wF9uINLp14RMlofKFXD88Ih+npbA6DKjt9jdoPgN119gRrClLYYPa1u01PTjIfFEQAyMcZsGjer6F4+ZGfpSrBynbjbjmSKcd2dI5FtVKbUiUxHaeoewUPWnKUiC9GUKv4qdOf9gejKulrGE79bRUwSgXxWxE0tXz868n2cM+y8gXXoagZJUbZYomCxi+MRm9IKVIiW5ChUglbzEPDUuM9cvWwJRMU/oWJSDJpFW4H2BYRzd/WyHTWklrXoLwJFTGIJxWZYVv+37ymxnZWgd7ugaBh1wBa612Az+2alm53qyVaTBt16qjXralqWeFQ8fwBB6PIFiLW03MNZjuNq0e7sE6s0Yhc3/YGkJy3Kz3mrUGjCuQDgFmV516KGVBID8B0iBseSjzAuUYdDg7wBb7897e1x2oibfrcT8/4lNygAcID9XTBWvHy6ctBOfzyytSrF9ebRML5Rx4WD4jXp3tCIHRjB0vOEDmpHZhS0dv6rmT8+zYXJNDL6k6mfYkIsw8bESOW/INxy+2ZUOKxYR7MoRSInt5ShPP0LYW0s4RA2kv2WAyx9+HvYlVyuNJD/ytYa836sGna73oY9yg3LnMUPb/DICj/M/K6e1MJYgtC7PVeDjt9Ox1NCRKCmlevkj56NcvrLyBgVXwCin2IkojTPKFPD5HZGgGIRkq5Ytu2oAWZpyiEa30CHdLjsnOypJgUMFqFcMSUKfhqAW8B36WSmX8S0jOgozIHmS5HkUVJIlkcaUsC+0wI64qkCGTgTpMQezaWbkUk6CVlWNRGn3mmqT0D9Gxz8BOppPYH6scSMdZJa4UozycRUqPuGa5bucLiEdOOGYvMYfRbqtqII+ozwo9RKo1xkdU7UPRxAiGcZ/2m30GkHSipjlnzTU8vWAKwlaUdhJJMUV+d4VZGHhZZIXNZlgWB1PxfCGto0EOPTLGtBg8oew31HQHLhpsFUSzJrvaVVpyEy9gfMVKP682dBQhrwJKat/I2+Y+B5cQ8Njy6IT8eOQveJF7PF/+OocnRDVclM1wIqMXfVXsaj3+iKrf28W9jE8yclTmggEu2Vcvb1QO368n+nQoGYnGzx/vcuO4ecyeoPfthWXwuxWoyk14VUeYzCpQnoHFzOsN7Gi6Wb1DjqTQBU9PknoJqYHCacQe0o3yzeN935Hv+0avKwPg95fPlxtTekEFuzEKwRlX6CCfDFHpXoXR7uF0Ikayj3zyNEA/OfNKHWtZa/GFg/HVwV48dP2ZHwVIB0jvYI/Ftt56j0pZzGn887HzQXUwgxh2OzGpSdbaqyRGTCx+Bit1x3tlB23L+NUd0t43pH9tWXAQhzVLxmQZYqmNOtH/A8AG4BzfsT7WBSQ63ngFrME0SGG4q82KzWfRrfH3HalZaG2DlgPnzEB/puboO81wseLjeky5V8t/G3mFpGL6ItvqORgMMclzS4ZRf6QYpLED8CicbLntDofwI6AvUsysd3gYFMWUUQc6F/xj80UmlOVqbVjt2Q6aHzEwJekckCRqDRZKlEHICwADphKMduiy75GvweJBBQjy4vnHICORqSA8gCiFZIyh7fRBPKmzCd1k6xhZDsxtJa0KjkNNcElrtvA0kCqHhnWdTkQt4jDILHTvbZOi1WmzjW1w2qFe2IpjWlHDBXM8pIHmoGuXbDebKJ9BVwVRDJM40cBalDUDzJFv0QefetAdjG0jNEQpueK2aAHJ92qvSHDK6uzI5YG1AFGBLKfjlZ7y9Bugx5wmMkeQJ6DVhW4YbC26gfP4IZlhtYYXNZjUaIXDMlVNG+z+tpouu3vbBpbV1KAvRKeW0HgSTthEMCiCiR1j2cfA43w66PVHs6VfatAbTSgyHsH2w57vALKnKaKP4abS6tg7muNEL1fM/8w2Fz6/3XZ9WJ+2u9P2xMHRfj0f93u9ZqNSqjQMLWl2Cqvh3K9fjGcvxS5xKSmrACQhkoaKODrEYioyVUdZRlSRYgCZV9lZDJ6WJY99+m7Q8LiLXXeK3BGQFeJIE2OPTkLnBoyrMlIKM+px2YFO2Y7mBpHhnYajHoBdjcsEsDR+ZCi65yVhOC37Uc89QCyfTKZMUFSEO0uAiegVyLKS7GW7PEKi4PwYKUyQKQgF7jZoWBaROGnQWkJvuFZT1kmjXqFTXIu6Y5G7SPSqVhM01hG9qJRF8MZYl9tjtwdjTzOjEVjiGw3x1xCPwISkQgqNn3200pBzLMpypNl9Sc4q8v8gopK7qbgGdcpglQbySOA5a62JkpA9ERcDB8AB2Ee914C2Hjzo0QsE4lNI+cWPBrv2qbmo7APSuoQJ6kFDjcsBW1/KFm6UAoN8ZfWlrDvkAY00QQXSv70LBtHyvd8ZAXxGj1rJQ/bb1x/MfW/w7cBFRY1m+MGLBExEXbGe4cn88ZssrA+Qtz68hPb2NcpbCp1YNIfZskbHdstuy3V9f6GJtXKJVNQrBepMQ7+L4PYE6RF5WEJjhgufH68f3fDBUQkBU4o2ohk06tj9cX8WcHN+RpRFycpIueP1SCoI2KeogB2BVSg/5sV7p0vTqt7uZ7U/HYGcBnh0zN2TDEZ+ltsAb6kv2XnGw8oxWCIlSDiJvprNUTzCRratKDwbTUaZc2GBBckKYtCHRdf+cN5v5OTlye8Y8y5CH3vluij4WSslb6WvywcAM4ln5W4hK1hvycnSI5qWVtQsMAJmLoEtlcgpmNrCCLkJpCTkXI3Hng4P+dGA4QUG0f3RwApX2AiCIlJy85y8KNDBl13KEZivY66Xq7UwumWUmDvsO2mGZroMZ8XqxmR1Mivd3sYbgBgH825E/pAeMGHsXJoEt9sMTkaIa7XzIKSk0wILDNu2N9BZIzWL5GpDWuQeVjNF1TDZ1Wpm2QASkStA6jIpN1ipgvUfhr9t+HbZV+iagLaNZqff7HVgVo2SDamIQ5chd3uw2er3hpwl42RrnC12NXhhGjS3Bgbf8N2C+fVwPIIvFbr/48EAPes5jih0aI4r0hJ0DDFQAeK583GLROPz4SSthe3Cgcr4nGAvq/yRsANEz2W1WcqQ2g64/Q6A7ju01WJNTcFK20j4va15xIBTDxL1jOaYC/EL5ti4QUZsBe8c5tEEYoiXpjxq7LiyY4gCY7qWAKUZ5GGQjKZ8vz9Ecxvlfz2pxciR7DSa9VJ9NucHd7fdLRfb9Xq/hon77nA62HOwan+76C63k+ncboEOFY1qWTYQGIiWPBERKKMDhwMMOTFJkSSeDitkK6VQTkUej+TYARMoEbmK0BBxrEzdTUnim0IxBZEQRpgxa7oohDXGiipKSS0uZY1QEqZlWTcrSwChDrifrBylYEODbcXwo0wG1bF0x9AOwaIajk8E4TRzXa5iI5iClIA6JVI0fC05QsYhysAM9gFi2ZvkZWL18Kpm7wlujlRUZYDXSiZOY4N6O7SIuO20A7VqZ7FJ7YkRBGB8FGpVxkbZ1rWeImyUjyLjvDqBoQoBOA8GuX24KuCfpSFK8ft7SZsbxhvzdVSYsHxYJMmC31Ykspez5QDfSVCjKdqDbDrmV/+4eiDu+V/1m3sheyUMLA0ADXngiYolkqBvjAhnG/rsAp3HsJjXg3H07fV2vF8dWVl6vtxeFHbwFtKC1IB++aAGys6/v5LETHSGKuiNLeOPr1dypEJosNBYVS6spfF3VLrvyi8Er1nZDa9+edwkAVgV8fuHk59fzt43V54iIZUu2Y9+/AEqDPvHZ3k+uePV2ctbyJBO/uJJ+bs/XDAbVsQFgpbZMLhfWUUftt+EaqErqdI7FATnq92VBs1sQeskAMbfD+JVU0Uh1w8sXhv71JPVvN5KELUTS0asrN2OTe3txg09dlvvP+9WW1cTU3+Mka9KDCk+VWkf9sLfneOvyuUdvUBI0mKt7qutSl8gNIKJZ0sfPHPZpMhZJc56tQyOWOpAL2YspEKesChY8PUg91UAzEh3lDBjofB4OJgNDAeGfS6XrHgJwDD7JwQPx/anycDWDtvzF0sZAlS4uS08g8H6/JSTk2BelrCF4vMzoglz1SYBuBqs6oHNMe12koixd6kSYWNvBhbdWy7Y4fOvrgSR/AFN6CSJ3PCHyTAISQQO43JV2NJzocu4lFHsFBYQqCIrdFwAzDJXiQBcrz8AuMzuNXf8YqRUaEAEXRRnyYbbTeQ2MQrR0Bas6p6VeFA6WXE8qtaarHQhe7LSedBRDY1+NYpoclYh6TTIhlcXEimajVZ/+DCnphPXYAr2G8W3s4XqVRhyrFagVYOtuLDfDWlPNztc7POxJz8CYy4KLWA8xzXkTFkADlcZvq0M3pZ2qC5n1Lzb9hCxHtg3BmrgYiVf8cWCRxbleyvQuSl1osh4hvwoDT4YHD3lho3cvtF4NhGBAEPi6ZAZEYidWozRdrfdHrhuw/Fs3k0rcQ83NZpOur1RH20XXBPu6bQsx8G7XS+mC9s37NcDFMaw5aEB/GYJ7dSg26yDhJeWor+SDxXeEHEgTINkVGAYGiomSHUTadEluUtKj5TnCh8pVinWHhEg4fKZIk2SS2xIU4Fcci0sICGLC+RDGNKUI9WCEQfAonaRXY160itdMqtZKJfhrO5DYz9VmY2UxYpvyjK/ftgV2GPMp3kFRzzcNAGMoEUZFMO9u0K9scjKsTpPciwrhA4+5gCqQIu04cCQh7vPclateWYEWjh0iiMit6p+qiMAtFKF5RdiWcp1ZEjYFauo1eMCAwPtrmJ+hqq2VMBb24pXn3WHTAx4w5c0SZARSDCH/n4b84FkpUI5pdyJhGk23SK+DyzywWz/cXG8/YZeDTEfYMzy9/qokA/KXBDrGVUeroIa2YGGbGGEGBCHX16ttL1cXgyAUVa+WqUZ5Ex3IXDwhL6DcH29vhINmcZrCKrwXP4C2HwndioYiXD7+S4XS1TH6HPzXILyx7sbXL6rln4hjMMhizfyznxfXu4d3XE9vSvTJaj63fMHpLsJf68oS0EyUZnr6HtRP+188Q3MUdCpfvPxdjsetJywYc3buZ3QPsC+RdlLxzVwenc4G5KeJEuk4pI3djyfj/8C4P3psndIFv3a7uDERPbD5bSdz9aHs8uKNTQGQMurno3Ag9W5zrneqsK1BQqwSiTdkq/lAExtE8hhmCzDw3qLwma/W4fcdHlykekFNtkZcROqcFVDr3nV3UrpCxwnS8LsyUebMEf2ce9+RcdpuDoQgaVBWsyVurTwWlhmhlPxncm2Wgzh+TTUsI+BO+Mho4CV4Tf+G4ANfZ+iRM5+MQPBMAV2BH4EmIMmka81oRxq1t0yQSoSAmlMLSf9iVju0uImKniwu4tD6DNPGmXi1raUKhnuSzhSYj/bPoKZW2MmZTavbS1AZw7UTqqNvWGYqDdo6xNMdctsxdHXAJHDbLUxn6YsomjZNRu2ziA+jnVGFRNt/NHVUfVmF5ZcIGlh+ls35G0ZgLI5behMmjQq454MIvu0FUF4RMuKP+Q1VRG22OoNICchyavd7qOZS+rbAMZUYzQphnM4sjAkYrXaHaxAXMx3+FDczpeX+3FDljSmWeR9ik/CVjbJJ/j5CGXfARaudsStF1tvoTAukSQpecGBy4CjR6GJYl3j4HQ521xZEZKqb1azMYTmYJjN6POx2NB4yyre2ciK3YE9DzuOev2JPXy0WUbDdpctl2nLDo72iC2WMfxO2200+u1rf0ALLjiqM/gE8ur1ejTZgpqx0eBov117mQ8BP/kS6Gs3GPMHcydaTgXnLYpH5SyZySEyRquapWLhYSxB84nY8TMOTK3SYxIiwbBgmS1VN3gDAJfyxPsUOM0SD84fXvPRGFNwmfpHhvNlN8DgLNjOBoBVaCqN/ovMpsnr8gSkTEOZpJJF5UIZlTNRm5tQ4BR2sown4zY0LTNeMZO8l3+TkUZAOkEd5U2cwiZen8rABBtXVtb4BBCAm8zfptZPE52mPWT7rJQbsP2oV1KwHWsZ44/wmsetBprcGaRXnBpl/nr6tiQGh53uZNz2FHNBHuyOWSCQuK0KGg4lqLk493dv6sITCNMQPrGtXYh/XELL9PKvGnj/12wYFeHpqmEw8QPN5xOqO4T3cZSJzxO4zyiHiWRvCGuAghbNXE5VGUL/SrA7szYO1pQ0xML51Clp0MuIohfidPDE8n4yOVr2AwjWBqN39bE/P9mA/ny7v/GC7zKLhHOXMov43dD4DsGwes9S+r7QbePuDefLyZ6ZwezljHPOmHYzQ8aTGrnRUM4qqM6nx4sWWviMRuZlsMZcrTYVehqselA60BcvFyti+317MpzeG3CeuJ+h1wEAmDYdbFgf3Vyafe4zC3N2xQ+6CcoxDwdbf+arA0hxVCPv8TTg1BHun34dtgiQRXbwdCbUvMJZmhsFy2lvBDo7eknXgn0wwHQvzI27YgaRFDMUl5sDu9c7VNjE+J1CFHfB9WPlwCu9018nlt6rlfOwHsbVkHVOGHTHFZRhhBO1DzHx1aqpFGDGzIKFhRDCxxB4PBj1x4M0LidYZwpPLBjQwys+uw3W09N3FxrpwIwis+K3Xq00ayH3O1+QFU/iQ5xEMn/7LILo6K4cnqpGvYJceIpRmeGxSHFPQv47KxNyTCPD3SQhkYM+RcBoihYrVSXBJkHZRAcFEKptrWOtY6UwdvRcbKh0su+GsLVQ/ZZVqtRATIFgE+07NApDaxosWNT49LSs1ludWrWthIcuIyfsRDsuVMXuqsnkxEGnCTYXKoxWt992ilizTQoXZs8ttLExLR72uiNqdbEtGvKnAVysZiuUgrYfvN5OOB7Jn7bDki2Zx2jmsDtcb5fj+X7a7S9QXNzu1xNDnBRtTGe1jQ5imnFRFscQz/lkSlm6Eo49CFnxJKB+zRebzdx7KQghmTOFhK1pVMkwVbMafjCdIYzJbmsyGMBha0AD63Hr16+nrlXH88mQec3QU+P5dXp4WQaK6rCNCJInRrPldIB952y5pqsrpP082L0itiIZLS3bLWxBJBvBxLtVr2bS/YqxFblGuBQwVYCThKGuALEoHXCULwkvFDOBnjYr4DhiSYxMBk+BwhXIWMCta3tJqUyIA/QDvOTR8o7paSgI0a2poPlcKycEMvaFEVhMDljCJm+ZLCoNhO3wbLDFHRS7wdELCiq6blIGjf1n8p1bGCcSFYmdnX1PZqmnLXrKX1Ry4wy2vNkgYIYUiVkAYli1cqdYrw1qFfpiNquw6apBzlStpEW3scqX5AciO0wIqtifwhd/wB7T7C88tkzy8gm2layEuQ1y7XGasvOAHnrJLgcDXKYtabQvAP77xEj4UAFfAvf5cnL85XcPHuBu1TGHoUc3/K7I4Dt9OIha0h+90OJDGmD2qN1b68UTIBhZaJXq5f5G3w2ZMb+8v4gN/e5TYQggSOpibKGd95eTFpD1VeBKvBZvi01vz+lFHCJqZCuIP8SC/qBbtRXq0BEd6fhjGKfJLyEZBliY4EqkdVE1DNxj5vnlf0jkt7teL+1oUHqeHsDLmz8gOfl0PO/RN8AcHa+i2t1n9vAvVg7g1WfByxa0V9vaCoT7u9wv6mpfDntYT++mK3WjT0o7PATTEHwVwlL5BIEUitvtwXHXEJTwqn614y9/1CROjendzgfQu83u79Oej+/IyCZ2oA9b2f1hbLclxxoV8G7PSnjl/tVu1v9vSjXb4AJoBcdjvfQAxPmDWQPiFZNv5To5nXNZnE6GYmAJgBGYy0QGeAQPRt3hqGzQZVveCP6AzIOLU2QPPj39egpWRjl3hH3OPRfyv+IqMKxedU4jbH1LQR5SwObWeS+2gBXoo+B5pXLegTttgXzVmOqnGN7y8twPTkfOVU3Zx0I+fFHYi80xygKICBNVv9I1soIpqYOtXbhqCbojkJgKrG1UPIC1yhFbrQFdSLVcrsrCukJmDRbOegMM0mqTWXOowEqliq1PDbBmhMjgUrf7IGPRmAszYcOHoRXIg2G/w/Z0r11n8kOn465d3TZ8jEAGKzettuv2oY2CZ1dn0O327c6qjb7h8XhMvRO2Txuwm+29lzoeumKSDTD0OL/lUOEAACAASURBVJ52my1iB9HqwdTrdLzQlcCO+jO6MWsclSIdrGeGuSu4h6wNgGF6RUdMiOBFvGeDGs1heo/PmUIMerdd1A606Zg1Mgti15rP4ZmFbgsFbgP2W2yL135+LoyswN2u4P4xABkNsq3RdGrbjf6kS012tz/uNDsIiuy3h93BdAgzTViIrGA8oyhQGZGgPX08rLe+yZbaf22H+9Bq61atWgPnoFj8joN3L6y05L6LsWaTwSALGX6BiKWFv0QWfhSaqKk4CREdIzGVid0gohR5zlNgdRW/DTLF6HWfKfWPlS0GuRKJ0mJLZyzVqcSV/zTJVpwsZ2m9VrH9JumGRFWaO5fzcob1aMTIw49jP+7/Mq+jWIoG2JTZp3qWeoz8URS0yJtRiRfhYkKXy6JoVavdas22OA23izNgRj5EjBkwnaxiPpkypX+ke1fUQjJMTrkRqDNVIi1qZl4uRwLgkF6pNOgCHE8YBV3i7B6bjHwuKokZD75ZjAUiLhWiH4F5FVqdt7NMmgIny0nQF3ohk6xloIKS+Bhmv4QmEp9R717EvdIQ2X45n29vL+eTBw2jBva4B8NdEPjfNQW+G0ICWm9WPBtcWh2KGzLsvDo842LsVdulrJh9v6L+tQswGcHLaF7hjQXvXYgNrL0bGMO8y6pmFsR3Gk9jJAzwh+kXOuqsgO37nluG6/F8YkvszHY7kPZ6PfIfowYNXEk9g9SIjpzn279Z0FQaQQl5dWcSvKxnQ8XzgfqkvWM8opVxmyfOna2wvUlHiak8wPYgAIbLAT+ie8Zk2AVe0cw2zL6fDIAPm9X2hD8AgOmMeWb5uzvIqBrOXZrmGlZjvrvbHmjadT7vyeVGf3on7dLWk4rFucbqZ/cLpyDWvGEI7PhrV0aXwCpqsqA1tAOuGxLvbGGxBQdt6MOeGpPVXowu6pCdTy2RyXo9Q9dws5WtCMRPqxV9PtSJJguaDcM5rQoXSythuIIOJpNBfzxhFJJ96QuAXQ9sEGyLYHswqSVRtZJUoidHRftkFZ+e6MIR8DcnN1/D6Fyx+BQbilQqzbpTsHIUMWrp41guLoSPPgZsyDAUWTKfekWiqRtlgCw94jyLkyzwORjVXoIyH+3lOIITMSURJTYFBdcYNXtuHXWgLGhSWnoVkNWUZGXW5QpmpxuRd5rLnLHxfMAuUnO4DCbq7sWlzCppW9BqMS0bMA+MsK+vlCFEhiV+3WqErAaKdFtDY/h6cPzbRcO1YcVxo9kfI8sJiqXh0LC6122SNt2qldNmD4PjWrvbNphv1hq17rhdzMfFxqDbQofX3qbeGBFITCMcr+eTGXh7YDKAxn8/Ha9W7u7p0GEYfdgavtohqV0wNp/cMHO7yQb04SBa9IqGa8s5ZiAr7vPEK5jPV/JYJymLmcNW4eLrcArvVji92Pkr2+oZCg9hoTWZTwfLUX+2GPXps4Ws4+bPX/kRiQmT2XLcR3jiCHHGg3GzPxkt+osJ5FvD6ZD/wE5odmGp1esPDFJ7iAjh/UyXWyaLrhcrq4o3J1c17Hfe80K8y3ELm214iwxhyQIzN5D9CrYHKNo+kXmHGpAaICdS05J1j02d3DoKsIuEUVZcraB/ndfkGcVYXDK4yWHbZ9fGcVsAWVd+xyi85YIcKSoi5q7VA0qiOKsm3wplWlJWmLBQYfO5TME7S9CU/lfMAW1klaiWSS2c0jqLTWgcqsJgeFqVIudos+EUydACdwuVs+0WUJJm6PhUYQWSKU4Zjp5FToZcERSyJMFK5qeNEvwUZXotQfe53oJ+D17VaNnU08Lzz2fyQOJKlezHZruSltFjIiXSvjTrgmLDYLjZxcyWotxLd+d50sWnZwUylJllDO/MDO2KvAFwCZ7ZYNAXnwsJYBhUuR9n506dqJ05kdpLDpGtujvDCqzSBgZ71sLHE2Dm6NQsGk++3B4KJp5IIj5dkBJ0C6gLCFPhS4n+FS3qt1cmE74gt0GeWbDbIkuKuQysJCEd5njXUxKRxITK9/3jE2NdlMBvpE87Ot9f37xOvr/Jakshgpj/8mZfXhnqhJzhF+U03UWROl4Ufnw9sYRHJxg2m17/X1w0dKYF9vniLpxoRSsR6kQrDrTJIIzG4oBHj/MpNbrhleOA+bp3SEXBDTLbjV73vFtiLKTF3NCw7D4dAq6f7ufj/XLwBvlZbgd4K15edtPJhmw41KIwAsH9H05eh+PRP8heoEzv9MtmjXY084pB42Z2hCHp5Sje1jEInYDFJ7qGnLwKVsAilE3r/WkHdN791Z/e80ZZ66JNSJmSQf5qu5nPVmtad21o7oGc9+VO/llb3oZdY8/sJppCr+gLPWUUw3j00Au7hT/EnrPR2MqUET0Whox5R0QSC2XwomezgZVgCK0f1WG8g1DvAtUPWC9sCYMohIly8jCyctiw92eh8PM5H9eTWtasVD3QRlY4mM2pAgG5RGZ09IgFyzGFoCKizbStBUnB52deYpRyUd4+rGnwYIebPvpk+RhudlFcSLNqamDMsPZM2kNu5fNusCVCLJCZvxUq4m6VEvoDlEB2td07WDXA7rRcZA2CtBwsIVYJVxt1GhRWgMfV5qNSpsoTwehlEFKiBmyEs0ot4t4fxgZoMGbwxWzV681OHQALyy1D2na3xyAiJC8rfrHTa7R6HAMDZBHtxF42AhvZ+EuiYtnK6g4kJF2wwAaNbr9N7S0inDq9QXtEkvI0BHRt9gd6fRy3c5hzeKIRnGo2u6N9PiTrs105hjh21G9tz7kXh2GHdq/Cp8GOtuMNZlvY39mxhzHt1HZo3RGq8ek8pGjPrD6dT+cb+MHIaku5TfxxMRu387+KU/Sr2ZaZDLH/gxHmBK4eownMq6F2GmAQgq5M318fpkvaCczAvr7D33qB4xj+1t+zmO3+clovg9KB4kfbqR8YIrm0bcCgYzuiepqKhRBR1hTL7iOJPTU+cq9KtkHlnOXWWZpfppUHuRdXS9h6FmdKgqYij+yi5wPj+KYu1pliqJgLioOQqCA0h2PNeEHSYq9ZpEPQssr02oKHc7lWLkZlUhRT2mFKtqTWdpTJQTLvDadIA6MoH0mAm+TRFdfl6NpVAwXbQDEz9McGF8p7xEo6vy3PHCp+eO21ie0jFnIf7ZJJpYa5jb2Y+Z8uQkygfE5KFUj4aA1LgUG10XJVkygUGPdkfGZxFW5mhqs59xEQWYym0+CuJ1G5QtGiFbsYAyNVOXJfSxLvfog6hd4m+6VHtjrVvmTpRRqRFaRnwspRIj70oAP96ESm7z2QtG5EEgCwaj/HzovsccSrAB1aDWjDmevt6qofeGa9hxAH5hiSPUWHLCUE3gmggljGFxKDlTMsdbGMteySBHK71RfRqHUxu4iylhDnBM4lI43Y+b1zAuthFHh+IaIC++2TV/RgMV/FC2d3XSJhSoCBhihClUx4JnYTUq83nx7fNBe+Xv0lV0yD71IuZ42WkdF6Itr7C6zK+nIxZDzczjtsk9T35zSYBlzb/ZkYC6HlDXd/Fbr7Q8Huwb2nMVzYi+1F+TH8pw/UNR9d33zw7wGAD94BP8lrWgC8Z/9vg9r4jNTVjYhcGC6fHIBJAcNNrN0pc69OIEAfdBm14cjGkkGSWNjr3dJdP4C+s8VSacBi0HzHMagOhh0/vH1HMqF0JeeYa+WYDvwTOEGDQ9Mo5CJYyxrsZb5PL5B/VZCDIACYneZc/v/oxJE1yvWsVq56FoOmwOSu0B4/og74EatNyaK7vKodJu5nicGp6gkCSoulXOBKp/Q5Sr0/mJGJBSMjLjyRs7wA5CU15kJOWuyT5tgptGpwFzmOQuWcyMshjTxCVv4I5aqymwxjy1R4VmRRoMVRHBuck7DTx26ilUolu07KYTN7jJSQpAx1rZYZakM+dtvZWshdGgzrbcYad5td+HO14VqNyONugwLkVhPWX0hYhNQYhpu1dgfhEgh2gkpq0B5MxgAsGmhgko8+9ZSxmEruZHfmdNmql7JGjhj82piDApoijnnOfsLQ7HTYyWuVE2HlF6/UlUYhzFbzdLSUPyrZ+zNQEJzwhwMPF4PpB2I2+8WnhE2apZLCZovJaDYdTUZTJ3qRPj3pD5RNjaQukrfYjrHz8GqQpsYdC74wtprPluEii8l0DebERv54W/rjbPYysiV3gx0rPHxQ/XvNRgOkIhIN4Pvh2YZFujqXyyU3oiJ9qhQ8EKFoYmO3BMTMsjg0m78lN6A0iMuLA5XRfiqDS+IAF93dmIxqmT7hvCxmoQpA5Sw29TZywnGuHT1JiXZU2sWiiHSyVmg1u/lmmDwncXgGTnLUTsKDe0ulrBST2iDOF+KD0e3hqIWmYo8Iqjy0t/I70UeQ1LWEgclR/hfTfZ/zEcrcrJRSZNxsM3ZbSWNQG1QpxSfN0WX5lbI96Vzes5LQXM7n6HJFrxSsC1mFXmJJxI0B2/0RX2K9Ez9Yph3krI4FWI3Qg5U2B9rJERdYAh4whwQQE4EJEfiCJuwFch0BhrrSl5tDiCbCV1XA+lkBh5z8yneaVlNC0auEw4bNHwa1r8xFIHnrTX5cd+mPiL93/fTqHtJvr/4HhQXKZlpBEvdQGdPj+YUs7OtNM92jP2bSqgSs7AhcL3ThYAWqPcj1LwAW6/mbHY7npW41P/5nabGYZwgjMI2Rz6SP39xVWk4dvEv88Ui18RGGBWzvn3X+VbpiA0AwzC9HibTPBGCg+AXU4/Pr/aRtBNvaaDgc9cvpLOtMIGqgZ7PXAeN5hEYcHYBhby16tOucGLDEzHaJpXb7/d8ADE0WCGu7AMBcDkNnGk5HdKbeoYVIOtfJVkpbNY60EvbkozVLErj+L5ngQCaNYHkJADYkXjClR4qkeSBBc52bzanlVDLdeARnSuqE3Q56PJ8NrQYeGQDb4lZHcWpoUsxFzIoxBIqen56f8pFBL5DXI9VzuegJ/hz5uFVrgjMc52UmCHk9PzcBgN2wKH6wMCMXdUojEgdbo8dCgqZaKc6VwjIHLUKkJIcivucLWKoij2WnKQKKExoOxqqIsX48dE2ePZ5qYcLZKGV8UA2/H6184TeyadkpTDSkI+5K7Jl5Qh07h4mgGW165tGVq2DSRNVgs5tJJiqnJBmHVJE40cZYGPGJBryt3qjNvvSgx2xGpDZ5fkS337F1rYlgp5ZdD2EVWOpaFEkZnCPRWDfmODUcgdE1GowNiA3QphzlrjeY3ML6aoO6EKGWqy1ZDkeZz9gxGDz5wLE4MDBiu9kxChHm1OhUYwMH0JsvZiMlb6626/1uvtjtFquHYVu4J8xwF0sAsITJ6txAMIekEDSWeXzCtsMqejhRDwxfNWke4f+R7Kk1GsHceEgUhgEogZg7lf6o27GLLajkYmo2tVRkmqGaV5/JPkr8uFLTaNX8cmqblj6a/41ahW9j2DUGw444WGwQddDdVW3Lri9VcvxTGrw9Us1iOfJguD2LYXpSM9opUqZ80dP7CujkMHWI7LGQmJhyuJt42wk0QNCCsbOjmBiieAmJk3AsKlbQJ8EBd6MwGI71gZNPpLsxS4fF58nPDgInaMXO2jrciFXdGdpRlBYjrAn99lwuTlzlICOQIrtjBsoZlAZ1GLG7/K7ZJBbXmxhNVewLt7GG9bZaIIYhLxMRpTEU2K4CVTOKSAtPCmirYz+egjSSxHnf3hR/SKPCevfgtkucr8BqERGgwAGs38Bk1cr/tsliBceqldYVl4PPhr/xVxjOjrP9whjgl9uF9SjOAv357fWmiN3L+cbu9P3+Rm6U46fhK3GZo156Rb8IdWXmoVnwmwS/xGDSmnFHr4R51tJicd2cAyZfDFHJ8PXAfvAVFT9geS/r5vPx5kNcUrxVwV5ciXS+BMYVWwRsTN9OhMfbS3jy4GWxURCAXn4dIEPj5yvP5wPBvv10CrpjOYLK4lK1Kx/YJQAwL3Zg6hKfAx4fmhh4GGfnbQeGO97Ag18FqH4mm5oevWexTj0D8fBAY1XA9neduQuyYwGw3d7LFSy1/Xp/YmidS5M2u9CNJrOGQCs21wE6JquaIR7BLaCI3h73SzgYYfXkiuf+lhQpoRe93nxHArtgWA3oxQL5ATCJhqiTWTkwjLZSKfCfx+hK0yJriEZnib75+dwT6aGlrFaLOdgt5qAbIAmSXkWFEnPZf8XdBqmTwbGIBrZ/C/O94hUPBpVxqaiAcGeNiBTj/WosBHTbTR9beySGArYh/IDEOIOkIgJng8KlRKUGgJUf2EjsaoV4R36rWAVlFxBDYoVCpPAIdv8uI3hp3w8AdMWjkVz5QasJFQg60jI7KrtDCByQ0gLlyPQC5lIZwxMJ9BpkxyHHFS1tlMQw9LAad9jpkWc1kCM3eq7DXstWsk6vVTeA7SPbyS7cqDc6vU6z1QVHlQ0+emxCPGKFtf1nb14XyG7INB50e2h1s7RE6Yq92Ma+jWebzXgJR7cdzbGQ8WGHFJn7G+wQwU88UZR3OdGXC3/ZrnEwIS6YYSLu4rGgsn1LKy7P4AQznwYeBveHdv5XQk+uhbugb2HXNVUEou0OMEkG9tLLw04IYR5yRk6H8pFoXUwsnsIaE84xYAyyh40eAPYbvWaXvQN7roMhGzwjgTFBWCpBMh3X6xNsaXcHdp1A2aDKGYRqMNUxKk1KMnwMqZphAwjNsUYakVrWUEFhP6cDLNC7IuleQV0shpQfzEnyAGC7ekG8wqJr8ERHjIjL3DgmJXd5JhErK+eTSmLbyGoA4MjlTJlrg9VaLyk9gRsAfn54RLOZo656FsC56DsNFsSR3EYKhRK3AKrFJeCqGOhnMhDRcY//QZR09pYCj9woIGLMMllk7DjT+IaGW/KnQ7oYq2E7RWibFUkgKSgTmLVwBPaz/YsydZMSmMsnWazc5VIhkRtA6cfDZgkAfJL1IXqbJzacUWddUAXtQIy+hnEv0468xXy7ynNDzdXr8X9SkUhmBhDRYePlTm2RlbqvLzfHSKtWDYBlt/XyCjkTpEcuF3bHSm84v8DVg8YdbCVruAuiM3lX7FK/OQD70PgCShjuWjIotLB1q5qTnhywELgAp+rDThXkCYNZVrwBsG8a7l7CWFi/obIXSXrPUhcSI82uWSDblV5v2q+c3Fws3Agr3PPtVR0HNYvxNx+wn/3uzn/pitlWu5IdBiBV39geOOIg756YSMyV+7Q7cLEF7VJv+4sA+Mi5N14D/dWtP+Bo6W3oAMBBRiwA3u9o1wUmmtroaPntycXS/NpBerfxTvWGo2Gyrqz+3e83e6+Adw7AcNdaLjcHjYapAvZQwjXMFFa0RFIeMV0HKbJESMNyOZthyQQhBuWvATAXwKnS5ia0MYIlxMhKjHYtifLoM+dV7kaMI4Txc8g7iVxGb398NkCudhv1VqNbj4LFHIw4sDUvagCsvLiiF6xFGA35yvVo5HnTrEg1Qgw2DDQXTGUjmaZcob5QWaZRGQERBW7yg6YpSDMJwAFO3ZCLlTVHem5NgBUvFodGwz8JNqL4uwgXLKvWSEMSjPxCMjFGncLKioENvKxmO3j7JS3IWTB1eKZjQqIZMagwWTXRzaTqM1r1AHGrFbcyRBkaIA8440VSshW5AOCe1cOGsmQn9Vm8yeELGY6NCk0HK4jIQbxyp15r2FcDdtqFsJELi4whGMZ9q1+H6AVPF546PZ+PJoaoVpIikXCOPstWoYqYqZKyoRzv45YAvUOSIoVNCzsWt4a0UCwp/GFByRNg2A7gSyf/lB32a+cj2De0bxZTpI6A57WaTRerOTHYtoV2mIKsgMCmAMB4MZClyYkxZMcMdAI3i13oyRAeIX2MzjVL73DHAcET+jxqUi/J8CZ50T4Yuz244jDy5F4Xn10236E43u0gc8YrD9O0TFRBbEULngdR1BDFQEuFZTl+tH6DsyWuBI9m0aJJhwY3ocgcCfxCui8R1wegsUsBomAcEntYosuL2fN+HMZCZ+720DQX8pKw6MYiMnHlJdkyJznrIcdyPaBGPVQWxIxOKXnl7M1eiq6ySsntt7IEAVFZ+jDYiPl62OdIXHBGJpWYqQJGuVXF9O7iEFhVMWK47chsxwhf+H/Jeg/1RNJtSbS+7hKkTzwSQngrhEtAqj4z7/9cd0XE+pM6c7V3V6kkhDCZGcuEiQm84orokpIU1luXRZS27HXPsaRud6ES5MtQhBFUnv9SYrx1rrLU4AX5KFquXd2r8/6oBk3pP66TJ0Hqxj9chlQ9W2IhbqW20dMNq+vNHaJlQQcgroRRaFbpJH1m7gOx7kaZEcbU7nmlT125RFBWswvwds0v5Uy3mz7329ldAeCfrbg/AgIiARjPne07uvJzDSyX67G6V6dL9agJZlfNeJ8IfPkLgLE8/vnvYbipe0NMo/Dwu9JC96KHcA4GHBoXW6cs4PQd87X64mb3euaOt26HL5xRH883lg14h24XkppvtPuEjQnv5+aZxSfKlk78PZWUZbzg2IXnf/X950PlCHyi9RbnzKjH1BlzGUxgPXEyfSQAH0+ayFNSjO8CgL+cMyBO9eFgn9BnkwpPMLZOpz3+w1Xha+8jaMzy9oqACLGInzunsS4329Ua9oJE3BqAgz80dsWMb9dQer1kdwzrDq2Il9PZemXXZxotTMZv/V67dP5DxGq18Q/4ig3tktQFKNGm+dsAuP/Waw+H427NpgQAc9JMYIuajmrEML/spHTZ12jM8TIlZYRSYF4ZmFPKVJWOXWyYJ87hYBHn0IQkRSvz1oNDO7FeUZPHbikdx34lk51CIq9q/Xrl7NDTMKU1Uq4w8mDSpUfks+kAwOFphLY4lbokxVUR/glc55WMzYG6U5PostUp3KhQ6ky1/Tmdkni5SuhmyEsWLlivr+qMrdt9f2P7i5n06+iDw1d8A/HIvZ6YXlgqI5OOgclIahwMeqDMKLexx3WyXQPprQkTUu6MZyAeT+duSToDPWBBt7QZKVQ0yFgy71gSN8rdD/SSPeLEosvQ6fJ1OD8um82J9jMMb6It9U6q3cN52Hxpnb92WEqTor8CNq+XaJ6R1mSV4Ha/Xm+xRgaza+buMQs+JJinTmVRzUhr+2uCfy3A3OfWeDqxT+ezycIbfRjLgM4wpe4LtceIn42gr8NierPa0v+GCWT47/MTbPF9SFPTXhByxi8rI1aLt/FkNOh0+3KU5tyVGngBaJLVpIbMjxziF2VPMrpMnREoW0UdcoaJzcSHz16WyiidZhS8n8ACC/VgKBRzP/60FsHBmUrkRJhGRQAtQJ7pAMvcIiRzqgNH64l+XwH1NHMIuZFxVplCp9iOW0faivGbWGO2O7DkoIsmKNWlPMRSP8/YTEfOp+ZpLWMyOthRZkB5fac7zBF0BQAOgaas6PkrYwPhtIVxNdZenW6b0YkMiSgzP//qMAYwr870LD6L3y9y0pn1Isg+xCZ0eIF0pA6YS0elAGnhQkAFIkgZ7Iqk68PdlR28ayBk5iE6vkrbUXlyVN6naomLzraqzS3dw/JbS2OnP4eIh8e3fpGnOPHWYUp+v9/DAlZhCfa8YDBSuXDKnicBkV7PkBCRznR1X00OkPnvKlQcle+38Qzh84FIR8+Qugj02cl6zCNZ4ALj8+kYTE4uziZ3SAcd+nJ1bjYaXm+0L7dT9TCkvWhO8XWsmL1aPTDItj/Pd5+MKxSDXtT+flZVKBb0CyhyqIjA9vZeLx7ccPRgYg5ALseLS5FJ0yKjSvEOXDxpV86ZF/dtYkKTHYOtMDQV51NgcWoqTdUju2HySBh7CIKJOt8tHbG4Rt7R1Xezsg4GaYNY+NKIwz9CPtJ6LVrMUiBcr4kxl1x5nvtyIc9fu6CNoc4c9Lu0oEVoEWQ/WZlFsmamoBAN5EuUJC+Gr2+DbmvYHbWbIRC0Qb+NxG0OKG+o57uZeCrw50mDRWAmMwPwU/OC1yj8fK5SHSb02q9l3ttyfAb1oCOdQmY0w2bskjqSJE6e2M5rYNAXZ3kWBwN4KkX4lcj7m5p2wmWxUhO5H0uDqaGX/DnTmhjFA+dfe4CFxJRy/LXrCK6FednxCyLpPWxh8FWwrtEZM7EOn+W6ziAAr0OLA+Bpbzjo9gfWHveH76PXdzTC76/087Ce97XfGxKQmZ749oagxoE1x+Nh//XV+g+G0EKwjC6EqRMj66rfR4hvekd6EajYMLMGKAORaRTpI2BD6g+7nfWTsxEVRPMFhtXIUjwKscApvV3xN0+j86mm/WOivf889g2AERoBm00yp+1oxQ5FecU4EHfcSZP1v1kRgEkZFHVBx6+h70aqpyVohHDDnEs2R/8Se+jY6VLXPqaYffwe8BhUNSizZx+YAry9fmC08DEZYRQEO0450O3XdUrkQcZ3YZP1xdiW3Y6D8I/3t47iglI3xYxCUq0fS0nswMzZc+bHGHbBaEhRWCo3IXFXa+6BE42OWf55irH+jSLV2mUEhznG63xxv/S/LLxSat5TnhG0piRqppkmPYXCi2lUUxRyHUn1JIj8OIydzpgGc1gsYPPC03i9haZYqkWhXltmX0VQFzBDIXYjPI7I0pCZRCKXq/+KNkhYjVhW8s3GcwSNlxAnbdEdYLQD9AUA2yFOk4/S4yh+OQn67IaSMH9S2wU7Cux973fQe2/iJV20tZWbldo6QihZ0dT2XnDTGzLILsTWW4Ak7wEBdgxGuXl3/HhUEtXcxMK6qXsFdj2+70AYjK4FpJXrlW7+FTbb+AdBC9tkbZLt4+5LZTbCeHw3GmHdQsjE2ZVFD/Tb3/DG8IJCMiRuhCltJuaTm3XBly7uzKl+GiJige3P1dpRASyGy8dgiH06WX9vjeedVcvlcnfumb8qON8rKqvF/qoQrmxP/MGa54wOXPv1y1eF8fwXXheue89X2Ifwta70eEQwF6ftIl8/FQyqjEjduldi0d2OVxgLkS9qiHuS84qrK6vrcR9SFWmRibWZDDcOYqjdbtwWU2OsODtlaQAAIABJREFUNZs2xIbFAGBw+LDk3eOfQuav/R52WVzIgdC53+xEyjooEkJ2Cti2reBDuV3Ol+vFcrP0OEJnYMFxV3F0dtlab5ar/UqZSg7PS7Y9K+yFrf+dLlczsqLtatV/BeV0uoAtxGg07Fkb0O722xwGZfTM5QgJ7e+LXU/m3U45KIdlFDx6X14izWuztN520fk+FusqcCs1542bZEYBgO1aVaIvTf7BmLpZD+nAWYHKCFeF2IfFrRYMt3ipieRRWYjnBQ/f4D2NbXZMJ38ksuSp28PTYiGJgscfLkB2w8QfR9BOJS2E6sDKUFe7RLbUrY6YXhQF8ym0aNyVd1LJS1ptuHRBSEL6DdsAmW3JICGTRz/ZrT5mxGg6S0JcXO7ZcCm0KOBgF9Z3tA1yX197g4/piMGJVvX0Wy1csWhfjXQm/DG0N238+jYe9boDLuSspwCE2330+hh29xF6PCSUL6yfNoi1RhE4NaLZtQHVwNDZbjRiRMd4BO/wGcny24VyCqeYWcO9GlNcnhcYE/GUpNWr0kKPl36z0T4d0EPvyIuCoM4AeI8J9HINRysCsLW+OzTDclZdO0Pa4JfMKmiOmZmI1nw+mSxW2EXzYzYfjxnFhEG1VY5zGGNOqGISEItMjX0x7D6n74MhrD96b9JjI0pxOl+vEaLt+WU8EzfKNuPaGNXGQcyfA32213DD/kBgR6/jMqSklt+l9IdBRQdqLxelDruAqELAK81rWqQNbpbzJOI6NslzHIFYovjhnBXN3zy2FGgPaTKhM/LVCmM8gXw5M8bSUgOZzJ25yFJUomCmAy1H5KeMRgp6akq/FOGUwf06EyNpYb/9dBpJrW0FpCaNmAELKGS1pKYNhwEy3WTarUwe20lTSb6MEQdjM2n8ywDgrAEXLCqe2P3K0cfOsSZduu1RtAYwbwXrv2eHKrgU3UGvjeO7a2j/i2SgU2jMqD2lchTKFh1y6nUVyneRZatdwMPEufIR9F19LfSogANSrjjavZy4GCUVCh2r97akL985Ub0Fl0prbB+Bunh3LGVHbOB5gXb4B2ATOlt3m74pg/hmHfHPQ6pc9tXWdINI7StgypSqkDAhbxFtWd1ABHcoxZHB4un6ffIgJFUbUBO5murqbl5UHZ0OZzTwl8vjHF6nC6VX1Cx/W2Fwc5WXdddqwDEdOGu2bfdwVirw4esTQUvXm0dfPB6iTNv7gB/AaJ73h4nC9X49HC58HW/X0KBjP4+XFzUIHEM4CLigN75o2+zm0rfTObyTeLure3Dqwqr/VDt7XakxPn5+yrALIwE11EdXFp8NimnadaGMGG254g9P+y3sBXdHWCN8hfCHr68t2Fpw4ELby92wWCR1IDtHfNsNE+mWpLxAA0ILBazT5vQKRBy7dr8bGA6uF1O7eFAigp54OV/taHKwWs632w3sGGar+WSGoBuXYb5zDvr+2g8fQ6tOW+12Tu9GA7dGExeN3lv+PmwNX7PftRdls4ENbeQ4FgOQqPDHuV8bsCdpaRhYkgZizSUaVB/pEXOp5HBZRCO2O0wwlUYFn+TNNIfqiB05R2oy2iCHxFuIGOl0Mc0WksxDVcU7AdtDo2bUAnTPtYtPkx5dik/DjssuXw3M54oaz9N6dB1GbI2MxBFnjzHVxvnStPGAiLjkHk582qxrl8gWeOVYrKX5oESwLNPQkXNXdDvWo8A9E2FwLVBTCNdi0iiAtmhl+OFOf9hrd2C5BSweIYgdGYlDrtyG77he9eDt+/Yxfu0P3jiWRlcBswRmuA9erdPw2NjhK9nVPXhao5lGthM+7AKI4JzXt2HvDRkSo+HbCB3mZLaGP9fbK3bVcDKdLLH7ZYYYzpjT52X7ZRe+r/+G//6e/flzOQUZFDBtK3bUdk1KoRw2ZDGDETHySAx3FxQ3bWew3kLJOGehOEe5uYCEfbWmqm5hjwOGbwbJHD1zLA3KFvRKaIFhWzKts0c+pu+T5cIwe/kxnk5Go/HrbI6YKrsx984zoPGaioK11Qrb1e7ruJMEf42yd605/GGP9h8n4MHac3TXmLBi1Cv6PfY0fL9adJ6Q35sdpJDBxQFLAWQF45IMrAtOo3EapOL8S+2btKjzJe8BiFwmbhz5l5d6UkdKJKoPfeCM8VLEIBRkcqvFVSoKZi9cVWcl+/IkaiRl0sxL2mIpz8lnV51MPXnooPE1ACvE0Di5mxG9PcjaJssfJlrwvmq/2t21mCuMihyEkpd//mlogN94SWSJZedcI3uB/4l9VmTNF6tdqR22w3pgh3iHJtX9Tqs/hEFmt/eLrhtOHtJk9axt5I0E3eCSeHE9bHV1C6eTxwJx+Gv/8celNGJHLCSk0QSME7/V21bX4EN5q9zfAnNf9bZkbIl7dbuFRCXvtu817Pokmb0sUEl85zug9vsWHLm0guZ21D8EVN52A/wumoX7Q1Gfzo6W6t/bpVIn7kLgUzAa8RE0zOLJ1rqCegWFUBUMsm5CaD5wvIxXrnvF4rq6PQfkA0c0vvaCnuASeYEDV8i48N/jimSh+YUP6/5j3enBsK/SktufAXp/vu5WCdz0zGVEdqtYEF2eM2jBNvRlkizVLC+FPTvjWrkcJ6ZCsHwQSF/qzErQry5w6KBqHBaXYtB/0f4ak2pE0EGcWbt5QK4JsyxZYAUzLRjq04MaPka4aMEpEPqjtQAYvS/opSTTgPmKAd6SvS4lmiS5LGWMAHMizvXWSp1zAAbzZapJHoJxR0r9QT6cXWT67W6P/2/rFIX5XFZa9Ttol52iSa9ZckhBj7RLReScEi4+c2BZrAtFTctkg9lMXU9RW+Spaa6HxFbqQ6afuwtuRMPelA5aiYS+mXZbquiRuYo9V6w1WWCp6rfEnl/HsAiuvIpWk65+CXtl/G6Nxuihiaw0NskiUmuE6A8sg3MB/HnDgthH15zWJZS1aAZOUEfPkEllQoeiPOtwmVe22xnJp0XbJ9hFCU8gGG4pQAfzN59sW/XD3gM214V7Dxn8EnANanueGWFgCXQevQ4QnIjpM4QhA0Y92W3tHwPmPMF5v1NmTJVDgCMBnNPtDkJiMc62S2CXEpP+0COiXtEvv77iS68MPx4rX4EhizyetkvEjhzu8+a/r3YWyiHwhInQ+Uue6e4csqTj1kGJEfgqrDa3TBNZ84hWOtOSoiayCGnMBdYDBMlojoG9hrM4lOekV0NMDGOPuffGLmiaI3rqYwb7zOVy8oHQ4wW7ZVh9jsc0CR1L5jTCyJnr5jU2O7sNiRfYbR9gwIMx1ifZkiR50BX0sF1Oaedqp0qvncIHPUa0MQYwcZTTQTrRYZtaoaYJduQO1k1OfiQzppiXpjVYpQQLax7AWRF074w0ka4vfWY6aVcSqkXncRGyg0lrrvI0C/FQUaqwBEb+KttR6O0cCGaSycozUUC4T6R0nsTOgq4L1NqVGs0x0hzs2JF+SkN12ufRyIeNcfTS/Cf+HTP8Ub4AmQR+HdAnOgOkpHR40CkXdPiLOk0QDo7OuT27hsgtoK5PVjNJU1f3QgzXY8CNffGhCXWYgGq3yX8Djq15vQYSkpCwkl0l95MU6hBNKFPyHvnuVCofYX8/HvfQVQt7NfT2qfUdtGprLZn8QOgDHF8fP2JvgbV9q72o8YNHTHB9Pk2S2M2H3BU6Sdld0dPaW2ataJ9ez15G3K5WYgBfZY7FTpSfoaA4n7j69trkKt5xYEfBAxb98cmO/VN1BxrfriEUg2Q2vpZeMVSByGXIvf28fd/u4QFX/mpV9My86A24ksB1+76fb+7X7aTsY6CQBSOV2jzzouBj738rr7n+n5Ss2z2M8KHXOnxhI800p+vRHb7YCyPwGDkN9KcMPHu2w1ql7Q6uZvz6ornC3hOYkF7H0dnuU+3DdifcXTvdebWeQ24EETBb3SWWvQiT28gdawFBiP3pGmFrnpezqWwqpb78gDnxcPg+kT9Tr2PQ27czokcfnQwBgO0i7w1yBKf0o0bhJryYRNOe2QkqGcMZMsoIGTrm8oa0JqegT3ZzjtSd8Umo8o8sxrwsSkWmBv+ZvI/gweurszTOXGxcBAAuGe8QNES5KKKZE69ETUm1VPbsY43YIoWQFjWAiiddA3DqRNLiacobst5dDxKnHsDDoPjUB/JyJCZdO28X1vHn5Gp1pH22VrrdkQJDF74W/SE46KOQ2OoeJKWXeYsE2Jx5dmladg2O5RdStqkBMTh8QxzT+LVnn78xrRhtLfJf0QwPuviM/r49xBnAkhohya22Ihr7/Q7ylbsYc6OnYfvcJV4D6nuwy+xaa4Jb9yhNHrB7ZsIEcp7GBker5XYa/dNeQ6a+5rh6r7AzMhVP1AXKBx0Ob1ypSE28QU72FgDM3bESN7druawqF9vQGN+2f/N2iGiC0A5WXKg0PziUhqOWaNRqjjGLRoSxHePvY2iNF4homswwYQfzwR41vKytpf2g2Bg98/h9Op+NwVQDd3vjid1bJoAfKWXCqbkT7wNUyiOU+hgwWUs95cvaysG+bzaaykNgBL0qTZ+4FBlHsFQHyJvGm9wsT5M6awnHjvOwSV0M4jlf3mr5oYPULa9d1wv5VDCN1tYjzdVZpzUZmq5cyiVO3Yok9WLSlfU6zvlwcxHG8rTJ3xo3Y8Wg6DzGf0XeLNMOas42j58+aM0dGN2UKMJTcKGlsPin+Rs0bJqXJKWvg2nMkcLaBwd6p8cVCyrBX3LYXS4U3rnnaFCuHGe2n4IrAhgBSRQjhvlcfcfI0BI3qrjRBOq5Ib5df/57iJMVzKXVGzK5AaNVNGVsFW8E/WdUg1tqKC1UOmEnV7OL86VzAOgLiFh2txop28f3t6Hg9yN0rhogcxTOH7zAePp61a8GfYtwdjk/1LvWOuYg+xWD6XZ39Cc24vU4AeisbvBHQzIaHhUAGHnCzgKvjlIPgRxFdymkPFjzT/8xfKc6Hg3tz8GA2/FcY2uO5HHr++WTzGZ72bQo916f2EqfzOpcfVsdcsVEoLJPz24acr9oW3wJ8cYaRLOz1yiCrtZVyL9SulXF3f81xFNeq0A6Y07lGQBM6dRXAODLRZGKX8f//wfpH9svd/V4xhrKEJojPTXB6iXYTmx37sPBxS8gla0tI4Kx6PV4YMTd0YljvoIEaSb+K/rl2cJjGQIAg9QyQuw86KRoeqwXQnxoS4xedGxZ+TbuDHrD8VvayCJ3wX9pwpwqDyqdLIpkIK8uNdHuE+U0V7p2Quc5YhriMBpOAxeqNrjHILjJxoEQjtk1VsLu9ae49qRZECKbTZhOYkSde+cQuMuJx7LUUkkKiWPswCKQQvlbsRymhUgtryx8FR0KBg+RyJJOJs/pKJhdBxcioLf1rCHz2DWfkfrojHE8pTp6QS3tP+zKhr7Y/i0BZtF2dlnuRvkUMmFA2KHth32fW3lKtDKBsU8KW9A2DV+BtgBOtLBAya61tH2wupDGZC0Fg6Hs8kb//XanT9FJQeMQzMpbvW4LV+1WF7nuLeRPgB7WRS4UULqH0SuGhi2GSvQA4O3ucNh/7b/1B6PBW/nyb2vY61oRN4BG+UM97f7TYOqkUxclNUtNanVxNLOS3JAtiPYTDXCta2f0lw9+NnZXyzVJ2vsNmuHpYjflcbzZKHUYDOpZaH8nWhMjBBKeq2/21xQr5MnMGneyqD/ojw4h8cRuNKNbppw/WMy8A6p1LxgioWNnXOlhu3FRPioHPpHPk9TTElBvFrD6+kBGFoXGdRguh7mgReQlh9aUIWkF4oVmSYqUmNSMYPLg7OSvrCe5eNAgLq7FBgDhZlTzHmW0zKlR6rjMU6P0WXPezNqwNs+D+qlQj0wj9DgOOqZEP5wGab3SIJhixu2zwhTsv1Zmp2AqSibG3NwXlzCkZmJywVUU/J9jOumlDbtVArWXe06iWmkm0nKhHJdxV6vza07jAkSoKmfGVR9w8v1Sq2ZQjPYt6GsECZfnSJabSLadRGsJXalOhbfy5fG4ilUrnZHa1ctZ1pSO2teLZyrdva+FXLiq/lpzOsu5Cjh3u4TPXPiDcAQHQuIsHakfD1k5clAboFoja6UnVjUAB6Ky2ufL7R4yI7zlC3Kl4MvB4bf9Hgfge6gH7t5yh+FB4KudAhtKJliGiJwSeOt8OnyfAcD8svhdTp0Oj/emfvWEvvaB7GQN+c9elJBgjS+B82UN+U9lBYhmC8DcCm8CfwitMmJXNDI/n8QLtx8+fUH6/Ex3ci2ZA/AJAA+yW2B9gzP/dbyQI4+nxNG1xyaezkplArE0AC2IV+Bf4sJEfpbHHoYzXSOxz4DHG6qBRRp1APZcBpkSLVzdMV9xO7zkkniJODllE06W+gI+pfsuxnBMihtBRcrIAH1AVM/2qMN1T9uuva2Pxfug//rWSxsvcVgCRxn2Qczywwf3l+h8c1XWXrdHTSvqQTxppi7zd5K1OKDpcwcclzS+QvgRO+ISGa9RFmwBuFGGgyyo1WwRwIBJoyINyYeE/CLW5SwVAEPKlHpuKQWWqbhVPv1m+0paFkNKvefQz6tCiMu4CeNfsGKSvybTWSGedxRu7w9DTDP7XRFduJIyTACY51TQ/ZovlK6LeVnUF0KXQ5GymqeuyGwpZCZP/TZSQ5FVI5cuOvwr0wl9a6c7GHS6Q7gjky8NHhFGzT2EJ3OW3YdyKi88YErj0DjvtEF5yyjSzuVphIfbgv64hXvmtRXjELznhsOvBb5cdON/GvAf7mBm0iZ2oyoYvjEGZLHaQjWsLvILO5zDjlZx+8/NSjzlxUoFJUbNG2IzqFjrHcKaML6mLQiUAXarxWyxU0rTfLZZc9eC1QsKTHdkhaoKfe8CgdgA0gUyFKfj8QL/mtITE9f3xYLWXIbA+Gsy1j557JKm4FFNITIgYAlHbNbA9GNfb4JBDnNcSLb8RMNvpYZVCoh+fqOOzKocavmsMc6if0FfxAEdxfVGl2QnxeumPjvi4KYoguIpexpwwDQroQM0jzdwLaRCCI6ZMKGOxHEIjXNtdNOJM6QgpF6w5u6aQyuc3FGaRSTVxQllB5mLiWkzrYm3VZVliiSI0grYNoItRNloxknwGONpEMFZp8VYldg1XSl1WR4QAbNLjAx+q0bBglyq/F9u3Dd3lv5cy32iMfUfUHwohf3EXaA3h+fKgbASSejnoeXvRZwoUKqqG/+4XY9fl8rtKO6PAMBhAC19sZyfPNEQ+PstALzVoF+5daUXANdrXRBIrsQ29E4gZAoTN6bf94vj7l1JiY/v0Fu7tfMjmDP/5ewFmPPRtBpFelRdBN7eCnOYjQn4lZPz8zW0zQ8Njc8sLMhGFgTeKTOmlaV7eV4gOTrLU9qeFyKYT+e7s7ExTqd9tARUD2tlq9Pn1/3/gFhm//i5uawpeGrfryLDQTzFgkKT54fQMjT+VeVKrEtNNfcC434Bi/t8fHbI1f+KqQSf7ue7CnnHMOoEiexSMZiG6S1EX0+qofWQbKf1cT1JyqHZ9BcBWLGEjDzchp3UluMwskx5JfrfTlibzW41X9Gol12wATGGN5vlTLKjhWIaFvPpeqFYuSmndmNxcSBtQWDt27AHZg52g2Dz2CW7LDhb6yCorN0ezUajwWvfTqYXejATgVOko4SrLuyfsIlqwTKSBbaMHxnoywpdBXoabF85kI6pQ9JHEwQSqSU9UC12xST/iBg2jNO5SZxM2FoAgJ0TE1rYXFYcPoLOYwUOp379ECk0p6k9f0dE6+g0dW/p2mbXyaJJTspqEqaELsKwJkCdeKTrjgGsGFRKhhB7DBdTAjCGAsqptS9YSVIwn0eXSPf7LQIAl9QeI0RCAAxvTitvmnKy5p6Y3QtI01wSpHZlBRdGptVlASjt9GCYP0CKIl08em0m2RjytsTCbrUUY1f6u1F0oQnppCKtxuSsodxJWxqho8jS7Bollx0Z5SDNWr1+2c3++SfFffa7rZLGDLACUyCA/erB+HVEnhSiQcCvWu0+XR6gmJLTp3/sqRzeEENns+WWaYlL+3tD30v8twnSO2CwQTVLTeKvATW4ERuPflpSEL/ginfyMUd7SvUe/z2nGm8FJiLA+IP2cMRha57HqknfWZ/ifyPIq+2LYHFN4GWyBADvDl+Ov596UBtFqOwPB5zXR0y2vpgMuZ3NJiOS3bjSYXIYgbgZ19GG4eDiCoTQy1ATeZv/FT7MmVKeec4nFx55ywdQqUbYzNPWHck9o/DNStZKJR8Igj0mI2AgQ+pXkYb7aULHZIdcyrxw1AfuexkG4niAKBOTVtqOS+20C9acVCwzhimlkQ/mXqBLv2CW1c50dvEswGGfFO0CBW5OY7FE3LYk+UWstbpnIhPdOYcWE8Z3TLhJmE5my7X6Dq493FxQctGLW2/cv8M8+F55v/qQJPeu8KC78Ot2DzIf18ac2VuHLXOw0xKPKWiMgrFG8KS6KYRYPbEMovmLqp9HDcvoyB8/YZ5csWNGzuDP3fVJofWtyVJqMSuxht3dS4WC74BrApJH/2pHDACGZcfNu0XH25M/kJszkM+MTLrcUIDw4aMlJpcNg1s4ZymLqgqpSVVooQnkd6YUni6P/+NhEffqaXXJkoTtvBwzr8Tf0xm+mDdNGLQu4G43vEI3H1z7zreS43d4C27BJ7vOOmbMpMYLrExOfKmUneimXYTgq6w+4KBGy4/AssYQek89ExpkIvAneS3aAguAYZO/139iRwfjjd06fOKmgLMFR3qLuiMGeSVY5y8Xs/UMW7DpDBkB44/34ftI5CsBMbaHzOfuWv/ULTkFbYPg28I/WsPRYDR4f8siTlnVAjeiFi7HvDBjbIm8UCSnyKgib+svxZbm5HpQx+jOBgklj7CbDB8IQcqjWFtYDrpYNLuRRyrYJYsLE2i63kegbsmLV49KAzTPbVe3KuufqNlGza94JQIwWSNW50eAsCSsnoMgMqvtO7y/dTERRmr8fbpukjTDnXFUwtyWQmNNzSOEyOUauOdl7n1zEmf1yDrzoHcyZ5ycUzA3Eas6RjelRYc2BXaBs7/hVZQzrdFeUL7aJb2FWfOEVFo4/Mb2/pU+wlB8a6tQlBxc+eXT7+GuMifJCuicup0y+feff8CiiRNPY6ZOjEIrF1sTuA3Ku0WnbPVa3fzln6jdY5YFjwQ7fqCH6nRhFALI5moPKTrdPujcH9MZHcx3JP8fYO5Baf3JJUAbtcEI3/z6XK/3u/0WliELurwhGEJcLTTQJCNyZWi3r5V3C9CqlnSgJF1rSlUx3adpoKVOeLqYf3AD/DFmgJNIXYsZOdXj8XTmOidUq5PxaDybTt6Z8zz6oMkJClv8yiUyHhlagZk5zbi8kt7tFZx2OVud/akE5sXkfWBgjGUpWcYw6pDbh3RxzKtX5xsUx1ldEHJ3UtK2JjhTKiLYlx5JbQqXYg9LK1inYkGFJ+Z1GRxhKa4HnsqEK2qVmkxHcqexX5JDtZDlz4G2j7XdMU4RzApSwRCm5flOYn4kOT0w7axtJi+gmpWuUWBVYLfplO1BF6MZkj1DhnMS/7JayAqhyexjKiHalCQ8aMBxAZvbdexjChYgV/5TkF5ApCfpFNR7upDionzE1PbqLGhgx+O/P3fth79/EKWNGN+bbB9FViLn53S7hlQHFzS5x5Tj4lXcaW9pr6GT1tdpDu27UAh1/nwb0N3lIG292Tecqfzm6vQM6Dgg5q73qim0hsQ3ks/u33+wk/75vqHju3NL/OQln5/2z84Jx+OB/ucWuFPVDU1g5SlP55MsNegkKbNo5CXfr047tx/AAljZRaRvG0A//vxB3SDx0PXm1C/EMFc//z1QCRgO306eNHWrjULw8O/fP6fK+lTInE6n7x90tS5DOl68YNAa91T5cPnoXmB42PbVP572VJE7zQQnDSuOoHsfsUtW7XHFRprO0pX1zafQSF8+rSdGGsOB2H/+axl8gnbjeDhql4QTlwnEfwEwLP8g59jC5QoNAE55t8BaBTtKXAjs8jRbWfsAHsla3leb5Zx8VUopDYBXUzuoOYLDNeV9QA8DojGz9N4Hosb2ukz35qmXsXmM4qLzOhoMO+NJ2YwDtzNKmnFnAGqQtT2wzUNEQafNQAKQeDMBMCadNNpDkC91OLWzECQSzajugAsD4KxkiCkuNO0iQl5SmYSUl0biEiLlsCVodVGoM3MF0O0AHErpsGuWYYeV4+ifMQ1LxT/J2b7mraRsw3wrK9zoKHadcSyiWK7MJ07N2CY7vkJ7wqTiWHa77MyZ6OqxEIinKcq4wc6lyPznAczWWNi1zbmvYSRYOIW7xeBXBCECi6E3bskDLEdKjbU8UIVYe5kyUC6HDqVVpBH8Pnzk2OaqL2UbY++Bdab0MQFGG0R2PZU2KZXfmjMcDixsNq85/EibsABvttowECabiPOOzEMGnBhbdoZFavBuzywnhazF7Z/9nrLXa7V6w1ZuYIxsO8N8g3asnHMWA6DaYOOBxCMco7Pl7kDtD88JK0OPyDw6fH5dTvuddcu71RphnJ+b6Xx/8BaYJB06Y/ogaLNVWsR6Cy+u2Xy7lQ0X8xM3G0RCLJfyaOVMmY40SwPEJfKlDIwNHKGEnqD/giumshLZfBGA5zhdDLxHk/kHqlYoCNCXsYWeTRd28UdQ82K9hTP27nODL+BLeCYYcX2isTp9fh3hWoLslPk7yl41xoloSTFHzkoMZj+Z6dCUFaW9z2knRrR9ZPUP07nymMZw3NVqAMzFs6hVctCS2VYZd0ocsQUXIa6Dwgok5ayqLNSJ+jEEmUGWtzt2ELWLLJAUFCCR07CySNt27nRxIuXSH9MxOm0iaUEGn2il7eCMs0YRIRZSfT/W1rTfsetKar8iqVV7nMtkv3hQLOXeBqLKgiamcPJDvAcILRjq0eKeBAAO9RSetcC1b0sX3iXWBAjS/pI4yDD4AV3u/U9wzvjzTXenUwjzq9m+T7fjszS2bhXprK9bmFFumFH4AAAgAElEQVQLGagZ9hE1e7KTb0qDZsc9qK2TpFAJJsUUL7OPlKE0/4aLJUA4sJTvULUSd9x50gnS8N8wdKYzIxCanSL7uzNdLc6XEM8QSGaExkfdKGOqzV5SzC3pkiufRHurLR2vaOO05eQInKN0zzg6PagCtr9vCJj4voWZuORYt9vPnSt0VCB0I7tp0O8xEhRWo6qpq4jz1wkJqkzOsCdyPAWVkZIWfc7APTVfLNwbSovTWb30X7pnve74baiVuIJmAUO76k+mE6PrhXPXWWbRByuaEeBwPO44jgMNcw9LaOS+7DF/ZgcMcgvHzjD9W8v/Ctcg/HtONgv2T3N2xAhiABJP5hpC04UQMorXEYJmB+N3mfhh/YtF8PsI8pPhoN3rlRjj5vJshzlzVLy9Fq3hsJ82swb2PUoqTFqtrliyaH4xLu0pKbcFtiXDwdEgs1/Ct6AHphaCShzD2rINm0ZefbJ2MxHZA1rdrJU3c8dA6yNLw4CXnIHoUF0WzSZiTH02HUciSMt0kjpHQgVNeuKsBbExQl8acqEmxxT43YjjJoLBMWAmlrvPVsy0m7RIGEuD4FV82YCUfbhddAxoQSbx/CcahtnXUg0WY9JPlRuRNl8iH6Kr9G/ZL20lsgwBfuOaa88GXDPIRBO/adBm1Rs8emc5Y9VFoVleO5QUtD4CMLPwMXRHWQSc7bbI9UJz3OoAQEtrvMi41kKPtkd4U8qkY++PlVMlNDUR2KpF7mqX4CMIPo0976wRccCoTYK9U2nUiJkGkFOFRVMm0Ll6iKSARQja76Ld0wC8beVBCqZX3xC8z9yo1mBQ9Kev1lrOlehADtfXJznHlCSezyeYTyse0erQOUaQU0Y9bEmDsBZ5u9x9bq0HFSsCre+S+qY1kxvsAj5HMKIBLEdCWOxC5EQNlMHzZL6hpomwjFZrhg02iNQzWHG9Tz4Q9cxNJJKaoUFmorF9zMaj99HgdTz6sN8JRxA6f2KfzRH1YUcVoozD0OJDikhz+IN4aSggFtPRG7JOWqwCE5INW6Au4kgB/oEjF8WtFnTEstnyTYnBHWEYyZv4Z7sXBtQJYg5w40beiXR44fj3kTPIVGXCzInaQ1adrf0syAJFk9bTZQ/nQKzdkUzc6PtRhIQSlpwcnTvHAXVBmjP2kWIDTFBIAFfcQ8Ixkh38NPyIdb84jksaWpb5r+nk6Z46I7FuxXW/B6rSvxQ8FmZbKnUab8yCway02f2YwwpwruXEUgz7PWwYDnbR5cgTndndCUza5IY+9hLI1D5yrW7K/uMFPlg0Pu2YLy57hT0lbCofniXs+laqhJ0EhUmu84jkEPXQT4S9shUHWFFXYQdM2POFrHpF1986AAcLaK5Nz1jC4sE//nsGEobnI+OPUFhcnd/tw10FPUhCfRHXikafJ/LK0XI6sduaze+H9Zb+cgGLGT0BS6+K8cuiZPtE+uH63yvETID9G3vvqxRKAFy3uKwTJc5sv2WAdrse6zLo8teMnQv5758/P49b/Sxr9ZjG5FX4nKTtSrHH8raWqvgsg5eT74iDLHgvJdI+ADDN7O0/4i+K/C3ZWDsnYK0Iw5hAoyFgD0B7rAWYz+yUlzgCF2sWjGSqsJ4cz5Cg8/7+5iNoAC+Nh9+oNOl14fMPZhU9cJgVZN3ScFD2BoPX4oVBbFgTIqIB13U1NbRz0Ca4xQtuq+0humDWWofc7ll31Ru0rb+GngaAgkzQdklyEip0iYNRIONKnjVrdid6MF4xYg96K+OknT5H15i0paJ2UD7plK08U9WNyxl9b1NtjoMMohk/5Uh0CHR2lZt7pYogzpIWVU5hCZyXid9TLGZJM3Hds3amzaj+PXroKablMsaMJD+OfeVMc0DraSCo9t+NH1Unz78j996NxRR1o+16zqgBY1J7FRKtY+QmwgKJhQ+3t2w+0eMilS6mm4j8/kniynBNjju9TtnDZRcZsJFVDnkI0QijfKXrNl3YGjwI4yx++Q0P8SYG8ywRZFvI3TY9lFCDtToDpgvY/6mzIg0Mo/B2p9/q97PuOw4hJiR75sLHx3K3ARnLGmJpmuBTBUSzPzf7w2GhBctiK/7DghMiO2lg67Eie3on+uJWIYqQ4M2Xco3D9DpoCeSEudgAo9GPg+mzWtOimgFN7wbAsOKS38d0tpxOFkiOmDDt2T8AB2BwIaoKnGokVU0lPOCW0qNJGSyOMGM/3zWplvzQSdYrELSh64b6D+2r8hEMZRORs2QC3WqHDFA3mBJ1qo4DzTx/234uLtp2kDd5piBmMThiipuhibQ4E9TiwXEL9SOqOnTZQfeeh0POc5owXcl9jUNfD1LA5J/uomVVqKgP7Dhx8mPs0/aMLvERx+9/1Zpp8ouvMpF2JsbKbLmYYEk/I84uuFCbitHO2YPfFht/jaqnFItPic0zTaphgL6CYdH6cwPnsxONlNwRSoJiGkbdQr9J4CRCqWerqhBOIDSu3Av6GvKCA9lJbN3aQvJKq0d6RD9AS7opjZcWmAQRWUsaFH8H/Ja05lynKwQ29EMWH1eneStE8Xzi6hQ4DALX1XD8ppxA72kvAb6DWieEVVxCuXHxkISAcsoVDimDgWR89WzimkRmNQya9j/3CkSybw+nuFXh+66LrhhZHCxHpHsOVHEmJYXO9Q7/b5QdWEVzJK2xelBAswnGlIF5j7erRz1cyc6+STNW/YXJlKzdrifv5JlvfHFN2llgjynCWQolpDfYNUb2G+qA0daCdrXZqNcFC8uFGviWEhg4hsbG153wVzKKXigLaSE5kiZx6n8/5nbdeB+NudB6e30dvqHxHfS7SPiEN7T1LDTicQDmtbo16HdeB/339gvYwCAvwoCuifOKzjqQz3Q7Wge3FZLStfaHuXxI5cMusuyU/X4LTJ1Oxy68PXpI9buUMnFISgs+AycOWrFBonCYa9QoCTNcA+gmMkWTNNCpxWtGp9aMEvfqlQlRKvsAaJ+wAnPNLi9chDlwRLB1ZiZd7PETspGGZV9Q/OZMt8ll05sI6HwdjH48YzYEkRNj7ZidrTNd8eLUiA+JUp6+eHR7zTLDeDwu8qaDnMhkwYAhfWpRvLOvaeR1upRIr6ksT5IYoiJ72WJ5VOeFppgkdmk4HhCcLUzZQi5cnnT73VbPKiaEw3LBoIl27htJmm4nkQMtD4HYXfmtz6fx/otEN5KL0eK4qOVTYIzR5L+tAg2kAYpWAMDtfj9vD0gm4JK6w9Cndvd19DpA32mXT3CclW58vBDDTtcr4wc/d+vDTo4eoEiz8RFpmXYf2MVKsbdc7PY7Ozngq8518oKttn1jBUEUTpy1k71whu0ho0c44mo1mWPIvJjQBxO9NCjU1gJjUI0tDvwuJ7OP8WI8HIzGVBejfrDu+YNeXSooPiYLNmMA2e0u8M7I8hAI1/48cMJFk7z+3C+tk5uMBjid2tiZoJvEIIci/FCBJaLxpW5EnnmSF6O86I7qlGpZedjxSpIW4hLJhpLBOqvIYNkqOhWWO0Uri5wsnXkqaBErEyLXYiSjyYfBfIdsLScU5mlS66Pgf0VhQ+Z5yTrocbo4AD9PPO6AZyEmmh80Lh/bYaBJxpzSpLlY0qRrTVecS7MLBv7qigeIxg8bFEtuqSBMuyKuF6Qg0F2Bus4NlMbydxONyg02ap8rcaSqi+f7uAdFsLCqwpha1/2wlcU+UsJWD0sE75fpEtxSUn7DmAJPCSa63oKLJfDv7OYTfo9XSYnU193E0qYnZeXwZo/DOtRr9aAAF6xwTdOD0KkKW2EQri6nelB9c8Z1kDdVdcAwWVbXbxiDapTOR87BPGysf36o7/02JH6AS+YvFJpTL1Qq8rDuj9rCxCuBq9jSCgyunbzwM7ef75Pw8hISnrxtFgDLMfShTbCe2beyNmpHFCU/VHJSgxUpJgb2NriPR3hZriSRKXmYsUlE6K/D0c9NHhWQIW3kUUAkdvrzTomEROVdYEOvqY1YzclGgFcR+KRLr+uxaEN9iMOZml+Ij6D8ZdtL6NVfIEUU1OCESHCcewj6RGh8qwFVH9C38YKwYHjONcNOmK0S0rvz0kEYnS8a4C6p0v22XUbgeyPvm0G77PXbLSg12tgXt1xUnJaMKS2Cc0cbe85YTs+UO5CeEha+ZFMr5dA7gjCC5p6YJgPKF+bSNjbo5g+CTEVUzxTTTvyNvMcmNrpdNGLmeAVSp0tyEm3x5XGQeRoFjKaxSw0yJ4msEolKHNPoxUBBc0x2q1hfwOkoTbhjJU3MYZd759qAOKygk7SWcXmajsOjPPLRwWCumBWpq4w4Ok65XpTZVwiYD84l6E3SGDbg1nR12I0zbi8kQwWZGDXcFH6qpPCpQ5zHDbboihGyZxhScNzPk5MJymi4hC6zNnbCvU6GCo08LiS699s8RpTqziS+NmTKvQ59smHe1UfY08dMfm/WxTAr5fi1xwYHnq/HjUHpGivglS975Zm+pqzYkHajsAixpdZLB+DV+vMA5teS6UlbWs8tcNs9QRj+Ngs5ZilQEWZY3nhBrGqFrIHueDYZLWC4tZgobVLmXBNHYwIw8iLh/jrxNm61rkm8nsMS2JW7w+d69/V5OnNsfT5sEOu8sxbcCud+206YnBtj7DySmKRle8saSaz3NExEtEPGGjZBRnbJIo2elVwDoSrljjZ75i3WIyCFL8ncMneBcuGBSpGWvkUYXCtuRb0vzlicy2Eiw4MeJ1szVkqTJj+ZYhySuvVNnnFp2S+8WDOfMaN9XVqlM2FsljB27CNnvh0sitT/4lKn5lmzawwl0Dcr9RIbYgPg+WwJ/ZoUTXM2y1as4Tq54kIAOOzsqCAx5qqTq1M5bwUYDJYbzrYOGhmOtNk6ujZJf3BmfKHXxUXhBPr+7VHratnmiZlUAzBMJXzHSVuOi3a4AOCnEyO7yQrZg7w/so6rc00X9o48GFpoB3xRGpQnWcgUU70hwldOX6dr2AEL4BBmQarxESAMGBSUQu5l6MtYYwmjv/kIrpz9suVXRVOnTd0EzR6hIMtQ74DtRfnzzU329a81NhMhKhc1f//BnF4e4FcfVEiVHEKXfVNwu0rHDQNTAPA1jKb9VRNVmoGI8qysTqfrxQpglsFMVUL00idHUzhH9zuN2GhUwK0ws9HDV3lVsvJ+uVUfvCIAox3Gyb5yAAbt8208tYryjdeD0dvbkCToobyO7O9eW+m4YnBIXNiGT83bcJg3M7jMvbz8/vd3498Xa4Ij74Tkj0X+B2fGMU9Eu+C2uPdDBt9rt9suBv3XAaK8u52hgW+vVVrrReV+Idv3dhcOjLCG8txTuNYXdK51HQ8vMXEwr4+jQtASFLo1AEuGYf1v8r8BOAuGWHAOobcH4U1Mq3oP+3QGcgNADKz5isQ5bfHVJ7MoUFoDdt4U+MopKIvlqZk2JW5iGx69NAv5Z9Ez2GmhCelgaYgtdgB+sq2FwGmdiOwyFbe+jj320WXIcUp+WiHvantxWnRHiSKagNDkqCay8vc1QD+PWgBCe6eUHaf/B/DXJ82Ei3a9u3q9NOJvvqg8SJROjyeDIyGM6HFQ+H0pMwMSVIb1tOgKQQOlLo3+O0iKZeo7puXgGLXLlE5JdgSVlJzDGgTJs2/vsIleElchHTieIO68HsGq3m5hQL3CQpiZi8ot+Zgxx2S3cetLVqiA2z1+YL/ZMxT0U6xr5jZQfr9EywwAXjqsL7gqXizcsGPGDnmxwPaXKYrC2/F4Qo+t93fOUQ1IRm/v04/RKw0/sP3hDHUmUAcW07qTTtpgf28OsKbe2d8u+byfrPu/HPiw1kCaQY+6MlTKoEw7otXBwLLhQD0MFmQW06cSTGWK6ng8xkDR8jlo0dHFMw0ZE1YSY/REG5v4OXERUCrukOSuRLasUh2miUbTdOaifqFgCZcGhy564+TS/KV+zKeKVVZNDQBm7JUSoadwMZstV/OJyhqIkTjb1wc0SRMnYTFImhe7KTOxZ7QpHWtBvN7AA9AakQWuivaSb2f4JZP5akKH8els58BMBy4Q8yXIcQHO7eFiGe5p786vDuKfSkYcJCnVXlj1djLcxU16ZfTWQU4kZtU1iHgrhUrQkeLisH2+iIDtAiLJqv5afqopv11/pLQ9h0TFy1M/+wQzdsKYVd8Uf3wl6cvFSUJp5CSdvi6VprXVnalQ1ryjfgCt3zrfn2/yqtiR2ufff9ABe2xUvbCWErnSUvxay5Ivt2DmIZHXPQz9v9HFI6tB5PWwKq+C/5fMyKzzRnoVbqgk54fP/C/f33IqC68TyN2XqzPCrv4i1hOFq/OlL0euIQxtL1IjBZesL46jmZ4Gq8od4tAxe95vNp6xLgMhZs7s7OBx/spmx1UwqSmaq8nlgNMauti/T7FS0YRMZhykX41eBcDwfMieux5epFuDYb/3NuxnUf4SNWXz2vj9u/nSZOPDKy6MX9H9JFwiGhDjeiuVvsiTXRrWkTndGyBmYNjpWB88gLYUjk8lQ0XBxCYCoxlqg1FtrVLZ6pQymYdHBYi4Re7dalx4IxkSz8IIWqtY6zTRtsXPEbQLJFWeA4WJJHFaG4LIbd9H1WQ9Q3mcMsLGYxbZUkKlYXfXBGmLZrsaO0v0kcsxEztSkZ+TTvSCdPMsCnGsHBiTjZXFL1ERut3ACn9eR32YFyw567RIAXgj9k5DCuQIV8bgaIjxefD2CotBp1QF1Qfo4XZP7Vafqm6sf4m/vu31gXii+XPEebm9PqBKk3QWpc0X/kQYhbNOIr2Mw0Yr0EIHHzdf/sXuQkPNrMRlONZAvyzhkd1CMg7UzjTltNKsA743jLjkdtiFDRczZ7HD6PatJ35/fxu+wYtyhvCRHTwvYe6K7thnvGRGA4FhZ0lVAIZDsPAgn3YNs63t7nCAhJdnHLKE2SvvmC6xPX4yAnTJLhofBsGA2vksoMCc/Zn3yAvHCThlQmisAShsud4/IHfCjhgn3Ugkrvd3A2S2yTOtOJeqt/dfTAvf7U/YEe/2x0slV8+jfAPPSDPGI5p/MD56OOBJU/iAJA7mNEgv1P6B9s1FmfEoZq8qWlT6jPvlew05Xa5RdOKGW7kGOpoDFSEiInfT9dSRN5CuE3psuRcIAqFYeGUafStCOHVHuXAMJ17w4Yz99Xe8BnpZjJrt9R1rfmeAO3dyOzvg6WTJ5RohmESA3XYFavQHNGWI25zTIGGznS1ms/VqttQIerUmAX9mAKyVM8GcinW5nW+3O8XR7TCHsI7QyctVTdgKu9VgkOWyIjliPb5ruWoI33XybwUu08VJQH6fwQIaI92/IJMj78AbDsRqUrkc4V3P5KJh8H3B+q4Cp9lJTH+bLLNKYGNfuZ+yEOqZqHxxaa2j953GlOfT8YaQhuP1/t+fH8yAr4hSxB0RgL9/7kH/60qtRzD5okembClDnEMlazHqoi5er9gPoIi5o9Konrd7ep9UWDp/P76F5/fv+60GenbaaoDByL6Lo35/iM/NbX510WBCuRBVyH6ugts4qy24V2omjY/P/RciCw9fZ5TmQGEmmioneBcsKbkmplGWk0ocgLf7tYp8J0dPA6dh8j6df7xPPhSl+j5GduybDDmQxgA1ANI5O5LvZuyiytc3pN0N8ihtJM1G0wC4iRE0Iski733tSxLmwGIgigKJKGrQrB65gDjzWqTptNDz9voAYFxXe+2i1WOHg4D5LleBzuJqGSwgnamDYF341QGAiyIq6kK/kHlf4a7RaQDg0EvCiaMZP0lYDs2ZhMJw7OHaM3UjrGCA0PSprvp78MAiOfbUv4RXlLxoMigizzmKT7lnI8AI/pJCly3wUAX4zQDAERVNKZVdgKooePeHdtGtDP1D4ueoGdwbfDWbRKGukHW+0ixSNv0YG7M7hgN+s0ErlIzAiYmyIzavqEmnBmA5KUlc7VNtVTYhVgCPV/DMWXUTomEQtDiIds8GPAzVC8qIbJB7hpgcPKW0BIhCTcMn34xQJ3gPxbEJmNqZlWqwG6HumBKYjPxqEKdhE1MyCJk0gy6dhKlsgq8zSA/YAW9ZsX7xrLL2+Iu6As/JZh4xx9lrqgj2h61CyHYbKPENgNewX4c46lM1LA1hsW9cwbNrMdtSZ2xAPvvgPHQZBk+QJa9X7iMxXxBXAQXj8RxBixOFGk8WsHqCD7X0gGNyMZh7NRqhe6OuFWf27oCF1Lm6HunM80mBMYL5lLZGq8zdZrvCOT4dv+HswRJW8rs4zijug56eWwD5wXG37zjsZ0rIRsm1ygWWJ9AmRU81cUiE+Cv6u+YAPrkKkgfEGkPFXs0xFVE+677z8TohcB7qdvgXXPo+aubUPNCx5mxsuQywAmr68THjt6cTDRFogkDqKbrlqf0TrzqUw7BfIb6u5nOw5N0wQaNnu5OV06en8j1bKNkGyet0wlyh/4YB14oe4UjKBnPWV5cVY/mIPOofrbN0FlIIeVAgPTCWcHMHTkI/c/HAXcqSPI7gfDq7/UYVuEKSK4l1RcwJAFyztm8aSqMlZNiCj6qDoOp09qXnRTnLV+cEa7B+uwUADr/TMJzyp7ADlnrnevuEsLrekFsv+lDffqeb2EMy6L+8sTUfBpYyjLl2khbpjdkXHLnfvZOtzkxYkrXV7Sm/ulRunnn/+e+/H/t5BlCA9aWPqwD5j3fkD3/V75R9YTIBqH/czlwd29d/7hI1XbwxDpXK6XpF1CVH0pR46cJx3iDM0E5A5JieTgecjnSH37hFNMKT7Cz9xEANSuAAwNu13WC1WE4XdjxNP8Zck9ixPHn/mI5GNN7jWgpGP3bWv7+SitXi6jBDdCAXsmlatrKofHvvvPY6ry3AUuP3y+9//8UOmFDLftHAAXsddDmU6Xinh4EmRDs00cjRN+eeX854QqQOdKhQokETg+U7XdB3DYoxkUZqn6KZ+p1W174E7k4363YRi+ofJXvMvAyekmEETRsujMDsHG+iLHAZUpP0Y8YM0kOP8hrImiO/B8BWFv3jK9qYeazW85Wpu+0CZsE+i6KQGkOFcUylUBqFDjj31zGQp17sMYM+TBgEwJMFlsDy6qWJHOSwDkuSGliT5NkRFwxvTAJCO8mFge+6nahkFG8zL97us+GASNcExsdHznchkFM/2gAONsu8k8PRsvFCh88sV8cbvbwkUkFHaPcTcbRYmFDD0mTeK2l5L/YIrBnmEDRuRHmkTTt26LHdxppm/GmPO2rm4EODXQ4yQRz9hiehLsuKEhJPjKE5RUoukWEKdsRtDUa6jI/okt+dd0nBt5641y9LOH70Xl/73aEVlly9Ther7SeQyi6aVl6fvo7okA1V5awOWcHS0Gu9g+MlbKe3+09mG+/gzbWBMBCbnu0ndaX2U3PA4m675CATZ9p0sghRJ9vNalGTMRYyZYdth8HwxwJT6bH9Jbyl6fQMccXYFH9QffxOG67xuz3092F/+DZ8l5P1jGTq49dmdz5uWI57cgtDIuw7J5CImFnw9Uk1Mtr7Mc7oTtFNWp1mI2XZRa1dIc4+Bzew2mBooohc8gIRSyEVR6AIFq/BOIaiM1hQIqChJN7i7C8YEpxAjsZ6kAcQVhANq/DwhwpPsLFjVmLBUE+D6kzxJXZeEIAxqFO/QK6zIHdCeJzPsOvF2JiSJPyHggffl06JX6X8ez6Zrd0rHw5F2NXZBVJh6vPZdkEJ8Ww7n9G9RZ6By/WEw5LVgmjM+8EWekrjDzbZyzm2Azt7vQ09D4cTh7fXb5cXP852iQfkBHnSNcT3natv2DYyXdAg7aFNJvyZoLnF19RrYgZ8dm/lOuTBgPebq1SYZoDW9IOGsfp+cKTLpSy3xbdHaGYlsL1cHtcTeU0K9PaAYFqEIe/4drk8iVeXJ2uawEf8dV2V3dcdjhzqdO803KxkR/U3q9mgzjEaY+qbnj+/+42Iqvv1WF0pHH6oP74/ELpUXZgAQeT0Dvoe2nHN063x/s/wF1XDg4ppNyc7H8MW+3r3KTj1XfzdbpXFgb4SnxnR5Cx3li2MQfbR+FWVDkReBsakSMOw5MjowtMRcn4reN0CHsEzTKDBGYfdkec1bLn2QlnPAfV2M1cg8EZH8JSzZ7E3aQn9PnqHfgKEU2sj2v1OrywH/QKS0RaCPvN2mbADhlAxbTT+NQBuGAbb5fL3b9rScv2U8jKO04pEkOjZuRlSRI00bRLY0FyFrabPotgdR4S5NG91ujkcIWjswQUyNE7IAerERadMlBHeaRc0k6cPENX7dqnut8jAKkI8DB6Bp8NAWBGHqSvNMjAstpYwjIBR4sM1A4+fnrv2qOy7YJjF3gCKvYkRtRriKBhQ+/I19gFbGhKFA9nYR4GFFQIcTINbVCC8nTnFqGDkpCVgA2MpfoF/UA6ME1xT6sz5sgNy7FevWIM8vg26pEVIaaZVBijX9pVGltSdNV/0yAuNXFJk99LMSJ2x6zEGymQ0k+etFyThjjlCLnSJzPUXvLmC0yhpvDSk9+SKOwIVLY+bUb1BxmPi47aL7wt9+f+JSwhcup34N6cLfCAcedrLij49MmBQ7n0MpzEQfCCtkoGKRG4dRTrZJ/bW21Hb6YP31wWrC2hdtrttZDdaX9wfvI7Hr6PpcjIBOZFRCsj5pu3HGWzq/c7QebsX9HKlfPjcLtb7A40c9nDZWm+XWyyFDlsMlOiyxa4ISaCccNoV3bB5sjQMJ14vF9slVagLzal5dbe2dzlfTBjihA3xFNd37jV1UvK8HIucEcRYU0REvFuFPGZHbeCw2elX7Okbtj1sd0eETjmVWtFN3GEhtgkaxuVs/DZAPgdivpEnmogwzylOkcjLORJNDp7l2sMEwnzqM51WxncEY50muYDKekh8Bp2HEXSZ2i0LpCd5MckrRJKLmQcSJONWpNPHPWnQQlta7Ed+TVwHrAE0xsZzUZqnM0XNABxpdS9gxXYeImHA7zJ0zCRZ8WZTZtKwGFrJTJ9MVtabzLYAACAASURBVHvHfCpoPzvnZgEt8Wr2gR0yXmdx5URhnVLZpDBqqtmsh0YMO1xJt18g7BzOh6OsOs5VSG0Q9VcpPlx3AoAfiiesgvb4otzcK+CTuhv4UNzErCLAPYVRgkmAxuNOzw+yrf778/1kUdudux2nz1afxGyl7d4qT9e98F7gG8JU4L+tO+q8Rw9dFkkJ9p4U/D775dDt3iVxvl09f4GDXXbYdzpwCMTdIYw6ZnfNqmMNz87qDnqlYMl59cWy/e7//nyrx/3z584BdnVz3dZN1iV3oa5vi/lw+QMVs51qKnZtIHq51NomZlC64lmGYNczdVu0rtSlAnh8Voxh/YEd18GzC3faC9Mli4xKDdtQ2GFOs5zSueej1i7CgwOzntcRTu+31+Fbb9DvWCuRZe1uq+xyDwewgAfiYNhBDl0Brm+TiZ8RuNCeP04OtJOK3PDGAbipTSG+wZRSLVujerGYQI8rUEDfBs6kCwvTkg0Q0Bgul2XX+h76ECNBiKQt8mXbHdgpYkZpdwBSSvDGDcZAkcQWmfwsPS+QRbfo1LkEvYZ6gjYGp2GCFva4z440uGSIqRUqDMFaDB1OnMhO3wFYQKkGOC/zWHFRcLRCYUMczMuWzP4ykcHgzCWtckQ7Bg2sic18kG5kX38EZ22xxzhmZ+eJFlhb6zy0rIJDGotFT+POkDubl7y3IuUYA/8lzlTVJpyiaXpv620l5ZkAbOVVU60McDfxHTyPCH7QZgR+apI22w/9k7TAh+60YrLpeS9arXMerQChKJj2a7xO9hhZeXjR2i0lRrTa3T6E5r0260WK4PpdCZpIxccsG3tjdM2IjHoFZ5n95nRDv4/DERfPw+l8lIWznU/c9eAP7gB3n1bdbmHyYRfn+Xa33lq7CwcPjjUdX5m+vdstqblfwZPLUHy9UIBxsGQHIxKkMXm0Lyhnsus7vahlSvcRKNPC4XdxqK0/Ho9GY2oW7GRFDiUsuZaEki3iSvek78rR5+Cxavaw3VzsC8vj49cWTflyOX0b9vudQujJVYcdCCnt06UiUmWr9wPfb9m50LKKl2WS5wxzmezjmiz9O6UzpSlr3k6KOFjmxTKJ80WGJADg7olPz8fACpxlcpz+Ekt8uQqq3wX0vHITn/O1c+BdBLfvpfxGWefQTUU73hkDpJdLts2wA1zBwmXO9QNGF0DVhd5EeqORCm3Ybu/zZIY9w9zvDxA90cYfAdUIm4YzyBIcagy8FZgJ/RvTcxRzd67CbpeC3QekOt8/32ISUd0U/CPIOEKO/PUuSSt4yHB5govEuaoB2M23zmwxwQa7KWTiz8/DLTrsdyAHWTvfExRS0PKeAkvr6jis/lgD4Mvpy42Tr3XnG8KHEPlXnfZ4LOere2GjY3wGAF7dioRQ55GI32KBg9zlKHvTcJieWqJOB8vowLS6Opvc6eC3OvaCI2MrLkD74uI5hB5///mDm5D5rFzIuwOw0pdpfoafQNoFlV0PHyncawD+y4haRpa34DvqmRz1U5RNCV6O6yWEOZxY4aL4+vr84sL4E05ZW0r+sRTaUZlEDiiPzwDAEydqTsiBHr1DCPxqjfBw1B8Ou8MuO0/rOrkHgu0ctJt9ZJAPXwHAoGD9xsQR01S7xIupC9wSVeclVmMXP5eZLvqL1XA5AzKTGDcRYANvONlsiNsTRYU8pQoWAiTjAH97NPVgsG0XpNh221pgGBOAYtLqlEUG9bImbWKN8HpSFmmw202cnkxwtYq8xHSaFn4RE1LxpNggZiI5P/0+ggml5wuHltJ3xYlX8olkxom3nE3nY+eZM47gXITnJsuuOvUhLmHVQRuuRDQwSWrr+JiXWMytoBMmG50CKt6MJv/sgkMKvJTJeRwHARNLjTx0xCHwXbPJrCCRPBM6A/oTbPXjIHpiBYVmlZJOdsb0QwPLjLmvuDxLzyVGVuRbPY7JE+0X8RDsaTQye9PszUMP3oxemvqdSepiqmYTFiY8PPhKhE18Et45ZE8gnU8jUkQkW9UoK8wOQyHI5nod9HtIU2S2sYEwnLTLXr9L961hH+EjmFJ/fCxgWbPe2ekDOROuR8xMQVIZvGBh3GAX1s3n52a+sFsxeElXewKrNpCYY+8oJF4sEaUIKRGBmQQgGGbOlbi4knWshqS+weQnEzp/IDlxLJMJpRuTgwQ6L2MW7Vt2sjLJuAf3djDQYIYpb2q4f+E68Hng/7AwPnzRWQBQTHXxkRqLrVUJBmvv2DsXkAp79SwhQMHlj8yurJmlgRZmEXLdcImR9sIhybh29EiZ+5WXse939aZbrSa9rx+8+A4PFW50SO2LMpEzsl+0J4XeS3i7dJLUzInOixqA0fgaPqpLhfibA+rpeI5JMzKupkTFmQMw+l9mPqurXTpAr1Z26+V6NcUSHU0y31m7ZkptbBUSEXjGt3mp906ObUvtnrGMWM7xLmFHjbQmOqfKXfXksYEY9t5J0b2DSfS/MIa71hNArna5vDoqMn/ImcDYjgKi1ckhj/cMuPnPR9Ww+Ph5VFfJpQwaiOvn691/vgqLYLXm+ida20pq5Cq4f9VpQ3J+3qP1Q2iDHsj9xyVTITL5VMcveC8crD4Fn9aq+rw6NMtEZPx8pR+yh/jQnWskfbvVxHLgtYEvPh63ANk0uXr8/PHRN3wpH3cFNHMOzt/v6UrUc1ceJPy81yrsp/HJ+RKU23cnRl/YHX+JonYP5QZXBTef5V8UonwKucKn4x4VMIIN7cyDr86G/u+GwkuPe1toYzIBY3AseTvNsF7f3oYgrwzeAMCDzmDQb7d71GWy0cQAuNUfjfr2ncz6PICvXfh/RzCtQqMWhVMqdkZNzqVwPfcUourCbP9K4toyI37e0GvlRLpiDrUj6ZoC57go5HVoANy19rwFFOaUWs1POcBsErRZULhgdVnw4pwr516mXq52JPUkdlFimRGnDIEijsGsRWUTjK4sipMag0XRSmTLl9ZypQBPsfzwPUidJDQnl3gnF4KNkYQknaVKED0kskvltYytc9wMuOkBbrEhVxbuM4iDIjl+JKHZwPvy4vBLjjd2aoHDzFj1ZpR5v+xhjHUnQt9hhzo+2FxdaDMPX86aL+hnIz0jvov8f8PqlxhojN1eWBKH6gse3y+ZHRG8yNPNOG/kQEN2YdiNN7QLTNwilOYrcBX2JAyxzdwSjDVIkqSeWhuS3Qtka6h1E2fLjt5+l9sLFmnogqVGx18dyNq7NKywL5Tdfr/bHY7G7+MZcx4oa9pvDYPtTLKTS12yVbUYUK+Z/IAgJiKeXc4VWosQFMyG1zsmoZBqvSCXdinB72YyZw8sACZ8bDYIGlAnJjo1+z1wpylkUgs8lSYHImBMr8akdI3B6JKM1R746yvt7KxDHk3gA0Dy1icejX2mOdmezpeYUoMjfoIBPUhcQOP9ZobYCZxP2OOGAVaWuGI+tRo1ztqx+BOxjtfAzs/cy6MoixDWwO9HgbvAZLJGI850ttcjnXDZ4MXAdxz84q8gCwoMrKViVp2KBYayAHVJILY3wnreFRnqxF97NeEnNp9vl/OVofhytlAaDftljqB5j0tZR682S2uM56v5eDxbMWKd7+yc0XEahs+XzpteY/gBUhdKKncCttZ3g5D1D+o8ZVe9wD3yt6zIJsDLbldnmRtXHK4CGEIesGKXfpwt/YxAFBqfg6XkQ15XF6c4gS5twHX/kZH0N6fAd78tpswiJ92Q3+BMJzfmkNX0pQoey89U4tobW5FSmB5jRH3xAIrKO2CWAKQYsyBwQ86fbz2jWx2JpNsRfRlS4SvaYDet/tU6Y223PZzq+xYUxYq1eID8/LiFEERiMi3BrCm+q/DwF9IB+Ox2l8p/vqEiwct2DhHMNQCLRl0Fzhvui5Lji4w7OG6o1+bOJ+frDl8SyZewJeZ8+vz1eeLex+pcXDaO+51OvC0iVYnEiFNd0BJX5TvObsrqsGFyAB60e61Of9DtDfsGcHaV6sIpo4Rrb7tnf2TNxj8N7uxgiIGTtOnhfGla17boX6KoESi8TbgxJknDT7lIBN+64/1fH08ssav5Cz0RX9hpRRHbL+qalC6Yy5Cv2yvaXWwE2/1OKy/b/Z7kopxCkmsLXC6VmVtSbCxbvSxQTopMQ050nvaoEdiLEXQee3ziX/Neom/irWkiMnBcP2KyjTVl9w6YIB0IxT6r94pFqUmUL9HRDwjfhPRS+kzBDu9A5OwEecrkQYcXLQCcfjWY3pzfwiwUqY1yIaFxiQqjlDtdXAiF7IpxrN8BKsZiuUzynslUszY4DdNre/Mzhj6pG42FvqJO4Z5VfrFG4QPyO2Mijl5iKGDsKTeLXo7Kicye3INkVapAK51SKeXX5ZizUJ8fpAoIwcuMmXXMEQqOsQxqM3+TIiYpYnXCdMwuHbdA8Gu1EGpMAO749ATeH+4c1ZZ1dX/YHb5B2DSWXRb2wvuvw+mietdA+PC5pYHGBoyrmY+TkcNtJxquy1tceVf0ycSYdLtauze1ciCgG+SlGxp+tMvou8iinsO3aT7lopEpTD6pQv6e/Q8MrQ/GJYbv0PtyDGgeT9/7XBW/vrkR5nTqq9B1vZXiFQHd8SdIWwfllIv/iTDjPQXGi7kV5QNGZvnyosnNUVJKB67gBljfOds51VxHcdap55BmjDbRmdFo8rBrNaUHj55HcH3u0BIrdmLDrylFSJPJQg3tRAaT3PYS4GiEtZjDHk2d7YJfnZC1PCerGSM/ljuGw6sAwOxY7SKot2PBMOk1ZSL8mNE7XytfTCY2Cymg1C4L9PmSrhVsuaTXEQwWVrMJ6oH5wvNyQAmYcxux8HEJfLe26y11LJDJfclH4kw2teabtz8MLzAgNTy6A02+b09HK+b6Pn2wCGHA3Yf3nGgCvyviw1XumiJLYQQLE+jb98O1tVX1VC9xPfoIdGWJck6nZ4gDUfqK/vP74eNjwzH3z3jcfNX9uNXm2d6Jy77E2+L6D21t75U7YjOGwgMsOCnWmliOnFZQ/AjC7VM6P7sTNmVGj5/vW8XRNHff7OfrHfDt7N6g9wDAhObz+VoFjpVv1CV9voQRdK2s/ks59jRgoScmzbnvzDeGV7UD8IlQXCuIQcg4na1o/3IV5Bbifreu5F6YvPslQ9UWMztZyQF5H31YHW0ojBjZXq+VwOK5Z3iGaW+/k0XWS7atXSJ/ERdIQEMGUmPiutrkLz8551ZwV5rn1samDfF50iBjieU+FdUNcPK/sZjYqyFuw+VMZOhkDalyc6Ea7JXkj0unw34XsXcIhe8hpLjDJTFbI6QEtJhdXHoAIObr7TLTxJqTTRCqcySggtuV1KZaWlYnoePFI0njZj2C1kw9VcMYe9tQx7lG4rIkQY2jnXFIUDSs5Ng6QjQM9DkFu0L3B+SaWPgLwMnCAJ89alPuj479kjPZXdKtm2DH5Ha3GVET/dy52e2y+OXF7TS0qgfli29NU+8Pbbv0O+SZAIlZBHprQw9DEvDUHwC7YqyDMQCg5YbfKM8ajaJo8K2nk0Oj6BaeCEFHL/n7J/48OUHJUqqmBMCyEyZnPM2h6aY3RCaSGEudDCvrULgh5ZLCb8wUCjivtVogEuQFeNK9rn/0mKFpf7fln4rwCJhQ2JdaVtT1DYhf+8O38fjN6tQlPNnZRX75qvUAa2oIh8M5xdNrSYUSlX80g50uVnCtQ+nLM3C1UZ4iHWPX2MoyRAUj080czpdWIENQzAxFtcQfgiPaP80wN35/LooxqDYANpT4eHv/YI4iCVygdYQl8uhdHxNAh/2yPWMgP6FvpcnAZktxxQ4aC9TyjG7aQ7k4fhsMhq995mM6BzEJY+Q0j9003dMH3VIDOyMctFmchbk2yfJJ7sdR4pt+q68bXk6KdR04DL/Y6M5hmiHaE2yfJ4rNktGVfXVGLTZXsjOho8Fp8CpTbsNyCkqWtbcaQc8ma06Pgd3E7SmTsQDJ9iZshaqcSht4wuhsrR7cLbfkdSnGNXtwe+OWKpsW1kuDbI3vUXC+oXB8saHYiX0zXdlAtlfG9RoBHUemZ9nVebf7RNN0rjwPWLKih5w5tFplzxscpirxjC7AOPC6fHp6lRjp6iHCN+1e3Q7a3T74x0Ofyt3rdLmFn6+ZWv7xdRIJWhaV57N0yueaLCUOlUwg+Tl4XRivcykLmrILjJxHfReGPygfBuJqFH8Xffz+7U2zlrr4Jkwnv3/+A/kKiKru9/tHLOrHn4ebX+JWf+2AnaJdhXhI3iEaYJUBzw5Y6uTqEkhYssJ2p2ylY/E+aj01WeGuj/bXCR45GFVjIXz0Gv1qZdWZ5OkDnTwONCTYBmqWfG+XuCCwLhwr/mVilTZyX6bjVxCyeq0Me2DrhBW00CnsCmmnVpS46BQlL+aEcQgRcuPFNHHOcRlyfEQGSn2Hx2uqUDi0W07r0aRWo0YCS+OFeJDQugEdcBxyABLpWeWJGUbFEEIgmJ69jV1Z7SLaKcGiLmgHVBYMhQCbi8H2OTP0mDkB3aRBtBy4igT2QEhRVPJ58MgNFo1Z5gJX9beiizKyJpPoVviXZAGAg/WlKFVpGP2q+iBtmE8TO2/NEvjTqe9w2QprqOsGIM5l8Y1bloU21h1RmkGlq+FwEtUz5QD8/j3173QyazpZGUv9BmnJcFjxAQZxGMiH0UYjkO7iGoA5z8BEo0GH8LBKUGWG32dgGvnDJEkM8Tw53w+MJxU4ry6YL7Gn28WxOyqCoqu8n4wibdwZI3vItW+66KohK0w8Ds/EwKMCTyx1cxR7Q5GP3IXCvE2VeUmKFo3Z7IgZ9kC3b7WGrwNslcHGb5f4EoTJXcPifv91NBqPwbUBpIpsfDxCC0gW5OGwxeV1ocBi6PPpF7HdycJ9x+gyJBvTTos3A0KEbJXV0vnUC5+t8ppv5TGUTNaMzWTlPpGt+4cMpw0ToGFiDwwEpukWR9ijscBYDTOm09h4j97pXA1vqbWsMHfWlh1PmFfTofoA40vw0qAvPjCffGt9/OJjNMA8zE5uRFn+HZstt57Edb/2acte6mb8u5bUcQfcDGAs8/Om98ZiKopC4Rr6Xws2qktaj7EDxkjYniIn79CVLTgfni6JdvYaQvM7W265ArZXlYvYpV3TlojNWs5AtZrR0JvGG+vASeci2RDX/kMptBS6Ws00nZJkBQUbWtmV75a5ZJ/rzbFfvGchYPePROId18h6A9e7DWhaq4VMzjjyJmEOmbKbLa3GUfP49IR4vEcKNqxgPsE/OH0hPs/HsA+fyN5hP8WdJJMdDDwQ5/f9P//jMUSVJq3E67ukwfRhxP72ftMwlUPth2yhaDCJcat+XIaPNRRhLgKkefy4VaaijC4wCgkbZ8T8XbATJrvs+ueHAYVVza5i0BLTHNw743GHXpdlhMbEN3XKQmLNlvl8+YzR+f78+e9//ty5CYcc+pv5Uexdrw+Pcro+XOBby5B8F32RauoHO3fYUT585lyTsB53L1nc9ESWl7T8svtSyMNVLwPJ4Lf7BZIpaCjwanJdfLZq1WoShApzqnEWAJ/I1YJc/3g4w1dgb2BshTsSMrW8WC7gsLcSJXBBHuZ09PHx7v61b0M4/ln9PxpwFN3pv7bKbq9AaBhXq6VdyJBRmpKpAVsd8JdwbS7YvzSLOlYP10Bn5eLa2NAYmZo/jaWECAHSnITF5aQ1YL/J0iBYk3b7T6JlY9MlQuxJqTUVK6xZkOecFZF17DnchDF6hNUWPJUMXNtFDtxFklML40lul/MWrsIZ6J4F9saISSwFqQVJJmHnmwbn56yWIamIZ3qiM6upBA5PvylaGRs6KowZpBQF0VFEfy+7/QuEIHQoiNFHvrxI2RvRORcOFjFH5nGRuzzELRQiiYBkQxbJLRI1CntRa3PDzjfTC/cP29sE7mAQ/bz8EwbpOYuE6J+m9ESpj9gTjS3g1pUVjRf/OXbJzGCIf/9uqgRiVAA2ExRCBfvJuHz5J8/tPxmU4jk1UgBw0u7CIBG07BSar2AMYrBclERkxhUjZYCpsuy3lD7ByQFLgCRrkXqeNH13GacefpEo35lvmWye5FIa+wIi5+C51YIhdd9KL0jfrOLsDgp8BUcD9sWIqLCb0YyNNpjt9tCQuD8c2ZliXZJBq7wZ4PRx+fw8nfZcFivPwU61pUi5aHKpn4HjIbfES8iQGVtr1/wPa7GRm2I98JYsI1B9NSldTJR5aw0caUMbwYEkNEgseB8bCA/fwcmFW/T75EOEasPbCXykMMQG7WMOldM7ptgf74Pe64T7ZbuHHZJc4N4J6qYVE3AVgMTJnsH+C8nkmFYjJg7GQGCSjF9hfyKHyqB7oLc5rgd5HhVJqx0XNRkQI5QGgr3lykGeA077zJ1dAi1aISZx8xdMS+AzurGXwzr+CSfCHx8fHrYw0yYWy1iu4tfUZGn8PJ1bw4tXiVA4M+z8GEsqDPnuQi0ye117RzwgmvOLBWf27LlnUC1NP2YrjrHX8/FitvpYTkCz2yyWm9UEfOqVrEkhUIa1FiI+Vgs5TPNhoI5yr/Hl1gOrsZ7Y71dzu6IfwV3fwF0NPfFme9gt7I1nRAQjNPdislPYVHFO/A2LRvTEjz8/mK6emXlQPR7X4/WqoEPkEwBH3LsRa1Jm/T1+bl9HGVORVa2Ba4hpeDpRo73Dqvl41ve/jtfv//7czmhFoZ36pjDo/n2R/9dJNiT3QPK6BuxlahNmweje7Xb2Y5AvPQLZi0/KLa1DUuNNDlYyEbkj7Oh2+++///7n//5fw197phjM/7jk6CrV8/cf5ijf6mVzHRPpTLAHVb/Vjdah30BbRkNc6ComThikWCHZGY+L0YyVTLDJ/L7Lg4QRkIeTVNreKJ982w69MF45aq7t1T1djgDgk10PLggYNiQm+ZFsLThqbeltt1lD5Qgpm5WP08XGjrGFdcGL2bss8awqnFm1jNyk1+HrcPQxGjKvoQ8CcqsdbKpaIEmzlyg1CrZOg/iSF7GcETkRRNiAIRr3ebHINKk2pqm8LFMZQuJbXB7DIRFwlLpWFi5bPn0FcDcMONT22dcbTXg60xTCS2sNQCMaBcR0DWiBvGV9Ta/fg0ql49Np+H61kMQHlnVLXgRw5ML3Uhjn5kWpsIe/HDJSWj/mdJen+aRKCwExrP+IwXkShLCp1xt87tQ1ERaC1iaW6iZYW0eB/OzclLgpt+gXqSdDP04WKdrLUgNiu21Oq5BEGqvUM3NiTZWZ+qaOlCvcFJlSmvyTzt5oki+eF+mLOFlR4//ZCIgkk8hXGtfP0CD75fO3Gm+MrKVfavjfpH41o2bo1DP3SElxQERJGWusEMUeSxGLy5YrZSdvFS40Lcj0MeCWQ0QGzGbcXqoYqtRJPu4fJpp7nhdNb9gz7Qd8ARL7Wwmn01anRD/ebbcxzUEbDHJWn+QByNxKVG9kGsAyppOmnV5ZYIptXxgYkr2NZ4v5hB4ex6/dlXqgo52hh/3xegS9egPPpS1H1YvpzBeDvPQuljt+umJzxpwAyFcxWeWX7JPN9H26pmXTfIGkxfUqrJ0XnnlGpYw1bLB9GuP8HQNmJ9AuYWcMFEOo32yO3hgca3vIIxAwMaBGX/zOMfUHTCbWcM77PEBMAYcf/AHy1u7wxeQYg2I8v8/N9tNaxvH7eIhoJJ2aIOPhjIgUz5mxII+h72tGVKnrPIkbdu7//jcPGVu+xSEA4537NZfgaL6ac4is9pOjaPDEJx4JvFxOGXQOTFwyaRJIO7erGSzCUaZsAZmGac7fUpDSXOFwGg1zys8k4bl+nt0IPb2BvnxLrMUFzwuATrhcjPX2zJdYVc9JgkZfGzYGrvvG1zYssRYbRditj7vFbLm3fvTytSNTDgMI3Oh4WC72+/kO+m4DdZAEWJ2t5fIPfxWuibUA5lz2+/HzHzeoYFcD9moDSSc7V/CZuDJSGEtPA7GLdLfUFbOhuwQprwf5yvnqxHzAS3DDUCoUMOzBpEG7g0ul6CfPFgwfTr3yxSrG1GrDL25FeQvWj2cfW7tDNuy1CKgaKLPBN4T8+Z//gMCwvqKRFVIf7oGcRYD9fv7u8ADkTSbbjx+HdjKsMc9nk/2QL0gl2RRYZOhkg5OZqNv+OCl5Urwk+eBOTQ9WpEFsfTo7aR3+t4hzcADmyWI9sPXC0uTvPe3MKnbyOeE5YLXuAQM1P7Pnc7tCMO96JgsflM9zRJ/CB4biRGQIv8IyC1og64099hfWgSUFQ3kHKQx0fiftOHfnOvo4k8/sra4G2alUnrKok941Vuyda5Y43sQ1PGwr2ZmFDCYMGa1bg0rCGUrB/jBLY3fmil3/Qw51nhCIuz3IUfBXlyNosLOU4oTmjM8HKE2QRqhx4RRbPKXC49UUngj8hWwyTGYJBAI+Z14lElg0Y5rcN32TlvolKXGvZt+vUZcroEpc28O1chL9xV/R6J5ATvYxn7VGsI2XEr142D0ngRMV1ZkZiQNziqoGMt6E8MjMYGs9XxpC22b8pJe5Z5E+gZCYUZQ+iG5wlhi7eIzgR+CtjRZ8VO3pN9x5A4CxxQXvLKqZbsxvzDxFimk80r2k8nxIPFHW5WQeH5+WzqgraUKdBOePXBQEX04ixMMNFH0wEQqqkB1UiFGAtMROW6R5RIP0ByU9UhEXAQaBHQx53m5T94YOutPLWyDld4d9pCyM4f0PSywrdL/OsJG1a8kVJ6P1xeAib0D2IQDjEr8CCYvSmtnU59FrtGpcNPoHoiCwYxYDiZ4Q4gUt5FMhCpFYQtxjIicRobiYS5M7TWvH8TiY3zG6+P0Dxp12Zo/nCwAp7akNk4cDgzhOWfnbkDquZgyhMJhI72C6hScGRyBDY4zjDR8X67e2+IAM4zDIrZkF2A4kUdqUOWqccC/yO8jJ+QdbX2ZdxtEvyTVo1g1oXMw8HBhD5NnHZKEsJMmU8EJu5L6xnqq9ZbwRXFA0scfLrSBWJ1EvA7oc6QAAIABJREFUF85CXwtJlWk4Dc3xak1Suv2OFVZz1mFPV7PdbDPDPt9eD+uFF7oT3sp+ZI9Lp1TDBHa8h/ZwSHvl/Hkl734Yo37Z9Xu3Yd/O/hgI/bULkV3sldeMf19SL85p5Yx4vIPCBXNM6oPlAYmu7vFHsp7rzY2k7mFkfJfS5nFGeOD37frwbe3/I7R1BnBIzb2cXBZ8xcAX+1a6XmiVS7i6MNGYWMtfcg0eIUoF9OEzl63XkIPwV8oTOkttfW8afV9o8vy4h/uRaOsHy1+qjwIAe7d7u4eYyDC0fiIwn1DII74FUlel8AyZZHl2IdKd3KWaHfXjHl61R9BL17kS1fMpXWqqVj25vnydqwq2leyGmXBIt46Le3WQM0JnHLTF9i5+7sHPgt88N1dfdoJtYKjFzZa94VYBr8lawH/jKZj88CefcveEgBdmubwOEKIELMaIGsTSksbNigOGG4YDc1spg9a5BO5xUMAolk/s3KAZBFwEG0QtLF/UAgfKpMCjgQ4s9qCzF7FsNYX1mB7OpT0WLwreEbjz5ovUiwgD4BzSC4gSScU09ihKl5RKw4L2CDvknLtDtkpt5qHm6uMKsrJTioox5Wza/0HkbQZuWjMR5DoAR8H5J3IDijwVc8u733qnmyfiVbtnRi6SeNSsaV9M+ZNeiY6ZktsmvkoOusvoCZ0eNgHDSNwjARgm17hiJt0O5gTtQsYYkZIior8ROBibpSqN/PrJ0b8qJblJhhbUMwkTn0zEzec74Zt0zQci9b9OI6AeOU3qVj9JQy5z7ol1kp3mpVRlqYfweHaXqjuEVLaCfluW3bmnY3EFINKdjyg8/KrQ3oN+UKWy9UAVKGCz1qG02GvNtqgEZSYePgzTUbmVaYFBCuhe/TdDu9mrQdv0Y7EHPeNExqSdgvYn9kQHcGLXnELSAXNNe2kxcGERQVXrUsDKXEOrgGWoSC0N1S1rR2AZRMx1fjJjYEFtLJyTkWFAJLb28V35TPJ5NDSGBwAwGf8ag/DL0bVvjQ2mYdPDXCKFNa09XxmXDDyXE2H4cvq0K/Lx89N6/eWwJK89ifz9Rmw4Vr0g1DUzHb60aGtGuR9UifT0OCCaLkj6NfePhZtOyqAZk2UZcvgHmd5wxVjp5iuA4f9X1nuotZF1TaP+PSh0UiQHhQ5SK2ew57v/+zqrqtZumPfwzNgYhBCSUO1Vq4K+Llf0AdK2KZVuAJhnFLdMzzX85uSTZz4bs7UBbRt2302dvJ4V+cLGcQGwYSsfGTwS2AnYPY6dQsnhGq6k5Qo5hIge9KvzNkx7RJfb0+VQ4wFlcovdrXMbj/NtOauWRblBrj/bsKAeyMul19xVYCY4UFeqmM2X9WK53tSG5vZUYtLzmbkcnAnZVURY+qQj90rFsGBHmPvfqVF2qLNd05HBjFfqfdmpcHGV1FmTr+bFIxIrPEBKwO0j4JG4aUhJxJZtl+nPvnbVH2fZgTzTGtVS1BSrT9nzMM+3P5h8/7D04XRE7YKh6C1UTN3EPLu463/wV2Pup9qbREcrsEOKNnIFuMKrAJ82qluTHXIWmaB+peAYDpnZihQ9Hs7HnwB8wgmCPu6zR3hg9MXkG1TRAmB85HRUdypyO9ZqPcT6igTTerEGMR0cCzWBuK7mZV2KcJmTsHHxxweE04ytfaPvAXUO7DF6fHwYgK1jowNxDeMlpE4jgB0HSPlupBXmZOfiYm9J6aLlvhte7zstSWG/oaDlr+G6vAG4A7Rylmh66Coowk/gjchLyCDRb7sdOxXO4kW7YSOmX/cce8cPZNrtpdYGeuYq2Q80wg8DIMYPxv+zbKAywozB2aoC0i5TmlACMOFVFHDsxDMmPSmTU5/5PbEq/lECyGME07C6UeYTZ6eZ3CKFSoYEBSZuG/KIqk6SJpmsE0I/NfrF35O624XRpBDDpoPjB6oVup3vkbfrONyRxDs4qnDgQSBapxvu4pbXUbo2rqGCO6EkCx9ndgheZ5MoSOWDi1yRXknvm+jX3j0JZQFeIJ/oHs4aZxgdwcwS1oTL8xD7b1MPjeC9FZgXJXF+R3qmvjIgeFPlH3sJZ59OLTsR9fo2YPMUCRJ8dD9EZWbPFzGPg6yHTs0UzxSulmEcsKOoXfIBa+THR1QsvEAgXdXcGO/JEB7xi4q0DNYjFiHSmPIrJCgq7mPORtEZ181seyAvTaEW39FeczqZKA9qHnK23C0LYAZVakdnqpewM6asmL/B2AfjlxdVTGCjofQiH22zvIunX5/d9zQv5G+u/BVis1nXSAFabES1XVaTx/uHhxHvgxT+cf/Va8ftfzptF9zj2ZbctXtx+PWMO/48UhxP1P419+gqCpCnaiqisLnMX5+nKLNQSjQ+BAHpvHnjBraYazc+5yBKgZYqgnOfUmU0modULXh65fN1FVxd8rvlk5B8mdsQOsO2XgJWBYXYnYghpazXgGXQFFpHL2qWUDPchQkfLG8HhWH31WpJ51q1CACeI6dhtSrmy1p28eVSdbJ5WUNKUEKEBkaF5Ake/sViCgszAl9KlvIs1ysWjtAIy/ZiL8Y1OGYS1BfrIRBQ3czHP0qGCMAXLDcZXXUDICIZ43y4KjXj1MyyXP2yv5e4GoxLSpYOlYpgfCS/YtwHZdQO9AqMPAnVlV5JoNbk632+9BN/fv358+fzM+ijEa195o6X/ufr9+2+/GcH7BIrCKyvsm+FbkSmQ2uEPh8vXk+squcz8sNA0x+8PUOHieCnstt7FfJrAX3YhySxENh5dc8S3NfYEFMUvVWMx5Edh5qOV24587Yl1i4Bhw/bzfZw2NYHD7fcb9C2slIjKvpT8ZxirhaPihOKAmeTd2o0pxMFAtjvMbjpZ4zGfGOzw8iGBazUYCW+pxeEQc4cOTm4eEkoKhWGrOAFlSq5UJAqsa0ohOgEzytn4QgBO3a+diBRqYJe8TmTQWTcarVCJKY8Mb5v6hAgukE/rB7bOPmeiYein+1HGMOGdY9kEv5z0G/W333hMYKEMh0u8Kodp5JJifKE6lfjlqauRMeOWEXlFK+Qe/VjiHcUEji1x+5QC/0zmbEr6Zo+K1m6ZlYmVPdTb+p1IjcRTH/7mb31jUOzPL2ckwd24hjZBNwA8PfuV3d74gDc0RkHN6PFeiNulNkN3QDwzzdK5zpBVR2sWwrXxlErURx025foIfozCpNvEOdFivlUqH8UeRi38rZEQYiVgBw+dXk6qWsIuagWZAxL2hDQCv+Pei7jl7Q8lsaaJqwkcVc7HXeRiPA06g2zFFwIqBCcJu1JnqaDBxZ4YWvM6qasf5/F/fGwR/oH/UN8Pj08Pj2/vhucIgdzBcWr/dpt6GHAVLNBxSCNxPkUYRDQHC2ExHxVVm4i15gyzdivIl/ev9/KEBKFBrTvpSTBmig1mTA3eTpp3iD0eH+dMl/LQPmNhLQI61fUKL6+NmDMGEzU3Bds9VusNggKg+1xs61eh/2xaptHgySizSyh2q/diSGDZj5a2o17rd9YYgiBo0aRSMGITcD0F4F+0661DC6gWVW8vRguuh9IEyySheaC3YIENKTO8EDPld3RXDj3w0qea6Amjx++h1o1hMOsqYST2O9om1MXH+UH2pWoz14Il2cf+G55VdfgmCt/TBTBUrJnabFa1/AZF1JfrbeoSZzbsAt0hk0ZMAvlwHq7Im/tb7K1LaAnQDAIDOY89EhNDd6amaZlVcyoZXcRwWKtVQE3jgclQVEGdbrI0KPhV/StrzplCz6HbKuLRzJzkj3+vSmm43pqin2J68Rf7FLPpyaK0m3EZ+/204U5Zh7VZgSA9UlS0qjrFe4icOfe5nBxSy/Uz2o8dB8x+efLsVGLhaIldVNczj9EWOdGVsbd+MmpZG6X6a++irqnE9nOAfIv3S6Hg333I+M2r2pGxhHCfcPBfw0v04FZYjJMn5yKvhx3u4P0WDDy/QBg1ipt905Po8+bzntdDqw1M7RW28NxW1MsvWXPFgF4UzPdHVZi+y1b1nAkLOWn4BN1zmAZlK15pN7HVC5ECreQMw3rA4tKbQS4HwHD7h/u2evqJB7LjlzolPaGIdNOlC3ENWrDy9yAEzcexBA2HBEsvs24BN2IbUyMv/ymoOVmFZ/rGRGRn7rDrCYvK192FR3ZExfNkj4cJdib6N5RRB4OlO7BSQiku/1hJ4rBmBprto5nnlbPHyt05cYhco+eSJGm3rOgiTf0/rLNvt2VpIp1hF2PnezQvdTSj9gJzmBKpBl279RqHP2oRo5Cj7DjGaXE9Hd2BOD9e4RSDHrsJepG/5OQ0o0aKsFDUppM6Dvsg9FP2WkkUC6G0l0rUqITBVFYk1Dapnq6i/STJDUAVj5h40uR8pw7Y48bQ4xH2teASmEWWIeYqwQAp0ciRiqqjUIUJvOjhcMciDNPbApGLv2TTygq33F92slLQp3xYBelbd9u0Jqc6fCYaqENQd6AGGtPbzyfYX8bMH+N4zDlWqHemZsNA+nx4zMKFsBoVohtht4YkLwlZYXAD5x9l3Ux01BMHNLly+BkALLWDsCFj6YKTARjNZ/7MElSW0T1PHTZOyRxlck0HsH9xztiMCGm9iLjN9HWorkesed+RXELxCBIpn7/oCN3sVisite+HUbgLcDmPtbdmMAwHEVZB+Zx3Jfdbu8h7eBXN/o+r3EjEmnl8gvo7iQzBcWOo1O5g2fqDaTdV7P/jLBbzBDh7F0M+qlhtZzPPD5j3mixZi7jmn9T2bNcnQ7iHKa6w1UYTVye4TH44NUXlTuBZxTA2b3MY8+cJySeiyh5hvp5KWoDfVwwgyqydFFLpAWqG5119WpXlQg4XRWcnKvFGlXU7NqAS3i15qGgqJaaeRdljdIuxIAj2bpcLEm5o6eDFYt8cmB2qu0pBWXQcXMS9aroxxtLdZ3FVeAW8NQ+BLDab23wZawHABLEMxfNTa0gyFuUTdDJ67tjOoqY2cEkx+tRZmVKtnEVqJag3zZkVkqidfr69GLDbwqZDUeXz3//7++nQz56Dm/nE+fWQDm7jchFWJf/paBV8YC5WaKw5sghB7Lqm+wWoxgDAR8XAPD189ocULy2OVDiVw8D/bxIcOU5JvtT8A7DiwRk3YNj3h0Jr1gCs0VJ/wGIccmd/WpDxWgYfEJ3GYbilb2zXq6Pq3q9Q+weZY84Sq0kv0Cm1rJe12BQ7Hm0wTmsokKP2noFzfP5S0HDNGdQ3mSiM/b7K3KmuTDGH/cPz2NlEA3YCQwIQ9NNkmG9CjY4467YXjSBylywUqqFaEKpfzMfFe0jlEorzyKJO21lEtMoihpU2FrTII7udFtdJUS0fQrrMOCjmcpcbU0RsOy5jlsZywWh2WWwP9OTmGoIshoZmCODZZvx76mvtrPFmCW1EIgzTyjF+cIBgBFe2mVmSnjqqZRIOR2cajOdP+Kw0NRnBcyRx1kCwFpOBQT1l/00rbu2m2F5X3U637tfUq0BgMnwSp8tmTQmYJwx7NTR7Xjl7//gb/OhwER3fgSmeCJWFOmo07hwmxEYkaKRSOgQeUQSoq1tf6okDbVyePimB5+kIeaFUGkTsJdM4T7tyTPM5lv1bPCekzW7CfH+rq/lFfU8M/H7TdYyib1QJJ/QT6NpOWruMd/NK18m9U0+8MS+VX+A46KBsD2PuTy2U1mK9THeTSlP1FOizwQpQPQw7rHWaciAzMfHRy5hpwVXhvZ7VsuGq1YF7AVZdouQYgcOBoCo6Adr41wrSKiY+Ym8UXEBZGf58ucUWASwsAt/zGl/yj3b422qozQ3rlA+zdzW5IBs/4CG+uXp3WvE0RGBsT7PPxBe8nA/RoVL3zl9RK/2YQqMO4rUijp9w/f3x6ch9O1hH9Rq3SlXDUlY6P9DNPYMGjKZm7n6fZssF5OPkngcsqIBpaVm32oK39XUmWmEk8wWi6kiIpmuNRWMO7YXHmFJRRUpY0+8goALSIukooJZKtPyvbBHBvQwmHAQw1gNc6lQztEdTWsSSoRrlVzCGoW9/rIuZ4sa7VroKUYKmo2q7HC3r5NSel3ChFzXJbRX4KrXOHfZBVcLVUJDJTCfL9YoYFqtl4y6tNs45yykyRmhbXkVltMciHHOsJsMCD+dMaLtdrL+fJLavXp0JFe83JpSSH3Ynf/9hPTpcvs6YgeMBakAGDPt15ddene+NYZbibDIVLPwF/tb8dKUN30i3euAdctZY6Vyos/aEXvyyPlnlDTJ5y9w4X+xW2W/MhbA15MCOi/OC6N64uYDfci81Ph69mCNg4KzbnQZ03pMQuByth8C6H3GbhztTtevz9PR3gt1krerorMvvtS9OC+tI4Fdr9dVhIBKTNQ0IRGAKYLmzAs03pOE5p9hDD6oiO1wAu+82R/2561BMAB5aw/SanNc7Y6HDVSOROLdcYsgXDuOUbnF1fGGWw1Uqa6YN7tQ5nQlz4AcFbnqM6HCnM7foQ5F1tbb88s7M/KfYGji1nGothowoENGWqXQT9t0bPPxcAB2l/XeSU80ahT1YlTPgrvFuJgqx45+ho52wQjzZ3UAjP6duyaKWjNx7D5W7YQ1dHFPyS5bZ1wJIV3mQAnQQkyTvbrSZGzgOtZkM4Y3BZJwtPBAnzUSxw5umoYmeyEGNZqOe4nPWAoQwqqSybk03rDlDRFfcS8VdSxhERRdJKC7LvDucF9pPwHbhSUc7XqmdqvLCj9CXDtNop9C5h86ZiVwsRuYziKeP+xWjw08egRWyKyS+L9JoWncZHvTDdZyzjntelQolVetu9bdHaC15R/odJ2D7uqEFMZofKjdasO/G6d+jtJ4rndY2wxnt3c+OSXQSXQTPNErSTM9nkkv0U6jz6nU7tv/AG14N/OYD7RtpEGOJ8PxAHt7R+OU5cm4NGxyyipLPS+tR4Fb5EmqzOimLa2tOii4pVjWhNLM/njUux8CnvWskZ6PWoMMnWMA4DFUfn2YnQHLIKkZajUpFCJtQ88aoq11DVsQU5NWFNjOVMAwf5/m1ULFAJz74CzmB3QwJv68vbwjGKpUpoQXKfGL5vl7zqAu9RcDdKfSUXvb7seEUuIPaKnt99l+le2Xegbl9Bsjq6ev4LyeURj+9vLy8f70jC3Uy5MdSwc9qS6H9kRXXI49bfrtfrE9XOx8D0W4jdcPqJVkBnW3/U+r3f41U7p2NWGkyHQ+qcq316KEoxetbgVgEU2/DLPCsQPnB0NTO0LMddjgLDAFGYyfga6iyYyYzLVvoRkWyGUfW9o9tqqRvlEoBJpdwx9TRV9y1AYeT991HzPwkjsBLsRDIwPGZFydwegyn+T1upoCRm1m3RzRG7uoK7jDMcFWZBKXK6mfbUIuawryuOQzLEUMGcAeedI29s7XlZLFy2q1qsBgk4tmvj8jqUu4kIuqNog3KK+2YkeA0wgKySf10s4qoK5XZWUv4jDOAImvZ58F2c17OGEzewP5C38txuQ/n5ouVScI39NV4mZvIQR4IhY5SLtEa6tnCV/yqZwMwBNQyq71eLh83Q6h9CjsZxsbEHaz6D2SaOwsnxLHYNhwb8E0bBfEoUAaM7YYQa59PP65cV98CuVNbHiSezncOHLKtzCKn3WyOOBjn9fPMyIuoQzTT7FHgAkne/VH3Jx531/hu0YXhgqQTwcfgkN7457pHZfbEXaB42m7F/JugLvb9ZZ2pRXYZk7I+6N4Z5YM25+7gxelHjbQ7O0PxNs1TeE7exlYe/3heg0RNYiSNbiyerVdb9iIyAg+ew7MK1/esBx8OmOpmL+9sQECC2O00jw+cnYc3I/ieDDI1GZk+JXFvfEj3bkYjpl8ARzuMJoWkObxE0yMojMIoVnUGHGb550F3cS3yKjJhSQkhFZoCGtBdxMp2tGF1K4OUSY9ouSRmhf41LanecV95zR7fbXwsHLH/jDYtL+b00Vf4mmZmzImZvapskUMZtLrhzkObDAGr34G+7PBcT9xiVT0o0RGwz5ZaPb/2Y+bepAVrcdcucVSl8chJYHcfEu8PcptBIJJ1gV2AFZavw3AhuPHe7uN3d/IN0NtUVf6p0itxCGru+tN6wlg1xC07dYjtBrZ0aiTdNpx6/+12r1mB8zULY7md7+RwtEN8aJaHrBBosO2Jy+U4CPWSdxwlfjs2oEjK8WBy8daPaosrUqTOEyzUdwf4NTW8RZliuzY6sMyD3sIkkHaH3UYJYFPyGKG+ktyx3YEgTLc5jaJp7tZpqRiHOpYlKEdAmE54oFOfjdP+kzdkWWXhIoa0YxDxo+rKAI8CgbjXmw3B+rpgRghO6DZN7cbGdH+hFTqUf/hZTx+f7YD7HS9hRQDyXZ1udmtsF7covsMHwQTiaRFuXZmHzNKgBjV6GHQ0ASjxtZmLUfphQIf6DpUfmPpuq5JkdPqIx0xIJn1adMCaAiKmr/BiMgwUJ4UUxuBGT9NgyJ00xOGVkMe8vrwPJm8vD/dj4YZ60UpartLXlZscNus8RKESvs1QqjtjP4MQ8Uv9TAY3kzf3vMqn1TQIb1/FEBZCJ2mXH3nFX+qabGEUhqEcgGb0gy1RNp2q0SJGE1Hk2Z/RERirESNIFoUyoJwpqUxxmkmZUH15r5h0uFNHDTGZc7bXrfBNEw5u7mBBv/rTQ2kmVfbQ70EcNZwHDEFHLw0ey7rSjFZSxa7V5hmREIjMA3h0TgoVKA/OFIXmKdt9uUVUe+F2i1ahuUZRtB4aRO1MlzKGW6b3Ut1jUQwqPyQU1JCZbBG7eaavm4YjLnp/WKdks2ff7+wMTUAVcfv2efKa/j3Tw3XGVEWN1/WXpQy7W1Lx7N6H0L+lMGYYdPtFtw7xzBwhohJTrF//sjYrC4KAnDI1wrRk2ctaK/NFatzQoHRt6COtm/EzfXpoOn6yh5mdjTIMPV59eIIA+AjGXVpzo5nP0m46FqniZN//qokkAu1Zkr9PByDgUuTLkPEcA4BrB7Pu++3vcK/93In7b202wEYTWw7xEi77c+A93i2uZm5sWul1LHoEHlpLECEZGvFKlKUp+KL8fpAIf0KiXYiSKoVaJeZV6NqEYNDtXZM767tsIkYyVvI+Xi4Z7vR/UAviIkET1kMn1MKEWy/j5zfnkczp8qf+hYZpZ7p4UIbULihhiXycQ/vqc0WKuugjvboJ867wmciSxI7iGmjHERKrt30TSNfYBDpYEDMiIZhP1iZxLcDfDkY90bS7wwzOE7HQ5mLUXLcS1VI6IkZFFQrOkjrW/X+Rh5SGQcA1ubMI+19JO6ElgTuMslTMyGDRqngN07UHEliPu4NRgbAhhVR22Otm6YGzaaNTlsK6YiqZ7LGwXZ0d9fSxnfUj6O7bkdCN/s3MZi6N7vudtf37akkYL7bjoKErht5c1T6I7LfZeSR1zHqcY6VTkz0bQAYqvM0xnPE513sfL06Tz6xlP93JJ1Ggbz7u2kUN8wcZxkKL+VtMvC1By2F31pJxXGwECNXSywC8xhpbP4P5dDxvqo+SYkkDOAZT2Aj6bdodJLYACexfjIYwck3YNPxaDC676ejbPwwfnh7w3n1DRzr/P2jWszLPWzFsBQiZxYNxGo/5LqQv3rQWiF2ksFQYEgdgCs2/TCHQsVNcwLZVKZaWGOm+cKGuKkT2AzBmJAgt+GXQR9TIPCbnaPfZpNnmiLsDagLLTXdEfztnlCeOccXvjwbuKJ2ajROhy/AEAioEaZNydDB/lHxaF8vf5FYnky8qDHPq/f3Cv9LWgyHMoOyyLjZSFyFkA2EMdukO5nIuVRwtYspVyeR3M1GkJXTt2sj6ny2WMxKvS7RQz1hXqVaht3upBpgDcLcrysLet4A8DzcUFYd5gbsejCY42lvs3m9LuU2I8DWQHzF9ANCCyx7gbprcNm4eqqnl7IjlcstWOQl9Noo8qjrgnCM3AbyGJRl4ZCV22UgmV26Dp4/d8mBCE3H9qHJDA95oUauAhvE5YJFmxtEOZ0PALXb5yfst19fN2d3harcjqo8SHX3wDTIrZiq4RDnjUtig7HzVVeDGOazBNYXD9MwyMKa98KMZyZGs1ni8+/XRf298h3DV3UWK3z89Orfs9bO6nKyT9qkDur7K4RAh9u9d6expNS3rwM6GeyCuDpfQ7uv6YK8ELdBhQbCi27WWYBMyplJZBdVLjFIW3rovcdykGOGCuu4252upy1Dok9nCrHsOS5CGn84ClOipTJDfB615MgE32sDvNmuERFrf+357zVjpQ2k9+4u3nvZ947tZus1o9wB2zA3QUbNKogV2Wrp91jeVeokSg3j9Lv2FL+wSPd7fcZK6fHh4enl4YGpW5BRw9bRQ4Qz9FpAMHWuZGw5YjeSdDgM9fDq2RAanzBDGL0+BM5uU+TXEivbCkKtwLi2VO7T8WSndlBndRoblMuou4jDbHe8V4E7TJwD8HpPTrHnEQ7+1hvwBQh8O8I8R+ikt9k41YBvr/o9LAwz1BrTZ4zhKYujJoArJGWlhNq4B1I00mFAbTKeJiZhchzm+LC+bOoiQ2AIKHwMt+LvEf19P7Z7miUZ3w5kYTaX01Cnd6K0pYDpuNX2FqbwhqJKAvD9qJf4+x0EehN6Ee0NkAUAY88KjQ5PMUyySmNP5my6njxJG4DfDc3tibPg0U8AhpEcD3vs5uEus6N7yNti3UPPRVaK7MYyP0p6oOClak4abjrTshhVEPYcowoPUzGHV/VKS1EtsRvubHX+UFLngehx3HSK6PTBkK5uWB3zIiS91R+CbzBg7AfdS6N0MAbw8kCWQKNoF4MdyoA6HdIHBY764R6p1DaLYm1JZ5Odf/f2W0fZFl/Zoe8hDEOuO6Hb1TGmWJYUFzkAs6rp28iTw0c8zxc2bs6VL7VQ4OJ8EmBYpieEx9M/7OXF05kiLyGoRkY17E3TqgReTybMkHTOekIqezKdq7agXnsNxDav2Jm4+aU4ERDdJQC1+GAjYMkhE2+oKZIcDcFiU1/52p/TeYFpZ8JJAAAgAElEQVQcFK1686BOcdEVOw41XHv+xgxzQVVOc6cAOC5OZWFiIXGRexa1BOfk/O0+XZa5+phAQZf5LMjaQEAvVHnI9A1GIK3QjGiTa8nUDeEl7vgltXME4M0aLPgCPcKcf5HbgTtGXDX8J0uUdeQ1GqfrFXbRpXK8fqimK03yMJbrloOCLvwVl5R0tZiWyBeVn4rpIHRDlVM0dq1Wi83uAPJWrh3psCDHonQJe2EXM51D2cEf1i58/vkeiZVY4SWCnFgvDd/M1iHFa92Yu3G5ndUSEWoGwf9i43wjqXtmbAbo8aOLtD9vHiNytaETJLC3JagPGDfsFpbTvH2HC2751x8N8LfPo4eCXOE7MkAMISTnzyuTKX0yPx0UTXKjhwqT/LmpajgpEcuF11JBH1GGpEYr8M/8yN4utT3TknTiRIxsE22B9wdXRW9lUgKA7hQATpzdHgijNAnbL/Vmt1HR0hb/2CMPdh/sxWQw9gey1vYPSsHoQWYwPZTU+GvF1wQ+j+Axxpktz6vAT+PprnOmPcEnyKmdfsjS9MawvNeXl9H4/uHx8WHcA2k7GPZgcugxaUscL3UumawnDF3wV2IvLVC+g5TNcZOkhVbabtRtNprxzy4mZQrLjGODoxqKfQQW1apeY64xOyEBStYmzsWdEO4EHJVeeigARszwqO8zD1vd+ioG4v4SM/GIKmq7MHnLrD9KvvuIORSGSOoEtcE23bP2rcUIx7jxMfkU7b5hnjRIncbdVvghsSmn/kpEb5+OsdGgQzNIUJHjixN+ZerO41QQGWfhp3UVOcKxovZd274UAWGtbjAhdeyjIBi0HojaSEnSztN38d0wXEchH9vl0lI+62+GfzBN213QidKd4wRCPIigXYvnSdypbjdU9Bp+OxkpaLubR91sGA+HqSI8PPKDmmpugTOIpEb2dOtpPrUrozm8j1oPBL71+zI9xVw1fzc6ekOGMwae9M1ddfIzG1uppcR8Pur4LvhxbPYeZohYp1qvN0jwvRBcLr9TfzRQ3khv1I/jfj+GkBqB7Yh3Rnoiwv7RPcp8HfQBrxhnWCw1L2mqA07kolQVA89YxiCLJhLZDIz9J8VcObyspV6rJeBSmRAxLrfZFgMnBFr4JfaeJjLUUE9jYH77QG8EkjAnJLPtU4VnCTCTi4ahEM1pILNYrX9N1R9YcBFb2jexaX6yWAC1BYHgihGUMVegxpTOI5S6TfOP96lcwtAvqzZ4kusnLKAKpTFLwdBFOfc8bSA+KANeHwOylBbNq0cKEXXllQNaxTTuWWCeOVfzA8ietsPBfI0uhhqidhta7M5fEl1rcsuUtat+o2YjpWHgqkYf06JU2gl8SSA0GFK5rO0K1piD7X+4UOyQwtWvkloEwbmEWMzdQrsTez5KGoXxIxBruRU0AC4rfnt+MZMv7RJTHG6WuIlrBDVtFixNVFsloOjfP58sDrx5PZErhU9uOv4MtHSwyookZqkCa5S+Ay+1TKXd50aW+qhwDNQufH7+Ye0RbE90+9AHBMSUwOoWsqourJz49Dn5jMn9yjrkM0nys6uZL6fb1xfY4s9Al1/9j4Nqk25N3eAnFF5n1jlx+6tairPWv5cmc+MsE5GCRKDY1s4XLQzAvgOl0UeUVZzY6YixGSteVSkh43PHpkj0NgBEhdt7FSkRgLnphYiLI/BhixJUaqlxke1huz0QgDnqOqltk/OWoLs/Ov7ad1yvRWELgCGI38i4TxnJilBc0dK/4LbK38rcTtRznlKnOiozKg8C6tfnp4fnh6fn+/H9ANUQtHsAxDCU4BXRXrC4XwO2eeBW0N1gdpPtVK96KiWOM8qHY7bv0FgTeoIiX7Wqw6DbcoxOAgRrT9yFjanTXDy0Ofnk3OkG7XUUhfaiWOlZzKTGyWGkwmL1FyuNiw7SPrfew5Eo+OF939/obAIHOugZxmVdyMXRCkdENAAOVHGqlPyOClnhKvKMTy+AlJQtQrg0bqNzyCnUZDZ+EYDZ58dZOnYFWFc5griCNKa6zQMU2robCMB2OPndQr+SDbudpNvsgAnAaHGMQBt0W+0IEmOaiOx6WuLG4yY1JdZ2t+vRGSKk47CJdhu1Ak1AzCPVP4YN3NXTjAbDlCruvWlZCuCcjjppv9vzRkqonrMgvcJkOqAOOhuN/EMo7+hha0ta20BxqBDK3ghKqwxlHdJoe95JEg4AcYhBgeIti7/tV92QFOVtm13t+tkFRI0WbtlglEKaiN3wQF3F6o6wg0AUD4ZpMuypUZP/Y5E8enh6fXl+m71/IN6ByYewstTL3Xax2KwLbQqDeylnkPKsiZWaTgtpaQFMH3N+GmMclLnMVKw5beVhWgaMzSeIt8S2d0K5FrhnkNNSTc/nkzfMvzaC4yKz+cfbjxpFOJ2wNX55UWUT+WrO9L/QicA8ekVlqPUAAMcTxDzULlQ8vJeoG0QuBtKwc3QXlbJr5TLlhh1t7kQyUbXgCAjbkv1Xgo8nVVsx26RkArR8yDMNx+KOpR0vNFPbBRel+oI9nGuaIxbUPrGAJ5eFHLL2rukRYy80aWOaf+FC0jhc8nADUn5FUnpF4K0X5QYZ4uv1Yl3OCrxS2qmqypGZ5SIsyrCWuD4psnC1EGIJeLmHgBi+UusHtNt5FVzG+CnCDI1jxUIxiAR9xmmCKgeDqd7NA9vozyrnJQ6DxqUY6XTmP2gSFvT9kXH2qt5iqp2VrkwVNQD43ARich4GDf31998///77Rfb4JDfyWbvW05fvnp0y9pbjz5Cw5ebfG1qZxDkHsRZdyGihEJy6ipopXqSSHYAha8bNVLwzQsGgUjvT4ntj2bFHU55YKHWQzuy4O8uNtGMStAK0UcSMKzvuPEB6tzsqfmO33aCYCkANAMbMS8c0ggD2AYA3CJFnUAfwdQ+f0u5ALwQ/tBVZLXfxbsvCJe2RmXMZNs1QVWCfvCLoAsgNuDdgpdeasQnN9UI244UWGbC713U+X1QT2hbB/Exxsp68swz1/eXp/eX94+Xl9enl6cng+PHJgZiARlfxwJ0/ENfolcn9KgmbZCOfjdgni4ZEilfVMBSRuUyDshZY04r9BT0ipqr2NlCL3Gx68YMnbLU7gSuN3HvzM5aiK2NOR6Iqj3ToM4+aNDXdKIjdGvTGIw7IEMyCjew1uR8chAwLhoPI8KOLGif8J39saFblexwFg584cuwNF0rUlI4K+xY3xzwo9J4eH58eRuNhp2mD+E6gJC4msSdocDDutjxi47v/gpLxjo3AcJy0uyEKFADMu8nQl/ZhOxOkzCftsw+iJd9TwppJu/JWrGyzRD2M4TZ4IvZPTbeXO6aRHTI6Phg3kdqhCxGtXCy88pjtbm8YY6zmbhgq56wX3EzcCoPaT9rd/jB1Wnncp7y6jzKqFA9Dj1QFLEXY52Z6zvWHwkIuleMYBjrehk4rEaGfhBSUrie2tf0g56sNSdDStOMtk2nMw1iWSsHVH/U8/YWOOIn5cADlOK6tBb0DhsT3j88vT49o7pvb79V0uTIQ2BombNegeLkbWmIyJgVZqvVvMmGJcYn2JUOynMla80K6IciMq/wn/rqXGD2JaM/FB/Q+C4yAwh8f87kB6ux1itxLkNTvyOBiuiXDP+g2fkcaF5fGM6SFvb69Pv5iyoBdflKslobfrJEq7ICwXkBJZN/AwFpJX7OPmWTIgklDNph8QipWqRV3c5O9LFDDLaI6ZRmuuDpHUmQlORcn8ClaCaeg1ueqc1YUivRuCvpYlN4U7Imgs7wUNFfr3RYRHBX37swctTu3dBEWxlwGPwP1vCnJ0G6FFTj/WSqBskSLh12E/ZW4VL1YVszvUPs0d3pLXQPPVaCmAZ4BgPF9bTyu1YOJL2TbB9XWMBHbHciAS/qK62Anl4AM1+NtEBVS2DAUw6+6R7mDCGKwz//+ud0o2bqxwteDNEJpAvnrz0uTuXVGzdE1XPxGeANyQs9s8y9pbhtiPy8KteaGGFhLX6/Q8XvdfLk1vl/CtP79wx5F7vjs0RrB1Ivb7nHVZwWHBAA+NuIw/YCnU1CaeV1SaKi4eEfhrvEhHQP+evYVZmUIs2wM3uvDHHkBwAdZhO3fBwEwQBpjMD6yp0jrICrZQBr88263EtfsrDN7DrU9RvUhDcZIZVc1Kqfl/RZYu8YSeIVJ+AB4F6cNvdYG1+1SLhYV82+8JvDPRY6nJk+apZ7brD9FWyLqisFQo5TVhuM3jMXI+bvXWmzk7UxYqGHE7Gs+6LH/F7u8hMFLIoZTTYqxMiMRSRErJiP2jV7Ubqw7HVGyUbcZgSPx0LTaQlUdBNKKZuw26+L/nwVIPURtH34iMKAMdMBkDGtTT5qtETMv0WXcz7IwASsYsz9QwEeWQZEG1w1fkLMk4TyZobAeSi78cFHj34GZiUIjp8450hvUcL4kUBoAP7082sTV6TSUvBucqDFvVuchwIRJlN2me5i9zUrcIADftUKfcNtFWOwYbqOFohPLIJ16nrTuyqSrYI6WXULrYpK7DWXO9fD391P9IW9qp+1mIXqn08R7FBXJmXIgTr3ywo5WPVQgpu0QtOWp3r2Mi/gU6nboCsZjTbgpiq37KERMcRczSZXig75hew/bggFNcz2ZfO2/bDiAIi9WE4kBPpfAcVOo1fdoEHc3e+oHVN92Ronitm/tmaSi0VzR19DxsRhzPEqi/iAZKGSLIu6+7zPgMed7mOwpkRiOH54M414/AAWFvZQu7VeOoc7SVK/gaaiX2hJyYpuwajeMoNQ6TckV52XDUwdPMd6mc6Vc+Fys4KkZ6pcARhPUQKCH6cP+n87p751PlTaNHTLG3ncukd+4PH57/jWlhMpGvULNgWF0pZYXQzG2wyUqdwtold/kWsIRHs1HxEgmXTC4eerdhEruohGLIiy7aa/2xbMK+1cZk2B5YpGC3UtAzjI0+ua45bx74K2cfXgiB5NFl4VNvNgDV8sZyPu8mK/3h3UxX+6I2OVqa+8vbcRdrNk9uKxWC62AmZaBYxD+5msgt/ZlXq1WcCzlBsn2wIAwRzCHvV8v5qUdByDAWmrFT3cRpuhlOVtWStkMACzxTbVeFgzMqotqZpeZ1wTr1QItHhWOYhtsnT1sWo3VDL1crGuvUXTupNQGkQP6eucssQ2L9PcqPPIWFMfMo7ZhGdLnIHX+vFxgcfpixrMh6V4D9BWdv//3758vepa+bifpvy4XCLyuAuOzK7WoY6YN6Xj6lDb59qkISayqm0wvrm0vhPnz4VO+owv55MP5dkLel31SAHwSBR26mcARh10xQFxTODEXcVcYirdqcvSgydOVcGjDMcZfg2c2MjRIfJJYjAladg3H/WZDSzCCPAjAqEEkRIKSPh6YZCaRFShoA/qNwBpT8n69PVDCpdEZEex2HmLhkp2rHX+3R1gMoMUi5YwkDyi39gzd28HXBHCH52nnhd+OxrsN2GkMzYi9xIpkQeGmKkzsGa4Yvcn0/RVnZzs4I/rSzs4vjy/vCMl7HN8/PYOiRs4W1nXMzRiNEVKFnh+s2+gtlj9FL4MQ7KQgNztNhoPNJBDbtD3GwhB60GNiZNAEw++EDgifgH/UFWDlmYZ95n/qIxyOuswPIU4zgpm5IS5kZtxIDzHGQNpsoEqpYXjTgI/lYDIaZ9nDEDot+7HuB3QywdlCe2zWk08mZFETdlgIlyh5MixRs4iL3hQ3rJ3YKeb5wU4pd4aidwaCUSukX2oyRZJRLCoeR4ikJx04AxSIxxBltf7fXbdz17m76/y+6wRyOu62qcFudUg5xIbbWKR6NjalY3YGatkVcsrtpCn8UdqgxmFJH8WUbOOwFOLQpEXHjbcvoXw98r0yHjXthNPEM4ghXmdbRTdqp90ka2XeveBJ0Dp8cdZFIUaSpWOR0THAdwAXE9uhUanRox846qFzJGqjxAOg6qVKg2w4JAAPqazCQ9TveUOkhmBsy0H6Z2wsTlVOQXldiqeai7fx+EC/phBupahoVW0PdRYlYx4fkSCHI1oPT20mcY0ZSD2wU4DaNUH2P4yS9Gl4/3g/fn5749J0sVqVC9oJtyocRFcTtVs2eRVofqjepmCCETEF/FFxwTcAsyyNSkqAMxjYCo3EHuwIThjr5PxjtiTjW9hUDRPvfAIi6+1lmpcfsylAGE1NTMO0L3m3Efn1l9a33GXmeAHArTDANQhnyOTkY6Zx9GNKf5Goanu18JgR+47T+XJVzWYuVkZIRj6ZLZb5jAtR6pcKqJExJ+fzZc7oreIDuq0y/7DL2NgH43DONGnsigH27G1GvAVReWFgKKcHPU6GzYvpe76yF7PjKoccOa/zabHZQDBls8USCAhk10K9XK0qSLMgbCbuLTeQs1OVVq3XhpvlrGD8d7VwonpV1YTEcikGuphiiQw39XLJZuEgisa8DJfWkpMvBnDgNYKEczYt1cXcpnG7cRy1OZczAAQCggW2DksyByXtynbrbS6vOa5XGrpRownv9Iru5eV6r4WxUrMwGP/9uhnQ/v3z+fX3D3MsfepFxtYXegE/v67HY8jFOhsA/wVe/7kQka+0E0HNjJjl6+0UYjbow2WOpYTYTLZGfYSPxczGvF4vTemTfTObopWppZ2ufL8cXQ/7T7DJhrtUSJ2hmj7vt7BIezAIP/gjYUsT8uHQuLBOe1YbG4pLKg6UtevayRh80F/2SSmzaIY+IY/SRmH79meUCO+2+7Mo6D3FVfgawq9vfg0k156zxWVwYx6GiouFhzgwnLaSZkF2TemBoevxtJZbab/xMib8B+jFmM0Lk8pW7TQZ7/1+A0X+Doi9Wm1FYddYQ9VcGmsjhNUFjMXv4IewfnoXu/XxNJ0goef55eX15emBherIyrgfjpGqby9NIGxtjIgHzIsHIuOlNFWrkUId8ILlnbHdn0FKdOpoGmSusTcaKP/Ck53QYh9SprsKoui2f7dTzIkRd6bfHHbTz9TtNKtlUdeYlTLSyrFoUWqlaRmGxXg87NBG2h+MDRYyO1Kk6Rik9BhNRpIFUbibeR1DkqmaIOtkVJYZstrpItIOkkMiyxztYr2RnVzGvfbvDmf8O/dBRz7vR+oWTNzUhRJD2KNxUSQ5wxAMwtU+1rLp1z4QIZaDEmgPCul4SDfCRtNhL0r7KTpk1R4ZdSUiTrPQTxdDtMWJMArYGon/hpDYPp7d2X2e3Gli7ECc3aEzi5viJIzKncTLlpmz0sYBgpkQcbCx2VTOFa207t0I9xfGx/s4tbMOMjRAM2TsvErQM9AnLZEGGVWssOlBtz/C8S7xhqa+KGnUbg3sGNWHBoDCZzzHELCSSZ2Q0J8ecW3Qje0w+E9XtrqwM07VltXJEDuDpxmjNqkyjDPPH7d/D73+M+3bQzQYDVz9jadHzKxXtivbeY4u9Yen56f39+eXqUGBjWdlvYElCC7CertZaVnMfEsKspg8NfWFqL+Vs3IBZCqnLi8GHM64QNIQNlXFXx7G5RlTPkq0ByJICgwos2vf0NE0mTg9/fH+q5TnduYFi1xIGc6/QSyEr5rMck8dIYNcYy8MaPDgzTmCpXB4V5fDVPUWECeLBGgKLCqGRaF3GB4jMsYlAzz0hbm+W868EkjCfHlOSxNwlycNw7gJhmx8blZszseNPEhgcQ3UEbGBfS98x9yycg2MpOeaMYKwBZH3Rap2rTKG5Xq7hBMphHvLVrZYIYey0nJfoR3My0LSCgd7f1hQDEEQFgDDcqS8LLqCtWRmhJqCXljKpKuDAA0BIdoFQ8hHmmQDmhLC2Vq7wjqQ1AvmijDaBLqt/QqZ5uBir0yRgiMXO9/b6ewILFnzBV0PSPHQ4Gyz8qcmYmiW2b3gkArj7uX6+d14xNXv5eSaLH3JGYO1OGZtjW8hqfLCDGqDQdmXPK0avl8yzwjUOLrLyLMmoWu+fH46je3E+XdphQhoh3JDRRp/cQhQU/P5dnbEVR42+5Y5MzMi68jB+4AGTxRfGAbvG16ZVPJW8RuBYt7vt6HPUIi890jLjXccMuCDgzYcx2SglfgBZReG2wPFWkBhorYbjbcbNjJxRN5xBraPcpuMvmLmdK2p3dquGKNGAoRNmVTj2yOvuhDJ/6UfYZ/n7BV2iNcntalhIkZEHrZhdvYfDR6G3BjbW2ygBZDyNN++MhIyVh6BXURk0bcsxwNtmeEsHygJ3kQsISObfMkbB6rUiWsuMPGC3/lvsrIDUUtaLZvMflhtO+pDjmCY7XoiNOczmVYZnU0eemBQyU2g3fyhoURsgJahDCDp9pSxHcafJFDtqeTgSI7i39oUoxABf/XuE1be2+CLlEq09oUiJcZPpA6AymxmjSDySewt8g04JmC0HbX/+X1nKPwP3v/d6ty1v5fgPKzYD2z3e5/OsajTkMptL0tMm5o67Nm7uLhDciDytcE2YGZLVLvrYIqp3QbnVnhcglhLzD8Ts1hM4eGSSQiWzOSUjuQ24uNPdnqIkDIS+3yqNHcmmZOeD7yZv4MTD3a/WAqL0u71vdYDkTIAbPEyBogDnqr63oQB3xqDT9ph+85JHWVZCth0QqWjDQAzSxTJmkj0HrHPMR2E5yue5ngq993gzBjUH4ZjztGgpxHB9fD8iEUOmKTcaw7pxrXRGEF3lFNDn/PdNl9wCLRLQqk1pdsFqmgUEGtp6lUK+eRj4pvXPLQc0NtbEK+nrE8EPn4QmQHAHzASf/zi+GsTpSRRLHNSgmTuJYKw5ALvXH0EoFws5SDyTIxC9UkM8ypniKhYLuYSX2lNK3nVdEZ3Vl5o/w0R1WxWzRlamVOSZphdF0EnXuhUIgBm5J+o7ZIQXdm8cDxuCjVSEfQWrENCHhbFUCvfxtqdh21v6U5sLV7x2ZwXXq5XjOCgaXtRCV/t6uHnpQRasrgy+Lgx8C/toMR0L3zKzhkY/EtppctQNYEHlCz4QmD7DcDaPUhdzatfeCw16xER2GmngoPWzcs1KhfXdTGjNA8/IG9LxRF8CeepjVD2wr63MYzdghyN5WO6BXcTgBNw+gfBk18EYMRvXamevnpG9JnhGTI1ITqTF8K+tsl+vrrqWRDqSrDQgaQk6OOBO2lXUAOlD5crUkD2SpY8npsMLzDOV5VWNGVITe5Isw8+ysVsf8uddGClsUH/X8jLVE54+AnA5wOrGpjQdUAyB5ThmJMlnVoHCjoAr6TMR7UmgYMOgMsL7Jq/lXHJUiWqsHbhi/YSfeE0BAxe27xt/zoEOxOz5ht+WorpUOPBwwA9x5SMIAFTrcVM/IAVGVsTZqmG7pdcckeUY9tR9/258RVPGR0A9+Hjy8vjy/3T0xMKE+/7I+pKe1QZ97hTZaURt5Jpf8RIwN6PpGDfpcpNjJWpoj8i6XDjEHXJEaYFm66rooWvDeo2ffUdtRmIlnYXj0c1Ks26y5SQzo+EKRmaY0MscpSEgEHIcRiAVh8IdL3BFnocVENw9FFwST/O+h5DnagcQuqtuMe2n3iMwCa7PL4/tFItt+FK1fT9V9dbqmL5p8HFc9/bpS0JOZT2f6t190/7TgDccqk0f15MojbM2fEnzjKH9O90SvyYWeMz0oY6iNXRAa0a5CjkaLEUMQqJX0jKQuJXc55pfD//qTT2VniI8vRh8MOSIvtH6GGy+2WQUbsOa5LbhlNvJPb8SrmCvIwYSVspo7ayJvdScum+HgjJ3Ac2nGaZWjqVjxXAnI+LxG7oe+g06nnd75Hm3/jOfentJDQqK0Y8jby0IqX9OfU+Y7tNw1HK2NO0z/Ji9mhiodzP7MAwoDerz/bQwWD88PwKb1EuQSzmn80ShNRyUQKN5VsRnFLDZNi1KMKAS+iZyxrjYybxOAQUK2M5911xWCXzHwbdUjLPZr+8A4F+KVyAsRsGGHO/TsZo5J44gqoKlTOqocHNwgJtrpJXtPjUC15HqfxKf0PulYEVP18DmoGplUxGFXel8Fkz2hI2pILK8jqX0zdfaG0OT6XdluXaXr/Wi2LyEbTWOM0s/YBAACW1bC9cdhxANFahqOeQp1FX3lSM6ReWbaqUXapcsGpjkXMzXUolZSP4Aqqzkhx/zpQVZFGXM8aazWgps2+hRgk8mHb7UFBRymUVKOhCihvsp7GqZtIWmQSl/WMoBnArGaRablaoDlnhgMAD25rPjlzmKoWnQnBWrYDTK5uMEUJxCm33Nor+/UMt1h+0Hv3779+/3AkbQp+//lwNAJlYpaphxGbdxGBfz+cvGYuPTYEDKxXO31nQ9qXn4DUOzQrqJ5ZtiKGYhoe8WiVgAoCPEj+7yjoQ2u5fVssS3zT57nYBkFmjbIh3dd/yn4uswo7LoqCPpKUxGSsuy75uj05hyLO0C0ZJAxVZPhH7XExVM4GYiLp30699NoRLs3Jpv13Z30zd0gCM6CyptOwARIPUll/O9x26+aa0ra17nuz9I2ZfZk47i71VAhetTHjyOAAr9ye8cUPCx52Z6rNJUTo5xe0U+k3fn98+Xt4eMRgjNf7pCaFbD8PHe+1W6Wka9tSSk/WG4QVUZUYMQ/DEf2UVK3iKgVWhRoETU/Q/ABxpwm1FTW+Qf1xmlI42xvAZN1ZavadLxYGsVutRVxx2u6M+YftAnxihOGlYSR/v4Q8d3/MF3157RwM1QkgW3u93sz43mf0QTIFATxDuKK/odqncIbUbsqd919qonsTbJv/VlzUArNSS1t1vlv4CdW0M/gZg7IBlOLKhNUbiNe9R/ZwBSGL2XriFB7tYBp3Rf8RiKEKnVtF2fmj3bFJvqx5K4ukWQ1LoYe4mTXmE0r3bTb1lHOzG4XHxlgVtaaNQMxyPex10c2E1bXdRHLmfPPZgMq9kylzHlWFf34c5Ows6Zk7Ifb5njxBipKFJ4KJ4ADG7NAp8kAyIYXK3RzCTezkOJRuun464Icc2349FnSauhKeTdlPu59lt7MvmTYREj5tt8uLpiDa3DFLqxG4WF9+qxJ0LfcYAAA43SURBVOaEjPn5/vEJDBICrTBo8mV4gd9NiLbYDFF50AdxSCGWeXAnuV0p/8k/E2gplso1cuYq+hWggvT17On5LPiAy1zZVQW1u3NdL4fOiqW6hvzYTiNgEQSxpFsAEjfmThXSXK/sqisYZOfqQ54UoZZwxuTIBUAHa9OCrb6zD/w0mCUL/3YzniDKhZw9IffRvg7tRDaxQmxuMLSFDVvqa1xrIWWY6mpo+S1roFZNwZONmDWVzMtl6dQe3iGmLaRO5z6+yJVNWXGCrdhvjFmby2E8BuiE4O1fgKCnbXtZUgDNuM7KYRYAjxOB3Zk1AzP5IwmA88ZPbP+tVvJOVbKwURjA7ggEZjMdc4WqEIinQatDHr3wL6B5GT/wolJeyUKj/cJfr0lQHxg6TfPvH4iv/u/ffz8lgyYAn69fn8x2xrB7sY9dUEt4YzHwzYGRe2YbmyHogm76RxvDRcEe15AFwi9AowSvgfOzDaII8fi8HRGKFVa3rDe8NqrqAMAyFPub+HWg5SGEciiyKwSHHHd7QPiR5w01J/FCEjy7iBo+pj12wKdv0fT5IDYZTqT9MQDwaq2sK95rh4C6QQwNshkX2K52DsDQbGHARQAMRVXC7W3oIz5wHt4fFILpW+bdzgXU+4MT3tJmYTMMzzAHX5VABPwVXOtPvSSwC6Kq7HinHHo+lXI98XFSZ17PC0K3MA/Df/j69vL4AeUWkj6opR72kUOLmjhMCYznx+yCYrmec4pipblJExeZKN7SZ8M48skr8Rdy321Gvuz9T6mBoj3aneBC+ZZpNR8IH+Kqllrg9m/onBhDaR9Pu0rF5vIy7rQ5VPVkigEHicMFf5w04XRP2n00RHoTPbi9OFJzceYcAEXkcdvL/zSBRXEIn2oSxtquNyOwGqiCFY2aFJLWP/wgThacgNu/AwDzo/AWR21DVk6UsX04baTirg4LPmV2x9qIKxePfVu29UYScsFJ1IY0rp16sXNMa5QoCQKwEJi+W7VBxaG0g/jbCbNx2xE4dD5ksWqiukMCMG4BROS4Y8QEeMljEjR77FGCzgAb4Djri/vv+9NG550MympNoGE0FeL1B005Z29wP+4PH/AYZiA4pI9muJYbz7tOBlAC3u50A0PRDSRKl1Dc9QgW96HbgYQVi0iPw6p/0POzJr3YUsfHuIWM5MqGTpWTHxqOEUqH1sHJ6zu4yHpDh0sN0SRj7kq9Qlc+yc402qKe9ENqqYC/yMOa0+AD9Jt+zAIXLGlzztRMe/s1o9V25qvYecnyYdZMYB09L5hj5d8ER2ykR06pTPY96Hwe1M7KwrJJcTGfVQTuuefhioCelxRPc2ie2qUQGPahaqQC2dMMHSnculTTsGuQrkArbcLgXCqWNn6sl5i0hZ/ckc6WYnTnQO1KHZLYmhLSKEBe0XaUCwZxxFnbFLxcN1Yp9R1qAUfugVP1ovCdLWcPnEwW1Qw0e+kU9IKmbbteDNF2D4C6oIoZQR0zJKFBjMXeQnXLim+WsZiwWjHEGusHoDAeA9y6ipmWBSZiDPY1QHZlP5kGdZTG44erV3ZUA8W+WkAchtss45SGeLuAzVWYvbC7vFxDygbSsf78/fr8+vsX6PoJhGUwNI1Ln5+N1Epf8ElDMj8e7EgoXYC+61PtiMyOVnBmQ2KLiIYSizlXYpqPYcl784JG5599BXxq3gS7jVuJOZQnhYWQwVbh0fnKLogLgFWUN5a/sBbvDiExeosd7JElwpKv+UaXAHwKFLSBHiF175mVDcPs7ztjvOYErOGZH4Imes2IaM67O8i1bNzebINp+KCrW281AouK3u0ZYIk6YozAyOHCMmrNXK2V+Oq1R1ITgFfNHE0jRb2od6tiAWexR2954EdV2VHTfokV8KH+8ff3j9cXZvFMlEb9DjB+fnl+MhR+fhyroYnS4+FQgVTgqt2C4rOi2u+C2TaKKa5u2nadN2RoP3OmGxo08a0nOdk4JC0GcrqZlTuBsW41n2n/7qQxANjDt/zSkHuhHZgasph/Z6yEh00069sPgOhhSoIG45H7VmAgTfVSPxwm8eDxBWPP031GqpfZx67ajZXrlLhQLW13pXpq0/VLgzRUWGSeZcXiAKzxvt3lB4UPHk5iZ4URmNW0F7fuAMBSsf0sISZFjGW0wV/qtcnUHUVaAUDnTUiNm5rkOLRCiyHo/mhyiv633TiKmxpkv++7obyx02I/JACYqWqI/kpTEB6EP8BvpFTqMAp3bGiNIXPjzeyNqKcmAGsGHvCuR4YqV7PqJbYHJ/VlMUiYQQ8JHAjcGCAFDQuRcZMh7kjcBwmtc8S3kq/jQR6xN12HqFGPUQUYp+07lETHuhviTMGnXp5sfw15KqBLgN+qF5qs5dwb6PSJ1gi0mCGh7p3kLjKesBZkIwuEW5qTlqFWN4eQeI6SIe/UzdUcHijobz11KbOTdyf+ygsvIpILsVAVcMF+YyRgMdlyLkcTwkDUdjTxDfDc4VdRX/gSaYZLmm1yEWQewSfomat42N1L1DzlbBEueKqYVZJNF0sP7+Tkz0YH9szMVvaKtcICli29CKbS4tbuFIDanJonDQMVE7CYTcaYXrC8eekbtVruo5UXRRYLn19dc0WZVcWFvBxjoXdS1qNCczo0WHN0BBfzqvDl8VJUMtAPxi0Is+QLJuoWnOftA6pBtJMKV91LZRiuV8stjwnYC+AORG6lklnopqqQqLVknVMI8kBNiL34rpntUS8K/wEYvYRjhHKJ0ZSoqGJKfwWYNqh+/lEG5ecn0BdWJk/g+pTu6vYZCgjZmhREUlBFX5mZ+clJV7nWt8s5rH/Z4hS6DDkro/IBEqpLA7Zn2qqu33ZiLnsbypkALRU0d7vKiD5RvoUF7x488vGiEkMH4DO7nGwIPVy2bCw0eDxiKt0eGG+iSKzdGsBIUAX17CKsnc/FIXtSoMu6JDcVhYoH2IO3B0dnxkFr2yvOYc9ZeIs4DwKwBF47qbBkQkIILGEXWMtUapiJCcw7PEpUVIuq3mkgXq9c+eVk9qpeb+va/sY8DPX0QvZGe55s67U9C6rA6SigDnqRCXrWJh/cF0/eX1ELIQUXusafH/R277ZiFI33B1oa67VVBb9JSPxg5VyDWpHK/qDYDUx1SCKMNKr4YNX5Ee/hO2HVBbUDXHnYFNtSQ++fffLOG3ejVooCItKsrfCazMFIPbfUSvd7SvtXgIOGL7zS9+ghtYH0cTK+v398GMRt5WN6qIT9ONBIezcC9WBdOaX94JFQNBwrXEJtxCGXpM2qxzal0p3vhuF2tzMck11OMQF76YOXPAQ01rYZsddR+qPPl/3I8lPZp8G1ht5fmY50Xyc/Izt4c79tYEHFFRLMooai0PEiauReNl73E8qUUaaXJV2fnWOXSvlJK7QVp3rcs0EceitdzEW/rvcX9/sCVC6FNQOTejaUA/kr2xIZ6j5j0sYjtHoMGZ4mSziV1YobkRZfNUxQpCkCvN35qTlg2YWePB2Nx5HLADXJc33tVU18s0mdgdjMXaejKfbFdwhPfbiHkuLh/uX55Q2hVgo/ZsvOYtEoJtGdy9jLqUuASmVDzj8WhXhpjrVaGufBvgqm91eu6OcZqxHs85XagbGctVF3VkgFbTCTa8nkYK2lMjO9kFE14/jHtJAKRG1VTsl120TrmZtz59ZzNDDAyAs6dzrDSwaU0+CXKWMq/Y3BJPWqZmJ2VSibugAjtypQDGUADOxCvEU5s0kzZ+guYFpKYUNFeIKWc8yNmErFHSgq0l6eVIbEZA4CWi3EVnKHwy62yiLCFxWLm2BXmuVL3HbtvqF6q+E08u6oxQo7aMRayTLFbBWcMBaBgvYcj7wui3qFq+TjyLkZQ/lyu9Iy27DXRl+7vpIBIMtayV5LtCsh9pRUN01XbH6q2fy0rguXz/LGK7JLQSga5Bn5gZf0zYH8K8yzjIK8fIEV/vy6CH6/qJe+sa+J71y/RCqfwwzNNgemaiE76/pJQdWJPiWi8MVF0gyyPJ9ucPheUMR48g01NNb2OUVqXm/6eJB0heBoTsJhAObATEAni4w+5f35epZv2OM78PNAMnXdny9Y+J5hAD6fdkcWUWFstgkYAAzNGsI4gg3JmWileABa9wJgTL1MmnQAhnB6j13yXmDs9qUN9r+yLukaVNeA7GgXRAvndzg2MGRrLSp7be9uVD4MpN0tKcVDvDSyMreBut6t1w0AgwDfoMP8tF1s9YG6koB+va02tf3LNV1oTlzS4LbgLyji3jkZf3wgDghGCEg0pd/SGyKiUNP0cD8c3aMDeKjRMuVc02dQhtrhAcfuB7WXrC7qARG6L9LU45kpHWK6IjevSdzyoMXuT8FQ9AOAw8Acw2L8+3fXS5qi3924c9cyVDYAbkW/oztNmgTBNjXMYG3jTqqNIsIkkNJBGrI/GN1TgwaqvTcY99P7+cvL0+vzOIulL1KhBAGcLU0xXavEFv0rExGbwldD15Za+xA4KcADHDP8qq2G4TD5x1G7N4hZhEwAaYUobZHQUlsrwQOWYWVuy9JLgj/tshbCJlTYfzPFi6EEI5G82a5aVqTI+VvvT+qK3U66HlEZgkd/8/OMIsXg27nDA4MrbaWjuKs9A+bgyIunAwCr7JCtVQRipV4iRZOglvgEjLRp3HfeyJRlYqB7mn9B/vMIlPZhKx7cj8E9D/AcQxwlE1kGVCrcx/Y0G4xHGWJaANJUfuHMwZUvWr0Y89JuezGin2VwDmr/A5wOFdCk0tOeOpkh3qLzLabxCQy6KPReopAtJJ72mt1Grx+QGrBto/tgPL5/esUbkieRtBGY30WZI+dh6eRxIX9SPmGahfoOVDJUqI5ItUNF+f8B6mt7rl8mm0MAAAAASUVORK5CYII=
Sei $$A$$ eine $$n\times n$$ Matrix mit $$\det(A)\neq 0$$ und $$\tilde{A}=(b_{ij})_{1\leq i,j\leq n}$$ mit $$b_{ij}=(-1)^{i+j}\det(A_{j,i}')$$.
Dann gilt:
<$latex text="A^{-1}=\frac{1}{\det(A)} \tilde{A}." displayMode="true"></$latex>
!! Beweis:
Folgt sofort aus dem [[Entwicklungssatz]].
iVBORw0KGgoAAAANSUhEUgAABBAAAAPFCAYAAADcMRviAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAKKTSURBVHhe7N0NXNV1nvf/tzZXi3M1DWIqOPWP0snbsjQwzVHXRsStdkgFwbBp8iYM3BlbwVS4rt3AzJt0GjAppXEUBURdpnJVHBt1SbdIJkPXbKR1dhrRnFG23HK8iv5+f30xMPWAcuD8znk9Hw8fnt/3a63bGJ3z5nPT5stzBAAAAAAAcBlt7c8AAAAAAACXRIAAAAAAAAA8IkAAAAAAAAAeESAAAAAAAACPCBAAAAAAAIBHBAgAAAAAAMAjAgQAAAAAAOARAQIAAAAAAPCIAAEAAAAAAHhEgAAAAAAAADwiQAAAAAAAAB4RIAAAAAAAAI8IEAAAAAAAgEcECAAAAAAAwCMCBAAAAAAA4BEBAgAAAAAA8IgAAQAAAAAAeESAAAAAAAAAPCJAAAAAAAAAHhEgAAAAAAAAjwgQAAAAAACARwQIAAAAAADAIwIEAAAAAADgEQECAAAAAADwiAABAAAAAAB4RIAAAAAAAAA8IkAAAAAAAAAeESAAAAAAAACPCBAAAAAAAIBHBAgAAAAAAMAjAgQAAAAAAOARAQIAAAAAAPCIAAEAAAAAAHhEgAAAAAAAADwiQAAAAAAAAB4RIAAAAAAAAI8IEAAAAAAAgEcECAAAAAAAwCMCBAAAAAAA4BEBAgAAAAAA8IgAAQAAAAAAeESAAAAAAAAAPCJAAAAAAAAAHhEgAAAAAAAAjwgQAAAAAACARwQIAAAAAADAIwIEAAAAAADgUZsvz7Gvga/UVmvvq3v0hy/O6INfz1Pqqv32op6wR7TwFz/SrW2DdPPAH6p/2LX2AgAAAADgjwgQYJ1V9d5SbV6XrYkLSu1ZEwxLU97P4jTqwf4Ko64FAAAAAPwOAULAq9Xp97cpd+6Mi1caNFXYI1qwcramRnXXdfYIAAAAAOB+BAgB7WO9v/FZJY2dp98265+CMA1Ly9GLGTG67TrKEQAAAADAH/DpLlDVVuutJdM0bMylwoM+emThGm0oeVtHv/hSJmf6+sdfdfTtTdpQvFCPdLG/vIFq7VgwRsOSV+u907X2DAAAAADgZlQgBKQa7V2UqLtTN9nn+kxwsEizk0aoe6OqBz7W+9vyNPfHT2pVtT2qJ+yRlXp96QT1oBIBAAAAAFyNACHgnNWfNj6piDFL9Y3P+2GPaHHJs/ppZFiTS1Nqq9/Q808l6cmLzFEIe2yD3npptG68xh4AAAAAAFyHACGg1Or0e6uVPPzRb1YLhD2mvNeX6LEe19uDK3B6v15OTtCkVfvV8A9VHz22/lUtHxNOzwwAAAAAuBSf5wJJ7R9Vuui5i7Qa3K+Frz53deGBcV0fPbY0Twv+9sLBCPv18rRFKvnTWfsMAAAAAHAbAoSAUauPd7yoaS9X2uc6YRq2IENJ/YPt81W67m4lLZyhYfbxvOqlSvlFmT62jwAAAAAAdyFACBS172v9/JWqvrBhJexRpU+5W9fZx6vXVtf1n6CMtP72+WvVC3K1/v0z9gkAAAAA4CYECAGhVqd/t1mrS6svmE0QpqisRzTsu8093fAGDZv4hKLs09fKVFR25NzvBgAAAADgNgQIAeGk3lq3Rjvs09cGa9zgcHljOULbboM0LirMPtWpVmnRbh0mQQAAAAAA1yFACASf/0EVG/bah3oeideo24LsQzNrG67B4wbbh3pKt6jsMG0MAAAAAOA2BAgBoPaDfdpWZR/OC1PU0F7qbJ+aX5C6DY6+SBtDhXbuP2FfAwAAAADcggDB79Xq9IeHdeHuBam7RvS90at/ANqGhuvOC7sYVKVtb/6ebQwAAAAA4DIECH7vrI4dOaxq+/S17rq1i5faF+pc/30NGNHVPnyt+p0jOsYcBAAAAABwFQIEv3daHx76wL6up2s33dzxW/bhj9r4425q06ZNM/xI0oaj/8/+fdspODTYvq6n6qQ+IUAAAAAAAFchQPB7n6nmWI19XU/XEH3H6//rB+m7Hb9jX9dTdVh/OPG5fQAAAAAAuAEBQqAKDW6BAOFb+k5IR/saAAAAAOBmBAj+7vOP9MEb31jB0EK+pe8Eh9jXAAAAAAA3I0DAOTdp9K8O68svv2yGH7ka0+V/2b8vAAAAAMBfECD4u2910q33fnMTQsv4XJ/UnLSvAQAAAABuRoAQqI7VtMAmhM/1yckT9jUAAAAAwM0IEPxea65SPKP/PvGJfV1PgxWSAAAAAAA3IEDwe9fpxu632tf1tMgqxdZcIQkAAAAAaE58jPN71yo0vJvC7NPXDumDo2fsay/5+Pd6c9s3N0CE3RmuUP7kAQAAAICr8DHO77XVdTd20+326WuHtG3fh/JmF0PtsSN6p9o+nBem27t30XX2CQAAAADgDgQIAaDtrX014huLGKpVuvM/dNw+Nb8zOly2RaX26WuDNW5wOH/wAAAAAMBl+BwXCL51s/qN6W8f6tn2uvb86ax9aGa1R1RWVGYf6omK1uBuQfYBAAAAAOAWBAgBIUSRcQ9rmH06r3qjXtz6gb6wj82p9vBuFZVe2L8Qpqhxg9SNP3UAAAAA4Dp8lAsIbXXdXaM0ISpMbezJV6pVmr5KO/67uSOEP2tH3gu0LwAAAACAH+GzXKBoe5vGznxUYQ0TBKl6pbJeelun7ePVq9XpvauVuWCvff5aWFqSxt5G+wIAAAAAuBEBQsBoq+uHPa7sxy7cx1CtHWmZyt1bY5+v0um3lZu6SDvs43lhycr5h8G63j4CAAAAANyFACGQtL1JUVN/8s1ZCNqk1Af/US+/97F9vkKn9+vl5IlK++1Re1Cnjx7LnqGY711rnwEAAAAAbkOAEFDa6rr+ycrfkKwwe3Je9cuaOHz6FYcItdVvaElygiau2q8v7VmdsMf+Wf8cw+wDAAAAAHAzPtMFnGv1vdFZenXh/fa5HhMi9LxXP160VYdO19pDTz7W+9uW6Cf9B+vJVfvt2dfCHlmp15+P0Y3X2AMAAAAAgCu1+fIc+xqBpLZabz3/lGKeXKULly1+pY8eWThLP/p+dw18sL/CGkRNZ1W99zfa85//oV//NFWrLuxYsJzwYOkE9biOnAoAAAAA3I4AIaB9rPc3PquksfP022b9UxCmYWk5ejEjRrcRHgAAAACAXyBACHi1Ov3+NuXOnaHUi7QgNFnYI3ruX+bpZwO60B8DAAAAAH6EAAGWaUso1eZ12Zq4oNSeNcGwNOX9LE6jvtHuAAAAAADwBwQI+Kbaau19dY/+8MUZffDreRevTAh7RAt/8SPd2jZINw/8ofqHsaIRAAAAAPwZAQIAAAAAAPCIYnMAAAAAAOARAQIAAAAAAPCIAAEAAAAAAHhEgAAAAAAAADwiQAAAAAAAAB4RIAAAAAAAAI8IEAAAAAAAgEcECAAAAAAAwCMCBAAAAAAA4BEBAgAAAAAA8IgAAQAAAAAAeNTmy3Psa+Ci2rRpI/6YAAAAAJ5VVVU5P4zf/OY3zs81NTXat2+f/uZv/sb5YVRWVur48ePO6+bE+3Z4EwECPCJAAAAAAL528uRJvf3229q7d6/+8z//U++9954++ugjHTp0yP6Kb5o0aZJ99ZWwsDB16tTJPjWPadOm8b4dXkWAAI8IEAAAABDISktLnWqCd955R//1X//1jaCgLhzo27ev8/Ntt93m/BwaGqqgoCDndUvo3r0779vhVQQI8IgAAQAAAIHCtB9s27ZNFRUVToWB+bnO7bffrh/+8Ie69dZbddNNNzlVBMHBwfa29REgwNsIEOARAQIAAAD8WXl5uZYvX/6NwMBUFnz/+993Ppj7WlhwMQQI8DYCBHhEgAAAAAB/YmYYmCqDDRs26I033tDRo0ed89jYWA0ZMsRpQQgPD3fO3IQAAd5GgACPCBAAAADgdqY1Yd26ddq1a5e2bNliT6Xp06crMjLSaUvw9QoDTwgQ4G0ECPCIAAEAAABudLHWhPvuu0+DBg1S//791bNnT+fMXxAgwNsIEOARAQIAAADcwmxMWLFixUVbE+644w5nM4K/IkCAtxEgwCMCBAAAAPgyM9PAtCfMnz9fR44ccc5Ma0KfPn2cH25vTWgsAgR4GwECPCJAAAAAgC8ycw1mzZp1vtrAtCeMHz9ed999t4KCguyvChwECPA2AgR4RIAAAAAAX1JUVKTnn39ee/bscZ5NtcHQoUP9bqZBUxEgwNsIEOARAQIAAABam2lTePbZZ/XKK6/o0KFDuv3225WYmKhhw4YFTIuCJwQI8DYCBHhEgAAAAIDWUjcUsbi42Hk2AxFHjx6tXr16BWSbwuUQIMDbCBDgEQECAAAAWlpubq7zY9++fc5zRkaGBg8erPDwcOcZ30SAAG8jQIBHBAgAAABoCWYootmksGnTpvNDEWNiYpwVjFQbeEaAAG8jQIBHBAgAAADwJjMUceXKldqyZYvzPGnSJCc86Nevn/OMxiFAgLcRIMAjAgQAAAA0NzMU8cUXX9TLL7+sw4cPq0+fPnrooYf0wAMPMBTxChEgwNsIEOARAQIAAACaS3l5uRYuXOisYPzwww+dSgNTccBQxKtHgABvI0CARwQIAAAAuFpmIOLatWv1b//2b87z9OnTFR0dzVDEZkSAAG8jQIBHBAgAAAC4EmYoomlTWLVqlY4fP67bb79dU6ZMUWRkJG0KXkCAAG8jQIBHBAgAAABoChMcpKenq7Cw0HlmKGLLIECAtxEgwCMCBAAAADSGCQ5mzZql4uJi5zkjI0M//OEPFRoa6jzDuwgQ4G0ECPCIAAEAAACXYzYqPPvss85wRMMEB2xTaHkECPA2AgR4RIAAAACAi6kLDtasWaOjR486rQoTJkyg4qCVECDA2wgQ4BEBAgAAAC6UlpZ2fjiiCQ5iY2PZqNDKCBDgbQQI8IgAAQAAAHXMOsaf//znOnTokDMY0QQJBAe+gQAB3tbW/gwAAAAAl2SCg1tuuUVTp07VjTfeqIKCAr3wwguEB0AAoQIBHlGBAAAAELhKS0uVlZWlf/u3f3MqDky7AusYfRMVCPA2KhAAAAAAfIMJDgYNGqSRI0eqpqZG2dnZWrx4MeEBEMCoQIBHVCAAAAAEjqqqKmeTwp49e9SnTx89/vjjGjJkiIKCguyvgK+iAgHeRoAAjwgQAAAA/J8JDtLT01VYWOg8z58/X9HR0QQHLkKAAG8jQIBHBAgAAAD+ywQHs2bNUnFxsfOckZGhBx54QMHBwc4z3IMAAd5GgACPCBAAAAD8z8mTJ/Xss8862xQ+/PBDggM/QIAAbyNAgEcECAAAAP6jLjhYtWqVjh8/7mxViI2NZR2jHyBAgLcRIMAjAgQAAAD/MG/ePD3//PMEB36KAAHeRoAAjwgQAAAA3C03N1c///nPdejQId13332aNm2aevbsaW/hLwgQ4G1t7c8AAAAA/ExRUZFuueUWTZ06VTfeeKMz7+CFF14gPABwRQgQAAAAAD9jNisMGjRI8fHx+s53vnM+OOjXr5/9FQDQdLQwwCNaGAAAANyhbkDiwoULnefs7GwNGTJEQUFBzjP8Gy0M8DYqEAAAAAA/YNoVTNWBCQ/MgMQ333xTUVFRhAcAmg0BAgAAAOBi9dsVzJyDkpISpaamKjg42P4KAGgetDDAI1oYAAAAfA/tCrgQLQzwNioQAAAAAJehXQFAayBAAAAAAFyCdgUArYkWBnhECwMAAEDrol0BjUELA7yNCgQAAADAh5l2hQEDBtCuAKDVESAAAAAAPqh+u8LNN99MuwKAVkcLAzyihQEAAKDl0K6AK0ULA7yNCgQAAADAR9CuAMCXESAAAAAArax+u0K7du1oVwDgk2hhgEe0MAAAAHhPWlqaCgoK9OGHH2r+/PmKjo6m4gBXhBYGeBsVCAAAAEArKC0t1W233ea0K5jQYOfOnYqJiSE8AOCzCBAAAACAFmTaFUaNGqWRI0c6YYGpPjDtCqGhofZXAIBvooUBHtHCAAAA0DxoV4A30cIAb6MCAQAAAPAy2hUA+AMCBAAAAMBLaFcA4E9oYYBHtDAAAAA0nWlXWLNmjY4ePUq7AloELQzwNioQAAAAgGZUXl6uu+66y2lX+Lu/+zvaFQD4DQIEAAAAoJmYqoPIyEh9/vnnysvLo10BgF+hhQEe0cIAAABweabqYPLkydq3b58mTZrkvA4ODra3QMughQHeRgUCAAAAcBVmzpzpVB188cUX56sOCA8A+CMqEOARFQgAAADfRNUBfA0VCPA2KhAAAACAJjh58qSmTJlC1QGAgEMFAjyiAgEAAOArpaWlSk5O1uHDh6k6gM+hAgHeRgUCAAAA4EFd1cHIkSPVrl07lZSUUHUAIOAQIAAAAACXYaoOBgwYoOXLl2v69OnKz89Xz5497S0ABA4CBAAAAOAiLlZ1kJSUpKCgIPsrACCwECAAAAAAFzBVB/fccw9VBwBQDwECAAAAYNWvOjCVBlQdAMDXCBAAAACAc5h1AACXR4AAAACAgGaqDsaPH8+sAwDwgAABAAAAAauoqEi9evVSQUGBMjIyqDoAgMsgQAAAAEDAMVUHo0aNUnx8vPr06aOtW7cqMTGRqgMAuIw2X55jXwMX1aZNG/HHBAAA+AtTdfDTn/5Ux48f1/z58xUdHU1wAL/QvXt33rfDq6hAAAAAQEC4WNVBTEwM4QEANBIVCPCICgQAAOB29asOnn32WSdIIDiAv6ECAd5GBQIAAAD81sWqDh566CHCAwC4AlQgwCMqEAAAgBuZqoOf/exnOnbsGLMOEBCoQIC3UYEAAAAAv2KqDuLi4pyqg969ezPrAACaCRUI8IgKBAAA4Bbl5eUaP368Dh8+rIyMDI0dO5bgAAGDCgR4GxUIAAAA8AszZ85UZGSk2rVrp5KSEiUmJhIeAEAzogIBHlGBAAAAfFlVVZV+9KMf6cCBA5o0aZImT56s4OBgewsEDioQ4G1UIAAAAMC1cnNzNWTIECc8WLFihVJTUwkPAMBLCBAAAADgOnXrGadOnap7771XO3fu1A9+8AN7CwDwBloY4BEtDAAAwJeUlpZqwoQJ+uijj1jPCNRDCwO8jQoEAAAAuMaUKVM0cuRIde7cmfWMANDCCBAAAADg88x6xjvvvFPLly/X9OnTlZ+fr/DwcHsLAGgJBAgAAADwafPmzXPWM37xxRfKy8tTUlISVQcA0AqYgQCPmIEAAABagxmU+MADD2jPnj2KjY3VjBkz2LAAXAYzEOBtVCAAAADA5xQVFalXr15OePCLX/xCWVlZhAcA0MoIEAAAAOAzTNVBXFyc4uPj1adPH2dQohmaCABofbQwwCNaGAAAQEswgxIffvhh/f73v1dGRobGjh3LrAOgCWhhgLdRgQAAAIBWl5aW5gxKNIFBSUmJEhMTCQ8AwMdQgQCPqEAAAADeUlVVpR/96Ec6cOCAJk2apMmTJzPrALhCVCDA26hAAAAAQKvIzc3VkCFDnPDArGdMTU0lPAAAH0aAAAAAgBZlBiWOGjVKU6dO1b333qudO3dq8ODB9hYA4KtoYYBHtDAAAIDmUlpa6sw3OHHihJ599lknSGDWAdA8aGGAt1GBAAAAgBYxZcoUZyVjaGios57xoYceIjwAABchQAAAAIBXmfWMd911l5YvX67p06crPz9f4eHh9hYA4BYECAAAAPCaefPmOesZP//8c2dQYlJSElUHAOBSzECAR8xAAAAATWUGJT788MPasmWLYmNjNWPGDDYsAF7GDAR4GwECPCJAAAAATWFaFsaPH6/Dhw9r/vz5iomJsTcAvIkAAd5GCwMAAACaTV3LQrt27VRSUkJ4AAB+hAABAAAAV820LJiVjLNnz3ZaFlasWKGePXvaWwDedvDgQfsK8B5aGOARLQwAAOBySktLlZycTMsC0EqOHTumoUOHOq953w5vogIBAAAAV2zmzJkaOXIkLQtAK1q9erVuvPFGJ8QDvIkAAQAAAE1mWhYGDRqkBQsWaNKkScrPz6dlAWgFZWVlTstQQkKCunbtak8B76CFAR7RwgAAAOozLQuJiYk6ceKEfvGLXzgVCABaXk1NjRPgtW3bVu+88449BbyHCgQAAAA0WlpamhMYhIaGauvWrYQHQCsqLCxUZWWlli9fbk8A76ICAZdlqg/q1NbWNngGAACBw7QsPPjgg9q9e7fzHc9p06YpKCjI3gJoaWbrgpk5MnnyZL300kv2FPAuAgRclCmDutQfDf7IAAAQWEzLwiOPPKLjx48rOztbUVFR9gZAazhz5ozTRvTZZ5/p3//939WhQwd7A3gXLQz4Bk8zD8w9lQgAAASGupaFTp06acuWLYQHgA9Yv36907qwdOlSwgO0KCoQ0EBTggH+6AAA4L+qqqo0YcIE7dmzh5YFwIccOXLECfWio6O1efNmewq0DAIENNDUygLmIgAA4H+Kior0s5/9TMeOHaNlAfAhpnXhySef1P79+/Uf//EfCgkJsTdAy6CFAQAAAOdNmTJF8fHx6t27t3bu3El4APiQXbt2afv27Xr++ecJD9AqqEBAA1QgAAAQmEzLwo9+9CMdOHBA06dP16OPPkrLAuBDTEXQsGHDdM899zjbUIDWQAUCAABAgDMtC/fee68THhhJSUmEB4CPycnJUVhYmFavXm1PgJZHgAAAABDA6loW+vTp47QsAPA9ZpVqcXGxkpOT1bVrV3sKtDxaGNAALQwAAAQG07IwZswY7du3r0HLQvfu3XXo0CH7qwC0tpqaGk2cOFHXXHONfve73/HeG62KCgQAAIAAY1oWhgwZ4oQHeXl5tCwAPmz58uXO1gXzM+EBWhsBAgAAQIA4efLk+ZaFnj17Oi0LgwcPtrcAfE1FRYVWrFih1NRURURE2FOg9dDCgAZoYQAAwD+Vl5dr8uTJ32hZuBAtDIBvOHPmjBITE/XJJ5/oP//zP+0p0LqoQAAAAPBzpmUhJiZGX3zxhdauXUvLAuACK1euVGVlpV588UV7ArQ+AgQAAAA/Vr9lYenSperfv7+9AeCrDh48qJ///OdO1VBUVJQ9BVofLQxogBYGAAD8g5l38OCDD2r37t2XbVm4EC0MQOsyrQtPPvmkMzjxP/7jPxQSEmJvgNZHBQIAAICfMfMOevTo4YQH2dnZtCwALrJlyxZt377dqUAgPICvIUAAAADwI/PmzVNkZKRCQ0OdDyKUPwPuceTIEc2cOVPR0dEaN26cPQV8BwECAACAHzAtCwkJCZo9e7ZiY2Od1W+33HKLvQXgBubf2y5dumjNmjW0CcMnESAAAAC4nGlZMJUGhYWFysjIUFZWloKDg+0tADcoLS1VcXGxUlJSaF2AzyJAAAAAcLG6FY1//etfVVBQ4OyNB+Aux44d07Rp0zRw4EDNmjXLngK+hwABAADApeqvaMzJyVG/fv3sDQA3Wb16dYOfAV9FgAAAAOAyZt7BoEGDtHz5cmdF4+LFixUWFmZvAbhJWVmZ8vLylJqaqq5du9pTwDe1+fIc+xpo8rCW2tpaBrwAANCCzLyDBx54QB999JGzorG5tyx0795dhw4dsk8AvKmmpkYTJ07UNddco3feeceeAr6LCgQAAACXqFvR2LlzZ23dupUVjYDLmcGn+/fv10svvWRPAN9GgAAAAODjLraiMTw83N4CcKODBw9qyZIlmjx5siIiIuwp4NtoYUADtDAAAOBbTMuC+YCxb98+Z0Wjt7cs0MIAeN+ZM2ecf5c/++wzvfnmm6xthGtQgQAAAOCjzIrGhx56SF988QUrGgE/sn79elVWVmrp0qWEB3AVAgQAAAAfVLeisUePHs6HDFY0Av7hyJEjyszMVHR0NHNM4DoECAAAAD7kYisaQ0ND7S0ANzOtCwsXLnQGoa5Zs8aeAu5BgAAAAOAjzLwDU3GwZ88eZ0VjUlKSgoKC7C0At9u1a5e2b9+u559/ntYFuBIBAgAAgA/Izc3VgAEDnGoDVjQC/ufYsWOaNm2a7rnnHo0bN86eAu5CgAAAANCK6lY0Tp06VWPHjmVFI+CncnJy1KVLF61atcqeAO5DgAAAANBKqqqqNHz4cBUWFjorGtPT0xUcHGxvAfiL0tJSFRcXKyUlRd26dbOngPu0+fIc+xpQmzZt7KvGqa2tbfJfAwAAvlrR+OSTT+ro0aPOikZf2bLQvXt3HTp0yD4BuFo1NTWaOHGirrnmGr3zzjv2FHAnKhAAAABaWFpamrOisWfPntq5cycrGgE/Zjaq7N+/3/kZcDsCBAAAgBZSt6LRrHGbNGkSKxoBP1dRUeHMNUlNTVVERIQ9BdyLFgY0QAsDAADeYVY0jh8/XocPH3ZWNPrqlgVaGIDmcebMGU2YMEGffvqpfv/739tTwN2oQAAAAPAys6Jx9OjRCgoKUklJCSsagQCwcuVKvfvuu1q6dKk9AdyPAAEAAMCLpkyZ4qxoHDhwoPNBwsw9AODfjhw5oiVLlmjy5MkEhvArtDCgAVoYAABoHmbewQMPPKA9e/Zo+vTpevTRR50KBF9HCwNwdUzrgtmwYgYnHjhwQB06dLA3gPtRgQAAANDMzLyDESNGOOGBmXeQlJTkivAAwNXbsmWLtm/frueff57wAH6HAAEAAKAZFRUVKSYmRmfPnlVBQQHly0AAMa0LM2fOVHR0tMaNG2dPAf9BgAAAANBM0tLSFB8f78w5MPMO+vXrZ28ABAKzsrFLly5as2aNPQH8CwECAADAVTLzDkaNGqWFCxdq0qRJWrx4sUJDQ+0tgEBgNqwUFxcrJSVFISEh9hTwLwxRRAMMUQQAoGmqqqo0ZswY7du3T/Pnz3faF9yMIYpA0x08eFAPPfSQRo4cqc2bN9tTwP8QIKABAgQAABqvtLRUjzzyiI4fP+7MO/CHlgUCBKBpampqnMqjzz77TG+++SbVB/BrtDAAAABcgXnz5jnfbezUqZN27tzJvAMgQC1fvlyVlZXO3APCA/g7AgQAAIAmMPMOEhISNHv2bMXGxio/P595B0CAMlVIZnBiamqqIiIi7Cngv2hhQAO0MAAAcGkmPBgyZIgOHDigjIwMJSYm2hv/QQsD0DhmZaOpQho4cKB2795tTwH/RgUCAABAI5SXl6tHjx5OeGDmHfhjeACgcc6cOaMFCxaoc+fOeu211+wp4P8IEAAAADzIzc3VgAEDnFaFrVu3Mu8ACHArV67U9u3b9fzzzzP3AAGFAAEAAOAy4uLiNHXqVI0dO9bpdQ4PD7c3AAJRWVmZfv7zn2vy5MkaN26cPQUCAzMQ0AAzEAAA+MqF8w5MgBAUFGRv/RczEIBLO3bsmIYOHaq+ffvqnXfesadA4KACAQAA4AJm3oFpWTDhQV5enjPvIBDCAwCXZuYe5OTkqEuXLlq/fr09BQILAQIAAEA9Zt7B6NGjncCgpKREgwcPtjcAApkJDYqLi52KpG7dutlTILAQIAAAAFhTpkxx5h2YtWxLly5Vz5497Q2AQFZRUaHMzEzFx8crKSnJngKBhxkIaIAZCACAQGTmHTz88MPasmWLpk+frkcffTRgWxaYgQA0VFNTo4kTJ+raa6/Vtm3b2LqAgEYFAgAACGhm3sGIESOc8GD+/PnOdxeZdwCgzqJFi7R//36nvYnwAIGOAAEAAASsoqIiPfTQQzp79qwKCgoUExNjbwBAzhwUM/fgmWeeUUREhD0FAhcBAgAACEhpaWlOP3OPHj2ceQf9+vWzNwAgHTlyRDNnzlR0dLRmzZplT4HAxgwENMAMBACAvzPzDpKTk1VYWKhJkyZp2rRptCzUwwwE4KuVjWZ967Fjx3Tw4EF16NDB3gCBjQoEAAAQMKqqqjR8+HAnPDCr2FJTUwkPAHxDdna2KisrlZ+fT3gA1EOAAAAAAkJpaakGDx6sffv2OfMOzHcXAeBC5mvFihUrnIAxKirKngIwCBAAAIDfM9PTR44cqY4dO2rnzp3MOwBwUaZlwbQ1DRw4UAsWLLCnAOoQIAAAAL82ZcoUTZ06VbGxsVq9erVCQ0PtDQB8zcw9yMzMVOfOnZ2vFQC+iQABAAD4JTMscdSoUVq+fLmmT5+u9PR0tWvXzt4CQEMrV67Ub37zGz3//PPq2rWrPQVQHwECAADwO2ZY4n333actW7Zo/vz5SkpKYlgigEsqKyvTkiVLNHnyZI0bN86eArgQaxzRAGscAQBuV15ervvvv18nTpxwhiUy76BpWOOIQGPmHpjVrtdcc41+97vf8d4WuAwqEAAAgN8wwxIjIyOdOQc7duwgPABwWWbuQU5OjtPyZNqdCA+AyyNAAAAAfiEtLe38sESzgi0sLMzeAMDFmTan4uJiZWRkKCIiwp4CuBRaGNAALQwAALcx3zlMSUlx2hUmTZrkrGBj3sGVo4UBgeLgwYOKiYlRdHS0Nm/ebE8BXA4BAhogQAAAuIkJD4YMGaIDBw4430FMTEy0N7hSBAgIBDU1NU7g+Nlnn+nNN99USEiIvQFwObQwAAAAVzLDEnv06OGEB2vXriU8ANBoixYtUmVlpfO1g/AAaDwCBAAA4DpmWOLo0aPVuXNnbd26Vf3797c3AHB5paWlztyDuXPnMvcAaCICBAAA4Crz5s1zhiWaUvulS5cqPDzc3gDA5R05csSZkzJw4EDNmjXLngJoLAIEAADgGgkJCZo9e7azaWHx4sXOukYAaAyzsnHGjBlO5dJrr73GHC/gChAgAAAAn2eGJfbp00eFhYXOsMSsrCw2LQBokuzsbGfuwapVq5h7AFwhAgQAAODTzLDEAQMGOMMS8/LyGJYIoMnKysq0YsUKpaamKioqyp4CaCoCBAAA4LPMsDOzp91UG5SUlGjw4MH2BgAa59ixY87Kxt69e2vBggX2FMCVIEAAAAA+yWxaiI6OVocOHZxhiT179rQ3ANA4Zu7B008/rbCwMP3617+2pwCuFAECAADwOXFxcc6mhbFjxyo/P59hiQCuyMqVK7V9+3Y999xz6tq1qz0FcKUIEAAAgM8wwxIHDRrk7Gg3wxLT09MZlgjgilRUVGjJkiWaPHmyxo0bZ08BXI02X55jXwNNXmdTW1vLChwAQLMwwxKTkpKcN/1mWjqDzlpH9+7ddejQIfsEuJOZe5CcnKxrrrlGr7/+OlsXgGZCBQIAAGh1Jjz4+7//e509e1YFBQWEBwCuSk5OjmpqarR8+XLCA6AZESAAAIBWZYYlRkZGqmPHjs6wxH79+tkbAGg6s7HFtEE98cQTioiIsKcAmgMBAgAAaDVTpkxxhiXGxsY6O9oZlgjgapgWqKeeesrZ4DJr1ix7CqC5MAMBDTADAQDQEsywxIcfflhbtmzR9OnT9eijjzIs0UcwAwFuVTf34Nprr9W2bdtoXQC8gAoEAADQokx4cN999znhwfz5853BiYQHAK7GmTNn9PTTTztfX5YtW0Z4AHgJAQIAAGgxZlhijx499M477zjDEmNiYuwNAFw5s7ll+/btWrx4sTNTBYB3ECAAAIAWUVRUpNGjR6tz585O9QHDEgE0BzM00cxQSU1N1bhx4+wpAG8gQAAAAF5nNi3Ex8c7/fVm08Itt9xibwDgypmhiTNnznSGJi5YsMCeAvAWAgQAAOBVjz/++PlNC6a8mE0LAJqDGZr4zDPPqFu3blqzZo09BeBNBAgAAMArzDCzhIQEvfTSS86mhfT0dIYlAmgWZmhiTk6OTp06pbVr1zI0EWghBAgAAKDZmfBgyJAhKiwsVEZGBpsWADSrlStXqri4WLNnz1ZERIQ9BeBtBAgAAKBZmU0LI0aM0IEDB5xNC4mJifYGAK5eaWmplixZosmTJzvhJICWQ4AAAACajQkPHnzwQZ09e9YJD9i0AKA5HTx4UNOmTdPAgQOd9qg2bdrYGwAtgQABAAA0C7Npwaxp7NSpk7NpgfAAQHMyQxPNLBUzNPG1116zpwBaEgECAAC4avPmzXM2LZjvCprBZmxaANCc6oYm1tTUMDQRaEUECAAA4KrExcU5g8zMmsY5c+YQHgBodnVDE83XGIYmAq2HAAEAAFwRs2lh1KhRzpt6s2khKytL7dq1s7cA0DwYmgj4jjZfnmNfA00eRFNbW8vwGgAIQCY8uO+++/TOO+9o/vz5iomJsTdwu+7du+vQoUP2CWhdR44c0ciRI532qDfeeIP3nUArowIBAAA0idm0MGDAACc8MJsWCA8AeIOZdzBjxgx17NjRGZpIeAC0PgIEAADQaKaU2AQGQUFB+pd/+Rc2LQDwCjM0cdGiRaqsrNSmTZsYmgj4CAIEAADQKGZNoykl7tChg7OmsVevXvYGAJrX+vXrnfkqy5YtY2gi4EMIEAAAgEczZ8501jSaTQv5+flsWgDgNWVlZc5QVvP1hqGJgG9hiCIaYIgiAOBCCQkJKiws1KRJkzRt2jSnfQH+iyGKaE11QxN79+6t/fv321MAvoIKBAAAcFFm00KfPn2c8MCsaUxNTSU8AOA19Ycm7ty5054C8CUECAAA4Buqqqo0YsQIHThwQNnZ2UpMTLQ3AND8LhyaaGatAPA9BAgAAKABs6bR7FyvqKhw1jRGRUXZGwDwDoYmAu5AgAAAAM4rKirSmDFj1LlzZ6eEmDWNALzNDE3MzMxkaCLgAgQIAADAYdY0xsfH67bbbnPWNLJpAYC3HTt2zBnQ2rdvX+drEADfRoAAAAAUFxd3fk3jc889R3gAwOvM3IOUlBR16tRJGzZsUEhIiL0B4KsIEAAACGBm04JZ02h6j6dPn6709HS1a9fO3gKA92RlZTlDE3/1q1+pa9eu9hSALyNAAAAgQJnwYOjQoefXNJreY9Y0AmgJ+fn5TnD5zDPPaOTIkfYUgK8jQAAAIACZTQtmTeP+/fudTQusaQTQUsyGFzM00cxcmTVrlj0F4AYECAAABBgTHjz44IM6e/as1q5dy6YFAC3GDE00bVNmaKIZ1grAXQgQAAAIIGbK+ejRo52hZebNe//+/e0NAHiXGZo4bdo0Z00sQxMBdyJAAAAgQJjwwGxaGDhwoHJycti0AKBFmaGJ7777rlatWsXQRMClCBAAAAgAaWlp59c0mk0LhAcAWlJJSYkzNHHu3LmKioqypwDcps2X59jXgNq0aWNfNU5tbW2T/xoAQMuKi4tz3rhPmjTJKR9m0wIup3v37jp06JB9Aq6eGZpo5h5ER0frX//1X3nvCLiYyyoQarR30YPOF526H10mbtSHX9hrn3NWf9qYou+1/fr32+Zvl2jv6Vp7DwCA95g1jaNGjXLCA7OmMTU1lfAAQIsyQxNN1YEZ1rpmzRrn/TAA93JVgFD7p9e1bMkm+2TcryefGK4br7GPPudafS8mVdmP3W6fz9mxUDNy39Yn9hEAAG8w4cGQIUO0ZcsWzZ8/nzWNAFqcGZr49NNPO1+PzAwWhiYC7ueeAKH2Dyr5P/9XLx/9uuMiLO1JTekfbJ98VNubFDX1JxpmH6Vq7Vi8SqUf/tU+AwDQvKqqqpwe4wMHDqigoEAxMTH2BgBaTnZ2trZv367FixcrIiLCngJwM5cECLU6/buNyn55v87HB2HJyvmHwbrePvqutrqu/wRlpNVbk1W9VNOyy/SxfQQAoLmUl5c7Wxb27t3rhAembBgAWpoZmrhixQqndWrcuHH2FIDbuSNAqH1f62Yv1A77KIVp2JOPKOp719pnX3eDhk18QvXnzVYvWKKX9tbYJwAArl5paalGjx7t7FjfsWMH4QGAVmGGJs6cOdMZmrhgwQJ7CsAfeA4Qaqu199cbtXHjRq1f9GN1qRsGeIkfXX68SOvP/Vrz6zdu3KH3r3pgYK0+3rFK6aXV9tkYrAl/f4eus09u0Pa2v9fM+lUI2qTFL7yuPzFPEQDQDEx/8ciRI9W+fXstXbpUYWFh9gYAWk79oYn5+fn2FIC/uPgaRxMavPpb/XbjPKWu2m8Pr9KwxXr71Z+q/3VNLHqofU8vjxquifUChLC07Xpv/nAXtC/UV6vTe5/Xg3c/Wa+S4n4tfDtfM3xojoMJgZqCNY4A0PpMeDB16lTFxsZqxowZCg728flA8GmsccSVMkMTzcDWv/zlL04LA3MPAP/T8NP86ff1+ssz9bfXdNHdMQ/XCw/CNCztJW3YsElvH/2rTObQ8McX+uTQb8/db1DxwkfO/eqL+OMXUlBTOybM7IPNWt2g+uB+PRnXz2XhgdFW1901ShOi6v/T2aTF6yqYhQAAuGJxcXHnw4P09HTCAwCtwoQHWVlZqqys1C9/+UvCA8BP2U/0H+v9bUv049u6676JC+p9hzxKaXnbdeiTD/Xb+ZM1evTfqX/YxeYOnPtwfNswp+9y7Ixf6eiX/61D2/OUNqzeh+V7b1WXb9nXjXZSb61bU+/3c07UQ/r7u1z65qjtbRo789EGAUv1glytf/+MfQIAoPESEhJUXFysjIwMJzwICgqyNwDQstavX+98PVq2bJmzBQaAf2qr0+9p48xYdY96UqvOf6PfVBxs0KFPNmv+Y8N1W1PbDnS9bhv+mOZvf115I7s4J11vv1kdnVeNV/v+K5q/YK99MsIUFTdI3Zr62/EZbXX93T/UhAYlGmUqKjsiRiEAABrL7FQfNGiQCgsLnfDAlAwTHgBoLaZdITMz06mESkpKsqcA/FHbJcmxGrOg1D4aUUrb8LpenT/6CoKDC7T93woO/fa5F111762d1LQChDM6XLZV9X9nCntUaWNvqyubcKfr79DICf319dSAapWu3qzfXfWwSQBAIDDhwfDhw7Vnzx5nx7oJDwCgtdTfuLBu3Tp7CsBftX2ywZDEKM36TZ7mje7RzBsObtLtN7e3rxup9ojK1pXZh6+ETfih7r7+GvvkViG6e2SUwurPHdyxRuveOqlvTrMEAOBr5eXluueee7Rv3z4VFBRQJgygVZmNC6aVio0LQOCo9838Pnpsw0vKvO9GL3yHv6NCvtO0+oPaw7u1rsHwxDDd3r2LrnP9wP+6Nob6/4/s1eqt7+pjEgQAwCWY8OD+++/X3/zN3zjlwuYNOwC0lpqaGqWkpKhjx45O5UGHDh3sDQB/ZrOCMA1bmKfnR98sr3x/P6ybwkMvNnzxUkz7whaVNvie/GCNGxzund9fS7v+DkVN6G8fvlK9oUK//9w+AABQT1FRkTOoODQ0VDk5OerZs6e9AYCWZzYuLFq0yNm4sGnTJnXt2tXeAPB3XwUIw1K1KOnuZm5bMG7S6JW/15dHn9Hw65tS13BC+3dWqEF+0DVSfW/1lwFR1+nG2261r62qt7Tvg8/sAwAAX8nNzVV8fLyzm9+EB2FhDSbxAkCLM/NX6jYusK4RCCznPtX30WPTRuuuqx2Y2Jw+/r3e3FbVID8IG9NP32/yGkhfFaRb+0aoYVZbpnVsYwAA1GMGk02dOtWZbL548WKnAgEAWpOZdbBixQqlpqaycQEIQG0VNV0zY26u62XwCZ//vkIb6o8/qJt/YJ/8wbe+309jGnwTqVqV7x/VafsEAAhscXFxWrBggRMepKens6YRQKszGxfMukZTFWW+PgEIPG0fe/w+dfOl9ECf68QfDqvKPn2lu0b0vcLhjh+/rpld2qhNm4v8GPmyDn1hf91F1Z77y2erywV/XZeJG/Wnqy0VuK6Lut/esAyVOQgAALOm0Uw1N+XBGRkZysrKIjwA0OqOHDnifG3q3bu3004FIDC1ffiHN/lU9YEZoHj0g0P2dZ3uurXLFb55anujRuZsUPHCR9TFHp1XulGv/O6UfbiYtrqu5xgty0vTsHpLE6o/rNH/2NdXrO0NCr/zgt9RVZX+cIIEAQAClQkPhgwZosLCQic8SExMtDcA0HrMusZ//Md/dDYu7Nq1i40LQABre3eThhu2hFP6Q+Uf7WsrLETB//sKf5/X3abho0dr7Ixf6U//vV1pDb7pv0lLiiv0sX26mLZh/fWjR+J0f9e6BKGPmqdqI0jf7fgd+7rOIX1w9Ix9DQAIJCY8GDFihA4cOKCCggLCAwA+wWxcePrpp521jWbjQkhIiL0BEIjaXm9f+IzPP9IHbzRsYNC3Q/TdbzdD0HH9IE3MirUPX6levV1vf3y5foSz+tMrv9SSqq9GOoY99s96ullmRgSpy63d7es6n+jEfxMgAECgKS8vd1Yzmv5iEx7069fP3gBA6zJtVNu3b3fWNrJxAYCvlR9c3L23qkuzbGAIUreR8XqsfhVC9UrNX//+JbYf1Or0ewWanbJUR01+MGyxXn0+Rt/z2j+1Gh2rYZUjAAQSEx7ExMSoU6dO2rp1K+EBAJ9hNi6YeSzPPPOMxo0bZ08BBDLfCxBO/EGVFxQgNKe23xuihyf0t09GtUqLduvwRRKE2urtembqLK0yGyGG/V9tX5us/s227vJb6nhztwtWOX6qYzX/wypHAAgQubm5ioyMdPqJzVCy8PBwewMArausrMzZuGA2wcyaNcueAgh07qhAaFY3aNjEJxRlnxylLyhvx5/tg2EqD36ln/SP0rwd1Qp7ZKX+45X/o+Fh19p7b6lW1UkCBAAIBCY8mDp1qvPm3OxUDwtruJkHAFqLaaeaOHGis3GhqKjIngJAQAYI5/6f7nafHn+sj30y9mr11nftMEUTHqxW8vBHncoDEx68vnSCen4nIP9RAQC8oH54kJ6eruDgYHsDAK3LbFyYO3eu005lNi6YFeYAUCcwPxW3vUk/fPhBNRiFsCBX69//1AkPUu77iVZVh2lY2gbtWDpBPZqtbQEAEOji4uIahAdBQVe4phgAmpnZuJCSkuJshTFBJxsXAFwoQD8Zt9X1wx5RVlSYvs5Uy7R67mQ92PNR/epoqIbN+pXWzhut21o0POiqe2/tpGaZFwkA8DkmPDADyTIyMggPAPgUEx6YjQuVlZX65S9/ycYFABflewFCx5t1e8PJgt7R9laNfHy0ws4nCNXasWqtdihMw2at1NqsEQrz6j+dz3XiD4flxXmRAAAfkpCQcD48SExMJDwA4FNWrlzpfI1atmyZoqIaTAsDgPPcUYHwxgc6+rl93Wyu1fd+OFoTvk4QHGFp+SqZG+Xl8OBSghUa3M6+BgD4A1MK3KdPHxUWFp4PDwDAl5SUlGjJkiVOa1VSUpI9BYBv8r0A4VuddOu9F5QgfHpS//2pF3YTXNdVkaPqD1OUqt/ap9+fbok9CGd09IND9nWdW9X9xuvsawCA25nwYOjQoTpw4IDy8vIIDwD4HLNxYebMmYqOjmbjAgCPfLACob1uvv0m+9qqPqwjx87ah2Zyer9e/skDGptXaQ+sHWtU/NZf7IM3ndF/n/jEvq4TouDvMAEBAPyBCQ9GjBih/fv3q6CgQIMHD7Y3AOAbzMYF017Vt29frVmzho0LADzywQAhSF1u7W5f1/lAhz48bV9fvdrqN7QkOUETV+3Xl8OSlfZIw5WOCxa8ove9XYRQ+2cdeeeofbCiItSnMwECALhdeXm5evTo4Xxnb+3atc46NADwJSY8MBsXOnbsqA0bNrBxAUCjeCVAqH3/ZY1s00UjX35PX9izxvuWOt7cTQ2bGI7qnSN/VnN8pq+t3qb08bF6ctV+adg/6TdrFmvenOlqMCqm9F/0yu9q7IOXnD6qQ5XV9uErYXeGK9QHIx0AQOOZ8OD+++9X586dtXXrVvXv39/eAIBvMBsXcnJydOrUKW3atEldu7bEBHMA/sALH1fP6HDZFpWqi+4Mv+GK/g986/v9NCbMPjiqVXnoqK6uBqFWp9/fqFnjf6x5O6oV9kiO3lw7S/d1uVZtu92nxx+rX4WwSYvXVehj++QNn/++Qhsa5Adhuv22LmICAgC4lwkPRo8erdDQUC1dulTh4eH2BgB8R3Z2trNxYc6cOaxrBNAkzR8g1B5RWVHZuRd3a0DPYF1RJ9X139eAEV0b/LXVGyr0+yvexFCr0++tVsrfjtUCJzxYqdeXTlVk2LVfXbe9ST98+MFzH+G/Vr0gV+vfP2OfmtsZfbCv/IIVjoMVNzjcF3tKAACNkJubqwEDBqh9+/bOd/ZMiAAAviY/P18rVqxQamoqGxcANFnb5v4ue+3h3SoqrZa6dtPNHa+0n7+j+gztpwYJQtVb2vfBlXygP6vqt5Ypefij+tXRL214MEE9rqv/Ub2tro+M0ZPD6kcIxUrP2+2lKoQT2r+rwr62ukaq762scAQANzLhwdSpUzV27FjnjTnhAQBfZOayZGZmKj4+XvPnz7enANB4bZv3u+x17QtS2Jh++v4VzwMMUrfB0YpqkCCUqajsSBNnKpxV9evzNH5AilZVn/s9PfLLi4QH1nV36O8nNJyQXb16o37zp2be/mB8/Hu9ta1h/cHV/fMCALSWuvDA7E835cDBwcH2BgB8x8GDB52NC71793ZarNi4AOBKtE2fW6T3TjfTyoHT7+qV1aZ9IUy3d7+6fv623QYpLqpBU4FKi3brcKMTBBse3PdP2nHuyVQebM955OLhgSNI3UbG67EG/yc36sWtHzTL8Mav1erjt3+j1dVf2mejvyaMvEPX83UcAFwlLi7ufHiQnp6udu2oJAPge8zGBfM1qlu3btq1axcbFwBcsbbVqx7V8OTVVxkifKz3X39ZMx+MUeoOMxnwygcontc2XIPjLtiZXbpFZYc/sw+X0zA8UFiycp5JUM/vXP531PZ7Q/TwhP716h6qVZq+Sjs+bs4I4aTe3lqqBvnBsIcVFxlyZfMiAACtYty4cc4QsoyMDOeNeVBQkL0BAN9hNi6YtoWamhpnrSzhAYCr4XyiNiFCzwdn6Vd7q5v23fbaau399XLN/Nse6n7fRGdA4VduVfcbr3afgKkIGNewIkBlWld2xOPvsfZPryljwj9/FR4YI4Zr4PfswMTLClFk3MMaVv+TfPWrWvObP17BOspL+PhdbV29V1/nB2GKmjBKd12yMgIA4GtMGfC6deuc8CAxMZHwAIDPysrK0m9+8xstWrSIjQsArtrXn1p3LNCjd3fRjT9eqPUbf63X37/Y+MCzqt77r9q4cb1enjlSba7portjptQLDowwDZs1WaO6Xf2bqbqKgK9Vq3Tdbh2+bIJwRoe3Furl+t/i3/Zrrdn2fiPWQLbVdXeNUmJUF/ts7NfLY8L1rS4/1qL1G7Xx9cb8fS6lrn3BPjoGaxzbFwDAFU6ePKk+ffqosLDwfHgAAL7KbFwwlVJz5851qqYA4Gq1+eTQ9i/X5c3XxAVm9OGVilJa3mQN6HCLBj7YX2HN9mm4Vqf3Pq8H737y62oC3a+Fb+drRv9LDak6o/dffkQ9JhXry/ptAo9s0J9WjlYXj30C5z7kv56uHvfNU4PP+VbXhW/rvRn9dUXzDmvf08ujhmui2VJhhaVt13vzh+t6+9zamjpQp7a2liE8AAKCCQ+GDBmiAwcOODvUo6Ki7A3gX7p3765Dhw7ZJ7hVSUmJZs6c6cxoKSoq4v0agGbR5stznFemHeHVPfrDF2f0wa/nKXXVfuf4G4alKW/aADkf36+5uZkDg4uo/YM2Tn5AY17++vfjax+6G+dKwpCWR4AAAN9kwoMRI0Y4K9AKCgrUr18/ewP4HwIE9zNfq0yr1cCBA7V79257CgBX7+sAwWddrCIgVnmHVumx29zUc/pnvT4zWvct2GufpbDHNqh8+Wh9z4f6FwgQAKCh8vJyPfDAA/roo48IDxAQCBDczaxrjImJUd++ffX6668zNBFAs3JB631bXT/sceU81sc+G2Va/cq7VzGLoOXVvv+K5tcLD0z1wZNPDPep8AAA0JAJD+6//3516tTJKQcmPADgy8y6RjOfxaxrJDwA4A3u+Pja9iZFPfGYhtlHM0xxR+oirXv/jH32dX/WjrwXVH/KRNhjP1HCXb7TugAAaMiEB6NHj1ZoaKhycnLUs2dPewMAvseEBykpKU61FOsaAXiLS77/bbYjjNa0x/ro62L5YqXn7dbFdkX4FjP7YLUyG1QfxCoz7e+oPgAAH5Wbm6vIyEi1b9/eCQ/CwhrsFAYAn3LmzBnna1VlZaVeeeUV1jUC8Br3fIRte7Ninv5nPVZvjUL1gsV6aW+NffJRtX9U6bJf1hucGKZhC2corns7+wwA8CUmPJg6daozudy8ITcVCADgq0x4kJWV5axrXLZsmRN+AoC3uOp74G2/N1xTp99vn4xNWvzC6/rwC/voc87qTyULNe3lSvt8zrBULUq6W9+xjwAA32HCgyeeeMIJD9LT0wkPAPi89evXnw8PkpKS7CkAeIcLtjCgJbGFAUCgiouLc96E14UHQUFu2vQDNB+2MLhHfn6+MjMzna9b69ats6cA4D104QMAAl5deDB9+nTCAwCuUFZW5rQuxMfHEx4AaDEECACAgJaQkOCEB2b1mSn/JTwA4OsqKio0ceJE9erVSwUFBfYUALyPAAEAEJBOnjyp8ePHq7Cw0AkPEhMT7Q0A+C6zrtEEn/369dPOnTvtKQC0DAIEAEDAMeHBkCFDnO/cER4AcAsTHiQnJ6tjx45O20KHDh3sDQC0DAIEAEBAqQsPDhw4oBUrVhAeAHAFs64xJSVFNTU12rRpk7p27WpvAKDlECAAAAJG/fDAVB/84Ac/sDcA4LtMeGAGJlZWViovL08RERH2BgBaFgECACAgmPBgxIgR58MD0z8MAG6QnZ3tDHtdtmyZoqKi7CkAtDwCBACA36uqqnLedJvJ5YQHANwkPz/fabdKTU11NsUAQGsiQAAA+LXy8nINHDhQe/fuJTwA4ColJSXKzMxUbGys5s+fb08BoPUQIAAA/JYJD+6//3517txZW7ZsITwA4BqmYmrmzJmKjo52Ni60adPG3gBA6yFAAAD4pfrhwdKlS3XLLbfYGwDwbQcPHlRCQoL69u2rNWvW2FMAaH0ECAAAv2PCg9GjRys0NNQJD8zPAOAGx44dU0ZGhrp166bXX39dISEh9gYAWh8BAgDAr5SWlmrMmDFq3769cnJyCA8AuIYJD1JSUvTRRx9p7dq1hAcAfA4BAgDAb+Tm5mrkyJEKDg4mPADgKmfOnHG+bp06dUqvvPKKIiIi7A0A+A4CBACAXzDhwdSpU51p5WblGeEBALcw4UFWVpaKi4s1Z84cRUZG2hsA8C0ECAAA16sfHqSnpzsVCADgFuvXr3fCg2XLlikpKcmeAoDvIUAAALjaheFBUFCQvQEA35efn6/MzEznaxjhAQBfR4AAAHCtefPmER4AcK2ysjKndSE+Pl7r1q2zpwDgu9p8eY59DahNmzb2VePU1tY2+a8BgOYQFxfnlPwSHgDNq3v37jp06JB9grdUVFQoISFBvXv31v79++0pAPg2KhAAAK5TFx6YXemEBwDcxqxrNOFBv379tHPnTnsKAL6PAAEA4Cr1w4PExETCAwCuYsKD5ORkdezY0Wlb6NChg70BAN9HgAAAcI3x48c3CA8AwE3MusaUlBTV1NRo06ZN6tq1q70BAHcgQAAA+LyTJ0865b4FBQWEBwBcyYQHZmBiZWWl8vLyFBERYW8AwD0IEAAAPs2EB0OGDFFhYSHhAQDXMuGBqaBatmyZoqKi7CkAuAsBAgDAZ9WFBwcOHHC+Y0d4AMCN8vPznfAgNTVVSUlJ9hQA3IcAAQDgk+qHB6Z1YfDgwfYGANyjpKREmZmZzsrZ+fPn21MAcCcCBACAzzHhgSnxrQsPzKozAHCbiooKzZw5U9HR0c7GhTZt2tgbAHAnAgQAgE+pqqrSiBEjtHfvXsIDAK5lwgMz/LV3795as2aNPQUAdyNAAAD4jPLycg0cONB547127VrCAwCudPDgQWftrPkatmvXLoWEhNgbAHA3AgQAgE8w4cH999+vzp07a+vWrerfv7+9AQD3OHbsmNLT03XDDTdo27ZthAcA/AoBAgCg1dUPD5YuXarw8HB7AwDuYcKDlJQUHT9+XK+99hrhAQC/Q4AAAGhVJjwYM2aMQkNDnfDA/AwAblNTU+OEB6dOndKmTZsUGRlpbwDAfxAgAABajQkPRo8ereDgYOXk5BAeAHClM2fOaNGiRaqsrNTGjRsVERFhbwDAvxAgAABaRV140L59e2VnZxMeAHAlEx5kZWWpuLhYy5YtIzwA4NcIEAAALa6oqOh8eGAqD8LCwuwNALjHheFBUlKSvQEA/0SAAABoUbm5uYqPjz8fHlB5AMCt1q9f74QHc+fOJTwAEBAIEAAALcaEB0888YTuu+8+wgMArpafn6/MzEzFxsZq1qxZ9hQA/BsBAgCgRZjwYOrUqRo7dqwWL15MeADAterCA1NNtW7dOrVp08beAIB/I0AAAHhdXXhgvlM3Z84cBQUF2RsAcJeKiorz4UFBQYE9BYDAQIAAAPCq+uFBenq62rVrZ28AwF1MeDB+/Hj17t1bS5cutacAEDgIEAAAXnNheEDlAQC3MuFBQkKC7rjjDu3atUshISH2BgACBwECAMAr6gYmEh4AcLtjx4454UG/fv20fft2wgMAAYsAAQDQ7OoPTCQ8AOBmJjxITk5Wx44dnYGJHTp0sDcAEHgIEAAAzYqBiQD8hQkPUlJSdOLECW3atEldu3a1NwAQmAgQAADNhoGJAPzFmTNnNG3aNJ06dUqvvvqqIiIi7A0ABC4CBABAs2BgIgB/YcKDrKwsvfvuu1q0aBHhAQBYBAgAgKvGwEQA/qIuPCguLtYLL7ygcePG2RsAAAECAOCqMDARgD/Jzs52woNly5Y5X9sAAF8jQAAAXLG4uDgGJgLwG/n5+VqxYoVSU1OVlJRkTwEAdQgQAABXxIQH5rt0DEwE4A9MeJCZmel8TVuwYIE9BQDUR4AAAGgy0xNswoOMjAzaFgC4XklJiRMexMfHa926dfYUAHAhAgQAQJOYygPzBtuEB4mJiYQHAFytoqJCM2fO1MCBA1VQUGBPAQAXQ4AAAGi0uraFuvAAANzMhAcJCQnq3bu3Xn31VXsKALgUAgQAQKMQHgDwJwcPHnTCg379+mnXrl3q0KGDvQEAXEqbL8+xrwG1adPGvmqc2traJv81ANyH8MBFak9o/29/p6NfnHv5x+2au6BEH9mri+kUk6Y5991kv6MQrNsG363wb/P9hUDWvXt3HTp0yD75p2PHjik5OVlnzpzRm2++qZCQEHsDALgcAgQ0QIAA4ELjx493+oIJD3yYExq8qTdLX9SCkvft4VWKnKUNLz6iPoQJAcffAwQTHqSkpDg/b9q0SREREfYGAOAJAQIaIEAAUJ8p7y0sLCQ88FWfHtG//+t6LZ2zXG/Zo690UuTkaZpwR2d1uWuQ+nT8X/a8Tu25v/Rtlb1fc+kqhZvStGHrRPW5xj4jYPhzgFAXHpw6dUobN24kPACAJiJAQAMECADqEB74stM6snu9ls2cp5IGn/wHa/LcyRr7d5FNbEM49/f79y1av/R5LX/L/g1jslU2P0odv3pCAPHXAMG0K2RlZWnPnj3asGGDIiMj7Q0AoLGoSwQAfAPhgQ/79AOVLvqpRv6kfnhgKg6ytfV3yzVj7D1XMMPgOoXfM1YzfvUrzR3cyTm56bYuoisc/qIuPDCzXObMmUN4AABXiAABANAA4YHvqj1RoZX//FNNW15mT4zBmvyLlXpxRtTVDz9s207X3/A3aqOb1P+mDqJ7Af6gfniwbNkyJSUl2RsAQFMRIAAAzjMDEwkPfFPtid36+ZM/1bwGQxIH6/FfPaMnR3bVt+1J8wjTbV2+a18D7rZy5UrCAwBoJgQIAACHqTxg24KP+vR9bVw0Ty/WzSdw3Kax2Zn62T2dvfAf8xB99zrqD+B++fn5WrJkiWJjYwkPAKAZECAAAGhb8Gkfa3/Bc5rToPKgkyLT5mpOVBfv/Ie808268YYLNzcA7mLCg8zMTCc8WLdunT0FAFwNtjCgAbYwAIGH8MCX1erT/av0+Jh5Ddc0Rs7ShhcfUZ+rnXkAXIQ/bGGoCw/i4+O1du1a3qsAQDPhnQcABDDCAx/36X4VzM9rGB6Y1oUJUepFeABcVElJyfnwwLRlER4AQPPh3QcABCgGJvq6/6fjZSVa2WDuwTmDH9HkH3qpdQFwuYqKCs2cOVMDBw50wgMAQPPi/QcABCAGJrpA7R/1b+t+o4bxwW0aGzdI/x//9Qa+wYQHJhjt3bu3XnvtNXsKAGhOvAUBgABD24Ib1Or0WyX6Rdlx+2x1+ls9MCiM/3gDFzDhgfna1qtXL+3atUshISH2BgDQnHgPAgABhPDALf5b+8vK9NEFY447/WiQ+nyH/3QD9dWFB/369dPOnTsJDwDAi3gXAgABgvDARb74kw5sOaCG+UFv/Whwd33HPgFoGB5s27ZNHTp0sDcAAG8gQACAAMDARHep/eN72v1H+3DeTQoP/bZ9DeDYsWMNwgMqDwDA+wgQAMDPxcXFMTDRVWr16bH/0vv26byb7lCPm/7GPgCBzYQHKSkp6tixo3JzcwkPAKCFECAAgB8z4UFxcTHhgauc0ZEDv7tg+8I5/W9S52vsayCAmfAgOTnZ+XnTpk2KiIiwNwAAbyNAAAA/RXjgVn/V6VP/Y19/7abbuojvsSLQ1VUenDhxwlnVSHgAAC2LAAEA/BDhgZud0ccnPrav63TSzd/9ttrYJyAQ1YUHp06d0quvvqrIyEh7AwBoKQQIAOBnxo0bR3jgZrWf6eM//9U+1Pkb3XB9O/6jjYBVU1NzPjzYuHEjlQcA0Ep4LwIAfsRUHqxbt47wwM2+/FT//YdvTEAAAtaZM2e0aNEiVVZWKi8vj/AAAFoRAQIA+AnaFgD4GxMeZGVlOV/bli1bpqioKHsDAGgNBAgA4AcID/xIm2/ruzd3sg9A4KofHrzwwgtKSkqyNwCA1kKAAAAuR3jgZ9q20/U3/I19AALThZUHU6dOtTcAgNZEgAAALsbARH/0XXW5Lcy+rvNX/fnjz1RrnwB/dmF4QOUBAPgOAgQAcKm0tDRnYGJsbCzhgV8JUnjvu9SwieEjvX/kI31qn5pb7ZH1mtj9B5q4/gNCCrS6lStXEh4AgI8iQAAAF8rNzdXChQud8CA9Pd2ewj+01XV9BulHF4xB+GjLAR35wj40q7/qv97+N5Wpo3re2J43BmhV+fn5WrJkifO1jfAAAHwP7xMAwGVMeGD6gc0b7Dlz5igoKMjewG9c112Df9Rbbeyj44/v6r0//tU+NKPaP+ntzRXnXtyuO7pe/9UZ0ApMeJCZmel8bTPVVQAA30OAAAAuUj88MJUH7dq1szfwL9/VHdF/r8gGCcIWPb/+d/rEPjWX2v+q0Oayj6Sb/j91CbnGngItq354UFRUZE8BAL6GAAEAXOLC8IDKA3/WVt/uFaXEMd3t81c+Wl6gLf95xj41B9O+UKayc686RfdWOPkBWkFdeBAfH+9UHrRp0yA5AwD4EAIEAHABEx488cQThAeBpG0X/fAfUjS2wSyELfpF7r/qg0+badThp4e0/RXTvtBJt4V30re/OgVaTElJyfnwoKCgwJ4CAHwVAQIA+Li6yoOxY8cSHgSYtp1/qDm/elYx9UKEj0pm6cf//OurDBFO68i/r9eix5O14M3j554ZoIiWV1FRoaeeekoDBw4kPAAAl+C9AgD4MAYmBrq2+vatP9L//UaI8JRGPb5Y/7L/RNPWLtae0P7t67RowiiN/PEcLX/rI3txk8JDqT9AyzHhQUJCgnr16qXXXnvNngIAfF2bL8+xr4Em9x3W1tbSqwh4CTMPUF/tiXf16189r6eWm4kFX+sUk6bZ94Wr/W0DdE/4dfa0zv/Tif279bujn+njd4s154K/9iudFPn4fC3+2SB15NsKOKd79+46dOiQfWp+deFB7969tXPnTnXo0MHeAAB8HQECGiBAAHwD4QEurlafHnlL/7p++SXCgMYarMlzY3VH+xt119/2IThAA94MEOrCg379+mnbtm0KCQmxNwAANyBAQAMECEDrqxuYyMwDXJZpR/jt73T0i7P64/YXtaDkfXtxgcjJmjvhDl1vXl/ThcAAHnkrQCA8AAD3I0BAAwQIQOui8gBAa/NGgHDs2DENGzZMd911F+EBALgY34MAAB/BwEQA/siEB8nJybrhhhucr3OEBwDgXgQIAOADLqw8aNeunb0BAPeqCw+OHz/ubFuIiIiwNwAANyJAAIBWVlpaStsCAL9TPzzYtGmTIiMj7Q0AwK0IEACgFZWXl2vSpEm6/fbbNWPGDMIDAH7hwvCAygMA8A8ECADQSkx4MHr0aAUHBysnJ8f5GQDczoQHKSkphAcA4IcIEACgFZjw4MEHH1T79u2VnZ2t0NBQewMA7lUXHpifCQ8AwP8QIABACzPhwf3336+OHTs6lQdhYWH2BgDcqy48OHXqFAMTAcBPESAAQAuqCw86d+6spUuXUnkAwC/UDw82btzIwEQA8FMECADQQk6ePOlsWzhx4gThAQC/cWF4QOUBAPgvAgQAaAEmPBgxYoT27t2rgoICwgMAfsGEB9OmTSM8AIAAQYAAAF5WFx5UVFRo7dq16tevn70BAPeqqzwwX+MIDwAgMBAgAIAXmTfWQ4YMccIDU3nQv39/ewMA7lW/bWHDhg2EBwAQIAgQAMBL6sKDAwcOOOEBlQcA/AEDEwEgcBEgAICXPPjgg4QHAPwKAxMBILARIACAFyQkJGj37t2aP38+4QEAv3DmzBlnYGJlZaXy8vIIDwAgABEgAEAzM+FBYWGhMjIyFBMTY08BwL1MeJCVlaV3331Xy5YtU1RUlL0BAAQSAgQAaEZxcXHnw4PExER7CgDuVRceFBcX64UXXlBSUpK9AQAEGgIEAGgmJjwwb7AJDwD4i/rhgak8mDp1qr0BAAQiAgQAaAbjxo0jPADgVy4MD6g8AAAQIADAVcrNzXXeYE+fPp3wAIBfIDwAAFwMAQIAXAUTHpiS3rFjx+rRRx+1pwDgboQHAICLafPlOfY1oDZt2thXjVNbW9vkvwbwF3XhQWxsrObMmaN27drZGwBwJ1N50LdvX+e1GZjIzAMAQH1UIADAFagfHqSnpxMeAHC9urYFg4GJAICLIUAAgCa6MDwICgqyNwDgTsw8AAA0Bi0MaIAWBuDySktLFR0d7cw8IDwA4A8IDwAAjUWAgAaaEgbwRweBpry8XKNHj1b79u2Vk5Oj0NBQewMA7kR4AABoCloY0AChAHBx9cOD7OxswgMArlc/PDADEwkPAACeECDgG0yIcLlKBHNP0IBAYsKD+++//3zlQVhYmL0BAHe6sPKAgYkAgMaghQEe1YUJzDtAIKoLDzp37qylS5dSeQDA9WhbAABcKQIEeGRCA/6YIBBVVVVp0KBB6tSpE+EBAL9AeAAAuBoECPCIAAGB6OTJkxoxYoQqKiq0detWhYeH2xsAcCfCAwDA1WIGAgBcoH54sHbtWsIDAK7HwEQAQHMgQACAekx4MHz4cCc8KCgoUP/+/e0NALiTCQ/M9hgTHkyePJnwAABwxWhhgEe0MCBQmPBgyJAhOnDggBMe9OvXz94AgDvVrzyIjY3VunXr7A0AAE1HBQIAnGPCg6FDhxIeAPAbhAcAgOZGgAAA5yQnJ2v//v3Ky8sjPADgehcOTCQ8AAA0BwIEAAEvLi5OhYWFysjI0ODBg+0pALgTAxMBAN5CgAAgoJnwwLzJNuFBYmKiPQUAd7qw8mDq1Kn2BgCAq0eAACBg5ebmEh4A8BsXhgdUHgAAmhsBAoCAZMID8505M1hs7Nix9hQA3InwAADQEggQAAQcEx488cQTTniQnp6uoKAgewMA7kN4AABoKW2+ZME/PGjTpo34YwJ/UV5ersjISMIDAH7hwoGJzDwAAHgTAQI8IkCAvzDhwejRo9W+fXtlZ2crLCzM3gCA+1B5AABoabQwAAgIJjy4//77FRwcrJycHMIDAK5GeAAAaA1UIMAjKhDgdidPnlSPHj3UuXNnLV26VKGhofYGANyH8AAA0FqoQADg10x4EBUVpRMnTjhvuAkPALgZ4QEAoDVRgQCPqECAW5nwYMiQITpw4IAKCgrUr18/ewMA7lNTU6NFixYxMBEA0GoIEOARAQLcatCgQdqzZ4/Wrl2r/v3721MAcJ9jx44pJSVFlZWVVB4AAFoNLQwA/FJCQoITHphtC4QHANyM8AAA4CsIEAD4nbi4OBUWFiojI8OZfwAAbmXCg2nTpunUqVN66623CA8AAK2KAAGAX3n88ced/mATHiQmJtpTAHCfusoDM89l48aNioiIsDcAALQOAgQAfiM3N1fLly/XpEmTCA8AuFpdeGAqDzZs2EB4AADwCQQIAPyCCQ/MRPKxY8c65b4A4Fb1wwNTeRAZGWlvAABoXWxhgEdsYYCvKyoqUnx8vGJjYzVnzhy1a9fO3gCAu1wYHlB5AADwJQQI8IgAAb6svLxco0ePVvfu3bV48WIFBQXZGwBwl7qBicw8AAD4KgIEeESAAF9lwoOYmBh16NBBOTk5Cg0NtTcA4C4mPEhOTtbx48e1adMmwgMAgE9iBgIAVzLhwQMPPKCQkBDCAwCuVj88eO211wgPAAA+iwoEeEQFAnyNKe8dMWKEzp49q6VLlxIeAHAtKg8AAG5CgACPCBDgS+rCg4qKCq1du1b9+/e3NwDgLoQHAAC3IUCARwQI8BUmPBgyZIgOHDiggoIC9evXz94AgLuY8MBsWzA/Ex4AANyCGQgAXOPhhx8mPADgenWVB4QHAAC3IUAA4Arjx4/Xli1blJGRQXgAwLVM+9XQoUMZmAgAcCVaGOARLQxobXFxcSouLnbCg8TERHsKAO5iwoOEhAR17NiRygMAgCtRgQDAp82bN4/wAIDr1YUHpoLqvffeIzwAALgSAQIAn5Wbm6vZs2crNjbWmX8AAG5kwgPThmXCg23btikkJMTeAADgLgQIAHySCQ+mTp3qhAfp6elOKw0AuE1d5UGvXr0IDwAArscMBHjEDAS0tNLSUo0cOfJ8eBAUFGRvAMA9ysrKNHHiRPXu3Vs7d+5Uhw4d7A0AAO5EgACPCBDQksrLyzVmzBgFBwcrPz+f8ACAK5mvX5mZmU54sGvXLioPAAB+gRYGAD7DhAf333+/Ex7k5OQQHgBwpbrwID4+nvAAAOBXqECAR1QgoCWcPHlSI0aM0NmzZ53wICwszN4AgHvUDw8KCgrsKQAA/oEAAR4RIMDbTHgwZMgQHThwwHnDbSaVA4Db1IUHZn7LunXr7CkAAP6DFgYArc6saCQ8AOBWZ86caRAeFBUV2RsAAPwLAQKAVjVu3Dht2bJFGRkZhAcAXMeEB1lZWQ0qD1g7CwDwVwQIAFrNvHnznDfbJjxITEy0pwDgDnXhQXFxsZ555hnaFgAAfo8AAUCryM3N1ezZs53v2BEeAHCb+uHBsmXLNGvWLHsDAID/YogiPGKIIppbaWmpRo4c6YQHc+bMUbt27ewNAPi++uHBCy+8oKlTp9obAAD8GwECPCJAQHMqLy/X6NGj1b59e2foWFBQkL0BAN93YeVBUlKSvQEAwP8RIMAjAgQ0F7OusUePHurcubOWLl2q0NBQewMAvu/YsWNKSUlRZWUl4QEAICAxAwFAizDhQVRUlE6cOKHnnnuO8ACAq5jwYNq0aTp16pQKCwsJDwAAAYkKBHhEBQKaQ58+fXTgwAEVFBSwrhGAq9RVHpjwYOPGjYqIiLA3AAAEFioQAHhdQkKCEx6sWLGC8ACAq5jwIDk5WR999JE2bNhAeAAACGgECAC8Ki4uzin3zcjI0A9+8AN7CgC+ry48OH78uF599VVFRkbaGwAAAhMBAgCvyc3NdSaVT58+XYmJifYUAHxfRUWFhg4d6oQHmzZtovIAAIBzCBAAeIUJD8xu9NjYWD366KP2FAB8nwkPxo8f77RcER4AAPA1hijCI4YooqnKy8s1ZswY3XPPPUpPT1dQUJC9AQDfZsIDM7fFhAfbtm1TSEiIvQEAAFQgAGhWJjx48MEHFRwc7EwtJzwA4Bb1w4PS0lLCAwAALkAFAjyiAgGNdfLkSQ0YMMAJDXJychQWFmZvAMC31YUHvXv31q5duwgPAAC4CCoQADQLEx4MGTJEhw8fVlZWFuEBANfIz88nPAAAoBEIEAA0i4cfflgHDhxQQUGBevbsaU8BwLeZ8CAzM1PR0dGEBwAAeECAAOCqjRs3Tlu2bNH8+fOd3mEAcIO68CA+Pl6bN28mPAAAwAMCBABXJS0tTevWrVNGRoZiYmLsKQD4tvrhwdq1a+0pAAC4HAIEAFcsNzdXCxcu1KRJk5SYmGhPAcC31YUHsbGxTtuVGRYMAAA8YwsDPGILAy6mqKjI+c6deQM+Z84ctWvXzt4AgG86c+aMM+S1uLjY+dplqqcAAEDjESDAIwIEXKi8vFyjR49W+/btne/kmbWNAODL6ocHzzzzjGbNmmVvAABAYxEgwCMCBNRXVVWlgQMHqnPnzlq6dKlCQ0PtDQD4pvrhwQsvvKCpU6faGwAA0BQECPCIAAF1Tp48qaioKO3du1c7d+4kPADg844dO6aUlBRVVlZq2bJlSkpKsjcAAKCpGKIIoFFMeDBkyBAnPDBDxwgPAPi6uvDg1KlTKiwsJDwAAOAqUYEAj6hAgJGQkOC8ATfrzvr3729PAcA31YUHH330kV599VVFRETYGwAAcKWoQADgUVxcnBMeZGRkEB4A8HkVFRUaOnSoEyIQHgAA0HwIEABcVm5urjN4zIQHiYmJ9hQAfJMJD0zFVL9+/fTaa68RHgAA0IwIEABckgkPzLRysy997Nix9hQAfFP98GDbtm2KjIy0NwAAoDkwAwEeMQMhMJWXl2vAgAFOcJCenq6goCB7AwC+p6SkRDNnzlTv3r21a9cuhYSE2BsAANBcqEC4YrU6/f4Obdy4Vot+fLvzIfvrH7frx4vWauOv96q61v5ywEVMeBATE6M+ffpoxowZhAcAfFp+fr4THkRHRxMeAADgRVQgXIHa6re0+ucZ+smCUnn+hxeltF8+rZ89MkBhLo1rqEAILGZdY48ePdS5c2fl5OQoLCzM3gCA7zHhQWZmpuLj450VswAAwHsIEJrkrKpfn6fx9/2TdtiTxgp7JEclz05WZNi19sQ9CBAChwkPhg8frn379jnlwD179rQ3AOBbzpw5o+zsbK1YscKZ01JUVOT89woAAHgPLQyNduXhgVG9KkUDxs/T69Vn7Qnge5KTk53wwHwXj/AAgK8y4UFWVpYTHkyePFnr1q0jPAAAoAUQIDRKrU7vXXqR8CBMw9Je0obth/TJl18636V3fnxySNuLF+qRCyu/d/yTEp8q0HunGYwA3/P444+rsLDQWddoJpgDgC+qCw/Metlly5bppZdesjcAAMDbaGFojNNvadHfP6TU3x61B0aUZv0mT1n33XjpFOb0e9qY+VONbTArIUzDFpbolRmR+o498XW0MPg/s67xiSee0M9+9jMlJSXZUwDwLceOHdPTTz+t7du3O+EBX68AAGhZBAge1WjvokRFpG6qFwJEadb2l5U5/Hu6xp5cUu0ftHHKgxqTV2kPjFiteO9Xmti9nX32bQQI/s1sXDC70k0PMesaAfgqEx6kpKTo1KlTmj17tqZOnWpvAABASyFA8KD2Txs1OWKMXq62B7aC4NUZkbrOnnhkKhgejFHqjvN/E4Wl/Ubvzb9P19tnX0aA4L+qqqp07733qlOnTlq+fLnat29vbwDAd5jwwMxoqamp0caNGxUREWFvAABAS2IGwmWd0eGthfXCg3PCHlXGlLsbHx4Y192phGmjVX8kQvWCF7X+/TP2CWh5ZuNCXFycjh8/7qxrJDwA4IsOHjzohAfmaxXhAQAArYsA4XI+3q289GL78JWwCT/U3dc39R/btfreD0drQoOhimUqKjsiximitTzwwAOqqKhwNi6EhobaUwDwHeZr1EMPPeQMTty0aRPhAQAArYwA4ZJq9fHbv9Hq+tUH6q8JI++4sraD6+/QyAn97YNRrdKi3TpMgoBWMG7cOO3Zs8fZoc7GBQC+yIQHCQkJuuuuu/Tmm28SHgAA4AMIEC7prI4dOXzuY349YVEaeXeIfWiqEN09MqpBG4NKt6jsMG0MaFlm44JZf2bWNUZFRdlTAPAdpaWlTnjQu3dv53VIyJX+txcAADQnAoRLqT2isqIy+2CNuFs9m9y+UKetrruxm263T1+p0M79J+xrwPvMG3EzuXzs2LHODwDwNfn5+Zo2bZoTHuzatUsdOnSwNwAAoLURIFzK6aM6VNlgeqKihvZSZ/t0JdqGhuvOBiUIVdr25u/1sX0CvMmsa/zJT36i22+/XXPmzGFdIwCfY8KDzMxMxcfHa//+/VQeAADgYwgQLqH22BG906B/4dsKDf7fV/cP7Lou6n57gwRB1e8c0THmIMDLzMaF8ePHO2/GzcaFdu3a2RsAaH1mSGJdeBAbG+sMdwUAAL6HAOGianX6w8OqtE9fuUm333yVa+7a3qDwO7vYB6vysD48TYIA7xoyZIgOHz6srKwsNi4A8CkmPDBfm+rCg3Xr1tkbAADgawgQLqpW/1NzsuEARXXXrV2utuT7Ot3Y/Vb72qo+qZr/IUCA95jKgwMHDigvL089e/a0pwDQ+urCAzPYddmyZYQHAAD4OAKEizqjox8csq+tsBAF/++r/cf1LX0n+MJ+zkP64CibGOAd8+bNc0qBzcaFwYMH21MAaH01NTUNwoOkpCR7AwAAfBUBQmNVz9N9371Gbdq0uYof/0tdxrxo/4aAd5l1jbNnz3ZKghMTE+0pALS+Y8eOafLkyYQHAAC4DAHCRZ3SHyr/aF8D7mM2LsydO9cJD8zGBQDwFSY8SElJcYa7vvXWW4QHAAC4CAFCq/ujKv9wyr4Grp55U37//fcrODjYeZPOxgUAvqKiokLJyclOiLBhwwZFRETYGwAA4AYECIAfMeHB8OHDdeLECT333HNsXADgM0x4kJCQ4AxO3LRpkyIjI+0NAABwCwKExuq6QG//vy/15ZdX9+P/vb1QXe3fEmhupuJg3759zuDE8PBwewoArau0tNQJD/r27as333yTygMAAFyKAOGi2ik4NNi+tj49pf/+9GrXLX6uE384rCr79JWbdPvN7e1r4MpNmTLl/MaFfv362VMAaF35+fmaNm2aBg4cqNdff10hIRduIwIAAG5BgHBRQfpux+/Y11b1SdX8z9UGCIB3mI0Ly5cv1/Tp09m4AMAnmFYFEx5kZmYqPj5eu3fvJjwAAMDlCBAa7aRqPvncvr5Sn+uTmpP2NdA8zMaFqVOnOhsXfvzjH9tTAGg9JjzIyspywgPztWnt2rX2BgAAuFmbL01jPi7wuao3pqjLmBftszFMC99+VTP6X2efr8Rp7V30oO5O3WGfjce14WiORod9yz57X5s2bewr7+GPVcuoqqrSvffeq+PHj9sTAGh9JjQoLi7WsmXLWNMIAIAfIUC4qFp9/Hq6etw3T9X2ROqqRzb8Vr8afZN9vhJ/1MYf/63GrKo3BSFslra/l6Xh1/tuMYgJHPhj4nvMxoURI0Y4k8137tzJxgUArc6sZzTzDt59913CAwAA/BAtDBfVVtfd2E2326evVOmNDz7SVTUxfP6RPnij4QhF3d5NN17H/wxougcffNAJD8zgRMIDAK3NhAfJyclOuLl161bCAwAA/BCfXC+hbWi47gyzD1ZV5R90wr6+Iif+oMoL8oOwO8MVyv8KaKK4uDhnIFl2djYbFwC0OhNmmvDAtFNt2LBBUVFR9gYAAPgTPrpeynVd1P32CxKENz7Q0SsuQajVxwff1jb79JWuGjHg+7rePgGNYTYumN5is66RN+kAWpsJDxISEnTttddq06ZNioyMtDcAAMDfECBcSttwDR432D5YVW9p3wdn7ENTndWxI4frzVQw+mlon472NeBZaWnp+Y0LY8aMsacA0DpKSkqc8KB3797atm2bIiIi7A0AAPBHBAiXFKRug6PV8Pu7ZSoqO6Ja+9QktUdUVlRmH6yoaA3uFmQfgMsz6xp/8pOf6Pbbb1d6erratWtnbwCg5eXn52vmzJkaOHCgdu3apZCQEHsDAAD8FQHCZbTtNkjjouq3MVSrtGi3Dl9BglB7eLeKSuvXH4QpatwgdeN/ATSCGUo2fvx45w16Tk6OgoIIngC0jjNnzjitVJmZmYqPj3fmsRAeAAAQGPj4ejkXa2Mo3ahXfldjHxrrz9qR94JK7dNXBmvc4HD+B0CjDB06VIcPH1ZWVhYbFwC0GhMemK9DS5Ys0eTJk7V27Vp7AwAAAgGfXy8rSN1GxuuxBrMUNyl1xi+193RjyxBqdXrvamUu2GufvxKW9rjG3sZ3keGZ6S/ev3+/8vLy1LNnT3sKAC2rpqbGCQ/MENdly5bppZdeUps2bewtAAAIBAQIHrT93nA98eT9avAWacdCzch9W5/Yx8uprd6uZ1IXaYd9/kqsMh8bxPYFeDRv3jwVFhY6GxcGD76gGgYAWsixY8ecioO68CApKcneAACAQEKA4FGw+if9Hy342y722ajWjtSJSllcpurLFCLUVm9T+vgfa95vj9oTI0zDFs5QXHcG4OHyioqKNHv2bGfjwsMPP2xPAaBlmfAgOTlZf/7zn/XWW28RHgAAEMDafHmOfY1LMm0Iz+vBu5+8oJLgnGFpyvtZnEY92F9hNo6prd6rVzev088nLvjGrw97ZKVeXzpBPa5zT3ZjSlT5Y9KyzMaFmJgYp2Vh8eLFDE0E0CoqKiqcNqqOHTvqtddeU2RkpL0BAACBiACh0c6q+vV5Gn/fP30zRGisYf+k7WtnaXjYtfbAHQgQWpbZuDBixAidPXtWS5cuZWgigFZRFx7069dP69atU9euXe0NAAAIVLQwNNq1Chs+S2vfzNEjDYYqNk7YIzl604XhAVpeYmKi88Z9zpw5hAcAWkV+fr4THvTu3Vvbtm0jPAAAAA4ChCa5VmGRyfrl3je1Mi2q4WDFS4pS2i//XXt/maxIwgN4kJaWps2bN2v+/PnOd/0AoKWZ8CAzM1PR0dHatWuXQkJC7A0AAAh0tDBcsVqdfn+XSvcf1Qe/nqfUVfvtudFHjyycpR99v7sG1puN4Fa0MLQMMzQxPj5ekyZNUmpqqj0FgJZx5swZZWdna8WKFc7wVtO2AAAAUB8BAjwiQPC++kMTn3vuObVrx5YOAC3HhAdZWVnOmkYTYJoqKPO1HwAAoD4CBHhEgOBdDE0E0JrMmsacnBwnPFi2bBlrGgEAwCURIMAjAgTvGjVqlLZs2aKCggLmHgBoUSY8mDZtmhNkmsGthAcAAOByGKIItKKZM2c64QFDEwG0tIMHDyo5OVnHjx/Xxo0bCQ8AAIBHBAhAKyktLdXChQudYWVm/gEAtBSzKtZ83THhwSuvvKKIiAh7AwAAcGm0MMAjWhiaX1VVle6991516tTJWZkWFBRkbwDAu0pKSpzqp759++r1119nTSMAAGg0KhCAFmZ6jceMGeN858+sTCM8ANBSTGBpwoPo6GjCAwAA0GQECEALMz3H+/btc4YmhoWF2VMA8B6zpjE9PV2ZmZlO29TmzZsJDwAAQJMRIAAtaN68eSosLFRGRgZDEwG0CLNpISsry1nTOHfuXK1bt87eAAAANA0zEOARMxCahxmaOHLkSOe7f+bNPAB4mwkPUlJSVFlZqWXLlrFpAQAAXBUCBHhEgHD1zNDEwYMHq2PHjgxNBNAizKYFU3Fw4sQJvfrqq2xaAAAAV40WBsDL6oYmmu8E5uTkEB4A8DoTHowfP17XXnst4QEAAGg2BAiAl9UNTVy7dq1CQ0PtKQB4h6lySkhIUK9evbRt2zbCAwAA0GwIEAAvqj80sX///vYUAJqf2bSQm5vrbFqIj4/Xzp072bQAAACaFTMQ4BEzEK4MQxMBtBQTHtRtWjBfc9i0AAAAvIEAAR4RIDSdGZp47733qlOnTgxNBOBVZr7K008/re3bt7NpAQAAeBUBAjwiQGi622+/Xfv373dKiJl7AMBbTHhg5qzU1NRo0aJFGjdunL0BAABofsxAAJpZXFycEx7k5eURHgDwGrNpYejQoTp+/Lg2bNhAeAAAALyOAAFoRmaAmelBNkMTBw8ebE8BoHmZGStm00K/fv20Z88eRUZG2hsAAADvIUAAmkl5ebmmTp3qDDAbM2aMPQWA5mXmqkybNk0DBw501jR27drV3gAAAHgXMxDgETMQPDt58qR69OjhtCysWLFCwcHB9gYAmofZtJCdne18jTFrGgsKCuwNAABAyyBAgEcECJ716dNHBw4c0NatWxUeHm5PAaB51F/TmJqaqgULFtgbAACAlkMLA3CVzOAyEx6YoYmEBwCam9m0kJiY6IQHZk0j4QEAAGgtBAjAVWBoIgBvOnjwoLOm8S9/+YtT4ZSUlGRvAAAAWh4BAnCF6oYmjh071vkBAM3JrGl86KGHnPaFkpISRUVF2RsAAIDWwQwEeMQMhG+qPzRx+fLlat++vb0BgKtnAoOZM2eqb9++ev311xUSEmJvAAAAWg8VCMAVGDJkiE6cOKFFixYRHgBoVmZNowkPoqOjtX37dsIDAADgMwgQgCaKi4tjaCKAZmdaFdLT05WZmanY2Fht3rxZHTp0sLcAAACtjwABaAKGJgLwBrNpoW5N4zPPPKN169bZGwAAAN/BDAR4xAyEr5ihiWPGjNE999zjfJcwKCjI3gDAlTPhQUpKik6dOqU5c+awaQEAAPgsAgR4RIDw1dDEAQMGOKHB0qVLneGJAHC1zKaFuXPnOjNVXnnlFUVGRtobAAAA30MLA9AIDzzwgA4fPuz0JhMeAGgOZWVlSkhI0LXXXqtXX32V8AAAAPg8AgTAgylTpmjPnj3Kzs5Wr1697CkAXDmzaWHixInq3bu3tm3bpoiICHsDAADguwgQgMswQxOXL1+u6dOnKyoqyp4CwJW5cNPC/v37WdMIAABcgxkI8ChQZyBUVVVpyJAhuvfeexmaCOCqmWGJTz/9tLZv3+7MPZg9e7a9AQAAcAcCBHgUqAHCXXfdpXfeeUc7d+5k7gGAq3Lw4EEniKypqdGiRYs0btw4ewMAAOAetDAAF2HmHpjwIC8vj/AAwFUxmxZiYmKc9oWNGzcSHgAAANciQAAuUFpaen7uweDBg+0pADSdGZZoNi2YYYlvvvkmwxIBAICr0cIAjwKpheHkyZPOpoVOnTpp9erVateunb0BgMYz1QZmc8uKFSsUHx+vpUuXMiwRAAC4HgECPAqkAGHQoEHOysatW7cqPDzcngJA45lhiTk5OSouLlZqaqrmz5/vfB0FAABwO1oYACstLc0JD8x3DQkPAFwJEx6kpKQ4X0uWLVumBQsWEB4AAAC/QQUCPAqECoTy8nJFRkZq0qRJzncMAaCpzLDE8ePH64YbbtCmTZuYdwAAAPwOAQI88vcAwcw9uOeeexQUFOT0KwcHB9sbAGickpISzZw5U3379tWGDRvUtWtXewMAAOA/CBDgkb8HCKNGjdKWLVucDwA9e/a0pwDgmRmWuHLlSi1ZskTR0dHO1oUOHTrYWwAAAP/CDAQEtHnz5jnhwbPPPkt4AKBJampqlJWV5YQHkydP1ubNmwkPAACAX6MCAR75awWCmXswevRoDRw4UJmZmQw6A9BoZljitGnT9O677zrDEpOSkuwNAACA/yJAgEf+GCCYuQfDhw/XF1984exnDw0NtTcAcHlmWOLcuXN14sQJvfrqqwxLBAAAAYMWBgSkp556Svv27dOcOXMIDwA0WmlpqRISEnTttdfqlVdeITwAAAABhQABAaeoqEjLly/X9OnT1a9fP3sKAJdmhiWaAYmmbcG0PW3bts1Z/QoAABBIaGGAR/7UwlBVVaWhQ4eqR48eWrx4sbO6EQAux4QHZlhicXGxYmNjtW7dOnsDAAAQWAgQ4JE/BQh9+vTRgQMHtHPnTloXAHhkhiWmpKSosrKSYYkAACDg0cKAgJGWluaEBytWrCA8AODRwYMHlZycrL/85S8qKCggPAAAAAGPAAEBwQw+W7hwoSZNmqQf/OAH9hQALq6srEwxMTFO+0JJSYni4+PtDQAAQOCihQEeub2Fwaxs7NWrlzp16uQMQWPuAYDLMV8nMjMz1bt3b+3atUshISH2BgAAILARIMAjtwcIgwYN0p49e7R161aFh4fbUwBoqP6wRFNxYNoWAAAA8DVaGODX5s2b54QH2dnZhAcALskMS6wLD+bOnUt4AAAAcBFUIMAjt1YglJeXa8CAARo7dqzzwQAALubIkSP6x3/8R9XU1GjOnDkMSwQAALgEAgR45MYAwcw9MOGBmXeQl5en4OBgewMAX6uoqFBCQoI6duyoTZs2KSIiwt4AAADgQrQwwC89/PDDOnz4sDMIjfAAwMWYYYkmPDDDEt977z3CAwAAAA8IEOB3cnNztWXLFs2fP9/ZvgAA9Zlhienp6U7AaIYlsmkBAACgcWhhgEduamEwcw/M7vZ7773X+YDAykYA9ZlhiU8//bS2b9+u1NRUJ2g0X+MAAADgGQECPHJTgHDnnXfqiy++0NKlSxUaGmpPAeCreQdmw4KZkbJ48WKNGzfO3gAAAKAxaGGA33j88ce1b98+TZ8+nfAAQAMlJSXOvINrr73WeU14AAAA0HQECPALRUVFWr58uRMeDB482J4CCHRm3oGZizJz5kxFR0dr27ZtDEsEAAC4QrQwwCNfb2GoqqpyZh706dPHKUtm7gEAw8w7yMnJUXFxsSZPnqwXX3yReQcAAABXgQABHvl6gDBo0CDt2bNHO3bsUFhYmD0FEMgOHjzoDFKtqanRnDlzlJSUZG8AAABwpWhhgKulpaU54UF2djbhAQBHaWmpHnroIad9YePGjYQHAAAAzYQKBHjkqxUI5kPCyJEjNWnSJGcdG4DAZgKD9evXKzMzUwMHDtRrr72mkJAQewsAAICrRYAAj3wxQDBr2Hr06OFsW8jPz2fuARDgTKvCokWLnHkHsbGxzmBV5h0AAAA0L1oY4EqJiYk6ceKE84GB8AAIbEeOHHEqkUx4sGzZMq1bt47wAAAAwAsIEOA68+bN0+bNmzV//nyFh4fbUwCBqKKiwlnPaDYuvPXWW8w7AAAA8CICBLhKeXm5Zs+e7ZQox8TE2FMAgci0LyUkJKhXr1567733FBERYW8AAADgDcxAgEe+MgPBzD0YMGCA07KwYsUKtW/f3t4ACCRmWGJWVpbTshAfH6+cnBx16NDB3gIAAMBbqECAayQnJ+vw4cPOBwfCAyAwmVYFMwPFhAfPPPOMCgoKCA8AAABaCAECXCE3N1eFhYXKyMhQz5497SmAQGLmHQwbNkwfffSRtm7dqlmzZtkbAAAAtARaGOBRa7cwVFVVaciQIbr33nuVnp7O1gUgAJWUlGjmzJnq27evNmzYoK5du9obAAAAtBQCBHjU2gHCXXfdpXfeeUc7d+5UaGioPQUQCMy8g+zsbGfuidm2YAYn0rIAAADQOmhhgE+bMmWKEx7k5eURHgABxsw7ePLJJ53wIDU11VnfSngAAADQeggQ4LOKioq0fPlyTZ8+XYMHD7anAAKBmXdgBqcePHjQmX+yYMECewMAAIDWQgsDPGqNFgazstHsdu/Tp4+ee+45tWvXzt4A8HelpaWaNm2a+vXr5wxQjYiIsDcAAABoTVQgwCc99dRTOn78uPMhgvAACAxm3oEJDMy/9wMHDnSCBMIDAAAA30GAAJ9jPjTUtS6wshEIDGbeQVZWlpYsWaLJkydr9+7dzDsAAADwMbQwwKOWbmG45ZZb9J3vfMeZts7KRsD/HTlyRDNmzNCpU6c0Z84cJSUl2RsAAAD4EioQ4FPMnnfzYWL27NmEB0AAMBVHI0eOdCoQNm7cSHgAAADgwwgQ4DPKy8u1cOFCTZo0yRmeBsB/XTjvwGxbYN4BAACAb6OFAR61VAvDoEGD9MknnygvL0/BwcH2FIC/MdUGTz/9tLZv3+7MO3jppZfsDQAAAHwZFQjwCfPmzdOePXs0ZcoUwgPAj1VUVCg5OdmpOCgsLCQ8AAAAcBECBLS6qqoq5eTkKDY2VlFRUfYUgL8xg1ETEhJ07bXXqqSkROPGjbM3AAAAcANaGOCRt1sYRo0apS1btmjnzp0KDQ21pwD8RU1NjRYtWqTi4mLFx8c7gSErGgEAANyHCgS0qqKiIic8mD9/PuEB4IfMVhUzGNWEB88884wKCgoIDwAAAFyKCgR45K0KhJMnT6pXr17q06ePFi9ezNpGwM+YFY3/8A//oBtuuEGbNm1iywIAAIDLUYGAVjN16lQdP35caWlphAeAH6m/ovGee+7Re++9R3gAAADgBwgQ0CrMdyZNSfP06dMVHh5uTwG4nVnRmJWVpSVLljgrGt944w2FhITYWwAAALgZLQzwqLlbGEzrwoABA9SuXTtnKjvVB4B/MCsa586d6/w7npGRoaSkJHsDAAAAf0AFAlrcs88+q8OHD+vpp58mPAD8hFnLWH9FI+EBAACA/6ECAR41ZwVCeXm5IiMjnansqamp9hSAW5l5B6ZlwbQkRUdHa82aNbQsAAAA+CkCBHjUnAHCnXfeqS+++EJ5eXkKDg62pwDcyKxonDFjhiorK50VjbNmzbI3AAAA8Ee0MKDFzJs3T/v27XMGJxIeAO5WVlamkSNHOkMTt27dSngAAAAQAKhAgEfNUYFQVVWlIUOG6N5773XKnQG4k2lZWLlypbNloXfv3tq1axctCwAAAAGCAAEeNUeAYIKD3bt3a+fOnQoNDbWnANzEVBvk5OQ48w7MisaXXnrJ3gAAACAQ0MIArysqKtKePXuUnZ1NeAC4lFnRmJycrDfeeEPLli0jPAAAAAhABAjwKrMP/qc//amGDx/utDAAcB9WNAIAAMCghQEeXU0Lg/nQUVhYqC1btuiWW26xpwDcgBWNAAAAqI8KBHhNaWmpEx5kZGQQHgAuY1Y0JiYmOuHB3LlztXnzZsIDAACAAEcFAjy6kgoE07owYMAAtWvXTvn5+QoKCrI3AHydWdE4ceJEdezY0fn3Nyoqyt4AAAAgkFGBAK946qmndPjwYWVmZhIeAC5hWhZyc3Od8MCsaHzvvfcIDwAAAHAeAQKaXXl5uZYvX67p06erZ8+e9hSALzMrGs28gyVLljgrGvfv30/LAgAAABqghQEeNbWF4a677tLnn3+uvLw8BQcH21MAvsqsaDRzDmpqajR79mxNnTrV3gAAAABfowIBzSotLU3vvPOOU31AeAD4vvorGjdu3Eh4AAAAgEuiAgEeNbYCoaqqSkOGDNHf/d3fKTU11Z4C8EWmZSEnJ4cVjQAAAGg0AgR41NgAYdCgQdqzZ4927NihsLAwewrA19RvWXjiiSc0a9YsewMAAABcGi0MaBZmcrsJD7KzswkPAB9ltiyYtYx1LQsbNmwgPAAAAECjUYEAjzxVIJw8eVK9evVSnz599MILL9hTAL6kfstCfHy8li5dSssCAAAAmoQKBFy1hx9+WMePH3cGKALwPaZlITk5WW+88YaWLVumgoICwgMAAAA0GQECrkppaam2bNmi+fPnKzw83J4C8AX1WxauueYaZ+NCUlKSvQUAAACahhYGeHSpFgbTunDPPfcoKCjI+ZBifgbgG+q3LMTGxjqVBx06dLC3AAAAQNNRgYAr9tRTT+n3v/+9MjMzCQ8AH1JWVtagZWHdunWEBwAAALhqBAi4IqZ1Yfny5Zo+fbp69uxpTwG0JtOyYDaiTJw4kZYFAAAANDtaGODRxVoY7rzzTn3xxRdasWKF2rdvb08BtBbTsvD0009r+/btmjx5sl566SV7AwAAADQPKhDQZGbbwr59+5zqA8IDoPWZloWhQ4fq4MGDKiwsJDwAAACAV1CBAI/qVyBUVVWpW7dumjRpklJTU50zAK3DtCysXLlSS5YsUd++fbVhwwZ17drV3gIAAADNiwABHtUPEAYNGqQ9e/bozTffVHBwsHMGoOXRsgAAAICWRgsDGm3evHlOeJCdnU14ALSiupaF/fv3q6CggPAAAAAALYIKBHhkKhD+8pe/6I477nAqELKysuwNgJZUv2Whd+/e+vWvf03LAgAAAFoMFQholIcfflh/+tOfnNkHAFrekSNHNGHCBCc8MC0LpvqA8AAAAAAtiQABjbJlyxY9++yzCg8PtycAWkppaalGjhyp48ePa+vWrbQsAAAAoFUQIKBR7rvvPkVHR9snAC3BtCwsXLhQ06ZN08CBA3XgwAFFRUXZWwAAAKBlMQMBHpkZCDt37lRoaKg9AeBtpmVhxowZqqysdFamLliwwN4AAAAArYMKBDQK4QHQckzLgqn4MasaTcsC4QEAAAB8AQECAPiI+i0L99xzj9577z1aFgAAAOAzCBAAwAccPHhQiYmJWrFihdOy8MYbbygkJMTeAgAAAK2PAAEAWpGpOigpKVFMTIw+++yz8y0LZvYIAAAA4EsYogiPzAeZQ4cO2ScAzcXMOHj66ae1fft2Z+bBmjVrqDoAAACAz6ICAQBagRmUOHToUKd1oaCgQJs3byY8AAAAgE+jAgEeUYEANJ+amhotX77cmXUwcOBArV69Wl27drW3AAAAgO+iAgEAWoipNpg0adL5QYm7d+8mPAAAAIBrECAAgJeZQYm5ubnnByW+9dZbzqBEAAAAwE0IEADAi44cOaInn3xSS5Ys0eTJk/Xv//7vioiIsLcAAACAexAgAICXmEGJI0eO1P79+1VYWKiXXnpJHTp0sLcAAACAuzBEER4xRBFoGrOeMScnR8XFxc6gxNdee40NCwAAAHA9KhAAoBmVlZUpOTlZe/bs0TPPPOMMSiQ8AAAAgD8gQACAZlA3KHHixIm65pprtHHjRs2aNcveAgAAAO5HgAAAV8msZ5wwYcL5QYnvvPMOgxIBAADgdwgQAOAKmaqDkpISZz3jp59+qq1btzqDEgEAAAB/xBBFeMQQReCb6g9KjI6OVn5+PhsWAAAA4NeoQACAJjLrGYcOHao33nhDy5Yt0+bNmwkPAAAA4PeoQIBHVCAAX6mpqdHy5cu1YsUKZz3j6tWr1bVrV3sLAAAA+DcqEACgEcygRLNhwYQHqampznpGwgMAAAAEEgIEALiMuvWMZlCief3WW29pwYIF9hYAAAAIHAQIAHAJR44c0ZNPPnl+PeObb77JekYAAAAELAIEALgIMyhx5MiR2r9/vwoLC531jCEhIfYWAAAACDwMUYRHDFFEIKm/ntEMSnz11VfZsAAAAACcQwUCAFhlZWVKTk7Wnj179MwzzziDEgkPAAAAgK8QIAAIeGY948KFC50tC9dcc402btyoWbNm2VsAAAAABgECgIBmqg7qr2d85513GJQIAAAAXAQBAoCAZGYdpKenn686YD0jAAAAcHkECAACjtmwMGzYML3xxhvOrAOqDgAAAADP2MIAj9jCAH9x4YaF1atXq2vXrvYWAAAAwOVQgQAgIJiqg6FDh56vOjAbFggPAAAAgMajAgEeUYEAN6PqAAAAAGgeVCAA8FtUHQAAAADNhwoEeEQFAtzmwqqDVatWqVu3bvYWAAAAwJWgAgGA3zhz5oxKSkq+UXVAeAAAAABcPSoQ4BEVCHCDI0eOaMGCBdq+fbuio6OdCgTaFQAAAIDmQwUCAFerqzoYOXKk9u/fr4KCAm3evJnwAAAAAGhmVCDAIyoQ4KsurDpYs2aNQkJC7C0AAACA5kQFAgDXubDqoLCw0Kk6IDwAAAAAvIcKBHhEBQJ8CVUHAAAAQOugAgGAK1B1AAAAALQuKhDgERUIaG0HDx5UdnY2VQcAAABAK6ICAYDPMlUHubm5iomJ0YcffkjVAQAAANCKCBAA+CRTdZCYmKglS5Zo8uTJeuONNzRu3Dh7CwAAAKClESAA8Cn1qw4+++wzbd26VS+99JI6dOhgfwUAAACA1kCAAMBn/P/t3X9U1XWex/GX2M4pUxcdWwN1bMVRZw9miVqtzQyhi3ma1ANS+QMsf6yzmXnGI6gbs6uTqQOd3FFLzaDEyimF1bQxSYlx1ElNreSkMlqYP64zNq6jzOS6dV0+Xz7gBa9+AbnIvTwf53D6vi8Xqj/4cu+L9/v9qd51sHPnTsXHx9vPAgAAALiRCBAA3HBnz55VZmZmZdfBe++953QdsOsAAAAAaDw4hQGuOIUBgWLGFbZu3arJkyc7dWpqqmbMmEFwAAAAADRCBAhwRYCAQPA9mvG+++7TypUrFRUVZT8LAAAAoLFhhAFAg/IdVzh69KhWrVqlHTt2EB4AAAAAjRwdCHBFBwLqA+MKAAAAQHAjQIArAgRcL8YVAAAAgODHCAOAgPEdVzh+/DjjCgAAAEAQowMBruhAQG0xrgAAAACEHgIEuCJAQG0wrgAAAACEJkYYANQLxhUAAACA0EYHAlzRgQA3+fn5leMKEyZM0Pz58xlXAAAAAEIMHQgA6qykpERPPvmkEx6YcYVdu3bp5ZdfJjwAAAAAQhABAoBaM+MKS5cu1aBBg1RUVKSXXnrJGVfo27evfQYAAACAUMMIA1wxwgBfZlxh2bJlTnDAuAIAAADQdNCBAKBGfMcVWrVqxbgCAAAA0MQQIAC4JsYVAAAAABiMMMAVIwxNF+MKAAAAACrQgQDgCr7jCm3atGFcAQAAAAABAoDLTp06pczMzCrjClu3bmVcAQAAAAAjDHDHCEPoM3sONmzYoGeffdapU1NTNWPGDDoOAAAAAFQiQIArAoTQVT04SEpK0rx58xQVFeXUAAAAAFCBAAGuCBBCz4ULF5zRhIoFiY899pgTInTt2tU+AwAAAACqYgcC0ISY4MCcrDB69GhnQWKrVq20adMmrVq1ivAAAAAAwDURIABNxN69eyuDg/DwcCc42LFjh+Lj4+0zAAAAAODqCBCAEGeCA3Mk44gRI3T+/Hn9+te/dsYXCA4AAAAA1AYBAhCiSkpKlJ6e7gQHx48f15IlS/TFF1/o0Ucftc8AAAAAgJpjiSJcsUQxuJjgYPXq1XrllVfUvn17paSkKCMjw34WAAAAAOqGAAGuCBCCgzmScfny5U5w0LFjR6fzYMaMGWrbtq19BgAAAADUHQECXBEgNG4mONiwYYNzDKMxYcIEzZ8/n+AAAAAAQL0iQIArAoTGyRzJuGbNmsrgICkpSXPnzuU4RgAAAISc7du3a9++ffryyy9VWFjoPBYbG6uhQ4eqf//+Tl1XxcXFzuvqtWvXqlevXnr88cev+3uGKgIEuCJAaFxMcGBOUVi2bJmKior04IMPavHixYqKirLPAAAAAEJDXl6e0127e/du+8iVFi5c6BxVXltff/21srKy/H6tef/TrVs3W6ECpzAAQcIEB/n5+Ro9erRzk2vVqpU2bdqkjRs3Eh4AAAAgpJhTxMxobmJi4jXDA+Ppp592ughqy4QH5mv9MX+ow5UIEIAgsHfvXk2dOtUJDsLDw53gYMeOHYqPj7fPAAAAAEKDCQ8SEhKc5eBG3759tWjRImdc4WrMCEJtmQ6DIUOG2KqqDz/80F7BFwEC0IiZ4ODJJ590TlQ4cuSIlixZ4owvEBwAAAAgVM2ePbuy68CEB2aM4amnnnJ2FJggwR/zudoyr6lXrVrl/Duqi46OtlfwRYAANEIHDhxQenq6ExyYBNYEB1988YV++tOf2mcAAAAAoceMIlR0HqSmpjrhgTmivIIJEvx1IpjA4cyZM7aquVtuuUUpKSm2uowRYf8IEIBGwuw42LZtm9NxMGzYMKfTwNw0Dx48SHAAAACAJsGMFZjXxMeOHVNGRkaV8KCCGW/w56uvvrJX12f8+PGcwnAVBAjADXb27Fm9/vrrGjVqlMaNG1c5qvDZZ585N00AAACgKTFv3v0FBxXuvfdee1XV6dOn7VXNmZMYNm/ebKvykQlz6gP8I0AAbhAzppCZmal77rlHzz77rHOTNMsRK0YV2rZta58JAAAAoEKnTp3sVVV//OMf7VXNmZMY1q1b51ybzgMzMvHd737XqXElAgSgAVUfU/jNb37jHE9z+PBh5zhGliMCAAAA12b2Flwv03mQlpbmnHJmmPBg4cKF1+x8AAEC0CBOnTrld0xh//79evnll1nSAgAAANSCecNfXU2PXjSLGs2yctMNbKxYsULLly+vl2Ai1BEgAAFkjmE0N6Yf//jHjCkAAAAA9aRNmzb2qnbMiEL37t2dsQWz78C8Xvd3CgP8I0AA6pkZU8jPz3fGFEyyuX79euc0BcYUAAAAgPoRHh5ury4znQVXYz5nRocTExOd+rnnntNvf/tb3X333U6Nmml2qYy9Bvxq1qyZDh06ZCtcjRlTMBtcTaeB0atXL6fLgCMYAQAAgPplOgkqwgBf1d/eml0Hq1ev1pgxY5zadB2YEeK77rrLqVE7dCAA16n6mMJjjz3mjCl8/PHHhAcAAADADbJ9+3bnNXpFeDBnzhyn64DwoO7oQIArOhCuZMYUtm7dqrVr12rLli1q3769Mzs1ceJEFiICAAAAAWb+WOdv/MC8b2nXrp3mz59fuSRx6NChmjVrFsFBPSBAgCsChMtKSkqcYxgZUwAAhCrze5+XhwAaO7PTwCxDrM7sNnjmmWdsVX7CQlJSEics1BMCBLgiQCgfUzBzVmZ+yjBjCk888QQLEQEAIYcAAUAwuFqAUMEsMX/66aedU9BQfwgQ4KqpBggHDhxw/r9ff/117d+/37lBDRkyRDNmzOD4RQBAyCJAABAszP2qOrMkccGCBerfv799BPWJAAGumkqAYPYafPbZZ86H2W1gQgPjJz/5iR566CHGFAAATQIBAoBg4S9AyM3NVUJCgq1Q3ziFAU3a2bNnnZ0GS5cudfYZjBgxQllZWerQoYOWLFmiP//5z1q/fj3hAQAAANBImAWKw4YNs1VVBw8etFcIBDoQ4CrUOhBOnTqlTz/91DlFoWKngRlPuPPOO52zZB999FHnMQAAmiI6EAA0VmfOnKlyuoI/ZvdBRkaGrVDfCBDgKhQChIp9Bvn5+c6xi0bv3r0VExOjCRMmOLNSwchf2xYANBa8xAhOBAgAGpuvv/5aGzdudP7YV8GcrvC73/1Or7zyin2kHAFCYBEgwFUwBgimy+DkyZPatWuXNm/eXLnP4Ic//KEGDx6sRx55RFFRUc5jwSosLIwXeACCgtfrJfAMIgQIABoTM64wa9YsrVu3zql9T1cwp6T5hgoVuIcFDgECXAVDgFBSUuIc5fLJJ59o586dlYFBZGSks4E1Li7OCQ1C5fQEXogDCDa83AgeBAgAGoPq4wr+TlcgQGh4BAhw1ZgCBLP00HyYsOBPf/qTsySlYo+BYXYZfO9739MDDzyggQMHBu1owrUQHgAIVrzkCA4ECABuNDN2nJ6ert27dzu1GVdISkrSLbfc4tQVzPMGDRpkq8vMInSOXQ8MAgS4asgAoSIgMHNOx44dcx4zXQVG9fmm9u3bq1u3burRo4cGDBigPn36BP1YQk0QIAAIVrzkCA4ECABulOPHj2v27NmVr/t9xxX8MX9UNH9ArM68dzHvE1D/CBDgyryQWLRoka1qznQIeDweW11d9WCgun79+ql58+aKjo5WeHi401lggoKmEBb4Q4AAIFjxkiM4ECAAuBF8xxFMF/GcOXMUHx/v1FdztQBh3759uuuuu2yF+kSAAFe8YQUAAACCQ7C9vfPXdTBjxowajSCYruUWLVrY6rLc3FwlJCTYCvWJAAEIMgQ6AIIVLzmCAx0IABpK9R0GmzZtcu06qM7fa2MChMAJs/8EAAAAACDgTOfA4sWLK8ODoUOH6ssvv6x1eGCYr63OHOeOwCBAAAAAAcdftAEAhgkPpkyZosmTJzv1+PHjtWrVKnXq1Mmpa8vfskQTRvB7JzAIEIAgw80QQLDxer32CgDQlJnwwJyqsHz5cqc23QMLFy684njG61VYWGivUN8IEIAgZEIEggQAwcDcq9jdAgAwTHjgewKbWZh4veHBvffee8Xvmd27d+vMmTO2Qn1iiSIAAAAqsUQRQCBs375d999/v63KHTp0yO8IQm2Y4x+HDx9+xX3rvffeq7Kg0TAdEBs3blROTo5Tr1271vknao4OBAAAAABAQK1bt85eXfbhhx/aq7qLjo62V1X9/Oc/dwKDCua4yJEjRyoxMdH5b7ne4KKpogMBAAAAlehAABAI/sbZ+vbtqwULFqh37951HmUwIcGtt97q975lFjROmjRJLVq00OjRo53RBsP8e03nQseOHZ0aNUeAAAAAgEoECAACoV+/fpVv4KvLzc1VQkKCrWpv7ty5euaZZ2x1bYQH14cRBgAAAABAQKWkpNirqkyXwODBg21VN1f73tWZpY1mNwLhQd0RIAAAAAAAAsrsHzDHNlYwnQCm86A+jnE0gcC+ffuc71mdeWzRokXOwsaMjAy1bdvWfgZ1wQgDAAAAKjHCACCQiouLnX8Gaolhxfc32rVrR2BQzwgQAAAAAACAK0YYAAAAAACAKwIEAAAAAADgigABAAAAAAC4IkAAAAAAAACuCBAAAAAAAIArAgQAAAAAAOCKAAEAAAAAALgiQAAAAAAAAK4IEAAAAAAAgCsCBAAAAAAA4IoAAQAAAAAAuCJAAAAAAAAArppdKmOvAQBNjdejPet/r6Pfll1+vk5TUnN00n7Kn4iUTC0c2sWmz20VHf8jdWtJFg0AANAUECAAQFPjhAYf6IO8eUrNKbIPXqfYF7T7nSnq04owAQAAIFTxSg8AmorSYhVkT9cDzSPVZ9gon/AgQrFpLys39119dPJ/ZXLlqh/f6vyhD8o+n6vVmSllz/bj2LfSzfxKAQAACGV0IABAyDun4vez9NyYqcrx2Icc8UrLmq5xj8TWcgyh7PsVrFHWs+nKKLTfMCVXJ15LUGSz8hIAAAChhwABAEJZ6UHlPTtFwzPydflmbzoOFmtp+jB1v56RA+9BZQ+O07h8j6IyP9KBaTH6O/spAAAAhB76TQEgRHk927VgUpISq4QH8UrLLdD6XyZcX3hghN2q8NtblF1EqX+Xf9BN5Y8CaIzOFWh6ZDM1a+bnY1C2Dn1rn+eXt+zL/12R1b4uclyeTnjtUwAATQIBAgCEIK/nfaWPTNLUKksS4zVzS7bmJfRQS/tI/eiknp3biOkFoBEL66hBi8v3mETahyrl5+mdff9jC3/C1PIHiVqSlaZYnx90z/Gz+qu9BgA0DQQIABBqSov02oypmlexn8ARrbG5L2tOXIcA3PhvU9tW9B8AjVrLbopLSNDwaSt04i9blFZlG+q7WrB6r87Zyp+wiBgNTXlED0VVJAhl95SJA9SVV5IA0KRw2weAkHJWe5bO1LgqnQcRis14Rb9K6ByYm35EV91x+3dsAaDRa/3PGjcnyRblPCu36KNz15pHuKgT77yqBUfKB6Iixs7WL4YF6J4CAGi0WKIIACHDq9I9v9KQvlP1ge+dPfYF7X5nivpc784DACHDeyJPE/omKruyUSlC8VkF2ji2h59QoOzecnClJsU9Xn6SS9k95aP1UxRTq9NbAAChgDs/AISK0o+0dFpm1fDAtBlPTtDdhAcAfIR1+JFGJcfYyvAo/60dOuynCcHr2aK5/zbThgf/qS1vTiI8AIAmirs/AISEizqRn6MXquw9KBP/M00f1lnNbQkA5dopdtyTireVI/8lZRV+ZQvDdB6s0BMx8c5OlYiU1/TZO/+huAhGlgCgqSJAAIBQ4P1cm5blqWp8wJIzAFcX1nWAJo6NtpWxRys3fWqXKVYdWzDhQcGLyfoB3UwA0KTxWwAAgp5X5wpzlJ5frfsg4mGNGtipkd7oz6m4YJ3WPD+m2tnyPTXm+TeVt26PPJwvDwRWWCcNHPWwfA9k8GQs1ZrivznhwVMDnlCOJ0KxabkqfDFZPRhbAIAmjyWKABD0vlLB9Ac1IGOPrctFpG3RwV/GqbWtG4eL8ux5S/81bboyqo9bVBeRohfWzteUfhGk3UCgeA8qe3Ccxud7ZM9XUGzKA1LOmyo01zNX6M05/6IIfggBAGX4dQAAwe6bo9qbWzU8kGKUPOjORhYenFNx3iyN6pviHh4YnhxNvSdeT2QXqdQ+BKCehXXRoIkJimhma3lUWBkevEZ4AACogl8JABDkvJ9/oveP2KJSF3Xv2NJeNwYX5SlYoImJ86qdEuGmSDnjRmgSIQIQIN9Rh4EJSr6cIDgi0l7X2ufiCQ8AAFXwawEAgppXpccPa7+tKkX1U68uN9vixvOe2KD00bNUaGtHRIoyV3+gQ+e/lZmmcz7OH9KW1ZlK8R3KdkKEGVq656ytAdSrllHqN9h3maLk2fWJ/lDKIhIAQFUECAAQ1P6mP+z9fbXTF8r076LIm+z1jeY9qrX/8Z/K9vmPjEhZrJ17lmva8Fh1813M1rKb4oZP04ri/coa09M+aLyr1H/P06FvbQmgfpQWKfuJn2h4VrUYsvANrd71Z1sAAFCOAAEAgtoF/eX0eXt9WVTPzrrNXt9YXpXuy9Oi7CJbl4mYpMVzJ6jftc6SbxmtsYtfUWasTytC/kvKLjxtCwDXy+vZrgWTRmhcTpEuxU5SWkrVIx0zMt5RMU0IAAAfBAgAENS+1tlT1Vv7IxTV9tZGcoM/o11vv+EzuhCtsYumaViHa4QHFVr20U+fT1WsLXlDA9Qfr+d9pY9M0tScIil2lja/8YLmPfMzxdvPO/L/W+/sY3QIAHAZAQIABDPvX3X21N9sUaGFbg9vJAHCuU+1aaXPCRERD2vkwE41/G8LU8u7Bys53rcLYZO2Hb5gCwC151VpcZ5mjhyjeYWe8nGiN2dqQOR3FNZ1gCaO9e1CeFcvvL1X52wFAAABAgAEM+9fdeZIDY5EvCG8OvfRZq303X2QPFB9Wje3VQ2E3aH7H73fFsZe/baIMQagbrwqPbhSTz0w3DlKNSLlNRW8+G+Xx4nCOmngqIflu8PUk7FUa4oJ7QAA5QgQAAABclGnSo74LHiMUfKgO9W66mlxLm5Wl179FGUr6Yje3/kH/iIK1NpFeXYt0aS4x7Xi5CUbHiSrh+8S07KXha37DdNU390jWq30rB38zAEAHAQIABDMwm5V26gqZx42IqdVtHWvvTa6qHvHlqpVflDmpsgu6m+vDc/HJTrFHgSgFi7KUzBPI+95SjkecwrKq37CA6vlnRqS7Nv1U/YztzJPm09ctBUAoCkjQACAYBZ2q8Jvb2GLRuabP+nz7UdsUSaqn3p1udkWtXBbZ/W83IIg7T+s45xPD9SQDQ8GzHKWmZrOgy2LU/yHB46b1XXQYxpbZY4hT8s2fS5+6gAABAgAENTaqHPPTva6wt906uxfb/yL/dNHVeSTHyiqrVrV5bfOTf+gLv19EgTPYZWc4q+hgLuq4UH5Eaoj9AOXH8SwDj/SqOQYn24hj/LTc1R4jggBAJo6AgQACGot9P3e91VZemZe7O8/dFKltqpv3uJsPRgWqUHZB2sXUtweXrcA4YqQ5LTOnP/GXgO4Gu+JDfp58uzLx6j+S5zuq8kRqmqrfo+MUqzvvJFnvd7YfEzf2hIA0DQRIABAUAtT6z4DlVxtDYInd6/+EJD32Bd0eNt7ylek7rqj3TV/iXxz8nNt1yVblclJVGSzZmpW649W6pNa+RYIQI2U/axu+rWyPT4/g++v0xvvF9cgXCw/QnV0fKStjSJlJ96hmyLH6Pk1ecorqMn3AQCEGgIEAAh2re/UoOQYW1hHdumTzwNw9Jq3RNve2iZd6qN7fhBuH2xox7T/6P/YawA15slR6utFOueTKVxVWDcNTxtTrbupjPkeSYlK23teddhoAgAIcgQIABD0bLuxrcoF5ug17+Edeivfo0tRUep82032UQCNz83qNvZteb2XdOmSz8eKBEXW6CiUMLWOm6uTvl/r83F4Woy4AwBA00OAAABBz7QbJ2jy2Ghbl/NkLNWa4vrsQqgYX5AiEnvr+7x7AAAAaFIIEAAgFIR11rBfzK569JrpQnjuLR2sryMPSz/VOyu3lV1EqGe3SLUsf7TGojI/0v/5+Uum+8fXOpSVZL+L0Uk9O7ex1wAAAGgoBAgAECLCOgzTrwpe0xif/mRPzuOKm7RSB85fT4hwTsUF2Zr+8DClFnrKavcFisZNkV3U3+cguCP7j+q0va6db3T+TN2+EgAAAPWHAAEAQkaYWvZI1uItryrFpxPBhAj/NGSmVuzx1O7YRa9He9Yt1/QHeqj7gHHKcMIDo4u6daxB/8Gt4brdtyPi1FnVLce4oL+cPm+vjdvUthXzEwAAAA2NAAEAQooJEcbo1T079VpavH2sTGGGHu8TqY5jnteavHUqKPa3XvGiPHt+o7y8NcqePkjNmkeqz7B/9QkOjAjFzpygwV1vsfU1tPh7tWthr40jZ+oWIHi/UsnHJ21RJqKr7ri9JmfZAwAAoD41u2QGTAEAIcir0uJCvZ31S43PyFfdb/bxSsuaoHu++4+67+EYRdQ4ej6mvMfjlLjisK0nKvfkYiVE1LJ74FyBpvcYoIyKHCM+S4c2jlU3InAAAIAGRYAAAE2BGUdY/3sd/faCPl83T6k5RfYT1cSmKWvyPQo318071zIwqO6CirPHqPu4t20do7Qt72l+XDufzQjuvMXZGtx9nHP6gxGRtkUHfxmn1rYGAABAwyBAAAAEiFfnCtLVY8A8VTQPmJMYDkyL0d/Z2p0JIVLUfdxqW0cpJfcDrUjoZGsAAAA0FBpAAQABEqbWfQYq2WeR4pF3t+qT2ixC8JZo21vm6MgKvfXj6NvsNQAAABoSAQIAIHBa36lByTG2KFOYrSX5X9bwNAivSvdt1Mr8y0scI8Y+qkFdb7YVAAAAGhIBAgAggNqq3yOjFGsrqUjZk5/X2hMXbX0NpR9p6bRMFdrS7FBIHvkjdeA3FwAAwA3ByzAAQACFqeXdCZo8NtrWZTwvKnH0PBV4rhEilBYp+6nxSvU9QjL+SY2NZXwBAADgRiFAAAAEVlhnDfvFbI312YWgwlkaEPmwpmdv0B7fIKG0WAVrnteYbj01bsV++6DxkDLnJqh7c1sCAACgwXEKAwCgAVyUp2CeRg6Y5TOSUFPRSslapRfHRqulfQQAAAANjw4EAEAD+I4i4n6mZbkz9UAz+1CNEB4AAAA0FgQIAIAG0lrdEmbpjd05Sov1nWe4iogUvbAzX68SHgAAADQKjDAAAG6Acyou+ECf7s3T06k5urwqMVopmTM19Pvddd/DMYog5gYAAGg0CBAAAAAAAIAr/rYDAAAAAABcESAAAAAAAABXBAgAAAAAAMAVAQIAAAAAAHBFgAAAAAAAAFwRIAAAAAAAAFcECAAAAAAAwBUBAgAAAAAAcEWAAAAAAAAAXBEgAAAAAAAAVwQIAAAAAADAFQECAAAAAABwRYAAAAAAAABcESAAAAAAAABXBAgAAAAAAMAVAQIAAAAAAHBFgAAAAAAAAFwRIAAAAAAAAFcECAAAAAAAwBUBAgAAAAAAcEWAAAAAAAAAXBEgAAAAAAAAVwQIAAAAAADAFQECAAAAAABwRYAAAAAAAABcESAAAAAAAABXBAgAAAAAAMAVAQIAAAAAAHBFgAAAAAAAAFwRIAAAAAAAAFcECAAAAAAAwBUBAgAAAAAAcEWAAAAAAAAAXBEgAAAAAAAAVwQIAAAAAADAFQECAAAAAABwRYAAAAAAAABcESAAAAAAAAAX0v8DQfUZ2wPT3oMAAAAASUVORK5CYII=
<<list-links "[tag[Darstellung des Differentials durch Richtungsableitungen]sort[scriptorder]]">>
! Lemma
Es sei $$(\Omega,\mathcal{A},P)$$ ein W-Raum und $$A_k\in\mathcal{A}$$, für alle $$k\ge 1$$. Setze
<$latex text="A\equiv {\limsup}_{k\to\infty} A_k:=\{\omega\in\Omega\mid \omega\in A_k\text{ für unendlich viele }k\}." displayMode="true"></$latex>
# Ist $$\sum_{k\ge 1} P(A_k)<\infty$$, so ist $$\textcolor{blue}{P(A)=0}$$.
# Ist $$\sum_{k\ge 1} P(A_k)=\infty$$ und sind die Mitglieder der Ereignisfamilie $$(A_k)_{k\ge 1}$$ paarweise stochastisch unabhängig, so gilt \textcolor{blue}{$$P(A)=1$$}.
!! Beweis
''Beweis von 1.''
Für alle $$m\in\N$$ gilt $$A\subseteq\bigcup_{k\ge m}A_k$$\ } und daher $$P(A)\le\sum_{k\ge m}P(A_k)$$.\ Aus $$\sum_{k\ge 1} P(A_k)<\infty$$ folgt unmittelbar
<$latex text="0\le P(A)\le \lim_{m\to\infty}\sum_{k\ge m}P(A_k)=0." displayMode="true"></$latex>
Damit ist 1. bewiesen.
Da wir Aussage 2. später nicht benötigen, verzichten wir auf den Beweis dieser Aussage und verweisen stattdessen auf die Literatur.
Sei nun $$D(f)\subset\mathbb{C}$$ offen und $$f:\, D(f)\rightarrow\mathbb{C}$$ stetig
differenzierbar. Wir betrachten die Nullstellenaufgabe $$f(x)=0$$.
Um diese zu lösen formulieren wir ein Fixpunktproblem:
<$latex text="
x=x+g(x)\cdot f(x)=:\Phi(x)
" displayMode="true"></$latex>
Die Funktion $$g:\, D(f)\rightarrow\mathbb{C}\setminus\{0\}$$ werden wir gleich
genauer bestimmen. Zunächst stellen wir fest, dass unabhängig von
der Wahl gilt:
<$latex text="
x=\Phi(x)\;\Leftrightarrow\; f(x)=0
" displayMode="true"></$latex>
Wir haben also in der Tat die Nullstellenaufgabe in ein Fixpunktproblem
überführt. Nun wollen wir aber noch für lokal quadratische Konvergenz
sorgen, d.h. wir wollen $$g$$ so wählen, dass für eine Nullstelle $$\hat{x}\in D(f)$$
gilt $$\Phi'(\hat{x})=0$$. Daraus ergibt sich:
<$latex text="
\begin{aligned}
& \Phi'(\hat{x})=1+g'(\hat{x})\cdot\underset{=0}{\underbrace{f(\hat{x})}}+g(\hat{x})\cdot f'(\hat{x})=0\\
\Rightarrow\; & g(\hat{x})=\frac{-1}{f'(\hat{x})}
\end{aligned}
" displayMode="true"></$latex>
Wählen wir speziell $$g:=\dfrac{-1}{f'}$$, so erhalten wir das //Newtonverfahren//:
<$latex text="
x_{k+1}=\Phi(x_{k})=x_{k}-\frac{f(x_{k})}{f'(x_{k})}
" displayMode="true"></$latex>
<$details summary="Bemerkung" tiddler="Bemerkung">
{{Geometrische Anschauung}}
</$details>
Das Newton-Verfahren alterniert also zwischen zwei Schritten:
#Approxiere $$f$$ durch seine Taylorapproximation erster Ordnung.
#Berechne die Nullstelle der Taylorapproximation.
<$details summary="Bemerkung" tiddler="Bemerkung">
{{Beispiel: Das eindimensionale Newtonverfahren}}
</$details>
<<list-links "[tag[Das Gram-Schmidt-Verfahren]sort[scriptorder]]">>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/BbMytuPERdw?rel=0&start=1713" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
<<list-links "[tag[Das klassische Gram-Schmidt-Verfahren]sort[scriptorder]]">>
$$\text{End}_K(V)$$ ist isomorph zu $$M(n,K)$$. Insbesondere ist $$\dim_K(\text{End}_K(V))=n^2$$. Also müssen $$1,T,\dots, T^{n^2}$$ [[linear abhängig|Lineare Unabhängigkeit]] sein.
Dann existiert also ein $$p\in K[X],p\neq 0,\deg(p)\leq n^2$$ mit $$p(T)=\Phi_T(p)=0$$.
!! Satz und Definition
Es gibt genau ein solches Polynom $$\mu_T\in K[X]\setminus\{0\}$$ minimalen Gerades mit $$\mu_T(T)=0$$. Dieses Polynom heißt ''Minimalpolynom'' von $$T$$.
!! Beweis
Sei $$d\coloneqq \min\{k\in \N:\exists p\in K[X]:\deg(p)=k,p(T)=0\}$$. $$d$$ ist wohldefiniert, da wir schon wissen, das ein solches $$k$$ existieren muss.
Seien nun $$p,q$$ normierte Polynome von Grad $$d$$ mit $$p(T)=0=q(T)$$. Dann folgt
<$latex text="(p-q)(T)=0, \text{ }\deg(p-q)\leq d-1" displayMode="true"></$latex>
was ein Widerspruch zur Minimalität von $$d$$ ist, falls $$p-q\neq 0$$. Daher gilt also $$p=q$$.
<<list-links "[tag[Das modifizierte Gram-Schmidt-Verfahren]sort[scriptorder]]">>
Sei nun $$n\in\N$$, $$D(f)\subset\mathbb{C}^{n}$$ offen und $$f:\, D(f)\rightarrow\mathbb{C}^{n}$$
stetig differenzierbar. Wir betrachten die Nullstellenaufgabe $$f(x)=0\in\mathbb{C}^{n}$$.
Der Ansatz ist der gleiche wie im eindimensionalen Fall:
*Approximiere $$f$$ durch die Taylorapproximation erster Ordnung.
*Löse die Nullstellenaufgabe für die Taylorapproximation durch Lösen eines linearen Gleichungssystems: <$latex text="
f(x^{(k)})+f'(x^{(k)})\cdot(x^{(k+1)}-x^{(k)})=0
" displayMode="true"></$latex>
Anstatt $$f'(x^{(k)})\neq0$$ zu fordern muss nun gefordert werden,
dass $$f'(x^{(k)})$$ regulär ist. Ansonsten übertragen sich alle Berechnungen
vom eindimensionalen Fall. Wir definieren
<$latex text="
x^{(k+1)}=\Phi(x^{(k)})=x^{(k)}-(f'(x^{(k)}))^{-1}\cdot f(x^{(k)})
" displayMode="true"></$latex>
und erhalten so für eine Nullstelle $$\hat{x}\in D(f)$$:
<$latex text="
\begin{aligned}
\Phi(\hat{x}) & =\hat{x}-0=\hat{x}\\
\Phi'(\hat{x}) & =I-0-(f'(\hat{x}))^{-1}\cdot f'(\hat{x})=0
\end{aligned}
" displayMode="true"></$latex>
Bezeichnet $$\Sigma(\Omega):=\{{\mathcal{A}}\mid \mathcal{A}$$ ist $$\sigma$$-Algebra über $$\Omega\}$$ das System aller $$\sigma$$-Algebren über $$\Omega$$, so gilt:
# $$\Sigma(\Omega)$$ ist bezüglich Mengeninklusion halbgeordnet.
# $$\{\emptyset,\Omega\}$$ ist die kleinste $$\sigma$$-Algebra über $$\Omega$$.
# $$2^\Omega$$ ist die größte $$\sigma$$-Algebra über $$\Omega$$.
# Der Durchschnitt beliebig vieler $$\sigma$$-Algebren über $$\Omega$$ ist wieder eine $$\sigma$$-Algebra über $$\Omega$$.
# Zu jedem System $${\mathcal{G}}$$ von Teilmengen von $$\Omega$$ gibt es eine kleinste, $${\mathcal{G}}$$ enthaltende $$\sigma$$-Algebra über $$\Omega$$. Diese von $${\mathcal{G}}$$ erzeugte $$\sigma$$-Algebra $$\sigma({\mathcal{G}})$$ ist der Durchschnitt aller $${\mathcal{G}}$$ enthaltenden $$\sigma$$-Algebren über
<$latex text="\textcolor{blue}{\sigma({\mathcal{G}})=\bigcap_{{\mathcal{G}}\subseteq
{\mathcal{A}}\in\Sigma(\Omega)}{\mathcal{A}}}." displayMode="true"></$latex>
<$details summary="Beweis zu 1." tiddler="Beweis zu 1.">
<$latex text="\Sigma(\Omega)" displayMode="false"></$latex> ist bezüglich Mengeninklusion halbgeordnet, da Mengeninklusion eine reflexive, transitive und antisymmetrische Relation ist.
</$details>
<$details summary="Beweis zu 2." tiddler="Beweis zu 2.">
Jede <$latex text="\sigma" displayMode="false"></$latex> -Algebra über <$latex text="\Omega" displayMode="false"></$latex> enthält <$latex text="\Omega" displayMode="false"></$latex> und die leere Menge. Andererseits ist <$latex text="\{\emptyset,\Omega\}" displayMode="false"></$latex> eine <$latex text="\sigma" displayMode="false"></$latex> -Algebra über <$latex text="\Omega" displayMode="false"></$latex>.
</$details>
3. ist klar.
<$details summary="Beweis zu 4." tiddler="Beweis zu 4.">
Ist <$latex text="(\mathcal{A}_i)_{i\in I}" displayMode="false"></$latex> eine Familie von <$latex text="\sigma" displayMode="false"></$latex>-Algebren über <$latex text="\Omega" displayMode="false"></$latex>, so ist auch <$latex text="\mathcal{A}:=\cap_{i\in I}\mathcal{A}_i" displayMode="false"></$latex> wieder eine <$latex text="\sigma" displayMode="false"></$latex>-Algebra über <$latex text="\Omega" displayMode="false"></$latex>:
<ul>
<li>Da <$latex text="\Omega" displayMode="false"></$latex> in allen <$latex text="\mathcal{A}_i" displayMode="false"></$latex> liegt, gilt auch <$latex text="\Omega\in\mathcal{A}" displayMode="false"></$latex>.</li>
<li>Liegt <$latex text="A" displayMode="false"></$latex> in <$latex text="\mathcal{A}=\cap_{i\in I}\mathcal{A}_i" displayMode="false"></$latex>, so liegt <$latex text="A" displayMode="false"></$latex> auch in allen <$latex text="\mathcal{A}_i" displayMode="false"></$latex>. Da jedes <$latex text="\mathcal{A}_i" displayMode="false"></$latex> unter Komplementbildung abgeschlossen ist, liegt <$latex text="A^c" displayMode="false"></$latex> in allen <$latex text="\mathcal{A}_i" displayMode="false"></$latex>, also auch in
<$latex text="\mathcal{A}" displayMode="false"></$latex>.</li>
<li>Ist schließlich <$latex text="A_1, A_2,\ldots" displayMode="false"></$latex> eine abzählbar unendliche Folge von Elementen aus <$latex text="\mathcal{A}" displayMode="false"></$latex>,
so ist <$latex text="A_1, A_2,\ldots" displayMode="false"></$latex> auch eine Folge von Elementen in <$latex text="\mathcal{A}_i" displayMode="false"></$latex>, für alle <$latex text="i\in I" displayMode="false"></$latex>. Daher liegt <$latex text="\cup_{j\ge 1}A_j" displayMode="false"></$latex>. in <$latex text="\mathcal{A}_i" displayMode="false"></$latex>., für alle <$latex text="i\in I" displayMode="false"></$latex>$. Folglich liegt <$latex text="\cup_{j\ge 1}A_j" displayMode="false"></$latex> auch in <$latex text="\mathcal{A}" displayMode="false"></$latex>.</li>
</ul>
</$details>
5. ist klar wegen 4.
Sei $$T\in \text{End}_K(V)$$. Dann gilt
<$latex text="\ker(\Phi_T)=K[X]\cdot\mu_T\coloneqq \{p\in K[X]|\exists q\in K[X]:p=q\cdot\mu_T\}." displayMode="true"></$latex>
Das heißt $$p\in K[X]$$ mit $$p(T)=0$$ impliziert, dass $$\mu_T|p$$.
Die Menge $$K[X]\cdot\mu_T$$ ist aus algebraischer Sicht ein ''Ideal''.
!! Beweis
$$\supseteq:$$ Sei $$p=q\mu_T$$. Dann gilt
<$latex text="\Phi_T(p)=\Phi_T(q\mu_T)=q(T)\cdot\underbrace{\mu_T(T)}_{=0}=0." displayMode="true"></$latex>
$$\subseteq:$$ Sei $$p\in \ker(\mu_T)$$, d.h. $$p(T)=0$$. Division mit Rest:
<$latex text="p=q\mu_T+r," displayMode="true"></$latex>
wobei $$q,r\in K[X]$$ mit $$\deg(r)<\deg(\mu_T)$$ gilt. Dann folgt aber
<$latex text="0=p(T)=q(T)\underbrace{\mu_T(T)}_{=0}+r(T)=r(T)." displayMode="true"></$latex>
Da aber $$\mu_T$$ von minimalem Grad ist, folgt schon $$r=0$$.
Ausgehend von einem Startknoten $$\bullet$$ wird für $$k\in I$$ mit Wahrscheinlichkeit $$P(B_k)$$ zum Ereignis $$B_k$$ verzweigt, von $$B_k$$ geht es mit Wahrscheinlichkeit $$P(A|B_k)$$ zum Ereignis $$A$$:
[img[Wegecd1.png]]
Insgesamt ist die Wahrscheinlichkeit, vom Startknoten über $$B_k$$ nach $$A$$ zu gelangen das Produkt der Wahrscheinlichkeiten entlang des Weges, <$latex text="\textcolor{blue}{P(B_k)\cdot P(A|B_k)=P(B_k)\cdot\frac{P(A\cap B_k)}{P(B_k)} =P(A\cap B_k)}." displayMode="true"></$latex>
$$\textcolor{red}{\text{Die Fallunterscheidungsformel spaltet }P(A)\text{ also auf in die Wahrscheinlichkeiten verschiedener Wege nach A}}.$$
Der Satz von Bayes besagt, dass für alle $$A\in{\mathcal{A}}$$ mit $$P(A)>0$$ und alle $$k\in I$$ gilt: <$latex text="\textcolor{blue}{P(B_k|A)=\frac{P(B_k)P(A|B_k)}{\sum_{i\in I}P(B_i)P(A|B_i)}}." displayMode="true"></$latex>
Im gerade beschriebenen Wegemodell ist $$P(B_k|A)$$ also die Wahrscheinlichkeit des Weges über $$B_k$$ im Verhältnis zur Gesamtwahrscheinlichkeit aller Wege: <$latex text="P(B_k|A)=\textcolor{red}{\frac{\text{Wahrscheinlichkeit des Wegs über }B_k}{\text{Gesamtwahrscheinlichkeit aller Wege}}}." displayMode="true"></$latex>
Das Wold Wide Web kann man als gerichteten Graphen $$G=(V,E)$$ modellieren:
* Knotenmenge $$V$$ ist die Menge der Webseiten, o.E. $$V=[1:N]$$.
* Kantenmenge $$E$$ ist die Menge der Links.
Für $$x\in V$$ bezeichne
<$latex text="G[x]:=\textcolor{blue}{\{y\in V|(x,y)\in E\}}\cup\textcolor{red}{\{x\}}" displayMode="true"></$latex>
die Menge der $$\textcolor{blue}{\text{von }x\text{ aus verlinkten Seiten}}$$ $$\textcolor{red}{\text {inklusive der Ausgangsseite }x}$$.
Bezeichnet man die drei Türen mit
* $$\textcolor{blue}{a}$$ (Auto)
* $$\textcolor{red}{n}$$ (1. Niete)
* $$\textcolor{red}{z}$$ (2. Niete = Ziege),
so lässt sich das Ergebnis eines Gesamtexperiments schreiben als Tripel <$latex text="(\omega_1,\omega_2,\omega_3)\in\{a,n,z\}^3." displayMode="true"></$latex>
* Wählt die Kandidatin gemäß Gleichverteilung eine der drei Türen aus, so ist $$X_1:(\omega_1,\omega_2,\omega_3)\mapsto \omega_1$$ gleichverteilt auf $$\Omega_1:=\{a,n,z\}$$.
* Fall $$\omega_1\in\{n,z\}$$: Hier ''muss'' der Moderator in der zweiten Etappe die Tür mit der anderen Niete aufdecken.
* Fall $$\omega_1=a$$: Hier hat der Moderator in der zweiten Etappe die Wahl zwischen der $$n$$- und der $$z$$-Tür.
* Die ZV $$X_2:(\omega_1,\omega_2,\omega_3)\mapsto \omega_2$$ führt in Abhängigkeit von $$\omega_1$$ zu unterschiedlichen Verteilungen.
*Berechnung einer oberen Hessenbergmatrix ($$O(m^3)$$ Operationen)
*Iteration zur Berechnung einer oberen Dreiecksmatrix. ($$O(m)$$ Iterationen, um Maschinengenauigkeit zu erreichen, jede Iteration mit $$O(m^2)$$ Aufwand.)
Das Verfahren lässt sich schematisch folgendermaßen darstellen:
<$latex text="
\underbrace{
\begin{pmatrix}
\textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
\textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
\textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
\textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
\textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x}
\end{pmatrix}}_{A \neq A^*} \overset{\text{Phase 1}}{\underset{O(m^3) }{\longrightarrow}}
\underbrace{
\begin{pmatrix}
\textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
\textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
& \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
& & \textbf{x} & \textbf{x} & \textbf{x} \\
& & & \textbf{x} & \textbf{x}
\end{pmatrix}}_{H}
\overset{\text{Phase 2}}{\underset{O(m)O(m^2) }{\longrightarrow}}
\underbrace{
\begin{pmatrix}
\textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
& \textbf{x} & \textbf{x} & \textbf{x} &\textbf{x} \\
& & \textbf{x} & \textbf{x} & \textbf{x} \\
& & & \textbf{x} & \textbf{x} \\
& & & & \textbf{x}
\end{pmatrix}}_{T} \\
" displayMode="true"></$latex>
Falls $$A$$ hermitesch ist, so ist die Hessenbergmatrix //tridiagonal//:
<$latex text="
\underbrace{
\begin{pmatrix}
\textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
\textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
\textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
\textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
\textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x}
\end{pmatrix}}_{A = A^*}
\overset{\text{Phase 1}}{\underset{O(m^3) }{\longrightarrow}}
\underbrace{
\begin{pmatrix}
\textbf{x} & \textbf{x} & & & \\
\textbf{x} & \textbf{x} & \textbf{x} & & \\
& \textbf{x} & \textbf{x} & \textbf{x} & \\
& & \textbf{x} & \textbf{x} & \textbf{x} \\
& & & \textbf{x} & \textbf{x}
\end{pmatrix}}_{H}
\overset{\text{Phase 1}}{\underset{O(m)O(m^2) }{\longrightarrow}}
\underbrace{
\begin{pmatrix}
\textbf{x} & & & & \\
& \textbf{x} & & & \\
& & \textbf{x} & & \\
& & & \textbf{x} & \\
& & & & \textbf{x}
\end{pmatrix}}_{T} \\
" displayMode="true"></$latex>
Eine quadratische Form $$Q: \R^n \longrightarrow \R$$, $$Q(x) = x^tAx$$,
und ihre darstellende Matrix $$A$$ heißen
| positiv definit, wenn | $$Q(x) > 0 \ \forall x \neq 0$$ | $$Q > 0$$ |
| negativ definit, wenn | $$Q(x) < 0 \ \forall x \neq 0$$ | $$ Q < 0$$ |
| positiv semidefinit, wenn | $$Q(x) \geq 0$$ | $$ Q \geq 0$$ |
| negativ semidefinit, wenn | $$Q(x) \leq 0$$ | $$ Q \leq 0$$ |
| indefinit, wenn | $$ Q$$ sowohl positive als auch negative Werte annimmt. | $$ Q \gtrless 0$$ |
Diese Fälle lassen sich wie folgt charakterisieren:
| $$Q > 0$$ | $$\Leftrightarrow$$ | alle EW sind $$>0$$ |
| $$Q < 0$$ | $$\Leftrightarrow$$ | alle EW sind $$<0$$ |
| $$Q \geq 0$$ | $$\Leftrightarrow$$ | alle EW sind $$\geq 0$$ |
| $$Q \leq 0$$ | $$\Leftrightarrow$$ | alle EW sind $$\leq 0$$ |
| $$Q \gtrless 0$$ | $$\Leftrightarrow$$ | $$Q$$ hat positive und negative EW |
<$details summary="Bemerkung" tiddler="Bemerkung">
[[Bemerkung: Definitheitskriterium]]
</$details>
<$details summary="Bemerkung" tiddler="Bemerkung">
[[Bemerkung: Definitheitskriterium 2.]]
</$details>
Eine //orthogonale Projektion// ist eine Projektion, die entlang eines Unterraums
$$S_2$$ auf $$S_1$$ projiziert, wobei $$S_1$$ und $$S_2$$ orthogonal sind.
<$details summary="Beispiel einer orthogonalen Projektion" tiddler="Beispiel einer orthogonalen Projektion">
[img[qr_orthogonale_projektion.png]]
</$details>
Ein Projektor wird zwar durch eine Matrix dargestellt.
Ein //orthogonaler Projektor// ist aber nicht zwangsläufig eine //orthogonale Matrix//.
Die //Taylorapproximation der Ordnung $$p$$ von $$f$$ in $$a$$// ist
<$latex text="
T_pf(x;a) := \sum\limits_{k=0}^{p} \frac{1}{k!} d^{(k)} f(a)(x-a)^k.
" displayMode="true"></$latex>
<$details summary="Bemerkung" tiddler="Bemerkung">
{{Bemerkung: Definition: Die Taylor-Approximation}}
</$details>
Analog zur obigen Darstellung ([[Differential zweiter Ordnung]]) definiert man Differentiale höherer Ordnung:
Für beliebige $$p\geq 1$$ definiert man $$d^pf(a)$$ wie folgt:
<$latex text="
\partial^pf(a)(v^1,...,v^p) := \partial_{v^1},...,\partial_{v^p}f(a). \qquad (8.17)
" displayMode="true"></$latex>
Die dadurch erklärte Abbildung $$d^pf(a)$$ ist invariant gegen Vertauschung der Variablen $$v^1,...,v^p$$
und linear in jeder einzelnen Variablen. Sie hat die Darstellung
<$latex text="
d^pf(a)(v^1,...,v^p) = \sum\limits_{i_1=1}^{n} ... \sum\limits_{i_p=1}^{n}
\partial_{i_1} ... \partial_{i_p} f(a) v_{i_1}^1 ... v_{i_p}^p . \qquad (8.18)
" displayMode="true"></$latex>
Eine Funktion $$f: U \longrightarrow \mathbb{c}$$ auf einer offenen Menge $$U\subset \R^n$$ heißt
//differenzierbar im Punkt $$a \in U$$//, wenn es eine lineare Abbildung
$$L: \R^n \longrightarrow \mathbb{C}$$ gibt derart, dass
<$latex text="
\lim\limits_{h \rightarrow 0} \frac{f(a+h) - f(a) - Lh}{\|h\|} = 0. \qquad (8.1)
" displayMode="true"></$latex>
Die Funktion $$f$$ heißt //differenzierbar auf $$U$$//, wenn sie in jedem Punkt $$x \in U$$ differenzierbar ist.
<$details summary="Bemerkung" tiddler="Bemerkung">
{{Bemerkung:Differenzierbareit: Definition}}
</$details>
<$details summary="Umformung mittels Rest" tiddler="Bemerkung">
{{Umformulierung mittels Rest}}
</$details>
Die diskrete endliche Menge aller in einem Rechner darstellbaren Zahlen bezeichnen wir als
//Floating Point Zahlen//:
<$latex text="
F = \left\{ x \in \R \: \Bigg\vert \begin{array}{c} \exists \beta \geq 2 \text{ und }
e \geq 1 \text{ mit } m \in \N, 1 \leq m \leq \beta ^t: \\
x = 0 \text{ oder } x = \pm \left ( \frac{m}{\beta ^t} \right ) \beta^e\end{array} \right\} ,
" displayMode="true"></$latex>
wobei $$t$$ die //Präzision// ist und in IEEE die Werte 24 bzw. 53 annimmt.
$$\beta$$ heißt //Basis// und nimmt normalerweise den Wert 2 an.
<$details summary="Bemerkung: Floating Point Zahlen" tiddler="Bemerkung: Floating Point Zahlen">
{{Bemerkung: Floating Point Zahlen}}
</$details>
Eine Funktion $$f:A\to B$$ ist eine Teilmenge von $$A\times B$$, d.h. der Menge von Tupeln $$(a,b)$$ mit $$a\in A,b\in B$$, s.d. jedes $$a$$ genau einen Wert aus B zugewiesen bekommt, d.h. für jedes $$a\in A$$ gibt es genau ein $$b\in B$$ mit $$(a,b) \in f\subset A\times B$$.
! Notation
Die Menge der Funktionen von $$A$$ nach $$B$$ schreibt man oft auch als $$B^A$$.
! Beispiel 1: Notation
<$latex text="f:A\to B, f(a)=2\cdot a" displayMode="true"></$latex>
wird oft auch als
<$latex text="f:A\to B, a\mapsto 2\cdot a" displayMode="true"></$latex>
geschrieben.
! Beispiel 2: Gegenbeispiel
<$latex text="\{(1,2),(1,3),(2,2)\}\subset \{1,2,3\}\times \{1,2,3\}" displayMode="true"></$latex>
ist ''keine'' Funktion, weil für $$1\in \{1,2,3\}$$
zwei Paare ($$(1,2),(1,3)$$) in der Teilmenge enthalten sind, dem Wert $$1$$ also $$2$$ verschiede Werte zugewiesen werden.
Doppelungen im zweiten Eintrag, also im Wert der Funktion, sind aber erlaubt!
! Hinweis: Terminologie
Für $$f:A\to B$$ nennt man $$A$$ oft:
* ''Definitionsmenge''
* ''Definitionsbereich''
* oder im englischen ''domain''
$$B$$ heißt
* ''Zielmenge''
* ''Wertebereich''
* oder im englischen ''codomain''
beim Untersuchen von Funktionen ist es essentiell diese beiden Mengen tatsächlich zum zeigen von Eigenschaften zu benutzten:
!! Beispiel 3: Abbildungsvorschriften sind nur ein Teil der Funktion!
Durch $$f: x\mapsto x^2$$ ist noch keine Funktion definiert! Hier fehlen der Definitionsbreich und die Zielmenge. Wir können uns zwei einfache Fragenstellen um das Problem zu verstehen:
# Nimmt $$f$$ nur positive Werte an (d,.h. $$f(x)>0$$ für alle erlaubten $$x$$)?
# Ist f injektiv, d.h. nimmt $$f$$ jeden Wert höchstens einmal an?
Die Antworten auf beide Fragen ändert sich mit dem Definitionsbereich!
# Für $$f:\R_{>0}\to\R_{>0}$$ oder $$f:\R_{>0}\to\R$$ ja! Für $$f:\R\to\R$$ allerdings nicht.
# Für $$f:\R_{>0}\to\R$$ nein, da $$f(-1)=f(1)$$. Für $$f:\R_{\geq 0}\to\R$$ allerdings schon.
Der Faktor
<$latex text="
K_M (A) := \| A^{-1} \| _{M} \cdot \| A \| _{M} \qquad (5.8)
" displayMode="true"></$latex>
wird als //Kondition der Matrix $$A$$// bezüglich der Norm $$\| \cdot \| _M$$ bezeichnet.
<$details summary="Bemerkung" tiddler="Bemerkung">
{{Bemerkung: Kondition einer Matrix}}
</$details>
Für einen Vektor $$x \in \R^m$$ ist der Rayleigh-Quotient
<$latex text="
r(x):= \frac{x^T A x}{x^T x}. \qquad (7.1)
" displayMode="true"></$latex>
Eine //Schur-Faktorisierung// einer Matrix $$A \in \mathbb{C}^{m \times m}$$
ist eine Faktorisierung der Form
<$latex text="
A = Q T Q^*,
" displayMode="true"></$latex>
wobei $$Q$$ unitär und $$T$$ eine obere Dreiecksmatrix ist.
<$details summary="Bemerkung" tiddler="Bemerkung">
{{Bemerkung: Schur-Faktorisierung}}
</$details>
Eine differenzierbare Funktion $$f: U \longrightarrow \mathbb{C}$$ auf einer offenen Menge
$$U \subset \R^n$$ heißt //stetig differenzierbar auf $$U$$//, wenn $$df: U \longrightarrow L(\R^n, c)$$
stetig ist. Dies ist gleichwertig zur Stetigkeit der Ableitung
<$latex text="
f': U \longrightarrow \mathbb{C}^n, \qquad x \mapsto (\partial_1 f(x),...,\partial_n f(x)).
" displayMode="true"></$latex>
Mit dem Differenzierbarkeitskriterium folgt, dass eine Funktion $$f: U \longrightarrow \mathbb{C}$$
genau dann stetig differenzierbar ist, wenn alle $$n$$ partiellen Ableitungen $$\partial_1f,...,\partial_nf$$
auf $$U$$ existieren und stetig sind.
Den Vektorraum der stetig differenzierbaren Funktionen auf $$U$$ bezeichnet man mit $$\mathcal{C}^1(U).$$
<<list-links "[tag[Definitionen Differenzierbare Abbildungen]sort[order]]">>
<<list-links "[tag[Definitionen Differenzierbare Funktionen]sort[order]]">>
<<list-links "[tag[Definitionen Eigenwertprobleme]sort[order]]">>
<<list-links "[tag[Definitionen Grundlagen]sort[order]]">>
<<list-links "[tag[Definitionen Kondition und Stabilität]sort[order]]">>
<<list-links "[tag[Definitionen Lineare Ausgleichsrechnung]sort[order]]">>
<<list-links "[tag[Definitionen LU-Zerlegung]sort[order]]">>
<<list-links "[tag[Definitionen Nichtlineare Gleichungen]sort[order]]">>
<<list-links "[tag[Definitionen QR-Zerlegung]sort[order]]">>
<<list-links "[tag[Definitionen Singulärwertzerlegung]sort[order]]">>
Es sei $$\Pi=(\pi_{ij})\in[0,1]^{N\times N}$$ zeilenstochastisch. Ferner gebe es ein $$L\ge 1$$, so dass alle Einträge in $$\Pi^L$$ positiv sind. Dann gibt es eine W-Funktion $$\rho=(\rho_1,\ldots,\rho_N)$$, die sog. ''Grenzverteilung'', mit folgenden Eigenschaften:
* $$\lim_{m\to\infty}\Pi^m=:\Pi^\infty$$ existiert und in jeder Zeile von $$\Pi^\infty$$ steht die Grenzverteilung: <$latex text="\Pi^\infty=\left(\begin{array}{cccc}\rho_1&\rho_2&\ldots&\rho_N\\
\rho_1&\rho_2&\ldots&\rho_N\\
\vdots&\vdots&\ldots&\vdots\\
\rho_1&\rho_2&\ldots&\rho_N
\end{array}\right)." displayMode="true"></$latex>
* Die Matrizenfolge $$(\Pi^m)_{m\ge 1}$$ konvergiert exponentiell schnell gegen $$\Pi^\infty$$.
* Die Grenzverteilung $$\rho$$ ist die eindeutig bestimmte W-Funktion mit $$\rho \Pi=\rho$$.
Sei $$D$$ eine [[Determinantenform]] auf einem [[Vektorraum]] $$V$$ und $$\dim_K(V)=n<\infty$$. Weiter sei $$\{x_1,\dots,x_n\}$$ eine fest gewählte Basis und $$y_i=\sum_{i=1}^n a_{ij} x_i\in V$$.
Zu zwei Determinantenformen $$D_1,D_2$$ auf $$V$$ gibt es genau ein $$\alpha\in K^*$$ mit $$D_2=\alpha D_1$$. Diese Aussage folgt direkt aus der Linerität.
Sei nun $$T\in \text{End}_K(V)$$, $$x_1,\dots,x_n$$ eine Basis und $$D$$ eine Determinantenform.
Dann ist
<$latex text="\det T \coloneqq \frac{D(T(x_1),\dots,T(x_n))}{D(x_1,\dots,x_n)}." displayMode="true"></$latex>
unabhängig von der Wahlen und heißt ''Determinante'' von $$T$$.
Für eine Matrix gilt dann
<$latex text="\det(A)\coloneqq\det(x\mapsto Ax)=\sum_{\sigma\in S_n}\text{sgn}(\sigma)\cdot a_{1,\sigma(1)}\cdot\dots\cdot a_{n,\sigma(n)}\eqqcolon|A|." displayMode="true"></$latex>
!! Beweis
Sei $$T(x_j)=\sum_{i=1}^n t_{ij} x_i$$. Dann folgt aus [[Eindeutigkeit der Determinantenform]]
<$latex text="\frac{D(T(x_1),\dots,T(x_n)}{D(x_1,\dots,x_n)}=\sum_{\sigma\in S_n} \text{sgn}(\sigma)\cdot t_{1,\sigma(1)}\cdot\dots\cdot t_{n,\sigma(n)}" displayMode="true"></$latex>
unabhängig von $$D$$. Ist $$y_1,\dots,y_n$$ eime weitere Basis mit $$y_j=\sum_{i=1}^n a_{ij} x_i$$, so folgt:
<$latex text="\begin{aligned}D(T(y_1),\dots,T(y_n))&=\sum_{\sigma\in S_n}\text{sgn}(\sigma)a_{1,\sigma(1)}\cdot\dots\cdot a_{n,\sigma(n)}D(T(x_1),\dots,T(x_n))\\
D(y_1,\dots,y_n)&=\sum_{\sigma\in S_n}\text{sgn}(\sigma)a_{1,\sigma(1)}\cdot\dots\cdot a_{n,\sigma(n)}D(x_1,\dots,x_n)
\end{aligned}" displayMode="true"></$latex>
also folgt $$\frac{D(T(y_1),\dots,T(y_n))}{D(y_1,\dots,y_n)}=\frac{D(T(x_1),\dots,T(x_n))}{D(x_1,\dots,x_n)}$$.
!! Bemerkung
Daraus folgt auch $$\det T \neq 0 \iff T $$ bijektiv.
Für [[Elementarmatrizen]] ergeben sich folgende Determinanten:<$latex text="\det(I_n)=1" displayMode="true"></$latex>
<$latex text="\det(L_{ij}^n)=-1" displayMode="true"></$latex>
<$latex text="\det(S_{ij}^n(\lambda))=1" displayMode="true"></$latex>
<$latex text="\det(E_{j}^n(\lambda))=\lambda" displayMode="true"></$latex>
!! Beweis
$$\det(I_n)=1$$ wurde schon in [[Existenz von Determinantenformen]] gezeigt.
$$det(L_{ij}^n$$ entsteht durch das vertauschen zweier Spalten von $$I_n$$, also gilt
<$latex text="\det(L_{ij}^n)=-\det(I_n)=-1" displayMode="true"></$latex>
$$S_{ij}^n(\lambda)$$ ergibt sich aus $$I_n$$ durch Addition des $$\lambda$$-fachen einer Spalte zu einer anderen, daher gilt
<$latex text="\det(S_{ij}^n(\lambda))=\det(I_n)=1" displayMode="true"></$latex>
$$S_{ij}^n(\lambda)$$ ergibt sich aus $$I_n$$ durch Multiplikation einer Spalte mit $$\lambda$$-fachen , daher gilt
<$latex text="\det(E_{i}^n)=\lambda\det(I_n)=1" displayMode="true"></$latex>
Sei $$V$$ ein $$K$$-[[Vektorraum]] mit $$\dim_K(V)=n<\infty$$. Eine ''Determinantenform ''ist eine Abbildung<$latex text="D:V^n\to K" displayMode="true"></$latex>
mit den Eigenschaften
# $$D$$ is linear in jedem Argument (n-fach multilinear), d.h. es gilt:<$latex text="\begin{aligned}D(x_1,\dots,x_{j-1},\alpha \zeta+\beta\eta,x_{j+1},\dots,x_n)\\=\alpha D(x_1,\dots,x_{j-1}, \zeta,x_{j+1},\dots,x_n)+\beta D(x_1,\dots,x_{j-1},\eta,x_{j+1},\dots,x_n)\end{aligned} " displayMode="true"></$latex>
# $$D$$ is alternierend, d.h. für $$x\in V^n$$ mit $$\exists i\neq j: x_i=x_j$$ gilt <$latex text="D(x)=0" displayMode="true"></$latex>
# $$D\neq 0$$
!! Bemerkung
A priori ist ''nicht ''klar, dass es Determinantenformen gibt!
Habe $$A\in M(n,K)$$ Habe Blockdiagonalgestalt:
<$latex text="A=\begin{pmatrix}A_1 & & &*\\& A_2 &&\\
&&\ddots &\\
0&&&A_r\end{pmatrix}" displayMode="true"></$latex>
mit $$A_i\in M(n_i,K)$$.
Dann gilt
<$latex text="\det(A)=\prod_{j=1}^r\det(A_j)." displayMode="true"></$latex>
!! Beweis
Falls eine der $$A_i$$ nicht invertierbar ist, so auch $$A$$. In dem Fall sind beide Seiten der Gleichung also $$0$$.
Sonst kann man $$A$$ als Produkt von Matrizen schreiben, von welchen alle bis auf eine von der Form
<$latex text="\begin{pmatrix}I_{n_1} & & &&&0\\& I_{n_2} &&\\
&&\ddots &&&\\
&&&A_k&&\\
&&&&I_{n_{k+1}}&\\
0&&&&&\ddots\end{pmatrix}" displayMode="true"></$latex>
und einer letzten Matrix, welche obere Blockdiagonalgestalt hat, schreiben.
Nach einer geraden Anzahl von Spalten und Zeilenvertauschungen folgt die Behauptung.
Eine Matrix $$A\in \mathbb{C}^{n\times n}$$ ist genau dann diagonalisierbar, wenn sie $$n$$ linear unabhängige Eigenvektoren besitzt.
$$T\in \text{End}_K(V)$$ heißt ''diagonalisierbar'', falls es eine Basis $$B$$ von $$V$$ gibt, so dass<$latex text="M_B(T)=\begin{pmatrix}\lambda_1 & & 0\\&\ddots &\\0 & &\lambda_n\end{pmatrix}" displayMode="true"></$latex>
gilt.
Es gibt folgende Definitionen sind äquivalent :
# $$T$$ ist als Matrix diagonalisierbar
# Es existiert eine Basis aus Eigenvektoren
# $$\sum_{\lambda\in K}\dim_K(E(T,\lambda))=n=\dim_K(V).$$
!! Beweis der Äquivalenzen
$$1.\implies 2.:$$ Sei $$B=\{x_1,\dots,x_n\}$$ eine Basis mit $$M_B(T)=\begin{pmatrix}\lambda_1 & & 0\\&\ddots &\\0 & &\lambda_n\end{pmatrix}.$$ Dann gilt:
<$latex text="T(x_1)=\lambda_1x_1,\dots,T(x_n)=\lambda_nx_n." displayMode="true"></$latex>
$$2.\implies 3.:$$ Sei B eine Basis aus Eigenvektoren. Wir nummerieren diese, s.d. $$\lambda_1,\dots,\lambda_r$$ die paarweise verschiedenen Eigenwerte der Eigenvektoren aus $$B$$. Konkret sei $$b_1^{(j)},\dots,b_{n_j}^{(j)}$$ die Basisvektoren mit $$T(b_k^{(j)})=\lambda_jb_k^{(j)}$$.
Dann folgt <$latex text="\sum_{\lambda\in K}\dim_K(E(T,\lambda))\geq\sum_{j=1}^r\dim_K(E(T,\lambda_j))\geq\sum_{j=1}^rn_j=\#B=\dim_K(V)." displayMode="true"></$latex>
Aber nach [[Anzahl von Eigenwerten und deren geometrische Vielfachheit]]
gilt auch die andere Ungleichung, daher gilt Gleichheit.
$$3.\implies 1.:$$ Gleiche Notation der Eigenwerte und Eigenvektoren wie zuvor. Sei nach $$3.$$ also
<$latex text="\sum_{j=1}^r\dim_K(E(T,\lambda_j))=n=\dim_K(V)." displayMode="true"></$latex>
Wir wissen wieder, dass $$B=\bigcup_{j=1}^r B_j$$ linear unabhängig ist. Nach Voraussetzung ist $$B$$ also eine Basis.
Damit folgt schon:
<$latex text="M_B(T)=\begin{pmatrix}\lambda_1\cdot I_{n_1} & &0\\ & \ddots&\\0 & &\lambda_rI_{n_r}\end{pmatrix}." displayMode="true"></$latex>
Sei $$A \in \mathbb{C}^{n \times n}$$ hermitsch, d.h. $$A^\ast =A$$.
Dann gibt es eine {unitäre} Matrix $$T$$, d.h. $$T^\ast \cdot T=Id_n $$, so dass
<$latex text="
T^\ast AT=
\begin{pmatrix}
\lambda_1 & 0 &\cdots &0 \\
0 & \ddots &\ddots &\vdots \\
\vdots&\ddots & \ddots & 0\\
0&\cdots & 0 & \lambda_n
\end{pmatrix}
" displayMode="true"></$latex>
Seien $$X_1$$ und $$X_2$$ reelle, unabhängige, stetige Zufallsvariablen mit den Dichten $$p_{X_1}$$ und $$p_{X_2}$$.
* Die Dichte von $$Y=X_1+X_2$$ ist gegeben durch <$latex text="p_{Y}(y)=\int_{-\infty}^\infty p_{X_1}(y-x_2)p_{X_2}(x_2)dx_2." displayMode="true"></$latex> Man setzt $$p_{X_1}*p_{X_2}(y):=\int_{-\infty}^\infty p_{X_1}(y-x_2)p_{X_2}(x_2)dx_2.$$ $$p_{X_1}*p_{X_2}$$ heißt ''Faltungsprodukt'' von $$p_{X_1}$$ und $$p_{X_2}$$.
* Die Dichte von $$Y=X_1 \cdot X_2$$ ist gegeben durch<$latex text="p_{Y}(y)=\int_{-\infty}^\infty p_{X_1}(\frac{y}{x_2})p_{X_2}(x_2)|x_2|^{-1}dx_2." displayMode="true"></$latex>
* Die Dichte von $$Y=\frac{X_1}{X_2}$$ ist gegeben durch <$latex text=" p_{Y}(y)=\int_{-\infty}^\infty p_{X_1}(yx_2)p_{X_2}(x_2)|x_2|dx_2." displayMode="true"></$latex>
!! Beweis
Ist $$Y=X_1+X_2$$ und $$B=\{(x_1,x_2):x_1+x_2\leq y\}$$, so ist
<$latex text=" \begin{aligned}
P(Y\leq y)=P_{(X_1,X_2)}(B)&=\iint_B p_{X_1}(x_1)p_{X_2}(x_2)dx_1dx_2\\
&= \int_{-\infty}^s\left(\int_{-\infty}^\infty p_{X_1}(u-v)p_{X_2}(v)dv\right)du,
\end{aligned}" displayMode="true"></$latex> wobei wir die Substitution $$u=x_1+x_2, v=x_2$$ verwendet haben.
iVBORw0KGgoAAAANSUhEUgAABlEAAAEpCAYAAAADPARtAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAANwOSURBVHhe7N0HgB1V2T7w55yZuffuphdCJ5RQAtLFgopYUAigoBSldwkEEAH1q36f5bPwt4D0DiIqRaqAIGKhSG9CIISO1CSEJLt77505Z/7ve+beZLO7kIUkmy3PLzk7fW6bmXPveeecY3IBIiIiIiIiIiIiIiIiWoxtDImIiIiIiIiIiIiIiKgTBlGIiIiIiIiIiIiIiIh6wCAKERERERERERERERFRDxhEISIiIiIiIiIiIiIi6gGDKERERERERERERERERD1gEIWIiIiIiIiIiIiIiKgHDKIQERERERERERERERH1gEEUIiIiIiIiIiIiIiKiHjCIQkRERERERERERERE1AMGUYiIiIiIiIiIiIiIiHrAIAoREREREREREREREVEPGEQhIiIiIiIiIiIiIiLqAYMoREREREREREREREREPWAQhYiIiIiIiIiIiIiIqAcmF43xPvHq66+FoTUGpTiRZxD+o0+fBBER0ZJ0yR5tFOH1V/4VxjeYvEkYEhERERERERHR4MaaKERERERERERERERERD3o85oob7z5RhiOH78SjDHIfQ5rTbc7fomIiPoVybNefP75MLrW2muHIRERERERERERDW59HkR5a87sMBwzdlwInOiDh2BKmEtERNQ/aFOTnWk+9eyMp8L4ehtsGIZERERERERERDS49XkQZVajJsrYcSsVNVCIiIj6oW7ZozF44blnw+ja66wbhkRERERERERENLj1eRBlTqMmylitiUJE3egpqbWzlHcZbBSH8WWhue9w2stDmG732hd326vmEt9sco9oiNNz45kZT4bxSRtsFIZERERERIPZq6+/Biu/IUtx0vgNueg3IxERUX/knQOiOLSINWm9SY25S6fPO5bXPlA0EVF3mfPyhdRAT5HiLFm2wQsNoIQLicjqaRh2k8s5KutooCVrrEtEzbNRz0zmYUREREREREREQ0Wf10SZPWtWGI4bPz4MiWgRJ2ej1j6Jowi59zDWLqyVsqwsVhtFdN1/nqXIjTyuPAcvz0GfRxwvu9owRAPZzBnTw3DSBpPDkIiIiIhoMHvjzTcwfvxKxW/IZisFfVuMRERE1Cu5lnE2yj31RvXnn3lqmZXfMIhC1I+EAIcONXihQznpI7vsKoy5LAuBGT3rNUASRVG3prq0poquk8rFRhdZY9mcF1EDgyhERERENJRoUyhjtDl2+RGpv1FDMKVYRERE1K+E0kst9GzkVc/PnIF1Jm2gc5danzfnRUTvLMQ05UR3Mnzm2Zm45sorGkuWDf3Cq02FzXjyCdx2841FhLYLL5eFGdMfx4wnHivWd1ljCREREREREQ0lzrnQT6b+TtXfh0r/MjExMTEx9bcUNPIq57ykZVemySAKUR9a1NcJUJeTWQMULzx+D3beeWccuP8BmLr/3rjo7/eHYMrzz7+Mex54CLV6FbWOqmxYRZrVZbsFaK9nyHwGV6+FmiPtmUynGXJXRZ7JRaJWQ1XWffWlZ+UxHebUZFtXh0cHOup1vPbaHNx190PIZJ3U5bJOFZlLUZV9WJvi1edm46kZT8v6BlHCpryIiIiIiIiGIttD6wVERET9XRTZkIctKwyiEK0gGkzRpP2NjBo1Aj845Wx8+/s/xNW/vQSPPvUEPvPJ7fCjH/4QsbUoRTHaq9q0Vw6Xl2WeXAxkaxObEEyxJoaX77XaD7yT+V6X5x6rrLEm0vYqRsalIkiSZSEi+7FPfBj/9t3/1jWR5ynStGi2y0giIiIiIiIiUtoPChER0UDROdfS2pTLCktMiVaQZpVo5x1GDBsG7zxq7e0Yixgjh4/AHbf+Gd/6939HR25x7i9Px7mX/AaXXHwRfvh/p2DOnDdRry3Arbdej3POOAO/OuMsnPWL8zBrznxkrh0/Pfk7uOR3v8W5p/0cPzr5F7jwwgtwxWW/xnk//SHeml/F3/50M6Z+52fy2B6333IbfnvFZTjj1FNw7dU3NJ4dERERERERERERETGIQrSCWGNC8lmGV19/Hf/7rWn40ck/wvBSK1ZfbU2UfYSOthqiHJj72pvYdZ/98ZV998d6G2yEObNeR7U6F9Ofmon9px6Dw6Z9DZtvtTnueeifSGyCtg6PKbvvjsMOPxzDR47HBz/0Yeyzzz4YNmEiHn3yeSQJEJVbkcslYIedPod999oPhx9+BB569LHGsyMiIiIiIiIiIiIiBlGIVhRr4fMcURxh7JjR+O5PT8dZZ56DtVddE7+79spQQ2XUmBGoO4fRI0djfr0DpbiEkWNLeO1fz6M2r4T2tgoqJod3c7D22iPwxHPPwniDOGlF2cbI0/koDxuNltbRiFDHWqutjFSWe1+T/ZtQrW3G08/hkksvwkWXXIgoShpPjoiIiIiIiIiIiIgYRCFaQSJfR5Zr+3wepTgJncyXyyVs++GP4bVZr6OurX3ZkpylPjT9NbJUgssd4iiGTz2Gj2yVbeohGAOZfmPuPKw2ZjTq3hbt1hqEvlGM8YhlO8h2xmiHSg466WyKtvYqLr/8MhxwwCE45LCDMWxYi2xrkNs81FLR55TnvnjCRERERERERERDRC6pc7dAWj7iXAqXzsLrVVmQ19E2fy7mVGtw9Sp+eNL/4sprb0Sapuhor6OaVpHV30I1y9EuKXMeuXNor7cjzTqQ1tvCuK9lyPSBsgwdsjzz7Zjd4WW7mszK8Fa1jjtu/wvOveAKeRZ1zFlQg/cpFrRXw825yKr47r+fjLdrbXAswyFaLhhEIVpB4riExFjJOD1skmBBRw1vvPYGrr36t1hvtYlwUY7XX34BpdygCoeaZIaxjVBttygPXxnRcJnn5+K5Z59FVB6Bv9/6GNaftA6sbZPMtF0ydyCqjII1ksl7zZC9xlUQeQeYBMONwbBSSaYzeBPh4QcexSsvvxwCLUbWtbJ2CKQw/yUiIiIiIiKiIU7LWdS9N/8BP/uf/8RFZ5yJC845H3+46VY4Y/D5HXfAuquOQ546wOawpgQTlRCbFAkyWNSRw6MUlcMyay1a4xZU623IsloIusS+DniDJDaIkcp6GVoTj1VWXhmbb7Upsnot3IDrGjfiaskNES1/0f+Ixnif6GhvD8PW1tYwJBpKNGuTfDUEMzLnwjBOHObObcfLz87As09Nx3af2RHbffJjsFGE1VYah/XX30AyUIfha6yJkYmFjSPJSGtYY9UJ2GLrD+GP19+Axx54GJts9gF8+KMfgpXMNk07sO56GyGRTDut5VhtjVXRWonDHRPDR43FuBEVlFtHYONJ66CldRhuuu5qlCoVbLr5llhrrVUAyfCHjR6OCausXIRStLYLEWHO7FlhOHbcSmFIRERERDSYaRkOy29oqNNyHBXCFbnHy08/hvZoFA487ACsvf4muOmWW7Ddth/FyzOeQTR6OEaWynhs+lO4586/4I47/4EJq62N0cNLsn0N/3jgIdx01bWY/thjWHmNdTGspQUvvzQTT734Gh677y7ccfutGL/+Vpj50D2445brMWyldbHSiJF4e+4rmFU1WGPCWDz08KO45frr8Oprs+XxN0AMh7/efi8+sv02KEVJ6H+XaChrngFzZr+JceOXTfmNyUVjvE/MnlUUQI0bPz4MiYaS0MqWnMl6MrdpoCK2yNLZsPHYEFSJTAaXS4ZnJWv1FsOiHHkmKYrwZj3FOJ2ODDIZT7R3eGGMhZcsM89rSEyCNJVhSaa1z5M8C3c36L0OJevlhK8iw3AkMqcmjxPJ/LxxZbGS6fo8QqR3S2QGaSTrmxhWviBEUVysRDTEzZwxPQwnbTA5DImIiIiIBjMtw2H5DQ1VWmCqpaa2UW5ST1MkEfCPG3+D+16qYdrX9sNpp5yOYStNxIF774YLz7gYI1YZg203mYyTfvBDnHPxRZjxxGO44brb8c1j9sK82tv4+Snn4/vf/3+Y88ZcnHvOOTj6W9/AS4/eie+fdSF++eMfYO6br+DE75+O/z32SKy5SgVn/vYv+K9jjsQ/HrodD7yc4EOrWTz17Ev48lf2w3lnn4vNttoMn/ro1vjuf/8Sx33nKAwvtSAyvBGWhi49b/WU1eHMp57A+hturLOXGs8qohVFMzWNqkQl1DMHZy3qtbrMlvmyzGlFT5mvcU6fO5Ql146jSC4EBqXKcMiq0CkNlmR5KutFocP4qFxBVmsER6KyLJdlMtpRl8dAEu6ayPJYhpnsDyjJw1nvZbwcnk5ovUtryRiDej2Tp6L9qBARERERERERDV3aYoj3HsOGD8fTT03HeaedjhHDR2HevLdD37LzZs8KN6ZmzmDbT34Kpchi8002hB2WoXXEcPzj9n9ih52+Cu/aMWHlCOUREV6fmyLKS9j2Y5/F+LHjMWbMCGy6+Yex+dbbYNxqa6GtmsOVI7TNnY3S8FZ88GMfxZ777Y9K7LHKaqvjwfvvaTw7IlqeGEQh6kN690LjBgYMi2VMMtQ4GolKKUGLZMYtw0Yh0XnWYmTiUZL5tlxCHEcYVYpk/VjWLyEyOVpbYphYppMYiU1kOyOLKzBZjqQi60QyT/YTJeWw7+GVFtlvWeZF8jxylGWfWtNEdiL7KIXnVGnsy7ToegmGyX5YDZSIiIiIiIiIyMBEFgvmL8C6k9bHYVOn4eDDDkK1vR0vvfYKRoweFVoLMblHSyVBkjtoj7NaBuPqDm/Pm4cRI0cggUzrzbSS5nfUZA0tm3HIZdthrZVQjmOQAt6itXWYLMtgo5Lso46ZM57GD77/Y5x/zlmY+eSTeLvWHm7C1T50Q7UZ+a8d2BPRssUgClG/FKqRSGqeopJRh+qYzYBGc7pYHmt0RmuRaC/wkqFrjRKlA61REuaLLJOhrKvBE90+lwydiIiIiIiIiIh6wecoV1qR1uuhM/l66qGNpbe0tmBe23zEJoKNY1meIpJhSdZJO0qIKyWsve4ozJn9EpAMB+wItNjx2GD10Wirz0Ypz4qmw6IErSVtnt0gSuJQNBRZHZaRyP7u+NOfsNEGG+GAw4/AppttjjEjxyB32jqJPDWj4RlZNWJxL9GyxrOKaEDQ4EnXGiGLpmuSedsoDi2EGS/j3oU7EJzL4LxH0S+8Q5IYZGmHLPKoV6shwEJERERERERERO8utNSR52jrqGL2a6/g4vPPxQVnnInRI4ZhxLDhskhrjFg4nyGCR+ZyZN6jpaWEjsxig023wBMP34ezzzwNZ/3iTExafx20mBSlSgUV7Z9WtspRQt4+ByYuyX5yJL4DXpt69wYtSLHVRz+Cx594GL+64AI89eQT6GjvgLUWpSRCe62GLK11Kz0ioqXHjuWJ+pXm6fhuWZ6u03l5Lhmrk6Q1TiTzlYzTOSMnN8JdC7rMGq3cKRm4ZLzahmeaRrCyTKuYaj8rRNQ77FieiIiIiIYSdixPQ5mWvoTaIY0iGJ975D6D9/Nk5lgZtsHkrUh9jjjO4bM8lLlEstGsjirGDh8myzvgvEU5SeDrtdBkl4kTVDMgMXUkkcyX8czmKEcxUldHLXOSgNGt8piohOa/sjxDexaj1dSQRa1IfA3elmDlyVlfR1o3SBOLkjxXfb4R+7elIapZaqpDdixPNGjoKd2Zl8y1Lpl00aF8mONlXNuzlKS1SnQb77QZrmK5rqvd0GepwyXnnY9fXXgBzv7lz3Hj1dehHlrxMvJPq4VKZh7H+Nuf/4xvHXccbr7lLslsmakSERERERERES2J9zmMNYiiGDbNEBnA+BTlREY80FIpIYGTcYfhrS2hLEcLXo2NMK+WI48rsHEi+zEoWR+a6TJ6B6zLUI5lRVnfmFLoND5KWkJTYVHuQpBGlWUbfXzZk0ZJZF3Zf3hogzhKkci+cllX5xHRssUgCtEKpRlhkRnqUAMdje5LJONz+NcLz+Mfj07HFb+5DBeefTaee/ZZyVtTyTQtah0dcJLBep8hl4zzrr/dgUkbboJ99j0ARx57DJ5/5lm8+Moc+Fxyz1x2amLUqjXUq+1YY421UB6zmuTPzccmIiIiIiIiIqImjUV0DkhoSx7WJLB2NKJKCXE8AkmlEuaXS0lYxyZF/yfDk1zmAVHcgnIcY1QllvVsuJlVuzrR/k2iSLaR/UUtFd27/NdgiJf9tmBkKUeStMJEsaxrZX4c9qP7a4kMIpuEzuT16el+bKkVJVmnpK2OGN4wS7SsMYhCtEJpdtfMkYtaJsZKLiuytB1PPTEdp576S2yz/WfxoW0/gt/+5opQfbS2oB1JqYLI5MjqVXTUanj99VlYY+J6kqGWkacpUp/itTdnhUCJdnOmFVvq9Qyf3nFHrDtxDbz5xst6fwQRERERERERES1Tnct7emtRMa22KRJZ/av7aMx/r7sjomWGQRSiFapzDuiBPIPLteKIR1K28DbCVpt/GBPGjcZGH9gYUXkEZs19BVddeTkuu+TXOPfs8/C7312CF559Bm++9obsTu+IkCw2jtDaWsIbs2aFTs18rncixGgZNgqxMXjhxecwbtXVFtaBISIiIiIiIiKipdUsadHaIO+n2HVR8EUb7lJ93J01EfWAQRSifkEjJ1ovJJVc0uh/mWyDl2FL60iUEoMor6KWeiSxh3P10LamgUeWpqi1t6PSMhIudaHzeCNndlZvw4iVVoXxXuu3hDY5tYqpto/Z0lJCtX3uwgyZiIiIiIiIiIiW1tKWs2hRrS3CKNo0u95wq2VE2lR7MZeIVgAGUYhWlMXuJJCM0MQyL0KaadBDZ1UQ2xht9TZkGk2xFZRaKhg1fG0ccNjXsP9hB+KwqVNxyOEnYPMtPoIPbLkennj8buTGoF4zmFVLsP3ksUiidqTad4qxsPqYEVB1KUZpIEYeN9PmvmS2dpDmsiw8GyIiIiIiIiIi6qpzWY72a6vTzT5utUxFy1hMmJ8616hFYkKftjrerFWiLZDUPfCrCy7CJRecg1tvuRU1mXayD+9d6GQeeRV3/u1unHnW+Tj7vAvxq/MvkdkemcsWPgvWUiHqGwyiEPUnNgodjRX3FkSSMTq88uILuPS88/Hz730P6683EVEch6WdGWOw4SYb4/kZT+O8M8/EheddgI995CPIM4fXXnkFp/74J2ivZ3jzrTdx2a8uwb9em4WHHngYf7jyClTb21GrVWGs6XHfRERERERERETUVRHA8Boc8b5oVSQ3aF+wAMY5mchCqyDeZYgiC6dBFZ3WYIsMLznnHAxrHYUv77s/nnjsCdx601+hTYvo+hobqWVz8OhDD+Kj23wYBx20n6y3DyJr9S5YfaAQQNHyICJa/oyccH0aspw9a1YYjhs/PgyJqMmFOw7yPEFs9M6CDtz+57vw5EuzcPjB+6CUyzx4RCYKmW9nLqsDNgmZqN6VkMKiYjXDruLPf7oN3gzDJ7b/FCqxbJe3h3WdsyHz1Y7nQwBFM2LBDJjonc2cMT0MJ20wOQyJiIiIiAYzLcNh+Q1Rz/Jcm2RPkPkMiZavuBruuPNBtLS04NG7/4qPfOrTmDhpMloSE5pWh4kQxwZpWgvjZ/zsFBx5/PGIjcM9d96Dm275G6adcDwmjC3DamsheBOnnHo1Pv+lr2LSKsMRw8OWyqHcRoMxxkZaBwZF5/NEpDTQoWeEDmc+9QTW33Bjnb3UWBOFaIVaPIZZBDAkC9ShsVhlpfEYrq186d0KWR31ake3AEoQlZDW67C5QxLnaLEOWa5VRz1efvY5bLfdJ1CJgDTPkFvtCUUyWsngtaZLksThQpDWagygEBEREREREREtUWggXe9lRep1OoPzNfzljnvx2mtv4qsH7IvLL/0d7rrzPjz66KM45+yzccG5Z+O8c87Bry/5FWY+PQPVTPYRaQgkxyYbr4EZz/4Tc+fOQyb70/5ubT4CiCq49vprcOGFF+H+u24PpUhFDZSibKhoToyIljcGUYj6kSLrzOEkD7Q2xoabfABf2fcrGvKAlYzVlltDhtmVgUOpVEImmWgtkwzVxIhtgiQehgO/dgxsHMHbCEmUyEmfhJqfkTFIkqTY3lqUKhV4rW5KRERERERERETvQpvTykL5TWjjx9WQxBaV1hH49I47oIwO7H3A4fjno49h8saTccDBh+OIo47CQYcejv0OOhATVllVC29kW23iK0dsqhjRmsDEcQiSxKWy7DTG4UccgGMkHXzwPvjrLdfgheee067m9S7csJ5ttCpCRMsXzzSiFapzzY9I8sAESaQBkEgywjJK5TJakgilkmSkSQWtSbzYFk3W6PpGto1QSRJEMq7TkezLSio35mlNE2NLkrHLfMlomzVPmkMr2xMRERERERER0bvT4IneCmu1SMXE0L7gOzrmI80comGj8eJLzyFpbcUTjz+Oi88/Gxeddz4uvfjCMJw7e46sXy/KgOIS3l7g0VGthaa/rHZMLzt3sCjFkqIcUZRgsw9+FE889mh43EW9MzSHRLQ8MYhCRERERERERERE1GvFjaq5yxBrEEX7J8kNSjLvr3/9O9oX1HHzzTdg8y02w+Yf2BxHHn00DjzoQBx8yKE47NDDscZaE1GuxPjHHXeiZiLc9Ke7MeVzU7DaKmPxjzv/jofvvw/OR7j7b39BrO2T5DEenvEq1t9wg3BzbXjsEEgpboolouWLQRQiIiIiIiIiIiKi98AYbf1DWwaxoS/bOIqRlMr410sv4pivfQ17f2U/fHDrzeDjBG/Pn4eaz1H3HrlMJ3GEvfY7AL+59GLsv+duqJTL2GOffZFnKe68935E5RbIXvHUUzNw0KEH4uCD9sMGG26I9TbYKLQ00qiOwj5RiPqIyRfV/+oTs2fNCsNx48eHIREtH1r1c+H9CI38tTEahPsVjPbCQkS9NXPG9DCctMHkMCQiIiIiGsy0DIflN0Q90T5RqvK3Bd47RMahnlXxs5+ei68dMw0jyxYm1+7mEZpUD1t4DxtZZGmGKJahB2r1FDILMBaVJIZ3HmeedRa+tNdXsNr4sWHf2qyXz9IQeLGyLy3L8bova+FkGLFfFKKFQnlnYzjzqSew/oYb6+ylxrOMaJAKAZJmCpePTtONREREREREREREvdW4QzWUtBRNapnQ5yxg5c/WW22GcpzDpx4+b0esgZHchWCIbusl5SHoYYr+bOFQShK0lpKw17fmzsb2n/gYJowbjUy7kNd9y7axLK85DcnoXvSfQebcwhtmiWj56vOaKG/NmhOGY8aNQa4FuWFKLiLhaciFIYzLqGtHZiohyhPbHC7XSmxAWq+jnBj40AF35xiQXFiCxV+O7taDnWUTEZHykq+kMtRAouYNmgv1/n4C1kQhIiIioqGENVGIiGgg0ciAlvTocFnWROnzIMqs2W+G4fhxK4VhUxFD1aei1eEMOuoOibxiE2lgReZ6BxvlyFyO1Fm0JFr4lcu8okpc8dY03yZNTc35REQ09DTzg5CTNFLnPKKpp3ndMYhCREREREMJgyhERDSQNEt9dDigm/PKchdSEdYo/qqiTooDfAecq+G2v96DqQfujzv+chs66tpWYIx7/von/NvXj8GP/u9HsoGFz3UbrYHS3I9Ody0I02l9mUxMTExMQy91zhea+UFzniYN3HdOmqdoNWtNREREREREREQ01GlpUp/yxhXJNwqsFgZAZJhroVUNc2a/hnvvuR9nXHgJ/vXqK7J+hNTVse6G6+A7P/l/WHeTrVGrVhHHzaev+2gWiBVTmrSJsGLvWijGxMTExDT0UsgNOqVFeUSRT+iwyCvCMNd2a33In4iIiIiIiIiIiPq8Oa9/zX45DFcavToSqwVa2i69AcLdv1V4Px9PPfkC7n+yjv123hJ/uOUWbLfjbmgxHXjjhcdwxx2P4K1oPPb74hQMG1EOHTd1DaCccdqFqNc7wkTqDVxUCcuIiGho0ZyhCJDoeA4rIzbTcfljtW8UXWBQjiswSYKjpu4rMzSgb2Ft9/602JwXEREREQ0lbM6LiIgGkqL8pxgO6D5RXpnzrzBcafRqiE3x0CGIovIO5H4BXnr5Tdz8lxdw2L6fxXXXXoNP77oHrG9DJepAbEfi8pvvxrZbbIGxoyO0DhsuGxY1UnRv9Y4OnHXub3HwEfsjSSw6shSp7/MKN0RE1A9o/qL9bHnJQq2Ma19bw3OHSGsyGq1xIivJ8lntHfj2CT/EeWd/F6nzsDZGOW7kTZ0wiEJEREREQ0lvgihZvQ25fH+OohJcmgGR1f9wTkblO7iV8cwDsc5cjN5Mq1/I9Xt3scz1aQkVERH1R11LYwwcjNHWQzrHEvTG1+7lNs1cRYcDOojy2uxXw3DC2FVhQxCl84utSx5aRbXm8eOTz8da40pYfZ21scUnPosnH/oH8tpcPPHPp2FHrYIv7rQjxq88GrFk1J2DKOp7//tjfPM/TkJJdq3Ns1i99ZiIiIYuyQaM0bzCoO4187WaO4RFIRfydXzqUwfgL3/9DXwuy2VZ0u1HHoMoRERERDS09CaI4lINopRR8/otGmhJIvn+naNWqyEuleG9RxxHi5X+FLSsplku1FxaNMFLRERDXTNfeKdy/e5lNqqZq+hwQAdRZs1+MwzHj1spDJs02KFNrYSx3KAjA0oml8y4ijvv+AdGjxuFzTbfFJFNUM+0SRaHWDLmIvJUvGnaB4rkzTj9l2fj8KMOlVdnkEQeyTu8qURENMiFPELylkZO50N+IPOMk7ymQ8Z1uiT5h8FOO++BG2+4ElaWRbmFiRPdZDEMohARERHRUNKbIEqep/jxd7+LN+fOw3//5BdolWkTR/j9RefhxttuxzHHn4T1J2+MkcNaGlsQEREtH1r8MyiCKG/Nmh2GY8aNRW7MwpiSBkD0Jeq9wU7GDVLUM4vY5shtCVmWIYlyRFEC4+pIXY44iRcPonjd1uGXPz8dx35jaigU02CLYZ8oRERDknYcrwH6hc1GikizUpNJjlqXqVh+9JVCfjRlyr645vcXw1gN0htEkvd0xSAKEREREQ0lvQmiPHz/XXj9rXkoVUagWu3Apz7xMTiX4/UXnsbYdTbBNb+5DPsffACiRV/J3wVrohARkSpiBY1SnVC+U8zTOQb2HfKU5lY6HNBBlDmNIMrY8WPl76JXqzVRwrQ8HX1jLOry5iQyrT0Aa7CkWKdWq6OlUgrr6FPXNu6bb40GYqoOOPWnp+LEk46F91loc9PK9itG861d9DpVz3N7Fj6eRuFfb9YnIqJ30bim5rmTPMOHy6teWz0ifOJz++Pvf7xElhlkslpF+03pgkEUIiIiIhpKehNE+dvtN2FY60gMGzMBjz72KL70xd3k27VHKt+9n3vmebQtaMNWW2+xsGyjKBUxoZkvvZkpz1LYOJbv4AapT4tViIhoSCqqWMg/yUM029DuamMr8ySPCKmRl2hsQGaEvm+1K4+iuEe3Lcp5dDiggyiaAaslZcK90XzixVunHQTnaMuAM045AyeeMC3UT9GW7Xt3t8Py0LyDontBXPMDXZLiNYbDomGFvRgiokFEgygmZLCSBaMul+ttdtoXD950KSKrcxbVlOyMQRQiIiIiGkp6E0S54/abUBk+GnlcwYyZz2DP3XaH3o+Umgg3XnklPi/TLaVmnyhayqHJIpXv4L889Uzcd/+9eOrFl9E6bhW8XmdLIkREQ5nVQEieI5dMI7YRoqyGsluAcl6D1xKccDeswSotwBd23Q377r8PkNURJwniOAk5jOY3OmQQpaH5xIuMuD8GURZ/hotrfqTvRtfRQExz3eb6XYdERPTeMIhCRERERLQkvQmizH/7TZx9znloaRmBHb+0F9565QWsM3Ei/u9//gtrrT0JE9ddD5/fdVe0lLTPQS3f0GThZPDzn56GI487WmZlaNXIi3w/JyKioUtLZDSfKGqjaLNdOq0LImRem/XKNQqA2W0Ov7vwPBxz9NeQSP7hXRq6AdG1tTxHh8syiMLcablpfMDdiuH0APAy0OBIbzhZVztA7rw/HdfU230QERERERERES175XILjjr2eBx0+NewzqoTMPuN1zFy1Cj89LSzcOSxx2HHnXdBOe7ezLr2YVsqtyLKazBaOOYcLDwTExMT0xBOJs+L5LVPWyvjBpBpLU+PZKZWltDS8bEV7Qs9R2wdqpls906dpCwjrImyXDSDHD3FqJrLNEU6411okEReUKDrNtfX+bq9vjDGwYiI3jvWRCEiIiIiWpLe1ETRcou0VkdUaoXz2u+ggfUZ2hbMw/CRo1GrpaH4olLRprqa5SE29Inyi1MuwrRp+8DZMmKdz5ooRETUlGsf6BpcqSPRshqTSD6j/djmSDOP8869CMcffSDafYKyyVgTZWDRj6ioIaLte2rVI/2rXw7mdtSRywdczXL5wF1Y1vWfVknSLx3O65SRYSQpRt0B8+seC2SnNdk+dTKstiFzNeROFhIRERERERER9TFtbiUqleF9cRNoZAEbJxgxegyMtSi3VFCulMOyopSkuF3JWoMF1fZQ6KV3HWs794lsy8TExMQ01FNepMigHEveEJck05C8wkSSZ0ieI/lHZmNUazV4E6Mk2xgZLk/yENQXjMmx3gZbY8S49TF21Q9i3EofwLjRm3RPYzbB+HGbYqXxm4bxseMnYcz4dWT9yVht1U2w6srry/LV8D//8R35EjIM3smXlJ5ulyYiIiIiIiIiWs60UMtKiqMYSaQ1vZuFFFrkVEwVf/PQgoj8XySOoXcVayGZFoIREREVhd2L8pK8UwtN2naINuuVeZ1btCMS2yIQvzyxOa9lrlkTxaDubYia6cPXsxyf3eMQbLHTAUhNCSVXRz3SqqyLW/hlQ3YTIUWcV8Ocmm2Bky8lFd+GVr8Acx6+DWeedSrSVJZb+aKiETkiIuolNudFRERERLQkvWvOq7c0gKLdAVvYUNiV47snn41vH38Ekrj5/bunb+FERDSUaWn7otzBhya+ZtcsLjztdJx0wrRQecHlNsQAmuvqkM15DQAamtIPqxmjivVuDJ/gFT8aC+xIzK9MQFs8uluqxiPRLqkjGYW2ZBzmxxMwL9F1x8j8UWFZNR4hXzgsMpfCRrF+/QiPQUREREREREREREREyw5L35eTIoBSDFXmU8yPWtAyogwXJaEGUil33VIkG0XamXxetCXqTBJqrqTyUTlJKYbJsBJ2rjdu6L0azccgIiIiIiIiIiIiIqJlh0GUBg1E+E5Bj6JJLk3vNUShFYa0PVCDSuQQGX2LtXO0GC0aIGlzqNTryOpAXd7+rqkm66Z5DNkSWfOhZV8aXLFa7dV4GJ/JEIhtKTQ7E8XLt+McIiIiIiIiIiIiIqKhiEGUBg192FCzo0nHiqSxDE0aZOm9RduG4IwmGXdG5oUHek87IyIiIiIiIiIiIiKiPsYgyjvQoIcGP7yM6LgK/Z71km6i/aEUwRP5I9vq0MtQ67cQEREREREREREREVH/xiBKD0IApFGTRAMnVpvQgqZGNGWJdGsn23rZNg9Ne4UAjIxrM1xeJjQREREREREREREREVH/xSBKDzS8oS1uafLeI88kuRpCRybvoAi86F+tZ6Idw6eSXJir+zNexq1F1TkdwGg0hYiIiIiIiIiIiIiI+i0GUd5FnrbDuAzGpmjvqKLmtXmu7kn+wOjQy6gmnR8CKgZOBppypKjXa2gplRHZSNbTAAsRERERERERUf+Um0UNkmsph5Z1eJ8iy+pwzsswg9cbSH0GV60hS+tor8s81x6Wp7Uqcu/RkabFToiIiAYgBlHehYlaUM8N5DsASuURsFHc+NLQPQWhyomB85F8iSjJl40y6vJdItUvDjJtowri2MiXiRSR7IuIiIiIiIiIaMDIc9RrVcRxBGsNosjKLA+nd48iRxQnMMbpmDZyjiiJQ3+zkTb1QURENECZPFSl6DuzZ80Kw3Hjx4fh0mg+8SIr9qEGSFsGnHHKGTjxhGkhQhQy7feZV9fTDFt+9LNYdc11UM0SOGNRRrWxdBF9HvoQxVcG7e8kkr8GNjxBK29yKl8f2tFRWROrf+arGJ6UUKvWEVfKusK7iiR5K19KtFkxeRD9GjI6nYPaQ1fhzDNPlaXy5cTE4fGJiKi3nPyY0/6q5BotV+66B7bZaV88eNOl4QeeXst7uq7OnDE9DCdtMDkMiYiIiIgGs1mz38D4cRPCeCjiyHM4be48lHtE4SZRG8v3Z2dgfRV5Mhw151CR79SyBCWbop5ZlBO9kVRb8/Dy14a+Y3X6uyefjW8ffwQS2Ufx/ZulG0REtLhm2XvBw0teMrtmceFpp+OkE6bBGMmbchtiAJ3L6Wc+9QTW33Bj3WipsSbKu9ACtpXW2gTrfH4qVt1lGlb94jGY+IUTu6cv6vAErL3rN7CWjK/1xeOx7hePxYa7HYuNdp6KTaYcgg/vvC8WyIerhXML5rdj1IglB1CIiIiIiIiIiPoLjX14GDzywP246Pzz8ewzz8PksRZpwWVzcdcdf8fj/5yB3Oe49647cOl5Z2Pm009rAUtjD0RERAMPgyjvopzkSF2GLI7RGgEjNaqlzXV1SfoFQu9azo0NQyNvqwZgqg5heS1qRc3FKMcew1tbUWmtoFbnFwgiIiIiIiIiGji0BZC5b83GH66/Fl/86v644+93wGV5KF266ZprkMHgXy+/jnkdbfjrHX/FHgcdjH/ccy+y0NwXERHRwMQgyrvQZl5yG6GKMmyu1VOLN6xrCtWJjPyVlCBHKfcylGXWwlsNopRlIpF1c3RU6zBxjFTXJyIiIiIiIiIaKIzF7Fmzsf7GG2P88BLGT1gFUclC/+36la9gnbU3gE1KKJtYlq2E3/3qYmy4/noInc93lQMlWTfS8hFtab5vW5snIqJ+qnNuoBUZMy8jko9oPD5kF5Ln1JwP/ZeHEvZcqzQs3zyEfaK8K49td5+GiTsfjUqulVMN8h46Q9Pn0ZzbDKpo3RRd38oHnJoIE+qv4o5bb8akKQcislF4rr15WuwThYhoeWCfKERERERES9K1TxT9pjz9n4/gkccew26774U//ekv+NznPokoLsH4t7GgPgy33vpXfPoTW+Ky6/6ATddYBa+93YY9d99d4y/o3CdKLv/+5ydn4bgjD0SedchX9Aw20ltSiYhoqNMyGc13NGn5fslkqOcxYplyeY72eAR+c+55+OYJR4d1NdhiQ3nOom2XZZ8oDKK8KwZRiIgGJwZRiIiIiIiWpGsQJc8dFrQtwH986yT84Cen4JLzL8C0Y7+GjjpQMilenVfDPfc8gE3XXx3X/OkOfPPwg3Hx76/Gfnvugcgs3rG8lov88JQL8I2jD0ZJ+533xV3FREREkklAW33SvEcDJJHR4EkkOYiW0ed4s2rxm3PPwfHHHKEryzzNWxaV0+uQHcsTEREREREREVHfyoGWSgv22f8g/P7XF2PnXadg1huv4OZrr8aD99yHGy67CHNefRErjR6FDdaeiIsvuggfWG+dHm9Q0nl661Js9eYmEwIrREREQSNPKPIKkechSKKzw7ww3nehjX4RRMm93o2gFTmBNE3hNbzkivYynYzXZV6oMCMplfne+bANEREREREREREtH53rZ4exPEcSx/jwhz+Kg474GtZee228/tob2G6Hz2Obj2yLI485FocccjDGrLQSpnx+Bxx40AHYcquttOAn7GMxssPMZaHcJ5T5WN7nS4OTlmCGcs/QN5BOOTklqpiferxVd6i5FO1Zjg635JTJ+dKe+bB+m6R5qcOCtC7nkkeeVmX3NXkElpnSwNb5CF44vljARI5y75HW9XgXi7Kq5aZ/BFHkhWqmqW+AjSy8Bktk0jkX7kbQd0LnZTJt9Q3TWdaECwQRERERERERES0HWmDTSdHcVtEclxbOaJnNJpt9EONGjwTiYlnRpHqMkpY4xUlY175DgEQLwYq7iRd/HKLBxIQG/5WDNmmn3QcsqNWx55Hfw8e/ehK2nXIkPrTjQfjozocuMW270z7Yduf98dFdD8LHvng4Prrbkfj0V76O8y7+DRDV4PMOPTPDoxENVJ2PYB0vsghtjn2R0BS7BuAbFo0tH/0iiKJvgHb8AicXFXnF+sbodMhEvUMcFRm0Zrq5S8OTznVdZrJERERERERERETUbzWLd3MUzQ9ZlGOLfPg62GrnQ7HdXsfh43sfjw/udcIS0xZ7/Ru23Ovb2GrPk7DVHl/HB/c8Dpt8/iC8Od8h9cOQaeJN50TLXL8IoiDPQ62TTJ5OljfawfR6whuZZ5DKya81VTqqVeRRCdVU5mrQZbnHmIiIiIiIiIiIiIiWTrO1HU3zXAl124IOmXzbAR1JCVqHZMkpQtXEqMGi5g1qzsicCCZzyNNUK7kgKqqDEdEy1D+CKHIReXbmTByw71fwn9/8BmraL0rmUZXhD//3v3DYQfvhsYcexJ9u/AMOPXBfnHT8NMxva0do2ouIiIiIiIiIiIioH9IWh4pWh4pyTO3RoGQjOO8RJyWUKgmsSxFn2RJTaz3FsLSOEZJGug6Mcu1IUJcHkO1192kaWvkhomWrz6MQtbg1pGaHSjo07mXc+eCLuOBXv8HuX9we01+eB1suwfo2TJ16BE694Dd45LEZGDkqwXkXXoDv//QMtJS075Si8/nF5D40+2V0/waNtjjfC+1+qfFP99GYG1ttwbB/0P5hFjZlxibNiIjeh6LJyNAdV2BQaWmRa75eU7VpSX7rJCIiIiIiomXBNorvimLYokwvhYtzzHc1dFTrcM6G8swlpTSOUI8i1KIYdVtB3VRQ1tonsu8odii1JPK7tofyUiJaKibv3ANLH3jlrQVhuOroYfLXy4mtVc5ewu9vfRZf2PGTeOHpB/BG+yhsMXktVJIMmS/j+uuux3obbAxUX8N99z6M+VWDIw7fD5Xho0MnMkUYQfYlL2VB6nHqz07DtMP3RT3ziOTCYm0U1ljc4i+7GYrQuc3unsqJxQ4H/BvW2+UYtOReLkw9B1J0m+b2ejnUcSNzdT82d0hNhAn1V3HHrTdj0pQD5TlHRfAobPHu9Jl7uUhqZ2shKCQXwhHpHNTuvwI//ekPkdXa4HKLOE6KDYiIaAlyWKNfK01x/ZTxjizHZ746FQ//8bcoRTnSNEeSaMeYi5s5Y3oYTtpgchgSEREREQ1ms2fNwrjx4xtTS0tvVtVyIFs04y5j3z35bHz7+COQxM2ynd6UlBANNEWXBcVQRahmdUw58XKsvPmWGFGvo2YTWWXJx38s51BmiqCMrq3hkrKvYY23H8N/nXAAMpkRR2icY0SDQ+eydz2PvJwHs2sWF552Ok46YZqcD3ko39HKFM11dTjzqSew/oYb60ZLbQUEUeaHYRFE0ZoeEUztZVx++8vY7VMfxIyn74OrrIlN1loZSZLizjsfxMuvvIY9vry7rN6B3LbgkX8+i1G2DettukXYV/EmFkGUdmdw2iln4JvfmCpvnkGkAYhevESNAjc/DCer693JUZ5iuz2Pw7o7H42Sy9Ch+9MrURe69+a2fRFEGZm9heyhq3Ha6T+XpZk8mAZQ+vRjJCIasPT6a40PGayTq3Yi4x1yKf3U3kfizivORmJdkTf18KWTQRQiIiIiGkoYRCFaFoqaIXr8Fz8zI9RchinHX46VN9sCo9I6anEC14vARyKraP/Rxe/VXEsFUfJVrDn3MfznNw4MrdfEWmuFpxINIp3L3ldUEKXPm/PSF9H1PDZJRU74FBedfRruvP2vWGPVcbjy2usxZ/YsXHfd1ajVa7j5xhtxy01/xEXnno3b/ng91thgI6RZ93oh3rtQOyX3eRgqzZyXlMKbKxca/afjYVOZrxcfvVvZRhFiSf1BCKjIwWLlSWpVPn3OPb0mJiYmJqbuSYPr+oUzTMs1VcfjyCKrVeVqn4frvuYhRERERERERMtGM/BRJJ9beCtDG8HLfF0W9SLleaa/WgEZarJ5iijXbub1FkEfWlZoFIcS0TLU90EUjbpKal40dNybMnbd8WM4ZNo0HDHt61gw63UklVaMGrUSfnTyT7H3V7+Kz+2yC3b6wu44+PAjcPyJ30AlSZCEHpMWp0GFUGVDC8lk+r0UhOkFS//pxUYjV2FfIgRSJOmwP9DnFS68+nwkaUEgERG9V3m41ocrqOZNYZ5eYyPYqM+zRyIiIiIiIhqU9KZs/Y2pQ0k5kOUGNWtQjyXJ78+qsciMWWKqRwnqNkZqE+RGAzA2FINqMj12Z0BEy0KflxJp81aaTCj/NzBeq7K1QMurbIhRGIwcuxI+v8MngbgctokjgyJeYmGjOIzn73Bh0LiC1kYJxWL6GHKBWTrF9hqL6fM36x2ETvNDIIqIiJZGM4vQwHSWZY1prY9CRERERES5WVT2UHxH1r86b9H8UJO7Md6k87S5lc7rEQ1szWNfh8Ux3/W4765xDuRVGWpZZXE+hO1yg+HubYxJnYxGoa+T5s3S75ZKTpOX5JBkDqXMo8VliH0eyljh30s5qD6f4rVouWezewOd1mW96R6BaKjo+yCK0ZoTnTJYo5216wluQifwyCOMHt6KYZWWEJ81XhvTKpYTEREREREREVF/UpTaNBXlPTJvqW9qJepP9HjWYlRtiivEM3ov9GWspZzFDeG6p8h42LwFSDPkblHLCEsSwh6yst40nlsbbjKvy/7zUCNFFryn8665bi6bafcG8px0F425PIWJFunzIIqef8U5qIEUveLoxScK/Xx4vWhEceOElWXh5O8v9T+IiIiIiIiIiKizRf0vNO5qz4t5C2cTDSI91bx6Z3oWFGdCUaujURtFzw9JHu3II9mf1aBIWG2JQvBEknZC72yEzFqkJoZvdEnw3lrk0XU1CFoEUIo2GfQ5anf1OtTU+1dLNJitwCCK0BNbzsXiJJUnE0eoy7XEuSxkvQx5EhERERERERH1d1quowGU7gXMOkfv3CcaDJodwGsrO1pqWRz575SK8EShcX7kRSDFhJvGPbR/A+1gXtfvjVweV/tG0SBKXfadag0UK4+i/Xwa7T5BO57v/BzeOS3SPYqjMR/thoGICn0eRCkuGHJyy8keKnzKhUJGYRq3LugTiuK4WKZ0PV1eTIVhMxERERERERERUf+weMFsQQtje15C1J/1fMwW4Y6i1lVvj+scFho0MSaS7SPZvAjERLlMOyNJ1+pdSWczKBOegQVSmYx0SoMzeQbvs8ZzXDLvm4EdSbrfsJk2ORbL00lkMlr4eERDXZ8HUcIJqUkuFiFuIn/0wlFEYIEkDBrLGni6EhERERERERGtWHnu0dHRjrPOPBPnnXMurvrd5aEgttrRhgfv/huu+PVvcPl1t8Knbbjyxj/jjJ/9DH+/405kobmR7uJE+4oQRaSFqJ/S49PDh0CFphQ+qwNODmyfdU+uOS7rapLNNVARYh0o+i6pphlSG4daJbKn8Ai94Rvlp7IXxPJcWnyKSM7LKM7lIbOiAa6so/H4nZJrPJeQinlhV6HQVR9dkjwXL+vlsizzddT1xA01Z4hWHD06i9qMLgybQT/Ne+I4acQN7HKPH/R9EIWIiIiIiIiIiAYcvQH2xeefwchRI3Do4Yeh0jIMWbUdxsbYeLPJ2GqrzdHaOgzz51dxw623oWXYMETWwqZaTNydFoJpTwxuYcFYUWDGxLSik/Z94nMvx6ULMT7vDbLMo5oZtNUj1FEKARDIsd81aWfvYVyjFJLq3qPmZFs53nU8lfE2J4sSjw63AFHkQ0fzvWHlyVh5PpqM7E8LkxekDiYahjyqyLlUkvGWhc9lYYr0ucjzbT5nE4XX6GQfNXnoaiMtkOfWkcnzlNdqTIfsn+cl04pLcnguTErzitB7T27kXJLjV/MNPablXA0n6nJkJJNavo/QxexZs8Jw3PjxYbg0mk+8iDTphS1HWwacccoZOPGEaSFCJJcRuRCFFd4Hj213n4aJOx+NinwY4UPqXEWmQZ9Hc24ziKtV53R9KxfbVC5ME+qv4o5bb8akKQfKdSsKz7U3T0sr0WnnUNrxvjZFGMkrGp3OQe2hq3DmmafKUrmYG23+jIiIek/vYChqQer1Wvvj2manffHgTZfKNVrnLGxUcjEzZ0wPw0kbTA5DIiIiIqLBbNbsNzB+3IQwXpR95Hjyycfw4IMPYZ+v7I+rf38ttv/wpmhddR0k7nXU8rG46qa/YcrHJuPkX92I7xx3AC79zbU4ZN+9of1ea00WvRPfGt1Tjv/58Zk46pB9UOt4C669DVGpEh6LaEXTI9VojQ0Rao9Ieh3D8O3vnILH51RhkhGwleHIilU6KX5J6hZGi1xzh3LWjtxEssjAeh/KClcaNhYjxgzHuh/+OLwsS5ulxEug5YTaH4oGU/QsyuThSpLuvuoCdHTMRzp6ZSxILeK4tdigE30E3V5/BTt5HqNS7VvFoib7031pQfRI24b9t98Ge+z+SVRchiydi7jcu+dGtOwUx1yz9NzlVo7zDPU8DgFHPbX82NVx+Xnn45snHC15SlFub+V41i11Kx3OfOoJrL/hxrqLpcYgyrtiEIWIaHBiEIWIiIiIaEm6BlG0QPjNN1/DhedfiGnf+Dauv+IK7L3XLuiww9GSvYLX55Xx1wdn4rNbrITvnHczfnTiwbj2j3/BXlN2RJLI9+zOQZQ8xw9+dh5OOPZQJBGKshv5fk7UH+jxqQWzyucRMjkB5ssPx8P+41yMmLQZknIrvBzLWpuqq+K3ZGO+7CfRMstQYijHuZxDJk+RRiU888STWGvSJNlXSX6TxnL4L7l0L5L96Z33GkTRoIzWhtESyDefegzrrr0KqvFwmLiMrEsrXKFv6rBt8Ty0nLHVZaF5sKKJsCK4Y2tzsLqcy986bh953hmciWBtKWxD1Bf0LGieVXqYK62BklgnQzketTxH1nqjI8dl55yDE447Mmwkh7Qcq3o+LNrHsgyiMHciIiIiIiIiIqJuOt9aVIwZrLTSqtjuE5/EVb++BJ/YfjvMq2b449VX4vFHZuDq3/4aC157FnEyDIfusRuu/fWl2HT9dZHEi/bTZGSWBlNia8KNTKGQV+czMfWDVAT6ZESm9FjVQ7hk65idD0c2bAyqTmtzhDUXS0ZSUXNFO2WPkZsEHbaMjqgUUnuk4y3wNkaalGWnFWS6trbP1QthLQ2GNMb1GWg3J7NcCbXyBDg59zJX1DfpnLT5oxD0kY00GRuhLUnQrimW5xhHkuT5VmTbPEMk6+v+NYCij8HE1FdJNcc1rqipqCChNU3kb8gr5OzSCY2cNOmJuhzpmURERERERERERLQ4bRKjk1CTW9JHP/4JHHDIIVh9jdVx8/U3YrMtt8TkbbbH1GOPwyEH7YNR41bBlhutjn0PPQKbbbzROxZuZS5DHzeQQtRrudd4RRHc0/LachSjblqQegftzjoU5WqwpVMKrclICgW9jcM+lpTIca4p0q2MzMkjeJejrK3VoCSP08siWt1p47FCEEX2WZInl8iU7iHXW/Z12Fync9LnprVOZFyfmrZrE8vq2jF9LI+v/3J5faFlnVheQ9QS1iNa0eSQFRqkbCqOc22WrnHEN4bLD4MoRERERERERET0vnxhr69gtTXWCoVbtY525L3s24GIiGigYBCFiIiIiIiIiIjel8TkqJT0znqPpFSG9ntCREQ0mDCIQkRERERERERE74s2W5SmKUwUwVgLJ+NERESDCYMoRERERERERET0vkRRhKRcDuMaUImTJIwTERENFgyiEBERERERERHR+6b9oTQ7/LVR1BgjIiIaHBhEISIiIiIiIiIiIiIi6gGDKERERERERERERERERD1gEIWIiIiIiIiIiIiIiKgHDKIQEREREREREdFSyDulDHmeS6qHcSIiooGOQRQiIiIiIiIiIloKzQBKs3t51XmciIho4GIQhYiIiIiIiIiIlkIziKIsjIEkDaKw2ImIiAY+5mZERERERERERLSMNIuaNIjSrI3iG0MiIqKBp8+DKCa3ISFv3qXwbhlpc3nzbobmeOd5RERERERERES04mgZTU/lNGzSi4iIBr4VFkQpstZ3ymSbmss7B0+aOo8TEREREREREdHyltZTtKcO3ueopxmyNJXxGryroy6pJvN8KMZpR83lyLMUqe9e/KSlPFEcQ9v+8rpB2Iio/zB6D7gMNenfeuYQeYeSzEgl5YMwRqjnor4s5zzyXM7fnOclrVh6/kl2IyTf0fNOk0xpk5GlUinkIcqEChvLT58HURarzblEzRWbG4W3qFMiIiIiIiIiIqK+4LxHlgNXXfYrTD3kANx+6x/hjYHLM9Szdpz5s5/h+itvhvdtcBiB3158OR689wFAprvSUh1riv5TrP7REmuifiaUPobCWROCfkkUIbJRKKHU82GwSZIyIn2NURwKqYu+jYhWHD0CF52HYST8zeT802D+ovnL1woLohijL7A3J2JP6zR2QkREREREREREfUKDHa+98jLmvvUWfnb2hXhr3nzEMLDyb8ajj+AzO++B1tYxoYzrXy+/gnIlRnn4SMCXGnvoolH4Ff72UUEYUe+ZxsFZDLxzjRoaDnFkJEXFwkEkcxmcL2qaeTkneVZSf7D4cVjEBVzjGF0Y6FvOAT+Ta92sPjRn9twwHDN2ZONFatT23S46urwZ60klJcWovH3yNoWx4m9RzawtA8445QyceMK0sJWTpXJde588tt19GibufDQquZcpg9x235m+gc25+pg6LmuG9a1cWFMTYUL9Vdxx682YNOXAImKtH3LY4t3pO+OtRe7l9ckGkbyi0ekc1B66CmeeeaosdTJfv7IQEVHvaTVQvavGhut1XbKabXbaFw/edKlco3WOLGus2dnMGdPDcNIGk8OQiIiIiGgwmz1rFsaNH9+YAnKf45lnnsYdf/87DjjwIFx77TX4wq67AXYBsrQD/3pDlj/2Ajb74HjceO3d+NSUKXjtpefx4Q9tARNZaNNAuYZcQnlQju+efDaO/doB8vW8iqxWQ5Q0y3yIVqxcfita+d2ohXFOuyawOVLnsMf3b8M6W22ht8HLshzdCm4b07ZR3NrTKkpnPTl9Oj6w8WTUdB1JvWkerKe74Xu9L3ki4fnIuafljTrU377yKhv79Shl87HynEdw0lH7IK3XwzmrNVOIVgQ5XAMnR2jJZEjzJJSNa04yPxmJy887Dyd9/Sg5tLUcXvOWYhs9/HU486knsP6GG+sullqfB1Fmz54dhuPGji1OXhnXv5lciKzVF1tcoCR3lWFVTlgZj8vhZM59hjxKYHxVtpGMVU5ifXP0jWkGURakHmeefg6+efzUEJHSgMV7U7wdxbvi8bEvHYO1pxyFSu6Q6bOQTL+r4jUUdKmO62taXkGU4bU34R69FqefcWp4v5w3ss/uz4uIiN5JEUTRH3CRZLY1uY5us/O+uO+GX6EcabvNBibufl1lEIWIiIiIhpKuQRS9O/2pGU/in/98DF/a/cu4/vrrsOsXv4AsfRMGJcxeUMajdz6KuPUVXHD+zaHviHErj8FPfvZ9WJuEAtnOQZQf/PwCnHjsIeHmV51XlMgQrXhyqMtxqSV7JjRhF4INPsPnvnkN1tlsMqz+ntT5XYtVGxGTgRpEKft2rPb2P/FfJxxavLaenjxRH9HzMAwllYxDPY/k2PVwMv+1jgyXn3MeTvz6VDlMl38Qpe9L3vVVhLT4SWhtLC9UX15xAs+v50jTDFFSljdM3iSXySIv895GFmqjZDKpp/niNNONjAYdJFt+H4EFfWz9gHSoz0bH4sgijuX59VALZUUIXzbkyTXfwp7vlyYiop4U1/ZiqBmvDvUqmuh1XhcI8/6rMBIRERERDVpaLrLGGmvh5WeewbnnnINSFKGeejz2wDN4/JGZuPzCs/DgI7dhq60/jV9feg7+76f/g30P2At53vMNri5L9e7ecL+qlgnp13Ampv6QEv1x2CjBTeS4L8m0zk+NRYfOzNyiEt5BxUNbDrLGy3lZtO7DxLSikp6HmvT8MyZCWYZ6v2tiPVrjuIgNyHqalvfZKA/bt/QF9fSijJykoaaJT1GttePMM87Cr88/B9defoWsX0R7//nAvbj2N5fgtFPPQXtHDaaHIIm+byrPNbTQmNLIaS+TZt5Fx0m6ryJCq7VkisBK/6DNzxSBlMbzVs1xJiYmJqZ3TSFnkFEdaqYcJl2KOHxRXLQqEREREREtzjmHlpYWTP3GSTj48MPxuSm74J677oS3ETbeYit87ehp+MZJ38SoUaPhfYaVV1kNm2y+VbN0hoiIaEDq8yCKBiM6BySKjLTxNxReObz6yksYs9LqOOjIw9EyfDRS50NNlc22/hC+9NV90TJyDNJqh2zVPRvWDp5clsmSonOZXgeFdb3myrJdswCtWesjy4pOlfoDrf6qFWBDUWCI9nR/H4iI6B00oiQhD9GhXtqjBHlo/lGD5xpMD2sSEREREVEn2jeCS+uoJDGi3IcmzD+x3SfxoQ9/BElkUZL5pVISblC1kbY4AlnH93gTLBER0UDR532ivDFnThiuNHZMUYDV4F0Ga1PkSPHUU8/g3sdnYf8vboErr/4Hpuy2C2LjUAqhgwxX33ofvvC5j0hGLBlyHDX2IsvkpbRlOX5+8qmYdvh+oc3COHRK1sNL7DKr2IcGJvSv1osxSKzDzof8FybteixsliIzkun3ULKm2zTn6tcCHQ9BHPm7PPpEGZXNRcf9v8MPf/i9on+YqNzj8yIioh7IRVuv8nqN1s7JYpnR5ix2OmAaHr7xUpmjzUdK3qK/+LpgnyhERERENJR061i+UYSkNVKiyMK7PDSnElr0sNr5tg2dUSelErzMjyL5ti3baNKmwHrqWP7bxx+BJG6WELFsg/oPL8d5OK4bZW7a1cB237wOa266IYalWk5nu/c90lh34PaJsgCrz5uO/z7hoIVziVY0OWzDcV7w8JKXzK5ZXHja6TjphGlyaOdwufZ5u2hdHQ7sjuUlA1adM2E9g8MLlJNZa3u88q8XcfmVV+GQw4/EjVdfiT322Q/Gezwz82ncd9992H6Hz2H1CSshlwuZZrzFm9gMogBnnHIGTpQ3UE91udwtbK7lvfPYdvdpmLjz0aiE2h9yeemhUK3zB7msgyh54/XpxdfLeAUpRtT/hY6Hr8fpZ50RHidcGWXZu9Hn2Pyow0tY2GacPmO56OuoJCKioaHoWF6bR9TraN0D2+y0Lx686dLQ7qteoXu6JjKIQkRERERDSY9BFC1/0DKNRjlE5/IGHUa2URyr8+R/CJ7ItP5lEIUGEgZReno0or4nh204zgsrJojSP84GOYmbFyR9iautMRHDkwTfOvYobLr55nhj7jz86oLzcfstt+Caa6/G9//jW3jgnrvgtWv+Qa8ZbJGDQf46o3VR9FInF2q5Ija+k/RKuH6HlXWP+tEXl0w98N5T02dERERERERENORo2Y2WKCwqw2mUMMi0pmYARYV5jRtRF61NREQ08PSbkKLeraDJaoYrw8OOmoafnnkuNpq8CZ554lFssfVW+Nqxx+GyK67GL846H5tt89EQZRrs9B7pKEQ+NIhiFg+ihDVEpy8v70TXCF9ywrq6pUagQlhGvthogzZh741lRERERERERERERETUP4IoeaMaqCQtwtc7FbTtzNjVEScxPv6xj+MDm20e+k1JcodSZJDEUWhyZbDTzti0ikgIgjRS+Cvvlb58bdd/UVBk8RSqyUpqThdBp0YKO9LAlb79GpBZtHciIiIiIiIiIiIiIupnNVFUUbafoy6pUqkg9TmsBlTiGPVMO57XlQzq9bS59qAXwhvywkPdk/AGaMhDkwZHdF6Y2aNQ8WQxOkM/9khGtTvlGFkeIQ3JwvWmAUYiIiIiIiIiIiIioiGgfwRRTNEnysLiexlvTRJ5dhFKVubHSWjmq7XSgijSGigWlXKpsfLgFsIkjRo32ohXlNeRhD5MPPI0R+ZT5LkLned0TdppspMdOK/9nhjkvgqTp7JTB+9lH6GCisxzC1A2VcRIi5ovRERERERERERERETUf2qi0DvrXDfEa/0TG+GRfz6Jo485HkcddRKmTj0Wx3ztiO7pyCMXpmlf+xqOPnIajjryGBw19RgcffSxOHrq0Zh21DT86abrkbsOWK8BFo2sEBERERERERERERERgygDgtbSyeFCa14Wczo8opU2wMof/zKSLXaH+eD+mLvt8d3S2x/9+sLh2x89HvM+ehzmf2Qq3v7wUZj7oaPQsc0RiDfbA1fe8A/Mro/AXFfB/LTWeEwiIiIiIiIiIiIioqGNQZQBQZvYKprZ8ibC8OEjUM9yvN6RYH48BnOTkVo/pVvSjlQWDo3Mk6E1FpExKMmScl5Hqawd1Du0Jg4VpBhWKofHISIiIiIiIiIiIiIa6hhE6cf0wyk+oBzeWMTwoQN+7WgfpeGYbyrI4xYYH8E600OS7RvJeBPW87KXor8UwBmZlmU6t2QcSlaDLexYnoiIiIiIiIiIiIhIMYjSz3Tt1l1DGtrXuzbjFWln8jJRdh1hRY9EK5kglvna3FfPSfchQ9kuzk2jc/qidkpmE9lHWcYjxFELbByHDvyJiIiIiIiIiLrJc6TOo71WR5amcN7DyzyXZUjrKWpphmp7eyi78F7nO3jnwjZEREQDFUvMiYiIiIiIiIhoiTRokqc1RD6DjROZ4WC1RYs8R1JKZDJFqVwJgRNjZX6kt3ICCRu9ICKiAYxBFCIiIiIiIiIiWiJjI5g4wYvPPYsLzjkLL774QqhlYqIYHWmGv992Gx5/7JEQPLn/rjtw0Tln45VXXkEmy4iIiAYqBlGIiIiIiIiIiGiJtKnwl//1Mm66+Wbstd9BuPfe++C9Q0dHGx697x6stvba+Nerr6GjvR2jRo3CHgcegttuvQVxudTYAxER0cDDIAoRERERERERES2RtspVrdUwYdXVMKK1jJZhw5BEESrlCrbY5sMYO34VGJehpaWCdTeYjETWX3nlVeDZJwoREQ1gJtfevvrQ7FmzwnDc+PFhuDSaT7xoWrPodL0tA8445QyceMK0ECFysjR6321vemy7+zRM3PloVHIvUwa5tunZhT6P5lx9TB3Xztx1fZs7pCbChPqruOPWmzFpyoGIbBSea09Pa1nuqyttidRbi1zbMJUNInl3RqdzUHvoKpx55qmy1Mn8uFf7IiIa2By8XAiNseEaW5ffdNvstC8evOlSua7qHFnWWLOzmTOmh+Ek+UFIRERERDTYaRlO5/Kb3Of45/TH8fjDj2KPvb+CG268Drvtsitc7lBLHdrnzcM9996HKVN2Qnua429//CM++slPYNTI4fLdW75n516+a9uiHxUZ+9+Tz8GxR+wPl7bDyDIbx8UDEb0PcgTJHyeHVg5o+Zf8qtP43ef+53qgZRhGyvxYfgs6Xb4EzvR0LOr2HpM2/gCc7DiPijK5xYRjWx6+MV8HjVmL0VlPTp+OD2w8GTVdR5KW1S1JT3fDv999KT0vw7DxfHX44N13ojxc3q9SGVlWh7dF30bvziK18p7JgydyPXDyXpV8B6ovPYqrT/93xPI4cSyfSdf3i6gH4bzRYSN5OX5KclTV8wiRnIM67y07Apefew6+9Y2jEBkv68SStxTrN7ed+dQTWH/DjWVs6TGI8q4YRCEiGpwYRCEiIiIiWpKuQRSXOXTU6zjn1J+jdeRorLP2ROyw0464/+47ARPhgfvux5y587DfwQfjlJN/jNVWXwsTZZ0v7LkXyjZH5yCKlk383y8uwDe/fqjM0bnyLVy+nxO9byEgkMt/+YEXjiWDBbUUn/n3KzF58y3hazXEvTzG0lAqt7hyBDz86GPYaKONUUoipPJQ3X43NoISAzWIAuPx4owZWG/yxqh21OR1auBjyTsLAavGviKZ0r2V/Tzcec25uO/qc1BJiqBUL58WDWXNE6bTyeNkVMuxc8lnDDwk+8CbNeCyc8/D148+LJzuGkRdnkGU3l05iIiIiIiIiIhoSLNxhJYkxrST/g37Hz4VO3zu85j+xD8xv60dm33oo5h67HE47pvfwsTVV8ePfnQyvv7147DHHnsgyeqNPSxirAk3hmqBrxZ8aQBFC72YmN5v8vJHA3U+z+FlQmucJPBI5PjyLkcUJci8jHdJOq9rSqxs2yXp/Eq5hEpFG6orbnkebHJ5kbVaDVk9QynJ5TyNu71fPaVIa5LJ+x2SzLAynckwisvyvsdwWSZ7L2oQMDG9e9KAexGI0796HmsQRY+f4hyXM0+OL70BVmueaV4SwiYyf3liEIWIiIiIiIiIiJZI71bXYiptTqVsvUY+YGXG5lttE1q/0LaTKrFFLUthyiXkUTHuo56b6fK5Q6bNIuleZVzvimdiev9JDipjYa2Ma9KCVROHstV6rSbzcyRyfEZdkjYz1TUVWy/+T4Mz2ryVBhjSNJNjdvAVqxobhaCHtfrarLxe1/39SrqnLI7hoiikTIMmMm1NhI62Bci97kM+B9lfz58bE1OnpP86j4d/4eAshjot57fmH3pO5rJeY8FyxSAKEREREREREREtmTGIkiQEPeLQ5wQweZPNMHb0aMRG5+awUYSSpMSaRqfzZURayNUDr3esy36KWih9UApGg5oeQaG4NZdjSg5OvUFde+fIcjku4xhZpnewF00DdU46r2vquo6mWHfobQjEJKVI9i8zBxkj56PWGdHoaC7vYy7nZrf3wi+eQk0U5xBrzZNQI8XBauBE3q/hw4bL+ySfirx1RV9IRO+NnnZyygkTxvUw0npg+ncxy/n4YhCFiIiIiIiIiIh6RYupYq1ZYgyiKApDDZzoHexGhqHAtDG/WcZVNLfSnQZREArDdB0WUdGyIMdTCOgV9LiyxsqxKktk5qIl751uH45TGWrTXqa3HY8MINpUUjgTXR6Cnz29XzpHk2sMVagNIEIQSvag/ajovlJtxissG3zvFfW1xfMIDZg6J0ehnpg9HqnLFnMoIiIiIiIiIiIiGgJYmL8sFE0omT5rSoloRWMQhYiIiIiIiIiIlrHi7mCi/kYL/peUaBG+P0QMohARERERERER0TLXDKIwkEL9S+cjM6Rc+/9YPNEi3d6vZpI/zSHRYMcgChERERERERERLaVF/ZsU9G71ZrETS1mpbxQF+kVH5o0x+Rsha8zoscBfl0nSo3XQFpQ2XqNqvsaeXquukctf7dsok6GOvytGUGiIGLTXBiIiIiIiIiIi6gtakKpJAylNWvjaLIBlQSv1jdz7hYEUZUMn8xEyHW8eh7pC59SFbDLoNV+jkdevqTOv750xoeP4UHDc+b1qJqIhhkEUIiIiIiIiIiJaCs2ASTNoQkRENHgwiEJEREREREREREtJi5hYzERERINPn+dui5rga1bxLKqAea1uJ/+cz5DnxTLvtOKYzPVpmKcdO/lGCh09eVYfIyIiIiIiIiIiIiKi5aPvgyiNfyE4on81OCJDay1qHR1wrh6Wd7S3wxqLtFaDyx2ykGQ772E0yTYZYyhERERERERERCtMe0cVzntkLkMqKfN5GCqfyXTm4HLWUCEiooGrz3MxhygkpYEQoz0ZaYCknqFSaUEUJXDOw5RbUKvXZbmVDDcPmW7kUtnWoCabpKlMD4WenoiIiIiIiIiI+qlSEsOl9aKDau8BlyEyFrVqFbkpbqPVch4iIqKBqu+DKLkNSfJWQJvtyrXJLslsI4ssz1BzOTJt70tWiGUgk3C2hESWO5uHZr+0ma84iSDZc9gnERERERERERH1vcynMHEp3DBbr7tQngOZiktxaMjdw8oSBlGIiGjg6vsgirEhFfVQQiQlBFIeu/9+TD3sUHz/v/8TLjfyxHKkWYrbbvkjfvK978A5hz9c/lvsu/eX8R/fOhFvvz0fEWMoREREREREREQrjNY2OfsXP8V/nXQibKmEtBEveXPOa/jfb58QSn60lREiIqKBqs9zMb0hIdyU0JzQ+iQmwksvvIhfnHMxttthR7zw/MuIoghRuYTKsGFI5Wl6WWfU+HE4++KL8f3/dwpGjhgWOpjviWbORjLxZrXR96O5Z91egzUhYDMIgzbaJ014r3RCawAREQ0hnbORKI4b06znSERERETUW0/982GsveFG2GHKrnjwrn8gjiyq1Q7M/Oc/senW2yDNivooREREA5XJRWO8T7wya34YrjpuWKOQqg4nT+Hma27Fjl/YGc+9+DxeeX0uPvbBLZD7dlTTHD/60U/wnf/5Dh6+5294YvpMzGvPcdAh+6Pc0ookagZKPPSlLJD1f/nz0zDt8P2ROpnntemvUlijs64vuthHo7P7MG5QKcX4zH7fwqRdp6HVAh3ak73tXrSm6zfnNuvYaFhCu7+3uUNqIkyov4o7br0Zk6YciMhG4bl239Oy3VdX2hONt1beE3lfZAPtnWZ0OgfVB6/ED3/0A+RZGzJvUerh/SIiGiz0Sm/kqqq1HrVpgcTkqMr1/TP7HY0H//BrlGMgy0xoNrKrmTOmh+GkDSaHIRERERHRYDZ71iyMGz++MdWzv/35GlRGroLRI9fAw/fciy/uvStiq33c5rj22j9g5513R6mUhAIOvZEzl+/gVm/izHP86JQLcdIxB8PaRrkGa6xQLxTldj3zcoxZOZr0eNJ+latZhp2+fR3W3lx+w9VdUYZmuxxnjZuKrSxTOujpPmOd9eT06fjAxpNDf82hm+eu6y3LffWgpzOkV/tqPgl5QrqPpX5esnHYh3wa+stZh3oWa6cNurpOt9oa7vr9WbjvmrPlmiBzw/+edka0ODm0Fh4pXia0u4/EuNBspIWXf8Cr7R6/PedcnPj1I8N6YRs9LnXYmJ751BNYf8ONZWzp9XkQ5Y3Z88Jwwrhh8mrktDWpTBlc/uursdMeX8a9d96OtdZcByPHrY7xI3PMbavhvDPPw9HHH4cE82GTsbjh+j9hmy03wKprrhViGsWbWgRR2rIcZ/3ybJx4/FFykhenZm9e4KL15KSXq4OO2zzDx758LNbd5Wi0yEW4KvPNIAuijKzPQvbItfjl6b+QfWmhohyMvdkZEdEApl/tQhBF8qFEfrDVvMHHdjsY/7j6/HAtzL38sIu6fz1lEIWIiIiIhpLeBFH+/JcbMGrEyiiVxuCRRx7DXntOgU08qu3zcNONt2GXL+yJJLaIJS0WRJGx//7RGZh60FfQ0T4HWbUDpXJLsVOi90FLOLV41Wr5nRxnTn7SZWkdh556L9bZZmuZH4VWbboVezWiCQyi9HJfSjYO+5Dz+J2CKFE2D3/63S/x94t/grSj7R1vdCfqiR5HcojJGa3JooQUdfkbIwsVMuLxa+Gyc87Ft086JqyrwRZr9chbtO2ADqLMmv1WGI4fN1JPJ3lRcnqlDg8/9jh+/rOfYv1Ja+I///v/8B/f/384aN/dcPLJP0ZH3WCDdSdiRCnFPfc+gi23+RSOPe5IRCV54+TNKc7lIojSnuU445dn4wRZbiI5jWVesfw9aF5FfIZt9zgOE6cchWG5Q912vytZNT8ctbSBj2W5r656DqLMRvbINTjtjFNkHw6ZvH9J3PPrJCIaPCQbNlYyWbm2yrfC9tTj47sfgn9ceyFKkVyJQ5C/+5WVQRQiIiIiGkp6E0R5e8GbOPe08zBq2DhM2XNvzHnjeay2+nj86YYb8MTTz+Ezn/o8tvnEJ9BS0vKLRUEULXL9wc/Ox4nHHgKtBK6Ftd1qCBC9Rz53eoQV4zCoOY8dT7oKa222ESJvoTdca1nhYhq//RhE6eW+lGwc9iHnsZYiFmf04kGUkpuPu649Dw9cd678ztYgqqzR04MS9aB5pCysiWIdUh8hMj4EQ9+o5vjN2efihEZNlFB2LhvJqmFbHS7LIEqf506RvCRNxUvRk1ZeVpxgo00n4/wLL8a3/+s/8eyzL2HDdSdhvdVXxmmn/RLnnHEm/uPfvoWjjz8Wv7nitzj2hGNQkcw3nK1daH8oVlMj4w0n53tMulf9gDTpCa4pfGB+8LXhqS+5Sce1T4DO7wUTExPTYEvhS7P810xXM2K95ms/XJpvyOzA6UWfiIiIiIiWaGTLCBz59W/ggCMPxcpjh+OVl17GiJFjsPcBB+Lf//f7+Nh224WaKF1p4Wwk38Fj+X6uQRUr38z1+zgT09IkPdKM/NbT4ysUqGrgTo4vLR/03kkafGV7/ZZ8Don2ea3vv34m8nl0/qyYmN4tNel5HPoql2NIsxKdDvOsHFtajh0s/zKcPg+iaKFV0SF8XLwp2t6lnEWVpBLan4+jYVh30lo4YL/dYSsjUYpb0FKJYaMESTJO1q2gEt6xOHRW1lUoFHNZCNPoCaoFZO+VPq/wgcj+i+dYFLoVz3hw0Xo8mqHolxU9GPWCRkQ0mHW+zGl2Eq7zcg1Ma7Vw7dessaemvIiIiIiIqLvMG5SNRyk2qKYd2P7zOxatZsgyk/uinCHX+9MXp/fUps5JypHJsHm7LRPT+0/akosM5YedpubNccVfLeeLQuCO+oZ+Fh1pHXXvUdd+q+WkX/zzYmLqOTXva9WBlu2H8n3JTBZWeJB/WZYhrdeLdTsX9CwnvHIQEREREREREdH7kiRlJOUW6E2yw4cNRzmOEEVlma6gFJdgZTqOksbai4QyL++g9y/FnWqGMzG9/yT/GtE4ndYuABI5vjI5Nqu6zMlCtjrQZ6Lw/sdIjJFrQdEH8+KfFxNTz0mPFaUDrYVSVGbUWk0yT44nna/HlFYMaFYIWN5nNoMoREREREREREREREREPWAQhYiIiIiIiIiIiIiIqAcMohAREREREREREREREfWAQRQiIiIiIiIiIiIiIqIeMIhCRERERERERERERETUAwZRiIiIiIiIiIiIiIiIesAgChERERERERERERERUQ8GdBDFhJTLXycphzEWZXlFJpdx+DDPeh32lu6r8/ryCLlBrPuTJKNERERERERERERERDREDIKaKM0gigY/DBJrZFQDKjJfRnXQexolWbRBrrvITRGI0QkiIiIiIiIioqGqUTbifI40y2Qyh5NZWeMGVi/zc00yv1arynoezmVhGRER0UA1CIIoGvjQl2Eh2TScDL2JJKM28LlWSwkrvQdF3RbJ88N3g9zIfiTlGpx5bxEZIiIiIiIiIqJBQ0tFNDCi5S/GGGTOwebaGkgRSHEaVNF1ZMWkVEaey5Sxst57aSWEiIiofxkkQZRIsm8bAh+ZJC8ZtGbS6r2FPXTtTlvIrnN4eGvgdFy+IBARERERERERDUVay0RLRmJjEFmLOI5D2YmWwMQynWcp4DNZJrPzHJGJw3qLlbUQERENMEWkYcDTLNwUNUf0DojcS0atUQ8d721GrXdFaBVTp3tCqHiimbzuxoR7LEIiIiIiIiIiIhqKrBaW5Dlq9XpREyVNISPwMq9eraJUKiG2MVyahXl6M2qW1sM2REREA9WAD6I0s2ENb2henmh+rnc+aDAkZNLvXGVUl2p4pFjHyYQmHS/2qsEY+YaAauZ0INNhNhERERERERHRkKPFLFluMPOZmTjrjNPx0osvwDsXbmidM28eLrnoIvzu8suRG4v777sPF553Lp568slGbRQiIqKBaUDnYiEI0imwYbX2CTyGtVaQupos8yHj1rsfuqaixopsrP8laadouXwRgIllW6DuPLzJw/zhLRXk8qXANzpKIyIiIiIiIiIaarTY5fXXX8cfrr8eBx98MO68824YDZCkL+OPdz2G/ffaF6uPbcEdTz+Nq277Ow7Y50A88MxLaKv3XJ4SJ0kxogUzNOTkeSZJ+9gJxXONcr6iz53Qn07oYacx3flfo1yva1ImisKB6mU/TvYxPwNsPkeO01h7A0DGeN4y0Xi7Q8Gy9lKdZBmM84hkgU7rp1b3DjZa9HkWn3H3f/pZLZ40MLvo819483sjhX3JejQ06HGjXXjoZ6/DcL5DznGZiOOk0W6UXe7tRw3wS0fR7NZiZDp1Vi6UFXTUFyCVN7g4oRdPYTN547V2icnljUeCDGXZLkYapg1qmaS0aMSrXCmjpdzI3ImIiIiIiIiIhhpjUO9ow+qrrS7jFmNGjQw1UULXtMYBJYuVV1kZJZ9h+09PwbQjDsYHNtkUreW4sYOuTGjyS4tDi4KxosCMafClJi0E1eQk1WWkJimV1Jzv9Z+vy3gHnC9ukDaycufU4wNo0h3oceR1H7JPSZkmWZQ6Lcy3jRuwaWmFLhBC0s/MILURfGTD+RzIRaGcVEKDP7lcD0LATK8VXT5LI8u1XHbxVJTe5jrUi4N8nqmPJFnUnLYYZCQt+tiZBldSzfHGKR2Gqjj95eiT46S4bhT5RnGgNVZaToxkUsv3EbqYPWtWGI4bPz4Ml46eSULeuMDk6MgybP2RXbHSyhMRxWW5GHcgMXq5XJy+aN1Kh/rmexPJXwMb3g0ru0oRoR0dlTWx+me+iuFJCbVqHXGlrCssprkv1QzQ6MVELyI2d0hl3xPqr+KOW2/GpCkHIpILi77tzW06W5b76iqS5K1chOTio29ZBIfR6RzUHroKZ555qix1Mj/u1b6IiAY2vYNBrvryxU6vsXpj3DY77YsHb7pUrqs6R3OE7mbOmB6GkzaYHIZERERERIOZluF0Lr9xWYZnn3sWd911F76y3/645frrsfOUXeDyN3DFLY9jz89thxdmPoHps+bh8RkvY7t1V8Mr1RS7fO6zqCRa8LWoIFuLvr578jk4buqB8Gk7TJbCRLx5dbDSsvWiDE6S/NGh0z6Iw+8yLTjXtSDHhi7UvnbqgNdaJRVZR0u0OnmHgqsSqo39F+VoeozNc2Xs9f3fYd1tPoVKvYaa/PYr2a77K3ZoG0WkOmjGAjrTWU9On44PbDwZNV1Hn2rX9ZblvnqgZYVd9WpfzSchT0j3sTTPK2zfSLoTXayt/bgwniPSbWReKa/hL1f8Enf97hfyYdfkN7ie+13O8ca+m89FHy8KtVCU7kULx+W/tjQkK+vveJ2rGya2US5Mg1DxKTePPSfHTsk41OVaoOXZWmYzPx6B3557Lk76xlFyTGr41cjxpfWgisNKhzOfegLrb7ix7mKpDeAgij7t4kSCRibl3dFLZM0b7LDb0djk8wehXm5BGmkm3XjHF6NBieJky0wEb004SUvOI5FUytsxzM/GLbf+HVt++SB0vN2BUa1ltPewr+aHo5Y28LEs99UVgyhERE0MohARERERLUnXIIoGQea3deCXPzsZK40bj9XXmojPf25HPHjvbfjXW8DbLz8DV+vA9nvvgwt+ezUmlYFopZWx75d3QxRp+UWnIEqe4wc/Ow8nHHsokkjWCwUgWhJCg1Hz91WzEFJLI4t7yDv/9iqmdb6R32xaMhbWa27UoEGXnkSdCtWb+2/PLHb+1gVYa4uPo5y2owYt92IQZVm9xqImmZN3NYMzMSIv53codzSwro6/XXseHrz2l+H81tS10aViV8W85pLm8wqfs5bdhml5IvrMdaBkWXOUBhf9uJufbeM0CjVQEutkGMlR4EI5+RsdOS475xyccNyRYSM57GBDec6ifSzLIMoAzp307ZCLnpGkbXrJyWNkvCKTLjZ4uzJc3iw9YSXpsEvSrYv6phYlWbNF3umyvLu5jZDFFm+XRiGzLSjJBbhWc0haW9DWm6sZEREREREREdEgpIWawyoVfOM/voODjzwKn5uyM96a+xZef+01fObzn8VBR03FgVOPwhorr4pjjzpK1jkSe+/+JWSheZ7FafmotmcfRybcyKQlLkyDNzWF6VCQn4dQRihY75TyEDzRtbQJOBuOjdjmiyUNlvSUQjlhI2kZoQ03CnvEPgOyGqxPZXvdNy0NLdhuFm7rZ6nvsc1riOT91cBKCCB5j0RO8rKc41q2msjbnshloNtnKfMj2T4ysp0kI0n3GC4QMhYOBR3m2sqQBmHDlHBhEdPgS6o53vnaoJ98GATFsbMwZykOiuVqAAdRiIiIiIiIiIio7xhEcYSWyCCJbEgvPvcsttthVwzXUlIt9C5XQqHp2JI2nW5Rjot1e1KvV5E3G7sPhaY0JOhn3UyLMchDPxlZaEXFuQx6eIRmnDqnPOqevIXTbXK9W137WQEy78JwfjIKqWzZHg2TeTzOlpbe69+sB6KhK71Z3ZsSMpvIsAiIaqNdNqtijK/KZyOfi3wWqttnqcnI5yd70VT0deHlc2om7TsnQs1FSF09TIfP2bFIeygpgihxGIbm//QYlGGaybVCF2nwrdv1ZNniEUdERERERERERO/L5ltvjZGjRi8sD9dCbx0PhV3hTzGfqKtG+EzomJeBg420JkIbjKvC+HlFrRU5oBZPXlJRc6FIMq21GlBFlNegzf3Eshcr/4z3SNMqKnELKtpRffGAtBS0MFlPba0LouGUzMSoRRXUbRL6RdE4lZfPpRTJe9/xNqyvI4nlc3W6XdfPUud1+izlcyyZKhJTQ2wyRCYN41FY18F7bZpbC86b/aYQ9Q0GUYiIiIiIiIiI6H2JkwRmYfGSD0GUPmlbhQa8RfG1YkyPGq2BUsdISbEcXCOhHYoXyzsnFdZupIJHIqloBiy04G+01D7Cqi0VJOUkFMjXUm0WipYN7cNZGTnvi2uA9nWkAZRMPqa3TAn/agfa8mGo+RJy22yqbQmfpdEQWAKXJ7I/7YRBh/L5upJ8ugYlbQpMm2gj6kMDuGP5d+Kx7e7TMHHno1HJi575cw1rdqEvujl30eV4xXcGvyz31ZW2CsmO5YmIFDuWJyIiIiJakq4dy/ckzdLQt4l3aah5knmLxGp5jDa9ot+s81DAquOdO5bXEpDvnnw2vn38EUji5vdvlkgMKc2m3OS4Cc12eY95tXZcfNlf8PbcDpldRlKO5VB551oHC8vR5I92bG7kGAu1V7RJsDxFRwr8440MlY02xUqoomYqsF37PA7HozyNRhGpDhqzFqOz2LF8QZtS0jpDxRaqaE5Jyy71tWcy3ooU//j9pdj78x+X6RIi2ZE22tWThXuSP6EPJe3TRifkmLDeyTWmhjHDEnxlnx3QEkWyWK8vPb0bNBh1PtK07N/LeT67ZnHhaafjpBOmyfGYw8lxo/2kNNfVITuWJyIiIiIiIiKiFS6KYnifw9gIGgrRjru1gFXvZy1CIzpdrEvUVbi3W1NDEiW49fHZeHX0BvjXyLXwbGU1PN2yRpe0JmY00kxJOv10RcdXxzOSnq1IkvWeb10Lr49eD21IUM4NMpRhXM+F+PTe6Cdm5U+zI/lIk9cAli7TM9+iXd7vuaMm4oV4Al4sr4bn3+WzbA5nyuf47DBJ8jnOrKwqw9XwXOvqeN6Mw7lXXi/XmzKs1QAKP0fqWwyiEBERERERERHR+6K1SrQ2t94VbvTu8RAx0YBKUxFKIepGjhutzRAK5OUgiSOLchxhjh2BNhujmlvUkYRaDIslW4JrJG+0M/METtaDdjCv68v8etSCWjQcdVsOtVxGWy3c11pQ2k4LLZVGVLQZxghxsHCWa9KiZnmfZV4sqb2WoV4aEz6HetfPMST57OTz0nHX+CxNaBrMynQkn2Usn6V8pqUy2uVREg3SWl2uzbYR9R0GUYiIiIiIiIiIiIiIiHrAIAoREREREREREREREVEP+jyI4o0JqavQuVieyVgduZekncI7J+OpLoVz2gGZg/MLkGr7hbKclp52xBOantTPpIfPhYho8DLF9a8hiovqwNomL6+GRERERERERESk+jyIouVVncqsiulc2z90gJeU1+HzDH/5619wyD6H4h9/ux31bJ7Mc/De4if/+1/4wzXXY/7cuYvth94na2GjRsGhy+BSDWBpwIqJiYlpcKZwvdNxeGQyqeP1NA2BZC/j8he5NppLRERERERERERDXr9ozsuYopMxE8XQ8q3Zb76Jv/z1fpzx6/Pw6utVeFcJhVsP33snvrD3UcgTi/KwEXCZK3ZA75vRN1yTjsv7H5J+HkxMTEyDNIXrnQyt5DxRqIRnEMclWO3JUHOjsF5YjYiIiIiIiIiIhrj+0SdKKMTXZlVyGBNjzuy3sP76m6PkZqOlZRTiOIH3Dlt+cGuMGD4GcWQQaQ0KFnItNX3n9X33PkfufShMJCIa/CTPkaQVTvQ6GGqgNGrlERERERERERERNZlcS9D70BuzZ4fhhHHjwrAIn2gBVgZrrMyo44UXXsbf7nsKX93tE7j293/FJ7b/CMavNB4WdTz73Hw8/fSD+PT22yMqxbC2axzIY9vdp2Hizkejov2qaEFZD9GW5uMq3YOOa5Garm9zh9REmFB/FXfcejMmTTkQkY2KIE/YYnH9dV9dRZK8vF8aLMllgwgOI+pvouO+q/B/3/9PdCyYi1rqELMgkYgGNbmeGidXQLl+ypU2kissWkfhk3sfhum3/R6tZZnvtanDrvkLMHPG9DCctMHkMCQiIiIiGsxmz5qFcePHN6aWljav68N3cBtu4Mzx3ZPPxrePPwJJbBrlGr0p3aDBRPtDNtYuvKm37jJs983rMGmTDRFpCzRa7tX1sOh0A7BtFGvqoKf7gnXWk9On4wMbT0ZN15H0Tvvrd/vqQfdfqb3cV/NJyBPSfSyL19ibfd1w083YZacdtROHd36NsnHYh1wTtOxSh1rSGbZpTJf9fNx1zfl46PpzEfOu+iFHDo9wLBQ8tI/v2TWLC087HSedME0OoRwut6G1kea6Opz51BNYf8ONdaOl1udBlDfnvBmGK41dabEXpZ3GF+eAR62a4r++93NsuvbKGLfy6thhl8/ioXseQUspwz33P4SXXpqFqdOmYsKEcY3mVzpjEOWd9BREGZXNQfrQ1TjjzFNkqZODMOrxwkdENJhovydeLoR69dQsoupybPuFA3H/DZdIputlDb0Cd8cgChERERENJQyi0PLGIAqDKLpx2IdcExhEoZ7I4RGOhcKKCaL0XEq0XOkp4OTk0JciKQzliWgtlGIM5UoZ3//ef2CvfQ/ADjt9Eg/ddx8QJdhks81x0GH74Vvf+XeMGdPaQwCF3qtwAZMDL3wOkvSip+8qExMT02BOIf+RpNlI+KImQ59lMksDKDqHiIiIiIjycINRQb8ja8FV7lLUZPaC1KOaedRdGzKXIU8X4O3Zb4Vlvl5HXlsg62ToqNbRlnX/hq1zbBTJPmVc9hu+j9OQokXlWjKpobWiqeUcWW4QybGQeg+rTc8XP+BoiMuyVI8SOC/XmjyHy+qNJTTYaV6h1wc5CuBCfhGuHGEYx3GzkAeh3+/lqO+DKPqCwot69xdWMjkiyUT17oSJkzbA1ttsFuan1XYk8qaVy0moUUFERERERERERMuf9xmqWYpzTv0pfnfeWbju8isQ5WUgnYfbbrsbf7j6apz2k+9jbq2K6/7yGC4872zcd//9SDoFY5q03Etb14j0jiZh2bT4kKP1j/TTt2GodQ8MvMtCcC2SFCznglEaGOKkjCSO5ZpRXCf0GKGhZlGNxfDP2EY3H40oynLW90EUrfqgqWnhqL7g5os2qGuouaSX0BjDh4+C1buDbYJyZTziqATnZHnfvEdERERERERERENeZAyef+4ZjJ6wMg4+4kjElVa0px7WtuPNDo+9DjwAu31pF8x45EH86vd/xuhYgyceiXuHm2AXFpAbFpYPWfrZF2M6CM16ybGgRX7aT6U29UUUap94X9REkGkd0tCwsPi/Ux6hY3XnkEnesnC5XjuWoxVwJdKXWaSiSa+uwmUSzmWIIycZdIQkVO/UWilykugblGsVzyLqREREREREREREy58WaJfK5VBboF6vIam0IIojpGkdrSNGwsah4AZz5i3A+h/ZDnsddCCe/9dryHR+FwsLRbNGgEX7cNX5TEMmFU30FLSIsGjaLQ/BE61p4GSGlg8SaWtEXo4HDbIVKerxmGIa+Ek1x/Wa0EwaJGkG0YrrhTbrJf90oc5czvq8Y3ntlEwtu47JumLH8l0VH7D8beywihhln8k+HdbLXsBrD96KM884Wd66RL4QFX0DLJl8udFDRw7gqpeDWC5mJesQZw4+imW6KhneMCSS8RER9T9yrcqL6p96ja3L77ZtdtoXD950qVxXdU7PYXp2LE9EREREQ8ms2W9g/LgJYVzLFnLv8MorL+I3l/4a077xLfz+it9jr72+jMjPxa+uugN77DkFj9xxO4aPnYBf/u52nPXdo3DZFddh9z2+hOGJll8s3rH89356Lo45fD/kroqsVkOUJOGxaGjwcixExsHIbzPtFFpbrnF5ji9991asvdXmaMk8aloTRcufOgvHT4Edy/dyX80nIU9I97EsXmNv9rWsOpYvuQX42+/PxN2/+2W4VmRpDeVKRbemQUyPC+XkSCuZDCliuWZox/I55scjcPl55+Obxx8lh5CWnWveItvI+nrc6HBZdizPIIrQE755Ug7eIIrsx8qYrFjXA0725WTJeulz+POl52KTyRsgkWUGNdmgpbHFu9BMTg5dvdBlvvlMHXb9/Gexw06flS8+XuaXUCnxCxAR9UcMohARERERLUn3IIr+1k8x/bF/4v5778fndt4FpSTHn//0d3zyEx/CTbf8CRNWWQM77bQTXpr5BG768534/Gd3wFprr44kKaFrEOW7J5+Nbx9/BJK4+f27p2/hNJh550INp9CMl6i7DNt98zpM2mRDRJkDtNyr62HRqcSeQZRe7qv5JOQJ6T6WxWvszb6WVRCl7OfjrmvOx0PXn4u4h3JeGtzk8AjHQkGDKB6zaxYXnnY6TjphmhxCGoDVoOyidXW4LIMoPZ17NCjJFxI5evQirhVk9YPPTIx5WYT6mLUxbNs9kW/6KZS33hN2q12XmJItdkVJUkXTlrti2BY7Yeymn8Uf/ngroiiWi59c7nhNIyIiIiIiIho0NPihTa5vtsUWOODQw7DGqqvgjVdexg6f/xxWWX1VHHjQQdhlyo6wyLDm2hNxxNcOwzrrToS179AnChER0QDAIMoQEmrldAn5RnEZkYnRHrdgQTwe7WYY2syIJaYF0WjMj8bh7WgsOpKxqEUj4JLhMBoN1v5s4gpiq/FjIiIiIiIiIhoMvNZEyVJk4Xe//Oa3BpMmb4rRI0fKeAm5LYca37mJZLIVeb0m821YRkRENFAxiDKIda8IYkIgRWukaKWmKNeqTjIWlfHmAjkUWkZiPkow8ZKTk5TFFdTlC1KKBJlpkS9K8oVJvlAZm8BlWhMlPBARERERERERDQYaD4liRFEUOnnW/nxN0hJuomzPPNLMQZvsch6oZqYoH9Dmmlj8REREAxhzsUGsGcLQYIpWENE2BEMro/KFJpIvNIkME+9h8xSVGIicJL1DJGy5hKRfilwu28qkBk7kn5P9WG3HMraIJTXbsyQiIiIiIiKigSeUITQUZQtRKDfQoIj2JRjKAHShBSpRhHJkEIcmvyxynyGSoa5f9IFCREQ0MDGIMkRoHyWNkUZART58DaYgh8kdYklGpnW+hlqWlJT2rWK07xPZte5Lu3zSpWGxJLZ4SkRERERERDSA9dgLdARjiuIkXVqOZNzaUBtFgybyJ9xUOaxcgpFxDbQQERENZMzJhhjtpaQIeuiw+DKk0xpM0XmaNPixpKShFhgZk12EZrskaWNhWm23qRm3ISIiIiIiIiIiIiIaiBhEGeQ6N6lVBE7y8KF7mZ1ZiwwxvI0ROpzXWiULa5e8e8qNJt2P7sMWdVDkAXzuQmBFVgn7IiIiIiIiIiIiIiIaqBhEGUI0nKJNeeVhrKBhDp12xsKbouP53jC5RW60/grgZadZpNtHsqA4pEIwpjFORERERERERERERDQQsZR7EAsBEq0SIpoftDa2VdQm0Q7lc0QhbFI0wVUEUYp1lpS0KTCrey2qnMDJPOTaWJiVZTohs9lxHBERERERERERERENYAyiEBERERERERERERER9YBBFCIiIiIiIiIiIiIioh4wiEJERERERERERERERNQDBlGIiIiIiIiIiIiIiIh6wCAKERERERERERF1kxvfGJNxTXkG51JAUq1eA7xOt6GeeXg3L6yX1epIXV1G2pD7XJbrdBaWdZbnOaI4AYyRcd2++zrUD8nntjDJ57swOTlWmuOyTP72mBYj29gokkPAyMJim/mZQaX2NmI5HrLYITWuWJcGJS2YtvLZa9JrgZNDoWYiVK0NyxLvUHIOZbmulGUYQa8/Xg4X1+3Y6py6cjKzLodoTVJHlqMqh5WOp41E/YweD83UJPlPYyT8dXJsJKVSOG4ks5LjpdO6ywGDKEREREREREREtER5bqBF3TWvhd8l1JyWX8WITA6PJJSfZ1qglcmCKJKBL5b3ULilBee6N6+F78LqdtSv6aeYy+fUTPIBatllkazOWzSUscWSBs00eR2GafncrcZc9PMvjgEtLy3L9iUZSUyEUlSWYysKy2hwK46ZQiTHg5VjIRxjcpA5Y+GTFnir1xi9ahTl5s1ja2HSY6mZwjFVHFdKV4/kjxaEl6IcJevkGHMyzyFmoK7/CdeXIoV8RT/KxniRDxlYuVZ41/jsZFW9fixPDKIQEREREREREdESaRnVggULcMapP8elF5yLa6/8Pawtw9Xn48+33I0rL70Up/zk+6inOea1LcBVV1yFhx96FFnWQy0T2Zk1FkmsRVNFoVgoBWPqPyl8ToumjQ4bNU00yd9QOB0CYqHAU9cvCrENXJdUzLOmmA4F3HkVFnUZSkIq81MkRgu4ZVKOmVyDcfogNGgtFurQ40rEuUOsx4xMOzmuNNWRII0qyE0cgisafF10bDWSHDvNVBw4iw4eraWgwVw9vqLcwOYW1hdDrcPQPKaZ+kFqaozrpcWGa0vnZTovQmQjmHBNknm64nLEIAoRERERERERES2RtRHeeO0VTFhzTXz1wEMQJyW0tbWjVLJwqcNue34Fe+67F6Y/8QJeeu01RK0taJf5canS2MMizjlkkrQiitdCsOVcAEbvQ+dCywajAZIQJCnoR+e8D59hET8JpZmyqV0sGaNFkIumQ5GkFogv3JM2zyTHhMxPZVZNi8W1gDSUntKgped949zXoyIE6vRA6kSPkTTL0C4XC12ix4SJksWOr5A6HV/NpM14NcvYA91/qHniZF9ag6447qgfCcdA4xPrfA3qNKpHTF0+3FArLqyz+DGzPMix2fnZLH+zZ80Kw3Hjx4fhsuex7e7TMHHno1GRk04v61qVsCt90c254SQNSU8ejUJqm4sRJtRfxR233oxJUw4MkS19q7rvaWjsqyutTOmtXJAko9Qqd5FccEanc1B76CqcccYpcv3T+XGv9kVE1PfkC5NcvPSLvF4XtW3UbXbaFw/edKlcC3WONi3Q3cwZ08Nw0gaTw5CIiIiIaDCbNfsNjB83IYw3C4+eeuIR3P/4P7HPHl/FDdf8ATt+YQpi9yquu/pJ7PblT+OpGXfh5VeG47kX7sTHPvNFtL29AFt+YBKiSMsctNjSNpruyvG/J5+DY4/YHy5tDwXzNo6LB6F+ofiUOtEiRJ/BaPmR/JbKcgv9RJUWvWkFACvToSyux19Ui8qpdF/6e0yLPiPIPhuF2vPyCvb7n8ux7pYfQ4eVY8LnqMjjLKZTwC30pSF00Gn2QjrryenT8YGNJ6Om60jScqzFNAvx+9u+etDlnQh6ta/mk5AnpPtYFq+xN/u64aabsctOO4YwxbvuS+h7pv/0eHAmkvXl97rOk3UqxuPm3/wSD15+MvK0Fo5BDbJ1pnuShwiaQz0W9Wi08uD6+Nr0ILwepfrMdahkyqZhjPqHcEzpsJG8HAMlOYrqeSTHR3HVecuOwOXnnoNvfeMo+Vy9rBOH65Aua24786knsP6GG8vY0mMQRehpo+N6Uq3oYEV/3VdXDKIQ0cDGIAoRERER0ZJ0DaJ47/Dmay/i15f9FodO/QZuu/ZafGmPL8HbV3HVxQ/hCwfsjLv/dhWybC3MmvUkXnh9Pka0DsfhRxyMks3RNYjy3ZPPxrePPwJJ3Pz+zVKE/k+Lw5ulTPJ5ajmSFmDqLf+hnMjJb6pGZ8+L0SOoWVbVWCbbak0AbdZN95nJtm11YOd/+xUmbvEhzLU1TMhb4dIuzcF1KXhXOuj2kEJnMYgimk9CnpDuY1m8xt7sa4lBlK5kRzEy+RfJewhEunORuA7cd83Z+Md1pyOSdZzsKEmSsOydaOfzJtQ60QddlEK/PLJ9sZ8MqY9QCc0KUn+lR8GiQ0euN5KXzK5ZXHja6TjphGnyOefyWVr5TBetq8NlGUThEUJEREREREREREukNyGNHr8qhrW24t+POxJrTlwdHd7h7FPPx3qTJ+Lgr+yFv9z+N2z/2Q/iy3t/GXvvsQc+se0HkdeqjT3QwKdFic3iTBnPDVxmYK2X8QjeSco9nM+7JITkJWXaLJPMy/x8GW+T9bNQ4Kl1EBJbxwjZx/AFHRhVy+G7BlBo0PNyXDWDLUXzXjkqkfZ9IaO2hDQvapJ0P8YWT17Wc16b9NIUhWBJ3Rlk2ku5ycON4SZbgChnc160ZAyiEBERERERERHREmkhUhxZHPq1o/GzM8/FVh/+CB6650588tNT8IEtJ+NXl1+Kb3/nh6HJnJItYfWVx2PyxusjKZeLHdAgsOh+8IIGROpozxIsSFPM9wZtziPNuySfSyrGNWSS5do6QCscWlDzMWpZjrpzeKXDIipXkEQGsTyU05JzGlK0I3ltRad5pOnw7WoV8bCRmJ95VJ3WHjHdj7FcjjEZ1pvT2u+S176XZJvMoSbTuk5djr16lsLldZg4hjeLNwtG1BM25yWaMfT+0GxWf91XV2zOi4gGNjbnRURERES0JF2b88pdBpc7xPI9OvNa+8DIsB25ryAyqXy/lu/RUUlWzJGmVZRKrTJag/MxSkks42zOa+ALR0IxKp+XNqs0u1rD1GNORlYehtKwMZjTNleOg66fZTGtW2oZlTZ3FZkMaWjKSz5/rTkg/4ZXRqG92opJm22Etrxd9jNG5nYRjp8Cm/Pq5b6aT0KekO5jWbzG3uzr/TTn5cI6BiXvETXKHfVBbvj9Zfj4BiujPa7IMVJH0i32ob/ltWS4eJ9i2SaW7Z0cY3UbQS5ZiOQaNMJ2wM16DZee/xOMlOsWkpI8LPtj6s/0c1106Azh5rzkOgk4jQI6OE16gMvMLMvgNUpYr8kKspIc/LpqKvNTVucjIiIiIiIiIuozxtrQobN2Aq9dgWtBlfZgoIWo3tZh45ZQUIrcIUq0yRyPyCQoscP4QSZ8yPK5a8fvPvR3k9oRWG3TT6FlzY2x7gd3wNpbfKZL+hTW3vIzWEfSxM0/jbW2+DTW/MBnseZmn8PEzWT9zT+LdSSN2viD8HEJNTmujBxTyNnh95CjF5TiP7RTeQ2CILbww0Zi9Y0+jAkbbIn1t/l0D8dYMW+dLYuhHmfrbLo91t7sU1hns09iXRlfZ/PtsYpMvzBrXqj55OWa1Z6ythMtWb8Iomi0strRjiiK5BlZuLpkvDKvXu0IARUbJ+H8STOH9vnzEMt6ScIMmIiIiIiIiIhoeTH5omKjEDAxFrGNgbiMliSCjSKUkha0VBKU49GhLEfnRbI8iUbKtKyr6/d0mzoNUAbeaTm3lY81gvxHJH/eHLEm5pcSmHIFdVlez83iCVEYancUGoCry/a1KA61BvQ26bocW6kcL9YnaJN95jaCM6sgx7t3Hk4DnF4bGtcHvdpojaQkh6QisKFNeymv1UhQlmNsFPJ4BLK0h2NMUirHVurlWNJyZDmm2pNEjrMojOu+MnmU3DnkkcGYSjm0RDGsVAqPQfRu+kUQRSMkpWEjQtNQWgMlLpXl/DGIEzmI5YLa3lFDrZ6GC2vSOhypK9bTWipERERERERERERERETLQ/+oiSLp5htvwIVnnYnT/99P0FGrwrtMhjWcd9qp+P1vL5P0G9x+y804/8zTw3StXgvVuoiIiIiIiIiIiIiIiJaHfhFE0WCIsQb7HDYVU770ZTw/8yl5Zhavv/Iytt3+U9jzwEMwbqXxoZmv/Q87El/eZ39USuWi+S8iIiIiIiIiIiIiIqLlwOSiMd4n3pgzJwzHjx4ND4PYALnvwOU33oM9d94eT0+/F2+1lbDNlpvh2ZceR9vbVWy04Wb44y1/xeqrlPDQYzOQtkfYc98vYPz4lWQPRdt4i3hsu/s0TNz5aFRyHx4j10Y5uwiBm2K0aHMvpDysb3OH1ESYUH8Vd9x6MyZNORCRjaBvVfc9DY19daXhK29taIItlw0iOIxKZ6P6wO/x05/+H7J6OzInj8tAFxH1Q3L1gpOLl14PNR+q2xK23/MwPHTTZagkmi9ph5ndr4YzZ0wPw0kbTA5DIiIiIqLBbPasWRg3fnxjamkVHZHn8m3chn4Ocnz35LPx7eOPQCJfyotv392/g1P/o83rG6t9oujn5TG/7vC5f7se622yIaKiMCiUFS2m0beFbRRD6qAxazE668np0zF58uTQv4Wu/077Ur3d3wc2noyariNpaZ9bn+2rBz3dDd+rfTWfhDwh3ceyeI292dcNN92MXXbaEdohw7Lcl/U+lEt2IxuHfcj1RUskdaglneHxG9NlPx93XXM+Hrr+XMQ9/O6n/kc+0vD5FeSzl7xkds3iwtNOx0knTJOPXct4LCJZqbmuDmc+9QTW33Bj3Wip9XkQZVYjiDJuzJhQeCWXVeS+iot/exP23vOLePDuWzBmpXWx1pprY+68Z/HPh5/Gdp+dgmt+fx32+PInkUSj8YfrbsMmW26EtSeuIW9S1xOGQZSmZbmvrnoKooxMZyN96BqcdvrP5QuRk/lx44sREVF/o5mufJGSFNscHRnwyT0Px11XniP5jFw9tQPNHq5fDKIQERER0VDCIAr1hEEUBlGCXuyLQRRaFuQjDZ9fYcUEUXo69/rMwhdvY0xaZy0ce+gB+MO112PShhvgR9//P9TaHe67+x/41lFTsdF6E/HjH/wQX/nq3nj8sYex+uqryRumbwf1F8XnKRlc4wLkXBaGRET9jmS4RZYqVy0Z6I+5WkdbyIi9fBkjIiIiIiIiIiJSKyCIooVWiwc/NHK99TZb4pxLLsX3/t/P8cpzz2LzrbfCmhPXw79/93s4+cyzsNnWW+Db//U9XPSry3D8Sccilu1st1ootCLl8jkWdyHoZ6qfz8IwGRFR/9L5+iSjOlWptITrltVadozRExERERERERGR6PMohMnzkLQAS6tQFSwSpIDXqlsGa667Dr605xdRipOwbinRZqZkLRujpZTAJgl8pNUGWcrVr2hVOt+ofWIsbKShLiKi/sqEqp4qljwlS7MQRMlzyZ9YpZeIiIiIiIiIiMQKC6KEvjd0GOZaxEnRlqKxCSLbKNiycSiI17KsJI5kfhKCL7GMx6HdO9ZE6U+0ZpB8PNouTpGIiPo1yYc6xUpcVgSBNS/iFYyIiIiISHS5ebWY0uZvtU364re/S9Mw32uT3jodJjIZFmU/df2eresSERENUCs8ClF0KqYZqw6JiIiIiIiIiKg/aN76qnRM70HSvgSztArnXAiOaGshrp4WgZLcI81SaN/iqQZPvENkczjPEh8iIhq4+r4mSiOFv/q/mBDNjnx1BjNXIiIiIiIiIqJ+Jc8RadAEFsZGaK/W0FFPYUwdmTPwrgZrsqKsR1Ity+G9B0JrIkRERAPTisvFJOPVap1F0hlOhpKxhgkGUYiIiIiIiIiI+ps0c3jq8cfxm4suxIvPPRuaZAfqePWNWbj0wvNx49VXaDepmP7gnTj/vPPwystvICoKfoiIiAakPg+ieJiQrGSyeteCdhavHfkaMwI2ihpVU2RI/VoaWeR5hoqvoyxfoGKXw2qTbN4Brhqq9pqsJh+475YyWadz0nZUNZgmG4XkZH/OyXppCp8VgTWfyr6IiIiIiIiIaIV64/XXcNufbsUX9tkf99/3AEpaluM78Pe778Ou++6H4SOG48Hpr2F8a479Dj0cf779LnSk9cbWREREA4/JQ+l135k9a1YYjhs/PgyXPY9td5+GiTsfjUruQ8AmD3dFLE5fdHOuRpJ0XLsSDgGe3CE1ESbUX8Udt96MSVMORGSjUNDffU9DY19d+cjC+hRl5+Fyi9jkKGWzkT1yDU459cdwsk5iS7CyXlddQ2T6PLVHnEj+Fs9QAzQy33sZ0wBbsTwE2YiIlgkN4Or1Ra8yOepy+dlmp33x4E2Xhjvp9ErY07Vw5ozpYThpg8lhSEREREQ0mM2a/QbGj5sQxvW3u/5Yf/rpJ/DAAw9ijz33wU033ohdp+wIb97G7//wML60y/Z45qmH8Wb7GGy76Sg8/PiboXzgg5uvD/lRL5uHX/fhZlrd4/d+ei6OOXw/5HozZq0Wmgqj/k1LaiLjYOT3lJYHRSbDW3kZB3z3RkzcanO0ZB41bb5NC3Y6C5+5HAaN+TpozFqMznpy+nRMnjwZqUzp+vJQi+u0YW/394GNJ6Om60h6p/31u331oHspWy/31XwS8oR0H8viNfZmXzfcdDN22WnHcB1Ylvuy3sP31EygbBz2IdcXLUXUof6+D4/fmC65Bfjb78/E3b/7ZbjuZGkN5UpFt6Z+Rj9LpU1IluRakyKWa4589rJgfjwCl593Pr55/FHysWt5t+Ytso2sr5+1Dmc+9QTW33Bj3cVSYxBF6CnXPJEYROl5X13phUqDKImsn0umqS2ijvCzMf/Ba/Dzn/8QcSlCbEqhxlFXGirpzMkT1S9Suqo1tijYlOdp9QTIslBjycm8JGYQhYiWFQZRiIiIiIiWpGsQRb8jP/rQfXh8xtPY9Qt74K+3/Qk7bP8JRBWHq675O3bfbUe89PyTmDWvjK02XxW/vuZ27LzD51FJHIa3tITf/s0gio7/4Gfn48RjDkEpMaE8QB+D+rdcPiRtY0ZLw/Xzyn0dc7IS9vzPq7HmZpsg6qghs4C1XcpwGiXjDKIUerWvHmj5Xle92lfzScgT0n0si9fYm331xyBKks3D3dedjwevPx+J7MLL+j0UX9IKoh+FfCSBfpZKy44T65D6aGEQ5dV2j9+eey5OPG6qfOxa3r18gyg9HG1EvaWHpBxCcoHSy1GUtcmUk3GtmVIs1ULKrsnI1alzSiRbLKEDcd4uF0Ed1uUk8ainKazsqKOjDRFroRARERERERGtWPJbfdJGk/HSc8/i1+efAy+/202U4J67H8DIYRWce/rp+OPNf8LENVbGt076Jl5/+nHc/7dbkSTdf9MbYxBZiyhuFE15veWzKEtg6r+pc2GzFnYXwZIc3nlJLtyUFkVxsQJRP2T0xnC9eTLXG8M1aVnm4sc504pLqjmu15tm0ohKJEMdDdeeUB4t/3ShzlzOGEShpSAXHDlgi6Cgl/EIDz/+JI4//kQcNfU4TJ06FdOO/Fq3dNRRRy2Wpk49FkdOPVHSSZh69Ek48qjjcexRx+KWP9wMk1u0tgwLTXsRERERERER0YqTG4tKqYQjjv06DvrakdhhyhQ8/sC9QGkkPr/Dp7H/kdOw3xHTMHJYgn//wc9xwjdPwsc/uwOSdypU15KwIO80Tv2ffl6NURnXgmj9/LR8SIMpLMOh/mxhALdR9q5D6r+Kcuf/3957ANhVXve+/11Om6JeQBJFCAEqCCEQorpgHNuYDsYNMG7YDnYSx8m9fjcvuc599yV5SV5uXvJuEt/ruGD72hhMNQLRi0F0kECFKiEEqqPRaNo5Z7e7/mufI82MRnP2iJEsofWTvtnlfHvtr++91/qK0OcZwT2ux+Vzze70lHjcubdPMCOKsVf48kD0pXCGUmyrrodur4T23ATEE+ej+9SvoPf0r6G66BvoWPRHu7kdi/5wp+sWV174LYSnfQvxadcjOuU6eKd8AaX5l+OeJQ/InTjSxRt0WjDDMAzDMAzDMAzDMPYfnPaGCshSzkdevtNzvot5Z5yNU085BQjLKMknPFc1KRR8tHg5uOK/KechHESpTnVXFEeIOE+LEEehbo0DG06OxBzjxGw6DbLrSplwEWtectIkwQxixgEM10AJwlDan7TN4Qgq42AgbXvqrRBnMYr12ZKe3deYEcXYO2jdk/98eWIpciENjyONjpNH1S2i4jajLPt58TTQcR2VuvMoR2CzVRUpFScn1xYQaNHk0Drd8EbyxzAMwzAMwzAMwzCM/QVnh6jDr3Ltue3mUMgV4XieTr3tei7yvgun2Aw/56OYz8H18yjkPfHjy+8+8t7uC8ZTHpWXOhOL48o1NgXUvoLrB0TiaASjmiWOqggqATb2hAiDENVKB8IoBKc1GtyFci2dyOByKKqviUVmhM5KiN4oxgR3C4phhHyOPfxTXY9h7E/YWnEtmvqcOZHj6Foa7ADOfZ5l0cxJWS/5o9AbJjpqSkr4gPJed9RWRlLguR8gjKviuL4q60ogWyrxE3T1tiMJ2rUOqX9jROGzIu1bz0Xl+bzgJF7pNgwlzWvNDWdL2pfYwvJCqq6n4yI0v9sF3A9UWQPhKBQpPAjkhSlyE+SjLhSjbixbfCdmXPAluWECPw7khsXaFf2JWeDleuJJA+RJqGIJD2ch5BopTWEHqi/egn/5l/+mgedyUFnCZRiGkQ1bWN4wDMMwDMMwGkEdzsjpb9Kew/WF5Xn8X/7u+/jut69Dzq+/f9uX/z6B+peagpF6n1Dc5u4efO67v0TR9eAH2+AVJ6CMPRuyUg2Oi4rvwU1CdU4Swa1WMWbSFLRva8P0kxaiPaii6OdVD9WP2v2zLrhuC8sPzm7pKmSSVQ+EBIgyRiKOWWTt14XlB8giuThExJFS+u2fUkQVt9z8Cyw6/jhUg244+fGIdg+Y/JPAiONYh9hNUPakLMpZyizEge57UkqDLa/g1//+D7pIfU7ClLf5wUYc5sSuVJW8l2dJW8XFj/7//44//c43JetpKE6naKv75dYWljcOHKSBUlNVEsgDgiNR9KT8l6ZEfkubm/6O1A0ohO0ULcKhK85zEcoxGyf+0xaWzWMf/4ZhGIZhGIZhGIZhGMbwYc97z6Hyl8YsH4fNWYCmuR/A2HkLMeXEkwa4E2tu7s7tMbPm4OhZ88TNl/2TccyCM5GbOBXVXBPCahWJk4MT7T59m2HsDwaqD1OzR01dWdsGXgH+xBlonb0I4xaei8nz50vZHlj25+FwdfPFnSzHp2Da3NMwdc5CTJvD7SI5XoSjZp+JjZva0ORFaHalXtnUYO9bzIhi7B3SKrH3gjo+fKWhcBxP9guIPQ+xkxeX0xEre3K0ynPLBekDN6cjY8qOmw6xU+MJHceJxnofwzAMwzAMwzAMwzAMY3hQb8OpuKhZ4RomYczOrB4ij51hY7S2tujUXDo9UT/H69ydjr31ExpIxDlxAjd2gDBBs2w8ud7JuxhTiOByMRzD2M9Qz+hpKVdtolL1cgidPouPC0EYoX1HG3xPzlaAQpDUyvsuF+k2Pa860DhGPizDp5FEq4DUichB3k9QzDVLnXJR5U38+p2N9xtmRDH2Ch0y57m6pklTEKOcjEFBHqIxVzeJQnjyMOUwqqo8qAe6Sm0b1raEo1Y8aZCKMSf0ErnS+KT2YU82OX3IG4ZhGIZhGIZhGIZhGMNDjSYJNbycNSRGzk1Q8hN4bgjH9+HEvXACTs/l9nO0hVAxzS1nFOHWc+Wck+pxOLNICJHn51D1PPQ4LkK5jtO1G8b+huaLvuticCmBMqibZJlMp+eSPZ2OqzkOwJWauKZThbrIAWWfzhffvhRy9vMuRCFao260oIqCyMjLSV9uVQ3lHrGPvC/nOBJFV3023o+YZtowDMMwDMMwDMMwDMMw3qeo0UP/0ZBCaBCpwks4oiRCEIfwcy4cN+nn9EJ2ahXnUkHsOYhkG/qeGk2qvo8wl8cOJ+0o6/CcE9VmFzGM/U/fkkdzCs15VH7rGjVchkDKOtfPKEgZBqe2q5XxgWXfkfN0rAO0CXIdp9jxIVfoes5cY4VrTosIxK5P86SOXEnEj/H+xIwohmEYhmEYhmEYhmEYhvE+hYstq7KY029F4hwXjt+KKGlOz8VNcjpB1Qv6uYpXTZ1bRdkL5Zw4TgOGdCp2ikoNJpEaY/J0nOrLbCjGAUIeCfI0FkLHqdRGT7H85qToc/Iv/nN2K/uBV0HFSct+xQ3S8u/mdSkCjmphEacsjjzx4rKUeU+NL3I3va/x/sOMKIZhGIZhGIZhGIZhGIZxKEDjR5xO8RW7qUKY5EMHLWW3n2uteOJkv+piVEV+rzrIJem6Ezlx3LIPPqdnL8Sc7j3Sqd5tMi/jQIFltFbEAS3vUmLdHCriOJqEP8ZSZncv+y5KUu6bq56UfRfFMKeGFxogWb45lRfHnPgIkHOqug6Qk4RwzYL4vsWMKIZhGIZhGIZhGIZhGIbxPoVqXU41lE7P5ej6KJWwjNipAlxc2+lFID8FntfPVcVv1XURiOOW69r6nAKJcxjJZezfz1UmaE4BcrrQfBKnC9AbxoEAp94KxUWOqyNQdL0eKZ4xVeJSD1Kbh7Nb2aerSJmveCz/DnplG8p1dDQ80nE0VihlP3J9qV8c65JPF6I33peYEcUwDMMwDMMwDMMwDMPYKziBDVWVqlWnol63FcRhJIc94kJxPO/A4TRSzi4Fuy/XUd9OBSR9HOzEEom+jnEa6IZDXzlqBEGMMIprcqr6l/uNHNW7nG6L60FwXQiaPAp+HqWwR4495Ly8+HF13Yf+zoUn27qT3JMrU7jnivC6EjpyPISu3MnjctypwrGfk/DT8Tq9Vv7U9/s58ePJHvd9p26mGVzWcOQRHZUwhLz6NQeMrEHcbnLo+shKV+fYc7jqMkYijtlk0dfIy6K0fnLqriarvs/r0nvwOJXDSsUSTzypG5zqbreyL7/7tS3rQU62nrRTlFE3oOhUduJ6xVcQJSIpRiCy5WxDF0RVbRs5uVjCtVqIhE3/JTEiymFYhwmv6Ntu9HUHMyw7dZgsNNR62vgwxSI93pv0Gg4sU4ZhGIZhGIZhGIZhGIYxbBJaQeqoDstBFEUIQyoHQwRhrArGlFQ5XlfpOQnVjpxaSo5VAUZl4sHrJOaDuKDfcT3uWaGKEJJOTMs4CFGWtOyudKE3iNAVxLJt7HZUEpRjFz2hXBsCnSLjnc4QLYWSyI4QO3lEOtKkvwvq29polICK41q4mF+qkK4pLqkOrnK6JC4+L5ncNwX6uZoCmimh1w5wWh7ARbsFJ9EF6weVU3cZ5UnUlSHlHaiy+rhBZclp5hXvJWJ2u6avqxsARiJcWWRxxEfA34URlSVuMDl0lKXyxA/L6ECnyIbh4SFr6MCyz5FXYc1xn1f50k5xJBZlcHQLTXzVMEBp9Dh0VKuoBIEuND9YHRzoylGIaiz1OYzQE8XolrrdJdf3lHuQVBlLqe/VigZ1dxiagY6xFacGmUjOSNuqBuyakUZHyNT8HPCOYWWc+oaZ+zUkf2hSK3qulAg5lN9oRJHs3KeYEcUwDMMwDMMwDMMwDMMwDMMwDGMQzIhiGIZhGIZhGIZhGIZhvAdq6iXtKM8+0B7yxZwc5OA5HjxvH3cRPkBIR51ov3ZxFUmLQHu6a5qIS9hNHek0PY0ce5RzaiNOo6U9rCUdN/YCl171DZx16e/jo5/7E5z56a/jlCu+2tCdccW3cealf4CzL/sjnCPbsy7+I3z9P30fm7d1wM/56Ijkntp3Pe3vPdBpcNgxnPt7crUsrvsbTA5dI1mMbFZZdMOSl24GlUN3oMrq6wbKqV9L9J7cihvsWrr9Hcc6eiwMJodu2LLkeDA5dCMhqy5D92vnOH2UW59iTn7kuLqm1ma8+W4bPnLlf5Q69nUs/OQ1g9bBge6Dl3wdZ194Hc6++Bs4+5Lr8YFLv4WPXvpVXH/9n6E30FVcEIb924TUcVTa7k7bFwkoo5ZOicZwcpu6gw+mOl0d5sCu8Udc2D8n+cEZvXSaSEkDTYB9yPvAiDIwgViUOV8d95mSaSQHOv7MOSAJ91n4PXF6mfyVoqeSmRmc746/0R2qsgY6Dl0bTBb/8D4+5Qwhi+HilrWbQ0ZZFSiMDZCfhPDdQM4l0BG/HJeow9Hoa2i3Mxx6nO5pJYrlxSUOEcecM7R2PhP029ftfk/DMA5G+CHCFidtD/hNl5NdnUdTzxiGYRiGYRiGkQ2ufcJvY/lud6jkSpCTF+xqpQLHzcN15b1bvsmzEMj3/8HqQnFwiuoSp4QYTeIKCBMX1dgVPx6ChKs5pOvCNHLUkexCzsUxmosuksNOwbwrvovjf+/LOOXj38RZF/xhQ7fwkq9igbqvYMHFX8GZl16L4xacAWfcFERhBDcMkHM9/S7q75LUSajTkO8Og0odT05cfYl51fvshSzC85llDUueXFff7kneiMiiG0lZ/d1gePIRm6vdi/uUN9i1DFeariMTxyyyuEZLPUwjKUvTdx/KUkMEZYkf+qdMKvG5tpAfh6q79GS/u8fBEdPm4LTzP4fTL74ep136J4PWwYFu/sV/jJPVyf5F38RJF30D886/Dm91yI0L0o4kOeSbBmsreK6/4/RWjBENrfUYuY4vrn59uh2s3TowHZ8FfZ8HgC7Yv1M3TH10DJ/PFup81eon7Zjm0b5jT+XpoIXJKGVcC7Qnibtz2s2BSOHpt5VEd2pzcGpWSEbEUvhY5ejDlczaY2IdCrIGQP+DyeIvWjkpS34bDBb3OvRSlfBxvsydqkvZOG6IZStfxe9f/2e4/vr/hOu//l38fgb3ja//B9l+R/x/R7bfFvdH+No3/gB33HG3LqpUroYIw74h6I/29hiS+u8S74Z+DcM4UOG8zWnLyHosraAccH7TRNqjmFur34ZhGIZhGIaRERdOTR9A+KbNNVHWrl2P//H9H+C111dR3aW/NSLnJget88VxQX0u+O7UVkzgd0Z9cXaqZqhzSVMpC3198noP1VBSUm7jV8vwEg+h56Pseg0d17iouL64vBznZVtASymPqDYypjXulU1c6+Pd17mIJfxcFyKuufQLqq8TfxI5dlnlNbvWthjosshKdUZZZQ1HHte/iCVJRyJsQ8vibyMna6AbTBav5fgn/Z6lHMobcB0dw6UdmUcgXFllUU4gckZaFvf3qSw9JzK4FcdtGTnJVx+JS5OVJ+ktNdr30b6tB06xFZXIQ5RnHRu8HvZ1DnUSEhBX6iD1sTTIcIH77e1t0pawTZVQJHvS0kqg+zj+Y1vDo52IzJ3royRcxL46aLt1cDi2ozQS0bzHZ4k8byTt2fbomlySN2mu7luy6swPYPoVES0gbFLYy8F10qGIbEQGOr1Ktkpty4rD33hMwwIzpe6fFi+tbLXjvu5QkLWbG1SWFGAW4kTSvaaMHMzR+snGJ92XEMh9qbxk48FrQyePHUEzwrEz4C08H+W5H4Jz6mXAgot2c04fx2Pv5IuRo1twiWwvQmn+JzBh7rlYfM8DGuacNER8mdsTDNtOqETVBOnjWFFr6ZZu6QzDMAzDMAzDMAzj0CT9Kq59ZydUdIUIggr+8i++j6uvvQIPPvRk+tsAuNhxUK6gSxdRjuRbvYo48Q4al/Z17++AfM354gfoLgeoStJ0Bwl6gkgXdu+oRNgucd6T66iG2F6porNaxRa5fmNvjK3lCNtE0LbAQ94twnM9SbEAJUnrops0dCU3QpNsqYzkKKF8zkdZwucH3UBYgZNnB9kIBfl9oMs7qWPPfaqOfc/t5/hba85Bc9ApWR9qL/78Xsqia5ZkHI6srPLycYgkikckbPtT1kA3uCwHTSLLi2PVeeWceNBrd4ZL3IjFsYGsoKsNrVJOR1qWHwf7VBZlcMv6w31H6pzry4WeONeRY0eNHiWRF0hblk9i/c0TeQPr32AuKuQRFiSEvi+XeXBkmzg+WsZNxYaeCrYHObRVnUHbiHZpN7eJa6sE4kJslTalrRyjXbad0n50hwG6QgdbOkJpd3xpf3LoFDdYO3Ygur5tav1cGEtmyBkah+IoQa+0hzuCAJGkhySc5HWsI1b2JU6yn7vbtm3dqtvxEybodmRhVGKcdem3MOP866TRcNAjTVaR5rgBMF2l2Ev15TaBK4Wc0FJM3xXJm0nVzVh6z2Ic98kvaMVT65ZUjoEcCrIGwmGkHGnST1ZlE55YcjeOP19kOdllhWpEYRilwDuuyh3ltOOJ39yMYz9xLZJiszRcCWJ5iWiEJ/d0pfHSQi23L4Y9GJfrRscLi/GP/+2v4Ps5RKH4yzfuBaOGoNr+LmjnZIxT2GjuOjIM42CBj77UZprWctbsM877HB659xfy1IjVoOr2NarWeP3VVbo99rhZujUMwzAMwzCM9zPU4TTW3/CdmoYQfmezY2Uv1sh789JnHXz+09Px67uexEXnn4tcjsaFOgnCKMY//vMPUGxuRtfWDch5PqL8qNrvBz46jcwAnLjWaVR+0lSJE3hNY/D0s0+h1DoKQRTB0V7s/b816pJ2nU2042moaniXqYqgt4wJ047Bxi0dmDP/JNVthCIv0VFADfACvUe6moM4uTjvAuvWvoXpRx8Jx3d1OjKuq9CfPuHU39LQ9IWyyDvr38ERIos9xCNqpAaKyiCLxGGAd995N7sskkHe1COmwpUyGLF3/nsM2/6TtTsudW0DiMOqyNqQyqLeK1OacTaaEYgjGULW0mdexFmnz5cyVhhRWTTC0lDZn5GTlR6mOkDua91xpa7JQbp8gfwm+1FYwdPPvIQzF82DkyumutKwcZ3szknbQH2oOB1xIvXYi7rxwJ23YfaMqXITD9U4REnqwJ5IwyjhkmtZ1NLaTXkSviRAZ/tmnHP6mYh6O+CrsWbPsg5INE6ykTTSvJSN5oYbIZQ407BVkEz4xjeph5Y2TNIx51EDXrtO3OuvrMTM42fL3nvnfWZEkdQUTr/sDzD9wuvhSWFjdSkOqEOE0WbR4bgVbt04kgIGVGn9k2SuysGkykYsXXIPjvvEtfpw0Qo1SIE7FGQNxBWPHHI2UNYTIuv4869FwXUQUdigsmoGlhocAcPhqLTacmovNjhFdGPp4ltw4kXXoDeWhkTuRevuQAY+Oxh8ukgqD/WfTVEZY8ONaH/uLvzTP/8dfKlksVQyj9bjBnAquJDC+sAhdqpX5XnZoaKVPSMMwzi4YPuodVkrM/+aEcUwDMMwDMMwBpLNiBLVtul3No0or61egaXPlnH1Z+fjptsfw2WXfFxHQOwi0R7z67duQ4AmFL1UER+4Jd0erHCdBMCtaaeoi4nBNRrCmFNqSaxlP+dT/dpfvyGfJzXqO2mnTlWOyrb+6UKjSRwF4KQ2eTV8iHy3cSdRVf5yq39FGsOR81DuCVDIOwjCJO0NP+ATqB6unX2TeUIVR7vgHDBcnL63p4piMYdqNYInsgcKyyJL8RJUy1EmWSSrvDz1QOKZxqn3Grb9JWswnFoH6X6IiGpvgDw7DIsMKvzZ6bcv9XAR/WkE4kgaydrRXsHo0QUpJyMsi4p1r3/ZH2lZ8ov+XieUkzSqsAYT/UXqUld7D1rHFOQi+VX8MP0bUfZ9lUNDCq+TEMs21jrZ2pqgEvqqUk2nStwz9TjvCmnauji1tigMIuQKefR09SBXOjjaV80T2UrSpvnINkbSxksXztb8CxIXQeSiJM+OiWNduLHE1SmgIOVWrxXHrRlR9kjakJgRJWUkZQ3EjCjiZMeMKIZxcML2UeuyVmb+NSOKYRiGYRiGYQwkmxGlLzSoJNi8ZR3+5v/6Kf7mH/4Uv/hfd+LKz1yBUr7vdzj1AqkijEq+gkO1Y6w93w8WVCG8B+qjVKiPoW7Bd6ifiZEEabyRpxmkDzzXV54cq6LWlau44U9JFdXeCLliAYi7UYk64bgtyPty3AAHtXRNYh6oviYII/g+z3NUUCJBGqTPfj1MtfgofXZJHHP9Fwkt9UQeNURyjVy3W/JkkEVijmxJRGIWWSSzPMZO0r+mL+rHsMO2n2QNxh5lSTnxfdlKOTuA4siplzgKghrxkZTFFsNNNey7GElZpG9gKZMjaYjEQ/7obiTp7dJgIXWVuk6K4dR4jeCoHI/tXkxdNsu6tI+xD8fPSX0MRIKPchijtdDfuENU38sbsXEQ+hnManHnaBtwhIvUIxpUHI/nG7cVBwJsWxkNJj/bUoacUWW6UlcTJp62Yb7TI6nGRfi7xUPNiJLjSL80d7gdSSMKc/2g4b777sO//uu/4B/+/u/R1VOWM0yO9G+6Jw+XmAv/SIFjInterfCmDW9fx5zgwkBEr+WDSQoWH3CsC5GTqy2kVJAHlIOKlOmADdEAOYeKrIGOw1MHkxW5IqtAWQmqQ8jS4a21cKXKSinvkl/sHUF5VclHyT3ZAi3yIGe95xosA53KkD/aRohj5ZLTeoIVjC8rneUAnicvKCKYCzPRaKMvDru5VBAt0HRclstDWZqtKvJOqM6XcHDRfEcaOzWoaGNn7B/SvIlCedhJ5qYL4BnG8GFzwYZCt/oY5JyaMQpNJSlbrP9yhn8MwzAMwzAMw8hMffFiMmH8ZFz+qXPxsx/9DB/+4BnwB+nISHUF10FxPFd1F5FsqS47WP4NplegYk+dxI9frGoYiir0jWoUaAdU5HzVgfRz8mfXcSxpw+8SXpXIfrqNkxz8Uh7lMEDoNCGfa0Xeb5WbFBo6VUrSUdEr0jy5TzGfwHep1ZFvoVyo30HVxOnvqNsRF8g+HX0nEsi+jkpfFSh5TE1K7Ma6rP7eyFJ5kj5ZZQ1HHvdZzkYibNzfsyzqtEZI1iBuoBw6R+RIJZM8pn5u6HBVJZ9HKo5ZZHmFnOTjyMuiXnFfyuL1KqvmqOFUhaWblk12uuZ9uA3goxLTsd5TcTh4PezrXKnDcFqk7rQiERe7TQjdHCqVXkn+nDQnCfKUtrNd2OW4FotstA2ttw+1VknruQRD5OUQSHsjNVvaC9mPODXgwfEvzTkuiM/lGiQ2Cdc9r6hOliP78k4vitI2uE5RYhpR3Q0nyUu6Ne4w/16g9uigISiX8cUvfRkf/shH8M66NYjj+mOJxaSGJHDekQd3eQf8aneq6NYM6O8YcS1w4lgAuaUo/sb/qoyXB1PCOeR2bNdhjnlpkAbKoTsUZO3uBpMlL0txiK6Odh3KWaiNUtndSaEXx23q5KzIoNJS2iip4OJEVuJEqFa5lbhw+OYg8DpWsPQvD8RvEuoQWp+VTsrDqEJBLcxltmyeVDCHC7Dxpaa/S6Q8JVTMS0NF5yaehLMgLidyJC6Ji96eMsJKVdKW/6RKi/+ad3P73DnokfR3pFyx7usoAS0A5swNz2l7Ja1G+q6RnuPTpNxV0R4fccRFLaUtMAzDMAzDMAwjM46TF8fpYny4bjPOOuccfOmr1+HIo47UBc37wzdyF6VcHiU/Xeicc9lTIcaOlqqs1I6Q8i0o7+Z01ZBGCp6Q93n9bfiOr/mByOEojPSd3xnUXxY3mCzfTZ0nAec3qyv+/FxBj/N+EQU/pwaTgfCbtw47Bzvy/ctvXw2fppXIkutcx0MpX9C0ct1WCUf9110uke8ZEYKQiy5LuKiM3fW7/OP0QJwCjApIh+sk+HJOwijyOUNJ3k3Exeo4w4tOowN+R0kc699SA53EU8PnuRJXyUuV09/p+g/imXJoc0lCqtQHyFFXi2sfWbvkMVyRHjNMdC4krtWydogbSh7TynMlPwbKcyRc4o/hoz4pCajbyiaL6wFzBRIaylQXJcceRxhQdc3ZceT7kirtTLIkPFzjF3JNKiORYIQ6q4wvZQwMl5wfVFYt/XfGUcNFA15Vrg9r+SdhiwOJW6D3of5rUFnyb2C4qFtzGC65hrPH6Dd11Asv7NKwclq5PcmiHMpLw8W0lmsZpyhEPqlKGkp4JA1ZNriN9lTG+K+vLNkOjCNNhByH4Mk5zxk6jgNlcXYcN6xK+BhHlnWW11jCl5ZXESUXSmLItazbeo046j7z4oriqeTTQCqhkLiFVal/UsapN4wkfBItqY/p2iuh/C6XaljS0Ej5kz+c8rBQpHHFQTEvdb2Y1xtH1bQzsbY1ckw9LpKKpJaU/Xo7VpNDp+GjLGlv8lK/c1KXchI2SRoNk4ZFLqtIW8P2IZL8iKg3Zfsq4e/bzu3JqTBp/9hmM36MV8Ke7HLvMOxBUOv5Pti1uzmREnO0DC8RQZVIdkS0BEutVF0Bw0WDCWsq26uS5J0neeBJ+yXPHXcU3EJe83JfIuWeSbf/eC/Ted1+6624+OKLsWr1avSWe7FgwXw9z2oiUUkTPQxw1hW/j/kXXoVipRuRV5Smq6D+BpLGPL06tcXLQ1keJL5cUXFymBi8i/vvvR9nXHw1OrsCebjzIcO77M6hIKsv2mhKRRko68H7HsBpF12F7q4QxRxHf2gABiUNG5EGSGS5CBDwRUAaqqI0XM8suQ3zz/8seiu9yBXYzLLCDE5dFM0jtAmzsaMlOceGr6cN9/z0H3HU1MPBkTasYKzcA+GpfjHnS4v+4y+py0t8tm7egFNOOknP0/jC0S3GvocvRJPGT8B3v/eX2jDS6FUs7rlMGMaeqLeL2tTpfoQeeTBf/qk/wK03/5O8BMmrmDxLfLZhA7DpvAzDMAzDMIxDieFP5/VeoHKQRhRVs+oZKqBDeTd3vQKqVCTzm15+yg3yrp6FarmsUx6l6384qtTk/t4wkrKCakWu9eHIty47dfFj5b3IckWWTncj4QuCCgr5wfVig1PXgchf/XhydLovV8LGNVkK1BtlhNczbSiF6cVvLMZLDR4ir7H2KSUNBaHSNtFF9SN25BU8P6cdcmkcoiGoEZTF+6uhgEeyH0SxpFVO0q6KfKGAioS1kEHfwDznB6ZOPSbpzTh6hZIEhndJJDxU6ctWPz6HRmfboD+mmbhKuReR66Ek4eEx5ZfjCM1y3AgaNeQSuDWdXJlpny+p0YeKd1/qWCh1KTVcDo12eOZW6qHOGBMESKQM+G4s56rI+U06cqNI61QDAq3LOUk3GiokJEGvTuHHmYRAJTo1g4mPEkfWZIBtgle7LePo+Xn5npcTIrsseUkDZta2IhRZLBPUw1eqEkcpTzlX0qvSAyffrPlTzGebblDTK0gNwmEcSBikPkod8h3WoVCXX3HcbLJoDKVhg4vCVysVxGwjqj0oNZckTGx7aARqnPaknl6sJ+VKoKPIaMxypPy6rq8jefJsYDMQqYFQ7u+mRmRHynq5EqKpKHGVMhMGCQoFdtRvDPV7NKKwDWQneHZdD7s7UWpq0fogpQTNueG3F9wesmui3Hzjjfjk5Z/CU799FEceMQ3HzJguZ+WRSmW3FMx0qE8VT7+xFS2jJ6PVl4ImCS01VK/viyamNk6S0ZIC2qgzk6XQ0CJalcoyNtmKjrI0frRu5aWSS2HjaI2BHAqyBkJ5Iri/rHgLOipNarwoSKMehqE2FANhOPoaMficYHV3pXGqiBzuSxOKSk8PYr8gDap4EE85udeeUHESVYmpXC/VWBpM2udpPvLjUF8icmzspMHujnPyUNxDI6rVoRY4PoUFSmEbwi2HNAYSrpLHlyOmp9yF1lVj3yPlJpSHIMsUy2ogD48cnzyG0YA+zU0f+PJdr+Oh/Ctg2ep3cNaiWVLf0x5FLHMDMSOKYRiGYRiGcShxIBhRqDhErqjGBc6A4RdKmZTlg6EzmsirvqrC5H2fhgHqKPaGkZRFJQk7X1OzxaiJxFoKDB/2Vk+NBAwPtGc8lcPZ4d3pGLcYtBNQ10JlOvUt+Qw6ozrs9e64nsrRwFCGhIeGHRqg/Azf9GlI6unB7zhJq0Dix571Qr0nPvXIWXui70xfKW+6kXBRN6VCmJ/yP8taumHAXv1MnQhquAql5KqRKFRRVCwz3bIYK6hDo66MWUXfoZYJqqklT3u6kG9pRSDntPNzA2js0jLAcEi4JLkQS7oXnEgV3J7LOib3yRCugEYTiSGnmPMlNIHI1XA5VR29wxECNH9wQe9GsDxQ/0iDDDt6M4zwcyKbYeqVtCyiGvuZDDKkXA10Jpp6HF2JD+XS4ECjiK55kpGqyOJoIsqgASVKHPjsNC1hSxKeS0esZKFMfZV4ZR1k6eCSEwwLjQWEAzYKGcNG3RfbBcaJ13GSHS4vFSWBpJuPikS8uZCXcDYO2870knAlUgaYZn5UVV0ntamRnOMUYlp4GxBxNI2WUdZxTj/GaiNp5Eh5ETmsCwwz79UIGmQkpoylpH8B3UGEJsZXyh7TrVPysslnGmRLM5Ztpga3h6wR5ZlnnsHf//3fYu7sOfjun/9ntQhy0Z60MvNvKJlURme1IInNxA2kUrMg7aEi11N0J9KYSAHUh3QsjUuyRTKqhOZ8SdtpeZzLPQ9hWbuxu6yusAlN+aIULJ6ldXsQWQPDxOPatixvDWyTOOJDGx1pTNk4c7EgLpi2J+qlmI2JDgHksD3Z52JDbKzYq6BJ6q2OHJFKncWyyvDrw1Dl1fzHZX0YOa7EURoFytrrlyRjWPBhqw/4WnrzBZoPN8PYO9JGg+0ER5PxRa036JIXnSZ5wZVvNHmewNu9Z4gZUQzDMAzDMIxDiQPBiPL6q6/hqSefweWf/axOv+R4udqv2aHqi1P73Hn7bdi+rR0fPu8jmHrU0YgqFeSHOcPBSMqqw6l6nn/uWYwdOxZHH3WU9hAflt2jDz+94QaUu7tx9gfOxsxZc+TbOdbp0rLDb6X0e6mrt4Jf3fATnDB7DuYtXKSK4QIVtg1Qg5daERxJqwTbtm7G7TffjHyphFGjR+NjF1yEnM+RI40VrAzJzqSg0SOO8MxTT2PZsuV6atGZ50g8Z4k8N7O8FJayBHEYYtnzL+Cl5S/hrA99GEdIXnIqpCzKX35Qbt/WhtYxo1EJIrwkcgr5PE5ccBIW33kHtmxpwzkf+CBmHndc7YI9w3BRVsuo0ahWQyx/4Tn4ktZzJA9zfgFL7roD5150IZoyKN8pq2PbVoweNUqV7C++8ILIKmD+vLl4ddUKPC316QMf/T0cM/3o9IIGtLdtQYvkGwdFLJNw5fI5zJs/C2++/DKefupFnP3Rj+GYYxrLYrja29owurVFp7t6cdlL8IqSXnOOk3JVxbNPrkTLYdNxwvRp6QUN6GEn53xqSGAcGa75Cxbgpp/8CF3lCs4862zMnjev5ntoyt09aiDkWs1vvvEmOnZ0SBzno7NrO+75zWIcOe0InPPhc2u+h6anp1vKAafxAta+tRk7Onbg2GOn4/knH8a7G7agNHoyLr/soprvoSlLHNmBmMbIN9asRXtHO06dNwvrNryNh5Y8iElHHoOP/97HwI7ejainF41EbzCOnZ049eSTsX79Wty7eAlOkLQ6/fQzpOw3lsXp6pIwQYgATzz2GNo7A1z4sQ/j3a1b8PA9d2HqzAX40AdOkzrZWG+XGlGo00+w9NHHsaG9A5dcejEcKXCP3v8QFnzkPIxvZruTrVGstxncHrILyy9cuBA33ngT/vw/fw85zdBUgc1dWuWo9vL8VoxpyutIA89voumYGnApIJzeKdKtXqDnxNX2U+friANaxYvU1foTMarYohlOC7TOH9fPfx9HxW6/c+9DWbu53WW1FptVFueuZI8CXUCePbrlRScdDsNCXJZjZh8vli3DSCc/Ug7npeQxp2pimPJquWzRHN6TqweJ13JLuz2HcnLuxpIEclTeAxeyo6U3T4t2/Z70q+Giq59LHeca5dBL1+GoFUkXOgmHnxstjRMXgUqH7PaHVVTiqm5vqcvoy2DnhoZX1NGr+54YJumlu8KwSxT3hieYL8W1HX355JC99JzI4bl0bzc8ls0+6b27AYUyuKJOKmt4oep/zz2FYXhQwq48S+XxeM9xHIzU3y5Zu65N99L9rNTSfjcoe1dYD0ikbKQwnDSS1vN6qHD3LxMp9S3LEg3w3Eq7IM3C6EILmmSH84UOZkAxDMMwDMMwDGP/8+ADD+K1NWtRltd6KuapMB0uNHpw5Mi06TNw2gc+jCcff1wNF1RSD5eRlFWHcXpzzZvo6e6SOA7UMwyP7W1b8ekvfgXHzz4R6VosA7+ds/ODf/pHnPnBD+GkM87WqbiydmSkP35rsbc6v1rHjJ+Aq75+PS656lrtTU8jUarHGybUGUj6P3D//bjyy19Xt2L5S6iK0ExGjz7QuMPPw87t23DjL36BS67+Eh5/9DHVY2XtLMvRDq1jxuo0YPfeeSe2dnSr4WSr5EEo35WXXP0VPPbIozXfQ8PRGWqoCEPcf9cd2LajE5u3blGj4X/57p+iva1dO/VmgaORmkePQ1Vk3XPXb7B5Rzc2bW5DpVLBa6tfwSWf/wKefebZmu+hYYfWUWPH6UiZ+yRcbdt7sFnC0tNbxmuvvoYLRdYzzz5X8z00lTCRcI3VdLv37ruxaUcPNrRth5srYvOmd/HWuvXYwdXZM+Lk8v3iuGXbdi0jmzZtwGe+/FVMm3lCzWdj3EI6ZSCNKEvuvQ9bt3UgkPJ78//6GWadNB+LPpjNgEI8v6jp5ng+7lm8RNK+Q42H55x3Li688jPwcq01n43xJI6cni2SdmHJEpElae9IXVyxYgU+9cWv4pGlS7F585aa76GppxcXVLjnHoarTacpWyrl/rJrvojbb79Vy24mHFeSOpZy0IPWcWOxrb1LwlrAfQ88jMuu/jxu+MVN6Ni+o+Z5aLi+CUdslStVjBo3Ab0Sxi4pK7ff8mtslDAyDeqanN8lw2thDmrqDeB7exgZw4PPnfThw51002fH2E8cSKm9+7tInxMZX1QGh9fuuv69SHr/0jdVDnCjyUB2lo10m+2lln76X7draxiGYRiGYRjGwcBnr746XXuBr/IR13EY/js9p1hy/TxOmnciWke1yL4PnZglHv53EQ0Efi6Pt9e8gRXLnsdxc09U5Vqiiyxnoz4pDEdsUIl57123YcqUaToqQqdP0k5j2dEOinECrtGxafNm3PKLn2PTxo2qeBxOh8o0XEzfBNvbtuDdd9fjt489hpXPPKm96ochSmHnWo4O8SXNclGAjWtew8TJhyEfR6hPbZSFdF0O+SffgZyOavzEifj1T36obtrRR+lsI7p2RAYYRaYJjVWU297RgdlzZ6HoJig2tSAv0a9mNFawsy6npPLyRVx06SU4ZdEiVKtVdHZsx1FTDkerL2GdPKnme2jq60FwjZALLrkUi04/AyHXMvGB7/3132DC+LEsMDXfQ8POyBxl4+S8WrjOQLm3C6VSEz520cXQvsVxtjLGDq0s3zR0XHjJZTjtNIljby+aSyUcdfR03PbTH2LmccennhtQEEGsvl4uh09eeCEWiqxKTy88VPHEQ4+LvCnoleOsFKRs9Y1jb0+35EeIzVu34pf//gO0b8tmXCCc1SZXyMGNyrjmy1/Rtbirvd14YflyPPnbx/D8M0/VfDaGs1v4UiY8ya8vXXcdwmoZQdgr93CxecPbmDi+ueazMZy6kO2VK7Ku+fJ1SKoVlCtSrsaNxg3f/++YdexsjBk7uuZ7aOrp5cYVfOGrEq5Kr9Ypv6mIlpyLObNPRHv7tprvoeFyEK6fw6iWZmlX56OlqYANW3owecJ4uU8en/n81Vjz5pqa76HhaDnO9tPa2ooTT5qHYs5HXtqLyz79aY1bScqNTgn4O4b14BBAGg6pDJx6iZYyY//BR+9AuOiR8buh78tTrdPF74CBpYLHdO81NHU5dVl738DWpbz/qMeKacM0qqf5e4lxPa3fa/4NTf0jIyVLWOv5T7/W5hiGYRiGYRjGwQqn585z5ILnyncsVxjYu28P6oXeWrcOj913Dz76yQt0vYhdnbWyUf8u4fYTn7wQp591Nta8shqVahVcqHu4JK6Ll59/Fi88/RReWr4MTz/9DHKFIhIO18iILkRP5P408Hzvv/41rvzcVfjtQw/oGgg0PmRlV2c1R9eWbRk7Dp+79st4/a11jLSObNlb2Pt95YqVOGXBAnBpWRpDssA70iW04sjejh0daGppxTHHzVTX3dmFahCqQjcLOtBHy5HsSBiOPHoGWkePxS9+8iP0dHXqKAmuk5mJOFFDEQ0SLJuV3qrOWsIe9SxbXNMhDX02qDD340inyO/s7dEpuGgcY8y5eLefyzZdXFpLHLhyDYtltacXTaVmkSWyfR8P3X0HPnbBhTXfQ8Nc4ugfrkcEiWe50iNlNK/hOuGk+bjiqmux8pVXUs8NoOGKynAqzTkjTKW7A8W8h+eeehLPL3sZzz+3DM8tfbzmuzFMl75xzNNwIen+3e99D9dc9zU89MDDqceMxJL3kkBS9gM05fLo7Sljzuw5+NrXfh9rWAcyQsNEyPUGpCz0Sj7mJY7USQehg9dXvoYT551U85kFKT+htFUSyaDaK+XcRSTlk8am+QsXYbuU/21bshmL6unFmXsYR47w4NrRJ8yYgZ/+7Gd48eXlaGkZlXpuhOSfjsqTaL751luYOGkcJo1vQiB1URoiRD0dmdbcJnHENXIkfnLtm2vWiqxJKMm1nMIslPBxVA/r1e+aQ0SzxCovhc6U9wcIlg+/C97Du84Iw4DwYVIPUN+Asa7uLZRDZ+WrMUznuiP1tNsb3kue7Q1Z8nmk4mYYhmEYhmEYxu+axMtj4uQp6NjRAzdXANfGzUrfzlgcIXD/kiX4+JVXIS9yODKlTEXnMKCRgTLLvT1Yt3EDmsZNxNatbTolsO9mV/IxWGnYHMw88ST8xV//LT5x0SWYd/LJ+inD6W2yQsMJlZmEMrmubGdPN7rYK1+OXb1Pdupp1jxqNMJqBd2dO1QpvHXz5vf0adXVW9Z1JkqFdEohXVQ8AwwP010X8pfE2dG+DW+sXYMzzjxb3ebNG1EsFXemQRbStVNELrdxgE9ediXO/NBHMG5Mqy4wTgNBFnhHnX6N6eL52LZ1C2LZHn3MTLy0bDk4xmLLhg3qtxG8JRdI51qwHC1AWblcXr58HfhRgrBS0dEImZA0Y5nUcuT72Lp9my4azuml/p+//HMcfexxyJeyjYbgSCmO5OJUTby+o72LQ0nQ3rEdK154HgUnwcb1b9d8Dw2ncudC4VTeu/kiejvaUPKBhWeegz/7r/8vPv7Ji3H6aQtqvhvD9Yv7xtHN55mtaG1pRdemDXDK2Ue1UJYa1iSOXZLWVcfD5ImT8OrLL6OjXNHp1rLC4uBybSevoLJiT8qaV5Q6EODt9e+gqSn71H9UZfs5H1HioieIJXgFXfvlrbfX65ot48aOwZYtm2q+h6aeXjQ4dpXLCEU4DXXHzj4R537kPEwcMwZjR4+p+R4ajpxiPLu7OrH0kYcx69SzEMqZcvcObO7pwaMPPYAJk6aknhtAw7E0MrpOzhMPP4IFp58jcS5Iox2iWcLI+Gatk/sS73tCbX+/0CsJSZqamnS772Ei0zFr6zMuJnjjtVewbt27OOzwyek5PiSkMA0HlSx/7rjtFry1Zg2OmXGsnKOMtIHPSv2BQHm333or1q55EzNmzExlZAwXr+3riw+PXqnkjzz0oDTeM6SyxVpZstI3TOQXP/s5Vq94GcfMnisPYJGlD5ysqK1TwiTVSRqRF599FnfddRfmzDlJe12Q4YaND9utG9/FTTfeiBeef1FfhqZOSxeeyiKJ8UrYW0M8p4vHO7j7zt/geXkAzJE4qpU9YxzTNEpzXi6UPw7uuP12vPnGGsw49tg0+zSDGoeMvRT0BUjiuHrlKix94kmVsXXLZtx886+w5s21mDUr24LWHMbLFx3e9bUVK/DoU09h+owZItvBQ/cswWFHT5OXvHRdoUZwSDHznMVx1arVePyJp3DC8TOx4Z11+KWUDfYCmTB+QiZZnEeTstjx4JUVq7Bx02ZMnDQem9atwa9+eSNQbMXhk0RWzf9QcD5Qlh2Wh9dffglvbdwo106UtI7x9JNLsa4txBGHjav5HhqGi70+KHPlKoZri4RrIl545gncu+R+rHv7XcycyfzMkI9qJXc1XKtE1gaRNUlkxVIQfn7DT7D61Vcx/eijkecDvgFp2qe9SFatXI2NGzfhsPHj8OC9S/DbRx7Fi8tfwrjxEzF6dJbeArXSKg+f3uoOPLhkKY459ih9WbvnN3fh0Ucf1qG6kyYfJmGX+sryoVfU0YKc7qavi+IvQLnag4cfeBJTDp8qDzpg8W/uxsMP3StypmLU6Fb1R5x+7VkaFsLyri+8km/r163HLb/6FcKgF5OnTMVD9z0k9fIFHDtrtg77TUXs3KlJqG8lVBIZtneOvJy989Ya3HTzbfLyWJSPrrF4fdVKbNrcJfk6tuZ7+GyrzQ/KNDcMwzAMwzCM9zvU4exv/U06e0X6js8voZtu+DE6d+xAc7GAyYcfpj3Ns64b0vf7jd98Lz73HNaslu+C9evkW2gmOLrFzyirDmXyiiW33qrTeV36mc+p4pujKzhtVSMYS8rgNxC/Z6nQZxD4fVgoFFBqKoHrzGb59iT8nlIdjbgt767Hr2/8JVYtewEXXn4FxowapSNVqGdohIaLjmETmVTgT540CQ/cfbdO4XTYkUfpNxm/m/eGtrY2jG1twXj53qRhh/KzxJF++J3Hb1Wm2eix45APAjz48ENY/uILmDt7FqZMnSrftUzLxvJUGSsyqTNh+lM3dMO//avqXS649DIdZcGEyLJIPf1xnZG8xOXlF5/H0088jmpQxfRph2OTyHvmyaX42Mc/Lt/rjadbYjwrlbLE08PLzz0rsp5Ap9S/8RMn4f7Fd2FbTzc2b2/D8VJuG8G85DotnDbrpReew9OP/xa9ZZE1ehQ2btyoeoV317+NE05ovGYIRzJpGZJ6uULS+6nHH8X2zg7MnXsClj7yKF566SVc9rmr0VJqPErGcRKUOX2XhGvlC8/qNFk9vb2YIt/+XqmEgpz3iy0Y05qtzaH+hnWvHsfu7i5pr4q49ZZb8OaaNfjYZVdkChdh+8BRRdu3b8NDS+7Bjq4dmDr1MCw460wsufMOLDztdEycMKHme2jCSGS5Pjq2t+Phexejo6MdOSnz48aNxegx4zBuwlgpX9kMpVEYaNr3lsu47ze3qyGyyXcx45gjcMftd6oB4qPnnStp27i81tNr+/btePCexRrXUcU81q19QxeHv/KLX8Xo5lImfWiq93KwbcsGvLr6Vby95k2Uu7pw4omz8cC90mYsPBOzZs1UfVYjWFZdaVw2rX8Hr7/2qrhXtP5wZNiq11/HI1KvqAstFbPlJanfdVvbFoyfMDL6G0caRtat/Ubb1lQBNT5jwds76k0/SS3VqsRX+2167gf/8q+YeORxOP8T5zHnwQWysj6giCr9ZMtK9torr+CZp57CZXxwxgGKzVyoPUNjK9QfZiwwHe3bsH79eqxYtRoXXXIZ3JyPpkK2xbb4DIglHvrAkIrDuKx6aTmWPv00rv3il2nQk3hKZZGHTiPqqadx1AMH9y25F+ed9xGUpfKWJK2yPIAJZThOIDscVlnVeftu/eVNuPzqz6JzazdKY5ul8ousLA9hBkbCwiCR9ratKI0ah0cefABzTl2II8bKy4H8nsUgw4W6+HKTeo2xbfMmycPn4BVK8PIFnPOBs/W3LENV0/SiQpmK4ARvv/4qnnnuRVTkDWru7BMx56TZiGQ/zwkWG8B5JfkSF8UR/v1f/yd6Qgff+c71uPmWm3HywlPx7ONP4yMfPQ+TJjZuAMrSwFaTGHnJ/J/+27/hbSkf/+Fb38Ijt9+Gti3bccXXvoiCPCCyNNzlckVqTzpX6w++/+/okvj88R9+E68tfxbT5y7A9dd9Gf/2P3+IYoaheuyxE1TlxSDfhJ/9jx/iiFnH46wPfgBvLn8KM+echG/+4f+B/+8f/gqjWhsbBXo4P6iEhYvv3fzjH+HI+Sfh9877ECrlLtx0y+1YU27Fn117oZTXxsYKLoqWzzno7NyOn91wI+bMm49T55+Cl5Y9gZNOORVOaQyKTqwPnEZU5cXHkbTnQ+6GH/8Ux889ER845yw8/duHMOVoeYiMGovpE7MZd5j20hTIQ7cTP7/h5zhmzlx87NwP6gJncPP427/+K3zr29/BuNZS7Yo9EwWhlFTOe5rDE7+9FW+86eNTl52LyE3kpWM5Tjv9NPz61ltw5ac/rS/H8kqv7WPabrCk12ufi7AaSrtCgyrw+GO3SXvTg+u+dS3WvfUqVr2wAh++4GLc9Mtf4LOf/1zNeJJ+GPSXQ9J5ex0nJ/VyO5Y/uxpHHz8H//bP/ze+ct3X8eRjL6DqRDhh3gLMnnmMPoA9tk1SHtMHO4XuqlvVShWxBN4Ne/DK8uUYf+zJ+Iv/U8rUP/4dbvvxz1CaeDQuveQjNd8SR364sC2oHTfi9VdX6fbY47IZMw3DMAzDMAzjYIY6nH2rv+kLvxP4bd33m4t6iVicq4YT9gZnD+jax/ywoY4inRKMNofG33YDSXUc6b2ph9EvG+pa5NuEXynD6YypUmp6Du3lzm8m+TbRVJAwZp1Sqm+YiOpyat85REejZNRtEPrUuPCvnOQev+l6qgFKhUIm9c1gVMJI17Xhwt2MJWVnMYbVw0V9iyavXBgmDurarVCOKSXVh2ULHGVqumnseODodGzsaKrrrkSy7zVO/7RTrviT9GbgNKwil7Il0eQg1UMOR99Y1xOmI3Vo0OKXuZQRivSYl43Lrfplcmg4ZEe2LPWcMokBYudaxjxzXjIsIkfLhcSX2ziRcFKYpFXo5pDLVFzTOKXJJVvVazAQDipSvor5nOymaZYFxlNTvRZH3erJdCvNhsjKJo3Ty1HXoN5rdS8Iqtr5Oy/Hmn4ZE0zrXD0TRBQ7enrc2VlO0nTMAo1+mlt6b71S0o1BpBHDQzlyUNQi0Thsu9KLR1LO5YTqfmrluKdSVWN1VmhI8XzWF8aH02+JMIm7nJFfJVC1OtAYKUNSFmjEoiwakVkHVbcuIqryGw1sWeFd09QCXn9lJWYeP5un3zPZcuygY2DBYbLV4X6Mz37hap1jkvXDy7FxyjYkjoVXM0MqAh9COd/HcbNmYeyY0ejs6tRFmrJWUDaq+oCUrZ/PY9zEyXhn3Vv6G5WWeVrZ2V0/A9VqRYfEsaJX5cFUlXDS6nr0jGN1XkCHlS5jZdfGXtA4yjWRNBrLXnwOd995u+7zYUwjRBYogw2+JrSwcd2beOvtDbjh37+P4vhWfTjV79eIui/Ggg+TseMnaCNd6ezAxFGt6iFbDCV9ay8ThIshlVpasFbSftPmTZgzZ46c5ByUGcMlfgnDxHLE3gvTpk3F0TNnYe2at/RB78nDJQvM92qFeenhM1/8Ejq3t2l65+X4yKlTseC0RZmHSfocEiBpn8v5+MwXrkGlqwOxlI/zLrwI4yeOl0YoloY8W4pxEatQ8jwvD7TPfulL6O5o0/jOOnGeLkQ1bdo0SbJsceQCfJwXkbazK6+5GpVyGXHQgwmTxuGmn96Aj338/EwGFJKW+XRk22eu/RK6uqvorEZ4bfXzmHvckWgaM0EeeNmGSTKdOIyXi2J99gvXYsf2ThSaC+iUuP7q5z/Hc089m/mB6brp61xTqSD5+EX0dncjlhfFN9auxf333I0H7rwNgZSLLDDt+fBoZbgk7aNyrxoLC3kf76x5HUdJ2o/NYEAhDD9f6vmictrpCzCqeZTEsVnnRH399Tfwox9+H4dNO0JfHurBG/wjQNqutLmRl30Xp552CsZOPFbn1KyUI7SMHy9eqvCLJX25TduBtO3sX0vTM9pri8YaeSE8+bQFKteXMrJl62ZMOeoYzJs/DytWrNJ4y+uCXMbrWIcpq3+e5NUgzusdzJk/X3tVTJg8UbK2GxddcTEKvryQUU7d1a4zDMMwDMMwDON3Dd/Od32rp/C93Uu/ZeTI43cuX/j3En4DsCPh3hhQCK+vw89DHZlR6xia1YBCdkqpyeP0OnWjB89kXpND6BsmwuO6LJLFgELoq+4zTW1+O7EzXBo3KlczfhIPSkHSieFimjHeWXVU6l1c+j0uTsKko4dqjsYOjwaPjPEk9KnxYjrTqRxJM56T37IYUMhORXgt73mtpr8cU8Gd3iN7uEg971SGhIvfy+xs68m3bNZ1IZg0etf6vRkmDRzDmX4T63FWGD+NSz2eEi7Hl2MJm5TdbAYUQo+prlGPPF/jxJEWNNBR/rCCpXGqXVHf1iMm2zQ3s6GdqDWeuyLD0VJ5Gm1reZEVrXMsQ2kARXZatiQzdbuz3GRA2z6GS+PC9GGZYP7RqOCimFYocY1Jg7PLf93wyPaQZWI4BhSSdriVOs18ZDjlSMu7lI30PlnjKXVaOz+zLrOTa1ofKYvtxHAMKPuS7Ll2MEMl/k4VPA0n6ZAjKsl9L0EUlPUhmgWW87SopTBD161di6bmZowbNRo9QdDv9yxQRqpgTPDh8y/EmLFj8caql1VpnbVicchnSAOHRJPybv3Zj7Fy5Uo88dvHsPy5p1HRxawyZnctqRgmHTIphfWP/+Q/qkL01TfeUEW8VopMJJLOkv7inZbNMKjgjDPPxEknL8Jtt9yvcQ7rN8wIw8WHCUPAuS9HjRkjFcpDoPmcFUnzmL1ZUgvnprfX4Yhp05DL5/HGypf0JYi/ZYHX0y/zig3IrJMXYPPGTXj0vntwxPQZGjvOH5kF3rJYalKFMuXSUZmtjZEj+RGlYc6EpEc+X9B45twcfGm0PXDRJwr0ZZ8NecZ8lGsKpZLKqjeuXOwskOPH7rsXX/jil6WxzWasoFEtLw1zknCBu7ThL0rZmjp1Mj519TVYvnwFNry7seZ7aNT4SXmFPKTJloR20ZpL8Pgj92Ppk09LPVqF1a+8XvPdmCiqat7TCMIXApar8y74JD79hWvx8INPYP3b79R8Dg3ziLnkF4paLvhCwB4tzdJOXHPdN+A3NWPlshdTz42gLOYhe/xI2jPPQikHThRh1cqXcflVV6tBKwt88LrsCRBL/ZH9Qr5J55wMy9sxbuw4nHji8ejYtp0FlrdN83tnGWGMdjnGiXnHFznHlTzwigi6qphx7FFYt+YNXZSPo2cog+WF5bh/2U3lsDzo8FQJT1Dt0nAtfegRXH3VVciLbM9v0t4NLCsaJr0uvZr1uB/igQYg9qbgFGNyMRYvfhDXfe3baJLy6UnZqIapgUvvLn75gpqxFhiGYRiGYRiGYRiGYRiHIIeAEYUqt74KRlXFoX1HJ0ZNnIIgovqMaxekKrmG9PHG3WoQ4LFHH8OpHzyPmm7oQmIZU7WvISKsVrF1wzt49621umgXlYGJI+HSoU/ZYI8MimT8Lvn8NfjGH3wbpy46A3MWno68WnRrHhuglkm5v4ZPXHv7NlW8bnh7PUaPGgsvSRXpWdBRKDsTLcHEKdPw9tq16OndgbHNnOPQgZtxBAPDU1fCpkFM8OwTSzF/0ZmIKhVVvvZN00ZQeUpxHCnCBdJoCDvqiCPx9oaNCOVcaultjCrMVZkfqfGDBoFPXHIFjhRZc046Qafmypr4HFmh4ZJC1NXdi2JTK7h4VEdnN9588w2sWvESJk89ouZ7aJgWVHRzyGF3VzdyuSKqIrlYKCEn57ukzJUlvFnIqWGBI7aAzq4e5EstCPw8lj72GCZNm4bJR06XupAtH3NSTplmLK/l3hiJV0JP5GP5sufRVCqhY/t2NT5kgRZqjriplgN0ShpxYUC4OXzp+m/i3Isvx9wzPohjjzu25nto2JOF0/qFYYCungC5UjOCxEFvbxldbe8iqJTROibbWhrsBUPjCUdmdPdwTtM8erp7tL0IKr3o3NaG5lHZRtsw7XWEUrmqaV9Fmhe9Infjlq1oyaX3ygKbOYYhV3DhuTG6KjHK3QG2t3egqakFZ5x1qs7BGoZSaqT8c6SYVjatw/V6nBInEpegrD/TGF3prSDXXJC6E+IzV38BC05ZgLGjR2l7wmng0jrQX4bWHTXssZQ6yOWLuO+eJZhy9NGYOPUoHZ20etmLeGX1SsyePVsN36wPKouVdxAYRxpuuFjhg4sXY9q0wzFpfDOSSgCHBh1UsKNju96baBj2IMswDMMwDMMwDMMwDMMwDoGF5alvo4LRVSVd7QQW334r3l7zLsZxQZ/xY8A53LJYP/oq6al8r1bLePH5F/Dqy8swurmISZMOU+NHH2+Z4JQ9peYW3LN4MUaNGY2zP/gh5DgSgT9mEpbs9Mf4cughh0qSyZMnyd/UeJTJyNDHDw0AHW1t+NXNN+HI6dOx4JRToHPSiZed6TkE6kONEWlYCqVmbN6yDW0dW3DBBR/Xe+U5jVJGGP56HLjt7e3B1GlHpFMx8bf0B/19SOglSUe00P9hU6dh+Qsvom3bNlx2xZWSfjRAZJBDxBvTPDXiuLomw89//CPMnjtH0v4wiZ+XOR+py6XhicaU3/z6JhTyeXS1b8WpC0/FYw8/gtFjxuLkk+fXfA+Nhl8cp5y7Q/Kv2NyMtrYtSMq9unD6qtUv47jjT0BTFoOF6phjNQbcJeEqFgro2tGuZfTN117D4w8/JLKO05EWDZEwsSyyvt11y6/R3duJ5lyIuBLi/iX34fLPX4Mjp2SdczfRUWRU9i++7RZ09PZKGF0cfthhKBWbUe7swYwp4+SWWfJS8pzGDzeP30h6bWvfjtGjS1jxwrNYtmwlPnrBpThiyvhsssQPh6VS5uJbbsaWbW1SFiZirpSJ2269BVOmTMHpixZlkyVJpUYZKV+U1bljOyZPnICW5iY0tzRj0oRJ8hvv1FgWp1zjkEgaYZ5/5mls2bAVr65+CSeecjJef+MNPPnkUsw98WQcfvhhajhlGUrDWHeEpZkGTU+HftJQ98JzS/Huxg489dsncezM6bj5lzeis6sdn7zkCikjqQyVxSv7xDndl3aOc4Nxajk53vjOZqxesVLS/HlMn34MOjq6AWmfzzjjdOQpS/6poZfy+shSeI71h2kfx9j47ma8suoNvCTl/bDDx+Geu+7G9s4Ex8+chkKxlA4THUzOENjC8oZhGIZhGMahxP5dWN4wDMMw3ht1DQ9nbenc0YGx48bXzrw3nGQ/d8HdPwvLG4ZhGMbIYwvLG4ZhGIZhGIcS+3dhecMwDMMYGTgrCqebnz5jZu3Me0M7yBuGYRiGYRiGYRiGYRhGX8yAYhiGYRyMcCalkTKgEDOiGIZhGIZhGIZhGIZhGIZhGIZhDIIZUQzDMAzDMAzDMAzDMAzDMAzDMAZhvxtRuBAxnbJ/l2MxDMMwjL2GTyzfz6szDMMwDMMwDMMwDMMwDg1sJIphGIZhGIZhGIZhGIZhGIZhGMYgOIlQ2zcMwzAMwzAMwzAMwzAMwzAMwzBq2EgUwzAMwzAMwzAMwzAMwzAMwzCMQTAjimEYhmEYhmEYhmEYhmEYhmEYxiCYEcUwDMMwDMMwDMMwDMMwDMMwDGMQzIhiGIZhGIZhGIZhGIZhGIZhGIYxCGZEMQzDMAzDMAzDMAzDMAzDMAzDGAQzohiGYRiGYRiGYRiGYRiGYRiGYewG8L8BoJ+Y4am7A1wAAAAASUVORK5CYII=
* Bisher haben wir nur im diskreten Fall W-Maße diskutiert.
* Dies führte auf [[Zähldichten|Zähldichte]]: $$p=(p_1,\ldots,p_n)$$.
* Zähldichten kann man sich als Säulengramme veranschaulichen: über dem reellen Intervall $$(i-1,i]$$ wird für alle $$i\in\Omega:=[1:n]$$ eine Säule der Höhe $$p_i$$ gezeichnet.
[img[dichte_binom.png]]
* Die Wahrscheinlichkeit, dass das Ereignis $$A\subseteq\Omega$$ eintritt, ist dann gleich dem Flächeninhalt aller Säulen zu $$i\in A$$.
* Säulendiagramme sind Treppenfunktionen.
* Im Folgenden geht es um kontinuierliche Varianten: statt Treppenfunktionen lassen wir allgemeinere Funktionen, sog. ''Dichtefunktionen'', zu.
* Bei kontinuierlichen Funktionen ist das [[Lebesgue-Integral]] das adäquate Werkzeug zur Messen von Flächeninhalten.
!! Definition und Satz
Die [[Potenzreihe|Potenzreihen]]
<$latex text="\sum_{n=0}^\infty \frac{x^n}{n!}" displayMode="true"></$latex>
konvergiert für alle $$x\in\mathbb{C}$$ und definiert die ''Exponentialfunktion ''$$\exp$$.
Außerdem sieht man durch ausschreiben der Summe, dass
<$latex text="\exp(x)\exp(y)=\exp(x+y)" displayMode="true"></$latex>
gilt und man nennt $$\exp(1)$$ die ''Euler'sche Zahl''.
!! Beweis der Konvergenz
Es sei $$x\in\mathbb{C}$$ so gilt
<$latex text="\left\vert \frac{x^{n+1}}{(n+1)!}\frac{n!}{x^n} \right\vert = \frac{|x|}{n+1}\to 0," displayMode="true"></$latex>
daher folgt die Konvergenz aus dem [[Quotientenkriterium]].
<<list-links "[tag[Die QR-Zerlegung]sort[scriptorder]]">>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/BbMytuPERdw?rel=0&start=0" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
<<list-links "[tag[Die Singulärwertzerlegung in Matrixnotation]sort[scriptorder]]">>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/RFXF71LzwKk?rel=0&start=2014" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
<<list-links "[tag[Die Taylor-Approximation]sort[scriptorder]]">>
! Definition
Ist $$P$$ ein W-Maß auf $$(\R,{\mathcal{B}})$$, so heißt <$latex text="F_P:=(\R\ni c\mapsto P({(-\infty,c]})\in[0,1]" displayMode="true"></$latex> die ''Verteilungsfunktion'' zu $$P$$.
Die Funktion <$latex text="\textcolor{blue}{\phi(x):=\frac{1}{\sqrt{2\pi}}e^{-x^2/2}}" displayMode="true"></$latex> ist die ''Dichtefunktion zur Standardnormalverteilung'' $${\mathcal{N}}_{0,1}$$. Für $$c\in\R$$ setze <$latex text="\Phi(c):={\mathcal{N}}_{0,1}({(-\infty,c]})=\int_{-\infty}^c \phi(x)dx." displayMode="true"></$latex> Dann ist $$\Phi$$ die ''Verteilungsfunktion der Standardnormalverteilung''.
$$\text{End}_K(V)$$ ist sowohl ein Ring, als auch ein Vektorraum über $$K$$. Die Multiplikationen $$\cdot: K\times \text{End}_K(V)\to \text{End}_K(V)$$ und $$\cdot: \text{End}_K(V)\times \text{End}_K(V)\to \text{End}_K(V)$$ sind dabei verträglich. Für $$\lambda\in K,T_1,T_2\in \text{End}_K(V)$$ gilt:
<$latex text="\lambda\cdot(T_1\cdot T_2)=(\lambda\cdot T_1)\cdot T_2 = T_1\cdot (\lambda\cdot T_2)." displayMode="true"></$latex>
Diese Struktur nennt man auch $$K$$-Algebra. Ein weiteres Beispiel für eine $$K$$-Algebra ist $$K[X]$$.
!! Einsetzungshomomorphismus
Der Einsetzungshomomorphismus
<$latex text="\begin{aligned}
\Phi_T:K[X]&\to\text{End}_K(V)\\
p=\sum_{j=0}^na_j X^j&\mapsto p(T) \sum_{j=0}^na_j T^j
\end{aligned}" displayMode="true"></$latex>
ist ein Homomorphismus von $$K$$-Algebras.
Das Bild $$\Phi_T(K[X])\eqqcolon K[T]$$ ist eine (bezüglich der Ringmultiplikation) kommutative Unteralgebra von $$\text{End}_K(V)$$.
!! Beweis
Direktes Nachrechnen zeigt:
<$latex text="\begin{aligned}
\Phi_T(\lambda\cdot p+q)&=\lambda\Phi_T(p)+\Phi_T(q)\\
\Phi_T(\lambda \cdot p \cdot q)&=\lambda\Phi_T(p)\cdot\Phi_T(q)
\end{aligned}." displayMode="true"></$latex>
Die Kommutativität folgt dann direkt aus der Kommutativität in $$K[X]$$.
iVBORw0KGgoAAAANSUhEUgAAAOQAAADECAIAAAAAmRrsAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAAL6ZJREFUeF7t3Xe8JUWVB/A1oKCMDmYUFUREDKAiDuMIiKiAAoKAgKioKDoCBkyDiglcFXNcc855zVnMuuacM+bsqmt2v0tpe7dv6Kruqu5+b27/MZ8371VXV506deqc3wl1rr///e//tnyWFFgRFMCsy2dJgRVBgX9bEaNcDnJJgf9TAZZUWFJgpVBgyawrZaWW41xK1iUPrBwKLCXrylmrzX6kS2bd7Flg5RAgM7N+8IMfvOc973mHxOce97hH9cZJJ510pzvdabKDu9zlLhs3bgy/CS3vfOc7P+ABD3jiE58Y/vvABz7wP855/MYTfq6eZz/72S960Yue8Yxn+M273/3upzzlKY973ONqbSb/66/aLGjQ858e+chHokkiRTs1R1skPfXUU+9617ueeeaZk/N9+tOf/tznPhc93/ve977mNa955zvf+dGPfvQ///n45Vve8ha/efvb33766adXL37/+9/PsiMyM6sh3vve937f+9737W9/+7vf/e773/9+o6+ez3zmM5P/DT/f5z732WKLLe52t7uF/771rW+dblP9pvrr2972tne84x3hv+HnBQ+ahr9i1p/85Ce///3v/2f+s/ivM9970IMetMcee7zpTW/61a9+taDn6T/99Kc/rYb9oQ996CMf+YjdbpB++Z73vAe5/PCxj33MmP/7/z9f//rXccAPf/hDryD1f53z6OGss84KtPrc5z43j4xYC/ff//73f+Mb3zizDXqGB3mxXY2wiOkxyHe9613+NU4/hCf80m8+9alP/e53vwvzffjDH/7pT396jMxq2ey8pJF9+MMf5j2xC5PeGlvjH/zgB+b+4Ac/2ML8/Oc//+tf/zq2EU6OB/efdtppzhxDLT3ORzziEXg3y1cyS9bWzPrkJz85y3yG7eSLX/ziv5/zOFK+973vDTuYxV8n86hMhvqVr3zlL3/5S7mhripmdaKRrPSkcvTquWcsa4Ue//jHO5R/9KMf9fz1pM+96lWvQvkPfOADf/7zn5NejG+8qpjVtDHr/vvvHz//FdGSPvCKV7ziec97Hr3w17/+9WjHTDN+1KMe9bKXvazQIFchs17jGtcY7XK2Htgf//hHh+zrX//6hzzkIYyV1v0UffFvf/vbV7/6VSqBffWLX/wi+7dWG7OuWbNmVTJrWHh28be+9S0WJKCNGMvODd07ZA7++Mc/xqyQKYBG9w4nexgvsz71qU993etelzrbvfbaaxUza6DGH/7wB2DTCSec4MyFjqWSqIf2v/nNb4zNCjoQMn5uMGb97W9/C02EekCMaTmAD4fI5MRaoAFev+ENb3jFK14RNJiRRuPsih0DiTzuuOPe8IY3OHNHiHA99rGP5RPJqA+88IUvpGZkWY406Armv27dOpvviCOOuMhFLuK/tmN3ZuWRusIVrvCJT3wiy5TG38nZZ5/9mMc8hmIA8AchjW3AfHj3u9/9vvnNb2YZmN4++9nPZukqjVm33XbbAw44wIe/9KUv7bPPPrvsskvNOdFOsjp9tttuOzI7y5RWRCeOWp4e3h2C5/Of//yf/vSnUQ0bpAWCtcrdIdjB1IBjjz2Wpw5ZOWyOOuqotWvXcg92l6wcgNtss40tOKoF62EwTttXvvKVEFnGzagQWTzKs/ikJz2JF7cjvw7GrI6GQNNPfvKT17zmNffbb7+aOkKyOtMhiyQuHbT2fOMb3+Dom2YCLvKtt956NfkFkhidW4Qks6jA+Y6ckfTdxY0Je4EH5Ct51EW3HoxZw/TAHMcff/z69evFOtTOL8x697vfHbOGEIfJ52lPexqpfPLJJwd17dGPfrSgHtFBTA2qm1iWY445JjtuknHxinYFHxCsJLgElcZDBLoKdVPAA32gZknHU2NIZgXBoOluu+2GHXFtzT7ArMIj2LzTjxeBCZ4Q1uRfUlZ8FusY2kWyUlux8u1vf3tMLNiHez2XFRlP2QFbkl60AsarLT0elcCorIJFofi1I85gzIrVRADiKrGMAsyOPvroWkBNOwMLFQ477LDrXve6/D3ASHoShQnTn3jiiTAyUpzyxPzic//lL3+JxfH62CySdgs58y3KEmrYrqICM3bbpStDOvjgg52TLbSUwZgVL/Ljb7XVVte+9rUhozQBlmx3A0sPIqxJa0rbNE0xKN2XIeI8En9otwQ1A+/S9mC9I0R/unCGdwkFa2y7ignuoi92HMbk6/j1Nre5TQutejBmPfzww0FX1QNy+tnPfpaFWUG222+//ctf/vJG+nJdUvmZz6IKSVzBIt7ymy984QsMtRZbv/GLgzSgL1KQnvnMZ5JnDpPWKmPGwdMHyAu6dRKRB2NWZ7QwzephCtT2fWs1AM8R2F6PJy6BSpHibRcpQi15znOew/XioQcTSPH9jLYl2oJfnv/855sUvSiJRUpMyoahpwl5kZIQP5jBmLWRBK2ZFSBw4QtfmOu83ZnuLRsJXkYOQW0NA01x8HgslUbSzWsgco8SD0IiZcXEtO4ny4t4FJGlhTnKIvl1FTIr7RNwe+ihh3JFdiEracQukZb0ne98B7Mi66ZNm571rGdh5ZEofy1mZ+TOEBifhafqtOgh4ytMW45xapszLUY5WYXMajGOPPJIFluu5DLLg6wAMlxLwQ05sRCMWjBDxlUs3RU0EEQgedhZXPpbi/u3eXCqY5Ah2DiSVcispk0KsrHkUjbOv10D+4FHl88CIoZrifBpnbtdz729hUug9PAQqg7curfvzvyQpB2QcM3Cnm65CpnVJNlJ1FaBHaXPazzKDSF6/wlPeAKcGLxQLgOpBD/ZZlAt5KISxBzEJcYQ+iRZSPrF8Vmrk1m5rHbccUcRAoWSgabXDKfSEALyxYgZXB2M5ypDBTl7wJ/xb5VoyVlDf6VrzescvFgD41sPIy1EsPEzttFLXvKSxmYzG3z5y18+8MADeUpyRVJGDsN5ilkpBtZeRDlTr7RojxzY4maQAcUmuGeFm2TpsF0nMAHDwJHzgBe420iZ9YwzznCOt5s2X5S6LNTWj3/84+166PIW8Eu4Rlh+YabCHrr01s+7tBfGlspIgIIBVVhWLJ2EGj3TP7w61QDyjComAYE3dSjZBkAgIYh26iwAQSRkP2zX5StQuaASDMivxLwBUKimkeDVyawWTL4ytRWjtHMNdFny2rtB0N7rXvcSSdOzWpI6CzaWcC0OPGdCb+r+9CB9Wtgn1b9m861aZqW2ypa5xS1u0UMNpkieoG8JXLQMWHY8YVDTg3cmOIv5ZikwQ0EEZLzkrZqve9UyK7T1Vre61cUudjFwUiQz9dDM8aqYI5Z10oE5xxMcPT13tjkVdsCjIMDAkzUuVy2zoj4nOLSV2toDF6Z+ArhGxApWFMkxWk/Ya1/7WkldgxipgZ5ibh760Ic6JMN/VzOzgpCkZYMFUjmpn/Yi90hZSI14A+sRGczRz9iqr1AcuQNtrZ6/W31OSpn6A0HAr2Zm5b7bc889RXYPReiY78LkCVeGoCUZJ8gFLZbr5oDKW14lhjja2MOi46U/Ic5qZlZTpaRLycpV2zuSvqnNgGsKT5OyIg2ULU99vXT7qtzam9/85kGcyTAs+pKHf2v1FBOeXjZwnTICD3vYw0qvaPf+sSyjkNNOCP3MnJzun2jdA361nYh/h/IgUCAwizZytatdLZePLbO7tXXw9eSSWH5o64UudKEVlBUIa5NmI+Jb7seohg3KYLNKxBgEd5OQo9KU86f1lpt8cYzManxKv8hMzLUjs1CqsRM8SlFz6oV4qMb2vTUgVh1TLMKY8NPso3Lm5IImRsqsgvwxK+U1O+1Kd0iWOHn5jWkF4xGx+NWJzMvVv4trMAPLnCWR4iSFQ2bi9lnUAPyEppe61KXAAhlrL5Zm08n+pYLhV1lTfLZ9fnfBt6wdfyy/Rs9OjcGYVVDS7W53Ozx01ate1XpMkyYXs+pZYOtlLnMZsTwjWezUYfAaGDx5JuBh8ES/MHjhUS9+8YttoT71gcGYlZzjK6dQXvnKVy7NrApbSM6WhZLKJeNpTw2Ad+JXIq1neTaPCIbhYOSV7U1FGYxZkcBp4rrKHpgVKqR8+9577z14MHwX7ocfoZgKdtIVR8KvtGrGAOyiHzxr1MwqrC5csigimJ9aWhm0j19KFSD4DpeGB4wS7koErCwIESKTaAIyT7qwy0jedfJKB33pS1+KDkNFRVWkwK9QC0vTg78AcDaYU6BRsvLovOAFL6DIG6VDPDxcf34jw8FNrRpA0dXGodLxcLDY2GpSe+XxWEiLWkVe83GLwLrjHe84fXnBSFgwdRhURh5aU+7tFJ43QjHm973vfa1C6hRS23O6WsfUt2a2T4auGpl18d2tZCoD2UMlpTnJjcbZBLCDifn86le/WkSmjCi4D95VTIEacOlLX9qE1SwaXCB1pzhJplaUk1FeaJ9WzsyRCzRx25Egqe7zWtCDkzbXJ/pm1nmzEglAvooOcVDS8CDYFAmA5Q477ABwvcAFLiDQaSQ6X8eldW4o5GGXkrKDz0gKl3C+ovFZboNXG6oj0cLracyqLA9B6Cagi170oqeccgohMV1MOPVW7JnTgPtwAlGq1BTCrB7VW7lhpPI5UxYk/mYhSulOQjkgLlC1CwYMlA7T5B92rJVzFg5mYJF8NoqzY+PGjbRPPt9aBFpGnDUgD/bGZS97WcxK1QMLUG1D3TW1FdR6/9rXvjbOiNIYdge+2nhwwHJFaGKGYedQuibDpWPeim8zGLNSuYIVH55pWzIvs6KIT9AHdt5550MOOQSkQG0NFazIeNoCkcBKgGKu0ILuoYycQsotrmWMZ5fGljY8fuUsKFF0cTBmbZw2QISdlJpI7VgHC8gRYFoBvMjOyYRBy6mmvVyXmaWG/ZX+TosXMCEWjvSlCI7zvsl51GNpuTRVLgpQb6iDggiwBEyFIBEaFzq+ASCIzpqlzzSdtXGIFFamAwSqsWXVQBiAWwMEkt3oRjcSFkgbPs95zlO7E0samsLwe+yxxwIc259wrQGgONsF4IDug8TJx8+9aolH1UAG9qlUMCCqpUCJbZPXOQzq8WQBdIdnVmqoYvWEimNI8Iq7H3bddVeBMrUld4XLlltuadqNrEBOIzqWJaRhYeLTBgeJGsccGuDXM888kxxKPZoi+29sZm/TqWz1xpbxDVYVs5KspCBt6da3vvWGDRtoophsum4AeIWl5fLs+LojEvroJDwRDji2IKQ2nsRDtWSV27QD3gwKhJGtmRHMWlXMSk/dd999hVruvvvuTGNsamdP35DtHMHNYAGcF89JjlTOXsE3rDT57CL5c7n+4seQ2tKmCpcj9OO7nx6eAQB8IC2pI5/ZHp4DpBupGqAQX5KmKKICCyoe6JRXpl1iPuV15nXu9Dktr3e967Wo18LkgmiqHM0E5P4V0p9lJQp1IroNWfjthuJXuhMq2efdJ0i4UMZGyqyp9SmcO/iPqgrBVfJS7aB5CcQ0OfLmEpe4BJdsOyKyY3CtsL1wSzmhnoWI7Qaz+C3aEWPRURCv9mQcBrJAf6FO3XcLTYz8ykLn/AZWKrMmkThkENzgBjdofTtj9TliQ1QXA1xgrm6zYCtJc2lszC6U5G2xBUn1b3L5uk8bQEd0gqXLhT5SZoVvFwUL+R2UbKHXZlk/fCAlgcB28LXQLhoZrmMDuwgwwr3kOsUs800aj2gNlIm/RWhm545BAPlImbV04UWYq6Sao446ihMrifQLGgvvgl3bAIzxERaxciK7zDFXoF0S0XAqR3eXgiOrCg1Iop3GXFZ0qctd7nIgniz7NQwAEg6vCQAtMZY6qtLtWYSU7FyxdvGjRWE1XcjX1mmxo2ZW1l9HLaeRlGCBdevWXf/612cqNTZOakBRow84eVk2jZfmJPXcvbGQbV5lh0D3rpJ6gO2IGWqdrzFqZmXD5vXXTVOWierUVtAdIUroxxRZMgw2zoxNWtfSjalAp512Wv/F44VbCM9o913WlZiNLGdgfjRAQEZSbEC7BeakhQmoo9QdFpg5ANYMe4umAR4fPOS0GiHIQgyxKC1c245urd8Cntz85jdvUYMI5EIqj5RZUwNZWpOPJad+G02uqJnM++XwJcIHj+oPhLLqyhPBB+zSnuE2LmtYeJLHx4AZGA7bkTIr/aYfg5o3gRNBiFaurIl524ZtwcIQjsRVO4aYGCaBzWNIPVfU4p6QaKTQSZJ0oLBBr0bKrBzBqZuvtXCF6Qop5ADrQexBjiRHyMsdw30H+JWKArTvc/MQ5OBCwijppmMAy3hjA4SklDawKua2K0J0Cwq25vj4F+ltofyO9J5BvKCTQ8Wm4gfI1z5HwpwVFocC8dJh1GgA0Cd+JvGMMq+lvQ7G4iYQDNq9t8YeHGeMG0Ykr0xr6LHxK5ENmDuEKz0ysn2WZqASOwTuG4nDjJpZe9NZK9LLHzrvec979NFH97NJaGwWjAor1bZnrXGa28hX8dp9QmyUAVAMj1okSDIks9KvscVBBx3E6p+uR8nuEzjcs5WKe1xSBXal/mcRHjGd0EDIcihSTOOibWwYa9FDbZVqFghOE/XEeH8GY1YxH1tssYX6P04ftdmIlhrwhlkhwDFzyLt+XFmSCOgDXKZJtmrHYchPFNNIjevT0Jkes+mL0+V7623uIi03bdoUk1Q8DLPiy5122on1zX5y4KolePWrX92JMEk7zMpe7lPlD1+3PZicCmO5oLBEPvECnkYWgWDETCH3RMx2Cveo41f5Z70da1IJYgJercsAwddQRjf+EGCBfFaIGV6r0opZ+4SuJhdSyqHKF0Kz+Ut6w87CALh/pY8zO7jve/50RQGWHyDPGPqsFe6AVe118XYSaEF+9Y2zBmalrU4yqxNwcitjVskY4q8xMYORryXIWj8D5yCUni7xZovpQszvv//+Kg71f8sPflXhml7EHdq/FhTIQsZTXhlbvQ3ArLn3aqdrbY3IjgHiWWcyq2ttJ2UJ1mScahlKBQoRsvPAcsStoEzqrDgMyT0EALJqScWUbhVpVzYeiDQ2lTIuf/nLK4zVvxJJ+VFxTQ5ZPyDaTGqEWPKiyRq173JHO2MXKH7D6KwzmVWw46RSj1mxS/UbQhcr2/HhcUJRqlgDbvmmm5PKMvgcJZJaobMyTHA2TaiLymuvi5xQvkWdgUbmzt4gXDtoIv04KWaO3wDQM8b0yTJ9UpwM8szrDUsMIFkd3yqmBDUAHq42G2OrFg5sZPHbmllAlcGa+FiHItCwPrkLhzrppJMI3XbZlbbHjW98Y6jFUAWkbBjCxhmShRtadKJgwuGHH97b2UL0yCaYV9pxsKgr4mrt2rWKUPA3KnypkkqtckQSsy5YBoxL7nKlcsdzKoYqGHg6Uk/X0lXFl7zkJftEc2rTEb2hoiXYpDfzfHIA7AQCvntuasxWIXQYJ07ImbryYFFXNqurhdavXy+0EadOR1ViVuPOiPZZbF4GiiCJawEovhjXLxs/QTBDBmQTUKpiKJ69DQHvkDFyJ3LkHss4BucVaQej6OfT7GbVnmWwTa/LYMyKmrYRdrEAM32bmLVQWovPsTqpttbAfuCwMYzFOBGXIH69wx3u4JzKyAfxXQVIS8QtdT/Skx7f+eKWxDkcTfnlduH9LYZhZ1r9aeBsSGZdPI1casCCrzB4RevJZ2fE0Nxx7bzEBHqwyzPwq+N4qKATnh5YkiKy/cf2B9GOSv2kmFsFChv8p6b2kC88JlkEfP60lngDq8X2rV5xzIU7CHAtUwYWNq3go5oTgKmx7bbbijvpR4GbnpTv0vJV2sqF0MXTjdqm1JQt3U/QJjVAPFoNzPH18eZg9cOsYcFoSEQmJqDXMsXgzzVfq8OX8ur+TvI110Xi8bxStSTkHMoQpf4voEMQjj1yvQc7zzQpHrU5DgNdxSxSD2rAzGE4ZWRO28FSUqmqk3k1+BWGpc6AukMD3pyBV84+++xb3vKWPfOr73JSsPP6OViUXLjtbW87uUaDQVeN/DoUs1YDsyTML5AFDxnttlohqyXM5SpXuQrFoAcZM49QOBX8B6DoeQy8LZamEUJpXN+YBqeeeqo6LlXLzdrAiqGXNkAJUQqS1qm2QYuSESq2QaSYM7GfZZsealBLXH9QLkBiJn3orKDGfpABigeHUWX1Lpk1imNFJasFxBqFH1EAMKgQTE64m970potjL6J6b9uIsA9pTD2HMgokctlxP8iAY61yOC+ZNZZT+FRoUQwv5KMe2O6kmvs1JTuweGJ7yd0OngXNSUq7yzKEUECzh5gsfnIOZ15fw14ya9raEWaOfv5PeKfkWxl2LtsexDavxg08J3toKWkz6daaFxoUygXdrZvmtx1iVA5ZRvCBJbM202u6BYhASJeaCze72c1YWu6DlVbQQ6WjeWPFr7wVfRaMZ9UpCOKQ6aEKCSWHUStmcsmsbZg1vOMIFpfoSi1pDnJixcq076vzm0S+FK5wXPbzsLRCpbTSnwu1MoU7s2vHWz6oT6dAa4rLl4KwUAbOda5zuS+uH7Nj5mg5NfjYpr2UrafW+KJABX6m7NVCp7/rHHN0uC2C6rVZu1sblySmgUQ2FxeSr8cccwwEdCg8y9HM/ZZUkydmdvPaMLCYd+Ze2tLCoIxIWdCc4Utm7bJk/3hXTAxkQGaBoEc2Qc+xUWEQrBCsI8KBFyPDlCK6IFYplCRfad8E94esOOjhklkjliWiCZyFSgDPcmBxvZSWNzNHBBJmO9Mm+4k4MQapUVTJ0rm4eJRrJldB/ZUadRXBhAlNKI5c2CHTUExMFjGQ8PlzmoocENUwM345tauY9gABEF4PMNYSDYhZjrQ2Fs9pRb5e6UpXEs5nIXvLYQoDdSJjHUhwb9E23HjHHXdcGpnSWy+ZNZ1mEW9QADh4XGcs2fB85zufnOaIl3I2CTWk6ANd8nvjB+RzDLuku3DjO69aLpm1BdGiXhEa66oCeBYU1g+D5BeIAuEZjhpu50biaViWRaMUhmRWfhdRduqOzMyTHjxEsOPyEWkUx5133llyrJAX5Uaokj1DWoytm9zkJr1dOB/uUSoHgwzGrDgV5OF2PxdS4stpzljpzGpGpCnXi8CoQw455OIXv/jxxx9PlSxtNdcoqRoD5bUfV4WgdQZ7uZzKwZjVeUGrUz9QIPOKYFb+TCJKSGv1Q7w6CIaUb3j+85/flfJq9PUMEcgPEenSA45mXtRWqVqFJjgYsxIAwS2xIpjV0abOgKDjI4880r/77ruvqzKqouZCkMRB40LlB2cqD8xzUSYsLRfCKAMPt++oYyS9rvw8gVcr0pjUQ3xjzjPKT6FLQJfMGrUQlD/QjOuy7K6AoTKbeP+87IgQiL3PPvuQmkoQz8uLIpW5CoXVuR0OquUCt6gP52hkp3HDEq49lLAkv6WpifotIchHzayibskzQqt6xIn1jFkGbhFgZb0tgLDANWvWyEOSr+e88ycsqLiQFQKv4mOhJPOEq9c9DModd9wRpIX7i9rOk8PgzaJ0SWXOwfwNfRCuNoa6Idm/VYRZRXZS6ref9ey3334y9MM0GtUAcoh94PEKQrvz0xEsPt+hJhzOKSxCT2UKQosBYT3K2S6YzD4RZCTfkkAVaeVzpskFDx5i79tOZqTEEH5tHAYMRCfnPve5xb6YXWP7LKvuoxbbFEojEmglj8DSZP9QEWaNJG4jsy4IEWToCBZR8cGuMAfAgp/pgn7PmmGG5z2GWLjEp1BrNeQc93QyxX59FJhKi51kVlnaysQ2UsAg+bfoErvttpsLsRzQpQNBDEnsqUK2PYhzFGA0Z78LfDBmJU7gOKQjDJKkFDVcy0ZPgq6IOucOkE9QBbeNY1rxaCyFCbLsb/3vvvvu17nOdTZs2IBZOVGVwhRm5ciTM9iCWbEODUd+LH7dbrvthBX3kKSK5meccYaqt+Wg0LBLQ+gg+ufdgYMxq/2NU0844QSWNe3NwVFLC0li1klJxiHO8lUWSp+SpfTT/dZJKJVzTe1BJj+FRJ/OUx+lgdBMJplVFHYkCI91dKUSPBWWyQXbKqHn1WS8o0B1tx4u2JCpRkuOR/cazyINBmNWJkuovx4eTqwaOMdkISZbF//Qm/2AZJKnyRJ4ih+yH0wYTilCDBpStMFwJG683GIsOpqBCTKbKbvABOZa6ynHrLc2Yhf58UsHEKIMYzSo8rke2fCyvrKo+JlDBFlOpGP3m/4cSTqhZtANpEaQtQ7cLLpBWAPRx7IFCchddtmFczW1hqtNS74q9iae0OvYnagu5wQyYHNnufZQ/R3el/cmOjYJ8zrLZs7MrI5yEcS5UkYpT7gWaM/FQowRh923QWBWPWM4Rj0LD3rVQkszMAccryz9gQ0nN4bHgb6R10acFG+Ek5iBHiwt5m/GogpOWmjm6mfW2kmkwJgUFBWWybAsk+940tFP3H0QbuygENMrWF2S48pd6Mq8c0y32FpJM3WgqcCc9MqCxqNmVopg7Y7MXNMO/ZCydqrDhWIQr2jmHUPVm3WlThCu5LSJk3xqa3I9UOhLuNodMsrV9xCdLW4w15YbNbM6W4vyEO2NZA3ld5RcLboxYlic8nrKKaeECCm862flNakErv7KHjZFE6C31O4eixlkahvWLXA39a2Z7UfNrKUla6CIkxcO5fBlcwRAaqiHQuJelKqGFOFHE3BpKGCL8sd0yytiIXpAktJTJgKUDc0CPoyaWTMaWI38x94SGCXXDzo7oBbrxCTtGFthwLhT0QqL7Vb5vfbaK2/OKuHqVGFr5kVDa6RmJjoxslyVuGTWf9GWygHuBeZxUPV2rV5taVk8HD/OzUkHAbMd4sZ34EYDGQcZFc3g9itaQduMpBOyDRrlRWODJbPWScS+AZsDCKG8eY/dxsUIDWjSRJGAgUnoykh4d4UBKQJ3rWtdKxfY7luUH+kMRW0DDjNHVvdLZjDrSC/AyIuzRjJK1UzAMvzZKZnd6RUzEgc0WI1bpMZD9BOILF+XiC22PKiru8YCBxUwUDQywSy4PLoX5VxK1rnMI3SL/eGJ9PXHcGF8GxGJlIGZnwaRHnDAAawuHi84BjW3I1yqioyb6jN69aan6bCy8zvGIi+ZdRH/kFvkgdJRjuB4PsvVkp5KFZnZG+Oah1YgGJalYTPCunjMAQKiW+g/uUY+3Q+1m+HYkYxLZm1eIDQSutp/7SrxjWTevFAsGi1sGFAAixW5RsftohIIbandSt5Ml8QWXDAdleMls0aRnHZIWYRvl/PXzxwHO1oC97whOv1hsXBZBY132GGHLsWEqQEuKoqiRdtGxD+kpYt3Y9TMysbqcrq1peqM9+hzoquEdfP6FDWca9/2XR580O+CuRCo/AWumJM6KxtRZNnMoiGLqQFq5drNSLHprowTJtAFJhs1s/Zz2VLkCoV7/bCC47KoLVIbj+2qusJi08TYwrWuRKyEb04v1nfqIUChZANFUqNdM7tO3mVr6o2aWaWmFNX6W1Cc0BJvSn9tTfEWH5WkcPrpp8eAvnhaeLLIWslCwp3wX5IiKzW3KMGdTvzJrT+BWRXsSJrRPGqPOp61BYvMe4V8dd8uWD6Ge7J8F9Yrm0C91ZjeaCmseztK6iKuFWctWCdSdQF9zMMfYj4d04Zm3BrAWjoFYihcbwNCJ7fYtll2eeMIsBrfOg0k/h4fSAJsS/XCrbbaSuQuFoxx0oJsI0V445jnNZC30zp0BrN6PYsZs7lI1rAMAZvss6Ak90SSl9Wi8iwoDSufUWgsVMHrMi8WKDCieXjOuvtFF7AyfMN+aMfrQ+qsKpoces6jlo61rx1Vw7pbY6gpD5uTKfJ0julwQRvWkioK3ASpdV4piOBYjgNxMO6XU89QJ/NSeig27ARqZfxonelwPYUCPNNxgIJy/B5UPDns1rADZlVVcwDJCh0UVswCAM2goyD52jk1fmYlopzOVP4ucEw8W+Awl06xpuNfCS1hBQQqkFiJLlgBKet+uXn3I4c4rHh9AwXcpkQ5Jr/BEZNj40nxe7U8JAtM+q4I+3YRg5gVXpGKcswkV5oaQKCuXbtWPA7rwQklS44KOHlCjZ9ZUcFpgIIc9KkCL5XhQnsxR7TPdgaKoVJJSVmso/imNNqTTz55OvZAQSRyJJ6ZsI4hKVejWsekW4EGEkrOqJqI9SeNUSvbLncAqSnuWeyENGYVNLR+/XouY0RUkUU5czX6JqOAVwSzYiCnEotbUkMP4IB1slrda2GI54LIbrPNNooXcdkTGZPiClJGVYgPjqGD4kuBYAcddFDYVAQ5xgWfYdaZkaz8wy22K2YV0DiAGlCdUM7Qgw8+eKeddqq5ADCrVBOhelkG14I08a/QzCxYP/emglHt6vixzWtJgjruyQsIl8Icis0AQcN+Mx0BtZFZfvYPHZTxJ6RGLkPYvQIVnPWwCE41xUqmx6D8TGT/k++G2lBZ8hr+JVltSkzGIJh+7NrJ2jX0MGGjoods5Zp6jlm5EIVaKk7B/OI3Ig/4l8FGzsH4fd99XWN6MFNBJz3sK3ub1pTlQ840thFzii6riryiXXBWVqNFIcAiDUf2E6NN1KJ0XLcretdiSSunG1BYSdaZUY7+2iK8NUQUZWZWVODjIf+nHxKoQkZQnJxgZpGg8p9qWw2zsmEhKTa9vwKJUJAxSK5oz52ImrZEDwVyY5jVXNQVbLEAMZ3X2jCzLFuLF2e+QjSiZBCE7kLixCI45CeSETGmjJGAnPkdFCTdeuutoWPki3VngQgSV9Nz5keFs4jzSp1CKclK+GG+mU+lINOy6TokK7hEJZJaiFpNZyVKiV5BRray8oOMWfsBc8hXZhDYvpFOmlQCxbe3AHaXUcW/0q4lqqq82e7deW/JQQ1IXCgxq8qGu0nExzSeYGJTMDoTSiFEKTdWk+mM+0kWOrENPPOL2IPRkiojB8NZKUwmAwSwm1FHKlxVZDhMr9HAMlVIAt6FmDA7QPT9aI0LuETkgLqIrX3f8fwnHjyjcK2+i4ewLC8Ricg8Yn7REReUU7BtaJ9MNDAOicPG2nXXXWEjzhkqnOretTWtPkRgOWNTb9AcjFlpeBSA6jnxxBPb4ay2PrMAfygORZmT6DdUYmpYCQQN5duLPjYqZLrEJ0JRMPEPTgk66JZbbsn2pRhM70DqKbYGrxITuJwCgFmJVboZiI0dQmGlrc0cpGPQes20vRZMajBmbSR0o2Sd2YP0N+cLQcsQiVG5GoeR2oCVbZkZLqkvprbnjGC/p74V3144NunoWOf3goiTsowbcjdYt7iNVirqIDwYlCaghr3CGRBWCG71p3mpiBZIyYL48QRBQB4PgLM2jrIds+qWDLChqflKRTin+ozl8/UgMxyFpZUB8L7khUYytm6AJ+w6dgITlmIaQC6nPOOJF617DUYHoJ2QBE5jVtZ2FhmU5hRoJCJmlbXTmij2ukOKmu92lMZv5W3gDBXx1DE5rnFI/CliKtp5sxo7Dw1UJA9ZKAHkwrIMO9aFrFp+HChkfPDh9BeNH5WSPNWY1ZPE3/Nmmp9ZHTRdaiRhdPAnvBpokGp4Ri7nPIWMQ0tUfJfBNw4Am8Lek+KwGvusNTCFyf5xCX+BO66OPfZYNjFtFVyFtli2xfHFbvNu0lVyg8UGNBLONHiou8t8IlaeWj+3lFST4vgAd9DeGqfZugHFkc8P8Ny6h8YXXUAwU60kFK0OxVSWIpDLjSCuh0jNQTL+cEFD4zCqBpiVCyOL3MkvWVVOzRIgYhOzZ8E9rZWKeIKGllaCk4ZRnIWy877uDCXnymkC5KVSRTO/boI0BHKXLatEPdyABQaKoc7GG0CYlQ4aT9vVhgbMm3nIp2NB9+bxss1gOkVLoTPAoT9FlWMJPAvkBW4GqfLUsA1gVVBzuAFBa5fG0Jkw5kJfMusMClC58CuVALrU6JiJp+CCljSBBffOZfkExKPotcWm4FCKHCqAgt/LxZLcPUQyAxd2TvDP02ipSZzn8Rc/bS6SNZCbBoxZRfTNu746clUim9FcSabIxu2acWwy5uJP3tSvOBmSqlWGu/h4fERgifIWVg83ENqBa6fNzQCbCE6KHNWomVUsRXzIeuSEdQiCgVD2U5Rd6EJRBwFLnORLAoAiCVU1m3d18oJ+CAUDoxsI9HZLrehBl4byKRC9PNKTxxrNHitHDmnUzFqoTDs2ZVQK3YqkUZdm1DIRTF16WPwuBFQcT1G1tQWzVmMmmKleAqwIWj4F13/CbnlMeMKC6SnsDpoeSR/MCojMYrPmRwNYi4UOOPLVtM8666xIMnVpxl3e5fXGd6UlpUaENPY52YCfqeP1mRQAAC0hKs5VlovYWf4wXEteUBjiI3I2C+hq5tpAXiiU1KaklWvRmDs7fj1a9M+3LNi3nAMClOu6mBYDq71CN0BzShFRyg6jG1BqMS5VgXoQ41YYtRpQ+gIM1okozO7LsLgHxtzGjRvLfcWRymQsh5EBp/WfcfxUlyBrId9CupThuOAFLyhbgSW3OGJus2ZWGx00QyzFbOsuqyUAsmhcC9uFo67LCBe8S2XiVi3UucAxEQ4HHnigsGaehTVr1gg/oKHR9QUr19RTzEq4ZNEM8+uspSWrBZBxIEukdCF2TnbIRqH11i19hnwt1D9mVbK4UOe6ddeXqHmABsNL1IHALqYY3j3ssMPgCfJHMC7kC48WSWvJMrHWIYJJX7cSPJZw9e5BCAu+i9aOvKSBJTWGXsWjlUk9a+zIBp5kkWczP83GqiLjwLRS9HAtzy1xK/CAaktVgHwRt65VoiqMFA3oQbIin40LQCkqXCmUCF1uP/CTlbuSHZuiT/diBfM2icQYBlbtr3YIWSvnQoiM8rQbNmzgyJXjJakrCxlXpBqARnYqp58IjHI+WDYKtbJF5Z9IKQhaSvIzRXYbmmEOTDMvQSWpq5mNUWZeLaPwddSTugivVTjDSEYaz9qPZEURlqnwn3I+LfQV7piachTPBwzEvffeO759Ustw6WE59A2SBfButHE1EB8TshGTxj+z8UqVrCaDEGyUcuiPTxCrStB1p/K8Hmh+5ToPl3IV6j8+syokY27WakBYA2JPSnGh9dCt2CKAQDkAi85azsaSPAh9K0QclKfDxBhwmNWe2awNrGoNhL7HkKzdmgEERN0vUM7adVu9ZaeVu77CNmhdAbhxXlwzQotiKL9ZOwVqdBRxMm2WNtI6soFgZK5wIiqyfWozgEA5GwsOKlwmdUiR7cVnKRK1ZNZIcv2jmZoD5dabWkwNKFfWXdK5NP+0CUe3psOUM0DpoHbCklmjV+OfDbPXkJocAUvWkzym6BfU8Ytum9YQs4qSjrlCI63ff7aG48Zo86NWAwwue/D1Ymqq5tKO3DFv8ZMVTUFRxC9mGC3aYFY6a7maczwmMbjhqJm1UPD1gtViA2UJh5v5CVXKIIVZ8nVn9q9wWAtGjHkFs1KQknL8Y7qt2qjwGpN4jFlHerUQoJgjtJxXaSY1nXTlavIwewXNlAuPUsC6EVpP4qGqsbLrHDTx+SepX1G1PeYCYiCX3T5GD1aoZRmT0ZtKmsXtuapjlP0WH1UzQtR9OacrfipU9JPTyGUv5ZxY7kOMSXaIB7kaVyezB8vRI3gMrtH44bwNVHQrVDSTSGBJlCv445hOKnCSRDeMUi48QJSqnPLG8QimQcAsoiQ/s6JOi2sSGue8uIGiuIR6x07mvS6Wr5xkxazWstDI3RRQTmeFQLuVoHHko2ZW1KEtNc4hbwPoejkR4jCF5uYdcNXbklnjCZtfsg7CrBTlcvdYMBHKie0lsy6ZNZ4CzS0hL+U8rktmbV6Af7bILFkF7In04VJyb53HLU3+5aQ54JxHzkP4YfKZ+cvpZuE3soGrP0nt13n4rxt29txzT2kVggbdZuGBh08+sFgF3vzGLSXyhI4454EhCC0QpyeU3Z+gkn6oPQruQZd0OP2nyN9IL/HpqnH42S/DbyQwKUgRfuNhKVbD9nP4r6h7F+MEeiJmoO30f6tfViRat26d8lXziDnv9wrSeHzLbbFMfj9v2rTJGPzGD2F4EgatssSVarRCq5Se9YgZMGyKuKQg88IP/h1j1NXkLgn3CrGmcbBjlLIvP86/tWfmL6eb5fpNOe1znoSwTizOENApoTlgk345CT36PXuZ6wGcIsjLZEWjytYXQO1nBAxYrAaT0CbyTofz+mXowYPs5puLdPH9GHwJIzuzZI0X6cuWSwqkUmDJrKkUW7YfjAJLZh2M9MsPp1JgyaypFFu2H4wCS2YdjPTLD6dSYMmsqRRbth+MAktmHYz0yw+nUmDJrKkUW7YfjAJLZh2M9MsPp1LgfwHekBLUogecgwAAAABJRU5ErkJggg==
iVBORw0KGgoAAAANSUhEUgAAAOUAAADqCAIAAADS/RWUAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAAIiZJREFUeF7tnU3IrtMaxw/bznebSJIiUZQBEgaUJOxQBnZJkoEBbTu0KQN1BkQyMJB2O+lo+4yknSQplAFlYGAgGRBFIZKBhJzfOf/TOnfP87z3s77Xte7nvge7d7/vute9rmv917Wur3WtQ/7+++9/zM/MgV44AF7nZ+ZALxz4Ry8Dncc5c+A/usDMhZkDHXFgxmtHkzUPdZavMwa64sAsX7uaro0f7IzXjYdAVwyY8drVdG38YGe8bjwEumLAjNeupmvjBzvjdeMh0BUDZrx2NV0bP9gZrxsPga4Y0BivZAUtsOvNN988/PDDd+/eze9feeWVm2++eSU/+f1rr73WFavnwWbggDm8bt++/a233oKyP/7446yzzvrxxx9XUsnvzznnHNpk4MHcRT8cSMIroLn88stPPPHEp556yklKfnj88cfPOOMMmPDRRx+df/75QPCkk046cOCA2PL9999fccUVRx555PPPP78gX10SJs3279+/d+9evbKyn3vvvZc2rVj9888/f/nll5988gmr61//faD6n6uep59+mr++9NJL77333scff/zNN9+0GvMEvpuE1z179jzxxBN//fUXPwzx+uKLL/JLuIMIfPfdd/mBvXvHjh3i15133qkGd99997I+4H6zc+fO999/X6+s7Ie/XnvttRXm4Ndff/3www+fe+450HjdddddeOGFp5566mGHHZaS4nzyySefd955t9xyy3333Qeg33nnHRZABVp6/0QSXmH677//Dgt++umnIV4F1oXHNUDWqsEvv/wygtejjz5anW/VD3899thjS0zAZ599hjgESewexxxzzEpcHnHEEaeffvq555575ZVXArvbbrvtnnvuceKVV9zPt99+O3+98cYb6Q2MwrStgE6fLIY77rgDBH/66aclSOu9zyS8stE7+od4db9EYXj44YdvuukmBKRrsPKt5X62bds23g9/HXaVOBPgA5SAFSC1gCdEKbiEChCMlP3ggw+++OKL3377beSLy+twoTFaAf2gJzz44IOg+ZJLLgGsC989++yzWQnsYGgdidRN5vUkvCIpJQLZMVfi9aKLLnrkkUfeeOONr776yjVAwMhOGr61jFdkp5OvK/tJl68Mg434rrvuOvPMM4dYOe6445CaDzzwwKuvvoqSGjHZa/G6ss8ffvgBbfihhx5C61gQw2ggyGk4Ob5OIoba1ytJeEUBZfVDMKaPE4fDqcKo+vzzzwHWUFXlZ9lJ999//4g+cP3118tRwLOyn7fffps2Eexmnbz++uvIS3DpYAo+QAk2E7Iz3e0Qh9cFWlgqTz75JOMErG6c6Cc33HAD6gpURNDe+ytJeEVtxdLHkIKtQEq8GE7VwYMH0QTUwP2et7ClwMezzz47glcwLS8sz8p++GuQfwDJhHxCjxyqpEAB+YqUTcfoEApZ8Oo6ZGwYfMj74T6AlsIC2zTgJuHVMfTll1/GmMi7dpkknGLffvvtym75PX/1BBmTjZqI381JKZTURx99FFGad8zLWk32/lF82dPQd52DArpQrKEx+7cMdpiEVzxTaJmEoy699NKvv/46O3kj8a1bb711bXwLNKOAMjYHU+QTZns5mFbAq/sE2gKaLjaZow4QI24913D2yarTYRJe6wwx4ivodmggbvdEAcAGRxuuNpd59YFxDuBnQKVxSg5eNraOqXpzp4ZXlFSQ6rZ+tGQEav3Jq4lXoRkaEbfOq4Apie04PZtsOnhFdiJXHFLxmO7bt6/VhNXHq1ALE/AQOxcy3IAnU3KBTQSv6G3sg9LksPzwA1Tb+ldu1q3w6gaD8gMfxBCELqGQtgyJUOpWMzZXR636QXtzNgdyBcdqq5EMv9scrxoMqMUIE2rR5nHbWWBOyhg6lq9E+XGmyq3DZOAKsCNCjOBVyGANO9MTl23X0d0u8YpChlomi1iGhR2kCiKm8Cq9FjNU1hgrHMuslWafIlz/w9jE9+u/ThapkxZ4qb777rv6Y1j7RWt41YDxIZDQox0Jdb9H9aAnvCJWHbvRWQHuWty0amATr+IGGr9zIMDPvgRtN3gl3oiLChyQd4dL1TiXLeNV6oFTqFj5ILjVwg79bh94BaDaxUhnxswKJbJ+e+N4FUOISzvvARy2ZgOsnDXreEWOklAnjwxWQhc8NWhvjaxYrFXJApwt9QOBoaLENF7J+Zdvlay/voyDLuSrwwr6gExY/uVEZCiGara3i1dCVvJYEach8b4mU9K/1RdeoZd9DNesvF0Ew9I5UKgHi3hl0yehU5sUP/QY/u4OrzLCyBIW20n4ssl2c3hFhbrmmmvkByB1o9AyLd1tj3gVT4bbmkHfti28YvtLkUJh7fpAc794BbKWZ8EQXolrKxsQJ4vBlR0kkrvGK5Syy8nVRbjb1EkbK3glk0jWFQepbWpOG4VXiGUWnAXmDioHMaFEYxN4xVelahG4WicA1r78ryOoYi4o2CFbgpTiEvgL7bM9XskDFFixSXsJB6zlcu/6wJBAXDSCLKbYWsJLN2iMV8B66KGHwg4O108GrJORrw58RBaZo0MOOaQ5ZFvi1akBrF07GlIWCTEl+QpDmB3tgc0Vg2Z4dSxAsvIzduiUIDslvKK5anYkZdsKlzZ4xXUlb4DTWScG2cnglQqKOBmdKKFmqGK2rZxcDfCKO1p+VrwBQ51VkDVihyZqBdPAq8C6kAEjjwEz1SSgUxuvOKKVcrXSz4pGOw3ITgCvZL0sg3XolyUGWT+sUxWvSFPlBhA72crPOg3I9o5XTh8Ax61yC5k7Rb9InavsL6+KV3nyYMT4nROCbHfmF74eqFt4ekzZwa5ijsar4rFPqkAJFkii7hT0ej28Mp3o6ViXPnpPj+YXSbrLl3D4EBs0YaUbczAGIPpUFccOkdGMmlt6VK7/Snhl2kSbv7zpEbILdeXR//oKgqg0vg9YXfIhS5Sn2qmEGngld102FvpA0ELsDrJcMTDUBzClg+ht25jBc8471IQixRuSQXmds1818KoDg3G6eV9OLsLLQ7xaPliysDYE1ohzR86G5rhihc2kOF7Rh2RjRfBCPO3IYwCNQ7x2UakKAx+ocVA+eoLYP6UIMdelt4iyeCUKIhMk8XRrR5B1d7nwQwV5k4gPJbniC0/czTlhq4kuXXqjIF7hhere4B9JZKuTsvadXFT4kYhlh02numgPTBDucJ4sxXKoYwDVGCpZetuK8IJ41cyx0eQSM12YXxSvFF6pB1gUbYmdI1ARq4A1o8NfQQTmPXFsI6+XwivF2ORtzVs+yD5kCYUIr5Y9r4AVOYL7IiNYARkhBnktE9W/2niFC3JglVDA7XsMMD4sK68CK6VIc+17Q3gRyGXeiTgU0gqKyFcNupwqY9z8wutu1vOKe7UcWAEuayCj0bIsaPPj1YXpitZntQxZvLC6Vtfag66C5CNqU0KyOmLlK+Ap4c7Lj1eceQhXtpvSs2UkLQblhwAmnjtgSiQdM3nPnj3cbYsuhGOE35A4wdJFtyu0RXrymUECVsJRnu1TmsnUxlOW0snKdzPjVWuL7KrxDKxcZDQxv/CrA00mHuMaVVUHmzwf9FruByVLnzyKaP98BPfY9ABrCXNi5WBQkZWSn93wyoxXmVk1d8NqkMXeB6O4bJYByj0WKIVc886uwm4LLPRwNI3fsOGAUeCynL0Fu+iTZJGiG7QK59ScFECsG9lZz3ldEDnxiszQEItyf3lBL3gMEO0Zjx0DU+wndxkdBOKyIRcCXEIvcst/l6clWgEOWsnm4X3hyF320FzAxdpzCVMCa/1MBjAg4YWCFLEhFI8XMD5NKntlxvF5duXML2lpKCSJuy07GgJpePs161BHeTMKDPRasDv8CoNnglOio5IacADIolU3AatmDeoYCZtPRo5lk6/yYeHLqCxcHaCBLFLKZaCiI3pifaEZHh9kJ/MtlZQ++W8uybfVkJDiDNjlHiDCEbf+eaiuW6c4Cih0WDOZepk6RbzARtxcLL+VB68sIO1uDa/DZHYX0qVDk4jZr5F2DqnwuvKdiSx1voiyq6UCapHoQbIW1WVo+XGjTuI+k4gztiPGAzb8tabxL+bBq5RrtLpE8qJfl2dxwUhnPP7CHjnkxBuIKeo8XksmX0fBlX3mf1uxYuALTIjLal07Qv8GunY5lx8tA15ZOhKuDUsHYGA5uTicMJ+kEwQzmR96i9nN7oLxn9qFljgHcTtoYMz6+AFAZ98sL9q8KRyh5EjEslcEbRQF7S3sEgbE1uMvzEJp9mkPO1ABFwQMIB5nE2JVKRosOX5uS8JKMlmKEvz40UaUURULWlAGjKw9RWizaLGp8pUJltZY32OycnYxXJyw1ORtdWgMu8rd7GX2HlrROLz3lTEvH7HCaTX0CqMamVp7clkwqnRxkIpXnVjK67Pwkabjbfbt2zf0bi4Xe0LV02XV/NvQRgyilI1VOjpjXlCvndrAXoGmmMu4CRreSGNgqi0i3S+eilcZs9UCff4cRCa5S5EY5HBlo2dLGjHNET4j/zFkb+muFWD8bplJevFwoqFOGDyCLqkruFwi3h2+koRX5FZGVTqRkpWv49LSikLiqgFalLt+MqMfu8TgV/bJwnNHbhAT6AbsJGSWWE4Pl0ojgzjxgFcSXvEOallXm624D6Fbo/KzSzqjpKOraFeSzPLTqmM12j/TJhLkGw6tQbFAfjxeXYzAiBE6DmVGa6oOf9zCG77lqpMjNdJ7q9ADkhW8JsYO4vGKFsjn62e3xHFWkhWZ1Is08iHTXQKVyxvv89GUNjg9E62ueLySPmfT0lpmqHIb2hYyT5nmkXddWX2DJu/ysCU1CN1FcyMSr+iCMrHHgy7Rw8r4IvuAVL10Z0rGUWXsCpeiCLTvmMMbo6My0bGuSLzqlD1GTEa+l+gKP6XWVZaaHSVGmKVP1aqA0rZpDz60KGMrWnZE4lWRoSwRNh8i49rg61FQoE4psrhB5npL1jf0hhYYzDUAz34UvUeZ9GyfwT+AC1C+NOPKgBYVQYEe/ayh0+lqtEN16Ls126ueCHG4uEmJka94UvgkEbaadIZ+iwC65E1fEaxQMoftXVJl2xzttSQo4SQumy8Gr4qvVC5cv5YLwwZgVDtAk8M5QUPN21jJeyiyllepwkxxJ/5j8KqsC8uqvW6hieNIXgDV703SpGHu/FqSFcaP25+D8UqcWvtsem7YWsLiGkgTII5iNvkjji7Pt3AVyco0kuG5PGyXrhVRACYYr0Su4UWJ0h2e8zHeDMewUteM63BZiN2qE92sBGqj3ZxFh0fnMoUjjnoH41VXSlQuvuDPPl3/0PCYrv9Qi7aURmQ2tUAH/iKq4gXjVWcbbHqycD3KzOoiBacoXtlqCSPhNrJpeDEqponCC6FMCMMrJ9f4DJiwqbzq9mjLpkbo9KS018XERatdpwxPSnaoChuGV6Wyp+QrpFA4/q7LCLbsuChH/nLPyt/LdTA1+8iVLxVqFIbhVSmkNrPXFOhLP3GRfWIadqiz/xFmTYUxK1crVPyH4VVnS2w64RU1sTm2CtO/8hMKH2Q5mJqdBI2NaHlQz2F41VF9g35N1CAGZvnWgKBZydhYwZ3Q0kwZB7BVV7pbj1Bc0LcC8Iprkw9gdQZ9oE7jLGeD6gy18lcU/AzddusMUqmeQRW+AvAq/Z0jDXWICfqKWSkSREWJxnLp2Nx5lAsb5HwMwKucAxE+3hLTMOxTykAvJ8lKc2O5f52aMnhwjQSPUBdBAF4VOko8j1titjQws7GcEiQH9WmWPxGICsArOQPAIvokQxCLgxqrGo9B+RFERbnGqnMdEUwqNyT1rFNVQe78ALwKFon1ObKzAG1dgUebIbfs9MZ1qGpiQZZN3IeC3lJiYdApwAC8Ku/JWuaACs7NMdhxoCj9BQskCE+lG+tsDIFZ/w/54pVop+4vtibG5K8xqFX7z0GFltIUDR4JkUffX/D74lUJNbiNKjA36BOq9mpQqw6ionRjFeMhPFn6Q6H9yxHpn0Tmi1f5jAw6XxWGbVvyPHSS6rdHi5MXtv6nx7+o9FT/8JsvXhXtRZiZIpgzwSptYq1CrykuMRizjJJi7X9W1hevOhRlLVggLcWg2LCGV8ajjciauayQgf/hpTC8WjtxqhDxnEPoszyUWxcU/PTpNrFNKbyqQlP0pYGhVHleXy1nVnRxm9BRdd2eokw+himmek3jVRnV/oWtfOUr5Rrpt1rRRr6ljR4NBPZtlcEoLcWO1P/zzz/xGe3YsWPbtm2nnHLKCy+8YAfiI8F6MEqoiRwudAbZA9WGHYor35GF9ptIsPA6fMAuR3MRqEMNTIVd7ThfASsuamxe4hcXXHDBCSecYCd/XI5qV6cREYCVA0bdrY5DbidOn//robjqBq8L2IXR6Ax79uypKfXXTgOSVWDVc/HFF9uJ2gsZu3btQqkb3gi+LBqmI19X0lb/l9ITUKl3795tCq/bt293YOWHq666KjR/fu2SiG4gvO7cuZNtauFi6OUZXHm5abmJ9tczu5Gv0geos0DkwsWEQ3eT6Mn2fPG0004byte9e/dak68OGURYKNUDS2d9wHNyx5ppKZNVROEajvwS/1iZt2BNfz148CA6K2oAkhWwAl+z+uuQ+9REQ7kCu6oJMAV9QKdvq53khn0wcW1ujTX/ACDAiCHxEjUAyWoHrAzMM5kfuVszjSt0h/TVBwwigzmY/a/+e5mn/9W/wywtVY7Nv2pG33id41v+oNms+JZNSTbnD/jj1Wb+QKjU95WvOgNkLY3fbNqRP4zqtCR/zWYimyom+Zc888XrnP9aB1iFvrJx+a+UVpWDqRBDo7udzxf4sM7s+QJ50PwrXPnKV5iiDWWtj8mHfRnbzOe3fJhp9vyW3L3+oArA63w+1gcZNtts3PlYpiGi2lGFyZvrD/gw2Wb9AbkjS9Uf8AyQ+LAvb5u5vss4P83Wd4moyBagD0RUO8qLy616M1sfqg75a79ilj8RiArAa8RqWMvKLA3m+oTjbNzQ+oRz/dcsq6tyJ7qPchPrv9qvr22zinRlgC58Tnc82eRM2fraMML4/QWWb7Vtglp3U6t/AZVq4yx+fwGU2L8fpuZZ5GpTG/0hZSlt7v0w8/1b0dBp8qLky+bevzXfb9gEdnEfldt1o+837OL+WGtF6eLQlv6WYrA2LS2oq3F/LJ/p4n5u/3zKdFjY7MHdz22twJvYVel+br6kAzdc1mpznhQyYVH5p/zYJCRxVEr2MHtnDufyGV5EucuA+JY4yKF1vsRdMYkMLfQ6TmLlkfmXaCw0kobd4iSBA2y4VPFvOIyRT3NMP84QDMar4iWWPZ06yktGEjnmNmer6KjAqIqs+x86LTqe5c6dVxilJfTTwXjlA2KHZR1Rhw7s1C0MnZWU9hhY0M65KLMaka4xiqsyHYNXccTgZSNumlHndRqCMpEpc9/du5Tth3Aeyxc66EhInDSJwSs1mqPXRzUEqMAyesvmaAVoAjq07YpmVuN20Ic0SP87C4adx+CVjUb162z6Shx5ckBiKXPsO4ihPTZmUuQTQBcyqwnAWN0RRxQjblJi8MpXZd/5l/FuggBYI6d0hN+kyYBTPqpQOfQaFyJ4QhlndAn/SLzqptqgkzcpkxH9LkahktbMOoyjSRu+KCcjlFo2gjVgbQLRaUmReMXNKRwYX80wCNZM2/bCnBCBNesKxi0z2cE80Y7hSLwyXEQ6PPKvjBxHYZa3FPRigU3vznkokuCwc4nDyJSpKmvQBfILvcXjVSVDsPUsa/eiFkX2sssuY7Ss7ClBFlqOOuoo+RbtzwIToZNk0coAPcTjFftOp9qtXUE2XJHMImsaa5TDZ3IbI41S+JVF3mfpBLZLslLRe//+/Vn6LNqJzv+BmZTLU+PxCm1y/JIBU5TO6M4xPnQRivMPCLI8xj2Ua0nGwJLOCmnPPPMMP5CaTdxo7YsNG7AJpOstSXhVYM1gRjDqPNzRjDK8YTkxqVBaZnEuwIZTzqfZMeS64kFeSA3QOQKhIUV6lSONGZHPHimb8pUkvDpOmbK6MJOlqOhZdhI74URhGCzWFPZVfpdZlz+IZ+ih4zihFicPtJOtV3lgaz8nMZF+028qXnWiDTe1BVmFHCXR0SGVH0jNWSlvUBUUSuDfXnIMsK6UacSYl20G6WbuId/FzplYl5CVbjmk4pWhKBzcNnsNULIV6rj58BmxBckrUBoXD7kXltMMEKto3pKgAHHlUF3i75B8ig9EezrXikz/Bjr2l+WYbipeGbQibLgqGrpU3C45nC2fg1zoBkI52yiJsw1J2Gr6kUnKQMcbwGhHRojIWFiu/BetMV2q+UNzZUudocoSvc+AV1a29MW4jJtEXuh1Mn+HOiuDQRqRWu7TOal3zl4B4na2UYhy65AffMhxO4YDLlKtbQwSNYbB5DLKM+AVTOg4TtvbOA4cOMAt7m6eQtNzEa7udj8uLWkbiOfrBIGkADCqcbE6XJNg2hlevItgbm5Q6kaNXDcN5sGrix20sl0kXx977DFZJPwcobexUcBWd9UvQrcyOez12K9O2COTsKJCCXHeLsDK03DTYyFJuCbGCIYLMg9e6VFXuTY5mCqwyuDDRQBkU7KxsGYwU5zpxpSDgNJKAjoJX9Fi0+6JezhuH5enk66QrJib/NwwBC19JovmKtRmwyuyQeyufGkqM+3AKpKAbLrZxKwD+uG96/yM9GXu0zt3AgPnOX3KHNEDD5ndUJm6oKZjYDmsM+BWkFWBmby+zmx4hWVyW9TMgEGEJErTtQYZwhtVeHjpOsIPnQxxCCxYLf7xJFoCIzZowiuop0MDkf4RqEjxEm7sJpBlVSsYnrd6V068MvcaYsp2vBZAroG2/mqhNaSFZOHQoJFQBG1sfCRY4scFxwxJD9onv8F6QyVlGSs9ZfjwS9qApxIwHXJSkK2py8oEh8C8pGXGq3JwYE1p9zv9A9ZcVqf/IqElhUvRecAZziPGsAzfBVAO/8vmCLIR2Lgj6Cfou4mNpcvWgSz6jHak7KpzZrzCU91gG3da13NKYAdyzkiGMvIDtYSFinoACtE+d+3adfXVVyNfCZpjBfJ7sBKkOXjyIbRZNcgqD65EEaD8eGViZFwXcmECVvJUWA8Z7Z7QiR9vj/g0e8KxgseApatDLyWcKvnx6nxb6LL+tognYuyDFUJQ2mzebyEmFzW/ECK6Dq1QhnERvLJFyreV1xiiWwxzRJdZySpvmhRWn/Cp5yrN3qwcZOWGZ/YTXXJbkVwEr3wMZYAdAYs4V2EcwIoPiCevvZkdCjrpzmMwCXXZY5DXHsJbJ1Uwb7fDYZfCK9+Q0s3ukC4OwSjKu32wOqoh3OwxITf92Z1cimYVrehdEK+ATO7YdFUGnwPOo+zacHbhSocusmBZhXWEZ/QYqGAZM15IE9CYC+KV3jngJfdkyhlaBBVCuguw6k4p90TUNy2xhMb7zAJZ+QTKOYUcCWXxymcwuSADYRPnHgesuFrj3q0/9zod5J62Zy78yU90ciFKtJHmNa9Xjr84XvmqisNFVNDFkdkRWKFUlzu4x6wXdhkK0R4DjBNV+kFnSzdU1q6xGnh16y8oIsVixZFZOq67lkFBDYb5XEwhGS0VpjBohCON4yCrWk8QXlRtracP6Es4I+Xp8KxJhommDM5ck1GhH5SW5VwCy17YraSsf46BaunxVCvVUUO+ii+6tMTHI4vP2cJBjlCIi8CFx3N9hn6rXHt/8wvPus5i1FTT6+EVFuuoBlgc2eUhnga5ogzl5nW8Zyay1afTv+sDWXZ/2Vih5+QSh1cVryhz4zXayW9C5yuRJ5HIptDXmcjQV0y1H/cY4FlXaAAbunK4sTZb3e1Q+P8XSJ0MWEFe73iFhK3ML8UatU8OC5PVWW+18QpVOnEFwfi5nPmMjj8NyappmwBet4IsTjqoQ+FpYko2wCuMIPAjd4G0Hy3llBhYncXt/5Vp4NVNjfMYqEoXDoHEMoP+nFxo2QavYoTOMyFlWx3gjOba2hcng1codeaXagy2LavfDK9ihCBLaGQtAvpqMCW8aqaOP/54gdXfO1tiylriFXoIuEsxcKV3SxBZv8+J4VWSFTWgeem4xngVZCVle7k0wgf9U8KrvOZG7n1oj9ehYoAuW9mf5wO+iDbTwCtzIW9AczXATYEJvMr8kmKw7JeNgEvzVyaAV+dnNXUJlBW8ysklvyyxk77SspaXR+94dRcl4LqplsviI2UM4ZXhEkpQSh6xkybuaB+W+bTpGq+WZ8EWXoECK1s5BuhM3SU3/V/N6jZ/AA+AFLOtLkrwWa7l2pjDK6TqiinlkvJDjxZYj/IVtpN8Lbbjq7HJdot41eocLvRezm/1K185A6IsFvBaM581VBLbxSuUoMIqyRJ1tq/sgr7kK8kAMhv413gyp2m8AlnWvY4r8hBl6eU4VEd4pW6AdACi4nXOYIXK1GF763jVWDl7KJ5SiKCLowdd4JXyQe6+JDjchSzoA69AFi8gV9LJbwBzjZfPMI5XoMkhOfkB0LhaJQdGCNpu8AptWKzuWkq4XKi+bAQT+4oXgE53wwf8NL7yF3jbE141dGDqjvmbvffVpnwd3kPLcfm+TFjNfn94laB12xkBQ673sKZ7WcMr/KG+p2rRYQlgufYlVv/vKMyy/TXpBMNLdyXIEVOu5mgEdabwigIgtyAPscMuqtBtxfMu5euQmOFkoJZVvkFzS7baiMeyhp0HgCXdowLQvf66DBFtdu4ySwLfnNloqyE0l68gVRcN83CJEk5Wm/HV0L2re/nqCJaPxl0aiPOLuGKrSWqFV5hAHFs3XvDADXjSigmhWPRpPx28ilrmBmPC3bGNaOG/9cM29fEKjSqSJ6Tqbu9OjaoR4E4NryKVecJpsHDddU3trSZeiaRwobhboroxubsMIR/h2qs/y5M2NkcOM3J3q0SO3AgIobh72j0/+j83YXl7i2Kj0DK82xvTCmWgreIexKWIxtOUrwuMQAKxOQ7vw2aaEULlgFtOvlKyiq0DaLpas9BFlnBHMdUImE7B/xpKNqotfgOKlw/vycaFTm4yMbO8YikvXhkbS45k6mH9bvCKM5UjGNNTUjdOfx2HMhOMm5Y0RSV8OKcPUEZ0ZRG6WfCKKMVPx4lqp4jLkCKxmn2/vhEZKiBKtN8IfWArxiG38FOS8zEEBJjAdkF0Ic+AdVzJyDi8YiRhFKKosHLcPV5aTvyXZAnGs1HSdHniNhqvQ3ZwlmHfvn1c8KKsxeHDzou+i5xDTUSwoSli64zrD2vxyoF1tnh2c3IjASJG4VDY6+sEUdkEcPUbz/kvIUe36nPG6wrOkJkAknASrYSRwIQSjFQG3BT4AHA8tAd8emjgfkZ+81dSHQg4gXtcwgvrwf2XPnH1s2ZYOV1H+csheMbret6yBSNTKf+NhoDuCKQWNuut8Dfye4x6sIv4RGaDTtSSqXpM1/M3pMWM1xBuDdpi7qAVIAWBGlDmYeN2MnX4A3DkrygSeCHY2VGI8/oiIgno87UZr33O26aOesbrps58n3TPeO1z3jZ11DNeN3Xm+6R7xmuf87apo57xuqkz3yfdM177nLdNHfWM102d+T7pnvHa57xt6qhnvG7qzPdJ94zXPudtU0c943VTZ75Pume89jlvmzrqGa+bOvN90j3jtc9529RR/xv0YTCJtZxgngAAAABJRU5ErkJggg==
iVBORw0KGgoAAAANSUhEUgAAARAAAADgCAIAAABEja7vAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAAG0dJREFUeF7tnXuoVcUXx00TEzV/aT64BdciycelTCOlzEQsDRX8Q0FCSkJB0UrTyj8MK0FBgygpuyhl+KKHvURMDJOkLIQihPpDoihJKSmkP0LK7u9jq6bdOfeeM3vv2XvPnr32H5dz7509j++s71lrzaxZ060jzvPBBx8MHz78yJEjcV7SsopAHgj88ssvN998c7du3a6++upvvvkmoya72dcLWwYNGkSH+KmcscdNS+aAwK+//ips+d///vfVV19l16ItYYQt8IQ+8VM5k92UaM1xEfjtt9+mT58uuuXkyZNxX49V3pYwGzduFK1Ct/jJ502bNsVqSQsrAlkgYNiCbjl+/HgWTUTrtCWMeUcIo48i4AMCUbZkaon9K/9xh62EiYuYls8OgTlz5ojfcuzYsexaUQ2TD7baSoYIoFsMW3KwxFTDZDiXWnXWCMCWmTNnim7Jky0Xffi4Y1OTLC5iWt4tAr///ruwpW/fvjmzRQnjdiq1tswRMGxBt7DVkXl7dQ040DD79+/v1avXvn37tm3btnTp0pom+At/z39g2mKQCCxYsADdctlllxXCFjcapmfPngcOHPj6669vuukmvgBq5unChQvjxo379ttvg5w/HVSeCCxcuLBYtjggDAOQZ8mSJS+99BI1Mqrdu3fzYfv27StWrJAP9ZonT6C1rQAQELZceumlfDsXOBwHJpksAwwdOvTcuXN8YAUDldLe3j5t2jQZGHE+LS0tBQ5Smy47AosXLxa2YPkXOxZnhMEwMyM5fPhwjx49olE90f8WO2BtvXQIGEusWN0iuDkjDBrm7Nmz1IjTgm5Zv3791KlTpQ3+rhqmdGLqSYeFLTxvvfWWD11yRhi8FMwwhoQzIz6MWTTjwwMPPODDaLUP5UJg+fLlYol5whY3GkbmgHWw0aNH16+SnT9/fuTIkd999125pkp7WzgCa9euFd3y8ssvF94Z0wEHGsbUxSpZvSZhoUxWz/RRBOwRWLdunbDl9ddft38rh5IuCZNDd7WJKiBg2LJ161bfxquE8W1Gqt4fn9ni0oep+jzr+F0gwDFescQ81C0yPtUwLuZZ63CBAM49C2Kw5ZlnnnFRXyZ1KGEygVUrjYvAjh07hC0bNmyI+26e5ZUweaKtbXWOgNEtODCeY6SE8XyCwu+eYQsbL/6PVgnj/xyF3MM9e/aIJbZmzZpSjFMJU4ppCrOThw4d4igYbFm2bFlZRqiEKctMhdZPwxYCxuojqrwdrRLG26kJuWME6otugS3lGqcSplzzFUJvYQsJX8QSK5FuEeiVMCGIYInGYCwxDrqUji1kdVLClEjYSt9VwxaSv5SILXSVtW+5TkMJU3op9HkAHMEfM2ZMnz592traiBMjmRgiN3v27LKwhWP22I2cJpYIt4sf4sKdgGNxm9DyYSCwd+9eGDJ27NjJkyfPnTuXNA8ITyl0C4lcCNWZMGGC7BHxoF42b97M35UwYQinj6PgeiPUC2yRp7W1FVWDzPnY13/6hJeyatUq0YQ8fMDXil6koYTxefrK3Te+ng1b5ANLyX4OCRMRlTJx4kThCQ+fiUKop7cSxs8ZDKFX/fv3j2qY2267bcSIEb4NjOtjiWG78sorjUohB9rRo0e76qcSxrcZDKc/999/PypFOIMnw72oXh3QJzsztwAYL4VliS1btvz000+NJ0AJE46AejUSvrlZUxowYAB+S/fu3XEGXn31VR96yO3krNddd911xvriQlnWuy37poSxBEqLxUDg+++/HzZsGBJJMsd+/frx4fHHH4/xfjZF8d2jDj1mGIE5cW9dVsJkMzkVrhW5lO9vLLEvvvhCvshJ71gUJDj0mIJR6wsrkZwBpPxO0CUlTALQ9JUuEeALW7b52MTAH0AuhTB33313/qixxoVbYhx6HKr58+envD5WCZP/PAbbIn6LWGJ4BbIgi4AKYUaNGpXnsOEt5pbZoWd1jsQap0+fTt8HJUx6DLWGiwgYtmDw4FgLKOxdCmEIT84nHAb3nduVzdoX2ynkZXa4W6qEUXF3gABevvgtYolJjXzNm5UoPpw4ccJBS11UIY4KrZvtFGLA4jr0Nt1TwtigpGUaIYA+QasgqVHdwgvGgREhJhYrCxxpnVwzYgryoNNID2BUnPMWlTDOIa1WhVhieAjClppdP+PAiChjKbmFRjbpTdwXKo4g/KwNPyWM20msVm18kXfFlqgDI4TBBXclzdhaRD0bR4X1a05xOnRUGsyiEqZaIu5wtLBFzlRhDuHD1NRc48AIZ9K7McSzsBlqqDJv3rz0dcbCRAkTCy4t/DcChi1YYvVsqXdg0rsxLHaZaOJkm/ROJk8J4wTGalWCZSXrUfV+iwGixoFJ7MZgaLH89ffx4L/sOiLBkm3SO5kkJYwTGCtUCbpF2MJ6VIOtQLQBphqPpFPiJ5950R4pqMLCmtnJ4fViqSI9V8LYz6CW7OCrXb7skWPLXY477riD8vy0h6+GKugxlIyrBQP7bnRaUgmTEsAKvY7IEvMSiy2gE4swPlNFNUyFZD39UBFlYQv7HtEz7k1rtiRMDVXQY5wQ9kSrRMeoGqbpjGuBDqSZ8HhZQba0xAxqTQmDUxT1VdhUYe3YW9CVMN5OjS8dM5YYbGFzPW63GhCGNQNOdEnaWB7PqaImWdypr2J5Y4nh5SdgS1c+DIsHXM1nqIJbT8q/UuCrGqYU01RMJ9EtYonht3z++efJOlGjYSTtqlks9moFzGaAShgblCpahngtYQvp7RJDECUMfrwJK2ajxp/FYvvRKWHssapQSfQAGR9lBTnWmlg9RkKYG264gTxG4qugVYiVLCmaSpiSTly23SaoMaUlZvpHRjLhCQ8R+H4uFtujqYSxx6oqJUW3pLTEAAtDjkT9QhX8+zIaYPVTroSpCg0sx8k6b3q2kGqVNWKhioTiT5o0ybIDnhdTwng+Qbl2j0wrKdnCoUuWCiTgEh3FiUhSKvM5VixZrmOO2ZgSJiZg4RbnKDySjawnWxNjncBs2KNVVq9eLQfrm+70lwtRJUy55iur3opugS3J1q/YdjSLYGzdRMNnlDCxOZbVJGu9jhAQvyUZW9jQNAchiZisDwNTwihhHMmpH9UYSyyubiESjNxf4tOzHdlVxhYljBLGD0l30QtSDyPxcXULAWakApNIMH7i2Tc4M6yEUcK4EFUP6iDdsOgH8kvYd4fCJhKMHZtOM2BEa1PCKGHspcvfkqxowRYee7aQ0IgUR7K7gmdvuZimhFHC+EsDy57BFtlStAyqZ3eFZTRRR4S32HNMl5U7gMxyVrSYnwiIJWbJFtldkXsjZHclbooj1TBKGD+JYNUr8fIt2cLdQ13trlg19lchJYwSxl5a/Cppr1tw5QlYFhsMFz/uinNKp99YMfv37+/Vq9fSpUsb4/jaa6/dc889lKk3f/j73r17HU5DbOlXk8wh+nlWxT6JEIAPjdslrFiuuaN84yVjm/4n0DBGxnr27NmUqxiNw4cPP3v2bKeE4e8jR450mH1GCWMz6aUvs2PHDmELd7Y0GAyn9iWXEg8fEh9LTqBhfvzxxylTpvTu3Xvnzp1CGOlG0y/o9vb2lStXSosURttcccUVUaatWLGCMq6mUAnjCkl/6+HMVlO2RPci2bZHybgaj6WG4Zrl3bt3X7hw4aGHHjIkacoWOsl1s0eOHDGEeeyxx6gEvQRn5I/8d8aMGa6Go4RxhaSn9cAW2ZJvoFvYURHnHl4RVxZ3HazxyC0JM3jwYASdqs6dOxeLMH369Dl//rwhjLG+TCX8t1+/fq6mRwnjCkkf62HDpLFuYYOF3Xopw1H7lMf3O4XAkjBGIURdERsN06NHD9NutHz0c7TylPOkhEkJoL+v47c01i3YXbLBQiwZIZgZ3eBlSRhzPxn6LZaGQXtENUw9eVTD+Cuj/vQMI170BkvJ9b1CKCXNhTj3TePB0ozLkjC4LuKaP/LII7EIM2vWLLOS1qmGOXjwIGXSDCH6rmoYV0h6VA+qQw4Jozfqu4XmkehJjhCzj+lwyTWNSfbzzz/jvqNntm/fHosw0Mxs1HRKGP6rq2QeSadvXTl06FBXbOEEi2Sy5CFJRdy04slGaqlhGldOzFtLSwubmPUKE8Jfe+21P/zwQ6c18Hf+6/BLQTVMMjHw9C3Wu8RvqdctKBbZjuQnS2e5DcAJYZD4U6dOnTlzhjWx+p6bnf76f917772605/bXJesIXSLsIWl4WjX8VhMfrA5c+Y0uGcviwE7IQwxMnPnzmVH32bdLItR/LuWELf2wnsct8MVKU8qMHwSZocsR1ELhEP2BOTnr1gM7E4Ig2Lh6+CTTz4pXPzUJAuBULBC/JYoW1As5sw96SkyXQprAKITwmBZsZcSXUAratqUMEUh76xdIr7EOYmyBWdGFAtE4iYWh15v3H47IUzcRrMrr4TJDts8aubIivgt7KsYVnA9t/yRa745V5xHP7puQwkTm2PFTljArcMW0S1sPso+PeHGJksYh4oLVCxufRh/JjG29BfudfmDXbE9wRITNWLYwn6l7Ejy0/Kwfg5DUA0Tm2M5zErVmjB+i7AF/37+/PmyI8nWJCGV/gCihFHCFCyNNWzhV7kHj+Ax/PuCO1fXvBJGCVOkTNawhfPGYpiNGDGicP++U1yUMEqYwgiDTy9eCpFgxImYwDAWlN2e+nI4QiWMEsahOMWoCt0ibOGkF9veYoblE3Eco5dqktUgoKtkaaQn8buchZQVZNhCxK6YYXxG5ySuM58XVcOohslH0v5tBVaIPkH4zGoYYS8ZnZF0OzwljBLGrUQ1qQ22SJDL+PHjue1eVsNI35prJ1I0poRRwqQQn5ivck0ky1+QpLW1dcCAAXzgTGL9LV8xa821uBJGCZOTwBFfLNmPhgwZIgf0OdaS82mW9ENVwihh0ktR8xqM3yKnXHi49MuH2LDmXf9vCSWMEiauzMQujxoRS0xOubAm5jAVZezepHtBCaOESSdBzd7Gb+G8Fzy55JJL+IlV5ucWfrNx/P1/JYwSxlJUkhRDtwhb5CFW36tIygRDUsIoYRKIjdUr6JbRo0cbtixevLgUOy2Nx6aEUcJYSX/cQgSD3XjjjcIWEnCV12mpGbgSRgkTlwvNy8MW4imFLYMGDbK8oLh5vR6UUMIoYRyLIWy5/fbbhS2jRo0qKr2L41H9U50SRgnjUrTwUsaOHStswd0vu4tvoCFPGhEJPGJn8lN+dYldEXXFln4GX0Q/w2wTtphrislJGYCLb+YputZnljEYbNknMrb0K2FcTTn0kKhKHi57KOMufgMoSFdreGI+EGHtCr2i6lHCFIV8xzXXXIMksTv5wgsvFNaJzBombU09YQJY+lPCZCYyXVeMbpGzk7Dl+eefL6AH2TfJnpIEjEafADw0JUz2svPfFhCagQMHCluee+65vJvPsb0aNyYABwbwlDA5SlBHB0vGwhauMt21a1eubefeWI0bE4ADo4TJVYiI2L/88sthS/fu3d99991c2y6isRo3JgAHRgmTnxwRccx9v6JbyPmSX8PFtVTjxgTgwChhcpImMiTJyRZ0S0XYIsgaN2bw4ME5YZ1xM+rDZAxwRwds6d27N2xh1YgrsDNvz6cGjBtzyy23+NSv5H1RwiTHzuZNgkEIPRZL7PDhwzavhFTGuDHcUBnGuJQwGc4j1pfsRcAWt3f5Zthpp1XjxmCFggC37TmtuLDKlDCOoec7deTIkdhgpN7jWkZhy9tvv+24mZJUBxrylYEPo6tkJZm0HLtJLn0xwGRfUrz8999/P8cueNRUFA3y3F511VUBcEY1jEsJk22W6MNf1lb1Md8dAginGEiF4xLuIupSwrhEvT7cUP8SRYC1dZdwF1GXEsYl6uK0mAdPBlOkqgpmLc5bFA1iglTDuJS2stfFjRQ1hEFEArDaE88L1ziLIydPGGiohkksD/95kTgxub+FB8WCrx+Gj5sSnSeeeKJ///4hoaGESSkSF19nt6GlpUXY0t7e7qBGrcJXBJQwaWeGnC9y2xFPkGcn0wIU1vtKmFTzydlJk6ty48aNqerSl8uAgBIm1SwRUyi65cknn0xVkb5cEgSUMMkn6s477xS2PProo8lr0TdLhYASJuF0EX4rbFm0aFHCKvS1EiKghEkyaQ8//LCwhQT7Sd7Xd0qLgBIm9tQ9/fTTwpZgznjEhqDCLyhh4k3+iy++KLvXt956a7w3tXQQCChhYkzjK6+8ImwhxWtIeZBjQFD5okoYWxF44403hC1Dhw5ls9L2NS0XFgJKGKv5fO+99+SoLZeAB3Z/i9X4tdA/CChhmsvCsWPH5CwUxzkISW7+gpYIFwElTJO5JUmSsKXKh43Dlf/YI1PCNIIMthCdLovIzz77bGx09YXgEFDCdDmlsEUSh/M8+OCDwU29DigJAkqYzlGDLeZA2LRp0wK7HiyJpOg7fyGghOlEEPDs5cIjnuuvvz6MLNoq8E4QUMLUwsiqMTstUIVdFxwYsu47AVorCQMBJcx/5hHdIhe1kq+R58CBA2FMs47CFQJKmH+RhC1y2FiS7W/YsMEVylpPMAgoYf6eSiwxYYvYY1OnTlVHPxgpdzgQJcxFMEmSJGwhjzg/8fhPnz7tEGWtKhgElDAdLIKRkVFikPv06cMHLnUJZoJ1IG4RqDph0CTi5Y8bN27IkCF8WLNmjVuItbaQEKg0YWCLXMI4ceLEKVOmyAc96BKSfDsfS3UJQ7rKMWPGQBJ+cj+WuPsauu9cwgKrsKKEgS2iW2CLuVivyonDAxPr7IZTRcJE2XLq1Km2tjaYs2zZsuxQ1pqDQaByhDFsgSesj61evVr0jLouwch0pgOpFmFgCzuSMIR1ZPZeiHyRK0uxyjJFWSsPBoEKEQYdMmHCBNmXhC2oF9nUX7VqVTDTqQPJGoGqEIY8L+Lls6MPW4B13rx5/AqF1BjLWshCqr8ShIEtM2fOjLKFG7H5lRQwJ0+eDGk6dSxZIxA+YVAgkydPlm0WoQfGmJwP03jkrMUrvPoDJwwRx2J6wZbjx4/L/InfD4s0Hjk8gc56RIETZvbs2WJ6cUZfoDTGmMYjZy1bQdYfLGHQHuK3kMvCZN8j8gXy8MctW7YEOZ06qKwRCJMwsGXhwoViiUVzVYp5RoSlGmNZC1ao9YdJGCEGysT4LcyfbFNqutdQRTmfcQVImPnz58OWvn37RtkCmhKbvHbt2nyQ1VaCRCA0woglBltqEr5s3rxZImJ0mzJIOc5tUEERRtiC0UW+/SiCbO2Lr3/06NHckNWGgkQgHMIQny+6pZ4VsrisAfxBSnDOgwqEMMIWdMu+fftqENyzZ48EXOq1YTnLVpDNhUAY7v6GEp0mqoQkEgWjOSyDFN/8B1V6wixfvlzYgiaph0/+O2fOnPyR1RaDRKDchOEoC3zg2bFjR/30EGoJkfBqJJ5fH0UgPQIlJgw7KsKWrpJXqK+fXj60hhoEykoYo1u6igrDaZFFM1Uv5RV6Isp963wpCbNu3TrRLVu3bu0UUELFJPurnnjxTeBi9UcJEwuuzguzZy+ZKxpEHPu2r//ll18uWrSIczhYiQcPHnSAQpmraIBGDUP4lTzXs2bNArpPP/3Uh0GXTMMYv6Ur3QKmpIaR6yn9Scx33333ffbZZ/Ttww8/nDFjhg8TX2AfGqBRT5j29vY///wTtsCZAvtsmi4TYURv8GzatKkBdpJqzNsDlR6aGQUKokGDD9FHusRf/vjjD/O5wH6WjzD4LWKJNXZLWEpmv5+S0WMwhQN97tw5Fr6feuopvlyVMA3QqNcwZu48wa0cGsZStwCuxPYThVk4SaIdIBZh586dH3/88ZkzZzyZ+ALxaYBGIYRBWnbv3g0g27dvX7FiRWNkSkAY4+U3vblF1AtLyb5dFD5t2jROR7N2x1iUMPZoRLHKDjdOfHA7EM4SHWv6PeI7YchZIZZYU7YwVEJgKEk4TNNh51zgo48+whjD3X/zzTezm/icB5W4OXs08iEMAzl8+HCPHj1sktR5TRh73cKYOQMjgTB6x0tiUa7mixcuXEC3rF+/3mYhzl/CsHBsr1uYackRoyeQqyn0aUa9ZMkS8WG2bdu2dOnSUvowxhKzPPVF+n3YwvYLmzBpsNN3FYHyEcbcQgFbbPIhmUAYTLhi55tNA/rcv39/DOKWlpZdu3YV259iWw8GjY0bNx45ckTA9M4kY7+ClS7UhSVbGIMksyQpjA27MpUh+kzn6Qne6tixYwcOHOhPtEGmA++08mDQgC2DBg0SzvhFGCwrYQsrXZbSTzG5N9wH0US3CFvkGT9+PDGg+UuqJy2GhIbhjMSa6OMGAVYpovEdkyZNclNvOWsJE42430bMXdxXbMqzKCy6ZcGCBZa6hWqNemkcXWbTASdlWltboxpm5cqVVdYwIaFB0LRYZbGlPwvC4OWzf0LNBLbYs8V4LyRQ9iQjzDvvvIPfgiV21113wRYkxgdD0cl3QYJKgkHDsMULHyaZbvFQvYhIkeeJuwHRluiWKrMlJDQ8WiXj2hY5uxLLEpPJQBx50R/1kuA7WF8pHQJFmmSGLZxDjGWJCcpyJTJh/6UDXTtcXgQKI0yULQkShJsUSrq1X17hK2PPiyGMYQvxxcn8dUw4PwOTyygE2md7BAogDNHEkr4VtiTQLYyN6ynxqnk0MNl+prWkEwTyJgymlGzMT58+PZluYdhyat+3Y5VO5kMr8RyBXAlDTj0WtZB1Dh4k0y2gCc3kshevTu17Ps3aPVcI5EcY2DJs2LCUbGHYcr6f0y+uINB6FAF7BHIijGELllhi3SKjamtrgzBsvtoPUksqAq4QyIMwrPxK4lYsscR+iwyYfXTqYSvd1fi1HkUgFgKZEwa2IN/i5afULQyMWGCq4gBMrEFqYUXAFQLZEoZ0R8IWduXT7zCeOHGCiHGNhXE191pPAgQyJAybJLKCTMS7k0RhcjWfJuRPMM36iisEsiKM8VtcsQXnhyMAaBgn3HMFn9ZTNQQyIYzxWyZOnJjeEpMpIesS6mXevHlVmyEdr1cIuCeMYQu6xRVbgExXk72Sm8p2xjFhomxxaDsdPXoU9YJHVNl50oF7goBLwnCmRc6ouPJbDEZYYnr0xROJqXg3nBEGtkiyVuJfiCZ2CKvEJqu77xBSrSoxAm4IE2WL81uL5QpY8mMkHqS+qAi4QsABYfBbxBJDtzhnC+OUsBrcGFdj1noUgcQIpCUM0S7CFsTarSUmQyLIUtz9BIf+E4OiLyoCXSGQijCwhQix7HQLnZajyJ7k6VMxUgSSEybKFpurmxJgzcK0uvsJcNNXskPg/2j+oxZe7Nz5AAAAAElFTkSuQmCC
Der Ausdruck in (8.14)([[Einleitung: Differentiale höherer Ordnung]]) bzw. in seiner Variante
(8.15)([[Einleitung: Differentiale höherer Ordnung]]) heißt //Differential zweiter Ordnung von $$f$$ in $$a$$//.
Bezüglich der Standardbasis des $$\R^n$$ besitzt das Differential zweiter Ordnung folgende Matrixdarstellung:
<$latex text="
f''(a) = H_f(a) =
\begin{pmatrix}
\partial_{11}f(a) & \dots & \partial_{1n}f(a) \\
\vdots & & \vdots \\
\partial_{n1}f(a) & \dots & \partial_{nn}f(a) \\
\end{pmatrix} \qquad (8.16)
" displayMode="true"></$latex>
Für diese Matrix gilt $$d^2f(a)(u,v) = u^tf''(a)v$$.
<<list-links "[tag[Differentiale höherer Ordnung]sort[scriptorder]]">>
<<list-links "[tag[Differenzierbare Abbildungen]sort[scriptorder]]">>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/Z9cjYwZuxDo?rel=0&start=154" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
<<list-links "[tag[Differenzierbare Funktionen.]sort[scriptorder]]">>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/Z9cjYwZuxDo?rel=0&start=0" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
$$f: U \longrightarrow Y$$ heißt //differenzierbar im Punkt $$a \in U$$//, genauer //$$\mathbb{K}$$-differenzierbar//,
wenn es eine $$\mathbb{K}$$-lineare Abbildung $$L: X \longrightarrow Y$$ gibt derart, dass der durch
<$latex text="
f(a+h) = f(a) + L(h) + R(h)
" displayMode="true"></$latex>
erklärte Rest $$R$$ die Bedingung
<$latex text="
\lim\limits_{h \rightarrow 0} \frac{R(h)}{\|h\|} = 0 \qquad \qquad (9.2)
" displayMode="true"></$latex>
erfüllt.
<$details summary="Analogon zu differenzierbaren Funktionen" tiddler="Bemerkung">
{{Analogon zu differenzierbaren Funktionen}}
</$details>
Jede in einem Punkt $$x_0$$ [[differenzierbare|Differenzierbarkeit: Analysis]] Funktion ist auch in $$x_0$$ [[stetig|Stetige reelle Funktionen (Über Grenzwerte)]].
!! Beweis
<$latex text="\begin{aligned}
\lim_{x\to x_0} (f(x)-f(x_0))&=\lim_{x\to x_0} (a(x-x_0)+r_{x_0}(x))\\
&=\lim_{x\to x_0} a(x-x_0)+\lim_{x\to x_0} r_{x_0}(x)\\
&= 0 +0=0
\end{aligned}" displayMode="true"></$latex>
Eine Funktion $$f:I\to \R$$ heißt ''differenzierbar in $$x_0\in I$$'', falls es ein $$a\in\R$$ und eine Funktion $$r_{x_0}:I\to\R$$ mit
<$latex text="\lim_{x\to x_0}\frac{r_{x_0}}{x-x_0}=0" displayMode="true"></$latex>
existieren, so dass für alle $$x\in I$$
<$latex text="f(x)=f(x_0)+a(x-x_0)+r_{x_0}(x)" displayMode="true"></$latex>
gilt. Der Wert $$a$$ heißt ''Ableitung von $$f$$ an der Stelle $$x_0$$'', welche wir mit $$f'(x_0)$$ bezeichnen. Die Funktion heißt ''differenzierbar'', falls $$f$$ in allen Punkten in $$I$$ differenzierbar ist. Die Funktion $$f'(x):I\to\R$$ mit $$x\mapsto f'(x)$$ heißt dann ''Ableitung ''von $$f$$.
# Äquivalente Definition 1
<$latex text="\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}=a" displayMode="true"></$latex>
existiert.
# Äquivalente Definition 2
<$latex text="\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}=a" displayMode="true"></$latex>
existiert.
Existieren in einer Umgebung $$U$$ von $$a \in \R^n$$ alle partiellen Ableitungen
$$\partial_1f,...,\partial_nf$$ und sind diese im Punkt $$a$$ stetig, so ist $$f$$ in $$a$$ differenzierbar.
<$details summary="Beweis" tiddler="Beweis">
{{Beweis: Differenzierbarkeitskriterium}}
</$details>
<$details summary="Beispiel" tiddler="Beispiel">
{{Beispiel: Differentiation rotationssymmetrischer Funktionen}}
</$details>
<<list-links "[tag[Differenzierbarkeitskriterium für Abbildungen]sort[scriptorder]]">>
Eine Abbildung $$f = (f_1,...,f_m) : U \longrightarrow \R^m$$, $$U \subset \R^n$$, ist in $$a \in U$$
$$\R$$-differenzierbar, wenn alle partiellen Ableitungen $$\partial_{\nu}f_{\mu}$$, $$\nu = 1,...,n$$, $$\mu = 1,...,m$$
in einer Umgebung von $$a$$ existieren und im Punkt $$a$$ stetig sind.
Sei $$B$$ eine [[Basis|Erzeugendensysteme und Basen]] von einem $$K$$-[[Vektorraum]] $$V$$. Dann heißt $$\text{dim}_K(V)\coloneqq |B|$$ die Dimension von $$V$$ über den [[Körper]] $$K$$.
!! Bemerkung
$$\text{dim}_K(V)$$ ist Wohldefiniert, d.h. unabhängig von der Wahl der Basis
!!! Beweis
Falls $$V$$ nicht endlich erzeugt ist, gibt es keine endliche Basis, also $$\dim_K(V)=\infty$$. Sonst seien $$B_1=\{x_1,\dots,x_r\}$$ und $$B_2=\{y_1,\dots,y_k\}$$ zwei Basen von $$V$$. Mit dem [[Austauschsatz]] folgt:<$latex text="\begin{cases}k\leq |B_1|=r\\r\leq|B_2|=k\end{cases}\implies r=k" displayMode="true"></$latex>
und somit $$\dim_K(V)=|B_1|=|B_2|$$.
Seien $$U,W,\subset V$$ [[Unterräume]] mit
$$\dim_K(U),\dim_K(W)<\infty.$$ Dann gilt:
<$latex text="\dim_K(U+W)+\dim_K(U\cap W)=\dim_K(U)+\dim_K(W)." displayMode="true"></$latex>
!! Beweis
Folgt direkt aus der [[Rang-Defekt-Formel]].
Für die $$1/n$$-Diskretisierungen $$X_{(n)}$$ von $$X$$ gilt:
# Für alle $$n\in\N$$ ist $$X_{(n)}\le X < X_{(n)}+\frac{1}{n}$$.
# Ist $$X_{(m)}\in {\mathscr{L}}^1(P)$$ für ein $$m$$, so ist $$X_{(n)}\in {\mathscr{L}}^1(P)$$ für alle $$n$$ und in diesem Fall ist $$(\textbf{E}_P(X_{(n)}))_{n\ge 1}$$ eine [[Cauchy-Folge|Cauchy-Folgen]] (d.h. $$\forall \varepsilon >0 \, \exists N \in \mathbb{N}_0: \left|\textbf{E}_P(X_{(n)})-\textbf{E}_P(X_{(m)})\right| < \varepsilon \quad \forall n, m > N$$)
! Beweis
(1) ist klar. Hieraus folgt (Übung!) <$latex text="|X_{(n)}|<|X_{(m)}|+ \max(\frac{1}{m},\frac{1}{n})." displayMode="true"></$latex>
Wenn also $$X_{(m)}\in {\mathscr{L}}^1(P)$$ für ein $$m$$, dann ist wegen der Monotonieregel
sogar $$X_{(n)}\in {\mathscr{L}}^1(P)$$ für alle $$n$$. Weiter ergibt sich $$\textbf{E}_P(X_{(m)})\le \textbf{E}_P(X_{(n)})+\frac{1}{n}$$. Vertauscht man in letzter Formel $$n$$ und $$m$$, ergibt sich insgesamt:
<$latex text="|\textbf{E}_P(X_{(m)})- \textbf{E}_P(X_{(n)})|\le \max(\frac{1}{m},\frac{1}{n})." displayMode="true"></$latex>
Das zeigt (2).
Im diskreten Fall ergeben sich die Marginalverteilungen, indem man durch komplettes Aufsummieren die
irrelevanten Komponenten eliminiert.So ergibt sich etwa im Fall $$(i_1,\ldots,i_k)=(1,\ldots,k)$$ für die zugehörigen Zähldichte $$p_{X_1\otimes\ldots\otimes X_k}$$: <$latex text="p_{X_1\otimes\ldots\otimes X_k}(\textcolor{blue}{\omega_1,\ldots,\omega_k})=\sum p_{X_1\otimes\ldots\otimes X_n}(\textcolor{blue}{\omega_1,\ldots,\omega_k},\textcolor{red}{\omega_{k+1},\ldots,\omega_n})," displayMode="true"></$latex>
dabei wird -- bei festem $$\textcolor{blue}{(\omega_1,\ldots,\omega_k)}$$ -- über alle $$\textcolor{red}{(\omega_{k+1},\ldots,\omega_n)}\in\Omega_{k+1}\times\ldots\times\Omega_n$$ summiert.
Diesen Vorgang nennt man $$\textbf{Marginalisierung}$$.
!! Beweis
<$latex text="\begin{alignedat}{2}
p_{X_1\otimes\ldots\otimes X_k}(\textcolor{blue}{\omega_1,\ldots,\omega_k})
&=& P(\{\omega\in\Omega\mid \forall i\in[1:\textcolor{blue}{k}]\colon X_i(\omega)=\omega_i\})\quad\text{(nach Definition)}\\
&=& P(\{\omega\in\Omega\mid \forall i\in[1:\textcolor{blue}{k}]\colon X_i(\omega)=\omega_i\land \forall i>k: X_i(\omega)\in\Omega_i\})\\
&=&P(\bigsqcup_{\textcolor{red}{\omega_{k+1},\ldots,\omega_n}}\{\omega\in\Omega\mid \forall i\in[1:\textcolor{red}{n}]\colon X_i(\omega)=\omega_i\})\\
&=&\sum_{\textcolor{red}{\omega_{k+1},\ldots,\omega_n}}P(\{\omega\in\Omega\mid \forall i\in[1:\textcolor{red}{n}]\colon X_i(\omega)=\omega_i\})\\
&=&\sum_{\textcolor{red}{\omega_{k+1},\ldots,\omega_n}} p_{X_1\otimes\ldots\otimes X_n}(\textcolor{blue}{\omega_1,\ldots,\omega_k},\textcolor{red}{\omega_{k+1},\ldots,\omega_n}),
\end{alignedat}" displayMode="true"></$latex>
wobei die disjunkte Vereinigung und die beiden Summen jeweils über alle $$(\textcolor{red}{\omega_{k+1},\ldots,\omega_n})\in\Omega_{k+1}\times\ldots\times\Omega_n$$ laufen.
Damit ist der Satz bewiesen.
Es sei $$\varphi\in T([a,b])$$ eine [[Treppenfunktion|Zerlegungen und Treppenfunktionen]] bezüglich einer Zerlegung $$Z$$ und Konstanten $$(c_k)$$.
Der ''(orientierte) Flächeninhalt'' unter der Treppenfunktion ist definiert durch
<$latex text="F_ab" displayMode="true"></$latex>
Es sei $$f:I\to\R$$ $$n$$-mal [[differenzierbar|Differenzierbarkeit: Analysis]] und $$x_0\in I$$. Das Polynom
<$latex text="T_{f,n}(x)\coloneqq \sum_{k=0}^n\frac{f^{(k)}(x_0)}{k!}(x-x_0)^k" displayMode="true"></$latex>
heißt ''Taylorpolynom vom Grad $$n$$'' der Funktion $$f$$ um den ''Entwicklungspunkt $$x_0$$''.
Wenn $$f$$ beliebig oft in $$x_0$$ differenzierbar ist, so ist
<$latex text="T_{f,n}(x)\coloneqq \sum_{k=0}^\infty\frac{f^{(k)}(x_0)}{k!}(x-x_0)^k" displayMode="true"></$latex>
die ''Taylorreihe'' von $$f$$ in $$x_0$$.
! Bemerkung
Das Taylorpolynom konvergiert nicht umbedingt gegen $$f$$!
!! Gegenbeispiel
<$latex text="x\mapsto \begin{cases}\exp{-\frac{1}{x2}}\end{cases}" displayMode="true"></$latex>
$$f$$ und $$\varphi = (\varphi_1,...,\varphi_k)$$ seien stetig differenzierbar auf einer offenen Menge
$$U \subset \R^n$$. $$\varphi'(x)$$ habe in jedem Punkt $$x \in M$$ den Rang $$k$$. Dann gilt:
Ist $$x_0 \in M$$ ein Extremalpunkt von $$f$$ auf $$M$$, so ist $$f'(x_0)$$ eine Linearkombination von
$$\varphi_1'(x_0),...,\varphi_k'(x_0)$$: Es gibt Zahlen $$\lambda_1,...,\lambda_k \in \R$$,
sogenannte //Lagrange-Multiplikatoren//, mit
<$latex text="
f'(x_0) = \sum\limits_{i=1}^{k} \lambda_i \varphi_i'(x_0). \qquad \qquad (9.9)
" displayMode="true"></$latex>
Im euklidischen $$\R^n$$ bedeutet (9.9)
<$latex text="
\text{grad}f(x_0) = \sum\limits_{i=1}^{k} \lambda_i \text{grad}\varphi_i(x_0). \qquad \qquad (9.10)
" displayMode="true"></$latex>
<$details summary="Beweis" tiddler="Bemerkung">
{{Beweis: Multiplikatorenregel von Lagrange}}
</$details>
<$details summary="Umformung mittels Rest" tiddler="Bemerkung">
{{Umformulierung mittels Rest}}
</$details>
! Aufgabe
Mit welcher Wahrscheinlichkeit bekommt jeder der drei Spieler eines Skatspiels genau ein Ass?
!! Lösung
Wie in Kapitel 4 modellieren wir das Austeilen der Karten als Ziehen aus einer Urne mit $$4$$ blauen (Asse) und $$28$$ roten (nicht Asse) Kugeln. Wir nehmen an, dass jeder Spieler zehn der 32 Karten auf einmal bekommt und die zwei restlichen Karten in den Skat kommen.
Als Ergebnisraum betrachten wir für jeden der drei Spieler jeweils die Anzahl seiner Asse $$\Omega_1=\Omega_2=\Omega_3=\{0,1,2,3,4\}$$ und für das Gesamtexperiment den Produktraum $$\Omega=\{0,1,2,3,4\}^3.$$
Sei $$P=P^{*}$$, dann gilt für beliebige $$X,y \in \mathbb{C}^n$$:
<$latex text="
\underbrace{(Px)^*}_{\in \: Bild(P) = S_1} \overbrace{(I-P)y}^{\in \: Bild(I-P) = S_2}
= x^* P^*(I-P^2)y = 0.
" displayMode="true"></$latex>
D.h. $$Px$$ und $$(I-P)y$$ sind orthogonal zueinander.
Sei umgekehrt $$P$$ eine orthogonale Projektion auf $$S_1$$ entlang $$S_2$$, wobei $$S_1$$ und $$S_2$$
orthogonal sind und $$\dim S_1 = k$$.
Dann wählen wir eine Orthonormalbasis $$\{q_1,...,q_n\}$$ des $$\mathbb{C}^n$$, sodass $$\{q_1,...,q_k\}$$
eine Basis von $$S_1$$ und $$\{q_{k+1},...,q_n\}$$ eine Basis von $$S_2$$ ist (vgl. BES \pageref{BES})}.
Dann gilt
<$latex text=" \
\forall j\leq k: & Pq_j = q_j & \text{ und}\\
\forall j>k: & Pq_j = 0.&
Sei nun $Q$ eine unitäre Matrix mit den Spalten $q_j$. Dann gilt
\begin{equation*}
PQ =
\begin{spmatrix}
& \vline & & \vline & &\vline & &\vline &\\
& \vline & & \vline & &\vline & &\vline &\\
q_1 & \vline & \hdots & \vline & q_k & \vline & 0 & \vline & \hdots \\
& \vline & & \vline & & \vline & &\vline &\\
& \vline & & \vline & &\vline & &\vline &\\
\end{spmatrix}
\end{equation*}
und
\begin{equation*}
Q^{*}PQ =
\begin{spmatrix}
\textbf{1} & 0 & \hdots & & & \hdots & 0 \\
0 & \textbf{1} & & & & & \vdots \\
\vdots & & \ddots & & & & \\
& & & \textbf{1} & & & \\
& & & & 0 & & \\
\vdots & & & & & \ddots & \vdots \\
0 & \hdots & & & & \hdots & 0
\end{spmatrix} =: \Sigma.
\end{equation*}
\scriptOnly{\bem{Die Orthogonalprojektionsmatrix hat demnach $k$ Eigenwerte $=1$ und $n-k$ Eigenwerte $=0$:\\
$\lambda_1 =...= \lambda_k = 1$ und $\lambda_{k+1} =...= \lambda_n = 0$.
}}
Die Matrix $Q^{*}PQ$ ist diagonal, wobei die ersten $k$ Einträge 1 sind.\\
Damit haben wir (wegen $Q^*Q = I$) mit $P = Q\Sigma Q^*$ eine SVD (Kap. \ref{chapter_svd}) von $P$, für die gilt:
\begin{equation*}
P^* = (Q\Sigma Q^*)^* = Q\Sigma Q^* = P.
Es sei $$f:I\to\R$$ eine Funktion. Eine [[differenzierbare|Differenzierbarkeit: Analysis]] Funktion $$F:I\to\R$$ heißt ''Stammfunktion von $$f$$'', wenn für alle $$x\in I$$
<$latex text="F'(x)=f(x)" displayMode="true"></$latex>
gilt.
Man schreibt auch
<$latex text="F(x)=\int f(x)dx" displayMode="true"></$latex>
# Bemerkung
Stammfunktionen sind nur bis auf eine additive Konstante eindeutig:
Sowohl $$x$$, als auch $$x23$$
Es sei $$f:I\to\R$$ $$n$$-mal [[differenzierbar|Differenzierbarkeit: Analysis]] und $$x_0\in I$$. Das Polynom
<$latex text="T_{f,n}(x)\coloneqq \sum_{k=0}^n\frac{f^{(k)}(x_0)}{k!}(x-x_0)^k" displayMode="true"></$latex>
heißt ''Taylorpolynom vom Grad $$n$$'' der Funktion $$f$$ um den ''Entwicklungspunkt $$x_0$$''.
Wenn $$f$$ beliebig oft in $$x_0$$ differenzierbar ist, so ist
<$latex text="T_{f,n}(x)\coloneqq \sum_{k=0}^\infty\frac{f^{(k)}(x_0)}{k!}(x-x_0)^k" displayMode="true"></$latex>
die ''Taylorreihe'' von $$f$$ in $$x_0$$.
# Bemerkung
Die Taylorreihe $$T_f$$ konvergiert ''NICHT'' unbedingt gegen $$f$$! Gegenbeispiel:
<$latex text="x\mapsto \begin{cases}e{\end{cases}" displayMode="true"></$latex>
Eine [[absolute konvergente Reihe|Absolute konvergente Reihen]] $$\sum_{k=1}^\infty a_k$$ ist auch konvergent und für die Grenzwerte gilt
<$latex text="\left\vert \sum_{k=1}^\infty a_k \right\vert\leq \sum_{k=1}^\infty |a_k|." displayMode="true"></$latex>
!! Beweis
Da die Reihe konvergiert, ist $$(S_n)$$ eine Cauchy-Folge. Daher gilt
<$latex text="\forall\epsilon>0\exists n_0\in\N\forall m\geq n\geq n_0:\left\vert\sum_{k=n+1}^m|a_k|\right\vert=|S_m-S_n|<\epsilon" displayMode="true"></$latex>
Die Dreiecksungleichung impliziert dann
<$latex text="\left\vert \sum_{k=n+1}^m a_k\right\vert\leq \sum_{k=n+1}^m |a_k| <\epsilon." displayMode="true"></$latex>
Also ist $$\sigma_n=\sum_{k=1}^n a_k$$ auch Cauchy und konvergiert daher.
Außerdem folgt dann aus der Dreiecksungleichung $$|\sigma_n|\leq S_n$$
und [[damit|Grenzwerte reeller Folgen erhalten Ordnung]] die Aussage.
# $$\exp(0)=1$$
# $$z\in\mathbb{C}\implies \exp(z)\neq 0$$
# $$z\in\mathbb{C}\implies \exp(-z)=\frac{1}{\exp(z)}$$
# $$x\in\R \implies \exp(z)>0$$
# $$r\in\mathbb{Q}\implies \exp(r)=e^r$$
!! Beweis
# Folgt durch direktes nachrechnen, da nur der erste Term 1/1 ungleich Null ist.
# Gäbe es $$z\in\mathbb{C}$$ mit $$\exp(z)=0$$, so folgt <$latex text="1=\exp(0)=\exp(z-z)=\exp(z)\exp(-z)=0\exp(-z)=0" displayMode="true"></$latex>
# Folgt aus <$latex text="1=\exp(0)=\exp(z-z)=\exp(z)\exp(-z)" displayMode="true"></$latex>
# Für $$x>0$$ gilt $$\exp(x)=1+\sum_{k=1}^\infty\frac{x^k}{k!}\geq 1\implies \exp(-x)>0$$
# Für $$r=\frac{p}{q}$$ mit $$p,q\in\N$$ gilt <$latex text="(\exp(r))^q=\exp(r\cdot q)=\exp(p)=\exp(1)^p=e^p." displayMode="true"></$latex> Für negative $$r$$ folgt die Aussage aus 3.
# Das [[Matrixprodukt|Multiplikation von Matrizen]] ist assoziativ und distributiv:<$latex text="A\cdot(B\cdot C)=(A\cdot B)\cdot C" displayMode="true"></$latex><$latex text="A\cdot(B+ C)=A\cdot B+A\cdot C" displayMode="true"></$latex>
# Das Matrixprodukt ist im Allgemeinen nicht kommutativ
# $$M(n\times n, K)\eqqcolon M(n,K)$$ bildet eine $$K$$-Algebra mit 1 $$(\simeq \text{End}_K(K^n))$$. Als Ring ist $$M(n,k)$$ nicht [[nullteilerfrei|Nullteiler]]
# $$(A\cdot B)^t=B^t\cdot A^t$$
!! Beweis
Alle Eigenschaften lassen sich durch Nachrechnen direkt beweisen. Wir zeigen hier 4 und geben ein Beispiel für 2. und Nullteiler in $$M(2,\R)$$.
!! Nicht kommutativ & Nullteiler
<$latex text="\begin{aligned}\begin{pmatrix}1 & 0 \\ 0 & 0\end{pmatrix}\cdot \begin{pmatrix}0 & 1 \\ 0 & 0\end{pmatrix}=\begin{pmatrix}0 & 1 \\ 0 & 0\end{pmatrix}\\\begin{pmatrix}0 & 1 \\ 0 & 0\end{pmatrix}\cdot \begin{pmatrix}1 & 0 \\ 0 & 0\end{pmatrix}=\begin{pmatrix}0 & 0 \\ 0 & 0\end{pmatrix}\end{aligned}" displayMode="true"></$latex>
!! Beweis von 4.
Sei $$A=(a_{ij})_{\stackrel{1\leq i\leq m}{1\leq j\leq n}}\in M(m\times n, K)$$ und $$B=(b_{kl})_{\stackrel{1\leq k\leq r}{1\leq j\leq m}}\in M(r\times m, K)$$. Dann gilt:
<$latex text="(A\cdot B)^t(i,j)=(A\cdot B)(j,i)=\sum_{l=1}^ma_{jl}b_{li}=\sum_{l=1}^mB^t(i,l)\cdot A^t(l,j)=(B^t\cdot A^t)(i,j)." displayMode="true"></$latex>
Seien $$a,b\in R\setminus\{0\}$$. Dann gilt:
# Ist $$d$$ ein $$\text{ggT}(a,b)$$, so existieren $$\lambda,\mu\in R$$ mit $$d=\lambda a+\mu b$$
# $$\text{ggT}(a,b)$$ ist bis auf [[Assoziiertheit|Primfaktorzerlegung, Einheiten und assoziiertheit]] eindeutig bestimmt
# Aus $$c|a$$ und $$c|b$$ folgt $$c|\text{ggT}(a,b)$$
# Gilt $$c|a,c|b$$ und $$c=\alpha a+\beta b$$, so gilt schon $$c\sim \text{ggT}(a,b)$$
!! Beweis
# Folgt direkt durch rückwerts Einsätzen im [[euklidischen Algorithmus|Euklidischer Algorithmus und der ggT]]
# Seien $$d,\tilde{d}$$ zwei $$\text{ggT}(a,b)$$. Dann ist $$\tilde{d}$$ ein Teiler von $$d$$, da $$d$$ ein $$\text{ggT}(a,b)$$ ist. Analog ist $$d$$ ein Teiler von $$\tilde{d}$$. Somit gilt $$d\sim \tilde{d}$$
# Folgt direkt aus dem euklidischen Algorithmus
# Sei $$c|a\land c|b$$ sowie $$c=\alpha a+\beta b$$. Es folgt direkt, dass $$c|\text{ggT}(a,b)$$. Außerdem gilt nach 1.<$latex text="\text{ggT}(a,b)=\lambda a+\mu b." displayMode="true"></$latex>Damit folgt $$\text{ggT}(a,b)|c$$. Somit ist $$c\sim \text{ggT}(a,b)$$
Sind $$f,g:[a,b]\to\R$$ [[Regelfunktionen]] und $$\lambda\in \R$$ so gilt:
#<$latex text="\int_a^b \lambda (f(x)+g(x))dx=\lambda\int_a^bf(x)dx+\lambda\int_a^bg(x)dx" displayMode="true"></$latex>
#falls $$f\leq g$$ punktweise, so gilt: <$latex text="\int_a^b f(x)dx\leq\int_a^bg(x)dx" displayMode="true"></$latex>
#<$latex text="\left\vert \int_a^b\ (x)dx\right\vert\leq \Vert f\Vert_{[a,b]}(b-a)" displayMode="true"></$latex>
!! Beweis
Alle drei Aussage folgen aus den entsprechenden Eigenschaften von Treppenfunktionen durch ein Konvergenzargument. Ihr Beispielhaft 3.:
Sei $$(\varphi_n)$$ eine Folge von Treppenfunktionen, welche gleichmäßig gegen $$f$$ konvergiert. Aus der Dreiecksungleichung folgt dann:
<$latex text="|\Vert\varphi_n\Vert_{[a,b]}-\Vert f\Vert_{[a,b]}|\leq \Vert \varphi_n-f\Vert_{[a,b]}" displayMode="true"></$latex>
und damit
<$latex text="\lim_{n\to\infty}\Vert\varphi_n\Vert_{[a,b]}=\Vert f\Vert_{[a,b]}." displayMode="true"></$latex>
Aufgrund der [[Rechenregeln für Grenzwerte]] gilt dann
<$latex text="\left\vert \lim_{n\to\infty}\int_a^b \varphi_n(x)dx\right\vert=\lim_{n\to\infty}\left\vert \int_a^b \varphi_n(x)dx\right\vert" displayMode="true"></$latex>
Mit der Standartabschätzung für das Integral von Treppenfunktionen bekommen wir dann
<$latex text="\left\vert \lim_{n\to\infty}\int_a^b f(x)dx\right\vert\leq (b-a)\Vert\varphi_n\Vert_{[a,b]}=(b-a)\Vert f\Vert_{[a,b]}." displayMode="true"></$latex>
# $$L_A\subset K^n$$ ist ein [[Unterraum|Unterräume]] mit $$\dim_K(L_A)=n-\text{rg}(A).$$
# Ist $$x_1\in L_{A,b}$$ eine Lösung der inhomogenen Gleichung $$A\cdot x=b$$, so ist <$latex text="L_{A,b}=x_1+L_A" displayMode="true"></$latex>
!! Beweis
''1.:''
Da $$L_A=\ker(K^n\stackrel{A}{\to}K^n)$$ folgt die Aussage direkt aus der [[Rang-Defekt-Formel]].
''2.:''
Sei nun $$x_1,y\in L_{A,b}$$ zwei Lösung der inhomogenen Gleichung. Dann gilt:
<$latex text="A(y-x_1)=A(y)-A(x_1)=b-b=0\iff y-x_1\in L_A" displayMode="true"></$latex>
!! Bemerkung
Wie findet man den Lösungsraum? Für $$S\in \text{GL}(n,K)=\{X \in M(n,K)|X \text{ invertierbar}\}$$.
gilt <$latex text="L_{A,b}=L_{SA,Sb}." displayMode="true"></$latex>
Induzierte Matrixnormen sind Normen und es gilt für alle $$A\in\mathbb{C}^{m\times n}$$, $$B\in\mathbb{C}^{n\times l}$$ und $$x\in\mathbb{C}^n$$:
* $$\|A\cdot x\|_{m}\le \|A\|_{(m,n)}\cdot\|x\|_n$$
*$$\|A\cdot B\|_{(m,l)}\le \|A\|_{(m,n)}\cdot\|B\|_{(n,l)}$$
<$details summary="Beweis" tiddler="Eigenschaften induzierter Matrixnormen Beweis">
{{Eigenschaften induzierter Matrixnormen Beweis}}
</$details>
Die Norm ist Quotient nicht-negativer Zahlen und somit nicht negativ. Es ist $$\|0\|_{(m,n)}=0$$ und
aus $$A\neq 0$$ folgt, dass es ein $$y\in\mathbb{C}^{n}$$ mit $$A\cdot y\neq 0$$ gibt, so dass $$\|A\|_{(m,n)}>0$$ ist.
Weiter gilt für $$\alpha\in\mathbb{C}$$ und $$C\in\mathbb{C}^{m\times n}$$:
<$latex text="
\begin{aligned}
\|\alpha\cdot A\|_{(m,n)}&=\sup_{y\in\mathbb{C}^{n}\setminus\{0\}}\frac{\|\alpha\cdot A\cdot y\|_{m}}{\|y\|_{n}}=\alpha\cdot\sup_{y\in\mathbb{C}^{n}\setminus\{0\}}\frac{\|A\cdot y\|_{m}}{\|y\|_{n}}=\alpha\cdot\|A\|_{(m,n)} \\
\|A+C\|_{(m,n)}&=\sup_{y\in\mathbb{C}^{n}\setminus\{0\}}\frac{\|A\cdot y+C\cdot y\|_{m}}{\|y\|_{n}}\\
&\le\sup_{y\in\mathbb{C}^{n}\setminus\{0\}}\frac{\|A\cdot y\|_{m}}{\|y\|_{n}}+\sup_{y\in\mathbb{C}^{n}\setminus\{0\}}\frac{\|C\cdot y\|_{m}}{\|y\|_{n}}=\|A\|_{(m,n)}+\|C\|_{(m,n)}
\end{aligned}
" displayMode="true"></$latex>
Die Ungleichungen ergeben sich aus folgenden Abschätzungen:
$$\small{\|A\cdot x\|_{m}=\frac{\|A\cdot x\|_{m}}{\|x\|_{n}}\cdot\|x\|_{n}\le\sup_{y\in\mathbb{C}^{n}\setminus\{0\}}\frac{\|A\cdot y\|_{m}}{\|y\|_{n}}\cdot\|x\|_{n}=\|A\|_{(m,n)}\cdot\|x\|_{n}}$$
$$\small{\|A\cdot B\|_{(m,l)}=\sup_{y\in\mathbb{C}^{l}\setminus\{0\}}\frac{\|A\cdot B\cdot y\|_{m}}{\|y\|_{l}}\le\|A\|_{(m,n)}\cdot\sup_{y\in\mathbb{C}^{l}\setminus\{0\}}\frac{\|B\cdot y\|_{n}}{\|y\|_{l}}=\|A\|_{(m,n)}\cdot\|B\|_{(n,l)}}$$
Sei $$T:V\to W$$ eine [[lineare Abbildung|Lineare Abbildungen]]. Dann gilt:
# Ist $$\{x_1,\dots,x_n\}\subset V$$ linear abhängig. Dann ist $$\{T(x_1),\dots,T(x_n)\}\subset W$$ ebenfalls linear abhängig.
# Ist $$\{x_1,\dots,x_n\}\subset V$$ linear unabhängig und $$T$$ injektiv. Dann ist $$\{T(x_1),\dots,T(x_n)\}\subset W$$ ebenfalls linear unabhängig.
# $$\dim_K(T(V))\leq \dim_K(V)$$
# Ist $$T\in \text{Hom}_K(V,W)$$ und $$L\in\text{Hom}_K(W,U)$$, dann ist $$(L\circ T)\in\text{Hom}_K(V,U)$$.
# Ist $$T$$ ein Isomorphismus, so ist auch $$T^{-1}$$ ein Isomorphismus.
!! Beweis
''1.:'' Da $$\{x_1,\dots,x_n\}$$ linear abhängig sind gibt es $$\lambda_1,\dots,\lambda_n\in K$$, von denen nicht alle $$0$$ sind, mit $$0_V=\lambda_1x_1+\dots+\lambda_nx_n$$, Es folgt <$latex text="0_W=T(0_V)=T(\lambda_1x_1+\dots+\lambda_nx_n)=\lambda_1T(x_1)+\dots+\lambda_nT(x_n)." displayMode="true"></$latex>
''2.:'' Sei $$0_W=\lambda_1 T(x_1)+\dots+\lambda_n T(x_n)=T(\lambda_1x_1+\dots+\lambda_nx_n)$$ für $$\lambda_1,\dots,\lambda_n\in K$$. Da $$T(0_V)=0_W$$ gilt und $$T$$ injektiv ist, folgt:<$latex text="0_V=\lambda_1x_1+\dots+\lambda_nx_n." displayMode="true"></$latex>
''3.:'' folgt direkt aus 2. und der Definition
der [[Dimension eines Vektorraumes]].
''4.:''
<$latex text="(L\circ T)(x_1+x_2))=L(T(x_1)+T(x_2))=L(T(x_1))+L(T(x_2))=(L\circ T)(x_1)+(L\circ T)(x_2)" displayMode="true"></$latex>
und
<$latex text="(L\circ T)(\lambda x)=L(T(\lambda x))=L(\lambda T(x))=\lambda L(T(x))=\lambda(L\circ T)(x)." displayMode="true"></$latex>
''5.:'' Aus mengentheoretischen Überlegungen folgt direkt, dass $$L\coloneqq T^{-1}$$ ebenfalls bijektiv ist, es bleibt also zu zeigen, dass diese Abbildung auch linear ist.
<$latex text="L(x_1+x_2)=T^{-1}(T(y_1)+T(y_2))=T^{-1}(T(y_1+y_2))=y_1+y_2=L(x_1)+L(x_2)" displayMode="true"></$latex>
außerdem gilt
<$latex text="L(\lambda x)=L(\lambda T(y))=L(T(\lambda y))=\lambda y=\lambda L(x)." displayMode="true"></$latex>
Sei $$D$$ eine [[Determinantenform]] auf einem $$K$$-[[Vektorraum]] $$V$$. Dann gilt:
# Für $$i\neq j$$ und $$\lambda \in K$$ ist <$latex text="D(x_1,\dots,x_n)=D(x_1,\dots,x_i,\dots,x_j+\lambda x_i,\dots,x_n)." displayMode="true"></$latex> insb. ändert sich $$D(x)$$ nicht, wenn man $$x_j$$ mit $$x_j+\lambda x_i$$ ersetzt.
# Für $$i\neq j$$ ist<$latex text="D(x_1,\dots,x_i,\dots,x_j,\dots,x_n)=-D(x_1,\dots,x_j,\dots,x_i,\dots,x_n)" displayMode="true"></$latex>
# Ist $$\sigma\in S_n$$ eine [[Permutation|Permutationen und Zykel]], so gilt <$latex text="D(x_{\sigma(1)},\dots,x_{\sigma(n)})=\text{sgn}(\sigma)D(x_1,\dots,x_n)" displayMode="true"></$latex>
# Sind $$x_1,\dots,x_n$$ linear abhängig, so ist $$D(x_1,\dots,x_n)=0$$.
!! Beweis
''1.:'' Es gilt <$latex text="\begin{aligned}D(x_1,\dots,x_n)&=D(x_1,\dots,x_n)+\underbrace{D(x_1,\dots,x_i,\dots,x_i,\dots,x_n)}_{=0}\\&=D(x_1,\dots,x_i,\dots,x_j+\lambda x_i,\dots,x_n)\end{aligned}" displayMode="true"></$latex>
''2.:'' Es gilt:
<$latex text="\begin{aligned}0&= D(x_1,\dots,x_i+x_j,\dots,x_i+x_j,\dots,x_n)\\
&=D(x_1,\dots,x_i,\dots,x_i,\dots,x_n)+D(x_1,\dots,x_i,\dots,x_j,\dots,x_n)+D(x_1,\dots,x_j,\dots,x_i,\dots,x_n)+D(x_1,\dots,x_j,\dots,x_j,\dots,x_n)\\
&=D(x_1,\dots,x_i,\dots,x_j,\dots,x_n)+D(x_1,\dots,x_j,\dots,x_i,\dots,x_n)\\
&\implies D(x_1,\dots,x_i,\dots,x_j,\dots,x_n)=-D(x_1,\dots,x_j,\dots,x_i,\dots,x_n) \end{aligned}" displayMode="true"></$latex>
''3.:'' Sei $$\sigma=\tau_1\cdot\tau_2\cdot\dots\cdot\tau_r$$ mit $$\tau_1,\dots,\tau_r$$ [[Transpositionen|Permutationen und Zykel]]. Dann gilt:
<$latex text="\begin{aligned}D(x_1,\dots,x_n)&=-D(x_{\tau_r(1)},\dots,x_{\tau_r(n)})=\dots=D(x_1,\dots,x_n)&=(-1)^rD(x_{\sigma(1)},\dots,x_{\sigma(n)})\end{aligned}" displayMode="true"></$latex>
''4.:'' o.B.d.A. kann angenommen werden, dass
<$latex text="x_n=\sum_{j=1}^{n-1}\alpha_j x_j" displayMode="true"></$latex>
daher gilt mit der zweiten Eigenschaft der Determinantenform $$D$$:
<$latex text="D(x_1,\dots,x_n)=\sum_{j=1}^{n-1}\alpha_jD(x_1,\dots,x_{n-1},x_j)=\sum_{j=1}^{n-1}\alpha_j\cdot 0=0." displayMode="true"></$latex>
Für $$f,g\in$$ [[K[T]|Polynomringe]] gilt
<$latex text="\deg(f\cdot g)=\deg(f)+\deg(g)," displayMode="true"></$latex>
wobei $$-\infty+l\coloneqq -\infty$$ für $$l\in \N_+\cup\{-\infty\}$$.
Außerdem ist $$K[t]$$ ein [[nullteilerfreier|Nullteiler]] [[Ring mit 1|Ringe]].
!! Beweis
<$latex text="\deg(f\cdot g)=\deg(f)+\deg(g)" displayMode="true"></$latex>
und Kommutativität folgt direkt aus der Definition der Multiplikation.
$$1_{K[t]}$$ ist durch $$1t^0$$ gegeben. Für die Nullteilerfreiheit seien $$f,g\in K[t]\setminus\{0\}$$, dann gilt:
<$latex text="\deg(fg)=\deg(f)+\deg(g)>-\infty \implies fg\neq 0." displayMode="true"></$latex>
Es sei $${\mathcal{A}}$$ eine [[sigma-Algebra|Sigma-Algebren]] über $$\Omega$$. Dann gilt:
# $$\emptyset\in {\mathcal{A}}$$.
# $$A,B\in{\mathcal{A}}$$ impliziert $$A\cup B\in{\mathcal{A}}$$, $$A\cap B\in{\mathcal{A}}$$, $$A\setminus B\in {\mathcal{A}}$$.
# $${\mathcal{A}}$$ ist unter abzählbar unendlicher Durchschnittsbildung abgeschlossen.
<$details summary="Beweis von 1." tiddler="Beweis von 1">
Da <$latex text="\Omega\in{\mathcal{A}}" displayMode="false"></$latex> und <$latex text="{\mathcal{A}}" displayMode="false"></$latex> unter Komplementbildung abgeschlossen ist, folgt <$latex text="\emptyset=\Omega^c\in {\mathcal{A}}" displayMode="false"></$latex>.
</$details>
<$details summary="Beweis von 2." tiddler="Beweis von 2.">
Die Aussagen folgen aus <$latex text="\begin{alignedat}
A\cup B&=&A\cup B\cup\emptyset\cup \emptyset\cup\ldots\in{\mathcal{A}},\\
A\cap B&=&(A^c\cup B^c)^c\in{\mathcal{A}},\\
A\setminus B&=&A\cap B^c\in{\mathcal{A}}.\end{alignedat}" displayMode="true"></$latex>
</$details>
Der Beweis zu 3. ist eine Übung.
Für beliebige Ereignisse $$A,B,A_1,A_2,\ldots$$ eines W-Raums $$(\Omega,{\mathcal{A}},P)$$ gilt:
# $$P(\emptyset)=0$$.
# $$P(A\cup B)+P(A\cap B)=P(A)+P(B)$$; insbesondere ist<$latex text="P(A)+P(A^c)=1." displayMode="true"></$latex>
# ''Monotonie'': $$A\subseteq B\Rightarrow P(A)\le P(B)$$.
# ''$$\sigma$$-Subadditivität'': $$P(\cup_{i\ge 1}A_i)\le \sum_{i\ge 1}P(A_i)$$.
# ''$$\sigma$$-Stetigkeit'': Wenn $$A_1\subseteq A_2\subseteq\ldots $$ und $$A=\cup_{i\ge 1}A_i$$ bzw. $$A_1\supseteq A_2\supseteq\ldots $$ und $$A=\cap_{i\ge 1}A_i$$, so gilt <$latex text="\lim_{n\to\infty}P(A_n)=P(A)." displayMode="true"></$latex>
<$details summary="Beweis zu 1." tiddler="Beweis zu 1.">
<$latex text="\emptyset,\emptyset,\ldots" displayMode="false"></$latex> ist Folge paarweise disjunkter Ereignisse. (A) ergibt: <$latex text="P(\emptyset)=P(\emptyset\cup\emptyset\cup\ldots)=\sum_{i\ge 1}P(\emptyset)." displayMode="true"></$latex> Daraus folgt <$latex text="P(\emptyset)=0" displayMode="false"></$latex>.
</$details>
<$details summary="Beweis zu 2." tiddler="Beweis zu 2.">
Sind <$latex text="A" displayMode="false"></$latex>. und <$latex text="B" displayMode="false"></$latex>. disjunkt, so folgt wegen (A) zusammen mit (1): <$latex text="P(A\sqcup B)=P(A\sqcup B\sqcup \emptyset\sqcup\emptyset\sqcup\ldots)=P(A)+P(B)+0+0\ldots." displayMode="true"></$latex> Allgemein gilt wegen <$latex text="A\cup B=(A\setminus B) \sqcup (B\setminus A) \sqcup (A\cap B)" displayMode="false"></$latex>
<$latex text="\begin{alignedat}P(A\cup B)+P(A\cap B)&=&P(A\setminus B) + P(B\setminus A) +2P(A\cap B)\\
&=&P(A)+P(B).
\end{alignedat} " displayMode="true"></$latex> Schließlich ist <$latex text="1=P(\Omega)=P(A\sqcup A^c)=P(A)+P(A^c)" displayMode="false"></$latex>.
</$details>
<$details summary="Beweis zu 3." tiddler="Beweis zu 3.">
Aus <$latex text="A\subseteq B" displayMode="false"></$latex> folgt wegen (2) und der Nichtnegativität von Wahrscheinlichkeiten: <$latex text="P(B)=P(A\sqcup (B\setminus A)) =P(A)+P(B\setminus A)\ge P(A)." displayMode="true"></$latex>
</$details>
<$details summary="Beweis zu 4." tiddler="Beweis zu 4.">
<$latex text="\begin{alignedat} P(\bigcup_{i\ge 1}A_i)&=&P(\bigsqcup_{i\ge 1}(A_i\setminus\cup_{j<i}A_j))\\
&=&\sum_{i\ge 1}P(A_i\setminus\cup_{j<i}A_j)\le \sum_{i\ge 1}P(A_i).
\end{alignedat} " displayMode="true">
</$details>
Der Beweis zu 5. wird in den Übungen besprochen
Seien $$V,W$$ $$K$$-[[Vektorräume]] mit $$\dim_K(V)=n,\dim_K(W)$$.
Sei $$A=(a_{ij})_{\stackrel{1\leq i \leq m}{1 \leq j\leq m}}\in M(m\times n, K)$$ eine Matrix
# Srg($$A^t$$)=Zrg($$A$$) und Zrg($$A^t$$)=Srg($$A$$)
# Seien $$S_1:V'\to V$$ und $$S_2: W'\to W$$ [[Isomorphismus|Lineare Abbildungen]]. Dann ist für $$T\in\text{Hom}_K(V,W)$$<$latex text="\text{rg}(T)=\text{rg}(S_2^{-1}\circ T\circ S_1)." displayMode="true"></$latex>
# Für $$A\in M(m\times n, K)$$ und invertierbare $$X\in M(m\times m, K),Y\in M(n\times n, K)$$ gilt<$latex text="\text{Srg}(XAY)=\text{Srg}(A)" displayMode="true"></$latex><$latex text="\text{Zrg}(XAY)=\text{Zrg}(A)" displayMode="true"></$latex>
!! Beweis
''1.:'' Das Transponieren einer Matrix vertauscht Zeilen und Spalten.
''2.:'' Es gilt: $$T(V)=T(S_1(V'))=(T\circ S_1)(V')$$, also insbesondere rg$$(T)=\text{rg}(T\circ S_1)$$. $$S_2$$ ist ein Isomorphismus, insb. bildet $$S_2^{-1}$$ jeden Unterraum $$U$$ von $$W$$ bijektiv auf dem Unterraum gleicher Dimension $$S_2^{-1}(U)\subset W'$$ ab. Also ist<$latex text="S_2^{-1}:T(V)\to S_2^{-1}T(V)=(S_2^{-1}\circ T\circ S_1)(V')" displayMode="true"></$latex> ein Isomorphismus und es folgt $$\text{rg}(S_2^{-1}\circ T\circ S_1)=\text{rg}(T)$$.
''3.:''
<$latex text="\text{Srg}(A)=\text{rg}(K^n\stackrel{A}{\to}K^m)\stackrel{2.)}{=}\text{rg}(K^n\stackrel{X\circ A \circ Y}{\to} K^m)=\text{Srg}(X\circ A\circ Y)" displayMode="true"></$latex>
und damit folgt dann
<$latex text="\text{Zrg}(A)\stackrel{1.)}{=}\text{Srg}(A^t)\stackrel{3.)}{=}\text{Srg}(Y^t A^tX^t)\text{Srg}((XAY)^t)\stackrel{1.)}{=}XAY." displayMode="true"></$latex>
# Sei $$\sigma$$ ein [[Zykel|Permutationen und Zykel]] der Länge $$k$$. Dann ist die Ordnung $$\text{ord}(\sigma)=k$$, d.h. $$k$$ ist die kleinste natürliche Zahl $$m$$, s.d. $$\sigma^m=\text{id}$$.
# Sei $$\sigma\in S_n$$. Dann ist $$\sigma$$ ein Produkt disjunkter Zykel und damit ein Produkt beliebiger Transpositionen.
!! Beweis
# $$\sigma^k(a_i)=a_i$$ folgt direkt aus der Definition. Es bleibt also zu zeigen, dass $$k$$ die kleinste solche Zahl ist. Es gilt für $$1\leq m \leq k-1$$: $$\sigma^m(a_1)=a_m\neq a_1$$. Insbesondere ist $$\sigma$$ also nicht die Identität.
2. Beweis per Induktion über $$n$$:
!!! Induktionsanfang:
Für $$n=0$$ ist nichts zu beweisen.
!!! Induktionshypothese:
Die Behauptung gelte für alle Permutationen von weniger als $$n$$ Elementen.
!!! Induktionsschritt:
Sei $$\sigma\in S_n$$. Wenn $$\sigma(n)=n$$, so folgt aus der Bijektion aus dem Beweis aus [[Kardinalität symmetrischer Gruppen]], dass $$\sigma$$ eigentlich ein Element aus $$S_{n-1}$$ ist. Die Aussage folgt dann aus der Induktionsvoraussetzung.
Für den Fall, dass $$\sigma(n)\neq n$$ gibt es ein minimales $$k$$, s.d. $$\sigma^k(n)=n$$. Sei dann <$latex text="\sigma_1\coloneqq\begin{pmatrix}n &\sigma(n)&\sigma^2(n)&\dots&\sigma^{k-1}(n)\end{pmatrix}" displayMode="true"></$latex>
ein nicht trivialer Zykel der Länge $$k$$ und $$\tilde{\sigma}=\sigma_1^{-1}\circ \sigma$$.
Dann permutiert $$\tilde\sigma$$ nur die $$n-k$$ Elemente aus $$\{1,\dots,n\}\setminus\{n,\sigma(n),\sigma^2(n),\dots,\sigma^{k-1}(n)\}$$ und die Induktionsvoraussetzung liefert die Behauptung.
Zuletzt lässt sich jeder Zykel als Produkt von Transpositionen schreiben:
<$latex text="\begin{pmatrix}a_1 & \dots & a_k\end{pmatrix}=\begin{pmatrix}a_1& a_k\end{pmatrix}\begin{pmatrix}a_1 & a_{k-1}\end{pmatrix}\cdot \dots\cdot \begin{pmatrix}a_1 & a_{2}\end{pmatrix}." displayMode="true"></$latex>
Sei $$V$$ ein $$K$$-[[Vektorraum]] mit $$\dim_K(V)=n<\infty$$ und $$T\in\text{End}_K(V)$$.
$$x\in V\setminus\{0\}$$ heißt ''Eigenvektor ''von $$T$$ zum ''Eigenwert'' $$\lambda$$, falls $$T(x)=\lambda x$$. Dann ist
<$latex text="E(T,\lambda)\coloneqq\ker(T-\lambda \text{Id})" displayMode="true"></$latex>
der ''Eigenraum'' zum Eigenwert $$\lambda$$ und
<$latex text="g(T,\lambda)\coloneqq \dim_K(E(T,\lambda))" displayMode="true"></$latex>
die ''geometrische Vielfachheit'' von $$\lambda$$.
Seien $$A \in \mathbb{C}^{m \times m}$$ und $$x \in \mathbb{C}^{m}\setminus\{0\}$$. Dann heißt $$x$$ //Eigenvektor// (EV) von $$A$$ und $$\lambda \in \mathbb{C}$$ der dazugehörige //Eigenwert// (EW), falls
<$latex text="
Ax = \lambda x.
" displayMode="true"></$latex>
Der dazugehörige //Eigenraum// ist gegeben durch $$E_{\lambda} := \{x\in\mathbb{C}^{m} | Ax = \lambda x \}$$.
<$details summary="Bemerkung" tiddler="Bemerkung">
Die Eigenwerte einer Matrix (oder einer linearen Abbildung) kann man mittels des //charakteristischen Polynoms// bestimmen:
<$latex text="
p_A (z) = \det(A-zI).
" displayMode="true"></$latex>
Zur Erinnerung:
$$g_A(\lambda) = \dim E_{\lambda}$$ ist die //geometrische Multiplizität//
(oder geometrische Vielfachheit) von $$\lambda$$. Die //algebraische Multiplizität//
(oder algebraische Vielfachheit) $$a_A$$ von $$\lambda$$ ist die Potenz des Faktors
$$(z - \lambda)$$ im charakteristischen Polynom. d.h. $$a_A (\lambda_i) = l_i$$ für
$$p_A = (z- \lambda_i)^{l_i}$$ mit $$\lambda_i$$ EW von $$A$$.
</$details>
*Ist $$\nabla r(x)=0$$ für $$x\neq 0$$, dann ist $$x$$ ein Eigenvektor und $$r(x)$$ der entsprechende Eigenwert, d.h. die \EVen von A sind //stationäre Punkte// von $$r(x)$$ und die Eigenwerte von $$A$$ die Werte von $$r(x)$$ an diesen Stellen.$$\\$$
*Da $$\nabla r(q_j) = 0$$ für alle Eigenvektoren $$q_j$$, $$j=1,...,m,$$ von $$A$$ gilt, folgt aus der Taylorapproximation <$latex text="
r(x)= r(q_j) + \nabla r(q_j)(q_j -x) + O(\| q_j -x\|^2), " displayMode="true"></$latex> dass
<$latex text=" r(x) - r(q_j) = O(\| q_j -x\|^2),
" displayMode="true"></$latex>
d.h. der Rayleigh-Koeffizient ist eine quadratisch genaue Approximation eines Eigenwertes.
<<list-links "[tag[Eigenwerte und Eigenvektoren]sort[scriptorder]]">>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/771_xo46ybI?rel=0&start=0" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
<<list-links "[tag[Eigenwertprobleme]sort[scriptorder]]">>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/771_xo46ybI?rel=0&start=0" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
Eine Zerlegung der Form
<$latex text="
A = V \Lambda V^{-1}
" displayMode="true"></$latex>
heißt //Eigenwertzerlegung// (oder //Spektralzerlegung//) von $$A$$.
<$details summary="Bemerkung: Eigenwertzerlegung in Matrixschreibweise" tiddler="Eigenwertzerlegung in Matrixschreibweise">
{{Eigenwertzerlegung in Matrixschreibweise}}
</$details>
Besitzt $$A\in \mathbb{C}^{n\times n}$$ $$n$$ linear unabhängige Eigenvektoren $$v_i$$, so gilt für alle $$i=1,\cdots,n$$
<$latex text="
Av_i = \lambda_i v_i
" displayMode="true"></$latex>
In Gleichung (\ref{eqn:eigenwertzerlegung}) erhalten wir damit
<$latex text="
{\small
A=
\left( \begin{array}{c|c|c|c}
& & & \\
& & & \\
v_1 & v_2 & \dots & v_n \\
& & &\\
& & & \\
\end{array} \right)
\underbrace{
\begin{pmatrix}
\lambda_1 & & & \\
& \lambda_2 & & \\
& & \ddots & \\
& & & \lambda_n \\
\end{pmatrix}
}_{\Lambda = \text{diag} (\lambda_1,...,\lambda_n)}
\left( \begin{array}{c|c|c|c}
& & & \\
& & & \\
v_1 & v_2 & \dots & v_n \\
& & &\\
& & & \\
\end{array} \right)^{-1} }
" displayMode="true"></$latex>
Eine differenzierbare Abbildung $$f: U \longrightarrow \mathbb{K}^m$$, $$U \subset \mathbb{K}^n $$ offen,
ordnet einer differenzierbaren Kurve $$\gamma: I \longrightarrow U$$ die Bildkurve
<$latex text="
f \circ \gamma: I \longrightarrow \mathbb{K}^m
" displayMode="true"></$latex>
zu. Diese ist nach der Kettenregel ebenfalls differenzierbar und hat für $$t_0 \in I$$ den Tangentialvektor
<$latex text="
\frac{d}{dt} (f \circ g)(t) = df(\gamma (t_0)) \dot{\gamma}(t_0) = f'(\gamma (t_0)) \dot{\gamma}(t_0).
" displayMode="true"></$latex>
Tangentialvektoren werden also durch das Differential bzw. mittels Funktionalmatrix abgebildet.
Anwendung auf zu den Basisvektoren parallele Koordinaten:
Für $$a \in U$$ sei $$\varepsilon_i(t) = a + te_i$$, $$t$$ aus einem Intervall um $$0$$,
sodass $$\varepsilon_i(t) \in U$$. Die Bildkurve $$f \circ \varepsilon_i$$ hat für $$t=0$$ im Punkt
$$f(a)$$ den Tangentialvektor $$f'(a)\cdot e_i$$. Dies ist gerade der $$i$$-te Spaltenvektor von $$f'(a)$$.
Die Kurven $$f \circ \varepsilon_1,...,f \circ \varepsilon_n$$ heißen die von $$f$$ erzeugten Koordinatenlinien durch $$f(a)$$.
Betrachte die Polarkoordinatenabbildung $$P_2: \R^2 \longrightarrow \R^2$$
$$(r, \varphi) \mapsto \begin{pmatrix} r \cos \varphi \\ r \sin \varphi \end{pmatrix}$$.
Diese bildet die Gerade $$g_{\varphi_0}: r \mapsto (r, \varphi_0)$$ auf die Gerade durch den
Nullpunkt ab und die Gerade $$\tilde{g}_{r_0}: \varphi \mapsto (r_0, \varphi)$$ auf Kreise durch den Nullpunkt.
Die Spalten der Funktionalmatrix
<$latex text="
P_2'(r_0, \varphi_0) = \begin{pmatrix}
\cos \varphi_0 & -r_0 \sin \varphi_0 \\ \sin \varphi_0 & r_0 \cos \varphi_0
\end{pmatrix}
" displayMode="true"></$latex>
sind im Bildpunkt $$P_2(r_0, \varphi_0)$$ Tangentialvektoren an $$P_2 \circ g_{\varphi_0}$$ bzw. $$P_2 \circ \tilde{g_{r_0}}$$.
! Das Problem
Die Fachabteilung $$F_j$$ hat entweder ''einen'' Experten oder ''eine'' Expertin in ''alle'' in Spalte $$j$$ mit
$$\bullet$$ gekennzeichneten Arbeitsgruppen $$A_i$$ abzuordnen.
<$latex text="\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
&F_1&F_2&F_3&F_4&F_5&F_6&F_7\\\hline
A_1&\bullet&&\bullet&\bullet&&\bullet&\\
\hline
A_2&\bullet&\bullet&&\bullet&&&\bullet\\
\hline
A_3&&\bullet&\bullet&&\bullet&\bullet&\\
\hline
A_4&\bullet&&&\bullet&\bullet&&\bullet\\
\hline
A_5&\bullet&\bullet&\bullet&&&\bullet&\\
\hline
A_6&&&\bullet&\bullet&\bullet&&\bullet\\
\hline
A_7&\bullet&&\bullet&&\bullet&&\bullet\\
\hline
A_8&&\bullet&&\bullet&\bullet&\bullet&\\
\hline
\end{array}" displayMode="true"></$latex>
''Frage'' Gibt es eine Gesamtabordnung, so dass in den Arbeitsgruppen
keine $$\textcolor{blue}{\text{reinen Herrenrunden}}$$ und keine $$\textcolor{red}{\text{reinen Damenrunden}}$$ entstehen?
<$details summary="Eine zulässige Färbung" tiddler="Eine zulässige Färbung">
<$latex text="\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
&F_1&F_2&F_3&F_4&F_5&F_6&F_7\\
\hline
A_1&\textcolor{blue}{\bullet}&&\textcolor{red}{\bullet}&\textcolor{blue}{\bullet}&&\textcolor{blue}{\bullet}&\\
\hline
A_2&\textcolor{blue}{\bullet}&\textcolor{red}{\bullet}&&\textcolor{blue}{\bullet}&&&\textcolor{blue}{\bullet}\\
\hline
A_3&&\textcolor{red}{\bullet}&\textcolor{red}{\bullet}&&\textcolor{red}{\bullet}&\textcolor{blue}{\bullet}&\\
\hline
A_4&\textcolor{blue}{\bullet}&&&\textcolor{blue}{\bullet}&\textcolor{red}{\bullet}&&\textcolor{blue}{\bullet}\\
\hline
A_5&\textcolor{blue}{\bullet}&\textcolor{red}{\bullet}&\textcolor{red}{\bullet}&&&\textcolor{blue}{\bullet}&\\
\hline
A_6&&&\textcolor{red}{\bullet}&\textcolor{blue}{\bullet}&\textcolor{red}{\bullet}&&\textcolor{blue}{\bullet}\\
\hline
A_7&\textcolor{blue}{\bullet}&&\textcolor{red}{\bullet}&&\textcolor{red}{\bullet}&&\textcolor{blue}{\bullet}\\
\hline
A_8&&\textcolor{red}{\bullet}&&\textcolor{blue}{\bullet}&\textcolor{red}{\bullet}&\textcolor{blue}{\bullet}&\\
\hline
\end{array}" displayMode="true"></$latex>
Obige Färbung ist zulässig, denn alle Spalten sind einfarbig, während alle Zeilen zweifarbig sind.
</$details>
! Abstrakte Formulierung
Gegeben sei eine $$n$$-elementige Menge $$F$$. ''Konkret: ''$$F=[1:7]$$ identifiziert die Fachabteilungen
$$F_1,\ldots,F_7$$.
Ferner seien $$S_1,\ldots,S_m$$ paarweise verschiedene $$r$$-elementige Teilmengen von $$F$$. ''Konkret: '' $$S_i$$ beschreibt die Zusammensetzung der $$i$$-ten Arbeitsgruppe. Im Beispiel sind etwa $$S_1=\{1,3,4,6\}$$, $$S_2=\{1,2,4,7\}$$ usw.
!! Aufgabe:
Färbe jedes Element von $$F$$ jeweils mit einer von zwei Farben (rot, blau) so ein, dass keine der Teilmengen $$S_1, S_2,\ldots, S_m$$ einfarbig ist. Eine solche Färbung heißt ''$$(S_1,\ldots,S_m)$$-zulässig''. ''Konkret: ''
* $$S_i$$ einfarbig rot: reine Damenrunde
* $$S_i$$ einfarbig blau: reine Herrenrunde.
!! Frage:
Existiert überhaupt eine $$(S_1,\ldots,S_m)$$-zulässige Färbung und wenn ja, wie findet man schnell eine solche?
Unter der Bedingung $$r\ge 2$$ und $$m\le 2^{r-2}$$ gibt es eine Lösung. Diese lässt sich z.B. mit diesem [[Las-Vegas-Färbungsalgorithmus|Ein Las-Vegas-Färbungsalgorithmus]] finden.
! Der Algorithmus
''Eingabe: '' $$n$$-elementige Menge $$F$$ sowie $$r$$-elementige, paarweise verschiedene Teilmengen $$S_1,\ldots,S_m$$ von $$F$$.
# Färbe die Elemente von $F$ gemäß Gleichverteilung blau oder rot.
# Teste, ob Gesamtfärbung $$(S_1,\ldots,S_m)$$-zulässig.
# Falls zulässig, Färbung gefunden, sonst weiter mit 1.
!! Korrektheit
Es gilt folgender Satz: Es sei $$r\ge 2$$ und $$m\le 2^{r-2}$$. Dann gilt:
* Es gibt eine $$(S_1,\ldots,S_m)$$-zulässige Gesamtfärbung.
* Im Mittel ist der Las-Vegas-Algorithmus spätestens nach\newline zwei (!) Färbungsversuchen erfolgreich.
!! Bemerkungen
* Der Las-Vegas-Algorithmus löst auf sehr einfache Weise das Färbungsproblem
* Die [[bewiesene Ungleichung|Las-Vegas-Färbung Beweis]] ist eine obere Schranke für den Mittelwert. In seltenen Fällen kann der Erfolg sehr lange auf sich warten lassen: Mit Wahrscheinlichkeit $$pq^{k-1}>0$$ muss man $$k$$ Schritte bis zum ersten Erfolg warten.
* Beachte: Wegen $$p\le 1$$ und $$q\le \frac{1}{2}$$ ist die Wahrscheinlichkeit $$pq^{k-1}\le 2^{1-k}$$ für große $$k$$ verschwindend klein!
* Dies motiviert den neuen erwartungstreuen und konsistenten Schätzer: <$latex text="\textcolor{blue}{T_n^*:= \frac{n+1}{n}\tilde{T}_n}." displayMode="true"></$latex>
* Die folgende Tabelle vergleicht die Erwartungswerte, Varianzen und mittleren quadratischen Fehler der drei Schätzer:
<$latex text="\begin{array}{|c||c|c|c|}
\hline
&\textbf{E}_\theta(T) & \textbf{V}_\theta(T) & \textbf{E}_\theta((T-\theta)^2)\\
\hline\hline
T_n& \theta & \frac{\theta^2}{3n} & =\textbf{V}_\theta(T_n)\\ \hline
\tilde{T}_n& \frac{n}{n+1}\cdot\theta & \frac{n\theta^2}{(n+1)^2(n+2)} & \frac{2\theta^2}{(n+1)(n+2)}\\ \hline
T_n^*& \theta & \frac{\theta^2}{n(n+2)}& =\textbf{V}_\theta(T_n^*)\\ \hline
\end{array}" displayMode="true"></$latex>
Beachte, dass
<$latex text="\textbf{V}_\theta(T_n^*)=\textbf{V}_\theta(\tfrac{n+1}{n}\tilde{T}_n)=\left(\tfrac{n+1}{n}\right)^2
\textbf{V}_\theta(\tilde{T}_n)." displayMode="true"></$latex>
Sei $$D$$ eine [[Determinantenform]] auf einem [[Vektorraum]] $$V$$ und $$\dim_K(V)=n<\infty$$. Weiter sei $$\{x_1,\dots,x_n\}$$ eine fest gewählte Basis und $$y_i=\sum_{i=1}^n a_{ij} x_i\in V$$.
Dann gilt
<$latex text="D(y_1,\dots,y_n)=D(x_1,\dots,x_n)\sum_{\sigma\in S_n}(\text{sgn}(\sigma)\cdot a_{1,\sigma(1)}\cdot \dots\cdot a_{n,\sigma(n)})=D(x_1,\dots,x_n)\sum_{\sigma\in S_n}(\text{sgn}(\sigma)\cdot a_{\sigma(1),1}\cdot \dots\cdot a_{\sigma(n),n})" displayMode="true"></$latex>
!! Beweis
Aus der Multilinearität folgt:
<$latex text="\begin{aligned}D(y_1,\dots,y_n)&=\sum_{i_1=1}^n a_{i_i,1}D(x_{i_1},y_2,\dots,y_n)\\
&=\sum_{i_1,\dots,i_n=1}^n a_{i_1,1}a_{i_2,2}\cdot\dots\cdot a_{i_n,n}D(x_{i_1},x_{i_2},\dots,x_{i_n})\end{aligned}" displayMode="true"></$latex>
Allerdings kann $$D(x_{i_1},x_{i_2},\dots,x_{i_n})$$ nur dann nicht Null sein, wenn $$i_1,\dots,i_n$$ eine Permutation ist. Also gilt
<$latex text="\begin{aligned}D(y_1,\dots,y_n)&=\sum_{\sigma\in S_n}^n a_{\sigma(1),1}a_{\sigma(2),2}\cdot\dots\cdot a_{\sigma(n),n}D(x_{\sigma(1)},x_{\sigma(2)},\dots,x_{\sigma(n)})\\
&=D(x_1,\dots,x_n)\sum_{\sigma\in S_n}^n\text{sgn}(\sigma) a_{\sigma(1),1}a_{\sigma(2),2}\cdot\dots\cdot a_{\sigma(n),n}\end{aligned}" displayMode="true"></$latex>
Seien $$U_1,U_2\subset V$$ [[Unterräume]] von dem [[Vektorraum]] $$V$$ und $$z\in U_1+U_2$$, dann ist die Darstellung $$z=u_1+u_2$$ mit $$u_1\in U_1,u_2\in U_2$$ genau dann eindeutig, wenn $$U_1\cap U_2=\{0_V\}$$.
!! Beweis
Behauptung: Jede Darstellung von $$z$$ ist von der Form<$latex text="z=(u_1+u)+(u_2-u)" displayMode="true"></$latex>für $$u\in U_1\cap U_2$$.
Sei dafür $$z=v_1+v_2$$ für $$v_i\in U_i$$. Dann ist <$latex text="0=\underbrace{(u_1-v_1)}_{\in U_1}+\underbrace{(u_2-v_2)}_{\in U_2}\in U_1\cap U_2." displayMode="true"></$latex> Insb. ist also $$U_2\ni-(u_2-v_2)=u_1-v_1\in U_1$$. Somit sind $$u_1-v_1,u_2-v_2\in U_1\cap U_2$$. Insbesondere gilt also<$latex text="z=v_1+v_2=(u_1-(v_1-u_1))+(u_2-(v_2-u_2))=(u_1+(v_1-u_1))+(u_2-(v_1-u_1))" displayMode="true"></$latex>
Die Gleichung (8.1) in ([[Definition: Differenzierbareit]]) wird höchstens von einer
linearen Abbildung erfüllt.
<$details summary="Beweis" tiddler="Beweis">
{{Beweis: Eindeutigkeit des Differentials}}
</$details>
<$details summary="Bemerkung"tiddler="Bemerkung">
{{Bemerkung: Differential}}
</$details>
<<list-links "[tag[Einführung in die SVD]sort[scriptorder]]">>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/RFXF71LzwKk?rel=0&start=0" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
* Für allgemeines $$\theta$$ ist das Ereignis $$\frac{X}{n}=\theta$$ unmöglich, z.B. bei $$\theta=40,5\%$$.
* In jedem Fall ist $$\frac{X}{n}=\theta$$ unwahrscheinlich. z.B. gilt für $$\theta=40\%$$ <$latex text="P_{\theta}(\{40\}):=\binom{100}{40}\cdot0,4^{40}\cdot0,6^{60}\approx8,1\%\text{.}" displayMode="true"></$latex>
* Wahrscheinlich haben Anton ''und'' Brigitte unrecht.
Sinnvoller wäre eine Aussage der Form:
<<<
Mit einer Sicherheit von 95% liegt $$\theta$$ im Intervall $$\left(\frac{X}{n}-\epsilon,\,\frac{X}{n}+\epsilon\right)$$.
<<<
Dabei ist $$\epsilon>0$$ eine Fehlerschranke, die je nach statistischem Modell und $$X$$ zu bestimmen ist.
Für die Bernoulli-verteilte Folge $$X=(X_1,\cdots,X_n)$$ liefert unser Maximum Likelihood Schätzer $$\theta=\frac{1}{n}\sum_{i=1}^nX_i$$ der Erfolgswahrscheinlichkeit <$latex text="E_p\left(\theta(X)\right)=p
\hspace{1.0cm} \text{ und } \hspace{1.0cm}
V\left(\theta(X)\right)=\frac{p(1-p)}{n}\leq\frac{1}{4n}." displayMode="true"></$latex>
Damit können wir z.B. die tschebyschewsche Ungleichung anwenden, um ein solches Intervall zu bestimmen: Für jedes $$\delta>0$$ ist
<$latex text="P_p(|\theta(X)-p|\geq \delta)\leq \frac{V(\theta(X))}{\delta^2}=\frac{1}{4n\delta^2}" displayMode="true"></$latex>
Setzen wir $$\frac{1}{4n\delta^2}=0.05$$, wählen also $$\delta=\sqrt{\frac{5}{n}}$$, so erhalten wir
<$latex text="C(x)=[\theta(x)-\delta,\theta(x)+\delta]," displayMode="true"></$latex>
und es gilt -- wie gewünscht --
$$
P_p\left(p\in C(x) \right)\geq 0.95.
$$
Bei einer Folge von $$n=100$$ Experimenten mit $$k=40$$ Erfolgen, schätzt man eine Erfolgswahrscheinlichkeit $$\theta=0.4$$. Mit $$\delta=\sqrt{\frac{5}{100}}\approx 0.22$$ ergibt sich das gesuchte Intervall
$$[0.18,0.62]$$. Kleinere Intervalle erhält man mit größerem $$n$$.
Sei $$f$$ eine differenzierbare Funktion. Die Werte $$df(a)h$$, $$h\in \R^n$$ sollen mit Hilfe von
//Richtungsableitungen// ermittelt werden.
Für alle $$t\in \mathbb{R}$$ mit hinreichend kleinem Betrag gilt zunächst
<$latex text="
f(a+th) = f(a) + df(a)th + R(th).
" displayMode="true"></$latex>
Da $$R$$ die Bedingung (8.3) ([[Definition: Differenzierbareit]]) erfüllt, gilt:
<$latex text="
df(a)h = \lim\limits_{t \rightarrow 0} \frac{f(a+th) - f(a)}{t}. \qquad (8.9)
" displayMode="true"></$latex>
Wir betrachten nun eine Alternative, die QR-Zerlegung einer Matrix $$A \in \mathbb{C}^{m \times n}$$ zu berechnen:
Anstatt $$A$$ von rechts mit einer oberen Dreiecksmatrix zu multiplizieren, wird $$A$$ von links
mit unitären Matrizen $$Q_{k}$$ multilpiziert, sodass
<$latex text="
\underbrace{Q_{n} \cdot \cdot \cdot Q_{2}Q_{1}}_{Q^{*}}A=R \qquad (4.15)
" displayMode="true"></$latex>
eine obere Dreiecksmatrix wird. Da $$Q=Q_{1}^{*}Q_{2}^{*} \dotsm Q_{n}^{*}$$ auch unitär ist,
erhält man so ebenfalls eine vollständige QR-Zerlegung.
Dieses Verfahren wird //Householder-Triangularisierung// genannt.
Insgesamt haben wir damit zur Berechnung einer QR-Faktorisierung nun zwei Methoden kennen gelernt:
*(i) ''Gram-Schmidt:'' Dreiecksorthonormalisierung
*(ii) ''Householder:'' orthogonale Triangularisierung
Eine kleine Einführung zur Linearen Ausgleichsrechnung:
<$details summary="Wahl des Modells" tiddler="Lineare Ausgleichsrechnung">
<<PhotoGallery [[Linaus Gallery]]>>
Die Daten im Bild oben links werden von links oben nach rechts unten mit Polynomen von wachsendem Grad approximiert. Für Polynomgrad 5 erreichen wir Interpolation.
</$details>
<$details summary="Ausgleichsgerade" tiddler="Ausgleichsgerade">
<<PhotoGallery [[LinApprox Gallery]]>>
Daten ohne und mit Ausgleichsgerade
</$details>
<$details summary="Lineares Ausgleichsproblem" tiddler="Lineares Ausgleichsproblem">
*Gegeben: $$(u_i,v_i)\in\R^2, \quad i=1,..,n$$, z.B. gemessene Punkte.
*Gesucht: Gerade, die die Punkte $$(u_i,v_i)$$ //am besten// approximiert.
[img[linaus_ausgleichsgerade.png]]
*Idee:
**Wähle Gerade $$g(u):=x_{0}+x_{1}u$$ die den quadratischen Approximationsfehler minimiert, d.h. $$\sum_{i=1}^{n} |v_{i}-g(u_{i})|^2 = \sum_{i=1}^{n} (v_{i}-x_{0}-x_{1}u_{i})^2 \longrightarrow \min \quad \bigstar$$
**oder $$\underbrace{\|b-Ax\|_{2} \longrightarrow \min}_{\text{lineares Ausgleichsproblem}} $$ mit $$A=\begin{pmatrix}1 \cdots 1 u_{1} \cdots & u_{n}\end{pmatrix}^{T}$$, $$b=(v_1,\ldots,v_n)^T$$, $$x=(x_0,x_1)^T$$. So können z.B. Messfehler in $$b$$ ausgeglichen werden (siehe obige Abbildung).
*Lösungen des Problems heißen ''Kleinste-Quadrate-Lösungen'' (auf Englisch ''least squares solutions'').
''Anmerkung:'' Die Äquivalenz der beiden Formulierungen in Gleichung
($$\bigstar$$) lässt sich wie folgt nachvollziehen:
<$latex text="
\sum\limits_{i=1}^n (v_i -(x_0+x_1 u_i))^2 =
\left\| \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} -
\begin{pmatrix} 1 & u_1 \\ \vdots & \vdots \\ 1 & u_n \end{pmatrix}
\begin{pmatrix} x_0 \\ x_1 \end{pmatrix} \right\|_2^2
= \|b - Ax\|_2^2
" displayMode="true"></$latex>
Da weiterhin $$\| \cdot \|^2 \rightarrow \| \cdot \|$$ eine monotone Umformung ist, gilt,
dass die quadratische Minimierung $$\|b - Ax\|_2^2 \rightarrow \min$$ exakt dieselben
Lösungen wie $$\|b - Ax\|_2 \rightarrow \min$$ besitzt.
</$details>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/oqGQvtb9KnI?rel=0&start=0" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
Sei $$\{q_{1},...,q_{n}\}$$ eine Menge orthonormaler Vektoren des
$$\mathbb{C}^m$$ und $\hat{Q}$ die zugehörige $$(m \times n)$$-Matrix. Dann gilt für alle $$v \in \mathbb{C}^m$$:
<$latex text="
v = r+ \sum_{i=1}^{n} (q_{i}q_{i}^{*})v,
" displayMode="true"></$latex>
<$latex text="
\begin{aligned}
&\text{mit }& r \: \in\: <q_{1},...,q_{n}>^{\bot}\\
&\text{und }& \|q_i\|=1 \quad \forall i=1,..,n.
\end{aligned}
" displayMode="true"></$latex>
<$details summary="Projektion mit
orthonormaler Basis" tiddler="Projektion mit
orthonormaler Basis">
[img[qr_projektion_mit_orthonormaler_basis.png]]
</$details>
<$details summary=" Bemerkung" tiddler="Bemerkung">
Jeder beliebige Vektor $$v$$ kann in eine Linearkombination mit orthogonalen Komponenten zerlegt werden.
</$details>
Der Vektor $$v$$ wird also in eine Summe aus einem Element aus dem Spaltenraum von $$\hat{Q}$$ und einem Element
aus dem orthogonalen Komplement zerlegt. Die einzige Voraussetzung ist die Orthonormalität der Spalten von $$\hat{Q}$$.
Daher ist die Abbildung $$v \longmapsto \sum_{i=1}^{n}(q_{i}q_{i}^{*})v$$
eine orthogonale Projektion auf $$Bild(\hat{Q})$$:
<$latex text="
\begin{pmatrix}
\\ \\ w \\ \\ \\
\end{pmatrix}
=
\begin{pmatrix}
& & & & & & \\
& & & & & & \\
& & & Q & & & \\
& & & & & & \\
& & & & & &
\end{pmatrix}
\cdot
\begin{pmatrix}
& & & & & & & \\
& & & & Q^{*} & & & \\
& & & & & & &
\end{pmatrix}
\begin{pmatrix}
\\ \\ v \\ \\ \\
\end{pmatrix}.
" displayMode="true"></$latex>
Somit ist jedes Produkt $$\hat{Q}\hat{Q}^{*}$$ eine Projektion auf den Spaltenraum von $$\hat{Q}$$.
<$details summary=" Bemerkung" tiddler="Bemerkung">
Auch das Komplement eines orthogonalen Projektors ist eine orthogonale Projektion,
da $$(I-\hat{Q}\hat{Q}^{*})$$ hermitesch ist.
</$details>
Sei $$p$$ der Rang von $$A$$ ($$=$$ Rang von $$A^{\ast}A$$) und seien $$\lambda_{1},...,\lambda_{n}$$ die absteigend
sortierten Eigenwerte von $$A^{\ast}A$$, d.h.
<$latex text="
\lambda_{1} \geq \lambda_{2} \geq ... \geq \lambda_{p} > \lambda_{p+1} = ... = \lambda_{n}=0,
" displayMode="true"></$latex>
sowie $$v_1,...,v_n \in \mathbb{C}^n$$ eine Basis orthonormaler Eigenvektoren
$$(A^\ast Av_i = \lambda_i v_i$$ $$\forall i=1,..,n,$$ $$v_i^\ast v_j = \delta_{ij}$$, $$i,j=1,...,n)$$.
Eine solche \textit{Spektralzerlegung} existiert, da $$A^\ast A$$ hermitesch und positiv semidefinit ist.
Nun definieren wir Vektoren $$u_i \in \mathbb{C}^m$$ durch
<$latex text="
u_i= \frac{1}{\sqrt{\lambda_{i}}}Av_{i}, \qquad i=1,...,p.
" displayMode="true"></$latex>
Für $$1 \leq i,j \leq p$$ gilt dann
<$latex text="
u_i^\ast u_j = \frac{1}{\sqrt{\lambda_i}} \frac{1}{\sqrt{\lambda_{j}}}(Av_i)^\ast(Av_j)
= \frac{1}{\sqrt{\lambda_i \lambda_j}}v_i^\ast(A^\ast Av_j)
= \frac{\lambda_j}{\sqrt{\lambda_i \lambda_j}}v_i^\ast v_j = \delta_{ij}.
" displayMode="true"></$latex>
Die Vektoren $$u_i, \: i=1,...,p,$$ bilden also eine Orthonormalbasis des gesamten Bildraumes
$$Bild(A)$$, denn
<$latex text="
dimBild(A) = n - dimKern(A) = n - dimKern(A^\ast A) = n - (n-p) = p.
" displayMode="true"></$latex>
Diese Basis kann durch weitere $$m-p$$ Vektoren $$u_{p+1},...,u_m$$ zu einer orthonormalen Basis
des $$\mathbb{C}^m$$ erweitert werden (vgl. [[Komponenten eines Vektors]] Basisergänzungssatz).
Des Weiteren gilt
<$latex text="
A^\ast u_i =
\begin{cases}
\frac{1}{\lambda_i} A^\ast Av_i
= \frac{\lambda_i}{\sqrt{\lambda_i}} v_i
= \sqrt{\lambda_i} v_i &\qquad \forall i=1,..,p, \\
0 &\qquad \forall i \geq p+1,...,m.
\end{cases}
" displayMode="true"></$latex>
<$details summary="Grapische Darstellung der SVD" tiddler="Grapische Darstellung der SVD">
[img[svd_graph_darstellung.png]]
</$details>
<$details summary="SVD in Matrixnotation" tiddler="SVD in Matrixnotation">
Seien $$U \in \mathbb{C}^{m \times m}$$ und $$V \in \mathbb{C}^{n \times n}$$ mit
<$latex text="
\begin{aligned}
U &=
\left( \begin{array}{c|c|c|c}
& & & \\
& & & \\
u_1 & u_2 & \dots & u_m \\
& & &\\
& & & \\
\end{array} \right), \quad
V =
\left( \begin{array}{c|c|c|c}
& & & \\
& & & \\
v_1 & v_2 & \dots & v_n \\
& & &\\
& & & \\
\end{array} \right)\\
\text{und } \Sigma &=
\begin{pmatrix}
\sigma_1 & & 0 & 0\\
& \ddots & & 0\\
0 & & \sigma_p &\\
0 & 0 & &0
\end{pmatrix}.
\end{aligned}
" displayMode="true"></$latex>
Dann gilt:
<$latex text="
A V = U \Sigma \Leftrightarrow A = U \Sigma V^{\ast} \Leftrightarrow A^{\ast}
= V \Sigma^{\ast}U^{\ast} \Leftrightarrow A = \Sigma_{i=1}^{p}\sigma_{i}u_{i}v _{i}^{\ast}.
" displayMode="true"></$latex>
<$details summary="Schematische Darstellung der SVD" tiddler="Schematische Darstellung der SVD">
[img[svd-matrix.png]]
</$details>
</$details>
<$details summary="Geometrische Interpretation" tiddler="Geometrische Interpretation">
$$m\geq n:$$
<$latex text="
\Sigma =
\begin{pmatrix}
\sigma_1 & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \sigma_n \\
0 & \ldots & 0\\
\vdots & & \vdots \\
0 &\ldots & 0
\end{pmatrix}
" displayMode="true"></$latex>
$$n< m:$$
<$latex text="
\Sigma =
\begin{pmatrix}
\sigma_1 & 0 & 0 & 0 &\ldots & 0 \\
0 & \ddots & 0 &\vdots && \vdots \\
0 & 0 & \sigma_n & 0 &\ldots & 0 \\
\end{pmatrix}
" displayMode="true"></$latex>
Zur geometrischen Interpretation beschränken wir uns auf reelle Matrizen.
<$details summary="Linkseigenvektoren" tiddler="Linkseigenvektoren">
//Linkseigenvektoren// werden definiert als $$x^T \cdot A = \lambda \cdot x^T.$$
Wegen $$(x^T A)^T = A^Tx$$ sind die Linkseigenvektoren die (Rechts-) Eigenvektoren der Matrix $$A^T$$.
</$details>
Sei $$S$$ die Einheitssphäre im $$\R^n, A \in \R^{m \times n}, m \geq n$$. $$A$$ habe vollen Rang.
Seien dann $$\sigma_1,...,\sigma_n$$ die Längen der
Halbachsen von $$AS$$ (siehe Abbildung) und $$\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_n > 0$$ die Singulärwerte von $$A$$.
<$details summary="Abbildung: Ellipse mit gestreckten bzw. gestauchten Hauptachsen">
[img[svd_ellipse.png]]
</$details>
Die normierten Einheitsvektoren entlang der Hauptachsen $$\{u_1,...,u_n\}$$ sind die
\textit{Linkseigenvektoren}.
Die \textit{Rechtseigenvektoren} von $$A$$ sind die Einheitsvektoren $$\{v_{1},...,v_{n}\} \in S$$, die durch
$$Av_j = \sigma_j u_j$$ ($$\forall j \in \{1,...,n\}$$) auf die Hauptachse abgebildet werden.
In Matrixschreibweise:
<$latex text="
\tiny{
\begin{pmatrix}
& & & & \\ & & & & \\ & & A & & \\ & & & & \\ & & & & \\
\end{pmatrix} \cdot
\left( \begin{array}{c|c|c|c}
& & & \\
& & & \\
v_1 & v_2 & \dots & v_n \\
& & &\\
& & & \\
\end{array} \right) =
\left( \begin{array}{c|c|c|c}
& & & \\
& & & \\
u_1 & u_2 & \dots & u_m \\
& & &\\
& & & \\
\end{array} \right) \cdot
\begin{pmatrix}
\sigma_1 & & & \\
& \sigma_2 & & \\
& & \ddots & \\
& & & \sigma_n \\
\end{pmatrix}}
" displayMode="true"></$latex>
</$details>
Die LU-Zerlegung zerlegt eine Matrix $$A \in \mathbb{C}^{m \times m}$$ in zwei verschiedene Matrizen $$L$$ und $$U$$.
Es liegt nahe zu fragen, ob zwischen diesen beiden Matrizen ein Zusammenhang besteht.
Die Cholesky-Zerlegung zerlegt eine Matrix $$A \in \mathbb{C}^{m \times m}$$ in zwei Matrizen $$L$$ und $$U$$,
wobei gilt, dass $$L^* = U$$.
Seien zunächst $$A \in \mathbb{C}^{m \times n}$$ eine Matrix mit vollem Rang (\ref{dfn:rang_matrix}) und $$a_j$$, $$j=1,...,n$$,
deren Spaltenvektoren. Wir betrachten die geschachtelten Unterräume von $$\mathbb{C}^m$$,
die von den Spalten $$a_j$$ aufgespannt werden:
<$latex text="
\underbrace{<a_{1}>}_{\dim \leq 1} \subseteq \underbrace{<a_{1},a_{2}>}_{\dim \leq 2} \subseteq
\underbrace{<a_{1},a_{2},a_{3}>}_{\dim \leq 3} \subseteq ...
\underbrace{<a_{1},a_{2},a_{3},...,a_{n}>}_{\dim \leq n} \qquad (4.2)
" displayMode="true"></$latex>
<$details summary="Bemerkung" tiddler="Bemerkung">
Achtung:
Die Notation $$\langle \cdot , \cdot \rangle$$ ist mehrfach belegt.
Sie bezeichnet zum einen das Skalarprodukt (vgl. [[Skalarprodukt]]), zum anderen aber auch den
//span//, d.h. das Erzeugendensystem eines Vektorraums. Während das Skalarprodukt nur zwei Komponenten
enthalten kann, können beim \textit{span} mehrere Vektoren aufgelistet werden.
Das Skalarprodukt kann auch mit einer Trennlinie geschrieben werden ($$\langle \cdot | \cdot \rangle$$), der
//span// hingegen nur mit Komma ($$\langle \cdot ,..., \cdot \rangle$$).
</$details>
Dabei ist $$<a_1,...,a_j>$$ der von den Vektoren $$a_1,...,a_j$$ aufgespannte Unterraum.
Konstruiere nun eine Folge \textit{orthonormaler Vektoren} $$q_{1},q_{2},...$$ etc.,
die diese verschachtelten Unterräume aufspannen, d.h.:
<$latex text="
<q_{1},q_{2},...,q_{j}> = <a_{1},a_{2},...,a_{j}> \qquad
\text{für } j=1, .... ,n. \qquad (4.3)
" displayMode="true"></$latex>
Somit haben wir mit (4.2) und (4.3)
<$latex text="
\left(\begin{array}{c|c|c|c}
& & & \\
& & & \\
a_1 & a_2 & \dots & a_n \\
& & & \\
& & & \\
\end{array}\right)
= \underbrace{
\left(\begin{array}{c|c|c|c}
& & & \\
& & & \\
q_1 & q_2 & \dots & q_n \\
& & & \\
& & & \\
\end{array}\right)}_{\hat{Q} \in \mathbb{C}^{m \times n}}
\underbrace{
\begin{pmatrix}
r_{11} & r_{12} & \dots & \dots & r_{1n}\\
0 & r_{22} & & & \vdots \\
\vdots & 0 & \ddots & & \vdots \\
\vdots & \vdots & & \ddots & \vdots \\
0 & 0 & \dots & \dots & r_{nn} \\
\end{pmatrix}}_{\hat{R} \in \mathbb{C}^{n \times n}}, (4.4)
" displayMode="true"></$latex>
wobei die Einträge auf der Diagonalen ungleich null sind, also $$r_{kk} \neq 0 \; \forall k=1,...,n$$.
Ausgeschrieben erhält man demnach für die einzelnen Spalten
<$latex text="
\begin{array}{rcl}
a_{1} &=& r_{11}q_{1} \\
a_{2} &=& r_{12}q_{1} + r_{22}q_{2} \\
a_{3} &=& r_{13}q_{1} + r_{23}q_{2} + r_{33}q_{3} \\
& \vdots & \\
a_{n} &=& r_{1n}q_{1} + r_{2n}q_{2} + ... + r_{nn}q_{n}
\end{array} \qquad (4.5)
" displayMode="true"></$latex>
und als Matrix
<$latex text="
A = \hat{Q}\hat{R},
" displayMode="true"></$latex>
wobei $$\hat{Q}$$ eine $$(m \times n)$$-Matrix mit orthonormalen Spalten und
$$\hat{R}$$ eine rechte obere $$(n \times n)$$-Dreiecksmatrix ist.
Sei $$f:U \longrightarrow \R$$ eine $$\mathcal{C}^{p+1}$$-Funktion auf einer offenen Menge $$U \subset \R^n$$.
Weiter seien $$a,x \in U$$ Punkte, deren Verbindungsstrecke in $$U$$ liegt.
(Wir führen dies auf den 1-dimensionalen Fall zurück.)
Wir betrachten die Funktion $$F:[0,1] \longrightarrow \R$$,
<$latex text="
F(t):=f(a+th), \qquad h:=x-a.
" displayMode="true"></$latex>
Es gilt $$f(a) = F(0)$$, $$f(x) = F(1)$$. $$F$$ ist eine $$\mathcal{C}^{p+1}$$-Funktion auf $$[0,1]$$.
Nach der Taylorformel für Funktionen einer Veränderlichen gilt somit
<$latex text="
F(1) = F(0) + F'(0) + \frac{1}{2!}F''(0) +...+ \frac{1}{p!}F^{(p)}(0) + R_{p+1,}
" displayMode="true"></$latex>
wobei das Restglied nach Lagrange mit einem $$\tau \in [0,1]$$ in der Form
<$latex text="
R_{p+1} = \frac{1}{(p+1)!} F^{(p+1)}(\tau)
" displayMode="true"></$latex>
dargestellt werden kann.
Die Ableitungen $$F^{(k)}$$ berechnen wir durch wiederholte Anwendung der Kettenregel:
<$latex text="
\begin{aligned}
F'(t) &= \sum\limits_{i=1}^{n} \partial_i f(a+th) \cdot h_i \\
F''(t) &= \sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} \partial_j \partial_i f(a+th) \cdot h_i h_j \\
& \vdots \\
F^{(p)}(t) &= \sum\limits_{i_1=1}^{n} ... \sum\limits_{i_p=1}^{n}
\partial_{i_1} ... \partial_{i_p} f(a+th) \cdot h_{i_1} ... h_{i_p}
\end{aligned}
" displayMode="true"></$latex>
Wir stellen $$F^{(k)}(t)$$ mit Hilfe des Differentials $$d^{(k)}f(a)$$ dar.
Dazu führen wir allgemein für einen Vektor $$x \in \R^n$$ folgende Bezeichnung ein:
<$latex text="
d^{(k)}f(a)x^k := d^{(k)}f(a) (\underbrace{x,...,x}_{k-\text{mal}}),
" displayMode="true"></$latex>
Dies wird nach (\ref{diffbare_funktionen:eqn:differential_hoeher_var}) komponentenweise zu
<$latex text="
d^{(k)}f(a)x^k = \sum\limits_{i_1=1}^{n} ... \sum\limits_{i_k=1}^{n}
\partial_{i_1} ... \partial_{i_k} f(a) x_{i_1}...x_{i_k}.
" displayMode="true"></$latex>
$$d^{(k)}f(a)x^k$$ ist ein homogenes Polynom vom Grad $$k$$. Damit gilt
<$latex text="
F^{(k)}(t) = d^{(k)} f(a+th)h^k.
" displayMode="true"></$latex>
Schließlich setzen wir noch $$d^{(0)}f(a)x^0 := f(a)$$ und wir können die Taylorapproximation
wie folgt definieren.
Auf Grund des Satzes von Schwarz (Satz 8.1.3) ([[Definition: Differenzierbareit]]) kann man einer
in einer Umgebung eines Punktes $$a \in \R^n$$ $$p$$-mal stetig differenzierbaren Funktion $$f$$
in Verallgemeinerung des Differentials eine symmetrische, $$p$$-fach lineare Abbildung
<$latex text="
d^pf(a) : \underbrace{\R^n \times ... \times \R^n}_{p} \longrightarrow \mathbb{C}
" displayMode="true"></$latex>
zuordnen.
Wir betrachten zunächst die Fälle $$p = 1$$ und $$p = 2$$:
$$p = 1:$$ $$\qquad \qquad a \mapsto df(a): \R^n \longrightarrow \mathbb{C}$$
<$latex text="
df(a)u = (\partial_1f(a),...,\partial_nf(a))
\begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}
" displayMode="true"></$latex>
$$p = 2:$$ $$\qquad \qquad (u,v) \in \R^n \times \R^n$$
<$latex text="
d^{(2)}f(a)(u,v) := \partial_u(\partial_vf)(a) \qquad (8.14)
" displayMode="true"></$latex>
Diese Definition ist aus folgenden Grüden sinnvoll: Es gilt
$$v=(v_1,...,v_n) \Rightarrow \partial_vf(x) = \sum\limits_{i=1}^{n} \partial_if(x)v_i$$.
Die Funktion $$\partial_vf$$ ist in einer Umgebung von $$a$$ stetig differenzierbar,
da die Summanden $$\partial_1f,...,\partial_nf$$ diese Eigenschaft haben.
$$\partial_vf$$ besitzt also Richtungsableitungen und es gilt
<$latex text="
\partial_u(\partial_vf(a)) = \sum\limits_{i,j=1}^{n} \partial_{ij}f(a)u_iv_j. \qquad (8.15)
" displayMode="true"></$latex>
$$(u,v) \mapsto \partial_u \partial_vf(a)$$ ist linear in jeder Variablen $$u,v$$ und nach
dem Satz von Schwarz (Satz (8.1.3) ([[Definition: Differenzierbareit]]) symmetrisch.
Es seien $$X,Y$$ endlich-dimensionale normierte Vektorräume über einem Körper $$\mathbb{K} = \R$$ oder $$\mathbb{K} = \mathbb{C}$$
und $$f: U \longrightarrow Y$$ eine Abbildung auf einer offenen Menge $$U \subset X$$.
Besonders wichtig ist dabei der Fall, in dem $$X = \mathbb{K}^n$$ und $$Y = \mathbb{K}^m$$:
<$latex text="
f = \begin{pmatrix} f_1 \\ \vdots \\ f_m \end{pmatrix}:
\mathbb{K}^n \supset U \longrightarrow \mathbb{K}^m, \qquad \qquad \text{(Standardfall)} \qquad \qquad (9.1)
" displayMode="true"></$latex>
Weiter verwenden wir auf dem Vektorraum $$L(X,Y)$$ der $$\mathbb{K}$$-linearen Abbildungen
von $$X$$ und $$Y$$ die induzierte Operatornorm.
Die Endlichkeit der Dimensionen der Vektorräume impliziert, dass jede lineare Abbildung
von $$X$$ nach $$Y$$ stetig ist und dass $$X,Y$$ und $$L(X,Y)$$ vollständig normierte Räume sind.
''Vorbemerkung:'' $$f: \R \longrightarrow \R$$ heißt //differenzierbar// an einer Stelle $$a$$,
falls der Grenzwert
<$latex text="
\lim\limits_{h \rightarrow 0} \frac{f(a+h) - f(a)}{h}
" displayMode="true"></$latex>
existiert. Gleichwertig damit ist die Existenz einer (von $$a$$ abhängigen) linearen Abbildung
$$L: \R \longrightarrow \mathbb{C}$$, für die gilt
<$details summary="Bemerkung" tiddler="Bemerkung">
Prinzip der Approximation von Zuwächsen durch lineare Abbildungen
</$details>
<$latex text="
\lim\limits_{h \rightarrow 0} \frac{f(a+h) - f(a) - Lh}{|h|} = 0.
" displayMode="true"></$latex>
Dabei ist dann $$Lh = f'(a)h$$. Das heißt aber, dass der Zuwachs $$f(a+h) - f(a)$$ durch $$Lh$$ so gut approximiert wird,
dass der Fehler schneller als $$|h|$$ gegen $$0$$ geht.
Im Folgenden werden wir für allgemeine Abbildungen eine Analogon zu differenzierbaren Funktionen schaffen.
Dazu werden die meisten Aussagen in ähnlicher Weise hergeleitet, wie dies für differenzierbare Funktionen gemacht wird.
Gegeben sei eine Funktion $$f: U \longrightarrow \R$$ und weitere Funktionen
$$\varphi_1,...,\varphi_k : U \longrightarrow \R$$ auf einer Menge $$U \subset \R^n$$.
Sei $$M$$ die Nullstellenmenge von $$\varphi = (\varphi_1,...,\varphi_k) : U \longrightarrow \R^k$$:
<$latex text="
M = \{x \in U | \varphi(x)=0 \}.
" displayMode="true"></$latex>
Gesucht werden Punkte $$x_0 \in M$$ mit $$f(x) \leq f(x_0)$$ $$\forall x \in M$$ oder
$$f(x) \geq f(x_0)$$ $$\forall x \in M$$. Solche Punkte heißen //Maximal- bzw. Minimalpunkte von $$f$$ auf $$M$$//
oder auch //unter der Nebenbedingung $$\varphi=0$$//.
Das führt uns zu folgender notwendigen Bedingung für Maxima und Minima, falls $$M$$ eine Mannigfaltigkeit ist:
Reelle Zahlen können bekanntlicher Weise mit einem Computer nicht exakt dargestellt werden.
Dies hat zur Folge, dass sich Rechenfehler wegen der Ungenauigkeit der Darstellung anhäufen
können und zu extremen Abweichungen vom tatsächlichen Ergebnis führen.
Um eine Funktion $$f$$ auf Differenzierbarkeit in $$a$$ zu untersuchen, klärt man zunächst,
ob sie partiell differenzierbar ist. Im positiven Fall prüft man weiter, ob die einzige
als Differential in Frage kommende lineare Abbildung
<$latex text="
L: \R^n \longrightarrow \mathbb{C}, \\
Lh = \sum\limits_{\nu =1}^{n} \partial_{\nu}f(a)h
" displayMode="true"></$latex>
die Bedingung (8.1) ([[Eindeutigkeit des Differentials]]) erfüllt.
Für beliebige Matrizen $$A\in \mathbb{K}^{n\times n}$$ ist das QR-Verfahren sehr aufwendig, denn jede Iteration benötigt $$O(n^3)$$ Operationen. Daher wird die Matix $$A$$ zunächst auf eine Obere Hessenberg-Form transformiert.
Obwohl sich viele der folgenden Konzepte auf allgemeine Matrizen verallgemeinern lassen, beschränken wir uns im folgenden der Einfachheit halber auf relle symmetrische Matrizen, d.h.
<$latex text="
A=A^T\in \R^{m\times m}, x\in \R^m, x^*=x^T \text{ und } ||x||=\sqrt{x^Tx}
" displayMode="true"></$latex>
Insbesondere besitzt $$A$$ reelle Eigenwerte and eine vollständige Menge orthogonaler Eigenwerte.
Für den allgemeineren Fall veweisen wir auf Martin Hanke-Bourgeois. Grundlagen der numerischen Mathematik und des wissenschaftlichen Rechnens.
Springer, 2009., Kap. 25-27.
<$details summary="Absoluter und relativer Fehler" tiddler="Absoluter und relativer Fehler">
Betrachte zunächst die Auswertung einer reellwertigen Funktion:
<$latex text="
f: \R \longrightarrow \mathbb{R}, \quad x \mapsto f(x); \\
\tilde{f} \text{ Algorithmus zur Berechnung von } f.
" displayMode="true"></$latex>
Dann heißt
<$latex text="
\begin{aligned}
\lVert \tilde{f}(x) - f(x) \rVert & \textit{absoluter Fehler} \ \ \text{und} \qquad (5.1)\\
\frac{\lVert \tilde{f}(x) - f(x) \rVert}{\lVert f(x) \rVert} & \textit{relativer Fehler}. \qquad \qquad \ (5.2)
\end{aligned}
" displayMode="true"></$latex>
Aufgrund von \textit{Daten-} oder \textit{Rundungsfehlern} wird die Funktion $$f$$ i.A. nicht an der Stelle $$x$$,
sondern an der Stelle $$\tilde{x} = x + \Delta x$$ ausgewertet.
Wie wirkt sich der Fehler aber auf das Ergebnis aus?
</$details>
<$details summary="Auswirkung des Fehlers" tiddler="Auswirkung des Fehlers">
<$latex text="
\Delta y = f(x + \Delta x) - f(x) \qquad (5.3)
" displayMode="true"></$latex>
den //fortgepflanzten absoluten Fehler//, so gilt nach dem Mittelwertsatz für $$f \in \mathcal{C}^1$$
<$details summary="Zur Erinnerung:" tiddler="Zur Erinnerung:">
MWS: $$f: [a,b] \mapsto \R$$, $$a<b$$, stetig auf $$[a, b]$$ und diffbar in $$(a, b)\\$$
$$\Rightarrow \exists \xi \in (a,b)$$:
$$f^{'}(\xi) = \frac{f(b)-f(a)}{b-a}$$
</$details>
<$latex text="
\Delta y = f(x + \Delta x) - f(x) = f'(\xi) \Delta x, \qquad \text{wobei} \quad \xi \in [x, x+\Delta x].
" displayMode="true"></$latex>
<$details summary="Bemerkung" tiddler="Bemerkung">
Eine Funktion $$f:\R \rightarrow \R$$ heißt //Lipschitz-stetig//, falls
eine Konstante $$L$$ existiert, sodass gilt: $$|f(x_1)-f(x_2)| \leq L \cdot |x_1-x_2|$$.
</$details>
Ist die Ableitung //Lipschitz-stetig//, dann gilt sogar
<$latex text="
\Delta y = f^{'}(x) \Delta x + \textit{O}(|\Delta x|^{2}).
" displayMode="true"></$latex>
Dabei heißt $$a_{\varepsilon} \in \textit{O}(b_{\varepsilon})$$, falls $$\exists C > 0$$ mit
$$|a_{\varepsilon} | \leqslant C b_{\varepsilon} \quad \forall \varepsilon $$ aus einer vereinbarten
Grundmenge $$E \subset \R^{+}$$.
Das heißt aber $$\frac{a_{\varepsilon}}{b_{\varepsilon}} \rightarrow {\varepsilon}_{0}$$.
Falls $$a_{\varepsilon} = \textit{O}(b_{\varepsilon})$$ und $$b_{\varepsilon} = \textit{O}(a_{\varepsilon})$$,
so schreiben wir auch $$a_{\varepsilon} \sim b_{\varepsilon}$$.
</$details>
<$details summary="Maß für die Fehlerverstärkung" tiddler="Maß für die Fehlerverstärkung">
Vernachlässigen wir den quadratischen Term, so ist
<$latex text="
K_{abs} = |f'(x) | \qquad (5.4)
" displayMode="true"></$latex>
ein Maß für die //Fehlerverstärkung// des //absoluten Eingabefehlers//.
Üblicherweise ist der //relative Fehler// von größerer Bedeutung:
<$latex text="
\frac{\Delta y}{y}\approx \frac{f'(x)}{f(x)}\Delta x = f'(x)\frac{x}{f(x)}\frac{\Delta x}{x} .
" displayMode="true"></$latex>
</$details>
Betrachte das Problem $$x \mapsto F(x)$$, wenn $$x$$ und $$F(x) \in \mathbb{C}^n$$. Wir beschränken uns auf den Spezialfall,
in dem ein LGS der Form $$Az = b$$ zu lösen ist, wobei $$A \in \mathbb{C}^{n \times n}$$ invertierbar ist.
In diesem Fall ist $$F(b) = A^{-1}b$$. Bei Eingangsfehler $$\Delta b$$ ergibt sich
<$latex text="
z = A^{-1}b, \qquad z + \Delta z = A^{-1}(b+\Delta b) = A^{-1}b+A^{-1}\Delta b,
" displayMode="true"></$latex>
d.h. die berechnete Lösung $$z+\Delta z$$ enthält den fortgepflanzten Fehler $$\Delta z = A^{-1}\Delta b$$.
Sind $$\lVert \cdot \rVert _M$$ und $$\lVert \cdot \rVert$$ ein verträgliches Matrix-/Vektornormpaar,
d.h. $$\lVert Ax \rVert \leq \lVert x \rVert \lVert A \rVert _M$$ $$\forall A \in \mathbb{C}^{m \times n}$$ and $$\forall x \in \mathbb{C}^n$$,
dann folgt:
<$latex text="
\frac{\lVert \Delta z \rVert}{\lVert z \rVert}
= \frac{\lVert A^{-1} \Delta b \rVert}{\lVert z \rVert}
\leq \lVert A^{-1} \rVert _M \frac{\lVert \Delta b \rVert}{\lVert b \rVert} \frac{\lVert Az \rVert}{\lVert z \rVert}
\leq \lVert A^{-1} \rVert _M \lVert A \rVert _M \frac{\lVert \Delta b \rVert}{\lVert b \rVert} \qquad (5.7)
" displayMode="true"></$latex>
Das heißt, ein relativer Eingangsfehler in der Größenordnung $$\frac{\| \Delta b \|}{\| b \|}$$
führt zu einem relativen Fehler der Größenordnung $$\frac{\| \Delta z \|}{\| z \|} \leq \| A^{-1} \| _{M} \| A \| _{M}\frac{\| \Delta b \|}{\| b \|}$$
in der Lösung.
Sei $$A \in \mathbb{C}^{m \times m}$$. Im Folgenden wollen wir die Matrix $$A$$ in eine linke untere
und eine rechte obere Dreiecksmatrix zerlegen.
Idee: Bringe $$A$$ auf Dreiecksgestalt, indem, ähnlich wie bei der QR-Zerlegung, Nullen
unterhalb der Diagonalen in den Spalten erzeugt werden. Dies lässt sich mit einer Folge
von //unteren Dreiecksmatrizen// $$L_{k}$$ durchführen:
<$latex text="
\begin{aligned}
\underbrace{L_{m-1}...L_{2}L_{1}}_{L^{-1}}A & = U, \\
A & = L^{-1}_{1}L^{-1}_{2} \dotsm L_{m-1}^{-1}U=LU \\
&\text{$$U$$ obere Dreiecksmatrix (\textbf{u}pper) } \\
&\text{$$L$$ untere Dreiecksmatrix (\textbf{l}ower) }
\end{aligned}
" displayMode="true"></$latex>
Im Deutschen wird anstatt der hier gewählten englischen Bezeichnung ''LU'' häufig die Bezeichnung ''LR'' gewählt, wobei $$\textbf{L}$$ für die untere \textbf{linke} Dreiecksmatrix und $$\textbf{R}$$ für die obere $$\textbf{rechte}$$ Dreiecksmatrix steht.
<$details summary="Schematische Darstellung:" tiddler="Schematische Darstellung:">
<$latex text="
\begin{pmatrix}
x & x & x & x \\
x & x & x & x \\
x & x & x & x \\
x & x & x & x
\end{pmatrix} \stackrel{L_1}{\rightarrow}
\begin{pmatrix}
x & x & x & x \\
0 & x & x & x \\
0 & x & x & x \\
0 & x & x & x
\end{pmatrix} \stackrel{L_2}{\rightarrow}
\begin{pmatrix}
x & x & x & x \\
0 & x & x & x \\
0 & 0 & x & x \\
0 & 0 & x & x
\end{pmatrix} \stackrel{L_3}{\rightarrow}
\begin{pmatrix}
x & x & x & x \\
0 & x & x & x \\
0 & 0 & x & x \\
0 & 0 & 0 & x
\end{pmatrix}
" displayMode="true"></$latex>
</$details>
__Methoden:__
Wir kennen die folgenden Methoden, eine Matrix $$A$$ in eine Dreiecksmatrix umzuwandeln:
| ''Gram-Schmidt:'' | $$A=QR$$ | Orthogonalisierung |
| ''Householder:'' | $$A=QR$$ | orthogonale Triangulierung |
| ''Gauß-Elimination:'' | $$A=LU$$ | Triangularisierung (Gauß) |
''__Problem:__''
Der Algorithmus [[Algorithmus: LU-Zerlegung]] (LU-Zerlegung ohne Pivotisierung) funktioniert nicht,
falls $$x_{k,k} = 0$$: Betrachte dazu die Matrix
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$.
Außerdem wird der Algorithmus instabil, falls $$x_{k,k} \ll x_{j,k}$$ für ein $$j$$ mit $$k<j \leq m$$.
Da $$x_{kk}$$ bei der Berechnung von $$l_{k}$$ eine wichtige Rolle spielt, heißt $$x_{k,k}$$ //Pivotelement//.
Im $$k$$-ten Schritt werden Vielfache der $$k$$-ten Zeile von den Zeilen $$k+1,...,m$$ der aktuellen Matrix
abgezogen und so Nullen in der $$k$$-ten Spalte dieser Zeilen erzeugt:
<$latex text="
\begin{pmatrix}
\textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
& x_{k,k} & \textbf{x} & \textbf{x} & \textbf{x} \\
& \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
& \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
& \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x}
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
\textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
& x_{k,k} & \textbf{x} & \textbf{x} & \textbf{x} \\
& 0 & \textbf{x} & \textbf{x} & \textbf{x} \\
& 0 & \textbf{x} & \textbf{x} & \textbf{x} \\
& 0 & \textbf{x} & \textbf{x} & \textbf{x}
\end{pmatrix}
" displayMode="true"></$latex>
Lässt man Permutationen von Zeilen und Spalten zu, so gibt es keinen Grund,
die $$k$$-te Zeile und $$k$$-te Spalte im $$k$$-ten Schritt zu bearbeiten.
<$details summary="Beispiel: k=2,i=4" tiddler="Beispiel k=2,i=4">
<$latex text="
\begin{pmatrix}
\textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
& \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
& \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
& x_{i,k} & \textbf{x} & \textbf{x} & \textbf{x} \\
& \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x}
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
\textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
& 0 & \textbf{x} & \textbf{x} & \textbf{x} \\
& 0 & \textbf{x} & \textbf{x} & \textbf{x} \\
& x_{i,k} & \textbf{x} & \textbf{x} & \textbf{x} \\
& 0 & \textbf{x} & \textbf{x} & \textbf{x}
\end{pmatrix}
" displayMode="true"></$latex>
... oder $$k=2,i=4, j=3$$:
<$latex text="
\begin{pmatrix}
\textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
& \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
& \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
& \textbf{x} & x_{i,k} & \textbf{x} & \textbf{x} \\
& \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x}
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
\textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
& \textbf{x} & 0 & \textbf{x} & \textbf{x} \\
& \textbf{x} & 0 & \textbf{x} & \textbf{x} \\
& \textbf{x} & x_{i,k} & \textbf{x} & \textbf{x} \\
& \textbf{x} & 0 & \textbf{x} & \textbf{x}
\end{pmatrix}
" displayMode="true"></$latex>
</$details>
Wird vor diesen Schritten das Element $$x_{ij}$$ an die Position $$x_{kk}$$ durch
Zeilen- und Spaltenpermutation verschoben, so verläuft die Elimination wie im Standardfall.
Leider ist der Aufwand für das Suchen eines guten Pivotelements im $$k$$-ten Schritt $$O((m-k)^{2})$$,
sodass insgesamt $$O(m^{3})$$ Suchoperationen durchgeführt werden müssen //''komplettes Pivotieren''//).
In der Praxis wird deshalb //''partielles Pivotieren''// eingesetzt.
Dabei werden nur Zeilen vertauscht. Man sucht dazu das betragsgrößte Element in den $$(m-k+1)$$
Subdiagonleinträgen der $$k$$-ten Spalte ($$O(m-k)$$ Operationen, ergibt $$O(m^{2})$$ für die gesamte LU-Zerlegung).
Sind bei der Spaltenpivotisierung alle Elemente der Spalte 0, so ist die Matrix singulär.
<$latex text="
\underbrace{
\begin{pmatrix}
\textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
& \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
& \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
& x_{i,k} & \textbf{x} & \textbf{x} & \textbf{x} \\
& \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x}
\end{pmatrix}}_{\text{Pivot auswählen}}
\stackrel{P_1} {\longrightarrow}
\underbrace{
\begin{pmatrix}
\textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
& x_{i,k} & \textbf{x} & \textbf{x} & \textbf{x} \\
& \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
& \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
& \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x}
\end{pmatrix}}_{\text{Zeilen vertauschen}}
\stackrel{L_1} {\longrightarrow}
\underbrace{
\begin{pmatrix}
\textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
& x_{i,k} & \textbf{x} & \textbf{x} & \textbf{x} \\
& 0 & \textbf{x} & \textbf{x} & \textbf{x} \\
& 0 & \textbf{x} & \textbf{x} & \textbf{x} \\
& 0 & \textbf{x} & \textbf{x} & \textbf{x}
\end{pmatrix}}_{\text{Elimination}}
" displayMode="true"></$latex>
Mit diesem Verfahren erhält man eine //obere Dreiecksmatrix// $$U$$ nach $$(m-1)$$ Schritten:
<$latex text="
L_{m-1}P_{m-1}\dotsm L_2P_2L_1P_1A = U,
" displayMode="true"></$latex>
wobei die Matrizen $$P$$ Permutationsmatrizen sind.
Im $$k$$-ten Schritt des Eliminationsprozesses muss $$L_k$$ so gewählt werden, dass alle Zeilen von $$A$$ mit Index $$1, \cdots, k$$ erhalten bleiben und der $$k$$-te Spaltenvektor der Matrix $$A$$ wie folgt verändert wird:
<$latex text="
L_ka_{k}=L_k\begin{pmatrix} a_{1,k} \\ \vdots \\ a_{k,k} \\ a_{k+1,k} \\ \vdots \\a_{m,k}\end{pmatrix} =
\begin{pmatrix} a_{1,k} \\ \vdots \\ a_{k,k} \\ 0 \\ \vdots \\0\end{pmatrix}
" displayMode="true"></$latex>
Dazu erhalten wir die ersten $$m$$ Zeilen und ziehen für $$k<j \leq m$$ von der $$j$$-ten Zeile jeweils das $$l_{j,k}$$-fache der $$k$$-ten Zeile ab, wobei
<$latex text="
l_{j,k}=\frac{a_{j,k}}{a_{k,k}}, k<j\leq m
" displayMode="true"></$latex>
Die Matrix $$L_k$$ hat damit folgende Form:
<$latex text="
L_k=\begin{pmatrix}
1 & & & & & \\
& \ddots & & & & \\
& & 1 & & & \\
& & -l_{k+1,k} & 1 & & \\
& & \vdots & & \ddots & \\
& & -l_{m,k} & & & 1
\end{pmatrix}
" displayMode="true"></$latex>
Durch diese Konstruktion erhalten wir in der $$k$$-ten Spalte Nullen unterhalb der Diagonalen:
Beispiel:
<$latex text="
L_2 =
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & -l_{3,2} & 1 & 0 & 0 \\
0 & -l_{4,2} & 0 & 1 & 0 \\
0 & -l_{5,2} & 0 & 0 & 1
\end{pmatrix}
" displayMode="true"></$latex>
Definieren wir den Vektor $$l_k$$ durch
<$latex text="
l_{k}=\begin{pmatrix} 0 \\ \vdots \\ 0 \\ l_{k+1,k} \\ \vdots \\l_{m,k}\end{pmatrix}, \text{wobei} \ l_{j,k}=\frac{a_{j,k}}{a_{k,k}}, k<j\leq m, l_{j,k}=0, j \leq k,
" displayMode="true"></$latex>
so können wir die Matrix $$L_k$$ schreiben als
<$latex text="
L_k = I-l_k e_k^*. \qquad (6.1)
" displayMode="true"></$latex>
Bei der Berechnung der Matrix $$L$$ gilt unter anderem Folgendes:
*Da $$e_k^* l_k = 0$$, gilt:<$latex text="
(I - l_k e_k^*)(I + l_k e_k^*) = I - l_k e_k^* l_k e_k^* = I, " displayMode="true"></$latex>$$\text{d.h.:} \qquad \qquad (I - l_k e_k^*)^{-1} = (I + l_k e_k^*)$$.
* $$\qquad$$<$latex text=" \begin{aligned}
L_{k}^{-1}L_{k+1}^{-1}
& = (I+l_{k}e_{k}^{*})(I+l_{k+1}e_{k+1}^{*})\\
& = I+l_{k}e_{k}^{*}+l_{k+1}e_{k+1}^{*} + l_{k}\underbrace{e_{k}^{*}l_{k+1}}_{=0}e_{k+1}^{*} \\
& = I+l_{k}e_{k}^{*}+l_{k+1}e_{k+1}^{*}
\end{aligned} " displayMode="true"></$latex> Also berechnet sich $$L$$ wie folgt: <$latex text="
L = L_{1}^{-1}L_{2}^{-1} \dotsm L_{m-1}^{-1}
= \begin{pmatrix}
1 & 0 & 0 & . & 0 \\
l_{2,1} & 1 & 0 & . & 0 \\
l_{3,1} & l_{3,2} & \ddots & 0 & 0 \\
& & \ddots & 1 & 0 \\
l_{m,1} & l_{m,2} & & l_{m,m-1} & 1
\end{pmatrix} " displayMode="true"></$latex>
Sei nun $$m>n$$, $$D(f)\subset\R^{n}$$ und $$f:\, D(f)\rightarrow\R^{m}$$
eine stetig differenzierbare Abbildung. Das Gleichungssystem $$f(x)=0$$
enthält $$m$$ Gleichungen aber nur $$n$$ Unbekannte, es ist also überbestimmt.
Analog zu linearen Ausgleichsproblemen betrachten wir daher nun nichtlineare
Ausgleichsprobleme:
<$latex text="
\|f(x)\|_{2}^{2}\rightarrow\min
" displayMode="true"></$latex>
Wir suchen also $$x\in D(f)$$ so, dass die $$2$$-Norm von $$f(x)$$ minimal
wird.
Das Newton-Verfahren kann für diesen Fall zum // Gauß-Newton-Verfahren//
erweitert werden. Wie beim Newton-Verfahren wird $$f$$ in jeder Iteration
durch seine Taylorapproximation erster Ordnung an der momentanen Iterierten
$$x^{(k)}\in D(f)$$ approximiert. Die nächste Iterierte $$x^{(k+1)}\in D(f)$$
wird dann durch ein lineares Ausgleichsproblems bestimmt:
<$latex text="
\|f(x^{(k)})+f'(x^{(k)})\cdot(x^{(k+1)}-x^{(k)})\|_{2}^{2}\rightarrow\min
" displayMode="true"></$latex>
Leider garantiert das Gauß-Newton-Verfahren keine lokale Konvergenz.
Grund dafür ist, dass die Lösung des Ausgleichsproblems $$x^{(k+1)}$$
bei schlecht konditionierter Matrix $$f'(x^{(k)})$$ sehr weit von $$x^{(k)}$$
entfernt sein kann. Für weit entfernte Punkte ist die Taylorapproximation
erster Ordnung aber nicht mehr Aussagekräftig. Die Verwendung des
Gauß-Newton-Verfahrens ist daher //nicht// empfehlenswert.
Das //Levenberg-Marquardt-Verfahren// überwindet dieses Problem.
Die maximale Schrittlänge $$\|x^{(k+1)}-x^{(k)}\|$$ wird nach oben
durch eine Konstante $$\rho_{k}\in\R_{+}$$ beschränkt. Wir definieren
also $$h^{(k)}:=x^{(k+1)}-x^{(k)}$$ und fordern $$\|h^{(k)}\|_{2}<\rho_{k}$$.
In dem Ball mit Radius $$\rho_{k}$$ um $$x^{(k)}$$ vertrauen wir darauf,
dass die Taylorapproximation sinnvoll ist. Man spricht daher von der
sogenannten //Trust-Region//. Um nun $$x^{(k+1)}=x^{(k)}+h^{(k)}$$
zu berechnen müssen wir
<$latex text="
\|f(x^{(k)})+f'(x^{(k)})\cdot h^{(k)}\|_{2}^{2}
" displayMode="true"></$latex>
minimieren unter der Nebenbedingung $$\|h^{(k)}\|_{2}\le\rho_{k}\in\R_{+}$$.
<$latex text="
F, \sigma: D(F) \subset \mathbb{C}^n \longrightarrow \mathbb{C}^n
" displayMode="true"></$latex>
*Durch die Transformation $$F(x): = \sigma(x) - y$$ kann jede nichtlineare Gleichung $$\sigma(x) = y$$ in eine Nullstellenaufgabe $$F(x) = 0$$ überführt werden. $$\\$$
*Da nichtlineare Gleichungen in der Regel nicht geschlossen gelöst werden können, ihre Lösungen also nicht in endlich vielen Schritten berechenbar sind, kommen fast ausschließlich //Iterationsverfahren// zur Approximation der Lösung zur Anwendung. $$\\$$
*Für Iterationsverfahren im $$\mathbb{C}^n$$ verwenden wir wieder die Notation $$x^{(k)}$$ mit hochgestelltem, geklammerten Iterationsindex. Im Eindimensionalen verwenden wir einen tiefgestellten Iterationsindex.
Wir erinnern uns, dass jede Gleichung als Nullstellenproblem aufgefasst
werden kann:
<$latex text="
\begin{aligned}
f_{1}(x)=f_{2}(x) & \Leftrightarrow & f_{1}(x)-f_{2}(x)=0
\end{aligned}
" displayMode="true"></$latex>
Entsprechende Lösungsalgorithmen sind daher auf sehr viele Probleme
anwendbar. Gleichzeitig sind sie bei hinreichender Differenzierbarkeit
und niedriger Dimension sehr effizient. Bei vielen wichtigen Problemen
existieren allerdings auch spezialisierte Algorithmen, die effektiver
arbeiten. So ist, z.B. Eigenwertberechnung ein Nullstellenproblem:
<$latex text="
A\cdot v=\lambda\cdot v\quad\Leftrightarrow\quad(A-\lambda\cdot I)\cdot v=0
" displayMode="true"></$latex>
Allerdings sind hier spezialisierte Algorithmen effektiver.
Sei $$f:U \longrightarrow \R$$, $$U \subset \R^n$$ eine differenzierbare Funktion und
$$\gamma: I \longrightarrow U$$ eine differenzierbare Kurve, die in einer Niveaumenge
<$details summary="Bemerkung" tiddler="Bemerkung">
Sei $$f: \longrightarrow \R$$, $$D \subset \R^n$$ und $$c \in \R$$.\\
Dann bezeichnet $$N_c=\{x\in D | f(x)=c\}$$, $$N_c \subset \mathbb{R}^n$$ die \textit{Niveaumenge} von $$f$$ zum Niveau $$c$$
</$details>
von $$f$$ verläuft, d.h. es ist $$f(\gamma(t))=c$$ für eine Konstante $$c$$ und $$\forall t \in I$$.
Dann steht der Gradient von $$f$$ im Punkt $$\gamma(t)$$ senkrecht auf dem Tangentialvektor $$\dot{\gamma}(t)$$:
<$latex text="
\text{grad}f(\gamma(t)) \quad \bot \quad \dot{\gamma}(t), \qquad t \in I.
" displayMode="true"></$latex>
<$details summary="Beweis" tiddler="Beweis">
Wegen $$c=f \circ \gamma(t)$$ gilt
<$latex text="
0 = \frac{d}{dt} (f \circ \gamma)(t) = \langle \text{grad}f(\gamma(t)), \dot{\gamma}(t) \rangle = 0
" displayMode="true"></$latex>
</$details>
''Grundidee:'' Sei $$A$$ eine reelle symmetrische $$n\times n$$ Matrix mit $$n$$ betragsmäßig verschiedenen (daher reellen) Eigenwerten $$\lambda_i$$, die wir folgt indiziert sind:
<$latex text="
|\lambda_1|>|\lambda_2|>\cdots>|\lambda_n|\geq 0.
" displayMode="true"></$latex>
Wir betrachte die Folge
<$latex text="
\dfrac{x}{\|x\|}, \dfrac{Ax}{\|Ax\|}, \dfrac{A^2x}{\|A^2x\|}, \dfrac{A^3x}{\|A^3x\|},...
" displayMode="true"></$latex>
Dann ist der Grenzwert dieser Folge der Eigenvektor zum betragsmäßig größte Eigenwert.
Um das zu einzusehen sei $$q_i$$, $$\|q_i\|=1$$, $$i=1,\cdots , n$$ jeweils der zu $$\lambda_i$$ gehörende Eigenqektor qon $$A$$.
Dann kann jeder Vektor $$v\in\mathbb{R}^n$$ in diese Eigenbasis entwickelt werden:
<$latex text="
v=\sum_{i=1}^n a_i q_i \text{ und es gilt } A^k v=\sum_{i=1}^n \lambda_i^k a_i q_i\quad \forall k>=1.
" displayMode="true"></$latex>
Konkret ergibt sich
<$latex text="
\begin{aligned}
v^{(0)} &= a_1 q_1 + a_2 q_2 + ... + a_n q_n \qquad \text{$q_i$ Eigenvektor }\\
v^{(k)} &= c_k A^k v^{(0)} \qquad \qquad \qquad \text{(wegen der Normierung)} \\
&= c_k(a_1 \lambda_1^k q_1 + a_2 \lambda_2^k q_2 + ... + a_m \lambda_m^k q_m)\\
&= c_k \lambda_1^k \left(a_1 q_1 + a_2 \left(\frac{\lambda_2}{\lambda_1} \right)^k
q_2 + ... + a_m \left(\frac{\lambda_m}{\lambda_1} \right)^k q_m \right),
\end{aligned}
" displayMode="true"></$latex>
d.h. für große $$k$$ gilt
<$latex text="
A^k v\approx \lambda_1^ka_1q_1.
" displayMode="true"></$latex>
Verwenden wir den Rayleigh-Quotienten zur Schätzung des Eigenwerts von $$v^{(k)}$$ so erhalten wir folgenden Algorithmus zur Eigenvektorschätzung zum betragsmäßig größten Eigenwert:
<$details summary="Algorithmus: Potenziteration" tiddler="Algorithmus: Potenziteration">
{{Algorithmus: Potenziteration}}
</$details>
Sei $$A \in \R^{n \times n}$$ eine quadratische Matrix und $$(\mu_{k})_{k \geqslant 0}$$
eine Folge reeller Zahlen, sogenannte //'Shifts'//. Dann berechnet man im $$k$$-ten Iterationsschritt eine $$QR$$-Zerlegung (vgl. Kapitel [[QR-Zerlegung]])
<$latex text="
A_k-\mu_k I = Q_k R_k \qquad (7.2)
" displayMode="true"></$latex>
wobei $$Q_k$$ unitär und $$R_k$$ eine reelle obere Dreiecksmatrix ist
und setzt
<$latex text="
A_{k+1} := R_k Q_k+ \mu_k I .
" displayMode="true"></$latex>
''Gesucht:'' Verfahren zur Schätzung von Eigenwerten
''Ansatz:'' Zu gegebenem $$x\in \R^m\setminus\{0\}$$ wird $$\alpha\in\R$$ gesucht, das einem Eigenwert ([[Eigenwert und Eigenvektor]]) am ähnlichsten ist, d.h. das den folgenden Ausdruck minimiert:
<$latex text="
\| Ax - \alpha x\|_2 \stackrel{\alpha}{\longrightarrow} \min
" displayMode="true"></$latex>
Dies ist ein $$m \times 1$$-Least-Squares-Problem der Form
<$latex text="
x \alpha = A x
" displayMode="true"></$latex>
wobei $$x$$ die Matrix, $$\alpha$$ der Vektor und $$Ax$$ die rechte Seite ist. Es gilt:
<$latex text="
\begin{aligned}
\alpha \text{ Lösung des Problems} & \Leftrightarrow & x^*x \alpha = x^*Ax\\
& \Leftrightarrow & \alpha = \frac{x^*Ax}{x^*x}
\end{aligned}
" displayMode="true"></$latex>
Damit ist $$r(x):=\alpha$$ eine natürliche Schätzung für einen Eigenwert, falls $$x$$ kein exakter Eigenvektor ist.
Bisher haben wir folgende Methoden betrachtet:$$\\$$
*Eigenwert-Schätzung aus einer Eigenvektor-Schätzung (Rayleigh-Quotient)$$\\$$
*Eigenvektor-Schätzung aus Eigenwert-Schätzung (Inverse Iteration)
Jetzt kombinieren wir die beiden Ideen zur //Rayleigh-Quotient-Iteration//:
<$details summary="Rayleigh-Quotient-Iteration" tiddler="Rayleigh-Quotient-Iteration">
{{Rayleigh-Quotient-Iteration.png}}
</$details>
<$details summary="Algorithmus: Rayleigh-Quotient-Iteration" tiddler="Algorithmus: Rayleigh-Quotient-Iteration">
{{Algorithmus: Rayleigh-Quotient-Iteration}}
</$details>
''Notation'': Sei $$\textbf{f}: \R \rightarrow F$$ eine Funktion, die $$f(x)$$ unter Verwendung
von Fließkommazahlen berechnet, d.h. $$\textbf{f}$$ beschreibt einen
Realisierungsalgorithmus.
<$details summary="Bemerkung" tiddler="Bemerkung">
Zur Erinnerung:
<$latex text="
K_{rel} = \left | \frac{f'(x) \cdot x}{f(x)} \right |
" displayMode="true"></$latex>
</$details>
''Genauigkeit:''
Betrachten wir die Implementierung von $$\textbf{f}$$ zur Lösung eines Problems
$$x \mapsto f(x) = y$$, $$x \in D(f) \subset \R$$. Seien dazu $$x$$ und $$y$$ von Null verschieden.
$$\textbf{ f }$$ ist ein //guter// Realisierungsalgorithmus, wenn
<$latex text="
\left | \frac{\textbf{f}(x) - f(x)}{f(x)} \right | \leq c_V K_{rel} \varepsilon_{M} \qquad (5.13)
" displayMode="true"></$latex>
mit einem mäßig großen $$c_V > 0$$, das von $$x$$ unabhängig ist.
Gegeben seien die Matrizen $$L \in \mathbb{C}^{n \times n}$$ und $$U \in \mathbb{C}^{n \times n}$$ sowie der Vektor $$b \in \mathbb{C}^n$$.
Dabei sei $$L$$ eine untere Dreiecksmatrix und $$U$$ eine obere Dreiecksmatrix,
wobei die Digonaleinträge $$L_{i,i}$$ und $$U_{i,i}$$, $$i \in \{ 1,...,n \}$$ ungleich $$0$$ sind.
Gesucht sind Methoden zum Lösen der Gleichungssysteme $$Lx=b$$ und $$Ux=b$$.
Man unterscheidet dabei zwischen Vorwärts- und Rückwärtssubstitution,
jenachdem ob die Matrix untere oder obere Dreiecksgestalt hat.
<$details summary="Vorwärtssubstitution" tiddler="Vorwärtssubstitution">
__Vorwärtssubstitution:__
$$Lx = b$$
$$L$$ ist eine untere Dreiecksmatrix
<$details summary="Vorwärtssubstitution Algorithmus" tiddler="Vorwärtssubstitution Algorithmus">
{{Algorithmus: Vorwärtssubstitution}}
</$details>
__Fall $$\underline{n=2}$$:__
<$latex text="
\begin{pmatrix} L_{11} & 0 \\ L_{21} & L_{22} \end{pmatrix}
\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} =
\begin{pmatrix} b_1 \\ b_2 \end{pmatrix}
" displayMode="true"></$latex>
Dann berechnet man:
<$latex text="
\begin{aligned}
x_1 &=& b_1/L_{11} \\
x_2 &=& (b_2 - L_{21} x_1) / L_{22}
\end{aligned}
" displayMode="true"></$latex>
__Allgemein:__
<$latex text="
x_i = \left( b_i - \sum\limits_{j=1}^{i-1} L_{ij} x_j \right) / L_{ii}
" displayMode="true"></$latex>
</$details>
<$details summary="Rückwärtssubstitution " tiddler="Rückwärtssubstitution ">
__Rückwärtssubstitution:__
$$Ux = b \\
U \text{ ist eine obere Dreiecksmatrix}$$
<$details summary="Rückwärtssubstitution Algorithmus" tiddler="Rückwärtssubstitution Algorithmus">
{{Algorithmus: Rückwärtssubstitution}}
</$details>
__Fall $$\underline{n=2}$$:__
<$latex text="
\begin{pmatrix} U_{11} & U_{12} \\ 0 & U_{22} \end{pmatrix}
\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} =
\begin{pmatrix} b_1 \\ b_2 \end{pmatrix}
" displayMode="true"></$latex>
Dann berechnet man:
<$latex text="
\begin{aligned}
x_2 &=& b_2/U_{22} \\
x_1 &=& (b_1 - U_{12} x_2) / U_{11}
\end{aligned}
" displayMode="true"></$latex>
__Allgemein:__
<$latex text="
x_i = \left( b_i - \sum\limits_{j=i+1}^n U_{ij} x_j \right) / U_{ii}
" displayMode="true"></$latex>
</$details>
Ein Fixpunkt von $$\Phi(x):=(D+L)^{-1}\cdot(b-U\cdot x)$$
löst $$A\cdot x=b$$:
<$latex text="
x=\Phi(x)\;\Leftrightarrow\;(D+L)\cdot x=b-U\cdot x\;\Leftrightarrow\; A\cdot x=b
" displayMode="true"></$latex>
Für $$\|(D+L)^{-1}\cdot U\|<1$$ ist $$\Phi$$ eine Kontraktion.
Ein entsprechender Algorithmus lässt sich mit Vorwärtssubstitution implementieren:
<$latex text="
\begin{aligned}
for \ &k=0,1,... \qquad (k \ \text{Iterationsindex)} \\
&for \ i=1 \to n \\
&\qquad x_{i}^{(k+1)}=\dfrac{1}{a_{i,i}}\cdot\left(b_{i}-\sum\limits _{j=1}^{i-1}a_{i,j}\cdot x_{j}^{(k+1)}-\sum\limits _{j=i+1}^{n}a_{i,j}\cdot x_{j}^{(k)}\right)
\end{aligned}
" displayMode="true"></$latex>
Sei $$T\in\text{End}_K(V)$$- Dann gilt:
# Sind $$\lambda\neq \mu$$ zwei [[Eigenvektoren und Eigenwerte]], dann ist der Schnitt der Eigenräume trivial, d.h.:<$latex text="E(T,\lambda)\cap E(T,\mu)=\{0\}." displayMode="true"></$latex>
# Sei $$T\in \text{End}_K(V)$$. Weiter seien $$x_1,\dots,x_r\in V$$ mit $$T(x_j)=\lambda_jx_j$$, wobei die $$\lambda_j$$ paarweise verschieden sind. Ist nun $$x_1+\dots+x_r=0$$, so ist schon $$x_1=\dots=x_r=0$$. Insb. sind die Eigenvektoren also linear unabhängig.
!! Beweis
''1.:'' Sei $$x\in E(T,\lambda)\cap E(T,\mu).$$ Dann gilt <$latex text="\lambda x= T(x)=\mu x\implies\underbrace{(\lambda-\mu)}_{\neq 0}x=T(x-x)=T(0)=0" displayMode="true"></$latex>
und damit $$x=0$$.
''2.:'' Beweis per Induktion nach $$r$$.:
''Induktionsanfang:'' Für $$r=1$$ impliziert $$x_1=0$$, dass $$x_1=0$$ gilt.
''Induktionsschritt:'' Seien $$x_1,\dots,x_{r+1}$$ mit $$T(x_j)=\lambda_j x_j$$ und paarweise verschiedenen $$\lambda_j$$ gegeben, s.d. <$latex text="x_1+\dots+x_{r+1}=0." displayMode="true"></$latex>
Dann folgt nach Anwenden von $$T$$ und durch Subtraktion von $$\lambda_{r+1}$$ mal dieser ersten Gleichung:
<$latex text="\underbrace{(\lambda_1-\lambda_{r+1})}_{\eqqcolon y_1}x_1+\dots+\underbrace{(\lambda_r-\lambda_{r+1})}_{\eqqcolon y_r}x_r=0" displayMode="true"></$latex>
und die Aussage folgt aus der Induktionsvorraussetzung.
Gegeben sei die $$m\times n$$ Matrix
<$latex text="E_{i,j}^{m,n}=(\delta_{ki}\delta_{lj})_{\stackrel{1\leq k\leq m}{1\leq l\leq n}}." displayMode="true"></$latex>
Für diese Matrizen gilt dann insbesondere
<$latex text="E_{ij}^{m,n}\cdot E_{kl}^{n,n'}=\delta_{jk}\cdot E_{il}^{m,n'}." displayMode="true"></$latex>
Folgende quadratischen Matrizen heißen ''Elementarmatrizen'':
!! 1.
<$latex text="L_{ij}^{(m)}=I_m-E_{ii}^{m,m}-E_{jj}^{m,m}+E_{ij}^{m,m}+E_{ji}^{m,m}." displayMode="true"></$latex>
Diese Matrix vertauscht (Multiplikation von links) die Zeilen $$i,j$$ bzw. bei Multiplikation von rechts die Spalten $$i,j$$.
!! 2.
<$latex text="S_{ij}^{(m)}=I_m+\lambda\cdot E_{ij}^{m,m}" displayMode="true"></$latex>
Diese Matrix addiert bei Multiplikation von links (rechts) das $$\lambda$$-fache von Zeile $$j$$ zur Zeile $$i$$ bzw. das $$\lambda$$-fache von Spalte $$i$$ zur Spalte $$j$$.
!! 3.
<$latex text="E_{i}^{m}(\lambda)=I_m+(\lambda-1)\cdot E_{ii}^{m,m}" displayMode="true"></$latex>
Diese Matrix multipliziert bei Multiplikation von links (rechts) Zeile (spalte) $$i$$ mit $$\lambda$$.
!! Bemerkung
Es ist eine sinnvolle Übung sich die Matrizen einmal auf zuschrieben, und zu überprüfen, dass diese tatsächlich die Effekte wie oben beschrieben haben.
!! Definition
Multiplikation von links oder rechts mit Elementarmatrizen nennt man elementare Zeilen- bzw. Spaltenumformungen.
!! Satz
Elementare Zeilen- bzw. Spaltenumformungen ändern weder Zeilen- noch
Spaltenrang.
Die [[Determinante]] eine Matrix $$A=(a_{ij})_{1\leq i,j\leq n}$$ kann durch die Berechnung kleinerer Determinanten beschrieben werden.
!! Notation
<$latex text="A_{i,j}^* \coloneqq \begin{pmatrix}a_{1,1}&\dots&a_{1,j-1} & 0 & a_{1,j+1} & \dots & a_{1,n}\\
\vdots & \ddots & \vdots & \vdots &\vdots & \ddots & \vdots \\
a_{i-1,1}&\dots&a_{i-1,j-1} & 0 & a_{i-1,j+1} & \dots & a_{i-1,n}\\
0 & \dots & 0 & 1 & 0& \dots&0\\
a_{i+1,1}&\dots&a_{i+1,j-1} & 0 & a_{i+1,j+1} & \dots & a_{i+1,n}\\
\vdots & \ddots & \vdots & \vdots &\vdots & \ddots & \vdots \\
a_{n,1}&\dots&a_{n,j-1} & 0 & a_{n,j+1} & \dots & a_{n,n}\\
\end{pmatrix}" displayMode="true"></$latex>
<$latex text="A_{i,j}' \coloneqq \begin{pmatrix}a_{1,1}&\dots&a_{1,j-1} & a_{1,j+1} & \dots & a_{1,n}\\
\vdots & \ddots & \vdots & \vdots &\vdots & \ddots & \vdots \\
a_{i-1,1}&\dots&a_{i-1,j-1} & a_{i-1,j+1} & \dots & a_{i-1,n}\\
a_{i+1,1}&\dots&a_{i+1,j-1} & a_{i+1,j+1} & \dots & a_{i+1,n}\\
\vdots & \ddots & \vdots &\vdots & \ddots & \vdots \\
a_{n,1}&\dots&a_{n,j-1} & a_{n,j+1} & \dots & a_{n,n}\\
\end{pmatrix}" displayMode="true"></$latex>
!! Berechnung
Nach $$i-1$$ Zeilen- und $$j-1$$ Spaltenvertauschungen:
<$latex text="\det(A_{ij}')=(-1)^{(i-1)+(j-1)}\cdot \det(A_{ij}^*)=(-1)^{i+j}\cdot \det(A_{ij}^*)" displayMode="true"></$latex>
<$latex text="\det(A_{ij}^*) = \det\begin{pmatrix}a_1 &\dots & a_{j-1} & e_i & & a_{j+1} & \dots & a_{n} \end{pmatrix}" displayMode="true"></$latex>
!! Entwicklungssatz
# Entwicklung nach Zeile $$k$$ gilt:<$latex text="\sum_{r=1}^n a_{k,r}\det(A_{l,r}^*)=\sum_{r=1}^n a_{k,r}\cdot (-1)^{l+r}\cdot\det(A_{l,r}')=\delta_{k,l}\det(A)" displayMode="true"></$latex>
# Entwicklung nach Spalte $$l$$ gilt:<$latex text="\sum_{r=1}^n a_{r,l}\det(A_{r,k}^*)=\sum_{r=1}^n a_{r,l}\cdot (-1)^{l+r}\cdot\det(A_{r,k}')=\delta_{k,l}\det(A)" displayMode="true"></$latex>
!! Beweis
Die zwei Aussagen sind äquivalent, da sich durch Transposition der Matrix ineinander übergeführt werden können. Hier wird daher nur die Entwicklung nach der Spalte $$l$$ bewiesen.
Sei also $$A=\begin{pmatrix} a_1 & \dots & a_n \end{pmatrix}$$. Dann gilt
<$latex text="\det(a_1,\dots,a_{j-1}, e_i,a_{j+1},\dots,a_n)=\det(A_{i,j}^*)=(-1)^{i+j}\det(A_{i,j}')," displayMode="true"></$latex>
Dann folgt direkt:
<$latex text="\begin{aligned}\sum_{r=1}^na_{r,l}\det(A_{r,k}^*) &=\sum_{r=1}^na_{r,l}\det(a_1,\dots,a_{k-1},e_r,a_{k+1},\dots,a_n)\\
&=\det\left(a_1,\dots,a_{k-1},\sum_{r=1}^na_{r,l}e_r,a_{k+1},\dots,a_n\right)\\
&=\det(a_1,\dots,a_{k-1},a_l,a_{k+1},\dots,a_n)\\
&=\begin{cases}0 & k\neq l\\
\det(A) & k=l
\end{cases},
\end{aligned}" displayMode="true"></$latex>
wobei der letzte Schritt gilt, da nach [[die Determiante alternierend|Determinantenform]] ist.
* ''Ereignisse'' entsprechen Teilmengen $$A$$ des Ergebnisraums $$\Omega$$.
* Ist $$\omega\in\Omega$$ das Ergebnis eines Zufallsexperiments, so sagt man im Fall
** $$\omega\in A$$: das Ereignis $$A$$ ist ''eingetreten''.
** $$\omega\not\in A$$: das Ereignis $$A$$ ist ''nicht eingetreten''.
!! Beispiele
* Beim einmaligen Würfeln beschreibt die Teilmenge $$A:=\{2,4,6\}$$ des Ergebnisraums $$\Omega=[1:6]$$ das Ereignis
<$latex text="\textcolor{blue}{\textit{Es wurde eine gerade Augenzahl gewürfelt}}." displayMode="true"></$latex>
* Das Ereignis Bei $$n$$ Münzwürfen fällt mindestens $$k$$-mal Zahl wird beschrieben durch die Teilmenge
<$latex text="A=\{\omega\in\{0,1\}^n\mid \omega_1+\ldots+\omega_n\ge k\}" displayMode="true"></$latex>
des Ergebnisraums $$\Omega=\{0,1\}^n. \quad [\textcolor{blue}{0\cong} \text{K\textcolor{blue}{o}pf},
\textcolor{blue}{1\cong} \text{Zah\textcolor{blue}{l}}.]$$
* ''Ziel'': Festlegung eines Systems $${\mathcal{A}}$$ von Ereignissen, so dass man jedem Ereignis $$A\in {\mathcal{A}}$$ in konsistenter Weise (Siehe [[Wahrscheinlichkeitsmaße]]) eine Wahrscheinlichkeit $$P(A)\in[0,1]$$ für das Eintreten von $$A$$ zuordnen kann.
* Ein Ereignissystem $${\mathcal{A}}$$ ist zunächst einmal eine Teilmenge der ''Potenzmenge'' von $$\Omega$$: <$latex text="\textcolor{blue}{{\mathcal{A}}\subseteq 2^\Omega:=\{X\mid X\subseteq \Omega\}}." displayMode="true"></$latex> Warum es nicht sinnvoll ist, immer die Potenzmenge als Ereignissystem zu wählen, wird in den Übungen diskutiert.
* Gewisse mengentheoretische Operationen mit Ereignissen aus $$\mathcal{A}$$ sollten wieder in $$\mathcal{A}$$ liegen, damit man das Resultat der Operation wieder w-theoretisch bewerten kann.
* Es hat sich herausgestellt, dass sich solche Mengensysteme $${\mathcal{A}}\subseteq 2^\Omega$$ eignen, die $$\Omega$$ enthalten und unter Komplement-, sowie endlicher und abzählbar unendlicher Vereinigungs- und Durchschnittsbildung abgeschlossen sind.
* Mengensysteme mit diesen Eigenschaften nennt man ''$$\sigma$$-Algebren''.
* Ist der Ergebnisraum $$\Omega$$ ''höchstens abzählbar unendlich'', so wählt man gerne als System $${\mathcal{A}}$$ die Potenzmenge von $$\Omega$$: <$latex text="\textcolor{blue}{{\mathcal{A}}=2^\Omega:=\{X\mid X\subseteq \Omega\}}." displayMode="true"></$latex>
* Ist die Ergebnismenge $$\Omega$$ ''überabzählbar unendlich'' (wie z.B. im obigen Beispiel unendlich langer Münzwurffolgen), so gibt es innermathematische Gründe (Stichwort: [[Satz von Vitali]]), die zeigen, dass man sich bei speziellen W-Maßen aus Konsistenzgründen auf kleinere Systeme $${\mathcal{A}}$$ beschränken muss.
* Im folgenden werden geeignete Forderungen an Ereignissysteme formuliert, die dann zu den Forderungen an ein W-Maß passen.
Das Reduktionslemma kann wie folgt ergänzt werden:
Eine Abbildung $$f: U \longrightarrow Y_1 \times Y_2$$ in eine direkte Summe ist genau dann stetig differenzierbar,
wenn ihre beiden Komponenten $$f_i: U \longrightarrow Y_i$$, $$i=1,2$$, stetig differenzierbar sind.
Für den Standardfall impliziert diese Ergänzung:
Die Abbildung (9.1) ([[Einleitung: Differenzierbare Abbildungen]]) ist genau dann stetig differenzierbar,
wenn alle Komponentenfunktionen $$f_1,...,f_m$$ stetig differenzierbar sind.
<$details summary="Beispiel: Polarkoordinatenabbildung" tiddler="Beispiel">
Wir betrachten die Polarkoordinatenabbildung
$$P_2: \R^2 \longrightarrow \R^2$$, $$(r,\varphi) = \begin{pmatrix} r \cos \varphi \\ r \sin \varphi \end{pmatrix}$$:
<$latex text="
P_2'(r,\varphi) =
\begin{pmatrix}
\partial_1f_1 & \partial_2f_1 \\ \partial_1f_2 & \partial_2f_2
\end{pmatrix} =
\begin{pmatrix}
\cos \varphi & -r \sin \varphi \\ \sin \varphi & r \cos \varphi
\end{pmatrix}.
" displayMode="true"></$latex>
</$details>
Bei der ''Modellierung von Zufallsexperimenten'' hat man zunächst u.a. folgende Fragen zu beantworten:
* Wie soll der Ausgang eines Experiments beschrieben werden?
* Was ist vom jeweiligen Ausgang des Experiments von Interesse?
* Wie kann man die Gesamtheit aller relevanten Resultate mengentheoretisch beschreiben?
Dies illustrieren wir anhand von drei Beispielen:
<$details summary="Beispiel 1: Einmaliges Würfeln" tiddler="Beispiel 1: Einmaliges Würfeln">
<ul>
<li> relevant: oben sichtbare Augenzahl</li>
<li>irrelevant: Position des Würfels auf dem Tisch</li>
<li><b>Ergebnismenge:</b> <$latex text="\Omega=[1:6]." displayMode="false"></$latex></li>
</ul>
</$details>
<$details summary="Beispiel 2: mehrmaliges Würfeln: Variante 1" tiddler="Beispiel 2: mehrmaliges Würfeln: Variante 1">
<ul>
<li> <$latex text="n" displayMode="false"></$latex> Würfe</li>
<li>relevant: die Folge der gewürfelten Augenzahlen</li>
<$latex text="\Omega_n=[1:6]^n=\{(\omega_1,\ldots,\omega_n)\mid\forall i:\omega_i\in[1:6]\}." displayMode="true"></$latex>
</ul>
</$details>
<$details summary="Beispiel 2: mehrmaliges Würfeln: Variante 2" tiddler="Beispiel 2: mehrmaliges Würfeln: Variante 2">
<ul>
<li> <$latex text="n" displayMode="false"></$latex> Würfe</li>
<li>relevant: Häufigkeit der gewürfelten Augenzahlen</li>
<$latex text="\Omega_n'=\{(h_1,\ldots,h_6)\in[0:n]^6\mid h_1+\ldots+h_6=n\}." displayMode="true"></$latex>
<li> <$latex text="\Omega_n'" displayMode="false"></$latex> ist dabei das Bild der Vergröberungsabbildung </li>
<$latex text="\Omega_n\ni \omega\mapsto (h_j:=|\{i:\omega_i=j\}|)_{j\in[1:6]}," displayMode="true"></$latex>
die jeder Augenzahlfolge das zugehörige ''Histogramm'' zuordnet.
</ul>
</$details>
<$details summary="Beispiel 3: Münzwurffolgen" tiddler="Beispiel 3: Münzwurffolgen">
<ul>
<li> unendlich oft wiederholtes Münzwurfexperiment</li>
<li><b>Idealisierung</b>: gut zum Studium von Gesetzmäßigkeiten für sehr
lange Münzwurfreihen</li>
<li><b>Ergebnismenge:</b> <$latex text="\Omega=\{0,1\}^{\N}=\{\omega=(\omega_i)_{i\in\N}\mid \forall i: \omega_i\in\{0,1\}\}." displayMode="true"></$latex></li>
<li> Nach diesem [[Satz|Überabzählbarkeit der Ergebnismenge von Münzwurffolgen]] ist die Ergebnismenge überabzählbar. </li>
</ul>
</$details>
!! Fazit
Die relevanten Ergebnisse eines Zufallsexperiments werden zu einer
Menge $$\textcolor{blue}{\Omega}$$
zusammengefasst.
Diese Menge $$\Omega$$ heißt ''Ergebnisraum'' oder ''Stichprobenraum''.
iVBORw0KGgoAAAANSUhEUgAAAocAAAGcCAYAAACr7QonAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAL6fSURBVHhe7P0HfBxXmp8L/6uqcyM0cs5gzpliDqISSVGiRIWRZmbDzGzeddpre/eu7/ra6+vrn7/1tcc7MxtmdiSNIpUpBlFiDmAGIwgQOefUOVXV955Ck6JIUAIpBoB4H+oVuqtOnaquDvXUiZJOgGEYhmEYhmEIOfaXYRiGYRiGYVgOGYZhGIZhmK9gOWQYhmEYhmGuwXLIMAzDMAzDXIPlkGEYhmEYhrkGyyHDMAzDMAxzDZZDhmEYhmEY5hoshwzDMAzDMMw1WA4ZhmEYhmGYa7AcMgzDMAzDMNdgOWQYhmEYhmGuwXLIMAzDMAzDXIPlkGEYhmEYhrkGyyHDMAzDMAxzDZZDhmEYhmEY5hoshwzDMAzDMMw1WA4ZhmEYhmGYa7AcMgzDMAzDMNdgOWQYhmEYhmGuwXLIMAzDMAzDXIPlkGEYhmEYhrkGyyHDMAzDMAxzDZZDhmEYhmEY5hoshwzDMAzDMMw1WA4ZhmEYhmGYa7AcMgzDMAzDMNdgOWQYhmEYhmGuwXLIMAzDMAzDXIPlkGEYhmEYhrkGyyHDMAzDMAxzDZZDhmEYhmEY5hoshwzDMAzDMMw1WA4ZhmEYhmGYa7AcMgzDMAzDMNdgOWQYhomh60PBMAwznpF0IvaYYRhmnKIj7HPDHQQsjgTEmYLwejzwBCKAyY74hHjE282QYqkFuhqC3+OF2xeEKlsQl5CAeIcVyvWJYmhhHwYHQ9AsDiQm2oCAG56QRlnTNla+R2cYZnTBcsgwzLhHj/bjwo6t2NNkxownNmO67yS2bf8ch6u6ocWVYOWGZ/DM2mlItcRETo/AU38Kuz/5ArvKm+CzpmDe45uw+YmFKIwzXSeROtSQH23l2/FPb1TANHcDfvK7c6Cf+gjvHe9GypxnsOWRLFiGEUqGYZgHBd+yMgwzztEQqD+LQ5UhRDIXYHbcFXy56xBqLCvwr//bf8OfLlNQe3gH9l0epJRD6P5GHPrsS5zpz8Vv/d//L/7jlnx0lH+Bz061IRxLI9BDg2g++zneeGcb9p7rhmosVZA5dS4mq2F0lJ1E1eDQUoZhmNECyyHDMOMb3Y0rZ8+gNxjBpGlFkLua0BSSkVRSgqKMdOQWZ8NsGkBdSzf8sU3Ung7UdluBnMkozEtBdkEJMlQFXbVd6L1qkESwtQKnKvvhLJyNBTPSY0sJRy5Kp9vgCVfgdFVPTBoZhmFGByyHDMOMb3xdaGoaQFhLRnaqExE/PVZ9UKwWKLQ6LiED8UEnfJ1eeIe2QDjgQzgYhqKYKQBnfBKcFsA70A9fMJaIsBcvwfM//F38+IlpyHaK3K5iQXp2Phxkm8017Rjgxj0Mw4wiWA4ZhhnfeAfQ7jXB68xAopOeSzIkCtFeUCDpGiRokCX92g+mJElD7QpjUqdTGh0qZPI/eYS/qnZnAuyqDnfvIAavr4tmGIZ5wLAcMgwzviGbM8kkfloUmiZ6KyfCYrIhGgwiQgsG+1rhsQXhyklCnK5Do1CsdthM9PMZDCAS1ckve+ELykhMTkWCldJo+rcOiSPJJJg2kkqFgksOGYYZRbAcMgwzvnEmISdBQ7yvCwNuHUlZJSi0WtFzuQLl1VWorBmAZslFSbYToY4WNDd3IZCYjckFJqCrEuUXGlB5pQaeBBMKJqXB1N2JxoYO9PijsR0Mj6+/F34SSldSKsToNgzDMKMFlkOGYcY3zhTk5qXALHnQ2uuBljoVa9bNQmHwOH79//4vvHtOR97cVXgk34/TH/4CP/3FeyjrzcT8dUtQ6KzDJz/9G/zjni4kTVyNVdPtqN3xBv77//cGPqsciO0AkCxOJKelIIUs0Gh5qIfQ2dFMkikhf2IGkoxUDMMwowMe55BhmHFPsO4Afv3JWbjzVuF3np2FVGFwasSoMtYVCywmeq5H0Hj0fVzoMaFg6RbMSBXLVITDmqgjhsUiNtLRe3En9jeEkTr9CawsHL5IUPPXYc/r21ARLsbaH2zEdFdsBcMwzCiASw4Zhhn32AqmY0lJIjI9dWjuJyEUCxUzzNaYGAo0H5A6F6VTVqI0JbZMUmCxmmNiKAghZC3FtJK5mJN7q7piHd7GajTaEpC6cC4mshgyDDPK4JJDhmEYQvX1orMvCN2ZgszkWPXvN6BpGgKBAHw+P2RZRnx8HKxWa2ztNxHGYGcvfFELEjNS4LwqnwzDMKMElkOGYZg7oKW1DXv27MPBg4eRkJCADeufxIIF8+hxfCwFwzDM2ITlkGEY5jYJhUL4+S/+Cb/81WvGc1mW4HK58KPf+S28/PIWmExcHMgwzNiF2xwyDMPcJufPX8S58xdiz0QVsw6P24Oa2lq0d3TGljIMw4xNWA4ZhmFuk9a2drS1tseeDaFqGtwkiD6vL7aEYRhmbMJyyDAMc5sUFxWgtLQYiqwYU+mJufRMJgUOhx1WqyWWimEYZmzCcsgwDHOb5OblorCoEK4kF7KyMpGZkYGkpCRMmFCK/Py8WCqGYZixCXdIYRiGuQ3EEDZnys/hyy/3ITMrA6XFRYhEIsYyMUDili3PsiAyDDOmYTlkGIa5DTo7u7D1/Q8RF+fE5mc3wWYbGuy6o6MTH3z0CVyJiXhhy2Y4nU5jOcMwzFiDq5UZhmFGSDAYxL79B6FGVSxfthQWi8UoSRSRnp6GeXNmo729A2VlJxCNRmNbMQzDjC1YDhmGYUaAqqo4c+YsWlpaMXPWdOTkZMfWfMXcubNRUJCP8vJzaGxsAlfMMAwzFmE5ZBiGGQGi2vjU6XJkZWZi0cIFUBTlphDT561ZvRJWmxV79h6Ax+OJbc0wDDN2YDlkGIb5Fvx+v1GdLGZCWblyqSGCV6uTb4zk5CQsXDgPvb29OHy4zOiswjAMM5ZgOWQYhvkGRHXyiROnjbaEs2bNMIasEe0JvymmTZ2C4uJCnL94CdXVtVy9zDDMmILlkGEY5hYIp2tubsG5c+eRl5uDObNnQZblbw0xt/KK5cvgdDiw/8BB9PcPxHJkGIYZ/bAcMgzD3AKv14t9+w7CZDZj1aoVRu/kG9sZ3ipSUpKxdOliDA66sf/gIYTD4ViuDMMwoxuWQ4ZhmGGIRKI4WnYMPb29WLBgLlyuxGHbGH5TTJk8CVOmTELl5UpcvFhhLGMYhhntsBwyDMPcgGgjWFNbiwsXLhltB2dMnxZbc3uIeZeXLV1itFM8fOQoenp6Y2sYhmFGLyyHDMMwNzAwMID9Bw7B4bBjxfKlhuTdKWImlWVLH4HPFzB6PIdCodgahmGY0QnLIcMwzHWEwxEcPHQEHrcHS0nqEhMTh+10cjsxadJEzJk9E9XVNcYczFy9zDDMaIblkGEYJoaQtsuXK1FVVY3Jkydi4oTSa+0Hv2ssWrTAmGKvrOwYOjo7Y3tkGIYZfbAcMgzDxBBtAkWpYWJCApY8sshoezic6N1JWK0Wo/1hKBTGnj37EQgEYntlGIYZXbAcMgzDEKIt4IGDhw1pW7ZsCZxOp9HW8G5GUVEB5syZhbq6epw4edoYYJthGGa0wXLIMMy4R5TsnT9/EfX1DZg1cwZKS4uHbTt4N0KUSObl5eLEiVNoaWkzBtpmGIYZTbAcMgwz7uns7EJZ2XGkpiRj0aL5RonevYqh2VOW0l517Nm7Dz6fd+ggGIZhRgkshwzDjGtENbIYYiZK4iZmQbHb7cPOeHI3Q5QcLlq4AG1t7ThKUirmY2YYhhktsBwyDDNuESV5p8+Uo6Wl1RhqJicnO7bm3jN37mzk5+fh1KkzqK2rNzq/MAzDjAZYDhmGGbe0tLYZcpaRkY758+cagna/QlQvr161HFaLBXv3HjDmYGYYhhkNsBwyDDMu8fp82L//oCFqV2dBEdW79zPEtHqLFi9Ab28vjhw5ikgkEjs6hmGYBwfLIcMw4w4hZqK3sOiIIkoMMzMzhm0beD9i9qxZKC0pwdlzF1BVdcWQVYZhmAcJyyHDMOMKIV8NDY0oLz+HvNxczJ0z+2tjEd7vMJkUrFy5DE6Hw+gY09vXFztShmGYBwPLIcMw4wqPx4P9Bw4Zbf6WLXvEkMUbq3vvd8THx2HJksXo6xvA/v2HjFlUGIZhHhQS/TByHQbDMOOCSCRqjC0oBrxetWq5MeD1aEH8FO/Y+TkuXbqMp5583JhJRQyazTAMc7/hXx6GYcYFQr5qa2tx8VIFSoqLMGP6NGPZaAnB8mVL4HIlGvM7d3V1G8sYhmHuNyyHDMOMC/r7+43qZIfdjhUrhnonjzbi4+OxcsUy+Hw+7Nt3EMFgMLaGYRjm/sFyyDDMQ084HDZK4/r7B7Bo4Xw4HI6bprUbLVFSUmyUalZduYIzZ84ayxiGYe4nLIcMwzzUaJpmtOO7VHEZkyZOwOTJk27qMTzaYunSxUhPT8PhI2Voa2+PvRKGYZj7A8shwzAPNT1igOmjZXAlJhq9k4V8jXZEyebKlcsRiYSN2VP8fn9sDcMwzL2H5ZBhmIeWYCiEAwcOw+v1YfnypXA6ncN2BhmNUViQj7lz56C+vgEnTp7m6mWGYe4bPJQNwzAPJaI6+SRJ1Zd79mP2rBlYu3ZVbM3YIURy+/4HH6Gnpw8vbHkOhYUFGAMFnwzDjHG45JBhmIeSjo5OlB07gfT0VCxbtsQYM3Cshd1ux9o1q42q8L379sPr9cZeHcMwzL2D5ZBhmIcOfyBgTEUneimLoWGsVotRkjgWQ8z7vHDhfLS2tpPsHjdmVGEYhrmXsBwyDPNQIdrmnTp1BvUNDZg9eyby8nKHbdM3lmLunFnIz8/F6dPlqKurN5YxDMPcK1gOGYZ5aBDO1NLaZshhTnY2Fi9acG14mLEcFosFa1avhNlkwt69BzE46I69YoZhmLsPyyHDMA8Nok2emFkEErBmzUrYbLZh2/KNxRDVy0uWPoLunh4cOVKGcDgSe9UMwzB3F+6tzDDMQ4Foiyemxztx4hSWkUTNnz83tubhQVSZb/tsp1G1vOnpDZg+fapRssgwDHM34ZJDhmHGPOIet66+AafPlBttDOfMmRVb83ChKApWrVxmDJK9b/8B9PX1xdYwDMPcPbjkkGGYMc/AwCDefe8D+Hw+vPjCc0hNTYmteTi5ePEStu/4HFOnTsHGDU8ZvbEZhmHuFlxyyDDMmCYSieBo2TH09fVi6ZJFSElJvtbL92ENIYWiSrmi4jIukCiKIW8YhmHuFiyHDMOMWYQoVVVV49y5CygqKiJhmnaTSD2MIRDtKl0uFw4ePIyurm5jGcMwzN2Aq5UZhhmz9Pb24p133zd67r6wZTMSExNia8YH1dU12PbZLkyYUIJnn9lo9M5mGIb5rrAcMgwzJhHzDm/fvguXK6uw/qnHMWXK5Nia8cUXX+41Bsdet24tFi2cb3RaYRiG+S6wHDIMM+YQbezKz57Dzp27MXXqZDzx+LrYmvGH3x/Ae1uHOuO8/NILyM3Nia1hGIa5M7jNIcMwY46u7m4cPnwUiYmJWLrkkWHb5Y2XsNttWLF8GYKhEPbuO0Cy6I+dJYZhmDuDSw4ZhhlTBINBfPzJZ6ira8CmTetRWlIcWzO+EQOAl5Udx6pVK7B82RKuXmYY5o7hkkOGYcYMYoaQM+XnUFNTi9mzZmBCacnX5iAez7HkkUXGAOBihpimpmajVJFhGOZO4JJDhmHGDC0trXhv64dwOh1G72Tunft12trasfX9j5CWlkrn5znEx8fF1jAMw4wcLjlkGGZMINrS7T9w0OilLNrYWSwWo2MKx1eRmZmBhQvmoaW1DWXHjiMSicbOHsMwzMjhkkOGYUY90aiKI0fLcOjQESxatMBoU8cMjxDCDz/6xChF3Lx5EyZOKDWqnRmGYUYKlxwyDDOqEbevzS0tRlu6nJwsLCY5vLG9HcdXYbGYsWbNSpjNZuzbewADg4OxM8kwDDMyuOSQYZhRjcfjxfvvf4Tunh4899wzyMxIj61hvokzZ85iz74DmDd3Dh5/bK1RDc8wDDMSWA4Zhhm1RKNR7Nt/0Cg1XL58qdGejhkZomf3p9t2oK6uHk8/vR7Tp001ShYZhmG+DZZDhmFGJeKnqbqmFh99/Clys7ON9nMmkym2lhkJfX39ePud94zz9tKLW5CamhJbwzAMc2tYDhmGGZUMDAzi3feGpoV78YXnWGzukAsXLmH7jl2YPn0qNqx/ElarNbaGYRhmeLhDCsMwo45IJGL0Tu7p6cGypY8Y4/bd2PGCY2QhpHDGjGm4dOkyzpMoiiFvGIZhvgmWQ4ZhRhWiMqPqSjXOn7+IiRNLMWvWjGGlh2NkIabRW7VyOZKSknDkSBm6urpjZ5phGGZ4uFqZYZhRRW9vL955931jvL6XXnwOiYmJsTXMd6Gy6gq2bdthjHu4adMG2O322BqGYZivw3LIMMyoQcx+sn37LlyquIwnnliHqVMmx9Ywd4MvvtiL8rPnsG7dWjyyeKFRqsgwDHMjLIcMw4wKRFs4MTbfzl27MW3aFDzx+DqjWpS5e/h8frz73vsI+AN48cXnkZeXG1vDMAzzFSyHDMOMCjo6OvHe1g+M0qyXSFzi4uJia5i7SW1tvTG9Xn5+Hp7b/AycTkdsDcMwzBDcIYVhmAdOIBDAgYOH4fX6sHLFMhbDe0hJSREWzJ9rSOKJk6eMeasZhmGuh+WQYZgHipjJ40z5OVRVVWPWzBkoLS0xeixz3LtYvHgh8vKycfLkaTQ3txjLGIZhrsLVygzDPFAam5rx/taPEB8fZ7SDs9ttsTXMvaStrQ3vvvehMbj4luc3IyEhPraGYZjxDsshwzAPDFGN/MGHH6OlpRXPP/cMCgryY2uY+0FZ2XHsP3AIjzyyCGvXroaZpydkGIbgamWGYR4I0WgUJ0+dRkNjExYsmMdi+ACYP38eiooKUV5+DvV19Vy9zDCMAZccMgxz3xE/O3UkI+9/8DFSUpKNUkOLxRJby9xPuru7jerlhIQEYw7rpCRXbA3DMOMVlkOGYe47g243tm79EH19/YaQZGVlxtYwD4JTp85g9xd7MX/eHDz22NrbF/WrVxEelpJhHgpYDhmGua9EIhHs3XcAx0+cMoatWbRwfmwN86BQVQ2ffPoZ6usbsOnp9Zg2beoIByDXAHcvEJCBhCTAfrWlEl1W/G6gvx8IRgCzE0hKBuJIOn20bNBLO40ltcYBYopE23XtHaN+2nYA8AYAxQ4k07ZO2/DyqYWAgcGhtNfjoDzjaRsfHce1dZRBnGvoOAboGEyUdxIdG0stw3wNlkOGYe4b4udGzPH7ySefITs7C88+sxEm7gQxKugnGXv7na2wWi146cUtRi/mbyXcDXzya6AnDdjwEpAX62keJGE8uB3YuY/WeUgac4DHNgPrpgGH3gG+OElXH5I0M1lZ4SPA448BpSSXAiF7Vw4B2/YAl1tJHkkMH38OeJTSxQ3zWQk0Ajt2Ascqh54HSQbdQWDRC8CaImDvJ0B5Cwmog/apAI9sAhZmAh/sovymAFtWk9jyZ5BhroflkGGY+4aoRhbTt/n9AXzv5RdGJiDMfePc+YvYvn0npk+bivUbnoTNao2tGQ4VqNhGclgNzHgKWE/id7UErm4/8O5hIJ/E65mZwJ6/AY6SsD3xLHCapKwnG/gByWQ25W8ioSQhxVU/81QAP38NiJC4/ZDyPfd3wJEI5f+HwNJhpvvT6ThCYUpPf9UAUPY+cLgLWLEFKCG5/OejQMFy4Nn5tB86QPGaLCSJJ16nfEkkF5N4PkL5cukhw1yDeyszDHNfCIfDOHT4CLq6urFs2SMshqOQmTOmYQbFhUsVOE+iKKqbb4nWD5wh8dKiwKSCr8tV8kTgxVeAJ+cBdjPJGAmgKCEeFFXFJHGyqF7uBjra6a+o8r2ujKK7GeiNA3JJDrPSgaLZQJDyqO80arFvQpQG2uxAvJPyvkQSWgtkkggunESiSflrHto3yWN3G+1PVHOL+mzapmT6UNX12ctAgMtIGOZ6WA4ZhrnnaJqGiopKQzgmTZqIaVOnGG0POUZXiOGFli5ZDFdCAg4ePIzOThIylWRKE0J1Az5a10TSJeeQDN4w3aErGyguAhLpceNx4NQgPZ5D0kbpLEEStSpg52vA/++vgH/8CGjxD20nCLiBEKVRSODoP6Mto5n276Y8QkNJhiVKonf0czpWEsVFcwFRSx0gGQzTvq4cBN78X8Bf/w2w7RQtp/xS6LhTukgYK4CuyFAeDMMYsBwyDHPP6enpNUoNnU4Hli9bAtHZQbRo4Rh9Iea1Xr5iKcID/Ti77RPo50mmLp4FWptIqq6TOA/JmI9kLy4DcMSWXY/oVFJ/DHib5C86AVj/ODBrPvDynwP/918D/+d/AV5dRvmeAU7XxjYiREmguDRdLcyjYzKQpW+u+u26AJwne8xYDEzKogWUz9QXgD/9BfDvaX9//e+BJZTBuf1AHQmoRAedbqNk9NjnG8qDYRgDlkOGYe4pwWDIKIXq7e3HqpUrjOpk0QmFY/TG9AmleC4jAVP/+W8h/eh54PdIsv7qT4GyA0OlegKZ5EtWATU61PNYSJymDf0Vbf+qKe2b79OyGSSBL5OopQIREkaRXhYNDOnyE58EWJ20jLbTxPYUtgQSNgt9cEj0ovS8t4X+0voUkVaki+1Dv+6xqG+uP0fHRvJXXAhQFrQzyoOOQ1R7m2i5QvsRJZxx9NjYhv4ar0GkFc8ZhrkKyyHDMPcMVVVx/vwFXLpciRkzpmLy5IlGFTPH6A60NqK07hIKRRVvlCTL7wNOHwM+fhuorRp6c+NdFCR73nYK2sbfTetqgfYBoO0E8NZvgO5E4BGSQ60NaGgFLn4J/PxvgXd2U9pK4NJFEjkrUJRM29QDNc0kbzlAIdlm24Wh9oCXK4BUksXSDGCQRLG6Guih47n+MTxDJZsOB5CbHithHAQO/hr4n/8L2HMKqDoDXKHXYish0SRJVPuAZkoYzaJjGK7ok2HGL8pfE7HHDMMwd5X29g7s2Pk5XbPteOrJx43BlYeryuQYXYGqi1AO74HcReJ3PU4nMH0OUFAMWEisRJVwNwlX4UwgWA5s3UVORrIXJKG7eJI+ACRwp/YAe3eS5JHATV4K5IWA8sPAoaNAXwKwfDOwgETzw58Cu0k8S5YBU0jWqo8D+74AOkkwFz5DMRGo/GfgH7eTbNL+pQO0v32AXAhMIHk8Q/tEATB/XmxoGsojk0Sx+wpw9CBw7BItp+Pc8ASJJu2vi+T0NAlrLr2eBaX0eoxXyDAMwUPZMAxzTxDD1Xz8yTbU1NTimWc2YuIEugAzoxtR5ev1QN6/C6Z3/hlyHYnV9Ty+Cfi9f0UCN2noeS3J4EfnSc4eI+mabTTzGxFRUWVMcmkiIzOGsNGAsx8DbfRkJuWVa4MxRE2YQlT9mmMZd5OAHmoDckjyFuUNLRsJIdGThfYnZn4RpYp6mITxTeBkEFhK4rlAtFFkGOYqLIcMw9x1RHVyWdlx7Nm7Hwvmz8O6dWtia5hRSVRIoRtSSyNQfgLSySOQm+qAvh5Ifh90SYJHNkH643+HuN/+Q6NDkYHaC3z6Ad0JZAJPbABS7rSlkh+4QvuW4oGi3JgwDkNrJeAjUcwsBhJGaqLDEG4A3t5JMjsFeHoV5RVbzjCMAcshwzB3naamZry39UPExTnx8ktbYLPFZs5gRhdqFJLXA6m5AdKZY5BIDLWkFKhrN0DXNZg+/ximE4ehWqzY4cxA5Mln8ehLLyEx4Tqb8pEg9gWB+BTANUbeZ38PMKACcUkkhlyfzDA3wnLIMMxdxev14oMPP0FTcwue27wJhQX5sTXMqCEqpNBNUlgP+cxxyBfLoaemI0pSqJZOBkzmWELA8sbPAbsD+wqm40DZcaxYvhRr16yC2fxVGoZhHi5YDhmGuWuIQZTFsDUHDh0xBlMWIsGMIiIRwDMIqbF2SAorL0DLyDakUBPtCMXA0zdgfu1nkOx2BF74bWz95DO0tXfg+c3PGD3Pr1UvMwzzUMFyyDDMXUH8lNTV1eP9Dz42xjJ88YXnjN7JzCggEobkcRtSKJ06ClRdgpadB/XRjdCKJ9KV4NaSZ/7130EmOVS///to7+nFm2+/Z1Qrv/zS80hOTo6lYhjmYYLlkGGYu8LgoBtb3/8Q3SQQW55/FlmZGbE1zINA/LRLJIVi2jm5oQbK6TLI9TXQ8goRWbseWuHIeo9bRMmhzYbI935MpmjGyVNnsPuLPUZHIzE8kdXKNwAM87DBcsgwzHdGzMu7Z89+HDt+EqtXr8CihfNja5gHQjgEDPRDqr8C+dRRSI110ApKEF39JLT84liikWF5XVQrO6C++hOSQ4vRdOCjj7ehtq4ezzy9ATNnTocs83wKDPMwwXLIMMx3QvyEVFZdwcckDHl5uUYnFDEFG/MAEFPbuQcg1VZBOn4IelM9tKIJiK58HHpuYSzR7SE6pMhx8dC+//tGyaGgp6cHv3nzXaPZgOiNnp6eZixnGObhgOWQYZjvRF9fP9597wOjl/L3Xn7BaG/I3GdCIUjufkg1lZCOHQTamqGWTkF0+aPQcwpiie4MQw6dcVBf/b1rcig4e+48PvtsJ2bOmI6NG5/i4YoY5iGC5ZBhmDsmRFKy6/MvcObMWTz22FrMmT0rtoa5L4SCkET1cW0lFCGFXR3QJk1DdOlaaFm5sUTfDcsbv4DkcCD6iqhW/koOxRzMn23fiUuXKrFhwxOYP28ulGF6OzMMM/bghiIMw9wRQg4qKipx9twFTJ400ShBEveaHPc+EAwAHW2QTxyBieTNtO09aCnpCP/unyH8/A/vmhh+na8fgxjGZsXyZXC5EnD4cBk6O7ti6RiGGetwySHDMHdEV1e3UZ0sOqN87+UtSExMjK1h7hkkhdJAH6QrFVDKDgD9vVCnz0F08Upo6fdmfmDLb34B2eG8qeTwKpcrq/DRx5/SDcIkPPvMRjgcjtgahmHGKlxyyDDMbRMMBnHg4GH09vYaA127XC6jJInjHgSdb4nOt9zRalQdm371Uyg7PoSaX4zQT/41ws98D1pmDv2a08/5vQjjCOj/9Ge445syeRJmz5qFy5crcfrMWUSjqpGeYZixC5ccMgxzW6iqipMnT2Pnrt3GMCZPPL7OkATm7iOJ6uP+XsiXL0A5ug/w+6DOWQR1wVLoKemxVPcW829+YQxlExFD2Vw3rd71eL0+vPX2u3TTEMJLL25BYSFPmcgwYxmWQ4ZhbouWlla8++77EHPrfu97LyIuzhlbw9wtpIDfkEKp4jzkw3uAUADq/GUUS6Alp8ZS3R8sr/8csuiQ8v3fu6UcCqpravH++x+jqKgQzz+3iT4XcbE1DMOMNVgOGYYZMT6f32hfVltbh82bN2HihJHNssGMANHJg6RQ6u0CLp0jKdwHPRqBungFtLmLoSc9mCGCzGIQbIcT6rfIoeDLPftw9OhxrFmz0uisYjbzeJcMMxZhOWQYZkSImTGOHj1GArAfCxbMw6NrV8XWMN8JTTOqi6WeTsiXzkIWHU00HdElq6DNXgg9MSmW8MFgfuPnhhzeqkPK9QQCQaNUua+/Hy+88BxKS4q5yQHDjEFEa2OGYZhvRNxDNje3oOzYCWRkpGPpksWxNcwdI6TQ64ZUXw1lzw6Y/v5/QD6y3xijMPRH/86Y1UQjMRR37w8ybge73YbVq1canVL27z8It9sdW8MwzFiC5ZBhmG/F4/Vi/4HDRi/l1auXw2azfm3MO47bCFUF3IPGbCbK7m0w//3fQj5+CNFVTyD8J38BddlaICFxqJfyKAjBsK/jFpGfn4vFixegvr4RR8uOG0MdMQwztmA5ZBjmGxEX9xMnTtHFvh6LFi1AYcF3m45tvCJpGiTPIJSayySFn8D0D/8D8qkyRB7bhNCf/gWij6yE5owbVrgeZIjiQ6Nq+KopjoDF9DkpLi7EyVNnjI4qRj4Mw4wZWA4Zhrkl4qJeX99gXORzc3OxaOH8r4kDxwgiGoE+0A9cvgB5+wdDUnjuFCIbtiD0Z3+F6MJl0B2ju2fvsK/rG8JkMmH1qhWQZRn79h1Efz+9foZhxgzcIYVhmFvSPzCArVs/Qk9PrzELSlZWZmwN862oUcDrgdTcAKn8BOQzx6DHJyL66Aaok2cAVlss4ejGIjqkOOOgvvp739oh5UZEibOYe3vBgvl48ol1sFqtsTUMw4xmuOSQYZhhCYfDKCs7gZbWVixZsojFcKRESQrFFHdijMJP3oX8q58CddXGnMehP/1LRGctgE5iKO7Kx0rcKXPnzjZmUDl79hwqLlca83EzDDP6YTlkGOYmxEX8SnUNysvPGsORLJg/N7aGuSXRSGzg6rNQPn4byms/A1oaEHnht42OJtoMOocWq9F+byzFbTU2vAGjenn1Stjtdhw8eMQogWYYZvTDcsgwzE309fXhwIFDxiwoa9esMi7yzC0gKZT6eiBdLIfy0VtQ3vh76N2dCH/vJwj/MUnh9DkkhRb6taWf27EYhiASd+iIqakpWLVqObq7u43PlOjxzjDM6IbbHDIM8zVCoRB27PgcZ8rPYv1TTxhVg8zNSKKkUAxJ01gLnDoKqeoStKxcRB/dCK1k0ldSNcax/PrvjOnzRjJDyq0QJdGffLodFy9WYMP6JzB//lwoihJbyzDMaIPlkGGYa4iLeHn5OWzbvhOTJ07Axo1PQfQ4Zb5CioQNKZRJCqUzxyDVVkHPykN07XpoRRNiqR4ezK/9DJLdjuirP7ljORQMDAzizbfeNZz55ZdeQHZ2VmwNwzCjDZZDhmGu0dHRiXfefd+YKu97L78AlysxtoZBOAQMDkAWM5qcLoPUWActvwjRVY9DzS+JJXr4EL2VZbsDkRFMn/dtVFRU4uNPtmHKlMl49pmNcDgcsTUMw4wmWA4ZhjEIBALYtm0HLlyswKZN6zFj+rTYmnGM+Hm8TgqlE4eB5npoBaWIrnwMWl5RLOHDiyGHxlA2Qg4tsaV3hrjc7Ny1G6dOncETj6/DkiWLuXqZYUYhLIcMw0BVVWNMup2ff4FZM6fjyScei/VUHceEgpDEkDS1VZBFm8K2FmjFExFZ/ii03MJYoocfQw4dTkTvQsmhwOv14a2330UwGMJLL25BQUFebA3DMKMFbkzEMAza2tpx5GgZklwurFi+bFyLoURSKHe1Qz5dBuWtf4Ly6XvQ4hIQ/u0/QfjlH0EnMRRnZzyFwbUH3424OCdWr1oJn8+HffsOwOPxxtYwDDNaYDlkmHGOuEgfOHgYg4NurFq5HE6n42tToY2L0DToAT/09hbg+GHIr/8Cyrat0JLTEP7dPzXGKtRy8kmQyJDGW5AVDp2jG87Zd4jSUjF25jxUXbmC48dPGm1cGYYZPXC1MsOMY8RF+ciRY9j9xR4sXDAPjz/+aGzNOCIYhCQGr75yCfKxg0B/D9Sps6E+sgpaRnYs0fjFmD7P4byj6fO+CTHe4dvvbEVf/wBe3PIcSkqKyEWFjDIM86DhkkOGGaeI+8LmllYcO34CmZnpWL58qXFxHjdBciK3t0I5fhCmX/9vyDs/gppXhNCP/hUiz3yPxfA6hs7Z1b93J8SsKWvWrDJuUPYfOAi32x3bG8MwDxouOWSYcYrb7cEHH36MxsYmvLBlM4qKxkkni2AAUl8vpKqLkI/sg+TzQJ27GOqCZdBT02OJmKuYXxclh4671iHlRg4eOoIDBw5jxYqlxmw8YlYehmEeLCyHDDMOiUQi2L//IPbuO4jly5dgzeqVsTUPJ+JnTgr4gb4eyEIKj+4XY/dAnb/ECC0lLZaSuRHLaz+DfHUQ7O84lM1whMNhvLf1Q3R0duG5Zzdh8uSJRskiwzAPDpZDhhlniK98dU0t3n//I6SkJOPll7bAarXG1j5skBT6SQp7uyBVnDekUCcZUR9ZCW3eI9CTUmLpmFthFtPnCTn8DtPnfRti8HUxe4rL5cKLLz6HlOTk2BqGYR4ELIcMM87o7x8wSmq6urpIDJ9HdvZD2LZOlBT6fZC6OyFXXoB87AAQiSK6ZDXUuYuAxKRYQubbML/+M0g2ByKv/vieyaHg+IlT2L17DxYtmo8nnngMtof2hoVhRj8shwwzjhBVeKJnctnR41i7dhVdiBfE1jwkaCrg80LqbIdy+QKUE4eNktLosjVQZy2AnuCKJWRGitFbWUyf9z2Sw3vYHlB0TPn4k89QW1ePZ57egNmzZ/K83gzzgGA5ZJhxgqZpxty2H330CXJzc/H88888PI3/1SEpRHsL5AtnhqRQMSGy8jGoM+ZBj4uPJWRuF+sbv4DkvPtD2QxHT08vfvPmu3A47HjxheeQkcEdhBjmQcByyDDjhO7uHrzz7vvwkkR9/5WXkJ7+EFx4NRWSKClsbQJICqXjJIUkMNHVT0KbPhe6My6WkLlTLK+LuZVJDr//+/dcDgVnys9i27adRsnhhvVPwm63xdYwDHO/YDlkmHGAmMd2x87PcerUGTz15GOYO3d2bM0YRRVS6IHc1gz50lnIJ49At1gRWbcR6rQ5gMMZS8h8Vyyv/R0kq/2etzm8iijh3vbZTlRUXMZ6ksMF8+dCUZTYWoZh7gcshwzzkKOSSJ0pP4dPP92OiRNLsenp9WP3YqtGAY8HUmsj5AunYTp7kkQwjqRwA9Qps6Db7LGEzN3C+trPAJsNkVfujxwKBgYG8dbb79HnVMaLLzyPnBwekJxh7icshwzzkNPW1m5MUyYa/P/g+99DcvIY7Kkr5t71uiE1N0A+fwrS2VPQ4hMQXbse2uQZgIV7tt4rLKK38j2YPu/buHipAh99/CmmTJ6MZzZtNOb8Zhjm/sBdwRjmIcbv92P/gUPo6e01BrpOSnIZvXfHTETCxsDVUsVZKJ++A/n1n0NvqEX4uVcR+pO/gDpzvlGdLO5wOe5d0Jtx83tzj2PqlMmYO2e2Ub185kw53R+o4kgYhrkPcMkhwzykiOrkY8dOYPuOXZg1awaeevLxsTM0SCQCeAYhN9VDPnsCStUlaKnpiK5+CuqEKQC3QbtviA4pkt1+z4eyGQ6v12tUL4dCYWOw9oKC/NgahmHuJSyHDPOQ0tTUjLffeR8mk4Lvv/oyEhJG/3AukpBC9wCkpjrIZ45BunIZWkaWUX2slkymBDyt2v3m2vR593CGlG/iSnUNtr7/EUpLivHc5k2Ii+Me6Axzr2E5ZJiHEFHi8uFHn+LKlRps2fIsJk+aGFszOpFE9fEgSWFjLaRTZUBNJbTsXKhr1kMrHt3Hfq+5+gP9oLT4WpvDBySHgi+/3IcjR48ZA7evWL704Rmfk2FGKSyHzJjl6ieXC5O+TiQSxaHDR/DFF3uxcOE8PP7Yo7E1ow8pHIY02A+poQby6TKSwzpoufmIrnwcWuGEWKpxih6FN+zGYFRBnCUBiebYB12LwBtxozvih4+eWqU4pFvikaBo8FD6vmgIkaGUsCsJSKZ1jm+shdcQCA+gM6rDaU5EmtkENepDn8iL9iV/9i6S4rOQ9Mz3EdD8lH8Q0diWArOcgBSSxpDqQb9Kkm9gQhzllWx1wDLs91NHiPbZG/LCH1si0etIsdHrlMLoDw2gJxpGVLJRHi44VQ3vvvsmuuiYVq9/DOlp2UiyJCHN5oQc6UdPyA2PdjUjB1LsCXDqXvTS4dhtLiSbuRkCw9wOLIfM2IMumn66GPSHdNityUi2Xb36aAiHPegNDGCAPtYmJZ4uHi646MKg0wVtMNiPLvobhgWJ1iRk2OyQInQBCQ6gT41Al6xw0fI0mwNy1IO+QB8Grl1wbLSNi9ZZh+/FpYXhpXw6wz4E6MIYb3YhXQyrEnXT8XiuXQAFkuxAki0R8bS0LzAIz1XJlZ203IVUi2lowQ1ESQj6Av3XHZMdLsonlZKLfQtZEPse6OjHvk8+Rzzls3HzY/CbQXuSYKXzkU6vIVEh6aDz1xsJ0LkYQqxzKSb41SB0UwIyrJZ721stHII0QFJYXw2FpFBuaYCWX4zoiseMvwyghpqxu+UQLkZz8VjeMsxyiHeEpMpXhz1th/GRuw3dtCROKsCTmcuxPiGM/W0H8OlAD8xmIWUSihIW46nMeZh8q46+ukpi2IlDLTvwjwM2rMl7En+QFo+W7mN4v+00jqkhhH2tmJa0At8rWY6BwTPY1dOIftpUfB67IyGkuR7F913xONt3FHv8ARJVK30KXZiVsQxP5k5BjmVoV1/Hi4t12/Bu00W0KImIM0lQrLOxKXc2Jkcv49OWkzgqxFhzYXb6SrySW4Dmxj34u9qDqCH5zXBkYkHeBrw8cTFSez/Fa7XHcVlPNL7rME/B0yWLMTN8DK81eZFf8DhezsuClbtfMsyIYTlkxhxqsAUHa77AQXcCHp3yDJYmDZUKRMPdON+wFx81naELBWAyleKJgqewJS8V/t5y7Kjdj92+fvQhDqXJy/FbJVNg6z2Od+qPo1wnOYQTU5OX0QVnCTI9h/B2xTYcVlOQJmTNVIjl+SvxQmEebh40RYV/oBJfXtmNrX1tGFCcyHHMwXMT5iM7dAE7q0/hCqXSVT96Qx5EbHPx8qR1mK+ewFuXD+KykoxEk0wXxylYV7AGm3OHG2pGQ1vL53jz8k4cVZNjx1SEVflL8GjcIA5W78Nnng40qCZ0VfdjBdLww/nT0aA3YJunC33kz3bTBGzMfwzPJAVxqP5zvNPVCpM1DlZJRp5rEVY6HSjvOY/uhEX4o9JpSKML9l0nFAT6+yDVVUE6cQRSWzPUoglQl62FllcUS8QAEbR1fIl/6BxERsZa/G5mGt3SDC2vb9+DNzp7kZ65Gq8mhvFF42fYE8zDxsR0HHVfQJttFv5l5kzkmSX6DphhIWFShn0rNQT8rTjRug//2HMGx5W5+FeF6/EHLj8+a/gMe3052FCwEtldO/D/dYcwe8az+FFmJqJRujtRfWho/xy/6uxBRu6T2CRX4WdN1bCkrcWf5JQiSZZgtphhNZuhDCdl0SbsuPwhDgxkYjXJ22IX3XQpFpj8F/Dr2i9xxTQbPyyZD8vAHrzdA8xJSIPXcwGfN3uRVBvB3JQu7CVhLJi4BmvDJ7Gj3YoFhRvxdFoi5aPAZqXXHWnA1ks7cRET8czk1ZgTP/xNF8MwN6P8NRF7zDCjH5K4nq6T2N7Shkj6WrxIIjX0k6+hs+MI3q45g4HMLfgvUxYg3n0W+wcGkSpZcKFtL/ZEC/CjGb+FF5M0NPY3o90bQIf7CqriluA/zH4VT9p6caCpHFeUNBSjHsf7FEzN/yH+j0lr8Fj2dMxKSoR12CudH/XdZ3CwR8fs0t/Gn2c5cK7tJA7pmdhQuAQrMxZhXfYCLLBb0O/3wpo4G8/kpKKj7zQueNPwWOlv4Q9KVmBd1lRMSXTCNGwNmBeN3adR1mfGzIIf4M/poiiOaYbDg2NNX2KHOxGPTfwdLA4P4oqnBlOWzEdugkrpZcwv+S38h4IChAdO4ZAniAzYcGagDk2ORfg3k57HlpxFWJJWiAJXPKyhOtT0tSPkmIhJTvNda+cmhUKQ+7qHZjPZ9Qmk02XQMrMRffolaCSGcCVDkiSOqxFpw+GuM2hSM7A8fRaK7HJsnUbviQsT4iZhnisdcSYPaj30XkYSkCKHURvsRMSaiak2BQFEIVmscJosJGg35G9EiL4H53HBF0WyLNTTivzESVhop++HkacJLocL0cErqAvJKMiZidnJSXDQjYnuv4RPWi5gkG6Cns+fBYePPlv9PYh35KPEosMj6bBY7bRvZdjPkO5txqGOy6il11IUlwRZ9iEiqqYHT+ODnl76PBRjuoO+2fZ8LKP9zopPRrqlGCuLHkG4owc1vTVoSk5BfrILFrpZbAjYkROXAYvih08x0THaYLM5ofgqsLe7F5qzALMS43jsNoYZISyHzNgi0o5TbWU463NiZd5yTIq7+nPvRVPvGZzp1VCavQarM+zwBxtR2d0PX0RDi7cOjc5JWJZogWpKw9zceViWnI08WzGWpU9AcbwZ3sEanOrvBOJykKE14dxABOkJBUhUfBik3dgtDtiHk0PdhHhbEeZmTsNEu4pudw3ODA5Cjp+A1SRALqsZitqCI62HcTyYhnUlj2KJpQcn2y7gTNiGovgMmGUPAnQhddJFzUoX8puI9qKi6yxOD6rIiM9HAh2Tm9KZfM3Y0XYFF2w5mIgIju47jmKtAD9ZuAGpSjpKXRMxPSkJlmg3rgzUol1LQo6io8pdiz5zBqZbZfijpBF0QbWbnLCGu7CvtwGVUioWJ7pg1jRjOrM7joAfemc79HOnIG3/AFL5CWg5+YhufBHq4pXQExJjL5C5Ho3k7JOeJnTYi/Boah5iheOEKBWLQ5LDAYvuQ23nCWzr64M9cQbmWQIkSXVojfrR563Ap53nURF2oDguHcnDFh2akOwswqy0AjjDTTjl05CdOAHz45NgjrhRNXgRh/sv4Ki/BklJpXg8czbSRRONSB9ON+3BZwMWTM9ZijVJQHt/HU67W9AddaO19yTebr6INjWJJDYJdrpxu/FzEfG04EB/A06EPAgFqrC/dQ++6AlBDfTgiv88znk60dpfgY9bjuG4G8iJL8FEEsEk+rw6nF7sk1tRH4nHs/HpkPV+nPENwBNpxom23fi4ox92WwEmxMfDHminfNsw6MzC/OR0OO/W3Q7DPOSwHDJjCs3diC9bKlBuKcSG/Ml0sYqtIDls7ruIs30qctIXYLaLZM9dj+M9vegUZReh0zjs6UZ3/2XsbD2GL3v9yEmehlkZqUi2Aj66EO1pPoM6PR9PpZbARGJ52NMHd7QDF7v244OWegRNxZiRGIer/QKuIUlQTCZY4UNrx3G8WXcEl/U0rM1ahDkJTpgRRkv7EbzbVA+QuL5amAu7vwMneqqxN+BGJFRHF7UvsY0uag77BLqoWUkBbiDQi0pKf8RLxxTpwPmuffigtQneoIb+0EV83nEJF1pOoDGxF2pxKVyuGfTa0pEeHwcLBlFFx/VFrw9JmY/gEbq41g5eRpMagMdXhV3tp3E2ZMeE5AIUKkFUDjTReXBgTmopMq2KMdXebUckDFNfN5SLZ2Ha+RGU86ehFU0YksKFy6DHJ8ReGDMcPm81dtP50xJKsZak5uuDt+iIkIRVdx7Bm11VCDoW4HtZszEjLhUTnHOwMesRbMoqQUq4HocHBmGyFWK245tmkImgy12FY4YcTsQ8qRWftp3AJakEL+Y9gSdCfhzr7kVvEt0ApaTD4rmEj9suwe2cjWfyZiHPbkOCKQOzXIuwsXAlns7KhuQ9j3IPkJEwmT7Plps+HyZzAoptU/A0yeUzpUsxXxrEwU66gYv00DfZhgnZz+MvZz6Pp8zd2NdRhz5HHhYlJSBE56WsswznQ1GYq32YqyRjyYTVeDRvFTZNXI11tihOdF1CtZKC2Um5SAt3Yl9PM9yWbNo+F0lcs8wwI4JL2ZkxRdDoQBIBrElIHKaRPXkaXTpFM1oNqq7R/+kOSCyEC1PSn8S/feSv8Itpy1Hgv4i32qvhVoMY6L2Az6r3YK/XhaXF67Amvxjzcjbhv876Y/z3R/4U/8+0p7FI6cXnPedRd7UHx9egPWq0PzkeeVnL8eOJj2Gh0obdLUdxzqNBD7TifF8DPOYiPJk8Eel0OIqzEBsLXsFv5vwJ/nbZn+GvJ69FHknitt4q9MZy/Rr2DCzIpWOaOXRM/3XqRsyTu/Fl/0WSPBlSjxVzGgvwn5TJmKS24uPui+jQdIRDvbjUtBdvt9QBKcvxUs50TEqZhx9O+hf4+ew/xn9d+Fv449wMeHvPY2/3ICSzHdmWCJJC/RgMDlcV+Q1BhykFA0Y7QvnYQci//hnkHR9AyylA+Mf/EtHNr0LPzqNfHfrZ4fjGUGQT/ZHoM6xDFT/TdH7Fp1qnv6rqRmXHfvxz5xVE45fhx/mLMDNeRpAkL2QSjW1l6Iod8fRe2iQd0WvfCMojls/Q46v7o3dOvHkGEgLBHlwOKbC5SjAjrQALvA7kdLeinm5QeiI6Oj0NqAgoSHDlIj+O3nc9TPsOI2Kh4zbTZ9HmhIsijvKiTz99N8SMJ0O7uPo4qgXhMdHx0jaSJHo2xyPOZINVssBqSkWqLR6JFjNc5kS4ZAURjb73dAP36ZUvsd+fjmen/h6eyZqDS1U1ONXWQvnQDRrtwE75WE0kwvTdFy9UfC6HdkxPxAtnGGZE0C8Dw4wdZEkx2k+pehSqMD/60Rdipmlm2GQ7LQhjMBqkC6gP/WG3MczGVHsqbOYUJFldSLEodBFKQCpdiNTIINp7yvHBlZ34PJCG9ZM34+X8DFi0CHw6hVVcpMlDTU44LE7alwra8dD+jItN7LEawoCnFVd6O9AHG3IySjE/NQX2QCcavWEEvG04O+BGf3wBJrlsxuswLo5yEAG6OOr0NRRVuolmB5RYnqpxEf3qsRaJ0jFF4Y8dk43S2ym9kAZZckIZlDEjuxQrHlmFOIvNkOh+dwfONuzCa821MKc/jj8sXoAJ9giCWggBWSWBoJdDF2OHyQG7TCJJr492RTJC51dotZBr49x+e+h+H/SWRuDwXki//Cmw4yNEC0tJCv8VIhtfgJ6eZZwvjpGF3UyfUTMQCrkxENIRIWGr6WtCva8fzd1l+Of2s2iylGBRUhoCajMqfS0437Uf//PKx/jHtou43F+Jcz4vkmwZmELC1uVpQdVAN/qDvq8eR+jzHNsfOaThUPQEZhKyfAt9k3zNdFPThNMWHwZcacizJiBB9qGXjglSCoqtqXCJz0i4B+eaP8HfXvgQ7zVVoqLtEs4MhmF2ZiALHtT21KPaPQivj15D7HFH72n86tKv8N9qDuJw3xWUDTQhRN/VRWmLsMiuoIeO/1hXDU4MNiOiJKBIG8DBhm14fxDIy5yIgjg/cuZNQF+GCf/29D/j/7iwE1901ONoTyX6VCuKE9Lhsup0g9ODYNSEdKeLhNV4gQzDjACuVmbGFCZRnTZQj8qIHXOTJtPFx42W/ja0hCxIJDG80l+DS7oZuejH+fY6dFlL8FT2BFgiLaj0e+Ewx2HAfQHl7hBybEnw9OzDe4MWzMldgXlJUXSEAvAP1uHzuo/x9+2tJIZJ8LrP4WhvD5JSF2Kty0QXrnZ0kow6NC+ae9vRRSLWTvm8VnkM1WoiUiLNONbZgF5rKdZmT4bVfw57OjtgS12CzVkpRq/Twd5TeK1iK94Z8MFlN6G99zzOuDVMSJ2FaYoXLR4/eZ+CgL8DDfQ44m/B9tr38Q8d7SSGLrjdZ3G0r49EsRTJoU74k+2YNmkeZL0Vxwc9SHVNQF6ILsD1Z9CTOB9PZeUabbPcdP6au47il1WHcDpiRia6cbarGr3IxrLM6cgn0fi8swkNthI8nl6AlG+ohjMGOiApRGeb0ZZQ3vYepMqLUGfMQ+TpF6HOmg/dybNZ3BF0AxDy16EzICHJWYzE4Bm82VGOajrlqtqLi6F+1GudKKPP8q6+C7jkd2KmYyJKzT0kZhdxgGRrQM6n93QhHnEGUNa6DW/39MNpike35yh2DPoRZ8tFvk00YNDgDnahRbWhIKEI011ZyJLDaPFexl7K+1R/NbKTZ2JL8XIUOAJocbfAjwzMTJmIfBI5KHFIls0IB2twvPcs9g60I2KbgU25CzFFv4BfXNmFQ0E7CunWaUfbYZyJOmjb6Zho8pLwnseBrou4FLJhduYKPF04m2Q2gMb+yzjUdRYVISumZ6zAI6Y+nPDW4TzJ5hVvBXZ1nsEBjxtJehqK6DPY4r6EKu8lnItImJi+Ci9mT0GuJYy69jKU+2yYlTkfCxLsXBrCMCOEh7JhxhaRbpys+QQfdKiYP/m3scFaiXdqD+CMdQb+uGAGwr378Zums6jVTEgmMVyb/zg25yWir/Mk3qs5iKPBMByKA3kpy/GoPYCDbdvx4dURgwVKMTblrcZLji5sE+nDYVglG3KSHsHLRcuRGziAn146gLb0jfjTjBC+rDmB3rR1+J00M87X7cL2gT74YKIL7yRsLHwMT+Y40Nq2H281dSIp5yn8fl7a0H5I0q60HMCbjSdRoUq0j3hMSluNV7MyUdf6Pt7rtmFt4TpkRg5h54ATKwofxSytHG/XHsZxOiaLZEeqYy7iL3ngaz0EbW4CumyiVNGJzMR5eDE5A20DB/Cz3jpjLLwhZMxKXIHfTp1MArwXW3ta6FIrIcFciGW5a7E+JwOhji/wT7VViGZtwJ+VlsCpaxiM+NEVGkBAi8BOEpBiiUcyXYQVEmbp8nlIZQeAYBDqouXQ5i+Bnpwa2x8zHD4thPbQIIl6wHhukmRkWl1IN18/vaGGzs49+HlrO5LTV+P3cvLoMxJb9S1EI1GougTTtSFsIqht+RIXAg6UZq/EdKeR7Nuh9z4c1mB+4+ewJcRB/f7vf/PcyrqKUIj2TTc1VovJ2LceaqTvyBV4nYVYWTgBybGk14hEEKLPv2QyQYzOdA2N8opokGQFFvOtlU6UWn/8yWe4cPEC1q17DIsWLoTdNnSMUf9lfHRpN2ql2dg4aSWmjf7ZIxlm1MByyIwxNPR2HMKvqs5gIG09/s/JE0lYYqtiqFG6QEV1yBazaH71FXQhiURUaHQxtlpu6vJxM2oUYUqvy6Zr6TV3NXY31KDFPgUvTyjE166zxsU0gqgmw2K9Yd+3go41HNGhm8SYcPRcD6OxaR9O9/qRV/wsFriGkl0jdkxREr2LF87hk0+3Y8rkSXh20wbx8ujsiNc2svIRVUiESj4sLuRiE7UHx+t3Y2+fGQtLnsbaFCtagr14v7UMrzfvQ62/E6XOTLzomo3vdZpReLiMLu5hRB9ZBW3OYuhJN136mWH4su8S/kvDpzjhrjWeJ5js+HH2avxx7qNIs1zXUSfYir0t5WiQcrA6dzaKRmqHN6IOoqavH6qonqX3aPgZS26NMX2e3XFHcyurniZUDqoklzkoSRh2NOzvzMDAIN74zdvG45deeh55ubn0SEdf8278qtWN7LyVeD4nPTZOJMMwI4HlkBl7BDtwrP4YTgUSsXbSKky5j+NTBAeb0TjggZw0ARMSbu9COSJUNxq6u+HR4jAxK+OWpUWtbe14552tJLsRfP/Vl5GUdKNF3j6R/ov4sKkK7Ymz8GpBKVJp32+1HsL/VfUO2oJiTgzAqkuYMBjB7/UmYmPeUqizF0JP+O77Hi8EtTD+Z8tu/GPb/tiSIRJJEP+i4Gn8Yc7a2JIhwoE+dAWjsNqTkWZ7MF1tLW/8HBBy+OpPblsO7xeXKi7jww8/wbRpU/HsMxvhdFrg7u+FV7UiwZWEOO6lzDC3BcshMyaJ+PvR7fZDd6Qj515I2ijG7/fjk08/w/nzF/Hss09j5ozpsTXfBQ1Bbx/6gzps8WlIspKnqlH8j9pP8R+uvPe1jp5mScEy10SscE2OLWFGSnWgAwf6K9EaGpLtq4iq5b8kOfzX+U/FOoaMHoQcSg4n1Fd/75urlR8g4jK2Y+fnOH26HI8/vg5LlyyGycRGyDB3ysjqnxhmlGF2JCE7M2fciWE0quLMmbO4cOES5syZjenTpsbWfFdk2OJSkZVKYmhSAfcAQlXnoNZfMUoLr8cqm2CjC6+iaBy3GQk2E+KsN0uLQnIoywqFDGmUhegRP9oRQ9asXLEMaWmpOHr0GJqbW4Y6TDEMc0dwySHDjCEaG5vwzrsfwGSS8eorLyMh4S62sldVSD4PpNYmyBfOQDpVho+Sg/jPcxNxRSVZ1KJGstkJufiTgjVYlTzJeM6MnEatDT9t3ItPmi8bYxgKSMEwyZmFf1u4Ec+lLTCWjSautTl85SejtuTwKlVXqvHeex+itLQEzz/3zN39fjDMOIKHsmGYMYLH48Wuz79Ee3sbNmx4Erk52UaJyXcOTYPsHoRcXw35yD4oOz8CBvoQefwZZD76IjITMg0xjDeJmTDsmB6fhVUpE5FkFuNKCsHhGGlYdAsaA/3oifiQaXEZUWRPw+9nr8GL6YsozehDOXcKMkmhPns+JEUZ/jM0SiI1NQXBUBBnz56DzWpFXl4uxIwsDMPcHlxyyDBjgEgkikOHj2D3F3vxyOKFeOLxR42L4XciGiHjdENqbgDE3McUcMYh+ugGaFNmQrd8NeWaTw1B0zW0hvrwZucRJJpteDFznjGrBTMyxMDpZz3N+LCjHHPji/BY8gxYZDMyLKN7fmlRciiLNoeit7J59Pf59fn8+M2b72BgYAAvvvAcJkwo/e7fFYYZZ7AcMswoR3xFa2vr8d7WD+B0OozqZPH3jhFS6BZSWA/57AlIFeeMHseR1U9CmzgN+rcIwL6BCnzcexoLEvOxLmUKLBI3/B8JvREv3mw/QZao4HcyVyDPlhJbM7qxvPELyE7RIUVUK4+NAWHq6xvw1lvvISc3xxDEu9Gbn2HGE1ytzDCjnMFBN3bu2o3u7m5s3PgU0tPTDGG87QiHjepi6cplyAc+h7J/l9HOMLJ+C6JPboaemQOYTF+rphsu0qwJaA7146S7Drn2JKRb4+g2kw6U45YR0CP4ou8yukJePJ02H9Picoc9t6MxTOdPGZ8LMfONLsvDf7ZGWbhciYiqUaPzlpmOvaAgn6uXGeY24JJDhhnFhEno9uzdj337D2LF8qVYs3plbM1tECEpdA9AbhoqKZSrK6GnZSCy5imopVPoV0AYzO1RF+jCb9oPw2qS8ErWIiSMoupl3ehdrd/Jy7oniI4nxwfrsb37Ala5puG59IWxNWMDa6xDSuR7Px71HVKuJxQK4d33PkBHR6fROWXq1ClGb3CGYb4dlkOGGaWIqcEqLlfigw8+RmZmBl5+aQus1q/aAX4rJIXS4ADQWAv59DFIdVXQMrIRJSnUSr77GIVHBq7gw+7jmBqXgSdTp8MmP3hx8IUkuCOAw6oj8YbD0VWgLyghJOtIJpe1kTyGwhL6Q7Rd7FdQIndIEtvS30FK2xsFopQukZal0qmX6Ul/EOinvESJYJJNR5IFuGWZlAY0+SP4u+YziNLjP8pfiukJLgiV9oU0dJG3e2nfVkVCOh2QOOZoWEdPSDf2IVwmxSoj2SINTYVHP9feoEbrJMRbJbjMtzbgSFhDL+Xjof0aUNJk21BeYis1oqEjSDs3y8igfZs0HYN0TH10TEP90ukc0bqsd38Js8WG9ud+gAHZBLNC6R0KXIqOvoCGMJ20JLs84un97ietrW3G7CkpKcl46cXnkZrKUzsyzEjgamWGGaX09vZi+45d8PsD2Pzs00hOTr5W1fdNIUcjkPp6IVVehLznM0hH9kETQ5FsfAHqmvVkNCnirvA7R6YlAd1hL44N1pA4xSHDmmAIiCi4exARDcs4Wq9gXy/JXKKGdJK2q+tUkqmeXgVvVSk46AMKkjQkmyTUtZrw3mUFu7olXOiRcdYjkRABcUFaVivj/RYZX3QoaIpIyHICgT4ZH9co+LBNQlm3gn6yqPR4DQmmrx/L1RhwK3izWsax3nwooRK0+s1wkUilRFUcqAvhl/VhfNYZQVmnmJNYQgFZY0t7CK9XhfBuewSHO6IYIEnMjZPhkkj0fBHsrA7ijRYVVoeMyXbjDn/YaKN8XrscxHuUz/meKI73qbCQGBY7JegkjjWtIfz3ihAu0ps2K0lGXCCK7ZT3P9WEcZzSn+qKgDZFenMALYMJ+KWUgg/o8eH2MDTFhCKrisOVbuzu1ZFChpwppPOGz+KDjoSEBCgks6dOnYFK8ltUVMiDYzPMCGA5ZJhRSDAYxJd79huDXT+6dpVRJSYK+b8xQkGgpwuoOA9p96eQjh2AFp+IyIYtiK58HLorefjt7jDE+HwpJidqA92oCXai1JECG0mDDu3+Bx1PF8nabpI8R1oUa1JVOrrYOlVHa7eMbQ0mfDIIWOJVLEqJIonkoaJTQW1Yx+qSCF4sjGJZehR59Mp2NJpwUVLxvSlRrHNIqKXtwiSYgz4ZrZYoXpoUxXxJxqFOCQGbimlx6k3HFNE1bGsJ4ovebvygRMGfp8XhSKeKCpK8zIiKQySxJfkW/F+0zu6l53064mm78u4oqswm/OlkE2ZTHoe6NSgkgblaFPvrIni9U0ObScbiZBkTafmN78tQqKjtiuKkX8IjBWb8QbEJj2YomExiqERJDNvCeLNZxXYS5aIkBUuTJFg9UbxDxxdwmfBnE814NtuEhSSNUjAFf6+mwzo9Ef9pmg0p4SjqAhKSXRZMkkg6O0PoJwGblqhAoVc+/PE8uMjISEd3dw8uXbqM1JRkoxReiCPDMLeGG2AwzCjDqE6uqER5+VmSwslYsGD+TSUiX4twCFJnu1F1rLz7z1A+egu6Ykbk+79vhF44NJTHvQjR4/bJlJmIRnXs66tBSNXoR0W5/xE1oXJQQZh+0WYlkOhcvy5oQoVbQdSiY7rRd0ZorULSo6A7KKGPXkcoqqDFp6AroqCfBPBKAAhYJKgRGT67hucmq1ifq2J1cQS/X6IjV6ZtI6SfigSbLH+1r+uiNTCIS/oJLMvrxqOuRPSGSOTo+BJpm5REE14pteCFdAUOEx2NIqbQI2ER+ZnF0QEdlL4nKsFCImhTdNQNkgCTkC5MkCHmxRnu/bgWmk7HpyOgGX2OUE8S2BQmkaUjC/t0nKfn6Q7Ki8SXTobIDAO0v0F6TeRTGAjqaKBz0Edy2uiic5VmRTZUtNP5ys6Nxw+mOjCTXkNmshl5Zh2NfVHU0/bDHssDDovFQjdYq+Fw2HHw0BF0dXWLrxnDMN8AlxwyzCijs7MLn23fZUjic5s3ITExYdiLnhwOQ+rpglxxHrIoKTxdBi0tE5GNL0JdthZ6YpJx0b/XkWVxwauFcGywFk7FghybC7JYdxcI6xK6SdyawmZ0REzwqEP3sxZJp30YDw00r6j+ldFi07AyU0PS9Y0ASQpLUzQscAJX3BJ6FA2LU3S4yCRP9Us4FSSBCtDfThP203ONBKmZBPGCV0LvgIw9HQpOeYDMBJJCB5lTUMalFgXvdtGxxGlYm6EhzUKnIrY7gRgX8vPeCqh0Xl5OnQG4E/F2cxRtZIGr0s2Ym2RCmlOGmUystiOKbd06HCRa67IUpEY1VPaoONyt4qIfyE41YV2GGVNSaLsM2otPQ71fQkGKCZMojxvfDyNCOi71azhDIugL6zjbpWIb5WmyKZhK+c2iY5hGwnma0mhxJixLkRB2qzjv1tBGoj8woGEbHW+laHxIzysGNVyg/Vb2hLC9KYRuksxJSRbEOzS4+8KoGiDhTbJiQhyJN+1/tEVcnNMYFPvU6XKjk1dJcRHMY6hzDcPcb1gOGWYUEQgE8MWXe1FVdQWPP7bWmAbspqqyYADo6oB0/gykXR9BOnMMalaeUX2sPrLKGLPwfkKXXyQZ1ctdqPC1osiRjDiSxBurWe8kLgdM+EVXAv62IxG/6YnDEa8VYU1HjjWCODl6LZ3fI+Ngt4JgvIrlaVE4rsvjWoQknOhV0GPSsCglgmSSxiy7jrWZUTxWFMFMk4SznQqqSBQj9Loy08P4o+kRrLVKONNFgqqomJUYhZXkMi1eRwEJ0tlumYRPxTQXLY/tJ6RHcKD/Ci6527EuaSYWJZQiIdY+sKWfBCxMYpcgI1nXUN0ewZttUTpuM17OMyEvpGJrSxQtVhN+XEwSJ+s4QlIXoWOYES9KKDU00XNxjPkpCiaKkr/hIGcUHU+WkgSuLzRjNe37fK+KCloxw0X7pvVhr4oDfXTMJHRLk2R6D4HSBAUbcyx4Oo/ShDUc7tHQQYIalGSsnBqPv5hlRUYgjKMdKixOUU0t2saGcZxkMomMfAblddPndZSEmHe5v38A589fNG64srOzuPcyw9wC/mYwDy90QTBijKCqKs6eu4Dy8nOYMX0aZs6cbiy7Fj4vNDGbydEDkN/4e0jb34eakoHgb/0JQs99H2p2njELx4OIdHMCnkqZDbtsw+H+OgRJfBTZ9J1ClczY647H+33x6IsqRilibdCCTwYScMbn+FpaM13kTfRrpol6W9AyyUQ/bmLMxq/SKJJilDZKJDoyLdd1BQFJQpg2FOviSA7jTTpslIWNRCnJQsJklpFIkuVS6P0JmdDiFtPf0UobMCVZRzZJWwctd6tD+xP5NgU8ONrfjEJLBibLxaga1DBAa7PJyGYn0AH4NDS6o6hoDeOfW1REE834UZEJ04Vo0borQZJtkrWp6SbMIOES86dUBnT0GeeaPtLGp2WoraE496KjRZRCDJlz9XEkooN2iwAdt9BHCx2yCNFRRXwnjPdtKJvY10RHQKX0lFoUzorOMXGKZPRAJvdFKuWTRFIsCmRFtbhK729/JGp8LjWxTzqqqKp9/fM6ykKwcsUyQwwPHTqC1rY2YxnDMDfDJYfMw0nIDXT3GlWAsNKFobcTaKGLwYCHVprp4n5DPeD1RAOUvgvooOjvo6C8xHgmdjKC4bbRxODS3UBbRyw9RZiuuMJW+uixGFvFeYttr0NcrHbs2GX0pnzmmY1GVZhRLRYKQu7uhOliOUy7PoZy6awxFE1E9D6evwSIH77a+X5HhiUBQS2CssFao/1cvi2ZlEjI2p3RHVGw32PDRf9Xs3IIMQprEqY6IpjvDA0tJExkNFWDMtopwXSXhhRVIpGT0R2lU09SRN5HnwkZJ/pk9Cg6FqdoMHsUvFNtxpdeOoW0i9ZeyiMgYXqqjhw67OYgveX0UemhfIWwlTiAzm4Fn/YMtREcpPzPeiVkJWuY75DQRenaIkEc7utEqzcBa5OnIjxgx1sNGoSGxJOwHe3VEHHImEBC9SGJYbPDhHWZJogCQNErWaE0DV4NPXTeUuiY2vtEKSFQmmbC/AQxXIyGJlp2RVQrp4pqZdFJRkWtl+SMpE0PacbjgF/DtsYotvaL4Wgk9FHmJ+h1im2WkXA66P2J+FUc7NOgxStYRuLa2hbBz2qjqCUJTyH5O92jIWhSsGoghM6eCDpTbUgneb7QFUHIYsGyHBvyLCoutYfQETVhHj0vco7uuZdFu0On02kMjh0IBFFSUmy0SWQY5uuwHDIPHzrJWOUB4LN9JASZ5IJ1wEfvAp98AZw4DnjJFgqL6MovykGGobuC0r8BbN0DVJ0Hyq+QkTiB4nzDK2/C1whsp/xf20bpLwJny2kflHd6PLB3O3C0FZgy8db7I3w+Hz7fvQd19fV46qnHUVhYACkYgCw6mpw7BdP2DyFXnIM2efqQFM5dDMTFG745eoKkwhyHmkAnznmbUWJPQ7LJcUOakYc4W5VBM8r9VqhiXJgYcbRiuj2CCbYILLRYpJNIjCI+Ej8fkBhPcheVsaPFhFPk7SX0XIxbKNGyRpI/2HTMSdSRQUaWRsLQ1q+grEtBNaWdkKHiqXwVEynjbpK9Y90yakMSCtNoeZ6GUhKtnkFK36OgQrQHTFHxdJYGp1vBL6tl/KqvCmYS1XBgLiz2BCxKkqGQsJ0moTs4oCFsVbAxU4Jd1XHKJ6ExqpOwqtjdPSSBxSRuC+1AIy3b36WiggR1QqYZz2SZkE4vlPQPA/QaB3UZhZS2wKbhcnMEPycBDdJ2ThLLd8mQJZeCx+LEsao41KPiPB1rYaoZz5OI5tFrE2dToxuYuqCOhAQFcyjy6bNtoeMp71VxmCR2UJGxIs+MJyrLkdnbg0vJ6TjcqcIjm7GkyIbFJJqKJ4w97REE421YmWU1qqZHO+lpqfDS9+3s2XOGKObm5nD1MsPcgKSL+gSGeZjw1QLvfww0pwM/XArsfosswwH8wQ+Ajq0kjSR8S/41sKE0tsENVO2g7UkM054GXpgDoy5SlC6IAai/cpSvaCPhfHMnEJ0L/O4qSkeJrCI9XW0rSA6/OAdMegl4nPZ39RoUIYHt7wXcg9Ap/+OVNdh2qAyz5s7GxrUrIdPFWL5SAbnsAHSvx5BBdcES6KkZsQxGL5d9rXir8ygSLVZsyZyLuO8we8r2ATt+2hGPWpLECAmikwQpm7IrsauYZQ9ivj2AImsEiYoGd5eM1xtlWNNV/E6BZgxyPSJUcn+VEis6LMI0r6LRctEhg94zUSV7jWGWR70y3mzw4kPPSfywIAU/zFwGixxbST+x4ahGu5Eof5LFkXiINrSNGAXbYhR73godPR0RHBjQkU4Sudx1Q+YjzucqutHznNwVptixWl7/OSSHA9GXf4SwYiYRV8S42YSG1noP/r4pioKiePwg3zLsvdNoxO324I3fvIVwOIKXXtxCN2P5RskiwzBDcMkh85BBF8LaI8Cpy2QQ64CCQeBoNRC/AHhyOl37/MCFVsCTCiwuGkb2yBTq9lOaU0DKTNqO8vMGAVvCUB3jTdBVtPUscJYE0J4P0AUagwG6ojrFNB0kiLT9uStADS2bN21IHMV4hJUXgbd/Cfzqp4js2YmqY2WwpWXgsaWL4bh8HvK2rZCqLkGdNX+opHDmPOgOynMMIEoPRdeME+46Eroo8q2ielkMkTJ8R4FvihxzFOkmDV0RE0m0ghXJOv5loUZ/gXKfGQc9VnSrisgdLosOc0RCkOTGFaciUR4+z5tC9HymtDL9/dpy+jfS5e30GTnqvowil4It6bOMc3A9Ct0AmChG7B+UTlGkEYikhsGQjgSbgpLEYWYpGXE+XyHTcYrjvXqsyvmTkEj09dkLYbKYY+soomGc6whBs9iwLM+ODFEiKZaPgbDZrEhITDCql91uN0pLSm5v9iGGechhOWQeMnzA+S+By23Ago0kbPRXiKJ9IrCUZDDcB1wkWfSS7C2cShIX2+waJG71lP60SBMBqg8Buyi/UAYwieTvptIXksP2cpJJEtKBKNBAorh9N9BrA6aWAAl0Va4vI2FtASauANJMlCfl/+u/o3w/Bvp6IFMU+vsxjS6u9qY6SDVViM5bMiSFU2fTsTti+xobiDMkOqg0Bntx2tOAPHsS0ixfl6WRImaHE9XHNpKxNJLz36a3YHa8jgyrjmVJOoqdot2fBYc8NvToCjIdGvJtJEsmHXHm+1MpItpZHvBWoIf+PZs2A9MdubE19wMJ8XYZqQ4Snhs/mncJ5RzdKJnN0OgGRZRAXiOiQ7GaMDHdigIxpM4YIyU5GcFgyBBEIYv5ebkk0tcXHTPM+GXsfaMZ5hvxAz1uki6SswSSKkl8xOkH/6on6PRAhEJX0mGvA7TN9A3Av/lb4C/+CvjzfwnMTwSObwcaxQAnN0L5F60Dfvy/gX9P91n//t8AT5EcVJEgXiYRlexAsihFJGl1Dw5t0tFKslhlzH0sENd0U1SFyT2A6MRpCP7Rv0VkzZPQklKgS9KYDKfJjqdSZiHTkoRDA9UYVH3QJPWOQ5Y0o6ROIJofihCeMj1ew1+UqviTIgkDsh1vBRNxUHKgUTehW5UQhjZsfncrovSv3NuIM+5mzI8rNoatGe58jO0wTjt9bbRrJaVGWEzITrIiwzF6h6/5phAsW/qI0eaw7NgJ1Nc3XFvOMOMdlkPmIYM+0qKXsEkDxPAVtjjASoIWIGkUPYgHO8kfPYBou2ej5yqlE9cDcVHQxDYhWu+l9PRXpmVWkkyHGExECCbJoUij0fKr6TVaFqD8/JS/+DbJQkppn6IHhMjXgB4LSY3JDeiCa8T1yHQRpmPSSybRtkmGMI71KLVnYl3SdPSG/NjfV40wna+h2UluP0SOIs/hEJ5vSGIJSWKhhEE5Dm8MpOL9QRfOBuzojZoR1UXV8/B5f5foCntxqK8O6WYXVrgm0bKbz8PDEEKajOFv6D18mMJut2HtmpUIhULYf+AQBgZiN3AMM87hamXm4aOvCmjvALIWAhPige4aoL4FcJLkNR0bKllcvJbEj/42kixaEoBIF6WpAzwkhqc+AN7ZTd8OEkhvPXC2AUiaAyzIAzobATddLi0B2lY8JjG8vBN48yNKS/tSaL/HLwLBEmDlI0D8AHD0DO2X9rFyOZBspmWJiAz0IXrpPBSdhEmIoqJAj0+AlpoO3UFyKeYofghmcMiwJKIr4sGJwXqk03nOsroMrbrdf6JDSo9uw6R40SM6lvkNCIVMt8Sqmx0yzvosOOxxoIfkUKFzbBdvG/0Vw+zcjX8BNYIveyvhjoSxOW0BJthGf2ehO8F0/hQkiwXajHlGZ5Qb2++N9UhKSjJep5g9RZYVo3MKVy8z4x2WQ+Yhg8whQnf/DSRpkVxgziQSOxsJIQnbvr0kd6QQ054GVhQAh98E3tsPZM8DtJPAp58A3im0bir9bSKpOwRUkBjGTwA2rCeZvAL85h2AskKhCuwmKWwmkVu+iBZ0A8covRj2RiKJXP8MMDUF6Ce5LCc5dUwjOZxOeQBhkxlXmlvR2VCP1NQUyIku6IUkkyWToXR1QLl4BpKmQjJTYhJEcWGWZFKqYS5soz3MdLEVnTNqg11GFDvTYCXxHZpLZORRTXLYq1sxOV42/PqboN0iPdYmschBbk+SKDqudEbF/CIaHZNGsqhRQvFs+P19W0R0FUcH6nBioBGrXdOwOmnqTa/9YQnTuSE5xOwFkE0mEij5oYuc7Cx0dHQaMxNlpKcb30vx2hlmvMJD2TAPH8EW4KNPgWqSwp+8CmTShU0nGYiI8UcUDI1XQs+vHKBoI4l7Fii+odOHSB8O01+6QFwdwiZM+e46DwxmAd+fM5TuesTwNKKa+mp6nbY/uwM4UA3MehFYnW9UZVVUVOL99z9EVlIiXlm2ENZQAFpeIRkN5dvXA+nUUchH9xnHq85eCHXiVOgp6dCdJKJj9IJ10lOHrd0nUORMxvq06bDLt1cqunPQgStqAp7JljFBzG98G4gxEi/7JHzUIaEloGOaLYh5dj+KLBEkmlS6nbj9n8CGYC9eaz2GDFMy/ih7LQnr2OhJfidY3vgF5Lg4qK/+hG5WburB9dDQ3t6BN37zNpKSXHjxheeN6fYYZrzCJYfMw4eJJIou/gh30Sc8D8iOH5IqUVV0bUwPEjc/LXPS+qJ0wxm/hkhvMg3FVR/zuym9HZg8CYiLjWF3PSL/69NHaf/llUAgB1i7kI5JzEPbi+07dsHn8+OZ5zcjsaQUWlauUZUs7tN0mx168URoJIWil7Jy+iiUsyeMWVKM/MXFWYQs2jDSjsZIZFuT4FEDKHPXIsFsR67NZZTY3FhKdauoDVnQo1kxKX5o5hBaOOKQ6U86+fqyZLoHcEoo91lwRPRuVmPVzXRardeGb/n28GthfNF7GWL4wBfTF6HAngpNBTr8Gry0zGkeel30P2PMwB4S0kaK9rBuTAFoUyTolL6L0rcFdfSGKMR9CO3fYRrah9j2a0F4KV2zX0cLbSM6xouhcaz0MfDT8lZa3kzLBylfE+VvpTDyITy0vjNE+dNnX+xbTK3XHjumQcpHDF0jlg+7Xwrl/FBvZXXaHHotGrppPzKlN9MNli8YRYs7ikafioGIZjT3tdByTyCKZk8UTbHllBwWic7PcMspfY83Ss91mMVXlGTd+C7c5xAzEonqZFG9rNEbWlRUaMxWxDDjEZZD5iGErjiuLCAjH3CQScQ5hhqkfQ360U8kW0hLulkMb4U1AUhOG14MhyNCV+pkOoZZMyCmjhDDZuzZewDnzl3A2rWrMW3alFjCYRCSWFgKXcyEkpBIklgG5cwxyKJjjZAqQxLNdO0WLfiMVzzKQ4LL7EC1vwtX/O0ocaQhXrHRmpFRHTTdUK08/F6+KcT/0+m0LaO3vNAh4azPjMNinMTI0DiJVkkngSHxoXS3IqxFcaivBuc9bViXNANLEicY8xV3d0XwRn0UDSQXMxJkYzBoSdVQ3xHGu9URvNOhYm9nFJU+HUkO2kN/BG9WhfE+Lb/Yp+JkvwYLSWVxnJih+cYjB0IkU/vqQvhVk4qdXSqOdUeh0XufZdJxrDGEX9ar2EHLT/Sq9LGQjaFlrHRcHn8UO6rD+E2bRvcaMiaYdWNO59dqo/igU8VpyidCrziX9itGo7lxvyKEHEomMzz5U/GbCz581CMhy2VGmhrCkRoPXq8J4NOWAI72RGC1mpAjR3Hgige/rApge1sAx+ncWCwmZCl07qo8+KcrAeyg5SdouZmW51toeaUHX/bpSE40I0OMX/SAyMzMoBu4Ply4eBHJScn0PNOQZ4YZb7AcMg8nEl1infFDw9l809X+XiJmBomjY7CbjOrkixcvYe++AygtLcG6R9eOrNG71Qo9vwjavMXQSUyFIJpOHgV8HmOYEYjBia+WJI5y4hU7EuicXPa1oTfqRbEjFRZ5ZGZeY3RIsZAcikG2RTXwnYcYEufqOImGJPpj4yRGRWeLIUk0UygUAjGziV8birpAN3Z2X0CxLRPPps2j4zdDDan4si2CNtmER3PMoP8MdL+KPe1RNFnN+MkUCzbbgX3tKqoVkiBVxyWfhIUFZvxhsRlrM0yYRIJmGVZENLR0RfF5LzCxwIq/KlFg9ao4NKAj5Newr1+HPcuCvymU4R+I4nxYRqFLhi0Qxb56ktYuDR0kjI+kKCjUVHzerSGSZMa/mmRCZlDFkT76qtC+i0WPnWFQzp9FRFdw0DEZr7epCMZZsSRNgb/Dh7dbNZSUxOOviswksBE06yY4vFG81xJGYkE8/maCGe6eEC6GFTjofHxI5ympIM5YPkjLL9Hy4jQrSuksH+8Mw21SMC3RdPNwovcJUZqdkZGGysoqtLV1oLioEPHxcbG1DDN+YDlkmPtAZ2cXtm/fhUg0imc3bTQuOMNVbd0ySAD1nHyo85dAy8w2qppNJ45A9riN2j8hiTCZhzqu0NPRGpmWRARJUI4N1sJKYiWqZE0k8rKkfGPUGNXKFhIoBSliQuVhc7+9kOnEZYjqZqN381B182HP0NA3iiTDTqLm10y4ErSizGsnibThcH+9MfPKS+nzjKpyUeLY263inU6NrNWEjemy6HNk7EGl9y3JImMOLS+Ok0ieNJwc1GCjfcVHNNT5JWSSlInBqz20hcMsGfv8+lGK0I33eEKigrlJCuJo/7V9KhojEvIpL19YR4S2zSUpbfTo0KwKZrqAbkpTEwKSRLWxLqGU5HAq5TE1ScbCeHr9JKiVfRqdVxkTaV0RHcjN+yZhqujAlR4HPkoqQBMJcq7TjNl0ztq6Q2gImlAqSkpJPnNSbViRboYrGsF5klTVoiBL0dAg6rpJkCfadLSQQN64fEayGflWFbXdYdRHZeTSa6TDGf57cB/CbrfDSt+n02fOIhwOo7i4iF5fzPgZZpzAcsgw95hAIIAvvtyLy5VVePyxRzFhQklszR1AFyk9KxfqgqVAbgGUi+VQTonZWfpIIeifkEiTmGpOpmfXl5eNjhCkmuJQHejCOW+jUXroMtlp3Tf/E9XKPbFqZdHmcDiJudMQhXVXJbGIZOuMz4xDXiu6IjL2DVrwvzrjsGPAhqMeM1oiTjyRlIdHXWnGtqLvcn1PFMc9JF+pCh4hCbz6WiWFJNAhI5G8wu9XcaAtigZVxnKXBEX0VfLp8EZ0nCe5/LRLhUTSO9FJ62LbfxUSyYoMl50kTNNQ0x7Ftl4dcckmPJFJ4hfUcJryONCroY/Szk03YR5JYL5LwZx0OkqfirqAhIJkGRNE/nRcAa+Ko40RbBsAXJRueSrlb7pxvxQkS+5uFz6JZkEudaKUXkuYpH4qCWFXfxj7ab+19NrOkth93hZGiD53U0g+JW8EJzsiONQdRb8uY36OFQtF/w5vFKdiywdo+TxaPpdeh9WqYXAggqpBcmyXGSWi6v0BkpGRbsy/fO78BSQkJBi9mUWpIsOMF1gOGeYeoqoqzpSfw4GDhzFjxjQ8unaV0cj96hAadxxieBvRkWXRMmj5xVAqL8B08ogxFd+1kkQSxdE4Lp1DsSLZ4iRB7ERneBDFzlSY6DUNN2TM1bja5nBSgvStQ9ncKXRoQx1XYtXNO/vM+LDXisGobPR4VkF/4cQkuwNzHTq9DrENyVoPyZdfxtQ0EyY7hzqjXAsyLDfJ2Z6GCHaTQM4tsGBDpoJsq4Sl6WasL7RgNeV1qVfFJcp/VpIJKSRvX8sjFlESyWoSwzfbVUQSzHg5T4F9QLQd1JCcacYf5irQaV+nfHSO4mMlgXR8zZR3FclhYaoJE0m6yPegkIgWkGi7IpohlVEr7ZuEUnTQuX6fmqgy95lw3Gmn16cgFNDQpJqQSxI84ImgSbLg5Zku/EWpCepACOVeCSGPiuOUZ2ZBHP640ATNE8ZpLxAcVHGiT0NWbHnUWK4g3WU1Slb7e8M44daRlmrDbBLEYT/39ylEk4/srCxUV9egubkFBYX5SCRJZJjxAt8KMcw9pK2tHQdJDOPj4rBm9UrjwnNjNdZ3CpMZ+tRZiP7xv0f0R/8CUjQC82fvw7z9AygXTkPq6YIxJM8oY6ojB6tcU9AY6MfB/isIaeFhlPD6iJVl0Ws2hiG6hyHGQJwWp2JGvH5T2zdRiheiZORpMSRDqMSkOWICHoGYSUSlBeL9cXui2FEXwT4StkeLLXghS4GD1rk1CT5DAgGryahdJegJbaPRepHfV491EkPV6Ejy61YVOonTj4rMmBGnoy1IYicpmOUyYWq6gnkukmxaVucXr2WIq4cq/kZJ9mr7SWbFBEBOBTMofRKtqaeDH4wdt9i3OHbxOOijdf396HD3oaxFDPqt4Xx/ALs7gmikPHJtJiSZaZ8k1SkkvJZIBFcGIlAVM2YnWzAl24r5ySZE/GEc7I5Au2l5BPW+iLE/+o/ke6g6/trn+wFGYmICVq9egT56/QcOHIbXS4bLMOMELjlkmHuE1+vD7i++NOZsferJx1BQkD/sReiuBFmGnpIGTbRJLJ4IpaEaihgvsb11aL2ojhbDcoykE8x9Is0cT3LYizOeJhTYU5BmSSA9Em0mb47aoMUoOZxyrVr53vzTdAmDUQm1fhmnByXU+IEAidxVyIPwZIKKdfFCYwQ6fB4NRyhMcTIWOHV0e1U0+kmuIhoONUXwbg9QlGnCnAQZvUEdfm8UnzRGsLUXsNHb0Tuo4qSHRCtZwWKbjna3hgESJasq2uXRY5I0T6+Kf2xQ0eJQ8GiGAtHPuz+qI0D7qSGBC9JbG0/Hcs6oWpaxME1BoWjMSMuarpYcJsvIJsn855owdvkovTm2LiRhRqqMUpLiOi+JqELHHlRRQ4/hkPHoqV3YpHdjzbLJUEIkzDYbNk9yYL5Zw+XeCAbpnMSFojjWFYUeb8EMp4R2Ogchs4Q4PYryzjD6ZROm0HI3mbVoHymWn6HlA7R8YaYFBZYozreF0Bk1Y24WPbfT5/nGz/gDCDEYts/nQ3n5eTidTmMeZnGDxzAPOyyHDHMPiEajOH7iFA4dPop58+Zg2dIlRjXdPUfsIykF2tzF0CZMgdzSCNNpksTWRkiaBpgsQ9PyjQJJtEomEr04owdwe3gQE5zpJEsm4yXcGDUhM3o1KyaTYKXS4dOiuxoqeZAYO7DKJ2E/SduH7ToGgmGSsAGSxQhMshUuOmVLnBrWJ6ootlwtmSOljJCUkdD5LBLmkgBd6lDxeZ9ujCdYHwTOkXA2kMDt6VbxZY8KidKsdckIuFUcJjm7QAKal2LC85kKHB4VP6uJ4BzlS7cS2Naioo72opEIVvglNNExnuzT8CXlVRUApieK4WmAcsrnQI+GThLDZbkmrCTZI4cmdPSTQA5SfkW0z9JECaLpX1O/hsPdGq5EJEwjcd2QLqGlLYpfNGkI23XYSXbf66DXaJcx68oRWM0qTLPmojsoIWq1YHqaDVMoL3MkitNdEeN16HYL1hXYsZbk1UoSKtoWHuiM0jHR8RQ78Wy+Cc7oV8u7jOUOoxOL7A7jy/YIwvFWrMiyipGfRgXiO5uVlYm62no0NDYhj+TQ5XIZyxnmYYZnSGGYu4z4StU3NOKdd7bCbDbh+6++jPj4+Nja+4shPySIyoHPIVddgpacBnXGXGhFE6C5ksnQRj7W4L3i4EAlPu45iWkJGXg8dSqs8s1msHPAiWo1AZuyFJLI2MK7ADkXBiJAA4nW6UGKfh2JUhgbknzIUDrxced51ATT4LItRy5J0UtJUUyy3fCTGY7ii9oIjocVrCsxY1HcCMVB02lTykuWYInVX6veCLa1qojGmbA+xyTGTR8BOlTKJ0wup1A+ww+HcwNkw8a+lav71tEjpG1QR2amGUtJOq9ieePnkOwORF/5sdGM4UZUEj7RJlMxySK7a4jlYU2CiZaLEter3LxcR0uDF//QEkVxYRxeyTUb40SOJqqra7H1/Q9RUlKC5zY/jcTExNgahnk44ZJDhrnLeLxe7Nr5BVra2rBxw1PIzs6KrXkw6AkuaDPnQZs0HVJvt9G7Wa6rpqs02YQoRRS9mx/gTBBieJvOiAenPA3ItCYiy+oCaQbFV/9qrqtWTrWIqubv9i9CctIXkXDJK+GLbuDzLhLFcAgvpXjwYooXGSY/DvZXYjDiw08yp+En6S6sjFORYhrmXpqMyEU3BGKWkiCJ1mSSwxHpISUSPYevTdpDBEM6vSUSCl2KGBlnxEgkhGJmlOvl7Bu5ad8aBsNAok1GSYIM63X5GHMr0+dEpc8QhhmXcqgDh2T0+r4esdw8zDHdtDwaxrmOMCSLDUtzrEgbbWZIpKQkIxQKo7z8HGxWK/Lz8+g1j54mGgxzt2E5ZJi7SCQSwbGy4yg7fgKLFy7AggV0QR0l6PEJ0KbPgT5lJmTPoFHdrNRUkiSqxowrQgCMsRIp7f0Mk6QYcxPXBrrRHOrDJEcmHAodz3X/rsrhZKO3shC0O4uwpqM7rOOCF9hFUri3W4NVDeMVksItyX7kmTXam47jA/U4MdiI5YlTscY1hZYNf+xDIcFhl1Fol5BFYmexSKA/N6QZWZitJL9OGYkkmcOtv3chIZ5eQ6pDBvnh19YpF8QMKSajxJnMjpbcZSI6FKuCiWSFYtzG0YqoXm5qajbaEGfRDV9KcjJXLzMPLVytzDB3CfFVEkNfvPPeB0iIj8err7wEp9MRWzv6kDrbIZfth1x+3Bj6Jjp7IbTSKdCTU6Hb7/9xn3DX4P2uEyiNS8P6tOmwy18VIe0YsKNKjcemLBkTnbf/kxXUgL4IUO2TcLxfR51XQ5EljA2uACbZvt6buyHQi9fbypCiuPCHuY8ixTy+Z8iwvP5zSA5RrfyToZLmcUxDQyPeensrcnKyseX5Z40SRYZ5GOGSQ4a5SwwMDGLHzt3o7u7Bpk3rkZGeFlszOtGdcdAmT4c2bQ4gOl2cPAq54pxoFGaUIBpVzfdRBjKtLgxE/ThGkhhvsiLLmmgUXen0rzo2fd6keAnJlqvlgN8eAZLC9hBQ7pawrRMo61GRIYfwSoobT7l8SDFFKd1X/zxqEF/0XkZQ1bElfREKbaL7xvhGOX/S+DxoRsnh+K5KdbkSjakwRfWySVGMEQhMJq5eZh4+uOSQYW6Toa+MZPSivYqYZmvP3v3YS7Fi+TJjfLSxhtTXA0VUNR8/JF4k1DmLoU6caszprDuclODeV6G1hfvxy7b98Gp+/CB7MQnj0MDDOwccqFLjsClbxkTHt/9k+VWgJyyh0kdC2A90kSVOswWxLsGPQivJ7zBEdBX7+6pQNtCAJ5Nn44nkWbE14xuj5NBuR+R7Pxq2Q8p4QzQdeW/rh+jo6MTmZzdh2rQpPLwN89DBJYcMM2J0BINRdHqjCJAcxsW6YIqShMv1bXh/70lE41Mwe8Uq6IoZdlqvaDrcJCaNXg0dYow3XTKWm0i+vEENTbS8lf6Kak+bSYJZFtIpGUOXdPo09GkSHBZKT8vE8puC9h8IqmilfJppP16SIovoHED77aEnLbSslzIfCh1h2kL0qejz0TZX14V0aJSXIyEOKJkMbeZ8iNlVTKeOwHT+FKRIGKLTikSvqV81o4ueyiYZVsrHQ9s3+3W0UB6DosCRjt9O+xfHJsaU7vVT/rTcGuuZGhWvi9I3BnT0R0QTNslo4zZI+fRRuhSbA0kmGyp8rfTca0yvZ5bF3MqxoWxiJYfGCx8mxNjPbSEJJwclfNSu49yAiknWAF5J9WA1iaHLRAmG2U5Enb8bn3VfIHnMwOa0BbDS673pfI/DMF0tOZw5b1TOuHO/Q3RESUtPw4WLF41aguKiolHdfIRh7gSWQ4YZIXo0jAs1/XivJoRogg2T44aqk3r7fXjn3CB2RvLhy5+MY10qGkiAUuMV2Lwh7K704o36EPa2h1BPUpSaqCAhEMa+Ki9+VRPEng7KlyTG4TAhT0xvFqHtW/346TkfDpPozM0041YD4YQon7IayudKEJ+3h1HeG4FuMSElHMXBWh8+bAnjVEcIBxoD2NEYhpckzRWJ4JMLHrxD6yp6aH0PWRotn5BoMub1hd0OvXgCtNkL6bHTGExbKT+DgJqADwaT8XaPhtQ4krSQit10Ll5rjOKLzijKeoQdSsb8xIqqoYvy/nVlCF94gOIkBSm6iitttKw6jK0dUZzvjhoyl0GWeaEphJ3dOuLjZcx1umhfERx1VxtimGNzoTZkuSaHKZavW52YtcQXlUiyJZwYkPBhm46KgShmO/x4OcWDJXF+xCtqrOJ4+H+eKJ2/3gpImgkvpC9CtjVJnAmGUM6dMpoX6LforTweETMeiWkwT58uN24Oi4oKjOcM87DAcsgwI0KHr9uHj+sC6EiOw8uldjjJTYLBEPacaMd7l92YNDsZfzknEWutKg40h1EXiUL1kAT6THhulhMvJOg4QsurZR15moqTfRJmTYjDn2QruNAWRJkqY3GyhB4Sw3drg/iYpCojxYLVmRYkDFOCIebNFQK2v1tDWkEc/qLIhNZuktCAjEW5NizJsmBVrgXLU2WYgip8dPFalm9CvDdsSNSMYgf+bLIda3OsmJZohlWRv5Y/bCSJhSVQ5y5CxJ6PU80OvB6OR7/ajqVaJ8IeCw77TVhQbMG/zZMQIME96gUynTLgjuDDhii2DpJXkCSvSJbhcEfxGxLJljgz/mqaGQtkDfs7VPTYZCyzA5f6VLTqwKwEGZmWONQGunDR24JCezo6oy50kRxOIilNswxVK4v/e8hHmwKi6ljCBySF1W4Vi0kKv5fqwcK4EEmhUMdv/heh9+JAXzWqvd14ImkW5sUVGtXqHEMh5FD0ZB8qORSDlNNZ40BmRgZ6untQcbkSyUlJyMhI5+pl5qGBP8kMMxI0krq+ANpCJsxMtiKd3MmoTqYLw6kTh7AqwY8/K7Sj2EZ3XHThMCtAOKDhgkdDf4IJJUlmpDlMSDGLqmQdlgwHfjzPiceTJHT5VEQoP5eJRMWjomJQg9Vuwoo4cW3WodN+xL5uDgnpaVb8eE4cfpAhw+enfEh20hTJqIY2WRQ4KM/2ngjKBiVkZNuw2CWhO6SCHAp6RCOZiqLOr8OriXl8h9sHhdWO6txifF6UgwGSs6zWszB/uRWF54/j+1IdnjB7YKbjFIMp22i/Ski8bh0hiwQ6NANxMSVPRkdUQpxDRjpFslVGMKrhoo+2TVCQZwXa3DpqKF2qOR5Pp8xBvOzC+13duOCzoNKn4LRbQWNQQXdYwWV6vqNbwd/VS9jfGcEKhwd/md2HZ5O8SDepkMhtRhLVvi4cH2jAJHs2liROuEkCOIbeQ+GKw34+xmkIEVy9eiVsNhsOHylDZ1fX0IlimIcAlkOGGQkkVE2eKPrMZhTED01M1kXScujQEdjUDryyJg+lLgv8g2Ec7w5Ds5mxPNEEUxTGjBU2k4w4i4xEqwR/VEZINyPeDPT3+fFxQwgNuoLZJJGpSTZsnJ2EP5xgRy6tFxdncRG6VZjoeMQYez5PCLvqgrgckDAxXiEJFdsJ2YzgqKi+jbfi0QwrnCRnot2jm6zoSk8Y71b48J/LvfioQ0VIGmYfJAae/jAOknwpCWZsTFfgnPIE1KWbkdpbjkmf/xqJR4+hotqNs+4IMhNUFKcqWF9qxb8pNqPUmN93SHLplCCFpHmAJPbyoIpqr0qyTRJNYhoiqc530Ov1aagloRYmMs2Ri2LnYrw7MBG/7I7H/n4F/7Faxn+4IuO1Fh3/u05FWXcQT8QP4K9yevCEy02CHYZ6G/96o14cGahBshJPoj6D5NY0ZEEc14XxFn7rZ3E8RlpaKlatWoH29g76LThKN2j+oZPFMGMclkOGGQkhzehE0WaRkEwi4/cHjNICMQvKyhXLkJqcjN7eAHZU+3HEJ2NJkQ3LhQkRQow0iihJUJS8R6GrraxriNLXLyfDgR9OsWGeEsW+5iAueDUjvRFDG3/1fJgQJRgqCV8KHdSmKXasjtNQ3hrE0X4VuhZFHYmd6LFblGLCFFESSYI6N8eOv54bj/+42IX/MN2BmVIUe7rCaAjfnH80GMaxtgDKAzIySDpFCWE/rGidMB+df/SX8D7/B7jgzsfW6jDs7ivYMliB1IEe6NHIVae4hitRxroMGS6Swg+qwtjZRSJIiYSAyiQecYqEsKqjSxwHpQ/R/7q0PAzoBcZzEUE6f/t7JZT3R/F84iD+Y3YfHhUdTRQ6p7f5L6yqONxXg4FwCE8mz0ShLe3afji+HoIbPxscQzFzxjTMnDkdZ8+eNyIaVWNnjGHGLiyHDDMSSGBEr1oxrW4oouL8hQqcPnMBU6ZMxczp0w0x/KQ6gANBBU9McmJzttmo0o2nkKI6fBENHhJMTwhIEt18SUgq+6Lo0RRkpZoxK0WG1a+imcRp6KIztFvj4hy7CGkqiSAJ5lePVXh9YVT1hNEWJmlNMWMaCakcUnHFG4UejqLeE0XYZMLMBAUWsV1EN6qUPWRkQsosJsBKwiu6dZBpQhX5iv2JamZ6HBS9oOmY26HhXHsYu3s0VLjD2NsSwFm3jlPOfPy6pASOAj/+oOsYpux6B5ZdH8N0sRxyf9/QFH2EKD/UJRmFqSb8/kQz/mySGd/PVbBWtCE0SxgasIYOgRKKLUT6roiEbhLfa9OsxXAoGpbEBbEiLoA4WYek0/HfZpCb46KnHeWDLZjtKMDi+FJjnxzDxxBDnz2Or4coURU3iGK+5aNHj6GNbhgZZqzDcsgwI4HMsMgpI5fE62J9B46WXUBIyULmrGVoH4ziy7oAPhqUUJBuRTrJ1pl+Fa1kNdOTFaSRqJW1hHC6PwqPpGBavAxvdxBvnPPhrfoQLnVGcWkQMMWbURx/tcH/dRdneqKHVTT1hVBB+/IFVTTS48uDETT1hPD6eR/+riaIC90RXHJriHeYMJvy0QM6Gnw6PHEK8hKG8lUDKvbU+PBfLgWwsz2KE90q2kksi+iYzOEIKnooz6COSCiKWsq7yaTgpdkJeH1JAv7rHAdeyZCxKMmCzQVWJHoj+FV9GB3xFsycNQ1NL/wLnH/uD+EhKTXv/BDmg2WQe4NAlOwyGkaU5PeLmjB+2aqhVtVR5dNgNlF+JK52ktE+ElcHnbMiYeGEkELxUHROFudBIP7mmlXkW1R6fOf/eiJeHB6oRYopEauSphgll8y3YHwuOYaLpCQX1q5Zgd6+Phw8dARerzd20hhmbMK9lRlmJJiAsC+My91h7Dt7HI7OTuTOWYeLkh2DYaDLr+GSDtR5osbQNHt6olCtJqxNNSHkj2IfLavyk9hk2PB0vh1FVhkaSVQ5ydjhPhVeixlPFtjwCMmkUCM1rKGJ8jSTeC1MNkFxh/BOpQ+fuWWUWiUcbwngYNCE+akWZEm0b8rnUJeKXjrQxQV2rMgwAySRVzwarC4LlqebIEZiU2jbLJME30AEB7vCuOTVjU4tL+SbEO4M4B+qwuixmzBR0/CREFeS2Zm03mVWYFF09Ac1BE0WQ3C7hPQGJXTTsR6jvPZ0kVjGpSNn9QpkTJ4IuU9Bkw/QQnVY6G9DitMMm8mMapJo0cO6Q5UxJ8eMtekKFBLHw10aem0mrM40IVm0mSRfG9QkNJG8elQxX7EKCwaxJmEAm5JVOOl4yPNuO/xaGF/2VqIvHMSzaQswyZFFy2kFx7ChiLEueSibbyU1NRU+nw9nz52H0+lEbm6O0S6RYcYiPEMKw4wQb6cb//NMK14/exb/osCE7z/95Mh+/Em0wlHNqFa1xgbONtCHlkdJgCwmBd80C5ceCaGsLoBmzYI1Uxz4+sR8OlTKJ6zStdtE+7ixHnY4NJX2rV93TDr62v0kmFE4s514NO3ujNkmNdZB2bcDck0VtLQMqDPmIpJbgmhCMmSHXQyvSLvW0d4RwestKuKyzPhxrokkcAifBnzuVrCbpBh6EH2BY5jm6McrWTNIWG9/4OEonfOygTrs6a3CmsTp2Jw2P7aGuRWWN34O2MXcyj82Bkdnbo3H48Vv3nzHmEXlhS3PGeMfipJFhhlrcMkhw4wAcQ/V0dONM/VdMKUVYvncCSiMt36t7dEtg7YXPYcV4TfDLDeRzEnSdcuHCS2kIaTLSEsyI98q3bBeFPAM5SO88OvrbhEY6s381TFpcIc1OGxmTEgxwfotxzPiSHRBnbUA6oSpkLs7YDpVBlNzPRRokC1mY+YNnY5dtL/0SQqWZZmQYf7qYioeTrHp2JCoYYNLRp4lhHOeerjVIAodKbReSKxIP7JoCQ5gW9cFpJoS8VzaAjgUKy1nvomrJYfqjHnGezXs+8xhhIU+02L+ZTH3ssfjQXFxEWw2/owxYw8uOWSYESB+6D/6eBsuVbZg1VPPoqQ0A7nxd6d0bTwhtTZBOfQl5MvnoSeQOM6cDzWvBB3WJKhxTmQ7v7naUiWJfa/rGA4NVmB9+nTMT8iHLInix2/Hq4bwGYlhW8CLlzOWYGZcfmwN801YXv+ZMSB69JWfGDOlMN/OF1/uNTqnPProGqxauZxOG583ZmzBJYcM8y1EIlGUHTtBP/bHsWjBTKxZOhMJ1pEJCfN19PhEaNPnQJs8A5J7AMqpI1DqKuE06Yi3W+gXyQRdTEMm7lmHCVH+l2xyoCbQRdGJYnsq4hTbUObfQESP4nB/Lc65W7HGNQ3LEicOmz/HzaGcOxkrOZwrirpjZ5T5JrKyMtHU2Izaunpk0+OUlGSuXmbGFCyHDPMNiIL1hoZGfP75l0aPxA3rn+BSgLuAHhcPbcpM6NNmQQoGYRLzN1ddAlQVEHJoGqpyHo54xW4IYaWvHYPRAEodmbDJFijf8K8h0Ift3ReRY07B5tT5lJ7fw5Fybfo8kkOd5XBEiHmWhRCKzil9/QNG9bLdbo+tZZjRD8shw3wDg243du7aje6ubjyzaYMxf+rV4Ss4vnuAJFGfPB3atNlANALT6aMwVZ6nx0ISSeBISiSL9abtsq1J8KlhHPPUwqIoyLW5aDlJ5zD/3GoAu3svQ9NkvJi+mNIOleJwjCxMos2hxQJt1nyeW/k2wuVyGTeXZ8rPGrJYUJAPhT6rDDMW4DaHDHMLwuEw9u47iL1792HVyhVYu3ZVbA1zr5B6uyGdPAr52AEyPQ3q7EVQJ06FnpIOOJ2U4KuSq+6wG//QuhftkV78IGcxCuwpsTVfEdIi2NtbhTODLdiUugBrk6fF1jAjxfza30FyOKF+//duWZrLDI/4DXn3vQ/Q1taOzZs3YeqUySMb4YBhHjAshwwzDOJrUVl1BR988DGSk5PwvZdfgNXKvQ7vF9JAH+TTx6Ac3Qs9HIE6a77R41lPz4LujLvW9u2irwXvdB1FmiUOmzPmIu6G3scXva14r+MUpjjy8NtZK2Dn6uTbxvL6z0kOxVA23CHlTujo6MQbb76D1JRkbHl+szEfM8OMdrhamWGGoa+vz6hOFr2Un31mIwkiV0XezxDj6unFE6HPWQQ4nFBOH4Vy9iSkgJ/EUIIuxtsjUUm3uhDRVRx31xrvW6E9FYokg3Ix2iN+3nMJim7ClvSFJJDxRhrm9hBtDmU617pRrawM+35x3Dri4+Poo2rCqVNnjCkpCwsLjOcMM5rhkkOGuYFgMITdX+zB0bLjeOLxtXhkMQkK82DxuiGfOw157w7A54E6fS60SdOh5+Sj36bgH9oPoDrQhi2Zc41SxIiu4eRgA2p9vdicthDLkibHMmJuF1GtLItBsLla+Y6JRqNGLUR1TS02bdqIuXNmcfUyM6phOWSY69A0DefOX8Ann2w3ZjfY8vyzRmNyZpTg90G6cAby7k+BgT5DEtXJM1CZZMY/uE+hLtoDh2JBf8RvdFh5JnUB/jTvcYiyRObOEOMcykabw9/nauXvQHd3D15/4004HA688MJzyMrMjK1hmNEHyyHDXEdnZxe2vv8hBgfd+P6rL3P7oNFKwA+p4hxMX34G9PViYNZs/D8Zg/jb4NlYAsAqm/Ev8p/AnxesNx4zd4bltZ9BsotBsHn6vO/K2bPn8cm27Zg7Z7YxLJYQRYYZjbAcMkyMQCCAnbu+wIkTp7CefrhF1Q8zupEiYchXLmHfiQ/xn6VKHM34Sl4k+vd8+gL8Rf5GlNjTY0uZ28Xyxi+udUgxBihn7hhRM/Hpth24dOkyNm54EgsXzufhbZhRCcshwxCqquL06XJs+2wHpkyehE2bNnCboDHE2y2H8J+ubEVDoDu2BEbHlGddM/Hv8tdjcmJBbClzu5jfEL2VnYi++hNuc3gXELUSr7/xlvH78uILzyEvLze2hmFGD3z1Yxiio7MTZceOIy4uDmvWrDLu5ofrecgxOmM6yd9cVwnM0lApDC2FiW57CzoHUVDdAKm7Uww6Z6xjbg/RWtOIYc47x+2Hy5WIRx9djf7+fhw6fARer9c4zwwzmuChbJhxj8/nwxdf7jPmQX3iiXXIpzt5UaDOMXbCIVuh6Ro8agAWyQSHyYrZtiw8165j1qlLkNqbRZ2eMQSOLjpVKFw9OlKU86egm8xG5x8xfd5w55/j9kJMrRcIBHHu3AWj3WFuTjbXVDCjCq5WZsY1YoiJY8dOGGMazpo1A+ufeiK2hhmL+NQQygfrUO1rx5zEIsxOKILcVA9l3y7ItVXQ0jKgzpgLrbAUuisZsNpiWzK3QvRWhk10SOE2h3cTv9+PN9961xg664Utm1FUVGiULDLMaIDlkBnXNDQ2YevWD6EostE7WVQrMw8fangQnTWXIZedQHZjLWQSQ3XGPIQK89HtlNENFVFYkGROQqYlDjYE0B0aQHf0alW0CfHmRKRZad1wBTxaBN7wADrCHnihIE5xIcMaD6vuRk9oEANaLJ1AssJliUecFMJgyANP7BdYkp2Uvwuptxgg+f/f3n2AV5XmZ4J/z826Clc5oQgIkaOAIudQgMhUrs7uevysez2emR2PZ23PzvrZ9di9z9jjdXu89rTd3QUFRZFzzggEQiiAkABJCOWsq3TjOWe/c3ShEtUF1YDS+6vnFNL9rq6OpBve+4X/5/d1i9tqR4v4XpDsiLGEI8ok6d+3xefGFwfNLcYwxJhtUGXx/b/QZjeFI0Kcv1P2wWQOEz+r5VvnFnGHlFfnYXkFdu/ei5Ej07Fp03qEOxyBFqL+xXBIw5a2+8mBg0dQWlqGrVs3YUzG6EALDSmqD4315/GbmgYExy/Fj40Kgq+eg+FuHsrivNibBBSIp0GPLRZJkXOwacRsZKEcO6ov47jLjURLEMwIwfiILKyKH4ukr+UjFe7eR7hQewmHOhvQaRDhz5yJlQna7VTgYlMe8kSeg+pFpwhyTmUEliXPxQS1DGfrSlAjAluYeHNiEF+zOj4LyyKesZOL7EJFcy72NxSgSPXDIIVjWvhsZEdForn9Nk511KBdnIff34kGEQYjQxfiB1EJqOvIwZHONgSJwGuVJKSGzsI8i4xLHeVQw2bgB4mjEfkti2U/X638e/rwMr1c589fwtWca1i2bAkWLZwv8jd/x9T/OOeQhiWfz4dr128iN/cmZs3Mwsys6YEWGmpkVyXO1Bag1pCCFYlTMCLKAWXCVMij43DB2oHHTg8+aonAFqOKC2ojSq3RyDC04lx7C4IjluDfJi/Fm9ETMMURI0KfUQQzSbyt/uIho8F5Fxe6fBiZkI1/HxWFso4S3JBtmBU9HXMip2Bh1FTMDXFA9rTCa0nFgqh4uHvuodyXhFWJG/FhwgwsiRqJkfYgGA1fvX1xuGtxte0+Gi0T8P20FciSHuFsayP89vFYHjMeMyOnYkl4JkahC1VeM5KjpmGhpRNH2+vQEzIbP0tehQ3R0zAzIgEjQkNhcd9HSWcnEJSGkUFm8S2e8T0DhzbnUBKBRetp1eYc0suVkBCPx9U1qKioEB8nICqwVSdRf+IjnYYdrbO8qqpaD4bxCXGYP3+u/mTMYygeKtqdD5Hb5YXHIcJX6OdtSsxozMp8Dz+e+r9gfNx4WBo7ENJWB3tTCXobKuGRe2ASR0tvLR6IUNemyiIsBe5EX2JCQvhc/P6obGwNs6PT2wkFRsQYzDAbTLDYbAix+FDbJQKj24rU6CmYJj6vd7vQIino8TfhoasW1f5uePENAzm2JKxM3oA/SJqEBMmJWvHmRjZaYTMZYbFYEBJkgVGuwtWuekj2sVgVmQaT0gGnr1ecixutnlo89LSgWfVBMYYj3R6DNn8LrnY3ouc5x47Er+zp747Hyzts4v6xYvlS+Lw+XLp0FR0dHYHfOFH/YTikYcfpdOolJHpdvVixbAns9qBnPmnzGAqHG80i2LkVM5It4XB8oc0UFIGkuBSkjk5H79IsXFowBd7IOCy8UwJHTh5szeXoqDqBExWf4ecP9uF/1pWj0f/sJGU0mxBkk+Hsvo/jDUV4JFswKigGDq2ejjbs3PUAFzsageBMLAhLgFX2oxdm1CltyHdewq+qPsFfll/A5c5eaCPQX6OFTKsNZrkDpfXXsLetBX5bPEaJYCEiKyB34U77XRR6Q5ERMRaZdsAjvnWY0YVez0OcazqFv3n4GX5RfReVXhlR1lgkGP1odTWi4Znf8Fm++Hvl8TKPpKQRmDdvDiorK3H9+k14PCy7RP2Lw8o0rHi9Xly5eh15t/KxYP5cTJ0yOdBCQ5MT5a1FeNhjx7joqRgX8pXFHrIHHd0PcPbRJZzutmHqmLexduoiRFrsmFTVgrXNEt40xsJsbka+HwgPGo2MoK8vGNF6o1XFiCBLLEbagtHbexd5vR44gtIx0upFWcsNnOmUMCb2DayICIbZECzC6kisjs7CuqQZmCb14GZbBapFaJvpiMbXNlUTt6+Iw2C0IyE4CelqO3LbqtBgisbU0EgYu0txsOkeOoLGIzt2HBLNEqyGCIwOnoK18bOxLm4kIr2VuNLRCbMtFVOCfKjsvI92ORRjQkci4bfsivdkWFmZPEN8wt08XpX4+Hg01Dei7P4DxMbGIDo6Sg+ORP2BPYc0bGhbV2m1DLVgmJaairlzZgdaaOgywiQZRbCS4UVgybAWtBQtzHnR6SzD8fKLuNAbhmUj1+DtxBEIiXKge0oWnCt+BGX8YpjLahB59xHCuuthaCiD1OXUayZK4na0fyFuu6e3Efc76tEsLoqNSMXksBj4vR2o8vZC8jSjvLcdkiUaE4PCYRWn4Jd7RGztRa+etQywm+wIMdr0wt3a7ari/LQR5icfq14nqp2Pcd/VDdkajQmhKSIAelHnaYXTr6DFVY0yrwGhIQlICdL6+PzwqC70SD7I4lleMlgRYrLBJrKGIqn66Lj4CcTHfS8C2uffdvT9j14Vs9mE5csX64Hw0uUraG1tC7QQvX7sOaRhQ3uyPX78FLq7urFpUzYiwsO/NLTDY2gevV2VyHF2wRCWgTkRNnR2N+CB+Lzb24DcmmPY2epDSvx0TAuX0OLphU/uxMOGs/i4oRy1aVNgmxyFiyEibDXWYl55oQhjPWgxmRDic+GRux31fi/aOvPwrzV5KPabEK4243b7Y3hMKZgflYFEfzWOtj5Gs20UlkenIsoEdHTexq+rTuN4rxt2s4oqZwnueWyYFDkOo9GFh93d8BpMUESwLBMfuzz1ON9wBnvaRWAQQa+lpwS3emWkRk7GfIcVTR3FyOu1YnzEFMwNEekQ3XjQfBH/WH0bZYoJDqUR+e3V4pxSxTmNRpzvMQ63N8FpH4WlkQkI/y0dgnrPocUCiMAsiZ/7Wb9jHi/n0Eppmcxm8Qb2tnhToCAtLRUm1pakfsBwSMOC2+3GhYtXUFx8F0sWL0Bm5pi+oUAeQ/wwQvI0odBZhy5LHKY4bKhtuYo9dTVodHeizVeLIoMH1a4HON9SjLMtjZAtyZgjApPFW4XbbXdwpbcF3uDJWDNmG0bGm/FPXZdR+KAUk0oLcbolH7fgQFZEBqKlNtzpLBVBtBadhmTMj5+JN8LDoHoaUer2IdwxCnPCI/QhY7s5ArHi+9Z1lSGn/SEe+CwYH6WVpglHfesp/HPtI7hsEQh1F2GvOCc1JAOLg0xo7ClHTuc9lHhkpIXPxJboDCRZ3GjsbYQbMZgYMRIpVvEzw4poox1WuRnF4pyud9aiy5CCBXFZmBVuh9NZhFtdHiRFiHApzlHrzfxqT+GTwyTCobansl48XASYZ/+eebysIy42Vn8je/deKSIjIhAXF8vdU+i1Y51DGvK04eTComK9pmFqSjK2bN6g751Mw4SnDucqzuCqOwbLR63AnLDn7IlRFfh8fsgw6EN+RpGUlM4yHK15BF+1Cxtv34Dd2QF5/BTImROgjEiF32aHVxLXFde3PM/rueyHV1tRYhTX1++SClqbc3DJqSI6ZjYWOL4yGVAR1/cp0BeomJ8vMMjazyCe5Y0mcV7iS1R/Ey5Wn0OuOxILkxZjTuhvmXAoPKlz6HtPq3PIXqzXob29A9t37ERQkB1vv7VFL3dD9DoxHNKQ19jYhM/27NdLRHzvw/f0id40nChob7qK/fVtCImejy2JUXrQ+y5czsd43OODzZGKVKMPhpIimM4ehaStHs4YD3nsRChJqUBo+HcMUh40dDSiU7Eh3hGLsFfwHsbrLMauhhp4wydiS1wyIgKXfxPLdhEORUjhDimvV1HRHRw8fBTTp03F2jWr9D2YiV4XhkMa0lwuF46fOI0bN/Kwbu1qTJ8+NdBCw4rsRlunEy7YEOlwIOgljtJJPi8MZXdhOCNCYnMDlJFjoIybLEJiGtQwERIHVKBS4Optg9NnFGEjAmHPcWra9nkI6ttbmeHw9dFemo8cPY7iO3f1Pd9nZmXBZOKIB70enMhAQ5Ysyygqvov8/AJMnDgeU6eybM2wZRShMCIOIyJebjDUqGYL5InT4PuD/wjfhx9BcrtgOrYHphP7YCi+JQJjo1ZDSS9v3f+HATZ7NOIcEQgVOe/Z1/n6Qa+ftkBl0cIFcIQ5kJOTi7q6ukAL0avHBSk0ZNXXN+DEyVP6/MIN69chKMgWaCF6BQwGqNGxkLPmQE0ZCWPlA5hu58LQUAtJkSGZzHq9QEncH7+44GOgH8aim3qPoTJ5OrfPe82sVgtCQkNw+3YB3G6PvnpZu4zoVeOwMg1JPT09OHzkuL4QZfPG9ZgwYVyghej1MVQ+hPHccUiPHkKJjYc8YSqU1FFAeCRUi7ZGeODTFqTAzjmH/enEydP6CMjKFcswd+4bLG9DrxzfBtKQ4/f7UVBQhKLiO5g+bQqDIfUbJX00fD/+Gfw/+UPAEQ7zhROwHP0MxoIbMDTWQfJ6vlbrbqAdWvdh38eBH4peu4UL5ukL6a7n3sTjxzX6fESiV4nDyjSkaE+aNTW1OHnqDIKCgrA+ew0sWgFfon6kOiKgTMmCmjFWn4NozL8OqaoCkuyHajRBNZmBAdobZCzM03sMtTqH2tA5vX5m8fsPDw9H/u1CdHf3ID09DTbb4Oh5psGJj3QaUrq6unH5co5eJ2z58iX6jgNEA4W2gtn33k/g++m/BZJSYLp6DuaDO2G8lQOprhpwu565IKS/D42kz0Ck/jJqZDremJWFsrIy3My7pe8TT/SqcM4hDRk+nw9Xrl7DqVNnMXv2TKxcsTTQQjQwSfU1MOSch7E4H2pQMPyTZkAZmQE1MkZ8PjDq2mlzDg3B4tze14pgc85hf/J4PNi5azc6Ojr1Yv5jxmT0Df0TvWQcVqYhQXuPU1lZhdOnzyI83KHXNOSkbRro1JCwvpqI4yfrJXC0HkTDg3v6zinarilamRxo0yL0uX/9c2h7K+vb503ksHJ/0yovREdFobCwGB3tTn14WZs+Q/SyMRzSkNDhdOLkydNoamrGhvVruQsKDSpqcAgUbQu+8VP1eYjmvGswlhZrq6ugGoz6fEQ9KPYDU2GeXoJHmTSDpWwGgLCwUD203y4o0sNiSkoyi2PTS8dhZRr0tLk3Fy5cxrnzF7Fo0XwsWjg/0EI0OGnb8Rm0gJh7SesWh3/idCijx0KNjRdBsi8cvC6Wj7UdUljKZiDR9vz+bM8+vZbrxo3ZmDB+HAwM7vQS8d5Eg5r23qa8ohI38/KRlpaCOW/MCrQQDV5qZDTkldnw/ew/QV6wHKa7t2HZ+xuYLp+BobwMUnenuJLSFxJf9cGFKAOO2WzC8mVL9D/N5ctX0draGmghejk4rEyDWltbu14gtrOzC5vEO2iHIyzQQjT4qTYblLTRUKbNgmoPhvHWNRiLbwHd3XqPojbU/HSRiDYI9AoOrZSNPqzMHVIGlOBgOyxmK27lF0DcE5CWmsJ51vTS8JFOg5a2nVTOtVxUVj7CwoVzER8fF2ghGlrUUIfeg+j7oz+Hsm4rzJX3Yd2/A+bzx2EsuwODs71viz7pywWsX84ROAn2IA442n7x48Zm6kX/S0pK9f3kiV4GzjmkQUlRFH0HlAMHDuv7jW7buonvmmn46O2BVHwbhjNHgM52yJkTIY+ZCCUpVQ+S2gKWl0Wbc2gMDoH84Uf6qmUaWLTRk1//Zgfsdrv+PJiQEB9oIfruGA5pUNJWJX+2Z79e7PrDD95BTEx0oIVoGHG7YCgpgvHsUUjtrZAzxkERQVEPiWHhLyXMcUHKwFdUdAeHDh/F9OlTsebNVXpQJPpdMBzSoONyuXD8xGncuJGHdWtXYcqUyYEWomHK54XxfglM54/B0NwEWZunqPUmJqcBYRFQf4dQpxXBRlAQvO/+hOFwgNJGUo4eO4l7paUiHK7GzKzpHEmh3wnDIQ0q2pya/PwC/V3y2Mwx2LBhHUs4ED3h98PwsFSExOP67ivyiNS+ItvJ6VDDI0S4e/FaieaP/wckezB87/8eh5UHMG1R3sfbd8JoNGDr1k1ISU4OtBC9OIZDGlTq6ur14WRtG6nvf+99fTcUIvoK8bQuiZBo0Iabqx9BSUiCPG4KlBQtJEYCFmvgit9OC4cGbc7hBx+x53CAKy29jz1792P8+HHIXrcGISHBgRaiF8MuFxo0enp69b2TG5ua9BpfDIZE30CSoGaMg/zRv4P/Rz8DrDaYzh2F6dgeGApuAI11UD1uaD0D33bQ4DF27BjMmD4NJSX3cLugEH6/P9BC9GLYc0iDgvYkp80xPHb8JCZPnoi1a1brZTaI6PlIVeUwXjwNQ3kp1IhoyBOmQU4bJT6O0sPjN9HnHNq5IGWw6O3txfYdu/RdVLZu2ahXc+BzJb0ohkMaFB5VPcaePfv1mmvf+/A9hISEBFqI6EVow8zGS6chld2F6oiAPHFaX6FtLSTaggLX+pwWDqXgYIbDQaSiohK7du/FqJEjuTkAfSfcIYUGvK6uLpw5cx41NTVYn72Wxa6JfgdaiRtl0nQoY8YDzjaY8q/DUHlfL6INo0nfdUVfuKK9E3O7YBTtksUCedI0vZ0GvoiIcPi8PhQUFiHIZkVS0ggYjcZAK9G3YzikAc3n8yE3Nw/Xr9/AzKwZyMqaHmghot+FVixbmTAVytiJMPT2wHhLhMSHpYDfBxgMkDqdenA0XbsIyH4oUTH6Fn7PHILmBMUBJzExHlWPH6Oi4hHiE+IRFRnJ4WV6bhxWpgFLu2uWl1di776DCAqy6cWubbZvnhtFRN+d1FQPY+4lGPJvQDUYgY42GEsKIDnbRVg0QkkdCf+HH0FZtravd1GnQGqrF+HSCDUyFor9yRpHcbmzGVKr+NonayKCwqFGRYmA+eyhacnVIc6hEeh0AaYgICZR3GYoVLkbUnMLpG534Jrie0eKoKq1PWNJpaR4gbYmSC1t4t2lCEOh0VBjYwDt3DrE5W0dXz6ncPG9nD2QLCFQY8KgDqH8VFtbhx2ffIqkpCRs2pSNyIiIQAvRb8dwSAOWtvvJgYOHUfmoCu+/+xZSU1MCLUT0qkgtTTAe3g3jwV16rcSnjEbIqzZA/sEf6EFRI3kaxHV3weiMg//NzZATn5TIccJ4dAdMFwoBW6zIcyJxJWfBv2gR5PRnVBnwdcB4/RRMZ65BbesRYdQGaeoqyCuXQFYLYNpzHIZqEQ61IIdIqPOXwz93IpSvVeRRYKi/DeNJcf2iaqg+FZJjLNRV6+CfFQvDqY9hvHRXnJMIi9o5pcyCf+YISJeuwRiUAf9G8f0cQ2voPCfnOs6dv4gF8+di8eKFsFqfv4wRDV8MhzQgeb1eXLx4BecuBJ7UFi0ItBDRq2bMvQzzv/wdDMX5Whd+34WCMjkLvp/8IeSZ88RnfhjuHob5+CNg8hr4VmRCedLr5n8M8z/8Eqa2BMjvboMiQqNqtEKxmKE+K3u1FcK8+4wIaFPhyxa3ff8TmPdVihD4tgiiRTAeegBMyoa8JAOqwQDVaoFiFrf1tV4+N0yX/wWm/F4o896BnNkJ4y/+AUbfNPg+WATpwK9g6k6D/PYmKAmBc7IaYCjYBfNVJ5SsbPjmJA+p3kNt1fJnn+1DY2MjNm7MxrhxY7lxAH0r3kNowNG2giqvqMTNW/lITUnG3DmzAy1E9DqoIaH6SuYvLUCRJKihYVCDA5UClHYYCvNgEOFRHp38eTDUdLUDPT5AFl/W9hhSRbkIgM4vBc0vkmzi6998C/51s6FEiJclySwOqzgUSK2V4t1irTjaxe3cB6rrobq1Gw588ZcYoGSuh3/z9+CfkAhFC0Haz2AS37e7RZyTX5yTKs6pKnBOneLnMEBOHw/FKX6eO6Uw9A6t/hKz2YTly5foU0IvX76K1tbWvgai34LhkAactrZ2/UlMW4yyYvlSWCwvvuUXEX13SnqG3juopI8WITEcakQk1OR0fQGLGj+i70rdzZBq/VCNCUC4ve+yAMnjhRQiXl48jZBuHofxN38Dy44jMD3ufmamU+2RkFOT4Y8Qj/X6IhhulkKKSxLfLwqqPwxwi2hTWQjp6K9g/oe/g+VSCQyeZ4U4C5TYJPiTY0UO7YDxxnUYuiLF7WQBIRKkUCPgqod0Q5zTr8U5fXIMxhpxThHxUKNaIDU/gNQiQu0QExsbg0WL5uNxdQ1yruXC7X4yf5Po2bhamQYU7UnrkgiGxXdKsGzJImRmZgRaiOi10YZsRTBUElNEqAqDPDkL/uxtUOYv66uHqGkvh/H6YxgixkLOEsHxi8PF1lAgZQqUBYvhW7wEalgTDDfKINlSoYyNhRK42hdJshuG2iKYDx+CsU1cZ/Va+DNHiGCaDHX6UvgXLYN/djqk+5dgrPZDyZgGOezZ/RuSCK6mG8dgunAf6ljxdUtnQIkO7zunhUv6zim0Hobc+5CC06BkRkF6lAujU4IycjLk6KG38C02NhbNLS24d+8+IiMj9MDI4WX6Jrxn0IChDSeXlt1Hfn4BxmSMxrRpU/UVyzx48Hj9h2Kzwz93CTx/8Cfw/uh/hf+NRZDDIz+/jsEoDhnwe/SFH6oqIp8sPpfFvz0dgLMDik+Bot1WUAhUrQSOon5+nS9+LIIhHt2Cad9+EdCSIG96C95JiZBVF9SOdqjdveLq4rYsVqgWETy1IW5tVbL29eJ5Q9VqNPr7PkZ3A4xX9sN0TgTDydnwrZkHX7g41552oLPz83OyaecUpJ9H38+k9WkaIFo+/xmH0GEwSFi6RFuQYu7bhrSxqe+Jl+gZ2HNIA0ZTUzNOnjwDr9enV/UPDraL1wCJBw8eA/LohfFuLgyuICjjp0AN6oGx6gFMrS4Ymm/DtOcQTFXa8LIXxqJLMPrCIM/MArwivNU5IQXZIDVWwqR97K2Gaf+vYC4V0UxcR3Z4IDX1QFI7YbqwE+azRZCMoZBaSsX3bIOUPgtqmgHGmloYVO15oh3GihoY3H4Y7x2Hec8VSDGT4Z8UL4Jlvbh9CcaGmzDtPgxTjTgnuzinQnFO/nDIWXMhR3fCeLZAfJ4GebZ4Uxpm+srPOjSOoKAg2IODcevWbfj8fqSlpsJi4a439HUMhzQguFwuXLhwGaWlZVi5chnS01MDLUQ0IJkNMDQUw9jig5oyQQSqDhjOH4TpYTeUSfOgRPTAcF8EroI7MPRGQpmzBvKUcEin/gWWyxVQkxMhlZyB6XYjJFkExJZKqB1tQGUBDLeui/DWBkP0BBEW06GKNmPRbRgfNADJMyAvnSuuK4LeznMwGtIARx0MJ3Ng6BGhsqUOqKmG2lkJQ5G4He22PCGQxTmp4V0wlBWKcyoWoTYayty1kCenQW0vhamgAVLyVMjTxOdDOC/FxkSjw+nEnTt3EeYIQ0J8HIeX6WtYyob6nSzL+lDykaPHMTZzDLKz1+jvcoloYDNUnYf5UAGk9CXwrRbB6itlaiS/VwQ/CarJDFXfvU2GsfgEzI1G+CcsgT/hOWvuqTIMXp94XjA+LWEjtRTCfL0J0oiJ8E1LeOY8xmf52jmpbhiv7oalSIY8by18U2KH/GYvnZ1d2L5jpx4Kt23djOTkJD7n0pfw7QL1u/r6Br1Qa7Ddrhdp5ZMU0eCgJIlAmBEDeEVI65QDl35ONVmgWJ8EQ40PCMmEPHoKlNgXKMashUKrDbJWJzHw9CDJIVDHZ8CfEffcwVDztXPyNcFQJy5PGAt51NAPhpqwsFAsX7ZU32jgas41dHf3BFqI+rDnkPqV9qR07PgJFBYW6/MMtQKtRDR4SL3tMDq9UIPDoYRZB124klxtMHYq4vwdUEJEaAxcPhycOXMeebduY+WKpXjjjdl6TUQiDcMh9Ru/34/cG3k4ceI0pk6ZhNWrV7DXkIjoNdHmem/f8Sk8Hi+2btmoz/XmczBpGA6pX2h3u6rH1di794D+ZPTB++/oq5OJiOj10fau3717HzIyRmF99lo4HGGBFhrOOOeQ+kVXVxeuXr2mz3lZvmwxgyERUT9IT0vFG2/Mwv37D3DrVr6+rz0Rew7ptdO2xdOKsJ49ex6zZ83EMhEOiYiof2iBcNene9De4cTmjdnIyMjQi2bT8MVwSK+VdncrL6/Avv0HYbfb8d67b8FqfYFVi0RE9NI1NDRixye7kZiYgE2bshEVGRlooeGI4ZBeK20Y+dDhI3j06DHefWcbkpICm/gTEVG/un79Bs5fuIR58+ZgyWJtqz2+cR+uOOeQXhtt6CLvVj4ePCjHnDmzGQyJiAaQrKzpSE9P07fXu//gob7fPQ1P7Dmk10J7kikru48DB4/owxVvv70FJhNrahERDSQtLa3YvmMXIiMjsGXzRsTGxgRaaDjh3sr0WrS2tuHkqbPo7OrCxg3rEBoaEmghIqKBwm4PgsVi0bc0VcV/qSkpLI49DHFYmV45t9uD3Bs38ehRFRbOn8t3okREA5i2KcG4cZkoKryD0tJSff97Gl44rEyvlDacXFx8F4ePHENycjK2bF4Po/HpRqtERDQAdXQ48ZuPP9GrSmi7pyQkxAdaaDjgsDK9Uk1NzTh56oy+PZO2d7L2RENERAObzWZFsHi+1gpj+2U/0lK14WVzoJWGOvYc0ivT63Lh1MkzuJl3C2vXrMakSRMCLURENNBp8eD4iVMoKSnFmjWrkDVjOkd+hgmGQ3oltDkq+bcLcOzYSWRmZiB73RoYDJziSkQ0mHR1dePj7TtFKDToq5eTk5MCLTSUcViZXom6+nqcOnUWBknChvXr9CEKIiIaXLSVyw5HGPJu3YbH40FaWop+GQ1t7Mqhl667uwc5Oblobm7GsmVLEBYWGmghIqLBZkzGaMycMR337pWisPAO/H5/oIWGKg4r00ulPWncuHkLJ06cxuTJE/Hm6hWBFiIiGqxcLjc+2blbnzK0edN6pKQkQ5KkQCsNNQyH9NJod6XHj6uxd98h8aQBfPjBO1ydTEQ0RFRVPcann+1DxuhRyF73JsLCwgItNNQwHNJL09nZhSNHj+NeaRne3rYFo0alB1qIiGgouHDxCq5dy8XSJQsxb94clrcZohgO6aXw+XzIEU8YZ86cw6xZWVi2dHGghYiIhgqv14tPd+9Fd3c3Nm7IxsiR6RxeHoIYDul3pt2FyisqceDAIQQFBeGD99+B1crVyUREQ1F9fYM+/zApaQTWZ69FRER4oIWGCpayod+Z0+nUewybmlvFO8l14okiItBCRERDTUhICCSDhPz8An1YOVmERBbHHlrYc0i/E22I4dLlq7h06QoWLpiPuXNnB1qIiGio0ipT7Nl7AM0tLdiQvRZjxmRwo4MhhH9J+s609xUVFY9wMy9fH16YOXN6oIWIiIYyk8mkzy2X/TKuXL2Gtvb2QAsNBQyH9J21trWJJ4Uc+H0+rFixlKvWiIiGkZiYaCxaOF8vYXb9+k243e5ACw12HFam70R7Ejhz9gKuXc/FqpXLMTOLvYZERMONoig4cPCIvihRq304ZfIkDi8PAQyH9MK0J4PiO3dx6NBRfRN2rVo+JyMTEQ1PHR1ObN+xC6GhIeL1YAPi4+MCLTRYMd7TC2tubtH3TtYCoTbnhMGQiGj4Cg93YMmShXqJG61Adm9vb6CFBiv2HNILcblcOHX6LG7cuIXs7DWYPGlCoIWIiIYrLUocPXYSJSX3sObNVZgxYxo7DgYxhkN6btqG67cLisQTwAmMyRiFDevXsTI+ERHptF1TPt6+CyaTEVs2b8SIEYmBFhpsWASbnps2ZHD61Fn9Y63YNXdBISKiJywWCxwOh14c2+3xIDU1Wb+MBh/2HNJz6e7pwfHjp1BQUIhNm9ZjbOaYQAsREdHnzpw5j9vitUKrZKHtta/VRKTBheGQvpVWCf/GzVs4ceIUpkyZhDdXr+RwMhERPZM2N33HJ5/qBbI3blyv9yDyNWNwYTik30q7e2gFTvfuO6h//uEH78But+sfExERPUtVVTV2f7YPY8aMxrq1qxEWFhZoocGAcw7pt+rq6sbZcxdQXV2D9dlrEBMTE2ghIiJ6NocjDD6/D4WFxbAF2fTFKVy9PHiw55C+kc/n0+sZnj57DrNnZWH5siWBFiIiot/O6/Vi567P0N3do1e3GD16JIeXBwmGQ3om7W5RXl6hDycHB9vx/ntvc3UyERG9kPqGRj0gJo1I1EefIiMjAy00kHGHFHomp9OJnGu5+h7KK1csYzAkIqIXlhAfh7lzZqOy8hHybhXA4/EEWmggY88hfY02FHD5Sg4uXryMhQvmYY54YBMREX0XWsWLPXsPoKWlVd9ZSyuFZjCwb2ogYzikL1EUBWX3H+DQoaOIjo7C1i0bYTabA61EREQvTtuTXytvExsbo88/jImJDrTQQMTVyvQlra1tOH36LDo7O7FpYzZCQkICLURERN+NVgLNZrUi/3ah/nly8gh2PAxg7Nelp7T5hVqx60ePHmPhwnl6zyEREdHLMHnyRGSMHqXvtFVWdl8fqaKBicPKpJNlBXfu3sWRI8fFO7okbN60nnNCiIjoperocGL7jp0IDQ3TX2fi4mIDLTSQ8NWfdM3Nzbh69bpepFSrZ8hgSEREL1t4uANLly5GQ0MDrl2/gd5eV6CFBhImANIfnNdzb6Kurg5LFi/UH7xERESvwrixmZgwYRyKiopxt6QEsiwHWmigYDgc5rQHZUnJPf1BOmnSREycOD7QQkRE9PJpu6QsXrQAoaEhuHEjTy+UTQML5xwOc7W1dfouKD6fF9/78H39wUpERPSqPXhYjn3i9WfChPFYvWo5q2MMICxlM4z19PTgwsXLeuX6tWtXIzEhPtBCRET0akVGRsDt9qD4zl0EBwcjQbwGcb77wMC/wjClVawvLr6LO3dKMH36NGSOyQi0EBERvR7z58/R91u+efMWamrr9H39qf9xWHkY0v7k1dU12Lf/oD7344P330VQkC3QSkRE9PrU1NRi92f7MGrUSKxZswqOsLBAC/UX9hwOQ93d3ci5lou29g69bA2DIRER9ZekpBGYNTML9+8/wO3bhfD5fIEW6i8Mh8OM9qArKCxCaWkZ3pg9E+npaYEWIiKi/jF7dhYSEhKQn1+AqqrHHF7uZxxWHka0P3VF5SMcPHgYQXY73ntnGywWS6CViIio/zQ1NeOTnbv1nsR1695ERHh4oIVeN4bDYaTD6dS3x9P2Tv7wg3f0lWFEREQDhba//7lzFzF37mwsXDCPHRj9hMPKw4TX69W768srKjF/3hsMhkRENODMmD4N6empKCgoQoV4vVIUJdBCrxN7DocB7cGlTfQ9fOS4XlfqrW2bYTKZAq1EREQDR1tbO7bv2IXo6ChsWL9O/5deL4bDYaC5pQUHDx5BQ0MjPnj/HT7QiIhoQCsquoOTp89i9qwsLF2yCDYbq2q8TgyHQ5zb7cb5C5dwNec6Vq1YhunTpwZaiIiIBiYtmhw+cgyVlVVYu2Y1Jk2awN1TXiOGwyFMG06+c7cER4+eQNKIEdi0KZsPLiIiGhQ6OzuxffsuhIWFYcOGdYiLiw200KvGvZWHMK0swJnT5+D2eLBRPLBY7JqIiAYLq9WKkNAQ3Lp1G7IsIyUlCWazOdBKrxJ7Docol8uF02fO6/tVrl+/BpMmTgi0EBERDR7Hjp/EvZJSrFq1AtOmTYHRaAy00KvCMcYhSHuHVXKvDEVFxZg0aTwmThgfaCEiIhpcFi9aoPcg5t7I0xdW0qvHYeUhqL6+AafPnBUfSXoZAKuVRUSJiGhw0oaSHeEO5N26rdfsTUlJZnHsV4zDykNMT08Pjp84jYKCQmzZvAEZGaMDLURERIOXtnNKQWERli9filkzZ7Be7yvEcDiE+P1+5OXl4+SpM5g8eRJWrVwWaCEiIhrcPB4Pdu76DD6fX19kqfUgSpIUaKWXieFwiND+jI8fV+PAwSP65x9+8C5XJxMR0ZBSW1uLXZ/uxahRI7F2zSq9zA29fAyHQ4RWD+rosZO4d68Mb23bhNTUlEALERHR0JFzLRfXr9/E4sULMHfObJa3eQUYDocAr9eH67k3cPbcBX2rIW1lFxER0VDk8/mw+7P9eqfIhvVr9V5EDi+/XAyHg5RWrkb702n1nsrLK/Th5OBgO95/722+iyIioiGtqbkZn3yyGyNGJGLd2jcRGhYKgwiIrIH4cjAcfhdPfmX99E6lo6MDpaX30d3TIwJhMAoLi9DY2KQHw4SE+MC1iIiIhi5tAea58xeRMXoUEhIT9PI2cbGxIjAm6K+NX9XPL92DCsPhC1I8nWhuakWXFIm0eAu6mxtQ0+CEx2BFRGwiRsQ7YP3aHU+G29mM2pZOSBEpGBn5lYUiqh+9zhY01DSgw2uANVy7c8chVO1EU2sHeszRGBkbrFcs7+rq0ucW/vKXvxbvnFpgtVkQHRWFTRuz8c7bW/tuj4iIaIiTZQV/87f/L44dPwVFVWA0GDF+/Fj8+Effw+xZs0RYDIyiqR60VdfBKYUhKjYSYeJFWnW3ofpRO+CIRmycA7avbAni625BfX0jWrq8MNijkCRekyNDrV/aOUT1ONFQ24jGjh4oFgcSkhIQEwY4H9fDZY1AZEwE7IO02g7D4YtQvWi/dxWHT91Gy+i1eHe8EzePncXFB53wGhREj3kDb25ejZlxQXiaD0Xwc3VUI//0Z/jkehNi1v4b/B/LkgKNGhWe9ke4dfEkTl9+iE6/AWp0Jua+uR7LRjTiwukLKMY0/PStuYi3SXqF+P/+d79A6b0yeP1+/ftotZ6WLlmkPyBY94l04q2xPgdHPLwHy0NcP9/Bds4Ggz6UpWjnrCiBSwe2wfh7JnqWnp5e/NP//FdcuZITuKSP1lHywx98iMTEBP1zb1sRDvz6FNqT5mHV6tlINnbg8a3D+Od/KkbEqm14d+tsJH2xz8bTgZJLx3A0pwTVzl7IUhzeWLMOq+eNRYwtMGwt96Au7zQOny5GaYvIAFIQMpeuQ/a8BDTs+xTXpQlYtGYppiZ8OVAOFgyHL0DuqULuocM4f8+BVT9dDM/FvThwA1j5hz/AxI5z+M2eK2if+lP82Vtj0dehrcDdVo3iK0dx4Mhp5LjTsOj7/+7L4VDtRdXVA9h1MB/GlT/Dj8e349SOA7jSORm//8crYM47imOXq5Gw+SNsnRiGSxcv46/+6r+hprY2cAMQL04GfXXyrNlZCAsNDVxKw5k27zQ0NESfuN3V1R24dGD7/Jz9eg/5YGCzWREZGQm324O2trbApQObNicrPNwBv/g9Ozs7A5cSDT73HzxEQUERnE5n4JK+Nz8rli/BRz/9CcaMGS1eY10oP/FL/PJuKOauFgFvtAEP8y7iyMGjOJkrY/5PP8KPvxIOvY9O4m//xxXIk7Px3toUVO38f7CvdSzWvf0WlmaE6WFPbb+Nf/nrT1EzYjHeens21Et/j7/NC8PSrW9jdchN/N3uKiTNXYXNizIQPgj7bBgOn5sK54ML+HTfadxPeBt/ulLCmU+O4UzXVPzxn65GYn0e9mw/gkve+fjj/305RupvLnxoup+P3JtFqO3qxMNHNQhZ8ZVw6G/A7X2f4MgFF2b8+/+INYkNyN3zCQ7l+LDof/tjzFVz8OmBMygJ34A//cF01JTcxS/+4f9DTk7u03f9ZpMZ06dPxerVK2F90o1Ow5o92I4RiYkitLhRXV0TuHRgs9lsSE5J0rfHqnr0OHDpwGa32/UXoN5eF+7ffxC4dGAzGA0YkzFaD+HaYjaiwaquvkHf9OHhw/Knr4daZ8nWLRvxwx9+iKSkEUDPPez6r79CefxibHp3Fcb7i7H7Qjl8rnpcOl+LxOUbvhYOG6/+Av/3URemrdmGt+anouXsz/FXp2VkrX8Pb89NgV1cx3PvMP7z399D/Kq1+GDdBNiKP8V/+cdKJK7ZiA+XG3H1579EcfRCrH9rFSZHD75FMgyHz82NqisH8fGBXJjW/wf8UXo19v76CK6oi/DHf7YUqa33cGjHAeyrHok/+vO3MeVLHXgeVF3fj389nAss/Uo4dD3Gtc8+xuGbEpb+h/+E5UmtuHNgJ/YerkfGv/kTvJdUg8M7juBobRp+/0+3ItPswalTZ/GP//jPaGxq1oeRU1OSsW3rZmzbtilwo0RERENbd3cPPtm5GwcPHUG9CIqKoiAmOgrf//4HyF63Bg5HGOSKk/iL/5YL67y1+P6WGUh8siXz4zP4z399EYY31n0tHFaf+gv81UUT3lj/PWydPQLuW9vxF/9ch7T1G/H+mjGIFNfpzt8pwuBjpGwQl63NROSj0/izv74Ky7x1+OGWTLTs+Uv8a3U61mzehpWZ4Z9PNRskBuNQeD/xoru9B/4WKxLCQkSsNvTN3VH6srWiyPDLfhhFWDO/SBeyuB2DQdyWyOj6LakK/OI2ZaNRBD/xbsNiQ5hdQai7AdrooM1qxRuzZ+rzKVYsX6pXiP/opz/Gm2+u1G+OiIhoOAgJCcZ7776Fn/7ej7Bs6WIsWjgfP/zh9/TXRi0YalzOdrh8FgSH2GF7Egy/hWQ0i//1zcvVqH4PVKMiXpMNeNIHqM031l+0A9eR/V7I4l+TWVzHaEdIhAVuTwecvS749WsMLgyHz80g/uhGSBYFbp8IgVYbgu1WGF2d6HUp6O3sQGe3CyGxCYiwinAnK09y47NpYVCWoRisCAoNgcXogbPbDaWnCx0d4jbDopEYFSTugeJ6krjLib/Ukz9WbGwMtm3bjP/6l/8n/vzP/gTLli3WHyRERETDifbapxXC/vlf/1/473/7cz0sxsXFBloBo8kCg6TA55chXpa/mSpes8UVVPHCbQ+LhVW87Pb2uuGVvWhpqIYvyoLo6BBxuXY7KkwhDoQZffD1uODxKehoqodHhMLoKAeCtWwpvpdZEkFRC5mDEMPhc7MgNDoMtjgvalvbITliMWpMHGI8d3HxfB5uFpagTjVizIxEmBuqcOfmXZQ1uwNf+3W+rkY8Ks7HnUofHKMyEBfjRvHli8jNK8bdJgPMGdOQFgH4u51o6pHRFZOOaEfgi4mIiOhbBUXFItLWi94OJ0SO+0ZyRw3u5d/Fg5oO2JMnY6zNj6qi27iam4Prd8XrdPwopEeqaLxbiOKyWvREjMSMDBXt5YW4npOHqwUVMKTFIT0lCna1A421Hhjt0Yh0BGMwrgRgOHxuFjjiEpEcEwZPRR1aDFEYOXMe5swIRsX5/Thb3AZH5iq8OT0azrKr2L9jFw6XdgS+1oAgRzxGjc7E6Ki+iQ3ullJcPLwT249WwDRqBha+MQ3BFRew59wdtDky8ObKaUiyyHC2NsHp8iElcwwSg/QvJSIioucRnYKpSX6onY1o7vT2Td/S2MRr+NjRGJXggFUkIW/LHRz61X4cvVaJtsjJWLd2ChLcZbh0+CxKkIm5c7OQGdWDwiO/xmcnr6PCk4J52QuQFlSPmyf341pTPGbOnoepKeEwdtegstqM1MhUpEQOzlE9Lkh5Ed5mFJ88juO5bkz76PtYkWzVu6L9fm0IWYLFos1GUOCsvIWbdx9CHrcRq0Y9O9Epzke4kXcPD5Wx2LIiHdq1FL8fsrgtg9UCozbdwduKorNHcPp2N6a+93tYnvacEyaIiIhIkNF8Yyf+/nwvxi1agw2zkxD0jJFetfc+Tm2vhHXCeMyYlwx9TanshVc2wGA0QVsCoJXFKT21AxXWCZg4Yw5StCupMrxeVa8CoM1JBPxou7EHf3/ahcxlK7BOfL/gQTiyzJ7DF2GJQtrUieJOYUVjQwdkLVZL2lxEUyAYamSo9gSkjpyD2Snf3NUnq0EYkZKOuTNT9GCoMWiLWWx9wVDc4yB3taHdE4zg8UsxPZXBkIiI6MUYETNxPhZER8DW5USn79n9YYrbguRlE5A5Mb4vGGqMFvHaHgiGGsUFS8pSTMqcgISQwGWSERaruI4eDAWlG9W1vRgzKQNZY+IHZTDUsOfwRak+uLp60OMxIjQqVO+OfjVU+F3d6HH5IQVHIMwauJiIiIheiL+7He1eA+zBIQi2Pkl7r4CvB22dfpiD7AixmwddCZsnGA6JiIiI6CkOKxMRERHRUwyHRERERPQUwyERERERPcVwSERERERPMRwSERER0VMMh0RERET0FMMhERERET3FcEhERERETzEcEhEREdFTDIdERERE9BTDIRERERE9xXBIRERERE8xHBIRERHRUwyHRERERPQUwyERERERPcVwSERERERPMRwSERER0VMMh0RERET0FMMhERERET3FcEhERERETzEcEhEREdFTDIdEREREFAD8/4I8zav7Ibt8AAAAAElFTkSuQmCC
* Sei $$X_1,\ldots,X_n$$ eine endliche Bernoulli-Folge zur Erfolgswahrscheinlichkeit $$p$$.
* Dann beschreibt die ZV <$latex text="S:=\sum_{i=1}^n X_i" displayMode="true"></$latex> die Anzahl der Erfolge.
* Mit Hilfe der Linearität des Erwartungswertoperators ergibt sich für die zu erwartende Erfolgsanzahl: <$latex text="\textbf{E}_P(S)=\sum_{i=1}^n \textbf{E}_P(X_i)=\sum_{i=1}^n P(X_i=1)=np." displayMode="true"></$latex>
''Beweisskizze von $$\textbf{E}({\mathcal{N}}_{m,v})=m$$''.
Substitution $$y=(x-m)/\sqrt{v}$$ und Ungeradheit von $$f(y):=y\cdot e^{-y^2/2}$$ ergibt
$$\int_\R f(y)dy=0$$, und somit:
<$latex text=" \begin{aligned}
\textbf{E}({\mathcal{N}}_{m,v})&=&\frac{1}{\sqrt{2\pi v}}\int xe^{-(x-m)^2/(2v)}dx\\
&=&\frac{1}{\sqrt{2\pi}}\int (m+\sqrt{v}y)e^{-y^2/2}dy=m.
\end{aligned}" displayMode="true"></$latex>
''Beweisskizze von $$\textbf{V}({\mathcal{N}}_{m,v})=v$$''.
Die Behauptung über die Varianz folgt mit obiger Substitution und mittels partieller Integration ($$\int_\R p(y)\cdot q'(y)dy=p(y)\cdot q(y)\big|_{-\infty}^\infty-\int_\R p'(y)\cdot q(y)dy$$ mit $$p(y)=y$$ und $$q(y)=-e^{-y^2/2}$$) unter Benutzung des Wertes des Gauß-Integrals:
<$latex text=" \begin{aligned}
\textbf{V}({\mathcal{N}}_{m,v}) &=& \frac{1}{\sqrt{2\pi v}}\int (x-m)^2e^{-(x-m)^2/(2v)}dx
= \frac{v}{\sqrt{2\pi}}\int y^2e^{-y^2/2}dy\\
&=&\frac{v}{\sqrt{2\pi}}\left(\left[-ye^{-y^2/2}\right]_{-\infty}^{\infty}+\int e^{-y^2/2}dy\right)=v.
\end{aligned}" displayMode="true"></$latex>
* Der Erwartunsgwert besitzt im Fall einer diskreten ZV $$X$$ folgende physikalische Interpretation:
* Wenn man $$P\circ X^{-1}$$ als diskrete Massenverteilung (mit Gesamtmasse $$1$$) auf der (gewichtslosen) reellen Achse auffasst, so ist $$\textbf{E}_P(X)$$ gerade der Schwerpunkt der Massenverteilung.
* Es sei $$\Omega\subset \R^d$$ Borelsch und $$P$$ das W-Maß auf $$(\Omega,\mathcal{B}_\Omega^d)$$ zur Dichtefunktion $$\rho$$, d.h. $$P(A)=\int_A\rho(\omega)d\omega$$ für alle $$A\in\mathcal{B}_\Omega^d$$.
* Weiter sei $$X$$ eine reelle ZV auf $$\Omega$$.\ Dann gilt $$X\in {\mathscr{L}}^1(P)$$ gdw. $$\int_\Omega |X(\omega)|\rho(\omega)d\omega<\infty$$.
* Im Fall $$X\in {\mathscr{L}}^1(P)$$ ist <$latex text="\textbf{E}_P(X)=\int_\Omega X(\omega)\rho(\omega)d\omega." displayMode="true"></$latex>
* Im Spezialfall $$\Omega=\R$$ und $$X=\mathrm{id}_\R$$ ist <$latex text="\textbf{E}_P(\mathrm{id}_\R)=\int_\R x\rho(x)dx." displayMode="true"></$latex>Dieser Wert, der nur von $$P$$ abhängt, wird auch ''Erwartungswert des W-Maßes'' $$P$$ genannt und mit $$\textbf{E}(P)$$ abgekürzt.
* Analog definiert man später die ''Varianz'' $$\mathbf{V}(P)$$ von $$P$$.
Wir gehen jetzt auf den Fall einer beliebigen, nicht notwendig diskreten, reellwertigen ZV $$X$$ ein. In diesem Fall kann der Erwartungswert von $$X$$ i.a. nicht mehr über eine Summe definiert werden, sondern ist nur noch Limes von Erwartungswerten approximativer Varianten $$X_{(n)}$$ von $$X$$. Diese Varianten definieren wir zunächst.
Zur ZV $$X:\Omega\to\R$$ und $$n\in\N$$ wird die ''$$1/n$$-Diskretisierung'' von $$X$$ definiert durch <$latex text="X_{(n)}(\omega):=\frac{k}{n},\quad \text{wobei
}k\in\mathbb{Z}\text{ und}\quad
\frac{k}{n}\le X(\omega)<\frac{k+1}{n}." displayMode="true"></$latex>
Anschaulich: Die reelle Achse wird partitioniert: <$latex text="\R=\bigsqcup_{k\in\Z}{[\frac{k}{n},\frac{k+1}{n})}" displayMode="true"></$latex>
und die $$X$$-Werte im Intervall $$[\frac{k}{n},\frac{k+1}{n})$$ werden abgerundet zum Wert $$\frac{k}{n}$$.
Die ZV $$X:\Omega\to\R$$ ''besitzt'' einen Erwartungswert, kurz: $$X\in {\mathscr{L}}^1(P)$$, wenn $$X_{(n)}\in {\mathscr{L}}^1(P)$$ für ein $$n$$ (und damit für alle $$n$$) gilt.
In dem Fall heißt <$latex text="\textbf{E}_P(X):=\lim_{n\to\infty}\textbf{E}_P(X_{(n)})" displayMode="true"></$latex>
der ''Erwartungswert'' von $$X$$ bzgl. $$P$$.
Aus Sicht der Integrationstheorie ist $$\textbf{E}_P(X)$$ das Integral von $$X$$
bzgl. $$P$$: <$latex text="\textbf{E}_P(X)=\int X\, dP." displayMode="true"></$latex>
Auch für den allgemeinen Fall gelten die [[obigen Rechenregeln|Rechenregeln für Erwartungswerte]].
\textbf{Indikatorfunktion}: Es sei $$(\Omega,{\mathcal{A}},P)$$ W-Raum.
Die Indikatorfunktion $$1_A$$ zu $$A\in{\mathcal{A}}$$ ist konstant $$1$$ auf $$A$$ und konstant $$0$$ auf $$\Omega\setminus A$$. Es gilt: <$latex text="\textbf{E}_P(1_A)=0\cdot P(1_A=0)+1\cdot P(1_A=1)=P(A)." displayMode="true"></$latex>
Dies verbindet die Begriffe Erwartungswert und Wahrscheinlichkeit.
Ist $$c\in\R$$, so hat die konstante Funktion $$c1_\Omega:=(\Omega\ni\omega\mapsto c)$$ den Erwartungswert $$c$$: denn $$\textbf{E}_P(c1_\Omega)=cP(\Omega)=c\cdot 1=c$$.
''Abzählbarer Definitionsbereich $$\Omega$$'': Dann ist jede ZV $$X$$ diskret und es gilt: <$latex text="\sum_{\omega\in\Omega}|X(\omega)|P(\omega)=\sum_{x\in X[\Omega]}
|x|\sum_{\omega\in\{X=x\}}P(\omega)=\sum_{x\in X[\Omega]}|x| P(X=x)." displayMode="true"></$latex>
Also ist $$X\in{\mathscr{L}}^1(P)$$, gdw. $$\sum_{\omega\in\Omega}|X(\omega)|P(\omega)<\infty$$.\ In dem Fall erhält man: <$latex text="\textcolor{blue}{\textbf{E}_P(X)=\sum_{\omega\in\Omega}X(\omega)P(\omega)}." displayMode="true"></$latex>
Im folgenden sei $$(\Omega,{\mathcal{A}},P)$$ W-Raum, $$X:\Omega\to \R$$ eine ''diskrete'' ZV, d.h. das Bild $$X[\Omega]:=\{X(\omega)\mid\omega\in\Omega\}$$ von $$X$$ ist höchstens abzählbar unendlich.
!! Definition
$$X$$ ''besitzt'' einen Erwartungswert, wenn <$latex text="\sum_{x\in X[\Omega]}|x| P(X=x)<\infty." displayMode="true"></$latex>
In diesem Fall ist nach dem Umordnungssatz die Summe <$latex text="\textcolor{blue}{\textbf{E}(X)}\textcolor{blue}{=\textbf{E}_P(X)}\textcolor{blue}{:=\sum_{x\in X[\Omega]}x P(X=x)}" displayMode="true"></$latex>
wohldefiniert und heißt der ''Erwartungswert'' von $$X$$ bzgl. $$P$$.<$latex text="\textcolor{blue}{{\mathscr{L}}^1(P)}\textcolor{blue}{:=\{X:\Omega\to\R\mid\textbf{E}_P(|X|)<\infty\}}\textcolor{blue}{={\mathscr{L}}^1}" displayMode="true"></$latex>
bezeichnet die Menge aller ZVs $$X$$, für die der Erwartungswert bzgl. $$P$$ existiert.
Eine Teilmenge $$B\subset V$$ heißt ''Erzeugendensystem'', wenn $$\langle B\rangle=V$$. $$B$$ heißt ''Basis'', wenn $$B$$ ein linear unabhängiges Erzeugendensystem ist.
!! Bemerkung
Eine Basis hat die Eigenschaft, dass es zu jedem $$X\in V$$ eindeutig bestimmte $$b_1,\dots,b_n\in B,\lambda_1,\dots,\lambda_n\in K$$ gibt, s.d.
<$latex text="x=\sum_{i=1}^n\lambda_i b_i." displayMode="true"></$latex>
Seien $$a,b\in R$$ mit $$b\neq 0$$. Durch wiederholte Division mit Rest ergibt sich:
<$latex text="\begin{aligned}
r_0\coloneqq a &= q_1\cdot \underbrace{r_1}_{\coloneqq b} + r_2\\
r_1 &= q_2r_2+r_3\\
& \vdots\\
r_{n-1} &= q_{n}r_n\\
\end{aligned}" displayMode="true"></$latex>
mit $$\deg(r_i)<\deg{r_j}$$ für $$i>j$$.
$$r_n$$ heißt ''größter gemeinsamer Teiler'' von $$a$$ und $$b$$. Man schreibt auch $$(a,b)$$ oder $$\text{ggT}(a,b)$$.
Jede hermitesche positiv definite Matrix $$A \in \mathbb{C}^{m \times m}$$ hat eine Cholesky-Zerlegung.
<$details summary="Bemerkung" tiddler="Bemerkung">
{{Bemerkung: Existenz der Cholesky-Zerlegung}}
</$details>
Jede Matrix $$ A \in \mathbb{C}^{m \times n}$$ mit Rang $$p$$ besitzt eine Singulärwertzerlegung.
Seien $$V$$ und $$W$$ [[Vektorräume|Vektorraum]] und sei$$\{b_1,\dots,b_n\}$$ eine [[Basis|Erzeugendensysteme und Basen]] von $$V$$ und seien $$y_1,\dots,y_n\in W$$ beliebige Vektoren.
Dann existiert genau ein $$T\in \text{Hom}_K(V,W$$ mit $$T(b_i)=y_i$$ für $$i=1,\dots,n$$.
!! Beweis
''Eindeutigkeit:'' Angenommen es gäbe so ein $$T$$. Dann sei $$x\in V$$ beliebig mit eindeutigen Koeffizienten $$(\lambda_i)_{i=1}^n$$ aus $$K$$:
<$latex text="x=\sum_{i=1}^n \lambda_i b_i." displayMode="true"></$latex>
Aus der Linearität von $$T$$ folgt unmittelbar die Eindeutigkeit
<$latex text="T(x)=T\left(\sum_{i=1}^n \lambda_i b_i \right)=\sum_{i=1}^n \lambda_i T(b_i)=\sum_{i=1}^n \lambda_i y_i" displayMode="true"></$latex>
''Existenz:'' Definiere T durch die obige Abbildung. Es bleibt zu zeigen, dass $$T$$ linear ist, dies ist aber trivial (bzw. gilt per Konstruktion).
Sei $$D$$ eine [[Determinantenform]] auf einem [[Vektorraum]] $$V$$ und $$\dim_K(V)=n<\infty$$. Weiter sei $$\{x_1,\dots,x_n\}$$ eine fest gewählte Basis und $$y_i=\sum_{i=1}^n a_{ij} x_i\in V$$.
Dann ist <$latex text="D(y_1,\dots,y_n)\coloneqq \sum_{\sigma\in S_n}\text{sgn}(\sigma)a_{1,\sigma_1}\cdot\dots\cdot a_{n,\sigma(n)}" displayMode="true"></$latex>
eine Determinantenform auf $$V$$.
!! Beweis
''Eigenschaft 3.:''
Für die $$I_n$$ gilt $$a_{ij}=\delta_{ij}$$.
Dann gilt
<$latex text="a_{1,\sigma_1}\cdot\dots\cdot a_{n,\sigma(n)}\neq 0\iff \sigma(i)=i\forall i\iff \sigma=\text{id}" displayMode="true"></$latex>
Also gilt
<$latex text="D(y_1,\dots,y_n)=D(x_1,\dots,x_n)=\text{sgn}(\text{id})\cdot a_{11}\cdot\dots\cdot a_{nn}=1\neq 0" displayMode="true"></$latex>
''Eigenschaft 2.:''
Sei für ein paar $$i\neq j$$, $$y_i=y_j$$. Dann gilt $$a_{ki}=a_{kj}$$ für alle $$1\leq k\leq n$$. Wenn $$\sigma$$ alle geraden Permutationen $$\tilde{S}_n$$ durchläuft, durchläuft $$\sigma\circ\tau$$ mit $$\tau=(i,j)$$ alle ungeraden Permutationen. Dann gilt:
<$latex text="\sum_{\sigma\in {S_n}}a_{1,\sigma_1}\cdot\dots\cdot a_{n,\sigma(n)}=\sum_{\sigma\in \tilde{S}_n}a_{1,\sigma_1}\cdot\dots\cdot a_{n,\sigma(n)}-\sum_{\sigma\in {S_n}}a_{1,\sigma\circ\tau(1)}\cdot\dots\cdot a_{n,\sigma\circ\tau(n)}" displayMode="true"></$latex>
nun gilt aber <$latex text="a_{1,\sigma\circ\tau(1)}\cdot\dots\cdot a_{n,\sigma\circ\tau(n)}=a_{1,\sigma(1)}\cdot\dots\cdot a_{n,\sigma(n)}" displayMode="true"></$latex>
Daher gilt $$D(y_1,\dots,y_n)=0$$.
''Eigenschaft 1.:''
Sei $$y_j= \alpha\zeta+\beta\eta$$ mit $$\zeta=\sum_{i=1}^n\zeta x_i$$ und $$\eta=\sum_{i=1}^n\eta_i x_i$$.
<$latex text="y_j=\alpha\sum_{i=1}^n\zeta_i x_i+\beta \sum_{i=1}^n\eta_i x_i" displayMode="true"></$latex>
und es folgt
<$latex text="\begin{aligned}
D(y_1,\dots,y_n)&=\sum_{\sigma\in S_n}\text{sgn}(\sigma)\cdot a_{\sigma(1),1}\cdot\dots\cdot a_{\sigma(j-1),j-1}\cdot(\alpha\zeta_{\sigma(j)}+\beta_{\sigma(j)})\cdot a_{\sigma(j+1),j+1}\cdot\dots\cdot a_{\sigma(n),n}\\
&=\alpha\sum_{\sigma\in S_n}\text{sgn}(\sigma)\cdot a_{\sigma(1),1}\cdot\dots\cdot a_{\sigma(j-1),j-1}\cdot\zeta_{\sigma(j)}\cdot a_{\sigma(j+1),j+1}\cdot\dots\cdot a_{\sigma(n),n}+\beta\sum_{\sigma\in S_n}\text{sgn}(\sigma)\cdot a_{\sigma(1),1}\cdot\dots\cdot a_{\sigma(j-1),j-1}\cdot\zeta_{\sigma(j)}\cdot a_{\sigma(j+1),j+1}\cdot\dots\cdot a_{\sigma(n),n}\\
=\alpha D(y_1,\dots,y_{j-1},\zeta,y_{j+1},\dots,y_n)+\beta D(y_1,\dots,y_{j-1},\eta,y_{j+1},\dots,y_n).
\end{aligned}" displayMode="true"></$latex>
Seien $$V,W$$ [[Vektorräume|Vektorraum]] von endlicher Dimension:
<$latex text="\dim_K(V)<\infty,\dim_K(W)<\infty." displayMode="true"></$latex>
# Genau dann existiert ein Isomorphismus $$\phi:V\to W$$, wenn $$\dim_K(V=\dim_K(W)$$.
# Sei nun $$\dim_K(V=\dim_K(W)$$ und $$T\in \text{Hom}_{K}(V,W)$$. Dann sind äquivalent
#* T ist [[injektiv|Injektivität und Surjektivität]]
#* T ist surjektiv
#* T ist bijektiv
!! Kommentar:
Insbesondere gibt es über einem [[Körper]] $$K$$ bis auf Isomorphismus genau einen [[Vektorraum]] der Dimension $$n$$. Daher können wir ab jetzt eine Repräsentation wählen:
<$latex text="K^n=\{(k_1,\dots,k_n)|k_i\in K\}." displayMode="true"></$latex>
!! Beweis
''1.:''
$$\implies:$$ Ist $$\phi:V\to W$$ ein [[Isomorphismus|Lineare Abbildungen]], so führt $$\phi$$ eine Basis von $$V$$ in eine Basis von $$W$$ über.
$$\impliedby:$$ Sei $$\{x_1,\dots,x_n\}$$ eine Basis von $$V$$ und $$\{y_1,\dots,y_n\}$$ eine Basis von $$W$$. Nach [[Existenz und Eindeutigkeit linearer Abbildungen]] existiert genau eine Abbildung $$T\in\text{Hom}_K(V,W)$$ mit $$T(x_i)=y_i$$ für $$i=1,\dots,n$$. Analog existiert $$S\in\text{Hom}_K(W,V)$$ mit $$T(y_i)=x_i$$.
sei $$v=\sum_{i=1}^n\lambda_i x_i$$, dann folgt:
<$latex text="(S\circ T)(v)=S\left(T\left(\sum_{i=1}^n\lambda_i x_i\right)\right)=S\left(\sum_{i=1}^n\lambda_i T(x_i) \right)=\sum_{i=1}^n\lambda_i S(y_i)=\sum_{i=1}^n\lambda_i x_i=v" displayMode="true"></$latex>
Insbesondere gilt also $$S\circ T=\text{id}_V$$ und analog $$T\circ S=\text{id}_W$$. Also ist $$T$$ ein Isomorphismus mit Inverser $$S$$.
''2.:''
Folgt direkt aus der [[Rang-Defekt-Formel]]:
<$latex text="\dim_K(\text{ker}(T))+\dim_K(T(V))=\dim_K(V)=\dim_K(W)." displayMode="true"></$latex>
Es existiert genau dann eine Lösun von <$latex text="A\cdot x = b" displayMode="true"></$latex>
wenn
<$latex text="\text{rg}(A)=\text{rg}\begin{pmatrix}A & b\end{pmatrix}." displayMode="true"></$latex>
!! Beweis
Wir betrachten die Fälle $$b\in \text{Bild}(A)$$ und $$b\not\in \text{Bild}(A)$$ getrennt:
''Fall 1:''
Wenn $$b\in \text{Bild}(A)$$, dann gibt es $$a_1,\dots,a_n$$ Spalten von $$A$$ und $$\lambda_1,\dots,\lambda_n\in K$$, s.d.
<$latex text="b=\sum_{i=1}^n\lambda_ia_i." displayMode="true"></$latex>
Insbesondere gilt also
<$latex text="A\cdot \begin{pmatrix} \lambda_1\\\vdots\\\lambda_n\end{pmatrix}=b" displayMode="true"></$latex>
und daher gilt $$\text{rg}(A)=\text{rg}\begin{pmatrix}A & b\end{pmatrix}.$$
''Fall 2:''
Sei $$b\notin \text{Bild}(A)$$. Dann gilt insbesondere
<$latex text="\text{span}(a_1,\dots,a_n,b)\supsetneq\text{span}(a_1,\dots,a_n)" displayMode="true"></$latex>
und damit insbesondere
$$\text{rg}\begin{pmatrix}A & b\end{pmatrix}=\text{rg}(A)+1\neq \text{rg}(A).$$
Es sei $$a<b$$, $$I=(a,b)$$ und $$f:I\to\R$$ [[differenzierbar|Differenzierbarkeit: Analysis]]. ist $$x_m\in I$$ eine Extremum von $$f$$, so gilt <$latex text="f'(x_m)=0." displayMode="true"></$latex>
!! Beweis
O.B.d.A. sei $$x_m$$ ein Maximum. So gilt für alle $$x\in I:f(x)\leq f(x_m)$$. Dann folgt für $$x\in I: x<x_m$$:
<$latex text="\frac{f(x)-f(x_m)}{x-x_m}\geq0\implies \lim_{x\uparrow x_m}\frac{f(x)-f(x_m)}{x-x_m}\geq0." displayMode="true"></$latex>
Analog gilt für $$x>x_m$$:
<$latex text="\frac{f(x)-f(x_m)}{x-x_m}\leq0\implies \lim_{x\uparrow x_m}\frac{f(x)-f(x_m)}{x-x_m}\leq0." displayMode="true"></$latex>
Da der Grenzwert (also die Ableitung) existiert, und damit beide Grenzwerte übereinstimmen müssen, gilt $$f'(x_m)=0$$.
<<list-links "[tag[Extrema unter Nebenbedingungen]sort[scriptorder]]">>
iVBORw0KGgoAAAANSUhEUgAACfUAAAWNCAIAAADJ17q8AAAACXBIWXMAADZKAAA2SgGlZZFrAAAgAElEQVR42uzdf2wb53348cdpusJwSqte2WSbGHRGVc+9VF6DehadFlyRSOKQovESm0bXNkEsLpWxNZmkAk1GYY4wKWkxi2q3AfYcSp2NJYMZJfOGFpCleo6QVLTn1qlUX4xSWLqGWotEhSVzzdJhaPX94/nm2dPj3fF4pCie9H79YdAUfxw/99zz63PP3aaVlRUBAAAAAMDq2LFjRz6fP3r0aF9fH9EAAAAAAKBKNxACAAAAAIAQYmpqapOz/v5+QgQAAAAAwJojvwsAAAAAEEKI6elpggAAAAAAQIO7kRAAAAAAAIQQ8/PzQohUKjU4OEg0AAAAAABoTKzfBQAAAAAIIUQ2mxVCxGIxQgEAAAAAQMMivwsAAAAAEHNzc/LBzp07iQYAAAAAAA2L/C4AAAAAQLz++utCCMMwmpubiQYAAAAAAA2L/C4AAAAAQExPTwsh9u3bNzc3t0lz2223ERwAAAAAABoH+V0AAAAAgDhz5owQYmhoaNeuXfrzpmlu2rRpamqKEAEAAAAA0AjI7wIAAAAAhGma8kEikVjRyCc7Ojo8png///nPv+NX5fN5wgsAAAAAQK2Q3wUAAACAjW5ubk4+GB0dPX36tP6nlZUVwzCEEB0dHV4+6pclCC8AAAAAADV0IyEAAAAAgA2utbVVLdUt9cwzz8iLNk9NTbW3t7t/1FNPPXX33Xfrz/zJn/zJj3/8Y4IMAAAAAEBNkN8FAAAAALhpbW2VD6anp8vmd4UQ+/bt0//7pS99iRgCAAAAAFArXJ8ZAAAAAFCGvEQzAAAAAABYc+R3AQAAAAAAAAAAACAYyO8CAAAAwEbX39+/adOm2267zekFpmkKIbZv306sAAAAAABYW+R3AQAAAGCji8ViQgjTNOfm5kr/OjU1JR989KMfJVYAAAAAAKwt8rsAAAAAsNG1t7fLB0NDQ6V/7ejoEEIkEonW1lZiBQAAAADA2iK/CwAAAAAQo6OjQohsNqtfpXlubm7Tpk3y8fDwMFECAAAAAGDN3UgIAAAAAACHDh0SQnR1dZmmqXK6SqFQaG5uJkoAAAAAAKw51u8CAAAAAIQQ4tChQysrK4Zh6E+Ojo6urKyQ3AUAAAAAoEGwfhcAAAAA8H+uXLlCEAAAAAAAaFis3wUAAAAAAAAAAACAYCC/CwAAAAAAAAAAAADBQH4XAAAAAAAAAAAAAIKB/C4AAAAAAAAAAAAABAP5XQAAAAAAAAAAAAAIBvK7AAAAAAAAAAAAABAM5HcBAAAAAAAAAAAAIBjI7wIAAAAAAAAAAABAMJDfBQAAAAAAAAAAAIBgIL8LAAAAAAAAAAAAAMFAfhcAAAAAAAAAAAAAgoH8LgAAAAAAAAAAAAAEA/ldAAAAAAAAAAAAAAgG8rsAAAAAAAAAAAAAEAzkdwEAAAAAAAAAAAAgGMjvAgAAAAAAAAAAAEAwkN8FAAAAAAAAAAAAgGAgvwsAAAAAAAAAAAAAwUB+FwAAAAAAAAAAAACCgfwuAAAAAAAAAAAAAAQD+V0AAAAAAAAAAAAACAbyuwAAAAAAAAAAAAAQDOR3AQAAAAAAAAAAACAYyO8CAAAAAAAAAAAAQDCQ3wUAAAAAAAAAAACAYCC/CwAAAAAAAAAAAADBQH4XAAAAAAAAAAAAAIKB/C4AAAAAAAAAAAAABAP5XQAAAAAAAAAAAAAIBvK7AAAAAAAAAAAAABAM5HcBAAAAAAAAAAAAIBjI7wIAAAAAAAAAAABAMJDfBQAAAAAAAAAAAIBgIL8LAAAAAAAAAAAAAMFAfhcAAAAAAAAAAAAAgoH8LgAAAAAAAAAAAAAEA/ldAAAAAAAAAAAAAAgG8rsAAAAAAAAAAAAAEAw3EgIgKA4ePOjvjadPn1aP5+fn+/v75ePBwcGWlhb354UQIyMjFy5cEEIkk8n29nZ2hA96ePXdUcOPdbJt27bdu3fv3LkzGo2yI4KFQ89SyFtaWgYHB9nv1bQRnZ2dkUhk9+7dTU1NG7wltbR0G9DU1FQmk5GPE4nEfffdR9jRsKW0ra2tp6eHgGzMg9HfCKhW/W0KISgPXo7Nv/u7v1u9viVhD+jYrYbzHnXbZu9qWBrX66if/j8A1Af5XSAwstmsvzfqHeu33npLfU4qlSr7vBDiwoUL8k+dnZ3sBX/08NqOcxYWFi5evFjp9Lr+sS6OHz8uhAiHw8eOHVvVGXzUVpWH3tzc3Jtvvhn0vP7Jkyf1Qt7d3d3c3Mx+991GqNek0+kHH3xwA2Z5nVq6Dainp8c0TfnYNM1VbR0Ie4Pw19lYQ4VCwXfvd920gxyM/spArfIKFELUsDysJ1NTU3ooVjUvRdjX07xHg28zo376/wAQOFyfGQDW0vLy8tjY2O23377ag4rFxcX9+/f7ODUVgbOwsNDf379r166rV68G/becOHFC/++zzz7L/q2J3t7effv2LS8vE4qNaX5+XiV3hRCmaeZyOcJCZ4N2EKAQAl48//zz+n+HhoaICUBDAwCoP9bvAsGTSqUSiQRxWDdj466uruo/Z3x83PaiN/Pz8y+//PKJEycWFxfl2DsWi3Gd7fWtr69vfczgT01NyXKbSCTkL3ryySe5LJvvNuL111+/cuXK6OioTOxNT08fPXp0I1zyGqVOnjwpH6iD69SpU6wwo7NBOwhGQBRCoKyFhQV5gahYLPbKK68sLi5OT0/Pz89zCVYEndOkSqnNmzfT0AAAGgH5XSB4tm/f3traWrevGxwclBdU2bZtG8H359Zbb52dnV3Vr2hpabEtFa2trffdd98DDzxwxx13yFRZT0/PlStX2ClofGplQDKZNE3TNM3FxcWpqSlOUPDdRrS3tz/44IP79u2bnp4WQgwNDW2ES16jlFoZn0ql5MTQ8ePHU6kUhQEAIyAA7i5evCgffOxjH/vYxz4mF++ePHmSswYRdE6TKgAANCyuzwzAUx+3tbWVaV/fmpqaWt+2Vjvx6aeflo9N05ybm2OnoMGplQFCiJ07d6qVZ5lMhuBUWR39wz/8g/rv5OQkMdlo1Mp4wzBaW1tjsRiFAQAAeHTkyBH5IBaL3X333fLxiRMnuPEHAABAnZHfBYANYffu3erx/Pw8AUGDUysDYrFYc3PzJz/5SfnfbDa7sLBAfKrR3NysUnqXLl0iIBuNWhkvT5v4whe+IP+bTqcJDgAAcDE/Py/v9CEHmNFoNBwOCyEWFxfpVQIAANQZ12cGUMbIyMiFCxeEEMlkUr8s6tTUlFxIp57P5XLf/OY3Ze6wpaUlFovt3r27qanJ5cOXl5cvXbokb9gjn+ns7Ny5c6eXuwDK9165ckVunnzvxz/+cd83/jl48KAQoq2tTd7gc3l5+dy5c9/61reuXbsmn7/zzjstC3BzudyFCxfkBsifbHvl2Pn5+f7+fvn49OnTemDV8Pj8+fNyA/TX1JD7jtB/u/zh8oqdtr9aCLGwsHDx4sWXX35Z7rht27bddddde/bscVrkrSKgSov8BD28bW1tTvtdFUIVGT3y7t+uvlrt2fn5+W984xte3qsiU1r+depYUF9Rk19ddm5FFapt27Y9+eSTTU1NcmvPnz8vn0+n02fPni3dMP1DXnzxxUuXLsntKXvYql86ODgoDzT5CfJbqj8GdWplwD333CO3zTAMebw8++yzvu/Cq8dN/Qof9V6VEbBUfW1tbQcOHKjnNRJuvvnm6j9E/vZXX31VVeDbtm3bvXu3SwRKq1k9Dh4bjrIsB1oikbjzzju9f2aV9dvCwsKzzz4ry09nZ2dHR4f7nl1YWOjr65OPW1panK5tODY2poqZS9H18uvUyvi2tjYhxJ49e+R/TdPM5XIeayTLvpO7vuyPtX2vx/1uOdZaWlo+8pGPuOwXS2N99epV9d5q6l73rUokEmqTvLTplVbCPqLhpbNhaWSnpqaef/75a9euOXVsquyAWTa+ra3ttttu83Hh/eXl5ccee0yGTh0XlbaDdWj3Jycn9TbCcpiUNge2/a4A1YG17e3Ulox2oVBQe0SVQH9NT00KYenhXFFnbG5uLpvNzs/Pyz1V0b5ejZis6lfXrSNqGeIlEomKjspKG51KK2EftZZ0+PBhWVxTqZTveubkyZPyQSwWk7vpoYcekpdoHhoa8l6ZV9MW+NjvDTjtEOiGRt8F27Ztu/feeytqxxt5EFol2QK+9tprqrRUVNhWddS/Vg2NHhl1w2AvoyQAgCcrAAJCHbajo6O+P0S/C+zs7GzZ51dWVhKJhO33jo6OqueXlpbUajBdOByemZlx2pjR0VF5tq/tG8fHx11+iMt7E4lEPp/3HeFEIrGysjI+Pm77+alUSr44n8/b/uRYLFb67Xp4SwPru2Z22Wul8vm8enHpFqrfbrsrC4WCeuXS0pK8H7OtVCq1tLTksqmyFDmtErONnh4r+UMMw7B9u+2hob5a7lmnjXc6rLwcd+pYkF9R819d+tX5fF6Vz3A4rN7utF8sGyY/wakEhsNhpx+rfuns7OzS0pLTJ3R3d9sWA+/04qqKnwpgOByueR3oMfg1iYBT9ZJOp933ew3bCLUB7jWtk5mZGafDUK9M3KvZyclJ2zi4NxzulpaWbA+0cDg8OTmpR8l271dfv+nHpmQYRtnN1rfZdo/o5VaWE9/Gx8dLN0xV+93d3V4+xKUJto2SHvaZmZlK97tLfSWLk95IeS+rhmH4LmkrKyuFQsFpq+Qx6N6m+6uEfUTDS2dDb2RLDwF57FTfAfvgBz8ohNi1a5f33eHUvMqjVe+uqI303g5WU5d6afedqiN9a50OB9/N6JrXgT56O/UZAbn/ND1E9SyEs7OzThWUx85Y6XX11VBl9WJSvep3x+p1RJ12iuzYuJSHahqdiirhUt3d3eooc++8Vd+R1vuQelXmMsysqCEr2xYsLS2p3+t9vzfmtENAGxqn/o9hGPl83nbeo8EHoRVNqvgr2HqI6jzqX8OGRo+qy/RalfMGAADyu0BwDtdGze+m02nbTKf7oNR9VO8+i132vXrft9IIJxIJ92tUptPp0hl8S8fd0klthPyuGgnbJhvUby/dlfogwSmRb5m/K+2j6wPRshM6pTP1KlbukbctM3p+1/2rbQcqtRp+V/OrLV+t7wVLUfc40isbRqdoqF86MzPjXhLcJ5jKUuHSP6dQKHif6qryqClb7/mOQNlCWIf8rsrwWc7e8MjjXVpLa0K9qin7IT4Sb2UrKP1LS/d+9fVbKpUqPbK87MelpSU18xIOhy1fof/VdgMqoj5Kry31yLgXCX9R0kt4pfvdS31lW4V6LKv+KpOyW6X/Uh9vd6qEfUSjovxuaf/HUiCr6YB5WaJRmkt2mq/Ut0R/V+Pkd92PlJmZGffy6fFki4aqA/31duowAvLy05zOsFm9QuilgrINuD4EK32Lx+RENTGpUk12xyp1RN13SiwWUzG3rVJ8NzreK+Gym+1yiKkS6/0kAPfv0jdM9S7KfriPKKn9HovFfOz3hp12CGJD494Pkcny1ej/rOqxX5P8rpef5nQOxOqN+te2odG3qtINAABU0K8gBEBgDtdGze/qfXE5pFxaWrIszLLM2Opfl0qlVFdVvlE/wbB0jKqPshKJhPrkQqGgf6mPKST1RjXgURtmOe9V9rPl+cWyM2o5W9MyKHU5j7XsaeDVD0UKhYJ+mrPtENR2EZXcHeqTLdMx+o7L5/N6eSgdVqlNVWG0vF2PXumgTv1Vvt0wjMnJSRn5paUly9mglv2uR0mFWv0oyxCxdGxfk+F3lb9a/2qXYV7ZY7Z08ClP2lURm52d1YtKaTTUL5WfYHm7ZcmC7xTs0tKS0+pS9dt9HC8VHTVl6z1/EdCnPGKxmKq+8vm8qtnUb1+N/K6+9MTfpK0ewFgspo5E+eEzMzN6qS7dEstvtNTh+gyCl2WvFnrptVTgcqv0isKy92tSv1nWqBUKBbm0otLAWqbb9FbP3zIR22/RP2ppacljH0Pfv/ruy+fzevwtFVrpPI5qPWWUXPa7+ka95rccNbZVqD6lZWk1LDV/pScTOJWW0j6MbbtfTSXsOxrunQ3LvNv4+Lj8ZDk1XJMOmF729F9d2mPU3+u02U55NY/tYB2m3fWaXP1SvQkwDEO+xtInce8DN3gd6K+3U4cRkL4B8jRN/XjUF+eV5tJWqRDqFVRpX8JS0zoVP8v4S/6WOsSkSjXZHavREdUvHiMXEOvtlPpGp/1STaPjsRJ24eW6LOo11fQl1KZa+ir6VXZcCkyVbYFeG+hVnO1K+safdghcQ6OfcWj5XhVMfScGZRBafX5XH73KJLce2NnZWUtZqs+of80bGtv+v+3AwffQHgCwQn4XCNLh2tj53dJudKFQUN1cy4yt++nDev/Y0rnXr/7k9F7Vua+0m+h+3mjpDH7p2FV9tWXEW4f8biwWS9jRh1guV790P6XUMm53GjXp0yKW0mKJnvtEWOlFw/Thh/vakdJ5DctXl+5ZyyWeLKPcmgy/q/zV6qu9DPPKjvTKfoI+L2CpDfSj3vbt+sHr45Tw0rGoZV9XufB0pXb5XR8R0P9kW4wtZ1j7zu8ahmFbG1jSTv6aEv1KAE7zdyp6pdWa99PzK51/tMzflb7AsgLDsvdrVb+5hKUsfRv0abiatP6WIJRmaNyv8VBaRMvuPv0IrWi/67tGX7Vve8jrb9Qjr/dAnJYFqJ9cafZC/9LS0lK6NK1WlbDvaKxUkt91yg1U2QFTf7rpppvca079w203u2xebaUB8rtOm1c6YVraefZ3Ck6D1IE+ejurPQLSt9wppC59g9UohJb+gO3hrH+FZbP1UuSvr1VlTKpRq92xGh1RvZSWfrJlcZ7l2K+y0fFSCftu3y11uI/z52wrKMugUt+zLtk1/WolPtoCL290OhWjMacdgtXQrFX/Z7WP/eqrO33LncYv+k+ow6h/zRsaS//ftmIs2/cAAHiqbwkBEJjDtdzcvS2Pndcq87tOVzTSP1YfBKrPdEo3qq6epTfpZfWe0/qkiiLsPiJ16vqrmFg+oQ75XS9cliiV7b57XN2ln1pb0bTjiuutm1zyr6VlwyW57jTl4TK2r9Xwu5pfLb/a4zDPfaSnf52X7KYlmO6jesvB6/vmXk7fbimH/u5CWsP8bqURUCN/l9P89WG27/yuF77v4Vp607VSehaw0mpW38UVTTl5ufmcUx1ew/qtmutY6hOFMk/sMl/p7/Nd1vfolUPZGwS6bIzt9Z+9LMu2jaGKrUvtbVuFellI5B4QL0eB03Gkf7LlKKimEvYdjRXP+V2XeruaDpj+fF9fX9l6Q+2y0s32kldbaYz8rm27r8+qOxVOtfEVLXVtkDrQR2+n5iMgy9ttbzruEhyndr+GhdBLJmDlV9frO3VF/C3ErDIm1ajV7qh5R1RPTzo1gno1ZSlpVTY61ZwAUXoYuidyqumoOFUClmbCqRby0gl3bwtc9rvTtjX4tEOwGpqy/R/9q2vY/1ntQaiXk+Z1pT9fNcEu8dSD4z7hVpNR/5o3NHo5d6kY1QZUeXcnANjIyO8CwTlcffE4rKoyv+uy8EX1TfXOrkv+Rg2AS4emLqcMO31pRTmMspmPsr1Ppzxug+R35bfYjvnLDjJdllRadpztPvKYVCtbCF2i5GUM7FJs1IDQMrap1fC7ml8tv9rjMM99pFf27P7SEbi+u13OO/ZS2r0oe5NdffVDlfNfVeZ3K42Al5kU/eevan5XFvVqbjHlMcg+5rP8JWa8zLY73XuyPvVbpeVzdHRUL+3+Fqw7/XzbT3Nf9+D0853qUr2cezmxwHa/e5k5tX3eNs3ssrXeJ5X06tFlp+grEmpVCfuOxorn/K5TI1tlB0yPxtGjR92PL72Ns2y293UejZDfLXvFFKfC6a9n2Ph1oO96ssqxj8vIoqJ2v4aF0HZw5L3H4qUr4oXvmFSv+t1R846o00m6To2L5fCsstHxMtIpS21DaQZXP3ir6U6432S3bD7JS5vr3ha41FFlu9+NOe0QoIam7DkEln5ODfs/qz0IrXRSxaWz5H49mHqO+huhofFSzj32qwEALm4QAFCdRCLR1NTk9Nf7779fPjhz5ox6srOzUz44fvz4wYMHn3vuuYWFBf1dTU1Nzc3Nlo+6evWqehyNRl02SX3phQsXfPyitrY29xfcfPPNjbYXxsfHZ+1MTk6Ojo6q0Xg2m7399tst0dZ99KMftX1+enray+5uampSwwx9f+laW1t9/0xVcvxxKTZ33nmnfGCapkt8fKvmVwsh+vv71S741re+1dLS4u9z1GGojpGygXrttddsj/pVKslqljkcDre3t7sc3YuLi1NTU2tY71X6lmw2q+Y1nF7T3NxcevPOSqVSKdvaYGZmZnR0VG25aZq7du3K5XI+vsKpBC4sLExNTQ0NDZX9BKeqxp+5uTn1eOfOnU4vc/pTg9Rv8u1q9vPRRx89fvy4fPz000+XtomVymQyaorT9tMee+wx1TSXVoN6VeAS5AcffFDOzgwODrrUtB7deuutKut8xx13jIyMlJbY0tK4sLBgmqaXb1R/VWWgLLXrY7GYy05x+t5qKmF/0ahJI1tlB8xLZ6ypqUlOYr7xxhu2v2Jqaqq3t1dNFNo2EA3F5TCRtm7dSh1YN7YjCxW9kZGR8+fPl/2QWhVCFXCX/oAMpjrkv/Od79S8M1aTmKzVV9e8I3r27Fn5YN++fS4vs/1rDRudakY6XV1d8sHf/M3fWP506dIl9w6Ax3pG/cwHHnjAveE7efJk6QtUW3DPPff4awvc6yj3kDbmtEOAGhpVCxmG4VKKnKq1xh+EVq+5udm2fC4vL+dyuf7+/nqO+hukoZE+/vGPe9njlvXfAACPbiQEQOCkUqmG6te6D0TVqEMNCIUQ995776OPPrq4uCiEyGazMu1hGEZXV1dbW9vOnTtte8Z6h29sbMzLED2bzZ4+fbrSX7Rly5ZqfvKaaGlpcZlTO3To0HPPPbd//34hxOLiYl9fX6VhmZ+fV/vRPfhqR589e/bQoUONEyL3o+bWW29Vj69du1Z9KqWG1MEinTt3zvf8qb53vA/m6zldq5JbDz30kNMgMBwOy4BkMpnGn+KX9Lkk9xNEDMPQa0sftm/f7rTLotHooUOHUqnUXXfdJWN4zz335PP5SifLVLXw05/+9OrVq6+++ur8/LxKYNff66+/rs+tuEy7NH799uCDD46OjpqmqY767u7u6sv5wsKC2kH33nuv7Ws++clPqtTF5OSk5Qfq83ruGSB/xcnp07785S/LOevFxUW1ed3d3XfddVdra6vttNe1a9fU42w2aztdJb366qvq8dzcnJe6TlWeH/vYx1xe5vRR1VTC/qJRE1V2wDxWDi7bf/78ef1DTp061VAdDKfS6/6CGp7msp7qwFUdAS0vL7/22mvz8/PXr18/e/asaZreG9xaFUI9GV/2hNFPfOIT8kv1yqq2qolJcL/apWxv377dvYtV50bHuwMHDsh2YXp6en5+Xq9Rn3/+efcOgBeq/BuGYVtdNzU1dXd3y1PTTpw48cUvftFSDapPuO222/y1BT40+LRDgBoaVXrdT0V1qtYafxAqjY+Ply2Bmzdvdu9yX7t27Tvf+c7169cvXLhw/vx5fSBfn1F/ozU07iGNxWIyG3316lX30ykAALbI7wLB4zJ334Bsc6VNTU3f/va3//AP/1AfxpumqU9W3n///Zbu3fXr19VjdYYyPLrvvvvUkDubzQ4ODlY0eFZTh6Zprsvg1zAhUXOWMWFvb++dd97poxJYXl5Wj9UER0PRVwacOXNGzTg7yWazw8PDDZWMd6LP/W3bts3llZ2dnau9a1pbW48dO6ZO+Dh37tx9991X0SeMjY2l0+k1nIe1UNNwZVc/JxKJ0vA2VP3W1NT0zDPP7Nq1Sz3z5JNP2r5yampKLcktlUwm9aywfv3VoaEhlzdK6XTaKXVR/RLzihw6dOj69euqeyAdP35cNmeGYfT29nZ0dOj1wJtvvqn/2NXrjNW/EvYRjZpY8w6YpR2cnp4eGxtr/BQvdWDjjIDm5+fT6bS6KEKDFELvP6dsj2hNYhLEr3aiujSRSMTlZbbZsvo0OmU1NzerNMk3vvGNnp4e1fTIUJdeGufgwYMuH6hnK5eXl0+cOCEfv/HGG05vVGFcXFy8dOmS09lp9bwUFtMONTxs5QP3OQTbaq3xB6GK+0nz7nK53GOPPeb9kjCrN+pvnIbGiwa8Nh4ABAv5XQBr1nV+6aWXLl26NDQ0VNoJlpOVsVjszJkzKvG2Jlc9Wk96e3vVTMqLL75YUX63moEKamJ8fPzw4cNy1Pfwww+/8MILlX6C7UWuGoo+2ve4jOPZZ59VE1hB0QgJ6fvuu08tg85ms97zu8vLy/v27bOtEBKJREtLSywWu+mmm/bu3bsmv8tf6rHR6jfL9IpTAr5QKLhMkFmuM6HfM9LL7zVNM5fLNchJ9D09PZ/85CdPnjx54sQJy8yXSkdNTk6qeWSnK8euuZpUwpVGoyYapAOWSqXUpQIeffTR1chkB936qANrbmpqqqOjwzZchmF0dnZ+/OMf7+/v95JyWDeFsIYxCdBXe+Ej09A4jc4XvvAFeTiPjo6q7rG6OHPppXHcg6zndy9duqRanMXFRS97Z2hoqEGussO0Q235OL+t8Qeh1evv77c9vSMWi+3cufOuu+7as2eP++kjNRz1AwA2FPK7ANZMU1NTe3t7e3v78vLypUuXpqenz5w5o2d0pqen9+3bp3q0bW1tcjAZi8X++q//mgD6GNyqx5VeWE+dD+794njuVy5CReRk/W/+5m/KtJm/VSP6Nai9XHtKcl9sWkP6ygDvnnzyycDld2t+RT5/1MW4Krqg3Oc//3n9fk7333//Rz/60VtvvVVfAa9fE6zO/F0cr6Hqt4WFhcOHD+vPHD58eM+ePdWkEPSV8d6dOnWqcS6S1tLSMrLFx/UAACAASURBVDg4ODg4OD8//+KLL549e9YyudzR0TEzMyM3WL8d3ezsrI8acpXUqhKuKBo10QgdsFQqNTg4uLCwIC916O9mE+veOqgDV6PNVdnEcDj80EMPxWKx97///T6uAVvzQriwsOCxbq9tZ6yGMQnQV3vk45KwjdPoqDvgmqapLtGsrthhe9Ncj8pe9qNU6WWimXZYH3xcn7/BB6HVGxsbU8lddfXvSCTio/dek1F/IzQ0AIC6Ib8LYHWpdUjhcLjsiEtOmkxOTqpbj0xPT6slRFu3bpWv/+lPfxqgK1SvD/rJ7Osy+PqCuUpnLdV58asknU7L89+j0ai6smJXV1elq0b0DFwoFGq0/aivDJicnHRfP3Hu3Dl5XbXFxcWpqamarw84f/58bT/Qe7S935Wq/ubm5lQaSU5z275MvxNkfXi/u5jtipOGqt/6+vrkgSDX4ckb8dqmEDo6OlzmkfU5GvWrw+Hwt771LfcNGBoakq8/fvx4KpVSlYxqgtfkDnNKS0tLS0vLoUOHTp8+ncvlvvrVr6pf99hjj8mZWf3GENu2bavt6joVWPf5Tf1ShKtXCXuJRk1U2QFTVwvwLRaLyQqnublZ3YQ4m81arkNezwaroSrn9VQH1pyacw+Hw9/+9red8gplT4KpVSHUK+dr1665V1CqPd29e3cDxiRYX+3O9tLlpWzvrbuqjU5F9Dvgyks0LywsqDvOlkbbYzZafYgclagsslOhVSn8kydP6n1F1RasyX1VAzft0GgNjcc7yNie5dngg9AqLS8vP/roo6ql0BeCW46juo36G6Gh8U6VK4/rmwEAFjcQAgBVcs9GvPzyy/KBurzk8vLy1NTU2NiY7Z17mpubDx06dPnyZZUPVte8UidHm6bp3j9+7rnn+vv7x8bGpqam2EH62EM9rvRk6ra2NvngzJkz7q/s7+8fGRkZGxtbwzV87iMHW//xH/+hph704Hi51KF+a9XVoKYYhBDDw8Pq0Ojr66v0o2KxmHzgfjHG5eXlgwcPjo2NjY2NeRmL1oRaGWAYRnt7e6urAwcOlL6x0uGuiypTEbZUWTp37pzLy+o2p6kG896v56mmNcPhsFNyV2h3gqwbfbfmcjmnlzkV5sap35577jlVUz3zzDPPPPOMqr6ee+650ubS5RhRUzn6yviHHnqotZxkMqm+Qr9rr14xulQLqvYo3WAf5ufnx8bG+vv7bVvzaDR6+vRpdelpVa3py0TcL5s5Nzd3+PBhubW2GdlSd911l3zgfhaI0/dWUwn7i0ZNVNkB+8QnPuGx/Mv3lt4BTk9AHjp0SIXxM5/5jMcd56OuXsN2f8PWgava/Tt27JhL77ds41urQtjc3Kw6cu79geXlZXUg13bWu1YxCdZXu1Mbc+rUKZeXvfrqq6VPrmqjU6l7771XPhgdHRVCXLx4Uf53YGCg9MXu/QHbzsCBAwfc39Xe3q5q0RMnTug/U7UFtmH00hb4GPw25rRDEBsaVQtls1mX0ut0lmcjD0Kr9Nprr6mR41NPPWWb3PW4Q2s16m+EhsZS9bl09dXj97///UzZAYAP5HcB1GCg7tT51qeV1WhzcXGxo6Ojq6vL5Y3Nzc2ls4H6xa/0cWbplx45cmRoaKirq+v5559nByn6WcBqiOWRmvszTdO9gz40NNTb29vV1VX9mLzmXAbeKkdouTdV2eH38vJyPe8QJleNqEOv0gzKPffcYzvhYnHu3LlsNtvV1dXV1fXWW2/V4XfpKwPkwtyyceju7i5bBdm+sexrXCbHqyHX+oi3Z9ycRr/1mdNcWFhQg/l9+/Z5fJc6m8c9W6Pf6rVux4Wq0775zW86vcyp4WiQ+k2/MnMqlZLzpKqcHz582N88l74y3suVV9vb29WUkL4rW1tb1fMuTfClS5dk7bF///7qY5JOp7u6umxvmKeULiRqampS5cH9/I9jx44dP368q6vr8OHDTvNxFnv27FGdGZfS4lQOq6mE/UWjJqrsgOkFz6VNUe998cUX3bdHXS1zcXHxscceq+2PbbR2f+PUgatB/zku2UQf54NWUwhVV9OlPyCE0A8i/Rhs2Jg08leXdffdd8sH09PTXga2dWt0KqUacXmJZnXRDtV4+WuLVWXupSOtcsmLi4v68FO1Be4toPe2oKyGnXYIYkOjL+50WVvsdAg07CC0evqyfpeardIdWuWof20bGu+//eTJk+qgaJwL9QNAsJDfBVAD6lpbFkePHpXTyuFwWA0JWlpa1JBGXj/KdkijVsao0xibmppSqZR8/OijjzpNLT3//PMqQXL//fezd1RI9duUVnr5nWg0qvbaww8/7DQq6+/vV49XaZa5Gj09PbZbPjU1pUYdlvyHWhPjlLL6+te/Xudfoa8aqTTlo5a9Li4uHj161KmoqCRTLBarz0BLnzpRV3Vzp04ZcalJbKkcldNQs+bZAkvwTdMcGxuzjfzDDz9c/0pbzWmWpXIALmfu9/f313/ZjRBCtQ5DQ0O2+Yn5+Xl18bTGrN/UlZnD4fAXv/hF+eSTTz4pS6y8SrOPj9VXxnu8IJ6aEjJNU59nV88/+uijTjWPKlpqj1RDHeZDQ0NO36gvKy8tD9ls1ilVMDc3p6oO70d9c3OzaiacSsvc3JxTv6iaSth3NKpXZQdMzys4TQrncjn13rKtQGtrq2qUjx8/XtuTchqw3d8gdeBq0BdWOq1hmp+f/8xnPlPpJ1dTCFUdYprmyMiI01ap/eUxqbbmMWnkr65opOPU2qqBrcsBWPNGxwfVWKtv7O7u9l2E9FMP9St8uNDrfH34qZ8g5VSRVtQWlNWw0w5BbGj0mDhdt0AfUwdlEFo9PS3q1BZMTU059QxXadS/tg1N6ejA9iCS543Jx17O8AYA2FsBEBDqsB0dHfX9IfpddmZnZ8s+v7KyorqGlu+1nAmYSqWWlpbUX5eWlvS5XZf3lv4c/b3hcFj/2EKhoKYsw+HwzMyM5b3j4+N6p9ZfhC0RKBsK2zB6eV7fYMMwarU3S83MzOgLdtPpdKW/XX6IelksFsvn8057rTRELhHwshllI68XKst+t9xZKhaLFQoF72VGzzumUinLT7aMyV2+ura/Wv/k7u5uy1/Vgj/LBkv6Nnd3d+vHlzzE9KJi2SSnIPv41RZq8iUWi3l/l14bWH6IC72gTk5OWn6+JcHvVHf5i4AefMsnLy0tWVbVV1rVe3xjPp9XJaTSgFsOB0vMl5aW9E+2jYCXqsbL8W5LBbC0dcjn85Z0l2UD6lC/udMrIsvG638aHx+v6GP1a2WX1vwuhcS2WtObYNso6QVA/6vv/b60tOTyjTL46gWW/aIfULa1qL8KxLLHY7GY5b0zMzOWwlarSriaaLh3NrwcdFV2wFxqP0vQ9EbNpcrVo2EYhiWM7u1gRRVdzdv9soeDl4YmiHWgxy5rzUdAqoMRDodLv7r0gPXe7ldTCPXORjqdtrxXP5Yt1Wk1JaRWMZFHdOJtDbI7qm+U9aOgtHK2nLRUugHVNDq+ez7uEdCvuuH70/Qf7r2t1PsD+o6ueVtQdr835rRDQBsa935g6ULnQAxCK5pUKdvZLp1qKJ03q9uof20bGr0c2tb5+gaUtqHVNDQAsNGQ3wWCc7i+zTCMRCX0Kd3Vy+/KTlsqlRodHU2lUnpnsbQnaslkGIYh3zg6Otrd3a2/t3Qu2zJyMAwjnU6Pjo6m02n9SkfhcLi0b+0xwvXM7+p/SiQSMgj+ppidCoBlN5VORnufdLNMbcRiMbnBlj1emjFqnPyuKpOlZcZ2XKFP3unlTf/JKix1y+9a9oVlxkE/NuWRpU/rlOYRZTTk0ac/X5oNWqWhtf6WitJX+jSB96mr0pS/5eeHw2H1uLYTi6VVX2lxckrP1KSNsEybhsPh0hSRx5lZS9WtVzX6Y0s9vKr5XUsCo3TP6uEt3YDVrt88brlt0VIxqXSX6bVBRW/UC6q+E/Xpb73ZskTJsu+q2e+WRl99YzqdthxNlgrcUh5UF2V0dNRSB5ZO2lYUWFlj2H6yl3qgokrYdzTcOxseD7oqO2CbN2+2rT30LbdMr7tXufr2WGLl3g66W+12f/Xyuw1eB65VftfpqEmlUnquUZVDyyz5KhVCSz3gUkGVFt3qp92rjIklbdA4u6P6Rlk/CtRO0as4l8a6mkantvldS28tHA77/hy9Piwd0bvQewuWneg0CeC7LXDf74057RDchsYSk9L+j/67atj/aeT8bmnVof8uPYWpio2lYq/PqL/ODY1lcOpUYFxGN74bGgDYcAkjQgAE5nD1S++TrUZ+N5FIuFyG0WnlRGn/vpTTELf05O7SFGalSYuVNcrvWkbgFY0rbDOXZQuD7ZnX3r/a/Q4utmfjrjRMftfl/km2aW/b+RqL8fFx9RX1zO/q8wKl55u7Jxhs11l6OfpWaWjtb2XAyq+uMvS9DrX0PJXZ2Vn1S2u+cGRpacnlHqixWEwlrX3ndz0yDMNHPel+OKjNVtWaZRpiVfO7cvNcbmmWSqXUh9tuwKrWby70STHbKULLygAfM7wVvWvlV1elWGbZyjbBpTuuyv3ucsC6N/r5fN69p2G7Iscjl/tMG4ahB9C2HvBXCVcTDZfOhveDrpoO2Ac+8IFKt7xslatXp3rpKtsOVlPRVdnur960e4PXgWuV310pSV3bFjx1ZFlqy9UrhO79AZcKqibT7tXEpMpp91XdHdU3yi51ezgcVnW77Qb4bnRqnt/Vf4WPyxjYtjiVNpd6LWq5ypd7C+ijLVip5PTKRph2CHRDMzk56bLlepmpYf+nwfO7ZcuYbD1V7WfpWq/qqH8NGxr9HFOnMuNy6ir5XQDwiPvvAqiBwcHByclJy4xSd3f37Ozs4OCg7VuamprOnDkzPj5e2hWWpxYWCoVDhw7Zvjcajebz+dHR0dI5rFgsNj4+fubMmaDcr0UI8U//9E+Wbvfrr79e26+Qp5HOzs6ePn26qampmo86dOhQoVCwLOZQe3xycvLYsWNVfsXqaW9vn52dtUQ7FotNTk6+8MILTpvd0tKSz+dLf7IM6X333bcmv6Wpqenpp5+Wjy33MWpubp6ZmbEcHfoNe5qamo4dOzY7O1s6wJZH3+zsrNPRV3PLy8snTpxQIa2o8LS0tKgKZHp62unmWLYlwXKZYvXbL1++7PEepb533OnTpycnJy1Vn2EYo6OjL7zwgrr11+pJJBKTk5NXrlzxUU+2tLRcvny59HCw1Nv79u2Tz3/zm9+s53HR0tLy0ksvlbYOsVhsZmbGqT1a2/ptbGxsenpaPj527Jjtva+am5vVPMv09LTt/ZtL6ffM+8IXvlDRVuk313zyySdLm2DL4hU1iZzP52tee8iq23a/qArctjC3tLS88MILpYebeHutzOXLl6PRqL+t6unpKW1QwuHw6OjoSy+95H5wVVMJ+45GTTob1XTAbrjhBlkUS3+1zIg7bbmL4eFh9fiP/uiPvLeDZWuSBmz312sdWLdxSmk9oB8y6gaK09PTFd3j0HchVP0B2yNidHQ0n8/7rqDWNiYN+9Xe63bbLmI+n3evo1a10amIutepEOKBBx7w/TmZTEZFoNIt1+8xrN9uWbaAMzMzNWwLyva9G3DaIbgNTXt7u+1YoLu7O5/Pt7e3r1L/p5HJMmZbTuQOla2nKoFlz6aq4ah/DRua0vFjaZ+5bL0KAChrUzWLAgHU09zcnL83bt68WfWZlpeXX3vtNfn41ltvVXM0Ts8LIebn59966y0hxLZt2/R557Gxsa6uLiFEIpE4ffq06k1eu3ZNCFFpgkT9Osu3lOWy5b4j7PQ5TqGw3Rg9Ak7PWzriMnTeg6B/rAsvYSn728tus/se9xIBl80oG3l9Y/QCLz9z165d8rFq8tT2VFpm1JbYHj6Wr67Dr9arhdKvUJ/g/kvVyyzb7z3IPva17esrPfz9HThOMdS3Vn2s5TNrGwHbb3H66pq0Ef5CVPZwKP1Yp8rBS1XjpeT7Plptn6xP/eZlx7m/3fsrS3+Cj/bRSwXi5Yio7X73vl9q2NPw+Ml6EFTTEw6H33jjDY+hLlsJVx8N2zrT30FXaQdsx44d+Xz+6NGjfX19HkuFlwLmXlA9toP1bPfL/nCPh1Xg6kB/Xc3aHrnum2r7RXUrhN7jU6sS4jsm6kfJWs73hNIq7Y4qG+XSz7EdSnsJvveiW6uej77x73nPe4QQhmFcuXKl+tGxj8Km7wiXt9eqLfC+3xth2mHdNDS2wyjbJxtwELpKe9ZlU52+qG6j/jo3NC7Fw8vH6j9qVU+/BoCgI78LwCfb/C7QaGzzuwAA+DA/P59Op3fv3h2JRFwWqTz33HP79++nj6Sz5HcBBN2mTZuqTB9ilUxNTXV0dAghxsfHG3klKAAAAKp0IyEAAAAAgLLC4fDx48ePHz8uhJidnbVdT7C8vHzkyBH52P22ZwAQUHINlrodAxpKT0+PfKDfbQEAAADrD/ffBQAAAIDympqa1H3OHn744dIbQy4sLOzbt0/e+TgcDjO3DmD9WV5efvjhh8PhcOk9HbHm+vv7ZRuUSqWCeMNsAAAAeMf6XQAAAADw5Kmnntq7d68QYnp6OhKJJBKJzs5O+aezZ89ms1n1yqeffpq5dQDrz9e//vVXXnnln//5n2t7L3P4dvDgQfng/Pnzi4uLQgiy7wAAABsB+V0AAAAA8CQajU5OTspbGwohstmsntOVwuHw008/7XKDXgAIrgcffPDBBx/k/JXG0dLSMjQ0pD/z9NNPk30HAABY97g+MwAAAAB41d7eXigUUqlUOBy2/MkwjHQ6nc/nSe4CWK+amppI7jaU7du3683QzMwMbRAAAMBGsGllZYUoAPBhYWHh2rVrQojNmze3tLQQEDSm5eXl1157TT5ubW0lIACA1egOCSFuvfVWch5OduzYkc/njx492tfXRzQAYDUaIwbmAAAAGwrXZwbgU3NzMxd9QuNjhQEAgO4QAIDGCAAAAOsJ12cGAAAAAAAAAAAAgGAgvwsAAAAAAAAAAAAAwUB+FwAAAAAAAAAAAACCgfwuAAAAAAAAAAAAAAQD+V0AAAAAAAAAAAAACAbyuwAAAAAAAAAAAAAQDOR3AQAAAAAAAAAAACAYyO8CAAAAAAAAAAAAQDCQ3wUAAAAAAAAAAACAYCC/CwAAAAAAAAAAAADBQH4XAAAAAAAAAAAAAIKB/C4AAAAAAAAAAAAABAP5XQAAAAAAAAAAAAAIBvK7AAAAAAAAAAAAABAM5HcBAAAAAAAAAAAAIBjI7wIAAAAAAAAAAABAMJDfBQAAAAAAAAAAAIBgIL8LAAAAAAAAAAAAAMFAfhcAAAAAAAAAAAAAgoH8LgAAAAAAAAAAAAAEA/ldAAAAAAAAAAAAAAgG8rsAAAAAAAAAAAAAEAzkdwEAAAAAAAAAAAAgGMjvAgAAAAAAAAAAAEAwkN8FAAAAAAAAAAAAgGAgvwsAAAAAAAAAAAAAwUB+FwAAAAAAAAAAAACCgfwuAAAAAAAAAAAAAAQD+V0AAAAAAAAAAAAACAbyuwAAAAAAAAAAAAAQDOR3AQAAAAAAAAAAACAYyO8CAAAAAAAAAAAAQDCQ3wUAAAAAAAAAAACAYCC/CwAAAAAAAAAAAADBQH4XAAAAAAAAAAAAAIKB/C4AAAAAAAAAAAAABAP5XQAAAAAAAAAAAAAIBvK7AAAAAAAAAAAAABAM5HcBAAAAAAAAAAAAIBjI7wIAAAAAAAAAAABAMJDfBQAAAAAAAAAAAIBgIL8LAAAAAAAAAAAAAMFAfhcAAAAAAAAAAAAAgoH8LgAAAAAAAAAAAAAEA/ldAAAAAAAAAAAAAAgG8rsAAAAAAHtzc3ObNm3atGnTwsIC0QAAAAAAoBGQ3wUAAAAA2Nu1axdBAAAAAACgoZDfBQAAAADYOHjwIEEAAAAAAKDRkN8FAAAAAFhNTU1ls1niAAAAAABAoyG/CwAAAAD4FQsLCx0dHUKI0dFRogEAAAAAQEO5kRAAAAAAAHTxeFwIMTk5SSgAAAAAAGg0rN8FAAAAAPyf/v5+0zRTqVR7ezvRAAAAAACg0ZDfBQAAAAD8f1NTU0NDQ4ZhDA4OEg0AAAAAABoQ12cGAAAAAAih3XZ3YmLC/ZWFQqFYLBaLRSHE9evX5ZPyv/l8/qWXXhJCfPjDH5bPLy4uWt6eyWRCoZAQQv67detW+bx6cuvWrfIxAAAAAACwIL8LAAAAABtOoVDI5XLFYrFQKAghTNMUQpw9e1YI8Tu/8zvyyswu99/NZDKZTMb2T8vLy//93/+tPs3p7fJ7ncTj8dHRUactP3DggBAiFApFIhGZBpYP1DPqeQAAAAAA1h/yuwAAAAAQbHLhrMyYqpW1hUIhGo3G43Hbt5im2dPToz/zX//1Xz/72c/e/e53y08TQiwsLHjfBpVP3bx58xtvvPGud73rQx/6kHzm0qVLb731lv7i5uZmuepXfZfTp9n+WJUblmnpUiMjI4lEwumHm6YZiUTkZsgHAAAAAAAECPldAAAAAAieYrG4f/9+8XZC1/Y1W7dudcrvygsgy+xmJBJZXl5+/vnnhRDpdFq8nV41DOPixYu2b+/r6+vr65OPy66U3bFjRz6f158ZHx8v/Tmi5FLPtiKRyMDAgHzN9evXZbpXpbTLblIulzty5EjpZ6poGIbR29tLAQMAAAAANCzyuwAAAADQQGSeslAoyOWzyWTS9mWhUMg2s6uuV+z+LdFo9OrVq/LxwsKCfP3s7Gxra6uXjaz51Y/12/GWfaVTTKRCoaBu6OuRfpHqiYkJl/yuaZoqEwwAAAAAwJogvwsAAAAAa8M0TZnHLRQKpmmqpajqBe65TLmCtvQ2tJVuhrrP7q5du5xeIzOaiUTi9OnTDR5V9+RrMpmUIZWhlpndYrEos+kui6Glrq4u+ZZIJGIYhgy+vM4zV3sGAAAAANQH+V0AAAAAWBvZbDaTydj+KRQKbd26tbm5uVgsOqVs3Zexwp26GrO/t8s11qXP9/X1cXlnAAAAAMCqIr8LAAAAALVULBZnZmYWFhZM0zRNc2RkxCmJKJfbyjxuJBKR/zUMo7m5Wd4ftz4bfOjQoUOHDtn+aWpqqqOjQwhRKBSam5vZuRcuXJCLrRcWFuSOFkLkcjn1AnUL4VKFQiGXy0UikWg0SiQBAAAAAL6R3wUAAAAA/+Q1fnO5nPrXcoHfXC7nlN9NJpOJRKJueVzUhMzEy8f6Ut1cLnf9+nWXSzSbptnT06M+xDAMwzCi0SgXdgYAAAAAVIT8LgAAAAD4VCwW9+zZY3vHVj2B5/IJJHfXjYpW5crLO09MTKhn4vF4KBTq7e0l1wsAAAAAcEd+FwAAAAAcFYtFl0WZKjsrr6tsGIa8+q680jLRgy4ej//nf/6nvLzzK6+8Ii/frW7iK3O9AwMDBAoAAAAA4I78LgAAAAD8H5lye+WVV+Q9dAuFQigUunr1qtPrx8fHhRBOV2AGLOTlnePxuHpmYmKiWCyqwub0xiNHjhSLRXkCAXfwBQAAAICNjPwuAAAAgA2tWCyappnL5WZmZkzTLL3YsrzDrtMS3vWd2W1vb19ZWaGQrCo91+sim83qhTMajcr14p2dnVzSGQAAAAA2FPK7AAAAADa0bDZ75MgR/ZlQKKTunitxsWWsrWKx+Md//MdqTbkQIpfL5XI5IcSRI0dCodDevXuTySTregEAAABgIyC/CwAAAGBDkykxmSEzDEOuhiShi4YSCoV6e3t7e3vlfycmJuQlxGWKt1gsTkxMHDhwgEABAAAAwEZAfhcAAADA+qRfeHnv3r0qN2ZhGMbk5CQ30EWAxOPxeDwui/TExMTCwkIul3Mpw6ZpylXphA4AAAAA1oFN3EsJAAAAwLpRLBZnZmZeeeWViYmJQqGg7lcaCoWuXr1KfNbEjh078vn80aNH+/r6iMaa6OrqmpiYUIvUo9EoV3IGAAAAgOBi/S4AAACAwMtms7lczjRN0zQtf1I5LaKEDUseF/IyzhMTE/LJeDxOrhcAAAAAgoj8LgAAAIDAM00zm83Kx/I6tNFo1Hgb8cEGd+HCBXUZ55mZGbmuXc/19vX1OV3AHAAAAADQaMjvAgAAAAi8eDxumubevXtlWjcUChETwHKMCCGSyaQQolAoyPXu8l+CAwAAAADBQn4XAAAAQEOTt9Q9e/ZsNBpNJBK2r4lGo+Pj48QK8CISiUQiEfXfiYkJ/b8WhULB5a8AAAAAgPojvwsAAACg4RSLRbm4cGJiQq0vLBaLTvldAL7Jpb1Onn322eHh4Xg8Lk+wYHE8AAAAAKw58rsAAAAAGkWxWJyYmJBpXXmLUCkUChmGEY1GCRFQZzMzM+Ltm/UeOXJEXgJdpnsJDgAAAACsCfK7AAAAABpCOp0eHh7Wn5E53Xg8zi11gbXS19dnmqY88UIIkcvlcrlcJpMRQrCoFwAAAADWBPldAAAAAA2hublZvL1Ud+/evZ2dnYZhEBZgbUWj0Wg0mkwmhRAyy3v27NlCoSDeXtRbKBQGBgYIFAAAAADUDfldAAAAAA0hHo9HIhGW6gKNfJDG4/GBgYFCoXD27FmZ7uVCzQAAAABQZ+R3AQAAAKw6eU3XiYkJwzBGRkZsXxMKhUgUAYEQiUSSyaRc1KvfKtuiUChEIhHCBQAAAAC1RX4XAAAAwGpRaV3TNOUzhULBKb8LIIhcFtw//vjjExMT8Xi8s7MzkUgQKwAAAACoCfK7AAAAAGqsNK0rhIhEIolEorOzk/gAG8TMzIx4+za9PT09JHoBAAAAoCbI7wIAAAComYmJiXQ6rad1Q6FQIpFIJBKGYRAfYEO5evVqJpORt+kVJHoBAAAAoEY2raysEAUAAAAANWGaZkdHh9DSupFIxOXyrdgIduzYkc/njx492tfXRzQ2LD3Rq4yOjsbjcYIDAAAAABVh/S4AAACAmjEMo6+vf+qUngAAIABJREFUr7Ozk7QuKvKlL33p8uXLPt44MDCwd+9eAtj4kslkMpkUv5roZVl/DbW3t/t419TUFKEDAAAAAof8LgAAAIAKFAoF0zRdltz19vYSJQBOZKK3WCxOTExEIhECAgAAAACVuoEQAAAAACirWCxmMpmOjo62traurq5CoUBMAPgmL+Hu8oJ0Om25mDMAAAAAQGL9LgAAAABHco1dJpMpFArFYlE+GQqFTNNk4R1Ww+233/6Vr3yFOGxwpmkODw/Lx3K9LxWOd5/97GcfeOAB4gAAAACsY+R3AQAAANjI5XITExPZbFZP6+7du/fAgQN79+7l3roAVpVhGKZpCiEymUwmk4lGo4lEwn3JLwAAAABsEOR3AQAAAFh1dHTIzIoQIhQKGYaRSCTi8ThpXQB1YBjG5OSkaZq5XE5ePyCXy+VyuZ6enmQymUgkDMMgSgAAAAA2LPK7AAAAAKwikYi8AnMikThw4ABXRgVQf4ZhGIaRTCYnJibOnj2bzWaFtpx3fHycEAEAAADYmMjvAgAAALBKJpO9vb2RSIQFuwDWXDwej8fjIyMjMrlbKBQ46QQAAADARkZ+FwAAAIBVNBolCAAaTTKZlMt5ye8CAAAA2MhuIAQAAADAhlIsFtPpdEdHR09PD9EAEDjxeNzl/ruFQoEQAQAAAFjfWL8LAAAAbAjFYtE0zUwmMzMzUywWhRCFQmFkZITIAFhPHn/8cdM0Ozs7k8kky3wBAAAArEvkdwEAAIB1rlgsZjKZiYkJ0zTlM6FQKB6PJ5NJggNgnVV38hQWeafeeDze2dmZSCSIDAAAAID1ZNPKygpRAAAAANYfuWB3eHjYNE25YFcIEY1G4/F4IpEIhUKECPWxY8eOfD5/9OjRvr4+p9d86Utfunz5cqWfPDAwsHfvXiIMXS6Xy2az2WxWPRMKhRKJxLpfztve3l7R66empigtAAAAQECxfhcAAABYn0zT3L9/v3ws0xuJRMLlppUAsA5Eo9FoNDoyMiKvW5DL5VjOCwAAAGCdIb8LAAAArE/RaDQSiTQ3N7NgF8AGlEwmk8mkaZrZbDaTyQghJiYmJiYmDMPgTBcAAAAAgUZ+FwAAAFi3JicnSesiWG6//favfOUrxAG1YhjGwMDAwMBANptNp9MbIbn72c9+9oEHHmDXAwAAAOsY+V0AAAAgwIrFoksGl+QuAEjyGvXqZuQAAAAAEFw3EAIAAAAgiIrFYjqd3r9/v7zuKACgLM56AQAAALAOkN8FAAAAAqZYLB45cmTPnj3Dw8OmaQ4PDxMTAKiSPGMmm80SCgAAAAANjuszAwAAAIGRy+UmJiay2ay8xGgoFJK3liQyAFCNYrH41FNPFYvFXC6XyWSSyWQikSAsAAAAABoT63cBAACAAMjlcvv375dXY5b33O3r65ucnBwfHzcMg/gAQDVCodDIyEg0GhVCmKbZ09PzW7/1W0eOHCEyAAAAABoQ63cBAACAhlYoFLq6ukzTlP+NRCJyYRl3kQSAGorH4/F4PJfLZbNZeZXmTCYj1/Imk8lIJEKIAAAAADQI1u8CAAAADW3r1q3yaszRaHRgYGBycjKZTJLcBYDVEI1GR0ZGJicn1fWZM5lMW1tbV1eXrIoBAAAAYM2xfhcAAABoaKFQqLe31zAMrsMMAPVhGMbIyMjIyIhcwlsoFAqFAifWAAAAAGgQ5HcBAACARqeWkQHr3uXLl9vb2yt6y9TUFHHDKpEXZ85kMs3NzUQDAAAAQIMgvwsAAACsPXl7XVboAkADSiaTBAEAAABA4yC/CwAAAKylQqGQyWSy2WwkEpmcnCQgABC4ajwSiRAHAAAAAHVDfhcAAABYG8VicXh4OJvNFotFIUShUCgWi9zfERvTV77yFYKAgNbkXV1dQohkMrm219LnQuUAAADAxnEDIQAAAADqrFgsHjlyZM+ePZlMRuZ0BwYGLl68SHIXAIKlUCiYpmmaZk9PT0dHRzabJSYAAAAAVhv5XQAAAKB+nDK7yWSS5C4ABI5hGJOTk3LlLlleAAAAAPWxaWVlhSgAAAAAdXDkyBF1NeZQKNTX15dIJEjrYt3bsWNHPp8/evRoX18f0cB6lcvlMpnMxMSE/K9hGGt+xWYAAAAA6xXrdwEAAIA6KRaLcs1uX18fa3YBYD2JRqOjo6Pj4+ORSES8vZZ3//79uVyO4AAAAACorRsJAQAAAFAfAwMDkUjkwIEDcvYfALDORKPRCxcuTExMPP7444VCIZfL5XK5aDRKZAAAAADUEOt3AQAAgDoJhUK9vb0kdwFgfYvH4xcuXBgdHZVXaSYgAAAAAGqL9bsAAAAAgNXy+uuv/+///i9xwAYUj8fj8XiVH/Lzn//8Jz/5yebNm2+55RZCCgAAAEBi/S4AAABQG8ViMZvNdnR0FAoFooENbmRk5K677nrnO995yy23/PCHPxRCPPHEE3/6p386PT1NcICyLly48Gd/9mcf+MAHNm/evH379t/4jd+48cYbf//3f/+v/uqvOGECAAAAwKaVlRWiAAAAAFSjWCzOzMyk02nTNIUQiURiZGSEsGBj+td//deenp65uTmnF6RSqcHBQQKFDS6Xy01MTCSTydKL9v/lX/7lX/zFXzi9cceOHSMjI3/wB39ADAEAAIANi/wuAAAAUJVcLnfkyBGZ2RVCRKPRgYEBwzCIDDagxx577Mtf/rJ8fMstt7z3ve/dvHnzO97xjv/5n/9ZXl7+0Y9+9Mtf/lII8Xu/93vpdPqOO+4gYtiw9u/fn8vlhBDJZHJgYEA++d3vfrenp+fFF18UQmzZsiUcDr/nPe9517ve9Ytf/OLnP//5T3/605/85CfylT09Pel0mjACAAAAGxP5XQAAAMAn0zQzmUw2m5X/JbOLDS6VSj3xxBNCiFAo1NLS8p73vKf0NfPz8z/60Y+EELfccsv3v//99773vcQNG1MmkxkeHi4Wi/KQGRgY+NSnPnXbbbf9+7//uxAiEol88IMf3LRpk+VdxWLxBz/4wfXr14UQjzzyyFe/+lUiCQAAAGxA5HcBAACAihWLxeHh4Ww2K6fmo9FoMpmMx+NEBhvWCy+88IlPfEIIsXXr1t27d7u88tq1ay+//PLKysrnPve5U6dOETpsZOl0enh4WD6+4YYbFhYWhBC7du0Kh8Mu7/rud7+7tLQkhPjGN75x9913E0YAAABgoyG/CwAAAFSmWCx2dHQUCgUhRCgU6uvrSyQSoVCIyGAj+8hHPvK9733v3e9+9549e8q+uFAo/OAHPxBCnDp16nOf+xzRw0YmLwVx6tSpa9euCSE+8IEPvP/97y/7ru985zvLy8stLS1Xrlz5tV/7NcIIAAAAbCg3EAIAAACgIqG39fX1Xbx4MZlMktzFBve3f/u33/ve94QQH/zgB728PhKJyOWJjz/+ONHDBmcYxsjIiDwitm3b5iW5q461+fl57sILAAAAbECs3wUAAAAqZpqmEIJb7WL9efPNN90f/OxnP7O8+M033xwYGLh8+fLNN9/84Q9/2OMXXb9+/dKlS0KIo0eP/u7v/q58csuWLfLBTTfdpD+jnrd9Bgi6q1evfuhDHxJCfOQjH/n1X/91j+965ZVXfvzjH99xxx0vvfQSMQQAAAA2lBsJAQAAAFApMrsICpmCfeONN4QQr7/++ptvvqmeefPNN+XzP/vZz958m79vmZ2dFUK8973v9f6WrVu3btq0aWVl5e///u9/+7d/29/3btmyZcuWLTfffLNK+r7vfe8TQrzvfe/bsmXLTTfdtEVDYUDD+rd/+zchxDvf+U7vyV15xP34xz/+9re//Ytf/OId73gHYQQAAAA2jhs//elP+3jbpz/96U996lM+ZhaSyaTvbW1ra3vkkUd8vDGZTPqep9i+ffvQ0JCPN6ZSqVdffdXfl27ZsiWTyfh449e+9rULFy74jnAmk/Ex6/GP//iP//Iv/+L7S5944gkfsznnzp3zFyLpkUceaWtrq/RdP/zhD//8z//c95euyVFz5513+nv7mhw1jzzyiJxhrOdR88QTT3z/+98P1lHzta99TU5cNv5Rc+XKFX+FoZqj5o033vDXWKzhUfPhD3/YX/WycY6aTCZz7ty5YB01qVTqtttu46hx31rfX7omR8373ve+r33t/7F3/zGO3PUd/z+BFAgDQy7qGShxmrn0AjnbdxJKcza0VI2VzUo000oxjsxf1e6kyn+ub/+qN61ZKetW+nbXsSq1oJs9/qjaEY5TVcO3+m738KURLZ5TKOLOnqbNlR01vpbEh8hlyACXBu77x6eYZXft25/++Xz8EU3sWXv8GY/tm9e8359y/48ay7L2dqz1/6ixbXtvWzvAo8YwjGQy2eejRtf1Pf8rrLP8zjvv3LhxQwjx4x//+J0NfvKTn/z4xz+WK3RuEUJ88IMfPH78+B6e9NKlS/IRevjpT38q13nf+963qwdXVfXNN9+UL2SjK1eu/OAHP9jzCH/yk5/s9t3XyYPFL4bBQoh//ud/vnjx4nvf+97dvor9fMEN5KhxHGdvn2ajftQM8ymIl19+WQix22l077jjDrnw2muv/eVf/uWeT0EM6rtmIEfN3k5BDOSo2ecpiLE/avZ/CmI/J+72fNQM5MTdKB41Azlxt7ejhtPdh30KYnJOd4/iUUNIxFEz2KOGkOj2vb2n93wk7PkP9/mke/7bjc3H+vliJ+dJR+69NDlPylHDUcOT9u2oGcgGc9Qc9pPu+cOQQ3V4/vaNN974zne+8+CDD07gocpRMyRPKutrX3/99Xa73W63G43G22+//c4778j/7upJb5nR9nDL5/rpT38qF3ZbQSjX33bbdvsCd/Vl7Xne1ntfffXV11577f/+nXz77e95z3ve+973vvvd737vz8hbejz43kqEOWom/LtG+uEPf7iHI+hd73rXxnfCKH7X9P+o4Q08NkfNZJ6C4KjhSTlqOGp4Uk53cwqCJ+24fW8XOxw7dmxvG7GfK3blRdZ7sJ/rQfbcxeuxxx57+OGH+/ykyWRyD5dv7/N54/H4Hso7OvbWii0Wi+3nvbTzWcE2CoVC+3lSjppbymQye/6A2/OT6rp++vTp0Tpq9va3AzlqNE3r/1GjKApHzVgeNXtu3Tmoo2Zvb+CJOmr286SHfdT88Ic/fO6557797W+//fbbH/vYx1Kp1ACPmr0ZyFETj8f30wJ3IEfN3r7gDvCo6bRK7oS4QRCsr69v2y1ZVdU9P+mee7fec889O8mGr127JoTYWonbm1x/a2j6kY985MiRI30+ao4cOfL+97+/x6beuHFDVhXLzXvf+9535513Hjly5MiRI3feeeeev+D6f9QcO3ZspI+akfjH1G5/oX31q18tl8u7PYLefvttufDRj350P6cgBvVdM5CjZm8bPJCjZp+nIMb+qNn/z8KBHDWDOnHHUcNRM/CjhtPdY3nUcLqbo2awRw0h0W03b94UAAAAAITwfX9paalSqfi+L4SIRCJnzpyZnp5mZLAfnbC2E+LKQHefU94OlRdeeOGtt9761V/91Z13gb5x48bXv/51IcSDDz740Y9+dDz2dSgUOnbsmOz8HAqFPvzhD8sFjgL09o//+I/yu+ZTn/pUj+sMNllfX19fX7/77rtbrRZjCAAAAEyU2xkCAAAAQAhRr9dzuZw8S66q6tzcXDqd3k/FJCZTp6my53nNZvOtt96SVbnDvM2diWk/8IEPdK7X3tWCqqp/8zd/c+3atfvuu6/TM7a37373u0KId7/73UtLS//7v//bGT3xi72nNt2yaeH1118XQux5Xu0DJ8P7rbdvzH1jsRihLzZ59NFH77zzzuvXr3/3u9+97777dvhXsm7+d37ndxhAAAAAYNKQ7wIAAGDS1ev1paWler0uhFBVdXp6+syZM+FwmJHBLbXb7fX1dZnqeZ4nK3SHYcM6ka3sYCaXZaYYCoU6Oa68ZT9tGyWZ7/7whz985ZVXPvGJT9xyfd/3//M//1MI8eSTT37mM585qH0h66Hfeuut4BfJnTLAMHhj7mtZllyQoa+mabLSdz9d1DAGZmdnl5aWPM+76667dtKf/MqVK7Jh+A6vqAAAAAAwTujPDAAAgMm1qSFzIpFYWFiIRCKMDLbaWJjbiXL7X5grY1rZ+Ff8LKDtRLYd/R+fP/3TP83n80KIU6dOHT16tPfK//qv//rGG2/cd999jUbjjjvu6P/WyrS13W5vDIPFz4LYQeX0lPlOuFOnTl2+fFlV1Yceeqj3mt///ve/9a1vCSE+8IEPqKrKbAIAAADApCHfBQAAwOTyfX9qaqrVakUiEcMw0uk0YwJJ5nyyNrf/hbkbQ9xQKCTLcOWNA8lud+i3f/u3/+mf/kkI8Wu/9mv33ntvt4PulVdeuX79uhDCtu3HHntsaF9OEASe58kAeOPEyX2OfjVN+/CHP0yZ7yS4cOFCMpkUQqiqev/99995553brvbqq6++8sorQohPfvKTn/nMZyqVirzdMIyFhQWGEQAAAJgE5LsAAACYaKurq1evXmWq3QknA7xGo9H5bx8Kc0c0xO3h29/+9uOPP76+vi6EuOuuu+6999677rqrc++Pf/zj7373u9/5znfk/545c2ZpaWmk3zCvv/76QKLfTmPnWCymadqIvluwrT/+4z9+5pln5PKxY8c++tGPbixwf+ONN/7rv/7re9/7nhDiYx/72Fe+8pVPf/rTruvmcjnXdYUQiUSiWq0yjAAAAMDYI98FAAAAMHH6FuhuDXFlA95BdVE+bD/60Y9yudyXvvQl+b+/9Eu/9L73ve/d7373jRs3fvSjH8kbjx8/XiqVPvvZz47ru0sWfG+MftfX1w/vigFFUWTQS9w7Hr72ta/lcrlmsyn/94477njPe97z05/+9MaNG2+//ba88fd///eXl5c3TtNrmmahUKhWq4lEgjEEAAAAxh75LgAAAIDx159AV6a5x44dk/OnjnQx7n48//zzX/jCFzoBVcd73/fe2ZnZUqn0nve8ZwLfhI7jyPdhs9k8vGJf4t6RVqvV5NTLZ86cOXv27FtvvbVphY9//ON/8id/8vnPf37r37ZarXA4zBgCAAAAk4B8FwAAAOPP933aL0+aww50NxXmykiGLG2j/8f9o/P1/y/47o//013/qfq/xx4M/7+zF4+++6OMTIcs7fU8T5b5NhqNA38K4t7Rej9ks9kgCHRdNwxDCPEP//AP3/nOd/7nf/7njjvu+JVf+ZWHHnro1KlTDBQAAAAA8l0AAACMuXq9XigUzpw5Mz09zWiMsUMNdCnM3QNLlF8SNSHEhQsXgiA4ceLEl+974S4RYmR6O9QyX+LeYVYul2u1mlzOZrPJZJIxAQAAALCt2xkCAAAAjCvf95eWliqViu/7uVyOfHf8eJ53GIGupmkU5mJQ4vH4plsOsMw3CALHcRzHsSxL/GLcG41GGfwBajabnXA3Ho8fbLhbqVQikUgkEmGcAQAAgPFAvgsAAIDxJMt2XdcVQkQikTNnzjAmY6BTpHvx4sX19fWDDXQpasRwkpcabMx9O9c0NJvNA4x75fs/Go1uzZhx2OQukHRdP8BHbrVahULB933DMBYWFhhqAAAAYAyQ7wIAAGDcyLJd0zSFEKqqptPpubk55t8dXUEQeJ63vr5+gJkugS5GWigU2ljfeVBxb6PRaDQatm2LDVmvbEjOmB8q27Y7O07X9QOvpf7Qhz7k+75pmpVKZWFhIZ1OM+YAAADASGP+XQAAAIyVer2ey+VarZYQIhKJlEolOlKOogPPdAl0+4/5dwfloOLeDlk9TNZ7eB93hmHITzlFUUzTPIxBXl5eXlpaksvpdHphYYHLngAAAIDRRb4LAACAMeH7fqFQqFQqQghVVefm5tLpNOevR4jMdBuNRrPZ3H+mS6A7cOS7Q+Jg4145KbXs4cxhdTBHimV1mjNnMplMJnNIT+S6bi6Xk9MWqKpKIS8AAAAwush3AQAAMCYKhYLsyZxIJBYWFijbHQmdTNdxnHa7vZ9Ml0B32JDvDqcDjHtl1qtpWjKZ5Ijb8+7IZrPyoy8UCpXL5U0j6TiOXDh27FgodACHj2mahUJBLkcikZWVlXA4zI4AAAAARgv5LgAAAMZHKpWanp6mbHfIHVSmqyjKsWPHZM9YAt0hRL47EmTc63lerVbbzwUWiqLE4/HOBRYM7A4Vi8VOgpvP5+Px+KYVDMNot9tCCF3XDcM4kCd1XXd5eXl1dVX+b7VaTSQS7AsAAABghNzOEAAAAGBsVKtVBmFoeZ7nOM5BZbrxeDwUCpHpAvsUCoWSyaQQQk4B6ziOvPzC87xdPU4QBLVarXOcxuPx06dPb00rsZH8SJTL8Xi8b8Mly3YrlUoul0skErS7AAAAAEYO+S4AAACAwyJLdR3H2UNc1EGmC/SHoigy65UH7z6zXhn3yqJe+V9GeNModabdVRTl8Kbd7SadTk9PT7/55pt0vAAAAABGDvkuAAAAgAPWbrcdx7l48eL6+vreSnXJdIHB2pT1NhoNOV/vbrNeWaJqWZZ8wHg8Ho1GGV4hRK1W6wxmMpkcSP6tqirhLgAAADCKyHcBAAAwSnzfr1QqBzUHIQ7Qxll191aqqyiKnLmTTBcYKrLfcqd7sDzGd3ukB0Fg27Zt20IImfImk8mJPcwHXrwLAAAAYKSR7wIAAGBk1Ov1XC7XarVUVU2n0wzIMJCFfRcvXnQcZw+lumS6wMiRWa+MJGXKK0t7d/4IsqjXNM3O4T9pRb2WZXU+MDOZzBB+9Pm+T2kvAAAAMLTIdwEAADACfN9fWlqqVCryjLPv+4zJYMk4x3Gcdru921h3Y6bLlJzASNta17urrLfRaDQaDVnUm0wmZVHv2A+a53lycmIhRCwWG86XXKlUKpVKqVSKRCK8zwEAAIBhQ74LAACAYee6bi6Xc11XCBGJRDjdPCiyA7PjOHuYg1MIIQNd6nSBcdXJeoMgkDNwO46z8z+v1Wq1Wq1cLssrP8b4+g/TNIe/eHdpacn3/ampqbm5uTNnzvD2BgAAAIYK+S4AAACGmmma8iyzEMIwjLm5uWHuGHn+/PlWqyWEePDBB0+ePDkeu6DdbjuOU6vV9laqe+zYsdOnT8uCXd7PwCRQFCWZTMqy1D1M1iu7N1uWJR9nzLo3y0tk5PLQvjRVVavV6uzsbKvVWlpaWl1dXVlZCYfDvLcBAACAIUG+CwAAgCHl+36hUKhUKkIIVVVLpdL09PSQb7NpmnKDV1ZWRj3fDYLAtu1dpTIdmqbFYjFZfkepLjDJOpP1BkFQq9UuXry48+7N8lNIdm/WdX0Mgt4gCCzLksuKosg5jIdTJBJxHCeXy1UqFdd1p6amFhYWmPkeAAAAGBLkuwAAABhG9Xo9l8vJWthEIlEqlagc6g+ZweyhWleW6kajUWbVBbDtR4Su67quCyEcx2k2m7VabecfMuMR9G58vbquD/9HZalUSiQSuVzO9305UcLCwgJvZgAAAGDgyHcBAAAwjFzXbbVaqqrOzc0ZhsGAHDY5X6Zt23uIdWOx2OnTp+PxOKW6AHZCFvUahtFsNtfX13dV1CuD3hFt3RwKhcrlcq1Wu3Dhgoy6h186nU4kErOzs67rmqZZr9dLpVIkEuFtDAAAAAwQ+S4AAACGkWEYrVYrnU5zEvlQBUHQaDQsy9ptrBuLxWSpbigUItYFsDfRaDQajcqks1aryaLeHX52bQx6k8nkCLUN6ExOPCrC4fDa2try8vLS0pLs1by2tsa3MwAAADBA5LsAAAAYUjSBPDwy1r1w4UKj0dh5rCs7MMtS3VAoxDACOEAy9cxms3La7x1O/t0JekOhUDweH62gd7ScOXPm0UcfnZ2dTSQShLsAAADAYJHvAgAAAJMiCALP82q1muM4u4p14/G4ruuU6gLoA9m9OZPJyOnAd9i9ud1uy6BX07RYLCY/shjMgxWJRBzH8X2foQAAAAAGi3wXAAAA2LWrV6++/PLLrVZLCPHAAw8kEolh3to9x7oyI9E0jVgXQP8piqLruq7r7XbbcZxarbaTil7P8zzPs21btpFPJpMEvQdLVVUGAQAAABgs8l0AAAAMjO/7lUrFMIwR2uYrV648/fTTlUpl442RSOTs2bPDlvLKWFeGIrttwvzYY4/FYjFiXQDDIBQKyaDX87xGo7HDoLfRaMj5xQl6AQAAAIwZ8l0AAAAMhuu6uVzOdd1WqzUqU+2eP39+ampq29fyqU99am1tbUi2s9ls7i3Wffjhh+PxOLEugOGkaZqmabquN5tNGfS22+1b/lUn6I3H46dPn04mk4zkYfB9n9JeAAAAoD/IdwEAADAA9Xp9ZmZmtObwu3z5cifcPXr06B/90R/JkODKlSuFQsF13ampqUgkMsAtlHNV7rCyTZKxrgw8iHUBjIpoNBqNRjOZzK6CXsdxHMcpl8u6rsfj8Wg0ykgeoKWlJdd1q9UqQwEAAAAcNvJdAAAA9JXv+0tLS6ZpCiFUVS2VStPT0yOx5Z///OflwtGjR//lX/7l+PHj8n9Pnjz5+OOPP/3004uLi67rDmTbdluwS6wLYDxsCnpt297Jx6Bt27Zta5oWj8d1XedjcP9c15Xf7PF4fGVlZbBXOwEAAABjj3wXAAAA/eP7fi6XW11dFUJEIpGVlZVwODwSW37+/PlOdvu1r32tE+52PPPMM1euXNk0L+9hC4LAtm3HcXZYsNuJdePxOPNQAhgnnaDXcZxms7mT6108z/M8T/Zt1nWdct79iEQiCwsLhUKh1WpNTU2VSqV0Os2wAAAAAIeEfBcAAAB94rru7Oxsq9USQhiGMTc3N0IT9f3d3/2dXHjqqadOnjy57Trz8/P9yXeDIPA8z7btRqOxw4LdWCwWjUbj8bimabwVAYyxeDwej8cNw3Ac5+LFi7Va7ZZ/Ivs2h0IhGfQO1eUvuq7L1tOyVgLFAAAgAElEQVTD/+ltGEYikUilUvJaLtd1FxYWeEMCAAAAh+G2mzdvMgoAAAA4bKZpLi0t+b6vqurc3JxhGKO1/aFQ6Nq1a0KIarX6+OOP33K1lZWVmZmZA9+Mdrtdq9V2XrBLrIsBskT5JVETQly4cCEIghMnTnz5vhfuEhSOo992HvRK8Xhctq9n6PbA9/1UKiU7XkQikWq1OkLXcgEAAACjgnwXAAAAh8513ampKSFEOBz+whe+MCoT7nZcv379yJEjcvnSpUvd6neFEE888YQs4T3YfFcW7J49e7bdbu+kYFdRlGQymUwmiXUxQOS7GDa2bV+8eLHRaOxwfV3Xh62cd1QUCgU5Ha+qqtVqlel4AQAAgINFf2YAAAAcukgkkk6nW63WuXPnRrGO59VXX+0s33HHHT3WjMfjB9uiudlsOo6zk4kkpVgsJsvOFEXhjQcAG8m81vO8Wq1m2/Yt17dt27Ztynn3YGFhIRKJ5HI53/enpqYWFhZGrm8HAAAAMMzIdwEAANAPpVJJNmce9Rdy/PjxHvd+6EMfOpBnCYKg0WhYlrXDPsyKoui6Th9mALglTdMMw5AT9H71q1+9ZTmvnJ23XC5Tzrsr6XQ6EonMzs62Wq1Wq8WAAAAAAAeIfBcAAAB9Mh4z8F25cqV3xLtPuyrYVRTl2LFjjz32WCwWo2AXAHYlHo/H4/F2u+04jm3b7Xa79/qynDcWiz388MM9ynlN0yQGliKRyNra2tLS0tzcHKMBAAAAHCDyXQAAAOAW7rnnns7yj370ox5rvvTSS3t7is4Muzss2A2FQslkkoJdANinUCgkC3Mdx7l48WKtVuu9fqPRaDQa3cp5ZVRs27au63QkFkKoqrqwsMA4AAAAAAeLfBcAAAC4hTvvvPPo0aPXrl0TQly5cuXkyZPd1nz55Zd3++BBENi2XavVblk6Jn5WsGsYRigUomAXAA6QLOfNZrMyoN1hOW88Htd1PRqNys9zy7LkvbVaLZlMcgkOAAAAgMNAvgsAAIADU6/XK5VKqVQav5f2B3/wB4uLi0KIv/iLv3j88ce3Xefq1asvvvjizh9zV62YNU2TBbv0/ASAQ7Wrcl45O6+mabquy04M8nbCXQAAAACHh3wXAAAAB8D3/aWlJdM0hRCJRCKdTo/ZC0yn0zLfffHFF+v1eiKR2LqOXGEnms2mZVnr6+u3THYVRYnFYplMhpwAAPppV+W8nuctLy83m80jR47cc889iqJkMhnGcCc/HlRVZRwAAACA3SLfBQAAwH75vp/L5VZXV4UQkUhk2+xz1J08eTKdTlcqFSHE7/7u737ta1/b1KX56aef/uIXv9j7QXY1yW4sFjt9+nQymaQPMwAMkCznbTabtVqtRznvf//3f9+4ceO111577bXXPve5zwVBwKd3b6ZpFgqFUqk0fteEAQAAAIeNfBcAAAD74rru7Oxsq9USQhiGMTc3N661OEtLSy+88MK1a9euXbt26tSp+fn5z372s4qivP7666Zpyui3m51PsqsoipzNkYJdABge0Wg0Go12K+f9wQ9+8L3vfU8uq6q6vr5uGEY8Hn/44Yfj8Tijt5Xv+7LnRy6Xc113YWGBMQEAAAB27rabN28yCgAAANgb0zSXlpZkf8W5uTnDMMb79V65cuXTn/70tWvXtr336NGjnWl6V1ZWZmZmhBA3btz467/+651MsqsoiqwSo+QL48ES5ZdETQhx4cKFIAhOnDjx5fteuEswgTTGwabZef/93//d9325/MADD3zwgx/srCmn5k0mkwzaJr7vp1Ip13WFEJFIpFqt0qsZAAAA2KF3MQQAAADYm0KhUCgUfN8Ph8OlUmnsw10hxPHjx1955ZX5+fmtd6XT6W9961vHjh3bdPu1a9ds2+4d7sZiMcMwTNPMZDKEuwAw/OTUvOVyOZlMvvHGG51w98iRIxvDXSGE53nlclnXdVmuig5VVdfW1uSPB9d1T58+LbNeAAAAALdE/S4AAAB2zff9QqEgOxInEolSqRQOhydqBK5fv/7SSy/JrtThcPiBBx64++67hRCXL1/+5je/KYR48MEH5QS9586d+/u///tujyOTXVoxYyxRv4tJEARBPp+v1+uvv/76T37yk0984hPvf//7e6wv+zSEQhwIP1epVHK5nFyuVquJRIIxAQAAAHoj3wUAAMCumaZZKBTEuE+4u3/dwl0m2cVQ/yvxtts2/u/a2tojjzyyh8ch38UksCzLsiy5fP/991+/fv2W86wLIZiadxPXdVOplCyDXlhYmISOIAAAAMC+/uVOvgsAAIA9SKVSn/rUp86cOcNQdLNtuMskuxhmTz/9tJxAeqs9/MuRfBdjr91uZ7NZ2YE/FAqVy2VFUTZNzdsDU/Nu1Gq1ZmdnZYvmubk5fmAAAAAAPdzOEAAAAGAPqtUqgyDduHHDdd1ms/nyyy8/8sgjx48fF0KcP39+U7gbi8VOnz6dTCZJdjGczp07J8Pd+fn5Z555Rt54+fLlU6dOCSGi0Wiz2WSUgI0sy+pMr96ZQD0ej8sODbZt90555dS8lmVlMhlS3nA4XK1WZ2Zm6vV6q9XyfZ/uIAAAAEA31O8CAAAAe/Hyyy//x3/8h+M4//Zv/9Z7TSbZxWj84/C228QvhrtSJ+LdbaNm6ncx3prNZj6f73zOd6t9t23btu1bNm1WFMUwDFJeIUShUGDqBwAAAKA36ncBAACA3Wk2m47j1Gq1TtnWtphkFyPk/PnzcuGpp57adNfJkyflQqvVYqCAjs60u0KITCbTbTXZk/+WKW8QBOVy2TTNTSmvYRjyr3Rdn5BZaRcWFnh3AQAAAL2R7wIAAAA7tfNkVzbbpBUzRsUjjzxCbydg52q1WqPRkMu6rkej0d7ry5S32WzWarUeTZu7pbwAAAAAsBH5LgAAALryfd913UQiwVA0m03bthuNRu9kl0l2MX46pb0PPvggowEIIYIg6BTvKoqi6/oO/zAajUaj0VtOzbsx5WW0AQAAAGxFvgsAAIDttVqtXC5Xr9dXVlamp6cndhxksus4Tu/VYrFYJpO5ZQkXMFqefvppOavo/Px8p1EzMOE2dlrWdT0U2t2s0pqmZbPZbDZr27Zpmt1Wkymv67of/vCHf/mXf5lhBwAAANBBvgsAAIBtuK47OzvbarVUVb169epkDgLJLibWuXPnZmdnO/976dKlnYe7P/nJT2Rk1Yx9438+9l9CiHfeeYchxdhot9u2bcvlUCi08+LdrTpT8/ZIed9555319fVXX331+PHjEz7ylUrFdV1m5wUAAAAE+S4AAAC2qtfrMzMzvu+rqloqlSaweJdkFxNufX194/+eOnVqfn7+mWee2cnfPvXUUzKsCmWFyvyhGEexWEx+QRiGsf9u/DtMeWu1WiaTmdh5eV3XLRQKctqIarXKmxAAAAAT7rabN28yCgAAAOgwTXNpaWliw92dJ7uGYWiaxhsGY+/8+fNTU1NCiB1GvIVCQcZUihG89zduCCFu3Lhx8+bNEydOfPm+F+4SIYYUY6BWq3med+Dz425NeS9dunTjxg0hxEc+8pF77rlHCKEoSjKZnMCpeTufLZFIpFqtqqrK+xAAAAATi3wXAAAAP7fx5OnKyko4HJ6c106yC3TTade8q0bNlii/JGpCiAsXLgRBQL4L7NDGlHdrvtuh6/qkpbzLy8tLS0tCCFVVq9VqJBLh3QIAAIDJRL4LAAAAIYTwfb9QKFQqFSFEIpE4d+7c5FTGkOwCt/6n4223iR2X8Erku8B+yJS3R74rTVrKW6/XU6mUXK5Wq4lEgrcKAAAAJtC7GAIAAAD4vp/L5WS4axjG5IS7zWazWCzm8/ne4W4sFiuXy4uLi4S7mFjUyQF9Jifl/fjHP957Ndu2dV23LGtChiWRSKytrclfKalUqsekxQAAAMAYI98FAACAEEK0Wi0hxNzc3MLCwiSEu0EQmKa5uLhIsgsIIZ5++unbbrstGo0yFMBQueeeex566KFtK3c3sizLMIxarTYJYxKJRNbW1uRFJ4VCYXl5mfcJAAAAJg39mQEAACCEEL7vf+Mb35ienh77VxoEgWVZtVotCIIeq9GNGRPl/PnzU1NTossMu1evXpWzca+trT3yyCM7fEz6MwP7ZxhGu90WQui6HgqFblmuqmnak08+OQnXavi+PzMzU6/X5SgtLCzwbgEAAMDkIN8FAADApAiCwHEcy7LkufJuSHYxof84vO02IUQ6nf7KV76y6a5oNOq6rhBiV/9+JN8F9m9jvivn2ZXz8vb+q3g8bhhGKDT+h1sul6vX688995y8BgUAAACYELczBAAAAJgEzWbz7Nmznuf1WIdkF5NsbW1tamqqUqm4rttsNju3y9xXrsAoAQOn67qcmrdHyus4juM4nUh4jJVKpVarRbgLAACASUO+CwAAgDHXbDYty2o0Gj3WIdkFHnnkkZWVldnZWdd1O5lux646MwM4bDtJeW3btm07k8lkMpkxHgrCXQAAAEygdzEEAAAAGFdBEJimubi42CPcjcVi+Xx+cXGRcBeYmZm5efNmJBLZeOP8/PzNmzcJd4EhJCNeXdd7rGNZlmEYtVqN4QIAAADGBvW7AAAAk6VSqUQikU35zfgJgsCyrFqtFgRBt3UURclkMslkUlEU3hhAx8bmzACGn2EYyWTStu1uIW673S6Xy7ZtP/nkk9FolBEDAAAARh35LgAAwAQxTbNQKKiqWq1WxzXiDYLAcRzLstrtdrd1SHYBAONE07RsNqvr+rPPPtttpnnP8/L5fDweNwwjFAoxaAAAAMDoIt8FAACYFMvLy0tLS0KISCQyrpPVNZvNs2fPdju1LYRQFEVOtcupbQDAmNE0rVwu12q1Hhc5OY7jOI6u65lMZowvcmq1WrOzs6VSaewblgAAAGAyke8CAABMhEKhYJqmECKRSJw7d05V1TF7gc1m07KsHvPsCiFksss8uwCAMZZMJmW7Zvm9vy3btuXEvYZhjOUgzM7Ouq6bSqXGuGEJAAAAJtm7GAIAAIDx5vt+LpeTJ3nT6fT4hbvtdts0zcXFxR7hbiwWy+fzi4uLhLsAgEmg67pMcHusY9u2YRjdZu0daQsLC/InUCqVcl2X9wMAAADGDPkuAADAOPN9v1AoVCoVIYRhGAsLC+MU7gZBYJpmNpu1bTsIgm3XURTFMAw54yDvBwDATr5cyuVyj0nc++nYsWOapmmatrdeyoZhlMvlZDLZbYV2u10ul7PZbLPZHKedmEgk1tbWxM8i3nq9zhsbAAAA4+S2mzdvMgoAAABjSVburq6uCiEMw5ibmxuncNdxHNM0e5x/VxQlk8kkk8kxnl8QGGaWKL8kakKICxcuBEFw4sSJL9/3wl2Cqa8x9G9dy7IsSwgxTpPUep737LPP9pifXgiRTCYzmcw4zU8vWzT7vi+EqFariUSCtzcAAADGA/W7AAAA42lTuDtOlbue5xWLxWKx2C3cVRQlHo+Xy2Vd1wl3AQA71263bduWy47jjM3r0jRN1un2iG9rtZphGJ2XPwYikUi1WpW/f6jiBQAAwDgh3wUAABhPb7755sZwdzxelGzInM/ne5xzj8VixWIxn8+PUwUSAKA/LMvqNPwfm+LdjmQyaZqmYRg91pETH/Su9B0hkUhkbW0tHA4LIVKplJyxAgAAABh19GcGAAAYW/V6vV6vnzlzZjxeTrPZfPbZZ3s0ZI7FYo899hjz7AJDgv7MGMUvmnw+3/lOWVxcHOMXa5pm71JdXdd7J8EjRM7C67quEKJUKqXTad7tAAAAGGm3MwQAAADjKpFIjMdUc7Jst1ardVuBqXYBAPsnp92VMpnMeL9YwzCSyaRt292+XuVdcrVRf7Gqqlar1VQq1Wq1eJ8DAABgDFC/CwAAgOEVBIFt27Ztd7plbkKyCwwt6ncxWmzbNk1TLo9T6eoteZ63uLjYoz2Gpmnz8/NjMOuB7/vf+MY3pqenebcDAABg1FG/CwAAgCHVbDbPnj3bYwrAWCxmGIamaYwVAGA/5OVEclleOTQ5r13TNNmruRNvb+J5nmEYY5B5q6pKuAsAAIDxQL4LAACAoRMEgWVZtVqNsl0AQB/Ytt0pYNV1fQK/XHRdj8fj8su32xA1Gg1d18egXTMAAAAw6sh3AQAARp7rupFIZGxejuM4pmn2aBSZTCYNwyDZBQAciHa73SneDYVCuq5P5jiEQqFsNhuNRi3L2vZb2PO8crncbDYzmcwYtGsGAAAARhf5LgAAwGhrtVqzs7N33313tVod9dfieZ5lWY7jdFtB07RMJhOPx9nvAICDYllWp10E1w8lk8lkMik7Nm+7Qq1Wq9VqsmMzbx4AAABgIN7FEAAAAIyuVqv1uc99rtVqua5br9dH94UEQWCaZj6f7xbuKopiGEaxWCTcBQAcIMdxOh2J4/E43zKSYRjlcrnHDPemaWazWc/zxuDF+r6/urrKTgcAAMAIId8FAAAYVb7vz87OtlotVVVLpVIikRjRF9JsNrPZrG3b3WbbjcVi5XJ5MidEBAAcHjndu1yWM7szJh2appXLZcMwuq3geV42mzVNc9R/TRUKhdnZ2Uqlwk4HAADAqKA/MwAAwEjyfX9mZsZ1XVVVFxYWpqenR/FVyLLdTuHUVrJsN5lMsscBAAeuVqt1KlCTyWSPctWJpeu6bNfc7cvatm3ZrnlEv6xVVW21WkKIXC4nhEin0+x0AAAADD/qdwEAAEaP7/u5XE42ZF5YWBjFc5FBEMjTwd3OF8tk1zRNwl0AwCF9E1G8uxOKomSz2XK5HAqFuo1kuVzOZrPtdnsUX+C5c+cikYgQIpfLUcULAACAkUC+CwAAMGJkuCsniiuVSqMY7nqeVy6Xy+Vyj4bMxWKRhswAgMNjWVbnayiTyfCN05umaaZp9m7XbBiGbdsj99JUVa1Wq52IV14/BwAAAAwz8l0AAIBRsjHcnZubG8Vwt1ar5fN5x3G2vVeW7ebzeZpkAgAOT7vd7jSQ0DSNXhE7pOt679YapmmOYiHvxog3lUoR8QIAAGDIke8CAACMkkKhIMNdwzDOnDkzWhsfBEGxWOxRtptMJsvlMmW7AIDDtvHL6Mknn+R7Z+dCoVA2m81ms93aNctC3m7zLwwtGfGGw2FBxAsAAIChR74LAAAwSuRpR8MwFhYWRmvL5Wy73cp2NU3L5/M9ThYDAHBQHMdpNBpyOR6PR6NRxmS3ksmkaZq6rndboVwuz8/Pj1Yhr6qqzz33nKqqQoiZmRnXddnRAAAAGE633bx5k1EAAAAYIaurq9PT0yO0wUEQmKbZrY5HUZRMJpNMJqmdAsaMJcoviZoQ4sKFC0EQnDhx4sv3vXCX4BoODJ7nebZt12o1RVGKxeIwzwhQLBZlnfHDDz88nE2kPc979tlnPc/r9i1vGMZotb9utVpTU1O+76uqura2Ji+tAwAAAIbK7QwBAADAaBmtcLfZbD777LPdync0TfvDP/xDptoFAPSTpmnZbPb06dPtdnvIv4PW19fld+jQbqemaeVy2bIsy7K23hsEQblcbjabhmGMyoVc4XC4Wq1OTU2l0+kPfehDHC8AAAAYQuS7AAAAOBRBEFiWZdv2tvdStgsAGKx4PM4gHJRMJhOPx7sV8tZqNcdxRqiQNxKJOI5D5S4AAACGFvPvAgAA4OA1m81sNtst3NU0rVgs6rpOuAsAwHiQhbyZTGbbe2Uhr2mao/JyCHcBAAAwzMh3AQAAcJDkbLv5fL5bT2Zd14d8skMAALA3mUymXC6HQtvPtG3bdiaTcRyHgQIAAAD2g3wXAABgSLmuO3LbfMuy3Xw+P0Iz8AEAgN3SNM00TV3Xt703CIJisThChbwAAADAECLfBQAAGEaVSiWVSi0vL4/KBsuy3cXFxW5lu8lkslgsMtkhAACTwDCM3oW82Wx228l6AQAAANwS+S4AAMDQqVQqhULB9/3V1dWR2OBms5nP523bDoJg672KouTz+Ww2S9kuAACTQxbyJpPJbe/1PC+bzY5cIW+9XmfPAgAAYODIdwEAAIaL67oy3I1EIisrK0O+tZ2y3W4lOMlk0jRNynYBAJhM2Wy2WCx2u8ZrtAp5TdOcmZlJpVLsVgAAAAwW+S4AAMAQcV03lUr5vh8Oh1dWVsLh8DBvred5vct2s9ksZbsAAEy4aDR6y0Jey7KG/4X4vu/7fr1eJ+IFAADAYJHvAgAADItWqzU7O+v7vqqqwx/u2radz+e7FdzEYrFyudztTC4AAJgot7zqy7KsbDbbbreH+VWcOXMmnU4LIer1eqFQYLcCAABgUMh3AQAAhoLv+7Ozs61WS1XVc+fORSKRod3UIAjK5bJpmt3Kdg3DWFxcDIVC7FYAANDRe9YGWcjrOM4wv4RSqSQjXtM0K5UK+xQAAAADQb4LAAAweL7v53I513VVVS2VSolEYmg3tdlsZrPZWq227b2ybFfXdfYpAADYSlGUfD5vGMa29wZBUCwWTdMc5pfQ+amWy+Xq9Tr7FAAAAP1HvgsAADB4hUJhdXVVCDE3Nzc9PT2022nb9uLi4ra9EynbBQAAO6TrumVZsVis2++NIe/V3Gm1MjMz47ouOxQAAAB9Rr4LAAAwYL7vt1otIYRhGN3KWQaud09mynYBAMCuKIqyuLjY7ZfPkPdqVlV1ZWVFVVXf91OplO/77FAAAAD0E/kuAADAgKmqWq1WFxYW5ubmhnMLe/dkzmQy+Xyesl0AALBbuq6Xy+Vtf0UMea/mcDhcrVaFEDLiZVcCAACgn8h3AQAAhoJhGKqqDuGG9e7JnM/nM5mMoijsQQDA8Gi32/Pz857nMRTDT9M00zSTyWS33yFD26s5EonIiFcIIXuxAAAAAP1BvgsAAIDt7aQnczweZ6AAAMPGNM1Go5HNZoe2+hObZLPZUezVnEgkSqVStVoNh8PsRAAAAPQN+S4AAAC2QU9mAMCIchynkwUOZ90ntjWivZrT6fRwtmABAADAGCPfBQAAwGb0ZAYAjKggCCzL6nxnZTIZxmSEjG6vZgAAAKCfyHcBAADwc/RkBgCMtFqt1pl2N5lMaprGmIycEe3VDAAAAPQN+S4AAEBfLS8v1+v14dw2ec6UnswAgBFF8e7YGNFezQAAAEB/3M4QAAAA9I1pmktLS0KIarWaSCSGatts27Ysa9uyXUVRstksZbsAgCG38YtsPKYSKJfL2341TwLZq7lcLm975Zlt241GY35+nivPAAAAMIGo3wUAAOiTSqUiw91EIhGJRIZnw+jJDAAYA57ndYLAWCzWbQ7X0aIoSuhnJnO3jmivZtd1c7kcRyUAAAAOCfkuAABAP7iuWygUfN+PRCLnzp1TVXVINoyezACA8bDxQqXxKN6FNHK9mn3fT6VSlUollUqx+wAAAHAYyHcBAAAOXavVmp2d9X1fVdWVlZXhCXdt287n8+12e+tdiqLk83nOjwMARoLjOI1GQy7H4/FoNMqYjBPZq7lbTbZt29lsdngaWauqOj09LYSo1+uFQoHdBwAAgANHvgsAAHC4fN+fnZ1ttVqqqp47dy4cDg/DVgVBYJomPZkBAGMgCALLsuSyoiiZTIYxGUu9ezUbhuF53pBsaqlUkhGvaZqVSoV9BwAAgIN1O0MAAACwrStXrly+fPnNN98UQoTD4Xvvvff48eO7fRDf93O5nOu6qqqWSqVEIjEML01OuNttvrpMJqPrOmW7AIBRYdt2J9jTdV3TNMZkXOm6HovFFhcXt3YfCYIgm83m8/khuUBtZWUllUrV6/VcLhcOh4fkRyAAAADGA/W7AAAAm50/fz4ajd5///2pVGp2dnZ2dnZqaur+++9/4oknLl++vKuHKhQKq6urQoi5uTlZxjFwcsLdbcNdejIDAEZOu922bVsuh0IhXdcZk/HWu1dzsVjsFHMP3Llz5yKRiBBiZmbGdV32HQAAAA4K+S4AAMDPXb9+/Yknnpiamtr2HFylUjl16tT58+d3+GidjnyGYXRrJ9hnzWaz24S79GQGAIwi27Y7cw1widLk6NGr2bKs+fn5YdhIVVVXVlZUVfV9P5VK+b7PjgMAAMCBIN8FAAD4ud/7vd/rzJEWiUSq1eqlS5cuXbq0vLx89OhRefvU1NQOq3gTiUQkEkmn03Nzc8Pw6mzbXlxc3HbCXV3X8/l8KBTiPQAAGCHNZrNTvBuLxbrVdGIs6bpeLpe3TfQbjUY2m932grY+C4fD1WpVCOH7/szMDHsNAAAAB4J8FwAA4P+cO3fuxRdflMvz8/PNZvPxxx8/efLkyZMnc7nct771LdlhTwixuLi4kweUCfHCwoKqqoN9aXLCXdM0t4a7iqLI8mIKngAAI2djJ95MJsOATBrZq3nbGZflhBTNZnPgGxmJRFZWVoQQ9Xq9UCiw1wAAALB/5LsAAAD/Z3l5WS489dRTzzzzzKZ777777r/927+Vy5VK5cqVKzt5TFVVhyTcrdVqW+9SFCWbzTJVIQBgFNVqtUajIZd1XY9Go4zJBFIUpdsEE0EQ5PP5ToX3AE1PT6fTaVVVE4kEuwwAAAD7R74LAAAghBCXL1/uzLnbbc62kydPdkp4v/71r4/E65LFK47jbL1L0zQm3AUAjKggCDrFu4qicK3ShMvn890KuE3T3FjnPSilUmltbW16epqdBQAAgP27nSEAAAAQQnzzm9+UC5FI5O677+622tmzZ4UQiqKcPHly+F+U4zjlcnnbCXdjsVg+n6cnMwBgRNm23ZldVdd1ppBHJpORP2+23mVZVrPZ3OH8GocnHA6zmwAAAHAgqN8FAAAQQoiXXnpJLvzmb/5mj9USiUQikRiJcNeyrG7hrq7rhLsAgJEWj8eTyaQQIhQKUbwLKRqNlsvlbcP+RqORzWY9z2OUAAAAMAbIdwEAAIQQ4vvf/75c+PVf//VRfy1ywl3LsraGu3LCXcMwCDksQoQAACAASURBVHcBACNN07RsNlssFvlSw6Y3RrlcjsViW+/yPC+fzzebTUYJAAAAo458FwAA4AD4vl8oFDoz+A5Qu90uFou1Wm3rXTLcldVOAACMgWg0ykTy2PqDZ3Fxcduq7iAI8vm8bduMEgAAAEYa+S4AAMABWFpaMk1zamrK9/0Bbkaz2czn841GY+tdspyFk+AAAGASGIZhGMa2d5mmaZomQwQAAIDRRb4LAADwCzoT8e5c5yyhYRiqqg5qy23bXlxcbLfbW++Kx+PFYnHb6egAAADGkq7rxWKx26+mbDa7dSaLPpMNYNhTAAAA2C3yXQAAACGEePTRR+XCyy+/3GO1q1evPv/885cvX7569aq8xXXdpaUlIUQkEpmbmxvIxgdBIDPmbU9TZjKZfD7P3IQAAIwc+2c8z2M09iAajZbLZU3Ttt7leV42mx3swE5NTZmmOTs7y54CAADArpDvAgAACCHEAw88IBdefPHFTna71XPPPZdKpU6dOiWjXN/3c7mc7/uqqq6srAykeDcIgnK5vO1McnLC3Uwmw/4FAGAU2bYtL+Gq1WqMxt5omlYsFmOx2Na72u12NpttNpuD2jZ5feHq6mqlUmFPAQAAYOfIdwEAAIQQIpFIHD16VC4vLi5uu87169dXVlbksjwfl8vlXNdVVbVUKoXD4f5vtgx3HcfZelcoFJqfn08mk+xcAAAwyRRFWVxc1HV923vz+fyg4vOFhYXp6Wn5k7Jer7OnAAAAsEPkuwAAAP/nz/7sz+TCF7/4xeeff37TvdevX//zP/9z13WFEEePHpX99FZXV4UQc3Nz8txcn7Xb7Xw+v224G4vFisViNBpltwIAAAghDMMwDGPbu7q1QumDzjWCMzMzrVaL3QQAAICdIN8FAAD4PzMzM+l0Wi6nUqknnnhCTrV7+fLl559//jd+4zc6db1/9Vd/1Ww25bS7Pc4VHirP8/L5/LaTxum6ns/nQ6EQ+xQAAGDjb6Ryuawoyta7TNO0LKv/m6Sq6nPPPSd+NusH+wgAAAA7Qb4LAADwc1/60pc6EW+lUpFT7Z46dSqVSsnKXSHE8vLyQw89JKfdjUQiciLePpPhbrvd3nqXzJu3PXEJAAAw4TRNM01T07Std1mWVSwW+79J4XBYzgBSr9eJeAEAALAT5LsAAAA/d+edd37lK1+pVquRSGTrvb/1W7916dKlXC539epVIYScdldV1T5vZLPZzOfzQRBsul1RlGw2221uOQAAAMifTMViMRaLbb3LcZz5+fn+b9L09LS8xLBSqcjpPwAAAIAebrt58yajAAAAsNWVK1cuX7785ptvCiHC4fC99957/Pjxzr2+77uum0gk+rxVtm1bltUt3I3H4+w4AEPCEuWXRE0IceHChSAITpw48eX7XrhL0Doe2AXDMGS7Dl3XBzIfxHgrFouO42y9XdO0YrHY/24oqVSqXq8LIdbW1ra91hAAAACQbmcIAAAAtnX8+PGNge4mqqoOJNw1TXPr7YS7AAAAu5XP503TtG170+1yIoz5+flQqK+XpJw7d25qaurNN990XZd8FwAAAD2Q7wIAAIyGbc8/CiE0Tev/+UcAAIAxYBiGoiiWZW263fO8bDZbLBa3nan3kHTm/iDcBQAAQG/MvwsAADDsgiAol8uEuwAAAAcuk8ls2/s6CIJ8Pu95Xj83JpFIEO4CAADglsh3AQAAhpoMd2u12ta7YrFYsVgk3AUAjCXHcbLZbJ/TNUwmXdeLxeK2P8Oy2Wyz2WSIAAAAMFTIdwEAAIaXDHcdx9l6VzKZzOfziqIwSgCAsfwGtCxL9sjddu554GBFo9FtI14hRD6f3/ZKOwAAAGBQyHcBAABuwXXdgTxvu93OZrPbhru6rsvp4tg7AICxZNt2p3KX7zv0RzQaLZfL277fus2UAQAAAAwE+S4AAEAvvu8XCoUHHnigzymv53n5fL7dbm+9i3AXADDe2u12J0sLhUK6rjMm6A9N08rlsqZpW+8yTdOyLIYIAAAAw4B8FwAAoJelpaV6ve77fqvV6tuTdgt3FUUxDMMwDPYLAGCMWZYVBIFczmQyXNKEfgqFQsVicduI17Ks+fn5/m+S7/u+77NrAAAA0EG+CwAA0NXq6qqc888wjOnp6f48abPZzOfznfPaHTLcpYYJADDems1mZ67TWCyWTCYZE/SZoijlcjkWi229q9Fo9DnidV03lUrNzMywXwAAANBBvgsAALA93/dzuZwQIhKJzM3N9edJbdteXFzcNtzNZrOc4wYAjL2NLXAzmQwDgkFZXFyMx+Nbb280GtlsduuvtUPSarVc163X6/KiQwAAAECQ7wIAAHSTy+V831dVtVQqqarah2e0bds0zW7h7rZnGAEAGCe2bTcaDbms63o0GmVMMED5fH7b1ilyKo3+RLzT09Oyi0yhUHBdl50CAAAAQb4LAACwLdM0V1dXhRBzc3ORSKQPzyjD3a23a5pWLpcJdwEAYy8IAtu25bKiKBTvYhgYhrHtW9HzvL5V8ZZKpXA4LIRIpVLsEQAAAAjyXQAAgK1c111aWhJCTE9PG4bRh2fsEe7Oz8+HQiF2CgBg7Nm23W635bKu64qiMCYYBplMJpvNbr293W73J+JVVXVlZUUI4fv+7OwsewQAAADkuwAAAL/A9/1CodDpzNyHZ+wW7sZisWKxSLgLAJgE7Xa7U7wbCoW2bYoLDEoymSwWi9u+b/sT8UYiEXnR4erqquwxAwAAgElGvgsAAPALTNOs1+tCiP5Mu9st3E0mk/l8ntIlAMCEsCyrE5IZhsE3oJTJZAzDMAyDqYgHLhqNDjbiXVhYSCQSQohcLtdqtdgjAAAAk4x8FwAA4Bc8+uij4XDYMIzp6enDfq4e4S6ntgEAk8NxnFqtJpfj8Tizzm/8SaDruq7rjMkwGHjEe+7cOSGE7/u5XI7dAQAAMMnIdwEAAH5BJBJxHGdubu6wn4hwFwAAIUQQBF/96lflsqIomUyGMcHQGmzE25mIt16vb/szEgAAABOCfBcAAGAbh92ZmXAXAACpVqs1Go3O96CmaYwJhtlgI97p6enp6WlVVe+++272BQAAwMQi3wUAAOg3wl0AAKQgCCzLkssU72JUDDbiLZVKFy9e7MNMIgAAABha5LsAAAB9RbgLAMDGr8VOGJbJZPgexKgYYMSrquphd5oBAADAkCPfBQAA6B/CXQAAOtrttm3bclnTtGQyyZhghAy2ihcAAACTjHwXAACgTwh3AQDYqFwudzKwJ598kq9CjBwiXgAAAAwE+S4AAJhoruu2Wq0+PBHhLgAAmxiGIWt24/F4NBplQDCKiHgBAADQf+S7AABgcvm+n8vl4vF4vV4/1Cci3AUAYCtN07LZbLlczmQyjAZGFxEvAAAA+ox8FwAATK5CoeC6rqqqh/oshLsAAPSgaZqmaYwDRtrAI17f9/vTkwYAAADDgHwXAABMqNXV1UqlIoR48sknE4nEIT0L4S4AAMAkGGDEW6/Xp6amPve5z7EXAAAAJgT5LgAAmES+7y8vLwshEomEYRiH9CyEuwAAAJNjgBFvq9VqtVrb/vIEAADA+CHfBQAAk2hpaUl2Zp6bmzuk/syEuwAAAJNmIBFvIpGYnp6WP3Hp0gwAADAJyHcBAMDEqdfrMnk9vM7MhLsAAACTqUfEm8/nD+lJS6WSqqq+7+dyOXYBAADA2CPfBQAAk8X3/UKhIIQIh8OH1Jm5VqtZlrX1dsJdAACASdAt4vU8b35+/jCeUVXVUqkkhKjX66urq+wCAACA8Ua+CwAAJotpmq7rip9VORz443ueZ5rm1uZ7hLsAAACTo1vE22g0DininZ6ell2ac7kcXZoBAADGG/kuAACYIK7rnj17VghhGMZhdGb2PC+fzxPuAgAAoEfEWy6XD+MZZQmv7/tf+MIXGH8AAIAxRr4LAAAmSzgcDofDc3NzB/7I7XZ7cXFxa7iraRrhLgAA2NuvC2nrDwyMhG4Rb7fpPPap06V5dXWVLs0AAABjjHwXAABMkEgksra2trKycuCdmYMgWFxcbLfbm27XNK1YLBLuAgCAPcjn84ZhGIZxGFkg+qNbxGtZVq1WO/CnS6fTkUhECJHL5Rh8AACAcUW+CwAAJo4853WAgiAol8ue5226nXAXAAAA0WjUMIytt5fLZcdxDvzpVlZWhBDhcLherzP4AAAAY4l8FwAAYF9kuLv13JyiKPPz84S7AAAA0HU9mUxuvb1YLDabzYN9rnA4XK1Wq9VqIpFg5AEAAMYS+S4AAMC+mKbZLdwNhUKMDwAAAIQQ2Wx224h3cXFxaxuYfUokEgc+HQkAAACGB/kuAADA3m07cZqiKNlsNhqNMj4AgAkXBAGDAHRks9lYLLb1MMnn8wce8QIAAGCMke8CAADskW3blmVtvd0wjHg8zvgAAGDbdjabPfD2s8DoWlxc1DRt041BECwuLnI9BAAAAHaIfBcAAGAvbNs2TXPr7YZhbNt5DwCASdNut23b9jwvn89ve0UUMJmKxeLWiLfdbufzeQYHAAAAO0G+CwAAxpbv+1NTU8vLywf+yLVabdvz1Lqu67rOyAMAIIQwTbNTj7g1zQImlqIoxWIxFAptut3zvPn5ecYHAAAAt0S+CwAAxpZpmq7rnj17tl6vH+DDep638YR1h67rhmEw7AAACCEcx3EcRy7H43FmLgA2khGvoiibbm80GkS8AAAAuCXyXQAAMJ7q9frZs2eFEOl0OpFIHNTDyiaTW8PdZDKZyWQYdgAAhBBBEHQaXSiKwlcksFUoFCoWi1tvbzQa204Csk+VSmV2dpZhBwAAGA/kuwAAYAz5vr+0tOT7fjgcnpub+//Zu7/Yts4zQfhvJm6b5MSsstPSyNdo1kzxdaaQhHp2gS9UFotxSzQxBignARJ1uHPRpGGu5T/AXtjFOp6ufRfbwlyGbtIros4smmGAjpJZNh5gETH49tu6odQWM6jpDpPJhk13VKYnaRO7/i5Oe4YlZVmWZVsif7+ro1eHjPTIIXnO8z7Ps1FP2+l0jh49OpjczeVy5XJ5sAIDAEZTvV5vtVrJcaFQ0JwZVpTL5VZM8dZqtVqttoH/oYWFhX379s3Pz8/Pzws7AMAQkN8FAIZQpVJJejKfOHEik8lsyHPGcXz06NFOp9O3ntyYk9wFgPQdU/EurNHk5OTBgwdX/DRbr9c36r8yPT2d9LPZt29ft9sVdgCArU5+FwAYNu12O+nMXC6XN6ozcxzHc3NzaSlSKpvNHjp0SHIXAFLVajXtdVEqlbxLwury+Xy5XB5cn5ubS4dYX7tvfOMbIYRut7tv3z4xBwDY6uR3AYBhk9QlbGxn5hXvr0VRdOjQoWw2K+YAkGi1WmnR4dTUVKFQEBO4omKxuOL/LMeOHRvcX7g+mUzmyJEjIQRdmgEAhoD8LgAwVNLOzPv379+ozsy1Wm3F5O7s7KyBggDQ90aseBfWYXZ2dsUU78GDBwfng6xPuVyemJgIISjhBQDY6uR3AYDh0e12n3766RDCnj17ZmZmNuQ56/V6pVLpW0ySu/l8XswBINVoNJrNZnKcz+cnJyfFBNZudnZ2amqqbzGO46NHj27Uf+LUqVPJZ+bjx48LOADA1iW/CwAMj/n5+W63m8lk9u/fvyFP2Gq1BpO7IYRyuSy5CwylN95445bf9bWvfU1YWIs4jqvVanIcRVGpVBITuFpHjx4dbA/TarWOHTu2Ic8/Pj6ebIJ85pln2u22gAMAbFHyuwDA8JiZmTlx4sSBAweS1nPXKKmWSJtMpi43IA1gq/vyl788Pj7et3j06NFbbrnl9ddfFx9WV6vV0kGhxWLRCANYn2PHjmWz2b7FRqORTra+RskUXiW8AABbmvwuADBUZmZmyuXytT9PHMdzc3OD084KhcKGPD/AZvO1r33t9OnTIYRTp05d+q20uutzn/vcG2+8IUpcTqfTqdVqyXE2my0Wi2IC6xNF0aFDhwbX5+bmGo3GtT9/JpNJUrynT59WwgsAsEXJ7wIArKBarQ7eQcvlcpK7wFB6/fXXk/mOL7/88le/+tV0/Z577rl06VJyfODAAYHicmq1WtrxolQqRVEkJrBuuVxuxYbMc3NzaZX8tSiXyxMTE0eOHPn4xz8u2gAAW5H8LgBAv1qtlhYhpZJaCjesgaH0P//n/wwhTExMfPGLXxz87qlTp0IISXUvDFpcXEzfN6empkwxgGs3OTk5WAd/uekh6/Dyyy+Xy+VMJiPUAABbkfwuAMDvWFxcrFarfYtRFM3Ozg7OQgMYDi+99FII4XLDy9OhvFo0s6Le981SqSQgGyj/Wz6EjKByuZzP5/sWO53OiqW9AACMlG1CAACQ6nQ6K1ZFlEqlwftrAEPjW9/61re+9a3LfTcd0HjPPfeIFX0ajUaz2UyOC4XC5OSkmGwggyFG3Ozs7Ntvv93Xk7nZbM7Nzc3OzooPAMDIUr8LAPAbl2t5VywWB/vjAYyO48ePhxBmZmaEgkGVSiU5iKJI8S5srCiKjh07NjgfpF6v1+t18QEAGFnyuwDAFpaWlG2Iubm5vvKIEEI+n3e3Ghhl3/jGN5aWlsKa6wj37t1755133nnnnf/5P//n73znO9/5znfee+89YRxix44dSwbuFotFPYRhw0VRdOjQoRU/uC4uLooPAMBokt8FALawffv25fP5+fn5a3+qarXaaDT6FnO53Ozs7GDNBMCIeP3115944okQwsTExBe/+MW1PCT+rQ8++ODixYsXL168dOmSSA6xbDY7Ozs7Nzen1wVcJ5OTkwcPHhxcP3r0aKfTER8AgBFk/i4AsFXNz88vLCyEEN54441rfKparVatVvsWoyjau3ev5C4wsl5//fXPfe5z6UvuGh/1zDPPJNWc/99n/vafdiyGEH7wgx/88pe/FM/hlsvlBAGun3w+XygU+noyx3F88ODBtEf6Nep2u5lMRqgBALYE9bsAwJbU7XaTeZDT09NrbBl6Oa1Wa8Xk7uzsrLvVwMj6u7/7uzS5226377nnnrU/9s///M///M///N/9u3/3qU996lOf+tStt94qngDXaHZ2dmpqqm+x0+ms2L35ai0sLDzyyCOnT58WZwCALUF+FwDYkk6fPp3Mgzxw4MC1PE+n0zl69Ggcx33rpVIpn8+LMzCavvGNbzzwwAPJ8dUmdwG4Tg4ePDg45brZbNZqtWt85kqlsrS0dPjwYUEGANgS5HcBgK2n2+0+/fTTIYQ9e/ZMT0+v+3niOJ6bmxucW1YsFg0RBEbW1772tWTmbgjh0qVLkrsAm0QURceOHRtcr1QqjUbjWp75qaeeCj0NcgAA2OTkdwGArefpp59OJoQlt6LWrVKpNJvNvsVcLlcqlQQZGE1f/vKXjx49GkKYmZm5dOmSgABsKtlsdsUU77Fjx1qt1rqfdnx8fGZmJvmY3W63xRkAYJOT3wUAtpilpaVkNtiTTz45Pj6+7uep1Wr1er1vMZvNHjp0KIoicQZG0OTkZPICe+jQoW9961sCArA5X6vL5fLg+sGDBwdnjqzdkSNHko/W17iBEgCAG0B+FwDYYg4fPtztdsfHx1e8sbVGi4uL1Wq1bzGKor179w5ONQMYBV/+8peTueanTp36r//1vwoIwKZVLBbz+XzfYhzHK5b2rlEmk9m/f38IYX5+Pnk7AABg05LfBQC2kvn5+YWFhRDC/v37M5nM+p4kjuOjR48O1jeUy+XJyUlBBkbQN77xjaRy99SpU1/96lcFBGCTO3jwYC6X61tsNpu1Wm3dzzkzM5OU8KZT2AEA2JzkdwGAreT5558PIUxPTycTwtZnbm5uMLlbLBYLhYIIA6MpvZX/xBNP3HJ5f/d3fydWAJvEsWPHBqeKVCqVxcXFdT/niRMnQgjtdjvZ9AMAwOYkvwsAbCWnTp06cuTIgQMH1v0MtVqt0Wj0LRYKhVKpJLzAaHrjjTcEAWDLiaJoxYbMKzaqWaPp6ek9e/aEEA4fPizCAACblvwuALDFlMvl6enp9T12xbG72Wy2XC4PVj8AjIh77rnn0tp88YtfFC6AzSOXy83OzvYtXuMg3qSEt9vtSvECAGxa8rsAwKiI4/iZZ57pq2aIomjv3r2SuwAAbEWFQiGfz/ctXssg3kwmc+DAgXK5XC6XhRcAYHPaJgQAwIiYm5trtVp9i8VicXJyUnAAANiiZmdnz5071+l0ehcrlcrU1FQul1vHE+7fv19UAQA2M/W7AMBIWHHsbj6fN3YXAFbXlzQCNpukIc3g+sGDB9c9iBcAgM1MfhcAGH6tVmvFsbuD48oAgD5zc3Ozs7P1el0obrzZ2dmkTe66e+0yIiYnJwe3LV7jIF4AADYt+V0AYMjFcXzy5MnBsbvlctnYXQBYXaPRaDabrVZrbm5OivGmfIzp/JZosLpSqTQ1NdW32Gw2bc4AABg+8rsAwKbWbrev8Rkqlcrg2N1CoZDP54UXAFYRx3HaACOKosHUEbCpHDx4MJvN9i3Ozc0NfhgGAGBLk98FADa1p5566oEHHlhaWlrfw2u12mDJwtTUlLG7ALCWt9E0LVQsFnO5nJjAZna5QbxHjx4VHACAYSK/CwBsXgsLC/Pz80tLSwsLC+t4+Ipjd6Momp2d1ZkZAFbX6XTShszZbLZYLIoJbH6Tk5OD/7d2Oh2DeAEAhon8LgCweT399NMhhPHx8ZmZmat97Ipjd0MIs7Ozg23rAIA+1Wo1fRstlUq2RsFWUS6XB7upNxqNRqOxvidcWlo6fPjwuhvqAACw4bYJAQCwOS0sLCRlu/v3789kMlf78Gq1OjhprFgsGrsLDPr6W1/fKj/qH972hzN3zfiTcb0tLi6mAw6mpqYKhYKYwBZy8ODBcrnct9Px2LFjc3Nz62i0vm/fvqShzssvvyy2AACbgfwuALBJJcW7ExMTe/bsudrH1mq1tKVkKpfLGbsLrOi//PN/2So/6pfGviS/yw3QO+DAuydsOVEUHTp06ODBg33rR48erVQqV/ts+/fvf+KJJ5aWlpaWliYmJoQXAOCmk98FADaj+fn5pHi3XC5fbfFup9NZcezu3r179ZYEVvTf/+//vlV+1Htvu9ffi+utXq83m83kuFgsTk5OiglsOckg3r4tj8kg3sG87+r27NkzPj7ebrf37dunhBcAYDOQ3wUANqOksGB6evpqJ+/GcTw3N7fi2N11NKMDRkQho/cs/Os7abpNKoqiYrEoJrBFlcvlZrPZN7IkGcR7tSNLnnrqqaSEd35+fh3NdQAA2Fi/JwQAwGbTW7x7tY+tVqtpyVHK2F0AWKNardbpdNI30Gw2KyawdR07dmxwcW5uLv3ffI327NmTdGY+fvy4qAIA3HTyuwDAppMW715tcUC9Xjd2F1jdkbeOnHz75DD9Rg//+OEXll/wl2VDdDqd9J00m80q3oWtLoqiwW7McRxfbYvmEML+/ftDCEkJr8ACANxc8rsAwOaSFu8eOHDgqh4Yx3GSGO5l7C7Q57l3nvvm//nmMP1GLyy/8M2ffdNflg1RrVbTGQelUskbKAyBfD5fKPSPIeh0OoOfnFeXlvA+9dRTogoAcHOZvwsAbC4TExMzMzPtdnt6evqqHrji2N1SqWTsLtBr+eLy2LaxVU547p3nli8ur/4kY7eO7fzYzl137Bq7deyq/uvnf3X+7Ptn1/eT796+e/A/d8UfFdau0WjU6/XkeMWEELBFzc7Onjt3rm8Qb61WKxQKV/VR+cSJEw888EC73TaFFwDg5pLfBQA2l/Hx8RMnTlzto+r1eqPR6FssFosaSwJX65v/55tn3j2zxpN3b9+9e/vuw3cfXuP5Z98/+/CPH17fD/bKZ17ZvX23PxDXz4svvpgcRFHkDRSGzKFDh8rlct/i0aNHr6qKd2JiYmJiYmlp6amnnpLfBQC4ifRnBgC2vBU7M2ezWWN3gevtzLtnnvrnp+46e9dz7zwnGmxptVqt2Wwmx4VCYXJyUkxgmGSz2cGZu51Op1qtXtXzJBsx77nnnm63K6oAADeL+l0AYMtbsTOzsbvAtbv07y8NLi5fXD7/q/Nn3j3zNz//m6TSd/ni8uM/efwnH/5k7YW8IYTd23f/2cf/rHfl57/++Srn7/zoTn8RrpM4jtMcTxRFNkjBUMrn81NTU+lOjkS1Ws3n82vv0jwxMfHyyy8ng3gBALhZ5HcBgK2t0Wis2JlZ4RFwnYzdOrbrjl277ti1d8fes++dffjHD5//4HwI4al/fmr54vKJe9baYX7nR3fu3bFXPNkMarVaulOqWCzaIAXD6uDBg4MbONbRpVkkAQBuLv2ZAYAtLI7jubm5vkWdmYEbZtcdu1pTrXQs7sm3T558+6SwsOXUarX0PdTkXRhiURRtSJdmAABuLvldAGALq1QqOjMDN90rn3klTfHue2Nf0rQZttb7aaFQ8B4KoyDp0ty3WK1WW62W4AAAbBXyuwDAVtVoNOr1et+izszATfHtT387PX74xw8LCFtLFEWzs7OVSsV7KIyCwRLeEMLRo0dFBgBgq5DfBQBusm63e/z48Xa7fVWP0pkZ2FTGbh179t8+mxwvX1x+7p3nxIQtJ5vNCgKMgst1aU5btQMAsMnJ7wIAN9n8/PzTTz+dz+evKsW7YmfmcrmsqyRwszz2icd2fnRncrzvjX0CAly7SqVSq9VqtVq5XBYNNtCKXZorlYouzQAAW4L8LgBwk50+fTqEsGfPnvHx8TU+5HKdmfP5vHgCN9FDdz2UHCxfXDaFF4DNbKO6NHe73aWlJfEEALiR5HcBgJtpfn5+YWEhhLD2qhSdmYFN60/u/JP0+O9/8fcCAsCmlQze7lu82i7Np0+fvu+++5544gnxBAC4kbYJAQBwE1UqlRDC9PT09PT0Gh9SrVZ1ZobVLV9cnuvMnXn3zPlfnV++uLz6yQ+NPfTszmcFbUPsZRBhlQAAIABJREFU3r47PT773lkBAWAzKxQK3/3ud5vNZt/n86mpqVwut5ZnGB8f73a7SQnvxMSEkAIA3BjyuwDATbO0tJQU787MzKzxIY1GY7CkQGdmSC1fXD7y1pHn3nnuimnd1Nn3pSE3zNitY7vu2JVkdq/Yn/n8B+fXngPedccu4QVgwx08eHCwC87Ro0eTXZhXND09PT4+3m63jx8/furUKfEEALgx5HcBgJsmuW00Pj6+Z8+etZyvMzOs7ux7Zx/+8cPnPziffLnrjl27t+8++97Z3kTjY7//2Ni2sfTLsVvH/uzjf3b9fqTli8tn3zu79mTzFSUJ1LFbxzbtXyH92a74W59598wf//CP1/i0/7LrXzbzbw3AFpV0ae77jJ10aS4Wi2t5hv379+/bt29+fr7dbo+PjwspAMANIL8LANwc7XZ7fn4+hDAzM5PJZNbyEJ2ZYRVn3zv7+X/4/PLF5bFbxw7fffixTzzWmw58/Pzjz/3suRDCzo/tPHz34Rv2Uz1+/vEXll/Y8KfdzMnO3h8s+XP4xwnAZnaNXZpnZmaOHz+elPCeOHFCPAEAbgD5XQDg5nj++ee73W4mkymXy2s5X2dmWMX5X51/+McPJ9nEZ3c++9DYQ30nPLvz2TPvnjn/wfmTb5+8Yn53+eJyMrj32itlD999+M8+/mcbWL8bQtjk9bu/E8kLq+V3d92xa/AvdTnyxABcP9fYpXlmZubpp5+en5/fv3+/El4AgBtAfhcAuAm63e4zzzwTQnjyySfXUryrMzOs7shbR85/cP5yyd3EQ3c9dPLtk0nD5MsNc11xfO/eHXtP3LPOcpxdd+watcGxvaHb+bGdqwXn9l03spYaAC7nGrs0l8vlp59+utvtPv/88/v37xdPAIDr7feEAAC48U6fPp0U7z766KNrOV9nZljFmXfPJL2X9+7Yu0o96Odu+1xycPa9syuesHxx+fHzj598+2QIYff23bu3707WT7598o9/+Mfnf3VeqNciDdTOj+4UDQC2ikKhMNiNuVKptFqtKz42k8nMzMyEEJIdnAAAXG/yuwDATVAul0+dOnXgwIG1NHDTmRlWd+StI8nBV/7NV1Y57YpNkuc6cy8sv7B7++7WVOuVz7zyymdeufTvLz31fz0VQjj73tnHf/K4UF/R8sXl8x+cT45HrXAZgK3u0KFDg4snT55c06eRI0dCCN1u9/Tp0yIJAHC9ye8CADfHnj171jJ5N47jarXat6gzM6ReWH7hzLtnQggPjT20ejfgn//658nB2LYVJrkuX1w++fbJnR/d+e1Pf7t31Ovhuw8nKd4z7555YfkFAV9d8rdIyO8CsLVks9nBz+etVqter1/xsWkJ7+HDRg8AAFx38rsAwKZWr9cHm8LpzAyp77///eTgK7//ldXPTNsy96ZvU8nM3dns7OB3D999OGk1/M2ffVPAV/c3y3+THv/JnX8iIGwea+mwClAsFlfs0ryWx5bL5YmJiQMHDnS7XZEEALiu5HcBgM2r0+kMFu8WCgWdmSGVZm133X6FatGktHTs1rEV60of+8RjOz+683Lje5PK4N7iVAYtX1xOS5x7BxjDTRfH8dGjR2dnZ9dShAeMuMEuzXEcz83NXfGBExMTf/3Xf10ulzOZjDACAFxX24QAANi0qtVqHMe9K1EU6cwMvZL87titY6s3Zz773tlk/u7u7btXrN8du3Xslc+8crknSep3V3zg6s68e+bvf/H3Vxz9u3Zjt459/Pc+vnfH3k34tzjy1pH0Nz18t+6UbCK1Wq3T6YQQkgxNoVAQE+BystlssVis1Wq9i/V6vVQqZbPZ1R8rswsAcGPI7wIAm9Ti4uJgmVGxWLzifSUYHcsXl89/cD6sYdTrXOc3ZTez2dnLnbNKhjhJW65joOyRt45seNXv2K1jj33isXUkm6+r59557uTbJ5Pjh8YeUrzL5tHpdNI8TTab1QMDuKJSqdRoNJJ9If/6WWJu7ujRo4IDALAZyO8CAJvUYGfmpJhAZCA1duvY2K1jyxeXk/rayzn/q/NJ3+D15R2XLy4nOdp15Hdf+cwraQfpjbLzYzs3W3L3zLtn9r2x7zc/3kd3PrvzWf842VTvp2kzDAPsgbWIoqhcLh87dqx3sdlsNhoNe0QAADYD+V0AYDOq1WrNZrNvce/eve5KQ5+dH9t59r2zSRXv5SR9g8duHTtxz4l1/CfmOnNJCnmV2t9VrCMrvLWcfPtk2pl57NaxE+MnNlv6mVHWaDTSZhj5fF5iBlijfD6fy+VardbvfCSYm/MyAgCwGcjvAgA3yOnTp0MIMzMzVzwzjuPB4t18Pj85OSmM0Gf2k7OP/+TxVWpkT7598rmfPTd269izO59dfUbvil5YfuHk2yelLQctX1w++97ZfW/sS4OfBPmhsYfW+AznPzh/VcXNV5yyDIPvpy+++GJybID9FpWWX/sgxI136NChcrk8+CndiwkAwE0nvwsA3Ajdbvfw4cPdbveNN97Yv3//6if3dpJMuCsNl/PQXQ/N/XTu7HtnX1h+YTCzmJSWXm3eMXX2vbOPn388hLC+hw+BtOtyr+ULy0lqNqnZTezevvvZf3t1GfQz75754x/+8drP33XHru999nv+zbN29Xo9bYZRKBRyuZyYbMU/YjoDVX6XGyybzRYKhbQHQPpBvVAoZLNZ8QEAuInkdwGAG2F+fr7b7YYQHn300dXPXFxc7LuLFEIoFovuSsOKxm4de+Uzr3z+Hz7/8I8f/vanv51mYZcvLu9r73vuZ8+tI++YOPve2c//w+fDCCd3Qwgn3z65lj/B4bsPP/aJx9Q3s6n0NsOwTQpYn3K53Gw2000GiUqlcvDgwbU8fGFhYXp6WhgBADac/C4AcCNUKpUQwp49e8bHx1c/c7B4N5vNFotFMYTLSVK8j59//OEfP/zQ2ENjt46dff/s+V+d33XHrhP3nNi7Y+86njNN7n7709/evX33SMVz50d37vzozivEfNvYzo/u3PmxnV/5N1/Z+bGda8/sjt06dsUnX+Wx/rWzdrVaLX0/LZVKBtgD65DsDpmbm+tdbDQajUbjioN4H3jggaWlpRMnTqxlPgsAAFdFfhcAuO7m5+eXlpZCCH0TvAbVarW0k2TKXWm4orFbx7796W+HEM7/6vyZd8985fe/suuOXetOB55598zDP35458d2fvveb4/gwNdndz57/Z589/bdramWf7Fcb51Op1arJce5XK5QKIgJsD6FQqFWq7Vav/PmValUrpjfnZiYWFpaOn78uPwuAMCG+z0hAACut7R4d/X+bHEcpzejU/l83l1pWLudH9v52Cce271997qTu8+989woJ3dhOMzNzaXFu08++aRtUsC12Lu3vxdI7yaSy0l2drbb7fn5eTEEANhY8rsAwPW1sLCwsLAQ1jB5t1ar9Q33Mi8QbrDn3nlu3xv7dn5s5yufeUVyF7aoRqORNsPI5/OTk5NiAlyLFdsAVKvVvo/ufSYmJpLJLMleTwAANpD8LgBwfZ0+fTqEMDExsWfPnlVOW7EIoFgs5nI5MYQboze5a9QrbFFxHFer1eTYNilgowyOWYnj+IqJ2/3794cQFhYW2u22GAIAbCDzdwGA66jb7SYN2VZP7obf7SSZyGazxWJRDOHGOPPumX1v7Fu+uDx269jj5x+/3GnJlF9g0+odk2mbFLBRoiianZ2dm5vrXWw0Gq1Wa5XXmT179hw/frzdbj///PNJrhcAgA0hvwsAXEenT5/udruZTGb15sy9nSRTpVLJvEC4kZYvLocQzrx75nInKOqFTa53kr1tUsDGKhQKgz2Zjx49ukoVbyaTefDBByuVyjPPPCO/CwCwgeR3AYDrKCnevf/++5PhWyvq7SSZmpqaGpzyBVw/u+7YdeKeE6ufI78Lm1y1Wk2bYRSLRdukgI21d+/egwcP9q50Op16vb7K5/YDBw5UKpVut3v69OmZmRkxBADYEPK7AMB19Nd//deVSmViYmKVc3o7SabMC4QbbOzWsb079ooDbF2Li4tp8e7U1JTiXWDDTU5O5vP5RqPRu1ipVKamprLZ7IoPyWQy4+Pj7Xb7pZdekt8FANgovycEAMB1VS6Xp6enL/fdTqeT3oxOFYvFyclJoQOAtetthmGbFHCdzM7O9q2s2IynV9KZeX5+vt1uCyAAwIaQ3wUAbqbeTpKJKIrclQa4Klpn0+l00kn2+XzeNingOlnxs3q9Xu+by9trz5494+PjBw4cED0AgI0ivwsA3DSLi4v1er1vsVQqmRcIXD97d+yd/eTs0Pw6Y7eOPfb7j/3JnX/iLzvistlstVotFApRFJXLZQEBrp9SqTTYjblSqVzu/Ewm02g09u/fPz4+LnoAABtCfhcAuGkGO7lNTU0VCgWRAa6fw3cffuwTjw3Tb/TszmeH7DdifaIomp2drVQql5uCCbBRBveRNBqNVqslMgAAN4b8LgBwcywuLqadJFOKdwHgWngbBW6AfD6fy+X6Fk+ePCkyAAA3hvwuAHBzDBbvmhcIAABbwt69e/tWWq1Wo9EQGQCAG0B+FwC4CRqNxmDxbrFYFBkAANj8crlcPp/vWxzcwQkAwPUgvwsAbLCFhYXTp0+vfs6LL77Yt6J4FwAAtpDBKbxKeAEAbgz5XQBgg1UqlX379j3xxBOXO0HxLgAAbHXZbLZQKAxeC4gMAMD1Jr8LAGykpaWl+fn5EMKjjz56uXNM3gUAgCEwWMLb6XTq9frqj2q320IHAHAttgkBALCBXnrppRBCJpO5//77Vzyh0Wi0Wq3elSiKSqWS0AEA9Nm7d+8vfvGLEMKOHTtEg00oiqJCodCX0K1UKoN1vYl2u/3EE0+02+2XX355fHxcAAEA1kf9LgCwYbrdbjJ598knn8xkMoMnxHE8WLxbKBRyuZzoAQD0mZyczOfz+XzehyU2rcES3jiOL1fC+/GPf3xpaanb7Sa7QgEAWB/5XQBgw7z66qtJs7UHH3xwxRPq9fpg8a7JuwAAsEUlJbx9i5ebwpvJZGZmZkIITz/9tNABAKyb/C4AsGGef/75EMKePXsmJiYGvxvHca1W61ssFovZbFboAABgi7qqEt4kv9vtdk3hBQBYN/ldAGBjtNvt+fn5cPni3Vqt1ul0eldW3OwPAABsIVEUlUqlvsXLlfBOT08nk3ePHz8udAAA6yO/CwBsjKR4N5PJ7NmzZ/C7incBAGBYDY5cieO4Wq2ueHJS7zs/P9/tdoUOAGAd5HcBgI1x+vTpEMLMzEwmkxn8bq1Wi+O4d8XkXQAAGA4rlvAO9u9JpC2ak/Y/AABcLfldAGADzM/PJwO0rqp4N4oioQOANWo0GoIAbFqDvXkuN4U3k8kkKV4tmgEA1kd+FwDYABMTE0eOHNmzZ8/09PTgdxXvAsA1arVac3Nzs7OzKyZLAG66dZTwttvtZJMoAABXRX4XANgA4+Pj5XL51KlTg9/qdDqKdwHgGlUqlTiOkyzv4uKigACbUKFQGCzhXXEK7/T09Pj4eFDCCwCwLvK7AMD1NVi8m81mFe8CwNo1Go1ms5kc5/P5yclJMQE2p8ES3nq9vmIJ74MPPpjJZLrdrqABAFwt+V0A4DrqdDqDbSQV7wLA2vVWv63Y/hRg8xgs4Q0hrFjCe+TIkddee23FDkAAAKxOfhcAuI6q1epg8W6hUBAZAFijWq3WarWS42KxmMvlxATYzNZewpvJZIQLAGAd5HcBgOul0+k0Go2+xVKppHgXANb+ZpqOsTfgANgS1l7CCwDA+sjvAgDXS71e7yvenZqaUrwLAGvXO8beHilgqyiXy4OXBiuW8AIAsA7yuwDAdRHHcVpvlPrSl74kMgCwRouLi+mbqT1SwBaSz+cHS3jr9brIAABsCPldAOC66K03SmSz2Xw+LzIAsEa97UwH51kCbGaDr1qDuz8BAFgf+V0AYP0eeeSRRx55ZH5+vm89juPB7fmqjgBg7RqNRrPZTN9DJycnxQTYQgan8K54jQAAwDrI7wIA67S0tLSwsLCwsDD4rWaz2TdeK4qiYrEoaACwFnEcVyqV9D1U8e7IWvwtg0vZigZfu9JXNgAAroX8LgCwTi+99FIIIZPJ3H///X3fevHFF/tWisViFEWCBgBrUavV0nxesVgcHGPJiDh58uTBgwcPHjyosS1bUT6f77sEWLGEt9vtLiwsHD9+XMQAANZIfhcAWKdXX301hDAzM5PJZHrXe/tJJqIo0pwZANao0+mkybxsNqsBBrBFrXgV0DtZPPXII488/fTTp0+fFjQAgLWQ3wUA1iNpzhxCmJ6e7vvWYPFuPp9XeAQAa1StVuM4To5LpZIGGMDWNdiiudPptFqt3pVMJjM+Ph5+2x8IAIArkt8FANbjcs2ZW61WX/FuCEHhEQCs0eLiYtq8NJ/Pa4ABbGlrLOHdv39/+G1/IAAArkh+FwBYj/n5+bBSc+bB4XD5fD6Xy4kYAKxFb9rDBilgCAyW8DYajXTEeGLPnj0hhG63q0UzAMBayO8CAFdtaWlpaWkpDDRn7nQ6jUaj72T3pgFgjWq1WtoGo1gsTk5Oigmw1WWz2Xw+37fYV8KbyWSSKwstmgEA1kJ+FwC4amlz5mSjfaper6fzAhNTU1PuTQPAWsRxnCY8oigarHgD2KIGX9Dq9XpfCe/MzEwI4dVXX+12uyIGALA6+V0A4KolbdOSWzCpOI4HmzN/6UtfEi4AWItOp5NukyoWi1EUiQkwHHK5XDab7VtMZ40n0hbNySAYAABWIb8LAFyddrvdbrfDQHPmWq3WV7yby+UGW7EBACvK5XK1Wq1QKGSzWdMNgCEzWMLbtzc0bQ6kRTMAwBXJ7wIAV2d8fPzNN988depUb3PmOI77NuCHEAqFgnABwFWZnZ2tVCqKd4Ehk2xe6V0ZbP/z4IMPBi2aAQDWQH4XAFiPvsm7jUajb4BWFEXyuwAAQGKwhDcdOt57iaFFMwDAFcnvAgAbYHDyrsGBAABAKp/PD5bw9jYBymQy5XL5wIEDExMTwgUAsIptQgAAXKNGo9FqtXpXoigyOBAAAOi9Rsjn830bQ6vVam/XnyNHjggUAMAVqd8FAK7Viy++2LeieBcAAOgz2KK50+ksLi6KDADAVZHfBQCuyeLiYrPZ7FvM5/MiAwAA9IqiqLdaN9E3hRcAgCuS3wUArknvxKxEPp/P5XIiAwAA9CmXy30rzWaz0+mIDADA2snvAgDrF8dxo9HoWzR5FwAAWJESXgCAaye/CwCsSbvdXlhY6Fus1WpxHPeu5PP5yclJ4QIAAFY0uB90cM8oAACrkN8FANbkpZdeeuSRRz772c/2Lg7eiPnCF74gVgAAwOXkcrlsNtu7Esfx4NgXAAAuR34XAFiTpHj3/vvvT1cWFxdbrVbvOVEUTU1NiRUAALCKUqnUt/Ld735XWAAA1kh+FwC4sm63++qrr4YQHn300XRxcIt9sViMoki4AACAVeTz+b6VZrPZ6XTSLyuVygMPPHD8+HGxAgAYJL8LAFzZq6++2u12QwgTExPJShzHg82ZB2/TAACwbsXfyuVyosEwiaKoUCj0LdZqtfS43W4vLS0988wzYgUAMEh+FwC4spdeeimEMDExMT4+nqzU6/U4jnvPmZqacucRAGADFYvFcrlcLpcHM2Gw1Q3+q+7tDzQ9PR1C6Ha77XZbrAAA+sjvAgBXlgzf3bNnT7ry2muv9Z3zhS98QaAAYHW91WkAo2xycjKbzfauxHGcpnjvv//+5CDZaQoAQC/5XQDgCpaWlpJd88km+hBCq9VqNpu950RRpDkzAKyuXq9XKpVyuTw4wx5gBBWLxb6VdBdpJpOZmZkJv91pCgBAL/ldAOAKklsqmUwmze8OTt4tFApRFIkVAFxOHMfVajWE0Ol0KpVKp9MRE2DEDbZobjQa6ctjcvXx6quvChQAQB/5XQDgCpL8btohLY7jwd6SincBYHW1Wi1NWhSLxb6upAAjKIqiFVO8yUEyHabb7SrhBQDoI78LAKym2+0mW+YfffTRZKXZbMZx3HtOLpebnJwUKwC4nE6nk+6Oymazgy1JAUbTfffd17eStDoIIWQymfHx8aBFMwDAAPldAGA1P//5z5O7KhMTE8nKiy++2HeO4l0AWF21Wk13R5VKJUMNANJLib5+BnEcLy4uJscPPvhgCOGZZ54RKACAXvK7AMBqxsfHX3755R/+8IdJlrfVajWbzd4TVmyqBgCkGo1GvV5PjvP5vPdNgF6Du0XT18xkBG+322232wIFAJCS3wUAriyTySQH6TSs1NTUlAmCALCKtPVFFEU6MwP0KZVKfSuNRiMZWH7//fcnKy+99JJAAQCk5HcBgLWK4zjdSp9ynxoAVlGr1dLWF4VCwcR6gD5RFE1NTfVddyT7SjOZzIEDB06cODEzMyNQAAAp+V0AYK2azWayjz6Vy+XcpwaAy4njuFqtJsdRFA3WqAEQQvjCF77Qt5K+eO7fv39mZibtJwQAQJDfBQDW7rvf/W7fyuCsLACGxuuvv37LLbd8+ctfFop1q9VqcRwnx8ViMYoiMQEYlM/n+14h4zju21oKAEBKfhcAWJNOp5O2l0wVCgWRARhWn/vc5wThGt86a7VacpzNZk00ALicKIoGryzSEl4AAPrI7wIAa1Kv19MKpEQ+n89msyIDMJRuueUWQbhGc3Nz6Vvn3r17Fe8CrGJwE0wyghcAgEHyuwDAmtTr9b6VwSlZAAyBpC2zOFyjRqOR9r3I5/PG1QOsLpvN9m0ejeN48BoEAIAgvwsAXM7p06eXlpaS40aj0Tf+KpvNTk1NiRLAkJmcnNSW+drFcZy2FY2iqFQqiQnAFQ2+WqZd7gEA6CW/CwCsYGlpad++fQ888MD8/HwI4bvf/W7fCYVCQZ9JgCFzyy23JDt7ZmZmLl26NDExISbrU6/XW61WclwsFnO5nJgAXFE+n+9babVafdtMAQAI8rsAwIoWFhZCCJlM5v7774/jOO0wmSoUCqIEMJQuXbr0rW99SxzWra94d3CiJAAriqJo8CrDFF4AgEHyuwDACpL87v3335/JZJrNZhzHvd/N5/N9w7EAGAKXLl26dOmSOFyjarWavm+WSiXtLrgW5XK5WCwWi8VKpSIajILB/G66Y2bfvn35fD6dIAMAMMq2CQEA0Kfb7b766qshhAcffDCs1JxZn0kALuev/uqvTp06FUL4vb9455b/590Qwvvvvz86v/7i4mK9Xk+Op6amFO8CXJXJyclsNtvbkzmO406nk81mFxYW2u32Sy+9ZHwAAID6XQCg36uvvtrtdkMI09PTcRyfO3eu7wTNmQG4nNdff/373//+97///TfffLPb7Xa73V//+tej8+v/4he/6C3e9e8B4GoNTuFNWjQne0+feeYZIQIAkN8FAPr94Ac/CCFMTEyMj483m83e7fMhhFwupzkzAJfzl3/5l1//+te//vWv/+mf/ukf/dEf/dEf/dFHP/rR0fn18/l8rVYrFov5fH5yctK/B4CrNfjiWavVQgjT09MhhGTnkCgBACNOf2YAoF8y1Cq5gfLaa6/1fXdwQz0ApO6+++6vfe1rIYRqmPt/Qz2E0G63P/jgg5EKQrlc9i8BYH3y+Xxfi+ZOp9PpdO6///70aiW5VAEAGFnqdwGA35EO301umjSbzb4TNGcGAACunxVbNGcymfHx8RDCwsKCEAEAI05+FwD4HUtLS0nHs4mJiUajoTkzAABwIw22aK7X6+G3I3iTbkMAAKNMfhcA+B3J7ZJk+O7i4mLfdzVnBgAArqt8Ph9FUe9Kq9XqdDpJh6Gk2xAAwCiT3wUAfkdSvJu0Pms0Gn3f1ZwZAAC43lZs0ZyM4O12u0p4AYARJ78LAPyO/fv3v/nmmydOnNCcGQAAuCnuu+++vpXXXnvNCF4AgIT8LgCwgkwm02q1+hY1ZwYAAG6AwRbNzWYzbdEsvwsAjLhtQgAArKher/etaM4MAADcGPl8vu+SpNFoPPjgg+Pj4w8++KD4AACjTP0uALCCVqulOTMAAHCzrNiiec+ePfv375+YmBAfAGCUqd8FAFbQaDT6VjRnBhg1i4uLggDAzTI1NRVFURzH6UrSotmuUwAA9bsAwAoGmzPL7wIAADdMFEWD1yCD+1ABAEaQ/C4A0G/F5sy5XE5kAACAG2awRbPeEgAAQX4XABikOTMAAHDTTU1NDV6q9G1FBQAYQfK7AMBvLCwsJAeaMwMAADddFEWFQqFvsdlsigwAMOLkdwGAEELodrtf/epXP/WpT/23//bfNGcGgMuJ47hSqYgDwI0x2KL5tddeExYAYMTJ7wIAIYSwtLTU7XZDCG+99VbftxTvAkCqWq3WarVSqTTY7gKADbdii+Y4jkUGABhl8rsAQAghLC0thRAmJibOnj3b963BWyoAMJo6nU6S1o3juFarSTAAXG8rtmh+8cUXjx8//sgjj4gPADCatgkBABB+O3x3bGxssDnz5OSk+ABACGFubi7N6T755JNRFIkJ19WOHTuSA//YGGWTk5N9LRN++MMfJq3yl5aWJiYmhAgAGDXyuwBACL+t3925c+ePfvSj3nXFuwCQaDQazWYzOc7n8/Y/cQMcPXpUECCfz8/NzfWu/MM//MP4+Hi73V5YWJDfBQBGkP7MAEBYWlpqt9shhA8++KDvW25eA0AIIY7jarWaHEdRVCqVxATgxoiiqG/XaRzHSVo36UIEADBq5HcBgN/cFslkMm+//Xbv+uCdFAAYTbVardVqJcfFYjGXy4kJwA1zuV2nr776quAAACNIfhcA+E1+97Of/Ww6UzAxNTVl2BsAxHFcq9WS42w2WywWxQTgRhp84d2+fXsIodvtJo2IAABGivwuAPCb4bu33HJL37riJAAIIVSr1XQLVLFYtPkJ4AaLoqjvtffcuXOXLl0KIbz00ksMmRuXAAAgAElEQVTiAwCMGvldABh17XY72fOebIHvVSgUxAeAEbe4uJgW705NTSneBbgp8vl830rStDnZqwoAMFLkdwFg1L3xxhshhEuXLr355pu961EUZbNZ8QFgxFWr1fS4VCoJCMBNMTiCN9mfOj8/LzgAwKiR3wWAUTc9Pf3mm2/+5V/+5e233967PjU1JTgAjLhGo9FsNpPjfD4/mF0A4MYYrN/92c9+FkLodrvdbld8AICRIr8LAIQQwuAowS984QvCAsAoi+M4Ld6NoqhcLosJwE28YOlrL3THHXf8+te/Dlo0AwCjR34XAAghhHq93rdy7733CgsAo6xWq7VareS4WCwaWwBwc/WV8G7btu0//If/UC6XM5mM4AAAI0V+FwAIrVar0+n0ruRyOXexARhlnU6nVqslx9lstlgsignAzTXYJP8//sf/eOTIkYmJCcEBAEaK/C4AEM6dO9e3YvguACOuWq3GcZwcl0qlwUEGANxggxcpjUZDWACAESS/CwCE1157rW9lcGs8AIyOxcXFdHJBPp8vFApiAnDTDY7gjeO4rxERAMAokN8FAFao3zV8F4BRVq1W02OdmQE2j74RvEEJLwAwkuR3AWDUGb4LAL1qtVqz2UyOi8WinhYAm8fga/Li4qKwAACjRn4XAEZXt9sNIaS3sFOG7wIwyqIoSqbtRlFUKpUEBGDzGLxUGbycAQAYetuEAABGVrvdfuCBB+6+++5sNrtt279+KlCoBMAoKxQKhUKhUqmkiV4ANokoiqampnpzunEct1qtXC4nOADA6FC/CwCja2lpKYTwj//4j73J3eSOieAAMOLK5bLiXYBNaHA3qhJeAGDUqN8FgNG1tLR04cKFj33sY72LU1NTapUAADaDubm5OI5DCPfdd1+hUBAQCCEUi8VqtZp+eeHChe985zudTmdmZiaTyYgPADAK5HcBYHS98cYbH3744Sc/+cneRZ3NAAA2iWaz2el0QgjZbFY0IJE0z0+2PiS++c1v1mq1iYmJ6elp8QEARoH+zAAwupaWli5evLh9+/beRaUhAADAZpbP59Pjbdu2bdu27eLFi8n0GQCAUSC/CwAjqt1u/9M//dMHH3zQN3xXdQgAALCZ9Y3g3b59+4cffriwsCAyAMCIkN8FgBGVNGcOIfTW705NTYkMAACwmfXW7yZXNL/85S/b7bbIAAAjQn4XAEZU0pz59ttvv/3229PF++67T2QAAIDNrK/t0F133XXp0qWf/OQnIgMAjAj5XQAYUSsO31W/CwAAbH69JbzJRc3y8rISXgBgRMjvAsCIWlhYuHDhwm233ZauGL4LAABsCblcLj3+yEc+EkK4cOHC0tKSyAAAo0B+FwBG1DvvvPPrX//6rrvuSlfuvfdeYQEAADa/3s5D27Ztu/322y9cuPCDH/xAZACAUSC/CwCjqNvt/qf/9J8+/elP9/Zn7t0CDwAAsGlFUdT75Sc/+ckPP/xQ/S4AMCLkdwFgFGUymT/4gz+49957b7/99nRxcnJSZAAAgM0viqK+Fs2XLl36H//jf4gMADAK5HcBYER1Op2+Ff2ZAQCAraK3RfOdd94ZQvjwww+73a7IAABDT34XAEZUs9ns/TKbzWazWWEBAAC2hN7+Q9ls9vOf//zJkyczmYzIAABDT34XAEZRq9WK47h3RfEuAKNjcXGxUqmIA8CW1lu/G0LYtm3b4uKisAAAo0B+FwBG0blz5/pWFO8CMDqq1WqtViuVSvV6XTQAtqgoiqIo6l3p61EEADCs5HcBYBQNbmzvbW4GAEOs0WgkCYA4jlutloAAbF19XYjiOO50OsICAAw9+V0AGEWD9bv6MwMwCuI4TjszR1FULBbFBGDryuVyV7zSAQAYPvK7ADByBne153I5/ZkBGAW1Wi19EywWi97+ALa0wS5EGjMAAKNAfhcARs5f/dVfNZvN999/P13ZsWOHsAAw9DqdTq1WS46z2aziXYCtbmpqqm9FfhcAGAXyuwAwcp599tkf//jHb731Vroy2NYMAIZPtVqN4zg5LpVKURSJCcCWFkVR34t5MmEdAGC4ye8CwMh5++23Qwh33nlnuiK/C8DQazQa9Xo9Oc7n84VCQUwAhsC9997b++XgMBoAgOEjvwsAo6Xdbn/44YchhI985CPpYt89EQAYPi+++GJyEEWRzswAQ6N3r+rS0tIrr7zyF3/xF8ICAAy3bUIAACPlH//xH3/961+HEG677bZkJZfLZbNZkQFgiNVqtbRjZ6FQmJycFBO2hGPHjqVNxYEVTU5OprPVt23bduHChW63KywAwHCT3wWA0fK9730vhLBt27bbb789WVG8C8Bwi+O4Wq0mx1EUlUolMWGrsAkPrmhqaio9TnoUtVotYQEAhpv+zAAwWs6fPx9CSJO7IQQ1TAAMt1qtllZAFovFKIrEBGBoRFGUvrDfeeedIYRf/OIXwgIADDf5XQAYLf/rf/2vEMK2bf/aw8NtbgCGWKfTSft2ZrNZk3cBhk/akWj79u0hhEuXLp09e1ZYAIAhJr8LAKPlnXfeCb+98ZHobWgGAEOmUqmkxbt79+61qwlg+KQdiZL+zCGEl19+WVgAgCEmvwsAIySO45/+9KehJ7+by+Xc6QZgWDUajUajkRzn83kjCQCGUi6XSw62bduWdCr63ve+JywAwBCT3wWAEdJqtd5///3Q059Z8S4AwyqO42q1mhxHUVQqlcQEYCj1XtTcfvvtIYQ333xTWACAISa/CwAjZHFxMTlI7nqEnq3uADBk6vV6q9VKjovForc8gGEVRVE2m02Ok05F8rsAwHDbJgQAMDrefvvtL37xiyGECxcuJCuaMwMwlPqKd4vFopgADLEdO3Z0Op3w205F77//fhzHLnYAgGGlfhcARkgcx8lB2p/53nvvFRYAhk+1Wk3f9Uqlklv8AMMtbdKQ1O++++67aQsHAIDhI78LACPk3LlzvV/29jEDgGGSy+WS97ipqSnFuwBDr7c/8x/8wR98+tOf7rv2AQAYJvozA8AISVqWpSR3ARhWhUKhUCjUajWdKgBGQW9+9w//8A9DT+8iAIDhI78LAKNisEGZW94ADDeVuwAjYmpq6oqXPwAAQ0N/ZgAYFW+//XbfimGEAADAEBi8tGk2m8ICAAwr+V0AGBV9zZlDCJOTk8ICAAAMgVwuJwgAwIiQ3wWAUTHYoOzOO+8UFgAAYAj0Xd3EcTy4wxUAYDjI7wLAqIjjuG8lm80KCwAAMAQG63fldwGAYSW/CwCj4m//9m9feeWVpaWl5MtsNiu/CwAADIfB6TPnzp0TFgBgKG0TAgAYBXEc/8u//MuFCxfefffdZGXHjh3CAgCwmdXr9eTg3nvvNVsU1nERJAgAwFCS3wWAkdDpdJLM7vbt25MVxbsAAJtctVpNGswWi8VyuSwgsIqpqaney58LFy786Ec/EhYAYCjJ7wLASDh37tyHH34YQti27Tfv/lEUCQsAADAcoiiKoiiO4wsXLnz/+98PIdx1113CAgAMJfN3AWAkxHH8y1/+MvTU7w6OpwIAANi6kh5F27ZtS3a1/vSnPxUTAGAoye8CwEhotVrvv/9+6Knfvffee4UFAAAYGuk1TrKr9cKFC0mHcwCAISO/CwAjYWlpKTlI63f1ZwYAAIZJUr+bXvW8++678rsAwFCS3wWAkfC///f/7v0ym83K7wIAAMMkl8v1fvnhhx+eO3dOWACA4SO/CwDDr9Pp/PM//3NyfPvtt4cQduzYISwAAMAwufPOO5ODj3zkIyGEX/7yl61WS1gAgOEjvwsAwy+O4+QgSe6GgY3tALDl1Gq1SqUiDgCk0suc2267LYTw4YcfppdCAADDRH4XAIbfuXPnLly4EELYtm1bspIOpgKArSiO42q1WqvVSqVSo9EQEABCCFEUJWNokgufCxcuNJtNYQEAho/8LgAMvziOb7vttk9/+tNpWld+F4AtrVarJSVZcRx3Oh0BAaD3SifpzxxC+PnPf66EFwAYPtuEAACG3uLiYjab7c3p3nvvvcIC19uPfhRef/03x3feGf70T4UENkan06nVaslxLpcrFApignec9B3ncj7ykfCJT4TPfCbs2CFgDLOpqalWq5X0Zw4hvP/++51OZ93jaX70o/DTn4a33vL/EQCwucjvAvz/7N17dFTlvfj/T5IJuczkhjghIcEkyM0kEBQ1xAsgRagiROvBYmsFxban65wF6Gl7BFrlW8D2e7RAv7U/7eKm7ZLCsRoRrRKpUCgEihBy0QDmgomJGTAJJMPkMiG/P55kM86EkATI7Nnzfq2urj179ozks2ffns/zfB7A+MrKytzWMH4XGAAFBVJUdPHlLbfQFAhcHevWrdMGYz311FOqFCfgz06f/sYVpwe5uZKYKBMmyMSJhA3GpC4K2vhdp9NZVlbW1/xuba3s3y+nTkld3SWPozFj5K67iDcAAPAO8rsAAPidfvdeB9AnFRXfeLl/vzz4IFEBrlRhYaE2mWJmZmZaWhoxAfqkslIqK8Vmo7AEjPywYzKZMjMzw8LCRKSv9Zlzc+XQIWlpufxxVFYmM2fSgQ8AAHgB+V0AAIzPbWJCi8VCTIBrbe9eaWpSR1znwsmTRAW4CtLT09evX793794jR47MmzePgABuRoyQsLBu1p89K/X1nZckEcnLk4gIRh/CgLSHnYiICLXQp/zua69JaenFl4MHS3y8xMV1vjxzRs6du7hBaals2SLz5pHiBQAAA438LgAABueW3BWKMwMDQiuLPnKkfPqptLRIU5Ps3UtLOnAVWK3W73znO9/5zncIBeApJaWna83770teXudyQQFXJRjzGuG2pry8vJefdU3uDh4st9zS/TFSUiK7dkltrYhIXZ1s3y5PPUXgAQDAgCK/CwCAwXl2V2eeQuBaq62VqqrO5cTEi+M8yspoSQe69/Of//yy2yQnJw8ePHjkyJETJkwgYkD/3HefNDV1TtZbWyuHDzMRL4ym3w87ubkXk7uJiTJ79iVH5Y4ZI2PGyMsvd6Z4Kyvl/fcpeA4AAAYU+V0AAAyO/C4w8D75pHPONotFJk6U+vrO5sLSUqmtpYIf0I0jR470fpu4uLi5c+fOmjWLuAH9MG5cZ35XRDzqvAA+z2w2m81m14egWpWG7VFtrRw61LlssfSU3NU8/LCsX995y1dURH4XAAAMqEBCAACAsXk2Z1CfGbjWtCqAqmVw+nQJCelcs38/4QGuVE1Nzbp161asWGEjNwX03ZgxF5e16XgBA+vNxWL//s5MrYhMmtSr3nixsTJy5MWXJSVEGgAADBzG7wIAYHB2u93hcDQ3N4tITEyMMH4XuMZKSkTrVpGS0rmQkNA5hPfkSSIE9GTGjBlZWVme6x0OR1VV1aeffqqN4t23b19tbe0f/vAHggb09TqliYsjHjAgq9Xa+zl3Fe0OzWLpw2wa48aJxSIpKd/oNgEAADAAyO8CAGBwdru9sbHx2LFjIjJ9+nQRsVgshAW4dgoKOhdc2wdTUjrzu01Nsncvs/ACl3T99dd3m9/V7N+//5VXXqmpqRGRkydPvvLKKz/+8Y+JG9CP61RICNcjGJPb847dbrfb7T10ci0puTiWPSGhD/8hNREvAADAwKM+MwAABmez2ZxOp4iEhYWpNdRnBq6piorOBdf2wbvuEq2lsayMIAH9l5WV9eKLL2pt93/961+PHj1KWIBeevvti5PvTphAPGBMycnJns9EPWzvem+WmEj8AACAD2D8LgAABme321V+12Tiug9cc7m5F8d/3HzzN95KSOgsiVlaKrW1vZrXDUC3rFbrT3/60+eee0693L59+wTyVDCoefPm2e126Uv/vLIyqanpZv3Zs1Jff/EiNWaM3HcfAYaRNTY2lpWVtbW1TZw4UR1Hl+I6EfX11xM5AADgA2jnBQDA4Gpra93yu4zfBa6d6urOhcGD3ev13XzzxSkP9++XBx8kWsDlNTY2vvnmm0FBQbfeeuuwYcMiIyPV+qysrBkzZnz44Ycism/fPpvNxtUNhjRt2rS+fkRNB9Czu+6S6dOJLgxLlWJ2Op1q2K7T6aytrU1LS7vU9k7nxWXqLQMAAJ9AfWYAAAzObrc7HA4RCQ4OFpK7wLVUW3uxVf2GG9zfHTNGBg/uXD55kmgBvbJx48a33377zTff/PnPf/6vf/3L9S3XMbuHDh0iVkDvHTok27YRBhiWqs8cGhqqXjocjp7H79bXEzMAAOBjyO8CAGBw2vy7avyu6swO4Fr45JOLy1lZ3WwwalTnQlOT7N1LwIDLOHHixK5du9Ryenq620BG15cl2uh4wO+NGCFpad38b8SIi1MDtLRIUZGsXSu1tQQMhqW6tyo953cBAAB8DvWZAQAwMlWRrK2tTbryuxaLhbAA18iJE50LiYndT697yy2Sl9e5XFYmd91FzICe7NixQ1ueN2+e5wYjR448efKkiJw+fZpwAUpKSk/Xl5IS2btXKitFROrqZNcuefRRYgajif3mfZhWqPlSrr+evg4AAMDHkN8FAMDIVEf15uZmoT4zcI2VlEhdXedya+sl615aLNLUJCJSWiq1td2ngQEomZmZn376qc1mmz17drfzJkZERKiFE1r3CgA9GjNGxoyRtWs7r1klJVJSwoSjMBr1yGMymUwmk9PpvGx9Zrc7Oo4IAACgf+R3AQAwMteGDDUBFfWZgWvkyJGLy7W1vRoFsn+/PPggkQMuKSsrKysra/v27W6VmTXh4eFqoUn1mwDQO6mpF6cJ+OwzslkwGu2RJywsrLGx0el09pzfjYuToqLO5crKvh0RubkSEyMTJxJ1AAAwoJh/FwAAI6utrRURh8MhXfWZk5OTCQtwLVRV9fkjJ08SNuDyZs+efanOSUlJScQH6Ifp0y8unzlDPGBArhcOp9NZ22PPu1GjLi73td7/3r2yfbusWnXJ2i0AAADXAuN3AQAwMrvdrpK70lWfmfG7wLWQmyva6MERIyQsrKeNT5/uHN3b1CR79zILL9B/TLsLXLnWVmIAA7JareXl5aqH62XrM8fGSmxs5+1Zn3rs5eZ2LrS0SHAwUQcAAAOH/C4AAEZmt9vDwsIyMzOdTqc2SSGAq666unMhJEQef/wyGx8+LNu3dy6XlZHfBfqP/C5w5QYNIgYwIIvFIiJhYWH19fWqPrPdbu+hq2tycn+637lO/j52LFEHAAADh/rMAAAYmc1mE5GIiIiYmBjVez0lJYWwAFdXba2UlnYuJyRcfvuJE2Xw4M7l0tJezdQLoGc333wzQQB6Txt0KCJDhhAPGJDVapWuGWra2touu/1994nF0rl84ECvbs/27r242YgRzGMNAAAGFPldAACMrOdCZACuik8+ubicmtqrj9xww8XlPXsIIdBPR44cUQvh4eFEA+g9Bh3C8NRQ3YiIiIiIiLCwMOnq+dqDtLTOhaYm+eCDy3z/4cPyj390LoeEyO23E3IAADCgqM8MAICReeZ3VU92AFeR1kpuscjEib36SFaWHD3auVxRQQiB/jiqHUUiY8lQAb1TWysffHBx0GFsLIMOYUwqvxsfHx8fH3+pJyM3990np093FmUpLZW1a+WWW7ov1JybK4cOSUtL58sJEziOAADAQCO/CwCAkdV+s7IYyV3gqispkbq6zuXeFGdWYmNlxIjOBsSmJsnNlenTiSXQNwcPHtSWMzIyCAiglJVJTU33b50+/Y2qsyEhMm0aAYMxeT74lJWVpWlDdC9h5kzZsqXz1q6uTnJz5ZNPJD5e4uI6N6ipkerqi/d+IjJihNx3H/EGAAADjfwuAABG5tZLXXVjB3AVdVWHFRHp0wSg8fEXZ+1lCC/QVzab7cMPP1TLI0eOHDVqFDEBFO3i0rOQEJkxg0GHMKz+PfjExsrixfLGG1JS0rmmrk7q6qSoqPuDaMIEkrsAAMA7yO8CAGBkbvldi8VCTICrq6qqc2Hw4L61kk+fLkePSlOTiEhlpZSU0MgO9MFbb73VpI4fkftoXAf6IiRERo6UyZMlNpZgwLBiPX7fl63PrHn0USkpkYMHparqYhFmt4MoOVluvpmbNwAA4DXkdwEAMCybzea2hvG7wNVVUiJJSZ3LWuG+3pswQerrO5e7ElUALm/btm1//etf1fLIkSNnzZpFTODnrr9eLld3VkQkJkZiYno7VTzg0zwffDwfjnowZkxn7vbwYbHZLt6nBQfLkCHdT8oLAAAwkMjvAgDgR8jvAleX1vbXP8y5C/TVrl27du7ceaSrMLrFYnnqqacIC3CF1yMAl0J/CAAAoE/kdwEAMDibzVZfXx8WFjZ8+HCiAQDQuV27dn366aee62tqampqalzXWCyWX/7ylxMmTCBoMPaNnFowm8101AN6z/N46X19ZgAAAP0jvwsAgGGpJoympqYvvvgiJiZm+PDhNAsCAHTOM4/brZtvvvm73/0uyV0Y3tKlS1WKd/bs2QsXLiQgAAAAAIT8LgAAhtfW1kYQAADGEBcXN27cuKysrKysLKIBAOgNp9NpMtEECgAADIWbGwAADIsSZAAAnWtrawsODhaRFStWXHZjcroAgF5ShYsaGxvz8vJEZOrUqTwcAQAAIyG/CwCAwTmdThFRrefUZwYA6EdRUdH69eufeeaZxMREcrcAgGunra2tqamJOAAAAMMIJAQAAAAAgIG3ZcuWsrKyZ5999ujRo0QDAHB1mc1mrSyz6vMKAABgGOR3AQAwLNVFXbVlqKYNxu8CAHQiLy+vsLBQRM6dO/ePf/yDgAAArinqMwMAACMhvwsAgGF5NmGQ3wUA6OQKtX79eu3aNG/ePGICALi6zGazmqQGAADAeMjvAgAAAAAG1Pbt2202m1qePXu21WolJgCAa8fpdDJ+FwAAGAn5XQAADK6trU266jMDAOB1Nptt+/btatlqtc6ePZuYAACuOmoXAQAAA6OpFwAAw6I+M9Bvn3zyyXvvvXfgwIHq6uqamprBgwfHxcWlpqbOmjVr5syZxAe4Elu2bNGuUPPmzePaBHg6efLkjh07/v73v+fl5TU1NQUGBn722Wd79+6dNWvW/fffHx4eToiAnuXm5v7jH/+oqqpqaWkRkaNHj37++ee//OUvZ82addtttxEfAADg68jvAgBgcMHBwQzeBXpv+/btq1evPnjwoOvK06dPHz9+fPfu3S+//PKQIUOWLl26ZMkSYgX0Q1FR0a5du9RyZmbmtGnTiAng6sCBAy+88MK7777rtv7zzz///PPPX3/99cDAwJ/97GdLly6NiIggXICnl19+efXq1dXV1a4r7Xa73W7/1a9+9atf/WrChAnPPvvsv/3bvxErAADgu2jtBQDAsNToqPHjx2trLBYLYQEupbm5+bHHHnvzzTfVy8jIhJCQyNTUeRZLXHNzXWNj9alTe7766uiZM2eefvrpV1999bXXXrv99tuJG3Apx/eVHT5Qaq9prjrR0hEhlTc31D1Rv2XLFm0DKjMDbp5++uk1a9ao5ZCQyJEjZw0efGNERHxb2/nGxprq6kOnTu25cOHCr3/96z/+8Y+vvvrqww8/TNAAzbFjx37wgx8UFBSol7Gx4264YWpERHx4+PVNTdXFxX9pbW1qaKg4evTo3LlzZ82a9ac//Sk6Opq4AQAAXxTQ0dFBFAAAMKQtW7a4NqOLyOrVq9PS0ogM4OnTTz997LHHjhw5IiI33DD5jjueHTFihudmZWW5xcV/yc/fKCJBQUGvv/76o48+SvQAN5s2bfrFL37x5Zdfer6VkJCQmpo6aNCg2bNnL1y4kFgBit1uf/TRR9XU1EOGjL3zzqXp6d/33KypqebgwXX79/9GvfzNb37zs5/9jOgBIvL2228/9thjqodrevr3b7pp7qhRD3hudurU7n37VpeV5YrI2LFj//SnP91yyy1EDwAA+BzyuwAAGNb69etVK6Fm3bp1ycnJRAZwY7fb77jjjmPHjonI9OkvZWY+3fP25eW73nnnB42N1SKSm5v7rW99ixgCSm1t7ZIlS7TeReHh4SEhIUFBQa2trefOnVMrQ0JCbr755tzcXGbeBTQPPfTQ22+/LSK337743nvX9Lzx118fz8n5QXX1IRF55ZVXfvSjHxFA+Ln9+/ffeeedHR0doaEx2dmvjxw5q+ftP/nk/3v//Z+IyMiRI/ft22e1WokhAADwLeR3AQAwLPK7QC9prep33rl06tRVvflIQ0P5G2/M/PrrE0OHDj148ODw4cMJI7B///45c+acOXNGRKxWa3Jysuv8oE6ns6am5sSJE+oh9Ic//OGrr75K0AAR+elPf/riiy+KyIwZa2+7bVFvPnLhgnPr1tmff/43Efnoo4+Yyhr+rK6u7rbbbistLY2MTPje93YOGTK2N58qLf3wjTdmisiMGTM++OADwggAAHxLICEAAMCoVHUyV4yUAjxt3bpVJXdnzFjby+SuiERHJ8+Z83pgoOmrr75avXo1YQREZMmSJWfOnAkMDBwzZsy4ceNck7siYjKZEhMTJ02aNGTIEBH54x//uHXrVoIG5Ofnq+Turbf+Zy+TuyISGGiaM+f1664bJSIrV64kjPBnq1evLi0tFZE5c17vZXJXREaMmHH//X8UkQ8//HDjxo2EEQAA+BbyuwAAAPBrKjs7YsTM3reqK8OG3T516koRefXVV48ePUok4eeWL19+6NAhERk/fnxCQsKlNgsPD8/IyLjuuutE5Omnn66rqyN08HMvvPCCiERHJ82c+bs+fTA8fMi0af9XRHbv3q0VRQf8zYkTJ1566SURueuu5UlJU/v02Ztvfmrs2O9od4MAAAA+hPwuAACG5Tl+F4Cbjz/+uKCgQETuvPPZfnw8K+vnMTEpIrJt2zaCCX+2d+/eVatWicgNN9ygcrc9GzVqVEBAQHV19ZIlS4ge/JnNZlNXkDvuWNqPj48ePefGG78tIuR34ZVTWb4AACAASURBVLf+93//V0TMZuudd/bnIFKHXmlpqdu8NgAAADpnIgQAAPgP6jMDbt577z0Ruf76m4YPv7t/3zBq1OyDB9e+9957agAW4J/eeustEQkMDBw5cmQvr0ejRo06fvz466+/vuI/1lrMEcQQ/ukvb3WmlNLS5vXvG8aMeejzz//23nvvnTp1LiwsnJDC3+Tk7FD3YyZTWD8+Hhd387Bht3/55cH33ntv9uzZxBMAAPgK8rsAAPgR8ruAmz179ojIyJGz+v0NI0fOOnhwbWFhoc1ms1qthBT+aceOHSIyfPjw3n8kNjb2+PHjIvLn6e/cG/pvxBD+KffcP0Rk5Mj7Bw2y9PsyJCIXLlyYNy9nyJAsQgq/0t7efPhwnjqIruBe7v4vvzyo7gkBAAB8hem1114jCgAAGFJeXl5lZeWJEydEZPjw4aGhoVz3ATeff/65iERHJ/X7G667bpRa+OMf/5iYmEhI4Yc6OjrUoRQVFdX7Tw0aNMhsNtvt9srmUkeHgzDCP9W2VYlIVNQN/f4Gi2VoSEhUS8vZ6uoSh4PLEPxLS0u1WoiJGdHvL4mJuVFEvvjiC56VAACADzHNnz+fKAAAYHglJSUiwnUf6JbFEt/vz0ZGJqiFX/ziF0QSfi4kJKSv29vt9pqWqnMt54ge/NNpqRERiyXuSr4kIiK+peXsqVNFp05dT0jhZ8q1o+AK7uWGiYjD4eBZCQAA+BBTTEwMUbjW2tvbz507JyJRUVGBgYEERFc6OjoaGhpEJCIiwmSiYrlOnT9/vqWlJTg42GKxEA29aW5udjgcQUFBkZGRRENvHA5He3u70+ns6OgQEZPJFBHBBIe6c/bs2QsXLoSHh/c1L4KroqGhoaOjo+UKcksOR51a4F7CK9ra2pqamkSE5xo93FG3t7f36YNOp1NEwgPMgQEBhNGLu6+jQwICJIC94A3hF8wi0traeCVf0tJyVkSCgsIDA4MJqVeuROpOm4PIG2cws9OpjoJzYWHX9fderl4tcC/hrYfW5uZmnlX17MKFC2fPnuV5R+ePtGazedCgQURDn2g71bPW1la73R4QEBAdHe1z/3hTXV0du/BaO3z48K233ioin332WVxcHAHR2yVQ3cHv2LHj7rvvJiD69OSTT27cuHHWrFlvvfUW0dCbF154YenSpWPHji0sLCQaerNs2bLCwsLc3Nzm5mYRmThx4oEDBwiL3gwfPryysvJ//ud/fvKTnxCNgTd27NiSkpKmppp+f0NjY2dhwPz8/JSUFEI6wHbs2PHAAw+IyNdff03DuhdFREQ0NTWdP3++T43jLS0tIjLccuP14cxd7c0HopaWlrCwcBrWvSLu7PBPmz/RLiX90tHYWCMiN988dejQaYR0gDkcjo8++khE7rjjDhptB15ra92HH/5aRJqaaqKjk/v3JU1N1SIybNiwqqoqQjrw/vu///s3v/lNZmbm3r17iYY+1dbWDh06VEQ++uij2267jYDoTVRU1Llz51599dXvfe97REOfVqxY8fzzz2dkZBw+fJho6M2f//znxx57LDIy0hdTpfS4AQDAj9jtdrPZTBwAzZgxY0pKSior94n8rH/fcOrUHhEJDw9PSkoinvBbU6ZM2bFjx5kzZ4YNG9bLj9TX16v87uhbb3NEdRBDbzlyoPirr75Kjk3JyMggGgMv7tMRclyqqvb3+xsqKnaLdIjIPfeMiYsjvzjQ6uqcH330LxG5/fap8fHEf+BF/vOfQ5qazpw69Y+EhKz+fcUXX+xV94REEwAA+BDyuwAAGJZK5VJACejB/fffn5OTc+LEjubm+tDQ/hTlO3nyPfU9TMMBfzZr1qwdO3acPn3666+/vu66XlXILC8vF5HRo0c/uSuLAHrR/71/3fvvv//vM/990R/uJBoDb9CBh/6c9WJ9fVl19b/i42/t12Voh4jcdNNNv/71ZOI58E6dcvyf/7NFRL73vf8eN45SBF5QUDB748aNJ0/uuOOO/+7fN6h7uVmzZhFMAADgQ2iEAgDAsBiqC1xWV1tex6FDv+vHx0+d2lNa+oHQJgi/96Mf/SgrK0tEjh8/riZ9v9yxc0rVv1q5ciXRgz+bNGnS8OHDRSQv77f9+LjdXnv48B+4DMGf3X///SJSWflPlabtqwMHXmxpOad9DwAAgK8gvwsAgB+x2+0EAXA1dOjQxYsXi8i+favr6k729eP//OcLIjJ+/Pgf/OAHBBN+7re//a2InD9//uDBgxcuXOhhS5vNdvLkSRH54Q9/+PDDDxM6+Llnn31WRIqL/1Ja+mFfP7tv32qnszk0NPTpp58mkvBPDz300B133KHdlfVJY2P1vn2rReSpp54aOXIkwQQAAD4k6PnnnycK11p8fPyxY8fGjBmzcOFCoqE3oaGhau/8/Oc/Jxq6FRAQ0NzcnJ2dzaxgOjRkyJAvv/zy7rvvvueee4iG3hQVFR0/fvzLL79sbW2NjIy86aabpk2bFhMTQ2R0pby8PD4+/plnnomIiCAaXnHLLbf8/ve/b21tqa7+V0bGEwEBAb384M6dTxcW/llEfve736WmphJJrxg1apS6l/vud79LNLwrISEhODj473//e2tra21tbVhYWHh4uNs27e3tx48f//zzz0UkJSXlnXfeCQ4OJnTeZbfbTSbT97///RtvvJFoeMXEiRO3b9/+1VdflZXtHD36wbCwwb384L/+9fs9e54XkV/84hcMPfSW6OhodRlatGgR0fCWoUOHvvHGG+fOVTY1fTVqVB/Gsm/bln3mzGci8uabb/KU5C1ms/nrr7+ePn26KgQCHbJYLOpE98wzzxANHSopKUlOTl66dOmgQYOIhm7vFmpra6dOnTp5MrNp6E5KSspnn32WkZGRnZ3tc//4gN7UzgIAAL5o/fr127dv37dvn8PhGD169PDhw9etW5ecnExkADfbtm175JFHRCQlZfqcOa9bLEMv+5GPPvrpgQMvisjixYvXrFlDDAHlhRdeWLp0qVq+7rrrrr/++rCwsMDAwNbW1oaGhqqqKvUE+q1vfWvNmjVpaWlEDBCRTz755I477mhpaRkyZGx29utxcRMv+5FDh9Z9+OFiEXnggQe2b99ODOHnli1btnr1ahG59db/mDnz/112+5aWszk5PzhxYruIbNy4ccGCBcQQAAD4FsbvAgBgWEeOHDl+/Hh1dXVra+uQIUOioqK+/e1v0zMd8JSamhoSErJr1676+rLjx3PCw6+3WtMvtXF19aG//e0/8vM3isgDDzzw2muvEUBAc9ddd82aNaukpOSLL75wOBxnzpz56quvampqbDbbuXPn1Da/+c1vXn31VavVSrgAJT4+ftSoUW+++eb582eOHXstJCRq2LDbL7VxQ0PFrl0/U0Vlx40b9+6774aGhhJD+Llp06YdP368qKiouvrQ4cN/SEycFBU1/FIbl5S89c47P/jii70isnz5csqbAwAAX0R+FwAAw1JtHHa73Ww2R0VFmc3mu+++m/Z0oFt33XVXYmLi9u3bm5vrS0r+eujQuqCg4NDQwSEhEYGBJhFpbKw+fjxn377VO3cu+frrEhH5z//8z9dff53QAW7i4+MXLFiQlJRkMpnOnDlz/vx5bf2iRYvWrVv3ne98hygBblJTUydNmrRz586mpnOlpR989tn/2u22QYMsISFRQUGDROT8+dNlZbl5eS++887jNTVHRCQ7O3vHjh2RkZFEDxCRhx9++Pz58/v3729rO5+fv8lmK2xrO282W0NCIkQC2ttbKyv3nTjxzscf/+Kf//y13W4Tkd///vfM1QUAAHwU9ZkBADCsLVu2bNmyxXXN6tWrKYYJ9GDfvn2rV6/+29/+5royLOw6h6NO5OJt86hRo5YuXfr4448TMeCyWltbb7rpptLS0hdffJFp24CelZaW/upXv3KrDBESEuV0OtrbW7U1MTExS5cu/a//+i8iBng+Ab3wwguFhYWuK8PDrz9//rTrmmnTpi1duvSee+4hYgAAwEcFEgIAAIzKbDa7rWlqaiIsQA/uvPPO999/Pycn5/vf/75WzNzh+FpL7s6YMeN3v/vd8ePHSe4CvTRo0KCgoCDiAPTGiBEjNm/e/M9//vMnP/nJ8OGd1WVbWs5qyd2srKxVq1ZVVFSQ3AW6NW/evIKCgj/84Q/333+/tlJL7kZERMybN2/btm0fffQRyV0AAODTTIQAAAAAcDVnzpw5c+aISEFBQU1NTXV19eDBg+Pi4kaNGhUdHU18AADXVFZWVlZW1ssvv/zZZ59VV1dXV1eHhYXFx8cnJiYmJiYSH+Cy/r1LcXFxS0tLS0tLaGhoTEyMW40WAAAA30V+FwAAw/Icv2u32wkL0Hvjxo0bN24ccQAAeMXYsWPHjh1LHID+aWtrc+2ZZ7VaiQkAADAM6jMDAOBHyO8CAAAAAAAAgE8jv+t9aWlpAS4eeeQRYuJ1jzzySEAvLF++nFjpQW5urtuuqaqqIiw63C8cPgPPc/zuZRUUFHAc6YrbsZObm0tMdKWqqorzm09QJzfutHtp+fLl/Ko5UsC1BtytGftcxyMP7Qa4kj3F4eNdtF37HHJAPrR3CgoKfOVfTn7X+5fG4uJi15Xbtm3zrd8Q4EWqpePee+91W5+YmMgdjNft2bOHIPii8ePHEwSdUPkVt5X33nuv50p48aHacx7EVatWcS/Hyc3Xb65WrVrl+aumFY8jBVxrwN2ab3GrXaR1fuVcR7sB+npzSMsb0G/kgPRs48aNnntn/PjxvnIvR37XawoKCrRLY0eXyspK7TdEA4oXbd26tePS1DapqakrV64kVt69xdRaOo4dO6btoLlz54rIqlWrNm7cSJS86OTJkyKybNmybo8jDp+BYbFY3Nb0XJ+Z/oO6usVU+RXXg+jYsWPq3bS0NELkdcuXL9+2bZuIbNiwgXs5naOdvfe0m6vKykq3M49nhgkcKeBaw90ad2s+h0ce2g3Qe7S86RZt176CHJDO7+WefPJJt+dfbe/4xMMR+V2v0TrFa+dcEUlISNBevvLKK0RJz08CH3zwAdHwrmeeeUY7/44bN871FkfdaGonaHiFaoqaPHkyofA6p9PpcDgcDkfPm+Xm5qq9Bj1QZ7Bly5a5Po+NGzdONRoWFxdT+s/rD2nqXm7nzp1PPPFEt/dy2nUK3t1TpKz69Hyr3VwlJCRoZx7tEZcmPI4UcK0Bd2s+xK1vq8Vi4ZGHdgP0CS1vvoi2a10hB6T/e7nU1NSOjg7t+dd17+i/SgH5XS/fwSxbtszzLbUyJyeHKOmN9iSwc+dO7ZiHVxQUFPSwL7QjizIXXtxBamHs2LFEw4tUCbLS0tJ9+/apYiOXGr9bVVWlehRu2LCBuOnhcqMWfvzjH7u9pT1Ua+kWeMXhw4fVY8D06dM931XHEa2HXpeWlkYBxn48327YsMHt5iohIUH9qmnC40gB1xpwt+a7GhsbeeSh3QB92kG0vPni5Ym2a10hB6T/e7k33njD892dO3eKS3pet8jvAn2gngTmzp3b7QM2BpJq7BCRbvfFuHHjVEUF196FGEi1tbUikpqayt2kr5g5c6a6faH8ph5Mnz5dncQ4gnTrww8/VGe5bt/VjiNKLXmRNonO3LlzOzo6LrWzoNHa5iZOnOj5rraSJjyOFHCtAXdrPkF1bG1sbCwrKysrK3M6nX/5y1945KHdAL1Hy5svou0a6CU1AXxqamq3JzGt45HOy7GQ3/UabaICz7fUyuzsbKKkK9p4/JdeeoloeJ1q7Oi29xP0c43Mzs5W5f40TEM1wNT43eDgYBFxOp1yifG7y5cvLy4uXrZsGQ8A+qfdWXabgMGAUdMdbd26tdt3tfE6tFV5XQ+7CW60Jrxun2+1ldpm4EgB1xpwt6Z/TqeztLS0tLT0xIkTp0+f5pGHdgP0Hi1vPoe2ax0iB+TrdF6Ohfyu12jnWbeJjrSXnkV+4EVVVVXqnLts2TKen/VAVbdISUnRDhxXxMfrVHWRVatWuZX7Ky4uDggIYCYqXcnNzV21alVqaqrrzGHQ7dOa6o27bNkyeknr2W9/+1vtQQ7eosYTEIfeKysrk0uPFNTeUpuBIwVca8Ddms65dmy9cOFCaWnp0KFDeeSh3QC9R8ubb6HtWp/IARnjMVm3yO96jZqoWbWSuF0d3aZ0hh5oU51zztWVxMTE5cuXe95WBgQEbNy4kfh4kSr0J121/jRq5b333suj2sBQ43eVbsfvatPufvDBB4RLtzZu3KhuEtTT2rFjx2iZ0vn+UufAhQsXEg0AANca7tbgRW1tbR0dHa2trUJ7Du0G6Bda3nwFbdf6RA5It1TnleLi4m7nOvnss8984q8gv+tNubm52q2M2/0N81rpjXpImzt3LudcPdBOu0uWLFHjDl2fBNQl88knn+RG01u0M9iGDRvcCsppO0jlFDEwTCbTpd7Spt3l5KZnbr0Fx48fr5Vdgg5PgE8++aR6VKP6HwCAaw13a/AW1bHV6XSq5G5mZuawYcMIC+0G6CVa3nwObde6RQ5In7RLzDPPPOP57pIlS3ziryC/6zUbN25UvyG3C6T2MEAnNV2dhdUCc07ojZoxtKioyHVlUVGRKlP25JNPdtsBB9fauHHj1AntiSee8Hz3jTfecDuycO24jt91beZQmHbXV6xcuVK7T9i5c6d6cqPRUIcKCgq04nKMiQcAcK3hbo3IeJF68Kmuru7o6Bg0aND1119PTGg3QD/Q8uYTaLvWLXJAupWQkKCOl23btrnO+15VVRUQENBtSl6HyO967ZFM9bf1vEB2dHSoCySd1PRj/fr16izM9Dk61G3VEW1uA/VoDb09xamFPXv2EI0BYDab1fjdtrY2cRlboKbdFRFqx/mW6dOnb9iwQURWrVpFT0+9PVFrDe6VlZV0mgYAcK3hbo27NS+qra09ffp0TU2NdHV7TU5OJiy0G6AfaHnTP9qu9YkckM6tXLlSpXjVvO9KYmKiiBw7dkwVKtA58rtXQUBfqL4Ahw8f7s0Fku4bXtk7bqqqqrZt2yYiTz/9NPHUyW7SGjIuVXUkISFBnYJ1PgW6nxxEnnziAmmYffSXv/zlk08+aW5ubmpqevfdd//2t7+Jy7S7x44dI4A+dxBpPdzV5Ql62Edan1yhwd0XLkO4EmqaIgADj2uND+FuTQ+++OKLvLw8ERk0aJBa41ncCHpGu4F30fLmQ2i71i1yQPq3cuXKyspK1zXLli3r6OjQukro/PmX/K53qCtfampqzxdIOqnpgTaZ9sSJE4kGN/qAr7tw4YLdbtc62I4fP94tO6K1GyYmJgYEBDzyyCMEjXMgerZ8+XLVJ1dEOjo6aHCHj1IPrj3UoVJvqe7MALjWgLs1nVPJXRFpbW2tr69/9913J02axCMPwHnMeGi71i1yQD4hISHBtXS2KnNYVVXlE8+/5Hevgo6+cBuJD/3vHXWGpcCF3naTuv75Sil8f9s7y5cv73kQldpxDAAamH20du3a22+/PTQ0NDQ09Nvf/vaUKVNcp+CFjx5E0M/dwiOPPKJKnc+dO1ebRAfcafsirT2o22qi2srY2FhiBQwwrjU6xN2a/jU2NhIEnz6IaDfwOlrefAVt18BVp3WbGDt2rJ7/neR3vUPrHd/tFPRa74DJkycTK6/LyckRkezsbEKhKwsXLlQH0aWaIDmIvEiF/VJ7R6s6Qr/CgWE2mwcPHpyamjp+/Hg1Ea/dbn/iiSculR3RhvZWVlZ2dHRs3bqVGOrtIOI+QT/S0tJUIaxly5ZxsMDXae1BWhkxV9pKmo0ArjXgbs1Xjp0HHnggJSUlNDQ0Li7ugQceqK2t5ZGHdgP0Hi1vvoK2a90iB6RnBQUFqqpHt6c4Naf1pQrU6wf5Xe/QSsG88sornu8+88wzakHnvQP8gXaepcOg3kyfPl0tPProo57vqu7trpvBK3tH2xGeJ8C5c+fSQDwwzGazyWSKj4+3Wq1qDeN3ff0gmjlzJqc4PXjkkUfUTcKGDRtUAR/A1y1btkxEnnzySbcGiKqqKlUYdsOGDUQJ4FoD7tZ8gutTT1hYmIhoD0Sg3QB92ke0vOkZbdd6Rg5Iz7Tri+pJ6So3N1etVN1c9Iz8rnckJCSoxpFVq1a5lSLROudu2LCBOXW8rq6uTi3QYVCHVJfb4uLigIAA11bIgIAAdRBpfXIx8NQpbtu2ba6nONUxSi2/9NJLRGlgeLZiqPk/4BOnOLeDSJ3i1MMbpzjv2rhxo3bD9sQTTxAQGIOWPUpMTNRurgoKCrQ5h/i1A1xrwN2ar6itrRWR1NTU6dOnp6amktyl3QD9PtHR8qZntF3rGTkgn7gMrVq1avny5a534FofI/33XyG/6zVPPPGE6iCvrpEarXMuz2/6eR4QkcGDBxMNvZk+fbp2H5mYmKgdRNo9KF0IvXuKU9dI11Pc+PHj1buVlZXcuwwYs9nstobxu75yivM8iDjF6Ycay6gWAi5NqywH+IrKykq3myvXyzfxAbjWgLs1X+H21OP5WATaDdCbEx0tbzpH27X+T3TkgPS8d+bOnSsiq1at0naNugOfO3euT0zfQH7Xm1auXNnR0aEmq9ekpqZ2dHRwYOsEzVj6v9Hs6OhQl0nN3LlzOzo6uMXUwzXS8xS3YcOGjo4OHtIGUmxsrNsa8rs+fRAtW7aMU5zXdTt3DmAMCQkJnjdX6szD5RvgWgPu1nyI21OPxWIhJrQboB9oedM52q71jxyQnm3duvXYsWOeh5VPJHdFJKCjo4O9CACAUdnt9nnz5rmuyczMXLp0KZEBAAyY0aNHnzhx4sUXX9RmmQIA4Nqx2Wxuc+ZNmzZt0aJFRAYAABgG43cBAPAvjN8FAAAA4FePPNRnBgAABkN+FwAAIzObzW5tGdrsLAAAAABgPJ6PPOR3AQCAwZDfBQDA4KxWq+tLxu8CAAAAMDDPRx63ZyIAAABfZyIEAAAYm8ViaWxsrK+vF5Hhw4eT3wUAAABgYNRnBgAAhsf4XQAADM5sNtfX1x8/fry0tFStIcULAAAAwKjKy8vd1sTGxhIWAABgJOR3AQAwOKvVGhoa6rrGZrMRFgAAAACGpPqzfvHFF/v27SsuLhbG7wIAAMOhPjMAAAantWU4nU6n02kymRi/CwAAAMDYnE6nw+EwmUzC/LsAAMBwGL8LAIDBmc3msLAw1zW1tbWEBQAAAIAhlZWViYjD4RARk8lEchcAABgP+V0AAAzOarVq+V3VxsH4XQAAAADG5nQ6RSQsLIzizAAAwHjI7wIAYHAWi0VbVm0c5HcBAAAAGJXNZtOWTSaT6wMRAACAMZDfBQDA4KxWq8lkUvNOqfG7ru0dAAAAAGAY2sOOevYJDg6mPjMAADAe8rsAABicazkyxu8CAAAAMDDtYUc9+4SGhlKfGQAAGA/5XQAADE41Z6gpeFUbR21tLWEBAAAAYDxafleN31V1jAAAAAyG/C4AAManSjSLSFtbm1CfGQAAAIBBlZWVua1JTk4mLAAAwGDI7wIAYHyxsbFq/G5zc7OI2O12SjQDAAAAMB7VmVUN3hWRsLAw6jMDAADjoUQJAADGl5ycPHr06NGjR2vVyWw2G93YAQAAABiMyu+qiWlExGQypaSkEBYAAGAwjN8FAMD4zGazyWRynXqqsLCQsAAAAAAwGFWf2WQyxcfHx8TEREVFWa1WwgIAAAyG8bsAABif51Bd6jMDAAAAMB41fjcsLCw1NVVEhg0bRkwAAIDxMH4XAADjS09Pd1tTXl5OWAAAAAAYiedjTmxsLGEBAADGQ34XAAB/pKqWAQAAAIBheJYpojgzAAAwJPK7AAAYn9lsdmvXoD4zAAAAAIPx7MbqOVUNAACAAZDfBQDAL7jVJbPb7aR4AQAAABiJZ31ms9lMWAAAgPGQ3wUAwC949ltnCl4AAAAARuLZhzUlJYWwAAAA4yG/CwCAX/Ccd4opeAEAAAAYidszjuc8NQAAAMZgIgQAAPgDq9V6/Pjx+vr6mJiY0aNHC1PwAgAAADAWm83m9hBETAAAgCGR3wUAwC+kp6eLSGNjY1hYmFpDfWYAAAAAhqE94Dgcjubm5tDQUIozAwAAo6I+MwAAfsFsNgcHB4tIXV2dWlNYWEhYAAAAABhDbW2tWqivrz98+PC+ffvMZjNhAQAAhkR+FwAAf3HjjTcSBAAAAACGpBVndjqdIhIREZGWlkZYAACAIZHfBQDAX6jZp5xOp2rvsNvtbtNTAQAAAICP0uozNzY2iojJZLJYLIQFAAAYEvldAAD8hZqCV7raO8SlhzsAAAAA+DS73a4WVH/WsLAw1cMVAADAeMjvAgDgL2699VaTySQu+d2ysjLCAgAAAMAAtKcb9bwTFRVFfhcAABgV+V0AAPxIWFiYdPVnF5ce7gAAAADgu1xnn3E4HCIyevRowgIAAIyK/C4AAP4iPT3dbfyuNkMVAAAAAPgut+SuiAwdOpSwAAAAoyK/CwCAvzCbzYMHD3ZdU1hYSFgAAAAA+DqtOLNWrCguLo6wAAAAoyK/CwCAH1H53bq6OvWS+swAAAAADEB7tNGKFd19992EBQAAGBX5XQAA/Mgtt9xitVrj4+O1NVodMwAAAADwUUVFRWpBjd+NiIhISUkhLAAAwKhMhAAAAP+RmppaWlrqusZms1mtViIDAAAAwHe5jd81mUxms5mwAAAAo2L8LgAAfiQtLc1tjTZPFQAAAAD4KO25JjU1deLEiRMnTiS/CwAADIz8LgAAfiQ9Pd1tjVbHDAAAAAB8UXl5uTZ+V0RiYmIyMzMJCwAAMDDyuwAA+BGz2ezWjb2wsJCwAAAAAPBdnkWJmIMGAAAYG/ldAAD8S0pKiutLu91us9kICwAAAAAf5VmUyHNiGgAAACMhvwsAgH9JTk52W8MQXgAAAAC+y3P8rluvVgAAAIMhvwsAgH/x7MnO+F0AAAAAPsqzZQtPZAAAIABJREFUIlFycjL1mQEAgLGR3wUAwL+kp6e7rSkvLycsAAAAAHyRzWaz2+2ua2JjYwkLAAAwNvK7AAD4l/b2dqfTabPZnE6nWkN9ZgAAAAA+yvNxxnNKGgAAAIMhvwsAgN/Zu3fvsWPHGhsb1UvPgmYAAAAA4BM8yxGR3wUAAIZHfhcAAP8SGRlpsVhERMvvikheXh6RAQAAAOBzXMfvFhcXFxcXt7W1ERYAAGBsJkIAAIC/GT58eENDg1afWUTcJqwCAAAAAP1zq0VUXV0dFBTE0w0AADA8xu8CAOB3br31Vvnm+F3PmmYAAAAAoHOuDzLqAcdkMiUmJhIZAABgbOR3AQDwOykpKQEBAXV1ddoa15pmAAAAAOATysrKtGWHwyHkdwEAgH8gvwsAgN+56aabgoKC3Oozu5Y1AwAAAAD9Kyoq0pabm5tFZMSIEZGRkUQGAAAYG/ldAAD8TlZWVnBwsHyzRHNeXh6RAQAAAOBDXMfv1tfXi8iYMWMICwAAMDzyuwAA+J3IyEjVpV21gChMwQsAAADAh7hVIWpsbAwKCkpKSiIyAADA8MjvAgDgj0aMGCEiriWaXXu+AwAAAIDOuXZRdTqdDocjODh40qRJRAYAABge+V0AAPzRnXfeGRgY6Fqfmfl3AQAAAPgQ1y6qDodDRIKCglJTU4kMAAAwPPK7AAD4o6ioqODgYNf8rt1up0QzAAAAAF9RVFSkLatHm8GDBycmJhIZAABgeCZCAACAH1q4cGF7e/vHH3/surKwsDA5OZngAAAAANA/1/G7jY2NAQEBTL4LAAD8BON3AQDwR5GRkXfddZfJ9I2eXq793wEAAABAt2w2m+sUMzExMcOGDZs5cyaRAQAA/oDxuwAA+Kn09HS3NYWFhYQFAAAAgP65Dt4VEavVunDhwoULFxIZAADgDxi/CwCAnzKbzVar1XWN3W632+1EBgAAAIDOuQ7eVdLS0ggLAADwE+R3AQDwX5mZmW5rysvLCQsAAAAAnfOcXCYlJYWwAAAAP0F+FwAA/2U2m93WUKIZAAAAgM7Z7Xa3JxfP6kQAAAAGRn4XAAD/NXv2bLc1jN8FAAAAoHOFhYVuM8ukp6cTFgAA4D/I7wIA4L88O7nn5eUxBS8AAAAAPfPslpqcnExYAACA/yC/CwCAX/Ps556Xl0dYAAAAAOiW5+S706ZNIywAAMB/mAgBAAB+a9u2bX/605/q6+tTU1O1lUVFRTSOAABgWF+JHPDBf/ZYkTHsPAAi3U2+m5yczOS7AADAr5DfBQDAf1VVVVVXVzc2Nrrmd/Py8hYtWkRwAAAwpq9EHvLBf/Z/ivyOnQdARMQtudvY2BgYGHju3LnIyEiCAwAA/AT5XQAA/NdNN90UEBBw4cIFp9NpMnXeFdjtdpvNRv93AACMaajIWh/8Z9/OnjOmjg65cKHDt/7NgYEBAQHsOm86ePCg68vTp0//+c9/Li4u3rlzJ8EBAAB+gvwuAAD+KysrS0QGDRrkcDgiIiK09Xl5ebNnzyY+AAAY0FAR6nRAN3Jy6h96qMy3/s3794+eNMnCvvMiz/G7JpPJtSIRAACA4ZHfBQDAf0VGRkZGRra2ttbX17vmd4uKisjvAgAA4FpLSQmdNs3HauomJoaw47yovLzcZrO5rmltbQ0MDExMTCQ4AADAf5DfBQDAr6Wmpu7fv9/hcLiudOsRDwAAfNUKkckiUwz6p80RyWAf+7bx48M++mgkcUDvuT2qOJ3O5ubm8PDwm266ieAAAAD/EUgIAADwZ6mpqQEBAdrku4qagpfgAADg2xpEnhd5x4h/Wr5x/zQAPSoqKnJ9qYozq+caggMAAPwH43cBAPBrkyZNWr9+fV1d3YgRI1zXMwUvAAA+r8Hl/y8l53JfEi0S3d9hshUi+Zf78iSRpCv7A+E7cnIasrOjjXacNbTv3t1ovL9Lt8rKvjFhc2NjY3BwcGJiIvWZAQCAXyG/CwCAX4uKihIRp9PpcDjCwsK09UzBCwCAX1jQ6yxptMh8kcf7kuvNF3mwd1smiWSLLLqCXC90Lz///IMPlq5Zk7B4cayR/q7Nm88sWVJVX58RHR3EXr7WPCffDQkJCQgISEhIIDgAAMCvkN8FAMCvqTpmwcHBbuuZghcAAHxDg8hakbUi80XWiFzdwYoVXV++mCyvcX9BDe0icvbsBR3+w/Lzz+/Z07R7d2NDQ3tFRUt0dFBGRriIZGSET55smTIlooePnzrVJiIVFS3qI7imPB9SwsPDheLMAADA/5DfBQDAr0VGRiYmJlZWVg4aNMh1vd1uLyoqSktLI0QAAPiFDJFN3a2vEGkQ2SOyuWvNZpHNIh+LTOnL92/yGPirvvmUSIXLl6ss7xqRxewSv9PQ0B4Tk3/ZzZKSBmVkhCclhcyZE9Vz5rU3/8UVK2o2bz6jcs+u6ysqWkUkJ6dzeHt2dvSiRdYr/M/hyrlNvisip0+fFvK7AADA/5DfBQDA3y1cuPDcuXPt7e179+51XV9YWEh+FwAAP5Jx6ZXzRTaJLBFZ27V+ah9TvJ6T+Lq+3CSyVmRJ18slXeWgAQ8VFa0q+bp2bW1GRvhzz8X1b+7b3bsbFyyoUF918XcaHRQdHeS2UkRychrmzIkSIb/rTXa73W38rtPprK+vF5FJkyYRHwAA4FfI7wIA4O8WLlwoIna73S2/W15eTnAAAMBFa0QeF5nQ9XKqyNG+TMfbs8UiU0Smds0HvEBkCoWa/VdGRvjjjw92W3n27AVVS3n37ka1Rs3pO3/+dZs29e23snZt7YoVNdqw3SlTIubMiZo/f4g2h25FRUt+vuPYMcfzz1dr27BfvKu8vNxut7uuiYqKkq6KRMQHAAD4FfK7AABARMRsNlutVpvNpq3Jy8uz2+1ms5ngAACAThkiR11SvA+KlF/VLy8Xiel6ueISJaPhB5KSBi1eHNvDBps3n1mxokYNtN28+euKitaPPx7Vyy93Te5GRwc991yca2a36x8QkpQUkp0d/dxzcWvX1q5bZ4uOpg3Nyzwn3509e/aWLVsOHDhAcAAAgL8JJAQAAEBJT093W5OXl0dYAADAN2SIvN21XCGy4Kp+uWsZ593EGpc0f/6Q8vL0+fOv6/yx7G6cMOGz3nwwP/+8a3J306akxYtj3ZK7bhYvji0vT+95GwwAz8l3p02bJhRnBgAAfon8LgAA6OQ5265nGwoAAIBki2R3LW8WqbiqXz6F+KK3Nm1K0lK8+fnnFyy4zG+xoaF9wYJTWlnmNWsS+jd3Lwae5+S7ycnJVquVyAAAAP9EfhcAAHTKzMx0W8P4XQAA0L01Lssrruo37+5ayCDKuLxNm5IyMsLV8ubNX+fkNPSw8bp1tvz882o5Ozt6/vwhBNBXeBZnTklJISwAAMBvkd8FAACd1BS8rmvsdrvrjLwAABhQAyHolySRpK7lnKv3tbtF8ruWye+idzZtukFb7mEIb0ND+9q1tdrLRYsY+ulLDh486Lbm9ttvJywAAMBvkd8FAAAXMYQXAOAv8kWWiCSLxIgEiASIPCiymbj0xfyuhYarNFduvsiDLl/+HCFGr2RkhGtllhsa2jdvPtPtZuvW2bTKzNnZ0VOmRBA6H8L4XQAAAFfkdwEAwEVMwQsA8AsrRKaKrP3mxLE5IgtEJjCit9fGuyzvubKvaujaKSr4U75Z/xm4nE2bki4e3ytqut3GNe/L4F3fUl5e7lZViMl3AQCAnzMRAgAAICLFxcUffvhha2ur2/rCwkK73W42mwkRAMAgVog837UcLZIhkiSS31UWWA0h/Zgw9cIUl+X8y23c4JE4rxCpEGkQOSayuevdaJHnROaLRBNf9EF0dND8+ddt3vy1iFRUtDY0tEdHB7lukJ9/vqKi80Y3IyOcwbu+xbOkUHp6OmEBAAD+jPwuAAAQEamsrHzppZciIyN//OMf79q1S1tvt9vz8vKmTZtGiAAARpDjktydL7LGJY+oMrsVIrtF1oos7tf3V1ztf3CSjoMZLRLdlZe97B++QGTB5f7S+SJzjDDtbkNDe37++fz882fPXuhhs6iowPnzh7ilIdFvkydbVH5XRHJy6ufPH+L67u7djdpyRkYY4fItro8nnSeMpCTCAgAA/Bn5XQAAICKSlZUlIufOnbNYLG5vHTx4kPwuAMAIVBFgZbFHBeAMkaMiE0QqRFb0K787oRfDWPsqWqRexyHtfX73sqaITPb55O7u3Y0rVtS4phJ7duyYw7WwMK7oF+QyJPfUqTa3d13XREfTGuZLui3OvGXLlscff3zFihULFy4kRAAAwA9xRwsAAEREIiMjExMTKysrm5ub3d4qLCwkPgAAI1jXlX+dIvJcdxtEi2zqmgV29zfrD/fGoiuehtbTeB+J7WXLKWd3t01F1/9EZLPIZhERef4Se0ffGhralyyp1MaP9kZGRvjjj1/HcXnVfoMuWdv8/PMeO8h58agaH0q4fEi3xZnXr1+vHmGIDwAA8E/kdwEAQKdJkyZVVlYeOXIkMzPTtRnFbrfv2rWLIbwAAJ+3uWth0aXzkVNEkkQqRN7pe353vsh8f43tZfO7j4tk97hrVnQlep8XyRHZ5EtjeRsa2idM+FRN7zplSsSUKRFz5kQlJYXs3t34zjsNKukbHR1UXv6NGUOvaWVmlW/Oz3dcxe9MSho0ebJl8eJYX/yFNjS0u/whIZwOfYhnfnfIkCGVlZXq+YX4AAAA/0R+FwAAdEpMTBSR/fv3P/roo27NKJRoBgD4vIqu9GH05RK32SJrr8FMukaNqnRF9UrMF5kvkiOyQKRBJF9kqsjHvpHibWhof/DBUpXcff75+Oeei7v4U8qOzs6OnjzZsmDBqYaG9s2bzwxkcrShob2iouVq7u2KFj3PFhwdHRQdHaTyuGp3uEXDdUuOXV9RXl5eXl7uusZqtZ45c0a66g8RIgAA4J/I7wIAgE4zZsx46aWXzp07l5CQ4PYWJZoBAD6vomuhQSS5F9vnE7K+hOiqJGKzRTJEJog0iDSIPChS7gNhWLKkcvfuxujooDVrEubPH9LNn5Uds2RJVUND+7p1tl7md3fvblyypOrjj0f1OxMZHR309tsj/O0nqSVxPeOWlDTIczPon+fg3czMzAMHDohIVlYW8QEAAH4rkBAAAAAlNTVVLezduzczM9P1LVWimRABgF8pKCgICAh45JFHDPL3uCYjGy73P+n6f/Rgt8vy5Kv0nUkiR7uWK0RW6D0GOTmd5ZcXL47tNrkrItHRQaog8GXTihUVLTk5DUuWVE2desJzBllcNnoXf0cu2dyuvdDT7LzQraKiIrc1aWlpxcXFIuLZJxUAAMB/MH4XAABcNGnSpAMHDhQXF8+aNcuts3xRURElmgHAr4wfP95Qf8/ZroUpfZ9YF916x2X5KhZSTuqaAllENos8p+sYrFtnE5Ho6KBFi6w9/U1Jg/Lzzzc0tDc0tHc7JHfz5jNqjC8/q35zrcnsms3tWnMx7MeOOQiXTygvL3crI2Q2m4cNG8bkuwAAAOR3AQDARampqQcOHPjggw9Wrly5bt0617fy8vIWLVpEiADATwQEBBjtT9Ky1dF6Txn6hnyX8bvZIklX9cvVFMgiUiHScMWT+14za9fW7t7dKCLz5w/puZCylrhtaHB2u2V0tEkN850yJUJ9Mz+xPv8kXUblTp5scT8BjA/z3B3QOc85YqZNm6YG74pL8SEAAAA/RH4XAABcNGnSpPXr1587d669vT09Pd21SUWVaGYILwAYXkFBgdFG7ipTuhZ2X7P/RH5XPvLq/rOTdBlP18rJV70DWIXLcrR+f1N79jSphccfH3yZn0ZX6lEVavaUnR2dnd35p27efIYTUT+8807nIP3o6CCVJneLcHR0kMrsqqw89O/gwYNua9LS0vbv3y8iqampiYmJhAgAAPgt8rsAAOCirKys1NTUSZMmnT179p577nHrMk+JZgAwPG1eQwPS0oQNIhXXJmk69RrM2pskUq6/YK4Vyelann8N6l1rkyVn6Po3pbK2GRnhGRnhPW+m0oo9b4YrkZPToGVtp0yJ6HaQdHZ2tJosuaGhfcWKmueeiyNuetZtceb09PQXX3xRKM4MAAD8HvldAABwUWRk5M6dO9Xy4MGDKdEMAH5Fq8k8d+7crVu3GjDXO19ks4iILBF5+xp8/8cuicmrRYcJzt0ug3eTRNZc7e9f4TJ+N1u/v6b8/PNqwtekpEGXCVhX3lEboTtgrm4h4p5rUHuRytdqLy81F/Jzz8Wp/K6IrF1bS35X57otztze3q4uTOR3AQCAnyO/CwAAumc2m61Wq81m09ZQohkA/EFHR4dh/7Y1XfndHJGcHnOHDSL5fR+WmqH38aZXwWaRJV3DlKNFNl3t+skrRJ7vWk66BpWfrx6V3JVLl1zWaHWDPSeFvXYaGtqTkwuv+kSz8+dft2lTku5+lZvPaBWws7OjPYsza3sqOzs6J6dBGMLrC7otzqx6ox44cCArK4sQAQAAf0Z+FwAAXNK8efPchvBSohkADMzImV1F5SMXiIjIgyJrRBZ3t9lukQUiGdeg7LBP2y2yzqUsswrm1QqRSqgvcRkAfS2Sx9dGz1nb3bsb1fjd+fOvu1Te8Zr82KODFi+O1bKeA/PHekV+/nlt8G50dNCaNQk9bLxmTYLK74rI2rW1ixZZdTso2c/ZbLZuizOLSGJiIjPvAgAAkN8FAACXlJmZSYlmAEBf7d+/3/Wlw+HQ0T9uvsi6riTiEpE9IpNFMkSiRfJFjons7no32s92W0XX4GY3DSKn/n/27ie2sfS8E/Xn6cwYyEF4KzcXNAZpIs07QIxAEmyvmqrNtZtwm5vhOIBaBlfjVLHXLFXtKANqARExC6tUXM2iWGXvCKsLiENvVB0w7lWTBgZIxxIdoIGAnbAHgxBzZ9onOJnJXAR1F7ytq5CUSqW/lPQ86IXqO/xX72l0U+d33vc7UJaRr4fwo1dsVv7TaZsTj1784xA+PTCT+WSvf+H2xzJ/+uk/HvGwen0YQrh167WLbxW9Cc2pH3/8D3/4h3+936b8ox+9cXQ79RtvfHlr6/WVlc9CCJ9//k/f+tYnf/EXf+A/2jOo2+2OrSwsLERRpDIAACPyXQDgUFNHNHe73VwupzgATPXuu+82Go2Z/oh/EcK3QvgwhPDFoOZJt0L49zfszH3+RWfz0W6FsBbC9189//7xIfnxmDdCqJzo9S/cG298+Y03/tWnn/6vv/zLQ+9g+PGP/+tPf/r5rVuvvTR35JX/hf38n9bX/8uPf/xfR+HuqHP3ODsc37v3lT/901+Pmqo//vgfvvGNv/qTP/k/X3p2Pvzw7+v14Z/8yb9R+YsxOZz5rbfeUhYAgH3/QgkAgCMUi8WxlcmrLQBwxfw8hB+F8Ma0Q7dC2Aqhf8jo5pvpVghvhPDNA5U52/B19OL3QvhRCH9xDq9/TlW59dp3v/vbIYT9eb9jPvzw71dWPjt+7shBn3/+T1P/+fjjf/jpTz9fWfnsG9/41aNHf7cf7v7oR298//v/x3H/A/Dz39+flf3xx/+Qze79+Mf/9bCP8eGHf/+Nb/zVt771ySgS5gIkSXLYcGYAAEb07wIAR8nn82NtWEY0A3CEx48f/4f/8B8Orrz55pt//dd/PXMf9PshfD+ED0P4NIS/CSGE8H99EWTeqCSuf4zHnLgg3w3hv5/n61+2ra3XP/74Hz788O8fPfq7e/e+cvDQo0d/N9oU9kc/ekO4ewIffvj3v/3bHx/nkd/85m9tbb3+9a//5iu9/s9//vsrK589evR3oz/+0R/9zR/90d9897u3bt167Y03vjwKkj///J8+/fQf94c/26n3wrTb7bEVw5kBAMbIdwGAo0wd0by3tzc/P684ALPpS1/60vEfPDc3t7e3d7Yf4Hd+53cO/vG112Y4FPnmjf/X5dYVf/3L9vOf//4f/uFfr6x89jd/8//8u3/3v9269dqHH/79aPzv97//O2tr/9pY5vP6N+vWa9/85m+trf3rV012921tvf7v//3//od/+Neffvq/RiuHtWKHL1JkZb8Yk/9XMpwZAGCMfBcAmKLX63U6nddff71QKOTz+WazefBou92W7wIAhBD+5E/+zU9/+vlf/uX/WF//L59//k9vvPGvTtZRSgjhRz/6vZc+5o03vjzqsj19Q+3Xv/6b/f7CT3/6+Z/+6ec//vH/PfmAW7de++53b1UqaWfzwiRJ0u12D64YzgwAMEm+CwBMsb293Wg0UqlUoVAoFotj+a4RzQCz7MWLF4oAF+m737313e/eWlv710pxGrduvXb8PXTP/PT96EdvfPrpP3788f8IX4xivnXrNbHuxTOcGQDgOP6FEgAAkxYXF0MIcRwPBoPRiOaDR5MkmbzyAgAAV9cbb3x5lPV+85u/9c1v/pZw91L84he/GFsZDWd++PDhH/zBHzQaDSUCAAjyXQBgqtu3b49+eP78eQihWCyOPWDyygsAAMCJ9fv93d3dgyv7w5m3t7dH956qEgBAkO8CAFOlUqlRC2+n0wkh5PP5sQd0u93hcKhQAADAmRjbeXf0a0gURb1eb5Tsjn5DAQBAvgsATFcoFEIIH330UQghiqKpEa8qAQCc3scf/0M2uzv6Z339v4wWv/GNX41WvvWtT5SIay9JklarNbaYy+XCF7ecplKp/SFDAAA3nHwXAJhueXk5hBDHca/XCyG8+eabYw9oNpuqBABwerduvfb55/+0/8+tW68dXPn0039UIq693d3dJEkOrmSz2fn5+fBFvnv79u1UKqVQAAAhhN9QAgBgqlQqlclkBoPB8+fP5+bmcrlcOp0+OJM5SZK9vb3RNRcArp+9vT1FuNpuKcGV8cYbX/7v//3r6sBN9rOf/WxsZdS8G8fxaKTQd77zHVUCABjRvwsAHGp0DeXx48ejP46usBzUbrdVCQBm1K0QvhnC167jX+2NEL4ewr9zjuGa6Pf7u7u7B1eiKCoWiyGEjz76KI7jYPNdAIAD5LsAwKFG11DiOB4MBiGEUqk09oB2u32woxcAmC0/D+Hedfx73QrhL0L4phMM10S32x1bWVhYiKIohPCrX/0qhDA3N5fJZBQKAGBEvgsAHOr27dujH0ZbXkVRtLCwMPaYyWsxAAAw5utf/80Qwu/93r+8Zn+v3/u9fznaL9kpPrEkSSbHAo2ad0MI29vbQfMuAMA/J98FAA6VSqUKhcLBiylvvfXW2GOazaZCAQBwtFu3Xuv357/73d++Zn+ve/e+8vOf//4bb3zZKT6x3d3dsZlA2Wx2fn4+hNDr9UaThOS7AAAH/YYSAABHePLkycE/5nK5ZrN58PpLkiTD4TCdTqsVAABHuK4h6Kg1mRP78z//87GVXC43+mE0RiiVSu0PFgIAIOjfBQBeSRRF+1db9mnhBQAATmA4HI5t+BJFUT6fH/1cLpefPHmyvr6eSqXUCgBgn3wXAHg1pVJpbMUWvAAAwAlM7ry7sLBwcDhQoVBYXl5WKACAg+S7AMCriaJobBpzkiST12UAAACONvl7xFtvvaUsAABHk+8CAK9ssoW31WopCwAAcHzdbnc4HB5cSafTCwsLKgMAcDT5LgDwyia34O33+2OXZgAAAI7w53/+52Mr+Xw+iiKVAQA4mnwXAHhlURTl8/mxxWazqTIAAMBxJEmyu7s7tjj5WwYAAJPkuwDASRSLxbGVbrerLAAAwHG0Wq0kSQ6u5HK5dDqtMgAALyXfBQCOpdPprK2tDQaD0R+z2ezYxZckSdrttkIBAAAvNXl76FtvvaUsAADHId8FAI5lZWWl0Wg8f/58f6VUKo09ZnIDLQAAgDF7e3v9fv/gShRFCwsLo5/jOFYiAIAjyHcBgGP5zne+E0LY3t7eX8nlcmOP2d3dHQ6HagUAABxhcvBPPp+Pomj080cfffS7v/u7d+/eFfQCAEwl3wUAjmVxcTGE0Ov19i+yRFGUz+fHHmZEMwAAcIQkSSaHMx/8zeJXv/pVCGEwGKRSKeUCAJgk3wUAjuX27dujH3Z2dvYXJ/PdVqulVgAAwGFarVaSJAdXFhYWstns/h9HQ4NGN5gCADBJvgsAHEsqlSoUCiGEg1vwzs/Pp9Ppgw9LkkQLLwAAMNXU3xfeeuut/Z97vd5gMAghjH77AABgknwXADiu0Ra8Ozs7B/fBKpVKYw9rNBpqBQAATNrd3R0OhwdXoijK5XL7fxzdTprJZPTvAgAcRr4LABzX/h30B0c053K5KIoOPkwLLwAAMNXPfvazsZVisXjwF4rRcObRraUAAEwl3wUAjiuVSi0vL4d/PqI5iqLJXXibzaZyAQAAB3W73d3d3YMrY79NGM4MAHAc8l0A4BWMhqTt7OyMLruMTI5oHg6H/X5fuQAAgH2Tzbu5XC6dTu//0XBmAIDjkO8CAK9g/z56LbwAAMDx9fv9sebdEEKxWDz4R8OZAQCO4zeUAAA4vlQq9eDBg/BFI+++Uqk0tudut9sdDocHb8YHAABurFarNbaSy+Wy2ez+Hw1nBgA4Jv27AMCruX///v379+fm5g4uptPpXC439kgtvAAAQAhhOBx2u92xxbHm3VG4Ozc3ZzgzAMDR5LsAwNmY3IW33W4Ph0OVAQCAG67dbidJcnBlYWFhfn7+4EqhUPjP//k/r6+vKxcAwNHkuwDA2chms5PTmMeGNgMAADdNkiSTw5n/7b/9t1MfrHkXAOCl5LsAwJmZbOGdvI4DAADcKK1Wa6x5N5vNTm7vAgDAMcl3AYAzk8/nx1p4p96qDwAA3BBJkkwO9cnn8yoDAHBi8l0A4CxNtvA2m01lAQCAm6nb7Q6Hw4MrURTJdwEATkO+CwCcpVwuN9nCaxdeAAC4mSbH+RSLxSiKVAYA4MTkuwDAWYqiaHInLS28AABwA3W73X6/P/b7QrFYVBkAgNOQ7wIAJ9TT26OZAAAgAElEQVTpdN5+++2lpaWx9ckRzcPhcG9vT8UAAOBG+dnPfja2onkXAOD05LsAwAn9+te/7vV6nU5nMBgcXJ+6n5YWXgAAuFH29vZ2d3fHFieH/ezs7HQ6HeUCADg++S4AcEK3b99OpVIhhOfPn48dKpfLYyu7u7vD4VDRAADghmi322MruVwum82OLb733ntLS0uNRkPFAACOSb4LAJxQKpUqFAohhMlrMXbhBQCAm2w4HHa73bHFyZ13d3Z2RtOAvvOd7ygaAMAxyXcBgJMbXYUZDAZjI5rDtF142+22Fl4AALgJ2u12kiQHV3K53Pz8/NjD3n///RDC3NxcJpNRNACAY5LvAgAnVygUDhvRnM1m0+n02KIWXgAAuPaSJGm1WmOLb7311thKHMe9Xm/0a4WiAQAcn3wXADiVw0Y0h2ktvN1uVwsvAABcb61Wa6x5N5vNTm7g8tFHH43mAL3zzjuKBgBwfPJdAOBUjhjRnM/nx1p4kyTRwgsAANfYcDicbN6d3Hk3GM4MAHBS8l0A4FSOGNEc7MILAAA3zGTzbjqdnmzejeP4o48+CoYzAwC8OvkuAHBay8vLIYTNzc3JQ5MtvMEuvAAAcE0Nh8N2uz22WCqVoigaW/zoo4/iOA6GMwMAvDr5LgBwWvt33E+OaA4hlMvlsRUtvAAAcC01m83j7LwbDGcGADgF+S4AcFqLi4tbW1u/+MUvpl6ayeVy2Wx2bLHRaKgbAABcJ/1+f7J5t1gsTjbvGs4MAHAa8l0A4AwsLy+PduGdanIX3m632+/31Q0AAK6NyX1YFhYW8vn85CN//etfLy8vZzKZyWE/AAC8lHwXADh3WngBAOB629vb63a7Y4uTN3qOZDKZ9fX1brd7xE2iAAAcRr4LAFyEe/fuja3s7u5q4QUAgOthavPu/Py8ygAAnDn5LgBwEbLZbC6XG1t89OiRygAAwFXX7XZ3d3fHFg9r3gUA4JTkuwDABZncW6vf70/OcAMAAK6Wn/3sZ2MruVxO8y4AwDmR7wIAFySdTk+28NqFFwAArrSpzbvFYlFlAADOiXwXALg4ky28w+Gw3W6rDAAAXFGadwEALph8FwA4Y51OZ3t7e+qhdDqdz+fHFpvNpqIBAMBVZOddAICLJ98FAM7Szs7O0tLSysrKYDCY+gAtvAAAcD0kSTJ5s2Y+n89ms1MfH8exogEAnJ58FwA4S4VCIZPJhMM31o2iaLKF1y68AABw5XS73X6/P/Zt/7Cdd+M4fvPNN+/evdvr9ZQOAOA05LsAwBn7zne+E0I4bERzmNbCmySJFl4AALhCXrV5d3t7O47jjz76KJVKqR4AwGnIdwGAM/bgwYMQQhzHh0W8WngBAOCqa7fbw+Fw7Hv+Yc27IYSdnZ0Qwu3bt0fzfgAAODH5LgBwxlKp1OiSzfPnzw97zNQW3larpXoAADD7pn57LxaL6XR66uN7vV6n0wkhvPPOO6oHAHBK8l0A4Ozdv38/hLCzszMYDKY+IIqiUqk0tjg53g0AAJhBrVbrlZp3R7d+ZjKZQqGgegAApyTfBQDOXqFQGO2qdUQL7+Td/VN38AIAAGbKYc27URRNfXwcx48fPw4hLC8vqx4AwOnJdwGAs5dKpUbXbjY3Nw97zNQb/JvN5lgfAAAAMFOazWaSJC/9br9vZ2cnjuNgODMAwBmR7wIA52K0w24cx9vb24c9Jp/PT27Q1Wg0VA8AAGbT3t5eu90eWzyieTeEMPqNoFAoZDIZBQQAOD35LgBwLjKZzOjyTafTOewxU3fh7Xa73W5XAQEAYAZNNu+m0+kjmnd7vd7oNwLNuwAAZ0W+CwCcl/fee+/BgwejRt7D5PP5bDY7tqiFFwAAZlC3293d3R1bLJVKRzTvPn/+PISQyWRu376tgAAAZ0K+CwCcl0KhcP/+/bm5uaMfdu/evbGV4XDYarUUEAAAZkeSJJM3YuZyuXw+f8Szfv3rX4cQlpeXU6mUGgIAnAn5LgBwybLZ7OQloWazORwOFQcAAGZEq9Ua+4o+db+VMevr63/1V3919FAfAABeiXwXALh8k5d7pjYHAAAAl2LqiJ2pm61MSqVSmncBAM6QfBcAuHxRFE1GvN1ut9/vKw4AAFy6er2eJMnBlXQ6/dLmXQAAzoN8FwCYCcViMZ1Ojy1ubGyoDAAAXK5ut7u7uzv5BT6KIsUBALh48l0AYFbcu3dvbGU4HLbbbZUBAIDLkiRJs9kcW1xYWCgWi4oDAHAp5LsAwKyYn5/P5XJji41GYzgcKg4AAFyKVqs1uW2KycwAAJdIvgsAXJBOp9Pr9Y5+TKVSGVuZ2i4AAABcgOFw2Gq1xhaLxeL8/LziAABcFvkuAHARHj58uLS0tLS0dPTDoiiabAVot9uTHQMAAMB5azabSZK89Bs7AAAXSb4LAFyEd955J4QQx/H29vbRjyyVSul0emzx0aNHaggAABep2+222+3Jr+tRFB39xKWlpbW1tcFgoIYAAOdBvgsAXIRMJjM3NxdCaDQaL31wuVweW+n3+5OXlgAAgHMydZ+UhYWFfD5/9BN3dnY6nU6j0fjss8+UEQDgPMh3AYALcv/+/RBCr9d76S68uVwul8uNLR4nGAYAAM5Eq9Wa3CTlOM2777//fghhbm5ucXFRGQEAzoN8FwC4IIVCIZPJhJO28CZJUq/XlREAAM7bcDhstVpji8VicX5+/ugn9nq9nZ2dqd/nAQA4K/JdAODijFp4t7e3X7oXVzqdLhaLY4vtdns4HCojAACcq2azmSTJwZUoiia/n08a3cqZyWQKhYIyAgCcE/kuAHBxlpeXRy28Dx8+fOmDS6VSOp0eW9TCCwAA52pvb6/dbo8tFovFyS/nYwaDwah5d3l5OZVKqSQAwDmR7wIAF2p5eTmEsLOz89IW3iiKJqe67e7udrtdZQQAgHPSbDbHVqYO15n0/vvvx3GcSqUMZwYAOFfyXQDgQo2u9cRx/Pz585c+OJfLZbPZsUUtvAAAcE5ardbu7u7Y4r1796IoOvqJcRw/fvw4hPDuu+9q3gUAOFfyXQDgQqVSqVEL7+bm5nEev7q6OraSJEmtVlNJAAA4W8PhcLJ5N5fLzc/Pv/S5jUZj1Lz7zjvvqCQAwLmS7wIAF219fX1xcfHZs2fHeXA6nc7n82OL3W53b29PJQEA4AzV6/UkSQ6uRFFUKpWO89zt7e0Qwu3btzOZjEoCAJwr+S4AcNFSqdSzZ8/m5uaO+fhyuZxOp8cWNzY2VBIAAM7K1MnMxWJxcsOUSXEcv/766+GL3VgAADhX8l0AYNZFUXTv3r2xRVOaAQDgrEydzJzNZovF4nGePrqD84MPPlhcXFRMAIDzJt8FAK6A+fn5XC43tmhKMwAAnImpk5nffffdKIqO/yLHn9ADAMBpyHcBgKuhUqmY0gwAAGfusMnM8/PzigMAMIPkuwDA1RBF0eRuXqY0AwDAaZxyMjMAABdPvgsAXBm5XM6UZgAAOEONRuP0k5kBALhI8l0A4CoxpRkAAM5Kq9XqdrtjiyYzAwDMOPkuAHDJ4jh++PBhHMfHefBhU5rr9bpKAgDA8ZnMDABwRcl3AYDLFMfxm2++ubm5ub29fcynTJ3S3G63TWkGAIDjO+Vk5mPeoAkAwJmT7wIAlymVShUKhRDC5ubm8Z9lSjMAAJzG6Scz7+zs/O7v/u7a2ppiAgBcMPkuAHDJ1tfXQwhxHB+/hdeUZgAAOLHTT2aO47jRaIQQPvvsM/UEALhg8l0A4JKlUqnl5eUQwivd+29KMwAAnMwpJzOHELa3t3u9Xghh8rZLAADOm3wXALh89+/fD6/YwhtCqFQqk1egTGkGAIAjnH4y837zbqFQWFxcVFIAgAsm3wUALl8mkzlBC28URZVKZWzRlGYAADjM6SczhxAajcZgMAhf3KYJAMAFk+8CADNhfxfeUSvAMR02pbnf7yspAACMOf1k5v2hO4VCYW5uTkkBAC6efBcAmAn7u/Bubm6+0hNNaQYAgOOYOpk5n88ffzJz+KJ5N5VKad4FALgs8l0AYFbst/A+fPjw+M+aOqV5OBy+Uh8wAABcb4dNZi6VSsd/kTiOHz9+HDTvAgBcKvkuADAr9lt4P/roo1d64tQpza1Wa29vT1UBACCcxWTm0YvEcZxKpcrlspICAFwW+S4AMEPW19fX19efPn36qk88bErz2DUsAAC4gc5kMvN+8+7y8rLmXQCASyTfBQBmyKgVIJVKveoTp05pTpKkVqupKgAAN9ne3t7pJzOPvqs/ePBgbm5O8y4AwOWS7wIA18TUKc27u7utVktxAAC4mZIkefz48eknM4+Uy+UPPvggk8koLADAJZLvAgDXR6VSSafTY4uNRqPf7ysOAAA3UL1en/wyXCwWX2kyMwAAM0W+CwBcH1EU3bt3b3K9Wq0qDgAAN83UbXdzudyrTmYGAGCmyHcBgGtlfn5+8nJVkiSrq6uKAwDAzdHv9ye33U2n05VKRXEAAK40+S4AcN2USqWFhYWxxd3d3Xa7rTgAANwESZI8evRobNvdEEK5XD7BtrsAAMwU+S4AMNPiOD7Bs6rV6uR1q6l7jwEAwPXTaDSmbruby+UUBwDgqpPvAgCzq9PpLC0traysvOoToyiaOpB5Y2NDVQEAuN5ardbk6JqFhQXb7gIAXA/yXQBgdnU6nV6vt729PRgMXvW58/PzxWJxbHE4HNZqNYUFAOC6mrrtbhRFlUrlBJOZG43G9va2qgIAzBT5LgAwu8rlciaTCSE8fPjwZE/PZrNji91ut9vtqi0AANfPYdvuViqVdDr9qq82GAw2NzdXVlYajYbaAgDMDvkuADC7UqnU/fv3Qwgna+ENIdRqNRvxAgBwQzSbzTPcdvfhw4dxHKdSqeXlZbUFAJgd8l0AYKYVCoXTtPBO3Yg3SRIb8QIAcM20Wq1WqzW2mM1mT7bt7mAw2NnZCSG8++67qVRKeQEAZod8FwCYaadv4bURLwAA195wOJy67e69e/dOsO1u+KJ5N5PJlMtl5QUAmCnyXQBg1i0vL49aeN97772TvYKNeAEAuMaSJKnX61O33Z38GnwcvV5ve3t79FVc8y4AwKyR7wIAV8CohXdnZ6fX653sFaZ269br9eFwqLwAAFxpzWZzd3d3bPHE2+6GEBqNRghB8y4AwGyS7wIAV8B+C+/a2trJXiGKomq1OrZoI14AAK66drt9htvuhhA6nc6oebdcLmveBQCYQfJdAOBqGA1n7nQ6Ozs7J3uFXC6Xz+fHFvv9fr1eV14AAK6i4XA46rU96DTb7oYQNjc3QwiZTGZ5eVmFAQBmkHwXALgaCoXC4uLi+vr67du3T/wiU3cga7fbNuIFAODKOWzb3VKpdLJtd0MIjUaj0+mEELa2tjTvAgDMJvkuAHBlPHv27PQz4lZXVycX6/V6v99XYQAArpDDtt0tFounfOXRvZUqDAAwm+S7AMDNkk6nD9uId7L1AeCm+eyzz770z/3gBz9QFoAZ1Gq1znbb3ZFyudztdkd7owAAMJvkuwDAjZPL5XK53NjicDis1WqKA9xk3/ve9zKZzNjixsbGl770pV/+8pfqAzA79vb2ms3m2GIURe++++6Jt93dl8lkJv93AADA7JDvAgA30dSNeHd3d+v1uuIAN9MPfvCD7e3tEMKTJ09efGEwGIyOfu1rX/vss89UCWAWDIfDqbNnSqXS/Py8+gAAXHvyXQDgJoqiaHV1dbK5od1ut9tt9QFuml/+8pcbGxshhA8++ODOnTv766+//vqLFy9GPz948EChAC7dYRuLnMm2uwAAXAnyXQDghkqn06urq5Pr9Xq93++rD3Cj/Kf/9J9CCHNzc9/+9rcnjz558iSEMOruBeByTf2yurCwcMptdwEAuELkuwDAzTU/P1+pVCbXq9XqcDhUH+DmeP78eQhhbm5u6tH9XRiNaAa4XK1Wq9vtji2m0+lqtXr6bXcBALgq5LsAwFXV6XTu3r378OHD07xIPp/P5/Nji6OpdyoM3Bw/+clPXrx48ZOf/GTq0f1deF9//XW1Args7Xa70WiMLR627QgAANeYfBcAuKq2t7d3dnYeP368HzycTKVSWVhYGFvs9/tTpzcD3ECjO2mWl5eVAuCy9Pv9yXB39FU2m82e8kv1Kb9OAwBwweS7AMBVtb6+nkql4jh+7733TvlS1Wo1nU6PLe7u7rZaLXUGbrinT5/2er0QQrlcPs7jG43G4j/3t3/7t8oIcBqj6TJJkoytl0qlXC53mlceDAZra2u5XK7T6agzAMBVId8FAK6qVCq1vr4eQtjZ2RllDycWRVGtVptcbzQakzucAdwcv/zlL+/evRtCmJub+/a3v32cp/ziF7/o/nP/83/+T5UEOLEkSer1+nA4HFsvFoulUumUL/7ee+/FcZzJZA7bgh0AgBn0G0oAAFxdy8vLDx8+HAwGd+/ePWUQm06na7VatVodW6/X61/5yldOOfUO4Cr65S9/+bWvfW30887OzjGfVa1Wv/KVrxxc+Y//8T/+t//239QT4GSm3nGYzWZPH+7u7OyM/vNeLpdTqZRSAwBcFV968eKFKgAAV1en01laWgohbG1tnX5vyEajMTmTOYqiRqMRRZFqAzfHn/3Zn7399tujnweDweuvv37il/rqV7/6ySef/PCHP3zw4IHCArySVqs1ue3u6MbEye1FXkkcx0tLS71eb3Fx8dmzZ0oNAHCFmM8MAFxti4uLhUIhhLC2tnb6VyuXy5N7mCVJMnV6M8Bs+tKrmJ+fn3yFp0+fnlW4C8CJdbvdZrM5thhF0b17904Z7oYQtre3R1ucuPkGAODKke8CAFfee++9F0KI4/jhw4enf7VqtTo5jXl3d1fEC9wQP/jBD0Z77oYQXrx4IdwFuBT9fr9erydJMrZeLpen3przSuI43tzcDCEUCoXFxUXVBgC4WuS7AMCVl8lkRpOZNzc3B4PB6V+wVqtNTmPudrvtdlu1gdn34lXs7e0dfO73vve9jY2NEMLy8rLdfAAuS5Ikjx49mgx3i8ViPp8//etvbm7GcZxKpUY3SgIAcLXIdwGA62B9fT2TyYQQzqSFN4qi1dXVyfV6vT4WhABcJ/Pz89vb2yGE1dXVn/zkJwoCcCmSJKnX6/1+f2w9n8+XSqXTv36v1xv91/7dd98dfYUGAOBqke8CANdBKpW6f//+4uLi/fv3z+QF5+fnq9Xq5PrGxsZwOFRw4Pr53ve+N9qI8cmTJ3/8x3+sIACXpdlsdrvdscVsNlsulydnzJzA2tpaHMeZTKZcLqs2AMBVJN8FAK6J5eXlZ8+enWELQi6Xmxx/lyTJ1NwX4Ep7+vTpqJfryZMnd+7cURCAy9JqtVqt1thiFEX37t07k3B3lOyGEO7fv59KpRQcAOAqku8CAByqUqksLCyMLQ6Hw6nTmwGurrt37+7/8KXD/dmf/ZlaAZyfdrvdbDbHFqMoqlQq2Wz2TN4ilUptbW11u93l5WUFBwC4ouS7AABHqVark1fTdnd3RbzAtfHZZ58pAsCl6/f7jUYjSZKx9VKplMvlzva9bLsLAHClyXcBAI4SRdHUKHd3d7der6sPcA28/vrrL47n29/+tnIBnId+v1+tVifD3WKxWCwW1QcAgIPkuwAAL5FOp2u12uT61AF6AADwSobD4cbGxmS4m81mS6WS+gAAMEa+CwDwcvPz81Mj3maz2W631QcAgJNJkmRjY2M4HI6tZ7PZWq0WRZESAQAwRr4LAFxng8HgrF5qfn6+XC5Prtfr9W63q9QAALyqJEnq9Xq/3x9bT6fTq6urwl0AAKaS7wIA11Mcx2tra2+//Xav1zur1ywWi/l8fnK9Vqvt7e2pOQAAxzcKdyfvFIyiaHV1NZ1OKxEAAFPJdwGA6ymVSj1//jyO47t3757hy1YqlakR78bGxmTjBQAAHKbRaBwW7maz2bN6l52dnbW1NdUGALhO5LsAwLW1tbUVQhgMBo1G4wxftlKpLCwsjC0mSVKtVkW8AAAcR7PZbLfbY4tRFFUqlfn5+bN6lziOV1ZWGo3G0tKSmgMAXBvyXQDg2lpcXFxeXg4hrK2tneFGvCGEjY2NyaaKJEk2NjaSJFF5AACO0Gq1ms3m5Hq5XM7lcmf4Rpubm3Ecp1Kp9fV1ZQcAuDbkuwDAdba+vp7JZEIIKysrZ/vKtVptMuIdDofValXZAQA4TKvVmjpdplwuT90H5MR2dnZGb/Tuu+/Ozc2pPADAtSHfBQCus1Qq9d5774UQOp3O9vb2Gb5yFEW1Wi2KorH1fr+/urqq8gAATOp2u1M7d4vFYrFYPMM3iuP44cOHIYS5ublyuazyAADXiXwXALjmCoVCoVAI5zClOYqier0+GfHu7u6KeAEAGNPv9+v1+uR2HsVi8cwj2Eaj0ev1RpOZU6mU4gMAXCfyXQDg+tva2gohxHE86uU9Q+l0ularTa7v7u5OHbsHAMDN1O/3q9XqZLibz+dLpdLZvlen03n8+HEIYXl5eXFxUfEBAK4Z+S4AcP2lUqlRxLuzs7Ozs3O2L57NZqdGvK1Wq9VqKT4AAMPhcGNjYzLczWaz5XJ5ch7MacRxvLm5GcdxJpN58OCB4gMAXD/yXQDgRtjvXeh0Omf+4vPz89VqdXK90Wi0223FBwC4yZIk2djYGA6HY+uj2wTPNtwNIWxvb4++8b733nsmMwMAXEvyXQDgptja2nry5Mn6+vp5vHgul5u6a1q9Xu92u4oPAHAzJUlSr9f7/f7YejqdXl1dPfNwd9S8G0Iol8uFQkH9AQCuJfkuAHBTZDKZc73IVSwW8/n85HqtVtvb21N/AICbZhTuTt7tF0XR6upqOp0+83dMpVLPnj2bm5szmRkA4BqT7wIAnJlKpTI14q1WqyJeAIAbJUmSRqMxNdytVCrZbPac3ndubu6DDz4wmRkA4BqT7wIAnKVKpbKwsDC5LuIFALg5RuFuu90eWx+Fu7lcTokAADgx+S4AwBmrVqtTGzJEvAAAN8Fh4W4IoVwuC3cBADgl+S4AwBmLoqhWq4l4AQBuoKPD3al7eQAAwCuR7wIAnD0RLwDADXREuFsqlYrFohIBAHB68l0A4OaK43hlZWUwGJzHi4t4AQBulKPD3VKppEQAAJwJ+S4AcHMtLS1tb2/fvXv3nF5fxAsAcENcVrjb6XTO6W5FAABmlnwXALi51tfXQwi9Xq/RaJzTW4h4AQCuvcsKd+M4vnPnTi6X63Q6zgIAwM0h3wUAbq7FxcVCoRBCWFtbO7+LYiJeAIBr7BLHMq+srMRxnEqlUqmUEwEAcHPIdwGAG21rayuTyYQQ7ty5c37vIuIFALiWLjHcbTQaOzs7IYQHDx7Mzc05FwAAN4d8FwC40VKp1Pvvvx9CiOP4/DbiDSJeAIBr5xLD3V6vt7m5GUIoFArlctm5AAC4UeS7AMBNl8lkRhvx7uzsjHogzomIFwDg2rjEcDeO47W1tTiOM5nM1taWcwEAcNPIdwEAQrlcXlxcDCGsrKwMBoPzeyMRLwDANXCJ4W4IYXNzs9PphBDee+89O+8CANxA8l0AgBBCePr0aSqViuN4ZWXlXN9IxAsAcKVdbri7s7PTaDRCCOVyuVAoOB0AADeQfBcAIIQQUqnUaLpdr9fr9Xrn+l4iXgCAK+pyw939mxHn5uYePHjgdAAA3EzyXQCA/0+hUHjw4MGzZ8/m5ubO+71EvAAAV87lhrshhJWVlTiORzcmmswMAHBjyXcBAP5/9+/fv4Bwd0TECwBwhVx6uLv/ZfXBgwcX9pUVAIAZJN8FALg0Il4AgCshSZJ6vX654W4IYW5u7oMPPiiXy84IAMBNJt8FALhMR0e8U68hAgBwkUbhbrfbnTx0keEuAACMyHcBAC7ZERFvvV5vtVpKBABwWZIkqdVqwl0AAGaHfBcA4PIdEfE2Go1ms6lEAAAXr9/vVyqV3d3dyUPCXQAALot8FwBgJhwR8TabzXq9rkQAABep3+9Xq9XhcDh5qFwuC3cBALgs8l0AgKP0er2lpaVer3cB7zWKeBcWFiYPtdvt1dVVpwMA4GLs7e1Vq9UkSSa/sFUqlWKxqEQAAFwW+S4AwFFWVlY6nc7du3cv5u2iKNrY2MjlcpOHdnd3K5WKMwIAcN5ardbGxsZh4W4+n7+Yj7G9vX0xdxkCAHC1yHcBAI6yvr4eQhgMBhcW8YYQqtXq1OuGox3gJi81AgBwVlqtVrPZPCzcnXof3nkYDAZra2tvv/32zs6OkwIAwEHyXQCAoywuLpbL5RDCzs7ORV5cO2zuX7/fL5fL/X7fqQEAOHPNZrPRaEyGu+l0ul6vX1i4G8fxyspKHMepVOr27dvOCwAAB8l3AQBeYn19fW5uLoSwsrIyGAwu7H3L5XKpVJpcT5KkWq2KeAEAzlCSJPV6vdlsTh7KZrO1Wi2dTl/Yh2k0Gp1OJ4SwtbWVSqWcHQAADpLvAgC83LNnz8IXjRQX+b6lUqlWq02uJ0lSqVT29vacGgCA0xuFu+12e/LQwsLCBYe7nU7n8ePHIYRyuVwoFJwdAADGyHcBAF4ulUo9efIkhNDpdB4+fHiRbz0/Pz814g0hVKvVqVchAQA4vlG42+12Jw/lcrlqtRpF0YV9mMFgcOfOnTiO5+bmHjx44OwAADBJvgsAcCyFQmF5eTmEsLm5eZEb8YYQ5ufn6/X61AuL9Xq91Wo5OwAAJzMcDqvV6tRwt1gsViqViwx3D267azIzAACHke8CABzX1tbW/ka8vV7vIt86m83W6/WpgwEbjcbUjeIAADhav9+vVqv9fn/yULFYLJfLFxnuhhA2NzdH2+6ur6+PvnYCAMAk+S4AwCt49uzZqJFiMBhc8Fun0+l6vZ7NZicPNZvNw2Y4AwAw1SjcHQ6Hk4fK5XK5XL7gz9NoNBqNxujdR2NjAABgKvkuAMO9mHwAACAASURBVMArSKVST58+/eCDDwqFwsW/exRFtVptYWFh8lC3211dXXWCAACOY29vr1qtJkky+XWrUqkUi8WL/0jb29shhMXFRdvuAgBwNPkuAMCrWVxczGQyl/XuURRtbGzkcrnJQ7u7u5VKZfIyJQAAB7VarY2NjcPC3Xw+fymf6tmzZ+Vy+enTp7bdBQDgaPJdAICrp1qtTm0r6ff7lUpl6h5yAACEEJrNZqPROCzcnXoX3cVIpVLr6+vCXQAAXkq+CwBwJZXL5VKpNLk+HA4rlUq321UiAICDkiSp1+vNZnPyUDabrdfrlxjuAgDA8cl3AQCuqlKpNDXiDSHUarVWq6VEAAAjw+GwVqu12+3JQ9lsdnV1NZ1OqxIAAFeCfBcA4AorlUq1Wm3qoUajcdghAIAbZW9vr1Kp7O7uTh5aWFio1WrCXQAArhD5LgDAGYjjuNPpXMpbz8/P1+v1KIomD3W73UqlMrm9HADAzdFqtTY2NqZ+IyoWi9Vqder3KAAAmFnyXQCA0+r1em+//fbS0lKv17uUDzDaMS6bzU4e6vf75XK53+87TQDATZMkSaPRaDQaU8PdcrlcLpcvK9wdDAZOEAAAJyPfBQA4rUwmM/phaWkpjuNL+QzpdLper+dyuclDSZJUKpVut+tMAQA3R5Ik9Xq91WpNHoqiqFqtFovFy/psjUbj7bffvqzpLwAAXHXyXQCA00qlUk+ePAkhxHF8586dS/wkR1yprNVqzWbTyQIAboJ+v3/Y/W3ZbLZWq029K+5idDqdzc3NOI63t7edKQAATkC+CwBwBubm5kYRb6fTefjw4SV+knK5XK1Wpx5qNpurq6tOFgBwve3t7VWr1eFwOHloYWGhVqtN3dXiYgwGgzt37sRxPDc3t76+7mQBAHAC8l0AgLNRKBSWl5dDCJubmzs7O5f4SXK5XL1en7qZ3O7ubqVSmXq5EwDgGmi1WhsbG1M33C0Wi9Vq9bI23A0hxHG8srISx3Eqldra2kqlUs4XAAAnIN8FADgzW1tbc3NzIYSVlZVer3eJnySbzTYajam9KaNxhf1+3/kCAK6TJEkajUaj0ZgMd6MoKpfL5XL5EsPdEMLm5uZoz939L40AAHAC8l0AgLP07NmzVCoVx/Hdu3cv95NEUVSv16fuLZckSaVSabVazhcAcD0kSVKv16d+vYmiqFKpFIvFy/2Eo+w5hFAulwuFglMGAMCJyXcBAM5SKpV6+vRpCGEwGCwtLV3656lWq6VSaeqhRqPRbDadMgDgqhuNJ+l2u5OHstnsYXe8XaRer7e5uRlCWFxcfPDggVMGAMBpyHcBAM7Y/mW7Xq93uVOaR0qlUq1Wm3qo2Wyurq46ZQDA1bW3t1etVofD4eShhYWFWq2WTqcv9xPub7ubyWSePn1q210AAE5JvgsAcPbu37+/vLw8Ozurzc/P1+v1qRc3d3d3K5XK1EuiAAAzrtVqbWxsTG64G0IoFovVavVyN9wdWVtb6/V6qVRqa2tLuAsAwOl96cWLF6oAAHATJElSq9V2d3cnD0VRtLq6Oj8/r0rAmfvqV7/6ySef/PCHPzSSFDjbLzaNRqPdbk/9YlMul/P5/Ix81MFgcPfu3eXl5XK57MQBAHB68l0AgJul0Wi0Wq2ph0ql0mGb9QKcmHwXOHP9fv/Ro0f9fn/yUBRFlUrl0jfcBQCA82M+MwDAzVIulw/rHWk2m5VKZeqEQwCAGdFut6vV6tRwN5vN1ut14S4AANebfBcA4MYpFou1Wm3qoX6/Xy6X9/b2VAkAmDWjmcz1en3q7Wi5XK5Wq6XTaYUCAOB6k+8CANxE8/Pz9Xo9m81OHkqSpFqtNptNVQIAZke/369Wq0dsM1GtVqMoUigAAK49+S4AwMWJ47jT6czIh8lms7Va7bABhmY1AwCz44iZzKMNd0ulkioBAHBDyHcBAC5IHMcrKytLS0s7Ozsz8pGiKKpWq4dtx2tWMwBw6Y6eybywsFCv1/P5/Ox834vj2FkDAOBcyXcBAC7OYDAIIdy9e7fX683OpyoWi/V6fepmdWY1AwCX6OiZzMVisVqtztSGu2tra2+++eZMfdMDAOD6ke8CAFyQVCr17NmzTCYTQlhaWhplvTMim83W63WzmgGA2fHSmczlcnmmNtxdW1vb3t6O43h7e9vpAwDg/Mh3AQAuTiqVevLkSQghjuN33nlnpsb3mdUMAMyIqzWTeaTRaDQajRBCuVxeX193EgEAOD/yXQCACzU3N/fs2bMQwmAwuHPnzqx9PLOaAYDLdeVmMocQtre3Nzc3R9/0Hjx44CQCAHCu5LsAABdtcXFx1MXb6XTu3r07ax/PrGYA4LJcuZnMIYRer7e2thbH8eg2vlQq5TwCAHCu5LsAAJegUCgsLy+HEHZ2dtbW1mbt45nVDABcsKs4kzmEMBgM7t69G8fxaBsO4S4AABdAvgsAcDm2trYKhUIIodFobG9vz+AnNKsZALgYV3EmcwghjuOVlZXBYJBKpba2tjKZjFMJAMAFkO8CAFyaJ0+ezM3NhRA+++yz2fyEZjUDAOftKs5kDl+Eu51OJxy4bw8AAC6AfBcA4DI9e/bsyZMn9+/fn9lPaFYzAHBOruhM5pHBYLCzsxNCWF9fF+4CAHCRvvTixQtVAADgpfr9/sbGxnA4nHq0WCwelgEDN9xXv/rVTz755Ic//OGDBw9UA9i3t7f36NGjI75alEqlGWzbPajX6z1//nyWb9QDAOBaku8CAHBcSZLU6/Vutzv1aDabvXfvXjabVSjgIPkuMPmNotlsttvtqW27URSVy+WZbdsFAIBLZz4zAADH9dJZzZVKpdFoKBQAcJi9vb1qtdpqta7iTGYAAJgFv6EEAAC8kmKxuLCwcNis5lartbu7q5EXABhzdNtuuCIzmQEA4NLp3wUA4JVls9kjemtGjbzNZlOhAID9rwdHtO1GUVSpVMrlsnAXAABeSr4LADCLHj58OOODjkfXYSuVymEPaDablUplao8vAHBzJEnSarWq1Wq/35/6ADOZAQDglch3AQBmTqPR2NzcXFtb297envGPms/nm81mLpeberTf75fL5Var5ZwCwM3U7/fr9Xqj0TisbbdcLm9sbKTT6Vn+W8RxvLa25mwCADAj5LsAADOnXC4vLi6GEFZWVmY/4o2iqFqtlsvlwx7QaDQ08gLADTRq2+12u1OPjtp2i8XijP8t4ji+c+dOo9FYWlpyTgEAmAXyXQCAWfT06dO5ublwRSLeEEKxWGw2mwsLC1OPauQFgBslSZJarXbV23ZDCHEcr6ysdDqdEMLy8rIzCwDALJDvAgDMolQq9ezZs/2Id3RVccZFUbSxsaGRFwBuuHa7XS6Xr3rbbvgi3N3Z2QkhbG1tyXcBAJgR8l0AgBl1MOJdWlq6EhFvCKFYLNbr9Ww2O/XoqJG33W47vwBw/Yzaduv1+hFtu9VqdfbbdsM/D3cfPHgg3AUAYHbIdwEAZtco4s1kMuFKRbzZbLZerx/RyFuv1w+78gsAXFF7e3tHt+3WarVisRhF0ez/XeI4XltbG4W75XL5/v37zi8AALNDvgsAMNNSqdT777+fSqVCCHfu3On1elflkx/dyDua3KiRFwCugSRJ6vV6tVo9um33sG8FM2htbW17ezuEUC6X19fXnWIAAGaKfBcAYNZlMpkPPvgglUrFcdxoNK7QJx818pZKpalHR9eC6/W6UwwAV9fe3l6lUjnsnq1sNnuF2nZHVlZWhLsAAMwy+S4AwBWQyWSePXu2vLx8FS8ylkqler1+2E577Xa7VCpp5AWAKydJkkajUa1Wh8Ph5NEoiorFYq1Wu0JtuyGETqezH+4+ePDAWQYAYAZ96cWLF6oAAMAFaDQarVbrsKPZbHZ1dfWwGBi4ur761a9+8sknP/zhDyUlcG0kSdLtdhuNxtSBzKP/rZdKpVwudxX/dg8fPhwMBuvr66MNMgAAYNbIdwEAuDj9fn9jY2Nql89IsVgsl8sKBdeJfBeumb29vcePH/f7/SP+b14qla7QQOZJcRwLdwEAmFm/oQQAAFyYbDbbaDTq9fphA5lbrdbu7u7V7fgBgGssSZJms9lutw9r242iqFKpXIP/iQt3AQCYZfJdAAAuWqVSyefzjx49mtrI2+/3a7VaPp8vlUrGNQPAjNjb2zvs/90j+Xy+XC5f6bZdAAC4EuS7AABcgvn5+UajccSOvO12u91ul8vlYrGoXABwifr9frPZ7Ha7hz3gSu+2CwAAV458FwDgatve3n7+/PmTJ0+u4ocvl8ujRt7D9vBrNBrtdvvevXvZbNa5BoALdpyBzKVSKZ/Pa9sFAOD/Ze/+QttK8/uPP9mmQ0FTjX4UXBgiRp5lNkxP3CiwZaRAiRIziQpdxwGPllzFjrXQvbJl7dXMgHxgMlexZV+WOY4daAmrdWtFe1HFwWvNFkbKlZW1tUsDO1KQpzCGrpWzo8JCWf8uns6Dqj/Hsi3b+vN+XQTFPral7/n/fM7zPDgx36EEAAAAnSuXy0UikWQyOTIy0qEfob+/f35+PhgMNlogn89PTEwYhsHqBgDgJG1tbX344YeJRKJRuDswMPDpp58ODQ11aLiby+W4wAAAAEAnIt8FAADoYJqmBQIBIUQ6ne7ciFcIMTQ09OjRo8HBwUYLJBKJ27dvr62tsdIBADhu5XLZMIwPP/yw0QAbNpttYmLi3r17nTvARi6XGxkZiUQiRLwAAADoOOS7AAAAnU3X9e6IeGVL8fz8fF9fX90FyuXy/Pz8xMTEzs4O6x0AgONQLpfX1taCwWAikWh0vh4cHDQMw+KprPYnw13TNO12u9frZb0DAACgs5zZ29ujCgAAAJ0uFArFYjEhhNfrXV5e7vSPk0gkrDvTDA0NWQzpDKCtnD9//sWLF/fv3w+Hw1QDaGdbW1ufffZZoz67QoiBgYFgMNi5fXaldDp99+5dGe4uLy9rmsaqBwAAQGeh/y4AAEA3iEajMu/s9F680tDQ0Pz8vMfjabRAIpGYmJjIZDKsegAAjk4OyHzv3j2LAZmDweCHH37Y6eFuLBaT4a7T6STcBQAAQIei/y4AAED3mJ2dnZmZEUJomra6utoFn2htbe3Ro0cWAzIPDg4Gg0GbzcbaB9oW/XeBNre1tTU3N2dxth0YGJiYmGg0gUIHMQxjZmZGhrs/+9nPnE4nax8AAACdiHwXAACgq1RGvMvLy3a7vQs+lGEYjWYBlCYmJjp6FkCgu5HvAm0rn88/evTIYjyM/v7+27dvW4yo0VmXEzLc1TRtYWGBcBcAAACd6ywlAAAA6CZTU1N2uz0SiZim+erVq+7Id4PB4ODg4NzcXKNBI+fn5xOJxNDQECkvAADNKJfLjx49WltbK5fLdRew2Wy3b98eHBzsjkEyDMOIRCJCCMJdAAAAdAH67wIAAHShdDp97ty57mu7TCQShmFYLNDf3z85OdnpUwMCXYb+u0Bb2TfZFUIMDAwEg8FuOp+OjIyk0+luGt0EAAAAvYx8FwAAAJ2kXC4bhrG2tmaxzODg4O3bt7tgmkCgO5DvAu1zDt3c3DQMw2KqXdltd2hoqPs+fiQSCYfDhLsAAADoAuS7AAAA6Dz5fP7evXsWzdNCiKGhoWAwSK2AU0e+C7SDra2tzz77rNFMB0IIm83m8XiCwWB3DMgMAAAAdDHm3wUAAEDn6e/vNwzDerjmRCKRSCQmJiaYlBcA0Mvy+fyjR48ymYzFMt03IDMAAADQxch3AQAA0KmGhoYGBweth2uen59PJBJySSoGAOgpzUy129/fz1kSAAAA6CyMzwwAANBDisXi9va21+vtss+Vz+cTiYT1pLz9/f2Tk5P0TAJOHuMzAyevmWRXTrU7ODjIgMwAAABAZyHfBQAA6BXFYvGDDz4oFovLy8vdF/EKIba2tubm5qwn5R0cHLx9+3ZfXx/bA3BiyHeBk1Qulzc3Nw3DsDgh2my2oaGhoaGh7kt2TdMsFouaprElAAAAoIt9hxIAAAD0mpGRkVgs1n2f68KFC4ZhBINBi/h2bW0tGAxazNoLAEDn2tra+vDDDz/99FOLcHdgYGB+fv727dtdGe6GQqHr16/ncjk2BgAAAHQx8l0AAIBe4XQ6V1dXZY+WUCjUlRGvEGJoaEimvBbLyBl5E4kEWwVQ68z/9fTpU2oCtL+tra1PP/30ww8/zOfzjZaRye69e/e6chwLGe4mk0khxJMnT9gkAAAA0M137ozPDAAA0FNM0xwZGZH9WnRdt85BO1q5XDYMY99JeYeGhgYHB9kwACHExx9/fO/evbrfOsqdI+MzA8d9vtt3qt2uP9/1zuUNAAAAIOi/CwAA0Gvsdvvy8rLsxRuJRLp4pGKbzTYxMTE/P2/RnJ3P5+fn5ycmJix6OwE94sGDBzLc/eijj/a+9fz5c/ndCxcuUCKg3cgnmYLBYCKRaBTu2my2YDD46aefdnG4WywW5ZjMdrs9Go0S7gIAAKDr0X8XAACgF5mmeffu3XQ6LYQIh8NTU1Pd/Xm3trbm5uYsJiMUQng8Huu5e4Euvzk8c0YI8dFHH33yySeVX//Vr3518eJFIcTq6ur7779/iN9M/12g5crlciKRWFtbszi12Wy2oaGhoaGh7ptnt1IulxsfHy8Wi3a7Xdf1QCDA5gEAAICud5YSAAAA9CDZi3dkZCSdTs/MzAghujvivXDhgmEYiUQikUg0agrPZDKZTIaUF71JTbL7D//wD1Xf+uu//mv5olgsUijg1DWT7AohBgYGJiYmuv50VhnuRqNRv9/PFgIAAIBeQL4LAADQu1TE+9lnn3m9Xq/X292fV3ZjSiQSFqNSk/KiN73//vuM7QS0OZnsWgzFLA0MDASDwf7+/q4vSDqdvnv3rmmahLsAAADoNeS7AAAAPW15eTkSiWia1vXhrjI0NDQ4OGgYxtraWqNlSHkBRXXt/f73v081gFPRZLLb399/+/Ztj8fTCzUxTTMSiRDuAgAAoDcx/y4AAAB6VD6fl0NcWi9Gyote9vHHH9+7d0/Um5e3ecy/Cxxak8muzWa7ffv24OBgd0+1W6VYLI6Pjy8sLDidTjYVAAAA9BTyXQAAAPQ0Ul6g1oMHD8bHx9V/nz9/rmbh3VcqlVpYWKj8SiKRME2TfBc4EJJdAAAAAI0wPjMAAAB6Wn9//8TEhJyXt5kRm69du9YjQ1+il3355ZeV/7148WLz/Xf/+Z//+Z/+6Z+oIXBoJLsAAAAArNF/FwAAAPhfTfblHRgY+MEPfkDKix7x9OnT69evi6aHaF5dXa3qv/tv//Zvv//97+m/C+yLZBcAAABAM8h3AQAAUJ9pmoZhTE1N9doHJ+UFqqjhmg80ULPC/LvAvkh2AQAAADSPfBcAAAD1hUKhWCymadrq6moPfnxSXnTwbd6ZM80vrGna1tZWk7+z+VGaK5HvAhZIdveVTCY1TXM6nWwtAAAAgMT8uwAAAKjPbrcLIXK53PXr1xcWFnqtXbXJeXk3Nzc3NzdJedH1NE3L5XLUAWihcrn86NGjtbU1kl0LhmFEIhGn05nJZNhmAAAAAIl8FwAAAPXpuu50OiORiIx4l5eXNU3rtSIcNOW9du3a4OAgGw9O1yFGafr444/v3bvXZF9eAEdEstsM0zRnZmYMwxBC2O32YrFIF14AAABAYnxmAAAAWEmn0yMjI/L1wsKC3+/v2VI0OWJzf3//0NAQKS86y9OnT69fvy4azLC7vb0tY5XV1dX333//oL+c8ZkBZWtrK5PJkOzuyzTNUCiUTCaFEF6v98GDB3JYEQAAAACCfBcAAAD7yuVyIyMjpmkKIXRdDwaDvVyNJlNeIcTQ0NDQ0FBfXx+bEDrj5vDMGSFEIBD46U9/WvWtCxcuyMGZD3f/SL4LCCG2trY+++yzfD5vvRjJrhCiWCyGQqF0Oi2ECAaD4XCYcBcAAAD4P7fw5LsAAADYl2maIyMjMuAJBoO6rvd4QUh50X1UF96qUZpl7isO23lXkO+it5XL5Uwmk0gkSHablMvlxsfHi8Wi3W4Ph8M9/lQZAAAAUBf5LgAAAJo1MjIiO9N4vd7l5WUK0nzK6/F43nvvPQZtRpt78ODB+Ph43W8dOtwV5LvoVeVyOZFIJBIJ66GYBcluhXQ6fffuXdM07Xa7ruuBQIANCQAAAKhFvgsAAIADiEQihmHQhbdS8ykvU/OiI6jRmKWPPvrok08+OcovJN9Fr2lykl0hRF9fnzwvkOwKIQzDmJmZkeFuNBr1+/3UBAAAAKiLfBcAAAAHk0wmaXKttbOzI/tpNbMwgzajp5Dvonc0OcmuEGJgYECO60Cyq6TT6ZGREU3TFhYWnE4nBQEAAAAaId8FAAAAWkmmvDs7O/suScqLHkG+i653oEl233777WAw2N/fT91qJZPJy5cv2+12SgEAAABYIN8FAAAAWi+TyTx69KjJLlzXrl1j0GZ0MfJddLFyufzo0aNmhmK22WxDQ0Mej4dkFwAAAMARnaUEAAAAQMt5PB6Px7O1tbW2tmY9Ne/m5ubm5mYikWBqXgDoIEyyCwAAAOC00H8XAAAALVMsFpkwrxZT86LH0X8X3aRcLufzeSbZBQAAAHCKyHcBAADQGrOzszMzMwsLC36/n2rU1fzUvB6PR0YCFA1dgHwX3aFcLicSiUwmwyS7R2SaphCCSXYBAACAQyPfBQAAQAsUi8Xr16/LFttwODw1NUVNGslkMj//+c83Nzf3XbKvr8/j8dCdF52OfBcdTXbYTSQSm5ubTLJ7dLlcbnx8/Ny5c8vLy1QDAAAAOBzyXQAAALSGaZojIyO5XE4I4fV6Hzx4QNccC81MzavQnRcdjXwXHWpnZ0ceqJsZd4FJdpuRTCZDoZBpmna7/cGDB16vl5oAAAAAh0C+CwAAgFaKRCKGYQgh7Hb78vKypmnUxIIMDx49etTk8szOi05EvovOombY3dnZ2bfDrmCS3eaYpjkzM6OuEKLRKLM5AAAAAIdGvgsAAIAWMwwjEonI17quB4NBarKv5qfmFUIMDAxcu3aN7rzoFOS76BRbW1uZTGZtba2ZWJdJdptnmmYoFEomk0IIr9cbjUadTidlAQAAAA6NfBcAAACtJ2fXKxaLQohgMKjrOjVpRiaT+cUvfpHJZJpcXo4FSrSANke+izZXLpczmUwikcjn880szyS7B5JOp0OhkLokCIfDTN8AAAAAHBH5LgAAAI6FaZp3795Np9NCCE3TlpeXac9t0s7Ojkwa6M6L7kC+i7Z1iA67P/jBDwYGBhiKuUmGYczMzMgJd3VdDwQC1AQAAAA4OvJdAAAAHCM5HS9deA8nk8k8e/ZsbW2tyeVlf7ILFy5QOrQV8l20m3K5nEgkMplMkx12+/r6BgcHBwcHmf78QEKhUCwWE0JomqbrutfrpSYAAABAS5DvAgAA4Hil02lN0+i8exQHmp23v7/f4/EMDQ3RvQxtgnwX7eNwM+z29fVxRD2EZDI5Pj7u9XofPHjAZQAAAADQQuS7AAAAQGfY2tpaW1trvjuvx+O5du2ax+OhdDhd5Ls4dTs7O2tra8132B0YGHjvvfcGBweJdY8omUxevnyZcBcAAABoLfJdAAAAoMMkEom1tbUmUwrBuM04beS7OC3lclk+FtPkAdNms8nxD/r7+6keAAAAgLZFvgsAAAB0pIN25xUEvTgl5Ls4YSrW3dnZaWYcZkGHXQAAAAAdhXwXAAAApyaZTPr9fupwRIlE4tmzZ5ubm00ub7PZBgcHCXpxYsh3cTLK5XImk5GzlTcZ68rj4eDgIB12AQAAAHQQ8l0AAACcDsMwIpGIpmnLy8vMzHd0+XxeBhtNphpCiL6+Po/HQ7CB40a+i2NVLpc3Nzd//vOff/nll80fAOmw20KxWCwQCFAHAAAA4MScpQQAAAA4FaZpCiFyudx7770XjUbpyHtE/f39/f39t2/fzmQyP//5z5vpzruzs5NIJBKJRH9//8DAwNDQUF9fH5UE0BHK5XI+n08kEpubm83HujabTY5Uz3MtrTqVRyKRWCz25MmThYUFCgIAAACcDPJdAAAAnI6pqSm73R6JREzTHB8fDwaDuq5TlqPzeDwej0dNP5nP5/f9kXw+L2OSgYGBCxcuDA4OEvQCaE8y1l1bW8tkMgeKdQcGBm7fvt3X10eH3VZJp9OhUKhYLAohXr16RUEAAACAE8P4zAAAADhNuVwuFArlcjkhhKZp0WhU0zTK0kI7OzuZTKbJoFch6EULMT4zjk7GuvJodtBY99q1awMDA8S6LWSa5szMTCwWM03TbreHw+FAIMBUCwAAAMCJId8FAADA6ZudnZ2ZmZGvdV0PBoPUpOXy+fzm5mYikdjZ2Wn+p5iiEkdHvotDO3Ss+/bbb1+7ds3j8XDsajkezAIAAABOHfkuAAAA2kIulxsfH5fDPGqatrCw4HQ6Kctx2Nra2tzcXFtbO1DQK6erZNJKHAL5Lg5KxbqZTKb5IxWx7gmIxWJyYgUhRDAYDIfDdNsFAAAATh75LgAAANpIKBSKxWJCiHA4PDU1RUGO1eGCXpvNNjg46PF4Lly4QA3RDPJdNEkOMyAPSgftrctIA8fNNM1IJCLP0Xa7PRqN+v1+ygIAAACcCvJdAAAAtJdYLBaLxR48eECXoBOztbV10OFPJZnykqnAGvkuLMiuupubm5lM5kDThBPrnrB0Oj0yMiKE8Hq90WiUMTYAAACAU0S+CwAAAOB/ZTKZra2tRCJx0B8cGBiQozfTqRe1yHdRq1wub25u/uIXv9jc3DzokyVyXnCPx9PX10clT9Ls7Kzdbg8Gg5QCAAAAOF3kuwAAAACqZTKZZ8+era2tHeJnPR6P7FFHGSGR70KRw8LLWXUPEeteuHCBWcABAAAAgHwXAAAAQENHDHplp17CmB5HvtvjZFfdZ8+ebW5uHmi2b4lYuaxR5AAAIABJREFUFwAAAACqkO8CAACgY5im+cUXX/j9fkpx8uTUmAedIFOy2WyDg4MyoaGSPYh8tzfJWXXX1tYO0VVXza0rx36nmAAAAABQiXwXAAAAHcMwjEgkEggEotEo1Tgt5XJ5bW1NdsU7xI/LOXrJbHoK+W5PHR9krHu4Z0H6+/sHBgYGBwf7+vpsNhv1PBXpdPrcuXNOp5NSAAAAAG2LfBcAAAAdY3x8PJlMCiHsdvvy8rKmadTkdGUyma2trbW1tYN2zhNC2Gw2OeAqWW/XI9/tbpWZ7qG76jICczswTXNmZsYwDK/Xu7y8TEEAAACAtkW+CwAAgE4iu/DK1+FweGpqipq0g62trS+//PLQnXptNpucYpOstyuR73afI2a6aq+/du3awMAAXXXbQS6XC4VCuVxOCEG+CwAAALQ58l0AAAB0mFwuNz4+XiwWhRCapi0sLDCMZFvJZDLPnj1bW1s79G+Q3fjozNc1yHe7Q7lc3tzclPNwHy7TFULIJzk8Hg8jMLcVwzBmZmZM0xRCBIPBcDhst9spCwAAANC2yHcBAADQkSKRiGEY8rWu68FgkJq0GzkB5+Gm4VTUGM4XLlygpB2KfLdztSTTlV1133vvPY/HQ6bbbnK53OzsrJr7IBqN+v1+ygIAAAC0OfJdAAAAdKp0On337l3Z30jTtGg0yoy87alcLq+trW1tbWUymaP8HrLeDkW+23E7rMp0j/JwhtxbBwcH6arbnuRsu7FYTJ5GvV7vgwcP6LYLAAAAdATyXQAAAHQw0zQjkUgsFhNCRKPRQCBATdqcTIy2trYON1OvQtbbQch325/MdOWOeZRMV3bVZXz19lc5267dbtd1nRMoAAAA0EHIdwEAANDxcrlcLBbTdZ1SdJYWZr19fX0XLlx4++23+/r6KGy7Id9tQ+VyOZ/Pf/nll+rfQ/8qmeleuHBBJrvUtiMUi0WPxyOECAQCuq7TbRcAAADoLOS7AAAAAE5fq7JeQdzbfsh320FVoHvoyXSlvr6+t99++7333nv77bfJdDuUnHOX2XYBAACATkS+CwAAAKC9tDDrFcS9bYB891S0NtAVQvT39//lX/4lmS4AAAAAnLqzlAAAAABAW/F4PHLgUNGKrDeTyQghEomE+uXEvehKLQ90hRByluv+/n4yXQAAAABoH+S7AAAA6GamaY6MjASDwUAgQDU6UVXWu7Oz8+zZs6P06yXuRdc4jkBXVGS6Ho/HZrNR504/CTK3LgAAANB9GJ8ZAAAA3SwSiRiGIYTQNG1hYcHpdFKT7rC1tfXll19ubW3JvLZVZNwrx6G9cOECdW4JxmdulWMKdG02W19f38DAgMfj6e/vJ9PtDqZpxmKxmZmZ5eVlTdMoCAAAANBNyHcBAADQzUzTjEQisVhM/jccDk9NTVGWLrOzsyMTr1ZN2av09fXJfr2VLyj4QZHvHkK5XN7Z2fn666/z+bzcwluV5opvA135EMPAwEBfXx+ZbpfJ5XKhUCiXywkhvF7v8vIyNQEAAAC6CfkuAAAAul8sFotEIqZpCiE0TYtGo3Rm6mLHF/dKMg9T3XyZlHRf5Lv7Uh1zd3Z28vn8N99808I0VxDo9hLTNGdmZmKxmDzleb3eaDTK2BUAAABAlyHfBQAAQK8IhUKqI28wGNR1nZr0guOOewXdfPdDvltJdczd2dnZ2dnZ3NxsbZQrEej2pnQ6HYlEZLddu90ejUb9fj9lAQAAALoP+S4AAAB6SC6XGx8fLxaLQghN06ampmj77jUnEPdKHo9HZmx08+3ZfFemtsfaMVch0O1xVd12A4GArut2u53KAAAAAF2JfBcAAAA9Z3Z2dmZmRgjhdDozmQwF6WUnFvdKsoOvjOJkGtcLnX27O98tf0t1yS2Xy19++aX6+jH9XQJdKOl0OhQKqUeXdF33er2UBQAAAOhiZykBAAAAes3U1NSNGzdCoRBDNEPGqx6PR/5Xxb1q7NzW/jn5axu9k6ro12azMblvm6gNceUYy8cd4io2m81ms6nRvwl0UckwjGKxaLfbw+FwIBCg2y4AAADQ9ch3AQAA0Is0TVtdXaUOqFIV94pvE185Z+rW1paM947jTx8o+hVC9Pf3E++1Vm2IK0dUPrEQV1F9c/v7+wcGBuR/Wd1oJBqNvnr1Std1TdOoBgAAANALyHcBAAAAoKG64ycfdzff2j/XKPq1fUuGvjIIlG9bCCG/KKPB3kwHyxUqk1ppZ2fnm2++kRUW306XeyrbmOqYq16w66F5drt9eXmZOgAAAAC9g3wXAAAAAA7mFLv5VlH9SvP5fJPv3Gazvf7667YaKiFW/9Z9ccJU5lr74uuvv1YVUAFtm0S2jVR2zO3v75cTMNMxFwAAAABwIOS7AAAAQDXDMGZmZnRdDwQCVAPNqNvnMp/Pf/3116qb74mFvhaO/gYaRb+vv/56owVevXolhPj3f//3P/zhD/IrKnaVWaywzHE7lIpy6ZiLljBNUwjB3LoAAAAAhBBn9vb2qAIAAABQ6d1335Ut6ZqmRaNRZjREa8ncV3Y2bZ/o9/j84he/KJfLf/VXf/Xd7363mz6XDLArQ1ybzSZnSu7ZAbFxHEzTnJmZicVifr8/Go1SEAAAAADkuwAAAEC1XC5nGEYsFpP/DQQCU1NTTqeTyuC4VY7z3DXRb0fnu5XjVxPi4uSl0+lQKFQsFoUQdrv92bNndOEFAAAAQL4LAAAA1JdMJqenp2WruhAiGAzquk5ZcFqqol857+w333yjZp9tW+2c76r5htUMxGo45crJidn8cPLS6XQkEsnlckIIu93u9/t1XSfcBQAAACDIdwEAAABrhmFEIhH52ul0Tk1NMSkv2pNMfHd2dmToK76dbffUw+ATznfVsMlCCBXZVv77+uuvk92inakBmeVMAV6vV9d1ZgoAAAAAoJDvAgAAAPswTTMSiajhmr1e7/LyMmVBR6sMg+V/Ze4rg2H5b+1/hRBq+coFqpapYpHvqni19sXrr79e91uViawcLdlmsxHZomtON5XJrqZpU1NTfr+fygAAAACoRL4LAAAANCWXy83OziaTyXA4PDU1RUGAumoTX4/Hk8/np6enf/zjH9fmuACUUCgknyWy2+3hcDgQCDAgMwAAAIBaZykBAAAA0AxN0xYWFmKxGF2pAAu1Ce6f/umfCiFef/11OUIygEaCwWAymfT7/VNTU06nk4IAAAAAqIt8FwAAADgAJt8FABwTTdOWl5eZahcAAACAte9QAgAAAAAAgHZAuAsAAABgX+S7AAAAQGskk8lQKFQsFikFAKAR0zQpAgAAAICjIN8FAAAAWsMwjFgs5vF4SHkBALVM00wmk9evX5+dnaUaAAAAAA6NfBcAAABoDb/f73Q6hRAy5Y1EIqS8AAAhhGma6XR6ZGRkfHy8WCx+9tln9OIFAAAAcGjkuwAAAEBrBIPBTCaj67pMeQ3DIOUFAMhkd2RkJJfLCSG8Xu/y8rLdbqcyAAAAAA6HfBcAAABoJZXyyv+S8gJAz0qn09evX69MdldXV5eXlzVNozgAAAAADo18FwAAAGi9YDD41VdfVaa8169fZzROAOgRJLsAAAAAjg/5LgAAAHBcKlPeQCDAaJwA0CNCoRDJLgAAAIBjcpYSAAAAAMcqGAwGg0E67wJA75iamorFYuFw2Ov1Ug0AAAAArUW+CwAAAJwEOu8CQO8IBAKBQIA6AAAAADgOjM8MAAAAnLJ0Ok0RAAAAAAAA0AzyXQAAAOA0FYvFu3fvvvvuu7FYjGoAQKdIp9Ozs7PUAQAAAMDJI98FAAAATlMulzNN0zTNUCjk8XhIeQGg/Y/bkUjk7t27MzMzyWSSggAAAAA4YeS7AAAAwGny+/2rq6tymsZisShTXvqEAUAbSqfTkUhkZGTEMAzTNJ1Op2malAUAAADACTuzt7dHFQAAAIBTl8vlDMOo7L8bDAaDwaDT6aQ46Gjnz59/8eLF/fv3w+Ew1UAnMk1T9tnN5XLyK3a7PRwOBwIBu91OfQAAAACcMPJdAAAAoI3Upry6rgeDQSqDzkW+i85lmmYsFovFYirZ9Xq9fr+fZBcAAADAKTpLCQAAAID2oWlaNBqNRqOGYUQiEfkVygIAp2JmZsYwDPna6/WGw2FN00h2AQAAAJwu5t8FAAAA2lEwGPzqq6+i0ajX66UaAHAqwuGw3W73er2rq6vLy8ter5dwFwAAAMCpo/8uAAAA0L4CgQBFAIDTYrfbV1dXmQcdAAAAQFuh/y4AAADQkUzTjEQixWKRUgDAEQ+nFt8l3AUAAADQbsh3AQAAgI5kGIZhGB6PZ3x8PJfLURAAOCjTNGdnZ0dGRnhWBgAAAEAHId8FAAAAOtK5c+fkNJDJZPL69esjIyOxWIyyAEAz5BAI77333szMTC6Xm52dpSYAAAAAOgX5LgAAANCRAoHAb37zG13X5dih6XQ6FApdv36dlBcALKTTaZnsGoZhmqbdbvf7/cFgkMoAAAAA6BRn9vb2qAIAAADQ0ZLJpGEY6XRafSUYDIbDYdnBFzhd58+ff/Hixf3798PhMNXAKZLJrhrQ3m63/+hHP/rggw+YYRcAAABAZzlLCQAAAIBO5/f7/X5/LpczDEP23zUMQ9O0QCBAcQAgmUzOzs6qZNfpdAaDwUAgwEMwAAAAADoR4zMDAAAAXULTtGg0mslkZGjh9/upCQDIw6MMd71er67rq6urwWCQcBcAAABAh6L/LgAAANBVnE5nNBqNRqOUAgDUgTEQCASDQU3TqAYAAACATkf/XQAAAKC3mKY5OztbLBYpBYDeEY1GCXcBAAAAdAfyXQAAAKC3fPHFFzMzMx6PZ3x8XE7WCwAdrVgszs7OXr9+nSdXAAAAAPQC8l0AAACgt2xvb8sXyWQyFAq9++67kUiEUARAxzFNM51OX79+/fr16zMzM7lc7smTJ5QFAAAAQNcj3wUAAAB6SzAY/Oqrr3Rd93q9QgjTNA3DoDsvgA6iOuyOjIzkcjnTNO12ezAYlIc1AAAAAOhuZ/b29qgCAAAA0JtyuVwsFjMMo/KLuq4Hg0GKg1Y5f/78ixcv7t+/Hw6HqQaOwjTNXC4nhxwwTVN+0ev1+v3+QCBgt9spEQAAAIBecJYSAAAAAD1L0zRd13VdTyaThmGk02khhEpNAKCtRCIRNcyA3W7/0Y9+dOPGDU3TqAwAAACAnkK+CwAAAED4/X6/3y9nr/zggw8oCIA2dOPGjVgs5vV6A4GA3++nwy4AAACA3kS+CwAAAOB/aZpm3RNOTnJJoQCcCr/fv7q6SoddAAAAAD2OfBcAAABAs0ZGRux2++XLlz/44AOn00lBALSQnF731atXfr+/0TKEuwAAAABAvgsAAACgKblcLpfLCSHS6fTMzIzX6yXoBXB0MtZNJpOxWEwOEmCR7wIAAAAAyHcBAAAANEXTtIWFhSdPnsRiMSFEOp2WQa/f75fTYTJ0M4DmVcW6lYeaXC5HP10AAAAAaOTM3t4eVQAAAABwIMlkUgW9it/vn56epjsvqpw/f/7Fixf3798Ph8NUAyrWffLkSbFYVF+XQwLcuHGDZBcAAAAArNF/FwAAAMCB+f1+v98fjUYrg94vvvjijTfeoDgArI2MjKjXmqb5/X5iXQAAAABoHvkuAAAAgMOrDHqFEAzRDMCa3W53Op1ykl1iXQAAAAA4BPJdAAAAAC3g9/stvmuaZjKZDAQCFArA6uoqz4IAAAAAwKGdLRQKVAEAAADAsfrtb3+byWQymczbb7/93e9+991336UmvWN4ePh3v/vduXPnuP3sBV999dX29vZvf/vbv//7v7cIcX/3u99RKwAAAACw4HK5Gn3rTCqVokAAAAAAAAAAAAAA0A7efPPNd955p9F3v0OBAAAAAAAAAAAAAKAjkO8CAAAAAAAAAAAAwKnZ29trfmHyXQAAAAAAAAAAAADoDGe9Xi9VAAAAANC2/vM//zORSHz/+9///ve/TzU60eXLl3/7299OT0//+Mc/phod5Pe///2f//mfN/ruf/zHfwghzp8/T6EAAAAA4Oj29vYymUyTC5997bXXKBkAAACAtvWv//qvMzMz8rXf779x44bf77fb7VSmU/z+978vlUr/8z//w+1n+zNNM5fLpdPpZDJZLBZ1XQ8EAnWXHBgYoFwAAAAA0CoHGp/5LPUCAAAA0M7OnTtnt9tN0xRCJJPJZDIZCoW8Xq+maX6/nxGJgKMzTfOLL7548uRJMpmU+5qUTqcb5bsAAAAAgNNCvgsAAACgrQUCgUAgkE6nc7lcMplMp9NCiHQ6nU6nDcMQQgSDQV3XKRRwUMlk8te//rXsqlsZ69rt9kAg4Pf7NU2jSgAAAADQbsh3AQAAAHQAr9fr9XqDwaAQQqa8T548KRaLVAY4NMMw5AMTQgi73a5p2uXLl2/cuEGsCwAAAADtjHwXAAAAQIfx+/1+v1/Xddmp1yKLKhaLT548uXHjhtPppG7oQaZpWkxWffnyZdM0vV6v7KrLtNYAAAAA0BHOHGi2XgAAAADoIIZhRCIRIYTdbr98+bKmabIfMJU5SefPn3/x4sX9+/fD4TDVOAFyMl018PKDBw/Y5gEAAACgze3t7f3yl79U/33zzTffeeedRgvTfxcAAABA11JTipqmmUwmk8mk/K/srUjWi66Ry+Vkd3ap6lts5wAAAADQTch3AQAAAHStqampqampZDK5vb2dTqe/+OILmfiqrNdut//mN7+hUOhcIyMjuVxOPcog2e12p9Pp9Xo1TWMyXQAAAADoMuS7AAAAALqc3+8XQgSDQSFEsViU3Rzlv5cvX6Y+6Gjb29sy3LXb7ZqmXb58Wca6TKYLAAAAAN2KfBcAAABAD3E6nU6nU/23aiTbSsVi0ePx+P3+c+fOOZ1OOZ4zBcSJKRaLuVxue3s7l8tFo9FGi01NTW1vb9+4ccPpdJLpAgAAAEAvIN8FAAAA0Lsshq6V0a+asleSQa/MemXuSw3REqZpyqlzZRfzYrFYOeTy1NRUo40tEAhQPQAAAADoKeS7AAAAAFCHpmnRaFRGbul0Wn6xWCwWi0UV+i4sLMjBn7vVr371q4sXL8oPfu7cObaK45BOpyORSKOu5JqmOZ3O7e1tHiYAAAAAAEjkuwCAXlEqlZaWll6+fFkoFFwu11tvvTU8POxyuaiMRbmeP39eKpXcbvfFixeHh4cpC4CeUjWSsxws99e//rXqZCksu/+m02k5H2pHF0GGuzhW586dU+Gu3GZkpuv1ehlyGQAAAABQi3wXANATstnsrVu3CoVC5Rd1XY9Go6Ojo9SnytzcnK7rpVJJ/jcejwsh3G734uKi2+2mPgB6k4x7K3vrptNpiy6VhmHIbr4qrpPjOXfQqM4//OEPWe+HYJqm7Oe9vb2t5tDVNG1hYaHu8m+88UY4HGbEbwAAAABAk8h3AQDdr1AoXL16tVQqjY6O3rlzp1QqPX/+fG5urlQqjY2NCSGIeCstLS2FQiGHwzE9PX3lyhVZrunp6Ww2e+nSpY2NDSJeAJC8Xq/Fd1WPTNnft+q7TqczEAhMTU217ad7+vRpLBZjLTdJxvky2a2cN7cZdru9nbcEAAAAAEC7Id8FAHS/UChUKpUWFxdVjjs8PDwxMXHr1q1UKhUKhXw+HwM1S6VSSYa7GxsbqibDw8M3b96UGfmtW7fy+TyFAoB9ZTIZNaTzF198IYRQk/gKIYrF4qtXrxr9bLFY/NnPfnaK/X23t7evX78uhFhYWBgfH+/xVan641rMtZxMJivXrxDCbre/8cYbcvXJPtzsFAAAAACAliDfBQB0uUKhEI/Hh4eHqzrpOhyOxcXF/v7+Uqmk6/ri4iK1EkLE4/FSqTQ9PV0VeLvd7mg0OjY2VigUlpaW6PEMAM1QQzpX9s5Mp9OvXr369a9/fePGjUY/uL29PTMzU/WrNE2z2+0q8bXuPXxEMshcXV3tqfVlmuarV6/koMpqaGUZ7soFVldXG8W0fr+/Ms2Va4qpcwEAAAAAx4F8FwDQ5eQksnfu3Kn9lsvl8vl8qVQqlUpRKOnly5cOh6NuuUZHR+Vw1i9fvqRQAHBoMpe16AkqOZ1OFSsKIWT/0coFLLJGGSHLuFH+qgO9w48//jiXy3300Ufvv//+06dPu6DmMrg1TVPGrnWXSSaT+/ZUthh4ORgMBoNBNm8AAAAAwAkg3wUAdDm32z09Pe3z+Rp9N5VKyQwYQohIJCKEaDRatdvtzmaz2WyWQgHAsfJ6vZlMRgihupDK7qSqX6kQwqJvqJwLtvIraqzgN954Q2acjSZ8ffr06b179zRN++STTzquboZhyOJsb2/LQFclu3KBcDjc6INX5r6yRKqrNP1xAQAAAABthXwXAND9ZGZZl0x2HQ4HVaJcANCGZMpY+/VisWjRK7c2hpRJp+oBrGla3ZhTTbv72muveTweu93+X//1X/JbP/nJT2w2m/zlN27caNT/uFgsptPpnZ0dIcTrr78uv/jNN98IIV6+fClT58uXLzcKSmOxmMyzxbedZeUsxZUdZy1GjZ6ZmbHoYiuEyOVyFqVeXl4mxwUAAAAAtD/yXQBAT5OBpdvtphTN1KpQKAghrly5QjUA4HRZD7kcjUaj0aiaTVZ2YN3e3hZCFItF0zTluM21ZGr7F3/xF19//bX8yh/+8Af5IpVK/cmf/In6643y3VwuNzY29t///d+133r48OG//Mu/CMuRpXO5nGEYFh/NOnm9fPmyTL7tdrsailn1WpadmC1+87FOaQwAAAAAQKuQ7wIAelc2m43H46LB7LyoMj8/L4RwOBzDw8NUAwDaX2XG2Qw57e5PfvKTv/mbv5H9fYUQL168+Md//EchxO3bt+ViFvGwEOKNN9547bXX6ua7zVDJscpx1QuV0Vr8+MLCAusdAAAAAND1zuzt7VEFAEAPKpVKt27dSqVSw8PDKysrFMRaoVC4dOlSqVSanp62GMAZANChnj59KkdmrrpDVF8vFosWsW4V2VdYfDsy89/93d8VCoVPPvnko48+otQAAAAAANTa29v75S9/qf775ptvvvPOO40Wpv8uAKBH6bqeSqXcbvfi4iLVsFYqlcbGxkql0uTkJOEuALS/M2fONL+wpmnJZFKGuM+fP2/JG6hKgl977TUhxJ/92Z+xagAAAAAAOLrvUAIAQA+am5ubm5tzu90rKysOh4OCWJDhbiqVItwFgG61uroqX1y8ePHM/yVzXyGE0+k8c+bMD3/4Q8oFAAAAAMDpIt8FAPScubm5UCjk8/nW19ddLhcFsSDD3Xg8Pjk5GY1GycIBoCPsHcTW1hYVAwAAAACgg5DvAgB6SygUCoVCk5OT9Nzdl+q5u7i4GI1GKQgAdKu7d+82Sn9V195isbi3t/fTn/6UcgEAAAAAcLqYfxcA0EPGxsaWlpZkV1SqYa1UKl29erVQKESj0dHRUQoCAAAAAAAAAO2AfBcA0CsId5unwt3FxcXh4WEKAgAAUPeSqVAolEoll8vFrB8AAAAATgz5LgCg3aVSqcePH8vXExMT1m1n2Wz24cOH8vWdO3fcbrd83TvhbigUki9u3rzp8/msF15aWnr+/LkQ4sqVKyrHJdwFAACwls1m5+fn4/F4qVRSX5ycnNz3YhUAAAAAjo58FwDQ7nw+n67rqVRKCBGPx/P5fKMl5Xyx2WxWCDE5OVkb7k5MTBQKBblk1c+qhTtdqVRaWloSQqRSqY2NDesldV2XBbly5Yr64tWrV7PZbDQadbvddcvlcDhouAQAAD1rbm5O1/Xa68m5ubm5ubn19fV9n7EDAAAAgKM4s7e3RxUAAO3v0qVLMrj1+Xzr6+u1C8hwNx6PCyHcbvf6+rrD4RBCZLPZS5cu7fv7d3d35fKdLpVKXb16Vb7O5/MWQWw8Hr9165YQwuVybWxsyI8/NzenegA30mgVAABQ1/nz51+8eHH//v1wOEw10OkqL5ZcLtfw8PBbb7318uXLeDwuH4xzOBzr6+td8+wgAAAAgJOxt7f3y1/+Uv33zTfffOeddxot/B3qBQDoCOvr6zKqTKVSdQNIXddrw90e5PP5VKar67rFkvPz8/LF6Ohoz5YLAACgeZUXopOTkxsbG9FoVM4Aks/np6enhRClUmnfp+UAAAAA4CjIdwEAnUH2hFB9TOUQxIocDU8utri4WJlWut3uvSZ0U8AZiUTkC9WPpFY2m5VDXgsh7ty5o74+OTm5b63ovAsAAHqTenhOZrpVF5CRSGR4eFgIkUqlGl2DAQAAAMDRke8CADqGy+VaWVmRr8fGxlQ8mc1mZVubDHcZDW94eFh24S2VSrJPc63Hjx9XLQwAAAALc3Nz8vrT5XKpx+mqLC4uyisr62FUAAAAAOAoyHcBAJ2kcubXW7duZbPZUql069atUqkkhIhGo7LPRI9zOByqDnXbFkulkuoAXdl5FwAAAI18/vnn8oXF3BYOh8Pn8wkh1JOIAAAAANBy5LsAgA7j8/mi0agQQia7Y2Njcvi7ycnJ0dFR6iOpPiWVUa6ixgx0uVwk4gAAAM3IZrPyxZUrVwqNXbx4UV6DUTEAAAAAx+QsJQAAdJzJycnnz58vLS3JRjTx7RRoVEZxOByjo6My2Z2fn69Kvh8+fChfkIgDAAA0Q112CiGuXr267/KlUqlUKjXq5gsAAAAAR0H/XQBAR1pcXJRj3wkh3G53oynQepmqSTabVc2RQohSqSQHDHQ4HAzODAAA0IzKq6nj+xEAAAAAaAb9dwEAHUl2iZCvC4UC3SNquVwut9stBxKMx+OTk5Py60tLS7J0Pp/P5XJRKAAAgGYuPuWL5p8s5EILAAAAwDEh3wUAdJ5SqTQ2NpbNZh0Ohwx6r169urGxQcRbZWJiYmxsTAih67rKdx8/fqy+S4kAAACaoUaOKRQKw8PDFAQAAADAKWJ8ZgBA5wmFQvHPRBcJAAAgAElEQVR4XAgRiUTW19eFEIVC4datW1SmyujoqOw4UiqV5AiBhUJBDs7sdrtVMyUAAACsORwO+SihuqwCAAAAgNNCvgsA6DBzc3NLS0tCiMnJycnJSZ/PNz09LYRIpVJXr16lPlVUJ11d14UQMhcXQtDvBAAA4EDcbrd8IZ+WAwAAAIDTQr4LAOgkS0tLoVBI/N+ZzyKRiEwrU6mU/C6U0dFR+UImu59//rkQwuFwMDgzAADAgajLp1AoRBdeAAAAAKeIfBcA0DGy2ayMbx0Ox+LiYuVsu4uLi7JHherdC8nhcMiIV44lKLubDA8PM1cxAADAgQwPD8vpLUqlkvUzhaVSaW5ujooBAAAAOCbkuwCAziBn2C2VSqIizVUcDsfKyop8PTY2xqB5laLRqHyh67os4J07dygLAADAQS0uLsoX8Xj80qVL8sqqUqlUWlpa6u/vl1NjAAAAAMBxOEsJAADtr1QqjY2NyXHwJicn684d63K51tfX5RS8V69e3djYqMqAe5bswru0tCR7Nrvdbtn1BAAAAAficrkWFxfHxsaEENls9v/9v/83PDzsdrsvXrz4/PnzVCpVKpWy2SyFAgAAAHCsyHfRXgqFQjabdTgcLpfL5XJRkK5ZrQ8fPpQtHaVSyeVyOb518+ZNEjjsS4a7skuuz+dT0+7W8vl8k5OTcjQ8GfFyJJHu3Lmjhq2um44DAACgGaOjoy6XSz5TKISIx+PxeLxqGZfLpSbrBXDo20DZRuRyuXg+FQAAoMpZdc2knjA93VxN3SMd1J07d+T8gsrc3Nz8/LwQwu12q0E7K/X398sXi4uLtVeKlWN7ch15Alftuq4vLS1VDW+1vr6u5jdSm6jb7a6cNlJGhkIIh8PRKCmMx+Nqzs6NjY3aBdTIWtFotA2TD+u3pyrQhttqKpUKhUJVD7BX/nd6elr2LIxEInVnA7169arsshmJRKr28SNucsd00CuVSpcuXVIbMOFiSywtLcm7ennEtp44NhqNlkoleQwfGxtbX1+ngPLg4HK5CoWCw+GgtfFAe7R8KuXk/7Q8LVovIx+Hks/KHOjkxUVOz8pms2osBHlNFYlE2mEbkJeCKiBpdPXengqFQu3VTpNcLlebrAL2C7VfuFyuaDTaqpUSj8d1XVe/3OfzqW1bTjzRhvsjmryy2t3dDYVCVSdreWqWrRPWl6zHekRVRySLe+QuuEhrt4+5tLRUOSj38PCwmiTl0HeU0sbGxmltTqfbklAoFCrbiNxut2rPadQQZNF21D6XDarls+6aVRfq7bn/quY10biFzYJqiV1ZWemCo9Px3VXdunVLbskTExOTk5Ocdlu71uQgHEKIfD7fKe/50JM+LC4uVjVoWG9dlft4bX165BoDhziqH+iyR3bjkduSw+GonYPv5C8mO7ir4d7e3t7eXmUDyuTk5N7pOfQHmZ6ervpVapNyu93Wf2tlZaX2u5VrdHd3dw/HxmIMVbVqKhOaxcXFyh9XP+tyuRr9CbWFOxyOuguo1V31y9uEuuKv+/YqLyLz+Xz7rNaDJuUbGxu1v0et32g02sK3V7lFjY6OtvA37+7uWn8i4LTIA93pnuU78fTk8/lO5a8f4ja+9lpo39OKuhREj6g9NQ8PD7fDG6u9FWztef+E3/yBtMkqOG7f+973hBD3799vw/dW+wRho1uGQ6i9zVHbdu2W0yMbQ/dZX19fWVlZX1/f2Nhoh6aDyrjltC5jTvhjtsm+o+ZmPuLtee3BodeapCYnJ+vmspWNe6oZpKohqLJ5sz2bdyrzkrpbiPquRRtX+1xMHnQjVz+4vr7eBdvq8d1VqS2c+/fjOGt33L3wUZ58rW2ZVFtX3QaEyr9lfQTr4msMHOKo3vzF2O7urjqVOByOusHcyR8NWpsOHNEf//jHVIUXL15YLMz4zDj9p27V8xo+n8/n88mJi7LZbOVzcOgs2Wy2sjuC7KF7584d+Ty7HGHp+fPnhUKh8oH3XnskGThJ8Xhc7pI3b96kGvsqFArz8/NyVIl26EpVtw+QGrBOdWuYnp6Ox+Mt7HaGrty29/3KqXj16tW+X2lbL1++bO1Kwcnfj5zkL1fbdu2Wc6zvBMeH0y4srsAP8cTe48ePe7loc3NzcrYdh8Ph8/muXLnicDhevnwpJ7dmozr1M2ZVS52u67VPNgAA0Og8MjY2Jgfucjgc7TmQamdp33zX5XLVHeWj0fUcyVCHmp+fl+Hu5OSkGqGXHbujZbPZq1evVg4ZvbKyUrmHyhEP5FqORqNyWDNmXAaO1cOHD8W3j9FQjboHLhmUygeMDjfO6vG5c+eOxYqLx+OPHz+Wj8vII7Ca3QBA++P6p7vV3qW+8cYbzS8MoHOP7YVCQdf1g+a76kl3+Rt6rW5yvgbx7WiNlU1DkUiE7erUqVnV1PYZj8fJd4GTNDo6Wnf0IBITdMRZvircbeFUjD3rrLr0VNW8ePFi294Mn+RRaXR0lKfpT4B8MFNerFusXLfbrS4Zq9qsI5GImnalN2t48+bN9mkZlEfqys5k1rdh8rZtYmJChk8neb/dhgc94JgUCgXZTnTnzh2qUZec4qtD3/zw8PDw8PCVK1fUNEL7Rryjo6N0gOhNtRdL3PAfk6odsO4eJ6f3Zk70ZqixCo7jicDaX9joTzSa7tGCfJaxcpJddQkaiUQqnyhyu90WG0OhUKicxJdNAk3e6XTxEyRtfkPn8/lkElYoFA60FlTnXfkbem3rVfHh6Oio9XP/ExMT8tam6krGou2oU6gNuw0v0tT2OTExIe+eSqXS0tJSzzbQc1eFNrmnO7EjhhygseuvMXAc2jDc7Y504GztBRDU/TZFOG6qicTtdlufhyrPH1VOprNvoVCQAeRbb73Vbleuhxjx6fio0bbFt32ym/kpt9t9wvOou1wuDno4lauZS5cunfzwI7quyxSB0RGauV2Rc+7G4/F268W7b+OC2+2+dOmS/O+tW7c2NjYa3XEdcbpQdPT1balUUu1QLpeLK95jUjV4CY54eVkZcqysrLT2dHbnzp1sNls5sUjdnFXX9enp6cor8GaOpT6fr+6oVPIPVc75ZCEej1c+QOnz+Zr8QfTsxcxx3OmkUqnPP/9cCHHlypV2iM2O6WO2ys2bN+WB60Cj18qoTH469Rt6itzG5GZmvWSjE0FlW22HatsNW3Uu9/l8o6Oj8h5TCPH48eOezXe5qwLXGECTVzihUEiGu/Lg2Q4nju5IB77D5oXTvTpUu1P7v9Xp6enp6ekenwvHWjweV0dqmoyBukeSQqHw/Pnz475sqpwVKR6Py7ahunO4QhodHd3Y2Njd3d3d3V1fX49EIp34LKrb7VYt/vLRSNYsqsioKf8thvJGR6hKOObn54/j4Kn2i42NjbrNDVVvQ130noCHDx9Wdg9iEkqcisePH8s74s56AO4UT7iHOFakUin5rEnPpmUd1EbUmwcBtXk7HA4VscfjcYY/BAA0IsNddTO1uLjIsMwtRL6LU969KUI3qWxum5iYIEkCTsvVq1fPnDlz69atq1evypDPetRHyG67XXDU8vl8alCHVCrVg90+AAAA2uHaUrZdqi65zVCTFt28ebM360YbUTtTW7IcGbtyKz3JZ54AAJ2FcPdYke8CaI14PK66DHbBmEhA53I4HDKnlHtlqVSSQ+jwyEWPqOx8rOs6BQEAADh5Kv1qctSBQqEgQzI5VwgFRFtRnXSHh4flvcbw8LC6weSmAwBQV+VUO9PT0+QFLXeWEgBoCfWssRAiEomQJAGnaHJyslAoFAoFOe1uNBpliLPeIUdLm5ubE982FDLvcgvJByaO+0/Inbcd+pSrNyOEcLlcBz2SyB8vFAryuROXy3Van0h9kEN8ClTVsFWpwwnsTe1ZRllJIUR3jBsBoBEZgxUKBTlFy75nH3VDzZUb2pDaPiunRh4dHZU3HfLUxiUWAKBSVbjLTI7H4TD5bjabffz4sTx5u93ut956i+C96qZdXb430/yRSqWy2ezLly9l45fL5Xrrrbd8Pt++F0apVOrzzz+XrQMul+vKlSvH8Yzngf6Kaq2QH6Tq67ImbrebjcRi55KbwTE198iNU+6/coXeuXOnVZfgaqacyolYTnjXW1paUrvSlStXWnVoknX7/PPPZZOc3Emb3MGrVq788ZN5HFutkcqdTrUvuN3ug7Zxyx+UW07Vjqz28VKpxBmhHXDNxAYgm1qEEI8fPz7KMVlO5yyvBOTJvVUnjrm5OdVO5HK5KruYp1IpXdflUUUdc27evFn38FIqleLxuJrW+uLFi42OQqlUSk0b5nA4aneTpaUl1cNGziKvjnWpVGp+fj6bzaoTgdvtvnLlihoNWx1j5+fn5eR5ajH5jMW+dVY/WDWB2fDwcO0fqjwyh0IhdVqfmJhQp5hsNvvw4UP5Ozc2NtRaq6xDo3LJz6sO7FXvx+Vy3bx5s9G5TF1sLC0t1Y6y6PP55HDxzW9FtcVxuVzDw8PN/JKlpSU5cWnVB5G/Yd/1cirm5uZevnxpsaHW3Z4r58Wo2in29dZbbzXawFTx5cZftSU02ivl5qemAJdbZtU7V7uJw+GQW0XtJy0UClXzzlZu9uq/tZux2hNVcdRhsFQq6bou//rKyorajC32C1kEue9XFafybVisLHkglYe1ujuFPODUbs9qVdbOa1jZU8rhcLTwkh6949ANESd2Q3fx4sVGR6dmqD2usnVCnqTU2fy478vUI3fxeHzfz1I1+O0h2qAqS9fkqpQHqOfPn8ubR3nls2+zjzo0qS3nxG5yj/VmubKYLbmrzWaz2Wz2+IpTuy6OaZ4suZ3UtvbcvHlT3XTour64uHj0PyEn9z3Fo9DxNZrVPeoeaEuTVVIPLJ7A4driQKoeVjtQM69Fm3npW4VCoSWbwUHb5xutteZbxeuWq7LFTN4b9uZVR2WzYTNrRLXEqlsGl8t18eLFfRs3jnUvbuE5KJVKVR4NmnmT+zbzykCh7pZ56Kbgo6gclvmg4e6hM6bjSAfa8Jr5/9j7luNbGxsbew3k8/m6e5HD4VhZWdlrhcpmlyP+KtVk43a7rf9W3Tc/OTkpCzI8PFz73d3d3aqKbWxsVA5OoiwuLjZ6h+vr6xZnQZ/PNz09faAfdLvdFqvvoA7xV9bX16tqvru7Oz09rX5PNBrd29uThVIjiKqtSJmcnKz8tbK3hxxftNG7VcvULdrKyor6K41+vHZ95fP5yndV963KQ+fRqx2NRmurreqg/nrdCkSjUflOfD6f9Qqte9wZHh7e3d094vvf2Nio3EL2Wqdq46lrd3dX7rC1n87ip9Q2s76+bvGbZXnr7qRut7t2jezu7qoF5J5Sd1caHR21KLtapxZHQpmFSNalk4e4jY2N2ucGmjxo1A7tKz/7xsaG3MErv5vP5/fQeDeUlzWUov2pCx7rQ+vxqWwEtDhMWRziLE58o6Oj8ugxOjpqcQCcnp6uewCsOk0fgjzDVh0V5R+1uGGruy6mp6ebufSqPE9V/sVKR3xLFucL6wvsRifoqqNu3aNr1XtTq7vqzahNSF0RWVwGN5l61r1+ti5X1eVH5SeqXY/yUGl9tWxxZSivzK3fg/W15eH2VuVwF1eVVxEWl1W166jygucQrat163CULbOqycbhcHzve98TQvzt3/6txW5S9auab4mrut6r2pwcDodcHVXXM+pT1x4fKgvS/CMytUcVefvcZANl7eVB7X5hsSKO40y0u7u7vr6+uLgor/oOd4+grlctLsvRctZ30M03RFTecVjcER/9wsDihs7iytn6Y6pDpTxZN/oTLdwyKw+/VUf1RrdstU0W6tKi8pTd6Jwir9YaHautbzosaq6OaVU7fj6fl9eQjQ7jk5OThzj9VR4oqn6hUvlrD3qzXPctqV1AXSOtr6+rSGnf9bXv9lxbKPk4oyyj9b2zajGzWIMWq+/o+6PF3lTbQGp902HREisrX7cp1efzVd3+yLsS65Ve2U5r0SixsrLSqAGt0ZRGFo1mzdxV7XvUnZycrH3D6ipIrtCNjY3ajcq6PaeySbPR7WRl0epe26tLEbnqG214zVxRyyap2s++u7u7srJStRkc8chcdx9ULXiq7boyFjlQq3ijDUydBdSeUnWUPvStR+UZwXpja4bauqyb0BvVR7YBNjr5ql1M7a2ykgfaei1ObbK8jXKolZWV42j6Vh+5mQOsOl7VTZQs7lJ9Pp91g2ozrc0+n6+ysEdpCj5ollf1eStvZA5xYqq9LqqbMR13OnDo8O6I/vjHP6YqvHjxwmoVNDrFNrrkOmi7wKG3iXbIdy0aEysbX1ZWVqwvixu1M1bdIDV5o77vHIqHaAVu1V+pyncrO4tU5bsHahxR78R6b7Q4ZBw6322mPeWI26o8+li3PO6b7+7bsmP9sHCje57D3crWPYEd5SRqvfbz+bz104KNLn1UVRtdFjTZSF1V9qp81+IpIYu7DrVOLe6RapsPGpVuZWXFInVQVwYWl8UHaiNuySGoW5HvdpBOz3cr99zaI7z6bqMj9r4HwCNmCbVpikz79g2T/n97dw/jSpYWfLzuaFaIQXqnrkjQaKRbF3Y0MLNMuwV528FOQtB2MhsAavcgEpK2GSQCVrItsREX2Z2CRvZNkNjEbhFOYPfGiK472lnBLKLrik2Iutg3QCLYfoNH87xnz6k6LrvKX93/X9T3ttsunzrfT51z3HbQraOWDlOX1t566+/u7pZGmKTjsXRRTl5vYaU61q2u3cvLDP5pFsoLo3oSyv/Frdu60hOsZvubeWHz+XxpYCyzJfW3ekUC1WuXVrPTO14m8+Ldd7PKqTsoi6LILObFg4Keu7nSun/3i1g5IQzDb3/720vfx6pvi2cnKxu7xer29tYd3Wh94kbEzd5j8TCzW6NmFih5PDRv7ql4B77C8YjbXbHWzSx9kLRIbU//Z8vx3bwxVJGJCM1RBZ8XKTnXvLTXkZf9PF/Tiu/6x4xVDWAzB2h6kf7mRlNAq6al8V0JzLg1TMEOm1VVZuYEs991d3dnpWHmn6zxsK/bLfS/7aqD5aXxXXdOpkx815+fa7WaeWf9T+/lTYivXWTKR4PcbGwmXZFp4eJTqeYIyOyoL51F8bc4ecnr75Nbfa3io6r7wo9OWu9vxnf9M7R5dYs5pemZ9fLfPjO+6+/q+xuClTrnJatl/6BSorxL47tLLzhzGs2K77rPSj6Y+K6n8TVn4P1P3OY9A20VmeIPsvhLcZmpb72zRVoHTzh/abTF31sws58/i0r96X9N5Ws1zWJrDUjXCCdb8V23NFnZz+2lFKxVPNGBtYN3W47vFt2fOUmSRqOhmwz0ej3ZR2s2m8n2a0EQnJ+fr7otg38Vtrnhld9Km7xV7vz8XPcWkypSkt58gbtjbavVkvRst9sXFxeabrJe/uXLl7PZzP1Si8VCd+GT3e1kMfhsNpM/kXdedX5tE58Sx7HmGZ0UkK+pew7I8vbgm13y9G+Pjo6CPSAP5miaZF5qXvFeKf9Ikmq1Va/Xj46OkiSRzet0d7u1DQYD3TOnXq/LSZyyYUW325WdLhqNRpFhlafAmh3frd2jNE1brZbcGrlfp6encsqRZOMgCCaTyenp6arbk6Zpat4auS+np6dhGMqOXtfX11L1eSq9bre7WCzkWc6Tk5M0TV+/fq2NnGz3t4XNIWV/zuCbrRTDMHz16tVkMtG9/s7Pz/Pu/uXlpXxNrfm1itCWTI5bDsNQNzoLAOxBE2b24lbtnnW7Xa0ApaMiDcdsNpPiL5uvltmELfNDZZuddrt9dHQk26hau5J2u91tbgJ/fn4u1Xin05FLkl2azddMJpNnz56NRiPp7B0dHYVhqG2EeRcmk4l18bPZzHqZ7gstzc1gMDA/rtvtms+b5/XizI1bV6U7VEsNL2NC6fMnSSLNh/zWPH1N203rfknfT1pAaTrNPo8/WyZJMhqN5LRXadxfvXrlRi5fvnxpbfSUJMlgMDB7JmYPYbFYaG9W7/ImzpUoOJBxZ6CGw6GcnG3mEz1IW9LZ+nbymLw5MpKckNlH1f30zHc4PT01/2c0GpkXoM29PN2sHUjzyy59MuC///u/gyD41V/91b/8y7989uxZEARXV1fWp8i2yWbARjZGtgqdtfOY7MC8dDCro5tVDYdDyVHm+C7zMtxOnXkLZNtMczXJYrFoNBpWnWCmQK/Xky3I3P2xzaizewfXFsex9P3MUsMhwQ+MTkQ0m00t18E3e/fJ9I5mwlqtpiNi3XVfx/VVjd912GVmPLPXsVgsRqPR2ns165jRHGubLdpsNovjeEMnSfV6PRnRe47MyNv8dmlnTydt5DQH3XRxMBhIi5nXYRuNRuYoT6sm3cJRjmkwi3+329U9nMfjcWbOsTZRLCiKIr25OnHhWSi8iSZbM4N8hbU7BmmaHh8faxOp82BHR0evXr2SqcJWq1W+g6pFRk+ssIpMt9utaqpB9hHVr+PmcL1rL1++LN5Rl3SQB54ypykajYY8b6T3RX6Vt9v59fW1mcPzNgLVToXZlR0MBpoHMifNkiRptVpL++Gu0WikfUKp4k5OTsIwlIm4169fm18574Kl+tVi7s7nbOGINEkB2TlZK1Kzbz+ZTDIPm9DhicycS451+5NSq1RynY1GwyyDMkCTdJPafuksqxYlHRDJ6Gw2m+norNFouM8HWzdOG1wtPpV8R3NGrkg/dlf9DZlqNk9jCX45YqJz0Way6LfzN0/WULRIKZbOwBqlWLpMkm1k719PRSed+cwGXfKV2XBLh0e+l059tFotWdHuH7Nrd136YFZlcn5+3uv1ZFogbyq42+1uqOoYjUbWsL3VahVcRFe8NJndNslL/uiAOaYuSANbmcE7OQ9oL84hLbh+VzNu5i4EWjbKP0Ky3rfIfOJga+t35SOsZ0CsfSesR6o1lCJLQ/KeYXQvTPtSmZu76lcus5GFuVQlc3cdLaLup2hOMDdzt3YGWHXh6Q7X72ZearWLU825sMztUKyGZ431u+YemJlPZmnVVmZb3VWf2axq/a7mxiiK3GymBS3zvvvX75p9oOFwmFdO+/2+lapW5eA+j3Z3d2duYZT5ztWu3w1ytqA0W7XMQqoLp9zrNNOWDZlZv7uefr/frFqF9c+hr981+9Pun/ufNDcbTbeGNJ+LXLv4u8+USG1jdagyx8xWdbS59buZfby8l7lp5V7Y0idMM7vZ1iyA9SnuLJv1PzJ01K/gX79rDboy20cdgVuX6r5zZi9Xt4Ww0j9vyanVr3On89wS6i5IcouANa4rWS2XOR4yr3PrDhSlpXY/a6UnrzOfa3Z7Mu7yL+tWmp2ZzI6Eu373jTfeCILgz//8z/0rdN0EcecCllbLbunLLBeah/3rd/MGqkWWzOrF9/t9/7qfvDyflx/Kn67iWariGaKut47N00bLBFa1NrE36cHJW9iq7a9brs18m1mxaM1Z7Vbb5sDHra610ckcFhVcv5s3hWKOtcvPZeUN0MwtmvPSXC/VvIwi+zNL4CHzt+bFuGM9d7lwZvE023pNbc8qnPJd8aWbbN1XvX5Xk0Ie0ylZ+5n9mcypMKvDs8b63aUddU+RKfml8oqJ2ZovHR0s7SuaXR2zu6j/7zlEz7yhmVdizmPoR5uTZpmVifYi3Pf0j6rMd/a0rePx2P1zq+viXpjZhcgsetWu382bJTZr2swcYnY+3Y/w/Go9ZrJk7nZrdb38F5w5K67vkLk6U7OueevLT5oV32MpL+6Tmbs2un43Lw2tiW7rGjRHeQZo0+nUes+lpbj81Lfed/9IRD/IKg7m6CnvwD79iLwK3D//YA308vbQNuuWSnZpNqPgVp1gtg6rjrg1IxWJMW0iOmAG7zzzWlUtg7ZUvz+ztbLeP69Rss46xPhuXiNtlSvzU/TaVhp86l/lbQyi9UiZnpyZbqt+ivsUjL9/THxXa1VP4TJTdY34bpG9feTrlxnTml3waqs2T7/BbL89Ry/k1WyevzVnNldtgayp/8xb5h9s328gvpv5LcxL9XeAMn+rPQ+ilcUR3/XHpcqrsIo+9Piu2av27GnsppjZe8nLqzpZsPYMb+aeAZndG3fphlVtbjS+m/kIS+YTmm4iuwFLz4E0nhttRZ6sN8krR3lzlP74rnVf/HO+nqm9pYOC4XBodUsy47tu18W9j1aMzX3B0haw/BxomfhuXiK7QdYoitwH8FeNY7nlxe3+uV9njZzp5geJ77548SKzpt10fNdfLjYX35X76C9KRRqyLcR3i4wBN2GN7cSLLGqs8FCxA5UX+HSPBlyja1RhfNes6/IGdDocdotS8fhuXmxVv1Qlm5znDdC0UspLOm3Nzfq2SHy3YDZwm0L9VcEZPP/caIW2H9/1PGNXJj976lKznV01vmt21POyk6fIrPellu4xbtbkS+sHzyMXme241ufmzJj7h1peNK/6VwiYdaB10q3nzrrdA39811wrtWopNjv5/pB2Xne38vhu3ly0GXrxdHXyQuAV1i3mJKGnmTP7n56v7LlrUgzdhsPqUkrPs5K68UDju3llyhx1Wrde785Kc8tFpr7zSvEaMxh57YVZKt1DxJc+6mGm7dLBSOa988fOC04Fr8qsqcyul9wLs7VdqX/u5vm8GNOGogPrBe+qslJ8940idYFu1NbpdPIWHevGF9YuW2uTZqOgTcwRF3d2dpa5b4wM5vWfL1++1J9lgzJzY5Ai2xrobnue/dPlE2W7gPU2T6jwUzqdjv84jUduNpvprhSewlVmpb9sPqD7WuTNgEinczabrbdtXeBsBLqdBNTdF9vtdt4GC81mU/qaZgEs/s6yk16Z2aXMCzP/c+00X0nmrn3m9llaKVk7YLgX7L5n8XoMcAMGd5Vae9jzsK3UEMumVcE327HmddKk4SizD7Cr4EZ826k29ZLcMJV7kbVazY0nvf322/43t/Z6rfEN880AACAASURBVNVqmR1a652tv8rrOczn8zX6YNaXNbcr9DRkQdaWv3nHi2q3p8heYW4T7L6nlR+urq6Wvkng7Kwr20dXXu6WqtfreR0YWcdm/o/sMGzljZW2XNPdOM3b5L6DNZprNpuZOdO68qUJ+NZbbxWpnTI7JFXdkfF4vOWxiYSUVtpVfifdKt2HUFJpm0nU6/Uq7wwsPX8LBVuTbQ7oZO115mt0Cz63hi/fx9ANHjfauzg7O7Pm1qxSL7cjryewNk1ST8VSMCdo+yubxj+8rnIle8PKmQLys2c+rcyO+npQiOxVkFdkJCNV0lGXoxOCrKPKMvtaxT9UtinO/JWZelpqzL1t3ZlnqR/ME+4zawztCGmp1Hm5yifNFouFftyqp8/m1SF5vdntdB7yKlLt52RehtYYmUXMrFvK18Papnjupr8MygEx8rOnRyRvLht3e65HZsU3cSOK94h2W7vm3QVz+GwFFzQbFG9rtjP1bQ5v84JfepKF1aDHcaz5Sk64y/sUndGaTCaecp13PE29XjfffL2p4DLthQ5XdbxvztGVOZ7AE2PaUHRgjeDdriyP75oHgWS2KJo5JOOaBx5sYVpE7Wf6yt5fbr9ZC2HxTfNlp3h/p8ospa9fv17jgvVspyiKPEOLIp8iB8gxcvbQ7mbJIKI/22RW8Znd8TJDNXMW+9WrV/529zzHqg8laJnyD5CkvKw0haFNdbPZLFO95HV/zf/cQjvhORldG/XMW+/PD/q3xHextbb+QDsDO2E20CtNV2nb5D+YRCreaqNi7iE6QelD7jdxSZnjqCIvs9LKDYh6iknem2S+eD6frxfbsFJbjnp98uRJq9XyN9NuI1t+htofIS6YyObeaHmt2KozCAXd3t4unXDRcxDyUsDzzEpmaNbfa7KmXPMieVZS5N0F6w+XdgZ+5Vd+ZbdtzXw+38LpdCUL3U6YD/h6HjmlM/AwaCmQGn7n16NVh2euab0BXcEGvdrQgqefIB+UGQwo2PUqU8N4mulut1skYc3p4PPz8wcW4u31epVUfeY0woZWoWSeHeuSAlVJltapcM+zSmb2qOQJADk90UpVs4y4sVvJxpLsWmNYV6LPI5oHCev8lf9JU03S4t9OL7LkoxueY7nNZN9CScmrqHU+MPMyNEyQd1K7f1ZqJVqbtdvt9Qq1zop7ptHMKtSzyG1zM70rdZz2tuI1H3owS7Qmu3merp/mnMpLsUVvaN6DLHkN+mKxkHylz994so2+wPNYm3+SX1Ny6VRwtdO5WgN0Oh0NCUVRpPW5+7xyQf4Y04aiA1plrXTi9U68WbyQhGFYJMS9zUUVB+Hs7Eyqexkw6GGWtVpNStFoNBqNRrJA5OTkJK+ca5ELw7DIA3Hr1VYVfkrJwNhjoIUliqINpZX5vEXBG7peH8ic+/NXAtfX154Wuvj6BrNJfvXqlSeoLC8rXjWZo+6CM/tLR9S7tfZlhGHoSTczA2/oyv/t3/7tn//5n3eVbn/wB39QPOn0WagidWYcx0X2ulg1tvFP//RPP//5z3eSVh999NHv/u7vUqvvFbOBXqkS0J6AOePvqQHWbjg84+T9UfCr5c1WFGxr9H/y2kerNk6SxL80tkzr02w23QpK/mcymZyfn3c6nYuLC+sC3Fa4fAu49qSMlVHzUtVq4BaLxR4u+JPVOfq4t5m8Ky2yTJKk1WpZX3k8Hrtf2R3ke9LQzJnmSCfTbuO7zWZz5/c3TdM4juM4fv36tfRj92QZnLk+wB9je9h+8pOfZJ4dsGnf+ta3Pvnkk22OC3QiYjKZTCYTKR2eiYjtdFeur689Azq54KX1TOVtSrW1kFTmg8HA3ObNrGMrL4CerUTOzs7kc9M0bTQaskhaskFeCutXWCwWz58/323OqbZQrLTLQsEZng1drVbXr1+/XtpRL1Nk3EGuf26k1+vpIyNWJl+P9q7Nb3FycqKZ0EoWqUykpJsvM2+u/pWZzzVJkyQpMmm20sxSJfXP5rLTdhQPQpccPlQylWd2zPz5IYqiJEk8yx/9yzQhj1nIMNNM9rOzMym/8iBat9ttt9tHR0eeaKVOfVdeii3tdlvifNKHt8qm7sbhrpDUKyxSnGu1mryPJ/jqeR8doO2q6mi321bmHw6Hi8VCo2BnZ2er1oqeyP3mogPSz7GCd5IV963nszy+azZ1RU7HYSGXp30y50Dn8/nz5881V5nzJrJfed7EmcwLbKi20uU+5T+lZGDsMdAU3txoUz9Cd6so3pVZiVm1bWezL/NSi1RNxcc25juXvDXPnj3bq/70Gn8oWSgzlrCFDPyv//qvf/RHf7SrdPuP//iP4t3xVqtVPOcXLI9BELjnL3r82Z/92c9+9rOdpNVf/MVf/M3f/A21+t42MStVAtqyuyGlakdH1Y7nt9CLq5abbnKwSvk0XyPYbBqPx+5myybZ49daIuxe0q5aQDdqXnCB2t7OvwyHwyRJrFYjMzTryTDdbte6R51OJ3MtiHvrJQJU8IM8ySjn7+5KyXJRkjz0rbsx7RvzedDM8hKG4WM4/uAnP/nJTrqdb7311jbjuzIRcXx8rIXd7Jc2m82qFjIWrLH1Mor3OtarrnceIOn1evIdZ7OZGfrSJYa6c2BV3Yw0TT2Bh3q9PhwOdT2KdELkCmXHOHeLiOFwqJPXVs6p1+tnZ2dVRUm3P1iupA9Q4WPintu6apEp+SCm7jWa10DkjXbLx3fNy9ZvofNOEnh2V7lJTMX8fzNbantn3qBVJ83iOC44s2+un3kYo6T16ii9/uvra3ezYs3VURSVrAPNXtbaiaaZpOCsuGfQRHC3eI6ypmHn83mj0dDbqtWdPI7jNk+bK8XuPW232zIych9k0YrI3EzeusIiQxLP3hsr5a6d9HzkBrmXN51Onz9/Lj+3Wi3zdPCSQ7nNRQfkso+Pj4sH73ZleXxXA34F1/VTf3k6JXEc6z9ll7BWq+U2BlIf9ft9c+25/8QCf8O2Upe0qk/h0KPiqb25KadVb2iZHqc8vBbkPMdkDgutTRUajcYaz4WYWwsUrHYKjm3MiymZboe+fvfi4kJGcYPBwOr9pGmqOzps7mGO3/7t3/67v/u7XaXb06dPi79Y5juWVryvXr2SdRJFEs2zrWimFy9e7Gr97u/93u9Rpe8VMz630tDF3JywYAX48M5g23IfYFVLlyGWb7mm02lmB9XMJ41GwwzxurXfTlrAtYNne/gQrunk5MScqjB3QSxiMBhYMx31ej1vh6syOXOf15fsqksmK6etjq5sO/ns2bNarSYv2G3imBGazOrl2bNnJVeAHYQPPvhgJ93Ob33rW9svDjIR4Q7BZCKi4BHpFTaFKw3oDnQpmyxUkh0aJ5OJxpx0SFVy8a5EXl++fJl+Y+mfSKDF3XJQjp9cLBbus0Tz+TzzvAYJD19fX5c8ZHQnqpq5qvAx8QqLTMnniszdQYv3EKxMXr7h1qlUM7hyfX1t7ZGrT7Xq9JQZHTHXIpuPuG1u0oxt4cTFxYUEXeRxFiud9Xzl8qWmkqm8CvMDs+JLZS7Tlx7peDx2nymRWO9kMhmPx9spxa7T01OpgtwHWTy7cZi199KP0OekPZFIz/4cOxRFUV43IIqifr8vVYHs0rxSV9NTmjYXHZDLXil4tyvL47uaY+r1+mN4bndzPTC3GNdqtdvb29lsdn19rQvVlWR6c79ybRo3cTx75Z9y6FuIbKd7pNvmbO6GSg6cz+ebviO6X1OwbEMeqyCs103Uv4qiqNq91Ky9ph/zMyvtdnswGMi4yGx9ZSWQVFnNZnNzp9m9//7777///qHMCxTpHywWi8lkUqvVNlGNf+9736NehTsX4z+DxGPVZypRcoqk3+8XmdvdQv9KOqiDwWA0GuV1UWS/LG1/dRepzA7wDlM1cwVS5h/ubXM/m82sfcbSNG21Wjc3N0WuWfaSsrLQdDoteCzxXuXMQxwGNhoNazDYbrfNHc53vqLX2hDvQJffVeKDDz744IMPHsmXlQFU3kTEaDRKkmQLkz9m5/kx9DrOzs6krdQ1hRpwMk8DXUmappeXl7PZbL2N9DqdjpwCcHV1ZT2rGsdxo9G4ubmxqvfxeHxxcXF1deXuOzKZTBaLxcHdyqraL/N9NvQggvmeW0hnc6/RIq2Dudn4y5cvSzYoeVOpJycn8imj0UjmS3WdpVmI2u12v983l/nq+ZfW5kZbmDR75I/DalReerDT6VTSWTKMdFPl5JEKBwJrd+x1E7ter1cmD6/6OObjpI2OOxZrt9vtdns0GklHxWyeJCPN53Mt8lue+paPsx5kmc1muhLdnSNdaf7/cE8+9a9R6fV62l1ZdZdm/37UZud2Q3MjBYN3u/JG8RRkfUb5hjwz48rE083Nzf39/XQ6NduPfr/vPvBl7qBVOX1IZKOfAqtweXaHr2rMXHAz2DLM6mwymWy6xtCvVvkHmaMC6j1tKUej0ZMnT1qt1vHx8fPnz2VMVUkvHEDlwyQN59Tr9ZWmC82BKCdubKcVM1ucqICtXWGv17u7u5tOp/1+P/M0PnOZuPtbz56Q22m2VkrVvQ3uyv7S7iC/4KLPOI6t2PDSg3sz89he5cwDInsyW8Vqfzbycvu6bMT12FgTEeamdjpNuekaW3JdwfWmDyDBreTVzW89B8v5K/nj4+N+vy99tjAM5Z7O5/Obm5vb29siGxUGQdDpdObz+d3d3e3trVlHyUO9mX2YXq83n8/v7+/n87n5J7L295EPnDfXizaLzBZKqLnX6LCA8XisOUE3Hi8zosnsNms50kTIPCH44uJCftAl8vqDFXrZ3NhHL3tXveL9YSby8+fPW61Wo9E4Pj6WA0TCMKzkqFpz2Lv23dS7pruZYnN0Mjyvb9zpdKbT6d3dnQxLzYiJORQya55ttubmU/Vaw2Q+FqBXWCTaosmy6pZ++898drCqHYw2Fx3w9Jnzgne7sjy+q/UjcY6StVWRh3eazeZ4PDYfN9CtKopsv15to8u92zTProaH2KG0HuoscqZ9yY/Th/6qrZ3M5nM7nYO9NZlM4jg26y552EpybL1eL7h4CMjUarWeVq34uVAPmBkN0qmNNYYrD6wC3P9+7H5ObctZjDLtq4/bK316bLeHm2Z2ZR/A+EUeTs+b31wsFv4aT9ZYW/mq1+v5n/lwRysMCtYus1bSRVG0uU2Yyg8Wgh1tJDgajSrvDFjLplG8tr+7u9O+/aZHc49w/sEcL0sDqvO8a2zOLG2EZPVarSYz4NPptNPpyF7rURStun+jVFO3t7fugqQ89Xpd/kQbl+3knP28v1p8Njf9sp2J7OCXF+MWz59m6LTkGoO8vXbDMNREkNGKlCNrEbxOYuhl6BtaX0ffrfJ1F3o9j7wrpQ8fm/tp6xMAtVptPB5X3kFaO811UEMHeAs0kZd2QeUBpvF4rCtM0jR1/3w7UXld3aRNpLn9e2aFaZ4dXnyI8fC2+JYNnLUVy3yGbI3Gd0PRAU9LZwXvNLq/K2+slEzuMRvwF05zDU3xJ7XNrTs1a5qxwM2txTTD+Qc0sbu1Mlz5AEB7pf5T7tb+CH2A0bPF4iYauWC7S3grH0PqO+sDFodV81RFHkar1+vyKHe73Za1gPKI9xZ2PsHDFkWRzD1VaH+CTLsyGo20k9But9fYPl138tjnCnAN+7YxibvTXZHFUlvo8LRarbxWtdlsWlsembshuVnR/0Eb6mdaI+oi3ea9XTd2fn5uTi1J42sm9WQy8YzOrD8PvtmHs+DQb6U7tdGc6T5Jtqv7tdIzbUmSWGmS2WsqOHvofnRVCV7JZob71hnY5x3X93986k5EbJTOPzywXkceffDu+vpaW6iC57xYtNsgBypXe2KOebRBwZygX21PmtSdXIbeR//caZlr29wciNtP0wxWfDcgc0ao5BXqwji3dGhul+69bs5s1fzyMumi6K4z1ubMwS9PmlWbhjqq2s6OCOvZwoXJ5rphGE6n05ubG30GRc56r7D6Mjux/qGfpwyaQWhCvBtlpnDxqcV2u+2u1t1cKc7Ladbh37qDtOze7Olvuxv8uuVFR68Pcsa10+lorT4ajSopZVtrGa0P1T7zzuuKN4q8SPt27h5TCLwPeQ0Gg/XW0Gg/QKuAMAx1d50iDzis12U0P6XIKqg96btvM1tW+JW175umqacOKlNNSLcpyN9bqfIJGnOzhUajsdEcolWTLDPdxDsnSbKFra3Xs4VYhe70JW3weDyWsO5wOFzvgKg9ISXu+Pj46dOnsjvQo33MvOB4THZPevr0aavVcgMGZQqabB9XoT1cGrVNo9FIq3rz0ciV6JApSZKlD/btQzegyCS++Xjv/nCPRvbXRYvFQvYx2/RIu9/vNxqNIndcE9+dm/Y8GBrHsWzLtokW1t0Ry5+qcr7g8+fPN5GSYmIYOQaDQWYA1XxWQ0q07FxnHYtwfn5e5M+Db7bTXKmDqrfSP1ey6ZxZJLS5nbrImmRxnwww/5m5pbl72ebGbsU/2v3KZUZDu11A2Ww2K+8MeE6YxhoTEW6urnBtorkIZm+HXRXS2NJsNtOQ9nqxDV2llHmGQskBoxkmKTi/rN2APSl9O3mwTx8y8/eiy6wT1W1szRjAJjrq5l6jxe+pmXOWPvvlWWk3Go20e+NOper/SHxIPsVdM6chH1ktquXFbYZ00mzpLOhKSWoGorYwHbfeKGkLTb95nkutVtNJgOFw2Ol0qq0xzL0HPF/NUz+Yz+Du5K49MHnVlDkNHobhSptYaHOj5WulUlxtbS9VpVaYeV/k4uJCr9Z/hZosURStsRnbQah8l+bNRQcK9pl3HokvFN9tNpv63JO1S5hVOLvd7iPcGjGv2RiNRtqlq9fr5nzTbDbzB8u1sTEPkOj1ejrl6ikAciPWHh2Zn+K5m/Ip21nS7R9Jbi1ymdf7WXs+xew3TCaTzFvmvwsr1Zsyq5j3MpmbK18PanUhF7/R7dHMbe5arVbexcsU8/HxcfF3rtfr+i3yZk61R7KJSWFzUJRZ5W5nBsTa0ehhSJJEz6mSMacEMyrJ/w9Pt9ttNBry+LYsMpDSREQ8s0JIvrGTT+92u2Zwdz6frzdaDsPQfLDPUwNI7H/nIV6zp5Q387KfTyjqQFRNJpPMwiX3V5rUjdZU+ubSK3DvvhsyzBynabJbVyvHwWpkdxM3xVx8ph+aGa7WVJXmoPKcfH5+3mq15LEY1XVINN1KKDcnDIdDKdFmFyWvCzSZTKy+8dJjd/05s9vtZvYhZWwoOXOjVYF15eYTG4vFotVqbaIztvQyzBIhO4w9f/7cnMR048FmMkoOLLiQ3f1oDQzL+5TpxmiAbRPVi9k4PoYDVvffYrHwt4mew/A8J0aVGRFrr8P/EOGqA7q9pdO1UiGEYbjeBK7uvZxXjfi3ZPNP5miH1tzPT7eDzstabt9g05Mzux0su6x4XmZ+XiwWZVaYmU96eWYqtKO+dtWt7+w+j1iwTQmWPWPX7/czr3+xWOgfWlOpVgtrXqeb8TSUe319nTnFusakmdtnK3izZrOZJzWk473RPRQzC2+aplvYO0EPjd7CBLIZRcurstyHIC16pri0mJ5xU6vVerQnjheUuW+t9F21KHU6HbPL4W+eMrdlDnYx9S0ZO47jOI6l8Hp2OzBrgziOM+f5raGBjv4eHmuX5vKRxA1FB2RM7en56HDM3Udw28Of+2/o/8zn83vH3d2dlSnNX93c3IzHYymNzWbzvgRrdsaj7bi7uzPfSvNKrVbzf9Z0OnV/qzmjXq/7E0SYaXJzc2N1QaxU1WuTndbMK7+7uzOnpaw/nM/n5pyaeeVyI/Tpp06ns/ZdsD7FvAbrU/r9ft4fFvmgpfdIaP0YhqF7I6ykzvziWtG77yC0LTHvY+Y7mN9ablYYhlbeK87KSNbFu/vfZl7e0mQ0c1S73b69vTUvYD6f6w3NLP5rsG5KXqrKBej9bbfb7gu0wR4Oh5l/biaR9UG3t7fT6VTewb312lJm1gDWren3+3KOuiaa9vms3G7+YeY7W/VP5vcyi5Kbem7YJvMjNOk8tYE/8c2c02w2zRq43+/3+305cuD+cGh+63Q6cuWy9bTWD2bp2AS5s1bNubckZWq12s3NjdRyWqDysu7hunNoBKVWq1m/Wtp0eiq94jydAb3m29vb+XxuPVZfq9WW5mStpfO6bWYAqd/vWx0Vcx+t9VpAa5vfIg10Xmq4XbIwDKWAaxuXOU9tNZru++R9O3fY5m+dzWkm9ya6w7ZardZut4fDYb/fl304rA1U/Rfjr5Z1mxa3V3N/f2+tDdVM0m63rcvI/DruBJznz62Pdi8ss2EqmHPcOb4oitrtdr/fl7UC7vWUac7K7xxgJoV7tr3VjludH/l2/kwlrwlzyEEMVg/KfQeZYzVzZt41ZJbcd999NwiCFy9e+PNMZhOZl7XM+2h+Bff1/mrZzflL+0XmK83LMD/Ifegh+GZDlH6/L0nkJpSVkv6yaX50md6FXEbmsLcks8weSv/nYdCsZXXYrIkIa2Do73uYFbX8VicHMvNtcWZ9MhwOrV6H2f8s+DXdhjjvo81yuvagPrOoFpwB8Eyg+a/NrKitalz6P9aRpZlJJydfWi2g+bdaLWhZrtfr0+nU/bhK6qKlg/T1BsuZd1YzVbVVk1VdmzlTp4/MF2R22rWbnTeQ9xeZ+Xyu/cP1cnXBmbqlOTyzk+bGPDxJlDdDpZWVpFVe+yW/1Xhw3nCj4KRZ5iWtNKqq1+v651J/TqdTfYGVmfUmemoJ/fS8FDD32nFLivXIYGZnSWt+T+r5K1uzJyCnfbnTSlVNRVpN1dIMlldXm9WvzIfkzYpbrY/WAJ7kWo95SRLNKh4xcWs5zV2ZFaD5Wf4qKLPxtTrAZgK6zVMURVY1paVVlnrnZVq347F2KS45ANRiuDQQY5Y4M9piTbB43so/k2x1jYpMBZeM4llXtdK7mQ1Z5h1Zmg89E0eVRAe0MvEH7+SYjLx2MHNQWcQvfvGLheHrr7/23QL3ZuTlcrMLpfVykbme9fLEGqyO0dbiu2aOdPfGkSrJU6TN95GZF/8Y2B3eZ96IMvHdtT9lQ/Fd82Jkzat0AjS16/W6v/4qH991p9LMpCgzle+WrCiK9KuZO2avHd/NnOdyJ+asrk+FkQmt1KTrNhwOM2dX14jvSmfRneV08+qq8d3MSeQgZ6cyq5YvH9+18luz2ZQ8rwcVhGFoViMbiu9mRjsy06RkhbM1Upm4V6v3upLOzcOI70qEIPP5Fc2Emw6Hb1Nmec+TGQfaaHy3+MPR1hTP2vFd8+EbffPMTs562aDC+G5mjNOqsWUyZQ/ju5mt2NKnUzcX380MR+WlrftB7lN3xYOa1cZ37+7uVlo/VLJCqzC+6165O+uRNy7L+1XBJUdL58f9rOxdbXy3SM40i+GG4rtF+kVWv85fImSvhSLx3bywfcEo0VIaKMp8E5lyKl/bE9/dh/huZp50JyIy+/bWkx/WOcdlatHMqi9zQJc5C3xY8V3rLngGjEuvzZpWkmmEzAeqrLYys9/rprnZOGY+ZeL+iTwWuen47qqD5W3GdzN7BXKMhc7wmNe2Xny3eJFZr2D6Yz/FBxqZ7W/eVKo7PeUJYFh5OO86rXzrn2fPnDRzpwGtb7TGqEqfuvP3VSqJ75pfqlaraUkxZ1Mzn1GrML6bNwee2R2tZIbBvZXmI3FFJtMyxyaZFexO4rurcueKtxbfNbfuz6yj3KreLRqZzVNm9Gq9Ulyy86wXViRs7DYQbm3Q6XTyWtKHFN81e5WZ5WXV+O7t7W210YG1g3d7Hd+VFtQzVyLb6JfszB1ifFceeMw7QDvzzW9ubvr9vmeU7o+X+KcC5YHKSia7/Z/iZpUNxXfd2Ko7l61104biu5mtu853l3z2J28mTpZoW5lt7WT0H8RYr9crX4jprj/2ZPh6vZ757YosFvRPKOcFPIoMHf2VnkTfrXeuJL7rv1/ygPbS4lY+vrvS3O5BRPtk9JLZTmkWKj+z8zDiuzIyybxU7Yc9pInaQ4/vSreheDW+dCZi6TXIJ65d6t2WPe9KrOo9swj7g3n1el0WXi99Es66pLyJEjdZMlPeXQHpKTJFwqL1et1tzqyLWbqniNvlsJoqdxOaVbuauqmPv9HXjQHyLiwzudz76MnDRY6gzkzVMhP669GepDV3kzeUyMyHupyu5ALigv0ra1BgpaFbcr/97W+78V036fK+r+cxjmazaZVB92391aObaHmlNS9BdETg5qW8P5Gqya158rK0v2dYPhvr0E+HNrquqPjDQ8R39z++K1vXeGppeZw673ZntrZSDEsOBNYb0B1ofHc+n/e/UXA2P/Pabm9v8/o/kmKeSMN0Ol36AIpVIQ+HQ/+zU1qtbTq+u7RKvLm5MfsVW47v5s0dZQ7k14vvFiky7kzFqvX22gN88wu63ekyU6l5/fa867Ta96Xv6clX2n2tfFSVNx1XSXzX0y3ULSH906Hl47vmzlhFbHQoLQ1cwbp6Op36Z8Xdu0Z812288opV3q5jS5snf4B2jVJcvq8VrLLbgWeidWnV95Diu9bNcielV43vVh4dWDt4t/347hO9DXoSwNnZmX9SZjabXV1dLRaLNE3l+Ysoio6OjnTz8TLKHOl3cXFhXkAcx7IR9ttvv51Zs+tnnZ6euv3U2WwmZ888e/bMzRxpmj59+lTbHnnBZDJ59eqV7L0uz/UUScxXr15JYiZJEkWRPFyQeUmeGxF94/T0NG/6Yz2TyeT6+rrgpyRJonvrm6du5Fl6j0yyO38cx3oZcmvkpk8mk9evXwdBIFlx1Q8ajUZyuK8/5QeDwWw2W/VOFSH79V9dXcVxLE93apkyj8TI/LiVknE0Gl1dXckW8JV/C88nZh4lIhXI6elps9nMKykFb42mgx4UaiXjqjWAVdakFCRJInv71Go1M/tZlYP/fhX/3vM/fQAAFCxJREFUdDl4Rr+Olj55/dLipkmXWSi0gOcVHDnQTo4KcB96krOOrKNGoyjK3NFxf8jJ5Zk949lsJr8197OqnJzZ0+/3i9SQuyUZIG/ILUcMNpvNMsOMvbLS4UNWf8NtASupVLUf4vH2229rm7hSH0zf3FM/WM2TNhxSHS3t4RTvA0hfy9ON1NrMn7bSL9KTTrSJ0bp66SeaN/Htt9/OrORXuqTFYqHHffm/o9ncxHEsXyEyeD6l4MVkZq2lb6utqqzTklvvruTOa1/kaNs4juVvRV7mMS/s6Ogo71OK55zMVLWupKr+T5ECm8e6C8VvqPmh5oDFTKIilibjZDK5urqSdl8yg3YMiufM733ve19//fWLFy8+++yzvG9xcnKSufJMxwKSIfUOerp5BfP5GqVVerZ5Q5K8BHz58qWcBRVFUbPZNC/JrHn8H63vY2bjarvxs9lMPkJHCicnJ/5vV7x5PTk52VwXC6uOoXQiQioNLddLK8ZutzubzXR4cnR0VCaHFBnQeYqY/2ualWFe37vIa9br22zn3dI0HQwG1jyJ1o1LJwrkLLpXr17pKXFLC768p3a3gm82v+31epXURcUH6VUNljdUNUmzslgsZIanXq/rB5nXljmsWKmjnllkPBMsxTNe5lzoGlO7Vvq7t1gyoXyLglOpZir558HMK8lM7ZKTZmVGVf539k9yFpm4LlJLLK1ItYPkSWdPZSVHd+vppFJUrfFX4JwjXsmcjCSOTOFKvtIvuFJdPRqNZChR5K6tND27douwKvdiNHdlVoBL08efZ3RuLQgCeTZX3lAyoQRZi0SRRqORDCcLNk/bn/o2hw9La4DMAq5thExfu6uN12giS04Fl6nw13g3T2Oxdp+q8uhAXvAur6kyhz9rp/D9/f2PfvQj/ec777zz3nvv5b34Sckls49WZnwXgL93Jb033ZfD2tQLe0UCeEEQDIdDT/9JRguj0Uj+KTtv73PVnSRJZoOdJMnz5883XaUfUHxXymxeR6TVas1mMzlJhcICAFjq/fffz4zvAgAA4EE6Pz+fTCbBN6eN+h+GOz8/l58zz9bBoXDju6QJsKqV4rtvkl4AtqP8M0HYGnnQSe6aP14rG1wkSSLx++vr632O78qzBZm/kpXKQdYRy5TZvOQquXwTAAAAAAA8SLowdzwe+2da2u12rVY7Pj4OgkC2PAEAFPEGSQAAsGh/umAA7+zsTH4wt2s+xIGH7BWzuU+R6PLR0dFBZw/ZbTUIgtPTUwoLAAAAAAAwyfZpgfc5e5Me0iHHgZGAAFAE8V0AgE3DurKXzlJ6xN2BHquWpqmcgVTh+WGZwjC8v78/9LXsl5eXcv4ii/IBAAAAAIBFDucOjECvn5xxGxiBXgDAUsR3AQA2PXY+TdNGo+F/8Wg00vN3T05ODvH7Xl5exnEcRdFBHIu7W3Ecy+3u9XoMugAAAAAAgEufCG80Gv5dlxeLhR7aeqDLBgBgJzh/FwCQYT6fNxqNNE0Xi8WTJ086nc7p6WkURVEUyW45SZJcX1/PZjPppodh2Ov1DnFB52g06vf7YRhOp1MCln5pmp6fn6dp2ul09vmgZQAAAAAAsEPD4TCO48VikSTJ8fFxs9k8PT2V5bky95IkSRzHl5eXSZLI4t16vc5j9wBQHPFdAECGWq12c3PTaDRkIx1zka4rDMPhcNhutw/ua04mk8FgEEXRfD4veNjwoyWLueM4Hg6HBHcBAAAAAIDHfD7vdrsymzSbzWazWd4rwzBst9vsEwYAK2F/5vWF3yApADxIURTd3t5Op1NP4LZerw+Hw9vb20MM7o5Go263S3C3CAnuJkkyHo8J7gIAAAAAgKVkyqjf7+e9IAzDfr8/n8+HwyHT7IcuNJAawBY8ub+/JxUAAEvFcSx75qRpGoahbKpzuGFRCe7W63W2ZS5y61utVpqm4/H4ELfgBgDs3Pvvv//111+/ePHis88+IzUAAAAeIdmQWaaVgiDQaSXmZABA3d/f/+hHP9J/vvPOO++9917ei9mfGQBQSK1Wq9VqD+O7SHC33W7zfOhSBHcBAAAAAEBJURSxdxoAVIj4LgDgcZHgbqfT4WSXpTS4O5/PH0x0HwAAYFVpmiZJIpvZeF4WRVG9Xie5AAAAAGwa8V0AwCNCcLc4grsAAACLxWIwGMh+kkVePx6P2+026QYAAABgo4jvAgAO0mKxiOP46upq6VxbFEW9Xq9Wq0lwt1arHR0dzWYz+a315/V6/eHFMtM0XSwW19fXi8ViaVrVarVeryfB3SRJ+v1+HMdxHLtpFYYh05cAAOChStP0/PxcO41FhGHI+l0AAAAAW0B8FwBwYOI47na7S0OV5utPT09rtdrV1ZX88/z8PO/Fw+HwIcV30zQdDAaTyaTgihNZmyLx3SRJgiDo9/t5L46iiPguAAB4qB1OedYt+Ob5v9PTU9ml+fLyUv9/OByaf8WWJwAAAAC2g/guAOCQjEajwWCg0cparRaGoRnrrdVqURSZf1Kr1ZrNZlBsxs3624MmkWxZehsEQRiGtVpNjo7T10jKmF//4uIiKHZ6HBtcAwCABylJEgnuhmE4HA6tB9o6nU6r1ZrNZovFIgzDh9R7BAAAAHAoiO8CAA6GbLAcBEGtVru4uKjVahqy1V8lSXJzc5P559YCi4ctjuNGoyGB8H6/f3p6GkWRRGTNuO/p6WnmGtx6vc7uggAA4BFK01SDu+Px2HoYTvR6Pdm3+fLysmAPc7FYXF1dParuKAAAAIDNeYMkAAAcBDO4O51O2+22uR630+nITsJpmk4mk0eeVjIvmaapzEvK8cO63LZWq83nc/l5MBiQtQAAANRkMpHH4PKCu4Gx44u5LUper0werWs0GsWPFwEAAAAAP+K7AIADkCSJRCIlNpm5D55sLBwEgZyz+5h1u11ddJK5PDcMw06nIwlb8GheAACABy9NU+1z5gV3pSul26LkvWYwGBwfHz99+vT4+JinDwEAAABUi/guAOAAyJm7ErDMO/ZVJ9qWLqR42BaLhcwhdjod/7yk/PDIkwsAAEBdXl7Ko2/64GAeeVlev1S6WEmSRFHUbDY59gIAAABAtYjvAgD2nQYs6/W6uSezS6bYHvmCVFl0Eobh2dmZ52Vvv/22/EB8FwAAQIxGI+lHeR6SC4xlu5747ng8vru7u729nU6n/h4sAAAAAKyK+C4AYN/pGbH+hRRpmkqo0jPR9uDNZjM52q1er2fuYq2ur6/lh8ecXAAAACqOY3lMsNls+jtIepKuv7sFAAAAABtCfBcAsNfSNJUZtFqt5t/arshCCuudu93u8fHxQ0ouPXvYv3jXTC7/vORisZDT454/f95qtQaDAet9AQDAg1S8M/nq1Sv54fT0lHQDAAAAsH1vkgQAgH2mE21L97XTV/rDwGmaxnEcx/HLly/jOH5gqy50NYk/ucy1zp4UGAwGo9FI97tOkmQ2m/X7/eFw2Ol0yJwAAOAhef36tfxwcnLi70dJjysMQw7WBQAAALATxHcBAHtNo7ZHR0f+V+qGw54puW63K8eqPVQSta3Vav64taZqu93Oe81oNOr3+2EYjsfjWq0WhmEcx91uN0mSbrcbhqHnbwEAAA6OPtPmf05uNptJj6vT6XDOBQAAAICdIL4LANhrupDCH7BMkkTPnfUspAjDUGKftVotjuPZbPaQ0qrglstBELx8+VJ+yNtUME3Ty8vLMAxvbm703aIoqtfrjUZDAr1Lj/gFAAA4IBqs1UBvpsvLS+kXXVxckGgAAAAAdoLzdwEAe00n2vwLKS4vL2UmrtfreV7W6/Vubm6m02mv13t4sUkzEOt5WRzHk8kkCIJms5kXC18sFkmSdDod661kOW8QBGmaPrDoOAAAeOT0uTd9Zs41Go3iOJYeEYt3AQAAAOwK8V0AwF7TbZllH7xMSZJIwLLT6TzmU9DCMJR5Rk9aBd8sOgnDcDgc+t/w7OzM/U/d/Fk3xAYAAHgAtJOj+8dYZrPZYDCQ4C4n7wIAAADYIeK7AIC9pnNneQsp0jTtdrtpmtbrdf/i3ceg2WwGQSBbVWcajUaTyUTmJT3LfJvNpucFspbas7QFAADgEE2n0zAMZZGu24k6Pz8PgmA8HkuPCwAAAAB2hfguAGCvhWHY6XSCILi6unJ/K8Hd2WxWr9dlPu6RJ5dEuNM0zVzCOxqNdNHJ0nnJdrvtf4F/x2wAAICDU6vVbm5ugiA4Pj6W7WHkTIpWq9XtdpvN5s3NDcFdAAAAADtHfBcAsO+Gw2G73V4sFq1Wy/z/OI6Pj49ns1mn0yG4K6Io0klJc92JBMK73a7MWpaZl0zTVN6Z+C4AAHiovanhcHh1dfX8+fPnz58PBgPpQfm3PwEAAACArXmTJAAA7L/xeCx75R0fH0tscjabJUlSq9WGwyGBRpPMP7ZarUaj0Ww2wzCM4ziO4yiKJFJeMhB+eXmZJEkYhhcXF6Q2AAB4eKIo6nQ6soUMAAAAAOwh4rsAgMMwHA6Hw+FisZDFoxLWZc1uplqtdnt7m6bpYrFIkuTo6KiqKHiSJKPRKAiCTqdD4gMAAAAAAADA9hHfBQAcknq9Xq/XSYciwjCs9ny4NE3Pz8/TNO10OnLQLwAAAAAAAABgyzh/FwAALCfB3cVi0el0hsMhCQIAAAAAAAAAO8H6XQAAsIQGd4fDIWfRAQAALDWZTF6+fCk/J0kSBEEcx41GQ/7n9PSUPhUAAACAtRHfBQAAPmmatlqtOI7H43G1Gz4DAAA84B7UYrGw/lP/J4oikggAAADA2ojvAgCAXEmSNBqNNE0J7gIAABTX6XTa7TbpAAAAAGATiO8CAIBsBHcBAADWFoYhiQAAAABgE94gCQAAgIvgLgAAAAAAAADsIdbvAgAAmwR3kyTpdDpBEMxmM/c1YRjW63XSCgAAAAAAAAC2ifguAOARmUwm3W7X/J8kSZ4+fSo/N5vN8XhMKgVBsFgskiQJgmA0Go1Go8zXRFF0e3tLWgEAAAAAAADANhHfBQA8IlEURVGU91vOSDMTqlar+V9DcgEAAAAAAADA9hHfBQA8IvV6/ebmhnQgoQAAAAAAAADgQL1BEgAAAAAAAAAAAADAQSC+CwAAAAAAAAAAAACHgfguAAAAAAAAAAAAABwG4rsAAAAAAAAAAAAAcBiI7wIAAAAAAAAAAADAYSC+CwAAAAAAAAAAAACHgfguAAAAAAAAAAAAABwG4rsAAAAAAAAAAAAAcBiI7wIAAAAAAAAAAADAYSC+CwAAAAAAAAAAAACHgfguAAAAAAAAAAAAABwG4rsAAAAAAAAAAAAAcBiI7wIAAAAAAAAAAADAYSC+CwAAAAAAAAAAAACHgfguAAAAAAAAAAAAAByGJ//yL/9CKgAAAAAANuTm5uZ//ud/oih65513SA0AAAAAADL9/Oc/15/feeed9957L++Vb5ovBQAAAACgWr/1W7/ljlQBAAAAAMB62J8ZAAAAAAAAAAAAAA4D8V0AAAAAAAAAAAAAOAxv/tqv/RqpAAAAAADYkJ/+9Kf/+7//+xu/8Ru//uu/TmoAAAAAAFDSk/v7e1IBAAAAALAh77///tdff/3ixYvPPvuM1AAAAAAAoCT2ZwYAAAAAAAAAAACAw0B8FwAAAAAAAAAAAAAOA/FdAAAAAAAAAAAAADgMxHcBAAAAAAAAAAAA4DAQ3wUAAAAAAAAAAACAw0B8FwAAAAAAAAAAAAAOA/FdAAAAAEAQBMEXX3zxJN/3v/99kggAAAAAgJ0jvgsAAAAACIIguL6+JhEAAAAAANhzb5IEAAAAAIAgCH76058GQfBXf/VXf/3Xf01qAAAAAACwn1i/CwAAAAAIgiD44Q9/GATByckJSQEAAAAAwN4ivgsAAAAACL788kv54Xd+53dIDQAAAAAA9hbxXQAAAABA8F//9V9BEHz44YfvvvsuqQEAAAAAwN4ivgsAAAAACK6vr4MgaDabX3755RPDd77zHRIHAAAAAID9QXwXAAAAABDMZrMgCH7wgx8cHR2Z///VV189efLkiy++IIkAAAAAANgHxHcBAAAAAMFXX30lP3zyySf3BvnPjz/+uHiI9//+sl/84hckLwAAAAAAVSG+CwAAAACP3Zdffik/fP755//4j/9o/ur+/v7DDz8MguDjjz8u8lZ/+qd/+n9+2b//+7+TwgAAAAAAVIX4LgAAAAA8dh999JGs1v3000/d3/7DP/yD/MAuzQAAAAAA7NybJAEAAAAAwOOjjz6SH66vr7/73e/6X/z3f//3f/iHf2j+zx//8R//7Gc/IxkBAAAAAKgE8V0AAAAAeFCePHlS/MUffvjhj3/84yIv0wN6l6rX6+Y/33rrLW4KAAAAAABVYX9mAAAAAAAAAAAAADgMxHcBAAAA4EG5X4Us3v3+97//5MmT73znO3nvKYt3f/M3f5PkBQAAAABgt4jvAgAAAMBjd3JyEgTBV1999eWXX7q//eKLL+SH3//93yetAAAAAADYLeK7AAAAAPDYffe735UffvCDH7i//fjjj4Mg+OSTTz766CPSCgAAAACA3SK+CwAAAAAIPv/88yAIfvjDH5q7NH/55ZdPnjyRn//2b/+WVAIAAAAAYOfeJAkAAAAAAJ9++mkQBH/yJ3/y1VdfaUxX/ed//ue7775LKgEAAAAAsHOs3wUAAAAABEEQfPrpp/f39x9++KH5n59//vn9/T3BXQAAAAAA9gTrdwEAAAAA/9+Pf/xjEgEAAAAAgL3F+l0AAAAAAAAAAAAAOAzEdwEAAAAAAAAAAADgMBDfBQAAAAAAAAAAAIDDQHwXAAAAAAAAAAAAAA4D8V0AAAAAAAAAAAAAOAzEdwEAAAAAAAAAAADgMBDfBQAAAAAAAAAAAIDD8P8AJgw5yEjVxuIAAAAASUVORK5CYII=
Sei $$p(X)=\sum_{j=0}^na_jX^j\in\R[X]\subset\mathbb{C}[X]$$ und $$\lambda \in\mathbb{C}$$. Dann gilt:
<$latex text="\overline{p(\lambda)}=\sum_{j=0}^n\overline{a_j\lambda^j}=\sum_{j=0}^na_j\overline{\lambda^j}=p(\overline{\lambda})." displayMode="true"></$latex>
Daher gilt für reelle Polynome, dass $$\lambda$$ Nullstelle von $$p$$ gleichbedeutend mit $$\overline{\lambda}$$ Nullstelle von $$p$$ ist!
Außerdem gilt:
<$latex text="(x-\lambda)(x-\overline{\lambda})=x^2-2\Re(\lambda)x+|\lambda|^2=|x-\lambda|^2\in \R[X]." displayMode="true"></$latex>
Durch Division mit Rest von $$p(X)$$ durch $$(x-\lambda)(x-\overline{\lambda})$$ ergibt sich:
<$latex text="p(x)=q(x)(x-\lambda)(x-\overline{\lambda})+r(x)" displayMode="true"></$latex>
Mit $$r(x)\in\R[X]$$ und $$\deg(r)\leq 1$$. Allerdings hat $$r$$ zwei Nullstellen
<$latex text="0=p(\lambda)=r(\lambda)" displayMode="true"></$latex>
<$latex text="0=p(\overline{\lambda})=r(\overline{\lambda})" displayMode="true"></$latex>
und muss daher schon das Nullpolynom sein.
Insbesondere kann man $$p$$ also wie folgt faktorisieren:
<$latex text="p(X)=c\prod_{p(\lambda)=0,\Im(\lambda)>0}((x-\lambda)(x-\overline{\lambda}))^{\nu_\lambda}\cdot\prod_{p(\lambda)=0,\lambda\in \R} (x-\lambda)^{\mu_\lambda}." displayMode="true"></$latex>
Der folgende (stärkere) Konvergenzbegriff liegt dem starken Gesetz der großen Zahl zugrunde:
! Definition
Seien $$Y,Y_1,Y_2,\ldots$$ reelle ZVs auf $$(\Omega,{\mathcal{A}},P)$$. Die Folge $$(Y_n)_{n\ge 1}$$ ''konvergiert $$P$$-fast sicher'' gegen $$Y$$, wenn für die Menge <$latex text="A:=\{\omega\in\Omega:\lim_{n\to\infty} Y_n(\omega)=Y(\omega)\}" displayMode="true"></$latex>
aller Stellen $$\omega\in\Omega$$, an denen punktweise Konvergenz herrscht, gilt
<$latex text="\textcolor{blue}{P(A)=1}." displayMode="true"></$latex>
!! Bemerkungen
* Allgemein sagt man, eine Aussage gelte ''fast sicher'', wenn sie mit Wahrscheinlichkeit $$1$$ zutrifft.
* Das Ereignis $$A$$ liegt in $${\mathcal{A}}$$ (Begründung: [[Fast sichere Konvergenz impliziert stochastische Konvergenz]]), also macht die Definition Sinn.
$$(Y_n)_{n\ge 1}$$ konvergiere $$P$$-fast sicher gegen $$Y$$.
Das bedeutet $$P(A)=1$$, wobei $$A:=\{\omega\in\Omega\mid \lim_{n\to\infty}Y_n(\omega)=Y(\omega)\}$$. Für $$\epsilon>0$$ ist <$latex text="A_\epsilon:=\{\omega\in\Omega\mid \exists N\,\forall n\ge N:
|Y_n(\omega)-Y(\omega)|<\epsilon\}=\bigcup_{N\ge 1}\bigcap_{n\ge N}(Y_n-Y)^{-1}(-\epsilon,+\epsilon)\in\mathcal{A}." displayMode="true"></$latex>
Dann ist $$A=\bigcap_{\epsilon>0}A_\epsilon\in\mathcal{A}$$. Wegen $$A_\epsilon\supseteq A$$ ist auch $$P(A_\epsilon)=1$$. Mit Hilfe von $$B_N^\epsilon:=\bigcap_{n\ge N}\{|Y_n-Y|<\epsilon\}$$ zerlegen wir $$A_\epsilon$$ weiter und erhalten <$latex text="1=P(A_\epsilon)=P\Big(\bigcup_{N\ge 1}B_N^\epsilon\Big)." displayMode="true"></$latex>
Da $$(B_N^\epsilon)_{N\ge 1}$$ monoton steigend ist und $$B_N^\epsilon\uparrow A_\epsilon=\bigcup_{N\ge 1}B_N^\epsilon$$ gilt, folgt aus der $$\sigma$$-Stetigkeit von $$P$$ (siehe [[Memo: Sigma-Stetigkeit von W-Maßen]]): <$latex text="\begin{aligned}
1&=& P\Big(\bigcup_{N\ge
1}B_N^\epsilon\Big)=\lim_{N\to\infty}P\Big(B_N^\epsilon\Big)
\le\lim_{N\to\infty}\inf_{n\ge N}P(|Y_n-Y|<\epsilon)\\
&=&\liminf_{n\to\infty} P(|Y_n-Y|<\epsilon) \le 1.
\end{aligned}" displayMode="true"></$latex>
Folglich ist $$\lim_{n\to\infty} P(|Y_n-Y|<\epsilon)= 1$$, für alle $$\epsilon>0$$. D.h. $$(Y_n)_{n\ge 1}$$ konvergiert stochastisch gegen $$Y$$.
Sei $$\{a,b\}\subset \{1,\dots,n\}$$ mit $$a\neq b$$. $$\{a,b\}$$ heißt $$\{a,b\} $$ ''Fehlstand'' von $$\sigma\in S_n$$, falls $$a<b$$, aber $$\sigma(a)>\sigma(b)$$.
Für $$\sigma \in S_n$$ sei also
<$latex text="\text{sgn}(\sigma)\coloneqq\prod_{\{a,b\}\subset\{1,\dots,n\},a\neq b}\frac{\sigma (b)-\sigma(a)}{b-a}=(-1)^{\text{\# Fehlstände von }\sigma}\in\{-1,1\}." displayMode="true"></$latex>
sgn$$(\sigma)$$ heißt das Signum von $$\sigma$$.
!! Signum ist ein [[Gruppenhomomorphismus|Gruppenhomomorphismen]]
!!! Beweis:
Seien $$\sigma_1,\sigma_2\in S_n$$. Dann erfolgt der Beweis durch einfaches Nachrechnen:
<$latex text="\text{sgn}(\sigma_1\circ\sigma_2)=\prod_{1\leq i<j\leq n}\frac{\sigma_1(\sigma_2(j))-\sigma_2(i))}{j-i}=\prod_{1\leq i<j\leq n}\frac{\sigma_1(\sigma_2(j))-\sigma_2(i))}{\sigma_2(j)-\sigma_2(i)}\prod_{1\leq i<j\leq n}\frac{\sigma_2(j)-\sigma_2(i)}{j-i}=\text{sgn}(\sigma_1)\cdot \text{sgn}(\sigma_2)." displayMode="true"></$latex>
!! Berechnung:
Folgende Rechenregeln folgen sofort aus dem obigen Beweis:
<$latex text="\text{sgn}(\sigma)=\begin{cases}-1 & \text{falls die Zahl der Transpositionen ungerade ist}\\1&\text{sonst}\end{cases}" displayMode="true"></$latex>
<$latex text="\sigma\text{ } k\text{-Zykel}\implies\text{sgn}(\sigma)=(-1)^{k-1}" displayMode="true"></$latex>
Es sei $$\varphi\in T([a,b])$$ bezüglich $$Z$$ und $$(c_k)$$.
Dann ist der ''(orientierte) Flächeninhalt'' unter der Treppenfunktion definiert durch
<$latex text="F_a^b(\varphi,Z)\coloneqq \sum_{k=1}^n c_k(t_{k}-t_{k-1})." displayMode="true"></$latex>
Dieser ist unabhängig von der Wahl der Zerlegung, daher schreib man auch $$F_a^b(\varphi)$$.
Man definiert daher
<$latex text="\int_a^b \varphi(x)=F_a^b(\varphi)." displayMode="true"></$latex>
Da es sich um endliche Summen handelt, folgt dann sofort
<$latex text="\int_a^b\lambda(\varphi(x)+\psi(x))dx=\lambda\int_a^b\varphi(x)dx+\lambda\int_a^b\psi(x)dx" displayMode="true"></$latex>
,falls $$\varphi\leq \psi$$ punktweise, so gilt:
<$latex text="\int_a^b\varphi(x)dx\leq\int_a^b\psi(x)dx" displayMode="true"></$latex>
und
<$latex text="\left\vert \int_a^b\varphi(x)dx\right\vert\leq \Vert\varphi\Vert_{[a,b]}(b-a)" displayMode="true"></$latex>
<<list-links "[tag[Floating Point Arithmetik]]">>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/v4p0lnH3K1w?rel=0&start=0" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
!! Definition
Sei $$M$$ eine Menge. Eine __Folge in M__ ist eine [[Funktion|Definition: Funktionen]]
<$latex text="\begin{aligned}
a:&\N\to M\\
&n\mapsto a(n)=a_n.
\end{aligned}" displayMode="true"></$latex>
!! Notation
Meint man die Folge $$a$$ wird häufig $$(a_n)_{n\in\N},(a_n)_{n\geq k}, (a_n)$$
verwendet.
$$M^\N$$ ist die Menge der Folgen in $$M$$.
Sei $$U \subset \R^n$$ eine zusammenhängende offene Menge. Hat eine Funktion $$f:U \longrightarrow \mathbb{C}$$
überall die Ableitung 0, so ist sie konstant.
<$details summary="Beweis" tiddler="Beweis">
{{Beweis: Folgerung aus dem Mittelwertsatz}}
</$details>
Elementar aber wichtig sind folgende Formeln.
Es sei $$(\Omega,{\mathcal{A}},P)$$ ein W-Raum und $$\Omega=\sqcup_{i\in I}B_i$$ eine disjunkte Zerlegung von $$\Omega$$ in höchstens abzählbar unendlich viele Ereignisse $$B_i\in{\mathcal{A}}$$ mit $$P(B_i)>0$$.\ Dann gilt:
# (''Fallunterscheidungsformel'') Für alle $$A\in{\mathcal{A}}$$ gilt <$latex text="\textcolor{blue}{P(A)=\sum_{i\in I}P(B_i)P(A|B_i)}." displayMode="true"></$latex>
# (''Formel von Bayes'') Für alle $$A\in{\mathcal{A}}$$ mit $$P(A)>0$$ und alle $$k\in I$$ gilt: <$latex text="\textcolor{blue}{P(B_k|A)=\frac{P(B_k)P(A|B_k)}{\sum_{i\in I}P(B_i)P(A|B_i)}}." displayMode="true"></$latex>
!! Beweis
(1) folgt aus der Definition der bedingten Wahrscheinlichkeit und der $$\sigma$$-Additivität von $$P$$: <$latex text="\sum_{i\in I}P(B_i)P(A|B_i)=\sum_{i\in I}P(B_i)\cdot\frac{P(A\cap B_i)}{P(B_i)}=\sum_{i\in I}P(A\cap B_i)=P(\bigsqcup_{i\in I}A\cap B_i)=P(A)." displayMode="true"></$latex>
(2) folgt aus (1) und der Definition der bedingten Wahrscheinlichkeit: <$latex text=" \begin{aligned}
P(B_k|A)&=&\frac{P(B_k\cap A)}{P(A)}\\ \\
&\stackrel{(1)}{=}&
\frac{P(B_k\cap A)}{\sum_{i\in I}P(B_i)P(A|B_i)}\\ \\
&\stackrel{\text{Def.}}{=}&\frac{P(B_k)P(A|B_k)}{\sum_{i\in I}P(B_i)P(A|B_i)}.
\end{aligned}" displayMode="true"></$latex>
! Der einfache Algorithmus
# Wähle Zufallsvektor $$x\in\{0,1\}^n$$.
# Berechne $$A\cdot (B\cdot x)$$ und $$C\cdot x$$.
# Ist $$A\cdot(B\cdot x)\ne C\cdot x$$, antworte mit $$AB\ne C$$.
# Ist $$A\cdot(B\cdot x)=C\cdot x$$, antworte mit $$AB=C$$.
!! Aufwand
* Arithmetischer Aufwand $$\Theta(n^2)$$
* Aufwand an Vergleichen $$O(n)$$
!! Bemerkungen
* $$A\cdot(B\cdot x)=(A\cdot B)\cdot x$$ (Assoziativität)
* Antwort $$AB\ne C$$ ''unproblematisch'' da $$ABx\ne Cx$$.
* Antwort $$AB=C$$ ''problematisch'', da von $$ABx=Cx$$ auf $$ABy=Cy$$ für ''alle'' Zufallsvektoren $$y$$ geschlossen wurde.
!! Urnenmodell
Eine Urne $$U_{A,B,C}$$ enthält zu jedem Zufallsvektor $$x\in\{0,1\}^n$$ eine gefärbte Kugel $$K_x$$:
* falls $$ABx=Cx$$, ist $$K_x$$ ''blau'',
* falls $$ABx\ne Cx$$, ist $$K_x$$ ''rot''.
!!! Analyse
Insbesondere ist im Fall $$AB=C$$ jede Kugel ''blau''.
Es gilt der [[Satz von Freivalds]], das heißt im Fall $$AB\ne C$$ ist ''höchstens die Hälfte'' aller Kugeln ''blau''.
! Freivalds Algorithmus
# Wähle $$k\in\mathbb{N}_+$$.
# Greife $$k$$-mal in die Urne $U_{A,B,C}$.
# Sind alle Kugeln ''blau'', so antworte mit $$AB=C$$.
# Ist eine Kugeln ''rot'', so antworte mit $$AB\ne C$$.
!! Analyse
* Arithmetischer Aufwand $$\Theta(k\cdot n^2)$$
* Aufwand an Vergleichen $$O(k\cdot n)$$
* Antwort $$AB\ne C$$ ''unproblematisch'' da $$ABx\ne Cx$$.
* Antwort $$AB=C$$ bei hinreichend großem $$k$$ marginal ''problematisch'', da im Fall $$AB\ne C$$ die Wahrscheinlichkeit, immer eine blaue Kugel zu greifen, höchstens $$2^{-k}$$ ist.
<$details summary="Bemerkung: Frobenius Begleitmatrix eines Polynoms" tiddler="Bemerkung: Frobenius Begleitmatrix eines Polynoms">
{{Bemerkung: Frobenius Begleitmatrix eines Polynoms}}
</$details>
Zum Beweis betrachtet man $$M'=M-zI$$ und entwickeln $$det(M')$$ nach der letzten Spalte. Für $$m=4$$ ergibt sich beispielsweise:
<$latex text="
\begin{aligned}
%{\small
\det(M') &=\det
\begin{pmatrix}
-z & 0& 0 & -a_0\\
1 & -z & 0 & -a_1\\
0 & 1 & -z& -a_2\\
0 & 0 & 1& -z -a_{3}\\
\end{pmatrix}\\
&=
(-1)^m\left(
(-1)(-a_0) \det
\begin{pmatrix}
1 &-z & 0 \\
0 & 1 & -z \\
0 & 0 & 1
\end{pmatrix} \right. \\
&
+(-1)^2(-a_1)\det
\begin{pmatrix}
-z & 0 & 0 \\
0 & 1 & -z \\
0 & 0 & 1
\end{pmatrix}
+(-1)^3(-a_2)\det
\begin{pmatrix}
-z & 0 & 0 \\
0 & -z & 0 \\
0 & 0 & 1
\end{pmatrix}\\
&\left.
+(-1)^4(-z-a_3)\det
\begin{pmatrix}
-z & 0 & 0 \\
0 & -z & 0 \\
0 & 0 & -z
\end{pmatrix}
\right)\\
&=(-1)^4(a_0+a_1z+a_2z^2+a_3z^3+z^4)
\end{aligned}
" displayMode="true"></$latex>
Die Abbildung (9.1) ([[Einleitung: Differenzierbare Abbildungen]]) ist genau dann
in $$a \in U$$ differenzierbar, wenn dort jede der Komponentenfunktionen $$f_1,...,f_m$$ differenzierbar ist.
Gegebenenfalls gilt für $$h \in \mathbb{K}^n$$
<$latex text="
df(a)h = f'(a)h,
" displayMode="true"></$latex>
wobei die Funktionalmatrix $$f'(a)$$ folgende Gestalt hat:
<$latex text="
f'(a) = \begin{pmatrix} f_1'(a) \\ \vdots \\ f_m'(a) \end{pmatrix} =
\begin{pmatrix}
\partial_1f_1(a) & \dots & \partial_nf_1(a) \\
\vdots & & \vdots \\
\partial_1f_m(a) & \dots & \partial_nf_m(a)
\end{pmatrix} \qquad \qquad (9.4)
" displayMode="true"></$latex>
Mit der Funktionalmatrix $$f'(a)$$ bzgl. der Basen in $$X$$ und $$Y$$ hat man für die Richtungsableitungen die Darstellung
<$latex text="
\partial_hf(a) = f'(a)h.
" displayMode="true"></$latex>
Insbesondere ist im Standardfall $$\partial_{\nu}f(a) = f'(a)e_{\nu}$$ gleich der $$\nu$$-ten Spalte in der Funktionalmatrix:
<$latex text="
f'(a) = (\partial_1f(a),...,\partial_nf(a)) \qquad \text{mit} \qquad
\partial_{\nu}f(a) = \begin{pmatrix}
\partial_{\nu}f_1(a) \\ \vdots \\ \partial_{\nu}f_m(a)
\end{pmatrix}.
" displayMode="true"></$latex>
Sei $$B=\begin{pmatrix}A & b\end{pmatrix}$$.
''Schritt 1:'' Wähle $$j_1$$ als kleinsten Index mit Spaltenvektor $$b_{j_1}\neq 0$$. Nach Zeilenvertauschung ist $$b_{1,j_1}\neq 0$$.
''Schritt 2:'' Multipliziere Zeile 1 mit $$\frac{1}{b_{1,j_1}}$$ und addiere für alle $$i\geq 2$$ $$(-b_{i,j_1}\cdot \text{ Zeile 1})$$ zu Zeile $$i$$.
Das Ergebnis ist eine Matrix der Form
<$latex text="\begin{pmatrix}0 & \dots & 0 & 1 & \star & \dots & \star & \star\\
0 & \dots & 0 & 0 &0& \dots & 0 & B_1^{I}\\
0 & \dots & 0 & 0 &0& \dots & 0 & \vdots\\
0 & \dots & 0 & 0 &0& \dots & 0 & B_{m-1}^{I}\\
\end{pmatrix}" displayMode="true"></$latex>
Falls eine Matrix $$B^{(I)}$$ existiert, s.d. die erste Spalte von $$B^{(I)}$$ nicht $$0$$ ist, wiederhole Schritt 1 und 2, sonst ist Die Matrix in reduzierter Zeilenstufenform und das Gleichungssystem kann (bei geeignetem Rang) durch Rückeinsetzten gelöst werden.
Zum Beweis benötigen wir folgendes fundamentale Resultat:
<$latex text="\textcolor{blue}{\textbf{Gauß-Integral}: \int_\R e^{-x^2/(2v)}dx=\sqrt{2\pi v}}" displayMode="true"></$latex>
Durch Übergang von kartesischen zu Polarkoordinaten, $$x(r,\phi)=r\cos(\phi)$$ und $$y(r,\phi)=r\sin(\phi)$$, und mit dem Transformationssatz erhalten wir im Fall $$v=1$$ ($$v\ne 1$$ analog) mit $$\cos(\phi)^2+\sin(\phi)^2=1$$:
<$latex text="\begin{aligned}
\left(\int_\R e^{-x^2/2}dx\right)^2
&=&\left(\int_\R e^{-x^2/2}dx\right)\left(\int_\R e^{-y^2/2}dy\right)
=\int_\R\int_\R e^{-(x^2+y^2)/2}dx dy\\ \\
&=&\int_{r=0}^\infty\int_{\phi=0}^{2\pi}e^{-r^2/2}\cdot
\Big|\det\left(\begin{array}{cc}\frac{\partial}{\partial r}x(r,\phi)& \frac{\partial}{\partial \phi}x(r,\phi)\\ \frac{\partial}{\partial r}y(r,\phi)& \frac{\partial}{\partial \phi}y(r,\phi) \end{array}\right) \Big| dr d\phi\\ \\
&=&\int_{r=0}^\infty\int_{\phi=0}^{2\pi}e^{-r^2/2}\cdot\underbrace{\Big|\det\left(\begin{array}{cc}\cos(\phi)& -r\sin(\phi)\\ \sin(\phi)& r\cos(\phi) \end{array}\right) \Big|}_{=r} dr d\phi\\ \\
&=&2\pi\int_{r=0}^\infty r\cdot e^{-r^2/2}dr=2\pi\left[-e^{-r^2/2}\right]_0^\infty=2\pi.
\end{aligned}" displayMode="true"></$latex>
! Satz
Es sei $$m\in\R$$ und $$v>0$$ ein reeller Parameter. Dann wird durch <$latex text="\textcolor{blue}{\phi_{m,v}(x):=\frac{1}{\sqrt{2\pi v}}e^{-(x-m)^2/(2v)}}" displayMode="true"></$latex> auf $$(\R,{\mathcal{B}})$$ eine Dichtefunktion definiert.
Das zugehörige W-Maß $${\mathcal{N}}_{m,v}$$ heißt die sog. ''Gauß-Verteilung'' oder ''Normalverteilung'' mit ''Erwartungswert'' $$m$$ und''Varianz'' $$v$$.
* Im Spezialfall $${\mathcal{N}}_{0,1}$$ spricht man auch von der ''Standard-Normalverteilung''.
* ''Beweis'' sowie Rechtfertigung der Begriffe Erwartungswert und Varianz: später.
''$$n$$-maliger Münzwurf mit fairer Münze''. Betrachte zwei ZVs:
* $$\textbf{Anzahl der Erfolge}$$ (Zah$$\textcolor{blue}{l}$$ $$\equiv \textcolor{blue}{1}$$):$$X_1:\{0,1\}^n\to[0:n]$$, <$latex text="\textcolor{blue}{X_1:(\omega_1,\ldots,\omega_n)\mapsto\omega_1+\ldots+\omega_n}." displayMode="true"></$latex>
* $$\textbf{Wartezeit bis zum ersten Erfolg}$$:$$X_2:\{0,1\}^n\to[1:n]\cup\{n+1\}$$, <$latex text="\textcolor{blue}{X_2:(\omega_1,\ldots,\omega_n)\mapsto\min\{j\mid \omega_j=1\}\quad\text{bzw.}\quad
(0,\ldots,0)\mapsto n+1}." displayMode="true"></$latex>
* Die ZV $$X:=X_1\otimes X_2$$ ordnet $$0\ne \omega\in\{0,1\}^n$$ das Paar <$latex text="(\omega_1+\ldots+\omega_n,\min\{j\mid\omega_j=1\})\in[1:n]\times[1:n] \subset [0:n]\times[1:n+1]" displayMode="true"></$latex> zu; weiter ist $$X((0,\ldots,0))=(0,n+1)$$.
* Damit ist
<$latex text="\textcolor{blue}{X=X_1\otimes X_2:\{0,1\}^n\to [0:n]\times[1:n+1]}" displayMode="true"></$latex>
!! Satz
Für die zu $$P_X$$ gehörige Zähldichte $$p_X$$ auf $$[0:n]\times[1:n+1]$$ gilt für Wertepaare $$(k,h)\in[1:n]^2$$ <$latex text="\textcolor{blue}{p_X(k,h)=\binom{n-h}{k-1}\cdot 2^{-n}}." displayMode="true"></$latex> Weiter ist $$\textcolor{blue}{p_X(0,h)=0} {}\forall h\in[0:1]$$,$$\textcolor{blue}{p_X(k,n+1)=0}{}\forall k\in[1:n+1]$$.
Schließlich ist $$\textcolor{blue}{p_X(0,n+1)=2^{-n}}$$.
Vgl.: [[Beweis über die Zähldichte beim wiederholten Münzwurf]]
* Hat man Ereignisse, die von mehreren ZVs abhängen, so reicht nicht die Kenntnis der einzelnen Verteilungen aus. (Ein Beispiel dazu findet sich auf der letzten Folie dieses Kapitels.) Man braucht vielmehr folgendes Konzept.
* Es sei $$(\Omega,{\mathcal{A}},P)$$ ein W-Raumund $$X_1,\ldots,X_n$$ seien ZVs $$\textcolor{blue}{X_i:(\Omega,{\mathcal{A}})\to(\Omega_i,{\mathcal{A}}_i)}$$.
* Die \textbf{Produktabbildung} $$X:=X_1\otimes\ldots\otimes X_n: \Omega\to \Omega_1\times\ldots\times\Omega_n$$ ,definiert durch <$latex text="\textcolor{blue}{X(\omega):=(X_1(\omega),\ldots,X_n(\omega))}" displayMode="true"></$latex> ist eine Zufallsvariable $$X\colon (\Omega,\mathcal{A})\to
(\Omega_1\times\ldots\times\Omega_n,\mathcal{A}_1\otimes\ldots\otimes\mathcal{A}_n)$$, deren Verteilung $$P_X$$ die $$\textbf{gemeinsame Verteilung}$$ der $$X_1,\ldots,X_n$$ genannt wird.
* Hier ist die $$\textbf{Produkt-}\sigma\textbf{-Algebra}$$<$latex text="\bigotimes_{j=1}^n\mathcal{A}_i=\mathcal{A}_1\otimes\ldots\otimes\mathcal{A}_n :=\sigma\Big(\bigcup_{j=1}^n\pi_j^{-1}[\mathcal{A}_j] \Big)\subseteq 2^{\Omega_1\times\ldots\times\Omega_n}" displayMode="true"></$latex> die $$\textbf{kleinste }\sigma\textbf{-Algebra}$$, bei der alle Projektionen $$\pi_j:(\omega_1,\ldots,\omega_n)\mapsto \omega_j$$ $$(\bigotimes_{i=1}^n\mathcal{A}_i,\mathcal{A}_j)$$-messbar sind.
Die mit Algorithmus [[Lösung von Ax = b mittels QR-Faktorisierung]] von $$Ax = b$$ mittels QR-Faktorisierung} berechnete Lösung erfüllt
<$latex text="
\frac{\| \tilde{x} - x \|}{\| x \|} = O(K(A) \cdot \varepsilon_{M}).
" displayMode="true"></$latex>
$$x_{k+1}$$ ist der Schnitt der Tangente an den Graph von $$f$$ im
Punkt $$(x_{k},f(x_{k}))$$
<$latex text="
y(x)=f(x_{k})+f'(x_{k})\cdot(x-x_{k})
" displayMode="true"></$latex>
mit der $$x$$-Achse.
In der äußeren Schleife vom Algorithmus des Klassischen Gram-Schmidt-Verfahren ([[Algorithmus: Klassisches Gram-Schmidt-Verfahren]]) wird die gesamte Matrix bearbeitet, indem ein Vielfaches der ersten Spalte
von der anderen Spalte abgezogen wird. Im zweiten Schritt, muss nur noch eine Untermatrix
bearbeitet werden, da ein Vielfaches der zweiten Spalte von der Spalte $$3,...,n$$
abgezogen wird usw.
Dies bedeutet, dass für die Gram-Schmidt-Orthogonalisierung $$\approx n^2m$$
Operationen benötigt werden:
$$\approx n^{2}m$$ Operationen $$\widehat{=}$$ Volumen der Figur.
<$details summary="Geometrische
Anschauung" tiddler="Geometrische
Anschauung">
[img[qr_gs_komplexitaet.png]]
</$details>
[[Reihen]] der Form
<$latex text="\sum_{k=0}^\infty \lambda^k" displayMode="true"></$latex>
mit $$|\lambda|\in (0,1)$$ konvergiert mit Grenzwert $$\frac{1}{1-\lambda}$$ mit Partialsummen der Form
<$latex text="\frac{1-\lambda^{n+1}}{1-\lambda}." displayMode="true"></$latex>
Um dies zusehen berechnet man $$S_n,\lambda S_n$$ und stellt entsprechend um. Der Grenzwert folgt dann in dem man den Grenzwert der Partialsummen nimmt.
Für den allgemeineren Fall einer nicht fairen Münze mit einer Erfolgswahrscheinlichkeit $$p$$ und Misserfolgswahrscheinlichkeit $$q=(1-p)$$ ist die Wahrscheinlichkeit beim $$k$$-ten Mal Erfolg zu haben
<$latex text="\textcolor{blue}{G_{p}(k):=p (1-p)^{k-1}}." displayMode="true"></$latex>
Diese zugehörige Verteilung auf $$\mathbb{N}_+$$ heißt $$\textbf{Geometrische Verteilung}$$ zur Erfolgswahrscheinlichkeit $$p$$.
Vgl.: [[Geometrische Verteilung (revisited)]]
Ab jetzt geht es um Verteilungen auf unendlichen Ergebnisräumen.
* Wir betrachten ein Bernoulli-Experiment mit Erfolgswahrscheinlichkeit $$p\in(0,1)$$.
* ''Frage'': Wie groß ist die Wahrscheinlichkeit $$P(k)$$, erstmals im $$k$$-ten Schritt Erfolg zu haben?
*''Lösung'': Messraum $$(\N,2^\N)$$, W-Maß (genauer: Zähldichte): $$\textcolor{blue}{P(k)=p\cdot (1-p)^{k-1}}$$.
Dieses W-Maß heißt die ''geometrische Verteilung'' auf $$\N$$.
!! Satz
Die geometrische Verteilung ist eine Verteilung.
!! Beweis
Wegen $$P(k)\ge 0$$ bleibt zu zeigen, dass $$P(\N)=1$$. Dies folgt aber aus
$$0<p<1$$ und den Eigenschaften der geometrischen Reihe:<$latex text=" \begin{aligned}
P(\N)&=&\sum_{k=1}^\infty P(k)=\sum_{k=1}^\infty p(1-p)^{k-1}=p\sum_{k=0}^\infty (1-p)^k\\
&=&p\cdot \frac{1}{1-(1-p)}=1.
\end{aligned}" displayMode="true"></$latex>
Vgl.: [[Geometrische Verteilung]]
Ist $$\Pi=(\pi_{ij})\in[0,1]^{n\times n}$$ zeilenstochastisch mit nur positiven Einträgen, und bezeichnen wir mit $$\Pi_1,\ldots,\Pi_n$$ die Zeilen der Matrix $$\Pi$$, so sind die Zeilen $$Q_i$$ der Matrix $$Q:=\Pi^2$$ Konvexkombinationen der Zeilen von $$\Pi$$, liegen also in der konvexen Hülle von $$\Pi_1,\ldots,\Pi_n$$:
<$latex text="Q_i:=\sum_{j=1}^n\pi_{ij}\Pi_j." displayMode="true"></$latex>
Es zeigt sich, dass das wiederholte Bilden von Konvexkombinationen geometrisch einen Schrumpfungsprozess auslöst. Dies wird durch folgendes Schaubild illustriert:
[img[simplex_info.png]]
* \textcolor{blue}{$$\Omega_{ZR}=F^n$$} ist der \textbf{Raum der Farbenfolgen}, der mittels <$latex text="\textcolor{blue}{X_{ZR}:[1:N]^n\ni(\omega_1,\ldots,\omega_n)\mapsto (\phi(\omega_1),\ldots,\phi(\omega_n)) \in F^n}" displayMode="true"></$latex> mit dem Bildmaß, hier kurz mit $$P_{ZR}$$ bezeichnet, zu versehen ist.
* Dabei ist zu beachten, dass auf $$\Omega=[1:N]^n$$ die Gleichverteilung $${\mathcal{U}}_\Omega$$ vorgegeben ist.
* Für die Farbenfolge $$\textbf{f}=(f_1,\ldots,f_n)\in F^n$$ ist <$latex text="\textcolor{blue}{\{X_{ZR}=\textbf{f}\}=\{\omega\in[1:N]^n\mid X_{ZR}(\omega)=\textbf{f}\}=F_{f_1}\times\ldots\times F_{f_n}}." displayMode="true"></$latex> Daher erhalten wir für das Bildmaß $$P_{ZR}$$: <$latex text="\textcolor{blue}{P_{ZR}(\textbf{f})}={\mathcal{U}}_\Omega(X_{ZR}=\textbf{f})
=\frac{|F_{f_1}\times\ldots\times F_{f_n}|}{|[1:N]^n|}
\textcolor{blue}{=\prod_{i=1}^n \frac{N_{f_i}}{N}}." displayMode="true"></$latex>
* Dies ist gerade das \textbf{$$n$$-fache Produktmaß} zur W-Funktion $$f\mapsto N_f/N$$ auf $$F$$. (Siehe übernächste Folie.)
* [[Beispiel|Beispiel: Geordnete Stichproben mit Zurücklegen]]
Ein Fixpunkt von $$\Phi(x):=D^{-1}\cdot(b-(L+U)\cdot x)$$ löst $$A\cdot x=b$$:
<$latex text="
x=\Phi(x)\;\Leftrightarrow\; D\cdot x=b-(L+U)\cdot x\;\Leftrightarrow\; A\cdot x=b
" displayMode="true"></$latex>
Wenn $$\|D^{-1}\cdot(L+U)\|<1$$ ist diese Abbildung eine Kontraktion
(siehe obiges Beispiel). Es ergibt sich der folgende Algorithmus:
Für $$\|D^{-1}\cdot(L+U)\|<1$$ ist $$\Phi$$ eine Kontraktion. Als Algorithmus:
<$latex text="
\begin{aligned}
for \ &k=0,1,... \qquad (k \ \text{Iterationsindex)} \\
&for \ i=1 \to n \\
&\qquad x_{i}^{(k+1)}=\frac{1}{a_{i,i}} \cdot \left( b_{i}-\sum _{j=1,i\neq j}^{n} a_{i,j} \cdot x_{j}^{(k)} \right)
\end{aligned}
" displayMode="true"></$latex>
! Problemstellung
Zu drei gegebenen $$n \times n$$ Matrizen $$A, B, C$$ entscheide, ob $$A \cdot B = C$$
ist.
!! Naive Lösung
Direkte algorithmische Umsetzung der Definition des Matrizenproduktes
mit anschließenden Koeffizientenvergleichen:
<$latex text="c_{ik}\stackrel{?}{=} \sum_{j=1}^n a_{ij}\cdot b_{jk}" displayMode="true"></$latex>
* Arithmetischer Aufwand: $$\Theta(n^3)$$
* Aufwand an Vergleichen $$\Theta(n^2)$$
!! Randomisierte Lösung
Dieses Problem lässt sich mittels [[Freivalds Algorithmus]] randomisiert lösen.
Es sei $$I\subset\R,f:I\to\R$$ eine Funktion und $$(f_n)$$ eine [[Folge|Folgen]] von Funktionen $$f_n:I\to\R$$. Die Funktionsfolge $$(f_n)$$ heißt ''gleichmäßig konvergent'' gegen die Funktion $$f$$, falls
<$latex text="\lim_{n\to\infty} \Vert f_n-f\Vert_I=0" displayMode="true"></$latex>
ist.
Es sei $$D\subset\R$$. Eine Funktion $$f:D\to\R$$ heißt ''gleichmäßig stetig'' auf $$D$$, wenn es zu jedem $$\epsilon>0$$ ein $$\delta>0$$ gibt, so dass für alle $$x,x'\in D$$ mit $$|x-x'|<\delta$$ gilt, dass $$|f(x)-f(x')|<\epsilon$$ ist.
Konvergiert] eine [[Folge|Folgen]] [[stetiger|Stetigkeit differenzierbarer Funktionen]] Funktionen $$(f_n)$$ gleichmäßig gegen eine Funktion $$f$$, so ist $$f$$ ebenfalls stetig.
!! Beweis
Wir benutzen [[Die Epsilon-Delta Definition|Stetigkeit (Über eine Epsilon-Delta-Definition)]] von Stetigkeit. Es sei also $$\epsilon>0$$. Da $$(f_n)$$ gleichmäßig konvergiert existiert ein $$N\in\N:\forall n\geq N$$ und $$\forall x,x'$$:
<$latex text="\begin{aligned}
|f_n(x)-f(x)|&<\epsilon\\
|f_n(x')-f(x')|&<\epsilon
\end{aligned}" displayMode="true"></$latex>
gilt. Da $$f_n$$ stetig in $$x'$$ ist gibt es ein $$\delta>0:\forall x: |x-x'|<\delta$$:
<$latex text=" |f_n(x)-f_n(x')|<\epsilon" displayMode="true"></$latex>
gilt. Dann folgt:
<$latex text="\begin{aligned}
|f(x)-f(x')| &= |f(x)-f_n(x)+f_n(x)-f_n(x')+f_n(x')-f(x')|\\
&\leq |f(x)-f_n(x)|+|f_n(x)-f_n(x')|+|f_n(x')-f(x')|\\
&\leq 3\epsilon
\end{aligned}" displayMode="true"></$latex>
Iterative Verfahren zum Lösen von Gleichungssystemen sind nicht immer
anwendbar, aber sie sind:
\begin{itemize}
* kaum anfällig für Rundungsfehler,
*effektiv wenn nur ein Vektor $$b\in\mathbb{C}^{n}$$ genutzt wird,
*sehr schnell, wenn $$A$$ eine dünn besetzte Matrix ist.
! Endlicher Fall
Ist $$(\Omega,2^\Omega)$$ ein endlicher W-Raum, so heißt das
W-Maß zur konstanten W-Funktion<$latex text="\textcolor{blue}{\rho(\omega):=\frac{1}{|\Omega|}}" displayMode="true"></$latex>
die (diskrete) ''Gleichverteilung'' auf $$\Omega$$.
Dieses Maß wird mit $${\mathcal{U}}_\Omega$$ bezeichnet. [$${\mathcal{U}}$$: ''u''niform distribution.]
Für $$A\subseteq \Omega$$ ist dann $$\textcolor{blue}{{\mathcal{U}}_\Omega(A)=|A|/|\Omega|}$$
(# günstigen Fälle / # möglichen Fälle).
! Borel-Mengen
Ist $$\Omega\subset\R^n$$ eine Borel-Menge mit Volumen
$$0<\lambda^n(\Omega)<\infty$$, so heißt das W-Maß auf $$(\Omega,{\mathcal{B}}^n_\Omega)$$
mit der konstanten Dichtefunktion
<$latex text="textcolor{blue}{\rho(x):=\frac{1}{\lambda^n(\Omega)}}" displayMode="true"></$latex>
die (stetige) ''Gleichverteilung'' auf $$\Omega$$.
Sie wird ebenfalls mit $${\mathcal{U}}_\Omega$$ bezeichnet.
Für eine Borel-Untermenge $$A$$ von $$\Omega$$ ist dann $$\textcolor{blue}{{\mathcal{U}}_\Omega(A)=\lambda^n(A)/\lambda^n(\Omega)}$$
(günstiges Volumen / mögliches Volumen).
* $$\Omega \subset\R^n$$ sei Borel-Menge mit endlichem Volumen: $$0<\lambda^n(\Omega)<\infty$$.
* $$(\Omega,{\mathcal{B}}_\Omega^n,{\mathcal{U}}_\Omega)$$ wird zum W-Raum mit kontinuierlicher Gleichverteilung, wenn man für jede Borel-Menge $$A\subseteq\Omega$$ festlegt: <$latex text="{\mathcal{U}}_\Omega(A):=\frac{\lambda^n(A)}{\lambda^n(\Omega)} =
\frac{\text{günstiges Volumen}}{\text{mögliches Volumen}}." displayMode="true"></$latex>
* Dieses Modell wird gewählt, wenn aus Symmetriegründen die Wahrscheinlichkeit nur von der Größe des Volumens abhängt.
Google benutzt eine Modifikation der obigen Markov-Kette bezogen auf den ''Google-Graphen'', das ist ein Teilgraph des Webgraphen.
Die zugehörige Grenzverteilung nutzt Google zur Bewertung der Wichtigkeit einer Webseite. Diese Bewertung ist ein (wichtiger) Bestandteil des Gesamtrankings von Treffern. Genaueres zu diesem ''PageRank'' genannten Verfahren findet man in:
$$ \textcolor{blue}{\text{Lawrence Page, Sergey Brin, Rajeew Motwani, Terry Winograd:
The pagerank citation ranking: Bringing order to the web.
Technical Report, Stanford Digital Library Technologies Project, 1998}}$$
pdf: http://dbpubs.stanford.edu:8090/pub/1999-66
iVBORw0KGgoAAAANSUhEUgAAAbAAAAEgCAYAAADVKCZpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deVxVdf7H8dcVRHHD3QRcQswUxVRIzHIrNa0hUzNbzNK00pnK+Y1m0+S0a1nToo0NadmqlZVQ7mm2mIYYlYkpqSSgJuSSmsp2fn+cJJHtstx77rn3/Xw8fBT3fLl87uGc8+F8z/f7+ToMwzAQERGxmRpWByAiIlIZSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJL/lYH4CpNmzalbdu2VochImIraWlpZGdnWx2GU7w2gbVt25akpCSrwxARsZWoqCirQ3CauhBFRMSWlMBERMSWlMBERMSWLE9g48aNo3nz5nTu3LnE7YZhcPfddxMeHk5kZCTffPONmyMUERFPZHkCu/XWW1m5cmWp21esWEFqaiqpqanExcVx1113uTE6kcpbmpxJ71nrOH/6MnrPWsfS5MwKbReRslmewPr06UPjxo1L3R4fH88tt9yCw+EgJiaGI0eOsH//fjdGKFJxS5Mzuf+DrWQeOYkBZB45yf0fbC1MUuVtF5HyWZ7AypOZmUmrVq0Kvw4NDSUzUye5eLbZq3ZwMje/yGsnc/OZvWqHU9tFpHwePw/MMIxirzkcjhLbxsXFERcXB0BWVpZL4xIB805q9qod7DtykuCGgUwd3IFh3ULYd+Rkie3PvF7e9rLeW0RMHp/AQkNDSU9PL/w6IyOD4ODgEttOnDiRiRMnAvaajCf2dKYb8Myd1JluQIDghoFklpCkghsGOrW9rPdWEhMxeXwXYmxsLK+//jqGYbBp0yaCgoJo2bKl1WGJlNkNOHVwBwJr+hXZFljTj6mDOwCUu11djCLls/wO7IYbbmD9+vVkZ2cTGhrKww8/TG5uLgB33nknQ4cOZfny5YSHh1OnTh1effVViyMWMZXVDXjmLqm0LsDytjvTxSji6yxPYIsWLSpzu8Ph4MUXX3RTNCJFlfUcqrxuwGHdQsrs7itre3nvXV5sIr7A47sQRaxS3lD38roBq6K899YwfBElMJFSlfccali3EGYO70JIw0AcQEjDQGYO71Itd0HlvbeekYl4QBeiiKdy5jlUed2EVVHWe+sZmYjuwERKdfbzJmdedydPjk3EXZTAxKeVVY/Qlc+4qsqZ2FRrUbyduhDFZ5U3Wbi8oe5WKi82TYQWX+AwSqrV5AWioqJISkqyOgzxYL1nrStxqHpIw0A2TB9gQUTVx5s/m7iWna6d6kIUn+XNAyG8+bOJnKEEJj7LmwdCePNnEzlDCUx8licP0qgqb/5sImdoEIf4LE8epFFV3vzZRM5QAhOf5sqJyFbz5s8mAkpg4uU8quBtQQEYZ5V/quEPpSzO6g4etW9EKkEJTLyW2+ZCGQYcTYfsVDi0Gw7tgWP74NgvcPwXOP0b5JyA3N/P+UYHBNSFgHoQ2BDqNYd650GDYGjSDhqHQdMLzNermeaJiTdQAhOvVVbB2ypdpI8fhJ+/gvRE2P8dHNgKp4/+ub1mHTMJ1TsPWkZC7YZQqx7UrAt+Z51yeTlmYss5BicPm++b/jX8tg8Kcv9sV68FnBcJwRdB6xho1RNq1a98/Lhw34i4kRKYeK1qmwuVexLSvoTUNbBrHfyaar7uXxtadIYuI+C8LtC0g3nnVK9F1boGC/LNO7pDu+Hgj3Dge9j/vfmzjXxw1ICWXaHd5dB+IIREFU2MTtA8MfEGSmDitZxZFLJUp4/BzlWw7UP46RPIOwX+gXD+ZdB9DLS+xEwi/gHVH3gNP2jU1vzX7qyqGaePQ0Yi7N0Eez6HL5+FL56GwEZw4VXQ6VoI6wt+Ncv9EVXaNyIeQglMvNbUwR2KPOeBcuZCFeTDns8g+U34cZmZtOqdB91vgQsGQ5tLoWZtN0Vfglr1zITWbgD0/6fZ7bjrU9i5ElISzLgDG0GX66DbzWaCLUWF942IB1ICE6/l9Fyo41mwZaH577cM85lVtzHQeYT5vKmGh873D2wEnYeb/3JPmV2MPyyBLa9BYhy06ALR4yFylDlY5CyaJybeQMV8xXft/x42/Rd+eB/ycyCsv3m31WGotXdaVXXyMGxdAt+8Zg4wqR1kfq6ed0JQqNXRiYez07VTd2Die/Zugi+egdTV5hD2HrfCxROhaXurI6segY3g4gkQfbv5Wb9+CTb+Fza9BF1Hw6VTzMEmIjanBCa2VqHJuOmbYd0j5gCIOk1gwL8geoI5B8sbORzQppf578he2PACfPM6fPuW+Zys3/3Q+PwSv1WTnMUOlMDEtpyejPtLCqx7FHYsh7rNYPAT5l3XOc+FvFrD1nDV09BnKmycA4kvm12n3cdC32lQ/7zCpprkLHbhoU+nRcpX1mRcAE5kw8dT4KXekLYBBjwId38LvSb7VvI6W/0WMOgxcz90H2s+J5vTw+xSzT0FOLFfRTyE7sDEtkqbdPvLkePmM5/1syDnuNlN2G861Gns5gg9WIOWcPV/zGS++kFY+4g5CnPwE+w74gCKT8TWJGfxNLoDE9sqadJtV8dPLA+cAavuh9AomLQRhj6l5FWaJu3ghrfhlngIqA/v3MwbdZ4lhKxiTTXJWTyNEpjY1tmLNtbhFA/7v8qHAf+mVa0TMOp1uPl9aKaJuU4J6wd3fA6DHiPGsY01taYx3m8ZNSgANMlZPJO6EMW2zgwoWLv8PaadnktIjWz2hN1Eu1EzoXYDi6OzIT9/uORv+HcaRtbiv/HggbcY6pfI07Xv4fohAzSAQzyOEpjYV87vDNv3H4blzoem7WDYm7RrHWN1VPbXsBUt7/gQtr5Hj+VTWZT3Dzj5IBRM8tyqJOKTdDSKPe3/DuL6wub5EDMZ7vzSXGpEqofDYZagmvy1WaFk9QPw5nA4dsDqyEQKKYGJvRgGfDUXXr7crBh/Szxc+QQE1LE6Mu9U/zy4YRFc/ZxZ1eO/vWDHCqujEgE8JIGtXLmSDh06EB4ezqxZs4pt37t3L/3796dbt25ERkayfPlyC6IUqyxNzqT3rHV0nf4OXzw60LwbuGAw3PWVOfhAXMvhgKjbzEEeQaGwaDSpb06hz8zVnD99Gb1nrWNpcqbVUYoPsjyB5efnM3nyZFasWEFKSgqLFi0iJSWlSJvHHnuMUaNGkZyczOLFi5k0aZJF0Yq7nakK0ejoNj4KeICY/G94vOBWll7wpIbGu1uzC2D8Gna3HU37n17h6ZP/ojmHCit1KImJu1mewBITEwkPDycsLIyAgABGjx5NfHx8kTYOh4PffvsNgKNHjxIcHGxFqGKB2at2cFXBOt4PeAg/RwGjcmbwcs4gZq/eaXVovqlmbcYcuJ67cyYT4Ujj41r/JMrxoyp1iCUsT2CZmZm0atWq8OvQ0FAyM4v+JffQQw/x5ptvEhoaytChQ5kzZ467wxQr5Ody+/GXeLrm/9hc0IGrTz9OsmFWjFdVCOvsO3KShILeXJPzKMeMOrwd8Dg3+q3V70TczvIEVtJyZA5H0TI2ixYt4tZbbyUjI4Ply5czZswYCgoKin1fXFwcUVFRREVFkZVVvJKA2Mjvh+DN4dzmv4r5eUMYmzudw/w5t0tVIaxzZt//ZIQyLOdRvirozBM1F/Cfuq9Bfq7F0YkvsTyBhYaGkp6eXvh1RkZGsS7CBQsWMGrUKAB69erFqVOnyM7OLvZeEydOJCkpiaSkJJo1a+bawMV1ft0FCwbC3k1s6fYEzzhuJR+/ws2qCmGtsyug/EZdxuVOZX5BLNfmr4K3roNTRy2OUHyF5QksOjqa1NRU9uzZQ05ODosXLyY2NrZIm9atW7N27VoAtm/fzqlTp5SgvNXPG2H+FeYd2C0J9LhmMjOHdyGkYSAOIKRhIDOHd1FVCAsN6xZS5HfSsmFdml47C2LnQtoXsGAwHP7Z6jDFBziMkvrw3Gz58uXce++95OfnM27cOB544AFmzJhBVFQUsbGxpKSkMGHCBI4fP47D4eCpp55i0KBBZb6nnZbFlj9sWwofTICgVnDTe1o12I52r4d3bgH/WnDzEmjZ1eqIpILsdO30iATmCnb6JQjmAovLp0Kri+GGxRoib2cHf4Q3R5hdiaPfgrC+VkckFWCna6flXYji4wwD1j0Gy/9hTk4es1TJy+6aXwjjV5uTnt8aCds+tDoi8VJKYGKdggIzcX0+G7rdDNe/pZJQ3iIoBMatgODu8N5tsOU1qyMSL6QEJtbIz4P4yWYx3l5/NQcA+GlxBK8S2AjGfAjhl8NHd5urZItUI10xxP3ycszBGilLod8/WdrgJmY/+Sn7jpwkuGEgUwd30ChDm1uanMnsVTvYd+QkbYIm8nZLB8Gr7oecE9B3qtXhiZdQAhP3ysuBJbfBjx/DoMdYGjic+z/YysncfIDCunqAkphNnalfeeZ3mnY0j0G/38byNoG0/vQxKMiD/vdbHKV4A3UhivucnbyGzIZL/sbsVTsKL3RnqK6evZX0Oz2eCzdmjTWfdX42Cz6daVF04k10BybucW7y6jkRKL2moerq2Vdpv7vMo6fhL3PAwExioDsxqRIlMHG9/Dz44PZiyQvMunqZJVzwVOvQvsr8ndaoAbF/FOP+bJY5cKePnolJ5agLUVyroAAS/gop8TB4ZpHkBUXr6p2hWof2Vu7v9EwSixxtzgHcNM+CKMUb6A5MXMcwYPn/wXeLYMC/oFfxhUjPDNQ4M2JNoxDtz6nfaY0acM2LkHsCVk6HmnWgx1iLIha7UikpcZ01/4YNz8GlU+Dyf5tL04ucLS8HFt8IP30CIxdA5xFWR+Tz7HTtVBeiuMZXc8zkFTVeyUtK5x8A178BrXvBB3fArnVWRyQ2ogQm1e/bRbD6X9BpGAydreQlZasZCDcsgmYdYPHNkLnF6ojEJpTApHrtXG2WiDq/LwyPgxp+5X+PSGBDuPl9qNsU3hwJ2alWRyQ2oEEcUn0yv4H3xsJ5nc1lNPxrAUXLCmmQhkAZx8SYD2HBIHM5lts/gXrNrQ5VPJjuwKR6HP4Z3r4e6jSFG9+DWvWBP8sKZR45icGfpaKWJmdaG69Ypsxjokk7uPFdOH7QPJ5yTlgdrngwJTCpupOHzXWf8k+bq/DWb1G4SaWi5FzlHhOhPWDkK7D/W3j/dijIL+FdRJTApKrycuCdMXA4DUb/8SD+LCoVJedy6pi4cCgMeQp2LIdV/3RTZGI3SmBSeYYBy/4OaV+Yk1Lb9i7WpLSSUCoV5bucPiYungAxk+Hrl2DzAjdEJnajBCaVt/FFSH7DrGUXOarEJioVJeeq0DEx6FFoPwiWT4Xd690ToNiGEphUzo6Vf8z1ugb6ld7FM6xbCDOHdyGkYSAOIKRhIDOHd9EoRB9WoWOihh+MWGB2Tb97i4bXSxEqJSUVl7UDXr7cHDF22woIqGN1ROLtDv8MLw+AwEYwYS3UDrI6Iq9lp2un7sCkYk4egUU3QM3aMPptJS9xj0ZtYNTrcHgPvD/BXOVAfJ4SmDivIB/eHw9H9sKoNyBI3YDiRm17w5WzIHUVfPq41dGIB1AlDnHeukfNquFXPwttelkdjfii6NvhwPfwxdNwXheIGGZ1RGIh3YGJc7Z/BF8+Cz1uhahxVkcjvsrhgKFPQ+jFZs3NLE2I92VKYFK+7J/gw7sgpIc5uVTESv61YNRr4F8b3rkZTh+zOiKxiLoQpWw5J+DdMeBXE657rbBA79lUrFeqW7nHVINgs9zUG8Mg/q9w3UIt2+ODdAcmpTMM+OheOLjdXC23YatiTVSsV6qb08dUWF+4fAakLIVN/7UkVrGWEpiUbstC2Pou9H8A2g0osYmK9Up1q9Ax1fteuPBqWDMD0je7KULxFB6RwFauXEmHDh0IDw9n1qxZJbZ599136dSpExEREdx4441ujtAHHdgKK+4zE9dl/1dqMxXrlepWoWPK4YBr5ppdiktug98PuTg68SSWJ7D8/HwmT57MihUrSElJYdGiRaSkpBRpk5qaysyZM9mwYQPbtm3jueeesyhaH3H6GLw7Fuo0hmvjoEbph4mK9Up1q/AxFdgIRi6EYwdg6SSz61t8guUJLDExkfDwcMLCwggICGD06NHEx8cXafPyyy8zefJkGjVqBEDz5lql1WXOPPc6vMesQVevWZnNVaxXqluljqnQHmbh350rzCLT4hMsT2CZmZm0avXn4IDQ0FAyM4s+rN25cyc7d+6kd+/exMTEsHLlSneH6Tu+fQt+WAL9/1ni8ijnUrFeqW6VPqZ63mk+D/vkIdiX7I5QxWKWD6MvqZaw45zhsHl5eaSmprJ+/XoyMjK47LLL+OGHH2jYsGGRdnFxccTFxQGQlZXluqC9VXYqLJ8GbS+DS//u9LcN6xaihCXVqlLHlMMBsXPgpUthyTi443OoVd81AYpHsPwOLDQ0lPT09MKvMzIyCA4OLtbmmmuuoWbNmpx//vl06NCB1NTiyypMnDiRpKQkkpKSaNas7K4vOUfeafOk9w+A4XHmMhYidlOnsXn8Htpj/jEmXs3yBBYdHU1qaip79uwhJyeHxYsXExsbW6TNsGHD+PTTTwHIzs5m586dhIWFWRGu91r7iFlj7poXzRFdInbV9lJzkdXv3obv37M6GnEhyxOYv78/c+fOZfDgwXTs2JFRo0YRERHBjBkzSEhIAGDw4ME0adKETp060b9/f2bPnk2TJk0sjtyL7FoHG+eahVIvvMrqaESqru990KonLPu7uXqCeCUtaOnrfj8E8y4xnxVM/Ezre4n3OJwG83pDy4tgbIK6xZ1kp2un5YM4xEKGAR9PgRNZcMPiUpOXah2KJ3H6eGzU1iw+HT/J7GHofY/bYxXXsrwLUSz0/TtmHbn+/4Tgi0psolqH4kkqfDxedCN0/AusfdSsLiNeRQnMVx1Jh+VToXUvs55cKVTrUDxJhY9HhwOuft4cnfj+BHO0rXgNJTBfVFBgLgZYkA/D5pX5bEC1DsWTVOp4rNvEHF2btR0+fcJFkYkVlMB8UdIC2PMZDH4MGp9fZlPVOhRPUunjsf1A6H4LfPUCpCe6IDKxghKYrzm021x6ot0A6HFbuc1V61A8SZWOx0GPQ4MQ+PBOyPndRRGKOymB+ZKCAlg6GWrUhNi5Tq1gq1qH4kmqdDzWbmB2JR7aZU7cF9vTMHpfkhgHe78yn3sFOZ+AVOtQPEmVjsewvhA9Ab6eB51ioc0l1RucuJXuwHzFoT2w9mFoPwi63mB1NCLWueIhaNga4v8KuRqMZGdKYL7AMCDhb1DDH65+zqmuQxGvVaueWbX+0C6NSrQ5JTBfsGUhpH1hLvhXga5DEa8V1g+6jzUrdGRssToaqSQlMG93NANWPwjn9zVPWBExDXoU6rc050RqgrMtaRCHNzMMWPYPMPLhL8+X2XWoeofiLZw+lmsHmV3qb18HXz4H/e5zf7BSJVW+A7viiiv47rvvqiMWqW4pS2HnCrPWYRkTllXvULxFhY/lCwZB5xHwxdOQpfJodlPlBPbUU08xZcoUbrvtNvbv318dMUl1OHnYXJG25UXQ864ym6reoXiLSh3LV86CmnXgo3vMuZJiG1VOYN27d2fdunVcffXVXHnllTz88MOcPKmhqZZbMwN+/xViXwC/snuKVe9QvEWljuV6zWHw47B3I3yz0DWBiUtUyyAOwzDo0KEDd911F3PmzKF9+/a88cYb1fHWUhlpG+Cb16HXZGjZtdzmqnco3qLSx/JFN8H5fWDNv+HYARdEJq5Q5QR26aWXEhISwpQpU8jMzGThwoWsX7+exMREJk6cWB0xSkXk5ZiLVDZsDf3ud+pbVO9QvEWlj2WHwxzQkXcaVv3ThRFKdaryKMSXXnqJiIgIHOeMcJszZw4dO3as6ttLRW2cA9k74Mb3Sl1h+VxnRmhpFKLYXZWO5Sbt4LL/g/VPmHdk4Ze7OFqpKodhGIar3nz37t2EhYW56u3LFBUVRVJSkiU/2zKH9sB/Y8xyUderC1ekwvJOw7xLzLXyJm2Emr7XjW6na6dLJzJblbx8kmHA8n+Y5aKGPGl1NCL25F8LrnoGDu+BL5+1OhophypxeIvtCfDTJzDgX9Ag2OpoROwrrB90GWUmsOyfrI5GyqAE5g1yTsDK+6FFF3OpCBGpmsGPg39tWDHV7N0Qj6RSUt7g89nwWyaMfLXUOV8qFSVicupcqNcc+j8AK++D7R+Za4eJx9EdmN1lp8JXc6HrjdC6Z4lNVCpKxFShcyH6dmjR2ezdyDnh9lilfEpgdmYYsHyqWQZn4MOlNlOpKBFThc4FP38Y+jT8lgGfP+2mCKUilMDsbHsC7P4UBjxgdnmUQqWiREwVPhfa9DJXMP9qjgZ0eCAlMLvK+R1WPWB2cUSNL7OpSkWJmCp1Lgx8xJwPtsq5yjbiPkpgdvXVC3A03ZzzVU6xXpWKEjFV6lyo1xz6ToPU1bBzlYsjlIpQArOjI+nmAnydhkHbS8ttPqxbCDOHdyGkYSAOIKRhIDOHd9EoRPE5lT4XLr4DmrQ3B3Tk5bglVimfRwyjX7lyJffccw/5+fncfvvtTJ8+vcR2S5Ys4brrrmPz5s1ERUW5OUoPsuZB87+DHnX6W4Z1C1HCEqGS54J/gLlu2Fsj4Ot50Pse1wQnFWL5HVh+fj6TJ09mxYoVpKSksGjRIlJSUoq1O3bsGC+88AI9e5Y8VNxnpH0J2z6ES+81K86LiHu0vwIuuBI+e0pLrngIyxNYYmIi4eHhhIWFERAQwOjRo4mPjy/W7sEHH2TatGnUrl3bgig9REE+rJgOQa3gkrutjkbE9wx+wiz4u9b53g9xHcsTWGZmJq1atSr8OjQ0lMzMopMKk5OTSU9P5+qrr3Z3eJ7l27fgl61wxUNOL5UiItWoSTvoeYd5Lu771upofJ7lCayk1VzOXlusoKCAKVOm8Mwzz5T7XnFxcURFRREVFUVWVla1xmm508fMv/pCL4bOI6yORsR39ZkKdRqb01hUJ9FSliew0NBQ0tPTC7/OyMggOPjPaurHjh3jhx9+oF+/frRt25ZNmzYRGxtb4no1EydOJCkpiaSkJJo1a+aW+N3my2fhxEG4cqa5euw5liZn0nvWOs6fvozes9apTJRIJZV7LgU2hP7/hJ+/hB8/tiZIATwggUVHR5OamsqePXvIyclh8eLFxMb+WTgzKCiI7Oxs0tLSSEtLIyYmhoSEBN8ahXhkr1nvsMsoCC3+uVXrUKR6OH0udb8VmnWE1Q+az8TEEpYnMH9/f+bOncvgwYPp2LEjo0aNIiIighkzZpCQkGB1eJ7hk4fAUQOu+HeJm1XrUKR6OH0u+fnD4MfMhS8T49wYoZzNI+aBDR06lKFDhxZ57ZFHHimx7fr1690QkQfJ2AI/vA+X/QOCQktsolqHItWjQudS+BXmv89nw0U3mc/FxK0svwOTMhgGrP4X1G1mzvsqhWodilSPCp9LAx8xB1ipWr0llMA82Y7lsPcr6Hc/1KpfajPVOhSpHhU+l1pEmHdfiXFwaI8bIpSzKYF5qvxcWPNvaHoBdB9bZlPVOhSpHpU6l/o/AH41YW3Jjz3EdTziGZiUYMtC+DUVRi8qt9o8qNahSHWp8LnUoCX0+it8/hT0mlziSGFxDd2BeaLTx+GzJ6FNb+gwxOpoRKQ8ve+Gus1hzQxNbnYjJTBPtPFFOJFlPiAuYdKyiHiYWvXNNcN+3gCpa6yOxmeoC9HTHM8yF6vsGFukK2JpciazV+1g35GTBDcMZOrgDuoyFLFAqedij1th03/NeZvhl0MNv/LeSqpId2Ce5vPZkHsSLp9R+JIqbYh4hjLPRb+aMOBBOLgNvn/X6lB9ghKYJzm0G5Jege63QNP2hS+r0oaIZyj3XOw0DIK7waePQ+4pCyL0LUpgnmTd4+Zfcf2KrkitShsinqHcc7FGDbjiYTiaDpvnuzEy36QE5ikObIUflkDPO6H+eUU2qdKGiGdw6lwM6wth/eGLZ+DUb26KzDcpgXmKdY9B7SBzOO45VGlDxDM4fS5ePgNOHjIHdYjLKIF5gr1fw86V0PseCGxUbLMqbYh4BqfPxZDu0PEv5jJIJ361JFZf4DBKWhLZC0RFRZW46KXHMQxYeDVk74R7voWAulZHJCLV4eCPMK8XxEyCwY9bHY3TbHPtRHdg1tu1zlzZtc9UJS8Rb9L8QogcDYkvw1FNeXEFTWS2kmHAukchqDUJfgN5ctY6TVQWsbFzJzn/+7LbGGS8Z9ZJ/MvzVofndXQHZqUfl8G+ZL45fyL3xe/QRGURGytpkvM9Kw+xu/VISH5Ty624gBKYVQoK4NMnoHE77t1+oSYqi9hcaZOcp+y/HBx+ZpUdqVZKYFZJWWqWnOk3nfSjOSU20URlEfso7Xz9/mgdiB4P3y2C7J/cHJV3UwKzQkE+rJ8FzS6EziM0UVnEC5R5Hl86Bfxrw2ez3ByVd1MCs8LWJZC9wywZVcNPE5VFvECZ53G95nDxBPPcP7jdogi9jxKYu+XnmX+FtegCHa8BNFFZxBuUex73vhcC6sH6mZbG6U00jN7dtr5nVp2//i2z8OcfKryMuYh4nDLP4zqNIeZOczDHL9ugRYR7g/NCugNzp/w8cz7IeV3gwqusjkZE3C1mEgTUh8+etDoSr6AE5kZbPo6DQ7uZuHcgvZ/8VPO8RHzM0h0nWZh/JaTEM+aJV3UNqCIlMDeJ3/IzTb95nm0FbVhd0EOTlUV8zJmJzs+eGMgxI5DRJ9/WNaCKlMDc5PuV82njOMBzeSMAB6DJyiK+5MxE56PU49X8wYvJxp0AABHCSURBVFzll0jrvD26BlSBEpg75Odx8+l32FbQhjUFPYps0mRlEd9w9rm+IG8ox4xA7vb/QNeAKlACc4cf3uf8Gr/wfN5wztx9naHJyiK+4exz/Sj1WJg/mCE1NnNJg2wLo7I3JTBXK8iHL57maIML+NLv4iKbNFlZxHecO9H5lbwrOUkAs5qvsjAqe1MCc7WUpZC9k6BB9/PE8K6arCzio86d6FynYQv2tb+JVpkrVCOxkjxiReaVK1dyzz33kJ+fz+2338706dOLbP/Pf/7D/Pnz8ff3p1mzZrzyyiu0adOmzPf0iFVFCwrgpd5QkAeTNkENv/K/R0R8x/GD8FwkRFwL186zOhrAQ66dTrK8Ekd+fj6TJ09mzZo1hIaGEh0dTWxsLJ06dSps061bN5KSkqhTpw7z5s1j2rRpvPPOOxZGXbJzF7P7T5d0eh5MgWvjlLxEpLh6zaHHrZAYB32nsfTngCLXEC1sWzbLuxATExMJDw8nLCyMgIAARo8eTXx8fJE2/fv3p06dOgDExMSQkZFhRahlKr6Y3e/US3yW43VbQecRVocnIp6q991Qw4+0+MeLLYipeWJlszyBZWZm0qpVq8KvQ0NDycws/Re2YMEChgwZ4o7QKuTcxez61fiOCMceXjgdC36W3+iKiKdqEAzdxhDy84cE5R4ssklzRctmeQIr6RGcw+EooSW8+eabJCUlMXXq1BK3x8XFERUVRVRUFFlZWdUaZ3nOncsxyT+eTKMJC4/3dGscImJDve/BYRQwwX95sU2aJ1Y6yxNYaGgo6enphV9nZGQQHBxcrN0nn3zC448/TkJCArVq1SrxvSZOnEhSUhJJSUk0a9bMZTGX5Ow5HtGOH7m4xg7i8q6mWcP6bo1DRGyoURvW+PXhBr91NOa3Ips0V7R0liew6OhoUlNT2bNnDzk5OSxevJjY2NgibZKTk7njjjtISEigefPmFkVatrPneEz2jyfbaEBCjcs1z0tEnFKz3/9Rmxxu9V9Z+JrmipbN8ocz/v7+zJ07l8GDB5Ofn8+4ceOIiIhgxowZREVFERsby9SpUzl+/DjXXXcdAK1btyYhIcHtsZ47yvDsEUJn/puwYjn9cr7jJf+b+fdVURpBJCJOuaJPH/Ztv4Lb9q/m5byradCwSbFRiGVdg3yRR8wDc4XqnstwZpTh2QM1Amv6FZ+M/M4Y2P0ZTNkKtYOq7eeLiA/Ylwxx/eCKh+DSKUU2OX0NqiI7zQOzvAvRLs4dZQgljBDK2gnbP4KLJyh5iUjFBXeDdpfDxhcht+jgDaeuQT5GCcxJpY0EKvL6V8+Dfy3oeaebohIRr3PpFDiRBd++XeRlp65BPkYJzEmljQQqfP23ffDdO9BtDNRz7whIEfEibS+FkB7w1QuQn1f4crnXIB+kBOakcytJwzkjhDa+CEYBXPJXC6ITEa/hcJh3YYfTYPufVYnKvQb5IMtHIXoSZ0YZlrj95GHYshA6D4dGba37ACLiHTpcBU3aw5fPQsRwcDjKvgb9wddGKSqB/eHcET5n6pABRZJYiQfD5gWQcxx63+O2eEXEi9WoYdZITPgb7FoH4ZcDZVyDcO4a5m3UhfiHSo/wyT0JX78E4QPhvC4ujFBEfErk9VC/pXkX5gRfHKWoBPaHSo/w+fZtc8TQpfe6ICoR8Vn+tSBmEqR9AZnflNvcF0cpKoH9oVIjfAryYeNcCO4ObXq7KDIR8Vk9boVaDcwRieXwxVGKSmB/qNQInx3L4dBus6+6lAr6IiKVVruBmcRS4s1RiWXwxVGKSmB/GNYthJnDuxDSMBAHENIwsPwSLRtegIZtoGNs6W1ERKoi5i5w+MHG/5bZrFLXMJvTKMSzlDXCp5i9myAjEYbMhhp+5bcXEamMBsHQ5TpIfgP6TYc6jUttWqFrmBfQHVhlbXgBAhtBt5usjkREvN0lf4Pc380pO1JICawyslPN51/REyCgrtXRiIi3a9HJnKqT+D/IPWV1NB5DCawyNr4IfgFw8USrIxERX3HJ38wpO1vftToSj6EEVlEnfoXvFkHX61W0V0Tc5/w+ZrGEjS+Cdy7jWGFKYBWVtADyTkHMZKsjERFf4nBAr79C1o/w01qro/EISmAVkXsKEuPMvujmF1odjYj4mojhZnmpjXOtjsQjKIFVxA9LzD7oXrr7EhEL+P/x7H33p3DgB6ujsZwSmLMMw+x7btEZwvpZHY2I+Koet0LNOrCp7InNvkAJzFm71sHBFPPuS2WjRMQqdRpDt5vh+3fh2AGro7GUEpizNs2Dus2h8wirIxERX9fzTijIg6RXrI7EUkpgzsjaCT+tgejbzSUORESs1KQdXHClWZnDhyc2K4E54+uXwK8WRI2zOhIREVOvSfB7tjm4zEcpgZXn90PmxOXI6zRxWUQ8R9vLzEFlm+b57MRmJbDyfPO6WUSz511WRyIi8ieHw1xq5ZcfzFWbfZASWFny8yDx5T9KuHS2OhoRkaI6j4Q6Tc27MB+kBFaWHz+C3zIgZpLVkYiIFFezNkSPhx0r4NddVkfjdkpgZfn6f9CoLbQfZHUkIiIlixoPNfxh83yrI3E7JbDS7PsW9m6Ei+/Qissi4rnqt4CIayH5TTh9zOpo3MojEtjKlSvp0KED4eHhzJo1q9j206dPc/311xMeHk7Pnj1JS0tzfVCJcVCzrlZcFhHP1/MOOP0bfLfY6kjcyvIElp+fz+TJk1mxYgUpKSksWrSIlJSUIm0WLFhAo0aN+Omnn5gyZQr33Xefa4M6kQ1bl8BFN0DtINf+LBGRqgqNgpAe5mOPggKro3EbyxNYYmIi4eHhhIWFERAQwOjRo4mPjy/SJj4+nrFjxwIwcuRI1q5di+HKeQ9bFkL+aa24LCL2cfEd8GuqWaneR1iewDIzM2nVqlXh16GhoWRmZpbaxt/fn6CgIH799VfXBJSfa5ZnCesPzTq45meIiFS3iGFmvdav/2d1JG5jeQIr6U7KcU61d2faAMTFxREVFUVUVBRZWVmVC2j7R3Bsn1ksU0TELvz/KHeXutpnhtRbnsBCQ0NJT08v/DojI4Pg4OBS2+Tl5XH06FEaN25c7L0mTpxIUlISSUlJNGtWybJPR/ZCswuh/cDKfb+IiFWiboO6zSB7p9WRuIXlCSw6OprU1FT27NlDTk4OixcvJjY2tkib2NhYXnvtNQCWLFnCgAEDSrwDqxaX3gt3btDQeRGxn/rnwd+3Q4chVkfiFv6WB+Dvz9y5cxk8eDD5+fmMGzeOiIgIZsyYQVRUFLGxsYwfP54xY8YQHh5O48aNWbzYxUNF/SzfLSIileND1y+H4dLhfNaJiooiKSnJ6jBERGzFTtdOy7sQRUREKkMJTEREbEkJTEREbEkJTEREbEkJTEREbEkJTEREbMlrh9E3bdqUtm3bVup7s7KyKl/Jw4UUV8UoropRXBXnqbFVJa60tDSys7OrOSLX8NoEVhWeOg9CcVWM4qoYxVVxnhqbp8ZV3dSFKCIitqQEJiIituT30EMPPWR1EJ6oR48eVodQIsVVMYqrYhRXxXlqbJ4aV3XSMzAREbEldSGKiIgtKYEBU6dO5cILLyQyMpJrr72WI0eOlNhu5cqVdOjQgfDwcGbNmuXyuN577z0iIiKoUaNGmSOK2rZtS5cuXbjooouIiorymLjcvb8OHTrEwIEDad++PQMHDuTw4cMltvPz8+Oiiy7ioosuKrb2XHUq7/OfPn2a66+/nvDwcHr27ElaWprLYqlIXAsXLqRZs2aF+2j+/PluiWvcuHE0b96czp07l7jdMAzuvvtuwsPDiYyM5JtvvvGIuNavX09QUFDh/nrkkUdcHlN6ejr9+/enY8eORERE8PzzzxdrY9X+citDjFWrVhm5ubmGYRjGtGnTjGnTphVrk5eXZ4SFhRm7du0yTp8+bURGRhrbtm1zaVwpKSnGjz/+aPTt29fYvHlzqe3atGljZGVluTSWisZlxf6aOnWqMXPmTMMwDGPmzJkl/h4NwzDq1q3r0jgMw7nP/+KLLxp33HGHYRiGsWjRImPUqFEeEderr75qTJ482eWxnOuzzz4ztmzZYkRERJS4fdmyZcaVV15pFBQUGBs3bjQuvvhij4jr008/Na666iq3xHLGvn37jC1bthiGYRi//fab0b59+2K/R6v2lzvpDgwYNGgQ/v7mInAxMTFkZGQUa5OYmEh4eDhhYWEEBAQwevRo4uPjXRpXx44d6dChg0t/RmU4E5cV+ys+Pp6xY8cCMHbsWJYuXerSn1cWZz7/2fGOHDmStWvXYrj4kbQVvxdn9enTh8aNG5e6PT4+nltuuQWHw0FMTAxHjhxh//79lsdlhZYtW9K9e3cA6tevT8eOHcnMzCzSxqr95U5KYOd45ZVXGDKk+HLcmZmZtGrVqvDr0NDQYgeMVRwOB4MGDaJHjx7ExcVZHQ5gzf765ZdfaNmyJWCe4AcPHiyx3alTp4iKiiImJsZlSc6Zz392G39/f4KCgvj1119dEk9F4gJ4//33iYyMZOTIkaSnp7s0Jmd58jm4ceNGunbtypAhQ9i2bZtbf3ZaWhrJycn07NmzyOuevL+qi8+sPX3FFVdw4MCBYq8//vjjXHPNNYX/7+/vz0033VSsXUl/GTscDrfEVZ4NGzYQHBzMwYMHGThwIBdeeCF9+vSxNC4r9pez9u7dS3BwMLt372bAgAF06dKFdu3aVTm2sznz+V21j8rizM/8y1/+wg033ECtWrV46aWXGDt2LOvWrXNpXM6wYn85o3v37vz888/Uq1eP5cuXM2zYMFJTU93ys48fP86IESN47rnnaNCgQZFtnrq/qpPPJLBPPvmkzO2vvfYaH3/8MWvXri3xlxwaGlrkL9GMjAyCg4NdHpczzsTRvHlzrr32WhITE6ucwKoalxX7q0WLFuzfv5+WLVuyf/9+mjdvXmK7M3GEhYXRr18/kpOTqz2BOfP5z7QJDQ0lLy+Po0ePuryrypm4mjRpUvj/EyZM4L777nNpTM5y1TFVVWcnjqFDhzJp0iSys7Np2rSpS39ubm4uI0aM4KabbmL48OHFtnvq/qpO6kLEHJX15JNPkpCQQJ06dUpsEx0dTWpqKnv27CEnJ4fFixe7dASbs06cOMGxY8cK/3/16tWljpZyJyv2V2xsLK+99hpg/kFS0p3i4cOHOX36NADZ2dls2LCBTp06VXssznz+s+NdsmQJAwYMcPlfyM7EdfZzkoSEBDp27OjSmJwVGxvL66+/jmEYbNq0iaCgoMIuYysdOHCg8G4nMTGRgoKCIn8EuIJhGIwfP56OHTvy97//vcQ2nrq/qpU1Y0c8S7t27YzQ0FCja9euRteuXQtHhmVmZhpDhgwpbLds2TKjffv2RlhYmPHYY4+5PK4PPvjACAkJMQICAozmzZsbgwYNKhbXrl27jMjISCMyMtLo1KmTx8RlGO7fX9nZ2caAAQOM8PBwY8CAAcavv/5qGIZhbN682Rg/frxhGIaxYcMGo3PnzkZkZKTRuXNnY/78+S6Lp6TP/+CDDxrx8fGGYRjGyZMnjZEjRxrt2rUzoqOjjV27drkslorENX36dKNTp05GZGSk0a9fP2P79u1uiWv06NHGeeedZ/j7+xshISHG/PnzjXnz5hnz5s0zDMMwCgoKjEmTJhlhYWFG586dyxyZ68645syZU7i/evbsaWzYsMHlMX3xxRcGYHTp0qXwurVs2TKP2F/upEocIiJiS+pCFBERW1ICExERW1ICExERW1ICExERW1ICExERW1ICExERW1ICExERW1ICE3GT/v37s2bNGgD+9a9/cffdd1sckYi9+UwtRBGrPfzww8yYMYODBw+SnJxMQkKC1SGJ2JoqcYi4Ud++fTl+/Djr16+nfv36VocjYmvqQhRxk61bt7J//35q1aql5CVSDZTARNxg//793HTTTcTHx1O3bl1WrVpldUgitqcEJuJiv//+O8OHD+eZZ56hY8eOPPjggzz00ENWhyVie3oGJiIitqQ7MBERsSUlMBERsSUlMBERsSUlMBERsSUlMBERsSUlMBERsaX/B762Eip5RdMIAAAAAElFTkSuQmCC
iVBORw0KGgoAAAANSUhEUgAAAbAAAAEgCAYAAADVKCZpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de1hVVf7H8ffhpnjFC5ZczBAlQPESpGV5S0WtyMxMM7Ny0sqmySbNZsrJmiYau2tlpGVNE1bmD5xUzEuWmYYolUUqeSk4WoKFmqII7N8fO0kEuZ+zz4HP63l4inM2+OGIfFlrr/VdNsMwDERERNyMh9UBREREakIFTERE3JIKmIiIuCUVMBERcUsqYCIi4pZUwERExC2pgImIiFtSARMREbekAiYiIm5JBUxERNySCpiIiLglFTAREXFLKmAiIuKWVMBERMQtqYCJiIhbUgETERG3pAImIiJuSQVMRETckgqYiIi4JRUwERFxSypgIiLillTARETELamAiYiIW1IBExERt6QCJiIibkkFTERE3JIKmIiIuCUVMBERcUsqYCIi4pZUwERExC2pgImIiFtSARMREbekAiYiIm5JBUxERNySl9UBHKVt27Z07NjR6hgiIm5l37595ObmWh2jSuptAevYsSNpaWlWxxARcSvR0dFWR6gyTSGKiIhbUgETERG3pAImIiJuSQVMRETcUr1dxCHi6pLS7cxZtZP9efkE+PkyPTaMkT0DrY4l4jZUwEQskJRu56Gl28k/VQSAPS+fh5ZuB1ARE6kiTSGKWGDOqp0lxeu0/FNFzFm106JEIu5HBUzEAvvz8qv1uIiUZXkBu/3222nXrh1du3Yt93nDMLj33nsJDQ0lKiqKbdu2OTmhSN0L8POt9PGkdDt949dx4czl9I1fR1K63VnxRNyC5QXs1ltvJSUl5ZzPr1y5kszMTDIzM0lISOCuu+5yYjoRx5geG4avt2epx3y9PZkeGwb8cY/MnpePwR/3yFTERP5geQHr168frVu3PufzycnJ3HLLLdhsNvr06UNeXh4HDhxwYkKRc6vpKGlkz0CeHNWNQD9fbECgny9PjupWsoBD98hEKufyqxDtdjvBwcEl7wcFBWG322nfvr2FqURqv5JwZM/Ac16ne2QilbN8BFYZwzDKPGaz2cq9NiEhgejoaKKjo8nJyXF0NGngKhsl1eYeVlXukYk0dC5fwIKCgsjKyip5Pzs7m4CAgHKvnTx5MmlpaaSlpeHv7++siNJAVTRKqu09rMrukYmIGxSwuLg43nrrLQzDYPPmzbRs2VLTh+ISKhol1fYeVmX3yETEBe6BjRs3jvXr15Obm0tQUBCzZ8/m1KlTANx5552MGDGCFStWEBoaSpMmTXjjjTcsTiximh4bVuoeGPwxSpr27pflfkx17mFVdI9MRFyggCUmJlb4vM1m46WXXnJSGpGqO3PF4Nn9DOes2om9nGKle1gidcfyAibizs41SqpodFZX1AxYGjoVMJEK1LRIVDQ6q6tcagYsDZ0KmDRoFRUoR+7zqq2KFomogElD4fKrEEUcpbKl7q7cDUMbnUVUwKQBq6xAuXKR0EZnERUwqecq6oZRWYFy5SKhjc4iKmBSj1U2RVhZgXLlIqGNziJaxCH1WGULHSpb6u7olYS1pY3O0tCpgEm9VdkUYVUKVJ0VCcOA4iKweYCHJj5E6oIKmNRbAX6+lXbDqFWBMgw4lgu5OyE3Ew5nwxG7+Xb8VziRBycOw6l8KD71x8d5eIFnI2jUDHxbQ5PW0KwdtAyClsHQ6kLwDzP/vxbFThudpb5TAZN6q867YRzLhR83w/5tYN8GB76C/F/+eN7mCc3bQ4sA8AuGxt2gcUvwbgwe3uDpDUYxFJ6EogI4eQSO/wL5v8KBr2HHCig6+cfn824K7cIh8GLzLSgaWofAOY4TOpM2OktDoAIm9Vat72Gdyoe9G+D71bDvMziYYT7u4QXtIiD8avO/bTtD2y7QIhA8PCv+nBUpLoZjOfDLHsjZYb79tB3S/wOpr5rXtAiCC/tBSH8IHQJN25T7qbTRWRoCFTCp16o9RXjiMOxYDhnLYM96KMwHL1/o0Ae6jYYLLof2UeDtgKX0Hh7Q/Dzz7YJL/3i8qNCcpvxxE+z9FHalwFfvmPfTgntD2AiIvM4c9f3OlfewidQVFTCRolO/F4XFkPmROb3XMhh6TYAusWbR8m5sXT5PLzgv0nyL+ZM5UjvwpZl55wpY/Yj51uEys8h2vb5K9/9E3J0KmDRcv+yBrYvgy3fMqbtm50H0JOh6vXm/qQr3mizh4QGBvcy3gX8zv45vPoDtS2D5/bDq7yS2j+XBY73YdKoTYH4drrKHTaSuqIBJw2IY5jTcF/Nh50pzGq7LMOh1C4QONkc77qZ1CPSbDlc8YC4s2fYmHb5+n0TPJHZ4hTD/5DDSmw9g2rCuuv8l9Yob/msVqYHiYtjxP9jwjPlDvkkb6PeAOeJq0d7qdHXDZoOAHubbkMdh+3tctPkVns99GXyS4MQ9UHAb+DSxOqlInVABk/qtuBi+XQqf/NtcCNG6E1zzIkSNccxCDFfRqBlE3w69boXda2HjC7Dqb7DhWbjsHoi5g6SMw9onJm5NBUzqJ8MwF2SsfQx+/sZc7n79QnO1Xm2WursbDw/oPMR8+3GzWcjXPMqJDXPZnn8tBwsGYOClfWLiltTTRlxeRR3ly7X/S3hjBLwzBgqOmYXrzo3mCr2GVLzO1qEPTFgKk9aQUXA+j3i8zhqfBxju8QVguMxZZyJVpRGYuLRqdZQ4+jOsewzS/2ve47rqGeg10eyAIX8IjuH6/L/R3+MrHvRK5BWfF9hUFMGjhbewK6+D1elEqkwFTFxalTpKFBdB2uvmdOGp43DpVOg/w2zjJOUK8GvC+rwebCjoxjjPdfzV631W+DzEB14j4GQ/aNTc6ogildIUori0SjtKHPgaFg6BFQ9AQE+4ezPEPqHiVYnTZ50V4cnbRUMYcPJZ3jWGcEPRCph3CXz3odURRSqlEZi4tHN1lOjQ0gvW/dNcVdekNYxaYN7jctXNxy7m7D6Rzfz8aRL7PLa2++HD++Dd8XzscSnTj99CI7/ztUJRXJIKmLi08jrKX+z9A683egM+3QXdx8GwJ8G3lYUp3VP5fSIDSb7kv3yfHM89xvukNPqWh4/czkNLC0o+RsRVqICJSztzpPBT3jGmN0thctFiPIrbwrh3IWyYxQnrn3+v3oO94BpSbD15xvsV5vs8z/8VbeHllLtUwMSlqICJyxvZM5CRIQYsnQI/fAYRI+Hq58ypQ6lzp+8vZhpBjCqYzd2ey7jXaykX5++CrPMhOMbihCImLeIQ17dzJbzSF/anw7Uvww2LVLwc6MyO9YV48WLRKMYUzMLL0wavx8KnT5sdTkQspgImljvnRuWiU7B6FiSOBb8OcOcG6DleCzUc7PQKxTN95xXOtuH/g8iRsO5xc5P48V/O8RlEnMMlClhKSgphYWGEhoYSHx9f5vkff/yRgQMH0rNnT6KiolixYoUFKcURTm9UtuflY/DHRuWVm76EN+PMHn4X3waTVkObTuV+fLW6dEilRvYM5MlR3Qj088UGBPr58uSoblx9yUVmV5OrnoG9n8Cr/SB7q9VxpQGzGYZhWBmgqKiILl26sHr1aoKCgoiJiSExMZGIiIiSayZPnkzPnj256667yMjIYMSIEezbt6/CzxsdHU1aWpqD00tt9Y1fV2aZfHfb9yxo9Dz+3ifgmhfMxrvlOLtLB5hnXj05qpsWGziafSu8dyv89hNc/bw5MpZ6wZ1+dlo+AktNTSU0NJSQkBB8fHwYO3YsycnJpa6x2WwcOXIEgMOHDxMQEGBFVHGAszcqX+/xKe/5PM6JYk+Y9NE5ixdU3KVDHCvp4PkMP/E4nxV0huS72f3WPVBUaHUsaWAsL2B2u53g4OCS94OCgrDbS08DPfroo7z99tsEBQUxYsQI5s6d6+yY4iCnFwzYKOYhr//yjM980oq7MMX3aTi/W4UfW2mXDnGI0yPf7w57M/HUTF4vHEanPf/h4PyrIT/P6njSgFhewMqbwbSddZM+MTGRW2+9lezsbFasWMGECRMoLmcVVEJCAtHR0URHR5OTk+OwzFJ3pseG0dr7FPO9n2eK13LeKhzCFP7O5GGVL9U+c7VcVR6XunHmyLcITx4rvIXppybTKmcLLBwKv+6zNqA0GJYXsKCgILKyskrez87OLjNFuHDhQsaMMaeSLr30Uk6cOEFubm6ZzzV58mTS0tJIS0vD39/fscGlTowM9WJt638z2HMbs0/dwqtN7+Kfo3pU6R5WeavlfL09mR4b5qi4Qvkj3PeLBjChYKZ5T2zBYMh2j3so4t4sL2AxMTFkZmayd+9eCgoKWLx4MXFxcaWu6dChA2vXrgXgu+++48SJEypQ9UHu97BwMK2O78NzXCL/eGIuGx+6ssoLMM61Wk4LOBzrXCPcrBYXw6Q14NMUFl1l7t8TcSDLO3F4eXkxb948YmNjKSoq4vbbbycyMpJZs2YRHR1NXFwczzzzDHfccQfPPfccNpuNRYsWlZlmFDeTnWbuJcIGt34Igb1q9GnK7+cnjlRef8qSka9/IPxpLfz3Blg8HuJehJ43W5hW6jPLl9E7ijstBW1wvl8D706AZu3g5qXl7u8S15aUbi/pZB/g51u2W/3J3+C9CbB7HVz5D7h8mjaguwl3+tlp+QhMGpiMZFgyCdpdZBavZu2sTiQ1UOnIt1Ezs9ly8t2wdjacOAyDH1URkzqlAibO8+U7kDwVAqNh/Pvg62d1InEkLx+4LgEatYCNz0PBbzB8DnhYfutd6gkVMHGOLQth+f1wYX8Y+475G7rUfx4eZuspn6bw+YtQcByunQcenpV/rEglVMDE8VJfgxUPQOdYGPMWeDe2OpE4k80GQx6DRs3h4yeg+BRc96qKmNSaCpg41hevwsoZEDbCPAbFq5HVicQKNhv0n2EWrbWPkfXrcW7KuY3swwXlLwIRqQJNRovjlBSvq+CGN1W8BK74K9+G30dw9nL+evxZPCgqOYFAJwlIdamAiWNsXXRG8Vpk3tAXASbv7c9Tp8Yy0vNznvJ+DRvFasIsNaIpRKl7X70L/7sPQgfDDW+oeDVAFe0T25+XzyvE4U0h93svId/w4ZHC29SEWapNBUzq1rdJkHQnXHgF3Pg2eDWqfNOr1Ctnn9N2eooQzP1jAX6+2PPyebHoOprYTnKn1/84TiPeajrJytjihjSFKHVn9zr44E8QFAPjFoO37zlPXNb9jvqrsnPa/mjCbCO+cCyLCocyxWs5r1243vlhxa2pgEndyE6DxTeDfxjc9J657wcdOtkQVXZOW+kmzDYWNJ3Cj8HXErHjRXO/oEgVaQpRau/gDvjvaGjmDzd/UKrDhg6dbHhOTxGW9/hpZVpRFfWHxSdg+V+hSRuIHOmMqOLmNAKT2jmyH94eBZ4+MCEJmp9f6mkdOtnw1OicNk9vc7VqcG9Yegfs+cSxIaVeUAGTmjtx2Dw248QRGL8EWl9Y5hIdOtnw1PicNp8mcNNiaN0J3r0Zfv7WKXnFfWkKUWqmsMA8EiVnh9mYt31UuZed/qGlVYgNS43PafNtZX4/LRxi/nI0aTW01PeKlE8FTKrPMGDZn2HvJ3DdqyQdCWNO/LpzFigdOinV4hdsLgR6Y7h56OltK6BxS6tTiQvSFKJU36dz4OvFMPBhkoqv0DJ5qXvto8zGzzk74P3boKjQ6kTiglTApHq2LzE7incfB/0e0DJ5cZzQK+GqZ2H3Wlj1kNVpxAVpClGq7scvIOluuKAvXPMC2GxaJi+OdfFEyN0Fm+ZBm87Qe7LVicSFaAQmVZOXBYtvMm+o/94iCrRMXpxgyGPmcTwpD0LmGqvTiAtRAZPKFRyDxeOgqADGvQtNWpc8pWXy4nAenjDqNWgXCUtuh9zvrU4kLkIFTCpmGOa04U/fwPULwb9LqadrvOdHpDoaNYOx/wVPL/OXqROHrU4kLkD3wKRiG56GjCQYPBu6DC33Ei2TF6dodYG5MvGta+GDO2Bcojk6kwZLIzA5t10fwbonoNsY6PsXq9NIA5KUbqdv/DounLmcvvHr/tiW0fFyGBYPmavg439ZG1IspxGYlO+XPbD0T3BeV/7X4UHin/pYnTTEKSo7T4yYP8FPX5uzA4G94KKrrIwrFtIITMoqOG62icLGR92eZsay77VRWZym0r2FNhsMnwMBPeH/7tSijgZMBUxKMwz431/MRqrXL2T2Z8e1UVmcqkp7C70bm/fDPLzMxr8Fx5yUTlyJCpiUlvY6bH8PBv4NOg/WRmVxuirvLfTrAKNfh9ydsOxe85cvaVBUwOQP+9MhZSaEDoErHgC0UVmcr1p7CzsNhIF/h2+WwNY3nJRQXIVLFLCUlBTCwsIIDQ0lPj6+3Gvee+89IiIiiIyM5KabbnJywgYg/1d4byI0bQejEsDD/NbQRmVxtmrvLbz8fggdDCsfhP1fOjWrWMtmGNaOu4uKiujSpQurV68mKCiImJgYEhMTiYiIKLkmMzOTMWPGsG7dOlq1asXBgwdp165dhZ83OjqatLQ0R8evHwwDFo83lybflgLBMaWeTkq36zwvcW3HDsGrV5gnO0/5VMev1II7/ey0fBl9amoqoaGhhISEADB27FiSk5NLFbDXXnuNqVOn0qpVK4BKi5dU0xevws7lEPtkmeIF2qgsbqBpGxj9BiwaAcn3mAs8bDarU4mDWT6FaLfbCQ4OLnk/KCgIu730Eu1du3axa9cu+vbtS58+fUhJSXF2zPpr/5ew+hHoMhz63GV1GpGa69AbrpwF3y3T/bAGwvIRWHkzmLazfnMqLCwkMzOT9evXk52dzRVXXME333yDn59fqesSEhJISEgAICcnx3Gh64uTR83mqE3asrzTI/xLm5XF3V36Z9jzCaQ8BMF94LyIyj9G3JblI7CgoCCysrJK3s/OziYgIKDMNddeey3e3t5ceOGFhIWFkZmZWeZzTZ48mbS0NNLS0vD393d4dre3/AH4dS8bouJ54MMsbVYW9+fhAdfNh0YtzF/OCo5bnUgcyPICFhMTQ2ZmJnv37qWgoIDFixcTFxdX6pqRI0fy8ccfA5Cbm8uuXbtK7plJDX39Hny9GPo/yMytzbVZWeqPZu3MIpbzHaz6m9VpxIEsL2BeXl7MmzeP2NhYwsPDGTNmDJGRkcyaNYtly5YBEBsbS5s2bYiIiGDgwIHMmTOHNm3aWJzcjf26D5b/FTpcCv2ma7Oy1D+hV8Jl95r3wnYstzqNOIjly+gdxZ2WgjpVUSEsugoOZsCdn0GrC+gbvw57OcUq0M+XjTMHWRBSpA4UFsCCK+GIHe7aBM3PszqRW3Cnn52Wj8DEyT57FrI2w1XPmOcroc3KUk95+cD1C8w+icl3q9VUPWT5KkRxouytsD4eut0AUWNKHj692lCblaU+OHvj/csR0+n+9eOQmgC9p1gdT+qQClhDUXAc/m8KNG8PI54u87Q2K0t9UN5ZYmPTI/k4oD/nr54FIQPAXzML9YWmEBuKtbPhUCaMfAl8/Sq/XsQNlX+WWDF35E0E7ybm+WFFhRalk7qmAtYQ7FkPX8yH3neav4GK1FPnWjn7zeHGcPVzsH+beR9Y6gUVsPruxGFImgptOsOV/7A6jYhDVXj8T+RI8/7vJ0+pa309oQJW36X8DY4egOteBZ8mVqcRcahKV9SOmANN/c37wYUnLUgodUkFrD7b9RF8+Tb0/QsEXWx1GhGHq/QsMd9WEDcXcnaYIzFxa1qFWF/l58H//gL+4TBgptVpRJym0hW1nYdAj5vhs+fhoqshsJfzwkmd0gisvlr1d/jtZxj5Mng1sjqNSJ1JSrfTN34dF85cTt/4dTVrOh37hNkzMXmqphLdmApYfZS55o+pQ/12KfXI6X1etT45wdcPrnnBbKn26RyHZBXHq3UBGzx4MF999VVdZJG6cPKoOXXYNkxTh1LvlL/Pq4YnJ3SJhe43wYZn4cDXdZRQnKnWBezf//4306ZN47bbbuPAgQN1kUlqY+1jZvPSa+eVmjqsk2kXEYvV+ckJw/4FTdrAsnu0wdkN1bqA9erVi3Xr1nH11VczbNgwZs+eTX6+juGwxI+bIfU1s99b8CUlD9fZtIuIxSrc51UTvq3MpfUHvoLNL9cimVihTu6BGYZBWFgYd911F3PnzqVz58785z//qYtPLVV16gQs+zO0DIZBj5R6qk6nXUQs5JCTEyKuhbCr4ON/wS97aplQnKnWBezyyy8nMDCQadOmYbfbWbRoEevXryc1NZXJkyfXRUapig3PQO4uuOY5aNSs1FM6sFLqi0r3edWEzQZXPQ2e3rDsXh274kZqvQ9s/vz5REZGYrPZSj0+d+5cwsPDa/vppSoO7oDPnoOoGyF0cJmnA/x8yz2wssbTLiIWcsjJCS0CYMhs+HAafPkO9Bxft59fHKLWI7CuXbuWKV6nLV+uo7wdrrgYPrzPHHXF/qvcS3RgpUgV9LoVgvvARw/DsUNWp5EqcOg+sJCQEEd+egFIfwt+3ARD/wlN25Z7iUOmXUTqGw8PuOZ5ik8cYcUzk7Ri1w2olZQ7O/ozrJ4FF1wOPSqe8tCBlSKVS7K34Keia7jT4//o43EZm/IieWjpdgD9+3FB6sThzj56GE7lm+ccnWMaV0Sqbs6qnTxXcC0/FLfjCa+FNKJAK3ZdmAqYu9r7KWx/D/reB/5drE4jUi/sz8vnJD48XHg7IR4/McXzw5LHxfWogLmjwgJY/lfwuwCuuN/qNCL1xumVuRuKo/iwqA9TvZLpYPtZK3ZdlAqYO9o0z9zzNeJp8NY/LJG6cuaK3cdP3cwpPHnc5y2mD9UshyvSIg538+sP8Mm/Ifwa6DLU6jQibicp3c6cVTvZn5dPgJ8v02PDShZonP6v+XxrXvcey72Fi8D3SyDIutBSLhUwd7Pqb+aCjWHxVicRcTun+4Kebq12ui8oUKqIlaw4LBoKr26BlJnQaSD4NLUkt5RPU4juJHMN7PgQ+s+AlqV/G1S3eZHKVbsvqKc3XPUMHM4y27WJS1EBcxeFJ2HlDGjdCfrcXeopdZsXqZoa9QW94FKIGgufz4VDux2UTGpCBcxNfLs0Hn7ZzcSfRtP36Y2lipO6zYtUTY2PYxkyGzwbmVP44jJcooClpKQQFhZGaGgo8fHnvrezZMkSbDYbaWlpTkxnvZTPt9Lx25f4qOhiPinuXmaEpW7zIlVT476gzc83p+53pcCujxyYUKrD8gJWVFTE1KlTWblyJRkZGSQmJpKRkVHmuqNHj/Liiy/Su3dvC1Jay2PNP/CimMcKJ5Q8duYIq84P+ROpp2rVF7T3ndCmM6Q8aE7pi+UsL2CpqamEhoYSEhKCj48PY8eOJTk5ucx1jzzyCDNmzKBx48YWpLTQD5sYWryB+UVXk220K/XU6RGWus2LVN3InoFsnDmIvfFXsXHmoKr3OPTygeFPwS97eDn+r1ow5QIsL2B2u53g4OCS94OCgrDbS39DpKenk5WVxdVXX+3seNYqLoaUBzlIG+YXXlPm6dMjLHWbF3GOpKMXsdaI5pZT79OWPC2Yspjl+8CMck4/PfN8seLiYqZNm8aiRYsq/VwJCQkkJCQAkJOTU2cZLfPlf+HAV/x48b8htSmcsVDj7BGWus2LON6cVTvxLhjHRz4zmO71LjMKp5RM5+vfn/NZPgILCgoiKyur5P3s7GwCAgJK3j969CjffPMNAwYMoGPHjmzevJm4uLhyF3JMnjyZtLQ00tLS8Pf3d0p+hzlxBNbOhuDeRF89WSMsERewPy+ffUZ73igaxmjPT+lq21PyuDif5SOwmJgYMjMz2bt3L4GBgSxevJh33nmn5PmWLVuSm5tb8v6AAQN4+umniY6OtiKu83w6B47lwE3vgc2mEZaICwjw88Wel8+8wuu43nMD//B+ixsK/kGAXxOrozVIlo/AvLy8mDdvHrGxsYSHhzNmzBgiIyOZNWsWy5YtszqeNX7ZC1/Mh+43QWAvq9OIyO9OL5g6ShOeLhxDjMcuRvmkasGURWxGeTeh6oHo6Gj33S/23kTI/Aj+vBVaBFR+vYg4zelmwD/lHSPF92ECfE/RdNo28K4fK6Td6Wen5VOIcpYfN0NGEgx4SMVLxAWVms7f0xzeutacMbn8PmuDNUCWTyHKGYqLzVY1zdvDZX+2Oo2IVCZkAHQZZjb6PZZb2dVSx1TAXMk3H4B9K1w5S8c2iLiLIY9DwTFY/6TVSRocFTBXceqEuWz+/Ciz87WIuAf/LhB9G6S9AQd3WJ2mQVEBcxWpr5pnDg39J3jor0XErQx4yJw1WfOo1UkaFP2kdAXHf4FPn4HOQyGkv9VpRKS6mraFy6fBrpWw7zOr0zQYKmCu4NOnoeAoDJ5tdRIRqak+d0GLQFg9C+rn7iSXowJmtV/3QWoC9LgJzouwOo2I1JS3L9s63Q32rUz9+yx1qncCFTCrrX0cPLxg4N+tTiIitZCUbmdCWgjfFQcz3etdDuYdVad6B1MBs9L+L+GbJXDp3dq0LOLm5qzaybFTBk8VjqOjx8+M91xT6uBZqXvqxGGltbPBtxX0/UtJe5r9efkE+PkyPTZMzXtF3MjpjvTri7vzeVEE93gl8X5Rf/bnWRysHtMIzCp7PoHd6+CKv5L03W88tHQ79rx8DNAheSJu6PQBs2DjqcKxtLUdYZLnyjMel7qmAmYFwzD3i7QIgpg7mLNqJ/lnHFYJaOpBxM2c7lQP8JURysqiGCZ7LefvA9z8bEIXpgJmhYxk2L8NBj4E3o3PeRieDskTcR8jewaWOnj2Ld9baGo7yYi8RKuj1Vu6B+ZsRYWw7nHwvwi6jwP+OCTvbJp6EHEvZQ6eTU6FLa9BnzvBr4N1weopjcCc7atEOPQ9DHoYPMzphjOnHk7z9fbUIXki7m7ATMAG6+OtTlIvqYA5U+FJ+OQpCOgFF11d8vDZUw+Bfr48OaqbViGKuLuWQXDJHeYvrjm7rE5T72gK0Zm2LjIb9sa9CDZbqafKTD2ISP1w+TTz3/76f8ENi6xOU69oBHNHjrkAABJASURBVOYsBcfg0znQ8QoIGWh1GhFxlqZtzT6J3/4fHPja6jT1igqYs3zxKhzLgUGPlBl9iUg9d+k90LglfPyE1UnqFRUwZzhxGDa+AJ1joUNvq9OIiLP5+kHfv8CuFMjaYnWaekMFzBk2vQwn8vg44A76xq/jwpnL1alapKHpfSc09Yd1j1mdpN5QAXO047/A5pfZ334wd68rUrsokYbKpylcfj/s/VSHXtYRFTBH2/QSnDzCg4euVrsokYYu+jZodj58/C8delkHVMAc6dgh+GI+RF7HZ0falXuJ2kWJNCDevnDFX+GHjeZITGpFBcyRPn/BXD7ff+Y520KpXZRIA9PrFmgRqFFYHVABc5TfciD1Neh2A7S7SO2iRMTk3RiuuB+yNptHKkmNqYA5yucvQOEJ6D8DULsoETlDzwnQMlijsFpSKylH+C0Htiw0R19tO5c8rHZRIgKAVyPzXtiH98HutRA62OpEbsklRmApKSmEhYURGhpKfHzZrs3PPvssERERREVFceWVV/LDDz9YkLIaPn/RHH31m251EhFxVT3Gm4farn9Ko7AasryAFRUVMXXqVFauXElGRgaJiYlkZGSUuqZnz56kpaXx9ddfM3r0aGbMmGFR2io4lgtbFkDX0aVGXyIipXj5wBXTIDsV9nwMQFK6Xc0OqsHyApaamkpoaCghISH4+PgwduxYkpOTS10zcOBAmjRpAkCfPn3Izs62ImrVfD4XTuVr9CUiles5wVyRuP4pkrZl89DS7Wp2UA2WFzC73U5wcHDJ+0FBQdjt5/4LW7hwIcOHD3dGtOo7duj3lYejwb+L1WlExNV5NTKPW8nazLqVS9TsoJosL2BGOXO/tnN0a3/77bdJS0tj+vTyRzcJCQlER0cTHR1NTk5Oneasks0vwanjGn2JSNX1nADN23PzycRynz6z2YGmGEuzvIAFBQWRlZVV8n52djYBAQFlrluzZg1PPPEEy5Yto1GjRuV+rsmTJ5OWlkZaWhr+/v51nrXCb578X+GLBIi4Fvy1t0tEqsi7MVw+jUs8dnCJ7bsyT59udpCUbtcU41ksL2AxMTFkZmayd+9eCgoKWLx4MXFxcaWuSU9PZ8qUKSxbtox27cpvyVQXKipQlX7zfJEABUeh3wMOyyci7u2cP2N63cKJRm34i0/p+/9nNjuYs2qnphjPYnkB8/LyYt68ecTGxhIeHs6YMWOIjIxk1qxZLFu2DIDp06fz22+/ccMNN9CjR48yBa4uVFagKvzmOXEENr8MYSPg/G51nk1E3F+FP2O8fWnc7y/0tX3NkBZZ5TY7OFff1IbcT9UlNjKPGDGCESNGlHrsscf+ODNnzZo1Ds9QUYEa2TOw4m+etIVwIk+jLxE5p8p+xhA9CT57jteCP4ab3i3z8QF+vtjL+TnUkPupWj4CcxWV/XZzrm+SC1t6wOfzoNOVEHixw/KJiHurdATVqBn0mWqe2nzgqzLXqZ9qWSpgv6usW/y5vnme7/wVHM/VykMRqVCVTqS45A5o1AI+fbrMdeqnWpZLTCG6gumxYTy0dHupIf6Zv92c/iaZs2on+/PyCfDzZcaQC4n65H64oC9ccKkluUXEPVT2M8Z8wA8umQwbnoGcXWX2k6qfamkqYL8rr0BNjw0r9c1S5ptn23/giB3iXgTMm7QVfbyINFxV+RkDQJ+7zJPcNz4PI1+2IKn7sBnl7SSuB6Kjo0lLS3PcH1BcBPNiwKcpTPmUpC/3l/vbVUMf4otIDax80Oypeu+X4Bdc+fV1yOE/O+uQ7oHVVEYy/LLbPBLBZtMeDRGpO5feY/7387nW5nBxKmA1YRiw4Vlo0xnCrwG0R0NE6pBfMETdCNveMs8XlHKpgNXE92vg5+1mE04Pc2VilVYYiYhUVd/7zHMFv3jF6iQuSwWsJj57zjwCodsNJQ9pj4aI1Cn/LuYMT+oCs9uPlKECVl1ZW+CHjXDpVPNAut9pj4aI1LnLp8HJw7D1DauTuCQto6+ujc9DYz/oNbHMU9qjISJ1KrAXXNgPNr0Mve80zw+TEhqBVUfOLtix3Nxo2KiZ1WlEpCHoex/89hN8/Z7VSVyOClh1fP4CeDWG3lOsTiIiDUWnQeYpFxtfgOJiq9O4FBWwqjqyH756F3reDE3bWp1GRBoKm80chR3KhJ0rrE7jUlTAqmrzK2AUwWX3WJ1ERBqaiJHgd4F5D75+Nk+qERWwqjhxBLYuMr+JWnW0Oo2INDSeXnDZnyF7C/y42eo0LkMFrCq2vQknj0Dfe61OIiINVY/x4Nta7aXOoAJWmaJT5vRhxysgoKfVaUSkofJpAjF/Mu+D5WZancYlqIBV5psPzCNTLtPoS0Qsdslk8PSBTfOsTuISVMAqYhiw8UXwD4fOQ6xOIyINXTN/6DEOvkxUk19UwCq2ex0c/Na8eWqzWZ1GRMQ8aqWoALa8ZnUSy6mAVWTTPGh2HnQbbXUSERFT284QNgJSX4OC46WeSkq30zd+HRfOXE7f+HUkpdstCukcKmDn8nOGOQK7ZLL6j4mIa7nsHsj/Bb5KLHkoKd3OQ0u3Y8/LxwDsefk8tHR7vS5iKmDnsukl8G4C0bdbnUREpLQOl0JAL9j8ckl7qYZ4KrwKWHmO/gzb34MeN0GT1lanEREpzWYzj3Q69D1kfgQ0zFPhVcDKs2WBuf+rz91WJxERKV/EtebBur8vqW+Ip8KrgJ3tVL5ZwMJGQJtOVqcRESmfp7d5Msa+DXDgqwZ5KrwK2Nm+SjRvjl461eokIiIV6zURvJvCppcb5KnwOpH5bF6NzdHXBZdZnUREpGK+ftBrgjlrNPgfDe5UeI3AztbjJhiXqI3LIuIeek+B4iLYstDqJE7nEgUsJSWFsLAwQkNDiY+PL/P8yZMnufHGGwkNDaV3797s27fP+SFFRFxR6xBz1ijtdfMefgNieQErKipi6tSprFy5koyMDBITE8nIyCh1zcKFC2nVqhXff/8906ZN48EHH7QorYiIC+pzp3nvfvv7VidxKssLWGpqKqGhoYSEhODj48PYsWNJTk4udU1ycjITJ04EYPTo0axduxZDp5KKiJg6XgHndf395PiG87PR8gJmt9sJDg4ueT8oKAi73X7Oa7y8vGjZsiWHDh1yak4REZdls0Gfu+BgBuz91Oo0TmN5AStvJGU7awFFVa4BSEhIIDo6mujoaHJydNSAiDQgXUdDk7bmKKyBsLyABQUFkZWVVfJ+dnY2AQEB57ymsLCQw4cP07p12RZPkydPJi0tjbS0NPz9/R0bXETElXg3Nnu37kqBQ7utTuMUlhewmJgYMjMz2bt3LwUFBSxevJi4uLhS18TFxfHmm28CsGTJEgYNGlTuCExEpEGLmQRN/SGn/jbwPZPlG5m9vLyYN28esbGxFBUVcfvttxMZGcmsWbOIjo4mLi6OSZMmMWHCBEJDQ2ndujWLFy+2OraIiOtpfj7c/x14Wv6j3SlsRj1dzhcdHU1aWprVMURE3Io7/ey0fApRRESkJlTARETELamAiYiIW1IBExERt6QCJiIibkkFTERE3JIKmIiIuKV6uw+sbdu2dOzYsUYfm5OT45KtqJSrepSrepSr+lw1W21y7du3j9zc3DpO5Bj1toDVhqtu5FOu6lGu6lGu6nPVbK6aq65pClFERNySCpiIiLglz0cfffRRq0O4oosvvtjqCOVSrupRrupRrupz1Wyumqsu6R6YiIi4JU0hioiIW1IBA6ZPn85FF11EVFQU1113HXl5eeVel5KSQlhYGKGhocTHxzs81/vvv09kZCQeHh4Vrijq2LEj3bp1o0ePHkRHR7tMLme/Xr/88gtDhgyhc+fODBkyhF9//bXc6zw9PenRowc9evQoc3hqXars6z958iQ33ngjoaGh9O7dm3379jksS3VyLVq0CH9//5LXaMGCBU7Jdfvtt9OuXTu6du1a7vOGYXDvvfcSGhpKVFQU27Ztc4lc69evp2XLliWv12OPPebwTFlZWQwcOJDw8HAiIyN54YUXylxj1evlVIYYq1atMk6dOmUYhmHMmDHDmDFjRplrCgsLjZCQEGP37t3GyZMnjaioKOPbb791aK6MjAxjx44dRv/+/Y0tW7ac87oLLrjAyMnJcWiW6uay4vWaPn268eSTTxqGYRhPPvlkuX+PhmEYTZs2dWgOw6ja1//SSy8ZU6ZMMQzDMBITE40xY8a4RK433njDmDp1qsOznO2TTz4xtm7dakRGRpb7/PLly41hw4YZxcXFxqZNm4xLLrnEJXJ9/PHHxlVXXeWULKft37/f2Lp1q2EYhnHkyBGjc+fOZf4erXq9nEkjMGDo0KF4eZknmPbp04fs7Owy16SmphIaGkpISAg+Pj6MHTuW5ORkh+YKDw8nLCzMoX9GTVQllxWvV3JyMhMnTgRg4sSJJCUlOfTPq0hVvv4z844ePZq1a9diOPiWtBV/L1XVr18/Wrdufc7nk5OTueWWW7DZbPTp04e8vDwOHDhgeS4rtG/fnl69egHQvHlzwsPDsdvtpa6x6vVyJhWws7z++usMHz68zON2u53g4OCS94OCgsp8w1jFZrMxdOhQLr74YhISEqyOA1jzev3888+0b98eMP+BHzx4sNzrTpw4QXR0NH369HFYkavK13/mNV5eXrRs2ZJDhw45JE91cgF88MEHREVFMXr0aLKyshyaqapc+d/gpk2b6N69O8OHD+fbb7916p+9b98+0tPT6d27d6nHXfn1qiteVgdwlsGDB/PTTz+VefyJJ57g2muvLfl/Ly8vxo8fX+a68n4zttlsTslVmY0bNxIQEMDBgwcZMmQIF110Ef369bM0lxWvV1X9+OOPBAQEsGfPHgYNGkS3bt3o1KlTrbOdqSpfv6Neo4pU5c+85pprGDduHI0aNWL+/PlMnDiRdevWOTRXVVjxelVFr169+OGHH2jWrBkrVqxg5MiRZGZmOuXP/u2337j++ut5/vnnadGiRannXPX1qksNpoCtWbOmwufffPNNPvzwQ9auXVvuX3JQUFCp30Szs7MJCAhweK6qOJ2jXbt2XHfddaSmpta6gNU2lxWv13nnnceBAwdo3749Bw4coF27duVedzpHSEgIAwYMID09vc4LWFW+/tPXBAUFUVhYyOHDhx0+VVWVXG3atCn5/zvuuIMHH3zQoZmqylHfU7V1ZuEYMWIEd999N7m5ubRt29ahf+6pU6e4/vrrGT9+PKNGjSrzvKu+XnVJU4iYq7Keeuopli1bRpMmTcq9JiYmhszMTPbu3UtBQQGLFy926Aq2qjp27BhHjx4t+f+PPvronKulnMmK1ysuLo4333wTMH8hKW+k+Ouvv3Ly5EkAcnNz2bhxIxEREXWepSpf/5l5lyxZwqBBgxz+G3JVcp15n2TZsmWEh4c7NFNVxcXF8dZbb2EYBps3b6Zly5YlU8ZW+umnn0pGO6mpqRQXF5f6JcARDMNg0qRJhIeHc//995d7jau+XnXKmrUjrqVTp05GUFCQ0b17d6N79+4lK8PsdrsxfPjwkuuWL19udO7c2QgJCTH++c9/OjzX0qVLjcDAQMPHx8do166dMXTo0DK5du/ebURFRRlRUVFGRESEy+QyDOe/Xrm5ucagQYOM0NBQY9CgQcahQ4cMwzCMLVu2GJMmTTIMwzA2btxodO3a1YiKijK6du1qLFiwwGF5yvv6H3nkESM5OdkwDMPIz883Ro8ebXTq1MmIiYkxdu/e7bAs1ck1c+ZMIyIiwoiKijIGDBhgfPfdd07JNXbsWOP88883vLy8jMDAQGPBggXGK6+8YrzyyiuGYRhGcXGxcffddxshISFG165dK1yZ68xcc+fOLXm9evfubWzcuNHhmTZs2GAARrdu3Up+bi1fvtwlXi9nUicOERFxS5pCFBERt6QCJiIibkkFTERE3JIKmIiIuCUVMBERcUsqYCIi4pZUwERExC2pgIk4ycCBA1m9ejUADz/8MPfee6/FiUTcW4PphShitdmzZzNr1iwOHjxIeno6y5YtszqSiFtTJw4RJ+rfvz+//fYb69evp3nz5lbHEXFrmkIUcZLt27dz4MABGjVqpOIlUgdUwESc4MCBA4wfP57k5GSaNm3KqlWrrI4k4vZUwEQc7Pjx44waNYpnnnmG8PBwHnnkER599FGrY4m4Pd0DExERt6QRmIiIuCUVMBERcUsqYCIi4pZUwERExC2pgImIiFtSARMREbf0/6491v677Y4CAAAAAElFTkSuQmCC
iVBORw0KGgoAAAANSUhEUgAAAbAAAAEgCAYAAADVKCZpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deVxVdf7H8dcVRHHD3QRcQswUxVRIzHIrNa0hUzNbzNK00pnK+Y1m0+S0a1nToo0NadmqlZVQ7mm2mIYYlYkpqSSgJuSSmsp2fn+cJJHtstx77rn3/Xw8fBT3fLl87uGc8+F8z/f7+ToMwzAQERGxmRpWByAiIlIZSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJL/lYH4CpNmzalbdu2VochImIraWlpZGdnWx2GU7w2gbVt25akpCSrwxARsZWoqCirQ3CauhBFRMSWlMBERMSWlMBERMSWLE9g48aNo3nz5nTu3LnE7YZhcPfddxMeHk5kZCTffPONmyMUERFPZHkCu/XWW1m5cmWp21esWEFqaiqpqanExcVx1113uTE6kcpbmpxJ71nrOH/6MnrPWsfS5MwKbReRslmewPr06UPjxo1L3R4fH88tt9yCw+EgJiaGI0eOsH//fjdGKFJxS5Mzuf+DrWQeOYkBZB45yf0fbC1MUuVtF5HyWZ7AypOZmUmrVq0Kvw4NDSUzUye5eLbZq3ZwMje/yGsnc/OZvWqHU9tFpHwePw/MMIxirzkcjhLbxsXFERcXB0BWVpZL4xIB805q9qod7DtykuCGgUwd3IFh3ULYd+Rkie3PvF7e9rLeW0RMHp/AQkNDSU9PL/w6IyOD4ODgEttOnDiRiRMnAvaajCf2dKYb8Myd1JluQIDghoFklpCkghsGOrW9rPdWEhMxeXwXYmxsLK+//jqGYbBp0yaCgoJo2bKl1WGJlNkNOHVwBwJr+hXZFljTj6mDOwCUu11djCLls/wO7IYbbmD9+vVkZ2cTGhrKww8/TG5uLgB33nknQ4cOZfny5YSHh1OnTh1effVViyMWMZXVDXjmLqm0LsDytjvTxSji6yxPYIsWLSpzu8Ph4MUXX3RTNCJFlfUcqrxuwGHdQsrs7itre3nvXV5sIr7A47sQRaxS3lD38roBq6K899YwfBElMJFSlfccali3EGYO70JIw0AcQEjDQGYO71Itd0HlvbeekYl4QBeiiKdy5jlUed2EVVHWe+sZmYjuwERKdfbzJmdedydPjk3EXZTAxKeVVY/Qlc+4qsqZ2FRrUbyduhDFZ5U3Wbi8oe5WKi82TYQWX+AwSqrV5AWioqJISkqyOgzxYL1nrStxqHpIw0A2TB9gQUTVx5s/m7iWna6d6kIUn+XNAyG8+bOJnKEEJj7LmwdCePNnEzlDCUx8licP0qgqb/5sImdoEIf4LE8epFFV3vzZRM5QAhOf5sqJyFbz5s8mAkpg4uU8quBtQQEYZ5V/quEPpSzO6g4etW9EKkEJTLyW2+ZCGQYcTYfsVDi0Gw7tgWP74NgvcPwXOP0b5JyA3N/P+UYHBNSFgHoQ2BDqNYd650GDYGjSDhqHQdMLzNermeaJiTdQAhOvVVbB2ypdpI8fhJ+/gvRE2P8dHNgKp4/+ub1mHTMJ1TsPWkZC7YZQqx7UrAt+Z51yeTlmYss5BicPm++b/jX8tg8Kcv9sV68FnBcJwRdB6xho1RNq1a98/Lhw34i4kRKYeK1qmwuVexLSvoTUNbBrHfyaar7uXxtadIYuI+C8LtC0g3nnVK9F1boGC/LNO7pDu+Hgj3Dge9j/vfmzjXxw1ICWXaHd5dB+IIREFU2MTtA8MfEGSmDitZxZFLJUp4/BzlWw7UP46RPIOwX+gXD+ZdB9DLS+xEwi/gHVH3gNP2jU1vzX7qyqGaePQ0Yi7N0Eez6HL5+FL56GwEZw4VXQ6VoI6wt+Ncv9EVXaNyIeQglMvNbUwR2KPOeBcuZCFeTDns8g+U34cZmZtOqdB91vgQsGQ5tLoWZtN0Vfglr1zITWbgD0/6fZ7bjrU9i5ElISzLgDG0GX66DbzWaCLUWF942IB1ICE6/l9Fyo41mwZaH577cM85lVtzHQeYT5vKmGh873D2wEnYeb/3JPmV2MPyyBLa9BYhy06ALR4yFylDlY5CyaJybeQMV8xXft/x42/Rd+eB/ycyCsv3m31WGotXdaVXXyMGxdAt+8Zg4wqR1kfq6ed0JQqNXRiYez07VTd2Die/Zugi+egdTV5hD2HrfCxROhaXurI6segY3g4gkQfbv5Wb9+CTb+Fza9BF1Hw6VTzMEmIjanBCa2VqHJuOmbYd0j5gCIOk1gwL8geoI5B8sbORzQppf578he2PACfPM6fPuW+Zys3/3Q+PwSv1WTnMUOlMDEtpyejPtLCqx7FHYsh7rNYPAT5l3XOc+FvFrD1nDV09BnKmycA4kvm12n3cdC32lQ/7zCpprkLHbhoU+nRcpX1mRcAE5kw8dT4KXekLYBBjwId38LvSb7VvI6W/0WMOgxcz90H2s+J5vTw+xSzT0FOLFfRTyE7sDEtkqbdPvLkePmM5/1syDnuNlN2G861Gns5gg9WIOWcPV/zGS++kFY+4g5CnPwE+w74gCKT8TWJGfxNLoDE9sqadJtV8dPLA+cAavuh9AomLQRhj6l5FWaJu3ghrfhlngIqA/v3MwbdZ4lhKxiTTXJWTyNEpjY1tmLNtbhFA/7v8qHAf+mVa0TMOp1uPl9aKaJuU4J6wd3fA6DHiPGsY01taYx3m8ZNSgANMlZPJO6EMW2zgwoWLv8PaadnktIjWz2hN1Eu1EzoXYDi6OzIT9/uORv+HcaRtbiv/HggbcY6pfI07Xv4fohAzSAQzyOEpjYV87vDNv3H4blzoem7WDYm7RrHWN1VPbXsBUt7/gQtr5Hj+VTWZT3Dzj5IBRM8tyqJOKTdDSKPe3/DuL6wub5EDMZ7vzSXGpEqofDYZagmvy1WaFk9QPw5nA4dsDqyEQKKYGJvRgGfDUXXr7crBh/Szxc+QQE1LE6Mu9U/zy4YRFc/ZxZ1eO/vWDHCqujEgE8JIGtXLmSDh06EB4ezqxZs4pt37t3L/3796dbt25ERkayfPlyC6IUqyxNzqT3rHV0nf4OXzw60LwbuGAw3PWVOfhAXMvhgKjbzEEeQaGwaDSpb06hz8zVnD99Gb1nrWNpcqbVUYoPsjyB5efnM3nyZFasWEFKSgqLFi0iJSWlSJvHHnuMUaNGkZyczOLFi5k0aZJF0Yq7nakK0ejoNj4KeICY/G94vOBWll7wpIbGu1uzC2D8Gna3HU37n17h6ZP/ojmHCit1KImJu1mewBITEwkPDycsLIyAgABGjx5NfHx8kTYOh4PffvsNgKNHjxIcHGxFqGKB2at2cFXBOt4PeAg/RwGjcmbwcs4gZq/eaXVovqlmbcYcuJ67cyYT4Ujj41r/JMrxoyp1iCUsT2CZmZm0atWq8OvQ0FAyM4v+JffQQw/x5ptvEhoaytChQ5kzZ467wxQr5Ody+/GXeLrm/9hc0IGrTz9OsmFWjFdVCOvsO3KShILeXJPzKMeMOrwd8Dg3+q3V70TczvIEVtJyZA5H0TI2ixYt4tZbbyUjI4Ply5czZswYCgoKin1fXFwcUVFRREVFkZVVvJKA2Mjvh+DN4dzmv4r5eUMYmzudw/w5t0tVIaxzZt//ZIQyLOdRvirozBM1F/Cfuq9Bfq7F0YkvsTyBhYaGkp6eXvh1RkZGsS7CBQsWMGrUKAB69erFqVOnyM7OLvZeEydOJCkpiaSkJJo1a+bawMV1ft0FCwbC3k1s6fYEzzhuJR+/ws2qCmGtsyug/EZdxuVOZX5BLNfmr4K3roNTRy2OUHyF5QksOjqa1NRU9uzZQ05ODosXLyY2NrZIm9atW7N27VoAtm/fzqlTp5SgvNXPG2H+FeYd2C0J9LhmMjOHdyGkYSAOIKRhIDOHd1FVCAsN6xZS5HfSsmFdml47C2LnQtoXsGAwHP7Z6jDFBziMkvrw3Gz58uXce++95OfnM27cOB544AFmzJhBVFQUsbGxpKSkMGHCBI4fP47D4eCpp55i0KBBZb6nnZbFlj9sWwofTICgVnDTe1o12I52r4d3bgH/WnDzEmjZ1eqIpILsdO30iATmCnb6JQjmAovLp0Kri+GGxRoib2cHf4Q3R5hdiaPfgrC+VkckFWCna6flXYji4wwD1j0Gy/9hTk4es1TJy+6aXwjjV5uTnt8aCds+tDoi8VJKYGKdggIzcX0+G7rdDNe/pZJQ3iIoBMatgODu8N5tsOU1qyMSL6QEJtbIz4P4yWYx3l5/NQcA+GlxBK8S2AjGfAjhl8NHd5urZItUI10xxP3ycszBGilLod8/WdrgJmY/+Sn7jpwkuGEgUwd30ChDm1uanMnsVTvYd+QkbYIm8nZLB8Gr7oecE9B3qtXhiZdQAhP3ysuBJbfBjx/DoMdYGjic+z/YysncfIDCunqAkphNnalfeeZ3mnY0j0G/38byNoG0/vQxKMiD/vdbHKV4A3UhivucnbyGzIZL/sbsVTsKL3RnqK6evZX0Oz2eCzdmjTWfdX42Cz6daVF04k10BybucW7y6jkRKL2moerq2Vdpv7vMo6fhL3PAwExioDsxqRIlMHG9/Dz44PZiyQvMunqZJVzwVOvQvsr8ndaoAbF/FOP+bJY5cKePnolJ5agLUVyroAAS/gop8TB4ZpHkBUXr6p2hWof2Vu7v9EwSixxtzgHcNM+CKMUb6A5MXMcwYPn/wXeLYMC/oFfxhUjPDNQ4M2JNoxDtz6nfaY0acM2LkHsCVk6HmnWgx1iLIha7UikpcZ01/4YNz8GlU+Dyf5tL04ucLS8HFt8IP30CIxdA5xFWR+Tz7HTtVBeiuMZXc8zkFTVeyUtK5x8A178BrXvBB3fArnVWRyQ2ogQm1e/bRbD6X9BpGAydreQlZasZCDcsgmYdYPHNkLnF6ojEJpTApHrtXG2WiDq/LwyPgxp+5X+PSGBDuPl9qNsU3hwJ2alWRyQ2oEEcUn0yv4H3xsJ5nc1lNPxrAUXLCmmQhkAZx8SYD2HBIHM5lts/gXrNrQ5VPJjuwKR6HP4Z3r4e6jSFG9+DWvWBP8sKZR45icGfpaKWJmdaG69Ypsxjokk7uPFdOH7QPJ5yTlgdrngwJTCpupOHzXWf8k+bq/DWb1G4SaWi5FzlHhOhPWDkK7D/W3j/dijIL+FdRJTApKrycuCdMXA4DUb/8SD+LCoVJedy6pi4cCgMeQp2LIdV/3RTZGI3SmBSeYYBy/4OaV+Yk1Lb9i7WpLSSUCoV5bucPiYungAxk+Hrl2DzAjdEJnajBCaVt/FFSH7DrGUXOarEJioVJeeq0DEx6FFoPwiWT4Xd690ToNiGEphUzo6Vf8z1ugb6ld7FM6xbCDOHdyGkYSAOIKRhIDOHd9EoRB9WoWOihh+MWGB2Tb97i4bXSxEqJSUVl7UDXr7cHDF22woIqGN1ROLtDv8MLw+AwEYwYS3UDrI6Iq9lp2un7sCkYk4egUU3QM3aMPptJS9xj0ZtYNTrcHgPvD/BXOVAfJ4SmDivIB/eHw9H9sKoNyBI3YDiRm17w5WzIHUVfPq41dGIB1AlDnHeukfNquFXPwttelkdjfii6NvhwPfwxdNwXheIGGZ1RGIh3YGJc7Z/BF8+Cz1uhahxVkcjvsrhgKFPQ+jFZs3NLE2I92VKYFK+7J/gw7sgpIc5uVTESv61YNRr4F8b3rkZTh+zOiKxiLoQpWw5J+DdMeBXE657rbBA79lUrFeqW7nHVINgs9zUG8Mg/q9w3UIt2+ODdAcmpTMM+OheOLjdXC23YatiTVSsV6qb08dUWF+4fAakLIVN/7UkVrGWEpiUbstC2Pou9H8A2g0osYmK9Up1q9Ax1fteuPBqWDMD0je7KULxFB6RwFauXEmHDh0IDw9n1qxZJbZ599136dSpExEREdx4441ujtAHHdgKK+4zE9dl/1dqMxXrlepWoWPK4YBr5ppdiktug98PuTg68SSWJ7D8/HwmT57MihUrSElJYdGiRaSkpBRpk5qaysyZM9mwYQPbtm3jueeesyhaH3H6GLw7Fuo0hmvjoEbph4mK9Up1q/AxFdgIRi6EYwdg6SSz61t8guUJLDExkfDwcMLCwggICGD06NHEx8cXafPyyy8zefJkGjVqBEDz5lql1WXOPPc6vMesQVevWZnNVaxXqluljqnQHmbh350rzCLT4hMsT2CZmZm0avXn4IDQ0FAyM4s+rN25cyc7d+6kd+/exMTEsHLlSneH6Tu+fQt+WAL9/1ni8ijnUrFeqW6VPqZ63mk+D/vkIdiX7I5QxWKWD6MvqZaw45zhsHl5eaSmprJ+/XoyMjK47LLL+OGHH2jYsGGRdnFxccTFxQGQlZXluqC9VXYqLJ8GbS+DS//u9LcN6xaihCXVqlLHlMMBsXPgpUthyTi443OoVd81AYpHsPwOLDQ0lPT09MKvMzIyCA4OLtbmmmuuoWbNmpx//vl06NCB1NTiyypMnDiRpKQkkpKSaNas7K4vOUfeafOk9w+A4XHmMhYidlOnsXn8Htpj/jEmXs3yBBYdHU1qaip79uwhJyeHxYsXExsbW6TNsGHD+PTTTwHIzs5m586dhIWFWRGu91r7iFlj7poXzRFdInbV9lJzkdXv3obv37M6GnEhyxOYv78/c+fOZfDgwXTs2JFRo0YRERHBjBkzSEhIAGDw4ME0adKETp060b9/f2bPnk2TJk0sjtyL7FoHG+eahVIvvMrqaESqru990KonLPu7uXqCeCUtaOnrfj8E8y4xnxVM/Ezre4n3OJwG83pDy4tgbIK6xZ1kp2un5YM4xEKGAR9PgRNZcMPiUpOXah2KJ3H6eGzU1iw+HT/J7GHofY/bYxXXsrwLUSz0/TtmHbn+/4Tgi0psolqH4kkqfDxedCN0/AusfdSsLiNeRQnMVx1Jh+VToXUvs55cKVTrUDxJhY9HhwOuft4cnfj+BHO0rXgNJTBfVFBgLgZYkA/D5pX5bEC1DsWTVOp4rNvEHF2btR0+fcJFkYkVlMB8UdIC2PMZDH4MGp9fZlPVOhRPUunjsf1A6H4LfPUCpCe6IDKxghKYrzm021x6ot0A6HFbuc1V61A8SZWOx0GPQ4MQ+PBOyPndRRGKOymB+ZKCAlg6GWrUhNi5Tq1gq1qH4kmqdDzWbmB2JR7aZU7cF9vTMHpfkhgHe78yn3sFOZ+AVOtQPEmVjsewvhA9Ab6eB51ioc0l1RucuJXuwHzFoT2w9mFoPwi63mB1NCLWueIhaNga4v8KuRqMZGdKYL7AMCDhb1DDH65+zqmuQxGvVaueWbX+0C6NSrQ5JTBfsGUhpH1hLvhXga5DEa8V1g+6jzUrdGRssToaqSQlMG93NANWPwjn9zVPWBExDXoU6rc050RqgrMtaRCHNzMMWPYPMPLhL8+X2XWoeofiLZw+lmsHmV3qb18HXz4H/e5zf7BSJVW+A7viiiv47rvvqiMWqW4pS2HnCrPWYRkTllXvULxFhY/lCwZB5xHwxdOQpfJodlPlBPbUU08xZcoUbrvtNvbv318dMUl1OHnYXJG25UXQ864ym6reoXiLSh3LV86CmnXgo3vMuZJiG1VOYN27d2fdunVcffXVXHnllTz88MOcPKmhqZZbMwN+/xViXwC/snuKVe9QvEWljuV6zWHw47B3I3yz0DWBiUtUyyAOwzDo0KEDd911F3PmzKF9+/a88cYb1fHWUhlpG+Cb16HXZGjZtdzmqnco3qLSx/JFN8H5fWDNv+HYARdEJq5Q5QR26aWXEhISwpQpU8jMzGThwoWsX7+exMREJk6cWB0xSkXk5ZiLVDZsDf3ud+pbVO9QvEWlj2WHwxzQkXcaVv3ThRFKdaryKMSXXnqJiIgIHOeMcJszZw4dO3as6ttLRW2cA9k74Mb3Sl1h+VxnRmhpFKLYXZWO5Sbt4LL/g/VPmHdk4Ze7OFqpKodhGIar3nz37t2EhYW56u3LFBUVRVJSkiU/2zKH9sB/Y8xyUderC1ekwvJOw7xLzLXyJm2Emr7XjW6na6dLJzJblbx8kmHA8n+Y5aKGPGl1NCL25F8LrnoGDu+BL5+1OhophypxeIvtCfDTJzDgX9Ag2OpoROwrrB90GWUmsOyfrI5GyqAE5g1yTsDK+6FFF3OpCBGpmsGPg39tWDHV7N0Qj6RSUt7g89nwWyaMfLXUOV8qFSVicupcqNcc+j8AK++D7R+Za4eJx9EdmN1lp8JXc6HrjdC6Z4lNVCpKxFShcyH6dmjR2ezdyDnh9lilfEpgdmYYsHyqWQZn4MOlNlOpKBFThc4FP38Y+jT8lgGfP+2mCKUilMDsbHsC7P4UBjxgdnmUQqWiREwVPhfa9DJXMP9qjgZ0eCAlMLvK+R1WPWB2cUSNL7OpSkWJmCp1Lgx8xJwPtsq5yjbiPkpgdvXVC3A03ZzzVU6xXpWKEjFV6lyo1xz6ToPU1bBzlYsjlIpQArOjI+nmAnydhkHbS8ttPqxbCDOHdyGkYSAOIKRhIDOHd9EoRPE5lT4XLr4DmrQ3B3Tk5bglVimfRwyjX7lyJffccw/5+fncfvvtTJ8+vcR2S5Ys4brrrmPz5s1ERUW5OUoPsuZB87+DHnX6W4Z1C1HCEqGS54J/gLlu2Fsj4Ot50Pse1wQnFWL5HVh+fj6TJ09mxYoVpKSksGjRIlJSUoq1O3bsGC+88AI9e5Y8VNxnpH0J2z6ES+81K86LiHu0vwIuuBI+e0pLrngIyxNYYmIi4eHhhIWFERAQwOjRo4mPjy/W7sEHH2TatGnUrl3bgig9REE+rJgOQa3gkrutjkbE9wx+wiz4u9b53g9xHcsTWGZmJq1atSr8OjQ0lMzMopMKk5OTSU9P5+qrr3Z3eJ7l27fgl61wxUNOL5UiItWoSTvoeYd5Lu771upofJ7lCayk1VzOXlusoKCAKVOm8Mwzz5T7XnFxcURFRREVFUVWVla1xmm508fMv/pCL4bOI6yORsR39ZkKdRqb01hUJ9FSliew0NBQ0tPTC7/OyMggOPjPaurHjh3jhx9+oF+/frRt25ZNmzYRGxtb4no1EydOJCkpiaSkJJo1a+aW+N3my2fhxEG4cqa5euw5liZn0nvWOs6fvozes9apTJRIJZV7LgU2hP7/hJ+/hB8/tiZIATwggUVHR5OamsqePXvIyclh8eLFxMb+WTgzKCiI7Oxs0tLSSEtLIyYmhoSEBN8ahXhkr1nvsMsoCC3+uVXrUKR6OH0udb8VmnWE1Q+az8TEEpYnMH9/f+bOncvgwYPp2LEjo0aNIiIighkzZpCQkGB1eJ7hk4fAUQOu+HeJm1XrUKR6OH0u+fnD4MfMhS8T49wYoZzNI+aBDR06lKFDhxZ57ZFHHimx7fr1690QkQfJ2AI/vA+X/QOCQktsolqHItWjQudS+BXmv89nw0U3mc/FxK0svwOTMhgGrP4X1G1mzvsqhWodilSPCp9LAx8xB1ipWr0llMA82Y7lsPcr6Hc/1KpfajPVOhSpHhU+l1pEmHdfiXFwaI8bIpSzKYF5qvxcWPNvaHoBdB9bZlPVOhSpHpU6l/o/AH41YW3Jjz3EdTziGZiUYMtC+DUVRi8qt9o8qNahSHWp8LnUoCX0+it8/hT0mlziSGFxDd2BeaLTx+GzJ6FNb+gwxOpoRKQ8ve+Gus1hzQxNbnYjJTBPtPFFOJFlPiAuYdKyiHiYWvXNNcN+3gCpa6yOxmeoC9HTHM8yF6vsGFukK2JpciazV+1g35GTBDcMZOrgDuoyFLFAqedij1th03/NeZvhl0MNv/LeSqpId2Ce5vPZkHsSLp9R+JIqbYh4hjLPRb+aMOBBOLgNvn/X6lB9ghKYJzm0G5Jege63QNP2hS+r0oaIZyj3XOw0DIK7waePQ+4pCyL0LUpgnmTd4+Zfcf2KrkitShsinqHcc7FGDbjiYTiaDpvnuzEy36QE5ikObIUflkDPO6H+eUU2qdKGiGdw6lwM6wth/eGLZ+DUb26KzDcpgXmKdY9B7SBzOO45VGlDxDM4fS5ePgNOHjIHdYjLKIF5gr1fw86V0PseCGxUbLMqbYh4BqfPxZDu0PEv5jJIJ361JFZf4DBKWhLZC0RFRZW46KXHMQxYeDVk74R7voWAulZHJCLV4eCPMK8XxEyCwY9bHY3TbHPtRHdg1tu1zlzZtc9UJS8Rb9L8QogcDYkvw1FNeXEFTWS2kmHAukchqDUJfgN5ctY6TVQWsbFzJzn/+7LbGGS8Z9ZJ/MvzVofndXQHZqUfl8G+ZL45fyL3xe/QRGURGytpkvM9Kw+xu/VISH5Ty624gBKYVQoK4NMnoHE77t1+oSYqi9hcaZOcp+y/HBx+ZpUdqVZKYFZJWWqWnOk3nfSjOSU20URlEfso7Xz9/mgdiB4P3y2C7J/cHJV3UwKzQkE+rJ8FzS6EziM0UVnEC5R5Hl86Bfxrw2ez3ByVd1MCs8LWJZC9wywZVcNPE5VFvECZ53G95nDxBPPcP7jdogi9jxKYu+XnmX+FtegCHa8BNFFZxBuUex73vhcC6sH6mZbG6U00jN7dtr5nVp2//i2z8OcfKryMuYh4nDLP4zqNIeZOczDHL9ugRYR7g/NCugNzp/w8cz7IeV3gwqusjkZE3C1mEgTUh8+etDoSr6AE5kZbPo6DQ7uZuHcgvZ/8VPO8RHzM0h0nWZh/JaTEM+aJV3UNqCIlMDeJ3/IzTb95nm0FbVhd0EOTlUV8zJmJzs+eGMgxI5DRJ9/WNaCKlMDc5PuV82njOMBzeSMAB6DJyiK+5MxE56PU49X8wYvJxp0AABHCSURBVFzll0jrvD26BlSBEpg75Odx8+l32FbQhjUFPYps0mRlEd9w9rm+IG8ox4xA7vb/QNeAKlACc4cf3uf8Gr/wfN5wztx9naHJyiK+4exz/Sj1WJg/mCE1NnNJg2wLo7I3JTBXK8iHL57maIML+NLv4iKbNFlZxHecO9H5lbwrOUkAs5qvsjAqe1MCc7WUpZC9k6BB9/PE8K6arCzio86d6FynYQv2tb+JVpkrVCOxkjxiReaVK1dyzz33kJ+fz+2338706dOLbP/Pf/7D/Pnz8ff3p1mzZrzyyiu0adOmzPf0iFVFCwrgpd5QkAeTNkENv/K/R0R8x/GD8FwkRFwL186zOhrAQ66dTrK8Ekd+fj6TJ09mzZo1hIaGEh0dTWxsLJ06dSps061bN5KSkqhTpw7z5s1j2rRpvPPOOxZGXbJzF7P7T5d0eh5MgWvjlLxEpLh6zaHHrZAYB32nsfTngCLXEC1sWzbLuxATExMJDw8nLCyMgIAARo8eTXx8fJE2/fv3p06dOgDExMSQkZFhRahlKr6Y3e/US3yW43VbQecRVocnIp6q991Qw4+0+MeLLYipeWJlszyBZWZm0qpVq8KvQ0NDycws/Re2YMEChgwZ4o7QKuTcxez61fiOCMceXjgdC36W3+iKiKdqEAzdxhDy84cE5R4ssklzRctmeQIr6RGcw+EooSW8+eabJCUlMXXq1BK3x8XFERUVRVRUFFlZWdUaZ3nOncsxyT+eTKMJC4/3dGscImJDve/BYRQwwX95sU2aJ1Y6yxNYaGgo6enphV9nZGQQHBxcrN0nn3zC448/TkJCArVq1SrxvSZOnEhSUhJJSUk0a9bMZTGX5Ow5HtGOH7m4xg7i8q6mWcP6bo1DRGyoURvW+PXhBr91NOa3Ips0V7R0liew6OhoUlNT2bNnDzk5OSxevJjY2NgibZKTk7njjjtISEigefPmFkVatrPneEz2jyfbaEBCjcs1z0tEnFKz3/9Rmxxu9V9Z+JrmipbN8ocz/v7+zJ07l8GDB5Ofn8+4ceOIiIhgxowZREVFERsby9SpUzl+/DjXXXcdAK1btyYhIcHtsZ47yvDsEUJn/puwYjn9cr7jJf+b+fdVURpBJCJOuaJPH/Ztv4Lb9q/m5byradCwSbFRiGVdg3yRR8wDc4XqnstwZpTh2QM1Amv6FZ+M/M4Y2P0ZTNkKtYOq7eeLiA/Ylwxx/eCKh+DSKUU2OX0NqiI7zQOzvAvRLs4dZQgljBDK2gnbP4KLJyh5iUjFBXeDdpfDxhcht+jgDaeuQT5GCcxJpY0EKvL6V8+Dfy3oeaebohIRr3PpFDiRBd++XeRlp65BPkYJzEmljQQqfP23ffDdO9BtDNRz7whIEfEibS+FkB7w1QuQn1f4crnXIB+kBOakcytJwzkjhDa+CEYBXPJXC6ITEa/hcJh3YYfTYPufVYnKvQb5IMtHIXoSZ0YZlrj95GHYshA6D4dGba37ACLiHTpcBU3aw5fPQsRwcDjKvgb9wddGKSqB/eHcET5n6pABRZJYiQfD5gWQcxx63+O2eEXEi9WoYdZITPgb7FoH4ZcDZVyDcO4a5m3UhfiHSo/wyT0JX78E4QPhvC4ujFBEfErk9VC/pXkX5gRfHKWoBPaHSo/w+fZtc8TQpfe6ICoR8Vn+tSBmEqR9AZnflNvcF0cpKoH9oVIjfAryYeNcCO4ObXq7KDIR8Vk9boVaDcwRieXwxVGKSmB/qNQInx3L4dBus6+6lAr6IiKVVruBmcRS4s1RiWXwxVGKSmB/GNYthJnDuxDSMBAHENIwsPwSLRtegIZtoGNs6W1ERKoi5i5w+MHG/5bZrFLXMJvTKMSzlDXCp5i9myAjEYbMhhp+5bcXEamMBsHQ5TpIfgP6TYc6jUttWqFrmBfQHVhlbXgBAhtBt5usjkREvN0lf4Pc380pO1JICawyslPN51/REyCgrtXRiIi3a9HJnKqT+D/IPWV1NB5DCawyNr4IfgFw8USrIxERX3HJ38wpO1vftToSj6EEVlEnfoXvFkHX61W0V0Tc5/w+ZrGEjS+Cdy7jWGFKYBWVtADyTkHMZKsjERFf4nBAr79C1o/w01qro/EISmAVkXsKEuPMvujmF1odjYj4mojhZnmpjXOtjsQjKIFVxA9LzD7oXrr7EhEL+P/x7H33p3DgB6ujsZwSmLMMw+x7btEZwvpZHY2I+Koet0LNOrCp7InNvkAJzFm71sHBFPPuS2WjRMQqdRpDt5vh+3fh2AGro7GUEpizNs2Dus2h8wirIxERX9fzTijIg6RXrI7EUkpgzsjaCT+tgejbzSUORESs1KQdXHClWZnDhyc2K4E54+uXwK8WRI2zOhIREVOvSfB7tjm4zEcpgZXn90PmxOXI6zRxWUQ8R9vLzEFlm+b57MRmJbDyfPO6WUSz511WRyIi8ieHw1xq5ZcfzFWbfZASWFny8yDx5T9KuHS2OhoRkaI6j4Q6Tc27MB+kBFaWHz+C3zIgZpLVkYiIFFezNkSPhx0r4NddVkfjdkpgZfn6f9CoLbQfZHUkIiIlixoPNfxh83yrI3E7JbDS7PsW9m6Ei+/Qissi4rnqt4CIayH5TTh9zOpo3MojEtjKlSvp0KED4eHhzJo1q9j206dPc/311xMeHk7Pnj1JS0tzfVCJcVCzrlZcFhHP1/MOOP0bfLfY6kjcyvIElp+fz+TJk1mxYgUpKSksWrSIlJSUIm0WLFhAo0aN+Omnn5gyZQr33Xefa4M6kQ1bl8BFN0DtINf+LBGRqgqNgpAe5mOPggKro3EbyxNYYmIi4eHhhIWFERAQwOjRo4mPjy/SJj4+nrFjxwIwcuRI1q5di+HKeQ9bFkL+aa24LCL2cfEd8GuqWaneR1iewDIzM2nVqlXh16GhoWRmZpbaxt/fn6CgIH799VfXBJSfa5ZnCesPzTq45meIiFS3iGFmvdav/2d1JG5jeQIr6U7KcU61d2faAMTFxREVFUVUVBRZWVmVC2j7R3Bsn1ksU0TELvz/KHeXutpnhtRbnsBCQ0NJT08v/DojI4Pg4OBS2+Tl5XH06FEaN25c7L0mTpxIUlISSUlJNGtWybJPR/ZCswuh/cDKfb+IiFWiboO6zSB7p9WRuIXlCSw6OprU1FT27NlDTk4OixcvJjY2tkib2NhYXnvtNQCWLFnCgAEDSrwDqxaX3gt3btDQeRGxn/rnwd+3Q4chVkfiFv6WB+Dvz9y5cxk8eDD5+fmMGzeOiIgIZsyYQVRUFLGxsYwfP54xY8YQHh5O48aNWbzYxUNF/SzfLSIileND1y+H4dLhfNaJiooiKSnJ6jBERGzFTtdOy7sQRUREKkMJTEREbEkJTEREbEkJTEREbEkJTEREbEkJTEREbMlrh9E3bdqUtm3bVup7s7KyKl/Jw4UUV8UoropRXBXnqbFVJa60tDSys7OrOSLX8NoEVhWeOg9CcVWM4qoYxVVxnhqbp8ZV3dSFKCIitqQEJiIituT30EMPPWR1EJ6oR48eVodQIsVVMYqrYhRXxXlqbJ4aV3XSMzAREbEldSGKiIgtKYEBU6dO5cILLyQyMpJrr72WI0eOlNhu5cqVdOjQgfDwcGbNmuXyuN577z0iIiKoUaNGmSOK2rZtS5cuXbjooouIiorymLjcvb8OHTrEwIEDad++PQMHDuTw4cMltvPz8+Oiiy7ioosuKrb2XHUq7/OfPn2a66+/nvDwcHr27ElaWprLYqlIXAsXLqRZs2aF+2j+/PluiWvcuHE0b96czp07l7jdMAzuvvtuwsPDiYyM5JtvvvGIuNavX09QUFDh/nrkkUdcHlN6ejr9+/enY8eORERE8PzzzxdrY9X+citDjFWrVhm5ubmGYRjGtGnTjGnTphVrk5eXZ4SFhRm7du0yTp8+bURGRhrbtm1zaVwpKSnGjz/+aPTt29fYvHlzqe3atGljZGVluTSWisZlxf6aOnWqMXPmTMMwDGPmzJkl/h4NwzDq1q3r0jgMw7nP/+KLLxp33HGHYRiGsWjRImPUqFEeEderr75qTJ482eWxnOuzzz4ztmzZYkRERJS4fdmyZcaVV15pFBQUGBs3bjQuvvhij4jr008/Na666iq3xHLGvn37jC1bthiGYRi//fab0b59+2K/R6v2lzvpDgwYNGgQ/v7mInAxMTFkZGQUa5OYmEh4eDhhYWEEBAQwevRo4uPjXRpXx44d6dChg0t/RmU4E5cV+ys+Pp6xY8cCMHbsWJYuXerSn1cWZz7/2fGOHDmStWvXYrj4kbQVvxdn9enTh8aNG5e6PT4+nltuuQWHw0FMTAxHjhxh//79lsdlhZYtW9K9e3cA6tevT8eOHcnMzCzSxqr95U5KYOd45ZVXGDKk+HLcmZmZtGrVqvDr0NDQYgeMVRwOB4MGDaJHjx7ExcVZHQ5gzf765ZdfaNmyJWCe4AcPHiyx3alTp4iKiiImJsZlSc6Zz392G39/f4KCgvj1119dEk9F4gJ4//33iYyMZOTIkaSnp7s0Jmd58jm4ceNGunbtypAhQ9i2bZtbf3ZaWhrJycn07NmzyOuevL+qi8+sPX3FFVdw4MCBYq8//vjjXHPNNYX/7+/vz0033VSsXUl/GTscDrfEVZ4NGzYQHBzMwYMHGThwIBdeeCF9+vSxNC4r9pez9u7dS3BwMLt372bAgAF06dKFdu3aVTm2sznz+V21j8rizM/8y1/+wg033ECtWrV46aWXGDt2LOvWrXNpXM6wYn85o3v37vz888/Uq1eP5cuXM2zYMFJTU93ys48fP86IESN47rnnaNCgQZFtnrq/qpPPJLBPPvmkzO2vvfYaH3/8MWvXri3xlxwaGlrkL9GMjAyCg4NdHpczzsTRvHlzrr32WhITE6ucwKoalxX7q0WLFuzfv5+WLVuyf/9+mjdvXmK7M3GEhYXRr18/kpOTqz2BOfP5z7QJDQ0lLy+Po0ePuryrypm4mjRpUvj/EyZM4L777nNpTM5y1TFVVWcnjqFDhzJp0iSys7Np2rSpS39ubm4uI0aM4KabbmL48OHFtnvq/qpO6kLEHJX15JNPkpCQQJ06dUpsEx0dTWpqKnv27CEnJ4fFixe7dASbs06cOMGxY8cK/3/16tWljpZyJyv2V2xsLK+99hpg/kFS0p3i4cOHOX36NADZ2dls2LCBTp06VXssznz+s+NdsmQJAwYMcPlfyM7EdfZzkoSEBDp27OjSmJwVGxvL66+/jmEYbNq0iaCgoMIuYysdOHCg8G4nMTGRgoKCIn8EuIJhGIwfP56OHTvy97//vcQ2nrq/qpU1Y0c8S7t27YzQ0FCja9euRteuXQtHhmVmZhpDhgwpbLds2TKjffv2RlhYmPHYY4+5PK4PPvjACAkJMQICAozmzZsbgwYNKhbXrl27jMjISCMyMtLo1KmTx8RlGO7fX9nZ2caAAQOM8PBwY8CAAcavv/5qGIZhbN682Rg/frxhGIaxYcMGo3PnzkZkZKTRuXNnY/78+S6Lp6TP/+CDDxrx8fGGYRjGyZMnjZEjRxrt2rUzoqOjjV27drkslorENX36dKNTp05GZGSk0a9fP2P79u1uiWv06NHGeeedZ/j7+xshISHG/PnzjXnz5hnz5s0zDMMwCgoKjEmTJhlhYWFG586dyxyZ68645syZU7i/evbsaWzYsMHlMX3xxRcGYHTp0qXwurVs2TKP2F/upEocIiJiS+pCFBERW1ICExERW1ICExERW1ICExERW1ICExERW1ICExERW1ICExERW1ICE3GT/v37s2bNGgD+9a9/cffdd1sckYi9+UwtRBGrPfzww8yYMYODBw+SnJxMQkKC1SGJ2JoqcYi4Ud++fTl+/Djr16+nfv36VocjYmvqQhRxk61bt7J//35q1aql5CVSDZTARNxg//793HTTTcTHx1O3bl1WrVpldUgitqcEJuJiv//+O8OHD+eZZ56hY8eOPPjggzz00ENWhyVie3oGJiIitqQ7MBERsSUlMBERsSUlMBERsSUlMBERsSUlMBERsSUlMBERsaX/B762Eip5RdMIAAAAAElFTkSuQmCC
iVBORw0KGgoAAAANSUhEUgAAAbAAAAEgCAYAAADVKCZpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de1yUZfrH8c8o4lnU1BSwFDECFA+hsGmZlqJWZGZmtWaHjVrd3Gx/Vrtbrh1csXPpVkua5rqrlZWwqVgeUzIRZSuljEoSRk2wNC1PwPP740kUOcPMPPMw3/frxUuZuQcuRpxrnvu+7ut2GIZhICIiYjMNrA5ARESkNpTARETElpTARETElpTARETElpTARETElpTARETElpTARETElpTARETElpTARETElpTARETElpTARETElpTARETElpTARETElpTARETElpTARETElpTARETElpTARETElpTARETElpTARETElpTARETElpTARETElpTARETElpTARETElpTARETElpTARETElpTARETElpTARETElpTARETElpTARETElpTARETElpTARETElpTARETElpTARETElpTARETElvysDsBd2rVrR5cuXawOQ0TEVnJycigoKLA6jGqptwmsS5cuZGRkWB2GiIitREdHWx1CtWkKUUREbEkJTEREbEkJTEREbEkJTEREbKneFnGIuMKyTCdPr9rF3kPHCGzdlKlxYYzqE2R1WCKCEphIhZZlOvnzu59z7FQRAM5Dx/jzu58DKImJeAFNIYpU4OlVu0qS12nHThXx9KpdFkUkImdTAhOpwN5Dx2p0u4h4lhKYSAUCWzet0e0i4llKYCIVmBoXRtNGDUvd1rRRQ6bGhVkUkYicTUUcIhU4XahR2ypEVTCKuJcSmEglRvUJqlXSUQWjiPtpClHEDVTBKOJ+SmAibqAKRhH3UwITcQNVMIq4nxKYiBuoglHE/VTEIeIGda1gFJGqKYGJuEltKxhFpHo0hSgiIrakKzCROtBmZRHrKIGJ1JK7NysrOYpUTglMpJYq26xc10TjiuSoBCj1neVrYHfeeScdOnSgR48e5d5vGAaTJ08mNDSUqKgotm/f7uEIRcrnzs3Kde3kcToBOg8dw+BMAlyW6axzbCLewvIEdvvtt5Oamlrh/StXriQ7O5vs7GySkpL4/e9/78HoRCrmzs3KdU2OamUlvsDyBHb55ZfTtm3bCu9PTk7mtttuw+FwEBsby6FDh9i3b58HIxQpnzs3K9c1OaqVlfgCyxNYVZxOJ507dy75PDg4GKdT0yBivVF9gpg5uidBrZviAIJaN2Xm6J4uWWeqa3JUKyvxBV5fxGEYRpnbHA5HuWOTkpJISkoCID8/361xiYD7NivXtZPH1LiwUkUgoFZWUv94fQILDg4mNze35PO8vDwCAwPLHZuQkEBCQgIA0dHRHolPxF3qkhzVykp8gdcnsPj4eObMmcO4cePYsmULAQEBdOrUyeqwpJ6oz6XmamUl9Z3lCezmm29m/fr1FBQUEBwczGOPPcapU6cAuPfeexk5ciQrVqwgNDSUZs2aMX/+fIsjlvrC6lOT63PyFPEEh1HeIlM9EB0dTUZGhtVhiBcbkLgWZzlVeUGtm5L28BC3fu9zkyeYa1SuKgIRqS07vXZafgUmYhUrS81d0cVDV3Di67y+jF7EXawsNa9r8lSnDRElMPFhVp6aXNfkqU4bIkpg4sPcuRG5KnVNnuq0IaI1MPFxVpWa13WfVmDrpuUWoKjThvgSJTARi9QlearThogSmIgtqdOGiBKYiG2p04b4OhVxiIiILekKTMQdik7B0e/Nj2OH4MQR86PoBBQXg1EEjobg1xj8mkDjFtC0DTRtCy06mH+v4NQFETEpgYnUlmHAoe/g+53mx8Fv4Mfd8MNu+PlA3b52o2YQEAytL4R2F0H7i6B9OHTsAf7NXRK+OnmI3SmBiVTXyZ9hzyeQmw556ZC3DU4cPnN/q2Bo2xXChkOrIGhxPrTsaF5NNW4J/i3Mq60GDcHRwEyAhcfNjxNH4NgP8MsP5lXbYScczjUTYs4mKPy1ZN7RANpfDIF94cJLzY82XWp8tWZ1I2MRV1ACE6mIYcD+z+GrVfDtesjdAsWnzCTSIQJ6jIZOvaBjTzOpNG7hnjiKi81k9v1O2Pc/2JsJu5bD/xaZ9wd0htArofsw6DqoWnFU1YtRV2diB0pgImcrLjavrna+B1+ugMN7zNs7RsFvJpoJonN/84rKUxo0gDYXmh8XjzwTZ/6X8F2amVw/fwe2LYCG/tDtSogcBWEjoElAuV+ysk4eujoTu1ACEwHI3wWfLjYTweE95lRfyGAYNBUuGm4WVniTBg3g/Ajzo//dUHgScj+BXSshKxm+Wmkms7CR0PtW6DYEGp75715ZJw9XdMoX8QQlMPFdp46ZV1rbF8KezWZVYLchMOQRuPhq900JuoOfP3S93PwYNgOcGbDjHfj8bchaZq7H9b0NLrkDAoIq7eQx5c3/lfst1GdRvI0SmPiew07YOhe2zYdjP0LbbnDVY9D7Fu+70qqNBg3Mac7O/WHoE5D9AWT+Cz56BjY+BxePZFTsJBjds9x1rqdX7VKfRbEFJTCp184uRhjQ6gAzO6yms3MlYJjTazH3QpeB9XfPlZ8/hF9jfvyYAxmvm1ecX/yXUZ1jGDXqj3DRCDPp/Up9FsUulMDE1iqrljtdjNCtMJtpjZYRdzKDn3Mb83Xobwm95gGz/NyXtOkCQx+HQQ9B5r9h82xYcgt0iITBf4aLrwGHQ30WxTaUwMS2qqqWW7ryQ55nEcMbb+WQ0ZwXCkezoDCO5s4OpPla8jqbf3OISYDoO2Hnu7BhFrz5W3M7wJBp0H2o+iyKLSiBiW1VVC33Rmoao3avYeGJN/m5QROeP3UD84pGcJRmABxWMYKpoR9EjYXI0bBjqZnI/nMjdLkMhj0BgX2sjlCkUkpgYlvnVsU15xj3+v2Xu48vh50NWOx3HU//PIJDlN6zpWKEczT0g17joMcNkDEfNiRC0hUQNQ6GPmZ2ExHxQupGL7Z1JhEZxDf4mLWN/8R9fsv4qGEs3JdB82v+zolGrUs9RsUIlWjYyJxanJwJA6eY04uzo+HjOWZzYhEvowQmtjU1Lowejfbxn0YzeMl/DvuNttxU9CS/XPtPaH0Bo/oEMXN0T4JaN8UBBLVuyszRPbW2U5UmAXDVdJj4CVwQCx/8Ff55OeRutToykVIchmEYVgfhDtHR0WRkZFgdhrhL4QnY+CzFHz3LUaMJs06N5aMWI/nT8AglKFcyDLO7x4r/g5/2Qv8EuPJRz7bSEo+y02un1sDEfnLTIeU+yP+SBj3H0mr4TGY0b2d1VPWTw2H2X+x6Gax5HNKTYNcKuO4fEDLI6ujEx3nFFGJqaiphYWGEhoaSmJhY5v49e/YwePBg+vTpQ1RUFCtWrLAgSrFc4Qn4cBrMGwYnjsItb8MNr4GSl/s1bgkjn4Y7V5k9FhfGw4oH4eQvVkcmPszyBFZUVMSkSZNYuXIlWVlZLF68mKysrFJjnnzyScaOHUtmZiZLlixh4sSJFkUrltn3mVkZl/ai2dNv0idw0TCro/I9F8TAvZvMDibp/4R/Xgb7PrU6KvFRliew9PR0QkNDCQkJwd/fn3HjxpGcnFxqjMPh4KeffgLg8OHDBAYGWhGqWKG42KyCe20I/HIQbnkL4l/SGoyV/JvBiFlwW4p5yOfcq2Dzy+Z6mYgHWZ7AnE4nnTt3Lvk8ODgYp9NZasz06dNZtGgRwcHBjBw5ktmzZ3s6TLHC0QPmxtoP/goXxZlVcRfFWR2VYHZBGfBWEX3z/8ZGoxes+jP8Z6x5orSIh1iewMorgnSc01h18eLF3H777eTl5bFixQrGjx9PcXFxmcclJSURHR1NdHQ0+fn5botZPGD3Rnh1oPnnyGfgpkXQrK3VUQlnWng5Dx3jB1ox/pf7eaL4Toq+WWeW2+dtszpE8RGWJ7Dg4GByc3NLPs/LyyszRThv3jzGjh0LwG9+8xuOHz9OQUFBma+VkJBARkYGGRkZtG/f3r2Bi3sUF5tHfiyMh8at4O615oGN9bVbvA2VbeHlYN7Jq0jw+zvggNfjIP01TSmK21mewPr160d2dja7d+/m5MmTLFmyhPj4+FJjLrjgAtasWQPAF198wfHjx5Wg6qNjh8zu6Gseg4jrIGEddOxhdVRyjooOtlz7UxDcswG6DTb3jaXcZ1aOiriJ5QnMz8+POXPmEBcXR3h4OGPHjiUyMpJp06aRkpICwLPPPstrr71Gr169uPnmm1mwYEGZaUaxufyvYO6V8PWHMHwWjJmvQg0vVVEvycDWTc1p3pvfhMunmodoLrgGjnzv4QjFV6gTh1hvVyq8e7e5v2jsQugywOqIpBLnHmMDZo/JMm26dr4HyyZCk9ZwyxLo1MuCaKWm7PTaafkVmPgww4C0l2DxOPOwxYT1Sl42UO0ek5HXmxufHQ54fYT5RkXEhXQFJtYoOgXLH4DtC3EGxjH+4B3sPlys03/ro5/2weKbYP/nMDwRYu6xOiKphJ1eO3UFJp537BAsugG2L2TXRfcwNPd2vj1cjMGZU5WXZTqr+ipiF606wR0r4aLhsPJB+OARs9pUpI7UzFc867AT/j0GCrJh1CvcmdqRX06Vrmo7dqqIp1ft0lWYjS3LdPL0ql3sPXTszFX1TYvMBPbxbHOT+nX/MM8gE6klJTDxnANfmFdex3+C3y6FkCvYu2R5uUPPLtUu98VQyc1rnVvkcfqqGmDUyGegRUdY9yT8XAA3/Qv8m1sZrtiYphDFM/Z8Ym5wLS6EO1ZAyBVAFSXZlO76oClGeyi70fnMVTUOBwyaCte+BN+ug39db04pi9SCEpi4X/ZqWDgKmreHuz6ETlEld02NC6Npo4alhjdt1JCpcWFAFS+G4pUq2uhc6vZLJsCNC8C5Hd641rwaE6khJTBxrx3vmGXy7brDHanQ5sJSd1dVkl2tF0PxKlVdVZeIuA5uXgIFX8H8EWa1okgNaA1M3Gf7QkiZDBfEwi1vQpOAcoeN6hNU4ZpWYOumOMtJVhW9SIr1psaFlbvR+fRVdSndr4Lfvmt2sl9wNdz+PrTScUlSPboCE/dIf83shddtiPkCVUHyqkpVU4zifaq90fm0LgPM35GjB2D+SDic59F4xb60kVlcb/PL5vlQF42AsW+AX+M6fTlVIfqI3K2waLTZT3HC+9C6c9WPEZez02unEpi4VtpL8OGjEB4PN8wDP3+rIxI7ydsG/xoFzdvB7SvMTdDiUXZ67dQUorjO5n+YySvyerObvJKX1FTwJfDbd8wO9guvg6M6mFYqpgQmrrElCVb9xawsGz0XGqo+SGqpc3+49S04tMe8GvvlB6sjEi+lBCZ1l/E6rJwKF19jThsqeUlddRkI4/5tltj/+0Y4cdTqiMQLKYFJ3Xy6BN6fYjZqHTO/3N52yzKdDEhcS9eHlzMgca26aEj1hF5p/k7t3Q5v/lanO0sZSmBSe1/81zywsOvlcOMb5a55qRWUlKfab2rCr4H42WbbqXcToLio/HHik5TApHa+XgNv3wFBfWHcYmjUpNxhagUl56rxm5o+v4VhMyBrGSz/k3kQqghKYFIbeRnmlE77i+HWt6FxiwqHqhWUnKtWb2ou/QMMnALb5sPGZ9wcodiFVtulZvJ/XVRv0cEsd27aptLhagUl56r1m5or/wY/7YW1T0LLQOhzqxuiEzvRFZhU32GnefxFAz8Y/x60PL/Kh6gVlJyr2s1+z+VwQPwc8yielPvMUw7EpymBSfUcO/TrYZSHzcMo24ZU62E17osn9V6d3tT4+cPYf8H5EfD2BNi/w01Rih1oClGqVnjCXPM6+LU5bdipV40eXlm3efE9p38XKutvWWn/yyat4OY3Ye6V8J+b4O410LKjFT+KWEwJTCpXXGyWyudshNGvQcigMkPUbFdqqrI3NaerFE8XepyuUjz9OAACgswjel4fYSaxO1aAf3OPxC7eQ1OIUrm1j8OOpXDlNIgaW+Zu7fMSV6t2lWKnXjBmHuz/7Nc9YsUejFK8gRKYVGz7Qtj0PFxyBwx8oNwh2uclrlajKsWwETDsSfjyfdiQ6ObIxNt4RQJLTU0lLCyM0NBQEhPL/yV86623iIiIIDIykltuucXDEfqg3R+ZLaK6DYGRz5gVYOXQPi9xtRpXKcZOhN6/hQ2zYOd7boxMvI3lCayoqIhJkyaxcuVKsrKyWLx4MVlZWaXGZGdnM3PmTNLS0ti5cycvvPCCRdH6iIKv4c3xcF4o3Lig0ua8tS6JFqlAjasUHQ645jnoHAPv/R72/s8DUYo3sDyBpaenExoaSkhICP7+/owbN47k5ORSY1577TUmTZpEmzbmptkOHTpYEapv+OUH+M9Yc6/XLW9Ck4BKh2ufl7harbZe+DWGmxaZB2EuuRV+LvBYvGIdy6sQnU4nnTufOTo8ODiYLVu2lBrz1VdfATBgwACKioqYPn06w4cP92icPqGoEJbeYZ7DdPv70KYLUHmVYXVKokVqqlZbL1p0MJPY63Hw9u0wfpmO9qnnLP/XNcppzOk4Z72lsLCQ7Oxs1q9fT15eHpdddhk7duygdevWpcYlJSWRlJQEQH6+TnKtsQ8egW/Xm90OLogFqlfSrH1e4jUCe8O1L8J798Dqv0HcDKsjEjeyfAoxODiY3Nzcks/z8vIIDAwsM+a6666jUaNGdO3albCwMLKzs8t8rYSEBDIyMsjIyKB9+/Zuj71e2b4QtrxiLoj3HV9ys6oMxXZ6jYP+98DmOfD5UqujETeyPIH169eP7Oxsdu/ezcmTJ1myZAnx8fGlxowaNYp169YBUFBQwFdffUVISPVaGUk15G6F9x+AkMEw9IlSd6nKUGwpbgZccKnZM/HAF1ZHI25ieQLz8/Njzpw5xMXFER4eztixY4mMjGTatGmkpKQAEBcXx3nnnUdERASDBw/m6aef5rzzzrM48nriyPfw1nhoFQhjXi+zZqAqQ7Glho3gxvng38KsqD1xxOqIxA0cRnmLUPVAdHQ0GRkZVofh3YpOwRvxsDcTfvchdOxZZsi5a2BgVhmqIa9YpUaty3I2wRvXQsR1MGZ+hfsZ5Qw7vXZafgUmFlr1V9jzMVw3p9zkBeomL96lxq3Lugw026DtfA/Skzwaq7if5VWIYpHP3ob0f0LsJOg5ptKhqjIUb1FZUVGFv6OX/hH2bDHfsAX3g6C+HohUPEFXYL7owJfw38nmIvfQx6yORqTaalVU1KABjHoZWpxv7nM8fthN0Ymn1TmBXXXVVXz66aeuiEU84cQRs2jDv8WvRRuNrI5IpNpqXVTUrK35+34oF/77R6ifS/8+p84J7KmnnmLKlCnccccd7Nu3zxUxibsYBqRMNg+mHPM6tOpkdUQiNVKn1mUXxMCVj5rrYdsWuCdA8ag6J7C+ffuydu1arrnmGoYPH85jjz3GsWPaI+SVts6Fne/CkEeh62VWRyNSY3UuKrr0j9DtSkh9GL7Pqnq8eDWXlNEbhsHOnTvZtGkTjzzyCE2aNGHmzJmMHz++6ge7iZ1KQT1i36cw9yroOghuectcFxDxRUcPwCuXQvP2cPc6aNTE6oi8ip1eO+v8KjZw4ECCgoKYMmUKTqeTBQsWsH79etLT00lISHBFjFJXx38ym5s2awfX/1PJS3xbiw4w6hU4kGX2SxTbqnMZ/auvvkpkZGSZBryzZ88mPDy8rl9e6sow4P374cfvzA7zzdXBRITuQyHm92b/z25D4KI4qyOSWqjzW/EePXqUSV6nLV++vK5fXupq+0LY8Q4M/gtceKnV0Yi43bJMJwMS19L14eUMSFxb8Sbnq6bD+T1g2URzWlFsx61zSWq4a7H8XeZidddBMPABq6MRcbsadepo1ARumGtuLUmZrNJ6G9JiSH116jgsvQsaNdW6l/iMGh//0yHcvBL7aqU5WyG2ole1+mr1dPj+c7juZe33Ep9Rq04dMfdC18sh9c/ww7duikzcQQmsPsr+0Fyc7n8PhA23OhoRj6lVp44GDcyqxAZ+8O49UFTopujE1ZTA6pufC8xF6Q4RMPRxq6MR8ahad+oICIarn4W8dPMkZ7EFJbD65HSrqOOHYPRr2qApPqdOnTp6joHwa2HdDJ3ibBM6TqU+2b4Qdi2HuL9Dxx41emiNDgkU8WK1Pv7H4YCrn4fvYuC9e+F3q9Xs2svpCqy+OPiNuQjddZC5QbMGanxIoEh91aK9OZW473+Q9oLV0UgVlMDqg+Ii8x1jQ79fF6Nr9s9a49Jjkfos8nqIHA3rZ8H+HVZHI5VQAqsP0l40F59HPgsBNZ86qVXpsUh9NvIZaBIAyZNUlejFlMDsbv/nsO7vEHGduQhdC7U+JFCkvmp+Hlz9jDmVqKpEr6UEZmeFJ8ypw6ZtzMXnCnpSVqVOhwSK1FcRo+Dia8w3iAXZVkcj5VACs7MNs+D7HRD/Up26zNf5kECR+sjhMAs6GjWF5D9AcbHVEck5VEZvV87tsOkF6HULhI2ocxl8rUuPReqzlh1h+ExY9nvImAf977Y6IjmLEpgdFZ4wu2206ADDZ5aUwZ+uJDxdBg+UJCXt8xKppV43w2dvwerHIGxkrQqlxD00hWhHG56C/C/g2hehaesqy+C1z0ukDhwOuOZ5KC6ElQ9aHY2cRQnMbvZmwqbnzanDX0+RraoMXvu8ROqobVcY/Gf48n3ISrE6GvmVVySw1NRUwsLCCA0NJTExscJxS5cuxeFwkJGR4cHovEjhSVg2CZq3h+F/L7m5qjJ47fMScYHYSdCxJ6yYCscPWx2N4AUJrKioiEmTJrFy5UqysrJYvHgxWVlZZcYdOXKEl156iZiYGAui9BJpL8KBneZ0RtM2JTdXVQavfV4iLtDQD+Jnw88HYM0TVkcjeEECS09PJzQ0lJCQEPz9/Rk3bhzJycllxj366KM8+OCDNGniox3WD3wJHz1ltri5eGSpu6oqg9c+LxEXCewD/RNg61xwbrM6Gp9neRWi0+mkc+fOJZ8HBwezZcuWUmMyMzPJzc3lmmuu4ZlnnvF0iNYrLoKU+8C/OYx4qtwhlZXBn75dVYgiLqjIHfxX2LkM/ns/3L3OvDITS1j+zBuGUeY2x1kdJYqLi5kyZQoLFiyo8mslJSWRlJQEQH5+vstitFz6a2avw+uTzG7ZtaB9XiJUa8tJlZq0ghGJ8Pbt5pVY7L1uilaqYvkUYnBwMLm5uSWf5+XlERgYWPL5kSNH2LFjB1dccQVdunThk08+IT4+vtxCjoSEBDIyMsjIyKB9+9q90HudQ7mw5nEIvQqixlodjYituawiN2KU+X9y7ZPw014XRig1YXkC69evH9nZ2ezevZuTJ0+yZMkS4uPjS+4PCAigoKCAnJwccnJyiI2NJSUlhejoaAuj9hDDgBX/Bxhw9XO17nUoIiaXVeQ6HDDyaSg6Cav+6oLIpDYsT2B+fn7MmTOHuLg4wsPDGTt2LJGRkUybNo2UFB/fb5GVDF+lmnPubS60OhoR23NpRW7bELjsAdj5Lny7vm6BSa04jPIWoeqB6Ohoe+8XO/Yj/CPG7MX2u7VaKBZxgXPXwMCsyK118+pTx+DlWGjYGO7dBH7+LozWGnZ67bT8CkwqsHo6/JwP176k5CXiIi4/eaFRUxg+Cwp2wZZXXBqrVE2vjN4oNx22LTB3/gf2tjoakXqlqorcGpfZhw2Hi0bA+lnQY4ya/XqQrsC8TVEhvD8FWgWZvddExGNq3fh6RCIYRfDBIx6JU0xKYN5my6vmIZUjZkHjllZHI+JTal1m36YLDPijWdCRk+a+AKUUJTBvcjjPPL78ouHmUeYi4lF1KrMfcD+0CoaVD5ndc8TtlMC8SerDYBSb7aK050vE46pTZr8s08mAxLV0fXg5AxLXnple9G8Gw56A7z8317DF7ZTAvEX2avjivzBoqvZ8iVikqsbXVa6RRV4PFw40O3T88oOHo/c9SmDe4NRxWDkVzusOv7mv3CEVvusTEZepqsy+yjUyh8Ncvz5+CNbP9HD0vkdl9N7g49nww7cw/r1yN0K6pAGpiFRLZWX21Voj69gDLrkdts6Dfr+D9jq2yF10BWa1H7+Djc+YzUG7DSl3iMsakIpInVS1RnZ6puSSTf05ajRm/9t/8mR4PkcJzGqpfwZHQ4j7e4VDXNaAVETqpLI1srPXxw7SihdOXU/HAxv5OHWJRdHWf0pgVspeDbuWm4Ublezed2kDUhGptcrWyM6dKVlYNIyc4vPptOUJs0GBuJzWwKxSeBJSH4K23SB2YqVDp8aFlduA9HRllIh4TkVrZOfOiJykEX8vvIWkBs/DtvnQ/25PhegzdAVmlS2vwsGvYXgi+DWudKjLG5CKiMuVNyPyQXE02xv0MCsSjx+2IKr6TVdgVjiyHzbMMjtuXDSsWg+pqgGpiFir/JkSPw5fNh02jIFNz8NV060Kr17SFZgVVk83T3KtpHBDROylopmSwYOHQtQ42PwyHMq1Osx6RVdgnpa7FT5dDAOnwHndSm6u8REOIuJ1KpwpGfIIZC2DtU/A6CTPB1ZP6QrMk4qLzX6HLc6Hy87sD6n1EQ4iYg+tO5vFWp+9CXszrY6m3lAC86TP3wZnBlz5t1JHpWijsogPGDgFmrWDDx4Fw7A6mnpBCcxTTv5srn0F9oFeN5e6SxuVRXxAk1Yw6CHI2Qhfr7Y6mnpBCcxTNr0AR/aaZfMNSj/t2qgs4huS/YaS5+jIl/+awmUzP9QyQR0pgdVArTvCH86Dj1+CHjfABbFl7q7qCAcRsb9lmU4eXraLxBM3cnGDXPodWa217jpSAqumOhVarHkcgFWdfl9uAtRGZZH67/Ra9/LiGD4r7soDjZZSfOqY1rrrQGX01VRZoUWlica5DT57k13d7+b+1IMVHomijcoi9dvpNW2DBswsvIXF/jMY3/BD5h262uLI7EtXYGepbIqwVoUWhgGr/grN2/OHPVeo0lDEh529pr25OJINRVFM8kume0CxhVHZmxLYr6qaIqxVocUXKbBnMwz+K18fdpQ7RJWGIr7h3P1vyGkAABBUSURBVLXupwrH0cZxlNkXbiq5TSev14xXJLDU1FTCwsIIDQ0lMTGxzP3PPfccERERREVFceWVV/Ldd9+5PIaq9mLVuNCi8AR8OA06RECf8ao0FPFx5651HwoIJy9wOGG7/wVHD6ihQS1YnsCKioqYNGkSK1euJCsri8WLF5OVlVVqTJ8+fcjIyOCzzz5jzJgxPPjggy6Po6opwhoXWmydBz/mwLAnoKGfKg1FhFF9gkh7eAi7E68m7eEhBI+eAYXHYeOzamhQC5YXcaSnpxMaGkpISAgA48aNIzk5mYiIiJIxgwcPLvl7bGwsixYtcnkcga2b4iwniZ19hVTtQotjh+CjpyBkMIReVfJYQP0OReSMdqHQ51bIeB3HL+FA+zJDtMxQMcsTmNPppHPnziWfBwcHs2XLlgrHz5s3jxEjRrg8DpceGrnpOTOJDX281M2qNBSRMgY9DJ++yV+aLmPiL2UPvdQyQ8UsT2BGOT3BHI7yCx4WLVpERkYGGzZsKPf+pKQkkpLMTs/5+fk1isNlV0iH9sAnr0KvcdApqmaPFRHfExAE/e9mxOaXiWh0LVmnOpbcVdM30b52qoXlCSw4OJjc3DNn5OTl5REYGFhm3OrVq5kxYwYbNmygcePyTzBOSEggISEBgOjo6BrH4pIrpLVPmn8OeaRuX0dEfMeA+3FkzCcp6ENuOphQqwR0ugikor2m9ZHlCaxfv35kZ2eze/dugoKCWLJkCf/5z39KjcnMzOSee+4hNTWVDh06WBRpNez7zDwuYcD9EBBsdTQiYhct2kPsvQRvfJa0ex+Bjj1q/CVq3WzBxiyvQvTz82POnDnExcURHh7O2LFjiYyMZNq0aaSkpAAwdepUjh49yo033kjv3r2Jj4+3OOoKrJ4OTduYxyaIiNTEpfdB4wBYV7uT2n3xVAvLr8AARo4cyciRI0vd9vjjZwogVq+2wdED326Ab9Yw2+92nnsszSfmn0XEhZq2gUv/AOtmmC3ogi6p0cOrU0ld31h+BVYvGAY/pvyFvcZ5zDl6hTYhikjtxNwLTdvC2hk1fqgv7jVVAnOFrGW0ObSD5wrHcAL/kpu1CVFEaqRJKxh4P3yzBvZUvJ2oPL54qoVXTCHaWtEpWPM4u4qDebfosjJ31+f5ZxFxg36/g49nw/qZcNuyGj3U1/aa6gqsrjL/BT98y7zGt1FcztNZn+efRcQN/JvDgD/Ct+tgzydWR+PVlMDq4tQx2PAUdI7h0hG3+tz8s4i4SfRd0Lx9mYpEdasvTQmsLtKT4Mg+uPJvjOob7HPzzyLiJv7NzP2kuzfAdx8DdTwVvp7SGlhtHT8Mm543m/V2GQD43vyziLhR9J2Q9qJ5FXb7+z65UbkqugKrrY9nw7Ef4cppVkciIvWRfzOzKULORshJ88mNylVRAquNo/mw+WWIvB469bI6GhGpry653VwL++gpHYpbDiWw2tj0PBQeg8F/tToSEanP/JvBpZPh2/X8vd8xFYqdQwmspn7aC1vnQq9boF13q6MRkfou+k5odh6D9s1Xodg5VMRRUx89A0YxDHrQ6khExBc0bgG/+QOseYxRg/cz6uEhVkfkNXQFVhM/5sD2N+CSCdDmQqujERFf0f9us9nvhqetjsSrKIHVxIanoIEfXPZ/VkciIr6kcUuInQRfrTTPHRRACaz6CrLh08Vmn7JWnayORkR8Tf+7oXEr2Pis1ZF4DSWw6towC/yamrvjRUQ8rWlr8w10VjLkf2V1NF5BCaw6DnwJny813wG1aG91NCLiq34zCfyamFt5RAmsWjbMMjtEXzrZ6khExJc1b2dubv7sTbOozMcpgVXl+52w8z2IuQean2d1NCLi6y69Dxo0NPsk+jglsKqsTwT/X/dhiIhYLSAIet8CmYvgp31WR2MpJbDK7P8cvkiB2N9Ds7ZWRyMiYhpwPxQXwicvWx2JpZTAKrNhllm2+puJVkciInJG264QORoyXjdPxfBRSmAV2b8DvvgvxNxr7oAXEfEmA++Hk0fN3qw+SgmsIh89Bf4tzelDERFv07EndB8Gn7wCJ3+xOhpLKIGV5/ssc7NgzD1a+xIR7zVwCvxy0Czo8EFKYOX56KlfKw8nWR2JiEjFLrwUOsfCxy9B0Smro/E4JbBzHfgSdi6D/gm6+hIR73fZA3A4F3a8Y3UkHucVCSw1NZWwsDBCQ0NJTEwsc/+JEye46aabCA0NJSYmhpycHPcFk/5PaNRM+75ExB66D4P24ZD2EhiG1dF4lOUJrKioiEmTJrFy5UqysrJYvHgxWVlZpcbMmzePNm3a8PXXXzNlyhQeeugh9wUUNxNuW6auGyJiDw4HDJgMB3bC12usjsajLE9g6enphIaGEhISgr+/P+PGjSM5ObnUmOTkZCZMmADAmDFjWLNmDYa73mk0agKd+7vna4uIuEOPMdAyENJesDoSj7I8gTmdTjp37lzyeXBwME6ns8Ixfn5+BAQEcPDgQY/GKSLitfz8zYYLORvBuc3qaDzG8gRW3pWUw+Go8RiApKQkoqOjiY6OJj8/33VBioh4u74ToHGAuRbmIyxPYMHBweTm5pZ8npeXR2BgYIVjCgsLOXz4MG3blq0QTEhIICMjg4yMDNq317ldIuJDmrSCfnea/Vt/+NbqaDzC8gTWr18/srOz2b17NydPnmTJkiXEx8eXGhMfH88bb7wBwNKlSxkyZEi5V2AiIj4t5l5o3t7cDuQD/CwPwM+POXPmEBcXR1FREXfeeSeRkZFMmzaN6Oho4uPjueuuuxg/fjyhoaG0bduWJUuWWB22iIj3adkRpuyEho2sjsQjHIbbyvmsFR0dTUZGhtVhiIjYip1eOy2fQhQREakNJTAREbElJTAREbElJTAREbElJTAREbElJTAREbElJTAREbGlersPrF27dnTp0qVWj83Pz/fKVlSKq2YUV80orprz1tjqEldOTg4FBQUujsg96m0Cqwtv3cinuGpGcdWM4qo5b43NW+NyNU0hioiILSmBiYiILTWcPn36dKuD8EaXXHKJ1SGUS3HVjOKqGcVVc94am7fG5UpaAxMREVvSFKKIiNiSEhgwdepULr74YqKiorj++us5dOhQueNSU1MJCwsjNDSUxMREt8f19ttvExkZSYMGDSqtKOrSpQs9e/akd+/eREdHe01cnn6+fvjhB4YOHUr37t0ZOnQoP/74Y7njGjZsSO/evendu3eZw1Ndqaqf/8SJE9x0002EhoYSExNDTk6O22KpSVwLFiygffv2Jc/R3LlzPRLXnXfeSYcOHejRo0e59xuGweTJkwkNDSUqKort27d7RVzr168nICCg5Pl6/PHH3R5Tbm4ugwcPJjw8nMjISF588cUyY6x6vjzKEGPVqlXGqVOnDMMwjAcffNB48MEHy4wpLCw0QkJCjG+++cY4ceKEERUVZezcudOtcWVlZRlffvmlMWjQIGPr1q0VjrvwwguN/Px8t8ZS07iseL6mTp1qzJw50zAMw5g5c2a5/46GYRjNmzd3axyGUb2f/x//+Idxzz33GIZhGIsXLzbGjh3rFXHNnz/fmDRpkttjOdeGDRuMbdu2GZGRkeXev3z5cmP48OFGcXGxsXnzZqN///5eEde6deuMq6++2iOxnLZ3715j27ZthmEYxk8//WR07969zL+jVc+XJ+kKDBg2bBh+fubh1LGxseTl5ZUZk56eTmhoKCEhIfj7+zNu3DiSk5PdGld4eDhhYWFu/R61UZ24rHi+kpOTmTBhAgATJkxg2bJlbv1+lanOz392vGPGjGHNmjUYbl6StuLfpbouv/xy2rZtW+H9ycnJ3HbbbTgcDmJjYzl06BD79u2zPC4rdOrUib59+wLQsmVLwsPDcTqdpcZY9Xx5khLYOV5//XVGjBhR5nan00nnzp1LPg8ODi7zC2MVh8PBsGHDuOSSS0hKSrI6HMCa5+v777+nU6dOgPkf/MCBA+WOO378ONHR0cTGxrotyVXn5z97jJ+fHwEBARw8eNAt8dQkLoB33nmHqKgoxowZQ25urltjqi5v/j+4efNmevXqxYgRI9i5c6dHv3dOTg6ZmZnExMSUut2bny9X8bM6AE+56qqr2L9/f5nbZ8yYwXXXXVfydz8/P2699dYy48p7Z+xwODwSV1XS0tIIDAzkwIEDDB06lIsvvpjLL7/c0riseL6qa8+ePQQGBvLtt98yZMgQevbsSbdu3eoc29mq8/O76zmqTHW+57XXXsvNN99M48aNefXVV5kwYQJr1651a1zVYcXzVR19+/blu+++o0WLFqxYsYJRo0aRnZ3tke999OhRbrjhBl544QVatWpV6j5vfb5cyWcS2OrVqyu9/4033uD9999nzZo15f4jBwcHl3onmpeXR2BgoNvjqo7TcXTo0IHrr7+e9PT0OiewusZlxfN1/vnns2/fPjp16sS+ffvo0KFDueNOxxESEsIVV1xBZmamyxNYdX7+02OCg4MpLCzk8OHDbp+qqk5c5513Xsnf7777bh566CG3xlRd7vqdqquzE8fIkSOZOHEiBQUFtGvXzq3f99SpU9xwww3ceuutjB49usz93vp8uZKmEDGrsmbNmkVKSgrNmjUrd0y/fv3Izs5m9+7dnDx5kiVLlri1gq26fv75Z44cOVLy9w8++KDCailPsuL5io+P54033gDMNyTlXSn++OOPnDhxAoCCggLS0tKIiIhweSzV+fnPjnfp0qUMGTLE7e+QqxPX2eskKSkphIeHuzWm6oqPj2fhwoUYhsEnn3xCQEBAyZSxlfbv319ytZOenk5xcXGpNwHuYBgGd911F+Hh4TzwwAPljvHW58ulrKkd8S7dunUzgoODjV69ehm9evUqqQxzOp3GiBEjSsYtX77c6N69uxESEmI8+eSTbo/r3XffNYKCggx/f3+jQ4cOxrBhw8rE9c033xhRUVFGVFSUERER4TVxGYbnn6+CggJjyJAhRmhoqDFkyBDj4MGDhmEYxtatW4277rrLMAzDSEtLM3r06GFERUUZPXr0MObOneu2eMr7+R999FEjOTnZMAzDOHbsmDFmzBijW7duRr9+/YxvvvnGbbHUJK6HH37YiIiIMKKioowrrrjC+OKLLzwS17hx44yOHTsafn5+RlBQkDF37lzjlVdeMV555RXDMAyjuLjYmDhxohESEmL06NGj0spcT8Y1e/bskucrJibGSEtLc3tMGzduNACjZ8+eJa9by5cv94rny5PUiUNERGxJU4giImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiImJLSmAiHjJ48GA+/PBDAB555BEmT55scUQi9uYzvRBFrPbYY48xbdo0Dhw4QGZmJikpKVaHJGJr6sQh4kGDBg3i6NGjrF+/npYtW1odjoitaQpRxEM+//xz9u3bR+PGjZW8RFxACUzEA/bt28ett95KcnIyzZs3Z9WqVVaHJGJ7SmAibvbLL78wevRonn32WcLDw3n00UeZPn261WGJ2J7WwERExJZ0BSYiIrakBCYiIrakBCYiIrakBCYiIrakBCYiIrakBCYiIrb0/xX31XCVEHV9AAAAAElFTkSuQmCC
iVBORw0KGgoAAAANSUhEUgAAAbAAAAEgCAYAAADVKCZpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deVxU9f7H8dfAAC655ZKypCGGK2pi6rXMHTVFSzOtW1aW3bL9l7bcNG3TMlu1jBaXFq3UC+RuKi1mEUplUUnmAqOmqLgiy8z5/TFBIqgoy5nDvJ+PR4+cOQd4c+bM+XDOfL+fYzMMw0BERMRifMwOICIicj5UwERExJJUwERExJJUwERExJJUwERExJJUwERExJJUwERExJJUwERExJJUwERExJJUwERExJJUwERExJJUwERExJJUwERExJJUwERExJJUwERExJJUwERExJJUwERExJJUwERExJJUwERExJJUwERExJJUwERExJJUwERExJJUwERExJJUwERExJJUwERExJJUwERExJJUwERExJJUwERExJJUwERExJJUwERExJJUwERExJJUwERExJJUwERExJJUwERExJLsZgcoL/Xq1aNJkyZmxxARsZTt27eTkZFhdowSqbQFrEmTJiQlJZkdQ0TEUiIjI82OUGK6hCgiIpakAiYiIpakAiYiIpZkegG77bbbaNCgAa1bty52uWEY3HfffYSFhREREcGmTZsqOKGIiHgi0wvYLbfcwooVK067fPny5aSmppKamkpMTAx33XVXBaYTOX+xyQ66Tl3LJY8upevUtcQmO85puYicmekFrFu3blx44YWnXR4XF8fNN9+MzWajc+fOZGZmsnv37gpMKHLuYpMdPLZ4M47MLAzAkZnFY4s3FxSpsy0XkbMzvYCdjcPhICQkpOBxcHAwDofe5OLZpq38naxcZ6HnsnKdTFv5e4mWi8jZefw8MMMwijxns9mKXTcmJoaYmBgA9u3bV665RMB9JjVt5e/syswisHZVxkWFM6R9ELsys4pdP//5sy0/0/cWETePL2DBwcGkpaUVPE5PTycwMLDYdceMGcOYMWMAa03GE2vKvwyYfyaVfxkQILB2VRzFFKnA2lVLtPxM31tFTMTN4y8hRkdHM2/ePAzD4Ntvv6VWrVo0atTI7FgiZ7wMOC4qnKp+vgXP23AR6HeMid1qwqF0JnarSQO/E8A/Vxiq+vkyLir8rN9bRNxMPwMbOXIkCQkJZGRkEBwczOTJk8nNzQXgP//5DwMGDGDZsmWEhYVRrVo1Zs+ebXJiEbfTXQb0O7SNIb4ZtG72FUe2JdHAtZcGtkz8yINVwCqIAqJ84YSvP3tcddhjD6RO2OWEV8mFI/YSXWIU8XamF7D58+efcbnNZmPmzJkVlEak5P65DGjQ0fY7fXw30ttnI6E+e2AxhNmrQlAbqNsWajSECxqCfzX3FxsGZB+hypHdNDmymyb7tkDqO7DlLQCWVg1jeU47VrguJ9UILvQzRcTN9AIm4snONJDiv90bsHnZm1zH54T67CHH8OU7WnOkze20vWIA1AsH33N4i+VmwZ6fYdsXNEyO4/8OLuT/WMhGVzM+zOvFWt+uBZcYz5ZNxBvYjOKG+VUCkZGR6kYvpXLqQApwf071cv+L6HdoASTNBmc2P9qaMy+7Oz/VuJKx/dqXWRFZvuEH/lgzm6tzVhLqs5ts/9oEXHk/XH4HsSmHi8025do2KmJSKlY6duoMTOQ0Th1IUYfD3Gf8jx6r1oKPAW1HQOextL2oJdPL4ef379IOurzqvty4/WsCvnkN1kyGb17HkTsQV25PwL9g/fxBHipg4i1UwEROI3/AhA8ubvBdw8P2T7iALBbldeP6h16BCy+pmCA2G1xypfu/9CRImMLYP+YxwH8lk/NGkeBqVySziDfw+GH0ImYJrF2VlrbtxPk/wTN+s0lxNaZ/zlReu+D+iitepwqOhH8v4gG/J3Hhwxz/F3jL7yXqc7Ags4i30BmYSHFcTmIu+ZJmKa+RSQ3uybmXJa7OVPWzM+WkgRRm6T7geq5ZfCkjc5fwgH0RqwIeYZLrDnpE3WF2NJEKowImXq3YkXyXOGHRHbRK+xZHUF9u338jv2X7EeRBI/3yM0xbWY3PD3Xg9SqzeNX2MmzbBS2nQ0ANjVKUSk+jEMVrFTfKsJffL7xRdSYBNhcMeBEihrs/g/J0zlz48kX48gWo24zPI17i3tVHNUpRzpmVjp36DEy8VuFRhgb/8Y0nxuc5HLk1YEwCtL3eGsULwNcPejwGN8XC8Qy6rB3Glc5vC62iVlRS2aiAidfKH7HnTy6v+M3kUb8FLHd1YlDWZKjb1OR05yn0KhjzBX+4GhHj/zJ3+8Zxcr9FjVKUykQFTLxWYO2q1OQYc/2eZ4jvN7yQO5x7cu+ldu06ZkcrndohPFB1CnHOfzHe72Oesb+HL+4zTY1SlMpEgzjEa03sVpPQlffSmN3cn3M3ca4rCnWEt7L7+7XhscX34sirx932eBraDjCeBxgX1e7sXyxiESpg4p0ObCPqu1vI9cvkIdtElmQ386hRhqX1zyjFKuw6UpfJfnNZVfc16rWMMzmZSNnRKETxPhl/wNxBkJflHvQQ6AVnJT8vgkV3QFAH+PdCqFLL7ETioax07NRnYOJd9v4GcwaAMwduWeodxQug9VAYPhd2JcO8wXD8gNmJREpNlxClUjt5Mm/HmpnMs02kip8v3LoM6lv/s65z0mIQjPgQPr4JPhzGkrazmLI2XROdxbJ0BiaVVv5EZUdmFg3Zz0vZEzl+Ips1Hd/2vuKV79IoGD4X164fqL90FBmZhzAAR2YWjy3eTGyyw+yEIiWmAiaVVv5E5boc4gP/56jJMW7KeZSJG5xn/+LKLLw/k+3305FfecPvVfzIAzTRWaxHBUwqrV2ZWVTjBHP9n6eR7QC35oznF+MSTeYF5h2J5L95t9HLN5kX/N4if7Kzto1YiT4Dk0orpJY/k48/T3PbTm7PfZiNhvuyoSbzurfB/Mxe1OEI4/0+Id2oz/S84do2Yik6A5PKyTCY1/Bjevj+yIS8Wwtu+lhZJiqX1riocKr6+fKGczAf5fXgXnssN/snaNuIpegMTCqnr1+myY5P+b3ZGL5M649NI+0K+Wei8+9MzLyNS/wzmWR7F58L+gLaPmINmsgslc9vy2DBSGg9DIa+Y52O8mbKPgKz+8PBHXD7Gqh/qdmJxCRWOnbqEqJULnt/hcV3QGB7GDxDxaukAmrAiPlgD3AX/6yDZicSOSsVMKk8jh+A+SPAvzqM+Aj8NCDhnNQOgeHvu8/CFo4Gl5dPNxCPpwImlYPLCQtvhcO74PoPoWag2YmsqXEXuPpF2LoGPp9kdhqRM9IgDrG0/FZRI47O5V57AsntnqZ9SEezY1lbh1v4c/MGQr95jTsTfPm5ZjcNfhGPpDMwsaz8VlHNDn/DvfZYPs7rzg0bL1U7pFKKTXYwZOtAfnSFMs1vFr6HtqvNlHgkFTCxrGkrf6du3h5e8XuDFFdjJubdonZIZWDayt85nOvD2Nz7ceHDLL9XcOVmabuKx1EBE8val3mEGX6v4oOLu3LvJxt/QO2QSit/+6Ub9Xkg925a+uxgkn2utqt4HBUwsawnqy+mnc+fjMu9kx1Gw4Ln1Q6pdE7efgmu9szMi2akfR3/rrHJxFQiRamAiTX9sYYbnbEscPVhpevygqfVKqr08ttM5Xs5bxg/GM2YaLzlHmIv4iFUwMR6ju6D//0H6jen+qCpBNWuig0Iql2VKde20Wi5UhrSPogp17Yp2K4X1a7B3j4z8fO1waLbwZlndkQRQMPoxWoMA2LvghOH4OZYBl0UxqCOYWanqnSGtA8q+odArZdh0Wj4Yir0fMKcYCIn0RmYWEvSu/DHauj7DFzUyuw03qXNMGh3I3w1HdISzU4jogImFrJ/K6yaAE17weV3mJ3GO/WbCjWD4X93Qs4xs9OIl1MBE2tw5sHiMeDrD4NnqkmvWarUhGvehAPbYJUuI4q5PKKArVixgvDwcMLCwpg6dWqR5Tt37qRHjx60b9+eiIgIli1bZkJKMdXXL4MjCQa+BDUbmZ3GuzW5ArqMhaT3IHW12WnEi5lewJxOJ2PHjmX58uWkpKQwf/58UlJSCq3zzDPPMHz4cJKTk1mwYAF33323SWnFDOsSPidv3RTinV3ouqSOWhp5gPi6o/nTFsJfH9xOvynxek3EFKYXsMTERMLCwggNDcXf358RI0YQFxdXaB2bzcbhw4cBOHToEIGB6jTuLeI2bueidf/HQeMCJubegiMzS335TBab7OCRuC3cd+JO6nKY0cfe1msipjC9gDkcDkJCQgoeBwcH43AUfiNMmjSJDz74gODgYAYMGMDrr79e0THFJHuWP09L23aeyL2NTGoAqN+hyaat/J2sXCc/G6G85RzIdfYvudy5Sa+JVDjTC5hhGEWes53yAf38+fO55ZZbSE9PZ9myZdx00024XK4iXxcTE0NkZCSRkZHs27ev3DJLBdn7K7fkfsJnzs6sdBW+RYr68pnn5G3/Wt61pLqCmOL3Nocz95uYSryR6QUsODiYtLS0gsfp6elFLhG+++67DB8+HIAuXbpw4sQJMjIyinyvMWPGkJSURFJSEvXr1y/f4FK+nHkQezfHbdV4MveWIovV79A8J2/7bPwZl3snF3GQp6t/YmIq8UamF7COHTuSmprKtm3byMnJYcGCBURHRxda5+KLL2bNmjUA/Prrr5w4cUIFqrJLfAt2beKPyCfJ8qtTaJH6HZrr1F6JPxhhzDEGMsS5CrZ/bWIy8TamFzC73c6MGTOIioqiRYsWDB8+nFatWjFx4kTi4+MBmD59Om+//TZt27Zl5MiRzJkzp8hlRqlEDu6Atc/Apf3oePXoQn351O/QfKf2SgyqXZUGg56E2o3hswcg94TZEcVL2IziPoSqBCIjI0lKSjI7hpwrw4APr4Md38DY76B2yNm/RjzDH2vgg2vhqkegx+Nmp5HzZKVjp+lnYCKF/LLY3euw1wQVL6sJ6wUR18NXL8He38xOI15ABUw8R9ZBWP4IBLaHy8eYnUbOR9RzEHABfHY/FDNSWKQsqYCJ51jzFBzfD4NeAx/fs68vnqd6Pej7LKR9Cz98YHYaqeRUwMQzpG+EpNnQ6T/QKMLsNFIa7W6Ai/8FqyfCMc0Nk/KjAibmczlh6YNQoyF0f8zsNFJaNhtcPR2yj8DnT5qdRioxFTAx3Y//mw67f+Se/dfR9ZUk9dSrBGJ31eJD20BIfp87n3tDr6mUC7vZAcS7Ld/wA1f89BJfutqwxNUJ/m7WC2iul0XFJjt4bPFmbLnR9Aj4kgdOvMl1ixsDek2lbOkMTMy1+kn8yeXJvFsA9+R0Neu1tvxmv8epwlO5N9PCZydDXSv1mkqZUwET8+z8jv6uBN5xDmCbUfgmlWrWa10nv3YrXB350tmGh+yfkp25x8RUUhmpgIk5XE5Y9jB7qcvMvCFFFqtZr3UVfu1sTM67mWpk82T1RaZlkspJBUzMsWku7PmJHR0ew/CrXmiRmvVa26nNfrcaQbxv9Gegc417uoRIGVEBk4p3/IB70nLjK+g48HY1661kim32O3AitgsawLKH1aFDyoxGIUrFW/ccnDgE/Z8Hm40h7YNUsCqZYl/TgKfgf3fCj/Oh/Y3mBJNKRWdgUrH2/gpJ70HkbdCwtdlppCK1GQ5BkbBmsnuSs0gpqYBJxTEMWPGYu9lrd91uw+v4+LjPuo/+5e5YL1JKKmBScbasgD/XudtFVa9rdhoxQ3Ck+5YrG2bCwe1mpxGLUwGTipGXAyv/C/UuhY63m51GzNR7kvtuA6smmJ1ELE4FTCpGYgwc2Oq+X5Svn9lpxEw1A+GKB+HXeNj+tdlpxMJUwKT8HT8AX74ATXtBsz5mpxFP8K97oWYwrHxcw+rlvKmASbnbunACzhNH6JsSRdepa9WZXIj9+QCTs4bC7h95asok7RNyXjQPTMrV6q/W033rfBY4e7DFCFa3eSnoVn8ityND/EO5I+d9BizuAGifkHOjMzApVwHrJpGNHy/nDSt4Tt3mvVt+t3oDH57J/TeNbAe40fWZ9gk5ZypgUn62fUU3VyJv5A0mg1qFFqnbvPc6+bX/3mjOcmdH7rLHk5u5y8RUYkUqYFI+XC5Y9QR7qMe7zv5FFqvbvPc69bWfmjcSP/J4vHqcSYnEqlTApHz8vAh2/4Djsofx8St8wFK3ee92arf6HUZDFhh9Gez8HPb+ZmIysRoVMCl7ednubvMN29Bh4J3qNi+FFNetvt6AJ7AFXACfTzI7nliIRiFK2UuMgUM7IToWfHzUbV6KKHafyH3Q3eh3+9fQ5Apzgoml6AxMytbxA/DlNPek5aY9zE4jVtL5LqgZBKue0ORmKREVMClbX02HE4ehz1NmJxGr8asKPZ+AXcnwy2Kz04gFqIBJ2cnc6b582Hak7vUl5yfierioNax92t0AWuQMVMCk7KybAtigh+71JefJx9fdrf7gdtg4x9ws4vFUwKRs/PWL+1bxncZA7RCz04iVhfWGJle6G0Drzs1yBipgUjbWPAUBNeGKh8xOIlZns0HvyXBsn/vGlyKnoQImpfbV6jjYsoKpR/vT9bUf1FlcSi12X0PW+nTh6LqXGThlsfYpKZbmgUmpxG5Kp8nXT7ObC5nt7Ee2us1LKeV3q2+YN4zV/t8x7Nh8HltcDdA+JYXpDExKZcPy92lnS+WVvKFk4w+o27yUTn63+m1GIz529uAG3zXUy9ulfUqKUAGT8+dyMjr7fba6GrHQ2a3QInWbl/N18r7zat61uPDhQfsi7VNShEcUsBUrVhAeHk5YWBhTp04tdp1PPvmEli1b0qpVK2644YYKTijF+uljLvVx8GLecJz4FlqkbvNyvk7ed/ZSh9nOfgzxWc+VNf8yMZV4ItMLmNPpZOzYsSxfvpyUlBTmz59PSkpKoXVSU1OZMmUK69ev55dffuGVV14xKa0UyMuGdc9xsFYrEny7FFqkbvNSGqd2q38zbxBHqMYLdXS7FSnM9AKWmJhIWFgYoaGh+Pv7M2LECOLiCu+ob7/9NmPHjqVOnToANGjQwIyocrLv34VDadSJfpYp10ao27yUmVO71deoXZ/0lmNo+FcC7PjG7HjiQUwfhehwOAgJ+Wfia3BwMN99912hdbZs2QJA165dcTqdTJo0iX79+lVoTjlJ9hH46kW4pBs07cEQNDpMylaRbvU5nSFtvnu+4a3L3XPFxOuZfgZmGEaR52yn7Jx5eXmkpqaSkJDA/Pnzuf3228nMzCzydTExMURGRhIZGcm+ffvKLbPX2/AGHN8PvSaZnUS8hX81uGoc7NwAqavNTiMewvQCFhwcTFpaWsHj9PR0AgMDi6wzePBg/Pz8uOSSSwgPDyc1NbXI9xozZgxJSUkkJSVRv379cs/ulY4fgG9eh+YDIbiD2WnEm7S/GWo3hrVP6XYrAnhAAevYsSOpqals27aNnJwcFixYQHR0dKF1hgwZwrp16wDIyMhgy5YthIaGmhFXvn4Jco66b3shUpHs/tDjv7BnM6T8z+w04gFML2B2u50ZM2YQFRVFixYtGD58OK1atWLixInEx8cDEBUVRd26dWnZsiU9evRg2rRp1K1b1+TkXujwLkh8G9qOgAYtzE4j3qjNMGjQEtY+C848s9OIyWxGcR9CVQKRkZEkJSWZHaNy+ewBSP4A7k2COk3MTiPe6rdlsGAkDHoNOowyO02lY6VjZ6nPwHr37s2PP/5YFlnEkx34E5Lfhw63qHiJucL7Q3BH+OJ5yD1hdhoxUakL2AsvvMCDDz7Irbfeyu7du8sik3iY2GQHK2Y8QJbTh0E/dVFncDFV7A+7uPevgXDYwSvPP6b90YuVuoBddtllrF27loEDB9KvXz8mT55MVpZ6llUWsckO3lu8lL7OL5njjGLzoSo8tnizDhpiivxO9Z8dacbXzlb8O3chTy/+XvujlyqTQRyGYRAeHs5dd93F66+/TrNmzXj//ffL4luLyaat/J2xfMxRqjArbxCgbvNinvxO9QAv5l1PPdthRriWan/0UqUuYFdccQVBQUE8+OCDOBwO5syZQ0JCAomJiYwZM6YsMoqJ6h/aTJRvEjF5AznEBQXPqzO4mOHk/e4HI4xVzg7caV/C0Uw1LvBGpW4lNWvWLFq1alWke8brr79OixYaam11j1ddxH5nDWY7C7fuUrd5MUNg7ao4Tipi0/OuY7n/YzxcfQVwvXnBxBSlPgNr3bp1keKVb+nSpaX99mKmbV9xuetH3jaGcIx/Cpa6zYtZTu1U/7txMUuNfzGS5XBEt1vxNuU6kVndMizMMGDt01AjkJbRD6nbvHiEUzvVB9WuSpU+T2B35bi7xIhXMb0bvXio1FWQ9h0MfJnoyFCiI/XHiHiGIp3qAQ7eCEnvQZd7oHZI8V8olY7praTEA7lc7rOvOk2g/U1mpxE5u6secf//i+fNzSEVSgVMikqJdTdM7f44+PqZnUbk7GoFQ+Ro+OEj2L/V7DRSQVTApDBnHqx7Duo3dzdOFbGKKx8Ce4B7/xWvoAImhf30MexPdd+2wsf37OuLeIoLGkCn/8DPi2DPz2ankQqgAib/yMuGhKnQqB20GGR2GpFz1/U+CKgJ6541O4lUABUw+cemeXBoJ/SaAKeZ2yfi0arWga73wu/LIN0atwSR86cCJgB89v0fZCx7lkRXc7p+alNzVLGsz6oO5iA1+fqt++k6da325UpMBUyITXbw22cvUY+DTMsdjuPQCXWcF0uKTXYwPv5PZuRGc4Xvz1x8OEn7ciWmAibMXJHM7bY4Epxt+d5oDqjjvFhTfrf6D5y92WVcyMP2T8jKzdO+XEmpgAlXH1tEHdtRXsy7rtDz6jgvVpO/z2bjz+t519DBJ5UePj9oX66kVMC83bH9jLEvY5nzcn42CreLUsd5sZqT99lPnVex3XUR4+yfEFQrwMRUUl5UwLzd+pepSg5vnHIrCnWcFys6uVt9HnZeyhtGS58dvNxmu7nBpFyogHmzw7sg8W1sba/n9mv7q+O8WN6p3eo31ejJoRrN6PjnG+4uM1KpqBu9N/tyGric0P1RhtQppsO3iAUV6Vb/22RYcAP8+BFcdrN5waTM6QzMWx3Y5p643GGUu+u8SGUVPgCCOkDC85B7wuw0UoZUwLzVuufAxw+ufNjsJCLly2aDXhPhcLr7nmFSaaiAeaO/foHNn0KnO6FmI7PTiJS/0O5wyVXw1YuQfcTsNFJGVMC80Zqn3Q1Pu95vdhKRitPrSTi+Hza8YXYSKSMqYN4mLRG2LHc3PK12odlpRCpOcAdoPhC+eR2OHzA7jZQBFTAvEZvsoOuUNWyIuZ8D1OKzqoPNjiRS8Xo+gZFzlI+mP8Aljy5Vs1+LUwHzArHJDh5bvJnQI4l08U3h1dwhjI//U29c8TqxjprEua7k2rxlXMR+HJlZavZrYSpgXmDayt85kZvLI/YFpLnqM9/ZU816xStNW/k7L+YOxYbB/fbFgBpXW5kKmBfYlZnF1T7f0dpnO9PzriMHv4LnRbzJrsws0o36fOjszXDfBJraHAXPi/WogHmBkFp+/J/9E351hRDv+lfB82rWK94mf5+fmTeYLAJ4yP5poefFWlTAvMBr4Zu5xOcvXsgbgevvl1zNesUb5Tf73U8t3s67mqt9E+not03vBYtSAavsco7R7s+3yLjwMrbU6KJmveLVTm72+65zAAepyRsXxeu9YFFq5lvZffsGHP2LerfNY/3Fnc1OI2K6Qs1+v90HKx6FP9ZAWC9zg8k50xlYZXZsP3z9KoRfDSpeIkVF3ga1G8PnT4LLZXYaOUceUcBWrFhBeHg4YWFhTJ069bTrLVy4EJvNRlJSUgWms7Avp0HuMXcjUxEpyh4APSfAns3u/qBiKaYXMKfTydixY1m+fDkpKSnMnz+flJSUIusdOXKE1157jU6dOpmQ0oIObIPv34H2/4YGzc1OI+K5Wg+FRm1h7TOQl212GjkHphewxMREwsLCCA0Nxd/fnxEjRhAXF1dkvQkTJjB+/HiqVKliQkoLWvcs+Nih++NmJxHxbD4+0HsyHNrp/qNPLMP0AuZwOAgJCSl4HBwcjMNRuK1LcnIyaWlpDBw4sKLjWdOuH9yXQ7rcrduliJRE0x7QtKf7sntWptlppIRMH4VoGEaR52w2W8G/XS4XDz74IHPmzDnr94qJiSEmJgaAffv2lVlGK4hNdjBt5e/syjzOwmpTaO1fmwDdLkWk5HpPhre6sWXRU9yaPpBdmVkE1q7KuKhwDbP3UKafgQUHB5OWllbwOD09ncDAwILHR44c4eeff6Z79+40adKEb7/9lujo6GIHcowZM4akpCSSkpKoX79+heT3BPnNeh2ZWXT3+YEOrp954cQ1xP561OxoItbRKIKdIYNpnDoP26GdGKBmvx7O9ALWsWNHUlNT2bZtGzk5OSxYsIDo6OiC5bVq1SIjI4Pt27ezfft2OnfuTHx8PJGRkSam9izTVv5OVq4TX5w8bv+IP10NmZvTQw1KRc7RfXuvxgAetn9c8Jya/Xou0wuY3W5nxowZREVF0aJFC4YPH06rVq2YOHEi8fHxZsezhPxGpMN9E2jm4+D5vJHkYVeDUpFz9OOh6rzjHMAQ329oY/uz4Hm9lzyT6Z+BAQwYMIABAwYUeu6pp54qdt2EhIQKSGQtgbWrkpl5gIfsC0l0hbPSFVnwvIiUXGDtqszKHMQI33X81+9DRuQ8Adj0XvJQpp+BSemNiwrnHv+l1Lcd4rncGwGbmvWKnIdxUeE4/WrwSt5QOvv8Sl+fJL2XPJhHnIFJ6Qy5xIXTvpRVXMmPRhhBGjklcl7y3zMvrfAlNWsVEwIWsGngKAbrveSRVMAqg88n4etjo+89b7KtdsjZ1xeR0ypo9pv6Gnw4lJDspcA9ZseSYugSotWlJcLPC+Ff94KKl0jZadYbwnrDFy/AsQyz00gxVMCszOWCFY/BBQ2h6wNmpxGpfPo+CzlHIWGK2UmkGCpgVrb5U3AkubvNB1xgdhqRyqdBc/ctV5Leg5D/pW0AABJwSURBVL+KNhkXc6mAWVX2EVg9ERq1g7YjzU4jUnl1fwwCasKKR6CY1ndiHg3isIh/eh26+7PNDlnKpUf3wPXvu7tpi0j5qF4Xej4Byx6GX+OJzY4s9F7UiF/z6MhnASf3OjQAv0N/0mTLHHaGDIaQy82OJ1L5dbgVGrTi+GePMHlxUsF7Ub0SzaUCZgH5vQ7zPWH/gGz8uGdv9Bm+SkTKjK8dBrxAtazd3OwqfL9C9Uo0jwqYBZzch627TzK9fZN5Le8aNh9SexuRCtPkCj5zduYuezzBtsK3a1KvRHOogFlAfh+2AHKYbJ/LVlcj5jj7qT+bSAV7r9poXPgw0T6v0PN6L5pDBcwCxkWFU9XPl7vs8TT22csTebdh9wtQfzaRCjaqX1feMIbS13cjvXw2AqhXook0CtEChrQPovrR7XRb8xmxzn+xs2YkUzTySaTCDWkfRJzrEbYt+YpJ9nlsq9qR+/q10XvRJCpgVmAY9Nk+HQKqMuSe2Qyp0dDsRCJea3CHJlD3LZgzgLWXJ0H7/mZH8lq6hGgFKbGwdY17LoqKl4j5mnR1NxBY/yrs22J2Gq+lAubpsjJh+SPQqC10vN3sNCKSr8/T4F8dljzg7ksqFU4FzNOtnujuhD3oNfDxNTuNiOS7oD70fQZ2rIdNc81O45X0GZiHOLVV1LiocIbU2eZ+Y/zrPghsZ3ZEETlV+3/D5k9g9ZNwaT9it7rUZqoC6QzMA5zaKsqRmcWTizdy9NO7oU4TdzNREfE8NhsMfAWc2eyaf2+R97HaTJUvFTAPcGqrKIAxxqdccGyH+83hX82kZCJyVnWbQvdHCdy9mm7ODYUWqc1U+VIB8wCntqGJsG3lTt8lfJJ3FTTtYVIqESmxLvfws6sJz/i9Rx0OF1qkNlPlRwXMA5zchiaAHKb7zWIvtXmn+h0mphKREvP14/kqD1CLYzztN7vQIrWZKj8qYB4gv1UUwEP2T2nm42CC6z/c3e8yk5OJSEkN7d+XGcZ1DPT9joE+7kuJajNVvjQK0QPkj1JasTyWO7KXEevbl0GD/63RSyIW4m4z9Ti/LNnI036z2VGlPaP7ddb7uBypgHmIIS1rMuTLt6FaCEPueg8CapgdSUTO0eAOjeHij+CtK/ns4gXQ7lqzI1VquoToKZY+DJk74JoYFS8RK6t/qbtLR+oq+O4ts9NUaipgnuCnT+CnBXDVI9C4i9lpRKS0Lr8DLu0HqyfAns1mp6m0dAmxAhXbbaNxDix5CEI6w5UPmx1RRMqCzQaDZ8KbXWHhaBiTAP7Vij8G6DOy86YzsApSXLeNiYs3cWDeTWDzgaFvg6/+nhCpNKrXg2tmQcYWWPFIsccAdeooHRWwClJct42HjblcmLkZBs+A2heblExEyk3THnDlQ7BpHr8sfaPIMUCdOkpHBayCnDob/xqfr7jZvpqYvKuhZbRJqUSk3PX4L1xyFQ/nvkUr27Yii9Wp4/ypgFWQk2fjt7Dt4Dm/d9ngbMkH1W81MZWIlDsfXxj2Hpm2mszye4VaHC20WJ06zp8KWAXJ77ZRh8PM8nuZQ1RnHPfzUL+WZkcTkfJWvR6/XTmDi2wHeM1vBr64LyWqU0fpaNRABRnSPggfZzaNl46koesg9wY8zcP9r9QIJBEvcVWvASQfmcRVP0xgkjGXWdXvZly/5joGlIIKWEUxDKJ3PAfGb3DdbGJaa4a+iLdpP+Q+qJ7BTetf5abuPaF9L7MjWZpHXEJcsWIF4eHhhIWFMXXq1CLLX3rpJVq2bElERAS9evVix44dJqQspYQpsPlT6DkBVLxEvFevSdAiGlb+F35dYnYaSzO9gDmdTsaOHcvy5ctJSUlh/vz5pKSkFFqnffv2JCUl8dNPPzFs2DDGjx9vUtozi0120HXqWi55dCldp679Z37Hd2/BF89Duxvhyv8zN6SImMvHB655C4Iug0WjYduXBYtOewyRYplewBITEwkLCyM0NBR/f39GjBhBXFxcoXV69OhBtWruuxJ37tyZ9PR0M6Ke0ekmKW6KfQ2Wj4fwq2HQq+4Z+iLi3fyrwQ2fQp1L4KMRsPM7TXQ+D6YXMIfDQUhISMHj4OBgHI7Tv2Dvvvsu/fv3r4ho56S4icp9nF/R7oeJ0LQXXDcbfP1MSiciHqd6Xbg5Fmo0hA+HEbd8mSY6nyPTC5hhGEWes53mLOWDDz4gKSmJcePGFbs8JiaGyMhIIiMj2bdvX5nmPJtTJyMO8/2Cl/zeINHVHK7/AOwBFZpHRCygRkMYFQ9VavNy9pNcZttSZBVNdD490wtYcHAwaWlpBY/T09MJDAwsst7nn3/Os88+S3x8PAEBxReDMWPGkJSURFJSEvXr1y+3zMU5eTLiGN/PeNHvLTa4WvJE1QnuywUiIsWpFQy3LOGwT00+9H+OHj7JhRZrovPpmV7AOnbsSGpqKtu2bSMnJ4cFCxYQHV24tVJycjJ33nkn8fHxNGjQwKSkZzYuKpxqfjYet3/I437z+czZmbE8xj392pkdTUQ8XZ3G/Bz1CVsJ5m2/6Qz1cQ/s0ETnMzN9HpjdbmfGjBlERUXhdDq57bbbaNWqFRMnTiQyMpLo6GjGjRvH0aNHue666wC4+OKLiY+PNzl5YUMurUKXRjO5aO/XzM3ry9vV7+Spfi00SVFESmRA5wiW+HxM1orRTLfNorNvGv4DnmWwjiGnZTOK+xCqEoiMjCQpKaliflja9/DpKDi2D/q/AB1u0WhDETk/zlxY/SR8OxOCIuG6OVA75KxfVlYq9NhZSqafgVnJqTeje7RXCIMOfQjfvA41g2D0agjUJUMRKQVfP+j3HFzcCeLugVldofckuGwUsT/u0Q0xT6ICVkL5czTcw1wNWh3+kg5L3gdbBrS9wb3DVa1jdkwRqSxaDoaLWsNn98OSBzn49Xt8sH8kjtwmwD/zxACvLWKmD+Kwimkrf8eZe4Jrfb5kif9/ifF/mUNGVe7yfxaueVPFS0TKXt2mMOozuPYdXJlpLPR9nDl+z9PN50fA8Pp5YjoDO5uje2Hbl9xz9AN6B2yivu0QW1xBPJJ7B4ucV+LM0SYUkXJks0HEdfT4CG72XclN9tXM832era5GrHW1Z8PhVnAiEqrUNDtphdPR91TfzoKNc+BEJmRlQp57EuFAezW+drbiQ2dvvna1BtyDNII0R0NEKkCN2nWZkXkNbzkHcbXPt1zn+wU3+67mDvsymDoN/GtA1dpQpRb0eQrCKn+nexWwU1WpBfXC3P+vUts9U75xV9b8VY/H/pdCluufVi+aoyEiFWVcVPjfn8NDrOsKYl1XUMvPycwr87iiylY4fsD9R/eJTPC/wOy4FUIF7FTtRrr/O8WQIMDmqxFAImKK/GPNqcegK7z4GKQCdpJTh8mfWqCGtA9SwRIR05ztGHS2Y1hlowL2t8LD5DVEVUSsxRuPYRpG/7fibofi7UNURcQ6vPEYpgL2t9PdskC3MhARK/DGY5gK2N9Od8sC3cpARKzAG49hKmB/GxcVTlU/30LPaZi8iFiFNx7DNIjjb6cbolpZP/wUkcrFG49hKmAn0TB5EbEybzuG6RKiiIhYkgqYiIhYkgqYiIhYkgqYiIhYkgqYiIhYks0wDMPsEOWhXr16NGnS5Ly+dt++fdSvX79sA5UB5To3ynVulOvceWq20uTavn07GRkZZZyofFTaAlYakZGRJCUlmR2jCOU6N8p1bpTr3HlqNk/NVdZ0CVFERCxJBUxERCzJd9KkSZPMDuGJOnToYHaEYinXuVGuc6Nc585Ts3lqrrKkz8BERMSSdAlRREQsSQUMGDduHM2bNyciIoJrrrmGzMzMYtdbsWIF4eHhhIWFMXXq1HLP9emnn9KqVSt8fHzOOKKoSZMmtGnThnbt2hEZGekxuSp6ex04cIA+ffrQrFkz+vTpw8GDB4tdz9fXl3bt2tGuXTuio6PLLc/Zfv/s7Gyuv/56wsLC6NSpE9u3by+3LOeSa86cOdSvX79gG73zzjsVkuu2226jQYMGtG7dutjlhmFw3333ERYWRkREBJs2bfKIXAkJCdSqVatgez311FPlniktLY0ePXrQokULWrVqxauvvlpkHbO2V4UyxFi5cqWRm5trGIZhjB8/3hg/fnyRdfLy8ozQ0FBj69atRnZ2thEREWH88ssv5ZorJSXF+O2334yrrrrK+P7770+7XuPGjY19+/aVa5ZzzWXG9ho3bpwxZcoUwzAMY8qUKcW+joZhGNWrVy/XHIZRst9/5syZxp133mkYhmHMnz/fGD58uEfkmj17tjF27Nhyz3KqL774wti4caPRqlWrYpcvXbrU6Nevn+FyuYwNGzYYl19+uUfkWrdunXH11VdXSJZ8u3btMjZu3GgYhmEcPnzYaNasWZHX0aztVZF0Bgb07dsXu919Z5nOnTuTnp5eZJ3ExETCwsIIDQ3F39+fESNGEBcXV665WrRoQXi4592MriS5zNhecXFxjBo1CoBRo0YRGxtbrj/vTEry+5+cd9iwYaxZswajnD+SNuN1Kalu3bpx4YUXnnZ5XFwcN998Mzabjc6dO5OZmcnu3btNz2WGRo0acdlllwFQo0YNWrRogcPhKLSOWdurIqmAneK9996jf//+RZ53OByEhIQUPA4ODi6yw5jFZrPRt29fOnToQExMjNlxAHO2119//UWjRo0A9xt87969xa534sQJIiMj6dy5c7kVuZL8/ievY7fbqVWrFvv37y+XPOeSC2DRokVEREQwbNgw0tLSyjVTSXnye3DDhg20bduW/v3788svv1Toz96+fTvJycl06tSp0POevL3Kitfc0LJ3797s2bOnyPPPPvssgwcPLvi33W7nxhtvLLJecX8Z22y2Csl1NuvXrycwMJC9e/fSp08fmjdvTrdu3UzNZcb2KqmdO3cSGBjIn3/+Sc+ePWnTpg1NmzYtdbaTleT3L69tdCYl+ZmDBg1i5MiRBAQEMGvWLEaNGsXatWvLNVdJmLG9SuKyyy5jx44dXHDBBSxbtowhQ4aQmppaIT/76NGjDB06lFdeeYWaNWsWWuap26sseU0B+/zzz8+4fO7cuSxZsoQ1a9YU+yIHBwcX+ks0PT2dwMDAcs9VEvk5GjRowDXXXENiYmKpC1hpc5mxvS666CJ2795No0aN2L17Nw0aNCh2vfwcoaGhdO/eneTk5DIvYCX5/fPXCQ4OJi8vj0OHDpX7paqS5Kpbt27Bv++44w4eeeSRcs1UUuW1T5XWyYVjwIAB3H333WRkZFCvXr1y/bm5ubkMHTqUG2+8kWuvvbbIck/dXmVJlxBxj8p6/vnniY+Pp1q1asWu07FjR1JTU9m2bRs5OTksWLCgXEewldSxY8c4cuRIwb9XrVp12tFSFcmM7RUdHc3cuXMB9x8kxZ0pHjx4kOzsbAAyMjJYv349LVu2LPMsJfn9T867cOFCevbsWe5/IZck18mfk8THx9OiRYtyzVRS0dHRzJs3D8Mw+Pbbb6lVq1bBJWMz7dmzp+BsJzExEZfLVeiPgPJgGAajR4+mRYsWPPTQQ8Wu46nbq0yZM3bEszRt2tQIDg422rZta7Rt27ZgZJjD4TD69+9fsN7SpUuNZs2aGaGhocYzzzxT7rkWL15sBAUFGf7+/kaDBg2Mvn37Fsm1detWIyIiwoiIiDBatmzpMbkMo+K3V0ZGhtGzZ08jLCzM6Nmzp7F//37DMAzj+++/N0aPHm0YhmGsX7/eaN26tREREWG0bt3aeOedd8otT3G//4QJE4y4uDjDMAwjKyvLGDZsmNG0aVOjY8eOxtatW8sty7nkevTRR42WLVsaERERRvfu3Y1ff/21QnKNGDHCaNiwoWG3242goCDjnXfeMd58803jzTffNAzDMFwul3H33XcboaGhRuvWrc84Mrcic73++usF26tTp07G+vXryz3TV199ZQBGmzZtCo5bS5cu9YjtVZHUiUNERCxJlxBFRMSSVMBERMSSVMBERMSSVMBERMSSVMBERMSSVMBERMSSVMBERMSSVMBEKkiPHj1YvXo1AE888QT33XefyYlErM1reiGKmG3y5MlMnDiRvXv3kpycTHx8vNmRRCxNnThEKtBVV13F0aNHSUhIoEaNGmbHEbE0XUIUqSCbN29m9+7dBAQEqHiJlAEVMJEKsHv3bm688Ubi4uKoXr06K1euNDuSiOWpgImUs+PHj3Pttdcyffp0WrRowYQJE5g0aZLZsUQsT5+BiYiIJekMTERELEkFTERELEkFTERELEkFTERELEkFTERELEkFTERELOn/ASkOnnE3/7vZAAAAAElFTkSuQmCC
iVBORw0KGgoAAAANSUhEUgAAAbAAAAEgCAYAAADVKCZpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deVxU9f7H8dewKZpCLpSApYghoriESVmm5l4RmZltWlp61a7V/aVpi9kqZXVb7GbUTW3TNq9wcyH3W+ZGcsvUjNwSpNQSV5Tt/P44yRXZBmHmzPJ+Ph4+HjJzZngz4nzmu9sMwzAQERFxMz5WBxARETkXKmAiIuKWVMBERMQtqYCJiIhbUgETERG3pAImIiJuSQVMRETckgqYiIi4JRUwERFxSypgIiLillTARETELamAiYiIW1IBExERt6QCJiIibkkFTERE3JIKmIiIuCUVMBERcUsqYCIi4pZUwERExC2pgImIiFtSARMREbekAiYiIm5JBUxERNySCpiIiLglFTAREXFLKmAiIuKWVMBERMQtqYCJiIhbUgETERG3pAImIiJuSQVMRETckgqYiIi4JRUwERFxSypgIiLilvysDuAoTZo0oUWLFlbHEBFxK7t37+bgwYNWx7CLxxawFi1akJ6ebnUMERG3EhcXZ3UEu6kLUURE3JIKmIiIuCUVMBERcUsqYCIi4pY8dhKHiKtbkJHN9LTt7MvNIzQ4kAn9okjsFGZ1LBG3oQImYoEFGdlMnr+ZvIIiALJz85g8fzOAipiIndSFKGKB6WnbS4rXaXkFRUxP225RIhH3owImYoF9uXnVul1EylIBE7FAaHBgtW4XkbJUwEQsMKFfFIH+vqVuC/T3ZUK/KIsSibgfTeIQscDpiRqahShy7lTARCyS2ClMBUukBtSFKCIibkktMJFKaLGxiOtSAROpgBYbi7g2dSGKVECLjUVcmwqYSAW02FjEtamAiVRAi41FXJsKmEgFtNhYxLVZXsBGjBhBSEgI7dq1K/d+wzAYP348kZGRxMbGsmnTJicnFG+V2CmMaYPaExYciA0ICw5k2qD2msAh4iIsn4V41113cd999zFs2LBy71+8eDGZmZlkZmayfv16xowZw/r1652cUryVFhuLuC7LW2Ddu3enUaNGFd6fkpLCsGHDsNlsxMfHk5ubS05OjhMTioiIK7K8gFUlOzub5s2bl3wdHh5Odna2hYlERMQVWN6FWBXDMMrcZrPZyr02OTmZ5ORkAA4cOODQXCKuTruIiKdz+QIWHh7O3r17S77OysoiNDS03GtHjRrFqFGjAIiLi3NKPpEq5R+HXzfDvv/CoV1wOAuO7INTR6G4AIoKwS8AAhtBvcbQsBmEtIWQaLigHdSruIu9ItpFRLyByxewhIQEZsyYwdChQ1m/fj1BQUE0a9bM6lgiFSsugqyN8FMa/LwUftsCRrF5X0ADCAqDhqFwfgvw8QNffyg8CSf+gKM5sHc9fDv7zyezQbMOENEDInvDxVeAj2+53/ZMle0iogImnsLyAnbrrbeyatUqDh48SHh4OE8++SQFBQUA/OUvf2HgwIEsWrSIyMhI6tWrx6xZsyxOLFKB37ZAxofw/cdw4iDYfOGiy6H7BAjtBM06mq2rqhgGHPsN9m+FrHTYsRLWzoA1r0CDUIi9GTrcBiFtKnwK7SIi3sBmlDfI5AHi4uJIT0+3OoZ4uuIi2JoC37wO+zaBjz9EDYCYRGh1DQQG1873OXUMMtPgu4/h52VgFJnP3+1+aNkdzhoX7pa0guxyilVYcCBrJvWqnUzikdzpvdPyFpiIWyrMh/9+CGteNce1GkdC/yRoPwTqNwZOT6LYVDuTKOqcB+1uMv8cOwCb5sD6t+C9BLNl13sqtOpZcvmEflGlxsBAu4iI51EBE6kOw4BtqbBsKvyxE0I7Q5+noM21pcamHDqJ4rym0P0huPw++H4efPUSvJ8IkX2g79MQEl3yPTQLUTyZuhBF7JXzPSyaAHvXQdM2ZuFq3bdM9x04uQuv8JTZGvvPi5B/FK74K/SYDP7adFiqz53eO9UCE6lK/glYnQTfzIDA8+H6V6HjHeBb8X8fZ0yiKL3Oqx2P9FrMtb/NNLs1t30BN8wwZy2KeCiX34lDxFJ7voE3LzeLQsfb4L6NcOldlRYvcPxRLKe7KLNz8zAwuygf+mIvC5pPgmEpUFwIswbA0iegqKBWvqeIq1EBE6+2ICObbkkraDlpId2SVrAg489tyooKYPnTMPtawAbD/2zRnLWouKLHO/oolkpPi47oAWPXmoV2zSvmz3A4q1a+r4grUReieK2KJlrUO76XvtsegexvodMd0P95cxagnY8HamUSRWVbQVXZRRlQ3+zqbHEV/Pt+mHklDH4XWmkKvXgOFTDxWuW1YroWfUv8sjegrh/cPMdcz1WNx5+520VNjmKpqjiGBgeWO0mkTBdl+8HmIuqP74QPBsOA5+Gye88pk4irUReieLQKuwgp3YqxUcx9vv/iXf/pZBU3gVGrKy1eZz/enturo9IuQqrZRdm4FYxMM7eiWvSQOZOyqLDGGUWspgImHqu8iQ6T528uKWKnWyt1yGeG/2s85P8pKcVXcF/g89CoZZXP78iJGlUVx2qfFl2nAdw611w7tiEZPhkGBSdrnFPESupCFI9VVRffhH5RvDj/K163TaeDbQfPFNzOhz7XM61/rF3P78jdLuzpIqx2F6WPL/R7FoIvgsUT4aObYehHZnETcUNqgYnHqrIVE36ctAZPEe3zC2MKHmBxg8FMGxRrd1GodiuoGhw6i7HraLjxLdi9BuYkmLvgi7ghtcDEY1XaisneBB/cRH0fX7hnCW+FX3pO36MmEzWqel5w4FZQHYZCnYbw6V3mforDUs/p3DERK2krKfFYZ8/kA7MV8/ZVJ7gy/a/mG/adC8xJDt4qcxnMuxUuiDFfi9raPV/clju9d6oLUTxWeV18s644yJXr/wJB4TAizbuLF0Dr3jDkffj1B/hwMJw8YnUiEbupC1E8Wqkuvh8XwicPwIXt4I756jI7Lao/3DwLPhkO826DOz4HvzpWpxKpklpg4h1+XGi+QTeLNbvKVLxKi74eEt+E3V/B/FFQXGx1IpEqqYCJ5/tx0RnF618a56lIh1ugz9OwdQEsmWSefSbiwtSFKJ5txwr49IziVTfI6kSurdt4OPYbrJ0BDUPhygesTiRSIRUw8Vy/rIN5t0OTS8xxHRWvUircLLjP03Bkn3nqdONIiL7O6qgi5VIXonimnO/gwyHQoNmf3YbnW53IpVS6zZaPDyT+w9wEeP4o8yRqERekAiYur7INecv1x0744CZzi6RhKXBeiHOCupGqNgvGP9DcO7FuEMy9FY7+ZkFKkcqpgIlLq2pD3jKOHzSLV3EhDFsAwc2dmtdd2LWTfoML4bZ5kPcHfHInFOY7KZ2IfVTAxKVV2VI4U/5x+PBmOJIDt30CTVo7KaX7sXsn/WYd4IY3YO96+PIxJyQTsZ8KmLg0u8/cKiqET++GnP+aJw83v8wJ6dxXtTYLbjcI4sfBhrfg+0+clFCkaipg4tLsbil8+ShkpsHAF6HNQCckc2/V3km/z5Nw0RWQOt7cdkrEBWgavbg0u87cWp8M62eahzV2GWlBSvdUrZ30ff3N7abe6m4ehjl6tc4RE8upBSYurcqWwk9fwpKHIWog9HnK0qwer8GFZvfsoV2waILVaUTUAhPXV2FLYf+PFHxyFztpwaDvBhO8Z3XtnpklZbW4ErpPhNVJ0PJq6Hir1YnEi6kFJu7pxB8cmzOY3AI/huc9yHHqVj3FXmpH9wlwcTdY+H9w8Ger04gXUwtM3E9RIXw2gjrHcxiW/xi/0rjkrtNT7NUKq5kKt5kC8PWDQW/DzG7w2d1wz3LwC7D/8XbcL2IPtcDE/Sx7Anau5LGCu9lkXFLm7oqm3ot97Fo8HhRmrg/79XuzO7Eaj6/24nSRCrhEAVuyZAlRUVFERkaSlJRU5v5ffvmFnj170qlTJ2JjY1m0aJEFKcUlbP7M3Cn9slF83aD86fIVTb0X+9i9eLzNtdDpDvj67+bGyXY+vlqL00UqYXkBKyoqYty4cSxevJitW7cyd+5ctm7dWuqaZ555hiFDhpCRkcG8efMYO3asRWnFUr9tgdS/muuR+j1XvcW4Yje7F48D9E+CoObmpr+njtr1+Go9v0glLC9gGzZsIDIykoiICAICAhg6dCgpKSmlrrHZbBw5cgSAw4cPExoaakVUsVJeLnx8B9RpCDfPBl//6i/GFbvYvXgczLVgN74Fub/Aksl2Pb5azy9SCcsLWHZ2Ns2b/2/D1fDwcLKzS/eFT506lQ8++IDw8HAGDhzI66+/7uyYYqXiYlgwxnyTHDIHGlxQcldipzDWTOrFrqRrWTOpl4pXLah2y/biy6Hb/ZDxPmQurfLxajlLbbG8gBnlHFtus9lKfT137lzuuususrKyWLRoEXfeeSfFxcVlHpecnExcXBxxcXEcOHDAYZnFyb55FbYvgn7PwUXxVqfxeOfUsu35CDRtA/++n8To8yp9vFrOUltsRnkVxInWrl3L1KlTSUtLA2DatGkATJ48ueSamJgYlixZUtJSi4iIYN26dYSEVHzOU1xcHOnp6Q5MLk6xew3MuR7aJsDgWXDWhxtxIVnfwj97Q6c7IeE1q9PIOXKn907LW2BdunQhMzOTXbt2kZ+fz7x580hISCh1zUUXXcTy5csB2LZtGydPnqRp06ZWxBVnOnYAPhsB57eA619T8XJ14Zea+1FumgM7VlqdRryA5QXMz8+PGTNm0K9fP6KjoxkyZAgxMTFMmTKF1NRUAF566SXefvttOnTowK233srs2bPLdDOKhykugvn3wMlcc9yrbkOrE4k9ej4CjSPNXetPHbM6jXg4y7sQHcWdmsFSjtXTYeUzZsvr0uFWp5Hq+GUdvNvPPEOs/3NWp5Fqcqf3TstbYCJl7PkGVj0H7W+GzsOsTiPVdVE8xI2A9W9C9iar04gHUwET13LiD/j8Hgi+GK59WeNe7uqaJ6B+CPx7vLl3pYgDqICJ6zAMSBkHx/abhydq3MtlLcjIplvSClpOWki3pBVl9zEMDIaBL8Cvm2HdP6wJKR5PBUxcx8Z3zPVefZ6C0E5Wp5EK2L0Zb3SCedDoyufg0B5LsopnUwET1/DbVkh7FFr3hfgxVqeRSti9Ga/NBgOng80HlkxyYkLxFipgYr2CPPh8JNQNghv+oXEvF1etzXiDwuHqiWbLevtiBycTb6MCJtZb+gTs3wqJb8J5WqDu6qq9GW/8WHObqcUTIf+EA5OJt1EBE2v99CVseMt8k2vd2+o0Yodqb8brFwADXzQ3Y/76ZSckFG+hAibWOXYAUsZCSIw57VrcwjltxtvyKoi9Bb5+BQ7+7LSs4tn8rA4gXsowzDVCJw/DsBTwr2t1IqmGxE5h1d89vs/T8OMiSJsMt3/qmGDiVdQCE2tsmmMO7PeeChfEWJ1GnKHBBdDjYcj8En5KszqNeAAVMHG+33eYp/e2vBq6asq8V7lsNDRubU6rLzxldRpxcypg4lxFhfCv0eDrb8469NGvoFfxC4ABz8MfO7VDh9SY3j3Euda8AlkbzX0Og3QCr1eKvAairjVPHDiSY3UacWMqYOI8Od/BqmkQMwjaD7Y6jVip37NQXAArnrY6ibgxFTBxjoKTMH801GsC175kdRqxWqOW5pZh//0Q9mVYnUbclAqYOMfKZ+DANrjhDajXyOo04gquegjqN4Ulj5jLKkSqSQVMHG/PWvhmBlx6t3bbkP+p2xB6Pgq/fANbU6xOI25IBUwcK/84LBgDwRdB32esTiOupvMwcyeWpY+b3cwi1aACJo619Ak4tNucMl/nPKvTiKvx8YX+z5n7JK6faXUacTPaSkpqbEFGNtPTtrMvN4/Q4EAm9IsytxnasRI2vg3x46BFN6tjiquK6AGt+8FXL0OnO6F+Y6sTiZtQC0xqpKLTeb/YsB1S7oPGrUltMrLy4+dF+jwF+UfhPy9YnUTciAqY1EhFp/MWpz0CR/exuu1TPJySWfXx8+LdQtqY42Eb3zG3GhOxgwqY1Eh5p/Be7fMdCUXL4IrxPLKxrn3Hz4v0eAR868CyqVYnETehAiY1cvYpvA05TpL/2+yyNYcek6t3/Lx4twYXwJUPwLZU+GWd1WnEDaiASY2cfTrvY34f0JRc9lz1IvjXrf7x8+LdLh8H510IS6docbNUSQVMauTM03l7+mQwxG81Oy4ZSY9e/QH7jp9fkJGtSR5iCqgPPSbB3vU8/FySfiekUipgUmOJncJYc39nZjX+EJq2IeqWZ0vdV9nx8xXNYtQblvdKsfVipxHKvafew4ci/U5IhbQOTGrHl4/Csd9g6AfgV6fUXZUdP1/RLMbpadurf2S9eIQXlu6gXcEtvBXwdwb7/oePi3rqd0LKpRaY1FzmMsj4ALrdD2GXVuuhmuQhZ9uXm0dacRzpxZfwoN9n1OVUye0iZ1IBk5o5eRj+PR6atjHHLqpJkzzkbOa/vY2kgqFcaDvECN/FZ9wu8j8qYFIzXz4GR3Mg8R9lug7tYc8kD/Eup38n0o02LC3qzF/8vuBC/zz9TkgZLlHAlixZQlRUFJGRkSQlJZV7zSeffELbtm2JiYnhtttuc3JCKdfPy2HTe3DF+Gp3HZ5W1SQP8T5n/k68VDiE82x5vBf1jX4npAybYVi72KKoqIhLLrmEpUuXEh4eTpcuXZg7dy5t27YtuSYzM5MhQ4awYsUKzj//fPbv309ISEilzxsXF0d6erqj43uvk0fgzSvAPxBGfwX+da1OJJ5q/mjYugDGZ0DDUKvTeDx3eu+0vAW2YcMGIiMjiYiIICAggKFDh5KSUvpwu7fffptx48Zx/vnnA1RZvMQJlk6BI9lwwz9UvMSxek6G4iJY/bzVScTF1LiA9e7dm+++++6cH5+dnU3z5s1Lvg4PDyc7u/R6j59++omffvqJbt26ER8fz5IlS875+0kt2Lkavp0F8WOheRer04inO78FxI2ATe/DwZ+tTiMupMYF7IUXXuDBBx/k7rvvJicnp9qPL68H02azlfq6sLCQzMxMVq1axdy5c7nnnnvIzc0t87jk5GTi4uKIi4vjwIED1c4idjh1DFLvg0atoNdjVqcRb9H9IfCrCyt1qrf8T40LWOfOnVmxYgXXXXcd/fv358knnyQvz/71GuHh4ezdu7fk66ysLEJDQ8tcc8MNN+Dv70/Lli2JiooiMzOzzHONGjWK9PR00tPTadq06bn/UFKx5U9C7l644Q1z/EvEGc4LgfgxsOVfkPO91WnERdTKGJhhGERFRTFmzBhef/11Wrduzfvvv2/XY7t06UJmZia7du0iPz+fefPmkZCQUOqaxMREVq5cCcDBgwf56aefiIiIqI3oYofTexUOnfwibEhmR8QdcPHlVscSb3PFX6FuEKxQK0xMNS5gV155JWFhYTz44INkZ2cze/ZsVq1axYYNGxg1alSVj/fz82PGjBn069eP6OhohgwZQkxMDFOmTCE1NRWAfv360bhxY9q2bUvPnj2ZPn06jRvr2HFnOL1X4e+5uST5J7OnOISbM3trXzpxvsBg6PYAZKbBL+utTiMuoMbT6H/44QdiYmLKjFsBREdHs23btpo8/Tlzp6mgrqxb0gqyc/N43O99RvotZmj+Y6wrbktYcCBrJvWyOp54m/zj8GpHaHIJ3PUFlPO+IzXjTu+dNW6BtWvXrtziBbBw4cKaPr1YbF9uHpfatnO37xLeK+zDuuK2JbeLOF1Afeg+AfZ8DTtXWp1GLObQdWAap3J/LYJ8eME/mWyjCUmFt5bcrn3pxCqpvn3IoSnfzfk/uk1bru5sL2b5QmZxbcnN02jlk8PDhfdyAnPBsvYqFKssyMjm4ZTtvFxwIx18dtL26Nc6K8yLqYBJxfZupPWOOey6+Gb2NOyivQrFcqfPj5tfdBU7iy/kb36fcrKggOlp20uu0Qnf3kMHWkr5CvJgwRhoGEbLW19mTd2GVicSKRl7LcKXVwoH81rADK7zWccXuVcA/5s1e/qQ1NOnOQP60OWB1AKT8q2aBr9nQsJroOIlLuLMsdd/F8fzY3FzHvD7nOZBAUDlJ3yL51EBk7Ky0uGb16HzcGilqfLiOs48P87Ah5cLB9PKJ4dXos3lOjrh27uoC1EAs+tletp2DuYeZkngY1xQN4R6fbXjgbiW092A09O2sy83jy0NruJQ4FI673obCv9CaHAg2eUUK82a9UwqYFJq3GCS3+e0NLIYeewRrt92lMRO6j4U15LYKaz0eFamAR/eBBnvMaHfgFJjYKBZs55MXYhSMm7QyZbJvb5f8FFhT5YXtNO4gbiHyGugeTz850US2zXSCd9eRC0wYV9uHnXIZ7r/W+TQmOcKby+5XcTl2WzQ61GYcz2kzyLx8rEqWF5CLTAhNDiQv/l9SqTPPiYV3Msx6pXcLuIWWnY3/3z9snlmnXgFFTBhWpcT3Ou7iI8Ke/F1cXtA4wbihno+BscPwIZkq5OIk6iAebv8E3TfMoW8+qHMqn+Pxg3EfV3UFSL7wJpX4eRhq9OIE2gMzNstfxL+2EH94f9macvuVqcRqZlej0JyD1j3JvSYZHUacTC1wLzZrq9g/Uy4bLQ5fiDi7kI7QZvrYO0bcOIPq9OIg6mAeatTRyFlLDSKgN5PWJ1GpPb0fMT8/V47w+ok4mAqYN4q7VE4nAWJb5qHBIp4igtiIOZGWDcTjh+0Oo04kMbAvMTpraL25eZxU4MtvFgwB7o9ABfFWx1NpPb1mAxbF8DXf4d+z1qdRhxELTAvcHqrqOzcPII4ysT8N9huXETq+XdZHU3EMZpeArG3wMZ34OivVqcRB1EB8wJnHjHxjP8sgjnKA/ljeH7ZLouTiTjQ1ROhuBC+esnqJOIgKmBe4PSWUAk+a7jOdx2vFN7ENuNibRUlnq1RBHS6A9JnQe4vVqcRB1AB8wKhwYE043ee8Z9FevElvFV0fcntIh6t+wRzr8T/TLc6iTiACpgXmNC3NX+vMxMfinmwYAxF+GqrKPEOQeFw6d2Q8SH8vsPqNFLLVMC8QOKpVOJtW3jdfyRZxgXaKkq8y1V/A98AWP281Umklmkavaf7bQssexLaXMfkW55lss1mdSIR52pwIVx2L3zzOlz5NwhpY3UiqSVqgXmygjz4/B6oGwTXv2qOBYh4o24PQMB5sOo5q5NILVIB82TLpsL+reZuG/WbWJ1GxDr1G8PlY2FrCuR8Z3UaqSUqYJ4qc6m5UW/XMdC6t9VpRKx3+TioGwwrtDOHp1AB80THDsCCMRASA72nWp1GxDXUDYJu90NmGuzdYHUaqQUqYJ6muBgW/AVOHoGb3gH/ulYnEnEdXUdD/RBY/pTVSaQWqIB5mnVvwM/LoP9zcEFbq9OIuJaA+nDV/8Hur2DnKqvTSA25RAFbsmQJUVFRREZGkpSUVOF1n332GTabjfT0dCemcw8LMrIZ+dxbFKQ9wWqfrizw7W91JBHXFHc3BDU3W2GGYXUaqQHLC1hRURHjxo1j8eLFbN26lblz57J169Yy1x09epTXXnuNrl27WpDStS3IyOaZ+et5/ORL7CeY8SdGMvlfP7AgI9vqaCKux68O9JgE2d/CjwutTiM1YHkB27BhA5GRkURERBAQEMDQoUNJSUkpc93jjz/OxIkTqVtXYzpnm77kR57gLZrb9nN//jgOcx55BUVMT9tudTQR1xQ7FJpcAiuehuIiq9PIObK8gGVnZ9O8efOSr8PDw8nOLt1yyMjIYO/evVx33XXOjucWehz7gut91/FS4c2kG//bZUC7zYtUwNcPej4KB36E7z+xOo2cI8sLmFFOH7TtjB0jiouLefDBB3npparP9ElOTiYuLo64uDgOHDhQqzldVs53TPF/n9VFsbxZlFDqLu02L1KJ6ARo1sHcnaMw3+o0cg4sL2Dh4eHs3bu35OusrCxCQ0NLvj569Cg//PADPXr0oEWLFqxbt46EhIRyJ3KMGjWK9PR00tPTadq0qVPyO8uCjGy6Ja2g5aSFdEtaYY5vnTwCn95Fcd1GTOavGGf8c2q3eZEq+PjANVPMs8K+nWV1GjkHlhewLl26kJmZya5du8jPz2fevHkkJPyvJREUFMTBgwfZvXs3u3fvJj4+ntTUVOLi4ixM7VwLMrKZPH8z2bl5GEB2bh6T539P9pyRcGgPgbfOYeKgboQFB2ID7TYvYq9W10CLq2D1C3DqqNVppJos343ez8+PGTNm0K9fP4qKihgxYgQxMTFMmTKFuLi4UsXMW01P205eQemB5juKUwnL+RL6PA0XX07ixahgiVSXzWbuVvPONbD2DXN2orgNm1HeIJQHiIuL85j1Yi0nLeTMf6Sutm18GPAsS4vjGPDUl9plXqQaFmRkMz1tO/ty8wgNDmRCvygSf3oYdqyE+7/z+o2v3em90/IuRKnamZMxQjjEjIDX2GNcwMv17lfxEqmG8rvjN7Os2WgoOAH/edHqiFINKmBuYEK/KAL9fQmggJkBf6c+J3nA+D/G9e9kdTQRt1Jed3xeQRFPfFMAne6Aje/w5dfry06YEpdk+RiYVC2xUxgYBr4L76dz0c886j+BkQMHasxLpJoqWhu5LzcPekym8LtPyP/ySbLzxwH/a6GBxphdkVpgbiKxcDHXFy2Dqx7i2Ucf038mkXNQ0drI0OBAaBjKh1zLdT5raG/bWXKfdrVxXSpg7mD317BkElzS39w9QETOyenu+DOduWbyxeMD+N1owCN+H8EZU6e0q41rUgFzonIXI1fl9x3w8R1wfksYlGwuvhSRc5LYKYxpg9pXuGayYXBjXi0cxOW+W+np89+Sx2lXG9ekMTAnOT376fQAsl1963mH4KNbzL/f9rF5oqyI1Ehip7AK/89N6BfF4/P7cldxGpP9PuI/+bEE+AdoVxsXpY/zTlLR7KcK+9aLCuDTu+DQbrjlA2jcyuEZRbxdYqcwnh7UiX/WGcYlPtmMOu8b7WrjwtQCc5JKZz+dzTBg0UPmibE3vAEtrnRsOBEpkdgpjMSOj8Csr3n4925vnXgAABDeSURBVM8g+hGrI0kF1AJzkkpnP1F6fOytZ8fCt7PhygfNtSki4lw2G/R7Fo4fgK+qPglDrKEC5iSVzX46c3eAQT7/YXThR6QWX8WCRvdYlFZECOtsHny57h9mV764HBUwJ6ls9tPp8bGrfL4nyf9tvipqx//l38v0L3+yOraId7tmCth8YekTVieRcmgMzIkqmv20LzePzrafmOn/dzKNcMYUPEABflp7ImK1oDDodj+sToI938DFV1idSM6gFpgLuKrhb8wKeIEDRjDD8x/mGPUArT0RcQndxkPDcFg8EYqLqr5enEYFzGq/7yDZ9gx51OWOgkc4QDCgE5VFXEZAfej7NPy6WSc3uxgVMCsd2g3v3UBdX/jhmvcwgi7SicoirijmRvPk5hXPwIk/rE4jf9IYmFUO7YbZ15nHmA9PpXezDvTubnUoESmXzQYDnoeZV7Hzk8nc+estpQ/E1IdNS6gFZoWzihfNOlidSESqckEMO1oM5eJdHxN8eFupAzF1Zpg1VMCc7WAmzLpWxUvEDY3b158/aMCz/v/Eh2JAx61YSQXMmfb9F97tD4UnVbxE3ND2w748W3AHHX12cJvv8pLbteTFGipgzrJ7Dcy5HvwDYUSaipeIGwoNDmRBcTe+Lophot/HNCW35HZxPhUwZ9iyAD4YBA0uhBFLoEmk1YlE5ByYW8L58XjhCOqQz6P+H2jJi4U0C9GRDAPWvALLpkLzrjB0LtRvbHUqETlHp2cbTk8L4M1jCTzgN5+ml4+gm2YhWkIFzFEKT5lHomx6D9rdBDf8A/zrWp1KRGqoZEu4gitg5ma6bX0KegyAOudZHc3rqAvxDGceadItacW5T409nAWzBprF66qHYNA7Kl4insa/rnle3+G9sPxJq9N4JbXA/nT6SJPTpyafXt8BVG+R4s5V8NkIswV28xyISXRAWhFxCRd1hfgx5pErbROhRTerE3kVtcD+dPpIkzNVa31HYT4sfwrevxHqNYF7V6p4iXiDXo/B+S0g9T7IP2F1Gq+iAvanitZx2LW+48B2+Gdv8+TWjrfBvSug6SW1nFBEXFJAfUh4Hf7Yqa5EJ1MB+1NF6zgqXd9RmA//eRHe6m6Oe93ygdknrsFcEe/SsjtcNhrWz4Sfl1d9vdQKFbA/mes7fEvdVun6jl1fwcxusOJpaN0HxqyF6OudkFREXFKfJ6FpNCwYA8d/tzqNV1AB+1NipzCmDWpPWHBg5Uea/LYV5t0Oc64zJ2rc9qnZ8mpwgSW5RcRF+AfCTW9D3iFI/au5DlQcSrMQz1CyvqM8+3+Er/8O338MdRpAz0fh8vsgoJ5zQ4qI67qwPVzzBHz5qHn4ZdwIqxN5NBWwyhQXwc/LYN2bsHMl+AWax4t3ewDqNbI6nYi4ovixsGM5LJ4EoZ3MP+IQLtGFuGTJEqKiooiMjCQpKanM/S+//DJt27YlNjaWa665hj179jguTHEx7FkLiybCy23hoyFw4Efo9Tg8uAX6PFVh8aq1hdAi4r58fMzNC+o3hU+G1eoJznqPKc3yAlZUVMS4ceNYvHgxW7duZe7cuWzdurXUNZ06dSI9PZ3vv/+ewYMHM3HiRMcFWvIwzOoP386G8Di4eTY8sBm6P1TpPoanF0Jn5+bpoDsRb1e/MQx5D47kwPxR5gfjGtJ7TFmWF7ANGzYQGRlJREQEAQEBDB06lJSUlFLX9OzZk3r1zLGm+Ph4srKyHBeow1AY9DZM3AFDP4SYG8HXv8qH1XghtIh4lvBLYUAS/LwUVpftWaouvceUZfkYWHZ2Ns2bNy/5Ojw8nPXr11d4/T//+U8GDBjguEBhl5p/qqlGC6FFxDPFjYTsTbD6eTi/JXS89ZyfSu8xZVlewIxypprabLZyr/3ggw9IT09n9erV5d6fnJxMcnIyAAcOHKi9kHYIDQ4ku5xfJB10J+LFbDa47hXI/cWcWh8UZi56Pgd6jynL8i7E8PBw9u7dW/J1VlYWoaGhZa5btmwZzz77LKmpqdSpU6fc5xo1ahTp6emkp6fTtGnTWs9a2QBqtRdCi4h38Asw14o2bgXz7jCX5JwDvceUZXkB69KlC5mZmezatYv8/HzmzZtHQkJCqWsyMjIYPXo0qamphISEWJKzqgFUuxdCi4j3CQyG2z4Bvzrmht+/7yj3sso+JOs9piybUV4fnpMtWrSIBx54gKKiIkaMGMGjjz7KlClTiIuLIyEhgd69e7N582aaNWsGwEUXXURqamqlzxkXF0d6enqtZeyWtKLc5ntYcCBrJvWqte8jIh7s1x/gvQTwqwvD/222yv509pFOYLawnF2kavu905FcooA5Qm3/I7SctJDyXigbsCvp2lr7PiLivhZkZDM9bTv7cvMIDQ5kQr+ossWngiLmKh+S3amAWd6F6C7Oabd6EfEadq/TurAdDEuFwpPwbn/IMouFZhlWnwqYnTSAKiKVsWedVskY1yt7uK3wCY4bdWDWQPj+E31IPgcqYHbSAKqIVKaqFtTZLbRvjjSh99EpHAyOhfn3Mjv83zT0L71jhz4kV87ydWDupNLd6kXEq1W1Tqu8FlpOQX1uOjaB1ZcupvW37/J10Coeyr+XpUcurngMrSoHf4ZGEeaejB7O839CEREnqGqYoaIW2i+HC+H6V+D2z2jok09y/iPsumoFa/4SWb3idWQfpNwHb3SBLfPP+edwJ2qBiYjUgtPFpqJZiFXupNG6D4xbB8ufgo3/hPR3IToBLrsXwi8zF0SfzTBg/1bY/CmsmwlGEXQdA628Y2mPptGLiDhBtdZ5Hc6CDcmQPhtOHTan3DfraB6Y6eNrnlWYdwh2fwXHfjMf0/5m6PUYnN+iRjnd6b1TLTARESeoqoVWSlC4efZg9wnw83LI2gh715snwmMzx7f860GLKyGiJ7TqaT7Gy6iAiYg4SbUngtVpADGJ5h8pQwVMRMRD2LUTiAdRARMR8QBnj7Gd3gkE8Ngipmn0IiIewBtPbFYBExHxAN64l6IKmIiIB/DGvRRVwEREPIA3bjiuSRwiIh6gWuvMPIQKmIiIh/C2DcfVhSgiIm5JBUxERNySCpiIiLglFTAREXFLKmAiIuKWPPY8sCZNmtCiRYtzeuyBAwdo2rRp7QaqBcpVPcpVPcpVfa6arSa5du/ezcGDB2s5kWN4bAGrCVc90E25qke5qke5qs9Vs7lqrtqmLkQREXFLKmAiIuKWfKdOnTrV6hCu6NJLL7U6QrmUq3qUq3qUq/pcNZur5qpNGgMTERG3pC5EERFxSypgwIQJE2jTpg2xsbHceOON5ObmlnvdkiVLiIqKIjIykqSkJIfn+vTTT4mJicHHx6fSGUUtWrSgffv2dOzYkbi4OJfJ5ezX648//qBPnz60bt2aPn36cOjQoXKv8/X1pWPHjnTs2JGEhASH5anq5z916hS33HILkZGRdO3ald27dzssS3VyzZ49m6ZNm5a8Ru+8845Tco0YMYKQkBDatWtX7v2GYTB+/HgiIyOJjY1l06ZNLpFr1apVBAUFlbxeTz31lMMz7d27l549exIdHU1MTAyvvvpqmWuser2cyhAjLS3NKCgoMAzDMCZOnGhMnDixzDWFhYVGRESEsWPHDuPUqVNGbGyssWXLFofm2rp1q/Hjjz8aV199tbFx48YKr7v44ouNAwcOODRLdXNZ8XpNmDDBmDZtmmEYhjFt2rRy/x0NwzDq16/v0ByGYd/P/8YbbxijR482DMMw5s6dawwZMsQlcs2aNcsYN26cw7OcbfXq1ca3335rxMTElHv/woULjf79+xvFxcXG2rVrjcsuu8wlcq1cudK49tprnZLltH379hnffvutYRiGceTIEaN169Zl/h2ter2cSS0woG/fvvj5mSfLxMfHk5WVVeaaDRs2EBkZSUREBAEBAQwdOpSUlBSH5oqOjiYqyvUOo7MnlxWvV0pKCsOHDwdg+PDhLFiwwKHfrzL2/Pxn5h08eDDLly/HcPCQtBX/Lvbq3r07jRo1qvD+lJQUhg0bhs1mIz4+ntzcXHJycizPZYVmzZrRuXNnABo0aEB0dDTZ2dmlrrHq9XImFbCzvPvuuwwYMKDM7dnZ2TRv3rzk6/Dw8DK/MFax2Wz07duXSy+9lOTkZKvjANa8Xr/99hvNmjUDzP/g+/fvL/e6kydPEhcXR3x8vMOKnD0//5nX+Pn5ERQUxO+//+6QPNXJBfD5558TGxvL4MGD2bt3r0Mz2cuV/w+uXbuWDh06MGDAALZs2eLU7717924yMjLo2rVrqdtd+fWqLV5zoGXv3r359ddfy9z+7LPPcsMNN5T83c/Pj9tvv73MdeV9MrbZbE7JVZU1a9YQGhrK/v376dOnD23atKF79+6W5rLi9bLXL7/8QmhoKDt37qRXr160b9+eVq1a1Tjbmez5+R31GlXGnu95/fXXc+utt1KnTh1mzpzJ8OHDWbFihUNz2cOK18senTt3Zs+ePZx33nksWrSIxMREMjMznfK9jx07xk033cQrr7xCw4YNS93nqq9XbfKaArZs2bJK758zZw5ffPEFy5cvL/cfOTw8vNQn0aysLEJDQx2eyx6nc4SEhHDjjTeyYcOGGhewmuay4vW64IILyMnJoVmzZuTk5BASElLudadzRERE0KNHDzIyMmq9gNnz85++Jjw8nMLCQg4fPuzwrip7cjVu3Ljk7/feey8PP/ywQzPZy1G/UzV1ZuEYOHAgY8eO5eDBgzRp0sSh37egoICbbrqJ22+/nUGDBpW531Vfr9qkLkTMWVnPP/88qamp1KtXr9xrunTpQmZmJrt27SI/P5958+Y5dAabvY4fP87Ro0dL/v7ll19WOFvKmax4vRISEpgzZw5gfiApr6V46NAhTp06BcDBgwdZs2YNbdu2rfUs9vz8Z+b97LPP6NWrl8M/IduT68xxktTUVKKjox2ayV4JCQm89957GIbBunXrCAoKKukyttKvv/5a0trZsGEDxcXFpT4EOIJhGIwcOZLo6Gj+9re/lXuNq75etcqauSOupVWrVkZ4eLjRoUMHo0OHDiUzw7Kzs40BAwaUXLdw4UKjdevWRkREhPHMM884PNf8+fONsLAwIyAgwAgJCTH69u1bJteOHTuM2NhYIzY21mjbtq3L5DIM579eBw8eNHr16mVERkYavXr1Mn7//XfDMAxj48aNxsiRIw3DMIw1a9YY7dq1M2JjY4127doZ77zzjsPylPfzP/7440ZKSophGIaRl5dnDB482GjVqpXRpUsXY8eOHQ7LUp1ckyZNMtq2bWvExsYaPXr0MLZt2+aUXEOHDjUuvPBCw8/PzwgLCzPeeecd48033zTefPNNwzAMo7i42Bg7dqwRERFhtGvXrtKZuc7M9frrr5e8Xl27djXWrFnj8ExfffWVARjt27cved9auHChS7xezqSdOERExC2pC1FERNySCpiIiLglFTAREXFLKmAiIuKWVMBERMQtqYCJiIhbUgETERG3pAIm4iQ9e/Zk6dKlADz22GOMHz/e4kQi7s1r9kIUsdqTTz7JlClT2L9/PxkZGaSmplodScStaScOESe6+uqrOXbsGKtWraJBgwZWxxFxa+pCFHGSzZs3k5OTQ506dVS8RGqBCpiIE+Tk5HD77beTkpJC/fr1SUtLszqSiNtTARNxsBMnTjBo0CBeeukloqOjefzxx5k6darVsUTcnsbARETELakFJiIibkkFTERE3JIKmIiIuCUVMBERcUsqYCIi4pZUwERExC39P85DHwumeHlWAAAAAElFTkSuQmCC
Auf dem $$\R^n$$ sei ein Skalarprodukt gegeben. Dann kann man jede Linearform (lineare Abbildung)
$$L: \R^n \longrightarrow \R$$ mit Hilfe eines eindeutig bestimmten Vektors $$g \in \R^n$$ darstellen:
<$latex text="
Lh = \langle g,h \rangle \quad \forall h \in \R^n.
" displayMode="true"></$latex>
Ist $$L$$ das Differential einer in $$a$$ differenzierbaren reellwertigen Funktion $$f$$,
so heißt $$g$$ //Gradient von $$f$$ in $$a$$ bzgl. $$\langle \: ; \: \rangle$$//.
Er wird mit grad$$f(a)$$ bezeichnet. Bzgl. $$\langle \: ; \: \rangle$$ ist er der durch
<$latex text="
df(a)h = \partial_h f(a) = \langle \text{grad}f(a),h \rangle
" displayMode="true"></$latex>
eindeutig bestimmte Vektor im $$\R^n.$$
<$details summary="Gradient (Standardskalarprodukt)" tiddler="Bemerkung">
{{Gradient (Standardskalarprodukt)}}
</$details>
<$details summary="Gradient einer rotationssymmetrischen Funktionen" tiddler="Gradient einer rotationssymmetrischen Funktionen">
{{Gradient einer rotationssymmetrischen Funktionen}}
</$details>
Im Fall des Standardskalarprodukts ist grad$$f(a)$$ nach
(8.10) ([[Richtungsableitungen]]) der Spaltenvektor
<$latex text="
\text{grad}f(a)=
\left( \begin{array}{c}
\partial_1f(a)\\ \vdots \\ \partial_nf(a)
\end{array} \right)
=: \nabla f(a).
" displayMode="true"></$latex>
($$\nabla f(a)$$ wird gesprochen " nabla $$f$$ von $$a$$".)
Wir betrachten nun den Gradienten von $$r(x)$$ (siehe Konrad Königsberger. Analysis 2. Springer Verlag, 1997.
S. 54)
da wir so eine Charakterisierung von Eigenvektoren erhalten können:
Untersuchen des Gradienten ermöglicht, das lokale Verhalten von $$r(x)$$ zu betrachten.
<$latex text="
\begin{aligned}
\frac{\partial r(x)}{\partial x_j}
&= \frac{f'g}{g^2} - \frac{g'f}{g^2} \qquad \text{Quotientenregel}\\
&= \frac{\frac{\partial}{\partial x_j} (x^T Ax)}{x^T x} - \frac{(x^T Ax) \frac{\partial}{\partial x_j}(x^T x)}{(x^T x)^2}\\
&= \frac{2(Ax)_j}{x^T x} - \frac{(x^T Ax)(2x_j)}{(x^T x)^2} \\
&= \frac{2}{x^T x} (Ax - r(x)x)_j\\
\Rightarrow \nabla r(x) &= \frac{2}{x^T x}(Ax - r(x)x)
\end{aligned}
" displayMode="true"></$latex>
<$details summary="Eigenwertapproximation durch Rayleigh-Quotient" tiddler="Eigenwertapproximation durch Rayleigh-Quotient">
{{Eigenwertapproximation durch Rayleigh-Quotient}}
</$details>
Die in (8.11)([[Beispiel: Differentiation rotationssymmetrischer Funktionen]]) definierte rotationssymmetrische Funktion $$f$$
hat im Fall einer reellen $$\mathcal{C}^1$$-Funktion $$F$$ im Punkt $$a \neq 0$$ den Gradienten
<$latex text="
\text{grad}f(a) = \frac{F'(\|a\|_2)}{\|a\|_2} \cdot a.
" displayMode="true"></$latex>
Dieser ist im Fall $$F'(\|a\|_2) > 0$$ zum Ortsvektor $$\overrightarrow{0a}$$ parallel und im
Fall $$F'(\|a\|_2) < 0$$ antiparallel.
<$details summary="Beispiel" tiddler="Beispiel">
[img[diffbare_funktionen_bsp_gradient.png]]
</$details>
Jeder äußere Schritt des modifizierten Gram-Schmidt-Algorithmus kann als Multiplikation
mit einer quadratischen oberen Dreiecksmatrix von rechts interpretiert werden.
__Schritt 1:__
<$latex text="
\small
\left(
\begin{array}{c|c|c|c}
& & &\\
& & &\\
v_1^{(1)} & v_2^{(1)} & \cdots & v_n^{(1)} \\
& & &\\
& & &
\end{array}
\right)
\underbrace{\left(
\begin{array}{cccc}
\frac{1}{r_{11}} & -\frac{r_{12}}{r_{11}} & -\frac{r_{13}}{r_{11}} & \cdots \\
& 1 & & \\
& & 1 & \\
& & & \ddots
\end{array}
\right)}_{R_{1}} =
\left(
\begin{array}{c|c|c|c|c}
& & & &\\
& & & &\\
q_1 & v_2^{(2)} & v_3^{(2)} & \cdots & v_n^{(2)}\\
& & & &\\
& & & &
\end{array}
\right)
" displayMode="true"></$latex>
__Schritt 2:__
<$latex text="
\small
R_2 =
\begin{pmatrix}
1 & & & &\\
& \frac{1}{r_{22}} & -\frac{r_{23}}{r_{22}} & -\frac{r_{24}}{r_{22}} & \cdots \\
& & 1 & & \\
& & & 1 & \\
& & & & \ddots
\end{pmatrix}
" displayMode="true"></$latex>
__Schritt 3:__
<$latex text="
\small
R_3 =
\begin{pmatrix}
1 & & & & &\\
& 1 & & & &\\
& & \frac{1}{r_{33}} & -\frac{r_{34}}{r_{33}} & -\frac{r_{35}}{r_{33}} & \cdots \\
& & & 1 & &\\
& & & & 1 & \\
& & & & &\ddots
\end{pmatrix}
" displayMode="true"></$latex>
Am Ende der Iteration wurden folgende Multiplikationen ausgeführt:
<$latex text="
A \underbrace{R_1 R_2 \cdots R_n}_{\hat{R}^{-1}} = \hat{Q}
" displayMode="true"></$latex>
Dabei ist $$\hat{R}^{-1}$$ eine reelle rechte obere Dreiecksmatrix.
Ist der $$j-$$te Spaltenvektor $$a_j\notin <q_1,\cdots,q_{j-1}>$$, so berechnet sich $$q_j$$ nach Gleichung (vgl. (4.6) [[Klassisches Gram-Schmidt-Verfahren]])
<$latex text="
q_j=\frac{a_j - (q_1^* a_j)q_1 - (q_2^*a_j)q_2 -...- (q_{j-1}^* a_j)q_{j-1}}{\|a_j - (q_1^* a_j)q_1 - (q_2^*a_j)q_2 -...- (q_{j-1}^* a_j)q_{j-1}\|_2}
" displayMode="true"></$latex>
Schreiben wir die Skalarprodukte $$q_i^*a_j$$ rechts der Vektoren $$q_i$$ und Klammern wir $$a_j$$ nach rechts aus so erhalten wir
<$latex text="
q_j=\frac{\left(I - q_1q_1^* - q_2q_2^* -...- q_{j-1}q_{j-1}^*\right)a_j}{\|\left(I - q_1q_1^* - q_2q_2^* -...- q_{j-1}q_{j-1}^*\right)a_j\|_2}
" displayMode="true"></$latex>
Bezeichnen wir mit $$\hat{Q}_{j-1}$$ die $$(m \times (j-1))$$-Matrix ist, welche die $$(j-1)$$ ersten Spalten von $$\hat{Q}$$ enthält, d.h.
<$latex text="
\hat{Q}_{j-1} =
\left(\begin{array}{c|c|ccc|c} & & & & & \\ q_{1} & q_{2} &. &. &. &q_{j-1} \\ & & & & &
\end{array}\right),
" displayMode="true"></$latex>
so erhalten wir
<$latex text="
\begin{aligned}
q_j&=\frac{\left(I - q_1q_1^* - q_2q_2^* -...- q_{j-1}q_{j-1}^*\right)a_j}{||\left(I - q_1q_1^* - q_2q_2^* -...- q_{j-1}q_{j-1}^*\right)a_j||_2} \\
&= \frac{\left(I - \hat{Q}_{j-1}\hat{Q}_{j-1}^*\right)a_j}{\|\left(I - \hat{Q}_{j-1}\hat{Q}_{j-1}^*\right)a_j\|_2}.
\end{aligned}
" displayMode="true"></$latex>
Die Matrix $$\hat{Q}_{j-1}\hat{Q}_{j-1}^{*}$$ projiziert orthogonal auf $$<q_{1},...,q_{j-1}>$$
und somit ist
<$latex text="
P_{j} = I-\hat{Q}_{j-1} \hat{Q}_{j-1}^{*} \qquad (4.9)
" displayMode="true"></$latex>
die $$(m \times m)$$-Matrix vom Rang $$m-(j-1)$$, die $$\mathbb{C}^{m}$$ orthogonal auf den zu
$$<q_{1},...,q_{j-1}>$$ orthogonalen Unterraum projiziert. Für $$j=1$$ ist $$P_1 = I$$.
Mit diesen Projektionsmatrizen läßt sich das klassische Gram-Schmidtverfahren als Folge von Zuweisungen schreiben:
<$latex text="
q_1=\frac{P_{1}a_{1}}{\|P_{1}a_{1}\|_2}, \quad q_{2}=\frac{P_{2}a_{2}}{\|P_{2}a_{2}\|_2},...,
\quad q_{n}=\frac{P_{n}a_{n}}{\|P_{n}a_{n}\|_2}. \qquad (4.10)
" displayMode="true"></$latex>
iVBORw0KGgoAAAANSUhEUgAABikAAAEyCAYAAACPszNZAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAIliSURBVHhe7d0HeBTV2sDxN4oNgxoEFTSA1IBIhwsIAipNUJAiKArYwYuCfiLY9QpcBa4KWK+ggl4BKSIoTUCagPQOoURJMBEpQQhF2vnmzM6EzWZ3s0m25/97ntWZybK7M2fmzJnznhKjDAIAAAAAAAAAABBkF1j/BwAAAAAAAAAACCqCFAAAAAAAAAAAICQIUgAAAAAAAAAAgJAgSAEAAAAAAAAAAEKCIAUAAAAAAAAAAAgJghQAAAAAAAAAACAkCFIAAAAAAAAAAICQIEgBAAAAAAAAAABCgiAFAAAAAAAAAAAICYIUAAAAAAAAAAAgJAhSAAAAAAAAAACAkCBIAQAAAAAAAAAAQoIgBQAAAAAAAAAACAmCFAAAAAAAAAAAICQIUgAAAAAAAAAAgJAgSAEAAAAAAAAAAEKCIAUAAAAAAAAAAAgJghQAAAAAAAAAACAkCFIAAAAAAAAAAICQIEgBAAAAAAAAAABCgiAFAAAAAAAAAAAICYIUAAAAAAAAAAAgJAhSAAAAAAAAAACAkCBIAQAAAAAAAAAAQoIgBQAAAAAAAAAACAmCFAAAAAAAAAAAICQIUgAAAAAAAAAAgJAgSAEAAAAAAAAAAEKCIAUAAAAAAAAAAAgJghQAAAAAAAAAACAkCFIAAAAAAAAAAICQIEgBAAAAAAAAAABCgiAFAAAAAAAAAAAICYIUAAAAAAAAAAAgJAhSAAAAAAAAAACAkCBIAQAAAAAAAAAAQoIgBQAAAAAAAAAACAmCFAAAAAAAAAAAICQIUgAAAAAAAAAAgJAgSAEAAAAAAAAAAEKCIAUAAAAAAAAAAAgJghQAAAAAAAAAACAkCFIAAAAAAAAAAICQIEgBAAAAAAAAAABCgiAFAAAAAAAAAAAICYIUAAAAAAAAAAAgJAhSAAAAAAAAAACAkCBIAQAAAAAAAAAAQoIgBQAAAAAAAAAACAmCFAAAAAAAAAAAICQIUgAAAAAAAAAAgJAgSAEAAAAAAAAAAEKCIAUAAAAAAAAAAAgJghQAAAAAAAAAACAkCFIAAAAAAAAAAICQIEgBAAAAAAAAAABCgiAFAAAAAAAAAAAICYIUAAAAAAAAAAAgJAhSAAAAAAAAAACAkCBIAQAAAAAAAAAAQoIgBQAAAAAAAAAACAmCFAAAAAAAAAAAICQIUgAAAAAAAAAAgJAgSAEAAAAAAAAAAEKCIAUAAAAAAAAAAAgJghQAAAAAAAAAACAkYpTBWgYAAABQAOzYscNacm///v2yb98+ay1/rr32WilevLi15l7FihWtJQAAAAAFDUEKAAAAIEKcOHFCUlJSrDWR3377TTIyMqw1kRUrVlhLDjoY8d1331lrkaVdu3bZghf169e3lkRiY2OlTJky1ppIfHy8XHbZZdYaAAAAgEhBkAIAAAAIIefAg3PQwQ44pKeny+jRo81l+ObRRx+VuLg4c7lq1apmQMM5qFGsWDEpWrSouQwAAAAgtAhSAAAAAAFiByCOHz8uSUlJ5jY7+LBw4UJZtWqVuRxq/fv3t5aCY9iwYdZSaNWtW1eaNm1qLtu9NMqWLSuFCxcmkAEAAAAECUEKAAAAIB/s+R02b95s9oLQ/w9G7wfnwEKpUqWkZMmS1lr2oZC0SKh0P3TokBw4cMBac3CdHyM1NVWSk5OttcAHPOxhp+xjbAcxGF4KAAAA8A+CFAAAAEAO9u7da1ae694QdiW5v3tCOM/BYLfqdw426IrxG264wVyGezqddK8VLVhDZ+lg0VVXXSUJCQmZAQwmAgcAAAB8R5ACAAAAsOheEXbLfV2x7a+Jp+05Euz5Ea699lopXry4+TcqtEPDDmjY6W33gtH80TvDHkpKp/l1111nBpvofQEAAABkR5ACAAAABY5zzwh/BCPsXhB2EIIhgaJDIIbyche8IFAFAACAgowgBQAAAKKarmjWQ//o/2/YsCHPFcyugQj9f4ZgKrjs+TPsYaV0sCs/AQx9ftWrVy9z2Cg9BwYTdwMAAKAgIEgBAACAqHDixAlJSUkxW7tv375dVq5cmafeEXpophtvvJE5BpBn9lBS+ly05zDJyxBSdq8LPUcJgQsAAABEK4IUAAAAiEjOPSTmzZuX64CE3TPCrgAuVqwYvSIQUHbvCzt4kZeePQQuAAAAEG0IUgAAACDs6crdbdu2ye7du2XJkiW5rtjt37+/WZmrgxLMAYBwo3te7NmzJ3PC9oULF8qqVausv+bMeagoPQwZ5zcAAAAiCUEKAAAAhB27l8Tq1atl2rRpuaqw1QEJXVFbrlw5KV26NL0jEJGce13kZfgyPWxZ48aNpVq1avS2AAAAQFgjSAEAAICQ00EJXRmrW5HnZux+XRFbvXp1qVmzJgEJRD0970piYqIkJSXluseF7m1xxx13mL0sqlSpwrUCAACAsEGQAgAAAEGXl6AEQ9oA2TkPhaavKV+vJz23Rfv27aVOnToELQAAABBSBCkAAAAQcHkJStjD1ehhmypXrsxwNYCP8jJcGkELAAAAhApBCgAAAPidngh469atMm/ePJ+DEnouifr165u9JOLj4+Wyyy6z/gIgP+zeFuvWrTOvSV/mtrCDFk2aNCFICAAAgIAiSAEAAIB8sytBFy1a5HPLbeegBEM3AcHjPETUkiVLZPTo0dZfPLPntGjUqJFUqlSJICIAAAD8hiAFAAAA8kQPKaOHb/K1kpOgBBCe7Am5N27cKFOnTvWpp4Uejq1169bmPDEMDQUAAID8IEgBAAAAn+S2t4Q9p0S1atVoeQ1EkNwOD6WHhurevbvUrFlTatWqxbUOAACAXCFIAQAAAI/03BILFizwqbeEc0UlY9gD0cOeY8bXibjpZQEAAIDcIEgBAACALNavXy9Lly6VcePG5VgZqYdw0uPUV6lShcpIoIDIzVBvznNZ1KhRw9oKAAAAnEeQAgAAoIDT49GvXbvWHMbppZdesra6Z/eWYPJcAJrz0FC+BDYHDx4sTZo0YVgoAAAAZCJIAQAAUADpikU9dIseb37YsGHWVvcYugWAr3LTy0LnLZ07d5Y6deowPBwAAEABRpACAACggLADE5MmTcqx8tBu7czcEgDyys5z9CunXloEQwEAAAoughQAAABRzNfABMM4AQgkPaxcYmKiT/Pd6HksOnToILfddhsBCwAAgAKAIAUAAECUyUtgggltAQSTnqB/48aNMnXqVPnuu++srdkRsAAAAIh+BCkAAACigK+BCSr8AISbvXv3yoIFCwhYAAAAFFAEKQAAACKUHj5l7dq1smjRIq/jvVOxByBS2AGLnCbe1vnak08+yaTbAAAAUYAgBQAAQITRw6TMnDmTwASAqGb3EPvwww+99rDQk2537tyZgAUAAECEIkgBAAAQAXTr4mnTpnmdcJY5JgBEK1+HhBo0aJA0bdpUatWqJZdddpm1FQAAAOGMIAUAAECY0q2IFy5caAYmPFXKEZgAUND4GrAYNWoUeSMAAEAEIEgBAAAQRux5JnTF27Bhw6yt2Q0ePFiaNGlCa2EABZovvcwY/g4AACC8EaQAAAAIA75UtDHuOgB4pufrWbp0qTz11FPWluzsfLRx48YEeAEAAMIEQQoAAIAQ0b0mlixZ4nVSWD2cU58+fWgBDAA+yk2PtDvvvJPhoAAAAEKMIAUAAECQ+dLaV0/+2qZNGyrPACAffJnbxx4Oqm3btvRSAwAACAGCFAAAAEHgS0UZw5AAQODs2LFD5s6d63VYvf79+5tBi1tuucXaAgAAgEAjSAEAABBAdqWYp14Tejin7t27S/v27RnOCQCCwJfhoOyh9uhdAQAAEHgEKQAAAPzMl7kmdK+Jnj17Sq1ateg1AQAhonu5ff/99zJ16lSP+TW9KwAAAAKLIAUAAICf7N27V6ZNm+a11wQtcwEgPOn5gmbOnCkvvfSStSUr8nAAAIDAIEgBAACQTz///LN88cUXMnr0aGtLVvSaAIDI4cscQrp3xf333y81atSwtgAAACCvCFIAAADkgV2J9dZbb7mdgJW5JgAg8uXUu0IPA6Xz+tatWxOEBgAAyCOCFAAAALmQ00TYusLqySeflMaNG1NhBQBRwpfeFaNGjZIWLVpIxYoVrS0AAADwBUEKAAAAH+Q0pNOgQYOkc+fOVE4BQJTT9wMdqBg2bJi1JSt7iD8m2gYAAPANQQoAAAAPTpw4IbNmzfLYcpZJVAGg4NK9K77//nt5//33PQ77N3DgQGnatCn3CAAAAC8IUgAAALjQFU9ff/21GZxwV/Gkh3TSk6YyETYAQAe0165da/as8DYUFHMUAQAAuEeQAgAAwKLnm5g8ebLHCVIHDx4snTp1YkgnAIBbOd1HdID7/vvvlxo1alhbAAAAQJACAAAUeN7GF9fDdXTv3t2sVGK4DgCAL3IaCooeeQAAAOcRpAAAAAWWDk54Gp5DVyDp4ETr1q2pQAIA5ElOQ0ExbwUAAABBCgAAUMDYk2G/9dZbXlu33nLLLdYWAADyb/369eZ8R+567Wl63gp67QEAgIKIIAUAACgQ9NAbCxcu9Bic0IGJRx99lPkmAAABtXfvXpk2bZo89dRT1pasmP8IAAAUNAQpAABAVNPBCd1y1VNlkG652qJFCyqDAABBldO8FUyyDQAACgqCFAAAICrlFJwYOXKkdOvWjWE1AAAhZQ9DOG7cOI9zJDEMIQAAiGYEKQAAQFTxNoyGPUEpk2EDAMLRzz//7HGSbTtYUatWLe5hAAAgqhCkAAAAUWHHjh0yevRotxOSEpwAAEQSb5Nsc08DAADRhiAFAACIaN6CE7rV6ZNPPimNGzemIgcAEHEIwAMAgIKAIAUAAIhIOQUnGL8bABAtvM2zRLACAABEOoIUAAAgouQUnHjuueekUaNG1hYAAKJHTsGK7t27y/333y9Fixa1tgIAAIQ/ghQAAASRrmD3JD4+nhaQXtBzAggfeoL648ePW2tZFStWjApSIMDsYMW4ceNk1apV1tbzRo0aRbACAABEDIIUAAD4ma6827Nnj+zevVs2b95sVq5/99131l9zpivcK1asKFWrVpVy5cpJ6dKl5YYbbrD+WvAQnABC48SJE5KYmChJSUmyfft2+fXXX81r0Ve6VXfTpk2lVKlSZp5WpkwZ8/8A/Edfp7NmzZK33nqLYIWP7CDrb7/9JhkZGdZWz3R5rHDhwgW6LAYAQKARpAAAIJ90BcHatWtl3bp1Hls05peu7Gvfvr00adJEatWqVSB6XHgb0oLgBBAY69evl40bN8rUqVNzFVzNDX3t3nHHHVKnTh0qTgE/ySlYMXLkSOnWrVuBu+Z0WWLbtm1mGW3Dhg25CrS68+ijj0r16tXNgGuVKlUIXAAA4CcEKQAAyKOff/5ZFi1aJC+99JK1JXd0RZ273gG+GDx4sBmwiMZKeoITQHDp3kpz587Nc5BVV9rt378/T0EN/W87d+5MwALwE3pWOHpKLFiwQJYsWZLvoEROdLmkQ4cOUr9+fXqKAQCQDwQpAADIBV2BvnDhQo8P/zb90FqvXj1JSEiQsmXLmsME+PLwqisL9RAE9vAqK1eu9Frxp3tY9OnTR9q2bRvxFQ45BSeYEBvwLx1o1YHSnPIYPWSTroC79tprpXjx4j7Nn+M8nIrO13xpwawrT1u0aEFFH+AH3oIV+roeOHCgtG7dOmp6Zur91UGJSZMm+RSYsPM2TQ/nFBsbay47W7Fihfl/X4ft1GUVPXG5/lyCrgAA5A5BCgAAfGBXoD/99NPi6dZp926oXLmyXx9O7aEKdK+NadOmeQyORGrrSLsipWPHjtaW83QlwrvvvkvPCcCP9FBOuteEp0o3u3eDv4cy0de6nuMip+GkdG8p/RsIVgD5F+3BCl1G+v777+X999/3WD7S+6mHzNQ9tvTcOL4EWt3RwQo78Dpv3jyvgQvmAgEAIHcIUgAA4IW3h3vNDkwEc56InIaZmjJlSkgqHOxgiq9BmmivOAHCjbeeE7oF8JNPPhnUYZd0bwsdePU0zJQOVuh8gEo+IP+i7Z6r90f3mujRo4e1JSt7GKbbbrstYPNG6Dxs69atXntvEKwAAMA3BCkAAPBATyD7+uuvZ6vQ0w/zujt/qB86vbUe1L/xv//9r9SoUcPaEli6VWGlSpXM5bFjx5rHxxtdWfrMM88QnACCQFek6Ulz3c2BowOtnTp1CmmvBV3ZuHbtWo8BlMmTJ8udd95JngD4gS/BCl25H850TyxPjUdCNWxcTj06dNlI91AjHwMAwD2CFAAAuNAP8HqIIdeeCuFage6twkFXQOpgQKB/74ABA2To0KHmsh6m5dNPPzWXXXlryc0DPOB/ujLP3VBqOm/o1atX2LXu9ZRH6FbRuvIvUC2igYJGV6p7mwdK92QKt6EWdcD1jTfeyNZrwS6fhcNcEDkFgYLZgAQAgEhCkAIAACe6R8ADDzyQ7cEyErrr6wfjMWPGZKtw0A/FX331VcBaFc6dO1datWqVOVeHHm7KtRWmPq66UsFdS27dwrtbt24MhQD4kc4PXnvttWzXnA4i6srHcJ/vwVNLaXf5C4C8i5RghaeAa7g2cPAWrNBlykceeYRGGQAAOCFIAQCARVe2t2zZ0lpz0A/ouodAJE3gqgMCzz//fLaWyIGo3NOVGzpA4fwAnpKSktnaWf9dP6C7C04w3jwQGLq1sb7Wna9LHawcNGiQOQxKpND5x8cff5ytV1uweogBBYkdrHj66aczGx3Y9P06VJPZewq4RkoZwlMDEn089X7ROwwAAAeCFAAAGPQwIq4PkF988YXce++9EVkRph+K3U0oqVvv9enTx1rLPx0Mca440BWhK1eu9PhQroWysgOIdnq4pEaNGllrDvp6e/vttyM2IOhuDptI3ycgXHmbw0bfv3UQI1gV69EScNXcNSDR+6KHFw23YbUAAAgFghQAgALNXQs9/dAYLWMG68m/n3jiCTNwYNOVeyNGjJDChQtbW/LGXc8TXZGoK0jdDW+ge6U899xz2SpQAfiHu2vSl4nsI4Fu5a3nvnEei17n1XoIGFoiA/7nbZjGYAyB6an8ossXV199tbUlsugyp7s5z5YuXUqgAgBQ4BGkAAAUWPphUbcIdK70isbJWd1NNKkf9HVLybz2EnHXulErUaKEpKWlWWsOkdrqEYgkrr3B9HX3zjvvRFVQ0F0PLQIVQGDpYIEuQ0ybNs3acp4eRrJ169Z+73HqrkeYv3uChpLrXF5aNO0fAAB5QZACAFAguQtQ5LfiPpz5c3/dfZYngarAAHCeDlDoa9Iu1kd7xf24ceOkZ8+eBWZ/gXCgAwe6V4XrfFf6+tNzQ/hrzit3AYpo7Gmge6o88MADWRp76DKZu2EyAQAoCAhSAAAKJNe5FKI5QGFz1wpZ7/enn35qrflGD7miJxP3Rg/79PLLLzNePBBgrhV6BaXC3t1+66BofHy8tQWAv+lyxKxZswI2pGNBCVDY3PVK1fmYvwI+AABEkgtfN1jLAAAUCLrVsa5At+mKen/M0RDuLrroIqlXr55cfPHFsmDBAnPb2rVrpVixYuZ2X+hj98orr1hrnq1YsUISExPl1KlTZmvnM2fOyBVXXGH9FYA/FNQAhVaqVClp3ry5fPbZZ+Z6amqqHD161Nym8zoA/qevrcqVK5s9ACpWrJhlCCh9z//888/l+PHjUrp06VzPG6Er7B9++GHzWrYtWbIkX0GPcKfLRbq3qQ7E2Pv9zTffmPmYzuMAAChI6EkBAChQXMcBLgg9KFzplpB9+/bN0oPCl5Z7rmPe5xYTQwL+49oCt6AOeaT3uWPHjtaaSP/+/XPs6QXAP/SE9h9//HG2iaC1wYMHS69evXzqUak/R1fWO0+SXZDKDO56VOigjw4EAQBQUBCkAAAUGPoh0HkoED00wfjx4wvkfAnu5pXYvn27VKpUyVrLKr8BCk0f72+//VZiYmKsLQDyQl+/9913X5ax4b1dv9HONX8aO3asdO/e3VoDEGh6fgVdnnAeRtM2efJkufPOOz2WtdyVRwpiowZdRtUBVztQowPPs2fPZthMAECBcYH1fwAAopp+CO7Tp4+15nj40xVbBXVCZ73fr732mnkcbA8++KB5nFzplsr5DVDYx5sABZB/7777bpYAha7QK6gBCk3n7bpXnK1Hjx5mpSmA4NAt/nUPJp0X6QYJzjp16iRNmjQxe7K6M2nSpCwBCh1kLIi9LnUvuHfeecdaE7NXhZ77gzalAICCgp4UAIACYciQIVmGI2DoIYf169dLzZo1rTXH8AwvvviitebgOsm4TQcemjZtKlWrVpXY2Fjz/5qe26OgDTkDBIu+ZmvVqpVZcTVq1KgsAdiCSgdYdX7k3Ap50aJFBTYQDYSSbtzgaXJtHcywhzFyLYMwXJvIuHHjzECrTfdEcR7SDgCAaEWQAgAQ9XSLWudWxnoOivz2DIgmrg/E69atkxo1alhrjr/rXhBa+/btzRaRelJMAhFAcOmKeH392RV/BXnIOndcKzwJ4ACho/Mr3UuiZ8+e2XoD6GCEnhvrnnvuyTKvDoFFh8ceeyxL75KUlBTKXACAqEeQAgAQ1fRDsvPY7bpS7+uvvzZb+8PB9Ri5qyjQ76HiAAgt17kXmFg1O9ega0GeqwMIB3pSbN2rwrVHpp6nYubMmdYa16ozfcxatWqVGcChhwkAoCAgSAEAiGp6yAHnbvJU6rmne5skJCRktnacMmWKdOjQwVwGEHquPcKYHNo9194meq6KTz/91FwGEDo6D9PDRzrPp2Oj11N2eg6Pli1bWmsMUwoAiH5MnA0AiFq6surtt9+21hzzLRCgcE8fFz0Mlk0HdnRLPgDhwXnoD93bqXPnztYanOkeX3picZs+bj///LO1BiBUdDlj2rRpMmfOnCyTa+v87JFHHrHWYGvRooUZZLW5mxsMAIBoQpACABC1Zs2alWXSxl69ellLcOf+++83KwtselgsAKGnWyA7V1C98847DL/mhW5trIdHsVG5B4SPMmXKyPTp0601MYOK5Gfu6XwsJibGXNY9UHTvYAAAohXDPQEAopLrkB8MJeAb1+GxDhw4IFdffbW1BiAU9BApdkW7boH87bffZlZcwT3X4bEYKgUID675me5dEVJnMiQtKVG27dglvyXtksStu+SPE0cl+ec5snB3hvWmElK7TTO56eor5LqK5eXGUhWkYpUEqVyprJSILWS9JzCGDBkiL730krmsG5KsXLnSXAYAINoQpAAARCXXyvaDBw9K0aJFrbVQ+FvSFn8mb/9njIyZvkbsx97zjAfgzo/Ik8/2lu71S0pgH3k9cw3uTJ48OctxBBBce/fulfj4eGst0JXtGbJj6n/k5SGfyKQ1ada23KogTTv/Q8qUvFFuSqgklSomSEK1m6R8sUsl2GEV58pQ5qYAQi+4+Zk3p+XwjuUyZ/YPMmXcl/nK75o90UMeaHuHNG1US8pedZG13X/00JvOjUUIuAIAohVBCgBAVGrfvn3m5Iyh70Wh5PiG9+Wexn1l7tEcbrtxD8nYlaOke/nLrQ3BN27cOOnRo4e5TKs9ILTef/99eeqpp8zlgLc6PrJABiTcLkPzWl/nUYK06fekPPpAB2lV63q5NEjRCt2bIiEhQezHncTEROYlAkIoqPmZW6clfctsGTP8LXnji2VuGozkXewTMyTp47ZS3Fr3J+feFPSmAwBEK+akAABEnfXr12cGKDQdsAitQ7JmyjfyY04BCi19mnz87RY5bq2GQtu2ba0lMXtUMOksEBq6Z9OXX35prYk8+eST1lKAHDssf/g9QKFtlx/ee1ruqXOHdHl9muzIOGttDywdkNAVera5c+daSwCCTedndoBCC3h+5upMqiz/uK+0rH+39PdzgEKLu+ZKKWwt+1unTp2sJcfcFLpHCgAA0YYgBQAg6uiu8DY9xMcNN9xgrYXIkQ3y/eil4lvXxXRZPm6ebDweuo6Oelgs50lnFy1aZC0BCKa1a9dmmfy/cePG1lKk2i7T/3WP1H/0c9kcpEBF7969rSVHLzEAoaHzM2fBzM9Uxkb58qku0rL3R7LK39EJU7zUqlAiYEEK14BryOfxAAAgAAhSAACijnNFlD1sUeickyOr58mXuWmdvPlHmb/xL2slNJwfhvUQA7oFJIDg0gFCe6iiwYMHy2WXXWYuh0SJ7jL0mykyZYrn1+RxH8mwV/4pd9cuYf0j99InPiOdX/1R9p2zNgSQc0WoDvjonnYAgu+LL76wlkRGjhwZvPzsTLL88Eov6f7xUjlqbXIvVso1e0xe/fArmT5/mazekiSpqamOV9IWWb18vkwf954837mu8U5XN0i1MkUDOu+Oc88T5x52AABEC+akAABEFV0BVbNmTWtN5NixY1K4cKDatvlA/SFznr1TWr23ztrgi1ipOmiu/PJSg4C1ysuJDko4HzcmagSCKyTXYNpU6VGyo7jtb1BumKza9pzU8WVe2DNHJHn9bBnz5mvyr+nbrY2uWsnQVeOlf52rrPXAcR7PPfRzFAEFj2t+pntVOJfVAue47P6yj9Tt/rmkW1uyi5VybZ6S1wY8Inc1KCtXFcoh1KBOyoFtS2TSyH/JgE/swEc3GZc0Rh688RJzLRBcJ9Bmjh0AQLShJwUAIKo4D/WkhywKactjg9q/WqaNdRegiJdGTRtInLWWVYZs/mCGrDgShGbGHujjpltu29aty02QBUB+6QooZ7Vq1bKWIkChK6RUnXvl9f9NlDE9PVVEzpZ3J62RI9ZaIDVp0sRacvS0o40WEFzOQz3VrVtXatSoYa0FkpIzyd/LoL7eAhTx0uyVr2XuhDflwcblcg5QaDGXSrEqzaX3R9/L6ikvSjPdraJMFalQ8mLH3wNED8WphzC1rVixwloCACA6EKQAAESVefPmWUsid9xxh8TEBLLzfU7OyP6V82Si26fj+tL9qa5S19PvS5src1YfslZCQ1fs2cfP+bgCCLyNGzdaS+ERcM2LmNib5cEX+ki77GOjmNJ+3Cy/BmFqisqVK1tLjiGfmHQWCC7nhg7t27cPUtnsiGz45nP5wmOEIk7qDvivfPVKWykbe6G1LRdirpSKHV6XKUsny/BXmkuliwO/T61bt7aWRJYsWWItAQAQHQhSAACihh5O4LvvvrPWRKpUqWIthYjaJyt/mO++BV/DxlKvRWNp09B9XwqRNfLlnI1BaWXsiXPFnj6ueqgBAMHhXAFVv359aynSxMhF5RvK3Q1LuB+rfeduSTkU+CiFboHsPM/O1q1brSUAweDc0KFOnTrWUmCp1PnywZDZ1pobDQbKyBebS8mL8hNcuEjiqneU/3u4rsQFIe5StWpVa0lk9OjRzBcGAIgqBCkAAFHDeXgUPZzADTfcYK2FhkpZKl9/tdlacxYrVe+sIxViK0iTexta27JL+3S6LP7zjLUWfLpiTx9H27Zt26wlAIGmK6BszhVTEeeCy+Wq6zzMrpNxSk6dCc7QS7pnnW3Hjh3WEoBAC00DklOSsmSmTPLYi6KhDBjUU/5xRR56UISQ6xwUKSkp1hIAAJGPIAUAIGokJSVZSyJNmza1lkLFeEBePldmZFirWdSRrrdXlsJyuVRu0sJ4VPYgfb78sHKfhHL0dOfWx/v27bOWAASSayV6RE+Oqv6WY3+dslZcxF8nxYNUSeh8DJ2H0gIQWK4V6UFpQKJ+l+XTF4nbIpjWoIN0rl/cfQ+vMKeH/7Nt3uyuIQwAAJGJIAUAIGps377dWgqD4VH0A/J3Hh6Qq7aQ26tdaSzEyMU3N5dHWpRwbM9ms0z8YZ3sD2GUIiEhwVpikkbAnSFDhki9evXk+eef91sL/f3791tLkmWi1Eik9m+XZYtT3AZbYxslSOnCwakmLFOmjLWUtZcKAAc9pKPOx+z8zF9DPDpXpDtXsAdU+g5ZMXu3teIqThp2vV1uDlLe42+6Z509p0dqaqr5fwAAogFBCgBA1Pjrr7+sJZHYWA8ztQaJSlkp381w94AcK1W7NpVq9sPxBWWkUZdGjmU30ifOlKVpp6214Ctbtqy1ZPyWdI/jJgAF1ksvvWROxjxs2DCpVKmSjBo1Kt+Ve869luLiPM1bEwHUYdk4cZx85TbrSJDOHRtIfJDqCV17ozDHDpCVHuJR52N2fnb11VfL+++/n+9rJSPjfHONUqVKWUuBdebXTfJ9uqcWHglye81ScrG1Fmmuu+46a0kkOTnZWgIAIPIRpAAARA39UG1zbjUbfCdl57ypMt7rUE+2S6V8o1bSwlrLJn2uTF6yV85Zq8FWuPD5X0rrYyC7wYMHW0sOTz/9dL4r95xbx/7jH/+wliKM+kt2TBokjz09yW2Psrj7XpYX7yoVsuFWDhw4YC0BsLn23HrqqafM/Cw/wdctW7ZYSyIlS5a0lgLprKSnJYvnASqrSY3yV1jLkce5fLtw4UJrCQCAyEeQAgAQlZwr14Pu3G+y9Jul1oqLhh2kbS091NN5F5RvKF08Dvm0W2Z8t1JSQhSliI+Pt5YAuPPMM8+YFXiu7Mo9PRxUboeBiuTWserkftmxfIoMf/hOqd3lP7LK2u4sttmbMuk/naT8xcENUTgPNXP8+HFrCYBt5MiRbodkcg6+5mdYu2uvvdZaCqSTkpq00/N8FOXKS+nihayVyKZ7vQAAEC0IUgAAolJQJmb04NyuZfLN3DRrzVmcNOzSWCq7VszlMORTxoy5sjzlb2stuC677DJryWHv3r3WEgBNXyN9+vRxG6jQ9HBQehio9u3by7hx43J9DTkPuRZShxbKV+8Ol+HDPbwGD5Be9zaTCpddI5UadpL+XyxzU0lYXboMniFrpr8gt5e4xNoWGklJSdYSAJvOz4YOHZqth5hNB1/t/Gzu3Lk+9a5wDmoUL17cWgokJWdOndT/c6/qtVI0OPP1B4Tr0HUAAESLGGWwlgEAiFj6IVhP8mzf1kJ3e8uQDSO7Ss1+Pxi/wdqUqY2MWD9Bnq6efb6Mczs+k9aVHpG51npWJaTF6Pky65HKIWldYE/QqCUmJvKADLhx4sQJue++++S7776ztnjWrl076dChg1SrVs0co12PBe9MT1prD1+3fft2s1IwKNKmSo+SHWWcteovsbW7yJM97pX2bZpJ3bJxEqo2zM7HdcqUKWYaAMguN/mZHiKqcePGHvOzCy64ILNMFpwyRIpM7dFMOo3b7T5O0X2KpI7tYJSsIpfzMT148GC2Yw4AQCSiJwUAAP50apcsmrjMfQu+hi2kSeXLrZWsvA/5lCZzv1kmu0I1MYUTXVmqgxa8ePHK+tJDzPlSoafp9/Xo0UNq1qwprVq1yta7wnl+nYgX20y63dNEqlW4Vq64KHyaL3fs2NFtOvLixSt3+Zmer8o5P9MBDgQP8+sAAKIFQQoAAPxGyaltS2TisnQ3MYo4aXivm6GebBeUlTsebi3Z+1hY5s6RpbtOWisAooUeU3zatGnWWhTK+Ek+eflJeaB1I6laqo606P0fmbrmdznptolzYFWtWtVaAhAIOj8bM2aMtQYAAOA7ghQAAPjNEdn040xZZq1l1VDubVJeLrbWsrtY4hu0kLs8RinmyZjZ2+WUtQYgOtStW1ceeeQRay2MlRsmq04pc4gRt6/TR2V/6h5JXL9EZn31njzfua6boOtO+enj56RjnTuky7/nyp6Twe0etnnzZmsJQCDooZ8iIj8DAABhhyAFACAq6KEJQu74Vpk9dqm14qL5XXJHFY8RCFNMfD1pd1c5cd/XIl2WTVwi206FoPmxEz2etNsKSl68Cvjr+PHj5lwTvujfv7/MmTPHvJ5WrlyZbYJ6/feIUyhWipUoJRWrN5JW3frK2xMXS9L6aTK4S3XrDc62y/SXOkrzZ76V5DOhydP0nBTu0pEXL16O/EwHUH2hJ9nW+VlKSop8+umn2fKz4IuT0jfHW8tu/HUsJD25AiU+3su+AgAQQQhSAACiwg033GAthYrxUL9xoUzYnGGtOyshLbo2kQRPQz3ZYq6XBu2aSKynty2bI4u2HbNWQqNYsWLWEgCbHoP96aef9jqGuw48LF261Kz8Gzp0qLRo0cKnCWT1+yNSzKVSvHo7eWH0OBnTs6ab4GuG7Pz4OXl63DY5bW0BEHp2fqaHbvJEBybs/OzFF1808zNP5TBfg7f+EyOFLr5U/8+9zfvk0FlrOQK5zvkR+qAQAAD+QZACABCVduzYYS0Fy1+ycf5ccT+YSCPp0qiM5DxlrD3kk8cohUz4cZsEs8ry0KFD1pJD0aJFrSUAml2hpyePdaVbIo8aNUoOHjxoBiZuueWWXFcoJSUlWUuRKSa2mjw0+GV5qKi7fO03+W7YeFkSpBrD9PR0a4n5KQB3dH7Wt29fj/nZ2LFjzfxMByZ8zc+cg7H79++3lgLpErnmhtLWshv7kiUtPXKjFLrHCgAA0YggBQAgavg6NEFAHFkr336w0FpxUeIyObRxpkydOjXH17er/pAi13saFipdlo+dJxuPB2+cggMHDlhLANx57bXXslXo6bxIDye0aNEi6dOnT66De6VKlbKWokNMydvksWebWmsuts+Q6auCk8+4q3gFcN59991nDtnkzDk/6969e74aK+zbt89aCqRCUrx0eSlnrWWTsU427HbX6zXyBL+XCgAAgUOQAgAQNZo2PV8J9ttvv1lLwXBOjqyeJ1+mWauu0sZJ/84dpWNHH16d+skn249a/9CNzXNl/sa/rJXAc271qCfEBJDVsGHDrKWslXkdOnTI8zAcJUuWtJZEfvnlF2spkhWRinVqSZy1ltVuWZz4hwS6XbPrECkMXQdkpa8R5yHr/JWf/eMf/7CWRFJTU62lwCp0483SNs5Tr9QtMnt9SsDznEDZvPl8n11fhgwEACBSEKQAAEQN58kD//jjD2spGA7J6jlzxVOMwr9Wy4T5wRvyybnVY1yc+ypGoCDTw5/oAJ4e1mn27Nn5qsyzXXvttdZSKIauC4QL5Ypi14n79tcZcuDAETlprQWK6xApDF0HZKWDFDofs/Oz/AYnbLGx53uHJicnW0sBFldR6rfy1JciXZZ++ZNsPhWZs2c7B3qirdcdAKBgI0gBAIgazq2PnVuaBZr6c4VM+nSNtRZoGbL5gxmy4sg5az2wnFtx169f31oCYNPDn+jhUfIyrJMnpUufH09dt2x27QUQec5KelqKeBroJWXPfjliLQeKc+86PYk5gKx0/qXzMTs/y29wwlamTBlrKWvPs4CKuV4a3N1EPA2eKcsmyPil+yUSwxQbNmwQpRy/nJ4UAIBoQpACABA1nCdCDdqDsJyR/Svny8Tz87EGXtpcmbP6UFAerhcuPD/PRtmyZa0lAIF0ww03WEsOkT9R6glJTUoST6PAl7u5tBS3lgPFuUeKc687AIHler3t3bvXWgqkiyW+8Z3S2WMH0GXywYjJsjEj8gZ9cp5bxzkABABApCNIAQCIGiF5EFb7ZOXM+eI2RhH7sEzY87fZ4i23r3MHZ0u/EtbnZLNGvpyzUY4EOEqhj9+qVausNYYVAILJubV/MHuGBYI6skl+mLjMWnOVIHcklJBC1lqgzJs3z1oSqVmzprUEINB0jwznOa22bt1qLQWWnrD/8f/zMGG/IWP6W/LMsAWSejq/halzcjJ5oXz2wVz5Nd+f5Z3r8H/0pAAARBOCFACAqOH6ILxy5UprKXBU2i/y7UT3FYhxD9wjzeIvttZyJ6ZobbnrwdrWWnZpX86W5YfOWGuB4VyR0K5dO8ZwB4LIuWfYihUrrKUIdGavLPjPm/LWskPWBhexDaVZtcBOYn3o0KEsEwI7D6cFIPCqV69uLYmsXr3aWgq0K6XOg72lp8feFCny078ekQcGzZbkk3kcQlMdkaQ570jPO+6SR/pMlXUHAtszw/le4FzeBQAgGhCkAABElcaNG1tLIrNmzTJ7JQTOKUlZ8oNMSnf3HVWlS5uaUjzGWs21olKnZQvx2JkibZZ8t+yPgA75pCsS7ON3xx13mP8HEBzVqlWzlhzD10XcvBTquKStmSJDHmgrd/xrlhy1NmcVKwn/vF+a5zGY6yvnSlEdcHUdTgtAYDVq1MhaEnnppZfk+PHj1logxUihUm3l5REPicc4hRmouFdu6/Iv+WZ1smSc8bVUdVoO71ggY57pJNVb9ZeJO/Vgdofk8NHANh5ZsmSJtSTSunVrawkAgOgQowJbewMAQFCtX78+y1AeBw4ckKuvvtpa8zP1q0zs1lzuG787e7Agrq/M2D5c2l6Tj0FMjiyQAQm3y9A0a91FXK/psv3Du+SaPAdCPNMVooULF7bWRNatWyc1atSw1gAEQ7169TKHXFu6dKnccsst5nLApE2VHiU7yjhrNYsS3WXoiHZS7kJr3QN17E/5dedmWTJzqkxf4yHzsiUMkNmLBknL/OSTPnjssccyx3EfNWqUOSkwgOBxLVPoynbnwEVAnUmW7/t3lbveW25t8CRWyjW7T7p1biJ1KpWVktddJyXjLrX+ZjiZLqn7/pDUnZtk6Yz/yYeTVrnMs9NUhq2eIc/V9jhdd77oHmHO5Vk9VxEBVwBANCFIAQCIOs4Ve7Nnz5aWLVuay/6mkidKt5u6yng3s8H6J4BwUJa82l5ufXOpte7CH4EQD37++ecsFQi61aMeTgtA8AwZMsRsdawNHjxYXnzxRXM5YLwFKfytwmMyeupQebjqVRKAOGsm14o9Aq5AaDjnZ4MGDcpcDgaVsVE+f6qnPPrFugD2QK0ufWfPkXdbXhuQPG3q1KnSsWNHc1n3CJs2bZq5DABAtGC4JwBA1Onevbu1JDJ58mRryd9Oys55U9wGKMyhnu7Mz1BPtqJS+847jU/zIP17+fqnlIA8cH/xxRfWkqPlMQEKIPiaNGkiMTGOjERX6OkK98hXQuo+8bEsnv9uwAMU2sKFC60lkbp16xKgAEJE52e2l19+Oaj5WUxsNXn40xmycNgDUsHa5n9/y8nTgZuTYty48+Hje+65x1oCACB6EKQAAESdFi1aWEtiDvGxY8cOa82f9svmRWutZRd1u0n3piX9UPkWI4WrtZTHmsd7+KzdsnTLXvH3yM579+7NHBpFC9qQDACy0MM76Yp1m3OFe0BcfpVc53EinPyqIM16DZPxi5fKgo+ekMbxlwc8QKF9+eWX1lLWADaA4KpVq1Zw8zNXha6XW5/7TH7ZPF2G9Wwo/hyUKbZub/lw3nfyVqsSAcnX9FCmzpP/33bbbdYSAADRgyAFACDqVKxY0ewKb5s7d6615E/XSYMeT0jn2s41eroS7h2Z8VVvqV/ET7fYwtXl4fc/kqF924vrMMextR+Qp5tXkPOjPPuH8xAC+jjS8hgInX/+85/Wkshbb71lLQXIFfXkkfdfd8nX8qBcU+ncvac88fwgGTHmG5m9ZJP8emijzP/oOenauKzEBiM6YdDD1jlX7LVv395aAhBsukemc6Aw4PmZWxdJ3E13yXOf/Sg7NsyVsYOekGbl8hquKCG1O78oH3+/RnYsfl96315RrioUmMzt66+/tpZE+vfvz1wUAICoxJwUAICo5DqnwsGDB6Vo0aLWGjxxHb9dD5dlj4EMIPhcr8mgTKAdJZ5//nkZNmyYuawr9oYOHWouAwiNsMzPzmRIWlKibNuxS35L2iWJW3fJH8f2y5ZpP8iazCE9Y6Vc05ZyS6krJa70zVKtRjWpfvPNclP54nJpgIOuujdwpUqVrDXuAQCA6EWQAgAQlU6cOGGOf2xPoK3nVejTp4+5DM/ef/99eeqpp8xlPSyDHo6hcGF/99UAkBvOE87q3k3ffvtt5lwVcM+1Yi8xMdHsZQcgtFzzs/HjxzPvlRcDBgzIDLAyYTYAIJoRpAAARK2pU6dKp06dxL7VpaSk0EXeC9cWjlOmTJEOHTpYawBCxbXCnR5OOdNDO9lDPVGxB4QPnZ8lJCRkls0oa3jmeqzoRQEAiGbMSQEAiFqtW7fOMknjyJEjrSW48/bbb1tLjl4U+vgBCD3dA2Dw4MHWmuNa1b3F4J6eh8h5LgqGeQLCh87PnMtjem4K3UgC2ekh6+wAhQ62EqAAAEQzghQAgKilhw948803rTUxxybXc1Ugu/Xr12eO3a4NHDiQ4ReAMNKrVy9rScxh7N59911rDc508Obll1+21hxzUTDMExBe7r//fmvJkZ99/PHH1hpsujcwwVYAQEFCkAIAENVatGghjz76qLUm8swzz8jx48etNWi6Uu/xxx/P0lqPoReA8KIn/h87dqy1JuaY7jq4iKx08Maei0iz59gBED50fqaHebLp/GzdunXWGvbu3ZtlSD+CrQCAgoAgBQAg6umHOxstkLNzrdSjtR4Qnjp37mwGEW06uMiwT+fpnnL2hLyaDurEx8dbawDCiR5S0jk/e+KJJxj2yaDz9DfeeMNacwy/qXu3AgAQ7QhSAACinm595twCWQ8Foscsh/tKPVrrAeFJD8Gmg4gxMTHmug4uvvbaa+ZyQadbHj/77LPWmqNHmA7qAAhPdn5m0/nZgAEDrLWCa8yYMTJ69GhrTcxhS3XPEwAAoh1BCgBAgaArq5yHfWrZsqVZqVWQ6f1v1KiRtUalHhAJdBDxiy++sNYcc+3oscsLMrvl8cqVK60tIu+//z7z6gBhTudnzsM+6cp5fe0WVLrhiPMQdYMHDzbLqwAAFAQEKQAABYKurNItjnW3eZued6GgBip0pZ7rvBOjRo2iUg+IAN27d88SdNVjly9dutRaK3j0kHXOLY/nzJkjN9xwg7UGIJzpsojzsJy6kr4g9nbVcww1btzYWnM0HNHzqAEAUFAQpAAAFBi60kpXZjkPlaJb3xa0Md31/vbt2zfLPBS6gpOx24HI8fbbb2cJuurKrYIYdNWtrp2HrNPB1hYtWlhrACKBLou1b9/eWnP0dtW9CgoKnXfrOYaUUua6ztvpDQYAKGgIUgAACpRbbrlFJk+ebK05hhZ4+umn5fjx49aW6KYDFHp/P/30U2uLo1JPHxcAkUOPUe46zFNB6x2mK/Gch0bRvUseeeQRaw1ApNCV8bos4hx41cNRFoQeYjrP1nm3c8OR//73v/QGAwAUOAQpAAAFjn4Y1A/DNh2o0D0Lor1HhR2gcB4WRR+HPn36WGsAIomuxHKuxNOVXAUlUOEuQDFixAhaHgMRSudnOvDq2kMsmntU7NixI1uAQufpNWrUsNYAACg4CFIAAAokXTHvGqjQFfjRWrl36NChbAEKPQY0AQogsuleULpSy3kYO13pFc0VezpAofMzm67U1HMOFS5c2NoCIBK5C1ToHhXjxo2z1qKHzqMrVaqUJUCxZMkSerYCAAqsGGUPfAgAQAHk2hpXPxh/9dVXUrFiRWtL5HM3lMCgQYPk2WefpdUxECV0hZeuzHM2e/Zsc2z3aOGuN5jOs3WlJkOjANHDXbll8ODB5kTS0VBu0UGXnj17Zs5BoelgMwEKAEBBRk8KAECBZveocG6FrFu2zZ0711yPdHo/SpUqleVBX++vnmiWAAUQPeweFc5atWolQ4YMiYqh7HSl5X333ZclQKGHeNKBGAIUQHSxe1TUq1fP2iJmuUXnASkpKdaWyKN7tT7//PPSo0cPAhQAALggSAEAKPB0oMJ5Mm1Ntz7WrfYitXJP/25dOan3w/lBeOzYsQzxBEQpXcmVmJiYZagUu2JPj30eqXRlZXx8vHz33XfWFkeAYuTIkeYE4gCijw5UzJo1y7zWbToP0A0vdJ4QaXSjER04HjZsmLXF0RNMB10IUAAAQJACAACTHlZAt2Rzrtx7+eWXpUmTJhE3tvv69evN360rJ216v/T+de/e3doCIBrpoep0BZ5rxZ7uIaaHGImkwKvuPfHYY49Jx44drS0OujfYp59+Sm8wIMrpIKQORjrPIabpPEHnDZEQfLV7T+hGI869WnUevWjRInqCAQBgufB1g7UMAECBplvntW7dWo4ePSpr1641t6Wmpspnn30mx48fl8qVK8sVV1xhbg9H+kFYTx6rAxH6d9v0g/BHH30kVatWtbYAiGY6n2revLlcd911Zktk27Rp02Tz5s1mrwSd34UrHUgZP3683HrrrZl5saaDrd9884106tTJ2gIg2l100UXmsE86T9u0aVNm+UbnDXpesYsvvlhuuummsAta6nzsk08+kaZNm8qyZcusrQ5TpkyRAQMGmPsGAAAcmDgbAAA33E1qqOkWfd26dQurIUZ0cOLrr7/OMgG4TQ/v1LlzZ1ocAwWU7ln1+OOPZ2nBq/Xv398MYOqeF+FCV+rpoMpbb73l9vcOHDiQ4Z2AAkyXd3T+4Dxkkk33tmjfvn3Ieybo3/j999+bARTXfEznuboxCb0nAADIjiAFAAAe6KFG3njjjSwTtdr0fBW6NW8oK/j0MAd6jGN3wQn9IKwr9cKpAhJAaOjK/3fffTfLEHA2nVfogGwox0TXlXoLFy50G5zQvSfefPNNc6gUANB08FUPCOE8T41Nl33atWsX9DxN/6aZM2e6zWd1PjZo0CBp0aKFtQUAALgiSAEAQA70nBTPPPNMtsozTT8IP/nkk1KnTp2gtPDVlXmrV6+WSZMmuQ2e8CAMwBMd2NT5hrtWyDrv0JPq33bbbUFp5asDJ3q4Fj0mu7tKPU23jH7kkUfoCQbALT3/jrvgpqbzND38ZaNGjcw5eQKRj+jAhJ7vS/e+dfcbND20kx5KlHwMAADvCFIAAOADb8OQ2HSLZP0gqud+8GcPBl2xqMeR19/vLjCh6YdxPRQKD8IAcqIDrzpQ4a4VsqaDrx06dJBq1ar5tXJP907bunWrGWj1FJjQdHDi/vvvZ2gnADnS5bMlS5bIhx9+6DFP03QZrXHjxlKuXDkpXbp0roOxOv86cOCAJCUlyYoVK9wGe22UyQAAyD2CFAAA5ILd+tdbBZ9NDzmgJ6ctWbJk5qTVesJadw+s+nNTUlLMZR2QyMjIMP/v7SFY05WJ+ntq1arFgzCAXNEB0MmTJ3sNGGg6n9ET1yYkJEjZsmWlcOHCUqxYMY9BBP252m+//WbmZbpCTw/n5CnAq9k9Odq2bUtwAkCeeBtyyR2d7+iJrZ1dddVVcvjwYWvNkZ/lVN6z2cPnUSYDACD3CFIAAJBHulXdtGnTvHbzDwR7CAM9pBNzTgDIL3tOCJ2X+VoZ5y96fp8mTZqEdE4MANHFl+Hk/EU3FLnjjjuCNuwnAADRiiAFAAB+oFva6dbCesgBT0My5Yc9TEH9+vUJTAAIGHvem3nz5uXYkysvdK8MXaFXs2ZNWhsDCAp72Mzt27fLypUr8xyMtXte6LKY7lUWqLkuAAAoiAhSAAAQAPYDcWpqqiQnJ/s8XICuwNNBCOdhojwNEQUAgaZ7jO3Zs0d2795t5mnp6ek+BWLtyjw9dIo9TJTO12hpDCAc6Lzt+PHjsn//ftm3b5+1NavY2FgpU6aMuUwDEQAAAosgBQAAIaCDFjYefAFEKruiTyOgCgAAACAvCFIAAAAAAAAAAICQuMD6PwAAAAAAAAAAQFARpAAAAAAAAAAAACFBkAIAAAAAAAAAAIQEQQoAAAAAAAAAABASBCkAAAAAAAAAAEBIEKQAAAAAAAAAAAAhQZACAAAAAAAAAACEBEEKAAAAAAAAAAAQEgQpAAAAAAAAAABASBCkAAAAAAAAAAAAIUGQAgAAAAAAAAAAhARBCgAAAAAAAAAAEBIEKQAAAAAAAAAAQEgQpAAAAAAAAAAAACFBkAIAAAAAAAAAAIQEQQoAAAAAAAAAABASBCkAAAAAAAAAAEBIEKQAAAAAAAAAAAAhQZACAAAAAAAAAACEBEEKAAAAAAAAAAAQEgQpAAAAAAAAAABASBCkAAAAAAAAAAAAIUGQAgAAAAAAAAAAhARBCgAAAAAAAAAAEBIEKQAAAAAAAAAAQEgQpAAAAAAAAAAAACFBkAIAAAAAAAAAAIQEQQoAAAAAAAAAABASBCkAAAAAAAAAAEBIEKQAAAAAAAAAAAAhQZACAAAAAAAAAACEBEEKAAAAAAAAAAAQEgQpAAAAAAAAAABASBCkAAAAAAAAAAAAIUGQAkB4Un/Jlv89J7dXbChdhy+QtDPK+oOm5EzaAhnetaFUvO05+d+Wv4wtAAAAgAurTHmbD2XKrzYfpkwJAAAQAjHKYC0DQPg4NEf6lW8lI9L1Sjv5aMvX0qtKYfNPIsdl68f3y029vzPX4vrOlp3vtpSrY8xVAAAAwMEoUz5TobW8d0g/9uZUppwlu95rJUXNNQAAAAQLPSkAhKfYEpJQN17MuEOFSnJj8YvNzQ4XS/EbK0kFczle6iaUkFgCFAAAAHBllCkrGWVKU05lykpGmdJcBgAAQDDRkwJAmFJy5sA2WfLL71L45gZSr1SsI2BhUxmSvHK5bDp+vfyjcWUpVogoBQAAAFxRpgQAADCd+VM2TP+ffP7NcvnjiqvluhJ1pV3PTtL0xiuylo9ydFySprwivX5uLl8NbyXX+KEbRD6CFEpO7/hKetz/s7T75j3pUvZSazsAAEC4cyrHTBohXW68xNoOAAAAAECUOblVvuz9mHxe6mX54oWWUupSY1PKEvl0yAy5vNcL0r361VLIeqt3f0va/GHywD3j5NoPvpcvHqwozv1U8yofQYoM2TCyq9Tou1ZajJ4vsx6pnLuxo87+KnNGTZFNp4/I3q17JP3cGTm4JU4envGedCjh2yHJwt+f57MUmdqjmXQat9tpkrWmMmz1DHmudh46C59ZI8MT6kj/3da66QmZkvp+gPcDwXFGMg4ckKOn/dWBKUYuKlJMisVG4rnhuHY6jrtAmnb+h5S6LHsOcu7gFpn2wxq5dthq2f5cbZfM0v73josltnYbaX9TnPyd/ItMWrjT3CbdJ0vq2I5SImT5AxAtsl5vDvm414UFXY65zyjHrJEWYxbIrIcTcjkGpq/HJFyPneN3dTLy4CY+5MHbjDz4Imv7eda+Tb1K2rS/Sa52+gjz3179ouwY20FKWNsQLsL0nORejTyzz+lAlimnGGVKIz/jPEVUCtP7QtAY+9/zNuk4dpe1rjWVoaumS/86Raz1gsBxHvitbitf/PxbqGcDDEeM59+e0uijm2Ta0tfk9qvtc1/JmdQfpH+rUSL9B8uL99WW4t56lZ45KFu+e0ee6jlE1t/1pawa203KXeSnXqg6SJEnf69TIxrG6fxCSYvRKvGstd1XZ1PV6mlT1ORx76p+bRIcnyNPqCmpp6035JK/Py/TOXVi9xw1ckAf1XfwJLX+kOvnnVZH96ep1NTdav3EAaqu+b1N1bDVR62/59K5Eyo9LVWlJm9TC0d0U3F+2w/otDydvk1Nf6WNqj1ivTpjbQ2uZDWlezllXL7WOZr/V7lhq9Up69OzyuncDTX72jl/vheNsferqXp+4mqVpP9mvNLSTxh748r690mb1OLJw1TPuiUc/7bC/Wrw5MVqc9Jelbr/qPEuQ8DyB6CgyHqvq2deq/m414UDXY65pagjP2gxJvflGJ/v/34uJ/hN1jx40UePqgrmbzNesa3VK1NyyoM14zP+3KVWjvmnSrD+bWzdnurNMdPVks1J5/NghJkwPSe5VwdQuJcJ8ytrfnb+GcpxblOmBHISpveFoHG//0NXHbH+HirBzrtzex4E8vf5+ZwMu3q2aL8vRyO7PrFtHuoT9b9NVPPHDlF9e3ZX3bs7Xj37DlZjvl+jUk/4+iCav885t2eCur9IUdVwxDp10tp2Xoba8tGDqvMr/1YDej6lho7/Ua1O3KvS7c/U11BKolo9+wv1aq+H1AOtjTJQ3ENq7M4Mx9/9JI9BinPq7/UjVUPzwtavzmpM4gnrb7l3NnGMauHHTMKvn3cuSU24r5y1n7Gq6qBlRtJ5cHq1GlZOv88/N/RzyRNUFz8el4LprDqRnqqS1s9XE0Y8o9qUizXTUlfsh/qInjtxQCVO+b/Mih0p8Yz6du8x4+ryxMiQju5XyYmr1OwxAzL3pcTz89Vhd/8oN+duOEidonrExDh+b7lhanWuEsi4yRt5UjOpqfrNTvNyDP2f3wAFzsnlatCN+lqN5IdXRznmFjvPyWc5xuf7v5/LCX5l5MHdzWNhvMoNzV0ebP7b6qrLsNlq19HQNAFAHunruUz4nZPcq/0s0sqE+ZUlP6NMCeRKmN4XgsZp/0MepHCTdx+z/hRwvpRZg3Vv8fc5mXmPCGHerY/d/eXPH7s3fw5e2iIX/FGfeFKlLnpXdalQW3Uf+ZNKzgwkGJ+dukpNGNBaVbj7dfVt4mGvZQ5fP2fqdk+fc0IljumsYmIaqFcWH3T7Hl2u6TJslTp5+i+VvP4nNWXMCDXo+V6OYMgTz6tBI8aoKQs2qD3bJ6leFRLUfeMS1d/Wv/WX3I1skOmYbFs0X/aVi7fWl8qEBbvktLWWWxcUuUqus5b9wa+fp/6WYwePWysZcvDICTmjT8sgiCl0kTBCdl5lyJrhzSQm5kK5rE43ef3rtXIqoYbcdDbD+nvoxVx6tVRs0FDqWetSuITEX1vYy0Q1MVIotpjEV6wjLR8eIpMXTJABdeMk7Y/DxhXpRgjP3eCLkUtvaih3lqsnjasV8zrZj7/zG6DAudC4N11oLUcsqxxT9gZrPX/lmALtzF6Z//FUuXDMOBn9fy2lXGwknxy67PCqTE07Y60XAGF6PXOv9rMCVSbML8qUKOCiopyXD+G0/+7ybmstLATr3hKN56TrsTuaU9raZVSeVoLDUZ94Qb7rE89KxoYx0rvtO3Lo8Q9kZJ+mEn+pXQ1/gVxaoo50GfSBvFVyhtzTbrB8//tJ62+uHJ/Tq03On9Ox/WD5IfVv62/ODsmOlZuMc+8GKeOh3vGC0lXk5h3JcqjQFRJfval0ePhpeentj2Ts2LEy9uO35aWnH5YOjYvI6hFvy8Q6L8ubXSv4ZR4KZ3kLUpzaJYsmXS0DXu0hVc0NafLjlz/J1lNRWNq9oIJ0GDpEnqhbTmp3flP+26u+XOmttIowUVhuenSipKWfkHO7FsjYt5+TB2+7SYpHzc3NyIhKtZLn3/qnJPycJKnu7micuwDgnlWOeb4glGMCSQco3hwo/yv9vIx8qJrERvw95oik7QqfxgyA31AmBIDI4ybvvsL6U1jg3pJ3+ti9PTjz2H3yRIMc0tYqo/KoEiSO+sTU/NYnHt8gn/V/S6bHdpX/e7iO++ujUBm566nHpPn2j+T/Bs+VNHdprD/n+bdlehEfPifxY3l2kJvPObtfklbuNRaKylVFPMzDcsn1UvmCve7rF00nJXn6CHlh4s0y4s17/DcPhZM8BCmUHN80XybGt5CWHe+UrlWtSWuWzZFF29y2545wF8pV1XvKxyt3yepvXpa2Nxa2tiO8XSCXXnWNXHfVpV5bQEW2C6Voo47S+/r9cvCIu1yEcxcAsjtfjmnRoSCUYwLEDFC8EEUBCsPxPbLh5xPWChBNKBMCQOQJ97ybe0veZT12d5XN4dhRRg0yf9QnnpE/F4yT139MkesebCkNinqKcMTIRZVukQ6NLpJdH/1XJm10bTDl+Jw3fkyWEg+2yvFz7jE+Z+dHn2T/HHVGTh3JyEecS8mZ5Jny74FzpPa7A6RrucBc73kIUvwlG2f/JKXb1ZP4yyvL7V3rWIm2TCYu2iWnzGUAQXFxKanZ5KwcPn7O2gAA8M6pHBPrKMc4OMox7jrHwkVmD4rnoidAIefkyJq58tVmmqgBAAAgXJwvo1JKjSAqRX76+ntJlxJyc8WSYjWLc+/C66Riw7LGwiL59PtNWYdztz9HGZ9TKR+fE3OJxJaI8x50UWfl9MWXy2Xu3nTmN5n+1r/NYZ7+1bWiXGRt9rfcBymOb5P5k0pIuwbXGzt3pVS7vYVUNXcgXZZNXCLbGCoBCIBzcvLwIcnINshjESlz00WS8ifVagDgE6dyzAV2Ocb8g1WO+ZtyjFc6QDHobVnScJB88FD1KAlQGGXyjHUydvgXst1aBwAAAEKNMmqESt8hy2fvNhYKy3VXXZ5D5fulcmXxIsb/M2Tz7A3ym/NAKdbnKF8/p5iHz7mwuNxYu5Sx8If8me6he8HxFNl28Q1yXbbOGsdl9/g35TFrmKfyFwfuATCXQQolxzculElV7pAG8Xp6jBgpXK2pdKmqD4KBoRKAADkuW0a/J3P3n7XWbYWkaMmr5Y8D9qRLAADP3Jdjsg75xJwEnqiMjfLZ4wNlceMB8nLLMu5b2UQcJWf2r5avXnlBXpz+m7UNAAAACCXKqJHszK+b5Pt0vVRCKpTMaTaZi6TotdfrR1ORpetl+5/nJ0h3/pyKvn6O5vI5InFSuUFtiY35TbanHDXOLldKTu3aJL9WKS1XWVsclJze/a280neptAzgME+2XAYp/pKN85dJFT1Egv1gWriy3N4l61AJ+R7y6cwh2bFgnAx+5knp9fhD0uPBrnLv/f1k8GczZU3acTcHMwd5+jx7NvcYicl8NZPha/xVeWFkOId3y/KpH8tr/R6Ue+99QHr0eEx69X5ehk9YKr9muFZGu0qRqT3Ku/y+8tJjaorL/uTnffb+6t+6QxaMGyavPNNHHurRSW5r1l4eHzhKpq35XU76kCDq5O+yZtooGfj4/XJv1wflwXu7ykOvfiYLdhwSHdxTGUmydPaPsnjhQvl+ZD95eNTP8meuEzoQjAsyeba83r6KFKnXRz7bcMjluAXLSflrv7veEjFyeePnZHjLa611zddzN7BpHjH8ld+o45K2ZqZ8Nrif3G+c3w/2eFC63nu/ccxGysQlSZLh+kFn1sjwChc4HXvjVX64rNb3EXVEkub+V17t10t6tL1NWvQeJXOSjrj9Lf65ts7JybQ1Mm3US/J0r8eN9O4m7dp29DG9jfOoZ4Ws+2GcR8NWHzX+Fpq8Y3+Wz/1b9m8w0mX4EBkyYqSMGD5chg8ZLIMGvSWjpq2T1OQf5bV7P5QNHrLcPH+/X9I3H+miv7+803ebr14yNc341fqcX/yNjBz4lDzdr4/0aNdW2j0+UIZ/+aNszMs91g/pHDy6HPNz9nKM05BP34TL0JW5zVMCTAcoPn+qnyxp+Ya8cvsN4mG6NR+FR55z9teZ8ubTHaR+2brS/b0fjbun9ol0LHmRy+e7Kzc5yXVahfP9N7/fn5+09SJU92orrbKeDyFMq1z//jApE4ZZfhYwoSxTut7zyw+TNWZBJbBlyqxlLi2f+XsAr7eglSn1hxnOrBku5c19KCl12nYzzoe2UqeItV9mmfCMpE3tZaxXlGb3Pig9jHS+t1lFl/3WHNexub1IHWn7YA/rs1yv5QDlv3k59n45J/NXhnccj40y98vhMqBXN7O+5aGn+8nTvY0yb66uyVDkgU5pnvnynHe7f18g71F5rSsLozTxJG2q9DD3x7puexjXm3lt1jPKgsnWm5zkKW1vczpujmPnKMee56mM2un6i13+rVFGneLmd/nIkU8VkfLNOjn21Tmfsp8dM+k8q7fjb+Wbyb36/fc2M/69u7TXab1WfvhMp7VxPzSPo/HqlVNaG+d0AOsWgueM7N+zW3Q/Ct2w+JKLcppx+0K59HJ7IKdESUo9aS3763O0iyW+2T3yQFySzF+dJNmbOR+RTT/ulTua3pg1UHB6p0x45Q2Z3eq1gA7zlEnlxrFlalCNR9WEPX9bG7Rz6tjq4aqBPmP0q+oQtfzYOetvPkqdorqb//4xNX71T2rkEw+rVyeuUqknzlpvOKdOp29Ts4Z1UxVim6t+41apP097+Q6/fN5ZdSJ9n0pN3a3WTxyg6pqf11QZF4f1dzdOr1bDyvnwvnN/qd2zh6kuFcqopv3GqmV7/lKnrT+p04dV0qKPVa/7hqh5q76y9uMJNSU18x2W0+ro/jTz9637qp9KMN9XTnWfkmzsnbPz7zu/H76+z7Efp/bMVK8P+FDNSzyY+TvPHd2gxvSsabyntuo1Jen878/GONap89TguxOU1B2opmR+xil1aP0Y1TOhjXrl66/VmInr1CEzDQ6oxa80Mj63sxq9/bj5Tr/JTB9R5Yat9vKbne1X85+vrWLM42G8WoxRifZp5A+Z56rxKjdUrfbwo879tUi9WrWXm/PAHV/P3UCleR4Zx8IoEFjHYpjHY+GRmb7urhUX/s5vDOeO7lDfD+qoypXrqAbN2KbS7fefy1DJi99X3Y1rvdkrP6g9J5w+59wJlZ6WqlKTt6mFI7qpOGu/V506pNZ/8ooaPF1/zu9qdr+65vkX28o4985Y/9bkr2vrpEqdP1Td/8RINW/LPpX5E08fUJsnv6iaxcYbv32G2n00y5c7cX8eDV11xKfz6JS1Pbus+zd5u5v9+1/2/Ysx9m9M4gnznercYbV5zD9V+1e+U4npLt907phKXf6J6lkh1sP5Zn1/u8q5Pr7m9+c7fR3pcl8O6bLriId0sb8/dadaNrKbKhqj0+UJNTlxjRrXr7d6beIvas9Re6dPqfTEuWpE95oqplw7NWDiJnXU/j539LVWXl+rOr84rI5umagGPu8+nWMClV/klS7HVM+pHDM49+UYX+//Pr7PzlPKe81TZmbNU/LLy/3ITM+Hahl/i1UVek1Re+zfkyfhk+ecO5Gu0lL1dZKqUma/osqYn/WAGrM+xdx2/pWm9mdeL1n5lv/PVL8ddz5mYXT/zXJOer+eze+fvNvL93vPt24rklPaOgn0vXr61mxp1aOiu+sqH2nl9VjlXt7OtdCXCfNURsqvLPlZBJcpfT1P3ZY5dD7uWuaoZx6TnMqUeSpzmXwru+Q2f8//9ZZ1/7KV6Sq7KdO92tj4XNcyZR/Vzocy5Srrz457zB61ZdYQ1baIdT7GdVMjl+1UqWnpxvExftfRA0a6bVDTX2mtYs39LaPaDPpBbUn+Q6VnnkfGdXwoSa2a8IJxDPV7jHtx9/fU7PW/qkOZ78nvsXfij/tCfs9Jqwzv9XhXLOL5+jb2e/34/qppbIK6+9VJav2fJ4yzwHL6qErdMk+N7tdLvTYvJftvd9r/oavSc95/r88z+r15ufcEIe/O6R7ltcyal7oyR5o0K6LTZLJal8c0yX9ZxZCZd7vJ5/VvWfmx6lrUUS8RW7en+tfY2Wp1YnK2smDe7m/uj50uxzrzVEYdvS7Z3OZLGdUX9vckb/lBDWpTxtxnkVbqlRkbVHLqAXXU3ieTzrNSzTytjc6LjPta39Fz1PqkVKf8ymBff3Gt1IAJzvdE/X171WqdlxU17onj11t5rrOs53Q98xk253K+/czp7VrMt8zz0Jf6xJMqadwD1vHMnr7ZnTZOyydUjLm/DdQriw5Y27N+jtdrzKQ/p5f1fufPsR1Tu8Y9rOLinlDjf3OuEzqnTmz/Qj3ywjx1MEuSWO+v0FdN2eN8vw+cXAQpjIf45UNUjfsmqD2u59Hf69SIhnGZB27Q8nTrDz7KzCTiVbm6vdSYTennMyxn5/arZYPbGDdw4yb72k9qn9N1kIW/P89rBu3El/eZN9zHVAWJU3UHzFKp2S5Kzbj490xRvetWsDKjHArJGYvVK/H6fe6CD05OLleDyuTmfcbF9ONcNfL179xUSJxTf68fqRrq35fwulr8l4eDd2KD+uhundnVVP1mp7l85yn1+5TeRqHFOBav/qQOmX88rf5cPFL1HvCNSszykOUHucpUbOlq+aCmZiWi/nex7s7//HB+iCrzipqd4nzD0a8ktXnJt2pYd33D9eFhyZWv564/0zyvjGMR3CCFlT9sPuz+WnDJH/70lO4ntqhxZoGomXp18Z9uPuu02jd7gKocY3zO4CXWeZ7VueQJqou532+rn5Z9ol6wH/jPbFIfNYpznH8NR6r1fzv9Y79cW+fUqV1fqftbvKnm/X7S2uZM35QeMj4nh2NgczqP3p7r23m06LBveUfWdzn2r2iM3r+F2ffPLAhaFc9Vh6hlGZ5+uHWc3J1v1vfH5Hh8PX3/eblPX6d0Sc0pXRbknC6Z11Z11aznMDV7T4bL/jicO7pefdy1onnMe47Z4DlQoa81K0gxdNYPavjAr9TmbA+9jnS+RX9vIPKLPHGUY6oHohzja17ry/uc85RF+9yklSNPSdDp7yFPyRPn+5FTkMIs/D/UXNWuWcLxN+shIIec1oPwzXNOrx6mypn7l4t7rU4rM3jjPf8302rQYvdpFer7r9M5mdP17Pj+1zx8vy/5lvGQ42vaut6r81uWd7lXZ3+bD9dVrtPK07HKA3+ca77mU/48J/1QRsqTLPlZEMuUYXCeni9zvKUWLncpczQu6jgmOZQps36vL2UuzZEHdGvpS9nFyzGw+fN6c96/WakuaaT378kcynSOMmXDm701xjxfprSDFOftV/MH1HEc+y4TVLKbjzh3cJ4akBBrvKeVGrE+w9rq6qBa/EoDFXv3B2pdlkYqfj72frsvOOT+nDxfhvd+vI10c3d9O11vzYetUIezfcQZdWjVp6pXswpKYh9Q43a7HDOn/X97pi/77+15xg/3noDl3Tnco3z9Xl/e55wmQ5erv/KRJv44J8/n3e7z+XMHZ6t+JUupZgMmq82HPFR7W2kb4+P9LWvFr8V5v7xUYjuXUSf/Hqhq+DPq4PyXjXPR+J7Yh10adLlKVlO6N1A9J+x0XMvOTqeoea+2VkViO6uR6z3cE3V6LxvqCJ6+OsdDnahBn9M3Op45cyrn28+cHq9Ff8hML1/qE4+q1cOame/NKX0dnIMU5VT3yXus7Vk/x+u1aHIOUjh/jhMjjeYP7qzqdn9fLUo6rE7rwO+KseqZnu+oZQez31vuL5qfZ7/cy0WQQrcob6rum7DbzYl2VK0f0cY6ELGq6qBlytOt1a3MTCLBONF3GbccL46tVMMa6IqE2qr39D3uT3p/f57fMmjjYlz8piNamvCymp/lBHBlV4Lpz8uhkJz5vTkEH3L9vgqqdbtX1bd7PWRQmcERT/trF/qM98QbNwo3FYWZhZbYLi4tcQIgc79yE6QwfuOh9Wri4GdUrwGfqPl7jllb/cT5ISrHVy4qTmw5npMWv6V5PhjHIrhBCkf+4PXdzvnDjGQ3BcujavNHXY0Cl6i4XjPUPk8X1SmjEN6ipHGe32+c527OIfs3lblfPfHCWLXllP1Bp9X+1ePUq8//W41b/rvTb/XXtZVh5N2tHMe8Qm81Ybeb36ZbnlfVD02N1CuLD3jONzTX88hTIcrpPHJ/w3bK/7zsX1d9vnjcP8eDnHSfon739qP/mq+er+p6vvn2/T7nXblOX50urXOVLl5lXlsNjPcetDa6YxREEseodmYrPU8FboNOZzNIYaTz3c+4P6c1I51fLaXfF4D8Ik/sckySm/3KXo7JVW6f67zW0/t0ntIlM0/5w1M5W+cpzUt4zlPyIjNvNF5WkMIRoOimXp33mzq46l3V3Dw3jFeeW9OEa56jPyq3QQpHWhUxHiZyzP+NtIrxlFau+xDs+6/z9+dwPXv//qxpO36XmyeBXOZbzvfq/JXls15XOaWVx+sqD+ebf9LK3+ear/lUfs9JP5WR8iJLfha8MmVYnKf2b8pVmTK/ZS7NkQeYFSy+5O+L9lsbPfDb9ZZ1/xYdzX5jzblM5yhTxhhlylRri1t2mTLbT3U0kqiqvyOur5qxz915dVitHmYcP+M53X05RTuhEsf8Uw2Yv8/lmSSAxz5f9wVLrs/J82V4n453lsNpV/ob39fgbbX8L3f1Lb+rGb0qG79b/3ZHvUgWedh/92ULf997cpl35/celevv9fS+rGmy7LCHNHkiwdFwy11dlWuabPdQ25jbc9JNme/c0W1qyoD71UNj1rhp5W9zvr9N9+n+Ntrdb3Y6dqEPUhgy71MlVPOPNimPYQr9vg7vqtXZ7hcn1J4p/cwG2Q2G/pLDs5Sd59VUD03Y4f7+qY+P/cyZwzltP3PmHAzIh8z0ivAghaYDE6unqY9e7at6PjFADRv3k0pyDfydSlTj7ktQFXpNdhMc0qxeQWbPQGuTH/g+J8WRjTJnfFlpV/96cy6PrC6Xyk1aSkNzOUM2T1goG4/p45Jb18lN5a/1PsZV4crSvKv+pjXy0YtfyS/HvX2Pvz8vn46vlTED35VVEicNe3eURkW9jSd2kVxTuqwUtdZCY6esr9REmpXUk4u6cUlhucL8U4ps2pNuXq1ZHZJNS5aJOcdLs2pS/vLsZ05MifJSx8hxJWOZTP9lr5vPCL2YuOpy74vvyEdvPS63lQrgJDHlhopRyNKBw/Ov00flz90rZMKAVmLcBIMgv2keSRz5g9dx1Z3zhxeM/MElX1Opc+WdlyYauV5teaxzfbkm+ynucFEZadCmlnGez5LPFySJx6FTf/tJfi1XVxIusj+okBSr/aC88fZAebB+Saff6q9r6285cuAvx+LOuTJz/UHHsrPCFaTBnZWMhaXy5eKdxr/whT6PbpXbSnrIfZ3Oo83GeZSdsX+Lc96/2l7375js3/OnyIy5sjj5hLXNjdiSUqm8a17s/P03+3R8zzk2e+dz+hrpctC3dInJVbpcIlcU9nBtm2Lkogot5dEHjMdo+Un+NXCCbDzl7SrfKStK3iZtK3jIF410LuKUX4ScXY5p4GM5JpDlAQ90nvKfF53yFE+lNJ2ntD2fpziPFusv6uhG+fz5cSL/94G8fntpKVq7uwx5rZ3jXrRzjAz890zZY9yzcidc85zcs9PqqPIh/9dpdSyH/D/k99+cr2fn788ua9rO8lva5r8sn+26yimtcrpXW2nly/nmj7zP/+ear/J3Tvq9jBTWwvA81WWO8vV8K1Pmu8ylWXmA/qPf8/f8XG+u+5f9xppzmdm5TOk8vrcLt2VKLUYKV2sqXasad9D07+Xrn7zMcSS7ZfxnP8lOdwXL07tkwczS0r5+cZeJRQN37PN3X3Dh8zmZj+N9fJV8+twHsl3Xt3RtIbWucJceV0nFurUc5ZnYf0iTqlebW7PT+9/Mp/13V7bw/73HV7m7Zjyfi36i06T/h+fT5EoPaVLPSBN9jKw0cX+4HOdkmwqXW+su8rlv5vxrfQfJhuZvyycP15K4Qu5/RZb7Wyff7m9fRML9rXAVubO7ngslTX4cN8dDne45ObJmrixvfofc7HK/UId+lg9fHmOkUh25p1kl8V5zdoVUbXa7VI9ZJ5+/Pk6WHPJ2dPQ57b2cbz9z+qucH/ViCkuJ2u2k1xvvyecfvyXPPdhUbox1vjaPy+4Jb0vf1S3l3wPvlFJZrgUlZ9JWyNeffS9bTsTKdcUukPSda+SXnX/5JT/xMUhhnIir58n4Ri2kfvwl1jZnMXJx5cbSpWGcY3XzXJm/8bBj2e8ul4R6DaWMXtw8Vb5d4eYmnCv+/jxPjGO44lt5d/khYzlBbq9ZSszrKKyVkVtrlZUinjLdHJ2SY+k5TZ5kMzKUfX9F6INJABWKleJl/yFdXv2XvNbA95hi3uU3zaONc/4wRaatOGBudTgpO2dPkM/TdVZcTWpVuNKx2a3LJL5SJaNoli5Ll+8Qo9jtQTlpXKWEDxmzv66tK6V6x0flobrlpHaXPvJo4xLWdmeXypXFi5hLv+1IlUM+3XmM86imcR5Za7nnj/2Lk3K1E4yHwU/ksZ4vyZgFW+XASTdPfBfcKHe/20UqZSkvByrv8jV9jXTp8Eju0sVc8oOYa6V280aOB7dlU+X7tValo1vxcmvDBCkeEfnF+XJMg3h3d9/z5Rhzd8xyjLd9DwQ7T9HLjjzF86HVeUrC+TzFHyVCZ4e+lf7d/ivyz1fkoZus3xFTVGo//oK81jzeWMmQnR8Pkbem/5rLAEm45jm5lT2tPHNJK2trdqG+/+b3es6ato80LmltdxagfMtrWV6n1cTApJW1FliBONd8lZ9zMhBlpEgX7PO0nNwaijJlPR/z952+5gH5vd78WKY8/Ik82uPFnMuU7lpAFb5Z2j7WxFjYLTO+Wykprve241tl9tLLpVPdOJG5P8iC7cesP9iUnNq6SObVbyrVCrtelIE69v4u5/l6Tp4vw/t0vDPL8Lq+ZYZ8sFmnt7f6lsJS8aH/yo4t62XLjk/loYqeqlKN/W+Q1/0PxDXtq2Deo3LiSJMPN+tJj3NKk08lcbMPaaLPSb9Xi+hK1/ny7wc/lGO9hssrt9/gJeic9f5W09f724pIuL9dLpXvvFfu09Gi5dNk+ho3daMqTRaP3y/33lnRJS1PScqPX8uH2420jk2QhFIeAkmZYuSSUglSX3/X9vEy+sdk42zxxDing1rOL+iUnN79rbzab4N0eauv3F36Mmu7Zlwryd/K0y2/kktbtZbaJQpLTKErpETFGlLxyFL58dfs03Hnlo+X9yFZPWeRJNS/QQrtS5O0NDevg5dLpdtvtt6/WibO3+ZmtnB/iJGLil4nFc3lNTJl7Z58tiD09+d5ckJ+3bxO0szlG6TMtd7jiuHhQnP2+LyXSy6Tq667ylrOSRmpE3+18Y1wq/CNUqux52xZnfxLDmb448zNb5pHG2/5wyHZsXKTzqeN8lIpKVnU3ROJ7UK5oth1jp5RPydJqsekukkql87phq7569oyflf1h+Wzlbtk9YR+0ri46z4YN6GMQ3LgyClr3VfhkHdcLje1f1h6VYiVjIXvyqO33yTFi9eTto8PkCEf/09m/LRBUsxr5hIpVqako+VOpkDlXb6mb6DSxReF5JqE6lLDXN4gs9fv9XJPvFiuvPySCMkvjHLM3MWOcswfbsowbsoxEwJWjvHEylM0v+UpeVVOug4dfD5AYYm5oo48PuRZaW5GsdbIxy+MlOneWjlmE655Tm4FIq1Cff/N7/WcNW1vvSaY+VYO9+pVkZxWocwX8rOfgSgjRbpgn6ehKVOO+SWay5RF8lCmtJ3vsZkxforM2+l87zwnR9YslO0dX5U3et1hrP8kX87bKVmP1BHZ9ON2ubV5ZTetkwN17P1dzvP1nMxrGf647Fy7wqpvKSsVbvDyXboVcZXqUkVXsFmbssvP/gfimvZVqMsTznSaLJc0MyjnSBOPvyvgaeLJOTmZPEfe7PaQvDRto/x68KybPMBZdN/fYuIbyX1mr/ql8v745dkaQqmUpTJB7pBm2Rp9pcu25WskQ7//2lJSIs7bcbHElZBy1+qF3cZ1vUUOuHzXeeF0TvuqkBQpWtxazq1rpHRxO//y1+fkwsmt8uVLg2TVvS/IC3eXyRqwO5MkU157SX5of6+0zNKz5UKJq1VbYuYtllSP6egb34IUeoiEL5fJj30byQ0lS0pJt6+K0urNxdY/yJDN/5sra454joXlxwVFrpLrrOXdm/bIfms5r/z9ee4dkt1rdjoyMyObuqqIDxdtxIuTGi1aSYJe/Gmj7HLTXUzt3yNb9hkLca3l3sbuhuCAg2794q4Xk3ZW0he9L6PWHbHW4U9Z8ofNTvnD2f2StHKvYzn9e3m7V0/p0aOHx9cjIzfJLd27S8/2ZSUu3yd6IK4to4CWtlWWzvle5q7YIDt+/V3S0vbJYSkixRz9ZoPI2L+WrXPcv61e9y9GCpVqJ8O+/Vh617Na9GaskR8+HSov9X5A7r6thpQq0Ux6ffyzpJ1x/Xzn79/k0/H1e4OeTMFPlwvjrjEeI7R02XswI0CB+yAzyjFzrXLM9W7LMPrlKMc4Utsox3wVuHKMW/nIU4r6++ZZtJrUSXDXk8N42HIz7FNytmvIF+GU5+RSHtKq4YP+yv8jQfDT1mNZPqT3aj+I1HMt0o97gITneeqPMpercC5TZr+v51xmdpQph079SHrVtXop+FymtMXIxTc3l0da6H+/VCYs2OUUhDgkq384IG2bJEjCHR3lvth0WTZhvmxyHhJM97RYcbPcUSWnCqcIvrdmOl+G93q8P1rqcrzTZc/mFGs5Vi6/1LcmRAFBHmgx0mRTmKSJW6ckfcNY6d11vJyrU9P4hcvl3WdGydw/vTz9uKTt0N4PuU1T+3U+bctFRtrGlJBb7+to5pnpX02Tn1Kcg5vHZNvMxVL2vgbZh7g6+4ckLt5treRexsokSfVtaIIIUUiKXGWGp/LgEimSOUSzvz7HVxmy5Ys3pe9a98M8Hd8wTUZ8cYnc07CiZLsbxVwj/yiXIj9mCcLnng/1Ko4hEr5pN0P2nXMZL9/1dXabjDFvvIbt38v3q/3XkRuR6EIpeuvDMrhXbZGUH+WHX/ZblT+2k/LrvBkyOaOCdBn2pNzpaYw5GArLTY/2kxbF3d3Y/5Y/fv1bynlrLRIJrigupfUoItrZU3L6rKdCvgfH/5L9F1wnxd2OPRoA6oycOpLhOKev7SpvfD5Wxo7N+fX58A5SNt8/0Z/XlvEwk7JUPhvQUW59cakUqnabNK9fXSreeL2UKHGdFIsNxXWZff+yPlLa+1deugz/p5f9u1Bib+omHyxaKatn/08+fPWfcndtpy7wGUvlk973Sbc357k85Jz//picjq/X78+P8EiXAykH5EguL8XwY5Vj7p7uWzmmpRXU2j4juOUYK08x5TZPCWa7BzfDPv17+m+5CGaFY56TS1nSqkuQ8/9wFoZpm5/rKhzSKlLPtZCWkQwRWqY0hUGZMm9lLi38y5Qz3ZbpvvehTOcoU364eFWOZcpUT/M1XVBGGnVpZCykyY9f/iRb/3a8T/25QqZmNDNbJsfE15N2d5UTWf69zM4cdlL3tFgg6+681Wk+B1dRcG/Nwofj/eT9bsrwYSLS7z0FxufSb+jv0uHLkfKvfw2REV0qSMz2D+Sp16Z7nnfN5f72+mfu09L1FTlpe4FcUftOeaRBnHGdzZIxM3fIaesvOlg6c14FaVfbTaW583HJiyOnJBwv5bwz7j0l48Uc4lEPJZjjXBknJTUp0TiOevlGib/GbqCc9XNynv/H+hyT8+f4QsnJLV/Li/13yQPZhnnS/pKNs3+Q5VJCbrzObK7m4gIpUqGoJPo6X6cHOQcp9Jhjk1ZL+/Z1ch6PL/PGq62RL+dslEC07VYnjxmHR4uVmrXLyTXmct75+/Pci5PSN9ul5QKkUClp2rmjdGkj8sHzb8rnK/ZIhpH7qJO/y5qJ/5JHn9wgHUZ+Ju/0uEkutf4J3LlALr2qqMS6m7xJHZDt6wpLmWsipXWMB4VLS/XbKziWf9sle7y1YHDj7N4dsqxKObkh2zit+ZMlf6jllD9ceLXE1ynjaG11KkOOWw8aQeOXa+tvSVswXLo0ay3P7blTPhv1iNT32sU2iFz3b/lv2fbvnvfGyLvdq+SYd8Rcer3Ubnm/9H7jffludbIc/TNJ1s//Wob2bGikaor89K/XZcRil4dyH4+vL9+fe87p0ibo6XL2z73i6KAeKxWqxPu/lX6wWeWYdu1r+1aOuTfw5Ri3rDzFFIo8JRfsYZ9amIPVr5GPB47wcdinMM5zvEqRqb1Gyhr7KS1LWh0L67QKnqz51piRwU1bj2X5CLqu3IrUcy3UZSSjTFkj3MuU4XSe+qXM5cgDut4WmrKLV877N2BQ9jLdP9f7XKbzpUw5cvGfHirqLpUKZk8JY3HZTPlxkz4bzsj+lctEWtV0lFFi4qXZ/W0lTlbLVzPtMojuaXFIOt9R1kPlTRgf+3zytQzvON5XSMkKdiDjkBw+GsK+wJF+7/EbI00qhkmauFPiKRn75QtyV7krjXOtijw45E15qGKM93nXst3f8lMd6w9GGbW3UUb156EtXE069G4jRewJtM1eXTpYOldW3HGHm3lxDM7HJS/qxMs1URWgi5FLylWTlu7q8t06K6f/thKxehUpf40dWPbX5/jg5Cb54qVhsu2BF7MP86SpA7Jzte4tU1pu8BD8iClRRq7dd+B8YCsPcgxSqP3r5IfZdeSuBtf4cMI53XgNaV/Ok9V+HypByal9KbLBXK4kzateL/k7l/39eZ4Ulgq1GkgJ8yDukb1//m1ujXqnNslXnxeTV6fOlR2ftBb55TN5+bGe0rPfSJmTXlNeXzNPxjzVSEq6q3yHb47ukpWp18i1l0X4MYwpIfXb3mEUyrXtsuU3PcGWrzJk87z5UqxjfSnt18PgJX+IuUZublpd3zeMskGypB4KcqEr39eWnhBpsvxfpwEyfXcjeeG5zlI11tfczzG27WF3k9j5i8v+xaz8PPv+Pd1YSnjcv1T5/tlhsiTbPaiQxBa/Uarfdp/0/2ymrBjzmFSQZfLf6evEnP/MZn3/K1O8H1/P359XjnR5rvNAM11e7B/sdDklv2/fIDvN5TrSsV5p44hFtsxyTH1fyzEdAlyO8cDOU7RQ5Cm54hj2afCruRn2KczznNyIqLQKhqxpq/Otm4sEM21zuFc3ieC0itRzLdRlJF2mvCtrmdL3KkJdppwX/DJlKM/TfJe5zucB3+0KRdklBzmVmVfnVKazypR/uf5GD2XKGUaZ0nqHq8yeErJUxs3eKsdVivw08RLpcGsJq4xSSIrXu0O6xGXI9tGzzTKI7mkxeW89aZBtDHgtzI99nvhahn/8fBne/HusVKxTz7rukyRxr9WTIRQi/d7jNzpN/mENc+RIk7AK1xSOl9LX2pWtMXJR2Xby2r8fMc4rL/Ouhfr+FhSXyI233yOddcItnybfrTkkypowu3PrCu4nFXc+Lrt3yZ79PlRT798jm80RouKkUdObpGTgxk8OjWI3STMzv98nm/YeEu+jWR2R1B16Rp1Yqdr5Fql8qeOOYLI+J8bXz9np4XO80sM8DZHnt7aRt15wHebJcvYv2Zc5pJ5np3elyqF8XOg5nAY6sj9flj/YSupc4dsZY994zV1Kmytz/D5UwjHZvnKZ/KYXG3SVe+tfbW7NO39/nicXyBV1WsmjCXry4zRJ+iP4N83M8TaD6Nxva+WHC66WuIsvlxK175SH+74h7+nujh+/LS/26iy3Viwa8RVgoXVaUudNlm+qlJHrIj5Tv0hKtuopL+quhbJcRk9d5WPmZhSwk+fKJ99UlqfaeGphlFfO+cN90rl+MXOrw2VS4ba7pZ05W9t6WbH1YM6FLrVX5gyfIjv8MN5i/q+tY7L1h/EyXpfq4/8h/0i4wrE5G6dofKazsn/uezJ6S+CmFc7//p2VUwd/ll92eslrY66Umx56Qd68r5ykb/tdDjg9C9nff1XQ8y47XYyzKc/pcsxazwP1uyz/bpFRTDGKNu0elM61r3Rsj1jnyzG1fRy243wFgsEqxwTngcrOU/SyI0/JsdrAj3lKrpnDPg3MNuyT50eS8M5zcid7WgUz/w8/oU5bb2V5nVZ3RXBaReq5FtoykqNM+VDWMqVP9bCOMuXHE6sEuEwZXucpZUofy5S7vDSgcipTHt6WmqVMmUVmTwnHHJ6rtqyQeWWbZalribmmvnR+rLZRBpkhkxanyJ/GeXNB10YS77auKZrurTZfy/ADXcrwF0rRBndLnwR9ISXKzOU7Jcc9O7JCRv57gRywVv0n0u89/mKnia4DC3Wa+OJSKXX3M/JOvwYSs3OEPDpwiuzONuxT1vvbL1GatjElGsq93WsaS0vl/a+Xy75kx4TZTeM9DR/kfFw2yoZdOfVFV3Js10b5SR+92Nby0G1lA/RsHUIxN0jjTi3M/H7n+t3ZJiHP4thvsv6n3cbRaCQ9WlXJOt+D/Tkxxuesy/lzNhifI+4+x6Pzwzx1+/fTcncp/48TkRvey15qn6z8IVHubl5VPN3usom5Xhq0ayLmuZnroRLOyN+nvV+56sgm+WHCMmOpmbz6Vnep5bUbrr8/L5+uaCC9hj4qFWSDfDN7fQ4VsGflyIE/c87ENefuhB6dkf1rFst3QY6NqDOn5PjKdbLtUOTebVW6kV5DnpXeA/8rC5LDqxCnjqyWL4bPkgqVSjhas0a6wrXk8ZGvSnNjZ9JGfySf6ai99SdPVMYmGffaaFHP9pRbi/rackjLZf7wtpE/XO6cP8TIRRXay0tmS+J1MnbCYknJoRXx8bWT5b9SSm7Izc/0IP/XVrrsXrPdsXhxrBS+xMPt4NSvsnLmFmslePyTdyTK1J8Sjcc3L2KKS/la2YfiO//9rg90gWaliz6VzHTxcE/KU7r8IVt27TPOfE+M+84vk2TEeKNgE9tGXhhwt1TwOPax/wQ0j3Uux/i6K3Y5xlyxyjE5ZUR+4chTXjYnpbbyFE/j4ZrO5ynX+yFPyQtz2Kd/9ZEG5po17NOeE+ZaduGd51x4TbzUMZcOZR+O4Owh2SvXOXVDP59WRUKQ/4cf17T1Z76V37K8m+sqotIqUs+10JaRTNnKlDlXJJllytfHiPzfQ4EtU4bZeerfMuXlfs4D8s+fZUqvpRQPZcqs7J4SxuL2r+T1p76VMq2rudS1XC317+koVWWzTJz+lYwdf1Za1bvWOEvcCe9jn3d5PN5X1JNHB+uW8Bmy+T9fyuxUb625HY39NlUqbxxxf4v0e48fGWnyyCCnNPndeSJmV+fTJK9TBedboVLS5oVXpV/lIpI+/g15ZcJOp0nuNZf720Tf0vbTfKRt7sqofhJzrTTu0snIh4xc5qsx8tZ/ZjsmzPZYg+x8XDbJpJnrvNd3qv3yyw8/SoqKl+avPS2dKhS2/hBNdIOJR+X15vFy7Lv5sjzNU35knCOblsq3KSJxPXvKvdVda98dn/Na81KS8d08Hz5HGZ/zkJvP8cBpmKeBd9/oOVhU6Bope4tuyJchx056uJ8eOSD7K5SWYm5uRb4+83sJUpyVI2smycivDlvrvrpY4hu2kDbWbTTty9my3McCQWybm+XIgsWehws4s1cW/OdN+ffyMtJzzHvyXGPvQzf4+/Py7yIp0eZ5Gf1aazk6eoSMWLDXQ2WRkjNpP8lHH84Snwa8iSkmCQ1vMhYOya69B10yUQd1ZI38b2ER6d0hp2CGf114Q0Vp+Nd70uv/PpXFO5IlLS3N6fWHHMgIdgVgbh2WXz7sJ11felc+fvsJaTdwhiR7y2yDxjhH0tfK533/KS8tv1Iql4zzc2uvULlQrqjTW8ZOe9N4hPtO+t8/UD5bf8DDdXJOTqYtl/8+NUCWNH5Lht6Tu+h7bvOH/o2KZz/GMUWlTr935et+t8rpL96S18ZtkgwPH6eOrDSu6dPSt0dN8cctOP/XVlGp1KCGUYgw7F4qP29xjJKc1UlJnvmTFHrieWmhV/86JifN/TsrJ49dJEWLBK69g3/yjtOyfMj7MmG7l5zUKCDtWvuXtH+gsZR3KtzZ39/7uWDnXVa66JuRmS7uwvzn06W5fl+2dPE09uQx2fTJBzJ+h7totb7vLJD/vPSBLJea0nPEEHm6frEA3xO1QOax+S3HODjKMUG6V5l5ynti5ymvj9voU57iWyuZQDDy7H/cK327WGWLnWPkhTe+kyS3wZXwznNirq8lbdrr/Vgr89alOfViUXI6caWsqVFFSjjfBKy0+l+/Jr7l/x/5L/8PP65p6z3fyk3a+qUs73Jd6bQ66i2t/Hiv9otIPddCWEZyyFqmfL7bC/L5hoM5lykbDZFh93h5SHcj0s9T/5Ypf/ZrHuAPzvu3KB9lyhVDPpAJiV5a/FllynYPNJLyXh7M7J4SMbJbFv79D2lVzbXXaowUrtZUulaNlfRPX5b3bmght17j6fiE97HPO6sM78PxNsvwmcf7Uil1z0CzviU2/Ut5adgc+d1tmcQo96bOkeFTKkm/O+MDU96N9HuP3+g0GZCZJi8PnyOpbvPKrGkSlLqNs6fk9NnsvyXmmtvluUEPSpzslPFPviwfr083fp0Tp/vbmS/e9un+9nT3vKetcxl1vlFGPf9VjjLq2upVpKTfT2IjH6rVWh5rGCeSMU1GrL7JnDDb69dkHpda8vvbg2Xo3BQP99y/JW3uKBn49q9Sp/c78nHfer43Jos0havLg288Jc3OTJC3Ri2SP931sju5VSa897lsrtBbPny5rfuhlvTnvN5Hmp324XPK95aPXvHwOdlkHeaptNcGildLQn0dttojyfvczUWo5O9fd8iJG4sbJTBX+pn/GeniyzO/yuK0Oro/VSUnrlKzxwxQbcrF6n+mYpu9oMYv26aS09LViXPWW12dPqr2p6aq1ORtatmYf6rKMea1Y7ziVbNXJqv1SXtVqv77/qPGt7hInaK6Sws1ePkBdSr1J/XJJwvUnhNnrT9qxu/as0yN69dcxVbopobN3qmOevodml8+Tx+LNOM371W7F72j7o7V+1JG3T1sgdqVZT9yeF/qAXX0tMuHn/5DrR73f6ppXCs1YMIqler0286d2Ke2zPtEDRj4tVo/b4gqZx7DCqrLiPlqe7LxeR7S4NyfP6nXmsUrSXhGjd920PptmvH7kn5SIwe8q+al7lBTupcz0yWuy0j10/Y9xu/bp9LN73e3H7Eqoe8EtXGP3o/cvs/2l1o/or0yCk7m97p/VVBNuw9UIyYsUonpp6x/l1/njFPygPF79G8yXvq8HPesqmt/Z91n1Th9Ttt/d5dOpj/U7L7VlXGpOv5dizEq0Xn3cs0+fo7ftOijR1UF+7PjHlZj1v12/je7eyUnqvXL56oJI57JvD5F2qkPN2dYn6/lcE56PXf9keb+cEYdTZyhBnepriS2oeo59Gs1b3WilV57VdLmxWrKSOMY1O6oXv12m/f8wJW/8xvt9O9q2Ue9Vd3YBHX3qxPVyj1/WcfYuqbnj1bP9xqu5qeetLYazp1Q6Wl6f/aoTROeUQlmWtZUPT9coBL1tW7sa1r6CeNM9iT/19a5oxvUuF6NzM+Ibfaamp54Pu84d2KvWjHudTXg8w3q6JndasL9FYy06KiGLkxUv+9eoN55cbLaYx42T+fHeLXJ3I+cziPX99nyu3/JmfldbN0+avSiXSo9yzWu84jdatHIh1WDnl+ozUfPWNttju8vknkvc/fy8v35SF8zXXo39i1dulU002XYoh3n08V1V4xzvkdMjPH9TdXQeUvUmN791MhFu8/neeeOqdTV49UA4x4SW/dRNWL+r27uM1nTr10RvT+OfMBbOnt+ny0Qeaz7cszXP+euHONIM/3S5ZhJbsox7s5pR16728yr7PuKr+9zYuUp9Yo48pRVvuQpuWb/Lsc+Z7kfxbZWr0xZrZLM3+fpXNX//neVtH6ier5unHWs9KuEqvvEB2r2+t3Gv82a3uGd55xTJxK/Uj0rGOdMwv+pqb8dNbYY+cShNWrMPwep2fvsX+rCJf/3mFa/O6eVp98WrPuv58/17Rhmv55d0/a77TmnbZZ8y3U3An6vnuDjdeX/Y5VnfjvXglwmzEsZya/sMmUN47zLuUx5JKfzyFm4nKeeyhwf/RT0MmUR472+5O8xbvMAX68jX99n80+ZUpdVfClTbjriWhBzdVb9tfh1VTkmTjUcsU79bW3N6qjxm9sYv6uRemXRfmube2F57PN1Tua3DG84fUCtH99fNY11lEnmbdl3vvx3+qBKzHYdedqv/JYtDH679ziVHX3Iu31Nt5zzeKd7hg9l26z3FidWmjQrotPkQ/VjntMkj/clt+dkU/X8lPWO+0Hmbz6rTqSnqE3jeqsS5nuMV4WH1IjZ64xysUv65un+5uHYDZ3vkrbOspZRv92TYWxxKqP+kf1f+MdJtXvcA0beWUI1/3Cjyp7ze2Afl7jmqt/YxWp3Zp5q/Ob0RDV/9DOqaVwj9cRHS9Xvrs9ALsfn/LOk92vR8/vySucz/qhP1E6q1GUfqO4Vaqouw35wuscY51rqCrOMENe0v5qw5bDxrd749jnjN6fn8Dk247za/IlxDtZWvSbvdnPeuTqnTm35WDU3zocWo7ca3+oqXS0f/IKasMfdXc145u9nlMPs4+flmT9G/8d4kyVFpvZoJh3H6aEeakub9jfJ1X8ny8+TFoo5n0m5YbJq23NSx10jzbSp0qNkRxln/7vM0OcxSf55jizcbUXBu0+R1LEdxJ7j33R4jfxv2mlp0aO+FNd3/5MpsnbJFvnjyF5Zv2S5bE89KmdL3iSNGzST21s2kIpX5TBDuV8+z3EsOhnHwsiVpGnnf0ipy06c35fM/XB+Xwmp3aaZ3BT3l2yZ9oOsMXf5CZmS+r50KOHaQkG32Fkv82fNlh+XJEq6joRddqUUvbKk1GzZQe6+tYLEbviPJNTp7zj2NiMNVm9/Tmpna/Cg5MzhnbJ4xnSZY+zjln2XytVXXSpXxl0tcdVaSbcOjY39/ON8+mZqKsNWz5Dnaqdn34+r/3ZKu9y+zygGmk7L4cRv5fX2j8iI7dY54E2Fx2TMt8PkoZuuzGeLhjPGKdlHSnb8xDiV20j7m652H40/d9BKK0/ppOTkDuP3/99L8sG+22XEp/+Sh6rnEEH2yvl88ZO4/5NZO9+SVlfbvz0f565f0tyPzhyR5A1LZd5Pi2XFwnky/oc1kqHzmPtaSIvbW0krX/IDV/7ObzLZ1/QCWbxytWzZe06Kly0pV14YJwlN2kq7VjWlxKVOZ+GZNTK8cl3pv0ufCXY6Of5+7uAWmWbs67XDVsv252p7aM3np2tLZUjyyoUyb8lS4xgvkfVSRiqXvELirq4iTbt2kbbVrzG+X7eyXyZj3h4kw8YclFr9+sizT3aR+iX0mJTGedTzNuk4dpexnMN55NP7/JV3pMr3zwyTP3u+IB3ifpUFM2fL4l+SHHmt4YLLCkuRK8tJ3dtbS+vbqkixbC0NHN//xj2PynvbfOjT5vr9+U3ffKeLE+P+3PP6TjJWNXEc4+rHZcP3E2XCwq1yMD1DDh88IheUryVNbzWuq9vqSFkv90TH/cN9+g1dNV361zns4/v02LRaAPNYD+UY9/dQQ67LMW6Oidv7f5qP73P9UbnMU3LNPlbHpZaZTtm//0TyLzJp4U7jsK2Wbca5mvXMsK/9mCznd9bj5eb+ELZ5jqaP+TqZPXmKzJyzQnbFlpdqFevInT27SvOyV3g5L3ObVk7naU774NP7cnv/dXPuevn+nN9nfb8/861wuVcH6ljlWX7OtVCWCQOdn/kg2suUCXWkvz79vJQ5sufjtjAqUwbkesv9/o2eOlQernqVn8qUbhxfKyM7jJLYkR/IwxXdta9WcnrH53LvU8fkNeOZtkaWIWfdCLdjXz0xH+ekv463vo42y+J5c2X+zytlVeLfEn/zjRJ34TVS7Y5W0vr2Gk7XkbH/AStbaPm59+Scd/vvmnGTx3sp2+Z8b3GVyzRx/S2+/mZ373M+J909I2T+5gxZM/wuqdt/odPnFbLO2yLyWrb0zUPaZp5D7o7dZON3dPRw7PJSRs0flTZD/tlxodw5+d/StqS7yfs9cT4u6+TXQzFy2WUXilxWQm6ud6s0a91UapUo7OZ353wtZj5z+vQ++5kztxz1idd3+kQur5Wf+kSbkf/a9bULVsuvZy6Ry06fkBNXlJfGd3aUTj6Xg/z1OcYnHflF/tOpq/y33H/kx5H35NCLwqL2y5LXu0iTH9vIqnnPSu3MoSuNe9bu8fLkmGvl7cG3S9FsH2U98z9rPPP/mcMzvxmqAALh9F61aNgDqkKFh7K22nVmtlxNUpsXT1YjejVztHBJeFnNP5hTCxSgAIv2a8vcv2552r95B/zQksT5+xf69v269VrYHl+nnhTDVh+1NgIAgAIv1GWuQMvH/vE8CgCITrqH4T0qtkJfNWXPCWubb3TvvTEP3aKavTrL6j16Vp3YM0u99tBQtejP/JcLXHpSAP5yXHZ/2Ufq9fhd/m/ZeHmhvg8tY9Vh2fD+49Lo6bVy14Qf5asuN0bJPAuAP0X7taX37ymp232vPLc8D/s3fq78r2vZnP+NR47jW7f777n8/ieM719jHt//Gcc3798fAK49KfLdkhcAAES+UJe5Ai2vZbrHpXHftdJ2fBiW6QAAyK+zifJl14GytdeHMuT2Erm+z6mM3bJw6kT5ZuZGybjkcrm6Ukt58LF2Uru4S8/oPKAOGIFxNkl+/O80SW9+r3Sq50OBUIu5Sqq17yht9CRia3/1OLEUUKBF+7Wl9+9TY/9adMnb/q0z9s/anCf28c3193c4f3ytzQAAAGEr1GWuQMtzmU7vXxJlOgBAdLqwkjw46Vv5dx4CFFpMbDlp1v1F+WjCBPly7Bh578V7/RKg0AhSIDDU35KRli4q7nK5LBdnfUyhi8Q/pzYQpaL92rL2T0K1f6H+fgAAgGCI9jIPZToAACIKQQoERqEbpdFDzSXmhxny487j1sacnJTkxXNlhtSVLrdVliK5KEwCBUa0X1t6/3o2F/lhet72r5mxf9bWPLGOb+6//8fzx9faCgAAELZCXeYKtDyX6fT+1aFMBwBAkF34usFaBvzoMrm+WhUpkfy5PPu/A1KtcS2pEHeJ565E6pgkL3hfnurxPyn6/Ah5p2c1ueICohRAdtF+bVn7t+czefbr3O/ff3pWlysuzM/+Zf3+mxvVlIpFL83x+5/u+T+J6+84vkXC4fiqk3J4335JP/qnbJ81Xj6YvlIOGJsvLlVVatwYK2eOn5KYyy6Ti8lnAQAooEJd5gq0vO9fXP/3jDJd9fAo0wEAUEAwcTYCypxQ5ZtP5T9v/SzFH3tSHrittlSpVFZKxBYy/npGMvbvlT3b18iCqV/K2A0lpeszT8ojrW+SuEIUCAFvov3aCvX+RfzxPbNGhifUkf67K0jTzv+QUpdZHSfPHZQt036QNRlPyOTfR0nHkhc5tgMAgAKJMiXPowAAhAOCFAgCJWcy/pCkzRtl/dYdsue33bJ1T7qck8JyXcXycmOpClKpWk2pe9MNEkthEMiFaL+2Qr1/5F0AAKAgoExJmQ4AgNAiSAEAAAAAAAAAAEKCibMBAAAAAAAAAEBIEKQAAAAAAAAAAAAhQZACAAAAAAAAAACEBEEKAAAAAAAAAAAQEgQpAAAAAAAAAABASBCkAAAAAAAAAAAAIUGQAgAAAAAAAAAAhARBCgAAAAAAAAAAEBIEKQAAAAAAAAAAQEgQpAAAAAAAAAAAACFBkAIAAAAAAAAAAIQEQQoAAAAAAAAAABASBCkAAAAAAAAAAEBIEKQAAAAAAAAAAAAhQZACAAAAAAAAAACEBEEKAAAAAAAAAAAQAiL/D1NCU4irdk6bAAAAAElFTkSuQmCC
Es seien $$D\subset\R^r,f:D\to\R$$ eine Funktion, $$a\in\R^r$$ ein [[Berührungspunkt]] von $$D$$ und $$b\in\R\cup\{\pm\infty\}$$.
''a)'' Gilt für jede [[Folge|Folgen]] $$(a_n)\in (D\setminus\{a\})^\N$$ mit $$\lim_{n\to\infty} a_n=a$$ <$latex text="\lim_{n\to\infty} f(a_n)=b" displayMode="true"></$latex>
so schreiben wir
<$latex text="\lim_{x\to a} f(x)=b"- displayMode="true"></$latex>
''b)'' Speziell im Fall $$r=1$$ definieren wir weiter: Gilt für jede Folge $$(a_n)\in D^\N$$ mit $$a_n>a$$ für alle $$n$$ mit Grenzwert $$a$$
<$latex text="\lim_{n\to\infty} f(a_n)=b" displayMode="true"></$latex>
, so schreiben wir
<$latex text="\lim_{x\searrow a} f(x)=b" displayMode="true"></$latex>
und im gleichen Sinne
<$latex text="\lim_{x\nearrow a} f(x)=b" displayMode="true"></$latex>
für $$a_n<a$$.
Seien $$(a_n),(b_n)\in\R^\N$$ mit $$a_n\leq b_n$$ für alle $$n\in\N$$. Dann gilt:
<$latex text="a\coloneqq\lim_{n\to\infty} a_n\leq \lim_{n\to\infty} b_n\eqqcolon b." displayMode="true"></$latex>
!! (Indirekter) Beweis
Angenommen $$a>b$$, dann wählt man $$\epsilon\coloneqq\frac{a-b}{2}$$ und es existieren $$n_1,n_2$$ so, dass
<$latex text="\begin{aligned}\forall n\geq n_1:|a_n-a|<\epsilon\\\forall n\geq n_2:|b_n-b|<\epsilon.
\end{aligned}" displayMode="true"></$latex>
Sei dann wieder $$n\geq\max(\{n_1,n_2\})$$:
<$latex text="a_n>a-\epsilon=a-\frac{a-b}{2}=\frac{a+b}{2}=b+\frac{a-b}{2}=b+\epsilon> b_n." displayMode="true"></$latex>
Insbesondere gilt also auch $$a_n> b_n$$ im Widerspruch zur Annahme.
!! Definition
$$a\in\R$$ heißt ''Grenzwert'' einer reellen [[Zahlenfolge|Folgen]] $$(a_n)$$, falls:
<$latex text="\forall \epsilon>0\exists n_0\in\N\forall n\geq n_0: |a_n-a|<\epsilon." displayMode="true"></$latex>
Das heißt für jedes $$\epsilon\in\R_+$$ gilt, bis auf endlich viele Ausnahmen, $$a-\epsilon<a_n<a+\epsilon$$.
In diesem Fall'' konvergiert die Folge'' gegen $$a$$ und man nennt die Folge ''konvergent''.
Man schreibt:
<$latex text="\lim_{n\to\infty} a_n=a." displayMode="true"></$latex>
Falls eine Folge nicht konvergiert nennt man dieses ''divergent''.
Konvergiert eine Folge gegen $$0$$, so wird sie auch ''Nullfolge'' genannt.
!! Wohlbestimmtheit
Der Grenzwert einer Folge reeller Zahlen ist wohlbestimmt, falls er existiert. Das heißt für Grenzwerte $$a,b$$ von $$(a_n)$$ gilt automatisch $$a=b$$.
!!! Widerspruchsbeweis
Nehmen wir also an $$a\neq b$$. Dann sei
$$0<\epsilon<\frac{1}{2}|a-b|$$.
Da $$a,b$$ Grenzwerte sind, existieren $$n_1,n_2$$ so, dass
<$latex text="\begin{aligned}\forall n\geq n_1:|a_n-a|<\epsilon\\\forall n\geq n_2:|a_n-b|<\epsilon.\\
\end{aligned}" displayMode="true"></$latex>
Daher gilt für $$n\geq\max(n_1,n_2)$$:
<$latex text="\begin{aligned}
|a-b|=|a-a_n+a_n-b| \\\leq |a_n-a|+|a_n-b|\\
<2\epsilon\leq |a-b|,
\end{aligned}" displayMode="true"></$latex>
was ein Widerspruch zur Wahl von $$\epsilon$$ ist.
!! Definition
Für zwei Folgen $$(a_n),(b_n)$$ positiver reeller Zahlen sagt man $$(a_n)$$ ist $$O(b_n)$$, wenn es eine positive reelle Konstante $$C$$ gibt, so dass für alle $$n\in \N$$<$latex text="b_n\leq Ca_n" displayMode="true"></$latex>
gilt.
Formal:
<$latex text="\exists C>0:\forall n\in \N: b_n\leq Ca_n." displayMode="true"></$latex>
<<list-links "[tag[Grundlagen]sort[scriptorder]]">>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/Cpjo9PzZliU?rel=0&start=0" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
$$ \varphi\in T([a,b])$$ bezüglich einer [[Zerlegung|Zerlegungen und Treppenfunktionen]] $$Z$$ ist $$\phi$$ auch eine Treppenfunktion für jede Zerlegung $$Z'\subset Z$$.
Für $$\varphi,\psi\in T([a,b])$$ bzgl. Zerlegungen $$Z,Z'$$. Dann sind $$ \varphi,\psi$$ Treppenfunktionen bezüglich $$Z\cup Z'$$.
Daraus folgt dann, dass $$T([a,b])$$ ein [[Unterraum|Unterräume]] von $$\text{Abb}([a,b],\R)$$ ist,
Eine nicht leere Menge $$G$$ mit
# $$\circ: G\times G\to G$$, geschrieben $$\circ(a,b)=a\cdot b$$
# $$(ab)c=a(bc)$$
# $$\exists_{e\in G}\forall_{a\in G}ea=ae$$
# $$\forall_{a\in G}\exists_{a^{-1}\in G} aa^{-1}=a^{-1} a = e$$
heißt ''Gruppe''. Eine Gruppe heißt ''kommutativ'' bzw. ''abelsch'', falls $$\forall_{a,b\in G} ab=ba$$.
!! Notation
Für $$a \in G$$ und $$n\in \Z$$ schreibt man:
<$latex text="a^n=\begin{cases}\underbrace{a\cdot \dots\cdot a}_{n\text{ Mal}} & n>0\\ e & n=0\\ (a^{-1})^{|n|}& n<0\end{cases}" displayMode="true"></$latex>
Seien $$(G,\cdot), (H,*)$$ [[Gruppen]]. Dann heißt $$\Phi:G\to H$$ Gruppenhomomorphismus, falls:
<$latex text="\Phi(g_1\circ g_2)=\Phi(g_1)*\Phi(g_2)." displayMode="true"></$latex>
!! Elementare Folgerungen:
* $$\Phi(e_G)=e_H$$
* $$\Phi(g^{-1})=\Phi(g)^{-1}$$
Eine binäre Relation $$\preccurlyeq$$ auf einer Menge $$X$$ heißt \textbf{Halbordnung}, falls sie folgende Bedingungen erfüllt:
# $$\forall x\in X: x\preccurlyeq x$$ (auch Reflexivität genannt)
# $$\forall x,y,z\in X: x\preccurlyeq y\land y\preccurlyeq z \implies x\preccurlyeq z$$ (auch Transitivität genannt)
# $$\forall x,y\in X: x\preccurlyeq y\land y\preccurlyeq x \implies x=y$$ (auch Antisymmetrie genant)
Hierbei ist ausdrücklich ''nicht'' gefordert, dass für $$x,y\in X$$ entweder $$x\preccurlyeq y$$ oder $$y \preccurlyeq x$$ gelten muss (eine solche Relation würde man''{Kette'' oder ''Totalordnung'' nennen)!
<<list-links "[tag[Hauptkriterium für Differenzierbarkeit]sort[scriptorder]]">>
Es sei $$f:[a,b]\to\R$$ eine [[stetige|Stetige reelle Funktionen (Über Grenzwerte)]] Funktion. Für $$x\in[a,b]$$ definiert man $$F(x)\coloneqq\int_a^xf(t)dt$$.
Dann gilt:
# Die Funktion $$F$$ ist eine [[Stammfunktion]] von $$f$$
# Ist $$G$$ eine beliebige Stammfunktion von $$f$$, so gilt: <$latex text="\int_a^b f(x)dx=G(b)-G(a)\eqqcolon G(x)|_a^b." displayMode="true"></$latex>
!! Beweis
1.: Es sei $$h\neq 0$$. Man betrachte
<$latex text="\begin{aligned}
\frac{F(x+h)-F(x)}{h}&=\frac{1}{h}\left(\int_a^{x+h} f(t)dt-\int_a^{x} f(t)dt\right)\\
&=\frac{1}{h}\int_x^{x+h}f(t)dt.
\end{aligned}" displayMode="true"></$latex>
Nach dem [[Mittelwertsatz der Integralrechnung]] existiert ein $$\xi_h\in(x,x+h)$$, so dass
<$latex text="\int_x^{x+h}f(t)dt=f(\xi_h)h" displayMode="true"></$latex>
gilt. Außerdem gilt
<$latex text="\lim_{h\to0}\xi_h=x." displayMode="true"></$latex>
Da $$f$$ stetig ist, erhält man nun
<$latex text="\lim_{h\to0} f(\xi_h)=f(x)" displayMode="true"></$latex>
und damit
<$latex text="\lim_{h\to0}\frac{F(x+h)-F(x)}{h}=f(x)." displayMode="true"></$latex>
2.: folgt direkt aus der Definition des Integrals und dem Fakt, dass Stammfunktionen bis auf eine additive Konstante eindeutig sind.
Sei $$V$$ ein $$K$$-[[Vektorraum]] mit $$\dim_K(V)=n<\infty$$. $$T\in \text{End}_K(V)$$ ist genau dann diagonalisierbar wenn folgende Bedingungen erfüllt sind:
# $$\chi_T(X)$$ zerfällt über $$K$$ in Linearfaktoren
# Für jede Nullstelle von $$\chi_T(X)$$ gilt $$g(T,\lambda)=m(\chi_T,\lambda)$$
!! Beweis
$$\implies$$ folgt direkt aus der Definition des [[charakteristischen Polynoms|Charakteristisches Polynom eines Endomorphismus]].
$$\impliedby$$: Durch $$1.,2.$$ gilt
<$latex text="\chi_T(X)=\prod_{j=1}^r (X-\lambda_j)^{m_j}" displayMode="true"></$latex>
mit $$n=\deg(\chi_T)=m_1+\dots+m_r=g(T,\lambda_1)+\dots+g(T,\lambda_r)=\sum_{j=1}^r\dim_K(E(T,\lambda_j))$$. Insbesondere ist $$T$$ also [[diagonalisierbar|Diagonalisierbarkeit]].
Die Matrix in (8.16) ([[Differential zweiter Ordnung]]) heißt //Hesse-Matrix//
oder zweite Ableitung von $$f$$ in $$a$$.
<<list-links "[tag[Hessenberg: Zweistufiges Verfahren]sort[scriptorder]]">>
Die Hessenberg-Form lässt sich analog zur Dreiecksform in der
QR-Zerlegung durch Householder-Spiegelungen herstellen
(vgl. Algorithmus [[Algorithmus: Householder QR-Zerlegung]]). Die $$k$$-te
Spiegelung wird dabei so modifiziert, dass sie das $$k$$-te
Diagonalelement unberührt lässt. Um eine Ähnlichkeitstransformation
zu erhalten, wird die unitäre Spiegelungsmatrix anders als bei der
QR-Zerlegung sowohl von links als auch von rechts angewandt. Daraus
resultiert folgender Algorithmus:
<$details summary="Algorithmus: Householder-Reduzierung auf Hessenberg-Form" tiddler="Rückwärtssubstitution Algorithmus">
{{Algorithmus: Householder-Reduzierung auf Hessenberg-Form}}
</$details>
Sei $$\varphi$$ reell und besitze auf $$Q$$ die partiellen Ableitungen $$Q_1\varphi$$ und $$Q_2\varphi$$.
Dann existiert ein Tupel $$(\xi,\eta) \in Q$$ mit
<$latex text="
D_{Q\varphi} = hk \cdot \partial_{21} \varphi(\xi,\eta).
" displayMode="true"></$latex>
<$details summary="Beweis" tiddler="Beweis">
{{Beweis: Hilfslemma für den Beweis des Satzes von Schwarz}}
</$details>
Nun können wir den Satz von Schwarz beweisen:
Die bloße Existenz der partiellen Ableitungen impliziert i.a. nicht die Differenzierbarkeit.
Betrachte die Funktion $$f: \R^2 \longrightarrow \R$$, definiert durch
<$latex text="
f(x,y) =
\begin{cases}
0, & \text{für } (x,y)=(0,0)\\
\frac{xy}{x^2+y^2}, & \text{sonst}
\end{cases}
" displayMode="true"></$latex>
$$f$$ ist im Nullpunkt nicht stetig, also erst recht nicht differenzierbar.
Speziell in $$(0,0)$$ hat $$f$$ wegen $$f(x,0)=0$$ und $$f(0,y)=0$$ die partiellen Ableitungen
$$\partial_x f(0,0)=0$$ und $$\partial_y f(0,0)=0$$. In den Punkten $$(0,y)$$, $$y \neq 0$$
gilt $$\partial_x f(0,y)=1/y$$. $$\partial_x f$$ ist im Nullpunkt also unstetig, $$\partial_y f$$ ebenso.
<$details summary="Bemerkung" tiddler="Bemerkung">
Auch die Existenz aller Richtungsableitungen hat nicht die Differenzierbarkeit zur Folge.
Betrachte dazu die Funktion $$f: \R^2 \longrightarrow \R$$, definiert durch
<$latex text="
f(x,y) =
\begin{cases}
0, & \text{für } (x,y)=(0,0)\\
\frac{x^2y}{x^2+y^2}, \text{sonst.}
\end{cases}
" displayMode="true"></$latex>
Es ist
<$latex text="
f(tx, ty) = \frac{t^2x^2ty}{t^2x^2+t^2y^2} = tf(x,y).
" displayMode="true"></$latex>
Diese Geraden haben im Nullpunkt Ableitungen in jede Richtung $$h=(h_1,h_2)$$:
<$latex text="
\partial_hf(0,0) = \lim\limits_{t \rightarrow 0} \frac{f(th_1,th_2) - f(0,0)}{t} = f(h_1,h_2).
" displayMode="true"></$latex></$details>
Insbesondere sind die partiellen Ableitungen $$\partial_xf(0,0)=0$$ und $$\partial_yf(0,0)=0$$.
Als Differential kommt also höchstens $$L=(0,0)$$ in Frage. Damit ist (8.1)([[Eindeutigkeit des Differentials]])
aber nicht erfüllt, da $$\forall(h_1,h_1)\neq 0$$
<$latex text="
\frac{f(h_1,h_1) - f(0,0) - L(h_1,h_1)}{\|(h_1,h_1)\|_{\infty}} = \frac{h_1^3}{2h_1^2 |h_1|} = \pm \frac{1}{2}
" displayMode="true"></$latex>
gilt. Folglich ist $$f$$ im Nullpunkt nicht differenzierbar. Man prüft leicht nach, dass die partielle Ableitung
im Nullpunkt unstetig ist. (In den Punkten
$$(0,y)$$, $$y\neq 0$$ gilt $$\frac{\partial f}{\partial x}(0,y) = \frac{1}{y}$$. $$\frac{\partial f}{\partial x}$$
ist im Nullpunkt also unstetig.)
Es sei $$U \subset \R^n$$ eine offene Menge und $$f:U \longrightarrow \R$$ eine $$\mathcal{C}^2$$-Funktion mit $$f'(a)=0$$.
Dann gilt:
| $$f''(a) > 0$$ | $$ \Leftrightarrow $$ | $$f$$ hat in $$a$$ ein isoliertes Minimum |
| $$f''(a) < 0$$ | $$ \Leftrightarrow $$ | $$f$$ hat in $$a$$ ein isoliertes Maximum|
| $$f''(a) \gtrless 0$$ | $$ \Leftrightarrow $$ | $$f$$ hat in $$a$$ kein lokales Extremum. |
Im indefiniten Fall gibt es Geraden $$g_1, g_2$$ durch den Punkt $$a$$ derart, dass $$f \big|_{U \cap g_1}$$
in $$a$$ ein isoliertes Maximum und $$f \big|_{U \cap g_2}$$ in $$a$$ ein isoliertes Minimum besitzt.
<$details summary="Beweis" tiddler="Beweis">
{{Beweis: Hinreichendes Kriterium}}
</$details>
Die partiellen Ableitungen $$\partial_1f,...,\partial_nf$$ einer Funktion können ihrerseits
partiell differenzierbar sein. Darum heißen die Funktionen
<$latex text="
\partial_{ij}f := \partial_i(\partial_jf)
" displayMode="true"></$latex>
//partielle Ableitungen 2. Ordnung// von $$f$$.
Weitere Bezeichnungen sind $$f_{x_j x_i}$$ und $$\dfrac{\partial^2f}{\partial x_j \partial x_i}$$.
<$details summary="Beispiel" tiddler="Beispiel">
{{Beispiel: Höhere Ableitungen}}
</$details>
<$details summary="Bemerkung" tiddler="Bemerkung">
{{Bemerkung: Höhere Ableitungen}}
</$details>
* Es sei $$(\Omega,{\mathcal{A}},P)$$ W-Raum und $$X:\Omega\to\R$$ reelle ZV und $$r\in\N$$.
* Ist $$X^r\in {\mathscr{L}}^1(P)$$, wobei $$X^r(\omega):=X(\omega)^r$$, so nennt man $$\textbf{E}_P(X^r)$$ das $$\textbf{r\text{-te Moment}}$$ von $$X$$.
* Die Gesamtheit aller ZVs, für die das $$r$$-te Moment existiert, fasst man zu einer Menge zusammen: <$latex text="\textcolor{blue}{{\mathscr{L}}^r(P):=\{X:\Omega\to\R\mid X^r\in {\mathscr{L}}^1(P)\}}." displayMode="true"></$latex>
Es sei $$(\Omega,{\mathcal{A}},P)$$ W-Raum. Dann gilt:
# Für $$r\in\N$$ ist $${\mathscr{L}}^r(P)$$ ein reeller Untervektorraum von $${\mathscr{L}}^1(P)$$.
# Die Räume $$ {\mathscr{L}}^r(P)$$ bilden eine Kette: <$latex text="\textcolor{blue}{{\mathscr{L}}^1(P)\supseteq {\mathscr{L}}^2(P)\supseteq {\mathscr{L}}^3(P)\supseteq\ldots}" displayMode="true"></$latex>
!! Bemerkung
Uns interessiert besonders der Fall $$r=2$$.
!! [[Beweis|Höhere Momente von Zufallsvariablen: Beweis]]
''(1)'' Seien $$X,Y\in {\mathscr{L}}^r(P)$$ und $$a\in\R$$. Dann liegt $$aX$$ in $${\mathscr{L}}^r(P)$$, denn $$a^rX^r\in {\mathscr{L}}^1(P)$$. Weiter ist <$latex text=" \begin{aligned}|X+Y|^r&\le&(|X|+|Y|)^r\le(2\max\{|X|,|Y|\})^r\le 2^r\max\{|X|^r,|Y|^r\}\\
&\le& 2^r(|X|^r+|Y|^r).
\end{aligned}" displayMode="true"></$latex>
Daraus ergibt sich $$X+Y\in{\mathscr{L}}^r(P)$$, denn <$latex text="\int |X+Y|^r dP\le 2^r(\underbrace{\int|X|^rdP}_{<\infty}+\underbrace{\int|Y|^r dP}_{<\infty})<\infty." displayMode="true"></$latex>
Also ist $${\mathscr{L}}^r(P)$$ ein $$\R$$-Vektorraum.
''(2)'' Für $$r<s$$ ist $$|X|^r\le 1+|X|^s$$: Für $$|X|\ge 1$$ ist dies trivial. Im Fall $$|X|<1$$ folgt die Ungleichung aus $$|X|^r< 1$$ und $$|X|^s< 1$$.\ Ist $$X\in{\mathscr{L}}^s(P)$$ und $$r<s$$, so ist $$X\in{\mathscr{L}}^r(P)$$: <$latex text="\int |X|^r dP \le \int (1+|X|^s)dP =
\underbrace{\int 1 dP}_{=1}+\underbrace{\int |X|^s dP}_{<\infty}<\infty." displayMode="true"></$latex>
Seien $$p,q \in \R$$ mit $$1<p,q<\infty$$ so gewählt, dass $$\frac{1}{p}+\frac{1}{q}=1$$.
Dann gilt für alle Vektoren $$x,y \in \mathbb{C}^n$$:
<$latex text="
|\sum\limits_{i=1}^n \overline{x_i}y_i| = |x^{*}y| \leq \|x\|_{p} \|y\|_{q}.
" displayMode="true"></$latex>
<$details summary="Beweis" tiddler="Hölder-Ungleichung Beweis">
{{Hölder-Ungleichung Beweis}}
</$details>
Der klassische Beweis greift auf die Young-Ungleichung zurück.
Spezialfall der Hölder-Ungleichung für $$p = q = 2$$:
<$details summary="Young-Ungleichung" tiddler="Young-Ungleichung">
Seien $$p,q \in \R$$ mit $$1<p,q<\infty$$ so gewählt, dass $$\frac{1}{p}+\frac{1}{q}=1$$.
Dann gilt für alle $$x,y \in \R_+$$:
<$latex text="
x^{1/p} \cdot y^{1/q} \leq \dfrac{x}{p} \cdot \dfrac{y}{q}.
" displayMode="true"></$latex>
</$details>
Diese Überlegungen führen zu folgendem Algorithmus:
Wir benutzen die \matlab -ähnliche Notation zur Kennzeichnung von Teilen einer Matrix:
$$A_{i:i',j:j' }$$ ist die $$((i' -i+1)\times(j' -j+1))$$ Untermatrix mit linker oberer Ecke
$$a_{ij}$$ und unterer rechter Ecke $$a_{i' j'}$$. Falls die Untermatrix ein Vektor ist,
so schreiben wir $$A_{i,j:j' }$$ oder $$A_{i:i',j}$$.
Weiterhin setzen wir $$sign(x_1)=1$$, falls $$x_{1}=0$$.
<$details summary="Algorithmus: Householder QR-Zerlegung" tiddler="Algorithmus: Householder QR-Zerlegung">
{{Algorithmus: Householder QR-Zerlegung}}
</$details>
<$details summary="Bemerkung" tiddler="Bemerkung">
{{Bemerkung: Householder QR-Zerlegung}}
</$details>
<$details summary="Beispiel: Anwendung der QR-Zerlegung" tiddler="Beispiel: Anwendung der QR-Zerlegung">
{{Beispiel: Anwendung der QR-Zerlegung}}
</$details>
Im vorangehenden Beispiel benötigt man die explizite Berechnung von $$Q$$, die im Algorithmus: Householder QR-Zerlegung jedoch nicht gegeben ist.
$$Q$$ kann mittels folgender Algorithmen berechnet werden:
<$details summary="Algorithmus 1. : Berechnung mit Q" tiddler="Algorithmus 1. : Berechnung mit Q">
{{Algorithmus 1. : Berechnung mit Q}}
</$details>
<$details summary="Algorithmus 2. : Berechnung mit Q" tiddler="Algorithmus 2. : Berechnung mit Q">
{{Algorithmus 2. : Berechnung mit Q}}
</$details>
Somit kann man $$Q$$ auf zwei Arten berechenen: Berechnung von $$QI$$
#mittels $$Q^*e_1,Q^*e_2,...,Q^*e_m$$ und anschließendem Konjugieren //oder//
#mittels $$Qe_1,Qe_2,...,Qe_m$$.
<<list-links "[tag[Householder-Spiegelungen]sort[scriptorder]]">>
Die Matrix
<$latex text="
H := I - \frac{2}{v^{*}v}vv^{*} \qquad \in \mathbb{C}^{m \times m}
\qquad \text{mit } v \in \mathbb{C}^{m}\setminus \{0\}
" displayMode="true"></$latex>
heißt //Householder-Transformation//.
<<list-links "[tag[Householder-Triangularisierung]sort[scriptorder]]">>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/BbMytuPERdw?rel=0&start=4104" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
Enthält eine Urne $$N$$ gefärbte Kugeln und kommt die Farbe $$f\in F$$ mit Vielfachheit $$N_f$$ vor, so ist die Wahrscheinlichkeit, dass bei $$n$$ Ziehungen ohne Rücklegen $$h_f$$-mal Farbe $$f$$ gezogen wird (d.h. es resultiert das Histogramm $$H=(h_f)_{f\in F}$$), gegeben durch
<$latex text="\textcolor{blue}{P_Y(H)=\frac{\prod_{f\in F}\binom{N_f}{h_f}}{\binom{N}{n}}}." displayMode="true"></$latex>
Diese Verteilung heißt die ''hypergeometrische Verteilung'' zum Parametersatz $$(N_f)_{f\in F}$$.
!! Beweis
* $$[1:N]=\sqcup_{f\in F}F_f$$ ist die Zerlegung der Menge der Kugelnummern in gleichfarbige Bereiche.
* Zum Histogramm $$H=(h_f)_{f\in F}$$ erhält man alle $$Y$$-Urbilder $$A$$, indem man zu jeder Farbe $$f$$ eine $$h_f$$-elementige Teilmenge $$A_f$$ von $$F_f$$ wählt und $$A=\sqcup_{f\in F}A_f$$ bildet.
* Für $$A_f$$ gibt es $$\binom{N_f}{h_f}$$ viele Möglichkeiten.
* Der Nenner ist die Kardinalität von $$\Omega'$$.
* Die Behauptung ergibt sich nun aus der Formel für Bildmaße und Satz 1.
Für ein Beispiel: [[Hypergeometrische Verteilung: Beispiel]]
* Beim Skatspiel enthält jeder der drei Spieler zehn Karten aus einem Pack mit $$32$$ Karten. Zwei Karten (der Skat) werden zunächst beiseite gelegt. Es gibt $$4$$ Asse.
* $$\textcolor{blue}{\text{Wie groß ist die Wahrscheinlichkeit, dass Spieler } A \text{ genau drei Asse erhält?}}$$
*''Urnenmodell'': Ziehen ohne Rücklegen und ohne Berücksichtigung der Reihenfolge.
* Die Urne enthält $$32$$ Kugeln, von denen $$4$$ bl$$\textcolor{blue}{a}$$u ($$\textcolor{blue}{A}$$ss) und $$28$$ rot (kein Ass) sind. Also ist <$latex text="\textcolor{blue}{N=32,\quad N_{\mathrm{blau}}=4,\quad N_{\mathrm{rot}}=28}." displayMode="true"></$latex>
* Bezogen auf Spieler $$A$$ wird $$10$$ mal gezogen. Gesucht ist die Wahrscheinlichkeit, dass $$3$$ blaue und $$7$$ rote Kugeln gezogen werden. Also ist <$latex text="textcolor{blue}{n=10,\quad h_{\mathrm{blau}}=3,\quad h_{\mathrm{rot}}=7}." displayMode="true"></$latex>
* Die hypergeometrische Verteilung liefert für die gesuchte Wahrscheinlichkeit den Wert
<$latex text="\textcolor{blue}{\frac{{4\choose 3}\cdot {28\choose 7}}{{32\choose 10}}= \frac{66}{899}
\approx 0,0734149}." displayMode="true"></$latex>
* Aus Zeitgründen konnten Hypothesentests leider nicht mehr diskutiert werden.
* Hier verweisen wir auf das sehr empfehlenswerte Buch:
''Hans-Otto Georgii: Stochastik'', 3. Auflage, de Gryter., Kapitel 10
Dieses Verfahren wurde begründet durch und benannt nach Alston Scott Householder (1958).
Schematisch lässt sich die Householder-Transformation wie folgt darstellen:
<$latex text="
\underbrace{
\begin{pmatrix}
\textbf{x} & \textbf{x} & \textbf{x} \\
\textbf{x} & \textbf{x} & \textbf{x} \\
\textbf{x} & \textbf{x} & \textbf{x} \\
\textbf{x} & \textbf{x} & \textbf{x} \\
\textbf{x} & \textbf{x} & \textbf{x}
\end{pmatrix}}_{A}
\stackrel{Q_{1}}{\longrightarrow}
\underbrace{\begin{pmatrix}
\textbf{x} & \textbf{x} & \textbf{x} \\
0 & \textbf{x} & \textbf{x} \\
0 & \textbf{x} & \textbf{x} \\
0 & \textbf{x} & \textbf{x} \\
0 & \textbf{x} & \textbf{x}
\end{pmatrix}}_{Q_{1}A}
\stackrel{Q_{2}}{\longrightarrow}
\underbrace{\begin{pmatrix}
\textbf{x} & \textbf{x} & \textbf{x} \\
0 & \textbf{x} & \textbf{x} \\
0 & 0 & \textbf{x} \\
0 & 0 & \textbf{x} \\
0 & 0 & \textbf{x}
\end{pmatrix}}_{Q_{2}Q_{1}A}
\stackrel{Q_{3}}{\longrightarrow}
\underbrace{\begin{pmatrix}
\textbf{x} & \textbf{x} & \textbf{x} \\
0 & \textbf{x} & \textbf{x} \\
0 & 0 & \textbf{x} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}}_{Q_{3}Q_{2}Q_{1}A}
" displayMode="true"></$latex>
Konkret bedeutet dies: $$Q_k$$ verändert die Zeilen $$k,...,m$$. Dabei bildet $$Q_k$$ eine
Linearkombination dieser Zeilen, wobei die Nullen in den Spalten $$1,...,k-1$$ erhalten bleiben.
Nach $$n$$ Schritten ist die Matrix $$Q_n...Q_1 A$$ eine obere Dreiecksmatrix.
Es sei $$((\Omega_i,{\mathcal{A}}_i,P_i))_{i\in I}$$ eine Familie von W-Räumen
sowie $$(X_i)_{i\in I}$$ eine Familie von ZVs,
die alle in denselben Messraum abbilden
<$latex text="\textcolor{blue}{X_i:(\Omega_i,{\mathcal{A}}_i)\to(\Omega', \mathcal{A}')}." displayMode="true"></$latex>
Die Familie $$(X_i)_{i\in I}$$ heißt $$\textbf{identisch verteilt}$$,wenn alle Verteilungen $$P_i\circ X_i^{-1}$$
übereinstimmen.
!! Beispiel
$$n$$-maliger Münzwurf mit fairer Münze.
* Hier ist $$I=[1:n]$$, $$(\Omega_i=\{0,1\}^n,{\mathcal{A}}_i=2^{\Omega_i},P_i\equiv\text{Gleichverteilung})$$ für alle $$i$$.. $$(\Omega',\mathcal{A}')=(\{0,1\},2^{\{0,1\}})$$.
* $$X_i:\{0,1\}^n\to\{0,1\}$$ sei die Projektion $$(\omega_1,\ldots,\omega_n)\mapsto\omega_i$$.
* Dann sind $$X_1,\ldots,X_n$$ identisch verteilte ZVs,denn die Verteilung von jedem $$X_i$$ ist die Gleichverteilung auf $$\Omega'=\{0,1\}$$.
<$details summary="Matrixnorm" tiddler="Matrixnorm">
Eine $$(m \times n)$$-Matrix kann als Vektor im $$\mathbb{C}^{m\cdot n}$$ aufgefasst werden.
Damit kann jede Vektornorm auf dem $$\mathbb{C}^{m\cdot n}$$ auch als Matrixnorm verwendet werden.
Es gibt jedoch andere Matrixnormen, die in vielen Fällen nützlicher sind,
die //induzierten Matrixnormen//:
</$details>
Seien $$\|\cdot\|_{n}$$ und $$\|\cdot\|_{m}$$ Vektornormen des Definitions- bzw. Bildbereichs von
$$A \in \mathbb{C}^{m \times n}$$.
Dann ist $$\|A\|_{(m,n)}$$ definiert als die kleinste Zahl $$C$$, für die $$\forall x \in \mathbb{C}^{n}$$ gilt
<$latex text="
\|Ax\|_{m} \leq C \cdot \|x\|_{n},
" displayMode="true"></$latex>
d.h.
<$latex text="
\|A\|_{(m,n)} = \sup\limits_{x \in \mathbb{C}^{n}\setminus\{0\}} \frac{\|Ax\|_{m}}{\|x\|_{n}}.
" displayMode="true"></$latex>
[[Inhaltsverzeichnis: Grundlagen]]
[[Inhaltsverzeichnis: Lineare Algebra]]
[[Inhaltsverzeichnis: Analysis]]
[[Inhaltsverzeichnis: Numerik|Inhaltsverzeichnis Numerik]]
[[Inhaltsverzeichnis: Stochastik|Inhaltsverzeichnis Stochastik]]
''__Numerische Lineare Algebra:__''
<div class="tc-table-of-contents">
<<toc-selective-expandable "Numerische Lineare Algebra" "sort[scriptorder]" >>
</div>
''__Numerik in der Analysis:__''
<div class="tc-table-of-contents">
<<toc-selective-expandable "Numerik in der Analysis" "sort[scriptorder]" >>
</div>
''__Übersicht:__''
<div class="tc-table-of-contents">
<<toc-selective-expandable "Übersicht" "sort[scriptorder]" >>
</div>
\define kapitel() Kapitel $(currentTiddler)$
\define blatt() Blatt $(currentTiddler)$
''//__Vorwissen__//''
<<list-links "[field:stochastik_kapitel[-01]sort[scriptorder]]">>
''//__Kapitel 01: Einführung und Motivation__//''
<<list-links "[field:stochastik_kapitel[01]sort[scriptorder]]">>
''//__Kapitel 02: Wahrscheinlichkeitsräume__//''
<<list-links "[field:stochastik_kapitel[02]sort[scriptorder]]">>
''//__Kapitel 03: Zufallsvariablen__//''
<<list-links "[field:stochastik_kapitel[03]sort[scriptorder]]">>
''//__Kapitel 04: Stochastische Standardmodelle__//''
<<list-links "[field:stochastik_kapitel[04]sort[scriptorder]]">>
''//__Kapitel 05: Bedingte Wahrscheinlichkeiten und Unabhängigkeit__//''
<<list-links "[field:stochastik_kapitel[05]sort[scriptorder]]">>
''//__Kapitel 06: Erwartungswert und Varianz__//''
<<list-links "[field:stochastik_kapitel[06]sort[scriptorder]]">>
''//__Kapitel 07: Gesetz der großen Zahl__//''
<<list-links "[field:stochastik_kapitel[07]sort[scriptorder]]">>
''//__Kapitel 08: Markov-Ketten__//''
<<list-links "[field:stochastik_kapitel[08]sort[scriptorder]]">>
''//__Kapitel 09: Steilkurs Statistik__//''
<<list-links "[field:stochastik_kapitel[09]sort[scriptorder]]">>
''//__Kapitel 10: Konfidenzbereiche__//''
<<list-links "[field:stochastik_kapitel[10]sort[scriptorder]]">>
''//__Kapitel 00: Grundbegriffe und wichtige Beispiele__//''
<<list-links "[field:ana_kapitel[00]sort[scriptorder]]">>
''//__Kapitel 01: Folgen__//''
<<list-links "[field:ana_kapitel[01]sort[scriptorder]]">>
''//__Kapitel 02: Reihen__//''
<<list-links "[field:ana_kapitel[02]sort[scriptorder]]">>
''//__Kapitel 03: Stetigkeit__//''
<<list-links "[field:ana_kapitel[03]sort[scriptorder]]">>
''//__Kapitel 04: Differentialrechnung__//''
<<list-links "[field:ana_kapitel[04]sort[scriptorder]]">>
''//__Kapitel 05: Integralrechnung__//''
<<list-links "[field:ana_kapitel[05]sort[scriptorder]]">>
Dieses Kapitel enthält grundlegende Definitionen und Aussagen, welche relevant für spätere Inhalte aus der linearen Algebra, der Analysis, der Numerik oder der Stochastik sind.
Diese sollten beim Hören von Modulen der angewandten Mathematik schon bekannt sein, werden hier aber der Vollständigkeit halber trotzdem aufgeführt. Für viele dieser Begriffe gibt es viele verschiedene, aber äquivalente, Definitionen, welche je nach Gebiet unterschiedlich sinnvoll sind.
Insbesondere können sich die Definitionen also leicht von den dem Leser bekannten Definitionen unterscheiden, in diesem Fall ist es oft sinnvoll sich zu überlegen warum die hier gegebene Definition äquivalent zu einer anderen ist.
''//__Kapitel 01: Funktionen__//''
<<list-links "[field:grundlagen_kapitel[01]sort[scriptorder]]">>
''//__Kapitel 02: Die komplexen Zahlen//''
<<list-links "[field:grundlagen_kapitel[02]sort[scriptorder]]">>
''//__Kapitel 01: Gruppen, Ringe und Körper__//''
<<list-links "[field:la_kapitel[01]sort[scriptorder]]">>
''//__Kapitel 02: Vektorräume__//''
<<list-links "[field:la_kapitel[02]sort[scriptorder]]">>
''//__Kapitel 03: Matrizen, Koordinaten und Lineare Gleichungssysteme__//''
<<list-links "[field:la_kapitel[03]sort[scriptorder]]">>
''//__Kapitel 04: Determinanten__//''
<<list-links "[field:la_kapitel[04]sort[scriptorder]]">>
''//__Kapitel 05: Berechnung von Determinanten und Inversen__//''
<<list-links "[field:la_kapitel[05]sort[scriptorder]]">>
''//__Kapitel 06: Elementare Eigenwertheorie: Vorwissen__//''
<<list-links "[field:la_kapitel[06]sort[scriptorder]]">>
''//__Kapitel 07: Elementare Eigenwertheorie: Grundlagen__//''
<<list-links "[field:la_kapitel[07]sort[scriptorder]]">>
''//__Kapitel 08: Euklidische Vektorräume__//''
<<list-links "[field:la_kapitel[08]sort[scriptorder]]">>
''//__Quellen__//''
Die Inhalte entsprechen denen aus Lineare Algebra für Informatiker (gehalten von Dr. Thoralf Räsch). Die Reihenfolge wurde für die Wiki im wesentlichen von der Vorlesung Lineare Algebra 1 (WS19/20, Prof. Dr. Lesch) übernommen. Diese findet man in den meisten Büchern, welche die Lineare Algebra axiomatisch aufbauen.
Nun betrachten wir die Abbildung .
<$details summary="Abbildung" tiddler="Abbildung">
[img[Julia_set_for_the_rational_function.png]]
</$details>
Wie man sehen
kann hängt das Ergebnis des Newtonverfahrens auf chaotische Weise
von der Initialisierung ab. Wenn die Initialisierung nahe an einer
der Nullstellen liegt erhält man quadratische Konvergenz zu der naheliegenden
Nullstelle. Bei einer schlechter gewählten Initialisierung kann die
Konvergenz dagegen deutlich langsamer sein und man erhält evtl. nicht
die gewünschte Nullstelle.
Daher ist es ratsam zur Initialisierung des Newtonverfahrens und ähnlicher
Algorithmen möglichst viel Vorwissen zu nutzen. Man kann z.B. einen
heuristischen Algorithmus implementieren um zunächst eine Näherungslösung
zu berechnen und diese dann als Initialisierung für das Newtonverfahren
verwenden. Falls man mit dem Newtonverfahren zunächst nicht das gewünschte
Ergebnis erhält kann man auch systematisch unterschiedliche Initialisierungen
ausprobieren.
Bei einer guten Initialisierung und einer zwei mal stetig differenzierbaren
Funktion ist die Konvergenz des Newtonverfahrens außerordentlich schnell
(nämlich quadratisch). Wichtig ist dabei aber auch, dass die Ableitung
$$f'$$ tatsächlich korrekt berechnet und implementiert wurde. Ansonsten
können die Ergebnisse unnachvollziehbar sein.
Ergebnisse des Newtonverfahrens für $$f(z):=z^{3}-1$$
in Abhängigkeit vom Startwert $$z_{0}$$. Das Bild zeigt die komplexe
Ebene. Die Farben zeigen an zu welcher der drei Nullstellen das Newtonverfahren
für die Initialisierung $$z_{0}$$ an dieser Stelle konvergiert. Man
beachte die fraktale Struktur.
Eine [[Funktion|Definition: Funktionen]] $$f:A\to B$$ heißt ''injektiv'', falls<$latex text="f(a)=f(b)\implies a=b." displayMode="true"></$latex>
$$f$$ heißt ''surjektiv'', falls<$latex text="\forall b\in B\exists a\in A: f(a)=b," displayMode="true"></$latex> d.h. falls jeder Wert im Zielbereich von einem Wert im Definitionsbereich getroffen wird.
! Äquivalente Definition über [[Urbilder]]
$$f$$ heißt injektiv, wenn
<$latex text="\forall b\in B: |f^{-1}(b)|\leq 1" displayMode="true"></$latex>
gilt und surjektiv, falls
<$latex text="\forall b\in B: |f^{-1}(b)|\geq 1." displayMode="true"></$latex>
!! Notation
Für eine Menge $$A$$ bezeichnet $$|A|$$ die Kardinalität oder Mächtigkeit von $$A$$.
!! Bijektivität
Eine Funktion heißt ''bijektiv'', falls sie injektiv und surjektiv ist. Insbesondere heißt eine Funktion nach der alternativen Definition also bijektiv, falls
<$latex text="\forall b\in B: |f^{-1}(b)|= 1" displayMode="true"></$latex>
Es sei $$f:[1,\infty)\to\R_+\cup\{0\}$$ eine monoton fallende Funktion. Dann konvergiert die Reihe $$\sum_{n=1}^\infty f(n)$$ genau dann, wenn das uneigentliche Integral
$$\int_1^\infty f(x)dx$$ existiert.
!! Beweis
Da $$f$$ nach Voraussetzung monoton fallend ist, gilt
<$latex text="f(n)\leq f(x)\leq f(n-1)" displayMode="true"></$latex>
für $$n-1\leq x\leq n$$. Daraus folgt
<$latex text="f(n)\leq\int_{n-1}^nf(x)dx\leq f(n-1)." displayMode="true"></$latex>
Durch Summation folgt dann
<$latex text="\sum_{n=2}^N f(n) \leq \int_1^Nf(x)dx\leq \sum_{n=1}^{N-1}f(n)." displayMode="true"></$latex>
Existiert der Ausdruck $$\int_1^N f(x)dx$$, so ist die Summe beschränkt und konvergiert somit. Konvergiert die Summe, so ist die Folge der Integrale beschränkt, monoton wachsend, also konvergent.
* ''frequentistisch'': Bei oftmaliger Wiederholung des Zufallsexperiments ist $$P(B|A)$$ ungefähr <$latex text="\frac{\text{Anzahl der Fälle, in denen }A \textbf{ und } B \text{ eingetreten sind}}{\text{Anzahl der Fälle, in denen }A \text{eingetreten ist}}" displayMode="true"></$latex>
* ''subjektiv'': Ist $$P$$ meine Einschätzung der Lage vor Beginn des Experiments, so ist $$P(\cdot|A)$$ meine Einschätzung, nachdem ich über das Eintreten von $$A$$ ''informiert'' bin.
** $$\textbf{\textcolor{red}{Warnung}}$$: ich selbst kenne den konkreten Ausgang $$\omega$$ des Zufallsexperiments nicht, denn sonst würde ich ''wissen'', dass $$\omega\in A$$ das Ergebnis ist, womit ''alles'' zur ''Gewissheit'' würde.
Es seien $$(x_n),(y_n)\in\R^\N$$ derart, dass
# $$\forall n\in\N:I_n=[x_n,y_n]\neq\emptyset$$
# $$\forall n\in\N: I_n\supset I_{n+1}$$
# $$\lim_{n\to\infty} y_n-x_n=0$$.
Dann existiert genau ein $$a\in\R$$ mit $$a\in[x_n,y_n]$$ für alle $$n\in\N$$.
!! Beweis
Aus 1. und 2. folgt bereits, dass $$x_n$$ [[monoton|Monotonie]] wächst und $$y_n$$ monoton fällt. Außerdem folgt
<$latex text="x_1\leq x_n\leq y_n\leq y_1." displayMode="true"></$latex>
Insbesondere sind die Folgen also beschränkt und [[somit konvergent|Satz von der monotonen Konvergenz]].
Aus 3. und [[Rechenregeln für Grenzwerte]] folgt die Existenz und Eindeutigkeit von $$a$$.
Aus [[diesem Lemma|Monotonie]] folgt dann, dass $$a\in[x_n,y_n]$$.
Das Multiplizieren von links der erweiterten Koeffizientenmatrix $$\begin{pmatrix} A & b \end{pmatrix}$$mit einer invertierbaren Matrix ändert den [[Lösungsraum|Lineare Gleichungssysteme]] nicht. Insbesondere ändern [[elementare Zeilenumformungen |Elementarmatrizen]] den Lösungsraum nicht!
Die Multiplikation mit einer unitären Matrix erhält das Skalarprodukt.
<$details summary="Invarianz des Skalarprodukts Beweis" tiddler="Invarianz des Skalarprodukts Beweis">
{{Invarianz des Skalarprodukts Beweis}}
</$details>
Unitäre Matrizen erhalten daher Winkel und Längen. Im reellen Fall entspricht die Multiplikation mit einer
unitären Matrix einer Rotation ($$\det Q = 1$$) oder einer Spiegelung ($$\det Q = -1$$). In diesem Fall
spricht man auch von //orthogonalen Matrizen//
<$latex text="
(Qx)^{*}(Qy) = x^{*}Q^{*}Qy = x^{*}Iy = x^{*}y
" displayMode="true"></$latex>
<<list-links "[tag[Inverse Iteration]sort[scriptorder]]">>
Eine invertierbare (nicht singuläre) Matrix $$A$$ ist eine Matrix von vollem Rang [ [[Rang einer Matrix]] ],
d.h. die Spalten einer invertierbaren $$(m \times m)$$-Matrix bilden eine Basis
des $$\mathbb{C}^{m\times m}$$.
Nur quadratische Matrizen können invertiert werden. Eine Verallgemeinerung der Inversen einer Matrix
ist die //{Pseudoinverse}//
(vgl. Definition [[Pseudoinverse]] )
Sei $$Z$$ die Matrix mit den Spaltenvektoren $$z_{j}$$, dann gilt:
<$latex text="
{\small
\left(\begin{array}{c|c|c|c}
& & & \\
e_1 & e_2& \dotsc & e_n\\
& & & \\
\end{array}\right) =
\left(\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1 \\
\end{array}\right) = I = AZ }
" displayMode="true"></$latex>
$$I$$ ist hierbei die Einheitsmatrix und $$Z$$ ist die //Inverse// von $$A$$. Sie ist eindeutig bestimmt und wird auch als $$A^{-1}$$ geschrieben. $$I$$ ist hierbei die Einheitsmatrix und $$Z$$ ist die //Inverse// von $$A$$. Es gilt $$I=AA^{-1}=A^{-1}A$$.
<$details summary="Produkt von Inverser Matrix und Vektor" tiddler="Produkt von Inverser Matrix und Vektor">
{{Produkt von Inverser Matrix und Vektor}}
</$details>
Jede invertierbare [[Matrix|Zugeordnete Matrizen]] $$A\in M(n,K)$$ ist Produkt von [[Elementarmatrizen]].
!! Beweis
Sei $$A\in M(n,K)$$ invertierbar. Dann hat $$A$$ vollen Rang: <$latex text="\text{rg}(A)=n." displayMode="true"></$latex>
Insbesondere gibt es nach [[Zeilenrang = Spaltenrang]] Elementarmatrizen $$L_1,\dots,L_s,R_1,\dots, R_s$$ mit
<$latex text="L_1\cdot\dots,\cdot L_s \cdot A\cdot R_1\cdot \dots\cdot R_s=I_n." displayMode="true"></$latex>
Da Elementarmatrizen invertierbar sind gilt:
<$latex text="A= L_s^{-1}\cdot\dots,\cdot L_1^{-1}\cdot R_s^{-1}\cdot \dots\cdot R_1^{-1}" displayMode="true"></$latex>
!! Korollar:
Aus der letzen Gleichung folgt durch
<$latex text="R_s\cdot \dots\cdot R_1\cdot L_s\cdot\dots,\cdot L_1 A=I_n," displayMode="true"></$latex>
dass jede invertierbare Matrix auch als Produkt von Zeilenumformungen in $$I_n$$ überführt werden kann.
$$p\in R$$ heißt ''irreduzibel'', falls
<$latex text="p=ab\implies (p\sim a\land b\text{ ist eine Einheit})\lor(p\sim b\land a\text{ ist eine Einheit})." displayMode="true"></$latex>
!! Äquivalente Formulierung
$$p\neq 0$$ ist genau dann irreduzibel, wenn
$$p|ab\implies p|a\lor p|b$$.
!!! Beweis
Sei $$p=ab$$.
$$\impliedby$$ Es gilt automatisch $$a|ab=p$$Sei o.B.d.A. $$p|a$$, dann gilt $$a\sim p$$ und $$\frac{p}{a}=b$$ ist eine Einheit.
$$\implies$$ Sei nun $$p$$ irreduzibel. Falls $$p|a$$ ist die Aussage klar. Sei also $$p\not| a$$. Dann ist $$\text{ggT}(a,p)\sim 1$$, also existieren $$\lambda,\mu\in R$$ mit<$latex text="1=\lambda a+\mu p." displayMode="true"></$latex>
und es folgt
<$latex text="b=\lambda ab+\mu pb=(\lambda+\mu b)p" displayMode="true"></$latex>
und damit
<$latex text="p|b." displayMode="true"></$latex>
<<list-links "[tag[Iterationsverfahren]sort[scriptorder]]">>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/771_xo46ybI?rel=0&start=1906" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
Iterationsverfahren zur Berechnung der $$\nu$$-ten Wurzel einer Zahl $$a \in \mathbb{C}\backslash\{0\}: \\$$
<$latex text="
x_{k+1} = \frac{1}{\nu} \left( (\nu - 1) x_k + \frac{a}{x_k^{\nu -1}} \right) , \qquad k =0,1,... \qquad (10.1)
" displayMode="true"></$latex>
Wenn die Folge konvergiert, erfüllt der Grenzwert die Fixpunktgleichung
<$details summary="Bemerkung" tiddler="Bemerkung">
Sei $$f: X \longrightarrow X$$, $$X \subset \R^n$$ stetig. $$x$$ heißt Fixpunkt, wenn gilt $$f(x) = x$$.
</$details>
<$latex text="
\nu x = (\nu -1)x + \frac{a}{x^{\nu -1}} \qquad \Leftrightarrow \qquad x^{\nu} = a.
" displayMode="true"></$latex>
Unklar ist, ob diese Folge überhaupt konvergiert und wenn ja, gegen welche Wurzel sie konvergiert.
Für $$\nu = 2$$ (//klassisches Heronverfahren//) sieht dies folgendermaßen aus:
<$latex text="
x_{k+1} = \frac{1}{2} \left( x_k + \frac{a}{x_k} \right)
" displayMode="true"></$latex>
Nun führt die Transformation
<$latex text="
z_k = \frac{x_k - \sqrt{a}}{x_k + \sqrt{a}} \qquad (10.2)
" displayMode="true"></$latex>
auf die Rekursion
<$latex text="
z_{k+1}
= \frac{\frac{1}{2}x_k + \frac{a}{2x_k} - \sqrt{a}}{\frac{1}{2}x_k + \frac{a}{2x_k} + \sqrt{a}}
= \frac{x_k^2 + a - 2\sqrt{a}x_k}{x_k^2 + a + 2\sqrt{a}x_k}
= \frac{(x_k - \sqrt{a})^2}{(x_k + \sqrt{a})^2}
= z_k^2. \qquad (10.3)
" displayMode="true"></$latex>
Man bestimmt den folgenden Grenzwert:
<$latex text="
\lim\limits_{k \rightarrow \infty} z_k =
\lim\limits_{k \rightarrow \infty} z_0^{(2^k)} =
\begin{cases}
0 & |z_0| < 1 \\
1 & |z_0| = 1 \\
\infty & |z_0| > 1
\end{cases}
" displayMode="true"></$latex>
D.h. $$x_k$$ konvergiert gegen $$\sqrt{a}$$, falls $$|z_0| < 1$$ und gegen $$-\sqrt{a}$$,
falls $$|z_0| > 1$$. Für $$|z_0| = 1$$ liegt keine Konvergenz vor:
<$latex text="
\begin{aligned}
|z| = \left| \frac{x_0 - \sqrt{a}}{x_0 + \sqrt{a}} \right| \gtrless 1
\Leftrightarrow &
\quad |x_0|^2 - 2 \text{Re} \bar{x}_0 \sqrt{a} + |a| = |x_0 - \sqrt{a}|^2 \\
& \gtrless |x_0 + \sqrt{a}|^2 = |x_0|^2 + 2 \text{Re} \bar{x}_0 \sqrt{a} + |a| \\
\Leftrightarrow &
0 \gtrless \text{Re} \bar{x}_0 \sqrt{a}
\end{aligned}
" displayMode="true"></$latex>
Für positives $$a$$ ergibt sich somit Konvergenz gegen diejenige Wurzel von $$a$$,
die dasselbe Vorzeichen hat wie der Realteil von $$x_0$$.
Bereits für den Fall $$\nu =3$$ ergibt sich eine scheinbar chaotische Abhängigkeit vom Startwert $$x_0$$.
<$details summary=" Beispiel in der komplexen Ebene" tiddler=" Beispiel in der komplexen Ebene">
[img[Julia_set_for_the_rational_function.png]]
$$f(z)=z^{3}-1$$
</$details>
Nun können wir zum Beispiel lineare Gleichungssysteme $$A\cdot x=b$$ mit $$A\in\mathbb{C}^{n\times n}$$
und $$b\in\mathbb{C}^n$$ durch eine Fixpunktiteration lösen.
Wir zerlegen $$A$$ in drei Matrizen $$L,U,D\in\mathbb{C}^{n\times n}$$:
<$latex text="
A=\underset{\text{Einträge unter,}}{\underbrace{L}}+\underset{\text{über}}{\underbrace{U}}+\underset{\text{und auf der Diagonalen.}}{\underbrace{D}}
" displayMode="true"></$latex>
<$details summary="Beispiel: Gesamtschrittverfahren (alias Jacobi-Verfahren)" tiddler="Gesamtschrittverfahren (alias Jacobi-Verfahren)">
{{Gesamtschrittverfahren (alias Jacobi-Verfahren)}}
</$details>
<$details summary="Beispiel: Einzelschrittverfahren (alias Gauß-Seidel-Verfahren)" tiddler="Beispiel">
{{Einzelschrittverfahren (alias Gauß-Seidel-Verfahren)}}
</$details>
Jede [[konvergente|Grenzwerte von Folgen]] [[Folge|Folgen]] ist [[beschränkt|Beschränkte Folgen]].
!! Beweis
Sei $$a$$ der Grenzwert von $$(a_n)$$, dann gilt per Definition:
<$latex text="\exists n_0\in \N\forall n\geq n_0: |a_n-a|<1" displayMode="true"></$latex>
und es folgt für $$n\geq n_0$$:
<$latex text="\begin{aligned}
|a_n|&=|a_n-a+a|\\
&\leq |a_n-a|+|a|\\
&<1+|a|
\end{aligned}" displayMode="true"></$latex>
offensichtlich ist die Folge dann durch
<$latex text="\max(\{|a_1|,\dots,|a_{n_0 },1+|a|\})" displayMode="true"></$latex>
beschränkt.
!! Bemerkung
Die Umkehrung gilt natürlich nicht:
<$latex text="b_n\coloneqq\begin{cases}1 & n \text{ gerade}\\
-1 & n\text{ ungerade}
\end{cases}" displayMode="true"></$latex>
konvergiert nicht.
iVBORw0KGgoAAAANSUhEUgAAB9AAAAXcCAIAAAD1B4J8AACAAElEQVR42uydh1tU59b2fXNSNHajYgOkTe9D70U6olgQCyIqoqgI0tv8A985J29JMclJTzwaPWpiiwUbvYMI9l5i7woI7Otbe++ZYU8vTJ9t1jUZhmFml7We59m/uedeIz746gNxfK1XfCOOD7/5UNv4l17xrXx89O1H6uI73eN7JTHy+5Eq4wdd4kf5GPXjKHXxky7xszg+/vljzfGLtjH6l9Gjf9UltquMMdvHyMS/dYkd4hi7Y6yG2Kkhxu0cNxS/aR27xDF+13gNsVtdTNg9QSb+o3XsmTBxz0StYq98TNo7SWXsUxef7PtkKH7XISb/MVmH2D8UU/ZP0RAHlMTUA1OVx0EN4XDQQSYOaRXTDk0Tx2HdYvrh6dP/1D2OTJ9xZIbOcVQcM4/O1CGOycSsY7N0iOPy4XjcUYeoVB5OlU46xAl14XzCWec4qS5mn5ytf5zSNlxOuRg4TusfrqddyTB46H9GDJoY2uakvjmvvpp0rU2Vla7LiKF82NF61FIc9LQcLeVGWp1GaenYrtOMAPMIGrpPQLpOc2hIpkgtp1Q0DioJjTM4Ggc0h9Jlg0zsN0wQFzPK4w9LDB1Wd5IFofxykbCqHFp8EtalsIKVWdDunjC0MJYsntE1tnTJvXPc0LodW9ujlwDSK4LtY4YuLiRXHzIXL4TrHfHFkcIVk9wFEX79Ai8O7wUbABsGmw27BqcVMhnqDkYwai1V0CaIuhZVPlj+ND09a8ur4ISLzIBGV8FpR/bxGYwj02iHp9P/nMk85sw94S6sYgc2xSffTH2ciiDI+cDAOhoNxnsY6mDsgfFDvG6CIcfJCQbIKnf3RhbrUljY01Wr3mzaVFY+MG/ZHZ/IzqgF11aueyISIZkvM19nZSEi0cLUe0Fx5wWhbXTfOjfhGSfOiRmMow7UQ5Pd909y2TfB+T/jZv02duaO0dO3f+zwy6ipP42c8uPIyd9/9Ml3H0369sOJ//pw4jcfTPj6g/FfQbw/btv7475EY+wXEH8b+/nfxkB8hsZoiP+DeA+N/33vYzz+ZyhG/bdsfIrHf42Uxj9VxD/Q+MjIgb7LP1WHeCOlmy27L4TdxHd89P/iR0N8cOAojf0cPWjY0ftg/Db0eE74Go7th5O+hUMNB3zUlB8/dvh59LRfx8z497hZO8c77Z44e88nrr9P9TgAeTKLdWw27xTVp9Yv+hykR3F/8ePU1HahsIHBgDyBqKXR6un0Vh7v/uLF6eufLv5rMa+VR6mhwEwNkxQkJIy0MABC/UKWQk1BBUGxQAKjtQBp/9MoFDt8P/Kj7z5Cgcm/UPaCEpuvPvhg2wfvb3v//S/ff/8LNP72+d/+9hkhPh8K/AlofInFNjSIvEiKdMTI5fuPcNYB7w7bAFsCpYoXFGwhDA6wtTDaw5QHe8FuYsOOJy2/G5l0tXfrVth32N9GJrPT2/vhsmVlg2XJafe955zlhrRwg1uE4e0xi6735OZGXIngt/KZDUwadphYjazA84HwOvlFffcWLIDDdcbNDWoK5i4Y+2HEguEHRhcYRWDYgBKHcv9x1Cj0wGCU6F84lPpAemA+2CbZV8nheZ9wPGSOkzT+zwjxmS7xuXbxBR7vv68xvtQltmkf+BGWxFemja/NF19ZfGxTHzqdZS3iS5PEF0YKSSl9rnuMMAhw14G2f2MS2v6thdF2XYH7T1YI3LWn7duNQ9t3GJe2DxO4m4K27yFpu93T9qM2Qtt1Q+2VBkXtJ82P2i0EspM03Gr4u5WQd0vD7uZi7vLYnWTuejP3gxbE3LXC7tYO37XH7gZh7pLlvcx1gZS5/6o7c/9ZHriLr3SIwH3XeBQR7psEZwqSE2oNRhuPag9uC3fRX4terFt3PToaQZD45JsS4F45k3l0BuMIxCzWMWfOCVfBGZpvXWDc+TebNxeX9l+NjGxkMqvd3WGohoEQHb1goMLGPHik2sOjicW6HhNTOlCatPxu9ta38OKPli3rKyjoy89Pe5KWeDtx5RP4b+VfixbBrxKX3haGt9N96+CtndiV8KYOlIOT3f6YOHvveKfd42btHDPj36On/fqxw88ocJ/8w0effP/RpO8+xID7BxOkwH2bGLjL0HYpcP8/CXC3QtquD3OX3SNVwH20LHAfi31coQtwn4IBd8gWSBI3YRUrsCl28Q3IkOL+YkiSFi4X8qSJzW7Abs96ez9fu7a/pCT8cjirkQUZCBM0TFswfcDIDJkJAw6UJNQX1BHkLVwpQxpDSqPA/UcxcP/o24/0Ae5f/E2ev257fwiUSoH7vyRA5ruPcDAy6sdR4rLCC2rnWKgm2EIYMdCPrw5Pg1nS9Ywru4k97868rQW9KekPoKBuxMbeTkx8kJIC6S1CRCsznnhFdLACGhl+9Uz/Bm5wS0jCxbdbtsy/M5/XyqPX0T1qPOBoUGup/FY+FAj8VcaLDKigGgoFJnaNwP07AnD/Wmvgbhrm/pnxgLt2SNH2gPvXFhAkc7cd5i7B7voCd5PJ278h5e2kvN3c8vbfTC1vNwttVwfc9xkFuFsKbT9g77RdN9R+1GaF7RaE2k3P2UnCbrf83ZTk3dzYXd33WkyC3Unmrga4WxNzNyh214G8WyR/1xK7G5a5ywD33wwmch9i7j8roe1iebsq4P7HZEhCqB0YJdzOuHGaOVvebnm2enWHp+f95OTsrW95IS1uwipn7olZrOOzmMdmsY45so/Dj66C01TvWn5oW0r6g8yXmQ+XLm3hcmup1Cp3dxjXpaPsGVfXGgqlic2+HBb2ct26krIBBEHWPF8TeTUy/mZ8yMUQv3N+vud8Qy+FZr3Ourdw4ZWICLgt6S8Jir/A8KvHxfXT6X9O9TjwievvE2fvGe+4a+zMnWOm/3v0tF9GTf15FCpv/0F3eTuBtisC91EqgPtI7YC7DtD878rCUMxdF5H7EHD/PzFwH4MD9y/0Ae7UQzMYRxzZlS58cZKkrXsC5/1FRkaXnx/kCeQDRCuffzEkBB7f8GqDV4cXo4HhUe0BSwKYImHegZxERe4HMJH7XlTkDuWDlsl2icj9R1Tk/tH3CsD9qw+GiBcO3KUsWVd5+7/k5e04vpCTt+PfF4FBA7YWZhOYW92q3GAPIb0h1aGI3mzeXDJQknw/ubi/GPZ3bdZz9PMkv3qKd42HVzXcMvwbfKPOISIR/FbQJqDWUqEY4VC4V7nD60B9Jafd35D9Ckqjjk6HFQRMdwdlgfv2MWPQUQHjK9oA9y/MBNw/sw95+zY7o+1Wgd1J5m5sqfsIUt5OytuVA/dfSXm7jZrJGIm2/07SdmW0XS/Ubjrabi5hu52gdovn7FYMo88ML+wBvls2ebco7G519jImZe6HSeZuQvhuSSx+ONhdB+aupch9h54idyl2V3pBhP8tfm0iA9wxEwycEkJFw4jKbGSueLQCQZC7SUkDpaWlA6U+kZ0U7xoX/iknzglHdiUE3JnNO+kqOAOPswObEpbcQrB/HZ6e9XR6DYVS7eFR5e5+xs0NbuFH1EkmNLR8sHzF2kfrXqxbfH+xoF3AaGBQa6mUGgqtjsZuYvt1+RX3F1+Pje308bkQFASvlpL+gBWIiutnsY5Pox2eggJ3zE/GUc5P5gfcTwaXt3+oQd4uYyZjFHn7sFC7XuRdb+auyVVmCLiPIwL3f2kC7vsdxMD9OOSJu2cVw68BsmjF2scrn6x8sGQJnOI2gQAC7kCabS3ojbwayWvlMeoZkA/uVe6oyP2ErMh9n0TkvnOcGleZDyTmKe/LcmVFMqScthPl7d8Q5O3fSYCJxExGTt4+5CeDf3Z1wgn/skj45XDYZREiqhAh61+uT32cOlhWFr/kJie4GWoHKgjKyoV/2k14Bv9YYmPO66J3RQHdAVAUcBBg3nc7g4L7hFsJ6za92JL39lpUVD2DAYuLoyqA+08YYvleF+D+hRbA/TPLpu32LG//2iKDxO6mxO6Ww9xHkPJ2Ut5Oytut3kzGuqzbSdpu7bTd7B4ypkLtRpW0k5DdYPTcNGH38N0MgnfrcZixFuYuxu52ydzNi90NAN/NBOh1xu7GYe5ywF2Ructfy2h3TaQKuMOWw95BPkAyQ7nBcEStpSbeTtyS93ZD9qvB8vKsLa8D484z/BrchFWzeaecuScgZnNPuvBPuQlR4M4MaAyI7d5a0IsgSJe/fyOLVU+n1zMYNRQKRC2VCo/A4y8zMxGRqKx8IOhCELuJDb/DhcwwpsHQDW/qfdYbqai4EhHRzOGc9fLCCT43uAUD7semUQ9jBu57J6B+Mr8N+cmI5e3fa5a3azCTMYi8XUszmb/rGAZg7mYB7rNYx525J1Ga7FPLDmzyj+nK2PgipyfnRlwcpMQ5X9+LwcG9eXkZLzL8u/x5LTxmA5NeR0fF3VVuMGkOObkTRe6/oSJ3qasMKnJX6iqjwNxR7P4FwUZGXzMZFLhjBSXXDkHsJyNph0Cro/l1+eX25L5Yt+7JypVrsp4vWHFv3rI7UCwMf6imM3BknDj4x1eVs3noUWIFNMLT4PnLHi7jNHPgIMCCBCrF66zX6meri/uLX2dlXQ4Pb2AyYRkC0yMRuO8gAncM4RgcuH9mWtRuCbT9S4uXt39t2UEyd3uzdB9h6e1SvzU+cCfl7dYub7fgXqmkdbsa4K7VBarhrNutgrabxbTdNoTtFoHaLZWzk0jdhlm8icm7bWN3A0vdjWwvYy3MXQfgbgfM3dQI3nA43vDMfbc8c9ene6rWInelF0TywH0nBtx3T8B9MOAEoTbuR2agVhhn3HgtvIX3Fq5/uV6EoAYXi9PuC8LaqT61bkJckIuGq+C0u2c1zaeW6d/gGdGBdsUs7b8cEdHC5TYwGPV0Ot4Ys5HFOuvl9XL9+hVrH298vTHofBCriSWm7SecYUzArWzcq9w9OzyL+ouerlrVyuNdCg2FF9yU+4YT3AzvNZN51IFyCDNwl/rJbP94yE/GuuTtf9c39GbuapzcVbjKDPVN1Q+4HxAr3CXAHbdM4YW0BsVfWLfpRWnZwPWYmEthYTfi4vry8+NuxPme8+W38dlNbJS519PRDDkzZCwj4+SurHUqyjQURO5DTu5fqiWv21TT9n8po+0/S/oP75CRt+N+MqiB+7FZkN6wLzk9OW+3bLkcHn53wQLYa/+Ybk5QM/5lEWJHBLiDfxUASiwk4SJkPvzh4r8Wc1u4jAYGr5W3+tnqxytW5OT1ZL3Kepya2sRiwSJFRuE+bhwK3EePlgfu4layBgPun5mQtpPydmun7RaO3UnmbgxLd32B+zeknwwpbyfNZHQ0k/mPDmHz1u0kbTebabvhhO3Dp+0kajceZyfZuh2CeGsn7wbB7pYldSeZuyGYu7bA3YDM3bTY3Zz43jTYXTVzV2fmrqZ7qjKRO1y/aMvcf5HtmEoA7rABOHDHbdwhqVBXmWOzYICi1FD4bfyoa1EVIuRmXBwiEq1a/5Qb3EL1qXX3rHITnEFDWEXxQikqBD+0NWHJrfWv1t9OTGwTCBpZrAYGA6KJxWoXCu8uWLC1oHdr79aQiyGcZg6tlib2DMEaY0J1o97xVW6eHZ4IgmzJe3s/ORneN683L2vLK1ZA42zeyRmMI7iBO+Yns0vGT2aoXapE3o4Bd8PL2w0D3P8+vNAI3P8xLJG7qr6pWgH33zDgvlfi4X5YaikDqULzqWX41XOCmj0jOsISL8GZfVdUBNnycNmyrFdZkVcjA7sDvTu9he1CXguP3cQmMnexscxBB1Uid+WtUxWZu2qkqp6249btSs1kpPJ2YhHBNAoZ7tPpU9xfDDvYyuM9XLp07cbnvJBWinfNbN6pWazjM+hHplEPOVAOOlAPTaOhx8qJXQkHShjeDlXwNju7v7h4yYMlAd0B0dejRYgIDhqUWMqDlIHS0iY2G9YRML/hTVNhdPlNFrj/oAy4f6U1cDcsc//Mamm7hcvbv7a2ILH7Njtg7iNIeTspbzeRvJ3slWqT1u0W0ijVYmi7pbdINYuNzPCF7YbykDEHardlyG58Zu12xs2UYUsI3jTk3Vaxu/ntZUjmTjJ3s6D54WB37Zm71sYywxK5/6KVvF0RuItZIeY9jbrKHJqGi9xhXKXV0bw7vQdKSh4uXfp2yxYEQYLjL7CDmmk+dR5e1e6e1XinRwykNnCDW0LnXiotH3i0fPlZb2+8JWYzh9MmEFwKC+vNy3ubnR1+OZzXwsNBKg7cYfjCBxwYDD2qPYTtwtTHqVsLe0WIaOnDpXCbtPwu1bvWiV2JGrijfjL7VPjJKLZLtUx5+98NEYYWucu7yugP3CfgwN3t96keB+CUzWQcdWRXzuadcvesovvWMfwbOEHNwvD2gNjumEXXMza9eJmZ2ZOTA+d67u25cTfiYm/ExlyPibwaGXIxBHKP28Kl19EhVXDmjhvLqBG5E53cZZg77i1DJF6EH2XgqJa0/dfRio0QiF8TwQ3cgy8EZ299UzZQBhVUVj6YuPQ2w6/ehY92AJ5BP+JAPTTFY/9ktz8mu++fSjmIHi7mMRf+KXZgU2nZwKNly65GRkLRLby3cMvbLfOX3/GJ7Jwz/0rpQOn95OR6Oh0mf5imYOSGsUcM3MeMgRL/WQrcsW1XAtxlqZ9OfVN1wu6fDS8+N0KvVJuRt39tzUEyd9u2dB9Btksl5e2kvN32aftem26UStJ2a7ORsQXUboec3ZpJuuVyeTsh73aG3UnmbjvM3aaxuwYKbxDsrjtzH5bIXZG5/6Lyakg5cMfEuTK48KADZD6UJNqqscqN2cice2vu5tw3hcXvEAQpKOqbM/8KL6SF4VdP9anFg4aBVG5wi190FzxnsLy8OyCgXSBo5fPhFu6/zsoq6CuIvREraBfAC9IwoxmPag8YsWHAxJclMEHQ6+n+Xf5pT9LeFRbCO67b9CJhyS1OULOr4PRM5jEHqlI/mZ9GyvrJfCDxk3l/vL7ydiMC978bLvRn7jrauOsM3Ce57IUzJSHIR504lS78U6j1kG8dK6CRH9rqG3UudO6l+OSbS1c/hBNd1F9U3F+MJ1hxaX9fQcGLdevQLzq83ZLTkxN4PpDTzIFsgYREzdwPTYMshVqTF7n/jDm5yxrLyDF3JVxNEWF+owttJ5gyieXtmJ8M2gjhhDOlhuLT6bPpzSaomuy32bBHUCAeXtXO3BNwWODgoN/YcPsdDtcnrvumuIst7+G3uKsMlMyj5cufpqdveLUhJ78ncent2MU38grRNglnvbyq3N1h+oUJBwYzGHJ2Y8D93xLg/qOpgLsifP/MQPE5KW+3UdpusdidtJcxFHMfYdftUu1E3v4LKW83Tq9UWzGTse5GqSRtNyptt0hhu42jdsvh7PZN1c0D4q2cvBsWu9ua1N2YbVT1Y+54m267Ze4kdtcWvuuK3Y3J3HUWuWsUGGE+GIrAHe2buu8TKTFERe7HUdW5e7U7p5kTfjk8+X7y640bbyUk5PbkRiZdFYa3swObUDMZv3q4ZQU0coNbvCPPLlhxFxGJLoeHd/r4nPXy6vL3v7dwYcaLjAX3Fnif9WY3oz4h1FoqhEe1BzqPYMM13IFHPDs883rznqal/bV4cfbWtyEJF7nBze6e1U6cyun0P6egfjL7UD8ZVN6+Y/R0TN4+5Cejol3q2C/l5e1jNMrbrQK4/33YwP1TZTbuwwHuO1Dg7vwfHLg7UA7CWZvFOubMPeEqOEPxrmUGNArC2gLjzs9NubVu0wuRCCl4V7Dh1Yae3Nw1G55B5sQuujFn/pXweZejFlxLSX9QWjbwND0dUiKnJ4fXyoOEgbkMMhNGPEhUVOS+ezzksFjkrmgsIyXNUuz+tQZ4OcRwvlVL27ePwa/KiV8QIX5ehZsyQUp7nfVa9mhZT05O5qaXkQuusgKb4FA4sitnMHB5O2qRBIdrkuu+ye774YjNoB+BbHf3rIJqiph/JX39UzgIUFAFxe/gFkGQVxs2dPn51dFoeMdUmDdgWIKRBsYSGDMUgbu0Y6oJgPtndkvbTStv/9q2wp6xu60y9xFW5CdjZfL2H0h5O9kr1QrMZGRo+z6SttsibbcYGxkStQ+fs1ssYbc3tm4iCm9e+G4ZPjMWit1J5m4C5n6QZO4WBt91xO46MHdFYxnDitzVCIxUAXeJRBdOPWQjKnI/OhN1ejmFOr0wG5k+nT6F7wqzt75BwV9FxYbsVwGx3YKwNk5wMycIDX5oq/ecs3OSrhaX9t9KSDgfGNgdEHA9OrpisCL1cap/tz+/lc9qZOHAnVJDgZd1r3KHgDu0OhqvlZd8P3n95pfwV/cWLNi89Q28OOZ2fRJtlyqWt+8d77R77KydYj8ZQrvUj2Tbpb6vhZ8MStt18ZN5b6SlAXc9mLt2rjLaAPeJ8sB97BBwH9JrO7KPu/BPeXhVswIafSI75y29nVfYhyBIxvOMxNuJ8+7M2/J2y+PUVEiqJaseRMy/4h/TDVkkDG8XhrX7Rp9bsOIePPllZmb8zXhuC9etyg0mGhhgh0Tuu1CRO1oXCsYyQzp3ReyugHqIAEfKWMQwRC1thytZnLbDiEH8sArWBpDngecDy8sH78yfP1hR4Rt1juZTh/VKPQ5HZhr10FSPA5Pd//jE7XfIbfERo8MRq3QTnmEGNPpFdyWih6s361XW0/T023PnXgoN7fD0bGAwYLUFczVMZUMdU8ePRw3cx4xBv+KCgZYfcAN3KXAnwE0tgfvntkXbTWYms42k7VaO3Ul7mWFauo+wX3m7rsDd1uXtutF2i5e3k7TduGYyRmqUajzaftDCaPsR3Wm7tZi2W7yHjMFRuwkk7ZYG2UmMbgYKb3vk3UKwu03ay5DM3UjM3Y6xuzbkXR1z36cbcx+OyF0jc5eh7dvFVx9KgTuu0oVcQhd7R1BjGRgNYHBzr3Jn1DO8znrNuzNv9bPVT1auRESijTmvk5bf9Y/p9oroEIa3e4Z3+ER2hs69lFvQ+2j58isREVejot5s3pzTkxN6KdSrw4vbwmU1suB1aHU0XOQOAfeZjUzPDs+Y6zFrn69FEKS8YlCEiGIX3aBjbtezWMdR93apvF2uXeqUH0bKtUslytvH4fJ2g/vJ6Afc/26dwB1l7vLAfYICcJ/+K5wXODtwjlCDFI/9uJ+MM/eEu2cVK6AxMO58SWn/YHk5nOKoa1HBF4JDLobE34wv6Cu4M2/e3aSkwbKyecvuBMR2e0Z0cIKbmQGNTP8GQWjb0tUP+4uLt/ZuXfF4BeQPTKYw8uPdU6G4UJH7b+Mgn3FjGZS5/yhh7mJHFXnsro7bEIXtGAzBqYWik4w8bVf4pArWEvQ6Ouxg6UDpjdjYisEKrzln8Q+QHFkYcKcddqAcnOpxYIr7fkhv3IEH7ZvKQfumsgOboJTKygeXP1q++P5iOG6Xw8M7PD0bWaxqDw9YJsC0ifvJDBm4Ezqm/ijtmGptwP1zy7But0x5+9e2HlaD3UnmrlbqPoJsl0rK221c3m4HZjI2Qtv3k7TdNm1kLEfYblmo3YycnSTsJH/Xg7zbBHYfjtSdZO5yoTdwt3rmbuHY/YC+oSt51465K0rdicx9wh6tjGV0FbmrZ+7aAncJOoQMQdHhYXTlBoUJowGMXW5VbrQ6GqeZ43vON/1Z+vqX69e9XFc2UFZRMZi0/G7o3EuBsecD486HJV5alPpXf1HR7blzHy1fXvSuKPpatH+Xv2eHJ6+VB3/OamQxG5hoNDLZTWxBmyD4QjCCID25uU/T07fkvYX7G3Nec4Ob3YSY+Qb9yFTKQam8fZxU3m6sdqnWBdz/bhQbd32A+/axM3eMd9w10XnPJ65ox9Tp9D8d2cddBafpfvWhcy9CnvRu3brh1YaA7gCvs14QcGf+nflwuq9GRl4OC/tr0aLi/uK4xTe855xFG/P6oo154TYo7vyWt1v6CgrgmYHnA92r3GGWgQEZShhqTb57KsHMXernLo/dlXEYIl0ZErZLaLv0qyFDXVJ3y5QMStsPOuDydrRkTjjBMoNeT59zdU5BUV/ZYBlsPD+0DfYIBe7s4zMZR+H4TKMedqAcgvR2oBycRj2EOvAwjzlzT1K8a7zmnM3N71nzfE3opdCoa1G4TVMzh1NLpcISBqZimMoOEvxkiAbu4o6pssD9a72A++cWTNs/J2k7id1JexmLtJcZYSPtUr+z5nappLyd7JVqdjMZG7JuJ2m7eWi7jaF247nHmIuzk4TdVvm7lQjeTYHdzSV1N5m9jLGZ+5+mY+7DNHPXgbkfMBpzP2C1YN1AO6gTdlfH3HU3llEucpdj7r+M1tytitAxFb18+E0i1P2PcnqIy3WhflHmfnI2DNeUGgqjnsFr4fme842/GZ/6OBVBkPy+/LLywYyNLxKX3o5Lvpm04q5IhDxOTRUhovl35odfDg/oDvDp9PHs8BS2CwVtAkG7wKvDy6/LL/padPbb7LzevOLS/icrV74rLExMue0f08UObHL3rHLinJjBQM1kprjvn+SiVN6uXbvUsSrk7Vr5yZgQuH+oEEYTuSuxcdcI3Meih/SD8ds0APfZez5x+30q5SDe/xNnx5tyXt9NStrydgukASQPr5UHaQAJsPrZ6tcbN14ICjrn63s+KOj5mjWQTjELrwvC2uh+9W7CMx5e1b5R58oHyzt9fOBXcTfiaHU0mP5gwIehEnIVklbaPVWGueN+7kSpu4S8q+QqElW7EmE7XjU7JbSd8I0QmXo5IjFiwooFKiXwfGBuTy665ck3OUHNkNUYcK+cyTwGxwdl7rTDeMD9mYyj8CtXwWlmQOOCFfd6cnPhz6FYgi8ED5SVXYuKamQyq9zdYVaH6RGmFxixpH4yRAP3n1R0TNUI3L8wK3D/3GLMZCywV+rX9hekvYz1MvcRpLydlLeT8nZD0Xb95e0mp+2mkLdbj3W7KWm7bZq2m522mwq1G1XSbl7ITmJuEr6bQPBuOdjdwFJ3u2Xuh22KueuJ3Q/YEGHXfR9VYXeDMHetRO6qjWUUde6KlzNSA3d1wB1zlcH9MaBSUIZ43BFn7jBaule7U2upzAYmt4Xr1eEVdD4o5npMyoOUTa83iRC0r+Om3Dcbc173FxenPUlbcHdB3M24qGtRc67MgYA78Tfjk+8nZ73KKi7tz+/Lf7Vhw9NVqzblvIa/XZh6jx/aRvOtcxOeceKcmMk8KjGT+X3i7D3y8nZiu9RJGtul6u0nYyrg/qGKMLzIHQPuI40H3LGOqdRDM5nHXPin2UFNkA9l5YOb32wO6A5gN7EZDQxWI4vXwoMfIVseLFnS6eODfgojFHYHBLzKyoIH5y+/4zXnLDuwiRvcEpxwER65M2/eQGlpxJUI+HNIQphQUCf3A1MgY8XdU38jmLnj3jI/YVL3HyWwAifv3yuBJET6ISYVP48Sl8/2IRsZ/KIYvYbdS/BfOjCV+OkUVApMuGIXpgZG6MVQ2OzHqalzU26xAhox4H7KiVM5i3Uc0nsG48gM+pHp9CNwB36EB525Jz28qr3nnC0bKMvN7/Hp9IEjhivcoYDq6HRYjBwnytsV/GSkBu6GAu6fWx5qtxTabip5+9f2GqS9jJXay4wg26WaWd7+IylvJ3ul2qKZDEnbrYu2m8tGxh5Qu4kl7fYD2auGEfbA3y2YvBsKuxvLYcaU9jJGY+7691C1HuZucGOZYTF3g5N3A4FynfZd20OhH3bXj7kPR+ROULsrvZyRXqpIgbuYIaoA7jhGhLKCqkSZ+wkJc69yp9RQ6PV0ViOL28IVtgt9z/kGXwiOvBo57/a85Y+W5/Tk5Bf15eT3iERIQVFf0bsiiM1vNhe+KxwsK1v2cFlp2UDv1q2bct8gCLIq82lw/AWvOWdZAY0eXtUufJRI4rQd7Srp9sckl72YvP23sTN3jJm+/eNpv4yaquAnM0FvPxkLAO4fqg0jAHdlrjIE4P6xfsB953in3ZNm753sjhq4O7KPu3tW+UR2lg+WP121Ck49r4WH98ul19E5zZzwy+Gbt765ERvbxuc3sdkQzVxul5/fq/XrSwdKITGKS/vLygdSMx5vyH71Yt26Da82QI6xm9nu1e4wncEAThS5i41ldoyRZ+5y2F01zRhC7URh+w6JsH23EmE7sUzQ74JI/Zew74IwG5hhl8K25L3d2rs1YcktJgrc0fR25p5wZOPM/RjkOYramcfgcMHjroIzdL/6oPgLSEXFm82bE28nLrm/JLcnt0KEnPP1rfHwgJn8qKy8XeonQzRwJ3ZMlQPu29QAd3O4ypC0naTtpNTdxpj7CHtsl0rK200jbyd7pdqWmYz1NUq1b9pOCtstH7WbhbPbID03QVg1fDcNeTcsdje71N2Y9jIkc7fkBqoGYO76wXcLwOs6HxbtsLty5i4F7sqYu2FF7mouZ4gG7kqAuwqSiIvclTJ3vOUpp5kjaBP4dPoEXwiOvRG77sW6FxkZfXl5KekPEpbcjFl0HSJu8Y2EJbfmL7szN+UWRNSCaxHzrvhFd3lhHTIZfvUU7xo3wRmpwzVK2zHr9kku+yY67xnvuGvskLxd0i5VZz+ZzyS0XYWBu3GB+z+sD7iPJgL3LyTA/St1wN1l7xT3/dPpfzpxKqnetYGx5xEEeb5mTcKtBEgVSBuYzam1VG4Ld8XjFaUDpReCgppYrDoaDW+j28BgdHh5PV+7tq+gILcnN+paVNrTtMJ3hQXvClY+WRl9LdqzwxOyDqZUSEiiyB0uRaF2iMxdbLL0s9hhBifvauiElCcocWwnFsh+FQWCOS/BXAzrECgN/FsgAd0BBX0FIkQUknCRiX2e5Co4DUnuzD3hxK6EVHdkHUdv2ZUYbT8NR4wX0jpn/pXMTS/7i4sHy8sXpt6rECGPli9vYrNhbQKTKkxBuLwdb5eq6CejpGPq8ID75xaD2knaTmJ3O5G6W7Wl+whS3k7K2w0ibyd7pdo4bf/dBmn7EHAnabuJabtto3aTcXbrguxVthvWAt9J7G4aqbvR2qjaFHM/ZB/M3SRhVMiuB3nXm7lrNpYZjshdKXCXytsVgfteDcAdXWvhSBFzzIAx1qPag1pLRXXuTSx+K9+70zvsUlj60/R3hYW3ExMfLl26eeubqAVXA+PO+0ad85pz1jO8QxDWxg9t5Qa3sIOamAGNdL96qk+th1c1htpPOXFOzGKh3tZi2u6+HzeTmYCayYjl7aOn/fLxkLz9e4V2qXJ+Ml+o9JPRHbi/pxVw10vkPoTX/x8W5gfu76kB7uMlwH2SCuCOdUx15p5k+DdELbiWvfVNfl9+0t0kViMLZlWYvyBtfM/55vTk9OTmdnh61tFoVe7uMLejCz03txoKpZnDuRoZWTpQWtRfVFI28DIzc2PO64yNLwYrKhb/tVjQJoDcgzlrSOS+b9KQscxOcaXgpSEmABJiMATffyLo2X8mWDDJesjINEfdL+4nLPdBFH4pIS0NXN6OAvdGFLiLEJFIhATHX4CERz9VEla58iXMnYMG3IEfXQWn4be8kNa45JsFRX0l/SXoHyKiopJ38P/ugAA4LKrk7UN+Mh9//KOyjqk4cP9qGMD9czug7RZl3U4SdovF7qS9jOGBOylvN1u7VFLevoM0k7F9MxmStktpu+lbpJpR2E6idoNzdptn6+5wPapX2DaItwjybibsTjJ38zJ3KzBzty3mricuP6hvaDxEarG7BuauylhGP5H7dl3k7VI/GezaAUeKROAutqUmUEXxCu3YTFXGMuwmtqBNEHg+cOWTlYhIdDMu7nJY2I3Y2HeFhQlLbvnHdHmGd/BCWtlBzayARoZfPc23Dufs7p5VroLTLjyJyQZziLZPwWg7biaDyttnysnbxe1SdfCTGT5wH2Vs4P7/CGE84P5PIwP3fVM8DsB5nM07xQ1uKR8sX/9qfX9xMYIgPp0+tDoatZbKb+Mn309evPKv11lZTSwWLFVg6oN5CV8yw/wG83YdjdYuFF4IDr4SEXF3/vz8or7ohdfiFt+A11n+aDmkHOrkThC5i41lJMxdXCzbxwxVh/quwgr9hPEPouRQu4zDUqVkPY8vyLG1NGwVrEzwz6KYjUy/Lr/Nbzbn5PUExHYzAxqp3oS055+CQwThwj/tJjwDFQE1sn7zy/6SkoRbCUl3k2BPb82dC7uPfyYBaweYFVF5+9SpSuXtYj8ZZQbu3xAN3NUC9y/U8m4zonZdabtVy9tJsG7h2J20lzEQcCfbpZLy9l/JXqmWYiZjd9bt9kPbj5qKttuWsN3CUbvJOLtVs3W9AboJwkoRvAnIu2EF72bH7qbvpGqxzB0F7tbD3IcPjq0Iu5uOsOtyDJVi92Exd6OK3DUBd7GGd5/yjql44PUoB9yptVRGA4PbwvXr8kt7kpbbm3s3Kel8YGCXn9/FkJCXmZl5hb1B8ReE4e2coGamfwPdt07MHIVVroIzmJ/1SScO6q2B9pCko7TdAaPtQ2YyMvJ2rF3qFGm7VNxP5hud/GTUGbjrANzVusroytytDbh/oBG401HgzgtpRbB/Z729X2VlLf5rsU+nT9D5IPzBvoICSJVaKhVmPJgf0AEevzKYORN+hPkN1iP1dHorn385ImKwvBxNpLD2VZlP4W/DLoV51HjATISK3A86QOlB9kJZSZm7uHCkn1EptWDarrKxgdRDBioC6h0GbXgjNP8rHWF6xb/hAasOxSUT/OhR7YG7LbGaWH7n/HCFu190FyugkeaDftQk1rkLzkC4Cc9AOdB867jBLeHzLr8rLCwZKPE+653yIOV1VtY5X99mDgcOEawvKrFeqTAh7JfK2yXtUuX8ZDR0TB0GcP/cTKidpO1kWBl2t2/mPsK6/WS+MzJwJ+XtpLydNJOxbOv2YdH2Q9ZP24+ZmbbbkrDdQiXtlsbZbRSpmwfH2wp5txrsbhVSd6tm7lZh5m6dzN0iOLumg6kbdlfB3JUay2glct+uHXPfrhIsyrBFKXA/MAUSDF0HHpku5ezS1RQRuHtUe9DqaOwmtk+nz4pHK3J6cl5t2NAdENDh6dkuFHb6+NxKSBgoLZ2bchs1ag9CjdrFBjLCM5iTtZi2Y90jCbQdb5Tqug8zk/nPOKm8ffp2XN4u3y5V0U/GwMBdVxv3fxoSuH9kiZYyH2iwlNmPW8ow/RvWbXqBIMiF4OCb8fGF7wrn3ZlXPlieuPT25tw3gxUVLTweTNo4SkZHR3zMmzYNBlcY7GEiwqXund7e8CKLV/7lH9NdVj5wb+HCFY9X0OvpkIeQopCrUIxSYxkxc98lXzuqrsrlP38i2LVDOeOfPEHyw1yJ5zze8ZUHmw7RyoP7rEYWo56Bi/fxgPuMBgb8Cle4b8p57Rt1jh3YhH/gRPGqgSrw8KyGW6gIOEpQIAlLbq3Jel5Y/K7oXRHsbH5h3+Xw8CYWq4ZCQWm7k5PYTAaTt++VytvHjdshaZeKA3ein4w+wF2tq4x+zP3z4aN2kraTQUrdrQe7jyDbpdqavP1nUt5uW2YypHW79rT9IEnbLdJGZpjCditE7TbF2UmwbkoKb8Pk3VDY3YxSd/tk7qYyczepsYz1MHdjc3alR1JN6IfdtWHuOnRP1VLkvl0reTuxYyp6RbCbANwlBu64n4xY0kuoWXx1RDSqZjYyvc56Jd1NWvdinQgRXQgKahMIWrhcCLgDPyIIsin3TWDceW5wC94ZFfPTOIP5aZx04pzAtO2ok8x02p8O1ENTPQ5MJprJKMrbFdqlKvOTUWrgbgDgbirmbgh5uymA+7eywH3HUNNUGto0FU63f0w35MCLjIy/Fi3qLynJepW1ct2ThCW3EJHozrx5dTTaSakv+dSpUD3o1dWUKVBh8MhRnLm7uTWxWI9XrMh+mw0vVVY+2JOTE3cjDneEh5yEcRhKFeoON5aRMnflRaR4Nf2b+NJYphD2T4YyhyqAqQRmOngjWh2N08zx7PCMvRELm5H1OmvV01VlA2UrHq2IvxkfcjEEfgV5z2piQVFAsJvYvFaef5c/PLm0bMA36hz6mZN/A+6nBAF34EeoC/+YrrLygcJ3hcn3k8sHywfKyor6i24nJjaz2dUeHqcktB3vlSonbyf6yfws9ZMhGLgbA7hrSd4/N0SQtJ0MUupudcx9BNkulZS3m03erj1t32GhvVJJMxmra5Rqk7Tdok3bLdtDxuJQuyVwdhKvWwiFt1rybgXYXW+pO8nc7dLM3SzY3XioXQNVH+YBlztWw2TuWojc5YC7ZpG7XsAdEhsqCDeqJhY12hnypFjqy6hnCNuFyfeT+/Lze3Nzr86Z0yYQNLHZKG9ksZo5nLNeXo9TU9dtepm0/K4wvJ3h3yAB7qddsL6RWJdUVN4+nf7nNKrYul1sJoP3SpWXtxPbpYqB+wcaDNzlO6ZaNnDXtV2qsYD73/QD7o67Js7eO9l9/zTaYTizroIzrIDGoPgLqRmPRSJkoLS0sORdWfkggiD3Fixo4fGqMHk70ZccLu+gSlDm7uCA6txnzYKZrYZC6fL3RyoqCvoKEJFo3ct1kVcjOc0cWGagrjJHZ0hF7kTmrvITrN+GIPtQ02C5L3kQhO3u1e68Vt6yh8tWP1ud8iCluKR/Yeq90vKBjTmvYb/KKwaXrXkEe5TXmxd3I87vnB8UBTwfAu4Eng8UIaIN2a98o8+hbQwC0V7BTP8GOCzc4BbvyLOJS2/jXwLIfJmZ8SLj2erVl8LCOr29oYKktB23bocxCe+VKpW3i9ulEv1kiAbu+gL3LwzEyg1D23UkfSRtJ7E7ydzNztxHkO1SjQTcSXm73fVKtWczGStplKoHbcd7ZNkCbTe9jYwlCNttCLVbCGQnobmN8Xd7wO6ml7qTzN0mzdxNxtyNhNp1w+s6Hn+lx1ZO6q6Kuas3lpFBhL+pELn/W2uR+3bDKNyHaDsub69yo9XR+G38hFsJCIKkr3/2ND29w9OzkcWqp9Pr6HS4bWAyW3i8S6GhfQUF8JyQhIvswCaqT627Z5Wb8AzmYX3amYsC9xmMowR5+x+ovH22nLxdrl2qgp+MOgN3XYG7+Zi7PvEPSwHu036VAPc9k93+gLM5k3lsNu8UnHF+aCuc/YUr7pUPlkM8XLbsWlQUsREoLm+XomQoDqiYA5jIHYZkmE9gjm1gMLoDAv5atCi/qG/dpheb32z2PutNqaHAlAdZKhW5i5n7PnFlwRWo/EdZxEtayTew8etKccdgTNiOJv/xWfDiKG1v4a18snKgrOzZ6tVlA2Wbc9+UV6CfGdxNSnqSlga3bzZvfrVhAzxSXNoPt9HXo/27/L07vX06fUIuhpQOlC5d/dA/pksY3s4LaeWFtPBD27znnJ0z/8qKtY978/IW/7UYrxF4kXO+vk1sNhwZtJGshLbjfjvizyQk8vZdEnk70U9GqYG7zsBdF5G7fdL2bSRtJ7G7TWN34wN3+5S3f0/K2y1G3k6ayZC0naTtNkHbTSpsNxVqt1bOThJ2q+bv1kPeDYXdh2/sbhX2MiZl7keMydz1NZaxcDN3Y2N306H2Q4YOxYOvSuquyNz1ELnv1FfkrhNwV+XhLjGTEbu3n3Gl1lI5zZy4G3GvN26sGKx4tHw5CgpZrDoarZZKraFQ4BbuN7JYZ3H37b8WJ6fdF4a30/3qMQ/3Klzn7owq3FE/GfleqZi8fbzjrrGzdo6ZsWM06ifzi5yfjG4G7toDdy1E7u+NtBzmridwf08RuH9MAO6jJcB9jCbg/sn3I6f8+PFUFLjDmRrnuGui855P3H6fSjkIp9WZe8LDs5od2BQQ252x8cXKJytTHqRAPlwOC2vhciFPiH4yuMJ9H6Zwx4H7IanI3dm52sMD/uRWQkLm5pcR8y6XDZQtvLeQ2cCEuRWSEwZtGEuhDInMXbFBseKFJ572Yg+ZA1OHvttR6QizrXu1O7ORGXUtCrY5afndhan3trzd8mjZsoshIe1CYTMHioADW9UuEED+Xw4Pv5+c3Jubi4hEaU/TIq5EhFwMmXN1jggRLVhxNyjuvE9Up09kp39MV2TS1dSMxwOlpVmvs0rK+gcrKq5HR3f5+7fyePV0OhwWWKTAQgAm3uNS2i4xk4F92gODhETersZPRnvgbmkidxPYyFgObScRuY1hd1Lqbs3AnZS3k/J2O+uVal9mMiRtNztt19tGxjjCdoN4yFgRajcjZCfBtzXxdxOTd4vF7maRutsTczdFA1UrMXM3BnPXZwMshLOrOB3Kpe4KzF29sYx6kbu2wH27LsAd7xK5e4IYPu6bhAJ3TOSLk0eoBZy5S81kYBDzqPZgN7GDzgdtfrM5celtBEGuRkY2czh1NFoNhVLt4VHt7g63cL+OTm/hcq9FRQ2UlVWIkOiF19iBTRTvGlzejlnKVM5kHptOPyL1k5G4t++RyNsxPxmxvJ3gJ6PGwF1n4K6lq4wakbu5mLsetP2fsvL24QL3jzDgPkoM3P8Np2yC83/gJE71ODCdjtq4uwlRV5nweZd7t26Nvh4dcTki+232k5UrW/l8SJITEuB+UGLgjtN29BJKAtzhCZVY99QGBuNmXFxZ+UBw/IXBCvg3yG/lwyQOmYm3ToWkRatPwtxlCm2fkgtJ8dWfFLUfng7TBKS6tD8qo4Hh2eGZ9jQtbd0Tv+hzc+ZfgTe9GBICW4KnOprkNBr82MRmwx6d9faG395NSnpXWJjXm5d4OzHhVkL5YPn85Xci5l+BgxC3+EZeYS+UzOuNG+EWjsPl8PBOHx8oHxy1w2oI9hSl7c7OMEPi1u2omYxE3g6jxVC7VKV+MorAXZZCWjhwN4GwnaTtJHO3jU6qFsvcR1hEu9Rv7aldKilvt2d5u+2ayZitUSpJ201i2m6PwnYjoXaL5Owk3SbhuwkE7xaN3S3JXsYEzN12jGWGD9yHwdyHj931fF89aLvWh5T4bQPlaydtvo6gTO2uFXNXaiyze4Lm1qlqXGW2qwXu/5YA951DwB0VuWPAXeyqgfFHfGU4BNxPOMFwBOMzo4EReikUQZDCd4WlA6V3k5La+Pw6Or3aw6NKMgmj2B3DkQ1MZpe/f15h7/JHy/OL+oTh7TTfOnfPKhf+KWcu3jEVNXAX+8m4/fGJ676JuJ+M4y5l7VIJfjKTcHm78o6pmoG7Pq4y+hnLGIm5/8MQwP2/dQHuX6oG7j8Rgfskl31TPFAbdzi/roLTrMDGJavuQ8L4d/njTUfLBssgK3CF+zECUx66hIIycnCA4hMDd0dHmAxrqdSLISFbe7fCS/Xk5IgQkbBdCHkGsxXuKoM6uWPVp66JAuG6D79Yw7/PgRso4aidUkOh19PZTWx4/eALweterEtOux+7+AZuI9PIYuEKdJjnYcEiz9y9vM4HBl6Linq0YkV/ScmKxytgO+HPIfIL+0QipL+4+EFKCjwBjgDe84CI2k9jtB2mbhkzGYm8HQYM1E8Gk7dr8JNRYeD+FYH3acBq1iBsJ2k7GaTU3QKZ+wjST4aUt5PydivulWotZjLmo+1DV48kbbdk2m7fqJ2E7GQYEr5btuDdINidZO7Wwdxt3VhmONjd0lC7ftIE4onTYDKjBXPXTeS+Uy+RuxbAfchVZh/Bxv2gGLiLndwrHdFeqZiZjKBNsOXtFgRBSsoG3mZnn/P1bWAwqj08YAQVT/5ubrVUahWmc6+j0Vr5/MepqZkvM3Pye8LnXWYHNnl4VbvwiQbumJ8MBtyVt0tV7yczZOBO7Jj6hYyBu07AXTsnd8Mx938YGLVrou2GBu4/wKmBc4QB953jnXZPcsH6plIPz2IdgxMNZxzB/vl0+tDqaGGXwsrKB24nJtbT6TCJSV1T0BqSljVWUlLgDrMETGWQTm18/sNly3rz8kr6SxbeWyhsF+I27rirDOrkfshB1RdN5C7T8OEFClnqIQNTLbwau5nte8434kpE9LXoqGtRcTfjVj1dlb7+WVHJuwcpKZ0+PpDSMH/CXAeTMyQ5pDrkfwOTiQP3Di+vLn//S2FhN+PiHi5d+q6wsKS0v0KEQKXcX7LkekzMheBgeBHYERS1Mxjw59Xu7mjtwFRPmNjl3Nv3Y9p/qbxd0U/mJ4m83RqBu36onaTtZFg4drdbe5kRZLtUk8rbf9SHtmsF3El5u+32SjWlmYwlW7fr9+VofWj7YQuj7cdMRdut1EbGwlG7KSXtNgDZqy0sSPhOYneSuZuDuVuLsYyu2H1Yb2EE2j4szq4NeSeeC43MXUuR+3BcZeSuYqTAXeIqIwPcpX1T8daRGIuEeoFag6KGIQg3kwm+GIwgSOSCq/lFfS/Xr8fNuHHNr3hMwsS/OHmHXzWyWBdDQnpycvpLSuAPvSM7qT61hI6pqIG72E/GDfWTmSjnJzNdtZ8M0cBdfcdUXYG7dsYyBmXu/zAMah8ucP9fnYH7ZAy4O/wyZvp2OGVw7ibO3ov2TaUcmsk8Opt3ihmAKdxFooznGQHdARkvMpLT7vcVFDSx2ZAklRLjFHE9QRnh5YVfcMCAjQF3mI4gnRqYzAvBwQOlpSvWPoJc8uvyo9XRIDNhioERHhe5a25xjI0b4vSWCtvPuDLq0a9urHi8orD4Hbw4vAvcllcMbnm7BR55vnbtnfnzzwcGQj5XYXwcT+96Oh12pJnDweXt3QEBl8PDb8+d+yQtbbCiIje/J68372Vm5t2kpCtz5sBvO7y8Wnk8vL0wLmxHVe0wRUuvD7Aigol0yE8GM9sRy9sl7VJ3YAWt1E9GTcdUHYC7SZi73qjdxLSdRO0kdrdw7G5RzH0EKW83rLzdwv1k7F3evsuc8nbSTMYqGqXaAm23ANN2swvbLRy1m5Kzk0jdTnC8NZJ3IzrMmF7qbmnM/ahRmLseZu72YCyjHr4b5jUNTdsNydmVnUTlDjOyzJ1oc6FB5K5N61RdgLtufVMJNu6o+Pc4Km+H8ZDZwAy+EJzyIEWEiDZsefVm0yZc8IvTduJYgq9WTmMSYHjCOV9fBEEW3FtQMVgxZ/4Vpn+Du7DKmXtSHriLDdyJfjJSA/efhoD7JEUDd1UdU7UE7jqJ3NUz90+Hx9wNESppu2oD91H/oxq4fw4HEzdwh4OsBriPRoH7Djh3E2fvQW3cKQdn0NG+qTTfuqWrHyIi0YMlSza/2QyZkJb59MnKlc0cDqQHZAsu5Za91JguvobARnccuMMsCrnU5e8PrxAcf6Gw+N3c23MZDQyYW2FKgukAF7lr/kaR5KsbxNym19MDugMGSkqKSt693rjxcnj4+aCgq5GR9xYufJudDe+4/uX60gEUwd9MSEC7mzIY9XR6I5MJe9EmEEAhXAwJuZWQ8HzNGngOvMjqDc8WrfxrVebT1c9WZ77MfJ2VdT06utvfH++22oBr27HvheCO7ScIFxny8nZJu9T/yLZLVeIno6ljqm7A3ZjM3cSonaTtZJBSd5Mx9xFku1QLlbf/RMrbSXm7nVm3k7TdklqkmstGxgweMgZH7aaRtFu+mH3YONsDd701R1g1iDcBebc07D4cqTvJ3EmRuzGAu4FDV9pu0NWRxqWRVthd1l5Gkblr7p6qKHLX3sZd976p6LqdaONOAO64vJ1SQ/Hp9EEQ5EVGRln54Mv16y+FhTWx2TCH4MQQLXrpCgtGCAy7w5hXQ6G0cLnPVq9Oe5K2/tX6uSm3+KFtFO+a2bxTjuwh4D4ZA+4EA/edY2bsGC1v4P69BgN3bYG7liJ3Ncx9GD1URxqbtg/PT0Y34P6dHHAf54jZuLvum+JxALdxd/es8o/pLugreJya+iorq0KEtgy9Fh3dyuNBbqBqbkdHdPyWXjrIXRDAVODoCBPOaczGvdPHB1Wd5719mZm5+tlqViML5mjUxv34LHR4x5i7NGRGcsKDeGcCPLFhFUGvpwvbhfPvzE9b9yR9/dPrMTGNLFabQHApNPRpenrGxhfp65+lP02PuR4TeTVyQ/arR8uX34iNvRYVdSUi4nZi4pOVK19t2FBS2p/1Ois3v2fRyr8iF1yNmH8ldtGN3IKexX8tTriVsOnNprfZ2fD8s15eUuCOy9uhTGDvxHOgZGbDP4GQk7crtkuV+smoMnBX1TF1m/YozZJQO0nbybBB7G5zzH0E2S7Vvtql2p68neyVqh6426t1O0nbjW7abgPCdhOidtsXs1sVTzcDkbdF8k5idz3sZUzA3HU1lrER5m55IneLpu0GXxGphu+q7GU0MPdhu8poBdy3q7VxlwXucNykhhswADIaGLE3YhGRaE3W85LS/vy+/POBgai83dUVtbQmsELx6gyDpDAgwfCMO4G8zMwsHSjdlPNmTtJVhn+Dq+C0I7tyBuOoBLjjHVOVGbijfjLqDNy1A+66i9x1Ye7vjTSsvYzBabsOwF1ylD5TBty/wg67InD/GeubugPtmyq2cf/DgSp2lWH41QfFnU9Ou5++/lluby6CIPeTkzt9fOrpdMgfmF4gW9DMwfH6rFnSuUKcTnguubjUeHigLQFWrhwsL8/tyY2+Hs1uYsPsj9u4wxQgHbGlVB2fU4izA/4g3h+VWktlN7N9On0irkSkPEjZlPumd+vWq5GRbQJBl5/fk7Q0pKIieuG16IXXYZtXPF4RfzMeMr+ov2jpw6XFpf0bX2+ElMZl+xkbX0QtuBYYd9436hwE3IlddKOo5F3czbjQS6FR16JwgfzFkJA2Ph8qQgzcsa+GwGyJl89RyQcPQ41kcfd2grxd2i5VpZ+MYYG74Zj7MFG79dJ2knGT2N2u7GVG2Li8/Ttj0vYfSHk72SuVNJMxuXU7SdttkbaTqH04qN2S8bpVU3XjgnjLge/GI++Wg90t3NLd3Mzd4oxlSJG7+Wi7fpxdw0csSqXuROaOLy9/V24sM2GPfOtUqauMPsBdmchdpY07EbgfRoE71CMMKTDac5o5KQ9SMje/9JpzNi3zCYIg7Z6eqLxd0uBRXF5ShTLOSSVOIN0BAeWD5YXvCl+uWwd/yw9tdfescuKcmMmUAHdJx1TUwN1RYuA+TYmBuyGBu2GZu26W7obG7hpouxo/GRUdU7UH7lN+lAB3cd9U1FXGDXWVmU7/04lT6SasYgU0+kWfW5h6L+NFxtzbcyEZenJy2gQCVOTu4iKWeGM5A+l0UtI4VPogDtxhKdHEZl+dMwdSaGPO63l35kFaQnJCisJEg84FR8XMXaphhxeCSUo8rWCoHX8Qt5HxPeeb+ji1YrCiQoSZtotEeH9X/P/Fpf3h8y57RnR4hncEx18oKx+oQCrg8dSMx/BkuL8y48nqDc/gOX7RXcLwdshqXkgr3MLz/WO6F6fdL+grCLsc5tfl59/lH3M9pnSgdLCsrNvfv5nDgaLAgfsJ7PMqvIJw1C5tIYubySjK24fapWrnJzNc4I4x9y+GydktHLWTtF0JFiWZO2kvow9zH0G2SyXl7aS8nTSTIWm7PdJ205u2W0JzVKtD7RbC2Um8bmwKb3bybvnY3VKZu2HsZayRuZMidwsA7tovkzQujXRaBcmEdh+0yDN3gp+7riJ3eRt39cBd9WWOZht3WeCO+8nAGEWvo3t2eC64t2D1hmdxyTcRBLmVkNDIZMJYiMqTCazwT0KvSyjNSlyYTKGc8/UtGShJvp8cfzO+Ly/PJ7KT4l2D2rgzj02n/SkP3NUYuKvsmKobcFchcjc4c9dC6j7SdLRdubxdnYE7Dty/kAPuH6oG7mjfVMddE533fIK6yuyfRjs8k3lsNu8knG5eSMvC1HsbXm3w7/IPvxwuQkSPli/He5Ditir45HBCDrhLHpR+W+JqVNTWgt7Epbdze3L5rXxKDQXmQTFVx5i7VMkO2YtPavgchP54wllqI+Pf7Y/DdUjm69HRsDEbc17DA0sfLn1XUACpHhR3nh3YRPeto/nU0f3q2UFNnuHtnhEd/NA2QVgb3HKCm1mBTUz/BgYWcIcV0MgJaobfwt+WlQ+seroK3gVqR9gu9D3nm/Igpbi0/9WGDWe9vBoYDFgxnZYK/JXRdtRM5pNP9mK0XVHe/gtB3q7cT0bRwF1v4K4jdjcIZB8OaidpuzY83SBBYne7lbrrCNzN5Cdj1e1SSXk7KW8nzWQsyLpdlwt7XWm7bsDdSmi7pdvIGFPYbljUbiOcncTr5kXwVit4NxR2twWpu5Uyd6MZy5Aid4ul7ZplB1ove5RkBeGzFkXmLl4iKjB3HLijzF0bG3d9gbu8yF1q464A3GGDUQP3YzOh2HF5e8jFkMX3FxeVvCso6nuQknLWy6uWSoWxB0qZqMwVB3Yk4HEoXBhOYBhu5fH6i4sX/bUo+nr0u6Iiv+gumm+dC//ULNbx6XQCcHcmAnc5A/cfJAbuCh1TpcB9rGrgPkYFcNdG5C7G7v9tNKn78Mi79rRdZwN3FLi/rw1wn4oBd9TGfec4x12ojbvLPjinDljrVEd2pavgNMO/IS75Zl9BQeTVSEiDVZlPB8vLOzw9IZHOSKzMiY1DKwlLeJh2cOBez2BcDg9f/2o9giAl/SWCdgGlhgJzKExb8Dx8psAvLqR6dunqHeY7mFUhnxn1DNy0PX3904HS0nah8FJoKGzMvGV3ohdeX5h6L3bxDX5oK9Wn1k1Y5cI/PZt3CgLS1ZV/GnbEVXDGDUKIR5W7Z5WHVzXFu4bmU8cKbGIHNgnD2mMWoS408TfjvTq8eC08bguX38YPPB+ISvtzc2/ExrZwueIdx4A7XkRytB03k4EhYbcaebvWfjLqgbv2HRG/IPJ0pTFsyG5S2m4HqP0bEwaJ3UnmPoJsl0rK20l5u/nl7eYzk5n8uy1at5O03aJoO4narYWzk4TdMvm7FZJ3C8HuJHO3LDN3UuRuJjOZ4dB23b7Pp6wlo/zHLdITSmTuBGMZpSJ3sauM9n1TNQL3X1UAd4mNuxi475UB7lBTMLDQ6+nhl8MRBPPcqKh4m519OzGxHTMDgfEDb/CIg8JDhJMDj8Dj8FsYGGCYbGSxrsyZg4hEaU/SMje/DIq/wApodBOecWRXTqcfccA83GWAu6aOqXoBdy2Zu2rsbkSpOwG7j9SJs/9Di5f9VFs/GRS4/59Mx1StgfvH034Zg/dNxWzcJ87ei7rKYK1TZzKPOnNPenjV+ER2llcMvsjIKB0ozSvsfZaefj4wsInFwrXeROZOnB/wHrwwy8FEXUend/r4PElLgz9Pvp8saBdQa6kw28pZx+DXC1LgjtN2mGQpNRRWI8v3nG/8zfiVT1YWlbx7vWlT79atkN4bsl/5RHVyg1uYAY0Yaj8zm3fSiV05i3V8JvMY7IIkjs1iQRx3ZB934lQ6c0/A01z4p+H5FK8aui/K3L3nnF2V+XSgrCz4QjCvlcdqYjEbmewmtqBNEHcjbrAc9VbqDghoYDBgYXISaxsLMxL+kdVBSaNUOTMZRXn7zzh3kZW3fyvBTkYE7iYJUthuRZDdNvg72UnVUNh9BOknY8XAnZS360LbrUjeTprJmM5M5k9jmsmQtN0SaLuVo3bzQnYShdsPfLc+7G5kqbt1MPdjBmbulmUsY+cidwPJ2zXQ9mGidk0Jo565y5m5y4jcVbjKaLBx1wm4S5m7gqsMCtx3yyrcDzngBu4wgvFaeKiHzNy5L9ev35D9avWz1WXlg2e9vWEIh2HgGAYKcVkueiZhFYztJTyCi9yh7mEUbGSxLoWFPVu9unSgNHvr28Vp9z0jOjy8qp04J2YwjjhQDk123z/JZd8E5z3jHXeNm7VzDAbchzqmTlbsmEoA7uPUAHf1rjK6M/dhSd21xO6y8F1d/HO4tH3U/2hl4D4Ws+sZLwHuE+WB+ygMuMMpG4v1TRXbuLvum+K+H07udFTkftyFf5rp37Bk1X3UyKWiori/GP7/dNWqbn//BiazGu8gKmXuxFW8k9NJKXCn0do9PQdKSuYtvQ1/7tnhSaujwfwLc5/YOkb2EgC3kYFJEJ5DqaFwmjnzbs8rrxjs3boVshFeIbc3N/1p+ubcNz6RnQy/eshJV8FpZ+5J2OCZzKMz6Eem0Q5Pox5ygKAcRIN6aBr18HTaYfgVPGEW65gTuxKeD3vn7llF9allBzWFJFzsLy6GVPc+681uYjPqGfQ6Or2eDvf9uvzgTddmPb8zb14rj4db2MMO4sAdhq4hMxkYD2TNZHSTtysYuFsLcP+SpO1WDtmtmryTUvfhM/cRpLzd6LT9R1Lebqfydps0kyGt2y2Fth+3VtpudtSuJ203Emo3i6SdJOy2wd+thLxbAnY3pNTd2pi73RnL2IzI3YDydl1XQWpWO1osbBTzR/ETFyVm7goi96HWqWpt3DUAdy0ueRRdZeSB+wExcIdqhUHSs8OzbLCsdKB0ZcaTmEXXS/pLEATpDghAgTsGCg9jlBD9EEG6gp4yBR7BRe5Q4jD+NXM4L9ety9j4Iq8372VmJkRy2n26X70z9+RMxlEHqhS4/2e8466xs7COqdO3EzumjlTZMfUrgoE7Abhr4SozDOaug9T9Pf2Z+/DjUx3l7YoG7tKOqV9+oB64O6DAXdw3Vewqs3ey2x9SkbsT54S7ZxU7qDko/gKOy+fdmbf2+dq+/PzzgYH1mNxbzNydnWVW5TAXzZ4Nv4In1NFobQLBYEVFflEfvIJ3pze9jg5ZCvMjOoVhzJ24nodZDOZEnLazm9jBF4NLygbgD7v8/e8nJ6/Z8Gxuyi3IamF4O9Wn1lVwRorap9P/hM12oByE7Z/ivh92RBrwIzzoQDkET5jBODKLiTL32byTbsIz8CL80NbV658hIlH8zXh+K5/VxIItpNZSIej1dHgk8XYiVBPU0aXQ0Ho6HSb8IeDu4ADDg6KZzG8SMxk593Z18nYFA3eNwP1LErVbJ2rXh4B/+KEBwnbhu01K3U3G3Engbvt+MqS8nZS3W5d1O0nbLYi2k8J2k6N2ErKToTN8txvsbi32MnbF3DW2zbQEkbv1AXfjy9t1pu3aL2mUkXdikihl7hpF7kYB7r9qBu6wMbBt4o6pJ5xgyPXq8BosL9+w5ZUwrJ0T1Lx8zSMEQc56e8PYiYJCzE9GSgnxgPuwf7C7cDCggmFQbOXzcW170t2kkv6SN5s3w4uwAhpn807NZKLAfQoRuM/Egbumjqli4L5NGXDX1lVGE3M3GHb/L/Ngd/Xydm2AO9FPRivgjvdNhVOJusq4/i4Ruf85i4V2T/XwqmYFNvnHdEMCxFyPibgSkZrx+Fl6ertAUEejSZn7SdklNkxfMCvCb2up1FYe7/a8ef3FxelP073PetPr6bBgQGfMU2LmLv0z3LQdpnJqLZXTzAm6ELTor0UVgxVvNm3qyckp7i+OmH9FENbG9G+ArXLhn3LiVMJGzmCgqnbIyakeBya774ddgMyc5LJ34uw9WOyFH/H9mko5KGburOPO3BNuwjN033rf6HMiRNRfUgJvx25iw+ZRaij4qgY2g9XIirwaCfuetu7J/SVLmtjsKqzzsPSbIgdUydsxGqFU3i4H3L/Rwk/G0oD7lyRtNypnNwheNwKCJ5m7jUndNQB3E7dLNTNwt+12qdYib99pPnm75dP2vdZgJmOmRqkkbSeF7daE2i2Ds5PwmoTvwyLvdobdLZC5G7WBqrGNZaxA5G4P8nbtbWTUrGeOKYR67K6MuQ8ZyygVucu5yijYuA8fuEuZuyrgDtuGA3cobRhmBW2CgncF6eufekZ0CMPbk9NQS5A2gQCGzBMYcIejTqSEsISHvdkvAe6VOHDn8fqLilY9XcVt4fp3+VcMVqSte8IKaHThn5rJPDZNKXCfpgDcJw0buOvJ3C3BYWYYtF2zvF3OT0Z1x1QpcJ+EA/fvZYH7rzhwH+eI27jvmeS6Tyxyp6Jg2pF9fDbvlIdXNSeoecmqBxUVg4hIVFo28Cw9/UpERCufL2burq6ncOwuXSm7uJyRAPcWLvfOvHmPli0bLCvz6fRhNDA8ajzQCRdn7qfEfwP34RGY1ml1NF4rL/l+ckFR38vMzL78fBEiKu4vTlx6mxvcIrVrd2RXQiriHjIOlINTPA7Aln/iiqF25z2wO+MhHHfBrexnCQfRzxKYx3DgDim9OO1+6UDp6merhe1C9MOAGg90aYEtCWAxA4/ANkMFrdv04v6SJe0CAaxxYIKFiQsH7lA4Uvd2uV6p2xVou0Z5u67A/Ut7Qu3brBO1WxZhNxB/J7G7LdnLjCDl7aS83ebl7XbUK9WezWTskrbbg40MidrtnbPXmDxI8m5kwfvwsftwmqmSzN38Zu7GFrmTwF2jvF3L1Y6q9YymRYtipskxdxkzd2UidzWuMsMF7r+oFrnD1YpS4H4QA+7HZkLVw+jKaeYsf7S8oKgvdO6lkLkXN+W+uZ+c3MLj4aAQt5TBFe6wfkevCSZOhL1BFe7TpsERhZEAhlV4/qusrJQHKd5nvQO6A0oHSpevecTwb3Dhn5qFAvfDKHB3VQ7cR4qBO94xVSvgrtLGXQVwl++hamDsrt5h5lPzmMmokbfLG7jLdEwlAPfv5IH7NAlwx23cnfdMckFbp4rBNO1PzFimEk46xbvGM6Jja0GvCBEVFPdlvMiAO4+WL28XCuvpdEgtmDxx7C5e7cKc6eYGj9fRaM0czo3Y2JL+ksJ3hb7nfJkNTEoNBSZufFaVroTFgLuOzmvlzbkyJye/53Fq6s24uNKygdjFNwLjzrMDm2AzMMf2E0QbmakE2j5x9l40J/FGvjN3Yrum3DAHXsTds5of2gY7dTcpadXTVVA4sGGov/xp8W7AfWotVdguXPlk5WBFBezy5fBw2CO8+TAMFQclwB0vpd1Ke6XiwB2n7QT3dqXtUvUA7l9aCWq3Q2G7dUD24cF3ErvbgL0MCdyHC9wtXd7+CylvJ81kzGMmQ9J2u6Ptw7GRsRxhu6lQOwnZ9YbpcMFmwLAlIm828m5A7G5GqbsRLN1tgbnbisjdylxlDAXctZe3K6PteqB2JSmnlrnLG8vIidylrjI6AfftEuCugNqVXx8RWqfCi6DXGnDtsHs8EbjDBsPuwCAAIy27iR10Iai4vzg57f785XcqRMjVyMg2zAAERiAoTRQUTp0Ka+d9GCiEPUAtZaZOhRUoHBUYbGqp1DY+/878+bk9uXOuzEm4lYAgSFDcebpvHQrcWcem0VQB958lwF1i4D7pXyhwn6ACuI/TArirZe7Dwu6jLAS7f6oVbZdrl6rJwF3aMfWDCaifzIeYn4wK4C7um4pT6U9cf5+MmZ5Po6LdU1HHc84JV8Fpqk+tILQtdO6l1RueLf5rccz1mLTMJ7cSEiC16hkMWLDAJIxOnvhsCXMvzPAS4H4pNLS/uLh8sNz3nC+rkUWtpaJLAomQHALuw4KHUc8QtAvib8ZnvcoqGSgpHSgViZD45Jv80Da0P6pntQufSNsJ2nb3PzAnGVTbjtJ2x98kNkeYZw7G3LGusOhnCdOoOHA/CXsUnHBxS97bondFoZdC4d1hS2C2xedHqCaYx2GrBG2CsvKBdZteQBU8Wr4cdhZmaTFwl9TRHsxPhihv/3V48nadgPuXls3Z7U3Ybt2cXV/4TjJ368XuI4ZL278xPm3/lpS3k/J2a5K3m7JXqnHNZGzSup2k7brTdnsRthsctZtG0m4VnN3kGN0YYUUg3tjk3Tawu8Gk7rq2UTUfc7cgYxmTi9xJ4K6rmYy2qP24ilCG3aXpJM/c5UTuam3ctQHuSuTtBNqulLlrBu7HZ8G4gbaabGb7nvNNvJ0oQkQZG188W736VkLChaCgFi4X5oETBJG7xJEepe2HsI6puLy9kcU65+t7Iy4OQZDk+8nF/cULU+95hnfQfAjA3WP/J7oCd9zhRA1w15e5mwy7/9dIpWEM2q69vF2TgTsBuI9UA9yHbNxRV5kpaJdRqeM5asCCMnfvWk5Qc1jipcHycsiNsvKBl5mZt+bO7fDyamAya6lUmOGHVn+w7qBQ6mi0Jjb7QnBwXm/eQFmZX5cfq4lFq6PhPuni1WAN6pbObGAK24VLHiwpHyy/t2ABvP7arOeJS2/zQlog8dyFVZB7UtpO9G3HW6ROcpHI2x13YfL2HXgXX7iF+xKR+z4MuB+CV5jNO8Xwb4C3GKyoyNz0MuhCEGwDVBA6x2GTF8yG8CNsHq+VV/SuaG7KLaimO/PmNcgCd9yaCfWTUSpvxyCKBnm7IYD7lxbJ2b/UgyraKmq3Rs6uO3knsbs1MvcRpLzd+oA7KW8n5e2mlbcbzEzG7NbtJG23NBsZ4wjb7QK1WzJnt2aqbngWb7vk3XKwu40xd8XR21wNVC1N5E66ymgP3HXzk9Eob1dcrmixGiHmpDrmTjCWUe4qowjcd+sM3DW0uVK0cScAd9g22FTYIxhtaHU0fhs/6EJQ0t2kzJeZZeWDIkRUgcB/FQ+XLm3l8WAUhDo+grVORc8PnC4Hh8MYbYejAiNWI4t1MTT0QUrK01WrXmdl5fTkpGU+nTP/ijC8nYYq3E/PYh3HgPsBGeA+nQjcfxgC7pifjHbAXa3I3Qqw+6fDQe1a03bVfjLyBu5KO6Z+D2dn1JSfPpbxcCcC9z1oi1E3cYtRB1TkjhrLOLKP48yd4l3DCWqOXXwjJ69nS97bZQ+XFb4rfJud3ent3cRm19HptVQquu7AaDvcr6fTmzmcbn9/RASZKPLv8scbk1Jrqfj6BO7Q6+isRpbXWa/E24mbXm96V1gIz0xJf+AT1ckObKJ6o6btLjwxbce7pKJmMlQ5efs+2HgicB9SuM/cKQPcaYfhRWBfYEfWbHh2b+FCBEG8O71hTQKzIToaHEUHE5jaYMKFLRS2Cxf9tWhz7hvYgUthYQ0MxmkJcCdaM+3CgLsqefv3quXtKv1kdATuBsHuX9oWav+K5Owkebc5qbspgLtx5e3/Itulmkjerlu7VFLeblZ5u13Q9gNW1Sj1iD7AnaTtJqXtBhG2mwS1G5uzWyZet1W2bgAKb1vk3bjYfZhSd6PZy9gIczevsYxRRe4kcNcFuGuk7VqhdhXpKoPdCd4yKkXuElcZVcBd2jdVDrijFx0qgLvmayVNwB02GPYLBiVGA8Ovy2/t87UIgjxbsyavsLfoXdHCewtjrseU9Je83rixkcWCAQmOAeyrtCDgPhwMGG/qGYy7SUnZb7OXr3m0ct2T3IKevoKC/KK+pOV3faPOMfwbXAWnHdnHpxOA+zgUuO8YM327GLhP+WnkZH2Au2aR+xBz14jdNZJ3A/RTfW+kGvL+qfacXTNtVyZvf0+JvB0H7l8q6ZgqA9x/HDX1JzhTH0/7RcKjFYC7xFXGgXIIFbnTj8gwd68aVkCjd2RnYsptSLPcnty+/Pz7S5Z0BwS0cLkNDEYdjVZLpULAHfixmcPp8vNDRKKygbKA7gBuM5fZwKTX02l1NHodHTKW08zx6fRZ83xNfl9+xsYX6ze/XJnxxDOiA/KN4l3jJjgzW0zbK2exxPL26bQ/UXk75SAubxf7ycgA950Yc98h3buJzpiljMcB+Ft4KQ+vaq85Z5euftiTm5v+NB0H7jC74dMEjANQUDD/wkaGXw6H3RwsK4NnXo2MbGQyceB+GGs+jBq4434ysvJ2KW3XX96uF3DXFbsbQzC7zW48ZOyOs+tI3kmpu1Uw9xGkvJ2Ut5sZuNuhvN3ye6Vai5mMJVm32yNttzAbGYMI260ItVsUYSfxuv4I3ibIu6GwuwVJ3S2NuR83GHM3nrEM/lm1UUTupneVsVHgrmQ5pLDgUadtV1yKqFhpyOWtBuaOnVk1rjJi4L5HF+D+q3bA/RdZVxlp31S4FvjPBCJwh52CsY7Xwlv9bPVgefmN2Nj7S5ZkbHyxdPXDsoGy+JvxqHa4qKjb37+ORoNxBQ7Dcckxg/vwSC2Veg4Do+nrn0UmXd1a0AsvhSDIgyVL4BZehxvS4iaswoD7n1M8DkySB+6/fDz151FYx1Q54P6BEuC+TQvgroK5a4fd/6YfdtfJ2F0zdtcc7+lA21XJ2+X8ZOQM3PGOqThw/0Fr4I66ykylHMSc3P9EjWWYxxzZlc7ck66C0x5e1Qy/ekFYW0r6g5z8nsLidw+XLUMF4KGhbQJBE5vdwGDUMxhw28hktnC553x9e/PyILUCugN4rTxWE4vZwIRgNbIgY+FByLSSgZKS/pKKisHghAv80Fa6Xz28i6uEtjtxKnF5u4yfjFLg7rQbZ+7jZu0cO2uneNecMLcct9/hT2bQj8ALwutDSm98vfFdYeGWvLcJNxOotVSYB/HCh8KA+7BOYDezs15n9RcVrd34fMWjFQNlZU0sFmopg/kywYUmbuC+26Dy9q9UsLkvLT622Y2w3d45u3WSd9JehgTudtYulZS3m1jebodmMiRtt1Habp/CdgtF7ZYgaSfxusn4u3nJu5EE75aA3Y1jL6O8U7SZmLvRzdwtQ+ROAvfhAneNax418na5pYh2awxp6ioydzxb5ETuKm3cpX1TdQTu2l4xSW3cceC+CwPue8Ue7jhwh5EzoDtg45bXN+Liuvz8Hq9YkZx2PyjuQmTS1ZKygQqkIvttNlJR0S4UwhgPoxGME+hyafZsGITgkXaB4G12dlHJu56cHARBEm8nxt2IEyGia9HR12Ni4E5Q3HkPr2ondqUYuLvgwP03HLh/TADuH32iPXDXyNxVY3c9BO9Gwu6jDILaldF2Zb1SVcvb1Rm4EzqmosB99LRfpY4raoC7AxUVuaPGMoyjs1jHnHDmzj/t7llN863jBrf4x3Snr3/au3UrZAikzZ358896e7dwuU1sdhOLBbetPN45X98nK1dWDFYEnQ8StAk4zRwIbjMX7gdfCF71dFVBX0F5xeDC1HvwapygZnhlBdqOx/FZTMxSRglwF3u4T3CSMHcsMNq+G9+vye77HTADdxfeKXgXVLdeUXE7MRHuZL3OYjexYSqHiQ/GBJS2n3Gj19O9O73htxHzrwTGnR8oLe3Ny2tgMqFkYJCAIWE/ZuAubpcKVa4gbyf2SsWBuwxtVyFvt0bgTqJ2MjSSd3vD7tZiLzPCpH4y35oBuJPtUkl5u2nMZEwpb9eHtv9up2Yy9kzbLbFFqtmF7daC2s3L2UnCbk/83USCd9M6zOgndbcp5m4mYxndRO6mdZWxMuB+wETAXZ2fjIKZjErafkJFyGJ3PDPxrMMzSipyl3OVGbJx1x24a/CTUbieUnSVUQTukNWwFzBQR1+PHqyouJ+cjGrVMVDIDmyi+9VzgpqDEy4OlJXBgzfj4prYbBjX0ZEMhi43N7gPj9yaOxfB/kVcjsCpqE+nT+lA6dU5c84HBsLjCUtuUn1qnTgYcHffLwbu0gaV034ZJQvcP9QGuMuL3HVn7trau6vB7v9jKOyupeZdGWr/VPm7qJO36+gnIwPcsY6pKHDfIQbuTruJHu6T3ffLAfcZDNRYZhbrOCTAbDFzr4J8YAU0ekZ0xC6+sW7Ti/XZL/tLSh4uWwYJ0y4UtvJ4EG0CAWTjw5SU/L784AvBnh2e/DY+JJjXWa/wy+EiRLT2+doteW/jk2/C67ACG2k+YtqOd0mV0nYnzgncxn0G46gyS5l9UpE7ht13o3s0tFN74WlTPQ5gBu7HXQWneSGtkNIPly5t4XKvRkYOlpfD9tDqaPgKAW0+3IQ2H466FjVYVha98Frc4hvZb7MvhoRAsZzAuiAcJBi4S9ulysjbNZnJfKMaAloRcN9mHx4yJGe3JexO2ssoA+6kvN3G/GR+NUK7VPuQt1tZr1RLMpOxUOt2C2mUStL2k4YXtpvTrt2EqJ2E7CR8NwF8t0zsPhypuyXby1gdc9fZWMYSXGWGA9wPWExos4IyKHBXI29XTts1LR6kGS7D3BVF7kRXGf2Au1ID919GK6HtChdW+JOHgPtOMXCHhTpsA2wSbCSqcK/xiL4WnbXlVUXFoAhVGyOeER0eXtWzeSfdhGeY/g1hiZdwpH7O17eBycT7W8JtI5PZ5e9fNliW35cfcjGE2cBER8gzbsxG5upnq4tK+l9v3Jh8P3nZmkdU71pHdiXaNBUH7k4YcP//7J2HWxRpure9vrO7ZyfoGsYcUAxAJ7qbnKNIEgwgghlUDChKkNx/wwm7Z2dHJ8/O6IxjGHPWcVQyioqYc86YiHV9T4Wuruqu6q7OVd01815cLXQoqDfUe/ev72cUBtyH//DRsO+sBO66kDsDc+eA3Tlk3s3H7v9lCXY3u3Gl7abKpVJ9MowVU7/9CK+YigF3OHeod2XsL1rgvn2w547PJv42lHC4o0oZArj7HBglOYiJZQ6PUxyFTuWpRpn7lMBTkpA636im0MSL2blPKqt6O4uKOlasuD51KnSz1oAAaG1hYQ9mzSrtLo25EhN8ITjwfGDoxdCkW0nQUfsQpLD4fUTyJVV0szSs3ivoNPRYtEqq6ji8BLwQHmzHDfLjlcf1gTtaNFWfuWPYHW2DPLaRmf2hWLx9lOTAOMWRiX4nlVFNa9a/ezpvHvT8a3FxMCgiLkX4NvnKGmTwNaI9Ar4DPX9Fx4oaDbJw+fOynrJ7M2Y0KhSw+MMcg1dM3Un3yRjG243JZCjxdpMCdx4C989F1C42K8i7GHXnD3Z3Y+DuuuVSxXi74+PtokyGpzIZN6Ht/Je2u1Kw3U6o3SmcXYTsQoTvQiPvdsHujtfLuCJz54VYxn5WGacCdzNCCXYNuZsL3A9yAO5GaDv7KMA7OcHctWIZ0uROWmX0NO60uqlGgPtmA+DOGG9n31tRrTJE3dRfBsALwSvCAcDxwOHBkcN0pG5Rz382v6K3YkNFd8bCh4qIxol+v3v4HpugOjEl8JRvVBN8s7K38m5aWotKVS+VopZtmaxFrX4wezaCINPvTPdt8oWJHZ2dsIqR0VeiS7tK4UfrSj4EJ1yY5H9yjOzwCK99n6HAffvAcVsHjPn5U3OBu37dVLOYu20y7+Zh949MYvf/sjFq16ftXOLt7D4ZZoH7v7UC9y2Ed8UDTYKjPpmJdJ+M9/6RPtAOaEPuuMwdxd8kc/cJrpWHN/jFno1KvTx/6TPofj3l5Y/mzLkcHd0WFtYeGXkvPb2mryb+enxEewR0qtkPZmsQDXSq5Dm3gxLO+0Y2SUPr8Gz7RL+T8LR0dTvacOwOr04rmjp5NxFyn7iTZO6UtmOIJxrYR2n7lD3wW8DDYTjAq8DQmD73DnTsG9Om3U5JQTSa+GvxoW2hke2Ri54verdmDfzo6bx5H9av762qerV06a2kpHP+/qe9vGC9hRVpLy5wp/hkbBxvZyFxImp3MmoXAbprBd7FqLs+cHewT8YEbf9SjLc7s1yqPm3/0YXi7UKulWoBbbcg3m4zmYyA1O0ibXenYLutULtQI+0iZBfhu2Oxu01Kqjo46i5c5m6hzN31Qu57rGDuNkXt1pJ3a0Lu1gB39ng7A21nvyQgBwLB3A1D7npWGTsBd1PbK8a6qShw3zEEDgYOD44ZZgZJnSSyPbKqF0WEC5c/V0Y14XaOiX6/Twk8JQurD0640FdT82HdurbQ0GaVqsnXF75eCg/v3rChpq8m6HyQrF7mddoLnxsltZKYKzF91dXdpaWJGTfl4Q0TVCdGSw8N99r72cTfBo3f/jcCuP/0ych/48D9ryRwH8wG3P+lD9wNQu40t4xp8v4Pi8m7s7G7kef5b5Z4+/8ylUv9hy7ebuCTMSVw30wpK0oK3LF4OzXbjjfJgdG6kPsR7I2c49C7cObuHXwGOpgyqjlo6vn4mdfz13RUVfe9W7PmdkrKjYSE+zNnVvZWptxOSbqVlPcqT6NB5uU9jZ5+OSDuHErbw+rh4fAk8FQT1US8nVorFW3SQ9D34ADgSPCiqcOn7IHjJJk7nnPH2g7ixkTizQOUtnvvHy09CE/oqT7hFXhaEdEYkXypsPj9i8WLH2VmVvRUTL8zfcb9GQiC1NT0pcy5HZN2NS37bu7Kl/kd+e8LC9sjIxvkchgWR6g+GWq8HQPuFtRKFQpw/5xnqP1fImoXsbvLRN2dytz7iT4ZMd7Od5+MGG93TLzdtWQy5tJ2M4C7SNuFQtt5jtodzNlFyO7a8N1h5N2dou62UbpzB+5mMXcnimWcWDrVYVYZ+6B2C7G7pSF3ZuC+zzrgTo+3M9N2piFD9HlKyJ0wuTNp3E0D9184AXfT8XaDkDthlaEAd3h1uDCGY4NDhV8B5t7A1kBEo7kcHV3dVx2efEkSUjsl4NTkgD+8gk5Lw+r9Ys4mZd6q6K24lZx8PijonL8/fL2bllZV3Tf1+lT/s/6yBpn3GW+v017wVdmsLO0ufTRnDlJTEz39CjyDh+/RUZIDw6bsGTJx56Dx2/42bmv/MVtQ4D7CAuBuLOTOjN2tIe9mY3fLDDNc4LvJBzLRdm7xdmM+GQaB+0+GAnfCJzNlzwjvfXikHdooCTQCuI+WHkJN7kTIHf3wxES/3yf7/4Hl3M9AH/ONbPKPPReW1JaYcXPl2jfQG58tWPB47tyqvqqsx1mlXaUlG7qS59yGzukfd04Z1SQLq/cJqcVlMpP8T3oyAneUth8cjR0GGrf33jfCi6ibqmPuWuxONFRDvwvP6aNFXzHaDs8MryIJqVNFN8MRpsy5XVre/Xr58tVvVy/vWI4gyIyce/B9+BXg14HDwz/2Ab9Ce0TEGR8fWHthvtmHx9uHDNlmGG/HCMq3LLVSN5mSyZgE7p8LiLMLELWL9hh39sy4rV7GlYG7GG8X4+1ivN01ZDI8KpR60MJCqe5I210j2G4PgYwjUbtbcfbTppoYe3dv7C505u50sYy9Qu7CB+5moXZLsLtFIXeOGndzgTtjvJ267jMMIi1zNwy5U60yJoE7XHLDhTcRb/8Fu/jfMsBIxVRG2s6w+WKyyjDUTd0/Eo4cJhxFo6K4q7iw6H1lb+WMnHvqmBZJaJ1P8BmfkFpZWD38MyypraSs682qVZcjIy+Ghl6OinpfWLjyzcrQi6GqZpW8QS6pk0CD54m+El3wrqC8pxzRaPxizk70OzlWfnikz/5hk3cP8dw5yGPb38b+0n80Cdy/pwD3rxiAuxGNOztzZyXvljlnWAzvupKqNou6W9z+27RMxjDeriuXauiT+Yrmk9EJ3H8yFLgPwQXuWLwdg9SHcOSNMXcacEetMgocuGtD7gGnvIJOS6CbhTcoo1DmHpp4MTb9anr2veUFHb0VFRU9FX0IkpP7JDHjZmRKe9DU89AbFZGNUgbgjitltA53VClzSIv+D4z0QZn7CJS57yVy7hh2J8g71oZRlDjwEMwkc9RTjYqVpNgogGOLm3EtPefeouXPizd0llf2LFnxIi37bvT0K4HxrXBUMFjCky+9Wbly+p3pBeveXggOhssNolzq8OFEvB0rl8oWb//Konj7vzjQN7fl7P8SI+0idhej7rZm7v146pMRy6U6oFyqGG+3Pt7ucrVSXUQmY2d1u8vQdstKpLpLsF3QqF3QkF3Lx71Oezm3CRHT25W829AzYyV2dyRzt0AvI2Dm7qSQO7807o6i7eZhd7tZZSwG7oa0nXkdxweR1i1DC7njPYo7cP+VHbgb8ckw0XZW5k4Cd3rdVFzjDgcMvwXMtMEXgnOe5nSVlnYWF+fkPvGPO6eIaJSHN8BXVXRLcMKF5MxbGkRzOzn5akzM7ZQUjQZJvJkIj1K3qH2bfKHBjegr0QiCPMnJWZT/IiypzTvozHjlsdHSgyO89hIVUz1+JYD7SD3g/jUG3L80D7ibYu4G/P3/OPN3roF3M6Pu/+1I2s4h3s5aLtXAJ/ODgU+GJnAfRgXuchy4H8JD7qjDXXporAxXyjAAd/x9Hd/IJr/Ys9DTolIvJ2Xeyl7ypHhDZ29VVWlZF3RI6H7R0y8HT7sA90ET7uENktA6XCkz2Z9wuNND7kfGkMwdz9qTzJ3E7gR8J26M8EJ/BHdDg+1yItguDasPmno+YdaNJSteouqYvhr4uuz1shVvVnSsWAGjIDv3SeJs9M2AkGkXY9KurC16D/dZVfgWhlKDTEaLtzPa27W0/RuLaqVyB+52wu42IH0iahebiN2Fxtz7ieVSRZ+MGG/nS7xdgLVS7VHmi+fqdnNpOyfgzk/a7niNDE+C7fZH7SJn5wlSd2Ecbz/y7p7YXYjMnbvM3U7VU+0XcucPcLeetpuB3W0Ucjd+IWQtcGdauMmcOy3kzhG47zAG3Im9g3GfDJW2G+zFGIG7nsadsMrsGY6H3OEX9D7jHdgaWNVXhSBIaXn3ouXPIzB9h1/sWfganHAhJu3q0tWvXixZcjsl5WVubu7L3JirMSEXQ+BRAa0BoRdD0+6maRBNdU1fX00N6qUJrfNUnxgrPzLS58DwKXs+m/gbWjHV49cBY3/uP3rzpyN/NBu4W83cTSN4LuTdCHb/2PHYnYW2M8tkuMTbKT6ZoThw/57BJzP2F9InQxW4j/TejxF2zJyOkW4s3o4XTSUc7njdVFIp4x18Rhpah7+vEzj1fGRKe2rWnYJ176AvzX82v6av5mlOzvvCwqrqvvlLnyXMuhGW1BaAWmWa5VTmTtRNxcUyRM6dUj2Vgt1xvQzevLWNUt8VHgIPh8ODJ4dunzLnNoyIvurq8sqeBc8WJN1KSriRkHI7Zf2H9Y/mzLk/c2ZncXFJVwmi0XSXlcE98zvye8rLr0+d2qxUwvoPCxpMSDCrwbjfRrW3f4ISDgtqpVoJ3K3H7rZCe4zcUHioXWTfInZ3y6h7P9EnI8bbxXg7/+PtokxGpO3Cpe1CD7YLINLOc84ucLBuCYh3T/JuK+wuMnc7MXc+h9ztZJWxM3C3IW3nit0tY+7mhNyp59oM4E6u9eTCjS3B+JDExxc+KGjA/RBX4I5eP+sBdyaBO4NPxghtN2DujBp3nVVm9zA85A7HD7+XzxmfoPNBcx7NQRCks6ioeENnTu6T2PSrESntkSntcelX03PuIRrNk5wc+Drj3oz4a/HRV6Jjr8am3U2Dh/SUl8PXzEWPQqZdlITWTfQ76eF7FI23e+9DfTKowH37QKxiqgFw/8YQuP9FH7j/ixW467C7heSdQUFjHLtbH3W3AXZnfNr/4VQrlVu51L9q4+0fo/H2f+Pxdj2fDArcJ+4cSquYqtXIYKidTtt1AvdJVNoe2egXezY0sS0p81bB+ncbujcsfrE45XYK9Cu4fTct7WZi4v2ZM7tKSkrKuqqqe9Oz70KHDIxv1cfu+lH3Yx4EdteVUSXeCaA1rLwqbrzxPYoG2/3/gKdNy75b2lVaXtEDrwvHE3IxxP+cf2BrYOjF0IQbCRpEcys5uT0ysj0i4lp8/MPMzPeFhY/nzoV2PiioTiKB9fwIVSaDx9sHDKDG2znVSqXH220C3E1Sts/t2sRIu9jsT97FqLtdmXs/0ScjxtttC9zFeLu710p1Xdpul0KprkTb+aSRcQvUzk/O7mZ4XUAIns/Y3SlRd74zd4cXUHUuc3cAcOc/bbeYuVsZcjdtleEM3Km0XTdCtSF3nVXGCHDfbQDct1OA+1YG4E4I3Kk+mR9owJ2VtrOH3Kkad8Iqs2soHCEcKhw5/Bbwe3mf8fZt8o1sj5z/bD6CINV91fC1sqp3wbJnGQsezln0aOmqV+/WrFn+evncx3Nznuas/7Ae9WwgNUWlnfPynkZPv6KKbvEJqZ3kf3K88tgY2eFRPgeGYz6ZIZ478IqpKHAftfmTkT9+POKHj4d9/9FQrsCdYpVhYe768J3aLCLvFmP3j+2N3U3SdiaZDHu8/c9ovH0jLd5OL5f6iV68XeeT0VZM1QH3/YS6nYG2H/fEy6Vi9XglIbXy8AbcjZ6Ucaumpq+w+H1xZ3HqndSoy1GRlyMTbybiFqP2yMhL4eFXoqMfZmSgWfINGzaUd/chSOLsmxEp7f5x53wjdWVUpwScgu4Hr6Il74RnBlPNoPwdbfIjxA3FUYrl5gRquQk8DU8VlXq5pq8GfTkEyXyUqWxSSuok0nopjI7A84H4O0yXo6PP+fs3K+GHWPP1bZDLayUSuI6AmQPWMZh7YALAZTLUWqk/4jIZarydvVbqRm44z+bEzQGcXUTtdmqbLGoidheZO3fm3k/0yYjlUsV4uxhvd4BMRsDqdpG225W28yHYLizUzivOLuJ1ofF3OwXenY7d3Y25O1csIwJ3+9F2Ttjd6pC7fkCBekVkC+BOrq3ouMaB+wkm4H6QFbijl6YYcCd8MozAnV3gzjXeTmXubBr3rQMJq4w25A4HDMcPvwvMMzCpSuukqmZVyMWQ+Gvxsx7Myn2Zu/b92sL3hcWdxUWdRX1VVYXF71cVvs1b9Son72l69r34GddCEy+qY87Kwhu8g85gtP34WPkRIt5O+GR2DMQqpg4Yg1VM1QF3tGIqV+DOnblzaf1Nll1lDLzrYXero+5mYPf/ZkHt7LTdSLz9b5bF23/Wxtu1PhmsYipZbhQH7mRynDTJ6Lztgad8tKg9PPlSatYdDaLRaJDiruKcpzlRl6OCLwQHtgaGXAiJvx5f2l16Kzn5YkjIuYCAc/7+54OCLkdFPc7K6iopeZKdDY96V1CwbPXrlDm342deD4xvVUU3KyIapVjmHYXvmG1mkh/O3/F2Am0q7Kv2eLyx+sDwKFwlD88za/79l3l51+Pjyyt7wtrCYFDA2IerHXmDHA4MQZC3BQVwMI0KRb0Uhov0jLc3XI/Asg9LLkwhsC6RtF1fJmNWrVRu8XZeA3c7c3a3tcdscmATsbt7YnenAvcv7QzcxXKpfIq3mwbuYrxdiLVSnSiTcWHafkgYtJ3X0nZ+o3bX5OwiYXcV/m4P8m4X7G5N1N0+ehlhM3fHhtydrHG3D3B3AG23LNxgHnPnEnI3onE3rpTBl2PtEKYm3PUd7gdowB0/BWi8XQ+4byOAu3kCdy60HWs0qwyjxn37YLx0Kh5yhyOHXwF+cfjVYOrzPuMtq5cpm5X+5/xDLoZEtkdOvT41/W76io4Vr5YurazqnTnv/tSZ1yNS2oMTLvjFnFVENEpC67yCTk/yPzlBdXyc4ugY2SEi3o75ZHCBO1ExFQfuw3/4yDzgbsjcbYHdTfF3psC7iaj7/7Mg6q4j72T7L9o/jT2QA21Hgfv/sdvbN5phbx+H03Z6vH0KjbajqF1GCbYT4XECtfvHnotNv5qefbe6r7qyt7LwfaEG0UAHCzofpG5Rq5pVqhZVQGtA3NW40u7SO9Onnw8KalGpsNK8vs1K5Tl///bIyAezZnWVlHTk579ZtaqnvLy6pm9t0bsZOffyVr6cOut64NRWv9iz0DOVUc2ysHronBIMqUvRG3U+wWegwTd9IxvDky7Nmv8gJev2nEWPps2+EZN2JX7GtewlT17m5r7Ky1vwbAEMAbiwgaXc54wPHNisB7NqNMjdtLQmpbLWxweuekjUDishTCcwzcAMRKPtAwfitN1ErVRT8fYvOHI3XkL2z+1AG90k0r6Jf03E7m4ede8n+mREnwwfy6W6Rrx9O7/j7aJMRqTt9qHtFmtkBBxsd23ULkJ2l+bvPMTu/I+6W8vcj/KUuTsz5M4H4M4z2m5D5m7a5G5xyN2gaKqeVYbQuOMOd6x7432VBO7kRxxowB33yexkqZhq1CejH2833Ih9yxpyZ9C4U6wycMEMR4iH3OH44Y9AMneYvSV1EkWjQt2iDjofFH05OuNhRl919f2ZM18vX5636lXcjGsh0y6o6bTdU33Cw/fYWPnh0dKDI733D5+yB/PJ4AL3XweQwB0VuHMD7sZC7hzJu/mM3oC8E9idLer+iY2i7pY0NtrOKJP5P+IPopPJEPH2/6TE2z+ixdtx2r4Zp+06e7snxd4+Zc8ILzptR50tqKqFitp9I5uCEy5ET7+ytuj9kpdLyit7lrxYsr60c/qd6SEXQ1QtKuhs8gY5NLjhd9Yv9mos9LcHs2e3BgQ0+frWy2R1WJwcbjQqFC1q9aWIiAezZj1ftAie8E5q6rLXy/oQ5MO6dQiCLF31avaCB301qOwoLftuWGJbaGJbypzbcM/UrDtRqZcDp56Hg0nMuInWREWQnoqKyqpeBPtvbdG7vJUv4XkK3hXMvD8z+kq0/zl/ZZMy4FzA7AezEY0G7n8xNBS3x8CUAHMDzBYwfxzCgu0wFcGg16PtrDIZo/H2jebwOyczd3bw9y8x0i58wi5I/u422P1zh0fd+4k+GbFcqhhvNxe4izIZu8pkBFko1T1puxhstytqdypnF8G3u8F3mwfenRh1Fzpzt7yAqsBD7vwH7hZCc3M+PmgedreOuetdPlkbcjdk7uTgwscLDtzxeDvWD0ngjp9WHLgbq5hqvk9GP97Otn1js8qQwJ1ilaGG3OGPAL8dTDt4zl1aL1U2KYPOByVcRwtFPszIuBYffzs5ua+qKnPRo7CkNnVMiyy8wSf4zJSAUxP9ftfF2yUHCJ+MVuCOVkwd+zMduH/HCtwHMQJ3LXNnxe7WNC7Y3dyo+/9YGHW3GW03VSt1oFYmo4u3Y7RdF2//qf8oPZkMUSv1M5K267LtuEMGQ+0qFLV7BZ2WhtUro1DUnpP7BEGQ1etQGVHGw4zyip5ZD2ZFtkeqW9TyBrm0TiqplfjU+kjqJLIGmapFFXs1Frrco6yscwEBDXJ5nURyxsfnjLc33molknqZrFmpvBAS8iQ7u6uk5NXSpUUbOp8tWDDtxrT8jvzyyp53a9YUvi8s6SopWP8OXv19YeGLJUtQYl5VtWJNR3r2vTVF7x5nZXXk5897Oi/0Ymj4pXB47JxHc1Z0rOitqoJnQLT/lXaXwnPC81T0VNxKSoLjgesCHLXDgqYLto8YAdMYbEl3YLSdWigVpe0GMhnDWqkW+GRYoZsLQXaXR+2bXKWJ2N0d9DL9RJ+Mo4G7GG8X4+18qpXqaJmMc9XtdqLtBy2n7aaBu0jbbRtsFxRqFyG72HTwXZiBdx5F3QXN3HkplnFayF0QwH2X+c12UXczmDu7WMYSkzvdLUOOIB1t1/PJWCBwZ/HJWELb6Ts4Q6sMo8YdLZ26Z7hhyB3mK5iopXVSZbMy/FJ4wbuC3oqKq7GxbWFh7RERDzMz+6qrk+fcDohvlUc0+ITUTglEgft45fFxiiO4T2aE195hk3fjAnddxdTRmz8dyRG4M1plKMzdCHan3OfPLI39SazA7mboZf7HNqidkbZzk8noxdsNa6ViMpnNhEyGqm7X0XbCJIMF21GHDJlqx1F7YHxrevbdtLl3Fyx79q6gAPcRlXaVVvVWpd5J9T/nL2+QS2ol3me8yWsD9G0erNfFXYtb+Wblq7y8c/7+9TLZGa2/hbiuxFb4M97edRJJo0Jx1s8PumV3WRmi0ZRX9nQWF5dVdK96uwp9r+hGQu7L3NKyrp7y8vyO/PC28NirsfOezutDkMrqXqSmJvtJtt9ZP59aH3WLOqI9Ysa9GfAk8Lr5azqmz70blXoZD8IXb+hcV/IBXqJFrYaXPo7r2jHUjgfbYcTDxIbS9sGD8Ww7Xih1M0bbcZnMdwYyGY7x9i8sJm4OIeyf25Mkuipn3+Tqjc/Y3b2i7rbWy/RzI5/MN3bzyYjxdheIt//qTvF2V5LJ8EndLkja7uwSqYIMttsJtTsl0i7qYsTYu+Cwuz2j7iJzNxu4H3QV4G4r2r7L6maLqLuFzN366qnHaJcE5Iig0XZ6vJ3RJ6MncLfMJ2OatlP3cVSrjBa4M2jcdw1ltMrgwF1WL/M/55/5MLO0vPtuWtqF4OBz/v6tAQHtkZHv1qzpKSuLTb+qikY12d7BZyb5ncSB+2jpoZE++3GBOwHcPcwC7ptowJ2JuetDc2aq/i9ujfJsbOSdjt3NYu5Go+7/YxVq50TbzaiVSspk4AR9oqdup9B2wiTjtXekNxpsxx0yWGXUE5P9//AJJmqiRqVerq7uW/Z6Wcurya0AAIAASURBVFFnUU95OZolX7GitKxr2o1pAa0BikaFT60P/u47ubbiUQlJrcS3yXfq9amIRvNm5Urob/VS6Wlvb1jA0SWUehWMLcI4eYf7NKtU0EUvRUTcSEjoQ5D8NR3rPqxb/XY1PE9ncTGCILMfzFa3qMPbwtPupq18sxKOCn60+MXi8Evhymb0kxzJt5Phbg8zM2+npHSVlsIzJGbcXLLiZd6rvBdLllyLi4OXwGk76ZDBje2kRoaBtlPU7cZlMkbi7V/YxC/BEb2ZfBL7Q3ZXRe2b3LKJ2N1lsLv5wF0IPhmxXKqjgbsYb3dAvJ03tVLdRSZjP3X7YatkMsKm7a4RbLczahchu9h4FXu3oWfG9mJ3R+pljpuJ3Z3L3PkXcrcHcOfE3G0H3B2E2jmTd54y96MMVxF4JydoO9Xebhhvt94n88MnzPF27ZaNeXNHDblrN1boVohSNxUOAAfujBp3Uinj2+QbezUW0WgQBGkLCyNqV2KFK29Om1bRU7G+9EN48iXfyCafkFptxVRD4I5VTNUB9x+tBu40UG4mXjcN3+nknYrdjVjdrWHu/2MJareAtjPIZMh4+zd/ZVe3k7SdqJKKStv34sH2sfLDHr5H4bzD2fcOPqOKbk7MuJmWfTc581ZRaefjuXNvJSd3FhWt/7A+72XevKfzoi5HQafyqfXBOTu6FFKubGExhe/DT+E+025Mg4cgNTWtgYF1UilcI8BKizvTT+hdjMNKiMF3MvMOvfRSeDi8+rP58++mpd1MTHyZm4s7bZa/Xp7fkV9d0/dswYKO/Pz5S5/Nmn//w/r1C58vLO8pX1/yAR7VFh5+ITj4clTU21Wrqqp7eyoq4IHtERH1Mhms/7Akkg4Z3NiOB9thiG/HaTsMa8wks7l/fx1tZ5LJcI+3f2FDrbMVzTFyDBfj7JvExiv47gaGGXsz9348ird/KZZL5Y1PRoy3u0G83YKdHq9kMiJt5wltd7xGxspgu00cMoJE7a7C2b1Pe9u2ibF3hwXercTuztTL2I65M8y9/GPuzrLK8BO4OwG1cyPvJi/JHMfcjxi76tCn7Vi/Yo2379KPt+PAnaDtv+ji7QRwNxlvZ6HthsydapVhrpu6YwiucYc/IAncYfjD7ARLiaxeFnQ+qLynHEGQ2ykpZ/38GuTyepkMvjYqFK2Bge/WrMl4mJGT9zRw6nlpaN3kgD8MgfuQiTsJ4D72FxS4jyKB+/cGwP0rKnD/i2ngzrmRz8PYWMg7M3Y3jLqzKt3/l1Uvw4rdObdPjNN2urqdQSazUV8mMxSNt+vU7Ya03ROj7VppOx5sH6cgULtXICqQCZp6fsmKF9Bbcl/mriv58Hb16rvTp99NS1te8HrNuzVhbWHKZqWkTgJLMM7ZqQsTUZf4pO6dnsSbidD3OpYvPx8UVCeVwtINyybcCxYoYvGhLjv4SoXBd1hLYX2GS4k6iaSBUmG1u6ysug/+r0az6vHx7ZGRt5LRPPvCZc8qeyvhRkVPBfTzc/7+Tb6+8ChozSoV9HNozUolXF7BYgsTAFkcFXXIDBu2C0Pt6ODGpO0wrH82Stu5xNs32pTT8ZmtO4GzOwq1i2ydv+TdDcTudmXu/cRyqWK5VOuBuxhvty1ttyDe7rRaqTaXyQhI3S7Sdv7Tdj4H2x2G2oXD2c1m5Wesbi7H5e1K3u2C3Z0VdXc55m6JWIZ/IXdbAneHxdt3OapZGXW3E3M3wO6G3ZXskFTabiLevpMeb2f0yXCJt+vRdoMdn0mrDGvd1AMjUeB+dBzMFTA9SuukqhbVjHszNIimt7LyYkhIg1xe6+NzxscHvuLi7PbIyPdr13aXlS3Kf6GMavYKOu2pPoEXTdUC91104L7FQuBuLnM3TtjNgO9U7M4WdafqZUww9/+wCXMnnuF/jdF2nbodj7d//ic2dfsQQ3W7Hm3fPgSj7YRGRhtsH688Nsn/pE9IrSKiUR3TEjLt4rLVr6tr+t6sWvVh3breioqizqIa9KMRSM6TnOALwbJ6GazpsOTBgkW1M+ENv7qGpQ2WURy4z308d92HdTVIDfQ96G+wUMPSh9N2dCVh2z2Q/F2bfMeF79BpcfLejH1KA+fp8M8rMTEvlizpyM+HG61YdVY9WfwfmMcGrY+qNbbjDpndmEMGr4+KB9t/xTQyBG2nmmS0tJ2UyTDG200C9y+cAcGFy9mdEmkXMbqQyLuzsbtwo+79RJ+MWC5VeOVSxXi7KJOxp7pdpO28kLa7Kmp3lKhdwGD9DC+b0Fi8/cg7H7C7w/Qy1irdbcHcXSPkbkurjGOBOy9QuwUXadYz9/2mmLsBdte7aKF2RcLbbkDb7RFvN5TJMKB2FubOqW7q7qEocN+PAncYoThwlzXIwi+F4zKZB7NnN6tUtVoQib7x7eVVK5G0qNVvV6/OepzVW1kZkdIuDauf5H/Sw/cYBtwPMCXct3xqFLhjVhkqcDeTubOSdPSp/sLU/mz4KgyvxRh1t0bpTsHun5idajcItjPSdpMyGUN1O1EoFaPtWyi0HSuRimpk9o3yOTBGemic4sgE1fEpgadU0S0z591fnP9i+tw7cKOquu9afHyTr+/TefNyV75c8nJJ9JXogNYAeYMcrjpQ1H4CQ+1YCQRyLcBv41fmZPEA3ybf1DupK9+s7KuuxoE7LLNovB2j7ehwxAci2x4FH7ta/g6PgrUO184Q18LayquogkYqhec/gzviYWnVKmvwEP1R7LXgaakOmV10hwwebCdp+08GtP07s2i7GwD3L0TOLja+Yncx6u484M6reLvgfDLuWS5VjLfbO97urFqpglK3c6LtB12KtvOxRCofaLvdULtb5dkFRtVtx+JdnrzbBLtbY5hxQebu6mIZ/gJ3YdF27pdqFullWJm7Uexu5PKG7GNEbzGg7ejZ2W3U3s4h3m5EJmOMtlOZu6HGnayb+ou2biojcP/dE2ZaVbMq9U7q6sK3CIJcjoqq1zo9iCkK82XDN9vCwt6vXavRIKVlXUFTz3sFnp6gOj5WfniUhBW4f8IRuA9iQuFmcva/EO4UDm2g8Zdjirpbwdz/Q4+5GyHvnxhH7ZbRdgZ1O0HbR+nTdkLajmpkCGO7p/p3r6DT/nHn5uU97Skvz3iYsaF7w+p1b58vWnQnNfV2SgouPU+8mYjq2s/4wOKIp9phXaDqmKifJsGZOxpyPzkRup+yWZn1OAvRaLo3bGiPiCCBOxpvx2k7PgrJaVs7ZxMeTXJY4wOa5O8Ygj9Kt9Acp+J1Cs0nn59aGZXUtescMtRguwFt/147cBlkMuYD9y9Ezs4bzi4icpci7y4ddbc5c3cP4C6WSxXj7WK83VVkMrxSt5um7YfclbY7SyNjh2C7MFA7Pzi767N1Kyi8S1ZYtT1256VexizmzjBnOpC5cxTL8Dnkzt0q40zgvos3zTLsbrFe5sAovcshLhdCun7CSNspMhlbxts50na9kDvFKkPTuMP2YRtRNxUOlQrcYUrxqfWJuRKD2kBqap5kZ5/184NFABdrnNCWqYR/wkzcolK9Wbmyqreqoqp3Rs49aVj9RL/fxymOjJIcHOG1z0rg/hfG7LnpZsjZN3FoLOSdOepuG+bOjN1ZGsszcKHtLDIZVN2uo+1YoVQG2j58CqqRIYPteHFUdUxLYfH71W9Xl5R1VfdVQ0+prukr6ymDG1V9Vbkvc6OvRMsb5LCqQnciUTtR9uDwGP3PlGAbBLgP3BPuD+u7ukWtQTSv8vLgCa/Fx9dJpbCcQsc7hgHxw9rIOTlPG9s5kbsicsdjsKE5RMf35HMSczNFIEOidl2wHdvN62g7roNioe1s8XbuwP0LEbKLnF0k7y6H3YWll+kn+mREn4xYLpU/8XYe0nZzgTuPZDI8K5TqzrTdKcF2t0DtzubsIl63GMG7Enl3LnYXmbvTQ+6uCtztTdupnzvkWs3eFtid8QrNDL2MYdrdIIhg2Geon3LQo+16Mhk03r6dEm/fSom3b6HF243VSjVC2xn3hoYhd9IqQwL3X5mA+zEPmIXkDfJ5T+eVVfRoNMi7goJGheKUVuhB1qiEOQPmtnqp9E5qanFncebDzIXLnqljWqYEnvLwPTZaemiE975hk3d/NvE3rsB9CBW4b2JNnZuB2ulIfTDevqS3TZRX1GP9G5mj7rZm7gySGVpjfRRdGW8+bUdlMiht/3jEDzht729I2732jvI5QBrbvYJOS0PrVNHN8TOvr3qz6l56+vmgoMvR0W9Wrlxe0LHg2YLYq7FB54MUjQrcIQMriyFqpw0lbIjBj4iQ+/HxJHDPfZk79/FcBEHaIyPrJBJYHmE5OoqJ1HHaTkXttKmUnAbocwB9RzVSN/qpH0miPMkebaSdhtqZHDI4amej7cwyGSuA+xduD9lFzi5idxG7O5G59xN9Mpb7ZNy5XKprxNu3ivF2USbjIHW7a9B2AWlknO+QsTNq5xFkF0m6MPm7zVUz1mN3m0XdXZS521Ys4/iQuxOBOx9ouyFe59isIe82t7ozXFkZvXwyPPumabs23s4qk9n8KUO83UAmw0DbjewQjQB3at3U7YP0gDuMX5j9VC2qBc8WZC1+VFj8/ua0aXVSKcxDx3GbBybcgK8wsmEigfn+fGDgq7y8wveFeStfxaVfk4bWTVCdGCM7PNJn/7Ape8wH7l9SwTdn4M6C2rWE/T+NNh18Z8Du1jD3v3Nn7ma2vxuj7f3/SSuUistkBjGo2z8eRtL2n5hpu+TAWPkRT/UJn+BaVXRz4NTW4GkXolIvL85/8WLx4ouhoY0KxcWQkKrq3qzFj7OfZPud9ZPUSVCHzAlP6EsoateWF9b/gAg51kjmfnQcPATWMrii8D/nP+fRHA2ieb18OQrcoQdOmgQ9EI+3k5oXHSIn50jDSdFwYtB5vEboT7HkJErh7Pqpdq1DRk8jY4S2mwTuG80E7l+4H2F3PGcXYbf7kneRubs7cBd9MmK8XYy3izIZnhdKPWImcBdpO5+D7XZF7c6ItIuE3bXhu8tgdwui7uYq3YXC3B0vlrFlyJ2zxt0JwN2BnN0q/m5v7L6f8yUWxd1Pnjs92q5TtxvIZNB4+y9c4+1UmYw+beeSyiKZO2zWtMEmWt1UKnDfgwH3w2NgpPuc8Qm9GDrv6bz1JR9eL1/eFhp6xscHJgwyXIw3GJowB8DUeNbPryM/v6yi+21BQXlPeWB86yT/k2PlR0b6HNAC9x0WA3cOIXdjqJ1C1b8iXoKx0cg7Hbtbxtw/NcLc/2571M5I2xkLpQ42KJSK0/bRrLR9ovp3eXjDrPn3a5AaBEGWF7yeveBBZVXv/Zkzr8TEtEdGvlyyRINo4DthbWE+tT5osP34BBy1U6dccisBt6mzK8y3ZMidBO7wVN0bNvSUl69+u/puWlo9BtyPYcCdjLcTyhd8dqSAcoZmdMO3m0LY0abda+7Et7B01K7nkNlMCbZbTNstA+7OJe8OLiwpcnaxididP9i9n+iT4ZdPRlDlUsV4OxttZwXuLl0r1cVlMiJttxNt51Ownb+o3eGcXYTsPOHvAg28W4nd+ayXsRNzd75YxiYhd1cB7jah7azQ/DeLmmXw3SzJjCnsbuxKjHLdZXiWyYfjz0z+5ZlpO6NMhnutVEOZjHZLyLp5ZA+5o5ujzZ/idVPheODA4Cod/vI4cIcRBHOCvEG++u3qNytXllX0oBVTo6NhFocJAGWdWo8HDA4YTDCCYaJqUasreipKu0pznuQgGk309CuoVUZxFK+b+tmkXXYD7hhqH2gcteux9a+Zmj55/4ue2YYatOfA3P/DOHO3KurOkbYbFkrdSC2UqqPtI/7NStsxk4yn6oQktC5+5vVXS5fOfzo/6VbSgmcLNAhay/Rlbu67ggJc4J75MDPofJBPrQ8sQDDhwyyNJ9nJSqY4Vccnc7hBvndFZe4kcIfnibocBX0pYdYNePKHmZn12GcsUOA+duwhOm0nxC90Yk5r7PvCXUyQXcfZDVE77pBh1MgY0nYmdTtX4G4mc7crpPvCSW2jAzm7CLJF7M437M5n5t5P9MkI0SfjAuVSxXi7KJOxV7zd6YVS3ZC2n3AGbbe+PqoNHTIugdpFyC4m3+2C3Z0bdecbc7e5zN2RYhnHWGUcCdztE2+3GWTnzN9tid05kvd95tmByJNCoPbdQ2kmGUPabplMhoW2M24eaVtIOnNn07jDscFxUoE7zB6qZhWC/Zex4GFpV+m99HQcuMMIg16/DwOd8PeAUQLjFeakJqUS0WhS76SGXwrXaJDY9KteQafHK4+Nlh4c7rV36KRdgz13DPLYZgq4f80M3JmZ+0b2YDtFIEPh7H9FY91k+0bbiO/ok3cSuxtl7n/SY+79zWXufzeDs39i8Axa1G6ctv+Z+CsxF0rFafsAA9qOVkmVHYKTCKcyLKktf01HX3X1io4V2U+yy3vKu0pKoHssfrF45v2Z8dfjg84H4fVRYTWBORzNsGPGGL1PkBDA/SgB3Kk/IkLuR8biwF1SK4G+1F1ampp1p7ey8lpcXJ1UCivbMewzFni8fZ+BZn0XlwmGCbKTnB1Xx5Cidhy1U3Xt+sF2ikaGStuphVIdCdwtgHdf8KxtFMPsYuMneXfFqLvFzL2f6JMRy6U62SdjJm23GLiL8XYb0PbdokzGqep2gdB2YWhkeI/ancPZRcYtxt5t7ZkRStRdQMydnyF3fgH3PZYDd2touyNQuzXw3QrPDBt5N3mmaKjdXNr+i5a2G5fJsKnbqbSdfVNpGrhvpgP337TA/QgK3JXNyurqvowFDwPjW2s0yK2kpFqJ5IQWuMOvDn9g+EsQwH3SpCZf3/szZy5/vXzGvRlITU1YUptP8JkJquNjsLqpQyftGoID93GcgftgfZG6lrlv1KF2FtrOgNr1Ifs3fx2qbdRv6sg7ztwZhfJ6bpnPtcz9n0zM/R8mmLsOu//dHM5OC7b/h05l809OhVKHfqOj7SN/6j9684CxPw8cx0DbPXyPTvI/qYxqQt96eZjxevny94WFcKLvzZjRWVyct/Jl3qu8qMtRqmYVrpGBtYBMrxvWriDAOrbpgHlVf5tzcBQJ3OGppPXSiPYIeP4Va990LF9+KTy8TiKBZQ2VGmE+GV28nSJb10PnZDM+2XBB7czBdqO0/VtTtP1LLuiQf0BcrIAqNvfF7m4VdbcKuLuxT8YYbf9WLJcqcJ+MGG8XVrxdpO2uTtudFWy3iUNGoJF2EbK7AHwXSuDdKYYZkbnbMOTuYKuMbYG7Y2i7Ezi7jWIWpsn7HlPXcvRmeC70UDuukeFI2y1Xt5O03dS+krpnZLDK0Oum4sAdfh0SuCsaFdlPsleufZOUeaumpu9aXFyDXA6TEIxLGBY46IR+DSMJhjjMrK0BAXemT++tqCh4V5Cd+yQ08aI0tM5TjdZNRYH75N1DPHcOGr/tb+O2DhjzsyXAXcvcaU2Ptg82pO101A4vNPTbj5ga/iMW7E5n7gOZmDvXAqrs2F0fvv/d2N0YNDImaLt+oVSCtv+I0vYxPw8ct5Wg7ZN3U2k7nEHv4DNhSW2VVb191dUXQ0KgG0C7Eh2NIEha9t3qvuqQCyGSOglK24+Nh7kX5kx8uqPNWvjgou99DFk8CdxhifRt8s16nIVo4D+ks7j4amwsnnCHtQJ6He6T2as1yZC0XYfODXafxmm7nkBGzyFDGtsNNTKcaLs1wN11mftGEbLbhkqa3UTsLmJ366Pu/USfjOiTEUC8/Wcx3u46tVLdRN0u0nYx2M5D1C7QMLvPGR/HNzH2zivs7jC9jNOZu23FMmZXT+VHyJ1fwF1AtN0C+M6NvJuE74x/f+rfWYfatX8f47SdsVCqcXW7Hm03FmxnZO4sIXd4UWrdVDhaPeAuq5dFXY6q6q1asuJlZ3HxndTUC8HBtT4+MB8cwYQeqMBd65NpVipfLlmCIEhlVS98zV/TMW32Dd/IJm3d1P3D6MC9v2XAfRAjajdJ2wnUTrB1eDm2RpJ3LXY3zdy5F1Dlztw/5YraabR9gCnaTiuU+v3HI9BCqXAi4HT8jU7bR0kOkLR9SuApeXhDypzblb2V1+PjGxUK9LLOy+tyVFRvRUV6zj043eoWNSxnOG3Hc+v6niV8GOIjjrJpon7EhAy/o8D9+HhYUgPOBVRV931Yt27Fmo6sx1mv8vLqZTIUuGMVU0mfjCFt36ENqhONI3Cn0nY82M6okTFC2z/+2JC2k/F2q4C7FvCJkN0dIPuXPGgiduetYYY/zL2f6JNxZZ+MGG8X4+28rZUqqttF2u5g2s5j1C5ydqcgdZfC8fYn7zbG7s6KutubuR93HHPnYchd6MDdsng7H1G7BReExi8C95jfqH9SJtQOF73MtN0idTtX2s64/aSLZdg07obAHcYXzCryBnlke2T2k+zSrlINoqlBavqqq9sjI2FihikBBit6HefhARNGrURyNz0dQZA5ix6VdJX01dQ8yckp7iyOTGmfEnhqnIIZuH9qFLj/Jw2405n7ICbaPoidtg/9ho7av/8Y2nB6GwaH8T0du5tg7gYyd+NiGZsw93+waGTYafvAjbq/jF6h1JE/fjrqJy1t34bT9hFe+0ZJ0Cqp45XHJqp/h9MnCa1Tx7RkLX4M57ctLKzJ17dOKm1UKG4lJ/dWVb1bs2bGvRk+tT6wEKC0/cAoPNhOMyxRRyiFvFMtT1TgDt0Png1W1cDWQHiJ6XPvhCdfqqnpe5yVBS8N/e0I9hkL3CdDlclQnTDGgbverEaNt29jqo/KKdtOpe1G4+3GgfsmDnRP8ITd/pB9o8jWRQQvRt3trJfpJ/pkhOWTEUa51C38KpcqxttFmYyVMhmRtjuZtvNEIyM01M5Dzm4vAl5rfnNVCi8E7O74qLs7M3fbh9yts8rwBbjbKN7uCNq+E2tOgu/GivrsNlV1dhcLaseD7Tht38aSbbctbTe5CdULuWutMrS6qb8MQHcH2wfB8ZPAHaYXZbMy42FGX3X1u4KCwuL3i18sznyY2VtRcT4oCKZkdMrx9ISvMDG3Bgb2VlYiCLLm3ZppN6ZV9FZcnzq1Y8WKhcue+4TUevgeHelzwCLg/iUH4G6StutQu5az/0C0EdpGfmc4Dbv/Vf+ovqK8DcAiczcWcmdk7v8wj7MbBtt1tP1zFtpurFDq38b+MshDR9tHSw+OUxyZoDox2f8P7+AzsrB6VXRzcMKFnLyn79asuRQR0RoQcM7f/0pMTOH7wvLKnqnXp8ob5LCawCSM03boQjBGqJUM9HZ5NPK+m8i8w7xHLakKCxAs94GtgdCpUubcjptxDW5cjY1FP2BBAe64T8aQthtuVUngrlcxVR+4G3rbCf8Ts7cdB+7fs8tkbAzchYDdNzqPsG8U2bqI4N0Juzs96t7PrvF2GwN3wcXbXdQnI8bbBRBvd41aqUJRt4u03YHSducG2wWB2vnD2R3N0O3XhEjh7UneeYTd7aZ0txNzt6/MXSghdwcCd6vi7dxpu3UEnOPln80CGRbkM3ZzbrsYODvtd6QH243TdkIm8yN7oVRsa2aMtn/5n1y3oiRzN7TKaDXusI+AA0aB+24CuMN0FHIxBNFobicnf1i/Pj3nXsbChxpEU9RZhCDIWT+/WokEZmJYRvBaqfDNaTenKRoV8gZ56p3UsooeuGdh8XsJBtxHcQHuWKKcjrZNAvdN+jIZI7QdR+0jfoAX1bWR/6b+k4Ld2Zi7CbGMfsidK3M3JO9Md+hvEGynSNsptP1fWtpupFAqpm4f+8tAj18HT9gxdNKuEV57R0sP4iVS4awpo5r8484FTT0fmngxevrlnNwnLxYvvhYffyUm5l56enlPeUlXSfKtZDjdsO5Ah4FJkqDtWCUD3YigbgypwxkfmNrAOx5yx4E7zP+wVElqJcEXgrOfZOeufAnt1dKlrQEB0OWOY2V7Dxr4ZPRpO+xf6cCdeFmDYc0I3JllMky03Xi8ndEnYxK4bzIT8LktXuczZP/SzZqI3Z1imHEuc+8n+mR44ZNxm3KpYrzdleLtriyTsZO6/YhVwF2k7U4MtgsMtQuFsNcKv/Gfv9uNvNsSuzsk6i5s5u5IsYzTrTL7RloF3G3ik7F3sH2nzTi7jSk8xwtII38ZtrcTtKhdp5HRGqCN0fafzKTtTMF2E5kwg5A7G3CH48SBO/QQ1OF+eCzMRbFXYzWI5kZCQmVvZfC0C1I07NySsfDhhu4N92fOPKtWNyoUTb6+F0NCEATJfZmrPqvGJ+TgC8Fr3q0pKeuKTbvqFXR6nOIoJ6UMI3A3ZpXZxBJvp5tkcIcMRtu1kP3HT4n206ejfkK/wpHgTYfdtVF3mltGTyzDMeRuFnP/h1HUTg+2M9P2LwxpO5u6feC4rYMnbP9s4m/DvfaOlhz08D3mFXjaL/Zs1uLHqwrfFpV2Fha/z8l9MnPe/QXLnr3MzX2YmdlZhL7jMvfx3NCLobJ6GSxAMF1TaTsxIvCxsF23ryR3jtTxSzB3PeB+zAOWP98m34QbCYtfLIZO+G7NmtspKWf9/GCJxoE7LnDHfTJ6ThjaFpYO3PF4+27KZIkObjLkTgXuRgul/mhA203G21k/mmINc3dUunajyeZAvM5byP6l2IQA38Wouw31Mv1En4y7+2R4Xi5VjLdbQdttE293GZmMwAulCpW2O0vazkuHjOtxdvdi63ag8C5A3q3H7hZH3R2gl3EucxdiyF0YwN26eLuVtN0xnN32QXj65aXJX5/6ioMpkVq9YDtJ2wdonRQ0kwwjbf+eQtu/NUHbmdmG3kaVMeSO7eMM66aiwH3HEOgG0A9hpMA0EnIBJem9lZVFpZ3KqObJAX/4BNf6x55bsOwZfP9KdHRrQMD5oKCbiYnwz9irscpmpbROKquXRbRHdG/YAN8MTrgAj2IumjqaBO4/MAD3IeYAd4Z4+zekrJxG23HOPgrl7P1HbYZjQNuozZ+iDf0mht2pzP071oKupkPuzGIZGnPvbzFqp0nb/4SjdtO0/Tv874Cp27eQ6vZhU/aM8jkwTnF0SuCp8KRLi/KfP547t/B9YfaT7DmP5uS+zK3pq1lb9P59YWFZd1nW46y4a3GBrYFwotFCqcfHQ29Bq6TuGY7TdhgR1OoFtLyXFrvj20Mi564F7rhSBmZseE5YgqEXQRd6lZdXWt699v3at6tXQ2dDgfv48Ye1FVP30OPtupKn1O0sFbhjUyA8iphQ6f53Q+BubrzdtsDdcj7IBZFb0BxO1UXCbrqx8UgRvrsZdncKcxcOcBd9MmK5VEcBd060fZsYb3d9mQx/1O3Op+1Olba7QLDdZTi7iNfth+BF7O4cvYzI3B0echcAcLeDScbpnN2OIJ7tF9xhFLUblEjVp+0/stP274zSdr1gu9F9K3PInWKVYaibumMwnH3oadDbYSzLGmSpt1M/rFtXWtblH3dOElonDa1TRjVHprSXV/Y8mz//clQUtGcLFhS8Kwi/FK4+q1Y2Kf3P+Wc8zEA0mqrqPt/IJk/1iTGywyO89w21AXDfZE68/VstYqbQdhy1o5x9C7QBY9DWf8wW7J84edem3anMnSaWMQi5GwB3kyF3LXb/h36jE3YmgYxesN0Ybf8LhbbT1O0jUXU7TSbjvQ/O0UT17+qYsz0VFb1VVUtfLQ2+EBzYGhjZHpl8O3nh84VITU1pefey18um35ke0R6hbFbCsgsLB8zAMCvCrAXTC0Hb8YGwdSBt00rZh+oxd5h5SOAOHQ+mcVhiJLUS6EXdpaUIguTkPVnycklpV+m1uDhYlmEBgTkbF7jjEXXDkqe0Ha0ecIeZEmZTfLqlGGngGfCHUwXuJu3tPxjG280F7nZi7sJv7kjYOajC7NXcEr6LhhkrmXs/0SfjVj4ZvpRL/dmmwF2MtwulVqqzZTKuqW4XabuI2vkA2UWkblP+7jDyzivs7siou1CZu62qp9qzdKpjgLvlFVNtFW93Imrfwd6cDu530J3Ueqh920C9YDtNI2M72s6VWxgwd2arDL1uKvxGcFqhL0FnhtEHc1dYWxii0SAIkpx5Sx3T4hvZBF9Dpl1MzbqjQTR3UlNvJSfDHdLvpYdfCg86HxR8ITj5dnJ5ZQ88BO7mFXR6vPLYaOnBEV77hk7aZQq4Y1DbBHA3aGS8fTDN3k7Q9mE02o6l2nHO/vOAsb/8DWtwA/0nekgodtcyd23Ofdj3JkPuf9Zn7p//iStzZ8LuWs7OhNrpwXZSI8NI27E/CLVQKlUmg8XbUZkMGm+XHPDwPQonKzKlvXvDhnszZsy4N0NSJ1G3qGOuxCx9tbSzqOj5okX5BR25K1+WdpfGXYtTNatgZYTZHo+3Q5+BnkPSdtpnO8itLgW7E8zdELgfGg3zPKxNsnpZ9pNs6EURKe3BCRf6amqKSjuvxsbCigrLxSFtxdTd7PF26r4WHbLaoqkMCXetkYYE7rC3pvpkNtN9Mv827pOxFLh/yQcDtUjYHUDYnUjVeUPh3Qi7u3TUvZ/okxHLpYrlUsV4u13j7aJMxpGFUkXabhVtt6lDxvU5u8jNXQC+2yHw7pSouxCZu6uG3G1QN9VGwN3m8Xazabs1ovYd9m+2Q/+0S9zt+pydAbVTUSOVtv9kI9puzgaWMeRuUuOO102FkQJDXtYgm/NoTll3GYIgqVl3QqZdDEo4H5bUFj/j2uL8F6+WLn2claVBNCm3U2KvxsZdi8Mh6dqidzFpV6Rh9RP9fh+nODJKcmC4114MuO9gAe7fM6bIDeqmGgXuQ7R8WS/ejlLmf2O6dpy2/4xy9nHQtg7E2t/whmF3LO2uZe5wbCNYQu6EYn6TGSF3FuZuRhvwT4tou1bdPvwH4l2H0Vv+hsbbt8HpIOPtnuoTcL6ip1+p6av5sG4dnPT4a/HT70yHs/l21apbSUkPMzPz13Qkz7m9KP/Fug/rAlsDYU2EaRwmTJi48Hg7Qdvxt5q2DNDtkUnsjjF3wi1DB+56AndFoyLrcVbBurdBU88HxJ1bV/wBL9ULyyCsAzAfoz6Z4cMNbTBkRB1NmrGF3DHmTjrcbeyT4QbcLWPum0TCLizCLiC27iQE757Y3WWYez8X9Ml8zSOfjGna7jY+GSeXSxXj7aJMxm4yGf7QdtPA3Rm03TJpuxM0MiJqNwnZRTjuVPjuPtjdBlF392PuDgu5c7XKWAPc9zsOuNuPttsKshtPb9i8sdF5Ew/cTufsVNT+KwNqN9TIcKLt31pK243vc6nM3bjGnQTumMYdt8rA6MNrVybfQkPr7woKVha+Scu+mzD7RlLGrdkLHlRW9b5ZsWLJiyUZDzMWPFtQXdOHIEjW4sehiRfl4Q2TA/4Yrzw+VnZ4pM/+4VP2fDZp1+AJOwZ5sAH37ywF7lSfDAW4E/Z2SrxdR9u3DvT4FY5k0HiseWyDfw4kmbs25/4J9fCGfcdklTEA7sZD7pYzd33UjmlkjND2L8k/BU3djspkiFqp1Hj7OMXRyQGn1DEtKXNur1z7RqNBVhW+WV7wukaDPMzIuBgSAu12ampZRXdU6uXo6VfgLCfeTIQVFgXuB0dDb8Hj7SRtJz/SQW6i8UGBmou26kLuJHCHOQ0F7gdH4T4ZWGdVzaqU2ynQweJmXEuYdWNDN5q7r5fJYMmCKf8gReC+ky6T0d/+Upm7NuSOl07dRbW3a+Pt2yzwydgEuJvD3AVK3je5NmF3PbbuWP7u+tjdhaLutgbuok9GiD4ZsVyqXYG77Wi7jYE7j2ul8kQmYz/abgK4uzNtd5Vgu0BRuwjZRfhuJ8+MM6PuvGLujhfLWBpyN6N0qj2tMvYSuFsabzeLtlvJ2R1M2M1uBle8ukvibUyRdjbUbqiRYaPtFEpHRXR6tJ0BSHAnW/jWlcUqQ2jcN9M17phVBg+5w8iFyUreIA9tC81+kl3SVaJBNBVVvTUapLS8e33ph76aGo0GKavozlv1Kj3nXvT0KwFx5+ThDV5Bpz3Vv3v4Hh0tPTTSe/+wKXs+m/ibFrj/Yh5wH8wduNN9Mlp7O+5tR8uEjv1lIE7bx28fPAHaDqxth3/qMXddyJ1qcme2ymzErDJfmC6daglz/6exYDtX2v699l0H4o8AZ2EwHm/32gsnaILquDSsHk4fnNyFzxd2FhV15Oe/Xb26LSysQS6vk0gaFYrLUVEIgoQmtsH5ra7py3qcBas5TM4w6eE+GRgmMBzQzo+/w0TZkpPMnRpy1wH33UNJnwz6Hs/JSbJ6WfCF4JTbKVV9VXMWPyqrQAsGtAYEwEoOaw5M5zDXwmQJ85xhOJ1hB2wglsGxO/FZHdL/Tsbb6T6ZLXSfjIXA3ZyQ+5c8VFELH6zbmLC7J153CHx3K+wudOYuVOAu+mQcB9yFWS6VRtu3ivF2d42320MmI9BCqSJtt3ew/fQUYXF21wuzS2olHJsrwXf+B96tEbtbFnU3Vy+jNwXZirnbVuZuK7EMT6wyPAXuDqbtNuHs2x3daJfBBhfJ+pfWeqhd65AxHmyHXQ9J6UzTdsZgu7nQiwLcma0ydI07/O5wBqHPQIeEDg8jC8Y4TD6SOomqWRV8ITj6SvS0m9PS7qZlPsxc+mrp29WrV659M2Pe/fgZ18KS2vxiz8ojGryDz0zyPzlBdXyc/AgqcPfeN2zybhy4D/T4VQu16cCdFiH/mitwH2wKuI/4gRZvJ2m7544hnjvhkKDBDfSdAIy5o+n7sb+gYplRcHg/GVhlKGVdTWjcqVYZC5j7P/UfYhhsJ2n7IBO0nfZHQN9yQP8CQybuhJMy0mf/WPlhOFnBCRcQBEm6lZR8K7mzuPhSeHijQgGLFbo4eHrCjRa1uqukBO6TuejRiyVLKnsrceCOCtx3D8N9MjAQoCNBd9J1eOwjFKS2CN38ksAdV8rs+gweDvMeTJ4wRUNng6cNvxQ+/9n8/I78wveFlVW9T+fNuxId3eTrC4dxnFoxVZtPp4XT8YZvmnX74IFUt8wO6kRFkb/rlUvl6JP5noJJDIG78ZC79Tl3ZyH4TcJpIl4XKHwXsTv/sXs/0SfjzHi7K/lkxHi7IOztYq1Ukba7Im13crBdUKhdQJCdO0C3d3NT8m5b7O7YqLtdle52Z+62EsvYLeQuCOBuQ5+M7Wm7ZZzdftycS2O/MKaF2Zk4OwNq5xBsp9J2qkbGAtpO3bWzbXvZrDKsGnfcKrMHDR2jTu2jHjDkYfKBiVreKFefVaPY/XJ02t20ip6KR1lZ7wsLFy5/Hpd+NSjhvDKqWRpaNyXw9ES/38crj42VHx4lOUAB7tsZgfvHzMD9K+uBO80ng8XbB43fNnjCDjiYoZN2DZ28G9pnk3YNmYgz920Dx1EOD7PKWAXcjTB3ArsbtAGMjaTtNNT+ZzLYbkDb/8qc8cdqpXpgf4FJvw3X+mSmBJ5Kzrz1JCcn+0l2cWfx84ULGxUKWHBgesanUpjLYZV+mJFR8K6gvLKnr7p66vWpsPzBrAudBBW476ADd+jtWhpAvKOzGdsy04E71SeDvrtzdBysa4GtgQiCwME8X7QIqakp6SrpWL78amwscUgeHjhwxwXuOw3C6QxbZya9DK0Z0HYi3s7NJ2MlcP/KKKzcJDYRr7s3fHdZ7O4SzL2f6JPhv0+GD+VShQXcxXi74GqlurxMxsVpuy1KpAo02C4U1M5bzs4fqi48Fu8Y8s4P7M43vYzNmbsjxTK2DLlbqnHnI3C3Ot5uF9RuJ3q+fRCni17uhF0bmtVdjf+iL5ChonZdsB3P+dqKthtydsMttR52N2KVYde4w1+AsMrsHkZotQ+PhREKkwPMV7A0KBoV/uf8oy5H5b3Ke71s2c1p0+6kpiIazdwlj8OS2lTROHA/hflkjo2RYcDday8X4P6RfYD7pxSVCh5vH+K5c+ikXcOm7BnutXf4lD34sWEFXemHR2jcOQF3Jo270ZA718YabDeg7foK+4+1Cnv4C/Rn+gtgPpmDcJq8g85EpV5GEKSyt3JdyYcr0dG4vOUIVp4UJjaYcWHlaQ0IeDZ/fmHx+wXPFgS0BsBKBDMtA3D/8VPoV7oORgHuhFIG+pjWJwPdDCY3tFzq4TGwXsBCn3gzcX3Jh/szZ9b01Sxa/nzZ62VLXi6BntasVKIVUz08iIqpw4bt0vpkqLh8K8uWWs8wo9dotF0v3m4r4G4pcxexu30JuwjERfLuHthdBO6iT0YslyrG21003s4DmYwwCqWKtN162m6jYLsgUDvfOLvQ8TpPEbygsLsNDDNuzNwdVj3VEVYZxwN38+PttqTtFhUgtQSvb7NlY2brXDj7LwNYUTtTsJ3QyFBLpH5nZolUk6idjt31d756Vhmqxv0HJo07BkNJszYMChhuMJBhGoE5U94gDzgXkHI7pbyn/FZy8qWIiPaIiHszZqwv+TB7wYOgqedl4Q1egacn0oH7UGbg/pMx4D7kK+sd7nrucnh1OIYhE3cOnbxruNfekT770fT9lD1DJ+0a4rnTLsDdQuauexQdtRtK2zf9JxNtZygYO5YSb5/427DJu+F3Hy09NF553Dv4TERKe3lFz4buDfdnzmxWqWCROY4Bd3xehAkYlpEWlUqDaKbPvVvVV6VuUcNiATMqTFwocN9pkHAn67SRziK8aCrFJ0N+kAKPt8MTKhoVuS9zEY1mzfp3kSntiRk3175fO/X61Iqq3rN+fnAMcEiowF3rkyGLnerTdnLDTd1bGx/rBrSdLd5uJXDnytxF7C7idRG+8wm7i1F3DsDdfXwy3wjHJ2PzeLvokzFoYrzdvHg7z2ulCkjd7p603dkaGf44ZJyA2kW87sII3t7k3YbY3Z2ZOw/EMrywyvAKuFshkzEr2G4xarcrWzdN1Y0QdiOc3SRqNxJsN0Xb9bkCd9RuyNwNQ+4GGnc0/ETVuG9FNw44DMVLp0Kfh9GEhtxPToRJUtGoCGsLW/cB/l93KSKiNSAAWltY2Mu8vIJ3BalZd9QxLT7BZyb6nUSVMhyB+3DjwP1Lq4H7T/0N8t3Dp+wZ4b1vhBcK3D9jB+4fWwXcDZn759xRO0uw3YC2DzFJ2zGZjMGvP9Jn/xgZWjHVJ6QWTlx+R37W46yHGRkNcjkO3NFJF+ZaDw+4Dd856+dX2Vu5et3b0vJuZZMS5n+YRXUOd3rRVN0+nR5v15VL3YXW5iU+RXFkLCwTsA76nfVDsP/8Ys9CLwqIb+0uLS3rLqvoqWhWKmHNgVkcF7iTPhmqTIa0wehvvg132Hq2d/pjt3CIt3MH7hxD7l9xRpMiW3dVvP6VjZpI3kXs7hjm3s/m8XYTwF30yQjQJyPgcqnuEG/f5Yh4u/1qpQpDJiPSdj7QdtcKtrskZ7cvua5zbBMuf7e3asZG2N3iqDt/mfsJa5m7rcQyDg2520fjbiFw32NL4M4p277zMxugdvtDdqweojlUnY7XjUN2Y5zdELXrBdtZNDKsJVK/MhpsN3NLzRpyN1I3laJxp1llDuisMjBPqlvUM+7NWLGm425a2jl//yalssnXt0Wtbo+M7Cwu7quujptxTR7RODngj/HK44TD3YvN4c4I3L+hAnczrDIG3NmgXujPhMPdE3O4T949bMoePN6OF3TFHO5bscOjFE1lez/ALOCuz9xNNT3Urq+RoZVI5Urbqf76ybuxgP+BMbLDOHCfv/RZV3ExgiAvc3Nx4A6zOzp5w4Q9YQKsCbC4tQYEvF62rLK3csb9GdJ6KUz4BHDfMwx6C/QZGFbQf1Dmrq1kgG+l8Ww7YW/fjhYJIHrXXl3vguUJrk+CLwRX1/RNn3sHdROF1QfEnVuz/l1XScmNhAS4BMArpsLuivTJUOPtjLSdjbwbNt0Q1w1uGm03C7hbFnL/ykwuKbJ1QeD1r3jZXIO8uxR2pzP3jUJg7v1En4zokxHj7WK83fVkMi6vbhdpu+OD7XxG7c7i7MJG6vzA8UINvAst6m5uGVWbM3dnimWcAdyt1LhbCdxtRtutjLebpO0cUbtdE+tMbJ0Br29luBofYIjuLEbtjBqZb7hK25m33Xq7XpMhdxaNO2PdVNwqgxa0xKwyuF8bxiOOREMvhiIaTXlP+aXw8CZf33qptE4qrZfJWtTqe+npRZ1Fq9e9DU9q8wmu9VSfGKc4MlpyUL9o6jhKhHzEvw0j5BjUNh+4Y1oVLOSOoeehOvT86UhaynswlvKG4/lsEtaoAvdxW7Fj26L1yRhRzHME7uYwd4KzM6J2SrCdRttpoX4m2o5Wi9XKZLBffNIu1CfjtW+U5MBYOQrcvYPPRE2/vLbofVdp6c3ExAa5HNYi6uUtLDWwqrdHRFRU9hSVdka2R8JaCbM6Dtyhk8DEAtMCdBuCudOHD2qSwT45QdJ2atfCaTus7MpmZUR7RFV1b1LmraCp5wPiWxMzbiII0lNe3qJSoQL3ceNg6oWZEqY61CeD1TvFx7dhPl3XWDbr+L6cPsQZaLsJn8zHH3/HAbibxdy/spRLugtY5x9e/8pVmkDJuwtjd55H3fkN3EWfjOiTcclyqS4db3dtmYwwCqU6nLZbIG13HG23SbDdRg4ZewhkHM/Z3QusO5bCC4+8CyrqLkjm7pjqqRaVTuVklRE6cLeatpuF2i3m7JYQdpN4fSvzFfgAxnysAWdnRu16DhlTGhmutN2sLbLRkDunuqlbBtA07rswjfsBVOOOUtE/JikaFel308squl8sWXLWz69OKkUnSy8v+FovlV4IDkYQZNWbVctWv/aNaprs/4eH79HRUipw3zHQY5sWauPOFquBO3erjNZjjptV4GAGe2JtAoW24/F2Zp/Mt3rHxgrcmZg7K3bXft8IaqcH21lp+8cGtL2/lrYTvzIR7Sd0OqMkB3Hg7hV0OmjqeTh3C54teJiR0ahQwDklrjTxS0Uvrwa5/GZiYkVPRU9ZWWBrIHwXpnGYS2HGg7kLZh583kAHOwzbX4mhR+5YSW+7XqFUeBJ4KuhXAa0B4ZfCE24kwEuk59yLS7+aMud2T3n5uzVr2kJDoYPBGqLnk9GLt1Pz6ayNZeNOZfSMtJ1SkcFq4G49czeHSwqVp/MPrH/llk0MvIvMnTNwF7TAXfTJuFC5VJ7H2y3wyYjxdqvi7TaXydhD3S7SdjuXSBV0sN3mqN3BkXYRrzsYwbsjduelXkbQzJ3nVhknAneT5VK5xNttG2y3ALVbIF43gde3sl54D2CTUDBxdlxOzYbajQTbLSiRyrDP5rL95RJyZ6ub+pOubiqaRCaB+34CuMO85H/Ov6q6r7yy51FmJoll0cuZyZPhdpOv78OMjBUdKwrWv4tIafcJqZ2gOj5Gdmikz37Uk45rW/SBOxvUxlPkHOumsltldCH3H/uPwgG0lrl7bBs0Hm0DPbZRaDu1XCrdJ0MTuJsL3P/1Zx1SZ2z/YkHtesH2TQZZfuO0nXyDAZXJoNVisXg7XjB2tPTgWPmRCcrjUwJP+cWeLe8pR9X869e3qFSwihKoHVsJYfVuUatfL1+eX9CRfi9d0aiAFQcH7jAf4iF3lLnvwpj7DtrAx3eR+AYQLwyAe4pw2g5LZMiFkFVvVyEIsvrt6pwnOYXvC+flPV2y4uWG7g1P58+/GBJSL5VCH4O5H2ZfmCb34PH2IUO2s9B2S6N0urux0XYGnwwjcGfSuDOG3L+2Fe60E+x2ZBPBusjfBRt4FzR2dx5wd7hPxk7A3Rht/1b0yYjxdjHeLqR4uwBkMvZTt7sYbXe2RkZIqJ1XkL1ObLbk7w4g7zzB7pZF3YXN3PkjlnFt4G7reLvltN1q1O44ws4O2WmcnS3SbgS1Gw+2c5a262+vzdoBcwHuRuqm/qytm7oDLWsJXQ4F7ofHwOCFyTCsLUyDaArWvb0WH18vlcKsg04JMOI9PWFSgaXgcmRk94YN3aWlCIKoopsn+v0+Vn5kpM+B4WhhUmbg/on1wN1UyB01ueNimVGb0Zw75paBw9A1DLWT2fZPcdquO7DvDA4Mj95vMge4c26MwXY2aTv5O5qk7ahMBrO34/F2nwOjpYfGyY+MVx6fHPCHIqIxPedeTV/N62XLWgMD66RSWLvwbDv68QWZ7GJISF919Yd166IuR0nrpLCCwAQOMy3MlnilaJS570GnIMMZBt+yoTuvvcNhi0R622GZCzofBE/7vrDwTmrqo6yst6tWlXWX9dXUPF+06GZiIrxoo0IBh4HH22F+hblwt165VK1MhjZkDff9/ftzarRRbkDbjQrc9YA7x5D713YCnSJVF8G6i/F3N8TuvI+69xMF7jYXuPPaJyOWS3VGuVRexdvNou32i7c7s1aqq9L2Y2bS9uOuS9tP8Yy2Cwq1i4Sdt/xdGIF367G7g/UyZjH3353E3PkacjdulbEfcLerT8ZhtN0s1G5tgVNThN0EZP/ZALIb5eymUTt7sN1Cjcy/LAXuX/zZBnVT9wwjgPuJCdJ6afq99PKe8s6ioivR0TB5w9wA4xW/poMJAOa5trCwiqre1DupvZWVIdMuTg74Y5zi6CjJgeFee4dO2oWp0rcxedJZuDZpbtFlyTmF3PXT30T1VDTnruPRKGEn2xY4HibazlrNlRZvNwTuFjB3+sOZgu20txO0nnoG2j6AZpLR0nZtndgRXvtG+uwfJTk4RnZonAIF7pP8T0pD6yJS2hHsv8tRUY0KBZxffOmDJb1ZqbyVlLRs9esFzxb4nfWDJRWWD5jMYSpG51Itc4dJjJyydFstfA+FffYX7gaTKszJMMnDaqVqVs28P7NoQ+f9mTOvT536YvFiePXSsq4apOZxVhYcRotaDYcBixV0MJiY91PLpdLj7bqBa0b0jtZ+MhzrdNrOGG83C7hbydy/cqqsQ4jVSkWw7oLwnd/Y3d2i7v1En4zok3HfcqkuEW+3gUzGtvF2ntdKFZC6XaTtVtB210ftTufsIi53Gfhuc+wukKi7PZi7fjVpO4tlnB5yt1bj7gzgbmW83ULabjzYbqU3xiIVu2nCbjTMbiLSzgW1cwi2c9LIMG5wPzdo7MzdeN1UGnDXq5u6baAecIfRrWhUIAhSVd1b2Vt5b8YMFLh7esLgQ4fR2LEwlGG6ag0MhPuk3U2Dr2FJbd5Bp8crj6EadwK47ySA+1j9wqQfMRYmpWrcB20yi7kzZMBH6Kg0CqbRtDvRPh2Fo3bt8ejRdp1Z/mumQ7IauDOjdoZgO/FGAq1EKpnfJ2n7z0Zp+16MtqPx9rHyw+MUR8crj0/0O+kdfMY/9tzKtW+q+6rvpKa2qNX1Mhm6hkuljXI5nNZnCxZoEE3CjQTfRl9YDWF9gS4BEzjK3I+g0yk+WxpuYfAdCkyqMOvCtAz3hyUAHi5vkC98vrBjxYoN5d1r3q1BNJq5Sx7PXvAAvfF4Lny9kZDQrFTCyglryxGDcql4vJ2g7RhwN6TtFqTydI9ip+3WAHcjzP1rIda3FMG62JzSOd0Nu/OVufcTfTKiT8YFfTJivN3h8XbB1UoVnLrdLNpurkyGn7RdoBoZG6J2B0TahQ7ZpbDNtboJGr67MnZ3AebuYLGME0PurgLcLY+3c6btNkPtDoPsHDi7YaTdELXrOWSMBdtJjcyXZmpkKIT9T5//CW+szJ3FKsNYN1UH3H/UAndt3VQSuMNggVGPA/fpc+/MX/rsblpag0wGEwMMPhgQMIZgZMPseDEk5NmCBQXvCpYXdESmtEtC6yaoToyRHRrhvW/o5N04cB/IBNw/pmfJ/zrEZN1UOpVmF8sweFdw7E5pn+AN+5HW285iuRliaLlhAe4mmbvB/Q1Q+yZOvw6O2im2nIGUwrBGafsRD9+jE1THJ/r97hV0WhHRGD/jWmlZF5zlCyEhTUplg1zeqFC0qFSXo6JKukqgBZ0PkjXIYB2EVQnWDugV6Hx+bDwxIVM2BfjVPnHRTrkgh6UEVii4HghrCyvuLC7tKk3KvBU09bw6uiUwvhVul/WUJdxIWPR8UUd+frNKBQsgLAhEvJ0sl2ogk9EXr2uJOa2xYwMaVPjkEwbabi5wdwhzd0P4LrJskbxbTN5F7G5z7N5P9MmIPhl7+GRctVyq+8bbXatWKh9kMi5O2086nLZbrZFxK9TOf8huE5Ju28Zz+O6S2F1k7g4Qy9gduB90NnBn88nYMN5uU9puArUbz7M7krPbBLWTwXZzNTIsqXaSs+s1BuZuDnBHt3ha4A5/B/hbkcAdOgD0KxK4yxvkqXdSizd0rSv5cH/mzNbAQDR9PGECfmUHk0ejQtGRn19S1lXVV4UgSNbix8ooTOMuO0wB7tsx4P4LDtw/NQTu+nHyr0wBdzOYOxEJh5cboSXv2oal2n/AfoodCTttN0jcswN3zk0ftTME201oZAhpO0rb0Xqwg8dvH+yJVkn9bNIuPdo+RnZorPzIOMVRD9+j45XHcOA+JfCUNKw+cGrr4vwXnUVFNxISzvn7N6tULSoVnGg43W9Xr068mag+q5bVy8hFEBYafNUgr6JhNYFv4leesPIqGhXwFL5NvvAo+Cd+EQhXHeoW9eIXi98VFEybfUMR0QivjmptwupT5twufF8YeD5w9oPZ3Rs2wKuj5VKxN3X04u1byXg7Pduuh9pN5feYmyGQYKbtBsCdY8j9G0PkYwvs7hr8XYTUInx3Gezu8sydr8D9a7sBd9EnI5ZLFePt7lkr1bkyGb4WSnUl2u4awXZ34+w8BOs8BfHCxe5WMneL9TJ2YO7OL6Bq75A7fzTu+0baA7hbE2+3JW23DrVz5OwWQnZzObtJ1P79R2YF2y2h7UZRO425M4bcuQD37wjgrqub+ssANLuzfRAO3KFnokoZDLjHX4/P78jvq6rCkXprQABMZug1zuTJME9fjYmp7K2srunLfZn7NCcH7hA9/fLkgD+wuqn7h03ePWQiDtx//RsB3DfrgLvZdVM3MjN3UiwzWA9VYxoWjFZrsbtBG6ZD7Qzon/lgNlKAuwXMfSMFtW9kes/gK9rxD/vu42EU1D7yp0/pZWD1NTKTdg3TVkml0nYP32MTVCcmqI5D81SfmOh3ckrgKUlIrTKqOTb9ao0GeZmb2xYWBucX2qWIiK7i4lVvV4W1hamaVbJ6GbkikysgLIiwmkMPUbeo4W4R7RGhbaGxV2M1iKavuhp6wsLnCyPbI/3O+imblfAVbsM3c/Ke+Mee8wmphQPwVJ2AG5kLH8L3E28mlnaXvlu7tlGhgPUEZmvGeDs+0EnazuiBMQswMN5TL9v+g1HabgjcLWbuX7tAlUsRpovNkZ1QxO4OZ+79RIG76JMRDHAX4+3Cj7eLMhmRtvNO2n56isujdv5wdhfA685H8A4j77zC7naOujuLuXORuTtALMM15H7I7JC77YH7XhPA3X4+GePA3Qa03UaonbyitibMzszZ2SPtZqN2LhoZLtJ2bqjdZMidEbije89vtFtFzCpDA+4/D4AzAicO+gB0JxS4H0KBu2+Tb96rvNfLlq0r+YDK3HurOvLzz/n718tk0OBGT3n5+s71IRdCwi+FV1T1FnUWJc+5PSXgFBW4Dx6/faAHBtzHbOnPBbizatw3cmDuhglxHLt/S4B1w0agdq3Zhpm2f8lwGGYDd0bUbiTY/i17fdSfKah9+xDPHZ9N/I0Mtg/32ovT9tFYldSx8sOYRubE5IA/Jvr97qk+4an+fZI/Ctx9QmoVEY1BU8/PWfyor7r6ZmJiW1gYtJvTpnUWF6feSQ06H6RqVikaFTL8lNfL5A1y6BV+Z/1CLobMvD8z+0n2vKfzlq1+jRdfXflm5aLlz0u7St+uWtVbWQnfgSeBZ4TukX4vHV4ievoVVXSzJLRuSuBpOAB49bTsu3DPotLOVYVvH8yaBQssrAMm4+3m0nbuzZBkfM8duJsKuX/DiH8cgt3FJjaRvAsbu/Mj6t5P9MnY0CdjS+DuVj4ZQZdL5We8fTdf4+0uKpMRabtAabtro3anQ3Y3wetOQ/COIe82xO4ic3ftkLv5GndHAHfOPhn70XaTGhljwXY21G5BpN1WnN1A22wT1M4abN9oLNjOEbWzhtzZgPuXFOCuVzeVAtzhRBDAfZcWuJ/wVLeoa2r6rsXFLVv9OjjhwtSZ1xEEeZKdfT4oqDUgAL4PP425EoNbRPJe5cFPQxPbqAn3zyb+NngCAdwHjNmCVisd+ROlSOl3Hw39zhhwH2wcuBtxy5Dwmig6+leMqn9EaX8l2jckajek7cYOgwDuGzlxdiOonQjm6wfbPyKC7T98MvLfesH2geO2DvLYNsjAIUOi9lGSg6Olh8bICGn7eCWRap/o9zu0Sf4n4Rx5BZ2WhNTKIxr8Ys9Gpl4uq+h+u3r1tfj4q7GxcIpLu0pjrsYEnQ/yO+sH3QDOL9wIbA2MbI9MvZOqQTSojb2868Hs2V2lpV0lJfDAV3l50B/erlrVHhnZolJdCg+HnyIaTfq99MSbiQVvC+YueRyedEkd06KIaJSF1ftGNsWlX4M7wI9e5ubeS09v8vWF1UYXb//sM5iTaLVSKer2H02BcqJxR+0maTtn4G42c2fC7iJ5F5tI3oWO3V0v6t5P9MmIPhmxXCoX2m4VcLdDvN1xwJ338XZhyWTsp243i7abBu78p+1WStv5EWx3JmoXCbvLwHe3we4W6GWcy9x5KpYxv3SqAIC7PX0ytqHt5gbbOaN2Szj7Fqs5OzXSbhK1W0zbvzCftv9T2ywF7sSu1jhw36wD7nDGof9AJ4TeDkNV0aio7qtGNJrpc+/KwupV0S3TZt8s6iy6lZR0JSbm0Zw5q9+uDr8U7n/OP7QtFM84q2NaUIe7/DATcP8ZBe5Y3VQtcKfXTTVhldnIgbnrU2wUuw+hYHeG9rU+atcSfxPHMJDK3PWw+0ZWzm4ij2882E46ZLDiqFrUjgpkvPZpi6MSqXYtakdNMp7q3yf6nUQ5u/8fkwP+mBJ4yjvotE9IrTSsXhHRCKcsZNrFxIybcPoeZmbeSU3tLiub/WB2zJWYsLaw0Iuh8BVuz3owa+mrpdU1fV0lJb0VFX1VqGJIg2iyFj/GT3127pP1pR8Wv1h8Z/r0cwEBbWFh1+LioJOgP3qSDV9Tsm5HprQHJ1wIjG8NmXYhec7totLO3Je58CPoTo0KBaxXMMHDXAtT425cJjN4sE4mw0Lbf+DKJHQIntbY7/m9BcCdG3M3C7uL5F1sInYXsTtPmHs/0Scj+mREn4w9fDLuFW93Sq1UQchkrFC3i7TdtYPt9kDtTom0iwCdR/zd3uTdpoYZh0Xd+c/czRbL8MwqY1rjznvgbkm83f603XrUzomz2wO1mxtsN4u2M2pk/snSbA7c/00B7njd1B2DoZNA34MuDQMN5re4a3FvVq4sLH4fGN/qH3cuIqV9Xt7Td2vW3E1Pf7927ewHs6OvREddjsp5ktORnz9t9k1JaN0E1YkxssMjvY0BdxN1U82wyhjF2Trs/hX2zCR8x9oQ/OX0UDs12G7UIz/QaDNXffPZN7Qqr1iJ109R2k4JtlN17TRXO8nZj3goiLKoWsj+x+SAU1MCT3kFnfYOPuMDLaQWzpEsrF4e0eAb2aSObgmIOxeaeDE27WrGgod91dVP582r7K3EY+nJt5IzH2aWdJUgCFKjQXorK/swsJ6ecy8q9XJwwgW/2LPKqGbfqCZ4KlV0S0zaVUSjKXxf+Hb16keZmQ9mz36cldWxfPna92vzVr6cveBBWvbdGfPuLVz2vKyiu7SrtKoXpfa3k5Mb5HJYqWC+h2kYpsY9TDIZnbrdGtrOuTHS9u9Z8AkjcLeQuRsl7yJ850P72lFNJO8ug93tGnV3pF6mnyB8MnYC7qJPxkLavlksl+okn4wYb+dDvF1w6nbe03YBaWQI1H5amKhduJC93qlNiPBdENjdmqg735i74MQyDrTKGNG4Ow242y/ezpm2s2pkuAXbjaF2G6pjbIXav9GidntoZP5ptNlcKUMC9y1a4L4dBe7Q2aDfwvCBCUHVrKruq+7esGHuksfR06/EpF1JzbpTXtHzfNGiqr6qWQ9mTb87feWblQiCzJh3XxXdPCXw1HjlsTHSQyO895kD3K2xyhiPulPpttE2WC/YbrJqK528c3gbgCF9rxdsH8YQbCcdMpiufednk37DUu2oPQatiSola6Iep8rZpWH1svAGRUSjMqrZL+asOuasX+zZgPhWaIFTW4Omng9OuBCaeDE86VJk6uXY9KuJGTdnzruft/LVh3Xr8jvyl79erkE00ODMFpV2wtmfNvtmZEo7PBB3wsDz+wSfgdea7P8HLquBl/YKOg0vB50E7r9y7ZuC9e/WrH9XWPy+qrfqw/r10Ivg2eBrZ1ERfH2Vl3c1Lu6snx+s8ye1tN2wViqjul2PttuCWJii7SzxduMh9285EB3LsLvI34WFzkUu7xzy7trY3RlR936iwF30ybibT8bdyqWK8XYByGT4qm53Ndp+egrvgu3C4ewuTtV5BuLdBbs7UC/jAszdZPVUu4bcBQnczRK4Wx9v507brQi2W4nabRBp54LajQfbHUbbDZg7M3DfaCZw/xHbK23pjwN3OMvUuqkwEmGCCjgXsOz1soqeirKK7oXLn89d8nhx/gukpqbgXcHa92urequWrX4dP/O6X+xZn5DaiX6/e/geHS09qA/cx21lAO76dVNx5m6kYKlJ5s6A3WnkHefdtEb7qQ6169N2Li/N4RgYa7pi5VtJjcynBG2nBtuJyqhDtal2FLXLDo1THJmgOj7J/6Q3JmSXomL0xuCEC7PmP1i0/PnUWddTMG0LokHFL9XVfQiCLFnxorqmb+XaNzU1fWvWv8Nr4Zb3lMM3NYgGblT1Va1e93be0qcz5t1PzLgZk3YlLKktML5VHdPy/9l777c2rnVv3z+d835PdklP3Ds2mCIJFSR678U0Y7CNTS+mmF71b7znPefs5KTtlJ3iJHbi3rvpzdgG94Ir2MZ05vo+o1EZSSNpJI1GI2kl6+ISMAhpyrNm3Xx8Pz5BnZ4BVzxklzcrUDv83nWC02t4J1d7n1jpdVzB/U/ACQCnAT+kWxYzBGcFvJLWtoWCCfi/4F5Cws3w8OHAwAE/v16hsNPHB+Z2mNNgJjmhou1/qGk7lUzGAtpuLsD4yjBtNwO4m8ncTWB32vAdIXinYeguDuIRducsc1+CBO7IJ8MgcEftUp3KJ+NE8Xa7y2QYU7dzrVGq49B2hNq5xdmvOOngJnx3UuzuQMydKZm7HUPutgDuOHNnFLgz7pNhj7ZTBtspHTLWoHYrI+0Wo3bjwXbLNDL/l/awALh/Rgu4w+GAQ6bumwrnIZzScB3BZQ6Vjd/ND74evPXh1j3je0pel5S+Ka2fq6+qncrOfxa/7W5wwnVheK9nwFU38fl1/NOrvI8v9zAE3L//y7Jv/6ID3E1aZd43l3r/DyXypoLvZMhuBLWbz/pNonaKYLuyP+pfCY3Myh/+rg62r//1ow2/a1D7lqOrvI6v4Z3cIDzrIbvsFzWQlHU/MnU0KGE4Nv1Oe/viYlvb7pe74QDN1NbiTvaGhvmmprFt2+BTOSZ/U1LSMIeHzcsny6umqnKe5aQ8SEm4l5B0PwkeT5aVzdTU7Ch4HpN+m1CuE94Yr4Cr8Lvc/S5tkV3Gabvv2bX802t8TsLhXuF5FF7VUvdDy7ccWe1zAl4VbCMK743YOtrQNLfj+Y7UR6lyOXY7JmZAKu3m8zu8vOCOAKY+mHZgfoASDqUXiigUPyhpWjIZRT0wRNspmbhymAniTQ+jwJ0R5k4Lu5sJ352AwCJu7soU3lmxu8NF3UnA3VUF7sZo+xfIJ4PapaJ4O9fj7ZyWyXBS3e7YtN3uGhnOOGRY4OwIr3MTwXM08G73qLsTMXfrxTKMhdzNtMpY3jfVfOBOfVtipU+GfrzdFG3XAHczabuFwXZuoHZKh4zlwfb/YiLYbhK4/5eFwF3ZN/V7rb6pcBbBGQinLhFyh7IA5dGn00fcJw4aDoq+HZ39NPvt3r2viooKyiei025Jowd5wV0e0ssbRefW8k+t9Dq+zOPwp5vIwP1nEnD/TgncdfqmUlhlLA65U+FvJQHX5e8ayG6Qsxv/vf9j4BdRCm2MBdspNDJrfn5fEWyHPQn7U51qX8M7uU5wxk183ieoMz7zbn3jbNVU1b7pfXtKxjEMe5CcPCiTvSoslOM+GOxNaenOwuf5E/nFr4ub5pvi7sZFjkYGXw/2H/KXDkr9BvxgyAZlgcOB0bei4XmebNv2cOtWTC7PznsamnRDEkV2yFzaJLmgyLafU2TbT63Cs+3Hlm85stT90CduB+EjHP31vme2yC7LYgZrG2ZK35TCr4Mhx+T3k5P7RKKrXl4wh8NUCdPRKTJt//TTAyR1u5ZMRlvdrkvbDaBwJuG76qnMA+4WMXfzyLt1/N12iBZxbcTfEXZ3yqj7EuSTQT4ZF2qXiuLtDMXblbSd2Xg7ksmYGW9HtN3WGhlXQ+2IsDsKf+di4N2+UXcLlO6MMndbNVC1QcjdblYZmwJ3KwTutoq3W0PbWUbt39gMtdPvj2o72k4DuFN3TDUXuP/2IZxmcIrCCQ+XEly/UECgovI6eZJ+SdStqLbFtsfp6fcSEzG5PK90PDB+mB/S5SG9tEF4bg3v1EqvY9rAff97BHBfqQbu376z9BsDGnemQu6mmLgtxvs0UDsp2K7XH5Wg7WSNjDLYvtT9EJ5q9z6xln9qve8ZN9F5d79LvODOhG33CD06hmF1s3UtCy2T5eVPsrKebNtWUz8D34q7ExdzOyZyNBIOnKBHwOvi+XT6eHd4e131ggEP4FN+F1/YK5QNyuLvxs83Nt6Ji7sZFgYHd66hoaBsIjjhuii81yeoUyVtv7BRdA5eAx5v553EgbsnDtyXueMJdzjuq7yPbxCehfNhd/HLppb5kBshfgN+gdcCK95WvNi1q0coJLLtMCmdVphkjiloO9EoFaqXQXW7YdpOl3DYMt5Ok7mbi93NJu9sIXg0EH93bPLuAlF3GzF3lwHuyCfjdD4ZB2iXiuLtSCaDaLtdaTu3gu22Q+1c4Ox24teeVzwZGQ4K350Qu7sOc2dHLMMdq4xdgbsFPhnGZTKW03YDDhl7onajDhlawXbWaPv/1abtDAL37xTAXdU3ldC4E1YZuFjgMoTrHWqad4e334Bf1pOsRQwbiYi4Hhx8JzYWw7Cc/GeSyP4t/lcMJNzVwP1ff13x/V+XUWrcDVllPjPQwtSszqW2x+76sngTqJ0cbCdo+3dKafsqnLa/r6btm/6AnQm7dC3/tJv4vIfsslfAVZ+gTt/QnqCE6y2tC48zMvolkgGp9EVubkXN27zxvB3Pd5S+Kc0cy/Qf8vfp9IG7ApgHiSlJc1uouK+Dr8P0DYdV0C2AjXe/3D1bX38jJGRQJrsWEHA/KWmxra2+cTYs+aYwvNc7sAN++yYJAdwJe/up1T64vX2F59HlW/Cx0usYnACwWWzGHXg9Mbdj+F18XhcPTpuamZqpqqpugYDItsP8AEUdivERNW03qm6noO3mQA6rAu804u02Ze7WwncXB/GM7Dd7DQTfEXbnWNR9iWv6ZLgL3FG83cHbpaJ4O5LJ2EQmY5a6/bSZwB3Rdkra7uyonfuQnSmY7hhQ3l7knXHszlDUnYvMnTNiGZZC7kasMgwC98M2A+7W+WToAnf2abt+sJ0LqN1osN0SaTvTtN2gwN0wcFcvNk0Cd2Xf1N8/Ultl4EKDaxnqkneHd8iNkLb2xbGMjEGZrE8sHpRKH6WmNs43bs15yA/p3iS5sJZ/ehUO3MkO9/3vrfn5XQVw/9uK76n7ppodcjeQczeN3f/bFpF2o6id5JAhB9vJGhkNbf8Rp+1rFbR9o5K2E5lx78COkMQbOwufp+96HLl1NDz5ZtrOR1NVVTdCQ3uFwn6JBMOw3cUvkx8ki/vFPp0+MJnCIcNrPtRzVdEmyjsxF8DEAdMTTI5eV70EPYKwm2HtWPuTbdvgmMITwhiQSu8nJc03N8MzJ2bd84sawHPuGuZ+Rs3cV3nDwDumruWf2iS+IIsZLJ8sh/NE1CeC1wC3HLJBGdbevtDS0sXjwZSlzLavXAk19c+lSw+SGqXi6nYoGFTqdmtou1XY3Rzg/qURyy9D2J0x+M5l2uvQlNwZiTzC7oi5swLcP3NAgbv5UxBTtB0Bd6fyyaB4u0PF2+0uk0G0nUnabj+NjEugdmcH6/YH8eyTdw5id4ui7pa0UXV65s5WyN2yvqn2Be7m+WSMxtvNo+2mWqQa0cgYCbYz62rHafuXVjhkTGlk2KDt5gvczQPu36uA+8/vwbmBW2UOaqwyBHDnd/Ozn2a3ti3cDA3tFgg6fXy6+PxBmexNaelcQ0PE1tEtssvrfc+s8j6xfAsFcP+7PnBXaNxNWWXMZO4sqGYoOfv7n1GjdkPBdi2NzPd/W/kvLdq+gUTbfc/6BHVW7HvbutCKYVjVVBV8zCsdL6l88yw7+258PIzFtraWhZam+SZhrxCmLajzUJOV1VV1+w2fwnGEkg6TBYHdYeKAjb2ueol6RRmPM6arq29FRfUKhZ08Hn5webw+sfh+YuJ8YyP8xsLyVxEpI8LwXq/Aq+7SS5vE6qg7Tt7h4wbh2c2Si7zgzuTtD57l5MCP+A34waRMnDZt7YsPUlLgRgOmlJMq2n5IRdu1GqWq4u3fktTtjNB2CuxukryTtvzSeubONHZnlb+jgSg89+A7wu4s62WWIIE78sk4vE/GYduloni7PWn7UQ7JZOzWKNVc2n4G0XY2aLuNUDtHILuj43VWEbwTYXfE3M1i7pwNuZsG7kftBtwtFLibE2+3QN1uIW1nJNhuDWqnqWu3ONhuRCPDAm03FG//n3/TLGA/pwXc4WDBodTRuMPZTgB3qGPSQelsXd1MTU2/REK0voQi3cXj3UtMLHxVuLv4pTC81010frXPyeVbjuLA3e0gDtzXEcD9JwVw/4EA7kTf1Hdw4K4TclcCdy4yd+2Gq2ajdpKxHQ+2L/1Wo5FR0vafNbTd7Y9l7odXeh1bJzizxf9KSOINvP+pXO434BdyIyTtUVrpm9LWtoX5piY5Jm+ab8p9mRt8Pdi7wxsmAjhYUCqJeqi521fcyUONhUINUwBx34sD94vu8FMB1wLgqWZqa4f8/Tt5PJj8iXulDm/vHl/f2zExzS3z8FveVlTklY5HpIz4RQ3wgru8Aq56yC67Sy/B8PS/Igjphq+HJt3MzB2bqqysmqpKeZCS8Tgj90Vude30QmvrjZAQmNmg6pNp+wESbTfUKJUObTcXfnxFB7trb/OlbZg7s+QdUXg02ETwzkbeUdTdkYD750jgjuLtNgPujtsuFcXb7dsr1YnV7c5I2xFq5yBndwXCzgZ/Z428cy/qbmu9DE3mzrLM3Y4hdzatMiwAd2Z8MnRkMvq0/WcaJhl6Ghlrg+2MoHZzgu32p+3Wxds1wP0Lg8AdX/78S6tvKpxmcIriGvfjK+EqhooaMRJRXj35uqSkWyCAiqhIBbhBoR2UyRZaWmZqatJ3PXaXXlrLP7XC8+hS90M4cN/w2wcEcF+tBu7fK4E7fauMllhGn7n/j82BO03Urq9r/+hLXYcMKdiupu3vrvrxPRJt/5jokup5FPYk7M+ghOv5ZRMNTXONc425L3JhtLYtTpaV1TbMlLwpSbyfGHAtgN/Fh1kJqjFUSzheygqmWkrAp1DuoB4SzJ24qYaqTiTc+d38hHsJFW8rXhcX94pEVz098emOmLXc3Ym/qQwHBs43NRW/Lq6aqpqtq8MwLCXnYfy2u6k7HgUnXA+Iu5aZO9Y0Dy8Rz8IT/zW3LhSWv0rb+aixeR5+5OHWrR1eXjBjQGGmzLYbb5RqiLZbiUC+MmdYEKX/ghvkHYF4NGyN4BF25yh2Z5q5L0ECdyRwtyNw51a71F9Y9cl8+CuKtzuYTMYYbeeeTMasRqmIttudtnMo0o4IO8f5u4Njd9di7nYVy9ANubNmleEYcDejXapFMhlb0XZzg+06K4iv36GL2k05ZMzQyHCKtuvH260B7j/gwF3TN/V3Td9UuIS9rnqVvinFMOx1cTFh4iYKAJSoXqGwrW0Rh7Y1b70DO9YJzqz0OrbU/dAnOHD//YN1v7635hdt4K6rcVdZZcghdxaYu8WcnSxq10ftZF270iGjHWxXa2QI2v7Te2uUtP1DBW3/dPOfy7ccWe19YqPonDR6APZ5+uN0+DhXX7/Y1vYoLe12TMyznJw9JeP1jbOw2wU9AphcoPxCDYTaBQWKXIvgCCqx+7EVSuZ+EmfucPBgvoCJ2G/AD568ZaHlbnw8HFmY5eCYwvFV3sa6ucHEddXLq18igQ1eFRXBxnF34hrmGmbr6uAFwKdFe1/NNzXBg+DrweEj4VlPsuBbC62tOwufp2Q/KJ8sf7lnTzefD88GBfsoQ7T9C1PDMZi7AezODnlHXB4Nxvm7k2B3DhhmuKmXWYIE7sgn4wo+GRRv52i83Rzabhq4H3W8eDui7XZvkWoNbecmarcLZ0cY3Q7wnQXyziB2tzLqbplexsGZO0vA/YQzAndmfTKWxdttTNsdJthuDm1nUyZjzCdDA7jj6ybjwP3MOp9On8b5xqjUWxiGdQsEUGmIixUe9IlE43l5ZZNl23Y/EYR2bxCeW+V9fJnH4U82/fERGbiv+pEA7noad4Mhd0rmrnHLvE8Jym2K2j8zjtr1de2a5qh6wXZC2q5F2zce+FShbl/pdWwt/5SH9FJc5t2pqqramdqXe/b0SyQd3t4w3/YKhbDDU7IfpO96vPvlbu8ObyjUUAmhZEHBgdqiWekoMkPE6kOTcz+5Gkou/AjMLHBYo29F1ym4+XBgIDw5TDgwP5DrPcwDcJRh6uv08YFt4PXAxpN799Y3zsbdjUu4lwCHHr5S/Lo4cDgQng0eP9y69XZMzPMdO+Dxk6ysHl9feAao5VBcD5G6pNKh7V9bRNs5xdzpvmCuknc0XOtPF84C3xF2t0XUfYnzC9yRTwa1S3Xudqko3o5kMiw2SuUibbdU2s5ksN0lUTvC5VyB746J3RFzZ0EsY3HInaPA/Q8q4H6QSeDOIdr+vZm0nelguyHUbplGxl603dp4Ox3gTvRN/eU9JXA/+AmcwHClwAXu3eGdOZZZWvnmdUnJcFAQVFOiPMCDewkJjc1zckze0roQFD+8SXxhtc8JMnB/f60KuK/84a+qvqkqjbvaKqNsnUolljHE3P9hgLkz0A1VN9Kuj9o/NIzatR0y7yhQu8LYTg62E7T9l/fX7lfTdthjS90PLd9ydJX3CaJX6va8p3WzdZNlZf0SCcw2UGuhmsI+f7FrV3n1JOz2nc93wtQG9ROqFhwsKCOaogErI1jyqJg71C7YRgncT6+Fsg8Tn3RAqpDDY8+ys3uFQpjZYGYgfovWjfm6dWTs3i8Wj0ZGNs03tbYtNjTNwYuBJ0nb8Qg+NjbPP8nKGvDzw9vq8ngd3t7wIzB16GTboRr9otclVUnb//IXRmj7Fxa3UbUNczfjlRsg74i/IzTviPDdFbC760TdlyCfDPLJsA3c/+UAPhlz26XaJN7OIHB3/Hi7fWUydo+321Pdjmi7DYLtjLvaWePsCItzF77bCbuzH3W3HXMnChFTDVTpyNzNE8twLeRujsbdXsDdJj4ZkzIZk7T9R1Zpu6FguwmHDM1gOw2NjGnaTimT+U8b0nZde7th4K5eHpoA7j+/B+cJ3jf14McEcMcT7h0+Wx9ulWPympkaIg191csLany/RDLf1NSy0FL4qvB+cnJJ5Rt36SW8b6rHERy4b9QB7v/6Gxm461tl1CF3XbGMEeZuNXZ/nzHU/v/po3aVQ+avKyiD7fs/WK/wthO0ffOhZR5HVnodW8M76SY+L47shx1eMFEwGhkJexsqOsHBYfa4HRMDR2GxtTXkRgiUcahyUIKghkB9UFcAKA5QN9TMXQ3coZzCAYVpwrvDO/ZObGnlm6bm+Re5uR3e3oQpCH4FXnR1bvnXrIHKDd+FeQNuOeHQ9/j6DkilA35+MEbCw99WVMCTXA8O7uTxYEYlkvIwG8APEl1SoexBPYNaZYy262fb/+M/LKPttgu5W8PcGSTvCL4jFu9Y8B1hd65F3RFwZ8sn86X94u3fcNgn8wPyybDuk0HxdoeNtyPa7qDSdq4F212Os19lcbgAeecCdncJ5s59sYyNQ+5KNRwlc2cCuFsicKftkzEr3k6hbreStuugdrNoOyPBdpoaGetoOzPx9v80UyajE2+nD9z/SQHcib6pBHCHqwMuXl4Xr22xbaKgIDN3rLx6EmfuQUEDUun9pKSamRpxnzhwOLB1oTVt5yN36aU1PieXbznyKQ7cD3ywHgfu763++e+rftTSuC/Vt8qQTe76YhkyczeA3d+3PM9ukrPTRO36unbCIfM3ArWv+gl2hSbYvv43BW0/+MmmPz7d/Ocyj8MrPPF4+zrB6c2Si9LowZr6mYXm5kGZDGY5qOv4nenGjTCjPk5P31Myvu3JNu8Obzg6UK+gqkCVwC98xWVOLNDwxdTBj5Uhd4VVBgfup9ZASYdJ0H/If+fznWVVb+BoXgsIIP7VwmkFbVfWUfJKgqivZPKuyLzDvARTGUye+Iyt4Oz4k6xbByUcNiZQO1RBKG9QxnBp+wcf/KLQyODFgygSUA+Iq59p2m474M4qdqcH3xGCRyAekXfbYnekl7EhcOeIT+Z/kU8G+WQ455NB8Xbn6ZXqWOp2RNu5HGznXqTdJZC647B4J8Tu7OplHIO52zHkjoC7ZfF2kzIZZmm7nYztTNJ2mjKZ/7QatdOn7TR8MspFHznh/i0JuP9IAu4HcFYL1wJcm94d3kRrTb+oARj5pePjeXl3YmPfVlRsfbg14FpA1K2ohebmiJSRTZILq5XA/c+PNh74cP1v76/d/96an98lAfe/kvqmUobcTTN3UtRdG7v/g5RYNzT+YZiz6zRENYraPzKE2v9Jhdq1je3rf/tww++wfz52O6jKth9evuXoSq/ja3xOrvc94y695B871DjXCLu9TyyGmZCYMWDW6vH1fVNaOtfQEDEaAV+C2gh1CeoJVAO4xomLlziCeMhdBdxhG6h4UCqhDsM8IugWtGPtU5WVckz+KDW1m8+H6YUIpJ9Qo3bKxYeav6uS73jBVpRwIhcP34JtYGMokzhqJ4Lt2tL2H4lg+9/+RgTbbUTbrQLulDjEBtjdwrdGj78jBI8QPJfhO8LuDqeXWYIE7sgn46g+mZ/Y9cmgeDtn4+3c75XKirqd4UapiLYzGmy3J2rnMme/6lzDwcm7g0XdOcDcmZK5sxdyZ8gqY0fgzkjHVLN8MubF281Rt7NH27+irZH5X/M0MsZbpNKi7UaA+39agtpN0naDMhmGgDucbHCuwjkPlx5Uquhb0YWvChO23QtOuB6XeRfDsGc5Oa0LrSkPUuLvxtfP1u+tfisI7d4oOrfa5wQVcP9JA9x1rDI6IXcqsYwB5v7Zv+sR83+jMf6dYlBxdstQ+zISatfo2qlR+6eb/1zqjtP2FThtPwa7bi3/1AbhWQ/pJVnMUH3T3Ovi4j6x+KqXF0xuMDl38XijkZFlVZO7X+7md/GhaOPtUtXA/Vdt4H4AF/HDQcQd7keXE/F2KPgw/wZfD4YjGJ12u3yyfCwjA54Zyj/U4BMqYq4sisaXLDpVU/H1wwrOjhc5qGcK1K4MthuWtltC29VExGrgTgu1s0LeLf67An3+jkA84u9cI+8IuzuQXmYJErgj4O7MPhnULhXF25FMBtF262i7DYPtXELtTkDYvWBtbf5wXP7uPNjd2Zm7eTJ3i7qn2i3kzkjfVBaAOw2Bu/XxdtMyGXZoO32NzBcWaWSYpe3/zzBtN87cDWyvi9oN0XZDMpnP/p283tTyyegD9++UwB0OLo5rf3lf2Tf1j0/gxIYrCC5/Xhdv+9PtmFy+u/hl+q7HuUUvZmpryyfLCyYK2toX4VNp9OAW2eX1vmdWeR9f7oED94/JwH21CrhrNO5GQu7UzP3/fECF3Q2QdxrjM708O1WknQK1f6lE7RSdUb832BlVIZDRR+3LtxxZ4Xlspdfx1T4n1vBOrROc2Sg65yG7LInCHe4Yhg34+XUpGpB2CwSDUulsXV39bH3QcBDMXFByoeLhwF1fKfP7h4TDXRNvP7kaSjdMjtJB6daHW8urJ9N3Pm5ZaIHnhFkI6jc53k4UwiMqhk5gdCNDWdiISgYVS1GifiMZ23U1Mtq0XesSN8mgyUSE2Xg7HdpulLx/aV/ybgWCRywe8XdXI++IuZurl1mCBO5O6JMxE7i7uk+Gg+1S6dD235093n6E0Xg7ksnYFLg7BG135GC7A0fa7YTRGR9c5u/cxO4ux9xtLJZhI+TOoFWGG8Ddep+MVfF247T9Xxym7Z9b1CLVJG03N95u5qAItpuk7ToyGUPxdpXAXbdpqgK444uaH3GNuwa4H/yE6JsKFyYUKEGPIOpW1J6Xe2pmahrmGmBU1U7tLHwen3nXP3bIJ7hzk+TCOsHpVd7Hl1ECd7xv6g+qvqnaVhmqkLseczccddeF759R43VifGCSs5NRO8HZ1a52ArV/pYfacYfM31SdUSlRO94Z1e0g7BZcION+GHbR8i1HCdS+yvvEGt7JtXyctm8Qnt0kvrDF/4oooi+vZBwXrAcG9giFPQJBv0TyIDm5tW1x68Ot/C4+TBxQb6H0QbEimqbitUJRFtQdU5X29mMrYDPYGCamwGuB8JyYXF7fNPe2ouJmWBjcGsAMoBVvVyXcybRdU730Oz0ThYooS4o6RPyZTwu1awfbDWlkmKLtX7BA243C9y+5A9+tRvAIyiP+zhp5R9idbexuDnNfggTuSODuxD4ZFG9H8XYkk3Fx2m6vYDv3UTsHCTtH2DpLIN4RyLsDRd1tyNzZkrlbKZaxbcidKY27AwF3JuLtZqnbrafthqTtFmhkzJa2661iadF2FXC3krlTo3b6tF1HJmMpcIezQhmRVvRNhasALi680+YlD0G3IGAoIPp29Pan26erq6eqqnYWPo9IGRFH9HkFXHUTn1/LP73S6/gyj8Nq4P7Buv3vrflFBdy1NO5qq8w7KuBOk7mTsLth8m56fE6tjtGKtBtF7dqdUf9O6NrJqH3DbyRR+5/L3Ik8+9GVKs6+2ufkGt4p2GnrfXHUvlF0DvbhZr+LngFXhGG9ydkPMLl8JDx8wM9vQCqFBxiGlbwp8Rvwg1kbpgA4KFAnob4RzB1qi2bVQ1a3n8RpO0wxvj2+lVOVTfNNlTVTVVNVz7Kze0Uidbyd3CiVYO5aihjCEqPG62rCroLsas6O1xhFOSH+Wkegdjoama/ogGZu0nZWyDuT/N02IB5hegTfHZG829ow4zR6mSVI4I58Mgz4ZL5HPhkUb7dnvN21ZDKuSdsvOAVt5wBq5whkd0S2bkME79TYHTF3S5i7ld1TT7IYcnc04G6hT4bZeLsR2v49bdr+jVW03bRGxhraTjPebl3IXQ3rTaB2cpdUI7TdcLxdI3D/+h0t4P69HnDf/4G6byqc83AFwdUKZQTqvKhXFD4S3jDXMJaZ+SAlpbVtITN3TBo9oALup5TAfTMFcNfTuFOE3DViGS3m/gWJuWuwO0kyQwe+a21MkWenRu1fkVC7YV27xtVOoHYi0q5UxxCcfZXSG0OE2RWQ3ffsBuG5jaJzm8QX3P0uKcZFD9ll78AOYVhvWPLNdjl2PynpenDwzbCw18XF+6b3hdwI8e3xhTkaJheo6lBvceZ+YhWUMqJeEasPeABlDT9wp9ZCYYcZUNAtiBiJwDAsKH44Ou3WtifbpqqqOry9NfF27ZUELpbRc7IfUGjZCV0MQdiVZYYoKqpCok616zhktDQyFtB25nql2gS1syWcsSF/txOLRxDf+eG7c2N3+0Xd2WTuS5DA3VbAna14u5XAHflkULtUFG83D7gjdbtL0XbuB9vtiNoRYWecv9uFvHMNuzsmczdP5m4bsYwtWqeyAdwPWwHcD1oE3K3wyTgAbbe1tP0fJhavBted/89EyJ0mdjfG2fVQO3Ww3QhtNxRv/4qUkTIE3MldNxUad7hM4NKDsgCFUdgrTH2U2rLQMhoZeT0kJGn7fbkcS9h2jx/StUlyQZVwP6IE7ht++2Ddr++v/eXd1T+/qwbuJKsMKeROmNyNMnetqLs2eaeA79p4XYuwG+XsKlG7EdSu0LV/R9a1v7da0xb1o40HFJF2RTdUz6MKP/tJ2DOELsbd76K79JKH7LJnwBWvgKueigEPvAM7vAIVD4I6YGeKIvqCE67nl46P79lzOybmYWrqYltb3J042aDMt8fXp9MHJkeYaGAKgLoN1Rivq1A8oUKqbt3hUyLYDocs/m580v2k7U+37ykZj9w6uqvoxXxTExw+mHCgJCtpu3q1AZVS4ZaBgqdF27VR+34qzk6J2g0F252ZtrMbe2eDvzsslEf4nkPkHWF3R9bLLEECd+STQT4ZDsXbWfbJoHg7F2QyrKjbEW23J223K2q3F2R3WcLOGH93aOyOmDsLYhkzQ+6WWWUYBu5HbALcze6YyrhPhp5MxhVouyXAXQ+7mxj/jx5qt562U/pkvnmHWG0RqyQjwB1OY7gc4HLDrTKXPWSDMjkm3/l8p3RQ2icSyWKG8kvH6xpnA+OHPaSX1glUTVM3//mx28EPN/xOAPf3cOCu6Juq1LirrTJUIXcq5m4Uu/+vHkynHHo/pcXZSfYYJWr/2hBq13PIKILt63/9aMPvuKh985/LPI6s9Dq22ufEWv6p9b5n3ETnPWSXheG98Zl3YzPuBCVcj0q9tadkPLfoRXTarcSse5Gpo0Hxw/6xQ35RA5LIfvgIOzYk8UaKwiozlpEx39iYOZYZPhLuP+Qv6ZeIekW+Pb6CbgG/m8/r4vl0+uDz8hVPOEAwg6jthfCVwGuBrYut43l5b8rK9k3vK61809wyj2HYzbAwmFqhnBMyGbzmkdclKp/Mn0uX6vdB1UHtmj/PqVztBGqnDLbramT+4z++dHraznrs3Z4I3jXQvAsCepci745omGEh6r4ECdyRTwb5ZBysXSqKt9sYuLuiTMZS2m4GcGeZtrOrkXF+1I4gux3hO8ewO9ej7rZh7mw2ULVzyJ22VcaQxp0jwJ2+wN1u8Xb6jVJtSts/p0XbrZLJ0AHu1gzjqN1c2m4g3q4RuBsF7uS+qYTGHS5qqK4xt2Mq9r2Fj4JugXeHNz+kKyJlpGWhZXfJS15w5wbh2VXeJ5Zv0QPumr6p2lYZnZC7QeZOhd2pybupoYDslJwdj7RrofZvtFG7RteudMis+oki2O6Op9pX+5xc73t2k+SCIsl+FfZSWPJNDMNaF1qLXhUVV7yeq69/vnNn/Vz9QkvLy9275Zh8rqEBU/yXW/wyI3csafv9xKx7qTselVa+eV1SUvS6KPVhavzd+Ng7sXF34pLuJ2WMZRS/Lq6eri6fLIef2ju5N+NxRttiW8qDFEm/hNfFgwMUciOksXkeBmzQ1r7Y1DI/WV7+IDl5SCZT90olaLu6P6p66Gbb1cF2fdSuqhA6qP07fdRuirZ/yQ5ttwtq5wB85xyFdwFSj8g74+TdAbC7E0XdzQTuSODuvMDdBG3/DvlkHNYn4+DxdiSTcTZ1u2PRdtaD7dxF7Qiycwq+s0beHT3qfsE87M4yc+dmyN2OVhk2gTstgbs58XYTvVIZaZRKs0uqXWi7WcD9v2zP2U2hdkrarqVu17G3U/pkjAD3X5TAHU5Fpcb9xCq42L07vPeM71loaQm9EQrFHMqUh+yyNHpQLsdaF1vhgZv4/Gqfk8u3HF2qAO4fKYH7fjVwJ1tltELuS7/RFcvoMHdt7E4i7yr4bmx8oQvZtTi7OtKuQO2fGkftSoeMnrH94Keb/lzmcXil1/G1/NPufhf9ogbiMu7EpN0OSbwRmTqKYdhYZuat6Oi3e/e2LrS+raiYKCioqHlb9qasrW2xeroak8trZmrkmLxloaVhrgEewC5tnm8mHsDHRQxrX2xvbJ4j6DlG+g9+5FVREXxxsbV1vqlp3/S+8JFwQrWfVzIOx0UYjrdgLXldgruAIiK6eDyYNHCZzKpV5Oaoioq1VFOoDNB2vGZQptrVDhnyRU9PI2MNCHaAYDuH4bujgngHh/WIvDsEdnfdqDuVXmYJEribV1CRTwb5ZFyqXSo34+1H6QF3l5XJOAVttwC1s0/bnRa1I87u7OTdkbC7ozF3hsUyHAi5OxtwN9cnw0S83XKZjEPRdtPA/b9sxtktQO1Gsu2G4u1qgbtR4A6nmQa4H8eBO6+LJ8fkuwpfRI5GQnWFr2yWXPSLHtg3vQ/DsJDEG+5+F9fwTq3wPLrU/dAnBHBfTwHclVYZqpD7O8qQO5m5a2P3j7WwuwEE/4WBbbSfh8zZTaB2fYfMLx+s248H2zf8/rFSI4PT9nWC0x6yy0EJw4utrU3zTTUzNe1ybE/J+ER+/q3o6BuhoXWNs7CvEu4lwIgYjZAOSCX9EnG/GIbfgJ90UBpwLSD4enD4SHjsndjUR6nlk+WTZWX5ZROpOx7FZ96NSr0VlnwzOOF6QNw1afSgX9QAjODE6wnb7tXO1D5ISbkVFTVRULDrxS4YpZVv4KAIQrq9gzoKyifi78YvtrUNBwbC3AUVGuolQdsPqSC7VkFStUhVN0fdrxds17jatXXtOqidJm3/0jao3eJg+9e0h1PCd2cG8Rxm9Ii8OxV2t1PU3UZ6mSVI4I4E7i7qk/nFeX0ydGg7g8DdieLtzieT4Yi6nQXabpm03b4aGQZROzucHdFwzsF3W2N3xNy5IHO3UcjdAquMywB3ZuztRmUy9NXt9qHtdNTthoC7SeZuLnk3/jw6nP2/KVay1KtUU7Rds+LT88mYAO6/fQhnIJyxcHqrgXv20+yGprm88TxRrwhKoneH9/a8p9W10zM1NfllE54BV9byT5OB+4frf1MA91/eXf2Tsm+qllWGHHLXZ+5GsTtV7N0oXtfxxuhxdmpXuzZqX/0zvBdlsJ3QyGho+zE82y69FJx4vaBsYr6pKf5ufMqDlOLXxS2tC7P19UQavXyyPOR6CK+TB3OTevqABzANwWyIW3q6+MJeoXRQGnozNONxxlxDw1hmJiaXp+54FJZ80z92SBzR5xvaww/p8gq46iG7vNnvIgxP/yshiTeIXzSRnw/bN7fMp+18FJ4yEhB3LTrtVlPLfH3T3EJra6ePzzmFul23LaoKsh9QGdt/J/VHJWtkDOnaKYPtFLSdyiTzpU1RO23a/jVDw7n5u+vieHtweVck7y6G3R0l6r4ECdyRwJ3jPhkt2s5Bn4xd26WieDvH4+3Oqm53QtrOiEbGQVE74uyOTt4dBbszpJdxJObOvZA7s1YZSzTuNIH7IYaAu7kCdwM+GRvG28kyGXq0/Z2vqYE7Y11S9Wn7P8xYmNIF7taM/6bF2Y2gdtO03VC8/Z/KlZRJ4A7nJ5zecNXA5czv5rdj7XJMjmFYxdsK/yH/kBsh8DhiNAI+yuWYd1DHOsHpFZ7HcOC+6Y+PNh7Agfs6HLgr+6YaD7mTmbtO1F2D3Q2Qd2PjKwrOrh1pV6D2b3XaouqhdpKxHdfI4NJ2NW1fwzvpJj7vFzUAu2LH8x1v9+5tWWiZLC8fz8urrp0ufFUYeydWOij16fSBqg7VVVk2FTeu8CmUbpgXlMy9my/pl0SORi60tj5KS7sVHT2WkQFPG5txRxYz5BvW4xPU6el/xV16CX7jBt+za/mniGS9f+zQ1pyHheWv4Fhg7e1t7YswGpvnmxea4cfvxMZ28/lQ+Mm0HdZJB0ltUdWcXSvYTmhkVLT9X9q0nRxs/1aB2vWl7V9rE2Rr0K0tUPvXNh62g+8c5O+IyCME76zY3eEMM8wy9yVI4G4v4G59vN22AvfvmQfuyCeD4u0o3s4hmQyi7VwOtnMAtTswoe6gMRB5Zxq7sxl1R8yd5ZC7TYE7ztxZAe6WCNxtHW+3oFEq47TdMpmM0SWpTZg7JWT/b4OrVzNQu0na/vU7FD4ZFXAnljAa4L4fv+2Hc08J3I+thKuV18nDUXvNW1nMYGXNVNaeJ1lPsvLG88JuhlVPV5dWvvH0v7KOf3qlNnD/YN1+ct9UFXBXhtyVJncK5v7Nf+hH3VXknQTfqcd/aBF2A5xdxx5DRu0r9VPtuEPmg/W4sR3e18duB/EWqZsPLfM4vMLz2GqfE+t9z8DbT9h2jxCsD8lknTxer0j0fMcO2FHwFemgFOYOqJl4ZVNUMOJGGqof1Eklc7/kDhMZv4vvP+Sf+yJ3sb19JDz8WkDAzdDQ18XF8CSRqaPiyH5ecOcW/yub/S5uFJ1bJzizhncSxmbJRUlkf0buGGyWP5E/vmfP/aSku/Hxd+PiboaF9YnFMAGeU9N2hbT9DxJq/02Hsxvoj2pSI2MxbTcCZ7+0RJ3LCdTOcvjdIfi763J51+PvCLs7E3NfggTuSODubAJ35JNB8XbUK9UcmYztaLu5wN1RabvDoXYH5ewd9huORd65j91Z1suYw9zdLnBI5m68e6ptQ+6MWGXYB+4HTAF35nwyFsbbLVC3f2NaJmMBbTdD3f4PS5akul3DzGfr1HidPmc3gto/110zUtN2Q/F2tU9GsQ4yAtzhNIZrAa5HqHspD1LkmDxh2720nY8wDJuqrMx5lrPj+Q54HBg/7O53aS3/1ErPY8vcD5OA+6+6wF3TOpUklqFi7tpRdz3ybmJ8rQ3ZtTi7nqjdCGpXCmTIqP3TzX8udT+0fMuRFZ7HVnmfWMs/7SY+Lwjtbl1ohTEcFASTGFRZmCgmCguL9r5qmGvgdfKgWkK9ghKkvLGHm/YTq6Ca4cz97HqoxlDqYfoT9gjj7sRN7t37KC1tUCrtE4n6JZKbYWGztbVEzl0c0ecd1OEhu7xJcmGD8Nx63zMbRed8gjpz8p8RgvhtY9teFRXBy+gVCjt9fOBlwIuBAnxS4W2HckVoZNSWdgrOrkLtOv1RadL2bwzQdpsSYfqp9q85M2zN3x0awaPOrk7D31km7wi72wK7L0ECdyRw57JPxp7AHbVLRfF2h5XJMKxuR7Td6mA7Uw4Zl0DtRtm3d4c3m4PjIN5GgXd7Rd2dlrk7TsjdcqsMPY07a8CdpsCd4raN0Xg7TZmMlep2CjJkMW2nH2+3dDFKC6bTJOx0OLuRVDtVsN0gbaf0yRgB7r9/BGcmnMZwFcCFBhVD0C3IHMuUy7H6xtmq2qnm+WZ4XFA+EZEywg/pchOfVzRNVQL3jzce+HADAdyVfVNxjbt+yF0jlqFk7qq0uy55NzU+1Q6z63F2tT3mrysI1P4vcltULVe7Hmpf5nF4+ZajK70I2n5qg/Csu/QS4ZMZ37OnTySCWQgmhE4fnxe5ue1Ye/hIOJRlqFpQVYgCApUEHkMtgpIFhY4IucPU4NPhE3gtcLG9vWm+aTgoqFsggCfp4vF6hcKR8PC5hoZ90/uy854Gxg8LQnu8Aq9ukV3e4n8Fdn5G7mP47UHDQbIhWc6znImCgn6xGGZ4mDqgTkM1hRJ4VEXboeQc0La063J2dapdjdrVGhnLaDuNeLtLoXb2m686K4J3QjTvpPDdybC7qzF3BNxdVOCOfDIWA3eXiLf/wel4O+O0ndV4u6UyGUdSt5tP290uuLFA2y1ukcoGbbdpsJ2znJ0zYJ0xEO8sgXd7Rd25wtw5I5ZhJuTOglWGPnA/wmHgTtsn8+7PVsfbjcpkGGuUaj1t/wc7/+6aNl6nCdmNRNp1UPsXWms907Rd2yejD9zhzCGAO5yQcNLCzKVJcAAAgABJREFUaQ9XE1zLUN9EvaKIkYj0x+klb0qmKivzSsdjM+74RQ14BVzdKDq3hndSG7j/rgLuCo27JuT+A9nkrhHLkHPuethdk3k3MN7RIew4ZCdxdqWlnWyPoUDt72ujdrWrXcXZj6zwJFD78dU+J9fyT633PeMmPu/pf8U/dgjDsLGMjD6RqIvH6+LzhwMDF1tb62brfDp9YO9BCYJCoY77wF6F4oOH3E+tge9CNYZJR9Qn2je9T47JH6am9gqFMDcSMxU86BYIboaFvSkrq5mpWcSwfXXTiVn3otNubdv9JCN3rLJmCn572M2wqFtR8ON34+NhnoepAGow1MvjZGm7Ktiur45Rc3Y1aicH2420SKWk7bYG7s7B2Vni7wjBOy6Rdzr4jrC7SezOQea+BAncHVTgjnwy9o+32xW4o3g7ircj2s59jQyXUTt3CDvH2bpVFN61sbtt9TIOwtzNEMswHXJn1ipj276pVgB3YwJ384G7xT4ZxuLttlO3f25K3W4ZcLd4SUp/sWtoKfqZJZydGrWTafvXFLRdbW9Xx9s1HVP1gDucS2rgTvRNhesRygVME9JBadL9pHasfSwzE8OwjNwxafSAJxm4exz+VA3c16uAuzrkrgDcpJA7BXPXwu5Lv6Ei74aHCrLrcHZVpF0Xtb+rn2rf8BsRaf9UJWrX5uwn4G0SrUo3CM+6ic67+13yDuwIiLs239j4cOvWAam0Tyy+FhAwkZ+/2NYmG5RBhYf6BqUGagKxolEDdyLhDiUUyju/i59wL6GpZb5tse1aYCDMyTBL4CV/0yao/TDVdPj4wNNOlpXN1Nbufbu36FUR7P+amZrtT7fDx5r6mbzScTgu8MVeoVBJ21ev1rRIJWlk9BuiUnB2Mmq3krYzp5SxT0NUwkqvHo4O300heJel8A5A5J0FviPs7lhR9yVI4I4E7sgn40LtUlG83fa0nX683QnV7Yi2M03bnQG1Oy9h5yx/ZxW7Wx91Z5e5M9tA1e5iGcZD7kxp3NkA7jbomGqHeDuDMhlrGqXqLXxtvnilsfaku9LUX0XS5+xUwXYK2q4fb//+b2rgTixSDAF3uDrgioNSAOVUOiitnq7OfpYdMRKRmHWv4m1FTPptn6COjSJcKbNSCdz//Njt4EcK4E7um6qxymiF3PWYOwV2J/F3raG7wV+0vDFanF1pj1nxw98Nofb1OGr/xO2gtqVdGWZfJzi93vfMBuHZjaJz8GbdxOc3Sy64Sy95KqQuAXHXiIT79eBgGI/T09sW2yJHI3mdPCjFOHA/vlKTcD+Mi3rgK7BXoTzCBjDhwv6cq69vWWi5n5TUzedfUrjXoQArb2Y3boSiDjNSt0BwKypqtq5uRmF1h//2Te8bz8uD0bzQPFtf3ycSwZZQXE/oaWQMoXZdzq4SyOiidqO03QRwt4K5f8UaZ3/HDLyhP9jB8V/ZCcEjCs9FFu/48N05sLvTR92XIJ8MErhzFrgjnwyKt5sH3JmVyRznSq9Uh1G3s0bbOS9td3XU7qqE3Tz+7krY3YZ6Gddg7rYNudvGKsNF4G68Yyp9n4wt4+12U7ezDNzpLDBpLCFNLBXpc/avDKzRtGm7brxd7ZPRA+5wvsF5qO6bChcaXOZQKsNuhrXLscjRSEm/RBYzVFU71dg8L47s3yS5gDdN9VIA981K4K7om6oE7mSrjDrkrsXcyT1USWJ39aBm67pJdj3Orom0q3qiUrVFxQUyeKqdQO1HV3kfX8M7ScTY4a1tkV32DuzwCYLRyQvuhI/eQcpP+SFdovDewPjh3KIXL/fsuR0d/SA5ubVtIel+kt+AH0ydULShBuIdU4+tJGqIUuB+cjWUROLfDYSPhOdP5G/Pe4q1tw/5+8MsB/UbKquyZEJ1hPIJ9XXDBqIdayeP1ycWj0REPN+5czQqql8i6RUKewQCmOugYJ8yrJFRC2SM5NmpUbtK2v6teu2uE283Cdy1kS5dwk4Psn9lKWH/xpaDBQT/la2HKQqPQDxXKLwjk3eXxu6sR90RcEcCd44J3J3YJ+Mg7VK1aDtDwB3F211CJmNRo1Qnp+1MBdtZR+124eyIsHMEvjOI3dmPupurdLcnc7dO5u4QIXdLNO40gfthOwB3M3wyRtqlWhFvt0Qmw4i6/XO6i11rV670F5KfmYnXPzexBjS23PuKOtJOsUCjpO3keDs94I73TT2xGq5uKMjbn25vnm8OuBbg0+HDC+5K2n6/aqoqNuOOu/TSWv5pKuCuZ5VRhtypmbsi6q6N3emO7/5KydnJonZd1L6f7GpfuhlPta/0Or6Wf2qj6ByeXg+4Au9RFjO0s/A5hmFpOx+VVb1pa1+EB+k7H0ekjAQlDPvHDgXEXQtLvpm649Fsff3jjIyFlpbMsczQG6GSfgm/iw9TD9RhKJJQzZTF6qTGJOPT6RN1K2qusRF+6m1FxWhkZCePd1kRb4fCCSUQSp3mbh0KoQK+E+Qdt83AvLF5M5GFJ7Y/biTYro3ajXN2rX/HonuVm4i3m2bBRgCumUSYa5Ddyfk7bQqPQPyXjsnfEXbnIHa3e9SdOeCOBO4uIHDX0PbvkU/GSX0yf7IL3Dkbb7dxr1Q7yGRsr243j7afR7SdUdpuL9SOIDuz8J198s61qDv3mLvbBUZl7nYMuSPgbj5wp+OT4US83Up1u+Fl7r+ZzI/9gyGw/pnRVeH/0suwG1rffWUwz069NNNB7dq0XSverhK4GwPuqr6pUPD3vt1bXTsdNBwE5c4r4GrS9vsNcw2pOx7B43WCMyu9ji/zOPLp5j8/cTv40cYDauCuscoQIXeDzF2F3WmR9++0IbuSs/9Vw9mV9hgFav+JJJD55YN1+z9YT9a148H2FXiw/cR63zMesstB8cPbdj9J2HYvNuNOS+vCRH6+XI61tS8+y8nBdS41NTO1tdPV1c0t821tizsKnsMeyNw9BltOlpfvfrk76X5S5Ghk8PVg/yF/Sb/Et8cXdh3sMfVfQKGGw1fgu9G3ojEMi0m/DR/haXuFQphGiHg71D+oZ1C6dBcBRHlTIXii/hGbQYkiULvS2K5qjko4ZHRQOyVk/15nVU3xNzUK2m42cLduOBBkdwn+biaI/wpReEeA7w5J3rmB3Z0v6r4EdUxFAnfkk0E+GeZ9MijezlWZDEfU7c5H210LtSPI7rCxdzawu72V7swzd5bFMmyF3C1vnWpF31QWgDsDHVOZ9clYEW9nXibzOeMWVUbZOo0lHq2lHOXCjc4/OCavs4zSdv14OwHciTUCfmN/4CMNcD+uBO67XuySy3F1uHRQGnAtQI7Jq6aq4FN+SNd63zOrvI8vJwP3Db/hfVO1rTLqkLsuc6fE7qbH93p5dt1Iu7arXYHaVQ6ZTzb9Aa92mcfhFZ5HV/vgtN3T/0pEysh8UxO807I3ZXv3vX1VWHgvMZHoULrz+c7CV4Xxd+NTH6amPEjJHMvMfZFb8rqkeb65bbEN9kbjfGPtTG3tbG3LQkvDXAN8Eb5VPV3dNN+U9SQr+X6ypF8i6BZIB6Twg/ONjfjT1s8Ulr9qXWy9HhwMk4w6245j9JUr8VKkLj/EskNvnQFFCErOnyqBDF459FD7T2rUbjzMTsXZdbzt/6TEx7Zkvl87C2Q3wd8d1//OEIj/CvF3RN5ZxO4o6s5t4I4E7sgng3wyqF0qirc7h0zGWWi7HYPtDoPaEWd3ltg7I9idi1F3B2fuThZydyTgbkTgTtMnQ7qztWe83TLabj1zp7fuox9ap5VbNx6KMsvq+U8DqP3bv+gskbRkMjrA/Rc94H7wE7xv6pFlcMnARQq1HcOw/NLxrD1P8ksncp7l7Hi2I+FeghyT84JVwH3LkaWbD32y6Y+PceCu1riTrDIGmbs+djcxFJBdj7Pr2mN+fn+t0tWuTLUTDhm3P5TNUT3w5qg4bRec8ZBeik67VTtTO9/U1I61w5tdbGureFtRPlme/jhdOijldfFgJ+A6nS6eoEcg7hPLhmQhN0Ji78RmPcnC5LAn5DkFz9J2PkrJfpC8/X5y9oOMXY9hj8FTzTc3T+Tnw7PF342vnq7eVze9q+hFZc3UQnPz4/T0QZkMph2oslAOcY2MIrF+VAHZCZ6OI3WKivKpspYoisfvep1RqVE7jTC7oWC7ucDdAtRrTdfTb5xisNN/1Z4IHoF4u/N3ByHvDo3dnYa5I+DuMgL37zgJ3JFPBsXbnT7ejmi7HWm7swbbWUbtiLM7KXm3OXZ3TeZuJ7GMkZC7Ba1TbQvcj9gGuB8wCNyVt1t28cnYOt7+BRPxdrNWt58xh9fpg3UjCzHLFlyUqyq9pZMh2q5c3fyo5ZPBVxb7qYD74WVwjcCFCUUs8V5ic8t8Ru5YXeNs3Wxd7otcOSZP2HbPM+CKPnAna9y1Q+4asYySua/8gYTdf1CRdAV/V42/rdAm7IY5uyrSrkHt8DI+3PA7IZAhUu1L3Q8t8zi8fMvRlV44bV8nOL1JfME3tKe8ehLDsJGIiH6x+F5CQmH5q/LJcumgFCYXdRWFB1CrYfrw6fQR9gr9h/xjbsc0zTc9y85+sWtXadWb2Iw7wQnXpdGDoog+QWg3L7jLL2qgoWnu5e7dbysqSt+U7ikZD026KY0eIHLxw0FBRL/T06Rguya6rqbqCrCuKRWqCkFUBeXf3ahc7Yb6oH5ndOX9TyrU/k/7BbTZh+wm37XThN85wd8tAvFfIf7uAuTd5bA7x/QyCLgjgTvyyTinT4Z+u1Q7xtuZAe52ibc7ikzGInW749J2x9LIcB21I87OTfLOPeyOmDuDzJ3lkDvDVhkawJ0y5M4GcGfcJ8NUu1T79kplZNAk7DpLMwNrLsaQuuHFlIk1lM5aSQe1/0Ba2qji7crQDwHcf6UA7nB1wNUH9cG3xzflQUr9bL0ck7e0LpRVvUnOfiCJ7HeXXlonUAF3dz3grrTKECF3CuZuALsbGGTIruDsVPaYX+CXEqj9IwrUfoRA7fCC1/BOrhOc3ig6t8X/SmDctcW2tgfJyT2+vlD+RyMjm5rnc57lwDSBdz0l7m/PrIPHBHOHCQh2SOBw4O6Xu2fr6m7HxNyJi5tvasrOexqceF0c0ccL7oKn3SS5AEMWM7ij4Hltwyzst6K9r3MKnmEYtqCIvcMkCcWVaHl6TA+1HyTjdVIZ0PzjFuKKV3H2n/RE7Tqc3TRhN4Da/2l3LmwbmM7UcKbwO7cQPALxLPB3zpN3x8Xujh51pwvckcAdCdwtA+7IJ+NU7VIPseuTsXe83ZlkMlxolGoJbb+AaDvrqB1xdpcMvNsr6s4J5n6BLnOn00DVpFhGXWntE3JnyipDX+NuL+D+u82BO1Pxdpv0SrUpcKdcwZlL2I12MTUrom5slfRPS5WbOisgI7SdJHBXdkxV3ORrAfejK+ASg6sbSqXfgF/CvYTq6epXRUXl1ZNRqbd8w3o2+11cJzitBdzdDiqB+/pfCauMMuSuEcuo3DIk7K4i7xTj73qQXYuzK+wxGlG7CrUr7DHKtqiKSDsukIHXudrnxBreybX80+t9z2wUnXP3u+QT1BmxdRSPt4eH94nF/RLJq8JC+FTYK4S6B6WGuMeGKgR1DL6CA/cOL3GfOOl+Urscu5eQcC0gAMbdhISpysqcgmcBcdcEod1eAVfd/S5ukV0OSbwBmxW+KpwsLx/LzHy6ffujtDTYHmYwnLavWXNc4ZDRRe3aGXY1YSdDdoOcXYHaDXF2OnjdAqDMJA7mNl7nAoJn/x8WfMXB4ZIgnjvw3cmwuytH3c0E7ijejgTuSOCOfDIo3s5avN0xZTLOSdsdJ9huO9TuuDzap8PHgoEC71yPunOKubMplmE55G4jq8wRehp3OwJ3egJ3m/hkzI23m98rlTHgTgeyGyHshvE6xcrIyMLnWzPHd5ZHjnSXPORFjR5tV64stIE7nJb4/fPhpThwP7Earl8oTcJeYcrDlLrZuqT7SeXVkzsLn4si+kjA/ehS90OfEsBdo3FXW2VIYhmyz52KvP/dCGRXcfZ3lZxdbY+hRu0KUftRBWc/uZZ/ar3vmQ3CsxtF59zE5zdLLnpIL3kFXBWG9Uan3cLk8tHIyOvBwfcSE9vbF8NHwqH+Q72CigHXPhQKqDnwKdRJqOT8Lj5sMFtb+6qwcMjfv1co7PH1HZBKH6WlNc03NbfMx6TflsUMSqL6w5NHMAyLuR2T/jj9dUnJtcBA2BImKKjKUBehYhHBdkrUrrzKVVf2zzqQ3QBn/56Ks9Nn6wyy46/1c9mkL9paBcOp4Uzhd65TeFdyxLsgeXdQ7M79qDsC7kjgzkS8/Xt2fTI/OrlPxpHi7X+ieDu34u2OpG6/4IZoO4PBdteMtFsG05karkPe7YXducDcnUAsY5PWqez0TeUYcDfDJ2OoXSrX4u2f2zDJTrnCosbr9FqVmhcYopccsjxXpI3aybRdN96+X7kKIG7jlcD90FK4CuDagSsUSo24TyzH5GmP0gKvBeItRmdrw5JuesguK5QyJ1TA/c9P3A6SrTKkkLt2zl0Vddcl79pDG7JrOLvSHqPuiUoSyHy66Q/CHkP0RF3LP71BeHaT5AK8VO/ADl5wFz9EPbqFYb3S6MHotNsNTXP3k5IeJCdjGJbyIEXUJ4JyDVUL6glUCdgJUIKgxMF+gPkraDgIb6za3j4SHt4tEMCcBrNQp49Pn0j0ICUFk8vrZuvqGmcxxX/NC80FEwULLS134uJgG6jZUCzxYPuqVUSwXQu162jZVZxdH7JrWqGa5Ow0+K+9TCn2ZOuUYX8jA/F3x0XwLkDhXYq8u5Bhxq56GQTckcDd8QXuyCfjsu1SuRxvd0CZjOvQdltpZBwWtTseWO9kazgIiGcDuyPmbg5zpyuWYTHkznzrVCcC7vb3yVgab6e2t1sJ3M0NsxuF7PqrG931C5Uz3ao1CCNDfxXzo0HaTo63q4E7nIqEUgYH7kdw4A5XJdQZ/yH/djkWeyeW18WTxQxiGJaT/8wr4KqiaeqJFVuOLnM//OlmbeCOW2UIk7sWc9eKumvgO2lof/c9Pc5OiNp1UDvhal/mcRhezCrv42v5p93E570CO3zDevyiBpK234fXnFv8srllvrD8VXbe09iMO+EpIzAStt1taJp7lpOz2Nqa9SQr9GaouE8MEwrUTChcxB0vTtsv4LQ99EZo0auiPSXjr4qKeoVCmDrwgg2V2N0dJoQuHm84KOhVYeHk3r3zzc2wx6YqK+H3PkpNhZkZqixUO6hSUGZw1L50KYHatTqg6pvZ9cLsun52w5D9Gwcf7PF0awbi74jCOzd8dz3sjvQyDAF3FxC4mwbuSOCOfDKoXaoN4u2MA3drabuNgbt9eqWaFW+3caNURNtZou1cQu32p+qMgnhnIu/WYHd2lO72Yu50Ze4OEnJ3NeBugcDdKp+MYdpOCdwZjLebB9zpcXaKxZR6laQP2fUJu3oxYsjc8gONFYT+UuJfthn6y5OfDNJ248AdLhm4BqF6BA0HtS627n27V9IviUm/3dwy39a+yAvu2uB7drXPiRWeR5d5KIA73jdVyyqjEstoM3cldtcj7+okuwayqzm7lj2Gsi0q4WqH17NOcMZdesk/doiImecWv5yqrHycng6PJ8vKWhZaFjEchdfUz8gx+Z6S8eKK11NVVfkT+WmP0uLuxoWPhAdcCxD2CmFWIio2zCOiPlHkaORcQ0Nd4+xEQcGAn98VhRwG6qLythTuNN3coHjDtNYnEg0HBsI28KBHIIDCDxtA3YKqQzhkyKhdE2knLlwdzk4zzG4zgGtTNMx2UN0cDsE+gnc++buDIXjaFB6Rd46Qd4Tdbcfcl7Adb+cCcEcCdy4I3H9kDLg7nk8GxdtRvN2RZTIuSNut0chwC7Vzg7M7Hl63FME7AXa30jDjzMydNbGMLULuNrDKUPZN5QJwV950WQDczfHJ2DPeTh+4f25iUWYWZ9dZBBmE7NqE3VADUv3wOGND21RpZAFibEliaOmhXlOQfDLUwP3YSrj0oHSE3AjBMCw772lu8cvWhdb4u/HwKT+ka4NQD7grNO5EyF1bLIMz9/fXaGN3g+MXMmcnR9o/3PA74Wono3aFQ+boSq/ja3gn1/uecfe76B87tNjeLpdj5ZPlbYtt8AD+y3qSBW8k8Fpg0HBQ2M2w2DuxqY9Sdz7fufft3pa2hfrG2bb2RUwuX2hpmaqqgu3hnSbeTwwcDkx+kNzQNAffKq18Uz9XPxoRAVMK1EsobFC98EIFJYq4QYYKByVQwd8JFg9fOalojqrWtWuhdm11zI+0m6CS2a5pwGq+OZ0rDnQbkHRGhq35+zcuw9+dIwjvWvAdYXcXYO5LkE8GCdy5K3BH8XYnbZdqgrYf4Wq83dF6pdpd3e4StJ3BYLvzonbnJOzmI3inwu5c0svQB+4sM3crxTKcDblb2TfVDsD9N/OAu618MuzE240D989NrcVMeWOMcHb1woSasGvjdQoxy8+G79JpD80NP9WKQPdfKpg59NcXOrRd0zGVErifXAMFQdgrbJhrKCibaG1bqJ6ublloSd5+3zuwgwzcl24+RAB3pVWGJJbRYu6K8d4aivE+GbKrOTsZtW9UtkXVQ+0KYzsP74y6SXKBH9KVVzqOyeU3w8Jux8SUV0/mPMuR9EtgioEaDrMDr5MH70g2KAsfCc94nAFbvi4u3l38Mmn7/ei0W2HJN0OTbmTkjs3U1k5XV+eN51XVTuG9VTHsVWHh9eBgmGEIPwzUISg5eIEh37mrq46ixhACGTzVbgC1Ky9QI5ydKsxOwU9pruy5QNttFku343Bo+M4R/4zT9GV1CfLuBNgdRd0NDwTckcDdVgJ35JOxv0+GzXj7IXbj7UedLd7ufDIZs2i7Ergj2m4L2m4n1O6KhJ2T8J0L2J1TzJ0mcGeSubMectf6ay4XrDJHTDN3poC75t7Jlh1TTQB3i9ulGoq3WwHcjTN3g8sufT+7tjeGMsyugeyqXaG+5zfoPdem1XRvpH8z/UcUrcO6ny6Rp/+vZsnLBy3aTuqYit9sK+6i4YSHCwSuL7iooZYGXw/OeZazb2ZfXeNsZu6Yf+zQFv8rCqXMyRWex5Z5HNHqm0oOuSuZOxm7a8F3DWFXjA90OLvaHqNA7Xhb1M2HlrkfJgQyq7yPK5qjnlonOLNBeG6T5IJXwFVpNG6Zv5+Y2C+R3AgNlWNyePFQUYnyBdUSyjivi+c34Bd1KwqTy8cyMx9u3SqXY1tzHgYnXhdH9vsEdXoHdqTtfNTYPNfQNLe7+GVu8ct2OXY3Ph4mFngaqExQbAierqwWeqsHIs+OR9o/+eSADmrXi7RTeGNMcXbLUaaVtJ0h+/m3Tj0Qf3cVBO+Y/N1ZyTuKuiPgziXgjgTu9hO4c8on8+GvqF0qirfbNt7uMOp2CxqlXrQIuHOStrsyakeQ3Vz47ljYnVt6GRszd3Zk7iyH3M1tncqaxh3uIuwF3C0XuFvsk7Em3m4+cNdn7sYWXIYi7TprGTVn/06Xs2sy7JTpdW3XuToPrrzXNXBza+IeWH3oLbD27zeckf/F6ApiPzVt17wdbeAOlwZcUHDZQrES94vTHqVVvK3YU/KypOK1LGZwi+zyegVwX+l5bDkB3FVWGXLIXZu5/6rg6Xh6XT0+WEeC7CTOTthjlKJ2JWrH26Iu33JEE2kXnNkoPOcmPr/Z76KH7LJX4FXf0J6QxBstrQt3ExJGIyNnamt3PN8B0xaUJqgYUHmgvkEp5nfxA68Flr0pm62vHwkPvxEa+ig1FcNw5h4Qe803rEcS2V/XMFv0uuhNWdmTrKzHGRnDgYEwLRA2dqgoUCqgMJDBOn65qy904iArjq2xSLuZeXZKBmrBWt+81byrQnNW+TuH4Ttn+fvXiL9zh7wj7M4admeFuS9BHVNNAnckcOeuT+YnFG+3ELhzv10qirdzTSZjW3U7y7T9MndpuyOidgTZHQW+2x27Oydzt59YhlWrDH2Nu3MAd0YE7mbF25nyyZi1RKaP2im9MWrO/i8lZyffnBsKgOsQdoJKK8E05T96+HOpyRQI8S31iUFxSuidDKZD8aYGZTBf/60pgftRHLjDtQm1RdwnbsfaUx6kRKXicpXotNueqoT7Sq9jy7dogLtWyF3F3PWwu/ZYT+bsiki7WtSuQO3wzOpUuyLSfnqj6Jy73yWvgKu+YT3iyH5JVL8kst8vaiAg9hq8wpbWhbHMzPE9e8omywKHA2EKgHoFlQRKEBRA+FTSL8mfyG9umb8dHd0vkfSJREMy2eOMjNm6Onh3za3zFfve4n9deLkHngc2gCkIaifULTzYrkDtBGf/QwHZlcdNfdAU+1V5iIgLVB1p11HH6HF2OmF2swggfeBunLNzH2p/Z+ZA8N35+DvnKLzjwHeWybvjYnfuR91tA9xRx1QkcGfCJ4ME7rYF7g4bb7dXu1S7xNu53yuVK+p2x6LtTGlkbBRsZxG1I87uoOSdEeyOmLsjiWXY0rgzC9x1MCslcKeOOR/QuqcyF7iz6pMxRdvNbpdKf3FM6Wqng9pVkXZynl3N2ZWKGH28TsbQintUdaQDvzM8iivO4bzSnHJwjhFnFNlKpL451L79U24G5xWJ1FOcNsQJox2HN5GF1yHypu7/Ne+U/DZVwB3eFwHcpYPSircVkaORooi+mvqZXUUvCIf7Gp4SuC9zP7x085+f4sBdFXJXMHcFdv9Njd0NDiLPrrLHKHuiqlztyxWu9lXeeFtU+KUessvS6MGo1NGU7AcYhtU1zmJyeXPrQtHeV5m5Y+k7Hxfvff26uBhecPKD5JDrIcJeIVRs/P7t4maYC/wG/Momy+obZ8fz8vrEYpjN8DsRH59eoXA0MhL/wX1vMUWj1ddFRfBFqL7KYLui9+lhArWrOLuasFNCdmp1DA3OrgM0aeE8mot+k+t423D275gaf/2rtYMzUN4J4DtC8E4G350JuztQ1J1repklyCfDOeCOBO6cAe7IJ4Pi7TaJtzu1TIalRqk2o+0OHGxnC7Ujzu4c5N0m2N1mehmnZ+5cDrlbaZXhGnBnvGMqq+1SaQL3/zUnzKQTbCcWPjqo3UCknbhdJ3N23Yg36XaUHOOAIw6nAZweuNn8xGoiLg2XCTHRwwUFlwOc1fi5Cqcl6WyET+GLcHrD9sr7mbMb4FM4mfFzlcD0R5X8XXmykSLzFEF4UzoaQyBe/w5f9+8Kf+gB9+Or4HqEd+c/5N8w1yDH5KmPUiveVrTLMV5wFwm4K/qmkkPu2sxdmXbf8Jv2+P0jfc6uRO1/Lt18aKn7Ya22qIpgu6f/lei02/NNTaWVbzAMm8jPh4/FFa+z857mFr0or55snm+G19my0LJveh+Mutm64tfFaY/Sgq8Hw7vIeJxR8rokt/jFIoYNSKUwLUB9JYoilFio6J08Xp9I1CsSdQsEUPsJYzvhkIFjokbt5CT7firIbiTPriONMRRmpwR2pjGAqUU/TdpuIUO3noZzZ7BL4W0E3xF/d0T+7lKBdxR156BeBgF31DGVdYH7j3YTuLtQu9SDHIu3H3aBeDs3eqUi2s512m6LYDsrqB1xdqck7w4Udbcbc+eUWMa+IXfm+qY6EHC3XOBuy3appoE7eX1sePVkFmon1gL6kXbYhwRnh/0PB4W4w1SDdfIgjj7B2eGMglOO4OxwSUKVC7gWUPKmJOVhSuRoJB6jvrwFvoWf/KpTHR4TG0PlgSIJ2wQNB0kHpfAYLlWCvOszenJenjgVdVLwxvm78hT63diNPfkeXifFT+wK4l3jwP3UWngLoj6RHJMX7X1VO1tb+qZ0Z+Fzn6CODcJzCuB+fAUJuOMhd8LkrmbuJOz+kTZkV3J2Mmrf/KeyLSoJta9R6NrdROe3yC7LYgZbWheeZmc/3b69rnE2PvOuOLIfF8tE9PkP+UeMRqQ9SmtdbJ2pqcktfpG+81FS1v20nY8a5hrmGxsr3lbsKHje3LowkZ9/LSAA6jqUOihX+LGCgkTcnBIFbP16KEhqXbsatWu1PyWZ2TWQ3bCf3WCY3RAKtAi96TN34/F2+qjdOam61QgewXe6/B0heAeE704TeHfNqDsC7qhjqusJ3J3SJ+PK7VLNjLcbA+4o3s6cTMZGjVIRbWc22M4eakcc3K7knZvYHTF3hwu5M2mVYQi4azm7WQPu+2kAd7ME7my1SzUDuBteN1E6ZJQLFpVAhhK1KzugkiLtRKCbIOwET1fffWlOEuIrcLt1crXaAA71RzYoC7kREnM7BsOwnPxnmFyeVzpeOVUJX4QCCJe28jZAwdlFvaLE+4l73+7d9mRbwURBZc1U03xT62Kr/5A/VB7YTHkpKa4a8vUFvw5+KfxqdQpenX8n/tijdY5RWuAPmMjKkO/SteLtqjg/AdzhxcD7ir4VXfSqaK6hYU/Jy5DEG14BVxXA/dQqr+MrPI8uU/RNXbpZHXLXMHdifKQaH5MgOynSrrTHqFztR1d6HVek2k+t9z2zUXRus99FT/8rgtCemHQ83j4SHv5w69bpffv4Id3ufhehmsLMI+4Th90Me1VU9HLPnifbtsFxSdp+Pyh+WBDaHZtxp15hnqltmIGPw0FBUKFhN0PVwYsKUTZI1QIO/lGyq10HtWtz9h/1w+ymOLsRyG4lINMB7sbj7Tq03Rhnp4ekv7fr4AKCR/AdReBtBN8dnrw7KXZ3yqj7EtQx1Zk7piKBO1s+GVrAHflkULzdFr1SHVcmYwFtv4hoO3uo3RE5O6+TZ/FwcfJuvWHGcZm7g4llLAu5m2uVYVzjbgFwP8QGcDe3YyqFwN1Mn4zl7VIZAe5fmAq2W4ra4bDifpiTeF9QAnbDyQxnLG6GIZ2BuA3mLJ5qhwtW1CcqelWEyeXzzc31s/XVddOti633EhPvxsVhiv+ChoME3QKitot6RXF38a/LMfmD5OQ3JSUtrQvw6Vhm5kxNDTyQDclgS6KqQAnCf6RPJO4XS/ol/kP+vj2+8BvhVRGmGpy865jiSQp4avk76TQz8s9P1Tfh5E6wauAOVxzsFniR8NbgzeY8y2lrXwxJvOEZcEUJ3L1x4I5r3DUhdwVzV7tlqAbB2Ql7jBK1e6hT7cdX+5xcJzit5OwBV3jBnYLQbnFEX0DctZTsB28rKh6np8PLuBkaCqUXKgoUPJgWBvz8xjIyFlpbb8fEjISH48wdw7LznyVtvw+HbPfL3U+zs+HrvUIhlFKoTFBLTqjYuvqKJy7uQ2RRu8oeo4y063N29cWkvowMSGMoiJ4VeMtc4E69fDewRjfO2b93/IHgO+f4O1cRPILvzoTdHcUwY1/mvgR1THXIjqlI4G6+T8Zy4O5wPhlHjLczCNxdNd6OaDvLtN3uqN12tJ2znN0anm794CB5d46ouz2ZO9Myd7cLzhlyp69xt6pvqjXA/QA1cNeXgTAL3C33ydBpl8oscNdH7eRgO9khQ2qLagy1H1Cl2o8sI1A7nIpwpfC7+ZJ+iXRQCoPfxYdrFi4N9UmOO2EuukO1CboeVPK6pGm+aaKgYCwzE8Ow2tnap9u3Q9noFQpvhIZOV1fveLYj8FqgdEAaNByUP56/0NwMmxWWv2pomssterFvZt+LXbtg45vh4fD1lAcpskGZuE/sN+AXfTs690Vu1VRVO9ZePlle8baica4Rvgj1E3672lRDXDKEhQZOb3XynTg5tU5C8rl3UO+PPeRbcUPC+mMq4H52A+yTsJthckweejO0smYqY9djr4CrG4Xn1iqB+zE1cCdC7hrmrki7a4bqi0rOjovaFah9C9nVforojCqK6AtJvLGz8HlB2URN/cyOgmepOx5m7Xmy2N6+0Nr6JCsL9nk3nw9FFMp5n1j8OCNjX930w61bB/z8+kQiOJ73EhJgy9m6Okwuh48DUukVIti+di3UCRy1E4Sd+AcqxG4j9hbB2fUi7VpydhJn/84wZ1djRCOQnS6ZooEKyMDdMtpOydlNI+y//c0mw3FBPILvThqBR+T9SxfE7i6ml1mCfDJI4M45n8yPyCeD4u0o3u5IMhmnpe0cDLbbErVzKtJuX7buGBTeUbC70zB3xwy5m26danuNu52B+29mAHe6HVMNCNxt65OhBO5fWIjaTQTbTaL2gzhTJgQyalMKXO+Ro5ENzXMYhrW1L05XV5e8Lom+HS3oFsBlTlyMcF3zu/jB14ObF5ofpaXtq5+GjXcWPk/YdhcetLQu3I6JuRYYeDM09EFKCnwl7m5czO2YsjdlWHt7Zu5YYPywMLyXH9IFH7fnPa2drX24deud2Nin27cXviqELePuxFVOVS60tCy2tdXM1MBPtS60PsvJebJtW+NcY+iNUHgxeJkigvDwEerJJQ+8TevZDXCZaMg7SfiuC9/1T0Wd22zSjbRaXq8E7ifXwCUMZYpQ6KQ8wN9jY/O8d1DHRtG5tfxTq7xPEH1Tl3toM3cFdv+U0MUox5/Krysi7TqoHZ5nDe/kOoWr3TPgasTWURyUY9ib0lL4uK9uurjidVXtVHPrglyONcw1NLXM1zfNTZaXP0hOhv0J21TWTMGP9EskMC0QpRoe9Pj6wld6RSJ4DAUPN7MrUDsRZtck2UmQXbcbql6kXSfPrrlcqKQxlJDdEHuiCw/MBe70NDL6qN0kW/+BrWFHOu/i8B3xdwTf7Rt4R9idfeaOgLvzA3ckcEc+GV3a/ofztktF8XaG4u1cULcj2s6aQ8bunN1R8DoX+bttPDNWGmaY1Ms4HXO3pnsqqyF35jTujgvctTqmWiZwt41PRgu4f2FifaS/DjIYbFegdoK2EzfkhlA72SFDBNuhHAVeC8QwLGHbPfg4VVm52N7ejrXD421Ptkn6JfwuPmwj6BYEXw+GL87W15dXTwbGXROEdnsFXvUO7PCLGsja8wS+BT/4NDt7LDNzvqkp51lO/Wx9ScXryK2jkqh+n6BOD+klN/F5GPAj4Skj++qnYbOXu3dXT1fnvsjF2tvzSsej0275xw7B9sEJ1+EJn2RljUZETBQUbBvbFjQcJBuUBV0PirsbVzBRkHQ/KWMsI3wkXNl59dwGwjlDkHey8J0ce6c4OSnvog9rfDJ4n9jjyj6xUHZgJ8gxuVyOVU5VZuaOwXshgPtqHxy4q60yy9wPEzBdg93VkF2RZydE7VSo/fQG4dlNkgteAVel0YOLbW3EHzC25z2F/SyJ7A+MH74TGwt7bLK8vKZ+JnP3WFzGnYxdj2dqauobZ3cVvXhTWjrg5wc1GKoalC5ylcKboKpS7QRqV3P2A6QwOyVn/8lQH1QzObsOY7Kil4EWczcr3k6m7eahdnbxuk2gPBf4u421M/90AfjOZQUNIu8Oh92RXgYBd9QxFQncbQLckU+G5XapDhlvt2+vVG7IZGzaKJVztN1Bgu32Qu1OQ9g5xN9th93trpexgLlfsidzZ0MsYyTkzqJVhlmNOxeBu3UCd9v5ZHSBu4FBsQKiEWxXovaf8Ttn2EXETSx+X3rwYzgE6s6ohCAFzli43qWD0sjRyNRHqfWNs/llE6+Li/tEoh5f32sBAU+2bdtXN538INl/yN9vwC9oOKh2phbDsMSs+6LwXs+AK5skFzYIz673PUsw9IDYa0lZ9/NKx2Gb6X375Jh8V+Hz2Iw7AXHXfMN6vAKubpZcXO97Zi3/tLvfRVFEX3Ta7Zz8Z9V1083zzcUVr7fmPAxNuiGO7PMJ6vCQXvKQXZbFDDW3zL8qLHyRm1swUZD6MLXwVeFCS8tsXd1MTc18YyO8nqb5pozHGb49vlBw4DLHL9JzG3EB/el1+BVxgqLVKuUZSx7q22ANcD+hBO7wK0R9IviNrYut5dWTYck3caUMDtxPK4A7YZVRMXcPFXPXHkrO7nFEP9UOT+WO69qv8oK7JJH90Wm3FtvaHm7dCrtUGj1wSdETdUChiIG3/ygtbTwvr7JmKi7zbkr2g6nKSthXYxkZfWIxlEaoSVBUoGCcJHdD1WuCqiONUXtjlBeT+i9W2pF2/T6olJyd4iIwyozMggrmAnezaLs+ZzdzSW3G4ASL5wx8/9YB4Tvi75yA75wh7wi72w67s8zc7QncUcdUp+yYyk2BO/LJuIRPxgni7bbsleqoMhlE222A2u1ij2EYZ3exNRwLvnMcu9uPudNsoMoYc7eZWMaqkDsrVhnLgfthbgB3Gwnc/8kwcDfC3KnXPl9RB9spHTIEasdvcVWonfCSE3ltgh3D+QNnMr+Lv/vl7vrG2bn6egzDWtsWXxcX3wgJgesAakCvUDgcGIj35Fxsi70TGzESkfUka765OTbjjjiizyvw6ma/ixuEZwmVylr+afhUENodknhja87D4orXtTO10/v2VddNp+4gMDop4S467xVwNTjx+u7il3JMXvqmdKqqCpPLM3Y9hi1FiiffJLkAW8ITxqTf3lPycrGtrXq6unWhdcfzHTG3Y4KuB4XcCNk7uXciP/9uXFzDXEP4SLikXyLsFfr2+BLNWqGSwHuEi0vjeVec7epTmrL9L/kemLjL1QD3UzhwhxIBz5/7Mnf70+019TMxabcJ4L4OB+4nV3kfV4fc1cxdbxxRfPeoCrUfJ1Lt8CQessu+YT3BCddTch6k7niUvP1BRu6YXI7NNTSMZWYOymRQzrsFgpHwcNhdT7KyrgcHw/GCBwstLbDZYns7HDLCGAO15KSiFSpxiROQ/QipDyoRadfKs5M5O6U6RjvSTtkHVYezkxGSlWTHIEugBO4mabv2otwgaje8mNYQ87//neHBLpRnHMEj+P4N4u/2he/cIO+2xu5cMcw4tV7GCuCOOqYy3jEVCdy5EW9nHrhzyifj4vH240gmg2i7h8O0SHV81O5IYJ1FCu9w2N0lmDv7Yhnuh9yt0bhzErjr0HYNcDerYyp9n8x3zPlkLFh5f0nhkDEWbDeK2gmHDBFsh3MDziUi2x5zO2Z38csHKSm3Y2Jmamr21U3j3U1bWoZksj6xeFAmux4cDN96VVi468WuzLHMhrmGxKz7/rFDgtBuz4ArmyVK4L7a58Q6wWl36SVJZH/GrscYhsH2+RP5L3btepKV1da+2C7HZTXwg75hPbzgTviYtvPRVGVl9tPs5AfJuS/h/9zH6emYXJ5XOh6adEMY3usd1MEP6YrcOlpWNQlfr56uho87C5/HpN+WDcqgkkNh8Rvwa5rHjTRzjY3pj9NTHqQUviqsmalpx9r3vt2b9SRL2CsksDtcekSHVXj7ZPKujr1rTmzyra+KtsP2cBGRgfu+6X07nu+Ad7qj4LkXrpQ5D3tgDe8koXFf4UkwdyV21x44Z4cNVnodh41X+5yEHbje9+wmMS6QCU8ZIRz6rW0LLa0LlTVTLW0Liwo/PmHJH8/Le5GbO9/cvNjWNuTv3y0QwJzWzef3iUQwYAKBIgcFBqoCXOJEK1QyZP+DKtK+n9QKVYez63dDNRRpp/bG6FEhI4zG8D+q/3cjmIESuKvj7VbRdiMrZsYJu3U4ng0Ezz58tzF5Zw2+c46/uxR85wB5d1Ds7lJRd3rA3abx9s+QwJ2TwB0J3JFPBrVLZQi4M9srlbF4u+1kMiyo2y9ZBNy5RNs5FWxnE7U7G163JYJ3BezumszddmIZC0LuNrfKmK9xd3rgzrBP5ksLUTs52K6h7d8qabtWsF2ta9dD7Xiw/ajC2H5iNZw2cILBKQqXZOBw4J6Xe1rbcJLbtti2bfdYYhYucF9oaambrVtobX1VVIQ3LM3Ker5zpxyTwzZZe55Epo76xw4Jw3q9Azs8pJc3iXGlzAZfXDguDO+tqZ+BzeLuxsXeiS2fLH+cnj4SHj4aGTlRUFD2pmympiavdLypZT636MVUVVXmWKbfgF/M7Rj4kXsJCTdCQm5FR+MvoLk5v3QiO/9ZftlEuxxLup+U9igNXsCz7Gwi1j0cGNjN50NREfeLUx6klFdNzjc3w5PUzNTseLZj+9PtlVOV8Lumq6uznmTBNlBR4f1ClVCTd41q5rjWH5kobmuPKQXuxN4jgDvMGgUTBXUNs7Uztcnb73sFdriJz68TnFnDw//2oAq5H1OA9aMrtiiGp5qz66D2M/Cz7tJLPkGdsGPh7d+Nj29omguKH/aPGboVFQWHAPZVe/siHKDQpJtNzfO1DTNt7YtD/v5QoaHyEZZ2GFBgiFQ7jtoVeXZyK1QlZzccaVcr2o1E2ikt7dSRdqOQ3RICYQq4G4m369N2rTU3DdRuCLL/aIPBCIXnJn93ePiO+LvjwndHD7w7C3Z3OL3MEiRwRx1TTdB2Vwbuv3IJuHPMJ8Pldqko3s4pmQynGqXakLZzONjOGmp3LcLONH93COyOmDuDYhnj3VMtC7kz1TqVcY07N4G7cYG7FnCn3zHVRj6ZL81H7frBdiqNjDLYrkLt5LaoSikK3KHB3ZcioA3nD5x+cPbCpeQ34Ne60Pp0+/bahtnKmqnI1FF+SLdPUIdvaI9/7FBM+u20nY+y85/tKnpRUDZRse9tc+tCY/N8Yfmr9F2Po9JuBcZdE0X08YK7vAKuevpfgY/waV3DbGvbov+Qv3RAGnUrqmm+6VZ09ICfX69IBB9vx8RgGDbX2JjzLKfsTVlzy3zLQkv643T44viePYMyWY+vL4yhgICXu3fDr9vxfEfbYlvhq8KIkYiiV0UT+fmjkZF34uJgezkmv5+UdDs6mtDEl02WzdbXT5aVwReDhoPgWWRDMtjsWU5O3WwdIcOB1xNyI0TSL4GCBlc3ub0qmbxrzn/SLStx/4n/ywAFcIcdCOU0cjSS6JsanjwCb99NfF7hpj+lsMoombtyeKoe4Jz9+GrvE2tIqH2L7LIgpFsaPRiSeAPvWCuXvy4peZyeDhNRr1AI7xG+8ig19XFGBjyANzVTU3MvIQG+BRURV7SvXw8V4hShaCci7QRq18mzKzj77yrO/iu9SPv3dCzttDm7NVTFCHPXB+6G4u36tF0dbDeE2vXz7AZB+bvvmj1sTeFtg+AZge9cJu8uDd85wN+dnrw7P3bneNTdTOaOgLuTdkx1cYE78sk4k0/G9eLt9uqVaneZDKLttqXtHOHsXS457E7eOYDdLWijymnmblexDHshd4Y07vrAnU7fVPsC93d/to/A3djCnf4a5ysK2q6rkVEF24nOqLDfyKJ2tQiFiGbDKUHQdjir4ZqCShV/N76xeR7DsKTt933DejyklzaKzq33VbY/3SK7zFdQ4PCUka05D/fVz5S8LiEC7wstLVVTVfCDZVVvUv5/9t7zK44r7df2h3O+nLPWeT1jz3iUhSKSkEgdgCbnKIJEkgjKIEDkDN3/xjPpmXk843G2ZVuWbAUUQNlKBIEEyhkJZTJ0rfeu2t3V1RU6UdVd1V32XiyEEHTv2vum9tU/rnvLo+Sc+zC2l74u2vMSPlg+Wq7qVYUOhFaOV05UV18PDoYChkoClJ9rgYFD0dEvi4oeZ2W93b0bPl/f1vayuLhXpYIyg/Y6FAkoujcjIh6lp8NnzjQ1TdbWwrceCAvrJqwpg1FRYxUVO9/s1GE6eJt0L6lirGKkoODdnj3vSkvhb68FBPSq1TnPcjCdrmYCJ/IwtHotPPLW2db0R+kB1wJQe1W8t2on0Vv15FK0X8gNYnZHetw0hwi4Q0lMuJtQ9r5sT8U7ePrrw0zAfanfCSLkjjN3fBCQnRjH4ePwtzhqN3ZG9Yu4AvNfWvm+XavXt7fDhNQ3TdU0TJRUvHuanQ2zBI99pLBwIDS0LygI3sLswZTCXEEF6iS8MbCzO6icnRJpN2wsm7uhfkOLtNtsj+FE7WxgxUYmYpm5szZNtUkmY4G2W4y0c+H17+Y8HGbxYuDv4iHv7gHf5fC7U+G7S8m75LC750Td3Qu4yx1TZYG77JORfTIOtUuVarxdoF6pgspkxKFulwBtlxpqlyG79Mg7f9jdaVF3FzJ3l3dPFSrkPnerjHB9U0UF3O3pmMoicOfXJ8N1wraK2j/7vzRpO7q3R7QdN7b/+BFMFMwhQu2kpd1wb0PeunQug1UHyxVWPmzk4OvBza0z042NWQVPAqKuot6nS/1OIkwM76xUnl6nuaiM7UnYdAfDsMKRwrzhvMm6untJSbdiYu4mJr4sLoaPY1rt1hdbW9tn4W3Ry6LZ1tbK2nF9Wxv8zUxLy2BUFNQb2GqwVwx3K6tWwR9hu+OdP/39e9Xqa4GBUEjgg/C3+M6AbQH7ZuVK+Agi733BwfBp8A5UFFQMoBT1KJX3kpNxdXtjo769/WVR0VB0NDyw8aoqpHSHB1A9UV05XonpdC+2bo2/Ex86EFryruRZDk7h4Y+afo2qRwVVnWZ4N+wdxu0lunWEz4FtC58P1Q++SNV4VW3DZGrug/Vhl3C1TmDXsoBTXn4G5m4+TiDUviygc6Xi9Gr1WR/NxcDoa/FZd+AptGv1iZvvwvvDeXnw8ODS5G4bLq8ebWmbhTmHpw/TCJOG1zZioqBUoG6oTM7+C0ek/QdWewxXQ1RHUTsXZ7cjYMjNKjiBOy3ebkEmY0Ejw4HamZD9O6cMZyB4Xvm7J8TeZfjuUeRd7NjdGnP/1POi7gIx9w88pWPqp3LHVFngLvtkeALuEm2X6l7xdkn0SvVA2i6SYLugqF3m7E6G7wJhdw9n7uISy8wl5C5Y61QeNO5uCdxdJXC3bdAOKVSNjIm2f4PTdkN/VIK2w2TCbMM1gksM6wSWHKxb9OMYFjm5hvEf6+e8YZf5X/FPvp+s02HNrTOq2J61IRdWKk8v8z+1xPf4Qp+j89ceXryhY3lg5zrNxfCUG4i2x9+JT3+UPtvaOhQTgxQxvWp1v0ZzPyUFj5aXluLi9bY2vOsphtVP1Y8UFt4ID4cCgILYhjWL1imxhPE1btwBuBHFy+sEkqKgZYs+DX0Owd8N+8b4R9iaUBKgDF8PDobHc41oHHrF3x/+OFpeDo8THsbWF3gY/3l+fru+/V5SUq9KBW8na2tbZ1srxyvhg/r2dh2mixqMgkINVQV5ZlDg3bCtzO8b8VtB4nUL+EyobKEDoXh8XodFpw/hwF2Nu+yXBXR6+RuYu3Gc9PKHcWp5QCd8AkLtypjuqI1DKbn3C3a9GKuoeLt7N8znYFTUZF3dcF7es+xs/MUMne5+cvLVgAAoaaSfHZ8oMtJOcHZkcjJwdvNuqFwNUS2J2u1C7WyRdk78Ya0x3d/ZsDsLkLAI3Gnxdsu03VbUbvGM+z2M3/3OjvGh2e/eCMffRQTf3TH27nz4/rlsnnFf8u7OUXfJ6mUYwF08HVP/KQvcXS9wFzNwt+lmRDw+mZ9kn4wcb3dFvF0ktP2sTNttRe180XbhULvM2d2KvLs66u4a5i6MWMYqc59L91R+Q+5zB+6sIXc7+qZ6JnC31yfj2AHdPNhOp+1fGlqk0mk7oZGBmYdLBisBT15f9FH1qNIepsXfiYcRfiNc0a2AooG2IbyF94P6gnDcrNVGpN70Db9ExNtPexHAnWj1eXTJhuPwkYCoq82tM+Wj5fBFQgdCUx+kYhh2Izz8qr8/lAF8Z8M+JkQxVwMCepTKa4GB8FfdCviGCvgE2D005wk+0C0h82aQ9f4RFiZ5A0i91zPieNg9KDVv+P291auhNkCB7NdoXm3b9jw/fygqCh7wk02bMK12sra2eqK6Yqxiprl5pLAw8W5i5uPM51u2NE03xdyKgTnxv+IPUwRbHvfMdC1HG9Cw3Yz3gbA90esZMJMh/SE6HW6Aic+6syHskrf6HOHk6VwWcGqZ/ykv44A/wgdXKHBRz9rg834Rl6PTh2Bi6xunKmrGauon4LG1tuF9a+Htu9LSgdDQXpUK5hNmFSqiQR1DcHbWSPshi/YYoVA7W6qdHXnYwNnZsTsbtOAC7rR4u2EP2UvbaUdejqOtfXjdHhDvOH8XDL5LmLw7MfZuB3x3r/C7a+G7jN3dCbuLWen+gSxwl4G7LHAXlcBd9snI8Xan9koVgUzGLnW7W9J2d0DtMjR3FnkXIXaXmburuqfyFXJ3lcbdKnCH2xJnA/fv5wbcOQTuLJDjs//LZ7z93xz9UT83HArIFqnstL1jEawN2DhhA2FJ95Iw4r/W2dai3S/bZnG7S/K95KC+oMBrgQFXA5Q9yphbMTUTNZsLnypje9aH/uYdZCDFqOEnjGUBnWtDLmQXPdW3tYXfCPe/4q/uVec/z4cv1atWXyQMMMgSw7KuiSVsCmLD2iHWi2GN0G9Iue9VyRtS6l0nlcUvWoRA/AkyOE8k4mG3ofw7+jmPxPF34uPHq6ownW6qvn44L0+H6e4lJ99NTIQPNkw1NM80a/XaqvEqmBkcu1/A9e7IM0PbobiW5/RKBNxhSivGKhqbp2PSh3DgHnRulerMCkUX4cHvNI6uFYrT8PE1wefhc9RxvTEZt3aWvXlXUpKw6e7tuDh4AK937CAk87rh3FzksofqBU8BV8cQ3VCPM2aSjLRbaIhqAbXb4mqn0Xa7Ubs1zv43m5m7BeBuS7zdAm1nBtu5ULttZ1brQwj+LiB85y/2PnfhzJcSib27BL5/7tnaGTcj7xLC7h6il5GBu9wxVfbJiF7g7jSfjNwuVY63O10mI9N2Pmm7SyLtLmLT/lf8nTPcn7zLzF0EMnfrYhnRhNxttMq4FXD/lg24W+6Y6jSfzL+5NTK0FqnE3TjcSFNNMoZs+ykv2AtpD9KmGxtnmptr6ie0Wv1oefmr4uKXRUWts627y9/uerMreiha068JuxG2+SkufonaOBgYfW1D2KW1IRdWq8+uVJ5GsHil4vSa4PPquF74nKn6+qC+IKgzkYOR8MdX27ZBeYMdA4uX9MAYVhZaSpS4Ol0sbgTEdgzK2qEyeiqIp/L3DpK/m+tocP6+bt3VgIDrwcEw+kNCHm7cWDdZVz5ajgLvz/PzY2/Hzra2Nk03Jd5NDO0PDbhq6KqK7260i7sMN2bwEfg4FDR1r1qH6Sprx6M2DvmGX4ZJW63CpxEmcIUCfwvv46g96JxP6G+KmO7NRU/1GELrWLtWj6Qx70pKBokYPjwwqOWkov0UmltiSsnJNGuIyoXaWQUy5m1RvzbiTsQiLQfb/2XBIcOB2lnxuuXBztwZ3IIVuLPG26mncyu03Ry1W9bFmE6ov/+9I8MxBC8y+O42qnehybsM392EvMvYXZpRd76YuwzcJQXcv5CBu9sJ3GWfDH8+GU7a7mqfjHvE28Uok3EJbeelRSp/Ghkhgu2i4uxOA+siBfGSw+6iYe78NFB1lljGBSF3cQJ3RmLZGcB9v3XgLoqOqXbR9i/YaDulSyrMHu5tP7YQLjqsQGW3EsOwPRVvy6rezzQ34+KXgAAodd1K5UBo6IPUVEyrxaPu95MT7yZWjVflbhsOS7mhjO0JiLq6IezSOs3FtcEX1gSfXxdywS/icljyQObWx1V1443TjTte7ygfLcfhMKbr12hgV3WRohgKWyfXwq+kUtycC5PCE1sTLNQ7aOqdsjmCR/z9CMHfUQSeC74j8g6PH0oOVN+BsLCXxcVPsrIeZ2bOtrS8Kylp07fBc2yYamiZbYGnHNIfAjUcqhZUEqoHH/fjn18D1U/Vo9r1Zldzy0zUxkHf8MtrQy54B51brT67SnUGBryzJugcTKx/5FWY6vQtj3Q6rHTfu/vJyXAtRsvKMJ3u+ZYtZENUU6SdamknUTtT1I5QO5urfT+F0ppQu40OGSptt9khw4Xa/2bnsBpyR8Cd1SeD4u1M2v45k7ZzB9tZI+2shP0HO4eNCN5V8N3jyLsM390avrsNeRcIu8tRd7uYu5SBu9wx1fM6pkpM4O6ZPpkjNgB30bdL9Yh4u6hkMnyr28VP28UZbBcDZxctYXclf3cOdufDMONA1N3lzF1EYhn7Q+6mnw58hdwdsso43jdVrMDdrC+hZeDugMCdF5+M/bQdniA8a5gHmDGYT7gccDVhFcEOCr8RrtVrY9Jv7S5/+3Tz5osEwIWNAtu6W6Ho12juxMe/2r69brIubxgXqmzMfxi9cSg0eSAooU8V16uK7YG3mqT+6PSh4pKXGIYVvyzeN7YP3snbPlzbMDlWWQlfAb4sLFVYWR0MkzjVcHLQHK9T76y57so5b8Opt9vmCB59O074TrHAw2KHTQCbg4y9w5aF2gAFDMozzM+t2FhMp9O3tY2WlT3Pzy8YKdC3t+9+uzvnWQ6J3Q2lhrjhgeoE1VLVo9rzbo9Oh0WmDfpFXPHBX7Q4vyboHD6Cz6/TXPQNvxwU35dd/Ay+eGnle/ia45WVs62tjzMzB8LCetVqKNtkQ9RTVHsMB2pnutqpDhkTaudwyAgRbLcVtf/v/43GX4lB/tE6c+cG7nSfjEWZDBdtt4DaaZyd/ej50UecwwEEbxd8l8m7ZMm7Z8J39yHvUsHuctSdJ+buEHAXZcdUS8D9X54I3HmIt38lC9xln4zcLlVS8XaJymSc2SjVXWg778F2F6J2iRJ21/B3Z2F3mbmLTSzjQMhdcKsME7h3zLVvqr3A3cTcnQPceRK48xBvd4i2w5PFafvPOG2H2YYLB+sBlq7/Vf+YWzEYhm3Z8Vzf3t6v0cBPclhusEugtPSqVAOhobfj4h5lZLzZubNyvLJk37stO1/k73heuHtkV9mbhuapfTVj7Vr9dFNT6ftS+DoVoxU5z3JmW1qeZGWNV1ZOVFfD14SvBgsTVtAxggVzBa4PMNi6LfCRii+5QDzJ383gO1fynULejzLJu5cXsr3DxoXyAGXpakBAX1DQYGTkeFXVaHn5ZG3tiy1bdJhu99vdiXcTg/qCoIDjtQ71nv0N7z2r6lHBLOkxLDLtZkDU1fVhl3w0F9dpLvqE/uYbflkZ0524+W5d42R94xRM4FhFxUhBwXBu7lB09FV/f9KDD1ufFbUfoQhkzOaZMsk0h4xjwfbP52BsZ6XtNM7+V2uDht0tAPd/sgF3S/F2C7Sdcrq1jNotr09bhi0U3jJ8l8m7k8i7+OG7u/B358N3Gbs7B7u7pV7mA8Hj7c4C7nLHVNd0TP3GceAuC9xln4wcb7cr3m6jTIb3eLv7qNvdgrY7G7XLkF2E8F1o7D7nqLs0mLsAYhmRhtxFZZURK3CnoSn+O6by6pNxmLajRqlUmQxs+bCBsI0PN5a8K2lonn69Y8fD9HSUnr4WGNgfEnI7Lu7Jpk3vSkpQM9Xm1pmxffve7Nr1ZufO92VlU/X17fp2eKvDdFod1tgy/bK4uHW2FT5/ICzsWkAAfB3YiLCEYZXBSjlKxK4NCJg1ak3p2ElyQ1tv/5l3+hz83QJ5p2F3M9s7m22mi7TNrF0LxQwm7UZ4+N2EBEynm6ytnaipqZ2s3fN2T8ytGFWvyv+qPyqz8I66V531JKuldSYybVAR3e0XccU3/DK8DYy+FpZyI2/7cFv77HBeHvo6cAn6goKg/EOdQ6J2ErWTAhlaW1Qbg+2WjO38amQoBIQX1G6VubMAdw6Bu2kzMdTtlmg7w9XOwtkdguw2IXiZvMvkXRzwXSbv/JJ3yWF3V0bdnaiXcZi5fyAL3N0NuMsCd5EJ3G2Pt9sO3F3lk5F6u1Q53u5IvN1mmYxA6nYR0nbXB9ulido9CrI7A747Bbu7UukuM3dXhdytWWWc2TeVdrvCG3D/QUjg7pDA3Y6jNnlOsUbb0Q02ou1I3W6QyRwhZDKnV8BOT3+U3jrbimm1YxUVLW2zu9/u3vpia1Xd+Ni+ffARDMO0em1Ty3T+juebCp8U7h6pGKvQYbqn2dm34+JuhIf3h4T0BQf3BQWh0aNSXQsMvOrvDxuabOAJawpH7QsXkqgd5dlZ7OEUq4ldBNCCNZsVvrNm3tFSso7dycA7TfJOCbzjvxmgVt+KiXmxdet4ZSV6QSJvOC/yZqS6V63oVii7lcHXg2HyW1pnojYOqeN6FTHdypjukMTrqbkPKqrHdpW9mWlunm1tvR0bi17/uECidrLlrLHZ7DG2zqiWje2cGhkL/VFZaTt1IZszHds1Mg6jdlbmbhm42xhvN52qrdJ28yXH9WIPl/jI6rAp/C6Td9GSdxm+uyN590TsLkfdHdXLyMBdOh1TZeBuJ3B3B4G77JOZY7vU40IBd9HG213cK1W0jVKlT9v5DbY7DbXLhN215F3yehkHmPsFsTN3691ThQ+5C2iVkQ5wp6Ep+4D713MA7nMUuM+ZtsMkw9WBZQD7ZePDjTv3vn6YlnY3Kel9WVnh7hE9hlVPVE/U1GBabXXdRHbx0+j0ofCUG5Fpg0nZ95pbZ3KHc7e+2DpRXX0rJqZXrb7q74+XCqJvJ+wPWONnSCJMeE5wFkxJtZOonUVmYmS+VPJr02CcJOgnA+oJwBbsbjHtbqW3KsLu3t4wIciAfyM8HDVWfbtnT/1UfebjzIibEZp+TdgN/BcLtFp9bObt0KQBGDEZt0or38NHMJ0OPnkoKqpHpSJRO3K1w7eAjXvC6JChNp6VPG3ngOl/YQyegbtxP7HKZNAMWKftlDOljZD9AGXwBt9dQd7twu7fOoTdeSbv9mN3gci7DN+lDt8l7ZnxqKi7C5m7DNxZgLuzBe7/kTumul7g7gKfzAHZJyMOn4yY4+2u7pXqJrT9grvQdumgdrFw7as2DLeB72LF7iJh7s6TuUsr5C4kcLelb6obAHd7O6bO0SfDIpNBRwaLtB3mASYHyWRQr1RYTupe9XRTkw7T4W0/Y3CHe2zm7bCUG1EbB0OTBwKjr/lGXN4Qfskv4jK8r0nqz9j6uGm6KeleUvK9ZPjk+ykpPUoljtrXrqX6xE+QnH3hwiNG/ktH7QxpOJWwW0Vvlo4aHOTdRuzOIpmhuN0NXVVZo+6k233ZMvymjJDM4Gn3desuITmPRvMgNXW8slLf3r5vbF/K/ZS423EZjzK0Oiw5+1581p1NBU8am6cxnW44N3eQQO24QMbH5zzxMoZZsJ1ibJ8TbbdqknEpbf+LtUFn7hzAnb1jqpEQ0OLtNJmMBdpu0shQ1pWl/gGUFr7Whw0gfq6Zd88LvPNF3iUde/co+O408i5d7C5+w4w4o+52MXfJAvdPBQDucsdUe2m7MzumStMnI4TAXfbJuLxdqtTj7bz3ShWDTEam7WJA7eIi6fwOqZB3gbC7ezN3dwq5S8IqMwfgbqZxdxFwZ/fJfOUUgTtbvJ1J26nedkO2naDteLz9CB5vhwsNCzV0IBQPU2PYi61bpxsbd+x9HRB1dW3IhdWqsysUp5cHdq1QdK1SnlkTfN43/LImqb++aSrnWU74jfDIm5F73+8dLSvrUalgC+I4mGDBOAgmKDCpEYeb0INsqN2M89Lom/0QjYrgWcm7VexuJeruAHMnxO6GqDvhdofy3KNUDoSG3ktKeldaqm9rKxwpzBvOa2yezil+tq9mDNNqUU/UvqCgqwEBUDsvGn9pwGRstz/bbsHbvn8O3vb/2Oxtt4W224vaWZk7GXJnBe72xtvJEzONtnMG2y326eU+/JkNy/zdrsy7EIH37xwj73wF3j2GvIsUvku526okybuM3cUddRcSuIuyY6ol4C53TJUF7s4H7rzE23+WfTILpdsuVY63y7R97rSdL42M0Kjd3di6qym8cNjdhZ1UBWXuUpS5uyDkPvfWqcd5ssrQ+qbyAtwPCgbcv7UNuM+tY6oD8XYzmQxx54/uzC3R9sPz4RLAVYNVAcs+7EbYztc7dTqs7H2ZFtOq4npXq88uC+hc4nti8YaORes7lvge9/I/tVJ5Zn3ob3FZt2daWqKHotW96qC+oLzhPAzD+oKCYPfAwsRp+5IlHUSq3YTaEe0lRe00wkthbewszDLqYjussJB3buzuAHO31S3j5YXfxJE5dwpz71YoroeEDEVHP0pPf7tnT9NMU23DpL69/UVBwb2kpJvh4bilB9F2Y7YdKXqQSQa1SKV621m6pJINaY20/QAFznJpfMjLwUXbvzASNzpt/z//Z0603VHUzgtwZ4m302QylHVlyrbTVhGzJS+Fs5uOen/8o03DMn+3k7xLKPAuCtWMa8m7HHt3F/IuUb27zNwFwu4swJ3PeLuzgLvcMVUWuMsCdwn5ZCTdLpWTtp90r3i7Xb1SJaVulxhtFzTYLk7UflWyQ2zkXWRRdwkxd5eLZVwYcneGxv2IpZA7HiEWCLj/aA24f88O3GlAiDfgPvd4O1Mmg2j79+y0HWYbLgpcUFgtsCWzHmdN1tVNNzbmFD8LSby+Juj8soBTizccX+hzdP7aw/PXHF6w7gj8cXlg1/qwS0W7X9ZO1qp71VBbFN2KTU82zTQ3Xw8Oht0AqwyWSYcx2P4La6rdyHaZSeqv2TiXVTJFg++s2H0uzN1qG9UjiLlTQ+6LF1sKufv4XCbcMn3BwYORkfdTUl4UFMy2tFRPVI/t2/c0O/tOfPxAWFivSgU/TFC8nSqTwbcvFbgTOwzF24+Q8XajvceWeLut6nYqj+Om7f9i0nYKcBeIttOYux3AnTvezpTJ2EXbzV6woUD2gzYPW+G7QIF3CWF3QQPv4iPvMnznn7xLPPAuY/e5YHdnMvcPhPXJ/MMdO6bKwF0WuLvOJ8M7cJe6T0aOt7s23m67TMZE28+JvlEqH7RdDBoZ4VC7TNidCd9FZ5hxInOnbUaxMHd3CbnbbpVxZt9UGnCHuxS+gDuNPwkF3AXrmGop3k5Rt+O0fT/d245oO1wLuExwiWGBKXuUGIbdjoubrK2NSb/lE3pxhaJrie+JhT7H5q89/KfVv3yy6uC8Nb8uWn9sWUCnX8SVdq2+YqwCKgDslICrAUUvi1rbZnvValjLsGrg+sPFRAnrg9ZQOytnt5U6WTjT0M4o1IOINeZO97mzhdzZG6jaZnJHDVSvBgTAjA1GRj7OyMB0uqq68YJdIw3TDQUjBVpM+3bPnruJiQOhod1KJRRpKHhQivCEO6VXqhXgbs3e7nC83SaZDI2J2GmSYZL0P7MNKyF3GnBn65hK88kw4+1fGoE7uZC4aDs92E5ZNvRjHMe57SBtcMF3bux+wLXY3WHPjDCGdzck7y6NvX/h7uRdeoF3p2B3OerOL3P/QO6Yajdw/8wVwN3DO6ZKU+AuDZ/ML3K7VFEDd5fE291BJuMq2i4OjYwEUPtVTxouJ++ezNxdKJYRLOTupNapPGrc3QO4f2MncLe5Y6pN52aL8Xb8vp0ik4FnB88X5gGn7b/MQyYZuBZwgeAiwnWHtafp1+yrGRstL8cwLDihz1t9jhpvpwL35YGdytiemomaltYZxTUFbMPwG+EY8d/VgABYd7Ac4NqSGhlEeOGeGsWomaj9K/NunFSo9IVdJx5r2N0yc7cUcrfBKnOEFbgjpQxsNWq8naDtqG/q/ZSUscrKdq0+d9twUva9rILHzTPNqQ9SU+6n7Bvbh+l0L4uLh6Kje5kdUxkOdx6Au9VeqbbF263LZOyk7SbC/r/+l9lgY+62Andunwx7vJ1D3c5K21k67hoh+yE7hyPk3X2xu6sC71Ih7+4N392MvMvY3WOZuwzc6cBd7pjqhI6pssDdSfF2UQncJdou9SSv7VLleLtM210YbPc8zh5wNcCWIS347j7Y3S2Yu9hC7qYfH6Kyyhzlr2+quwJ3e3wyhkwPEW+n9kqly2QO/tHkbe8w3A7BZYX1AIsz+Hrwnrd7Wttm87c/94u4skp5xssfAfdjC9Ydmb/m8Lw1vyKlzErl6aD4Pn1b27uSkszHmUUvizAMq2ucfLp5M+wYWDtwneG6wS0nTngpwXYyPc1Ccs15rsODHbszmDvNLcMScrdslWFVypB9U2k+GUTbV6zAafuaNVCWoPr2qtV3ExMnamowok1twqa74ak3I9Jubsx/qMN0cbfj8Fa0g5FZT7JaZ1sxne5pdvaNsLBrAQFQAknmTobcSeB+jNXhbjNwt8Mnw2pvt18mYwdtp6F2bubOBdxt8clYjreTMhkrtJ328gz5Co15x10L45DRvG+ZvPOI3X8QBruLzTMjNvLuNvDdyc4Zmby7DXZ3b72MDNxl4C4L3HkA7h//+LE7Cdxln4ynxNtd2itVIJkM/41SpU/bhQi2ixay2wjT+RpiI+/8YneZuYtTLINKt3taZcQN3D/8/kPHgLtQHVNtjrcbZDI/mWQyuLe9YxF5PwMXF5YHLODQgVB9W9v70tK4zNs+ob+tVJ5e5n8KtUtd6HNsoc9RGIvXd3j5n/QOOheSeH1byavJujoMw7KLn5VUvJtta+tWKGANHidkMr9QaLsp2M6F2vmmP1TsTmPuZj53iyF3C8Cd5nCn+WRgvdNpO2GSgRICpQ5m6XZc3Ehh4XRTU1PLzNadL8JTbqjje9VxvZrE/o35D1tnW6OHooP6glS9quDrwXG349pm29r17ZhOdz85uS8oCArtBcItQzJ3Zsgdf0gU4H6Iw+FuC3C37JPhJ95umbZzoXYKc+fUuFsD7iw+GbZ4O6tMhou2s6N25qnL7Pd25lmC7xbJu1XsbndLVavMXTTY3YWBd5m8e1rsXcbuc8LuctRd8sD9UwGAuyxwlwXuohe4yz4ZkbZLlUK8XRK9UsXTKNXJtF1YjYyrULtk2bqzEbzzsTu/UXeXMHdBZe5ODrmfFUfIfS5WGVcB90MuAu6Um2EaPhGqYyorcOeIt+MyGUa8Hd3PwJWFKw6LBBZ25M3IiurRqvGq6PShdZqLOHAP6PTyP0kw9+Mwlvgehz+uUp7xj7yaufUxhmG1k7UzLS3wTvNM8+24OFjd8FWPErT9ICtt54hLOxiTtHgqIpm75ZA7J3BnVcpQm6Yy4u3wxBFt76DQdth2sGVhZqAUwQ+KwaioZ9nZs614aL26fiJh0111XG9A1FWY0sCoa0HxfTCxrbOtkYORym4l+rGi6FaEDYRVjFU0zTTBPM80Nw9FR3crFFD24MtaZu5mVhlnAndH4+2O0HaLIXfbgTvdJ8MVb6euFspSYaHtxprEStitDqvk3TJ2P+BO2F1ygXeRkHcJxd6lQ96FDrxLCLuLNuoufuZuJ3AXrmOqQMBd7pgqA3dZ4O5pPhkPibfLMhnBaLvdwJ0X2u42qN19CbvgCF4E2N3TmLv4xTKuCrlbssrYqXG3Ctxx5i4Dd1vapVJ+g9YUb7fWKxUBd1wmc8II3E+vgEWu6dfUT9XXNExoEvvXaS6uUp1ZoehaHtC5zP+Ul/9JGMsCOlcpz/iGX95V9kar16Y9SIPPf5SRMRgV1a1QwLqGlYLU7Wa0nbi1R8F2E7plQhmuA9AcsDsXcyfFIEyrjAXgzuKTYaPthmy7sUsqbGioH1Bf+zWaB2lpmA7+w+BtWdVoaPJAQNRVmM/1YZc2hF3yi7iijuvdXPQU5jbiZkTgtUCopVDloCpCfVb3qmHCdZhu7/u9s62tk3V18AWhSMMXRz1UYe8amDsplqGY3OlWGQpstQDcv7YLuHP5ZKzF27lkMrbSdraQu3Xgbs0nwxVvp8pkrNN2Y5UyO0VZOD/ZQN5ZsDtTMuNMw4xg2F1Yz4xM3t039u4GgXeBsLscdReJXuYDAePtzgLuTu2YKnXgLndM9RyBO08+GevAXYo+GdHG2ztdGW+XvExGpu1zpu2uQu0SJexCwXenYXdxRN2dx9xdJZZxevdUu4C77SF3vjTu1vumuitw/8wh4G413s7slXrwExSqgLmFyTcD7p3LYOXACg+5HoJhmFavDU647qO56K0+t0p1ZpUSx+4wVipPr1af3RB2KWrj0Gxb2/ZX21MfpLa16/s1GtiIsDBhaRxDtP2TT2CmEW2namRYoK2NbMVR5j534E7zyTDt7Sy0felS2DpIIwOVAEpaj0r1KCNjurFxqqFhe+krmLTk7Huq2B7f8Mswz+tCLsCAdzaEX4IPbit5pcN0ETcjoIZDfUMVCYoVvB94LTBqKGrH6x3wCSMFBa+2bXuUnt6rVkPlw/UyBHM/SWHuTLEMLeTOBO7fW064MwTuCDnZ6JNhj7fbSdv/ixg2Ave/cQB3CwJ3artUC/F2qkyGSdsPMRT/TM5+hDJYz1JWsLuIo+78tlSVHHYXgrzLsXfRkndBA+9y1N1dmfsHssDdPuD+mTOA+1wE7g4Dd7OfEu7XMVUWuMs+GeHbpXpQvN11MhlxNUp1KW0XC2qXIbtw8N112F1m7vYyd0mE3F1plXFL4P6VM4A7Z7zdokwGj7cfwePtMP/47dAJvF0qXGtYFbCoYNkH9QVVjFVU100EJ1xfH/bbmuDzaKxWn/UOOrcu5EJA1LVNhU8wDGudbYVPg3fuJyfDxoIVd8ICbTdqZGj5aAtAhJW228hu6Cch6nGHDbgbDxYfWhK401gqF20nNTJEsB2qS7dC8SA19VlOjl6rfZyRMVlXl7ttOCL1pn/kVR/NRZhbmFgYa4LOrQ25AHOuiu3ZU/FWh+kiByOhFEOBgnpiuH06vwb+CKU47EZY5XglfA58zXelpdONjf0aDZRtKEtnCL0MbFYaczcAdwpzZ7XKkCTUFuBuWeDO6ZOxLd7OStv/y3w4Atxt88mY2qVSlg093m6+SCzTdtPxaMEC68Nm7C75qLvA2F0m7zJ5d4/Au9tid7FF3Z2il5GBu5DAXe6Y6pYdU91M4C5ln4zE2qV6eLxdzOp2mbY7jNplzu40+O4E7M5j1N2dmLuNYhnndE+1EHIXg1WGV437vMPcwP0XCQN3rlO1pdMwd7wd9UqlymSotB3Pth9diN8vHV9MymRgAcCagdUIW0PVq9JhOq1eG5LY7xthFr72Db8cnHA9q+DxRHV1wp0EDMOeZGUNRUfDloLFBdcfmWQOsdF2eFAkq/2cEo626TBk86GH0+RuI3C3EG+3TNthIZPSdiLYDhsUOWSuBwePlpeP7dvX3DpT2zCp02EVNWNB8X0bwi6tDT7vrT67SnUW/x0C1ZnV6rNrgs+vD/1NFddbXjXaMNUQeTMSiifUHLg01LsyKC9Q7lQ9qrQHaWXvy5LvJb/ZtetFQcGTTZuuh4RcJKLuXQRzP4F87jTmTopluEPuhjVu2eFuu8Cdwydj2d5OA+7/xTFsBO42Cdwt+mSY8XbqIjH8AoQ5baei9iNG1G44/TAPPQsYVi1u7M5P1N0e5m4h6i5jdzcm72KE7x4cePdA7O7GzF0G7mbAnRefjAzc5Y6pLhS4G2i704C7iH0y0m2XaoW2d7lVvN2V6nYX0fY5tkiVImr3cMjOD3l3EXaXOnPnUeYutFhGEiF3plWGqXF3B+D+nViAO/UAwhJvJ2QydNp+GKftKNhORe2wJNDPeljYsN1Uvaqil0XtWn0Y7ha/5ht+GYZfxBVlbE9c5m0Mw3a+3jnd2Ajv3I6Lg4oCCxxW0HFu2v61kbbTPCT0SKBF4D5HjsMO3MlDCc0nw4i301kqG203aGRQsN3bG0rXjfDwx1lZw3l5o+XlQ1FRk7W120peRaYNBkRdXWd09axUnl6hwAe8A3/0DjrnE3oxKL5Pp8Mapxujh6LhikAlgatD7mt4C9cLSgeULEW3IvdZrg7TNc80w9ttr7ZNNTQMhIbCd4frAv8CKd25mDvN5G4IuTOBO6lxnzNwt90nYyNtt8zcrQB323wyVuPt1JdkqLohM9pOnntYzje0KmiA7+zY3baou+B6GWEMM3aJ3Z2B3T2WvEsl9i5u8i52z4zA2F2cUXdR6WVk4M6/wN01wN1dO6bKAnfZJyMkcHdyu1Spx9ud0SvVQ2i7RIPtMmd3OXkXGru7lLmjneUIcP/NM8QyTgi5C6Nxtxe4060yv3BbZZwO3M1gDAncvxQGuFuMtxtkMvt/Z2iUStB2sksqXCy8P2oXfquA//gmLCUGP/il9VAZ1L3qjMcZGIZFbRxUx/UqY7rhbUTqzcJdI1XjVbMtLXqt9k58fK9KBdsI1iAsE7jIJG3/2UjbYcKo2XZaj83/cGAIlsMQm42dyYZsAe5fWQTutHi77bTdoJEhg+3r1kGJvR0Xh+l0O8vezDQ3l1eNNrXMwJTCNPqGX14TfB5H7YrTKwK7lgd2EsPgx/dWn/XRXAxO6NNq9bWTtVGDUVAAUbzdsHOJrYouH3wQig/U5/Ab4YUjheNVVfdTUkYKCl7v2DEYFUVeoE6SuS9aRGfuTLEMh1WGBO5fmQP3zx0C7lw+mb8IBNxt65hqwSdDa5fKEm8nfwGC0UqXNA6ZjjXcBxp6RaSUQ1ui7s5h7kJH3eeK3YUPvIucvH8lk3cRkneJYHc56u5M5i5B4P6p2IG7eDumysBdssCdf5/ML57qk5Hj7cxxdpX4ZTIybeek7eJD7TJDFxt5d03U3cnMXRJiGeeG3EVnlZGBu13A/d8c8fYvTfF2Ut1O0naYarg6eGfUMyuRkAQ2b8C1gMBrgeRQdCtUPSpNvyblfgqGYfFZd8JTbkSk3tyY/7Cxebpmokbf3o6jdrXaFKD28kK0HS4Oou0woz8g2v7hh1y03fKByewwxNX4lBUtWTgJUf4t3SdDibdbkMkwaTsubUcaGSLYDlsNtjvU7H6NBtH2x5mZw7m5E9XVhbtH4jJvK2N7fDQXV6vPrlSeXh7YtSygc1nAKePAsftKBd6QFj4nNHmguXVGq9fGDMVA3YMSAdsZ9qzZ9uzEtftIBAQVMnoounG6sfRdad5wHnzrmebm6cbGe0lJcKWghBiU7gRzP8pk7hSxDGfI3dwqQ7XwczZN5QLu3AJ3x2i7Y8DdqsCd7pMxf22GJd5ufEmG2kqXStsRajccWZiHFWpppGJ3jqj73Jk7P3oZgaLu4sTuggXepUvev3Qj8u7Rnhk56u4KvYw9wP0fcwXulp6lEMD9XzJwt5W2OwbcRdgxVRa4yz4ZuV2qVOLtIpHJSIK28xVsl1G7jN1l5i60WEb8IXd+rDK890097FDfVHuA+8c/fixJ4M6Mtxt7pcLDxmn7zwRtPzIf5hwuGawTWMyB1wKT7ydvfrq56GWRDtPterMLw7DCkcKMRxnxd+KjhqKih6JTH6S2zLak5z9Kyb2/q+zNdFPT292778TH9wUFQQ2ALQILFulK4DofI2g7TD/MNE7bP/oIsVoUiyZpOw21WzhIUU9CVGJOy6ebgSrqZHPQ9i9tibdbpO0otnx43jy4yTVoZCjBdpiW68HBmA4mVfeupOT93r1peQ9KKt6hly78Iq6gYPsKArV7+Z/y8j9JjmX+p5YHdK5QdOHAPfS3iNSbLW0zDVMNcbfjoJrB9sf3bOdy+jY85YXS7vAJ8Gmafk3Os5zSd6Vw7VAz1cbpxqGoKKi4pldH4HpxMXfzkPt+tpA7rW8q7UUUe4G7jT6Z/7ITuNNo+18ZHVP/22aBu2HhscXb9zPi7TSZjIm2owMNhbMbTiSoTNLMW+bYnSyNDjP3Q3wwdwf0Mh6F3T2OvLs09i518i4Qdvcow4zbMPcPhIq3Owu4O7VjqkuA+xfOAO6e2TFVjAJ38fhkfpV9Mk5sl9plH3CX4+0ybXdGsF3m7FIh7wJhd/di7mIRy0g05G6nVcaqxp0FuB9xELibmLtV4P6TiIH7v+2Lt6NeqUjdDvMAMwbTDhcR1piqRxV7K7b4VXFtw6S+vX1fzVhL2yym09VM1mi1egzD2tr1LTMtRS+Lcodz2/XtRbtH4INv9+y5l5w8EBrarVDAxoXdAMvZ0JNz6dIOwlICl+KgubrdwGfZaLvVgxRLvJ2NlX9DSV7TWnqa8SDzs44t8XYu2m6mkSH6o+LB9pUrYUKgPuG0Hf4jgHvbbFtTy3Rr22xl7Vh0+pBv+GXvoHMrFaeXE6h9qd/JpX4n8OFLvPUjmHvAKRy4q86uD/0tMm0QrgV8ocjBSBK44zsR9p1xr6F3DCL+ruVQB6BMKboVKfdTRsvLqyeq4fE8z89/V1JyMyKiR6mEooj8P3gb1UWL0C8lkMydSyxDDbkzNe78Ave/OAu4MzumsgjcWX0y5u1Sf6QCd0q8nVS3m7LtRtpOcnZqyMdULynYnUfmflBI5m63XsYBw4yd/VQdxu6iCrzL5N29ybtnYncJM3dh9DLiAO7/IxHg/pkzgLvcMdUFHVNlgbvAAnf39sl4SrzdLtp+zu1kMlKm7R6H2q85OqSL3Z0YdfdQ5i4esYxgIXdBrTJ29031ZOBuTts54+2ETAaePjLJINoeNhBW3zQ1WVfX2Dy9reRV3WTd46ysOwkJN8LDB0JD4e1QVNTdxMTHmZmvtm2baW6un6qfbmx8sXXr/ZSUmxERvWo1lBPYRvha9vZGZnBqvP1nFG83qtsNZJZqHaGc5+knLfPjFLVlJY22U2Pp31LC10zJOPtBhxFvt0LbzSkqQqioPyosfNgxcAcExe96SMhgZOSTTZumGhpgJlNy7o+WlZVXj0ZtHAyMvrZOc3GV6gzukEGo3ffEEt/j5gNn7njIPRAH7hvCLmVseVQ7WQsj4W4C1DHY4Cjebthi5revCLvDJ0ARgIqk7lVrMe1sW1vK/RS4xPr29pfFxfq2thdbtsAVxPUySOluztwPUpg7UyzzLfEKCi3kztU31V7gPnefjO3A/b/NgTtXx1SmwB02N5dPBgoJzd5uWCqUhroG2k4eOJgnDPdg7mKKujsVu0uTvH/lUeRdzIF32TDjFlF3MQH3f3owcHe+T+YLWeAuC9yd7pMRscBdLD4ZOd4uHHB3hbpdirTdnVH7NacPj8Xuomfu/DZQdblYxnHgftq5rVNl4G4ncIczN9dZmRY2Y4+3f0GPtyOZDEwmXCZYOVCm6ibrdu59vbv8rV6rfbhx4/WQENjBaEvBRoRy0qNU9ms0t2JiHmVkvN+7t6puvGKsAtPpnufn34mP7w8JgVIHuwpWMaw4WEGwBOB6HiXi7YfY4u2GEDRb/JnlvMUB3FmdHqQBhiuC/RXHKYc13k6VyVjILCONDKxcPNju5dVFGNt7VKrZtjatVj9ZVzdeVTWcl5ew6Q5MMoZh2cXP/CNxjcxK5WnCIWNA7Ys3wOigDJy5L/U74UUC9/BLmwqfFO4eqZ6oTribAIXLANyJeDu+pxh3ufiN60m8Fy7sd6hIql4V+h0FHaZrmWmBr5P7LFff1vYkKwvqtEHpTrRRtcTcye6pXCF3msZdGOD+X/YCd6bAnQDu9nZMZRW4m60Whk+GZm8/QvW2E7QdoXa8alLrKFlEydppgbnb20OVJpYRFXN3KOouLewuk3dnknfJB949CbvLzF0G7nTgzotPxjXAXe6YagG4ywJ3iQjcReiTEVe7VAnF28Upk5EUbXdBsF3MnP2aWIc4ybs49TIOM3fJydxdFHK3Aty7hLXK8N43FVdoeypwtxRv/8o83n7oE5g3mH9YFbDLooeiMQxLzX1QVTc+tm8f1AxYqugHOCxMWP6wEa8FBvZrNPeSkqbq63fsfb2t5NX219uzn2bXTdbBv32Yno4YPSx2PN6+fPkJo0/GZG83j7dbpu2fsuXcP+N2erAYtGmqcSoRZoNQdtN2Y2DZEGwnNDIo2A4zAPWgW6kcr6rSYTqYrrrGSS2mhYlCcp6ETXf9I694B51boegiHDIItXcsWg/jGGUYmPtS3xNe/ieXB3auVp/1i7icnHO/oXkavnLEzQgoTXARYUvCXkO0nbZ90A0w/BVsQNiqsLWhyEBxDh0I3fx082Rt7Wh5+bOcnJfFxfAFB0mlO/GSCWp4e8QaczeZ3LmtMqbFKwXgPkeBu+XXZujxdqNJhqTteCmFskotqLSouy3MnVoXbZe5C8nc56iXcTZ2l2zgXSbvriXvnoXdxWOYcUeluwzcZeDuPODuCR1TZZ+MfcBd9sl0ij3eLnivVCmo2yVH2yWP2u0E34HXAgUa4uTvrsHu7sLc+RLLCBtyPyt4yF1oq4xnAfevbAPu3FYZrkMHM94Oj8Rgb//5DzAbMLFwNWF/pT5I3f56O4Zh7Vr98/x8KGC4gR3dPqxcCSsOdgns2l6V6k58/Gxr6/bS18k593O2PSt7X5Z4NzH+Tnz+83x9e/vrHTv6NRrYfCgiDVcbrh7VJ8OMt5toO/cBmxlypzs9iBk14U5juNhwuahQmIu5U48pttN2mkaGMLYj1A7T1aNSPUhNhVm9m5BwOy5utKxsbN++nOJnkWk3FdHdPgaNDB5sp6L2hT4wjhqHibkvoQD3gKireyreNs806zBd7O1YHLifXgl7kIy307cMuk9G2P3EEtiYcGmhkkAdTrqX9GbXLkynU/eqrwcHv9m588XWrUjHTyrdqcz9EPHaCb2BKutLGhxWGckDd+pvV1gTuBtOeKw+GeKUYxZvJ2k75RyA3jdj7lxuGQEaqDKZ+wGBmbuHY3eZvIuRvMvYXY66uy7qLgN3cXdM/dwZHVMdA+6i6Ji6XzQdU2WBu6R8MiJslyrH250mk3FOo1R3ou2iguzCsXWeKbwYsLsI9TLSYe5i754qFauMXX1TD3NaZWwH7gbmLhhwx5m7k4G7Md4O38UQb9+Px9vhKcMswczDcsp5ljPd2Phq+/amlmkMw27FxMBSRUYR5EVBwB0K2O3YWD2GlVS8i8m4FZk2mL7lEXx+7K3Y0IHQsIGwjQ831jdOjZaX92s0sC1gNZHA3eST+d3vcNk3W7ydqhkxG5RjGQ24k04Par4YZ51GLI4GnqwnVDZMKMxyRjGePIiTBF3GTdJ2ukZm8eITRLAd5qpbobifkvIoPf1BaupYZeWTTZuuh4Rokvphrt6VliZl3zNoZBSnlwXgwfbFG44bUTsO2ResM4yF60zMnQDuxxFw91afU8Z06zBd0e6X8DbzcSYVuNNoO+12Gv4KRd1xpXvXcrj6yh4lPDB9W1v20+y423FPN+OB92c5OW927Xqen9+tVEJFOWV08TOZO4Kn9JA7KeinWGW4+qaKArhTO6ayAXerHVO/oQF3hsD9oPEVGqZPpoMw/huAO0Hb8eJK1lpUXI0F1e6QO1UsY35cs1HmLixzd0LU3SHsPhfPjEzeZfLuHPIuY3dPYO5SA+6fysCdf+Aud0yVBe7S9skcd5lPRo63SyPe7vRGqdKg7SJB7aLH6zzwdylgdzEzd1c1UHVt91THQ+72tk6di1WGX407N3Cf94sZc//EPMzphsCdeqYwb5cKDw8eMzw1eO4waXB1YNnvfb93qr4ew7CCXSNZj7MeZ2bC+kI2GHiLA/c1a2DvDkVHz7a0wKdFpg0GxfcFJ1xP3HwX0+lib8Wqe9WKbgW83fhw497K96937OghQC1cfypwh7tm0idDi7czpd5mpzeGVYbq9DD5ZIysEy7RASPiRP4TFMSmAncmc6fRdgvk1KCRmTfP1B8VvTJBGNsnampqGyZ3lr2ZbW2F+cndNpy59THMW2vbbFPLdGD0NaNGhgy2HzNy9iOMgTP3RThzJ4C738nlgV3wz5Ux3fVNUxlbHzXPNEcPRUMJgv0L+w62lQG4MzYIGoa0e8ciXC9zcinsa6gzcO02Pdmkw+B/XeV4JbzFle7DuW36ttHycvhZYci5I+aOjPxG5s4ilmELuVvQuIsOuFNpBC8dU2kCd3RUYvhkTlCBO1RcovqicnuKytxZQ+68dk+1WyzjTOY+B+z+nSSwu0zeXUreZewuR93FxtxtBu7/mCtwt/QkhADu/3IL4O7JHVPdDLgLLHA30HaegLuH+mRE2y7V8+LtMm13gLZLCbVLH7I7yN9Fb5hxA+YuJbGMdELuTKuMAxr3OfVNtQW4H+QPuH9vG3D/2jbg/jkHcP9srj4ZmEO4XrCnmqabWttmg+L7AqOvNTZPP0hLgwWI+p3CW1gysI2GoqNnmpqmGxuj04cU0d0BkVcVMd3wPoZhiXcTld1KtLtVParCkcKG5umn2dmwpWCZdJDAnRC4I58MHBq+NBJYVsGIJebODdwR64TvgijnQYJvHjQKx5H5hNpA1YxtkUcQw2/JWsKmCJjCAkSvScAmgA0EkwZVfLKurqllBuH11tnWhuapytqxiurRrTtfRKYN+kVcXq0+uzywc6nfSSLYbkLt89fCOEwdC9bizJ3IuRuA+1ICuK8JPq+O683f8byqbrzkXUnoQChUG9insNdgK8GuQTuFuSlgkNgdj7ofXwybETYylAuok8HXg5PuJRW/KoansG9s32xr63hVVcN0w9PNm2EBmJg7IeVHXXAP0mTuDLGMWcjdolXGbuBOAegOA/e/WgPu/2M7cGf+VgRHx9RfbQPunZSiax24O2Ryn4tYxjnMXSRRd3fF7jJ5dwl5l7G7O0XdncDcPxAk3u4s4M6jwF0kwN2RePsXcsdU6XVMZaHtP8s+GSn4ZFzXLlW08Xb3lMmIgba7X7DdfSG73fDdDaLunsHcXds91cUhd5dr3H/l1LhLBbhb6Zv6mZXjhmWfDMwJTClcPtgddZN1NfUT6vhedVzvvpqxB2lpsMlgESF7O+zXe0lJGIZNNzbGZ93xj7y6IeySb/hlv4groUkD8PHNTzcruhWwr2FfwFcLvxGu1WGj5eV9QUHwFeCSwgWBm1CTwN3ok6HG2+k6b/MTnr3AHSXcf2Yk3KlE+FvWwwebt50qbSd9ILAG4anBSkeoHSl37iYk4K9YpKb2azT3U1JgHiZrazO2PtIk9ftHXlkbcmGlktDI+J7Ag+0+xxZSUfuaw/Pw8SsMeN+MufscJawyOHBfoeiCrxOTcat1trVlpgUpfaD+IOAOO8gQb6fsCLKlgRl2P7oA6WVI5g7VT9OvqZmoGSksHC0ruxEePhAaOl5VNdPc3BccDGWPbITLxdypYplvzLun0kLu/2a97iIA7v9NBe7k8uP47QorDXstdEy1CtyZShkacF+69LhjVhlHQ+42MvefXMTcXYbdZfLu1uRdcoF3cWF3wZqpSlIv4yhzl4G7zcD9M16B++cycHdlx1SeBe5yx1QX+mQ6JOuT6eIfuIs53i6ETEZsjVLFTttdhdo9DLK7lrzzgt1FzdzFJ5aRdMjd7tapc9e48wHcaRp3KQF3qyH3z8zi7TSfDA7cf8CBOzxrmCKYXrh2sEqT7yVr9dr4rDvR6UNVdeMP09L6NZq+oKCbERF3ExNfFhVhGNbYPJ2Sc98v4sra4PNrgs6tCT7vo7mojO2Bvyp9V6rsUcKOwH+mn18DJQs+2NY++ygjAxYpXFsacKf7ZND5mXZwJXAn9ZxHa1xJ9WizKmVoDnc6cGdiMvIAwUHbTdJ2Y39UWPjwBKF2DoSFwVzdiol5u2fP8/z868HBG8IvJefcf75ly3hVFUysX8RlqkZm0foOIthuQO0IsjOHgblTgDv8c/giMPObC5/CJOc8y6mpn9j8dDMC7rDFzIA720YwkXfiPhz2FJW5w0+BxulGuHCYTqfoVkCdHoyMhPfvJiR0K5VQR6EsdRnV/CRz/5n8HQI2UT4z5G7BKuMcpQxrx1QHgPuX3MD9B7uAO83hztY01VRQHUi4W7DKOEssY5m5W22jKmN3mby7K3n3NOwuR93txe4feHrHVN6BuzgF7iIA7vx3TP1eFri7u8DdM3wyzm6X6jnx9jnIZKRC23kMtjsNtXsUZ3cVeXde1F0SzN2FYhkxhdz5scqc4NMqYwW4H54DcP9ZSOD+zf9j0bgb77dpR3zrwP0z9oOGgbYzfTI/fIQE7jBFMMNwBWGlqXpUZe/LWlpnMrc+rm+aepaT8zw/HxlRKmvHG6YbYBTsGvENx3UoKxWnVyi6VipPe6vP+UZc3l3+drKuLuxGGCx1tH5ga+96s2tPxbsHaWmw0uFqHyGBO0XgjrpokjFnqsj7n9TjIJW5M7kntWkqIdGmhtzJNqdUyTipcjZhMurpgS2ebJK2UzUyy5fDHh0IDcWI/3SYDn9lQqvNfJwZkz4Uk3Grpn6ieaYZ5lMR0+0ddM6okcGN7bhDhoravX/9k/cv1AEfIZk7fObCdVTgfton9GJy9r36xqmooSj41tFD0VBSYHuijqmwR2i0netmHkXdYSuRzB3KEXw14vno0h6mhQ6E3oqJebdnDyyJO/Hxt2Jj4flCKYXrbGDuqIcqYu6sYhlGyP0/bG1yaRp3IYC7JYE7Adz/zgHcaa/0sAB3dMCdG3DvIIG7OXNnp+02AncOjbt9Vhn+xDK2MndnRt1dh91l8i5F8u7J2F2chhlPYO4ycJeBuyPAXRa4i0rgzidwP8ynwF32yYjQJyPJeLvoZTKipu3OR+0yZ3eYvEsx6u5c5i4isYw93VMlEHLnwyrjCHA/6nHAnZ25s54miHg7fodPAHd4JAaB+wFc4A4zBnOOgDvsxIibEcUvi9u1+vqmqYnq6j3v9qTcT1H1qGona+GDMRm3NoRdMuhQ/E7C8PI/hbtNgs9HbRxq17fXT9XDlkc3CUF9QXjCfbZtpKAANtNJVuBOUAmTT4Zh8f4Ho3Hl/1iwylBSxmbEk4CePxhp+36LvRNZgu1ki1Qy2E5oZFB/VNid14OD3+zaBfMTm3m7cPdIXeMkTFd13QQ8/dGyMnibknNfEU3SdlwjYwy2G1C7CbKvhnGIeGvG3Am3DN46lQTucBXWh/0WnT6k02FFL4uqJ6qDrwfDRYRLaQDuxng7K22n3dLTmDtscyhZIf0hcEGnm5oqxyvzhvO2l75+V1KCabXNM80zLS2j5eVQuQ3MfeFC2G2/EJQWdg/1NwlIsQwidwi4f0GzyljUuLsWuP/TNuD+lUPA3czhTlpl0FHDyNyp54aT/AJ3bquMHSF3UTF3GbsLht2lS95dHHiXsbs4o+4SZO4ycOdT4C5e4G4Lbf9K7pgqC9xlgTufPhkxtksVd7zd9TIZJ9J2J7VIdTJtl1G7yMi7q/Qy0mbuIuue6pKQO19WGbs17m4A3K31TbUXuKPbePim+L3xflPHVATc4bLCUoQ9GNIfkvogdefrnfr29oaphu2vt2c/zS5+WYxh2JadL9aH/rYisGuJ74lF6/GANgF/O5b64fA3IOoafM5MU9OO1zuC+oKUPcqCkYKSine1jZNarR42qAG4//GPMG3fE8AdTgxfcAB3znMhh1WGCdxJ6InoOZXHfc8B3E3HAg5pO1d/1LF9++CZVo5XNs8073qzq3qiGtNq87YPJ2Xfi0i9qYjp9tFcXKU6syzgFKGRwY3tuEOGELUbOfuhTxgDJ++IuZMhdxNwPwVf0D/yysa8h/tqxtr0bVtebCGBO+wmvGMqBbizLHjy5t+I3dGdOZW5w1eD+h81GLXpyaadb3bWTda1zbbtebcn41FGwt2EsYqKO/HxUOpg98OuPWpk7rgunylzNxfLsIbcLfdNRcD9b4ICd2rHVLuAOzoN2wncyTYAhhMPReNuxtyN2J1E7ay03TJwt0njznvIXWDmLlTUfQ7YXSbvYiHvbhF4l7G7q6Lu4mTuHg/cxdQx1cXAXe6YKgvcxeqT4QTunuGTkePtc5HJOKlRqghpuzNRu8zZBSLvnsTcRS6WmXv3VMvlVEohdxf1TXUmcMeZO0/A3YGQu4m2I5/Ml/i9OtkxFR48PEeYBJg9mHwE3GGnRw9F732/d7yy8l1paXHJqy07X+wqf1O4eyQy7aaP5uLywM7FGzoW4Lz4MIpdL1h3ZNH6Y17+J9cEnY/LvN0w1fC+rKy1fTbrcRaGYUnZ97aVvHq/dy/sBrjUh2nA3VzgjowidNhqfoKkW2VsM3vYOEjUzqmRWbgQlucpI2qHegDV8VZsbFXdeOqDVFSB0x6kjVVUvCspydz6WB3fuyHsEiltX7zh+EKfY2SwHcF0A15fBeOg2aAw93kEc0cad5jtJRuOL/M/tVp9Nii+DyZ539g+nQ6rbZiMvRULBcQA3I8tgk1hFm8nVzvboYC8vUfMHbYbcstAVYHSGnI9JP1ROgbfRqeA+JHFAACAAElEQVTb9mqbFtPOtrRotXr47n3BwVB7YE5YmTtN5k6G3L9khNxt1bg7DbgbVx0ncDcexO0D7sYVdcgcuNOtMhTmTjtenKDQdtZ4u5WEOzdwt2yVcTDkbrGBqoDM3XVRd9djd9eqZmTy7mHYXdbLOK2NqgzcRQzcv5CBuxQ6ph5wCnB3M4G77JMRcbtUfuPtHqFudyJtF12wXebsnoHdpcvc3aN7qgMhd+dYZWzVuAsM3E3M3YXAnbVvKnfIHY4MVn5TlgrcvzYBd3gWJHDH48ynV8ACDhsIwy0oFRX3U1Ke5+fv3PsmJuNWUHyfX8QV76BzywJOLVrfMX/tEYSJ/0hwYXh//trD8PHlgZ0BUde0OuzJpk3wb1tmW2obJneWvZltaRkIDYUFaGiaagTu31gD7oi0mgaNfnL0TaWF3GkdUC2jdnqwnaaRWbQIVigsf9jH3Uplv0YDz+tmRMRIQcGet3s0/RpUgva+33svKQnmMDnnvm/4pdXqs2YaGRRsJ1ztRtR+8I9sg8DuiLkbQu4m4O57HK6Ft/pcaPIAXK/C3SObn25uaplOfZAKBQT2IOwgHLibx9vpi5x2TECnAGPU3eRz71qO+t/mDue+LCp6s3Pno4yMvqAgGHChMZ3uYXo6FFGoInTmTjZQZYplzEPu1NapzJA7l8bdMeD+Zzbg/lcO4M78vYp/WVx1rMB9PxtwRwcyErjTrTI05m7E7ie4aTtLvJ2raarNwN2xkLu9YhknM3fJYXd+A+8yeZexuxlzl7G7pJi7pID7pzJw5wTuIu+Yagbcv5OBu1sL3D3ZJ+OSdqluEW+3XSYjXLzdOY1SXU7bZdTusdhd7Mz9ksiYu9i6pzoWcne6VYbnvqnm3gQHgDvO3PkC7t/aBNyZGneukDuTuZudI8wF7jTgDhOCgDssAKgYLTMtUw0Ng1FRA6Gh91NS2tpnw1JuoBapywJOLd7QMX/t4T+t/uWPK3/+eMWBj5f/BOMPK3/+ZPWh+WuPLPE9Dp+mSeovrx7FMKy5dWaqvn6ksPBWTMxlwvQNlxGm/2cupQwHcP87E4Ba65uKgDuTubNidxpqp6o/yGD7EaNGBrYC1IzneXnt+vbaydrJurpnOTnTjY1Zj7MiByNDrofE34mvm6xrmGpoaplRxfZ44/PWSRh4jpG/FmASyCC2vhLGzyyDmnNnAe6d3kHnghOuw1THZNyKHoourxoNGwiDCgCbDnYQ2TEVAXe0yNmSyabjgynqTmHusFuhCECd3PJiy+vt259u3pz3PA9qIFSsXrV6sqYGFky3UgmFjWTux8yZO5K5s3RP5Qq5M4G7RY07Fbj/eQ7xdqcB95/NgTvdKmMUy5DMnfFLtua/DmRO2636ZCw43OcE3OcglrGDubsk6i4Qdne7wLug5F2KgXfJYHcxGGZkvYw17G4zcP/HXIG7pQcoBHD/lySBuyM+GYkAd3sF7taBu9wx1S0E7py0/Zjsk5Hj7WKXyYiRtjsn2C6jdheSd0GxuzBtVMUlc5dD7q62ytjXN1X8wP1rNuDOZZX53EJcjX5MIOPtBuD+LQW4HzQAd7gisLSS7ydjGPYoIwNqBuzywcjIdn17RNrNdZqLhLf9+IJ1eLYdp+3Lf/po2Q+/99oP46PlP8JH4OMLfY4tCzi1LuRCcML19PxHbe2ze97ueb19+0BYGOwYWClw9ZjAndk0lUpaScyKnNpWgDvVKoNC7haZ+34Oh4xZsJ3QyMACPEnQdigDt+Pi2vRthbtHEjfdLdg1AjPWMNVQ/LIYRs1EDS5dwbCN+Q9Vcb3E7wR0Imk7rpGhBtsNqB0H638wjAN/WHEAf0v8kcbcUetUCnA/sTywc03weXV8797K93nbnxeOFJa9L1N0K2CPw46DjYOAO1UmQ65tzgMFGXWnMfdTXlBY0G8/wBMselkE3whKdK9a/XDjRvjIjbAwWDBwlaH8wIU+Ycy5UxuokmIZesidrXWqgVAI0DfVasfUv5kL3BGN4GrVaxW4s3bfZde4G0PuSCxjxtyN2J0+Fi/mpO3CAHfHQ+7iY+7Ox+6uD7zLkndXBN49DbuLLeouHr3M3Jn7B/zH290SuH/GK3D/XNrAXe6YynPHVFng7pR4+5yAO48+GRe1S3WPeLsgMhnXNkp1Fm2XUbuM3d2WuUtFLCPukLvp55djVhmeNO6WgLu5VWauwJ3K3OcG3K1o3L+wBtw5TgrWgfuxhXCNYEmXvi/duvPF7bg4WMWwSAdCQ9u1+sTNd9cEn/fyP7Vo/bH5aw5/svrQH1Yc+GjZj79buv/DJd/B+L3XDx+vOAAfX7DuyBLfE6tUZwKirmYXP9v5emfK/RQMw+4kJMAXhBVxjAHcvyZ03sgrYtY0lSfgziKWYXRGJWEoM9hu6I9qlLbDnNyKiWlpndFhusm6utb2WXh2NRM1TS3T20tf5+94nlXwJC7rdlB83/rQ32AeYNIIaTuukUHBdipqN0F21mEE7n9EwH01HbivCOxap7kYmjyQt324tW22cboRZhuqOmxw2Gs4cD+6EHaBKd6O1jZjVVNPGSbsbs7cYTPC1oaqFTkYuff93re7d+c8ywm/ER5xMyI19wGm091LShqMjLwRFtarUkFphLlCzB0u9yGqzJ1AlmZiGbaQ+6eM3rl2adz/bKdPhgbc/84E7uZtA+YI3Kl9U00ad5rJnWTuNOzOGB220HanAfe5hdytMve56mV4ibq7B3aXybsIA+8ydvcAvcwcmbuEgTsPPhk3AO5fysBdFMBdAh1TZYG7BH0yTm6X6rHxdpm2y6hdxu4862Uuz4m5i1ksI2z3VJGF3Pm0ytiucacC98N8APcDrgfu9jH3z40+GS7gTihlYCbhesHmKhgp0GPY8/x82BCwuh+kptZO1iZsuusddG6p34mFPkfnef/6x1UHP2YB7j99surg/LWHF2/oWKHo8o+82tCM+8SD+oK2v9o+3dgIe+uUOXCHSYIbeQTcSY37vyhWGVq0+e9cDnd7gbs5bf+RK9hOGNvx/qheXrDSYXPAru1RKkcrKvTt7Un3kjT9msibkZmPMzEMe19amrttODz1RmD0tfWhvxHS9q6lfieRtJ3UyCDrvQG1E1Qd1/Ks+AmZefCxAg06c/9kFd46FQfuxha1cDlWKk77RVwp2v2yYbqhTd/W3DoDU63qURmAewcB3Ck+GRNtp67nA4y4DzpfUJn7kfmw0WBjwk6HAhXcF7zj9Q59W5sO0+U/z4cnrtVhL4uKppuaZlta4ONPs7OhcsOkwd6FaYTJhI1FytyZ3VNttcpIELgbrDLMF3UYGnczkzsHc7c0GLSdM94uAHDnMeTOF3OXMHZ3deBdcuRdDry7p9hdrFF31yrdZeDOK3D/jyiB+1c8AXexdkxlB+4/OAW4ywJ3VwncZZ+MXT6Zs6skFm+XaTtPtN3TULvimoLH4fbY3T2Yu5TEMoKG3E/zFHLnyypjWePOI3A/JDhwZ+mb+rU1jbvDzP1zU7zdMnDHE+6dy6AI6NvbSyvftWv195KS7iQktOvbMQxLz3+0Wn12ie8Jg0/GCNx/72VUyiz78Q8rDnyy6tD8NWTrVBy4F70sUvWqqsarxioqYC/iwH3hwl8owB23ixDA5QuGVYaebqYcIkmbNrVp6mfGZ2xZKcOk7WTo+CAt2L54MSxSWPiwk2DvQoWAqnk7Lk6rwxLvJkLhgi2Gv0TxouBZbu5wbu62klfK2J51IRdWKc8sCzhllLbjGhlTsN0MtVM4O3MYmTtplfkTYZUxAveOpX4n4Rup43rxjqkjhdtfby+rGm1rn424GYED95M4cIftYADuh/5kirezdQCmHkbQJ9CYO+wm2G44c+9cDmUHnn74jfD0R+k7X+9snmlubp2pHK/Mf56fdC8p7UEa/HE4Lw8qHFxx2Kw0mTuLWIYj5D4Xq8yf7aftdIG7AMCdS+NuFnKnMHfSLWN2mmFw9g7a0YdB2y3E260Cd06Nu2MhdxEzd6ljd6mQd7FL3p0VeJcAdpeZu/iY+weS6ZgqA3cBgLsLOqZ+K3dMFUDgfsi9BO52xtsFB+52+mTcu12qq+Lt4pLJiIe2OzfYLkmw3m3zkA6Fd3/mLiqxjADdU51tleFi7ra3TuXVKuNw31QaT+IfuO+3Gbh/YydwZzL3z63TdnR7j9+lf0MH7jADMHVwgWD910zUZBc/S9/yaLqpabyqKvtpNoZhURuHVqnOmATuqw7+gWiX+tGyH9Gg9E01AXctpn1fWrrrza7soqfwRWB7wcWHqwTzjaTeMFUkdSWtMp+RFm9z5v4PG9Dn59zo04y2M43tCH0aVdrwIGHpwSqGTdajVN6KiRmKjr4RHj4YGfl8y5bSd6WhA6FQtWCDQ7WHp3YvKWmyBp+3DWGXVilJjcwxqkbGEGxHqN1I1T9a/iM+llHG8h/pzJ0IuZMadwK4H4VJ9vI/CRdFHdfb3DKzc+/r4OvBjdONLTMtYQNhCLjDNkGvOZl8MsZ4O413spxT0GEEDhoM5g6bFPY7lBeorvBNk+8nl42WwVIpq3oPU5HzLCf5Ht4G4PX27TB1UE5gW7PL3FH3VCTxZwu5W7DK2Ajc/2yBtgsB3NHCY1t1UAzMlhzNKsMWcjdj7hTsTj3csB99aLTdWrz9MOMMZxW4226VsRByPzA34G670l0q2F0sgXe5vapzA+8ydhc7dne5XkYG7kzgzkvHVBm4Swy4yx1TPUng7q4+GTneLv54u1Rpu8hQOz9IfS5DfPydL+wuM3f3CLmLqnWqDNy5Qu505s51HDCPt1OBOzxyeHYwAzBvcBVgwUQNRrVr9Xsr31fWjjdMNWAYtnXni8CoayuVpxFwn+f9K46PCXaMdCgICuMRbO9f5q89spgA7hvCLmUVPIZ/3to2265vv5ecDIv6JALu8+YdJMArsot8a4w5k8iVyVuZpz34Kyr3tNox1UL7SmqwHWlkYPXBcobdeTsuDiP+g2cBb59mZ0/V1296silyMDL4enDI9ZD85/laTFs9UQ1/q47rXa0+S0rbcY2M969/Mg+2mzj7MovDiN3NrDIIuOMO96OLN+DAHb6dMqYHvnVq7gN1rzp3OFeH6eBHDGxhuJqwO8iOqSafDGUNWz2wsDP3jkXwxWHXQ5lSdiszH2eOV1a+LCraVvIKHkbxnpdt+ra6xsnK8cpnOTm4uH/5cti+RwmxjEnmToBOk1iG2T2V0jrVYauMlWEzcP+nVeDOXHgM4L6fAtxZrTKWmTsrdreO2q3Sdv6Au/ND7qJj7iLD7rJqRsbuYsPuMnOfO3OXgTtvwN1WgbuHA/fv+ADu+6UK3GWBuyxwl3S7VPHH22XazgNtFw1qdyVedxTBuyF255u5C9RAVXJiGVG3TuUbuFvWuC8wtyeIDrh/Zw242xlyt8Dcze7/v6T4ZIgbbDpwP7IAphquL6z/yJuR2c+yy0fLMZ1u664XURsHN4RfWqlAwP0oHtk25rXJQQhPfoG/WrDuyOINOHD3Cf0tNuNWa9ts1XjVs+zsXpUKVhwKO/9KAPcDKOlMUYuQyPUzgrmTyPVT5gHOHHpSafsXbPZ2dtpuDLYj0HmECLbD+oIHCYsa9t9AWNj7vXsxDNMk9Sdl3yvYNQLvN880F4wU5A3n7XqzC/6o12rhbXLOfVVsj7f6HEHbOxauw2k7GWw3oPYVNNT+w+9heJkN+CAxDL80QIbcacB9IQHclwWcgu8YGH0NHti2klfJ95ObZprSH6XDFYTrCPuICdwN8Xa21cs8zrAyd9RAFfYg7GIoIFDt66fqn2za9CA1tallOii+zzf8MjwkmC6YFq1eCz9YoJzARoctS5W5/0jg0e8JiT/t6jtglfmLA8zd/F/xD9zR2qMBd4bGnRZyZ2XuLNidYxy1Sttt8MnwDtylwdwlhN1FEHiXybtA5F3M2P0zkWF3d9LL2NVGVQbuYgXuX9gB3J3ZMdUB4C53TJUEcJcF7qLyybigXapHxdvtl8k4jba7WNruatouasJuD393JXZ3L+Yuse6p7hhy503jblvf1DkB94MiAu7szN38gM5yBPiCEm/nAu4H/gDPGiYHJhYuFiwqZY8SWUGG8/LaZtuSNt/zjbhMJNxPoOC20UiOZ7fxtwQInrfmV5wF+xxd4nt8eWDXhrBLRbtfFowUZD3OmqiuhqoACwquqgG4s1FXS/0zGceyf9tJ25HTg5Rok8F20iHTQfRHPUn0R4WN1R8a2jzTXF0/MVlbW9swCQPT6eqn6huapvZUvN2x9zWMLTuex2fdUcX1+mguwvx4+Z9cvL4D/yUApJFZRfwewEri9wBMqJ1K2PebDyp2N4bcjb9AYAbcYZI3wCR3rgk+D989Le8BXKw9b/fsfLMz7EYY1CXYoQi4w/o3Cdwp8XaWdUs73VDPL3A2oTF3ooEq7HoolfCtXxYX346La26d8Y+8AvPgHYS/DFC4e6RxurE/JAQmEwoD7GzYrEcYMnfWkLvZKy4Mq8zf7bTK2A7c/0YD7kZu4ThwZ3uxh2mVMRzOKMDdMnO3adC87bbH2+0C7hasMraF3J3M3CWH3UUUeJe+akbG7nLUXaCouzOZu2cD93/LwN1u4C64T0ZCwF0iHVPdW+Au+2QkGm9np+0XRErbHVC3S4+2uxS1SxWyiwm+8xJ1Fx1zF1osI4fceQq5O6JxFwy4k9prkQJ3rgO6+e29gbYTt+gswP3gJzAhMJNwLVBsOXc49+3u3UPR0Y8zM1taZ4Li+1arzy71O4m6gCKgTI553r8i2k64xY8t9TuxQnHaP/KqVoflDeelP0rXt7fDvodlctwI3Gk6b0Rdv2FTi3zGPGZTzlJU3PmFhXwxI9hObY56zIjaYc3CkoctBQVspLAQUezY27Ext2IS7yYinf1oWVne9uGojUPquF6/iCt4i1TVmeUBnWSLVOpvAPyBHbUTeH3p/t9RBg27I+ZuZpWhAXff4ysUXevDLsVn3SmvHm1umWmYaih6WRQ5GIkD964VsINgX6A1zxlvp9J2xpGHPN3QmDspc4fVApUn6V5S6fvSmebmfTVjipjuNUHn1waf94u8krDpTru+fTAqCsokVJpOI3NHDVTR1Yfv8D3brzgwQ+62W2VsYu7E57DE2xnA/R/2AHeu13uoi5BpleEMuZPMnYbdrZJ3VtTOStttj7fbBtyFCLnbyNyFjrrPBbuLzTMjefIuhsC7jN1diN09m7lLB7h/6ubA3RGfjAzcuYD7Dx4B3J0qcD8s+2TE5JPhPd5+Vprxdkd7pQotk3GJSYYv2u4yzt7tjsPp5N3DmbuNYhk55G6hdarpJ5oLNe4cwB3uZyQA3G1n7tz39tR4OwLu6BYaAXd4RvBMYUJg6mDO4frChip9V/pq2zaoOtdDQrSYNnPr43UhF5YFmHwp89b8isb8NYcJ1H5koc/RRT7HcLe438mVyjOB0deQ/by8enS2tRW2FKwOBNwPU2LONJ33N8QxwgBejez1P4yzPfUM9AVHl1RasJ1qzUbNUY8YUTusSljXsBVgM8HWhAo0GBXVrm/Pf54PhRdtQ2WPcvvr7c+3bBnOzS3d9y444fqGsEveQedWKLrwYLtJ2m7SyHxs6itr4uxGwv49Y1CxO26bIUPuVOA+zwDc8Vc1VipPq2J7Wttm84bzdJiuXavfXf5255udUB5he+LA/ehCsmMqAu5m8XbzFct1/GEyd9gsOHM/ugC2JGx5KJWpD1KrxqvG9u1LzX0QEHXVL+KKIqY7On0Irv7tuDj46QElEKa3i8LcqTJ35PGnvtxitXWq9ZC7ZeZuj0+GN+DODLmjsx015G7O3MmcOzXqzjgnmQ3OcxXraYztDOd84O4S5u7UqDt/2F3kgfdvPC3w7nLsLkfd+cPuUlG6y8BdysD9SycCdzfrmPqD3DHVrQXuHuCTcVm7VM+Lt/MgkxEzbXdFsN39ObtLyfvco+4Ot1EVjrm7a/dUqYTcXdg3dZ45YRIpcOcOudvN3Cm03dQxFQF3uEPe/zt42PBE4DkijTvMLVwyWNJ73++dbmoaio6+Ex9f9r6srX3WL+LKCkUXmeOevxYGBbWvP7ZofcfiDR1LfI8v8z+1WnU2MPpazrZnrbOt7/fuvRUTAwsZVgEJ3MmQO1UsY2Du5oKRL1ixAvUpMlC7WbCd4ZAxBNsJXTusPljmsImhrPaq1T1KJYz+kJDhvDwMw0IHQqEIoA2i6lE1t87cjIh4nJUFswHPzjvo3PLArqV+MCEdC9Ydnb+GMO0wgu0G1E7j7EvMBwW7k8zdFHI3A+74bxKgXyNYpTobnnpjX+1Y80zz5qeb99WMxWfhoXKo23jC/bg5cEc+GXLdUpYrnSbSzkTGqLsZczfK3NErNIi51zZMtmv1G/MfhiYPwIAHo9dq7yUn92s0ML1QpGENQPHAmbu5Vojq8f/KnpA7F3C3EnI3j7fPEbh/Zu2Fn28tAHfzkDtVLMPK3Fmxu/Uxf74dtN02n4ytwF3qzJ137C5Kz4wceBc/eZexuxx1twe4/2OuwN3S9xcCuP9L3MD9cxm4iwC4yx1TeQfuUha4yz4ZccbbZdruTNouc3bnk3cxR92FYu7ilLm7JOR+XhQhd8GtMrb3TZUUcMeZ+9e2htwNzP1Lm1E7lbaTPplvP0Q3wAi4wxNEGnfkCYGVtvnp5pbWmdqGyXclJbvf7i6vGg2MvrZKdYZIc3cs9Dm2YN3RBeuOwNuFRKp9qd+JJb74gHeWB3R6B50Liu/DMCx3OHeqvr5XpYIFeIoA7nCh4LKgkLuBuRMozZRzN7JXErsjnGF2XqGcSL7mQu2UYDuJ2g3B9oUL4ZHAqoRNcz0kZLyysnmmGcb7vXvvJSXdTUycbmrKfJwZcj0EqhDsbigaCXcSqurGXxYXw5PKLn7mo7m4QoFou5lGhhpsJ3qiItRugOwfLvmOa1Cwu1nInQncF6w9At/Uy+/kavVZTVJ/03RTzrZn/pFXI25G6DBd+Wg51EbYhrBfYC8YOqYeNAF3tFzNaLvF8xGNucMXgS8FXxAxd1gwsG0Rc48ajGqcboSpg9WSvuVRxtZHWh2G91NNS3ucmfkkK2soOhrqOtQVvHfuggUmsQybx99C61Quq4xNzJ1B2+0C7jY27GUF7lxWGVPI3SiWsczcaZIZR1A7B21njbcLDtxtFssIxNydbZjhFbuLK/AucfIuY3fXNlOVZCdVVzD3D3iOt7slcP9MysDd1R1TJQrcP/7xYw8C7rLA3cN9Mp4Ub5equp132u7cYLuM2l1C3l2il3EzsYwcchc25D43jbsLgLtDVhk6dmcM1lt38v6cFLijG2B4wIiiIo07zBueWT6zMrgvGNlgmlqmaxomsgqeqON61wSfN8rKcea+0Aen7fA+fGR5YKeX/8mlfifg7fLArrXB5xM23YWvkP4ofbatDUoILCW44DhwX7ToqAXmTkbdKWl3KmShHyY4mCYTtR8mUDsKtsP6goUJ+6kvKGi0vHzbq20b8x8mbr5buHsEHvOLggJ4m/ogNXIwUtOvgZHxKAM+om9vr5usa22bDYi6ulJ52kDb1x6Z5/2rQSNjCrYbHDIsqH0xjG+Ng/ijCbvTmbvBKrPipz+sPGAA7mt+XbDuCMw5zPNq9dmg+L52rT45574ipjtsIAwe5Oanm6HUwKaDPQKLH3VMpftk0Fplo+0ffs84OhmZO9LLmJg7KXPvwF+kgYIA31fZo4y7HVc4Utg621pdP9HcMjO2b1+7vr1stKxxuhHT6d7u2QM/r6B+wFVAYhnW7qlmIXeHWqeaxDJU7G78yF9sEbjbCdw/ZwJ3W6wyrCF3o1iGytyZ2N14nGIfls5hXLRdYOA+95C7g8xdsKi7W2J3yatmZOzuKuzuRlF3MTN3GbjzB9z/IwN3a8D9Oz6Au0g6pv4kd0yVMnA/6VzgLsfbPSPe7mTaLv5gu8zZ3QC7e4pYxnNC7jJwFwy428LcbfydVDPazgDuqG8q6QmBWYULBKsu5HpI+qP0irGK1zt2NE43puY+8A2/vFJ52sv/5BLf44vWdxAamWOLceB+fKnfSTS8/E+tUJz20VyMy7qNYVh949RYRQVsOFgyJwngjl89uGKIuROA76DRLfOTOXZH5P07VmxEvdM35+w0gQzClCjVjqN2ojkqLFXYVTfCw6fq62eammrqJ8JTb8Zm3t5U+GTH3tczzc1l78u2v96+682upummtnb9dFMTPJetO1+Ep9xAk4Bo+/y1hEZm9SGTRsbokEECmQ9J1E4Q9v+PbRjIuxlzNwfuhMadCtwXb+hYFnDKO+icIqa7tPL91l0vhqKjsx5n6XRYSH8IFAG4giRwNwjcafF2c9puvQ8WGXUnmTvZQPUobiKC7Qy1Amoa/JiIuBkBK2f3292zLS01EzX5z/MT7yaGDYSl3E9pbZ+dqK6GWgi7H7XPPcjonmoh5G5X61Qz5k4ZfxEYuNM797IBd5aQu23MnRW72zUsHOA4abs9wH0uIXd+mTv/UXfpYndZNeN88i4d7C42w4zM3C0zd6kCdx4E7jJwdwpwd0HH1P1yx1RZ4M6zwN1dfTL2xdvPiaZXqlPi7TJtl1G7S8i7zNydydw9LeRud+vUuVllHNa4OwDcTczdVcCdGXL/ym7OTkXtpL3dcC9tDtzxvqnGzDISc8OVhWUcOhDarm9/kJp6LympYaohJuPW2uDzywM7l/qdXLLh+OINHcjbvnjD8SW+xwmfzMllAadWKc9sCLuUknO/drJ2sq7uZkQErGtYGnCRTddz8WK4bnB9fjVn7gcoQM0MgTEhF3mHbrwChraoBLIk7TF4pJ3ojAprCpYbrEdYy7CNetVqDMM2FT5pmWnRavXw/mxrK7xf+r4UF7NUjW7d9SJ32zAM+JyETXdCkwd8wy8T3nY847/Qx0jbaRoZrx8MrnYKajfh9UXf0AcVu5u5ZYwadxbgfhQmHB4GXAtlbE9q7gN4wMO5ua3tsyn3U6DGwl6GnQW7wwTcqT4ZMt5ujbbTD1NszN0kcz++BHY6FBkorWEDYVtebBmvqhqvrNxW8gomt/hlccTNiJihmKq68ZmWFvhJAiXkuDHk/rMx5P69XSF3KnDnCLnTsPtf2AbNJzNX4M7WN5XFKkN5cegnSsidi7nzg90tnt64Dn+stN21wF1Q5u5C7C4H3mXs7gbYXTxRd6fqZZzI3GXgLgN3twPuP8jA3WXAXWwCd8/1yfDXLtVt4u3OlsmIkLY7RSMjo3ZxYnc3Ye4iEctcsJu5e0jInV3jfpxd426lb6p7APevHEXtlGw7irejO2QzfvrzH5CYm5SEwHqAzd4y2zKcmzsYFVUxVtHcOuMfeWWV6syygFOEtP34YgK7I+C+1Bf5ZDpXq8/6R16FT057mFbXONmrVsOqhBWBA3d000RccLiGZANV5JZB8A4ROhLDWb99pqSDzUTtBGdHkB2/IYL7nVWrYAfAnoM69LK4uLJ2vGq8KnQgFP9Z062AdxLvJu5+u/v1jh2YTpeW9zAs5YYqtscv4oqP5qK3+uwKRRdS2C9Yd3TemsN/Wv2LQdpOMbYbg+3mqJ3J2dmwu4m5kyF3o8YdAfc/EcB9oc/RJb4nVihOrw+7FJ5yY3PR07Kq0an6+sKRwphbMVAtceB+0gs2Bdxs0zqmMuPtTERnduBiY+4mnzuh/oejAblmoFZAtYy9HQsT+Cgj482uXbnbniVuvrut5NV0Q8O7khL4+LvS0hvh4bAkYK+TIXfkFNrvUMj9bxZN7pbHXzkE7kIAdy6rDItYhsLcD3Ezd+Opa95cOLt12s4rcHc9cxc46j5X7C4H3kVJ3mXsLkfdXYjdBQbu/7QHuP+PDNx5AO7O6Jj6tbME7kICd7Mf3U7vmOoy4G5Dx1RZ4C77ZHgG7oLG23+zH7g7XyYjbtouOGqXubkosbvomLt0Qu7CimWEC7nz3TpVUKuMewB3dub+lZXbcqbpnJW204G7MbA87/A8MrAMi3Pjw42NzdNaTNsw3VC852VwwvV1IRdWKk8bmfsJIttuirevUHR5B51TxnTvrXzfrm/HdDqoELC4OkngvmQJush4yN0oc6dRP67b1YOMQYWSJnvMokXwXeA7wnqHvYuqDr7dN2yAt1DAbkZEYBhWOV6p7lXDdoOVDCscCkLSvSRMq32Ylja2b1/6lkfK2J71ob/B01mhOO3lf4oQ6RhapJpJ200aGWOw3Ry1/z98fI2PhZSBf4TJ3E0hd9IqQwHuv8xfc3ihzzGY+dWqs0EJeFvafWP74InANUItapU9ShNwPzwfdUxFAncznwyDtls6eVFPVUbmTpO5G34xomsFlMrCkcLRiorBqKjnW7bkbhtWx/UGRF0NSby+qfBJZe341hdbpxsa4FrABYLti4fc//SnnwmhkKF7KlvI3XrrVIshd6GB+3+MwN2qxp3WOpVTLMPB3Lmw+1yGhZOfU4G7kMzdyVF3UWF33sm7VHqrythdZu5uydxl4M4PcLe1Y6qNwP0LTwXu4uiYKgRwlzumSkzgfso+4O6uPhnPjLc7QSbjZrRdRu0egt0lx9w9vHuqGELujgP3I9aBO9wF8QzcvxcMuH/lEGr/1pohxAhPYbpgPuFCwHWHbV4zWdM22zbb0oJh2JadzxUx3WtwBt21LOAU0SgV75WK7O3LAztXKk+vDbkQTLDguqm6uwkJsHtgBRmAO+X2qoOwyuCXi7xQtMaPHDeJ7PeVhD3GkGpftgy+I3zf+ykp8DC0mHaqvn44N/dGeHhfUFC/RjOcl9c03RR+IxwqAOwIWJywaOH9hqmGh2lpN8PDR8vLswqe+EVc8VafWx7YBc9u8YaOhT5HjRoZurSdJdhORe0LuQcVu5tC7hzA3fsXeACL1h+DaV8bfD5/x/PSd6WZjzMn6+rgCeYUP4MnG3MrBp4RFbgbOqYy4u0sC5L7OGa2eEgTEVUsc2Q+bEnY4FD36qfqp+r+f/be+61tNH3ffn/a7+5ndmanZdJ7paSR0EzvnSRAEnpLQiihhF79h+zs7uxOz5QkM+m99zITCARCeq+QBEJHx3tJsmXZlm25S7bm0MFBGAPW89zPY+n0xXlX4WWnJzd3fe7zxf6XFnidWeh9dmngleSsJ83jzXUNo9c8PbF/oB4UIXeme6oy5P6T3pA7Z+tUY0Pu/9QtcP8XRduNA+4ffKAHuKtZZXSH3Hkyd0th932m0nbjgLv1Qu7mMHcJuzuHakb4nhkJu4tCLyMc5i4B978ZnnwJuEvA3S7A3ZE6pgpV4C75ZGwWb7cMcLdZr1SJtkuo3XGxuy2ZuyDEMsLvnmp74H5acMBdj8Z98gFDwH2vMID7T0YAd+0rcPYVtS43iOKClr5M3UUaQhQhd2UnTMwRCgbLPOpOVFPz+P3Y2JG6uk0lb5cFXV1IKVbmeJyksPsJfMTn+MpCr7Pu/hdDErsHt24da2zsCgpCvauA+6xZjMNdMY0aF27M1Rl95cVcZzGVQmXkj7K+V/VdrIao1zw970RGNo83Vw9Xp294mZL9tKl5jCCIe7Gx92Ji5IR81aNVvtd9sUtgWeEc8dGvw6+4vP9BfPztiIiWlvHwNbfdZBdwRlR/1CN0sH3SIqVGZt7vn81lNDIawXZO1L5N62Bjd1bIXWmV+XQWC7jPVwPuc5afcPO7mLu5ByeIc8GZPklOzivsxQmufbYWyx9DhuWgAu4aPhlWTfIlZ3qYOy2WoULu+L347QkPE+obR/uLi4v6itZkPHbxPU+/GYNPfCKvb9n6Hs+zzdsb+w3m6zAVcsf62013T9URcufVOtXIkPs/DXVMNQjcv9EB3HlaZTRD7toydzZz58Lu+6yD2vXb2zX/1sSCwN145v67QJi7lbG7s5F3Jwy8O7Bhxhmj7tZk7hJwFwRwN8UnY0vg/rNzAXdeFwuSwN32wF2MAvdTRgB3W8fb+QN3Kd5uS5mMSGi7YF3tntc8LXU4MHYXEHOXuqcKOOSuE7ifMM8qY2TfVDZwx4WNpYC7BpuxFHDnw9yNC7Zr0PadqitVOq2sCLkfmILBpMUyqCjsYARBDFZUDFdX19QN+8feWOx/aaH32fkrT89dcWruipM45q08Nd/z9CKfc0sCL0esuU3I5W83bWrz9kbNonxQC5hzxdyypvSYEqzT10ookFOUbx2VqCpYFxesD6xp7A1YYfgKHoCaOsG+yEJxzZ1LB9sfJyUR1H/1o/VZm14tDbziG9UemXQnu+D1QFnZq8zMsoGyqLtR/jf8cV70CyI+z3mdg8c3jDbgY1FZn0fIHzgdirYb0Mh8zKbtTLBdHbV/iGOq+sHG7tN/0gi5s/qm0sB990QFcD84ffGROR4kcE/Jelo5VHk7IgJj0urlNVpf3zjWGHIzBEsYo4wloN0xFTOuFm+nS1FPEf6sU0nE/HmERsgda5+uFhQASiUq+a6730WM5HzPMy6+51eE/okhrq4b7pDJsFFhyo4qQ+57mZD7p5+yQ+7fa4TcNVqnmhpy/yeXT8ZM4P69DuDOaZVhh9w5xTJ8mbuR5J0Pajcn3m4p4G495m6aXsb+2F0KvEvY3R7YXfRRd8di7v+VgLsE3EUG3HcIA7hLHVNN7ZjqkAJ3ySdjI+Au0XYp2G41ti4CCi8Y5q6rSgUtlpFC7oIKuRsJ3HVaZUQI3DkuvFl4VHWpvJ0j2M7QdjXgvvsLunUqGXKnOmFiCjCbqMbQ7lCCIBrHGseamorL+2XR7e5+F0nm7nlm/srT5OF5eqHXWVff88uDr6blv8jd3NOTm4v94DwN3OfNO0kzd42LIwqU04QdlYuVgeXY6ul5Py7u8Zo1tyMi2n19cdyLicFvb2gcfZ6a+mj16lYvLywRfIvir/WoCkVdYwO4Gx3dMNqQkPqgonqwbrSur6hobc7T2HX312Q8Ts9/UVJB9hfN6clJepIUfz8+5l5MwoOEjW824oc/iI9vHm/evOVdcXmfV3jrAq8zs5Ydn7748BTXg5MXUbRdt0ZG3diuFmznQO3czF0duM/kAO6TF+2b6nZwxpIjczxOuskurM54RMjlnQEBGDG8now1NuIssL1jSWKlsIG7QuC+8zO1eDuLthskW7qYu0Lmrh5yxw7j3ead+SrzZWZmY9OYZ3irm99FV98L7v6XVoZeS8173jLe0i6TYQYxfXT7XCxTpnsqqpIMuX/8MTvkbrB1qnbI/Z/Gx9t1AnclaeAF3I2xynCG3A0wdz3YXR3B7+ON142i7eYDd4uH3M1l7k6M3Z0z8C4s7G5Nt7sUdbenXsY6zN2Jgfs3IgfuP5oF3E3wyZgL3H91JuAudUx1FIG75JPRD9wFHW8XnUxGDLTdvqjdLoRdWPzdothd3Mzd0mIZpwq5cwJ3BXMXhsbd6sB9J2/g/gu3MtsE4M6TtutKtWtfqdIXnGoh90PTMMiYFMwyqtr/hn/q89RXmZkD5eWVNUNe4a3ufhcX+Zxb6HWWlnTjcze/iytD/0zNfU7I5fdiYrAcUac0GaeZu+pyRplkR0VjYbV6eT1JSnqdnf14zZoX6ekbejeQEfXG0fHm5mfr1jW3jMc/iC8fKG8YbSh9XzpQVnYrLAwLl71csDc8WrWqvGqAbNZKELH3YkO7Q/N78+tG62pHaisGKwrfFeJ78QOLy/tr6kfkhBwPG6mrIxuoVg6MNTZGJd9ZGXaNTmST2Xb3w0ppu0oj89kc/f1R9dP2H5UHB3NXhdy5gfveyS77KeB+dO6Kk66yC4FxnXjmd6Oi2mWy7tDQ2vqR5CfJmCYMLtYIyp4G7poCdy2ZjK7+Adq3b2zmriGWwTIhQ+4HpmA9Yl1jawq+GdzQNIZBTs56glJZHnx1efAfPpHX1+c+G6mpwXPGTomLR1QCljuW70GWWIYJuW/TCLnTsENv69Qv1WE6r3i73o6plgXu2iF3/szdFOxuGmrnSdutBNwdg7lbH7tLnhmrkHcJuwseuzu50l0C7g4N3LfZGbgbF2//1TifDDdw3ykBdyfumCpmgbsUbxdXvN0Jabu9ULsAIbv94buVou6CaaBq/+6pThJy59869YQ+5s5tlTmqztxN6JtqP+CuxkWMB+6czN0o2s7Wteu5QFUAd6p1qirkfng6xhzThNlHMft3+NNJ86ra4TWZjz3Dri32v+Tqe97F5xwOV9mFxQGXvSPampvHCbm8KzCQZOKurig3uoKYQDqZZ6c5u6fnvdjYpykprzIzC94WZG16RbrI5fLq2uHQVd3BCTczNrzEb6wYrMAXi8r6wlffSsp8gq+MNTTcCgvD/kG+2C5Zgk9uR0SQX29sjLkXg70IC4qUs593xSbge903/Hb4umfr8IB3BQWZG19Fp9wNSbwZGN8VENfpF9PhFd66LPgqnv98zzNzPE7MWHKUbJHqcmDSwn2aGhm+/VG1TTI/ah0Mc1cPuav6prKA+0ISuONZzVx6bN7KU25+F32irm8sfvM6OxsD+Gbjxi39W3yu+2DtY4lhaWDuMImoZDZwV/lklPF2tcLjKjaNSuNk7nTx4HfRNUOaiE7Nxf4W2h1aP1qPMU/Ne45xlkW3B8Z1Zmx8+bag4Ia/P6YMuyDJ3OfNO0Yxd6xORiyjbXLn2zpVPeT+T0O0XdsnYyxwp5k7A9xVfVP1W2WYkLt691TjmLtFsTsf2m4icDfKKmOqWMYE5i567O7wgXcRemaEid0FZZhxDL2MvZi7BNxtC9y/l4C7fYC72iuzKDqmOhJwd3qBu7P4ZMQcb7e2TEai7Q7M2e1D3q0UdReXzN35Qu76gPvZBeaH3O1jlRE8cOfkEEYBd85Lbk7ph8q1vdPwFSl9gvRVpUbIHbOAucPso7ADOwPTXqQVvC0gCGJNBsnclwRcdve76OZ30d3/0rKgK7Lo9samsfelpe2+vlhYKGqyGJV1h5pF7WONdvj53Y+NfZ2dvfnd5nW5zyqqB8dbWnIKXuOTwr7Cd4WF+PkFW96NNTaWDZThf6VkP10e/AetrAmM66xrGMUDugIDWz09cXQFBQ1XV4/W1YV0h2AHQOWjAulyQj3jK+G3wvH4pykpz9atq64bDk646RnW6hHyB/2GAd0DdvbyEzOXHlWTtqs0MnSwfYcy2K6hkdGg7QYT7mo5d0XInTa5k1YZZd9UJXD/QgHcD0xzPzxr2fEFXmeWBF72j+lYnU5aZXry8qqGqiJuR2AjxRBjTTHAXdUxVemTUcXb6cLj16FXm7nT92IKsYwy5I6yoe3/pIno9DxscbJ2GaqlqXm8RU7Erbsfk3J3Q/GbF2lp3aGhHTIZJg47NPaz0xRzp2Xue7RD7tTtLB1yZ4A7/5C7/uNLQ8D9K13AnWLuuoA7p8adZ8idkblzMHfd2H2v9VE7H9rOE7hbKeRuGeYuYXfJM+OE2N1Jou7iV7r/f5ak7dYD7v+TgLsE3G3UMVUowH2vucDdgTumOpTA3aI+GT60XZQ+GdvE2x1A3W4F2m5j1C5qzm4H8i4xdynkbsfWqTbUuNsauPMRuPMG7tyX3Nrx9u0s6QdD27UuNT/fpXkVygB38trvgCLkjgHHvGAqURgobJ/rPtXD1bSSJSmTFIYsC7q6JODy0sArHiF/BMZ11tQPv8rKavP2xuLDUlBUt7s7Vg92iM6AgIeJifjevMKerdWDI3V1NfUjG99s3Pxuc+1IbfTd6KCuoOQnyRkvMxIeJETeicx5nfMiLa1xrNEz7Jqb38VlQVe8I9rCVt8iAfratV1BQTeDg3vz85vHm8NuhWEnwS9DoZLcmbrGQ3FiL9ryfsvLjIzu0NAH8fH4Rv/YG3i2brIL2qidDLYvooLt83dr9UfVDLbrpu18mLsu4P6LGnCfRwL3SQv3TnE9gGc4x+OEi+95n8jrGPnC0ncYQAxa1qssDBT2Xhq4Y1GgzhngrumT0Y63s2tM9w0gU3VqzF0plmG6p9L2f9JEdGY+tji8eIXfCs/rzWsYa8gueL1l63tMxNOUlBfp6a+zs58kJ2MGcdGEXQTrG4sVdySoxJ2skPuPVMjdiNapWiF384H7fw0Bd/q+XAO4G7DKaIXctcUyRjB3Fnnfayxn54HaNWm7tYG7bZm7OVF3QWF3gZN34TdWFSx2F5phRtLL2Iu5S8BdAu6WAO626ZhqE+D++W+f8wTuUsdU8XVMFarAXYq3iyjeLlyZjJhpuxWpd6uRh+jIu+Wi7kJj7g4ccte3tYoz5G6yxl0gwF2DoJjYMVW/4mObPr+2Svex41PGss0YY1QntZv7mlMF3PdPxrjRIXdMAeYIc4raQD17t3mveriKIIi6htFVaY98Iq+vCP3TI+RPr/DW0FXd+PrDxMQ2b28sa3ptYb1ig+kMDHySlLR1cGt+UW/jGNnkM783P/lJcuSdSK9WLyx2rCwsAUV5Uy/6+ObAzkCC+q+4vC8grhO/yy+mIzjhJu2WeZCQ8CQ5uWG0IfZeLJ4VFj5+Ap4kCo++9MISiL4b3dA0Skaqvbzw+IamMfwQN9mFBV5n5nqcnLXs2IwlR0iHjOsBrf6onMZ2ddSuk7YbxO7qwH2aLuC+iwLu+/D08Dznrji1LOjqlor3ZQNlmS8zm8eba+pHSir68Yn/DX+MmxpwV3ZMZftkNOPtTI3x6OOlydx1d08lxTInyXdoMKdebV6h3aGY6OK+4roG0p6/5f2WvJ68TW830TPbV1SEDRtbBZYyR8hdaZXBvS/P1qn8Q+5fsjA9d8dUE4C7usb9Jwa4M1YZirnv0B9y18/c9WN3dfiu7+DB2Y2Kt1sDuNuNudscu0uBd4EE3h0eu38vYXfRMnerA3edtN1KwP1rCbhbC7ib1TFVRMD9d0cB7vttAtwlgbuz+mSkeLuz0HaxcPZWKx8CJ+/iYe5SyF0cIXfTrDLH9DJ3M/qmcgP3fZYA7jssB9y3GQHcuX0yrJ6W5HUmTdKVV4b02XFwLw3gfmAKhpE2uWNSMHGYaFQOShp7Rcy9GDkhbxxrTMp87B9zwyfyuiy6PSr5bnPL+N2oqOu+vuRGtXJlm7d3V1DQs3XriJaW3J7c5vHmpvGm+AfxITdD8EOw6FDk+JlkaZ2ej4Khy4O+cEIJoYaxba5+vLquYYQ0zFQO4NclpD5Yk/F4a/Xg6+xsgiCSnyQHdwXT1B7rDsVPFzC+F3tR3UhdQ9NYu69vh0w2XFNTUtG/PPjqAi9S1z5z6THGIaMwtrOC7Z8wxnY+DpnpzMHJ4rWxO2/gvmDPpEX78CRnLjk63/N0UHwXIZcH3wzGYL7OyRlrasJQ5BX2bn63GfNCAvfDJHDHJJLAnRG4q/tkdNH2v2vpDLiZ+8/qzF0r5E632yXV/1TIPexWWObLTDxtHPiQ9iIt+m50YGdgwI2Akv6S6trhR6tXY7fDcidD7pTJHeuJO+TO2TpVK+T+pXnxdtOAu2bfVINWGVbInSdz14667zEGmpt87LE0cBcmc3cw7G478u48nhknwe6SXkaozF0C7n8zn7aTwP07Cbg7DXDf5TjAXeqYKg7gzs8ns+DsAl60nT9wt1K7VEeKtzsobbdBsF3oeN3KCN7BmLudQ+5XxBNyPy/WkLtlrTKmAPcDAgDu/ATu+q66uYA7u12qRryd6YaqOFNdzF0buNNWGcrkjmnCbNIgG+WNNR5yM6TgbYGckKflvwhNJNucJqQ+IOTyO5GRNwICbvj73wwJebp2LUEQVcNVZQNlm95uCu0OpaPoKH78HDZnJ6ce040pxsxSE0r+3uOz8AA8GN8VfTc653VOxWBFc8s4jtKt74dravJ681Y/Wh1+K9z/hr9Xqxe2EXohY+sI6AxY+2xtSX/JSF0dHt/QNIbvjUy64+J7fo7HyZlLj05zP6wn2E47ZNRRu44Y+3Rl11OtQ53Oc2B3/cB9Ahu4Lz26wOts6KrugfJyDOlwVVVXcDCGN3dzT9amVw1jDdiXaOCOIsckqjqmavtkqMrhoO067hO1mTsbuKPg6ZA7Y3LHc8BU0hMna5dt6N0wUlv7fP16uZxI3/ACTx7zgvnCzhzYGTje0tI83tzq5YUdAtO+b/JkrDwsLCwjVDTP1qmaIXceYhnteLtFgDtH31TtkDsLuOsSy3Awd91R9z3CoO0WBu5mMnc7Rd2dF7sLo7GqhN3FiN2/NRu7Owlzl4C7uIE7n78ldBzgvkMkwH23SIC71DFVPAJ35/XJWDnebs9eqQKn7QLk7K0CPgRC3i2kl7Ezc7dm91Qp5G69kLvF+6baGrhv5wLuv3AAd25CsE1fE0srAvfd6g53deBOWmWOz8b0YaJRG6hArAKscf8b/ilPU5rGmnILe+LW3U/JfjpUWXk/NvZuVNST5OThmpqakZrq4er4B/F4JBlpv7IURa5C7SeVkXaKtmNmyXk8NI2ZMtJPcmwmGXU/74L17nPdJ+RmSPz9+LQXaVsHtzY2jVXWDNWP1jePN29+txlfTHqchN+V/To742VGUVnf05SUd5s3V1SRvVjxZGLX3Xf3vzR3BU3bD3Ea21nNURWoXa+oXZ22K7QzrIPB7srHqzH3abqA+w4SuM9VAPfJi/ZPdTs0c+mxhV5n/WNvEASBk2rz9sZu0eblhX+ONjTkvM7BwGIYsQowdyrgzuqYqmZvV4+3G0Q4asxdWyyjDLmjtBRWmWOkQB9FsurRqhY5cS8m5kF8fONYY/z6B6iTpubx/N78oK6guPtxxeX9OIV2X1/sLljZmHbaKrOT3Tr1ww+1W6fqs8oYCrl/aWXgrm2V4R9y58PcbYPd9xhJ23UCd3uE3O0bdRcWdpc8MxJ2l6Lu1tfL2IC5S8BdAu7W6pgqAXfTO6bukTqmSgJ3ySdjq3i7kGQyDkzbHRCyW468CzDqbm3mbmexjDVC7pYG7mINuWtYZYzsm8oG7iRzP8BhlbE2cFfLFhrpkzFw4W3I4c4B3PcoLvw0gbvGdSaXUoYN3DHFZMj9vAtKF2sK247/Df/Y+7FlA2VllQM5Ba/fFRS8SEsbrqlpGm9Kf5kecTvCr8MP+wkejFWAcsX1A34CWRsoBtbsk8D9yAyStlNzRE8HSW8PT6P9JFhQ2BsDOgMSH5JtV3tyc0fq6tblPEtIfZCU+aS4vI92gg9XV78vLcVRO1I7VFnZ1DwemXwnbPUtWXSHm+zC3BUnZyw5SmtkmGD7Z3N/Uwu2s1E7SwvDOtjAXUXbSVw+41dFe1V2k1XFT1OPuk8zANw/n/s7ntvEBXvwVKe5H5q17NgCrzN+MR2k97ywENsbFjd2wTcbN26tHgzuCsZyxhhiAMnR2zORrNjfP9cWuGvH23mSG03mThUeCpttckcJ0VYZpmNtw2jDy4yMDj+/2xERNcM1IYk3vSPbAuM7m5rHRuvrB7dubWgaw1S2y2S4rlSzyhjZOpU/c9dF2/kAdxVztxxw1yOWMYK5s7D7HmugdnNou51C7mYyd5tidxt0VXXKxqoOiN0dPuruDMxdB3aXgLsE3IUB3Hns/Ub5ZLiBu0HaLhbgvldkwF3qmOrUPhnniLcLUSZjUdpuPY2MU3B2S8B3x2TuwuueKoXc+YTc+bRONcUqY2zfVC7gjisc6wJ3EwTuhmg7R8hdV9NU/Q53LeCuoO17JtJXhnS8HcNIAvejSqWMMuFOA3esF+wPvu2+Id0hCQ8TcntyxyneXfq+dN2zdVF3owI7A73bvLEJ4JF4PEnbz6nTdmq68Qn+yQbudM9PjDlJbw9NVfhJqH6tiQ8T6xtHn69f/yA+vr+kJCX7aXBClyy63TeK7Kcauqo7OuVuTsHr+PUPVqc/WpX+yCu8dbH/JRefc/NXnp697Pj0xYenuB6ctGjfRM1gO0vXrobatTwwbOY+/ScWbScJ+yczt5N9VpXHxzN1EXx1dj+dDdy3q4D7/N0TF+6lgPthGrivDLvW1Dz+dtOmVi8v7H/XfXwGysvHmpqwXWOIsDowayhsTCVGj+mYqi1wNwG4s5m7tlgGv4hpnYoZxFRilr1avWrrR54kJ2Mnvh0R0dA05h3R5u530U12wSPkj+SsJ5tK3taO1MoJUkOELQ3lgLWLFamwymi1Tv2WR+tUDeb+pTZtNwTc/8MPuH+jAdy1+6bqtsrwD7nrZ+76sbsJ8H2PqbTdWsBdgMzdTthdCrxL2N1u2F1UUXdR62Uk4C424P6DBNydEbhb2CezT+qYKniBu2h9MlK8XRAyGTHQdifl7ALB7mYzd3aNiUUsI4XcDYfcjbLKnLKWVYavxl04wN1QvJ3Pbbp+q4wCuFOhYybkziB1zbNjLi/3KFPwOuLtmDLMJqYeNYOaRP1jqXq3eQd1BcXci8l4mdE41kjG3GuGCt4WrH60OuxWmF+HH/YuLF48mDTJUO1MyTo5NY+Utp+YTV9H0TWAicZUMsCdngvaT4LH4Buxmax/tr6qdujxmjU3g4O7Q0PfbNyYufGVLLrdI+SPpYGXF/tfcqcPv4tufhddZRcW+Zyb73l6jsfJWcuOzVhyZKrbISbY/vm8XRoOGXUmzubsPyoPNnNnxdsZ2j6LZuX0QUfmtVPz3F4a5udQyH7HZ3NUwH2K64Hpiw/PXn58gdeZZUFXk7OeEHL5zZCQG/7+9+PimprHo+5GYRvBKsO6QLWTb1ewgbshgTsHsNF9O6li7sraU4XcWVYZVA5WOqasdqS2arjqbnQ0QRCFpe+WBFymZwQfMV+hq7rxgIQHCcPV1dhTUQhYx1iajFVmOwXcf9JhleFsnaoG3JXMXe1Qf4AabTceuH/LujXXD9yNCrkbZu56ou46yLv2DeIengcP2m4CcLclc7d71N0ZsLuwAu8Sdpei7g6ndBclcNc3ABJwNwq4/2RF4G6cT8Y2wP03iwF3B+iY6qjAXRK4Cxe4m9ou1aHi7YKl7RJqFwx5F47SXThiGWGG3E1snSq8kLuVrDIW1rjv59C48wLuv3MAdw2awg3cf+EH3PnRdg7mrgy5K66Tt2taZRTMfZeOi0lO2k7F20nafnQm5gJzpKLtF93IbPu1lbRMpri/mJDL+4qKnq5d+3bTpqxNr3I397QQLanPU8Nuhfm2+7IT7nRF0Ql3hUlG+eYKfpECuB9UzRGeBp2VxnLLepVVVTv0aNWq6z4+OG74+/cVFhZseesV0bYk4LKb7IKL7/mFXmfne56et/LU3BUnZy8/QXH2o9MXH6YcMkpju1ZzVE3UrsHZp1CHOnZnA3em06nCvT6H7HdKH0rsboi5M+CeysjjW2jg/sX83ZMW7pviemDG4iNzPE4s8j67LOhqSGI3QRBPkpIexMfjE4wzXhew0rGmMFYMcMcthmbHVFbVGQHcv+fqoaoUy2iH3GmrDP02CXa/rYNbURIjtbWl70sTUh9gjmYvPz598RF8xGR5hl1DqVQOVTaMNWCrxvaA1YxlSltlfqOtMqzWqTytMprMXfehxyfDF7ibbJWxKHPfrQeF8wfrpqJ2A7TdosDdXszdgbG75JmRsLvFsbukl7EGc5eAuzMCdxM6pgoNuNtN4O5AwF3qmKqHtusE7sIUuJ+1NHAXo0/GavF2Tdp+RUDqdtHT9lanPEQVdbcnc5dC7kIIufNpncrPKmN34M6+3mNzFA0QYpxPZptxwF2Nuf/MCrn/qhZy52Duu7SuKnXQdgwsRpvOtrN7pWI3COoKSn6SXD5QXjNSM1pX9yAh4VZ4+N3o6IGysrU5z6JT7q5Of1TfMFozXLPm8ZrAzkDsV6TD/aK7dsideXOFnNkjiqap9KzRxB+1gfqPvRe7tXqwr7gY2wlWHhZ9u0w2XFOTX9S7IvRPBW33PjtvxSk2Zyc7o7qSuvZJCzWao2qgdnY7U5Kq/30Kjh/UDzZ21xCv/8p4YPDD8Ss+n4eDwvpzf/tUJ9nXAdxn0cD9N/yQL+bvmbRo31S3gziduStOucourAy7FraqOy3/xfvS0v6SkuzX2cE3g7ExYhVjoDBcKHVayEMXKh/gbixz5wi5/6oecqesMphQ7BLebd7pL9JbxlvKKgcC4zpdfM7N8Tgxc+kxTNMCzzNLA6+gYFAnT1NSMK3YJ7CmMfmkVYYC7tpWme+MtcoIBLizrDIcIXcdYhljmftug2TcCqjdHOAuOuYuNOwueWYcCbtLUXeh6WWExtwl4C5O4P6jwwH37SIB7rscBbgfECVwlwTukk/G8eLtjkTbJdQuUOwuBOZutljG8iF3awB3pw+5m65xNwm4K7qJGgvctX0y+oG7sfF2vRfkekLu9BNQAPedrOvSXVpRdz3Z9mMzSW/7qbl0l1RUOzac8FvhaS/S+ktKqoaqaoZrHq1a1RkY2C6Tdfj5dYeFDVdXJ2U+DorvCojrDF99a8vW9+ME0TTelPI0xf+GPzYB0i1zwU3b5M5m7vSc0k8A/xcPDuwMHK2vrxup6woMJAvWxQWLrysoiCCItTlPlwZeWeRNqmOoVPtxJtI+xfXA5EWUQIZb186B2rk4u9qhZO4K/boWJVd0OsWvI9uxkuIarV+qHXKfrgu478IzxylMc1N0TF0e/Edk0p2czT2lW9/X1o+UDZRhLjAjGFgauGPcGAM+J3BnlDJq9WYec1eF3Hd8Qlbars9RVLRVhn6zJORmyHhT08uMDEyWu/8leqbmrTy10Pss5i5j48s1j9e8zs7GZondAusbC3cf2yrDap3KWGW+0bLKmMDc/2UD4K7fKmNCyJ3F3E3H7lY4rA7cLcfcRYndpcC7hN2lqLvTM3eLAvevnBS4f/DtB+YAd5M7phoA7tsk4G4P4L7bUYA7746pZgF3e3RMlQTu1gbujhxvF4xMRmjSdgm1Ww+7i5G5O2DI/aIUcjemdaqRGnd231T7AHfTBO7atJ1fDoZ9Ba4/5M7tluGk7YdJ2o4xx6RgNlEbKGDvNu+wW2El/SXvt2ypaxgda2h4mZHRGRiIvYde3K1eXjdDQgi5fE3GY1l0h1d4q1dEm19MR2Law8qaocyXmRWDFdmvs4O6grBfYX2hwmnsTqfdFeSdVQB0rB5FiyW/9una9bnPm5rHOvz8UJKoaPzGF+np+b35Ucl33WQX5q88PceDDrYfoVLtBxSudk3UvkMTtdORdjZnn/w9fXxAHcp/snLu+oD7bwrx+oI9it8+bxcZclf86u1cTVnVO6+yfhS+Fz+H7pg6e/kJN7+LGMzx5uaMlxk5PTnD1dXF5f0V1YM1wzWBnYHYHzBiCuC+Vwdw/0Wr9rYZirrrurVUimUUb/ZwWWVQS1iqmES8cDSONQ5VVZVVDniGXXOl/hYBBz5ZHnx1bfZTOSG/FxODXRBbBVY5li9Wp/lWmX8ZG29XB+5fmQPctTTualYZrdapmt1TLcHcdwuHtlsKuAufuTsMdhd84F3C7jbD7kKIuota6W5B5m4/4P5fCbg7CnD/RQLu5sbbLQvcbdQx9aBTd0wVkE/mjOSTEUq83eoyGbHTdpvjbK9WL9MOx8TudmfuUsjdaUPu5mjcGeB+wLbAnVPgrj/ezueuWpdYRt3kTl7oqofc6XPhpO2kRuawQiODKcO8o3Sx5CPvRDaMNRByeUlFf39JyWBFRXdoKPYbrCp6EWC5YHHfDA4eb25OynzsHdnmEfLHsqCry4P/WBl2LSi+KzXveeVQ5aa3m5rHm2uGa6LuRAV2BtKBd9ozQ7/lw9QV/omVguXvc90npDsk9XlqUVnfcE3N3ejoDj+/zoCAV1lZjc1jm0vf4ecv8Doze/mJmUsZV/v+SYv2TaRR+zw2at/+MQt2a0balYRdeXxHHerYnR1y5w3c8RVVa1Y2cJ+uCdw/Vv2onZ/NpYH73skuZMfUuStO4kwJgkh8mIjpqBupe5mRQf4z7WF+YW9Jfwm2LKwpGrhjTlG3ZKHu5ADu+t7vYbA7jwaqCuC+TUfrVMoqQ4fcsS+F3Qor7i9+v2XLmozHqAp3f7Kr7ZKAy57hrZU1QziRG/74khv2D6z4w5TGnbTKUCF346wyvEPuPOPt5gB3/lYZ/SF3I5i7PbD7bvOAux2Zu4TdJezumNjdllF3B9bLCI+5S8BdAu4iAe47nAa47xUJcJc6plobuJ+xmMBdZO1SnSbe7gC0XTio3WS2LiAKL2zmblWxjMW7p0ohd0uF3LWBu4K5m2SVsT1wZ6MdY4G7Bh4wEG/nf1e9TdW7kk/IXQXccVWpTtsZjQwZbD85B9OKusJmlfo8Fcd4S0vcuvuEXP62oOBBfPx1Hx8sDhSsogDd3FDgWKl0wj0564lXeOvSwCuL/S+5+1/CR3zuGd4avuZ25sZXlUOVL9LSaoZrCkvfVQ1Vxd6LXfVwVUBnAL13ebd50xuL/w3/svdleICckBMEUTda1zTWNFpfT1D/ba0exM8hBfEZj11lF+Z4nJyx5Kgi2E47ZObvVkTL56iRbg7UzhD2Sd/pPCjyzsq5szTuSoc7u9MpfvUXHEoZOlyvBdzZPhkWcFeA+4V7yY6pS47MW3naP+ZGX2FhxsuMze829+Tl3QoPH66qil13PzLpDsYEGzvWl2Hgrs6oNEpRzTBjkLmzQu66rDJYgFitWP7YACNuR5RXDVTXDYetvrUy9Nry4KsrQv/ESeHJv9mwoc3bmwbu2ABojft+Q1aZr3lYZf5lY+D+wQc/GNK4a1hlLMXc9Ufdd9sduFsw5C485i5M7C5Wz4yN9e4Sdpf0MjbRy1iEuUvAXQLuvIC7sT4ZCbjb0yfjSMDdHh1TJYG76HwyQo+3my+T+dMywN0OwXYxE3b78HdrY3cbMndriGVE2jrVsUPuRltlxAXc+fhktC7C/65+08x5ia4r5K5mcmcBd5wXQ9tpjQzGDeNJB9tRKih+WbuscaxxtKFhuLq6um6YIIjR+vqbISFYZChMVBMuB1AXqBp8jq/g692hof0lJWn5LzzDri0OuEw3MsXh6nveze/i0sDLXuGtcevuZ2963Tze/Cozsyc3t2a4pri8Hz8861VWxWAFzdPTXqTl9eRlF7zG513BwfdiYvDgiurB+tH6pCdJ/jf88fWSiv6INbcX+1+au+LUzKUUbXc5MGkR3Rl1F3dnVBVqZ0XaWWD9/yZ9q3GoY3dWyJ2xylDhdCUoZzdN3cU0Tf2M1TSV5XDXA9x3aAP3+Z6nvSPaisr6mprHR+vqsMFjG7sVHl43UlddOzze0oI9mUy4H9YN3DXe+9HdxZc/c9cMuWtZZciQ+5HpWNTYQFBUEbcjCLm8qnYofPUt36h2WXQ7JrFqqOp+bCxeGVBF2FGwMWCVYxFjsTJWmR1GWWV4MPd/GfLJmAzc9WjcNawyhkPu5jB3Hdh9t71ou2VD7pZm7kLD7lLg3daBd8Fjd4sYZhwj6u74SnfdzF0C7hJwdxTgbpC2Ow9w328YuEsdUyWBu/B9MiKKt4tCJmPrYLsjQnYbwXfHZu5CCrnTG4j5IXcbWGUEFXK3lFWGV9/UAxwadwsCdzbbUEsDqgN3/rSd+y5Z+6Jdnbmrhdy3f6wB3FXxdnXajvHE4GMqUczBXcHRd6PTXqRtLHkTENdJEMRAefntiAjsKKhilAnmXHV9sWABqgMFiCWFxzQ2j+UV9q4Mu+bud9HFh1R1L/A6gwOfLPI55yq7QFpEwq7FrbtfXjVQVNaHH/5u8+YHCQnvS0sbm8Z6cnPxQ3rz81uIlqHKyvuxsdhm7kRGjjc1JWc9Scl+2tIyPlJbWz1cHbP2njtN25ccnep2SGFsJxPlu9hNSg2idhKsT9R7sLG7irlzW2UY5s46aNpOpeyVz0eraaomcKeT8jidSQv3TXU9OGPJ0fkrT2PcxpubafsKVjMGHxve65ycpuaxpMdJ2F7IpqmHp6OqdQJ3Db7FVaI6mbsu4M4KuWtbZSYfmIz1iJVLv5GDnTzsVhj9VwsxKffCV9/CtGJyb4aEYKKxldLnxYTcsS736LDKqIC7ulWGM+Ru8LAIcP/OVOBuWsidF3O3JnbfbexhWeBuBeYuYXcJu1sJu0tRd0FF3cXL3J0duBueKAm4S8Bd6ypJ33WEY3RMdVzg7oQdU0naftaRfTJijLdLtN0xOLt1ybtVsbvomLsTWGWEHnI3pnUqT6uMyX1TLQzcjfXJ6JbJGLgz1rh0Z4tlfv5IwyqjAdzVaPuhqRg3DCwmAvOLBbL22VqCIAa3bq0Zrskt7Nm85R3+eT8uDksH5UOidkwjc51CzTC+iP+FtXInMrKvqCivsGdl2DU3v4uLvM8u8Dwzf+XpeStP0cd8z9MLvM4s8jnn7ndxefBV36j29PwX9Q2jcjmRX9RbNlA23tLyOCmJagfaV/iusHKo8n1pKSGXp+W/IBuxRrT6RF73i+5YEfqni8/5OR4nZiw5MtXtoCLYTtvS56jr2qf99OE0lUCGbY9hUfVvdB/qzF3hc2eH3JUGdjXmTmJ35UFm22narhZvn8YJ3Ek1jRpwX7QPJzhzyVGMnkfIH5iLxqax6z4+WPFYrJiUgbKy7ILXkXcisbqxXlDzCuC+Sw24a3bx/VX1BxBq/xflqixRXsydyyqjAu57JuLJ4CmRb+ecnEO3BMArTkh3SH5vPs4lOetJUVnf89TUW2Fh7TKZirnPm8eY3OmQ+066daq6VeYbvVaZfxsL3LWIhbnAndU31XSrjEnMnWfU3Rz4vtvSwN0izF04UXfBYnfn8cxI2N1u2N1Ro+4CYO4ScJeAu/WBO4+t2qiOqSYC998k4G4ccOfTMdUs4C51TJV8MrYH7qKVyYiGtjslZ7cieRcecxdHyN0RW6eKIORuIauMtYG7KT4ZHvF2vnfDP/6dI+TOBu7bVYljlUxGSdtpabtCI3POBUsj5l5MX2EhQRClW9/XjtT25uU9TExsl8lQvJh/TCBmjJwi+hqHmjdMJqYahYO18iA+vrFprLp22DPsmqvswgKvM/NWnp674uQcDxwnlMdJfAVfx/918Tm/2P+SR8gfnuGt/rE3NhT10kA5dt39qOS7+EQuJwpL38Wvf4DHuJGR+XMLvc/O9zyNHzJz6TFaI6MItrMdMjN+VUbINVC7RqSdQupffPM38vha/SC/robdWcxdLeTOmNyVYpmPSWKudlBf1E3b2che5YL/7fN5u75YsEcB3JeSwH1JwOW1Oc+qhqo6AwPJbWzp0us+PgPl5dXD1d5t3liDWCAK4L7HAHBnbojYtz8q1bt6zt0Iqwyjcd9J1hsWESoNSw9lRv/9BPYu7OR+HX7Rd6OzXmXV1I9gil9mZDxNSXm0evW9mBicGl4csJmh2LDQsYjp1qlsq8yPbKsMDS94WGWMjbczwP2/6sD9ayOBuz6NO9sqY23mzgO784Hvu805DAF34TB3R8DuDhl4l7C7mdjd4aLuzsbcJeAuAXfzOqY6EHDn9UruJMD9IF/gLqiOqdYF7iedALjbxCejj7Zb0ydjerzdjr1ShUTbbYbaRc3ZrULeJeYutU4VbMidn1XGFI279YC78QJ37h6VptF2LeauZpX55R+qpqlMvH03GTpmsu00bcfc0bnjoK6gisGKNRmPV4Ze21TyNrcn99GqVTT9xNySqB2zoXFBNHs2pg4zTAP3hwkJrzIzyQae4a0kcPc8M3fFqTkeJ2YvPz5rGY5jzDF72fHZy0n4Pm8FGXtf6HXWxfe8O9VedUng5cUBl/GRBvH4Cv4XHjN3xUn8nJlLj81YcoTuj8oE2zUcMqrOqKq2qGzUTjJ0Lsj+tV7szsHcP2SJZTS0MGqHErVz03YdwH0CBdwnL9o/ze0QznreylPufheD4rsaRhvId0F8fa/7+t6Pi2uRE3H34zCDWFlYEZhWXcCdNh2poXaqMNjvHuHrbOauAO4/6oArXCF3bY07G7hj30OlBd8MXv149cY3G+tH63GUvi8t6S/BedEG/3eFhV2BgdgIUXJY2VivuKHRtsp8x8Mq828zfTK8gfu3BoG7OVYZLeBuOnPnjd2tclgJuFuNuQsTu0ueGRPIu6Nid8eIuouXuX9jc+YuAXcJuIsPuAu3Y6oAgLtDdUw94tQdU20mcHcin4zzyWQUtP1PcdB2B0PtlsTu1mTuNhDL8O+eyhO4SyF3SzJ3C4XcTde46+2bKjjgzhVvN/r2VyPkrgXcyXj7TpVMBqeJs2bTdizenNc5ZQNlGS8zCLk8KfNxYtrDprEmgiDavL1RL5g0TAvGXjHq9JUUdbmEacH/wgNQF1go9+Pj8RM2lbz1jmhzpSj5HI+TFG0/NnPp0RlLcBxhHUfxxZlL2fz9xNwVJ5XHKeogo/H0t09fTHL2qW4HJ7vsV3PIGIXa2Zx9Ao7/cR8a2J2buf+gZO7blMz9p38osbvawaB2lbd9m/JQfEUF3GepgPvEBXtwsjhrjMD8lafd/C56R7al578Yrq6+Exl5NypqvKkppycHrwtY71hHBoE7c2hq/ekH08ydql7Uj6pEmZD793pD7myNuzZwPzkHGwu26/Bb4aXvS1Fdr7Oz+4qKCsvebX63OfFhYvjt8NDu0DWP1+B/4QTvxcRgG8MGQIfcSavMp5/iuevRuGtaZfiF3P+txydjHnDXqXE3ZJWxLHMXEHbnAdxNZ+7ixe6SZ0bC7vbG7k4edRc6c2dhdwm4S8DdKsDdOIG7wwD33YaA+x4JuJsocDcduDtwx9SzC5zaJyPF220Vb7c2andgzm5h8m4l7G4mcxd/yF0crVOFF3I32Spjct9Uc4A7p8CdDdxVvEGvT8YI2q7/8l4ZMdYJ3KnrUlomQ9L2g5S3/fgszA7qP783f6yx8dn69QPl5XUNo7TAnc62oxAwUZgBmrOTw8xcbVEDTzL32bMxhzRw7y8pqR6uHq6pkUV3uPqen7fyNIPLZyw5Mn3xYRzT3NWO6e6H6a9PX4wHHJmxWIHj6X9Sjych+xTXAzRnpwUy6rp29c6oGqhdaY9RRdpZnP2vWocO7K7F3GmZ+5QfVDn3qduYuLoi7c7B2SnLDSm62abE9NvUgPtMdeC+cO8UlwMYhNnLjy/wOrPY/5J3RFtU8p1xgniemvp206aCtwXBN4OxK2JRYx1hSjC5mGJULypWoTzSBu7sP3qgLEPk43crmDsdcieB+89aVhmq/NRuObWAO75R1Td19wQFcD86A6seO1747fDG5rE3Gzfei4l5mJiIYluX86yqdij1eWpQV5BXG/m6FnE7gpDLm8eb8UqFnQPFhpVKW2UMa9yVVhn+Ifd/8xO4mw/cDVplOEPu7O6p+sUyImDu/IC7QJm75bC7pHeXsLsB7O54hhnHY+6W08sYxdwl4G5D4P69BNxN7ZgqTuDO37HHh7aLDLgLsmOqcIC7Adp+WtgCdyv5ZKR4u/PRdqdC7ZbB7tZg7jYRy9gr5C40q4zThtz5WGV09k3VAu641LEIcGfjCkvG2/XExjitMkrgTl8z02iV5qq0TIak7YfJLqmYBZRQ5J3IocrKutG6mrrhwtJ35QPlL9LSbgQEoOQxz5gZMthOcXaOyy4q545pwbxh8vEtT5KTc17njDU2yqLbKeB+ipHA0OicouckQFcdruQxRXUcUBwuJGFnIPvEBXtIzj5/l9LVbhRqZyLtbMj+379+rnVMoA82eddg7uTP1G6gyvjcKey+jUMaw+bs6sdHjJFGBdx3fjb3twnzd5PA3fUARm+Ox0kXn3MeIX8ExXclpj3M3dwzWFFRNlC25vGaoK4gBriTCfeDUzHLRgD33RNop7/qW3Z8ipspumi1gbvmXSerAtkadw3gjieGzcG7zZsgiKGqqq7AwM6AABq4x6TcS0h9iCKMvhuNFxFsjzidDW82oIoeJCRgr8JaJ60yX3xBWmV4aNy1Q+7/Np62Gw3clRp3emwsA9yND7kbzdxtj93FzNx/tyhzl/TuYtW7Wwe7O37UXVK6W4K5S8BdAu4ScLczcLewwF0C7lLHVOEI3IXhk7FSvN0GtN0CMhmhamScFrVbG7uLjLlbO+TuYFYZwYfcjbPK8O+balXgbppPhgdt13m1z3Z6MMD954844+04QbJR6uFpGD0MPqYYS4n0aDeOyqLbvcJbq2qH1j1b15ufj0VG0nZKI4NxxXCqXZFphNwpqwwJ3Jcte7R69WhDQ3F5X0Bcp6vsggK4LzmqoO0MamfAupKqT15EgnXFsXDvROr4QgHZFXn2z+b+9tmcnYq2qBqofaoStU9iUDvLHkNF2hWc/fP/8joo7G4kc2ei7j9ygnX6eaofOoE7zhcnPmmhomPqfM/Ty4KuxK69V9cw0twyXjZQRrS0NDSSf46AKfPr8MOOoXC4GwvcKdEQyh4VggpXAPdfeQF3NnNXhdyZvqm/fYYfjqrDU8KaRb0lPU7Cc74dEYEt/7qv76usrA1FvSgV/9gb6fkvcC4BNwKwrWE/b2gaK936vr5hFPsuNgCs3b1sjTuFonhp3JXA/d96aLsVgLuGxl0DuOvRuBsIuZvN3O2P3XkDd7OYu7NidyEH3iXsLmjs7kBRd8dm7hJwFzFwN7AKJeDunMB9v2HgboC22xy4i6Bjqs2Bu+gE7hb0yUjxdhHQdgm12x27C425W1Qs49ghd13vWdo55H7GjJC7/tapfKwyPIH7gcmaVhmTgbtBgbu2T0Yr3q6Lthu44OcC7mo+GYqrkvF2SiaD0cCIYagxsyhUWYesbqQuIfWBZ3irZ9i1qtrhypqhezExqCAy2z5z5hEKtbOv1zCodLD9qPLaCg+jgTuW4HhLS+NY45uNG/Ez3WQX5q04NWvZ8RlK4M5k2+kkOxNgn7SQzrBThJ0N2ef9TufZlZx9xyczjUXtTKSdzdO/0nuwsTsTdedk7po9VJXHjyzyzjqmqB9qzF1hoWEDd4wDBgeDhjF08T0fs/beSG1t8pPkxIeJRX1FbzdtKirrS8l+ShBEzUgNtlwsPSwKvsBdw+G+W6FxZ/qmKpQy24wH7j+rAXcUHg3csV+tfba2uWW8KygIBdYhk9Hxdo+QP5cFXfWJut7YPIavpL9Mj7sfh4clpj3EP7GhYg84RAF3WuPO7pvKrXHXsMroYO7atJ1T4P6VOm03Dbgb0LibF3K3GHO3DXa3GXDnYu4SdncWz4zTY3cp6m4vpbu1mbsE3CXgLgbgvkMC7pYD7geEAdyPiAq4i7NjquSTMQu4S7Rdou0Sc5dC7lLI3XIhd6M17gc1+6aaAtx/1wTuRgncjYu366Xt3BJtbeC+4xO6Xap270rUs891n/Db4QRBJKY9DFt9a33u89L3pQ8TE1HCmBwMMxlsx5ixL+go4I5RP0FZ3enLKwa4Y7WN1tfH3Y+rGqqKSr6jBO4sn4wbHXLXdLJPZDj7vF10mF3hjWE4OxVp/5jm7NoCGR2oXRdn/3+fcR/c2F0vc2f3UFVg98k/sMi7/kPF3JmGq9rAHeM2x+PE0sArJRX9m99tlrXLEh4kYJwfJyXVj9bHrr2HuWsab4q5F4NpxdLA5TQN3BVx9Z2fapiO2MydvqNRVbWywyoJ3PXH21m3otzAfTtZe2zgjg0Nxba59F3/li03Q0Lel5J9Uz3DW119zy/yPusquyCLbsdXHq1ahY9VtUMNow13o6KwEZ7Q6JtKA/ePPvqRAjdsjbtOqwyLuXMcuuLtXB1TbQnczQm5m87crY3djQHuFmDuVo662wi7O5hnxtGxuxR1l5i79Zi7BNwl4C4Bdwm4G0nbD9qkY+oRS3RMPSZ1THVEn4x12qUKIt7uuLTdDiC7zRKHwLG7FZi7uELuFm6dKhjgLvqQu6lWGc6+qVNY/Fi7b6o2cGdTH77A3aBPxmC8XZu267gF0MwXb/uITTwVHm0m3n54GoYRc+p73Xfds3W5PbkZLzNqRmpyCl43t4wPV1ffiYxEjWOuaNqOAcM4qV30TZmC4cQAq3qoUml3zBKdcH+SlFTSX0IQRHBCl5vfRRVwd1cI3BW9Ut0OqYD7gr1fzN8zYf7uz+ftYuXZVeoYVaR9OmVC53a160HtGpD9P7oPCrt/ps3cWXoZXT1UWdhdSd6Z4we1g4O5K6wyJHCfwQLuC/ZMXrQfwzXX4+TKsGstLeMY2Mg7kfh4Pza2MyCgJzc3c+Mr74g2fCWvJw8rXQ9w57hXUubc2XxOQdu5OqbqKkVFEeJekgHuvyiAO54Dag9rDasVG07K05TNpe/qG0dRb9mvs1enP3KVXZi74uTs5Sfw0cXnXGBcZ3nVwNbqwabxppfp6R1+ftjAjrOBO1ffVD0a9/8YBO46QIUun4yZwJ2Pxp1PyN3qzN2q2N1I5i78qLvAsftO59C7C62lqsNgd6fVywiTuUvA3YmB+08OBNwN0nbLAXd9VwcScLcgcD/qsMBdXAJ3J/XJiDPeLkzaLia8LgD+bmfmLoqQu5O3TjU/5H7W5iF34QD3nUYCdz3xdv60Xf0uQFvooRK4a8XbMVCYBVm7rG60rr+k5Hlq6rvNmwm5/H1Z2bO1a7uCgrAIMKsYaQwkQ9vZF4YK5k7l3JnrLxq44xuxhbzdtIkgiKbmsdi199z9L81bqQHcD09ffBj/xCdTXQ9OdtlPi9rZtJ1E7apIu8oeYwRq/5wTtf+H98FOu/Nj7hrYnSTvKviucfxdPQivcMvoAu4u+zFic1ecXB58dVPJ29H6+pKK/t68POxq2ELaZbLGprHquuG3BQUZLzOwnEngTitldn9BFyrjk9G+Y1K7M2LZkPTZ27lKUQXcqb6pDHCnu/ViNWGtYYViW8CrUurz1Orh6qraoYwNL5cH/4EKmbn0KMqDbgzrJrsQENdZWvkep1PXMNIZEIAtigHuWIi/qQN3gxp3AyF33ZTC2sCd0bhbKuRuGnO3T9TdeOBupai7wLG7pHeXsLs9DTOOEnV3MOYuAXcJuJsH3H8RCXD/zSmAu1A6pgoHuB+3MHB3sI6pthS4C7xdqvXi7SKSyYiPtrfZ+5CYuzWZu5NbZUQUcreMVUa3xt1KwJ1T4K7LJ6Mv3v69lrhD740Ap0Ebv1Qt3r5HGW8/MRvVkv4ifVPJ2w4/v6cpKbS7o/R96cvMzHZfX1rdjhHFmGGESMuOYjwUA8Mwd8UVHIXdGeB+IyCgpm64pL+EtoUsCbisAO6Lj0xTJtwZ4D7F9YAy3q7siapsiKohatdC7aRD5v8mUZibG7Xr5uyfMse/qUP5Tz5Rdw7m/vX/aWB3bfKucahhd42QOwu4z9n5+TwVcJ/jcRKDmZz1ZMv7La+ysrCtYoVh0WAzuB8XN1JbW9xf7H/DH4tR5XBXB+4a7wDpvKX6RYu2/6iXtn+naZUhbwmpt3wY4I51hPLDqsQyxxaa+DCxr6gI5RG2+pab7MKc5SdwgjhNlMSsZccXeJ0lA/tyecjNkJrhmocJCSRwnzVLE7h//LEe4K7TKqPB3HVTiq94APdv+AH3HywC3M0IuZvL3K2E3e3F3K1vmHE07G5Dz4zjYHfbiN3FFnV3ljaqVmbuEnB3OuBuhE/GmYA7r1djCbjbCbhz0/ajUsdUQ7T9rP0E7sLxyVi6XaqjxtstTtsdmbPbhLxbCrvbmrnbPOTuUFYZW4XcdTF3niF3bqvMSeOsMib2TbUqcDfok9ERbzfi/lJPy0oGd1LxdlyJYWQw2ij4tBdpckK++d3mrdWDcevuNzSOJj9JJgiiw88PU41hxsgxtH2P+lUnOTysqLtC6T5jBiYK34ufUF41EHAjILcnN7+od7ESuE8ngTutbqetMqTDnfTJ0PF2VbZdh6td0Rb1BzXUPpFTIKMDtasIu56DR9SdzdxVSncu7E6Rd/rgwu5qfVa1gftnbODufniOxwl3v4sFW94mPUnqLy7GBoPFhLWCtdsVFFRU1kfK0Fs9sb6wFtSAO8vJrlGQutiS6j0hpjj10Hb1OtQD3LESsZaxoeW8znm2bl1Pbu6qtIeuvudxavQfQMxYfIQC7me8ItrGm5vxsKbm8cdr1qCusNaxfBngvkMJ3PX3TeUOufNDFDYC7sZbZcwKuZvD3C2O3U0C7tZj7tbA7pLe3e56d8fD7k4edReN0p3F3L+xNHOXgLsE3CXgbhWBu1MD98POB9xt3DHVQQXu9vLJOEC83Yq0XTjB9jYxHA7E3G0acrd+61SHtMrYOeRuOasMZ99U84E7G8noAe46O6bq8MnojLd/ZypwZ3wy7Hj7oWkYK8yIb7svQf0XkXR7WdDVFSF/llcNxN6PpYE75gdjiUHCqGAYaC6mdmWqxO40cz9IKd0Z4H7dx2esqSnlaUrNSE10yl1aKTNz6TGyY6qiUSrZK1Vhb1+4TyGTUZpk1Gm7VrCd1Rn1b3SwnQLfbFe7JmrX4ux/UT94YHdOvcz/tKPu6thdC75P1ILvLOZOWWW0gfuuiUrgPnv5cRff8zFr7zU2jb3MzMR+Rq7aRYuwbdwKD28eb8b0YWvCOsIq0ADujMBdgxvpREHb9Gbbv/1AdcfKBdyZItR4ywcViJWLnWTN4zUFW97Wj9anZD9197tIvSVzHEUya9mxOR4nFnqf9QxvxQMIuRwHahIbyTGqJtnAHcvrZzZw19s31UTgrgUYaOD+tc2Bux6rjAXFMiJi7hJ2d3y9u+NidynqLullzGTuEnCXgLsE3G0F3PcYAu57JeBuYsdU6wJ34XVMdSiBu6h8MsLslSoo2u6knN1q5N1uzF0YIXehW2UuCjvkbjJzNznkzqN1qqZVRrfG3SzgvksNuLPJh2GBuy6fjPnxdi3grhYu3kGyTjx5XOzhTDEUGDpMU2BnYANl/V4e/McCrzMuvufj1t0fb24mWlqwmDD2dLydpu04b82rV+qaVMHclT1UMfCYLtRaZ0DAq6ysisGKgi1vgxNusoE7RdtJzq5olKpStzO0fYeKtis0MjyC7TpRu07IznloYnejlO7q2J16M+AbffCdwe60W0ZhldEE7hPUgftC77Ne4a3jTU0EQVz38SH3oSVLsFNiwDeXvgvtDsVix6pB8bOBO90xVc0V87NOhKP2PhCXt53jppU3cGdaCOAVJPt19uDWretzny0NuoIinLvi5ByPE3M8TqJaUJCy6PbRurot/Vvux8fjNLFDHGWA+xdfkMD9009J4P6PfzDA/TslcNfVN/U/lo63cwB3jRt0XcD9ww91AndjrTLGhNwtxtwti93tztxFi92dQu8uYXfHjbpLzN1k5i4Bdwm42x+4G96/RQjcecbbeQJ3vh1TeQB3A7TdNsDdIG23GXB34o6pohS428An42TxduHSdguBb+82b9MOEWN3+zF3/iF3wbZOFZ1VRhQhd6M07mp9U20L3Pn4ZIyIt3+rPPT0q/xJs18lbfPAKWNkMIyYRL8Ov4GysrXZT5cHX3Xzu7gk4HJS5uO83rw7UVGMLBtDskdJ239Tv/JVMHeMDRVyVwD3mTMxe1gW7zZvLt36vn60fqypCT+WdrjPXHqUMrYfpFH7pIV7SW+7Xtr+ITdtVzZHnfA1V7BdE7WzePq/FMcnrONT9sGJ3Q0xd42ouyZ2VzZW1YTvmsydNrnjfNWB+28kcF+4d4rLgemLSeC+wOvM0sArCakPivuL70ZH44UF23lXUBBBEPm9+dhjMbmYYl3AXZO2b/uIE72oCtIQaudg7oaAO4oQSxsbWsy9mDcbN+KZe0e2ucou4NTme57GsdD77OKAS/HrH4y3tDSMNdwMDsa+hW2AbuFLA3dUIBu4/6gE7t9SaIMB7kaF3G0D3H/UDdzNsco4M3OXsLukd5ewu32xu0j1MqJm7hJwl4C7YeCubx+yOXDnfvUQLXC3oE+GBO77nRS4c9N2CbiLSuAu7nap4oy3C5S22wOvWxfBC4O521QsI8iQO1/gLiSrjN1C7jyYu/6QuylWGUbjfkirb6qFgDsbUWgCd5N8Mtz3kd9+wI04NYA7W+DO+GT2TqTj7RgoDDJmGZtPzUhNat5z74i2FaF/+ka119QND1ZUYIEyPhmGbP5GgRsFVaHOlWHuZMidssrQwB2TiZ9Q+r60uWU881Xmi/T0FjmxLOjq3BU0cD+kaJFK0vY9rC6pDG3fzkXblf1R1TUyasZ2drBdKZBRQ+2f8Dh0Yvf/8Iy6q2F3PeRdm7kzVhk14L5DBdxdVcB9sf8lzFdh6bvh6uru0NCbwcHP168nCCK4KxibEhYgN3Bn+WS4Wwj8+HfuP7PQRu1ct7RGAPcjind98EJWOVSJZx6ZdGdp4BVX2YVFPudcfM65+V1cGXYta9OrxrHGvqIivAhgX8G61wncqb6p3zN9U5Vg4r/GhNz/o9snYwC4q4/Ed7yBO8++qbysMqaF3IXG3AUSdXc87O5wendHwO42ELtLzN2hmbsE3CXgbmXg/qsE3IUE3A/YFLib7pMRJHAXWcfUc2IA7kLzyYgt3m4tmYyoULtVIbsl4bstmbvzhdxFoHEXZMjd6O6pxobcdVll9AN3LasMeWViUeBuuGOqQZ+MLpnMt7o9HjpUHvjttE9GA3RiIlAMWIlZr7LKqwaCE24GxXclZz0hCKI7JAQFhVHH4NE+mV2ULBsnR58Wzf5wljRzx0jspqwyByjgjnnAPGNbqqwZir4bjU2jeri6sKxvaeDluStOzlhyRNkidZ9B2v4RH9rOK9jOD7VrYnejmLtG2p2LvE/Qhd1J5q4KuSuA+zYdwP3I7OUnSOAecMkzvDVizW1M2dO1ax+tXk3I5QkPE3yu+2AHw/LEqtFwuKuAu3Y3VEN/XWGYLugC7lpNU5k6xCpGHWJjDL8djrPYUvHeO6JtaeCVxf6XcCwLuhq6qnuktrahcfSGvz92PmwVx7WA+04lcP9JA7jr7ZvKydz/wy/eLhTgbquQu+iYu1ixuzN5ZiTs7mhRd+fWy9iRuTs7cDfM3CXgLgF3pwLuBmn7QUO0/ZCFBe6mA/fjDgrcbdUx1Rl8Mo4Qb3cM2i4GyG4Z+C5C5m67kLuVgbsArTLOE3I3U+NuGeDOp2OqMT4ZnrTdCHc25ZOh26XS8XYUG5Zh1J2o8aamxLSHq9IfEQTxICEBSxOTT7o7KIE7LiFxrjuV3SnZKJBk7hTLUwD3KVMwxpgT1AU2MPy06LvRQV1BTWNNyVlP3GQX5nicUAD3RftJbzsHbdfokmo6bTcdtXNF3XUr3Q1idwOZdxVzZ0LuFHD/UAO4z981iQTuBzGAdDfRJQGXvcJbQ1d1r815NtbY+K6wMOd1DmZT1i7DDob5xfLBKkCd6wLumor2H/RydhZU+BubFrDvdplqVAfu3F4jJXDHhoaXlbQXae+3bIlMuuMZds0j5E+PkD98o9pLt75vHm9+mJhINoZ1dbU4cP+PISah0yejA7h/ayZw1+qb+ouxwN2OIXeLM3enxO6/S9hd/NhdoIYZB4i6S8xdi7lLwF0C7hJwl4C7BNzNA+58aPspYXVMtaLA/aIVgbtY2qUaG28XkEzG9rRdtJzdLPIuIuYugJC7HawylgDuZlllLBtyt2z3VHNC7lpWGf0adw7gfsDSwP1XY4C7oXi7YXH2d9zAHc+N7ZPBcGH8UTOof9/rvpF3IvN78/OLeusbR5+vX38zJARLjZRlKxPuuISksSbO6RcKCtBRXJoA4us0cMeAYSDxLfhG1GOHTNaTm5v5KjPjZUZV7ZBP1PVFPudmLz8xffFh2idDetvVaPt2HbT9ByNo+6c8afuXWoeRzJ0r6q4Tu+si71rMndG4fziFBO4fkcD9FyVw341Bm+p2cObSo3NXnHKVXVgR+mdIYndy1pMNRb0VVYO1I7XFfcVZr7Li7sf5tvtiJ8GawnJAqaOkUb0q4P6LGnA3bGlnc3Ydt726gDuKnGkkoPAa7ZlIv/FDNxJgSjGgM6ByqLKiejAgrtM7ss03qj1+/YOGsQZUEV5wsOdhQ9IA7nuUwJ2uTBq4/6AXuH9lAnvg45OxEnDX6JtqhlVGxMxdwu4O4JmxVVdV0WN3SxtmnDbq7jzMXQLuEnCXgLsE3C3qk7E0cOem7Uct0TGVD3C3qMBdxMBddAJ3m7VLtVO8XQjqdlvSdoGjdhPJu8Mzd+GF3O2scTfVKmP17qlnLRZyt4hVxi7A3aBPxmC83cDNAidwVyaLSdC5ewK7UyVmFisioDMg4UFC+sv0TW83yQl5f0nJy/T0+3FxHTIZilThcKeVMkqsyZiycQY4IQa476GAO0YUM4Bpx/bwMDGxNy+vaqiqsmYodu29FaF/LvQ+O3v58enuh6e4HKDj7awuqbah7V8aOszRy3Bid07yzsLujFuGAe6TvqM07j9+OJUDuE9zOzRr2bEFXmc8Qv5Yk/G4qXm8YrCClAINlI83NeUUvM7e9LqlZbxsoMz/hj+WNpYJal4buNMgR1V4LNrOwdn53fnqA+5ajQSwDLE8sZxptRG2ULy6xd6PrRmpiV//IDjhZmTSHUIu7ysq6vDzw/6KrQjbBjYDrHIsZROBu46Qu1HxdjsCdytZZQQtlhEPdpf07kIJvDscdhdf1N2Jmfu3Nmfu9gPuX0nAXQLuEnCXgLtzAXepY6pIfTJWibfbqVeqUGi7I3J2U7C7DaLu9hDL2C7kLgSrzEXrWGUEEnI/wwXcTxsKuZtkldEG7iRzP8jdN5UXcP+dC7gb0zGVG7hz6bP1yGQ0bhYY4K4BOmmBO04Zo4QZwTpKe5FW3zgqlxM9ubm9+fm19SPFfcWb3m4iCGKgrKwzIACTj6E9RJFNnDGudhmsuY0G7pRShnS4T5jA+GQwMyjz/pKSwtJ3OBrGGoiWlqTMJyvDri30Pjtr2fFp7ocmu+yfqIy3a5pkpnHR9kkkbf8/c00yX/I++DN3vdjdQOBdjblTIXeFVUbZN3XbR9N/0gTu7ofneJxw97u4JuNxX1HR6kerI+9EJj9JHq2vf52dXVj2Ljrlbvia25U1Q5hHzDJWEIof1+ds4I5SJG/Btn2kiLcrabsBzm7o7pi5t1UD7srOvVgXTB3iXgDrEaWIp4fdA7sZ9mG8roV0h2S/zt5c+i4x9eGG4jfvS0u7Q0PxqoJNEXsMdgisfixxlBnuJ/gD9/+ZBNy/Ei9wd8iQu3Njd8kzIzjsLjaxu32j7hJztx5zl4C7BNztDdy3iwm487/GsT1wn7xvsiCA+2GbAPdjFgbuBn0yIgLuFhG48wHuNha4C7FdqiPF221G250AtdsMu9uOuVst5O7YVhkLAnd7MXfLh9w5rTLafVPtAtyN9cnwjrezQ+7awF3RMZUSZ2MQMIYo1OL+4pq64Wfr1nWHht6Nju4rLMwpeE0QRNLjpKi7Ubk9ufgc2wBmAAOGIaFl2TsoWTZ9Kr9o+2SmTsWQY0o7ZLLygfL1uc9rR2pL+ktepKU1jzf7x96ggPuxqW6HaJ/M5/N2UfH2HZ+QXVJ/1ZltV6ftFHA3lrZ/afxhlF6GE7sbCrxrMnd1q4wacN+Ogfpi/u7Ji/ZPX3x43spTnuGtmKCiviKf6z4BnQEFbwuep6bej4sbb26OW3ffK6ItdFX3cE1N1J0oLD0sARQ2algNuLN8Mtq0XRuya9wsa94y6wfuuHHb/rFmI4GjM1GKeHrY4rCZ+173DeoKwhNOepIkJ+R5hT14/g/i4zsDA/Eig42TTrirgLsxCXezgDunT8ZQx1TzgfvPZgN3xwy5CxC7S3p3CbtLUXd7Rd2trHQXBXMXJXDXx9wl4C4Bdwm4S8CdJ3A/ITjgbrhj6hlhd0x1ep+MwHulioK2OwxqNw67i4G52yjkLhCrjJU07layylike6qZYhkTQu5GadzVgTuueYwF7iZ2TOXhk9F3J8fZN5ULuOMUcHYYEMxFQGdARdXgUGUlvWvejY5uHGuMX/8gNe95+UB5YGegb7vvWFNTX1ERZv4YY5WZMAEnuoOCm/S1s4K2T5iAS0gM3hEq3o5qepiQUFkzlPEyQ9YuS36S/GzdurGGhsikOwu8zsxcenSq68FJC/dOmL9bGW8nZTL/mPELi7b/qE7bv1XS9q/ZtP2vn7FlMpbKthvB3Hljd23yrsXc6ZC7NnCfpg7cXfZPX3xkvueZsNW35IQ881Um9oqwW2EY7e6QkHaZ7GFiYnPLeFB8V9z6+715eZhNLF6sBVx7o4xxo6EB3OnCUwF3tqWdgex676ANAHddjQSOTMfiRSliX/W/4b/q0aqNbzbi2TaPN1cOVeITQi7vzc9/kpx8JzLyhr8/dn3si7j8xH5gglKGOQn+wN2oeLth4K5+C24p4L7dGsBdFCF3Cbs7jd5dUNhdMszYt5OqXaLuwmfuEnCXgLvlgbvaDicBdwm46wbu3LRdAu56jrMLnFHgLvlkrCqTEQxtd0jUbm3sLtiQu2CtMgLUuFvAKmMXsYzu7ql8Qu5Ga9xNBe7MlZ5lBO584u06biU0gTuj8qCSxTgLnCZGBkVS+K6QIIiX6ekoLqyntwUFOQWv/WI6AmJvlFcNbB3cmv4ivaJq8O2mTShYjDFGC0Oyh2LubNZDZ9tp2o5xxdhj9rAOXmVlVQ1VYV2jHvw7/AnqP1l0+7yVp2csOTLFlRS4T1DG25W0nZTJfDh1G0nbp3DR9i/UabtOdbulaDvfTqrGYve/amD3Cf9lQu60VYYF3H/EmPxDHbjPWHxkgeeZmLX33mzciFFNfZ5KTmVGBrYxzCb2vN78/Nye3MqaocGKirj7cVi8mHRMPQoARYt7Fk3gjpJT0nZFtp2OtLPvlPXcYtN3zVrAnbzl/PHvqkYCO1SNBEiv0TGF1yjrVVbDaEPTWFNfcfHTlJQnSUkv0tOHqqpwUhvfbGwZbxlvbn5XWHgnMhKvSDhBbBgoSCxoLFyyJk0C7l+ZEW/X75NRLUeNG3QLAnfzNO7mW2V2CQq4O7ne3dLkXcLuzoPdJb2MwzB3CbhLwF3wwH2HicBd7YVIAu7CAe5HLAzcuWm7pYG7TtpuW+DutAJ3h/LJOCFtb5NoO2/s7nghdxECd2Fq3C0TcreqWEZPyJ0TuB8TBnDnFLjz9skYvnvjA9x3KYA7hgilVTNSE7P2HkEQ3aGhPbm5Jf0lAXGdSwIuu/tf8gxvrW8cHayoaBxr7M3Pxx6gaJ1K8U2MhIptYTwmTqRNMhhdDD8eiXLD0n+7aVPGywzsHlhuod2hvRs2pOe/WBxwaY7HiWnuhye77Cd9Mky8nZbJ6KLtE9m03WCjVMvSdiOYOxd21+eZUWfu6laZSd/qAe7TFx+Zt/K0V3hredXAcE3N1urBhrEGjDndUBQfsTu+ysoaqa2tGKwI6gpigDuu80ng/ttnTNNUErj/oAbc6XvYv6rx6b/qvPVW3kcz98jspql6vEZYiVjR2JzrR+tr6oYHystvhoTc8PfvCgq6Gx39ZuPGDcVvisv70l6kxd2PS3yYiBMp3foeX++QybDtYWPAEj/EvAmkBdy/Nxu4G4i3mydwNxO4W0/j/ruogbukdxeqZ0bC7pbE7kKyuttLLyM6pbu1mbsE3G0I3L+TgLt1gPtOc4E7+Qa0RTumcgD3PRJwty1wPy4Bd+sCd1EL3MUdb7eTTEYKtkvM3XYhd+tp3C+LTeNu85A7f+bOP+TOyypjELgfVAfu+40E7jt5AXdOgbsRPplvLADcUQ8pT1O2bH1fXTdMEMSqR6s2lbxd7H9p/srTc1ecnO95Zmnglajku41jjXk9eU+Sk+nWqbQ1m3wnQnlhSF70TZmCUcQYY2bwMKwALPrOwMDe/Pz1z9YHdQXhqBmuwS/yi+lQCtwPTlq0b8L83Z/NZcfbSdpOq9uNo+3WkslYG7szzJ0VcmesMnTfVC3gPkHpcMc0YY4SUh/UjdYNlJd3h4Rg+WIFoLoxU1ijmIL6xtENRW+i70ZjSZLA/dBUzBlKlwTuO8jKZIC7mk/ma1a2nUbtOu7H2Wis9s4AAIAASURBVPfaGsBdW+COtcAuQjwf7Dx4bvlFvahAvGphn8YLSGdAwNOUFHwlMe1hat7zor6i8Fvh/jf8AzsD1z5dW1ze11dUdMPfH5WGdY+TPaA0HVkWuH/FL95uesdU44G7rTXuFrHK2AW4W4K8S54Z++vdxY7dpai7vaLuTsncLQrc/yMBdwm4CxK4Wyjebl3gbh5t5wncDdB2iwJ30wXu4gLuvGm7bYA7SdvNBu4mCtwviEbgbgHgbna7VHHF261E250QtVsPuztUyN35NO6WDblbSyxjjZC71YA7Q034And1gTtfn8y3H/C6aeMN3DEsmCDfdt+0F2k1wzW19SMFW956RbTO9zw9c+mx6e6H8RGfLw/+o6l5vHq4uq+oCEWN4cdYYuQwZqrrtWnT6GA7ZhVr92FCwuucnGdr1z5ataonNzfzVebqR6vLB8rxK0ISb7r7XZy74qSGT0Y93k43SiVp+wdG0nbT4+0fW4K5q7C7fvKun7krrTJKjfvfJ3MA90mL9k1zPzRn+QmMZ1r+i3XP1tWP1ncGBGDNYQWg2E9Q03Hdx6fgXcFofX3iw0QauKPUUcyoXrJv6o5PSc3Rz//QUMrQN/d/VTYYVdx6c962M/fgDHD/mgu4UwJ30iezneWTOTwNixevKXI5Md7UdDsigrxkW7wYLyB3o6MrhyoT0x6GJHbHrb9PEETYrTC8lmGrx8eUpymVNUMjtbXY+5m/ulAA988+MwK4G2LueuLtJgrcBQbcbWSVsS9wFxp5t6VnRsLuzoDdHSXqLjF385m7BNwl4C4Bd8sDd54+GQsD9/2OAtyPOiZwN0jbLQbcHaxjqrUF7uJplyoy2i4F2x2SuZsWchepxl2MwN22YhnF28l6Qu66WqfyscpYA7jvMATcOQXu5sTbeQJ3pcMdA4Lxx1pLe5H2dtOmprGmyKQ7i/0v0TR8qttBfJzjccLV93zoqm7SvC6XY1lj0jDMGFRyFHF5RV1A4Z+YDVRQu0zW1Dze0DSWlv8id3MPvun9li3F/cVyQo6vBMZ1Lg28stDr7OzlxzV9MjO3k/F2RiYz+fsPJn9HxtsN0HZOmYxV4+08mLsp2J0lluEA7t9rAfddkxbtm+p2aNay4y6+59flPCNaWrZWD94KD8faxfogrxnnzcPiw+4+UF5eOVQp65BhumngjpJGAZPAfeenuDmiq5EsPwa4s+LtCiD97//3l3//5S//+gv58d9/Ubt51wvc9ftksNLDboU1No0VbHl7LyYGJYRNsTs0FJVD9xLwjWoPSewea2yMuReDVxB6z/S57lPSXzJaV/d4zRqcL1b5IapvqmWBu+F4Ox+BOz/gvk14wP13xwPuUuBd7Hp3a2P3jz/eLhlmbN9J1SmV7lZi7g4H3P8nAXcJuIsGuFvQJ8MLuB/gBdz10faDhmi7IIE7N23nA9xPSsDdqQXu1vPJ2D/eblfaLnF2I7C7TZi79ULuNrLKODZwt1rI3WLM3ciQu9FWGf7AfTc/4E7T9u26O6bqF7h/Zx3gvmcizg7jgFHFQmshWu7FxLxIT0/Lf0HHz2cuPTpjyRF8nONxYqH32ZVh11rGW2rrR7qCglAjmA0MMznAGN3ZszHwmDHU8p2oqJ68vOrh6qTMx/6xN1anPyrY8rZxrJHm7+Grb3mGt7r5XZy3kkzQT3U7NGnRvi8on8wnsyifDBlvV5fJKGj7N9q03UiZjDWAuyHmroO8G2LuKqsM0zdVC7jvnDBv16SFe6e6HcQcLfA84xN5fXPpu/rR+gfx8ZgIrDnMCNYWNoAOP7/m8WZMHzZJLCssBxQ8Zl/RN/U3Vt9UTuCujLcraDtz0MxdB3A34JOh3vLBc8BixPIP7AyUE/Kcgtcv0tLw/F+mp48TRFF5n2/U9WVBV3H4RF2vbxzNfJWJU8D2hZ0Hu2thX2Hu5p7RhgZstKhGLF8N4L7NGOD+lR7GoIMl8PTJfKt9a24X4G6Oxt18q4yggLsYAu+S3l3C7uYbZsSklxGz0l1QzF0C7hYA7qpraAm4S8Bd1MD9oATc7QncDdL2BWcXSB1Txe2TEVu8XaLtjsncRRFyN1Xjbkngbtu+qRYPuVtL5m6MWMYyVhmLAncjBO6GfDJG3KXpB+6sfDFOHwOIFdFCtLzOzn6/ZUvzePPSoCvzV56evfz4rGXH8HHuilMLvc8uC7qSnPWkYrDibnQ0ShUzhtlQXHTMn4/pxaJ5nJREEETu5p6q4aq3BQUE9V/mq8wt77f05Obi89h19z3DrrnKLlAJ+qNTXA8qfTJku1RWvF0hk6HU7eq0fYI+2m4P4M4bu3+iB7trAXc65K7om6oTuGP0prgemLHkCMbT3f9i3Lr7+b35tAYdmwR5oeTujo3qVlhYVe1Q8pNk7EhYU1gaqHyybypllSEb/FJWGZXGnVHKcAL3L/UC9/9pAndUMn2fSJcfVgTpk9lF+mTYUiPUSW39CJ58xssMFGF+Ua9XeKub7MIin3OuvueXB1/N2vRKTsjx+oXHYxPANpj4MLGw9B2KFps6tgGsY6zR3Urg/jMN3KmbXZ7AXefBO97O0ydjM+C+QwLuVibvkmfGsbG7ZJj5SdLLiI25iwS4/1cC7hJwl4C7MwJ3btouAXdH6Zhqf4G7SHwypsXb7SOTkWi7vZm7bcQyFg+5284qY6W+qUYBd4GE3M9ZPeSur3WqCRp3M4C7NQTuFgTueIZ45jgpnC9GCaVVP1q/qeQtQRAbino9w1sXeZ+bu+LUHI+TVN/U0y4+55YEXo5Iuo0HPE9NxeIgawRzTv3pAj7H4uvJza2tHxltaKgYrAi5GRLUFeTX4ed/wz/qTlRLy/jDxMRna9fi230ir7v4np/jcWL64sOTXQ4ofTLq8fbJrHi7grbTwP2/OtTtWvH2T3VR7y8Fhd1VzJ0j5P4/8qxJq4wSuE/hBu4YydnLyb9CwMSVVPRXD1c/iI/HjJAXHcuXYwN+mpIy3tKCGcFEY6FhjWAJ0FYZVDJKl7TKMBp3qm8q0zSVdrirlDKshDv75t1AvH2bIt7O/IEFWX77FOWHDQfPbcv7LQNlZVu2vke15GzuWR78x0Kvsyg/HPNWnnaVXQhfc/tdYeGax2uwW2IzwUsDIZfj6C8uxmsRNgMauO9iA3cK39Br6FsKVXADd/3M3aR4O0+fzA/aAvcPP/zJDOAu0L6pAqftYiDvIvbMSNjdEtjdvs1UJeYuIuYuAXcJuEvAXQLulhO4iwi4GyNwFwhwN0jbHRC48xa4i8AnI5B4u51ou8TTzcXughLLWCHkLnrgLiirjNCYO6dVRofG3QLAfZepwJ2PwJ2zXeo3JgF3pUFbETHerYgYY0AwyD7XfVKfp47U1hIEEZ1yd7H/pYVeZ+evPD3f8zQ+cfO7uCTwsl9MBylkLy3FgqZLks5QY9k9WrVqvLlZTsgjbkdg4aAk6MsMPCioKwjf1RUUdDM4uGa4Jnz1LRef85TAXemTmUP5ZGb88tF0RbxdXSZjSN3OGW+3D3A31jPDydw5NO4GgfusZccxU+5+FwNib4w1Ng5VVd0MCSG3Z0/PGwEBgxUVpe9LseFjOsipOT0fiwKVj4tw1AAqgdsq842WVebfSo27LoE7bpn12tuZeDtWEPkHFoenY81inywbKHuZkfEiPT1jw0uUGcpv3spTs5Ydm7HkCA58grNbEfrnlor+2vqRvN68gBsBaS/SSsr78wp7i/qKbvj7qwH3Tz/FUqOB+w9mAncdIEFnvF3bJyMG4G5+31THAe7mkXcp8C5hd2EZZkQadZeYuxnM3erAXR9zl4C7BNwl4C4BdxOA+zEJuFsRuFu9Y6pdBe7W8Mk4ZLxdou2Oz9xtH3KXNO6WA+5CY+5GhNx5W2VMA+4MYjEduLME7paJtxsE7tuV0JOSaOP0MWKoB5KMy+V3IiNbiBZZdLu738VF3ucWep/FR1fZhSUBl70j2jaXvhusqGj39cUioCsXa+5udHT9aD1BEME3g1HwmF9MBEYYo03qubsCG5vGsAd0+PlVDFaszni8yOfcrGXHpropfDKKdqlkvP0nRbydUyZjiLbzA+62xO5fGsfcdWncKeD+gQHgfmzeylMY2GVBV8JW3RquqekrKuoOCekMCMDskG+i3I3GPowJw9aBSSEn6Bgr5P67Vsj9Ox0h9/8oou7sm3E9Mhny/nGbpr2dfLNn7yTcAmD1Yf36XPfBM7wVHv4yI2N97nNUGs5l5tKjU90O4eyUEf7jbn4XG5vHniQnv9m4Mft1Nr4lKvluctaTkbo6FOFJtsOdC7h/wwXcDTB33RTBBJ+MfoH7j1w+GSEA99+dFrg7X+Bdwu72xO4iMcyILupustJdvMxdAu5/43mVLAF3CbhLwN1pgbtO2i4w4E43wbNkx9TzksBdGO1SbRtvl2i70zJ3CbjbF7hbKeRuLeZufMjdaKsMJ3A/wA+4swXuuoG7BQTuWjcOHPcXrJsF+lJfBdx/oYD7zs8YjTtOGWOCIUVhlw+Ul1cN1DeOrs997h3Rttj/kqvsgqvveTcKuHuFt6bmPR+pq+sKCsKixDLCOu4ODa0ZrqkfrQ++GYyfgMrBBQYGnwbumLiQmyEZG16+ziYJ6VhTU9jqWwu8zsxYcmQK2ycz49ePpv/MHW83oG7XjrfzAe42xu5fGs/cyfPVAO5/VwPuv2kk3Gng7u5/cWXYtcikOw1NY6+ys+/Fxj5PTd3SvyXsVpjPdR/se9hqMEeYF8wRlgBtctcZcme3TqVz7l9poXYdtJ1DJkO5jJh4OxYaigTPRNYuw7Md3Lo153UOymOR97nZy45Pcz882WX/xAV7Ji3cN9WVagzrdcYvmvwbi/7i4ubx5qKyvk0lbxrHGu9ERWH7wfrGqsXSxELcQQN3CgbRwP1bPsCdzdz1IoT/meOTkYC7M5F3CbtbkLwLBbtbtZ+qxNwl5m42c5eAuwTcJeAuAXfLAffDEnDnpu22A+7nLArcHbtjqhjapVoy3i7Rdidj7tYNuRtjlbGgxl0C7vYJuZ81WixjnFXG2sBd2TGVBO6GOqaa6ZPhvr8wBNwZjzbOiA65Y6Aw8ljIyU+Sxxoa3mzYUFj6zjeqfVnQ1SUBl3HgE8/w1uiUu3JCfjsi4rqv73Ufn67g4OGaGoIgwm6FYU2hRGmYS87CCfJiBlUR1BW0dXDrWGNjfm/+WFOTZ1jr3BUnp7kfnrRo3wSFT4Zpl6oRb2dkMjrU7dzxdv7AXRiBd4q5c4bcGeCOAdEL3I/MXk4qZVxlF9z9Li4PviqL7ohbd7+5Zfx1dvZAWVnq89SYezGYI8yFrF2GHVUhcz8xB/WPAkBJc5rcycJjxDLaHhbWXTM3bWd1DiBlMvTbPMqqw6U7/ZYMXmjyevNQG5kbX3qE/IETmbn02DS3QwxwpxvDzlt5amnQlcik23mFPTXDNe82b366di0qENsndgKsZqxXLEoSuH/yCe4Isbx+ZIC7Ek8YAO78EIKZPhn+HVN/0qbtYgTuDkDbhUPend4zIxzsLnbDjFPpZb63uV7GjszdiYH71xJwl4C7BNwl4G4Z4G4w3m4AuJ+xEXC3iMCdD3B3WIG7GOLttpbJSLTdsZi7HUPultK4iwO428YqIyixjCGrjK6+qRYE7iYK3Hn7ZP7Gvtli32LoAO64xmYDdzx5nIsi5H50JgYN84Llk/06e2v14EhdXW39SEjiTc/w1hUhf64I/dM7oi1s1a3GprGHiYmkkz0k5FVmJmn2uBNF60pQZqgB5s8R6J+W35s/UF7e1Dy+LueZX0zHIp9zM5cem+J6YKJ6u1TNeDsvmYxe4G4cc7clfNcTctfSuGsC921s4D6JBO4HGeDu4nt+sf8lTBbGOSr5zvrc5zV1w41jjcX9xbTzh/6vuK949aPV2LGxTrFGUPmoARQzGXLf8QkqRBFyZ3dPVbHqv3HcIH9tiLZrlRzWF5YeViUWu+91Xzwr1NKqtEekvX0F6ZOZ5k76ZCa77Mcx1e3gjCVHSeAeeCV23X1CLk9/mY767A4NxTaPvQSrHCsYyxQ3QL9RHVOxzhjg/p0SuH9tEnA3J97+rV6fDKfAfZv+eDsF3H91MuC+x6TDCcm7hN0dB7tLUXfxK93txdwl4C4Bdwm4OwJwn7xvsnMCd27abjPgbjmfjIiAu3g7ptrNJ+PA8XbB03afNh+f62YcbT4Sc7dkyF0gVhmRAndhMncrhNw5+qaygDujcbcKcDfDJ6NB23kCd4VKmyX3IOPGB6fg9DEyGDrMC9ZC+O1wGs42jzenZD8NjO+SRbf7xXSErureXPruRXr63ejoJ8nJ+L/xD+Jl7TLaVUIDd3pyUT/4YvrLdPyQO1FR+CiL7nD9/9m77/cmrnVf4PeHe+49O9nJ3iGhY4oNbmDAplruBTdcMLhQTDHFBkxzwd3+O+45ZyewQ0JJg4QWeu8JJYmxqab3Xo3LPPc7s6TRSJoZjeSRNJLW3vP4MY6LNLPW0pqPX39f3SnfsENKy9t7Csvb18iXt5uCezfN3QnybqXI3QTce/HgvsEE3IdtI3ErA0fuGxJ6aNi4Yzi9obFncZnS828tKnlZW9+58t3Kjurq+Uue4yLig2m5N6YW3K1v6GqvrGxsZKKao3C9MC+w08bOH+MBQ9ckWGaD/i8tTNjd4hAOOeN4k9Z2Mt7Y3/EcYn/HE9kciUeLEZI96+5w3amhY9h2qT4h+waM2NN/+O7+w/eQkHr/8ccmTPqzrqsu/WZ60vUkPItLsbFYCNny9kGD2DwZEuBuCu7rrYH7Wlu0fa2EtlvNk1Ea4E7BvdvO7gKC94KCd8ruHszuNF7Gw8ydgrtK4P4NBXcK7hTcbQN3cW2n4O6O4O5ZeTLaAncnlrd7jLZ3S9hlDw2Zu7sVuduZKkPBXVVwd4S5d6fIXS5VRhTcdzsK3MUD3CXyZBSWt4uD+3or4I5noc/32DMA5wGnCOcQ1wUDMvyv8IxbGY1MIxvRXtsxbfa9pGnXU6a15s97+Gbp0gd5eR3V1VPvTY29FIvFCpMOk4IdxtyLKd7XXdTNeDSDgC/DMDPmPwqJPOM35gib3m5/eftXUuXtFuAuMHeNyrsycO/JgXtvCXAP3Emqv/3CDgdOPBEaezZxCvsnCB/KywueFEy7N23xq8XP5s3D+c+Zcz8+64ou5eL4xD8mTPoTF/H10qVFr4qiW6IxrTARMAYwGNjuqZv1wTJm5m7MNZLq0MsVthu7pJomyRBtNw62/Wx5O+YsVgmMn6VvllbVtMdmXArWnRo69siQ0IODRu3HUPEJ2esTsg/v+4Ydxn+ateBxXX0nXqdiLsVgZLZER7Pl7b6+mL5sngwX4G7smPrppxu5O127wX2t4vJ20XapyvNkbAhwtwbum7UG7tqgdifhu6cXvHswu2sh2N0LS929wdy/dbq5U3B3Pbibm7ticLdi7hTcKbh7LbgfdD9wt6rt/scpuGsuwN2heTLuW97uec7ucnnXcpG7Y1NlvA/cHZIq4zpztw7uB+Vi3O0Gd942bO2YKhrgbkN5u9QthgS4k400D+542HgKfMQHnj7OCWFQnHmMGUwK3UVd6o3U+c/nNzKNDMPMX/K8YOETprGxvbJy1uNZaTfS4i7HRTZHhv8VTlYPvIOPTLs3bdX7VS8WLnxVXLxgyYvZi56Exp4dNvbooFH7+w/f3SdgZ89hW83L2/vJlrd/bge4S8i7nQTvaHM3pMoI+6b2JDHuBNy/xSn6ZMCmf/h8LwT3AcP3DB51YNi4o6Oif0/Pv/WhvHzFuxXJ15NxFXDhcMnuTp16b9o0vJM+/ZYupQkXYkTE6TFx52tqOzrr6hqYBqxRmCYY9sbuqZs/MzN3I7tL3G/yw8yySyrJbdfXtgt/tXPYD3MZqwqGTQNXdB81uWW47hSei1/Y4SGhB/G8Bo06MHj0Ad/QQ/7jj+GRLyp5+XrJEgw8PJ2uhga8mGANwGzGvQJmJ8mTwZwz6ZiqANzXKjODf6ta3q4owN1ucJe6bdU8uG93xeFyeffmnBkPY3da6u7Gke6eYu4uBfc19oO7nLl/rXbfVArumgF38XWagrsbgfs+9wH3w9oCd6vargq4m2uOO4A7zZPRVHm7Zzu7C+W9O+buRqkyTgN3JeZOUq1sMHcngLtmzV1BsIySVBnngLuSAHd78mQs7jKsgPt3gqapFuBOJBTnAWcGp4uYOwYABjCmnu6iLuFqQubtzIInBcvfLm9gGio+VCx+tXju07kzHs3If5g/89HMec/mzX8+n2GYyvbKB3l5XQxT8qakePmriUl/jYg8M3SsoRNm4K+9hpmWtw9QobxdAburUv/uhCJ3CXDvYw7uvYZtw8kcMGLvkNBDwbpT8VlX2levLm8rj26Jxhqua9KltKaQPJ/LcXH3c3K6Ghom590cG38hKPzkqOjfK6vbW1NS6hu6sLZjW4jpQLqn8sEyRnO3GKJklApvJI3ULoiREf4VBf9LHVbbDwzG9MREJtFDeNVY+mZpeeWHyNTmERGnAyYcZ819zGHfsEN4ar5hh/FPfDxqcsvcoqe1dZ3LS98uWPL8VXExVjW+vB2T0ixPZpOhY6oScLfBBmwvb7cvwF0c3C07pnoQuG/XwEEL3im7uzu7u6rUnZq7I+Jl7DB3Cu4U3Cm4U3Cn4O5l4H7S9eBOA9ydlyfjodre3XB2N5R3B5q7M1Nlut031R3BXdzcnQzuTjR324rc5fumqgXu3I7R/gB3m8rb5cGdeOgmWXDfyW7YsN3CGcA5wVnCqSNdTzFCMIYxocKbwuOvxGfezix5U/J68eLFy1/NnP9o9qInK8reMQxDenLW1nU2dDUsKnlRU9uRPO16ROrFUdG/B0444TfmMGmD2TfoVzZMZujWz323mJe397UpvV0S3FXwd6eyuwy4s+b+N33fVAO49zcF96BffUL2DR17ZGzCBZz/ms6ahKsJZNXCcp11J6uztrYlOhorepNO9yAvb9nbZbheKTmt6fm35hU/e7lo0Yp3K3RNOsxrzBHspdnuqSRYZksPvbn/oP+DDEkX2WSkdlLYzsfImPz9BFfYjknHjq5DvuQ3OlglsDThJaCqvQqPHwMmJPJMUPjJwIknho07iueFw3/8seERp6Mnt3TV1c15OqfiQ8XjWbNupqdjecbsJ+ntpLyd5Mn8xLEU3zFVHNxtN3dby9tF26WqEuCuQXDvvrZv1+Th9vJO2d2d2d2ppe5uFy/jOHNXwO4aN3cK7hTcKbgrBXflhQQU3Cm4Ox/cWW1XF9xP2QnuLuiY6oo8GZvA3aPK212t7ZpydiezuwODZRyfKuPwGHdvBXeXmLv/cXuCZZTHuJuD+55ugLt9HVM32AjuX9sC7hvFwZ2tPhZUuOvBnRQgcySK84zLjVGHmRLeFJ50PWnZ22UvFi68n5vLMEzmjNsJU67GpF+KmtwSldYcmdqsS7k4MemvsQkXRsewuSWBE08MHXt0SOihgSMN2h6wo+dQEiYjLG/f+Hfr5e12grtdHK+E3R0H7l8qB/d+QbtwbgPGH4/LvPyquBgXBWspu3E6PRyr5aKX+P8irMdYpbDGYF28nZVFXH7GoxnlH8rrOusKnxdOujYJCxomEaYDhj3bPXVbT6G5G3sPSNy+GaldUNiOOUKonfRHJc6OWYlxhZ9F9plYIrCU4RVhztM5BNxHRv0WrDsVFH4yYMJxHBhCIyLPYFAtXfkan4ARWFXT0RIdjWUVywBms7C83Zgnoza4y2i7/eXt9ga4/2B3x1S7wH2r48F9uzscbhw1Q9ndVf1U3bnU3Usi3T3S3D0R3P9NwZ2COwV3Cu6y2u6p4H7Co8DdEwLcPa+83aXarmVqdw67a7HIXTupMl4C7t0sclfR3FUtcu8muPMGIwR3+Y6pigLczfJkvhEBd3FttwB3/Z2CaB9LqbiPPQP0Fe4HBpNUGQLuGJyYswlXEyo+VLxdvrw1JaU1OfndihXTCx/GpF+akPTnmPjzobFnR0X/FhJ5ZrjuVNDEE/7jjw0de8Q37NDg0QcGjtzHJskE7eodsKPXsG1cmMyWzwaZlbev/1hf3s6Du3R5u3rgLuvvzmF3kxh328Ddf3u/4F2DRh0IDj+ZktPKMMzCFwux7pE/TdA16dgA9+xsrECYhWQaYW1o0rEfr6xuf71kCd6ZV/wMbzNuZWDRwDTBAMBgwG0C6QOsH8lmvzT6weSmjNx8mf3ZBGmOiu9mkh5z0nx3hx+KFRKvF7Mez6qp7YhMa2Z/VRN5Olh3CsfwiNOjYn6PTr9UXvkBD7Kqpr1sddudKVOwXmIBwITGFp6Ut28n5e0kT8YQ4E7A/dtug/u/7Shvt2yXqkqejLUAdyXg/rPTwN2DtJ3KuzezOy11p/Ey7mXu1sBdDXNXB9zXUnCn4E7BnYI7BXcXg7u4ENGOqaqCu5PbpboLuLuLtuuPPyd6lblTcHctuDvW3E+oae42g/teu8D9F1vAXVjevsm2PBlJbecOKXAXzdfGAyZlyMRG+fJ2thj5gDH0A2MJUynhSsLKdyvru+qvTZrUHBnZEh19PyenoZGJz7oyLvGP0TG/j4g8Exx+MnACT+1s08tBo/b7hOztP3xPv6BdfQJ29tKHyZiUt38iLG/vray8XQ/uCs39K7FDRXZ3DrivMwH3QUZwHzz6QEjkGYZh6rrqlq58nXQ9CYsJLtmsx7MWL3+FK4Vph9lAhj+mAuYNFhK8aOBSVndUJ029npZ3E18e3RKNCaUvct/ZB8ObDGw+Isn8Lzb4W6rNn/HNUTEd9Bkye/rjW2ECYspjDcQ3T25NTr2Rmn4rPfZybPhf4VjJyXrLphX9FZ57n/2biejJLWPiz4+KwRf8hkE1LuGPSdnXVpa/W/BiAYbfg/x8PGZS244ngomL+wBMTcxIzEJ9nowgwH2joGOqKLj/2/HabneejEPAvTt5Mo4B9+3ufDhf3r2w4J2yOy11p+Zuq7lTcKfgTsGdgjsFd68Ad6sdU+0Ed9oxVbN5Mp6i7W5G7Y4vdafgbjXG3WngLlzW3AncbTd3qVJ3K8EytqfKGGPc7QP3rebgrrRjqliejNV2qfLgbrzFUAjuPI8aulmSfQ7OEk4dzi0uNMZ/4tXEFe9WMAzTmpyMlQaTFQvDtcTEttLSqQX3xk/6c1Q0GwNi6HWpL2w3anvwrj6BrLazYTJ+P3O9UvnydpN2qX/rpRjcP/9KQtK/MmSgKz6kCd6E3R1Y6i4K7l+JgHtfU3Afto2A+4iI06sq3j8rLLw2aVJ9V33qjdQuhqmr73y1eDFWKUwIjHSMbnbX7OODXS1mBmYY1siuuroZhY/S82/dz8mZ/WQ2JjsuPWYBxrzQ3E2ykraY3xDpqd3w1xL6wvaDgzE9sarjweQ/zK+p7eioqSle/gqjaPHyV+Vt5UUvixKvJUZcjAhvCo9qiZp6b2plTXtsxuUJSX+OS/wDgyo6/RIeGz4fn4y3D/PzMfCwjOm1nXtGmKCkvF2fJ9Ojx4+GAHd9x9Tugfu/rYbJOCVPxuaOqY4Ad6rtDsV35xe8U3Z3PrvTUndq7k4xd2eAu5y5U3C3BPf1jgV3o7lTcKfg7jBwF9d2Cu4U3LUN7jRPRmva7r7U7mh2d465eyy4/+5scBfRdrXBXUPmLlXkLpEqI983VQjurLnLgLuhvF0S3MUC3JXnydis7UrAXaqn5Z7+JLqdbFdwxnAmcQkwthOuJjCNjUxDw+3MTMxpTAgMeUydi1wySWdtbVRa86jo34PDTwpiZEht+74BI1ht7xvIRbdzYTKkVyopb/90wCY2T6bvBlbb+Xap4nkya2wzdLsPC3x3Sqm7cnBfjzOGU4cTaGiaugunOnDiibTcG7gc93Ny2quqlr1dNmvB40UlLx/NnIlph/GO/fKuvn0xfjGQMa4x3jEn8J9ak5OLXxU3Mo0dNTWZtzOxCmHiYEZg5LMDfkcfqd8qCW9nhJ0A8IUYSBhCmKd44ahsr3yxYAG+f3llG5tvM3Xq3ezsB3l5z+fPb6+sxLha9HJRSmvKpGuTcu7nrCx/Nyn7Wkz6pbjMy9Nm36tv6Fr6Zim+6t60aRhsWESxcmCWYypj+mKyYo6y5e18u1QuT0YqwN0OcLfUdi2Ut7tNx1Rv0nZXybu35cyowu6bvZvdqbl7g7lTcFcA7grN/Vv7zZ2COwV3J4C7FW3XCLjvp+BOwd0NOqZqKk/GheXtVNtdZe52B8s4pMhdcYy7kr6p2gL3M5oEd7WK3E3NvTuR7nLmbkeqjOrgvtkGcFcrT8YM3IVNU2XAHfs9PEE8ZZwHshUhbS1xkjEm4y7HdVRXMw0ND/PzMePxAkiGGAYsJuKdrKz6rvq8uQ/C4s4F606x4D5GCO57+w/f3TfoVxImQ3ql9hiyWZ/e7qMvb5fPkxEPcHeSvNvB7ipGykiC+6d6cN/SkwX3XweG7Bs69mho7NmM6bcqqtis85rajs66uqdz52IVxJYQo5tvK4rtP8Yyts8Y+5glWJnuZme/XrqUxLZgTcZswtQgRe5kzFu2CBbejLA3Fzv0qUT6UXTYF4MHy+Osx7OWlb5NyWkteVPSmpyMB8OuhaNH4x28TF2KibmVnv522TI84OkPp+OTi5a9zJp5J2fO/erajq76+lfFxbcyMpp0OqzBWKgw7/GAMUIxd7FhZ8vbCbib5clw4L5JrGMqD+5KzN2qtqtc3u6YPJnNLuyY6pXa7sbyTtndueb+k3uWuqsWL+OgSHdq7hTceXOn4E7BnYK714K7uLY7E9yPaQXczfnGYeCupLydgruXl7d7krY7z9y7X+TuJqkyzouUcStwt9PcT6pv7sJgGb7I3b4Yd0XgbuqPvEzYHOAukyfDt0tVru02gfvPBnAXUCnODFvbzmk7Blvc5bgFzxfMXvSEYZiLOh0GKTsQuAuIgYNxfSkmBv+pZNWbiNSLIyJOB4w/PnTsEb8xwvR2Ftz5XqlceftmQ3m7sF2qZJ7Mf3arvH2N4kNFdncCuH+Hc9hjyJaeQ7f2Cdw5YMRe37BDwbpTE5P+ypxxu6GRqfhQ8XD69JaoKCwGGPvYCxNwZ28OOHAnRe6YDZheWIbfLFuWNfNOTV1n5u1MTHbMFEwHDAn9yN9p8qsms1sJvuMupg+mFQYPxgeWxMjmyNL3pVML7ubOffB6yRISvI5tI0YOBhJWWbw4NEdFXUtKup+T01ZevuzNsiUrX9c3dHVUVz/Iy7uWmNik02HlxrKH8YavZWPofX0xfdnydi69fRfJk+F+kUDyZEwC3BWD+79l7v5V0vbutEvVeMdUWt7uWHmn7O7R7E5L3R1a6u615k7B3T3BfQMFdwruFNzdAdyPeh24y6UYe2XHVEfnyXheebvnUbvj2N0JRe4U3L0C3G0tdRczdzuL3F0C7koC3GXL2xVpu7BvqkJw324Ed5wEnBacK5xMjBbdRV1NXWdDI/OmpORybCxGKC4af/pxTTCgMH3bKysr2ytz59wfHXM2cOKJYeOODRt31Dfs8KBRB3xC9vYL3t0ncGdvrrz9C79fegzh8mTY8nbTdqnieTJr7cqTMcf0/9R3H5U4lOC7OLurZe62NE0l4D7gu38O/LHHkM1fDN3aJ2BH/+F7Bo8+GDDh+NiECzPmPyp8Xjj13lSGYVqiozFxDxnAfadha7+LgLuPDyYBpguu7PMFC6prO/AljUwjSZXB1MBcwCzg2xiYzQLi7OxWf3c/TBlS2I6pivUzqiVq0rVJGbcyil4VLSx58aGiAuMHqwW2wJipWHLOcpFEeEnBI2xNTr6fk/OquLixkfmwevWTgoJb6en4fLx8nRPTdhIHtV8I7r16beUUzyzAnWiLFXAXmLvIoUzbTe7aRW/B1Stv94wAd4e4tulvgqwfVN5tlHfK7tpkd2ruDip1d2tz/1//58v/Q8HdS8F9EwV3zYC7VW2n4E7B3cngfspzwL27HVNpeTvVdq2au6ZSZSi4uze421rqbou5Wy1yF41x7ya48wAg0zHV5jwZ+fL2f0sXudsF7jgzpEIZUyz7bvacRU+Xrnz9ZulSzAninuwOwt+fvRoBAbhoGPt3srKWvV22cOmL8OS/SKoMB+6HBo3aP2DEXpN2qb6kXeqPou1SDXkyUuC+xiZnt4Ls0ofkj5Mpde+uufPabh3cPzaC+w8suPv90tt/R7/g3Tjb/uOOjYk/zzBM+q30yObIkjclz+bOPcNVuGOri7GMgcw2V8K+G9vqAQPwQcwATA7M42uTJuEL67rq8h/kYwHEFhEjgS1y32uy5dZ3Ejbs4dlGu3sGsIXtB9jCdiw7k29OXvluZSPDJv4z3P86qqpeFRffzc7G0o5V5DT3hxFYvy9GRFxPSno0YwYJwJm96Mmy0rfzn89nGhvvTZ16OTYWLx0YXSZJMpy2s8eQITy4SwW4Czum2gPu1u7yu1Xe7j55Mr84oLzdNbyuMYV3jrxrv+Ddgezu9H6qXljqTs1ds+buanBfYz+4y5n7127WN5WCOwX37pS3U3C3GdwPuRu4H1cP3E96Drh7XsdUp4G7NsNkvEHb3cDcnRPjTsHdMeCugrkrZ3dr5m4SLGPaOlU1cN8hBu62dkyVKm9fr7i8XeY2RAzc2Q08Affv5SJlcH5wGjEFZj+Zvfzt8lXl79+tWPFXeDiuP07qEX4bgl0GJ+8Yay3R0fUNXR9Wr54x/9HIqN/YVJkxR4aEHhw4cj/bMTVoVx9leTIf9ZIJcJcHd3lnX6v4EC17V1bqbr+5/0sM3L+SA/d+LLj/Y+APOJmf+/3cy387G+M+ct/QsUfGxJ/vrKvLuZ+DK4jL18g0YuXDxcI2FoOa31bjfYx0dm87eDCmBaYRVspHM2YsWPKcYRgs8phWGAkYD2RG4NDvljFHMEEMO3D249wvaTDdsObEXY6rqetc3b76Snz85djYe1OnEnMveFKA4YR3bqWn30hNvZ2R8XjWrLayMnyktq5zasHd1JwbmTNu459T703Fg1/xbsXdqVPZ6HYe3P38DnFJMge4x4y35FcIUgHuxo6pSsDd0tzt1XZHlLermyezxQl5Mg7Vdgc5u+sI3j0K3r2G3Wmpu8tK3am5C/p7d9/cKbhTcKfg7nhw307B3Y3BXVLbKbjbBO5ntAHuNE9Gq+Xt3qPt6pq7VlJlKLifthHcT2kY3G1hdyvmbq3IXTTG3RLcWXNXD9ytB7jLl7fLa7vFnQh/K6EH9/Vi4L7FpMIdTxxnA+cK1zrpelJ7VVVldXttZ+315GSMTZzawxx66nc03G4FJxjXCvObYZjM25lLV74ZG38+cOIJvzGHB48+MDBkHx/g3pMDd7E8mQ2CPBmr4L5GrqTdTmSXlXfRn6uyudsE7t983Hf9343g/tPnvj/j3PIx7qOify9d3YbLwZaKM0x9fRfWflw7XLJ9XJdRdr+M7fDAgUSuyaXEJ+ASP50zZ9aCx7jiidcSMRkxXzAeyLxgs4YODMbcYT9Cpgm3o8bcIb+hwboU3hSecz9n8YrXr5cswYp+KSamrbx8euHD3LkP8D3zHuSxWf9vSmo6apa8XrK66kPJqjfJ01qjJrdEpF6MSb+UOeN2I9OY0pqScDUB3weffDszE98HixkBdza6nduPszt3Hx+TPBlDgLtJnoxpgLt+MlmbQ0ru7yXDZBxf3i6fJ2N3gLvKeTIO0nbnU7tz/d0NCt4puzuB3R3RTNXj4mWouVs1dw8F939TcKfgTsGdgjsFd5XBXZyHKLi7G7hTbafm7qAidzcCdyUrjJuCu5rmftIec5cvclcS424/uG8VA3drAe7yeTJWytsV3ImYgPu3H5N9vhy47+6H545zghOIUV34rHBG4aNJ2dcauhqaIyNxyg8LxHO/wWoPc1bLpspMmVLdUb14xeu4zMvDdaeGjjkyeDQb4N5fEOAumifzd7M8GevgLnJYofae5Pi37LFWEGJjzu7i3K+Ouf9LpmOqVIU7B+6b/uHz/WeDfvrcl+ubysa478Y5Dwo/OXP+o7fLluGoret8OnfuRZ0OExSXjzQaJXtevK/feHLgjrmCNeNmWlpVexWueOLVRCwXmDgYD2Rq4C1mCjtlMF8MG2MS94/Zh9U1+242m0jTWceGybBJ8I0VHyrmL3kekXJxYtJfiVOuLlz6Ym7R08wZt6fNvhebcRkfHBN/PizuHI5xCRci05rnLHpa8qYk5lKMrkkX3RKNEYhvdT0pCUsshh/mMRsjw2n7Xk7bd3PxOGbl7cI8GbMAd/vAvbva7tLydtfkyaiu7RpxdifiuzvKO2V3Wuqu6XgZ7zN3B4D7Vw4D97UeC+7m5q4xcJczdwruFNy9Htwltf2IAm0/qijAXbvgftoB4P6bLeCuzY6pLsyTccPydu/UdhXNnYK7q8DdZXkyzgR3ZexuW5G7dKqMJbjzoRnm4L5TAbgrD3C3micjWt6uEAgNqTLkTkEP7hslwR1PE2cApwjjIbwpfM7TOTMXPF5U8vJ5YSEGL86lkDv3cSXS+Cc+iBOMgXk3O7u04v2H1asZhhkV/fuwsUcJuPMB7l9w4C6XJyMR4C7R1FQBtZsi+9+sHSb4Lsfu4qXudpn7vyTK2/XgzsXjsE/EAtw3fMKBO05mjyFbuBj37f2CdpFUmdDYs2m5N+YWP1v2dhkuBy4NVilMCwx8ttcot5Nlf1mCCWEAd0wRTOKm8PC28vKlK99MvjkZSw2mDylpt9wJE3zHXhTTEItn6fvSRqbxZlraoxkzlq16wzSy5p49625Y3Llg3anAiSdwBIWfDA4/ibdBE3GcwFv8c0TE6VExv+PToie34EvyHuSF/xXObjP+GBd3Oa68rbymo+ZiRASWLn4Emmi7aXm7kjwZm8Bd8g7eljAZx5W3Oy9PxlXl7VqmdqfgO2V3t+mnSkvdqbmrau7dD3On4E7BnYK7R4D7rxTcPRncrWo7BXdHgbuTA9y9r7zdm7XdtebuiFQZtfqmUnDXHLgrYHcpc+eL3EVSZWTBnURUC8Gd3aXs6td3l2nH1B29yZ5K2DFVEbgryZP55mPJ8nbBTYfk7YmwyN2ib6oR3H/iwH0rC+54aniyOBU4dZh6eQ/ylrxeUl7Z9nz+/ObISLY+2teXt05+54VdFc4cTiqGxu3MzMr2ysRriV319WPiz/uPPzZ49EE9uAfs7GWaJ8OB+ya5APeeMjXmNlC7GKxzpt/LcPTUE7+YvIuwe/fM/V9y2i6SJ/OV/qmRByYJ7mzf1F76VJk9OO0BE47jEmTPulv4rDD5enJNXeftjAzMfrbvKIlBN/Qd5dOB8J8wn7DudjU0LF7+qvR9KZYsTCjMF5OqdrIBPshmy2BOYQJiqZx0je222lZefj05ubOmJj3/VmRa87iEC8N1p0jvXDykQaMODBq1H28Hj8Zx0Df0kN+Yw/ivgRNPjIg8ExZ3LjWntbO2Ft8KazVZMDEOpz+cvqLs3cPp07EeY34fMgxCtvtr375smIygvH0zV94umicjBe5f/83me3onlLe7UZ6MNrV9h12HxvHdofJO2V3jCTNuUOquRrwMNXd1zV0BuDs6VYaCOwV3Cu4U3Cm4dw/cWW13E3BXK09GIbgr7JhKwd0l4E613YHmrmqRuxeCO/nNn6PA3ZF5Mg4EdwG7WzV38SJ36Rh3Ibiz5m4ruG8zAXcrAe6yeTK2lrdbJl5amrt5jDsB900CcP/5czx4bAhZcN87ACcEF3rB8wVP58x5t3JlVXtVV319U3g4Ti2bAO7jwzaR5fdu2JcNGIBNE3YuuA4XIyIYhpnxaMaKsncTJv0ZOPHEkFA9uJsEuA/6ic2T8SF5Mhv1eTKSAe4iWepWeqKKULuA160eAnwXY3cpc//SFnOXOHpI5sn8p+FZfNT7GyO499eDO9s3lY1x34rzjLM9cOQ+vzGHh+tOTZp6DVck6XoS3uI6Yk0lwSy4XuyelN+xCsAdy96jmTNr6zrzHuRhDcTkwsQh+Uv8RhfvYwZhWmFWYpWe/WR2I9PYXllZ3la+9M3SWQses1Xt4SeHjTs6JPTQoFH72Vih4Xv6Be/GY8PRf/juASP2DAzZN3jUAd+wQ/i0YN2psQkXVlW8r2yvjLgYgRWVXeVOj8CaGd0S3VZWhgffEhWFNQDTl7R+3cWHyfTqtZUjObPy9k2ctovkyQg6psqDe3e03SHl7a7Ik1GxXapDqX2HIw+t4bt2C97dkd3dJWGme6XubhwvQ829G+bu9eD+tTJwX+eG4L7RZeBuYu4U3Cm4U3Cn4K55cHd5gLvm8mSotrubuatc5G5Hqox6fVO1Au7uGeDucHCXLXVXWuQuAe58Aa8ZuLN7Dx7cf7UF3CUC3K3kyYi1SxUtb9ffkojdrZjcj/CpMvLgvqM36ZiKM4OBuvT10qr2qpw592vqOkrfl7ZEReF0Yu+zxwCd7DngtnjYoGFjhd0NLkJTePjTOXMq2ysXLn0Rn3lluO6Ub9ghAbiLB7h/bCXAfa2FrdtC7eKqvs7iEJV3IbvbYO5GcO+hKrhzj9wM3D/1+f6f+r6pW74YurW3//a+Qb9yRe4Hho07Njb+QkNXw/MFC2o7a18VF1+bNAmrFNt9lDd3w85U3/w2MBCr1O3MzBnzH1V8qMCaiUmH6UP+KITfu+KfRNvxCbOfzGYYBt8ZbzFgkqddHx1zNmDCcb+ww/oEf65lLhviH7Cjl/92HHgHH8HH8V/xOUPHHgkOPxmRerG6tmPhi4VY0rGyYbXBNMe6hH8ufbN0Zfm72xkZWBrxyPcbxiHfK1WY3m5e3i7Ik/lGrLz9a1tu5WW0XcUwGYeWt6ubJ+Nabd/hukML8q7dgndHdlV1J3Z3i1J3rzV3Abt7sLlTcFcN3PluSM4Ed/uK3Cm40wx3Cu4eCO4nKLi7ccdUW8Hd3cvbqbCrbu6uB/cLFNw1kSfjDHCXKXU/LmHuYqkyQnDnS3dtBvftpuAu0TFVPMBdNk/GTm2XMHdLcMePNma4C8AdTxznB+OZYZh5xc9CY88mT7uO9zHRcRZxerAdI2XFZP+IM4Ed3F4DuLempJSselPxoeLlokUNTAO+3G/MYZ+Qff2COHC3LcBdIbiba7s0ta/7iNVq2UMU34Wl7g41d07bxfNk+I6pBnD/O9c0VQjuJMadpMr0C96N0z4k9FDQxJPRk1vmFD1dWf5u3rN5JMwd6xAxd+wljbtOPz9cYlxELELXk5NrO2uXvlmKBRmzHpMI04f/6xBMInwEkx0rasatjJI3JR3V1fjOi0pejkv8Y3jE6WHjjvmGGQrbg1ltZ6l92LYvhm7FI8SBkdDLf3vfQNbcB47czxbjR5xOy7v5bN683Pu5WAMxncnkxTtYVGc9nlVX31nfVY+VHg9S/4sfQ3n7L3x5O4dHwvR20fL2dWJ35Epu4uW03fYwGQe2S5UCdyeUt3df27Xt7GriuzsUvFN2p6Xu3Y+XcXKk+0aXl7prydw1AO5r7Ad3OXPXLLh/qwDc11Nwp+BOwZ2Cu5rgzhckOhTc5co81QZ3Vtt/86yOqdrJk6HaTovc/3BDcP/dqeCu2TwZ54G7gd1lzF0+VcbYN1Ua3NlNhX3gLhbgzt+wiufJyJS326TthnsWS3AnNwv4QWSXjg22Edy39SQdU/H0cYowUJe8XjK36GnU5JYpM++8X7UKk4MHd76sGE8a52BX3744TziLuP6PZszoqK5Ou5nGMExle+W4hD/8xhzRg7s/AXdjgPsnAzZ9wubJbLDMk/mbWEW5HLV/YVbYLu/s30gc0vIuXuouZu497DV3E223LG83dkzlwR1nD+fQDNx7DttG6scHDN8zaBRr2cG6UxMm/Tmn6Gn+w/yCJwW19Z2XYmKw0mC64JqycwLbSW7biOmCD2KNaYmO7qyt7WpowNqOlYTwNz+PMLmwYmA5XfhiYVt5+bPCwqJlL+csejou4UJQ+MlhY4UxMgJt9/uFu/qbufSbLRgMwvSbkdG/LSp5WddZF38lHksNqanHVMXPxYqX9yBv2ux7GFR4vWL/0mLwYOz6yS9+2F6pgvL276XT26XyZGy4ZZe+O//WFeXtzsuTcVp5u7tRu2r+7ip5d/OcGbcJdvfOUnfXRbpTc6fg7pgYdwruDgZ3cXOn4E7BnYI7BXcK7n9QcKdF7hTc3Rjc3ay8XbbU3WqRu3nfVIXgvssU3HeYgvtWCXCXD3C3q7zdurYLzd0ixp3d52MDT8D9B1Nw39MfJwEnCgM1pTWFYZgps+6UV7bdzszE5NBDJwfupKx4KwF3rsId5xLj60Fe3vK3yzFns+5k4cvD4s4PHXNkoB7ct38xdGsPDtwFAe4b/i6VJ2MF3KVjZMSp3dTW+1gcovJuYu5fd8vcbQqTEQ9wN4B7n28+7vvt3/tu+KT/xk9J01QDuH/u9zMpHueK3HcZA1t0p6LSmqs7qkkY+ttly64mJGA1wgTCRCGpS7i+eB8fwRpzUafD5StrKwtvCseCg4lm3PKdCMTagiU3/VZ66fvS9qoqfNu4zCujY88GTjyBn8Vp+wGfkH0D2ND2XWySjP928scNbJrQwB9w6Fu8suk3eJD78FVj4y/Uddbhu0W3ROOnYIeMoYi3eGR4APhZdfVdb5Yu/YvrJUDGIebidj693RAm8z13i8mHySgsb3eltrttebvK2u4R1K4CvntTwbum2d2JCTM0XsYz26hqw9xZcLdu7toBd8/tm0rBnYI7BXcK7hTctQXu7tUx1ZF5MlTb3dXcKbiLabtVcLetY6oz82ROahLcZc1dMlVGCO7Cvql2gbs9Ae6GPBmr7VLt1HazIndBjDvZ55uBO7aLeFJ4sjgVOG8Y53GX4wqfFy5Z8frtihW3s7KadDqMFJwwbKb4TpXYTuJMYIOG04YTjAF+IzW1vK08+Xpy8aviOUVPR0b/5jfmsADcBR1TpfJkRALc19qp7WbU3uebj/tw6efSh6m8W5S6C81dJFtGJljGmrnLl7cb8mQsAtw34jSagLuvAdyNIen7Bo8+OHTs0eERp2PSL+XNfcAwTMatjNLVbVcTErCk4bKyfxnCzRi8g3mMdQgvCJ01NY1MY8TFCCxcWCL0W7VTwVh/sN7mPcjrqKl5U1Iyf8nzxClXcaEDJ7Da7ht2aPDoAwNH8uXtLLj3EoA7rj4OIbgPHLnPf9wxXUpT2eo2PLaolig8FExDTEDMSkxbLMs1dZ34T9Ud1Vfi4lhwN/ylBfnFzxaLXqkbBWEy3Qf3dXZEt1uEydjRK9XNytsdpu07POVwA3mn7O6eCTPOj5ehbVTdxdwdA+5fUXCn4E7BnYK7hsH9IAV3jwD337UL7m4c4O7I8nbq6Vorcle9b6pbgLsrA9zdQdvt/BFm5m4RLGOeKiPRN1U5uCvvmGoe4G6WJ6OwvF1e26VuasyK3IUx7tiQf2cC7nhebMfUQ744z1gNsu5klbwpYRobqzqqGO5/zZGR+uJiLj7b2DF14ECcTgy6izrd7cxMfObcp3Nr6zpj0i+NiDjNgvtIA7j7seAuGeDeSyrAfa2t2m5e2G7p7H1ZszYcYuzex4TdrZq70mCZHqLUbqrtMnkykuD+Iw/uXwzd2oukygT+2i9414ARe3D+h4QeHDb26HDdqXGJfxQufv5+1apGprGjuvpOVhbWTiwqWAnIJMM6gXUIi/eT2bMJf2PRY9ccblXBAoWlO+d+Tn1XfVV71cryd+HJTSFRZwImHDdo+8HBow8MMoL7r30C9ODOXn3fLT2GbMZBHmdvfzZSZtCo/UETTxQsfLzi3Yryyrail0VYcDArsc3GJMVjimqO6mpoSJxyFY/nRmoqJjQbbdSvnz5PhktvV9Qr1RHaLh3drmaYTPfL2zlwd355eze1fYeHHp4h7xpkd7cJdvfueBlq7s40d+eBu3b7propuG+g4O5N4L7DzcBd0tytgvs+Cu6eCO5nKLi7Mbh7ZHl7+F/hMgctcrezyN1rwF1Jnozzy9sdTe3Wf5ypuZuD+zHbwJ3dKkiB+04JcLca4G5HnoxlebsUtYve2tgK7vt8sK/AQJ35aCbDMI9nzepimLr6zrwHeVPuTsFHMEVw/nCSsKUiOy/sm7BnwTi6kZZGXP7D6tUVlR9y5z6ITGseEXnGb8wRAu699ODOd0xVHuC+VlFuu2hhu5DaTZB9/d8Nx8cmh2i1u4i5KwiW+VLS3HuYabsZuH8llydj7Ji6ge2YSsB90I8mkTIcuPcJ3Nk3aBdb5D5i76BR+4eEsnXuQeEnx8Sfz5h+a/HyV9PuTStb3XZ3yhS88mAN49cYLGNYvB/k5dV11sVejsWySZYvrH5Y5LPuZFXVtOMLp8y8MyHpT1xiXtuHsNpOjgMDQ/b1H76nX5AhUobtmPoLHt7nvuzBN3fF5+DzR0ScLln15u3y5deTkzHesOBjLmPyYinTXdRNuTNlWenb7Fl3a+s68cqAEYhRh+mIOxjcIeFOS1jeLhcmYzu426TtCsNkvKe8vTvavsNrDmfKu+YK3rXK7l6YMOOWke7U3FUD9y8puFNwp+DeDXDfZj+4KyxyVwLufXf1peBOwV2ps3gEuJto++9OCXA/5+Z5Mp5b3i4v7FrDdwrubgPu2ihvd0Jhu9KfLlbkbp4qY9E31Tq47zYBdxs6pirMk1Fe3m6V2mXMnbvXYG8WCLhvZMEdjwqPkAd3PHGcooiLESvL311LSrqVkbGi7F3G9FtdDNNZW9tRXd2akoJRg5PHnq1Bg/AWmxGc+MuxsUUviyZlXytc/HzV+1Vvli5lGGZy3s1R0b8PHcuCe18LcOcC3DcqC3CXOHquldd2AbULhX0DGxxvdvTdYI7vPLuLm7tYmLv1IndTcxdQu1x5u0mejCDAXd8x9bt/DPyBA/fNPXy5pqkm4M4VuQ/f4xNCzP0QLkfgxBO4LlFpzbisFVUfns+f3756Na4gFlp2hRs9GgshlvNb6eld9fUJVxOwULNbhQtjdU26afemVXVU4asyZ9wem3BhRMTpwAnHh4096ht2eEgo6+w4fEMP4Qfhog8YYchwZ5umsubO1rkP3co/Qi7Afa9v2KGQyDNLVrx+kJd3JT6eaWiIvxKPlwC8As58NBOjDmOpvLIN71xLTMTyxucakTwZ8fJ2NcJk7NR20TAZBdquQq9UV6W3U233bHmn7O4dpe7OiJdxizaqnmXuFNyNr+dWwH2dY8Hd3NwdCe5Gc+8+uH9PwV0NcN9OwV274C5n7kesmTsFd1vB/Tc3B/fzFNy1pe12O7tr5V2bqTLuAu5O7ZjqHHDXjrZLPCQpcxdNlRH2TbUV3LGTEQd3mTyZn7qRJyMobzcPkxHcyEje7EgXucuAO05U5u3M2rrO1pSU10uWZM+6GxZ3LizufEpOa31XfdnqNkx0nGacS3aXMWwY3m/iGmzWddbh7ewns/Mf5r9YuPBOFts0dcKkP4eNO8qB+6+9hm373O/nzwazbTP5jqnKAtwVavvXRm3nC9u5qnYxZ98oOMzl3dzc+8iau23dU83Y3ULbRcrbZfJkDB1TuVR0Ujnecxib4S4E9/7Dd7PBMiH7Bo06oDf3CcdHRJ4Zl/hH8rTrbDZ6bQfe3kpPvxgRwS7M48Y1hYdjADCNjUnXk3RNOrwuRLdET384vehl0dKVb+KzroyJP89q+8QTuL5+Yw7j27JJMqP24+DeMTZN7Rv4a5+AHb39t+NRYQywB/fwuIj5Pfh8PJ6QqN8wwPAY7mZnd9XVZd3Jyrid0cg0NjR0Vdd0LFv1pqyt7EF+Ph4bCTUiAe4kT4Yvbxf2SnWttisMk7G/V6pLy9vVCZOh1K4KvlN2p+wuZu7OL3V3izaq3mnu2gD3NfaDu5y5Ox3c9X8o6kng/l23wf0HCu4U3DUN7pLmTsGdgrsmwd1N82TcmtpdIu9OK3JXF9yVmLvGwd1ReTIa1nbr4K7sEYqYu2mRu0JwZzcAPLjv0YM7u0Wxq2OqkjwZm8vbxahd5JbH8PlKwB3PgkTK4BTFXo5dXd3eXllZ1lY2Mekv//HHWBKNPJOWe6O8rfx+Tg7GO045XtIxiDCrnhUWdtbWZt7OxDTEXIi7HMcwDFH4+Kwrw8Yd9QkxgLvvz58NluiYapInowTc+TAZs9x2obYbCtsNyM5WhfeXOIT4bmR3izp3+WAZaXC3MHeTQ6S83a48GX2AO9s0dWdfHtyDd/fnitwHjtzHVqCHseYeMOH4cN2p0TFnI1IvTi24V1vX+bKo6Hlh4bXExOaoqJaoqNaUlK76+sk3J2M8JFxNmPt0bnnlh9mLnkSlNYfFncN4CAo/ScYGKW8fNIoF94EjybHPZ8Te/gTcg37tE7gTj6d3wA5ykN8E9B++G5+GB4NHMjrm9+j0ljmLnr5dvhzDZv7z+fUNXZkzbo+f9Cce4bLStzn3cz5UVGDgGfNkDO1SheXtaoXJWGq78kapNEyGart7ybu24t01ye601F2Dke7U3BWaOwV3tVNl3AvcN1Fwp+BOwZ2Cu3eA+1mNgruGAtw9pbzdcdTuTHbXRKqM54G7xsrbu6PtalG7dXC3JfGG/4ZmRe7CGHdJcD9gM7h3N09GSXm7Em0XuwMSLXI3gvt6Dtw3sRtsFty3fI6ngOeF7RNOC4Z97oPctrKyuUVPw+LOEVQNCj85NuHCkhWvu+rrm3Q6DHYMWMyY1uTkhoauKXemYBaQ32pgljEM8760dNHLRbEZl/G1PiF7+wTu7CkO7uYB7oryZCTDZEy03YTa9bC+SfqwZHdxc1dQ5P6VgiL3LxWVtxvzZL7W58nowZ19LsI8mc9JngxX3t6H65hKtJ07dpMidx+2yH3/4NEHfcMODx17NGDC8WDdqZFRv+HKRqdfmlH4iGlsxHE/J6c1JeVWejrez76bnX4rfcnrJTW1HRnTb0ekXhwTdx5fgi9kw2TGHdOnt3N5Mhy478NPwRUfwIF7/+DdxNzZI/BX/lFxrVz3s9o+/nhI1G8Tkv6clH0td859DLAGpgFvp82+F591BR/XpVwkvQGezZuHuY4dNCYlpuA2YXm7qmEy1rXdrkapqvVKtQbuW5xZ3q6StlNYV0feNVbwril2/9kL2d194mWouXfX3D0K3DUe4/6tSjHuFNwpuFNw9xRwt2LuFNzdBNy12zGV5sk4l9q1b+4U3F0L7qqVtztL2+XM/ZQth1iRe/fB3bxj6q9WOqaSTaCVPBmz8nZ9Re7HouXtotHtItRucR8kA+7stn8j2zcVjwqPEA+YBfcdffBkcSowZqbem/owP59hmPDkpuDwU4ETTgTrToXGnpuUfa2+q741JQVzHXO0OTLy3cqVpe9LsWJgcJKzjUk079m8jpqavLkPRsec9Q07NGDEnj4BO3sO3dpjyBbTjqn2Brjz5e1m2t5bRNsNVe2buJJwtipc7Nj0yQCjvJubu0iwjGSR+/+1scj9/4qUtyvNk/nU5/t/CPNk+Gz0wF/1zs4fenDfO3AkG/kyJPSQ35jDw8Zx5h5+KiTqTFjsuYlJf8VnXcFVq63r/FBR8WjGjPerVs1+Mruqo6po2auUaa0RqRfHJlwYHfP7iMgzweEnA4zgboyU0Ze3h+z1GbEXP5E19+G7+3HsLnD/vYNGHcADIL/FSc25sXjFawy2mo6aBS8WdFRVvS8txWOYV/yscPFzfHzZ22WPZ83CAq8vb+/bd7sgvd2sV6qTtV2mUaoqYTKaKm93S23v00fNwwvk3cPZ3aUJM15S6k7N3fnmLlPkrgd36+b+Fe2bqr2+qRutmbtbgPuPFNy9Cdz3OhvcJc2dgrtWwV2JtlNwd6M8GU/Vdiewu+tj3G0F9wsOAHfndkwlv/NzTp6MprRdHXAXmrspuAtTZWTAnX1l58F9rzi42xbgLsiTsa1dqmx5uxVtN9wHCe9xTPqmfmvom8qD++YeePx4UniOOAM4UbGXYxeVvKzrqsuYfis09tyIyDMhkWfwTmRq85KVr18sWHApJqY5KupWenoj0zjp2iTMUIxPjCu8jbkU01Vf/3rJkvisK0ETTwwefaB/8O7eATtMOqYOkO2YamN5u3mYjFDbDYXtRmr3wfE9S9XcW+4wyruB3Umpu6S5WxS5r5Utcv/S7BChdonydss8GQG4c3kyA415MmwzUv/tfQJ3crntewaM2MOR925yGMCdJLmTIvcj/uOPBU48MZyrcw+LOzdh0p/Rk1tSclrz5z0sr2xrKy9vbGRmL3oyOf9mbObl8OQmDtzPYjCwFe4TT+DLuQz3I3zTVEOwzL6BXJ07KXUnB/vTuRJ7fCa+amQ0m9u+urqdYZglr5ektKYktybn3M/BD72VkYHj2bx570tLn86ZcyM1FcsndqzYg+NuAJMPtz5bSHk73yuVzCdXabtoo1RRbXdEmIxsebszw2Q0oe3qCruGFV5D8u5EdqcJMx5s7uqwu8bMfb2rzZ2Cu0eD+0YK7hTcKbhTcKfgbhe4n3MiuF+g4O6W1O5O5q6lvqlaB3enlLfbp+0OonY5cz+l6OVA1NylYtxFwP2gOLgr6ZhqHuAukyejpF2qaK9UO7RdtMhdGONuAHfssXlwx9NhY9z3+uC0YLCl3UjrrKlhGhtTclrHJVwIizs3Nv68LqUpPf8WwzA30tKuJye3lZUVPC6Iao4i6e2YIFg3Cp8VkgyQMfHnh449MpAEuPtvZ8Gd7Zj646c+35t3TLUpwN0I7mJhMn31JG3QdrZ03UDtLLLrj4E/6A/DR1h556vdTc1d0EPVssjdttap0sdXIuXtknkyFgHu+jyZbb392fL2/sN3E1vnvJuUme+RAfdgHVvkHhp7dlziH5GpFxOzr00tuFey6s2q96verVzZ2MjMnP8oNfdGTMalicl/YRiMjvmdN3euzv0ovpXfmMOGbBmjvAuOA1yUjT4+flT07/iejUwjxsnkm5PJ7iKyOXL6w+mviotboqPxSoIVHUsylkbMY8xXou18mAxuy34065UqQAf+7tlp2q6FMBnXlrfbqu2uQvadig93IXg3Knin7O495u7KUndq7vaA+5ceDe5fU3Cn4E7B3dngLmnu3gfuVs2dgjsFd4eDu2PyZLxB2x1q7hTc1c2T6Sa4u7a83dHarhzcrSTkmBW5KwN3fcdUAu77JMBdcYC71TwZmfJ2816p9mm7ZZG7ZYy7oW8qHiHfNxXPDk8W5wEnCgN79pPZDMN0VFXlzX0QPblFl3IxKq05aer1FWXvHs2Y8SA3t66zLvVGalRzFFkx4i7HLXi+4E1Jycqyd7qUpkC2vP0gmycjGeCuB3cbA9xN8mT48nZBmIxR2/WF7XpkZ539n/rjR+5g3xfKu6Ha3TRbxlqRu5VUmc9tAvc1/9eiXerfhHkyfUlIjmiAO5cnE2QAd32W+h7DsdcnZJ9JpMzYowHjjweFnxwRcXpU9O9juF+oTMq+NnvRk5qOmoInBYXPC5/OnXs/N/ft8uXtVVUYDLlz7idMuYqRMI6UukedGa47FcTFy5Bqd07eCb7rDz8cY46Q+Brys0Jjz2I44bvdTEvDW6y6mKpYJCObI/HPB3l5WO+xZGJaY+5iM4tdMyalXtsFYTI/qBcmowVtd+swGddou0qwbt+hQX93nLx7KrurH+xOS92puWvM3DUD7trom2oF3Nd5L7jLmTsFdwruWgP3A5oB9yMU3B0C7gTOvBDc7eiY6tnl7RrRdoeyOwV37QS4e7a2d+u1QNTcLWLcRTLcD4mDu3zHVJMA9616cLctT8au8nZxbZe/XRIUuUuBOx4h3zeVpMrgueOc4KRhbCdcTWAYpq2sbHV1e/68h2l5N9Pzb04vfPihouLtihUzH8+cfHNy0vWk1Buphc8Lqzqq3i5bVrj4GZf8ftI37PDAkfv6Be/qHbCj59Ctn/tusatj6hpLcDfJkxELk9GTtIm2c84+6EfxY+CPPLsbSt15czcJljEmuUuDu3zrVOXl7bJ5Mpv+YR7g/ksvA7j3C95NhJ07eG0XKW8PmniC1faY38cl/hGTfglXtqGRqe6ozridkdKaguv7fP7860lJVxMSbqalvVy06N3KlZ21tSvK3i0vfZuS0xqbeXlC0p9j2Jr3syFRv+FbEX8PmniSfcsdwRyyj4k7H591JTWnNT3/Fr4wa+YdjKvXS5bkPcjD2o7lCwt47oPc+oauy3FxWA4x+7EDxVYXe2pMR6LtJLodk8whYTKO13Y3DZPpbnS76truOmRXgeDdPGrG9eyuvWB3WupOzV3L5k7B3UV9U1UB9w0U3Cm4awzc9zgb3O3vm0rBnYK76uB+noK7V2u7g8zd7fqmui+4q58no4a2O43alb8ciL8Q2Aruh/Xgrg9wP6ioY6oKeTJm7VKly9vt0XbLOyYZcF9vAPfv//HPn9i+qXyqDJ41zgNODs4bBh5mdPL15DlP51S2V65uX11f37W89G3Z6rbSttLFrxaXtZWRAJnyyrbZi54kTLkaFncuKPyk35gjg0YdGDBiT99AQ56MsWMqB+6KAtzXGA6pAHeL9PZ+wvJ2gbZzsP7ZoJ8+G2xxDPrJwO68uXN57sJgGWGRuwW4S6TKKAT3r0w+06JdqhDczfNk+AB3i46pJLRdT+0i2q6vbQ+JOjMm/nzU5JapBXdrOmoqPlTgQsdfiY9qjoq9FJv3IO/t8uVX4uKadDq8IFyMiLiWmPiyqKitrOxxQUEXd91Xlr9buvJ10bKXSVOvTZp6bXLezci05olJf0VPbsmYfgvjITK1OSb9Ej5HP07ayvG2oZGpqPqAwVPypmTlu5ULXywsflVcV9/5dO5cLMOYuJim2Atj042dO+afUdtJdLtomIwGtN1R0e3aKW93obZrEtm7RfDeUPBO2d2R7E7NXRVz3+TR5u5IcP/KYeCu8Rh3e8Hd3NwpuIuZuwvBXc7cKbhTcHckuPsf96fgTsHd7QLc3UbbmwyHB4G7akXuTgd386mnBNydEuDujPJ2DWi7klcEyVcB/gkKwZ2LlOHzZFhwP6IHd7OOqSbgLhPgrjBPRlDergd3+XapMr1S+TAZq9QudtNkkipD+qYawB2PBI9K2DcVTwrPkRS544TgLOHs4dxi5GNSx1yKSb6ePOXOlILHBXVddZXV7QULn0ybfS89/1Yi56pjEy6MjPotcOKJoWOPDB590Cdkb7/gXX0CuDwZv5+tdEztaQnua2TB3STAnaS3Gzya1/bveG03UPtmPAzu2GJ4ZzM+aGR33twtitxNwf0b22Lc5czdUttF82S+4Z4gHon+2RnyZAQdU4dt58B9px7cDbnt+iQZTtvZJJlxR3GNRkSeDos7FzW5JXfufYZh6rvqcUy+OVnXpCPLcsTFiJz7OR1VVZdiY7EYswskFsWwMPzHlujoO1lZb1esaK+s/FBRUdVRNfXeVHwTfI/6Btbh5yx62tjIFrDjfbwzt+hpR3V1W1lZcmsyBlLi1cTpD6d31tVV1bRPL3yYmH0NY6m2rhOffDEiAltF7HCxg8aWHPt6S20n0e1qhsk4Xdttim534zAZR1L7Tnc7XIjvlN2dw+5eUupOzd29zN3Z4O4VfVMpuFNwp+DuAeB+yN3A/TgFd/cDd1bbz9MAd+dqe5Mth9cUuXs+uP/mdHB3W20XeVGQeTmweNZm4G4W4C4D7lIdU+XyZLYpy5MRa5eqtLzdmrbzd1Lm91OWRe6CGHdyL0D6phJwx8NmY9y5VBk8Uzx3nAecGZwr1txPDcfwxpSMbI5MaU0pflX8rLDwZVHRnKKnSdOuR6U1j0/8IzT27IiI05y2Hx0SenDgyP0Dhu/pG/Rrb3+SJ/PzZ2zH1B9EOqb2FnZMXasU3C0D3IXp7QP0NeACbdc7++e+bD244djCyfuWHgJzFwbLiCa5m8e4i/2qQALcv1Ja3m4tT+ZT/qnxAe5Dt/by395HHymjr3A3FLbvNzQsZYPUh0ecDos9F5d5ZWrBPYZhajprGpnGJa+XRLdEYxUlqxwWQyzj2XezO2pqLsfGYu3EMsYuRViEsFcaORLLIVb6K3Fxd7KyiJV3cYCehX/fyVrxbgW+Z8HjAryQTbkzpeRNSX1XfdGrorjLcVjwMYTwzwe5uY9nzWpoZJaseI0R9WT2bHzDk5y2H+AK27Hxx7TDhNtm0PbNAm3fZND29Y7U9m8cr+1uHSbjcG13f2e32d/dreBda+zu4aXuXhIvo665qx4v43Rz/9Y+czcDd+vmTsHdyX1TKbhTcFcM7qy5U3D3YnC3WuRuFdyt8goFd68Cdw/U9qZuHK42dwruLs+TUaW83XnafkLi6A67KzF3w3MkX2uWJyMEd/mOqeYB7qrmySgtbzcLkxHTdjNqlzR3qVQZA7hjj23sm7q1J5sqs7MvnjgpcsdZwknD5cM4xPSJao7Kf5DPNDbeSk+/nZnZUV2dOeN2ROrFsLjzIZFngiaeHDbuqG/Y4cGjDviE7O0fvLtP4E42T2boLz1MAtxNwV08wH2NYnA3y5MRhMlwzVGN2k6o3e/nL/x+IQfeF7A7a+7GPHdhkbs8uPdSBu7m5v6VhLaL5cn0UZYn478DJ5xtmhrMazvbItU39NDQsUcCxh8frjs1Nv58TPql7Fl3WWrvqKlqr2poZNJupGEdxkrFrjan2Z0S3scKPOXOlA8VFVcTErA6YililwpMZW5nh3fwT3wQSyCW/Jbo6OtJSSQ0pqa24/n8+asq3uP9vAd5y94ue7t8eWdd3awFj7vq62s7a/EJD/LyWqKimnS6q4mJj2bMuJmejuUWk5WNkREUtrPa3rOnqLZLRrd/9JGDtP1bxdruuEapPynQdpvA3SHarkqMjOdSuw2V7+5T8E7Z3V1L3d3B3L+n5t6NIndbwJ32TfUgcDeaOwV3Cu7KwX23NsB9v2eB+1EK7hTcKbg7UtubVDpcZ+7eC+5n3Rbcu6HtKiP7ie76u9JsGbM8mZNqBrgb82R2SubJ2NQu1f7ydjNt/5fFIbylEqbKyIC7oW8qH+NOUmWwlcI5wVnCecOZxDjElEy7mVbVUXVnypRLMTGX4+IeFxQwDBOfdWVM/PkRkWcCJ5Dy9kODRu0fMGIPyZPpNWwbCXD/bJBZx1Q9uJt0TP1CCtzXiIO7RYA7nydjLG8fTNqKcjDt98sXQ9licHLgfQO7s+ZOsmUERe7fCYrchTHuEuAu/G2BKLgbzd1S2yXK23uZl7ezxfs+38mWtxNtZwvbSYaM//hjwyNOh8aejZ7cUlH1gaSoP8zPx/u593N1TTqsY1hG+LmDeUR+vzLt3rS3y5ffSE3Fcoh1hY1oCgjArtBYsIEdYkAAPo6ZhzUMSyz7ohEe3hwV9WT27Lou/L8Oo+VKfPztzEz80CWvl7xctKg1JQWfic9n1ypuZuObkP6oxsJ2LkZmK9F2rkuqibYLotvtK2+3X9s5cHeStjs4TGarNLi7Utu9w9ldXvbuiIJ3yu7eVuqu8XgZau54IaPgbiO4r3MiuK93Y3A3MXerS8VP/6TgTsFdFNyVFLl7Bbir2DeVgrs3gbvnBbi7TNvtYnfXmrsLwP28YnDXWMfUbrZL7VaYTDe1/YQaR/dK3c2ejtXydtXyZITl7T+rVt7eLW2XMndDkbt539QNhr6pQnDfJgLuOKUY4bGXYxmGaSsra4mOxizH2nAlPr66pqN4+avw5KaRUb8FTTwxjM+TGcHlyQTsMAtwF4A7KRVfZxu4fyEC7h+bFIAbSJrUgA/6qcfgzfoycA6m8Xh6cUdP9uDY3e8XQ507X+TOJrmbpsps+HvfDWbg/pEMuH8hAe6Sh3R5u3y7VGF6u0HbB47cxxa2h7Fx7cHhJ8cmXEjPv5U1805pxfv7ubmviorqu+oLnhQkXU/Ckog1BNeXnyzsju5EIFYSrIdZd7Lq6rvuZGVhOTzFsTimEeaQfh9KdqlkQ4rNpqm/k+J3dvHDIhcSgjUSKzpeCvCRk/y38vPDbhebYuyssTHHHl+f2G4obMfc2iyl7aLR7QrK29dRbbdW3q6WtlNqVx/fPazg3RHsrnawu8oJMx7XSZWau8bN3W3BXcOpMs4Hdzlz36Raqox2wX0zBXcK7hTcKbhTcNcQuGtC25scdlBw7wa4y5e32wPuygLcHVfe3q0wGbu1XczN5V8C5P7ySbG8W3mZ4J/CCXFw15e3q5gnY61dqm3l7Ra9UiW1/V/WDglwJ31TRcEdm2EjuO8QgPthX5xDjEOsA2VtZTWdNdeSkjDbSP9MzPV706bVdNRMLbg3NuHC8IjTw8YdGxJ6yBjgHqAPcDcH974bDNksQrOW0XYbwN004pyUt+u1naV2/+29uaMXd7DsbjB3fZG7MMldHNy/VQzuCs19jcLydsFTMzyvob+wYTKctnNJMmyMzJDQg0PHHg2aeGJk1G/hyU0ry9/Nfz6/4kPF+9LSp3PmMAyz9M1SrNK4rJgvwtlB9oS44phQWPFy7+c+yM/Hl+BaY85hJhFtJ0p+0HLnS3a4Bog/wkG8cENq/HJ8CeYc9t0+Pphtuw3UThLbcWfzMydTBI9+ENN20TCZdVrS9k0KtV2VRqmOi253hbbvpIfT5Z2yOy11p+bukebuYHCnfVNdDu4bKbhTcFcM7ruUgrucuXcf3PdRcKfgTsGdgrtWtd1GdtdQqoxTwL2beTLdAXdX5ck4W9u77eyK8F05u1s+/hPWy9vl8mT2WuTJGMrbsRdS2i5VjfJ2/W2LHdouNHcxcGfvNQi4rzeAO9c3FU8BzwhPDU9TD+4HBmGPgbOKuTPr8az6rvpn8+ZhcmPYkuGJsd8cGdlWXt7Q0JU45erI6N8Cxh/3DWPBvb++Y+p2Y8dUPbhzkejmHVMlwP1z0VQZzqN7yoD7d8KeoqQM/AtS2+7PVoL3CdjZJ3An3mHZfdh2Ibj3MEuVka1w/5t64G5DertZmAyv7cN3+4TsHTSKLWwPmHB8dMxZXUpTXOblecXPXixceCM1tb2yctX7VdPuTYu7HIe1DosApoZxRhh2m/gIPo6LjhUv83ZmXVfd41mzsHxibmEasVxOqJ3siAda20oLt8+G/7SXQ3ZuhrHOjhmmr2o3ZMgIC9uJy4hqu63g7mJtF4C7ndpue3S7e2g7pXaPlnftsLvHlrq7baQ7NfcNtoP7egrubg3uNse4awHcv6fg7lHg3t2+qXutmbtGwP0gBXcK7tLa7kxw7462X3BIgLvbg3uTsw73Avc/3QDcXdIx1W203QHObh3fbY+4EWq7neXtMnky28XyZCzapfL3kYrK2y17pUqEydig7RZF7kZwJ6kyBnDHHh6PkAd3tm+qAdxJ01ScN4y0qJYohmHq67uuTZqEEU2aZ+LAoMPUeVxQkP8wf2HJi/GJfwRNPOE35jCb4W4J7gNZcP9kwKa/i4C7ME9mjSlYC9l9rZGkBTXgH1mA+z+E4C5IOWe1nWsrioOYOyly/wIP0s8kVUYG3D9SGdzFfp0gCJP52PR58WEyFtrOxsj4jTmCSzBh0p+4Xo1M47LSt3jnbnb2rYyM1dXtRa+KsN7igmJqEGonv3biD8wLfJCk9mN9K3pZ9KakpLOmBgswAXez4nR2Z83vwQ2bdMFu3fgR/iD7fXJnQEraCcnx1M4Xtuu1nXCJMm1fZwu1O0rb1W6UutlVjVKdoO2U2rUq75TdNVXqTuNlqLnbbe4m4O7tMe7rvKtvKgV3Cu4U3K2Y+2Gl5k7BnYK7J4G7BgPctajt7mDuFNw1Wt5uq7Y7i9rtx3fTB2ap7UrL2y3apZrlydjWLrWb5e1KtP1/TA/5InfTvqnkRoD0TZUCd5winEBMjdL3pQ1dDc/mzcOkJFne+pbqAQEYiRcjIt4uX95VXz+98GFI5JmhY48MGnVAn+GuB/ctrGJzqeif9N8k7Jj6US9xcOe1XRC3Ito3dZ1FGbhZpIxZW9GdXND5Lhx6c2eL3NlUGQXgvl4c3HuKB9ArA3fxMBnT57Xhk34kmP57nENjdPuwrb39ibazoe1DQg+RxPZxCRdqajsYhsFVw9uazpq6rrqytrKs21lYAzFfMB1Yaue6F+h/4WTY0BJzx0wh4D7l7pSiV6y5Y53GPMMcwrzBF+3nqtQJtQsZnT2k7wOMXEhEz+DsWw2MRVzJrLBdqO2WjVKVgLtCbf9Wk9ruqEapVNs9GN8pu7tXwgyNl6Hm7khzd2dwX+uivqkU3N0O3LdQcNcfmgD3vc4Gd/tTZQ6rUeROwZ1GyngZuLuyvL3JFQcFdweBu9MC3N1H251J7Qpj3y0/R1zbFZS3O6RdquLydpu1/X8kDmupMiZ9Uw3gjm02Hjl2uSy4bzWA+z4fnCiMAVLevrL83bN58zBmcXb5tpk4rzjrmFL4hCl3p3QxzNj4C/7jjw0ebQT3L0zA/Tv7wF2qDFwP05JB5+YV7gTc+w/f3T94txDcSYW7WYb7p9bBXV/ebi+4rxEJk+kp3SuVe0Ykuh1PB4+caPugUfv9xhwOnHAiJOrMOK4/Ki7H5bi4K3FxDV0NeD/1RipWYCwpmBeYBdh2kt8z8b9qIltf/JM190NDMFnwmVj0Zj2e1VVf31FdjZcaAu58g9O9ppkwZqS+U8z+thuQXe/shpJ2c2oXxsgo13YDuK8zr2T7m5L7aRlqp9quUNvdj9oxYhUeXl/zrkF296hSd2ru1NwdZu6OB/evaN9Urwf3H1wD7sqL3Cm4uwrclfRNtRPcD2gL3K2YOwV3DwJ35dquArj/4RXgrmltd2KROwV3TefJOELbtUTtSg7hS5IVbbervF20XaqS8nY9uPPl7d98bNIr9WtBmIwZuItq+/9YOwSfbLx7kgf37z7FbtkM3HFOcMYwDlNaU8or21jDjY3FIGLLnEnPTK49Js4xRuvNyZNXvV9VVtkWm3E5WHdqSOghn5C9ZuDOEvYAc3D/mxi4W2q7IFhmrUjQuSm4m2adG+rBuY6pwkiZvsJIGUHTVHzVP0l5u893bOJ8fy4Dp59cx1RZcF+jSNut9ErlwmTMtD1Qr+1Dxx4JiTwTldY8KftaSk5r8fJX93NymqOiriYmNjR04cJhNcb0x1zA4BeOef3vmfj9MDa9BwbhuuK6YxJhSaztrJ254DG+Q0tUFAvufn4HDeXt7CwxhMMI69Z3WDCc0M74enZ9SbuA2oWF7cIYGUttlwR3gbkrp3YNabutjVJt1HYZcHeJtjtf1X9V6dAyxztU3im7q8juzu+kSs1dnN01Y+4OaqDqGnD3+Bh31cB9vYbA3da+qRTcnQ3uSjYyVlNl3BDcHdg3lYI7BXcK7hTcNVPk7jngblfHVOfnyXSnvF1FbVeBwo8rOLr3/S2p3UzbJcNklKe3u6i83WZtNzN3QZG7sG+qHty/5cB9owHcfzKCO04CzgxOIOZ+dUc109j4eunSJp0O5xu7EhLhjQObHZxXDK6rCQkMw3yoqMDb0NhzfmMO+4Ts6xe0i4B7DxNw3ygA93UCcJevDVfC06Qe3ADuxrhzFqlJ4jkf4y5omrrN0DRVLE9mgGXHVBFwNw1wtwruCmr2BWEynw7YRLSdi8f5mZTqc9q+e+DI/X5jjoyM+q1k1ZuOmppV71fV1Xc2NDJPZs9+XliIa1H0sijiYgTmO6YAhr1wtBt3vIZewXiHLXI/OJgH97lP5xYsfFLbWXtRp8OqgGuNK44vIkkyvLYLC9hFhN3C2cWpXSxGhjcLIS5IaruCg2q7K7XdOYXtqtq6/RDvuVEznsDuqibM0FJ3au5aNnftgfsab++b6jRwN5q7W4G7uLlTcNcOuO/xIHB3Wt/UY9bNXTVwP6F1cLfB3GmkDAV3LWi7s8zdA8Bdvrzd+eCuqLzd+drezcJ2g6FbfdVQcojqvNQn+x/3t6rtJEyGpFfrtV0AjraWt5N2qTaltxu1fZ1Ir1QRbf9SUtv/43/+Q3jYBO7svYYpuOOR8+COXR8L7gcG4aym30pvKyubv/j5ghcLWqKicKZx/gi54sA72MVgsNxMS2MYJud+ThfDTEz+a9jYowNH7usXvKt3wA4pcOeCWYRmbUbVNsady6fKcEXuXwzlzH3Y9l7++qOnUdsFeTIDFebJmAa4y4G71YQc2TAZQ3Q7G0ZPgnECd3Lavs837FBw+MmEKVdx8gueFMx8NJP97QjDFL8qzr2fG38lHksZZiUGPwa8PjTJsFXGHphkyGAK8DtkvI+P4PMx0bDk4hs2MA0vFy1qjozEysGC+6BBpLxdqO3CrBgpZxemx2wxeBChdvPCdnlttxfcv7GxRaoN2i52O+vJ2m5faLvjqF3tAnaHELzHybu68e5aCHZ3u1J3T42X8SRz36ABczcHd9o31U3BXc7ctQ/uP7oY3K2bu2PA3cTcrYL7DgruavdNpeDuNHA/TcGdgrtHa7t3gLv1Udo9cLe5Y6oj82RUDpOxXdvtc3ZVkN2OQ/hqxb6iiWq7WJiMa8rblfRKtQyTsaT2/zY9JMxdvG8qD+7rJcEdpwhXNu0mK+mRac14ezEiggX3wYOxkyK7NryD7QwGzuW4uNUfViddT+qqq5uY/Jf/+GODRu3vF7y7d8COngTcB5mB+7dGcO/5tViejHgMy3+KmbsJuJMWo8Yi9x/wo3twSe6suXNh7vzxhZm2i5e3K8uT6Wmi7TLg/p/i2i4dJkOewhA2id6o7SH7hoQexHkel3CBaWxs6Gp4v2rVvWnTns6dW7Ts5bK3y6JborHIYHZg2GOc63+fJNhO4yOknp3vXkCK3PXgfiIwsjny7fLlpRXvF75YeCs9/RQH7vs5cGfL2y213Sq1G6raefERFrZLartEmMw3qha2u5O2c+DuTtruIGrXKrIrIngtyLv2Ct7dnd3dqNSdmrt95r7RDc3dzcHd3fumrlcjxn1jt1NlKLhrG9wVFrl7Krir0jfVA8Dd/7i/9sFdSZE7BXcK7p4J7k1aTJVxY3BXJcBdk+XtKmu7ZpxdWNiuSNtNy9v12m4ob8d2xby8fZs96e1Wy9vt1Pb/ljiE5m5Z5G4W4y4K7ls4cN/ZB6cCJwqDIaolqrO2Nm/uAxLkjdGEvQk2UOx+rX9/7JhwgjFUr8THd9bVzX8+f2HJiwmT/gyYcHzw6AP9hxvAfYgFuPcRgrtlgLtco1H5GBbTIndjkru+zt33Z8Lu5GD/ySbJWGi7Ib39k36y5e3SAe7sIVfYbtR2yTAZ0+h2VtuHbRNq+7CxR4dHnE7IulrZXnlz8mSyIL1avHhy3k1cLKyfRNsxyPW/STL8GolsufERfmPM7595cCfNcnHpI9Oaq2o6bqSmshXuvr7Y/7J5MsLydoOCbbVJ23mIEcbIWNV228H9G6rtjtF2lxW2uyGyawrfXVDw7nR2p6XuXmTu6rZR9URzdwq40xh3d++bSsH9F9vAXcTctzs8VcZJ4L6bgrsDwP0oBXe7YtwpuFNw1462a7LI3ang7siOqU7Ok7G7vL372q5lZ5d/kRK+ovEvf4q0XaJXqrG8fbsjy9sN2s6Cu1R0u0JtlzJ3KXBf9xG5EcAeHg8Yj1wI7jghOF0YGBEXI2Y9nlVe2fZ6yZIHeXmYrzjfB7kgbxzYy+DiNEdGtpWVddbWVtV0FCx8EpnWHBR+cvDog5Lg3ncDXypuB7iLmrtFkrserI3BMoN+InnueDCmB0vtbJKMibYLw2QsytuNSTiSeTKWRe7/aUXbzcJkNhrCZAzR7cO29QnY2T+YTZJhtX3cUZzk0NizU2be+VBRcTEiAksOlquXRUWddXWLXy3GWoHBT7RdmI+k37QTdhduubmtNaYDAXcsHbj0bEzQ7Pu1nbXNXNNUbEv3c2lCJE8GdwbbRcHdFK34JBmlte18l1TTMBmz8nZ5c//GDmq3Xdu/o9ruNGr3IGfXCL5rmd23uTm7O7/U3XnxMtTcXWjusuC+noI7Bffu902l4C73KuHqGHcng7uSvqn2g/s+p4D7QbcC926nylBwp+DuBHD33vJ2pxS5U3BXM0+m++Xtamm7TYXtqlK7MHXdvoMPkDEvbD/iZ4O2G8JkhFXABCSMYTIqlrdbC5OR1Pb//g8lhyS4f2UB7t9w2/4NenD/50//xPMygvuhIRhyydeTSTfU0velMx/NxPuYLjj3ZA+CdzCl8MH0/JsNTENnXd2r4uLCxc9Con4bEnqo//A9fYTgrk9F3/h3fcdUS3Dnq8K/UmruJI/FFKxJkTvfPZU1dy5bhmd3k4OjdpLbLqLtwjAZmfJ2CXCXOOS0/WM+up2EyXDR7TiHvQN29AvexWn7If/xx4brToXGnpuY9Ffu3Acvi4ouxcQ06XStKSnllR/mPJ2DhQ7TAeOcaDv/qyN+w0929WYF7zy4YwZhCYq/Er/wxcLS1e+fFBTg5YWAOxvfzwW4m5W3y1e4m5W3m+S2C7qkipa3y4O7DYf8fbAqLVKptquu7e6ZG+NG+O6IgnfK7iqXuqsVL0PbqHqludsF7jTG3VP6pjoU3E3MnYK7c/qmdh/cd6kJ7pLmrj1wlzT3w0rN3dPAXaG5U3Cn4E7BnYK7TeDutAB3B5S32xwmo662d4/auwnrMshuRu0m2n7IXNslo9tle6Wal7dvMS9v12u7oVJXprzdSq9U6TAZhdpuUuRuEeMu7JtK7iYIuOMBs+D+owHcd7DgjlOHod5ZW3s3O7uBacibx6bK1HbWPpoxA2OfDB+M9Pu5uaWr3xe9Kkq8moj/eikmpqGha0z8ed+wQwME4P5PHtz7yYG7ubb3wPEld3DvmwfLrJHvnmowd32eO1vqzh4/ssLOHwN/INROHp4+Scag7ZZhMh9Z0fa11qndurYLw2TY6Pbe/tv7Be3yCdnnG3Y4aOKJ0NizE5P+iprckjDl6vTCh88XLLiVnv4wP5+0TsV6iGmCoY6LiI03O5L5TCT+HgG3AEJ25/bnenA/OBgTCqsivtubkhJc+vqu+stxcTy4YydumSezTcytLCvcLcvbv1Nc3m4ZKaP8ULOwXUrbpW5M3Ufbt6ui7epR+6/0cKG8uxe7e7y5e0q8jDeauzGB2xnmrgjcaYw7BXebwf17B4P7TxTcnQru3Y1x32tDkbtzwN3+VJnDahS5awPcjeZ+0hV9Uym4S4H7eQruHpEn45HgfkFNcHeXAHfVytsVa7uDqL371esmwn5M/MVL6OyWhe0y2k6i262EyViUt5uEyWwWC5OxtbxdWZiMpK3/l6Iid5vAHbtNPHGcE5w9TBymsfHpnDkVVR/GxJ0Piz2XO/dBTUfNlbg4dt6EhjZHRtY3dOXcz8FcwDiccmcKw+ArGHymL1fh3tsI7j9yor1JAtzF8mSM2v6lkd1tDHMnfq0vdSfsTo6B3/Pvf6qndtIlVZm22wPuEtrOheEYotstwmT8fu41bFvfwF8HjNjrG3ZoRMTphClXl5W+Zbj/lax8s2DJ8zdLl7ZXVi5/uzylNQWLIeYsrh3GNqltxxjmf11EDnLXgIGtr3Y3JMxgLmBeYL5g0mHBr6ntqKxun7/k+cxHMx/k5bHgPmTIPq5jqii4iyKXUnBXUN5uX5H7twoK26m2q9Yitfva7pUl7dope6fs7gGl7tTc7TP3TR5q7s4CdzdMlXFh31QvBHfsfSi4eye4K4lxtwruDoxxVw/crfZNpeBOwd1mcL9Awd2dzJ2Cu/PyZBxd3u5cbXdyJbsMryuhdlu1Xd9PcreJtgvL283CZITl7SZhMt8btJ0vbzdoOzbkCnulKtX2/7I45IvchTHuZuD+rR7c8fhZcN/cA0+TBffd/XHqMFznPJ3TVVc3teBuSOSZ4RGnJ0z6s2jZy7fLl7dERV2MiLibnc0wTGRzJIY9PjmlNeVVcXHunPsjIk7zGe5fyIB7L3lw/1L8kDX3j8zMndSMs4ptrHa3OIizE2oX5Lb3NUmSURAms9YKtYtr+zqBtpuEyfQwhMngTA4efSAo/GTOnPs1tR2NTGPqjdT0W+mzHs9a+W5lbWft/OfzJ9+crGvSYRkhYTK4gkZtN/yuSHjTgY/z5i4Ed0wcTHzdRV1nbW1M+iUcVe1VV+LjsRhg37rXAO5mAe4ihiuocxcBd9vzZGwzdyU3vhK3uY7VdqlbTKnbSun7SGdqu3Oonaq6p8q7u7I7jZdxWqQ7NXeHNVDVKrivoTHuNoO7nLlTcKfgbjgouGu0byoFdwruFNwpuDsU3P+g4G5/ebttYTJqabst1O5oXjci+1HzFzgZajfLbbdslGoS3b6rr/UwGfleqd/Z3CtVMkxGStv/S/oQLXIXBXcS444bDR7cN36CB4/ngl0unimeOE4ITheGQfyV+BcLFzIMMz7xj9DYs3ibNPU609h4KyOjNTn5fWlpzv2ciIsRmKFYZBa+WFjVXpU45WrAhOODRu3vF7yrt//2L/x+EYL73xWCew9pcLdm7ibZMnp232BImNHLu+DQf1BP7YLCdgXa/m9TbV9rt7aLhclsxqnr5b+9b9CvPiH7ho49Mjb+/OoPqz9UVERfisYKmdKasuLdilfFxasq3q8sfzf/+XxcCKwPmAgY4biCGMYYvfyg5e9Z+FsP9n6BZMvs7EPAHRcdX45VBd+qoashY/qtabPvfVi9GusxaZbLgjvpmGrAMplbDXyEL3LHzZAIuPPMIVAJM3AXN3cpdld4y2tXYbut2v6jq7Td6m2i1rSdMrpWA2c8kt1dVer+s73srvV4GWru2jZ3e8Gdxrh7BLgbzV0ZuNvfN9VTwF3O3N0E3FXom2oV3Pc4Bdz3exq4WzV3zwB36+buIHD/3UZwP6s5cLcjVYaCu4elyjgI3LUV4O7gPBlnlrc7QdvtyI2xSdilkF3v7GLULqft+yQbperL23dKhslY6ZX6vVHbzcrb7emVymv7/yjWdgtzlwR3Yd9UAu7r9eCO54KnhqeJJ46zgbOEM4xJsfrD6vbVq/PnPYxIvahLuRifdaVg4ZOXixbdz81tZBon35wcezk27nLcrMez8GnTZt8bFf2735gjPiH7+gbt6qUH980E3D+xC9z/j+AQi5eRM3ees/lqd8mjrwm1G0JvZJJkLMvb10pSO/fYRLTdNLod54cLkzHplUrK2wMnnMDJZxims65u2r1pWXey8P6jGTPuZmfX1nVmzbhdWvEeH8cCgimA4Y0riOuIcYtByw9XckdDzN1Y5G4Ad1xxzBdMUqx7idcSFzxfsLDkBX7K9eRkrGqYjtjYYt6Yd0w1u9UQ+hqpcxeA+2YxcN8kBe7SRe62HqoXtn9nY4tUJ2j7VpdoO6V2L5B3J7E7LXWn8TLU3B1g7v+L7AJdVeROY9zVAffup8o4Gtx/cDC4b6bg7sng7sC+qd4J7ic8Bdx/0xi4n6PgTsGdgru7lrdrSNsVUrsrkN2ypF1P7RKF7bZpOylv39FHStste6Wy5e3fG8rbu9cr1TJMxmZtNzN3YaqMcnD/iQV3PHGcCpwinEZca8zfms6a9qqqZaVvM6bfSsu9MW32PYZhXhUXFz4vzL6bnXs/l/RTnTLrzpi48wETjg8JPThgxJ6+Qb92A9xFtN1Gczeitp7dDfKux3fDwX/QSO2CwnZbtH2tiLMLH5WUtvfl+7uyYTLG8nYuvd2HTW8/HBJ5Jnla64qyd0xjI3Hw1pQULMyXY2Pxflzm5cn5N/EOliAW3PcMwBVky9u3fM6OVfJ3GOTO6Md/Gs196xcE3DH4MRdIngyWkdQbqfUNXfhBnbW1zwoLL8fFYd3C5MNk2mMJ7gLGxUcIwhKkw73FNkGqjBS4i1a4Wy1yt5va10tVjtkUI+MF2u7Ywnaq5O4m75TdVSt1p+bevUh3zzB3J4S5r9cCuHt+jLvH9E2l4O4W4L7TKeC+2yngvs8p4H5QM+CuJFXmuD8Fd5vAXWGqDAV3dwX3JgruFNzVLm+3pVeqq7TdgVkx8sh+xPzlz7yqXULbSYyMubaLNUpVFCajUq9U8zAZVbT9vyRj3M36purBfd1H5EaABfdN7B4bTw1PE08c5wFnBicN5xkjB7Ms9Ubq0jdLSa/Oyur2leWs/NZ01NTXd5Wtbsub+yA241JY3Lmg8JN+Y44MGrW///DdfQJ39hq27XO/n9UA938ZDjN2NzP3NSS5xUS3ewvZ/Rte1S0Pg7OLUrsSbReldlu0nQuTYXul+v5Mytv7Be8aOHLfsHFHw5ObcOanP5z+obz8dkYG1k52xgcFYaF6t3JleWXbirJ31bUdWLUwETC2cQUxenE12b/DMIxS0hqXXGX2NyuGCneMf5Ing7nGdsplmJvp6Wz/W6Zx6eul93NzsYBhImLnu8fQMXW7oYBdiLkE3PWtL03BfYs1cN8kCu72mvt6ZdSueoyMEm3f7Cxtl6H2bSrFyLgFte+yekjdlSr5Wu/LeVdR3t09Ycb5pe6Oipeh5i5v7grAXZvmrm1w954YdwruFNw9F9wlzd3p4O6EvqkOB/djCsD9OAV3R4G78lQZ5eCuN3cK7hTcNQjuzgpwVzlPxoXl7Y7XdoUBMgqd3Sqyyzm7Mmo30fa9Ftq+W1bbbQ2TUaVXqmh0+385HNxJ31SisXimJMadICxOJi4Exg8GPxaB+Cvxk29Ozn2QW/yq+O2KFQuWvpgy807ilKu6lKaw2HPDdaf8xx0bEnpoYMi+fsG7+wTs7Dls2+e+P3822E5wt9B2E3ZXFOne82tT5l5nIHXRY50ItRsK2/9mK7Ur0nbT6HbSK3XIFlLe3idwJ5snM+pA4MQTBQsfV1a34+R/qKjA0oUZSUY93rkUG9vIsNXoc57OwSKDj+rB/Rc9uLNDlLsXEwH37b34PBl8IaZ5ZHNkZ13d6qoPCVOuVtd0JLcmt1dVYQHD5MNM0ndMFZS3m9yI8EXugkgZ8wx3IixS4P7JJxukzX29HTe1iqm9WzEyUi1SFWj7Fqdru8tiZFxi6/36OfzQsMI7Tt7dj91pqbuG26hSc3ecuXcD3GmMuyPB3b4YdweC+3cU3DUA7ju0Be5q9U11ILgfcCq4y5m7U8DdapG7E8Bdhb6pvzm7byoFdwru7gHuf060X9u1AO5uWN6uZqNUeW1Xo7DdNmc/YrOzW6d2CW0nhe3GLqky2m5TmMwPisJkrPZKFQmTsart/89wyJq7EnBnbxbMwH0zB+7bWIclMSM4ybi4GGYY+ZjLsZdis+9mNzKND6dPb2xkps2+F5N+aVzChZFRvwVOPDF07JHBow/4hOxlO6YG7Og5dKse3Ady4N7fXnD/zOIwZ3dRczdnd328uxHf15kiu6mzm1O747SdjW7nw2RIeTtplzpgxJ4hoQeDw0+m599qr6oqrXh/OzMTMx4TAmMce1XMGCxXz+fPL17+KutOFhYHTAQC7hjDLLj/JKhw/+EfJFIGQ5o0TTUrb8dSk3Q9iWEYXcrFEZFnphaw2UHPCgux6mCqkY6pxjwZ0XsRIYFxH9SDO3e3RMrb5cF9o6gsWPvDeZuo3Uphu60xMmq1SJXRdvm7Q6dru6ao3dm8bq/Ce2TUjKbY3atL3d2/jSo1dweZ+//im/l4S6oM7ZuqTXD/0SHgrtzcXQXuJua+o7tF7uqAuyox7nud0jf1gFNi3NUDd6sx7o4Gd6t9U03AXaG5qw7uZ5wN7pLmTsHd1eZOwV218vbugbvb5Mk4q7zd5jCZ7mm7KtSutJhdgbObUbuVwna7td1BYTIE3IVhMl9Kh8nIULuMuSsAd/ZWxQLcsc3WaywX405SZUgjTVwXjAQMV8y4+CvxNR01j2bMaE1OvjdtWn1DV2rOjfGJf4REngmYcNxvzOFBow5wAe7m4P6pneD+L3Fw/8xY7W5R6r5Ggt3N5F36Dil7AgAAgABJREFUMH6+XdRuXdu/FdV2nKgevmx5e89h29g8maBdPiF7h4QeCtadSp52vayt7N2KFViPMWsxM8jwx/TC2sMwTNGyl3OezsF8Z8F9T382w31bT3b0bu5hxAxDeTvpmIrNP7bu+vT2w75YDbDupd5IXV39IXpyS3jyX8XLX9V31eOFBSuBsGMqmxXTq9dWQ1yM8U5FcEeyVajtBNwNeTLKwd0ec7d282q1sN1qjIxDQts5bVde2K6atju6sN3RyK4dYbeR4D1J3t2M3T2l1J2au9eau00NVL0P3P/toX1TvQncxc2dgrvCvqmeBO4e1zfV5eDunFQZjwd3m2PcKbjTpqmuA3cNBbgrzpNxbXm7M7XdaoaMVWpX19llqF1G20mMjGSXVKG2b1eg7aZhMgp7pSoMk5HTdgGy/+//979xSJq7reD+rQHcv/sUG2Z939StJrXPuBAYDBiomNozHs1gGhuvJSY2R0Vdjo19uWhRV319bMblUTG/B048IQD3X3v78+D+kzi491YG7p/JHjKl7kJ2N5d3K4fR2W2ldpu1/TuDtrNhMp/76cvb+wTu7Be8yydkn28YC+758x7OeTqHYRgsnJi47KzCvBk6FDMVq9ezefNqOmsSriZgUmNS4Krh2mFvz/ZN5cYwf/+ir23nw2R298M0wczCF2I9jGqOyrqdVVXTkZ5/a9rse2VtZbfS089wHVP5AHdjebtiSOLL2/8/e+/910Ta7/+fX77nc865z+7x3uauBWyIIIKICoQeujTpoHRBRDpIDcnf8TmfvXvdVVe917JrAezdXQtFQRArFux0yDy+78mkzExmJpNkJplJZncePGJMQnLN9b645umL51srcGcG7kSrDDVfMMLrbC5bTaB2jjQyNmiR+iNXLVJ5DbZLkJ01f5ewOyvsLgbDjAPrZSTmzl8DVV6Zu7CBu/CtMsIB7v+0ELgbmLuVwN0kc5eA+1GbaNwFAtxPcgzceeybKiTgbpK5S8BdAu5mAXfLmLsE3HkC7k7dMdUmPhkO4+2cqdutoe1WoHbL5OwEzs4YaWeJ2tnQdtjbkBqlWiyTQePtf6eJt5srk6Gh7Rhq1x/UzJ0KuKMXVszA/btPMOWIPgGNadzR+HOXC5wCmBIwkyPvR6oR5OW2bbCoQPFBEQ/K5XOtrYhKFRDT4ym7smrjORxwP4oD7vsZgfufLQfuOOxOaXUn9FMlMnGagw1kp3pNM2n7J2TajspkvliF2tsXuh+DAVy89oSLtwa4B16Oy3gAgzxZUwPrK9Q9VohQxLAqwFlAEETRoYaFGk4TVAfMfJjnML3Rf0PSzGfD5cbhL7BGqVrarlG3wyoRcjek4mNF43Tjjnc7VCqkouajWqkciY+HlRK+C1QhJnDHx9vZQKJDOtpOirczA/fvzEIMLC5VjVE722C7JG23KNjOPWd3DMguPPjOOXnnCruLzDDjeFF3ibmLkbkzAXe7MndugPufHE3jbuu+qc4N3E0zdzOBu936prL42S4a4N5pE+B+WjDA/bwE3J0VuN+0Arg7tMZdAu4O0DFVCD4ZHuPtVtB2i4Pt1qB203l2NpF2KtTOQNsxjQz3tN2kTOavHMlkqFA7mbnzA9z1GncsAQ3ltvvjbgRBBsLDoWJgdsPEhxp9mZPTON2YU/xifdgNt00Xlq3vXuJ1yijhrgHuS3gD7kyGGRJ2/6PZiXUyZKd/KWba/jWRtmONUvG0HZPJYPF2j+NL1p7EgPuagEuyuF5E819fUBAsEmgRe3jA4gFnoT8kRKlCSt+VwpoG9QsnC2oBZj7G3PWuJOxCAEPt2D+lQKVgjVLhBwS88mhGxvOsrPHdu5WI8v3OnY8SE+FHCixUUNkEnwyRthMQDxX00dP2A3qYort020sE7myYu7mHZaid42C70Gg7n8F2ibOLEb47NXbnKuouMXeJuQuSuQsCuAvUKiMBd+qYwadOCtx/NAXcD4sGuHPYN1VcwN0GGne+gfvqi6u5Ae6X7Anc2fRN5QW4W9031TRw/5Vf4O5sfVMl4C4C4G4znwwP7VLtRtstDbZbjNoZODtLdQw1amcTbGdP2+kapdLIZPRXVNb2SrWCtrMH7pRKGfQqAwPu/9ABd5q+qXCaYMrFDMfMtba+LyuDGoWpiv2Uhjl+NySkun4CQZDgLf0eAZeW+55Bm6YSHO4HtE1TuQHu3xIPZsMMHrtryTsRvltzWE3bXci0HZXJuP+Exts9TyzxOuXq3bViwxl3/4sb5TdViKpdMT8UHQ3rDbokeHrC+gGr18OEhNb2ua1Pt8JqAyUMJwsKBM4a9osd+mmvjbycWAT3Q41A4UBZQVHDcpc/lg8vjgH9Hbvftc61Nkw3jGZmwiJ9WdegVe+TQePtOjBkGtzgrqXI8XZTwP07Kzm7SdTO4JCxgUZG4NJ2C4LtEmfnDb6LlLw7Bna3fdTd0Zi7RdjdBsx9r/CYOx8NVAUP3P8oadxtBdy/tzNwX3DAur6pEnC3B3DnSuPOCXAXRd9Ua4G71SF3RwPuHIXc7QjcHU/j7tTAvUcowF0UHVPtG283VyZjnrrdtrTdNGpnzdktQe0mNTInFplN2+nV7bQyGeZeqUTajgJ31jIZBtpuYO6cAPfvDcAd65uqBe5dLnAqYTLnvMjZVvLy1fbtUAowlbCpAdMN6ulNYWHzbHN20XOf0Bsr/c66eHcu8qQG7p/ogfvXeuD+Fx1w/9N/GID7H1gDdwuwu4G8a/n751YDd/a0fbFp2g6jt2TtyaXrTrn6oMB99eYL3iHXE7Ielr4rfVNUBCsfrC6wkMDaA+voeGVlh1Id0h8CCwtUMRQj1BFaKVAgUBe6TS/chnvgfqgpeAAUJpw/WIJih2NnW1p2Vr2PTR8OSbibmP2oeqI65UmKUq3EGrRCOUJtGcfbD7GGMgSGgqMeTMDdIuZOx9kpUTubYDur/qgsNDK2kLabo5HhONgucXbHgu9iwu5S1N1q7C7YNqoSc+eEuVsN3AVllXFyjTvffVP38dw3VQLunAD3n0QJ3C3vm9otHo37eXH0TbUeuHNglbnOirnbHrizt8pIwN1GzF3qmCqKjqnW+2TEFW+3iLYzaGS4Re0m1DFcoXZ9sJ2Ktusv31nRdp0Iw1qZjEXxdpO0nSvgjm7gv/8EA+7wwbXA/RgK3GG04VxDXTdMN8y3tY1s2QIzF84/dkphdsBMf1tS0jLbMtPUJIvrc9t03tW7a5HnCRxwP4gB90+1wP2fBOCOhdy/IPZN/Ywu5P4t42EKu3/2ByPyTsHf2eF4S73tpmn7iSVeKG138e5ctr57xYYzMKRrg67C2Co65qfq6vqDg2ENg5UJFrm7oaEIghS+LoQVFRYWWAGgnOF8obWmKy64DSUJhQyLAH43BY+HZ3WoO2oaJv2j73gEXvYMvByZcr92sjbsXlh1/QT86IA1AIoPqkobbyfRdnMIC4G24+Lte4nY4jszsft3jJzdPNQuaWTMDbZLqN1xybuE3UXaSdWR9DISc7e+gSoOuDuVVUaMGne7A/e9EnB3GuDOicbdNsDd4fqm2h24W8Lcr0oadwm4SyF3ySfjTPF2zmm7+cF27lE7PWc3gdpNaWRY0fbDRNpuUt3OnUyGNt7+f20H3NE9vwa4wzbbANwPfwkDhQF3mAnyQXn7fHvdnqmXubkwW+EMYycHbsAfn6WnZz3PapxpDEu8t8b/4jKf7sVrT3ztfuxLNx1wd9UB98Xf/feif/4GDbn/7b8W/u0/v9JbZf7E2ipjLnM3xu4M5J2Wv9uGtsO4aWh7p4t3l6tP97L1p1dsOOu26bxn4OUNEb9u3f4EzsKjpCRYmGGBhK8j8fHtivnY4VhY8bAFB5YIrEkDlDysCbCwwNoFfws/I/Je5ZW8LSl6UxQ+EI79rIy6HzXb3BydNuQb/otHAAbcB6cbGlrb51rnWmF1hNpF26Xi4u3GtJ0VMSGhEBK8MMkm8GCdBWSnvu5kjdp51cgcErZGxja6domzOyd55wS7826YEVLUXWLuEnO3MuQuBuAufquMUDTuEnDnAriz75vq7MD9JMfA3Sn6pl6Q+qY6a99U3oC7ZJWRgLudfTLctUu1abxdALSde9RufqSdhNrxunbKYLteI0OStrOn7RSNUonqdgqZzN8ZZTIme6VaIZNhAu7fmgnc/6kD7vvR/TABuHe7wjwJvYsmqfPLxp6mpsKshxOOnRa4AX98nJwMf9vcOhueNOApu7Lc9/TitSe/XvPTl25H6IG7RuP+lQUa929ZHKyxO2vyTg3cTdD2f+hpO3z2T5fu/R+X/cZdUom0/ZSLd9ey9d0whprjzEo/FLh7BF72Cb0RFN8HgzzX0jIQEdEnk90NDR3Lz6+ZrIGzA+shLEfosnMN3cDAwgVrbPhAePLj5Pn2djg7Ze/Ldux+BzcmqqvbFfNZz7NihmPga23jZFjivY3ymz5hNzZG3oLH1E3Vfdi5c1Auh5XjNC7ejslk4JoGrnsoXDGmsAglbd9LBSy+s+5gj9r3co7aRaqRsWGwXYCo/YTRIZF3h8fuDh91l5i77RqocsjceWigygVwdwKrjC2A+99F0zdVoMD9oIMDdy417iIC7lLfVP76pkrAXVDA/aYVwN3JrTI9ksBdoAJ3tu1SrfTJ2FgmIwTaLiTUzkYjwwltJ6vbhSGTYWqaigfuv2cN3Pd+Cp8XBe6HCMAdplBQX1Dpu9KWttn3O3cORETANMROPky9Qbm8pW2uTTE/396eW/LSO/T6ig1nlnhRAve9ZOBO7ptK1ribb5WhYe44w4wRdmelmmFF2xcy0PZ9ONp+CKXtq1DavnD1URgoIm0/vdLv7Eq/c5qvZ1dtPLd68wWPwMvrQq5vjLwVkzasVipHMzJg2IdjYhCVKu1pWnB/MKyo2MIIi3D4QHj+WH7Fx4rZlpaZPXtmGhtf5ubCI6cbGuAHQl9Q0KPERPSfT8byaydrMwtGI1MGQ7b0hyXdyy8bg/sVHep7YWGw/EDtYvZ22P7DZYReJkNogsrIPigZx15TwP17rjg7D6id22C7cDQyfKN223P2EzY5nI2884XdhWmY4SHqLnqlu8TcLQ2524u5E4G7ZJVxCI27BNwl4G7y4AC4nzADuNMy906pbyr3Vhm2wN1h+qaaBdwF2TfVLOAuadzFCNzFFG+/7UA+GVvKZLij7eYG2y1B7ac5Ru3GwXZyi1QdbddfZDPRdlKjVCN1OyuZjDW9Uv+v1fF2ok/GAuAOQ4EBd9iMocD90pqo+1GIUtnaNlfxsaK1fa4/OBhmNExeqNTZpqZ5hSL7Rfa70lIEQTZH3V7pd3aJ16mv1/z0lduRz1f+67PlJoE7lcbd2pC7iag7O8kMG9r+Fxxt/9t/fa2n7f/U0HatRkZH2w+itH3lv75cdRgGZ6H7MRilRZ7HF689oZG2d+kdMnCs2njebeP51ZsvrAm4tFZ2xTvkup/8ZlB8X1reM7VC8SQl5WlamhJRbhnZEn4vPPRuaPhAeNKjpF0fd81ozohSBWcDyS56sbPqfXr+s8yC0ZrJmonq6sfJyc/S0sby8xGVqql1Nr9sLK/0VW3jZNNMEzzldWHhQHg4rENQ1lB/UFVkmYyOtlOIYkxxDVpmYSmbYKIbzKhd4MF2c2i7lcF2B0Dt1nJz0iWmA4B4nsm7oLC7OKLuotLLSMzdkRqoigS429EqI0KNu+XAne++qabq2DmBO/dWmZ+lvqlS31RnAu627ZvKB3CXNO7WAvceKd4uVIG7GOPtlspkzKLtdC1SzQq22wG1UzpkTAXbYetiGW03Q93OIJPhM95uNnD/oxnAHQYHBe7HF8GJgDlW8rbk6datlXXj4UkDFTUfp+rr+4KCoOIfbtmCIIisVwYV1zzb3No+tynyltnAnVbjbj1z/511zJ3UNJWOtv+VTNsX/fO/F32np+0LXPb/1pVZI9Pp6oNqZFZuOLtKA9ndN19097+4xv+SR+DltUFXvUOu+4b/AmMri+uLSh0qKBubqKp6U1xc/LY45XFK8uPkwteFcCKUSvWelpkdu9/FZTwIiu/bGHnLJ/SGV9BVjNfDPTnFL+Ak1jZOwtf6punphoZ3paWvCwpe5OQ8Sky8GxICiyKsKKij39WV1CvVmLbTmXDZ8wuz4oGsDsYLyn1SsN0i2m45arcjYV+82BaHwPm7k2N3/qPuNtbLSMxdYu52Au6SVcZJ+qZKwF0C7nYF7jxq3KW+qZwCdw6sMtelvqmSxl1UIXfJJ2OZT0Zo8Xbh0Xazgu0co3aqzqiUDhnjYDudRoYVbT9ApO106nYamYzpXqncxttZCNzZAvfvyMAdBg2GFE4ETJvER4kd6o6UbU/Wh/0SsqW/uXV2NCNjOCbm4+7dGaMZsl4ZHAiCdCjVeKUMAbi7YMD9exRGY8D9awy4G1llWIXcuWHurIA7mbYTNDKUtP0TAm3Ha2S0wfZv1vy8yPM4jJKLd6fG2K51tbv7X0QJu+yKV/A175DrPqE3fMN/8ZPf3Bx1OzC2J3hLvzx5MD5jJCN/tKLm40xjY8XHChWi6uhQ76r+kJ7/LDp1KCi+b1PkLThN64KvwUut3nxhpd85OCNwwG14TXidmLTh7Tte1UzW1E3VPc/KGpTLYbGHFREWJFgkzmpoO9QZSSaDqdt/IKL2vVYc33MI3E1dSrJE7ZwF2+1N2x0PtdufrXNH4R2JvP/EHXm3L3Z37Kg798ydCrtLzF2AzN0IuEtWGX6sMjbqm+o0wJ2PvqmOA9wdrG9qp637ppq0ykh9UyWNu6RxFxxw75Fou3nAXRw+GZvE2/lSt9PRdjppu3XBdoP3jBNXOxuHjHGw/fg3lBoZkrQdpe0/0tJ2bbydjrYT1e1MMhl8r1Sbx9vpOqbqgbv2MoQGuMMIwIBgwB3GE04BnHcoSQRBmlpnQxPuhibeTdn2RK1UPs/K6lB3JD1Kiroflf08e7KmJmrrfY/Ay8vWn16y1hi479cB9+8w4P4bFLgb901lH3L/Hc/A3TRtJ7RI1dP2xTjarpO2a4LthzFjOw61o7r21Zs00pigq77hv2yOvhMQ0xOWeC8p51Fs+nBO0YuMgtEdu9/ll41V1U8gmv/aFfMqRNUw3TDX0lJe/SGr8PmWzJGI5AFZXN+mqNvwIutCrnkFX/MMvKKh7Wfhu7is64TvCDfc/S9uiLgZnzky396+9enWnBc541VV/Zpgu4G2L1sGBQeFhZfJGNN2OuLAk/3WMs7OCrUzOGRsEmz/UZjBdgHYY0RD2K1D8A6gmhEOdufXMONkzP2QxNzFz9zFA9z/KGncubDKSMDdhsCdc427BNwtB+4OpnGX+qY6N3B3QquMoJl7j2P6ZKyJt7P1yfATb+dPJsMTbbdeI2Mv1M4QbNdrZDig7czqdnNlMszxdk7apdIL3NErnT8ZgDt2BUEG7vtwwP3IVzCYMOZw+mAeRt2PmlcoGpqmU7Y9Sd3+tKzy/ceKivIP5TkvcqomqjrUHQlZD9eH3XDbdN7Vp3vx2hOMwJ3OKoMx9z9yytxZA3draPs3f9e3SP0EbZG6Vy9t/3wFStu1wXaNQ2bpOjTVvtLv7JqASz6hNzbKb/lH34lJG4axVagVJRVv51pbW+daEQQZzchQIar3ZWXNs83wx4qPFRmjGcmPk1OepBS+LnxXWjrd0FBU/iYu40FIwt3N0Xc2hP/qHXJ9reyKR+Bld/+Lqzai2XY4HUvXnUKBu0833BkQ0wMvlfo0Nexe2JaHW9RKZX9wMKxesNJA6UOxQv1BeUE9wWWBXt1OoO2M/U6NaTjTwRtntxK1O3Ww3a6o3UEIu6X83REC71LUXSx6GX6Y+0GJuQupgSp3wF1QIXduNe5cWWUE3DfVjFCEHfum8gzcTTN3k8D9sATcrbLKSH1TueybelHqmyqmvqmC0LjfloC74Gi74/lkhBtv57BRqtW0nVIjY41DxhLUjte1UzpkcGSCpbSdFW3/YYH+yoySttPKZP5CK5MxK97OErgz0HZan4y+Yyo74A5DBOMG4wmjDecIJgZM49C7oYVvClvnWlUqBI4OpRq+VjdMZBU9lycP+slvegReXul31sW7CwPuX7od+WLljxrgfgAF7ktR4P7JImONO2PIXSeWoWfudOSd5pGm4+1GtN10i1Qtbf8Upe3aFqmYtB3tj6oJti/2RDujuvp0o3aXTRfWBV+Tpwy2z7cjCJJb/FKpVj5OTp6sqYGh/bBrF9xZ/qF898fd6c/So4aiYOSD+oJQdU+fDG7HPohtnm0ezcyEp8y1ttY2TsakDQfG9vpF3MSA+5qAS6s3X8CA+7L13a4+XXCs2HDWK/jath2vlEo1rNiwlkYPRcM36g8JgUUIlgSo4C4adTvGOAi0nUPxOmvCbs71Ipeo3ZbB9sOcB9v5dMhwhdodH7Kbz9/FHXh3bOzuMMxdIEp3ibnzxtypgLtklRG/xt3yvqlCBu4H7A3cfxQGcOdI484BcBdO31RJ4y71TbVh31RJ424X4C5E5i4w2i7qdql2ibdbJZPhlbZbGWznCLVbEmwnaWQ4oe1U6nbTMhnmeDsnwP1/WcTbf/fvhqskvMDdFHCHYUGB++Evsb6pcFLg/MJEgkkOlS4flGNdOieqqhAESct7Jk8Z3Bx1e13INffNF1f4nnHx7lzkeeJrdwNw/60WuO/7ZMn3hL6pBKsMvnWqKeZOi91NHdQdU9nRdjpp+zdYi9TvPl2yV0fbD+hp+8LVR7/x+HmJ10kN8j7jtuk8FmzfkjlSNV7VppjfPb67XTH/obz8RU4OFmOPexAHgwxDDasWLEf6jQQsXLAGynplW0a2TDc2jsTHD0REDMfGTtbWIipVyrYnQfF9GyJurgu57im74u5/Eb6Xhrmfhe+7yu+cR8Cl4C39aoUCvgusS/DiuS9zlUo1rPeweODV7T+R1O1E2q6nCeZf8FmC19mbaig5u3m6diuC7f8SebDdLqJ2p+bsrOG7SAPvQsDudom6O6PSXWLu5jN324hlOAXuv5esMhJwl4A7j8Bd6ptqM4273YG73TXuBOB+WeqbKlllxBNy7xEKbRc1cHeweLvlMhnzG6XyRdu5cMiQULuWtnea6ZBhEWyna5HKirbvN9B2E+p2dr1SjePtBJ+M+cCdItvOLt5uHnA/8FsYJRS4H10IIwxnAc4gTAaYe1AgsATFj8R3qDueZ2W9Liioa5yK2np/U+Qtr6CrqzddWO57eum6zkWex792P6YD7of0wP1THXDXadzprDJGYhkyc/+92cz9M8uy7Syk7YQWqft/i6ftqEbm+FKvUzAsbpsurJVdwRwyYYn3EAR5mpoKy/lYfj6MYf5Yfvqz9JjhGFgPYTGB1UD/T2vYvgjWCrgfli9ZryxvLG+mqWkgPBxdqgMDByIi4I8tcy3tivnY9AcBMT2oyT34mqcm6r7G/5JH4GX44+ao20k5jyZra6vGqxIfJRa+LqxtnFR0zMOaBwsApm4/rle3ExulGmi7WaTAJpydAbXvZ43aReqQOWoPh4z1qF2C7EKMvUvY3Zmi7s7J3PeZydwdQOZuBnAXWcidW6vMX+1plRFg31QJuEvAXdR9U21glbEKuJ+X+qZKGnfJKiNs5i582i6qdql2jrdbpG63DW23abD9FIVDhrI5KmWwnUnazglt/yc9becq3q4D7gzM3QRtN4q30wL3v9AA9+81wH0/uh+GUdL2Tf3pGxh/OF9w3rGQu6xXVvy2eKK6eig6ejgmZqqublfNR1lc77rgazrgfooM3JcdWOCy/39Q4L7XANwprDKUYhkG5s4u7f4ZXbCdzttOI23Hgu0LyRoZWtq+WkPb151a4XvGM/BK8Jb+7TteZRe9SMh6mFEwOllTAwN4NyQEQVA5T8RABKw5UPIwyGg9amoQbmCbLnTjdNkDlg5YskLvhjbNNL0pKoKfBrDswXoGX/uCguCe9nn4v72+aSqn+IU8ZVAW1xcY2+MffSc8aaCqfkLRMa9UIe0d8y1ts3mlY5V143Du7oWGwvqBqtuZG6Ua03aj63/tVaBl2N0izs4faufRIWMObT9qWbCd7e8k2xq1S5xdBLF3HjwzEnOXmLvE3O3F3GmAu9Q61YGtMkLumyoS4M6+bypL4E5g7sIB7qLtmypp3M0A7pck4O4sGnfHCLmbwdx7xE3bReqTsXO83VYyGc5pO0tpO5tgO18OGUbazqSRIdJ2/SUjLW3fR6DtFDKZv7GWyVgA3OlD7noWb5q2M8fbdQJ3tsBd0zcVBe6dLnCiYf5AFUQPRasQ1cOEhF6ZDNak4djYtrm2zMLnGyJ+dfe/uNz3DEXCnQDciX1TMasMKeROFsvgmTsldteRd4rj99SonQONjK5Fqpa2/wAf08gkg2bbPQIvR6cOtc+3N0w35I/lIwhSWTf+vqzsXWlpW/scjF7EQASsDFCbUGiGgoLd4NkVUIxYgcNXWDFgNYsfiX9bUvIkJQVWRFh7sMUGFidYPodjYtQdHfD6TbNNzbPNDU3TaqUS/ljTMDnb0iIflKc/S4c/jmtcQB3qjtHMTFiToKyxRqkmabv+yt/0taBZzJ27SDuXqN2xm6PaELVLnF285F3C7lZid1vqZSTm7sjM3VKZO9fAnSPmLlllnBS4/2AdcD/oEMBdXH1TT3DcN1XSuEsad0njbjlwv+UUwN3OzL1H3PF2630ynMfbzQXulshkrnEnk6FRt/NC260OtvPnkIFtBnWwnUraziVtNzPebp5PxijnTj7+l4m2k2UyJoH7X6mBOwwCHrijfVOPfY1q3E8thVMM8woKbdfHXbPNzf3BwVBbUEOwBrwrLUUQJDxpwFN2ZcWGsxqH+/Gv3X/6igDcf9ADd3zf1N8YgDtlyJ2KueOi7lTknXz8HybUziLYTqWR+W+tRub7T5fuxVqk4mn7V6uPfrPmp8VrT7r6dK/efHFz9O38srGZpiZMf185XjnX2lo9UZ3zIifyfiQMKVQxVBlaNVAmmurANpYw5ihzhz3bBTcYfFg9YBXtUHe0z7cPyuWwXMEqclm3mYKFBFYpOB2PEhOx1Hxr+1zm88z8sfz59nalCtn+artiXjGakTEQHn43NBQeCYsN1LdZtJ3lRb4ZzJ0nUbtJ1G4rhww3wXZOHTL2Qe02x9MnuT4EDt8l7C5F3Tlooyoxd8dqoEoP3H/naFYZa5m7o2vcJeAuAXdJ425WyN25NO5OA9wlq4wDMvcem6J2Z463s22XykO8nWOZDBeNUqlpO28aGb6bozIF26mk7eQWqexpu8lGqdbF21kB9/81xdnNpe1/MNB2gsCdBrjDgKDA/eBnaN/UI7q+qRrgDvMtqC+opW12sqYGKhJmNAZ5h6KjEQQpr/7gG/7Lqo3nXLy7Fnue+HoNEbi74oC7wSpj0LjjQ+6smDsx7c7i+AP56QzB9i/pgu1kjQyOth/S03b47Is8T7h4d670O7s+7JeGpunqieq5tjZFh3qqru5FdjYMV3X9ROrTVIy2Q01BgaC1oCsEuI1idw1zhxqEaoVKh9UmfCAcnqvu6IAfC7C6wAKAFje2d1u9GqoflgpYkODs9IeEvC4omG5sfFNcPJqZiT3rWXo6/BWsT/BEeAqUL7O3fS8jbWe+NDRm7szAXdSo3c7BdoGhdlty9pPCOBycvAsPuztJ1N0+ehmJuQueudsVuP9essrwrHEXdd9UCbgfEQxwd0KNe7ekcedZ435V0rhLVhlBAncrsXuPqGi7Q7dLtb5XKqVMxip1O8+0nfNguzUOGcs0Mlppu7m0nV7djqftbOPtdMCdgbkzH5S0nSSTYeGTwS4NsO09HrgvOLBAC9wPo8AdRh4F7meWw8xMf5au7uh4U1QEhQLTDSYXTNj+4GC4UzGvkMX1rt58wdWna/FaHHBfoQPuaN/UvZ8Y+qYaW2WYmDstdteS9z9QQ3YKzk6F2tkE2yk0MhhtP4jS9pU62u5+bJHH8SVep5atP+3ufzEieWCiurpqoupRYiIshLAI3QsLQxAkZduTio8VsIBAoUGNwPzXz3koAS1z73KBmoK6g2qFFQBWM3hKc+vsh/JyWPZgVYDxh9pFixXbG0IFwxbPzQ0j77ACoUsXrG2+vrCCwreGBQaeAg9Dpe0uLlB5UFhQSXB9AEUDFysHNaRjv462f6+n7Uac3fiwkLmzD1zxg9opde1O7pCxDLXbgLOfFM9hd/IuYXdLsLvE3FljdxEwd0bgLjTmzpPM3Wzg7pitUx3MKmNl31SRAHf2GnfC0mVb4M5539SvWXfhkTTugrbKCErjLvVNFa3GXQq5W3jwwNk5pO22jrffluLta8VL2w0/1Lhrjmoy2G5CI8M5bWctk7ERcP9/pmg7Zbz9j4R4O0HgTgncf8AB96MocIeTBacepm7h68K0vKcT1dVQQxfc3GBewEzsDw5GA9QIEpZ4b03ApWXruxevPakH7p+jwP2gDrjv+1QL3PFWGaOQu0HmTmbu//E5PXY3ffyRDrWbMrZrgu1ajczeTwnB9oPwAeFjYrR9ofuxbzx+ho/v4t25YsPZtUFXk3IeN882vy0uhtUIahSqDZYihVoBI1bytgSqGwoHSkA7yY9pd9EYc8dC7lB6ULMw+MH9wQ3TDTur3j9OToblB3s1OAVoOZI2m1CpGv6OIXj00EB5uB8KFAoRyu44rkUqStvxGhmMthsF27XXgsZXijTXiKaBu6mLP65Quy117YJzyIgZtZtNupcs4f0QOIIXW+CdS+xuw6g773oZB1C6Oz1zF0IDVUbg7gBWmT9JVhm+NO4WAncr+6Ye5LdvqvCBu9j7pkoad0nj7oQad0FZZRwp5G4tduf6EARtF1W8naIAGYA7t71SOWmUSknbL9qcttsl2M6okSHT9oPm0Xb2MhlmnwwtcP/2/7OQuf8/c2g7VbzdANxJAndG4A7jrAfuMI0THiagXTcrKwciImAKw0yE+vhYUdHYPD3b0pJV+Nwr6Opy39NLvDTAffXRL1YRgDtJ466xyhBC7v9lCLlTMndj7P5HlpAdx9mpULvWIcMq2E7SyKC03U2bbdfQ9hNL151atr571cbzPqE30BamM02DcjmsDdjvBMAKBAPYMtsi65VBPUKBwISHWY3NZ3Sz/RPqzUdD7p1LobigHqG6YQWD15lrbZ2oru4LCoIFA6pZz9Ch5ugSI9pDU3xQc1BqxzWECw22a1A7k7TdJGonMnfqFBYjcLeAtu+noe1iRO38OmR4Ru08cXYBsXXeQLwjkHchYXcp6i4xdydi7ubI3PkB7o7eOpV3q4wE3C22ylgJ3P9lNXA/LBjgLmncTQF3Hq0yksZd0rg7XOtUibnbALVbQNuleDuXMhmz1O2c03ZjabsVGhkLg+0nLAq2s6HtB0zQdpaNUtnG2/UCd5bA3SR2Z0bt5tJ2KoG7MXCHjS66NT38hRa4n0SBO0zvHe92TNbWIggy395+NzQUqvN+ZGRL22zy42RE859P6PXlvmeWeJ38Zs3PGuB++PMV/6IA7kSrjC7kThLL4NwyX/6JArsTPDPUB/6RhFegR+0sg+2frUA1MvABv3I7slDjbcdo+xKvU67eXTAIqzdf8A3/paTiLaJU9gUFwZoBdQ9rQ29gYPt8u0qFwMIC5QZ1ASMM44xt9eGGHrhD+UC5YfH2kLshSrVy67YnSqUahh2WATTevnw5lGCXJrSO8XQM/JG4G1ZYP+s4+1ENCcKM7Yc0TOQHKo0MJWpnumRkEXJnGW8XMmp3PF27EFC7+PA6dwhe3KoZ7rC7fQ0zNo66S8xdvMxdXDJ3U8D9d5JVxok07vz1TRULcGcfcpeAu1NbZc4KxSojadwd1irjiK1THZW5c/tBpHi74GQyNI1SKZdcTmg7W2k7c39Ua4Ltx7+xViND2SJVd8VmBm03J95O7ZOhAu5MzJ3dQY3a6Wg7HXD/GxG4f0cF3A+h+1KM/6LA/fRymNgIgtRP1ftH38nIH52qq3sQF/e+rCz9WbqsV1Y1UVVe9WFd8DUtcPcwAPfPlh/8reuBBXrgjrPKUITcaZm7MXb/E5GnUx7Ex3+Jc7XrULvBIYMPtsN7Q1E7jbEdF2xHNTJol9TjaLbd65SLd9ey9adX+p1d43/RN/zXyrpxGLT+4GBYe2A5gfXsSUrKzqr38kE5lDyUGJQGlnDHtvGYNB/qAu6HyoKqhEUA1uecFzktbbOt7XMPExJg7cFU7Bhwh2ozpNd1bF3LsLACwqpHcx1wWJdqx1C76WC7EWenvWQ0H7hbRdt5Qu32dshYr2u3EWrnG7KLkbBbzd/FGngXDHYXEXM/IjF3ibnzz9x5A+6O2jrVflYZ021xBAzczdC4Oytwl/qm4oG7U1hlztvCKiNp3JmAu2SVcaCQu72wu31pu/PE27nslcqFut2OtN3sYLsNNDJsaPsPZNqOAnc62v5PU7SdFG/X+2SYgbv1zJ2Uamem7fTxdoJPBg/cYSu+lwq4H0GBO5wpOOMw/baMbGmYbohOHYpNf1DXODWWn4+oVFufbE1+nFy3Zyombdgj8DKmlMGA+5d64L7swAKXH1DgvnSvRuNOtsrQMnddD1VG7G7q+BIfaf+z4ZUpUTsWbF+sDbb/D9nY/i+tsd3tyEL3Y5pg+3FNsP3k0nWdrj4obV+x4YzbpvMwFL7hv2YUjMIQDYSHY8se2jFVpSp5WwKLG4wnVBzaMfXEYnTOa/bYcAOLt0NNQQ1iMpnm2eaPu3Yp5hVjeXmw+l7GfDIrV0KZaoG7jrbjIftRHWTHykUPX8ionS7YzojaKa4aTQF3NvF2StpuXmdU1qjd8XTt/KF2riLtzkXYrePv4gu8S9idv6i7zduoSszdjsydQ5m7hcBdCrlLfVMl4C5w4O7wGndOrDLUwP20pHGXrDJisspIIXe7MHfO37m1tF2Kt/Mjk7G4USqqBbM7beenP6ppabtltB2X6SXTdqNeqdTA/Q+MDncicNcy929ZcXa2qJ2Otv/pP/DXGoR4O65jqjFwh5HEA3c4vzCRoLKK3xYjCJJXOlZY/nq+rQ0Ntn8ob22bS9n2ZEPEr6s3X1i2vpsauBv6puKsMiTmvpCOuRtjdx18xw4CWzcQdlyeHR9pxwlkjFA7Fmz/dMn3ny7VBtt/63oADbbrm6PSovbuFb5nVvqdXbXxvLv/xbWyK77hv0anDlXWjj+Ii+sLCuoPCXmemalUqiMGImDNgRqHSoSygpJBS0O3rUWz7TraDqtQ5P1IhVoRlTrUPNs8s2cPrFhou1RNE9SzGHDXNUElSGMoOTsVaicF29mjdiuBuyW0nRm1U9F24aB2Xh0ytkDtfHB2Z4PsFsF358XudmqmKnzmflhi7jwwd15l7rwwdxYydxbAXbAhd86B+58ljbsAgPsP4gDu7Pum8gXcBdU31WYa904ugLttrTKSxp0T4C5ZZRwm5G4D5s43dufpPds63n6L93g7HW03L97OT69U8lImWNpulrSd62C7hdJ2c2n797S0ncHebkLgTgfcjZg7gbwbHZQPNr5EMkbtJNpOGW837piKAXdsI43thzHgjklO4DTBaYWJAZMTSjh+JL7gdcHu8d1Ns001DZPbd7yKy3jgH3PHK+jqqo3nXX26l6xFgftCA3A/pAfuDFYZY+au6aGKw+64tDv+wCN4qgf8hRBpJ6B2ra5d55ChC7ZrHDI41K4VyKzDBDLdy31Pr9hwdtXGc6s3XXD3v7gm4JJn4OV1wdc2RNwMTbynVCHPs7LuR0aOxMerOzq2PtkKizksPrAaQAlDecLAQn3pd49QfVCksCwE9gYmPkrc/mp7Ufmb5NzHjTON8CKwZqD2dk27VCjKLl28HeNTsIvHvDGH9Zxdh9r1wIIOtetp+9/NPPDMnZVPhuqCz5i2s3fIHHBiXbuQUbsE2UUA33ki7xxhd2FF3Z1P6S4xd7E3ULUcuDtvyJ0Tq4zdNe527JvKK3A/KAbgbjON+8+Sxl0EVhkrNe6rL66WNO6OZ5URSutUfkLutmHufGB3/t6qFG+3RbzdenU7R7Rd+9OBnrazkrbzoZH5iV4jQyNtp26RSqLt+82k7VTxdmafDFkp8wfDxQgFc6fB7iaO39Gjdva03Sjeju+Yygzc0b6pp5bATIAZBbMdqj7qftS2V9vGKysnqqvzSscikgf95Dc9Ay+v9Dvn6tO1GA/cV1IAd61Vhirk/hutWEbH3BcaMXdD5v0v1Hj9S6MHGzg7KdWOBdsJqF0XbP/ht644hwzaGVWL2pd4nXTx7lzm071iwxk9ZPcIuOwpu+IVdNU75Pq6kGvw1Tf8l01Rt0MS7mYWjE43Nj5OTn5bXFz6rjTyfqSsVwbrG6xIsJ7AuoEuC5p1AHNGQfnD/fJBeUPTNDxFrVQ2t83OtrQMx8TACgSFjplk0F6pGnu7MW0noHZdpF2P2gm6dqJDhnQ5SHEdyXDVaHSNyD7ebhVtFwBqP2yXzqjsObs5qF3i7M5I3nnD7sIyzAgh6i52pbvE3IXK3K0A7s4Tche2VYZLjbsE3G0F3KW+qfxZZXjUuDuQVQYF7oK3ytgSuIvJKiOEkPttsYbcOSTvfL89+9J2McbbnYq2c6aROcGdRsZI2m4NbadTt8NWmVW8nQ64k5j772kucNgTdpOo3bhLKiVtNxO4w/DCmMO5QIG7xioO8wdmKZRe1P0oFaJ6mpb2ODm5Q6lO3f50U+QtSuD+xcofNcD94ALXH7R9UwlWGSzk/s/fkJi7EXanSLubOP5qzNn/62uDQMaA2hdhqJ0q2L7yX6hDZvVRHGrvWu57Gj6mu/9FL02GfWPkrYCYnvCkgdCEu9gRFN8ni+uVxfWFbOmXpwwm5TxGEOR1QQGMWOrT1JjhGPmgPGIwImooasvIlq1Ptpa8LUl+nFz8phhuy/pksMxG3o+Ep+yq+biz6n1TywzcfhAXB8sbbKnO6r3tukap1LRdl2qnRO3Muva/UaJ23WEtcDe61DNB24WB2m3UGZVz1G7DSLvdIfspfg6Bw3ehY3dhGGYcLeouMXdrgLszMXergLvNQu7CbJ0qdKuMRRp3bvqmMgP3/ZwBd/ZWGQm4O47GvZNjjbtklZE07jazyti6daoUcrcCvtvs/Vg2ejbqlXqLBW2/aY9eqVzJZMxRt4uPtnOnkWHZItVK2k4tk6GKt5OBO51Vxpi5//7f2V74mOTsv6e4eCFfmLCh7f/QbtqZgTucCNjUYRp3mDAwIaEA88byWuZaBiIi7oaGpuU9RRBEnjyoUcqgwN2glHHTAPcVKHD/raumbypzyB3vljEwdxx215B3HXwnH/9FIOwkzk6H2r/7hITatcH2Q/pgO3yWxWtR1K7thhpwaV3ItcDY3uJdb+GDF5W/QTT/NTZPz+zZg92ub5qqbZwsq3yfVzq2vfQV3JhuaCj/UF78trhyvLJ1rrVD3YGoVPDI6cZG+ApPVHd0vN2xA26nPE6pm6rLLBjdFHVbFtcL41w/VX8vPBxWEShljLafxHVJPYbRdp1GBi44jF3t+/SX+iSHDAm1m76IJIfcGRzudD4Zigs7M2k7e137IVF1RhUjarcxZz8lpMMZyLtjGmYk5i4xd+dooPpv5m40pZC77awyQta47zM75M4euJvom3qQX407B8D9MBfAXXR9UyWrjP2sMnxr3E0yd5PAXbLK2MAqI7qQux2Zu3AODmi7JJOxibpdoLSda2k7rUaGTtpOou0HaGm74XqImbbTyWT++p9sgTs9czebvNNd7/yBBrUbB9v/TLh2wF8dUMfbNdtvOuCu7Zva6YJq3C95yHplSkSZ+TwTKt1PfjM4vh9BkB27322I+NVtk8bhrmmautD92JduR75Y+ePnKw7h+6bqgLs25P7JIlrmToy6G5F36gP3YDxnJ7RF1aF2rUNmH9YclWhs/xEztn/jcXyJ16ll67tXb77gE3ojMLYnKL4vInmwQ6l+v3PnTFMTolKNV1ZONzY2zTTBONRN1TVMNxS/Ld7xbkfJ25LiN8Vwu/xD+WxT067qD/llY5mFz1Nyn8RlPIjceh+Lw8PX1O3oP1qMZma+Ky2t+FhRWTeekPUwLPFeev4zlQrpUHfA8gaVfVpH28ktUqmC7fvN0bWzQu2mgDubeDsHtJ3hEs3enVEtRu3H7IHahc/ZT4ntsDt5F3TgXQDY3eKouy31MrZpo+rszJ0RuIuPudPI3K0F7mIKuTueVUYC7o4F3M3um+qQwF2yyvBklbGxxl2yygjEKiPs7qlOztztQ9tv8y6T4Sbebj+ZjGWNUi2k7Wc4pu1kjcxJ1hoZU9J2li1SzaPtNOp2tsCdgbn/keriguY6hdVFzR8YOTtlsN04284i3o4Bd2yrrAfusOfEgLu+bypM3S0jWxCVKn4kHuplbdDVDRE3FR3zCIKEbOl397+4bL0xcP+XHrjjrTK4kLsRc//m7zjsrkm7k8k7zfE1zhtDiLRTonaSQ+bgZ1iwHdPIuGMamVPL1p+GzxUQ04Po/ive9ebjrl0j8fHwtaVtLuVJSsxwTFBfECyM2FoHC2Zgb2BIf4h8UJ70KKluqu5NYSE8MT3/WXTqEAyUf8wdP/lNn9Aba2VX1gRcgmEMS7xXVP6moWlahaja2ufgZdsV8+qOjrH8fFgyofShOlHargm2G1A7SSNDGWyncsiwFMiYVMqY65NhT9u5DLbzj9qPOAdq55Wzcwa+ly61/BAdguebvAsSuztO1N2uSnexM/cf7M7cBS+W+TcLfptSCrlzYpURN3DnVeN+wDqN+yEbWWXsD9zF3DfVWawy5ySrjFNYZZwz5C4xd9vTdlvKZAQab2cnkyGsP/yr203Sdi1w54K2W6uROW6VRsYq2r6XlraTZDIGezslcKcLuf/JcGnAhN1NIngWVyi01yDGwXaiSQZP2wnxdj1w30cD3I/ogPuppTBVYD6nPk0t2vUm+XEy1AVMwg0RvxaVv2mfb49OHfIIvLzc9/QSr1NGwP2QAbgbh9yJzJ0q6v53cuwdd1A85hscZ9fYY3RtUalQu+uB3y47qA22azQyOGm7Ntu+Oep24c7X8+3tUUNRO97taJtvQxBUCVMzWRMxEAGLCdb4FNuowDoAywisSLAeht4NTX+WPtfa+jg5+UV2NjwnIeth8Jb+TZG3fMJurA266u5/caXf2VUbz8EwpuQ+UXd0VI1Xvdq+/VFi4lBUVG9gINYoFaXtjP1RsWD7AZyxnTrYzuiQYXNBSQfcOaPtrIPtwkXtXOna+UPtwuDsduDp1h+Che+8kneHw+5cRt3FrJeRmLtjy9w5AO5OGnIXhVVGpH1TJeAuUo07G+Z+SrLKiNIqwyNwv2oGcBe3VUbsIXfexDJOyNy5oe0O0SvVPjIZSnW7NY1S+abtwpC280LbWcTb6YA7dc79T4QLBMKlxB+suh5huu74MzVqN1wmUNJ23TaewidDBdzhHBmA+9W1KU9SVIhKoVaE3QuD0otJG66qn4A/NjZPewVdXe57ZqnXqUUexxe6H/vK7cgXq/TAXaNx11tliCF3InPHR90ZyDs1ZCdx9v/WRdoxVzsetS9AUTtmbP+XNtiu0cjoW6S6+nSt2njOO+T6npaZrOdZH3ftel9W9jI3F0GQ1rnWqPtRsNpA8aKlpyk3uAFVCfULowSLDCxoEYMRTTNNz7OyBiMi7kdGvi0ublPMJ2Y/ksX1bgj/dV3wNY/Ay+6bL3oGXg5LuocJ3IveFI1mZvYGBsKCBMsDvDAU5Skdbcc7ZCiC7QsWsA22m0LtbIC7SZ8MS5mM5bSd086oDozaOYu02xKy2xes80/hJewuIMOMA+llbKB0FxBzNxO4i5e5WyaW+TfLWgZJIXcbWWUE3zfVmYE7+76p1Iu6cwJ3ySojWWWc3ioj4pC7xNxFTdvF0itVODIZJ6DtlBoZ5haplLR9wYEFXNF2SuBuNnOngu8UCP6PrC836K8pqK8d/vqfxpcD+O09gbYTfTKYwB3dDB/UAfcftcAdzh2ca5gnMKXrp+oRBEnMfgRfE7Iets+3xz6ILXhdUF79wSv4Ggrc1+GB++HPV+qAO2XInZK567A7mbzTH/+N88bgODsWaSeidpcf9A6Zz1ccgrcHb1IbbEel7T8v8jyxxOuUqw/aJXWN/6XA2B61UjlRUwPLIRR9f3Bwdf2EuqMDVjwoTCglrGRgcKDEoO7gTihzWDpg8cx9mYuoVPejomANhqffCw19X1YG41a487U8ZdA/+s6GiF/9Im6GbOlXI0jJ25KgviAYz4cJCbBWwUoAhduN0XadRobskNEZ2y0Otpv3K9MsfDLmxtuZabuxRoZlsF1C7dagdm45uwMSdq4RvJjIO7fYXThRd6HqZSTmLiLmLhyZO5fA3f4hd3G2ThWmVcb+wP0HCbhzBtwlqwwTcO+2iVXmrGSVkawyjhxyl5i749F2B5HJWK1uty9tp5C2d3HRIvUnc1qk0tH2g5bTdlKjVArgjvfJMITcidjdQN7/bM5FgbkH5eXDX8xD7Xjarre3GwN3bLtLAdxPLoHpAfMz9kEshtpLKt6+KytrnGlMf5YO98RnjHiiShkNcPc8/rUGuH+pAe74vqkLXEghdwJz1/RQxWF3HHmnOf5JePCi7/SWdhxq32cStaP9Udf8DG978doT8P5dfbqW+55223TeK+hqVOqQElEOx8TAogK13iuTzSsUJW9LoOqhlNC60OweoViglKDWoDyh0mG1kQ/KW+Za3pWW9gQGwkIFyw98hae/yMlp11jvEZWqqPwNekOpbGufU6qVmCMell7YE0HhQgme0rRIRTUyVM1R8Q6ZffoLeHbB9r+yOCyJt3NI2zkNtgsctf/ME2q3E2d3OsLOEX+3DXmXsLtA9TISc3dm5s6DWMZ84O5YIXcxWmXE0Td1v1V9U60C7gcFB9zZW2XIPzGEB9xNMHehAnfJKiNoq8w1QVtlHCTkLjF356DtdpTJCDbeziNtvyBg2s7cIvUYC9r+o+W0HQXuJmk7TbydDrgzYfe/UG/mSSEbM1g8czrH5O+80mVrKGk7Kd5OA9zhvGDAHc4yzA2Yb1Bx215tQ1SqqrpxlQppmG5QI0hq3tONkbfc/S8u9z2tA+4/fbX66JerDms07lrgjlllDCH3pXuJzJ0euzMdeshO5Ox41O7KmGrXofYlXqdcvDtdfbqX+55ZtfHcGv9LPqE3tmSOKJXqgfBwWKVgSXuydetcW1tgbyBUIgwIDAtMdagCqBGoIwy4w4IA62fJ25LKuvHhmBhYmWDBwPYmsKLAejYUHf1uxw7UzDOvQBAkfyx/vLISbrQr5u+GhsLaACULJQjldfybb45paDsWbKfUtWPBdj1qN0nb/8r6YBNvN2Fv54i2GwfbnQq1iyLSLhF24cJ3ngLvXGN3J9HLWKB0d0LmfoBP5r5fMMydV5k7Z8DdmUPuDqtxtwa475OAu2D6pjqBVYaT1qmSVYZ7q8xVh7bKCDjkLl6xjANjd3vSdhvH2y2m7TeEq25nRdvPm6LtZxlpe7d5tJ0EAyhpu2UtUilpO/5CzUDbf2BH25llMv8gb30pNszG2P2v7DbqNCze9MHiEoB5z2+8mSfs2/G0XbflJgncqYH7icUwH2BGwZSG9SF+JD5vLE+FqPa0zKTlPQtJuOsTemP15gvL1uuA+xo8cCdZZbQhdzxz/5TE3HXkXQffCccnBMiu5eyfGDj73v+hQu2faVE72hl1IYraf9IJZE4uXdfp6t21bD2K2lf6nXXbdN7d/+Ja2ZUNEb/GZTzoUKrvR0X1BwcPRUUhCJL6NBUWDag+KBMYFiz+D2UCBQUFCHUN61LW8yx45PuyMkxEgxa3uztUMHyF0odlA9Yz9AWjo8d3736Wnt4XFATrJaxG8AAoUCg7vbSdEGzX69pxqH0vDWr/h6XBdrbxdjNlMtbSdrrrLcs6o0qo3TacXSLsVsN3oQfeOcTuThN157GNqsTceQi57xenzN0i4C72kLu4rDIO1DeVPXA3oXE/aIlVxqbAXeqbKlllJKuMZJVx4JC7xNxtgtolmYx9ZDIs1O0k2m4cb+eStneaoO20GpnjHLVItZS2wzaSgbYzAHdyyJ0dpNTvyc3D8dZs8tns6o1RO5G26+Pt2h01JnDHOqZqNrQG4H50IZxBFLh3usAsgmkJBRU+EF7xsSJ/LL+o/E1V/URowl3vkOtum4yAu5sBuOusMoSQO5m5G7A7kbyTD8PDDHl2XKSdjNqXH9J2RtWm2lHUrrfHwHteseHsqo3nVm+64O5/cU3AJc/Ay15BV31Cb2yKuh2dOoQgyKPExAexsR937y59Vyrrk8FSAPUIRYQpZdB4ezcab0cH58b6xEeJjdONtQ2TqI3d1xfKHQoXCtSwNVu1Cu6BEoe/QlcIDw+4DaV8Rh9s12lktMF2nK4dL5AxRu0Mxva/mnmYHW83KZMxvlYzn7azDLabuJDiGbX/ZBfULhzOLpF0fuC7WLC73Q0zgoi621EvIzF3qYGqVcD9d1LInZuQu6Rxl4C7pHHnEbh3SVYZySojhdzFJ5bRMvc7Em3nmLY7sExGou1sWqQKhbaT4u3/oN0Am/w9UbOIvBWY08xfVDXesRujdjravt/wi56UwB1OLswBmDkwFaFw4h7EIQgS+yA2Jm1YqUJyil+sD/uFlHBfiAL3I1+s+hGncdeF3F1/+B8Cc99ngOYU5J14LCFCdj1n14raMdR+gIzaVx3+yk3jateh9mXru1dsQMPsHoGXvUOub4j4daP81uao23Bs0hz+0XeC4vui04b2tMy8yMl5tX1740xj7HBsYE8gLDJQ6TAUaKFp6guKEUob1qKY4RgYGUWHGh4PCyEsCVC+UJFQdtqCg2oj7gThBlQe1JkBteOC7QbUvmCBsaudgNrNMrbr/2XH0ng7pUzGDHW70WUZqUWqCY0M5w4ZG6B2TkXt1kbaxQbZO21+CBa+Owl2t3/U3VmV7hJzdwyZu82Bu4OG3B1M4y504M5z31RWS6BzAnent8qYDLlLVhlhWWUcL+TOv1hGUMxd1FF36z+74NTtNyV1u/1ou2UtUn820SLVBG0/xA1tN1a3swTuTMfftAc5xYIdf7fhQbdLN9qNk1E7bpuNt7cbfDIHP8O2rMbAHSYMzD2ostJ3pZXjlYG9gf7Rd9LznymV6sDYXoLD3QDccSH3ZXiTuxFzX7qXiN0Zj6UEzm7oiUqN2jUOmTU/wRtb4nXS1adrpd85j8DLPqE3NkbeikgerNszhSBIZe14h7qjqn4CUal27H6XlvcsMftRSu6TgrLXH3fvhjszn2fGj8TLB+Whd0NlvTJY3GCFQReHq16wnoTfQ1P/uz/u3lbyEl5tKDoaFgktbceQuouLnqbhsRdUEhTQzxo8dNTIIWMStf+DPtVuArWzA+6WyGS4ou30GhnboXaTl0dsrorsitqtjLTbGLJ3Cv5wePIuFOxuv6i7UPQyEnN3GubOh8zdCuDuDCF3ySrjlMCdfcjdKuB+xIbAXbLK8B1yl6wywrPK2Kt1Kn8hd1GIZfhg7mLE7oKg7Y4ok7F/o1Ruaftpe9J2QotUXmm7UbydDNwtxu6mdss8HYRNOPNWnLQD/56Rtu9fQADuh3TA/TABuMM0wIA7lC2CINUT1VCJ60Kub8l6CLejUoc8Ai/rgPsJFLi7H/vK7Qhe404KuZOYO4G8YwcBr+/V/JXhkTrObrDHkFC7vjOqNtjuqQ22u2264Bv+S/GuN3uaZ3KKX8BneZycPLNnD9xQIaqayRq4oYT/EaRNMd/SNqdJrM83TDe0zLZg6XV48ExT07xCgSiVcH/UUFTy4+Spujr4WzWCfKyoGI6JgbUEpe0rVkCpoagdx9YxvP6zDgZhmOaITiBj0LXrrv/36ewx3+uSa9ygdhrgTieT+QdVvJ1S3W42bWevkTHHISMW1M6TPUYUnL3TIQ5HIO+cB94dCbtLzF1UzP0HJ2Du9gHuvDB3hw65826VsVffVCcA7uz7ploI3J2gb6pklZGsMs7cOlX0YhlbMvc7zoLahUbbGWQydLSdLt5uHm3nRCbDbaNUk7T9nGBo+0+W0Hb8FZt5tH2fEW3/nom2UwN3cxk3y1/0tNnBsN/+nhq1G7bQJNpO9MmQgfvJJTBhYAZCmddN1bXPt0fejwyM7UU0/5VUvF0ru7LC98zSdZ2LPU98s+ZnEnDXWGV0IXccc9f63I3IO/Whe6SBs2si7b9ddpAOtaPBdo/jGo1M57L1p902nfcN/zWvdGy+vT1jNKNxphFD7fBf9FC0rE+G/VNrUF9Q2L0wuCflSUrxm+KJ6urdtePZRc9Tch/HZ45Epw5Fbb2fkT8KzxrLz68cr4Qb2P2FrwtHMzNhNULbn2qc7Kd0rhg9+tGWhY6nGDg7USBjjNrpOLsJ1E7VX4AOuJstk7GoUarFtJ1lsJ0r1C6QnqhWRdo54ezCxOsuLhwc4kLwTozdnZe502B3sTP3g/wxdzOBO/fMXRgyd+uAuwOF3B3ZKvMdb1YZ/oD7D44G3CWrjKCtMrYJuTutVeaKqKwyDhdy510sY0PmLvCoO1efUYi0/abTqdtFTdvxP/1tStv3fmp8CULelP6Dlrnz7Uu08PiO9fG9OSkW/OYZR9u1iZODpoB7lyvMQKh0BEEikgdUiGrbq20lb0tyX+YWlL1GgfsGDXBfe+IbDw1wx/qmajXuhJC7Viyjxe77Cdid5liA4+z6SLsWta+gRu3wNhZ5nljiddLFG6Xtqzae8wq6mpD9sGmmaSw//2lq6nRjI4baYbWBisb2ElD1sJ7AQhd6NzTpUdJsc/OL7OyZpqZtJS+jU4eC4vs2Rt7yDr0OLxWdNlRdP6FSITUNk6WV7+ClZvbsgQVVS9s1wXaomJ91nB1Lsushu56zayPtxgIZKnvM382MtDP9prT5Mhn26nYuabu5wXYHQ+38R9p54uz25+kCIPLiI++8YXc7R91tqJexjdJdYu6O3EDV6n2i1cD9d1LI3TGtMjxp3Ak1JAF3oQF3ySoj/JC7ZJVxuNapgg25C5a5C5C884XauaDtApfJCELdbkzbL65mVreLg7YfY0Hbf+SStpuWyRgxdxP7WMq9q1m/kbnPRDrkU4uvxiw79pFRO4G2k+LteoH7YXQPiQF3OMUwDWCqwJSDYil7V1ZVN76z6sN0Q8PO9zsRBAlLvOcReHnFhjMuZOBu0LhrQ+565o7m3PHYXRt4Nzp+MDyGItJuArUvXdfp6tO13Bel7WsCLvnJbyqV6g/l5bD4wQqBZdthYYECxLZDcAPqFz4jLFNh98IqPla8LS4ejo19nJSEqFTZRc9DE++iwD3kulfwtZi0Ycyu83LbtsfJyYNy+a9Ytn35cqgnbRPUb77R59kJnF3HFPS/Ao/N7r141G6FOobVRSQX6nZOaLu5Ghn2DhlBoXahRdr54OxiBes2ofBiIu/cYncp6m5fvYwYmbsRcD8oydzNYe72A+6/l0LuEnDnDbgfFABwF1rfVDtZZaTWqRYAd2tD7hdXC9wq4wytU3kPuUvMXQDYndvP4hi0nRuZjLAbpZJoO7W6nQVt1wJ3vmn7UR1tJ7ZI5ZG2M8Tb2YlZTJtYjEPi+yz/lUrSRZ65V3UEZE91MGyPSe9Qv8XVx9spgTtMA5gkMM1ghgf2BKY/S6/4WDHX0lK6+92WzJGN8ltr/C8t9z3j4q0F7l+7o31TDVYZLORuxNxRgI7H7lSHDrJrOLtp1I4KZJZ4nYJ34urTvdz39Eq/s26bzq8JuLQu+Josrne+vf1xcnJfUNBARIRSqY68HwkVClUDpQFfodagPOFnPSyGGaMZre1zwzEx8OD+4OBHSWjavaVtLjH7UUTyYHzmyGRNTcRARNt8GzwGFi1YAKBModSghvTBdrKfXeONMebsDPYY9t6Yv5jVCMws2m5S3c4bbbfYIXOEhrZzj9qFEGm3H2d3fLzOD4K3GXl3NOxuXdRdYu4Sc3cSmfu//fu3/y6F3G3ROlUAVhmH6psqAXc7atylkLu9W6dKVhnBtU61bcidM7GMTZi7DbC7jck7H+9fgLSdQd0uTJmMMW03VrdbT9tZNUoVEm3HXziyp+34yyk62k5olEopk/nOKshO7Ton0WqTQQ2T20X9h6W6fFxwwCI6b+ow3gbj3zAp3k4B3E+gwB2mFkxXqMGooaimmaaC1wWIShWX8WBDxK/u/hcJwH0NDriv+lEXcsfEMnrmrsPu+kPD38l34jg7Zo/5fCUtal+67hQWacc4u/vmi2sCLq2VXfEOue4XcTM08W5z6+zT1NQHsbETVVUlb0tgzYFPBDWCfrrTy6HWoGxhVYkZjmmbb3tbUtITGIitQLAKDsfETNbUFL4uVHd0wHOxxqpTdXXwt1DHZzXSdm2wXcNlyK1QdYp2A2fXRNq/Z4y0M0D2v1h0GAN3axulkq7SOKHt7ILtfKP2n4SH2i1Wx9gBsjsqXueav0vYXRRRd5vpZSTmzlUD1QNOLHPXAPdveQHutmHuTtQ6lT+Nu8iBO3urjOCAu9V9U/mwyjgmcJdap0pWGWGH3G0glnF45s43eefvPQuXtjuSup2qUSqvtF0L3C2g7Z380nb8FZ5VtN1kvP07c1C7fvNJ1VCU0rtC2AGy2+lR7uiML08pL0ApLzEXWNAUjOEXOnW0HR9vx7aaJOAOkwQmFUxRqKbkx8kN0w2xD2Jzi1+2ts1tiryNA+4nF3kcR4G7ziqDhdyJYplDGoB+8LNlevJOcWgfo3n85zjU/iWG2t2OLFytFcgsRgUyKGpfseHM6k0XPAIve4dc3xh5a3P0nYCYHvSI7QmO749KHSrd/W4sL+91QUH1RHXk/UhYdqBUoaygduArVCh8Ori/fqpe0aG+Fx4OiwosANiGAn6ww3I4FBX1tqTk3Y4dI/Hxw7GxsN5A4ULBdeqC7RSoHadop1DHUEXaqTm7pZCdfO3IYaNUjmi7hcF2PlC7UO0x9uXsEmG3AXwXNHnnELs7WdRdYu4Sc7e9zJ0j4C6F3B3YKrPXTn1TBQ7cf+QRuDuIxt2WrVM7pdap9rPKXHZEq4xYQu4CFMsIgLlzxt/vBPD99sxF7Uy03faNUh1P3W5Bo1ROaHuX4Gm7+TIZLXD/jm2k3bDhxLaU2I6R0rWCC4ATNmx0uzL8Hozmepp0lUy6AqbF8YwsngDldQfDtha/fcV/NOwjoDvDYzjgfmopzCiYk1Bo7fPtRW+KYD2JTBmsmawJS7y3JuAS6nDHgLunAbjrQu4GsQwRu+vIO/k4pMuz4yLtBNR+9Gv3Y9+s+Rm+15K1aFvU5b6n3Tad9w65LovrjUge2FHxtmW2paFpun6qXqVCKuvGt+14lVEwWrDz9UR1dfNsc+ZoZtyDuNB7obDEwfoANQ61D+sY3Im53Z+kpMAyA5UNlQqlie6DYKfj7g6Vja0BcAPuOUMMth+lQ+14dYwOtVNwdh1q5xays4y325q2s9PIWKNrFzpqdwDOLiF1HuC7iLC7uKPuEnN3AubunGIZHXAXM3MXTetUsVllONC48wfcee6bygdwdyiNuxRyl1qnSiF3SSwjHuwuzMORaLv41O0Sbaej7QfMpO30wN3A3L+j+lVLo0i7futIKTSnxtBHcFsmhm0SMXZAN4Zk670FY3iIRlZDujCl3MEeInxMfLydGrh3o8AdqrJyvLJ5tjmoLyg9/5kSUSbnPvbEmqZ6dy7xQoH7N2vQvqlaqwxeLGNg7hrsTiDvRMiuOTDOjtpj9AIZPWrHHDJYsN33jPvmi37ymzsq3jZMN7S0zX6sqBivqqqaqGqcbswfy4dj5/udNZM1LbMtSrUSQRAV/K/5r10x3z7fnv0iO34kHv443dDQ1j43UVUFCxvUMRQiVBtUGHl3BoXl6mpojorp2ulRO3Wk3Ugdw8DZ/2zOYUG8nWPaTrzqOsCGtrPXyNgetXNkj+E70s4JZxcOZO/i+XAW+C4G7C6uqLv9le5iYO6HBMLcnVLmjgPukljG7iF3xwPu+8QK3LmxykjAnQ1wF2rrVOtD7vZtnWolcLdB61Ra4O6EIXdLu6famLmLOuou0Xbr1e3m0nZuZDK2oe0XrabtZ1nT9m4WtP2UjWg7ZYtUZtpOUrcTaDtz3yhTkXb9zpCycSgesmNbIy1DN7lpwfYqmq0IDC+2YdCeAhh5GHAYZ2yEiWOrZwB4HE8IxTMieLKa5pDphkP43SnFvysYAXeYilB9SrUyZduTipqPCILkjeWlbn/qKbuiAe5dWuCu7ZtqCLnrmbsRdjc6Vuo5+4/YE7/SovZj8Jp61A7fyMW7c9n67hUbzq7efMEn9EZ+2Vhz6+xUXd1MU1PFx4r4kXhY92B5gfVK1iuLGIhIepRU/qH8w65dlXXjGfmjWzJHIlPuR229D59isrZWhahS857CK8zs2QNLJtQxVB6UFFo9mqLR0ysoFDh7cOoMnVEZUTulpZ1SHWMCspMvH//DLODOJW3/5BPLaDuDtF2YqF0UkXbrObu9CHuXgA+hwXeHxe72jro7mNJdYu6SzJ1r4C6F3AWvcRdC31RC0bD3WkrA3eq+qcK3ykitU6XWqfZtnco+5C5qsYzE3EWH2oVA2525USoFbT/HSNtJwN3BaDtDvP1705wdj9oNkfb9hl0fmbPrDObarREGnY+j0FkP0PEqfDIL6dQ+AMYfTgecLzibcIqxmQAnGu6B++G8UDwXdzr0p4AUh2fL32kveSl2pPqn6zeThM+uA+7wnmEeQqUkPUpSI0hTy8yemT11e6aC4vs8tAl3DLjr+qbqrTJGzF1/GPC6/liFi7Tr26JiqN0TQ+2nXLw7XX26l/ueWeV3zn3zRa+gq4GxvWqF4mFCAixLCIJse7kNyhyKEeoUbsAqFNIfkv4sXd3R8SwtbaqurnDn66jUoYCYHu+Q6wlZDzuU6un6eizh3hcUBHUMpQY1hHJ2DVrCCPtxnYjgGMbZjQQy+J6oe3UXyQyWduM8OyVeN3UdSQHfmYG7SdpO2SjVEtpukbTdpENGLKidfaTd4Tl7l0McdifvgvPMCAe7Wxl1dyC9jMTcJZk7EbhLzJ1vq4yVIXf+NO4ScLdX39Sjtu2b6hBWGZuF3KmB+2mpdaqQrDJiCLk7O3OXsDsDahcjbf/VUtp+g89GqZf5apTKN20ncV4B0fb9LGi7MXAnXWp8T8HZqe0xuEg7mbPrtDCYDQZGBsXNXa4wwnBGUHqu+ZUFOFlwatCzACOv+4EOt7EOnPAAmDAw32CSh9wNKXpTlPIkJbg/GO6Bp6ONOs8SfjUB/9Mc7kfPYJcrnCkSfDeLv9NSeKptp4G2EwcBHYET2hGAGQhzPqAnIP1ZOmZlSdn2ZFPkLczh7urTtcTr1GIdcP8atcqQmbtW6b6KRNh1kF3D2SlQu4cetXctW396xYazbpvOu/tf9Ay8vC74mp/8pjxlsF0x/zAh4XFysmJeAasfjD+8W/gKtQwLUdRQFEbbB+XyB3GoqL25dTYl90ly7uPZ5uZtL7e92r69PzgY1hKoUczMfoqYZNdOec1kN3D2zz+HSaTviWoQtTNG2k1y9j9ZluCiv4Kkjbfbl7YbXR5ZFmw3F7Vba4+xa6TdSs5uG8je5RyH45F3gWB3UUbdJeYuMXfBiGWMgLtYxDLsu6dKVhmb9E1lD9zZW2WcArg7vFVGCrnbMeRuy9apV4TeOlUEIXcrxTLiZO7Og93FQdv5bJRKGW/nsVEqD7SdJJMRK20/xCVtpwbu3zOidn1DVI08kBRpJyjL8Zwdi7R3osluGG04O3DGYWKnPEmJexAXPRQt65NhMWo4j/ofo1iYHSZVQE9A6bvS+qn67OfZCIKk5T1FVKo2xXz2i2x4EZhO8DD9v1XD/EH7dl5fB/MWnec31sP3gu8I3xcj71oXjS78julo9KeGcEZMdWQ13lvi95DkaL9uKDDgDu8H3ja8/8LXhXljebklLxubpzdH3SYA97UnFnmgGncs5I6a3PXMHYfdyQees2OofY2xQOb0Kr9za/wveQVf3RDx6+boOwGxPbK43tCEu/GZIzDIL7dtg69Jj5LgHaK/T3DeDb7CkIbeDW2fb59uaLgbEoKtc/fCwt6XlcGDd77fCV9nW1p6AwOhrFGNzLJlUCIYasc4OxZmx0ZUzxqYRe3MkXYyZzcTstNeU7ID7pTxdk5ou3ktUvkItvOJ2s2ItIuLswsEr7u62uEQOH/nm7zzid3FGHWXmLstmDunwJ0/5i5qmTsPwF0KuVvROlVoVhlWGvd9duqbygzcD0rA3UZWGWdsnXpaap0q2tapDhpyt0zmLhzm7tjYnW/Ubi/a7niNUkm03axGqRS0/TQFbdebTxhou57h0tF2vVWcP9pufOFCe11Cz9wJu0eiqJ1kj6GItJM4O6aO0aF2OL8wqYL6gvbM7MGabRaWv2mfby94XQDFBbMImwAwK+A2zP+kR0ll78ta2uYeJSVNVFcrOtTjVVVDUVHP0tJUiGrrk61QRPCC8GD4Co8PvxdeOV4JR/qzdOz1056mQYHAy6I5+rO6HP1p7fmFc4qG30+h/1JCaZ7BnyBW199HDLQdGxA64A7TGBaE1rnW2AexEckDu8d3h2zp90CB+1lXn66l6zTAHdO4YyF3A3NHsbuBvOsJu46zY5F2PGpf5Imi9qXrUIHMig1oZ1Tf8F+itt5Pzn0MQ7SnZaa5dVapVFfUfMwvG9tdOz7d0ID9JoF8UA7nBZYIWGqihqLgwYp5xVB0NKwoUPToD/x162BF6QkI6A8OhlUTFgxtsB3XB1WbZ8dxdgwW6CPtlKJ2fUNUhkg7A2f/o6nDAuAuVtpuK9T+sw1ROwfqGE44u70Iu12ouj1YvI3Ju6Nid/tE3W2idJeYux1C7rof3A4vlqEC7mJh7s4Zcme2ygiwb6oE3G0G3G2vcRdg61QRhdzP2SLkLrVOFWnI3WGZu5NF3S1G7eKl7WJqlHrB6kapPNH2k+xoOw7m6sPUtqbtFJkfii0iGbVrtm3YTgyLtFOrY3SRdhg01MB+BhXIwMnFhCQJDxMyRzOr6iayi14gCPI0NfV1YaESUe7+uDuwNxDmJxZOD+oLyn2ZCw+YqquDry1zLSW73tZM1LzfuRNmcZ9MBk+E++WD8oCeAHhi9FB0w3TDVH39XFvby9xcRKVSdKinGxoUakXB6wKoJpiQ8B5IvzZhcMFrwu8G7TuVdob0ryO0x1FDth2j7cbAHcYEvjssNW1zbfC2c0teNs82x2U80Djcz7r6dGuAu7ZvqiHkrmfuVMdCTUNUjT1Gg9o9NKl2zxNL1p6EV8McMiv9zq7xv+Qnv1le/aGo/I1Khcw0NlbVT6TnPdu67UnW86ziN8W1k7XNrbONzTPtinn0nyxUKniHuz7sgpvz7e3P0tNhRYHahVqE4tNGCDQ3oNqgmLQOGY1ARo/aCXl2DWc/gOPs7O0xxpF2JshOutZkcZVJAu7ky0TzG6VyQtst08iwCbazRe3Widr5irTzzNl5CrM7MlvnH8GLgLxziN05McxwEXUXn15GYu6SzJ2LkDsNcLcXc3egkLv4rDI8adxtAtzZW2W4BO4/mg3ceeqbyotV5mfHtcp02QS42yrk7gytU0UZcrcHc7dMLGMH5u4EaXfaTyfRdh4apQqWtmuBu0W0HcO1ZNr+sxFtP2Zv2s64OaQUyGhRO2yf9OoYXRoAo8kGe0yXKwwmDDKMOfy8g7Mv65MhKlRW/qG8HL52KNWvCwuhLGBdh8obiY9XdKi3Pt0a1BcU0BMQeje05G3JZE1N6e53MWloT86Nkbf8Y+6UVb5rnWt9npU1HBPzKDFxrrUVnhL3IG77q+0qRFXfNFWw83VW4fPsoudNLTPwXaDU4JWbZ5uj7kdBeaKL7a2NgT2BkfcjIwYiwu6FhQ+EQ1HATENd8CTtDKPzncDfKTeBRNqOhSEMFvszy2HqwvuBt11ZNw5flYgyLPGeR+DllX4YcO9c4nVysScu5K7PuWuU7gtxhF2bZ9dwdi1q9ySjdkzX7hFwaX3YjS2ZI7PNzYNyeXXDRHzmiJ/8pl/ETRhk+aA8YzRDrVB8rKgoKn+TkPUwJOFuQvZDOG91e6aaW2fh3MECA3WJsvUVK9C60ZQLBtGgJrBUux61kxTtBnUMQ6Rdh9qZI+3UnN3o+pI65WWSubOOt9uRtlsZbKfUtZuN2gUcaeees9uGsDseXucHwduGvDsedpf0MhJzl2Tu7Jk7PXD/1rHEMrYMuTukVYanvqnWAPcDzgTcBWuVkULuvIbcz9s/5G5Pq4xwQu42FsvYXOZuJXOXsLuNULttaTsBuAuGths3SrWEtl/kjLZrgTuvtP04C9p+lFPavs862r7vU/z2T9+VxyCQ0aB2eOekMLv+pz/2c1yfasd+kMF8COwNzHmRU980/TAh4XlWFhqgnm5EEKQvKAgm5h2NCvxZenrbXBtmdd/5YWfbfFtSziP/mDveodc9Ai+v3nzBffPFdSHXI5IHqusn4Llvioo+lJcXvSmqnaxtbZ9LzH4UFN/nF3HTO+Q6PCUs8R485kVOzqPExPFK1DATNRQVPxJf+q50rrUV/mqythYNzrfNwld4e/Amjdu3aoUzNOSdoAai3N3hdm54xw7WNhb2AFBoscOxFR8rVCoku+i5f/Qdj4BLK/3OLlvf7YIBd51VBsfcUez+tZ6wa7qhajn7mp8pUTu84OpNFzwCLnsFX/MN/0UW15tb8nIsLw/7FQE/+c01/pegamHVuR8VNd/eDifocXIyqmWveg+j2tQ6W/a+7GVu7kBEBCwMUHZQRihk17AqrAhIPVEJqJ1GHWOItDPaYwiRdkbObvalJ82FJi1wZ9colQ1t38dI2w+YSdvZNkdldMhwj9qdm7NLhF1k8J2nwDtv2F1cUXeJuUvM3VzmLhCZOyNw/1aUYhnHD7k7EnAXcN/UL/71BQdWGSuAu0NZZaSQu+OG3AnA/bI9W6dyG3IXt1iGQ+Zu16i7iLA706e47ay0/QbvtN24UarxCma6UaptaHsXjrZ3OiJtx+8Diagd3aTpXO2oQOboV/Ap9GoUjK0b/6iF4cVoO9bCVNYra5tve79zZ1PLTO1kbVX9REzacFnle0SpRBBkNDPzQVwcHE9SUmb27Ml9mVvytqStfS42/UFATM/6sBuesiurN11YseHM8vWnV2++APeEJd5L3f60dPc7je8EKSh7vSVzJHhLv5/8plfwNXf/i24bz68NuhqaeK+8+sNsc/OH8vLit8XlH9BkfWXdeFbh8+07XsHTW+daB+Xy92Vlha8LA3oCoCjQ+QwT+MpaeOcw3+BTwDxByTsu864/y2T4Tr9twx5PBu7n3aBw5INyFaLKKX7RrpjfjAfu3p2avqmGkLveLYM/vtFzdlTUrmmLqkXtnfAiKzacXb354rrgaxsjb8GgRW29H502BGOVV/oKxqRDqX6UlATrDRQoFH1/cDD6ywdK5UB4eF9Q0EBEBIwMPGa6oWGythbWOUMrVBeXUxoAhE12PGc/QkLtVJF2VvYY+kg7Kcz+B4sTX1RXmXilDGW8nVndzgFtZ5a2s9HImOmQMRe1WxlpP2EBarc9Z+cVsktInTf+LtDAu6DE7naMukvM3SRwd3TmLjqZO8/AXYxiGSGE3Pmzygijb6oogLsja9xZW2Vs3TrVcUPuPAL381LrVAGH3J2MufOH3QVL3k287dsc0fZbQqXtv5hN23lslHqJAribpu0XTNH2c0TafpY1be+2lLZTqdsp0tBUtB0F7uxo+4IDCxhouxlXHqS9Hwm1E4Pt8FbhncPHQVF751IYKBhVOAvoDxqNGB07QeiJ0Pz4w/4K5gBM6aznWQiCqBWKhKyHsrhen9AbXsFX4WtQfF9mwaiiQ41yc0Q1WVPzYdeu6onq3bXjybmPwxLvbY6+Aw/zDNQBd18UuPuG/xK59X5+2ZhCraiaqBqvrNzTMrN125PQxHsbI2+t0wD3VRvPrZVdge+Vsu3Jjop3be1zza2z8BSMy2+U34SX3Rx1u37P1Mvc3Gfp6R3qjtjh2PB74VH3o5IfJ2e/yI59EBt5P1Jrmzmvsc2cJtpmTpLJO7Plj+TbgYkHLwvFsmVkS9NME3zYtrk2GBCPgMsa4H7axRvtm6oLuaPMfZGHDrvjDoyzwwNQ1O6lRe2uPt3Lfc/AIHgEXvaPvlPbOLm79uNEdfV0Y+O8QgFHS9vcfHs7DHVFzce3O3Y8SkqCY6axsall5n5kJCwk6K+4eHvDIgFLDqwlUNZQc1o/+9Klxnl2PGc3Ru0GSzsLewxdpJ1NmJ3lVSkp5G4SuDPLZPim7Sw1MqJB7QLg7ByG2YVG2Lv5P0QB3x0Zu1tvmLEy6m5bvYzTMXdzgDtnzN0IuB906Aaq7EPupoA7P8xdRN1T+Qq5C9MqYyvgzt4qIwF3+2rcpZC7zULuvLZOXX1xtcBbpzpVyF1i7g5A3k2/z9t8BdttStt/tZy208pkHIm2k4C7ubT9FHe0/QgNbf+XKdq+3wrabhxp30/cv9EE2+Ejw8jAkMKJg3kV0BMQ9yAu92WufFAe2BMI8wrOO8bf4SucenjMlodbJqqq6hqnotOG1ofd8Ai45Lbx/Eq/s6jnZPOFdSHX/KPvyFMGk3Mf55WO1TZOzrW01O2Zyil+EZs+jCpi5DfhMR6Bl903X3T3v+gTej0x+9HMnj1Fb4rSn6VXjle+zMl5kZ3dNt9WWP4mInlgU+QteIx36PXgLf27qj8gCFL+obxhumGypmZHxVt4zcDYHp/QG2v8L62VXQlNvAePGa+sVMwr8sfysX8VgOPDzp0dSrUSUVZPVEMhw6yGTwRTTut5pyTvjOhCT9th5sATtcD93CoYooSHCYWvC2sna6vrJ0K29Gsc7ueWrT/t6tOl0bhrQu565k4+UM5uhNpPY2MLHxBGo6p+Aj5gW/tcRsEofF5sqEvflcKA7Kx6D3fCeM5qxhw+/kh8PKwNUJT6hqhQWFBDp4moXcvZFy7EOPthHSYwNETFULtxQ1QW9hiGSLtJws7+2pQJuLOIt5tB20mXXKSrK0ul7ayC7WZ1RrUUtXPP2VmgdvtydvsS9m5hH85D3gWF3e0SdReyXsZ5mPshc5i7JHM3l7mzAO5OKJbhLuQuMquM8PqmSsBdRBp3KeTu+CH3y1LInZuQu8Mzdxtgd9vDd1Zv6TanqN0CjYxz0vbLIqDtTOp2+9F2y1ukkkTt+4nddw7igu1E2g6fHUYJRhjOe+rTVIxll1W+V6qQxubpqbq63Je5wX3BMP2wOQNzL6gvCB7W1DITufU+RttXbTy33BeNb7t4dy73PePuf3F92C8hW/q3bnvSppjb8W6HuqPj5bZtU/X1inkFvHh8xkhwfP+mqNsb5bcCYnpyil/AA2KGY0LvhSY8TFAhqpH4+IHwcPiK4nKlcmfVe4wjT9bW5rzIgUdmjGbMt7U9TUsbr6qqaZiMSh3aFHnLO+S6X8TNuIwHReVv6pumFB3z8Ky0vKeR9yPhPUfdj2qebR6OiZlrbY0fiQ/oCYDqg48DHwqmMcxAmFcweWC2YJJ3jLyT5wNxc4U9ANPcwxMx4A6vBt+u9F1pu2K+oOw16nAPvLzKDx0iVx90iLCQ+xINczc+0L+iQu2esis+oTdg0GDYEZVqNCMDBmcj+k8RN3oDAx8nJ8MYjmZmzrW1wQjnFL98v3PnWH4+DCOcNyg4qB60ISrUhAZsdWpaocKHIETaNTOXEGm3WtSOXaWZjLSTrzspr1ZNXZuyB+580XYrWqRyHGxnuAThP9JuN84ueMje7UCHEOC7A2J30Ubdhcncj0rM3Wll7tYCd0di7lyF3P/Cc8jdGquM0DTu+3nrmypC4M5731Qp5C6F3HkIudvAKsNVyN0M4G6zkLs1YhkrGqjywtxtFnU3B7vzx9/N+O63uabttxyOttOp23mg7RSNUhlpO7O63TLabm6jVEraDj+sGWg7pbrdbNpujUaGAbUf0u6j9P1R8bQdTqt8UD7d0IAgiGJeMdvcPNvS8jI3d7KmpqVtrmWuJXooGgoQCiGwJxDl8ipVQtZDP/nNtUFX3f0vYr4UlCOvPblsfTfcA3+Vlvd0vr09czQz7VkavOzDhIShqKjHSUmTtbXlH8pn9uypaZhEZe0I0tg8Uz9VH9ATEHo3dPfH3eOVlX1BQVgBYQrymaam7a+2o21U51oTHibEj6Ag/lla2r2wsEG5fKKqCv5YUfMxI38U7Zg62wIPhm+BPTEh+2GvTIYplZIeJc23tX3cvXvbq23wrna+3wkvmDeWl/0iG1YAGASYiuTAO468a6cHcdeEbYHwTWWhBGAJapxuhLfR3Da7Ofo2CtzRf5M44+rTrbHK6Jg7dqw9qb+91OsU/K0GtXctX3965QZNqj3o6uboOzFpQxkFo5mFz7OLXrS0zaoViueZmfDRYJSGoqPn2tpGMzJgQAYiIp5nZU3V1Y0VFMBfQTmiivbly6EOUEu7jrOT7TH4SPvnnx/E2WPMRu2m7DG0nB13VWriytUc4E7tk2GWyXBO242k7RwG2zlD7bZVx9iLs9sMsnc72SFW8s65Z4YH7G7rqLuwle5OytwlmTt3IXfWwP1bwcvcHSvkzqNVRmh9U/kD7gdFD9z5s8oIunWqFHK3CLhbGXK30iojhdyFKZaxhrkLIupuKXk3C8Rb9eK3eUDtlmpkeKLtdI1SuaHt14RO20mNUilo+2kOaDuhUerPLBqlmqLtWnW7rWg7NWrXbIGMaTucRJiNeWN5OcUvwpMGEATpDw6GaQXzDipyKDp6Zs8euDPuQVzYvbDooWi4nVc6JovrXR/2Cwbc9TQZjpV+Z72Cr6Vuf6pWKOJH4iMGIhIfJaqVykG5vCcgAAquLyhoJD5e3dEx09ioRJSFbwqnGxsraj5O1de3tqMW8rshITBz0Unn6QnTEN7J3dDQl9u2Pc9CrfFKFdKumH+enQ2vhhUH3HiemdnUOlszWdM61xp5PzJjFE1/P0lJGcvPh289HBsL3xcelvo0dVf1B/jWKkRV8bFi26ttu8d3d6g7purq4LmBPYFQMjDJYYrCJMQC7+hEwpF3g31IvyPS7HngMfBIrK8sCtxvb4aXTXuWplSqA2J6MOC+YsOZZeu7dSF3lLmjh9cp7Y11p1xQ1N4FY7hs/Wl48KqN59cEXPIOvR6TNtzSNjfX0tLQNF286w18hD0ze5pbZ1vb5mCQJ6qqOpTq9zt39gQGwlhhJQ4FDbUIxQRVAtO/k5Kz6+wxPxLtMSZ6olqG2omRdmPIbvbFK9W1KS1wtzTebhltP0BF2y0Ptpupa7eLPcYOnJ1DyC40vL5smX0OgfN3+5F3sRpmrI66i0npLjF33pi744llzAHu34pP5m7nkDuvrVMFqXF3OuD+I0fA/YiAgbsUcneUkLuIW6cKyuQuNrGMEJg7N9idI/jOzXFbSKidRbCdc9pODdzFQNuxnpzCpe3HWdD2o+xo+yEraDv+AoKRthM6ox4y7J1QjcyRr/S0HfW2d7vC2MJZg/kWejc0fyy/sPx1u2J+JD4ezjacKzjzv2iY+6Bc/qaoqH2+PelxUvaLbHhMVOpQQEzPhohfvUOue2pU7G4bz6/yO+e26byn7Ar8rUKtSHqUBLUg65XBU6bq63tlMpit2h8LPj5QBH1BQaMZGY+Skh7Exk7V1aGh9fT0noAAmH3w3WEuaH/YurnBPIK3BDMa3sy9sDD4ChMZ5iA2xeAG/FV/cPDDhAQsMj/T1DQcE9Mnk90NCXlXWtqh7lCqkOnGxoLXBSVvS+DGXGvrk5SUkP4QqMSs51lvi4uVaiV8usj7keED4Zi5HkYGfo6j2P0MOrWw6USYRbrdDrZ1gcdogfslD/jg1RPVagSp3zOFKWVgfDTA/bTmnyVQ5k464E4caj/n7n/RK+gqjHBIwt2mlpmnaWm1jZP+MXcGwsNfZGdP1tbO7NlTsPN1dtELRKl8XVAAY3JVc9YuaMYNr2hHUTvG2ZkbouJF7dYIZIxQO0Wk3RzITn3xygjcTfhk2MtkLKDt5rRItYS22wq1252z8xtmty9htxdStx+LtzF5dxzsbu+ou8TcJebueGIZM4H7t8IWy3DbPdUGIXdrWqeKvG8qoTK4AO7srTJ8AHdhadwdwCojhdylkLuQQu78iWXEzdztiN3tAt+te7eshkii7VcJ64NYaLsWuHexaJR6krtGqUTabgDuVLQdBe50tJ3quoF2+4dt8/C0nahr1wfb0Q3MsYWkLqlwTmW9svRn6SVvS3Z92NXUMvO+rOxBfDzMFDif8BVmfa9MNhAR8Sgx8cPOnTve7VCoFZkFo1Fb7wfH922Our0h4lef0BtewdfWBl31Crq6PvyX4C39pZXvPpSXywflMGPh63x7+7P0dJjLMHGwvp1as5q7O3wXNMa+di36L7PwTT094X441eiJ1YMezYmFe9CfzBr+fl7HlLU/yVeuhHuwfyGAAoL6hq9Yyhv9CBs3wnefqq+Ho/B1IaZeGcvLm2ttvR8V1RMQkPw4eaKqSokoFfMKtVKJIEjbXFvjdGNgbyDUC0xsvWdGG3jvpti3oD6Z08vh3cCbg5kPVQyjCkNaXv1hU9Rtz8DLbpvQprLLfU9rQu7dGryuP7rhTvgrDLWv3nwBRhLGNjZ9OCN/NKf4Bdr7VKV6mpoK7/ZBXBzcfpycPBwb+2r79o8VFf8/e+f91Uaa5vv+YffsPefunTuz2zMd3Q7Y2BgHkpAAiZzBYDDGYGNsksHY5CCS9HfMzKa7u70z3dM9HcadnHOOJINxwjkbgwO5zn2qSiqVKqlKqipVSTXzHg7QgKX3fd7SWx++fB74DFwJYLfBnOCW9kOEPYYp0s4mamdD7V+SUbudtn+O0XYXrnbhqJ3nDS4XcHcZb3e+55OItjNI27lRO4m2u+GQEYzaPYu081e0y8/ZpYPsfgHWZUHwKiDvPobdVaJ015i7tMxdpTJ3CcQy8gJ35Yhl5A25e8Eqo3iNO1/gLkHfVA24S2WV8WrInZW5HxLG3LWQu1+F3OUWy4ghc/cKcxcx6i4+dpeIv4v3wCRE7f5E26nAXV7abgPuHtL2A+LRdrZGqUJoO/V+goTa2Y5/jLSd4pCxHV3stB2eLEwFTCCsWuL1xM7uubd1dY8LC8erqlrbp6vGq1qmWt7s2nUjOfl6YuLttLT7ublPNm16UVoKXzDX3V3X9HZ79cuisid5Wx5kFd5Jyb+ZmHs9IWckOe8mfIggyGxHB7ztmEXfds51tnVMv2to6NfroWRgkY/hrTuZXrFRzzgJFh+gHEDwUwbLsQIWHIXyGHwnoDz6IhwYCJUIRQ2b+O66dY82bryekDBoT77Dg5zv7t7+cnvN65rJpqaX27en306PHY61IJax8vKNjzfGXYvT9+thr+FdVdGaxALvlFYB+FEEphT+Kw7cYbfCTJaPlXf3zEeiwP1soO5kQDhqlcGYO4rd7eOIDbWHH4evCYo6szb2Ylz2NcRiQazW8pqxspqxqebmlvap2oY3M+3t5TvHYLFgPuHycBH7iwE4ApzAUDs8EC5Lu7OonQO1f0VUHxNqd+mQYRXIuCLs/O90ySF3QcCdTSYjPm13K9hOaY4qOmqXLdIuM2eXyBij4XUZELw85N0XsLtK9TIac5edufuwzF0ssYxw4O5XzN3rIXef0bh70DdVdODOn7m///37Pq5x10LuWshd1JC7E3BXUchdLTJ3xTJ3RWF3QSxe4n+X72y4G2zXaDsXbT8lI20/7IK2k+PtLmm7gEapf2NtlOoGbf8/X7KfACnxdvsfIDpo+573KagdnghK2/d9gqrbjyyC1yYoWgRB2qbbBqOibqWmwvuonwRB6t/Vd/fM7Xqza/fb3R2zHT2W+R27x7dWPS+rGbMi1re7d7/Ytm18x46Z9nb44rq3dfAT0K8Z3wEfNk02Zd3JgnfeNTRsr37ZOt06VlFxNSYGSobcuvMgiUGQTxn4OuArwB3LpZBBAsoftCM2SjTe5qWBEsZKG2oftiyqoMH+N9XS8nDDBnjnQV7etVjUroNYrTAPVtRQY22faY+/Fg87C+qf0LvjBWmrQ/yYcQz1ycDEwnaAHZpzL6drrqt85xiacI8+Gxh5cmnE8YDwYxhztw14f0nYMUzFcxLVtZsuRCb3JeSMbKl4Nl5VVVz+dDA6+lFBwWRjI3xosczPmM2jmZlwqcD/VsD2CwyiISoGZfbZZ49ij6GjdnpbVApq/8J+m8LTIUNvi8qG2j2802UE7nSfjDCZjCy03Z1guwJQu6yc3Xthdg2ve5G/+yd2V1fUXWPuGnNXK3MXAbgrXOYuWfdUzSrjb8BdxX1TvWWV8eeQ+xEt5O7jIXdFiGU8Zu427N7rl9hdriFgBqQMtquCtjuA+1ne6nY6bT+9gn4p85S2H/OItnulUSr51sehbrefplhpOztqt50AWeLtDLSdhNoJ2o7LZGARTUMmlCdbLI8KCua6ujZXPItOvwojef2N+HXX4rKvmTKHjJlDsVnDibnXszfdrWt6u+3FNpRK5+ffTE4eiY8fSUi4lZr6uLDw+datsx0dL0pLcX49mpkJ/3U0I+NmSgpUK6w/mr8mte7cR7uBd7rfpt1IU85WjJARR4o4N9xPQ/BoBB6OA6QIPK6ggX05GB09YDAMREXdSkuDBz/f01P6onTeYnlbV5dzLydjNONVRUXDu4bkG8mGAQOedsexOx54Jx8YoIyhtmFTwE6Eb9z+cru5c1aX3BccfXa5/tQy3QmcuRMDPkRRu/50cMy5iMRe9BceVitmoUe65rq6e+Ymqqt7LPO3MzKGTaYhoxGuZ6jgPjDwuD3SjjdEPUCOtLuH2l05ZMi0neyQ+U8Whwwjame+i/37v6cOV3e6rMBdSLydm7YTt18e0XZBwXbZUbtYnH2/jJzda5BdA+gqgu9SkHefi7r7mF5GOcxdGHAXwty/UwBz9w2xjLvAXX7mrt6QuwetU71jlVFY31R/Ae4Kt8p4O+TuI91T/S3k7hZw9/2Qu0KYu0RRd7ewu8+Qd09QuyS0/bJKaPs5AbSdDtxd0/aTntF2CnAXnbZ70CiVKpNhoe22eLtw2u4A7qR4u00mY/e2w6PCm6MSqXYY8GThucNUwKTBnEO1ZI5mNrxr6J7vrnhV0dg6GZHUuxLjwoGRJ2HAO/DhGtMF+Hxs1nBR2ZOWqZaceznlY+XPSkqGY2Nh00DlOl1E4SoYHg4VCqV0ButoigrZcdUJhtqJ3DpB1ck3xuTbXa6zG+WMRgPxrPydDN9JyXeoUKhiKHZ42RmMjh7fseNdQ8OD9esnduyYqKl5UlTUPNVsnjF3z3W3Tbc1TjZGDUbhaXd4dcZ/deQ4CZxcBtUOewS+IPVW6jyC1GAO91Ux51YYTsOsYswdHfAOfLhCfyo4+mxI3KXo9Kvriu42tkxW103cTk+HB/B6586mtinEar2ZkgJzi05pUBDM53E80r5o0SEmewxVIENztX9Lum3+WppgOy/UjoH1P7IMRuwuFLi7iLezqNu/cI63M9N2p85Wv3ZT2s5U1S4cMkJRO/edgejqGK9IY3yFsB+RfagCvvsPdldN1F1j7qIzd/9poCpSyN1z5u4BcP8XfxTL+IVVRmHAnX/fVA24K8IqI3/IXQKxDJ/zqRZy10Lu/szcRY+6q5q8C3uOnqF2WTUyfkLbj3tK223A3S3aLp26XTBtZzoNEgc/h0wGj7cTtH0Pmm3HaTvO2YmXbJgKmCKYT1i1uGtxCII827x5V+ObrMI74QlXlutPLQk7hrX0RDt5Lg49sjTieFDUmdD4yyn5N6eam7PvZideT8x/mA/fOGQyQYXiFXTWztbRhYU1tFvaCSjM6hO336PyvP/kQpakUxuFThLw0Qbfycl3XDuzeDGUGFTfSUw7A/sDnhps3KsxMa8qKtC0udU629HxqKAg937uu/r6zU83Z4xmRA2g2B32CF7zxKs5fAibBXZowkhC/bv62obXuuS+1cbzMJMww8sjT+G/zFhhOI3/PkOf0l+xc6yjaxb+HYtlfh5BZszm8aqq64mJw7GxcDVCI+12ewzh5KGidqa5JSbzO5qu3b1gO4exnSPYTuHsf+Q9KMydsWmqS58Mt0yGL20n3zl5rpFxI9guBLXLEGn3lLMrE7L7Fk9XB45XAHlXMXZXm15GY+5+2EBVmWIZz4C7kpm78kLukrROVZTG/St3+6ZqwN17wF0LuXsr5M7K3LWQuzdC7hpzVxp2VwV5F/ykPEHt8mtkNNouHW0X3iiVp0zGtbqdkbazHwVtBz/neDsuk7HR9h9QkwyebYenSX7ZhZmBeYN5hhqofVOLIMiTTZu217wMS7iM0fajC9ce+nTVgU+C98FYsPrA4tAj8PmIpN62jpnysXLTsCl6MDrzTqa5c2bYZIL6girAWbANsmMAhbtv5x5nFuy4gXR13+iy/yQFYpLD74LJO9ZqFTYBbMQho3EkIWE0MxOmq+FdA2K11kzU1L2tsyLW5BvJcBmBrQe7hvyCC7sJdmvctTjzjHlr1fPI5L41pgvB0WeDos4EGU7D25XRZ1ebzkck9iatv1FU9qTVPJ1f8mCsvPxVZeV8d/fT4uL+yEiYXlzUjttj2FC7Y3rxGSb9DoNnsP0vRLBdFNrOFmwXgtrdBO7s8XZGmYxUtN2TYDtvh4y4qN0nObtXIPsRnx7qJu/KxO7eNcxozF105q4wmbu6mPtX0jB3esjdY+Duf8xd5pC74qwy4mncnXaDeoH733gA9z0eAXdJNe5ayF2x3VO1kLsIIXeFi2UUwNwlj7qLQd4VBd/dfAoeonaNtiuBth/hR9sPkmg7/0apEqnb3abtXzj5ZJhlMnveR2k7JpMhjO3kl1eYK5hJWAgosE1PNvVY5punmuPXjayMOrM0/PiikMMLVqO0/cMVP8P4JHg/fGaF/lRCzghitSZeT4R6hm2SMZrR0PJuyGiEYrEZTnCZuEvOTqbA9rtE8o2fy3u8b/lFifeQ4Ts3eScartqBIE7ecdsMTt6h2GGLwP67GhPzuLDw4YYNc11d021tiMViRazd890wM3BBgG1IbCvYd7CjY4djW6ZaKmpf6VP618ZeXG08vyrmHIw1pguh8ZdjMq4WlD6CJdhe/XKmrW18x47XO3cOm0xwccJ/k3HSLmqn/xrDqS0qj2C7k7GdTSPDQtv/myZt/39MtJ0r2C4ctTMydz7AnU+8nVHdzk3bPZe28wy2i47a+Ubavc3Z5YPsamHrixd7OtTL371H3pWD3dWil9GYu982UFW1zP09OFwojblLJ5ZRbshdIquMb/RN9QS4fysfcJevb6oXrTICQ+6umft+X+yeqoXctZC7ZyF3NTJ3ebC7t+C7+4+2Vz7UrtF2r9H2Qy5oOwrcGWm7iOr274Q0SuVD27+gxtttvVKd1e2oTOanD4l4u00jY38xhamDuYXFiuyPRBDkdW1tTvG9kLhLyyNRmczCtTbg/lHQLzA+XbV/cciR4Oizm8ufds91w76DwoB63vx0s2XeMmAwwLKjkhOsb6eNBZM5+wcfMHbspASuhd65Uc+bTKyTIfPubJvhH3iH6jtu97zDVoCNBTv7WlzcRHX1y7KyN7W1sx0d5llz5atK07AJLg6wVdHXo0shsP1jh2OtiHVLxTND6kBYwuW1cRdhhMVf1qf2ZxSMWq1IS/uUuXMGfsLd7OyR+Hh3KQEgAACAAElEQVT4ybA1T5NRO5ZqP4QxHbx4WYPttD8dYNPIfE3WyDBJ23Ha/rmUtP0PTMMT4M4n3s4gk6E1ShWRtnsabOeP2iWLtPPn7CKH2cWF7IrC655jdNGHkvm7WgLvyou6q0DprjF3tTN3NYtl3sM7xfgsc/eHkLtaNO5fS9M39Vt3Qu4KBe6iW2W82DpVvWKZw77TPVULuUsXclcmc/cr7C4dghfnUYmE2kUJtrtH25kr379puw24u6Lt4qrbnYA7H9r+Dae6nTdtZ4y3ozIZkrqdkMnYuqQetAN37NUTphFmGxY07lrc7sY3CILErxtZFXNume4kbm//bM1BTCmz/9NV++H9gPBjofGX4Mummptjh2Oh3uJH4qdbWyeqq6FUYSVhQWCycRDsFGmnteuki02c7sQ4774I4vk1C3yncE/GwLuH2J1orwo7APYQ7NoBg+FeTs5YWdlsZ+d8T48Vsebez425GgNXG7hWRPZHwiRb5i2F2x/HpF/VJfdFJPXqU/phwuua3po7Zzq75xCr9e66dUNG42XMhk+g9mOEAZ892O5SI+MJbRcr284TtXNgd0bgTnRM5RNv55DJeELbiT+2+I5WdXyC7ZKjdgVzdlHC7FJDdl+j6t5g8eog74rH7r6sl9GYu2fMXaIGqr4qcyeH3N+zt2bXmLvHIXfFWGW8rnGXFbh/owF3ea0yoofcVd49VQu5qyLk7vvMXUlRd17YXRry7v3RKxJqFy/Yrm7afsZPabu4MhnyXQIjbccPhE5nQnu8nZm2O2fbbbT9gDNtx+LtsByw7gkjCQiCVO0aj0zpWxl9NlB3MiD8+JLQo3jH1M/WoE1Tl4QdXWE4bUgdaG6beltXt/X5VgT7X1Pr5J3MTCgEWB+ctuMUmI7av2MSiNMhO8ffC39FMmizAlAyA+XA7q4kM3s5JTOUtDvumYGt2RcZeSMp6UlREWK1dsx2wEi9lWocMhqvGhOvJ5pnzBtLH8VlX4vJuBqbfS13832cs892dsIcDkZH46idUOEfI6nwbcF2kqWHL21nzLbbTTJ/4WeS+ZxG2/+TB23nCLb/gd/gC9zZfTLUeLtLdTv5Hos/bXcj2O7SIeMZaucVaVcaZ1cMZPdrsC49gpeNvGvYXRTmvs8vmfsPymDu38vP3NUoc/dMLOMA7v7D3L0Wcv9vD5i7WqwyHMD9Kw24y6dxV0TrVK17qhZylyXkrhaxjFqYu9zYvdfHObt7qF0GjYxG28Wi7Z40SpVJJkNXtzPRdseB0DneDoc0Cm3Hve0obd/nMMmgL6n4Kyb2sggTCxMOCwRFknUna7KxsaxmLCzh8sqoM8sjTwXqTi6NOL4k7Nji0KMwAsKPLdefCk+8sq7obm3DawRBahveZG+60zrd+nDDBig0WDSYeJy2w2wRAhkbamfi7MyQXcj90leUDpYkGErB7oySGU+j7osW4VF31O1Owu6XMOx+LS7u0caN062tVsS6+enmtNtp6bfTd77eWbjtcWr+rcyNow0t7+Z7eiZqam6np6OoPSwMb4sK28gWbA8IOIohLQG0nd0kw+FtF6tLKk/a/geBQyhwdxlvt926savbqbQdKzPuAuOm7YKD7fxQO5eo3d1Iu/uc3euQXU7C7odsXTL+rtzAu4hud/+MusuidPcL5u6jYpm/KkYs8579fCEedpetgaoWcveWVcYVcHenb6q8wF1k5i4/cPfPkPt+tXZPZQbuR7WQOxNw92mxjB8ydx8n773KRe2CaftF36ftNuCuSNouWCbzvQcyGQpqpx8I6fH2b38D5yUbbf/J3iV1v71LKrxK4q+D2Osd/voF8w8rAssK1ZV1J2uqpSVj42ho/KXg6LMrDKdR7K4/tUx3AkZg5En4MDK5r6t7rmmqqfhpMYIgY+Xl893dz0tKLmMyGZy2E8F2cqrdgdppeXbynRJr+Ihy1KWdc6nYnTuA7B5zJ3LudOZu76fqiLoHB8Pmgy3er9ePxMc/yMtDrFYrYt30ZFP1RHVJ5fMtFc/aO2YmqqtHMzOHjEa4FMH+RoPtK1fCT2Cm7UwmGbq3ndIllfFXHQ7aTsTb7UXHRdvJ8XZBJhnPaDt/4M4Rb/8v7ni7G7RdiLTdRbCdh0PGc9TuRc7uuTFGIsiu4XWl8XeFBt59BrtrzF165r5HCHPXZO7KEcu8RzpiKJG5+2TIXYbWqV4D7n+RBLh71DdVIcB9j9KBu0JC7jKJZRTWPVULufuPWEZO5q5W7K58+C46ZxfokJFII+NXtN0G3PnT9sMi0fa9btF2mkzGFm93QyZDybaTDoROPhm8Vyohk/nunwjaDo8cnhQ8X5gNIslOeblBXzvgBeJMEBQDlGvu/dye+Z6k3Ouh8ZdXGc+tjDobFHUGH8HRZ9fGXTRmDBVue/yuvj5jNKPkWcnL7duHjEaodCgWWDoybUdD1uRsNVOknYOzM0N2tsGE3VnZKE/mTnfL4GclO6/EjzCHaEp3NOceGEhn7sMm0620tMebNs20tze8a2hum3pdW/sgL+9GUtLVmBgbbV+9msi2w0Idx00yzt52cpfUvQRtl1Ldzt0oFb8z+3cycOek7Ww8/ff2IQi4uxNv51S3f0GWybhF25k1Mq6C7aKg9n0uUbtnnP2gWJzdq5BdpXj9qPChdviuRPKuHMOMtzqpasxdrJC7apm7D4tl3nM+ZWjM3WPmLl3IXQqrjECNu+h9U512gJ8BdyVaZaQIuWtiGTGYOytwd8ncFR9yV2b3VEFiGSUyd/Gi7qJjd8HkvVcFhN0jzi4palcjbT/tU7TdtbrdlUyGb69UgTIZJ9r+Z+Z4OyNthycIzx0mCjfGwCJCPRDVBTVD1AZ8Hj4T2R+Z9yDPPGuOXzcSnnhlbezF1abzq43n15guhMVfjk4f3Fj6CEGQna93znV2llQ+n25rG4yKgtqBhcW97XiLVJS2kx0yjA4TIXn2L1x3jaVhd3bmzpVzZ/K5C+2hyhByDw3ti4wcMhpvpqQ8zM9/vXNnq3m6Z77nZVnZvZyc6wkJMI1wdbmIxdsdwB2PtzM1SsXLlhJv/8njeLs4MhnhtP33TMM94O4y3k6WyfwPo0zGLdouNNguCWr3MNIudZjde5BdgYT9qPKGL8N3VWF3FUTdPWDuezXmLi9z97rMXV1imfeY+sX4KHOXQCwjZ8jdfauMcjTubvdNVThw9xWrjKQhd7WLZVTdPVULubsRcvdI5u6rzF1U7O4OeZeNvwt5PB5NghDULr5GRqPtItJ2IY1SXarbPe2Vykcm82d24E7IZL75Na5uh4eB0va9H8HThAmBOYR1gVI0DZmSbiTtfrMbQZCS5yXtM+0bHm5Iv51uHDJG9kfC7ojsi4y5GpP/IB++IH7diD6lPyKpFwa8E7/uWuG2x/D57vluvD/qg/Xrb6enw7aAZYeFghWA2d2HS9vtGhncIcOM2l22ruKm7XYqynAQFsLcyXlkrpC7cOAOxQ4zA5vmPNZAFSbqakzM7bS0sYoKixXZWvW8um6i9EVp5atKxGp9XFh4PTFxwGCw2duDg2FvnWJPuLMBdzafDB97O1e83V2ZDHGXyWGScRD2v/s722Bn7k43wc63sC7i7S57pTI1ShWXtjME213p2gX0RPUk0q4Mzi4uZFcCYT/qK0Np8F068q5W7K4uvYzG3MWQuauJuatKLEMD7uJG3eVh7r4UcnfbKqMwjbsG3JUA3NUbctfEMmKG3E8oKeR+Rm0hd19h7krG7h7Bd09wvGf/kKdPWWzULnKL1Itr2faFf9J2G3An0/aDPGi75+p2MXqlCqXtKHAnq9v3vA8PD822H/gUpgVmGJbSOGREEGSysbFlqqVw2+PW9un2zpn65nfmztnO7jn4T6UvStNupcWPxCdeTyx4VFDX/DY572Zs9nBc9rWMgts761/PmM3NU82NLZPjO3Y8Liwcjo2FkoS6gGWENYHJdrRIxWg7JdjOE7WzaWQoqJ12Lv5HNubu5JbhF3LnBdwJjbtdKYMzQdThvmQJOd5+Huub2q/XX09MfF5SglgsDS3vsjfdzSy8U1P/etPjTRmjGXkP8jrnOhGr9f769bicx8bcnTumUpUynMCdrV0ql0+GmGqx4+2uaTuB2smDH3Dn45PhjrezqdtdlhAv2s472O4Gamezx8jM2VUG2TWwrnwKLwN5VyB21/QyGnPXGqgqQCzDBNw15q7YkLsqNO5S9E3VgLuHwF2ikLsmllFP91Qt5O4F5n7JM+Z+SSTmLmrUXWrsLjJ8F3uI8OyuSI/aJdPIoLT9PC/aTkftvkrbxWmUSpfJCOmVKlq8/UtHvB1+FCGTgYcEjxaeHUwLTDKseNRglHnGXFz2tGrX+Fx391RLC4zb6enoSEt7kJf3qrISQZDGycYd4zvW31+/+enmHbvHc4rvbdj6sKt77m1dXWfX7Mtt20YzM4dNJtgWUFxQArCkeLAdZtehkSGk7fZgOyVGzbNpFWvCneN0zMncXYTcaVYZNqXMXjtwdzjcnePtBG2HfQMTBZeQa7Gxz7dunTGbOzpnC0ofJeSMxGYNJ62/0dg6ufHRxviR+Njh2OSbyVXjVbAwb3btupOZOWAwwL4/R2buTCF3m8MdY+4Ohztnwp0C3Pn7ZNyPt3PTdkbUzgO4c/tkuOPt3Op2nrTdpbTd7WA7X9QuMNIuB2eXHbLLT9jFZNZLlnh/KJ+/qx+7qzHqrjF3jbn7nszdM+Aurl5GUcydj1hG6pD7f7sZcpfEKqOSvqnuA/dv1QbcvW6VkTLkrollVNo91cOQuyjMnU/I3btiGdmYu9ej7hK53RUI38V8LsJRu6TBdp+n7bbLJhm1e4u2MzZKdUsmI0m8/c//yNgrlSyTgacD8wCTDDWWcjNlw8MNCIKg9Lxn7lVlZb9eDwWFl8klTHUyEBU1Eh9/Jyvr5fbt8z091RPVO+tfd3TNznZ0PCkqup2WNmwy9UVGXsL04rD+sLywaGiwfeHCA860Hb/9IzQyFKRL5em/4mo2RMbuLoE7I3PnyUy5E+6O9DHdJ+NM2/FsO26Sgb0F+3vIaHyQlzfd2trYOmm1Iil5N6PSBiNT+gypqKIHPlP4uNB41aiHJenXG4eMeQ/yWqZa5jrRtPv1xERYGti1+O82HMwdwzoHaSF3G1wQEbi755Nhj7cLo+0ugTtvn4zrXqkc6nZRaDtHsJ1yqHcXtYvJ2aUJs8saY1cIW1cCT/cei1cTeVcadvewmaralO4ac1cZc/d1sQwncBcx6q5gmbvvhNxlscpI2DdVDODOP+TuBeCuEquMckLumlhGgFjGY+AeeCpQxSF3KcUyvsPc1Yzd5aHwUj1geVC77NJ2d2j7Gb+j7U7x9p8FyGSkiLcz0na6vZ3cKxUeGDxyeLIwb1AhbdNtb2pr3zU0dPfMvd6581ZaGlQTrBi6RCtWoP08V62COoISHoyKup6QcHfduhelpdOtrTPt7S+2bUObeSYmDkZHkyUn8L2oRmbJksP8aLsDoDMmQ1wdUenM/c88mPuXQrApAdwpDne6T8Z2OGKk7QEBUNR4sB2mdMBguJOVNdfVhVgs7R0zRWVPjBlXIxJ7Q+Mvw4hI6o3NGrZakeKnxVEDUXABge0Pl4jIvsjkm8nNU82bnmyaam6GhRsyGuHaADOPTrszc2cOuRNWGf7AnbRAFODu0ieD34T9OxNw5463u6btduYuyCfjkUzGPdouSCMjxCEjA2qXOswuX4zdi3hd7VRdLgqvdvKuEOwuR9RdY+7KYO6azN1bIXdXwF1dzF1RYhkFtE5VhcZdBOD+jQbcVRJy18Qyau6eqoSQuyrEMn7I3OXxzKhvuMXZeaJ28YPt0rRI5UPb6RcT36TtLOp2VpmMEuLtP/wWHio8KZgKmHbjkLG7Z26qpWVX45vGycbXO3dCneIeGJQOL1sGrwBQHVBKUP5DRuNoZuab2tr2jpmqXeM7xnf0zPc837r1ZkrKYFQUlDCUz2ks247H22E1Dtq97XBgIUwyjLSdGbXTGpw6mw6dsTt5YrjPyIKAu/3UyeaTIcAo2d5Ooe2oRiYgAA22Y/PZq9PdycpCrFYYRWVPEAQNtuuS+0LiLq4xXVhtPL8m9kJYwuXYrOHm9qntL7fr+/Ww3/E/SYG3cK2AhSt6UmSeNT/dvPnNrl33168fMBhgW8PPh1WDtbO5ZZyZOz3kjt+6E7fiDE1TGRPupI6pjMAdv21i88nwibf/3mPgTvHJCI23S0fb6RoZPsF2btTOKGp3m7Pzl8YoGrJ7hbD7G1uXDMHLRt69jN29LnZXkV5GY+6KZO7f+iVz5wHcRdTL+JhYRrqQu9qtMhpwlw24qzPkrkrmrpLuqdzA3QVzV2DIXVFiGUUyd0Vhd428E5zdI9Quf7BdrhapPk/bUeC+1011O/9eqQzA/WsHcOeyt/OJt39Njbej9vYji2C9Ch4VvKmtzdw4qk/pRxBkvqcHVh5PpsN0wjrA5R/qBYp0yGh8tHFjj2V+W/XL3OJ726tfbn2+FdebvNm1i3Cb4D5xlPkS8XZal1QKbf+SlJtmPq6ST6Ms90h05u4SuPOBp1w+GWd7Oxtth2KEqcCD7bCT4KpwOz398caNiNX6Yts2mPPCbY9NmUOh8ZdWG88HR59dGX0W3q4ynofPxGVf6+iaLX1RGtkXCTsXdiK+9WBvwgbX9+uLnxZ3z3VbEMtkUxP8wGtxcfDz0ag7ppc5ys7cWUPuQoA7Y8dU/j4ZseLtvxfik3FDJsOqbhfYaNeFRsYT1M470u5Fzi4KZJc6xq6xdQXyd0UH3iXG7t6KuvsSc/9FncxdKrGMzMzdbeBuP4HILZbh3T2VN3D3deauppC7rwJ3efum8gfuvJi7uMBddSF3KcQy++QVy6iCuWshd7FD7ipj7uJG3eXB7lc0zu5t1O6JtF1U2k69INBp+yk/oO081O2MMhnueLuTT+Yvwn0y+NHuL0z29r0fw3OH2YN1zH+Qb+6cjU4fDE+80tg6+biwEJYaZhRmBQXuy5bBh1CnI/Hx062t5llzfsmDxNzryXk3K2tfFT8tTr6ZnH47vXmqeb6n51pcHJTkGSJhvWgRGm8nZDIY1WWg7RT9OtOJlUGzjlFO4s7qK1pS3oXJnQdwp/hkmOPtdHW7nbZDraHBdkwjA2UOOwZ27WBU1POtW+ctlo7O2baOma7uuU3bH+uS+9aYLqyMPhtkOL0CG0FRZ4JjzoXEXYpfN9LeMbP95XZdnw72Kew4x0vzmSDYpHABSbyeaEWsW55teVVZOV5VNdXSMmwywV6Hr7JZfTiZO9nkzmiV+Zr2hwjcShm3gbvb8XZu4O6472SLt9tv71zKZOjVyCUgYqTtzhoZxmC7J6hdBM6uOsguG2HXKLlvwHcNu6tdL6Mw5v6jEOauydx9JuQuBLh7Vy/jFeau/pC7hBp3V8Bd5JC7BtzlBe4Shty9InM/KEzm7nWxjK92T3UJ3GXtniqxzF1m5q5A7O4X5N0zzs4ftUsUbPe8Rap0tD3wFPXqRLma+QhtZ5fJuBFv98QnQ4+3wwOG5wgTAvMJy5p8IxlBkOS8m4m51zu6Zm+lpkIF4UIYWB9Y/16d7n5urmXe0maezigYjU4fNKQNxGVfa2yd3PRkU+xwbMzVmOSbyYjVOtnYOBgVBd+Cc168V+peIt5ul8lQaDujAeYLFn0HPiXM91pMUPgLgUoZ8s8nfDJUe7uzTIaebYfKcgTbly2DfQD7bMhonKiuflFaOmM2J62/8a6hoaTyuSlzODT+UnD02RWG08sjTwVGnsTHCv3pldFnQ+Iuwrp0ds22Trfq+nSwK2GLkX9fBVsMNiNcCuKuxVW+qmyeap7FOqkSUXdYC9wOdARrXXuQkbnbxTJsIXcRgfu/MQF3j+LtAn0ynstkqLSdUi08aDtVI8MWbBcXtYvI2aWH7NIRdhXh9WOyD3XBd6nJu4qxu38w970ac5eFuWsyd5GAu3ej7vyZu0+H3L1ulfFO31Sxgbt3rDI/eNsqo6SQu9rFMszMXf3dU7mBO1+xzBmVdE/VmLss2N0HbTOeQXY5ULvY0nYXLVJFp+0nhdP2Y16l7aS7QKfbu5+FyWT4x9sFtUvl65PBDH5O8fYDC2CuYMJhZQ0Dhvp39SWVz/NKHiBW62hGxrDJNBAV1a/XDxgMd9etG6+qqhqv2tX4JiFnBO/nGZ54xZgx1NE1u+nxpqjBKNg7+n591p0si2X+6ebNULywtihwx+zt9Hg7HAwptN1FX1MyDbcdHn/N+KfHjI4al01TGQPL3zj7ZBwyGfzc50zboTSgUqB2cI0MbuOB4kUdMqtWwcXgWlwcgv2vq3sO3po7ZyprX0WlDa42XQgynAmMPLlMd2JpBIzj8BbeXx55amXUmZC4iyn5NxtbJ8vGynS9OtiPsKfwXUPo5nDsDhs5sj+y8HFh2cuylJspL8vKXm7fDuNWaiq8uMHLu00vw8HcSSH370khd3rfVGJuBQF3dwTuHgJ33vF2jl6pjOp2N2i7a40Mu0OGF2oXm7P7DGRXIF4/ptrhm/Bd9MC7KNhdgqi7cvUyGnP3P5m7D4hl3ALuimHuihDLeBJy16wyGnAXDtxlDblrzF0Ty0gaclehWEYe5u7D2F2tsfcrIoTZpUDt4gfbxWqRqtF2QbSdI97+PWe8nR9wF+yT+eG3aLx93ycwDzCHsChQALo+XcZohsWKVNa+el1T87KszGKZRxCktuHNm927S1+UznZ0bK16HpU2uDb2ItrM03QB3oEP4WuKnxZH9kfiFWsYMOwY32FFrMOxsfBaAasE8w0T6RRvt8tk6L03OULo5Pg51atun0KH/4RuquFB88k+Gbq9nVHd7qDtzhoZItgO2wIuDHfXrXu4YQPM6rMtW+Kyr002NlbtGo9bdy0s4XJw9Nnl+lMYaj8eEH7MPlDmHhh5MggD7vklD6xYZB0F7meDYclw2k7sC3gfPgOfhz0LS1n0pAj/+p75HliOeYvldno6XDxg1xJ6GViXA2zMnUfInQrc//EfuYG7GwJ3t30yHsbbGWUyDnU7e6kIou3cwXbn0/dHHKidMdLOoY4RnbOrmLBrVF11FN7b5F2V2N3bUXd/Z+5aA1WfDrm7C9zFwu6qYO7eCrnLaZXRgLt6+qa6B9xlE8uoXuZ+SFbmrsyQuxK7p55TmFjGQ+au5Ki7XNhd6fxdVMIulLMzoHbpg+2S0/bTiqTtZNQuLm132Sj1R160nVe8XQyfDPwQh0/mB5JP5ngALB9UjmHAkH47fevzrW0zbeZZc9lYWc69HOOQET6DZ7E3lj4KS7i8MvrsCv3pIAOqOlllPBeJdViteFUB2wp+CFQUVCl8Y/nOsQd5eVBNxzDgDvMHxxOneDt2GwOHTTIK/5O9/Sb5VEsG7vAtNtr+61/DbJGZpiORbUfDHGKZL3jG25lkMty0HQ+2Q1VC/cJrKcxAX2TkWHl5S/vUrsY3iNW6Y/d4JxZvT8y5vjb2AsxkoO4kitrDji0JO7okFBvwTtixpeHHl+lOBhnOhMRdWr/lfumOFy1TLbpeHWxA2Dg4bSefLnDsDv8JFhRWIXY4tvRF6du6OliOe7m58E/fSEoaMBhwUxDu1j/kzNxhjXCZO10sQ//rAba+qSIDd3Hj7WzAnd4r1aW6nSL6p/8GiIm2s2pkWBwy7qN2jgOywiG7Ogm7aOQ6IMD7QxUI3iewu8bcObC7xtxlY+6+L3P3JOTuirl7Bty9wtxFl7n7esjdU427QoD7X/0MuCvDKiNtyN0rMvcDYsjcvS6W0bqnKkEsoxDm7ivYnZm/y0bhr0hC2L2F2jlouyDU7om0nQ9tF9oilRdtP6o82u6sbueSyfCOtzMCd/Jh3zVw/8KFwB2eAjxxmCjUJ3MuOLIvMutOVut061RLy+udO2vqX+MYvfRFKa5AMaQOBMecC9SdDAhHU9hLI44HYiw4PPEK/gWw0aBUoAzgp8WPxM91dsInoZxh6Q5iAneYHpgGIt5OlskQuNZpOOfQbcCdHG/HmKYjOGy/b/zWZTtWUq9UZjs8qfslGes70XZ7W0uctuMaGbw/Kt4cFTYWXHuuGo0P8vNn2tvvZmePV1VNt7UVlz1Nyb8Zmdy3Kubccv0pHLUvDj26OPTIohB0LIYRemRJ2FGY52W6E0GG06Hxlwu3P55HEFQp06eD3Qd7B3YHugtIxQ/v4Ngd1hQ2IFwQUm+ldsx2VL6qzLmX866+/lVFhRWxvqmthQd2GtPL4Ep3eORszN3RPZUUcv+KKeQuFnCXzifjXrzdhbrduVSIm5LvKbSdt0aGzSHDgNql4OySQXbvEHYFsnUl8HTv4Xj1kXcNu3uol/FM6b5X+jaqqmPuKpK5q0Us423grnDm7sMhdyVo3DXg7iXgruiQuyaWUQVzPyktc5ck5C5p91QFM3cPo+4iYneZyTsXghdK5Dm/XbpH7jR7IqF22YLt0rZI9TnazrNRqlCZjIt2qfwF7l+48sngAvdvnQXuBxfATMJiwSYqHyuva3r7uLDwTlbWq8rK4vKn2Zvu5pc8LC57mpp/KzT+0vLIU0vCji4KObxw7SEYi0JQIhyoO7k29uK2HS/aZtqiBqKgEmDhoCTir8VX756wzFtgo8AywkzDtMGskOPtjLSdetR1DhdTgDuONWFeYY7JDT9dhNyZjsB8ZDKMtB2Vttv7oxLBdtgBsLmfl5TMWyxj5eUz7e0P8/MTcka6eubmursTc66HxF0KijqzTHciIBxF7Rhnh4m1DXh/EcbcA8JswD084UpX9xzMc+dsp65PBzMM+wU2BWwBvOzJJxYcu8NCwKaD7R93La5qvKpnvgdG11zXjvEd8A48Klgah14GY+77OZg7oethCbnTNe7ojQ63w11E4M5J27mBO59eqRSZDCNt/0YQbScd3iVC7dycnX+YXVGQXX7C7qdIXRYK7xX47n3sLplhRrnMXXa9jMbcVcDcfUgsIwZwFwW7+xBzlyfk7qZVRra+qV+xM3cNuKsOuP/8kcbc/VAs4zMhd2ll7sph7pJid2WQdxUNQZxdctQuukZGdtpOQe28aPsRZ9rOIW2Xkra7oW5niLez+WQ8AO6OeDtJ4O4E3Pd9DDMDUw31s+XZloaWd/dzc6/GxFyLi3tVUVG47bExcyg88coa04UVhtMB4ccWrj28YPWBT1ft/yR4P7yF9xeuPbQk7NjK6LNbKp493rgx934u1BsOeUuelyAI8rKsDLbIMTtwh1nB4+dEvJ0OaulHXTbgjgfPcZqJql1wRowDd3vI3ZbFtnPhL1kOv5TMMgdtx8k+RSMDRWQztmPBdtgocJF4vnUrYrXCzDS1TppnzB1ds9NtbW0dM+kFt9fGXlyBBduXhB1dbEPthxauOfQZNuAd7PcZh/GQ+7KIE0GGMxGJV7bteFG+c6x6ojqiNwIH7ni8Ha15os7t5xkUux9dDBsH9hpsZ/iW1FupVgSVuo9mZo5mZFgQy63U1N6ICLge4HoZVOmOtVF1MHfS7zAoYhmbyZ3JKuME3LGQu9eBO894O6VXKoNMhv3PIHDa/i2jSYZD2s4UbCc7ZLhRu6ecXRBk9wPCroF17yJ4FWB3TvIuN3YXO+ruY0p3YcBd4cxdk7krQSzD3j1VPOCudubu0yF339C4+ypwF0fjrjTmvldj7jyYu0+LZTwPuWvMXcPuPs/ZPUXtXg22i9UiVShtt136+NF21y1SKbT9gPS0nbdMhi3eTgbuTgJ3/sDd2SeDntaYOqbCjMHqGIeMLe3TVivSFxkJFdev109UV28ufxqeeGVl9NlluhOLQ498tubgJ8H7Pgra++GKn2F8FPTLxyv3frpq/6KQw4GRJ2Myrra0TzW3TW1+ujlqICpjNANBkLqmtz3zPbBvYPVgjn/GBO7wpG0cnBxvJx1vyTYPp4gxC3BHE+52CP4jkXCnWGVsc/YrptMuq7qdStuxAx2Fttv6oy5cCIUJpQ27B/Y3TODttDRz5+zd7OzRzMzJpqb5np4NJQ/j141EJPWiWp7Ik1iw3YbaYW5hLFiNjs9WH8Q+PITl3FHgvjTiRFDUGX1Kf23Da8u8peJVBZ5wh50Ce8FB2+2/TCKON+i55cgi2DuwxWD/RvZFwqLAg0m/nR53Le7Zli0vtm27gz3Cgago2N+w+fA2qlTmTmmgSu9Jy88qIyFwZ6PtPIC7OzIZ7kapvGk7d7DdfdTubpjdPcguLmFXLl7X6Lm8/F29gXclGGYkj7przF0IcBfE3NUqc+cE7lIwd0WF3EUF7s7YXX7mLrnM3SshdyVYZXy0b6rSgbuSQu5KkbkLZ+6azJ1bLOMJcOfL3M/4slhGNOYubtRdauxOI+/+DN+FemPkQ+1qoO3utEg97kGLVBXRdg6fzDe/Zu6Yyg3cv6DRdnrH1G8dHVPhicMcwqLn3Mvp6p57unkzFBSsYa9ON9XSUlT2ZI3pwjLdycWhRxasPvjJyn0frvj5g8CffrfsB3QE/vjh8p8+Xrl3weoDAeHHwuIvIwhyKy3tTW3t5qebrYg1c+PoxtJHU83NUIywVjCvuMCd4pNxQrR2Svs5qWUlwT3hyVGbptqB+99IvSj3sHNhBuZOPs8Koe1EsP2g3dgOL5VweXhUUDC+Y8fDDRteVVY+KSoyZQ7HrxuZMZthcuAdNNhuOL004gRh5rFz9gPoWHXA9g7G3PGQOw7cV0adicm4apm3bH+5vWuuS9+vh70GmwX1yRxeZKPttCMQfBKPusPGQTX9Z4ONQ8aq8SrEaq14VVE2Vjbd2to511kxVgEPbzg2FmfuR9iZO353zdg9lW6V+dwecqcD9/8ggPs//AMv4M7N3LEvcD/ebr+BI+LtbDIZUWg7h0bG6cjMjdr5Rdq9ANkVTNg1tq5S/i4PeVc3dvck6u5VpbvG3NXO3L0pc1eSWEYC4O5h1F0i5i6PWMazkLsqrTIacBcK3KWzysjA3H9RD3P3RgNVTSzjC2IZuZi716Pu4mB3PybvbnN2EVG7e8F2lLbzRu0itkhVC22n3B1KRdtdyWT4xNv5A3cHc//COd5OCNzJHVN/sHVMhVmFOkSs1ua2KQRBBgwGKLrRzMz6d/XrtzxYGX12SdgxW7Z9xS8fBP7426V73g/42z8v+R7e/m7ZDx+u+Bn+06KQw0FRZ3KK76EOmW3b8Gz79uqX5hnz9aQkqAtYFphLOMLABNB9Mn9yzraTBz1o/KUdepLbmRJ8k7hRpJpP7MD9L79iMCay0naiSyohbSf1R7UZ25csgRKG3dAbEfFs82Z47oXbHre0T8OUbtvxoqTyeVvHTJt5emPpo7WxF5frTwWEH18cemTh2sMEav901X7nQTB33CqDAffos9Hpg909c/kP8ztmOyJ6I2C7wU6BXQA1T9B2yjEJPwKh2P3wQtg4uFsfrmyJ1xMLHhVUjVfNdnSgkhkEme/pgbf9er1N6Y63Uf30033OzJ1RLEM3uVOtMpx9UxmB+x/5A3cO2u5BvJ1NJkMvFQG0naaRcRls50btbnN2NyC7fIRdZryueCp9XKShwXcJybso2F0aw4zMehmNuQsA7iIxd03mrgSxjDTAXb3M3XdD7qJbZTTgzgbcvaZxV2DIXSLmvl885q6JZVwy91P+J5bxJeYuG3ZnIu++B9+pT9Bzzn6ZdeHcR+0KDLZL1CLVq7T9I+cbNQ7azqFudyPezgu4/+VXjgMbjbk7xdvJHVMJ4P4jCtxhNmCGUeCOIOkFt7dWPX+0ceOToiL4cLqtLSFnZLn+1KKQw5+u2v9R0N4PlqPZdoy2f/ebRd/+0+Lv3l+654NANOT+2ZpDy3QnQuMvZ2wcLd85Zu6ceVtf/2zLluuJiVCSsLawCETHVAK4U3wyhIGEcjS2HXjZ+6Z+69yj8jtKvN0O3L9iO8kSh1YSbf+ORtsJjQzeHxU1tmPNUaHSYffAxeNxYeHO+tfz3d2dXbP17+oRq7W8Zqy47GlW4R1D6sBq4/nAyJNLwo6hwfY1h1DUvgpD7cH7PwneRxoO5o6F3FHgviziRHDMOVPWcNWu8bbptsLHhTbgfiwAtgBa7Rhwt9UzqZgJ7I5H3WHXwC6Db4QLiHHIuGNix1h5+cvt24dMppvJyXOdnfdzc+EyBtcA2K/H7G1U4SehzJ2k62EVy9BD7kwadwpwp1hl/ig05O78lW7E29l6pbLJZCjqdqG0nSPYzobaD7ChdraTLB/ILhdhlyfArha8flwlQ/nw3d+wu6Kj7h4z9/1qZu5aA1XvMneFhNwlA+4e6mXUy9zdDrm71zpVAquMaBp3fwPusvdNddsqozF3LzJ3b4ll/Drkfs4d4O5N5q5q7O5z8N1DyC4aavfYIcMWbPdH2s7RIpWDtu+VlrYzx9vdBe6MIXf6uQ7/YlbgfnQJVELBo4I28/TWqudv6+qap5rzHuTNdnZGJvctjTj+2ZpDjni7Hbj/02IcuP8NPvlR0N4Fqw8GhB9bFXPOlDlUVjNW8QpVlNxdt64vMhLqBRYQptzRMZUscGfqscnI3AmrDDnkTgmkk+/cyM4TNuD+FZMehByZp7RItWlksGA71CaUOey53oiIAYPhRlLSvMVyJysLrihx2dfg6U9UV+dteWBIG1gTewHTyBxfHHrUHmy3NZ5FCfvKfR+jYy+8hfcJ5u4E3HUnVhnPbyh5WPumtscyD//HlTIocMd8MjhtJ4qZ2jUHO0Sh2P3QZ7Br4Lvge+HqVD1R/WTTJnioEb3oU3i4YcNkU9NIfDy8j2J3u9Kdm7kTIfevOEPuNqsM0TdVFOBOy7bTaTszcOfdK9WlTEZM2s4DtTNG2jk4uyDILhNhlw2vazzdN0C8V8m7L2F3JSrdNeau7AaqmliGf8j9PacDiMbcacxd5JC72K1T5bPKiKtx14C7t0PuymXuvtpA1Y/FMuoNucvG3D2MugvA7vKTdxb4rlj+zvxoL3uVs4uC2t0LtgvSyEjTIpWZth8VQts5gu0HmaXtXqbtjPF2t4H7l66Au71jKgW4w4TAxMKa6vv1Gx5uaJpswgUj5s6Z1PxbwTHnloQdXbD64Mc2ezsG3ElKGfjwg+U/fYwC9wPwlcHRZ5PX34CfkDGaUfy0+FVlJWw4KAdYJZhpSsfUvzgD98+d09D/xejUpoTcMZM72exBDz054u2UeyTyWdV2/HQKy5M1MrZgO9YfFTe2Q83CFhk2md7s3j3f0/N406anmzdP1NTcSEoypA5kFt6ZMZvnESQx9/pq0/nlkacCwo8tCjnyGRpsd6B2DLJjIwgbtg9R5v4pytwPfLYa1bjjwH216cLmimdt5un199dbEGfgbo+3021IxKELT7vjUXf4FvhG2MvRg9Fdc11Tzc1FT4pSb6U+yMtDrNanxcVvd++eaWsbzcyE6wfK3Nlz7k5tablD7rz7pjICdwdzpw23ZTI84+10mYyTut1+wyGAtnMH27lRuxucXShh1/C6DFR96VJlDVVQeKnJuyzYXQXM3W29jJxtVDXm7pPMXUliGaEh9/cYTiLK0ctoIXeJrDJe17hrwF3NwN09mbvqmbvCZe4ed0/lZu6q6J7qg8zde9hdEvLOyd+9QuFZH4lnz5F1ViVC7d4ItntF2s5M248403b+Ghl+tJ0qbXeXtnM0SmWl7Uzxdg7gjjJ3nsD9SyefjA24f/sb+KedgPuRxbBqUNLJN5NrX9dOVFfX1E2kF9wOT7yyXH8Ka5d64OOVe1Hgvvyn32HM/bdL96AD75u64mesb+rBJWFHVxnP79g9Dj9E16fLHM1ErFbYgrDmsDiOjqkugTv91Mwdcif5PRhuq9hvnL5miSrTNTJEsB2eCBQjPCPYMUMm02Rj4+6mt/klD+HtZFNT+Vj5pu1PqnaNT7W0NLS8K9z2eG3sRUwjc3QRFmz/dNUBB2oP2vtR0C+UgWN3POeOhdwJ4H5yjelC9qa7O+tfb3i4oXmqOeJKBKwa7BQcuMM64vVM7zoAA/+kLep+4FMyc4/ojYAfiMD/rNa2mbY283TLdMvmp5vX3VsHlXAjKQmeKWxKNub+HYW5U0LuzqYgRqsMHbgzatwZmfsf+Mlk/hWj7Xzi7dReqewyGYq6nT9tFxBsd4naxYLsGl4XF6wrDaZ7A8d7F74ryDPjQ1F3xSnd/Ya5i9lAVRPLSCaWeY/rSKKEqLvKmbuXQ+7q0bjzAu5/9R5w/16hwF1dIXeNuXtT5q51T1UDc1cgdpeQvPND8G5DeQE/U6QnIpSz80TtsgXbZdbIeLlFqnu0/RdxaLugeLsw4M4Wcv+S4ThH+GSYgfv+T2FKYZmgtvMe5E01N9/LzZ3t6MjedDck7lJg5MlFIYcXrEKB+0crfvlw+U8fwAj88XeBP8JbeP/DFT9/FPTLJ8H7PluDKmVC4i52z3UjCBJ3La5psmm6pQU2DSwvLAhMLQW4f0Uis3T3yH+RTtNsIfcvaQb2ryk3VEw3To5POmu4GTUyeLD9AGFsDwiAooYdM2AwdM11dXXPzXZ2zlss8GRnzebquont1S9LKp9lFd7Rp/Svijm3THcC08gQwXZn1L7i5w/tA6bXibmTgPuS0KOwELAc6QW3u3vmrIg1934uXNNQ4H50CWwBqHNbvN25gCnhCQK7wxcTzB1+CFxDDAOGtFtpJc9Lptvadje9RazW7vnuHss83kQX9jqduf+AMXeyzJ3onvol0QvXOeROtsoI7ZvKZ3gSb+cjk2FTt7um7SwaGSLYzhO1u8fZPSHsfoLXNaQuNYX3MfKuEMOMWvQyGnOXk7krSOauFrGMGN1TWYC7dNhdtcxdySF3Kawyiu2b6i3gLrRvqvqAu1Jl7lIwd66DgIzM3R2ZuyaWES/kLjVzt2F3LzF3YdhdOeTdYxYvA1UXwNkVidrl0Miop0UqhbZT7udEpu2exNvJPplvfs0A3BmtMnTmTjnCuQTuh1HgHtEbgSDI/fXrr8bEPMzPb26bCk+4EqjDgPvqA5+s3PdR0C8fkgAxjto/QukwioYXrj20NOJ4SNylNvP0RE1Nw7uGDVsfdvXMQZ2iAvcFC9COqR98sAfLRBNw1kFmae6R/yKdpllN7jSzNq9BOoRyB9vx/qhQSrhDBl79YN/ApuzT6R5t3AjTlXQjCeYtfiS+/l39WHl55a5XCTkjEUm9q43nl+tPBYQfxzQyeLCdhNpXkGZyOTacsTsJuB9AgXvYUfhpuuS+9o6Z5qnmVvP0ztc7dX06G3A/tNDhk7EXMMefLRLMHfYI7CDYcfBz4IoRPRgNP/b51q3wvG4kJV2Njr6bnT3f0/MgPx+eMuxvlLkvWnSQwtwpMneaWEZcqwwf2u55vJ2PTIaibudP2/cStJ0WbBeE2oVBds/xuh+ydQ2pS4bg1UTelYPdPYm6e1svozF3ZTJ3vxXLSBFyf0/AIcWLehmvMHfvhdyla50qt8ZdA+6e901VashdY+5KlLl7LJZRX8hdBrHMeTeBu9ej7oKxu5LJu/KG+JxdCGr3SrDdPY2MYmm7ixapyqDtLoG7i5A7O3Mnzmlox1Ts6EUG7vC8YBJgJmG9DAOGuua399atgyK6k5nZM98TlTZoS7ivtvFih/lkpS2FTQSx4cuW6U6ExF9aV3S3sWVytqNjuq1tJCEBigXWbT/WMfVHjM9+hzVN/as9Dc2AZUkhd64Asv1Z0tufcqD2v5JQO9XY7hxs32s3tkMZQkXDxr0WF3cjKWkkPv5mSsqs2Zx7LzeyPxL2mnHICM/3wfr1DS3vdMl9K6PPwlQsCUP7o8LMEMF2x28slqNyHsr4EPtzAfzXGB/jv8YIdgD3FfrTxowhBEGa2qbgLbo6g1Fk4A6FTaiQGCoWPwcS2B0Oafs+pjD38CvhTZNNd9etg58PPxy2fp9O97ykZLKxcSAqCi458BnYx7AdYU7IzJ1ooEoRyzCa3D23yvCk7dzx9v/0IN7upG4nNUrdg/+2hpu2O2tkGIPt3Kidg7MLJeyS4nU1sXUNlHuVv2vYXY1Rd9Uz948+EszcheATTebuR2IZvsBdYuzuTebuuVhGFSF3Ea0yGnCXErh7K+SuMXdfa6CqZrGME3BXlFhGUcxdMdjdD+G7i9m4JEKk3VNdu+jBdnk1MiK0SKXQdg6NjHu0/Wcn2k65PaLf/Qig7Tzi7VTgzhRyZ2TuZOxOPrnhX08F7j/YgDtMIKxR1GDUbGdn91z3nawsBEG65rqS1t9AHe4hRxasPvhJ8P6PV9qafH6y0tbSc8FqfBxcuAb1jKMp7KTe3Y1vysbK4CfcTk+HqicE7jCRP9oD0fCkcTLLHYX+L35I9EvyaZTx+Ol86iSOk+R4MquxfckSqPo+nW6uuxvmxIJZVp5t2WKeNWfdyYodjjUNmba92Dbf3d0z35O24bZdI2Prj+r4RQUG0214PRDV8jgNEnMnhdwJ4H5sheF0dPrg7je7E3JGMu9kwmPAE+6wTWD5UIG7Pd7OWLFOp0E7dkej7vs/gf2Cu2XgIpAxmlH5qhKeY+Zopq5XN2AwjGZkwL91MyVlMDoaJuECFnWHOXFi7rQGqjxD7lxWGVLI/Y+CaDuTTObf6DIZQfF2vKLInXVpMhn+tJ2ukWFE7ayRdnchu8bWNbaufP6udPKuEOzulai7nG1UNeYuA3NXhsxdFWIZniH399z8kzy/ZO4yhdzFbZ36J+EhdwX3TdWAO1/gLpdYRn3M/YAszF0BMnepxDKn1C+WURVzFxG7u0Pe/R6+u37Wlzzg7JeEcHZXqF1oc1T3g+1ekrbL0yKVsF0z0nbKyx83baff2Qil7TyBOy/mzjIInwzal94O3OFhw3kAnjtMHaxI+JVwxGIp3PYYQZD6d/WI1RqTcXWF/vTi0KOYFAWNaVOaecL4bA06FoUcDgg/tjLqTHrB7XkEiR+J75jtuJ6YiPbbtMNZG3C3W7/Jym/C901usInDWZyHMgJ3esj9L3TgzoLaqQ4ZLNhOOGQOYMF2qDioUJy2P9+6FZ5RVuGd3OJ7FTvH5rq6at/UVr6qbJpqmuvshLnaWvU8KffGauP5pREn7BoZLNgetBcXyHxA0t/TB4bdceZuD7k7gDs6t0FRZ/Sp/ebOmYLSR2Uvy7Y82wKXHdhrsEEYgDuebSfXKvkkaU+7U5g77E24jCTfSIYC6J7r3vRkU/rt9Nzi+/Dh402bnpWUTLe0TDY2DplMcG1AmTvmlkGX1c7c8b9d+AabcwdzZwm5u7TK/IvzDSXP21Zx4u2kXqkcMhmKul0YbSeOq+QzKfnsyRlp5wPZRWfrCullqoF1f4Dv8pB3b2J3aQwzbkfdNeYuOnP3yQaq3/Nm7n4olnlPWNOZP6iVuXtHLCNnyF11GncNuCvGKqMxd1+TuWtiGeUxd9Vjd4HkXdX8ndez85Czi47auR0y/ILtPPujqlIj416L1L38NDKi03ZBwJ0Scqcw969cnNAcAnfsHAX/NA7c4UnBDMB0weRDYSTfSK57W9c63dpqnt5Y+kif0h9kOI2pUbCen8EYc8ey7Z+tObgo5MiikMMYdj+8OPTI0ojjq03naxvevKuv3/x0sxWxDplMUCOwkminzY8/ppNZjpD750yHYsdpl5JwpwF3VoGMM2r/G8khgwfb9xOofckSqF+oetjoz7du3Vr1vPZNLYIgHbMdNRM1iNUKz7So7Mn6LQ/SC24bM4dC4i6tMJzGpO2YRgb9gwC7QwZD7Ta2vuwHfPwWG8SHvyPn3BmA+/Hg6LPR6VfhX2xum2qZakm7lQaXFxtwP/gZLnB3irfTlEfkc6YNuzMxdyiDqIGoDQ83NE81QyG0Tbc1tk7C8y0bK1t/f331RLUFsQxGR6Mru2gRrOxefGWxX6WgK0uWuTt3T+VunfpvrkLufxSJtjvF2+3VxRhv5yOTEUbbOYLtHKidN2cXBa8fUxdYVwNbP6Gw4afwXS7srkXdRdPLyMXcf/Fd5u5jYhmFd08VDtzFxe6SMncJZO5idk/1ulVGDI27zMAdTWBpwF2CkLuHYhmNuUvK3H1MLCMs5C6LzF0tzF1c7O4+eXcLvisWwQt4/JdE5uySonZlBdtP0lC7z7RIlZe2MwN39pw7V9qdOJvRgfue38KTIvdNhfpPu5WGIMiLbdvgbWzWcHD02YDwY4SL3D5Q4I6jdhiLQg4vCTsaGHkyNP5SfskDi2W+qXUSvh12HhTCYQzLwqzT22xy6EcI7P45nbYTVJRFKUOh7XTU7qI5akAAlDPsA9hGsN1HEhJa2qeKnhRF9kfC3jcNmypeVbzcvn2+pyd9w219Sv/a2ItBUWcwjQz2mwm8PyoebMdc7QRqxyH7b5fucYxlexzk3c7cScB934LVB2B6l0YcX2O6kF/y0DJvQYdlvvhpMVzWyMCdiLfj5UoUKvMpFD9SsjB3uAjARSzmakzGaMbW51sRq7W5baptpq3gUUHh48K2jhm8jSrsadiRsMnIzN3lynoScnd9r0nplepuvJ27V+p3zr+zsZ33ybQdKyqhtJ0DtbNxdrcJu3KouqrBuvg0fNkyd4Yv4XjVkXelYneNuWsNVFXE3L0olhEx5O4ucPcudleRWEb0kLt3rTJSatzlB+6CmLvCgbvnIXeNuftkA1VFi2XOqFMsgzF3b+llpMDuHpF3D+C7nCDe/cd2SSTO7hXU7kGw3VsaGRGl7XK3SJWItjPdRnDcHHDfBPzqK9qp7Gu7wN0O3OEhwWMm+qbClMICQfEkXk9EEORGcvLLsrLahjchcReX6XBHChZytwN3eP+zNQfhkwvXHoL/GhCOSsYNqQMdXbM7xneMVVQMx8ZClcFSw4rBguDAHceyFOX313QyS8Lu9HPun1ni7WTazge1/4jFkInmqFBTuK4d9vpgVNRgdPRAVNSQyfRsy5amyaaYqzGwGWEvRA1E4Xp6xGKJXzeyxnRhuf4UPP1FIYdxjQwRbHcIZJw5+/v2QcLuJOaOWWU+WuEE3GEJwhIud893lzwvKRsrq66bsCJWfb8eB+5Q/7aOqQRwx8sVr1KW0yl+5sTPhHCuozL300FwxYsfiW+Zanm5fXtT62Telgcllc/hubd3zDS8a7iZkgJXC9jEhyjMnWllBYTcKcCdFnJ3Sdtdx9tJtN0p3s7eK5VDJkNRt/Ol7XTUbqftzKidjbN7CNZl4enqBeuyQnOZhypAvKTkXWnYXUlRd425e4u5+57M3a+6p3oG3EXE7gpn7hJ1T1WsVUZEjbsG3L0I3FXC3AVgd39j7p6IZY5pYhmFMnfFYndPybt4/N2bQ8iTlYSzS4PaeQXbvaKRkU3aLkaLVKG0nX6bwpO2s8XbuYC78/0Br7uBr10Ad9wqA6sAKx4/Et/UOnk9MfFlGdr4NDp9cLn+FGaVQYEyxtwP2Nul4sAd98mcWGU8V1T2pHGyMftu9ptduy6HhZ0KDISFheVCgfsnn+y1h9wd+hFCLENj7gR2dxrk0ysbbScF27+l2T/2kMCoDbVjzVGhxKBCYWeMJCTgBnMrYn22Zcv93Fz4MPd+bszVmPAr4TBy7uV0ds1ONjXB5yOSelegk4P/BYC9PyrukCFQuwOy/+39ANqAT9qZuz3kjrZOJQF3VN2DA3dYl4raV/rU/rq3de0z7bpeHew+2CwocCcE7ljpUmi70500+ez6w2/JehmcucO2gp8JuxguJnHX4hCL5W52NjzZuOxra+MuhsZfTi+4PdfV9WzzZriGwQUAdjAsMc7c4VAJ02v7bQqnMogacie1TnWDubPRdl7xds5eqYJkMnxoO0ewnYzauTi7ULyuQKSuJLDuayRdRhzv2+TdZ7C7hFF3jbl7lblLIXPXxDLeBu5iYXf1MHfZuqd61yojM3B3MHf3gPs3CgLurpn7D4oPuWvMXQLmLn4DVU0so3bmLh1294y8iwPflY/ghT8dvhN40Z1IuyeonZdDxnsaGWVK2yktUrmk7a5apMpG21mtMvzhO+Xc9VcqcIdHDk8HniZhlYHV1Pfr39XXN7S8m2lvx60yK1GrzPFFIUfQFqmrD2Ko3ZZwx+Lth5eEHcN9MmU1Y4jFUt/87mlxMVQorD8s5kEMuOOrwcDcycpvEpwlsDtDUIQ4pdK87X+lsVGnVLtd146T0H0YaoeCgtKDhwqbZjg29nVtrWUeja7nFN+rrpuAD5smmzY83JAxmgGj9EXp6507W9qn8ZkJMpzBaPuhT1cd+GTlPiLY7ozaHXj9nwO+J4Yzdncwd8IqY3e4H1wcciRQh07vzvrXRWVPTMOmsrGytuk2uNrAdoNVg+JHBe57SfF2Mm1nP8pSo+4Yc4dKgM0FuxL2e9RgVP27+ltpad0988bMoRWG0yujzkQk9cLMwAz0R0bCBQY2/VFSzv0nQtNPF8sIDLnzZO502i403v4n4fF2NnU7K21n0shQHTIsqJ2Ds8sJ1o+7MVSXVfcfpC4BhVc3eVc8dteYu48wd00s47vdU8UD7qJgd1mYu5syd4m6p8oTcmcD7n+SSeMuDLh/7QfAXRUhdzmZ+y8+zdx9VObu9ZA7T7GMYpm7WFF3F9jdY/IuJnz3Foj37KEKmKuLbkbaXaJ2CR0yYgfbXWpkmGn7UV+WtotI2wUAd07+TjluOQF3e99UmAfUKnPwM1gjKLP8h/mWeYsVse5uepuSd3ON6UKg7uSSsKNoi9Q1hzCTzEG7T8bWLjUo6owhdaB690TbdNurysrBqCgoIljzwzhwX7AAXxwyc/+BpPwm59xxET1+9mQ7nDK0SBWC2vfbUTs8vKNYc1TYLtfi4rrnu5vbpqaam6t2jVfXTbR3zMAkILT/JeSMhMZfXqFH28nCJNg0MqixHQu22wUyDsi+hHUQOXenkDsO3INQ4A7zDDO8PPJUaPylrE134CFteLihzTydfCMZVgp2nAO4230ytng7jbYznnXxL6Mzd9hxsHnhctQ42bir8U1X91x6we21cRehGHRJvZmFd+Azw7GxcOGEqYPLA7rWGHPHF5csc6eKZdwKuTP63MmonY22/ztjr1R7vP1/hMfbqTIZWqNUbtrOHGwnHxI5ObuIhP24h0O9RnUNncuC4L1C3pWC3b0bdXdbLyOS0l1j7hpzV4pYRt7uqWIDd/GwuxeYuyxiGQEhd2VaZbzbN1UD7hpzd8buGnOXVubuJ2IZJTB3MbC7DORdKviuvCFsWtzj7Bd5cXYZHDI8g+1e08hQaPshZmm7aBoZ6aXtbnjbGZi7y8H7fgL/mfhhyQHcf/yAsMrAEgSeCgy7HJY5mjnb2fmkqGiuqysqbSDIcGZpxPHFoUdQ5o72SsXU7RhtR+PtupOrjefzSx7Uvq6tGq+6nZEB5QwFgvpkFi7EgfsB+6IRvm9KA9Vv7c5N4maG67xJOl26SLXbXR/wL+Ko/SAmkIHHBoUJlQvVDVunLzLyTW0tPNnNTzen3krNGM3IuZdT8rxkurUVQZC8LQ+S198wZg7pkvvwFqkwG6jXfvXBT4L3fxy0lwi2s6D27/4JxmL7WPLdP9sGmbmjIXcn4L7SBtyXhB1dYTgN/3T2pru7G99MNjVtebYldjgWBe7HacAdq1u8UFkrk3LiJaLuP9r+3MFWDIdRsQwUw7q762AeGicbU/JuRqUNxmRczSgYtSLWW2lpV2NiYOouY9j9hL2HKuwtooEqrAhdLOM65P4P//CvjMwdw+7/QkPtdNruMt7+OWe8naFXKj+ZjNu0nRu184fsaofmGlX3Sf6uMvKubOwuf9RdKqW7zzB3ZTZQlUXm7ktiGc9D7tIAd5mj7l5i7t4MuctglZGhb+rX7mjc/Re4yxhy15i7F5i7t8QyxzWxDBW4y8/c5cbuIpF3H+Pv7jx9tzm7bKjdLYeM+8H2kzTUrniNjJvSdg80Mp7TdrcHI4Un/qsTcCdp3G255mMBUDamIROCICMJCfMWy+byp2jIPfJkQPgxjLmj2B0GRtuPLo04vsJwOizhcumOFz3zPa3m6SGjESoO9cnYgbtNoIEtLKwbLI6tgSqmH9ljv20jY/e/2u92mI+TJFE7q+vD3hb1Z5JABkoMShLqGjYKuqvgor52bW9ExGhGBjzfrDtZYZfDYLPA5jIOGTtmOx5v2jTV0pK96W5kSj9MQpDh9DLdiSWhR500MkSw3S6QcXB2ArIv/pY0bJ+kMHdbyJ0E3D9dtf+zNYcCwo4Fx5xL23C7q2eucbLR3DljQSyZdzLhugF7DeYUdoFD4I77ZEglynK/Sz33Upg7bB/bL2BOBsJ1LPdeLvzTMEWVta/WFd3N2/LAilgfbdz4uLDwze7dk42N93Nz4foK1wNYZZjqn+0yd/h3KGIZrpD7//pf/84pluFzg8gqk/Eg3v4ty59NMMpk9uL1hpUc2dvuoO3cqJ1+6OPP1lUI0DWq7m/8XTXkXSHYXeyou8bc1cLcpWig6p9iGdm6p0oG3D3H7lIwd89l7uoNuStQ4y4ZcGdg7n4D3DXmrhDmrqwGqn4olpGZuZ8XgbmLjt1lJu/qQvDuP8GLcnF26VA7m0PGg2C7YjUyFNpODbbvdV8jI4m0XSza/i3TcPUtdODuYKwHF8CiwCqHXQ7DbezmWXNR2RNdUm9Q1JlluhMB4ceWhB1dHIoOeCcg/Hhg5Mng6LPR6YMIgnTOdj7Iy4OdhztGYGFtwN3OGQ9jH+Ihdwdzt/vcbZNnv7Oip5O+sRN2p4aoLPYYG/3EUfunn0IdQd1BCcPmvpWa+rKs7GF+/kh8/NWYmGvx8W927SofKzcMGGDfQdnDHkm+kTzb0XE9MXG6rS1j4+ja2IvL9afg6S8KQZvHfhqMamTIwfb3sWA7DtCdIPuib3/jPMjY3cbcMaU7I3BfuPYQTDL86x1ds1l3smCSm9omN5Y+gndgjWD3ocB9PwrcCZ8MOd7OXJDk4zHp9MvA3LF6QBuonl8FkwMPoPJVJfzTbebp9o6Z+e7u6onqwseFW55taTVPT7e2wpUP1h22KV3mjotlviSJZT7/3/+bLeQuiLn/q5Tx9m+Y4u17SJXGqG5no+0cwXYG1M5B2P2Ep2tIXYPvPo3d5Yi6y6yX0Zi74huoamIZ6bqnSgzcPcTuimfu8oTcVW+V0YC7jH1TWYG7l5g7it19lLl72EDVE+auiWVkkLm7x9yVid15kXdp4LvXQbw4D/6iCJzd80i7CJ1RhQbbReyP6qFG5jCzRoZC231bI8OTs7PfkbAL4r9lAu4/OEQiMKuwBHjIPXY4dvvL7VMtLYjVml5we03sheX6U8siUOZuH8eX6U6sMJxeG3sht/ge7jcfMhqhTqFeYOUPU4C7/YacLHPH3TI4dsdnmnz/xnpXZp9vstzjR1KkHX7yPrur/SDmaoeShErvjYgYr6oyz5g7u+faOmbgAT8qKHiQl2exzKffTjcMGOBiAtsz4kpE2cuyua6u56WlHbMdMRlXgwxn4CkvXHt4weoDnwTjwfafHcF2u0CGQO0YW/+GZThhd5y526wyy/b8bhkVuC+NOB4Sd6m24XVX91zS+htpt9JwszwK3I8vhZ1CB+54lVJpO/tfhdKZO2wNwuyPM3e4yIRdCTMNm9bdXVcxVjHT3g4PA2YpYzRD36/f9WbXzvrX1+LjYZJhT9vEMnaZO0Us82da91TmkLszc/9XV3eEXLRdpHg7s0yGSd3ukrY7oXY7badH2tUC2U+4N3yaMp+Ua2jwnSd59zJ2V13UXWPu/ilz18Qy7jJ3WYD7H+RSuitBLOPtkLtXrDJuAvevFAPcv1cJcJc95C4ac//ZHeYufhtVjbkrkrnLKZZRC3OXCLsrB76rYHgO2YVE2j1B7eoLtkunkXGPtv/sEW2XtD8qXdfOi7bTzjn0B0CJAxHfRQHuhFXGBlhPLoNaTRhJmO/uvrtuHYIgUWkDwTHnUOauO7E04jgMeGd55KmV0WfDE68Ulz/tmusaKy+/Eh4OhQY1AstOSbgTd+MH7MwdXysiHfaTHb7/aL9LJG7/qEcw4nhFgp5Enn0/TjnxTD3RFnXlyqsxMc9LS1EdeeukLqkvaf2NAiwqPr5jR/lYefad7MTribHDsUk3ksyz5snGRotlvm2mLaf43qqYcwHhx3GNDN4f1RZsxxwyJNSO59ntYH3hN79Gx1+JAZ9Bhx2723LuDuD+N1zj7gzcD8NUr429aO6cae+YiUjq1ffr4TFve7kNFgg2nRNwJ3wyRH0603aGYrAXEn5Itindf7CJhuB4hpbEoc9g88JFAK5L8K/n3s+d6+oar6raXv0SBjyY3W93w9vZzs7769fDtRCuBDD5uFjmR7tY5luSWIbaPRUPuWPMnRpypzF3rns+53s78u2am/F2fr1SHTIZZ3U7X9rOlGrnA9lPKHNo9BwfgYEyDVVzeanJu7iBd6Vid8XpZXyGuX/0kS8wdw9k7tKKZXwu5C4XcBcj6q4g5u62WMa7IXev9k3VgLucwN1HmPsvEjJ3LuwuI3MXuYGqJpYRu4Gq28xd+didL3n3H/5+UTzILiTSLidq926wXXyNzEHFa2Q8CLazdj1lZO401M56tuHMNRN01Qbcsb6pMGM2c/fhRbCIUB5hV8K65rpa2qda2qczNo6Gxl9aGXV2uf5UYORJGMsjTwUZTq82njdmDM339MyYzSMJCVDpUFlQIFACsNp4yJ3hLt1+j03cOePLuNcZwf9svx113Gc6n3F+dubsBGQ/gnFMtC3q0qW4sX0wKsoyb8kveWieNU9UVze0vKusfbW76S08O8RqhaeJJ/RnOzre7NoF75hnzBkFo1Fpg8EobT+G0Xa7RoYcbF/yPdYQ1RFpp0B2pkFl7mSrjDNwP7Ao5PAy3Yk1pgu5m+9brEhCzvWUmylt5ml4C9sflglmFnaBo2OqHbjjZUDUAGsRkv/owZm5E910Cbk/XEn0/fqO2Q7U3r5x447d4wk5I7FZwwWlj6rrJlqn0QazI/HxMOGwvw9g4iAGsYy9eyo95M4mlvk3N2i7DPF2RpkMuVEqnbazaGSoqJ0Dr2tyEq/AdNnouZe4vH+Sd6Vhd425y8bcJRTL8Gbu7jdQVbnM3YdD7u/9/e//3jGUjN0VzNzdE8tI2DpVVKuMnBp3mYE7f5+M7wB332buIupllMzcvSVz92rIXWXMXdSouxN2l4a8C+bvF32csLsJ2d3g7Bd4cHZ5Ubv7wXYh/VH9RCPjBmr/NY+zP3e2nd73kuFBssi7yQoRB3C3t8qEhcAtIlBXUYNRxU+LK8YqLPOWuHXX1sReWBl1ZoXh9Ar96SDD6eDos6Hxl9I23EIQZKK6ui8yEmoWSgmKBcrhqJ25c5hkqbf9roLwjj+NI9wdGNmE74VCO47hdXKZw56Azden071raDB3zsLjTLyemDCSkH47PedezsbHG2smat7u3l1WM7Z+8/3MwjsZG0dT82+ZsoYjknqDY84FRp5cHHr0szUHPwnej/dHtRnbbQ4ZVCBjQ+0EZ/8Mxtcw/i9p/No2SGl3jLn/0yInqwwFuC9YfWBRyJFA3cm1sRcTcq7Dg39cWLhjfMf2l9sj+yNhd8P+gsmCVcM7plJ9Mvjq46XIx+zP6Br62SFzh0uEvl/f3TN/MyUFhrlzRpfUuzL6LJSBLrmvtX26c7bz4YYNcKGC1Yel3I91x/2JQyzjqnsqH+ZO0HZumYw48Xb8XE/8XYX9Vz4M6nb8/Ejukkqi7TxRu0bY5eDpPgDTpWHxyoHvasHuvhx1l4e5O2N3tTJ335C5K0Aso5TuqW4Cd9nguxKYu0uZu0RiGTdC7j5slWHTuGvAXXnM3bt6Ge8q3SVh7l5toKqJZWRj7iJid6kD7+7Dd+VTeB4P3qMZE8LZBUTaBaJ2Km0/I41DxlWwXW6NzH4pNTJi90flQu1/FfCnrRzxdqdDi/NphBu7E8chRuCOW2XwkHvgqUCo0tjhWDT7bbUWlT3Rp/SvMV0Ijj6LY1Z4X5fcV7VrfLq19XZ6+qXQUChPHLhDgeDM3UEWSIQRZ4u2F5xA+HcC4bvgHZy2ECWGx+RxLw2RiD9gl3UQfnb4sfC9sGmuxsTcTku7l5NzLS6uNyICvyr06XR3MjO7e+ZKnpfo+nSwfaDgYU/p+/X5D/LhkT8tLu7qQfXo8OxC4y+vNp7HOsSeXBJml7av3GfTyJCD7TZXOxm1kyD7gq+chhN5JzN3R8idBtz3LVh9cHHokRX6U+GJV9I23NpW/fJdQ8Put7szRzN1vTrY3WTgbhO4U+LtzrTdxd9SsPv9YcfBJoUlQbvpIsjr2tpnmzfDOyFxF1G5UMSJVTHn4tdd65zrnKiuhislXDxg4WAHE2KZPdjdOCGWIbqn8gq5M2F3x70d7X6OO97+ucfxdg6ZDIO6nWaSodN2CmrXOLvG05VJ4X2EvCseu/sOc6dhd425e425a2IZ6UPu7MBdBvguaRtVLeSuAXfxgPv737+vRuDuU8xduF7GT5i7yDJ3vxHLyMTcz4vP3GUm754ieNlwvMAHI8KcCITsfCLtoqF2MRwyfILtXtDIHJBbIyNysN1j1M4N3B32D4K2288VxLOgPmzngxDxjYTDHe2bus+mcYfVgUWEhYaagX2UejO1Z76nrultbvG9iKTeNbEXVhvPrzadD42/FJNxFUGQt3V1V2NiYLtASUKh2dA5ht1trzkYr8Hj51CwUOawQa+Eh18JC+uNiBgyme5mZw/HxsJn8EtIr04HPxD+k60Fa0CAIyxPvHguXnwMR+3BwfCVt9LQbqIwOuc6q8arJmpqRuLjr0ZHw9vZjo7qiWrDgAG2HpQ3EdaGR34nKwsGvBObNbw29iKO2gPCji0KOfzZmoOfBjs0MmiwfSkRbMccMjhq/8yO2p0h+6+wQcfuBHPHfe6MwP2jFb98ErwPHsCSsGPBMedS8m/CI2ycbJzrQtU3FWMVMVdjYNdTgTvZJ0PE2/n9RQUrc8dk7rC5YCfCvME1p/RFaeWuV/M9PRU7X4UnXlmhP71cf2pVzDl9Sn9L+9REdTUsIqwyXB5gjWAHw9aE/fcDLnPHxTL8uqf+B+lWjMzc6ajdJW2nxNv/x2W8HQfutHg7R69UDnU7f9rOiNo9Bccq77Gp8XTFInjfI+/qw+5ud1L1XhtVf2DuapG5a2IZcZk7P+AuHXn3YeYuT+vUzz0KuSsXuHMwd1cdwyQB7n+TD7iLaJXhAu7eZu74PbxylO6+ytw1sYxymLsU2N0r5F1kCi/LEPNZC+fsfCLtXkTt3gq222j7YWfafohZIyNaf9RfZOyPysMh4wZqZ2Duzi1PKdCccrPFzNydTzs2TP+jA7jjCXdYAtwqg4bcTwZCsYVdDsu5l2NFrKiSJed6RGJvSNyl0PhLEUm9yXk3LZb5RwUFfZGRsAmgbNEaRMttBVpiuNclKAg+D//1Snj4kNE4kpBwMyVluq1trqtrurX1cWFhj2W+4V1D3du6uc7OW2lpd7KyurrncKn6o40bh02m8xh2tyESEsSHn9wbEfGkqGiyqen1zp31b+u3VDyLTr+amn+rtuH127q6O5mZ8Njg5yTdSNL16mADwgOCJwUbKu9B3rzFAt+OA3d9av/KqDNLI04sDj26cO2hBasOfBK876MgUn9Ue7Add8jgKXVynh0j7H/51ae0AZ90xu4oc3cKubMC94Dw4zDPMMMw/7ve7HpVWVm+c6yi9tWWZ1vgcuEA7j9TgTs53u5E27/+NUf8Ba80J+Zul7nDvwJbFeYdrrSZdzLR37LU12duHIVKWG08HxJ30ZA6sLP+NSxEv90sdIzE3HGZOyGWoXdP/W/n7qmszJ3zBu4/aL1S2eLtf5Iu3s6HtrtC7Urouun9HqQa49b4uwzkXSHYXRlRdz9i7kIbqCqQuWtiGYV1T33v737/d+ThHfKuXub+H2Izd5Fap4prldGAu7KAuwKYuzr0Mn7O3H1U5s5HLKNE5i4xdpfN865kFi/h03ELsvPk7HKgdjaHjIqC7fw1MntZaTvlBcjD/qgeBtuF5GeYD0Vsom1yf0tcC+P0HJ2ZO/FEiA/x/2rzyfyExdv3fkwG7rBwsLhQA1A/ULS6Xl3OvRwEQap2jZuyhnXJfbqk3qi0wfySh4jVej0xsTciAvYQVDpazlgVQ6XD/rgcGtqv199KTX24YcPT4uKaiZr2jhn4OW0zbQVbH+VtedDcNgUfFpU9gR8Lb+e6u2fM5qInRfg/V/qiFN6OZmTA7ocCtynasVcP+PmDUVHPSkrgC+DndPfMzbS1wePRp/Qn5Ixkb7q7s/71y7Kymfb2gkcFCSMJhgFD2OUw2ONwGTEOGStfVaJ2lJ074W1N3cQa04VluhOLQ4+gwXaiP6qTRsbZIWNH7TTO/qXzIJN3KnPHQu6oVQbVuAd8/z4B3INw4H5oacTxiKReeIRdc13jVVUwjd1z3VurnsNn4JICOw4WC84/eMdUXOBOVClRkIyoneFYzsLcCbEM2j318EIoiZBLIVuebenonG01T6fm34IJh2HKHCqtegEP8mpMDCw6lAGac1+69DDeQJUkc3fqnsoUcneIZVwxdy7a7hxvp7dLJcfb/0KKt/+VFG//js3ezh1vt6vb+dB2MmpXOmXmCco1eu73/N1PsbvCou5KVrprzF11Mnct5O6SuVOBuzD47ifMXaUhd0X1TdWAu/eAuw8yd9H1Miph7jLL3H1QLONeA1URmft5aZm7Msm7Woe7kJ2nOsYlZxcRtXs32O5Of1R+GhnK/ZNSNDJuo3bnIzzDuehrVuZOB+6UlDr+CwYbcP+BqnSn03ZyvN0G3A9gShkcuGNWGSgYKDkoeH2/Pu9BHoIgxeVPY7OGo9MH47Kv7dg9PlFdPWwy9ep0l8PCcPPT5dDQ3oiIwejomykp7+rrX9fWtky1FG573NQ2Cd8O7yBW63xPj3nGDB/uGN8BXwPvZG+6W1L5vLl9qrtnrrltanv1y6T1N7IK7zS0vIPP3EpNvYRhXHSjrFoFexf+0e6e+dqGN/DTLIgl934uHopv75jZ1fimctcreGzw4a43u4qfFufcy0m7lZZ8Izn9dnrh40IUtdeg6L9moqbNPB2R1Iv1Rz2yYPVBPNj+4fKfHf1RcWM7EWwno3YSZ/8/n7AMMnknu2XsIXfUKsMA3PcvXHtoacSJsIQrHV2zMEX43xA8zM/vsczDQsD1AXYcbBZYOFhBW8dUerydQtu/Yhkk7E5h7nipwG7CxTJQGHDFgGWGmcQnfHP505S8m2kbbm2tev5869YbSUlDRuOAwXAlPBxWCi4ncAGArQwb9EdCLGPvnvqFq+6p+L0X335bzrSdGm+ntEsVN96OHyEp8Xa7+4iVtrtC7ZznLNLQgK82/BC+i07elYDd5Y+6a8xdk7mrlLkrrHsqF3AXAN+9qpcRgbkrSiwjdetU72ncOY7yPgbcebivPNO4K5O5KzvqrjF3MWXuJyVk7koUy9CYu/KxOwN81/g7D8LuNmTnz9kVitqZwIzigu2SamTc648qJNjOfWznSBmzNrmht7X8jj3hTgbuP5CeHfnc8gMLbd+PvvChL16HUaUMrDKsPlQIFBiUa+il0OjB6IKHBVbEml/yICn3etqG2wiC3M/NHTaZBgyGfr0e3g4ZjbfT0p4UFVkQC/zXVvP0zvrXeNvVrc+31ryuKX1RmnQjKeVmSvbd7NjhWNOQqfBxYeNkY/NUc/HT4rKXZRM1NTV1E7qk3iDD6bWxF2Myru5uejtrNg+ZTJfDwi6GhMDb4dhYqxXNfe9+u9s0bAq7HAY7Dja4YcAAP3n9/fVFT4oqxipmOzpqG96gUB5Bpltb39bXz3d3T7W0NE01wWfSC27HZV8LibuE0vYQB21n1shgwXaSQIbO2b9gGrb/SmfutpA7oXF3Bu6frrIBd3h4bebpN7W1fZGR8MTvZGXVN7+LH4mHPQ5r5ATcKT4ZdtqO52OIQT6r22oPKzn4IVBpZJk7FAnsVvh3oSpgwqEe8h/m4wH8LRXPKmpfvdy+HZYeVhBfcaiNK+HhcJmBCwDsYDg/4iF37u6pQpk7hbbzibf/mTve/pvfOMXbceDOO97uJJPBT3DctN09yO5qaORXG/4C3zXsrjF3n2HuCpS5yyOWUX/3VL7AnRd5917U3cvM3b3uqRKH3EWzysircdeAu0TAXTrmriK9jAhtVJXN3AU3UNXEMl5k7tJLZjT+LjVhd5+z87HHSIHa+TtklBBsd0sjo8xguyecnRu7swL3vzkc7sRrPcczdZw92Gg7Kd4Oyw0lAZUDxQZ1C7spojfCNGza+Ggjxtwfwpjv7r6TlXU9Kel6YuLt9PSnmzfjpHX3293TbW11b+sqXlVk3cmKuxYXPRgdfiU85FII7CZ0F0Cp26sa3oeNE3IxJLIvMudezlh5OfwMY+bQqphza2Mv6pL7EnOvw898kJd3NSZmwGC4Fhc33dqKhuLvZsNDgk0ExYzXJzxa3BiDB95flJaaO2ezN91NWn8jIWcE3qbm34KfFpd9LSKpd5Xx/Ar9qYDwY4vWHl6w6gBZI/P+0j2k/qi25qjOwXYaZ//4i390HvAZMnYnmDsG3L8igLtD4+4M3OFRLdOdWGO6kFN0b7ajA2YYnvibXbtgVmEm4SnD/oItgwL3n5yBu3O8nUzb0VM6d1yGlnN3yNwxsQzsStjCUB6Bp1DmruvTJYwk5D3Iq5mo6eiahWWqnqje9GQTfKZirKK9cwZW80p4OFxLYKM7hdwp3VNpIff/tN9IcTP3/+CWybDH25nbpeL7jK1dKs94O5NMBu+SSqHt5GC7WJxd4++ij1P4kHiBhI3AwFNqhu8qCLxLg9015i6YuZOAuxqZu4/J3H1GLCNFyF0wcHdN3n2VuSs55O4Vq4wG3NUG3CVl7r6D3ZXB3GWWuXOIZdxm7rKKZdTL3L2B3Vn5+wW/wOueE3ZBfnZ3Iu28UbsgXbtHDhkpg+2q7I/KFGwXAbV/5cLswYu5k60ye35LPTP8QM3yk7/A9mruirZDPUCpQFFBNaJA/FJIRG9E9GB00o2kwseFVitSVjM2vmPHo4KCZ1u2IFZrzesaeNs63brh4YbUW6mmYdP/Z++9v5tG9/3f71rn/HDv3WfPntl7GkNvAdJsx7HTew+BdEIJISS0BBKSkN7+inu/t6z1PefsNjMMM8Ae2gy9E9IIKZSE3nsogUCK1/1Ijy1LsmRLsiRLjmeexQpJcGQ9n+ex9Mrbr4+xz4i06VD8UMboV0HoTRXE73JQUaEfB98Q0BPQamptnGg0mUyRS68FJfQFJ/VHpV3PXfd4srn5ZmLijfj44eLipommpFtJcDxwYPCY8M+h2OD44QNYgNGD0ajh6v3ly5tbJpFnPCD6kjaq2z+i0yesfXHwBS/DOQy1ay3S9iUYbadpZL6w1cjgxPyPM0ioHWPrP7APCnY3M3ci5G7VuFOAOxzMDN+jcGxexnP+kZ3w9OHpPMnNRQ1gY4diYWuCc4gB9yMzYBJRx1QkcKfF2ym0/afPHAx0AY/KD5Uc1BuSue/7khDLwFKFsw3TB7uQtksbdiUs7V7atpFtH7Zvr9gxCmWw/P7yyGuRQX1BeU/zoE7ebt4M+xnsDbCaYY3up4bcyWIZBNyJ7qkU5m7B7v9l212Leh9GvseyH2+355Nhi7fjwN1xvJ0qk2Gm7XZQO/t103miI7HTxNYD0N15KJnIy0veXYzdxY66C9bLyNZGVb3MfQrJ3FUollF+yF04cHdA3j3MXbKQu0usMlw07h7gLhZwdxlzV0bUHd3qq4K5s2J392LuLpG5SyuWcYa5ux12d4DgO9XN1sXC63zD7Bwj7aKjdu4OGWmD7Wrsjyp2sP3z3cyX5zwgO/slE/lKyX7I3d5FBfnCgITayd527IXs+CyYOMIkQ2TbzfFznLYH9wdHXotMvJWY+TCzaLgI61NaW9s82bzh9YbsR9nJt5Ojr0eHDIQYeg26SzqUZEec3QrZSb+2wcoGSsXymxj4AD4D3wbLOelWUsskZqQp2PQyOed2Ytat5avuw18fZWdjcN9kgp8FB6Pr1sGPwID7mfmo/KCSAy4FwDfAt12PirqZkAAfx2Xc0EV3+4S1e4e0LQo6vzDw7LwAhNqPz/A9Ot2bk0aGIdhOQ+3TqIP0JQtzRzl3IuT+8+ezkMadAty/XXTwO+/fZ/odnas7tTjoQkDMpbj0oVVFzz5WVbWYWuA8h10JgxlhAO4Wn4w13o7qkEbb8ct4+oU96UqelnNH9YbKDEpo2qFpUDMwXzCDcOZhK466HlX1sepVYeHw+vXrNr8q2PgSSiLtXhqUQfr99LUbX4xWVHRptbCRHLUfcmcXy9gydzJqZ5XJsMXbObRLZYi348Cdd7ydLJNxRNsvOIgoSMnf3QLBTwmS7k4TLSl5VzZ2V1HUXe3M/bCHuU8xsYy03VMlBe5Kwe5cmDufBqpiimWUHXIXWePuAe7KBu5SM3cVRN09zF1UmbtaxTIKZO5KIu+cQLwLcTzTkUj39HlBdlE4u3JRuxPBdjNtZwm2O9Uf1SXBdl4OGT6ondWjzdTH0n7I3XxBYpNkp3P2g9/SUbtF2k5G7WhLhwpEGpmAnoCgvqCIqxHIjb5+eH2rqXWstnZk69aJxkb4eNWzVal3UmMGY0IHQg29BizS3oVH2i+aI+0ItaMqIr+KwQ+FH43VAEw9PuNYdPr4bPhmWBrwQ7Hc9Ptt8FMamiYKNr4sKX/3ZuPG+vH65feXR12PMvYatd1aWImwKOCY0S8JYJVlP8o2mUwDoaE9ev2tpKSWVlMEbqdBqH1+wOm52pOzNcdn+h2d7nMYBdu/8eKlkcHo+X8QtB3D69+j8QfLID5jy9zJIXeSxp0E3Bcf+s7791n+x+brT8Nhxy4f2lbxHvP0mFobxhvWv1ofdyMOzjANuJM7phLAnZG2217V217b2zJ3VGlYt4CD36CQu7l7apc25zGWu7+TkvJs1SqYpviMG0vz7jZPNjc2TcDnYe7g870GA+xAxy0md3PI/c9/tg25s4ll/vt/Y9B5MtJ2EeLtdtulcom3M8hk7NJ2AahdWviupKC0B6NPiTi8RORdOdjdmai7h7m7AXP3iGWU1j1V7JC7aMDdHnlXF3NXSMj9bzxD7pJaZUTRuHMD7sxtwTzAXWbmrhzsLiVzd4Dd5WLuzFcowpi74AaqksncFS2WEZu5i4ndlUrehXN554b8z4VvmJ0jZ+cdaReM2jnr2rk0R3VBsF2YRuaQmP1Rba/6mWk7X9Ruh7BzjywwMne2kDupGyqZs6NIOyGQQa+JGGo/NhMTyJyYAxNK6Nqh/FCe3dhrjLgWkXgrce2LtaUjpa2m1u0fto/V1Y2Ulj7Kzr63bNnj3NyGxvHVxc+bWyZzH+fGDsWGDIRglvYuDILb0naMsOOlgpF9/KUKPoZjgCNB84uOEP4Kn8fQ+UWfgJ6A8CvhSbeSch7nbHi9oW6srnastmi4KPNhZvzN+LArYYZeA2LuaJXBj464GgFHW1336WZCwmBMjMlkKqt8r4/tWYS72ufqEGrHHTLev09b8tu3KNhO0siQaLtFI0Ppj0oNtlM5O23QmbtVLPMTPCYzcPc68O3iQ9O9D8/yP74w8KwxvrdpomnFkxUFLwtGtm3bWjGybtNLeFJBfUFmh7stcKf5ZEjedsrFPMulPnF5T2HuFrEM6p6KTO5QPDBNAZcCYFIe5+RcCQuDwigqGQ5K6NNFd8ORryp6tqXsLXwViudWUhJsY7BnwFqnh9w//xyF3H9kCbn/lXpHxXbXRaftLPF2Udql/m4B7kcQcGePt5NlMmdx4E5425ntMTZXQxfIw4XknTO3tTc8aNuTgncJeRcLuyss6q4spbsCmbu7N1BVvlhGSMhdDLGMS0Lu4gN38bG7ipi78kLu0lpl+Gvc3Rm471MTcJeHuYuC3XlH3X8XP+pu70VbIubuRg1UlSCW4SVz58Hc2yVm7lTyri74rrohgLA7xdkVgtplC7bbp+1HOWlk6KhdvP6oogTb+aJ2B5Dd4XUUlbk7DLlbG6jaibQfmwUzZY60n10AZQOVCatD36OPuh617N6y5feXI6PLjo87qj5WoT6oj7KybsTFXYuIgDEUG/s0L6+k/F3qiruZax62mFoKXhZED0Yb+4y6bh0B3LHg+VlcI0MIZPAXO1RCUCRwMHBUBDJG6WmkYod/jrVR7TPCw8LxlLwrGdm6taJ6tLhkuKUVO6INrzdkPsxMupUUMxgTOxSbeCsRPtnUPAl/Nk82l46UmvD/4jNveoe04br2E7iuHQu2T1ti7Y9K18gw0fY/cqLt//zDt5YBH5OxO+FzJ4XcrRp3W+Duc3i25riX8VxS9m14CjAp8LweZmXBx4lZt5BRB2YNziQsHOzsHfjG3DF1Lwm4Q1mS4+1Etv1H9sHI3ImQ+15zyB2Z3NE06S7p4Hhe5Od3a7XDRUVrN77wj+iEI4fhG9YennoVvprxIAP+hH0XdhTYBmBZw2LlGHJnZO6s91jkuyibeLu47VIPW3wy9Hg7Au6O4u102m7v8oeJvyucvHuGh78r0zYjCnl3i6i7h7kruYHqFBTLuEH3VKmAuyuxu+qYu0qsMkoB7r94gLtozN0FUXcZsbtS2qgqirm7o1hGgcxdEuxOJe8e+C4aYe8UOB0cObsQe8xFu5zdLmp31iHDpTmqLW0/6epg+2+yBts5OmQcoPafhA77zJ0FuFNoO7s9BiYU5h0p2mGNhAyEZDzISL2buvLpyvGGhvdlZS2TLbmPc2vGat5u2fJ6w4YbcXEDISG9BkNPYODlwMC+oKDrUVEjpaWri5/HLB+MXnZ92cp7iG4n3Eww9hm1XVpYEfDgKOFOAe7EC99xrMcpEW+3Be5YQ85urCFn5sNMeOSXBQVPcnObWyaXr7yfnHM7c83DrRUjH3fs+FRdDV/9WIX9VmCspuZWUhI8haKSYfhr40RjbPqQT1j7fP2ZOZoTuEMGD7YvthjbcY0MTttRsN0sbeeYbWdG7eRhw9ztA/evKMD9xKKg89HLBuGJVFaP3klJ6TUaUdPUd6Wly+4vg3MLpxFmFiYaJh1mn9Enw0bb0btaicHM3HdRmbsl5I6Z3PH3IsC2AJtk+Yfyih2jw8XFha8K01c/WBJ8Ya7u5BztyYWGs5rIrm2V702trcNFRV1aLew3yCoDy5cWct/FFHK3dk+1y9z/yi6TkcMnQ8TbaT4Zi72dEm/nQtvRywIX7O4h757h9vxdCvKuSOzuYe4e5i4pc3cbsYxiu6dKC9xFxu4uYu6CxTKShtx5tE7lZZVxTuMuZt9UxQB3vj4ZuYG7DMxdpYYZD3NXDnM/76U6sYzzzF0q7O5JvruIsNMhO1/OziXS7iLULoVDxhNst0XtDiLtO9mHHexuE3KnAXdzvB1/rSeC7WTUjtljTmKoHcoAakzbrTX0GkL6Q1LupIzV1b0qLDS1tlZWj6blYeh8tKLi1bp1j7KyruAmdKyfgmWFdWu1lw0GzNbS2pqx5mFYypWgxL7Q5IGU3Ds1dZ9aJlsyH2aGDITA48PqMIfckVLGknAntP7I3k74ZOCwMVfJYcxVAoUKSy/8anjpSGlz8+SDjIyb8fF3ly6Fx0/KvgU/NDixPyRpIHrZ9cw1D9dufNHcMrmh9DWC/vAU0FHpoi8tDr4wX396tsbaHBU3th+gBNst0nYHtJ3ibSdn21loO4m5W4G7NeTOCtynLf5tus+R2ZoTXsZz4alXyz+Uv1q/vlung4XeZzS+LyurGK2AiYMTCyeKEbiT26VSZDJk2m4nc0Ni7kTtoctva8j90LdopmDziR2KhWKAKdi+40P0ssElwW3zAk7P051aaDjrG9Yelz60dWQrHDZUDmxCsGfAHoBC7vt4hdxx5v5XLrTdTrxdFJ8M0S6VzSfDLd6OdnQ6Z6e/68kefOeL3T3k3TNUDN+lxO5iSWZOuw67K0jp7i7MfarI3JUpllFhyP1//Pv//e+UoXDsLidzd5eQuzhWGSX1TRUZuP/LRcB9v1KAu7qwu8ui7lOEubuHWMYlzL3dFczdk3+XEq9LxNmF2GNEQu08dO12abvtbdzUDLZ/vttp1G5B6mz9Ku1cXFFC7kzAnXC4Yw0tcdrOiNqRpR0KSdOlibsRN97Q0NIyuerZKkSoYbRMtrzftg3++r6s7EZ8/OXAwE6NBor9ooX3wQdQ5rDs4Eu3k5JMra0pOXeMCX0BMT0w4IOEzJtlVe/rGsaKhovib8Tre/RYR9O2JbbMnQzcsdm3zDt8DJ+H74TFEjMYUztWC8cDBzMQGnolNBR+aONEY1zGjcC4y5rILr+IDhj+kZ3aqO6AmEv62B74fED0Jd/w9iUhbV7Gc1iwXXsS08jgwXazQ4YSbKdK22fjLVIZaLvdePu3/3QwzMydZpXB+6baAPdvvA5MW/LbDN8jc7QYcA9K6IMz8Dw/v0evhzPfHxxc/akaZkrXrYNTCqeRAO5Q52bgTvLJmKsRFZ592s7I3G3FMtSQO8wgbBSwH8Jk1Y/Xvy4uzit84h/Ruch4fqHh3KKg877hHVFp16HYPpSXd+t0sDnBjgLbA8eQOxtzpwybeynH8XbpfDK0dqnogosp3k7Jttt9254U2N1K3j3w3TPUBd9FD7xPtai7h7lLwdynTfvdvWTuChfLKDPkbgPcGYd02H2qMXepQ+68rDLya9zlAu4M60xG4O58vN1VzN1tsbvCmDszdlcPc7cD3FUscxeLubsq7c4Bwbsrhac8R/HOHi/ILpyzy4naRXTIOAy2Hxch2E7mrYoItttxyNhH7ex5doec3R52twm52wJ3K20nBdvNAhkctUNhoG6ogT2By+4te1dSUj9e/3bLFlNr65bydysKn5RXfagYrbiXltYfHNyt00GxQ0lClVnfv4QjQqhfWDeXAwMfZWfXNYzFpQ/pY3s0kV3+EZ3wJ3wcvWwQHqrV1No82Zz5MDPiaoS2WwuLguyWQYWElDLk2kAHDN8AhxozhPU7bRhvuBYRcSkgoEev7zUa76SmYkLztOvaqC7v0IuLgy8sCjpvHsbzXsZzCw1nFwSewZujnrIY2498h4LtFtROBNutGhkG2r4Lp+0kdTsl3v4D13g7Y8idDbjPtwHuhnO66O6tFSOjFRVXw8Nham4lJm7a9ib5djLsPHAy4QTCXGPAff/XtI6pbPF2e7TdhrmTxTJY7e3+nDHkDjMLswz1g35hE5p8xS+8AybIJ6xdE9UF87X9w/bHublQV1BCsN/AhgETDgudo8n975Zbor+yj7+x9EplbJcqpk+GDbjT2qXajbdbXyiIlxG5sLsHvlsH+TwocKjtfKos8O5a7C7Y6u5h7oKY+2FpmLtHLCMyc1dbyJ0bcBcbvjuL3UVk7hKJZZQWcleIxl1JwF1kgbvLgbt4zF1N2F30qLvzbVTlZ+4nnWLuU1As40Lm7hrszgHEK5zIMxyqBKeFYb7axeHsAu0xUqJ2Lg4Zh81Rp26w3Y6u3WGqnY2z/+i4ZaUtc2cA7nvMTSyxqxe4IMFlMkS2HYPXx2bCHCGBDBR56EBo7FBs9GB08u3kyeZmTLqSfCV/w4uK0YrhoqIX+flPVqwYjI7u1mqhYKHEoHborwkLF8LnoVphGfUZjaMVFSaTKTLtmjaq2ze8wyf0Igz4AP4amnyluu5TXcMYErwsvbs09EooBbufofRQJV7+4DPwJVgREdciJhobmyeb76SkoIg9/NBeg+FVYeF4fX1I0oBvWPuiIIKwn52vPzMvAEH2k7M1GGef6XfUitppDpn5/yIH280aGSbaTom3swL370UG7osO4sD9KDwXeIKayK74jBstky330tJuJSa+Ly8vfl1s7DXC5gDnEGaZN3D/4T8cDnJB2gu5H8RN7kdnwMTBzIYMhGx5u+V9WRlMfUhSvw6qKao7MO4yHH/1p+pbSUndOh3UD9TSSbaQOw7cKSF3G+b+Nw60nQ24k9ulCvfJWIC7HZ/MSXafzHnL767I8XYKaicPwcxdEHZ3N/jODWRfUM9QK5FXUeBdbOyuLr2M+MzdBrtLytyPiM7cFSVznzJiGWe7p7ou5M4fuItE3uWLuiuNuYsVcleIVcYD3CUQuAsE7qIyd67Y/YCLsbsSo+6KYu6nlMXcnQm5u5a5uyF2FwrlJR8yPk1hkF0szi4k0m4HtZ93DrU7F2y3vcei3UK5R7Cdo0OGB2r/kc+wZe67PmMA7uR4O7yU4/QTXtTgPMNEEMF2TZcm40FGc8vkx6qqVlNr8eviws2vEjJvRiy9NtnUtOnNpntpab0GQ6e/P5QkVBNUCpSG9R6eaPy4YAF8FQoTltSVsLDxhoaK6tHQ5Cv+EZ0obI4GfOwX0WGI71264m7pu9KneXkNEw31jeP5L/JDr4QSkhn0SyNyiUINwydhiQVeDsx/np+z9nFN/Rj8IIQp4Ydei4gwtbZuKH2tj+lZEnwBhdmpefbjM/2wSPt0n8NYZ1SE2s3B9n1fLviV6pAhS9uttJ0kk2EH7rwc7hhw/ycLcP+JDtwX7ocDhoOf6XcUntTioPPaqO6otOv5G1682bTpZUFBxWhF3FCc7pKOAtwPWoD7XibgTvLJOI63s4llLCF39NYKVHjY73jwkLu5yW3bkqC+oPrxeqirssr3kUuvBSf1h6VcScu71zzZPBgdfUmng/0SZhPKCTO5z5yJTO6cQu4WsQwNu9PvmdhpOz3ezt0ngwP3Q7YCd3QlaEfgTvPJIODOFm9ne5HhydzbxGDu9iCv4hn6hSk8lA7iVRF4d76fqqhRdw9zd2fm7i5iGYV3T90tKXMXB7iLAd9liro7ydydFstIF3KX1SojUt9UD3BXC3B3WeBdCdhdUr2Mi5i7QhqoKl3mLi5zt4vd1UHe3WswT4RgyM6Ls8uL2sXStU+RYDvv5qi8HDLcODu6yqINxisuBuBuuTpC8XarTIag7UdnwNTA3MGkQ81oOjU5j3MmTaaJxsZnq1a937atebK5snq0oXG81dQ6Vlv7sqDgUkAAlCQUDsbZ8Ttw+suOhR7C90B5dvr7D8bEjFZWmkymoMQ+3/AOTO2CG13QgL/6hF7URXfHLB9aXfwcvu3F2rWvN2wofl0MH698ujJ0INRw2aDv0Wu6NGjBBlwKgE9GXouMuh6VeCtx3ct1RSXDcHjXo6LQG2AGQkKGi4s3vtmYsfoB/EQvw7n5+tNYZ0482I5S7VhbVAbUbtW14w6ZvX9GqN2ikbGh7azAHXe4Cwq5sybcKcAdDhKO9lscuMPTgScIpzE4sT81907+huf1DeP14/V5T/PibsTBqSMDd5h9WAIIuGMdU3fbFbgLA+42IXes9vZjIXfsHRVHZ0ChQMnBrmjsNWY9yoKJrqgeTc65nZB5c+X6p+9KSwejo3uNxi6tlmDuSCwDKx5W8z72kLsd5s6QULITb2dql8rLJyNA4H7GrsDdCtxtLkmcZO6iY3d+UWuxxwXPcDsKP9WwuxxRd5H0Mu7P3FXYQNVtxDKK7p7qdMhdJOAuInZXHXOXIeSuKquMmwF3qTqmSgTcXY7dD7gUu08l5q5wmbsLxTIiyNxFZ+4cyLsHvsuH1zv4TZwcnF0e1C67Q0alwXanHDI8UbsZrDuinJSrLxLrJAN3erwdh57TDmG0HfVHRRoZKDb/Tv+IaxENEw3VtZ+WrribvvrBxq1vyj+UvywouLt06WB09GWDAWof0U+YdphqdGNMeY2yhHahZKCyoEi7NJoH6ekTTU3rtwwb4nt9Qi8uCjpP5M3xcRZhd9/wDmN8L3xb7VgtfH9rq2m8oeHtli3bP2xf93KdqbUVDib1bmr8zfiqj1Umk2n7jg+NzRMNTRPwDfUN4+9KSt6XlY1WVAwXF0+2tJS9LyspfxcYdxl+HJ5qPzlHewJH7ccxgQzeFpWG2kkOmb0MwXaMtv9Mpu0MwJ07c58mAnD/euF+OP7pPodna457Gc4Fxl4uKhmGM7P57eaasZqKHaPw8aY3myKuRsBGBKuYBtyxjql7nOiYyngXYPnFDwW47zFbZWAxwrI1t7o9NQ82JdiQjb3G+BvxW0e2wtGuWPdk07a3z1atup2cPBQTczU8vNdo7PT3N8vcLWIZhyF3h8ydkbbT2qXa98nsIflknBe4n+IrcBcA3Lkzd2mwu2e4D4V3M/KuEOyulqi7h7m7sczd0z1VxpC7qMDdCfLuVNSdM3MXpYGqgkLu0lllZNa4Sw3c98oH3LnSdkmBu2TMXbbAu+qwu3sz96kolpGIuXPA7h74Lj5e7+A9TayzL5Szy4fa5XLIeILtdIeMfdQugLNzDxf//DkZd6J4O2qUCicTTj5MFkwxJma56KPt0gb1BeU+zq1vHA9LueIb3hGU0GcymVY/g/9X9xmNsFygxM4g1I44O+PLF04SoSKgWM7gwP2STvd28+bcgscNjeP62J4lIW1ehnMLcIv6vIBTaMzXn14QeAY+D1/VRHaFJA2k5N5BSvf76envSkrg3042Nz/Myvq4Y8eWd1vKqt7Dl65FRsKAb3i7aVNl9WjRcFH6/fTk28nNk8314/XwDbHpQ94hbfDgSCAzy8/saseC7Ut+n4ajdrKuncEhQwTbybSdFbg7Yu50t8z3bD4ZLg53EnDHOqbCqctc8xCedcqdlPzn+XDO4ePstY+KS4a3jmzVdmthaaOmqZyA+07Hb7Ngfr8FtQ7NRUhtnWouv5NYyB32Ok2XJrg/OOFmwsqnK1tNrbX1Y282bvxYVdU02QRPYaKp6dmqVX1BQbApQlFhYplp02CJs5ncbZn73xlukv532o0Rd5+MGbijHcKRwP03hwJ3wR1TSZck9k3uvJi7B7t7hjr4u0qwu6xRd5cy95OqY+5CG6iqj7lPQbGMSkLu0gB3UbC7/MxdCrEM35C7Gq0y0mncPcBdqcxdHvIuGLvzMMy4lrkf9TB3F4tlBDN3Z7E7Z/Lu4e/8wLogvC4Astvj7KJE2i8sZlsd8qN2Jx0y9oPtdNQuWbDd9oJdlGA7g67dIWr/QeBwYPPAr3YIdTvCnWanx9kFUOGGy4awK2ERVyPibsRVjlZm5T8KS7liiLucmHVrorHRZDLdiI+HpQCFA1UA0wuTiW5WGV7W8BmGOYdygEqByoKK7jUYXqxdu/3DdnhkXXT34uALCwLPEj1L52hP4OPkXN1JnLybsbs2Cmv+WVQyXFb5vnDLq/IP5R+rqq5HRT3Jzf24Y0eLqeVVYWFfUNDV8PCneXn1jeM5BY8nm5sLXxUWDRe9LChYUfgkOLHfO/SimbZbXe04arfvkGEItlNpOwm4MzF3sluG0edOi7rjaXfr+J4DcN8Dh4oBd68D8ETgqcHZ8wvvMLW0wHxFD0bX1o/dS0sbLirKXvsoZvngeF1dSH8ILHMG4L6bHbjz7SXA2SqDtU49MgP2CthnYE/TdGng8JJuJ+U/z28Yb2hsmtjydsvKpyvT76cvv798/av12ypGJhoaYPZhC4TSOkIOuX/xBQq576SG3MliGQK7k1E7W7ydi0/GocD9oK3AXTzgbr1yYXsVcvBLXp7M3YPdPUPJ/N2D3aXRyyiCuVOB+3GewF065q4WmftUE8uoLuQuJXAXRN6FR90VL5ZxfcjdeauM8xp3pQF3pQrcRQDucmF3qcm7IrC7LG1UlcDcxZS52xfLnJNXLKNM5i4Ivk8RCs/jVLSLTdjZIbsInF1opF2ZqJ1TsP2ISoLtdpujcnLI7LQHMVlR+/d2h23InTFZvNsik9n3JaFux1jn8dkw9ZouzKZQBDEAAIAASURBVNiOguTNk82rn6+GP3MKHqfl3VtT/HyyqWm0svJ2cjKsPKgamPbjOGpHt53ML3cWYwbUAgLuUP7XIiPLKt9PNjfnb3ihjerCBS9nUNvS2RoYx7Hsuf9x+AAGfHKu7uR8/emFhrNLQtr8Izr1sT2RS69hSeeGhqaJpuq6T6uLnjVONGY+zIRP1tSPmVpa4jNvhqVciV42CIe9rWJk/ZZX8K8WB1+YF3AaHnOmH8XV/u0iRoeMnWA7RtvtAHcO2J1D1J068K+i7/yRAO5/ogH3BRhwn7b4Nxy4n/IL7ygqGYaztKH09d2lS3sCA+HMwykq3f5uZOvW0IFQCnDf9xVUBTNwZ1QeMQ47/Xt/YrXKwCLFrDJHpkMRYq1TLywJuBSQcDOhYbxhpLT0ZUFBedWHHbUf1zxfA58MuxIW3B+ceid1S9nbdyUllwMDoahgI0Emd1jEyCpDhNx/YAu5/x/2bokY4+0CBO77mQTuXDumWloN8wDubMzd4RurHAF3D3b3DNH4u0pVM6Jgd1ENMx7m7mHuHrGMEpm7EyF3WYC7k9hdkcxdhJD7f8kdcudilZFc4+4B7jIDdxmxu6TknfRKIo1hxvmou9qZu+wyd+WIZZxh7mJidyfguyqIvLPPSIzTKwyyy8HZ7aP2c06hdlZdu8wOGZcH2/fyD7aL4ZBhRu2Wyy3aGw3tWf6owN2WcpKTxWZ99ul5UL3L7i/bUv7uUXb2rcTEpytXjlZU1DeMI/7+dvPmu2lpvQYD1C9UCszzMRy1o3tI60uf5VWObKnGQu44cIe6gwU0FBdX/al6zfM1q4ue+Ud0ehnPzQs4PUd7Ekftx2bimhfSOAafxMk7FnjHPDPGc95YS9VLIUkDMIIT+8OSr+QUPG5pmSyrer924wv4pDaqGx7ZN7wDG2HtS7AQ/Zm5upN4Z1SKqx0TyBCofcGvDoLtbLTdOhixu41kho7dKVH3/2Cm7d9bvo0NuP/rywX7MOC+5LcZvkfn6k75hLWnr7pf9r7syYoVXVot7ASwvz7MwvqRFrws0F3Sweq2OtztA3dS3Zov3ckX8DsdE/nPdlp7CWCLZTfJKoO/zQKrw+Oz4JBgj426HoU65d5JSYE63FD6OjMfc+NkP8oOGQjRdGn0PfryD+W1Y7Wv1q2D/RI2G6g9WPSwsmHtYlaZzz/fhawyNiH3f3Cj7fx8Ml98sdeRwP0Q4ZNh65jKH7hbL21orzZ2UbuwkDsrdveQd89QMnxXNnaXz+qu5DaqqmbuHrHMVAq575E45C4jcOeJ3RXK3NUScnde4/69Avqmuhq4u9AnIzJwlxe7c4LvMmJ3+aPuimbuHrGMBMxdfOwuDYJX9JDg1DmeODEgOxfOri7ULnlzVDvB9kP8g+37xAu2c3TIiIHa7XB2hqsyslXGtlnlni9sZTLInQ2lYug15D/Pr28cf5qX9zg312QybasYqRytHC4uvpOSMhAS0qnRQK1BRcDcwuzBFKGZIczU5Oiu9UYUp4oEcO/097+VmIgh/NbWuIwbvuEdCw1n5+pO4c1LzUZ1XPZiHjN8juCfweA7jbwvNJxbFHR+cfAF75A2v/AOXXS3NqrLJ6wdPuNlPIe6sOLNUU/hxnaE2g9jqN0SaUeudrKunY7aGWi7GbizM3eOnhl2w4wl7U4Zli/9EQH3GWTgvhsOGA4ensg3VuB+Ek5LTsHjitGKxzk5cNph7mC3u52cnFf4tGi4CPZSWNEw+3A9wwbcsTL+6TPegwm+E1f7tlYZpHFHwB02Im23dtvINiiQ61FR16OjX65bt6roWWz6UOqKu/DJzIeZ+h69sdcIH6fl3fu4Ywc8KdiKoMxsrTLW1qk2zP0f7DdD5DueH1h8MgRwJ/tkGAXuPDqmCgDupJC7oysX0YA7M3OfsuTdztlw4fDAd0kD7wrD7oKj7gpqoyovc3fbBqqcmYccYhkmajVVxDJCQ+6yA3cZou4KZO6Shtydt8pIpHFXMHAXU+C+Tz3A3V3Iu7TYXVLmfsTD3JUrlnHA3C+6lLmrFMfLeyq4/F7EKcjOi7M7F2kXDbW7xCHDvTmqXMF2Ac1ROTpkeKB2xkj7P+0OG+ZOA+5kmQxF3X5kBooVw7pY/Xz1u5KSqpqPptbWNcXPU1fcLSoZLnhZYDKZbiYkdGu1sNGaaTsebKfd4CGYeATPsx8jqWbIwB0KsycgYKyurrZhDB42IfOmT1i7JXt+nOhfOt0b871Qx2Hs8zh8R+Qdd85YVe/zAk7P159GbVfhM5gL3mynOTbT9yj8Q3OqfdEhc09UaltUx6idCbjbH2zwHSPvHLG7OfNO/gwRbzcDd/hBX5CB+6KD8DThFMFJWBx8ITz1KpznZ6tW9ej1nf7+lwICHmVltZpa42/Gw84DqxgD7r+xAPefWX5vxHhxblv21JpnA+5YQeJvtoBqhF0C9qigvqDx+vonK1ZcDgwcCA39VFOTlnfPmNBriO9Nzrn9oby8vnEcEfmtFSMP0tM7/PxQ61TCKoO1TiVZZRhD7myDLd7OV+Buv2MqM3BHl2PcgPt5EvAVxtzbnGPubkvelQnQpwCRl4m8Kwq7TzG9jIe5q17mrs6Qu7PdU2UMubsCuMsQdXeeucsmluEVcleCVUaivqlTCrjvdzVwV6ZwRh7sLk/UXXAbVXGZ+0llMHeXimVEk7krIeruGQLwuiPC7hiyi87ZVYLaxW2OitH237kG251B7Q5puyQOGQ6onQdnt7k8owN3hEct8XazwcOibodTDfMCUwnloe/Rm0ym8fr65avuB8Rc8gvvMMT1VtV8TL2TWvKu5G5qKiwmqBSYXpgxlGo/RLpVQxOCAffp05GQmgG4z5sHZdsXFDTZ0pL7GEvQp69+gHcxPUMk0JFaHXUxxcZifCwhhpm/4/D9MMrCz/Q9SlXQHJ3he9SSkT9MtscQkXaSOobg7FTUzkjbrcDdMmZzGLYKGhvs/scZ7GJ36vgjySfz2UwE3H+Bo8WA+3wzcIezh4D7oqDz+piezWVvx2prr0VEwJm/Fhn5saqqfrwephs2EJh6WIn2gbu13y/5gpy4Aqf95om2BCyqGfKlPrPGnQTcQwdCoTZeFhR0aTSD0dFNk00RqVd9wzuw9zFEdMRl3ICvvt+2bdJkerNx41BsbIevL2xdZo37N9/sQ8AdWWXIrVM5MHfavQ4t3m7HJ8O1Y6oFuBPrggbcT3IH7rZWGT7MvU0k4O4AuyuE8EpJrtsUNtyAxctD3qc0dvcwdymZu8pk7h6xjJJC7q4D7nywu5qYO1+xjLytU/lZZeTUuKsfuIsbb5cVuMvO36UKvCsq6i5Y6a4Y5i6ggaqbi2U4M3cPeXcNWOeG14VBdo6c3alIO3tGS1zUzqprdxhsP+a65qgHXNYc1WWonXSFZgvckTKbliY20/ajM2HuYNKh5IL7gydbWjZufRMYdxk1F/WL6DCZTIWvCuHPwZgYKD2YdphDmBmE2sm3XoQ04zAecj9K6N0tYBFqBKoMyn8gJKS+cTztXho8bOTSa0tC2kiNTM05dHMvU7ydqXUstg4yhf9uCQbozUF4gtRbHsHK2Rfu+5LcENWSZ7dwdkeoncfYbRnM8J0Fu9vtp4qy7WbaTgB3QuC+G54LPLWvFu7HgLv37zP9js3VnVpkPK+J6opNH4JT/SA9/WZ8/OOcnKaJppjBGP9Of9gu7AH3Xz6nvWmDuAgnrroZFghjLp4mfN9FauG75wtz/94DX8NhQEHC1hQyEDJWW1u6feTpypVw5JU1H7VR3QsNZ6FOFujPeIe0heLK/pqxmsrRygcZGZ3+/hhwnzXrd4vGnWaVsQ25MzJ3+r2OTbydC3Dn2jGV6CfsELjjzN1yfcRslbFl7m0CaLsTwF002quA4Hmbuw8VIXgZyLtSsLszzVTl1MtMNeYufQNVd5K5q6Z7qoJD7v/j3//nv3MdysHuojJ3J8UyUofcxW+d6nKNO3fg/rMrgbtrfTKuBO4yInhJAu+yY3fxle7SMHceDVRPCWqgOkXEMh7srgSqzhOvcyLsAiA7R84uaqSdO2p3mUNGWHPUQ+I5ZJwMtvN3yAhH7f/4g+NLNXRhZgvcqWQTk8kc/s5M20/NgzqBkg6/Gm4ymXLXPdFFX/IOvbg4+IIuunv9luGJxsbRiooujQYxzcMW2o7uo6yXKjhbJKgi0T0VAXeoAigZqD5YxIMxMW82bdr2ftvajS+M8b2Lgy7MCzg1y//4DEz8chgRc4TasY6maHhhrU3xgX+8yO7wMvdB/XohkWdn4Oy2kF0QZzf/Q+vj2BlUFzwVu7P2U7WQdxptp3VMNQN3eL5w3r7zPjzL/xic1UVB5zWRXWEpV3ILHo83NDxZsQKmePn95cH9wX4dflbgTnO47yEB95//xJhqR+uCfP2MlgyZ1DMwd7KRhvauCxy4w8FAQWo6NaXvSiuqR+GY68frU3LuQDXO1Z2c6YcZ/OfrT/uGtSdk3Sx5V5JyJwWeUbdOB6WFivMgoXFntMqwM3eGGx2ePhkHHVOdBO44cz/HFnInTO5U5m57IdPmcCgtbe3B6Mpk8e5F3sXF7i6PunuYu8uYu9pk7lNKLOOCkDv+i3/JgLuk/N2dmLuLQu5OAXexrTLqAO4K9skoC7hLT+HFIu+8sbtr9TJKZu5TWCwjOnOf4vBdOEwXytZ5EHYWViEPZ1caahffIeN8sH2/CMF2cRwyOzkH27mgdhbOzny1RgXu2JHgPhmru8Miy4bpgFmDuYY6geqC1YeAe1re3cC4y9qoLl10N3J3TDQ29hqNUGsw20dwbzui7XB2KRc4JIEGTVdNAHcozEu4wH37jg/jdXWbtr0xJvQtCjqPC9xRR1Mb2o7QOTEW7mcbX5nHPnMTVMLPzsDZnU2ys0B2M8T/85w9KDhPDOJL9J9Lwu6UqDsNu1PGTmbgPs8C3Bcfmu5zeJY/Bqa9Q9r0sT0xywcz8x+Wbh/5UF5e+Kpw6d2lYVfCNF0amHfkcId6QMAd5tIM3HfbAHcabce775Ivj9EiovvfWVo0sfZNPTId9hbYD0MGQtY8XwMHvH7LKygSL+O52ZoTUCGz8OT+4qALUcuuf9yxo+x9GZRoT0AAbG+w/UCxYX1TCY27xSqDWqeixce1IQL5PsaylLkK3Jk6ph5iaizMF7ifZQfuDNc1XPC6xMBdUhDv4eMKmin3IO9qx+6y6WWmMHNXi8xdWSF3vsx9CofcnQDuUpB3KfQy0ollROye6nzIXVSrjLR9U3c57puqOuAuerxdBcBdGgSvWOzuYe7uJpYRhblfFI6PPQBdLLDOm7ALhuzSc3bFona3aY4qt0PG5lrLIWdnY+5W4E71yRA5YjjtME0w0VAtUIRQ0pouTfjV8FZTa/qq+6HJV0KTB2LThyabmkYrK69FRkI5Q1FgMhmCttvc4ZBTvbRILwbcZ82CaoKKHggJaZhoqBitMJlMY7W1IUkDXsZzKLxs7WuKAXcqbScj9QX7yONLi5CdGIiws8rZndDFMHF2W8K+l31Q9TVW7G4/6r6TRtv/OMMqcLcA9z1/QcDd6wAO3I/M0ZzwMpzTRnUnZd+qqvnYONFY9bGquWVy0oT9l/0oO6gvCLYpWPKwVM3Afb8VuFO4+c8stJ24+t1nWV+wrCzMnbXhqv2+qYe/g80EdjBtt3bTm00Ps7LgaKFI8N/KnJqtOQ7PCyX3gxP7S7ePoNh+p0aDAXfLL4QO4PXJapWhhtxZb3EE+WSYO6bSfgUlCLjTNO4MrVMZmbsA7O6hzJ6hBl+/hORdYYYZD3OXhLlTgbtqmLtyxDKekLs0IXcxgLu45F2dzF2AWMaVrVMVoHGXD7jvlQy4T+V4u/T83XnyLr5hxhm9jB2lu8uZuwQNVN1ALMODuV8UEze7AzGXkqoLwevyQHZ3Qe18HTLONEelBdvto3YJg+0cHTISoXb2yzZrQgIBd7j0svHJEPF2mBqYWagNqENYYv6d/voefeS1yJJ3JSvXP03IvLl0xd26hvH3ZWXXIiKwXqk4zSTiw4hmkm9LCHs1fInM3AngDjUCVQaL42o4lqOPuBqR/iC9rmEsMO7yQsPZOdoTuMCd0uDUCtwJ2s5E2El4nULYadKYz6k6F6KRKWnYa4Jqg9pxzm4L2eft/Yt5/Itp2B6eBbs7jrrvJNF2i8Ad65j6Mzy1P2PA/V9wZuB0wQmc4Xtkru6kd0hbUvbtD9u3r3iyIutRVt143bstW9Ztepmd/wjOfOGrQm2XFmoAli1X4G65rkZTDt+MLlbRAkSrzLbnqmPgTu2bCsUJ2xHs26ufrYZSqRitiM+86R16cUHgmXkBpzGNe+CZJcFtwYn9ptbWrSNbb8THw6sE0c4XvQNjn8Uq84uNVcZ+yJ1G2xl9Mrw7pkoK3Mkhdzbmzh27e4CyZ4jO31VK3pWE3eXQy4jRRlVpzF1dDVSVL5Zxt+6pigy5iwrcRSTvbsDcRQm5K9gqo17gLrrA3RNvl5S/y4rdJY26c2ijqljmLprM3aUhd2mZ+0UfRYBshYyLYg7ebN2u15bvHaerOLs4qF1AZ1TXOmQkao76C/9gu2BdOxd7zN8dDdoFGw24w2XS7s/J8XaYC5g+qASoRr8OP32PPrg/OPJaZOKtxFXPVm3a9mbl+qeTJtOzVauuRkR0aTRQleZ4O6kj5V78xoNySUVyWFuZOwHcZ8+GSmz39b0WGWkymTIeZlSMVuQWPPaP6FwQeMYWuH/LAtxpohj7kJ0eZrew9T9RB4W5M6L2OWyo3fyj6YR9PjbIoXvzAdOPmfz7AErUncTcqdidoO2ET2YWdoTwUPCwcH6+wYE7nMx5Aae1UV2NTRPFr4sjrkZkP8oe2br1UXY2fCYh8yaM1xs2wOdhS4FVzAW4kxulIkSOAff9X6GrLCgtupHGFrjvpF7b/2x57wUB3A98g+oTNhzY7qAsS96VfKquzl33WBvVvTj4gpfh3ELDuUVB533D2qPScKVM1fur4eGwB0N1wf4EWw6q0v2478hslYGjwH+41SrDHnL/npdPxgLcGQXuVuBuebcHDbgf5QbcT9OAu41Vhitzd0jePfjYM6Tm71MYu6sx6u5h7mpvoOoe3VOnVMhdGuAuCnkXXekukczdCbGMyCF3hVllxNG4cwfuexQP3PdPbeDuNHx3hrxzx+4iRN2d08swXxGwYXcFMHflyNwlYu4e7C4dSRcHrDtqGyfstlIUzi480i4qahfukDkqgUPmkJgOGQHBdjEdMgJS7X/nNpiAu7VjKi5wh+dOJIhhvqAMoIYDLwcuvbu0+HVx5Whl3Vjd1pGtG15vqGsYm2hoeJKbeyMurj84uMPPDwoQygFlhw+Q7NjE7YE16otjx18tAmsU7IVJPooL3OFxevT6u0uXvt28edv7bcWlryNSr/qEtc/Xn5mtsQB3m46phFIGydmptJ3JGGPTm5QRsrMwdwep9j/TUDs5zG4L2Rf8+qU5j2+TymfC7nb1Mj99ZkbtZtpO9cmQgfvBaUt+h5MJZ9UY3wszW/WxKnow2mQy3U5KuhYZObJ166r1zxIyb47V1mY+zIRtB1Y0LEm47BEC3Pd9hV1xcQfu1L6pZOCO2vlivqMj0+GQYBPzbfeNuxE3Wlm5/cP28NSrfuEd3iFtS0LafEIvaqO6l664W/6h/Nnq1T0BAbC/wrYHNYZ+LcSmcadZZb5np+0OfTJcOqayAndLJ2FG4H6CBNxP0YA7x5C7Q+buGZIOYep8pdr2pYLv6iLvro26q425n/IwdxXK3D3dU6Vl7pxD7hIDd+mxu3zMXVEhd5dbZVwK3OGiXwTgLpJPxhNvlx++KwS7O6mXEU3pzsbcT4jH3N1bLCMFc1cdeb8o33CKqotO2AVAdqc5u3SoXR5dOz+HjDKbozrvkBEJtaOoBDFsL95owB0Oj+yTQU0pYUZgoqEyQ6+EmkymyurRj1VVj3NzH2RkPM3Le7t5c0PjeKup9c3GjffS0gZCQzv9/bF2qThwxzgm1dRBvihD/JFwyyDgDrMK0w4FAhUHC/FRVlZN3SfUMXXj1jfhqVe9Qy/O15+erTk+w5eacLcJuRPAnUrbWfLsrJx9Fw/azo7aKZF2MmfHIbtVMQ/HTG3lSgnp82bupIF/lQTc98JhYMB90cHvMOB+bL7+TEBMT3PL5ERjY0n5u1eFhd1abYef35VQbN6bmifHGxqiB6MRcIeFCbUBFcJLKYMouT2lDHnJ7PyMdqmPgDtRnwi4Y31T8QYDsEHBsQVcCih4WfBxx471W14Z4ns1kV1oGBP6NpS+rmsYvxEXByUKWzJsirCHQaUh8ZH5N0N/+ctuJo07I3P/notPxkbgztoxFX+Th7VjKk/gfpIG3Jn6ptoLuXuYu+roubtzeZnhuxTYXZVRdw9zd9cGqooXy7ike+q/uDH3KQ/cncTucjJ32cUycrROdRK4O2mVkR24y9Qx1RNvdzV8lwO7Sxd1nwrM/axA5u6CkLt0zN218P2ia4ZoSJ0DWxdC2IVCduk4O5s9RmrU7jKHzEHVO2R4oHY7kN1+bIIRuFsE7vCUkU8GxduhhAIvB657uW5N8fMXa9f2h4TAGIqJeZSdbTKZNpe9xb70fE1t/dizVasuBwZCtWIJd5xjIp8MJTVM8mzAydtDAPevvkLAHf4h5pNZsKBbq4XHL93+buObjfDB6w0blq646x3SNi/g1Cz/4zN8jxDAfdpigrkfMjN3QiljAe42SpbdZNROQeqITZMHFbvTaDu7q52O2pk5O36oX7MMkon+V8bnwsTcd7HSdhJwh0eDB8eAuzcC7qf9IzozVj+o+lj1av36ywYD7CuwJcC+ezspCc5/2fsyY58R9hkacIclw7tp6q/sTVNtlgxxtW/VuO/B3oGBSpQA7rApwTbo2+4b3B+M93k1JWXfMsb36mN7DHGXY5cPTba0vFy3Dp4XvHzBpgubIgbcZ80igDu5b+rP7MCdPsjxdiafjGOBu+UdHrbA/XfngLutVYbC3G1fizy43O1hujpZvAvIu3tgdzGi7lOFufNqoCoLc/eIZTwhd4UBd2ewu/KZu0JC7vJaZYRr3JUN3Kcabed1eDI9BenJO0fs7jjq7hxzF62NquqYu9QhdwnEMs4yd+cp/EWlDPGROme2LgSvC4bs3MLsGGd39OZkUSLtikbtkjlknA+2y6Zr54ra/2Z3EFdxJOCOrsTMwB33ycDTRz4ZmAuYX1iVW0e2fqqu/lhV1RcU1OHn16PX30xIaGqeyCl4nFf4BL6afDs55U5KS8vk49zcdl9fKBmUcIezjlLDiGAiKfaPOI7chYD7F1/sJRLuyCczY8ZJ3CfTazTW1H3KepRl6DXs+LjDZDKlr36wJPjCXN2pWf7HMODubVbKIOY+jZRz/9rrgBW428bbrbSdmmq3Re0WVM2BtrOjdmqknZRnt4B1lMr3OvANdZD0OFYfPVfmPvMnYvyJDtz32AL3eQGnfMLaVxc/y3yYCRPdpdXCFMA+Advb9aioHbUfJ5qa9D162FJgadOAOwHNacCdHHI3M3fSFTJaZcwdU0mrhgtwh+0FtibY9KBWtd3aiGsRLaaW6rpPMcuHQpMHIlKvri5+DvUzGB0NzwueEXpqUGYIuGPuI8a+qTYad0bg/gOLT4YmcLfTMZUVuKNrPV7AnalvKteQ+xRn7h6erngKLxt5Fz3wroSou+R6GQFtVD3MXeXMXYliGZ4h919VHnKXHbhLht1lYu4uCbnL2TpVRo27B7i7hLaLjtclf2qSYXfrS5D0UXfeehkJmDvDZY4g5u5ymbsLxTKSYHflDQl5Oh+w7hRet7nt43snJylnVxRq56RrF90hc8A1DhmOunZJUPvfOA8Sc6cAd7LA/V9/gfOGfDJQCZouTfNkc9rKe62m1l6jEVYYphlpbV23+VXM8sHErFumlpaEmwlBfUE5j3NMJtNlgwHK6igjcMepJTzjnSTgDqcfZgYmDb4f88nMmgX/HBboQGhoZc1o7FCsodew5vmallZTUEKfl/HcXN3JWX4YcP+ODNwt2P3bxYdsgfuf5zHS9l9EpO0cUu0UbwwZtWN4Hflw8PEtPqyfYZHkWJi75RnN+oX2RD6zjD+RfTLYMe+BI4THgcf81gLc5+pOLQluS8i6CTP4ZtOmHr0eJhq2tw4/v6GYmMmWlsJXhf6d/rCN2AHudKsSjbnvplxFW3Pxv7DSdvMFP2fgDpuzX4df4OXAuBtxNZ9qCja+TMi8mZJ7B57Uw8zM/uDgLo0GAffTVOB+0Aa40/qmMjN3m3i7Y4E76phqeWMHTeDOG7g77JtqY5XhwtwveJC62OOi8obaEbwM5N19sLtsepkpxdzVKHOXTizjCbm7iLm7CLgLxu4yMnfJxTKMwF2ikLsiNe504L5LDuAuQsfUfTyBuwJou6sgu8jPVxh5lw27i87cj0jP3NmA+0mRG6i6k1jGbZi7Au8Xxb23E3DfxvGGzBnOztceIwJqF1fXrgqHzM/8g+1Cde32Xe2cIu08gTtqSokE7nDOYdagSDRdmsrRyrzCpyaT6UFGxqvCQviguXkyNHkgIKYnKKFvS9nbrSNbDb2G1c9Ww+dvxsdDMcKcw7ztJ5QyloT7D5aEO1kps8/ik8Hi7XPnwlLo0mqvR0dPNDYuv7889U7qeH199tpHfhGdCwLPztGijqlHzD4Z6iAD9y8J4E7Jg1Mj4dxo++eWeDh7sJ1oi2rjaidS7VTU/g0JtWOQHSX0acMsyTloZu5Ezp2I7ZN/i2DPivMzAdzxjqkEcD9kAe4nFwWd18f21NR9MrW0XIuI6NZquzSaHr3+cU5OQ9NE7FAs7O1QD1alzIGvzR52qhbG9vKb3EDVuqx2f24/204LuTtUysDuB5utX4efvkcffjU87V4aFOqKdU8KNr18u2XLjfj4/uDgbp2u3ccHCuyMRSmDuvtC+RH9BlC5ogVNt8qQmTv1JobBJyOsYyoC7haBu2jAnSXkzny9o17m7iHpCiTyKifvImN3t2fuAvQy8jL3427K3FUmllF791TlAPd/+5//xn24FXNXkljGfawyO3lo3F0J3GWLt7uUtiuTs4twBqTD7k4bZiRSuruAuZ8Sj7krNeTuJHNXPnZX7D2fRPdwgu/SxOLswiLtDkTtp5k4uwSo3YUOGdGD7aI5ZKRG7WzXcozA/UccuO/6DNFMhDJhFmAqoYT8O/0TbyVikL1lsvpT9bJ7y+Dj0OQBn9CLi4MvwJ/wcX3jOHyy6mNVbf3Y9agoKFgoBMzUgfeiRKlhmsOd8MmQ4+1QUFDRXVrtUGzsw8zMt1u2rB9ej7CpMb53SUgb3jH1xExSx1SzTwb/4Lslv9sF7rtJAhZHwN2ZYLsj1P41BbWb2TrxLBgz+1Tm/qttcp/+WwSbp0MSuO9B0XsMuC+2Ancv4zn/iM74zJv14/VP8/IGQkL6goKuRUTA+d/0ZpOh1wAbLGwmGHA/Mh0WJgbc9zEDd2R3tF6N/0zB7pTVtIuJtttc/Juv7e0A91NzYYeElwxttzaoLyh6MDr1buqa52tq6j61tJqerFhxJyUFKhOeUbdWCy9iWMh93jzYxmBngl0HrtH2o76pCLiz9U0lmLvN7Qv5TsWhwN0hcP+NCtyPCADu7FYZtTJ3TzjdPUC82sm7W0TdFad0VzBz94hlFNE91RNyZwXu/9e/8RgS8XfVMXdJQ+5itE6VzSojXd9UcYC76D4ZldB2daF24SfEVdhdcNTdPZi7bDL3814uCLnzv3XzgHXJwTrLjZozN2Tc77q43FrJF2kXjNrF07Ur2SHDBbVzd8iwdkb9xx+Eo/a/sgzqt1GAu6VjKhwwuWMqnFusY+pxrGOqpksTfyO+5F3Jp+rq8qr3ZZXvI1KvLg6+MD/g9Fzdyfn600tC2hIybyIi/3bz5qvh4VDdUCAYx6SZOnBZB0KQu3G3BrK3H8Lt7VA4UJsdfn4v162DR9taMQIPWFP3aXXRs+hlg7ro7kVB54mOqd95H6a0S8WBtTkS7nXwa0rHVJskuK29fRYzaudA21lR+5csrnbbVDsJtf/+nTdlUJn7AYoqh1Esw8jciSdCBu4LCOB+mADufuEdhvjeFeueNE023U5OHoyJub98OcxF3I04fY8eNl7YW2AHgIUMaxOKBFaZLXBncCuRr8lpi8jyPQyo3T5w34f/Wui3aXAwsBfB5gb7trZbG341fNn9ZUXDRTVjNc2TzabW1lYT/N862dLyvqzsSV7eUGzs5cDAdh8f2EFpfVPtA3cKc2eKtwsRuNsCd4tPRhhwZ+ib6jDkziiWkZ+5u1RE7sHorkHwHuyuwqi7Kpk7L7GMGpm7RywzVUPuPIE7O3+XG7vLxdzdJ+SuNKsMR+D+s/sDd3Wg9n1iDOngu6jknQt2dzLqLprSXWnM/Yw95i6uWEaq7qlCb+w8YF2heF0QZBeNs7sUtXPtjGpf1646h8wufg4ZB7p2sVD7XzkMR8Adjt8WuMMsQ7EF9ASUvCt5VVj4ct261UXPQpIGvEPacPCNidTxfpunfcPaEzJv7vi4Y+ObjfeWLYNFBoVzxMIx9+F3Mnvxmw0CO/6L1it15kwoOlgf16Oito5sjV42uHX7SOlI6buSEpPJFJ9xQxPZSQjczT4ZC2H/luw99+IocKcBd4ZhRyPDGGxn0rU7QO0YbbeE2S2Q/fB0H8vwPkxj7rZiGXshd8TcrU/nFzpw9zpABu4LDWd9Qi/qorsjll4rLn09snXrg4yMT9XVK56sCL8aHnApADZwqAfYHGBdT/t9GqxEZuD+02c8hk2qHV3/U24BbIH7v/6C9fU98A0SH8GuBfsqHGHavbSxujooGKjVR9nZz9esaWqebGyaWPl0ZcbDjJXPVprw/96XlV2LiGj39YUtE3Y1ZJVBhYpaDvxCBe4/MgF3B/F2mk/GEXAnBO4iAHda31TBIXfpmLsHrHsQvPTwXVLyLhp2d0nU3cPcXcjc3VQso+Tuqe4dcncOuDPBdw9zlyrkrkCrjNsBd5lpu3KD7ftkHOLCd5mxu5xRd1Uxd34yd5WLZUSH70q+35Ltbcai3Gnxva/y4nZf5SxndwVqd9gZVUUOmc93f+6UQ0aYrt0hav+bE6jd5qKOGbj/ZAHueynAHWoy/Gp4U/PEUGzs3dTUiupRXfSlhYazszUnZvgembbktxk+R+ZoTywyng9JGjCZTNtGtk00NbX7+EBlQS3A9JqZ+1dfke9nkEnjgCXbDt8J5QaF3KXRvCspaW6ZhIdKu5eW+zj3ZUHB05Uri0uG/SNJAnc83m7OfePRbzQszUUZM+B0gfvnDlG7kGC7FbV/xdIW1dYh850l2D7dQtvhrMLpxbU5ZuaO/2qBf8id8qRowH0fAu7TScDdGwPul8JTri7Nu1tW+f7Nxo3bP2zPeJAROxQb1Bfk3+kPWxlsGrDeoTwYgDt5dbDZ2Hdy1i798B8OgPtB/H0YuPhI06XJepRVWT36qrAQanUwOvp2cjLUUv6GF+u3vCp8VZhwMyHyWmTU9ai8p3mNE42tptZrkZHwSgXb4TG8UK3vxmAH7j8w0na7Phm2jqkU4E7qmCoYuJ+kAndC487JKmNXLHNBnZzdQ71VzN+lJu8Kw+6q0cs43UZVTcxdYTJ3V4pleIXcp5RYxq2AO5W8y4TdZWDuAsQyEofclW6VcaZv6s/crDJCgbvDjqmiAXc10vZ9ihnOnz2RsLsIUfcpwNylFsvI0D1VCuau9nspmZtniXhfJeBGiuM9k8MbJuGRdg49UZ1F7cdEQ+2w6anLISN+Z1QuqN0GphOxCdpwErjDXENxxt+Mb2k1PUhPf7NxY33DuDaqa0Hgmdma4zN9j87wOTLT7+gc7YmFhrMBMZdKt78zmUyPsrI6/PygBrGOlNOno7s1dFtlfSHFRdUw+fAN8G0ncdoOK3ggJAQeYeObjQGXAnw7fGOHYj9VV79Yu3Zb5Xu/8I75+tOYT8bnCOFqN0N2nLMTqB3BaIZ4O5EBZwfuDlC7LW23o2snULuXLWonBdtZaDsO3I9YVfWLf0MNVBlM7nNtQ+505k5E9RmB+yz/Y3N1p5BSJjixPznn9pri59sq3jc1T2I+FpNp+4ftuY9zw66E+bb7YlYZS99UWH1QLVAzNODOuC4YB8O7QGxvBKjAHRYvBtz3fwX7AxwGbFawRUOVTjY3DxcX94eE9BoMV8LCMBlOa+vSFXeXr7oPTyHxVmJwf3Dg5UBjrzHjQUZt/dhoRUV/cDBswLC3weYEV2SswJ1klWEOCDH5ZGgCd7aOqTTgfkhE4G6rcbfL3C9Iytw9bJ0YLtQEqu6CUQ2Bd9djd7S0Pcydv8xdCcx9qotlplrInQrcnWfuEgB3UQLvMjP3/8+lzF3ZVhlJNe6uAe7O+WSc58WK64+6T8FDMvIuMnZ3IuruYe5yiGXaZBLLqBGvq5KtO0fYuUN2cTg750i70lC7uhwyAnXtEqN2Ns7OzNwFAPdjmMM98lpkbcNYfeN4xWhFRfWoJhID7nO0J2b5H4MxW3N8ru7UQsNZ/8jOleufrnm+5vWGDZ3+/pisY84cKA2YfJht8g0bIolQIwi1Q83CaoA13aXV3kpMnGxuhp/o1+EHyzzsSpjJZNrxcUdOweMlIW1zdSet8XZE2xFkt3B2K4bGo99me7utT8aCpJmGFbWzamTsBtsdO2SYjO3TrSYZM22nAvffKSZ3/CkTVhn0NG2dOVyBuw8G3OcFYC7+oIS+dZtfjdXWFg0XFb4qHK2srKwZXbHuSfbaRw14X1yYGtgeMavMkRkwl7AS6cCdELLTFDE/OBosuhZ7wP3Qt3AYsKf5d/qvfrZ6R+3HodhYqL1une5aRMRYXV1e4dPItOsxywcbmyfynuYF9wdrujRQWoZeAzyX4pLhJytWwGsabIRQjVCZ+8n9Biw9fh0Dd/LdCU3gzqdjKiNwP8wLuLP1TXUm5C4Kc58ieN3HR/VDsZeTyg68nxcLu6tCLzOFmbtrZO5uJ5bxhNzVANydD7wrjLkL657KC7gLDLnLZpWRQOOuKOAuTrxdRbR9n9qG4BOrBOwuInN31EZVUubOcM3Fn7nLKZZxKuTe5oaEXU62LgVeF0zYeUN2Jzi7nUg7L3uMiKiduTOqi3TtrnLI8OqMKjJq/29uF3Vk4P4PJuD+sxW4o3aUMLNQVNoubfqD9PIP5U3Nk8tX3ddEdS00nJ2rOzVHc2K25gTqm7rIeN4/ojN/w/PGicbRysoujQYKGSoOKggqBd0xml98cGgIn4fahAVx0ccHvrlbp+vR6wdCQh5mZu74uAMZwwN6AjIfZr5at2518fOAGOSxwdulong72R5j4ewk1I6y7ZR4uyPgTkHtn1tRO7NGxibYzuyQYUHt1mA7Jm0n03YCuOO0HQF3+GarQse+VYYp5P65I+AOJ3ZB4FltVHdRybDJZEq9k5p8O7n4dfGLtWvfbdmyuuhZbPpQVNp1+FKLqUXXrYOqgNqACoE6YQDuO83Ana2HAf0XUd/b6/BEAHd0JQ8/yFyi+60lGtQXhFz/N+Lj4RUDaunpSkzXHrn0miHuclBCX8bqB/Xj9VBXvh2+sF37d/pnP8reVvn+aV4elB/snVCTsBXBBmML3HfaBe4/chC4s3VMFQu4n6AC91P2gbtLmLs7QXY3oOqKBPEyw3cJsburo+5uydxPSsncPTL3qRBy36fykLvrgLsz2F1c5q5ksYzrrDLOatx/kF7jriTgrkDaLgS471P/EJW8i4jdBXZSFaqXUQRz5ytzd1XI3c2YuwsJuwxs3ekAuwDIziXMzpWzC7DHKAq129W1szpk9ivXISMtahfA2dmu68jXbxbgjq6+zEATLo12U4A7TC4UD6z0iGsRDU0TT1asaGmZNMT3Lgo6P19/eq7uFEbbA057Gc4tCW7zj+hMzrld9r7s6cqVXRoNVD3UJpQb1BdRRMdxPngaR+0dfn434uJeFRaaTKa3W7bcTU29lZj4fM2agpcFsUOx8BNT76SiFpdhKVcWB1+AHzfT7xgWb1/8G2ZWwQC3uXcombOTgu3stN3Mo0ljNnuw3Z5Ghhpst0Xti+yjdmqLVAK4+yDazgDcv7XpCstklaF46qm/TtjNBNyPzNacgDmNXjY4Xl+fdi8tuD847kYcnPl7aWl3ly6t+liVmHVLG9W9cv1TKAP4EmxWMJ2Yxv3AN7AGYa3BykJNUynAncP7PNjuERiBOyxSK3BHvxM6NhP2xqC+IDjarPxHL/Lz76SkvN6wAeowJecOHLNvWDtUJpQQfEPhq0JttxZ2Y/iz1dQKzwU+2R8cDPsrAdxhIyGAO1r9thp3W9rO5pOhCdztA/eDIgJ3do27g5A7m1jGmQaqKoXsUxOsK4DCy0nelYvdZdbLyNNGVVLmzkvmLh1zd1+xzCFXMHdPyN1hyF0u4C4DdleqzH0qWmXcD7g7HW+XCLUrk7Z/Sf5N5T6ezWZlIO/OYXcFRd3lZ+6nVMncnQXubVObsMvD1kXC69wbn/IKszvD2R3bYxh7ooqI2lWia3fokJFE1y4Rav9vPoMduKOjYgXu+7+GSYEJhQqBSg7qCyqv+nA7Kal+vD4p+7ZP6MWFhrPz9afnB5xeEHhmkfG8dwgG3JeuuNs82fyupKRbq4VlB9UNJYxum5FgGqoYVlKnv39/cPCdlBR4tE81NTkFj1cVPWtpNb3ZuPHNpk35L/IzH2Zufgv/b66tHwtNvgI/br7+DIq3T1vy+7eLDiHi/CUp4k3j7NiYw07b7Y3d/DQyJIcMi66dHbXb0PbpFNqOA3dvG+DOqHGfx2TOoaT4rb9IsAXuc7QnloS0pa9+MNncHDsU69/pn/4gHT6+EhYGM/UwI6NurK5g00uogeHi4oSbCbAZwi4BC5zcN5UC3ImlwbQcHKdz2ID7L9glOixwWP6E9Qg2yYBLAWuer6msHh2trNzwegMUYVb+I01k56Kg81Co8CcUZ+HmVx937Njydkv41XB4CiaTKSn7VtNk07XISKjSYzhwP2AB7rttgTtTyP1Hdp8Mq8DdtmOqKMAdZ+6n7GjcWawycoTcVcHZPfRckfxdvYF3UbC7q6LuU4K5q07mrjqxDC/gLilzd+uQu7zAXfnMXVyxjGtD7uIBd3GsMvw17nICd0nj7dLRdn7AXRaq7syQAr47hd0lirqrirlLJ3NXU8i9TdGQfSrjdQExdu5hdoecnZM6hm+k3UWoXVkOGf66dspVh7yoXSBn5wjccZ8MdpVlAe5YfHgPBtyRIBvmEQoA6k3TpTGZTOVVH1omW9JXP9BFdy8OvrDQcHZB4JmFgWe9jHjCPbIzIfNm+fvyR9nZ3TodrHi0hhB2hz/h43Zf376goE/V1Si63jTZlFvwODDucnzGjey1jzaXvR2rra0bq2tqnly78QU8miHusk9YO26wOYni7bhM5qCtwdzK2c3ceY9VCMOZtn/BXyNjxyHD2BnVDmpnoO1YvN3icGcG7rSTwNwb1uqTMQP3vbbA3TukbUftx6d5eVh/1Ce5MDt3UlM7/f3htaJbq32Rn186Utpqat3yDgPWmMb9xBxK39Q9mFUGA+67KMCdvCIYVgHbLcP3luJEviP8Op8icN/3FewVqK8v7KLabu3Su0urP1XX1H2qqR9btf4Z3mkAKxt4aqgfbFBCX+1YLdZJ1WQqGi5aXfwsK/9RY9NEj15/xqKUQcAddg7YKtCWQAbuP9qPt9v6ZNg7pnIB7r9LB9ydC7lfkAy4T2W83i72cDP+rtLAuwjY3cPcPcxdauauxu6pnpC7y4C7YOyuBOauwpC7HFYZJQF3l8XbXUTbeQB3OQk7l21SUgTPfSJch91562VEbaM61Zj7Ej73oC6+15QZsqtHDuMkYecN2cXm7GpF7YccoHZ1OGTYjRmuRO0swJ2xYyoNuKOOlAhowqRDFcFCCx0IXfN8zbvSUpPJFJs+5BfesTjogpfxHIxFQeeXhLRpIrsSsm6aWlsf5+Rc0uku+vigTRHxO9h+4JN3ly4drahonGhcuf4pPA4mfK+oaGgcr6wenWhsLHtf1mpqhY+z8h9GLxsMjLvsG94BDz4v4LTV3o7j5q8soJkQtf+ZBtlxzs4n2E7RyNil7XSNDBFsZ9S180Lt7MD9NwbgvpARuO+hAvdfyHp6O8AdZhOmFSZlrK6urPI9fADzhYn4582DP7s0mrupZsNPzGAM0TeVrnH/2axxJ3wydNpOFD8tuENj7kTCnfhtENUng/1C6OC3sOHAlgX7qr5HXztW+2z16snm5qTsW9qoroWBZuM/nM+Zfsfm6k55h16EuoLjf1dSUj9eD2UGHw/FxkKhwnPkBNxJzN2Wtu8kv8OWXeBO65iKLioPCAXuxzkDd3tWGe4hdwFiGYWgdnfB6O3qRfPqIe/iYndXRt2d08t4mLuSZe4KF8uovXuqikLuLgLuFuyuRuYuQsj9Pzkz9ylglREC3H9xAXAXQNulRu08gLtEnP1XyYYo/N3pwLsohhkhUXc3Y+78xTKsV6bn7TJ3qUPu0t10ygnZVYjXBRN27pCdH2cXjNpPOha1W1H7cfFRO0bb+aB2NTpkZEDtXDn7fzENlus6OnC37Zi6E79kIgP3fV/BjMCswSxDhUBZ+rb7xgzGmEymka1by6reByX0+Ya3LwlpWxx8YUnwBZ/Qi9qo7viMG5vfbr6/fHlPQEC7r+9Fy67W6efXFxT0KCurbqxuVdEz+J7yD+VR16PCroQl3kpELTpT76aufr767ebNw0VFm7a9iVx6TRfdjdw1c3UnZ/kfm+6D29uRTMZGXE6F7Dw4Oyfabl8jw+KQ4SqQ8aUOEm03C9xZgTtj39Q9TO1hyU9zjw1wx5qmehnO6WN7Mtc8RFM8GBMDOzpsJLD6YReBnXIgNLSl1bS57G3O4xzY7WGHgQ0BKoSwypg17gi47yQl3Gm0nS2+Q47pWIA7s08GF7hjyqPDWHHCBhsyEFLXMHY1PBxrlJp2DTf+n5zhexSdNHiCs/yPLww8q4u+lJp7Z0Pp68rRyuH1628mJPTo9fCSAk8TtjTC4W4L3Mkh9x+ptJ0Wb2cQuDsE7qSOqeYrPotPhi9wJ5g7M3DnbpURMeTuQtruQeqKBfHyXNu6F3aXVS/jXBtVD3NXlMzdbbunekLuZuD+f/6b46GcqLtYzP3/lZu5S26V+ZuLrTJ04P6jUI27K4C7h7bzQO2/umI4Cd+dC7xLi93F0stIx9wlbqCqvpB7mwqd7JJCdinwuvA36HrxDQtxuV9xlrNzi7RLjtpdp2u30nZuqJ2fQ0ZAZ9R//IEHaucVaf8vDoMNuNsRuP9ITRBbgDvBNKEeoK5Qq8nSkdKGiYaJpqZVRc8McZf9wjt8Qi/CgA8CYi7FZdyorvt0d+nSy4GBnRpNh58fjG6d7kpY2HBxceHmV5WjlQUvC4L6gvw7/WGBo2UFW5buki7qehR89VFWFkpSJ+fc1kZ3e4deXBB4Zo72xAzfo9954/F2XCbzl/ks1nJBQwhtJ2lkSA4ZQtduRe3T2dqi+rIMMnD3FgO4k5/pHCpwX3iA4NEL9Gf8Izqz1z5a83xNzVjN9ago2IBhp4HNA/YYmCiYU+QCSryViAH3U3OhMGCxQ5HAmiVC7kjjTjRNpQF38xKg3lzYB+7Eb4OwBgPU3wbBXgR7GpRQ2JWwku3vPpSXQwkFJ/Z7Gc7N0ZzAjf/YSfvOG57gsfn6077hHVCiky0teU/zmponBmNiOv39YauGfRG2NNiZiKapGHD//HMzcKeF3BlvR2zj7TSfjKOOqWTg/hsZuBOXZmzAHWfuJ237ppIvkfhbZUQLuctM2z1sXXUUXtnkXVmGGQ9zF8rc3aqBqqvFMp6Qu0QhdymBu9QIXkbm7gKxDPeQu+gad+VbZbgA958VDNxdSts5AXdVc3bO/F0weRcfu4utlxFB6T6lmPsFuZh7m7SQXQTOLhFhP6+sALtTkF0yzi6mPUYG1O6crt1Jh8zntCtTxmC7oM6okqB2Zzi7nUs7NuBOE7hbEsTYJQ0JuMOcYljz+GyoRlik+h59+oP0ka1baz7VpOXdM8T3aqK6/CM6NZFdgbGX49JvIPd3r9F4KSDgkk53OTBwMDoaPlm6faRitCLqepSuWwf7FawsqGRUllDw8Bn4EnzbYEzM1fDwt5s2lVd90EV3I5/MLP/j1ni7WaLCpE+htwm1Hdastxi0/SAjbWdB7XYhO3XICNz34zz695l+x+YFnPIOuYgS7vDf/eXLL/r4wJZ2Gse1sD336PXw+aqaj+FXw2Hbh+mDDQQ2BLNVZt+XsB6tVpmdnzEDd3L9/41elhSlDEtxmjv6HsQr8+gM2OJg1w3sCVz7Yu14ff2a4ue66EsLDWfnaE/M9DuKnDxwSqGE5utP+4V3FJUM57/IR+/VuJ2c3O7jA08QNkLYzOAiC/Ye2FfEAe4knwxjx1TJgbtdjbt8IXd5aLsHr7sBgp8a2N1lUXd5lO5TgblLJHN3Y7GMdCF3G+Y+BUPuQoG76PBdbcxdvpC7LBp3mawy4mncZQLuguLtstF20YG70jk7B/guH3YXFHWfdkgmvYwSmDujzJ2HWMbVIXdOzN3h/Wgb76G4JLvy8LoAwi4WZKdwdhEj7SKidlE7o1ppu6p07fKhdhuSTlzFMQ5W5k4C7ow+GULgzgDcD2K/zUUhdygwqGHYCgIvY3CzabLp044dmWseBif162N7YBgT+rD48OTk3dTUgZCQXqOxPzj4ZkJCy2RLS6tp1bNVwf3Bmi6NT7sPrFNYBVCiWKUdmQGPDA+bdi8NvrNHr4fxZuPG7Tsw4I6T05Mz/UjxdotMBiPLBFbGefqf2AeFuVMYtN0uqXZoO00jQ3XIkFA77o2hI/WjTMMRcF/MCtxJOnurYIcrcF+EgPtROM9exnPBif31jeONE42Pc3O7dboLFgV/u48PTOhoZaXJZArqC4LdG/YrNIOw8DGrzH7MKgMrkWKVQUuGkCyx+JQoCXfaey9YZEfm914cxcoSdmBdt67sfdmTvLyS8neYwN2sIToOzwsfx+ZoTywIPBMQfalurK5ouCjiakRrq+leWhq8sp3CtTmwgcG2tI8JuNOtMkz3Imw+GUaBO2PH1ANUgTsduBOXYE4A9zM8gbs4IXdJabsbEHZfX8mH6vi7pOTdPbD7lGXuVOAuJnOXRebuEct4Qu6KBO5ikXdeehl1ydzlCbkrzSojpcZdIHCXPt4uJ213DNydoe2/qnBIQd6lwO5iRd1Vx9zdL+Qu3lBQmF3sDLszfhhnCDt3yC4dZ1cNaj/EjtpVqmv/J7uunRtqt2eP4QPZWZm7XYE7G9PErn/2UIA7zJcZuB+diYXcT82Dyve+6K3v0afewcQv23d8WFP8PHLptZCk/tDkgfhMrGnqvbS0a5GRMDA5TGtr3Vhd0u0kQ6/Bv9Pf56IP7Eiw6BCuRUUID+vT7lM7VgsPeD0q6kZcHHzQ0DjuH9E5X0/E2w+hXqmYTIZM22lsfeYubMzaxc7cWePtOG3fw9ollYW22wTb2SLtGFWf6XvUgoBJw5a5Cwfue/9sBe67uQN3+OmzNRiS9g1rj8u4UTFaAVMAM9jp79/u49Ph59el0VwJC4NPbh3ZCrMPLw1QCbApwfRBediG3KGi2KwylJz73xloO3O8fY/F3k7E24/MgJ8O2yAciaZLA8f2cccO+FMb1e1lPDc/4PRc7Ul4UrM1x+doT8wLOLUo6Lwxoa+lFcvvNzRNNEw0wBOEVwDYMpHA/QBP4L6TJd7OVeBOBe4H5QHuvKwyjkLuzgB3JXB2d4DpyobyLoTv0gXexcLuaoq6q5e5u7HM3Y3FMmoLue91achdVODuPHaXn7krLeTuvlYZ1wJ38ePtrkbtjoH7lELtzpB3SbG7qFF3hTL3Uy5g7ooLuauds4tL2M+5jLALhOxCOTunSDsHewyjqF021O6krp23Q0YKXbsUqN1RpJ0O0//T7rBl7ozA3b5PhhC441iTDNwJuAk1BnULK8jnog+yrld/qq4YrSgpf5eUfStm+VByzm2TyfQwI+NWYuLDzMzxurotb7fEDMYYeg1Ytv2iD2wIsIphKcHjoEpGwFTbrc1/kb+1YuRdSUnpSOlkU1Na3t0lIW2W1pe/f7PoIOqV+ud5NrQdQXa2Ycvc7QH3vX+20HZzvH3BrxxoOy3YTkbtOGf34zDIzJ3QuPMB7n9BwH2uHeC+mxm4L/kdfuhszXFEpQNiLm3f8QHm8c2mTf3Bwd1amBxtj14/FBtbUT269O5SXbcOTSXxNgXM5H7wW1jImMkdhdx/pobcbZi77V2DlbYzthbAZTLwI6y/BDo2E3469kugcwv9OvxS7qSM1dau3fgCjn9x8IWFhrPz9afhGc3VnYI/Fwae9Qlrj0q7DrXaPNkMz+51cXGXRkP4ZGCvgj1pH353jQF3fP+wAncLc9/JFPv5ibPAnaFjqmKAO7+QO/eLHXGBuzIhu4rAuutAvELJu8qxu4e5S9pA1QUyd3WJZWTvnqqCkDs7cN+rGuDuJHaXi7mrKeTu3lYZQX1TXQzcBdP2AxyGvMBdDtT+ry//wm0vVBR55zJ9DsXuAqPuvJi73TaqrmTuvGTu4oll7AN3K3NvcyVzVwRnFw+yK4Wwc7vP4HKHIZiz8420Kwi1S69r5xRsdwa1fy8Zamfj7P/Jc9gB7lRxh0OfDCKbNOAONQMFBmUJdQ4L06fdR9etCxkISbub1jzZ3NIyuWLdk4zVDyqqR5+uXPl89erGicbcx7nR16ONfUb4Tr8OP++L3qhRKrayYLHgOzb81bfDN+p61Prh9SaTqXastuRdCXxgjO9dEHgGi7d7H/528SGSTMbsbSdH2j+zGVTmvovC3LnE28m0nQTcLd52K223aGTMwXYyaqci9WMsw/o95Jy7feD+DRm4L2AG7l84Au7wb+EZWRLumOV8rg4D096hF40Jfdsq38MsPMrORnYg+PP+8uXwGWTh9233RSF3TMR/fDaUB9QJJpbZh4ll0GI0i2V+pDB3+tr5Bzttx6/qUWXSGvkiezv8XFSNWAm1+0YPRiP7fGDcZXgKi4LOLzKeXxB4FqpooeHskuALhvjehsbxFU9WNEw03E1N7dHr4RXmJOGTsXRM3UtNuO+yAe70Qb7nYPLJIIE7Y8fUfYRPRkrg7ozGXQSrjFi0XTmc3Y3xulwI3j2wu1Ki7h7m7irmLr3M3TViGbfvnuoWIXfpgbsz2J07c5dB5i6ge6o8Vpm/qtMqoxbgLi5tP8BzOA/cXUTbOYJ1AUM+8u4Mdhc16i6C0v2oPewuG3PnLnOfCiF3F3N2kSC7aHhdEGHnFWPnHmaXiLMLscdIgNphq+GF2tXikHENav9PJ4Ytc7cRuKN3HNJCxGSfjDnevv9rZMpGrxdQEsgqA9WIQu6wUfi2++q6dUF9QTGDMVkPsxonGnfUfkQp9crRysyHmXE34kKvhBouG+DbMJ9Muw/sNijkjgb8VdOlWXZ/WX3D+JMVK95u2bJy/dPknNuG+N5FQefnaE/M8D0ybfFvX3sd+HLBPjptJ1D7jJ/oYyYaDDl3slXGTrydUSbzDR5vZ6ftjKj92CwY/qyDht1FAu577AD3PyPgPp8O3GdrMOC+IPAMnHnf8I6QpP6ikmFTa+uDjIzrUVFDMTGv1q9H9nN9jx7ZgWAqYZ+0imUO4WKZX7+EKoJViYXcd31GdE81u2W+t/eGV/Rt9N8D7fkCXadhMplDVpkMairgdR57vYaDCe4PLv9QXlXzMTix3zesfUlIG4xFxvNexnNLgi9oorqWrrj7vqws72meyWTqDw6G1z0s3j57NvLJwEYFG5IZuOP7CnaLYAHuP7EBd9oNBztw59Qx1QngTjB3+8CdrnGXwSojCnB3IWef4nhdev4uJ3l3Y+zuYe5KaKA6FcUynpC7q1unSgzcBWN3cZm7QsQyrrLK/F1tVhkZgbvz8XaRUTtP7O4McBeLtksH2SXh7xzJu9jYXY6ou5TMnX6lI6fMXeyQO1/gLhZzFwW1u4qzK4iwiw3ZKZz9FG/OLjzS7kjULhy121yGc+2MKkjXbqXt3FC7WA4ZaVG76JydF3C3jbfvYo23E8AdS7iTgDusGlj7Phd9/Dv99T36kIGQ2KHY5feXr3u5rmaspnasdv2r9ZkPMxNvJUZdj4KvGnoNAZcCNF0a+H6/Dj8Y8IHuki50IDTlTorJZPqwfftQbGz9eH1s+pA2qmtR0Pm5OqxX6rQlv33jdZCkbrfSdmbUTsfudObOBNztxtvptP0gjbZPp9J2i6Udw+gksH6caVi+SmbuRMjdonG3AvclCLgfchK40xPuiwmHO6aUWRB4BiPUIW2ayK7Q5IG8wqflVR8e5+TcW7ZsrLY262FWzGBM2JWwoL6gwMuB2m6tT7sP7MCwjyHmDgUDa5wilrEwdwK7U9bX99ZUuzVbQ6PtJHU7JpM5Mh292QJ+KOzYqLcKlCIcD9RP3XhdeOpVTWSnd+hFjLkHX4AP4LnEpd+AMmucaKypH3uYmdnh6wt7P2yrsC/CVscI3H9BwJ3JKuMg3m7XJ2MPuFv2UVGAuzxWGQHAXQbU7oHsauTvSiHvrsPuHuZOY+6nXMXc1SlzV3L3VE/InZdVhlfIXRbgrmDm7qxYRraQu1tYZQRo3IUDd2c6popC2w+IMYQBd160XVWcXUz+7jx2PyAIu8vP3I+oh7nzFMvIFnJ3krm7DLW7FLI7g9eFEXaBkJ0LZxcj0s7dHiMVane6MypvXftu+XTtLkPt/8vRYLrGYwbuf2cA7rR2qTR7uzXefni6WSljA9w1XZrAy4FhV8ISbyXmP8+faGx8vWHDpm1vsHA0/t+mN5tyHuek3kmNuxEXdT0q8jrWTTXhZkLq3dRVz1Y1NU+827JlrKamYrSiYbxh3aaXqOMlou3feZPU7ay0fecfSeMz82Bi7g6A+16EoYl4O10mg9Tti/F4OzNtJ6XaSZx9toZ50LA7wdylBO42TVOtCXesaep8/WkkYFkcdME3vF0f2xO59Frmmocwj68KC+HPFU9WZD/KXvN8Tem70vIP5TDjybeTjb1GeCWCqoANB6qFEMtQmPtPnxHrzt4VPo7abWuS1igVqY1gH4Y6RMDdt91X36Nffn/5+23bYtOHAmIu+UV0+Ia1+4V36KK7o9Kuw8FnPsycbGkZionp1GjgZQS2YRRvh+0NE7iTgTuulKEBdwbmzjHezgTc90kG3Hlp3M9KrXF3Mt4uG2f3gHIl8Xc3we6uiLoLVrpPCeaurgaq7to91RNyFzvkLhdwF4bdp0LI3WOV4dI3VSHAnSNtPyDqkAC4O0PbFcXZRYDvXALvPLG74Ki7AL2M2pk7d7GMy0PuApi7WKJ2OTm76gg7L8guMmd3LtIuM2rn2xlVDl37LpE6o/6DmbYLRu2OOfv/4jn4A3ezT4Yp3m6WydjS9qMzUdNULFaMW7NhJ/Hr8NP36MOuhC27t8xkMk00NDzIyHiSl1de9T4t715Kzp3MNQ+3lL9rbJ7YVjHSamodb2iorvuEidrrx17k54/X13+qqXlVWLi57C3mf1/zQBvV5WWw0vZvFx38mpm2W1D7dKZhw9zJIXcKcKf6ZDjE2820HQPudJMMHbWT2PoJpmGD3YmcO9Uq8x1ulWEC7gdEAO5Y09SDhFJmnu7UAj0B3Dv0sT3hqVdhHlcXPdtR+7HmU01Lqwkmt6hkeP2W4cqajzCnMIONTRNxN+J8O3xhD4Q9h8zcYdki5m7toEAsRpuLebO0nSQ4stJ2srfd8isfhNqhDn3asXdaBF4OjL8RXzlamZxz2xjfq4u+pIvuDoy7HJs+BCVX/aka/rwRF9fp7w8vR7BDn8Dj7VyA+y4ycCeNn3gCd0q8nR24W+IQigfuXELuctF29+bsHXaHG8N3eci7uNjd9VF3eZTukjJ3XmIZuZi7OMCdytxdFXI/7Am5Kz7krlTgrkjmrsSQuzzAXTlWGf4ad17AnZ9Phlu8XSbaLgFwF0zblY/aRSHv8mF3nlF3vkp3ZTF3xgaqYohl7IXcRW2dyou5uwa1C/XGqMgSI4Cwc4TsPLwxAiLtgkTtkqB2FenapUPt/y0UtTPBdOK6jjbsMXfiAo8K3K3x9n/+gVmTvdcskzGr23+fhlA72tixWDFZ4N62BCHOuKG48g/ltWO1r4uLbyYkDMXGotaaSdm3IlKvhiZfCUu5Er3sekrOnbUbXxSXvDZZ/qsfr8/f8KKpeXLV+mfBif2ayK4lIW0L9GfmaE/M9EW0nWiUuveLOXustB3H6H800/YfbYYZu1OZOy3kbg+429jbD3xtK5PBU+cstJ3C2eHpMA4ydidy7rSQu+TAff6vcIbh0eCRLU1TT87Xn15owJQy2ihMKZOae2fztreNE42lI6Uftm/fuPVN+uoH8Rk3wlOvhiT1wzfkrH08WllZMVqR9zTPt90XtjgoGNgoMJn7vi9Rzt3cQ/Vnpt7FpGFF7bu/QF1S4RFQl1QoRahAKD/YorG3VuCEXdOl0XZrYei6dfoePeolAKWVsfoBVF1QYl9I0kByzm1Ta2tj88SbTZsGQkM7/Pww2j5/Puy7sInC7ghbIHfg/hMLbWf0ySDgvodd4G4L3A/ZAPfDNOBOXFhJB9yZmLsLgLukqF3B9Fye4f7kXf3YXQV6GeUwdypwP+U2MncScD/qTt1TPSF3UZm77MDdhcz9/5Gwe6pEVhnRNO6qs8ooELg7pO0HJBu8gLsEtF1kFL6X23AJfJcRuwuJuoukdJecuXNvoCqlWEaKkLtD5u4q1C4bZ3c9YZcIskvP2Xmj9sOKQ+3K17XzQ+229hhunJ0NsjvA7rYhdzbgTvLJYPH2n618E8lkrLT96Ay0e///7N2HexRXmi9+P3Pv/u7ujsdm7ME2OUgIoW61upUziiCJKJJIEjlIIBBRWX/D7s69Ozt5PPaMccIBAyZngbIIImeTg8lRUj+/t+p0V1euU1WnqrtFz5yHRxZCsepU9ae/+r5of2a0HfaiiJaIpJNJk25Mcjqd3bW1t6ZNO52SciI+viMx8eKoUS9Wrcqdcjlh9InojKOR6VTQ2JHWBi/Af8ZmHYvNPh4/6gS8AK+JGNliSWocHlcfHH1giGPvQNuu/tYdfUd4su1i2s6l9r7uJWPuTMhdDNzf84A7t0+GF2/nlcnQfS8S2s6m9r1ii83uIuZuILijualDvkFfaW83uMMHgo8On1tQ1H74cdhSmpNyTy4oefhq3bqi+0X51/OXPF5yr7DwSXFxycqnoyZdTBjdAT9NeDP7yNY5S35+UVYGR0LyqWQ4POBQgR2GKnOnB6h6zH0j90kywW05uhvnHY2otB2OQDj24EIW1R6VcS5jwrUJix8tLrxXOPnG5NzLuWln01JOpaScTsk8n1nytKRg7u2MCfBG5yYX3liz/mV1Tdfl3NxjMTGNVitcnQ7Q2g7bKuyaouD+nSy4fyH+IAOjT0YU3N1bpuTEVBrcd+gG9/0scJefm0q4xl0buBtE7W+YqvuHxfuYvBvI7n5RL9NTzL3nlLm/kdNTAyF3leD+2/+Ftbxo7phl7n4Vcidb424GuP/D3FYZxbmpG3sZAu6ay2Q2G7xIgLsGbTcD1tUuE+WdCLubFnX3mrnvNcTcfRbcRc1dl7Nrpnb1kfaQelOR3Uxhx0d2ks5Ouj3Gd6hdV137135D7XKRdhlk/xPeErK7WnDn9sm44u1bPqSIc3s/KtW+e6BrQ95LNcnAyQInrKXREnM0JvtCNkXtNTXw55UxY47HxbVHRbVFRh6LiTmbluasq5tceCNu1HFHWiuq0g5LbAhLOEIPsTwSGn84NO7w8Nj6YTGHgqMPDI3cN9i+d6Bt9wDrzn5h26kpqXja/nZftD6jF/Uyi92ZbhlukztT484Gd1TgLtMnIxJvZ7R9h1DbGWof4pBYLHbnmTunVQbVuGsF915scB/ICbnT4P4tDe6b4F3B10WBe/gu+MSCow9akhqTck+iX0QYd3Vc+tn00RdHr3219sakSVfy8p6WlNTUdmflX4jOPGqhB5PmTb18d9asR4sW5VzKsTZaXWXu2/u6BqiinPu3nKfQpLoc0Q02GiQAGwscirBrwUEIG769xZ52Jg0+pVfr1q1c87y6q7q88rWztrbOWdddXb382fL86/nw2RbdL5qz+P6EmdcWLXsEn+edmTNPp6bCwenS9uDgfXSZzG4G3N2VMltkwJ1V4y4O7uzHFhgF7vyJqeaAOzvk7iVw9462B3jdLxTeUHknxe7+FnUPmDtxc8cH990+XywTCLmzqn/9OOSODe7E8T0QcveFVplPvdQqo39uqvfA3Qva7g1wJ47s78lsaRiLOMETCLybEHU33dz57K7b3AmXuZMzdz3gTniZQ+2mILs3hV03shvo7F6ldqzJqH5S124+tWtxdpmYhRS4/50D7pwCd6ZPhlXf4RpNuXsg2mkpandPSbU125JOJjmdztru2uIVT6prus+lp7dHRTVHRDSFhzfbbG0Ox8kk6g1WrH6eMJoqiqFMNv7w8Lj6kNhDw2IOBkcfCIraPzRy/xAH5eyDIvZQymzdSUW5R2z7KHTrhyGbe7u1/T1K2zf2Emg7y9l5i2/urJA7t8ZdAdzdfTKC9nZWvF1G2xlb3wdraKRnodegv+WbuyfkjlplUI07A+7b1ID7RlR579H2gV9zc/10oj/ou95obmroVpRwh88NflIxmUfhJ1jTXZN7OTf+RDysjHMZ1DMreXmnU1LOpqU9KS521tVNm3MrZczptHFnJhfegOMB3iDvcl5UexQcJ3DkwEaEytypPQH2AXTif/s+/1dY2HfX9BQB9hM/jLbHHouFz2ftq7UlK5/AB7o2ceLZ9PRTKSlnUlPPZ2VdHTfuXmEhvL7OWbfw4UI4MrudzocLF17OzT2VnAzHJxyccDGEywhs5CjejnCEMvf+/WE7hN1OM7h/qQbc5QrczQR3lrn7Frj7A7WTUezwcK8tH/f3Hs/umqPuAXPvSWXuPbJYxidD7pt6eshdE7iTknfi5u7VkDvu6FSfr3E3enSq2hp3MuCO3SdjnLbzdiYi5o4P7sZqO2le16Xwvsru2qLu6uplRCvdfd/cvRty9wFqV6HtKqndaGQ3Wdh1IbsBzq6xPUZpJqpp1O5Hde2i1E5pu2Zqx3T2P5FYQnNXBPcNHnBnN3ig9nY4POBwohrb91EdMmhEalhDWPTR6JxLOfMfzC+Ye8vpdN6bPftkUlKL3d5otSKeaLRYmm2243Fxz0pLX61dmzLmdERqS1jCkeFx9cNiDgZFHaDFeS8iZirSHr6rP6J2OsFN1ciEbKYEWUHbWcLeh15cdueYu1irjCi4syem9qbBndcnIxZvp2RcQtvZzr6ftejXMOzONXd2yN3dKiMD7j+oAXfWVz3IU+POA/egqP3WpMaxBVefr1gBP+iYozH2VnvMsZiMcxlV1V3ns7KOxca2R0XBj/jG5MnwGjgMyl6ULX28tLKrsvx1+cKHC0dfHA3/BHZv2NBg/4GdhDL3zR+wdwORGzz3LRMzs5fRdjj8wpvDS56UwMdaueY5fGJw1MFh1hQe3hIRQf1SRWwsvOZ8ZuZP48bBMfmirKyzouLnefN+Gj/+bHr6ifj4VocDDlG4vh10x9vZey3snTxw/1YPuHseRsgWuEtPTOWDO3OfZRi4H/QdcCel7b6D7F5UdRMt3s/k3UsNM96MugfMvQeZuy9PTw2E3AmE3Lng/o3h4K6f3X0G3D3m/nuTQu4G1rj/XXerjO6QO/lWGRPAXRRV9Wm74Ok/8UUM3BXj7WS13RvIrs7fCcq78eyuOuqustIda4yqCeZuYrGMca0yXtB2NdSuqjpGrbNrQ3ZzhF0jshvs7PgzUQ2ndp117d8YWdeOMxn1E+lgO1lqVzT0P0oviRs/3v2eHLgzE1O/fMdV4C7sk9k1AI5SOODh5IJT3tpojT0eW/qs9PHixXXOOqfT+aSkpCMhAQWHmb0BXm60Wo9GR9+ZMWN9xevRky/aR1KjUENiDiFtpyPtyJRdmuyi9tCtqEaG0XaqFEWo7UywnXL2f3KXaM6dFXLHA3eRAvfhW3jgLoy3S2j7/iBYUfzFsDsyd5RzlwN3+rvUVzO4M9rO/cJdNe7B338wzAXug2y7g6MPRGW013bXVlZ1ZpzLCG8KtzRY7K327AvZ1TVdp1NTW9HzK/QzKx2JifcKC+vqnPDGDxcuXLz80bQ51DMxM+/MtDXbULEMHEvUlgJ7yOYPec/J8bYIdKvD/h0L2BthMw87EhZ3PK62jhrDW7To/u2CAvjocG2Bgw0+h1aH42hMzMnk5IujRsFRBx990bJHy54uW/1y9fMVK66MGcMk3NngzsTbUcKd6XDfpB7ccePtGBNTFcF9pxfBXWpuqhpw16nt5qfaez6vG0PwXpR3P2P3gLlrMnfvDFA1vsw9UCzjFyH379SG3I1vlSEB7jrZ3b9aZX5vNrh7pcbdjNGpOsH9a0PAXQZSVWk7prOrZnet4I75zKA2ave6s2PhOyl518buUkcIiag7+XoZ3ebOv13CNnes6ak9o1VGfbCdeKRdI7JrjrFrFnZyyK4YZlfh7P5D7eomo5LokDG7rl0ztauKtP9R5ZK68RO2yvDAXazAHX4o8JOCH6WnT2YX1ScDZxac9bZmW/yJ+Pzr+cvLnk6Yea30Wem1iROpEZQWC/Xr6qxTmTL3sLBWh+PWtGmrXqxasvxxZHrbiIQjw2IODo3cL67toT9Sgoz4mJVtl9V2Sth/yV0udmebuzvkzm+VUQ/urgJ3Vp9Mfws/3i6i7RSvHwiGFe1eUQeCqEVBvLS57xooMjdVFtyDuOA+WBzcXV/4QH6NO7wfF7hH7A6JPRQ/6oTT6XxdXp50MgkuIrCZwwEw5eYUeOXxuLiGsDDY4NEeDC9Qz6/ExJxKTr6cm1tV3ZU69szYgivwljmXcphiGZe5b/1IZOoD906GukVhaTt8DLicRbZFpp9Nr+mumTn/Dvx5OiUFLlnw0RG4t0dFwUf/ady47lrqSYJJs2/MmHen+EnxhGsTiu4XwVcBh+LJpKRWux2OTDhE2QXuu2jCgN1xGw0E8OnABvYd/fAYbUgkwV1Q4O7T4C5m7lrAnVy83TRqf9N5nTTBe0XezWZ3fzF3DfUyPcLcvV7mHpieKgnuqsw9MDrVcHD/rd+H3M0bnaq5VUY3uPvI6FSpVhlVc1P1gDuBeDtRasc1d03gTljb9VD7NySWTnz3GXY3POruO+aOOUBVZ8i9PsRvwF1lsJ0stePfm2tIspOpYtcg7PjIbrKzYxS1e5HafaSu3SeonZSzy9wBSrXKsMBdfGIqXeBOVXnQ4WI0LhUOVDhT4MS3t9gn35hc/KR42dNlhYvula5+1llZyYZXtuXBmQ2bSrPNdiE7e92rdQtLHsZlHw9zgfu+wXZUI6Ok7UOQtn9NafsAEW3/pcTimTs35M4B93flwV1kYqq7wJ3fJ8OJtzPajoLtLGo/6F4Mu6Oo+z53x44w5K4A7h+Igft7NLijiam/ZiamurWdPTCWaZWh56b+AO8TgfvwuPqUvFMrVj93Op3wc7c2WuEyEXc8jmrtr3O22u2UWaMOdFp74WV4DRwMx2JinHV1K9c8L1p8/9HixZNuTLI122DThv0NtinYgth7DrPPcO5M6DsQStt39oc9E64L1iZrQkdCzqWcqTenLn60eM36lw/mzbs6diwcfijb3pGQcDk39+ny5fDpzVpwNzv/QtbE8wVzby19sjT7QnbGuYwpN6dUd1c/XbYMtdDApQyO1b0I3Gm/gP0SdkRXn8wHH6AH0t8y8XYG3LEL3L8mNDHVbHDHCLkbC+46td00Z39jkV23v/t04N1P2b0HmHugWMY3imUCIXe/Hp1KFNw1s3ugVUY3uJOvcSc+OlWxVUZljTsmuIsyq1pwx9F2OUlX3p/wzF0PuOvXdg3U/o1Zyxh5187uahtmVEXdza10J2juBMvcCbfK+GaNDHaHDNneGF3IbpiwG4Hsis4uUx2jNtJuILVvMYTafa2unTi1K0TapQ0dpStEF665i4I73J59ygJ31sRUV4E7a0wlHJBwRsAZbW2y5l3Oczqdj5curanpflpScm3ChGMxMSgsDGeba68NCjqIHjm7U8/n0tPXrH/5bPnyzAnnLEmNLnD3zEfd4WmSCdnC13Y6mv3uwK/eoePtnN52htc/+gdn9fmHmLkLQu6cVhmmzVwO3JkCdwbc+7nB3d0nw4m3M9l2ZOvDog/C185ZiN2jDjDdMp6QOxfcB3DBvQ8uuH8jBPd3BeDuDrnTc1Phyxy+pW+YC9zHz/hpxp0Zd2fPrqjqTD+bnno6lRpGWue8np/fYLHAjxv2J+TUsMfAVgR7GxwAcP05l5FR2Vm5+uXq9a/XT7s1LeZYDFw+YLeE3YzaoGA7Yt05ePairX0YakdP9sDOCVcKe6s9/3o+fODu6uqHCxc+KaE63Jc8XjL/wfzKqs77c+ZQn5PTWeusra3tHjXpYmLOyYTRHaljThctvr/w4cLUM6kJJxKSTiZNvjEZ3qyrqupEQgJ8/ugJAwTusHFup7Wdibfz+2SUwJ3Rdl0F7mLgvo0H7syd1JsH7oZqewDZ/RvfvcTu/h51D5i7dnMPFMsEQu6+F3I3ANyNM3fTwN1HWmWIz00l3SqjN+SO3SpjDrgT1vYteEufuRMBd8LU/o0PLFX4rlPeNbC7qqi7EfUyZM19j1Zzxy6WwQy5a2+V8cFsO1lqJ+3sapHdBGHHR3aDnF1newzFWz8aQu0aJ6Oy69o3mlTXrpraP9ZB7djO7vL0P2Av4a2gDnBnCtxdfTLb+8KxB0c7nLNhDWGxx2KdTueM+Xfypl4ue1H2cvXq43FxlLbTXdjoJICTA044JuqO8s4nk5K6nc55D+bBP7SlNIfEHHIn3ClKdoF76I8IjnsP+8HlxVQ626Xt70pq+z/42u5hd8bcBSF3d6uMSnAXmZjKLnBn98l44u3ubDsS9pDYQ54Vc4gx9yCXuaMBqkzInVXjLgnuW4Tg/n7Qd+gbqAju7/JbZai5qTS4b4OPC59e6tgz5a/Lz2dm3po6deHDhaXPSvNnXYef5qWcHNjyYQODPWYr/QgZ/oStBZk7HACNVuvZtLR7s2cvKHlYWd017da08KZw2M/hKIGDin0zgHYzzk4FNxI7XNpOTUltCp9zf05NbffdWbNQX013bW3honsodw9/wucDfzu/+EHOlEtx2ccj09scaa1RGe3JuSfXlr+a+/PcxI7EqPYoWAknEuY/mA+vfLZ8+dHoaLj6wVG6h56Vip42QF8L7G2b3PF28n0yOBNTeeDOPDchCu7M7ZKJ4F6vD9wN0XbjqD1A56bge4DddU5SDZi7QeYeCLkHQu5+FHI3Btx/++aCu9wDLZ8Fd2+MTlXVKmM4uAvBVG0ZtwZql2V3LeBusLYTcfZfC0c7a1oE8R1f3hXZnUDDjLn1Mr5o7uaG3E0Fd6LaTirSbh6yGyDs2pHdeGcnTO1bZal9syZqJ9Uho7muXWkyqnnULuXsf9Cx2HeDoq0yEuBO3VBtoMDdU+BO98nATxzF21F3dlhDWHR7dOb5zK7q6qz8C5kTzzudztvTpzdZrXBm72VKRWjy28MwHy3vsA8dj419MG9eTXfNjPl3ItPbhsfVB0XtH+KgOtypshQa3NmDUt8PotLZvEGpv+qPtH2DR9s/+ofCYsydE3IXaZVhNau4ylXEOtxlwN1V4D7I5umTYcfbaW2nkH14bD18+dSKrWfMPdhl7kzIHQfcf9QC7gNFwf0rPriHbO4zYht8UPiUbKnNcxbf76qsvF9UBD/0VWtflKx8+nzlyrbISPjhwnYFm8oWer4obAywncDGA6+Enz5cEJojIq6MHbt4+aPcqZfh3yacSKBC7vuGwO7HbG6w3cExBocOtbnRyXdY8AKa04umpMafiF/3et2C4oeX8/KOx8XdKyxcUvo4Y8I5OBTnFz9YVvY0bdzZuOzj9pEt1qRGS2KDJanRltJsH9malHuysqty+u3pMcdiIloibM02e4s9+VRyV1XVomWPLuXkNIeHUwfw4MHw6cBH5sXbv1MTbydc4I4N7rvUgrvb3H0U3M3V9oCz+ya+9zR2NzHq/oabe6DMPRByD4TcDQP3376R4P4HHTXu0nNTyYK7T4fc1cxNJQvuWPF2RW3fom/hmDtRcCdA7WYJOwGCJ9Q2o5PdCUfd3xBzx56e6rs17pjaToraCTm7KmT3jrATRHaJe20tLe147TEEUu3epXYudBGoa2fdlvDvXjRQ+5+1ULteZ8c0d1lwpwrcP3cVuLP7ZOCAgeMQTpywI2EJHQljrowpuF1QWd01a8Hd7pqau7NmtTocsAfsdTdyeLZw+uiGMwBOFzhZYSM5FktF41c8X9FZXp6Y0zEi/khw9AEm5N7f6gb3kC1UvD0YxdvFymTEtf3Tf2ctYbcMJ+Qu2irjaVZhwP2b97DBnT0x1V3g7uqTccfbXdl2pO2hcYdhIXaHVw5zmTsdcne3yjA17gJw394vzA3uoT+iZymoHh4XuG+SAvdebnB/Vwrc6Rp3am5q8PcfUOD+I3w4+CrgU43OPJo39fKcJT+vXvfy5erVd2bMOJ2a2mi1wr4LP24E7qgIBYE7vBIVy8BF5mRiIvzoK6o64c+0s2lhDWGwe8NuSQk7utDvHoh2Syr27r4lgNdT2r4/CC5nMcdixl4du+TxEicdYy+vfF3dXZ2SdyrCzetwOME3Fn0P0XMb8DlbkhojUltSx56urume8NOEyLZIW7MNGZuj1QHv0En/72RSEhyfcCmATwSBu+Z4u54Cd9yJqW8wuBPX9gC1+wW+myPvZNmdfNTdrEr3gLn7bJm72dNTPWVvgZC7z4TcBRzlDXAnbu6+A+6/NwDc/0wU3D82EtwJhtxVtcpoBne1fTIatH0LoaVo7mrAXVe8XVHbNSP7RkJLj7/rDrxrYXdjou4q6mX0VLqbbu6EQ+7eBXeztF3xRhuzN8Y4ZNcg7EYgux5nVxtpN4najaxr19ghQ7SuXRe1k3J2DbeFzD2hWKsMG9zRnRgF7szEVHafDBqXuqMfHNJwpiefSq6s7nq0ePGLsrLqmq4nS5deGTOmPSqKksqhQ3ejOo7+/TnjHGkEhBMC3gB2C3hjp9OZcykH/kwZc9qS2DAs5iAdct83KGJ3f+tON7gzfTLfvjf4m17seDtTJtPnM7a2u5z9Q9aizP1T5ZA7F9y5c1O/cbfKfPd+0HcscP9BC7i7qtvpeHtcfWj84RH0gheYnLsH3KPcNe58cGeGpsqCe/Cm30iCu6BPhj0z1tUq45qbCu8K3jM9N3UPfPLhyU0Jo09MnHlt7au18x/Mf1JcfCo5ucFigT2YCoa7e8+RC8NPfxcN7vCjh+tAs8320/jxz1eurKnpnnBtQkRLBFwaYJuldkX29R3tgTtdl37YWmGHh+tUYkdiTXfNq3XrHixYgGa3Cg6hvcx0WVTmM9SxD76Z8L0NT2nKmnj+xapVcODBx7U0WNC1z9JogUP6WWlp8YonNyZNaoQvJCiIA+5i8XZFbf9CtsB9I63tQnCXKnAXB3fWKeZ/4G5QvJ0stfuPUzfLroC8G8XuJkbdCdTLBMw9UCwTCLn7bMjdsFaZngXuv/MfcP8TOXD/mxpwN6BVRl3InWCrzMZeZMB9kxZwJ0/tYjuW4nalB9wV9x61u47hwq6V4I2Tdz3sLjMbgFTUnXClu4S5c9hdaO57BeZOsFhGd8jdDHAnpO1kqJ2Es5uA7IPV5Vg0IbtmZ9cxEFV0JiomtQvr2g2hdt+ra9dG7ZiRdgVn/736JXgn/FtBleDu6pNB8fadVLzd2midcWeG0+m8O2vW6vUvKzor4OVz6emNViucu5S209TO2fXpbR6O4t2oWiQkpNVuvzFpUumz0vLK1+njz4YnN4XEHkIhdza4UwXuqE+G1d5Ox9vFy2T41M4y93/nmrsg5O5pleHXuMuC+wcecN8qXikjAe4hbHBPOAILXgiVBndBpYwH3PuKgPtmPrgPVQT3L7ng/pXY3FSqxj0ocj98tjGZR+cXP5h+Z/qoi6PgGLgzc2azzUYdAAMHwp7E/tFTP3cafGHrhZ0eLkrH4+LgmEGtMvEn4uHqAzs5CrnzNkN0oae0fd9QuAw52hxVXVUoh36/qGjanFsjx52JSm+Hbx18o+D7MyCc+vUI9AwE+lkMsO6Ebxp8A+Fbak1uyp91/dny5fA5W5us8A7R5QmugFHtUSuer1i8/NHNKVNa7Hb4PFEZPWyQm+l6HGpcKoq3o81JqUxGDtxVFbiLTUyVBHfWxNSeDe6ktN2Xqb3Ze+sNkndz2d3rUXeN9TJ+au49vczd7Omp+CF3bHP3iZC7KnA3IORuQqvMW7/47S+Eyzvmbg64/08A3FWAuxdC7t4Adx/SdhxzVwXuZLUdn9o3+sBShe++wO74UXfi9TLGmzuRYhmckLtfgrsObddP7Vqc3deEXfZWGuc+Wruze4PahR0yitROvkNGa1276smoJlP770ks2ZC7HLgzE1O/fIfpk0HjUuG4goMZTtiodiqcvmb9ywkzr2VNPF/TXbPg4YIL2dmwkcDJtNPdfM1klxgfRElnOLdgY2h1OO7OmlVT291VVTVnyX37yNbhsfVBUQeGOPYOtO2mKmVGbPto+NYPqD6ZTZ4+GZF4u4y2fyKZc+eG3JnRqe5WGZEad8/c1CA0N3VT72GbPOA+fOtHDLiHcYamujvc5RPuLnAXSbhLdrizwX0bAneqwJ0F7q4C9+Dv3eD+rRy4D/jSsyRr3H8cYN0Jnwx8hpHp7esrXk+8PjH6aDT6TYWOxES4JsAGicaNcp5loZ0XdmLYy+FtWuz2l2vWwD95uXp1+rn0sIYwOK6okDtd3c7eGOGQQ9oOF5rwpvCRZ0Yue7qss4J6jmfd63XJeafQUzXwLXIdNu5Zux+GbEFPhMBr4PXwfYNvpjW5aUrRze7a2qwLWeiDoqs/XMgcbY5FjxY56+rgPZ9ISIDLGjP9dbO7T8YTbxfT9s+lwZ34xFTC4O6toamK4O4Vbfc1W7fZzF6+DPE9mN0D5o5p7gYNUPWXMvdAyN2vQu4+Mjr1rV/81y9EFkF5f/PAnfjcVOLg7k8hd/y5qcaBu8nazt20NIO7zG6ksUbGX5wdD99VybsudtfRMKM26q6qXkZjpbu55k4q5O41cNet7ZqD7UScXTuykxZ2XciuGGaXuGuWuVOWujXGbI8hTO2m17V7tF13Xbvh1E7c2TUM++GaOw64uwrc6T4Z17jUnf3hNAmpD0noSHA6nVOKbkaktthHtqyreF1e+fpkYuJB2ih3uOdMbmFdOhAUurq8aXBHlTLV3dXw58rnK2OyjlFzUyNdIeV+lu19RlBsyvTJ/JrqkxGJt4tp+yeCxTZ30ZC7eKuMoMadNTc1mOpGZ4H7Fgbc+1Lgvp0B94HcoalB1NBUVoc73dseSvfJoBp3boc7d2iqqymFLnAP50xM7TvCDe7Dt/InpoqA+0ZFcH/X/WTDe6wad3erzG743OCnT7XwP1uRcjql4HbB9Hm3b0ye3BAWxnQKod2LKZPZj0SDbpVpsFjOpqU9XbasuqZ7zJUxtmYbXE1gG6e22d1uc9/N0vaDwyyNlrSzaVVdVc9Xrlyz/iV86DEFV6zJTfCNGuLwaDvzWxHwCaMfEDJ3+I7BdxLefvW6l3dnzZp4bWLYkTB4z/BR4HIAHz26PRreZ8Hc25VdlReysuD6xoA7bHtUvP3991G8nZmVyqZ2Zpk0MVUM3He+GeBORNu9S+2+AuuEIL7nyLtfRd17mrkHimXe1GIZ/wu5u8Hdj0LuEuDOlXcfAXfztJ04uP/Rj8Hdt0LuxMFdok9Gp7azngoUX7rM3SBwl9F2RWrX6uB0lWYvTomBzHK/MVl81xJ4N4DdjY6641e6EzR3DWXuGqan6qlxNwfcjdB2zdRO0NlVIbvRwo6J7AScHTvSLk7tW4lRuxGTUc2ua8eh9r8ZSe2Ytk4v1feNwmIZbqsMD9ypfMM/fynsk4EjBI4xOHThpINNA4H76MmXojOPxo860V1b+2jx4mabjRmYSYWC6TmTDBoiLoS/guMaTiPYJ9oiI6l3cnF09oXszsrKmMyjw+PqUZ/MAKpPZrurwJ3XJyMRb5fVdi67e0Lu/5AIuXNbZXg17h5wd7fKhLDmpo74se8IV5MJAvcB4buYJvEhjr1DHPuGUuC+H03ydIXc6bmpzMRUd7z9YDC7wN3hKnCXAneqT8YF7lv44B6kFdy5Ne5Mqwx86KGOfZbEhmlzbr1au7arqqr0WenKNc+vjhvXEhEBP1xqai6DAmhYLnPVHToUrgNw5WmPjn69fv3oyRfhMIhqj4Ljigq57xvC3nhhl4ZDDl4P17K441QLze3p028XFMxacBdl25G2U8dM+E72kzT0McMb90p9zuF0wv35ypUFtwsiWiLgWgP7NnwIeP+JJxO7a2ry6JYbFNX3gLu7T4Ydb+doO/OQgmvuChNTxQrc9U9MFYL7Hje47/VVcG/QD+6+Te1+yetaFT7A7n4RdQ+Y+xtRLBMIub8JIXeM9KkSuBNhdyLgLh9v163t6uLtv5ct/TQZ3D82HNzVmbsYuCuE3E0Edz3xdhxt58C6wo6lJO+qwB27T0Z1kww5aseFdQ1LG8RrlXfC7K4j6q5ukqrmehnTzF1bsYww5F6vPuTulXi7Jm03jtpxnB0f2b0g7DqQXVt1jK72GHOpXaGu/WsSde2fGVXXrpfaVUXapXkd6x5S4l5RvMYdbvDY4P4P6j4KgTv8OODnhcalUvH2Hf3hBIGz29JgiT8R73Q682ddTx9/duLMa3XOulPJyahPBo5W1Hn9A/2AhAFEytw/+giOyh0MuDsc94uKZt2dNePOjCWlj6PS2xG4S/XJ9Bq08V1Pnwx/VipH2z+g1r994HqBWpLmjoplOCF3jFYZVXNTd6Ea98HcVhk65O4xd8+is+3DosXi7SoK3Blw39SbPTEVgTvdJwNfkSy4f8mvcadbZSi8Dv2xn2XHoIg98KkmjO6AI+FFWRn8+XrdulvTpp1ISGgIC4M9HrZbDx+wE9Z0qwxcYZojIu7Onl3RWbHy+Uo4osIawuAKAlcB9q6OtB0uVfZWe+7l3Jrums7KSvhYI8eesSY3wScA3xz4tsA3hIm3u56kGfod+nkx417hDYY49tlSmlevo9Lx84sfjL40Gj4oXNHgWgmfwMy7M1e9WLVyzfM7M2a0RUZSv64xcCDsplvoAnemT8Y1K1VU293mLg7uWgvcNYO7yDffYHA/rArcCcbbfVLbe6yw+6a/+yC7B8zdd8zdX8rcAyF3fwu5f29uyF1zqwweuOs0dxP6ZAhqe48Hd5kad2+E3PW0yhgE7tq0XQ7ZZeVdj7mTjberC7Z7HdmVCJ6kvGvqmZFhd69F3UmbO4fdtZq73mIZIq0y5sfbiWo7FrUrOjtmmN1LVeyqhJ2P7LuUkF3G2VVF2k2ndtzJqKbVtbO1/dNfepHa1UXaNSG7+M2k6O0iu1UGB9zpAneqT4Yel0rF2/dT8faIlojEjsSCWwVLlj+eUnizprvmypgxbZGRsG3AKbWDVcHxHf2YAUkiHEFwiP2IwH3wYHjjY7GxNyZNctL/G1twNTrjaGj8YRrc+X0ycvF2TpmMS9v/jVp/dy+3vIuC+0fckHs/Qcid2yrznkKrjGSNO7tVxhNyR+ZOd8uwV3A0f1yqYryd1ycjMjE1iD8xVQHcxWrcXXjtDrnDJzYi4Uj8qBNjpl0pWflk1t1Zy54u666pOREfD5cX2NphS2ZvqK6QtbvGvdFiOZWcDD/99RWv08+lhzeFw3WHuljAFYHe8+EF+E94pa3Zlnc5z1lX93TZsqWlj+FosaU0073t+wfb99Lxdj64oxoiz+fsBndUg3O7oOBybm5FZ0X8ifjItsjUM6lwGN8vKqqu6X61du2lnJyWiAi4cO2iwZ2amOruk+HF20W03QBwZ/fJbOUVuCuCu0SfjMngfsQ3wN0can8TkR3b3/0v8O4n7B4w9wNeKXPHf8DhF9NT+/VTNT21x4fcN/ltyF0HuLvZ3Tvg7mva7lOVMprA3diQ+z/VN7n7ArjjxNuJUDs+u5MGd83aroravYbs+vFdvbxrZHetDTOqo+6kK9359xH6zV2xzF1TyN374K4Ub5ek9npNwXb11K5484sZZjdU2I1Advkwu7ZIO25RuwS1y23v2qjdiLp2zR0ymuraTaJ2RWdXf4fJv5MUhty54I5u2Fzgzi1wp/pktn5Exdv3DoZNwNZsiz8Rn3Uha+rNqYhK78yceT4zE4H7XgbcWYngb2hP3OQGdzj84VRusFiuT5pUU9sN76GzvLx45ZPEnI4R8YeHOvZRBe50n8wH7qgyZcSD2ONSOfF2trZzqZ29pM0dK+Suo1WGFXJnj05F5o5y7vRyOTta9F9R2j7UoRBv7xem1CfjKXDXCu6DNnpaZdDoVCrkvn2QbTd8kmGJDbHZx5eUPp50fVJCR0JnRcXLNWvaHA44HmCbh5+1hxvo7RnNTYXrxpGwsKMxMbV11JjS/Ov59hY7XK3gGGOuHXBlgeuRtdGa2JEIB9vDBQvgz8yJ5yNSW6i6/6j98J1hPQnhqZT5gFWkw8x6pSplIqlKmdXrXsJBe3H0aKoF/sqY3Mu58DnPXnh39OSLK1Y/n31v9v2ioqbw8H10PxL16xqowN3dJ8PE28W1XQO4qy9wl5yYSoM7ToG7T4G7CdpuNLUHkN3n8N1EdifVMOPlSnf/N/c3rlgmEHLXAe6+HnInPTpVNbhrMXfd4K5d242gdqV4O7GhqX8VgPvfjAd3mZC7zumpRrTKsCFVA7hvEgF3Vdqui9oFG5jMvqUF3I3QdkVq/7qXry9MfCfK7toaZkhF3XXWy6iudCdk7uqKZTBbZUwHd7XxdrXaLnVTLJ85UeHsupGdQIZdIWSCi+xGObvEzawytW8mSe3m1bVvMLKunT0Z9S8i2q6F2tU6++80LQxzF5mbygb3Tzngjgrc4WCAYwmOajhtrU3WkWdGLn682Ol0dtfWdlZU1Dnr4OV7s2efTklpsFjg9IWjGCXcv3MnguFPeBkl3OGAhTMG9oC2yMjyzvKZ8+8sfLjw1dq194uKJhfeCEs4MoQC951UVJlmUyrezh6XiuLtvFmpytruWjxz/yXL3Lkhd/HRqRpaZTwhd1aTO8vc0QDV/XSYnVn7WU0ybG3nx9v7M/F2V5/MVkGfjFSBuzpwd6X76a+aqkRHIfcR2/pbd8InFhx90JrcNLbgKhwJy54ugz+flZaeTUtriYioDw2FqwEcFZzfKKN5lwL3ESNa7far48a9KCsrvFcY1R5labCgX65Ck1HgZXhNzNEY+Nuu6upaZ+2CkoeOtLbQ+MPBUQdYqX9qUa0yFrqJiH6qBpk7ei7EHcmnhqZaEhvSx5+FT/LOjBlPly+ffW92VVcVHHvxo07YR7bW1TlXvVj1YP78I2FhwmeP2PF2trZvUAJ3cyam7lA7MdUccNdc4O4P2h5wdiL47h/sbkrUPWDuWsy955W5e7FYxl9C7rhTCP0s5G7c6FSV4P5fxoC75ng7qRGpqrSdSJ+MH4K7r4TcZfBUPbjj9MkYru3y5r4Zw2V+0BpvJ6TtWiLtX5FbxuG7fOBdZbc72YYZuag76XoZL5i7YrGMtpC7FLgr3UfzbsD1gjsJbZe5F5a68yXs7PjITi7ArlbYcZBd2dnVRNpFZqIaSu2Yde1f91IOtptf1y5F7X81jNqlnP13hJaUubPvD5XAHb75aGIqKnCHIw1OItg30s6mOZ3OJ8XFV8aMuV1QUF7ZWVvnnH57etH9oq6qquNxcbAxwPnhCQXTTPktLYnwGjgM4RiH0xE2lRPx8esrXs+4MyPueFzZi7Kuyso5i++PoMB9b3/rTlefjGtcqmi83T0r1V3dLqLtvZXMXVXInTM6ld0q872nVSZky0diIXe6yZ0plvGYO90ts8+VdqfXUNfaJ6XtA8Pl4+1yfTLK4M4294HuuanuL9w1g9SdGYcPBx99QPgu+CRDYg9FprfBsfF4yZLK6q71r9fDy9fz89siI+FCBEfFAZo5GNuFqwQcA3AharbZzqalobePPxEf3hQOVy50eYLjzdJgcbQ5xlwZU1HV+WjRovEzforOOAoHSXD0waGOfSjyj35vAD4HV/U/apVhvgn0syDwzaFL53cHRx+wJDXGjzoxbvpPa8tfPV+5sqKzonDRvdypl0eOPTN68sXyzvInJSUdCQnoSPb0ybDi7a79ibMzcR9PsB9GCCambqTBHadPRnFiqn+Du3yfDGa83XvaHnB2f5J3s9jd5+plfNLcD3rX3LWWuft9sUwg5P6GjU7VDe5qzV1nvF2bthuRasfRdpUF7hxw/4sucFeh7YrgbuT0VKNbZbSDO883ldLEhLUdw9x1grsGbSdM7dJi7qEfNYskwauRd0PYHX+Yqp6ou+Z6GQ1jVBXNXe0AVfUhd8xWGUVwF7371hNvV6ftajpk9FK7VmRXFWMnIOz4yK4YZpe+qyUfafcKtW/spb1DRlVd+z8Mrms3gtp/Z8Bi321qA/cvaHCnJ6bCMQOHIpyb9hb7wocLu2trOxITT6emPikunj7v9uyF9xY8WJByOqX8dfnzFStgZ4LTcbu7xh0OIpTY/YHW9u0o3j50KOxPp1NSqmu64B/Cu827nAf/Nm3c2eFx9YPte/pbdvQJ/fGDkM2/cY2+lIy3M2UyHG3vDetj7sIyd4Ihd26TO6dYhmXue4a42Z0l78jZKWofYudpO69MhtPeLhlvF05MxQX3r1gJ9689XzV8yfQTDG7I3g6fFXzC8LOLymgfNenizAV359yfk30he+mKJ9fz89ujohosFrjCUOzOXDlpuoVrVFN4+In4+CclJXXOOjgYIloiLI0WdIGDF+ytdvQcT1V119ryV7FZxyyJDfSgVFd1O/39dH1LmRp39NzDh3S1zkfDqR8E/cTATvTEQERqS3LuqbEFVxeWPKzorHi5ejW8/zXrqTGqS58shT+p8b8jRlDxdvbvaojF2zf8SmIylCi46ytw1zAxVRnc2Xc6RMBd08RU7fF2DdoecHY/wfcAu3uz0l2luR8yztz9tsydeLGMj05P7dsX19wDIXdvj071AXA3S9v1OjuethMHd/IF7m5w1xhyN61YRqxVxmhwx4y3k6d2GaDRBu548XY92o5F7YRsXS/Ek5J3r7I7kag7br0MEXPfpcXc5Ytl5EPuiqNTNYC7xH23krlriLfrC7ZroHbCzu69DDtf2HHC7OqdXTLS7lPUbkRdu/EdMkZTu2pn/2/sJXsXKgy5K4A73DttoMAdfljUxNRNv4EDCQ5aOJETOxJRgUxHQsKVvLzu2tqRY8+kjjldVd1VXdNd1VX1aPHiFrsdTno4XeBo3Uo/HNrsbsNA2g7nPWw2LRERZ9PTV697mXUhK+V0ysKHC9dVvIrKaB8Wc3BQxO5+FrrAnT0u1RVvF8xK5Wm7CLWzloi5s4pl+rDNXU/IXa5Yhm3uaIYqK+3uWYO51D7I5pJl6j1wtN0dbw8Vi7cP28Ttk3EVuL+HtJ0aQisG7tzVfIfq0QAAgABJREFUS+Srpp9jGLbpAzrkThfL7EDmHhJ7yJbSDIfE6/Lymu4aOC6elJTcmjbtZGJis80GFyU2zcDL8Jomq/VodPSdmTPh7bMvZEe2RYY3h1sbreFN4fYWOxxyix4tWrH6+ZLSxwmjT1iTm4bH1QdHH4CPNZjqkNmN2nXQ6m/diZ6BQHn/Pu4fAaXtdPXNsOiD4clNKXmn5i75+cWqVXPuzym6X/Rw4cJrEyZcHTfuypgxcEy2R0XBFRKOUnQMM+NShfH2DaTAXU2fjKqJqeTBnd+ZZxi4E4q3k9X2ALX3EHknxe46G2beZHP3sQGqZhfL4KeDAiH3QMidXMjd2+CuQdv1UPvvDaN24n0yfzGsTwYH3I0rliHdKiM5N1UPuOvTdnHTlC8cwJAaDtaoBHeseDu2titTu+nIrsLf8eQdM/Cuh91VNMxojbqrmKSqrV6GuLnv02fuSiF3teAuo+0awV2/tuumdvm7V8U7Vo3ITjTArkrYcZBdwdnxI+2+Su0E6to1d8h4i9rVRtr/W8eSMXeJGncpcIdvOwXuX1Pg7pqYurM/nOaxx2KdTmfpqmev1q0rf12eM+VSeEqTJbEhOqN9YcnD8srX8Lcnk5Jg84DTFE4ROKjh4EU4CCfBbrq6vSEs7Gh09OnU1Ct5efD2k25MKrhd0FVZmTHhnCWpMShq/0Dbrr5h26g+mWE/oHGp7Hj72303eGaloup2gbb/q2CJmTuvzF0QcveYu7qQO+owERbLuMzd0y2zaxDD7h559ywXtXuC7R5t78/TdlQmoxRv5/fJDHZrOw3uvdSCuzvkTpl7GDL33UMc+4bFUH3uWRPPO2trl618Ov/B/Lk/z4UfNGXZkZFNVitcuJD+wDUKDoam8HB4/YXs7M7Kyvzr+XCM2VvtES0RjlZH3PG4ovtFCx8uhKMrOe+ULaU5NP4wvP+gSNesVNczEO7IP+rYQd8W9G1H33l4A3jj4OgD8B5yp16GT6a2u3b0xdFZ57Om3JzybPnys2lpx2JjW+32RosFjl5K2wcO3C7T3i4ok5ECd69MTBWC+x6DwF14H0FqYqqPaXuA2t8cefePqHvA3L1X5u6jxTKBkLsiuKsy9544OtVgcNccb1er7cY5Oya1S2m7KQXufG03GNwNKpahf03URHCXKXCXRkwZbVdwdnx234JBNtLgjtUno0fbsakdC8S/JLGMxHfvsLuXou6aK90NNHelYhn5kDtOjbtmcJczd4l4uznarkztKp0dJxDiU8KuAtnVO7tPUDvmZFS8YLsKamdr+6daO2SkJqP+WbquXSW14zr7fxNdYvelnltQeXD/RADu37rAHQ5+OMcdrY786/nrXq1bX/G6cNG9iNQWOmu8d1jMwcj0tjXrXxY/Kb4zc2aDxQJ7AJyjzCkFJxycxLCFtERE3JgyxUn/7+myZc9XroR/sq7iVc6US1EZ7aHxh4dG0hNTR2z7MIQucB+K4u1fs+PtnDIZj7bzqP1vrMVjdzFzly6W4YfcB7L1+Zv3mJC7sFhm+FZRc0d97u6oO5N2Fyybi9pZU1KF2fZtHG2XireL9slggHsv99fL/pKpXD/VKuMKuVPFMqE/ssx9b3D0wbDEhujMo5kTzqOfdXdNDap3P5mU1OZwNIWHu6DKam222doiI0+npDjr6hY8WJDYkRh9NDqqPSrueNzYq2MrOitqartTx5y2j2yF9zk8loq3U607dgbcPd8Z+nkIutfetdBvFeyix7oeCE9umr3wHhy61V3VCR0J8FHgz6k3pz5bseJEQgIcmQ1hYUjb4dIBe7ZnDgG3vf1z6Xi7FLirLXDfpFjgrgjuMvF2HwF3NQXuXtR2H6X2iAjy682Ud1PS7t6NugfM3b+LZYiH3FnmHgi5+2zI3YjRqV4Fd8O03aQ8uz5t91qfDCa4G2fuZFtl2B0gSuCuM94uOY5SFbXjsLtacFcfb1fQdrXBdnxn/9KspQrf9VTNGMnuWMNUjY6649XLmGnuukLu2OCuqO2S4K4m3o6j7aK3uuSpXX2YHR/Z1fK6BmHHRHZFZ5epjsEaiOpFatdT1667Q4ZIXbtJ1K5E53AXSi2dbYeEwB0Ofji1I1oiZt2d9fNcKrCcknd6RPzhIY59A227hkbuC0s4kjHhXE1t98MFC1rtdgSXe907K6qRaXU4rufnF90rGj354oSZ1xYUP6iu6V697uW0ObdGjj1jH9k6PK5+iGPvgHBqYipV4I76ZAZtZMXbmTIZprpdqO1/+9ffCJab3SXM/VOPubuKZXjTU7+AxQ6590Ihd36xzCaXubOKZQTmjmaouqLuLHZ34Tv7P2lNZgXbudrurm5HZTI8bffE2919MkjbxQrcKXAXaZXpxY6301+vB9zZIfeQzagnHT4r1C0z2L43KOoA/DRtKc0peafmFz9YsvzxjDszkLnDMdCRmNgeGQnHSUtEBPzZHhV1MinpXmFhZVflyDMj40/EJ3QkZF/IRlifNu5sZHqbNakxNP5wSMwhF7g79g6O2DPIXWrPDrmzvr27BkWgJwAOhCU2wDEG7+35ihUTrk2wNFisjda443Glz0ofLV7cHh3daLXCIQpXLbiqwEYOGy3soJt48XZhmQz1YOJtOXAXTkwlV+CucWKqANz3s8Cdre0awN2gPhm14E5E271P7RhK3qJ7+R/Hm8XuAXN/08zdu8UygZD7mxNy91arjJHgboK266f2P+hef5TWdlP6ZFTH2/HBXXeZu9piGZxWGbkad2+Au0ZqVxuWJAju34qXEihoux5q/9IHFiF518nupkbdDZ2kqljpTtrc8Ytl1LbKmAbu2rVdNNiuj9qJObvpJewahB0H2eWcXWWknWT917dYk1ENqWs3t0PGDGqXF/b/p36J3q8KzV0nuO/oDydyREtEd23tpZyc1+vXp407Gxp/mC732BcUtR9ejsk8Wt1VXV7ZeTwuDnYg14TMoCB4Af7zWEzM85UrEaEuL3tWXdO17OkyWD/Pm1fbXZs37UpUejsC9/5WemKqq8Cd7pOh4u1fcOLt7Op2j7aLUbuA3Xnmzi1z1zs9FZn7BzLmHradFXVn0u4ufGetnXxHdme3UVNKHyVt58XbhX0yQnAXrK+ZN0D/ROQJBqZCJ5Rn7nuGRu4fFnMoLKHBkdaalHtyWdnTlaufL17+GA6AJ8XFP40ffzIp6Vhs7NGYGPgTXr46blx3Tc2oi6NGnhmZfSG7squysrorc8K56MyjtpTmsMSG0Lj6YS5wp446emjqHmZuKvOtY35pYAjl/vtDYg9ZEhuiMtrHTb/6cOHCx0uWwIewNdvgYM65lAOfzM0pU5ptNkrbg4JQFRLsxFvoWalMvP0rJt7O3quQtouBu1EF7uQmpvLBXSzefkDtxFRjwN18bfcOtRtG6kaJfM+Td4PZXX+9zJtu7prK3L1eLOPf01N9O+S+xdyQu7+PTtUC7mZrOwa14zr7H4gueWrXHW9XAHfN8XYWuJtn7vLFMpghd7xWGZLgbry2q5q5RwDcpctkpLRdMtgu7+zYFE7/3q/eRR7f/ZHdMaPuW7GOZAKV7rrNXbLMnVcsIxty1wbuONouae6i4C6It1NTz9Rru1ywXZTasSPt8veexJFdF69j3YH2w0x9aHB2Le0xBKndzLp2zR0yeura9VA7dqRdI7Lj3LjKhNz/+C+i4I7utXgd7nCQwKEFRzKcttZGq9PpXLP+5eqXq0dPvmhJahwWczA4+gD8OSLhSGR629Q5t1Y+X3k6NbUpPBxNyIRdp8FiORYbe6+wsLqmC/75lJtT8q/nZ5zLyL6QDe/n2sSJ1ydN6qqujh91Ynhc/WD73v6WHR+FbkUF7mhc6jsDOPF2ukxGoO0cW/8rd0mYu3CAquZiGX6Zu7i5oxmqTNSdxe47aFjnrR3sVLsn2M4aCiqu7ahMJlio7arAnaXtrHi75KhYt7n3c5v7oIg9Qx374PCAHyscKo60tsSck5Nn3yhe8aRs7YvumhpY1yZMOJuefjol5czIkZdzc511dROuTci9nLv40eL1Fa+z8y/EZR93pLWGJzeFJTSExh0OiT00LPpgUJTL3Onpskzf/R73ENq96EkgitqTGuGwTMo5mZV/YUrRTfiIFZ0V029Pn3139tLHS2tru+GAhI8OV0tG27fTw35dZTLvv/8NXSbzlXBWKqPt2sCduSnTU+Cuc2KqF8Fdpk9GMd6Or+16gu1eEvYWf1i+RfA+yO7mR93939z9o8y9JxXLBELuPh9yJ94q85Yh8XZDtV0Vtf/BEGRXcHYpahfVdm3xdj3arhbcDTJ37JC7eKsMaXCXj7cbqu245i4WnFQscMcsk5HUdtlguwZq51v5F+SWNoLXI+9SPTNGsLtXou549TKKY1RVmTvnvklrsYyqVhkscJe+3cYscFeMt+Nqu1Zqx4q0q3d2TGHX1Q+DLewqkH0bobIv36R2tdr+mSkdMionoxKgdkOdXeb2VSu4w3eeA+7fU+AOhyucibBjpJxOWfRo0ctVqwrm3naktVItH7GHhsfVhyU2RKa3jZ58qbKr8uKoUUxPN/x5LCbm7uzZS0ofz7k/J+lkkrXJCnsR7GOxx2JrumvOZ2aeTkmpqe3Ozr9AgXvEnn6W7dTE1OBN3D4Zbrzdpe1/F2j7X6UXm91VmbugWAaZ+yD5MneuuaM+99Afmag7K+2+nSZ1KsPOrH7cOnIWtXOmpPK0XaJMxtPe/t5gdoE7C9xd5u5egyS1HX2Z7jj/9+wKHTQnFr46VJuDzH2Ig46ZxxyCQ8Wa1Ggf2Ro36njWxPNT59yiftdh1bOu6uq7M2deHTv2p3HjHi9ZMvvu7Hk/z1u97mXulMvJuadiMo9S4E7P5h2RcCQ0rp4yd/ppnqAoWPuHRsLaR6/98J/o6R+K+BMbYrKOzS9+sHb9q+6ams7ycvhwcLytLX+1oOTh2IKrZWtfvFyz5qfx4+EQhSsbM+YXafsmiVmpbG13P4x4m2yB+w/CAnd9E1M1g/tBteCuvsCdbLydTLDdXGRv6RHLJ/CdrLwbye4Bc/c5c/dimbvvF8sEQu7+ODrVJ8Bd4uGKhmC7HLXrkHTRpcDrONSuWdv/SrRMRhu4f6KrzB2rWEZNyJ0noXrBXX28Xa60fVsfzcpDBtzx4+3atF0q2I6J7F+YuFT5u+a2GVXs7ttRd6xJqmaaO36xjKqQuxK4hynMFFMP7sJ4uzHaLnorqhxpl3F2UshuDK/jC7tOZ/dpau+RHTJGUDsOnf9fQpER1l2rHnCHgwoOWjjR4Hy3Ndum3px6q6Bg3at1aePOUl0fCUdGJByx0JaKarKvTZx4LCamLTKy1eGAF65PnDi/+EHhvcK443GWBgvsKnC+o0b48tflP8+dC28P/2rUpAvDY+sH2nb3DdvmLnB39cnQ8fYNb3PKZFzV7Sxtd8H6/3lfZImwO9/cBQNU4cO5y9x/xTZ30WIZXteKuLlzou593OxOr+0sfHevMI+zs6ndFWwXTEmV0namTEYy3i69+NqOgvzur9HTWc8OudMDVGlz38k2d+TgcKhYk5vgUInJOpace2rUpIsFc2+tK39VU9v9fMWKR4sWLX+2vHT1s/xZ17PyL6TknYobdTwqox3eHo40+Icudo8/HBpXD+8NDpiQWOpPeBleCYdiOP3O4Z8k5pycs/j+nZkz4dDKOJeReT5z8o3JqM0G3v+MeXeosb0lJXCIwrWOl21ntJ1TJsMF989wwF2xT4ZsgTsX3He7wX2PFLirnZjqC+BuWJOMsdre44Rdnb/3IHb3nai7H5j7G1DmHgi5GxpyD4xOJdsq85b3tV19sF2S2vXUv+hcf1JaarTd2Hg7F9wNNHdSIXdVrTIkwF0x3q6B2rHQR8A9OsFdLt6uQdtVUrt3kF2/v2sLvJvL7hqj7ps1Rt21VbrLjVEVmLuWMnfZYhljwb1BGtzF+mR0arvwjtUgasd1duLCrpbXsYVdGdllnB0/0q6e2n/zncb92ZDJqFIdMv/wRocMaWpXiLT/X01L8W5WqsadC+7oHg+B+y8//aUH3L/qBT93Ctx/+AAOUThf4CyGrSPpZJLT6eyuqVm07FHC6I6I1Jbw5CZbSrMjrS0p9yT81b3Cwo7ExGMxMcfj4i6OGgWvmf9gfuLJRFuzDTYi2EZgW4A/4T+XPF6yvuL1iucrKjorUsacDo4+QE1MpQvcUZ8ML97OK5PhaTtL2P/CXTx2lzd3nWXuXHN3efRmmt23MFF3Ju3ukncOvrPWCJazs6jdFWwXb5IRrW5nymRUgDuWtrPBnVPmvq2fZQf8NAfadg+2u809+mBI7KER8YctSY1wwESmtcVmHYNjJnPC+XHTr86cf2f5qmedlZWVVZ1waE2be2tswdWs/Asjx55JyjkZN+p4TObRqIx2OMzsI1vtI1tgwbGHeD0682hM1rHUMaeXlz1bsfr5yjXPZy24W7b2xYuysnE/jYMjLflU8qJHi+DIhAPy6rhx94uKrowZ0+ZwwNVvr7u3na3tqLpdqkzmM1lwN7vAHXtiql5wV+qTqddf4O4NbTeK2ntikt1v8J0gu/tw1J1Mpbs/m7t3ytwDIXczQ+744G6Qufeg0amkwV2/tpOidkOF/U9qlii1e1HbNYO7L5k7/txUjeDORkkNzRtaGUiOe3SCu5oyGdwOGUOd/XOxRRrfVcm7V9jd6GGquFF3TfUyJpg7++YOM+TOq3GXA/cGEuCuGG9X1HZhsF2pQ0b0NlODsyveOWIiu2m8jiXsGM6uNtKugtq/J0btwrp2QztkKG0n3iEjU9euitrNcXal21plcP+DGLj/nQb3f/DBHY4NOJzggIRzAU5POPctjZbUM6lOp/PZ8uVzFt9Pyj2JGDQ64yi8XLTo/tOSkrNpaSeTk89lZnbX1Cx/tjz1dGpkW6S10Qo7D7W9HAiGF6KPRhfdL3q5Zs2S0sd5Uy9bkxqHOPay+2Tc41K58XZRbRd3dhF212/ugjJ3cXNnz1DlkTQ77c6Vd7EV6p6MKkrtvCmp0tr+nk5tZ39RQm3ngbsn5L5jQPiuQRG7B9v3Do3cFxR1wJNzT2qMSG2OTG+PG3U8deyZvGmXFy17VPK0pNZZe3fmzDszZrxcvfp1efmqtS/gSKut7V6y/HFlVee0ObeWlj6eUngzf9b1sjUvJs2+AS/UOevgbRYUP1xY8vDnefOWPF4y7uq4eT/PW/96PfVvu2sL7xVWdVXBOzkzcmR7dHRLRERTeDhcFeGyBhciuGjIaPuXstrOBnedfTImFbgLwH0/OXBXW+BuVLzd69r+xiO7r+C7keweMHe/GaDak4plAiF3Hwi5e210qlpwF5j7W2Zou54aGZ62Yzg7ASInsv4sTe2i2q65uv3vurRdHbgbbe4mgrvIxFSxPhl+mQxO+JeguQtaZUTAnXS8HUvbZahdJ6l/zhUisSXzDw3Bd7XyrpXdCUbdpRpmCEfddY5RVWPuWGXumkLuvEelWNouY+5q4+1qtF0y2E6a2nGRnfiA0+3ENlJ1c1AxnF2Z2jfpS7V/i70tf9XTOmTMo/b/S3ophtw1g/tGGtw39UY17nDewUkNW0R4U3jGuYzlz5Y/XLhw7fpXGRPOJYzuiB91IiXv1IQZ15xO56WcnAvZ2T/PnQsvZ57PjDkWE9ESYWm0wO5EbXdHRsB/zrgz40lx8d2ZM6cU3XSktQ2LOTjQtqvPCFefzK8Hf+Mel8qLt1PV7Wxt/z9Y2i7N7lLmLlfmLm3ug6WKzkXYnR14V1jDt34oRu1cbf9eUtv5ZTIb8bRd9MvxUDtb29lt9fRTCNvQ9FRWyH0f3bHuCblHpDbT3S8dOZMvrVr3ouRpycRrE5c+Xnp7+vSLo0ady8g4n5V1ZezY+0VFcBR1VVa+Xr/+5Zo1sOYu/bmqugvefu7Pc8srO2u7a7MuZBXeK6zsrFz1YlXOpRw45JY8XvJo0SL4h5NmX6d+IaO29mx6erPNBpdHuOjBpQyuTnCdgSsDbMmwv8Imuol+9MvRdnd1++dK2m5En8xmsT4ZXoG7tompezEnppIAd7Pj7V6k9kCe3Tfl3UfYvaeYe73x5h4oltnzZoTcA6NTTR6dqgLcSWq7hmC7PLULnd1Ltq7g7FLUbo62fyK5zDF3PSF3+VYZmRp3HHCX65OR8Uf5YPv2vjiEJKQi+VYZjeCuWdvxgu241K5G1TUv7QQvL+9E2J14w4zRUXcNk1RNMXesYhmZkLtp4M6NtxPUdj3UbpCz4wu7abyujOwyzq6pPQarq13+V45MpnbNHTIf+x6163F2Qr++SQTc4YfrAffNH8IxDKcVnLBw4sO+Ed4UntiRWPyk2En/b0rRzcyJ5zMmnBtbcBX+8/qkSbcLCuCFvMt5SSeToo9G21vt4c3h1iYr/MPI9sjsC9krnq94uWYNvE3auLOh8YcH2/f2s+z4aPjW3sGb3h9Kj0ul4+2/YsXbWWUybG1nefp7sP4sWOrM/d/1mTuTCpesO+cKNQvf+Yv9tx/Sby9B7a5gu6C3XYu293JrO+cLobW9t9hXwSwWuG+VAncm4R6e3ORIa0sY3TFu+tX1Fa9Ln5WOujgq63zW9NvTX5SVncvI6EhIOB4beyw2Fv6El0+npl7Kybk2YUJtnfNZaemLVavQgfd02bIlpY+XP11e66x9sGBBycon1TXdZWtfPJg371xm5qXRo5+WlNydPftYTAxcLeESB5evPYjaUbAdaXvv3uih7zdCbWfF2z/DAHdifTL6Ctz1T0w9YHCBO6l4u/e1PeDsBPHd99ndK1F3c8aovhnm3sOKZXw25L7tjQ25+/Do1LfIxNvVaLtysB2f2nnOjqHh4ghuwvqLArUbq+2fKC9fMXdtIfeNvUiCO068fVsfGWRXBUwK5s5tlSHQJ6NH20WpHdvZDRJ28v6uRt5NZnfvDFNVG3XnVboTMXfMYhm8kDu7VUYc3BvIgLtMvJ3325vs+1bx0nacYLuQ2lVF2jUjO9HRpnpsXbkuBtvZvUDtxkxGJdshgxts11nXToTa9Qi7qttd0UAJe26qNnD/9n04ouDAQ60yVMh9z2DYDWAnsTZZo49GZ57PnPPznOqu6vUVr6fPuz258Mbysqc/z51b2Vk56cYk+Nukk0lxx+NijsbAG8cei009kzrjzgyn0/l46dLiFU+mFN20JjcNjdxPtbeP+JE9LvUd17hUXrydKZPharuIswsWl91NMXdOE4sgG86iatfawlqbOcjudnY+tfOD7bp626W+BPcYWFZIn7/cTxugSpkRvEqZPUMj9wVHHQiJPRQaf9ia1OhIa0vOPTVzwd3lZc8WPVqUfi498WRi8qnksVfHvl6//nxW1vHY2LbIyBaWwcHLrXZ7e1TU0ZiYjoSEM2lpp1NSzqal3Z0163p+/ln6P6+OG3evsPDMyJHwb+GfNIWHN1qtcEmE69s+FrVvR8F2d40MbJPfKmm7MN5OpE8Gt8Bdqk+GC+4cbff6xFRVfTL+qO0BZ/c7efcFdvflMao+Yu7eLXMnXiwTCLnrA/cfA6NTCY1OfcsobdcWbJehdu4DMzlnx+9M9/r6qwpt11La/onqRYTdVRfL4ITc1bTKGAHuiuAo6uyY8MRzJf3gjhVv16ftCtSuAdk3aFp6/B1P3r3F7uYNUzWrXsYL5s4OudeH4NS4qwD3BgG4Y8fb8bUdN9iOSe14kXb5G0Cc+z7yo031ZNgJObtcUbvp1E4y2P6pIcNRNQbb/4er7bLULtkeQ9zZFe97hbESNrj/j1Zw/94F7nCOwKkHJzKc/rBLwPZibbRGtkUmdCRkns+cfGPy8mfL65x1ZWtedFVVzXswb8rNKWOvjs25lDPq4qi8y3nTbk1b8HBBbZ3zxapVq1+uXl/xOjGnw5rUGBR1YKBtd98wV3s7FW9nxqUK4u3y2v7/SSyJtDtV/s4y979hmPtniuZOmbWw/Zwya5ECdE9aXBAYF0F292RUOWofKhZsF9X2gawlB+7uJplhm+DT4KXyeQs15LiHpm7vb9050LZrUIR7aGrMQUrbkxujMtqzJp5ftOzRgpKHcJyknk6NPRYbfTQ67nhc1vmsshdlP40ffyw2tsVub7JaG2g24mCQm24R1LqsinU9pHBn2DC4lMHlCy5ZcGmC6w9cYShqp3+NnWps59bIoM1Pm7ZribdL98kYVOBOFtx9pE9Go7YHqN1f5N2X2T1g7j5i7l4slgmE3H0p5N6DR6eSapV5yyRtJ0XtMpF2HrL/xbeXKLVjajtpZNfF7prNXU/IXb5VhkFMBi41g7sEOCpTIw6787xJyo/wwB0r3q7Gd6SIR7lABsfZNxi/VOG7ZnmX6pkRY3eZYnd/bZhRXy/DG6OKae7iA1Sly9yxQu5qwJ256VYF7hq1HbtGBofaRW8MNTi7Yl0MvrBTtq6H17eq4XVFZJdxdtFIu+nUrn0yqoDafWE4qooOGQ3Ubiiyy9/9yrbKyIH7xyxw/0wM3H/wgDucvCjkDtsIbDhURUxbZNzxuJFnRuZezp1+e3p5Z3llVWfxiidOp7POWbdyzfOlK56gCZZdVVXw5+yFdzMmnItMbx8Rfzgoav+giN39LNs/Ct36wbAfMOLtTJkMp0PGbet/otav3es9ZnHZXaReBt/cRXPuX/DNXTTqzpk76g68s/BdYm1ivyWnQMZD7d+9h18j43L2r9yLY+6sz5wTb2e0Xdgv/xGrjJ7SdlafDJqYGhTp0vbwlKa4UcfHz/ip2+mENevurKSTSXD82FvssKLao1JOp3RXVz8rLT0RH98SEQFXvMO06cBVC12sJOOK7msU0o09CNkHDtyJnL1fv21uanc1trtrZDyl7Wq0XTHebkifjM4Cdz3gTrTAXb5Pxrh4OwFt9zq12+3Grjcn8O6r7O4Vcz+s2dzVgHu9fw5QJW7ugZB7Dwi5+83oVFXgrl/biVC7jLNLIrsUahuw2B8Lc/Hfyd/0abtKLicp7+rNXWOxDGarDN7cVEVwl4q369d2HHMXr3HXAO4YZTJyacqvsKldMdK+wauLCL7jBd7l0+6+2TCDP0xVQ70McXPXHHLHaZURgjvvphsX3GXi7fjazquRkQ62q6N2tc6uD9k18roGWBfELTBv/dRG2g2h9o29SNW16+qQITIc1cgOGeLU/ovfEkqckAN319BULrjDmQgnL5zssBvA1gGbjKXRYm+xU10xp1PH/zS+zll3r7Dw5Zo1BXNv5027MmrSxexJF7LzL2TlX0gffzY591Rs1rGIkS1hiQ0hMYeGRu4baNvd37Kjz4gfPwzZ/JvgTe+x4+39uPH23oJ4O0fbWc4uuvjsLqyX0Wjuv2Kbu4vd2WXoyNwl2N2N778J5qg6X9hZeXYhtUs2tguD7Rxn/4pj7gy4s8alUp9wEAPuLm2HH5Zrhf7Iw3ek7X3DtvezMO3tLm0fkXDEPrI1ZczpsrUvyjvLq7uqi+4XJXQkUOX+TeEIUCNaIuJPxC95vASOotOpqRS403H1g+64+n6G1N2qvocFEMgXkB0gZOc5+2YBtX/D0nZqb2NuJLG1XW5cKtMnIxtvV+6TIVrgzp+Y6gZ3XRNTjeuTIaTtBGpkzKd2o23dTyDeWHn3x6i7P5u7oWXuBhXLmDo9VVPIfXcg5I4dcu/Bo1MVW2Xe0qjtRILtONTOjrTjOLtiPYs5S5XXk6B2dVUwaswd9/3rN3f1IXc9rTJshVTRJ8ON9Irscztkl6y5awF3/D4ZItquIdKOB+L0QyjtiyC+65J3THbveQ0zvKi7ykp3o81dMeQuA+6iN93sm2v2XTNWvF29tqsNtqumdjXOrmEQtIGwjs/ravLsaovavUPtPWY4qpq6dlxq1yzsauVd9B6YV+OOA+6fusH9cwG4b+Yn3BlwtzZaHW2OxI7EcVfHOevq7syceTkv7+6sWcUrnmRNPJ+UezI2+3hURrsjrdWW0mxNahwRfyQk9lBQ1IEhjr0Dbbtc2j58S+9hm94f+t2vB1Px9nel4u28Mhkm2P7rP+Eumt1Fo+5sc/9XXHP/jGPu/dnmLhp1Z0pmPPLOx3fphd6Y4+wi1P6NPLW/K1g8c0efMAfcg7+n+mTc8fa+I7b1oZbL3F2L/s++YQJtj9oPP25LUmN05tHChfcqqzqfr1ix6uWqOffnxB6PtTXb4Frmuuo1hIU3hUcfjZ51d9az0tJLOTmtDgdcBuGS5SmHGTIERddRep25mOzgCjtCdsbZt9APqtnULlojg6/thOPtmvtkhAXuNLjv9oWJqVrBHSfebra2m0PtPsXrPknwPZPdA+YeKJYxNORO3Ny9FHLvwaNTccCdSMj9Lb0PMHQH29VRu6izs5EdZ9Yo6cV8FH4KTNvCnI+q1dk1m7vyhzPB3GVD7oTBXSneLkrt8s9OCndKHHPHAnf8eLu2puAvVVI7Pq9/Rm5pUHhFeTeM3f29YUZX1N0UcxcvlmE3ubNbZfSDu0S8XapMRkrbRWpksIPtmNSu0dn1IzuJ0LoKW8cJs8tE2o2ndqPr2s0Itqsdjqq5Q0YftWtBdsy7YpmQuxDc/8gF97+JgfuX71AXiG9+Te3qmwTgvtdTKYNSyZNvTK5z1v08d+659PQzI0deGTNm5ZrnOVMuxY86EZneZktptiQ2jIg/HBJ7KDj6wNDIfYPte5C29x2x7aPhW9xlMt/+epBUvN09K5Wv7TxS/6PEkmZ3DHP/N2VzF6l0F2V3T7c7T955i2/rHmQXOjtmqv1d6dVL/BkCbsI9RJBwZy062M4MSqWaZOje9gOhcfURqS3JeafyZ19/tWbNs9LSVS9W5V3Oiz4abW20wvHDvhTCdc3R6phwbUJ3TU1XdfXR6OgGN7ijKvY97iS7MMbORnYmz77Z/SCZT+3uYDu7tF2Dtsu1t4uNS9XTJ6OxwN2Aian1AnDX1SejJ95utLYbTe1+h+w+4O9Gsbv+hhmT62UC5m60uffE6an+HXI3AtwlzN2nR6eSB3c92s4LtuNQu2h7jJKzi4TEeVT9dxJLSM8ybywK8b5H7ZLgjvEdIGzu3LtpxZC7OeAuGm+XxEQMasc0d4Uadwlw1xZv1wg98tSuKOyfmbtU+bs2ecdnd7INM98Z3zBjQNQda4wqKXPHKZYRhNzZ4C51u60I7qLxdp3ajtshoz7SLnX7Jh9mx0F2PaqujtTlbug+xAlRKDi7b1M7ZoeMuuGoZgbb9VO7oc4u/6uf+sAd3eaxwR1+6Ay4w+EHB3CfrX3gfITzF05z2BZg94BNJrwpPP5E/PwH82udtc9KS0+nph6Pi4N1Ji3N6XTOWfJzYk6HfWSrJakxNP5wSAwKtu8bFLFnYPiu/tYdfcO2UdXtIZvpWalq4u2uJhkJau/FWlLyzom688ydYXcxc/9QzNx5le6sqPu7gvA4N/DuxnePv4sslrALnV2B2gW8/qXrc3N/eixz5zfhCDvcP0LmHsqndjrYjrR9F63t+4ZFUzUykeltsxbchYNhzfqXD+bPr6npnnZrWmRbJFzC0IWJ/YQ0XMJszbbM85mrXqx6uWpVR0JCo8UCFy64Lrmy7SjV7qZ2xtlR9m2LmLNvYj2a/db94FNY2s7Xdm1lMlrHpZrRJ+P1Anfi8XZTtN3XkL3V4OUv+G4ouxOMur8h5m70ANWDhpm7fxfLBELuJofc/bxV5i292i4fbCdI7UJnF0V2LhNrYehP1a9PpB+7/l06Cy9Y/Oy8kdQubu5qnnvQZe5EQu4yrTLcuankwZ2r7eKbouzeyTd3sZC7XnAXnZUqXWKgStsxqd07yI7h7xrkXaFqRpTdMeepSjfMEIu6G8nuilF3s81dTbGMZKsMD9y5N+AiBe6ktF2mRobXIaOB2vGdXSuyG1ICo8bWJXldvbN7h9ox69r1dMjIDkeVC7aTGo4q0yFDkNr/6xfGLcl7Y1Xg/lcuuP+TA+5w8FDg/kNvOM7hzIJTFU5t2Apg00DantiRWPqsdPW6l866utMpKe1RUa0OR1tk5In4+HuzZ6+veJ0x4ZwjrdWS2DA8rp6Tbae1vU/o1g9DtvQWj7d/JmxvZ1e3s5pkOM7+L4IlJu8Mu/9ZEHX/67++LzD33pLmTrP7Z5xK934uc2e3ur/L6Unf6CFyT+ZdjOBZti5Adp6zb1SItA/4UnKxzd1T405/OC64f8AamsoLtlM1Mtad8JOFn+/QSKpGJjy5KTbr2NjpV2vrnI+XLIGDoeh+Ufq5dEerA65WcD2iLj3u6w76bTC4WlmbrCmnU6q7q9e+WnslL68pPJwBd6khqFulnV2K2lGwnYy2Y8TbN8rE2wn1yRAocNcM7nr6ZFTG21WVyWjXdiOC7b5n6yZBvD/Ku7ei7m+UuXu3zN1bxTI+EHLfFQi5+16rjDkh97dIartMsF2e2pn2GEVn5+bB+TDNVmAe+H76S5GcNc76p+xS9WvaAn+XXGLSrf3pAUxw15T6N8fcCYTcFYemSoC7aHRXTtt38usypOSdvVmKhtzlwV1qYqpcvF1KfPC1XTTYTtDZ/6lyGY3vagPvOtid7DBVQ4vdcaLuquplxM19l0pz36/C3JVD7mxwb5QEd/l4u2h1O662q+qQUdkeo9rZ9bTE6LH1zXJLAdZl790UkxJSd2rEqZ1sXbvGDpm/ax2O+mejOmREJqPiUTtupP0/MRZ+t4zgxlgduH/iBvcNb8MP2gXu377HnpgKZzGc+LBRwMZia7Yln0ouvFc4fd5tp9N5ZuTIVocDWUOzzdYWGXkhOxtev2jZo5jMo5akRqa3fVDE7gHhO/tZtvcZ8aOrTCb4e068vf/nb/fd8EtXnwwv3s4qk2Fru4va/yC7eOyOXy/zMWeM6oey9TK8SapMw4ygZMYl7xx838jCdOHayF+8PLtopF3G2QXmzmuVcQ96pSvmgzf1RuAesuUjT7EMp0bGXdp+IDTucFR6e8Hc23OX/Lxi9fObU6fenDKluqYr83xmRHMEXJ7gGkRdbtzP6aJLJ1yM4CIFF7WEEwnO2lr4J7enT2+12+E6RoE7Xd0u1HZ2RbuQ2r/lUjuvRkaPtuuMt5Pqk9khqu0+UOCuoU+GbLxdp7ab7+ytfrV8Td7Js7vOhhkzzV2J3X3W3H2kWGa/AcUygZA7G9y3+97oVL8PuZMCd23aTpjapZxdBtmlbPefWEtB8QQqJ5kpw59Ihk3bxGP4BMBdE7vjFsvoCLkrtsqIyKMouOPE2wVZXQ4d7lQuc+CYuwZwFxS4aymTweSeL5SpXZ2zY3i65BlKHOIV8Z0ouxvSMEO82F1/1B2/Xka20l3B3PdxzF2hzF2sWCa0Xinkrgjupmi7fmqXHN28XWWYXR7ZVfG6fkzHjUYIkF1NpN3XqJ3fIaNmOKposF2k/s7QYLsR1E4E2bHZXT7kLgfu9HfMdX9Lgzu6X4IfHPxYqUjBV+/CAeMCd7rAHc5TKt6+bwhsJuFN4Uknk6pqurpra1+tXXshK6vVboed6Yhb0Jptto6EhGelpesqXqePPxue0jQ8rj4o6sBg+96Btt1MmcyHIZt7D9skEm/v64q3//sHFLhz4+3s6naXtv+LsrYrsrtUvYyr0v3fcMaocqLunIYZXtqdW+HC9fdBG0VtHa1eEsgu7+zvuNYX3PXlOxLmzp2bisCdnpvKbpWhR6TyamSC3TUyRYvvr3u1bvmz5d01NXV1ztJnpRnnMmzNNrgqwXWHusTAlYV7JYULEFye4FqG5qauWvvi7uzZx2Jj4Zp2AIE7HW/nabsr2C6RahcJtktouyK4y2u7Qrxddlyqhj4Z/ytwV9sn4xVtJ0jtPRHZSfq7X7G72fUyBoxR1WvuPb3M3YvTUwNN7qrA/cdAq4yOVpm3tGg7ZrBdFbXzIu1cZ+chu5B0ccrBhTMVea8X9TWFqYnMI2GewqOHvnrwXRSyP9W3iIO7YtGN4u8ZaAu544xONQzclVO6sou3lQrjpR7nYlRLFtzVxtu1aDsRapf1dFKLAMHLyLs57N6zGmY018uQNHf1xTKSIXexeLtCmQy2tsvUyIhoO28sqjZqx3d2GWTHEXaCpP6DitUb+waNJLXzfp1oIxa16+mQ8eNgu3yHjH5q/09CS9HceXfI6MZYCtz/zAd3qsD9n2+zwd1V4E73ycApDKc/7Buw/8SfiC+4VTBz/p3a7tobkye3ORywG7H1Dbar9sjIpyUlU29OnbngTmR624iEI8HRVMKd6ZNB7e2/4ba3v9P/81/1ZY9LFY23s3rbVVC7FLsLo+5ile69FSvdOVF3bsOMh93fES1yEcF32SU1B1UK2ftLLPbnQ39KglYZ99zUYHaNO9Xh3neES9sHUtq+Z2jkvpDYQ9akxqiM9lGTLjqdzkujR9+dObNk5dMpN6fAAWNttMKVCK41iNqZiwhzSYXrDhxdcAxFtkUufbIU3sPiR4svZGXBoQXXK7gQUX0y7ng7o+3smageapcKtgu0/QuhtgvAfYNKbZeJtyuOS5Xvk/GPAnfpPhk98XbVZTJe0fY3CdnJ4LvvszvRqHvA3M0sc/f7YplAyF1nyN2U0amb/Cfk/pZObZcPtqugdrFIO9vZ5YWdb2piEWnFJd5bIlYUzsdK1uNk5oExprwLJ5fiNrTIlOR8+kst5k5irqxqc5culiEWcpeqcVcF7kxWVzTeztP2XWJLgsOwQu48cJcocMfS9o26tV0VtRsv7FoI3iB5x2R3obl7tWFGP7vrirrvkKuXMdrcxYtlZJrc5dvb60PVajv7FpJ9k6gu2I79azQanF0jsmuw9R+0LxFVx74pU+fs0tQuGmznU7uayah6OmS0D0f15WC7t6hd2tw1gLvr1pcN7n/ng7tnYuoPveEsg9MTTnPYHGCHiT8RT83AfLlmXcXrhwsXHouJga0IdhrYY1AZBbwMW1GzzXY+MxPecvW6lyPHnglPbgqJOTTEsY8Cd8uOPiN+/BD1yaB4++CNvQZ+9Y7YuFSReLuMtr/7e8mFw+4i9TIyle7i9TLiDTPskhkx6RbMLxVZ74oukTC7LLKLsbuwa54zNzWIqXF3dbjDj69fGK3t7tL24XH1keltoyZfHDf9pzmL79+dNetcRsaT4mI4ANLOplkbrXABgksMonbPr0O5r7DwSrjcwPUILlgRLRFLHi+ZPu/24uWPro4d22S1wkEFFyV4Q6pPhh1vF9V2brBdVNu/ZG9yYuDOX2J3Xl/Il8loiLfj98n4doG79+Pt5mv7G+/sevHdH9jd3yvdfdTc3/iQ+14/Dbm7wX1HYHSq34G7Lm0X7ZBRRe3sSPvH/yp0dg/U4vG6DHuhl3mLn5hmR025WWneNxU9wEZvz8F39GhZTN5xC9ZxmtBlF6a5EwB3+ag7vrlrCLlrrnFXA+7CfC5WA/UuycIHTsh9By64i09MlY23S5bJ4Gj755JtBiL0I+Hs+FMQ9C5t/q5H3tWwO9mouz+yu95Kd/YYVQPMPZT14FVo7sIbZzLaLlUjIzYcVb5DRhu1a3B2xVsnnaqurOdabZ2P7NJ3YfqpXWEy6pe669rVDkf1SrD9f7CC7RqoXa6o/T+NXDLmLjM3VQLc0U2vB9y5E1NRnwwTb4dtxNZsm3139vrX61euee50Ok8lJ8PjfzTWkoE82F3gNbBLnUxKWlb2dNnTZTPn37GPbB0eVz80ct9A2+5+bnAXH5falz0u9WMqWk7F2//KjbcLmmRkqF1W3sWi7vL1Mh+L18tQUXfRhhmG3QWBd6G8S4wzfXegXAO7LLJ/zqxf9Ufozyxxc2e1yrDAnaqUcQ1NpeLtYdsYbQ9ya3tFZWfxk+LSZ6Vry189XbbMSf8v/Wy6tcml7XAIMU/QckYNwRV290C41sDbwFuGN4WPujgK/u2qtS+ujBnTarfD4cSAO+qTgUs9irdjajt7Sqow3i4yBkjg7PwbLlFtVxVvVxqX6umTYcAdu0/GtAJ37X0y2uLtxLXdYGpvDSxV+G4QuwfM3Vxz96cy90DI3ayQe2B0qtdbZd7SqO3//b/UdcjgUbuIs7ORXSz4LCJcXIrlx0i/kliihSRupeX5LM864Q08uEk/zGbLu4vdN8gG3pWWHohUNHdi4I5dOq+6zF1byF2pVUYR3PlWKIy3MzgoTe1SzQ/CkLunVUYU3DH7ZHDKZL7i/H6GqjYDhVS7vLP/w/RFEN91srvWhhkRcxdtmDGS3UXnqeI0zFDPhmNH3cUr3aXN3cPuRps7d4kMSiWk7QrBdjxqF96CiUfa8Z1dCdn1FqlrQnO1y4PssjdfWNT+rQ5q11bXbkSHDI62mxBsV98ho5fa/0NpqTF3kXtmIuD+7XtwoMJZhuLtsF3AzoPi7blTL88vftBVXY0wlJppOWQIo3uwo8BOA3tSe1TU85Ur5z+YX7Tofmz28RHxR4ZG7veAe8jm3nSfzHtDRPtkBONSufF2jdouzu54UXfJehmxqLuA3d/msjtf3j3+/sU7nkIYYUUMt429vySyU7zeT3bx2F0a3NHQVFefDBVvp8pkBoTT2h61f3hsvS2leXLhjYrOCjg2Xq1bV13TtfjR4tzLubHHYi0NFrgAwZXFFWyHiwXrMuG5id01AN4A3gwuVdZGa8a5jNJnpc66uherVp2Ij4fL2j4WuAvj7fwmGYl4+1fceLscuMv/ViFemcxGWttF4+2m9ckQLnA3oU9GR7zdbG0POLs/yLvPRt39yNx9bYCqd4plesb0VK+AuzdC7jijUze/YSH3t8S1XXZEqkxjOxlqZzs7g+y83Logky4qVuJWJbUEyO7S2M0fsCGJZxMod4zw3fXIHB6Eu3+X3CXvbnZnAu8KD5VlkB0nxqto7oaCO14BPWaZO5mQO2lwV9D23WJL3txlwR2nwJ1vQ5jV7TjajhNs9zVnV+/veuUds9sdp2FGzzBVI9jdtKg7Tr2MornvJdctc1juFph9b4uj7Yql7XxtFwu266d20Ui7CmeXQXZMW99kxuLwOsatlsy9lU5ql/xdIv117V4Jtv+JWGO7lmC7Nmf/D00Lz9z1gvvHNLh/6gJ3OAzYBe5oXCpsCLC3xByLGXt1bNmLsgXFD51O58mkJNiH9qOBloMGuXZHWvpga4FNqCUi4tqECV1VVV3V1eNn/GRJagyK2j8oggb30B8/cIO7mj4ZsTIZPqb/D1r/m17/wlly7C4XdXebu0zU3d3qzmuYYdid6XZnB943cO37cxU9MIIMu7SwbxCsz0XQH4Xc+eDuGppK9cmgeDtdJjMgfOegCFrb4+rDk5viR52ore2+M2PG8bi4K2PHzl3yMxweCR0JlgYLXH2QtvMTHjs4z3PD38LRA4cZGhKQfz3//pw5i5c/LnlScjk3Fw4zOKJ2i4K7aLwdH9zxzP1zKW0XK5NRF28XjEsl3ydjXIE78Xi7v2i7d6nd4TBk+aC8+ya79zxzVxVyV2Xu3i1z9/FiGT8Jue8wN+QeGJ1qILgTqJGR7pBRpnamPeYTFrVznd3TqM4ue8HMfvLU6Vuxx88CjYUfEUIlBK+uIhH3jSmjq+gWFjWBuOT9B4+8w/vkB94F7C7evqoEhZJjIXnciW3u5MFdp7nrL5bZKBJyl6xxZyRRCdxl4u0iGrhbuXZZJOSuCO7yfTIS8Xbx6naV2q6O2tVS+KdqfuHj01/KzTDQh++4sXd97G5sw4zvsbt81B2zXkak0t1gc3ex+2HObS/7bzGnpEpqO06NjNRzdWqpXbezK94KabN1Po5rXt9rWSZTu/bJqCQ6ZHC13evBdiLU/h8klqqQO/e2WQbc0c0wB9zh0rPhbdfEVLrAHU4oOEnhZIcdI6IlYs3LNU+XLeusqHhRVnZlzJgWu50p1/Y8PBswADYM2Etg12m0Wh8uXNhdXb3qxaplZU8jUluCow+wwf03wd+/N5QqcJfsk/HE2//ijrf/kY63i2q7C9n/9ztii+PvUuwuE3UXrZcRtLqzGmZ4aXdB4J2deec7OFJ4QQmM55XS0fUN2Itv7p5WGc7QVFefDIq3ozIZ+CEGRe0PjTtsS2mOzTqWnX+h/HX5uczMYzEx1/PzK6s6lz5eamu2oWw7XEFQsF14eeWY+64BcOmBy1PYkTBUKZMwuqOqputyXl6DxQIXLrgcscEd9clsEp2Vil8pwwL3z9VQO2aZjOZ4u6dPhhtvV+iT0Vbgzu6TMQbcNcfbjdN2stTuZ7buYwpvmrz7BLv3AHPveWXuRhbLBELuXg65B1plJMFdU42MJ9iOT+1/k6R2j7N/+Q6jqOj2TZzRpb8xmA+zPfxKcxLyVjimqCzzzv4o+gFnJ5zHLrU5GIw2Htgq0B0tHPhINFyB9x/E2Z1dMsNmd8WqaxWV0yoTcEaBuwZzlyiWkSvoV9sqIwHuTMhdBbhja7tkUhXBmXpwZzYYYbwdp0xGTtvx6eczrKd59Nu62qUR4jWfd5jsbmjU3afYndcwozXqrnGM6l5OvYxac5dhd+ESpXaOtuurkVHokJEpaleMtG/tg+XsUmF2TcKuX8bJLvmbKXXUvlErtevukNFVI/NXufmocsF2DdouE2xX6pBRTe3/QXqZBe7MxFRU4A6nHpy/sA/AZpJ8Krm88nV3Tc3CkofzH8y/PX16o9WKGBQ2A/bvCFHmPmgQ/BU8qr84enTZi7KJ1ycuL3vqSGsbFnNwUMQeGty3UuAuLHAX9MkI4+2eMhluql2S2gXyLsLuvIYZpXoZ2ag7Drv/k8XulLxT+N53g3waHVfV6Xf1tsT6Ff8Dsaa50uDeyw3uTJ8Mird/hOLtlh0DbbuHRu4fkXAkNvt4zpRLY6dfnTrn5ss1a34aP/7G5Mm13bWF9wqj2qPgSkQ9Ntk1EKWC0FOw6BBxOTFL4VGWCC46cIUacXhEQkeC0+mcOucW/Hk+M7PJaoXrGCa48zrc5YemCs1dcqnRdpx4u6pxqar7ZAwocK9XLHAX9skoxdsbSMTbm1WBu+ZguwnU7nVe9yrBm83uPmPuTQaZe08vcw+E3PWDuy+G3AOjUw0Lub+Fqe1yNTKiHTL6qJ1qsXQ7O3yaCIn4sy5x1g+cwhCeV7IXO9KOqJ26Ad0zCM5d2F1gq0P3JrDvwoYNt7PpZ9PHXh0LN6bwGleQZJeH3eGdCNndxZ1fSrC7YNokJvZJYaiIgbKhUxW4fyy9NFS6K5m74lBcnJA7VquMYG4qDrjzHFCU/0QWF9F4IXdxcN8qDe5K8Xa92r5BIWipltqNE3by/q6hbUaJ3QlH3X2Y3VU3zKiNuiuOURU1dza7M+Z+IJj96Jb90JZ3H+rpdq8P5f1VSH2I2tJ2fo2MINiu0CEjQe0aI+2Yzi6F7JpGknpnffcbnHsoBWo3eDKqQR0yWmpk/qR6PirxYLv4ZFQzqR3P3LWDO7oZ/oQCd/gpU+D+5TuowJ3qk9ni6pOBnSf3cu7zFStGjj2TnHequ7r6VkEBPPyGLQR2BTj7t7F8EPYG2Dlgp4E3OJWc/Ky0tPRZ6fR5t+Oyjw+Pqx9s39PfuuOj0K0fuCamugrcf9VfqU/G097O13YBtf9OYqlgd+you3TDjBS78+Sdk3kXELzSYmH6Z9hrw9uic1z54M6Kt9OzUukymV1DHHvh55g65nRlddfK5yvhh1tV3fWirMzpdMJ/5lzKcbQ54MIElxj0kATdVTLXWQrcdw1AA1TZIXcXuO8bCgdb3PG4abem1TnrnpZQlTKt9O9SwDVqp0SljIK5i4Xc+eYuw+6CWycpbdcQb5cfl/qG98mQj7dr03ZDqd0vkN1cfzeB3YlF3QPm3mPMPRByN2V06vYeMzrVv8EdR9vVBNtdv5Ws2NUupHbG2XlF6pslBYfjklsU5vhx6rBZwUx2qh3desKmAntz1vmsgtsFxU+Kx1wZk3o6Ne1M2vwH853u/8ErY4/Fwv4HOwGciHAC8dPuTMkM6nZnNcxw2H2D1pmNajJxciF3DdqOye6y5s4nUczpqZpC7oo17qrBfdcAYceFcLeWMXd+jTtLyngiJlLgjhFv16Pteqn9U685Oxl/Vxt4x2F3clF38YYZEuwuLu9E2Z1Y1H23xKmHbe5SUXde2l24OKl21r2nhhoZuWC7FLXvUEHt+M6OFWaXQXb9AXOvLFlqJ1DX/gXhDhn+1qp5PupfDK6RMS3Y/h8GLyPBnZqY+il1cUETU10F7j9QBe5w1sOOAY/Fsy9kw91m6pjTaePO1nTXnEpOhk0INg8qdEw/8kH5XDjdYUuAbQM2G3hIfyknB/5VHfzf6Rw3/aewxIYhjr0MuL8f5JqYyipwF+2TYcalisTbudr+O7yFye6KUXephhlh2l1O3ln4LuXvRiyPuXvA3dXhTvfJsOPtnjKZPcHRByJSW+Ysvg8/07SzaQseLni9bt26iteF9wozzmU42hyhh0PhQsP+vVt0CUAvML+2C9cU9kWEeuXugfAP4bEMPMypqu56vX596bPSiqrOk0lJcLDBxQouRKJDU9mPUb/llrlLNrmzimU47I7knfWfX6jUdl68/TuMeDsf3CXi7TJ9Mruw+2TMB3esPhmZeLvvafubjuym4Lt57O5f9TJ+au4+UCxjxPTUHh5yxwR3Hw65kxqd2jNaZd4ipu0SwXYFaqfpip1qZ1M7u92FDzHcCXtSjRy8iZfM37LFAUkQejOU/kCzg2Bjg5tXeJxTU9sNt7Zw99lZUVHZWTn77uyVa57nTb1cMPc2PJJZWEINsPr/2XsP9yiuNO3b787O970znvE4m4xAJAmh2Mo5CyGhCAiQkEgSIKGcW9KfsHPtzryz+828k2yPjQ0GbJJNDiZHCSEhcs4Z5XR9d9Xprq6uXN3VCqDZc2nbTec65znP86u77sfvgh8eTxxmqA5Fe6hcVsDbfbM4ducU3usUuVUIS+T4zF1QFqcEuP9TzbCYuas3lpESuUu3TpWwcd9muMrBBNx3iAJ3M/Angvw48ZvD1NQBd768fYs6ebtWtF0WtSvF319oN2zN363E7gMvdVeM3VUL3q3E7gql7uLMXcDKyXpLd7bUnYfdpYcgaldkIyMrbBdC7RxhOyd74rvHWMnZJdIZJfnL0KLq4kmTjVC7crt2G3nIDER/VDZq/5/BELYrJOa/lxtqmbu2wJ3umMoG7liGWM4IBYghKPSDWoKQZyYsupO+4snL7Ox6nQ7hhwLuY8dioRP6ib9Y4ogEBLifcHLCU1atfbXk6ZInGRndFRXOgacmuR0wAXeqY+qm901+MoyBu4SfDE/erpq2i2F3K6TuarE7n7yz4DsPwRtBvOj4SvEwY+5GbxmjqwzLwJ32k/n+4ylbcJhYZjJ7cPhm+BwNirvYV1uLg9ur199PTX2WlUX4e9DFoJknZmLrwW7CvtxWoNIxNx8jaS0mGwXcjzkk3U16tnTpqvzXZRVdpV2lt+Ljj86YwVxOgfnGBu5bhCpVtp+7BHNfL5QKiQ0GtSun7ark7UPZT+awDfxkrJe325a2a47a31TObmP4Pjyw+9vE3G3dQPWNNJYZEbmrap06InK3hcj9HQtpu7mNDFfYLtIZ1YDaachlQO3raAJFvNq/e5+0imJQO2PtYuAp5vOdg1QocrF3oqGXKbsjkDkhNV1iaU7kmYwTL4VAgn0g5FJI4p3ErGdZeUVtzzIzUeFci4p6mplZ119XWd2j79O3FxTcTUpCGdNfV5fXludxzgOBDdEF8QAfjBKY0OaJqJoY7I6jzXWY4WP3b36rrhPjNwLA1FS9S4jcNQfu0tidw9wtNpaxWOQu4SrD65vKCHKlgTuJnVKmFnyPZnPgzpmufOAu7SfDl7crMZNRTduVoHZZPfsXAzhsBN8FybsIdrdA6i7P3IcLdhc3dpdupqpO6q6pvQxb6i5L3jnSDkHUrkjYvlfowpc94p1RFaL2HXKoXaFpjKCSXRPCvlnl0BqyC7dP36TSrn0QPWSsEbbb2kbmT1bQdg1R++/VD8uY+x/+TR64/3884P53LnDHDCEdUykD9+2fYZkjRCDauJ52DWkJWfJ0Sc7aV/21tbfi4ho8PSkGSivcsbixfLH+sF4RXBEYEEgQfk45O3eXlaU9THM/577q9arV+a+dA09NNgL3TwzAXdjA3eQnw26XypW3i6P235LxJ9ag77EQu5sz9w8kpO5S2J3lMyNJ3oX4u/VDCLubAfffmQF3Wt5OzGQo2k6Zydi5UvJ2p4CTmdlPizuLb8XHn3V3P+vm9iQjI3b+zf7+/sDmwOlHpmN/wd7ByH3YcZ5/7SYjZjIB96MOEVcjeiorA2Y3B8Y2l3SWXI2MPOrggB1sDwPc6Sm3VYi5m2F3Y0y1nrnL0HZBMxnL5O1Mu1Tr/GT2WeknwzFwH1h5+xtF298qzm4z8m5T7K6Nw8zbydzfTmMZFnA/OCJyZwH3XW9V69ThB9zFaDu/RapyYbsIapfxkKHVx/hhDKh911gKfx+YhMVKLHTJVfxsGoI7EeRI1ETsIbAbTzHBd+N0plgMTWHYtoYmimp0MMRz8bLYpgo7Cqv1vU8zM1vz8ip7KpHLPkxLa83NxZ0l5Z34zzsJCdjMEHlR+TxevLivtjb8SjiiPoIlPicldT8wyeCTyMbu2z4zGbtzpO7rRURwEqpYsXpemrkLObkLA/d/Wjo0ZO7ixjIqRO5CrVOlXWVkgDvbT8Z4NkhAV7ufS9lMalYC1xQDd46fjLC8XZmZjDBtV2hr8JVKSbsaSm7oJSA0BpK/y5N3i7G77KKWtJeRcZhRgN01tnfXELurl7rLdFIVlLofkJe6C5J3iSGL2hUJ25V4yIihdisl7Qo4u0SeYhXdtnQoRfMiD5DNjJTbtQ+ch4wWwvYhZyNjsYeM5pxdIXa3BXD/nAXcv30PM4rqmLrlY8pPZtc4RA/U6/5N/vMfzF/btraqt6qnsrJt7dobsbGnnJ0RaYjLB1EcY2UjBiBgIMCgEj7r7v5ixYrU+6khLSF4bvqKxzP9T0wSAe6/GbPOYOBO+cl8TgFrAT8Zc9ouCNy5nF1wKMbuiqTuarE7Td4/45F3A3wX4e8WjNFkCGF3RuQuBNw/tDPK2w1mMjvHz9o90WXfZPeD072OuAafyS9uwzQ47+1NeA2KkVr6MlyPcx7Yg7CPUBXHDqOn5dZPuCmu+dVmJL9lgDuqKr8mv+6KiuiU69Ep10q6SpoDAo45OGArwx5FgDt1jofum7qVV9NySlZFzF0Su7NRO5u2C1u320zeLuwnM0QM3PnydkHgrlberkmjVLW0XSvUbkuKfVbTMYzI+0Bg9xHmPhTM3IeAscyb0T11zzAVuY+4ytjAVeYdGdouaSMjKGyX7YxKQSgiT2YL2zcbhO04PjjamGVYBFijCKJR16Lm3p6bdDcp8GKg+1l33EM2fCSXEVcjVr5cueTpEuKljr0LAc8gMz9kj9XGUE5DBrSPEp4zOncG4lBNhIym7Qj8EVci9DW9L1euvDF7Nl45Y+WTnqqqNQWtcxfejkq+ll/cjhoG+SjiO6Iedhrko9TDnmTozunw2QhzJ/SffAbKZGb3eCoJ/nE05h0xdmek7mzszqjdxXJPrgZWDKEKMndxkbvGwN0i5i5v5i7RPVVM5L5RXuSuxMZdKXA3R3uC3RHNRO6ywF3MT0ZO3m5SYlpD27+SAkBSqF05WP9c5bCexauC79Zj94GVukt5u2sheFeO3a00drdG6s5uX6xU6m4of7nkXRC+89NGRah9vyUeMpqhdnFJuxRnV9t9VDle36RgbB6QoR1qV+4hI2/Y9S/1nVcsFrYroe3mqF0RbbeFsN3WqF2aucu6yvCB+3+rBO5Mx9QdoxATEG28z3tX91a/ysl5kp5eUt5Z2lU67/48JJzXY2JMNu5jxpAwgDiBiIKYdNLJ6YKf3/3U1JxXOQseLsDjA2KbHXyPMR7un0zZ8tHkzR9M3MjqmCriJ6NQ3q4ItZsPKewuInW3ErvzybsYfKf5Oxka8XcB5k67yhg83EnHVEO7VPvvibx9jAOxbt872f3gNM/DOIIeYedy8l49X7bsvLf3GVfXcx4ebXl5ZRVdYZfDUPtgl8GuYeggZbSyZG/WuIevLCF2moylDKZc+pP05atfLFv9/OmSJXgjVDoHaeC+ywjcDa4yxop3ixB5Z5g7u4eqKHOnsTt3COZBQrRdzEzGMnm7Ze1SZQ3cD7KAO9dPhgXcLfCTGaLydquF7YOL2s8O6hiy5N122H0w7WXeEuY+0j31TRe5j7ROHbIi93esspGRELaL2bWLNUfd8jF+ThwZzAgq7TtI6Syw5yTcSSit6Kqp7Ssu6ywoaV/4aGFAc4BPo0/QxaDsl9ldpaWdJSWoJVBX4G/sjVi/C36eDZ7u59wRQRmDFxP1YNvOGO2AKUuQfROJlB5xevYNCrL3VFYWtBfgRmTSVc+IBvfQs86Bp5wCTroEnw5PuNJXW9un19+cM6fe0xOjyd//0aJFhR2Ffk1+2NAQ8hGMEV8RRBEUCXzHuqdaqu4ej5lukLrzXN0ZhxlT6S6neOVq6/jMXUjkPhDA3TLmrtJYxjKRu5SrDN/G3QLgziZ6BLod4IrcBYE7iYLEHULCT0ZK3s4hRNbRdtWoXZawf26bYXv+rgS7i3q7y7q6q2TuWmF3zQXvFmB35Q4zWkrdJbC7IHkXGZyUUBC1yzZH5XrIWInarePsqsXsimXjGg9NObsEahek7cKbrw08ZFQ1Rx1kGxkJ2q7WsV071P6/fv+/ZIflzN0a4P43FnCn9xfMChNw3/oJ1jVCBBJIgtdbgoOfpKcvWv44Y+WT/Pb8vLa81tzc066uiEAIJwgeu2gOiNu45+SsWTdmz36ZjRw5G8/V1/QlLLztFdEww+coG7h/OGnz+xO/+x3TMdVo4P6/WcCd2y5VQ9ouKni3wmHGZOzOw+4Uef8ni7x/LkneefCdR+H5411ZgbxR8C4A3Md/y/jJfDR588dTfiDy9rEzd05w3jPZ7cA0z8OOfsdnBZ7EccQceL506cWgIJQeKEPKKroyn2Wi7sAehA2FMpPZPoo4WBriNmsf52J30iXrJ/qS4r1Uw4CZJ2YGXgxMe5hW0V3RVVJyLyXlgq/vcUdHbHF7aeD+Ewe4M0Uv6z+3GPupCjB39llLPnMXGRuEnGT4tF3MTEahvF2gXaomfjJyBu4D4Sejrbxdc9puvbB9+BP2gebvbzB2H1Tmftwi5j6MzdxHRO4DJXIf3q1TbQHch4jIXQVwV07beTYyYsJ2Qbt2BrUbhO0sGxkTbUfOd8ge0S6gOSDuVtzq16tz8l49y8pCZokSoqeiAolg7M3Y/Lb88sruqORr/jFNiYvu9NXUvFi+fPnz5ZlPKY/1mto+JIt4BTZ2N4jN95ldwo/bWEOEtiMcBl0MKirruBYd3V9XhxLFL+aCU8DJ6d5Hpup+tvc4aO9+cIrukIPvMZ+oxlVrX1X3Vj/NzLwaEXElPPxuUlJpV2nY5TC/C34+jT74G9wSHH0tGveEXgr1Ou+F2IwAhs+Ad8SCIAoUk73M5g9Ntf0Gbn9LeUOJDTyBvJG5qxC5aw7cJbC7WuaurHuqCpH79/Iid6bHlKiHOwu4k2DMac/IcXCWAO4kRhqAu6CfDGFkfHm7UK9UwUapMrRdsbBdIWe3OWQfDPgu6jZjgdTdAnsZC7C7hM+MBHm3TvCuAXbXxGFmr2g3YzHsziXvLP5uL6674GR8ylG7WSMHVj6lFLXvkEHt1nN21ZB9kzjIZo+NHyiclpyhAYXfZBVqt4WwXZWHzJtvI6OWtlvK2eWxu+bA/c9mwJ3kzAbg/tW7VEMjGrhjZWGdIu4hYiBv7O/vr6ruuZ2QUNJZEjTnomd4fXzarcKSDiScl8PCKOmxvT0JMwg5lLZ91iwiQEnJuIfkmTgizs984BvdaFK4TzcB9/co4M43cJfzk5Gj7b+gxv8RGlZgd4UOMzLY3VzwziXvRvjO5e+SFF4cygsydx5wN3VMJe1ScXQoebvjT+Nn7bZz3Y8CBMfOJeiUR9g5/9lNOLKtubk3YmPvJifra/pQE3mc8yDu7UTezr6IlhMhmY2bMHdsE2TDxaaDvWnKoSluZ93Wtq1tXbOmu7ycqI7uJCaecnYmp3bI5RQMcGfXwNzdhsXcmR6qbJE7m7lvUILaFdN2tfL24eUno2W7VPXy9oGh7QOJ2s8OzzFEyPsIcx8qzH1YGMsM5e6pI61TeePHISZyH+6uMu/I0nZRGxmFwnYWajd5yGw0oE9D2sfStmMNIexlPsssreh6tWpVd1lZX20t0srz3t5XwsNRSPTV1Kx8uTJn7auYlOs+UY2zAk8iB12Q9bCkvLOiqmdJ9tPYeTfSlj68l5JS2FEY3BKMTBTxj/iqUzSE6NyZzqv77XAn/gmhCI+cd39edW/1mtdrkNG6h5519D021fPnye4H7Fz3TXDeO8F5D/6iYpnmddg1+ExE4hW8KT7eo4ULH6alFXUUzb09N/5WfNazLBQ5bXl5vVVVXSUlRWUdpeVdMddjfBp98NUQdfC+7Ks+Tcx9k5k22WyIEzQ+XTVrwcoRuWvkKmNQ0hmHaubO4aGqzNzVd09VK3IXdZXZOUYKuLPl7SxyZ8BwzDUW5sCdRFADcFfgJ8ORt0vQdrPTMOsVeP2rAkAiqH1wILsy/xmtyLvl2F0tc1cgdVeI3aUE7xutFbxbhd21cpjZbeYwIyB1l8TunKtSROG7CGRnX8iiFrWzhe2cXEkMtXNyGSUW7VpxdqU6cVmqbtlQxd/lhvSntdCx/Rtlbag1aY5qaxsZC2i75jYyalC7BZxdNXPXBLj/VR64Y8kjbqAKT76bXK3vLe0qzcx55hRwAhmpo9/x0LmXeiorn2VmnnF1RWGMUhY1KupeStseG9tTVVVX14//IVXOb89/tGgRbs9deNuJeLjP3DVq+vaPKeC+6f0J3zEdU40G7v+kwbSEnwxf3s5B7eaE/TesIU/eVWH3v6jA7vLk/Z888k7Bd0n+rgDE87E7q3Uq8XDn+Ml8bP/Dp1O3jpqxA0dqogvVKBVHHGVO4JyLkUlXY+ffnJf5oL+u7llWVl1/HYoOVBZOJ5xQxWCLwa6BbRRxnl9TkLDGYHdT8bWd2mqx+5AOvYEXA2v6ah4uWLBs9XNMm7ibceVV3ec8PDDBuMCdJXLnIGxyPwHuBuYuZCzDYe5Sg5fgcPcEcdouLG//9NPtg+snIwLcbeIno0zerpmZzIDR9rcMstsWvg8x7K5BJ9UR5v7GG8u8JSJ3hcB9sETuI64yykTu74jSdjHTdr6NDF/YzrZrX2fQIFMeMnTGRNXJnISP5duOeICEr7isE0XCg/nzV6191W/8H0qI3urq7vLyssru5WteJKffi0i6EhjbPD/zAYqKNa1rXuXkFJS0RyZfjUi8UlTaUdJZUtZVVt1bPfvGbOwJTFdVkwjxwCQsUyxuxBWEZzysq7S0p6IibsEtj9BzDma0fc84p91jZ+4k/Ytwp4PPUffQsyHxLYmL7+QWtrbn5+MzFHcW43Nm571MXXI/Pu1WSsa9xcsf456nmZmFHYWUUqmnyv2sO4INlqMZc9/yMaNGEa722ZydxRq4mNXIWAVF7tq6yqhg7gNoLCMscv/OUpG7oKsM8f2nA6EYcOcbTRhE7gxwNxI3A3A38jW+n4ypXaqYvJ1lJsO1buchIQ4JUkjbZVG7Os6uuUnRIMF3aeyuiLmvs4i5W4zdLSPvg4fdtXeY4WF3GfIuNwQ4uxhql7VrV4vaFUjaNeHsFpuxCFDsjdbNT434uzrU/p1FwvZ1FvbGsETYPvRpu7Y2Mhag9v8wDlXMXXPg/pdfGvJnAtz/aQ7c17MU7j+ORtxAPhxyKaSWpueBcy7O8Dlq73Fwmtdht5AzmdlPK6q6m/z9T86aRQpv3GgJDsYj+2pq4m7F+Tf5BzQH5Lbm3oyNvRUfX9NX4xp8Grnr2Jm7Ppu+/WP7H2jgzuqYSvnJfPErpX4yArTdpGr/jYIhQd6FjN1/aZmxuzl2FxC8G8m7nOxdCMF/qoy/c5i7wVWGB9wpPxkzeTvqDhxuJ/8TqGjyitpIFYTjiP9fWd2DimP+g/nhV8I96z0djzsyfjLYC6iCYvNHpu5QrHzYYOO52Qy4U01Td4/DnoVSKLglWN+nRyXlE92YsOgO3qu8srtep1MC3Bm1uIG5s8zcOSL3jdxTme8rR+2CtF2qV6r18vZh5Cdjvbzdatp+aqiidlshb3d3FWOIw/ehid3fMOb+Rpq5Dx9jmRGR+4irzGACd3naLmEjQ4TtrOaoAnbt5qkeMW3HD0OuZ6SyPVpegbWIHQNJpL5XX9RRVFzeGTC72SuywTf6QnBcS0zq9bSlD2tr+1BOPF2ypKOoqJ+W8ZAEtKus7Hp09P3U1PLu8rLuMiSj5EJaPKU1NzfmegwldT8+kziqE/td/MVt3IP7PRs8lzxdgpcqLuv0DK+f6XccVY29x6FJbvsnuuwbP2vPuJm7xjj8hDx47Mydk1z3z/BmgPvdFbkvyPmAzJyn8Wm3Qude8olq9Ag9h/IGdVFQXEtWzrO6fuqj4i++HcIzlRzvncBn7gZL902ifEHgwvlNZpjeANzX21zkPgjMXYmxjLTIfaM6kbvBVWaHqI07x8PdDLjTE8wE3DmWMgxw5xi4c/xkLJO3s1yJlNL2r7hG/8ImwoKo3XaE3Ub83QL4rkrtbqW9zLfK7GWksbs15H2TpuTdMuyuucMMD7tLkXdO32PBsV+Ys6tVtXM9ZNSidmlJu2WcXU7MLgvZ5cG6yqEWvrMnsKhHzcbBEbYrvYRITtguYyOjhLYPimm7NcJ25aj9PxQMWeZuGXAnP8KfLAfuBg/3PRNQyAZdDOouL+8oLIxKvoa8dLr3kRk+R52DToXNvZzbmntj9uxzHh6naHp1wdcXaXCfXo+nIMmkbBJPzEx7mNZbXd1ZXIwXcQs5i4QWGexn07Z9bP/DB3Ybf0cBdxED9w//Jugn8+9s4M4yk1FH2wXIuwLsrs7YnY3d/yqC3WXJu5jy3Yy/i6vgTcydq3AfYwTuLAN3yk+GbpdKu7fvsnPd7+B7LCzhMkoelA/R16IjrkYk3ElY+XIl5sOagtaa2r4FDxf4XfDDgUaqif2F+MkgqiPukXLATIxCrjDexDXzZAueQi6F9FRWhsRfcvI/gUIG7/t82bLTLi4CwJ214ZhpxiWBO1/kbnZBrzlnl6btFpjJKG+X+pO0vH1o+8nYQt4+VGj7oHB2VUjdmjHMyftQZO40dn+zmbtaM3fbGcuMiNxVi9xHWqe+Na4y74jSdkHTdp6NjKCwXdiunUHtjHvgdgNtp9r17JmANYHIEXsjFrVB65o1iYvu6MLricwcA5WGX8yFtUVtix8vruypvD13bktwcHNAAP6SUa/TITRjn0DVcS85+VZc3N3ExP7aWoLCa/tqUZz4N/kj+pJGpiRC4AbiGYJ6+JVwPKaiqicgttk58BRKGrypvcfBSW4chTtlqmjvftAp4GTo3EtFpR36Pn3Gk4ycVznPly/HO6Vk3AuOa8EnnxV4ysHnGKqjmf4nEhbeRhV03svrfmpqRU+Frl6H98Wix7dm/NzNmPtmrgqPDbyEFYhM59XvxEXulrVOHXQz96/kjWXEuqfKiNw3S4rcFbvKCAP3g4aNggvc5fxk+O7tTAhRS9tNnv5ytF2Vs4Ei1C43HzhnawTHUFS+K5S6W2kv861iqbtII2VtybuE1YyG2H0gjN053u4cwbupXLYTz8hYhN08I+MkX4OC2geCs29Uhqq/E243IjU0ge+b5IbykwSKabuNmqNqKGzXuEWqTU3bldF2yzm7JHOXEbkLAvc/KAXupkRaHLiTpqlY7IgVyB+QLiKDxUjNuO8Wchb5JIZL0GnkwyXlnc+WLr3g51fv6dno43MvJQUZbOTVSNfTrqiqUbMi1424EoEcuKyrLGftKyf/E8hmkcR+Om3bR5O/p4C7WcdUvoE7Ta4F/GS48nZx2v5HkaEddpcwdpfC7orIuwB8VyJ+l2buJuC+7rdj19EdUykDd5OfzLRtox1+HD9rj73HIc/w+qreqmp9b9jlMPez7oHNgQsfLewoLHy6ZMnyNS+SFt/FP6H6cDvjhsNtAO5bP0UwR6BD7DIkfmzxk1j3LNrPE9UQqiRMmIikK96R58MSLtfW9d9NTj4xc+ZBIQ/3rXwPd5byfYskcOcw9++U7QaqaLtyebupXart/WS0Be4W+smolLfblLbbCLUPA7w+IAj+DcDumtjLDCPmPlyNZUZE7iMi97fMVUYdcJdtkSps2i7k2E7Vk+t+I2bXzm3UQ/sGEskwphKmMNYf4uKChwv6amq6Kyq8IhscfI9N0R2a5Lp/ovPeaZ6H/Wc3UYng1Yjy7vKrkZHYDBCzEDiwzk1reOpURAeEJ4RL7FWXw8I6i4tfLF+emf20qrpn5cuVQReDsCEgCiKGIUohtiGyetZ7pj1Mw4vHp91yDz2HemaG91G8I96dYe4TXQwe7pPdDjj6HotMulrbV7vo0aKoa1Fxt+LwmZGVouAp6SpJWHjHJ6rROfDUdO8jk90PTPM67B11Hi9+JSLiekwMbvhe8EW4xSfG+qaY+04z5s5YupsdqM1m/Y6MiaQJnbDtGrlO7utERO5fDgHmboWxjNruqYIXCmgoche0cWdou7CfjCp5u5CZjIW0XVBxqQy1S7nHWMHWFQ4bkndV8F0ldteQuavC7urI+3fvW2s1M7DYXd7YnYfdhVuqCmrelQ1+zsV1j5EzkJFoiyph1K5U0m4ZZ1csZlfI1n+nyKZX9aTV0B1eWxuZgRC2a0TbB7NFqnIbGVugdoXM3VLgzlGxqAPuWyjgjjiGtAGZaujlUGKrGJ54xT30rEvQabeQs0gyUzLu1db2IcttDghASowHzLs/z/u8N5GVoKrGjcQ7ia9XrVpb1OYbfQG5KJLY0Q4/fjJ160eTqY6pBuDO7pjKM3Bn+8mIy9v5tP2PyoYS7C5g7C4udRfF7iI+M5Lk3RL4zsHuosCd6ZhKG7h/94HdRpafzE5UHDhegXMudpeXv1y5MuxymK5el3wvub+29sbs2bfi46v1vRGJV8ITrvTq9fjXaYenYccxAfeNHxB5OxWLjKUZudqYDdyxmxADd+xlKElQDQU0BRR2FGJqRSVfy1n7qk+vb/DyOurggEwW2xoF3OnS2gTcmSqXVwObebgrAO5ywgBJ2q7ATMYCeTvTLlXeT4YH3JX4yRyyxk9GZbtU28rbhwxtH/aE3Wb8/Q3B7gNpL6OWuQsB9xHm/saL3DUE7nveeOAuydzfbFeZd1TQdpaNjJiw3WDXLofaCTch2nbMI0xMrAasaY9zHlU9VV1lZUj1CLCeQpm6HJjkth+3Y1KuI/VMvZ9aWt513tsb8QIrDcuDPd330bkOVh3WKmIEIhp2iyZ//1c5OahGUHX019VFXo3EGyEAI6DiL/aTgOaA8u7yuv46v5gm1+DTFHD3OYp3xJjq+TPB7pPdD9q7H5yiozpWBcVdxKstfbbUs8ETz025l4KXvRIe3hISci85Wd+rR7bqFdGA15nudQSP9446v3j542dLlz5YsKC0qxRPoTzljzkgomDh4hfAxKeQyrbPMFMY5s6GIGZabCMXZtuMGLxoCDigSYFlrjIyyuXBErlLd09dp1n3VEVO7jvNndwlWqcy3QIk2qXuVCRvNzOT4Vu38xrnCtD2dTza/pUC2m4pahfA5f+wdKgl75o2XFWF3QeZuSsn7xtsRd4FBe9DC7sLCd4F4bvMMM+tOCmVIkk7K98Z/ZNZ8mKtpJ2bNXys1pxdyuJ8owxhl4Lp6uetkv4EA0PbLbSR0UTYLmEjMxxouyLTdouF7f9h9bApcGfsGY3AnShXcMgMibR501SsRCxhrHfEB4QUZIkup11yXuVU91bX1fVHJFLSY6SXfjEXYlKv455bcXHXoqKQXha0F4S0hOjqdXg8SW6JWvnF8uUFJe3IqCe7HxjntGvU9B2fUB1TKeBOOqa+a94xlWfgzvKTYbdL1YC2i5B3eez+P1pgdwHBu0XkXRi7c0XufODOGLgzfjKTDX4y42bumuS638HnqP/sprLK7s6SkuJOyhSovLIbhUaDpyeKGqqj6YJbmAwVPRW5rbkORx2wDWErwdZAFO4EuJOUj1RnbIU79gVsH8TA3SBvP+7o1eAVcTVi0aNFOWtfLV31vLui4lJoKGnMe4AA97FjyfXj2IsYqs7ZzJnb7JLVtMOYR1+ltJ2fhnCyD/FeqfLydiNwVyVvHwp+MkNK3m4r2m4j1D6MILvW8H3AsPsIc9eSuWtt5j4UjGVGRO6Widzf5tapwxm4s2i7WItUaRsZrl27IGrfZjCQYVTtDK/EHMSkxnpCtPBt9K2o6i7qKEIt4UTJzAnv/nma12HnoFOpS+4jxSwu67yXkoJgRPI/zDy2EmE3nQxhlmOdYOERwTuC4DkPDySOXaWlKFp6q6tjb8Z6n/cmuxZSzKhrUVX6XiSvKGNcg087BZx09Dvu6HtsVsBJB99jM3yOzvA+itx3pv8Jj7BzoXMvLVr+qC0vL+lukmeDZ8z1mNq+WtQ8DV5eeJdGH5+HaWlZz7LWFLRGJV+jrOdTrs9deHtB1kN8+Pb8/LSHaaGXQ4kKCTEPoQKLFQsIPwt+H/xQZsydz61o73ty6oLAF6J9FhW5S7ZOlWLuNsLussxdzCDbdsYy5kyQDdwFjGV+Gs0XuZuMZfZOZIwpzNwnOLTdKG/nmMkYgPt2c3m7WjMZxbSdz4BUo3Zpzv4PG4wBxu6y5F2Jq7sEcxcH7lLMXQl2X6+BgliWvFuJ3c3I+wBgdwnBuzl85/J3oSGYQ3HSJbWoXcI9RlbSrkjPboU5uzrIvl6LITZvNcXuFtN2YRuZwRC2D7kWqbah7TZB7VoAd9OXVQXcSS79BQXcMU9MwH0TBUOx5BEQiLM26l1kqgl3Esoru5FGJqffRRYaHN8SlXItt7D10cKF91NT6/rr5tycE9AcgIRWV6/zrPcMbgmu6q3qKCwsKe8MiG1GFj3RZe8Yx5+MBu6bfsftmPr5r2QM3MXl7Vahdinsbp2xuxB25/vMCAreVZN3HnD/VBy4Gw3cTX4yE839ZJx2T3Y/gIojJP7SytyXlT2VOO4V3RUtQUEnZs486uBw0snpWlSUvk9fVNbxes2a9MfpjscdkWRSTVO3fWbycEfgMkYqRgtF2XsSefs2o7x9vx2KEf8m/9zWXLxRSVdJbV1/65o1t+fOveDnd9rFhQB3bHE7aeBusmg3r2D5paxp27ECuAuf9FdpJmOhvF0LPxltgLt17VLl5e3Dmba/XZxdI/g+TLH7MGXuA23mPiJyH7Yi9xFXmaHjKqOtjfs7Kmj7P1i0nSNsN3ZGNaBMgtoJGuahdgNnZ4mCsQ6o/k7HZyLh662uRn7pFdHAwG78dQ48FZF4hVxUeyU8HBGNSv7Gj99pVFuQnInkSQS7Y2ZjPRygpe4IAQhViNSNPj634uNLu0pRnMy9PRdv59PogxJl3v15eGXUMHhf99CzrsGnnYNO4U1dgk7TV++e0YXXo2KJSb1e21eLp+e15fXX1eUVtfXp9aTgqdfp8KkQH/EXt1H/4AWLOoo6S0qQwi57vqywoxBviowZz136fGnyveSQSyHYJxEjKea+dyLVQPWn0ZiMYsydwcGMwzgRxTPm7+pcZb6yTtFsMXwfsO6pIsYyJsdqC4xlfhQ1lmHr3DnGFEw85tB2m5jJiNN2YdN2hcJ2ueNuW8huMXb/fHCw+wAxd4XYXSv4Lmj1rkTwrspnxkbe7jzBO1/zzoXvigc/SxLj7JYZtUtL2gUTB5ubxqiB7GSWGobkTFbumCQxXVWg9o3va0jblQvbZQy7Rmi7EmH7f2g9hhhwx3pHWED0QOaAFBHFsdsZt7DLYUhBC9oLKqq652U+SFh0Z/Hyx21r13YUFS16tCjmekzopdDgluDwK+HzHsxDwqnv01fpe32jLyCLnuR2YJzT7tEzfvyU8pP5nnRM/a1wx1SegbuBZSuRt/MY+rviYxCwu3LBu1KrGbH2qhzgLuknYzRwn2Jm4O4afCZn7avMp5mrX6++l5xsuK538uT9kyYdsrc/OWsWSg+UGBU9FdHXox2PO9rtt8MWg+0D+4LBxp1m7ibpCd0xFXuBQd6+YxR1FcUe6ioKXb2usqfyYVravZSU1tzc8spuVDovV65sCQ4+5eyMGgpvSmquHTRwZ1u0S1eqZrSdB9ylmbtoxiFC262Rt78ZfjJq5e2amMmope2DgNrfVM4+WOR9hLmPMPcB7576Bojc91jJ3AcFuI8ZM+Iqo4nI/R0VtJ3YTQo5tjOZnKkVD3GPEeLsBLIzUxsrAEsKSxlhLLA5sKavZkn2U6+IBpegU7MCTs4KPOUWciYk/lJ/f393RcX9efMQ+7C0MDtJ6x7mkBDBAo46JhAmHKYso3Mn9jIIVQi19Trd5bCw/rq6kq6SpLtJKGAirkTkvMpB3YJ3QWXiHXkewyeq0X92U1jC5Tnzb64ueL0y92VtHQXQ9b16FDb4MI8WUX9ravuuRkRgA0DYQvgg+RNuYyO5HhPzYvny4rJOFD9xt+KWv1jenp9fre9NW/pw4bJHeO7r1avXtq31a/JDEEWE4Ji5CysWt5iceQh44gB3xlVGCrjzjGUUtcf8QgGUtKa/pYbGMt8MiLEM60INDnPny2NNns671dP2Lban7V++q5b+DA5nV8vcP9d6aMXcv9aOuX8rRyo1h+8Kybs1PjNC2J1ZiSbyLobdJQXvfM07F77vNnfUExy8VIifBIlJ2hUZtbPdYxRL2ocCZ5dn6wqH4JRWqHbf+P4Qou3Khe3qbWRGaPubBtw30Ej0+48YHopogzwZVSmKaZfTLj6NPhFXIxY+WogMtrq3uqS8q6q6B5lk1rOsjCcZK16sKOsqQxbdVVbWV1MTO/+mZwTVDMne/eAE5z2UvH36dsZPRqhjqnIDdwXydgNY/4PkkCDv0thdwGFGop+qCuyuSvDOxe6CrjKSfjLj1+NYfGC3iWXg/hMO1lTdz6hHequqQlpCVr9ejYLC0LmU9nVBXnl42rQGT08cZdQU2S+znU44YZ5Qwp0fR2PXID6TjASHufKY7LyMmQy5hAJTK+paVEFJ+92kpM6SksycZ2uL2hY8XICXfb1mzVk3Nwq429lhozOUXTyLdqlC1Jy2C2w4ChzbRWm7pfL27RK0/Y3zk7GhvN0WwnYNUfvbw9mtJu+Dht0HxV5m+DB3W5u5qzKWecNE7vuVMfeR1qkjrjIaAXcObf/LLyVapHJsZIS73m81iK/FODsh7GSRYQHhLxYoggSiYEBzQG1tX/qKx95R591Dz7qFnPWKPB+WcBl3oqi4MXs2witWKWY2pbMYNYqILIiWYauRuRN5AlfkTnNwxDWE6Xqd7mJQ0MMFC+r665BTJtxJwI2k9LuRyVcjEq/EpF6fl/kgO+9lf11dr16Pqqakk7q+cnX+a+S+z5Yu7SwubgkJwYtgv0EURgxirOT3GU3k8Y4IlI2+vv39/YWlHah/nqSn30lMxH/OXXg7KK4lILY5JePe8+XLkUnjWyPs4ZehzNx/GsPo1gWQCiO+3saylNkqbinDsXFfp8a8+0th32pF5P1z9YpjK7qncoxlpMzcJYxlpJn7dnHmvtPA7wTsoXleEwbf9l0mBkcMJVRZt2tL29XaGljC2f+uZljE3AdC5C6L3ZUxd0vM3L9RwSjVwff1WhtnqxS8q7B3F8PuCn1mfhrDzTU45H2XKZGRzHdYeJ2X8nD17Mo4u2pJu/WcfaNqc3ZFnP1bGwz+fLZa6i5G2zlNpzlBVTltt62wnUPb/zawtP1PA0rbBwK1awXc/8gD7uyOqSqBO5Y8ZeP+0xgEGdLlCHkyqm2XUy66el1AU0AE0tU7iVnPsrpKS9cUvM7KeZaZ/TRjxZMFWQ/iFtyirteMPO8ceGqG91F7j4MTXfaOm7mLkrfTfjIfTtr0/oTv3htPGbibOqZ+ItgxVcrA/RdmwN0C2q6EvHOwu5zUXdLY/Zfv/0Uj7M5l7kIidx5wH834yayj/WS+JX4yJgN3E3DfO9Xz56A5F1/l5OS15eHgXgoNRQlzYNIkpJO7aTkRqgyUM6gp8oraavtrUUBhkpAigqh2mLqA2XwZh09SoGHDQtGCEsz1jGtBe0FPJWVcE5V8De+7Mvdl/O14zLG6uv7z3t6Hp01DaYMtjvGTIZWX8FXVvLJTirYbmftGcc5uFW0XlLcPPT8ZrrzdIj8ZbeXtQ5a2j3B225H3t0jqPnyZ+4jI/Y0Uub9VrVOHhqvMDwPrKvOONG0XMG1n28iwDAHx2QlqpzDHTiqToyD7vomEsGMpYNFgeWEhYsliiSMq4Ab5TwQGxCEEY9LiKX3FE//ZTd6R532jGyOTr/bV1FBOMhERp42te/bQOgsclS30b7GZzrTw424TAu7EyZ3oBRC5EDSxqSCDvBQSQhHwurplz5chp1y07FHWqmd4o97q6p6KivaCgtY1ax4vXnwrPv5GbGxLUFCTv/85nQ4hHhETL4UQgE+C199Lp7+7jFbyjKENVizeFG9X7+mJt2v08bkYFPR69eq0pQ+9o867BJ32CDu3fPULfIC6/jrPek/8OAZjGZrFEJLO2IlwaZQRQjGPkQDujI27El8RYTQgAd+/sA3E/FIzYxm1Zu4c5i5q5m7O3M2k7mKEbhePtv84gLRd+hSLtqj971oM65n75zYbCpm7hsYy31iCKVUjeK3Iu5WCd4XYXaHPDI+8c91mBJXvyoZgUsPl7ObZirCkXT1qV87ZLRGzK+fsEpPwG15nUfHBPFhiSgvOVbXMXZ62i8nbZWn7VwNH2wWE7SO0fRgB978bgDvZNQSA+5ZPSDpN5dJ7J1Aid/pKUJIqe5/3DrkUknQ3qaqnCmkq0sikxXcjEq8EzrnoE9WI3BIZpqPf8Wleh+09Dtq57BvvtJuRtzN+MlTH1DGGjqm/ku+YKmDgLipvV4faeeRdArtr4TBjLXbnS93ZzJ0L3IX8ZMYK+cnY/0B1TGWAu+5nXXh9ZvbTmr6alytXoogg5Q8p8lFfoK5BfXE3KYnyF7o/b9apWaizMFVMV8puY3UAYq6OpScVHoOkFAXa5IOTiXt7RVVPeWU33tHB95hTwMnERXdQDS1+vFjfp2/09cV77aV1TgS4bzWayXwvXmFu4gwJ2q5gbJJrlGqZvH2HyYtOvl2qqJ+MnZ2t/WSGorydZp0DTNtHUPvAkPdhJHUfROY+lBuo2pC5D0r31BGRu9rWqWqAu1bMfZBdZWxj466VyJ0G7oppOyXYJLT9G2NhwGp2z6RxRI9DroHFOkaoQCBBcEJoRCBHrCVhEtEOd5LwQ/3rKRePcx5I+1a8WLEi9wXVEiquZfa8G71VVa25uZdCQrBbIOhgcTIXNuJI4IcgmRy+7RYh4E5Zytjbk/SFKNwRZM+5uzf6+OA1b86Z82jRoo7CwsrqHvx9kpFxJzHxWnQ0/qnJ3/883QQVewOCLJ6Ip+N1sNoP0GL2PQSy095GnPnE2NrgAxyg02I8F18UXwHJMbLYgNjmmf4nnINO5Ra24u1wT8TVCIPIfc94s3RZgrlvMfcb2fwR8ZNhA3czV5lv1MnxpOD7l1Yo3zUSuaswlhEzc/9OnZm7BHM38TueT7SgmzO3S6oQbRdolGoBbbdS2P5POfSjOWRXi90HhbZrxdy/tjFzl6Pwlnet3KCOvGsjeFfvMyNP3gXhuzmF5w6RB/NzFs5b20rSzuHsVorZrdezKybsivi7tNpdlrkLectYaCajirb/S4P2GJbRdgNwF6LtFHAfoe2qgLsC2s4F7uTH+RMPuP9ZMXDfaAbcEVtQiqHmQ61JAffjFHD3afSJvRnbX1f3YP78G7Gxz5ctW76aSpu9I8+7hZwlDZAMtN113/hZe8bO3Dl6xg5K3j7lB9pPZiPlJ0MM3C3pmMr3k/mjdsBdDLsrd5ixKXYXY+5cV5lffyotb/+GkbczwP1TCrjvGOO4c4Lznik6ysM9Y+WTjCcZqBEavLyOzJhxkC5AqMt27e1R1KCceZiWlrDozsqXK2ednDXl0BQU/ajISRFhOqFrNEVkajRyCsf+IDWj8MTo69EvV64MS7js5H9iiu7nGT5HUX/hTUvLu/D3jJubmY0nS95OystNInidPTZqTtttJG9X4Cezd6j5yVgjb7edmYwq2j6C2oceebcpdn+bmfuIscwgi9xt1jp134irzIirjLirzDtKafu/WLR9/XuG3jusTvcGxcTeiZi/WEOIEF7nvRY+WphyLyX0cmj0teiyrjKkbvMfzE+8S10GG3UtKuhikG+jr2eDp65eh+F93hv34PGFJR2x827Ep93G458tXXopJKTe0xORERGEAu506x5K4T5qFH5Q8lXxqxFLGZI5EQ93IgOhgPvUqUTejhfBZtPo63s5LOxeSkpnSUldXf+qta/y2vLa8vPvJidfjYxsDgg47+19zt0dcZxC7Y6OeC7el/jGYOXsZjVr3Ub3DtrKa85DPgkmMdYDnkKwO16qyZ8SkuQXt0enXEN1tGz18wcLFnSXl4dfCUcYRiwhIncZYxkh+MI2cOcDdxMsELsKnq/Os5S/Wy57Fwfu6oxlbNZAlcvcd4wWxu47RQkdR/GqirazT6hoRtutR+0ioNyAhNQMS5i7GHD/fMgA9y+1EbkrkgBbTeEHjrzbwmdGXPDOJ+/C8N1QcI+RzlDGiKsCRvOyEgnOLuzSvkWZpF09Z5eF7AKcXbmkXYKzr1M8FGN3a5i72C/A+cqi1u2qaPuX71ogbFfkJPN329N2Cet2cdpOAfdhR9utAO4yBu6CwP1vZsAdk0QYuG8TAO4o4pEtI6NGevx82bLLoaEtwcE3Y2ORWM6Zf9M78jzRtk/3OjJFd2iS2/4JznvHOe0a40DL26du/cj+e8pPZuJ375kZuMt3TP135cBdA9quHLsrdJixHrtzpe7iIncjcDf6ybDk7V8LyNsnbiR+MlTH1KlbR80wAHd7j4OzAilRTsaTjMrqnubAQFIBHaSh7eFp0/CfKFKIiCf1fuqsk7NQeU3aPwkFPcXcd5myTbKvUbaHe8bb7bObfGAyHkldW3zMAc/yOOeRfDcZL+IXc8E58JSj77FZASdRoeS34//y8b5HHRxQ++w2+slgp+LSdquRupW03UJ5u9XtUm3lJ6Ndu1Qx2n7C1mYyA0nbB5ZWn9NivLHYfZCk7gPK3EeMZUZE7m9h69Q3zFVmcIC7StpuMG03d5nEFKDSuINUGoeFixgWeTUSCVxPZeWzrKw1rWtwO3HRnZLyzure6uVrXhSUtFd0V5RVdhV1FBW0FyTeSYy6FhV2OQzPwu26uv4FWQ9ravseL1p0JSLigp9fg6cnQioiDhYwVhTm9C5W8keZyRADd0LbibzdSNuxmI8Y3dsbvLwuh4U9Wriwp6ICKez8rAcJi+6sWPMCGe2Sp0v66+ruJCSgejnv5UX82TFIN9SD9IWcWAx4X6ZZK0flsZmV9pGPRPI5fB6sHCxXhAxyBSi+Wl5bHn6T1fmvW3NzV71eFdISgu0C8UmRyJ3DX8zNRkzAfYM5NRAS6AmTdxZBkEXwmpH3L1QDdwGZMN/MXa6BqlLmzu+hup0L8sRks+xgxkHtBgC3TdxJRjlt/0aStkv2R1UnsRTh7BYQdhXYXRVw/3zggLvFIndB4D5ozF1VC1bl5J2vL96kHXlXKHjnk/cdwpmCombtCgg7F7JzOLsW1jGqTGMsgewbBI67BGq3CrIrIO8Cc16MuVsG3IXc24Xl7Wpou1U2MprQ9oFplPoG0PaBAe7ItEmazQHu/5IH7sRSBmW02xm3iKsRNX2U0eKl0NDz3t4YFwMD2/LySiu6AmObXYNPO/oem+Z5eLI7kbfvpuXtP342bRvjJ/M+8ZNhG7gbgPvfWcD9L9LAXdTAXRyg/5th/BdrUPdYjt21cZih+6m+z2PuH/Ck7sI6d3PgzvGTMcrbDWYyYwy0nSNvJwbun07bRgP3n8bP2jPZ/YCj33HUTb16fVdpKSqXk05ORP3DXDWLOuVJRsbi5Y9n35jtdNIJFQSqMLv9dqjvqb5BtJMhQcXMZceOxx3dzrp50/PGs8HTq8EroDlg8ePF2Xmv/Gc3eYSecws54xvdiBqtsKPw5cqVp1xcULnsNfbNMpO305vPRpuh9o1sjbwFtF1TefvQ9ZMxAriBk7cPIG0fXNR+bsDHW4jdR5j7EGHuIyJ3TUTuQ8hVZjCY+1vrKqPExv0dy7XtWz/BL4djhamEOY71SnxjPM55hFwKQTGQmfMMySLVz6evtqS8c0n2U9zZWVzcp9fjBjK5uv669oKCqp6q4s7i8u7y/rq6nFc5GU8yCtoLCks7nmVl3Z4792pk5MWgoEZf33qWfzph7rtp9k2U5uRI7zRq2xnaTmQgp2gjdSSsbWvX9lRV4d3xYSISr4TEX4pKvlZc1pl6PxUJ6/wH8yt7Kh8uWIDq5ZyHB6IwkbdjnVPadjZtR9JJHwBOuknyQuIpz/RxpT4YfQ4AyxWfB18EXznrWVbm08ySrhJ8mGXPl+HdkfsiguKXNDi5/zTaTOQuDV+kzUbWy+kQebxDBYVXeOH8FxbpheWUwnxqyUc2og1UlTP3H4SZuyB2FyR3gjDOjL5Z6dv+jXBrXIuF7aKoXQlk/5uaoZC5a0Xbv+ANzRXuqkTuX6sTuZsxd5tid4mWlerJu2rB+2ZLBe/imndB+C6ofLdsCKYVwnp223N2rSC7rHuMKs5OTinxh0LyLsvcFc49AaW/nLyd8wVFbdkU0HZLbGSU0/a/DjHa/l+qaTsXuA8ibdcEuP/Pvxv6JP2ZlWkzwP1zSeDO8nAnTVOdTzmHtFDZNRLma1FRSCbP0NSpwdPz5pw5SKTnZz7wCDvn6Hd8qufPk90PUL1Saff2UTN2fDqVtEvd/MFEMwP3d0d9aeiY+gm/Y+pfBDqmShu4i8jbeZxdcGgndf+tgNTdGocZQeZu7KEqBdzfNQB3k7ydMpNhyds/sNv00WTawN0MuO+e5Lp/utcRz4iGnLWvljxd8nzZsrNubihnCOwgDpmoUx4tWoSCIvRyKOqv6UemT/15KoqISfsnMTCAWMdg8sw8PlNXr0PpQbxiKqt7cltzUXpEX4tGDZK29GFIfIv/7CaURfnF7dkvs1GCUT4206dT8nbmqmJG3m5O278Tv3pKYmyU7JKq1kxGS3n70PGTsaJdqk3k7RrS9iGG2lXzcQ8PdWMoI3jNsfsIcx+mzH1Qu6cOOZH7SOvUEVcZ7UTu76ij7Rt4tH3fRCwpz3rP+Nvxix8vjr8Vj+wNN5aueh4U16ILr6/tqy3qKLqXknJ77txbcXGUYYuXFwYyufPe3hf8/C4GBl4OC7seE3MnIeHRwoUvVqzoLCmh9Dt1dT0VFW15eUg0H6alUe7qUVHNNApH8MIyxoIhBi9MYmRA7cZGqQgfCIsNNGrHq3WVlS19thTJa2TyVd/oC6Qpa1jC5YqqnoQ7CShjQi6FJN5NpE4GZGe3BAdjEzL0R7W330/L24mTDNG2U7SdzjI3sEr+7+jcEffjl+UY3RiY+6RJeEF8cfwgjxctepqZic+Tmf0UX3ne/XnY9wwi993jDa4y27muMgL8ZZM4k92grLudRGs7WRAvyxqUkHcLlMJfDRBz5/RQNbOX2SYA8pTwOEHUzrGRUU3b16mj7dagdmshuwLsrhxcrdgMAACAAElEQVS4y9N2CTLOn5yyIP4LSW37AAN364cN4LuW5P17m5B3MfguL4TfMVo6iRBMGay0aOe3olMnZldJ2C03apeF7F+LDwn4Ls7cBYD7BnkPd4EfShq4y8nbZZxkvrAlbX+zrdv/Y6jL26U6pkoCd0OmLQjcWU1TkQdSXZH2TUS5iULcr8kPCWpfTc391FRitHiCpmanXV2b/P376f8Fx7XMCjg5zeswBdzN/WRo4E75yfxu/Pr3GAP3UV/+2tgx9X9/xAHufzYH7mIdU2X8ZJTRduuwu8VSd3PsroC5841lBID7rz9l+ckI9UrlyNtJx9TPGODutNvOdd8U3c/OgacWL39MjmyTnx+O9TEaneDvSScnVDcobWr7a/2b/J1OOhFqgiICs4UgXuaa48DmwNgbsan3U3MLW/FSKKauR0c/SU/H7fQn6XlteWlLH8an3VqQ9bCyugd34p/qdTq8Hoqpvea1D/aozSyxkWWonYvdNTeTYQN39v7Pp+28dqkK/WT2DZKfzDGrgfuAmcnYhLYPMGRXS9UtHkMEvg8p7D7gzP2k7Zj7IJm5285YZkTkPpitU0dcZZSJ3IcYcFdI2xnpzWZTJYAZhIXi1eCF/KxXr3+WmdmWn1/SWVLWXYYcMSXjXn5xW59e/3LlSuSFxA+dSRYRJhBucCfiLDabRh+fi0FB12NinmRk5BW11dX1E//3+Q/mL32+tKC9gBiwILlsW7v2xfLlqC4QW4nanclysLQM5oaOjsRA5uacOXhiV0lJ4p1EfJKERXf8Yi64h551DT7jFnLWM7w+dO6luv66+NvxqGS8z3sjbY27FVfZU0ldwhkais+Gj0op3O3s9tDW7TuMEg/kf8gUUZtT9TiKccKjULDTGaSJuZvr3LGWsM7xsUmBhKpp+ZoX4YlXYufdwOdMvpeMKI5ogbVo6Hq0fRTHVUaatpuhBKEucMJIhRnfSkF5QbYigB7koIMg31QELhX2n1xnEXMX7KG6+SNpexmOhYUUxRNskyhiIyNG20WdgiRpu4zK0mLU/jdNh1rgzqHtsi0BrBjyhF1y3io/V6QEuMtid8sbVKqi8GLw3TLyvmkgyLsYfDct3u0KTs2bpwxiaQI/I7ARZxdrAarEkF1qR1C+F0ij9q9VDjHyLsjc+cF8g9wJHsEfTfL8tJS8/SsVp5xtTtsHQN7+xzfRTMYa4P4HceD+32qA+9dG4M6+hHT7KMqwcc94ZLcocD3rPZEPZ+Y8Q654gbBXR0eSTiOXPuvufjcpCZlzZXWPR+i56d5HGOA+2uFHCrjTfjIf2hmAu8HAffS/uB1TP7KuY6oS2v5roaEcuw+o1F2IuSsB7hx5u6iZDEvePnUrDtNoGriPc9o90WWvvftBB5+jvtEXVqx5kdua+2D+fNRKJ52cCEs95eLS6OvbXV6+tm2tT6MPageCWAhzJxbtzqecfS/4orJYW9T2NDOzs7i4p6oKr4MCpDkg4Hp0NG53FBZW9VSh7CLeNfeSky8GBqL2OUrXPvvs7Ii8ndQ+Wxh5O4u2G/Z5Zp95X7rDi5bAXZ283Zp2qdr5yfystZ+MJbTd9vJ2y2j7AKD2IYHXrUbwg4vdh7LUfbCY+4ixzIjIfaR16nCycVfD3NUBdxHm/o4obf/SjLYjjUIGhGfgnfEt8aNiLmBeI0TNuTknv7j9SXo6Ejhkb+35+X01Ne0FBS9XrkTq1uTvj6hEjFnYmQdJLIhMAyGyXqdrDgy8k5CAWiIl497SVc+znmVFX4sOaQkJbA4MaA4IuhgUfiV8wYMFePGVuS+JM8zFoCBSdVAlh5MTwiWi8zmd7lpUVHdZ2dMlS8q6yjKeZOCRWTnPwhIuu4eemxV40sn/BIZz4Cn30LMh8Zdq6/oTbid4n/cmuxxuzL4xG3ci9bwaGUlh/WnTsBqJwn2HsVMr0kEU5lQNTigBXY8T5m7QubO8ZUx+7uPG7TUyd+wutxMSyiq6fKIadeH1SIhra/sCLwYiPmH5Yg1xW6dyfL2NIIZDYVTIG5UMaRtfEd9wUW31l2pA55dywP1fysAln7l/q4y5b+LCPgnszjePFowfXKHrlk/4fkFmR5bFhvi0XYlpuxJhu7RlsG05uwhzt4q2S3oTiQ6N6LzAvNVU4T5gQymCV0DeJXpaKifvfKsZheRdDL6b+LvsylWQFAhmAfw9XzPOrhCyK8TrspBdQtuuIW1X0M9ABrgroO0CPyAfuFshb7ectlsK3CVou7Xy9jfeTMYGfjK/+NMvuAbuLOBulm+zgbvRsxFLHqEA0YPxbEShiUw7tzW3s6QEeSnyW+SlqI0N8jHaYASZ8KWQkMqeSqS7QXEtM/2O23scpC1laODOMXAf/y2nY6oJuH9oBXAXlrfLoXYp8q6J1P2/1bu6CzJ3vsidZeP+yT9+ZQLuwvJ2ykxm/LcUbZ/wHemV+uHkzR/Zf//xlC2fTN1K+clM346DNcZxJ47aBOe9k9wOTPM6jFIlOuVab3V1V0kJdemtmxthQ7iBognzIfNppleDF+6aeXwmQSy4gf/0Ou8178E8fU1fd0UFZsWrnJyisg7cKGgvaM3NfZqZ2ZqXV1fXX1rRVd5d/jI7+25S0uWwsPPe3phdpEHrfrrw2UXL26mOWebydtO2I11GKIDvGsrb32Q/GS3apQ5L2m5Tzj6kILt6+P6GSd21tJcZYe62NpZ5+0TuI64yA+Yqs224ucrIA3dB2k5Boq9MohuqlN34voG202UADiOmHtZxzPWY2tq+Xr1+Teua0q7SvKK2paue43bb2rVXwsMRkbF6D9EidOb6O0xZTPRDdDtTUidQanRPzysREZXVPQuyHkYmXY1bcAuJYPyt+IDmAKSSZFchcRT/ueAhhd3nLrxNtY0KCWny80MF8iwzs0+vfzBv3qOFC8kFmHX9dSg/OoqKMrOfekU0IG119Ds+w+cohoPPURQkrsFnguNaKMR/LwUvi7iOcIu30NXrZl+fjfuRp16NjESUZHcNwkHCr0nJ2997DwU4qbUJcxcWuRuNZfBczFesDfwOCAcImviJVr1ahS8SEk99jCcZGQl3EhA+sfT5rVPJpOAr3Pk4RljzKC4vUSoDlLz0XgD+ipHfLzUCl8rFwkKwhmtHwMc0ElJ3PnYXwnmCsYEdA6T730rZyEj84PzfXFbYrgS1/832w3raLtl319qhcrpadWXGEADulvRrFYTvWpN3RZp3PnwX5O/ia5a32/Oousi2L7jPDyhnl2XrFhv6K28BYiVwlzz/JBbGVQF34avBlAB3aXm7cjOZf47I24envN2CjqmCwP2fosCd0bWglkLBhyLYt9EXKWLsvBtIjM97exMeesjI8nAb99R7ej7Lyqqp7Ssq7XALOTPV8+eJLvsY4P4xBdw3f2BnNHAX6JiqPXA3k7f/Ws1gYfdB6qTK85YRELmzFe5cefuv2fJ2lpkMY91OmclQtP0HQts/m7591IwdOFhjDcB9zyS3/VN0hxx8j3mEnUvJuLfs+bL2goILfn7naBxWr9NdDg1FmYOqgdQvhAC5nKJKGENn3dpaTBsUVguXPoqdf9M3ujEgtjk5/d6S7KcLlz1KXHQncfFdlGzLny+v6qm6n5raHBiIVz7O9Mpiydu3seTtJtouflZXFXbni9ytkrcrb5fK85PZNZT8ZGwlbxfrlfom0vZhDNlVwvehjt2HC3NXa+ZuO+Y+InIftiL3IdQ6dcRVZsi4yrwjT9vX/44R3TBmMpgRmPi6c7re6uqrkZHI76NTrvtENSKfW7T88fwH84n8HIHgoNFpneQujM36Adr+BcsVYYX4q7SuWYNnhSVc9p/dFBzXkpnzDKlk+JVwKpU844pIhrhCljj2HDxy0bJHhaUdD9PS2tauRVqZ25q7tqitvLK7pLMECeiChwter16dSHnINLkEnSaofbr3kWleh1GH4K+DzzHnwFOBcy4iGU1/ku7Z4EkpRE7MRETEDbzFnJtz8O2qequaAwIQsLDqMHeJwp0N3P/FB+60yJ0B7ozIfTud51HGMrSZO9VA1dMT3xHvjo/dq9f36fXIkvEBpFunClvKbPpAli8ohFncsUnIuGbj+2Is2NS9U5ACf/muPMdUCC6tZu5KLd1FXN25UE8Q58m5SQifQbHatF2psF2a7yjn7H8VGVbK24Vouzxqlz5Jo2TwZ6mlQ+Ys0QDI29dZOpTw96FH3pXC9y1me7LIiXL5IbaxC27jUn1QVXF2BZBdA7xuhXW7Cvd29Tp3sRgucK0SZyLJitzlgLtm8nYltH3Q3dtH5O1WGrgrAe5fmoC7IdmmpS3I+phMGwlw7M3Yurr+/OL2u4mJp5ydkT0itTa5Kdrb457TLi5dZWUrXqxAeuwf04R01851PwHun9LAneqYKgXcjQbuH9J8mdUx1Qrg/l8WAncudlcodZe0l1HJ3KVE7lLAnSNv//o3Y/jW7ZsM1u082j7G8aexM3eOc9o9wXkPDp+9x8HpXkecAk6ivMpZ+6qjsPBeSsoFP78GL69GH59r0dG1df3R16LJFbruZ9119bqA5oClz5cS1VFBSXvcglvekedR7Dj4HsNLofaZ4X3Uyf+EW8hZ3+gLMSnXUT0l3k1MvpuMx18OCzvj5nbc0ZEAdxRrqHp+4sjbjWYy3J2HbDjS5F2EuUsD94GQtw+Wn4yEvH1ggbtV8nbraPvAofZhzdkVw/c3w2FmODH3oWDmPiJytx1wH1SR+4irzAC4ygwQcDdQLaPWxpT9s2g78ZTEhzKIbnaNw+TCUvNv8qcc27vKIhKvIIGb5nnY0fdY4uK7+e35yOGQDmL9GDI24yV7uI3JhLmIyU2AOwJQvU6HJLKip2LuwtvEX8UroiF07mXkf2terwluCUbIJx2BsCKxLBCfIq5ErHq1qrSiq7+uLv1xeviVcMTylHspPZWVeUVt1fpePHdB1gOP0HOOfseRZVKQ3ROJ5pEpup/tPQ7hL6oRfGa/mKay7jI8GAkr8UBE6CLYHbtZxpMM0kGowdMT3wWfHN8CB5htKfM1z1KGo3AnwJ0tcqeMZWiRO+Ls3aSkmpq+0q5SVFPLni8LuxyGeI+vaeYqIydyN2PivCELqpTMNdFmrRyHcYZWGKGwgVB8Jekzo5BdSgJ3jZk7X+rOw+7cn04Q6m2R5OxKULu2NjJiiEcVav+r+mGBvF2hsF0ItUtMEqmhNZSXmLEK5+ogcHb1CF4Wviuyere+w6pC+G4o0MVX61bJIbG6t0hGTtaGLHw602rOrj1hV8jcFcw3M/6+zmqRO2d2iZ0x3SiwISoRuWsA3JXJ25WYyVgM3Efk7drI2xX6yQh1TDUA9z8rBu70taRE2kL5yeybiLw3/lZ8d1lZn17fmpvbHBiI4pmoj0nxhnR6P51OI5e+ERu7ptWgXJnpd3yy+4Hxs3YbgfsPFHCfuNHYMXWdoWOqAbj/QxVw/4Va4P5rS4dqqbuGzJ1nLKMAuNPtUg3ydgEzGXajVDHaPnMXjtoE5712rvsmux9E8eLge8wl6HTA7KaCkvausrJbcXEXAwMvBgXdio/X91IyHb8Lfj6NPqjIYq7HkLa65HoI78jzLkGnUJeh/LF3P4gXnIiXddmHIgiviVIrdcn9gvYC1B2hl0OLOoqeLlly1t39uKPj4WnTDkyevIdpl/rpp1toL01G3k6cZAhnFz7hLrbhizF3LYC7Enk7uxv6kPKTOSLnJyPTLnWEtr89nH1QyPtQkLqPMHdLmftQ6J46FEXuI61Th4urzPC3cX9HnrYz1u1bPzU0cdo9HhMQKzj6WvTzZctWrHnhEXpuhs/RKbpDM7yPkjakz5cuRczCbGYuSNxh1HfvpkXuBLhjVSOGXo2MrKjqXp3/2j+myS3kjHPQKZfg08gFZ8+70VFYmN+ej3QQWwrCGIkcng2eaQ/TkFDiX0srula9XpVwJ2HOzTnFZZ34PMnpd/E67qFnUW9M8zo8xeMQclYUHvhr70FuHMANksV6RTTgWaVdpQHNAYiaCDOIH6TjEOKZX5Nfa15exsondxITERApkfvYsZgEODabxZqmsj3chYC7SeRuZ4cYhE3lSnj440WL8PWRTK94scKrwQvvznaVMRO5CzJ3ycFBUcz0EWgwKGSnwGnvye/waWY4ziLvJkDM4hRSF+CrVQorZO7KLd1VYffNCrjeD8p8JNioXfzSATb6sUTYLuYhoxy1/9W6oRVtV4japaeE4PiKOzTg8hrJ21V0Rl2nnn7yhmXw3UrZ+/vi+jcZ8q4Mvsus0y1mQxSpy+3PYpuw6GVDm+SNvCQ6YCuF7IItdjXH7irP9Mjw93UWAneBoL1J+DfnxlsbAXdZebsVwN0yPxlh2s4C7r/40y8UAvd/+8O/DVfgrom8nWPgbg7cmY6pOBZmwP0fwsAdc9LQMZV2bkQeiLx0Teua2r7arFXPsl9mNwcEoMQl5tqk4kIyybgUXg4NbVu7Fun0kuynbiFn7T0OjZ+1x2ApY08Bd0PH1HGkYyoN3D/9ghi4SwD3fx9E4G6O3QeCuUuI3BlXGQ5wJwbuZu1Sub1SaTMZplHq91Sj1KlbP6N8242o3XEnrW3fNc5pN47aRJe9dq77CXBHeeXkfwJFTdCciyi4qvS9t+LjUTfdT00t6iiKuhYVcikk4moEUQiVVXbPXXjbL+aCa/AZPMvRl6qDUPLYue4bP2s3zfR34fZ0ryOeEQ0oo+JvxaPo8D7vnf44vU+vb/D05LRL3U63S2Xk7bK0XQy7SzN3gR1euZ+MrLxdZbvUt81Pxra0Xa2NjFao/W3g7ArI+0Bi9yHI3E8NBnN/Q4xlRkTuw6d16lvrKrN1+LjKvCNM27/h0nZ8ZHx1/Io4aJgjmL9Y7rE3Y2vr+tOWPnQLOYOszsHn6KyAkwmL7uS25iIXxIrF/NtF+56T1IcB7pTCffJkrEDEHdQPr3Jy8JS4BbeQUDoFnHD0O46Bl9KF1SNx7K2qKu8uxwMirkQEtwTjb19NzdPMzDsJCT2VlSkZ91KX3EfWWNVTVVDSvmz1czzL0fcYklSkqpPc9k902YfMlR777Mhw3Yf7qUs1vY+gJsFX6CwujrsVh9hMRPRkEeMGgm7aw7S1xW3Ply1r8vfHB8YywLfYSovcNxkvqzRlk8bEkcjbNxvzQgLctzHAnXZyp0Tukycj9tXrdA/T0hYvfxyZdFXfp0+6m8R2lWGL3NnMnaOSNhsijInT6pNpFchMf2atcFYYuZOsD1PzTyOCN50DoKGSibxveF8pdpck7/KuIF9Zytylpe4KsLuYqYX0cuQ6SGwU95DRXNiu3K9AK84uC9ylabsgav9cHrXLO6RbLL8VxPFqaftXSmm7MCpViTstN/dQQuHVwneF5N0y2fsmmTOOKhC82lNolkJ2C8XsCti6Br78yji+JldgyJ/44QF3fh8OiVgtbI+mBrjLergrUrj/c7AV7kPcT+b3Q4m2qwXunI6p4sDd4OJotHCksu4NBuCO5AoZF8op5IGuZ1yR3yI9DoprKe0qbfDyQtVKwdBx45BOkysmkZcio0bJ/WD+/JW5L4s7i9vz84PjW5AGT3DeM8bhJy5wH2sE7lTHVB5wpw3chxZwl7eXsZ65i4jcFQF3cz8ZrrydMZPZ+KHdpo8mbya0/VMTbd85dibh7GTsmeBMFSykTqGAuzfVdMol6LRnRENI/KX0FU8wJe6npj5JT1/6fOnc23NT76cSDxkUREFzLurC60nPKge6ZxVVDbkdoDvo7ibvhRdH+RM699LrVasCmgNQcbifdV/4iGp/dd7b+8j06ZhOexl5+2efEXk70yuVhEkl+4MEc5cA7sIG7orl7Rq3Sx0UPxm17VJZhE4QuFsobx8mtH0EtQ+o4F0TqfsIc3+DjGXeNpH7SOvUERt3S4C7GW3/ikXbNxhou8G6fRuFZYm8HfMIcxxhIPxKOK0ov+cRem5W4ClkeF4RDaUVXV2lpfU6HVYXBdzHjdtBX5C43QjcMZMwX7FgEB1QPLQXFBR1FK0paGUufkQiON3rCEkx3UPORiVf0/fqny5ZUtdf11FYWEc1Q627FhWF0gLvheQSOagurN4j7Jxr8BmkmDRqP2Dnsg+VBpJXpJhksHJZSjyCXBaPnBVwEpVMZ3HxsufLvBq8EJCw0LHmsHSIij/uVhy+TkF7Ad4VgfsALXInTu7sBJRtRChA24mHuxG4MzUS1jCCC8L6k4yMvKI2n6hG0uAIGyZxlcGvbRK5G41lRM1Jvpdr7LntU4aws8E6WWqMroOkmYgEJDbgBv4T92OxkrVo4u87jPydge8MeafdZqSwu5A80HrhsFLmLiJ1l3CY4aAcAZrDpnvmQ9qpWVBlaQJqWgjbxTxkpFC7EDQ3qCnlhgrgLkfb+R4yHNQuwdlt5NAigK2l+bvc5BSD18Iw9Bt1th7atK8UQvADCt+/UwHfFfF3tefJFOyxYt0vLO+AqhKy26QXribdVi01glcO3LnydlbLa8HjInNR0Xpx4C4pch9SHu5mwH3ADNz/czgA999bJG9X5ScjZOBObY70rscF7ut+Q03mDb8j/o1I1SgD970TkAe6nXVb8nRJ+orHC7Ievl69+pyHB5Va01aN5LpdJGWox1A3ojK/n5qa/TLbv8m/p7IydO6laV6HJzjvHePIAPdNZsCdMnD/ksLEBLh/NLSBu8XMXaCHqnKRO+Mqowi4c+XtY9f91sxMhrJup2j7lC0MbWcc2ynI7ky0QXuJKmiy+8EpukN0xylK4e4SdBqVjl9MU0TS1QVZD1AsvF61asWLFSVdJTW1fakZ98MSLvtGX0A5hlpsJt22ivSssvcg2qO9KH/G471m7ZnkdgAPKCrrQDGFOm7miZk+jT59NTUlnSXsMzqUvJ1xbxeh7d+Qa3yZwdtMFDJ3to277fxk+O1SzYC7tLzdpn4yHIY1UPJ2TcxktLGRGUHtw0vwPoBS98Fl7kPZWOaYLY1lVIjcFTL3t0zkPuIqowi4Dw1XmQEB7l/8ik3bqVJ2/Xsc2o4vRGg7jhtmAaYelgJiQEBzQGVPZdrSh96R591Dz+rC6yMSryBjuxUXR9o6Ude9jh9PVBImebudHZYBFnO9TkcwelVPVXTKdWdiNeh1GCkmbbN+iCg7ZgWcRIqZsPBObV9tT1UVMVUv7SpFphgc10L1AqLTSjx+MuVRuB9pK8XZZ+5CIotKgzWoCzZpIcku+oJNyh4RKWlAbHNxZzFeLe5WHOIrogLWHxYBlg7CUtrDtGp9b1TKtbKusgt+foyT+3Za9EHSUANUYSWI35vT9q3G5I8B7ozSn1wIfGP2bMoNv6Krs6QEv4bBVWb/JPzaROTOZu6C7i4C3sTmSnZGw04IO17WANbpXJJkkSSFRMghAn98BgRd/CCIbfhN8K8UfN89Hs8lC5fh74z43XRKgCbvlOCdg90Zb3cOsPhKS+BuwpoWSN2Vq93FAJ/IsMBB2BJhuzIPGVHUbilkl2fuIrRdubBdArULcHbBI6tIkSUJGdmsUJC/i3vRCE5IUdSuBbXUGLUr9P2QNcZR7va+wQr4LrE8ZQ24xIdsc2npRtbykH2DMscYy5yFxJi7whMhEq1ZVT1e4osooe3fvCcG3Pm03ezMymbVPTNkRO5fKxK5KwLuFjD3AQPuf3yzgPvvbSBvtwy4f2EA7sTFkUq8N31g6Ji6cwxplaSr18Xfjq/urSai5kZfXyTPSK1308Cd5NWo2VB/Iuu+GRu75vUaSiZSUuIbfQGJ8UQXLnB/TwS4/7/mwP2XksD937UE7v9pPqzwlvmNYuauWOTOAe5sD3eenwxH3s4yk2FZt1O0ferWz6ZvZ9F2yj1mkhs96BuT3Sjfyym6nwltn+l/AvURiiyUWoFzLkYlX0tOv7t89QtUQ4WlHekrnsSl3Qqbe9kv5gKqMMpJJuAkkS6hhqLqKfpiX8rAnab5RGzkFnImr6jtSXp6xpOMxDuJ1FXC1T3Ply077eKCqoS4t5Ork7fQdeYm2kVzA22kuV4QtZtjdzHmrglwV+cno7Jd6i4jbR82fjKDKm8fLNo+wtkHH7sPoNT9bWfuIyJ3y4D7myJyH3GVGS6uMhI27u8wtJ2CJuK0nTKT2TmWyNsxPbEgEAO8znvp+/R5ha1IAX2iGgNjm7PzXrbl51/w80OEIm3uMS8NXpN04mLQtjs4YA9AqldX199TWTlvyX2kkg70lY+0FuOAIfU0SjyoBqcBJz3D6/1nN6GKCIq7GJl01T30nANtHD+JuliS0rMjcyWQHYns6Bk/jpqxY9R045ixg3QlMjYmopg7ElC8I9LTwpIOJJqrX6+Ovh6N+IrggdVMLGWS7iYhnUUui296MSgIQQqr0eBs+NlnW+lklH8MmESQQ9vNgPu4cVhpeDX8UA1eXt3l5XX9ddQJjIdp3ue9EerwO1OuMrvHMSJ3BmqbsPtWbqM/xo2d4eyMmN3A2feMx8sieCD8IFZNYSWD+MqIiHhr7Bu+jb6xN2JXvlwZdDEIOyc2B/wseDyeSKII4gEJAxR/N4fvpi6v5tid8XbnQuSvtCDvypm7RdidL3gXsJbmt+nbKAndNpjJKkVRuzXCdktRuxlA/78KhjRwV0nbhVE7xz2GI2lf9xsBzs47iBJD1MmEJzoWE8DKmMJ/LU/bVVh8yAF35d448mOA4ft6q+C7koUpf4ZMHKYLs3Ul6912kN2K5reicU/kl1e3lMwH//vKTGnpMwRsA3fWeRfBBtcSzTMYkbvwGrdG5z4gzJ0bpTW3lHmTgLvFtJ0N3P+gyMDdAuCOOUkB9+2foTZCroX6O+xyWG5rLpLDiu6K/v7+1ry8s+7uyNdQs5ESaw+dRiKpvuDrezcpCY9Z27Z2QdZDJMzTvY4gN+YB929/O3bdkAHu/ykyLGPuf5Rk7paI3M2BO2maqlTebrRu3/DBRKN1+5QfDLR9BuUkM85pFyoXO1fKOoYZUzwOTaVR+wwf6jJf50ATao9OuY4jW1jagfmw4sWKoo6iVzk51fre1CX3I5Kuoj7yjGhwCzkzK/Cko5nCnWlkRXH8aZ6HZwWcxIPxUr16fUlnybLVz1FSrWldcyUiAjXOfvrSZEEzGT5tF91YZJk7bwO3ALi/JX4ygyBvt9JMxpa0fQS1a0Xeh4rUfYgz9zfLWEY1cNeWub/xIvcRV5kRVxkx4G7Qh0rT9p+MtJ0GtZjdWFsIDIjfcbfiamv7YlKvB8e3zJ53o6av5mZs7Hlvb4Q2BA4sVywwrApD8jFlCtYk4tHlsLD78+ahMEi4k9BfVxcSfwnZ4RQdbQVDqzAmOO+lL7E0WBnSvYOQKVJpKNJHWrVheDDN2Wkxu8NPFGSfvgO57KfTtlFj6lbToO/BP43CmLEDDx47k8p0J7kdQFbqF9O0au2r7ooKfJjZN2b7NPro6nX4dr4XfONvxZdVdiGd7dPrLwYG4sP/TC63NDaD3UYfV3LMuCkgPQ+2s7TtzJWMBLiTMxCIKYjLLcHBL1auROKLzxB0MQhBFD+ZwVVm11iTkJy4uGxntTPdZt7slDGN2cHl7ES2T86X4PWx0eE7YtfFDewqJC/DdoEtdPb12bX91PUEjxZSro6p91MXPloYeimUORtBQhcmA16Q2M5w+Tuxnt/2mQG7MyYz4sbu0upgy5i7lthdgryLkz6BFogc3MaDO0pQu4npWI/areTsIthdBrizabtFqF2as4v6AomhWElPcDP/H+mWtutEyLtlc08tc1dI2xX2huWvIFUI3qbwXRV/V3PcFQ3J1xH+AHzCbiVkX2fd+EaulcV6eT99FZcaiIREecAtrcc3AnczPxmjvF3Qo9+MuUuK3KU+kg2YuxJvGUtE7kMWuEs3Tf39gNN2LeTtHAN3A3D/syhwN9g5MsD9Oxq4b/mYdExFBuhZ74kE7MH8+e0FBTl5r7KeZVX3Vt9JSECNTeQsyEVRKyKvbvL3xyOLyzqr9b34O2/Jfe+o8zO8jyJJHuO40wTcJxiB+2gC3L/41aef/28WcP9/hgpw/0+bG8tYDNzN/WRY8nbzXqnmZjKMdTtN23eMcfzJSNv3oZYhV/RO8zo83fsIw9k9ws75RjeGJ15JXHSnpLyzoqq7rr+uuqY37WHanJtzEm4n4D/vp6ZSxVRdXWFJx9yFt4PjWqgLjkPOUq4y/iccaJ07XnaaJzWmex1x9D3mEXoOj9TX9GHCFLQX9FRWFpS099fWYo6dcXM7RMvbRc1kWLRdfm8RYe6iIncJ4P42+clo2y5V+16pg0fbR1D7EMXuI8zdYuZuC2OZN0DkriFwZzH3EVeZEVeZQQXudL8mYopKWjbxfdsNsuh9EymzkUP2WDFYqQgqiNzBLcHI2NJXPImdd2NJ9tOXK1deCQ+/4OfX4OVVr9NRkZ3+i9sIygiXuIEEEWlifnF7TV8NCoOo5GuzAk4i1yQmgxNm7aEt13eNpT1hKAcY2gTGaMK+hx67aTH7LiJmHzXDCNmnbv1kyhYM5LXcMYWyTfyEhu+oPYjanWbue+09DuIDrFr7Ctnn7YQEfKpevb63mrqAd8WLFQsfLcQ9eUVtjxYtuhwais+PaIhwwHbLwVwh84B9sLeZ28jwr2Ek0iSDwY6DA34xJL6zU68vX/18ydMliPGUjft+O8pVZrcBYXPN080Hu/Ep2zeG4ew4dlMPT0W4xf6WdDcJGTzlpUP/b8GDBUEtQT6NPhjhV8K7y8tTMu4FxjZnrKS6M+UWtqYuud9RVBR7Ixa7K16BiZ2IeYhnk83PIVIfe+8EpuMrpXbf8omo1P0bUV8OWRSokLlrgN1FyLtSICUuaGW/hQzNUeYhw6U2ylC7VZBdFrgroe2SqN3MPUYBZ+cbOkuJmoX63yrhdCZoyDqUUkpY8V4CgvONPeXk/W2+UeDbrhiyyw51/F1T2xkV/F0WEysB8XLU2DLCLuXJrhKyC7f8le52q7BxtPLfSrCbtJgbjxjpFvxZ2L2CRa5AYvvJCNB283zKcuY+uNidrXO3TOTOcpUZfA/3gRe5W0PbLfOTYTqm/tm8Yyq98ZE97t0vjc2TCHDf/CGSJWRNyNyQAUZdi0L+2RIcXFvbFzb3cnL6vbKKLtLZEkkjKU2JPePL7GzkaUjqcl7lvFixor+ubs78m45+x+1c941lgLvdpvcnbHhvHAHuX2kP3H/DB+5/0B64WyFyl3ZyFwbuHwgDdzF5u7FXKm0mw6ftdPXBp+3TvY44+B5z8j/hGnzaJ6oxOL4llhYw4Zi25+fjaJZ0lqx+vTr+VnxIS0hAc0DQxaDZN2bj/ptz5lwOC7sWFfUqJ4eccVm8/DGqKr+YJs/wereQMy5Bp53pDlt4ZY+wc/6zm1YXvEatEX09Gq+At7iblHQ9JuZSSMhpV1dMp70TJxIzGVQxwrSdsxcx+4wccxcUuVsA3G3uJyMI3I2gZKD9ZBS3Sx0gebuGtH0EtY9g9zeVuQ9tY5lhJHIfaZ06vF1l5ID7jqFk477F1sCdT9vxkvho+JYUt905BseQIrb77TBVia831iuCBOKcZ71nYHPg3Ntzq3ur05Y+RLZ3LyUFqRuSv1txcc+ysnBPb1UV/hZ1FuEvEjtyxWv4lfD0J+mtublxC24hC5zmdXiSG+W9znjCUHJ12v5l9AzjcPiRuYd4xbAh+8dTKKr+0eTvkdd+OIkZm5jbuJ+6nJOG76RhkdFCcddEl71TdT+7h54lcLmiqruzuJhksffnzWtdswZJbVdp6atVq54uWXI3OflSaCi2FoQqLN29dOsqTD4ysTizhOMhQ2Y8O72jgPvEiVjqiEHYkDpLSvqN/8P2hciEdY91yZaNMxOZPWGJmN3QBHXnGLw6ddT2TCD+PwhL5KghimPf0J3TUZl6f39Kxj19TS95u77a2oqqntT7qTHXYxY9WrR8zYvIpKuBsc34J32f/sXy5XX9dcjRV619hXJOV6/DBEBQx2uSKIuojJCP7Qi7GXYb3Gas8PFh8MHwcxCpO8XcN5kxd1GnclXwXVu1u3LyrtxyQQK0fWMpapcWtqtC7f9Xo8EH7jzaLipsl0DtLEk7c4AEbCVEGidKd8hkQikJvUzRZrheZJvxahJOZ+DvjcCO6VKwgSd4V+9JLWuELUsAReXtsutI/eUjwvxdO/iuFX+3TKytaAj6pUgQ9vWKDYK+kcPr1vjsi6vFBdaRhBvPZjPzFoF+3awhirw3mp++2qCgSSznKhYheTt7UXO6npjWL/sDbBTuqKFt0BbF7ko6qcoyd57IXd7GXXPgrpWrzO9thdptRNulgPtfxIH7v6SAe3BLcGV1T3k3JYCY6X9ipt/xkPhLSNuQSJ9xcyOVOdJRpKbIzZC5hbSEzLk552V2NjJwZHSzAk7aue5nFO4fyAL3D4WB+y8tBe62dpVRL3JXC9z/YgLuZgbukvJ2xkzGaN1uTtsp33bipW7vQfVEdfQ77hZyhthypmbc76+tRdbdW119IzYWR7+mr2b169Whl0OZS29Refle8EUa36fXX42MvODn1+jj0xQQgOILGTu5VDe/uJ26ODXj/qJljzB5YufdqNJT2X5RaUd5ZXdBe0HopVAk/LinOTDwjKvrMQcH4lO0y2jdTtH2jz7axKPtzB4i3ExdGXMXdJVRC9y3WA/c33Q/GUvk7Tawbh/2tF2n03K8wdh9QKTug8jc315jmWEtch++rVOHsKvMiI27Whv3dyRoO2Ujs2c8Y0KCZYfljqhDrEi8z3sHNAeEXwmPvxWf9SwL6V1rbu6zrKzO4mIkiEjjKnsqV75cmfEkY8WLFb16/bwl92tr+7rLy+c/mB9xNSK/PR8P8Iu5MN37yCS3A8QZhlGsj5q+/TMM4gzD8of5hAyKsFMy9o/sv/9o8veEraOWQGpLjYkbkeayxkbD/XabaBfFzcRIkU5/Wczd82fnwFMh8S345Nkvs5HFNgcEoGh5lZ2dV9ha2FG48NFCjKKOor7+fnyd69HRiL+IBVhaWAaYyjtZU3AHa8LhTsLWKc9N8kg6t9vNAPdJkxBcEKDvJFAGO9W91QseLsAvjOiF8EC1Kt0zgc3cyRj9k+HaSEaqYZK07zGzjkGOTuQwkVcjkWRHXIlY/nz5wmWPktPvUdl2QECDlxdy7ttz5/ZWVa16tWpt29rM7KeUuQ1tGNoSHIxd+by3N34TckIi5V4KsgbGhQbbl9d5L5R5ix8vxi+DIx5/Ox7/ifspkf4+O3xVSuq+fRRWgIC9zHo5fqGQGGreUnWd1q0Fv5VCNpqjdgEu8zcbSNqFgLuovF1W2P7Fr0RRu1HSLitm5zg4m3E3wcG0F97+2ajtpt7C5DIRwf4EFHxnyDszn1mCd+ZwC/BT8UklhYzF2J9C4C62cP6lcbNim4rfFXncSy9Ji8zHVZ1OU4TXFbe9lbpewWLgzvyY376naDUJ6tbNz1exT1aZnM22G/qOcGzQDCeujOybf9UIt7PFeqmLjdifmSNvZ69u0wkzDnNni9w3inRuULIA1bS2th67yzN361xlfvGnXyh0lbEcuCth7r/XGLUrou2WAfc/iXZMVQTc15sBd2RNKCKRvCEf66upCY5rcfQ77kD7gaSveIJEusnf/5y7e71Oh8SsoqoHSRcyLiSNng2eRWUd/bW1yNZo4E55uCOFRraMHPh3BLiPWfcuBdy/tAi4/zcPuGveN3WoAHcxPxkBefuoL98d/S8jbf+Gtm7n0HbKt32s487xs3bbueyjvNS9Djv6HkPdERDbXFLehbppRe6LjqKiK+HhxIhf36dHLeB3wQ/lAA4uUu5ZJ2eREgz119zbc/Gwy2FhDZ6eBHUhUb/g63s9JqazpAQDeX5BewFmQtrDtLr+OswiJP+oYpCl5xa2FpS0V1X3YPKQhlsHJk9Gzb+LvmZXlrbLbDWcfUaxyN1i4K7KT0YFcB/6fjKDJG8fMNo+CKhdkpXXWzGGNIUfKOw+wtyHY/fUt1Dkvn8ARO4jrjJvmY37Oxzajs+Ir07ZyOwehxlBQdvDU7F2EZ+Qxwc0B8Rcj0FmjwQu+2V2XlteWVdZZU8lkT8XdhQufb503v15sTdjQy+H+jf5Y5MhsS38cnj2q2w8uJ/1v8DYZtQPk90p2j525k6uOczULYx0nWHrLA27kbATvD7hOxQS1Bi/njsmrKeu66Qv7TTqTTZ9OHkzXpBI3fGmePeJLnun6A6hPklOv9eWn095rdTWErecxEV3amv7kN0GXQzybfSNvhZd1VtV3Vv9aOFCxF/EDixUrKg9RpiOwblikeqPOnEi6R9rum6RzufwRCxgqpGso2Ojj8/zpUuRJZd3l3ud90IgNDQp3TsRS42sJMH1QfJEtks7ohTCJPYH/PLUb11Xl533sppWuKx6tSq3NRcJdxsN0xGmEdmRDeD2nYSEl9nZ+l59R2Hh4/T0a1FR2IkpI/6pUxGUcSRR43WVltbVUdcoYD5go/Zq8EISj5fFBEDBgH/Fc1E8VOl78UUMzH0/5URvsJchzP17E6OU1QVrSQ/F4ODXKsi7JV7byvHoV9ah9n8oRu3S3PwvkkM5cJek7Zagdsa1madpZSvZzWS2W8054DaTaN2s5wHPiAn7pKG0Io0K9kwgC3D0T+adgQm/k8TufLqqqEOvRKtJ5R0dxc5U/csGw0rxuy34u5oTYxYPGbau0iVGA8KuxDVLmrYLXR3CzTtY64vdo5s5U8UMs5PExhNX1Bpkn7j6nid4F1Ka80+f8NulGj7qlv+fvfdwi+O69//93Nzv/d0ktuO4q1u9gAqSWOrC0nvvAoGQEE30vizwL3y/Se5NbspNHNtJ5MSx5ViWrV4tq9gqNAFCICQhoYIKiF6e3/vMmZ2dmZ3ZnYUFIRn7PDxoWZadnXM+5XU+5/0h1QP8hW9g/VyhvZGwjIkmt5IIXrJ/srj3hrExnwB5NyvproS5T7jIfZIy7sqK3GWZ+/+dGtQ+GdpuTk9GomMqH7j/mQfc/2YE3PcRDXekfQjhEDYPFhUhCt3gfoHpn3nJM+yqdkTb7u+PeAxhG6K5jJ4Mx3pHpPhIoxF1Z/VmISTziby2yvFbRLZzVu9HRI3gGdEvBe4vM8D9JwLgTjumWgjcFcm4K2Tuv1RK2wXA/ZeTkHEXAne+hruxgPvrfOAuKG//ydt8MZndREyGNkrl03b2QO2BBWtJi9Tl9qdsXM7SVqiakJbqmnHcRHLStIrUKo3pdMPl5T7XfOwv2yOEtjlnQ4+TYuAbelAVgfeW+1vKR8oxAS5u3IhMhEOr32/YcNnevlmjuRMdfTc+vrBkAC+L16c179rKkc7w8PuJif15eU1ubgaFzIULD+hr278wQdsV+nATRe5TBNwly9slBdxnsp7MtJS3P3+0fdoh++XpGjMLvlsRuz8vzH1WWGa2yH0SRe6zqjIviKrM9AB3MW3/6l180rixmFZYEzADsLuaFk3ZcFnBQAEF5fnF/ZWjleM1NT0ZGV2xsZ0REYjqamqI0veOxzuCbwR7tHg4NTjBfsM+YVljQcAAIzrszc7Gr4fE31QHNdlpLq5y+HaJ3fGFa1naTlE7YlO2en0JV70uKGBn69Z5hB3RLVII/fj4FYx5zJj/8atksD/S8/dPOOxORWaQitBjngvXHV6y8cQa57MOvnW+kW1+UW1uQU0u/o34ui3jIVIa50ZnXBHsdNEgyX9oeTis9hlGTJNgdwap06nPn+WH9KEb96NDRsAdFg0OD3E2PsCa8RpNswbmE5YG654UuR/RtyQVvzRb0o61y8n+4DPH+8Tnr25S5/fnRyR2Vo1VXfX0bFKrOwIDu5OTh0pLx6urcfuQs1G/Ve/kdD0goDcrq6h0UFc1hnvdk5nZ6u0NBwNTBdMD+3iWObyMGB2Rek5fDu6yW5NbUEcQ3i2C+KDYDnxQHqEtKRkPad1NuXYYbwBTCG8J08ksc+cLmk+waHeiZNACqRkZ8Gdgf7xhmq8ZU1HT+r9Tjtp/b8mQB+6KaLuMhowJ1M5xdlmlZr6QxV6eMgyvbp075mSQY+J6Hhzk9YU+sZTKZ9FjPZjDiErINOZJPBlq3hluiD8trnb/xAi7y7BgU8LZJhrtWgjcp5y2W9pNYZL83exKnMB+2D/khyWbalOF1/+qYCgD7hK03Rhb75E5ILJXv764cyGUsx+Yy+8aQoNTbrOK7784eTT+xhVH3o11ZqTJ+yem2qXS98x/h4KzKV9IKNuIsLuijriSS5LXP1m5trsS8m5s8BUyd2lhmckUuf9qqorcTTH3/ztBzm4t2j4RPRnLgTtmJuYq1gjWDhyQ51XP8pFyhHBuwU2bvS6rvGvdgpszcnseJCVd8/G5GUrKnH2u+ahqVZRDeLV6ITgvHy63965dtvnkgrWH5qz6+i0DcEe0/PHLc//GAve3P/zxWx/851vvTwi4W1FVxsJh5Qp3rmmqCT0ZyfL2D5jydr6YDCvd/vNFErQdKcZiu2MrVN8g/UnNfIhIOyntQUp6d3dKCuLq+0lJmbk9Ubej3JrdiGzjeRJ1IAhBIrb8m+WUUlBxyLXn1+J2b3+0fbi0FFE9AvhzNjZneNwE3+MRRO+I2InajLNzo4tLu5/f9cBA/POind1369fjCbRaiBy9ZYQxDbrtMrTdhCMSOxwFRe5KgPse08Dd2gLuHG0/JKcnYwTcn6WejNXL260t3T5h2j4dhe3PiLBbjOBnmfuUMfdpFnOfBmGZGVHkrhi4W73I/cVsnTr9qjLUOVoLuD9DVZkZJuP+EgnxPzPQdnzYuMOYd1hhTvVOO5/s3HJvCwL68C23SFP7mhrSWTQ09Kqn5xVXV8RwV9TqVi+vu3FxiBQjEjt3FTwtHCgM6ghSX1Hb19rDIsLMwOogZxjV6a4HkBY96qCmtervqG77grWH5645QArbhahdD9n5hN1QwM4Rdj1b303G3N2Id6XGbvYJ81j+LsTubKk7jYnn2x5cxBz2JC2MHM+scT671vW8neaCZ9jVEa02pivGoc7BqcEp5k5MSfnQYFHRrfDwNj+/Znd3uMmzTKkIFjNWIBYSXSeC6E24PKjIzFEmboOlgJ2CA3iUmloyVDJWVeVx1YOg6m+WE1WZY+9hydLlaHiVwwtoMEjqcI+xAjKwoPCZvm2+qY9SU7pT4u/GF+Fdlg7ejoqCc6q1t6enTXdkP8bjcV1x+Fs9GRkPU1OHSkry+/MTd9wPTbhZVjEc2xWL38W9bnB2JhXuK1bgKxwGnGgDg+arx6ojb0eG3QrTjeriU++6BzcjFVyn/g6fGNI8/OKdmBj8ocDrgfjEMAeIHj3H3PdJMHdB0zzT9eBWJ4kKa97N4r/dytob/s0MZ59u1P77iQ7T5e3GtF1KsV0s124OtYuAGsvURKrrRm2E+fownEQM9yClhAS1H1+MRYRwBiEhIl9YMJdGF6wjzOewm2FIcRHCwL2TQydHeQXveuxOuxSwzYE/+7nExP6HTM21FGqXZnwyzN1UI0fjZWJiLXwkLMI1OfBkK/P3ySN4eQovsSv294mfUzFF1a2C142QxsQb2MrRdu6wiBGzNqD2L97kdzVglxhfMYZZX3QRESmzY+/RzSraVp308zhD+nkgFoaHIvxd78vomS0BeRcWvJvC7p8YLZlP9W+et09gDNzZPyEqcv9c3NBVyWCZkFzfV2FvEu5eyGJ3JfD9zyYbdUySuT/DIncp5m4Gu1s4lKL2/yf1npWVt0voyRh1TCXOkblHrBOUBO5MNI6JinWBBYWFgxQ/6nYULXYhnXWYsgYE27QrUl9eHkI1TYsGcaljvaNHiwfpu1M1Fp18x8b5LGJsxLQIsBHivr5kz2uLPkX0+woH3N+ZEHA3L+M+9czdKsBduZ6MuLz9fXxiMmIybKNU5C8cbZ+7mrZIPbLY7jhD2y/Ebbs7XF6ORCmrN0tXNYogvD8/v7R8CGE5wgybczYrT6+EFUWwweFbCm5hS5GaIaJGXE2nBBKx79atO7N6NSkt5FcF6tmuCOPiEZKnLF2KvIOqXB5gZGRgHWEXRV1SWV/Ho+2skzH2QkLPY1zkPkng/vkkgftE9WQOW1tPZpLtUmdoefsU0fYfDGSfcfDdWth96tuoPivm/mIIy8wWuT/j1qk/AFWZWRl3A3AX0XZMAUxMLETE7gjmEAUOlZSUa4dpbNei0Vy2t4cdhJ2CpYM9rVOp8OBgUVH8trte4a3IB7ZlPETUmNOXQ0vd3Zvdw26FIazE6yDErKwa3eB+YYX9N+9tOLZg7aG5a/YjGSCF7Sxq1xezs0IxPMjOFbDrCbsBqc/5608N4y+k2ISOOX+hD5KTnnPYJ+vJ+99fNWB3IuzOK3XfTzoaITjecGzJxhPL7U+tcvwW7zluW9fDbdtKhkqofMqYTqcd0dJ/5hb11dSM34mOxicDE/YNE85irdIlRxeVYOXwwjg85zgD3GF9YJqbNRq8eM14jVerF0w1RRWkyJ3hFHSNEsjOfEOrCGE8iIDM6VV4PqLwipEKvCV82nfj4x+npQ2XlVH1xgdJSV1xcfhRYtr9gOj29JwnuEdlw2Va3SjuF/7pHXHN2b8B6dzWnQ9SHqaom9S7nu7CLzY6O1PPBzdc7+jY5ObW7ud3PzERv57Xn5eU9sAvql0deGWz1+W1rudXqk7jswpNuEm3Z7bc2xJyIwRzAI4RZhjvFsZgzn5DD1WOuZuhkyY71CmFiVYsexc3ihJQLf6DJmia8Xs2hi8TRO1TytlNAneJ8nYhbefLyIg0ZMyidj5H4yQsBKXrXwsbG3CcnWkjTPeoaH06N9ieB8feg9Om+1XbH23HusDsTe5O3oY1n/kQK4K2F6bbYFiVeDKcM+2vYMDu+94ltbpfyE/sT2Q0MT6R4Oyy1bWSa8R0CwQFm1LKObt1+LsVEfzfJNbgxHC8xcPk31LE1hVTdbND7hPjXzu3zWCqsP1zaWAtGuzREKaqnXYNgauCkSen4i5u9L7mjUUEDxJ9J9q5wRkPsqWaeopElg+F71hBh4w2rnjy7mKu/U+JzreShfn890+HsZK7gblLB0pvmO63bCD1Qg16wdEWfcG7WGfmryYXoDnybnAEZpn7tAjL/Nuv/s3qzH3y2F36ZSdE23GB5svbJQXcRcD9T+aBOyYqlgPWBUImLBy7C3b+7f66MR18EJxRSPyNiMTOotLBR9u3Fw8WI8D2bfP1ueZDe2BWj1Xjp+vdvl+2+dTCdUcQ0L6zct+by754ffEehLsEuM+jwP0vP3nnox8T4P5nxcDdRN9Us0Xu1mPuZvRkTAH3f1cC3AXl7SL1dlkxmVfm6qXbGdpO6niQUKzch89/AWmRenTJRkLbESQHxXXk9+c/SU/H6ElPx31MfpAc2BHo0uiy7rt1uN00uuCSe3xPgTu+0oN3MKd4MtWKbHRxOWdre3rlylPLl59kmAKlBnKY4CjNR/QCmAS1UxmZt976nMkMKW3/B6XtQhkZadTOY+5Ki9zlgLueuZsA7pMUcN+vB+4H+MD9edSTmXB5+zOh7c+2sP25guwziLzPhFL3Hzxzny1yf15bp86qyszKuIuAOx7GuyC0/eA8TArMXNpmM+FeQnpOjzqoqXq8eqi4+KqHB+wmzAHn+8mJxfXr4QlavbxKyoaC4zqc/RsdfetdA64Ex90oKB54vGOHrmp0rKpqsKioNzubCNFUjTr41CHofG/D0fm2h+auJpnA26Swna1qZ+rZP2XlYgyV7HrIztWwc3hdz9YZMUqZ8S4C4o/0CJ6B72zZO7/anVWY4VTdCXa3Obhg7WEuUN6guRCWcLN8pPxeQgIuLafgKcLdiM4IdZPaq9UL/9RVjbX5+tY7OsJJsBHwsmUnaOyrX378ZXZUX96OFQ57AeuDj7TByalqrCq7Nzu2KxauAOYNlgbmgTJ3w1I+9h4eIaj95DISf5+3tb9s797sTtso4T8q7tmdnJyZ24N/xtyJ0Y3qKkcro5Ju4x5t9rrs5FcfEn8zM6/XN7LNya/BTnMBmQDGBvcLbkFNlbpRqiBUM07ONDzdtQsvdScm5m58PL7B5fdkZg6VlBSUDOzIfhyfei80/qZXeCtuvUtAI+22WjRYhLufkdtTWDJA9f3ta+1hYnHZWPRYgrIVwf80J52xW6I9ndWY+wT6rFqiBSH9Jj+SUBiYKtRukqGTKkjhsAC4S5a382m7VGG7QUOGg4MmUDujyCzSW+eElfhD4HMOGWQuCOOjAhfM06gWEy1sR7Dj3OAc3hmOBBj2qt3f//HOndpRLZ3/t8LChsvK8L1TgxM5631mNZcYs9j90Hw4KDKx9xkUZrgqXfMlurw2lYZOlZ+JlS7kamn55bTmD4JMAW23DoK3LoWX3xKz1jCzrybP1s3Qc+sZKFnarp97cqiaVT/nybKLxwGDChNWAWw7HBbtox7UEYSVEhhzHR4HLqBipAIPIg1C9oBVhgAD0T0N4bm9K7wIh91ZkRlRU+LPZAXWuR0p6avQ92/gIjIu7FIaW7F0R6Lxspja7xH7Mn6HEmOdGUnyLnHQRMYpiErdBfIyljD3aRWWMcHcrYfd5V7H1J/+hWIxGQV6MpIdU/nAnbpC6gFZ4P73V8XnTQ+yFTBYKRsubMDiCr8VntuXS4sqcgr7RsrLM3oydj7ZWTxYrKUdevJ6NCHN692+p0dIEWbPWf01Yto3l/4LIe5ri/75Kgfc3+UB9zclgPt/UOCuZ+6ywH0CRe4/nWLg/rIUcDcv4C5b3k5o++uSvVKFYjKsdDuTSiwnp2YJbWdE25dtPrnK4bStyzmVTx1u0/2kJNLp1M5uuLw8Ke1+9J3oTZc2EflNvYYkP09Afg8jiRAFM4EG/GvPr0W0X1I+hPgEKcNZRhzm5NKlx5nztUeZI7aiKh8aGdF8m3aZ4lA7LWyH9fqMoe2fCGm7CLWb8UUmitwVyLjLAnfrdUydUXoyp4XA3YrtUidQ3j6DaPsUoPbLL9CYVvI+9aXuzytzf+bCMj+wIveZ1Tr1h6EqMyvjbmXgjr9D9SIxIzD9aVjv1+ZXMFAQvfVOaPzNqrGqjqCg80wje3bqL1+O77FQ8SCs/82QkPyifq+w1s1el+00Fza4X9joccnRt9474lp6zpPEHfe1lSNhCTcdfOvWqb9bbn9q0fqj820PEtH2FfsQlZJMYMketqqdQ+08zv4y5exz/saH7DzC/iEZSBvI+EBqfMjUoXxIn8/Cd33NO4fduR5H/Gaqc1fv17c5Orps8ylb1/Pe4a3bsx5FJnX6RrbFbusqHyn3aPHwvOqZ2ZuJy+zJyBhjePej7dvrHBzw+dAjnCc58s5fqDRiY6I0CtxhKBGF40VqxmvCbobhXhDl6G9ISaDIPNDIG/cLxhUuK+xWGG1IWz1ejfs1UlHRn5/fn5c3Xl3tF0XE6NOyH2/d+cDJr56ovjidWeX4LcZqpzMYqxy+RW62fPMppAS4OyuZrMDZvyE7/2mFdiQ1k9Dzsgr2iENByQAeSUi9h1fDlQ4WFXUnJz/asQM/Kh8uRx6Y/TRbO0K0d/DI4507kUt4hLbgs6quJh8M3CDeOewH5hsRc//SSECAoopPX1MIFqWRooVaGYqwoEIOaBqomaCcCosZJ4zaTRP238kPE9hdrrxdCW030pARtEXltNo/Y9tLkGJVBrWTfs4HSa06PeFBdp70VWBs0nPcsDsl2uDifCN3TIR2GIZLR0wU1BFUrh15mp1Ni9mHy8qKywbptCe7aBs2NLu7E3GtW+G0FzRCJ8QyFBrS5sZ4Tartbjy3BftJxuNTA23ntQl7nV8/Ky2vobDI/RkB96mm8JNl8VMxFFasT4FQvixt58nICArbP31NQq79C3FhO1fGTgcbph2cxy7Do4uw6LAKsCjgfSoqRwaLi+G/SsqHsIJavbywauDRsHDcmtyQwCH3wleHOgf3ZneEGS6NLqpaFVYf3BxZQYcNK4huXEk6CMNC+JR3IuQz+WvZK47IzJU6GKIzE4pVXBgoKJznNYDlVr00dt+t7AzKR/IKY6ZL3eW0ZWY4c5fH7pIUXuGTzfzFidF2eT0ZccfU3xsE3E0Dd8wZrgiGa6cEDwVfA6ejqlNh4QRcD4jtiiXHRktLd2Q9Sth+LyKx0z+63S2oyZ4eNHQ4vWTj8YXrjiB8JXoyy/cirEWMjSj31QV/p8dD9cD9A6XA3byMu5kid+sw90mUt//ICuXtxmIyf+WLySCJeGPJHqpROXfN/oVrD+NGrFSRoNpOc9Heu9Yz7CqMYZufH5FWd3EZLi9HFI2cC6E+YmO6ec/PoUlNAMPc2cifOUW07rt1gR2BCLlhWvE6Z9as4ZpIUTVLA15nytgpYaeQnWa/+5iUlUPtxLhyou3GtF2By5IWlhEWuZtVlZk4cJ+AgPtE9WSOTpeejGXtUqeovN20dPuMpe0vImd/luT9B8LcX1RhmZld5D6rKvNcq8p8/YNUlZkgcCdnV/fPwf3EvHZqIOXVtK65ZKikuGxwoLAQOTOMBY3n6PzDrMXUx4qCaahVqZBXY7gGXtng/j3CyjXOZ9c4EfVzG5dzpGhafd7W9fxqpzPL7U8ttkMOcJjmAFRGhils/4wKtXOonVFm19ezs5xdX8nOQXYRYaclJyaG/pkcfOcXvBuwu17Yncgv8rD7fBuiwLiEUWC0cT67Vv3dBvcLjr71mXm9yHnwKfVmZpaUD217uA1xML4m7rh/PzGxRaOhqA6WkT3yuWzZCe7Upz5Eg4GgexiwknBLd6KjE+4lJHcnw0fBcBrEHE8KlBxpZ1SHOge/dj+KBZvd3R8kJWXn99J/kgMKgVfsNBfWqb/DjcBNwZtftvnkko0ncCMW2x3DeG8DxtFF6zGOMOMoFdJZYf8N7uB6t+82ai46+NY5+TVgOPrV46s6qMkn4lpyevf2R9tznubcS0ho8/XFn25yc7vq6dnu798VF9cVG0u+9/OrHK30Cm/F28AMGdFqnRudcTmwT6QcmIq5iyoZ9yiq55Vj7rI86yPLkOIEyZeCp5nSDZDk7JJyvSZQu4KSdvOQXSFznwRtFxS2736ZK7/FLeYKb1mt9i9IuR9sLTlif3A+PBJF5Jxjp4EAVgqWA8Iu2qiZrhqqXMF3kqJjIvSlEM4g483py+nPy8NyjtvWlZT2APPWLahpe9YjpLV34+LokRF8k9GT4dbshnWnqlU5YnnXO+J7BHe0PA0vyzUHFp3hMBDzT02hdkkJC4Nsxafi4lnZvSgTqjIWrY4PlY1nAuIV4HgTu2KKGL3JX7RCobr1mLsi2s7TkDEWkJFA7fpzJDTo48d6lATBh2GtIScLuRFSWDIAy38jJITs0Q6XjVVVIVWrtbeHL8Cyir4TrWnReF713HJ/i1Y3guc83LatdLi0onJk19NdSB/xOng1vCZeXLbUfY98a9PPZHq9ctDc7PhSAqy/u+9d4wbLokEfpzGj8T6BLHb/WFk/cGP3YQ67i+RlTOm5z1jmrhi7Txa1K6DtAjEZhXoyIgF3hcD9EwNwx0TC1MJaIGJNJwhmhZ+yu2AHj+PV6oUQcaik5MHWrYjSg2I73IObEafZaS4iAl/pcHrpppOI6xbYHqJ6MjTSZjqmfkIC7Hm7SVw9GeCuSFVGAXP/6QRRu7x6u0x5+8sTLm+XEZN5hycmQ2k7KybDqFOu+HLO6q8XENp+AvkCwmbco9CEm4Ex1yMSO2EYb4WF0W63dCcSwQM95UNMHy8PphiYnsOjApJ0JiDOyerNSs95Uj1WXefggAgIaQHVZKe0neXsQshu4OyMgIwBtcuLttPCdmGw8FNihEwyd7NF7mZl3ClttxpwNy3gblpPZtoE3J9hebv1xGQmQNtnUfvzgd2tUuo+g5n7lAvL8ID7TBOWeZZF7i9269RZVZlZGXcec38JF4o7gGkF40Fpe5uvb09mZlnF8HBZWUdQECwdVgUN5jAbMGmOMcwdywlWo0mtRtyPyA/hvq3r+VWOTLm0PSmXxkDcv3QTwbuI/heuOzzf5uAcTkaGUWwnRTdGqF1f0s6rZ9dzdgNkf4uF7P/JClAqGEL4LsTuPJEZobA76XrEicywjY+O4bpwmaudzmz0uIgwuqp6LL+4PyblzqhWG9QRFNEZUTZcNlhUhMdLK4ZGtFp8SvAo5xlBHvagAAPf2YBM39oIVhI+A5959Xj11gdb4UthaGkJLWuTvlnONk06ZwsfiD9Ed0eo8EtRKSnI9Ytq8wi96hbchOxrjdPZFarTyzefwl1YwtyFReuP4EYgE1iw9tB8W4yD82wwDujHQTyCH+Ey8WT8Cn6RlL2rTuPO2hAE/72912WvsFYqpxPZGTmq07V6ecHrw/HArFOLjMuEh8Al342LG6fF7ePjef15mmYN3jlX5M7pb/ALAzmqIlvSayQvY7oBqbUKeCfCwiRRpglxXrMl7VKoXWFJu2WQ3Yi5m6btLHA3Tds/5NF2o8J2sYbMnjdEhe1wJvBymP+wVJoWjW+br+sVV6wRLARVrcq/3Z8ctK+uxlpwa3bD44i2MNkwHQl5P7mUK37npDdpd0cEIw51DpWjlb1ZWVjFIfE3NnlcsnU5t9qRnP/AhMeC0laOwMrdjorCfC4cKAy5GUL7UpQPl2PJ47dy+3J9rvnY19ojGCHNgQ8biCHH3EXKGNKs8HMDK+QPAW00angwESV3JQvkQ2uMZ1gXbyGXt2BYyxRM/hOQKW8Xy8j8Q7CVxTYX5VFpTneFQ+182s6JLxniQaZZN1WSQbaU9jiNCi6l96Tja1Bsx85dT+CXsDpuhoTcCA6+l5CQ8zQntisWPy0sGYhJ6QqOu5GS3k2we2rqcGlp0oMkJFVYrfCIiF6JgzjIqroT5r5XUDkublvKV2EyBu4i5i4M0Ix7wEqCda4Ykn4awu7nbAhMJHEOCnrASmqmSXixj0021jaC73LY3Uyp+6R7qD4D5j4Z8v7/JoTajWm72fJ203oynIC7HrhTz2gGuDMHT+fsJ3vMnGQT0ugNFzY4NTiF3gxFhHkrPByx4nB5eXzqXXVQ0ybPS2vV51c7fot4jyltOTKPxNuMngzTMVUI3P9qKXA31TdVUlXGFHO3ELv/VDFtt0Z5u1hM5g2hmAw9NSshJsNkDUs/p72gEEjjLiCQiE3pIgdAR8pz+nIQnOQV9Q8VF8PiaUe1iJ8RexDafmIJd7iHS1INTd0P6Y/0MS2pYSQR8yR3J8N+IstA7I3cARkZ0ns+baeo3cDZ9SXtBtSu15CRLWzn0XaWsxuNZwnchR1TJybgflCZgPtRcwLuJ3jAXamejInyding/gzL258P2v4D4+zPhrzPMvfpEZaZwd1TlRe5vxitU19gVZmZKOM+9aoyzxK44wNjy9vrnbJ6sxARVo9VI4IvLB1IvJ/4cNs2mAnMS9xvep/wDeYQBe6wUDdCQhLuJeQW9m30uEjL2PWE/Ripm153ZOHaw/NtD82zOTB3taE/KqJSvWI7oe2vLqACMmLUrteNofXshkp2I8j+JyZbEI0/8v9Jn6Mn7zwRRnHorG98tPCTn+uF3Wk/1XdW7puz6ms9diciM0s2Hsf1rnE+a6e5sNnrsoNvXUDMdcTWD7ZuHdPpqPpE8I1gRNgPU1PxID6rOpUKNhpW8lvGYPFjLzyCx+EwWjw8BgoLEZ3b19rDSFPZClrJC3MIEwvP4NzgjKSrqmos6UFS7LauXYyCvFY3qibnDC7YuJxbhbyLvRfHeJydEvYDc9dg7J+zGuNrXBTuCzfwTzyIn+JpDHw/jN99T98/FrcYF+sb2VY1VuV9zdur1QuXicQPvpAL+mlgijmD68LjRCGnZhxpIZ4ZdzcOThsXDDvEFrkzYIJl7lJ6uKYIo2LmPp2KGUrYpSnObm3UPinOrhi4C8rbldB2rrBdSkOGU2wn0OGrObD9sFFwg1S5Ysu9LaXlQ9U148Vlg5hRvm2+sFS6UR1WQfFgMUzWjkc7tj7Yivm24/EOx3pHLCIsHKoWvZRXgwSjR7VxQ26EUBkZt+Cm9W7fr2KYBVY33VqzYRSWwhNv5Rf3DxQUFA0WlQ+XV+pGk9IeRCR2xiTfoT2KC0sGhsvKnBqcaHNgPnPnJN0lcCFPQ8ZA27940yBq8YWggaREb0arMHdzO0NTOKwrVvPRdNWVWxWmT3zbz5i27+bRdlFh+6evCdYXX6h9nxA0H5jL58ssYedFiKTcUt/5wOeaT05h3924uG0ZDz3Drm7yuLTW9TzWkYt/Y9TW23B/44z4GOKKyqrR2JQur/BW+MoN7t9jINJ4tGMHPAgCD9crrkiqkChgqWKx8wWaRJ1U+ZuygrFHvGslBu5GNezGhJ0rLDXAdGZwHwItNTX0M2Tk3ahtwSNcmarkMRfprqqilStqxmCsPCNyavLYXbbU3YSk+zQzd+XY3Sx/t/R1rEvbzQL3/1UG3D/lAfevBcAdsR/CJ782v1Gd7l5CQotG0+zujrVDyywQgtoyYjJsefvaQ/PWMGdJmeoWrmMqAe5zOeD+oeXAXSzjbqrIXUZYRrrUXen41Y+U0naz6u1KxGT+yBOT4aTbPxTQdiMxGXzyCJtXqL5xDbwyUl5erh1GxI5oOf5ufMlQSUXlSNrjtKCOIIc6B9xThCK4xdz+In/zj9v15Fq748mrz6xWN6lLh0rHqqruxsdf3LgRsTfRk2HK20W0neaoe+VRO0vbqQUSysgY/JtJp2SGuVvaN9VC4D59Au6SejKWCLhbTU9mesrbnxfa/sMraX/G2H0q5WWmhLk/p2Lus0Xuz1Xr1B+uqoxC4G6NIvfnXcb9JXyomBRYcAn3ErqTk7dnPXL2b7TTXIhM6iweKh4qLcV6xsTCzaMfLu4oJg1mLVZmnYMDnlBVPeYX1Y4cG/Hlko0nGNR+ZAHH2QnYJUj3nRVfvqUvbH9dVNg+7+NXZFA7r6RdxNn5kP2PgoEQmZ4DpeHy68Kf8uE7L4AWV6wIFWY4YXeC3Vez2J1tqWp3fNlmtuB9rfq8o299aPxN/+j28C23EBAjFxqpIMrmkbcj03OePEhKavf3b3R2hueA8T3LM4L4HkYW3uKKWj1YVLTj0Q6E40QqmukyhwGLC+sOj+rb5kua0fUQkJ3Zm4k/4RV2FX93g/uFNc5n9boxxxczN0LM2Vezt4PckZX7yFjx5dtGA4+/i6FXscetxEsttju+3P4bXGNw3A28AdcrrniHMXdi+nJz8bZh7GA4DuoPacI6YNoQ5r5hQ6u3N95k2JZb+Bp6MxTXQniKvsidHMOnzH2vVCe6PeLOk0qZ+1QU8FpC1cWEXQayT4CzS6P2SerGWATcLaTtYtF2ucJ2HgrkZGRItnl4ASYMFolbk9uOxzsKBwqHSkrqHR1vhIQMl5Vtf7S9uGwoMOa6yqfOO7y1oGRAWzmSvLM7JP5mT0ZGysMUv3Y/TFQOu1PfTk+K4EHnRmfmhEiNV3jrBvfvmV3Db5YSO3aULvCVqtObPC/BxCWnd1fqRkd1OhjJkPgb7sHN9t61MJVYepjYSH3x5/BmEK/h9Y2Zu0CNeo8sJeR3emS1oY2Zu9EWlAnmbtxAVZK5PzPg/uwA/bRtsFnxYsU7CiIxmd0vy8nIiA+O7CXQmWXN+1msQwm7oQUxpcwi2n5UL25wktRa2l+23/V014iW9BZ29Ku3dTkHB0RPtq10OA2XpAlpid56J7ewj56fS9h+zzviGpYqOQ/n8C2Cjczcnifp6Xn9ecE3gr1avVwaXZBXYbEjNCadVA8a7cvyS925pcRreyAL3HmoneVZXxkK+cm1M5WktLsyK5qsD8m50Js2KqcZAPIJ5DFwykhDHesd7Wvt4aPJbsEJtpEyC9H4ymn0mIvRhpkYvhsjeGG3VcmCd/PYXaGk+/9Iycv8mofdFTL3X/3bFGL3yYxfTIi2S4nJiMvb+Xoyxh1TRcD9Q8XAnRFuwkxzb3Yfr6kZKChodnevU6kwmtzcEC5qdaMuAY2IzRjgfoLpk0T0ZBDFvcUC98/0wP3jl+fu/qkS4P5z08BdrshdkbCMbKn7BFG7PG0Xi8n82oyYjFLp9r8YpNtZMZnPmNIcKiZzCKkQciKEDSPl5Vm9WQjatz4ghThIsmAMc4v64u7GUR0tIrF4cD6noMVtDYpaaFDgDuODjCD6TjRsKW2Te3HjRoTZIuAuEGrnCchwcu3iwvZXXyUGxriwXcqnmWDu0wbczXdMnRoB9+dUT8bKYjIzhLbPovbnGrvPZOb+fAnLPJMi92fUOvXUc9c6dVZV5pmryigH7lMs4/4SbgsmF5b+zic7kRIjQLRl0Lmjb33laGVnRAQWLQHuCxbQugB8g4mF2Q8r0xEUlNGTMVRaiqR6tdMZWllDpGM41L7q63cZpEuC/mX/YhTbJQvb5VH7W3rULubsfMLO4fX//Q/5YXiagLwLsbugCRI5KMoozBhK3XEhRNh95VcMdjfUgC+2IzXgyzaTpqNriMj7eTvNRbdgogEdvfVOYclAyVDJiFZbOFDYk04O3d8IDr6iVsNvwb7DCtM4CR8p/E2jiwtyKjzTucEZ7gXmHHYaX+GjXBpdUrpTasbJUf2S8qGE1HsB0ddxp9apv1ttkGinxwtEqH2/AbUznJ2A9eV73yLji7eWffEmGf/SD/IIuVJOTodTsd94Yo3TGf+odkwV1yuu8AmhN0Np0A/LhRVOlw2mCpY0DAfMFmwu3D+eExJ/o6JyZLy6Gv4QplEAU5iVZNzUjsPuIs5ohrkrKXKfSiYojdcVc3aLhdotLWn/rcyYAHBXTNspKORkZAyK7TwUSBXbSWG7HgXS2i54Nrhux3pHXdUoLejL7csldeWlpchmsRx2FTzdsuN+eGInHkx7jP/TxsbHs/J6taPawtKB9JwneNzzqidWENm+OrMGwQW+4ns8EnwjeLi8PCali1YIElEs+2/o0RC6rrGyPEKv4k/jdVMfpT7ZuXO4rGzrzgcwevRYj43zWcztR9u3346MzO/PV9WpEAQhQIAHlmPufFwoQITM5dNk29CSca9YxlrQgtU0czdb6m6lNcLO+Q/1Rxlm/phqVi78TJQMhW/VLG3nFhdB7aKOCP/ira/9c/iKMVQl5j0+V5CMH4+9R+WYECbDafm2+dbUjGOhuQQ0kgJbFeF9cEDwPnAWeMQrnOiPwW3h672EhIGCAnwTHH8Dz3cNvJK4435uUV9ZxTDF8VjOlN1jtcLrGbsJbi1IYHdh/wOxhvuXb3PLSlozR8/ZaVtCLGGaIdENb1bYTb9RBwOCJ8A70zNeBQMFlQz8SriXQDuvkEbKTAtE0tHhwFwTCjOGJcyNfxiG5C6aYS0bF7xLYvc/yWP3CZe6yzH3yZS6/+LZoXYp2i4r3W62vF0OuP9xQsD96CLMSTgseEDMsdHKyjY/P8RUlCxctre/GRJSNFgUt60L/gj+iwHuRxD4zWX0GxHgkcD7PRa4v0KA+98UAPc/GAF3EzLupovc/+tHZlg5Je9y8P1X5lC7Gdr+I1O0/X8mLt0+d/cr7HHYfzLl7Z/re6WS8nZYQmf/htzCvrLhstKK4bGqqkepqVc9PBD55xf3B8V1jFRUONQ5wKTA8sAQcSfhDN2eGXuFPJU2ioeJppJ6G77fEH83PjalK3ZbF6IRZBAscGckZQhw15e309p2abl2c4XtfA0Zs05JvAUsryozJcB9Mh1TFejJHJlmPRmGeZltl/rMytutSNtnBWSmk7z/kJj7rLDMC1jkPgNbp06NqsxhK6nKzCjg/vVs39TXX38JtxETEGYguTu5Py/PLbiJ9th08mvQVY1eDwjAYiZSIYsW0UAEswdzGg+2eHg83rEjszezoGRgk+elFapvFtsdY2j7QbaqfSWpaicHWqmGjF6x/TWjwnahVrti1C4g7H/QJwnmxuv6YPr1P0rE028b4mljVXdDqTujMMMrAD+4kJNe4eme05p3O81FR9/68MRb8al3dxU8ra4ZH6+p6cnIwOfWGRnZ7O5ea29/kboQOzu4sUYXF/yUEm04TOqaVHUq72vetKq9sGQgeecDhOz23rW4WWuczuBv6buhEiWfhevoCQOiz65Xj6Go/SsBaqeQfem/cFHIFpixRz8+ZzcY9BeLV5hvcxAvvtz+GyQSyBaQ4/lc86F9n5D1YZJghdNFRYD7vHmYMHS2wK883LYNU2VUp0t/kg5fDeNKYQRb5M6sNtGqotK9AtQ4CeauEKtZAMg+UDz+bATZRZx9YiXtf7CEs/9W8TAL3I3L283S9r/waLuJwnZO4IIRbae0HfMEXhThTERnhG5Mh1nnG9XmEtDoFtQUHNexK/9pfn/+g61b7yUk9GZlPU5LwzdNajWW1f3ExPtJSXR/izY5SH2U6ljvSBurYiBwc2pwwoQcGx+n7YVtXUnPZ9qIgnahwPfO/o1V1WPBN4L92/0LBgpuR0V1BAUNlZZm5PYwnRIuwPr5R7cjqUb2u/XBVk2LhnRf4Jg7r4equF3B5xJ8kF/dxkJGvYa1nLCMAdgJe6iawe5/nfgysWClfDA1Y5IIe5LE/IOpHJLvXAa4c7RdTkaGk2kSdURAqIWZyYnDUF0URL40RuYOglClFFFYSpsfIEKHY8KEhy8IjruBhUD7ci/ddJK6oWWbTm70uEil1UJukE6q7X5+Vz09u2JjtaNaLFuyC3szJOl+0mhlJb6PSrrtFd6KpVSmHYajDLsVRvQWRHXuUsxdbjVx0kx8eXpRM1hOHBnXhYvFtSMW0jRr4H8T7iXQVg1hN8Oc6p2QtCHdIUfNzrJHzeLuxvXn55PWEcx/rV5ecHCwEjAyZG/vvC1pA8s7yyVQl+LtnIkbKXNDZl1LOzsT2F2q1N0Yu0t0UjVZ6j4peRnT2P0X08jZJ0HblerJ8IG73kuyMmsccP9YCrjvn4O0CZOTdEq4YBd9JzqvqB9Req1KhfSesrbv168nJRrMf+qgJhvns1h3TIU7EXDndUz97LWF/3x1wT8Q0+pD7o8kgfv/ZwzcX5MD7sqK3JUx90mMCdF2RdLtJrIDKt3OiMmQipw9VHlyzqqvqXo7cqjs/KexXbE5T3NuhYU1ODlR1IKbVTZcpglpwf1ybnSGzYEdhnGAjeL8u2hnlAXuTLv41d+uhnmJvxsPC4lXgDnFy36zYgUsNBL+IzzgTsvb5Zqj0sL2v8v0R1W4+6ykyF0WuDPM3VLgPoGOqUoF3E3ryRgB9+dIT2ZGiclYq7B9lqTPCOw+y9xniLDM817kPqsqMzNVZWZl3K0q4/4S7i0mIFY2csvxmhrv8NbNnpcwPMOuVo9Vt2g0sA5YM5jHNKrA2sCaR9SoQ3JZRdph+ka12bqcM5TVrNlP5Urepkh3KS1s/8xMYbuRVrsAtfOlY17no3YRT/+9YLzGG4If8U6MSkg0mpOXWfL5mxRDM9XfvFL3QwvXUex+lCl415N3B4a8u56301xw8Knzj26PSOysGa8Zq6pK2/WYilHgc653dEQeVefgcMXVFY8g4de0aBBbY6ivqKNuR5UOlSLI3p71KIBRz1jv9v0a57N4carVbllhOy1p16P215fswXUx94iOT+k3TF3/HordcbGEudseorlEQfFAV1zccFlZuXa4Lze31t4e1hBmgspHsqoyDHAn6kOrVuE6upOT84v70x6nqWpVVOeaHrrn+kQZLz6WNn4h0XZysszdopr0DyaI15VAdmnObpWS9t9OdCgE7sJGqaZou1C0nfZvlNC4EJ6hpkAQfo+Wt2OljOl0HqEt69TfkTXleMY9uBmLIrk7+XZUFBYOYiyEL6xMEyPQhBgLM7PNz68rNraqegyLrnCg0L3Z3b7WHrEn5qHnVU9YucikTkffejvNRbwylpWt63kb57M2LueIDnVAY3J694hW69bkFnMnZqSiolmjQfKMBUuLDTNye8gbqybdWqvHq3c93bX90faIzgiXRhcEU4S5C9sViI5uCBDhFyaB+xfy3VONSt1l5aF3W97zQCGM/mB2yFoAiaGMvBuzDfO0/R9GMjL8jgh6jSZMS4qYack2qde+aKduUvtc83Goc0AuhWQIWQsCA4ThLII/tRzRLlfljemNVVk2XIYV5OzfQLZ+DZtVp+CVsIKC424Ml5djocXfje/Lyal3cqK5GeKHOzExo0ynE/zXGRHRnZKyLfOhs38jFl1WXu+tsDB4QPvL9vhDYj33fe8YH4ESo3Y+bd8raAbLr2pnUfuJJbguqg+DZMu/3f9pdrZ2RDtYXFxYMkCaosNVV49h+Ts1OLH737WqkBshPZmZMA5uQU1Ofg2pmY+GSkqIhlV3ytYHW4sGi9KfpMNoIEOiewZUXkbCoxn3gBUOY/gu2zacI++0qQCH3f8si90tU5ixeqn7LxWg8F9MJWeXRO2mabuJ8nZjPRmjjqkEuFMXyfOPcsCdtApn5NQwMz2ueiA+Lx0ubfXyQnoPH8c2/lmzBlMSHhCztKBkAEEmlh5CUBa4055JBLh/+hoTe3PA/ScmgPvrHHA3qSpjqshdkrn/l/VRuxnabrl0u0yj1J/I5wWvv/cZr7x9/4K1h5duOrnJ4xIsW15/Hr4isMedogkU8ina0Aj/wb7BOMAWwTTBUuG+UwtAmTt/fxQhBDJ1mOv1361HjEHPCT3ZuRPJAtIxxN54ZST/yNup+CfVkyHl7fK03bSMjMDb8129DHOfGHD/h3WB+6QF3A9bJOA+XXoyCtulzvzy9snS9meF2u3tJztmFHafslL3aWXuM7KB6myRu8SYbZ06zaoy0y/jzuzxz8q4my1yf4mGcViXrldcKypHYlO6XAIaXfwbkWeOVFQ0qdUXGbVxLHJ8hXFscHZudndHehzbFRt4PbA3O9s9uHmlw+n3NhxbsPYQS9tXMMKRTKDPaMgYFbbP4xe2cxoyxlrtwqp2WdRuIOyGDEF2/P4/Xvu9jFDjn3hCjZYx93l85r7uyKL1GEfxmSy2O76USM0QkfdVjt8yajPfbfS46ORX7xXempr5MLewr7R8CKnU3bi4q15eTW5uLRrN7chIWj+uadHga25fLhJ+PC0wtsPRr56W4uo1ZLgutUcVy8joaTtT0q5H7Z/SHRHRYK5Xn06s+BIvuHDtYfxRlXdtVl5vfnF/8VBxf14e5gnsL6wPLAK74BcsOEL769LuqRs2dCcnRyZ1jldXuze78zEK1jTH3LnOdfQRUYWvMXMnGIJX/Wei9M8ERpw4MZShabKE3VLOPrGS9t9Oeiin7cbl7TK03SDaLlXYzmnI0GIuqnEB0wSHBu+KaMKjxWO0sjIp7T7yWNqoYJXDaZ/Ia0g7K0crWzw8ztK0k0uBmLQHEw8xBAwXgkI8BzNQN0oYn1+bH8ydukkdfCO4qmoMr+Pk12DvXbvJ8xLGZq/Ljr5keSZsv4cnI7/VVY1ineJ7rM3vGayP6Kre0ZGVl3mwFcawaqxqqLQ0Ke1B3Lau6uoxbeVIwPUARGGcLIZBzZnHCgVDCNxlj3rwVOANFbIyVbGmybtYm+KvE2XuMwFhz5hhWP7CMQEELwvc/6rfxDKm7VIyMlxHBCoJjXiTNjBAYoHcBTkT0YZm/nu0fXt2b3bc3ThyEmt8PKgjyLnRGU8g7bvPEi0mVlDlnA0SGqoojZgB7mC923e2rufXqs9jeWKsd/seK2hXwVOsi5KyIV3VGFwbFg7tFk47hCO0wCKiUtRYWdXj1TuyHyPwSE7v7svNTXucBveHv2KoE+c6ke7jLQqpyMgg3f6lBG1nBWSOvUeFceh+AyfaVj5cHp54C1dUMVKBT+N+YuLtqKgxnS6vqB+mwKvVS31F7d3qrR3RxqR0Ofs3bnC/AM/u4FO3deeDcu1wUdkgjABeoaR8CEYApoZfp883AhIdwo3HZxLL3Cx5FxS887C7eWF3eYUZq5S6Twq7m6Xwlr7CL6WH8Xu2rLx9ksD9Mxa4Y54g0cFEhQfBIo26HZWa+QirstbeHk4N2elJBudhNWFZtfn5Yd6Somn/xlUO3y62Ozbf9hAPuO9RCtzfmCBwlypyN2Lu1ix1l0TtVqLtr4tpu1EVjl66nRGTeX0JW96OSBuBN+L/5fanEEXs3PUE5vFmaCgiENwpmp/j3uFmwZggbIDNgWUTAHdmjdNdUrLp8qVhi5QK6znVOxH19soRmJrsp9kwm2fWrDnFlEMdZ4D7QT1w55e3S9B2ajCEtF3s8KV8uwi7T1jG3brA3bKOqQoE3I9MSMCdT9tPTlRPZuaWtz9D2j5tcu2TZ+szm8LP0FL3aWPuUyrmPlvk/oIVuc9sVZlZGfcplXGfEuBOFRuwCmGMt9zfUlE54hvZhlQZ2ePDbdua3d0bnJwanJ1bvb37cnKGy8oqtCMj5eWII5GT5/fnp2U/Rmq9dNOJhesOI9YUNkcVFbaztP3lubtfnvM3nmK7bGG7jICMEWo3wdm5hkiG2Pp34gOkLHY3BNmyzJ3VlvlUQltmzf55NixwX7juCDPINwbsvkmP3R1Or3E6Y+t6foP79wjKXQOuBMRcz85/qqsaxad6JyamIzDwTnR06XBp6M3QyM7ImvGa0vKh0PibroFX8Hx82jYu51YzhYTLGdq+xE6ytp1VkpnD9UdluqG+xR07oLXtzHYIh9pJG1tmX4QduF69nA5XwjOPUajEX9/keSk47gaCfqSCg8XF8Jo0qeDrHuKfFLjDG3WnEBnf3uxs3zZf2HXYOTyJqMocnGdY0AfY8kMOxBvwipyMtb6w1zLmLuKGk+B9Aqz2vhnIbpazT7yk/bfWG2aBu+W0ndRT/UNP24UaFxQFcjIX/KaFVE8ZsUzwjeBRnc4n8pqd5iKpQHc5h292ZJMDIve2bEH4wspeUYe0cCE795YuxZykdA/BVp2DA3Ld/vz80crK8Fvh/u3+8XfjM3J7YPE0IS3uIc2we2FbbqVmPqIqNEWDRUiMh0pLrwcGtvv7I6wkpGPFilN60oFZfdXT82l2dm9W1q2wsO7k5MS0++7BzS4BjTkFT8sqhiM6I8hUP75EIOYuw9xFDR6pP2H7phrV80ryOAF5Nw3f+ZBut0y34Y/MY/fJMvdnAb4nON633jAB4uWK3I2AO9cOQbL/MF1itCkCS9v3E9qOlYWgFclEbFdsyVBJ+pN0rAK/dj9M+KS0B35R7SXlQ1gd2fm98Erl2mE8Bz+qHq/2a/NzrHekPUUw8AoIGHyu+WT1ZvlFtamY7sHr3b/f4H6B2U5uiEzqHCouTriX8HjHDgQSCCGwdhAKI4plgQUDKeg6wo+Q21zz9h4uLcWSwWvSfuOFA4VBHUFIvBCPG7oQ7zdsxPJbbQsGfxGJzs0cXgDPhCVJNehxFeoravdmd7cmN3wNvB5INHC23EL8M1BYWKdSwbZQ03HNxwePVIxUwC+T4Ke4HxcOp0w36uK23d35ZCe8NqxBcno3LVl4nJaW3J2sqlNRfyduoyq38cYbAhxvvMH2ifQxr5f1IG0y2N2UwszkSt1lsfvEyPsvrIbaJ0XbpfRkjDumSgD3v0oB971vYdJitmPBIrWlKxQLszMigmp2Y+1Q5Ic1heWDKB3BOZ4TGHPd1vXcko3HEQpS4P7msi8YOcdPSRBOIvDdyoH7f7xmVsbdcuY+WexuDrUbK8kopO0/V07bqXT7J2w9ytLPeWdAie4ibYJFm800azRn9UXopxg1zpuhoYWlg/iRzTkbmDW6D0clZbgO6nSXlGy6MCUItC7K9pyt9zVvrW4ULx6b0qWrGoNdJbXzzGSgGu60Y6qovJ3TbZeg7TKF7WY0z8wWuVsVuH9uDNwNlv6tZy/gbq68/dQUtUudRHn7c0fbXwTCPmP4+5Rg9xeOuc8WuVuLuVu9deqsqowVi9xnZdynTcb9JcwjzGKsQlgvJJxIcXdkkSoz5JN3YmLa/f1vhISMVFSMMVl3Tl8OKSmtGtVVjeYV9UUkdm72vIzg8j1OMpLWthPaztRNL/r0tYX/ZAvbZWRk9IrtwsJ2gYaMhaidD9nlhjF215e685i7kZ4720OVAmhWa4XroTrP5gCSHKa2nbJvMoQiMyeWbTpJ5d1XOX5r43x2LcHuF+y9LiM/9w5vjUm+U1o+NFZV1Z2SgtR9x+Md+NgRWHuFtzr5NSCrJ3oXLqS2nSrJ4NWQWeGV2fL2tYLy9jlceTsL3PcJgDtD27kdEXKb6BEEIvjDGwv+/jM+c2eqePAn3ttwbJXDt3hXg0VFyd3JuYV9rd7e8A0wiBxS4agKkSGytb3q6YknFwwUuDW5Yb6xPeUOL6BsnRtcgTN9XFDnLtVG1VD0x2fuH8sw949+agFwnwxhl4Tsxpx98iXtZun5/8gMxcDdjJiMMtoukJHhVd1ycu3wDLjpfEVpqneBEABBU8iNkKHiYo/Qls1elzd6XMSSCYy5Xl091pOZiRAKz+XUS1k5I4a5w0fSOndED5iBiL1ILa2HR1dsbM14TeL9xJ1PdialPYhM6tyy/V5x2SCBGjrdUEnJYHHxg6SkNl/fRhcX/BZCFso4iEyq3jseY+SSaIEhIr9alardj2AR9+DmDe7f79z15HpAQOVoJeyqWFhGpj5XwAr3vi3XQ1i6KlZGlUKOv3PkXbxY/mZxqftkWhpMHJS//wINE9hdCNzFYjK7X5ak7cZKTVz3RUrbg28Eb8t4+DAlBQuB9hnGdPWPbncJaMS6qBipeLprF9zQzsc7+3Jz8aNqpnEIV/BuX2uP4dTghH/qqsa8Gffk4FPn6FvvFtQEh4UnY3H15+f3ZmXVOThQv0D2Yun5J/0RqMMM1GA3ZZcvx9OwNrEAH6el9WZnJ2y/F77l1lBpaUp3CiwAXUT8th/c+Q/DGtkrbpEqkJE5NJ8tbD9JCvxVtaqiwaKs3qycgr6i0sGS8qGSoRL4MlwmTMHD1FSsfaQfeOdY/jAC9U5O13x8Hmzdiqfl9uVu3fkgauttDHyDcAgrHb8Io3HN17cvJweP6BAlVY/l9+fH3Y1T1anwF2HZuI03Q1OHvRK7BaKoUAl8F0i9c+Sd5/5MYfeJCbsbMXerYfdfPgPULpaRMSkm86NfK9aTEQJ3g680Bu7/eJXuRuMuE9j61btYs5gzyLkzezMxl4iKSHo6lgmc2lHGExEfx/SlxyrDT3Vj5PwWXCQiQwSfpGmqLHD/y8SAu7kid8XM3WKRGTnObjXa/h/GtP0tadquTwTY059vLmPK2xk9mfm2hxCNc8C9ijnZc87GhkKHb1et+n79+tuRkSVlQ97XvBHbEJvAdHnhN03l220kxFT2c83ZNTAjITdD8or6A2KuF5QMwE7i1WjITasNDOXt77xDy9v36MvbDbSdryQjSdsV9hmZAcB9r1ngzkv1TQm4ywP3KRdwNwHcZ3B5+zTR9qlD7TOHsz87+G597D4jmfsLKSwzHUXus61TZ1VlZmXcrSrj/hI9VU0kXJkWggHXA0qHSlMzH9XUjN9PTOzJzETinXAvweOqB/wAbI97szuyzd7MzLhtXcixVzudWWxHqmlIcL/SQNsZGZlPjWVkXjYhI6O0sF0OtUuy9f+RGr+VOU/KY+5vvS/okmR8jJQNtQ09RSlwZ9j3UYa2H1pge8hI2J3UubMtVSlzVxPmjhzJya9BE9ISGNuRsP1efnF/xUhFRm4P8nnfyDZ14BWVTy3VmMav4Bfx65x0u7BR6qH5Nhxw/5odq75mVfWNgDtX3v4z/Z1i5PXJzdIPnlTl4s/IyVmmkAfXhT9t43IuKe0B8oqy4bKBwsIGZ2eCJpnDzoYYlCGe8BnNbm6VutHSimFMIXgAGEUYJ9gPmAeOudPgl0a++IZTmxFjSsnukXx5GT5xkGwr95E54D4xyD4FnH0iqF3I1jk1AKXMXbK8fcK0nYq26zUu+M0b5+yfY1B40KN2ONVVTBYCL02kos/ZIpQjdqlimO48ufg3IuGsGa+BFULUCF8OJ3dQ37AXXzGViKIRw/JOMkwcMQTCEQRDpCkxc17ndlTUQEFB0WAR1tp4Tc2T9PQ70dHXAwJaNBpMY7wsgq2zTJ6MCcyywvnz+X7I0KWAOcOBmY9AGWuhpHwoO783LftxT0bGtofb2PrW47z6ViPWRq27uD53r5AkfiGuh5U07dJ6FEa9GUWqFNJ7VIqxu1LmrpywTw/p/tOzGEqwu1ngzonJSNL2z98wrLJ97/KpDRKCqNtR2hHtaGXl/S1b7sbH9+flYf6P8/7riotrdHHBaHJzu+Lq2u7vj8UyXFY2UlGxc9eTnKc5gdcDNc0ajxaPiM6Isophv6g2j9AWn4hrW7bfG9VqETAMlZR0RkTUOzrShn4IW6nWAe3wwfWvo4vIsFSXLUOUjwwKCxCLMW3XYwQYuYV9T3cRIRe6R0uEWRi/QOvcBdhdP97RcxcDbdd3iMUypO1eYVIyezKz8norRytxvS0eHm2+vndiYmBSxqurYRkQ/DS7u8NtwQLgK+wGPgraDaI3O7uqemwMTyss7M3KepiSgs/nqqcnrvd7JjfDk/H+R8rL8Wrwj/jQCgcKSatwE3sG/Df/pbh5uMBWmIXvvCNfSrG72X6qv7MAu5tSmLEUu1sLvpv7ExKo3QRtN1Hergy4C3ylELjT9Ys7jhmCqYI5j7x/19Nd4VtupaR33wwNhVeCx6EbzHBAWDhYYph7mJNYlZh1Tn71CA4RdiIIZIE7Ir1FQuD+riRw/5MeuP8vF2kbFbIYA/dJMHcBeZcfLytH7XwZGTNdUv+PlLbkf77Bp+0f4COSoe28shtGW3LOqq/mrSEpwOINx+gB0IKSASz8Zo2Gau4TdTtb21p7+6fZ2YPFxU71TqyyIj8w2PeO4VDOfsZuHya9UhEwIwVLe5yGUVQ6CKv7MDUVN50cG1q6lNa289ulInCQEJNhaPvHk6btzxFwV9IxVaGA+zFLBdynWk9GiOQsKG+3upjM80LbZzhkfxbkfZa5Px/CMjO1yP20dYvcZ1VlnmdVmedLxv3ZAHeaf8JOwOgiyfZt843tis3rz0NCXjFSkfQgKagjyL3ZXVWrgu3BwsVzRrRaZJjJ6d3r3L5btvnkwnVH5q458O7Kr94W0HYDwyUAd65BtP0nCmn76/rQn43+TdJ2I87+73S8KjOMsDuPufN6qIoDbr6wDBdtM0XujKoMI+N+mAXftgeZcYipcyfaMoZOqptPGSTdqbaMJwHuHqFXQxNuZub1IEwfr6lBUJ5f3I9EyzP0qmSF+1Kuwl0KuM9dzQyekjspcjcC7q/RUwg8zR96s7jB7jQw52dxyfj1dxlhGfxF3H3MAZ8IIqWdeD8RyR7SibP6ch4ivsHYR1oF3OTmVjlaOVxWRircGeAOW0VUZRi2Pp9XbUINBgErerUZPnMn9EF5qbsC5i7BCpULspuA7BPg7JMpaZci7HLDDHM3Ud4+adpuKN06wFIwTAPK2ameMsIBLqZAGILgCMYHdql8pDwg5jrWQnDcDVJMunUrEk5SPLtsGRwYvAIsNawqvmLK8Ckept9ZpocqAq9alQrz8Hpg4IOkpLHqaq1udKCw8G58fEdgYAvTDRUxKJ52jhGbxivzdVEp0OfSOVozRavp4WXp0f4mtTqnsC/+bjyWMOxnSneK51VPWE7EEZS1YT5zwjImBDG4Wl1J//CmAocgDeI/E3dbVS7HZFZhxgx2//MkNrGsTcwFi9TS8Uf5YfIXzZN3k8BdEW3n9UVg97R4EsBYXB4tHlSofVvGw/ScJ1Fbb6ekd+c8zXm8Y0e7v3+jiwvSJEz+M0yoTbap1qxBVkAXTrObW2dEBAIDPD/tcVrYzbC4u3G78p9GJJIDInjZoZKSrtjYq56edSoVEhVaHk4be7BCB7woiltBhiMp+r0rvAG8E1ozvqvgKVwGEZa5wAjLHF9MOn8I92JZULXPwNnphc/Zz8rI0KMzMDII/ImMzKXN9HOITenCV2SJeLf4i7fCwvDPrLze7Y+2k8anpYO3wsPrnZzwo2s+PvcSEsaqqsq1w2nZjxEgDZeW3o6MpJwdKRk1F5S5kO03GxtYkusBAfSv9GRkeLd6w+txewbUDoje/Lv79O+cN/jP4WJJM/ydtwPNbj9LYvcPJovdJyjsLoXdFZF3hRTeotdRUtguR9vl9GTkBNxNAnfqKHH7iJf8kgB3zFtklpj54bfC84r6MZfa/fyQ0mOOEeDO7CtjfWHuNTg7Y3LG3ImpGqty8KlDeLlo/REGuO+TBe7vKATucqoyljJ3c9jd4vHfJgvbp4u2Gw65ElXJhesOIyBfYf8NonpEAlXVY7CrF+zsKE+BIUX4gfsIC7Px4kYYZHrQkzvQySWv/D1CPE19hcQVSLv6cnN1o7pHqamwPHg1xDZ0O5NWA1DaTtXbBWIyQul2qttuTNtNeGwTzF1h39SpAu6804BfTr5jqmkBd0k9GSkBd2vpyRi3S53q8vYZQduti9qnBoXXCsdzTd6tjN2fC+b+Ay9yf+Fbp+qBu0Lm/jypyvCA++FZGfepkHGfsr6pL2Hxwaio6lSaZk3IjZDUR6kI2fvz8orLBpHxbrm3JbAjUNOicWpwgldxrHdMuJeAeLF0uNQn4toq0iv1KKLMd1d99TYppZGm7S+LabtetP0tStsl+6NaIiNjjNoFeP03UkMiBKfxt6ywjESR+x5Bkfuqrxkl9wPzCPIm1Hu+DQXuh1jgvoECd16Fu8u5daSH6iXaQ5XpujaCVD+mK2a8pgbhNZL8kYqKwpKBoNgO14DGzZ6shvsqRsPdTMdUMsibIY+sOUAEf2iRuwC4f2qyny1vp8GoyJ0Rljm63P6b9e7fJ6d3D5WWUgyK4IAiG5h4toiDaVx5xdWVVlA61TvB/MNwwpiRZOPIQorX6eAMBjUVJAnhMXdj7M5JWotK3alohljTVsTcOVYok2oobH+qnLNbv6RdMWSXZu4WlrcbpNs52v6+Atr+2c+JxsUXb1IIiBvKLziFCUKQgqAJoR/mBoyMQ52DqlZFg0GYJroRqB3RRm29HZHYSYtwkbginqPqqEeNKtxp7TmcJdVwR3SCyKlOpUKaej+R7Axl5vYkpN5DPkxEJJiWxa1eXvWOjgj4EF2RRmTMSW1K2w2iqPo0DxOQ5nWUGB5i/hxcO95Pi0aDVfBw27ZdBU9TMx/i3Xq3etPGibRLMF9YxqymhLjOfa/0T0VD5E/4rsMgAc87HTKRLghS2N0Uc/+z5ftYisH6ZEH59AxJ8m66yP3DHwvK2/nS7SLabiTabqDthxZQCWAE+NF3osd0uuz8XrgS+JGNHhcz83qjbkdhltaqVGeZaU8UgZkY9CRPY/08b7+qIyjo8Y4dWDU7n+zMKXiqqxqjPQywuBqcnLAqkXLQlzrOo+0IjPbyVXf1G1cG5o5FxEhk4BfhL/CCRJVljDDuvP48j6seSEq4c1HG3bYNnF3ffJsTquJ6L8Oq+Lf740NAGJPfn4+rxsJvdHbGdV0PJOrtMcl3whkLE9wRDC88VlVVNlw2otXibeDBsC23AmOuJ+64v/3R9qQHSXDNMBpIBWFhjjNFx5xIDqnWX7UKxoQI1AwWa0e1+JA5MXr6/glz3y9+51wjEy4K5lqI8y/TgOlFbR6+MOxDG1a3MXb/iyXY/Q8msbtyYXdl2N1i8j7RIffXTdN2OTEZ4/J2g4A7v2OqELgb3KURcMdNh4tE/ARviDgcIXf1eDWmIhYgmW+LFx9lZM2wWC7Y2d0KD8caLBkqiU+96+BTt9LhNAvcV0oB9zkKgbtk31SpInehsMzUM/f/NlPY/spvLKTtfzSi7SaUZMS0nZ5wRbCNaB+hPgJyRMVrXc8jpM/syXy0fTvMCzfAo/QAAIAASURBVCU+iGhuBAcjnve55oO0a/W3q9kw+Nh7uNdshn2EtIvHI3gcVmvVt6s2XdoE+1NROaKtHElKe5DXl4d/tnp7016sCDwQfnA7mlyvVCImIyXdbtwl1Zi2K+nqbVzkbhq477YecP9CBrhbs2Oq9QTcp0lPZrrK25WLyTx72m49nj75MfPJ+xSVuluLuT9PYu4/tCL3H0zr1ClXlXlGMu4HZ2Xcp0XG/SVE80EdQUgga8ZrdGM6RIedERF34+NzC/vitt0tKh1EbFc4UJj6KDWjJwM5KhLUnMI+0prJhbRmQohJWzMh9CQMV0/b9eXSVEbmb3zRdj1t//PU0/bfmBu8UncuCn+dY+4yRe56WXNWVYY5UsopubNF5YR0U9jNVrjzJWVoebuN89l1bt9t9rykDrwSmXS7rGIYtyD0Zihi8eAbwZWjlR1BQcjn2/39+/PydFWjuBf+0e2OvvUb3C/Y6vum4tXwmqIid4r76RugsvJ4EO+K7ovwWtqyuyOviXZHDDcLKcdHuHC608A0iSIdot5mlNzx+gvXHV5idxzZnZ3mIqaEdlSL94ncD84bjgQmnppsfAOn1ezuXjpEoLyqTkWBOwweKXI/uogIy/AtB8+QcNidj1cMh/GNqt2NGaIS5i6mhCIsOGndGIUl7QKcoayk3VLOLmbuJoC7STEZy2j752/gNuF+sVrSPNSOQC+uKw5GJvpONOZ8f35+9tPssaqqrF6CD/BgYEegf7s/VgRs1PYs0s70XkJCm6/vFVdXRJ8IbmjTsKNMkddBEblbtgzRAIIVxHBNanVXXBxp+Mw0RfSNbAtNuEkg2q2wiM4IvIHezEwst1r9axIlGSaVhSPZx7BCzrbSlI9CQ0IM9SI2R5k6d6ot0xEYiAXrEdqSuON+6XCpY70jogm4YpGghAGW7ZUobzcMI38i0J3Q18aKvJZYmEKq/yq/JFbidMhuBQozktj9A2ueGjEP1q1Lxv93EkMxeZdj7ny8IV3evvtlOdrOF//ll0kiVMT0QxpEtzyd/RvhQeA+8JXKlz1MTcUyOcGoE9BQj992mGXua9cisalzcCBnRAIC7m3ZQvoP63SPd+y4HRlJlySWDzIZPJO2SD3KW0Ff6FcQrU/cq9+yEtS561cu7bMNl4F4A6se/hFv26XRhdaEUpfB344VDa4XCL12mBpkNrAh1AHhDT9KTR0oLCweLIadGa+uprvFMcl38Mk4+zcExXbAF8MKZeT0VNeMYwl7hV119KuH81UHNSWl3U96kOTX7pfSnTJcWoocFe/2CHPIRiBmxRx5qVWp7kRHU8MFz84K4xxdxDUvEbzzA+SWkV3nwwtoZM15QLaROC8ulgTxIrdIFji3uo1FZrhjK88Wu5sg77+aAtT+K3nUbpa2S4rJmChvN+6Yqgy44yYS4H50ESZM/N34J+npmK6FJQNwiKNa7aWNG7EkaeUs1tr9xMRtGQ/x06GSEsxbOB0Ehwg4EYUywP1fiPRIWM7F5JYAd4OM+2uSYbZ0kbtJ5j5h8v7fkqhdvrCdi/CtoNvOdklldduNafv++STYPrxo/VGkRcvtTyG8h7nYVfAUCx+xB0VajS4uPZmZuX25zo3O9MTwytMrl3+znIMEsFR4ZPWZ1eR43zlbWK2NFzci/oGZ9Qy9ut7te8+wq0jEdj7ZeSMkBJEGKy7E0PavRLRdJN2ujLabbrBiRlVmioA7L3E1Bdx5AZG1OqbKCrib1ZPhA3c+bRcC96lrl2pZefsLRttnAF6fcgT/XJW6/zCFZWaL3Ke6yH1WVWaagLtC5v6DlHG3DLhnP83envlopKLi4bZtrV5eSHGvenoiRUQe7hfV7h3eiuQT6SJt2ZRX1J+V1+vkV7/G+eySjSfYvkwr97G0fbF52v5jSdou3SL1f61G242SAUEnJV44bhCW4RW5s0ruhuCb1TRni9yXfv6Wvsj93VVfMbLp+2mpO61w12u4k/L2ZZtOrrBnaLvLuQ3uFxCRB8V1VOpG8eHuekqUal2vuKqvqBFhV41Vtfv5Nbq6Njg7N7m54Y4Ml5XhpiCz8o64Zu91eZ36u9VOZ1aoTnPMnVFy54rcmRJ7RuJm4ToDcH+HAvdlIkkZSeD+IbPZQC+cB9yZ1qnvMB2iFtgeem/90aWbTuCK7DQXo7beLiodRDqBd0thKPUKtKsk5tVAQcHWB1vh2GH7YVlhFNnqHsb8LBTt7vFMDgvfD843FDbunyPSdhcU9xmfqTdSszXF3E0D9ylA7ZaWtE+Gs5sC7srFZHi0ndThyivJ0Np2lrYfmo/bTVD72TWId5wanDBbKipHMLcrRytTMx+WVgwNFhfD1FAcRtsD1IzXVI9XY4GUVgz3ZGTc27KlMyKiIzCw1dv7iqsrAjvMMSoVTb3dcUa6HY+cYXZ6Gp2dO8PDq2uIVDVWEFJWl4BG18ArgYwQPNaaR4uHX7sfZZFtfn54QYQmFBfS8vYvGUVUmsEiFUQSKIKGIm0ZBD14YwUDBcFxN1LSu+8nJgZcD8Alw6tzRe4i5i7u+ijk7Hy8zrF1fjGvoTD2gCySM3FGRBq7SzZCUCYyo0imSRlntw5btxyds8tWwZgIgpdj7np1JgNw/0iwlcV1IX71H6+KlGSoaDun10SI82FCnEmb0BNsm1C4FXhze+/aterzti7nNntdxpzvz89H+ocolp7nOMjTeKH15jQEP8eY8ToHh6seHrDwpNtq9uP8/vyMngwsrXsJCdd8fBqcnC4y+glky4rB9/wVxJUr8verWOCOFTRv3iHe36XMHV4DizQs4daTnTuj70QjlYH1QNhL/MXhhfztWOO223Ar8C9wNEhlXBpdCEDP7aFG43ZkZGn5EN5/8VCxrmo0M6/XN7LNTkN2suGa17qe3+hxUeVdi69Exs31vI3zWXoczd6rNm7b3fSedHWT2q2JqEPgBZFLHOUDd6E8DmIqalvg+4i6lP7985uXCN45bWhxbDG+mgjMuV1qLqCmUbPBtnz5DnGLfOz+iRi7GxRmZLC7uKXqZLD7r81hd3nyPln+bhqyy6F2E7TdbHm7HHB/3wLgjgmAqVs9Vg0PglWgDmoK23Irrz/vVlgY1T3DAkHQjqALsyuyMxLLEJ4RUTrmKgvcV0wUuBv3TTVf5C7P3GWxu2n4LvP8V2RQu1Fh+7+b6tjEFNaIaPvbkrT97yxt51o36XXb2SIblrYfYgprji3deAJBPlIkWA9kT7g1N0JCGl1cGpjmMUi1wm6FOdQ52F20gzVjqck5m7XfEbbuWO/o3uye2ZuZ1ZsFc6dpIa0yYGDpwQXYIo/QltHKyl0FT6+o1TAvZEeTa5RqRNv/KWyU+jeedLsi2k63xU0wdxkZ92cM3Hmpu9mOqRxtPzQ5AfdnrCdjjfJ2K4rJTIS2Tztqr51JY+aQ9x8Wc3++hGV+MEXuPwRVmVkZ9x+gjPtLCAcfpqQgha5VqWBtYfoRGnbFxBSWDmpCWhx965GcY6iYr3aai7QybrHdMdIodQ3bKPWNpYS201OrPxPQ9r+ap+1vKqPtotBfUrddKW0X1cLo43JOWIYtcudUZT5gVWXmyKnKsEXuHHNngbstF4UfXWJHxGTw0a12/Bb5/GbPy97hrUQ/t+Bp6VBp5O1Il0YXVa2K6vb4tfuNVVe3+frWOThQL4hvrnl796Sn09Q9ccd93B0E9Lgdq1g9dzFz50Tkac27HrgTGfc3l32BW/bGkj3krrFNU3kC7vzjCO9IVLizwH010axfxB6hPbXG6cxGzUW/qPZhpogYOSE9SAvHA3cF/93u5zdeXR3RGQF3Cp9ASntOLYcthD2jZoy/Rci3ZJwN47g821L1oERLVRa773mDDxAF8jImmLskcLeUtk+xeowphv4bqTEx4C4qb5eSbpel7R8LabtekRa3DHcTntypwSmoIyiwIxApZX5xP3LInbueEKGY2Nhb4eHN7u6Nzs7ITmGImt3cWr28OgID70RHP0lPLy4bQvKJdLRqrKp6nCB0fDNYVEQVZmhrMqI9zQhPIzjDS3VGROCVq7Gcqseit95x8qvf5HkJA+mrb1QbfuTb5os/hreE5DazJxOPdAQFYd7C8WP2HWJwISw1jCapF/vZzz5lgDsHDbkq3QMMLoSPPM50scMrDJWWbrm/hZ5cwYqmrJDrmkim7ldGjRNlOLsIsnNlvKQe9iDbZJg9jX7E4M8NSE5YHmsQaNr3rqAeVn7VTAC7W3xqxCKNpglRdVPc/A/WGKZBvAnmLgncP/wxv7xdLCYjRdvZFqn8RsTHFiOWpFtcDnUOZcNlW3c+cPCt2+RxCQ49KLZDO6pt9/fHkjnOzHYaM7EnNvQCL/SUEtYXPFGLRvMwNRXLJGrrbQysrPBb4bDqJUMlulHdvYSEJrUamc8ZyS0rBqOQtcMTZeIq3A09VJmNK4TCp/WqLLl9uZWjlfF34+EiYUDgNWj/D3ENuL7hNrfNAC+DbAm+Newm0WeHb8LqxvXCboTG33QPbvYKu+oZdhWfxhqye01OjMGT8seSjWTQzisrHU6vVZ/3jWwbq6pyb3aHIxvV6Ua0Wlgbg6SM/nAAPWFDhWXwsVRUjqQ9ToMvZ4Wbj73HOTL+m+faR4syAAp1kGHQXhe0KpYcETu+WBTjc1sRXLsIit3p8S/B0tYfYTGD3d9Xht1/OyHsPiHyLs3if6UMrE8ItcvSdgV6MmLgzrU84fzmblngjkgptisW8y1syy1bpkojMolIHl1RqxGrU5m+lO6UTZc2YZ5jDQ6XlemqRglwX3+UbZq6lA/cGc1AQUzOAff39cCdMvc/mJBxly5ylwm2FWN3BeMVSQEZqcJ2vowMF9uLaPsbYtr+EzFt/1hcXsPTkCR9m1ZzcT6tqiHl7fQM6xrnsxvcv3fxb8wt7BssLm719m7x8KDRiFerF4J8mAIKpWCW8UjS/SRaYYB0oKh08G5c3BMm2o/pikH8EBJ/wy24CfZKqxvN689DLH3O1haGgQp2EdquP0K0R9godSK03aiFudki92cL3OU6pn5lacdUPc6wooD7lOjJzITy9plG259Pzm41+D6T5WVeJOY+Rd1Tp6vIfbZ16qyqzIsh424V4L53+oH7g61b6xwcYEqon4Y9qnd0vL9lS0nZkGvAlY0eF9epv7PhNepE8rlo/VFaMU1pOw3oCbcVFEorq2036pJqDTEZM0U3ksz9/+iZu1jJnacqg0Tllbm7X+GOlwoLXoyAO6XthxkxGX4UfkEd1BSdfKemZlxXNZbdm+1zzUdVq4IngTfAV6oziyC7zdcX3veC3iXAAzW6uOB+DZWUUKiNKNw18Mp6t+8pLFi66STVc2e0ZQ5xjVtJtTvRcGeA+0rjvqmfCjX39TslQg33n/E13JfvfVcP3BnNymPLNp3E9LBhinq8wlvx3kYrKzsCAzG1qNPFN7fCw3FRSC1wjXAdsNMrTq+A4aSmkbN/XNBKzSpnhvnPJIxer0UjaKC3T1/W94Wg1F0sL8Nn7h/xQINRkbsEHFRG261e1W4ZZFeA3SU03H8nVZ0nJ93+5//kF+GKafsnvC6pjG47TDscDm6651XP8epqekY+vz8/M7ensGSAYm7McAQcNK+AOSL7NJs2wRwhU70dScr3knd2Fw0Whd0K823zxetg+LX5If8ke1DV1d3JyVdcXclxkJiY+0lJSFmZh8e0I1qkqZ5hVzd6XII1W+t6Hl83eV7yCmvVjeqw1lR1KsxRhJmuV1zTn6RX6kbb/f3PMwobcGYUF1LgThPCPXpoKJLF4DQx8IsIUxqcnR9u2zZQUFBWMZz0IAlxMSIOTF1a5E6EZfbPMTB3kQ8x7gCpl6XmIDup4T2yiEJVSuiwOrBS8FcQ/nAnSESlsnwKz3F/sl/FYHdOl0lwQESkMGMWuyth7hOWaVJG2KcKqU+Iv8ti9z8JeiGIgLtxeTtful2CtvNF2xkpFWpOqUwBTK5DnUP5cPn2rEfwGk5+DdRQw6FcZBQqjjFwnMY6+5m2wwbgvmoV1iPSsGve3nTHNzD2OhZUYMz1cu1wUEeQR4sHFiOpsR0frxqrguXHa1Jl88M8SRkOmpAuCCI9GT0EOcQsIk6VBUlCvZNTV2xsTkFfcdlg+K1wpDKY25jtfOFjGnhyCshEtP0kK38cdzeOiF+Xl8Nvwnpsub8Fnjc5vXuz12WYAnhkeC7mlJihFcpCpvM5fKh+sKJweM5K1WmYDlwmTAdeDd/0ZmbWqVTINxCvs0SG4hgGwZCG4WvXtmg0+KDwyaib1Pz+JXQ90vdvWM68G4fMg65o5D1IpHDtCA+8W71dGl2QECNXI25U7yK5tAbf02aMtEszJgbZjaarW05h5m9Ch8gtXhF2/5N1sLuEzowcebccvk8WtU+Gtv9WwoGKddio69RvVJONNBngTjXcva95p3SnpGR0061iTUgzPNTN0FC4RcRUlaOV7s3uFDZgqg8WFzPdlb6lGu5vs8D9MwNwnysF3N+SA+5CGXfpIndFBS68snQLyfsrJkraTRS2i2RkTNH2Hwtp+8t82q4XbX9d0CKVE203oHZWMZK0aGIVIxGZq3xqcTtoMQEinJ6MjC33tsBUqq+oEWzgm+g75KjQqE7Xm5VVWj40Vl2dW9hXOFB4zcfnRkgI4gcYmZzCvoTt92CycN/x5M6ICNI4d9kyciBJ3yh1r8na9t182s4Ad2nabozajZj7ZIH7K68oB+57hMDd0DFVGXCfio6px60n4G6pnsxk26VOrrzd4kap00bbXwjIbh3yPmNL3V8I5v7DLXKfVZWZTuA+M1VlXgwZd+XAXc/crds39SWqn0DXDK0MrVWpetLTx8bHkZPrdUu+4TJSpKPzbQ7SDpxC2v5PoSyJVWn7xIG7fMTPlcnQZ3LA/TWhqsxb70vJuJPuSXo9RwFw51qnUjEZruZllcNppPcOPnV+UW0VIxWMvkVNRk8Gwm44Fthmandh1+HrAq8Hlg2XUXULIsxC7aytLcw9kYcOCqqqHuvPzx/RavEy/tHtVCIAUf6yzaeY23SMgIO1PHmZNQfmcsCdU5VZ+vnrgiJ3qgVE+6Yy2J2M3VS2nm4wEPFKmnKs+oocpGWbRLHAHVPF1vX8Jo9LHqFXkRiMVVW1+/s3ODvXOThccXVFzlg9Xq1uUuN6caWw/bDomHbUEq9i6j3wCB6Hz8EHQr0cPWaLQX8LPoc6GSp/SUsd2barPKUOyhdo0S5X1meGuX8oz9zlgLtFtP1ZoXYTwF2mvF1WTIZP24XS7QYayChdcLQdJo12ScU9gpPE3E7pTsHE6IqJGdVqy7XDfTk5N0NCMEPOMrIw3CHcbxkJC7JVo1K1enuPVlbGbbsbHHejpGwo6X4SMlXSxvmyPQ2gYrtiqewV5hgmXn5/fnHZYPlweeL9xOGysojETqw7snHofHaN0xnMUpoMq4OadKO6mDsxiG0RdiFSw0u5NLrg15HxNrm5cUoRHC7kNDFYaCgC7npBCXhfXAXe/xW1GpcZmnATqz3kRgjmLWYsAWGMgrOoayKnui5Rz35grlhxgkflWCR3ZjUWCD6W8FvhYbfC8A2WDNYLfsTf0BIcKGFaFtMtK34xrADMGSvMyGN3M8xdwcER2cVlkrNbh63/fqLDUuwuD9wNVONDYV8EWt7O0fZPJGg7K9p+eAGVUkE0ysW5tC+xQ50DVkpB8YBPxDWMzNyep7t2wTLD0OJZXL2kQR+JQd4EGdvaIiq4GRpaUTlCtMgjryE2wPAMu1qpG8Vkc210xYvDSlMBhLyi/rvx8Vi8VPSAK3Jnm6byxGS4qvZDQkVdvioLHCNVZdmWQVoQ0yJ3XB2VI6PYmutwxzYbZGg7MrP4u/EZuT3XAwJuhITgd5PSHpRVDIdtubXB/QLc5XLiLk9Qd2lof7KGaTm+ej+jDvc1u33OwDU4dDg7eDpn/wa8Wl9ubrmWfCCPtm9HgooIik0DGCN2kvkGnx78Fexbf16edkTr1eqFRUqXpOH9M9E3exzhOLtthvcPHwcPCOtEm0jj4/Vu9abtW0uGSuD6cTfxIzyHRg5IbRFO+FzzwV9R1TFHAU4sxceCj1Wu1F0Wu/9FAXb/o37pTQa7//pHFpD3/5pKyC6D2sW0/dcSXtWUnowy4M4dC+OapsI1IK/CZMBt3fV0F2m+Hd7q7N+oCWmOT73bk5GB9ThUWhp1OwoxFaaBW7Nb6VApYktEgwg4MZ8xdScC3E3JuP9uohKOUtXuFgyZI6qv/EZJYbu+jEYf2LO0/U8C2v4On7bv5vVq0gf5y/5lKGzX19PwtSKX259aYf/NStVptj+T+js7zUWVT517cDPp9M6IbuEr7ldQR1DYzbCs3qxRna5ytDI7/2nU1tvMzW1Qedc6+tbHbuuqYAwLrCvs1UBBATKyB0lJiPzrnZxgjfmN4q1L2433wU0wdzng/pcZC9wt6Zg6cQH3SerJKG6Xel5OT2by5e2TlG63hLbPonYrk/dZ5v48dk99AYrcp7l1qrVUZZQA9+dUVeZ5l3F/4fqmvoRFJU4OVSpd1dhYdbWDbx0CR6Z0msqVkLrpeTYHJGj7IiFtnyvZJfUDHm1/X0DbRWIyssD9d5YBd17czwb6RrUzPOYuVHInVTB/5FRlSPHLux/JAvdleklHprydS84pbUcgvtrpDDJ8ZEqIocu1w+lP0hF5h9wMgS+lMo7UFsJMwvTCO4XeDE15mNLu709rfs/ou49yQrpX1Or7SUmIxYPiOqqrx1IzHyFk3+R5SX+/ThpJuhOIgPcmU+RO5ID4de4Mdv+Y1viwF8ucqKXl7bRPFF6Tphy0fn+Vw7e4zDVMprHZ67JHaItWN1pTQ0Sxm93crnp6DpcTAOrS6IILhJfj9hgoLKCl/fip+ooaCUnVWBWSTHwTfSd6bJz9z6/dz/WKq3uzO14HP/W46oFfJNj9hEFhgK0d/pot2mVL3WUUbDnmLi3mbhq4m6DtlmrIWCQg85sJDbPAXYGYjFyjVK5GjypdEBT4GYsCqaI0FZPBDN/6YGt3cnJmXm9kUqd/dDtWQdFgUbNGQzTTly7l6kMp5iO9djdsaHBy6k5JKdeOeEdcQ+4ayIiixtyJwUzAREJ4ggng1OCU+jC1Zrwmty83sjOSaivnFfVHJt3WhLRscCdHQFY6nKZ7QviKuWrrcg72Lb+4P68/z6HOgSzDszYIQGhzxay83gdbtyI6hD8+RIvc9Ue2WfV2KU0Mtj6XssKlS3EJeIURrTY18yGdwIj1EE1wW0REE+mAUGb9K55T2j+H3/6RalLjdzHb8SIUxnHxI8JMBMje1wiPQ5bem5WV05czUl4edzcOMTgsDA2LYETY/S1mc4uWx9IujkSDYr+wGHaPTDNVC7G78oMjZmi7ac4+1VR9kvydz9yFRe4G4C5T3s6JyQiOj3wmpu2YJ2QzhpFSQUBKiO0Z4lMQpGN6I3fBMgm4HlA+Uh6R2Bmfene0shLGucHZGQ7lrL4LwlEm2iO17Qxtx6xB2tDo4jJQWIjnEz2E8FaYdzvNRbgbl4BGrKDs3mxq1TEJ6f4olnlJ+dCj7duRF1Fp+AO0ElMfQvFVmA4zgANfDQEiwz6O0mYMzHvAOurLIwdZsFo1LRo+s+Y0xygOodeOuY134nPNJ+1xWnUNAeKjOl3cti4nvwa8czgp5qwe/zSYwEW+u3IffBwcOjtW7ntXv5VO2pZsOLZSdXqz5yXviNYd2Y+jbkfRRqxIjBE+UTeN90wzB3yDzxbvvys2NintfkRnBFYrliErp8bE+OR4CsNvONQOs4YPE/crvef/Z+87uNs4z3Rzzr2bzd1Nz9qOi4oly1bv7L2CvffexN47CIK/4u4msZ3iTbKJU2znusRFXbLVZUkUu0hJLKIoiaJYxX7u833vzGAGGIAgRarYtOfwQCAIDGa+tz3f+z5PNuJmZfUUkUvg6+BNEjPvTpaz5npt3QzMHAHR4aoDnF7qYOpMbe1Ibi48QHnVJJ7BhSKHw1rdYd2f/JzFRJMdNQXl2p9VYHcFz4z1sPubatvGarC7esP7fy4EjlsDxP/fxRyLQtvNt7eb5ZP5rXr0lPOwGQD3T1/EXcPawHpCUqSd1ZLcN+Im7FdXP4tIWjFZEdwdDLcPuy6ZKMF9h3lieSMlw5LGin1e5Hu0BnDnObka4K7OKmO+zcUykaMiJ1fF3//rfy30t8YfZ9rYblYi1TLa/qcfvCSTSJWrNFGXyRYD1I4cmzFN2ZykvGKb09ntXP5hl+uFPe4X4SSRYDgHtHiGdgTFdqdkD8JmkZ/AhFFe4U5lF46ExvcQbyd86Q6xt4noGW28LvuEdyZl3aO9lt6wsFYXF5QDcCbwqJKcOxzpR5yt6x/mVVIfBW1XYO5PD+AuV5c3AdyXUzFVREkeK4H7SvDJPE4ymceAtn87cPanC3Z/yjD3Z4hY5tltcl8J6dRvCavMkZVmlZEB7oeeORr3hQD3f35DdVO/gxVJa+U4Hx6HlaICR3VdWDZu431li/2p1/adeHX3US68+cVLWz9HEm9A2zcYo+0/kKPtP/8Dy+kJbRfS+nfMoO3m2tsfrcNdAbgbaTQJj5WA+y+VgPuvLQDuhnR8g0E0lWpyCW1n6km2XyILd/RrConvQQ2MvLm2bib5XrJ7uzsxqxDsJfV34xmagm+Yb7gREEBQyCnuyKSkDX4QTvyqvf39tDTeKN8wV19fP1ePUpwDCheRrxP5j6x3TwYovMGkU40wd6nPnfECcdhdOISJWgFtf06Otm8XRKLYIO3+k9Tag2Jvh8u5Pe5fo9hA7ZdfMjpRUoIvcjMoCOcZ1B3k3MJ6ISl9sL1iS9zZUf1R0f3RdbN1hEuSSOatyMjpqqrKqcqK6inUlv1RUfqG+fg78WUPy1CH4GLiVygy8W4KCVaxadcYPVwU5m6hyV0VcLfQ226EtlvT2L68ULsa4G4tmYx5oVQF2v6n78t5peVQIHFc4I7g7iBbQbWJheoa2Aqj2OV2ATcUfqbRzo51bK1bd0gE2o5zyVNkBki2GPX//Hx4Yh/Wtq33FZgSHs9otQeGD3i0e1BfbfZw9kRxMbxWZv4D2AJ+WztTq4m8vtvtIitibYia+QR+wi427T+Jn1zm92JO4chUZaXXNS+cGwyQusXxhngHLLP7qamwtaOyVrKPlQpdRmj7FyJWeJjjlfhSyJz6wsNLH5birBLvJmLNCwzOWKWH1sp5XYwOUxFFqfUVqx0uAoagnWFfs3iiOPJWpGeHp0+nT/lkeWTyLRTwsKDp6urKmim26TXf4NTshKQSOR0NjiCJdmtzi70dq+nS4LsjpUUehDwCpyRsVn38Ag2ICM2w7/3YHOxujtvdKsx9UYC7Oah9OeB1tgcmP9604hBfvAjY3UyTuwrgbtTebkLdbtjQ+viFF/8p0sjwxnYGN59icYTGg3CvqTkaawCeNuBGAIwlI3cINtUfHd2l0bS7uzc7OZHeBhJ3xBdhxITTyMBP346JgY2QvIFHSDusZoczE1yljVWsN139HCwRn4VPpFrBttEWS3GmthbOH/UJzJnkWKVsTDIZRsHE09PD3Pwl7ENiQidXgDKjGWlJaSkiY8FYAT4LsZJ4zKUcmQY+mIGc3opvDf8wp9ON5OZWVk8VjRdlF47YeF02NBCoRkZxAowFRx4fWYjkPw0TbFs+Zcolu47AmeAiuAS26vVzsDVGEF9d3erqeoGrWZ6Wpgb5HjnqQ1xqOIGIvgi5hIlULpDnwZeChSImBncHIyDiy5ZWPkRYvObt3RsaOlZQUD1dPa/XD8TFUSXc4ek5VliIbxp4MzBzKBMxEU7PPbidNgDgcOAW4CtwHrBuAXP/588N+9By8ig12N00OD4S7P6rf1GPZdYg7/+5SOj8kXF2dvzXwmg7C6a/stTevkTA/SOBhw1GjbUB1w37TbiTQDkSwlxe8SisEjc9ZTClaqqqpGKiRjsD84RVIsBhbWNVYz0zgaUN//jJegFw/8ErNH5qHeCuSuNumnj/0Azmbh3svsjjF4uB2mU0MsZo++/Y6KqEtrPc/o8KiVROI/OzDSotJut30dDqSSJR3OV6YZ/nJWQmcAVcE+Kaf9SNoNjusITeuPSB1OzB7MJhGGa9fg7BGg/Scu5HJPVpIrvwYoLamSyz01k2cGNz8tU9x1A7wEHBxzLKL70+rC8sYygDJo80CZ6EbYu++qqBuv355z+0iLb/jylv+2Kg9m8k4L4siqlPC5+Mde3tj4FM5jGh7d9KqH2JyPsq5v40EMusNrmvsHTqKo37Ko37s6Kb+h3K3uQ0CJ3e3tpZbcN8A3LBN2y/QnK5TkDbBdVNQtt/xtD290Uqkr/8QKAiUaLtL6ij7d/7mZXt7RYBd2tSfxXA/f/KDrHJ3SyNuxrgLvS/yGDo1z58QWJZ2Sai7ftOIIdGMu0a1KarZ0pHMzU1uKp4gNoJnhjOjOhWJQJWOC34TkQ2VFYjOTnX/fwQFeAQCQSRxtUpdYM/RRzq8PBggLtO59vlSyPzReXjSPpRd222kxhmhD4+kk6VIwucW0YGu69nsDt1u7OSY917Bp7611R7249u5Gj767ZfEtq+nTf47PVgs7TOAS1+kdfzS8YeZGXdiY+vnKoMvBnodc3Lo8PDp9MntDc0dTCVEPa6+lm8pn6u/m5i4mhenpZTVfZHRU1VVWk5iUGrq2u7uztj5W5oKK18WFQ2jidHcnOp59Gu0Y44aqhjF16WmogNo/Tyjl3zmLuCW0aGD1oJuFtG262lkTHHIfOLxwG4q1C3/8YSWCCggXJe6fd/gksNLyU13sLrI/jgviDhwv2qrp1mDEjO57BIautmcLuRlBznXM/w5ogKjANdpJJocXbGGsDycAlo2ev+NZbWbreLKG5D43trtDMTxcWVNVO6Ofyv6w4KQk3rHXbNyb8ZdSzrYxW3nbBKYQLrdx/FAxS0sAhqTNvmdBY1bd1sHRae/VV7ZCgS4M54Mzj16kWxRZfgQnk8UDS2yyIcAe6MjmPjRmQhSHz7o6PzS0bxbsTgTOvTIPkokzOVKNqZguIhA9QuoKi87xWnF9UflVc8WlIxgSswlJFB7a7J95J19XNJWXdxVfE8TAZHX3j4DNd7cGlxQapue8XWvd09fzR/oqTkYWnpTG0tnRiep50AUwIKIyXVH/3VCtj9j2qKxL9fKlPTbxYPtVsDr7+5rIc58H3BJvffGg+OGOzrD/9uPD4iMzEBbacNrUNrGWv5yddoM8axydH/hn/FZAWWBHnIovEiHAeGD6QPpeMnDGqsoGA4O3u8uHiqshJRibY54X67g4MbuXx6h6cnYtC95OTs4eyKqYoDBcOuga1ML8TxzBb7U+Tt8U9ilMZrsLokSnGYEj66sGwcSxHpBEIYklraUZPneUInO8c1qMn9kAh8HOZPEuAOA0TeD0sciItDZlL6sBRfkLiSJGEPiaqergACTWHpGL4L1nl4Yp97cDscAqdcO7Fhz7H10uwXC4iMbO3FzbQP/cnzmxQxkR8f8OMfBgbnzf9EBERIRezb4nDaQdMUltBLTFa4qnBEV2xtUZidlclRoDhE/KqdqUXIQ/2KC6WgUxPZYxDIvDu9cSPwSkRM3J25+nrcJhhyb1jYbF1dedVk1VQVbhMSA0R/uEd8HNtofJCJsBia0OsW1LbP41J8xh1cefhDRvqs13t2eDLM/agMc/9YRSeZYHdj/ihVenejyLhI2H1BnpkFkPf/XGGcXbWx3Rzabq69/S21GPo7qwB3Zt2cio1MG/4fi4QooXArkTgl3Utijc8NDTlFIykHBiOSbnmHdyLqIet7w+4rrPA1Ow4JGkuvfSgA7mv//sM1fxX5Hk0B93cUfTBCQv62OquMklhmAcx9eWB3tbcVP1QBtRs3tstI23/6G/No+/8Yoe2U9D6npE9Exot0AlcYWS7yEBuvy2xKb34+PXcI4ZhNnOhmxwoL9fN6ZLP4iVSH4nLkrciY2zGwazwPE0b24hnS4ejXtN/r8m43hrZLvJ0kwoT8BK4Vfx7dH42cAT/H8vOv2NjADQqbl3xgiKHtnOluRdF2U8xdQeP+ZAF3mcb8JwsB7o9O4L5owN1ce7sFwP2Jt7c/BrR9yaTt33qo/QnC7k8Yc3/aiGW+SU3uz6506uNklZEB7sceBXB/dlllnjLAfcVp3FcCcMcqoRuDB1jl8FP90dEoztNy7iMX3LT/JPI/htUqe9uVaLtE/G0Q21RB21Wp243b280D7ktscl92wF0cOBVaYIyQ6C/W7ji0fvdRpM5bHc/Y+TYiI88uHO6PihpKT2ekKF0axC4mGUqqhicNaRq8C1wRHCeCZOVUZd1s3c3AQDh3uDzcF7xE7iDwT+K5xgu6fH0Jtq6exv/VyOnndDp8LgrvHc5E7M7yeGKY4TS1vKGPQQyfGFrdDRDDB7zh/QPevM/GaeWEORJvO77jxr2KcdodLud2uTGonWZpnfyb3YPbNZFdqAaLyydQMGQ+yEy4k5D1IIso7PX6OV096/op5Oh5Rt5QXPoAHgfHdYcm9OJXWfkPAmNuop7MH8sXSWXmi8rZiwdiY0mOtdPHZ7auLrwvHLUogjkiM4IwQiKBp/B5cDMvfvZomPs7xgy2SwTcn0hj+6La29/6l4Wp22XkswahVDkU+MHPhAa9Tww0FwQZ4AaVT5bDHBw0V7FIXANbq6aqrms0SAuYPOnatcSBjoCE5Y084Iqt7d3ExNTBVCyMfZ6Xdrqe38pJ2LHYSHk4JvW2dlar1c0QU5NHSAfK1C2CgLDAgsWRtUOi8iETPySJM9I/3OtxCUuOuDKcmp2weHCSHh0e+GdCxp3xwsKr9vaM7ua1147wIW5iuJY3TBHbNcVOKRAywF3s00e+dSMgAAV5bd1M4t1EInkwSD5yzN3okOQTBaj99BaclXenN8wn+nY0Vnv+aH5G7hC+OqwAmXeHp+ftmJiHpaWMTCY3tyckBKaBBAiZmSR0mXA3weual991v/mGhrLKh/5R1z1DO3BW8PbDBw4E9wTDL9FmAKOXMcLcZQQUprC7hM2pwu6LHhz5rRVo+yJx9hVB2M0j75YxdwXgTpb124Xb2+VCqczEPhRIJ5AiYalgOcG+4PcCbwbiXheOFcLl5hSN0PDTREnJSE7O/bS0OwlYBQlDGRnVtdNYQliNUf1Rob2hQd1BIT0hjFNYq03NHsQrB1NS2OwU/69+rh5L1yWghaIJUTPBdvAT9gjDpD0bvAmqHGJXRxaPlQaXnpR191ZkJFYjzBn5MaOsWb9eyiAlaENKMSXzOcIt6JgIuJP0aJOj40huLs7c/4Y/KiR8inzHmm1Xn9kGS8GXwrnji+eO5iKI2Hpf2e50Fmdr8AkiXbsBbTdRNxHiIO1As+N9w8azAXM/xNyI3VdwO95h12BNZQ/LcCkGU1PbPTxgeoLg+e7duAKtrq64kvBmxLrOxEh4SYQH+C54Mqw3jPjZdXM6hEvkDOxWlo2nDKbAy8G/hcT34Hqm3U/D87hH3cHBtyIi8FlwU7hZeAGO8qpJ/LZgrIC22fwir+vq2e41rBuXCC6FlE4UmDsPi4KBy2dZVBveLdC7Lxl2fxTkfVEovJXvY7mx3TLa/uZSCNnUAfdPhO1qVHKIAljtWCf2V+1JaRMZFAw5t2gEOZJrUKuN9xXER0r2EN2wvBnxI9YzA9xJY+lviwHcLbLKWEq8LcPuv1gcyK6Osxug9kU2tgsSqd/jUlKiMpMSbecDnczSN/5DmuakHhq4DqS78IGwdGSh0Sn9sWkDbIinuBj3Yryo6F5SErLWismK0oeljOfnmrdrm6tLi4trqytuGaI2XtwbFnYvORmuKTyxzy2ozdbnCg0MEeUd3h+3DwdyGI+Qdpgw/hDlADzzSHY2nAn8HCOTeeWVz/i8nQJt5zHZCG3/oxJtN6WR+Z3Vx9MOuJsQuEuA+2eLBdyfZgL3p7K9/XGg7U8Eare1faTjGwe7Lxul+zOOuX9Lm9xXWWW+5TTuq7qpj8wqwylleD6BB7DPa97emfkPkBpGpfRvdz6HGnXtzsMSb/vzAtpOpJDvSZTfBrR9AaFUKac3bm83D7grmtwXzeSuwipjBLhboJSRONwF0VR8QVle/p4hL39d6vsW8vJtjmec/Vumq6qKxotQ7o4VFlZUT0XeikR8gAOjLmwmYMjtm1I2atCDj7RttKVq6rqfH5w1SbHhJWTwEs81we6Mdn/7dsTdTh+fsYKC2roZn04fpPt6/VxAzE2/qOtI61GJcbhBDrvzOXqps88wRy8M0Rvm6GU6UQaJ1P0npHHavR6XJHgdpQg+NDS+JzL5VnzGnbTc+3nFoxXVk6j562brSisfZhU8SMi4g2IjIPoGXoxzwx/a+TTaeF3G+6D22O12AWeLA+9MP/d7XmbvHN7pGdqBn5l5Qwl3E3BJEf4R+ZocHPrCw3WzrMHf65oXrjBRneKBU7OT1NanwNzNcctYJK41DNH/Tg0ZVGVvXxRv+8qh7b9YJup2M0KpElIgCaXCqxF1O/w3wgIiD1Y7IjYyLNy7Gu00bqhLYCsWyZxe3+ToyAalRTCOHBFiPO4vSlOCnBw0TShKGf26LStKmTqZ7Zdb7E/jSeKSprlscW9JQRbBJRDZgQdMynjbF1jG+O06Nhh+HG/iEtBSOF6IShimWq+fm9PpckcYqFdeNXk3MRFm1Whnh0yIRrkRCA/KunQPck4MRiCzYcNR/lupZjvKJR+JpKvF2Vk/p8c7R/VHIQ0k+mkEbdJ7XCsDIBXCjyeZ8COyMLtGu5rpGsIQ76elocLXz+sny8vvxMczwN3WtkujGcnNLSofR7WPK4bTRlJLghzIU5udnLqDgvB87O1YfMfkA/e8wq7Z+jSShjPbDCssTBlMIbonfBzD3A+vw70zxtw5AYUCdv+bCuxuREZhAXNfijrCrxcBtS8OZ//VIg/rMfcFAfffqduXgkzmrz+UhFIlxgmGth9Zh/uFDJooy3GXs/If6OrnJisqHpaWIoLg7nPNaftmR8c2N7cb/v6jubmp2YMww4Q7CZoujUurC0lSS3g9lhnWf8DNgPg78YgpgTE393td3srJWIiOibChTXywaZvTWbhxguaj+6MRvIjGHW+FVYo1eTsm5pqXFxw1SiMk+l9SLBNzU6McVOorpJyEwhwB7jTR1R/FoEZiZ0JRIhCyydjYAm4EFJWNh/aGwm9oIq/v97zEztyG7cAZi6MakbYraNZkHGucZu3Ha/9O1GpcNpxh7i+KmDui6iabLxENcZX8o2/kFI1kPciaqqrCF4fhX+HjAvjZ6uo6XVOTdDeJ1IypwkM+AOuG6eHqVU1VjRcWDmdnZxcO4594H4+QDvhJRD34qP08RDporqZkD8JNsYmEhvni8nHE07Sc+9RcfysiAnccV7uN0wThMcH3pQ9L/a77wbSlERbC3BlzFM83ycCFbnfJxv9mwiKlDJQKnpllh93VkPdFgO9LOlQ/0Sq0/VfLF0al+ZVPXhDmw46sR36IRU5N7prrmtqZ2tvR0T0hIVgESNSdA1r2enwNS4Q9bth7jGfsnMD99Y+xVn9qANz/Yi3grkbj/l1rm13MY+4q+LvyWOCvfqnsaleB2hWN7Wqk7d/jUDtqEyJtN0HbDUpFbFNtK0vpWXPJvuO0rxaTelvfwNLL4oli0kEdiItDlhs7EBvaE+rR7gEHSGoWhFbiMenZpg6mPsjM7PT2hnnejo2dravLLxnVRHYht8G9Y4ruTme3OpzGQXE5KrkfgT59iLXpIIVGlgvnSbrWqGlRiH5kDm2Xkbb/0YS0fbGN7caYuymrjPj+FgD3P1kNuL+3jIC7KZ/MygDuT4RP5ulpb3+yaPtTBK8/UQj+GcPcpWXzpIllLjxGzH2lm9wXBbifWWWV+QawyjydNO7LC7g/GqvM06ab+h1qoCZtNNZBlpNDVTcyyy0Op1/dc3TNjoOMTIbQdj6gymrRdSyDt1oo1QKZjBrgvjDm/pYVxDLGA60quqmWRFNZmo6zZcOnz4uAu0Dg/hcicOe1tzhjvlVA21Hz7HA5hzQaBf/9tLT76elIl6P6o4hGhniiGdTO1d7okAumwXE6Njuifp6uru709cVNgW+CyyBET2608gZA3EQEHlT4uHEpgymhvaF5o3nF5RMj2dmozXArSU+VASUGkplDa+RdfnKxOPEQNGAFAhkGUDKExfGMjddl1Hj+0Tfwcaj2qSSYqqxEFTGr1eaP5TfMN6DIzxjKQB0S3R+NYmOsoGBufh5VhE9Ep0tgq73vVa68d3Gn6/ntzufwnlhs1D7JZaO+JFyVoFXWRG9/Cq/Z7XbRO+wasR88OHCgw9MT1QvKzpna2sS7ibo5XVHZOL5sYek4I7XXz9lftWfk1EdfZX3uIjP1kjF3S03uCwLuS2OSWQm03RoymUUJpSqhQDgwAW3//GUEAdamfXwDMY8jY/Lt8kWlGhTbTYunNywMPgdLlykD83COn8Qkw9o25+eLxovCE/toUh5LF3UvVi9nhjm6gZHDHMcz/MnjCpxdvqRlx4ubP8WT8GYMeecT4vhbrCuf8E4Yi65+digzs93DA1U0at3q6WrYDiGJeOaqvT3OjRQvjhh141I9xmkxhGqN2DA44I6/Qlp5KzJyODu7YrICSSujn+ZOgGHuyphM3gCuAOuWoHava15hfWGkG9zs6Nju7n4vKQlnCxeBNU9dyNoZbWLm3dB4xmsR3heeM5IzlJFBze+4vGQj91NTYZIFpWMwkIDoG0QgG5bI/kQ3ywwnv2QMVhN7OxaJJM6N+NwlVE4dkjODyqlbk/VkTb9dJOD+lhW6xI+OsC8KeTeHuZsH3E3b2420iI26X3F3sNSwkFBVYJEEdwfD3yZk3AmN78E97fT2ZoLbO3ac5WU5NVlj/XQHBdXVzwbH9YQm9GJRxQ3Eube7oxakqSC3Njcs0emqqpLyCVr5eEN4Xc5OdoKbHmdk2svMkKiZeLw7r4nsIm1SWDfWJHVV4z82O6LXszZ5PdsDGExNRal2hjPFf8ml2inTle8lS7jGcXFT+UsC3LduRZ0DzzDf0KCf0zs3O6M8EvrEzwpi48E9wfRZ+Oke3Lbbjc27IIjghGWk7YxJRtyKY16Chr0M7e2ikLigaIIkhx/ysTZGImfgcz8sSaMjnNn5NAbG3ERApCtwXaPBOTc7OcGxwKvE34l3aXGBXZN+iU+nDy44/MxIbm5VzZS2bgYm6eTXbON9BSe/jXNNSGGRQiH8FT5lj7swSeYe3J6eez/pXhKsuzc0FCUxyifCd3Df21xd7yUnp2YPIi47tzhTNBSkGj57kVn3Jy+wVnc57C41vKsi73xfTSGsKueZsRJ2f0vNBheJvDPw/b+WCWr/r/9l7iOs3bo2CqNyPhnTKTGrAXfcI6Jxh0NG6ggjdW11xY1GWOzw8kIs6IuIYD0W4Z17PS6RFDDiIFI7InB/ftPHTGmJLeb3fmQJcP9vs4D7T9+2rsld5JZZLOxu1fFLk5Z2VQ4Zo8Z2IxoZg0SqCdr+LqHtP5HQdradJkg1bNzHm0ucziJZ9QrtKJ8s7wsLuxkYCFuuma6By8Wh6dLA+ew4v4N01wkxZcMr57aTYop7mzu8Vn9UFFzBVQeHZmdnvAN8Y+VUJVxESHwP3tnJvxmHS0BLyoFBJLTaWW3dbB3idXzGHcRlOHN4QlKfloRSP5CYZJhd/tB6GpnfqeunKI6nFnD/UAm4f2wGcLekmGol4G6ZwH0xgPtXVgLuj8gno4r0LbW9ffnJZJaAtq8o1P4YEPbHC74/btj9mcDcnxJimWe5yf2plk5dDKvM8aeEVWaVxv0bR+NuLeD+NQ+WyN2pPJ6qrGSkH3Uztt5XkL5L4kvP03TqRqpF3/vxWplQqvXU7UZkMuqA+0KY+0+WjrkLfe7iIUPbf/G/xfZ23iPztgC445yF4VNRVUnkk/npq+8LjTBvsO7vNTsOoqRHSbzP81J4Yl9c+gCuZ3dw8GheHh44NzvDQcKFwOgJajdF2fArvAAvc293p3F+JOXUWkstgUckRE+eF3LYnbW6b96M4NHp7Y1PnK6uflhaqp3RoiSomqrSN8zjfBw0TKAJhfp253Nv2H4lCccJbLYiDMHbgT8TQckveIPPkdf2ndjqcJrRZ/s0hsb3ogDA6eEjBlNTURiQwiSKwKj+KMbS3uHl1ubGCKTb2Cwtnqmerh6Ijb2bmEhD7k5+zZy8ks/SOp4hQGGToGzJwNMNe45x3m3hIOptzrvNGipRlkQm3aJzaJhvmKqqYj2/c/q0nPtBsTfxW7z5HGd4x0cj5OKqwqvBl9AcvaAX98iYuwIZtAi4L7G9/RePj0zGklDqgtTtf/uRBbQdoYzEAJFKIEfDwoB7Sc9l9EGTFRVY4R1eXh0eHp0+PjAWLJIbAQHXNRrcVtSi0zU1EUm39np8LdFBcPJlOUvMQWHpmigfsn5V3rJqOPgzbBtJmthgo+KMlRVr2973qq5+FmY3nJ1NBEfEoOrT6YNVNKfT6WZ1zU5OyIHkG2BHZbtfhjiq3AyjvUx8L2YyZWWOTY7IjAwzLvAGPHorVB/55gSsCSU3am+scOIGGS8sHCsoqNPNBsV2p2SzshzvmVs04hnSYefT6KBpikrun5f9hws4XVWFi6nF29TN4A9hs8SfI/1XOF44lJFRr5/zCe+MTL6F98dXxv2SqywKmDsPO0Z43ILNsJZEidWIZcwB7lai7Qt3tf9qZQ7LmPuCgLv59nZV6nbW+npoDRYMKgbcRKwE3Dh4ezyG/4frPcsXqiSyzWjE+awDfnugYNgjpN01qC0w5iYWGP4qqDsIQce7k1EP0TCEf/QNOFIJxdvAmYURLJTHEaJmglve6XI+OoWtPSwzrLEmR8dbkZFzen1JxUTi3UTNdQ0FtdTswf6oqFYXl6v29sg6cFYkLorzpOxZniXLBUvwGlQIsCMSca2dqcUqhT9B3SPpAPt2+ZZPluv1TMbA0a95p+v5LVyHUGSSEXnbafBFPAxOgwB3cYDPWA2eUDkh9AuoHBHLUIikvYct9qe3c3UKR78mXN7i8gmcz0BcXJevL42hxA7EIibCDeL8UwdTKyYrED5zi0diUm878zZ2XEkWE+1OCVLPbCvx2Ku7SYWCHWyvkWk2nkAQRzREnlZYNh7WGwY3BdO+wCVqj/CZmy+5JE+bqyt8F1YI7jKyC6QZcFIwbdJqhq+WYHekohLybmrp6tqqpjwzS4Dd3zS/8fwLa8F3AwT/XwvD65YQdnNQuxVou4X2dmNaNisB908FwJ1NsZzeanPFJns4G24ciwcW1Ghnh5sL151fMgbnj8VAgDsncCfA/SMBcOfTqGJzzJ/MA+6/+54McF9kk7s5zH3JyPsv1aD2X6lC7eYb201I282g7bLedgFtx5WEGcKWYZjwlp6hHckH7t1LSmpxccFRq50hGjo4H+K2kjAAEmQizJ02AonJ7Ya/f6OtLcFGl21s2tzc7iUns9m1+YaCsYLSyoe0U4jsPaQnBLnHKOeVgru7YmsLN3jEOrTdcmO7NVC7OcxdlVXmmQTcZSIiVgHuy0vgvkg+GSvlUp/29vblQ9ufbZx95cH3bzjm/iwTyzxVTe5PWDr1KWaVObbKKrMKuK8Mjft3rnl5oVavqJ5Enscgp/mGrPwHKMi3O51FXcfa27d8JlG3C2i7iVCqCXW7OpmMcXu7EnC3AnO3SC9jNeauOMTkXo3A/TdiU4xA4C5NnvL2dqHNDddnzfaD63czJpndbhezC4fj78SXPhSArawHWUjK4QvhGGDKBLUrrOoII2uG+RI0CXeLghx3YU6vb3N3h1dlfDIbNhyVZOXWrjVKEyX+CngouFdEL6TyIzk5mXlD0bejEXBIT5W2Aebq65HUO/o1b3dmtLavsa7hE1LjMKEqHNMkqms2S7vZ7qv9XpfzS0ZRD6TwXrkOT09t3Qxroh8vRp3v3OIsp1DHTzxGTLa/au/a6hp5K5KKjet+fg9LS0vKJ9yC2/CGu1x5B5/9KeIJeW3fCd6nfIwP/h+RsW8bCLjXsy77Y8RjsN/zkktgq1/U9di0gera6anKypmaGjzAP+Mz7uCBfk6fO5Lrf8MfsQ6OFhdO4K796HmFWJyIubPevT8re/eMyGpVMfffKAGFX1sBuD+29vZFoe2Wm/LMUbfLG29FjICYZJiKI+/URsxHeoIl4XDVgchMdXO6gtKx++npKDgnKyr0Aln0vK5+Lq94dLywMPleMl5WN1vn5N+MFcLpIBR4Ge0Jse5UsY39BYkUQtAk+H/wV8aHRJTEkXfU1dJgCmxhn+cl/+gbbAiD8xdFp/QXTxS7tLpgSeMBozuPimp3d2+0s5OInliLrkl/rlSYnRABd6RQzU5OcLP4jrAISVuSYe48C6BajXYmsFwdmhwCbjKAfk6na3VxuZ+WRiwTsCM8QP1PLDq23lfwc4cL27ViOgqOZ/a4sxEQZvgc/UzPvR+ZfCsw5mZQbHdS1j0YLJ68FRnZ5euLLwIvgQPv3+LsPBAXV6OdKSobnywvD+0NRRIKf0Vk7hLmzvA4GRjHLEikfjbgceaon1dCIOHtxTS2Lwo9/6XJsQTM3QLgbqG9nbRSrSCTQdTAKoJB4Z6S4nQV1+iDc2ZRg+8JsUXIaccYH8uePde8vfX6ueC4bhowsvVpxDovr5qkzUssMzLDtJz7+zwubXXgUPtegYVsDd/Wkh0H1zBqJkHP47X9J7D88IZYb1XTVaTCGpl0C0GnoYErl1zaH9YXRuxqNBFVM13TGxoKu2jk4Pt5Uhnlef8pU0hi61aUE7A7vBJfEIYQ3R+N+MKCzqW9qFm9O73rdLP4LjgBO9/GnS7nt9if5kwygg4hlw0nmikBcKcvQkLiSjV4xQwfkhwa4KPo/+O1sr32zcJeOx//Yk3um+1ObXVgmDssEVfDLagNVwDfd6KkBHY3kpsbNxAX3BOccCeB6NphoTBYEnkWWLM4XQ9FZAqFQhw0XH/hsjPyuv2MVBpBuWCsIKQnBG+Iu0yAO3Fz4eqh4LwVEVFa8TBnJIe2n+GekHjIMXeC3ZHbUg4rgO8fGvbYFDzvkqVLQfMRYHd1nhlrkPeFwPelH0ulZTO291+bVUylQRa5pVsA3GHp8MaICwgKuI+ZQ5m2jbaEFFzevz80vifxbmJofO8utwtIjeQzqWLSLtA/GgPuP1d2xigoH2U07haa3FUwd8uwuzn83fwrVVvajaB2lcZ2ExoZSSKVo+3fN0bbFUYNK4PpwRgDom9U1kzBmyHpPVAwTCxzjBBGpysaL0IoJ60g041z4oekPgObKzZsFm2+ATH367174cQILb2waxduH8vV+R4/MlgmRTNTgzdHdoTH7PWchstsb/uPfvRXOWm7hcb276nyt4nHv/6r4TCPuasD7koa95UA3P+xGMD9nwsB7ktWTD1mDeBuBYG7ZT4Zs+3ty80n81Sj7SsBtT+FOPuKIe+Pp9V9GTH3p4tY5tvZ5L7KKrNK475K477SgDtq16wHWe7t7vB/Qd1BIzk5SA1RAaLwW7/riNTeTqPWklCqkrpdjUzGbHu7JcBdiblbxTBjvgBQ1VD9hUKUSUr3De3tJgTuSj4Zox43GipHPU96Sj7hndoZ7e2YGFzGiupJXE8mRXh6K/wBjFWgbFZaDKkjwkxh8SR8h+x8prYWaTdycfhKpjVH7e3cuuQU0lLWSLKNhhp79+6+8HCSUfXt8kWdlnY/rahsfDQ/vzs4eEbLWM6D47r3erAif7vzuZ0u53e7XWQgBRec5J3mTLvpdZsvtzow6VcC+1Cx49sRMFoyUeLY5IhghfhAbp46emi6H+EFMRBlodc1r5rpGpQo+C4tLi43/P3r9XPxGXccNE34xG1OZzfbnxI/UYIYjJvupYM67vmcL6PU3Ol63sm/OfnAvYyhDO2s9lZExM2AABKnZQVMVRXNGYT2hrKO3aOvGktBfvAzoXdPDh+8axFzl5O5/9YYSjBucn+ygPsyCqXKe28tNN6KAAGppFKnNlaIXaMd3IvmuiasNyz+Tnzmg8zSh6Vz9fVlD8vSh9IjbkVoujTOzc6wFDwoHBMEAFFzugW1bXU8g3vNuSCI/kjiPlK0sRtUf5na4T9+Kgj/vq88PsDzTBZ44z/wyueIDErGC7Fx7/E3bL/CgodFYHE6+jVVcwSzfq6+braOMESctq5+drK8vMnBAfkWUhYFOYYUs8UyjNi6SGVhsowJKuI6yPUeN325ySD5eJZJPuIq6fVz+Ag4gaqpKkInPUM7XINaHf2ad7tdIIE1zrx0UjIcIvqgvleDiLHrhT3uX9v6XHEPbi8sG48diE2+l/wgM7PZyQknT53FOBgh1d691NpPoovube4wGdxEgX2C2mA/lrFPqCJxcsVFOau79YMj5gUSVCZIrAfcl4CwWzisxtytBdzfUeNr+pM6mYzA7Mzb2xEs2IhPZWV0Sr9LQGtVzVT2cDY8LdbkUR4v2PyTuBGLFTial6etm3ENbGVcXi7n4fyZSIYXE8kIT+xLyrqriezyCGnHr4gMGp5W2OKisacttMXFHrCDbXoxt7yGszNt2MO2QvGeMBxYroPmqq33Ffj56NTbWFGVU5VjBQVY1QgHMHnXVlc8OVnBJAdgZbCv7qCgLo2mw8uL1LBRIzFkSio/OJpAxDgtzs74IgVjBW5tbvZX7R2aHLyveTewobCG4LgefChrEmeB7CtOg2Pa3v4FaTlw2Jph2QqJmtdkHe4Gnck/SdvteNIM4M463IWtL6ezu1zP7/O4hDwKlyIg+gaCFE5worgYuRbOE7E4LLHPI6QDLxAYnPmklxAK+TkrNwnk1/9TPKDLzhOPL/Em+PIzNTXjxcVNjo6wayowJLHZNldXCohwxfAzWDkoBeClkUzAXVMqTZmyAXznbe+GzvcPTQZcOPJuaHhfMuz+thrr2mKR91+sGM6+5Ej6tmKWRX1r7Y8LAe6fvUiiqQgWuHdYOYgICKYwfCqtsXKQAtXWzZRUTMDusIRe3XOMd7gLXTJ8JlVI2hcA3J/7nTWsMgtNlxowdyEDXwB5VwfZzeLsCqhd4pAx19guoe3/vSDaTmpMyAdgWfBmsEQ7n0b4pTm+Rx7eF547mgsrK58sRy6NII5ILZiSKMQi6a9Q98ymk5tIggV5Ms1iwjbhxM7wmR46EHmRGzDk3camFelxQEC7O26ve6ePD3FDwYSR1SO9V0Xb/6KGtltubDeLsxsdFprcVxRwF6bmlh9wfwYI3JddLnVZ2tufdbT9mcDZVwZ5X8XcV5vcvxXSqU+IVWaVxn1VN3WxrDLfieqP8mj3gHuGmwntDSXqZBSBG/cdZ4k7tbdL1O3rFdTtP3hpITIZeXu7KZ+MGuBuHnw3Rd7fskrNaYGxVhFtV2lvl/PJIEdXtreTqhLLzo+8bvPlLg7+JmXdG4iNbXZyovZ2pNoMbT/xGqyQoHZjmzi0hjB3CXBHMCl7WBbDQQpk3qd5e4ugx8jNBoYhX/2UPlLuSAgLnAV8GYLBDX//mdpavX6OOnTq9XPE/hlzOyZvNG80Pz8otts5oMU9uC09d4hAar+o63hmt9vF7U5ntzme2eF8br/X5YzcoanKyjZ392teXlU1U/hb5xZn4qOX/CLOXBCvO7UFjhwRAwEQXz99KH1Op7vGYRSkEbgyA3Fx8w0N+Ggbr8t4f4Yy8Nn5TYKuHaEMB41Rhs2fSgTc+BVnAjm2xf6Uve9VnHZQd1Dmg8ye4GCiKUC8vGpv3x8VlV04jBPGCxBRqcmdaKkZbsh7deU6kAsPy//euib3BTncHwPg/stlEkpVo26nyomhA7zx9mcfCDQXwvz74XW41Fj2SKbgWCqnKksmSrAODxQME9/FnYSE+2lphWXjWJZxA3F+1/1cWl2Q/WFFOTU74TXjRUXBcd023le2OJwmtB13XE4XYwyyb/gH0S5zB8V8FOtOJbVDxfEe+9X69wh8x58YYHdBE/gL6hsldgisf0e/JnbaHCnLLRrJHs72uuaFcy4oHbubmNgXHt6l0SCvPW/CjCG1OLH6ihfVWJk9ISGT5eVYq7Bx5EoGvUduMkjfYC9hvWFVU1W4SnAj+MSMvKGkrLuo/DmGeEYYSZEPghgIdg6t5VMgfDDliEjBdBL2RaAMLmzgzUDfLt863WyLszPyJ2QPVFse4x4DSWeXr2917XRYQm/9XD1MhqmnHlkH54IAK1FPGBpgVdknzLW6LwFz/81CGglvPzLaLoPRVQxQ7VgAdrcMuP/aEga3IJkMwj6uPE2QEHs7Kh7YV2nlw32el7Y6nA6MuYm7DDeLtXeYYzRIyAhwR67f6eNTPV1dUjFhI0DSjLcEKwo/t9ifxj+3crpwsaudtriUsqJGCh8k8iHqfBgktfexnVr2zlx4Y4/7Rd/IrhrtTN1sXWr2IG2CFo4Vwhaw2JLuJcGmKPocGD4Ay3qQlTVdUwMvAeNqc3O76uAAE6OijtRHEUTg6uE9NF0atzY3LGlETLaVFdll632FDU5xShbGUbaP887vVgPc2d7tQTIfJeD+ocjhLqeU+TM/3rVEKbP3OL41vjJ1uCOGInQ6aJrcg9v9o28goMOc9fN6+D1cAX8uomDn26iCtss2ng1oO8mb0xyPTF6FNvvxZWHgmXlDyfeSH5aWoryEdUvgDpwPgu9ITg4xYFBPrnz7X8pJpHxcgOA/V0DwCvBdUlE2D7svTlLVMs+MKuualaFwsfD6khRQFm5vX6Sxy0VTcbMQLwJuBmjrZooniqmHg91dO7a3utfjUnH5BLIyLCo+lnp8kYD77y0A7kpWGTPEMuqYuxrybvH4FwsguxJnNwu1i2i7ALUrSNv5lKqAtv9ZgbbLVBnYuOqOQ7BB2G9EUl9F9aRuTpc/ykSJhg8cIGEGzXUNIjiuP9uQFnetcOCB0EAj0zxHWMeNY2rn6emXZfIVEn2WBM5KTCOERJzYuJGgdrw3TBCBV1JJZQFWJpH6P0Zo+4JQuwxYl8dYazD3bxHgLmMLfFQC92Xlk3nG2tuXA23/FuHsK4C8r2LuK66e+gSb3E0A97PPkHTq08Yqs0rjvnw07qu6qeqAe3B3MCpe11ZXIh5BTom6fYv9KRRyovLSQmQyL5qSyVjX3m4F5q7ONqMGu1vX6m58/IscbRfY22Xt7c+9I7S3v6hobxey862frd15eNP+k/s9LycfuJeV/6CgZOx+WhoTCK2v92j3gKuDocPm2AS3GWswAO4nNsKZIUJmPchKyrqHe3HV3h7Oi02Ir19PTDIC2q7MICVeQtgSPuQwb3WH94EDRSC56uDQ4el5OyYmr3h0bn4eZwU/bdtoG9obOqvTRSTdKigdG0xN7fTxmdFqJ0pK6mbr8EXcgttsva/Y+TR6hLTjTBj7pJ1dm7u7vmE+rDeMvpcwQntc0HiEoyU/Cs+NqIJQjEoDhQoJTiJAIuYhuLa5uuJTpqqqvMKu7XG/uNXxDOvV3X+Sq7kKzCGvbFfDel4nlIfwHdaSzK681+XJigqPDo+ckZybgYGICuQ6cd2QTFBL8oHhA3aNdnDe8HMCRcYnBszdwC3zd+sIai1g7haa3BficFcH+B4Zal8a2m40/74gdTvhgDT8jriHfAFehbqzGVd7efmDzMxOX982N7d2d/cujWYoIwMrnGhP8kbz8GLPDk/vTm/cqYni4vLJcke/pi0Op7EeYF+41y9uETgfnpfRxYid7EqQfS2fv+GbgioHCmxeY3PxQ4a8M91jFdj9ECenZlMUu90vYqF6h3fiqKyZ0s5qSeuicLww4U4CvOWDrKwuX98WFxfa7EFyY8SJATNEzoT1f83LC8YVezuWdhfkeo9INt3b3fHblMGUGu101TRTrXQJbGWMMXxTSqSiPiaSPinQQ0l3gaQX8CRHPwVqafy5jdeV+YYG/xv++GgScoSlsin1l16CV2G7dGQy+/fr6meJmQQmI0ksktVIra8C9YQJACdgcLIdLNPBESODWrQo8a8XCbgvBLVbibOrw+6WAfe3rMPg3jG7p6VCJvPJzwmDQ0yBQ0OwwJ1KzLprw8mFQhN6pyorsdIY4S8PGfiJRBNZNaIAPCHWrSaya5frBXjdN3gDuDQeIW3hcPfLWtqN97cMx4fSY5JGeIEmRTaTHPEXIs8MYxvfuJft+iCdoFZ6BEqEFRgUAmWNdiYsobekYoK8NIwLNoXzr5yqjB2Indfr4TQIiEdI7Q0Nhfm0urq2urjAjSAeIbJE9EUEdQfBXcBkfMI7OTEL1wURiVkEwF3ocFcqpjIb+ULq3xcAdy5Uw7KdDUrR1Ff+IhC4K9nkCPIWthn4cAk+eofIJ0OMZ4mZd2u1MzjbtPtp+MlH36aC43oY4O7TaHTCbLCMM7y9uvsobTwLcXDzp/KNRuavNn0knsBBfDq8pXtw+2he3kxtLeIg6eUSaoMHbLghPx+/QpqHAg52jZBtqiXDIHhZ7k85PuUthMIrON8/UmxaC9FTRjJjUG4w3au2EDTfWrjhfaX0ThYVRs0Z+yJnWRYE3HELcLP2X9pPsyC5o7mo8kkNCKsFudNOl/OxaQNkKXACWIcwYQPgvsF6wN1UN9VMk7sq5m4JdleA72qHxT9cAGq30NhuQtqONF6JtpMG8n/wBIBRt2/jO1j2p5hrmigpnihGrtIbFgbP0xMcnFM4kpZ7P6QnhGkhkK74Fy9LJSYMBCk4y+ePrENijLu25fSWfZf2pQ6mxqTeHkxJQTZOTHRMk8mEhs4gCcMrbZbtv/wy3hjxFmH2Q17OIbT+/cc//quItkuk7RKNjJxDxhzU/huLxzcMcP/s0QB3s4qpS+WT+coin8zpZZRLXWp7+zOPtn9joPblg91XutX9yWDuTwexzLenyX2VVeZbwiqzqpu6goA74xJtYOPYGXmszdknolNib2dVKGmlyrJ2qb2dEZu+uNj2djXAXYG8qx7mwPe31Vpv3lpY08k00TfILllqb+f19vsSmQwuES4UCuaSionU+6mZDzL1c/qi8aKIWxEOTQ4S2s6qVrELhhph5EMgEuCOF+NP3NvdkeXjfgzExSGSwSXBwo/w9nZC2w2MhHLAXZZNMthdIhPYtAkuFcHpup8fTjIssTdjKAMB1v6qvW+Xb/K95OLyiYni4rtJSUQwHXkrEt+CqfDV1IQn9nmHXQuJ72GAe0AA3oGaEBFk4JmoOY74cFg7z4nXSC0KvhbfAsENXwQVC1ZXm5ubwFzJ80J8qd7Q0PGiotziUZfAVpSLcjyRkxhYQnxkQANTtcLFJ81AfJEOT09458MSzLRtG8okLOy84lFNl0bQgTy0higy5JCBEeZuLKNqGXP/7cJdewuzyvxyOZrcrYEFlyDvpkrd/leB5kIilZZTzXpf856uqSmreoj7ci8pqZWD0STOfNXB4ZqXF5Y3ClrP0A7fiC7mdhoa2ERIQ8NESUlO0YhPeOdWhrYfUzSfilgYJ435gO//CcKGgl8i1ySiY/xAXf3uD/hPfojPS+A76u117/EGNyXsvoVwQwGwZjia4xksVFufxrj0Ae2MNiV7EKsu/k585VSlfl6fP5pfrZ2+k5DQ6ePT5OBAq92QCW3fjn/iSVwHfEdYEKwPBkKZGh7YNdqF94UzWVS9nr1txh334LZ9npe2c8IlY6hdZHOWdqQkFvufv8G2pthP3v1KmweMKmffcZhJbtFI7Uxt9O1oPLgdE4O0CWYisFGJxCOw0C5fX9JodWl1YawyxzcIdM8isvCiLJAaet6Vfa8LtLqbyKguDnO3HnBfGbTdUp+71RjcAh2v71oUSOCUTUhXUalgBcK/uQS0uAa24gGiBqyMuAgYoxH3/1iTI9nZ1AZuywdHOLm5xLXCF5U0VLTFGN6lORLB9Dhlk/CAUzNJ0gjMMyuQd4kBjJG8b+B8R9T5voWj0rvcLux2u4h17ujX7BzQgsMv6npIXE9A9A18EdLhKCob5wxms3P19Q85I9O95OTesDBEkKHMzLT7aXmjefAYmsjrTv7NNnIhbjtDw7jpNhXH3KVDgWg/t+lDkcadMHfaxhM26vgunaK9He/5Kqewx/eCwe5xv2jve9U7vDM15z4jaJosx4F8IPBmIH7CrPrCw+ESSVKFxBhIJdUAuO9nx3oGuCvjIGm6cuF6aTpH3PVnPbnbnM7Co8KH1NbNIFijSr/A60D8JKVZnIlrmyv8M+zaINp8fAOVGioFykkW0+llbETvyDopkyHwXZBTlmB3CqDK6PmosPtbj2uj2kwMNbu7Zo2lmxj7ogH3z1+C+8XNcrjqgFQqKLY760EW7iAllqSdgAWfnns/tDcUi8pB04RVtG7n4Ze2fs4Bd3nq/lc1wP0P/2YMuFvf5L4EzH0xh/Gbv2UMtZs2tv9MaGw3pZERJVL/zPKBNXK0/QOBHuoNooc6tHHvcZhkWu79mpkaJDCXbWwIhmhxdqaGJCTJm09tpu4NaRMaDxjm/sXLMBCWzx97FbaD8O/R7oEbh5CKtAfhFUH2OG9dP8I1mQ6LBfNBGVckJfmsq52g9ueek2hkJLRdhUbGAtRuBc6uDrubYO6PD3BnSYQlwP0jJeD+ycoB7tYrpj4Kgfsj8MmsVHv7cpDJPFYamW8k1P7YYPcni7k/68QyT1OT+zePVWYVcF/VTf2GAO6ob4PjuoPjelAl2nhfIdJk3iPz+c+NtFLX/t1AJmNJK9UofZfLpVoE3K05ZPi7tbC75TJA0TUjou1Ce7sxe/tP1snJZFgvzBu2Xzn7t2hntHr9HApp/bxeq5v1uuYFfwk3QGg7K1DFJUyAu7yDTADceYKOv8oZyXlYWjo3P48DcQjuBlZNDS9ytJ0kgMhCVJ5/+WVimIG1n+C9q4iF40VFJRMl1bXTKCRSBlMyH2RWTVXN6nRlk4xKO+BmAOIeXDviklOzU3hfeMN8Q2beg8Ssu6P5+XcTE1FsxA7EIuzDTcJb0NcRqgvOhwOXJqk+4h0KxwsrJiv6wsOFzl9KKLnw3VV7+4ni4rzRvOzCYTufxm1OZ1+3lQAgYY5eaG9/458vSLiPKH35HMfcabwAf+gc0JJfMorTa3NzYwMBolQgdexS51fM7RgEItonMOhAfvKCuQF5azH3xRDLLNjkvnT44JeL7MhTRdt/vVDjrXmqWawEwgWQBHl2eKYOpiZk3sHNxZLDwiMtRNI8xB3p9PHBwvON6LL3vWrDpyhgQd5h13zCO3Erd7ldeMPuK678xl2QAWmSt7RL/ewSzi4g7Nw1vStQQDDCK8PBW9sEaogfEP7OkXe2i7ZO1u1OuKEMdmcEzXuOSZjaXvevcdquQW25RSNsC6pgmPHOz89XTVflj+XjQV9ERIenZ6OtLZvqECscgXs6P79ovMi5xRkZLswNP11aXDKGMupmGQNVUtY9OOH9noxqiUk+2gqcGEphA7GlfYuBY0fispeOF0R6emEWxOako18TiTfO1Nb2hoXhXhBXFZWUxznjMyy00c6udqYW9y7yViSyOWnLkAK1UexVdLx+bCCZMdfqbkovs1jM3Zwu8SIA90dG25cIw1nY01rIyohMBtcZmQ5rbz+yHmkjslqUF8HdwVg8flHX/aNv6BvYKNJVBwe2v7VnD2wNj+EV5xsa4Iqnq6thdNudzxFpjEGFeBunaCfSkjfEOZJNcr4mUkQwFUUQpRFeVUojyJH3LRLyfpALcbO2d6Y3sO84pxE7iUXOIHjOxMKEB5zP7XRlgiJ7PS7ZeF2Gi3Dyb3YPbseZh8T3JGTcKSgdq9PN4huNFRSUT5ZnF46EJ/bBdbgEtMCT7PX4epfrBRipqD76pUTjboy5y6dDDN/dEGuMWaqEgZh/cHhORNu53jK+BbImfLRLYGtazn1EWN2cbrKiInMo0/+Gv1ubm0uri0e7R1R/1FRlZZev7zVv79sxMYjyeDH+BH+4XaJW2ydRygijBi8R4C7uOHKGELYTIOD+mz5ibbkyFRnP0A6kIrV1MzcDA4kNn21z2tvDKZFiM5wRyi8aR5Po4IjViqZtpDqS9gIdmx2xzPAnBoz+2AZhaO/gGixIiaKNWb1Sh5zNtRgZuxrszsx8UdHzV4uJnstu4796ZG1k6wB31BkssB5Zhxvk2ORY9rCsqGwcqwhBluWWqNj4Td/jfjEy+Vb2cDbM30HThIwU6/xlOeBOwktrHg1wV0uz1fvcHwV2V303K6B2WWO7ORoZEj1+94fSXvt6WcQ3SLmwS7rP4xJzMpzU8SxXUUKsRDRH1oooj/CN64+YiPBHOSTWv7AbKqbEtCEKW0OmTZrGra6u9FZCA404sSpP4KUha0YgI0HtYmO7BdJ208b2JUPtqn3uFnRTVxxwlxWrxoD7889/pGxv/0Qq1M0opn4uou1fiGi7lYD7EyFwfxQ+mZVtb195tH0Val8J2H0Vc3+Wmty/DdKpT4LG/cQ3l8b94GOgcV/VTX0EzP07qGn3e17e7XYB5S5qVJHGQa6V+oGklcqBLTmZjHp7+/8x297+yIC7WeT9bWt7cEwOCW3/rpC+/1Yif6T2dlEtjWkr4YJwtPdzXKWN+06gtg+J65nVaps4zIEcXVs349TsJGdjkBTJBMD90BpSSRUEVA+zEVQSmURAKBwvDE3ojUm9PV5UhADARJM4OYC884X6Nb7gBDIHZc8bWAv5awTYnXM0w23h3drc3Abi4oazs0dycm5HR/dHRc1otdmFw/hQlOJwt6wr5wxTbnRpcQm8GcjESOtmJsvL8YKIvgi3NjecIQHu9L3kgLskEuXQ5MAUJhsaHmRlodRH5JAoZb/iDBsIUZ3e3vp5fXXtdEbe0D7PS1scTnNKGUOHOwHuitZmQkCEjiQ+/7udTRjsdDmfVzyafC95MDX1PO8hogYTJgW5Z8/tmJjSyof4LgJ6eGQ9a9f9/GVcIwNQqEQJmfbj3368dMz91yuJGphH2K2FAi1ou1mt4mhEJoMljWuLlI2A45qZGvykEQ2aoZa0Q5GQ9UVEaGe1bkFtTLPX5RypBTBGac5iDP+DNUAL4Odv/FN29wWonXpOlf3sBpCdY+t/IiVnVmbz49/5If7zT/QCcbT8XZEs4u8GTO01gt0/IZIZYslYt0ugd0dBDj+51fEMY8nwvOyguRoYczM993567hBBXbQ7NV5YeCMgoMXZmakX2NjgZ4uLC64JLpF7u7tjk6Njs6N3p3fVVBVMpbJmyj/qhq1Po0D3IbS7qnLIyCBCNUZ7Q9Mxxz3lY/KOfs2xaQPZw9lzen0b14dgUIJM3xUmAyc2fOCAfk4f3BOMSg5GjbRC4HomlueD4owO/6cq7C7XV7SgkSBQuv9hIb6m31rV5L4owH2lwDjrOJ0tCCSoW5lIJoMLTmgOMlBkyqgt4JOLJ4pTODf6w7Ky7qCg635+cHpTlZUztbXlVZOj+fk5IznRt6OxJvd7XRbVUA8T1G4kjfCcDG4WcXYBbuZbXKrSCH8XXrCepBE+UCLvnARM0fN+0KA0sPsoVriAv+87gRAgkb8z6VEuIsKFfxkfup1vo3NAi2doR0DMTSxj1vzOBvPYdF5qzmBIfA9+5eTH+twFnhYDMbpkSkpF7u2yDndTfYiN/0/Sh6BDPgRDve048812X+Hj3IPbmDBszdRgSkrZwzLETY92D/ur9lTm2jXa4TbhLtxPTW1zdYXpt7q4IPiOFRRUVE96hLTDE1L2tUk4VQO3z0tKuhsBP+XOSi4kw0VNGAUWLhfNOtTr53rDwuB/EILxEx9XPV2NKI8i1cBndWYbHuCfiPjwSAj6wd3BLIeZ1Yb0hIT2hM7pdA9LS7Uz2tDeULxGEkgnyJ7iKdN44MgjSZEriN2XLIhi5aDYytj4InQaLKDtjw64/5MB7ijXYOm+Xb6IqljqNdM1uDW4C6zKtDkJG/GPvkGa9kjkXAJbN4tskJL20k/MAO7/rgDczdG4W4O5W0yzlwiyi5m5CtQuoe1KqF2dRkYpkcr3138sH2sT99df3vo53AJMj+RSJysqarTTiNrEuo7ICFNmDocEgY5vRPhD1EO8w5o3jB/xlJgR6/FxVZdWlwPDBzLzHsCIWKf8li1sk5v4IZV5O4HsVC5+xGs8AWonfVSjxnaRRka1sV2C2k1h9F+bORZscrfAKmMEuP9hOQD399UAd6mmlfPJmAPcP10IcFdvb18uwN0aPhkumfv4+WQeU3v7Y0Pbv1VQ+3LA7t80zH21yX2VVWZlmty/qTTuq7qpTxJw3+P+9XZngbsARSkqt1cYafKnKJUNWqnrzGqlGre3L8AnYxlwl7+M0mjZ8TMzb7JQSWC+HnjLALULLTMC2m4gk6H29lfeFbRSN/5DJJPhxbb9qb0el6JT+ocyM1HTtrq61tbNJN5NhKeUMzxKi8vA83h4raHD/fBa1rF4fCP8GSrz+DvxGXlDdfWzXb6+8KRwDTBFqb1dnkfCPKTOd0NrDD+kpPMzEZcnmmZ4N/hihAcEKtQSHV5MrS4soTcufaBwvBDhC14ZAQGRE5V54M3A9KF01gJfNVk3W4fvpbmuwRnCnVOlTd9Cjrbjb/GHqYOp1Pzb4emJ6ALvLBeTxDnAxSO4Ei6JAlIT2bXb7eJmu1NcNFU5Sq/o7GPrUAk08CEDu6/cgtoqqidn6+rwpfAFyeMzLp09ewZTU0srH0b3R9PMgdEuyIv/fFGOEhoRYhgYqB8Rc7dyQH65kIJfLQltX4yKo0Bz8ZEIChxZj0DNeFHm54ezs4vKxssell3380OMxwI+xhuosQbwz0Zb21mttmG+wUFzVZDMJeaHvdJ8w0GlhqGB3uEn5qF2Gc4uwOvkmsweBL6zP/mz2PhmGDOn7lEC16j37aWtRvwYxzbuO0HI+xZRI9HG67JrUBsWc17xaH7JaJ1udrq6GhfkFm94h3No9/DoCw+vnq7WdGm8rnmF9ITo5xmHTGhCr5N/M9t+cD63xcDmbIq2K5hkzICkNAQg4J70FST+pS32p/FBMJPyyfKhjAwk37AReerDVB/27MEJx2fcib0dK5AFH99IDa1SeCciKfIA6vzOprC7nGFmCTDc0jD3lQbcf7XIIRJzlE2/t2hlIpqD64wLTrNQCBZwaHDULq0uWEi6WV1u8ciDrCxYn65+Ln8sH08GdQdhsWlntOVVk2k595kugv0phrYjxG8XrEy+iv7DuLNbJj5MoyTSodRFMJJGEJF304Z3PjUCU+IaA2tEjd91u44Q4TsH3znyLnW+i7D7brcL+zwv2ftehasPiu2GS88YyqiYrLgTH38rMhJfHKtai6tQPxeV0u8Z2gH3YqpHqtbqLlC6K/RCXpdIzD4kwvTn+PaV5A2oExZviDd3CWwloom+sDC4tchbkc4tzqgdUbpJfeIocz07PBFDYf5XHRyoNG1ycOiPjh7NyyupmAiO68a3I8ydn+cxuZYJTXoZ+OX5uCHb+ycqDAPgfux1my+3cpVa54CWpKx7uPX9UVEdHh7wP7hQeaN5rm2uOBkEelSl+InHWD9+1/0yhwS6/NqZWvzsCQkZLyoqfViaXzKGfyK90dbNxNyOcWlxwbfzv+GPt8I/8ZixTh3bwLp9qdX9o+cFk3//p1btW/9+qZooby1RG3nhw8L7vGkF2m5k7BRVldvYZPKKPTZTwJ1i6xcvI2NBWoWlhQueIYrbOzU7oWTH8saNntEyWZGi8aLUnEGYORaAVYC7Qnjpv410U800uf9aVTzJ+tYWqw85zm4BaldtbDehkZFI24221eXTbKJkOt9CO2XrfQWXdLKiAunKuR072HDerl2wo6qaqdDeUCTAWPMobeUd7sKGKHfR1N4OI8ebTDFNisoujQbOgI2rcqFyeT4vQO2Es/OWdlRlPAlVcMiYa2xfEGr/tdXHtwFwt5ZPxjzgbpZPxgrA/ZRFAvdl5JOxtr19kVqpTxfavsKIduOSjm8C7P6NJ3P/1ja5r7LKrLLKrOqmLpVVZnkAdyLRRpknoO3bv0BV/IIRmYy6VqqF9nYln8wCgLuIsBuD7L9TO36rzghvGXaX9eOopPI/fftfDb3tEnU7aaXy9naZViqyc45eMbQdla1LQEt0Sj8KftSok2VluSO5CDvwEDAgibpEWDUSzyPH3CnXMxC4c6lJInLR1c8OpqY2OToyCVAk6NTeLuuFoQef8x52CW3/RLnaJEJDI9gdzgJeiSHv27cj7k4UF6ccGHQPbp8oLY0diPXu9HZvd0dFnXY/rUY7PZSRcSchoazyYUzq7Yy8IVQgKMI9OzwRMYQB8xMMaofXhINHtMSvWNFeN/OwtLTL1/eCKBIld3DSp7e6utbpZrMeZB0oGA6IvrHL9YLU4CyIxXGpTCOggUSupM6+dbsOv7b/JP42MfNu3Wwd7gLpxZ3lYnGI3/1RUZU1U/heCFk4VThL3BpceQsqcIbReKktd0mY+1LI3JdKebG44fe3FxZKVYACcpoLruL4sw8YzQUWHGtvP7gG9xWpCpYuKlKf8E5NZFfVVFVvWBjuPgIP4gFT8d20CUnDNW9vLI/03Pt7Pb7eYi+MNXB06bDqTZc1tluE2klMQoazi37JzMEnzaWa/PsqNfkHgpYanzcXW90/X7Od+nOPrOfNuRv3EjOGAA5udzqLpbjP85KDpskr7FpE0q3c4lHGzN7ApIO7g4JuRUbWz9XDzBPuJGjrZpKy7nmGdtj5qmgnMrFHUcRyzQ5FT+5LcnkDFQaM9+QMGIzo+fWPcVX5HuHxbY5nAmJuFpaOZY9kjxcXI71mxrJ9O6VZyMmQj+I8ccKRtyKRb1IfKyORkAQVj6xDBkF5hwTEW4DdrbKp/7Eag3t0GO6x8Mksgb2dQW9//r5cK5WsjIZIcG1xnQltR1KMW8PQ0haGlkbfjs4ezob3K3tYljKYEtIT4tHugWoMaXhYb9iDzMz8kjFHvyYii4PDFOaHDKzlSqhdJo3wYxm8/kMDcZPaseYvP1JKI6jB7p9I6gJStzvB7pxtRuh5lwhnJMxdMitHv2bq502/nx7cE5z5IJOEE9o9PDq9veHqZ3U6uBfWiKrXw/rgiCQlVbaVxXRi1beyXiZeHQl2J6Ym2UFnLrXB4sTgwWC8MOd7SUkI2fF34nE7UM9R/zhjaOH946jGcC+YRHldHU4VRSmVZyjtGu3siOmldqY2PLEPp7rd+Rxh7lzORMautvlTI2PncCHncN8iSDXAuhng7nB6p+v5/Z6XkZlEJPXhUtyOjb0ZGIgUBT7Ho8PDucXZqdnJrc0tqDsobzRPr5+7n54+p9ON5uaO5OTAgcOND8TFTVdVVddOT1VWIkyjsL/h74/zjO6PPjB8AM/nFY/SZqFLqwsTkDyxEdUAlqiCXuYDq6XIlwq7L1oqecnHmxbRduva243mxlSGWkwB988NgDsWiXNAy36vy7lFIxm5Q7AF3Mei8SLcERKox31BTNm2MOD+Z0P2biq89B/WN7m/bZRaPxrs/pYJzq4KtZtwyJg0tlukkZEiuwp3nKQxjouMpHGipKTJwYEAGpgANYg4NjluOb2F9dMcZv00cg53wUUffXXTl0zJRnNdg/wWXih1MLXD0/PM1q0o+Ek3haHtRlC7WK0xqJ2DzsQhw+OkpcZ2a6H2735X/Vg85q5C4/7NA9xXRjF1Rfhklqm9fdnIZB4BbX9Sje2NK3k8tbD7U4q5P9PEMt+MJvfHyyrz5ZNglVkF3Fd1U58Ijft3UM2iTqMxc1SejMlBIJORBJfe+9FC7e3/9rw5PhlTwF3lMAuyP6c81MB362B3M4eUxxvQdk7d/jwnf3zxf37AtVJ/JGqlIkFHyU38DA6apqjk/pTswfTcoYelpSi84wbikI7De7H+l4NrDEThHwskjwrMnZO5E+BOHTGIgeVVrE2bz63ONzs6whkRXqlohxF72OUbRELiLrbJyAWFFLC7RDLDAVD4WVKCSrufhp/ZhcMov4vLJ0jE8mZAAOoE1Ooo9gJjbroHt3uEtFPres10jV2jHSIMQgciG0K0R7sHo7GeqsopGkHhdz8tDQGPoe2vvXacuyfKWfH4BGeLhi9mxDI+Prh0jH9mft4ztGOH8zmJ8YCBIFvlnc4kFifCoGLfLmlCbnU4be97FZ9bUT3Z5uZGoAZDNGxth9LTp2tqCBcwatc1QgkNnbnmKd2//2cTRtqVwNyVTXnLMvxuLc+sKam0BZoLjgjgYiLcYfXq5nTJB+7t9fjaxusybmiXry/CM2MsXb8e9x2LAUneYEpK1oOssMS+HcQlvUfBbiGByKLzEXUL1xrkmi1D7TKc/ffC8TwN34gO6vnf/9vz4q9YH5xCUU2aOpfRy5hg7jJOjPW7xbbc/YaG921OZ3e6nN/j/rWt9xVn/2bv8M7I5FswbZjVUEYGfuaP5ZdWPgyJ74FNYd3u9bi00/U8/moLb8XdpMaAIR6H5NsSAt22yc6ETOPRdHfqxHbnc54hHdNVVXM63UBcHIkrUsaG9A7J6w1//4yhjNCeUOSeyLBwc4m4GTYM28FPqjsNT4pYvFnkXalObNT6ampTqma1xNbXXz2uOZJFsrcbtrVUtVLf+7GRlRHaDg8GP4Yay/uad/K9ZGp3nSwvv5+ainVVVD5eNF4U3hfu3ent3OLs3u4ORz1dXQ2rhLnh1gtou7B4VPnKLakQ/8CgkSBTSiBRBIMuwl9+pIC33jcMW4gIl4i5U5+7hLkL3e4iybtigoSJkXLuJnxfOBB8Qa9rXrG3Y8cLCzs8PJocHBrt7Ig7BQFrrKBgvKgI7ggvLquajEsfCIrttvVp3O12kYSIzTe8G0hm2LGFH/wx3yE4uI73wG6xP41QiBCpq59joghabcpgCs2HwV7oJwoOFCV4jFIMWQGDtuf0zU5OqN+YpgWviFB3wfpux8bO1NTgqKqZcvJv3uV6QWqAECd+FBskpB9uaLffxjpz8UVIZAJuhKRoHTRXcZJhib2kNItFEnM7JvBmYEhPSPZwNumiT1VWwhFpdbMxqbexeHB5/aKuF5aOxaffCYi+kVXwILo/ejQ//7qfX29YGCJp6cPS3OLR0IReR78mZD6zWi3eKuBGAGpHYaRPhrkL9DISoxSNiy0Zdl+ChMOygO9vPgLabplPhmOTZgF3kcOdTY+d2Rp5KxJRwz24zc6nURPZRSkZbiVLnDo8kYD5dPoUlY3j9mHxYNkIoqlmAfc/KQF3czTuiib3BTB3WUfLv1gFvr9lANnN4ex88FQFal+wsf1Fo010pUyLNLtmTBl37LX9J+FwkMNgeddop5FMEqQFJwN7hwXtvbQX1o3aXZiVPPgKtYTR3CqehIuGycP3Jt5NTMy8C8tC/omM9MvXX6dkHjUtUnHk5B/LiNpVoXahsZ0D1gs0tqvi7N81NhflGIY67P6ogLtI4/54APePlYD7P80A7iutmGqOwP2rRwfcl0UudVHt7Y9CJsPB1pVF258FkP0J4O9PE73Ms04s80w2ua+yyljT5P5tpnFf1U19GgD3bY5nUKqh7GSlnaRSaJDnes+QrFtqbzfHJ7MA4K4CtTNs/R2haUXt+J4lyhrzwqo/lYPs8jxe6peR0neeuL+oopWKonfNjkObbE66BLYi/0a1mXAnAYUQTfEHdQch2kgU5wzD/fiF50QIHHcY/zTqc4etkAIenJxLiwsKYNfA1gMFw+VVk412dnAxQkeMfPhUPAxLTcTZTReEkJvKkHfq9cB7wryPcz1VROuekBAU1YOpqSSoyCQf7ewQOPGrVlfX+YaGqJR+B00T17L7ul4/h1fGDcQFdwejApfw+rDEvrr62ZGcnC6NhtB2OLhj3O8I+SunFiGvxxQat2zB++tmdVkPssL7wvGtnQNadrqcf932S4Y17KTtn8/lnZjSaD+hn1ixUlPSLtcLXmHX8G7DBw40OzpS4G92ckJpqp3V2l+1R1DCraF2XQklZJwYYre7KT6oSum+Ipj70ibirYYJFoG2v2Mtwyy1t+PS4UoiHuJy1+lm49PvYJ24BrXN6XQCoRAPuqc5idBQRkZt3UxV7bSjX/Nmxm5xXM4hI9Am8MEagclK0dj+F0mu+QdGBDJCV7sCapch7OLxHG0Hyp/8vfH4OW+Ik2HuBmIWObeMnAqD2DAMEKEtY6AWeTAuEsm7W1CbX9T16NTbuUUj2rqZ/JKx2LTbeMY1qNXOlyk9SoA7/pz4ZDYoAPdDHJRkEP+6nUKHsgS4/4dMSlE+B0CgJ6PHMTS5w16ObrL5cofLOffgdtisvmH+dkzMVXt75KBUmMFqbvj7V05Varo0yEyRi8FqkMuQXqJUaOKf7Ekxu6H8hVnWMW5ZhxVDJHKzUmxlKekmzMqoLhZzf3NFhkiWgbVpSYrEuIC4mLiwuBGoLbyuMR4w5tZmtIMpKfDbXb6+cNpz8/MRSX2xaQMwQ7hoLRf9Q5CKz7iDBbZp/0mSRnhxy2cCT9cmEWpfQIhYjrPLtYj/pDwkUWID7E44F2t1l2PubyikEdaKaLuEucspmzbbMVPa5XbB3vdqWGIvvlrZwzKPdg/HJkfnFueQnpC5+nr4mSuiQDGpE2M9d3p7TxQXz9TUVExWzOn1FVMVDD5O6Y9LH4A97na7sN2ZCasKfFYGcxPAd4PRGRrwj3AJhxO0114/V19RPTlRUtLQMO933Q/1FpkJDqlEQM2BEgeVn+a6BgF9ODv7MleQPi3WKnhAc2YjubmFY4WkIo4z3Od5aavDabm2rcixJig3SJsWbA+A9bYfY9fK/hS+FPM5XGwWKQoCYlBsNxZAA9dUyR3JxU+YfEHpGD4lIPqGR0i7o1+TjdeVPe5MbBYuazs/SLrWzqcRf8t2Cufn8RN/VTtT+7C0lLZ5DgwfwNdPyLzLSLF6QpHAYIkyng3OLUOZjzlGKQuwu2D471jSJLdAKmUJebcSgrf8t0ZQ+1vGEOaC7e3G4VWaa/mLJTVyLPjq6WrcBe+wa5rILiRL95KTKf/0vubt2eFZPlkOq7f1voKVgAWDtbEEwN0sq4wRsYxKL8tb6rOklo+fWMDZVaF2C43tgj7qvysa2/9i0tiu2PZ7WcYURwItcAhEyuQT3gkDJxUW5MADcXG4/iRiBKMWMsnjik1oBEE8D3tHVoxEuma6prJmarywsNXF5czWrQibKJ4VaLsagQzv7lhYHNUS1G4eZLeEvFvA3L/1gPuSFVPNErivHJ/MyrS3LzOZzNLQ9mcZZ39MyPsq5v5MNbmfWyTmvsoq87TQuFuDuT8hwP3QM6Wb+q0D3FF2omDjQqlfGBqKNyq0Uo3a279v1N5uyifznDEDzPeshtoN2LoRXmYMnC0EuyuRd5XDmAWSwLjfG6jbX35XJJPh7e1vfPLyts9Rlm93OlujnUGdaddoFzcQh7ITj1OzB+tm6+yv2jM+mcPrsB4lGTE6cN8Y5k597p+9KJG5S00xKJzwPiiDSyseDqakwB2zHF3WEWNoY5etlQ9F5kcLN5uSVLzYCHaXc7uz4n/btnPca5P/PcNb8BA1b0VE1OlmfSI693lc2ufJOOtZBT5Zjgo8OK67snpqVqcrLB1DEairn7vh74/AgzfE28LLkL+gdJY6nRmpN89Z4R8RJK55ec3r9ajeUZzU188lZd3b7XZBruzH0djPOLsuI9g1jPZvNzQlbbY/tcP5HKrNsIReVDs3AwObnZyaHBzw5jNabURfBHIHBC5EAKTDBB2SNyV8UKKiFtpyP/m5otX9/YXwwUVh7haQwTdXYPj9LavRdqOu2z8Y0HY5zYW88RaLXIICkd0k3Usqr570Du8MiLlZP1ePi096oS1cIbA/OhoGEtoTisWDghZ3bT3nDjLsqag1ay+ysf33imkbY1+hOCTwXSawpuxzp0JdKa0mkr0eovb29QyhkzB3NXoZD4F4OjD2JttImyyvmqp6kJk539CQUzSCJ12DWm19Gg0yj3anXreh9ttjonbi4bUc+FvHAPejEiWIYhrAeHP0Xe67/iL5LsVECBdX3Oly3iWgJSv/gXZGeychAfZC6fVVe/vuoCDcPs8OT6SxyOOQYeH+ynMf/BMJF3wEkWaQAKOUuDErO7kJ9mVqWZJL/NkHP2NbWQsqK/73Uime33xixE1L0Eo1am83ViQ+uAYxAtccFRVNEeUVj06Wl7e5ucG+SIy3O5hpXfpGdGE5YbHhQWhCr1/UdUe/JqxD3ttOaPunpjREP1lvGIww6mr/wStGOLsMYTeoEIuHhLzjxa+Y6S3dJIiOSjQObONq52El4H4Ei58oZbY6nN7leh4WlJh5V1c/WzlV6dbmhuuAkg7fXNOlaZhvuO7nh6WLoEPkSGc5KoF/Ul/qQFwcDA1hGnFhigkhziBIIcj6R99gbe/eV3a4nIfdwWAl09u47zhshP3cdwL/hKfahIPvpeF8YKqxaQMTxcWwlN6wMFx2VM8wCsq7Ge52XNiOEiTErzrAxOZ0uk5vb5zVaZmiyZdc0QQBF06yLzwciUT1dDWcJN+2vKpsdefUUiKpFLHxSFA7u0puF+BGXAJb2a2P78EZZuQNFZWN1+vncInYrkN9PZ4hmh2sELz/fs/Lu90M6rK01ce/7wn64rj+W9j1v4Cr5BnakZn/IHMoc7ywsNPHB7EVR4en55xej/uSdj8NVTK+D2mSG+2xSaMtCtjdlGRmaTMu5pF3q8B36w8LULsV7e2qBO5k+BYAd1xJJE9YUVjWxNeH/+Iz7iRn3ZuprdXN6rCwcdTM1FRUT+K2bnM8gyWBtcFFmGhK9YMFAXelbqq5JvcFMXcT2N3aw8zUqRVQu0lju7E+quh8BMZ25nze+KdMlOUgj6pHNuwRd/jsT8Fh7nH/GsGxqmZqMDUVZkt8SmG9YU7NTljnyNW3nzOEPCkIwtjxWzZ4xEnkkMbjr/C3F3fvllpnVNF2AWo3pWsnDhm1xnZzUPvbSzqMMHfVJvenBHD/cDGA+2dPBHB/2vhklqu9/VlG2xuf4mMVc19tcl9llVlGVplVGvdV3dSnVjf1O6gzX91zlCNfBvZkQ4fpWtP2dolP5g9m+GTeMaVcl2Pu6kTtKji7nPxBzg6hhqbJPtEKdVbT0dR3xI5X4n8UcTfSSjW0tx9EXr7P81Jazn2aWJ+uqury9R3NzyclN7/rfvANMAssN9xk6pLGgSvNMPePnpOa3LFmYQEwMtg3XKNbm1v8nXj9nL64fHz4wAEU8wL/taiJKhdWkhB2+Q3+QOyUMTr45/9UgbzzDJWyUtbt/sorhzgaLmWWlFMS2ToTurSzY82SOh3xyRRPFONARZGUdc87vLOqdrpovAh1342AgCZHR/h9OD5GJLJu3SGu6XpQzG7Zp0i5LKeXgRtF1Gn38GBUG6xvk7XihcT37Ha7uEXAGo4SuzdJ27G5fuqL3GnAZd6wYzjITheBuDY99/5keTkR+/aGhmpntF7XvBD/Ed8QVRAEcIOkPkSiy5DD7pLOrXpP7t+WiLkvotX9zWUbfl9Y0s3CwLsJmYyqiiOiAS4griqSFI8OD92sLjbtdmzawHhhYXdQUE8Im3kvKB2DaVRUT1LPl0tgK8pa8jkvy9B2VRqZHxqcj+h/DMqofzRF25X+4R21gZvfGfscmeH/u7xiZ81xBiZ0qtUZYzLjcDj06h4BEBdb3Vlb7msiDwYW5A7Og2HrfcUtqC0y+ZZeP5cxlBHRF1ExWdEfHY0rM5TOFInzS8YCYm46+TfDq+zk2J+cxl1qchcPA62znMNd0eEuAivyzUIBcOfsExv2MJCOoDRHv6a49AHcpFSfKwAAgABJREFUo8HU1DY3N9hvi7PzrcjIutk6eCQDuHBWqAKR/eEZPG9/1d6xydG11TVuIC7pbpKmS+PU7OTS6hLWGxbVH2XXaCcwOJ3YSPzvMC5J08LA8vz+Tx+V0v1RMPfFwO6WxkqsQ9vNsjaZ0UoVyGS+YJwS1NueeDcx5cAgbhbWD8okStklKvDq2mnXoNb9XgxF3eV6niQBaOfSeDedFoxhW8uwsyVrbJd1tcuh9hdlusRyaeIX/0jPcDKHP0mt7sZChbzD9Od8WOTlbbRxRSv8sAS4v7r76Ma9x9kStT8Fi3DQNBWXT2jrZuBbsCZRw1FJBJdOECSWK10NrFB58zhKCNQqKPwQC/qjohBVK6unPNo9EGfLqiYRxKYqK/HnmsjrsD734Hb/6Bv4rF1uF7Y5naUJFZikk1+znU+jjdflPe5fE1ULXlxYOnYrIgLxZSQnJ3UwFUudNXdzgjjcLDyGS8TiR+GCuxbSE8JU0HWzuE04Q4QdJP2GWZHXXmNq0lu34jyRRczU1gZ3s70TtjlXPYlwRsrSMhXlo5zGinXjsm0z3oceldyfnjuE6In8Ya6+flarhbfJH82PHYgN7wuPvBVZOFZ4Pz0dLwhP7PMIYTRW+zwu7aKpGplKM23ycY6dIwKlPtvPPoHX2HAZSTo3JCdUIyHWt7i4TJSUMBWWmwEIr/hKiAjyDTb51rUBdn/vx0ZcbQvD7tYrOqgh70KofWspOLsK1G492i4Pr2YAd2FLWwyyxtMt4n4bHK9LC3Ow2cPZVVNVMAdkSzXamdzi0TAuu82mA22+xF2jrbXnDYD7e8aAu8gJKYTO59Vp3C0SNirHRheHvJtld7QItcuGUM03tstit9DYLnHIENRO3FAkxGK6Tc7o4FzPk+EHx/UgQPeGhd1JSCgcL/Tt8kWAQ9RzaHJAsIPzgTkg/CXcSaidqYWtIf/xv+Gvn9d7hV4je0m/n96l0cC6kQ8TM6QcbUfGrmhst8gh899KDhnF8jfT0v7Wdxdetgti7hZYZVYacP9gGQF3ESaQYAUVtJ0D7ktUTF0hAvflk0td8fb2lUPbnzjOztsa1I+nFnl/Oijdv6WY+yqrzGJZZVZp3Fd1U78lgDtqcnn7m6CVqtrebgWfjAn8rcTc/0MNbTc0tgtImZxkWe0w7WNdlFLrb1UyeFmj6/cl6nZOJiNyMnzy0tbP1u08jMuF4lw7o0U+3RceDocOp3nNy6t6uhoFPKprBrgfWotcjwB34jCljkUJcMdKxNImWl74G4erDvX6uQdZWfg5UVx83c8P7h7u44h8BFVE201BdgFn56mqdLDkVcxf5SmsHHk3YninfJSQ8cM86YRbgYeC873q4DBTU4PyA98aNQZ+9oSGPsjM1NXP4fHDsjIkHwgG1NiOPySonWm9ykxUeHN6f7HhHX+CmDpeWJieO4Qaxu+6n35O7xV2zdGvielqOpymFj8ONIhKlUxS7yRuxGb7U1sdzmwXKLMv2nhdxl/5RnRV1U4PxMXdDAwcyclJvpfs2uaKhEIuZ0cZLutROi1A8NKAMLFhEOyuGI0305P76Ji7equ7lci7Ne14Vui5qU+7G9FcyBpviVeatbdzvV8EYWQoqELDesMa5hsOFAwPHzgwVlCAx2F9Yc4tzm5tbpVTDN7yCe/c4XwOd5CDgALazmUbpX5bsdlW7LS1SCNjBdpuyRGx5/+P8WYbmf+7UpM7NecSGwZV7NReKqLtnG6CAHdqC+VdcrvdLtr5NGI1llU9rJ+rj+qP8un00VzXVExV3IqI6PD0bPfwwBKdb2io081qdbMBMTc52cXFbZxmepPNlwxzN6g7itwy2405nWXdyu8zVhARORU3C5nUs0D3TOKKBLgzAgq2JeCgaQqN7yXM/Zq3N1zZvaSk7OFs1krcaIvMl0ou5N2OTY44//C+cGIPr6+fyxnJySsenYZn4PxaeaN5KQcG53gbZnBPME3fS/YFX0ewu9DqLmLuDICzTNm0opi7Rb2EhRmcFkTbFySTMdFIEBSJqb/18FokkrgLgTcDC8cKM/OG4IRRHcGBEayMdBz/vJ+eXlb5EN5vl+sFuEQGoYpyxFgzCkOzorH9h+Ya201xdtPD0GfK+9wNrA5Skzu3o82finIIBrR9rdhtCjvabMfQdueAFqyojLwhrCgsSCxF+HCUIKQd4trqiufhalBh4jrgagjNMiLwwWAOTtuCMA1zw4sRsOCUpquqiieKEWuIBTsxi/Gi0KRaYem4W1AbxZG5+vri8WKJUyUssReBCc8Xlo4NxMbeiY/Xzeng9OD94AZJlAVZM5JxrHYse5RfsBcEx+nq6i6NBvUVzofRrG3YIKcGpmEvBCV8izsJCfgsfC6zL/3cnF7vHXbNzrfR1ucKoiER0DNk0J7tlvlFXccLYIAwWG0dG7mLHYjFl3Jvc4fLxYHrg5AKnwwn0xsWhpiI1/hHsX0FvBv88Dbe2v//2XsPv6qufG38fj5vu3fazbRUEzVqoqixI70degdp0rv03g7tv3jfe993fklmEu8kmaYzickYY4+JmtgiCFIsIIIFEQHpfH7P2t+991m7HQ6IRhMy+8Mc4XA4Z+21vuVZz3oeIdSIRrK0pUdUeplHj5/iT6fuuodfzy0eQq5nRugrV34tGLH0REZiSFEVoNfEuIva1geWoB5X+SdTxSpuYMva7gsHu+sj70bQowzB611Gv6KPWWrRdut6MjYC7pxoG2YUKhbMf9zWgGsBiMAjhYWNjTPRyb1IqYLc3xmEdHJFRoIQfZjESl4BuP9cC7i/YCQIae3MqA2wu60uSgqc/Vfv6EPtRsR2fX9UtQULn7iXi3z2EwgydsJZtPWu32BBkWTiNkGRyS2oFesrI+8+qtzJGoanB3cF44rpiykfK580owMwY/wH0tMx+bG47qWmIj5nDWbFZ9xBg+ARcrnazDxssaixWJiYjMSbsaDtWAG6xHYOan/fWENGF2r/nc2XdczdFlWZ2QH3n/70ewbclY6pnz8ex1QjPRnbAfd56snM2y51LvT2ZxRtX2BgfR7X9w67PwWY+9MgLPNUk9yfJuvUx6Eq89UzqirzFMu4L/qmLhjgPndVmQUA3NHcotcl9XbeK9VCb3+VOvAPf6ZjlzpvwF0jI6NUVbb4GWouhS+i5U+/ZxGOsPGvc39aLt9VcJvIDxVdBw+gI0WDmpYzgHYdVTjiO6IA1iQibH9KCjpk98vuMsMdd15kuO8RGe4kKSPT26mPQgSN7IlEK5tXPFxc/jB9IP3mjh3fCHoyKlLMx9LttJDZf/nLPRzCTtdfBL6M5RK+oyhnDTjvsherDL4fFKTejwqwOHJJq5vbeEUFWgu080iHrBoTsine7VcYBxlqF3B21QbXfullReSdaPWCjjzCd4e3NxoYfPaQ7pCikaKM3IG6qbrp+nq/HVdYJymw8Jg0NjnCeZ4X7CjRel5yDWxxDrjk5M8ufMc9+DJ5VM40Nt6Oj2d8+e5QjzYPp0tOKIJQU8i1AJV7lNiRe3EXSDqDqWEcfR2Rj7HdJWF3npOLEVRxcuePudsIuz/KyXcb0HYr0u0KF0eit38iMu9wC+l8BgYNFQHGE5M/pCsk9V5qzWRN5URlSn8K7iYGHyPv2urKIKTperSyb9hbWHhKENBQtP1ns6Dtu23agVNvv1kOuFiCgGCVLMlJiQdcZJYcryrzqkXcmaigjHPKn0nHbEzKultTO4nRCLgW4NriSrQ4/LM3KqrF1bXJwQEX1tSdhAQGUTc05BUPBcVe3+5zcYPbt3aSwLTEcz8s0dslwH3NPzXWlwrfS/mdU/h62e5z8jx4ffOxN7adIA7+BrczW70uYAWRHeXdpKTu0NDhgoLovmi8Vdw1vG3PNk/c1uKHDI6sqpm4vXMnlupIYWFfTAxJHHT6+HSHhQ3n5xPqh/iAq7B0BJ8at56WG2phTBLERtQdJDphwdz3qjF3GyXdFxJzt2KWYNt2l3XhJn3VJj2PBJ7ejtoHsQiFedlY2YNduyarq0dLSxEqUUZT1cjI0cIJJNyOgpJhRMW1TqcwbTAVMWdeU8j971Oj7Uuto+0fzYq2s9X3omIv3GJBrO9CbHFE4GXcedNU0klHtF/v+i1WUG3d1ERVVd5wHiYhmidEaVHG4TQzI8WCIjn7JkdH5CDU90ytRSipeQr5l4JyCwYK3VezkxMGEFksMfNu2I2wwOuBaffSMG/xV5gW+Y2w7MFsvCAySLV5AusUSaR0tDT7QXbWYBbN9pTs/l2FDwazs6smqoK7gskdBH+SCmoebTd1mLBqwnZ2NzbOoAFGf0KmJodJaY3wHcnaBL0EmhykVKaxJhz2wtqJ6Ikorxqj/YDqieqEjDsugS1bvFj6Q6BAvTGUl4chwnv2veKLVSbCJ2c3Ybnhn3hvWMW5Q7n3UlLwsvjgg1lZeGVTWMdW0wWmpSMk1pXi3swR0b9a0IsXIgxzi12ylu3SIbLZ+1zMLRpCXm738sJgkgwd2kUUA3X10whryKTIBcyW/PAy0U9SaZ6MisgiMsMT3v/6nHb5zwF21yW8G+lr/O4RLgOQ8n/pEYN5ertWwH1OgLt8jAyTyrHZEVkVmRRVIvJLQekI41ObLqyTDOdZMb9WKOaJOrPcRsBdX1XGNsxdgt1/ZSPCrouz2wC1/5an4xj5o3LE9lWMKMNB7ULusz+xTjIWdg1qDYnr8o3sjEjsiUjowVes1rD4G6E7u8Pjb0Ql9yZn9SODl4yWFI4U1rPTI9P4mp47gJ/6RHSi2vQIbcvKH6Rtv4dFRViMaTn3MvLuYzngm5ecndlB1WXLUO4q0HahdOeJ7bKGjJE5qhpqVwrI6E9Yef9oTtN5HoC7gLnPD3D/y0IA7p+qAHelgPv+eevJWAfcH5uA+4LryTwqvX1BxGSeCNr+fSLsCwq+f1+w+9OFuT+DJPdFVZkfi4w7B7gfXfRNXZRxtxFwlzQf91vo7ctnp7frCLjPAXDXR9sVlfSL8hF1y6Vu+A1g99l0JFTyNZZzqQJMwHh5UuEuqklgZMhycPmmo3ZOp4Jju1BP90REIFaSHisCImtlZ2bcWt2YhvvhpZiSDKj95HnJ6Oc3hFSK9HYCK4+vQOhCKkNbHpl4Ez1AdsFgxXgF+nxENCxXrIr9VKY///zHGoclLcj+Z/n6BUmkSnUtzyX593+XS1uxrtXovBP4LiPvWKiHBNgdn5RolSw+CqGNQRsCXw9PECntEsj+mXKFqIgneBoR3hFiEPiQA1rd3B5kZ88wUZnGyZqaodxctPEjhYWJmXe2+15Ed+To15yac2+iilmH4UkYKDyunaqdaWjAP4vLH6LzSci4E5PSF5d2CyOJ3824nxHVGxV+I5yULuJuxe16sCtvKA+/hQf4Qyn9KdmD2bhxkTcjnS85o5tFfUTIIIPdD1lgdy0+aIi5qwi5sx6BXxDZWesKs7aYub2vYd1qvFIxjUlXGsEYg4N0hFSJqsGhycHvql/KvRQiio4UFOQWDbEj1QNpGPbYW7F19VPoRaOTe9c6ncIiYgJWQsB5fh5o+0t6aLsGcJ+FqadRhpUwd2nXjVNyV6nKSMfSRcxdsnkU0fb1Lt9sNV3w28GI7Zh+BSMFnu2ebLPnwjbU0e6X3RE6bsfFNTs50ZYVLpTXnT4+hLLhC6au346r9j7fKdUkjsj8U0HH+XMiub/45qdKzJ2kQvaKHnGEtr/5meyvSBoRTPRGtnU1XcDK8gxtC93ZXW2eJOmJ6L7o0O7Q6N7o/OF8LBZ8rRfOspRXjeM+xqYyFZq0nIHwhB5mxyj8l5HLtiGH8/IYrOnoeDOSbSIGXg9kBFvGLJ7KGcpxu+yGGo30N0TM/RNrNqqGku6PqNq00E4J8zYltlgmSh4JIr19nyjfjBIScUmYFzPJ2f2JdxOvBwWR2hhqNbLBaPPwQAYx105u8jiLOyug7YdfY8T2Ay+vscjEqRaanoyMEm1XLD014K6E2rnjaC/qAWEWkvvff7PScliE8NxX1zHMnSwKVgiIGGYmmfqOV1Yy1RfBvxfdA9IlVfFoCBClEXbKx8vxhBYXFwLcMSDHBI8QvgI+KsiXkXgLkheaosvu7jRpG6YbBinpzMx4d3ijYcIKRbxif7qiYtJszhrMQtuK76MZ9bjsgUWBmIYlXDVRhR/hmQHXApwuOeEJmNgIhnhv6HvQYoZ0hWAt4JURDPHn0PkwpTXcNTI1kSrjQ8Kus4i54+3Z2WH5DGANYkENZOy8vbNwpBBp7sGuXZU141hrU7W1WHQB0deqzRM94eFX/fzwHccmR1JLYyNzyg5vADEZkQXpDKsPT8DTLjk5sc0GAc3H77oFtWLtk4CVtKtH7qyShbWgWPWidDIGt2aNw9eeoe34dbwZdObUBGIwmxwchvPzESIwRLgvtGMtSrQdfJXB7kLlbgV5F83JHwF2VydZW5B3G/H32aSv/5eBDAePUOrryVgF3LWplum2ndno2eZpnjKjkjF1mJBlsOpR7Wz3ubjO+fSqbScEoTbmmMocyG0A3NUy7nqpUy0so+eN9D/V1/+nuRRPMMbZtVD779W1Or+xp5CRUdiuyIlPBbW7BrYilxWWjsSn38byrJ6oxhjeio3F47tJSVhiSFU1tZMNMw0IqigOS0ZL8PykrLsRCT3Iyx4hl5Eut3pd2OB2Zq1gfrDO5Rv3kMu4C6UVo3iR/uRkFPBI6Be2bsWKxJIn6XYebZdlZGwnttsEtc+ujfQ/ZhNG0sHcZ/VNfVoAdwPH1P2PLuCuAdyfhID7E7ZLfaz09sePtj91IPtCgO9PF+b+gxSWeQpUZb5dVJVZaBn3Z0lVZqEA9ycs474IuM8PcEejZTmCytPbWUMu09s5u1QlNcY2sNtGtJ1v1//IWbRxnb8ad9utR7R/T3Ze1XNK5LRrLEwZQbf9ZToFLzHyqHAX6HjoQtGOompHjxoefwPNdk9EBHmgITAhNKNYJxtVBA+sM4V12L7nmZLMpwrpdqx7RD7kMRKiDYq5jqrdXDc1XFCA3IZ4cUimt0tou6z5KEPtVK0SmP4nCWFnRbxQxysu4ZvqSpdqXALfdWnvQi1LlesBAXk/yK95YQEfkPjsPMiund+qg588ms8w95Ur2Zn6bduu+vsLZN/piJ4Ip2Yn3yu+7KR86i3fyCuZ+fcHs7O7goOnBWWbqdranbd3xt+Ox1cmJH03Me1eGuHpBcMFaJbwtNLK0crqcca/q53EVd8wPVFdjd8dys3F176YmOH8fPRId+Lj8Z2MgQxCYRLvJKJOQVZB2EYolUVpZctHBSfXFsx9jlR3WzVnbZGXfXvOaDsvJoO5onBx/EQUk8HtR8JBOkWBE9wVXPSwqLFxZrSkpDs0tDskZKSwELcsLP5GQsYdGtL03AFm6eZ8esXmY6/xiMBKPbR9iRW03YDebhPgrgUL5A5fdHHgSO7Sxps+UCharsleAoS2v+X2rZN/c2befXzkmskazEyyWaPyDQ9cW1xJvKXJwQHVHuotYioR95acDKomqh4WFWGueoS0EXVxtagQckyWdCdczMJzJ20Zgt3Zxfj4vNGrDDrIHHwydN3uc5EErP12MJvNhMw75VVj5WPlJJmFJZOacy8y8aZ/1FU8B8/E87eaLmz2PLfJ4+xG9zPEE7T3/m6770WvsPaGGbb1dSs29qqfH8Ij5kP2YDbT4oi/ERzbRZLZiJCYNkyC4wuLtoxlTWkl3ee4mzUH1aYnbEpsfI5ERW9HkKFVhnIMY4X1dT8zE8OLYa+oGu8KCUGopIqQ6XFt2fKwuLhuqg4jjKnCvIg3HhFkZNgJErbKLGg7dwDiNetouwZwt2qcoLx2q1SV9Zin0sxk1qkWSWWsoze2MbTdJYA5Ft5JTKwxT/p0+qAxQjcgO/fKuDbmEi20Dm9vdspKEGyhDWAqZC1EclJIk/RbGDV7wwa0gmSszRSQ4roI2cdoUyKoqplANsFfZ4efvmaSWchH/lf90wfSEd+qzRNJWXczcu/jAZ5cOloadD3IocnBpcUl435G6r3Uqbo6U3gHnnw9KAgL/ISAth+SfE143IfU1Y5KWwLoYdDatXl43IqL609ORmKqrZtCgkMrjM+Lv0LhlB0lEXB51A9IVYQGoeHA4GCs0Mmh0zV1sI82kJbGLJGFjhcNPxIovllSzgSI3nL9lm3pSepDQmCRj0Qw+gXp/+A7CHQrtx7H87GW84bzeiIjL9rbE0yDMcRKr52qJecGvAFZnw0TGKNP5QIzTxbKfAX4vk9plGIFdv+v2WB3XcK7Sm1m3raSNkLtemi7oZ4Mt7FtCLh/xipGDCBaQEbO+G4bBh+3z6PNg7lo+DdHJPbgn5hpJOBucWNSsGc4KyaeOmMAuBsfDnvHOuxuAL6//b/0r3esKT1ap+MoztDIMjJypv5YLtpJEOnN7V+tZcfOzprCOlDv1dVPMVmYmhqsL6YiNVJQOFKISjLgWoB3h7dnmyeGF8vK76pfVG8Uw9BTUpAKw3Z2e4a2Ofo1I+UR2v6m/VdCSj2xzfu77IJBrPqS0ZIbYWFYEaQfdVQwYdJF2y0yMnqK7YbEdt3kNg9XAuuYu4GMu3XA/f3vC3CXu+7HB7g/GcfUBdeTeQL09seBtj8OqP17x9kfAXlfxNznhrkvktx/zKoyizLuP0rf1GcGcEeXhQLdmnr7EotdodxyzxFwN3Ys5E+JKshxH4gasq8YoAA6bDuNjrP4rqSLt2PVgwYUaPtyi+Asc0pk/NDDK7Yct3M65RHSVjdd1xsdjWRAERMpDY1x0cMi5AfEGGYdJmmSsN5y/0v4isek205KMoig6O1R96Mnb5xhBqRo3Seqq1tcXIjAqD6FyjsscXx2FcL+IX8x9iR3Sd+XIXix8OXBd6XmDBW4n3Bq73w5K6+TT6VZ/ols66qcgtoqWYbdsWLxSUXMfe3aS87OaN1Dd3bH34lH7kJhEngtsGGmITm7f6Kqqici4vbOneOVlW6tbsiieALhmKgpCOxAp+R3xS/yZqR50nw/M3NXwQO8lG/kFc/Qdvfgy25Brbhw+0xh7cGxXUlZd2NTb1WOVz4sKhrMykID1iAwSadnZvKH84nqjsTCdGmPMl1aRBf51MKsmLsICiyE29v8z7wbObkZnHOXQUCRdauktyts3I4uxzx3bHZEm0pWuteDggTdYJcOk2msrCwioYekkBlE63WBITvbvxYPvKvVq/bOA22fFXD/N0PA3QIKyOZsHMldaOktqjIiUKiScSfAnVk+bhDR9jWOJzd5nPOJ7MzKH0R/TiLmmEKo0ahcItVpDBDzPCgpQcGNyuy0UPecFHotPAvxpN3LC/O8YLgA3Xte8bB5yhwYfW2z53km38xxUZe+JYk/KGH3F95ghHd2vfkpAZrC+2TEdrxJO8EodZv3d66BLXirkYk3sQRyi4ZICgbrrmysrGCkYNJsTsnux8Lxjuh0DWplFote5ze6n13v+g25LJKQ9Bv2J97YJlyCmwLeoaNfU0RiT2XNhEgfbpwx101hepBVY1HZw4rxirhbcVitTFvm8DJRz30fh7nv0Zd1ntNulhpZm/XsyHxNieeAtv9e7xyJjLVJ9HbZI4FJSXyxBPUa4o/vFV+EJlpN+SXD3aGhaBJOCQ05OpnrwcHssM7MjHd4B+6CpClBaPunBmj7X/TRdg3g/vOXDdegXs59/ydKCqp4YkxWZ9JYEItqDwxwZ2IymKKYYF4CjZrpmDc2xvTFoIXCCiGDa4I3CFZG04CJVDhSiOjd6eMjKqSvWCFrthzkdoVl4xB8/4iEbjOdGTs7NFEd3t7V5snxigoyQr8VF3crNra4/CHtFyKnIMUg1gVcC6iZrBkpKEAawhqJSu41hXc4B1wi3vdYeXni3UQs3voGcjGYoZfCzUKfcJQ/BKb0NTkoHCBDxj8u4TikFIRfbHF1RWJiB0oaGhBM8Hm92r2ie6Pxqafr6nDfQ7tD8U2MBpm1YnxoZNBHul92R12B1Nnu6YlmVbTU27ixycFhID0d32e7X76MGc1pEB1UaBAJu3cEuL+6/iCmFibYVtMFRg0WAn6zoyPiGN4kAj6KH7xD5kx+0o6U2fBmqKeRWxYGwR9ZhtKI8HeFP7kg2vabvyuCAB3TU/k62AK76xDetcj7PPD3tzVQuxHarkqyRgLu8kkyoRrTAu608cYkZY6vQDMdeD0Q9xTlzbYL21D5bPY8h0hO8Xar1/k37b+SAfcXbAHcravKKEnu//prg1NiBrC7Icj+K51DZtahdl1iOy8joxZtf2PfS6vpWMZhzO0tnue9wtq9BfcFLGryWMaIIbfuuLkDixpLe/P5zSK4glEV5Jgcmxw92z3T7qXdS01FjL2bmIhfQU50DWzdZrpA1sosD9p/tdbpVEhcF17N1G7KG87rCg7GKynQ9hdf5NF2WbRdlpGxidiuTWiPpDv4P6wxNHTPbDxNgPsncwHcP18gwP2YEeA+R8fUk3MUcNfqySy8Xer86O0Civq0o+1PIdQ+L+T9mcbcF0nui6oyT5GqjAS4H1/0Tf2hAO7Pim/qvzAx5dX/pM5cxTb9hbpG/0Cn39aVTv6tjWi76qCoqphm9TRDBOhS+rlpNJ216JsSeVciAhyx3cKU0arNyhKQ6EXRzKzcykCr7T4XUXwP5+Wh4UQ+QDppdXObrq9H+Y64zp+qZvQuqaDDY6w5RkM7sQrhE4U+qv8b4eGMbd3YOJyfjza+2ckJ8VFUbxe8UjEn1Gi7JBqjxdnl6laUg5REIdkl/ZN/jqUItg18/4eEm6su7Tzbq7z+riqaJe0agt33c5g70s/9zMzysfKqiaqg60GmDlNIV0hyfzL6THT1+Jp0N4lIsgS7IPBjMJHiMPIoK1xaXPyu+OUN5d1LS+uJjMTAhsXfcAu+7ODbhI50k8fZDW5n3nL9dr3rt/iKx2hZXQJbAqKuhcffIIikycGhzdMTdxN/17XF1anZCVUGqfTiJvJKQWrtaY6LZ5Pw9KzH3hdKW9Y2tF1fTIbHASVdaUxsjDzKqLqpOib7U1DQ5uGBhYDahdYChjEioQfLZKPUl2LhYPlY5GUt0WavkZIM75JqCLgrV72xmYSEFAjoAEPbJT1ZAtyJ5K5QlZFk3J+TrEd1fVNFINvp1FbThfCEG9UT1Y2CKFLg9UCUipiZZMxLOg8o3zCj8JwHu3ZdJJtHwfpSbskY/LdhQ4uLC5r8kcJCZlE4lFs/XY857B3e4ejXvF7DdpdV3Ul2+eU1wmW3/xVpS0B4hydwF+x9LvpHXSXnw/GKCrxLtsM007Drwa6YvhjMdiy3yJvM/5CBC42NuIMeIW1YOFgjb7l9u06A2glnX7n1+Iotx17ffBQvjtsqXMzK+A38IadTDAYKasVo0IK6k5DA9MdrakgXJT7jTs1kDYYCxQ4Co7ig9j3PY+66ku66K2uuNqrzl2yak1PCO2rpdrbc3rOV3i5uax18FUkE8Y0plTc0hO7s9onoRMroDg1tcXW97O5O0v+jpaV5w3lllWObPc9jYpD/OVOSMeS2a0XbdQF3Y8zdSgGgl815VZlfLbM4Gb5oWUoHl208vFLYzN7ue5FOIOEThXaHYhFhBMh0V66F8RjfwZpCwMdqQhTqi4khwB0/P8IRybU1JYEshzjCO0O37ewQu9CUIvijAUZab/dix86CY7vScweQjIhHj0VxPyMD2QGDj2RtrpvyjugkcYnY1L76hmm85x1JN9ne0sMiJHREQsZtJ7RdaW2yXwaDeMxdgnhQ4n8pWZJe8fOjvSv8D3kwfzi/pnYSCwp/q7J6vGyszKfTB00bbUgwtP30WnScXu1epaOlBSXDNyMjyWRF3tgjLxaKLbGptzDgWLMIEVjOmDwIa6KkjLBbozzed/RN+6/Wu36DQJSS3Y/RuBYQgKFoN5mwuhFDHJoc0L/KQY/aMos/udTPUe5GIcTAdxJtkyzKVV4pssaU9ryLLuyurzNjjLzr4O9WL9Uvql9Wi7Yr86y82abY254VcBckZcg5OX0gHbPO/bI729hATnE+vcXr/K7CB3XTdZh1iM+iXNujAO76Zfy7+nruOuC75jJ6sgJn10DtykOoP9GYQ3Ci7eqdPMGQmaHtmK6Yq+ZJ87SwfgtLR6br6m7Hxw9mZSFoMFvvc4JQ1deiUBWmKyYqJjBWEGKLd6c3Jjbi7WUPDwQExFukSwQE5GIhLZ4nk1W34FasfSzMwGtsOwS1ECY+unF1Dc+h7R/JaPtsxHaaaLNC7XPdKbaCuduiKvMkAfe/GwHumoOzTwJwt9kx1SYBdyt6MirAfR56MhJEOD96+2MSk1lAtP2Zx9mfPOz+48Hcny2S+9ytU0/PBXP/ganKLMq4P1u+qYuAuwJwp/Onkpgy0dv/9pyFbaqjJ6Ovn66o1K1i7qqzoqr+XKKu/EKg4P07AQRKmEBBgNUXln1f/7S7XLvrMWXkY+8S2i57JFpUIO0ERCkqqbe+frrD2xstOvrz60FBMw0Nnu2eCPaIoAhCFkbeccbIkw/CI4bhCZ5tnuMVFeVVY9XmidRd90pGS9AA49UQqRFTsAIPCPR2JiYj3DwF2s5B7R9KJ1I/4LF1sSGd5ZKBeLEgFmpiRUGsKYWpDrZwT6Rrj3xxJq7ytUevgOZhd8LcDwiYOwIlUhqhDIx1WzdVLyi5j5Uz1CP+drxHmwcyD9vPOLKMCH2k54vEiHoEA5t5P3O8vPyqv3+nj09/SkpB6YhHyOVt3t9tdD+z3uUb3L41Aj8XzRjupuzFivYpJqUP/dhAWlpXcPDdpKSswSz0t/Q2sgezcWcJc9fRntbD3HWEp61S3fXZ7o942v0d29D29615uIk4oERvxwhgPqNICbgWUFo5mlc8jOFC0XBKQnNaXFwqqsajknuxTOwsFo6HBZmLz9EME3cSS0z2injOGtrOUWuVgPusmDsXhVSAO+/hRmfbeVUZA8B95T+IlkumqTwn1zWwJbtgkESKGhsZJRazEUUN6+S/Wi0u/FN2KMTcWt3Q6j8sLkb5i8JItHnk6FH4DiokVJZXfH0xjIl3ExPvJCJQMBWLyerQnd1bTey4wFqF+DKzVF36FpOawSDLyvK0GYAnuwS2+EddbZhuME+Zx8rKKqrHU++lht8IR7xyaXFh0s7NTnjg1e4V0xeDJ+CG9sUyGeuAqGuOfk2bPM6xheN4crWAtq/a+uWKzaKmPOnbyH9U4Puz8/ubPM6GJ/Tgr2Dh4NVQbZ8VqLVYVtMCeRl/jtFyJQNVHnNXwG1/UcJtf7TZoPid2QyKf7fQULsu2v6uDabEGnq7hdYq6EigWYnqjaoxT+5IullXP9UbHX1LuDu5Q7m4KscrC0tH3IMv23Fwm1K33Sa0na6fG8DuUqq1itM9/55+QufsEATNh72kzsSWknACA1OX2NMOvk2IG5Nm8+34eJIowapZdWIVY0kffZ2qWjzAP7FaSGFjuqEhMvHmnYQESp0ojhm9XZJtketChbAAr+VC+umynMvq1egx0NigB8MCnGls3PVgF5YeJu39zEx8B10oOjcsz0tOTg9ycnAXkrLuZubfLx0tzR/Ox3MaZhqIJt/m6YkFjkWN10cprHI3kYGh/cIZL3EnQIJ+eFV3NFeX3d1vhDMjhJGiIkQYpLbusLDGmcawnd0ICJPV1cQuR0+JqYKVlTaQZp405xYNYVjQHlOcoX6GOZ0KCnjIsKhAMHr5JcP2PhfXMgXwLwXM/RBh7rg1L635J9sRkcyWV2w5jgiAULDF67xb8OXk7P6p2lqsblb8NDYGdwU7X3ImH3LkSjp2hu8g4vlf9Y+/E+93xQ8RJhZzty/WsdkRKRtRkbZS2AGyQ6+J510k3bZf7/21ocKMDLvvng12t468a8B3W6935oK2a1Pt7p/qAO5/VgLu/xAlZeQdboTr6onq4ofFDk0OtAuFSLvB7duUXfeqJqoaGmdwa8iQSQbcpSTLAe5LtG5M+mdV/1UrLKPA3I1h91mudzm7cj2FSRlq11g6SeU6ycjIzhDKczOkJPPWIeSpLZ7nY1NvjVdW+l7xTbiTUDNZgwv1IXKfY5Pj2tNrLTt5x1egR8c/MSeRuOlsJaLuVB2zCCY47JKzc3doKCtK66eQ5bG+4tKYlwkSOsa/rHJsV+GDe6mpCETHiTEjCEIq0HYj0XYVsV1PQ0YXan8ULTQV5j67qswPCXC3grY/BsB94QXcF1ZP5kmJySwU2v5Dg9rnCLs/Sar704K5L5Lcnz5VmQUH3L9aUBn340+Jqsyib+pTI+P+yaOoyiwU4I6eSgmB/U3PLnXhAPdZPUs56gqrp5f+DW8JX3nlWa5zUL8xDQwnguwczq5QrdHU7oKSjAJtPyDR24+vcfh6rdOpDe5n3IJaibzZ5uGB1ro/JSXnQY5riyvTaz6zERGURCSIKYO2M6InIuBaAB4gqaIlLhsrS88ZsGcU4LMRCT1xt+JKx0o7vL0R77CGZZMl3GYZbZcPon7Elew8zi4j6bs5/6L39S7+CbuN8Hc98jtfH8slssW1Ve/in6MqpnmxeFKKx/JGZEGkQzQ/K1gvtrq5oeEh2Vlqb+JvxyNzIqwS7MJL1nq2eZaOlqJHuurvj+4I19WAgPGKiuDYLnvv74jbjjsogoZbjq/YzFi6r28+hsfk1IfbmrrrXk3t5Exjo3nKnJU/GBLXHRB9DTcaTRruKf6oxe+R5+JxoIA1ZPAPxmqzjyg1+7bNHm56nDtF//+RHr1dav6RWDAOyf3J6PDr6qcw81FIfSXYFSJloia47O6OdjQy8SYGXLZwFImTDG1XSVdJe3tctDFE2zkJaSvaMmrMncIOJykjAe6/swFwV5oni+w5xsldvpGh7etcvnHyv0ROv5ic6OqxutmW28k1JDktb7bhO6jCTB2miepqNP6oZVHxYMQwbkx4Wm7kVq48IVgTk7Xj3aSkwezsuvrpXQ92kftoePyNoNjrsam3XINa2XyWWOdvbJNm9RY2n5nKjcPJbaYLWQWD2YPZ1eYJwgfDusOcmp0QplBmUjlJOJ1jk6N3hzee0BsVhYDWYTKRz4FXWPtW04X10h+yczzJKT5bZG3oolCJn+JpYTu7yVABixEfB58LlRkqdUyY/JLhHTd3oDDEByagTbS72CdhbbyNKicvwytLLJRZwuxOCVb8ErS7XO8YSrfrmBJ/pKG3S9taqIZIeQzBDTcLkS3pblKVoB0xnJ9fOFIY3BWM++jQ5IC5xAQlTBdwx5duOMTvadmMtsuAuwZ/18PcVXaLkhKFnh0LOaNYTo/9VbF3JbkLILdiAm/2PEd6ynVTdfiw+HSEiGGSUDFLFSsekFg5FhRya+q9VAzLjfBwAtyRPVGwHuScRVQMCwuvnJB3kpoRQJYjArByXBB5x8Jk+15btjQ7OaENxrxFo4VOhvAR2Sy0PzkZGQdvu+hhERNv8fK6hOfb2+OnmPNYzocFGRmFx4myRrTYmUhsd56Gj08scvDXrkVXhvV6jjtFhFCAvBaR2DNSWIhxoL3hmsmaxMy7tJApyLAtPbnHIL0aO7sLgqoGxhnPT8i44xnahvTHNkc3HyMxd2Fpf0E2FVT8kBA2ojomm4ugSZWac2+koOBWXFztVG3Q9SCvdi+Py0z8Go9RDuUM5WClT9fVITiOlpbiTeLmZubfr5+un25o8L/qb3/RnvppBEbmfHN0OT62vP2G2la99yYpzKi233Rgd63OzKzI+6wQvJVf0UXbValWI+CuUm9TA+6SaSoD3I8sw2z37vTOLRrCUGPVMxuMo8sRipECUBehKCouf7jR/QyCP5mm2gC4f6At5q2S3I1g93dtQdg1OPu7xh2BBWq3QmznK3bix3AhheWgdc6n03MHMu5nYO6RuNP9zMzsgkGULph4GE9022QzwOSYjrCdPDo6Q5maxN9QTKIKxaLDisbqw9JDUsacp7WGSd7QMJ3Sn4IgjOV2c8cOPPM4Z79ESjIodxUWqUoZGXG2aontxlD7wrl9G5PcZ/VNtQ1w/+OCA+6cNKXWGooH3PdrAXfunNPs9HZjwP1JCrgvpJ7ME6a3P3m0/ZmG2p8k7P7ogPujYO7POsl9UVVmjpj7ooz7AqjKzBFwX/RNfUwy7o8KuHP0dkFPZunfCNdW68nYBLjPhrlra2sjNpxwUPSXy/bgLaGkFlADtbOiEnP/QJcDa7leUnixqg6lWiQgJd32l1b/U0bbBV9EwW9wuwC4u53Z7nsxdGf3TGNjV0gIY3jNzITdCHNrdXNsckQ75HzJ2bfTN/N+JlHX8bWgdGRSsOvE0wg4IxM8vFTKrnv5w/n4ziVnZ0QTLC2+WFfJPmqhdhXIbgHWLY2e4SUXyjwKP2u5zKPw1q8/SzC9XFj/1UCshlHdUTG/9BI+OyIFAtNx4Uw9kgdyZ5uHB1r0wJjrnqFtxDdHDqTMQEodGHM0+RNVVdP19dcCA1GynBcKvhZX16naWgy+c8AlDLWdwAsWcMljyzdJ1OANh/CVYQpbjq9xPLnVdCEg+lpF9Xj9dP1wXh51VvUN0wUjBR6XPZA9EDV57Wl9zN0YGbQQcn+vJzX79lykZt+2SVXWUFKWR9sNDNzU9PaDjN6O6V1WOYYmkxBA3CAicmL2onTAisB8Doq9jo535dbjFm77mn/K59xFHFAVaixqUXpiMrMg77t1RKVFpp6K5P62BXOfTVKGaLksMqCll/wDl6xjfM+VW79c7/qtf9TVpKy7Q7m5t3fuxFA4NTuhFEJxIZ9uoZ5MbuN9On3yhvNGS0pQemL+YsTwc0rbfHcn42IY23YvL1KF9u7wjrsVV1kzMVZejt6euftm3mVaSaYL+Iql4eR/CSFlvcs3GPn1rt9sM11Izx3A/O+JjKytmyIQE1UbVVJydUb7gvhR7C3Gm+4wmZodHZmZpLc3OQy7BrVudD9La0c4r3Aci0VSszlgIcOu/qekvnUIg0PaIPgP758Ad9qPueLr29A4Uz1ZjdIVo8RI7geZ1wX6Y9FimjNR1K4staT77vmaJRioM4n4+++MHYmNiO0G2k1GNgkyrVWr2iSbEmPa4H6h7/Fs94y8GZnzIGemoQGLa+ftncFdwb5XfLMGs9geZPpt3B3cFMxM5Sr7ux7a/icN2m79+ki9MFUkd33A3bKJ/nPZf1gE3C06y6+sPYCJhCiBGWsK7yBlcEzagGsB679dz9D24ytE7W+5Mj2yjKAxLChMWmbXWTeFX0RTpJBKlzBu1XFFFezOE95F5J1E3iXa+5cyoYZT7CUM5aQgAIWVgindExGBpMNEotasYUT7FSvwTonYzkPtRkbiuu9N3g/g7V6Z7vzatQgLXcHBjY0z2QWDyIzmSXN+ybDfjqvlVeNIggxejI3Fc/Bm8CvHBF17MbwIOwpEnMc7vx0fT/t/ZLy5yePcWulMkrAVzXSiVm07scbhJKLKZo9z9t7fOfk3uwW1onpB6ItM7MkpeoAsiXmIOZl6L7VmsqZyvHIwO7t2qpa8ZOkBk7GqrKw2TwwXFDQ7ORFTGIVQSn8K8mzlRCXuuLgDp5SZ0jVTZUdebIbddQnvFuTdOvg+68VD7bpou5GejDbhCkWSLuCOrMAE3K8FktQexg1ZhtGxHb529GvKLx7GBIjPuL3F8zyWEufJ9LEWcP8FVzPPVx+SA81/rULedS7F8zU4u6odULsraYntXMUudAciP4Y7fMayM2p1pEVUKeVVY+zkqACaDKSl+UR0YqyQ8hBYSM4IF6YcHmN5YPoxraqTdpvObcIg19VP94SHy4pMpySrlXMCF4TOdvTFxGAR4Z/yHhsWrKzbTnSZv6pE2zUyMlYU2ynbWIHa/1O+/vt/Fy/um7Ni7jaS3I18Uy2txNMMuHOGGfPRk1lQwN26gPvp+QHuTyG9/TGg7T8KqH0usPv3jLn/wIRlFlVlflSqMosy7ouA+/fhm/ovMhtOrfCgEkxXItpKwF1dpiswd8X1B+W5UT16u8g3JwScsVcIO+DJepr9AI2xm/L6mURp56H2XxjRZGQzN1Gm+YjQdn5JBE90nps8zm73uegV2p6S3T+Ul0cMr5CuEL8rfmiKiDU2nM8w9JKKUTwurRidrq/vMJlIqCFvKC8+445PJDMkDIi6Zp4yj5aW3t65E2ERi5PEZLSyjzI7RvZZknF2GTTnwfQ/8BfVx6qLe8J7BlwVuXrWFtAf8Fo0nCOr2ppVic5bwHdZpkaqqj9WyssgpiCEIXQi4iNPzzQ0YLQdfJvScwcmzWa0Q/5X/YlPF90b3TDTQEy6q/7+ePIZIc/hK8qF3qiotHtpIXFdmz3PMyEOe5XzpEzlO0imuOucT/vtuLrrwa6CkYLrgYGtbm49ERH3MzKik3tx75DGVdrTCiKeLcjgewZSszbw7AzFZG2UlNVD2/XFZMgrVYMDIhsgK2Kej5aUeIUxH9rqyWqUhl8LDHfcqSYHB4zSRHW1KbxjjeNJ3sLxBdrYW/kPlVGEJtQo6O3GgLuOzgxPdeeJt7qYu8XGzcg0dYkMuAsC7kqIcK3zaSxhLHw08BXjFfG34x2bHVHpYHzolPrrUpeGCYMSAEUHKrWo3ihM1Ae7dqHoFOGw118/Itg8HuZONB+RYHeUIJjJV3x9hwsKCFicqKoqfliMPxd4PZAULUJ3djc0Mll2fMX7iUnpQ2Bx8r/kHdGJJ2BFtHl44IH7ZXdURlRu0Nl5prAsnQ7xveKLSHU3MZF8KVDU4rbeCAubqqurNk8w+XjXb1c7fI0wyDarRPn4L8iyVfJr3UcC90vWHUDMtHM6heCWei+1PzkZdSfVZ6gXLzk7483gI2ApYawwRKKOM/lLf8Y5KGqo7qxH/2g24SbdZWXl7MijmRLPGW0noO1DQ3r7S/tfIno75gyKYtwa707vtIE03J2BjIzphobUXffKq8YqqsYxkfAgOLbrLddvcVMIaGPS7ZpVZoC2q1jtf5IcU/4s+anyXHgDzF1PVcbCcFcB7ku5wyKCFblAbz+KQIEJFp3ShzB7NykJcwOfGnNDRNslejstD9kdFK0AU7efmQmJ635YVIQuSKHf8sor+3lbb+GyBrvrqQ0odAZkLEZYmwS+0MYYtQoEbYsK8gLFnqB2/F3UfxY7cbluU7qI68JGOsi7EBYQb9EEsuVpZsFnMCsL40a49rXAwO8EGRnC/Y9IFrLyZyF3Vtr9QnYz106iYgntDi2rHItK6t2ZftvJny12rF8mEe553jO0zT/qakX1eGnlaEn5aLV5sqZ2sso8gZzbKCjL10/X43dzih4kZ/dHJfdiQgou5W0ugS3OAZdwZ/HAJLhWIneXjZXdSUjojY5GDCwZLcF3/HZcIWK+qcOEPlLG3Fko4I+87FEfeZkddn/fGHbnkHcF+P6urSC7Gmq3jrZz9HatY+qsgDtWATp4Ov+Bu4BaCMF809lN27y/yy8ZRl5ADkKUxmgjPlsAd9WhVXH5G++cqc+HWfdkenculzHt5rdq7weFhsxLHxgT2yV+jIy2r9m/ZC2TeiN9KhQnuUO5mGy084SL7VHNNEb0RIi0iS+WoF/ETMMIY8phbWNVIzOuPb0WqTxnKKeufhqpE/kXvytiAQKoKu63rVlD8MTXQh6nszVUvVsOpwo6kPpou23EdiOoXYGwW7kMYPdZMXcjkvtTBbjvsw64K5XEPn80Afej83ZMfUr0ZBaQ3v5Uoe0/SKj9ycDuP3hhmYUjuf8wVWUWZdwXfVN/QL6pzwbgbgUFIwr5zxUU8v9SA+4v6APuHOauuLRnz3/64u6fqpxLl/5VNipEPf3bVZ+IWwKv2yD6LEJ10iV9U5CGl6F2lduSkSPiERIbWS0oyax3/Waj+9ktXue3+1xkPWR4R1j8jYLSkeG8vMz7mSn3UqonqqtqJsqqxmJT+3wiO9H/bDNdwPPxICufSTyjUxovL8dz8ouHC8tGZhobidveLui9HhPEZEi63dBkiSvZd2tw9j9wtkvay6g3/L1GmdE6BL/bSA6ec2dVI/LaapuQdw52l6nuJC+DxYzROCxQ3ZEDOkym0tHSierq8rHyhsYZjGdl9TgGsLB0BK0mYQ2X3d2RNTGSlDNOSwZxE1VV+EWXgJb1Lt8w5WstRVc0mWTcKDzBO7wDvdZ0fX2TgwNpare4ulaMV1ROVDpdcmLa04eFbm3/ywgAZKA6K+YuAwEKCODRdWbfeQQ9Wb3mnxeTteCA+15gnf8XS5A9kDyZ9khjo0dIGy50sJc9PKhMxz26Ex+fPZiNee7g24SFg/HEqIo4oJFRKgfn/VyDtttyqTjvanVpXfdU5Zl3Tk/mfQpHeCfk9EicXBEitNv/2lsHV2w5hmjg6NdUXjWGHp621tCiiwoYHEpIB9VJ+wjjhnIvfSA9JK5rrKwMI0a876MSIsZnTV5dmnYymMKSk9NVf38m3l085N3pjWI88HogpiVC0EB6+r20tNqp2sKRQloLO5JuRiX3Itr0RkVN1tRE3owk5wOZyrfqxCrSq0U56dbqVj5ejpfCCsIbo/qPqa47Ok7V1RWMFCRk3LH3+W6t82klw13hr0iBWhglQUJ325dbvc5jiDAZLjk7YyWiWGSMYCcnrKyS0RJU0HgDdK6fMHemLfP5y5hpPNXdupPqHORlbDdLsG5HbBVq19Vu0rVJwELTNSUW1duPr0Dl69DkkHg3kTmjlpRgpnWFhEyZzREJPT4RnQRobjVdwFRcufU4icno2hHroe0fcZcFav93CWrnTVNE8H3Jn1Tb2/rCMirlZQEy49M6HRZhAu4ktbyBzRPEihnpv5T+FKdmJ4RvVMTEbSeog02SwyIogsf4Kaaua6srJnx51ThGBr0NVgrjlXP09s+0JZoBKGNBZziAhgfiLUR4HqaRkBqqgL/gpGx4Sruur7gMIenTNjnyO4+8469jGGgrGmmORG/QxJ4TIBKsWTo3w6B2KapYimylUg1t5pFcG+qQyvHKh8XF9zMzkS7D42+gaDGFtWOplo2VIQgwpfiRItydmL6YiJ6I0O7QsO4wRBV8hwXAxkYEHExL18AWVEeoeZhjius3iBjMNMXxpJ3jyXXMKOUcqiYEk4y8+4haU7W1dHoMf73aPMn2TrpDcOtxx8VTL4KkO8uwH/9GceRFBbt/KB4ps8Du/Cb3+/9mjfCurY1U+LvepXq+tpDSVlEqejsv4G4j4G6eYqg6GQgVlT30CmsPuxGGmgRRIro3GsHfNah11VZjwP01GXCfmyeTTbZMFgh+FusmY6hdR0NGUpj8SK7YadOO8WPYQRnhNCopyazZ/8raA6L98tbjiIqmsA6MybWAgHObNpErQ39yMuaY/UV7pGMsWuJMYITxAPMNRR3SIqo7JERM7NKKUTz5O3t7+SDaMd0GW2iV5bMsWK1i9f7rX1uqd+lYqpE/qorYrtKQmQ/OroHdZ8Hcn3rAXTdUzglwfxyOqccfk2OqMb39m4XVk/ne6e2LaPtCwO7PJOa+SHL/IanK/NBl3H90vqnPIOC+IL6pjx1w/+0qC5ZtoCejB7hzpJifqGzTjDF3ValtxV1N9kEi4qQt3FgJsOOQ95c/lHF2Hmq3ov8o+KMyjgwTQXY8iaYR3aOTf7N78GX/qKtBsdcjEnpiU28lZd5Nzx3ILxmuqplomG4oLn+YuuteZGKP744rbkGt6Dk3eZxd5/INcULf2HZig9sZz9B2/CJD3WcabsfH3wgPRzNw2d0dyQMBC0v3oCzdztfrgmi7ih2zW4uz6/aPNnC23uWOi+rxtHQg+Pc4IRq1IrwGjte1Zv1QY81KpbZIdf/Nb7AwPpWp7oKqO3JDu5dX3XTddH39nUQGQtVP1zOCHf5rbLzi64ssztzhJC4SsZCQk1ATjBQW5g3loU3FrVzjcBL92PJNRxWI4erP6O6/tv7gii3H8bSCkpHR0lIkeHLSQzK+FRubkt3ve8UXSQaBVmThyYiAioWnMnlTsnH1qe6/X4ij7kYn3LVislbPtvP0dgQh0pNBCMcHR3Z1bHZkkG7izeDYLtyF60FBV/39xysq8E0sh4rq8ZA4C+v2FbvPeQtHm6TbXzZC2z/glrbyeknXPFmf5/6v6gPvDAv4N10BdyEQifR2xt1metN2jie9QttJKPleKpNO9un0QY2jcnckWi4vOY36NOluEsbnZmQkCjhMUR1cTLq09olYAqhTB7OzadrjpdIG0irHK2nfLvxGOCmzu7S4MCBmvBLRabSESVpF9UYxEPOUHTMnPPga3hWdncdbQqGHHxFMfyMsTD4+L+5XbdyIAIXXr5qoiky8udV0wc7xlGSuKCsFWTy3tdsSnqFt03V1FuL8li0tLi5k+Il/4M9gZGQ4Fe+NUd0PCFR3gt0NVN1tOkTyextg97cfzZT47dm0m3RtEmR6O4evyapNGAG2yk6ucWt12/VgV2HpSF9MTIur6yVnZwTAierqsJ3djn7Nmz3PsfwieCQglC1ZJxwieeNT5WG1v1lcT15VSsQIlwVwl9F2AWdnwNZrf5UuXbtyiwa0ohJ4QUlT1Unre+XVhPD7+qajmCQxKX0IIyMFBQWlI3G34tCpYClhrsoaMvRYJmljtmDaoPnAkzHDMdWRT9GxoIbG00kznUfb5QrsU41+y5wufVBeWVZ+Jv1Fwtk/5sqvvRqzcXbp4u8aXEmFvJPjK8PNBcI7XUw6RjguI8cT3jb2c0m5HkW2TJZn2jLCoZOeiAg6d+Ld4e13hTmWx2fczikauhUX1xsVVTtVi6hCLS+C2PaL250vOXu2eYZ0hSA4YH6ycwnlD30iOjEzkT03uH271vn0arJL2fYlEi5vLLHR/SxqIQoC+Lv4662urncSEkgUG38Cd5/slC0ZVnXkhbbflAYP1mF3fZ2ZP8xGTLB+GdAW9NF2GwB3Mr2hfW6FpMyR5WiOE+4k4EYwMZ8dVzFWWDUkL+N+2T31XipWEGKCqOG+Rhdw56p6LeD+4iwEmn+1FXbXguwqnP0PXLOggdotGjI2Edst2o8C2r6UuXYfJT8eDBQm51U/v++2bZPzDiIGUh5WCwHutLCJ4U5RBXncs90TM7OwbAST89sNG8Q0LZ8UkdpaalwPCIuLFv4+YclbXJekY6kfaETbSUZmTsR2LdT+H1avWanuuiT3ufqmLhTg/tcFBNy14fqxAe4L5pj6KALuC6on80Tp7YtQ+48Vc18kuT92VZmnTMZ9IUnuNgPuXy76pj6yb+rnC6Eq8wwB7gvim/p3Y8z9X36jJcQpyeOK86cv6RkVPq8+VM5j7jqX8gypujMXams9wP1jHcBdgblLsLvl+kgkyOhA7UrFdkEJYelbBLWfWOd82sn/UlDM9ZC47rrpuprJGtI5Hc7Lq5uqM9dNVYxXJN5NjOmLwdexMkYBS8i44x91ldB2dD7kZ4gOk7TC7RxPugdfxivsvL2zYKQApTwaAIR+hDw6CM8bpSrQdokdo1J+1OLs73IVvO0MaSOe9Lt6RknWUXgjUXgrvqyy4IzMdt8jwO5UWO8TamhR1X35cmLkIdcix192d7+5Y0eHyYRSg9H6NP6TdNj/tOBu1+ntba6dHC0p8YnoXO/KrOEkxFB28twnYkDrviC7rdRd9+rqp3CPkN7wIvgT1wMD6xum/a76IXchWiNGKhABjoXHw4IWBQxjZHB2kdl3537CfUGt20Rd6UOvYWSRY1H4hHSFoPnHnMeUvpuUVFkzEdkT6dDkkHU/ayg31zO0bbXD15j2Ig6oJypti5iMAdT+IbeRptxjU8DuKsxdRXVXgAIS2i7IWwmxiDi5v1zKztkgCr34pkjIfWPbCUe/5tHS0uwH2ejnM+9nerZ5oghCCUCEXAsn96gEuB9lgDuqGJcWF6LDP8jOVng8SugYfylgd0HEmSnMCFIS7V5et+Pj+1NSeqOibsXGYvCLyx8iFqG+Q+GG2ty70zu2L7b4YTGmPaINHnu2e6JmJAtKlBiypjwT5WhsxMTGG2Mi1NKWFTGzmIj8pk09kZEIfxVV49kFg2zLypG2rI689tYh4fiCsIJYiN5H25Yk475i8zHMAUTC8IQbtCvT7OTU5ODQ7uk53dBA2wNYSvhLZIAsS3XjA4tsd4LdP33RArft/TWpOVuANuvyMtaFm+ZuljA3pwRdMZnZ6O0YAdwddEIYNCSavthYNEXoBAgzGisvj07pZcR2Om2w+RjiGFYZQWzP8wYJiiypUmMXLg5wl9F2hrAv/avoVb5U8ipXZlsOc1dJUlguKhIkq8OPuMMie2lXRqa3b3Q/i4+JhNjs6Ng404hpzDjOx16nDRiCQ1BsygUmA9yPLsdyw+zNG8pLye6vrZtC/mWA+4oVhwRVB4VsOl948SR344LPWlWnLQHlUk+q3mQ+OwPZBZx9D65fEkqsuPZI0NIeAwieF1L4RJBc03LeZfxIjiGiW6zyc/G6xgcIshc285A0keAIjqyoHvdq93JrdYvoiaiaqEJkmKiszB3KxWxcLRA10aKR5QNCPZ6ZM5QzmJ19xdeXTt7Ep992DhBtJBAlMD8F9bZjiBVMwG3DYcEL5+ib27/aZrqAmRx/J/5aQACpc6AJ709ORoQxdZgwARAQcKPlDKs68rIwsPusyPtcrz/ooe3vGaDtfxQJCGrA/W8S4P4PKfMeYDEBcRKBHYOMsiQquTct595QXl7Rw6Ko3qjk/mQsHJ/IzrVOpzC8qGrkvTdDwP0VLYdmt/Gh1fcMCDS/N760JBue0m4MtVPE0BDbRT+n1yV+jFC0I9e8xIjt7Gwic1oS0HZMOeQdlN8oxTFc3aGhl5ydMb3J9cS1xXXdN+uQcZBrEEwo19ImNKlUYZDNk+aqmomp2lokLMxMpF1ZJ+oLfn0pvRk+5iyXdGVktP6ochaaE9T+H3O5rPPcbVGVWQTcdQD3BXJMtUnA/fHpycyD3r6Itv8gYfdHxNyfNZL7onXqoqrMU+eb+rQC7k9Oxt1GwP3RVGWeDOD+D2uAu41AmFIx+SfKAl1NcreCuSuUXt+3nCFVUuFI7JUA8eclSZnZdGlV3D2ZvvdnC9QuWS2piO2vrj+ItvCNbSfQtGz2OBcYfQ3V+a4Hu+rqp2/Hx5dVjuEx2nv/q/6ebZ6ura4o3N0vu/te8U25l9KfksKq+cbGlF33TOEdDr5NBLjbST0nwQpFZQ/jbsWZ2k05D3J6IiPPC8qSMilPRtv/rkLbleyY9zVQu8xk14HX/+fcSJxvc8QWPUzJkAhvCxdeRxHeAHZXKMwIEANWI5Y9oskRyTtOLmpPSCD7UT6ucRLYSCooU6br6xPvJKbs6nf2v0QiDMs3HpHlxV9887MXBWauqCns8LVLYEv5OLOmRGWARIuv1wIC0IZ5d3ozLjM1bIdek2FBldmjFgjgbVR17N3mJDJr+/F2YyVZazw7id5u0ZUWWGBIC9SUourxaPOI6YsRJHwbS0dL8RhrAUujdIy55G01XZDc20R6+290xWR0JaGsoe2KAyvK60OtNK2sd2GJTmqwQEIEuNM2YiB69U/PvWahtwt604y1vc759M7025PV1deDgmpqJ6snqlH6oQRA4mUkXEljmimlKAF3Rp1r8yyvGkvO7se8Qtn0JXXyMtquK2EhC0EIbHeC3clMGDUfKmBmqTpd77fj6mRNTfiNcM92z4BrAekD6Qhf/cnJDQ3T8Rl3dhU8GC0tTRtII9NUvBNUgii0I3oiENPScu41zDS0uLriLZEWP28OieWDv3IvNRW3tWysLDi2S+C585j7AYa5c6apwrn+IwR8bHA74+TfjI+M93PF1/eyh8e1wMCS0RKfTh8U3agxUdyhFsNKxhgy5F0Q5GGC3YeW4mPPsr6MPYof3S/B1s1JlYyMHtpuzSZBprcLqk34yKjycHcCrwcWlz/EoDU7OZ0WymLU4s2OjmNlZQkZdzZ5nMPYYjYuE3YNSUafW2UGe9JLlEtGmx8FtB2/K3mV7/mVYFSu2Ylnv86tNW4P/kU1U5UtTF7AXdCTwVShrc01jie3+1wkMml3aOik2YyuDjOBbWcKd19eCRZ7w8NLMUMwYRCFMM9jUvqQWLuCgzFRURMf4rQdeLRdRmcs0Iym2pMrOZ3ijNN7UX1TLsX+oSGzE9GVLhlR0r10UHglEC+jTkR+l2nvnxoVpnz1KWBS/GYDoVEHBKo7+ZOjc7sRHj5WXo4pRzaniCeV1eOoVVDzMJNJQRcLDdb6b9dj5FECsSAjnC0jQBN3cLyyMijm+jbThfXS2T7BnFxWb/uCgNHXNx21czoVl3YLyQNRlCTgEM06vL1JVQYxiiKq6O6gPPKyMLD7+/p2N/ME33moXV0AWQPcye7mF0L1Y9mBUwHugsYUIjLitvMl5+je6IpxZteB0pRl35nGzLz7KDtRYQoabtImt56AmxpwNya5z8qh+VfjS1Pzv6cxeDCE2n/GCT+qj6IqNWR4qJ1M71dsPrZqq+C05HRqo/sZ54BLmMB3ExM7TCbaEEJ+3H5xOyYzMg56cUo0coJee3qt0yUn5MTc4qHY1FtTZvNZyRaCcvTnnFCVRTBKWvt7JcV2Ng0losz8iO26UPt/zPeygrnPSVVGF3D/w9MHuP9zjoC7rAxmcdCxCrjP3zFVhVUtkIC7Ltp+5imgtz8WtP3HDLU/Psx9keS+qCqzKOO+6Jv6I/BN/eRRVGUWBHCXWDAWPZn5AO4a5zQtO0aP4bKbc0xVAe5Skb3iH3RR88AB7n+VRWaVXnB/UuAIUtWuQ2xnLogSH1OA0lCje4d3BMZcN0+aUaOTXkR0X7RPpw/yEuIxBVo8QK5waHLw7vQ2T5lvhIWhpr8WGMjaH+bh1oXX2eJ1/i23b/Gaa51PoxfCa/bFxrpfdkenSk6GCIgi2s75LMncdstZVCWxXQu1q1Gj2USJbXcE1EXhbSTC/0FTkauK8t0q2J2Qd6EQ1yrMyLC7rGNrEc+VD/mqJLCJFLxixVfCqflOb+/RkpKJqiom4unzHWPpbjm+bCPJYhx42W7/y0zDnflhYiasdvh6i+f5+PTbDQ3Tlz08UOI0OTr2RDDSH24fMh4z9Du2grFxBZKUKDytpeL+7Tmt6rSCjbvbBm83W86528a2m5tv295fy8RbfEAEb+QT5Dp8fBR9WBHxd+IJcMcoVU8ybf36+mn8zyWwRaC3H7Z0/lZEq3hbZn3AnUPbVWdWFBcPu1v0LnQwdxV2oNS2+plavX3vbwW9aTICXb39661e53MKH2AytLq5zTQ0oD9HeSITcjFKhAla8uoR0YoNcQMNP8ZnrKzsspsbahpMTiY5LUCEfFY7YJALv5CMHGWRGZQ7qBF7o6Iwq3ELcooeUAgaysm56ufHUIbGxoiEHo+QNmZvO1GNHwVdD4rpi6mZrEm9l5pdMFhTO3k/IwOfBWsEtY4sTMGkKoSdLWauuG7dZXd3c91U9mB2URlDgWnXatU28aTIa28dfHUdOQ9/gViKgVq59fib279ay4APwV86rL2gdGQwK+t6YOCt2FhMFc82TzQHqHxRZrI9gG/W0U4AijuUZhguBogcY4CIuMQk2J0UZghom4O8jJFwk42ngebqlPCevnS7SG/XgGv4ULIpMT5+cFcwCZojAaE3wI1mgt1r115ydsb8Scu5t8HtjHB26oio6rP6M0Pnc/UJMB3AXULbLWe/hMy7VzIq30uwu8LchVuzKuNijeHhR9KpNZbQf7PyHy+8wbY26bDIJo+zSLgp2f2D2dl19dO+V3wxDZgrtbSXSRfhJVgS5G2I2ItFh2SaPpBeWjF6PzOz2cmJybIJjqkWPRmZdS5dvDD6ZxpuhQzQqwxObamoZIRdC7L/RcDg6Pozd/2Fv5577i+zYfF7OINxlYXgx7ZJEGoFakSjFEG0jczJO7y9rwUE4OqLickvGU7MvEN+y2xtnrLD3aHd1qzBLEzFruDgJgcH9MD4xVZX1+n6+orqcUSbje5n6Hjf65uPIREgPgjbcvsFoW3hZMPWL1EgMXOC0lKkV7SyaIzxCqi74m7FobVlkOjxlcg4FFdx6xWwu1WRGYbk8QnXGHZXE951wXf50qlvNFC7dbSdO+un2OeeDXDHCCAYMtvtsxtdWlwQwzHzh/PzC0tHwoXwvtXrgp3k5bBkrSHg/u86QpH84tVyaN63Ws9buTSNwPPvG0HtWnNUhcfSsj2ymdPzHNRONkvLNh4hVjuCCTIOZh3qbRTe5JyE3Icc3R0a2p+cnPMgx9RhcmxyxATecGYDZvLaU2sJWmBGJmc2+l1lSkqTZiaUP1xQwELK6tVHpT08bVQhSjutfTq88hfb/FFtIbbPCrX/H4Nr3pj7rKoy7ypl3GcF3P9rQQB3q3YX/B6qypzD4oltBXC3Qm9fKMB9QQXc56kn87TR2xfR9kXM/fvG3BdVZRZl3BcB9x8h4L4gMu6PBrjr6MmoAPcPuPOnltb6J7YU6AYXZ62mAtw/4ogtfOcvo+1KwJ0zdlNfEojAQe2KE6nExyS0/S3XbxMz76KHFEzYxkYKC9HGV9VMhN8IR3hGWEJEQcxAdMFjBDxEX+S9kO6QxplG9KiozpsdHdu9vIby8qomqorKHsZn3AmMvuYV1h4S142+CBfaUYJRGqYbkLcQNbDGDgho+z5et11Zsu/WnEXlq/Z3OCa7NYRdSWaxcvFnS42AeCsQvDX8na/OhQJdRYch2J3Y7n82gN33yQfq5XpaEwKopD4oHZlH0ESsR0mBkU/uT84azEIbZu/9ncBz/1Lg3x3GHMBFB95XbTth53hqk8dZ9LHo1nqjoi67u7d5eAxmZ+cP56NhI4YUaU8zQFBQwMAfZh6qKtVpK5Luf5yvwuz8Drbr8ez4U+2Wnl9Fb98n0tuRBBi9/ZQdqrPQ7tCZxsbRkpK+2NipurqYlL7Qnd1BsddN4R1bTRfQ9AoH2w8KXqk2uS8Yi8mo0XaFPBR3/ULt6/iBxtdxt+5BnJ/oCFtZDB7R57/wxj4eH/QMbUvdde9ucvJwfn76QDqCA2YC6QtZ2LgEu0t608jbmDAOTQ4k2oAg0+LiIjbzS5d+IXg8iqlLnsCSQIRKgln+qazgzFSY160jge+r/v648JjKXwSlvpgYgsC2eJ7fmXabNpxiUhkpGHewpnZysqam1c0NxRkZLR7lzoiQXyt5GKAWxCrAEqiZrKEg5hLYssnjnB2D3RmPFXcclyDTLFhMO5/e4HZms+c5LDQn/2a8geC4rhrz5J2EhIdFRTF9MaYOk2uLq1OzExaUY7Oj8yVnt1Y3lxYX+opiHJUvFhqiLsPduNMkWGLImaJ8055fWSC2j36hs7gek1+CjabE789ukyBua8lizUeX41PTIKflDNTWTeE+Un2JW3Bzxw7zlDk5u3+dyzcK6fZZJJss21oasbU/aSWSf/W6zj63vr+LwtxFUpwTETSlC7psPixtX2G2rHf9luZk3VQdFgUiM2YFGgXmmfnFq3Sv6SJjQ1n8ASsO+bdhpgHZFgM1VlbW5OCASv0ICbgLLFRe48VyKYnhBMqohNc/0WOsW4B1pRT7HkkuRkVjl0F2EV4XACbd688S8KS9VIi8FRLoXuGN/X22S1edhhRm6PQY+hM0TmjnMOs6fXwwtgjpO5JuTtXWBlwL8Eah0+mN24RKhvEMwsORVc9IzSTa4GuBgZi6uUVDjn7NmKJv2jODgWXcSbIXxGNkB1/fzAwemMr2zAypCV3cvh0RBr++4+YOJjZ1iolNMeNc2eDh0Gt06IFSrWWHW+PxIG9yzw676xLeNci7rdd71tB2HT0ZLiAokq8MuGt2uzHQiJYoSlF2RvVGFZc/jE+/7RrYstH9LDvysvkYyhjagbNiUS5Egw/Vi3ceJf1vlZf+05Q4uwJq1xDblxgotisrdnaCagOVal9SrkH1jtSMdLPF6/w204XtPheZ61LI5aCY65XV4/3JyahSMK+QHTGBfa/4hnSFRPdGJ9xJwGSOvx3v2e6JHyEhxqXdwuxFLMLkxypAQ85LVKko7bpQO51J/UCP2P57I2K7VkPGAGr/PzZftmPuVkju1n1TvxfA/eMFAdznridjCLgviGPq4xZwfzL09kW0/WmC3Z8JzP1HRHJ/1lVlFkLG/avvQ8b9GfVNPfTj8019hgD3jx8NcN+rewj952qGu4oOo1Jufd922J0vwZVir0LN/eqflPIvlovQdllYVlSV0VzPyafj2SvIlD0itgs0mTc/E2r3A+yA82Z2wDkg+lplzYR50lz8sHi8oqJqogoVudMlJwQtRreU+Ax4jPCDgIc4is4H/eHD4uJLzs7IAUxmd/NmtI7doaG19VPkQ5g/nI9aH/V92kDacH5+Vc0Evtnq5oboc0RG259/XhZ/5NF2/ZKdI8io+Oy2wOv/1+plOwqvA8Eb4e9qVEq/TNfC7n9Swu6yyIyMF6ilG2WZWmH9H+Cc5XDrkHu6goMbphvS7qUVlAzX1k2F7uze4HZGNnZjDCn7r9ZQ/8YzpBrZsffrgYFocUO6Q1Dm4NYjTSF1kPa0hYUnUd2N5GUsku68vIxV2F3Bs7MBZ9c/2G6zaZsOvf3TF3m7VHx8pgxeN3V7584Ob+8rfn6TZnN4wg2XwJatpgvoe1dv//p1S9sv8eykMzSiV6rt9Hbp+zzart5Os+LryGPuOtaOSradjt60iA++uu6LFVuObfI4R9Io5VXjU2Zzcn+yW6sbZgLDBw+KOy7ExsVMEOUvDjHAHaEDlY5nmyd+1zu8AzMKtTKKhiMCIZfXhBUdEQWph4MS4K6yHFE9jenMvP76l4J6klzZoAZilqcbNiAcIf5M19djwmcNZtVN1eE9ZOTdJ0eKDpMJgQtPxq8f5UzhDgmdJ70s1S5fC9rxdOLHu9M750FOclZ/acVoQsadbaYL61y+Wet0Cnff3ueia1Crf9TV8PgbO9NvRyf3YgVhoYXt7I5MvJmUdRfvpHK8cuftnVG9UXG34jIGMhBC6xum8bIlFaP4WlM7ia/Zg9lJd5NqpxjMJ9Jdv2R0V1QZyP9sie17QVxftKf1F2N5Gc0hEiPhJmuWCTbaJPzBJpsEWmgWevvHFlNixBOU/JghkYk9Dr5NGIrL7u7E/73q5/ewqCjzfmZwbNcax5PLNx3lxWR+a0WyaYkVd5M/6Us3CHzS3yqU3KzzZHWWrUUaQqa3S3apSLsIud4RnfiAgdcC8XWiqip1173S0VL0HFhQKANxl6k4IkkrhFZ8EwsKP8V8QPKdqKzE1GKq1lN1WFCYpYcldEwh+GBM8aaUQWXcPu75CnEYJXudh9d1QXYZLudR9Y/okvAmxSX99E9WLx6U10LwKlEaHaV4WZ1GhbzzsPuSJYck2J1E1UcKCszCesQizSseYvbkM40p2f2Yh9cCAhA6kFXFZszODk0g7gILEY2NRWUPt3l/R7tx5E8umD3st1AcNh9DqkWSFQ0eAgMxzzt9fHArA68HoneXxaZIaQohVLZ5sHDeZXl33U1uSWGG5VzbYHd95N06BK/7TDnhatF2AwF3i3WKFnAXjJTxwQlw92jzQGDccXOHqcOEUIBK1W/H1U0eZ1dv/wqlrLC38fmLVgF3DZPGKo1mjkwaPZxdA7UrNGR0iO0y24Yntr9ix1jtyzYeRi5Gqbbe5RuyWfLbcSUrf7CxcSYz7z7z3S0aQqJB9olJ6YtLu5WeO4B6PncoF+mvYryCtpxrzJMV1ePTdXXIg7diY6snqlGuI1sheVEyogRNx0/leKJltdOqt0DtBmdSZyW2azVk5g2124S5G5HcbZNxt5FD84MH3B/RMXVBBNwX2C71KRCTWYTan37MfZHk/oNSlfmhyrj/0H1Tf2CA+z9/JIC7hb9m0KirAXdbMff3Zye8iFAXB7ir1BsFxJxUZaUHHOAuwW3PcSC7TGmXwHoLgiBbLaH3W7KOoe1Mt93+hL33dyjKpxsargcHt3l6PiwuRpnuf9UfEYvZYx6RpCGOvo7li3jAjqCe3ejd4Y3Opy86GpkGgVIsktavR1BucnQk1UjU93jlhsaZ4fx8vHKLiwtSBQIKcds/49B23mfJovxocBZVF2efE7Y+p2tWCN6I//6ObZ5LqmLdGuwuEd5l8F1RfHNyAftl/RkBREB0Rua74uf3ICfHPGWeqq1FuxWV3Lvd5+I27+9cA1s8Q5nsBi6XwBbngEv46hFy2T/qal7x0N3ExDvx8SQ87dgsHklGopMRAUbEEyS8ZfkLEQX4WC1/YUR1F1XdjY3dDM+5Wz/S/p6689fRkP1IQ2+XcECZeEtGjqiPCBLFnG9ycEBJ1+rqiomNttbe5zs0wG9u/0pFvH3eOvF2FvV2CW3X0t8sYtNcQOChfLXkhW68skAAP1OaNv9SlL/4WKBkfr50w+E1jid3FT4oHSuNvBmJQSirGsNXjzYPVBmIDBgign6IjcvAwQOM5074ICIGKr6Q7pDauqnc4qHbO3ei/JLNG3iHQ3GviHpCDm3ndZnVe0sS8k4oOXWJ5OslGxj0JyfPNDTgr9+Ki+v09r4eFERaECi/ROPWZcsOCXlazscHJVEmUV5GEI5H7LqblEQAHFbQUE5Ow3QD/ukV1u4a1IppgH8iJA5mZ+ObtLnIRIcEuRt8v3qiumqiqrxqrLj8YVHZSGnFKB5UVo9Xmydyi4bIjLp8rLw3KmqksLDazJC++obp6L5odA+obRF10dey0RbQWCYvYyDpruukqtrN0tnEetfmS/dAiRXhJmObBN4uFTUUIgl5gabl3PPbcQUj0x0ScsXXd7KmBuuubrouu2DQwbcJOYt5pYraETK93ZounN5lAdwtIBen3kBW0qJSzesqpRq94yncxady2ZFFtktdtpEtqJC4rkmzGXe5KySkJzISkRaZF9EVRS6moApwx/hgQTF6+4lV6EtMHSY28ULbc4qGBrOyENsx5w9JejJqtF0PqZFhGouSjJ7f6V4NyM7D3FaY7DzC/uG8LiOA3giIV5PiNUo1CjCLy6EWxbaXX0YwQSTBkkdrhMKG1jJWPdYvVv1AejruVLOTEwoeNFokdsSfg+nw9q6frq8Yr4hJ6UNZZed4cpV4jOzQq+tJcooVXau2fUnHyJBn49NvT1RXIyJ1h4YiXPhe8XVockAnjSVPelN0obpiGiAn7UTmuybhyiIzhsLuBrC7IfJuBXy3cumi7bt/qk9v1+52GwPu5FuQP5xfOVHpftl9+8XtGD3M/4rqcXufi6sdvhYBdzvbAXcdrUh9zF1R1esX9mJtr8XZZ4fadYnte0XhR4HYjlgnyP0dXyMYom41XaDNhsz7mZU14yjPEEmQkjAUmK6lo6VFD4sKRgp2PdiFa7q+Pq+YiSNFJvYERF/zDG1HgYfJidovMfMuptx4ZSWyEvI7Hd5qN5lOCvpUZK2EbLtPKyDDQ+3ygVQNS+YPNhPbdaF2fTD9v/03uv63cIn/tA12t05yN1KV0QXcf/+UAO4aO2tDwH2hHFN1AXcbHFMfUcD9qdaTWSB6+yLa/iPF3J9dkvv3pSqzKOO+6Jv6pHxTnyHA/dNnBXB/jm/UdQF3vdLcEHOXanT1pct5kU+gvyxTXZTa60styJoArnGAO3fx6Dx/NF6E2iViO6l1U+O3cutxO6dT3hGdaGOuBQYiMiLQ3M/IQAfo0uKC3h4TX7RrO8QOs2P9Ya0jRCG3JN5NzC0a6vTxod86JYQkOkXIGKbr1uH7CPRITheFk9fUoGJxks4sZs8ngkXqHglt50XbbTRZUuHsKqD8P5VakHO+hF+3BYK3Br5rmO/WkHc92P1DpaWqjLzrCtpayO9KazjEQdwa3At0ZbnFQx5tHgTZRCbezMy7P1VXh+ZtOC+PKZLPNNRN1RWWjsSl3YpK6k3IuDMtcIRjb8UGXAvwbGeWuU7NTg5NDih2kPmRn5EAkXYwMUjYnfjOMtVdZt7pS7p/YCwvO6dz7u/N/Uj7h/r0dsIBMZQ88RafMeh6UEp2f139NOYzkWuaHBwe5ORk5N3f4nV+jWCkKcjiK4m3NlpEWAHcX+HCgvrsy16L0pRW8sKAxGcgNm0xkBC9UgV3xyWCu+NG97NZ+YPVE9Xm2skb4eGYOREJPQl3ElBlIETgdjN9g0+eR5gniIQAd7KZRZkT0RPBuHWNjYNZWa2urogVvMGjfKKKP6KhgtrVaYM73iH/iiw4Q8x3WeodZRbTWd62DbeMSKlYCyhHGNS+dCmeTEnXIsqkdEogHB8v9ZXAc2/z9ESELCp7iA/l2OwY0xeDMdmZfnusrOyqv39+yXD4jXDXFlfHJiYUg8WCtebT6RPSFYKA+bC4GIMQk9LnH3XVI7TNJbDF0a9pu89Fe5/vSAfAb8eVHUk3k7P6EZCZMUZAAJ6PF9xxc0fS3SS3VjcsNBQ1DJDdL2LuIsSmPUfygQ7VXV+76fcLpt1ku02CCKt9LOrJYNCZatOXK7HQTO0sNGFIMci0wxHVG4VmCEsPjzd5nF2x5ZjgSCysMibZZN2RWALc2UKTbYd1oS4JcF/1MaVLGXBXoPnKoyQqzP3nSttDEpOx0NvZgmJ2COucTyPwFj0swpxB/4DWZSAtDZ8OzRwGAaWlzF8W0fYvxNVE44No3NAwnZYzgF9hAk1KgEymo6oKo4+lHPGJtgLTQ9sVULsRyM6R2fVBdglyevTrQykh6oPyekx5NTWeA7bk3WtKnfs4oxQm7C6cDEMzdlYAaJA6Ee3xGMGEogeZPYiAlOD3wM7BbNrUHRLCMmYdy6HbfS+uF7VljpPqFHN3sGfuDhvczmwzXXAJaMGSz8gdGMzOvpuYSL707pfdUX0hhiB0IOeyvHMvZeftnX5X/BBt8B2mOXNa1JxhelMHX5MTrqHCDCfsPjvszmVhm8D395U4uzLt6tPbNbvd+oD7pxLgfnQ5cg1GpnGmEUOx9cJW9PGbPc8FxV4vGS3xjbyCOlY4W2YxKv/tHIzK/8hvS/+U3I+NqvoXjEp6XZxdV0BGESWo2n9O448qy8ggYqCueMP+xFbTBaTd6OTe8IQeLHxkh/6UlIbGmfSBdORizzZPTBunS06Ud7zavQKvB6YNpA1kZIxXVqKQ89tx1TWo1d7nIkLoWufTq7Z9ucXzPF7NPGUeKy/vjY6+4uv7nb09Q9tRpSvRdl5ARnZG5TVkjIjt79pCbLcBav/fEsJu5dJF3h8dcH/bCHA3IM3sni/g/jcZcFeeyHkkwJ2TmlwYwP3RHVOfPgH3WfRkfjxouwMaO5uuRcz9KSG5L6rK/PBk3Bd9U58qwH1BZNy/B8Dddt/UJwu477EIuM8GuNuAuevqNuhV5JxvkhJw/0jl5CZdIuCuvpYpcXaSfV+hgto/Rav/sp3FbUl29nvL9duQuK6ZhoZWV1fEZSSAsbKy6olqhEmsMBKTlRt+rD/EAwRF7w5vQtCQek8JLSiFCXIdVFEhqDUVDRIFCt4+wSL17xqLVEXJboUdY4yz6yLs/zGvSxeCnx/4/rZtipBGsDvV6zzh/S88HUZ5WP5j7WH5V15BbEK4xJ3qi4mpm65LvJOIxh5NWmnF6HBBwZ34eOZ22xWC24quPqw7DD3trge7mBHodH1j40zVRFXFeEXNZE3ZWFnlRCVaXHKnzBvKw3eS7iahE3ZsdiT5C9x72qfRSk7z8he8vMzc5GXnR7KzIiCrPc/+scWxDZ8Fk9ut1a1gpKCufupGeDhqAsaetrNDccZoZVXjmz3OoR9evkk80j6LrjTf88+uJ6PB7wQjNV5pWpaZFiVr1Axc5WYhd6n2+bRsXEQMkr9w9GvCHBgpLCR2Z3doKBND74tBrYGwgFEi8JcGjQB3md6OohLxpNo8USOwtvEKTG9awAdlKzY5l6izi9bFUU8iYx8HvsvM9wOyk4GgD3NMqgyOCNIxDGeX5OONVGvkBpUI74z3+uabqDixXpKy7haOFLq2ugZcC0i7l1Ym+F7g07GDQd+sw7Cg3EM1iroY3QlWB9YUlkxvVBR+F4vOJ6LTyb95q+nCRvez612ZubSd0ylcJE3j4NtECjNDOTkjBQXVk9VpOQPJWXdHS0vxUqjsUL9YeO6faDB3lWuixqbYmnbT7+eo3WSLcJN1mwSBwY2Pg4mEIhGlNCIJhgtzBgOFxJR4NzHoelBwV/B4ZeWOpJt2jieXbTwiORLbSm8XkviH4oKS/Yd1uKUWm5Pn39j3vKAqM+uemVqshntZ4bDIHvaaAnwmS3ivd/mmqmai2jzZ7OiIsIz+4XpQ0HR9PWYLlgyTDxLIy3SRdDvbuzq1Nvh68HhFxXB+PgLwYFZWp7c3+hlZT4bR2wWM7BONDrsKdtcajVpB22fns6twdg1W/kfbLwKqjC7paXND5HkIngO5/ibJte01gt2XLpVPzMiVzBFBfkpuCQioYhblghYN+v+GaeYmXTpampzdn5Ldj+VMa3yDG+Mmk6kDIoDfjisB0ddC4rpjUvqKyx8+LC5OvZcaeysW+RS5BpkXIQVTAgl6ymy+FRuLxF1QMoIwgvyLOICpYv+dPYoxctHACmIJV7IuJ8xdR2HGCHa3AXm39do9O9pu2e22DXBH7Ea7nNKfQjuaZCSzzuW0KazDPGmurJlA2JT24UTAXbUP95xaLvJDneRorarfPXtJLxX2Kkr7T/UTuvYw6x6KP7xou2Blf3jVthNbvS4gKdQ3TGN6IDU8LCrChGHagN2hyDIYEHLexoNNZzdtu7DN+ZIzclPjTGNPRATbI29sRM7yCmvHbNzkcZZk0JwDLrG9854IfG3z8EBqQ4JTo+0Ssd0CtdugIWNUuv+/2Yjt88DZ1bC7bSR3K6oyPwDAff/jAdwX3jHVioD7gurJPBl6+zOHtjfZjLA/7RD8AmLuPxqS+6KqzFMq477om/rj9E19OgD3TxYEcDfA3PUAd5XTmpKC+lM1HUaqznUKdONLzXz5QAW4/0JjfGrB3JcpQHYL11XG4FbKUDsTkBFY7ftfWXuATjQv23h4+aajhLavdT69yeMcWr7JmhoU3Gj+O0ym+vppn04fUZ1ZBtyF8+zMN/KknWOTIzrDnMIHd5OSzgg1uqUXlRtRbup/IUxc2XlJRWxXycjYKPv4/4xBdusw+pxkH607L/2nVfD9d0aikHrHVN/ljqlq5d3lwv1DDj7gKXs88i7D7qI1nFCCM8x96VJEVSSqK76+o6WlpBY9UV1d/LB45+2duKfIMMhdSLYoUlxaXLw7vNHL4Uajr6uoHo9LuxWZ2LMj6WZ8+u30nAH0foUjDA6YqKq6HR9f9LCorHKsZLQEbR7p/mPyMMnpz1956bOXLBDAHiUV14DqrnvIfRbwXUuymx+9TmWX+sUS5Ap8ovrp+vzhfIzYVG0tagIkPORpZnMnDONG9zMrt37JZC4ErV6ZG6uA6qzrybysorcrqHC/4K0dOFjQusy0AYn+Az0vVhlt/xs7zC5Iasjcujftv3IPvjxVV8fUYN56C3UDCtxq80R0bzQjXB9Zzns8EtqOlU+qu6i2PNuZertbcGtW/iAeoPLj3dg+k/KHmB6UqcK6haOqEdWVqBahc6nhlBF2mUH/mSaB8b+7nyPOHxL04hHuUOwOpKdjBMx1U3QMH6ugeqI6qjcKlTgVOxgZVIWocx2bHQOuBeA5GL1Ob2+mtcU0ym86+Tdv9jz3ltu3dk6nVm//ilkpbP0SYZlZ4W3/aoPbt65BrVHJvVU1E1itTMancoxcMdBeYGBRkpCSjwJzN9JumtUy4b3ZhZusaTc9ik3CZ6JNAoo12s11anYKuh6UeT9zvKICccYsmIrWTtVGp/RucMNCO24FVtOnt6tVX5SqMlqXQtJwFy7lhpZRkWC5tKx50fZQoLcjCy8VXMrXuZyOTb1VMV7R4uKCzodZbgYETJrN6FwRh5kltSDYjZyLYREPlp1ei7nEDAmmajNyB6omqsgQhc6LyOfGVGrLRkvmH1LlpFpc1tH2uULtugD6fz2GSwvKq4F4LeBFtHeZ8C5lT9V2NW/jLFfqfFFO6BVZlDNSvJ1dq6vrUF7elMBzZ8JQ0/V+O654R3ROz8xUjlcin+L7bCd7phF3vJHtXTfinuL/i8sf5hYNpecOJGTciU7pQ7aNSemLSOxB/sWFn840NLR7eQ1mZSEv41eQjPD69t/ZY+FgqvCb3HT2RaS6axRmbIHdLTpvNuLvu42hdukO6erJzA64C4fMEBli+mIwCAS4Y42scz7tt+Nq+Xh5Ru79TR5nV245Pgvg/prsLm7z6dUX51DSK3D22aB2IezwxHZJRoZE25VKMkgHuwofYMnj49c3TGMKNTRMYxwQLlCc4O5TF45unjyWkHdQiSXcScAMQUmPQuVaYCClKlRxHiFtzgGXTGEdyMjlY+UY1fHKyvNbtzK0fflyGW3/RNB7pFpd7Yyq0ZBRyT+q0HYtsX0WqH3uOLuNmPssJHervqk2ykJ+L4D7Z1YB9wNPCnD/al6A+3wE3J8hevtThrYvIMj+dIHvzyzm/myT3H8AqjLPooz70+qbugi4P+W+qU8GcDdqP/+F5NFtAtytYu6WAv1Fm4vylwwlHXUBd6Wku0VTAn2FBLV/zGxRV+0jrXYy6SIBGRTuyzYeeX3zUZTvq7Z9SWg7o1x5XUDTgpbvqp9fp7f3g11M9hE5E5EJi5V0QhnD7vAyLEpEFIT5nAc5pE3cIqhDHOcsBw9K7ShNRIsuhHDvCQXYK5fvErH9j7MR2607LP3nHIH1R/df+o/ZmO82Ie9WCO8SoiXX8SpX1Q+VwMFflGoz/El5WaCWMHdET2QOpOrLbm43wsJEl627Sci9hBIi4+EWOzU7mTpM8bfjG6Yb+qKj0bZFJd30Cmt3CWhx8GUiGIICxiV8p7BspMrM5KrvZ2YSU96t1Q1FBHIdXpDpjQg2jzztTp+K++EcDrnbzrAzRNuN6O0SDsjryaBemGlsjErudQ++jEa32dER5Qua2IH09Nyh3ISMO+tcTtN5dskrlae379ULLx/NBrjzChUqWHAPf+ScIfurVKoXOs7PP3+ZF7748Od888+gfBFtJ0mN5wWv1JeZS9vB5ZuOrnb4Gve9YKSgOzQUHxw11iVn56qaCb+rfqhWEBboQAOlJjxgXqlHGdqOSRV0PSj+TnxF9ThGqX66vt3TU9aHVehNK4P+xxqcXce8UW5KtdpKGvxdPy3p5hu+j+U62M8ldSZmq7hqFYo8lPhtHh6ImV0hISSBMl1fH9wVTApLmP+oWx2bHEO6QsyT5pHCQraj6eTU6up6JyEBo+cZ2rbZ8xxmDoZ31bYTJDqxfNMRRGmMOUL0etdvAqOvZdzPmKqra/fy6vTxGUhLwzBm3s/Ei6P80ZGS2MvtaVk5R6KyTHgU7abZhJtmt0n4jEmmYM5goaGqRR+DEcN4YnHdTU7OLhgMiev2Fg4EvOX27Rv2J5ZtPCx7JMj0dj2PhI90JV80kg4fqWXcKZ8KR8TwlZaw0TE48Q8tIVa71oV1j2VBvfmZQG9ntocrtx5f63QKwbNivOJaQAAmEkJKTyRzR8CEkQ0zUXfTtg3WESIqfhTdG11QMmzvc9E54BJ+l/RkyBOF7A0/VQou8wuHh29UyLv8Ha1ouxW0XRaQ0ULtKq76rHD5bqEAWJjLCIvn8XcJ/OITqBWdGZVWg65KMgUHEqJBU4f7Mt3ADB62X9wefoNpcOWX/P/sved3XNeZ5jsz3+66Y7favm6blkSKFCkxRxBEIeeccyRyzhmFQuFPmOsZ97S7rz22u+2WlUzKlkVZgWKUmCkm5ECACCQABuRcWPfZZ1edOrlOFQJBEvZZWCAAUqg6Z7/ht9/9PJNY+FQfya3NjYpNeXd5B/YERg1Glc2UjWVnIxeHxD/Ag4H7iwx7xPPWIfebB91u4iPqNI/QjtLKae2iFv8yYimWhn/UfaTm9Gfp9nfsEW+JnpuJuRv13JizZdywQE6YKWB3UQqWSMTqLgXazo63m1MwIgNTwSgA98PfH65frNfqFumAP/p+xATqqEF2HbzvyG/F0a2yPyvl303SzF1Y2EtdIpU2WdT+gzfM5qjsJh8bc6hoO7VI3bSLjMgwwo9M/g1sMeh087W1eK6IE7hWm1045tnhiUBBBf1x4S1CxYWGHqU73iuPDo963eLDmBgknTsMwkPyxTM2kZ+/yOwD1czXFE8VN+gN1XPV7R4el3buZGWpTplou9kclVn4XLl25cH230oNtqvSkJHH6P8supbF3FWoylgL3AUy7qsE3P+mBrhzXOjVAPczJuB+Vj1wX3HH1Ock4P58x9vXjLavAWd//uR9nTD3l2DIfUNVZsM31SbgvlK+qRvAfe2Au3pVmZUB7lske2mZjp0rLCOnjMwKQf6Mr+QoP//yA/H8Cx+4CyXaTSPtFA0wqJ0U60Zb1F089Zi3j5ynkH2X5jJa/b1OV/e5XDvgeuOwx/cOvvd8IrpQfw9GRT2KicEn1LYLMRIxhlpi4qLS7ZomDT1/GnP8Iap2xGUiy751K5YB0WcQ+Ryybmx/5Z9LJYrtFgfbVaD2X6kzWbJ6QEbehelflOG7aOxdJXlX1pmRxO7mgXeT1IwcOMD7zx6TR5CiU7pIgeiyyO2O7K6rXwjqDaIubUjLuPs+XT4FE0TS/QFjWjiSmFhcPuUR2n7M9+4hdzKWu8/5Gp6ivc7XDrrd0Pg1VdfNz9fUDERGzlVVHX9yvGK2Imc8hx3FVWDu3FFcVdqycvDdUsMvcZj9Q9nxdlZPxmjkeP1ABoHrz4Jie/WNSw+Cgx/FxaGbbTA04A3E27LL4RJW2Zv88XZpFKgE3P+kRsDdOIRrnIP7XEm7RjiEy1G9kPZqM8JBon2x64s39iJ6nEHowKs75nNX12AYSUqiZXSXt3dF9axbmxuqHlQHSNdkGpe1Vr6wHWUFqja8aY9TUqZLSpb0+tHMzE4vL9RS7Hg7T/5CpDctnLflOzee4JuMca3GJDtV7kivxTwhlLrm6NVQoQlqq0hOOezejeqzxdl5QasNie9zC24by84OfhCMd8a11RWfFE8VNy41zlZUtLq4oKqmYtB4H2rma45nP7H3IRLPO49d2mF3cdvhc28dPLN5/zdv7jvNnEM6+679d+4hbXjADHo93jcUhU0azUxZWfV8NRYpNVAl+xxi+eaT0utLeI7kjypcE5Yp3CRpk3CCZ5Ng1JM5S3yJ8bqSRpIQjh7GxHT5+PSFhekaFr3CO496E1Pid+y/I6pN+yRlmk/KDbH+QMrU1DzkLi3sYEyvHI+EE6Ii4SMTcOdcHPMVdkH9hKMOgfu7jdlN2e14BXefGqUiDre7uz9JTU17mubU7IT2C+8D2fVsdgzsCcQjVN+wWDVXFTkQWTtfG5rQ5xTQ7Bd1H8Fnoa6O2qWy4+2fMQfIzMuHs0f1Cffi10DC3azl03YZ1K4GrMtupBpPMclciglByH7VkHfucTE6VcoUpp9JcS6zgbNJ/B3d4FB8PFZu7nhuwnBC4WQh6qXK2UrkWcRMYjt/4yDV/UCqTX2SOllYSHZcGhujUgZdg1vtve8QsSnna+T4i8MlVG64dmsu44vuIe1ZBaNlM2VIyo+Tk0ezsvDvZ41mIXcj8Br3PlkPFf6ouzR2/0Aeu0vtlljB2SVpO3fDm3vCjAXun0gDdyJNpp2PSX0UHPdAu6j1iezKKRqLfRSLMIu1gCJEAbj/oyqLpj+pK+xlLi5nF6P21/m7cSbbc+6RGpp5ma3uL95gaDuywHa7iyi0whL7C8smEShuMNgCWQZ5AW8IVRNCi0k2uc9uRSJGOt57de/RO8RjiTigenreOnyY/i2kKmQffAUP21PGMWIkORn/Jr54aefOsyxtN8UQbrmuoCGzYoPt6iD7P6sm7zYMuSv7pq4j4M7GouUB92+4wF083v6cgLsaAfcbUsDdBj2ZlRpvX7e0/blw9ueJ3deWuT/nIfcNVRmLzH1Dxn2d+KZaCdzPrBVw/3qZwH3lfFPXBriviIz7coD7CbPgw+aPRMBdPB8qYu5S0+6Kpfl7lk6bGutykW8qR6XdhNp/wkftdKqdTNIxsOwd+2/Rp+13uX7M9y5aFI/QjoCYHt/Ibq+wTreQNrfgNo/Qdv/o+6m5T9C5LWq1cY/i/O77ebQTb0x0g5omDRImzQmeHZ5UO5KaHzY5OpKhmG3bCG03ofbPKUTjn2r/xHQolashozzYrjwa86/KkH15x1Fts2NSKOUlyLulgXeV8u7vcc7Ly1IDzrAelituE+uhioSNG1pZM1dRPVsyXZIzloPeNeZhTOFkYeNSIx6Gbl/fZienFmfnnoCAuepqv6j7R73vHHC9sYdSAHuig4Frl+YysS+L7S0ondTrDfjXYlMfaXWLRZNFSOkI6lRbhj3qLmHp9qFo1F1q1G4FZ+vEYjJmu1RWT4YRIqdGhVgReE+O5zzBC8RKKZoq8u70Du8Pr9ctOvo37Th6ccuBb17fwxm83f5XXre/RbrbtwG4GyfcTdNw/2RWlZGD+x8yUUU4h8v3amPtIo1wkBmv+4aOWiOAHPG8lZAxTBv4VlfXwago7aLWucUZRRyVLEcpgY+oXKiMLIrB0L7Q2crK3OLxtNyn+RP5zzIyUMJyG/vP+WLT4oFcMfvjCkkLr9deYx0RuSCepfAC7Cg3KS/d4nKUaqgpwmmGrBEn1XffRR35IDi4bKbM0EA2YKj8eu18bWbB6EJdHV54k0aDIpXWiCg90RXMVVVhxflFdR90u7nL4fIOu4t4q/EIIW4jeuPavP80oje+W1w+hX8EtTL+LsLw07Q0OjaLNxzlD55Pot385c9Zj2Lz+jrJX1/MqLtZ1f09KeEIi06Jtgk3sUOs4gnWz3+GXx4lEvUlTnmcglU2nJCAdwx9Wqe3N16sV3jnQbcbCDh4Q/AWicbbZTwSxEDN0pC7Kduaz5CZLpa2m4sE43/IfPE2yLm6Tz81ismQ8yIMQWPE3ByvIGb6RHTpFnWDkZG9gYGzFRWRg5Hu7e6ura6+3b4FkwV6g/5xSkqDoaHTy4sOR9dq57EMU3Of1i3U4RFCX4eyG8+hcfuKpl2BDjuziE7yF8Inoku8p7VM2i5E7erZ+v9led/HomH2f4hA2B9E/P09/ta1nEuKRfLFRgbKuVALoVUgc+579yJUDsXFPU5OfpKaWlIxhTtIxfrQvaH7RF/u1uaWNJKEZx4PAO7yw+hoFFfe4Z1Hve6gZtvteAWPCoIDnnxyNvEwKeewFqpq5xKHE7E68J+4a29P8Ss3JhiZ+xeb2FF3SYUZrp8qD7u/zzuqYLsS0HsStF043s7JwgrAHa8LaQVBNSP/WWBMD2qMlOzHeN+CeoPihuIYL+Xv3zZKylAvZRFwl9vzVmDuFrH7pv8UeqJsktGtohGGZ47KGLEwiu3GwfZ3qfyj8UzqWwdJAY8H4IDbjaiUQXqiFCkAsRGfJ44kknNO57ZRj3oq+UiBOx4t6rGEBwOPBxLH5d27abd/edcu6hhBASWeH+QvZDF2C5x1VzLKyJgU2wUaMioH238tUGxXjdr/2abLauauWsbdsvHSygH3k2sM3C3pyUgC97V2TLVBwH09jLc/V9q+HlD78yHvK8XcX74h9+enKvOqyLi/sMB9Xci4v9rA/e+vCHB/zQzcP5YG7uJBuU2S2J3D33mXyKvQjNr/9APpA6cfmWk7M9gunmo3o/Z3TpmK9S9osb710DlU6mjp3UMIUg+K60X3XjRVVFM3j9a9QW+YKi6eraxEx4Kv5BSNZRWONjYu4QeyRrOKp4j730ItcTqcLimprCHawdGD0fgYFNsblzaUP5Hf7eeHQHbBVKlAbgVKAACAAElEQVSz+uzsvCo70m48kcoZk2FnZP4gGmznjcaoP4Wq6K20IoW7MnxXT95XHLtLGqsasbsJGbDStJS5Eyjw5ptnGebe5OjYYGiYq6qq1y2m5z3V1i8Ulk0aGhoep6S0ODvTmVx8bHV1XWpsxA84+N7b73J9l+YyOv/tdhe2HWZAANpC++8Oud+MSBoonCxEm4d/sHquurpuLmIgAlkLMVggL2tmgieM03ZceRmVo3bMwKTpkm/4bTjJTvVkBEaOoX2hRZNFtdqFkumSpJGkmEfkOEhixvA+52t4E97cZ2r1pcbb5cbrRMD9T/ym/U8yStO0Uf+rQGb6R2J1LJ72xYfm8CKlW/1PZtpugoNHLux0uLTX+doh9+89Qzv0S/rByMj7/v4T+fmxj2JdW12pcR8+enZ4Bj8g0Fln0IX1h1HV8oCYnoNuN2JTH+Fb+COqLjLeLjWNKzfJbtGtkXt9ZGpijerMHBb/Z0sXD9BLUTazKQKL3TkKM6gRHwST14iFg48ItuN5ec/S09s9PFDRosK7bCrFUNuhWiUombEddg5o3ut8FasJjxAB7swhCdyCN/d9ja/sdrwSEN1TPU+O/KOIRy8xGB29qNVSxwU8mVhZZr729008+eZP+JYJHwktE5Yr3/TH5dokED2Zv29COYNVhhoTS4wIXusN1JgX7xLCjq7BEBjbiyW24+hFPJB4W7jj7Xhof7RNZk/rdQvAXaTkzhs+5VqUGyXdNpuWlQm4Cy/z4OpJs/kqIxBBxWS2HDizjWGm5JAZs6acApoRM/WNS0Px8XjtUYNR4f3hSK8LdXWIw6EJfZ5hZIO8smaurn4BiRgpeywnZzghAc8PIvN3jAoEz+GQm3kFh0K4jzd/F4qF8srr7kMZ4K5M28VT7ZKQXQ1YF3gKSFn5mi5ZrwEeF+OqLf9JjUuKTGQw7slxIgN7kgxPMpZtb1BQWdUMbiXuMkIlYiaedr9uP1pr9QYGNjs5NWk0HcyZs/S8Zxq/pgOuN0ieJWJT57cePIvgsIXsgJ7deew7PBW6RV23ry8iKlru+35+DQ0G93Z3KuOG7ofMuZ9+Ex0D3YpTxu7GUXcF7C4g72r4Oxe1i2k7JzJIbnsbfcs5pqkIdGhqXVpcUFeUV81kF47NVpBTdFgszCGzDqwpcxZ+lwB3noeK1D60tMeDhcL+PelifpNcYPlAePBlC19DhgkRJO3u/DsdbOceSyXjMszOHEIB8kWHp2eLi0sfowTo1Oy0+/JudMPoO1Go4CM6Wtz9PVf2ODY5Zo9lI4AgJeEJQdJBc05ba24XTe1/6bgMG0CMou0mGRllc1SbB9sVSvd/Xt6lUKuvKnD/jxUB7pYO6q0UcLdNwN064L6qjqlroyezxuPtLzVqX2vs/gIKy6y7IffnqCrz8sq4b/imriBw/2YDuD8n4P7p8oD7n/nAXVqNQaJ15w2lqqnLLZbmotl23mC7DGrfSW1RjRoy6Op3OVxy9G+qb1gsnS6lk3FDcXEzZWXlM+VoUaIfRof2hQY/CMbHyMHI+KH49GfpKOiLyiaTsx5HpzwMjuv1juhyD2nzi7qPvz6em1s1V5VVOBqe2F+nJS6RSA9YzGc4zocUn30qGmlnZ2Q+EPgscc+icgbbJYp1+ZH2/71CozE2Hlm1RN7VDLzLHWJdPnank3rsmJ5RXoYhhsZBvLfeQtQmRMDevtPLa7KIiHTf9/cnGuWHDiGf0XSFH0DlMZ6Tg2cArT4BAQ6Xdxy9iMfsrYNnCAggj9y53ZrLUSmDx58cH4yKIrDMxaV+sb5uoY7IXzBi7qT/51u6cQ+5qz3h/t7KD9Zx+3xWTwYRlDVyRLHg3OIcMRBRO0+2oHKLxvNLJvKKx4Niew+5f//O0W/fOmDWlf4nMt5ubPXlpJ9/ICtXJTA1/RNPaZ3Mx5GO3Tgcx0QDKjNtgvt8vs/8F8VYkDPJa+r8mfPsPzPPthvH62jDv9/lOnp+58AWOmf3KDZ2QasN7w/36/YL7AnMGs3SNSwa9PrJwsJFrbYnIABxBl/ML50IjOnxDu8ku3daLR4wKjZtnsblw0G5SXYJn0aOVaPspYLIK6D5EyLEZuZrJuxOhd2xjqg1AmopgokPHUJsRFOBUpiMFu7ahVeNUMmewsYfqf77XFVVwWRBau4TB997eJO3kyH3s3jn8SDhYrzyzmNNHfO5W1Q+NZqZ2ebm1urqOszYJKBroWI++EeNzJ3yNZF8s1i+iV1fyzxHIkbtamwSWLtUo57MF5tQ+6Bew8tB6EDEGM/Lw1uHdwmRp93d3dDQEJbQt8fpqmC8/Z/4h0he40pGcE2JlYC7oozb5j9zvMq5tF20rOiCEtA0Pm1n1JlIkETY3EV2sK4ecLtx1Ou2S2CLf/T95KwRLJDK2cqiqSLcXKRg38hupO9D7jeposhR7ztYehWzFdVz1f1hYU2OjgiweN5Q/tLtK3Y0VbyglC8BZ5dcg3JGqWrG2wW0XQ1nlyTsv1/GJUDw/2FpKFVBru1j/v4cF4oJHFOovMxZRl4GbRvWO+5svW5Ry5hsz1ZUEP/KRmKX2u3ri/RKW18k4ofR0dlj2SHxD4543sLdR3JBnt1y4Axz9oWcOtpud4EefJkpL292cjIeBNHrvTu9kafQ0hHmfn4beho2LLC7cTzszm7IMfpcEthdnIXN8vz//f8Wm+HyL/YnJWk7m4XptrcccDfvfDOSU+js3drcUL7mjOfM19bmlUzEpT1CTYIs/O6x74iq2z6Tqhtz8MuYhd+SM2CwPE8jLuz/u0Ix/3OhYhtnG0/KHJXucJs0ZN7cd9qI2g+fRzp41/47ejgVgcIvqptszAQFUe9TJF/7O/asOz16WXzEfd99ZTe+XjhZWFE9O19Tg6cOCQhJ5zzD1mlDS5yWmI6UiEDSY6lM9f6pjIyMcLDdtEiFg+2cY6kqB9tVlu6/lLqsYO5S9Tlbmav0TX1hgLuUvcRKAndFx9Rvl+OYumoC7s9NT+Z50PZ1jtrXFLs/d2GZtR1yX2Pr1PWmKvMqyri/fMBdjYz7WgJ3E3PfAO5rAdx/KJY//rlMA7+Je5lqcRE+E5XmnMF2kW47lZExa8iIBWQ4qJ09hYr2DL3HMZ+7S6b/LdQRU6m88Tw0KpomDeIogh8+IlQjL7m2uvrf90eP9zQtDS1cUtYIinuXIKIiut/1+i6Hy67BrdmFY9Xz1RMFBVNFRY9iY5EY2JPsXzAaMqyAjBC1M5Wl4Diqeg2ZZVbqCvX6L62v41WKRf6LNfaqK4Ld/6CM3TkKM6jgjcTQBAWovAwiMuK7McEwCYN7LJQKVXf7+uoaFqvr5o9639nteIUB7ucYBPY1wwfPvGP/rVNAc+1CbZePDxIh6gA8Ktr6BdRWyDAIyWQUS8TcBXO4PHmZD1TM2Sl3+xZpu2i8nXBARk+GCrhTI0csk4ThhKraObyix8nJmQWjlIgddLuBtYb3YfO+068zg7c/JRamXLtUy62+AhAUGCkLxtKNMtOs0jRX+2ILnw+artc4ohm8zp9PBrceOscKXyAIHPa45eB7zy24LSi2NyP/2WRhYdFUUeqTVNzrRa02p2g8LKHfI7QDgSIt76l2QWvQ6ZYaG/Go0PgzV1nZ4uKCYsXoycah7Wy4OGE6B2MRsr8vRfrE1/umFpd7iaG8gMvzEDwfvp8UyTp/xodrKAVQUqAiYesYOkXIrT/odymab3d3x7tEDh6VT9n73N1jWlOMaepZempkr9NVlrb0h4Xd9/fHmx8/FK+5pyEeG1d2Y4ny+JrUqLt5mpWjICHtmiAaTpaG7H+0cJSER9sF4+0CPZkviJ4M3ix0NogVeLqoESgNIENxcXjMQuL7dmsu0/FVzir7VKAnI/Q8V7W+ZGZRuRiduf5B/nqNszUuuaa4s+2InAdcbyCEOge2+ER0hSX2J2c9Lq6YamTga3res/Ckfq/wTsQWO6/b+1yIvj/+lp3n7QYD8ePNHM3EY4AGCVEa9fEZ1gvB0vaV5GEOiYvzY3KL0So9GVnarozaZSD77wQXTYuSF/8nJRC8AL4rkvf3JTGZiLz/ha/eZhx1Z/we0IY1OTou1tc/y8jAE547njuRl/c4JYXunaAnvMIgJzSlzU5Oc1XEDpfubeMBePvIBdR1ePjpPhwiM8KCa1ArfuZhdHSHp2dPQMCiTufV6YWKDv0lej5qvYPkhe6HanzTyGDckPuM8Xv4VCTsLsDuH/Kxuzjgvqd4iSIyj7YLxttNiVgM3Dd9QbTd6FEzvDrk4sCeQCwHRIYGvSE47oGD3z3TCZgzbxhtVE6Zgfs2yW1vwUiNfG2/SXQphhEF1C4wR/2pOeeaS3fWaQm3eL/L9YNuN+08b2n8mhArKmtmh+LjUaVnjWb5dPk4Njnidu+/vn/P1T0UYeJzjw4PumlXXD41GBWFKIqWGznoDAPZqc0S7R5ZpyXuOTM8xhL+qKsx2G6pgF9mxb6cIXc1vqmSYWSNgbucmYQF4C7lmLpSwP07dcB95QXc1+F4+wZtf2mY+0s25P4KqsqsiYz7hm/qGgH3F9Y3dW2Au42+qWsP3F/jDK9xdBgkmLssdle63hdy9teFespSg+1GuXZJrXYWtZtHY5ihVFTqdBa1y8cHQfzJ8ePZhWOo0RHGsNxRFmHF0wIdMR6Fe8iDEGqP2Rcair+VlDXiEdpu73P3oNsNtHxhif1543nZY9kDERFNGg3iIBa55KSqWtQuoyFjLWpfPl5fDn+3duB97bG7UdudozDDjrp/Skfdf/azLzZtooLUBBcypTZPupGpsIk55J49KI8MDQ36JX1I/AM8FQxoJpN3LHBHr3jY4/vSyunhhARa7vSFhODnNU1E/gJxHVEWgRChy8zc/8Y54S42c/vQ8pwdi+AVWn2JPt/SVB3b5LNGjlgXgb2B7R4eIfF9+sYlt5C2Q+5EffvtIxe2GMfbmT7frCfzF+PIuZIh8wdKe3gia8cfSjTwxsuoNM0F7qaxXO64Ln8Pj4jScGVkTC5tREZmn8t1O6/bTgHNXuGdgbG9kckDiRnDmfnPSiqmdA2Gqtq5zPxRBBnfyG7nwBYWDu5zvoafzy0eL5wktmy9QUGtrq4o8qjZw2mBJxs3YrCztAqQXZL2KGy7yJAfSSL/Ab8Z/pAzCy+YbOXaEbMzrZSvfcm0tdyG9jS3uWV6WqwvytzxtsxWVh5/chyPFuJzUFzvQTcy0bxLc3k3IzmC8Is3VuPX5BnWEZ8+NFte/jAmBgsqqDeIWmui5qUGjCSqf/sOta7lYndlJ1XzqPv7Np0jscoRUeYcCX5P/MIoDBEv9Aa9T0RXas4TJJpOL6+Z8vLKmrnKmlmXoFZEGzyZhKZxVpksTVPQi5Afcmells2aS6aMLMvZJZK1MVNTmkalmbYyzoeMNMQtt+C2pMyRuvqFWu08cq52UZv+LD3uURzS67PMTDwJaXlP/aPvuwS2HDXZZuIjQu58dbV7u/uijgiJIBrjEcKzxHohmKXbLdF2HnnnwHfxd1cRuFuJ2sWE/bdWXgIKL4bvasZU3+ePvYs1ZwRG5VRh5ksq4PbWW2h+0OmhNUVJdpcZaWdPwLDDoZeZve3+8PDquWpt/QIWPmo5PPxEVebQWSyBt5lxCgRnB997wXEPKmcrsVgGo6Ialxq9Or2wiJCt0NoiLKDRRNqlkQHJl9WZkdCeEgu7y2N3afJu8WJpu9x4O2fnW5iLqZnKGWKmgl5Zc0+TO56bNZqFdIxYUVg26ejftNfpKpYYA9y/MoYIE3CXFHb7B7mRGmMufl9tPf+6PGp/k6cJSbfijAdfRNJtqCLIbXW+Zu99x9G/GffdL+o+civioXdEFz7BvU7OejxVXIygETcUF9YfhivmUUzK4xR6PhXlPd4Qqg1Yt1CHR+LW4cN4ooweSwxq/9LU9X3ONGxcBaqTYn9Utm7nHkhd6cH2FaneLTN3hSH3DeCuGrhfkALua+GY+lwE3FcNuK8GbX/hUPvaYfe1Yu6vuqqMCuC+flRlXiHf1OcB3M9tAHebfVNfVeD+EUf4mC3KOdidR94lrh+w1+vCulxsXSitIWNC7f+P2BZ1N+XsX2/ef3rLgTNoxraxp1Adr9h53UYf8jQ1lSobPDl+nFX2oIsDiwwLGoEHX3RtdcV3n6alEckCF5eeACK+bNDrE9KHg2J7qVNi7KNYfMQPXKWtvshh6RMrUbukhgx3KEZYpq/IOMx/+28S17Lh+8pjdxlt999aKzIjrzBjHnVnZvFogY6YYjxwyuGDZCyXcYZEshyIjGwwEFtIt+A2NIdUeBpdLnuu4qDbzcDYXvSEnd7eeFoexsRUzVWhQ6ZnnxG26bSdUPtCtaqs1d2+uqk6MnVLZS5YPRlq1HZuG/Jw8IPgWu0ClgAqr6Ped7zCO3UGnUdoOzNV9y1zjP00OudNO3l6Mmyf/4/S/hAfSvX51slMm4yU+RcXuG/5M99ymYPa2SHcdz//+a4v6JbJ20fO73S4hJsYEN0TnfKQzqePZWfP19TUztfmjucmDCfg0i3qJgsKcorGg+MfuIe0HfO9e8j9+z1OVxF88DE8aQA/ibdroqCgmRHjpm2/kbYzcJAeXT/JR+2qcJ6MJaP1Nn5mIs97XgT8nQ/fJcZapeTdFURUT5sG4VHcoD5D3T8UH79QV0eXFUKue0h7aEIfond24Vh63lOE34ikgbDE/pjjD0sqpsdzCWkK6Qvx6fLxaPdwa3ND9KbW1qi7UcyiJDSKOH8jVHCScCr+SOkoiXD7QvodFB4lEQo0i20SuHoyf+dta+VP5GfmPzue8+RZZuZ8bW3kYGRQb1BV7ZyD7z2BKbFAT4YD3M0o7QdqD5GIhtyFzP0jKdQus4NlnF09RV1SkZ0RIantIW6rrsFA5US0i9rjT477dvu6t7vjPgbcD8D6ehgd3RcSMllUhIehoHQCP+8T0eUT2VVaOU2l7ZMyR6ZLStBWoYw+y6HtFJzxaDsXmnOuP6u+uNbEKwLcLdN2BdQuz9n/j4pLmb//3lZ89oGcUTlrmmIScDMeJmNsltltbHoC5jzHlhAxAXcWTR06fBINhhPw0Tey287zFnUpx4UAe9Dthj1zQgLfSswYnq2sHM3MTH2S6n/fn8YEPFTend5+9/38uv3c29zxFQQHJDKUfDQFczfkhAoz8thdoDOjKh2/L4HazbSdJmKBY6occGfcy9FV43U1LjX6dvki7nlHdOkblwJje5CLt9uZd75/agLuXCcV0c63/DHW12ULe1FJ/wH/iOqHIjsHCcV2Ts795u0jF3ZpLuOeIsolZ43gjlfUzE7k56OIepKaijBo0Om09Qt4yfgW+wmiAWqS/JIJZIrq2rneoCCiG7lQG5k8EJbQVz1XjeoL+eUcIzlFUDujOsVy9r/xzR64pbvcYPt/yA+2/0b1YPuKo3aF+tzikLtKGXcF4P771QTu0hbuTMdrC3CXckxdFnBnx9tVAHerHVNXTsB9VfRk1tV4+4uM2p8jc1/XQ+5rbp16cy1VZV5oGfeX2jf1/GqrynCA+9kN4C4J3C0x91MroSpjEbj/7TkAd57ZIJe580tzC5f5b5n7eWFpLi3XLkbtKNOpUPvm/d+8dfDM1kPnGLXHC9yDqAdcbzj6N9XUzQ9ERqLs7vLxqatf8OnyQbQg3pWn38SDjAWExYo4hCwR/TAaJTt+DHkFgRtpA39rNCsLFbxuUZc4nIiOTq83DEREXDO5pBLPw02bPjNN1ZEmn2+L+r4ItavRkLEWtSuA9f+1jMsihV9J7G69papV2P09MXbnjLp/whfHYMn7l5xZXUQ0RMbzDB9sdnIi2kQTebnF46HxfQfdbuKRe9f+O1y7HMh08xHPW+4h7WVVM0Px8T2BgVNFRfFD8ainkGmRjozM/exb1OZLtueXGnUXd/tKrT63yVd/hp2vJ0MHb1EBZTzL0Jks6fa7XPcIba9bqPOJ6NrjeIUdbzfbpe7gWJiyg3Vq+nyJ2br3xeO3gs05o7UjH7ibL/PXhVHlnzhH2hFPth46i5tIQ0dS5ggVoaIfQ/pCPNo9XFpdXFtdvTq9IgciDQ0NiAY0RIQn9rsGt9l73znkfhPPg0tQ62x5OX4ecWMsOxvlGqHtW7ci/31pGsXlCsWaDR5M5mwqIbs1MuOiS47CC1WIJJpkibFWrpoEQ95pM2xMfnwfM7qs8G6cMYk7t7m6llfNZI5m4r2tnqvOKhjF+zZbUYFnLGs0K3c8t3a+luJ4wlkMDfh641IjHsj6xXqDTlevW8TXC0onquaqUp+kJo0kocY3+qme3UoHWqXlZf5s3VESC+rMVtkh/lVCnRkhwrPDM2csp6p2bq6qCq895mEM3pC03Kf7XK5tO3yesUP8UrzK+IdIxLOr76s9RCJ55ow/586bat9ygncK7W2jEQLnvAihaXucrh7zuRsU27tQWzuRn182UxY1GOXY5IjAgj4JHzVNGt9uX9zEnoCAVldXJN8HwcF4AAomC4g0xFSxdkFbMFEwkpQ0GBWFHI0FJabtxh0s07ISQ3PWouDjZQP3D0XiTssB7nK0nYvaLUB2mhmVL3kEL4bvtpB3BezOEXanIjO8EzAm5nWGOWGGpgUNEnq/dsY9FWt/qrgYtZxnWIdLYGtk8mB8+lBeyQTyb1re0+Ssx8ezyYj3ok6HAJI9mo31stTYOF9TM5qZiSjxNC0NYYG6+GBxIRGj20YiRs+E/yp6CDLqfko46s4VdlfC7h+IFLuUrw+EiVg83s7uyRkPwQiA+8Xt6PIrZyvLZ8rxWg7dPHTM925JxVR13fwh9++ZPTmekwofuAuPmskcY/3Aqqr+h9KonWvncJINDnwZma9RwJNDge7f455mFY4mZo6gXkIdjttdXD6FuBcY0+Mb2YXgENATENYXhtiOO9vYuISfRzzxDO1AskbFheSbmvMEf4sx4V5arK9HJLm6d+95plZnPZaMqJ3plyQOpHJKd0kZGXZVSgy2S9F29YPtv7SmklcuztUMuYvrcMu+qRvAfTnAfXmOqSoF3G/aBtxf8PH2ey8FbV917L4x5L4h4/7y+qa+xMD9zAZwXx0Z97UB7pLM/b9whl94ToNi5k7qciF5V7ze4EN2fl1uFWo3nT+larDnyDA7Q9j3OV/b73r9gCvRfjnkfhP191HvO27BbSjZH8XGonWfq6pKGE5ANkAYoDraeKixtrDuETJRzdfrFify8pCWEDER44hJ5r59CMrNjo5d3t74F5qdnBDQ6byMHDiTrdf5ozFCwUeZ86fKqH3FCbtt8N0G7P4rK7G7SoWZ34mq/z+IsLtAYUZspvopBxSaybuJD1LzN+Q2NIRzlZU18zU6gw79v3Ngi3tIu0doOx45l6BWfPQO74xKHkTbPxQfr13QBvYGOjU7GcVGr+xBnjFKTp8Ryct8KtS+EEvKSg7ZqWryrR+pw2+INRLeH549lo0XG9QbhNx+0O1mRPIAWl+/qO5djK705v3MeLuwyed7tckBdxm5KokxOhmbBzP7k5x2N2vOmPyWt//1Jzs+pVGFPdK+9dC5nQ6XcO/QrpdUTOEjceZsJBoFVLcEF8o0VJ2ura6pT1OfZWR0euGbXogwZOxOt4CGPzFjuKxyBt1+41JjScW0Qadrc3MjSjJbt57mCF+Ig8aHLGq3BrL/QcqAUfqS+mEBgrcM30Vj7x9x+JqAvLPwndsbc5fVV4zm+xnTmsLbWFo5XTJdUjxVrNcbtIvaqMEovOFYNZomDZmA7gmIeRhTMVsxVVycmvs0MnkgOO5BUGxvaEJfUuZIWu5TujtiaGjAD+DfwW3CjcNyQ6FEyBrd2frsp9LbWuolm9XpRVh3juTrN1GIobpEwY5fGy+zdqEWKamobLKwbDIiacDO8/Y79t/yxCJsUG2SZe4KIm8fStiisoPtMudFfmq2HSaet/tdrlNVeqTj8bw8vC7qbElLfnyClYVlFdoXqjfo2z080LNRCoB03O7uPhgVNRARMRwf3+3nhy/iL11kxNwkaDsHn0mjdj5z/9gibVcG7jJD7tYCd66SjBraLobsv7H+EiD434r2sG0Aau/LeZXzp90/E52AYXHY15zjL7jLCAsIsNV1c8g1Yf1heHIQVBEokIlyx3Pjh+JR1KU8Tsl4llE4WYhYnVkwmpAxjIwcGt+HVBXSF4KfyRvPw7OHRPw4OTlvIo9u2gU/CEZvisjAPQSD4GDe9hYJu7PY3bz/LSDvH1hOwYJEbKTt4s1vbpTgS8qgckAdW79YXztfi/iG7Ixyt7JmFi/K3ufuO0e/lQHugnMwfK8mLnN/w6aqXhq1i4ID1x9179dvHTizw+4iyomE9GHE/JTsx7pFnUGvr29YDEvoO+pF5KRwIQvgJaOCQqFOdt2Sk0eSkvAwIPK7MfvctPjHX88Zy5mtqLjv74/QcWXPHpa2G4XaTaidjLTzldzMpbtNg+2qZGSsQu3LqMyXOeQuC9w5ky62A3fxsZgVBO6mVnxtgLtlx1TVwN0Gx9TnrCezQds3mPs6HnJf56oyG76pVgy5qwPuL5tv6vMA7l8vE7ivnG/qcwPu6lVlVgy4m50GP5Jh7mbybubvb7AlOHt9KIDsElZswik5kYDMjs9++g6r1U49UYmZIZVoR6mt8bvnHdGFNux4zhN09XTsxSuswyO03TeqOznr8bPMzLHs7MzRTJ8uH+QcRCYsYqwtLEFC228cRPOPGn2+pgatPqIbQgmiALd4ouaZWLHnGSFIVrSdHmCnVbtFhyXxXIyChox4HEahQLcKnf9P/rVS5F2Vtrv1CjNqRt0tC7ubsLu0wgx3HM9U2ZvJO1PEs3yQMPetW/FUoBpAz182U+Z/359MuxeP4xlDw099MuvqF7ILx/DsFZROTBUVpT9ND+0LxePn1uaGphEPISXvSGJ4whC5iars128iUJmd3FRIylpu9T+Qmqf7UKbDZ8fbRRwQ2TX6YTReS0D0/aLyKY92j6TMkarauYrqWeeAFqor/ea+r+l4O1Yr1ZORaPIVBuvesDhYJ232INa14HF20+4djSqs3zIz2M6elSFebXS23cH3XmnldPFUMW4ubmvicKKmSYOqBIEC5QMqEYQL3Dv3dnd8dyA8vMnREQUo6uMOT8/pkhLEkNzx3HrdIv6Fp2lpT44fx9fJFh11SeXqttOgIerz/2QtZJcyXVR/CUC8evjOG3vn+KwalxKHvH/C75MFmjPUZxX1BGodlIN4P3sCAoYTEqh+CN5nPHvUY8OlxSWwJ7B0uhRv7FB8PJZYQHSPS1Arbpmd1+0jHrfsPInOe3DcA92i7lFsLEI67gXRhR/LRoWLgG9m7qd+KnRNOGHBKdFI3t9XqxfBo+0y4+30HAkVcEdlhEoNzxj6kvCBcL3eMJyYOFddHZ3y0D2k/YjnrV2ay28fOY/cx93WklRtkndE/EBSAu4HItr+Ax5Hs5iy2cH2v9KtcSZZG5fVtsPndmsu404ZGhoKJwvnqsigMT0lg9CHFIxcTG1UEBWxanC/mjQaNCTUP/MKB0PgcyRian7IHVlVQ9vNJgTWzLlLA3ebhtz/KGbulsbbLdB2ec7+a0uXLH8XwXcbZt4FXuXmw2SvvSZ2fWBPwEgef6GC73gYEFpr6uYznmWUTJcgw+Kjc4sz2aS5S/Y+/br9iNZfI5lkLyidDIzpcQ1uI2HB8xYaZbpLisybNZo1W1nZuNSIyFAzX6M36AN6AvDscZm78agZx1WFbMtxs7AAuwu3X34oMqQWoXa+P7UgF0unYz5wx8LBy8cLqZytDOwNtLtl5xd1v7JmVtew6BLYgsKYD9w/s7j5rTRV8waPsP9AXNvzq3o5Owd2buZndCtu95dvEltyot62x/EKgvbx7Cfjubl06xqvBXXFXudrRD7o2CVyYvXaXtxKh3sOQb1BiIq9gYFdPj5IE7jpKPt9IrvcQ9rCEvtxfyMGIvC0oDxDt09o++bNXzEyMiTzSgUKcwrmyD+qGWy31h9V7WC7bQMxyxtyl5Vx50cMMXBXNlJ64YD7GRNwP2sC7ueWCdzXm2OqVXoyazPevkHb1wFz3xhyX+eqMtdeKBn35+Cb+soD9282gPuLD9w/ZqfbfiiL3eWvN/nluOyIHDt8qmyL+hUdbEeNjhJc49dENRxzisbxSV9oqL5xCSW7bhH/16HyphZ8GXnP5mtq0MnHD8WH9YehxfLq9HJsJifZEVw1TRq0YaXTpSnZj1GmI6TSlh7rCsuGLgz69OPhPs0YLvFmVFG48wfb5eTalTVk/k3q8Km4OreqNP+fy7hWD7uv1Kj7r0VjeiugMMPF7gIuwOGDCGEIo8glba6udFauaq4Kjxwa+OAHwU7NTh4dHvgEz1v2WHb5THm9bhG9Mb20C1q0+gbmbyWOJPp1+1FhdyJ8cW4rGXXnyMtgKYuH7Kxt9em3LMzTccfb+RyQCrgju3q0k6P98elDeBV4XelP09HqV9fN2fvcpbrSpsFbqnTBSEsbUaACcLdusE7h3LoIuHNH2sWo3dj2czbwzuJV7HO5lpRJ1GO7vL17g4KSskb87/tTn1tkWro/h5uFmi60LxSRp8PTE1Ud2/ygekOVjKcCf73d3Z2M4u7di1KACF8gbvC36ARase9zIJ21Rou8CVnVl0X+bhG+i8fePxSRd3a+lbumxCariKsIsIi6CL8Iwl0+Plg1flHduBfOLc5oPtza3CIGIuoX60ezsrr9/IjBRmNjeNKAo3/zYY9b+12u73G6ultzGRc+dwlqTc56XF07h4wQm/pooa4u5EEISkuiICGzxCS2tT7kY/cPbBGLsFaaGU8SQgceLTxgeBOQldJynzr43ttLbBIu8re1TKtsm9kxVUIswpSLVWxoWRCI+AfZrM2bXTUpRRg3sd6x/xY3CDdrqqio2clpsrBQrzdgBVGpH2qjgmWFF45bjDv15PhxLBzK1mmdTQvlC0yli3RMnQ+/5EM0rm67tNOpJHN/vkPuUsBdmbZzB9tt4OzqEbxgJ1s9eRcOvAt0ZriHYDgb23KnyujxFzwACLBtbm79YWFPU1PzSyfqFuqO3T1G9+FcW13D+8ORlQajovpCQhbr6yOSBpwCmo94krBA7VLJps7l3XjqEoYTcsZyHoSEIHQbGhoqZyvxL+C71OyBlXRnXVXYUXehsLsCducnZd4l+AFOLlZKx1LA3b3NHfWGa3Ar3oqwxH7UFu7t7ogbnqEdQuD+Dh+48wKF8klWi+U9r7AXn1Ll1vNkboavBkmPqL577LtD7t9XMnLtd48dQ/A36HS6BgPu3Q67i1QoEkEA9/HgzYPNzs6zFRVj2dmtrq5ItYgnD4KDGxoMqPDxEc8GAsh8dXWLs7PRnHzzZhooPjPtcxsDBQe1f8SeLZPSkBH7LS1TRmbFUbtK5m4jcJeScV+fwP2UMnA34QDLwF1mvP2cibY/N+C+egLuL+Z4+0uM2jeY+6uiKvOSyrhfeol9U9cMuKuRcX95gfvf1wS4r4hv6jKAu5mLSTB3IXmXvj76If/necKvW3hH0blNO5eISaJ2Rq79LKHtDpccfO+hh1/UavVL6DvQwuuXlpZSHqd4dniib/do9/Dr9gvrC6P9FSr40spp1PRVtXP4sXrdIvkrekPcUBw+FpZNahe1I4mJyCJY/1hpBLIzjzJ9QKnVEp4S0uFznNnYwXbugKoAtdumIWMRta84YbcNvqs5zWr7qLv1qu4qmwEFhZmP5DSpTWO5Zua+bRvyCqqKbl/f0aysgtIJPH5IvMh7qDVcW10DegKSRpLQ/8+UlSVljoQl9AXFEe2LhPRhPHLok6dLS/FA4mn06fJB5kcGQ5ino3ZcSXdzt39CyARlW3256yPr5unI4O03m5Fk8LuhTIsajMLyQW9fNFWUOJxYOVt5POfJPudr6Ip5ejKcDp8L3G2Xq3pD4K7MN1iWPCXD38ATBJZNO7kbeOS4zHa7i7s0l+28buMFPoqJQShod3dH249XjUSNdEfkp86/jcyPWsaxyZFYPlZWoiBGlYPqBMUHr4Zg6gMaScw9P+v0INCe4k/VWeevyJ+NFXstiq9/517y/N2KyXeFRlqKvH/CZ23CZbV1K9491MrzNTV4zBCfK2vmKmYrFrTaGu38UFxcq6trk0bT6uLy5PjxiupZl6DWQ+439zhd3Xns0o6jF6mNB/7oHd6JyP8kNbUnIGCqqGhJr0f7gtvH6rnLuiac4G9ryQlHqBhfVXWO5NTPWAF3/Hr00coazSLNlu+9sMR+/PGYz1063k63tTax21qyHE3a8/wHSv4rH8jamAtoGk8mgjfY/lPzJtbXdBMLt2O35rKjP9kaJ+YoR4/iDhZOFiJIoixFcmVV3RAAkazLqmZ6AgPRYFxiTpihRCaOmgxnJ3vemzd/zdnzNtJ2FqKpoO0f2aTk/rHkPyjP3GWH3G0C7pKz7RZQOz9dKly/5u9hi+G7SvL+HzICbu9Zknc/KT4BY8JnFJahASDHXxjrFISF3qCggtLJ5KzHeeN5yLBBvUH4ZK66ejAqqs3dHddQfDweNo/Q9sMet/Y6XcWDhABOWyU8ZqgPkcDa3NzQaeOB1Bl0+Dt0w5sw9zNbEBzYUXdZhRkxdrchHbO5WJyOxcD9M97OHLVU0S5oEzOGswpG80smEDHih+NRSxz1us3uf0sAd1bG/S3lwZoPpcm7wgCN8j6c8dQLGWynW3HUXn7H0W/3OF5BfMMtG4yMbHZ0xK2ht2+nwyUEELwQo5r/7t23jhzpDw/Ha0RIv21nRxkH3eRGDTYQGYlnoMXFBV8h7g6mI2VCdweG5LK73YIUzJ5EERfwNsvIqBpsXynhR3VD7mJVmX+VkXFXAO7Koy0rDtz/YhNw/0KgWCUD3K3Sk7EI3L/jAPdLywHu1jumrn89mQ3abjVzXw3svnxhmQ1VmXWoKrPhm7oGwJ3D3F8t4G5i7hvAfaWA+0n+kDunHBdhdwuXlLuaCIpxiBgZaWeHT1nOTqrzN/edRtnNFOjn0MDvPHbpoNuNhIxh1OXt7u5Njo519QsFEwVITQhLCCcIPAiN5Kxxmyv6sbKZsmfp6eiyolIG/aK63ZizxoGxvfjrxI6vYDQhfVirW2x1cbnMHEHFU45n9GsOZP+ccnZ+e88VX1avIaNgjioQeZQrzdeMs1uB3a10bbJZXsayqruV/YCkwozcLB4VnxUwdyQMZPenaWnRKQ/rF+t9u31Rzjg1O/l1+2WOZjYYGtBGjiQl5RSN+0R0OQU0o7dES2zvfcc1qDUubYjg3djY0unSpJGk8P5wJG2EfDFzl5CX4WN3y62+le09whjb3iP5INNiQRG6MZE3W1GBDj+zYDQ0oc/O89a79nw9Gb5orARwFzX51g3WKXk/SAUWIWr/nAYWgtpNG3g7jhLavt/lusbvXq12AV19h6fn4xSiC0zuyMXttBWjyAYFWuJIYk3d/MOYGNRYl5mSwqg3ZToWQw/E8OZwpWRkzBoylnicBGRXh9d/rx7BLw++WyTvXHtVwYgrEZlhJluRp/Gmof5A8YSqtycgYCAy0qDTjWZlYYm1ubkRzsIUvvik29e3aLIoPLH/iOetPY5X3rH/FrcSN3TrQXJYwZ6BOL2Bgahr2z08yqtmfLp8UEhifaGQMY+yipwSuUtMlqPxD5RIjK+Kd7ZOvCY+R2IWbmLOkSB5IQjUaudD+kKQy4hNQtJAY+MSEta7x77beujc5n3yNglKg6t8z/M3VCgyW5CJMMu+idSZzLOrO+wu7nS4RA4cBLZQK9Qub++F2tqAngDkaHIjzr6FV41Ked/1fV6dXsjCSNbNjo4o6wltZ8pfQts5x8u+pBnZpMXMHVlVQ9s/Wo51qjJzlxpylzuzwi4lC8BdcrxdAbWr5uxK/N1K8i4n4vxHcYYVnSf7WHAChivmZooJuN1fmbItwiza4/G8PGTMBa12rqpqqrh4urT0vr//PQcHxIQ79vYdjMnqk+PH7x47hhYUf4UWddRrFLFjvqbmcXIy6r1OLy8kaIQFBHk0iDu+JVwenRAZdedidxoi/vYTWllzz5zJYXdz0KAXJyzQS/A4mp/CEzwBdzFwR7tDj8JgBXm0e+SO5yI+NOgNjUuNecXjnmEd+5yvoUgmwH3PV6r2v7dYHKz5SM0MjcDLgTVH5ezDGU+9IDiQHe4jFxCxd2suU3/yyppZ5NMuHx/cuIn8/DtHjyJ04I6fYWzqcROv79+PO4t7RyWn8EdECdrPs/gSf0TcEKg+0qOoss6oMhoytvmjrrgg5PKrcWuH3JV9UzeAuxG4s46pksBdUsB9ecDdsmOqTQLuNurJPG8xmVeHtq/iqPvGkPuGjPs68U3dAO42A/cX1Df15QLuny4LuLPDL2Lmbr4kim8hZDcdPxfjMMFIu9ATlU7BGDn7WbTuBIrZXUSBvsuBmKM6+N6r1y2iQG92cmpzc0OjjnadtEzMqsIiRuBB0HVpdUkcTpyrrOwLDUUdX1M37x99H8X9IfebGr971XXzNfM1T9PSHsXF4d9B7KD2ShSTkdEYLmfn9PZic1RJDZnfqdCQsWqw3VrO/gtrrmVid2uNm1aWuVsYdbdNYYYxfGOJADvqboaDHObe4uxczygZlVRMV81VGfT6hbq62crKbj+/dg+P3qAg9MO+kd3HfO4edL+JB3iP09W9TlcPuX8fENNTXD6lb1zKKRrDz8Q8jMGjazR4/Op1s56syMNNudVnu31J2iRH26nMBasnYxy8PfMW1hR+K/d2d7zA9KfpKdmPswvHvMM7j3rd3u145e0jF8x6MozShRi4/0gQWFggqHKw7g2JwTpOhFFC7dzYQuXa2an2t5meH409bscBtxt2nrddAlsy8p+NJCYOREYiXNCTBzSwIEsjsKDm8rvvV1E9WzJV0urigrqETLJv337edCzmNGcI13wgxtTw025fwpnNFD1krRRVEPbfqb5sJu9qNGekW2sFe1WOcBM1SzDKyzB8DbUgrU3ZkwSo5PAJCtB7Gg05bbG05Brcts/l2rv23207TGbAN+//ZrvdhQOuNwpKJ56kpiK2t7u74ycDegJQ3qJ2w/oizJ2Zc2edErmS7nKnSXgD7/KX7M4WHW//5McCPRkq4I4SD5W+rmExv3SicrYSzQpSVX7JhN6gJ0aIjF2qwCZBBNxlB1e5c+5i/xUFnxWZwXZpUeY39pJNrK2HyCYWpWn7Xa4f9vjeNbi1vGrmUWwsrrqFOo92D2RnFP4oxlGz4+4Scaq56rKqGdwv9C2473RNCTRk2MH2z/gZebVpuxrmrlJYRrCpZhG4K+u2c+G4JED/N9WXMnz/ja2Hyf6gRt5dym9ZoDpFt+KovAxCwT0HByRW1HUo/9DV0/iAJhNhAX9EUZczloPvopdGuEB/RTschHHCbb28EDT6w8MfBAcvarW+3b5Ya0Yn80s70beh66LT7liVRuz+uTARS+dibjqWewTl07EwI8sAd/bMGX5t//v+ueO5+RP5ecXjAdE9R73v7DY7PRDgbrRW3vEpV+HNuDnHq/PVDdbwKny+bfJbQk1IscCUaar94s5j36FyQCF00O3mUWb4ICFjeDQzkwq4U7/TfS7X6TEXfKSCQviWrsHwICQEt5sKP7JR4hz3EAxr7cAIuHEH2wVy7e+LdruVBttXgbYvUw3SWuZulaqMAnBX75n0UgL3C1LA/VsVwF3BMdUG4P4i6smsyHj7K0jb1ylzX89D7i+jqsxL6Zv6nTrmvjLAXY2MuzXAfVnMnQPcz75qwJ3BI2sA3E+9EMDdPPzCwe70koLvEoRdWU+ZadelUPsec9O+3e4CQ9gv7XG8stf5GqpzdO8o0O28brsFt1XXzQ9ERKA0ny4pSRpJMg6intmCFUBkH67uRZwO7AlcamxEW9Xm6trh6TmRn7+k16fmPolKGSypmA7vD2/QG9rd3W8wHT4VfOQeV6czdMaRdv6AjBiZmedi5DRkrBxstwG1/2KFLtsK/efC3GXlZeQncbizeObGQIYICM6/07qf6mBQ7WkykLt1K9IG6o8uH5+Z8vLx3NzJwsJuX98mjQYFByoY9IoLtbVJmSPHfO7iGd6luYwHG20no156M7NgtHymfDAqaqqoqHiq2KXVBfmHq+dunrATebhJYHdLMgoC2k6H6ST0ZD7fhKhJHVOxoFCdlc2UFUwWeHV6BTGnQ7AG8VrwQrBU2cFbU3tvdkwVdfgnVHb4ElN1vIZfotsX2KKKY4tp9vY8O1uHYOLge8/Rv8kpoBltv3dEV2zqo5mysqniYkQV//v+rm2umiYNqkvEE809TfZY9lxVFT2XgGqJztOZUbvpWAwXC0ru0rEH2P+Tg9qVHRTVEnZ2k0nyUgffl6M5I03eRSLvAsom2M2iUhLfMK6JVDv1gqnRRbWEtx31HOJ2b1CQniB3MgO+x+kq1tS2w+dw4f7i5nqHd2oXtPgZIvi+tOTb7UuEmxibYsLcz75lBmoqT5N8LDO+amlwVVkmwji1enE7fj2tbjEk/oFeb4gcjMTvTER1GpeOeN7abndRsK31E1ngfkJSEc6CBYu0UoSMOao0UDNmbYQ1soPlegO/NiIeVpZXeGd8+hCiItZO/FB8YG+g332/4AfBkQORYf1hoX2heKU5RWP4SHa+d+3CXT7H1KNU2M1I25ny65Ro/9tm2v5nmy71zF3VkLsMcP+dPHBXQ9v/bXmXGvKuPPCuHrt/IHUCRuCt+hm7FWcyLb/ABAGufpfR3H7XLvScLc7O89XV5IBLUBDxA9i9m/ZsaDXRiyMdP4yJQWU4nJhYM1+DIO/S4uJwz+HonaP4Llpq1szcvDP31eubvpBQmKG5mMXusuRd/hLTdm5G5h2FYc6cse7KeOVISREDEQhx+KhrMEQkDdh53t7pcAkBkFF4+4qfkf8qjhW8Ol++vJfk7MIxmm0y+3BM2n3r4Jm3j5DIgEoeORcJ1z2k3TOswyusA1HaP/p+zPGHuCOzFRXJI8kIgH5R3QgauFMICE2Ojg+jo6dLS+vqF1Ajoaa6REMEM//+DZN5TzPtonlQRvVg+3+qG2xXkpGRFG2XkpH55eqcVbVYikurymwAdwrcOQLutgB3drzdInDnj7dfVhxvf1GA+9qPt7+ytH1VtGVWf8j9xQDuKzTk/uLKuD9H4K52yH0DuL9cwP2LtQfu6n1T1wa4mwtxMXPnwXfTJfEDJyz6FrLqMXyh9i9Zm7UdRy/udbp61Ou2g989r7BOtOLoJaJTHvpGdnuEtruHtKEczyuZGElKGsvOzh7LdmtzQ+jCgmMd2BD8iFjn0tJYTg5Kdhq1UbgPRETgi/rGJUNDAxUcQITCIiSuhhz9B+EAnQC1W9KQWcHBdjUV+S9W7Vr+cM0vV85D1SrmviwiwO0KRLKzRuZO5WVMZBCREZEamQNJ7gaTQY2Zb98+/BF1CZ7VBa3WLbjtgOsNtMTb7S5sPUTI4G7NZTzbC7W1KBFanJ3Rc4b2hSJVIicgBrNi0+YhXMGp9pNq+3yBOaBsb8/lgLS3P78NCRm/VWbBKNYUFhJeRcVsBRYmFileiGnw9stNO00H2KWBu7jDlzo9Iw/ZJQfrJE0gfiIfWyiKdfRvRrdfXTevW9TRuTntghafFJROZheOVdbMls+U50/k18zXLGq1dIy6QW9If5aemvMkJfsxvoBqldqyUdT+FR+1/40vGis72M5H7cqcXSVb/63UpQa+20ze5cbeuQ6r0gPvHMrGRWw8M9XXX8f6QpVg9DRj2mCq6ouSDncBt6ZwsjCrcJQurj2OVyjttfe+g2SBmzWalfUoLg7317vTG/0ECmE8z8gRZtVmjlOixGmSk6q3tfhYV5q2f/JjsZ4MNULE74PfLbw/HK+ouHyqcq4yaSQp5XFKfsnEPpfrzNSq7LaW9BLbrEos4h+ULM1PSGrISAI1hIJdmssH3W64BLbEpj5KyhxBji6vmsGCwqrJyHtGl1XlbCXxl9Ybqmrm9Et6JGhqBVGrnZ8sLETkJOmYmWpnD4vQvPy51GkzlbRdzWC7CZmKLnnm/rF65m5pyH05wN0ibf9X7iXayWYvi/BdgbzbgN3fE23FfSSzw23cijNtcn/FmKkaowHLxei23Pbt6M2Qc8kRpfmaOu0CFR5EEdjJ+GCH9YdFDETg+URVOVVcnDmaGfsoNm4oLuNZRv1iffV8dfFUMeJJ1GDUsbvHUFUiUKDBIiJvX3N25vgKM2bsLk7H5pMRrwlzMf8pZB+4H5kQIw0U9MyZGLijkdU0afDq8IpQAFPfVI3fPQ5wl4kVChmZP1vDvxQmaUSe5KbzZG/sIWkXv8/OY5eYc6VNxJRCr6+qnRvPzZ2vraVe8tRDvrp2DreMmMQsNdY3LOoaFvH5RH4+inzEw6C43pny8lZXV/T8uMtnOY4OZu1HTvIVm6Ny869kChYPtisMzVgr2r6qspDKdbiyjLtVwP036xa4sw22ALib2ntJ4H56vQL3FXBMXX96Mssfb3+VafurPOS+HFWZF0DG/YUC7uvaN5WJw8sF7mvmm2olcD+zAdxfPuDOY+7GclyGvHPrb3MJzuPsxplT8Uj7O6d+xsdhjFA7EX5999h3RzxvJWc9RrVdUjFlaGgYSU6mwy/TJSULdXXVdfMp2Y8zC0aniooKJgoiByN9unzQeyB60coF4dO7y3tRq52vrm738ECIRBii1QwCHCXvSCoIjljqRPCRDrablGEl+3khapczR1Ws0a0bbLdUkf9ira5lzrn/88ox939Twdx/bbPhmwqFGYEOBpaiWdL9zTcRENm2n0o6IkmQUdwDB9Dt1y3UocknMiyaK9vtLm49eHbboXNoj50DWtDqd3p5tbu7z5aXRwxEIG/TPp8drzMKX5xSPV6neAlpO+foOqsns+kLo4A78g+KlwZDA9pg9zb3fc7XPEM7csdz/aPv44W8ffj8lv3M4C0r4K4M3OU7fJVHZ5S7fRFqJz0/1ZChscXe+05JxXTpdGl51cxoZmaD3pA1mhU3FBfWHxbeHx79MDrlcUr1fHWtlgSZ8KQB38hu58CWiKQBarZcVjVDz7xfEStQ8cUu2DMxHysOtssJSvzeEl7/7TIuBfL+e2vI+7+rIO9yA+9yJorcDS1WxJk2zLRPPs30xqhXUDYhpFNh34rZCtyXkPgH8elDablP0/OexaQ+wl2LSxvCXZssLMRtDegJ8Gj3cGp2Qp+BR5rMsV7ebcTujGsCT15GQa/5z0KCZtXUqvkciUm4iXqH4jfBr+TW5pYwnFA5W0mcvZeWcovHNX5N1D8Qj/Hruzm+xNIQ7YSSC4uaDS1pqxXe7Kp5sH2PcR/rXfvv7Dxv4w0nk6pLS0jWDENbKpspS32SmjSShI/lM+XI41hWofF9nmEdWIkOvveyC8cQ/Z5lZPQGBiJTI2aeM2nIiL3KjQfOmMUlR9s/VkDtUoPtJxRQO/+yIC8jydwVhWUkzrUoS8pIjrdbRO0Cwq7mskje1ZmWW+GqKqMzI4HdxTGB1YVgwgKV/EYLPRQXZ9Dpgh8E6ww6PHjTpaVIYcVTxUVTRXgsETEWdbrSymn8EWVk4WRh9Vw1fWhRNz5LT097mpbxLAPpGD0x1ibP+IE/6m4OFHzsbnVGlk/KYuCO2OV/379mvgZJ+dD3h9xD2mvq5v2iundpLksC959YyMgWinxh5lVMvtSTHFUBk3bP79Zc9ghtxxuLrGrQ6x9GR+PzxIzhgOgen4guv6j7JG4PxZPNb70elX9oQp9XeCfiHjJvMVqApSWtbhF3sD8sDJU8iitis8R3dKBt1d9EyVfaHJWzDCUH29XIyFik7WtswqRyyF1BVUa89tchcGfb1xcDuC9HwN0q4K5GwH1t9GQ2xttfLOa+oSqz4Zu6Or6pG8B9BWTcX3Hgbom5n1oJGffnCNxJIc4ILnOYu6ko512C7zJ/RZqz00Z9u3ikneeJygi/XmBENr7PLR6vna8lnU9NTeVsZdVcVVBvkEeHh1eHV0BPQNRgFHqhkukSahXFDsiglULV7tfth59vMDRUVM+yrobU0pB70ROppLHnCD7+TSTULtB8FPIykYbMagy224ba/19L1+qNutvC3JctLKPE3Jd3+P19GYUZgbwMxe4sEESsPMc0/3QUF2UHHtHssewwxuNxN6Mqg6d9n/M1NJaZBaOPk5MfBAfjYQ7sCUR9gQRoFJsWC19IKsme5MEh9Y29cLyd0ZPhCbh/uwNVHpZZUGwv1h3aY3yub1xCC81wQE5vz5WWNrf3dPzWlg5fUZ/KgoAME14Iat9sckalAj5F5VO4EZOFhfiY/izdvd2dyAh8fwjvuWOzo1enV8JwwkR+/tO0tMqa2eC4By5BrbhfzgEtzJj7Ul9o6D2NBrUIpe0CBSp2r+6k2OlBPNiuoN3MJ+y/XZ3LBuzOI+/qBGf+qNB4c7pu5cnWU3zKRlcZYe47diDCL2i1pdOlKY9TKmvI4CQW0fEnx3Fz8cVGZoSybqGueq4aH+nn+GjQ6WIfxYb3h+O+o4QkQO2sGagp72y9dkJO3tvSzpZooVGCRoWbUDCiYPfu8q5frM94loGHLTShzymgmXFBvPjWgTNv7P3axm0teUU4i24r3M1ydnaVK/627dA5Qtu9bheUTuDXpjOqSMEe7R60pXNqdkLijn4YPVddPZKUZGhoiE556BHa4eB7zzOsA/kdt6nb1/emSdjtG4FjuVi0XZG2y17LQO1K2F2euUuKuVtQlZEB7rLj7fKz7XKo/VfylyR5/1cVA+8rhd3VbMVJxgQWvrPb3mjh8PRNl5aSA0yLutqF2rihOIR6BHmfLp+IgYjymfLRrKySimmy/dPhSffhcLm0uuSM5SBsIEogXxv0+piHMWh2zWfOmP1vNhfzAoXUtLts0BBkZOWkTHfBOcAdDTFeBX7LsP4wvK7wxH78wvi4x/EKH7jzXVXe/ovEkDunwlc/TMOZpJFSb9tr3ORGkeDo38TQ9oXF+vp63WJc2hA1UjrodhO5VeN3r8PTczgxEaF7KD5+vrY2OmUQ1cUxn7sojfAXp4qLByIimhwdr+7dS2k7expVoP0ogdoVzVEF4zJKMjKrI9r+P1f0snrIXZ1vKl3mkidaVh64888b2QDcP1cJ3DkC7jYDd0nH1BUD7nyOZjNwXyd6Mhu0fYO5v3Iy7q+Cb6o8cL+89sBdtW/qBnBXAO5fvzjA/fM1Ae5/W03g/glnzl2KvHMIOw+yczi7STrGBMLQqJvL8S9eN4+0f/PWwTOMeyHjpORwab/LdbfgtgZDAzpwBEFU22lP0xA7EUUQbxAXkW3QyaPTQEc0npeXkf8MPYZf1H3SutfMThUVaRe1kcmDdQt1D6OjETGxmClbp5ZK9JHlGhsaT6Hyp9rFqP190SlU3lCM6sF2AW23drB9OYR9mfDdujn35yEsI8fcV3XUXTx5h1hjHLvbvJk2/4jyyHBd3t5zVVW4CssmXYJa0XPicg5swaMbnjRAT3KgZ/br9tM0aZDtkTClhS9Mku5iICju86UvqcaePbpOOSAVcEceQBJDfYSVmJrzpK5+AR1+yIMQ/NEpoJkxcmQGb8W9vVR7L9Phn5BVppJt9WVtUfknZr4hxwiMLm2X9jlfcwlswW/e5eODKhNBxrfbF2UFMjkKB4QXFI/eXd74gYHw8Pt+fo9TUvA5Ikx8+lBJxXTueC7+iL+IMoLQ9s2bv6IKVKbZW+FenQnACc7ECAfbRSISqwrZLWB3dd6q1km9Sw28vyeWchZjd5F94mfM/Brtor9izpQgqqPGQqboDwsbzcpCUsifyEeOQMpwbXUN7AlMGE4geL2hISlzJCJpIDShD9kBTzLuvl5vmCouzhvPo0JJWGuojFgRJ7NwxF+lRZwUIJryyKqkRgT+0/gF8JvjF0t+nIzfvLxqBr/tEc9bjEYEcUHknSPZIQ3cVYnCqd7NYpcYzeACgSbGApHI5SNrRyYPaOsXsLJmKytr52vRY9GaHcuKiFC1uRVPFQ8nJCCt94USxXatbhEvsHKusqZufqasDHeQpe2s4TCPpnFo+0k+bbcM3EVbIWLUflJwMf8J7iWH3dUwdwVhGbGqjM3AXZm2/8r661/VHS9bKeyuLO8uqe3+N5N2s2A37hvGzJzMuR861OHh8eT48WcZGeWz5Vhfzi3OQb1BlbOVT9PS+sPDETEGIyNbXFzQ0hPfVKbvRPKNHIwsmCxAFngYE4MAgr+FHIFWzLj//fUb5lF3U6CQxO7qM7IxUAhihQJwv7qnbKYMsaJBb4gajNIZdKm5T4vKp5SAu0nG3RQuPuHU+ScUL/NIOx+1c4IDIzBlOlJmPK5KBdxiUx+h7GlxdkaUrtUuaPzu7dZcJr6pmsvU5BalkUGnw3c7vb37wsJwU1DMZxeOUUyv1S00aTSXTUfKVNkscar3D/jVu8TZMnkZGQXRdqtpu+rB9pUqxbmDL8sH7r9ePnAXK8ttAHd1wH2tBdzX33j7BmRfRea+oSrz4si4rzvgrmbIff0B94svKXD/Zj0Ad5XMfQO4/4hTiPOut0wX7+ufmOpvPmenFIwdaWfUYzYxko50LM44c3r4/A67i+/af7fT4RIq772M8O5R7ztBsb1z1dXozHuDgogb3j0HLEcsFKxLxBLEac8Oz/KZ8scpKQMREYaGBlTzHqHtR71ue4V34ufRvS/U1aG3pz38eWqsZHJVEgg+Gk+hyqP2D2RQuxWD7SIZGdsG21eDs9tA3m1m7isD3C0Ky1jL3G3yeTNSAL72tKQIBpWaPWfCgng+0SFnj2UXlE5O5OfjOUcjWle/kFUwml8yMVNenvY0Lbw/3P++Px5yNPkoZ5CQkbiQHxCeiY0qKy8jOtIubPLFoIjf1Vts7BGbqWMqipGAnoCCiQL09lS7IyFjGKt1u92FLabBW3p6XRK4/5gfVdR1+KZDM7w+/xPBZp7g0MzrZhRIOPt2JrzscrhMRb3tvG77Rnbjl+8JDHwYHY0XgtdF9zPwGhFbEGrw/uMH2tzdUdE2OzpSs036v7GcnCZHR6rbjgTG+j0o7dUpD7ZLoXYFMv5/rL+Wz9zVYHc5+K408M7RmbEasbE7W8z6QqWCxYWatcPDg5xayHsW1h/m1Ozk3emdMJyw1Nj4KC7uaVpaas4T7/BOJ/9me+87SBYavyaqWkY1yvAJlhth7mc5ZsUmeRkbd7ZOqhhZ/YI4pqJKQhGHKjhygBilurW5Ofo34RfOzH92yP2m0ZdYfI6EBe6Cba23JLa1+DtbUrtZb0m7mptomkmgiVlfWPVbD51j/VGRtQtLJ7GmWl1d52tqgh8EowxHuYr6F4U8+p7AnsCSiukuHx/aKLY4O/eFho4kJeG+tLu7o0vBHUT1eZrZxOLRNNNgO9dP5SSfen8sB9yltNqlObvxlipeooBqmbmLxNzlhtwlVWUUgLtYvV2Btv9q2ZeaQ2bPC7vzduM4xg90Nw79FfrPDk9P6txD/4eci2cPX8SzR+VN2j080Jaj50QiQL+Fj45NjtpFLRIBMTyvq8MDjO4Z8QHfRf9E9r9Pv8keO7OA3RWS8kl+UubQdvPmnAxwxxLz7fZtXGpE8VBaOZ05mokX6BPRJZSU2WkC7jvUJGXhxav2t0mgdrPAFFPec4+UIXDtcbyC4JBbND4UH493ciQ5GTFtv8t1hA78AOpz3B3EhKfp6Ut6PX6AAiDyk0lJkwUFuDWDUVFNGg1Nu+wm9+dcgSkOaqcboBIaMnKD7aplZCxYpFqi7SuF2q1m7oqqMipl3DeAu83A/ZJF4G5iW2sP3G+tIXB/gWm7RmO8Npj7c7VOvfWCqMq8ML6paoD7WvmmvnjAncPcVxe4q/FN3QDuLwJwFzP3/8IvxBWvbRKcnUrH0JF2YyGORn3n3zmonbAw6q5GEJjnLZfAFveQdtfgVueAZqeAZveQtvCkgZny8kexsai2aZ9DoNh5AsUQcjRNmpTHKWgz0L2jLu8NDKxnvJXQ8BNdyOHE4YQEpCIEGqP3Gh1mN0F2wdwcT6tdBWr/g0Dt0ZKr0krJyFiB2v/rf1V72YrdbXBtUsXcbVKVkRhyV2buivIyy1d1FzDBL5hpdzJwt3UrkgqezLGcnPna2sbGJXTI6Oo9OzzD+sPwSBdNFTXoDZU1s43MaXZ8qF+sp0JJ3p3eVNUdq4AnNi12bxM1+RLXJzzaLhCKZfVkCAdkGnsC3G8R4I7fJ79kIiP/WUBMD7roXUZzNuPgLXVMZXt7eoCdVZX5sdROnqUO/6RgP48z0i5ruWwMLw6X9rlcO+Jxy9G/yYkJLM6BLW7BbcFxD+p1iyOJiQa93u++H4oseoYAVQOqs8iByMqaub6wMBSIKKpoV4NPULfhI4oP1l3ZKELFdUaV81Wmg+0KcrF8pebl4HWbsfvvVoi5qyLvMjoz1mJ3Fq7hdqAowa3B/XqcnFwxW1FSMa1dJFa389XVSBAdXl59ISF4en0iuuy97xBjVaerexyvHHS7GRTXWz5TPp6bS6xxl5ZQYu/4dodwZ+uUzM6WgKPJQTT5cyRmx1TGKQH/daoijbBg53W7mNE+wi+54+hF6kssImg8mQjrt7VOKrutmAdXd5pRO0Vp9Dga3sP9LtexypDEERkexcU9jImpna9FjkatjZoU9S/Kf+cW5/LZ8vmaGkQ/NCSsmzQ+Yk2RTfG33xbIRLByzJ+yqF2GtksAd2l1n9eUOfsnli4BeZfD7h+ZVCyEzF1ZWMY24C413m6Rtv+LimvFsftvl43dJbXdado1hwWT1Aw9Z0bMzLdsQdeEFrHFxeVBSMh0SQke0Q4Pj7v29ojq6Pnb3N0NDQ2jWVm0aCQWAtu24blFV500kjSamYkAMltREdIXYn/HHvUnHmx8Vxq7n+LsgnMzMivv/onilo4oKYvzsuBAzNHbR1E85E/kL9aT1Bya0Ie48e6x74jO2z4OcOfLuCsnZeWRGrlTZcxWtxm17zj6LeLDXqerh9xvIvkez3mCyDwQEVFXv9Dh6YmgQVtfNOTfHz7cFxpaUzc/GBl5287O6DbP4EVqPo9+nk275k1ueacl7lb3cgfbl0HbrZWRWUF3JRtUZV564P4lH7h/bQm4nzUB93PWA3dpx9SdOxUcU60G7ivlmPoi6Mk8B7au/toA7i+1qsyGb+raAXcVzH1lgLsaVZkN4P6KA3f1Mu7LBu5/+bERppMmnL1+bL7+IuLsgpF2CaF2OhZHfAvtiZJybOqjet1iWt7T2crKxqXGyYKCRa22qmYuKXMEF5Flb2hIGE7w6fJBOEdswNpFIEFmSHuaVl410xcSgiRhbJlcXan4w1h29nheHuIysUJFD8/xM5Q9n25C7VRtWdJb6Y+S5qhSg+3ck6c2y8jYgtrVQ3bV5H0FgLu1Q+4rBNxtZu5Wq7qzCIA/6i5mgmTgjjnkjicTzyc6z8z8Z9oFLYoml1aXwN7AzNHMqeLiycLCxMyRwNhen4guPPnRD6OLporwdSyHyMFIj3YPLAREepa5c4UveECQywSlLrarF4zRCTgggjfyCZaeY7OjzqCLG4qLTB7U6w1uwW3omd85ygzeksb+q5/vMipd8FAgPcD+9l/M7b1wM0+6vecdmtkm2swTRhiu5TIRaj/icSshfRhXefWMdlG7UFena1hEq59dOJaS/biscmZRpzv+5HhYf5h3p7emSUPU25scGQXw2cZGIhqDkgVlBE3w1O8B8QQZ8TQrI8P0/AK5dl63L79X9+8ypoiynJ19aOWuZTN3i8DdBuzOg+8i8i4YeLcNu1PvBOOe1pYtFxgPVXRBPYGBVJ2gSaOhTWCbmxsWETLLMZ+7+5yv7Tx2iZx+OPYdFRdudnTs9PKqnKskwhFXOMIRdJV9vknN+Kp6gsYuNCLcxDolXNyBpqR+sR5LDEEgs2BUt6grKJ3c73p9+xH2HAlfI0KJoH0iOKD2jzIH1H4sdlvZ8SkrAbeJcUZlvBCIgAzdysLaP+p9xyWo1T2k3SO03TOswz/6fnLW47GcHLyZiFRubW5UBQ7NhGura85YTkX1bLefHxoV3CDEQLKsmDV1jjl/dtokIyNWZDa+06Z3VMm/VIazK6N2YWikZF9wyWB3Ncyda6CqZsh9ZYG7DahdDXy3jN1lLFXVe6jIabsLsLu09hRH3o1mXjrqjvaPIi1jG7lnD+I8asjByEiUoMMJCQgU5PnEj+3di7iBJ3auqgq1Jb4b2hfq2uaKfI1kgYYbzzbSIuu3zDNT5Qq7m8pwNUlZIi+LgfsXJuBusnxAnVC7UJv+NL2mbt47vPOgm/FAzJtG4P6FELhbTspKIzVciUjzVtwediuOHHlhOPv3CBEav3sugS3eEZ2o9qdLSqZLS/Em44904+3GgQN4kwciI4k7dEMDYvU1NjgwLfEFqfjwmUXUbmmwXdIf1aJou5xF6vJp+y+Wd6kfclejKiMJ3P+/9QfcP10D4C4z3m4jcOePt19eWcdUBrivoGPqKzTebgNkX0/kfb0w93WrKrNKwH2dy7i/aMBd7ZD7BnC3WcZ9pYC7ibmvDXD/+5oA98+eG3A3F+IyF6m8hZydP9LONy1kptqZE+hntx+5sPPYpUPuNzPzRxtQYhsaqA9h7nhu8INgXNEPo9E5lE6X0u/iql+spzqVXp1eIQ9CtAva/JIJ1O4I3wgrNBwgUiAGGcdhdu3CaiFozDTVLj6cLlZ7lDyCKjkUwx1st0pGRoG2WzXYrh61/w/RtYLY3bYh91UC7haH3AXM/Td8TCk76m5ChH+wOOouIzxtHLgzyV+wzB11Ennu9Xp08mQVLDWOZmVhBTyKi8Oz7RXe6eB7D8UCdSxIeZyiazCUV8/gb/jf90e6MzL3r99ASGOFL0iHL8bupj6fd/1FpqvnnFvHv4x/H/8V5Bwk8IThhLqFOpdWF4/Q9pr5Gnzc43R1u90FzuCtJHA30UBeVOHs5Jka+x8pbeaJIszOz2mfL7BcJuHF4ZKd5+067QLeK2reiP9FDUYhtoT1hcUNxWU+yyyfKa+qnauonq2smdXqyOEYvP/aRW1a7tNFrbbN1RWFCFI7gewm4wfuKRm25+dpyEiZsykFEBFtt46wWw/flyMpsxzgLknercLuEpOtpiVGRZyMA60csoYlxm1lkRdQrA8nJuJee0d0HXC7gTREFQ+OeNwqqZgeiIi47++P73p2eKL+NQpHnN2K4kVilYnGVxU4mvS8qkC4yeSUgLYgeywbCQ5PZt5EXsazjIT0YSw0roC7GbjzCRqXuVs+oyZGaWa3lc9MKM2kEWEyP3zX/rvDHt9HJg/GpD7UL+kREBC1ZisriSiWdqGobHKpsbFoqqhwshBLj8p3xD6KRZRr0BuGExLQ/FxhNrGopQpZVlu2nDY5qXC9ENg0/RcT7OYBblnZfCtQuwCy/0XFJYDvJ2V+KznmbllYRiTj/jvOvv5vFYH76tF2lcYqarC7pMLMKmJ37oY347FstDFnwNkFhpThaUR8QDo26HTIAtTeA1d/WFjMwxjki9SnqXiqUZEmjSQlDidmjmaiWC2YKMgZy/Hu8ra7bYe2FQ0cPRMjqzAjwO6SSVkuL4s2wlmpNwrc44fiESsCegKwAGOOPxQA959zgLvw5Jmw1JcaqRGidkkNN5M56rFL+K87+jcnZ40ggmHVU6sGBNicorGaunm8jQhuVTVzRNWnuno8L28iP7+8agbvcJe3N+p5dMsUsp9lmszT/LR7SiD/yJdrFxTw4sH2P1jc0HoBabsa5m5BVeZlBe6mdl0I3KmejAxwP6MSuJu4zHoB7utbwH2djrevFGp/3th9Q1VmXcu4vzjAfTV8U18F4L4s5r5mwF0Nc98A7jYAdxNztwW4m2tx/mWEX3KcnaMeI/JEPYtafLvdBbQBjIzMddfgVoNe3+3n1+7hUVw+5d7mTqMUoq9Liws6h4xnGSjEK6pnY1MfBcc9CIi+T+Dkkh7FOmr3ZxkZyA30KDodPmVXxTmGjp3mu6EKxuUsVurvKc6l/s4mGZl/sV5GxgbU/j+svFRid5sna/7Xuplwl2Xuyxl1lxzF5Tb//M7fyAQZYVk8uqgeun190XMOJySg22xxdm52csKi0C5o7/v7ozpBaqVVOUqqmvmah9HRj48fn6+tRd2BzEMH68TWbYLBOmGTL2rpJbt6MwdkBm9RsxCVm6VG/CaeoR1om73DO3drLr99+DwWOPpt7tF1Lgrk0UAaSSxv5v2Vz9nlDs18ZdKKJYdmth8xhhc0/P5MuGhzc5ssLKyYrUDNiKoHlRTKYe9O77ihuNmKiunS0pTsxwExPU4BzT6RXTWMhDf+9yA4GMUKoso5k/EDtVbmKV1QDRnOjp2ytbLFwXZJ1P4b1ZdK5v58abvywLtK7P6RaIlJjrqbyRrTGH/L8Hfc1lZXV4NOh3vtGdZx0I2oyux3ue7gey80oW9RpxuKiyM4vssbnQEVjhCYFQtEnCxwNMm1JjpHQudVufjMt9s3azRrUastq5pJzBi297m7kwpE7D/9xh6jcBMD3E/xVtnbAuYuJmgyu1kCtxVWAm43VwLuzNtHmIMjnrcIRzM01C3U4b2qnqv2u+/n1enlf98/YiAi7WkaVhZydHz6UHBcrzfjp6Iz6ApKJxbr6+8xnodYWecZmvYNx7RcoCGjhNr5g+1KnF2M2sUj7fJsXc7ixnyHJZk7V1Nejrlz3FNtUZVR1LsQ2zkq0XZR/lV2VbEKu9sm7P57/oac+GzZe3xax8XuH6vA7tRP9bSJrJ1l4DvxM9+zB/liqqgocjCyfrF+oqCgZLokaSQp/Wl63kQenvPSyunssWz8EQ957ngufgaP+kJdHT4vnCxE4SrIyGysIFt0pnDB7oUrJGVuXqbhgt2f40q9sREDxQDyMlaf/R37mOMPseKwSE1O5jzgLrkRLoXdjfFBeHp1h2SIIFl4ywESH1APuAW3EQW88qmxnJyq2rnc4vGolMHwxP7o4w+PPzmOuIHokZz1OCyxH8EhLu0RugB8BQF5LDv7BuPiwM6zs2n3C9PJVG5wEM7KiDVkOClYVkaGc0SVnZv5jdw+1jqm7SsL3H+1DOAuXr8vJHC3JOAuCdy/tRK4W+WYem39Cbir15O5uwzg/iKh9ueH3Vd1yP2lUZXZ8E19GYC7GlUZJhq/iMD97HMH7hzm/tUyVWU2gLt64C5xbTchMIazC1H7TpNQO0/e4dwO5tj+bscre52v7Xe9fsj9ewffe4ExPYaGht7g4PHc3LihOIQQrBKsWgQqx2ZHNA9oIQYiI1GF5xWP+0Z1a/ya0nKfou2ZLikZzcxEVqBj7OwgzDfsLIx8jU4Bmfn8qeJQjLhM/72CjMwqiLZboO3L4+yWsfvKDbnbDNx/tXzgbmnIXYm5WxrbUXJSlZK/YA+5s5LTeICRY64yhTXNo0jtTY6OaFkn8vNRtOHrRCv24nZk7MrZygfBwV0+PlgaLq0uSJX4FvcwO6/D/5sQCCpcPzF1LQQCcrt6hgPSwVsUU/gFUrIfU5PJet2iR2j7Tp6AuxC4s709l7nzmnzxNh43yOyQPTTzhrHJ/2abybOR+i3vd7l+2ON7xIq4tKEnqanUb9m1zRU5nxqiotzz6fKhJmx9oaH4JKtgNCT+QXn1TMrjlEdxcU0aDQoOcj5GZPzARe0UBZ6wcrDdAm23nrNbwO6qgbtF2q6SpFuL6aUH3mUmW9+3tMTYUXdWwYmYFTPk/SxD3lGooajtDw/XNZC5y6iUQeSU4zlP4tIe4UKimSwoyHiWEfwgmJoV42mhZsUS46unfia3ylThM2ah4R8x6sl89QZVZKbWxGH9YVjj6XnPcLkywk2MgDvFZxzgbh5ZlSJob1vczZI6msaRgOPuZiGJY7EfcL3hF2XcyqLOz/htEbbw0bHJ0f++f/1i/XBi4kxZWUb+M7+obpfAFvxY3UId1hqaMePJM6ws01T7l3ydN4Ezqu2oXeyJaomz/1VdqSSoluSwu5C5i8TcJYfc1arKWATuUuPt1qL2/21pL1whQa+wwowktrMeu39mCg6smTnZmWP8zMmZGEaKqsPLaywnZ7ayEsnu2N1jyLOIBrnjuShElxobkTW8Or2cmp3wLc09TXh/eMVsxWJ9PR77qrkq9OVG5i5lpirE7mpq809FG+GmiMEF7g73HOheuFubG3NkzmDvc5cD3NmIcYpu0UlGDPmaXzhV8zMJc3JC23c5XDrme1fPjLTPVVUhnLqHtNt53rbzuu3o39Tp7f04ORlv49P09MqaWeRc16BWdAGoc/DFDk9PRGbqmUzTrlgEUr2GjNxgu3oZmbWh7RYZulWmSr+wXlXGom+qYBUrA/ffqdwweymA+wUucGfH21cTuK+WY6q1Au4vwXj7aqP254TdX60h91feN/UFAu6XX1Dgroa5bwD3ZQJ3k63mqwvcjbW46foJ9xJzdpFQu0ne4dyOoxf3Ol21976DxjsiaSAyeRAf0bGjFY9KGVzQakezstDMoE9AbCDA/QoxLfTt9kX7MBAZ2ebu3unlNVVUVDtfSxgf4x7Z6uKCqEQ81sSDMKbdklOiWblPONqvf+a3werPn/IG22VE21eJtq8ealfC7is05P5LedcmG4G7Cj0ZuQl3i8x9ZeRlFOdwT3GEZckc7rZtdAgXTzVyGLJ4X2ho0VQR2nvUFsh2dF08CAmZrajAF7WLWo92D9QFyIRYNYj6iMfiDt846q7Q4X9qbunpDB13vN3MAZmuHr9AwnBCTd38Qu3/z955v7dxnXt+f9t9nv3p/rJ7c5PcuMaqtiSKEgUCYO+9N5EUxV7E3kAA/Ac2TjZ2Ns0tcRJ3J07crqtsS1bvFotIsUiiKIoUJTaxgcCz78zBDM7MnGkobJqbuXyoSgrG2z7ne75vW9k0ZdPsH34F3VunhLes04UTuGOD/dMfMsydgN1Zwq7mJO9LPL3At6GP7UnKuZWQfSuONr6PTh/KLZ6AMR5ersyxTGghEXCHPoXa3LjQMFddDbmlOzAQ5vwZ2nIaeWJA20dc/IBfkeF4yLDCdjXHdYhr84XtnqF2MnP3mLarla6/puwhk3cRtTsfsYkZu2O3ST4mCVoh0KBkQIhBx7/c2lo5W9lhXlkxmeAdkjeRBz9sXW6lqBWNrpbbqIpjXjFXz1WHXw+HjhuaQdbEiXChRMHhlkygfU2tJoavouvSWeyW+JvxsZk34DsJjOnerjv9lN+xx55zGjeJAXepEBMSNOHVNO7FERRi7KU0CLRdQRcCIq9mFNy5X1QEuQhenwNdB6BBZteYZ9/Nhhd2MBIKeORsVZXJZoKX1Gyxz1ZWwpzjjCzGi5m9L0K4fybYjOoeav+HAtT+L3JSJDyy2F0JcycYy0i4yrgF3Inydh4o/3/qabuE5l251P2PyqTubuxTVWUyQ1E5AXZH599Qf3/Yt2+momKquBhiv2CyAPLBdFnZzfj4ibw8eFf3BQdDUd55bicUZRi4223t47m5UEeaFptQHwvhQFXkbx6DiGYPwnnYXaYuY6hdLGMg4I7OwqHAQYdcdL+o/MhM4WRhS/syVZr9v5c9oiMnjaf4whpilviJK0tQ+8nRaVxMxrDdau01Gufr6tIOju7Un4XUce7ZZyHlDkRGwi9BYwPJ4W52NjT/kH4hXbR32CgnmR070E7Ur4Qn3KQ2niiXUShs9ylt/403aPuv5B73mLuEjbuHwP3V9Qrc/2s9AHecKK0mcPdsY+o68ZPZ2LR91bH7hhC5byob97Xbm6oB90cWuB/VgPsmA+5kyE533nTz/Qm6VUpG7dTeJOr6OVqLCi11Q/PCvfz8jpUOU4ets9PRZlqua5qHz+vm6/Lv5SeNJMGsApkYKkbCLWqSnykv79bpIEtC7oNcD/PMaGoqZbLBquSwud0lhKEbdAn3GFwRo7xN/5OIjcya0/Zf+uBxg7l7Ebj/Vhy445O82/J2CeYubekuZi8jxtzfVmA5/Sk9BuAiO3S3/RQz81MbgMvK4G0/HBMTOxybcjvl4ZEj8DMlUyVRQ1GB3YHQeiDjC6gbrNk0TgOF4z3h+Ygz0rum+s+dHJAV3sL30LDQAPGbX3ovJLEPxumn9h6nDdwZpwsauFNKOjTYu5j7R/yUws8wH+IZhjWnEjnJY9PLxZzD4+22dkgvMMMjK3xkC1NdPwfDfMVsRc54TvzNeEOvAbrI8Ovh1XPVJpvpelgY5BbU30BXBJ9D5wRdBTXzP/64azmbELXzlqNKrnz4ixph+8teetQCd2+hdrXMnfhViNhd1mEGzed/5+4r/kiI3ekoQ+sToOkfSUpqaVuqna+FohMxEJF1N8vR2TlXXV1QOpmYcyt6KBreNsVTxSsd1CkvRBz8Hmg8KebOtZdxSt0FUYbDWgI7+/h/48ZNzk0J3z0JPWzCTaoCGnoMwQnX4O1qiOvdeuDUE7RxEwe4i1wl4R6W/4twau4MtI9J21YoVfvPnqVC7Gn/49t1p6GCH4jqQjtRQxP7I1MHs4vuQmpaam5Ov5MOLx28Jug4EF4ueD1vxsfDtAYTEVTqXoMBAq2LvqbzPR1ZlHaVe/9MuFVldVA7AbJL91LcvkrYOX1AkuSzLcd74sYy0iJ3XwB3aZ4udhDuRewu5jDzqhqHGS9gd0zwjo7l2PwAb+C7WVlLLS1QbW/ExfUYDN2BgQMREXarFfIGZI8zdLGAd37Y9TDIG7cSEqDcQNKAikxtUj1J3YlBB+HUtRjGYUZdXeaVZixjsGfhMJzBF4LJHnoDqH12i8VitSfl3NoVdJ5/J4Z4+UyiLhOPvbl3X+hCTB3IbaNdIvdH/JCcOzJbUXE7JQUyWGBMNyQuGH0h/CEJzJSVLbe19RqNCOhAchiKiroeHg6tDjQ8+CE3GbVjlVeFsH2j0fZfKX48Ae4SrjK+A+5/XffAnbcxdb0Dd59uTPWdn8waytvXBLWvLnPfwKtTNeCuErh7zcZdCXD31t7UVQPuSmzc1w9wV2LjvnmB+2erAtw/WRXg/qE7wB0n7BzOjo3olFE7x+YV7UR90u876PW3Bpx8Luh8dPoQDAB3MjJa2peyDt01xvfqY3pgdE+4lVAwWWBrb6+pnyuunCqpnkK7lajr5x22h0eO9Oj1kFNO0wHM9iho0xpLxDgSOZaL8UZ3zD2GgNoFdu2ipEysQRdvzX1K23/p40eMufscuLslb1eubZcG7l6wdKdnCbL3BRcI4lJ3hN2/xO+2b9+O9jfWL9QvNjY2LjZWz1WjBcLsTsLK2cqSqZLkkWTjNSO14/HEFkj5uL2McLx3Tvjcx5lXBCM9ywGR8Ba6JPhm8u/lF5ZP5hZP7Iv4AcZpCPafOYW3OHDHBnt6tneN94JHmF7+Nz+9OFcuP0all2+pLZf+TqP2+Kyb8BLdSU9vbltKv5Nu7DUaeg0RAxEpt1PglVlsaqo4MnOo4n5x1RT8ttr52sra2XZb+434eAqv05sboSqjDRBQONkzPLKqnYfaFQvbV5O2v+wN2u65RTuBrfN09JJf9M+SiE3dyRaD3dkoQyuL0fqElY4OtCMR2ZGPpqaOZWZCVYpIGTgQ1QVNOrT2cTfikOadguC9BqhD7IUS6DVEIdpHKtgZ2pQAPRS0ddAXl02XwRu78H4h1ESohvrYni37KeOmnz3r3JRAuEqCE7SnyadZHM7uujjCX2yO3CHgK+4NvVxRO1t+ZIY6cujstJlMDqsVXgS0FhXyz6H7h3LHcxNuJoT2h5bPlMMvLbe0wKjmKtx064x2IXyNXRkhovZ/ClG7t3aiikvacc7Oz4siLZcMdhdn7u+KtB9EkfvrIlfr3APusrT9NwoeJdjd667uah1m3uQivHe5mYGA3bnHcl+g9Sq01B3ewDCvnmcGYBiYr+zbh1YuD8fEwAAPvwqTeX9IyP2iounSUkgRSbeSgvuCdV06qJUwbaP7Z1RRFjjMKKnLhNL8yb8TgTsM1vB1oR+AMCyrmQ6Kv7ZTf/bpvU7gLjwL/99ydfl/Sa5lwjc67NCf9Qu5FBB51RDbE558Hd1bXWhouJudHZLYBzkWSm3XgQMTeXlNrYvQ0sArBq8bmt75LT1vLaqYD6Qgjt4UUcyQbWTU7h92i7a/6GParpy5i/Xh3gLu5L2pqwvc2XS99sAdwz3rB7hfXDXgvp7l7WtL2zccc1/fwN3nNu4C4L7u9qZuUOAux9xXH7gf14C7BtzXFrj/LxaWoZ6bBWGs5nTrZ7yNavRO1OPITBna/d3BF3TRXUUV96HzRk7K/mGX0bX0A1FXo4eil1tb7x08CKN7dtHdsOTr0J13mFfgh1arvddohCwAAYNAGHq/UjvWGONXnrcjy9lxSbsS1P6mZ+KyP8rR9t96kbb7WNiuXOfujnekx8Ddu7T9JSXIUoApRR1mScz9TaG3rMgm1Y9ZkR0DBOGtDjUAiiUM87MVFVa7NbA7kBLhjmW129oXGxsLyibT76RnjmW2LLVY7Jal5uaMOxmGXgMUQKgMFA38kkMDKREuO94Lk8rH5JHeyQGR8PbUttD+0LqmeRjs47NutrYv7w27DMFOcUCn8NY51bu0tzhzZ8Z74Rkej7O7ZHQw27t2olLHeJS1RcDJ7YxRe2BMd3nNzFhGxkhSUsNCA3RJ0DtAWwSvVeKtxJWODhjyIZ+kHrxtjL+We3jcvGK2tbePpqVB64PmfGr9w+OPH6WrFL68kedxwaL2v7PsTHrBshraLvYmdON9KwHcpWi7MtT+Z8GjgrkTaTuJvAux++viu9fEpO4oyoQmEqyUFa0shvoCvXJ/aOhYZuaN2NhrQUE9ev1AeDi1NTchAcYGCEDoE6G1p3zMjMYHRUXZd7OhiXZaRiDt6heuCyUciEYu3SKBhtwhjj4G/R30xVAcOx2dUA0rZytR3WSMm/jA/d95USYMMYnzcmcRx6OM9mr3P771wCm/kEuVdbNLLS2QW448PJJwKwECH1JQ8khy0f2ixaamytrZvOKJ1IOj1H01WxtkJEhEXTodFG4UXOz2ctyReZ2gdgJn56dDyVYMb7wEXRSRuYsay0iyQl4CkQbuf1AC3N1C7fLYXVbqLlKyVbm6K5G684zd38YpHlt/xbE7fiz3De1AhWga5Apq5fKOHfAOn6+rs1ssUyUlDw4fhuiom6+jVqq2LcEnELBQrNH5HPx/zHBMwNUAqErODRBf86Xu8hmDefPhN89cl89o4A7zIgzWUYNR8EXjb8ZTO59TBnbozzy19xhE9H/u/Ipdr4Jdi/lEtC67ijLhDivrNPVz/++hCutje6C8wleEF4Q6kHM4GloWmlqXGhcb4QVBAhrIFfARGgYox5f8/GAmdzX2dH4gHnJzMoPIyqW31RxZETp5xbsQJGi7Eut2JbT9V+4+nrvKiO1N/T1pbypqrV3Rqh64/00D7kLgziAtGeDOI25rsjF1g/rJrAfavlrY/RFyldlYNu7eBe4KXWWUAHcBc9eAuwbcNzlwF2HuawPcccjuarsZzSm07z/e/gWrakdT+nbd6T0hF3XRXWHJ18OTr8PH6PShw5UP7hcVmS322IzhXUHnkc9jj14/W1k5V109GBmJWHx7h81kXoHpBUmHnNtQ0bjOW4WK+nLswqnQ+NWFxqRRu8SUK0nbX9ogtP15wbNqInflwF1MLucebfcQtauydCdr7hT6TQul7lzvC+QnCzVyODa2eakZza4wxY9lZd3Lz58qLh4ID9d16SiblIHw+oX6lY6OFbPZ2GtkFbgsDeRjd3zCx1A7DgF/9JlzpEccEKoNFOGi+0UwSyfeSoRZurFl0S/0Es0BecCdK3KnZ3sOdsfP8H5OTi+Me4wLtT+z/wTkjQNRVyGrJOeOxGfdjEobisu8UVoz/aCoCF6YyMFIZK0D7U9IX4h5xXw3O3sgImIkORl+FV4Zq8MKHxEQRJJb4foHsp20yH42FyxTeYddlra/pODxELhLk24yZGcSo+uRg+9E4K5EaO81qTspytDJFhViP/sZWqMKXSMEGvSv0B/DmDFZUIAIO/wMVCJovcdzcyHo4MmdyIWBBt5p0BhCLwZdkvBCCXu4xYsyfqwxgUbdI2HZGQ3cg64FFU8VNyw0QPWENzzamPr4LrQpgQvcsZMtYZQRzst5B1qudQjfoIsjUKB3BJ6BOh6c0GdaMUE5XmxqihqMgn8yTA8wLMYMx1jtVqTzPVhyLyJlAN0aobYN63TwSrLB9TUWXMTTcSJqf185ahfSdjWoncfZOf+VeG2ZoD+TwO58S3eSmfs7csSQTSN/FnO0E9/W/gc18vbfuPusE6m7jMOM9D5VOW931uqNWrJCr1yGEQ7Kx/WwMFt7e8tSC4QAhEbSSFLBZEGno3OhoSF3PDd5JDnhZkLeRB6UG7Pd3LTYBD8D4eNcb85I3QnYXSRp4BmDc/mMC9zhK1bPVftf8W9oXsgsHKPd3mjgTq9XgWD/j63cU7pnxOuyMFfQFfk/dzq7faj7u4IuQPhX1c1C42HtdKTk3YZuPyH7Vs7hcYfVCj+TVzwBPT+kkdb2ZfiZJfrui7Ox5+UH7kJyol27IitIVTYyirXtv5c8tfIhbReqXgQGj2INuQbcVxO4H5cD7ieJwJ3mUzLy9lUA7r7fmKrR9o3K3H0pcn9EbNzV7k3VgPsJZcx9HQF3jLlvPuD+5foB7nLMfSMDd6SDo0EYars5slPMQOYpv2NbGK92StlD4y3qqj71KXX9fLm1tXS6FH41PGWg68CBvpAQypy6sxPmlh/ovNwdGAiD/Y3Y2B6D4SwtbKc6csTZ6f+onzO2+kqGdrEb3MTLp24sVnpJmW+78M4p8bap12n788oerzN37wB3lfJ29/ajqnPncIO5C2gg0V6Gt0mVEtkx076Tuf/sZ5Dloc5Bf3YjLg5ipC84uNdohE86VjoGIiKg54AqClW6YpZyTZ3IyyucLHRudzxGL23jusfysTv3cdL2T3/EH+kZ4W38zfjaxvnGlsXiB8VNrYvIJRYJbxngjk31OHMnPf/OjvSIs29Fx3guo/bHdn3zxB7KnGrbgVP7Iq5U1c01ty4tNTebLSumDpvZboYcUtc0Dx8hvWTfzY4YiAjsDoweonx4Fhsbew0G1MN163QD4eHXgoKgYRKubSQkFiJqF+xnk9ix7DZtf0nxo/ys6BXFdJvA2YWQXewhYXchcH9V7pHA7qJuEgK4xpO6/4PBr06HGdw+Al9ZTItYoYWFtwo63BqMiuoPCYkajEq/kw4/XKivzxrLCr9OHXSh6xQ/P0H5Rbj2FdOFig/R2DrPDTSecRNaTQw9IPTRcTfiWpdbMw+NwRteF921TXeaw84Y4I70qpwo+/knvKMsDjsTHGjhCw+fNZzzD7scGNNtiOsNSexLyL4Fr8H9oqLymXIY4KBfhm8M4gt+COUbAgpenNlKSoBva2ubLCy8yN2J+qVccEmj9ve4j7ywXYFXOxG144T9E2UP3qtxsLsS5o61JW97skLGPeDuJdouhd19w9zdlrq/KSR6ROzOvFV4t2HwlcuUvfvjj8OQBuMotKz3Dx16UFSUOpqaOZYJyQGKL+SHsYwMqNH7ruyD4T7seljNXM3N+Hj4VUOPgUoXaL05u0z1ix/zMoZYaZaqzvQpHcQmtASHHxwuvF+YX3qvvmmBD9xdSeNTDnOXqMvkY7ljz+w/sdNwLjSpH/5dQ1FR0BLoY3t2B1/cF34Fevt7Bw9OFReP5+Qst7UVlk+WVk9PFhTcTk295OcnkR/ENqP+HY8aZcJ22RKslLaLxZFIBCmxbldK24moXRK7q3CVWR3gTroAKnEktnrAnQEBawXcT20Q4L55/GTU0/AuZc96Zu6ajfsGBe7n1wdw98XeVA24rzJw/1oD7hsFuAtYGC47Raj9W3Zd0q7gC3GZN2D2hla7uW0pOn0oKP5aZOpgWv5o1WzVitkMbTeMAY0ti9CjQ4O+YjJRZo67d0Ocn2aiFCLNKY5jfGP4E7u0pJ13cVuA2t9iBjBCj652sZI4bVdl3e5d2v68+kcdc1cD3H/tGXBXPqvzbqZ7hbMrtHQXDv+izJ1LA/n2MiJSdwiBr2m/aSgbECBnkAh39+4une7hkSNLzc1oGyGU6Oih6IWGhvHcXBi5dV06lwL3W6cCF5fUucZ7wcPO8y4O+DXFAaEiQbkO7gsumSpp77AVV00FJ/TtCESX1l3AnZLRoameZe40EKQfzgEem1t+hHIL98YMuwcC6W33hl3OOnR3uqwMxvj6hXrjNaO+Rx8+EJ42mlY3Xwcp5XDlg+yiuxar3WQzHaq4D4noWlAQNC7QIpxiqjtUXw5qJyUWsWvsSvezqaHtr3hA22W2/oocFBFtZMionQvTX5d8pLE7j7m/qux5TUTWqtrESU7qzl9ZTAve4Z0zkZdXOVsJb3V4L0EJa1tu63R0ttva4YFPWpZbymfKk0eSYbCAfhMCTfRwi+kCeKidpe1OP5kvf4oCDZpE6N9r5mqy71IOyPB1D0R1bQ2gNiUw7MypcEcnWz/iRBmXmj3zqWQRp++O7KFsmnYazkKxrq6fczjYizTUzuGm1sWmxab8e/mJtxKNvcaQvhAIf/OKuT80FKadi/SsDpMVfORtG+bsRMWCS2wtKhm100mSCNwVesiQUTtPz85ryGT7OV7rhmH3D7m+dri3DMHMXcEiGWkbdzeAu0J5+4ukRzl2F5O6y9Zx1fYygnM4dQ4z+D5VOj9IY3fkMwMVBLIElBVqq3l5OYTKYmPjcGxsf1jY7ZSUlY4OiA7q8Im+GdO63Dqalga/IXY41v+KP7tMFSYw3jJVZ9L49EeC6eHfeUmDunyGndKx12JihmMgNdnNZqiDEM5YdcavxXwmKM2f/Ltouvgc3+vwxB7n6pRn6eWoSbkj8M+/m51dXPlgV9AFeEEgDwxGRsILciM2ti84eCAi4l5+/lxV1c34+Au7diEZDb7Iga2/UnbtpOL7lrhoxue03dvW7apRuwhzdwO4C5n7b7k27hLA/aUNDty/EAJ3mkR4Ebif8D1wP+874L4ODNxXn7Z3ufusQ+b+g8+Yu29dZTTg7nXgjjH3DQHclbrKeAW4K9mbun6AO5e5bwzgzgimVw+4SzL3dQrcWRaGyU4ZA5nd30Ir/8z+E9sDzzxnPL839LIhtudw5QNovqfLqG1vzxrO7Q6+CD8Jw4atrQ05KSfnjSTm3FpsaoI2fSg6GtIKIuzH6Dcr6x5DXTIVcHZFknbuKEtG7b6g7XRr/jvfLUpVQNuf9+xxQ+SuGriLT+/SfjLyUzqXtr/sg8frzF2aBvL8ppHUHQIEiXChbkHsDEZF2S2WFZPpVkLCSFJSxljGwyNH5mtr8ybyooai9D166ESQpA4pcHF7GRYIcsZ7xhzWNc9/8RNk4I6Et1C3o4ei22xt+aX3iiruMxtTXcCdldE5USCrwN0ihOysMxXhGA/pbXfqz+4JvugffuVAVFdoUn9V3ex4bm6nozOkPwR6Aeh9jL1G+MfOVlZO0O4WyXm3D5Xfb1umxLa9BoNrAwQvt4ivf8ATi3I6psRJhj/tk+TtL3kXuIvI22UM0zHU/rr6B8fuBOauBrjzvts/SY/xSkyceLsTMKm7a3cCCrQnnqC83XftGo6NtZlMhx8chrd9/r18tDg0u+huws2ExFuJrcut83V1Frsl/mY8dLLIo1nh4RbbQfACDfoyCFgYC6x2ajdpc9tSm2k5IOoqvTH1u8eeY4E7fZVkm2iU8WKNOdAi3B2hhO1GSqza3mGD7NGw0AD/nPDr4fDx4MRBCLe6pnkIq4MlE/Cr1IYVhwNeFnhxoMlmF6JCBYdm8WtGteqee4yTsAsfAXBX4iEjj9q5TRi5gZPs83jYXYa5k8zc31F2XUZ6b6rbwF05aldC3lXby6i0dJe2l1EudeeVYD525+I83GTG5faGTsEff/x7WuoOsYBGcRjme/T6peZm6nKV0Xhp7174ITTA1J7hzs70O+mRg5FB14ICrgbAFA7TJ5Ux0HE45jAjVpqFSYM9pUPAHaZhKPrFU8XVc9VQnQOju5lrMRRw/+kO/nG4RGnm1mVnw0/dM9Odhq5eF90dktgfnT6UdWhsqYUy1bmdktJjMFzZtw9tv4CKfPXAAXhB0LJZGPIhURxDR91i9Ze7e0nMQ4a8H5VYf5lLIb6j7V4xk3Gftitg7mLduMTe1N8S96ZKA3fsSEwD7hzgjrEhMQP3U55sTJUF7hgQ9NrG1I3lJ+N71O4pdtdcZdbIxn3VgPsFDbhrwP2RB+6frwpw/3TjAnfUcwtwGDKQObkr6IIhticx51Z20d2Mwjtp+aMlVVPQas+Ul8P0vivoPKTCoejolralW4mJ/WFh8NFuNtut1odHjkASR4I4amOhiEU7b7WahKT9fWZQJ6N2boPupiJGfEHZ7yXNZH7jPTMZ39F2dcxdcX+vRFajQt6ugLbLCH6Zx0fMXYnrhYQC9+/ci+0fkUS4R2kRLhQAqEZQ+6fLytpslPA2625WyVRJ02KT2bJCyW+XWuBj42Jj/M146F+g0DkVuPQ1dsJsjz2stt3JAb+igfu3lPAWmoWymbLc8VwYtk0rpr1hlyEPsMJbDLhzmTv3+Q/nGR7KLV/wcgu6rv6s4VxY8nXKCtbh6DCvtLYvHyq/X1E7u9DQUDhZGHY9DNolaCfTRtOaWpcgyfQFB9+Mj4dfhWcsMxNZW8CrhLahSqx/+MiN9Q+kczsp2u4DMxlVwF0FbRdH7X/BBKT8Rwy7q2Hu8ptdRRycvXihxHm4RdM0tE8VGt/xnBzKMqW9fbaqaiQ5eaqkZDw391pQEMwKMItY7JaJvLx2W3tgdyB0o0i4Cn2QS7j6OTnK2GMt+A2sUhX+IPxxaCSh04eIRoL6sprpPSGXntmHVhM7gftPtjMnW9vIUYYdlrOB9iVC7U6vdvpeGr15+FJgTHdO0ThlBFFSEncjDvp9mGNC+0NLp0vvHzo0U1FRfmQGCn3rcisknIGICOjyXQuHmfLNvzIiEVzchaiinB0D7kpou5uondur/ZeCno/X9olJ3f8l4pwjeown7SojvjdVBXCXlLe/qPKRxe6+Ze4S9jJYTsA9o98QA3xchxl+iiB5u6NT8K+xU3CICBg1IWP00/buVocV3RNZMZup7cfUfpUO6H7hIwT1ofuHYoZjINAg2J3H4cLSLDJ/uC6f0ad0LHCHqdfYa4SMlHAzwWyx62N6IMCfIh6HiyYNobzGtUBld/AFSAKQCqDHYC/B2OmPFosd7Yilrq52dPTo9TDhw1ANL8tx+sD7G+KtMhHUzjFwIxVf+SuqbtH2P6pcOLz2tF3lrVNVrjKrANzfWE/A/SsNuK8z4L5qtL3L2886ErlrwN3bwH319qZqwN0re1M14K4Bd28D9498Adx/QsBh1JXSbbrT/mGXq+vm6psXFhsb4WNp9XRN/VybyUZ13dT/Om0mE0zv0P1PFRdD3keZCzIdfIKUp9+RNhaKSdrZjvwDgThOCWrnATKv0HbPzWQkgLty2v68Vx/vAvcXvAHcWXm7whvoYiLfV7jiYvfIu6fMnet6wVPgEmngR1wa6LrS/sQTUGwgmu5kZMyUl2fcySh+ULzc0gLxOJ6TEzsci6ToaAzW9+ihDLoWPH71U4oG0jmSmPlctB3meYYDQu2CBgQi2mK1W60waDv2hFykOSAC7uxIjzF30sMqbREBpEd6lznV1gOndgVdiEgZaO+wLbe21jXNJ+WOwHPw3sHa+drW9uWm1kWzxc7mmZGkJGjaUENzgZbUQQN2bdMAAIAASURBVL0/TqN2Vs8udob3LyW2VCilKLjJTmTNvjOTEQPu8mYyAtr+Z4FK9HWBS4OiR4jdufYyYsCdGKTeZe5SF0qEh1s//vFXzMpiaCWhbKHxr1unuxEbC2+762Fh8GaDpjhtNO3ewYNLzc0QbtDIQ4vK82h2EjSxXuPz/8ADDZop6NcQcIe/+cjDI/C1wumNqVB2WeDOsrMf41G2lXkEgUY5QjCqdmQgsyPwTEDk1cjUwdziieyi8fT80aKK+3PV1ZWzlWHXw2B0gFkt+242xPhgZGR/WNhYRgZ8PldVBcPhaTq+vqXjS9qIGedo/KrNhezvCh6FtF1M2C70aheidgnOLt0Xcvo/EnYXMneJDCPmUiVh407sTOT3t0vK219061EkdfcNc5e2l1EudZdwmBHD7qzJzBcMdmeXQEBRhhl4KCoKognKE0RT7nguhd07Ou5mZ0cNRYX2h+aM55gp7YkZYhxma9fuZfqgjk0aYtWZlbfj988QcI8YiEAXbqydjtCkfhJwdzF3YdL48bbPxW6b7Q6+kF96r8O8ApU39eBocEJfdNoQdBoLDQ2QGXKKxsNTBmzt7dDtXwsKcnb49K2Xo3iWELn48gHXwO19keKr9oqqItou6OeFi1J9ZCYjS9sV3TdV05N7C7j/UQPu3gPup70N3FX7ybgL3Ne7n8wa0XY3sftGY+6bALivmauMt4G712zcfQ/cT60FcP9+dYH7dwqA+7cacNeAOw+481E7jcPQXrXYzBvztbVjmZnZRXf3R/xgjOsdSUqCuQLGjMOVD2LSh+qbF+CHD48cgZx7hr5SimIDyeKES5MkJO3EoV1o1M5D7TwPGVePrtZJRoGZzO9FdGSemsmsLm2XZu5uuMqoBe5q5e3kmVxyV+SrJPK+asydsMZNZIcbkQZ+ytPWIeOL3btvJiTMVlbeycgYjomBqX6mogKGXmgrdF26Tkcn/PzhB4fhh+gOO2sd6xzssUyJ8B9L2yHLOgV0DAeEXiPldkrrcmubaTkpZ+Q543nICU/s+ZYB7rT2lpnqGSBIfUSTPDXMM2d4LGpnzal2BJ6BqX5f+BVjfG9B2SRlQuVwGOJ694Rc7DUa0++kL7e2zpSXl1RNRacP2S2WxcbG2ykp8M+HAs/mFjTku2dLJbpsWa28biPI22VpO07S/6rgIWJ3gtiQ+4KI0Xbp719oJSF7uPWO+sMtSupORxk0ZPAGg54SulsYYBabmuDtdyMuDh6KSndSpz/w/owYiICIQ2YR7OEWn6Cxfcfn/8EJtK+cSlVo3KDZhEEE3vyxw7Gt7cthSdchNJ72Pw6RggP3n3CjzClNFQQaXcE5BjIQtjEZw3azGa03L66aKq+ZaVxspGSqDgdlm+OgT7McjqHoaJhnLtATwjl6HQLuwkzQqwq3IJA838QguyxwVypsV47aOfcNfiQ4DaEf8X6Rh90VMXdBniHcnhFxlSHsTV1r4C6G3dc1c5fwsmDedVLG7tw7MSx2pw7CmXQBHS/ULIggqk41NY0kJ4/n5kKN7gsOhgEeRfdoWhpUUn2PHjIGDKzsQR06EceThuvEjlugncfhGHAPvhZsWjG1mWxmix1KJ7TrUFuhe4cMgFVnPGl8jiWNL/DDOdc9GMpG5gJ0+Oh7tljtfqGX4F/RHxoKJXgsI+NWUtJCfT31jzWb0YHcMebAG9/DJJ0lpN2WZGg7STTjPm1fEzMZZahdlLn7GrgzehcNuK8v4C5Edet8Y+pq+smsKW1fP8x9nQP3R9HGXSFwV8jcNeC+UYC7EpG7V4A7l7lrwH1jAHcctW/XnYY+G9ruiJSB2Izh3MPjc1VVME4EJ/Q9F3S+12CYKS+/f+jQzfh4aouUw9HStjQUFQU5CLm0O9Uu6Pq5ckk7j4jxjNrlULuQthMZmdtmMqu2K3XVaLtS5u494K5I3i4+jb8sOY1LP25jd3XMnTtpSDD3d7nM/R+CBW6cIZ+Wun9Di3ChhkHdhT4AehcYgx1WK9J967p1lbOVDw4fLpkqCboWxFPg4jTQSd6ZB/0MO88jDoiEt7njucVTxRDgQfHXnByQBu4/e/ZrGNRpFMjSQNdD69mRpJ0lgLR6zu/YM/tO7NSfNcT2pOTdhr+2zUS5x5TVTMMMf7+wEL4KNG1D0dFmix3+UYORkQjEw/91BwaeZZR0rEW7a2GjMlsqovCWTNslZ36JTKIEuK+CvF2UtgtsZHBVO47U/4ZlUd5DIO+SEOQ1CeAueWzmCXMnH27xmDtR6s4YR0B7B13ptaAgClVbrRALEFnNS82t7cudjs4Vk8lit8DPBF8Lhg6X2p3wLWMWQd8p4Z1vCQMNGi7o6aDZhPGr3dZePlPe2LIYnnwdiu/Te49DvLAnWz/lRNnnzPPFT7YLA82F2qmlCCFUEW8z2UaSk+GfEBB5NTCmO/5m/HJb23RZWWXtbFzmDbNlZbGpCe05hNyCXNpRlCnZgkD2fMMi611GvspeSnuXgSx84C5N26WF7QL4gqN2MT3757KNo2AFEIe5480MyjniJxBiInfcVUbCxl0CuP9eDrh7kbYrYe6qdqi6x9yVWLoL7WUkpO5EhxkJ7I6O6NiVqtD3wmh9hWZMVwMC+kNCIGlM5OZC2eo1GqGKzdfVVc1VJY0kRQxE6Hv0MMfDqOo6EaeTBqc68/LGl677Zwi4wywbcDWgYLKgfqH+YMnEfnrDCgvcmYM67ok4w9n5p+B7nI7te0IuGuJ6I1MHk/Nu1zbOQ1rILroL33+PwfCgqAj6f0iG8A+8QiMS5DRFXV0VNPmfYHdfPiTdfZEQtuM3P7xC2192i7b/VuSwikjbX/AlbZdm7kpt3DcpcOccrwqy/SYH7l7cmOo94L5u5e1dq/I86sBd25u6yYC7CHN/RID7MQ24izB3Dbh7CtxxTVx0+pDD4YAhAT62d1DWMdBtt5mWYVCfLCy001qea8HBKBFDgoY8Rd09p13aWc7+Jf3f5nPmlcVxmDRqf9891C5J2xWZyfz3//6y9+TtL3pP3v78pgPuEutSZWk7EbW/Jv68qszlQxVzl7K8EFntyEeBREt33iZVZsjnSd0RDYRaCHE3lplZOFloa29HNu42k6lytvLwg8M54zmU+/nFPVDuKAXut49zBns8p9LDPFLdonkecUBohdpt7THDMZAEjHG9FAdkgbtzpGen+i9dkJ3Gf/Qw70Tt8Eeeog1ktlEGMudDEvua25ZWTKbqurmUvNu5xRM1D2sgydQ1zcMXWqivN5lXxnNzWWcq6GyggaBme0bPzuYWFwekJ3xRWyruGR4fCLK5RaHCToF7rNfXpaoC7tK0nShsl+Dsb2CPGHmXSrDiLwvhETs88NjE6T0JESvRx4mVr27f3mswUIfKSy0dKx3TpaV2q/V2aioEV/zN+E7axSm0PxQxd2jEcKm7TKB96wRnMOIUPShyWK01DQ8PRHVto8HZE7uZky2anf2UE2VfoKBjqdnPnjtKo/Zvn957fCvtCAEBm5Q7knpwNKPgDoQbFG74ni/Tex2nSkrgX0Hdj8nKQiL37sBAgi+E8NaIuDXE37mSdl5kER+cub8nB1w+kBC2E+3aSQYyHDG7i2f++Au5/pL9zbxOkc/cmQ5MeBQhJnIXc5WRBe4vuQvcRTE6vVzxBZFdi54w99+p2ojuOXNXaS8jJnXHy7GwIvO83b9hvN1htqQWq+7eDfG11NwMcWdaMTUvNVNSdFubxW4x281NS01Qo8MHwiFpwBDpTBpHf0auzty8AUUczxtWhzXxViLkoH3hV7YGIOCObsZ8/VP8RHwH5xScTRr4GhXo+avq5qDJh5TW0rbU2r7cZrLVNy3AJ7a2NkgU18PDz+/aBV0HjMfOXCG4uqrwTI4vbCfdKnOPtr8qQtuVLEpVFTtumsm4Rdslbp0qFLm7B9z/sJGB+2deBO4MZBEC9+99Ctx5rM13wF0CcW4K4N61is9mYO7r2MZ94wF3Bcz9nNdt3FcTuCuxcd9YwF2JyN3bwP0bDbg/UsB9S8DJHfoze0IuBiVcg/b6VmJiXvGEPrYnJmN4uqxstrKysm42LuuGxWKH/vtaUBCkCQg81HxzrGOEknae8tRzVTtm144L298Qg0EeyNtX0739l2sB3J/3AXB/kdTi/0aNvF2atitZC+nifWK+Fm4xd9Hr7SSd3d88Ye64vQyigYzUnfWQhUoG/cRYZuZiY2PySHLVXNV8Xd2Dw4czxzLLZ8qXW1utdis0UFAhnWI6JHWns7Ir9dJp2ClvP/oY/DZqnj+5FbonapGjydbeYdNFUxzw6b0IuH+DRnqWuTPPV4iz4wSQMpDZd2J7IJVYDkRdDUnsyy66O1VMqeb3R/4Afy2lve3shO+5qXWxuHIKPr+dnAz/KHawP8bsYfta8aZlMfcYIRN8h0vb3yb5U7lhILt6Bu7ihJroJPO6CJbioXYXZGfPMvFH7haRvK89abPCKyK3SbzA3HlrVCUOt7jyVfZOCQwSA5GRAxER8MB7dbKgoEung/bf6rDey8/PGc+BQQd6YWTQjFSrTuzOa3B4gXbcCc7altuKKh7kl97bG3p5a8BJCri7TraEgcYcaCFqxgYa7dS0L+KH+qYFU4cNQqykeqqidrZluaXDvEItY+iklh5CWoDyDaMLmi5cp1kSN9IEO1ElTseFnP1t+iEwdxy4y9EWMWG7e6idx9m/ZECMsAFlfw9P7c5n7kQlgUDkTl6ditnf8fam8loUHwH3FwTn5WJn5yqYu7SxzNoyd5K9jJjU3XU4h+9T5d4/c2J3etsKzHKU4P255wYjI1FpW2hooA7qzOZbCQlB14KgUlfPUZ7vhl4DShpUdf7uCRa7y+cNRuEOBbpytrKz00Ep3Om8gW7G4CfivKTBonaksNkacOo54/mg+Gvw/TS3LsVl3oDPkWMktP3QV0DnD5/3h4Tgy5OPMuVYfmOKmLAdO3kSNW33Nm33xEzG6/L2X3oC3JWJ3JUD999qwJ0L3FnazgHuDI55VID7htiYup5ouzrmrgF3DbivIXAXMHcNuG9a4K6EuWvA3afAncvc/1tA1NWY9OHUg6PZRXepNYmdnVFpQ5C+R9PS7Fbrzfj4scxM+MmpkhLIqsjgFTXf3zD2Di5Ju9A9RkjExC2V3xNXnhJQO4m2iwH3P7vrJ6N8pnXHT8ZL8vZfCB7viNxXEbhLNPovyyFviUe5v7YSvukeB+TPG0LmLnC9+Bc+4fNUdTQNhLxPLVPdvXs0NXWuqupOejqC79fDwqBvgml8PDc3/U469ClQOZ0KXFrqzmL3/2TGDjRzQBGAQgFFCUolNEf59/LrmxayDt3dG3Z5qxO4fwezOo4CmedrepKn3WNoAvgko2rfE3Ix9eDt6vo5C51V4C+0mUxlNdO3EhPhcTgcI8nJ/aGhQ9HRt1NSevR6RACJuYVNLGpRO8FOmscExRdCuK+z8x5w94q8XZS28zg7/Q9/U+5ReBrxGvG+v/gtE+K/6zXPFyeoPNxiOdpRZn3CKdrV/RJtZ4w42mRBQdl02VJT0+EHh9NG0yIGImB0cAXaN3KB9h0VaNC9BnYHWjsdEGV1TfMQLFtcwJ062RIE2leuQNvNQe3wZ3XRXfFZN+dra6mNCLE9vUYjJISFhoal5uaiivudnQ4o3z0GA/xDXO4xvNMsphPi3BqRsCbnWkPwjq/4Dwm4c8TF3BMRHmr5l3oPGWnUzoPsX3EfXjOKY3c+c0eNnZiZFcnJnecqg9u48/emigP3Pyq4eycL3KVpu7Ta3SMzdzH7OJ8yd+ZATtZeRng4x3OY+ZhhfOxZOKrL6Dj8e9rbvTswcCQpaTgmZjAyEgr0vfz8Lp2uLzjYare2Lrcm304OuhYEdRZJ3Z1ndd88hkYrYt6AX2UP6uAPFk4WmlfMB0vuUQWakDf4SQM/CN+y/8ROw9l94VeCE/qg7W9oWYQCDRkDvuep4mLIbwMREVCUb8TFwRQADT97gVX0+ouIk5vYcnIZ03axmit7q8wz6/bVkbf/0q3HfeAuaMg3EnAnHbiuGnD/zg3gjrMkDbivKXDvWqNnDZm7tjdVjLmvW+B+ftMDdznm7jXgTjN3Dbh7KHJfJ8D9v9YKuAuYu+fAnSdy/2+UNW2n43Dlg7Ka6bbltqbWxZb25eXWVrvFAtMCZFJIWJBKIEpZe4ej9H9pnuxUArW7Z6lM9JAR0nblwB2HsGu4LlWJe7vbqF0teXdP5C67o0nawF1a3v6SskafZ07Nf+TEUK9IwlBp5q7IWEaWuTPUSbjdkWgv45K6Mw4zUEKgLkJsQuNCbW+jT8UGo6JgGp+vq4OP0UPRui4dVHVKgXv8KSSmo2ggm8KP/gyNGlAZoJhQHPDUNgrZdzoSc26VVk/vDqY44NN7jz/pBO6IuR+lZ3h6jKcmeYYA0qgdrVyGeT4mY3i+thbySUTKQEL2rZmKisXGxsMVD0qqp8yWlfGcHGjCoOGALuE0vRD1GM/XQvq6jLKsInSUfofEB99arwp3hasFXlVgJkNEUX8jofa3GCYlfMSwu9CEWsxg9xW3tiZ4zcRJ7nBLKHX/jg40aByhgb4RF7diMsXdiCufKV9qaSmdLqU8YRwOk82E7GVYfMYPNIaaOQPt+6ehpYXYbFxsNNvNWYfu7gq6sGU/AmfsyRYbZYJA23sMLVzxD7uckne7vcPWZrJV1s7a2trKj8zAN3krIQG+q5sJCQPh4bcSE4djY2H2gCbYtWeF6B4jMGji4zMR1M7j7Oy7RYy5i8rbpYWNbgjbWQMZAWr/CoMvEq0q+s3SzF3M1YrDHEmuMmI27mz4eAu4u0fbfcjcxczcPdihqoS5S9vL8MqxUOou4TDDYnf2OBxKM3VQ5+fXFxKy0tGx2NSEFi9b7Varw2qxW+DzrLEsv0t+lKv79087D8Xp8YufN44+xh7UwSy79/Lemoc1eRN50LH7hV7aShdo0byxi0btu7+ltjT5U8tR94Zdzj08bu10WGljLHT9BdIFJDT4BBqJi3v2wHcORRkZyLCqdqSqkcgV/5S2iFRi4CZO28X8yl5RbCbDXlddVXm7x7TdE+D+ggbclQH3bzYTcBfARLeBu083pm4+2r7GwN03IncNuGvAXQPuGnBXtDdVA+6ywH26tDQu84Yxrnfi4EHqMik9GMADcwKkg1M0C2MH9a9FcNinIpamylH7u3J27UTUTgDucrbLQuDuaz+Z/6veT8Zz1K6Qua8mcHdD3i7d5fOcqXmPwmsNYjDUc2MZl/YW87t4i3SfncfcP1C2tw3N9pQId+tWCNX+0FC7xVIxUwHPislUN1/XbmtvW24rmCyAbgXKI6XAPfakkwZi+R7J2+GX4DdAUUU31jtWOvJKJigOCPO8/3EY15/Y8y3D3J0P/PDx3d/CqE+hdv/v0S11yCQZBXfyS+8drnyw0NBQWDbZo9ePpqUh05hZGrsjW1j4tl3WMWxuYdyTxZYtK1e1Ezc3viMiyFXn4b62wF1uy6ibEArnUCIPnpZlmbuSgy61F0oUmjhJXChReLjFsYx4/HEUaND1DkRELLe23jt4cCI3d7aysj8kJGIgYrKgoGWpJbA7EDpo6DGhuYPWzBVojIIOBRq0dRBo0OfqunQQaHVN85Gpg88Zz23ZT59sQaDtZgPNyctcgbbXeX0EAi0g8ipE2f2iokPl9xOyb8InEFnlR2aKKh5YrXbKuh0daO3Y4UTt7MURusH6XA61/1OJUlXg+SZ83uZyFlG4KfiP8i+veshwULtLQPyfEo0sB7tjxu6fYZf5iCtqhCJ3oasMz8bdDeD+BxJwVyRvV0zbpe1lvGXmTmTuMsXXl8z9Pcm3Jf6GFGL3r7CMQR3UbdkCSaMvOBjK31w15SezUF9/Nzs77HpYzcOaovtFySPJ/pf9YT6G0RPlDTSlCfMGOhGngPulvZA36hfqzRa7X8glKLvOAk3KGwi1U1ua9lPrlP3Dr6RDdS65V1w1FZ58fTw392FNDXxX83V1K2Zzr8EAQzt8z86Gn04XCv3cPhCxkXlP8XJyiY0pMttBPDaTWc/ydrGe/FduAfffPLLAnZv83QTu7MZU94A7A7P4tF0SuJ+XBu4YCtSA+5oD9w0vcteAuwbcNeCuAXcNuPsIuFM7UVtapsvK7BbLQEREr9HYo9dTZsq0wgXeeYSFqGKoXeDVTlhgKPSQERG2K0Ht8iJ3gREEH7iL+8n8YY38ZLxI291j7qsD3MnydiUtvoC4ER+ir7SEsYwqkbt7xjJE5u6a8CWZO3uT/TN2xyOXBkK5vRYUtNTSMltVNVlYOFVSEtofWjhZeOj+ocRbidCwQKWF2sXSQAoI0jUBDfNQbeBXofxC49a42NjSvhyROvCc8TwD3CntLc3cqecJCv9RkzxFAP2/h98Dw/ze0MvR6UM2k6mxZTGzcKy8Zmalo6P8CPUR7V6jrsv4+VHHeLjYVuDS/pnkdRlZ1C4haZdg7m+JbG9jHZbVLU31DXBXK29/XXoSJtosCAxAxF4unBiK2mIITrleUbg4wesmTu4ebrmWqT7+OLxpT9FSd5gfINYov+PS0geHDy+3th55eCR3IjdmOAZmCwgiJHV3Ynem+XIG2nEq0CAY9T36qrkqa6cjMnXwWQMN3KUDjb4+AiGpj+1Jybudc3i8puEhfA/DMTFDUVHwyZ309MmCgvna2v7QUBRl+J6Vr6Uvjki6kL8vewuNjh3OI2Du76hx8CDQdkkPGQlh+5fitOVrtqkVdLpsRyvK3Elm7kSRO99VRmjjLrI3lQDceZZ3bgH3F9QDdyJz94WxjHtm7rL2We4xd96bky91Z+uyHHaHXhoyBkTl9bAw5JM+FB19Nzt7qbm5ZKokbTQNKjUldT9NHYoT8waMd+igDmZZ+J2ZY5ktSy1p+aN7Qi5CToAS/BQ3bzyO5Q1qmYrutF/opbDk6/BHSqunIV+NZWZC3oDv5GZCAnxXfSEhl/fuhRGadzJHQO3EdCE4nFNO2yXOtpUfbys3k3FP3v6iuLz91z6WtysUuWvA3VPgztuYqgH3desns45puwrmrtm4r2/gflE9cL+gAXcNuGvAfYMA94/XBLhD0z9XXb3Y1NQXHIysY07SgzqOw1yoXajtkkDtSiSoRMd2NaidiN1lF/p50cCd2JR7si7Vu7Rdlrn7ArhLGLgrlLcT+3ux5h63yBC74iDxn16JyP1lD0TuMoOHu0vbkKs7u0wV0UAIYWib+kNCKL/poqLpsrLltrbS6dKMOxnGXiOlwD211TnVY1UFfggVCXFAaBjbltscDkd48nWKAwac/Pm+72Fuf9IPnu+Y5xgigNTK5cAz/mGXI1MHMw+NFVdNUXtcc0eGoqM7zCt3s7NhtreZTD16vcs/mt2GSrouQ0btuOqWONvzVO1ynP0dcSd3CZG77M0Jnln5y54xdxWmK9J6T0najr8hXeAJ22yJP+/wTHgVQMPX1K8sfsVjEydPDrd4gUb5OHHXJ3xPBxq8n68FBa2YzYWThRBrD48cyRnPoU0aOnXdup3ndkI7yeIzXqBBmwkdcWB3YO18bWPLojGud6fhLBVo/ijQvuMG2nEUaOhMKyptCGKzrmk+r3hiob6+qXWxqOJ+m2n5dmoqTFwwY6BAI7jHKPNo+qcyC2axW2hvkryJJDiLlHeHb4TtQvfeo9z29xus5UW/E/1Blrl/jmkOeJpfjvG9iKuMs9UR2ZsqjB02arwD3N2i7WLeMgpF7r91S+TuKXMndQiizF2WA0q+Rdl04bwcw9xCw0/ET9PbIK74+987eNButd4vKlrp6KiYrSiYLICk0bjYGHA1AIZmYt6AYg3DInUF7dS2PRf3lEyVZIxlFJRO7g6+uO3AKbpAH3cW6D2cAr014CQU8QNRV5F1ZH7pvaq6WchSkwUF8HEsM/Oyvz+VMRgDGedVM8ElGNXbU0jncwppu7R1u3IzGWl5uyxwf3F9+Mm40ZYrAu7chtx9+Ysy4P6mBtwl/GR8CdwviQP3y5sOuHdpwH1zA3e39qZ6GbgrF7mvPnDHmLty4H7mUQLuxzcgcD+qAfdNA9wpeUtwMKQziDoXDuMO6tKoXeghIyVsV2MjI4XaWRaPP8QO3rvA3asG7mqB+y88eNYWuP+WCNwV9PdC2k6WtQrOXf5KUt1KGMu8pMRYxhPhrRBxKiZQH0q6x/Kk7shhpi8kBMb4uaqqhYaGww8Ow1QPA3bsjVhoLqCcQqGDGgVVCJUg+AR+CAUQKjY0jDUPa5pblwxxvTCrbz1w6pl9J572P/703uMww8NgD58jArg98Mzu4AuBMd3V9XMOhyOnaBwN84fK75s6bCNJSdBWQmI5h8S2NAH8Fp3hSaJ2oUWD7GyvHLW/iz1C7fZbItptib2pPArwqq+BO9FPRhw8/UXgdf43EdrOH4OZ96Tr4Z6SEpm7K9w8AO4KYw2f85UO+R4cbn0hIGhQMWHIGY6JuZmQAG/7WwkJ2XezF+rrqcOta0Zo2CHQoFt0BtoxV6BBHwqBpu/Rd9K+zhBBO/Vnt9InWxBcTwkCbUfgGb/QSxGpA3nFE5RAta0NgmssM3O+tvZuVhZ8vB4eDr3+adb/DfdoEvN/I4UYboTCo+3S5+KizF0INIVXDf7t36RouyRqV0rbJRflSfTELuwuYO64sYzwogDBVUbExp13QcTXwP0Fd4H72ovcVZq5SzF34luUe9yoZMcAXpeJGcN5Is6tzjCxD0VHT+Tl3UlPhwQwGBlZMlXSsdKRfic9pC/E75IfTMAIuzvzBn1K9/T31Ik4TL1QweF3Wu3WlLzbFHDXnX5m/wksbxzj5Y3QxP6Mgjst7ctQl+HrrpjN8HUnDh4ciIhwGruRVjt45OomTttlF6UotG4XXpmSkLdLu7cr2TPsoZ/ML1cXuP9aA+7eA+7HPATuNJnSgPvq+Ml0PdrMXQPuROC+Zq4ymw64n9aAu1eAO5e5a8D9EQLuaD8StbSQvntOQO1yRExW2P53pqMS7kf1hLYTJ3yCs7C40YEbwN07Bu7u+sn8wgfMXaq59xi4u+cnw2nuMQk5zrKJw7PwbcA5dJEUuctyz1e8JHJXYuZOsJkWY+6M2bRT6v744xDIEM5QVqF/GggPR3fYR5KT4WPZdFn8zXhozaCAQ8FENBA98DnUSfh5XZfOZDNZrPbA6O5nDee2HTi1Zf+Jn++D53t4YLanULvu9HPG84Ex3bnFE7WN8zDM19Q/HE1Ls1ut8HGyoKAvJIRDAIXXZYSoXcABPxTPKhKndzK0XSjcFjJ3BZlEBgSsHXD/sxuXLTBHhfew9yH+bnxfkMNluaESHyflzP01D2+ye+lwC0nd0Z0SCDRoGaHHhc5+MDJyxWwunymHj9Vz1c1LzcVTxTCFQAsMYcULNAg9CDR9j75xsbGydvZA1NWdhrPUydZ+Z5S5Ai3wzK6gC7rorvSCO1V1cxkFd2YrKiCQD5ZM2NrbrwUHI6N2p/8bquCq7o6IsDPhf2vioRTnFhrzCEXuSs48iB7ZHyvzkOHYyMjSdi5qZwmLsGlGbbGQuYv1RdKuMkQb9zcUHFZ5CNxf9B5wf8EDkfvvVlHkrnBTNOEehoK9vkTvI+HNGHLSgOqM1O70tnMo0LdTUlh799Lp0k5HJ2QPZ4E+vQ1hdzZvwA9hOEbAPXc8Nyl3ZHfwRajFkCieYQv0vhNb9p/cRhfoA1Fd9c0LDoejrGbabrHMVlZCgb6VkHBl377zdHVGqvZvScZusodz8uffwg6f2KWrMZNZNXn7uvKT0YC7BtxlgftFCeAugiM3JHBf934yawncN5yNuwbcNeCugLlrwF0D7psEuOODOovavySOlB4I24mm7WK0nWcjw1cxky6tS2hniOvIlAN3Nzam+sjA/Re+Ae7Prx1w5zT3dH8vlLeL0XaiSQtvtEMckCAeFKzMfVkZ91ThdKFG5P6OMl9jIgrkbFJFUvfHHvuOdphBNBA6FTTVr3R0wMhdOVsJU72x1wiNA9ReqI2o9MEnUGahBdB169qW22oaHsK4/qzxHMzzWw+cgpEeHvgEfgg/uS/8SnjKQPmRGWunIy1/FMb4zk4HfIn+0FD4cogAnsAWorpQO+7VLnljhphV/q6Atr+NPRzazvzm97gPUYsnJnJXBdxf8SpwV+Uno3CdgBiJ5ky/2CNmSC0UuZOFupI+Ti+r2VSsSuT+lpzCWtHhFmsvw5W6s6sRew0GCLSJvLypkpJ7+flWhzVtNM3QY4A2HFpaYaAh4O5wOPZH/kCdbEGgBWCBFkghs/0RP2QX3XVQseVoM9nQhsOb8fFDUVEw4VAbDjGjdiJqJ3rISLMzsgUzab0K2fBNDXDnyduFkuFPZFG7YtrOE7Zz2ApmIIC6avRLqDlmmftX3CSGX/tDGUzMVcaVr5QAd+5lLG8Cd89oO9FYZj2I3F+TE7kr2Rf9tleYO50xPmHesU7mjlVn9qyOUrtv2wYjOhRNyBuQMaZLSyF1QHUunCyMHIz0u+QHAzTMuDC2otQBMy5M0nsu7Um4mWCymWIzhveEXNwReMZVoAMo1E55T4VR3lOHyu9DgX5QVAR1H/ISfJW+4GBquwN2Psffz6QsY3zgBm1Xbyaj6lTb83WpPvKT+aUG3DXgLg3ccdquALhf0ID7+qbtXdreVB/sTdWAuwbcNeC+4YE7g5Q3NnBnmLtq4M6q2oXiUx4R+4T5vnmO7d6l7cKOnAfcif6whLZegbPwK9IbybwN3H+11sD9F+sZuOPNPVfe7jKTwWg73sQTXblx7S1PeCvhKeS5q4ybInei9hPRKBH5p1P4KSemQw4zPXr9UHS03Wpdbm11WK0NCw1Jt5KgS4KaDxUY1Vio0tAyBHYHwsxf2zgfEHn1uaDzO/Rnt+tOwwOD/bOGc36hl4Lir5nMKy1tS02ti/CsdHTcTEi4FhQEzRPUe3ZVIwe1YxDwcyznKroxI0fb+aidtPyTg9ox+bbQohpPI28I0shfVnFvqlLgrlLeLu9vzuVK+PMPkkXG20JjGTGhrmebitU6ub/hyeGWuEGzy8cJu1OCPJqhyYZZa6q4eKGhwdHZidyZIwcjYVyAlpkNNOiLoW039BjgVw+V398f8cNzxvMQX65AM57bG3Y5PPn6wZKJNtPySHLyitk8U16+2NgIgQwdP7VqZcsWaCLRVnMeaifrr5WxM+XadukraG9KuvrwVtdywCXXoEMhamdXpAp924nadgRWOFSFBSs87C5g7l+StseTXWXYxCVyTPXmRgPuqkXuaoD7Kojc/8rrJ8W9j6SZ+weyzB07qCM6zCDsDsMkUrtfPXDg/qFDUKAhb2SMZZRNl6XcTtF16SBRQLpgly1CGvG75Bd3I860YopOH4JyvNNwbjtKHYFndurP7g6+oIvuTssfraybzTp0F8o9/J0TeXlXAwLOM3fOFF6FUa1tV2DdTjST8Zq8Xf261I3iJ0Pcm6oBdw24uw/c5Wi7O8BdM3BXxdw14K4Bdw24a8BdA+6PDnA/KjerK4FiMrSd6NsuIZoT0HbegCRkKETSqtBZeK2AuyoD91+se+D+ogLgrsTAneDeTqLtzvcA1woDly2zKNDF3PH3gFuuMi970VVGztBDOHsov8Du8o3lTvW9RuNMRcVcVdWdjIymxaaMOxn6Hj30I1D5oaTDR+g7kLV0afV0QNTV3cEXnzOee9Zw7jnj+T0hlwKju/NL71msMMLb4f8f1tTcSkqCv/MiQwD5qJ2UWD7jJhaFN2YU0Xbu8ZusJy/BdpabQ94UuSvzupK9qSTg/rIvNqYqAe4i06+Y6Binz+wbj7dR831GsQuvs5jIfY23Jqg63PI40KClo6yctm+H3v1aUNBoWhrt0E49pVOlgd2BEFxsoME0YOw1tiy15BweD4iEQLvwLBNofqGX9LE9qQdH65sX4FcXGxuRqh2mKQq1b9/OQ+1KDsvFdpvzlarEIyg52v436VtoGGd5FwPurnca95BDjLZLoXZx2v4VCazgtJ3DU7jtOIe5003w1+xLLWbXg7nKoJdX9IyKBNz5V/G8DdxfWH3gLsvcRYD7H5UBd7dF7oqMZUhFmVOXlTF3ftJgpO7sFRlngd69uzswECKduo5mNtfO15pspoiBCP8r/jDKo7Eb5nj/y/7RQ9Gl06WRqYN7wy7vCjoPeQOeXUEX9oVfgZ80W+y1jfMrJhP8PcOxsfB3wt98Gq1oUmjv5tmFM0KHT6LtCuXtf/KSvP337vnJuAfcve0no0TkrgF3zkoPnwJ3DPRowF0D7pvbxl0D7hpw14C7Btw14O4F4P4Vt+3m6U/JUEyBtp3XiL8nSdvfkqPtfEcOwQCP9/pEdTNxlPUmcPfGxtTnfQ/cf7GOgbtSeTv7HqDfALxhGDfMRW8GBDX++j//p1Dk7jZwV+sq81fBkE80WyCK3Ml+F1wyRUSByF6GUtI9+eT3yGFmxw7oQq4ZjTCKLzY05E3ktS23wUgPfRa0J9CYQFtk7DV2OjpzisZ10V17Qy/vCbnoF3opIPJqdPpQZ6cDhvmllpb7hYW3U1KgX4QOg4PasbWoPDJFPMZT508lvC4jQdtFFM34q8o7HXThMHF3clFXGSEO8MzG3RPgLsugcQDtTKE82i4YdHG/b4QR0YtGPtni2bi7C9xfVukqI78b1g0HJ1WBRkvdoctExu4DERF3s7MhXuwWS/1CffhAOB5oQdeC2mxt6QV3DkRBoF2CQINwg89jMoYh0A6V36fUqRYL/CVOdSqN2j050/pQsQvzu4INn0oOxYnMnQDcuX4ynFsF+N0dAUMRonZ52o6ZyYjR9uMYSWEfHnMXitzJrjJc4P5Pkb2p6IzqrQ0K3NfOVWbVRO7yxjIkLPihEubO2sugszpugYZiCvN8j8FwKyHB1t4O4Y8cZvQ9ev/L/nsu7oHsATkkaiiqdr42InVgf8QPfiFU6vAPu2yI6y2pmoICvWI2w5+9GR/vvA1DOqKTso6U07a7bSajwr2dd4HMq34yGnAX9uSPJnA/6lXgfnLTA3cR0roegHuXBtw14L7Zgfu5TQfcT2rAXQPujxRw/1KOtruab2Zi53Mxdm4XuWQqJkdVaCYjpEXO6V2w3w/HrBKiS56piBLg/lsNuHsPuAub+5ckgTuamTnyduY94BJLco0vcBqI3gnobUB0lfERcFfuKiPhoy0jchc4xgpRIHK9YJV0UCaheEP30x8autLR4ejsbLe1p99JN/YaUd8a0hcCQ356/h1DbE9A1NUDUV0hiX3FVVMm8wr8/vuHDg3HxEBb5kTttIEM0s19K4CA7h3jie1eJjrAiNJ2AV0Vvp5CMw3iOtA3lNi4Cy+8ryJwV27gTnBvF7f4YA21P8Lyv8srQ0TkLrM31XfnW6qmffE1xd4KtNNMoA1FRSGzCLPdnHEnw9BrgMEIAi20P7R1uTU5b0QPgRZ5VRfdFZrUX1g2abHaIdBsbW3Xw8Ig0KApP4OjdvpMyyVsl7ua5rZSlbhJWLpGi3FMUeDOfbO5zjYEAEXI2cm0XcxMBgfuiKdwafv3XIaCctpxhrnzRO6irjKMjfuHPBt3sSO9dQbciTZxSkTuXgTuvnCV4SUHaSd3WZG7jJk7fkrHTRo85k7IG8jYnT6ug/m/x2AYSUqCvLFiMlnslqihqMDuQEgdum5d9FB07XxtZOqgLrobUkdgTHdM+rDd4Vgxm6Gg30pM7NHrL+7eDVO3y+ENOwuX8p4SWV0uY91OvHOmzL2dd3XMK34ym29jqgbcNxZwP6UBd18A940jb9eAuwbcNeCuAXcNuGvAnQvcFdB2KRUqUd6uxkxG4ST/Bk/aTDdqQrHqe1zM6hFwF0yzwoH2xUcPuP9arrNXeH1VdGOqtJ8M/R5gT1xYcMP25SzmcL4ZcJE78zZQC9xf8rGNu1BPJ+0Y+6G4/QI70n8hPtJDFaSUdLt2QXc1GBk5XVZmM5kaFxthjA/pC4kcjGxYaEg9OBqa1A9Pcu6IxWqHMX62qmogIoJC7TDJ79x5inaD/Z6WgnIgoDLaLrYQQniGJ7soVbjF4W3hMQbzevL4CE+vLTyxe1M9cH91DYG7+HtPeLWCeBpBBqBsDaOrAHrdiMda7GvFs/BaDeDuiauMGpG7RKB9I2BnSLIKg9BQTMxya6utra3mYU3UYBQKtE5HZ3LeCAq0lLzb1OZhq3WysBChdnSmBX8J8oJAwnZp2v6ZtBGcHDt7jyRvf1tco6oCuBPNi3DgzrzOfFGwBGrHaLs78naGofCdAZj+3qlz54rcvyYZ+LCwkrw3dSMA91+Lr2bZADbupHNHta4yqp3cxcggjgUFScN1UCcs0OwVmS1b0HHdJT+/XoNhNC1tqbkZckXeRF749XBIHXE34swr5tiM4ZDEvvCUgfzSe+0dtqWWltvJyT0GA/wp+LOUXbv4hRiO/ZSaCzEy8naSe/sq+cmQDNz/IG3grmBj6ovrY2OqBtw14K4B940F3Ls04K4Bdw24ewO4n9CAuwbcNwdwxw0fnKMjLnWRNZMRl7fzGnG33dtxeeZbDGxFkAgnrYgBoS8q4XLw5zUH7uo3pv5i0wN3koH7n0SAO/898G//9gHmSIAGRfbNAG88Sn7Lc5URsXFfbeDurquMCu0t9+q6i7nDSL99OxrpuwMDb8TGztfVWR3WrLtZSSNJtfO1mYVjSbkjFbWztra2ycLCgYgIaB/RJA/lmQMBWdrOzPNCJxn5xCKWVZStZeMc4AmAO+caBAZS0dflM3cxIiZYbPhnNXfefQHcX1MI3EW8jGQUx6x9OfPWYk0zUBX4QOAqI7E31VvA3XMbd1/dJhEGGj2WUzYR27dDYw2jQo9efzM+HgIKAi1zLBMCrWWpJaPgTnLuyJHGh47OzvuFhdfDw2Fqgu6fQmbbt5+Uo+1C3/b/Eo8yCXb2vjL3dll5uxLgzrlOwfOTwbdN4tCE+PBou3LgjkgKA1BYaIIPAE6RO5vicFcZko07C9w/FgJ3wXke8RKemBfTKgD3X29k4E4+h+NdNSPVYp5RofuuMoLSLGMsI5Y36LM6irkzd9HO0ufiV/btuxYUdCc93dbe3rzUnHI7JfV2qtluTsm7nXpwtM20vNLRMZqaCr8Hfif8/rPMKd33xLyBV2fZBeYCkzfhKbh7fjIbBbi/oAF3DbhrwF0D7hpwX2vgflkD7hpw14C7Btw3A3AXU6Eq35XKdOEK/WQ8B+5IrwrfzEeM7pKna8a9RHwN3F9YT8D9/2DPJgPuHPd2TN7+IVJH0u9beD+43gyM/BYdvawL4C60lhYD7so5oIhXLK6hY3eoOr1ltm6FQgv1HvoSaNT6QkJGkpMXGxtr52uPPDxSUjVlsdqRgUyvwQBdF4KALG13XVTnaT9VytsVubcr8JN5Swy44wpuhiazV/6Feu33BKtTiXtT1yFwF3vvSRm4CxXH9OvPyttx+vkZ/V+Q0vCiZAsvGn5EwVubsb6Bu6odxR96Hmg7dpxHgXbgQH9o6O2UFEdnZ81cTcNCAwTaSkfHZEHBUHR0j8EAcws0+uRjLa5MlQVnSuXtnvjJqAHuf/MQuPPuEEh3gQJ5u6J1qayfDCZvZ413TzIDACtyZ1984d0CHnD/RAPukntTVQF30b2pil1lXldr445VZKnVqcpcZXhJQ1bk/g3z5jyO6dxhhIYx/vLevd2BgWgnhN1iKZ0uNZlXymqmHVbrWGbmQHh4t04Hv+c8ou3btiEHquOkvPGlsu3KH3H3dig8BfeWgfuf3TBwJwH332vAXQPuGnD3JXD/QQPuGnDXgLsnwF0hc9eA+3oA7hhz14C7BtzXDrhLr0v1FnBnzbvp/gyRVvStIl0zK7p8m2ve/egA9/+zeYH7GzhwZzyFnIcu9NsAvYE/pt8MH9BvhlUG7n9aT8D9C9I8fwzT3kJZpeb53buhGYJ5/np4+O2UlKni4tnKyvna2vHc3BuxsX3BwdA4Qq9DSed27jxND/NiHPBrIgf0InCXXb8sCdw/YM5mPmJeNOo+BOZB9GgCdx4Axf1kPsHQJ3z89Ec/+oQB7v/cEMBddm+qAhv3DwUGEW4E2jkUaPv29ej1AxERt1NTp0pKFurrHx45Mp6dPRwbey04+Cp9ieQ8Hmgs8xXYiHNWnZPc22WBO8GyiYkvtw3c1ztw5xm4c4E74iMnGebOA+7fqgLu+LYDDbhvLuAutHH/QIIMigF3kbzhFLnT70l0VgcD+cU9e37Yv7/XaByKihrLyIACvSXg5ExFxZ309MGoKOpEfP9+/ok4XqAF+35lFyw/EsBd5cZUDbhrwF0D7hpw14C7Btw14K4Bdw24a8B9swN3TeH+CAN3TeHufYX7s89CO0Ip3IODbyUlPTxypKFlobZxvnS61GK33MvPH4qO7iUJbzWFu6Zw1xTunlwlqWuab2hegECzWywTeXmDUVE9ej0baKc1hbumcNeAu6Zw37HjPFK463TXw8PHMjMdVmv5kZmOlY6K2Qq71XonPf16WFgXSeF+TFO4awp3DbhrwF0D7hpw14C7Btw14K4Bdw24ax7umoe75uGuebivlYc7zOpD0dFz1dVWqz3n8Hhy7kht43zWWFby7eTa+VoY7ycOHoSRnrWWPsOzllbu4c4mSs3DXfNw3+ge7hgRlvZwx5clDMfGLtTXt7QtZRfdhUBrbV/OGMtIuZ3StNi0YjJN5OX1h4ZyPNzx2yRiG1M1D3fNw13zcN8cHu5obypzUOf0cPf37zUab6ekLLe0QMZIyx9NPThqtqxA3ki/k26ymeDnR5KT4ffA7zwvsmlZeAXNWx7u761jD3cNuGvAXQPumoe7Btw14K55uGvAXfNw14D7GgN3T7Wo4nJUUfELT5SqGLizCk3cUeQfjM4IfXV2puVNs/xRdg2BO9OOKwfuz2964E43987OntvTC4H7mwxwf1egXP4Xhjnwuw7oncC+DYhvgDUA7iTV7btiNhfYVM/OHsQb68Tr6q6FbOwix127oLsaCA9/cPiwo7OzzbQckzEcmtgfmTpY37yQNpoW1h8Wdj0sdTTVvGKG3zBdWno9LAz+CGEtG8vcsXvrShILe0DCp4GSsz3/xowccMeZMg+O8Gk7ho9dkFFAxAjAnX4brDJwV2VnRATu/BsAzOuDu8p8jNcw0p0AYr593TfAnUDWVAJ34rTPu0rieaA5j7VoR4gLdKANRkYuNDTY2tpqG+ej04dCEvuj0gbtDkfy7eTQ/lAItPQ76VaHFQJtIi+vLyQE7T8UsjMi9lVlEMG+7YVVm3CgxUSWGDVzA7iLHvBwL1XgdFL4kJm7QuDOGHfwRO7sg34GvebH6CabYJyFHXXgwP0jIXBnX17mhSWc53Fvz6wycH9hIwN3wrkjNxOyyZAM3Jk3Kg+4v6McuPPIoBI/GZK83Unb4a1Ia9vRKV2PXj+SnAypw2yxF5ZNRqQMQI2Oy7xhtqzEDseG9IdEDEQUPShqt7XD77mVmNgdGHhpz55ztCcVvjdVSuQukjQ+lDulk7V6I3b4G2tp6osacNeAuwbcNeCuAfe1Bu6XNOCuAXcNuGvAfWMDdzk0JhS5f6hY5C7tKsNrx6WZOwe4CwyI2S/H42UacPc6cBft7D1o7oXA/VUWuP+P/4FoGssNOVb+uHiZeYgokOWAf1YP3N0jgGqBuxdUtzx5Ow8CIt0cPclD+9IXHLzY1OSwWk0dtqxDd4Pirx2I6oInJLHP4XCkjaYZegzQEuq6dKH9oRUzFS1L8L+We/n5g5GR0IRRSjpagatkOZvCxKJO5C44wOM/XPMQ4evJ+xIcIsYmEPXA/ZU1BO5yAFqR6Bhj7uytEfZoBMeIrAPP2xhwl062PgTuqqZ9hSdbPD8ZNwLN338gIgKixtEJ/+fILrprjOuFKNNFd4Um9bealpNHkvU9eirQunXh18OLp4rNdrPNZILY7A8NhTEGmvLTTKDxD7dwnbuIk7sSkbt3bdzfEH/lpW5U4Ac83GsEMthdXOT+tRIbd8TcuQzFKW+nW3COgTsvuWGvOftqO0nlRgPuLyim7ULgLkHbVwm4k/xkxAoxz96Nd+HsLXE/mfdEDNxl/GS4NJBoQsU5DqdP6WDa7w4MvJmQAHkDsgGkjpiM4cCY7oCoq/AxOn2osWUxcjASkkbA1QBIIHE34jodnXaLBQr6zfj4bp3uwu7d8PfA34bnDfwNTEwa0iJ35TfPOCJ3kdRBBO6viwD319QAd6LI/Xck5v7/ZG3cJc+lZIH7rzTgrgF3Dbg/ksD9qgbcNeCuAXdvAPfvNeCuAffNAdz569fUozGyk7sakbtS4M4FRrxx6F0SLJMeZWWAO92p/07hQKsBd8XN/e9Emnsx4E4Uubuc3LnUTChVfpPnJ4MB91WT3P5Vwt1YTHUr4idDVN1y5nneMM/sb6SE7TDJ79nTazAsNjYu1NdnF91tM9mi0gYDIq/6hV7yC7nkH37FGN8L433OeI6uSwdtDrQt8BH6x9gbsVaY5h3WlY6Oe/n5NxMSoL3DsTvv9vpXkrfXP1ViLMPLKgryiQRwF76qfHkvD4dhOcSVRsSBu1CCt2rAXa3im2PjzmOgXKMPnv2O8E7Au5L+XcJkKxtuL5PCze3bJDIbU0knW+4F2jdMoKEbJNDvQrvfHxo6lplpa2+3W61tpuXI1MH9kT+wgRaUcK21fTn9TjoEFxtoEHSIneXfy19qbrZbLOhaCYvdkexaeLhFxmcKJKuiIncMnKkt00qBO/fGCX62QWQoRPLOZ+6qRO4Yc+c9xxjajsvbeZsn8bTGGi7h51ISwP2t9QfcFT4v+hK4Sxu4uwfclRq4u+cng2HBD1XuVjmK5Q1ngd6+HYb27sDAG3FxdrN5xWxu77AVV00Z4nohY0DegOyxP+KHqLSh6vq5iIGI/T/sR2jB/4q/8Zqxaraq3dYOBdrR2TkcG0th9127IG+coPMGu0BVLXN3U+Qua+PO/Bch2LjzgLtCkbsvgLv4fiYNuGvAXQy4n9SAuy+Auzhz14C7Btw14K4Bdw24a8B9XQN33tD+uTKhnBLm/r5XmfsbJFcEdi56h0sHeNLUvwgsDrwP3LG+3G3gvgo27s+vY+AutHEnu8owbv5v8ZwKsIfMAfH3gGeSW7clxgQDd/Etjn+Xlrez19WlIeBTT0HFgkoJHUCPXn+/qGi2omIsMxMZScMkDzP8c8bzzxrOwcc9IRcNsT2dnY7S6VLoB6HpgKYAqj18hP5F36MvflDc6ehE3hezlZU34+Ph70TeFyx2l6aBn6lk7kqNZYTMXahS5I52PF7wrmBdqtjG1HUO3GVt3N8kucq8J4Kecfsdvie1QN4uBO6veQDcvW7gLnWyJXePRIy2U9SMtoM4jgJt+3bo1HsNhtspKRAjFqsdoqm6fk4f0wPBxQaaX8glY1xva/tyzngOzEnQxUPrDYEGfToEmqHXkHEno2GhIftu9kJDA4XPYmKQmxOFz5DDDIPPjpJMTsR2IfJqt/CShxInd7xMvyFJ28nAnXfdBAfuJPceWewuw9zFVqdizN3JU7jtOEvbcXk70cBdDLijoymJCzQbEri7uzGVDNzVbkxVYuCu3k9GVt7+PnGNufRiFWLS+MlPnL7tyEaGuRADBRqiu0unG46NhXiHB5KGxWKPTB3cF35lV9CFZ43nIHXsCjrvH3Y5On2oqm42cjBy7+W9kDHQRA45ZP8P+6OHouEP1zysWenosFutQ9HRXQcOQOlHDjPHcXsZkjMSfldDgrkrKcpvi4vcVbnKaMDdF8D9txpwF9QFD4H7iU0P3GX3pq4dcL+qAXcNuG924H520wH3Expw14D7IwXclQ/tuJ+7auZONJYhObmLMfc3eCJ3niJJwO6Ju8h4wP2VjQPcn1/3wF2JmkbJ3lRFInfBXQeJcxciBHxV8cbUl31s4K5O3i6AgBxHaXquwId5qENQ/KCuwyQ/GBlJXTmnh/n2DlvqwdF9ET88Zzy/I/DMdt3p7YFndurPwmAfGNPd2r5cPVcN7Rt0DVC6UUGGQg1lHxqfkL4Q+CvqF+obFxvhgb/zRlxcj8EALdFZIXYXX9T2qceL2mSYO/Z+cAkVsQGPjBexNCL0k/kLRgT+pB64v6Tm8SZwJ7nKSDB33DDhA65ZE5ke8tAh6XSTaLOjRN7uoZ8McTWxvLxdGGgC2o4CDZoqJGyHBhQCDWaeycLC5dZWh9V6sGQCQik6bcg//Aov0HYHX0AnW0X3i2DKgdYb4gu1uvAJ/BBmkcjByMLJwjZb22hqKsTsVEnJXFVVd2Age76lRLX6qRxBk2busmJV8iMC3KUtjHCRO5G5y2B3EebuYit0Iytk7t8xTTbbc7O9tZO2C+TtBD8ZFrgzLy9+OvV37FRPAri/jgH313wA3F9cfeC+1n4yf1HoJ6PKvV0Nbf9MyVk4nTcm8vIoA5n29vT8O5W1s2n5o1CLIVFAutjOpI5nDef8Qi/FZd0wW+zRQ9F+l/ygKDsn5jPbYeDefXG3vkefcSej5mFN5ljmUksL/J13s7Odt2S2bXNVZ4HURoy5S5/Sybq9eUfkrtJVRuneVB8Bdx/YuP9KA+5KgDtm+OZD4I4xdw24a8B9nRi4a8BdA+4acNeAuwbc1y9wF+u/Ze+nK3KBcIu5v0ES0JGHeWZSEhPRCOdY4ii7OsD9/yroxX0K3J9fz8Add5XBRO5/wkXuXOYuBGo8RZWQtvPl7T4zcCdLbr3icSECAZ3SOWaYR1fUkbXFLWQF294+W1FRUjVlsdqDEq7tCb64Q39m24FTWwNObgk4ufXAKRjpnzOeD4zu7ux0HHl4BFpCaAeg9kL9ROURPoHiDG0C9GWRg5GVs5Wdjs7U0VS71QqfwJfoCwmBLwfNwSlmsP+Oh90929Umy9ydQz7zvCNg7sTLEELHaqG8XcrAfW2Bu9t3LOT2BzjfhNjDuxAgvS1DLXAX+/eqOtySP9kSuLcrCTSW9iJHCJaafccEGrznuwMDIdDGc3JmKiomCwsdDkdm4Zgxvnd38IUdgWcgvrZwA00f21PftABhA9FEUTNSoMEIVThZ2EmfkplWTIuNjcgsYiA8HCYQ17USGrsfJRE0AhFWyNx5Zu5izF2I3emffFPBaQfrKvMB6ZUn8hRp7O7CKyxhERjL8Jg7zla+46F2Em0nnx1iBu78janYQub3BHdo3thowH0N/WSUnjiS1qgokbcrNZMhWreLb1VhbWRQdT7KoHb2LPxaUNCtxMSJvLzZysrpsjK7w1Fc+SAmfXhv2OWdhrPbdKdRgYYHivUO/Vm/kEvxWTfbTLbY4dg9F/fAAA2zrzNvnNwKM/HOczv9r/jH3YgrmSqBvDFVUjJfWwt5Cb5Kr9EIX/EUMnZnXd3Z0sx7SyvOGKqMZdaDyF3V3tQX1sfe1F+5d/FUA+4acBfBkZflmLtq4K6YuW964H5VA+4acNeAuwbcNeCuAXccuEMYn5KUvQi1cp+4te3QE+YuMdLzHiFt9xC4/149cH/BN8D9+dWSt68acJd1lXkV7+wFzP1vggMY4duAI0z2bIXjK7J+Mm7L2yVWOEpCQJguPkcQkHG3YPW2UEShB+oPDUW0/U56OnwsPzKTlDtyIKrrWcM5mN637D/xzL4TP9/3PTzP7D+x9cAp+HlddFe7yQb/C+wOhDqPhnkoeqiswSfwQyjI0FDoe/SH7h9qWmpqWW458vDIWFaW3Wq9nZJyNzv7Gj3YO6+x0zpcJdfYiVJ3YlaR8KqSeN7FsPu7IiZX+GmNRCZRxQK8Atzx8x4PRe5vKDM1wt+NwgsB74g73YtuTCW9LLL/2Fc9mPPfkjxXUBFoPBsZTKCK9iJcDw9f6egoq5mxmUwVtbPtHbaKIzP7I37YaTgLYQXBhaIMBdo2OtD0sT1NrYuVs5Uwe0GnDF0qG2Uo0KBdhV4YGnyIxMyxzNLp0tTR1JmKihWTCeJusbGx12iEOYQiaG4IV4Uh5hZzdxVr5nlTcCL+ttxdCrG7BR8zzdOnstjdLeaOExZh0/wN4yRzlOlupZ2vcT8ZInB/VyFwF+lSvADcPXaVcdtPZj3I21WYychZt/9TpckbexsGXTtDqnYo0LcSE6Euz1VVwcfDlQ+snY66pnko0M8Zz2/Tnd4ScNJVoPedgB9uDzyzJ+RiesGdgrLJpJGk3Rd3Qy0WFmiYjGGa13Xr2pbbOh2dxVPFdotltrISXUe74u/PJg1naSZlDNdZuFvMXaGxzF+5zF1a5L42rjLrY2+qBtw3LXDnMXc54H5eA+7rnrmvjZ/MhgPuimm7Btw14K4B980A3BXQ9g0A3FFD4gZw7w8JgbkdchMyh8VFqWLLwSTMl/l0TOLaqRpvGQnsznkwRTzBBQLr3V91F7j/ViVwXz+uMqrl7d4A7mL9/e8U9/evCY1lRMTjvCsRf5WUDa6Co/RflMnbvQIBnXpbxkPmHK2bczgc87W183V1RRUPcg6Pw0gfn3XTL/QSDO1b9p+EGf5p/+NP7aUe+AR+CPP8Tv1ZmPZrG+dblloMvQao84gDopIFxQp9AvWNwu5ntqML7HXzdTDVZ45lVs5WOqzW/Hv5FrvlZnw8tIBI8A5112l/wXq7q3ePlVfVKcDu72IPXxdP8qQSZhKigfv6Ae4Sb0V8W6AoD+VtREAZm8nbBO8dMVsM0rYMsZdFLW0XHm4pHfI9CzTnDRKWmtFnWoORkTfi4mwm00hSEkTZQkND1qGx4IS+PSEXt+tOU6jdnx9oWyHQDGf1sT0QoRA4gd2BFHA/uRXCCkUZtH54oEGPDANHzHDMofuHymfKVzo6bqekjOfkzNXU3MnImCkrgyIO/f0p3KZZBLvLQDR0lYS0o1gYJm+JnHm/yfWTEXuDvS8ichdj7p9gzRYRuytk7kTsLtYTC2m7cL28qJ+MyMZU2ZMq7wJ3L9q4q6LtqyZv/5Oce/tfxa+avSlt3S7nJPMhyQRJdM0DJI2nn6ZU7bt2DUREjGVljaalQVEeio4uqZrq7KQuxIQlXYcCvQMKdABboI/B8zSVOuizOt1pSCxp+aNmy0rySDLUXxiCqQJNj5toEQEvb4RfD8+6m9W63ArZYzg21m6x3E5NHcvM7A8NhYGfLc3wHTozhlDqzj2lk966/L6ImTv/cgyxV1crcseukUm4yvxhU7jKaMBdA+4SwP2CBHAXYe4bErhvEJH7pjFw14C7Btx9C9zlaLsG3DXgvnmA+0J9/WJj40JDAyVK3bULYo81h2W9IJRgd+VSd4kdqmTmLo3dBaT1byTJjNeAu2CmJQphfATcn/c2bV814E7em8q4ysiI3AXMXWyWFnMFJett5WCoEkfpP3k+eCiHgIKRHrlbIGE7FBJ0RR1an77gYJvJNF1WNldVZWtvL6+ZyS4aD07o2xV0YeuBUzDJP7X3+JN+x570+w491EjvfxzmeRj1D0R1tbYvdzo6w66HQZ2HqgjVDGoRXoXQYO+c6s/ugG4rdjg2dyK3dLp0qbk55XYKDPbttnaY6udrayHDdOl0lM8MusnuhoGsGnsZhWr3dyS3N78h7ScjuzHVd8BdsauMzLuRxNzflr4KwD0iFdJ2CWj4quQiWdl/plr3duVmMrxA+4gUaOgGCdKoOj1ktm6F93Ov0bjS0XG48oGjs/PhkSNZh+62d9gcDkdgTPezhnNbaWQGkSUMtC37T+7Qn4XfVt+80LjYaOw1QqcsFmgIn0EPC78HZpSY4Zjltraquaqc8Ryo2k2LTXkTeSYbhfthXoKxwXW+RTo4J/pF4CH2Ae48jnuhiNhESGD3tySBu/KNtbLYXWgvQ2DuQqk7g92PYr0vpwNm+tqvhLSdlK/E/GT4Ow+Eaw9WEbi/6D0zGffWpfpa3q6Etr+h4ECITNsxCCi95sFlPMUuU9m2DWLzsr8/dRXMYrl/6NCKyVRxZCa3eMJitUPNPRB1lc4bhAINn8PPwM9vO3BqT8jF0urpnMPjBZMFFHA/tY3KG8c5eQM+RwUa8gYUcV2Xzmq3WuyW3PFcdCg+WVAAWWs0NZXavLJzJyrNVM/PHIcrTBduM/c3FDJ3N5zcvSRy96KrzK9WF7i/sP6A+1sbFrh/5yFwp5m7BtwfKVeZzeQnswmAu3u0XQPuMrRdA+5uA3fiuKEB90cBuLfb2u1m81x1NfTf18PDe/T6bp0OEhB74ZQvSpXA7kSHGZ6ru9BeRpJ8KcTufxPQdjFR6muKgfsflAH31bRxd4+5P7/qwN1zVxmpFl8AE4mPzEGLj+Xtys1kXOxJFgIycwVlI8MK25l5Hupor8EwX1s7XVp6Lz8fPoYm9R8suXeo/H5S7oh/2JUdgWee2X/iaX+Y5L97Ys+38Dy++9sndlOfIBT4zL4T2wPPBERebe+wNS02RQxEQEcAVRFJ51CFQWUEFRYEBKmp/iRFA5EId6mlpX6hPm00rWy6zNbeXjpdComl09HZHxoKLRcCgqcwVR3vSM8N+wsJ7P6uStr+lkB/91ein4zvN6Yqt3FXy55kZJ7cZbMSL5fwHoCEeZdq4O5xrPHvkcjSdrq+SgjbKbMm5kwLuv9eo3G5tXW2snKmogLe87WNDwtKJ+Ozbu6L+AEFGo3MvkNRhh4m0JwnW/rYnsq6WavDGjkYiU62INCg15MKtFNboZEPuhaUOZaZfy+/5mENBNeNuLjhmBiEz8Zzc2crKq4FBVHYfcsW6EFd9u5E7C6iXSXay7wr5hTBxM5bOGrH1qvIchYxpw6y1F3OYYa3RvVLcdoiJO9sp/s1Jmz/iulKcTOZz3i7bST9ZIRrD5QcVrGB87IXgbu7Ivc1lrd7w0xGnraTnGT+IX4gJCZsZ5epoPM56KUhY0BUIoc35OsCobrc0lJaPZ1ZOBaRMrA39DJ1IWYfOW88sYcq0NTlmAOn/EIuwR9pbl2CIrvn4h7ICeigDs8bKHVQeeP4UzCwwkgN1RnyTNZYFtTllY6Ou9nZN+PjV0wm+E76QkKu0ZdcUV12HYeLpAvRmzG8U3BlzF1CJaPWWMbt1anr31XGvY2pUsBdfKmSBtx9CtxPry5w92Rv6oYD7lc14L65gbsq2u4j4C5O29ceuLP5RA1wP/0oAfdjGxC4f60B900D3GfKy2NvxBp6DQjSzdfW0hvaOqmhnV6v5HRhpuVyrjunxFvqAjom4wWhxl5GAruL0nYSIxO6HAinWeJA62Ubdw9E7s/7kravGnD3vMvHkaLwkVAiq5W3e+7e7qbkVgQCOoXt7DxP6237goOXW1tLa6bLa2Zs7e019Q+bWpfqmxdKqqb8wy5v052Gcf1Jv2P0JP/NY7tcD/yQRoHUPA+/LSDyaod5xWReyRnPgQ7CyQG/e5Ia5r95HC8UaECByoPTwOC+4NyJ3P/P3lv4x3Wfad/vP/B0u32626aQxJSY2bIFIxgxMzPLIotH0oz0HzzF3cK2SQq7bdNNkzZJQ07s2E7MbIsliywGCy3W573O+c05c3jOgMC2smdVeSTLo5lz0/e+f9ed8SQjcyJzvqwsdSy12dV1MCYGLuVxaOiTjIzZoiJKAYM+zC4ceJdc3SbHBBW9ihryzkJDNePtki2cdQbuSqoyykPuavCTALtLXX9R1rgXtzblFQAspe1vKdqaypWwJkMTHCKRMjTjYDtHrAkZbZtWO1NYOBwfTym6FBS0enh4hbWPp6VV6hZc/JsOud7a43iV7WkxhnaevoyGtpM2tH3O1538GlZWqe3EPODONTRm+poYGovdiUAzCrvU8dSRxMTk0eTA7kA8h7nS0typXFjc6uoqbA0lCtwCWaxKOBq7RMEsdue2tZRG3cXYXXS9zecssisr1DB3u4+6c8i7OJH9QoG2K+rzSOjJSAm4/1ly0YjUYSyTA+HkJ7+yFrj/3B60fa3V282cd7Hd3ZnTbZe7LVXJu9FdcOPe8gMHEAER/hANV/R6JNhDcXHa0LbTxdMpOWPhiX0nvO4fcLmx+9QVZb+BL+Eb4F6Oa+8iQy+rnK9drj129xjCroLfINgd3wD3gorc4YFD9GA0AnT6k3TPds/hhAQyaoPMYbm2tsnFBc/2MjnhSoIy26UTRGQVJ2Pk9NwtYu4qhWXsuDp1jVRlfmzv8fYt4G5n4C6/SXsLuCsD9/vrDNw3N3N/uLUxdQ02pq4/cLd1vH0LuG8B9y3gvomB+4cbNeFev1qfMpaSNZGlq1kqnSstflq8VE2NvXd4eZGhVGr/4b59ajcsyQ2lmpVgVj/qzsfuFgN3/qQzL1kXAHc6R//lWsq4WzfkrhK7/7/NBNzlVGWEQ+7qEn1jrs9U2sJLGYmKwJ8VYjK2jtxaDgG5g+2UhsyuXWT3GjVvq9HAYKdPn+4OCEjLHZ8rKcHHgOguZ//GQ663qGL++Ffbj16kK/nzrxwi1zl8fPUQKemN9fxex6snvR/AIYT2hmZPZiPvYDkgogcJDqYIcP4VbmFvpIFXKRqI3C2wO3CmsLB2uRaFfXBPMJ7bXGkpAfH4+YMxMci3kG0g/KvZ3mYH7C6SmnlbYWPzZgbulgy5q9wf+CcpJRDxpbSbWkbd3uzLIvmrWSEmYylt50lDcCZVTWOqXA2Z3bthaJ1+fsu1tSHxvXlFUwsVFVn5EynZY6v0f15h7Qc1N+nBdranxVoZdXEN7bUTX+9zuubkRy1LoLSbB2NIZ4uMqVLUjGtlAkOj+1tkahWFDv4u/nVYWeFsIaJ23nReb0hIX3i4fkXfHRjY5unZFRDwyMeHOrIm1pkxN74qBsfK2F0A33ndGu4eBbmNlCKNbB5nsQK780fdhdidgS8KqSr55rNStF3NEYF3zQm42x24/8KcOIYVQ+6W0nbz4+32EJNZI9r+NxVKR8K95ZzNqGxz7hotIAO7a3Fzg2EuVlZSJ73qV1dWqYGWujr872py9uhxUy/84vYjFwhn5/oNKkYfPk8zdxa43yspn4tPH86byqOA+xUKuCv7DQq7X9pBenUn7p9IG0+rJ2M19EX+d1Gnw0ckEneOHKFEZkhQprt0xoisukWn4C6Umft/y21MkV+aYlZYxl5D7huoKvNj+8k8/ucLC9zJQgUbgTvD3K0E7gqqMvLA/aYycBfvTd0C7i8mbd8C7lvAfQu4bwH3LeC+mYG7U6NTcE8w6vb44Xjk3SsGg1+nX4OTExlKRdHeHxm5XFs7mpwM/3iNzsLJKXWTCjNTt3+qRgtCAMgUFGb41bvCqLtK4G522NlqGXe7q8qoZ+7/zyrOrkDbf2Qus1dK7tXJuFs05P5bc9PlCtdb5s4gi2HoOglcqIeAkoPtO3YgCCHA9wQHT2Rl9UVEDERHL1RUtHt6Onjdr6peHE5IiE4dPOF5b5/zdTLYvo0q5uky/uC5l6nrC/oylvTbDlMzdLuOU/X8Ca/7qTljxU+LY4dikeaQATpTPX/uFZ6DP/cy8f34Eg+7X9uLfAc/AT+HeJXy+XJ8zJvK64+IwBPWLep6Q0Ja3d07vL17goLgcJAiXJb3LWbUGyyZdrcSuFt4yH0dgLvkkLuSsIxA15jL3EXYXe4y242QND3uy/KGpb+XClv7E/8ciaShvcs3NFavSW6w/QJzfASJLDLyVg+PFb1+MicHFkeAe2b+REzqoF9kJ4yOMTS2p8W1MqOhvXrIBM72Ol1z9m+sW6lLGkkqmStBym8E7he2IwUjSRYvjRIY2sXtSB7JBgUYmnOjc3Bv8GxR0erqqkuTCzlT8vTMmbmSkqyJLDw4np7e6OyMX4QcKyGLVU06M3wTk5Mjf0+xTS4m72/LiBSZgDvrAAXaHXzmLhh1V6MwozDqzsXuPPgumZUyf+UzGdr+kWiHjXSXQiDgLrMxlWdBHNuxEbhbzdx/vha03a5iMrbTdpUaRybYx9GQMbXA6bhMPAaK1YeOjsicH/n4ILpN5eSMp6U1Ojl5hLTCEqtrl8KT+vA5nMYBzY3dTIvu1cNfEs4u9hs0c6cPxzABOiV7rEa/nDiSSAXoK3vM+43zrxDsju+E00D5fvLBSW2bNrI/smy+TL+ib3Fza3Jxmc7Lw1Nt9/LC0+709b3v4ICEnz0cI43drV0CYQVzt6OwzLM15G41cP/5FnBXB9zPP0/AXVLG3SrgvnlVZTYrc3+2x9u3gPsWcN8C7lvAXR64f7YF3G0E7uSoKZyTe6t7/Wp9X3h43FAcCnj/Lv+p3NypvLyCmYLgnuDa5dr5srJmjQaWD8Oj9GEZOQhL17KJAZn1CjMy61KVtSDVAPcNV5WxiLlbd1k33q4A3H9mLXD/lXjYzSxzZwrvt+Q4O78qe1Nxm6XZqVuLxGTUC1yogYCkqmeXo8LoYH1IEfojI5+eOROR1F9UOvu0uPhJRkZU8kDG6SfUqNrqqqPvw71O13adoAbbSTFPKvkfHsD1OX198fIBqqqnUODh89uPoJ6/tOfUFQev+7X6ZXLwxanBCXGVAu5MPU9cO89/f/FD4toFhT3iJGI7HAt+CGr7+OH4iaysupU6pHV4BH5mtb4e5X3VYlXedB4+7wkOxi8F30Liq9G3KGhPq17gJpZ3l2bum2/CXb2qjOyQuzJz54y6/w9Xp4t7lojf4FS/mFpul6zgxXnDZtr+P2poO2dkVfIECbenhRwIKReyRmT5bVptu6dnu5cX7lVcDU5Oxz3vVVUvjqWkJGQMO/o2HNTc3H3qyk7qBMkFBrVzrYyxNdbQGHBGHSWpX00dT00eTeaBM7atRQyND4ZZQ2OxO2VoN/bDrHRLuprlGtg+fmb2ZHaFbgHGBUMmM/gLFRXNrq74je7QNQPSbhiacU2iyMTUYnepkG2yLPoSSzmxZqhEWxjWKQAu9lKYMVEYPnxns8+zfNTO5pGfSEm3Kyvgi/Vk5Dam/kFm27AAuP/aHsDdLHP/uczf+g/7icmsG23/szrqZ2ZpuWRnjnYXCFUIWDAopMdwFwhnSJ6XqqsR8khocw1sDo7rzT8zjT/ic0p76tRVEp23HZGMzpJ+4xL8ximfhzDnwpIZBGhYvdBvCJwGG6DPvUycBlGYYfXfSC8c2b5rs2tvaCieHp7zYlUV0ZZscXenRGZef50NxyTVl4jFZkfdBZLugl0gapi7uWOLqoRlLBxyt8PqVNuY+49tAe4WblTaXMBd7qjTugD3C1YA99df3wLumwS4P3zBaPszKeBuCXC3emPqZgbuN5974K5I2+0J3GmfvAXcrQHubB20aYD7xxsF3Pm03S7A/R8C4G7Mv69Q+XdgdyCS+LmSEsOKoWKhAh+Xa2vrVuuW9Xpk4eTwaYubG9wricTwPlc5IzBEH5Y3lMqnY8pyEFZgd7Mk6I9qgLsKVZlfqVaV+bmdVGV+tBG03Y7AXTrLVz3kLsfcJSCjzPWmOgz6W3UaF2shcKEWAnJ2NiL2IOwhGxiIikrOHoU91tWtVFUvwk4LSmZyi6ZSssd8Ih4d095FZY76nAy2o5gnlfwP9pPrLPmEKenpIfcjX+44dmn3qSsnPO/V6pcDYrph7ZpmDWKvEbjz63meh/78B6banh6p42J3BGokI9o2be1y7VJNTfZkdkhvSNxQXGHJTM1STcFMAWnm6RZ1gzExSPtIrnNLwAQZhXezIhhyO9yE2J3P3C3TcF+vpakWDbmrEZYRrBqWxO5C+C76kvJWaqWTJRzg/oYialfY2aCWthOkq7AdQdzT+uEPz7NiTfv2Nbm41NWv6g3Lq6urE5mZsLW+8HBtaJt/dBcrI3NAc+N1h8tksJ2mZl9wDO0scwkMzQjOTno/SMsdXzEYTk+fRrmGBFYIzj5nDO2s0NC4BA2pHyFoqBvcW92jBqJiBmNih2LL58up5xwRgUjdrNFM5eXht+j08+uPjKQUpcvLUSJel1KKk6Zp6rC7mLwLabsAuCsCF8GQo/SouyR2l1ymyhWZ4ZN3yfyS/WZBpmii7VLH+P4uvy5VTsBdcmPqW5IDAVYdv5MD7pJ67j+XR+0W0fZfWCTdvna0na+U9ba5HSrccPy+vFy7EbUzG8tROsJjoOR+5Ou7UFmJMFdeNX+m/Gl17VKFbqGsch7uoqR8rqhs1jeyk2hP0cfOvnyVoHYJp8HzG69y/YbPA/y04Lge/bLe4b4DDB9+A7UdaYebovNZod8gToM6InNhGwnNKPqDeoKKnxZXLlCKNyVzJXAaVYtVhbOFpXOl+C3wD7VptZSk5N69Rm33HTsIdpdugcuc83iX7yiEWT1nV/kaMXeFIfdfru+Q+4/tMd5uL+D+yy3gzgfuvCF3FrgzzP1FAe6bf2/q5mPuD7eA+xZwfyaAO5+2bwH35xm4WzLevgXc1wS4c2g7BdzZsRfctjBHeEEU7X6dfkjEE0aolUpIu/EI3Emzqyv+OJaS0h0Y+CQjo261Trek6/D2hmeh1rLRp9Spul1hKFWFCrOV2J0Dhv5b5fIldaoyv15TVZmNY+4bAtzVDLkrMHc57K5wvWE/2q6+0jBD2wXlvUhGxjRDx87b7tyJ6IWIi3iPNIVStzAY+iMikA+5+DfmFk5NZGZm5U+4B7ce097d73zdCAGpwXYyN2es5L+/z3SRR/AlZobuS/yV109ePupxJylrND3vCQzctcUVPkEI3Dn1/PdZZa+z3xfU9kT+gsXuSAfcWtyiB6MpKdvV+syJzNyp3PmysvHUVLgXZHvdAQH6FX1vSAhcylBsLEr9xaoqignu329iggx5Vxh4N68zo6heJatRruhJLJItWlvgLj/nLjnqzsXukuRdzNmV25lKr4mYuXMef1PFORL1tJ07tapwgoS3HHXbtks0PsMt16zRUEy9vj46dTDj9JPyqvmKhQpdzRIeq6tbySua0oa2HdDceM3hazLYTnpaRmRmNLHP6EtoaGxny9H3oa5m8XTxdNFskVe7F+lsUZsSzr9qAmeslXFQMXmQnV0VDK6S82qwNcOKoS88HI4CtZRzo3NQbM9ybe1kdnbBTAGCO2zwaXFxl7//LXo1OqUzQ9M0shpdWjtCjqaJLUtqWfH/spcMcBcwl/fkmLvlCjNc7M7VdjebPn4qGmwX0na+mIzkeLucnsyfVCwcFiQn/2UtcFdi7qov62j7L9eLtksoZamTkZEebDe7sXzHjsv0aod7NIRCCGt1d4fHQIbc5OKCzxMzR+ZKSvLPTIclPvaN7HQNbD7qcZc5dkafhjE1wtno/Bnfb3zO+A2qI85OuFOab2VPk0aTHB4wwP3LbYLoLOc0TKH54nYUqXA7xF34d/lH9EXAFyHsDsfH4/m3uLnBXcCBIPOnhmyOH7979CiqevgK48FWTiDmqlEpn/aQlnTnMHfr9NzkxNwtE5ZZIyV3a5m7FePttgP3/3qWgfsndgTuDHMXA/ev1hS4C5j72gH3Y8eeb+D+cIu2r4+ejHXA3VI9mWcLuKvUk1EJ3Gm3sLmAuzxtf1aBO0Pb1xO4n98C7i8UcDcOpZKinSxWuroXJg4fGdgdOFtUNBQXFz0YDZ/q2uz6mD5zOn36dOZEJhL00rnSZb1+KjcX3hN2S3RmcGdzpWakF6ualYOwELv/SSpT/+8NGnJXmZGrAe4/2ijablfgrqwqo4a5/0YeOL6hANmtQu12kW43DwHpkVs5CMgdbIdNIX53+vk9yczsCw/HJ0OxsdP5+aiHj3ncdfRtWF1d7Y+MzMyfOK69t9fxKlvPs6jdVMnvZS76jz/Yx5b05NA6BdyPuN8JT+yrrF6oWKgI7glGRgCfQIA74YAS9Tz/kqjtGfVYJAXIZZDcocJPHUsdSUoiqtN4sFmjiU4ZWKisRJGfM5kT0B2ALz0tLu4JDkYqgxCOuEt8y0Ui8i45jSsz8C6J3Xkn3KUqfzVlv/o9AfaScbcXc+eOuguwu9z1RxFql4YgcmpOMpfk87ditv2vHEP7myRt5/e0CD7jHh+5Sq86RO0xW0jtIEW86w0Njc8YXq6txd2I+9Mn4pGzfyNshD5B8tW2IxeMg+37iaEZrex7zMU3NHpYle5s7T555YTXffxMv6hOw4rBs92T7WxRk6oEnBHazpjV90g689n35AzNNO1On1cL6gla0etX6+rwr6SMpWQ+yTxT/lS/osc/t8r8t2IwPPLxQXFiLABovThyZM2I3X/wA7m2lqRes+y+YqnrHZXMXSQvwxt1l1SYUYHdjTPvAv4uShAFqoKmZE7h0J6UeruknozCxlTbgbt9mft/rNGiVGu3pP5BGfMpyMhIDbYLNGSUUDtzCOY6fQiG2BHiVG9ICFLlmcLCVnd3lOsnPO/h8YGoqKrqRU1A02H32+xyVPo0DDvVzkRnrtNg/cb+s3As+E7SqNt5/NJex2tuQS11dStE803TpOECd1N0lnMaNHnnegzk/NQG5mv7EIIRlPEz8ZzhIo7dPXbn6NE2rRYRGY8gCs8UFMBdLFZVwT3CT8JhkuacCbvLeAneDmEZeRnzJ8xUBF+7iLlbJCzz07Vk7j+2bbz9OQbugibriwXcaea+2YC7dXtTnw/m/nALuJuj7VvA/RkD7lK0/cUB7he3gLsVG1O3gLsa4G4aSuWIPOIWhtnBlZbMleBCzl00W5Q2npY7lVu+UI50vL5+dam6GvX8TH4+sv/x1FRWCwLOCx/JWXXetiXVchACOmYWu0sv9FOTrG8mJfd1Y+4/smS8Xf00jUrgrjTkLiUsI1mTy5H3NxTVotdktt32kVsBBOQqtm/fjmADs+qPjIShxacP5xROzZeVwSiH4+L8o7p8Ih6VVMytUiPj9ZrAZpT0tIwMVc+TeVtSzNNl/KeCi1T17Oztq4coldjXHL4+6nEHFl2zXIMfWrdSh2QEEQ/hxQjcaQ5IXK+sc2XKe6NvoVt6LHYnK1WRnvg+8iXS0mTkNrgnOCFzpLjsadVi1ZmnZ1jt6ZW6up6gIKRcxiTm8GHkH4jobMH/ucqBd6IzI+lYpJi7ZNm/+VVl3pRfbyDJ3AXT7uYvAWqnPaqYgLxltg2mQhLHjKHxD5EIaLvZnhZuYUpDhj4+cpWWaSJjqg1OTl3+/jCBdi8vBLJDrrcikvrHUlJwo/pFdR7XsouIqdUI9GA7g9pZK9vDXEZb4xsa09mCoUWlDBSWzOAm92z3RFpNOltc4G6kZvL5C2toPIhGR3Ak4E4NTv5d/gjcyaPJMYMx6U/SZwoLc4umPMPa8a87+jYkZY3gX+/w9m7z8OgLD1+uqXmSkYEX4ZokUOPLu5vvaTHkXY6/c4G7mLnLyctIq7qbw+5C8i6C73KcnbvARxVtl1oXKRhvl9STEQD3N80B91+vF3D/j2eOtqsebH9PdPxFvK6c1Wqn1qLSh2AorfYDBzq8vKbyqO0jXuEdiFyrdXVLNTVDsbE+kY/cg1ujUwZq9ZQaVXTq4GG32/Sah0um/pzYaewVOI1P2Tn3H3KBu9M1BH14p9CExwjQ2jYtkaKiNqyce4UXndV5DG47/MidI+nj6XjOtcu1oY9D3VrcEKOH4+ORb+DfShhO8Hnks1hZOZ6e3qzRiNWoiJdQOBMjd/LDjKS72WUhZpm7vJi7NcIy8kPuZoRlRMz9x+pp+zoAd8UDplvAfcOA+8GDdgDu1sq4WwPcN9mQ+8PnnbZvbUx9hoG7aj2ZLeD+bAB3Dm1fW+DOoe1bwP2ZAe7GFJw7+XL+FSLySKXgt6mxl8j+yKTRpPjh+KiBqKyJrJmCgsmcHM82T3wVfrMrIKB8obwnOLhNq+0ODFyorFwxGKbz8uCIr3EV3uV2qyrqzNiiBfE/9mDuaqbJrFNy3xDm/iN7A/ef2gO4/9LsRjV57C5cvWgtZ1dJ239nw8itaUUq59w6gYAmDRmOugUiDQL8eFqaoW6lvn41Iqk/Pe9JacUcRcPrV6uqF1Eb62oWwxIeO3g/2EuLtgsgICndX9rzieAihT2HuVMl/fYjF1478fVht9t5RVMJmSN+nX74+Uh24AcQaijgzuGArGeVdJm88l7KtyCKIo9APZ8ylqJf0VPqHbTOzOnp0wvl5ak5Y17hHce1dx19H8amDVUvVT/y9W1xc4OrmS0qwtUXHo5XBgH7EiOCIfAt3JaehMKy4jI3OeausubfVEPucsxdjN2N97MkfKcfF3zz70Wz7XLj7ZLM/U35PoFZ2i4u4yX0mkQ9rY84g+1GsSZ6UhXpbH9k5FJNDVFc6Q0JeZKRMZKYiPvtuOc9WBZuzqHYWL1hxdm/cZ/zdXKChIAzY0+LpmYv7ZEwtJd4hkaGVanOFgHuMamDdbRpZzzJMHa2GODOTqoqWJnA0AhXEMyuIk2GoaH+cGlyQQQfTU6eys31j+46qLmJ304b2pZXPD2WkkKkZsL7wit0CxNZWW2ennhZqGWJO3aYwrdo4F3auCR3J/Dhu8TFAe5i5q406m5W2J2/UlVA3lWmfVzULknblRZFyjsWIXDn2JEgLTErdmd2b6p1zH0DaftbirT9jypo+9uiKCzWkBHKtTMIT7hAZccO+ArqEMyePTCNVg+PRZ0OwZe0hKllKlTXm9Kbwv/oDcsI2Zn5EyFxvYintGL7RUZ4ig3NCk7jE5a5M4066mQMAe6ugc34hwJjuutW6mDULHA3tcMVnQa3KW6My+dexl9HiEf5Cy+EbB+ugLTb60kzn75IC3y5pqZwtnBZr290dkaFT061cleqUiHY3AYIU0eKE3zVNLxtZ+4bPOQuxdxVXfIJ+RoB999sAXf7Afer9gbut6SA+20Z4P7c7k3dUOb+8Hmn7c8HcLeOtm9C4H7DEuB+fUOB+5WNAO5frS9wt368fQu4v8jAXToFZyZfcJ/CLGCmcCFwe67NrhlPMobj46dPnw7oDkBqAA+kadIMREej/BhOSFgxGCL6IiL6I+ZLSycyMzu8vam6ndm2dEEg8m7hwLtQ3l2M3SVH3a1m7lLCMjYOuZvdnqp81HSdaLtqPRmJFF+NqozikLsa5v4ba3n62tJ2K0ZuueoWnNqe2sOGwv7QIVgQql2YVV94eH9kZGza0Exh4dMzZxIzR/yiOjWBzSc87x1wucEp6QkE/IxMzBkL+N2ffHf3x+R6ibo4KJAp6ckM3a4TXx3Q3PCP7qqqXkwcSYSxk7VsiELKJb3AHXJHScW+hdvSgw9BcoSMz6nRybPdM386fyQhAfW9e3DrPqdrR9zvuAY1J2ePTuXmwu2s1NXBt+RO5epqFkcSE1Hzkzk7UvAr+RZ5BWpZNCaQWjbL3Dlj3fYdclcD3C1j7orY3ez1e3O0/S3VKxZUkTWZBQniEyQ8GRk6fAisjNvTwg1DiTUdOtTp50ft8i2YxG2fmjO2VF0Ni4sdig2M7cZVWjlPDXjWr4YmPIahwUCYEySmnhZjZR9/l38xhvaJwNCozpbD18e0dw2GlfrVev2yXreoQ+WE9NN4lIQG7khwSP4iZ2U8W6MNzdjfoo+VsNPuRGQGCb5Xu1fdat10fn5pxRx+WW1oW2BMNzzJ6urqmadnUsZS8FvPlZYSsoaXBSUEWZZoUnhXYGrmBt4lx97lhtwVmLt41N067C7m75J5Hi+B46B2MW2XO0Ajty7VrIC7lcBdccj9P+yL2teUtiuItqsbbFfWkPmHaHuKEbWzYlNMTw5WAEdB2BYqecSdhcrKhYqKVnf3e/RG4oGoKMKlo1MGfCM7PULanPwajtAyMrTHuMCcOTurEJolnAbVqOMBd8REF/8mOKvTxdOIzgiaqIONwJ1uh7Pj7WZDsykuky7d+VeohJ9WdT9696hLkwvCcUBXAHzCYmUlfrf+iIhmV9cHJ092+lJH06by8h6eOkWtN6epAbvhnMLu/PjLOxDDYnd52SXJUff/llmmokbP/Zln7vy/rlbAXR64/2IdgfufNxNw/3wLuG8y4L6ezP3hRqH2taTtW8B9LYC7FbR9C7ivFXA3S9u3gPsWcF8D4P7BWgB3bhbOnZVjsTtBY0QIAi4nqCcI2fZYamrFQoV3h7drsys+RvZH5p+ZWaquzprIShhJKJ4tRu1RMFOARx75+BCFGdZECX/nqsR+xrwNcgrvZuUgxNjdsgEZlczdWmEZuwy524jdf2SP8Xa7AHczQ+7yzF2M3X+zOWi7LSO37HJUogyLKAVjuUHvR0VuN1tYSO0OdXLCI4dcb/lFdc6Xl48kJqbnjaOkxyN7qLPqbElPQ8C9DARki/nXOReL3dk59320UOzBc9uokv6r/S433INbsgomqhar0p+ku7W4ISZzZ+gEJf13zblGARAUYHeyN4LIuyMLix+On8jMHIqNPVP+VBPQ5OzX6BnWHpncX1pJKeekj6fHDMZULlbW6JdTx1LhiJo1GiI8TaI70Xm/SKbtVCpQq19vyAdkCm7EvszdzJEOBWEZGeYuxu5q4Pvv+ahdmrZbCNylFeelyJqqEySCnpb88ZGLdE8Ld85gTExR6WzNcg3upaz8ibLK+fr6Vb1hhZpUXV2trl0qKJmJThk46f1gn/N1ytCoEySmnpbIyj76Dn19l7oYWzMamomdbTvy5Wsnvj7ifruwdDYufci91b20Yg6VHFJU9igJBdy5ba2PX+LmGiSnMCYdfEPjBXEau5PxVVgZMveAroDSuVJ6HSz5fwq1l8+X4xdPzRkLT+zzCGmFxeUVTekNy20eHih1UH6gbiGfGKVmWOwuUJCQFHGSIu/vCMbemT/+TYG5q8HuTD4kxu7/FCRkZpM5QerGH2yXpu2iA3lmenhioSqphOS3tgH3/5RB5xZxdotou/neuQxtV3PYRe0gLR/qycq1cwRkPma02omjIGtREVPunzgxnpYGY5nJz+/082vTaskqozZPT9TqiDtHPe6UVMwNREfPlZYGxHQ7eN0/qLm5x7hMhdsFP0tNte+RcBrf5XuM7/KiM30yhpKiooD7fpfrvpGdZKy+frUeuTdqaBa4s07jpU9Fofmj78q6i8++h5jOHXUnm5wO3Tp08sHJ0MehVLc7ISFtPO3wbWqZyt1jx/A64BXo8vdvcXNr9/QcioubyMrCg7cOHaKUJLdto9re/JOsAh0qBYUZS7Xdfr/GzN12YRmbmLsibf+JhYdNJYH7r9QAd1EzbAu4G4E7h7lzWZJlwF3A3C0C7rbIuCtQzmdFVcZC5v5wnVH7Wo+3b21M3YR6MlvAfQu4v5DA/dN1Ae4fPbvA3Vi3i7JwuYlU+KeEEWqSHek+tZON1oLQr+iLZouWqqtzCifjhuJ8O30bnZ2RiM8UFlKViVYLpwwni4jV4e39yNe3wckJlk9hd5FK7KeqR+fkFCHMakGaZe4qxdzlUvO1E5axDrv/yNIFTZYA95/ZBtzVMPdfm2PutsN3+9N2qZFbnpY0o9hO1jbClSOeIe+BdTzy8WlxdW3WaFDBGupW8EfkHPudrx90vZmVP9EXHj4cH5+WO37U/c7uU1d2HDPKyEhAwNc//g5DALkXKeyNzJ2ZvSXq0nRJfyMwprt0rrR8oZxCkPNlSA0QrxAoWODODt6yfuM78p6PdS+CCp+dw0XYIcseEdKR+hU/Lab2RlRU1CzX1K3WUUq49fV4GvgI95KYOeIf1aUJaAqK7YHzmSstbXJxIWkZ8tpWD48mjQbZDzVtR/Y2y2hYyWJ3ESZTGEpVydxtEZZRedMqMXez2F1E3pUuEWoX0/a3rEbtKrYjCHpawtUIosF2BHhWrh35EPIqJGdI9ZCeNru64qZarKrq8vdHYPKP7opOHcQj82VlsWlD3uEdzv6Nx7R393NOkBjHVBlwJrSy15iLxe4sPuOwM3KU5KDmJu7hSt1C9EB05UKlUwMzrEqAO3OOhNvWUrAySUNjgziZdscPRzoMc0aRpGnSuLW4adu0Ib0hsKMnmZnZBZOnfB7ucbwKP+Pi31RYMjOZnY0gjldmIiuLWrdQWTmSkICqw2hcHOwuxmpinRnZgXf+JcfcJUbd1WB3s+TdbMbGQe0fMskWj7abS0veVqknI7kx1Srg/gsVwN2i6z8tlZGRW4HOp3i/tSTsyvkEhcF2Jbl2/uoULmo3Srrt3InKEynrWErKaHJyTOpgfMYwnMNwQsJsUdFgTEyLu7uD1/2jHnc8QlrziqcJg3YNbKYOnDlc5u142Mf3GLtNnTn56PyJKDpTwB1Oo0K3kJI9lpH3JGE4AbESdbZ1ToPrLsS+gghSodb3bPdc1uvbvbxK50udG52P3D4C74E4i5flSUbGUGzsok6XNZGVP5M/kZn5OCzs7tGj8K7GUXez2J1pUyn3qP5s9YlVc8uZlJi7XYfcJZi7Guwu+it21JNRA9x/+4wD98/EwJ1m7nYE7l+vPXC/uXbAfY32pq7/kLuFzN1S8v5wU9L2Z2K8fQu4rxNwVyPgvpmA+2V1wP1ruwB34r2fFeDOoe3PDHBXM95uX+CupnzbdMCdX4CKK3bj8AsjMoO7G1ZLNGF9H/n6PPLx7vD27/LPeIL/y6hZrsHncD+wJ3iUZo1mrqRkOi8PRXtXQED9an3tci2RbH7k60vmg8hytvP0DURuC5MQ80svcYWY37dUiNlcsm4Rc1faVGabsIwV2jJm4fuPLLnU03a7AXdLhtxVjrpbx9/lxoRVbklVFriQG7nlSsSStY0IhLCI8qr5JZ1ulR5AHYiOHklKopiXl5eTX4OD9wNtaFtx2VNq+NZgcAtq2et4labtZIBOAAFZ/PdPXP9OX98xXiYUSFf11OwtkXHHj8IP3O98HcV88WxxWMJjPJGy+TIYO6weAYSsZaOAO3+GTuDkuF7tO3zEpQAEWRlZeA8U9nAs0QPRYX1h8CdBPUHZk9lwL3g+PhEdB12p+cEj7nfwguCRwZgYvES9wcHLej1pAeITpLnIJEhL7zxX4V3Uz5MeuGNhGZeUqdRztytzN3/r2sbcheRdzN/5X/qdAm3nAPe3lDm7CLXbIiMjtjLj8RG69kYacZ5uaFH6y3v3XqcrWyTEqChGk5KWa2tb3NyQ+yJNPOZxdygubiw1dTQ5OSFj+JTPw4Oam5xthxQ7Y3taJtROW9m/iy7K1ghBow0Ntvn9vTx2tt/lBqw4K3+ipGIu/Um6tk2LrBm5oXBYVWBlIhPj2ZrI0ATT7gSlwZyRFyMxR7Xh0eqhq1lEdF6qrvYO7ziguXnY7Zaj70P/6C6Y0nB8/KJOlzKWglhPrTKuXRqIikKZh1cSyesFWsRJwbhU6swoX+8qY3d+QiMtMsNgmg8Fr5kgLRPlZ9xU7AP1tF1ZJUPKjfxeDrjL75VRAu7qhtw3G223YrD9z6JWt1m5dnJLsD1vcvaFXYvKHn+Bo2j18FiqqYF11OqXvcLaQ+J7U7LHEH7ny8ri04fxx4CY7ti0QZiJwbBSVDobmdyP2PSaw9dkxwNXQ0bYnOPEZQmP8bppyJ0P3CnBt8TMkYKSmRNe90vmSmIHY+WAu7LTUPYVxmz/4nbUu0duH0kbT8uZzIGrxG8a0hsCV4CIHD8cjywFKX3iSCJitGuza+VCJR5Bwn/fwYEk9he4Im/MaTNq67JY2F3NnmFRp0rViVU1zJ25bxUaV2vF3BWwu4W0fWOAu6TQE+PiNhK4s0PuGwTcrzwjwP05UZWxlrmv+bWWtP0F0pN57oD7zc0B3K+pBu5Xt4D7ZgXuX2wB92cFuMvRMW4WbjpzytV2v7wbVghDh39yanRKf5I+FBfXGxyMFBw+EqYMr4OA4xfViUx9JDERdTtydM92T22blp2Ob3JxYVWYeSLvUiva5Gp4ZdVU5UJXcrLMIu1Uu4i5287cbbnWB7jbOOQuZu62Y3fJwXY1tF2twAV35JYzT/cZIyPzJUPbW9zcpvLydDVLmoAm7/CO2LQhFPZzpaUpYyko43EVls7CXp4WF1MaFLS+OaHtVFVPnVUXoHamjN+F60PjxS/sjczdOEZH1KXP7zh2ca/jVc+w9tK5UrfglsDuwOqlapizcZ0jF7gzM3Sse1PyZKI6X3m2zggEr+9HYkJ6e7lTuYPR0X0REWfKnx51v7PP+foR99vO/o0h8b1k6hAfI/sj3VrckkaSavXL82VlvaGhSGuoxY9E4Z0OY1/wFd4lsTvrTMSj7tya33bm/lvbOkZqgLukvIwcdpeG74rfrADcpS/5Va5csqa8iFgs1sRDaZy9CAgiCCiUVvvhwzCxx2Fhj3x9mzUa6gCWl9dqXV1vSAhqBmSre05dOaa9i6iEbxtLTY3PGMYNtvvkFWZS1djTopYcmlA7a2Ufii4FQzMdJfGNfFRXv1q7XJt/ZtqwYoChUZ0t+iiJELgTGRnWyj6UvziGRoZYhUfWaOEIcqYEVgb7KpwphKuByRSUzAREd7kFtXiFtYfG96bljc+XluZN5yFwhz4OrVupq65dSh2npJwa6IaWMXAzUds00LoW2F3A3C3E7mLy/uG/S7YthJxdjNrFSjIKYndmx9sle/9vqgTuqofc/3MNULtc4LZItF12sN3cYRfhclSRhowSame6cSQKG8++0GtRqe0pu3cjIuMOpw5orq5O5ebO5OevGAyV1YswkIqFipLyuSI6HJP/kM0GxfY4+TXsZ3Y8UIPt+yWbcxzCLvAYpqa4qUtHOw0+cHe5gYwa/2hgTDdPUoYB7sjVZUOzvKMQRmQ626fC8YVt8EiIwgis0YPRuiXdYlXVfHk5/umqxSq8FOVV82SlKjznIj0rgMeH4+PvHj2KwtuU2DP+wYTdlc+ZiYKvIP5adGJVPXNfazF3Weau4vrJFnDfaOB+yRxwvywJ3GnmzgXu5mXc1wK4r72M+xZzfyZp+/rryayXgPuGAXeV4+1bwN0uG1PXDbgztP25BO5nNw9wt1nAfRMDd0U0xlbsRgnms6YNS8aFbF9TRTv8TUA3NcD+OCwMWXjUQJRLk4tzo7NHq0dQXE9KztiSTlcwU5A+np42nkbtZKunZmMqFypRyTQ6O8OhwIDZNOUKvaXtktyKNtFuVQU5yL+qPs39e3N67uIFqs8Hc7eFtq8FcLeGuStid4tlZMwdmFXggNzBOgUt6c/559apzairq6UVcyhlz5Q/zS6YrKxeoASW6+rwx9LK+eKyp6eLp6OSBzxCWg+73aaVZC7SM3RMVU9ryJhKerqG/zfRxdb2RhTIzt7SYhfUOsejF/DDHbzuU0tTM0dSxlISRxKNe1Mv7oDVc4G7aYaOX9L/m3jZM30pA0Gekizd1WPJOzIdInwB91I+Xx6e2OcS0ITLK6w9LPFxVv7EfFlZ7lQuni0ufFtJxVz2ZDY1t+vvj0wIvoWEbcRdIx/kFP8fK2N3/qg7t3WnsuBX1nOXhO+W6SDxgfsb6kbLzWJ3lddb4kuRs0uidvOD7cTKJBtajJVJojQkPXjrkX/DsqijDzU1tQZKoagvPHwgOnq5tta7wxuF0THtXVyEZBGC5hbUsoc6QXJR3NPiWhljWR/8207mwuesrQkMjRaIYDpbFHCHpYc+Dk3Pe2JYMeiWdAia1N5UurMlAO4kiWCtTDYj4NoaMTSGphmPlYj0mhF0URXBrMjOFSLsTolEGwxnnp6hdrGUzGScfpKaMxaR1Ocd3gGPRKScHtCNCt76BLqzRVazyMm7bwh2lybvIv4uSLk+kEftCgr1lh62U5+BSAjcWTLkrh67S/7FX1g72P5fagbbZWKuZNgVonZuE454BsmlKaLjZV8wx8sogan9+0lZiwvF8H0Hh6G4uJXV1e7AQBT8+BJ8iDa0bTw1dSo3l6xQ9ghpc/ZvPOn94AjdAGZkZIyD7d+jmnMi1C4TlyVCM6dLRwF3qktnXGnuHtwKk8wpnMybynNrcWOPxaCoooC7ZItOPi4LI7J41B1e4tIOsmTl+L3jTg1O7N4muNOFigq8UNo2Yj2a3wAAgABJREFU7f0TJ+4cPYpkfiw1tXSulDrAeuQIXtVrTHFOOt/GyEsOsNLOQSzs/q7onNlfzY66i9aoSoRgm5m7XcTcrcPuP1GRkP9M3cbU/5TcmMrpk4lt9g2rgPuftoC7GLhbtzdVDOwsBO6bXMbdnsB9kzD3NUbtL46ezPpvTN10wJ12CPYB7mr0ZLaA+xZwf56Au9mxqvUE7pIVOw+NsRX7xy/JHVGH6cBLJQwnVC5WonQfTU6u1S+TyRfyiG5Jh0I9JZsq2rUhbQ7eDxx9G8IT+1C6T2ZnNzg5Ed8H79zi5tYTHNzh5QU/S51LZbQgJYSYxXKxUjozktjd7Ki7wg7VdZpzX3vsbul2JjsDd3UFvO3MXRZWysjIyNF23oSdMgdkaDsZbOctRyWo/dVX4bIRBhCckLVM5uTAEKbz81He4+YPiu2JSOqfKSxEbZ+ZP+EX1ekS0HTC894hV+Mqtm1HLrCi7bIQcOcHEhcPBTKTdKYxunP4ya+fvHzU405AdFeFbkG/rE8aSXJvdafOrX9FjdEpV/UqHJXQw7B1voICBlkdkTyaXF41D2eCCh/uxVBHievU1a8WzRYt6nSni6cTM0dCEx67Bbc4+j70jXxUXPa0umapTatF+sXunkIuhY/XaEEMcfHPw+4cedl3xKPuUpLutjN3axYP2Mbc37IvbZe/fqeM2i0cbJdVaqIH28leBGQ/SOkQR3qDgysXKssq5xF0vCM64tKHEJpgbiljKcE9wbhV/KO7UnPGiCQRbiT8cZ/z9R3HLpl6WsbBdkpAxmRljFl9m3NxbU3I3Pd8wna2dhy7uM/pWkh8L0KkJqAJJpZTOKlp1iBdRTZnPEoiAO5cK+MY1LfZ4M9cXFvjxnHewDtniHXX17uQesPEnBudPds9vTq88NH3kW/cUNz06dMws6jk/lM+D/Ga4Dkf094Nje+tWqyCs0K1BuNC1G50dm5xd8cfb9CrWZBTSm9V5bfJBcBaPXk3g91ltN3F5N38JYnaFWk7L+tQXP+o/pideuCuhrlLkneF7/yFusF2i2RkVCm2K2jISMm1/01uPznHP3wi8A90N64vPBzRdjw9vdPPr8nFBelou5fXisGAx3Fvk21DuPMpBbP6+t6QkCWdzj+qCxH5gOYGIvJrJ75mFduNm1T2SLTAleLyTpkuHQHu+0zA/bDbbVifrmZxqbpat6iD+0J9zwJ3bi/cgrjMIe9i7M7dAIHyF5U3WaYa9jgMzqE/IgIvFPwGHBfqXpT9ePXwOCJyk0ZDABycA/L5VnoDMxIeFK5UT44zRqMg7P4Ov+f9tsyou1p5GbM7VK1i7j9bY+b+ExvG2+0I3E02y02S1xe4s8x944E7d2/qpgHut9cNuNtbVea5Yu7PEG3fEnC3B22/vcYC7s8kcLfLxlS7AvdLW8B9C7hvOHCXrtUlE/GPpLjY+VeItjuMHv7brcUtdig2ZjAGV0BXgF+nX2R/5FJNzWROTnbBpFtQC6qU1x0uk9LdL6oT9XxfWFiLm1ubVjuZnV1WOW+oW8FFBGfgbmBOF8j+Q1YrVrQCUTJff1cGu0sqzMgNmkky9//aCOb+442m7fYF7lYPuVukLWOdaLu4kJCTkzYV/OL9qNzlqPy1jQgARFEacbonKCiveHogOhqJCOIfsQs8uFBePhAVBSvwCGk76nEHj7/mQAp7o2g7d+RWAAFp9vc+de2gL+pzKRQoGKOj1zniXznmcTc2bbBmGf9Xk1s0ZVgxIG8yil2Qc+viwVs+B1RyRWIg+KFwFFeA3bnuxbXZNWogKrwvnIjJ+nf5J4wkwLcsVVdHpwyc9H6w1/Hq7pNXDrne1AQ0VVUvTufnw7c0ODm1uruPp6Wt6PVzJSVPi4uRllG73TgDubLYnXPIXaW8jBJztx92txS4vyk/df7WmtH235lD7QpDrLKK7RwT+5A/tWrUiGBoGvL1+fLyotJZsjgkIqkvNm0op3CSijIrBkp8mVZkpia7V1fLq+Z9Ix/B1shsOyXavv/z7+/9TNLKjCa2Q+ra+b45QzMeJXH2b8QTCIzpxm2MgOfc6IzEFhkf1dkSAXeBlamK9qytyQE1DnYnQI1ou6O8QOEYPRANk+kNoQ6XOPo+fP3kZVwHXW86+jYkZo4sVlV1eHuTlarVtUsVugW8pIjgqGHEK4uF2J3TI18f7C4m7+9/W9yqkM6iuD/E1CcQ03Y5MRkbdsnYCNyVmbvZywrUriAjo16xXUFDRlmuXXIt6kcMj/uM6XkjEKN8orrdJ07gjp0+fbqkfC4zf2K1vv5JZmZ3YOBwQsJMYSFCBhwI8tW9TtcOu92u1C0Mx8cjTcWt7h7cSuWx1C7lSwiarxwkCx7kz8Fw4zLfV3ybfzhG7DEYHSoqNDt4P8DTSM8bPz19OjVnrGy+jIRmSeCuKi5/YN5LmPrftJdArXz41mHk9kjdEVsRTMP6wlDNw3XcPHAAL+kjHx+qMxEcDOcwGB2Nz+EZFiora5Zq8OpRDYydO6kxGq62mzJ2lx91t1heZjMx95/YQNst1ZP5D5FRrx1w/59ND9xZ5v5sAHd6WERJVUYM3O26N/XZG3LfQOy+LrT9xdKTeeGB+w1LgPvGbkzdAOBOe+NnBrhzaPsLCNw/WRfg/s91Ae7vWwHcLSjX5bkYT9v9ym5YLRwAnAr8GSJDQHfAisHQExQ0W1gYlTKAQgWVw17Hq6hhnPwaI5L6Uc/3hYc/ycgomCnw7fR1anDKmshCVYNCaDQ5GV6bt4KJrFflwHe2mBefTn3P7OlUyXydTdZVrFFdC+a+ptjduu1MkrR9PYC7bcIytsrImBNtl9vcyGpJC9Y2Ip6xKo0I4Q2Ojst6/Ux+Pj7Bg7CLnce/OuR2q7Ryric4GIVrff2qJrB5v8sNzio2o4yMqarnlfQyENBY3nOYOz1JR46uE1UZU1Xvdb+6Zil5NJkotNQu13q0esCuYeCUujQjFCs3eCvpTOBsJB+XHsVlB94/+x63qwf3QobskFYQ9wJfETsUO5aaCveCp4rXas+pK6+fvHzA5cYJr/s+EZRGdl9EBIr/lbq6vOm8sMdhlYuVydmjg9HRyFnxdrDn3Fnszl3sRpyJ+lF3ib6d/Kj7G/ai7SLgbh1zV0/eLYXsv+OvY/2DSg0ZjlITUYrgmRj37Ai9f5igdrL2ELaGpLY3JAR3r65mMWYwBu9+zmRO4khi3FBc7lTuTEFBxuknwXE9nmHtmoCmk94PEI/2Ol7jnCBh8BnfyihqxhjU/93xD+raTl/050Jb4xgaUZWh5lWpzpbxKAk55pU2npbxJMO12RX5tdy8KtfKuNH+/wpCOudSMDQxdudqu5Od536dfnhuza6u+JiYOXLE/c5BzU08Zye/BiK/Mxwfj5cxezIb34knj0eqa5dgiaiprtKn0/BekIaWYB2LKVJz4Jrt2P1dFdhdkryryZZ4g+3maLvErlR7zOSa3fdoL+aujNrtO9j+e/n2ti2onR1pN7XiOEpuKDVJC3a+rKyyevGUz0PEjqDYntPF0xNZWQjK/ZGRnqHtSFARDfFVOIrSirnFysq6uhX4E1gB7Hf70YuvHhJqyLConcfZd7xv5hIei/mI9RgEuG+jQzOeCVF88ghpJeJXDg8cJID7R0oew0zCz3URdLNCrDCDqhqJPelZLlRUwJ3C/I/dPXb83nHHBsd2Ly/k7XgZEZerFqtCekPcWtyCe4KncnMnsrPxslNjNPQ5mHPs1gdJ5yAQdpdapvonhdNm6k6N2MLcf24P5i5J3s1+v5k8XGG83Tbg/tZmBe4fbwbgzt2bup7AfdPsTd1EQ+7rz9zXC7VvlvH2LQF3azembgH3LeCuErif2wLuzyVwlyvUVQ3K8VUgcD/i/iX6y2Th0mpd3SMfn1YPj4qFCteg5sNut3Ad97znEtDkH92VmT8xlZeHL8UMxgR2B/o88qmrX8WVN5VXOl/6JD0dnh0GT6kw01bB3v3UrjYyRiclCimRsqtZhGhu1F0Nc/+F3Zm7CLv/2C6oXTVtVzPeLjjKahFw/4VtwF1yyF0tbZeXkfmjWEZGMHUrNdj+IaPY/hnNAb+khaQR2ts9PVHho5Jv02obnZ1xwSh0NUtd/v5ITcj59L2OV096P6iqWeyPiBiOj1+uqTnheY+u7S8YR273iUZuSVXPhYDbRReLAsn47a4PBJN0RF361cPnd5346pj2LgrpGv2yo2+DZ7tnacUcPiLMUjLujLq0ALhL0nYFFCjhagTVvnjIjh7FpZjgBaN7wVNCsuPf5Y9n2+LmNltYWFo5d8Lr/iHXW0c97pzyeegZ1h6XPjRXUoIvpYyl4Dvxonu1e1UtVtFa3fV45YliAHWG5tVXz7FtPPa0O+NMWHlZ06j7N74h7ttZIC9jLXZ/QwVtVwDubyoKrNtX4V0A1BRQu9IKYpmzIyaZJrL2cNu2i+zxEVqUuUmjIUv8vDu8kS+THbwoVkJ6Q5b1+qG4OHzVK7zDwev+Qc1NIg1BETRahZkaVt3zqcDKWHAmbWIStkYZJtfQ2M4WOUpy2O22T8SjrIKJperqotmi2MFYFDHIMZGsiY+SSFrZ/xUiYc4lY2jkJ0hg98+MC1pYbXeUO7SVGHXdi8pmvcM7tCFteM5hCY/TcsfnSkvzp/Njh2IDugM82jx0S9TWxOLZYvw6qAmReeO9ICsTzvGXFYt1JGzF7uKBd+anKZB3AYL/hyg9UkbtErRdRkxGYbzdVuAuNeQuZu6Sa1TVcHZ7ofY3LNKQsQi189WlBEdePiecnbTiGCU3VJXNrq6IC1EpA3rD8kx+fkHJTGzaYHL2aE7hZFX14pmnZzJPP8Efk7JG8AkemS8vXygvx7eVVs7DY5gislBySoDa3zfjMSRbdLs+/A7PY5xlPQZyZphYeGIfwlzUQBRM89jdYybgTp+JMcVlS/pzwuacXGfuix+iIoR/QAnu0eqBJ4PXajInp3SuNH08PfRxaHBvcER/RFLWKJwGUvrEkUT4W22bNqIvAn4Ej9Qu1yILunXokMTRVSnsLthkLuh5/0XdqLt4jepv5c+tbhRzV3/91GY9GSFwlzmeIgfczZ4EfZ6A+0UucGeY+5oC9xtrBNzXX1Vmw4fc1we7ryNqtydt3xJw3wLu9gbuV55R4G6Wtm8Bd9uBuwra/pwDd8ugmMygHDuOapyVI1tVmfOn8GE5UzlkMKdupQ4f0/Oe+Ed34ULlgKoGZUxN7RKzrW21UreQmT+Bqh5fNdStoKSfKSyEpyYr2q7SKQvJSPCRDL+TA6piXQg5XUjxtLtA2J2rDiEnLyM+3G0jc7cOuyvD9x8rXzbQ9g0E7r+2jrbbT0ZGbrCdux+VkpFh1jYisyF7CAnAwn/j6endgYGDMTEo+z3bPZFGHfO4e8T9zknvB3HpQ7olXdl8Gb4tILprn9M1InDxg/2fG8foXv+YN3IrUdL/nX8ZH/82Ke+NzB2FPZm9ZWXcKXXpnccuHXC5kZA5gn/dhVaXrq5ZQmmN4AxzZsUuXvr0JYXCXswBOdyLuiSxoOycneg8DVnajOeDwI4kzrBi0C/r9YblOvq1DUt4DN8SFNsTnTKQljdeWjFXPl9e/LQYFwr+Vea/xJHE5draZo0GiQhZ6XaB7eExA+9c7E7ciNwyVeJA/lvKgSiNuvPJuzWXFG1XBu7rw9ylR9pVoHaF5ajsUgRWponMq1ICTXv2kLwQSSQyVGTqQ7GxeJd9HvkgBUYYQsaE7Az5eOFsYX9ERKefHyxRG9p2yPXW7lNXdh6npCGMKszssKrRyjionbGvb+HaJry45ka+n0PQBJ0tCp8d9biTnjdeMFOA2zKvaCqncDJmMAY5LxI641ESFrhz2loSViayL2lzk7QyurmF/EWg2ozkEdkuyp344fi4oThYVq1+eSIzc768HC5Lv6InK1WLymZLyucMhhViU/Hpw+STwdhYFDPX6H3FptNpDFkzniMRhWlp7K56paoqnRlF8i7Rv2D+ltyzUqLtMuPtSqO4zP4YtdO4MkPu0sydk5z8QgavW6HzZgcNGZmTLn+2ELX/k7suhTnvcoEGZ6ySG7JHhOOFigqYP+7bTl/fLn//gaiohIzh+IzhtNxx3NXFZU+TskaRmuYWTRWcmcEdjkd8IztPeN1HcHztxNe0r5ARdpPtzP1dLi6z2F3cCxe06I6438bzxLPyi+xEYgx3gXKfqL0JgLtxvJ3Tn5O5v2WisAx2N/mHi9tJbu/S5JLxJIP0sMneJkTbvOm8yoVKvG5wttVLlGDXUnX1bGHhbFHR6enT+GO7pyeyd1TLeGsu0FXoOU7YJWk81ZOjaxu1CjPEvtR1vuW6WWvK3H+6+YD7r2wA7uZloJ4J4E4zd0uB+1cWAverZoG7YMhdAN1sBu42yrg/w0Pua4rd1xe1v4jj7c8ccLfvxlSVwF2NgPuzCNztIuC+WYH7+Q0H7gxtVwPcP9sC7vYE7iIuZj4d/0B+4P1zRmfmIlW3w7EljSQZVgyZE5nIuQ11K5PZ2QuVlXUrdSljKfgSmaNDweMT8eik9wNUNXsdrx7U3HT0fYjqAhl8d2AgXDzcKLxwk0ZD5hOfpKePp6fjQQk5ZkYXUiwaKxRlJlm7jMIMd0ZGQl5GhrkL5GVsZO7qsbvayzaxSFnabj/g/kvbgLscbVclIyM6GCuxH5WpEORm684ytB13JjKAx2FhKEpr6Zlx18DmwJjunMKpmYKC6fz8hJGEgK4ATxSgYe1hCY9PF0/DQJZqaqJTB7zC2mEIO6nljYS2U6vY+IU9t6qXhoAcFMip7fmzty+hsDepS1/c43iVqEvHpA6G94XDMt1a3BD5TYX9WZlJOrMc8D3OJWaC/5BnguwCiU9f4m2PoMt+pGZwBMmjybolHRzJYlUVXE3tcm3+DLUYk5DBlJyxsMQ+uBcXf0olAL9gZv4E6WpQyx4PHLhKw0HqGM2uXQjAF+mZd7yJBLt/RBf/SgozolH3P5gbdX9ThpVbDdnVA/c31wy4/15upF0GtZuRaxd3s2iZiLP02kPkQASfPfLxQYBo8/BANXKPrgNbXF2X9XrcEigskJAiuSMa5Y4NjrifG52d2zypoxuagKa9Ttd2Hr9E7zxkCBpjZbyGFm0+HBN7T+ri2Rrb3OIYGpFxNx4lOeF1v7p2iRoIHU06PX0anxfOFsLQ8FTJURKTdpOclXFN7D1zF9/QBFiNi91Z+Qiqp0UfU8PL6N7irm3TeuKFa/f06/TDc56itz1HJPW7Bbcc195FvD7sdts9uDWveLp0rrTD2xtVCnJ6JNZfE5ui4Rqr7c7tjnOXn//D3D7Vd/iXeuz+nrgZIToYwIXsyoPtCrT9bbO0XY2ejDxwtwNzV83ZVaF2yzVkVG5LftvsWlQi4EYfeWH73ChsUF8h+BK2xRaNKEdJONYbVkaSksiaX1SJ+Ain8cjXd660dCwlBUEkJL7XLYjav33C895RWkyJPQTD3aUsi9o5kF0uKH9ruzguv2/SoTIePqOA+8ucMzHe4R0Gw0pq7njNco1Xu5cAuLONcEF/TmVzThyFFfwD6Xkj/sLBIsOHi3BqcHJtdvXu8I4ZjHl65sx8WdlwfDz+2ODoeOfo0duHDz9wcBiMicEzh9+Ar76+fz/eI1PMhX9gwu5ZfrfbUoUZW5YSb3Lm/lPL9WReCODOyLgLgTvN3OWA+zmVwJ1h7psFuNt3b+qmkXFfc+ZuR+y+Eaj9mR9vf3YF3J9H4L6GG1Ofa+C+thtT7QXcLRlv3wLuFgB31RtTZYC7ufk4VVBM7oj6OTov/2onrBaeCR7XrcUNFbtHq4emWePS5OLe6h7eF446Zyg21rBi8IvqPOx2a9eJr3Ycu7j75GXUOU5+Del5T1ZWV9u9vFpcXbv8/cnIDBlWTc4exV9E8CDSEJK6kHLSkALs/hcpavZHxVF3KyTdf26VvIzShiWbUfuPLU/x1Yy3r5ukjAJtt0JGRmmwnZWTFmnI/JOjGEvG69jZdiIUi3s7LXf8lM9Dj5DWkLjexKyRwpJZPHjm6Zm6uhVKDrW+Xm9YqVutq9Qt+EY+OuJ+e/epK8xs+1lWtJ1wQFLYm1C7EgR8j1Pem+bcBYU9Obr+8sEvttPq0sc87gZEd8G+8qbyMp5k+HX6wXIRRU0y7vTsrQm4f6AKBTL0y3RJIngFJsgdtTOV/V9RWBC5CXI0uBRNk4a6mjXwLUE9lLb7SGIiPvpGdh71uINX9bUT1A6JY9q70amDcCM9wcFIBJE2kfwGnyAVQ1aEPIOsd0NkMs7ccUbd2cpfetRdqmknOepuBr5bdb1pD+BuF87OdrBsRO3cbha1FOHVV/HW4M0aiourrF4smi3SG5ZhQQsVFQgQbVptT1CQrmbRu8MbxQEyXGSXCED4JKA74Ez50ycZGYs6Sv8E9wM7r8qTkeHgM6GJvfrev5qud+nL+EeTuRFbY5tbXEOjO1vUUZLjl/Cvk8Wtzv6NKFDwW9Sv1iNKUjLu7FESKeAuNDGBcb0rdQksTmBldByXw+7kcAC1neX6PlgIyhoYFzwDIu9gTEyFbsHRt4Fsmn3N4esDmhuawObyqvn58nLUh6hAUA+wGf9VWhoOyet5pjsuXpnIbmH5u5Raugm4E15DIxtJ8q6A3d9Tke+8x0HtKmk7V7rdJCZjtZ6M5cD9V1K43GrObgtqf8PeqN34Pgq02jlHyohnIH043GYNTk5wBZM5OX3h4S1ubqj/CVfC53AUeBw3J6pTImwCJ4CAG58+jMe7AwPhRoLjeonYFCLF6w6XYa3MDhVTW46z3UGI2r9lPihL9ed2iIE7dSaGbH1APnzc8x6Sh7yiqaWamtyp3OCeYIQ8VoSKK/VmAu4W9eeUQzB/1J1N74l/QHpA7Vu+c8S50Tl5NHk0Kak/IgL+rc3DA06DUHUU5HePHu2LiKharML7greDOqhKYwISfKnON3NolfIPZHSGn71LLmdSGHU3Iy+zEcz9p/aj7WrG28XA/ZeKwP03mw+4v78OwJ1m7hcUZdwtAO67dysAd4tl3KWAux33ptpXVWbzDrnbDt83iLNvLtq+6fVknqeNqc8lcL+sDrh/vQXczdH2NQfuavRk7AfcP14X4P7hRgF3C+bj3jM3CCOjDEsWspG8nKw9hF1Smw9pUV0478BuqsJ55OPTExyMBP2k94PXT17edeKr3aeuoHo/4XlPG9pWq18eSUx8HBaGYiluKM6j1QMe3avDq65+lYzSDERFwS3CRAVyzORG4UnHcrD7u+qwu9lRd7uvUbUYu1t7/cROtN2snszaLU1Vou2KMjIW70elCwMWBX7ALEf9iLOc7XNaMRaOFZEA8Xu5tjYlZywrf6JwtnAiM3OxqoqQPlTLp6dP475Nyx0PT+zzj+7yCmt3DWxmljdepZc30lO3LAd8jeGApsLeVNKLIKAJBYrLe+7sLasqwx5df93h8lH3O35RnSjs61frK3UL+BgzGMObvWWXszHAnTdJJ4kC3zV38YGgHBOULPsJFmTdC/EtSPF8Hvng1e4OCBiMiSkue3rU4w5e2O1HqaYCfMsp34eZ+RNEAh7pbIOTE7wQ3iC8a8s1NWOpqXgQyQHCJxl1/5g/6i7Rt+MvU1UadafL/rfkgfjaoXaztN0yyC7H2fkj7ZKoXY1G04ecwXbjUoRXX0UKhWS01d19pa4udSw1IqlPE9DkHd6RlDWKADEYHY33Lm08zavdy6nBCZECyTvqFdzDiBdL1dVl82UrBgPMDSGGXpH6hWk1AjusyjS0+CbGMa5X6Eva3BiOxjS3jIZGj6zSe1PP7Th2cb/z9chkamc4noljg2PKWErmRCayezKyKiRoNHDnWpnQxEQGRUubU5ekrQnIOxvHjdids7WYXYpOTgnAuBC1KWWeyEiCLwNiulngvs/5+nHtvcCYbrzIHd7eVJXo4NDo7NwFG4yNHU5IaHZ1JQrOX9JmdVYgBCdewcIydzngzifv5req8sm77CXqXwhQO0vbxYtSVY63WwzcpWTc1TB3S69fbTLUzvoEnoAMX679C8YzoOZs9fCoq1tB2FrW62Ffi5WVQ3FxeBC3K25a+PY2rRY1OWpOAtMRDhx9H1bXLpHvwffjlkYgpsWmviKonTkBw9uh8m98XyFofv+rmuYc31ewh88Yd2EE7ngOMDGv8A78OlkTWSVzJUgqDCsGz3ZPxDuqEc51F+qDslwLnE31/yF0Dmz85SpQsdgddTz8LdWNwwvu7j6WkpI+nn7g5gG4DnwD8vMbBw7AJ0xmZ8MD46Um9Ac+AU57MidnobLycWgoHqHC7vbt7Ki7YI25srC73Ki7pK29ITi0KjIxyaOrdmHuP7UZtf9UMQlXvzH1+QPun/KB+1lzwF3l3lRJ4M5l7jyuJCnjbh1w3wQy7s/PkLtKBL+hbP1ZB+4bqyfzPG1MtRtwV6Mns57A3S4C7mqAO/HbW8B9C7irHm9fY+BudkROPJHKz8glZmH+aVSBEGxVJWsPcWvDFGB5cCrure719asdPj7wgKt1dSk5Y0c97ux3uX7A5Qalau3zwCOkNTyxD4X9VE5O5kRm2OMwn0c++Fv50/mzRUXUqfb+CBRL/RERFHPfvdskx0zfu6w65Fm+OqQydv+zDHY35uuKo+4Sku5WycsoZ+Rrjdptoe3mx9tVAnf6xbSFttt9sJ3UANxj7ERD5nM6lcf9Bm8LL48I1+7pOV9evlhVhfLYrcVN00Qd6XBtdkWRHNZHtY5Gk5PJ5LWjbwPuedzwe05dIUSYPbdORNt5tb0EalfmgO+yHJAu743zdNxhOlrswqQufdzzXnXNUtp4Ws1STf1qfXBcLz46Nzob97OJZ28la3sFFCiSgZBlgn+XYIIS03ZE252p/IlvQSaiaaY2ZxLwZ6hb8Q7v2Ot07fWTl/fQilUOXve9aYTxOCzska/vcEIC6YWkjKXgLSssncUfkVwie6AUq/jF/wdiB0KX/az3EI+6K2D3t1SzctsvBdpuAWTncHY1I+0CrKYKtTNFtUmmiWZqpJXVHRg4npYGI8o/M33K5+Ex7V3XwGb/6K6EjGGyETdhJCH0cWhQTxA+Jo4k6g0UgJvMySk4M0N2pe4+dWU7l7YLjo+wqJ1rX6+8+81X/iZ1cY2Ox9y5Q+74J0wE7cgFPIFTvg/xZPGc8cxxy4X2hqJowK3LlXHnjqwKgbvIxFSKnUtbmQC7i+yLaMTBCSBqR/ZHUuOrWu1CRYWuZhEeA5aFC2aFz92DW0oq5obi4mB6PcHBS9XV+mV9xULFmfKnVYtViNp3SHecMHdG1V16/wp/plWAvKUvEXl/V468C/j7v8omQeZpu0i6neQPZvRkmIxCGbgrD7nbi7n/Sl3k3RDULhhp/5jT5KYEppgjZSiAW9zdEVjH09PJ2QtNQHNQbE9V9eJYSkpvaCg8Q39kZJNGg2Ie9+o++qY97HYbGebp4mncrn3h4UhHWbEp02oHykt8ag61czn7u4oXD7srN8IJcN/nfB0hKSFzRL+ij04ZqNUvJ48mF8wUUFsf5IA7O97Ooe2q+t+CzrfkURjuSnN6mSpxDoduHYobipsvK2t0du4NCYGXOPXwFGpxFNAo1m8ePHj/xAm8zst6Pb6KHAn+Ybm2Fm6BknevrzesGHCRrcuocpG9i+WnJLG77NCMwmIVuVF3Keb+KxXMnYfdRUmy1dhdLW23UE+GNflfbwF3OwH3y2aBu7q9qWsB3NdTxv0ZZu6b9Xrmx9tfBAH3F2Fjqhrgvm4bU9cNuNtFwF0NcOfQ9i3g/kwDd/FisP9PmYtZNo4qpQIhrTPDorFLO2B88HxkkxLS7oXKytKKuaLSWb+oTrfgFo+QVt/ITrJbFcUGpbxBwxQyu4TvTMke84/uqq5dwsO6RV1fRARcHsyenGD9is2QaIuCGXDTd2lqJsLuLDgzKcys76i7ykEYe0F25RTfOvX2NdKTsZS2WznYzhT/xsF2wcgtLSBzjpxL3bYNrpkcnUZ6oTcsZ+VPhPeFI31A1EIAQZxBeHRscEwbT0P93xMUhJsZN/Bxz3v7na+/fvLyjmOXth0mFb5QTtqo2M7jgO9ZwQG/JZ69NYldUOrSr534+pTPQ9TzAd0BGaef+Hf5k31oHq0esFaJ0+si4M6r7d+1mAYqM0HiZMTYnUzjcgfu8IIjhyqapXpyE1lZ+JiWO+4a2HzU484R99t4zZ38GjzD2hMyhqfy8vB2VC5UBvcEuza7UqIZTRqy/rEnOPjBqVPIOajin4GD4uKfrfwVRt3/KEXZxOT9rc1H281CdjUj7SpRuxxTM0oz79qFhHW+vLyscj4lexRv2XReHt6muPTh5KzR/DPTtYblenrDJyUys7q6skp9jkdWDAa80dGpgye87u9zukadIDn85Q8P0LSdWJm4oSVpXy+T6x36oj/nWJyIuXMNzdjZ+j7d2eKKMtOLxMdhYiG9IU4NTkicEbeQbZGjJNLAnelpydJ2RmmFi6IlhM/Z+XfGynjYXXJfIr1PlWjgwL/pahbx/IvLnroFtTh43XfwfuDs36gNbYtKGVioqBhOSFisqooejNa2aR0fOnq1e+GNw9Xh7U3m3C/QKnBn+SpwkmSNy9zNAHc+ylHA7mou4YtqjrabEZOR0ZOxEbiLmbsa8i7+fuUO9waidq5P4LmFH/4QwRfVDsoz1Pkz+fkrdXW4IatqFqNTBo6634GT9wrviEjqq9QtTGRmlsyVBPcGe4S0Ofs1nvR+gDvWxb8pNWeM+IrcoqnVujo4k4Oam7uOf2Vc7bDPpCHz75wTMILm97/yI7JMUBa0w+WDsgRwvxaR1A8vgd/luPZeZH8k3FpYX5gycFeOyMZzMGJvYGHwFSxTdW50xutZPk9NG8ATRw1EnXp4ivAJxFZ83qbVjiQmTubkDMbELFVXRw9Q/uHkg5PkL84WFj4OC3vo6Hh93z5KXoYjP8XryYmxu9QyczOj7urkZaxk7qpH3QXZ/k/VXT+zSk9GJXD/re3AnY37W8DdQuC+3ntTN5mqzBZzX0PavqUnI0Pbn9WNqesM3OVp+2YG7peeU+D+xWYA7mpo+xZwp4C7FG3npeASK8m+afZ8usI4Km/gnaw9vLwb/jhtPK1Wv4xyaKmmhtqJWl+/XFv79MwZkrKnjqdmTWTNFhXlFU9HJvf7RHSgjjrsdnuf8/X9ztePae/6RD5a0etR4be4ucEJwvWQnAY+C46YLNODs7tMn1RVGFZ9TwV2NzPqLnMc1ZjsqmPua7FtaY1o+5qOt1tK2+072P6/IsV2oiHDqluQefaLdDpOpeC7diFIIOrgTmv39NQblvNn8pF9IGTB8cPdwisjHKGqrK5d6vDyanV3xx0bnthHnV4/SSm2v3r4/MsHjBU+T05aorYXlfQvcy5+nc8U+cJ5OjLkbhK7YNSlYVCoe2v0y+7BrYjnnm2emacn/Dr9EG+lZ28/sAQFytBAHhOUIu8mJ6OA3ZmBO3alKhLM0rnS/DPTqP8nsrKImD58SFBsT3Bcb0RSf1LWaE3tUvVSddJoUujjUK8OL7xBwT3B9av18DyVC5X4Kx3e3kg1jJuZCRxkin9WBIOt/FnvYWbUnY/bfieQdhHAcTtydj5qtwiyK3B2E2rnjLRzUfvb/CMj79AAVIjaBZydNLRopoZkBVYGlw6rQYwoLntat1KH9ytlLCV7Mjt3Kjd+OD6yPzJuKE63qJstLMTbGhDTrQ1t0wQ0nfJ9eNzz3iHXW3udrtGbDy+wi4gFYk1sQ4sQMY5xUYT9X6QuE3wX2xrH0FiZCPyjP2T2ph50vekW1BKfMVxRtVC1WIXfKONJBgosqrP15Tb2KIkYuJsImtjExGb1v5xLxtaksfsH32btC6mQaV/ihW2EuccOxeKCr0CkJg0qBOiEzJG49KHk7NGyyvmVujqYFazJo41SgYMx4s2C9xtLTe3080OkJtoyrAQci90lsZocc5f5/WzF7hIeS562S0q3W6Ynw9/uIA3czTJ3Kexu/hJxdrloayNqF/uEvyqidq6iFAvZiSIz6XOjbkH8pWbbjxwZjIlZ1Olg9Ya6FYrb0scfcwoncwunCkpmzpQ9RUpZNFuUWzSVVTCRXTAJH0K+E0kmbsiM009OF0/Hpg0dotcIwUJNh8y4XmLn+9LhWKnzLReRZYOy8EDM0Qt7Ha/6RXXCptyCW46433ZvdUdE8+30pYIyF7h/9F2ugLtsRH7X8p63KPiSkRru1geUgyhPkfB4tnviha1drl0xGOAk8Hn0QLTPIx88jo9BPUF4nevrV+HJk0eTg3uDtW1a+D2nRqf86XxEXlxUtzso6Pr+/UTSnd20LMbu3OCrtMzc3Kj7+jD3n6nm6ZbRdnN6MmY3pv5aamPqb23oqK0PcP9IJXAnTsM24H6JC9wlZdxtAe4W7U2VB+631wy4r/OQ+xZzf35o+5aA+ybbmLoWwP3K+gN32g9vAXcbgfvZZwe4f7QuwP2DtQPulmbhSloQMuRdae0hLe8Oo4HngON3anBCOl4yVxI1EJUwnODX6YdE3KPVA3VF7lTuaFLSdF4e6iK3oJZDrrdec6DQyc7jl/acunLY7bZXWHtdPTXK2ujsfI921g8dHcmZVt2SDnk/Pun09aXWq3KWMn0iWsr0d/5SJgVpZnaZqo2j7uuzcGktULsVtN1q9Xbl+t+ywXaGD3Kn7YxVgbj+Z4t/esgOXgNu6Dy9nA0h4TrZ90WHPZI3I6YiLxlJSFjS6dxb3BFjEWHg1I3A/eqekN6QRZ0O9yduVNyTIfG9+11u7KTn6Ywjt0bRdp6MjDRqf1kWBRo5oCxzp+fpdr7/b7s+MKrKmGp7Sl06NOFx1kSWNrTtuPaeW4tbedU8SmVEafwiZKMjuzfV7OytALUr0UBJJsh3NWqwu8m3XNiGsIy0SNOk8e7wppYt6xbwUb+ir9VTE9BwNXAs5fPlpRVzhaWzNfplIrJP/svMn0geTcaF+h9ZqXFFxCuvfMHCQT525zXtFEbdFbG7NH+XofBvqYfs6kba1QyzS3N25bPkHLN6hymwxajduAiBhuzcgyN42eG0kdLhXcD7UlAykzedh9CAJJekk/gE1QAiRdJI0mROzlBcXHXtEiICWYqwz/n6bkasieZoXwjEmjgEzWhiXPsy2tQP/1f64locx9a+9SrD0YyGRiAataCY7mxRwP2Q2y2YP8JW0WyRrmYxMXMkLXc8ZzIH0RBZnhii8YC7pImx9iUyKxpyfEPS1pSxu0BEgkyzImEku9BRkcA/JI0mpY2nFc4WVi9VF8wUZDzJgPcomy8rq5yHTa3W1dUs1xTPFuM3ncrJgQ2mjqXifZzMzobzNG47Z5XfYFn8nSssU/u7DHNXdCHS2u5/U8Du35TqDwrclSRtVxSTUbZ9aeAuw9z/S56588i7HHxnvir5d+UWkktOvFqB2v+iDrV/wIi2fcq0t8/Rim3nOesNUfygWIJbxl2ETI8617KiJ0pHTRpNp5/f47CwyOR+XLFDsTCrp8XFcOlx6UMJmSOni6cNdSu4IUsr5xDd8OApn4eH3W7R2wguwTzphtxn/ENmKjrfpuMvprj8TVFbjsvciaP4lrIC1dELyHIdfRvwnEPiel0Dm5FFICo5Njgal5kr+wqFiMzpf39TZgGxZM9bLD9lbMidexnPhxxddW50prSn6uurFquMq6rr61fq6vBHPHndog5empxbxR/hOvCGIIGfys3Nn8kP7A6E/8D7iCIflfCXnM1MgtMwVPA1u1VFcdRdcLjE0jWq3OR2fZj7z6wYb1cn4L7ewJ22fQXgzjL3ZwO4c2Xc+cD9qn2Bu9V7U+2uKqNyyH1LWGYz0PYtPZmtjakWCrhvAXe7AXcObd8C7tLA3ebx9k0P3K2eQn3HMhUI8dol7llU3KRkJxvZeQhHApcD5wSXBgdMIb+F8r6IiC5//7nSUlRHKI12Hv8KddH2oxdfd7i83/n6CU9qVxsS+u7AwGZX1zYPD6IjkT2ZHT8cXzJXEpHUp1vStbi5UaPurIAsf2mbtECkiJ1JLFOVUXWXG3Vf551LVnN2G2m7vcRkzE/bSVEAU23AcEMxBVDQkHmPLyNDgCC1tpGWi0Va0O7pOZ2fP5GZ+SQzs93LixykQFKCe2xFr08eTUaCg9sYtzSCA1npifuZWnpWMfc4NJQqLM/MUMsbT/KXN7IccCeRiKXKexFq5xN2BQjI54DSs7eU2MXH32PELl4/efmkz4Oyyvm8oiltaFtAV4DesAwbxO8i3OgoKu9NwF3gWN5RooGylwJ2lxKeNvmWTxnfcv4Vss8NiQNefOSMjg2OLk0umiYNfiPvDu+YwRi4lKdnziRkDvtFdboHtzj7N57yeejgdd/Jr+F08fR8eTml/BsRQUQwEHGp4p/mg2zxL8bucqPuYuzOpW+/lx85f0s1grdiJ6rtnF1BPUaM2t8TY7XvfY9oMSPnuMAUuheZQhcv+xX64Aj8PwE0eBORNiLbIkkQLAvJrGe7p96wAv+Pb8P3+ER0HPW4s8/p2msOX9PHR75kNh9+KpaRYTVkvklMTGRZ35C6BBZnsjWC0pjmltHQTJ0tcpTkKzy92uXakF6qKxyVMkBNiBdN4SOqB+OCYvYoyT+/w51a5RK0b74rS9u/wYJhyYvL30XYXbBSVZKswRXgeSKDJj0PspzWudHZq90rbihutqhoUadDsEZc9o/uCkvsi00bikoeCEt4THWzJjLxsdHJCZk6tXaFzkfPE+xOm9UnokMk/7CEuf+vuVF3lZfEP2GWtnPEZJT0ZKwF7r8R7TL5tc2XSs5udT9bqB7D2UMuub/hI+YkGdGSIk5AUIkRvIWas9HZeam6uq6eUgBDXEbpSEZNUYIe97yHcDwQFYWbbSQxsap6EU5eE9h8ypfy8PgqbPCQ6y14CaSRO45dIl7i+6Zd5f9Udcjs5b/JnYCRaoSb7YJLAPfdp67g2UYm9+NXgAVVLlRG9EfA4qiVDwS4n+VH5PfNN+ck03u5hjd7tlUQfNmGtyml/4JuyNGegZqkue+AgAvn7NXhhYCLy7/LP3owGlF1obIyMWsEDhCP+DzyadNqkbrj3RyOj58pKIBvnMrLwxt6hWxmotcy8Tpz3OArkneTXKb6P1L7zH8nUolUknSXYu6/MMfc7Yjdf6Z6vF2NnowycH9j0wJ32kVIAHeGuUsC9883K3DfeBn3NVCV2Rpyt5W2b7bx9nVZl7oe4+0v2sZUG4D71Y0C7nbRk1ED3C3ZmLqewP3cFnB/zoC73BSqdCIufWZbSghCpAxrfiKVaLuff4UMApOtqoS/w6kg+KBeQtWEXLzVw0O3pPMIad3jeHXn8Uu7TnyFUuSAy41j2ruoo5KyRufLylB3jSYlVS9V+3f6OzU6wZs6NTjVrdSR3Vn9EREPHR2vkl2IIo2If/IrfLE6s5zCDPdoqu2q7j+3PDu3L2Q3g9o3grbbDgLMasgoMEH4FDgvOFMEDNyHuLtwT+ZP5+OmWtTpUDrOFhWhnGx1d+8ODKyvX/V95IscB2EZNzBJsfE5qkpyaDp3Kre6dik2bfCA5uaOYxdfPngORb5peaNY4EKM2uVGbhU44Cs8DkiX9yZVGVbGnRK70Nz0CGnDL5iaM5Y0kpQzmYOCmRKjv7oX8UeAAnmKsXzgrjB7S0ZurQaCpjncv8u29CgBq7PfJwozpKWHKI2MgHovaD6oadKkP0kfSUzsj6SWQHqHU4gWjgWvAHEsR9zvBNALLUsr5ppcXJB/IMwjSCMGU2uZ+QuZTcdlGNehMOouxu5/4Iu3KPN3WQQvdanXjVGG7OY5u7i05hfVRJ2JNLFYrGZce7h9O15bvMIk3aRkwZj0jjyICoScPCC9H0QHpD+4FZF34J1FJps9mT2enk7FCHd3sh3hkOstejXCRWaw3cTRyMgq09DimBjfvmiw/tdv/ED+4psbn7lzh9zZzpYRou04dgk3W+VCJYyrvGrBwfuBS6NLwUwBfkFUNtSCYuYoCW9Zghi4S9mXtGW9TV8KhiaH3fkKM0REwtQsp9exkJ4W3hdUP67NrjCZQUpvJlZXs4hgjei83+U6LIvsqAyJ763RL5XPl8P0SP+b2NRFetv5OUa1WboXLmDu//Iv6pn7O5aidtW0XVlMRqHHJqnhzgXu0sydP+duBXYX//XfqDs6pqzSprwTRcIhcFE7c4yM7W2jAqGEpPbvf+Dg0Ozq2uXvDyeMghxVKykv4RZQz48mJ2cXTD4OC0PhjZoQVRapeV478fVB15ttWu2KwdAXHk729/pEPDrhdZ9Adnj41xy+RhpJzr4IG3KUl/iAaXvzDplxxab+RWVElmTuvM7c300y7pzmHHIDeDDYDp62X1Tn6eLpvKKp09On/Tr9KME6OiLDB/KAu0DAXSEcv2O+4a3Q81ZqyH3xMspKdoc5UiAkQkduH8Fzdm1xjR+On8jKImoznX5+D06exFt5ha7DSW8VeT58OJL2nqAg/BFfwttKvASpb7+k+fsXnMUqrJeQE4fkKcxwRN7Eo+5q5GV+aQ95GYvIu8rBFzV6Mi8ucCeH56wG7gxzNw/cd+9WAO6bbm/qZh1yf5GZ+4s53v6sCrhv9MbUGzbqyawXcL+sDrh/vQXcny/g/sn6A3cp2r7JgLvKRFxdaq5Exzj6sJJbVXFL4i4mYzLwbUmjSUjNW1xdHzo6Vi9V55+ZPun94IDLjX3O1/HxiPttB6/7rkHNgTHdlbqF8bQ0JOuR/ZE+j3xQ/CPU+D7yJbLUWRNZyaPJuiUdKjeKue/YwWbtwr1tzHn2f8ipM7PDMpLLVKWSdTWq7srY3V4SkFYn95KD7ZYqydiXtkui9t+ZW44qFLvgMkEy2E6LXVD1PzNqRy1n270bQX0sNTVqgBqaQwF8yuehS0ATPsmlp1NR2I8kJORN5RE1cGQ0yCCQibg0uUQPROMbBmNjS8rnUnPGolMHcd/SBzWoLamorr8jou18gQvxyO1fJWggedBU50tyQOHsLZmnIzLuO45d2ut0DfYFa8o/MzNXQumupI2nBXYHIrVBMIRtyqFAAtyFjkUNDTSL3d+xBrsbHcvZ73P3qVLY/eoeJDWODx0rFioeh4W1abVwGmm544fdbu+i35FXD53H67D71JWjHnfwZukWdf2RkbfpncyEC3xFin86lJ5nDryTyVx24E5u1F2M3QXk3Qr+rv5SvwFVANnlOPufpTg797AI16wEGjIEqyExwmvb4e3dGxKyVF09np4+HB/frNEg+SapLT7BV4vLnkb0ReAmRHqINxFvJUlekFihIKhdru0OCKBgjbt7yVyJT8QjRIedxy/x5JgVTOzlv/E4O8+s3ibX/2E+oS8p7G6yNdGQO1fG/QA1tbrf+XpEUj/CWXBc70HNTeTsiFn6ZT2KLVgZd0GxNHDnmBjPvkSQ3fje8C8hfyeGxrUy0jinTUyOrLENLQRrQtZgVmTncJe/P96yRZ0OvvEArZq17ciX+K1fc/gav6xXeEflQiXe0AYnJ9LHImkxe4Lkc45qM9m28uE6Mndl2v5XGdpuZrxdBXBXHnIXMPffSHFzS6/fWCXRxj039geZnah/4fez3+GPtHMdwgeMXDsBZ2dJtN227fJrr6ESnsjKKq+aX66tXayqQjCaLSp65OPz4ORJlOWo8Knu2uoqPMbDU6dQf8Izk6SOHCKBP39aXIx43ezq2u7lRbqqeHCP49XXTlAHX3BP4jthj0bUzjlhJqnnxo60/4vSIRhTFP6GXAv85b+xXoJEZK6Mu/A0zLFLsCD34NaM00+I+kp9/SpSWY9WD9Tc7GkYk8ibJeFY2AKX156yqCFH1phT2P28MZOnenJX9x66dcip0al8vnwwOhrvI964yZwcvI9wHRdo2ydifTcPHmz39MQ7jreMvLOo9gUok1D4C/TcDHwF2/CWGHVXVJgRjrqrkJexWtJdAbv/zB7Z+H9YCNx/rQK4qz/U8lwC94tSwP0rFcDdlr2pN+0i477RqjJ2GXJ/MZn7pqPtz4KezAsn4L7OG1PtBdzXd2OqHYH72gq4P8fAXQVt/2RdNqZuKHBXpwCrNIsqmaCrk2DmqUBy5N1Jpo47AjcUNSNzaQes2bHBEZn3UjU1VrxcU1Nds2QwrMSlD7kHt2gCm92CW1BHBcf1xKYNZRVMLOv1xbPFxU+LS+ZKdEs61CcrekrcMz5jmDrM/iSzpnZpOD4ekYA6rMofViX332dqRlalRt1/r2aZqkWj7vI5+gagdqsG29XSdpuXtqkZbDfxQSm5doGGLPdgO7wq7hYC/iaysvKm8lJzx1C6H9DcOOF13zWw2T+6KylrdKmm5umZM4kjiSG9IQFdAYHdgdED0TmTOZW6hbmSksrFypqlGt/IzmPau3udru08folH201FvtTUrcqRWx55V5695avKGA+wn9tx9OJex6snvR9EJPWhvDesGApLZhMzR2B0SSNJCPLU6lQuCjRX4SvRdhkgKKCBPOYu08yTxO6U9jSz1U0AB+FVkN/pl/UDUVFIPVs9PPDWOHjfJ8D9FQq403JVLjec/BrhNxYqKkjlT7KQK/y8AdH9Ii01i1sFN4xx4I7sc+MfkRHU/GIqx5WeUIDv6hG8WsUYc5BdkrP/RYaz88gaUzlLmNW2bcickAQ/LS7OKZz8/9l777e4rnPv+7f3OTn2yclJsSPbUZet3tsAA0PvvQtEB9F7G2D4J86Tk5wnyUliO45bLJ24qxfb6l2ILoQACRVAEqIzXO937TV7z9p1ZgAhZMnely4Eo5Fm73W3z7rX9zaZTQVDBTCWyZoaeqqpSa+/ptM1urg8SEwsGy1zbXJFIoycEYkbHiIyJvyKhNGzzROevy8pCeY5mJNjNpl0vg3v7PhhySZhNIKWiQnsjEHtBK//25uaF0vef/OxxNa4AyXynS0q435w8Uai3eTMLa2M3Ic7fK6iKgrtCsUixBdYnMJRkgXfShtXpcCdBm65fUks60P+ktiaI63uFuwubnVH1kZ3s4iw+6nVTted8KHwIFCk3Y2Lyyt+ss7l7NLNx+i0WH4f6xK8Zelo6U1/f9rcSpj7ihUnuA5WGpEPM8dHJMIRs6vn7jBt1xSTUWtvf09uzvIDK+JJDLaZO5da/GG6hN1+zj4doXYllXY2yAoCMoJPsEhLcSNSUMLBLWB5wCHsfrA7p2gwOK4rNL67sHR4vKqqJzy82c0NV29MDBabe6s7ym4Ulyjnlm/9bunm4/DeWGaG4Jap+nq8DDV5u5dXncmM76x1PsMPT+amlBPULgxHFWnI/FxhroMiZ3csFtuzBU4j8lsccF+x7butHpcqq8cRf9MfpucO5sJjkIg8UY0QBgeoBtxtHoWxa/9bfNRM6hxsjXygPTQEux9fiioZvhr+DY/sdkSE5TTS1JShxUAnReODkKNOK1YgyOKR3Y6MrDXXdvj5Ie+iUOPipk1Xd+xo9fTsCg7uCgnBOwizl+Er2FZ3+UAmRYUZh1rdpy3pLk3pNdNs+y87u17+S21iqgy4/+ElcFcE7jxzVwbuDHOfLeBup4y7o8D9OW1yf6GY+9W5ou0/nvb250jA/Uc6MfXU3Au4v5jAnaHth2eDttsD3Pe/BO5i4P7PWQDu09B8UEfwqirMn0lzdDWdGXoulchBHiHnUmHQztedTVMmZOc5gzmTtbWdgYF15joi9cjNPxwtLcUX+BEKEtRj+SVD8Wn3whN6AmM7vSPa9QGN27yuoMh39r+OHxWXj6T0pzzJzYVLpW0yx/k6/yi/7tlqH8+YNs7sEyvMaA9T1VCYUWh1ny52f0pTmOxB7XbJyNg5JXWWGtvVTrgraMioo/YvuKFMNIknWJBXkml0caEDvow1E2aTCevNL6pD59uAGj4gpjMmuTctZ6CobNg4YazHi+qnauvMtXWTeDH5XT2RZwmIvokVuNbl7Nvbv2d12ykKpBoXgowMLci5+lzedfuRMhCUt9/KmLtVWIa21C239t6+uXr/Qq73drXuFD6UyWyKvxePj7yn4HFSVp9/9E2qd2Gt8L9dAGsVRGMlwN2iLm0nDVRrwpUxd6kzUZnYLMXuwmbeQX5W83crkNckPkismaxp9fC46e8fdzfON7IDn335lhPLthxfsfW7lTtOrnU+s8XjUuiu7uqJarwM6RoRPOHKoQtc8Y9V0eLu3qTXI29D4gJnAgciNNzRyl/Yq/uEP94u74d9X07oVOC7lL/bfdkpy64A2bU5u5JSxF6mbGalma2K7YsWHec2sUhvu5dX7WStV5sXLMU1qInaVHTSnTqTeSA19YaPT4efH2wovCfc6boTUmY8OCSJNNFD4onQgIVaMV6B9bnr3q5JozE0vhsPbunm47ZNTBG1WwzqQ1uXYHRy5m6haRaUxqrK8Bxt+dYT6/XnQuK78KmDYm+1eXkl3k9MHUhF1YU0GetTdJSEk3G3Ddx5e1Hg7PJLbmifKG1ufaZO1sQiEjArJMIogPAgBnNzG3S6wexsokrvcWkF1+EOp4dPvXLnSXxwt+BmROq+pCTUSzAcytwt2J3XjhC63a1nR9gZiXw41mDucuD+qd20/VM7aLuamMy0gbtCk7uMuStgdwevP9rD2WWBVQGxifmazXNjtJ+d5ewUmVkGJtPzLsuXw8E26vW3goKwPLIHs2vqJnf6XFvvem6b52XXwKaIxB5KbKlKTERPBDwAVh3cwmpOKOadHT+s0p3a7H4xLvVuZt4j5IrNbm74I2WVo8gD8VOOth/mD75wMlPsbtwyxRHKEs4uB+sfya6P1c7BKIRjpS1wOmAZ2YJbUDP+/a5NrnCJYT1h8Bj4DvJh9xZ32AzqMy3gbufm90xOm8nPwUiE3bh5KnTeBhx45Xjl4+xsRE/EUHNdHZw/nh0qY7wARTCcANWeQmydMBofpqeTbdedO687O98MCMB9GK+sRHLSl5w8VlGBWgDfh/eAu7Dudos35z6TKcx8JFOYsba6y5k72+oukXRXlJexh7nPGLtrZ+MO6cnYA9zt0ZKaReC+b1rA/RsxcN+vAtwF5q4B3I/ZDdxFTe4zAe4znJs6L1VlXjL3Z9zY/rK9/fnUk3m+gPvJHzFwnxU9mecRuNvT3v4SuM8IuH9ihwis2uW4IoRtnRkekGFR08l4iB5ODU6+Hb7lY+VpA2k5gzmJDxJDu0K92r08Wj3w/cT7iUjQkc2nZg94h7fv8L6K2h4l1vKtRJd51c6TyON9Im4MFxWNlZe3GAzwbvAXrIULBg9DlZxXleAzRXVmCXZXVJj5b1sKM9M+lGoPiHcsrZ8uatdubHeItv9xupqScg0ZBdQuZoJfckm8pduOo+3wj1gMiOsmk7m4fMQ/+qZ5air3Se5AairB6oTB16P0zR3MJY14gzlDhYUpe/pD4ruwzAzBLS4BjTt9rm31vEx1Y8kIx83HUUWTan/1fiIX+/ZXRFFaQePCnq5bGf6zp/d2sVLvrUXsgsxNXa07FZV0B5/I/yZpMPQIbU3pTykbLSsdLXW+7ixVleFk3IW5qVbgLnMsyrRdkwZKUaDSuZn/sJZrVuyucIxGBgfxQXQNOnyo0opRqg8el3oXD4vK++JaQ8r+81s8LuE51k/Vd4eFNeh0yCyRwsJ1PMrMhA/JL35SM1lTUTXWl5R0Ny6u2c0N/uQY33BH23LlslQfMb2xCqiOoXX28Hf7Lw25mPflkF2Fs3/kEGeX7GC98QZiPPIJ5DrI81Bj3PD1xX0rGi4inaohLaudTsNjb/O8rA9oDIzpLKsc7UtOxgvITI6b/vomPUIAcnPkzsi1UaME3CQIBi8YKSnJLRo019XllwzByZPjI2Q0goW2S01MaGxn7Is3Lt6g3vjwVXL9XXaR7+OnrN1ZzI21NXmTO7eztWDl1/wsxOOrdhJp5sjdt+lHwEqMuhNlaDbgo9Emd6LOzKjKwMos21pKwP2nn8jsizEojnyQS5m5TyNkc/Ga7mYJZoVIjTw9sDMQDwLPbqysDD7TLah5jfMZuD6EYMRi+oh3+FwtLB021U/BplCNnOFU+ymPsFQFq1dT7aZjnLC7RKxZg7mrTpyZHm3XEJPRaG+Xn1zRBO5qzF1Nz90h+K74p/5kB2eXSseoqMcoCLVz91M6DZU74MKdZnxdwGSUjuHhkvmonLoUFgNca8lISVb+IywehNfcoidOftfhird7XdEHNvlE3ohNuWuurYVnyB/KhwegyoGwGhj+BrfzmwwXEXZ3Zz4YLiysM5nHq6pgXwjfQbGdcOnLthznDpYdpBoyvFy7MNRBS8zNrm1vrf3vjx06cyYAd3wcumEQHHcLvhEfGWGrzlwHf2gPcFeIxfYdNVPQnlI8CsPtySkrzHzNjHw4sgilLer7kK4QZBQDaWm3IyIQWJHMI69Ye2YtKnI6umktJxS50/daUOytCaPxZkBAu5cXOc1QX5/+MN2vww/ZfsTtiPGKCjjPofx8Olv1OM/crZtzVNuNVZgRC7srDlPVmKQ6Q3mZ2cLuDok6OgDcxR5jPgP3L7WBu9DkbhO4c8z9KM/cj2nKuM8pcJ+BjPuFWQfu80BY5keP3V9w2j7v9GR+HALuM5iYOq+BOzdIY6YC7vMKuDO0/QUE7l/PCXD/YibA3W49GdvAfRqyDzZaUz9yrDtGnqlbsPu31mSdakHAHOEJkI/Ah9GMA14TfhqRwa3ZLe9JXm9s7K3gYKTmsSm927yurNp5kjQ0rT+8eOOR5dx59o2GC35RHcjySZfN9u1whXBeZ7h0B04Wka/V3b3Dz++aTneRa4EnvTP8eVXFVne2X+Z9FWF3NmW3c5iqjQaZ2Tuaaj9nV0Ttc9DYbkNDhocC79nSkJGgdhYEfMUzQRYB0LltiGdUURQVr7F2IvpONCp8zzZPrzayzYNVZ2g2eLd7owLEqrsXT7rCA2I6nf2vb/W4JMxnW7GNHHW3DGdbQxRjf73ya8tkNgsKFDe229N1+wZ/2d97u4jpvV0q671dewD/QvxrIxJ7svIf1ZnMqPDX6c8h+4i8HZmYcd/nhg8CLCzRpsC0pMhXoIHa7bcfilGgTeAuhu8K6lViHQzC3I8twWfBEzSbTKWjpXhqD3bvRnlPxzxucDu/0e38ZveLVDIoNXtgIC0Ny6DVw+N2ZGTNZA3Vp0ruSzZOGCnQgfOZrKlp0uuJ01iyhDoNcj6GkXT/h6TPTqlJloXvf9OA75yf0brkr7fZyS6B7DLOrjwKlYXsLGeXmZUwCxHOtjssrGKsorRitLh8pH6qvqJ6LGxX9ybDhc3ul3S+1wzBLf5RN6OT7lQZx4fy83Gfw3vCAzsD/W/6E6Wm3ujdD3bT7a6J6mp48hIO7OJhrXU+Az+/aANH28mG1pcMbWd3sziCRlE7Y1wqkF3xEmF3EXNnNreoQLPiztY723/AGnMNao5O7sVHwaLKHszOepQV3BWMSoKOTlVWlWGVIgQTU6Htr7Iq4/xztbGzpXhATU1EQjCrA28iDUT2itCcO5iLT1Q0XDSYS77wCGld73oOnnCN8xm4xI1uF7Z7XwmJ78KPWgwGFGyUBVzhxmN2hYR0BQfDymBu+D7yfuTNWDbKqhEqzP3TedXergjcHWXumtjd5sUS9j+J318STx0biqiJ2j/nZzZ8xRD2bxkchowffhK1BGoS1EgItXCwcAsJ6fdD4rpqzbUloyV3oqNr68zwwFFJd2KSe3el30/Z059b9AS+Om0gLfZubFh3GHwCkrqA6JtRu++k5QxgXd1PSHiQmEg34XCF7upe53J22RaLjBuNv6+//dVrCnLtcBFyMbeP7dv2Vtj/tnHmjJFxVwTuyBzg1kz1UxXV41s9L7+z4wc4h+KRYnLg7Op2KXAXx2J281tY1o4eNVM8cybH7nJhd6HVnXbPII2HQ0MOj4w94X4C/v3w4caaicna2qqJKjzBrZe3UoCxyUDCLjIon4gbBSVDeJRIqxAjQrtCkW4h1afJf2p/akbuw9Gyshs+PnAdcBSokFGIHuCY+9eS2Q+K2F2lY+Zdm5NUJa3u05aXcbCNxp4OmN9q6snYOTFVEbirjXB4ToG7o3NTbQN3VlVGDNxPaQL3M08JuP+4mtx/xMx9Lmn7vAbuL/Vk5l7Afa4mptoL3O1rb3/Bgfuhl8D9uQPuNmQfFNPxD+24HEnT7cHudKSqRdj9yGKsa5gCHcRE+Pup1XAtZBxTg1PNZE1PRESzmxtS8MrxSs+wtlW6U0s2HfvNuoNEl3nz8be3f7/W+Qyy+diU3rKxsjYvL0QLeG24e5T6fUlJ1RNEKT4pq2+kpARfoPiH26J5PKvOLFKKEA9F1BZ211aYsZmsq+XrDnW+OzQQ1SHUPr35qPYottujIfO+toYM6cTiWIBM5sICBHnUDpd0mGu4w3NHkGjQkRECOYWDuYO5EbcjEI0RZGhwoKIWyBQMLYb8J/n3du3qDAgYKiiITbm70/faBtfzq3WnSFc7N59t4XrSWGfVuLDOb1TUuFBC7W9oA0EJfGda3SUcULn3lsi4U9FYGAhKWZS4huBm2AuyAPcWd9TG3u3eiM8IUFRVhja529NVp9F+a+m9tdZnr8qBu0TmQhW1K5J3RR0Mrv6nfe5IoJyvOyf3JY+Vl1M6YzKZA2I63YKbXQIa9YFNHqGtEYk9+H5PeHh/aqrZZMIyIJX/1e00a8PXw0VFeNnuzAcPMzKQkGF1aDB36yQ3AbvLpy/KKJ4EvstB/Pu2rr+J300g7KqQXcbZ2cmHijIR8kpYuoO1bBmSuSa9vnS0NCPvoVdYW0n5SNajLNy38aqqkoqR5D39qdkDhaXDFVVjWIGmKVOdyUyPIODZVBnHJ6qraydr8TgKhwuraybScx/i9du9rqxxOr1im1WsiYoyUxMjcszSxnZxVztrVgtwfSBcr3DXq6JLbHRqzF1iaDxKE2Tc4RngItxDWtNyBqomqsYrK2F0MSm9+IxJfUlkXsKxpcibFK1MBNw/kQF3DdrOXcrbWkrAXXmXC5YlMyvK3OEZEJoRkVFHBt8KHi0re7xnT1HZcOiubp3vtS0elza7X9rqeRlf+0beoONVsRgQfG/Cc+bnk7Z3kzm/eAiGWFw2ci8+HiEY0ZkoNdvJ3OXY3aFxqRrA3b72dpvA/V31YchqzF2E3Xnyzl4iqs5ezJ/6n9nm7PKZqCLUzoqzv/kmxV4C87L2mS5ejKIFBRIKP2Ru5tpaGDViKHI5rzYvuNb4e/GJDxILhgryh/IzH2XCUSf3J+c9yZuqr8/Me4S4THQF6+vhveGc6+vJvmlF9Ti8B1YX3IuTX8NWj0sIxIjCJASvOcAMR5XItUvnprAt7f9mc9vbxub3RyLmLlOV+QW3/y0D7mT66ybDhdq6ydKK0Z0+1za6XdhxdQdcn3HCiNBDFN4Ugfs+5W05h4+aaYtQfayE3VmFGck5mINvIYGnwlN4jniIeLJPcnPbvb0rxir2PN6TcD/B94YvnjsenG9kR0h8V0L6/bGKCgSCuLtxAZ0ByEN0DbrNFzdvvbwVLy4fK6cxAkEBOf+ZNWsszJ0/EPMVV3p9wdVLUuzOzlPVbnW3e5Lq76bd6s600fynIx0wjra32zkxddaAO7NwZh+4M2dl5gC4n2CBu825qZrAfRbmpspl3J+qqsxL5v6Stv/o2tvnVE/m5cTUWQXu380cuDsi4D4j4M7Q9nkF3OdiYuo8B+5i2v6Ugfs/7NZZVsq/hVPq7KXN36WFvQSiyQCZHLsLI1WxKrGWYRO07R2eA26+aLioLykJMQy+uD8lpbxqbLPh4opt3y3ZdGzpZiIg+86OH9Y4n9nsftE1qBl1Gl6MGq9Rr+/w9UXiPl5ZmdSXFNIVgmIAv0Wuj0KuydUVXgn2eYSXl/mSl5cRETTZMVVVYXdbCjP2YPf/qwnHJen7f0pyd1sZvE3OPluo3R4NGYfk2v8mR+1MY7uFBdCWdjENtI5UoodMlyyBt4X3R/zrCQ83ccjP0GJAPIS/h5elbpLKkiII+9/0p6MC6SQ3VPs632tUrh11vqWxXWisExSltTQumPL+DYcab0UQkOGAn9jXe0tk3GEjIXFdqGajk+5s87oCy/Js86wzmVHuItTD4mB6uF9CkzsRmP5cQTfW2lUnUZfWBoLUjciAuzZtl/MzVezOHXUX6n/EXiQLSL5g+LF3Yynb7U9NnTAayypH03MGYlPuxqXexccfzM7OGcwJvhVsaDYgpcUfQQqDBYDUJvJ2ZEbuw+jkO0/y8hqcnLBskBYoMve9TJMdLfg1mmc14LtD1wfiHvYPJPdb4qrZkRxMbfyZWIjJ0r7K7FoJFa91+0rYwVq06ChH25F4IUeHjUzW1uKWGmsnE+8nure6R9yOKB0tLRgqyHqUBSccdScqvCc8ujc6fygftz099yGVafIIbXUPaTEEt+gDm8ghEs/LG9w4sSbLIESLWITl+Agv2g4Ts3A0qX0xlsVx9lek19/4S/R9CXbnQZvI1sSGxu9sCUdJNhzBvxmRCMuGYsSH6elEqj6hJzCmEysQpRidlyCyMlvAnbUvNdouAe4K+ExBkEVlCrpgVl/8ysLc95M+dzhGpNhwjOTcD/ffaFkZrGlX2j2v8Ha3oGY8Qb+ojirj+O3IyFtBQY+yyGRphO+Ingi/Dj9c9OBInbku/l78UEEB6iU6IMEmc7did+b6x4yBuw0LdRC4azB3beyuAN9Vrv9RJOwqkN1+zi5taec9A7sD9wUzG5kcalm06BgXT4Xahi1X8Fs8WZRtcAt44jHJvVMmE+Ipgg686yoOXMHBogjefnW7vknvc8MHS2KsouJhRgYZLhJ1Ez4Bywm/wj/AdgJiOvG1Z1gbnMNa5zNEUXDLicUb+fnJKxXnJ+9VR+0yzm4Jx1o733LVqekdOKPDHta5nIWx1NdPeYe3O/tdRyxGdhrYGYhYjJrSAty/VQLuDgpP2ZvVy/J5K3bn/YNqzD3wFv7BiLmo6fFMdQ26tIE0PHckG3ACcIB9ycnjVVXmurrqiWp8ZLLhaq4jc3Gm6o2TxpKRkoyHGYgRCBbdoaHUt8DJIFjgC+TqWC9ECpJj7ohBtNXdit35hncWu4sUZmTMXa3VfRryMr+dXg7vSH7uaHu7GnDX0G98CdztAu4rVyoD91mdmzpNGfc5b3KfdeZ+9SVqnx9iMi/1ZF5wAfd5OjH1eQbuh18CdzXa/jwAdzltVwfuH9uRjv/dkUtJNFZDmtnaPbdPa6QqIe8HiWgsliHF7rBCuKuY3hik3W2envDFfUlJSM1R3q/Tn0XR9fb274mArO7UOv05VGJOfg3kSHt9Pap9IkEzNZXUl+TR6oFIRX1q5O3IzLxHuHrCwxEa4eMkExG/sJm7q2B3OxVmFLXdf6uCv/9zti8HOPszlGuXoHaZpKylsZ1L5RVZgIDXRak2l2HDrSMaIXGZqCaHHsK6w7AqEBCw2OAU4bdo6QjXjmBeMFRwPyGBplBdISE1tZM634bVTqdRLaPUt8jI0PlsIo2LfdLGdonGhaSql3baajTeWiEgxwHFvXUqvbcLLL23RDd2i8elpKw+fHD/qJstBkPwrWCUvm7NbrAORFdyE4TRqdPVu1B1JhLgDi8ha6CjF/2L1IC7Kh/8/JfWnlwqL3N0CcHup1bBhyCFpFgnuCs4+g6RLsl6TMp7FPxlo2WpA6kRPRHe7d7O152RJyL3ocDds80zZzAnt2iwPzX1pr9/o4vLBV6QitVzF5i74DE+tVu5Qs7fVS/+ZSp391WFzVAxZGf72RVa2sVDUIUtq4NMsD8k7GAtXEiJG2wKNwRp7pO8vNTsASM35hpmRfctkOLhV9xPZLu4sU4NTrilsXdjx8rKiHrv1FRgTKeL//Vtnpc3ul2AS1/jdHrVzpNYqDCxJZvYKYjCiFSRjAxjX3LUzsD0X//N9qWE3SXMXZieajU02r5KBxTzR0l2eF811U9hsSH63I6IaPf2Hq+srBirKB8rxyIk8xKOLEakI03uvJVJz5GITUxkX3+3Bdzlqk2fqGmyqCvMsMz9S5FNwTcio0chhcCa2p8KB0K0mOrrq2smkjIfRCf3IrwOpKVN1tSkP0ynGv2wPngYmCGWQUhXyFh5uWdoGzxwu4+PZdt78eKDXPsqHWZunaHKewKbVP0zHvEovlg6f9Vu4G5bBkpj+rEGdufJuxp817j+rALZp8HZP5JxdsXDLlRAhroFYQgqijcUnKh4UYcjt0IdyA7OwRf4Lb6PNAwLg7Slt3lhAZBQe2IZLVkQbvBbfHPntZ2BnYEV1WMwljtRUfX1U55hbTt8rm52v7jB9TxSu7UuZ4hn0J2ik3uWbj6GcMahdkv8fU0af1WHpkha2h3c85bsfH8oZu4Km98K05U5SRn4tzXOZ5BO5BcPpWUP+EffREgqGi5yuu6EuIOakgpPWVzEFxYXIQB3q57MJ7aEpz6caT7PYnch5uJfIj0Hw8RcFOL0sbo0uiCqBnQGwA/4dvjCJfre8EXWkfggcbiwEE4jLvVuWEJPeELPrrR76TkDuzMfZBcO+kZ2BMXeorye7N5FRGCZ0a1uOm8ZFeO3HHZnybscu8tb3S3Gy9upVqu7HfIyTwm7/1/72tunPTFVIwN/SsB9ryJwF+vUOQDcBeY+W8CdZ+72APdZnpv6zFVl5lOT+4+g1X3uafsL3d7+7PRk5g9wP/3iAPdZmZjKAHd7aPuxpzox9ccN3Gfc3j4rwP3zOQDuCtqOalPX/j6z68NX7RFoltAxe7A7FiyMAzaNOEZ7XuqnyBFj/JqR+zBsVzdKMjJQi1OP3eJxaYf3VX1gk19UR3bB477kZCT0qGGQ3+sbScEPt4e3cm1yzXyUWV419njPHlw94eFw8TB1EXNXarKz0e1uS2HGzpT9t+pMfHpJvPa7/dZx1P77Z47a5Y3tPGonI9o4AkirfRpRTnLxwEoBVq9GQG339q6ZrKkcr0QCgigEXw4vS1gz567gHfFqlL6V1eN4JeIlFklvTIxpyrTT59rKHWR+AKckw1T7yz9XUJTm63wVjYsPlHpvFS4LeZcW/FbmrtTkzqjKrPqGm+h4eNmW46udTuMjoKzFx78THX0/ISHjYQZKYl2DDhkEAiPCC9G72G8Znarafvupst6Flj/hgTut5Nka3joTdd8vLN1QbB+f8DcqUUI5AmCPupOtu2NLEKKRFyA3wWekYzkNzYbAzsDU/tSh/Pz8kqHU7P7aOnLcIW0gLehWkFuzm0ujS/y9eOp2zCbSjke/HioouO7sjHV1lJuhyu7SCQfbP9NkfIKKhcgT23CxIp6uJPElwusKkJ0vg+WjUFnULkxApeJLwjYVzVHwWzbhwG8pbUcq2ezmhpsDeykaLkJlgFuN4hUZDUvWkEUibfe54YNXdoeFdfj54ebHpvTqfK9t5PrZ39nxw4pt31GlJgG1y0yMl5FZSGi7xb4kxqXC2f/11+/Lr1fIxWL3v1mNTsrcxcIygqEt/+drK7749TvkKMnC9YeWbz2x3fsK7Cu5Lxkrp1Gvx/1B+XEvPj41ewCri85LoEdJLFbGbmtpAnfb9sW2t8uHrHyqbEpy8i7FarSVlZdspnvhyOtRqcCF0q2siJ6IlP4UOjgBMTp1IDWsO8yzzdOpwYluYiH+4k/hazoPIz33YXdoKAokWBPyY3aSuVWj2RZz11Kfmg3g/oE9cxeURhlrY3cReWfgu+rFvPgvmpBdG5ZZxZclmIx1DmLPIJwbO8C5BVg9TP7azp3IxJBl4VHCfz7MyLgbG4tvWiblcnUgvoarHK+spLQdvhcLAJUQ1g8WP3XOVKcI6wev6Y2ObvXwuOnvP2k0eoa1IaNb63J21U6i3rZiK3ULx7hTZSLPQBXb+eGorIyb1vxkKWdfIJWc0t72ZlrdP9KY9KCy+U1GquATrXU+g5Q1gDv4kpTZB48B54DYRE+bifbkvtDck/vEkXNmti4t7C7ZIBfvybFjlqmLwKfAE0d+hUeM9Bu+gu65It8oGS2BPxxIS0vPGfAOb+cEgsgIetwTpCiIBfjaK7y9rJJMPidt72FhtDkG1S9qV2R6BLu/9RatDyl8/4qRdyexmG2XUVF1/6t4JtP0Wt1tts7MMF232d7+ErhPA7gfVwLurIz7D/N5buq8Ae5Pibk/j9j96aL2OaTtL6CezHwTcD/7dATc5/XE1PkK3I++BO5K1zcvgbs2cJcoySin4x9YL7VOS/Y1Ngr+j3+qLeyujd3JVNXDi2AWcAAu112QeecWDeLX2snau3FxE0ZjcdlIavYAPa3vH30zMLYzbFd3THJvyp7+qfr6/KH8hPsJEbcjAm4GoOx3bXL1aveqn6ofzMmpqBrLeJgR0WM5Fw8vT/rcuYLfcrCdq/k1BCKl6TuXpNqpMKOI3eXk3SZ8n/b12xm2tD8T1M4l9JLhqHhGMMhvORZA2u5WrEDQQmbQ4u6OWq4zMLDdywuZEKIpnaCLC8EPacfD9PSSilGsCkROrC4K3OEgqQvE1/gmlRPpiYhAcG10cTHWTFRWj292J1pGizcckWhcSETbZY3tLA10sPdWWe9C3F6nKDDN9N6+sXr/b9YdWrLp2Dvbf0Ap6xLQGJF4m+LjrEdZsIW0gTS/Dj9kJXL1WImqjI322w9tFfMMcJecUrde+1RHw0kvJQRgHfn47QJL/X/UggiRcSD9QTbn0uhCzf9ubOxEdXVYQo9fFOmqyyt+AvdC78xkTQ2Fwln5j7IHswM6A3zaCSweKy/HAkMOIezSUTUqKyKk2F2ihmELvmtdsnnV1iqXp+oKqiEyLmk93y1MQ2VQ+7cUtS9ahIQDnw4mg9QTvhH2giz2LNfBiqwIViYcxMbLYFN4wUhxMW4dVpGuQUd3sJCSIIOgKQBsCvcfKR7qhtzB3EeZmc0GQ7Or6/1du4jKis+1dS5nud5V2tVOelfVlZrUGttZ1C6G7K/bcVngu8jorMxdZGuiJneLfBNP036z7uDSzcfW68+l5z7ER0OswQ2kdwlrBlEptDsUObL1KIlgZcy2Ftu+ajUxO/VkJLRd3L3OEuh/l8qsSEeqKtgUx9QscZmbdk6EQc6uRY1CT5DAhyDmTtbWllWSqbm4A/H34ul+HmoaLACk3ijF4Frx07LKse7Q0AYnJywzJO7HOcmI/dxoRDWDsjXcgT0b8x+KNmhDw10buNuadayF3dXJu6PXXxUhuzZnVxKN+VTiHFQ8w9d0E44fjIw6DUU+TZxqJmtqzbVP8vLooGMiv8aNz6FgCG7hdkREanY/1jwqabgFott2fCk9SUZFiuBHEIL3PN4Dp4ogi2Dd5uWFt/IKa0OcWmUdS0534IhboOddBM/ADkdVkXH7WFXGTTzRwfae9wIN5m7XaTPRpAe3825BzZG7b2fmPRqvrMRNiL4T7d7ijihMdr6PLsFdskx6+ML2IRjpmAf1xF7I7SXfVEvmFVyK4p4c3+pOsTtKQ4k+JMyfHDW7vM33hi+WCtIzXPgiNL5rOzcWG/cEz3rJpqNwoXjua5xO7/C+CkdROFyIGI1VhwBEmDu374vVSItVWo4e5OC7kL2z4pDsMFVJr4xiq/s0Jqna3zfjaFvMb+1vb1cXcP+Dg3KOcw/cv1AC7l/bBO7iARKzC9y/tw+4z3xu6rNXlXnJ3F8Q2j6H7e3PalzqSwH3+Tgx1R7g/uObmGoPcGdo++GnPTGVB+5zMzH1mzkRcJ8HwP2znynoLMtPmypl5MqQXUs5+BVJsq7G3CVizRbKxivMqGF3wssOL4QFwLLhvz3bPHEFdxGtmJLyEeOE8W5cXP1U/ZPcXDoNlUD5wdysR1n4Zn7J0J6Cx6UVo5SRoaR5kp9fNV5lnDRGJ/cSVY2b/jG9MdkFj8lcJjpDlWfutM9OmMskVP6fMUrNEuzugMKMJnZXJO8zRPAab2iTs9ujHjND1P6+JmpXbmz/5S/xdIRD7nB/8OnIe/BYsRJqzbUZDzOwPIqGi8YqKu7Fx193dkYGQM6/b93apNejpE8fSEeihGCI8AJ/D1dNHTAlswjC4T3hOYWDjzIzhwoKjLWTpaOlUUl3UASiGkTlL6Ht1mqfbbyV0kDV3lv+kvXbKmJ3ZeauJDDN9d4ydf4R1LHrXM7qfBuC47rw6aonqgtLhxIz7sel3sWti70bqzrUUekwu0N6F1bgLujJ0KKdne6gOKZVUR1LPq5ZQADcu0mOuiMq0qPuSGeQlLm3uJvqp25HRt709x/Kz4dDcA1s2ulzDRW+k1+Dd3h7WEKPRUk2sYc2Ifp1+GFVxPbGhnM/QhaFoH6InbosIEKeEkoIoE34/rFKi/onDs6KZOU1WBFVodz9XCYgQ8efwo7orlWHn9+UyXQ/IcFcW2symWEF+LrZ1RW5KZI5IQ9DDofvwCsT3FZf79LogttLxyFQrIZVtODbBfgC30HG53vDFw651cMDaT2s9U5UFDyzzvcaNxn1O4mGjHQEIrObxTa2Wwia2KzEnP09W5eIvLOt7hLmLhKWsRiadWdrwcpv3lpD2lff2fGDk991un4adDrSxbZxI3E7U1NUo5l0sB5dbAVqvJWx+0yOdbizu92yAQlYEAoaTZ9q7WNZ/iz+oJy5c33ueL7EVf5A+typTTlfdw7rDsNnhL/Fr1G778BSisqGJ4zGPY/34IO7Nbt5t3vnPckrGSmBOx0tLR1IT6d9zSiH6ERiiZg7y9z3qkN2XoyKv+ywu2kMTVWcbyzH7orkXQrfef6uRuHZn7J/6l11yK7N2T9hwqjkmAvrGQTU/iU/wuEAd3RM2IRD0d4ZEIAn6Nvha66r8wprg9t09r/uH32T5lrwqNednK7pdHSHKf1hulODE93YhmfAmsHKR6mBvI5Otza0GGrrJjt8fen23g1f35rJGkNwy1rnMyssIxyOLKSoffX0UfurNs6WaWx4/00du8tHK2sB918jEJN5Kgfh6FbpTuGmIYmtGKtAvjpaVoZktbB0mIw0bzHAVcqjsOScmUZ7u72J/Qc2knmpSpUMuytMWqZb3Sx2Z/Qh8bk2X9xMEvj6elg9XGJ3WFidyYxbsVp3ms6/xf3Br7hFhLk7n8GPyJ0ZLsSqO79hA4LO93THV1xFEwq/eDE7WBVreK5b3R08rupo3u5oe/v/m+78pPkC3OUjZGYXuPPMfRaB+9OWcX9mTe7PiLnPf+z+1FH73NL2l3oyL4qA+/ybmPpjA+4OTkx96sDdnvb2l8DdUeDOpuN26SzLM3LHJ/eJMnWxdoRynzvb6q6J3WmrOz2jStpkTq+Gt9M16AJuBni1eSF397/pjzLevcXd0GzwaPXAb5P7kh9lZiKnj0nu9Yvq8AhpdQtqpuP4nPwayLhIz8te4e0mk3m4qAhF40BqKupDKs2MRW9plhHUIXmRGUnDnQS7O6wwI8PucvKuDd+nfckhuw3Oro3axU0000Pt8jPvctROs3bhnDueDpGRobT97bcRfcnpB3Nt2WhZcflIfslQ6K7uXen3KQWYMBrbvb2vOzvj6vDzG6+q8uvwQ3KBsIkAhdCBpUUdP5m0eWETfooyuHqiunS0NKY3pnysPL94aLP7xeVbT6AafHPNfs35jR/LaKBC7+0rgq6FnV23ssbbVxUFprlS/+fW3tvPX3+bk45dY5GOXedy1hDcgnuS3E9mCD/KysopGvQMa6OIGZZlGep4QGuoo13AXdY6pwDc9/6HcCyd+k4531ecRWG9GPJu6czFe+4TjXyk+3YInvhoSDSQ2dExqqj5m93c7kRFGWsmXPwb8Xxxc1brTq3aeQq/rnU+s15/boPr+a2el8N2dU/WEJGQpL6k7ILHD9PTkZgikzgqRoT0PLvgnSl55zVyFMQx2HGO0ktJN0MZLypd+zRLXGEm6rdUi4lrXxXmCXcGBBSVDZPhliZzwVBBDT553SRWy1hFxYPERCocQRNEfIF6YKSkBOZGNyToeRHcaiwh2sdKNzzgvZHJ4t1giUis8bcgKe9LSsLfssPn6sqdJ5dtPk5o+9qDFKsJTE3BvoTGdhuonefpr733E8v1LnNZvomfSsm7uNWdNzdWWMba5C5SleGOkixcf2jZluPr9OfSc0iTe29MDC3MyLbE1JRnmyfuA9HWEDe5W61MvOztBO6SfW6J5jK/bqwcWn5wRDRZXSYHJzB3Qc8d2R/dxKKzzVH9IBzX10/BmjoDA0dLSyMSe9xDWhB5EYLpcupPSamtM8MP309IwG8rxisS7hNJq4rq8ZHiYqwHBW03yQ4WD9NZK9gnu/bKAL1Gk7tDqjJq2F2BvNvi78oUXkbVFQm7MmRXiqGf8CNPWGV2KWEXBhhy+aswLZnuw6EqQPWCuq7RxeV2ZOTduDiYLQwZT9An4sYa5zNwlXCSSKsMwc10QMhNf3+sdrzYbDJ5tXtRQT9kblgqKJiw8in6QrRFLlcyUpKU2YfXo1C8sn37QFoaPfUCn7CU+IQjIgEZ4hZYATdOYMoq1/6J9GCZxvxke+Y62H/UTCrvRuemCsD9nwxwP4TPhchSWT2OxR/YGVg0XISwUlM7GRR7a1faPXx8ZCAoGeE2BeAunDNTBu5qqm6OJvZq5F1t4PmnsmGqn1sVZqijYEVmyCx6bpASHEWjXg+Tb3BymjQa41PvIdrSVgY8a/y6eOPRZVtOrNxBDuR5h7dPVFUhpcfyQNw5xVMAfHF69WqBYGL9IH4dZ8SphFZ3krGry0K+b1+rO5u9a7S6/9dT65KxIfM4e8D9vVkB7syu3lMF7geZuTI2gbuijLtt4M7KuKsB93ku4z7HTe6zytznJ3afC9SuTtvns5jMDNvbX+rJvJyYOsOJqc8jcD/0Erg/I+D+z+kDd0d1liW0XSMXf5+5NLC7pP6XjF1SZO4MdlcUmSEKMwfetJxRPbYExgQDJeqQp8hEPvgnIhB5fiP8NMKgd7s3KhYUe72xsXUmM2pCFG8b3c6vdjrNzeL7Dhe+oL0zUUl3aGPveGUl3C5s/qgwl4k/o/qNOnkXRjPRJF7I4DVa3dUS99/LePd/KV6zR9hnytnVUbt2Qv+eGmpXacdTHOAmiLbTzjtEtRaDAY8ST796ojo4rouK+292v6jzbcAaIMSnvp6IzHh734uPLxwudG9xRzqDEI3FgyVEFtKZtYilWEL0CDOW0GhpacqefmPtZH7xE53vNSwb1P9vrjmwYOU3r4tou5LMhURRWsLZX9fuwH1fuetW1nj7qkxg+mds7+1S0UTHhesPL996Yr3rOXyo9IfpQbeC6qfqbwUHU2UPFPwmswm3BZYlOs/OtN9KaaC82ncQuFsa0j//JW2etZc8fqQ84c3KGbm2O9rnDo9u0XPnenKRRyBXxecl7FinQ96MJVE8UuwW1EznMC/fcoITCz5Kz7bjjq3ceRILKTPv0b1du4YLCydrawdSU1s9PEiT+/LlpLzndDCsZ2J47C5x1vtUenXVNKnlLahCsWozMAi/lSql8gWtZcIwryGDjIeON7ju7DxWXh7SFeLa5PooMzMkvssjpNUQ3BKe0EMVdYcKChpdXCznRbZtw32orplI6U+BNVGdbuREVKAJSQScNj1eAI/t1uw2UVVlrqtDconkDzcfN7PaOLHF/dLb277HDSdkbfV+Ylyi+ahS+2JPjTCbWGJrUiDs2hdL3sn7WM+aSJi7tMmdMDVWVYZKRryz/YctHpdgaDWTNWRuqpdXV0hI7WStZ5snKhjcKNwQdl6CpInVEsFtmphSe7u0/3SvlEZbmbtMBlrh+AhzEkWyiSUIyyCXR0m35/Ge0bKyVne4EPf+lJSkrD5nbhzuZvdLWz0uuwQ0Yi1hCeGGVBknInffxqPHMnNpdAm4GQDnM1ZWhkrmOHtqhBVz5/euFDj7LyR6VL9QxO6zy9zVsLttBM9TeEUWb/2R+I+I3lmSdonHJmvsVYtOtyhJJ3/FQy7KtoiMzKJFcHEo8+5ERcFy84uHEtLvIxria4RU/+ibdJwpAe6el/G4vcPbU7MHBrOze8LD4Sej7kTBjdCRuQiySNjo3jYuVHXI2eATMh9lFpUOIyj3xsT0p6Zi2cDTrtef4yaTH7H4BHLe5SvLZFS4BYRdkVz7pwoabm+KWtrVO9nf/1eVS+G0GTvgwcZcZVEUlgD3ZVuOwzkYJ4y4PwGdAbV1k743fHMHc2EUATGdyFp113QoHwlw328LuGtsyNmZ2NvspLGJ3fkzNKJW9y+s2bsg7IbQgGUQ1h2GgIuE7TzHLB5mZCCswEUgMyenGdYfWrThMILvsi0nEI7XOp/Z7nUlKZNs5MCxIOhYGOXGjYhBeJOB9PQHu3dPmUx3Y2Ob3dzwTctG+FtvfcsPhJCk6xqt7u8qtbr/0b5W99/ZStRnJPloc6iSLQF3SX4umbr8lID7Z3MM3DnmrgzcteemCsB9Duam2pRx55j7hfmmKvOsmfs8we5X5wy1zyJtn4mYzI+gvf250pN55gLuPwLgfvxpA3eGtr8E7sq0/UUG7hrt7aoZ+fuv/KvNmvL9f5Xk6CLmrqknKzkWbh2cyGN32iwjwu78PFWqDgnLgJHR0Ux0IiKcPUqX6pqJDj+/dm/vJ3l5GbkPd/hcXeN8ZsXW7xZvPIpsfuH6w7R9ZpXu1FbPy3nFT+jZ/0YXF7ghGO0xKhDJS0MK5F0E35nBqqTbndWItKPVXQG7q5N3Vfg+ret3dkD26XF2+1G7TfUYSUeewmjHN9/EA4L3RGxA6G3S67tCQvAQsx5lpezp32S4+Pb27/F8UbejsnXya/AKa0vMeIAX3ImOHq+sRKHr0erhfN0ZCRRNFXUNOkOLAcU/SsH6qfqBtDTU/3i9W1DzNs/L61zO8tLtB0j7rTptn6bMxWv8pQHflRtv+YJf3uTOj06VlPobXM/jc0XejnRrJoMuG5yckOu0uruj7s0tehJ/Lx6BHbEIVgZzU2u/FbkXRRr4gWMd7rQ+ZxVsLK6MwY7KTkwupsEjQtrnTpj717+mfdaIn/AVLtddisqGu0JDsXIoYq4Yq/CNvLHG6fTyLSdoT+Vbaw7gWeMLFP9LNx3DctrsfjF0VzdWUflY+e4Hu3Hrmg0GYXrqflaHivH4rGcXHLecHmp0pisSc2lMEgKPONIITO0rhrMLvauHuMmoyGOQtyHbbnJ1bfXwuBUUhI8WdzeOU9fthgWRZn+XM5sMF2BHuAO1dZODubnNbm4NOh185r34+KrxKvdWd6TAWDm4vahZkfLAOcNFIxmhBwuQUQbcDEjLGTDX1bW4u+Mv6ktOTu5Pzsx7hDdftvk4PDNRkuFoO8FqrIzMwn/wB0eUG9tZm5Jy9l/h+qvqJcfuiq3uvLlxtsZvbi38hDS58/JNgqoMPgXWDOLLaqfT272u4I7Vmcz9KSkPdu+Gdwq+FezZ5qm7pkMmjhtFRiNKmtz3KW01ac4llre3C0c92HhKv9CSgeb/IvbsCLuJxRoUFXPHvx8hGDk+FkBZ5WhnQAAqUiyM2xFkQILO9xq8Dcxq5c6TK3ecFBzyNq8rWEsxKb25g7lwv/DDldXjeD0sURiN8C1vTcIOt+TIiISzy7Mi6ckS4VjJNKan8tjdJrp83w4Q79Cl3ILMUlABfok5Oy7F6PmVWB+ZvQSqRZ0DFW1H/YbnArM1mU07vK9iPeNJFQwV0GMK4Qk9+oAml4BGBErPsDb/6JuRu2+XVY6RaDKYi9VO4ywiLEpqVLdI0lDU4mtEH7yApl719VPZj7ODOoPMtbVwCPhb4G/pDtwbZAdOoiGjNBlVEbWraLjZOFimsNtt1zkzm9pubBRGNMEHN04YC0uH3UNakLHgLuE7VcZxpB8wCg3gLlV1U4m/autVK5l/X7PnXRG7ayjMyIapUnFIfaMey2m8ooJID+3cOYmH/ijTPaR1te403e3GhVuEjOudHT8gdce98ghtxb26ExUF34JQdXXHDoLaU1OHCgroiGY4n/ySIXJupmoMsenkypXC4TPrVHN2FJOs1V2iMDMLre7q/TGOaj9q5PBa7e12TEydF8BdlttMD7gfYoE7x9yPaqrKzA1wn3UZ92fZ5D4PmPszJO9zx9mfBW1/ztrbnxc9mZcC7s/zxNTZAu4/somp8we4fzET4G63nowqcLdrsKGtpHwadaGoKcZR4M6Qd0nDu6AzI/TLWEaqHiA6M1ikWNcUu8P04X7gdFHjTVRXIx1vcHJq9/KqMxOZUU56+ziV3iatvusOLdl4dPlWwkRQ+afnDKD2QwEJTwrvALslopCcUR3hrYIu/YMq05nwT/4HozCj1uquht3VyPvvVfi4nRT+d5rX7zWb2e3h7LaTeP6AvBS1M5xdwATWjjxxU561sf21177iVWUpbUdwavP0RNGFigu11nhlJcrX2JS7O3yuUkmQTYYL272vuAQ0eoa1hcR1pezpx4srxipie2PDusNwRfdGJz1IynuSV145RpRnqqvvxcfTOV2lFaP6wKZ1Lme5WV7HqJLMgpXfWJRkxL23P5X03i74O1vn2y1zIdK7sFvswrbAtEVVZi1Rj13rcpaMQKgYRQWLWhcJAaIdIjdMht5GJBQwKDo61baGrGSoo8qUNpYMWrCgWMOdHmphNdzVmKMNGWu+ydeKCLn2edqTC3eB+O/W7IaC/25sLD47sgqktrgV0Ul3sGaWbOIoDydfwCmEfPvW2gML15N5s3TMHSp/sg3DNWbiCyR5liZ3XjrWEieY7tEvGQr/uVhz5n+VoOE/xYRd2nlKiRgTOIX4Z4lh4oglFK7f8o2rB7gylTS2L1nyPafFdD8xEX6ycrxyymSaMBphR8aaiaikO9u8rqzY9v2Kbd+t0p2CIdDzIgHRN+mw2TYvLyL1Xl8feTvSqcEJKbAgHEGGInCZER2Xh++7NLrgZTWTNSPFxXV1ZkpJistGdvpYDo5YtrKstF0qIyM1Lglql3J2K1X/F5VLjbyLWt1FzJ21NVGTO5Vv4pja15Sp0QHF613PIb4Exd7Kyn80WlYGr4L7TEZN1k2G94TD0CzCEfstoxGtWM1+4SbJhhM7HWGvaDqCyLj2qg9jYC7JwRH6hlSpmehFHHiTjsNFKQCPWmUcb9TrYRGonW4GBEwajXi4qzl1fjoLkTs1cmz5lhO4M3DOTn7X8RqshJT+FArcm1xdURggFZY0ubPMXdVkxJmTDeZuzwBVTew+7b5hR9qLrXhd3GesBbwkLe24J+yoBov586BKnqBTegXncJTS9tWrrzs7P8zIgE+gcNxkMvt3+PvcIOOjESIp8aytM9fUThIRqjoz1jZ5mtzUejjJpL6k2LuxEbcjQrtDseZDukLw/aLhItgCXo/wjTdPzR7A1+baWiow9c6OHyx+mI5Npo3tqnLtipPJVTj76zbPltlxyEw+VFl2zuzftYE7JykTk9xbPFIcntiDr9/e9j2MyK/Dr6JqLG0gDXmsKnD/TPX4izUyKib2778yzaxeseH9w1cVNKwYhRmRqvvXlgHmcBd0TC6efnnVGFYC/OFwUZHJbAqN79rhfRWJOpwDgg6CApbBahp3DBed/a/vzngwWVODBdPs5kZHjBDRyN4Yj1YPfaMeCzLrURYW5K70+2MVFXRUNSv4ZpV0p/IyjrS6/3kmre7TPZbqAG3X1JOZNnCXnKd5SsD9c3uAO7MXaA9wt1PG/YStuak/zGRu6jOUcZ+NJvfpCcvMJXOfM/I+15x9XtH2OWtvf0bjUqehJ/NSwP05npjqIHB/uhNTXwL3pwHcJU2Hzxa4s0m5Yl7uyNFoZeZOk3K1dFw+xk1tFJqgCyk6pvqlFLvToUxUTBYejkxkMpmaUPlzEzKRfFcaxze4nuOAO0Fpb67ejy8WbzyybMtx5PSodrzD22mfFYIrFYIkPoIbzcQaqmDJsDeYEFb/fk5K4ktOahbZpNDqblPVne2XUcTuivD997YYugN4XamTXQLZ7efs2kLt7ympxygqzAqkYJ9shpsgOU1nuMFdIoTQPsqUPf3+0TcTMu6XjpY+ycsj54unpvAd95BWr/D2oNhbqGzTcgYKS4eraybqp+praidr68wmk7myetxYO0mFMmoma/ACY80EXuke0oICb5PhIpGW3nKcHmx/YzWj2y7pvbXIyCg0tv/rTJUu2K5b1cZblgP+VKHat6rKLNpAJjoagltKykdwK7pDQ5ENYLXjZiIzG6+qwj1E5kL1LrSb3G0Ad8UmdwkT/1Qs/8o9bysQ/IzHCsxfoSxN+4HM7bDMnWpPf/U6PAbCGkK3rkFXUTU2VFAAe0eu0xkYiMUQlXRnle4UnjUR6OewL71pHHPn+tw3H1u544etnpcJaRotJeOXayYadDqhsKfegA0k0tDCk3epx1cqO4UuVBEl59pOhdLxKD2LA1/ET57Yzx/EsXatsu9AgRp9E06LCSnm3bi49IfpBaVDbkHNAdE3U7P7y8fKCQSpn/KOaF/rfGbVzpP4dYPb+S0el3b6XHMLbg7d1Q37uR0ZeS8+Hi/2bvd2anBCro3sFckj0kBLfnd6NX6LEmHP4z24w7jhuOpM5uT+5Ph78U/y87EOV3GbHLjDLG0XRNtFB0esxsValhi1SyH7X8j1S6WL/khK3pVa3am5LfgbKyxDNreoghO7s7Xic05V5hvxgOJrIXFdMDesGYSYxIwH8Egh8V2jZWVh3WFIb5GyWZvclUanKss0fyil7VI9GXbY6RevCQMSVLfNmPeX6jXxbyugNCosQ5rcD/0GqSuectFwkXHSCHNADUBsKiCAKnFz8JTsVuKevLX2AH5duJ4INC/femKN8xnch5GSkie5ufBFDzMy2ry8UMwgtz7CqzB/xY9G+FxTMelzSXYlO02ipi2jgd0Vu90VNxM/kPPxV+ybUqlwCkiymfKq7GlYIZdko9qK2pUOhNE9NngMdmygpauA8yHCRT0Mkh+6GYmgGbn7dlHZcOpAauajTDhPKsKG8hTVvEuji2ebp2+Hr/9N/8DOwNCu0NjeWNj5SHEx4nJ82r2U7P7ishEshsHs7MnaWgToierq3pgY+AGsGUSc8qox+AEnvwaslg2u5zl1qSNYJ4S2v2MdS842tjuE2m3MT35NdqmfMFPY8F4gE3Z7yyZwP4hQgsWfnNUHxwhfihQUmQbqaY9WIs8Fj4o7jMdjJ3CXBt8ZZvXa5N2mdKSs1V1ol6HMHasN2cW2y9vgD+vMdQnp97E2EG6QqOOLgJjOze6X1unPIuKsdTmLO7PR7cJWTq2IbvR2h4V1hYZO1tSk9Kdg4e28thPpCg06WIp4QdiubjgTqldD5zAfYpg7nQmxV9zqbsHu9ObNpNVdG7tPayCTdg+NkMz/t90C7oqjleYbcP9KE7jvnyvgPndzU+2RcbdPVeaZN7nPPXN/GvD92UD255+2z8f29h+NnswcC7i/nJj6ErjPBLjPmLbPH+D+v6rAXWBV/7AN3G3k5e/ZfbHHUWXki51nKG9s/9lnDIX/h0L/u6ThXYLdLSIzhxdS5g5/493unV042OHnB88IL9OfkoKiDvn6im3fUbEIXLyqzHEi5u50epvXld2ZD/KH8mnBT30T3I3lLOGqVfBicJ1w3DSi0MZYuACSzS9ciAWKdUOVIvcKqu6CvMwrr7wnbnVXw+5/EMNuBfgu4+8OXEp43WHIrsLZ7ZmJalWPkSvMyvrZRU2+XP7N6mDgtuO5IBsw19WhZHULbvYIbSXM9E5U9mD2eEUFqtbBnByzyUSlyUtGShLuJ0Tficav+CP4fmzKXf/om/hTrtwoXZ0vqfa3Ernhi1RD452i8CoHAACAAElEQVTtPyzbcoJqEBHR9lUSXWmuyU6795ZF7a85qHTxq3cdFbuwR2BaOM+OgjYo9lZyXzLuD3Iy5AR0+uXj7OyMhxlIfxB1YU0IGhIldxENt9l+bqeqjERpeq8CbVSg7Sp9oZa/hWHueEOqg0Ga3A++hUiLPCvzUaaxdrLWXEuViMK6w+ABVu08yWn0E+COZ/26ANzXHFhIxriRkbNrnc9EJ90ZLSXw9FFmZpNeT3tyES9pk7sQbITT0PslalSsAoyS5IukFf0QV0MiruNvgc/BX3eBayKmY+JOcW7KIoTFk3dJTBVgPS1ECXTj5qPioTe7uT1MTy8YKgjb1b3D52rk7tu4G7vu7xopLr7p75//JD847paz33VYh5Nfg0tAoyG42ZvbxMLtGioomDQaY3pjfDt8DS0GQaAJ+Tt+xdeebZ6h3aGJ9xNzCgfbvbzwhrhpEYk9sSm9GXkP3UNaVjudXrrpGN0HFdN24eCIsJXFGpcMtfPWZIHsv3TwkpB3aau7wNx5YRlZkzu7s8WpytABxd/B0DxCyJEIeJ7C4cK+pKT6+qmIxNtwNXWcSAeWooWsfStuct9ro8md2hrLYtXGGNBJp+wwBpFqjRzbfagqDW/ZIaPTEfhTI4i8KAXgeAtKhm74+p7hRun2JRPfgsDK6TJzZ4NWfQNrwq/cUMSD1Jrobnd82j2T2QTPQ1VlWDkIajKWPSpxDiQZ9SnKwMRHSdSYuwJ25/bLlUVmVOD7TC4JT/9QcsCAmQnN6OpbIfunzOAHDe21g9xIZLgIMqRhwwbqPVBjo9qk7QXwKgS+C0MFly1DYYOngBd0BgURwZepKcRQ3TXdunPryODTE8tpySKMzEWpCqt3aXTxueGT0p+COPJg926kYX5RHYbgFn1gE+Isoi2cSUh8V1b+4+Q9fYi/iRkP8B3YApzqyh0nkaHRvRmlgLvPKtdOUDsXdt9SRO2anP01m2fLmONlr2kKu0ma3FUPmSkAd3xMxBo6uhypyBaPSxtcz22+uDmgM6C0YtSvww+3lKq6KQx4sLnbLYuP08zq1VpqFNUjlbJ9VtXdwty/sTJ3xIjY3thd93ZF3I6on6pHdOhPTcUNScrsQ4R1C2qmiRnijj6g0T2kNSD6ZlrOwEBaGoJv4oNEBB19k3771e1wobhdqMhxA6N7o6uME2Pl5bcjIxFxkCIiPmJJH2IGmwtSkHt5V2BpdVdUmJmxqvvvpjuHSXHwkgPt7T8i4P7N0wHuxx0C7rM7N/W5bnKfx8xddD0veP3p0fZnIibz/La3/3j1ZF4IAffnDrgztP3w0xZwn1Xg/s3zA9w/nxXgrkTbrcDdrqlKMuCukZerTfiSMnfufeStplayJjSws8ydRe2f8pekF36vqBNWcSgT7IDk8Ve302aZDj+/ZlfXkeLi1P5UFH5rnM9QhIpSH7/ScYhEI9Lp9Ea3Cyj76+rMd6KiKE+n3g3uDy4YIbDd2xtVJ94KF9758Z49RMLYyQneHM6CaM5y59/pqVVBXkYySVUtd/8TkxMrkvf/pwLKpSxeHalr4HUJYZdAdsVmdjXOroHaP2RQu3wUqoZWtZB27xdUp5csgfNF2MNDwYMw1k6SU+51dbF3Ywnvu7rd0GzwavPyaPVwb3V3bXJ1aXTRN+oNLQb/Dv89j/c82L37fkJCYekwnjjKOa7WPb/O5exqTmiYG6t7AmsDi2Th+kNvrT0gO9Wu1Hv7prqotLrSxU9sylzIyLuVACqKXYgEpkUFvyAwjU+Ej4aPuc3rimnKVGuuvR0RgYwTmVmTXv8kNzf+XjzSNKQACJUIUAgLQvstoYEONbmrAXeZZ5DswwkHdOS0nXVZao14Fv9D/wralrvv51hepCd3/xuIfsgp8p/kl1SMRCT2wJzLRsum6uvdQ1pW7TwJz0C1TaikDL54Y/V+Tsz9EG1yh8fAmgmJ7yJHIoYKe2Ni6OhUOAHa5C5EI4raKew+KJnALIQZRk/Zqp7M9aLSWvEY15GK94efIacQtm27GxuLBV89UX0nOrrVw6PD1xcXHh9+SrYAly7FH7SIX/EXaWnnODutNk9wNA1pK3kr7r/Jmpqh/HyYEb6G7bg2u1KR+uqaiUdZWfiCqM1MUfI2VV41VmUcL6kYragaKxktyXuSlzOYQ38tGi7CRcV2KsYqSitG78bFDRcWGieM9C+KSyVyT/C3a53PYBEKAj4cbWeGIvAHR8TGJbIsFrVbzEeE0f9s3yXF7hK7EyzuFStz5/kabXJfaG1yt6jKrPz6zdWWAcXwLdmFj9MG0vCQysfKu0JC8LDoraipncx6lIUCCzGLyjdJlNy1m9zlrehCkykr4C6oOiBhYacfi+ay2tJrUjs1gnWMHA2pJQwq+FbwpNEIo+gMCOgODUWkHCoogKUs20IOlsGO4H9es8yVpcydqLq9ve173CKvsDbcEM82z4KhgocZGTAoYXSqZBax2qEQwZqEDS1V5i4eWSxNPTTJu9q9t/P6SH6p83QrVWcv2XTlvZKBqAxqhz8RRiKj7EFNO8ABTaq9jrjZn5zcFRxMT/nAIcDDCLwJv0WhCPdC3GPlKIICFiqKNvwYVQiCAk3/aaMDnZqL0hahFlF4wmi8FRyMNVBbN0lG1vtewzKAya93Pbdeb7kQcOEBaMzlFIekAVdobCfDUSUaMsJY8jeVx5KrC7i96+jZMvksZYVxygvUJ6lIgfvXPHA/SuMI7i0u18CmHd5Xna87w3PCseNWo5xF5UdPmNkA7hLL1cjq37M3q6eXXeRdZWiTaNjyXkbSXZi3fIRoy8BvbDi/YduVbaHdoRXV43sKHleNV9ER7kJcLigZyi0a3JP/OD33YWbeI3Ntbe6T3IT7CeE94X4dfsjrnBqcKBqM6SVDdyaqquBpEY/om7Qwc1ZY5m5xC0Kruwp2d6jV3THszsP3/5JAdiXOrt3e7hBw/x814M4m8OIcfqbAXXxudUbAXVCVmS3gzjN3x4D7ypWn5rGM+yw2uT/3zP25u+YPbX+u2ttf6sn8yAXc59XEVHuAu4MTU+cMuM/NxNTZB+5PbWLqjIC7wsi1TzSBuy3arpCRiy/bwF3ex7rX2sdqBe5UA0d2SVrjRdj9C6tAJJYSGcp0fClcDop/iniqjOOjpaX0TLTOt2EN0ZP9ftmWE7iWbz3x9vbvuXmAZ1HzO/k1mKcIUr/u7IwAcIHLY1CLdgYG1ppri8qGUT1mFzyerK0Nir2VljMwmJMjjFoV5rxReRlhOpOqvIw4d7ek74rkXQm+24Pg/1vlT9lL2NUgu1JTjFqaLkHtn7ConQUEnDi76mFSzsLhJg7yMx7hWBFpSLfs1BQeRMEQ0ZCNuB2B4IkoIbhweHpEDzpKFyEd1WxYdxheiQeKC18Ex93a4XN1gxs3049rr1vGDeziK/+Db67eb+mzUxqRyjXZkbKfysjIGtslShfvygj7XxT0Ln5lU+lCSezCcYHppZuPrdKd2ul7raxyrM5c1xsT0+bpecPHZ6K6OqwnzKXRBakTZe6kz+6wUtm/V+lg+0d2qMrIK3OJ3tSnMsfF0nZtiCB4Ia7Vnfof2pZLdTAWfL0AAQoxGVlbxsOM+vopVPhcV90DfWATabjefAz35801+3GjyLyH1fvfWnPgN5wOxqINh5dsOrp863drnM+4h7RQNj1VX48sGSvuKHfYhR2wTAE6XbcIlgcY5q46pZDTVad43Vrg0RM2GzbAHZHOeu4/QfU4+3E21T5ucXeHy0LCZB37TCM6rxEhlJR4TySXVHnJJ+JGVv6j5P5k3IeU/hTk9XjuSO5gNbprOkOzIehWUNSdKPxo1/1d0Xeiw3vCsULwnd0Pdpvr6sorx3al34tJ7k1Ivw/3aKqfgrekgN5sMuE9J2tqcooGU/b0U4vbZLiIhUcR26L1h99aw4wgVjo4whqXYFlWdqbQ0m4h6f/nF+z1P8wl+pECeWexu5S587ZmOVBiMTT8g4UZxWReAnOUZJPhAhks2ROua9DhzrQYDLS/GC5ouLBwT8HjgM4AuClkcMpHSWw1uUuEX6Soi9mf1h6QoCg3J52+INnBok3u3y5A2IW/9bnhYzKb/KOI7MNYeXlSX1JF1dh6ouR2jOoFWYH7SrqJRWWajq/ceRLBd7SsDLeCGiMMSlCVYZvcJckTS9uFkEHTOEXmrjCsWLL1r9b2LmbiLH9XZOhyjP6xdqO6mKSzrEpFbO8/hONA1u1qVniN2+c7zG1Ok8b2Vauw5J7k5tZM1tBtsz2P91A7hV0P5efD88N1oKKj5RbqMRSBKNf7kpLw6uKRYtTutImY0nbk9TQrJ5OoDy9EHYM/hiAb0hWCXAtru9lgaPf2rjOZA2I6t3ldIYfG+P1s2D5SL5gGFgYn60+iLRwscbmr5IrteyUzyTVQu5yzq0J21eNlKpJuqsfLZCfMWFW3hVrAHbcC1oE4UlM3GZF42yO0FXkJ7p5fh9+mC5tQyzoM3LWzekdSeq3Gmvc0sTsjGWfd/PtM4bQNPhcqSFSriMVIMxB09I16ZGj+N/0Lhwrrp+pzBkmCjbWXOpCKWBN/L37XvV3pD9PHKypyiwazCwdxr+A0TFOmirGKkpESsm1sNPZGR+P7SNcRqtya3Sz+ZPt22hZzkPcnX9JDM5xn2McqzGgIuzvY6u4Ydnd8IJPa7CU1AXdt4P7XpwDc/zEN4M5sndoD3A9MC7grqsp89zTmpj5NVZmnODrVTmGZl8z9JW2f1fb2l3oyL6iA+7OYmDoj4O7gxNQjc6Unc3CG7e3zDLh/+RwAd5uDlXjsZbMRxv68XEjEJcBdQVKWz7kk2hGWEoJtMJNczEQmS9fMPlGrO53hRsq/E8vg6lBJot7LLnxcMV4xVFAwmJNjnDAGxd7a6HaB1n64VulOrXE6vc7lLL65w/tqSHxXXZ25zcurQafD1eLu/jAjg3RxjpQk9yWjmPRu947oiagcr0QZMMXJlaAwqK2bRKQhgEBg7q+//rkSc/9AcyIT2/CuTN55/v4HTZguBetiti7H62wPu4Sws53s9nN27a52oRePcHZeK0aUTzPnRgXhaWGMGzwmHD2yBDzc3ZkPUrP7I25HIFVB8LHggCOLsAbgzMg03eNL4ctp8x2qLzyy3piYZje3FoNhMDsbZZvO9xqVT6Vj/TgBmcOoh7WKf6H3VkPp4nU1UemZKV1oCUx/YFtgmoxO/ZITmKZ6Fyew+LHsw7ku76H8fNycqfp6VKpBt4JQ97q3uCMVoq12Fhr41a+1mtztVpWRzFuzYnf++imPuLRoO/VRGo6IZ+6ssAw8Nz4IlgcWBtI0j1YPOIq+pKSRkpLkrL5NhgsrtlqEpzi9aSI5zSlQHVq0/jC+v4TTocKC2el7jSq5V1STQZFYk4jTWKIIfgeEuMXIuRzkgbuA4yViL1RUHWkHsqhrO3dilbZ7e7dzvojmsvjiTlRUxVgFngt+H38vfqK6Gv+GqDtRuYO55jq4rrqxiopGFxe8AzIYOmriKF9wEjkajuPT3tUmV9dHWVnVNRNVRjKsUt+kRxqLfA23BVkJLUmRwuC3SMEof8diQBbvdN0J/wCsEPxLHiQm4r7FJPd6hbXpA5uc/KgCwHVOeabFNbCJ/rrN68pm94sbXM/D3y7fSlQjFm04bNFo5lpZf8nTdvFWlujUiExDRmJQHDRXJuzal4S8C6anztx5MXfr5ha7s7X8n6/xVrZ00zG4FzoiIqkvqWayBmUMTUCRi8Pcqo0TWH7IsiVHSYQmd3uEZbSAu3g6gkDb2bdVPUTCTkfgmTsMVtTk/sWvkDfhn40Fg5iLKDlZU0PHn+7Jf+wZ1rbW+Qy3g2V51r9+5yuLqgx3aoSKucP30m2JJ7m5ZPB1RQXWP5mLwB0ZoRtUXzFjh62X0khhVrjJyuiV0qZ9DH/Xbn6XdL5/YpOki7vUFdrVVRrVBYy+T/jnyS7JtFhhx1qYcbKfm3FCd6Zh7CjnUNAiq6FnCMJ7wuE3AmM7fSM7fCNvFJQM0YMst4KDEVVRT1ISRMbe+vtjfeY+yXVqcBIOPMGbEAp8wDLYQxDxh+uAW4AXuh0Z2eDkdHXHjmaDwcg1OmzxuEQmYe74gTs6RmfnHllE4iy3q81tbZITRe/w0daqIcPMTGbk2m2idgXOrqXepnI5LOn2d8ncVALcF4mBOxEo208nKhPgrj8Hhxme0GMymXGj8p7kJdxP0DfqN17YSMIuv9W94OsFGsBdcrBM+QTYtFG7rSOtUuyufojNuv/3OZGXQS5BM3aC3flUTYg1CEYINwhz265sQ3aHoGNoMQR2BpaMlhCtqvp63C6/qA6fiBv4FTcwPu0eUkEsZvwKt0PV3pEZ5gzmVBrHEUbPrl2LOtw625w9NyMcguHMX4rdHWx1/4OsIUZt/NK0UfvvZFqRik022hNTbQB35gnPU+AuNLnPEnA/MTPgbpeM+/xRlZmrJveXzH2e0/b5Myv1pZ7Mj1PA/XmemDpbwP3wiwfcv36xgLv6SDTFk6cOpOZ/5S95Is7n3xLgLum2U6z8hX8qi9skhayVvIuHMlkOq375OpV0p8wdbsy1ydXnhk/QrSAUfh1+fvQ8NW0m2uZ5eaPbhQ2u53Gh2qfDAL3D22vrJrtDQ9s8PancMF4f2h1KG37ha6nbg3fHe95PSHALanYNbEKx1OHrC99HZCX4UW+Euf/qV+wY1Y8k/TJ87m7F7vKGd3HPuyqCV7/+qNm9rozXlQi7PCMXOLsUtTPStIJWO9vVjsVtlZflBTesibLc0XA/ooIY8KTwzohPeEDDRWTeWrVxAqmKIDiOPwbXAodBlP0PvAWXBheL4IBgHnc3zjhpbDEYkNk06HQ9ERHVNRP6gMZ1Lmc5uXZK262N7b/mG9st49oWq4m2f6DRfqsidvEXB2QuVAWmVZm7jSZ3ruZfyNf8+Pg7vK+icE3MeEDnBldPVNeZzFXGcdoC6XzdGTET99ZCA7/Umuto7+hUhrmz2J1tIlXgCIKnkqD2v0qdksDc8TdavBDXlssiQoRNLAzY9Z7He3rCw5vd3PBhQ+K7VutOLd18fNEGru9y3SGusf0Ir0NFpajI4Ad4D3gSLCGswyZXVyQ0WJxUy0UA65Kzz9awxxeKFnF2TlEdKQVyHaSA3WFhdK5v9mA2dUED6ek3fHzgwbDgw3vC3Zrd9E16gjXr64PjbtEHl577MG0grc5cN5CW1qjXn+UG4ZKZz6wu84oV+CZ8WJNebzKbsgsek43DqSn4N7g1JD54HTUiIZKz86iR3yFFhbl5tHpkP85+vGdPZ2Dg3bi4kvIR95AWrKLNhotUnYlceqtkBOyLOz5yfAm3ocWeHZHLNP30N+xWlmgfS2xWIlNS5uw/p9efZJcqeRcZ4K/+ImLuUluzIDZxk7tlXsKv37EMKMbHD9vVPWk04pkiAF3kJMiIEP+aNY0uLnR+LCIL2Sw8ugT+jja0UitTO0pisQ7ZJQLugoYyMwGFEHwxbRe1tyttwyuPRmCa3Cl1pTtYKIa8272T+5KxNrCuvCPasRLw3KkqNzkysspyagS/JdNTubkIeAHWiSG4JSP3YeloKRYw/DPZweKmHQqDiK3MnR1+IJYdYxsrvmInJTAJls2MStQFr675/qkGT+eQ+qdKs2lEjery8eA8gfpcLVMUv4Bt8LfItXMaMjB22tWOeEddx53o6LwnebvuEbEO95BWPJc1TqfX689t9biM32YXDtbWmTsDAhAc8adQPGNxYtHS7T1ydOzUKixRlCnWIPvtG+RYIZduoRJC3Yx3HikpubZzJz0dCCeD94xNuYv8ClawfOsJbqdN6Gc/YOHsK7+2nCETo3Yu2grbb0LAVZtJ/p6Setu72upt7GEyVVU3deYubnIXy7j/RnrwhQPulrnluAP0YAeCiIt/Y2BMZ3rOw8Hc3KLhorDuMEOLATcTJTK8rnUTjnUIGmdT2Pb291+xK6X/qx3Xu/aKSSoozAiq7oK8zD5rxk4FIQl252ONsNFLTygS/n5OdEIR+Xl/SkpW/iPPsDYqCYjbuE5/DuEGS5pczmfwnYCYTrp7B8cLd2RxKfyolf3szhxzFEYRu0+71V2uMPN7JXruEGrXoO0OC7g/a+D+z1kB7jSVsgO4256byvCd6c9NnR8y7rPb5D77zP0ldrcPtT8vtP0FaW9/KnoyP2oB95cTU1/QianPD3D/50yAu739pzaBu515uUZv6YdS1VeLCMwXr1nPtu/9OSvZLDTxSbCCCMl98lNF7E6VakkGv/8Noud+jOi5wy3BkQffCq6pncwpHEQK/iAxEYUNavu0nAGfiBtuQc0uAY24XIOa8dvU7P6+pKTbERFT9fXpA+le7V66azq8A9wnnBYZF/YdKQbgyEtGSqKTez1CW7MLHveEhwtiDpaDq1wHjZW5/+xnVubO9Mu8J9xaPvGl2F3a867U+W7z+pMjeP0vcrwuI+xyyC6fpyRB7Z+KBWSw+oVJbrQLT9CnphuhcKwWSsj6NS5LxvfxGiJjvX27ua5ud+aDlP4Ul0YXBBk8FLyagoAF3y6g1kya7w7+BssAwQHVWmX1OBHo37aNTr69GRBgnDB6hbWtdTkjzGrjum73L1hpGdfGyMhIRdulMjKy9lsNsQtxK+6f1TUu1AWmBUn312ViF6zA9FuyJndeQ5kquS/femK17vQW90uG4JbopDvVNRNY9kVlwzHJvbAFrO2KqjGYDHIiRDPrXMcv+bmO+xxXcpczd0Vt4w+VIYKUtnML9F/+al21glOyMnfeEVmnp375Gj4IPg4iMBKZhPsJ41VVHX5+1RPVVcaJze4X397+PdUUXrTh8OINR5ZsOsprDR1dws1+wIJZS1RlWstGy7AIYf5IlZANYKEe5sTTDzBjS61nn8XFoWUPiVvVSJ6QyWFxtrq7m+qnfDt8J6qrI3ffxvoMir21J/8xcVycAkz8vfi0gbSx8vKs/Ecu/o1UDZke0IlN6c0vGcJPqc4V/kl0HKJQTFLzweLvT06urZssKBkK6QpB0k3gDrWgwwvxTyQ9lXzYFA7+E73dk0RvV9eg23WfYLsOX98Wg6EzIACW5R3evtXzsiAc8c72HwTtCCocQUEbJ9CsItPEirZLZWR4yxLk2qWoXQLZ/+TIJcXu//ILEXP/Fw3mzkxNYHa2hKMkVFWGyLgHxXYi6OCmNeh0eNZUsgNfj5aVJd5PJAoSJ1eSJvcji1hhGY3pqYrMXR4fRUpuey2oXXT6jX8rZVuToDSlJnc6ixj/bOSqyNZRPhYMFcAiesLCzCbTNs/LK7Z9D1Pi2pkPWE+NCAdHNhwR5iKk7OmPvRuLwIpFhcqBHUTMThtWHDUsAu7MmATJgGLFEfbyzEySZkngu8qUdwWqLhGBYRvYRS3qss8iykrZ1FNINBksZR0nzg9HRXnWGRg4UlxMdk/rzFTkp3ysHCmQf9TN9a7nsCxhnqt0p2CzuPOugU2ZeY8mjMZ2b+/rzs7wHt2hoeOVlUG3glB8oyLE+kTRgyUKL0EF3Gl2TxMtOJCoO1H4a24FBcHtwMmgfG3z9CRbmHFd+Cve3kY8KtwpOTnEova3LXGWP0PGo3Y22r5lG7X/REm97ScSsO7IkTLH9dwEb/ChMDdVCtzftgB33Ac6fNvJryEisQcBt36qvs5cZ+ImZCT3J3u0emw8vxF5pmSfWxJztceJS1J6KW2XZfJ8zie9tOG7Dez+4as2W92FOUykSeIgWVFwg1hmWGxYcpaRvBc2IoWDC0UQbOOGb+OOhcR3IeoxJxRJoMG1dPNxGqCR1SOG5gzmIGhiMWNNIghaYrTSSBWh4V2E3W21uv/Z/lZ3Texu52UPbdfQk/mT3UOY5IdWZwG4MxJYasBd0JZ0CLgfZLpzhOHwR/hBOBoy7idmZW7qtGTc7VeVeTZN7rMnLPOSuc8pbX/BxGTmur19PuvJvMgC7i+B+4sH3L+YCXC3u71dE7iLWZi1rtbohXE8O1dIwd/7iTJw/9Si50CZ+OtcPkWEKRRpgqSDT1GplpWhkM1lohk8HaOKFQ0DgkHDk+mb9KFdoWHdYVXG8fKqsbGKCpSXT/Lza2onUeQUlg7Hp92LSrqTmHF/pKRkoqoq8X6iX4efa5Mrgh7cPNwnbfKiVginRSRKuBmAecVPesLDUabCv9O5hcKAJglz/0RRGlJQmGGwu7znXYG/a17TaF3/q+L0LIWJWao9Lx+xqJ1Lu+lYVJpYf8nl0LBnOA7cItqrfpHD36jwu4KDWwyGy9ypdtxGgRVa0mIOyiPq4Keo5Ksn8H+1zw0fPBfamUtZFWWFdDyggIEQmqieA6GQ69bhTfCkbgYE1E7W+kaSUbqofjkkxIi2k267z3kE8JmS0oVcV1oywlGK2tVFpf9HTWNaSWBaYAHqzF0sME1R4M8X07L/c6HsX7j+8LItx1ftPLXF41JgbGdl9Xjig0TUsX1JSbXm2rBd3du9r2bmP3qcnW1oMSDAWot/QfJCiQYqzIrQYO6WLZpXWTOX/EGLm3rfQtutrolF7eIFLWLu8EUfvkopIWly38cNe+Q0ZLFmsHicGpxGiouzCx6TPbbch27BzetczrIF/JJNxzglBA64b+KA+9bvVjudRj0/VEDmB+AWYVlifZKBpYsWHRKYO3MJqJ09roFFjj/Y7OZ2JyrqXnw83EhvTEzleGXek7z41Hsb3M6vdz1HT97EptwtqRitGq8qKhuGz/EMbd1kuEBPZizfQmZRrNKd2uB6Xh/QiH9PnbnuUVYWUnks9ZNMVgSzwsrvCgkhE03HK/C3IFMmp0MY2o54axmQy43ZpDeKyjSTkyIXN4d0hcBn3goOvu7kdE2nI2MVTSasFiIc4XzmnR2WZnZGoPkw1efhhSNoNyt/cITIyHzGbGUpyMiINGTUUDvD2f8/0fVH2WX9qYi8S7C7JnOntiYcKLHyNcno1DVkWwuPaYf3VTIldbLmTnQ06hzk+qgc4I4QhmJ6Y/AU4KOIHzu+lPa0In7ZFJaRM3epQBPP3NmJxOxhMimw423N/lnEFmviRqfiX474iCqnYqyiOzQUa6POZI7afYc9MsJfh7nLcnwElrVi2/dY7YikCfcT4Nkna2rgqFkJCFYoRhE6s2hGoh6oPZOH5nxfizO/LxkFG+XJqxoC6yxY58Vh1HRgvuSb04VBDgI/OshnyezgBzaLFTgUGXDCORY6ThyVGLIROkfBM6zNLag5PKGntGKUHJepr8/Me7jN8zLslI6LX68/t9n9IpyMZ2hbfvGThxkZtCPebDIhHLg0usDkURTCS2B9oqZBPIWvQCygTaQ0v8ICHq+oSMrqu+nvT8cJIqY/SEzMfJTpFdaGBQCHQHW6EHesXe3TRu2v2zMl5S8OC7jZJeYmmlsuU5URzU39GYm8cuBOh5b/sN3rirFmAo8JHiClP+VJbm5ByVB0cm9a9gAMx7PNE4UyFXOzxFw7gLtae7taPi9i639RvxThu2LDuxJ2l6q6S1rdeU1ICXYnOjPHliI2Ie4gzUMCP2k0InjRDSE4UnI2K6BxLResEWvohu5b3LQVRGrSTOB0Ggu7tm6yfKzcXFvb4OREemKWLTvKTTc5RE1MEHnj/QYdF0GtXhipKml1f/+VV+RHVO1pdZdg99/PjLbbbG+3KeAuAe7vzj/g/rUYuH9rC7hPZ27q9ID705Fxfy6b3GfC3F9w7P7saPuV2aPt05+V+uza25/6uNSXAu4vJ6bOv4mpcwfc7aTtsw7c1fuongpwtyn4IPAsBeCu2N6u3gWj0OSu0uGuANxtdeJL6duH0pZYtRlxwlwmrB1yUpUvC+F44AURUlBGure4B3YGhnaHRt2JSryfmDqQmvUoq3ikuGayBgl64XBhUl9SeE+4T7uPvlGPIAbnDZ9H+7xwwe/iHWJ7Y+kIsnvx8agEbvj6Nur1CAD07Cpl7iI9dxXmLsXuYvLOwndJ87vi9Wf11nWbfetyts7idXnazWbeH4tRuyDXbtGQ4QABneQGx4cY0GIw0KmPuHt0DqR5aorKUrd5eSESC7iQOmV8je8gtA/m5OQVP0GZinBNxWToJDcBuFs73A+R8Zh4We6T3NHSUrwnzZgRie/Gxu5+sNs3smMV4UHHUKRRFiCm7cLEtk+kShdPV1daUeZCRgBFzP19VYFpKia7mNW7+Mo6OnXnSR0nRw5DCL4VbKqf6gwK6gwImKiqMtfVwRxQrAbdCkJegHglmeEm+BnFjT2tJnc5dpdfHyiItv/kPaaxnbENYdELK97C3IUmd7iLT0RN7lgnCFC0PdOr3SulP6XWXDuQRtrDPUPb1jifYcAxvY6ywB3LZpvXleSsvsrxyp6ICGRvWFrHhWKeY+6WWMhXgwJqP84pI8EEsCD7U1OrjRN0/G9W/iOy/1dfn1s0GBLftdlwcaPbBWf/68FxXcXlIwVDBSPFxXWc2q+TX8Nqp9P0WMZiTlaeMvf1rufwegLXpqbgkfD+tOH0FFcEIl9scnXFjwpKhvC44Qnx2YlSBN2vOvQbIs3MHRCh/pk4Um7zkp4GQEJnaCY225ec3ODkRNPlRhcXfCenaHCLx6XV3DTUZZxMM6/JI2lolQhHCFtZH/9ULCNj2ccSNbZbzUqM2iWcnaPq/2HHxfB3JezOGJ2IubNi7ppN7rAy0uR+EAsGd8YQ3JJTOFg4VHg7MhI37bqTU6uHx1hFRWhXqK5Bh7oB8YXKZEt0JKxW9tnPpMxd/RwYq3IiEjexNZFYYRbx++phfZ/Vmiy7m6fXxN4lYZF46Sd5cal3N7iep0eIuCMjRzgjshwfscxF2HQUBrXO5Wxixv3hoqLyqrEHiYkoV6hE20GxqgybhCk2Qtp/fctCHP4SvvMNA+BoYiedv8pSdXHrugQqCVoxEt15gbPTucp0ioMFAHHlAX4rh4P7mU5PYZY4Gba8dCnZw167FrbZHUbEN4rLRjxCW73D26uMZDMVQfBuXBwCH5wMHMhm94u4tnpe3uF91dnvuntIC/wMnM+d6Oj7iYmlo6Xe7d5YmTByZE14rEh+EIbhLhBwafmCr/FNVKvIhYhqf8Fj/L0NOt11Z2f8LXV15uyCx1s9Lr1NjjgctdJ20ZYbj9oVJqN++G/2onYxZ3dMvc1uJbdf2Wpyf+PvsrAr3epesJKcLcOCh/eOT7tHVfX9Ovzqp+qRTOIxhe3qhqNALMCPNl/cjJsMt2zZfrMJ3D9QGXOiRNvt4uya/F2BvKthd8nUZaVGGXo+lY5iou0y+OBC6o70w6PVA4uzw9f3CoeEmvT6KuNETHLvev255VtPwJnQ1bVg1beIOAg9xKtwfe6eYW1IF0tGSrpDQ+FVhOkmR/hILQRrWpQK23tfcib/v3SkKtPqrqgMqdXqbgd2/71DqF2TtqvqybwE7mrAfZbmps6djPszanJ/ydznO2p/8cRkXurJPBMB95PPQsD9Rzwxdc6A+/7ZAO5zMzF1/gD3/9UA7hosW00WWStBt3XmVFE6WeH4OdcNRxNreg8coHVKFzuXyVL/f6rQ6m5RRaACkceWWMYAnlwFjwWnCL+LcLHz2k59o96rzSusOyx3MPdJXl5m3iPUPKhL8X/hcGHk7UjURSg+8WJ4fd01XXJfMh2aOl5ZWTleideUjZbht/ncCLJmNzc4RMrciZ77a6/9k2Xu//7vHwnNMjLsrnDvlUqeP8uuv9gnCyPVhJEh9b9JBuYpdiSrZ9uCXPs+ZjIqbWw/SA+8c7S91d2dypUUlQ2bpkzpD9Pzh/IJahzMrRiroDcWNRXiIoINjRNneGI4YTSOlpW5NLrQSW4EuAvn3A8QQQwKJPA1PB9egGeHghbvSWfxneYaAKtrJsqrxpz9r7+z44fFG49aRjjKaTurdCHSlf6bSLFdqPmnryvNC1z83A516V+qMHcFgemPfio0uS9h9S5Q+R9EUbpq50lUpBPV1e4t7rjq66daDAYq44vi9sHu3UTPxGRChiiccLdMT9UQlrE5PVXzUh7mrELb5RtQFmOAa+I8EulG++AVqZK7BCWfWePU4FQ9Ud0ZGDiUn4/VstP32hqn029v+37ZlhM8c///2Xvv/yjOe3v8l9zc5JNyU23HxjamC4SpQlr1Ve+9d6GCem8rafVvfG+qk9gpjpPYNzZOTDcdbLp6QaACAqEC6vX1Pc+8Z2ZnZmdWKyGKbex58RJCZXfmebfznOccnu2+fg87sb7F4dwu9yvIEqG9oVOlpegF0YKg6n8un+TFCfA4Z/mLnEBa7ejwsBpv+vouGI3ZD7N9Im7a+9wIiLmNcCiaKBrNyHjEOZpm5o/WcYoQ0XejcWHZD3DMvtCEPlvni6TSwCne4CWd2WJ/Dq95p9tlt6C2yppZQ908EhFeGDV/9BvxUgtLJ1KGUvBAeYT3lCATIe5XfcpvqPB36dCreAPoetAgI9GRXg1+GjpFxGOTo+NsZWVR2eQej6tMqZlp75zgtSNsD/N2CEpCKyO2Kx0RpDIy8siShpU21G4BZ/+1cFlA3qWwu5q8jETPnae4SoVluEDTILkzBQmsIjwaR7+mtJzh6tlqlJjbAQE9QUHIeOH94Sg9bm1uTs1OpN2MJ4LHId3ZUh5ZM8PcTdffzDB3qbi4aEpsduJNodok9gDqSnHvy/bRmQXiv3mSOx0ZYXT+unnkjeSsBzrfJs4s9xQF0Tr+vAjbkmGYOwe4k4Gza2BrQck47k9PcDAGG/IhP8q5EEtJ7gp+uozuLcFlFBIEJphGqvJkjtRIrEREo2NVuWdz1oMKimQGJIkQkuhfgl/3OScthbSAaEWQIv3SJIn4Os+dmTspIu8EDspPzJCXOHPi3b79lr9/vXGhpGIK5XWyuHgsN3e6rAwNDOtwuryQbaoNs/O1tVh4uUVjiRmDEUl3QuJ7g2J7guN6w5P6Uw8MM+vahgZ8i3eXN4osEgWWJWZNVFuMdKjENJnhY0y07u3uMQMxaIfyx/PxY2m/PK94HLkUdTwssX+r4wXz/WxeS4rygArU/r4FqF1ikfJHbTdyq9TbNGTctJXclJj7e+pibioGKgrA/fMdrpfKq6YrZip2X92NDFA8Wcz8bBP70ZM4+DRGJt9B+OCRYcQkJTd1wF1aai0A7lpo++8f+1Kj3Uhh9++9p0Z1f1/WsZusmEhhRirsLqiZYbHh/hhq57C8ESN0MnI4LQ2LbZ/XdZTjN98+hlrDGzJvY7a0ZA6B7m6X++Wo5LtoL9HbXLezQ0AhUkzuJmazNEWZqGT1iaJ7Fxgzmk6qGlR3c4UZVdjdqssMbV+unozCMfW5BtwlR3meNOBujW/q6sq4W6Uq80RJ7k8dc38Bu3/N0PZnS29/oSfzQsD9OXdMPf7Nc0x9fgD3J+qYygB3Tb81RXf+FzUNd23AXb1H/4NJwEGhKsM67L/KPdY+5K3baD9AcVJe3XRRCsBJLhMG/Fe5NZMZ1Z1XdZf7MonqkEg/yHnIzaiB+g598oPkiYKC+/Hx6Owxf/pGdmMQTc8ZxgQ7np9fVTNbNFlUWz+P6Wihvr7Ty2sgJgYdf37JeML9BJ+bPm5tbkE9QfiyqZKSu1FRSH8ITqx1la5dogsp8mVksLsceZdtfHxHQ2xT67CvnLdugasuF/n4/l/VFX1MHbasyRba6w9FYjvXQyOiSF6WP/DOwQqo0LNVVftH9js2OeLPeYMBYz9uNdHxiPlFdpE3fXzwxZe4Ikci13ciIpIzH4T0hqBco8IQ4M6bPR57g9ISEg89a8JS/br9sgseFpRM3AoIaHF27gkKGklPj7wTWTtfu1t/ZcPeUwQHYFrDSCxH2/+urSu9pNiFQlr6t8u/ljR1lEq6v2tJYFpOcpdAgccxkWKdTxYVube7u7S6YOBHO4iCShTsJp2ONj8w7qIa4z4TyZ1XHbHinIo55m4ezspLTedqCbRdLqVEmDv74ne/y6vKcCR3c1ouCU9hCaGpwTohganyqumYtAEHn8ZtThc37TuDFUJUd+46SfLHZHkXmzawYDSO5eWh48TC5qExDnM/Lhn5CGonuXas5A4Pj0cHDjQsNiCN4N6SaD6eQk3tXOpQKlnDIYcYF9mWHnILobHeXd5MOd3Pj6m4LC66BraSFSGuTRzabqM7v5WMED2vsZ9mmBtMSGjU6Rh+t3s3+vie4GCEVd18HeIOLaFSl5kD3ElAnK913IYl27g6sRap0rfbNzV7aDg9neGAXHOGfpHEK0orpxFKWEuiUjNWFyO2b/mPyRFx/b/UNJqslJGRa8gooHZ1eN2aSxt2N5eX4TF3ubAMf6BERnL/iZzkvsb2yNqdjG6J5WTndd0n4mZW/sNqwxzuJB4HnjjKSs0cQypLpkr8b/mLp0n4nS2zKFPB3P+mjrlLzca5ZK00JVboyylVmyT76DJHBLmMu7h9RSR3LBUs15iBmNHMzOG0tMKyiT0eV7E2pHtXuCEEuK/dySRlODOJ845+zWwzqTcU6UgUXBZdiD+TGqIKOjDmiIxJ5NfMUk8EYmQKvwIKQ9RyUUyAIDmm+Myx7EXQnyJDYcT6sTlypLYlQC+PFGB4WjoHtSPfIqZuBwbOVVej7o1kZKAJQXkipwRUQMxXJmau2Kxzb4FOzCCxIBhbXFzwXSlZQyHxveUz5bEDsWRzQhR1jHQYjr26vNCl4Muw5Mqnyw1zBnxcv1DP9GawHBsW0eFgHWY9zEocTIzojwi4FSBuCOmadA6NDo7Nju5t7h4dHli66HbwiNEIPcrJQRJIH0lHI1Q5U4nljVIuWOZyaDtSwaZPJXlgWVD7uxpu5Oo4u9XqbRY03N6x0j3FOsdyGeCOKNjheon4GQXjjGegD2nf5X5l34195PRQbZjFo8ENR37WBNzFOqsaxdrNvCba/o7Vl5aMmznsvlKqOzXtzCTg2BvMHOKcDVZgTtHY/YQEcks6v3Ur4sXYwHzOUQeRRki17NWth/ABpypznOzNt3Fa+XnF40SFQf3Ft4uOQYSrMuaygJkiGPF5Zq/K6Vn9R3BjYlR3bXkZhZOq9VR3Hna3EnlXg9q16O3PEHD/+1KAu1Rca2WA+6HHA9yfiW/qE1eVeeYk9xeY++NB7V9VtP0Fvf2FnswLAfdnLeD+NQPcn45j6uMC7qojurUOSytgxCxJcjcjs/yEk0GVKt5ICfgyxZs/y6nXZkxsEXmXNvFaVHdiPfPqkCfX0YFoJCqkUlRCTKHztbW9ISHo4xeMxtD4PtfAVp1vk8630TmgxS+qO79kvLxqGl9TVjmNcWiiqKhuoS48sT88qR+tPOZP1ATkckyhhRzPvcnREakEcYV1jIX1iXg6VYG5c4079e4K5F12st9MYP2P1kmuq+utyztmc5RG66KuWtFY/1NktUvMUXliOwcunOCc3Jg5pK0tCifGHtwfTPIYoqrnqjELYdrc6ngBl63zF7vcL+O2h8T1TpeXs0PEfn5oU4hz3eLsPFtVVThR6NzijKdGNrY8aPg5JywrwJzIhUi9qCHoCPy6/Qzzhvr6hUcHDhiNjC/csMisQfUhHTZsVDuBCY2R78jFkbAAOf2Wycj+Qp1+qyZ28bjS0laoS7+jxnN/V0Ng+v0fvv43JcmdU5XBXLrR7rSTf3PFTAVuNftzcREPiEFda9cyyuTbbyMisJ4Dbwei7KOs4SabtPI1ZKZNqeZ9FWEZyyD7EhK0Gmi7OFnyM+U7/62qKiOTt/rEhBLiTWEVoUtCEkgbThvLzSWHUqxDW0GXnEHbe05xAPdppt/iwDTTvSO6kBYmi4qwOHnqHCcEIa3WDGrn+KfnOQn1dr3euGCcra72ieiKS79XNVs1VcpOu+PX4VfrmnToiB2bHL27vF1aXEjPAXeeaWFdtzvw6MBcTU1PcHDtfG1S5gMHn0bEC8PZdefxOukiUWZHv+YEbuOqw9OzUafD1enpOVNRgZXv2uqKNEWbVeh3TAx3yQERXi6aOx6EdgDPHaMAE32qr8cPJC4/YXxd3t7GRWNVzexOt8u4S5x2BMPXXrX5zMwUUSS2/0Ou0awqIyONLCnU/jsNqF2OpP/IdP2XcEk/aRl2XwJzV4i5WyK5i34JTL5p876z252/2Od13SO0IzL5Tk7RGO5nQckEnlRwXI9vZDcVjuiBaPTFeCgWLBPUMfe/qQHuZl+gdFkww+lMG7xmJHd8MZUN08E1YWObrZbDr/HbV1/YenV60f5Q6nAqqifeOKJGKu7P5GU4hRl8BmFlwwD3JoRS9Ww1vhFDETNFEPBumY65FtQuoDA8yC6cLDkusd0WO3gpwkKzAeYNpDvUmg4Pj9tBQZhLSdOMdtEUXHsUdKmDq8nH1UzlRnxtUvkXQslFH+MrnKcIYjNvnLHLawxz+eP5KFu4FawILi7eiYi4zEnV0Yv5XJJbiNuOl9ro4HAvNhaJhW1XG41IIJhlkTooxmmewAfshN95G+QT5Ba0PU7NTqjCnp2e/rf8I+5EIMPQCb+EjMHM/FH8JHQ743l5tBNJWlW0OUQa8ROFhcgtyEgorGiEMvNGjQ2Lhrp5rGdbhrafeuPtY+JmNuWBn6wT5NqpwjI5KfkBMhWo3Uw95mcWLFJ+t9LLgnWKOeauANz/9H2zTW4LDHck6sCY2+VVM3X1TCKMogPPBZm/eLIYdztxMFHqVW4N4L5EM/8HDdcTOZguUSRUvywh76oik++q+EAQUUaV6q7E3I+wc4obz2y0u2ZXMlVSNl2G8CT4YzgtzeemT03tHEoeVhpt9HLXUXbwi5TW7M6gOO52v4LFiaLZFxbGZNa2b78gwKNf2Npe5s5+dfv6Iln1R0TcjY5GEkAqIGVIBCy5MYkNvDnmrk51l5IBrIDdTci7Of4ufPKXK0Lb1R1Tnz/A/RPLgLs8z68ccF9F31TOr2LZMu5PV1XmaZPcHx9z/7rC7k8Oav8qou1fd3r7aurJmAHuF14A7hpo+wvH1G+OY+pzAbiL2q+qag9avqlL9OhLWSppDecmkvsHvJKsunubRUNXE/qm5uTGc94F2J1v4v/O8+/4Dv6Tn4snVQlzR9wgTJm2DAe4u7S6YNx9kJTU7u7ertcPp6dj5nQJaNnjcXWn22U09Lh2uF7CX+19brgEtsal3wuJ73UOaHHwacSXYRBNHUpFNcOPCu8Pj0kdKK2Y6vTyQrITxdxNNBkF5q6A3SWEd+6tf0/6pt9Vu96zztH0r3JsXYGba15mX6N1XJR6aJ7Y/vLLTLH9tddIsZ3JpnNTTYuzM27v7cDAxYaG2HuxmNhTsh7s1l/htDuYUsdm+7NbHS/scP3SzvOaR2iHgZvzb/r4NDs54cJENFtVFdwbjBYDt5o52Z7jzNxOM1VZMY/iY3LKdW5xThhMILWfuvr5rIdZwT3Bvjd9h1JSwhP7t7M57STGs1e3fvby5k/5c+5m3HYLaLuM2P7T1ZeW1lKXlps6amDu/CF3DZK7ZPjf7vIFVjuZbQ6lpqKLIsdaQlTb3N3rFuoi70TihvMa03J/2uWKuVvC2S0bOEvxgne+o0Tbf81PliLgzqvKmMm4m2i5BwXJqaOvIyGgsKMDcm5mouTztUxQKj79vpN/M2LfxuH85n1nsUqxRDftO4NVSialnmGdWJD4YjSy6Hh4p19JjSdED+sfTViri8u92NjRjAz85OyCh0GxPcg5Ef0RIb0hyQ+S3drc2B7S+a3UqkjlkvEnPkZDhGWfO5abnjNimDOM5eXhdeKHIAUhgpCmdrpdwrXL/fJej2sOvo1e4V0MqouMRMR1eHiMZmYuGI2enZ5ok9EM4qfht5BjqumAyBEec6eLUiVxlhF0+cXjJRVT3b6+DHDngppZIyYn4yVFp961dbrIrBHfPsaYhjzarlBs/1DmiLgCGRnLULsMXv/VUpc58i6NQTV5GR5zl58p4eA2YXNLQnJ/y5zkfpx8/Pbor+pD2hMzBmvmarAAJouK8orHAmNu63yb8CjnDQajcQHPCE9cFJYRo0y6s2UJc1ew3YW/Sq3Iza1czI+SLM1wF5TieICMM01BKGH1YqIitwAkXrxZvLttjhc2cnmekdx3MpK7YIpwkkwR9nldTzswjNvSFxZ2iQB3ciEWpF3MBQSlcPZhKc4uguxSXJsTbEGoYtjDBIW5hVASzDMEtQ8mJlbVzC4ajeVVTO4MgdOk02EWxb8yhwaO9Cqi/6qOrFImuxQSOspJx4jaL/ilpMiEsoh5lTkrcOJCCPCwvrCJwkJS8WbaL4uLKJQNDYv94eEItwvcrt5pccDgvMTxSfzTTGVl6oHhyuqZlKEUhDlinNK1GNp00SE/pBT8K0Y3jJvkauPd5Y1vnCwuZif86ubpwJl7SLtXWCdaHQR+QelE4UThTAXblB3Pzx/LzS0qm0RJJXw/IPoWWqO9ntdwIRdtcTjHlGRYbVUcHftIQWyXQO1/0YTal7YiVwPQf2JBwE1Vus2yhtvvl2VX/kNtwB3LHqsd+ZntrywuIuq32J9j1sHcpi8ed1LmIG41Ho1Mw/0TFcBd1TFVeSzMCrRdhqpb6xH03+rIu+LYqznsbmamqurDZEopR9m5GduLtjljOek5w1iiuGl3o6JQSTNHM1Ozh5A3UKCRWFhKYXt4x8lqhZ39EuzEnTk7cQQUIprEmpBhkAdQlB9mZc3X1aH5yS0aq52vzcwfRU1HuPUGByM8EWLIJ4dIXkaCucsk3c3kZZakuv9agpL/8jGuX2mIyVhDb5cB7t+VHlR+vgF3+Rmmw1YC7tqqMqdWzzd1dWTcH0dVZqUk92eCuX9TYPeloPZnj7Z/zcRkvoF2qU9RwP3sUwbcnysB99UC3Jcp4P4CcH9CgPu/HhNwl51D/+inllRlVgtwN8fc5SR3U1ct1ZM1t27T2gbQApvfUzmyKqO6Cx08bwCocFI9yTupIp1H3IlAw93l5YWBHB05IcL6kPbd+isMbtOdR+O+0e70xr2nGeJmxxA3jJQ2DucIHfYM7ZwpLy+eLC6aLEodSi0pnyLnz0uCEC0TluHE3D/mHh5h7tS10yl/ExIiZQMvRfFfrp3pBxKBRWkr/KHE9u1D8foxHUJQXh/KG+iPhO75YyK2v/TSv0UZmTffRCpE+cGtIJUYOibPhGU54l5ixqB7cLut8xeYjjAsbdhzavO+s1t157c7f7HT/fI+7xuY+XMKH02XlXX7+uLpPEhOxiDq3u6O3gGlEiULjw/1gQBKri/eRKcW6JlijnqUnY3BCd+YXfAQF17DXHV1QSlTOdiw9/Qbbx9jiMBm/qg7DweYsACRc/cnbbGLFUtLr8DU8XcqrFs55s4JTL+nEJhmEIAmyf0YlvQu9yuBMbdLp0qxhm8FBOCRXRBsNskVM+puFG4p7jbjS3IgDmHuIhqolJm2EnPXgtqXRNvV6O1LA+5/+yGR6WQooXB0HTUW5R0NjlubG5N8XWwgO1+3oLadbpe2OV5AyCPwKfa5wL/kGtRaVz8/WVSErpf4sHRQXRzYyDMA/SJWr2HOkHZgODnrQcVMxXh+vqF2Lrw/HK0uujn0UKI4Eko6O6tx7E1p7UW+wsvDzccX4+UF3g4kkulMRUXVbFVS5mBQbI97cJuTf7POt8nRr8k5oAWxE5t2b6q0tCco6G50NH57wK0AXZMOz5EFDofsi5tV0l9K5Z1+KV4PvgwtKl5qavZQZv4ociPhlXjL9xMSmDCO0egS0LLF/uxbnDUi80IgQqvJF/FDuYyMEmIziyx1Yju/C6UGtVsHsmsj7+awu4nqzkfcd8wwd4o1Bcn9hwqS+6aDEiX3kyglez2vRXB0S8QUnuBATAxuI7nmpueMVHLCZa6truh/8cQRZSTyI9oUq2PuH6hj7iYVMPFSWJGb09vNzlJZ8EJne1cf8cfIxFDCKkJtRVp2bHKMGYiZq6lB+sX7Qj7nbXUlXsT4gLZayYUYaynyTuRgYiIWGBNRIWq5RE5dhN2lxqEi1C46JRASTbz1ixyJlWpQQcn4OLdTNZyW1unpiYnxModQoOiPZmYiJDNHM/PH8wtLJ/JLxslCmQ52tLm5IZDxY09wr4cknhWMe3EPgBeNkejYMKidMzXFiyFZM5Qh1Kb+iIibvr69ISH4LSG9IeyYXV1dedW0g0/jHv1V3BCXwNbcorH6+oW88TykI5KXoTwjvkG8uy5v75lK5n2CxYMRH/lk4xnODFkiFUW9MFnaINiRbVArkQow/mK9JQ4mztfW9gQH47Xh/SKfIJns87qOQrlbf3WvB/NWRZijXgfF3k7LGQ6IvuUV1pmSNZSU+UDYlTxHAlzrdjFdKf7c2GZRRobfcjOV1zXaULsl9RjL/ii/XQ31Nsu+KcIZF9P2tmKHW2adIgDutMn97zXbDq/dyZTckJ+NDUxVBs/ahosLZFoM6+kj6RXVM8ZFIx4N4ogywDIA9/e+p9rJK9t4c6j9dyu6LCLvqrC7TGGGGDlSlowZ5k7mECioe6/ujb8fP1td7R91C2UUd6+mdg5pMziuB4tT9FxBPlm/x6S0RpUaXxCTOsCOfOn1N+ztUbyaHB2x1HGf6xbqmCraVGnSgyTjgtHAufuUTZflPMoZSklBL4RZ/agEc0evy5Nm5KdU/yzwY8QtyyWp7r+Ww+WPA7VbT2/Xcky1BnD/y6oD7hI3aQtiXOqiYeKOpgXA/Vn5pj4FVZmnTHJ/Jpj7Vx12f9JQ+3LQ9q+wmMyzprd/dQH3Z0hvf24F3L+xjqlfM8D9k8cB3K2mty8BuNM5dJPZmkVVmRWeQrUsLPOuckSXdtXqJ9yXUrlRAQLelbkzmXNnZPIyIs9dsFHlSe6nNyAJoTAyFDgvr4nTO0YhwXSN4TMi6Q6TOtExXt663Sc52dljb7x9lLt4t7f1nEzkdpcvMaCWT5f3hYZinmeyzrm5fWFh+IHIg9SvM5K7KOauwNy5xl3Kdpci7zLLSTM7U1WEXQqySwXWpcIvIkpuvhDN19lHdHHw+kdmNnHUMR/kiO0i2n5cQNuH09NLK6Zq6+ZD4nu9wrtC4npTs4caGhZnKisxMsXvv4+pnql2kFKH7ryt8xcYkHDn7byuO/u3+EbeLCydGEpN7Q8PX2xoCOsLc21zJSc3lFbiuVP5wgcowiTHEdIbUjdfR0ap7e7u8wYDfrtrYCsDEbxvbHf+AvMYniZ/2t0y2s6AAKnYhQwTlBHbLUlL/2aF0tLWqEvLiLd/lKIAEmGZv/2PGhTIEe7Y/I+7TXIB4/n5ZLaJxoVnXy4uhveH454TNIx6S0a1pOeuau0o5d5aMmawGm23BLj/9ttWSsooAXczX2WUXFR4NC9oTiPvRNYbF7BQqw1zfpHde/RXsWyY8BEnlW7rdHGn2yWXgBajcWEsJwd9M9YgKcCKUxnaHaz/ZkfH+wkJSC+187UZeaMIBNxM35u+Ts1O5kLqDO8+IvH+FS7GNz/CC9qy0xsXbR0aHYJ6grIfZhtq56ZKS8kWGP9l5I5EJt8JjL0dGHM7glO7GkxMROBE9Ee4t7vju9C9Mk3ni9uI5M4wd45HT1g/Q95PrMWfJLqFlg0x5dziTMry+O9+fDwiepZD94h+iz93uV/m5CN4L4SXBfkIJiOzVi7QtOZ9lch6WSWyLBLbVwVqXwp2V2LuinBTFZYhkvsH/M7W+v/7+cZPaGfr9e1MVcaGlMqNxtC+UJ+bPiVTJb0hIQgxdqwqLa1+oX66vBzprmiiCI8J5QlLgrcplmDuvCabBcxdFW3/q8bW158sAu5m1Vz0ZRHVmcjtEN2TeF6E8FwsHqw3LI/RjIzSqdLguJ7d+its99qO90Wgi4ioiKl9XAqqq1+4FxeH8YaRyjnVcqlZqKKPFI1DidLO+ONkSrxjB+o4TbONOh1u70J9PYpCxkhGRfUMGYTgT5SVNnd33H8Ua4QnCgfmSMxkMQMxyIR4zVF3ozw7PRlMn5/f4uyMOQpDAntJeD1y0j0RMIl3KfLZTaJSnFA7skGXt7cYqpl5o+VV09Vz1Q+zssqmy7AYamrn/KK6Uf7oPA2zQXa6uFt/1Suss7JmtniymNfEsLW9wM1OtCfa6uKCn5ZbNJZwPwE3HKGNoGZou+QoEq0f4hxQ/0N7aaibukZd4mAifsLtwEBkftKeikkd0Pk2Iq6R9PAa+LzHpT78lV34gLtsHM5v4g8ukFvy0TXbDpt23cyI7ZyGDCUB0wEXS1D7EuYoSpD921ZfyzdNUT9PZtmrXMpw5/beDuMubbQ7vcfjKhYAuXG87fIlu7EXt6GryRzNrK9f8OjwkG65ibpSmoC7hZ0z8zZegbb/bjUuKfKuBbsrhN3VqO5SQUhRq4r5iBxfi+Xq2OxI6kZoKREv83V1qG5ouQ118wExt3e6X6Z98S08IYYtVyxgpB3kFu/wrtnq6t7gYCxyJIR7sbGo78yx/KaPrklH/ST+RJVk4k7F48FxvST7jkAzacsImPtHAub+AZduteRlVKjugpmqFuz+q+VD7Qq0/RsHuK+eb+rpJ+SbqiC5KwB3q1VlniDJ/Zli7l9D2N0KqP3GU4Tav0FiMl93PZkXAu4vHFNXBrgfWg3A/SvkmPo0AHeT5uMnMqkHpXjL6gLu2sIyMq+kv2qz7bTo9taJlyv7eOnJdwnmThAbSUMiFBCgyEnube4Y8gdiYlAJqNdBvUQTjzEbQxGGXiaVsOO46AT4qs1n+BMfC+5MJzbsPY2RKTyxH4N8Zj7D1JIfJBP/tNnRERmK3FNF/yUl5i7A7h9IARMZSPIDMjL9i5kIu7kOu9j1qqqri6ovB4WOVhEkFAaiQK05Cq9qdiQ9TX+E0Pb165Hu8faramaDeoKSsx7scGM8I//oWwuLi6lDqTOVlXciIh4kJ2Nqcg5oYdI9rl/iT9xzO6/r9j43nPyb3YPbfSJvRiTdwY0dzcjIeZQT0hvi3eWtb9e7trq6tLjgcm1zxYzkf8s/9l5s1N2oasPcdFnZo5wcOo+/UMdg96IyxiOjwwps+2TX5wwc3GoV2q6QltYQu/idtS6OP9K+rDB11FS6UMfczYRlJBCAqHeBhf3Wrs9tHM7hhuMxYQTFHbvl708yPoS/hPeH44brGnVo9NAxkV6B6KFKaA6yl7UGqpYB93c1EtHvv6Nll8rNlN8WfVO1TFN5SRkzwF3m7sBh7uhN0Oj5dfthyREBOTDm9j7v61jDGOBtnb/AWtrlfgXrFitzqqQEGYNEKnhx2G3b0E4hn2Cwn62sLCqbTDswXDBRgMwQ3BOMG4gmi6B2JudyYq25hDrvXCqYl+KSMYjxIs8wNBwNI7p7tzY3vNTYgdiM0Qyy3WMyDw1Y9pP5JeN4AQg3BI5Xp5dzizNtVtEBEXRqaLXwSkQRG1z4gOQm8JXBvcElUyXVc9W187WGOYNxwZg3nhd5JxI/Cr+oonomMWMQobrZ/izZ1oleCEJMWZSReUUCsS0pI6MIKAtQ+//8culradjdIuZuEnMXhGWYiDOn4Cwlua/7iJeSsPnPGltEGZOS8I7oQurDI3NscsSS6A0JwfBwkVswGKJ6g4MJhvPs9MRz4UPsMIeZfrocnrsCcP+rBrfdcs0V0fb3vqdphC7hokr3rkijCeMCibkv1NfjT9rDFk+MkSMCKYlt4wD3vOKxqdLSLh8fUnFhjgicBTFh7tK+k+ePyyntCD2EYYdej7WKKkCKZAPR0SjuWK6MHltZ6RHaYed5zdGvCRFNx636wsJmysuj70Z7dHjgoeDRkGtxSvYQUV8poBACd6OiFOLyIu/epCBPaPtbb50SRKVI9QXf2OLs/DArK2YghoREUA09QzujU+4WlE4sNjRkFzwMjuul7Wdm+ci8ZLk743QRNw2lkF5Gu7s7RlCa6y5xvcqDlBTaQXBodMAN55VkTjAlGXG3hs4hmextOZkOLDCkAuQNfG9PcHCToyN+WquLC947KibimgHBuvOcicUZvBhxm2Td7pMm/9sdx994m8lnE86Opf4K+SRblwRUoXYNSrsmzq5ijrLEuTEN3TazY2QWjcr5OisptSq+KWaAOzvssmHPKRSRoNgetpmd2E86PLS1WTVbhU/uvbYXzxFBtCqA+7LR9t9ad1mPvKvB7ponUy1i7rgz6AB9bvr4dvuiNqGHvG5nhzuGYA9L6EN2xbpFvOx0u7TD9RK7q+5XcHsdfBv1IR0ZuSNDqam3AwNR0w3zhrC+MJdWFzouyZgEXB3EB/h8jWHOI6QD1bMnKOjSzp3IRQj5oyQOqcDcFZLuEnmZZVDd1WB36y9r0PYlHVOfDuD+kRbgbtFu+kkB7ivzTV2OjPuTVZVZLsl9tYVlVhdzv24NSP0Cav+moe0v6O3Pk57MCwH3F46pLwB3E+COB64JgWmryqzcZ8misIyCySJBi7+vIjEhN0uUQe1/kOvb/EGiFPkHS4ffeZRNirkLx1QZyevkOuQktNeY8/sjIpBYKTEha6MvRxOPkXjzvrOYKkWphJe5YfJlzE6b/43Z8rWth/BPmDkxi2IwxrTsGdZZV78QeDtQ365naqd5eahPvBDka69hqR3kUGwp5k6w+z8EwfQPJJx3KfiuvKRepmZyMehxZXovZiT0Q4KHm3hRAItquRQ2/NI3W98HBZxdJlzLHaUntP08Jyzb7euLm1A9Wx2W2Ofg0+gV1om/JtxPwLCU8yhnZP/+bj8/NizVzjG3wNSB6NS7USnsiku/l5z1YH/uSFb+w5zCR4WlE/O1tUWTRQz+m62unKnEXMoEahoaSAeZBEAmCgoW6usHYmIeZmWR5xv+S80eshfUDNbtptPu3NPc/Kka2s4zcKWY4IqkpVegLv3r/7Js6iijulvG3N9VNXVU6l1s/IRBAFvJ1PGkjcO5PR5XMf+XVU7jfuJmYtrsCQ6eKCqKvRcb0huCP8umy3DPkx8ku7S4oM6zM++cyKyWV7P1mLsmvV0NMpAhBYqBUqonQwkB2eCvJtNU0nA3B9yx+lH9RMwdrQdaLadmp/zxfCKlxqQNOPo179Ff5QTT2c4QY7g3LCJXNDo4IGmg2aIDwvi4Sad7kJyM1VhtmCXZWY8OD3TKaLV4qP3kOpHVjmqpgNoZtMqVCyoLtLslFcUi52eyQERfhuaRXBCdW5yReRBfSGtJD5JKp0tJkNq4aMSzw2eIW02AL22foEtFK0qtJdpbNNQYCCh91dbPP0hKuuXvfyciAlGGSCyeLMZK8L/lP1NRYVwwMgFih3MsQ9oekSpIyDmt4ibWknYIdGREISOjSmxfEc6+NPKujblriLmrBRp3mkRCciegbe3O41vszwXH9SA74fbitlfMVCC+0BZTp4gmFQPJHOd7yWyKv+Bsik+sRYjxPOWlMHeZpLsUc1eg7WZGKZZ129T1ZP6pYpHCH8UQ9IiwPrHgXVpdqueq78Uy0w7UR8TOVscLm+3Pbtp3hjki7GN0VFuni8jSbMnVzXd6eSGOGOC+YQP64BMc5i5tXkUrVLIeJfI4bh3CsEOvnzMYgnqCmC939K3Q+D6mJLa4iJKRUzTmE3GT+Qw7nMdrQCz7RXVn5Y+O5+fXzNUgNFKHUsuny+fr6hCzoQl9Ot8m18BWlB7aAvHu8k7PGb4VEIDXhl9KmPtROe/+iEC3F/cA8NoYCd3V9U4kk8oZy83FTYhNu7fX89o+7xt4hdUGpmODnz+SkYE/3YPbbVhAfc6k7cnURHfhbZcv8fXe4V14bcg2TY6ONLhibr8dGFi3UIfQlp6Y4V0ZjkoAdw6xFZ2i8U9YWvj64N7g4vLJu1FRN+ztCZRB4pooLKypncPjIMvoDXtRN0+KVrdvvM3O+TGE3RbXYWIhMJzdzCT5x2uV9uOqKm0WoHYrTMgfQ7RNXbdNC3P/vcrGtqzOms6T/UADcP8Fb6HMq0uhXSwsm+Aeepu9zw0kZCRtdI9eXV54NIgdEXBH4C8NuEucGExtvAa9XR1qV0PVaTNbelkFvqvB7lrOELKTqe8z7FY0YeIP0Eg8mZEoschR8lCqcKOox0PAztXUDKel4eO84nGEfEzqgG/kTeZDENzmFtymD+nAX9FYontBXUZBRx1EEiZuOzu6x7mI44dvPLMRZTFvPC8lewih0RsaiqyC9ELbbKIhkxRzF21U3xdOpi5JddeE3ZePvFtA2zXp7c8Z4P7xcgD3z1YJcH9WMu5PQ1XmKQrLPAPM/fmE3a185Y8PtT9rtP0Fvf3rpydzfllo+wsB96+fY+pzBrh/JRxTGeCOhYPnwPwMrSG5/1npmbY04P6O2WUNz110NxWVULQQtxWw7DUEbfArqCuUAm0mkteR1xFYSEsYzqtqZvvCwujAOIIc2XA0M5NO+27adwZDpkl7hBsm2fjEaQVggnqVMHfyxOOEaMsqp8P7w5Gqsx5m1dXPY9JGIkN8HhFI7p8IYu6k06KA3WWcdznzXdraSpnsIsgu8y/lRNU/EVpYKc6OgEdOIahCFJ5G5kJiYgAHxyhk4LsEef+3PEIUqrWHBOFapJiTxG13dsb8gykIE858be1EQUHNXA3+TB1KdWh0QNF2bHbMHcvFF1TOMHkKTPjT5eW4XWTLVj5djn9NGUqJuxcXfz8++2H2ZHFxRt5odOpAeFJ/RNKd2LR7iZmDhaUTGIrw9fnF4/hF+3NH8kvG8eti0gZcAlqc/Jp1vozYvmnfWQ5q548pqCCDqmi7dZigZSPHlUpeaJs6Sqnu2pi7VMxdZurIQYEyFMDmP3TOff3uk1vsz+1wvaTzbfKPvkUw03hBAa4Djw5gRs3Kf4jbnpTJVMiJIIbwIVDgF5+ZEo465v43DczdOoa7CuD+jjq9zkRvF/Vk/iwDClVpuQxwF4TLRUEV0jhGx+p/y79ythJvH8O8e3C7vfcNDi+77hbUVlE9cz8+niAwmnPQELNjAZWVWIfGRSOWccCtALTkzOP3vA3meSYg8zmvmc6I7Qq0/eDLKB08qMrlCBpVxU0Cnup+hKe6oxlBd4MHgZeKjhKRpWvS6dv1wb3BZdNlTIe6oSEmdSAsoS8u/R6CBS+4qGzSMGfAwy2eLEagsXMhc9VJg0khvSEktYE/0ofTEVwThYWkcM0EnRYXA2NvRybfIYyjsGxCH9Juozu/btfntB+pgbbLZWTU7RCslpFRDaiVQe3asPtyMHeB6GoKNLJM4He2frruI3aUZBP5JRzdaHfa2b+lgd3ihsTBxIT9928HBtIRKDRqSMLosNv1+oKSCWRLTA+i7yXD3A+/ZknP/R8WMXctwN2yXcp7atJwf5PDYdKNq8/4jSu8WixO9KTMv/osw9w9OjzYka/KSrxz7/CunW6XOTWSc1u4i/l2uHzh4NNIybzF2RklGLcFN4RKkrQDxscnRUq7jQ3ZEaN2GDmW9ygHWy/U13uFdyGVIUKx+BGGKCsLRmN6zrCd5zXCr/FPwXE9aZzRaLVh9kDho/j99wNjbtNxKxuO2Y3Xtt35C3wLwmc8Px/PbSwnB78OEw5mAMa+F6j3RwW45zhHb+fNUW1sMAE+SGbH3fDzEzMGi8omZquqSEceLxgfR96JRH7AekAHcisgAEmDRL15rwjd+W1OF/GCd+uvIC2HJ/bjNdz09UXCQVR2eHqSDphbmxtWC4GGZAXBA+5cbpGemOHJwifWIrm5t7nj1z3KyUHKYpuFtrYYLxsdHPDyUEbRyYi71BzUzsnF2KKAykD2VzZ/+vKmgxKcnXdI1hSSktRWJdSuRWlXxdk1YXSrtdosw+5S6bafapHcZb6p35eapqxRBdy5Uvv2sXVcqcUy04d0oOeJTRvwCO3wuelTNVuVcD8BxQKjNgoQq61HBRcHbj9bC3DXbOOtRNstg+wqIK42BK9akd9ZSnzyT2byMn9Xd4mgzWaWWLjNPDqPQnvJ8wZDbd08QuludDTCBP2n0biARgUdJmINtRstTUnFVP1CffKDZHQvtPGsa+Qw9y93oIYifHDnXVtdYwdiURkJnUftQ6ChvlOi1sLczSXdpZi7jOr+ne/I7rrk1lqPvP/aDGpXp7evFHB/71kB7gKP5wkC7k/HN3VZMu7WqMo8BZL7E8LcnxDs/jwg79a/1FWB2r9paPtXkN7+5fNJb38u9WS+hoD7agm4P2XA/RvpmLoKgDsWIFOVOfTqEiR3Yfy2pOJqJeBupWjje+p2n0pm6x9X/tvNjVt5rO19E9Ym9u40diLZpA+nowufq65GHkf8I/CQN9FnV89WYybftO8MZ635GabKn21gWBLZTjIXLMLcGV5JmDvTlsF8HpVyFz191sOs4slizPN3IiORVXnnJSK5c836x8LjNLmVSrxJFeC77BLbWS0yuwRk/49EW5ZOu3/OubfhPbY4O2O0vh8f3+zkRJrdVN6Q6KWGdVLOu/Qy2dZxAX9UQNuRvjv0+tnq6uyCh6HxfQWlE8TgY5TDWwGoisj9lLyJpoQa7tDo4NrmijkH849Li4tzi7NTsxP+xF+9u7wj7kRg8hlMSGhoWAyO69WHtDv5Nzv4NO7zum4nXPh4HweD7vW4tlt/heS2tzic4/CCk2t3Hn99+1HMuq/aKLRlGS6g8HJcvpHjb8z1Lp6WurRFzF0uLPODV03uqXjXMo1pm8/W2B55c8fx9XsYELDd5UvcUrfgNtxtLOBqw2xF1UxK9hD+SnAz4gJPs75+AS0nKicKC1lHrC7mbikVmGPu75jQdiW9/S9yHQzBk02k5YpoO6ofAwqPr0XJJbKbuEqxLLGMq2armKR7VLdzQAsWoUdIR1XN7N2oKIQSmu9GB4dWF5eB2FhmJVpfXzBRENoXirWNro2GeR4LO7EWdwy/iwopAakqaLsIp7I4VzmjI+W5I6bQx+EXoRdG7CDQkIKGU1N7Q0ImCgqiU+96hHa4BrbiwgdhCX142XXzddVz1Xi18wbDZHHxvbg4fAse601f376wsPH8fHaCxGhEfrifkFA+Ux4Yc9ve5wYLNy7KuH2sM/zpHxsztP2Nfyhord+TCjStTLR92Wj7/5pdK8fcpeEmxpoEd9MkuYtHSdbYHl63+/Mdrpdw80czM+dqaqbLyjq9vMiNkyBafIyFNFlUlDeWh2kJ3TRvU3xCTlg+KAk0bkNdS15mCQH3P2uYKLxnlTOKdOOK0dsPv0awh8np98RbaITJDRIRhNU1XV6eWzSG3LLL/bItiYNzsuC4LQgoTsN9vlGnI8Cd7QRz/bRJbJdDQ5gXMSfSwijtnp7TpaXx9+Mjku4Exd5Ozxkha27aH0rPGcYPjL4bXTNXgzhFWS8pn0rNHkI2w+fZxtJI+oFH+P9AedUMvl7n22jrfBF1nCN0n8DzwseoIzvdLvtE3ESfEN4fjujGHIuXd4owd25/WsR3RN49JhwU0w4PD1KdRnkKS+yrnKlMGUphEGHldNpwGkoeHSihva6R/fsNc4b9uSOeYZ17PK5yghiXeVkMj2soeQje/JLxoZSUTk9PXGw7zWj06vTCD8EdJidkTCcmoaojMqEqekb4PL4Gqyv7YXZlzQx+Dhmxst2L7dubnZ2RBwx185ye3llUBFTPN94mqF1CZhdx9o0foxdS2COLULuKQ/IrFqH2n1p0IP/x4zijLNMrRcUuRVO9TcWl3FzAjZeWOkz+yVhUtLcdEt9bV79wJyIiaTAJHSOeq901OwziJMRvEm2zBnAXHFO1zMbV96pVcfbfLOdaEnlXhd219CfFjT3zkzQSzxWC3cmHYNeVXbhp7m3u6BVJXS3qblTMQExEf0TknUjELD6Pv6YOpSIAEcWlFVOIYiSKipmKpAdJwT3BHh0eTJ+w1RVfw5SmcnJQExGMGSMZOWM5FdwpsSbSh1y7VtSHFDH3D0VDJi7vSuVllkV1V4HdJfi7Fsiuym23rCdjDrj/8XkD3AVaz79XC3C3LOOuCrgvV8ZdTVXmohWqMs8Ryf25wdyvLwfLfqrg+3Jf2GpB7auItn8txWRe0Nu/gXoyX3EB9xeOqV9twF0V/7KG5P5YgLsFzF1sqd/9f6ojvaZksyoxRw1lU3TzPLlVgblL4DbcZiK5Y+0jN+g79NUGJmnSGxKCpIxs2K7XF5VNzlRUBMf1cID70V/YfPbSpoOYKom6RYocDKzkdDkxhZKe+1u7Pt9sf9bRr4lR7TIz6+br0LV3+/khuSN3IPyw+j/jluNBbnF8bO5Nqga+/1OOsMtaWDnOrgqyi7ZyyCNIT0ivaBqmy8qYdoHRmJT5gCRcMcZjApmvrR3Pz0eLoIDdj3Bxa65Xy2vpCufokWpRJicKCtKG0+gYL364V5eXU7MTSi4SvwgH8N6Mn69jyObpjXgQSOeoEqgzZH+KpsCxydGny6d8uvx+QsLtwMCx3NykzEHXoFY7r+u73C+/7fKlLefetlXHozb4AHMsHhlTm91NNm7HpTZuL2/iYUGGDgjasj98/YMfLBttX5GR4wqlpX/1bXOlix9bwty/q2nqKLqn/oPXmBbcUzlxJCzgExv3nt6qO4/b6+TfHJrQh8eX/RD/sxMGVTWzIfG9jn7NLgEtpAKEJ4v2AU+QcAEl5v6RRPJC20NV85iLmaiUqhatMgVxaDuv3m625WbBMdVUHonk/vk6FHOm2XKO02y5vNOh0QHDPMF5EUl3vMI6sbyrDLN3IiI69Pp2d/db/v4IH8M8I49jhsfqRQ+I78XCZrDpqfUiEEZlVgG480oyH8t3LLhbJ6KcePF0RoeYqqLRq/gidY06/GoC77q8vTu9vB4kJ2fmj7oFtdl739jjcXW3/gr+3Od1Hc83MOZ2dOpA2oHhmrka44Ixt2gsbywPeW+6tBQfF5ROJA4m4v3WL9SHJfbjGxFiNg7nBJUJUmc6zJ8X2fDxT9cLiJtEROL7qynabmU0yUD2bwmXVeC7JcxdGm6awjISkvvfZCT3zURyP7bR7sxez2uoLAUlE1kPs+YMBgw/aIiROZGZmZK7nd1oRkbZdBnWjwJFldpgKgPNOszdAsld/frzEsxTBQomayEFgSbEEUKAYe6tLunD6ftH9rPTY0FtWFHI4dsFRwSXwFZ8/mFWFm9BbGNDjbuUbIiOH1MHJqs2NzcULwLWZzibBJ+IrqBYJstOBiqPDhxYbGgonizWt+tRfRC57EhH+SQdqDLMGaLuRiF9+Xb75o/n34uNHUxMrKufR3Kz0Z1HGsTCRj5E+eAw91MMHnW75B99C2lwtrLypqgyL4jeEJrzuQRtx3R6Nzoar40d81pcRBDNGwzeXd6IUDrjhWELYYsJBhMP5r+g20EL9fV4MYNJSYjHasNsVPJd7/Au8vrG5cLtlhHJvS80dCAmpmGxIeBWgK5Jh9lUtGTgTZi5MzS0qyf245To8K/IFSlDKfj2wolCNAN0vo3Ub/CT640Lcen3drhe2mjHNh44tP0wCoQItbMdazmlXYTa/0eF1S7fbNOA2peDs2vaovyXxmXRK0WF6q6qLaMOuL9kBri/ugTgLpyGvIA1j8fqF9Wdkj2EpguPI/puNNYkVghmfYQMnhSeFwoEz55ZCnA39fAWvE8so+2/eexLgbxbD7ubUd0Jc5faRZC8jMmfGeuZk66iSs03kF+wBhI3kExQ7a7b4X66troiA6SPpCO9IHxi0+4hA4fE9Sbsv19fvzBbXY3YRAXEvxobFnuCglA0kVKyCx4m3E9AAsGMQGfCkJwRLOgR0AyjzT4oejKJmLtUXsaM6v6uGdXdAuyuibxbj7ab0dutAtzls9qyAPcPVgNwP6gA3CVHaaWA+6HVBdyX8k2VYe4KHGqZMu4rV5VRxdzlmONTIrk/Lcx9Jcj7k8DfV/Yanh3U/tyh7asEuF9++vT2J2mX+kJP5mkA7k+A3v7NdEx9fgD3T1YDcP/X4wPuCAuT8qNw/Nyc5K5infqeFfqPcpzL1ECbw+5mAus8211+KT1R/7Ac+QgNNQkV0O0vMswddwMPB0sDdwnxilKQNpyGYRtT7nRZWZeX11hOTlBPEGZRDNg8w10A3LnZ8iPGcJcA7iLJneMIn7J1uqgPaU/MHKyrX2CqDunpKNjicdRDHFWchNE/UbMk5cF3EXmXXx+Z4+w///lBAWenHpQ/2E4QAHWWXDd5lmNQonjjbc7X1RWMFywYGcqG0WK2qgoTuM9Nn9r52oLSCQzzN319Gx0ckOJJr5bOzpuCXDg+L7azPHF++/Y2d/eR/fuJLYvpJbw/HOWOgAASrRZpd0gDJu3sE4yrK+pjoHyhwju3OONVzVRU3PTxwdTTFxZWb1zwCO3Yy8kCEIedCQHbneHkgM9utDuN+//Wrs85Up7EyW3Lf14WnNw4WFAuefHaStF2K40cV0FaWk1d2gLmbm7qqBCW4bAAOqtBaKCCfMeddm+vrZuPuxeHazw/vyc4uD88HPe/dKq0YqaCHbheXCyZKsEzMuWcQ68i3TLg+BPhbI2w1cdj7h+sKuau5dssBL6C3m6uJ0P0dtQ3qqh8hTzO1DBojKetIOKPo6dDB+3e7h4zEIPhPPXAUHhif2X1zN3oaNqvwiSPpIHUgXuCrMLQ0gtb0aEwCEyKth81IZLklcoAd+G+EeBu2iIV0jU5vookdwLc8RPQIDDA/TxTnNc16aLvRi/U149mZCAMmxwdW1xc7kRG1hjm3ILa9nhc3eHKTF+3OV3EhTSFj3e4XdrrwTwknfyb8TUp2UPpOcMBMbecA1pIjiMhY9DBp9HW+YvN+85u2HuK05c4geDijRDUzosonYctCTStLtquBNnZ9UPhUgffV4C5mwnLvCQRltFQcudJ7tsO4+5ttj+7W381OetBwiDz48UDwjBDLTsGAxSLOxERKEZEf0byxD+g+yY9IkZ6PcbbqCoCzZK8jEJbRoK5a8Luf5Ybnis4pyL+JW5cHWa2KIoVTu6ptKWKjh5vxLHZsWq2yjBnqKmdcw1qJR43LixCfUgH6sXdqCjMirgVKFXnxRnAxgYjBBkRd3h49IeFjWZmIvmgFsSl30MumigsZCJOBkPArQCXFhePDo+Q3hCnZifcPdw6TCr41Rg0mfNzk458gwmPI5MGtmfm4cFt6D5AaLzFqSS98TYD3PExagrqy1bd+T36q6EJfbRhgFkaLwklj04nnBSKLFmk4oE+ys6er60Nie8lXSl2YK7NjelKnbPBtEGHXXBz2Mbz5+wcAN4nC+FGXcL9hKyHWeJ2Av2XmTcalXIXvz0i6U5h2QSTq25oiLgToW/XOzQ6ULbB28QiQb4izJ3/+Zx0lbiPiN+Lr8E4jgJNpp2o8jQgodY3OzlNFhfjDeKfUF45u3i2qSaroYKwnkw9RmGL+nhQ+7eVSeA35gj7f63wDNlSRilL+JNLyquWXcrSFuUnkEuRip39m0PievfnjpRUTCEcEPJYyZmjmcG9bLMWszviHY+P2DP8cdWPfqpo46UHVc0BdxV6+8rQduuB3iWRd2mj/ntLVHfzTT6e6q6QgzvCG55TqiHwHVGAdY6I2PHlDgrz4J7guepq9DCDiYl5xeM+ETddA1sd/ZpR+1wCW70julDNU7izL2h7kAc8QzsDom+R+QryMDsNkzOCRhTRjV5XelxV4clkkpcRqO4WVN2lCjMi7L4s5P03S6HtqnoyKwHcpT5czwRwF31T5YD7YVXAncPcjy/pm2oGuK/AN/VJqco8pnXq1wtzv75SyHsZQPxq/YrVhdqfD7T9G0hv//rYpT5dPZmz31g9ma+3Y6qZysU33DGVAe4IIMVMzvPg0KlbILkvx3BJyTeXcszf0VBX/4McWP/jUjj7UnwcTdcmuayEDHMXQStOWAZ3BgsNYYS0V7dQt1Bfv8/rekLGIEZ3zMnJD5Lr6hd0vo2chvsxqULxz9ZzaLsg484B7p+9tu3QGluM6Mcwn+Nbdrhd8grvIu+70qnSwaQk5FlE/jFOoQULl/xID5qtFVoQ/zJnvkuesdinSintvGHp2rUkTcAQCiFHU1YVAYu+sDC8X99uX5RBVNHogeiGxYbK6pmcRzkBtwIKJwoxyRdNFuWN59XO13b7+hKVDz+WtN3FjpYo7aSxS7Q+/Lp2vX6hri6n8BERCTG6o9YhByPVifRMghfF+JOyjJHtkF9F7eyQ3pDyqpmeoKBmJ6cmR8dOT885gwFzkZ3nte3OXzC03Y4js+85uW73Sc7YTQK1E0xg859XNv+bhwnkx95N6MCramj7z1eAtv/qSatLr8TU8SUzYRkN99RXeZI7O6Wxy/0KYgHzv3eXN9YwYqHTy6vRwQFdaZub22BCwr24OEPdPKNbLi7iEaP00fNlmPt/TNixAgrUtFFVVZTWOPtibp4s3d4zH9ot2zwS4E4DGdVJGt3Z9s+pDWgKaHRHB4T+CyHj0Ojg3uYe1BOUO5bLCLPVM6STXjBegJHerc0NnTsaQyxghrZz3HYRXCMlGRGLJHRSamwo26gQgRVOAQzvwiSKJQDujOF+ch1Jdjg1O6UPp9fWzT9ITm5xdr7ONdZ4ZD3BwbRNtVt/hTlG6s5vsT+3eZ/EstL+HD5JZ0TwBTwij79ych82TJfpzHqmy3RC0HGWAHB8WDHcTWKRKpFsfkVVtP1Joe1KkF3rksHu1mDuKrHGKTubNrf+n1JYRpBvoijb8C+iuBLitsX+rL3PDSybasMsUu5kcXGrqytNg3h2eGTk0unayoS2vDq9EIP4K9YecjqLtWOmQ2xSxf8VUt3/8n2ptwp/CQ7nMrT975y6kUhvV+jJcNLtCsBd3Lsi4SPaFkodSq1fqC+pmHINakPZ3et5zd77hk/kzYaGxW4/P8yEGHVQrWjqIG1xfBKZZyAmJn88PzFzEN87U1mJCmVcMOLmIPTC+8NxfxjufGEbqZZR6Il9N+2f0UWQHCIUoRp/n7ltI1L6QkOZ9ovXdSx4kpTh0PaTKDEb7U6TnrvOlx1fmzcYUIyYy7qNjcjB57Vutm1D3PWGhEwWFVVUz9TUziUOJjo2ObJd53M2UoF12niWcs/JZhavis7TIJn43/KPvBOZ9CApZyyHGVZz/zEFvJoa1Fa8ZZ+bPlghhLljjpSmHbwg9vZPCe/9DNuWYxsP1+307frM0cz9uSMTRUVI7AQ3tLm7ExM/PWcETwS1lZNik9jFSwxRZeoxJmNkM6122aEWaUlV0Wez7IayeiptS7mkqIu2WedP/ou/fF8E3CV2KZIzLkexomydLroHt5PWEJYHuk00Nqin8fvvJ+y/jw9KpkrwWPEoTZ5MB1/mAfcPLQLu72oC7sp2ekmo/dfLvzTQ3yVgd1Wqu7m8zN8lW32SIi51YRETDpa9qAiHGHducUb4DKeldXl73/L3r69fCI3vdfJrlm1CcyWP9qHp2A2iALFAQVc8WYw+Gd/LH1ddu5bE3EWJSOrYpZi7kurOKcyIrY2WwoyqtvtKBH7UzxgsIeD+5AD3D1cRcP+q+KY+MVWZxyG5r6awzMow98eD3a+vKiy+6tf15xlqf4G2Pzl6+ws9mScj4H7qBeD+DXNM/SoB7gg1LENms8aBX7zeq4B8qZPcLarKqDLcFWj7krC7DHmXXzxk9nuLQpNLMnHEnl7s5ok+I2LuAtcV751I7nggjOR+9HXEPSbb+dra/Tkjcen38orH6hbqCkongmJ70HBvtj+LsfO1bYc5QRL+JDX+fIno7ZsZvR1zlAC4H8UXr9/D3FNdAloWGxpcWl0wGFfMVKAS8236mjWHBCdS6cIyrTMN5rsUZz8oQO28Dyonzo5sgpyI0oip4KaPz/34+Ony8p6gIAzSqNwoe/iz1dV1ob4+ZiBG16RDIUKlIq1nTHphCX0GbgLEHI4/g3qC2AH/7GyMKKhYUslaamFJrJZSHjtEb2ODYm80LmTmjeJHZT/MxntH1SIpUoYQHVljQmMPvsQHhAh9HjLZYRHXz6PDA3PRo+zsZicnKvktzs5MDaB2zt7nBuYiTtqCUW45cOT4mzsIaufOv2+TnH+XwgQKMzeSvPiFBtquhgmqysg8trT0sgSml4+5v6ypMa164H3TPqZ6YZg3xN+Pd2xyRHRgzXR4eKClOMdVXKJwstPZi4vVs9X4Gjwyesqi5AVyqopAipqkuyrVXann/q76Lp3KGRoF2v6+uuo0b/N4iAfceWI7VzOlSkfiQXXRkpSAML9uv+i70QceHcBdyh/Pj70Xi8+4trna37BHt8izTc/J2KYi+ZeqKAluWALchf1RAkx5FwpSxDrI2z7jZ+Ln47W5troaGSfWeD8hoUmnQ2+KfhFhS9mgrHLaJ/LmLvfLWx0vIGo22p2mbSq6Nuw5RZAi93n2T/gMv4nFdrBMODsTcbb57Bd8WJmdF1lStF1hPryyUyOPj7YvD3P/tQJzX0JYhj9NQlH2vizKNvKgG24mbuwW+3N7PK76RNwkQAdpDRn7pq8v8m1fWFjDYkN4fzjWGOLLuGAUdcnxGSRt9KEi5q4MNHF/65/qTqpKVXcF8i5cPxAwFfouKdpuiiOO3s4D7odkAu4KwJ3hX5wLMUYETDy6Rl3knUhWZ0sm3IPbHf2anP1bguN6UTGRZ1CnmKcINynhgxv29ox+zhmNVtYwMeWiskmEHrJT6lCqYzPDshnQLGjvKMjd5l2tgu6N9EWFb6KwEH/6RnaTzzZiYePe08LxqTN4XtscL+x2v+IX1V04UYjKiODCXEQ0/LMc7IK/YqYdzczEK8wtGiPfbyQNJBBWB08KXqaHZT7JBBpSBTSJRJ23Mdkgc5oYXp1eKMp411WzVQ2cCeTC4iLWBm5F1N0o325f5CUSq8EKYaciJPMc4ewRdyLyxvIMcwa8fka6N8zhLeMn1BsX8ovHJ4uKEu6zIxfhif1IFCiszPhk6yGx85Gy2k1C7VpQ+8taULtcqH1VXMeXr9JmhTn5b60xSjHzSvmzBcAdNxO5FGvJwbexsmYWbaF3lzceXOZo5lBKSk4Rs+31Cu/yDOtE54OnjEeGlcA8mT57lVFnuDZ+ScD9u++a6cmY09stt9O/Xo3LAuHdIuwutWs2ycu8zzBdnuoulHLxhI057E5sd9q+Qjh4dXkhkd4OCEAPiR54MCGhonrGNagVNXEbVxM5kTTG2EAziYsXkrI/t1t/FWEyVVqKFFEzV/MoJwc/Af0PY8+QRKQZ5v6RIAipDrtbNFNVhd1/+xhou5V6Ms8KcP/XcgD3/zwTwH01ZNyfmXXq45Dcn2/M/XlD3q8/ievrgba/oLdrAO4Xv1J6Ml9nAXdrAPdnJOD+wjH1uRVwZ4A7IpUOnkuhHKl7qirJXYZzvautArkU4G4Jdl/y0j70ugx9SerpJa281D6RJ4r+naEGIskdgYJ849TshFF2/8j+jJGMqZKS2rr5mNQBnW/TVt15bvI8IoqAv7TpIC588MrmT3+xRUTbD79ue+QNpvp6DF+/ed9ZO6/rGKjEI+HNjo7IRIhbxI/oQSouPtEaiD5zUCS/C0vE1I9iRQoq7YcFqB0/FokJebbZyQm/KyVrCH9mPcwyzLPReqG+fs5g6Pbz69DrMXIw89LbAe5t7pjP00fSF4zGmto5nW/jDtdLuPbomb4zG/kW6msMczmPcvD1D5KTUdIIcz/J5SaxbWXc9g0b8NZQnDq9vGgywW/06mTq3iLaLpUeFrnPdJF9pcjYRYJEEbC/YY+7VzlT2ebuToRHElsYTkubq6lxCWy1dbqIwZWzdGOA4BtvHyVWO2/stuU/r5jOv8tggv+xEm3/uXVou7WAoIbehabG9HIFpi1g7n8005g2CcuIhgREcsfdw83caHcaqxdPP3EwEb0P+riGhsWbPj6ozaTpj4eOxYCOEI8ju+BRaG8onjWTDPqclwwiXXItENnEvTWnuv9Fjer+nkUdqne/K7WI0ETbBWacOUrII4PcTIa3wHPbT28Uj6UzU4HLu3AfkCU8Oz3D+8Pzx/MX6upGMzOZjEzpRMFEQXBvsHu7u0OjgxRwJ54pL6ksAu5iwSQN90Oye6V0TOV9k3/EC2dzO4VkmsrMD09tQMLH752prKQ4RYwwdjBRg7dvR+d6y9//AJ5RfO9Ot8s2uvOMrs7AdA5Z2MmDC+t3nxQ/iYBau+O4EFNHTTGluoP1ltoOlrpouxx0W5lL6mqh7Uti7ksKy8gDTcM9VTPKcG/XcWehtjt/wcjdETf3547M19Ux2LeoiOSJsMZKK6Yik++QkLdnaGdlzSzSNaKSGSecWi/brTmopLqrK8wIbHeTyIwcfzfhKBKo3YRzcaiJCeoSGKbEcEfrJzNNldghEOBOAUXqTLomHUKG9ne9wjo9QjtQcCcKC1GkGnU6IvujnGH1PsrJmS4rq+U8TlERkh4khfWFIdDoHAl+IH+I5KQEZBf449RpKtvJQ7y/Kx0QwU9AUM/Xsi2NyeJi3Pn4/fd3uV9hxzu4kx82Due32J/d4sAAd5RIR7/mvOIxY8MiXh6GN4xGNPlg6MLEeycykonb1NUZ5gzOLc4kxo2Xx+dGUUJK2Hjmu0VhC1DUiWLC92e3II1gXsTMqmvU6dv1oX2hDYsNWB4zFRW4XUGxPWEJfcg/eOVz1dWo8kUTRaibkXciUf39uv18bvqgpcFf8TE+iEu/N1FQcDswsD8iYmT/fqwu1HfcTMdmx9ShVLzmvOLxkLjet12+XL/nFJYoFqqoGSXfsf6HjNX+qgi1/8lcPMqC5bj6Httj+qCsBHxfypn8J79TF21TGKUoyqt8sw0NCe7n2p3H0VIiqHGrkbfR5+AZ1dUvBN0OCo3vM3JHkVB8kRAQ/r43fbF4sGywYlcAuGvS26X8FSugdt6s81cWL+5rlkbef6tGjhGHBW2qu+KcDV/QJeds+B30z0yhTcclEd2oyMkPkhGPRD1Bbunw8EDIRKXc3a2/ghjfsPcU51XAdNLWbDvM+TeYjquibuKhJGU+QOLFjDBbVXV1z54zmzaxZv6NNw5zzTyPub/00sdasDslXeRXKxRm3lE902vRzlbqd2sJbX8BuD+GjPvZZ6Eq8wRJ7lYIyzxZzH2VYPfrXzOcfUVQ+wu0/QW9/bnQk3magLuAtn9FBdxfOKZ+5QF3hD4/4J14C89TxT1V4JkuQXJfrn+p3MXUkry7miK8lnqMssG0jlMjw9z/wGPuJgdFQQ0Z9x7PHwsWcYabhqTu0uoSfTd6NDOzLywMY3Nm3ugej6sb7U6/ueM4E1KwYZj7K5txcUoyJrT9CBr017cf5VRf0aaf2LD3NKZWNPQNmI8xIaemNjk6IrshtklV5pAghyRC7WITKSO/y3tQ0RCVCbW//jpCGj/wFId3IyOjpo7n56cPp3t2ek6Vlsbvv+8X2Y1RISj2Nt5I1WzVcFra/fj40ulSvMeUoZTZ6uryqmnv8K4drpeILU5EV3xs63Rxr+c1z7BOjCUY4KdKSrq8vFCEkHaZwZqYyEgaHr/d1rbFxYUZbBY8PPDoQHBPMEqWuZKMaCogLkXCEBEuUgwRazjuXhymUDwFFGzSFiA9nLtRUWXTZV5hnbbOX+Clcs6Nx99gsOARbVjw/6SWbj+0JDBtvW77EwMErRa7+C+LmDuvd/EzMzF3E8n9fdE9lfd1ZCR3JjK7fs/JXe6X6dF7dHh4d3nXGOb6QkPJhwALj23wbNyIJ9Ll7W2YN6SPpKNLYoIJpwXBhGNvmKjukocuxZGlehci6qdl56jutCz5jMnj0cI59I+VaDvJvxIP1xxql8rIENrFtJUbGhaMxsGkpN7g4DuRkXX18xFJ/clZDzDPM4O1Dj2TlLm8S6TcygTcj78peqVSnWQ7E4d4oqu5PAjdK7rEt8B2pz5j/hP4meitfG765I3lZeSNTpeVoeemlu4C12ORveTtwEAm95zUv9Pt0hb7c4IOOzsRgmSFP9fuZJg7ibOr7F0JAYXlYV1M/UVVtH05FNdlHRyR7GP9cPnX8jB3tUDTdk8l+ab/EeSbEGU/2/DxS4iyLf8hzP2tXZ8jiW11vLDT7fI+r+uuga3+Ubdi0wZyCh8h+5WUT2FdBcf1uAe341+3O3+BhziSnp4/nq9r1GF1MbNirsSbPAC4k0PUSigVZiQbXTLkXev6QAa1i8R2HuFSoO2HeDcOHm0/ZtrBosMiUmFlMaycmp0CbweiPqZmD+Ft7s8dGUxMRKFpd3fv9PTsDw+f5URjFlkRZX6SzCC0kTcIlYqVk0GoeHyEjyyBQs6zyD99RdrTmaTMjr6OTgnVH5Ml6ma9ceFebCxiOTrlrpN/M57LdhcmN7FVkJtArcSzIOfSTi8vDKKXuKmM7Qfv28dcRhbqK6pnou5G4aXidTLSPaHtx83Qdkmwi/azTOTqyBpmBXlyHYnwMDuTq8zOJKwvDL/0XlxcT1AQWhTUdxR354AWZ/8WrJDQhL6Siin89gfJyYtG40RhIZqB8unyasMs+8ziIhoAVPxWV1dkiVv+/vhMTNpAbtEYvgYJvL5+gZxsUVg3MLT9mBRtF3astbTa1aF2DeWo32lS2lfRBOWxLFJ+rS0so0Jyl/qmagPun6BvxC1Fc4jOECvEUDdPTvKZeJajmfgYjxKfT88ZQc+JPFAzV4MLUzXWNhaqJcD9z3LAXUtPxnJr/ZsV4eza+PuShHd1KUgzqvv33vvesqjuoryVeFwSoV08WTxZVIQmnNCZG/b2CAo8Ap1vk43u/PrdJ998+9iabYep2DF5PaYSeZhL0Sc27TuDR+YX1Y1chB4g7cBwh4cHKixaXxKWkTXtxJIRpjUF7C4Vdl+C6q4Fu8vB999qQ+2/1RrOlgW4Sx09njzg/okccP901QH3Zy7jviqqMqtBcl9lYZnnAHN/OuD79adwrTravlKo/dmg7V9NevsLPZknoSfzQsD9hWPqcw24IzMhXhEfRDg1ibmLwjIEeP39R5ZJ7pqqMpYBdyvBd8s/ZCmoXX0MEFt8BeYu6LmLYu6M9yq6px58iaFXR19nTLdzNigRGOxH9u9vcXZuc3PDjBqXdm+78xfrdp/kCF+8LDhdr0qk2zmgimFV+JNTlTmJPt7e+wam4ozRDIyyXd7eSKNIDQjFIxKSu9hHIjaOca6kh6Tkd3nTSaz2oxKtduRWpHtUI5G2g5EgeiC6uHwSY9s2p4sYFew8r7kGtgbF9mTmjWKIK5kqqatfSMkawlDH7BCdLm7Ye4oBcOxdHMeAgRe/0e60jcO5Ha5fugW37c8dyRnLaVhsaNfrSVSEV63lutKzmzYhp6OyDiaw0+jlVTN+3X6ogViBSIRITuwE/ZE1CpkRcR2K8j4McD/MThsgZ7u0upRNM1tX5tpqa0vFAO8Ub3MoJaVipiIq5S4eysa9pzlekoC22/DE9pcFY7efrv8/qdosWaTKBKYfzyXVCrR9pdzbH1qFA5pj7v+tAgVqaUwrfR1/ztNvma/jVscLpM8+UVBQMF5QVDbZ7eeHAs+k/N966yRnkIu/YnAlZqhDowO6CZNkOcc2VZxs4M0k5DigUmFGznbXdHS0aPDIhtq/KWdyBQ9O1E3GkhMFZKSAIHn2end57x/Zf+DRAbxHxiJvaBiIien09ERyQDj0h4dX1sz6RnZ7hnWGJvQhrGrmaoJ7mOXdErDgESUsyAPugtQS3Si2P8F5jZGHA4MVBPV2Qgkdmx0RJgg6pCx06ngi0q4IgYlm9E5ERMxADPIY21fbd1Z6KIQufIzwpwygCrW/JEhpqWtKrPnbD9ZYAb0tV1DiR8sA3L+1YsB9hYFmwT3VYpQJwjIk34RisY7D3FEstnOSwUjUIfG91YbZ3LHc0ayssdxcJN6s/IeBMbf9orqR1Wtq55DAkwaTEHGk48QwdzHBSlYRtQyKnRsZ8k7XB2bX33mcXRVqx0+mOGKY9We/ILY447YffV0mzSTsYNklbaIAAIAASURBVBG33WRjeGEbU0q5tJP2sdza3IJ6gpDS03OGyyqn78XFIaaGU1MRaPhk/UJ93L04r04vBBTvC3phm1ScXUlpN4spwtmpQZN1Ydy7wL/iLeBb8EPQ2tNhEcajn628GxW1gGKa0Ofk38w5u15CNUQE7XK/bOd13SO0A1/WFxaGCkUTaaNOh0AbLyjA0wnrC0P2wE8jtF0UbZc+JtnG84c/5r0ZhI1nPFOpnjsdv6sxzCH5oMrjup+QkFs0Rgr4u/VXd7lf2c0dTUO9Doy9nV3wEMvGuMDOruF13g4MxEIqrZxmx93q6h4kJdUt1KEzwWJz4RqDiuqZxIxBt6A2TkmGa3U4JZmXNh4UzocpD7KsCGq3+iDLCjXZHkeoTcuWXBHstJP9joqMuwxw/6sG4H6YAHejcQE9TNpwGjMhWDQ6B7Tgk1jerq2uqKec1NJ48oNklB4sgCUAdzMTJlPfrnpyVOvM6JIN9kqRdyX4rnog1Qx2N/mfW6C6/0Nd1Z3qO6kzIV3su76Ple8KputI7I1LO3YgiMqny0PiercJ6klk1PTSxk9e4rQi0U/yKXo3c7VBF009wGxl5U0fH3TCaIEYgQb9/Jo1hwSeu+l8quDGpIDdLSvMKKnuctjdsonVCtB2c8D93a8C4P7ZcgH3FfimPo6M++qqymhbp1pLcn86wjJqmPszhN1XBYW//pSvFUHtzy/a/oLevjK03UrA/bHp7d8oPZkXjqnPkWPq4wHun6wG4P6vVQHcyT4LOQMRSYIeDHM/9BovLCN3T+WPlltDcl8B4K4FwWv962+XgNqtHANMbT26eQFzZ+9CEHM3ORCSIDInLIO7RPoMIb0hs9XVmJ9RLchDzNGvGQ03JiUmsMAwd4ZGMW771kP4Kz65difDqQUMi8HW6NE37TuD4TyveDy0LzRmIGY8P5/clhCuR4nkLmDuRNkg0voRyeell1RABkkBOQtVocXF5U5k5Mh+zGX7Me3jY0xrmaOZZEa3VXd+497TTHZWf9UloCUg5lZazjBmuZny8rzisfDEfgzYeIWcSP0JDmVjB2mJoU+Y+xaHc5gDHf2aGhoWFxsahtPTGx0cUDaQpqWgHptePD3xNdWz1TmPclCokciRMpmYzHGVQ/QmsjMHJhLQwGDEI2vwLahL2Y+y9+eMDKelkV8rtbz4pSiuA9HRRZNFgbG3GRGP2yfAaya0XQIOypBBGVKgiQwuG23/tvVo+w8f41oaDbSAub9jgX5r0dfxKO7tPu/rWP+zVVXk7YY7j4igIw6ol6i+aAvQjWHVGRsW3drcSOEBrQFqPhYA7fnJtK0+Vae6K9juosiMifAu8XXk8fc/f09m7ShITvNQu7bBmvTIOaPfnlxHODsxSZE57W/Y+3X7JQ4mpjxIYQr1c9X3ExIaFhtmODsERNwNe/vrZG7p4nIvNhY3Rx/CRKid/Ju9I5hPstG4UDpV6nPTBx00fibuhibmTuAgV+tUMPePZe4N9BYYLVfYl9I16pBYsgse4pd26PXotNjpE6EXoZDBI0NywAMKjuvd7vIlgvqtXZ9LaOxHXhdO59BfrYHaWUC9qaIp8T0LFqlPCm1fHcB9lUjuv1eLsr8qo4yEZTb/G/cZN5wkyDbZndnqeGGX+xXkZJSM1OHUuHtxk8XFPcHBtwICsAJRkpDb88fzxwsKDhQ+ik+/jzWJTIsSr9Bx0tq84WH3D38snpngQRGz68cCTGISkJGy2j9VstplikyC/wG6YPTL5DmMVEBQO+YMUmfCGIdAc2529ujwCLgVEHsvtniSabngbeJ9ZYxmhPWFeXV6OTU7YZpk50W+3C5C7SqmCJLzIoodLKnSDr+JJVz0pviYIoz7JIPnMPPhVRElfCglpbh8MinzgXtwm4NPo53nNTvO35V7TGNDqamtrq5NOl2Ls3N/RMRkUZFhzoDvRRphpIezW/ioJ7dkTrpd5mIibDxTspKqRdGLITNklxaX7IfZuC0o8fhFjdyvuxsVVVUz6xrYiuKOGm0rWj46Mw7+Xs9rSEfoAcIS+kjRDuWeWPmkPRWZfAdfQ9/Ivtfpog3XLaATIPU80SJeSmy3uF29BNT+eN4n/7tik4ZvLYm8L425a5Dcf/57dRl3dcD9Y2K402a2b2T3AtdbllVOhyf14/4zC43TG1E9g3uCqd068OiAa6srFqS1gPt7moD70vR269H2X1q8rOe8m4vMLEl1t3yC7SPTMRHp4RUEEVLNbGUl7jaq9oVt29DDMMOhffsoNHa6XUK7i2WPqod6hzVPgvv4K54XPo8mE+0QggsBlZX/MOth1kRBwbW9e/FDMOpTP6/o28UjqjQHmmB3zlL17wLsbo65m+T3LcLulsF3S/Snrxfgfsgy4P6EfVPPygGp81okd8uA+xMjua+asMxTw9yfPOz+/F5PAmp/PLT9ayAm84Le/nXWk1ktAXcJ2v5cCLi/cEz9ijimMsDdr9sv4HYALn2Hnrl10cFzznYJb1QpLPP4JPffPfb126VJN8oZYKmOX+zpqf2UirkTyV3hnsqEZTiaG6NXt7hglEUjfj8+3mhklFXPsM7tDN7FOErqJYwBShepPb4pY7iTqgzjLWKgPVDwaK6mhsFwi0ZR+fGYpEGXdpBibMj1Zjlb1DVrEIeifDZ+1FhubnH5ZPlMuaF2LiN3JKdorLZuHr+rtGIq9cCwf1T3bv0VzNI73S47+jWFxPfiyzC3Jz1IGsvLozPmUSl37byuC66wh2i6EAF3vN9N+85gDt/h+qVzQEtR2SSGQ1HjhTQriF+PMWayuBijSM6jHMw2qA/IqTzQIFetVWgN0yUepUcGwjc6NTvljuXW1S+0u7vjnVKiRG4lP1jeOTD1LmZUvEi8Wib1s/UzNRkZHilYDtr+ByvOv1spJmMBbf//lrq0YHcrMXcN+q0oOGvB13EDLzX75g5mnbrH46pXWGfageHEwcT88XwsOTz9i1TpOc1iPJGbPj5Vhlmfmz4OjQ5o8dA8OjY56tv1Hh0e+AD9CMMET7zFPJwFsWkp1V3KvVUaPL6vZvAouaSS0+bWjlKBV2LjkmI705XmJJLxwpiFI2dLiKjPGMkwzBn2j+wvrZxicjrVM5n5o7TT0OnlhUV+lTNyvMRNNVc5C9/xvDzEBaLDzvMa7pUdpwqSU/iIVmnC/QQeffvClrBCk7aMAnNHdHz2CxlKqKgqAjcfCQLfi34Ed9vYsDhVUoKQ7w8Px7NAjPCdAedmzHyMt27Fy0ZayBvLQ7ALZ1n4QyFrtpnyGF2WoXYm3yzXlBDQN2ssUs1121cLcH9szP1xlNwtR5kG+kbCMuw0yVYe0Fm/59QWh3O73K8Ext6ur1/wv+WPCo4ldMvfv0mnu8bNPJjKmp2c2vV6fL6gdGKmgjkuMssWbluLONQ87H6IW07/ZieKVBBnYafzJx+qXdITFQLOrqC0m3D247wWE4nGiEx2BcKOmMEshShDdXBsdnRtc/Xq8gq8HRgzEJP1MKtipmKhrm6isLC8ahoVKrw/HO/LpdWF+Q9f3Y3pB++RTopY0GpXyLWb1xrllsOHElOHgwKv/Ogb+MkM97ywDWHr1uZGR1uYQrrBkJo95BvZ7RbU5hLYqg9pj065O11ejuzX6el5NyoKFTBzNNO11RWvWYx3ouGbGO4C4C476SVnuNP5FXw9mSG7t7tXzlYa5g29wcGMTc/NsfigPyJiYXER2Qb1HaUQiwd1nMxd8YGNw3kSwEEHgi/grkvoB3S+jXjxdPRtM3OFPSU6N3DGyEd4YrtJRsYaj3FtqN1S9fzV09iuXplQm5X+KD9bDuAuFNa1O45vsT/r6NdcWDZRNFlEMuLoFdkZI+6h77q8K/JO5IHCR+gYdU06LHuscyngzvswmQHuMqKMlp7Mkmj7ynD2ZeHvUuTdCoUZc6q7uryMWPEFzJ2R3I+zWomYqV+oRxS3ubuje6Ft6Su7d08UFJRXzTj5N+P+oyZKGe5SwF20Zdrlfhm9EMp6aeV0q4sL/Sh0p5iuj3KHU4lGIzbwUk8mUd6d2O4mhRlB1f1P2gozUth9ZSPXOxb0ZCwC7n9aDcD9n2qAu4i5rwrgflgA3J+0b+rTUJV5HJL7ExKWeZqY+zcNdl8p1P41RNtf0Nu/4noyZ5+Fnsw3UcD9uXRM/SYC7saGxYV61lzuH9m/aDR6dnoiXrGs8IgUwjI8yZ00lAUyqRbJfTUBdzNKhrVQu6Kb/1+zS9rlU1svxdxFYZk/f+/7f/0+uafygy4n1ECyyMigpVOlyVkPMvJGCdoIT+x38Gnc6niBKNWixjFdAj+UvyQy7owUow/pKKucblhsuB8fjxqGlESnUI8K3bkCc5fGAEHwPNTOybUTiIYy0+3rS0fXM/NG93ld1/k2+UTcxGvGJycKC4dSUqbLyha5E/H4JD6YKi3FFOfd5R3aF8rOmAcEkIpres4w55B28g2mJsHr4WC6IDF3TO8YDrcx6iWzjSqtmKqrn29zdUUJRJkhLgYqa09w8FRJSf54vmurK1kIiHxekeGuUDzgD/h/8nNS3hRVMlCLsIBnKirwRjr0emTnY9w2wynOEraVZOIfZvtFddvozr+1ix0ExlCE0UjFy9Fawdk/rgI1bzXRdg3YXRUvWA7m/l0Lkhdv/J0kL0RfRyxsrASmXur6pXc4I24XThTO1dTci4trcXbGQ8caIOin09OThIxI7T35AdvLmTcYiE2ZMZKBz6O2s6M2R99QGOeaEMAPZWLT6krTEptHNmm/b/onc7FpLaidlJHJuREdK4ICrzZxMLFuvo7psNfOGerms/IfVs5UPkhKQpQ1OzmhC2SrXWyDbG2ZiNPu3Ww1NjC5DyQHBAh5DuMD/DU69S4TnubsiGMHYhEX6EDxzabQ4BBDpnSvJTkt81N+RZTBIVdhhAlubL1xIX7//ZxHOQMxMWieGNWOGzURL8gV6Gnwmru8vWerqxeMRtfAVl6slpA18aSOjaCRtUVDq10STQx6kxLbFVxXVbT958tH2zXVnH+5mgTY1bVMWEK+6X1plDH5JhOJ0qRasMfjKopF3lieS6uLa5trwUQBniyiDKkPmZBOLaDPxpocLyjAV9Yv1GMNs+NEZyRMarNFJcu6kp1O8/bBtAkqwdl/8W85n/3YG6TCpHA7QObHsIKZyaHRwbHZEZdXl1fArQDfbt/0kfSYgRikdLw1LMXq2WrSqsKfI/v394eH94WF4YO0nGFU28zRTN+bvozbfs0OMxPzQriwVSYj87kG2i60lrLTVGoyViYX4n/yuYIaABFzZ4al57bgTeHtODY54vWg6BiNC+VV04WlE2EJfQHRtyKS7iDG+8PC7ickGBeMyCQuLS6YUGWHWk6tp+GAl1aT1kHJvqOJbk8bz0ffwNvEROXe7j5fV1c7X4t6zcyQd+5kyMvOnZjSsTAqqmdcg9qQn20cziNRE3pO7sfr95wiR5YNe0/TtRGXHXftPY0vQOnkOpljUldkzhP+oBmxXRbsFqF2Or+ifSzsR0+nblqzdf2/1mHu6iR30R/F/OiYBcAd8Y6Ui/SLh6XzbcTiD+4NRpOJBowaS6ZrdGoDFnzacFpIfC++QNekQ2grTFNXGXC3jLb/cvUu62F3YVKQUd0tO6nKMXeSZhJDCSGZOpSKWowGhpjp57ZsQRZF/KLuI5C3OJzjSCcmDXfBn0k89MkINNucLqINpgYVbQ8aYCRkEtlDzT3Gwe40MNM8TBOvyHwnhXeMfMR2F6nullXd/2DueLXSo8Xmdloi4P7Hpwa4/+QnSsCdw9w/kfumfqrhm/rZ0/JNfRIy7qtsnfqUSe6Pjbm/gN1XEWr/qqDtL+jtzy29/YWezDdEwP2FY+oTEnBngHtwXK9XWKdbUJtfVDda9rLpMky84rlUJizzyUsWSO5KOUhVkvuSgLsVEoMmo5/fLJPVzmHr3/rfb6leUthdVVhGQXIX3VNFkjXCHdUsYzQjZywnfzx/OD19qqQEd5IUTjfsIYroMRJheN2kycBfIuCOodfG4Zyd1/WM3NGUISZPgZmZUbbXrz9Op1BFRoyczC4SN45wIjOIUgQ88gvy4yXO7qldr8e8nfMoBz9TH9KOMWCf1/XguJ55gwFjf/Fk8YOkJMwDs9XVk8XFdfWM36rv0O+7sc/+hr1Hh4dx0XjL37/RwYHIkhjt8L7wajFU4GUT2r5539kt9ueILrdVd56E4INiezBs3IuNxfeiOl7mINdWV9eJwkKiW6IGIuXTqX/Guzwp065V6Ory5nWf8uZ1zC719AaU+unyckw1uUVjtwMD8ZapGyZ6+3xtLa7sgof2Pjfw2jAj8U62RMi1Em1/5QlozloLHDweZLACzN1EyrOIBsqFZV7ihGUIc6eDGuGJ/eSqF3cvbqq09EFycqeXV5ura5ub200fn9GMjMTBxKi7UQyXL50ITehDCvKN7M4pfITYKa2c0jXqUNh5zP3wa6pnHRQUVKXY9AdLi02bzpULULvon0ZQOzoC9FNubW6IAs9Oz8KJQkQH0Vfzi8dj0gbKp8sfZmUhOvC+0G6inUJnc17akXCnOtAwYf0jxPDtsWkDiHGTqgPHKt3jcZVUnhMzBrFkDXXzBeMFzi3OaCqJ/aqpMCMghuJF6QD/hK8RXeDQUOOHB0Tf2utxraZ2rtvPD70OEgW+44hg8EAhUzdfVz3H8E2EDOlicfR2wYuCAxde2czh7FwQ8VD7hn+pashIiO28jIxcWcI6tF0WWcsC3H9ljazzt1ZoULwC6qvVR0k499QfCu6pCmEZVI23djJrPiykipkKhBIKEDJhWF8YkiFWGjsXxZUMceuxydGRbWvV1vrc9MF8QAivyKemzlE8SGEiVpvtd0o1zWn7k4HsB1+WGguLZHYmF3NyHbI0ViDpL+HCUnRvd896mFU+Ux7SG5I7lkuU8P+fvffwjuO60n3ver4zbzz2yLKsHChKDCIBZhI5NXLOORM55xwa/8N943EY33GQkzxjW7KVLOZMilEkACIRIAmQIEgABIic1/vO2VXVVZ0bgSIlSrWwGmCH6qqzw/mdfb6NMFReNYPzr66bS8gYZIpk+/erF9X4J7iL/sjIbm9vWBnCR6dKRau/EUn9QXG9dfXzrC32DS/d5sOkh65nXYEnlbQeIEFtLfkyJsTx1+el1jVyPQpq8CCt++KdibmT0hROANM+nIxrh2vArQDS3W5qWkrJHsZPuIuauRp8cXgVvd2SaULAgLvYR1q+HkAOkK6/fOEZkyF8HAIrbnFfcDDGANtVxidaeIDJ9lh2NsK9a2D7ducL1PCcCtWpGYPm2Cn1RtZswjPYp0EMoNShQVxaU4ROvqj223/VQe1mdBc3Fi5XKVZaunpt/nYWA0XuFgP3L3D9cbP2eV7F4Kmarcovmdjpegm2z5ZJTmxA7kQd45uWmmAR+77ah3FI+1OpCYqiVkYXuEsZu5Su6+jJrBpt/5nhw3zybhK7S6XuBuRl9DB3ZbMTBE3kHkiMC8smSyqmhlNSkFi2OTv3BgVlj2WnDqeGxvchdm+QdWkSFCP5Blaezx9Fboy7ttXhHCJ7avZw/IP4waSky7t2kcIeoi3m7YZK4Y6I9e+MvPMZKcPufDr3oUzVXWDuvNRd6gpvErv/agW0XX/H1DUC7py5GwHuHyuB+6drB9xXtW/qGaMy7o9HVWZ1itzNE5b5yiJuu3Lm/k3F7muK2r922v54xGServL2Z3oyz4D7s46p3zzgHpnc7x7Sian7LrfLYQl3pkpK1EtquC6MPtxAIXE3o3uquUXultB2DWTX5exGsn9llq/B6z/Vd+hj7kaK3Fn31A+1+3bCK8D1Orc5Jw8l34+NRXY+V13NCo58W5FzI/OWFNsF7K45DsuA+wnMhPe4XymvmqFC2k6VCh6QlB+oyJ2sRT76D4qoncm1k4YMb1CJGNDt7T1VXEw4Y7aSNZQrKp/MKRoLT7ybljsyUVCAab9Lm4t7p7u0ET7wdiCJa8ORw3Ozqt6rNpmjmTMVFYx0uLtXzlbmFY87+V+neftmm9NU2I7HW+zObsFP+7NWjl/iX3errjj6Xc8ufDRfV9fl4UFK1tcdHQdiY+drGHFAIsC6RJ7dSqWIVHQplPHqSGdIB9XtUo84uHYmlKFeDIq9nZ430hccTPI1+O74uLsREQUTBZijNqoXd6sub9x7kk+QNFvgBdpuWGPaQtr+S6N6Fya2w682QTAKC8xg7kZkpokGMjqw7i8/XP9XgQ6IzB2zTQx4jIF9Hlc9w27UNyxUVM8sNjQQWRvNyLgfF/cwNRW3pqlpKT7tgV/UTZfAdhsuEOwc0LbU1DRZWBjUG0TK/oh7rMejXGJIKTatUL2QSU6bEJuWK02LqJ3GFSIkgQwkIxhdaSNpzHwqKrIfZecWjXmG3ohOHSicLBxKShqIicFUHCONcXYrK2oOLPQHFiddrKZp61YmXr9nD23sCI7rJe0meAYYCw7Sc9jpeglmBW9cWTM7npf3ICEBn5gynBIzECNYClfJ0JbI4HFYireSOjaeQG1dYSPbL253uu7EgHvMbe/w7tr52jYXF5zVca5VRVthqMcDPEb1XDVsE09mJrPvJO7mm9sOvW51QAJtrJ6dOLsOajda2K5HtF3AcNq0/dc6tN1QebsZwN3sbor/27zDRHNFs4C7xT2KJQbHVra2sCJ3hAw43n2eV2FcGI2YsmC4BtxiqjJws0g9cWcRHZCN0c3FEO3x9a2uncOT4dJZVfU5K+TFlPaSoovUsFcj8q6lb65zSNsphDUejp5p4G0+sxlvy3p4XtrlecOzfKYccS1pKCl6IBoRoaxyGrEJ0SQ5a8grvLuufr6hcWF/zsOiyaKxnJyF+vqh5ORb/v4IHK2OjvhGJJKDn6STA1OCV/eNvKkK7vSN7MFFaFpq8u72xtyUutGwNarTSuCuXKOSeiBrbaNBYiWUt+uUF8hX3OXCMrA7WtmC8bOvfM4KMyQSnnJodVB1qkh0Hg4Q54zrH3c/zv+Wv2uHK9PAubJHt7OrpCIlbfbSvQt02SVdO8dWR3iqhIxBBHrMRaWmKeR84KNwVTE24GHgajBy3t3DKta1chImG8U34b1B4lGyHS3697K8o0Ht4kK1PG7yFTXTqN1wX3HTUdJwBPw3+fETnUP2r6uzem2mhJQFxs6A+1a2uoabhXgRFNtbN88WemH1Vg7n3rM9Q5tFMIQwtApKJwJuByBtYxFzecDdkvJ2c1H7z0zUu2jXvhjh73obL/1Cv8KMCXkZSdKdM3eSipJqaGB0mJTvvrw7+l40ske2FlgxRakLnBgewO0gueWr0cfXiW3Dpa2rvKM4laGwnkYI67hxcGgP09LgvliXct5k6JRSikRIFURUcZpDeaF70xtvULU7lbp/+MILWvIyfzAgL6Mfu8vI+6+MKMl8U4D7P1YG3A32TV0lGfc1VZVZhSL3p5S5f5Ow+8pQ+1oXtn9ttP1ZebsB2m5Ru9RviJ7MagF3C2n70yjg/qxj6tcM3JFB7s996BbUscf9SmDM7UdZWfiLfYs904I8+rbB7qmGhGV+a4C5GylyNwLZ9XJ24y2bTKL2n4iHLnP/Txlzl4rc39df5C7tK2eT3mPr4RXgSn16fHD17oaHY35bNl2G67nX4yuRuWumuDTLXUe0nTdNFYC77ZmdbpdSsofnaliRaYeb25ck+/jOOyT7SBYlNxLKGklDhgrb4ewQBvpCQxcbG6tr5/yjbgbG3t6f87B4qng8L68vOHi+rm6hoSHsThhiHYIAvDviBoIVfkp728lFEXZ0aHHAyeDdisomG9WLhOZzCsfsfVswnaBCXSvxsHY6v835wg7Xi5iT2Hk3e4XdqKufH4iO7nB1bXNxuenn17DQkDiY6NjqiBBHohm6oEGx919m6wIlEauPcfJO151Sh1PTckcaGhfuRkTg/QcTE+kMZyoqYgZimpqWIpP6rZiezLE3tx0iMRnaBa+h7ev+wnjBW4pS3O8ZoO3fNah6sezy9jUq2bOcuSvq8syVmX5BBghE5n6EmgBzcaErGCceIV0B0bcik/uTs4ZyisYYgm9sxDw2NXs4PPGud0S3k991pv8e3p1fMr6kVsN2sh9lu7S5UEsJXfxHmx7IocpbhpJX0y85/ZHQ0VGO2uVlqhh+pB6DRAa24NDqgNNQL6lpODHFF1ZEuFQ3XzdXVXXdyQk5GXVUI/kOrUCOX09xTY+zvFssEl8MSLzcL+rmLrdLVg5fChrKNvywPY3JOUxpn8fVqJR7jYuNk0VF8zU15VUzeAlOw73T3bnNGW4ZJybpUws1vCc02qJks8iJkGTBrqnhJNJ2VaeqeLI4Zv9AYuYgPDxOHsmf0M+WnyHy0eGUlPnaWmIK7iGdMBncRFqjEojbZplQO0G3DX+To3ZFYTuzJvlOEWO0/btK2q5olCpalkngvlzmrk3ezTh+vsyGimbXvX7fkLDMpk+o7hXhA/ECwYIWU8PvhsMTVs5WwnzgaanCXb6agoGKydtUSUnNXI1LuwsVVtMIQRRwbXcN7g2Gt/S64YV/xd+pfbqmt6oodC4yjNfkOyoQhBhqP87UzGE7rLtpmzN+Yj6HERtxN4LJwtTNPcrOnikvRziISOp3DmgjpQXqM4yffSEhtwMCenx8WrgGPeZOl/hMRl7Eh0kRpmdtzs54q4LSCSQt9ni6bytpWNGCMaaY+FKwEbmAuyHgTotVCuBOW2dktQXEKDW90yVZOVGGQq49Rf2fEdcwD8OFxdd363Dzv+WfNJiEizBVXJxd+AgRNG88L6QvBFaJJxBzl8vgSCtqWmvP0i2QLjtJTuNSs27VNTVwGtcdHWHO5I5g3ZjV4NK1u7pW183hCYjI8DMbNLvuDkl4nap0XyPBKK4W9ap8F4sBzagfaMu1a3VGNYjatQOlsRCpFRyN4PWfrOAwAt+Xt3r9f42srn3XPOCO2/HWtkNIXRAsMNRZp5DqWQz7na4XaSKNkeN43bFpqalwshAPMIRghppCGXOA+/vGgLt+2m5OhySzObvF8N1ItbuhUnelvIxB5i62IIZZIcJSMQf+h7NClpJXPI7rTC2R4XAwXdpid/bdPSfErP4IZfL4Fak+nPMmGwbctztfcPS7Tt6p1cFBWpuX2maet7aGo4NbQ1CG94OpUmkLLZud4tU2SPvhgJH1YKJIqu5MXkZi7rqdVM3B7kry/iszaPu3C7g/GTLuZqrKPLlF7qvE3K8umzh/Wzn7Yyhsf0bbvz3l7V+jnszqCrif+OYKuD/rmLr6Au4icP/7agH3bi+vmYoKzMOpKLupaSlzNBNTQUnJXcrdFcIyfzZDWOY3sjzeUJG7mbox+lC7WYXtelH7T3Swu4y5K4rcqUbmt0KRO025WZG7bF85TblhWHAP8Pq5Y7kxqQNlldO4lHUNCynZww6+rbKysmO0ZZtv1qaN25ocfbPtaSTonlxcgoA7XCrbgvruu8ckzUeZFVGmyDRkeGE7ngkfimjU4eo6lpPDlHBTB3a5XfaJ6MG7RfZHsml/YyOmDc5tznDqEltnsPvEu5JghXRQtS+TpLhmUzZTxtZmHu6fr63FfAADJrtwLLdozC/qppPfdVuva3s9vtqturJbdRk/MRvZ53nVzqfZNag9OoXpU9/08+vx9Z0oKCifKcfoQrRnpYjnreHCpd30wjkcW08eSCjdFb8qyRRgTFKTOoRofAvfm76xA7H1C/WzVVXTZWV4kDiYiJPEqTaqFwtKJwJjb+90vbRx30ne5OrAq+99/rJE2+Ud3t7S09FRh7abKG/Xo0JrEXD/warvkTeLFCj0ZxWYwLiYuy4NlMtMH6a2BO/ZnbF2Oo9bgOEBQ/AI7cLctbZ+vmiyaCQtbTg1db6ujkY7RmbjYmPOWM5UcXFy1lBUyr2aujnHVgYRhK0Ph/XjJ/LNWpILcuFpuVOkiZqE2hE68J4IkjBe5HHe3d4hfSGeNzzdu9xhL6WV066B7RjM+SUT+eP5A9HRXR4eLfb2yLSQfxBnp+3hWtGX5mbEvJB/IGdiOtoFBTAE16CO7S4XMBXfbMNklDfuPSkKKEs9hy9hih4U20saIG0uLiPp6fDJi2o1Xp72MM3puhMSVeoqiZ8kSYGEiKqJ3TvdYQLhd8OrZqvwIOxOmP8t/8DbgUlDSbnF43gTUufArL7NGQbkjBNrdXS8Fx1dt1BXOl06W1kZlnAHTgP+ipe3cwkmLtaspR7DLUiB2kVT0jQc1pKRMUzbDTRKlVmWCeCuMTQDzP35n5uB3Q0hePNeov2JhoG7gbpXfRiOtpLIhGV499Q3rZl801b7s15hNzBOJgoLF5eWqueq1UtqDFFEDYzM42L7aKS2yLkxIcF9x5ODeoPsmu0weGglJn+C6aTj70PJyTBAtXoRQwXjikm9S9XuohjLm8rFXmLW8NgIIhh+CBNhd8PUTUtVtbN4TwzC0Duh6kU1YoSN51UYPpNiLyqCl66YqcAH3Y2IwPBmXV5tbGBTMBOmyGRlpZXWE4w4z7suY4bW5e4OXxGdOuDg2wKvstf9K1vvZsQ4vG3tfC0GPL7d9ovC3imEFYprgqSMCNyJudOvkmy9RsBdC7h/IDZd/O/nCM/pAe48MNFeAUySaKHLtcM1tI9dgZny8ntRUWO5ufFpD0Li++DfaurmcTVwqT26PEhbBq+SNhnoWX6WXX9BGR+X/RST8EZYLy6fosuL6M806MTVd7aWtmvXnbCwkqkSREOEZjgZJBuyxgwCZNdIRWltYdFZV5NZ+n/LBGT+aDlq19n+ZRFnXylht5S8mx9Jf2Fgde3XymD62+8pFrC1u5G/spkWsA9JQm3Bcb1w0ak5D5FuESO4um9fcG8wkkzYHX5X9Bv/7FUhaf/whef/umrA3TRtNwe162wzNQ3fTWJ38Tw1pe6G5WWENqoSc/+rwqhJpglRFcYLp9rAxfGQ2CN3HUxMfJCQsNjQkF8y7uzfZiUk9idIXxE/keQTbWe9iB3OIZ+38bpGjZE6VSrWzWj7dmKm5M3aXVwe7t9PBSLUqRUTsYKJAjxAjL68ezdtckU+Dqely9z/Rx9zF7C7Rt1Twdy1sbsWeVf+06+NdkxdfeAuMvdVB+5fmAncjfdNXVMZdx7mDAL3p7fI/Wtn7k8ReV8Nzv6Mtj8eMZmvv7z9qW6X+kxP5tst4P4t7Jj60Y9+9L/gv+A6b3h6Ui3nbGVlTuFYzVwNfDbGMm67VOQuCMsYEHM3LSxjSFXGTNr+C/MK203R9u/8x3ekQ5u5/1zM4EUld4WqjFaRu86sG6YGL4JQFj0QnTCYsKRW94WETBQw6QxHv+vWTudJeZOXuiu0U0kJfcPek3jCNqfzquDOpaYmddPS7cBA3T5LilUvnhTC8uFH4L8QALrc3UcyMqaKi3HUNSyUVU1jKk4Y2qHVgRG6r/YQatdqmiehTEYzD2grQcNjwW0jrNm32JPcDf7DRwynpNRycFBSMZVTNBaWeNcv6qZ7SKdrYLtLQBt+uod0BcbcxnMGYmMfxMc3LTX53fRzuu6EM0Fkkxrc6aJ/0hSWdnWSHDChdocWB2rliqvUqF5cbGycKimhxYCg3iDCkfjK47m5QbG9hBiEDldcTObFjR9zfCCj7SIfNEv4QkHbjZS3/19jYhdmabj/9Gti7lpMUIMJpI3w39cSc39boIFUgcuZ+4F12w/jstMyEpt5ulzY53HVLagjPXckfSQ9/kH8dFkZRjg8D46bfn79EREYTn3BwSTQXFQ2OVdVFX43HKNOa7gSgZIOrSaigvDCp6/o8bVaetMHWc9DRFEkFHbNdnULdRifMFjMezGWKmYqolPueYbd8Iu8uVBfX9+w0ObiAnuEoRHN1BNZxXnaMW6VJ0TgjmSLvtRsRYWjXytcwXu2Z6hpIVdSPi5N1PFH2hmw1+OruLT7mOrDIU+XlrK+1k1NeDxbVYXzDLwdCA8zU16OE057mKbqUCFbh23icpFt4myXOEVdVLM9KXhJ5WwlngybpfbIeNzIy/fKq2Zowu/V7YWXj2Zm+kT2iB2GDylaIypKXPnuEDlq1yi2K2RkZLT9d6Zou45Z6QXuRpm7sTp3c6vdl3Xo+SwjwH1l3RQ3k9YEK3LfrbpMsAburraeuWLcwTZnZ+TilNHiJ9JljFsE+utOThgAtKDu2u7qf8sfMQIvCUu44xHa5Rt5E27zVkAAAha8NOIFTA+ZOJJZTfOAI+sUK7K8GyrcMjw5sfXquWrY9XVHx/7ISOqcnJgx6BPRg1iAX5OHkgdiYjrc3AiyS/WedKpypQUJXkhiC3gmno+Z5L2oqKraWbwn/MlO10s7XC7udLtk43kVoaeimu0IgW/BybM697NbpZ7DiiJ3WQqpcRqf6gB3eZJDbM6UpAw+EdMgXDecAC4vE85aahpMTOzx9b3p6zuWkxO7/z4utSq4A+efnjeCuFlTN5f1KIv2KNCeM/k+M2kRWkrVWSg8LuxlQTREnoaLHMr7si40NCAHgNvBzYH/wdXDMGh3cUH8na+tDY7rRXbBm8oc5bSda7Jv+Qdxdr06UbSo9sP1CqmoHxjqgaxB7e8bRO2m1WOMcnZTkP07wvEfRg/2HLPIu5nM3VD3VHN6Nrz2e4PAXbNj7CjumpXDOVuvawiLzFeH3Wi2s2u2tW13dYXNsvL2VkcMPLZCdkyocNdqv2QcuCs6purVkzFZ42Ictf/UwsN4vyWT2F1W6q4lL6Mt6f4nTQ2NYt/qIcbckZoiU3XrcIPDRJqSMpwCW4ZB4bLXztfiRiCx3+l6EeESUZs6DPNWw0IrI2surohQzvpj8aKTa7a2xIww58L7PEhIoCKnrIJH5TPlDQsNtFUlJL4vJnUALp0aROPJpzdtMsbclZLu5pS66yfvhmm7QeAuftATAtw/MwXcD4jA/aAI3B9z39SVq8qsSuvUJ525rxF2fzLJ++px9seD2leXtq9cuv1ZeftjKm//BuvJyID78WfA/ZmA+xoBd5L7PMt1SK47O4/n5QXG3sYkMOpeFOxMXi+jd8O1kMR/YKGwjBHgvma0/Ts/+Y6ctmszdwLuUpG7BNx1VGVoXzkrcv9I6LYkTbypVJbt8211LJ0uHUpKGk5NLZspi0zqd/Rr3eFykfcrOyWCtmN0vMtwm8janM47+V2vqJ6Zr6np8fGBm5YDPrnFUiJIUA83EXGFGAem8eGJd3OLx3ECo5mZdQ0L8Q/iESGZfsuZLZrepFpS6bJKYak9qaTPy0r4RaYAT2/bbOva7hrUG9S01JQxmkHtvCYLC5lYTX19ScUUE6stm0zJHo5OuReVfC81e3g8Px9PxqDy7vZ2aXexb7HHKSEY4lrhDWknPpF3qYcqnChtziSVYTwHUc6jy2NRrVY3LU3k53d7eeHoCwmZrapKzmQ1RLnjuRH9EVmPshYbGzF7cfBt3cIbPwpiMly63TBtNyF8YVRm2jBw190v/1iL3H9qTIX2eaPM3Twxd63WjnLm/hYx9z2MuVs5frnH/Yp3RHdZ5TRGDulN3wkNbXV0FFr8UcjnWA0TWhJgKa+aCekLwSBh8uWnNlLjUGn2oxHUlFSP+ZBmLR+/0BS/yw+FIMMRJgSBcYVBhZGDjxtJT+9Uqe7HxU0VF1fXzjHpGw6sh5KTcZ5SQ4WjPBYeli16UZSVYif9hTad4EvhC/ZHRDzKysJ72nhexfwc03J9a2/cG3BXgHELd+Hg2+Id3h2RdJd64uEccHo4maLJotLK6bi0+3XzbH8A3HXc/TjSXg9LvJOZP4rPanFwIMHrG56esJGHcESV0/kT+TEDMYG3A1WdKvgoPMZL8BULJgrIahIzBne6XtrAGh4cYWIyW/4h0nYqdKUqVxHAyRkcaciQKBNZE61dvfZ7sXeilkHpsSkzgLtukbvlzH11ybv+95fTdoPA3UCRu9Q99Q/fh4npE5Z59b3PcXdIyR1m5RPRExp/JyN/NOFBQsTdCNzTLg8PTEIuUDXl9u2XuBgLxk9vUFD9Qn1wbzBGCwZVQsage0inrXfzTrdL1mytt6Oufh7ulEos8R88NqYgQvMA3l5VMDqeflJEwBQBXh1PHkxKwrAkiRi2RMRhEiICjKhhsWGuqgrDEvO986IQ0ylRiEnKZeWFhAQ1YHGnuTQK/ANLUZyc6MScA9p2uV3e5qzpPLyPF9E3NC5QoSgiFOkvCSFPUkU/JLYalnRyPn+NpTdcnErqxkzqeUKSw+CQQNt1m6YyN8JXHfBZ8FSYQPvd9IOFqpfUuAi3/P3bXVxw2p3u7lMlJfHpD1wC2uy8m3HNkRL4RvbU1s/XNyxMFhVVzFSUTZfh1tDSOInRU1iUpiBSX1ZMEzFntWu2gyGnj6QnZg4i4N4JC8McmG2+4VcMt77N2XkwMTFlOGWxocElsF1qg8xq22nnynsynagNf1eKxujh7NoNkBX7wFYRtWtxdiN4XR9S/77hQx9/N4bdLWTuJreLKZbWpCbJpoA7ggUJgrsGdVRWz+aXTMDAO1Qq3PHquWqfHh/q4kDAndoSSFKQ2sD9A8PA3aLydnNo+09X4zAbu5uUl7GMufMGCfB7MEDkqHuu7PG64QX/1hscfNPPj8lz1c0js03KHPQMuwEnvN35ApIcBHccRNu3OV/ALdvncZVqaO5FRcEeW+zt4Q3gFuAYSTIu/G44y4rbXHC4drhmjmbOVlZW1cw2NLK4nDyUDDcCZ35S7MxhkrkbK3U3G7v/2rCezGMG7h+tOnBfu76pBlRlzqyFqow5rVPXuMj962LuV1eFTX+zOLtZqP1pp+1PjJjMN628fZXapX579GSeCbg/A+6W6skw4E4IiTYgw2J7fHyQ8M3X1kbfi4bFYyTKu4rJS8BIWEZg7pKwzB9MC8tYDNyNyMiY0yJVt7b9x+KBxz/5jga4a6nK6Mq4/+H7clUZys5xTWjujauEa4VLyQqxz1u7tLvMVlUVlk40LTWR2klofN8ut8tUDiPWt7JjA469JzftY7tQkaZjKl5TNzeamYm0XpJa1lKuOM5xHskF4K6xPQpeXhMFBZWzlV5hNwJjbpN0QODtQI8uDwQHIibC5vrD6xh0UFYEC3IcWqNPKb5BjBJvAvcGz4rviACFwOvQ4oCpgucNT0z8gvuCI/ojYgdiMU/IepRVMlVSO1+LK4DJQ/FUcfpIeuz92NA7oX43/XBiuESOrY62zbYkjoHoh1PVilQIyHiae6c7FRnhHRLSHzQsNDAVgl27Wh0dMeesb1jwjbzpHd4dl3YfX7xhsSF2/32XwPat9meFQt2tXzDp9o0f/2jD34R98Xoq9ZYrM/2COcDdbOb+3GNg7stroKokBdqqF6yB6gvvctULDXNn2jLrdzFtma325/a4fxWf/qBuvo4KbKPuRWEmiTuIxALBFcObODVGNWI87u9IWhoVydq32JPegrQYQ/0JkXRgzFDOJezbOMmrWWX9BiX9GWHfxkEu33z4LaLteBPnNuei8sm74eGs2nS+BqdUWDaZXzIOU6LSVMyQaaPJcWXv4oOy9gm0HkaiT0e0VJ6srTHNZtxerY5M7t+turyFrbrJmzrQcVimMcW2vGziXde2u1y0923BCGe6SZWVg0lJE/n5TU1LM+VsezvOrdnODo5isqgIk/OK6pnq2rnhlBRktOQZqK65NyhI3bQE6yitnE4cTIQdwehwxfAzfzwfr03NGQ6J73MNbN/hchGfy8RkrA8qGx78TVHrSvLNMtT+nAa168jISLT9FdGgNCtYivJ27XUsQ8DdOHNXYHczyPsyNGee/7nRtxJOQGFQxoG7iSJ37WUtEpbh3VOPbtx3irZE+Eb2qBfVcLxs+1FJCcJBt7c37IsVw9rZ4UGHm9stf3+Mn5ThlLKZssSMQbwEftLep2W36gpuvV/UTSYvo1bnFY8jiCRlDuFNAm4FMJx3zoopjPNFUKH++hQvsj5vDVte4us28Mx4K5yJo18r6/HYsAD/PxAbi9PAIMRQhC3Qhi2tDSLaaajIOCRdJkEVZ8+euxERCCVJmYM2ntcY4ZI6Dzuc2+Z8Hh+N08aHRiT1wxy8u73pzIWO3LrMXTcCcjUq1oRZLHIn7P78n4Wuy1rl7Szic/F6zGzwWYiASJ9w9eaqq6kYljq+XuPFyEircEkdfFv3uF9BJrDL7RIe4IqFJtzhy2bzU8XFuDsZoxls4XwkXdWhcrruhNjneN0Rbw4vhxsZdz+OljSqZqtyxnLwa+pwanH51GRhIZwY8rdOlYqEenDZMR5q6+bLq2YCom/hciHNgIfRoxOlv57dRD+GfzWjLaoCta8GZzcXrJt5mEXe9QdTA5HUwjBqFLjjNpGkDG4cBjks1M67mZVLLy3di4rqDQ7GMIseiEYIQ/qEEUitFxCBMLwxsOXAHQPYIHD/jSngbr6E4+qidsPkXVtnxmSpu5ak+2+/a4K5f6IxcKaseHLDljNbkGwkDSbh4sfuH0DOAI83mJAwlJSEGBqdcg+exy2ow8brmmjdlxHr4ZGQz7sGdezPfTiSkYEs/YanJ+7dUlMTEhukwUiAaV8L1Z3gwGMkPJh/wYdn5I82LjYiFekLCTlnZQV/iPQDuQymmp+IPVQF5s4l3T/gbVQ18jJml7rLyfuvDRxPCHD/uxK4f2IAuH+uC9yffBn3x9s69XEXuS+Pua81dn+c/H21CfvXhtqfFtpuqZjMt6a8/ZmezDMB96dDwP0b1DGVAXcMEUo48ABDHP4LM2TM3zAnh1/BiMYAYUXuB15/7XMZc9dqoPqn5/SLuZtT5G4cuC+jtt1M2v5jWZG7IRn3Xwky7kJRDLLzD76PLysUu33Iit1YkTuy8894MfjBN+Satg6tDgG3A3LHc/sjI0fS05Gpe4d3IwVnmhJ2ZzbZnOLazYKCM21ExT/ZeF5l1Lhx4XZQEDz7WZlatKaqgtf9kVoFMvjZqirSkZivqcGMHRN7oiTw33CTcEisAx7fU6+N2j99hTi7np6T8g6T4qICYXfWIu/YOzgPgi/UZxJRBREMURHxHxMGTAJVnSrfm74R/RGFE4UTBQWYPCRlDuUVj+M8m1jJbhPV7eaN5+FB8lAy5hjZY9m4YkG9QbXztfiL/y3/xMHEssppataqXlQXThbi5RiizXxzLr47vmxkcr+9T8s+z6u4tnvcv8I8hwn42Jxev+uYhrZv+oTT9o84bf+L5bTdsPCFAribXeRurrDM4xNzN6uBqumGbx+9uJEx91cFXnDw7R2shyrGNu5OVc1szlgO7AIJoFuHW2XNbI+PD9ICDGnED0LYiFKMuVtZNdvZDaekpOeORA9ES2ILrCfhl9ZwTU7XnTC0lrh0Nf3EGwo6EqdFHQlRAZkOClOSFAbptmc/ymZFuEtLLgFtOMN9Hlc9eBMFDDwM2hZ7e5wezgdhkvUr5iFHPn/DORNzl8reNW0VNmyA5ZKeTMFEQcNiA8b/DpeLm21P82Zrx6iF8lvbcRySHbyX8s4jAna3OWXlcG4fV8xIyx1JyBiMTOrPL5nIGM2Yq66GFSCT7vLwGIhm83PY0VhOTm9wMBJZ1qzV2vorLhe2qFbjo73CbvhH38JXgxH59PioOlRZj7Lux8aOZmSExPfhI6wdv4QvIul2HdpOGE7TKVEXtQt1r8Zou45NKcvbtdulKpummmLuOth9meR9hYdWbbs5wF1B4uRF7vpM7K/cxD5+efOnUo9i1nDbjjXcDo3vg1tF+MYtpoGN2z2en49bPJiYCLd5Py5uJC2tarYqv2Q8If1BRFJ/cFwvRkVAzG0YGiPCg0kIVRStSHqIsd25KpgbZgC0CYn2IVG1NQwzczQTzwlNuLNHdYV2b1g5fukbeRNDNGkoCbEP8zTk96z7N19UE5qRSBtEpKRTZj5HuQVJukys+ee2ba0ODmO5uTmFYzjbXW6XNZ2HbYW2w3D7GMbxaQ+ouB7fMe1hGuIRwtPmM5slnyAxd6nIXWLuAnDnyRHVuUtd/KizohaMQ+pN7bvdO91xHSqqZ/G5uNowOhjmZd76lXq9truyZYnUnId23s2s2bhYm7/d+QK+i71vC6IYCUog2E0WF+NO4df88fz0vBGEvPKZcoTFhAcJcAK0Hn8nLOxedDTuFFNUa2pqXGyEh4EbhCvDAJjjKYHfTT+my7+kRlJB0mpvbhN0oqiwXasPqrLvscFmDIoQueqo3XgluzGA/mOjh7nwfZnM3eResR8Z2ysmAXehCTkFUNYe+dA7u45t2seiwC63S3Y+zQhPrC/O0tLDtDQMD+RLru2u1CsY5onME9ENUyhWIvPpK0wHErk6Aff/WRFwN1jebilt/4l5hxnkXbva3VSpu24bVQ1z/0Bbz52SXvgH6qlOlTS4yMhpYWVx9+PiH8SzXTvZ2aSvCL8KQytiq/UTAdG3cJtcAtudA9rwE48jku7Cu94JDYUfXmxsjOyPRLpi22xL/avhSCUVKaTrSHI8ujxmKyvxQhuvazBnfMqlXbuQ87M85M03MV/FbPNjibk//7zE3LUk3XXlZUxid4O0XUdPxkzg/sHXAtzFIvcv1rhv6mNQlVlR69QdOy6ZX+T+FDL3q2tGsZ9YvG4xan+iaPuqSrc/LWIyT295+xPdLvWZgPszAfenp2MqA+4YOnTzjomin93e3pjRYdYH1yiVzDChBuot9qmsgeqHehqomiPmLjToUTJ3k8Bdm7Z/LcBdJuOuKXL/+CVcFhKGFnTPjwl7UeGeVZ2qhoWGkoopJNzqpqW84nGSl9nqcI54wSab05ttZMjAgxUCj+fn3/TzQ0iAN4SHkvRtqYaCttgj2HSqVLR/3zeyh/VoHU6pmavx7vbG5+LT2W764woBGW2+IEPtLLflZX10IPkVQAMn74p1BS4yw6rdRexOFcdw5AgU+GiER8wlqKlpzlgOZgsP4uMrqmcCY257hd3gesE9kcn9mfmjJC1dO187mpGBITecmjpZVET6mPdjY/GTHne4uXW6u+Mv8zU1ZdNlFTMVjGtkZtbVz1dUz9r7tNB+XtaLku8eYH3hdhyRccOPjdJ2HZnpV8wRvvilRcDdPOZuSFvmZ6vI3P/Jsgaqv9RtoPqvhhuoUoEeAcFXt3xOyGD9rmO4L3s9viIyjjwRCQgSLia1n5eHXARB7hAv3UJUQBDCrwyxbd/e5uKy0NCAMYCxhNwKaQ7SIrw88HYg3meioAAjAcNmob6+LzQUVuZ5w9Oh1QHZLpIpQU3i+LusH4Aof0wKyEI/gPPWmNbWNyzgHex9W6izMc4Tw4mtjXGVDJgYzA2nhJiE05PHCSqeIuYuj3ACcOedFZCCIE+9FxWVN56Hk3QNbLfiUPud3RJtP4RR+qb1wTesD4jHQfaXbYy8Ywxz7M6asFEHtt2qKzjVmNQB2j6CKzCUnAyTWVSrU7KHcT2pwHksN5d6ovaFhFA3bHy0rdc1O2/Ga4rKJieLi2cqKmBNxZPF+Ff8He+/Ye8JKoBV0nZls8R1/yNptRtE7RbTdi09GYNF7jIrM4LdDZL3teTvv9ApbFfSdk7fdIC7jqqMpO8s2Jc+YRmNmPun8h7FGCQYw/s8rzr5s6a78I37cx/Cu1bWzJZWTpdVTSP0ZBU8yikag6VMFBbC9GarqjAGqA9HQ+Piw9TU/oiIFnt7TBeRBkyVlOAvGfmj1bVzmaOZGE+06EXJNfJ0/OrW4YZ3wztjdGF8wgMTcE/OGsqfyEcwwvsgVMEWYILICxVdV8UNIkdlLcGlTuBHtTTTdu0aiIlBZoJIigC6DZ9ld1a+aE2NCqnYH1+/aLLoTmjoTHl52J0w13ZXOATCkawNrKjnTsxdkJ/6TFx+/lix/MyypI/EheePX5LXtsONYCJi12wX3BeMC4iLDEu8ExbWbGeHWZk0KWIC+rt3d6hUNXXzMFLcIFyorbw2HyeMg8V9xy93uV1y8G2hDuf4mviyuEcIc7hNiPJ3I9jiYvlMOT5lOCWF8AfcY29QED4Ut7V4qjj0TqiqQ4WZcdJgUt1CHS5+1VwVcgPv8G7eleGY1JXhZa6upmPdf9HXiUHPavR3V47a9XD2nxosZreYrZt5WIjddeOpfmEZxbq1wYYohoC7JBvFtrAcgGnTcjUyRlvva+4hnSFxfYkZg/klE7iziALUGRuBj3oFYzqLEU4y7qw+hjdeshi4U0KupSejN/H+mYHEe3mQ3SL4bhy7K0vd9TB3ubyMnLmLLZoE5ShK7A8IvZGR7sKNbL+wnboik6wifCOsj5W88NZBePAoKwt5BTPAmlm+rnkXIZs12MjIQMYLO0Xi4djqSK2Mtp0Xdu9Jm1A3nNyAv9fN1yFJdgloi065h0B/1cYGbpA6NGBijPQD80kTzN1yeZnlAfffrRJw/8uygfvLL39mqm/qgRX3TbVYVcYQcF87VZmvo8j9MTH3rwu7P6nH40TtV1cLtT/9tN1iMZnHUt7+pLRLfYL1ZE4+IXoyz4D7KunJPHUdUxWSMpIAQquj43RZWcFEAZw6q48+uRFjhxVHE66V1bmbbqD6W6PM/Zf6mLv5wN0kbTfQK1WbtlsO3JEtkow7wWg2D/9ElF6RmLsken5hm3Obc/jd8KrZqr6QEGThiZmDrkHtVIjNJt52Z2nWLe2Lj097sLi0dCsgAGHjS654KzkpqQkeZvWDCQkkkotUvlG9mDqciiSedbr7km3/lxf56tGQ+URTzSehdkG1ljJ3MR1WLC3I9HOIuWNswEvB50lK62w2wje/Y1KR/Sh7hvfG7A0KwqkGxfYyBVufZhuvazYc/zn5X/cI7YpPfxCXdl/NO6BimrHIdaXvhIVNl5ZW1c41LDQ8iI/Hr6zuOGOwpm4u4UECxmdV7WxlzawDR6XE2TE1Xb/r2DqG2g+9bnVA6Pe4UU7b/2webTdW3q5P+OK/Vpe5r0Gpu5lF7gYL9P5fwwV6WsydIQMJCG5hYu5v7ziCu7PL7VJm/ihuoku7CxIEZC54jJnqNVtbgto07Tkq1oazJaU9e275+6sX1WF3whxaHOCRHFodQvpCFhsY4/MMu2Hv0+Lo11pYOjGenw+vlTbCVGgW6uqImCONIuzO+vGe3ICfUqzGWEVSljGSMVtZ6RXevdP1ErFCAu5zNTUV1TMjaWlIRxA4D4o1ZZ8qNUO1sLvEEOVNC2HyrJdjUxOGro3nVRj7hr0n1u86ymj7tkOE2jFWX7f6Qn68YcXg+5vbDr61/dA6ht2PYmzjGr5ny5Ai3icle5hqkMsqp2P338el8Inoqa6di+iPwIWCBVFzVBJ5J8HrHS4XWYdJV9ZhEkaHdwiIvuUbeXOfx1X4H7w/F3c+wLsdsDWqFzf8/YV3ucTE23/VhnF6UPsf5ahdtCZdgzIG3P9FL3DXYe5mY3d95F0fgpdReDNZvObJ/6yfs/9C+0zk5e16gbtukbtyHwnvl0Am9lddE2PLWjsxSE5stjnN4wirm0YoITfr4NuKMeAe0ok7nlkwmj6STqoUN319O93d25ydEU0we8FwJXV1HMiwMVVotrUdTEqar62FueElbh1uVJJJW5owD6NdJh4hXXvcr+x0vYj4tc3pPD4UJjlfVwfjwvzkJEEivmRFq1aSycDkCawLYk0i/jjCQTwBd5wMToylJaWl0Sn3isun9rh/xZTZbE5v3HtyA5NlU/QctuIGUlA6gcg4lp1dPlMOA8wczcTZSpFR3vLBiLoaJVyUf0khHmkpXkuNxBHZWTNkXk4Ot9Ph5oaJHM72HG8GiwPBGr/i2vb4+CC6RST140LBhPkWN8SsU5rVAtsz+FI7XC8iJkYk3UVMxFE6XVrfsNDl4dEXHDyem4vYt6hWD0RH09wV946V/BeNBcX1Zhc+Kpos8unxIYWf0cxMtqklvJs1jbA/i+vz1vbDctouiUQ9r7Tuf9NSaZerx7yi2z/cMtSup6TdEGdfK8huHnk3JDKjn7mbWeSuf9FaF7iTLJukGbVp3ymYFcJcTOpAbf1801IT0qq88by56uqM/NG03Ie43RUzFRWzFTBP2CaSMYxPknHHMGbA/UMhSzcI3HU6phrTkzEn8V4t1G6SvOvF7sZL3XlWry3prsPc2QbWj4QdLZqkl3dIpgV7ZLxMVvHyLjgWpLu4+O6d7sg6gnqDQu+ERvZHJg8lw+0gU61fqMddQyoLX4QsHXMBslP7Fvs9X+3ZeXEn3CnVx2AqTyt5uI9e3V60cwi3+H5cHFz0eS6+B68ID0li7p9yMXcNc3/++WUw99+YCdx19WS+duCuT8b9c1My7rrA/THIuK+6qswTVeT+hDD3q89Q+xqg9q+ftq+BmMyz8vZnejJPt57MMwH3p61jKgPuMCQM3JNi3TRMF3Nsmj0iiSRdSM1e7ENvaem56zJ3Ew1UDYm5GypyX4l6uyHgbk7TVLmGuz7gLgg+itvMGYnmtTCUl0vMndqpwashArh3udfM19TN1+UWjWHuHRh7G5PhHS4XrZ3OWzl8SX2Wtrtc2OvxVUh83/6chzf9/BBphNk793ds9m5tjVBx3cnpQUICZllI7tWL6qxHWVJnVIVcu77OqFp756WN83JRfqYRxLNjYfrx5+fl6pZazJ2puvNyfrhn0qDEmag6VaXTpZhm4Ft0uLmR7k1C+gMn/+v4goT/tjtfwEEQcI/7FTvvZpeANtegDiaMgDlk9UxwXB8mmSRrsKRWB0Tfcglsdw/pxAykvGrGK+wG3ocTTCoZZhDzzW2HCBq++t5nL7Nmj/q6pFpK2w2W4prZ2vEXluu5rzp2VwD3VRNzf0XZ3ZEDwR8SEGRletT57Yu3th16Z/dxK8cv0/NGBhMTsx9lB/cGY85JZaEYHhjhCHvClEZsTsDaJO7a1ergMJKeXjVb5XXDC3Na/1v+eFVc2n1nrgCzzfnCe3ZnHHxbYS8NjQtFZZMRSf2q4A5C+Zj3Sr0TKdTTA+pAAP+G55RVzdj7tDAz5B3PMCD9o28VThYOp6YiQUScRtBi1WR8B7c034OnpqIq7VJ3UpjhAu74QNjvTHk5vi/B8d2qy5ttTrOxuuPIW9sxUA++wVE7his7togH//X1rZy8a7D7YYxwvHbD3hPUXZk0oHermGLsHtUVOBMqj62dr53Izy+pmJqtrEzMGLT1urbN6fxWkrq2Z8t7OLby5T38+p7tGbYAsPOoVvWrZo2KCtv1tEXVoPbvK1C7hOd0DEphU/qAu6Eid8HEjGB3k+TdDARvlMj/szG2bhS1i7RdBtx/aQq4C8Yl654qE5YRxdyZiXHmTltJME7W7ThCI2STDWsAAItjvft4T9E97l/BTDC2GxoXw++GJzxIQIjv8fFhXYv5sq7QR0FkDWzFaONG6qbe5uyMsUR9UD26PKjfNeZPjtdZb/CC0gny6hjeGI1w4xh15TPlo5mZGP/IK/CGB3hJ5udi/kRWgz+SvVB5uyY7FBfejvOODjgHvM9YTs5SUxNGNfw/jBTjllZYWeNx1nmYOpAfp++OYEqi9lkFj2jDBzWAtW+xx5lTe0mtvV9aIZISOtbCRAQ5wmr6IdZKkdSocCnSRtKiku/V1c/jy16ztWXBmhMTzbrFli2kPj8QE7P/4f6IpLsw2618bQ9hizdxwVc4ztcMhAUD8kIwbUe/1uLyKcTNosmihYYGOD18naShpNTh1OmyMjiWxsVG+E9VcCfurFtQR0beyFw12/eDL1s5Wwk3iHQCb6ipbRdiolwkSgu1y3swGGoermwb/oI5qP1nJlG7Ac5uFJR/T+v4d51D+QSLsLuhUnedqGq4yH0FwF0QjGJxE+MB9lVVM4vbGtEfgQgI+21YaBjmfbCD43q9w7sDY24jX0Iq6N7pjmwTKRlTlfn8NWRrmpZLHLizmhjLgbum2MV82m6Knn/nJ98RDnlOLv7RMvJuGLsbl3TXaqMqMPc/aSe90tYWqqdhPWCOavZ3bjnDtvsQAd1+YTtt8YSTJGVFzxueyNJThlLgQpGf5BSN0Z7O9JF0/B0pDfIQQf5R7FKDB3i5V7dX8lByfglb6bwTFtbm4sLaYHBtrmNc4I6JuUsNVCU9dx3m/kdd5q4l6W6q1P033yzgLpVHrKRvqjky7o9DVWYtitwfD3Pn2P3qM+y+6pz9GW1/Vt7+bWiX+vTryXwDBdx5QdXK9WS+kR1TGXCnHE6oxrKygtlj3vgoKwtJnkOrA9NEFnc7ChPUw0JHJm3m/mdjzF1PA9VfGWbua1Dhrpe5K3J3Au60F5VSc3H/qaD2+LvvGQfumv6iX7D2jEzrXGTu1GUUPhUpOOZLVbVzVJOeljuCqRQ1rCP6vNP10j7PqwHRt2rr5nt8fRGl4LIFJ7ttGx4j/t3kNb+Yb8/X1i41NQXeDrRttiUFT8YRTrxL5Xu0a56hBLFBnJaSjFZtuyDHL7uDlCwTdqfph6AtI809RD13DA9JzB0RUtWpIhXdW/7+rY6OLfb2bc7OD/fvVzcxpew97lfwTYlvspZ3jACeYT85BGSrDvw67HK7REWajn6tOPa6f4WrtM35wjan8/hJOviSOgdJc7xuxVE7FbZLghhCEZ+ltN0S4G6auZvqoWoYuxtQmPnZ8oG73iJ3PQV6RsXcdTu/vU5FuMrujkyL9vM3rA6s23Fkk80pG8+rabkPFxsbBxMTmXLCXM1kUVFvUBB8DrwQAi1NV6jAFgMe47/Z1vaGlxfGUsxADIZ6yVRJStawR2iXg28rLAWDBEMlIulu9qPsuvm6kbS0RbU6v2Sieq66unYuOWtovqYm9E4oE7G5sJ0k4GlZCKmTS7tLXcNCTOqAjde1nW6XdqtYG0OMtKLyyfKqmQ6VCi4RARKRRtJLpRkgzf10mTvs7BAvzpXkuTDsl9Tq4L7gxsXG0IQ7GLob955cv+voW9sP03B9fesXNGLZ8d5n4vE5/YXgu1jwLteZOSqW9J6iqnyYj5XDORgI/El0yr2olHt4sE9ckNi0j9E9PF9s1MwYHwyHF9oT+j9AMjJGeNxzelC7KCDz2u91CtsN0nZ97VI1wF1W5K7D3A1UuxuE72bx92WxeJOEXQe1GypvVwL3X3/XUJH7a3/UCMtIPYpF5i7JN71pfXDd9sM0PKgLN9s7ZXfGipdO23k3Y2CUTZd5d3vjKJgoIOkhzCKQB7OOfOvWUV6FJIyGMVv62rKFNlTdDQ+vna9VL6m9bng5tDjg8OjygBWHJdzBYMOb2/k0q4I7MvJH88bzYOAIVTDko+IGkU95oz8BkciYu6DIpCQgR8RVK7wDPr3D1bWhcYEK8229ryFMYOSzYcxQ+1Heapgd68WGw/hX3qX5SkL6A7wKkbQ3mKm+JDxIgAOBGyHJNepuommmStidhN1ldRqkR0CL6Ah2iHT47gsNDQjB8DNq9SIu4zUu+CCfDGgVMYzn59c3LHiG3RBWC/YK+7H4+R/lrZLZchptZBH05bjODN+g0ELbFLwjumnprpqnEPHpD+x9W+AAt7tchAfb53HVNbDdn21b6cFLrJhIlJ6WDLRtRR9qZ0atv5eJom34ylG7Pn12k5zdGFi36DAO3/Vgd8N67oaL3DUBVN+KtawVCi1X6wXusGUMBqRAuUVjdfXzsFmn606qDlXs/djx3Nw7oaFzVVURSf3U9ximV1UzizFmc9UG+RjGs6ZvqgjchWZLBoC7MQF3fWIyxnTbjUD2/7DwMMLf9WF3PaXucnkZk8z9D98nNqyb5GttY6XW62yLJzJ8vnmOOltsPcvazCAh331lNzJztw63sDthSGAe8A2pkcn9gbG3wxPvllZOL9TX19bP54zlIEVx73TH7ICK5fH8itkK0t/DMVVSMpqRcT8u7qafH9W5n+JNZaSNd5/wUgA9zJ23Uf2j0TaqJkvdf2M5cP/DWgN3parMcoD70yvjbqp1qqEi91UTlnlCmLsZ2P3qM9T+hIi2rzZt/zrFZJ6Vtz+W8vYnS0/mmYD719IxddX1ZL524I407pqtLVwDRW44oxZ7+8GEhPKZciT3cGxwBjBfqgylujCMCNxAQSOSb1nVZu5SA1V9zN1kA1VDzH05wP2n+stqtFN2vXoyBNx/8y9SeyUpF9fUv+gAdypyx8DE+KU+jQJz50gaDg8BASk4pky0zzSr4BEm4TZe1zjvYxWCtl7X/KJuYhrf4+PDGq+J8QCxp9XREfdruqxstpJJn1MBLwIIHCfbiHByg6awnfeFI3vSBu5KMRmt2nZG22XNb7Vk66mdFIm5y9tJ0bfDOMGAIQqDqUVvUBDGEoVb4jWsQDK0C9+RSm7fs6XOsWxbPQeC7JC22DOSaHNa6okneyaDhu/sPk66HFTSTmXCr77HULtQ2C4r0f2BMdr+ew0fNFSK+6LFYtMGmPvysfs/GcTuP1sBcDdTWEaPmLuMGvz2e6/+Ttbd8U8/0GLunAa+ue3g+l3HcNO9wm5Qw7fJwsKyyum88Tzqeso6FnBRC0oX4Isw5jFyMIQ63d37IyMxopKHkitrZkMT7vhE9LiHdLmHdHqFd8OCGhoX8A4jaWntLi6dKtVgYiLeH05M3UR4ipF9VacK6RuSIDg0/MSgJAF32Jqtd/Med/z+lZP/9Yz80dLp0lsBATgB1sqVyttffpnt2v7hD2lCSMz9Yz7ZUwB3PnkjDXqkIC0ODkNJSZgtl02XpeY8hI2Lyi1HxH0YX7y2ha8PvfcZOzZ/qjn4Xxh8J/K+VSTv1hryLvZWFTidJKmxhRez8xLgU9xSJKh3hAvHH6E2rbgjguFsIdQuL2z/ULuw3RBqf/X3hgrbuTXJDUoLuP9aaVaWMHej5F0ff1dSeItBvIWH5oN0ULuCtnNrUgJ3Q0Xugn3Jmfvb+pj7VoyQg2xVhm2GEIYEiZvD5dp5N8Pi0kfSXdpcHFsdvW54Ico8SEhAZEEeTNJJn7/2GhId1k2Bj+TjXGjuLBcxwwQMIYnaXfvf8nfvcsfPuvm6wJjbquBOGCMMk8ytLzgYlgsTYBCfKjHFJSvNYpXE3Gl3iAhBDnGdGaELAm+eDA9wLyqqcKKweKo4Iqmf2g5v0LQdZr0Q1m3nxw6+HMU3guCLwwr2eV5NzBzEKc1UMNWN8qqZuLT7jYuNCQ8SpKpS+Z4wYaFaK4c9rInjVNuOd+BK60z7fiwnB9ENX1a+R4dYDO3UYQsGbm7UjMQ1sJ16RXDafpQaOQjnrzFnzY3DN5Xk5qydzu90vWTv0wKX5RLYDn+y3eXiVt62hA5pfYVdH2Fh79AbXFpNKSPDY6Jg2hq7NiXUvmzU/lMDqN0Mzr46hH0Z5N0y5q5b5K4JoLLoKVuu1gbu/6YE7ggB8MwYD7ihiJhpuSNpD9MIXSB7xFi6Exra5e5OOZVbUAffXHI5Pv0BkkPYNaa/GMnI0JYP3GXpt/52qWan3MtH7frguwnsrlvqrk9eRkvSXZe5S4UmgqaiKC8jlbpTkq/B7kfXw4EwccWTG6mhEYnm2V6zJWUY5O23AwPH8/Jwjzx5P1UcyPzxK7VKniouZq2JlpYKJgqKyiZv+vr2hYQ8TE2trJ4tnCxMGEzIGMkg74q8Gi4FvkUSc9dl7n8xwtx16ty1mLv+Q4e2P7HA/TMjwH3FMu7Hn0BVmZUUua+2sMzymPsz7L4KnH1VUftTTNufHDGZp7y8fS3apZ4xh7Z/y/VknnVM/YZ2TGXAHQncUFISJoTw7/CM+HndyWkgJqZsukzVobJrtoPjh/eFO2cdfi7vgn0jicD4wv2U92WiQmkNt10ec9crLGNIVebnFhe568/UfyYrb9cn4M5ycfmGU0nkUdRw1wPcqcgd6fiht2A0EnOHL4Ebg3/FxfTp8UkfSc9+lE0M0cnvOlM297yKGbVv5M2lpqYeHx/M5Cng4UGXh8dIRgZtR00dTvXo8kAEk8QfBdmfo5rCdlnFIGPuWsCdhoCivF2uwi/JAXEhHfrWbI3hQ1bkTkruGuB+/B3aBotY593tzXTY6+fvRkRcs7VFbCMBQVaY7+uLLxWWcEcmYkvb6qV6W83B9QE0B1UCrt95VCAsRAytZSXt7332Mq9q1+0F94N1f35Oou2vm0nb3zdZimtJg8fHg90NwXd9T9ML3M0TltHaGv9d7QaqH8iLcHEjqIGqtEHeyuGcs38bhkFwXG906kDRZJF7l3veeB4cUX9kJCaT7S4urax81qHV0RGPMexv+fvfi4p6xOWYswsfZRU8qqieIchOAsqDiYmd7u4YZud4coCsAokO0jW89l50NJMyr5+vm68LuxNm32JPOSA8GwywYaHBJ6LH0a/VwbfFLagjM3+0Zq4GE10kbWe4WOohXkT2CQfurHbsBz/QAPcXX9Sq1T0k1gUjXcDJzFRUJGYMwlob1Yuw6B0uFzftOyVQMGte276FLxFx1P4yHZv4If5qhLy/TiLvAnwX+DtMg1N1Aa/L2LqiNasgYrNFs0Cl12rk1a//Zi5qN0DbZeXtBiRllMxdYV+myLsBwRmzQbw+Iq976EfqWofiDXU+Xeu0pfJ2/cBdUeQuE5aRibn/RVzWEpn7e5/zNqoHJOl/pjDDm+5aOX5p591cUT2bNJREIgaI7MG9wbX18wg0yLyPi6NdGMxK4M5sascOTOq63N0fZWUhDEXcjYjsj1SrFxG8cJRUTDU0Lg4lJ7e7umJGhDekMkx6T9IaJoxCi1W6ikxStfsRsZEDiTIt1NcXl0/VNyzEpz0Qytv3arUd5sNbaDV8aN12ItdMWgdRZqfrJZcA5nAY2Kqq6gsOvh0YiFMN6g1ybXdVdaqYMP2V3ZpmD7JkXMrB8ZgWlRG7WTvlpiZVcCfrAt3UNF9Xd4G3fSZhHEl9nl06UQ9nIDa2Zr4mp2hsn+fVLfbUxYE2ZvFGDpqTPyzeteN8J4ogT48HCgRvy3uts20rJ97VDp1HtaTV5N2PtQvb3/iTErUbEmpfMWo3oR6jl7P/+2M8VszcLVCVke8Pk+KmfuCOhAdmG5Vyb6GhIaQvBMkeMvDQO6EYyYiMyK/anJ0Xl5YSMweRUyG+wAbna2rqF+ox4UbOyfLzT1+hTajLBO6G9GQsoe2rg9r1bk41it2Ny8voaaMqY+6azaw62b7UzoF2eUqbWQm7S3k+7aJzvO6YM5YzV13d7e0Nz9nPWx9T7xm4AjgQ/OStkrvT80aqa+dmKytr6+ar56qRCz1MYw1pYvYPNDUtwVHDTdHO0bLKadaJ2tpa2pPExNxFybuVMne92F32rysF7py2mwncP1QCd4m5mwncP5eAuyV9Uw9b1DfVlKrM6SdHVeYxC8s8TuZuHnZ/WuD71a8bta+mjMw3hbYvT0zmW1Te/kxP5pmA+9Mm4P6YO6Yy4F5UPrn/4f752trBxMQuDw/MlpEX3ouKKpkq8e3x9bzh6X/LH1N05HkNiw35E/lpI2mYrsMcMQx1mbtGmeRPK2buKylyNzkN+KkObZeVtyv0ZH5juKuSvhSc8jsFcKdc/JgmF6f6F/h+hxaH0L7QxsVG1gir8JFHaJeT/3XngDa/qJuYR9309b3u5NTq4IDJ1d3wcOTieeN5GaMZPj0+CMvw6HCZrDrv1Ea4Ci3aTgZEBTiwWtqRwID7p4IQkKTe/jzvtaSQA6L5GJ+MCV/8g+/rB+6H3sSHwmlRC0p8l9Lp0tyisYGYGOQNkhgO2zmxezdG11RxcXLW0D6Pr6xkbU6ZLIBE0sXjbc3jw5yqaMCK0GRSVh1MqP1FARrqLdH9kxm03bD2xUu/toC5PzbsboK8Gz1+YEJVxqiwzC//RauBqiHmzoCgrLvj1n9wMfdjm224BLnqsqPfdcweMb1cbGhQqxfTR9LVi+rpsjJ4GwyVuoYFddOSBNbhqfDMsZwceCpC85h2wjSQHVIzMcRLCnukAk9tV5FgtTk7w6GxTRdLTbAg9053TIOd25wDbgXgj7A1VUinT0RPTd1cQ+PiLX9/5Ih44UnZrm0BF/J57IccuAtK7iI0JD0ZRD58Ol6Il8NyccJhd8LgXYeSkgKib2HMv7vnBC9vP6jZkMFH78ubPmHUWzxelg4d8v6KruDMVkWfVfkh9GLdqtGIpxcKiJ991sdMQGbD3/SidpmGjCWoXT9tNxO4K5j7csi7fhBvFou3kM4bAes6nP0F3XP7lay8XQe4v/S+/iJ3Jiwj2Ndzb/2PyNw/pK0kInP/jDF3K5L+Z+j5HYaeWbm3rfc1DHhYGYUPZPd4wGytpARGdIpKJt98U2hnSirqHLhT/g0rgxunpV94eHqrkoqpzILRpaamwaQkQRF+z54LvPkq0lxdC/pQ32IVoZCDoqQ7gX7YLyJIp7t7bf18RH/Eo+zsqJR7bNWKdUE4zrAy02USIoLsOCj1PCBpHQSa7c4XEFUX6uuzH2Xj5GGbcCAVMxVIZuobFvA//o5Uh+oJMF/BlUE4I6l6dqHOb8NkhWQiMLuNHYjNKRpzCWjDgYsAL4SJxFGuU39AFJUS9HC4rhRyKjg3PDMpc2in6yXx/I9Iu0ykQ94kmTC6tDFFPI7Kl9NovYEje82KmuBbmK6ajkKUfKeXBahd0xh8JahdUI8xUtJuirP/P+z4/5Z1rBi76zJ3Q0XuxlRltBuPGwXuBzAMtjlfWFxcHE5NZb2v25wDbweWVk4jG6TevJd27sTwQ67e1MS6a8IM74SF4VcMYwbcD7DkXAHcxVIYPcBdSsIt0pMxuZ3UTIb+Y51jGdhdb6m7hcwdMxQFc/9A2cdIX9MmodT9kKAwg3yYgPueK3swe0LW0RcSwjJ5R8duL6+5mpqQ+D477+Y9XElym9N55ELUZmMfl090D+ksrZiGX41Lu8+38XUho469H4tp185LOz26PBYbG5FmI6shwa5DvBk1NVA1yNyN9FDVy9zl2F35dwVwF9/hCQXuOkXuB1a1b+oayrhz5v7lSlqnrkGR+5PO3C3B7le/AZB9TVH7M9r+rLz9iW+Xugp6MjLg/k3Tk3liBdy/rR1TGXC392lBpp5dyHqLYfI5nJKClP1+XFzRZFHMQEzhZCFS+br6eeR8xeVT5VUzD+Lj8yfyfXt8YeusNdOhNwWlSK4JzgCuLnO3VM99jZj7Tw1oPkrp+C+UejK/VujJKGpe/izoq8jL26XadsrsKK3D9SHkzfacHlPuOf3SGi4cIc613TX6XnTtfC0udVBsr1d4N35W1szeDgzs8vS86es7npfXsNBQNVcVcDvAocUBgQXeF45Q0NbntF2uJKOxnoNCX1MJuAsC7nLg/hcDwF1MonUr3JmkzOev4v2Zpu1xpmmLU/K76dfQyOAFq223sUEU+ZL3ej3HqyMRsTrc3Grq5kiE14ptqz+9Ye8JsdkpFa0fplpd2SFBdgElSJrXSmioQO36uKG8F9wflKxQV2n6/eWW4hpTvTDc2lHRpNHslqorI++GKty1ityVwjL65GgtZu64m2/vPMI0pm1OYxjYeF1LyhzEyI/dP4CxMVlUVFQ2iQeFpRPUHDU4rtc/+hZ+pueOZIywHR7wTj0+PphwXuWLOgLae/ttBBgKIRKzowpTpgW/Zw+G32Bi4kJdHd42pC/Ep8cHP5kuU3wfSWFMFBTc8PKihSKMWwRsTWsysXxMmvXpKW9/6y0EVJwJ8hikrbf8/StmKlSdqvgH8bX18w6+LZttT6/fdUwSTJfWimSo/WN+6GB3GXnX8HcFgtdQeM3x3ufSE2QV9J8Iu0BkJiOhdoMaMq/9UQe1/04/atdL2w0Cd0PMXT951wffl0XhjXH55dN5BV5/wfgnymvbf6X5yhrgLqrKKIvcdYVl5Mxd0JbZxAbGa1tIgIgBXMbcdzPuzCqyudiXY6sjIgjCB34WThTib8OpqcjdT3A7kpdp4y8kRA43foGAu61tu6srhveDhITp0tJFtXo0M7M/IoJMEuaDaQyc/zluQUeVFqQxHx05JoHyczGZ4xxVY7rS7uIyEBOTPpLORJCXlpwD2rYK5eGaIm5qO0yhQbP4JMJr+u5wNdtdLoQn3oUl0pfFgZOvqJ5B5oOvsNjQsKRWh98Nd+CbaxDLaJEvczSzeq46diAWhmzXbIfDpc0laTApKXPIN7IHP+drakiq/ogcuEt6OFu3wkf1R0biK8DV+ET0wOPR+VMXBymoCR2SrRSCUTKeflA4rIVQqLucpr2WpjFwKSAq5dq1BWQeJ2o3l7MbJOz/at6xHPhuPnM3UeQuU5VRNkHRA9wRMfVKyhy1cjiHYTaakTFTXo6cPD79wXxd3Vd798IkieUhWmEwJw8lI9zMVlZSW2NkXWsI3M3bS2qCtv/YwmMF2F1bXkbM81fK3Ele5rNXFaruR9/GBH3TqU1I7+EuaOseHCahsetOTpOFhQWlE45+rTtdL9FGz802bLcKl1I8RfJf8BLbnM9vd75Aza6R/8A7wQXtuLjDvcsdczF4rd6gIOTVbGPNunUHxZbUusz9zyth7jqH3vJ2DXCXd0x9jMD9Ey3gvrp9U5cn4y4vcpcD95WpyjxZRe6rztxXKOm+LOz+NcL3q08SZ/820vanq1fqisvbv1wb2v6t0pM5vpLy9mcC7hbpyXzjOqYy4G4lNuYiDVZkck1NSxOFheUz5XiQmDEYGHMb/4QE0dbrmoNva2LmIKaO5VUznjc8YUMYRLhXRHIZxv1IydwN9FAVEv33l8vc/9Ns5v4zY6hdQdt11dtJT+a3pvRkPlY0U3rjgGb8UjZHqjKwMAbcj78LBwCHIfRWOm9NctKY53t3e6c9TKucrcQ1j065t9TUhIn6QGzsQkMD/hjcG+zc5oyQCN+PVwm0/RTb/64Qnz0kdn6TuP/BN+gv1OeWAXcdAXc5cBfmY3/4npaGO+6mRsP905fxbnhbfC6+C04pYTBhvra2oXFhJC0NmQRiA3F28rPnuARwm4sL5h6LS0usn5tMx1YQvhDK9Egf45AEGhhfsNJU7cmLgjk3/Lt+biiXkTFF202JTZtXjfujFRa8/2IlBe8a8v4Di8rbjQN3ZZG7BA6MNFA1ytxfFJWmcUM5C+P1pxy7Y/K5W3XFxuuak/91OBl7H9YkkCkseV3DA/zRJ6KnrmEh6l5URD/blH0vOrrdxYU1fLa2RvSVlCtoikXF5lJ9LmPu1tbIrprt7G54eg6npMxVV2eOZsbdj2tYbEjOGmINzeLj8U8tDg54T6RWTBBj06bjNJuVWpPx2aw0zftMi7a//TbiN8Y8Ztf34+LwKQUTBSnD7LNw8tZO5zfs1ZS3a9P2jR8rDr3MXVYCr/df9T9ZfE8i7MxYWD27ZC9aqF1jMtoaMhagdh3argPctS3LGHY3CN8NmN6aQfmVHpoz+Re9tJ2bkhZwl1RlZEXuorCMMeb+yStcg4hLugu2tnHfye0uF2NSBxbq67MeZSHosJYbl3fnT+SHJ96FTV2ztaW2n1LqeVJG21l5+65d8O2wu1v+/g9TU2E1OYVjhZOM1z/KyuoLCelydxcsaMcOwYLeeUcueiClOJ+IfITtDhFbpwq0nTccxtyjNyiokReGI/xVVM9Qu9GNTJTpGKftmmpu+e4N2vbx2lYJu7OC8Xd2H9u07xRs0N6nOSi2Ny7tPoJscfkUaSu3OTvDM+DjauvmI/sjSbIjOK43dv/AYmNjScXUkvgforD/Lf/EwcS03BG8A67ADS8vzAMFtXqeBzNRKb7wRmIy02VlVTWz+CKI6Xvcr2y2PY2TEc5f7Jn8mrJD8uvCVhWNABT/mtI3VS6naaSo+IqdvoU0Hg2lhWeyaCOonQzKfNT+c+22qCtG7cvE6xby9+Uyd/OL3JUy7jpqbEaA+8uShrvtGUTDpMwhWitaVKs7eTdvjDe2JLZ+PYwFI7A/ImI8P7+6dg5Bza7ZDlkXabgz4P7xi5TpCbKBFgJ3Y3oyy6DtP16NwyR2t4S5035W08z9T88RHhZKbT7SZu6kLYPLziQWT2/afmG7Z5dnXvH4aGYmiSviuGpj0xscXDJV4hXejZxnq/1ZngaTwNRRYXMn38jC+7Kc2MSaP7NGFNRAFZMyZNpFZZPqpqVuLy8k1ULy89ZbB0jMXc7cX3iBus7oZe6/N8zc3zeDtusF7r9fI+DON0WZBu48JVvdvqlrLeO+Kq1TV7HIfU3E3C1n7l+tFkFeAdF+4gj7GqP2VZaRWQltNwDcV0jbn9Beqc/K25/pyXyNejLfKgH3JwG4I+Hb6nCO72e86uzf5hPRgzk5UrqFujpMFDGrDIi57RbUYet1jSoy8Jz52tr+yMiU4RS4Foxr3H/cDcbcP9Fm7oq6aTlz/52SucvkZbR6qBrSczdW564Xu+scWim4XEyG1NuNl7frtlGSilzkDUulCncNcD/BgDsVucMLwuPC9yPcObQ6eHR5YLZfOFnIWEBT01RJScVsRcTdCPwd/4ogBt/PatvFBrasvP24dnm7AriLB4a5/o6pSkkZOXOXDmGZ4c8/QCKMr4yXMz2ZA6/jE3ECGAOeNzyXuJDofE1Ns60tPL7kWyndZI3j+M56PG2hocE1sN3K8cuN+wQd3rdEZQC5Dq9Q224tUoktyopg/SW6ssJ2PVW6urRdX3m78Wrcl8wAguaR9382Sd4tw+4a8q6A7waOfzIPuBtm7r9cFnPnPVQ5DZSUpqkEdcNeobXjFvuzGBu0yRo/tztf2OV2Gc4HfqmhccH/lj9sIaQvBAPpQXx8i709EhEmFc3LS+Gp4VLx8wBv+SjVmWL4IdsQiCGvz70dGDjMiWH9Qv1sZSXe6lZAQKdK1erggIyTduuzwvmNG/EOxNxp17YUBuSNUkl8g9W2b93a5uxcOl0an/6grHK6rn5+f85Dz7AbO90ubbYRy9up64Bmf4YObReBux7OLnvOi4rj77TypHUQWxePj7ilKDm7xl6k6lddDRlTAjIctRuj7fqAu9KyROMyTd4tAfErBfSWsnsTr9I5E+V3kZe3v/S+NnCXF7mLwjKaBqpy5s5Wtv6O0fKKQtL9MKwMxuUR2lUzVzOamZk8lJw6nBp2Jww/C0onRjMyBEGY3buRx0vJNAwHrvsSR0XtLi59ISGwF6QHecXjYQl34tLuM15/NxzvBlOaLitDYgA7ojbsDN9zCzos8SBlEaJWbbukJAPru+7oSLS9aLIIISMw9vZu1ZX3bM/gW0g9h+WrsK9KmznE3R6ktkTSOiQvQ5LucCn7PK96hHTh/ePux+EjMDnEnOq6k9OdsLCF+vrcsdz0vJGEjMHquep7UVH4O4y6x9d3KDmZ6H/GaAYCNGVBXR4ezXZ2wj6bjRspiUfUw3XD2970Y5Xy8Q/ix/PyvMK7rXl5OzweO3+x+4h8J4pw5sKagWwhQRuva7yBZiHt3b8Z3rAioXZBQ8ZAW9QVo/bnzEPt5nB2sxj6/9F3WEbel8HcDQrLGALuP9Tum6oJl5p+49rAHXcf43bjvlO7VZdZj4SpkqalJowoDDbWMJPXNSPMYRKIWTHsZbGxkXaJ2TXbIfdaBeBuQMDdZHn72tJ2I9j9J98xphu5Gsz9uf8xlv9j2so2fR57B9cfuXrOWI56UU3d4Ams4AGlwWm5I3vcr2yxk+/XOSitrr1uxbqziEUJJ7ban3UNaodf6o+IwKSgrmFhJD0dngeJCnIbKgtA4n+Ab+j+jM8/aTvRR6KwDJuKccxtPnN/3yhtNyLgbgi4/2n1gPvfDQD3T80B7ivum2qpjPtjUpVZYZH7GgjLPBHMfWXY3Xwif3WtjzXj7GtX2L6KtP3bLibzrLz9m6UnsyLgLqPth58kPZnHJuC+5h1TV1VPRgHckfBttj2NqSDSegffVr+om2WV0yTdMJSUNFlYuNTUFJM6oAruxDR1h8tFl8D2koqpsZyc2Puxts22MEoMQ42YO8mViMzdUOm0Rcxdu9TdTObOsTsdmoSbjp8byLz/S1neLuuhZHBjqay8HQMT14GKzckOhPJ2sZ+SJCmjqXD/0poB98sCcFd1qgJuBWB+XjRZVFs/nz2WHdkf6dPj49LmYnvNFjEHvhwvwQsJuLOubsdF9XYd4C4f4wJt53oyWsBdapoqMPc/CTfr38SiFKmoX17eju+Fj8bJxAzEYKhU1czOVlVdd3aGx4fTlNDDCZ6DnuEMpcPVtW6hrnK2UhXcQcCdahVFKduDJL8rNYF8S0lVdNqiSsLTisJ2Y/LT+mi7OQoY+uGgGRDQEvK+WgXv2vDd6GHg5YoP0gLu+huommbu66QGj38neRl5Ba7UKhDuaJPNKUxEcbxndwZTzW1O5/d6sF3VNfM1njc8YSZO150Cbwdi2jmamUmb64+JUtHyknMBuPPWi2y/hbU1MiE8/7qj4w0vr/7IyMmioorqmfKZ8oX6esxg70ZE9Pj6dri5tTg4EIOjLRoYw3j/wzSnFWOPFiVkOtdcSWaxsbF6rrpsuizrUdZ4bm5q9rCdd/NWh3Ok3o4RLsor61AzDW3/+CXDteoSXxN4ugKpM4uQgXVmHexYL9gIO94WOLvGWGhpypRcu0HUbg5tN8zc9RmXkr9bjODXntev6NB3Gi9p0fbfyK6bdJ2lInfBspjuMzVQVdS5/1Vg7lqS7tYHMfw27D2JCB6Xdp+VyjY2Pty/fzApibVMaGpiB29ysNjQANNodXSEFcCfX3dy6vbyuhMaOlVcPFddnf0ou7RyOii2F/mAe0hneOLdqtkq3x5fjy4PxKnU4VSYEt5hurS0Nzi42db2Am+uIO0UOSDLySTUfkhZFY65UKuDA84B4c+u2a5gogDJhmfYDSuRVgtxga3Cfq7dc1jW8ID6DFPN+BsaenWc9Y91OAeXkl8ykTGaATeCz4LVd3t74wE+C5diprx8KDm5092dxOjxEw6hzdn5pq/v/djYiYKCxsXGuZqaicJCuKDBxERcnw5xmeECb9eMv+Ai4N0SBxP3P9xfVTu3z+PqJrbqdlRLVErPyW/+TFsMSvADH2s2dW3QXUX7qxgHtTsem4Haf20Mtf9QFoBkIcYQav/fFqJ2hW6MBWDd/GO52F0vczcoLKOnyF1Xxt0IcH+OgPv6D3FzcbtZy5PthzDmd7peyiseD78bjoEEs0IgOyEaFGyH9ejevLnF3r5+oR7JOYwUIRLJIauDoaapKwTuhvRkLKLtP16zw8xS9zVg7po6d97TSJoCEHDf+9VepBaYK3WqVLTjh1S5rtnYjOfl4TbZ+7RssT8Lj6RIDLjJS/uT3uR+G8kDJmhe4d0FpRPZhY8qZioaFhrgoJrt7JhyF2+VcVh0sNJuPJoKfihj7lID1Q9kDVSNM3cjhyEB998rafsf5eXtawHcjcq4/8PSvqkrkHHXZu7mAPdVUpV5zEXuj4O5rzp2XzPy/vRy9tVH7U8LbX9CeqV+M8rbvzXtUp8mPZlnAu5PnoA7A+5c4ZRNQXerLrsGdRSVTWY9ygq9w7pf3ouOvuXv3xcauqRWk8J7bvE47a1Gcp8/kR/SFwIXy6ppjr6Nu8dESz7VMHekSwzm6jB3kghfqzaqesm77vGfOj2U/ktHTOZ9UUzmD6xIw3h5u5Rtk90wdRduEAraLurJbD4jK2/ntN2x1dHzhmdEf0TZdNmiWv1wP6bos1kFj5qWmqLuRZlT4a4rKfMaZxs0hGmc6gJ34R7xVFfD3JWHIKEjtkvFuzExmWPrcQ4OLQ6zlZXpeSMlUyXdXl6s3JgLcWgqQXgySkWLXe7uMxUVZVXTrMLd4ZyWlK1O47jD8jJAvZ1RNaV85hTqSujwFTOAuwV80Cz4vgrk3RB2f/7nRsm7If5u9PkmityXzdz/zIGgKC8jCV9w8Ye3tgl9Dgm7c0nTk5ttT291OLdLdTk4rhdux73THcaCvMzmmk1wbzBpWSAlkir+tFE4r3DH8DsraWLY2mICfC8qSq1eTM4awvQ1eSg5sj8SP6vnqtVL6vm6uumyssmiooHY2Buenq0ODnh/pCDUlBVRUwiKfBp2ggpyra1JbaPHx6e2ft6tww05YNZo1u1AtioAvwoHi++F8SwXk9FoqVN9uqy8XaHbLjF3nWpWLeJGh4atC3hdJOwSZJdZitJYBDD3fWOo3Uhhu1HarrEpg2ZllL8bJfKGjhef+ENE7Qra/tL7+oG7oshdw9yf08Pchd0kMub+Be+dcBRDcZfb5ZD4vv0PGW1nzYTVagSazNFM/1v+Lm1M9auhcZFx56WlnMKxiYICBHo8Lp4shmmExPU5+1+39bqGw9GvNSiWWaXXDS+EJ7tmO/sWewz+xMHEytnK1OzhycLC0YwM2AXpPtFmEU0iyNHGES6LcYIvWcGO2l1dp0tLH6aljeflxT+IR4IxV1OTkT8qGZFIq79Q0GrZupRkOxK3EuXsycMweRk4lq325+y8m5HSFPKEpwKRaaaipm5uf85DfKO6+brhlJTrTk5nucYO9V5usbdHjMNFq66bK6mYgsdAaI4ZiCF9drwVriRTpvLywtVrWGyoqpnF3yuqZxIzBgmu8fL8wxrazk/+JZGky9fbXtJeZtOF7KKl6y6hvSnf3aUxZ4Oo/UUxMPFg9HhRuxHO/n/W5jCC3U0yd9PCMtrAXUfGXew3bgC4r+NbwThwxwiBzWLMbHO+gMS7cbFR3bT0KDsbgYwYK9FApFiYzTbb2WHcIvosNjYiRCIzRPJpMXCX9pXqCrgb0ZNZIW3/d/MOS7D78pi7uXruoraMVtmNsMn1EBNaxJwI/pDmSvBpuGVEHNiC4s6d8LrlM+VeYTeQ2+D+wqfBQbGsQMxvJVkw2VopY+52Ps1w3UWTRYG3A+FjR9LSLu7YQSk39d6QtuJ9KnadYWLuHGFrhGVMMfffmkPbnxLg/rlsqm8IuC9Txv0JVJVZpSL31RVzf7KY+9NC3teYsz+j7d/q8nYzgfsqlrevInA3p7z9KdWTeTIF3L8WPZlvKnBfv4vNP60czu3zuBqXdh9TTd+bvphCpwynPExN7eAyC5h59vj6zlZWztfWlk6XLjQ0LDU1xac9wGQybSQNPgaDFwMBN4exXYm5/+1HEs/VSLp/YErS3fJSd/3YXRe+a/2TVnmLLm03JCYjqrcz2s7L26X9pFTPrrGVIyJtP/4OLhG1S2W17ee2wonCnSPoOV138u3xzRhlWwpwVe/Hxt4ODERGjuk6cuuo5P6mpqWKmQpk2HgmY+4XmYY7XJ1Cw/2YDnA/oFGSEYD7p9rAnS2KyIrcBebOsfsPxFz4eZ4LC7RdFJPBZ+HTESFxVvklE2EJd2arqhBiT3OqclSmfsja7nEoiSA0lJxcVz8/UVDgHdGNmcaGPbxckQGUg5rGd1y+9k1e6k5ljErarlGg1lPYLpORMaRArV3ebgS4m0HeLeHvumXvxsm7hY1VTRS8W3hov/kvjIq5m8ncGVCQ9KblQFCrx6NY7X7s3T1MauY9uzM7XC4S2vPu9kb+hVQF5oPhRx3JBqKjkZEgfGLISTVKipaPW7YgF0Hy1Gxn1+3tPZGfv9jYGJ541y/qZnz6g+yxbJ8eH1WnCgfeP7I/MutRFixxcWmpsmYWk9uZ8vKbvr5MrHnPHgJwNJtiQknbt3e4uY1mZo6kp/eFhGCEJw0luba7OrY65o/nV81VRaXcs2Ll7cfXbRdAm5K2yxRgNv5dBtw1nVEVnU7l2hHvaji7ngJ2XuiqIezcQOScXdwCIkPtFmnILIO2Lwu+r+T4l1U+VgD3tZ+veOfvGqTt2sBdKHKXi7kLDVS1mbuWpPur733G6iW3HYJlEXNnrQuWlorKJgOib/lH3STlE69ur+Kp4oX6eliW302/smmmP07YyD/qloNv627VlZ2uF2GPu9wu7fO86hPRk1M4hvhFG7Bopo4ghVAVPRCNoJCQMTiSlkbqT9RGVVqOPU7mydfD8E+YqHR5eCDHCE24k1s8jhyjUb1YXTsXGn9njzuJyRwjI5IHBSOiTCJ215S6C/Iy29mq3rt7TuA9t7tcsPG65hbc4R7ShZ+q4M7AmNv4suF3w9NH0qeKi6n7N1zHNVvbG56ecB0IYaFcSweeAV+cNp8hjicPJafnjdTWz4/l5u5/uB9XIKQv5FF2dorePS7vff6KUhvN0CFtYdFTya6IfVqcXQ9q/9dlo3ZzO6P+h4y2Lxu1/5/HchjE7uYzd/1F7gZl3OW9TwwB9//ma9K8xzgH7hjtGKtb7M/CSGEOMIq74eGY/9PqLyE/6s3b4uAwXVbWuNiIlAzTd8wUkQpSBYx+4P6HZQJ3E+Xt5tP2f1/uYWapu1xeZk17qIpzAVxq6myExBfpsX2LPXOw5ZOYQ9GKI7XEwGOkCpWzTJjL2uk83BqcEvIfOCvYO4V1kgWT+e2DvAnHqW3OF7zDu2vma/Dm0fei8f6YnSG9YZvwkHivXy8X72ItZ/hsUCEsoxRzN8jcjZa6y2n71wvcPzYJ3FfcN9UsVRlTwH0lqjIraZ1qhLmvcpH72jH3tcPuTxp8fyyQfa1Q+5NK27+RYjJPSHn72dUtb38C26U+gXoyawDcDzwTcH8sAu7IZP4Xy+T2nrRy/NI5oK12vjb2fizmijRdnK+tZZ0Juf4gzJ4JMuzb1+bs3KlSPUxLi0655x99C1m+a7sr6556bD0Jy2gzdxIKX668jGlVdzPJuxZn/4Xm5VpJtkHartUrlXaSfvoKlbdjSDIBdxG4U5oml5Fhou1nhKp2BAq7Zjv3LvfEwcT8iXxMk1jbxoSEG15eHa6une7u/RER5VUz3hHdquBO38ieiuqZpqWmsukyv5t+SLURQ6jO3WTfVE2R+2eCpIyg4c6HksTcaV1Ewu7yQ6riEWYUX7wGK8fXQdBOH0kvnCzEuc2Ul7e7usJTU4s8yeaPcG1rAu4Ie8OpqeF3wzFJcAvqkPbSytV46Xh96xdim7h/6KPtH+mn7W8apu2vGaWHyyOGL5lZAq8Xxhkn7ysseP/PxwLctZm7ULhnlLkz+Yu3/ltb+0LSmxb0HzRbHHjrsOOYZ1o7fuke0jVfVxf/IB7ZHIyIWiD49PhQQS6b04ptTik0nuAkglge3BfSwQ43N5gYU85Qq/2ibroEtLkGtgfH9cL6vLu9HVsdba7ZUDaKBw6tDnjzpKEkvH9+yQSeUzBRABvEOEcedp5PbJptban/alruQ5LpmKmoSBpMiroXBUeKXwNjb+9wvbhx30mm2iyCNrkskvbBWaEECuWaEholpQ0K2q5d5fq2Acj+1n9rOLtY0q4PtVtQ2K6k7ZYDdxOWpXX85ik6DCF7Uy/UvRr8OhsA7hoxd87cFdoy6/6iJeku1UtydsO0Zbban+Pc/PJu1ZV9nlcRaBhWb2oaSk4uLJ1MyHigXlRXz1WHxPchMSA1OZjhVodzW+3P4qe103m8Fp4cL4q+F217zRZTE0wdML+n3B8zG1hQ6XQpnoAwAQtC5kCtESgFp7Lxa7a2TALV1hbmiWfmjuXCfFIfpk79/+y9h3sUV7bu/Xxn7pkZ2xjbeIyNTc5CIijnHJAEiigjgQIiKKKc9SfMPXfmhHvuzBnPOGJjG8/gMLbBJJOTEAiRk8hJBOX0fO+uXVVduapbrQDI3o8e0Wq1uqv22rXWr979roKCNTmP/CPP2fsdm+e6j7lYbEcQSW7BmvaIyOKIxe5CqbuN6K7eDPud1E8PnwgfZ7HPUUf/BnzYurr+qOtRWAfKq3oepqffjo+/HhWF0KYGEUExF72XnQmOuVhd07fi5gqsG7gcYy3CBX3Vg1UVvRW4TKfcS4loicA39EaFwLqdLgLS3VomMyh+iF2hJGEu26fymejCx7nHyFH7S6bu34JLj+hC8ydr27VbG7W/JBz/JhjcgxZjd7OYu8RYRsdVRtI3lQPurRbFTAAAgABJREFUE5lL5KSPlYD7VsyT9xb8iInK2Lgfj1t1CxkXZtQJZ+cD4vu+CKtLISHllT34KVJ3zEaknai0eOBOPB554P6ZGcBdauCuLW83SNv/aI1hBLsPA3PnKgLitciI3JF4Iw+f88sc5xPO654Qf6prERG0uymltDh3OFlYEletfYBFdab9LiwLWJ2wIOC807SWbFFi7pVi7Zo039SEAyuh+9Km2tr+su4yLM4bCp6iFiPtqWfPpjdgUHaYRO5c91SJsYyQuW/SZO4fqtF2XXm7tYH713LgLrZxlwJ3q/RNNd9VRgjch8NVZkRF7sPP3BuGAUY/p4R9aFH780jbR4uZzEjJ28fapY75ybyYBu4ccP/HUAB3ul3RzvNQRFJLX01N0MUgujAHnA+gJAtLAwKGunLv4exBUDzjp8jv6wbqUFdjVcAUxpTBaWSZu7A/59diqTs1CuftZQxK3bXV7jLyrjWEqJ2m17RLqthJRou2bxXT9h9MtF1kIMP0R+Ul7Vj+XRpdcIRp10fk4lmPsmr7a++npp4PCDjl7t7o4nLS1RXH9k5iYm1dv1/EOfelp9xCTqHCT0y/U1HVg5p/9YPVOODOjc64GmApFZq5K+jcBcydd5WRMnfqLUOxO919yuW8JpNKgX4HHw2fpbCjEG+yq7i4oqeiLSen0dkZSyG19RD1wZs+fTfjzIvPhY+Z356/Nu+xS1AjKgeiWKQMhdJ22h1OOAhtpGxiq4C2M/Rhmqkp3GuK0MG4D/UghbrmNYc0TN4HL3i3mLy/LgfuQlcZOXNn37PJolqNub8ravOIkyjyvuAcZngtKorMaYt/numwa77rPkRBVW9Vf12d71lfZCuY9rjg4/uS8u5V2Q9uxsZiglEUjnyCFi2HGFU7FrMLQUHEOoME3EBZRbd/5DnMQKfAEy7BJwOiztfU9sXciHE75Ya8D0kT8iy8PpIaErBHl3if8U5/mI7fRTAmZdzpKS8nJu9ubvjaW1VFcDxjuEH9r+vq+guKOzDD41bd8g5vXuh1WGomw8tahfLVWX9XAO7MoaAW1UqtC+RaV5FjjFjMLuTsfIzIwsQcYbuMtluVuT+Lw+zbA9yTVV/zQy3gLjKWoZHF+rmPZ87+6yJ7GcbSXdSsmFV5z3H6ZZ4L6VRs63nIwb8BkzwsnijZER2OAQ32fscxhxe4H8ByPddlLyYzno+v+B6/Yud1GFFZUt6Fye/R5IHYwfWIbr2iqTEiKKIlorOoCE9bmXWvLTcXgUPrqyYPj+vR0YgmcrN5YOB6VNT9tLSs1izP05602eCNmBhcAZ2DGplbs7unkVuzPyk4Mkn6GfChxGN3OXNn+kbwywuzk4Y5Dq77FngcXOJ7NDz+Ct4q6UpSWlrUWRR1PYqYdfRWIvw9Qk/jsDj4H3cNJt4OT9evT76b7NXshdVj5b2VPRUVT9atS1/3MGP9w6rq3ryidiw1yKxmOe7haTv75mWxzFF1sSWUyDFGnbMrtioRofYPDKB21c6oSh4ylgjbVVC7EcL+b5YOC7G7Xg9Vmchdw1VG2DfVEHD/igD32VsxVTDhMUtxBUQMBkadH2A2XSFXpB2JKapDOX3c3h5XwDpc3brL7I/bI/SQgpo8Hre+hRyPujsOK3AfOtqujd0tYu7C0kBNgqNQF/Bm7vwG0B/eRSmMSsmxwREl0saSTqxjSI9xpiiZRT2FJZHuZ8UyO8thtxi4b2G1CHRzEm11s4BsTmJE7nsW+xwtKu1sz8/H7z9eu7aZaZuE5ZaK3FG0b+MbvItF7grMXegto4ndRUP4I8MdU3ng/vnQAPdvzALultq47zDXxn3wrjIqrVOtInJ/xpj7UEvdhxTBjwRbH6PtR8fk7aNA3j7c7VLH/GSs6CfznBq4j0jHVArctyPnQ11NTFfz833O+GDlwJKAEhr5/ZWwMNKjadasHdSugdEsY0Ij5i8EBj7Ozs4pbMtvz8dCi4jB7MOMoMydQN7vOKn7VpHUnfcKl0jdX/lI7OpuQO2uLHjXHf9jSqkJahcoWUxdUpmEUddJZtIPxLqd0PbtU0TuMb8QSTsWMOrS7nrSdfnV5XG34tY+WUv17Dh0OG634uLOMc3WcNWh2Qxp6ujp+WTtWiTr3oy0EOW9o38DKvyQ2Euo4ZFno/hHeR96ORSXUJwsVuq+ZzZWDlMDVUVvGaHOnfOW4bE7L3hnZwej4hd1hf2JFe+4N7n3VVdXVfeGMl4ENf01SCkwSbZxjSsRfghjCtzJbLGzu5eauoExCliT88gxoEHePo5tf8eqek3mvAJhr4i2a0n8zFXs6mBEtWEJgteG70rkfdCCd3Phu/IryETuGmbuasx9EnWdVmnzyEjdOYcZzth9ITHBQJ25yPvIirSb1KY26GKQ+ynSOjX8anhee15Bccf9tLTbCQmPsrIepqffXLECVegZb+9b8fF3kpJaMzNpCwrE3dq8x4wtxjG8GgZtE70u/wl+6tXshSQO6Q8PDemFHd/jR/jd8PgrmO2lFd14/Svh4V0lJbltuX5n/ZAwIgzDroQVdxU/WbcuLfu+fyTpL23reYih7TsZh9YfGdr+nXg+iwalhFLgrtW9YIvUWcKE2nnO/rmIswsDRGjXLgiTV975SIu2CyLlZeuGidnD0F9/eXBj2D+UImqXAHde5K7E3N+jzF3T0p1tVswSZ0zRmWzXBELS57nuY/A6S9gRerMc9yBDmOmwixu78Qh+ZON+ANem9HUPeyoqEIm4zCGdR+Agz6VtRXBJQjWG4IpMbolIulbVV3Vp6VK6fwsPbmD6wYQnXEldc6+PuXcVezM24HxA8MXgsu4yXBxjU2/YElrNasNNtF3gxCKPI+EdLAWd+7zvBVJ3E3YnB8FhFz4sNbAKYOAmYhlrTmFJR2zqTc/Q00t8j9l5HrL1OIh3hec4BzWmZN1rz8ujymL8dz4goLeqinrv4BqHnIrT5rNOMqY3TwLZtFVLuklF7xaa1AxKcMOMC17eq10VtRu1a7eGsN3UFtUgah8UZLeMvMul7hrM/T/UmbvUVUZk485fJd/6K3Ozjb04qgH3SawN1E4Eo73f8cT0O4UdhW25udTpiEI31PlNHiRXr63r9znrg8obcWdqqvQdB9yZ3Hv8ZhNwJ/m2LnA37CczArRdA7sPkrnzBcL7ysxd0tXJJHL/diKrStk1A5k/FrG4Vbfyi9pbIiNPurpSgIKThSwi8EIguU8ZehprDjIELA7UUoZuXzPdIjUBd9o9dZeN234sL8kZd5H5kDXH3x8zYe+cObTBjKR1qlDkrsbceXsZOXP/SMzW5eOjQQP3L6wL3AXM/Xtz+qb+xAH3UWfjPtpE7iPO3EcKuz/jY5Sidotp+6i0bh+Ttz9X8vYXw09mzMB92AzcCXCfYrcNaZyd1+HMDa1I2Ylc/bAdosT1pGtVTd+NmBhELGYVziJVLuM045+Y+lhiri1fnpXzqLey0vesL4IVExmTizD3bZy8msHu1Dpc6uou76QqcZgxiN058m6C7xIEzz3CP00BtUvyaWbTKMmnNws0LLIuqaywnaL2ndMRoAh3HDqsatQ3xqvZa+W9lTE3YnLbciuqenvKyzeWdLZmZFT3VSMFP+PjgwshFnfq2HOYMe3Blea0pycOKep8j1DimUvh4GKfIw7+x73CmrNzHyPP7qupqeqtSridgPPlctIFf86E3fWk7nLszgve+UEfJKj9W+6+wk/v4QXx4vhDSy8vxXvwDm+29TwUlXId3+PCiZUL4U1jhgD3yZOxatCOXrgw4znR16Nr+mrwzRK/Y6zPBoNRiLadE7PLukT+gy9CWEmvRbRdH7gPfihwOh3+rkTeVTTvVhG868J3rd/6k4LIXcPMXZG5v/PxOJGl++fKTFDgMMNtpt5JN1NX9FQgcEgLx+KO/gH2v/r6gYKOgrT7adTVdE3uo9asLHyzsXNjeWVPUWdRxsMM0tox+oJjQIMdo9i1cT+Ar/je0b8hMrmlu6xsxc0VSEuR4FDaTmyads5AEOErwpmWxxnrWzPWP3ycnd1ZVLT6wWq/c4S2IxyQ1Cy7uuzRmjU3V6xA2LoGn6S0HW97CrVuny9hbYLmh4yVhIm5m/igwFJGetuJt1QSuSpJVO0S1D5ODbVLhO26YTJxJMbbQzE+UhlWWwfMvIGn8Xk/4oG7ROSuwtw17GUEzYpNWm/q4PTztMU7pi/B2CkeO8RjJ21rPNdl70Kvw0tXXKJh6HHaA+GDyx+fBuBigata0MUgCq/x9U5SUltuLr0WeDd7I21AbBZ3FVMLJvpfb0UFidaYi7jqMZcJcbdhWTODN3kPFkEoscyd9kWQtFHlOqlKsDvXOoJg9/mu++w8Dy30PkKG12Fbj4Pz3fbj88513kvV/QsYUx1cnUNiL/XXkP6o9CPgY2JJwfPnuezjuoIzrb+Z3S3kthl3z0x8w0zBCUruB/Wq2pXuHSXUrmvXruchY2Vhu1HU/m9DPMxg7r/SZe4GXGXEfVO5rWAEuP9NDNw3SYH7XN4Dascsxz0L3A+SbV59VX3V1ZdCQhqQOjJYATnk1eXLS8u7U+6m4HqE6xe/2RRpmwS4I+s2AfePlYG7KXnWBe5qvVLNR+3/8sd/IeMPSuOP/zKEzP2/LWfufANVSZcj4iqzYxpWQs/TniVdJTg1Fb1kTbu3cuU5Pz8UTYUdheFXw3EekSogT8DKI2mayu514+67c8CdJEJYgpb4Hk1Mv5N4OzHpThKyjqOMp/8uGXCnrVO/UWPuTA9Vpq+WlqX7R2bSdgUDdzXgzsvbzQHuPHPXBe4afVOHxMZdyVXmF0tdZbRap3LM/dCzKXIXYffBoN4x7D6yqH2Mto8EbX/25O3PRbvUUegns/1Z85MZM3AnwJ32ZUIBmbrmHjLCjNYM91PuWLGirkeVV/Z0lZQgmAlwZzYqYuB0YtJgypJOTW5uqDar+6qXXlqKhQRxg/lLzcQxHUyol+G8Juz+9ZtqUneC3T82gN3VyLsMwZvw+l/EnF0FtatZNAqF7RLUjlhkLdr3z8dBcD3pGnYlLORSSGRLJOkuOzDQW1VFO4tueLrhwapVV5cta/bywsWGapT4xQ6LI1ZYXCrw067i4qwNj1BfLfY5isp/gcfBBbywLvDE0hVEV74m51H9QP36/Cc1/TX+5/xdTrrgWkE1hhrYXdpJlWumys5Tbs7SH9H7CkTCv20ylgF8Uix7+IwR1yJqa/u9wptRMMSl3eooLMTbxkqHlYKGKPGTmToV0wYrKS515wMCiM6RMdKJXnnd1uMg9eRl5e18Bzmu/d3vREjFZKBhcrDVou1GdLsWk7WPNIcqg1NG8Hrk3UzB+5/MJu9mDPY1VUXu2sydIQssK+Qt3QX2MiKpu7CZKsPcMVXotnr/yHMbCp4Wl5G2ASddXVG7dhYVIRCKOovCr4QjBIIuBG3s3FjZW5l2Pw01bVtOTsb6h+EJV92XnkLs2LgdmOeyj1AzDpwt9DrsGXa6rr+uvn4g4HwA8jKEIq78FBoicBBBSBmQt4ZeDqXeMr2VlVmtWQgB37O+zo3OxCfqpAsi8XZ8/KOsrKycR4hZvD51TDI1SlXwhKFWEjwrZCmhEBFybSG3yuTtnCR26pfaDVGlqnYG0qnekTJ+U2q44bjxGNQb75g5LPxDQ/NhhQp3TuQuZO7jOOYutJdRv61lclkRdqueYrdtysJthEETDE1INMPiCY6ngwXTjnsQQc5BjUWlnbjGlXaX4tqHgoDer8JA4CA6/M76xd2KK+worK3rR5isvLcy+GIwnolqA1dMz9Oe2Y+zn6xbl1/UHpnUEhxzEZcVB//jpKu2o5i2yzaIiL3O2fGmIJREIncuoOitLAXsTj47+dTTOPJOtPxE2s+o++13MY/swiOznYjAf47zXt6FxinwhEdoE67Xdl6HsbDgOXgFk+k87dxgEraLr2XKvRbUnKA+Nbm0i9xjDKB2k7Bd4iEjF7ZrObb/Ly1h+79bKGx/aRhQuxHsrsfctUTuaq4y0r6p9PqoANwnqwH3n0mPX9d9i3yO4AqIa1Dnxo1nfHxI/wMXF3zTUVBQN1CHUELRT+94EYX7Nsbd8bt3aNY9YcsEVuby2fhxmwwAd3nHVHU/GR15uzZn/4PhoU3eNZm70PpGn7n/Wcbc/ypj7rJKAUeYF7kjc8BZQKqMtAEJQ07h0/D4K5kbWvuqq++npeW35+e05SRn3sW6gdM6fclOod/URP4GoanzxI8UuOOZWHxQEcStuoVpUNZTRsUuLHBndiET4M70TaWuMjSvNzF3it0ZqK1q6a6E3T9SQe2WGbhbGbgPpm+quo37dots3J8Tkfuzw9zHsPsIoPbRTduH27rdUjOZMXm79f1kONr+4vrJjBm4W8PAfaiAO6pNZHJznfe6L23KKWwjtux1/fG344s6i5ARtmZmYo3ApKTSCQpSqTE3YglrU0tkZFLGndy2XKyUhFUxfuKkh+fO6ay3yfYpVPBuwu6M4oY4zAik7qyrO5PxvcKle8JEj8fuiuTd5PMucXvnHuGfxv6WBmr/bDwrbP+KNWdk+6MyAJqidsx9RBKCEp8XnxqLNC5BLiddll5aWtdf92D1aurpHJ1yfVnC1Y2dG1uzsjBuxMaecnMjTtO2tvsZC05+PWLtOG1tcak45+fXVVxcUNzuEtRILXTnu+2f77pvvut+Gze2W51n2Gm8eE1/Teqa+4l3EnOe5tA2StQDF2swFkX2XDC7++mJkPvM0CGc8vQR/JS1ytk2Bb9LPuxu9sPiaoaPWVvXHxR9ISDqfGV1742YGLxtfAS6rfVnJjfdxfRKxaXuYTrBlD0VFTggKVn3nAJOzHXZq2xsLZcuStwzplpG2z8eHDszBu+MAzg5fH/rA/PI+4S/GPKZMfGUP1kbuFvG3D8UMnfeXmY8zwSnfSWU4rKu0/NNzB3z3zmoMS37PkpW6hKTknl36YrLq9Y+qK7pW/NoDb5ivq3JeZSxvpV0a9zY7hHaRFC7+wHMOsYfYzcds6kthtt+RFNkcgteqr+21vuMN7InxA6u6ohuxA4iCNHk3uQe2RKJVY70TizrqqntK+kqSbqThAdjbsTgNzG9EeY95eWeoaeZ/gS7JLRdQsyFls08dhcxd+bjvyV0z5gpcFWartY+UUrb1YXtogCx3h2pYQToMjgugtHDOqyF6fU/r/RP88BdztxpcAntm4TxJfEv4rxWJjE9q98T8ndG/y7A7j8zHiwESSOC7DwPhcReKugouJ+auurBKr9zfsgEUEkgjtxOuSFA1j9ZT9b/8nLkFRU9FUgtAi8Eup50pcVN3K24x9nZuILU15MtU/Z+x209DiJUEewiJxmVNgaywd27mqkE3E3MnVW7mz44R97ZGw92FL4L7zrw9x7o/YadzGAQPHHj2TPb6Rd8g0fwtpl9LaJ3LhS2vy7YpPWackNjwd0yUWdjkaT9FdM0M4LazRG2vyZG7UZpu0XCdgtR+/+WDfNfxBLmbkzkrtw3VQ7cPzCkcGe8RBAUCA3HgAbq43c7MfGsr+9ZHx9k4MisqMEg3ZzK3y1GmkdS7m8mEuD+9QTTvlJk2oy0ZVDAXc293bC83QzUbhC7G2Tug2mgylUNcjN3lDOoqyQid+9mbyx9OF8orwKjzqNWQsKMZXBN7iOUBmQzHNNRmXGdYs0VuXVJ2Of5xyl22yhwJ/2u3Q/4LDuDJKS/puZOUtJxBwfk3ixwpwp3ppGSibkzOndaZBqUuouYuxi7a9D24QTu/9AF7pbauG8zy8bdWq4yQ9w6dbQZy1jNXmYMu2tw9lGL2kc5bX+2zGReEHn7mJ/MqDVwNyhvf+EN3AlwR1aHnB4J/SKfI3VMK59LISFtOTllPWW9VVVXly3D+oVgoA15MBUwY/A9Be5YMs74+CChXPt4LdGscYYMCA7MfTrrTcbi26fi9LK2ktpSd05oISfvQsE7S96F8F13cBmzCbV/9Irck5FuEaW2jLyHDIvaf55KMRylz7hELLu6rKqvKrctd8XNFX3V1ZHJLXFpt0jLtTIiPyntLsWDKI2opJ22usISg+VD2Muepl9YInG0r4aH19cPpK4hbNrW8xDdzD7HmTjqznXeS3vc2Xkecgo8kZB+u6avpq6uv545ceU95dV91cEXg33P+no1e+HKw/vMsHdBdpg07xS+E/4ujLmf3uO7v0r86HFmsbTj8uJ8wjnwQmDdQF10yvWYlTeQ9F8IDMRlnv90ppsH9vY3V6wglh/M7Ye8ona/CNpEzlRgiMS/s/6u1EdObFRtIhSylnEqHSBFRMxSomcpy/tIWzisSd6tid0HTd6NAfcJf9Fg7i+x8uePhC0f+WaPOq7TC1hvGcTCEt+jQTEXw+Ov+Cw/48y0P0XhuizxKu8wg2mGx+39jtl5HUawsFbUjFJ1BlGqsrAM8xA/WuB+wC3kVE1t/5P16/Pa8sKvhCMfRHZDMwtMeMx2LIaI4tuMKXxRaSdiPCb1Rn5Re1V1b1dJSVFnER4MjbuMt4E/R2i72Enmd7O3StxgxGPLBA67C1kh8VOa/Q/pVo/pQnm7QB47KNqudkfqeYHpk0xicCuNj2UrjPlQ/h1rLEHcWxrH9kgQMneTvYy0k6oAu4ta9VL1t4LjyjYK3PGVR89M21XCAR38j28oeNpVXIzoW5f/pK6/LuxyWMbDDIRMf13d9ejoloiIu8nJWP8T0+8QP6j2gtgbsWFXwpLvJuOf99PSOgoLV619YO93HOGDUDX107YhzFqxh4G4y6jsxtVMoaWMFLgLx9sC+yYOvtMbD5S//8BTeOEdCG5s54k88/02pgc4B86YG8k09tnAV/VDM+F1UUNjlbvIL6ug9pdEVw3Dju1m2MhYnbZbjNeNDIul7pYyd5GrjBy4/9kYcN8i8HDnFe67kPsx2ymOeYQ2IfWqrO69HhWFXBHpN+LI+4y3Y4MjCnqqtEDmxufbSF9RQFCBC5JbEXD/yHzgbg15u3nCdqVhlLlbu4EqbfWEMkRi5i40lkGFh3oBiTT11Eq9n4pVrryyZ23eE+px111S0ldTU1bZE5Xc4hLUaON2gO74ZFaPH+jiY7r3KW41gaRlvut+p4CGtOz7WGM7N25E7k3ELrNmUUuZbZzInWfuhrC7WOrO28voYncd2q4C3DdbD7hvNQu4a9u4q7vK7BhmV5lBtE7VYu5qxPBZZ+5jJjPDg9qHUtg+VLT9RTWTGVp5uzHgvnesXar5fjI/W8lPxghw/3HMwH0YDdwJcEfNibKWitw9w05TZFVb219a0V3VW9Wel0fa8tjZYcZjFtIMA1MW8x7hhHWh0cWlu7QUw6vZi2irD9kisomv8YEFWAywcmCZoSAesUK7quJMUqk720yVd3VHMcAILXSwu0TzLuDvIgpP2To/PhBwdl7VLmmOKveQoXbtnIM58VTZO4datGMhdz3pmv04u7usDEfpybp1JV0l6esehsVfSV1zP5X8n4pD1+TujgsJlkUcLgrZacALZRFYHfAjCtxxQboVH5+Yfnv12gcO/scXMG6wpuZ1jnvIfnamu52N+4HFPkfcQk7hL1LUeMbH535a2vqn6yngzmzN9DztiUsQPQVCk3e6itBFQrQM7GDN6LHCkY95hHR8dW50xielw/2Uu3ezd/DF4PSH6RnrW3MKn95NSbkYHIw/3ezlddbX92JQ0I2YmBvR0ef8/C6FhJRVdOPJPmfIXZm+6mqq/2W20G5j9tp/J9hrL5W0y1G7DCyq0fZP5GRKi3Mp0D2zQB6P8z7WJXEvqzWllJJ3geDdGHY3CRitT97/pATcB83ceXuZdzkyOEXoMCNyncZUeZd0kGPpAyJiHrPng2z+cGN3fiz2OergdxxfSdS4kqhBvIgh+84ZAk/qGaRT4m6q0vVZdiavqL2jsBCrX9ytuPjb8f7n/LGmrXqwqqa2715KCqY3pvTthIR1+U98l59F3LkGn3Rf2uQR2uS+9JS93zH8UVmXVJG4lbWCETdIZETHHHZnmbvJh5rvCTlBYKykZCYjc3nW6I+qcDtKewvI0LB1qyB1YyR9nP74VH1o/aI+lx9qcb30Y5pArcTS3dRJlXV1/8p0j0fmZcRjd97nnUJ2ipXpIIrLxTsQQQhDx4CGqOSW4q7i24mJtMtCeWVPf10disBGZ+fzAQGIrPjVt/0jzwdGX8BVsqoPyUUVLpEVVT3IHvKL252DGvE6sxx2T1tsaqb9tt4FQnjXShJB/L0EE22fw9k1qA0F/TtL4fmbEGIQzwybHybZMJiMa/3N3SH4B0XtE7jbxsIbxq9OVrkx9q5p1il3WeBCUobajQjb/6zQYXuQtN0y03ZDwvb/baVhgdRdwtw1jWWURO6sq4ypbyo5+L8x9U3VA+7M7i7Mril226YTD/fdyAOZtgHHcOlBEKVk3u0qKUEElXWXLbu6zPesL9Iz0vdb0EeBusqYbNyFwP1Ts4G7IT8ZI7T9D/9ilWFFkfugzNwlxjKMTAflIKoGlMU4ETgjSCSiWqJib8Quv7Y89mZsf03N9ehoDJq3e4U1I5mn3ZWRGL9n+xO9vcf7XE1laTvZWENmguu+Jb7H1uc/QYaPX0divn/+fBQRVBRFmDtTUVPmTrE7q3ZXNJkROMzwnVQV7WUk5P1j8eMjANyHx8b9eXGVsb6xzChk7i+k4H04OLsYtY/R9tFiJjMmbzeXtguA+64xP5kXwU9mVAF3KqVBbodCd67LPnu/497LzoTGXd5Y2hl3K440uqztvxIWhvWCIuNfOEU2ghOrBpZ7FNgFHQUB5wOw9tM1Dysrsn88surBqsQ7iUWdRSgJXBpJb08EDfGX/Gkykbp/SyoBut2VSN2/IvsbebU7MZmRk3cV+C4Sv0vGhy9J3AfZ3aAUtfO58hdKqJ1xMMcsRuggoLEQ+p3zW3lvZWRLZPDFYByfuvqBwKgLQdEXiJd6Xw3tCIf/2nJyTrm54aDhKOFYUc5O71iYApVmbJS5z56Np2GVPOHs/GjNmvr6gcjkFmTVNm4H5jjvnU24IeMkyw26jR3na4HHQQf/4yvSblZU9RKTDUbtPlBf311WRrey4n1ipN5PTbidgJNC26vShZMusVgXseDxuSGWQKzibqfc1jxaU9JVgjNIzCK7y+jnym3LTbufhpfC1/qBelLypaU9WL26t6qqpravvLJnXf6T6pq+pIy7ePKjrCw8DUeM9s0j7VJ9j81y3EPdNljpotSceouISIosbtV7x72rSihUmbtZpE8d6plH4rQop5LmXUPwbp69uxi7c+RdAN//pIHaVWj7n0Svz/xRsbGMGnNn26ia7GXEru7jOSyIaWCSus/Z+jYrdWcaiAlKUN7bgXguOxLPZUrY8VPGctrkQM03gaRaXfoKDL7fu9D7cFTy9areqifr1lX3VVdU9SCINnZupPeuUNMidTvr64t/xqTecAo8sdj3KLF74ropcrJckwmGZG6L9mqwbRK/lGP3CSKh7tcit3eVu1DKZjISnaxkTr5jFnC3sme62WBdD6mr0vN3h3coAfqhZfGTPlY6DgrMnbV0p/tIRA4zXylA6jls42LeRPi9BdRlhQyGB/3Eab23k46ODrupmTvdIdeen08vGV1FRef8/M54ez/MyMDjvsvPInBwtXIKaHBf2hQQdX5ZwlXv8GbXkJOLvI8giBgjJoGNjLjzgRS1k2sE+ap2y0r4WQhq51XtfFNurmWIwpjDGjqZSD3P4ud9Jx2CVxY1+hZEvQi1c0Eq8YrR2YDytiJq/0B8dXhfWdgupe3/z5hp+5Bp2/Vpux5D/614DB67azB3LZE7C9x/pekqw/dNNQDcyZ3mN2cR4P7OPNO+rjlOvzACi6MuQY2Io7C4K/GrbuUUPkUCltmaiRw76npUyKUQ72ZvJOHI8ZDUoWrk1S0oMti+qV+8PnzAfShpuxnM3SKRu9BYxgwzd7GxDIpR2jsapwMnBWURiiDagP3S0qUoEJq9ieFMd2mpZ+hpLKFIXaYv3sFsl9lGGmnYbePaWZM8h8v898xz2YcFc3nitcrq3ifr1+N1DixYQBVR1NGR6ty3caU1LZ55+G7SvIuxu0Gpu9rgabvcT0ahY6oKcP9KCNwZ5m4d4G5VG/cdQwTczXKVGXaRu0Ezd8uY+xh2H9WofYhtZEYDbR9y6/aRlbdr0vYhkrfvey7k7WN+MrrA/Z8vJHC3wE+GAHeqpkF9iyoa2R4ye1uPg86BJ1Zm3VvzaI3naU9kh8gIUTljWTzENPmkqQC+x4qDRf9CYGBpd+myq8s8mjxcT7riV8KvhOe15z1Zu5aat3YWFbXn5eW25Zb3lDs3OiPIiPqGMvfv3qYWk0Kpu9BkRoG8y+C7iL+rDD4rZPPBTWK79i9Zu3ahgQzmI2mLumMaQhDvGes3PiNy3PtpafhoOU9z6gfqY1be8A5v9o88n9+eX9NXczk09JS7O3GPsbPD2oSVgnB2JjJp7P0sUpOTBI4ydxa429o2ubvX1Q8UFHckpt9BfTXfdf9sp19YhsjhQnzF97SrG346z3XfQq/DLsGN/pHnolOuU7R92sPjrK/vw9Wr1z4mZyEh/TZ9HIUZzhEuobS5a/rDdBQAbqfccL2ilwJceVC2VfZWlpR30V+pqunrKCh4nJ19Nzn5fmpqa1bWk3Xr2nJzMSs2dm7Mfpy98t7K6OvRwReDvc94Y+S05dTU9m8s7azpr8FPcaD6qqtLy7tdg09y7u1Mh6i530nMbaUwUdHl9j1d2v6J1aWjMq5nJs4TYDgV4iYj7xKfdx2fGePYXUbeBfBdzN/FqF0fuJvJ3JWk7pJmqmKHGUaEy3BAobcp67Zst03g87CN1quTucF6MTMmGIgdhrZvZ+0g2GqWSOYRRF5hzbGpN4u7ih+vXYuS+NGaNcQpta4Ok//qsmXUNMMj9DSeaeN+AHE324ko6JkGiYw2bYHItJ3oW009Er8STWxuvM4pjgXYndfqmobWng9j8naj+z+sitetyNYHQdU38eNVfrw3uMG9juDFrcji9SxrVHT946Rm7mLmLraXYeeeHLsL1e7Cxn02P0iV3cRohfir0E0nVHfpu/xsSOyl5YnXECm4vuDaQdsthMRexE/tPA/RHuAIHxs30puE7kShju28sP0dsUhc2LpAuDtE4X6V4qdg3XIEWJxpRMx2R+Bcm7TGbE4srzS0WnxPlaN2/Y4jMsiudFGQova/Sjc/SW1ktGj7v44i2q5K2P8/w0MTwZtlL6PO3HVdZdT6puoBd0wezKWJXE6OuCAuIm77F/se9Qw9HZHUsr7gKe0/XNBR0FdVhX9iVFT1ImfD45mtmT5nfBYfWUzS7J1E5M66ynB9U5HxIp02AfcPLQLuFsnbrUvbVf3crS5y1zOWMZm5bx7PG8ugsEP5iDoCRQSq89l7Zs/fPx8JNhLv6r7quykpKJ2O2dtjbUT+vCLtJukU7XaAuXO/i2oCprFtMwhtpxtbqc5mngtJ+P0izqLsqq7tQ8mAwgHlg6nW4Mp4vlDnq3GqfKdVNGpgCXanDjNf8FJ3IXPXxO6fmCNv5w3crQnch8fGXeYqY66Nu9RVRszc94+gyH3RImuJ3EcLc39+yfvwcXZrCdufCdo+SsxkRnGv1JFtl7rnmWuXOrr9ZH4aTX4yL4KBOwHuivk96mGP0CaK2nvKy2v6apDf99fWnvXxIWkiXcuWLMEyetLFhTT5LClJvJMYeCEw6GJQ2v20kvKuotLOqJTrgVEX/CPPxRExThteqr+mBrkmVkfEECYpaev0w7t8J1Xq6k6xO0veecH7ZjZTY3M3Jo8zZXY8f/9ENRPkdRc0AaQqC4ldO/Ve5L3aibnK7pkIdCwzWL/jbsU9TE8vr+xBkdNVXNxbWVlW2VNY0lFW0U2VsLR/EVY3ImmnenZ57ksjh8vkaAKHqMbz8VtYi4mKtr6+qqYvKPoCsuq5LvtmOdIUfKdJrruIV+xS5ctu5OIoyfB8t5BTeCc4yB0FBbfi41szMrrLympq+6ne/H4qcZNMvpu89PJSFGYbSztRoaFOq6zqxT8Dzge4N7l7NXul3kvNXN/qHd6MQg4nvdnLC58Llz1c3U+5ueEdXg4NRcGQX9xeXNaFagGv5n3G2/mEM64/WGhxhYy6HlXeU44PsjLrHqYB5oC93zGmmeTOKYyZzNvzhLRdxZZaDbW/p6nenWQ1yD5OSTRqBOeN0yZx6gBUDlmGDLsrkXcxfNdE7TLgrmoso8TcxfYyEqk760CtYOwuavb4tsD4QmR7yg+ODDK7s9mt2VQ+xoD4nwQ9IYk7KkpZrHtOgSc2FDytqib7RTLWt2ZuaF39YHXq/VTEFB4JjL5gR6JyrwC1b2e2gVNQqCRsl6B2ijv5oYrdZUOy7WPqZrN6pRq4I2V+z8/B4HVz2boxqm6Ap39m1aFF5PVZvHkU3rhzzqdKzF1mLyN2mBEoxE0G6JKuqsLBuQyzhjM0gua77rfzOuTo37B0xWUEUUFxR0rmXa/wZlyb8COmGQm1R6MNFXbSm1VT+AgS9tCWeDFNk2wQ+UK+R4TzpjcBd6E3PTV7mSjuRSzoHcKPr8Xj75rDtAdF2s3Y5IEml7Qb7Oytt+3pd0qO7UZou7aTjNEuqf8upu1y4G4WbR8sZ1eG7+Zhd23mriVy5w7XfwlcZRT7prLA/bcscP+QAPdJFLhvxsxhE/K53zIG7ttmLKFtS46FxF6spFel1ozIlsjYG7GFHYWtmZlFZSTTXrriEkZi+p2+anKdwhMWH12MMhRZJnWVEfZNNQjc//VP+h1TjcvbB+/bbhWRu7DXq4Uid0VjmU9YBQ9rLEPlO9+8RQsKVDpEuLObCHcWHl4YcS0CmTPO3cPVqx9nZxd1FqVl3w+Nu+y+tGmh9xH+Rj7vg8dvaUUtMIdR2GCNZf0/BwZOe3oesrOj+495v0o1RsDqfnird0aehiqXYneh1F3I3AVKp3HCSusTyRDQdrm83VDH1GEA7jIb9x+N2bj/rGfjPqpcZawpch8R5j402L1hjLMPv7D9uaTtwyhvH1IzmRGXtz8H7VLH/GSsZuA+OHn7qDJwVwbuTIr/NU3xGeb+IwrgmQ67bdwOeIaezi9qRy5YP1CPHBFfiRM300n1rJ8f8rwmD49mL68LgYF3kpLWPVkXfT0aX0srupcnXvNeRvoZok5Apb3Q+3BwzEVUApdDQ5Egejd7YwVCtGHa8syd2MvQTqrM25zANPQxkXcBfJcq33n+vkmc7gmEFnzeN/6z8SLULvCQwfnEvMB8RGQgNGmbUKxeWAKxovuf8++trEzOvIucGJlu/Opb5T3lXcXFN2Jjr4SFnQ8IaHR2xlpJZCYMZzdBdj57k4XKdiaToyL3PUwTWiz999PScAD76+r8I8/beR6a47yXyNsZ2k4b1lFlLq/PZZwxOOzOdIB0CjwRFn8lp/DpmtxHKVn3kNnjrd5csQKXpUYXl8thYT0VFZmtmSXlXfGrb28s7WzLyXm6YQPOCyq3pDtJES0ReH7C6tsYJJv38qKuOFhtcanAtbPJ3Z2exxVpN6NX3qiu7Yu/He9z1ofuZcYCj29q+2vvJCZ2l5aGJ1x1DT7J3DnYS2g7sbdmrNvFtF3Nk5qgCklbOandrYxSDc6W4RUdyM5BPX2cp4zhtBriTTLgIWAedh8EeTc0/qwlcldl7mpSd7HDzLsmPijvpypXsErMl1n/ZY4MMvz9R94aFd8LcTzF7nxvOsSdY0ADli9MXe/w5uzcx5jtsak3XENOLvA4SDVoTDwKUDvv2D57K0sJefomvYfETO8pnNBYBbuzDHGaTNKrsvnjVS0/GbNuSn30suHxinndDqyF13XBugocn0ydVYTjc0uH6UVeFa1RmjjeDAr/qVmW8QrHUHzEFJi7TOouwO5KrizCEOPbq85j44sJIvbG1SzH3QgiG/cDi7yPYNgybUh4hMR6OjF28NSwmPYJNITambeqskHkK9GblwB35q2y9i88cBfR9q8nCO2bDAyuWetXgv0rX74m7uz9qgS186u98t4mcb+EiQZbar9vmLZr+7b/X1Xa/qo+bf+V1Wn7oFG7HnY301tGX+SuaeNuJnDHREVc4BIzy3EPsTvjdi6GXArxOeODdDT6BnEAvxkbiyw0Mf2OX8Q5pKZuIacCos7j8Zr+GjwBRTlybOS0xFVm61sEuH8lAO6fvEItGV/6wDBw1/CTGX55u3GRu7muMmoid8PGMryZOxHxfGcS8aCCR2XhcNxh5b2VKIiWJ17dUPAUhdXTnByi4OkpQ8HlHHjCljahIZJ2cm+SGaR7E7GRdN47322/nddhZCOV1b2oFFCCHVm06ICNDev5yXSK4iEvT3VZYsIID6nFJfV8RyWC6vqfjNr9G0bqLrSXMVm6C6XuAuz+iZqZjETebsBPhjdwVwDuEybIgbu8b6rlNu5musrsHC5XGfNapw5a5D4amPtQSd1l5L3hmYPsw8bZh0XYPkbbn61eqSMrbx/zkxmdfjJjBu7GDdwJcEd9yHglf23SuXPGkXNd9i70OuwU0ECT+JLybnyt66/b2LmRKEDr61szMm6uWHE9OvpOUhKyxg1PN2TnPl6eeM0/kmT/jgENqLdReCNNdPA7npZ9/8l60s9z+bXlXs1eWCkRl5jRmEE4vay9zLcTCXZnPjF91+zb3EJM3nX4uxDBC8Z4QacemuWxqH3LBBwJobAd7wQBh0XIudE54HxA0IUgvE+PJg/vM96rHqxCZuwReppABJ8jhSUdMTdiSJ9Sb2+s71i2TBaKQv9EXjfBZW/8j7ZxDyIOCXCfPRvLGS5s3aWlkckteGVUUAzd+4XuMOUb1rHiXG4IfB5NsGOB+wG8SafAEz7LzxaXdcXeiMULnvPzQ2p+JSzsfloasXevr2/Lzb26bNlx5qrW5O5+NTy8o7CwsKMQpxJ5f1te3sWgIFxa6E5V6niDJ5/x8WnLycERCIg877v8LE53/8BAUVdR6OVQHC6fsz5p99Pw5877+5f3lPssP0MUwc6Utm9n7a2pV4CItmsCREOd5cyRt08yS8wuR3tGWJ4ajFOB70r2AsOL3f88KNquANzVmbtJ6v6BwNVd7DCjgd2nidS4FK7xmty3hJ0SOQTPkkFeCz//n2KhLjGomcz5YyDiiJSM6cuK5cvO8xD1kMEjDGr/mQnDn95dwKN2odn013r3kMRDSN6VsLsQtRuyWjIE3D8Z+maeBgn7IPG6diQaQOdTJGOz+hA/0wCOVwLxajfhLDGl0WoAq7WImSzdx4smHs/cpf1UJZFl8jfn40tg9T5F3F9hOn+3WHD9Ym56cZydF55rovbXJHtEhMx9mlikP1O0FUYI3AVO61tFtJ3j7EKMLtxcIhziqFT0d5L19DawmUkA2cWcnVvt9Zt5TFCh7W+o0/ZhNZMxStv1APrv1YdZ2N0gc1czltFxlflXqY07twPszb+QE6cK3L9GuJG+SgtIX6X5rvuQClZU9VbX9Pme9XU+4ezS6IIsK/txNhK5SyEhtPdmUMxFF0bgYu93DN8juyuv7MGTUYmiFEN2zdq4f/UGSZg/G28V4P6r/zQsbx8i2m5V4C53lVEWuesay3Bm7jxzp2oe1LioAVCsU+ae8zSntr82/WF6xsOMB6tWIa9+sHr1uifrqE2lo38DEg9iuuWyD/kzco85zntRkdGchHhIBjWi2kImT2sQ1u2TIyP4Hun64YULj9nbn3R1PeXu3uThcSEoCBMG/0TCj8SeGtGgbEHZj5KEmMy88w4KVMLc33xzi5i5C+1lTNhdMD41Lm+3CLgri9yNA/fR6iozMiL3QXRPHRRzH3Gp+7MA3xtGkLNbEbUPUtg+umn7CJvJjMnbR3+71GffT+ZHa8nbRxC4G/eTGXoDdwLcCcma+gV1bGCZ+zzamXAb0v2ZDruR5C3wOIhU3jX4pM+yM8sSryIjTF1zv6C4o7Sim+pu+hmv9sKSjvR1D1ek3QyLv+Ifec4jtMkp4MRin6OLvI+gZsja8KikvKuqt6qOMaCs6KnwPO2JQMe8ps2dcGaI1J3B7jhU9BjwH5H/HBIET3Yh8vydQ/DS8QXL2XnULmmOir+OyY54xZoX2RLZUVi4sbQTnwsfMPluctT1KLJLN7kFH98t5FRQ9AX6qVHwYMmmOesO2qqIa1Ik0VDgcYQWIhPPkVB4HrhjcTzl5taamZmxvhX1FY62jdt+xk9mJ8P4tk9hUcVPvFCXH6yTNUs6WLU78f30ORKM6ot0fqzPa8+jbztvYxtGfnv+0w0bkOUfYPI2XObP+vpej4p6nJ1dW9ePI3AvJeVicDCumlQ4gwUXVxpk7W15edV91cFMgecY0OASfDIk9hJetreqinytqOgsKirtLkUtsT7/Cc4+gyk5bbsSbRdKAsdP1gPTqqjdAHDXMj7W5ewiqDcIeexnOvcSTB9tENj9TWPYXZW8/9k81G4C7jLm/qacuSvaywgcZpSxu9BkZrPQfvoNaaNRIYKXwfe53zFDoNWlcnixLzz1fKd9VmnvBKGk/V2bHwiy5wWzJlAo927eLD31ikSYt/iQkERuvCZzpJG+sgZwf/dTFYn0MEF2Cwm7MbyuI1cXk/TXhmyIoLw6hddH8O8aRvBSFq99YMXAXcTchfYyX4jV4lsUYkrubM4FFyJikiCOaHtVesFi95TY/MDf7hLozTn8LUftAs248hDeKhCZ0fPyfNLylAv8b6k1/FvKruuidqyy211fqgXjeKWLl7p7jAZn/0DG2TVRu9S0XaVLqlnW7SMgbzdO239v5jBo724ec1cVuUtdZeR9U8n10Rhw34pQQuDMsN+10PsIstDu0tKYGzH2x+xR7js2OAacD6is7r0SFnba0xNpW3t+fnbuY6SmpI83s8cRCR6h8BeDUCijqpv0wyRk1Cxw/4IoVMZtEgP3vw0hcDfDTOb/CMZwAnc1VxmxyN2IsQzZUEvN3L94nWfuqPNY5v7je9TSfc4vc1Br4FS6nXLD2cTJerJuHUmh6+tJjl5XR/3rcCrpJiGm6cV+G7cDOL+2nocW+RxB+r0y6x4qBUwAZOlIzinQObxwIaoS5PPI7ZHP305IKOsuw6sh2y/sKKQlQEtk5J3ERDzS7OWF5B/VB6lNGKn794y9jIS5U0dPib2MxpDL240YuCsC98H2TTXTxv0Zc5UZVSJ3azP348PA3FXge8PI4vVhJuwvKm0/Ory0fUze/gzI280H7jvG/GTGDNyNA3ciIJ0iZe4ohpl94tSbdQcPcJHqLfY56uB3HIkg8nvv8GYkhRFJ11ave7Cxc2Nbbm5rZmZfTU11TR9pm1nSuWrtg6SMO6vXPcSDCbcTqvqq+qqrE1bfDom9iJ+WVfa4n3InOvedhLljOuAc8tidHmPJgeQPmInC8/4zEgm8YPBJHI/a2ST4W1Z4gomPmMYC6XPGp26gLnND6+XQ0DPe3tciIp7m5OQ8zSF2Kxl3EtJv5xW1kxsMdXVXly3Deo0VgcfolLPLZxsexE+pgQzrnMikd9uYBxGKCGy8Dlbna8uXI+HG0UtMv+0Y0DDPdR+OPPWJpqJaIblg4IXJq/q9BT/y5hi0P+RMB9IKEsk6UnO/iHMRSS2hcZcDos4Hx1zMynmUfDc5/lZ8b2Vlk4fHCWdnZN74613FxTmFbQXFHekP02m3VZQB1MO90cXlfEBA/UA90necQVoJ2HkdRo232PcoJkN0ynWc7v7a2sz1rTErb+CfS3wJbcc7Ib7txEnme5GTzLSvKE8ZLzK6/UxZzy7WeJrRaVC3weAkY5xdEeoZBnnjpZb0epzUJHi3DLu/bxi765J3w2OCrshdztyl2P1ldew+7l3eE+Nznry/JvWUUAGFQomuZAjlugKXDD6myFggEuSaOLuoqSPL6SSoXd1v5DORv8fkz8crwcTXlMzfx+vbLlnpHtU7ZrfuNOBwYilh11Wv67L1qbKjqjRelw0Dv2UBhVdE8IPm7xoHWXxgx2sxd4W7WVxMiZ3NORAvurPFezohmshgXZ7IXhC+c+lsE2en1Fupb7Z4wgtunwjDRHifgLNx/7vUdWqO1L2dvn8l2i6WrpsRgJuUULuxJqhanF2C2i2g7VaXtyu5t1tD3m4l1K6H3fWZu0FjGV1XGWnfVAFw/6sAuH8iBO6YorjQIJeb5bgbeSBS5e6yMt+zvqinUSU7NDggeUPmdtrTs8HR8YST06WQkKreqmUJV5Gcz3XZ6xzYWNxVTNEqcloUf8irkUUT4L6FBe6vbnqV+IB89IoIuL9vJnA3ZuBuNmo3i7kPEXD/b03gLhS5KxrLcGbuysx92xSclFm7Z6H2wTldfHSxz1kf0kupuhdZd0dBwTl/f5y73I1tZH9q6k33pacc/I8v9jmy0Jvk20i87f2I/ikyuaWnooIaWlLChflwys0N86E9L6+rqCg793FhSQdeKm7Vrdq6fhQXyP+TM+6iCstFtdaWix9dCAxE6cFK3adONcTcBVJ3DdquLW+3PnA3bONurqvMzyPoKjP8IvdRy9yHAburwHdrUfgG7TFSkN3qqP0Zou0vsJnMUMnbDQL3IZC3D1O71DE/mTEDd4uBOxGQypj7W5S5z6ebxDlvVga78zYLS3yPIrP3Dj8TmdRSWdWLGqB+oP7mihWXQ0MvL13aEhX1ZN06yqbxlfbnxE9vxhJ7E//I86lr7j3dsGHZ1WVY+RB5LHPfNhlnm2D3H8QbEgRnjz9FvAWNAn9nEPwEQb72Jpevkdx361vCbZ6Etu+ZjWU+4XZCRU9FWU9ZZ1ERPgWyXrxhfAqkpz3l5eR2QlbW7fj4C0FBuDpitUIM85sx6aySTBo+z6OJ3U+c/p1P71jgPnMmFiBcZojTC/cfMmzG99xkYcFtw/9B4okh9MrgKCHTInLR9umLGezO9FlawJy1xYzVTHjCVdpZa0DwH4q0xPQ7YXFXVmbdy2zNpG6hjNqm/8Hq1fgGyf2aR2tyCp86B57ASy3wOIjXnO+6n0wJ5mbMIh9SCRBJjudBerdg2qKfJ9v+hDcm6JJKwApvI8N63Yrsp7X6Cr6iTdtF4xNzOLsKapfTvSmfj1cRWuoMVV6jfrPBOHZX6aQn5TIy7G5N8i4A7mYwd0bqLnWY0cLun+raYoidMQTwncFwkiFQ7CrJ4VlQ+O1EsfszNaPgBbliVbvKXg01oDxZE7srY1zFyaMO3MVx9Iolt6w+NtyxU1fGruESYw5h18brOiT9S3ZMG8SYKhI+v26AwqvceJPfODFiQWMWgpcfcFXmroTdv+K8VrZMmC5xM/9aGF+iUJKN3zH3qJjn/F2sLleWtI/X9GISvWEVVxnTnTZGSi8xk5kgfAPTBcJ2pTOoEHeTlZqLTDKgalf2jTFxdhFqlwnb1bpky+zCNMxkzHVvH5yfjDF5+xDQdlXsbj5zVxS5G3OVMQrcPxcCd2R9yNx8lp+p7a8tr+yJuRGDahtVtc9Zn+q+atKVx96e8rUGR8eH6ekFHQXxq297LzsTFn/lyfr115YvRzZLgPvO6SieUKYg9X1jyxuvf/E6Be7jPmH6pvLA/a+GgbuZBu4W0vbRAdxZVxmhk/tftETuIjN3FeaO00HaqP48DWU9So+5e+fitDocd/Bo8kDKnXQnCTl3RVVPb1XVlbAwnMTS8u6sDa1+EedcQ046BZxwDGhADu++tAknuru09GJwcJOHxyk3t9OenpdCQnorKgbq65GrF3UW1dUPJN5JTH+Yjtdcfm05cvi+mhq8YHlPeUFxR2D0haSMO3iw2cuLGmPuYSoaEXMX+LlLmPsmRdQup+16fjJWAe6Wu8poA3dFVxkOqYwKVxlLRe4Wdk8dCeY+MtjdMIW3ZIwsWx8h1D5G24fUTGZM3j6K2qU+034yhoH7P8cM3M0xcCfA/RVq2kCYOzFqMDH32VvfZtqoMvYy1Jh1B3U3nuuy18Zt/0Kvw8j8fJefzStqX/VgVfjVcCR2rVlZFwIDT3t4NLq40Ju6jc7OZDD/xIKL7+8mJyPJo9sb89vzgy4EYXFCeGEuYw5iTtEp854ATtM8SDi/yBMomhcY0bDwXeWY0aSMoPZv38avULEJZjTCEW9gzaM1eD/Xo6OJEoS7T5BT+DQl615ldS+KGbzt8wEBJ7jmqAi87Vy7IZKeMpNAeKb5nI9l7rKdjCxwnz4dywFWNByZ3srK0MuhGa0Z6eseLvI+gnJrxpKdJiOLBQLUTlvAiYfQqFpojsH5zOyaTc+d+wEHv+MJq2+XIltnTIH6qqtT19zj+24FxVzsKS9Hged52jPlXkpNX01uWy7+2VlUtDzxGk76AvcDxFnShXhKznYibZ1mOuzmmjvh+13EgmPRz5PtOBuZud9iOr056++MjFGgAhbY3Sq6TmvCQTM4uz5qlyE/Hc6uRvE0qdxryt4gpr+iopSUttoTYXdlqfugsfsEKwJ3JeauJ3VXw+6vmM6g3JBaV6grH1+bhgDKS90zTAYUYknsNFFbVEmnRFX2rY0+VTZPqG6SmKzAZ8fpMXcDkfWJOYTdmpDdEsIuk67rRKVpSB26BYhZ28j7Kz0Wr4TgFe+dTLHUf0YqgZecd9Mjr6o1opgsYu4K7QSmKXTxVTpEWwQhJtTCc0J45p/CxqSCjqNfKvQWVmlRK54PUpG7xFVGeAPgdwLc/6YU96v4xetwdo37o6p9OF7WtGjXRO0a+5YU+3Noy9v/+3+Z5yfzH4Pzk7FY3v57qw4zmbsRkbuiq4x631QTcP/dX196iwL3j5SBu922Oc6/LF1xGRkpMs+6/jq/c34RLRFUvX7KzY22DqJ2f8gen6xfjzQVP1qb9/jRmjVI4SKuRaAKR/GHRJcC9wlbJlgG3FmXcyPA3QI/mUEAd33aLgbuJtpuEXDXF7kLjWW4BqpvbHmD9otimfv3k0gb1W2kjSpK9pm7Z+IsErX7gQV2h+3sj9l7nPbwP+9PETnO6dMNG1CPVNf04cyGJ1xFzeUV1uzD3FkZqK+/umwZpsfF4OCHGRm1/bXI6lc/WE07Krk0ujgcd1hydAnFRXhllGR4HGUXao3gmIthcVdo1XMpJOSMjw/Zszt7Ns/cv1Fn7ibszpB3CWrXpe2K8nYLgPtQ2Lhru8rsGAZXGQOtU0eDyN0sM/fngbk/f8O6qH1YWqSOLG1/cc1kXjB5+5ifzIvlJzMsBu4McGf0NeNoc0IBc0dRSnqOUeZuQ+gt11Fw5yzHPfNc9tl6HnIMaFiWcBWVANI7FAPhV8Lr6vqvhIWddHWlbXwQq4guPioQPAhIrFzIDu8kJSHVi1l5Aykj3S2L2MKsx2zFTJwq6BCPf+JBRADiBhFGYxHf4MmYywTQM/CdFb9zyveJCvybqNrfYfIvzBdK2xFAWFHcm9zXP1lPW4kuT7zmEXraJfikc+AJj9CmiKRr5T3l8bfi+2pqznh7YyWlNjKY4rTLEGbAN9wJE8ou+B2OfM7Hpnqc4J1ayuClcFiw5iLffZydnf4wnRyQ5WdtPQ7iOE9fvGPKwu2TbX/iHS1Y1M450kqGyJNaRN4lDu978foO/sQaCIPdr+rF7ld19G9YlniV3ni4k5iIr4npd9LXPQyKubjI58g8132znfbgRWY67GIaunI98RZt59risWJ82k/yLbmNjEjYLtUGGpKxmyPCHRRqV+Hs6iDPGJhTaIApbxi7SdML+GNL+6mKYY0WeTcM3ydIabsecP8LfScyqbsudlcQvJvIO3/upHJdFWioTA+3KND56UI+KJXiKkjaDQmQFW21P9Pq6qkvi96kCfpVe2+aydYH3+/UbMiuq2HXw+uaMF0s4jYwtKC8ZfxdXfxuGL4LELx0qNv1qC53UzdLD6yBPQEGDrKSbYtSWwLlTz1Zzwlnurij8kzpzTNl2j5dnbYbQe0G26IaVbXLPWQktP19+eqtKG8Xubfr+skMoYG7PnAfetquy9x1zdyNiNyVbNwFwP3XbF8TCtz/Rq5uPHCf/DkiAnOS8XBnLWWcgxqREN6Ki+vcuDH7cXbmhtaa2r4b0dGovVFG0pIPtSIybWSnyNny2/MreitKu0sTbie4nXJDckssZTiFOwHuX3LA/dNhAe6jSt6uBtz/rzpwV3eVISL3v5pE7tLuqQx1Hr+ZZe448iYrS6pz/+FdVC6oQXCCUMvQ0mbu3rnz9s2zOWBje8h28ZHFTiecPJo8Qi6FrLi5orK3sn6gvp/ZjRq/+nZ4wpXI5BZ8T/YNr1jRX1tb3FUccyMGhZjrSVeH4w6LjizCi+ClMAfwmhR1UBMbvCx+B79bXdNXUNzRXVKCCTNQV9eWk3NsyRLMq+1MdfMdU9r8nSkadZi7eCjSdgV5u6XAffCuMj8oity1gbtVXWV+saKrzFCI3Eclcx/D7s8tan/OaPsQmcmMRK/U50He/uy2S31x/GReAAN3AtypepRl7pNVmfskE3On5uB7qTl4cVlXXnuezxkfJPfeZ7w3PN3QnpfX5OGBtQnht4cpCTCZ6LT4meHLtEHoCSenh+nppM1mZWXcrTis2YhsxBmCg853TGd8pZkoQhmLEC4U7qfc8Ye8mr2QVmKRxq/gp1QaL3Kk4Z1n6PnkvqdTgND2n0jzIkQG/iLW7Ly2vMfZ2TmFbeEJV3mmPNdl7yLvIzErb6TdTws4H1BT209ajNrY4N1t4/PRiRO3Kp0DXnzBpoBKDjOkk+rUqXg1HKhGZ+eOQiL5r6zuTcq44xp8cr7bfhznaYt/pvJ2HH+GthOYPlFocCEb1BBjImeIwZH3H3jyPpUh78yNk934mMz4BWMOhvMv+NT40wu9j3iGnY5IaskvbveLOOfgf9zO6/B85rAwkH0HXoFCdp6wC32u32He5Fum/qhSYTtDLlS24VvgK222UbsS7tRiT2qcXY0uqbM5CZIzYTip4N0IdjfkMGMRdpeRdwF8Vx3/ow7cDTN3kcOMMnZ/+R1FwTvXW1VM3scbtv1R1URPVblBMlmRs6sqyhXnoc4kNKMBrxS460B/FfI+ThuvTzLmFW4FyL55/KAIu5YQW8UaRXP3g+YzteNdowOn9eC7tnOR5rnQUI4b98vSM8E3o/2vZs8DGXNXdJVhRe4TxF7zQrm9VGjP3UXTuAFgoN+GurD9bR1huyZqN0jbZfJ2iZ+MOQbuwwLcteXtvx+yYRZzVxO5y1unyl1lxH1TlYD7Swxwf8UE3L9ggPs/3uaaptp5HgqKvlBU2onksLyyB6OrqKjBwWEPo0Sm9RWqMpSLSE2ReFPPxo2lnQm3E5xPOCNzRs2nBdw/IsD9pb+9xAP33/zPb0YeuP9hSOTt2n4ylgB3FZG71FiGNlClzH3r73hDS5wXXufO0lkGD/Dw3WY/Ie+LjixyaHBA4eN71jfsSljKvRTaBzVzQ2tRWRcql/qBepzu4IvBqIycG51RGS08vND2oC3qI7wI1SfhZSlXwDd4EE/Ak5PuJPXXEsOi9IfpgRcC1+c/uRAYuH/+fJRpmFcoVVC5bGWY+xaOuW/mmbsSdv/MAG1X85PRAe6GbdzHXGWGXORuqbHMMTUmO4bdn13UPkbbn3szmZGTtz+TfjJDI29/FoH792MG7hLgTjJ+jrmjjERh+Zq6zn2yHWmjOsN+52wn0o3TK7y5uqYv+W4ylVQgv0fOh9rg6rJlWKQkvisYhDJPmYIZifBAtDc6Oz/KyqIG4iGXQrCwYTFARJLscA+bdCKIsYAh16T7Kwfq68t6SK5ZUdWD773PeOOnNK2kmnfMd8xTzEE6rSRzhE4oTD1MXoQC4g+/i7wT77m3sjIyqYV2nZrpsIv2HbVxO5CYfqeytxLJaEl5F+oZLAQID179wXYWEjjG0wSRTwrlzN0E3HEopk3DcoD18UpYWHFZV0VvRVcx2S/sEtw4z2UfjjPxk6Hy9vn/pNp2oZe0yRXXNETdIE1u1Aqad9pedTs+6bTFdOzAR8YfxccnxkHOhLzbuO3HO2Ek7buY9q2soTzelQyyC94e15WOtsJTcmzXohUW9W+0rC2qIdT+uthdQQzytihrorXAnEzpqaCslGF3Sx1mBondlci7oWEAuEuYu4rUXR+7c4J3DfIu8yQRD7XHFdGnttBVa5eG4oSUz8ZXJxvB7notN981KLSXIHgjVH0YleyGIbs2YdeE6SZPoQkzhX1BlccEkTWKCpTX4u/Whu+qhFrvdFijHbQFQ7N9tPbNg890273Ke70qONvMMGgmo0HbPzWLtr88eNqubAv2P3rydnUDd/OA+388R8DdTOauK3LXcZXhgPvrHHCfIAbubzPA/V0WuGNOIndCzobkChnXPNd9zoEnIpJaaJ58Kz6+yd0dyTNS621c9yAkk0hKUXwi674SHp67sS0yuaW/tta9yR2JMWo7pL4i4L55/KufjRrg/gfr0XbL5O2KfjJqwJ3auEtcZYQid0VjGYGZOwoD0kTq24nCHqqUuQsre0rGaQXEC94dGhxQavmc8aGa9zWP1lT1VW3s3Ljy3krUR/7n/T2aPJxOOC05tsTusN2CAwvwu3P2srSdaJiY3cMofPA9Hrc/Zp/TlnM/LW1V9oO4tJv9NTVVvVUPVq3CLCIid3ED1b/zDVQZ5v65mLkrDF3aLpe3WwTch8pVhmMZFrjK7B651qmWiNyfTeY+ht0Hw9mHB7U/J7R9ENbtz3qv1BGTt5vpJ7N7zE9mdMrbxwzcZcCdYizK3D9lhDYi5i7xc59iR0Tusx332HocDIy+0JqRgcwPKzpdmVwaXZC0dZeWnnByQmjt4IUSjLMKrQ22czp3rBQnXVzw5ILijty2XKSSlLnT/Y908yPW46CLQTW1/VQO35abS7H7lbCwu8nJxV3F3me8kWLiDWD5x5qKXyd28LtmYKZT8s5OQ94CfvsUPE4aFiHp/GUOVsTwq+F4D9m5j12CT9q4H5jt9AvTqpSgZ/wzIulaV0nJxhLS9BVLNkIRL0b8DcW6D6FAA5kinx3yzJ0eAR64/8T7ycyZgyN3PzU1vz0fBVJ9/UBFT4VjQMMc519Qbk1ZSOXthGgLcfZbpu5z3DZ5eRNIUx9IAXyXGc68S5qs/kgRPKHwxHxGDOJ5JbvtTzxhZyH7/O/5lpLifpLCZpJf8GpBkV37pE8t1LMbAO4GULvQx0MbtX+phNqlnsUCH3AVSCcGc2/IXUrExEdRQ63uMPORAYeZv8k5jjJ2VyHvv7EQteszdxWpuxC7f6CD3U2C90+0WbZ0vGdwbFI1bFGF7Mp7L8aJ36T4fW4ygKc/U4etGgbfn1pvbLJO49MphsTsZkJ2RcKuFqF/t96Qh/nXOvzdCHw36vluhL9r0PbP1BqTKt2I+ly1kakZQ2/qvqflhGPAVUbE3BVvjaguv/ItLGpuUcp3iz/S92031B9VkbYPJXC3WtPU0Q/czWLuyiJ3ZVcZs4H7BxS4j2OA+2sMcEcGhYTqXZsfkIMhD7T3O5665l7a/bTku8mP165tcHQkqfW0aTS1RkqJAgn1GIpGlOW34uKQynqENvVWVvqd80MijXpOAtxf2/yaInD/7fu/NQ7cf/Wfv7IacDd/WJ22q8nbpR7u5ovcJWbubANVhrnzraSIzp3zz6SDuGjunDFz90zaVRV1jd0hOxQ41GQm6EJQ/O34+oH6pxs24HSjaijtLo29ERtwPsDtlJtDA/GTQfXEK9wpcKctsgjf3z4VJZLtQduS7pKeioqgmIt2nofclzb1VVdXVvc2urigKkHtRu/omKRFQmMZjrkrYHfmETXabi3g/ty7yowKkfuoZ+5j2H3EULtVhO1jtP156ZU6Jm8f85N5Vv1kOOA+1PJ2Atx/yyb9isz9SxNzn/PN2/O+m2Tzz/dsf0IZMNNh9wKPg+HxV+r66xLvJGLhRNwjmrE+RV+PLirrvBAUhHAlwJ1rv4ODYhK5T5uGKY7wO8x4lyNrLCzpCL8ajnUa6xBdRbB64XKx/NpyZIEVVT14QkjsJf/I8/g6MDBwb+XKlsjIvqqq2JuxMTdiqnqrSsq7cttyUZbgtyh2R4QhLEyzngsCmssiFrFI4C9W91W35eVFJF1b7HN0vtt+VDi0+Se+Weh9OH717cKOwkdZWc3e3njDiAF6/4DSdj773CzIIJWZO5P/0YTvRwa44x3tZsw3Tzg53UlKSrmXgjS6prZ/RdpNO69DeAOMn8xPrBm6UDzOcG2+i6OQ+CiApFl/F8F3ufKd4e88gmfGDwyINw0TYacNWoWeNtz74Tj71xRkGELtYm7+MkUVsvGKEKpah7YrSTuNqtrFFE+R3M0SDxmbU+Q+b2hyH7HDjAT3qEndDTnM6GH3v/xGi6GbNRSBu5y5qzvMmLD7hxx2l9u7f6wItcepmVm/q9Z5cpO6ElzJ+tyc20Ky+blJj7krDKPWItJPZyFeH2fAEHwYHGNUbfen6xL2vyvGqWKDXONDJcYlYmoRfzcG37Vk76+pyt6lXUal95bEj4zXBu7G0Ln0D1lwB0u9Aeyr2ndJlbo1qK7V0lMgNZQ3X97+iWHrdlXgPgh5u5nAfVAe7mYBdxlzf+n/mO/h/vvhZO7/8lszRe7KrVMVbNwFfVOZkzKB75sqAe6fkqybkblg9UByhYxrysJtyAOX+B5DWohM2PesL7LcRheXvRwPRTpN1BuMioW4yixYgEwy+3F2QXFH58aNfuf8kAajbjMB96/FwP0TBrh/qAzcCXMfncDdfOt2kZmMOfJ2c4E7dXI3idwVjWW4Bqo8cyfeMgJVEOW7fJ2Ckzh//3zbg7aLjy52bnTGNEi+m4wi6HZ8/P20tIz1rZHJLYnpt/EI6iDUX97N3k4NTjxzp16dpOXVz9Oo6ybKbtRBKH8Czgeg9vEKb7bzPOTgdzwl825/Xd1JV9d98+ZhOlGRO613JMYyEuauMQzSdqGfjAS4W2Dj/ly6yoxmkbsFzH0IsfsYeVfi7MOG2q0rbB9x2v48mck8l/L2F6Fd6pifzHPgJ8MAdwZpscydgVZEcckYShLmzujF3pxJmDtqgHfmMSL3hdtm2O+ycT8QGnf5YXr6mkdrsJZTO3V89T/nj8zvwapVWH0wlYlKgjvuPHDHhMO0RswgpLGeXgoJKe8pX/9kvUeTB1ZirHNUyhF6ObSrpKS4rCso+oJTwImFXofxRxd4HHQNPpm65j7+SkdhYVFnUV5Re8zKG0g68f2jNWuQcbo3udN7AAhxhCOvOhD6GCKssfwgf81vzy8t7/YOb8brz2ccVOa67MXXBe4H3Jc2dRUXI7u9EROD9ZHI2997D/NjKyP3+JLbXMnvoKQJJcvcOW8ZHrjzCnd6EKi8HReP8wEBd1NS1j9dn9uWu6HgqUvwyfmu+3GEpy7czsrb533/tpi2CxDP1yoivq+VibAaf+ec31kQTy3gmdasPF6XEHZpAzqes/Ne7SIDGTXUzoH1t1WGCbsbAu6qtF1T2P6anLZro3a1o2oEz2lYCQt6cr6uQH/0pe4v60ndDWD3oSPvasBdl7krO8zIsbtc8P6Klo+/oqGKkYaiVtiKYZS5vydnoxZ4iUjbaY7TG5r9Ns2H7JMHKWY3B7KrEXYNvM75cQnHW7LxO+n4h3CbkSaCV97moqB8l3u+G5K9bzagOle8bTMozm72DDT7VtCmcXrAfbzSui1atKdv0XD7ed1MPxnlRqmTPtbzk7EMuL+v6t4+WODOMHcF4P5fAuD+n+rA/d/FwF1P5D5KgfvvLRK5a7jKKNi4awD33/LAnWbdjMyFAnckWu/MJ31TkQcu9D6cU/gU6e6qB6vW5T9p9vJCfUvcGmlvJIYM/syYE6L8RjLZUVBQ1VuV2ZrpcNwB2S9qtUk/TNIA7qRvqhy4/3mUAncLtO26tF1V3s77yegCd95VRkPkzhvLCBuofvs2y9wFjpeEvG+fQnTuO6ejbKHA3e6QHU6o9xnv9IfpNX01LZGRqJtuxcUVlXYyUqRz+Jq5obWit6K4q3j5teXup9yJt8wh4i1D6qDds6bvmI4Cnbawwvfz9s1zaXTBvFqeeNU5qJGpqu7hn43OzvttbFCdkZs6tFsVI5miInfeWIZVGllK27WB+1eKwH0wrjKKIndtVxlFkfuodZUZhMj9sDVE7iPO3Mew+3Cg9uEVtr9QtP3ZNZPZZ5i2v1Dy9h3DIG8f85MZZX4yusBduLmV7eAkY+5bSA3AmLlPmv/PybY/EXNJl32eYaeLy7oqq3sDzgdgCaEIO/p6NB5E3nbKzY04njNbX3kdAbFSoQp3BrgjVrH0IMO7FR9fXtkTcS3C9aSr0wknJIJ+5/wG6uvzi9r9Is46+jdQGj7H+ZeZDqSRVGD0hbV5j8t7yvGclKx7AVHnl/gei0u71VNentOWU9FTUddfF3MjBtcHmm7SHkRYGxDH1CAe3+M9ezR5lJR3D9TVId2kQB/D1uOgrechB/+G5My71X3VeKmTzC5L6t5O5e3ICJE4kpZBRMUyjvYLYpk7szuSitzlwJ36yeClSIFka4u8uX6gvqq6t7a/FulyYNSFxT5HWT8Zu22Mezsrb2d6kG6VYm6xd7C4fZ+qtYIWLBaxp39IjWuYX+HIkUkqKJFms6JsTdSuBdnNYu46tF3XsV3VQ0YdtSsdOomBviqwk5N3Reyu6jBjkau7isOMudh9UPD9L5rA3RBzV3SY0cHuskmiN8xi6B+9rDk0pquyBl/TmMVMP5xNQzA+M8MxRsuZffOgxOxKSnbFzT0KhF2wvinH6RzWg0t9aET3VjmCl/F3ifJdtcHDG7rkXQO+W8H1xVzUbsFtHsPtAcwE7q9PU2thrdJFY+qIAfeXhg64v6EH3EdT39QRAu5qzN2QyN2AqwzXN5U5/rRvKgfc35cC9/eYfaXTvkKOQVwcSd/UH6cv3oG8NzrlemdREXLd9ry8Zi8vVM7IHlHdscXbtGk7mXQaufTl0FDkzEi/kZOjWEc1iZoM1Q/qEgrc3/jqjdc2vzb+s/HjNgmA+wc6wP1f/++/jgbgPhy0XVHeLmmaqgTcJa4yUpH7ZwQ/s8YynJk7r3NHWSnE7qTLFDV238ECdxRWi48u9jztueHphs6NG1siIs74+GBci4iorukLirnoEdrkFnIKFVl4/BVq91/TV7P08lJUUtSoc85eZsvvjunEuGbHtFm7Z+FBlFoJtxMKijv8I8/7R54rKu18mJ5+3MHh4IIFe+fO5UXu3yuK3DWZuwS169J2ZeA+NK4y3wugwOhylTGrdaq6yN0S4D7UzN1cexkrYvcXhLwPNWe3lrB9eGn70ZGg7c+BmcyYvH142qW+yH4y348mP5mtVqftisCdTf01mDtTxE6YwTD3OaQMeHfBD1MXbZ/ttMcp8AQSu4tBQRs7NwZdDEJu53bKLeVeSvzq2/X1A0gHSWEwcyZmGK/E2c6IcTBfMdEpcMeCgoUVVQRqCVonIK30OeuTdj8N/wyKvuAS1LjE95gdQ8PnuRL5uYP/8dra/tR7qYUdhXdTUrpQigwMrM17UtxVXNZdVlzWhfpkZda9pxs2RLZEuje5Y9HFaoQlhLrDU/iOhQfLqnezd2VvZeqa+85BjYu8j9h6HsLANw7+DWHxV3orK/HKzd7eB5guVUL3diJvHz9+06uvfvIK0bJQ5i4RuQuBO/Fw5+Tt2xl5OxagE05OeP2E1bfxHvpqaujntfPk/GRsf5pkw/jJCDqRck4yiobgsh59qkOVW+mZ3qr4n0w1QQqeCHOo/RM91P6hbCgzdwOSYT3aPlnk/zteVdiuidpFnF3UpZaOibIhQXVK5F2vlZ+C1H2TpVJ3NYcZc7C7CL7/RYez69P2vwj+ogpz15K6M9hdPn90/YjMgulvmznUDJEsELlrYHcLvDssxutGILv1TWO2qK5XZkB2RbD+jUbMGhkaIF6Rv8uV79rdHcwwnJm6WQW+W5e/G6PtCnjd8m4B8qBQWMOnbla/XSqcSCpHVbyjyErAXd1SZqLFHu7mAfdfmwvch9tVRsPG/fejS+Su4yqjbuNuNnD/krg4ziZ9U/lMGwnw8sRr9QP1JV0lLZGRKO9RuyK15qtB1JbIJ48uXtxTUZGx/iEySWTRSHdRGqLeYoH7Vg64f/Ha+M/Hv7rp1XGfMDbuFLj/zTzgbs2mqRbbyAwpbdeQt2sCd2HrVCpyF3ZPFZq5azF3xtUdp49aX9odsnM96ZrZmtmen387IeG0h8dJF5dT7u6Xli7FrAiJveQafNLRvwGVEYoy7/DmDQVkS0RNbV9ee17YlTDnRueFRxbaHLCh5Q9e0Pagrf0xexRHoZdD+6qrUTHFrLyBXzkfEHDM3v7gggUozWjtRlsFmJzcme6pvLHMF0KqrsTZRahdg7ZbCbhbsXXqyLvKDLPI/Tli7i8QeR8Gzm5F1D5G20eIto/J2wclbx/17VLH/GRGv4E7A9z57F+ZuX/GtnKaxpq5T6R7XYnIfecC9wPLEq5W91UP1Ncjwyst7173ZF36w3R831FYSFM3hC6m/k5mLtI0hdJ2PIjowk+xWmFZbHR2vhgcXNVblXA7Iehi0LKry5BHRia3eIU3uwQ1Io+09zu+2OcohnPgifhVt5Aa4jkkQfT3P+3ldSU8/NGaNfjnnaSke6mp+Ka2rr+urh/fdJeVpdxNIRnn4YUUu2Ng1cFihiXc96wv3v+KtJsM1j+6yPsI/oRTQMPSFcQpHtXL5dBQvENEON78j4wfPc7Q1waAO69wx7kkTVM5efs26t7O7f/NKWyLvRnrf5748NxPTY1KuY6jOtN+1xTOT0Zf3q4rjdQa7POleGKayusIQY+8uZxUea3mMK7G2dWZu0G9sDm0XWYjoyZsF+wJMBnyiDx55LY8ykMI6cSdb8VqdxWpu5gEifv4fap5b+NDNam7NnYXKCv1yLsCgjcC2VWAux5zV5G6q2B38T4J5WEGSf/Q0C0ijXlrFLgbZu5m9cm0bOj6kEyxBmefbjln14fsc1RuialE69tKQzu0pRReZXeLsruUheRdX/Yu4+8cgheOQQH3IWrVqyFvl3u4b9bscS0bkqub7NBZ7OGu0DTVGiJ3A01TB+MqoylyHzcmcjfQOlXgKqPaN1UZuH8oA+5bSKY991ukf5Ptts2w3znfbb/70iakxEsvL60bIBsuUT8jf+ZxHr7HIyecnB6uXo2nlfeU2x+3R/2KhJsCd2Ips/V3qAO0gPtff0s58q//RwDc/9/ggPsfh0vYrt0l1XzariBvNwjcVUTuJmMZxsxdg7lTkTtpbbpzxuw9s20O2Dg2OMbciMnc0Nq5ceNpD48GR8fjDg4nnJ1R/qBwiEpuofXLQu8jC70OkxIm8AQtYfpra/G1rLss7lZcyKUQ15OuHqc9ll9bnngnEY9EtkRGXY/KbM3EK5dX9txOSGj29j5ub3/Q1pYAd2YXBXWVQfFCRO5Mzcl3T1Vg7mqcnUPtirRdF7gbcpUZXOvUMVeZQQH3QTP3YcXuzzp5V/lQx0cCtQ+TsH04abu5jVKfSzOZF0Te/ky3Sx3zk3mmDNwJcP81rdlkzJ2CIZa5T/mcdnOaMJOV3kyy+WHKwu2zHPcgt1ueeK2wo/BeaipytTuJicgIkeS15+U9TE9viYpqcncnepy5cxEnpuSDSTgQq1gIsEJhZUSpgF+/ERODaiH2Zmz6w3SkgEgZfSPOeoU3e4adxlf/yHOxqUSFse7JOtIgqK/qnJ8fFke6ABFwz1zOkYZeCQsbqK9/mJFRXNaVkkV8CVPvpfqd88MFBKsjljcse8gv8E88iL8YlXzdNYRViLgENy5dcRlVTU95+aWlS/HehB2EeIU7MsLNjKXMpzJLGZOHu0zejkn/M9PeCq+Jd9sSGYlU2O2Um9MJJxzDyt5Kn+Vn5rrsnb5kx2TGT0Ykb58tJ7My4K7iQiCTQ5oztDr1faaEfTUcTmS8UuQHog4xlcHlx2bS9s9VWu3JabuJ8b0pF7YL+J2Q2bHG9/NUxtzv3paTdxF25xx7xFJ33tXdCvYyWlJ3dewuwj3vm8PQLQTuYpG7LnP/m1Q9qjCpBgPTzR1S5i4VuasCd0tF7laH7wqu8Z9rc/bXhl7P/qYuZ1eH7AIgrkbV1SN3nk5QK7B4dfg+rORdSfmuTuE3G0PwcuY+FMB9k1osGDQEU7H+V7Pr0QTukyXAXd62Wk/k/raiyN0cJ3dNV5lfj4zI/d+tLHL/7bMnctfqm6oP3P9qAu6TaKYtAO6MtOU92x+nLf55ttOeRT5HNpZ2dhUXd5eUXAwORt6Lwhh5NRXJUuXKWV/fqupepLu+Z31RryPVJn0yOeCO8gIFwRtfvfH6F68T4E5t3D9m+qZ+wPZN/c37VgbugxW5/9EatP2/hoa2S4C7xMZdInLnjWU+FxjLMA1UCXPfyvVQ/c7UQxXl+IxdM+bunYuaJfhiME59V0kJTvFxe3tKhfANiqbusrK07PsudIeux8EF7gcWMK6YmDAoapIz72I+4BfxtT0/v6CjAN8UFHfgkcfZ2fTxos6issrux2vXXo+OPu/vf9LFBS9O7+jQVgG0dapI5C5k7hx2Vx2aqF3RT8YgcB/W1qnD4ioz2NapY8zdXPL+rMB39fd/fPSj9jHaPiZvH2Z5+1i71OfMT+ZZMHD/Wh+4ozYzxNw3v84wd2rmzhjLkEpgrste1+CTSNr6qqvvrVz5dP368sqeiqqe1Hup8bfiS7pK8PjDjIwTTk5YjLAu8CGN77HQUEqOy8kpN7czPj6XQ0MfrFqV25ZbP1CfnHE3NvVGXNotZJO5G9vq6gfy2vNoo1T8lTPe3liaqQqDxglVzRObmrlzsR7hpyddXa9HRRGhenn5itSb/bW1tJUQLiZY13ERcD7h7H/Ov6a2PyKpxSP0ND6IR2hTePyV6po+vO0LgYG4Thxg2gchzDDvWeDOeLhvUWuayqSPInk7497OmslMnYp3S2j74sVNHh43V6zIepQVeD4w9HIo3mfcqlsLvY/Mctw9ddHP7xE/mX++w8nbxX4yipYy6qa0KppHHfGjImeRQRZl+qBhaMtB9pcE4+WJauR98EphOW1X74+qL2wXd5rlmR0H4N4h43vUydKBB0WcjlK5b3X60ErsZZSYuwX2MppSd4NWwkNB3jWAuwHmLpW6f/DSRO3bOZpjorHxtkX3irRt3I0B9/Hq41Xzh3ntNDXE7MPlG6PH2cWQXYGwK9Dzd/j4pWO+yuCfwDxfDcGrwnfrk3fj8F3nQvCaoQuB/FrwmfndUHVQu2og6HqCCdZz5TYA0xQ700rvTwgW2M9f1XSVURK5GzeW+cCAsYw5Ivc3hkbkPubkruoqo2Hj/l+Svqm/Jn1TmXxbGbhvwpRG8LI9k+Z88w7j3zhl4fYZ9rvmu+5zCWpMyriT/jAduSIVshxg6md8RS593MHhenQ0MueavhrHBkcUzSgoTcD9Ow64b3lD1Dd1GID7H4cVtRuxkbGEthsE7hJXmY9eUeyeKmHuROS+9S1UijhN1FUGNTTOHXFa32/jdsotszVzQ8HTu0lJqJVw3ilORRFxyt0dkyG/uN01xNSDar7r/nku++a57sP3i32Oeoaejl91a92TdSjQUD31VVXdTkxEadPs5YWC63ZCQnt+fnVtX2FHIS2vUDThR6jLMLX2iEXu3whE7ryxzJccTzcXsmvI260gcrdG69RhcpUZEZH7M8fcrYTdtcj7aIPvmm/1+JCOkUDt1qLtR8Zo+5i8/UVqlzrmJ/NMGLhT4P4nc5i7sBj4nvZ0Qm7nGnwyNvVm+rqH0SnXQ+Mup2XfX/1wte9ZX+dGZyKgKOu6ERNzNTwc6d1pD49GZ2c6qAshcrtzfn6XQkJaIiKQCLZmZnYVF1dU9Q7U1fXX1naVlDxZt+5+aurNFSuuhIWd9fUl7H7hQqo6p+7wbG7E5EO0fxTrV2NjgwW00cXlQlAQ9YdZk/Mo+3F20IUg91PuLidd8DXgfEBVb1VUynXf5Wd9I85GJrfgmU83bDjr54erziFmZ+UexhKHF3rg3G/lRO5f8o2DeOt2ddqOd7iToe347Ehq7yQmPli1Cnlw6v3U7rIylFKOAQ04mDPsd05ZuO3dBT++Q9ulMu7AMiArJDJbVI2/RZK9zeq6RTGqU/PnfVes7+Mgu55Lu2Rb/YdyMCrC7gaBuzq1tIi2K9rIiOieCLXPEaF2gt44Hjdp/j/JsBEM5hEBsJNgd5MBNLuJQYO5S+xlDDN3Ham7WdhdKni3Cnx/33zgLmfucqn7Bwo3dSYqI/WXFIbqq6nPWAXgbjWFuwHabv4w5iWiDdmnKDZBHVwfVOtxdkXIbmLrKmB9Eh/LoqEN4g3B9yEi7yqy9y+1djgZgu/q918nW9HJXcDZ1YyVJDNWwRZMCtxFnmnTVKzSlG5Oj9dxlVEUuasZy1iduQ+zk/t/Gha56zH3l8xl7qPWVeYPMpG7at9UZeD+JpNpm4D7J7RnEqNr2WLStdj8MNlu2/QlO2Y77bH1OOgZdpr6hNyIjUUmjPyWEjQq4Kit7a+t6/c767fw8EKUuTxwR51EgPs3b5G+qVsmUOBO+qZ+yvZNfelDFriLbNyFwP2/BcD9vzSB++CZuxpqHyIbGTXfdl3aLgPuaq4yBLjLjGUUG6iiskQxivOFehpF/Ow9s3Eqk+8m0z6opz09hXdZcN5RSvQzzZ8wMey8Ds93248x12UvZsssx92zHPfMcf4Fjyz2OYrqJiKpJSH9dm5bLp6Pmgg1191k8sqr1j7IL2pPupMU2RKZci+FeIQODKAWa3B0xB8idZa49hGK3HnmPpihSNutKXJnKnaJyF3DVeZHK7nK7LKGq4zZrVOHVOQ+LMx9eLC7PnwfZgRv4M0cH4YxQsJ2a5q2jwRtHzHr9mehV+pzI28fa5c65idjsZ8MA9xf/5OAuf9Fm7lTi0kTcxfseLVxP7DQ6/AS32NOgSf8I88jY0Pqtuzqsg1PN9TV9Vf0VGS1ZuHBzqKiruJipHStmZlkk2NeXmV1b3llD8ZAfX3exjYkfwXFHcVdxQ9Wr26JiroYHHzW17fJ3f2EszNW5ENib0FMEbp5gaZNNE/CHN3BYPc9TCOpAwLs3l1W1ltRUT9Qn3I3JfBCICqTkEsh+Ftxq26Fxl3G1+qavrspKWd8fGgxQ3sHEYX7jBkID7y4xM1QmHSyOSKXDm5lEj4hbcd7xrKCKyv+Snbu4/T1D/Gp8WbW5DwKj7/iEtS4wOMg2y7VTtYuVQjcJThGv9OmzAdGD5So8hEJYdeV9WlxdgWUqQHcFaml3EzGOrRdYiMz+x8SYbsctQshO4pkyRDCdx7PKWB34Yk2z9LddCqNM3eZ1N087K6kebcAviu8wm91gbtA5C5l7m/pzDFjYP0DI9P1Jd2dGW+btTPDEHC3BJdbMKaIILs5YnYFzv66GmefrtC3WWodM0jOLofsUrAuu0Nm7pDcUVPZ1PL/s3ce7lEc6b6+z9mz59hrG2NssDFZAeWccxYggsggchAgRJIQQln/wrln1xvuBnttHLCxMWsMXnJOQgJEzjmDySBA0jz36+7pnuruqurqMKMRyE+tVgyjmRHTXVXfO79+P73kHTPVyy9s0kHe5fBdF3+nY3eNpQQh7yr4vlwJ2T+mdu5V0XZkPicpZZDPeGS0XS9wp4fcyWIZFzF30yZ3t+qe2jYhd0utMgzA/b8F4N4VC9zFC0n7r+U07gEbegdv9gjf1j96V3BSfdqw07BpLC17AXtj2KYKcOow71FcUvZi/K3xkY2RUJdDCWsH7hs54A4lDtQiHHCX90196+u33vpS1Lirgfvf5MD9LwTgrhVyZ2XuJlC7xcF2Em1Xx9spwF2yyqDdUyWxjChzl4Xc13STgDvU+j67faIORxU8KpiUf+fhrFkHw8OhnJGCz/sCAqCagIKlorIZjorAxP0+Mbu9o3ZCEdEvbFvf0K19Q7fA6Be2FW6BgycgoS4qo3H2/Idw/Mx/Or+4qXhx6fPBYy8NGHVh5twHcOSknk5NOJ6QdiYN/goqlLuTJsFxBc8F5Y8QcuesMt26/SSF3MXyZ6Vh1E6Otzsr5N7erTJWhNxdJpZxFnO3GruzwneTLN7AU7gGsrNxdjcPtpun7U5slPrqyWQ64u0dPhln+mTWtjefDBNwF8sA1py7krnbL3rlMjiwq4Pdnh+fpxg4+kJrVVVzWdmvU6fOL3pis9mGXhm64OmCquqWGfdnFD4prKzirmEsWfp8afnLUZOvw/0zhp/NGnFu+ISr1a3VsPmraq26nZd3NjPzGB+Kh8kU5ho4ezna3qfPRp59r+XfBmFTJaBtuFFIu8ui7vzetIGXzMAD3p08uaWysqy5bPSN0blXcvMf5E/KvwvDVlt7bcSIUykpR6KjYcEQZlX4Wa45lYfHFj7kLmPufNbjX9K/L7L/+5n3tgtbOs4kw9N2mC/gAa8MGwa/Gmxn4d+k8HHhk/nzZ89/lDr0FPyjwZ6Yj7dv6uG/vruvo11qV1UEUhGElCu/OYiAc48oqYFutq4i7MQonw7OTgHuZGpJkckQ2+vppu14Y7tI8dSonWPr/tJY34MfH9uH/fbuInyXpd1pzP1fBpg7RuneHXm/MAzoC53YXUXe8bF3IwNH20nAHRdy12DuFg4G4I65MoPWeOBtStPUngydS51N2C3i7NZE2tk4OxGyq7i54xMyf7Zh/yxtnZq/U8n7WiPk3UP9ISuWvDMIZxjbe+DJOyN2J5B3HQPbsBdH25EDknYQ9iF3Asc1A1csnZ16kl1qCrGMJnPX6qH6Br2phrZY5u/OF8v80aliGXdi7uaB+5//UwTuv+2MRlvse2wqcOf6pvYIWN87eBPsDL0id/rF7Q1LPZA98rwQeT6Vmgp7WtivnkxKelRQUNFckXQyKbQhFApx713eUG5CLQjFGVRUeI27um+qHLjbQ+4k4P4nHcDdgd3/wAzZXWZspwbbSbSdDtwlqwwp5N5pRSdFyF0G3Df18tjmAe/j0MtDBQn7mfT0/YGBu318BDwBhUldQADUKVBhTbwzcdDoi4GJ+/tH7fIM3943dGufkM1wzEBdJgz4Hm7pF7YNCrSA+H0R6YfiBhyNzT4anXk4OutIYs6JSfl3Zj+cnXg8MeJQRNjBsPhj8QufLSyreHl/5sz64GCoXDaLLaxkhQ/K3J0zfpQzdwMhd6usMhsttcrssNoqsxcH3I2F3F3K3N0Puxvn71aMg64flqP2DtreIZN5reLtbtsu1c19MuwC97b2yVgicOeBu6MS0MPcJbcMUhXAxq5PyBaPcPuuDvZzMwruj59+K2P42UFjLtbUchVC3ozbo6fcmLPgEWwQU4eejh94DPZ8kRmNURmHY7KPJA8+OWry9aKmopxLOblXcmtaa36dMoXTyERFydr48Nn2tWL/UqW8hWfucODCob9NzLnDPAKzFTzIoYiIY3FxZzMybo4Z01xeXmurnfNozryiJ01FRddHjjyXlXUiMRFqGFiHYAbnbIl8yJ1j7rxYBs6TjbzMXfgYZw2f+EDfQgX9h/NBQP8wlcD8eCw+vuxlGfyCgy8NzjiTMeP+jFvjx7dUVmbkng1IqPOK2CHE2z9Wx9sVwN3rJ+kWAceIWBYF7nIaS+r8RsPrX6nwukjYPyJ0mzSeGiYDd4JPRiWTkavb5bZfc7Qd1cgIFE+UTgioToLsAdLYgAzxRpG82yGdAOaEqHv/tShz74pj7l20mft3VObOHHVHDDNa2P2fODhOSr4bQ+2fEZ6XEnJ3DXPX8iBp+2S+1hVvt4y291KMFXohuxZnd6Y6RtEHlZmzqyE7Aa+vlz4tIw3Fp2goglfyd5lLipx5l3neV8vIO1k1gyXvXfpSYu8G4LsO7N6J2LPXEGfHonYN2v497hekxtuZQ+40sQyZub/FztyZZl0Cc3eWWEbF3N9+hWXuhqwyhL6pBODO903t8ncZcO8Gu+svNYB70Ka+oVs9I3b4xOwOTKyDDTOXaLHZ7k2bdjot7WRy8sWcnIrmiiGXh8QciQlpCIHSHGpiqFChZITaDrXKwHZZsMp0WqHsm8oB938iwP3vGsBdl1XG4LAi2E53yBCN7Qra/ilOJiOn7TLgTgq5y8UyjpA7b5WBkpED7us/hsrbc7tn0P6gwieF0wvuL3mx5GRSklABCa2qhIt3oUi5Nnw4FEojJ10PStzvHbmzX9jW3sGboRaDnad9keLXOFi2oLLoHbyJi0aFc9EoOJb8+euSI9MboeyC6iz+WHxwfTAcPPC8gy4MgrLo2aJFUBDt8fXlQu49e9pbp0ohd5G5C0zcuczdmFjGTMidwSqzuY2sMm0ccnctc29b7O4kEH/QHUZbo/YO2u4+tN0pvVLbe7zd9e1SO3wyLgPuLo+3i8BdP3OXeqh28Vj1gedP3bx//tBnLYLd7WEKv9g9AfH7AhPqBNtMeNqhsNQDoSkNIckNwcn1cCP8lfC3cEtE2qGEQccFzXrambSUUymDLw1uqax8VFBwKiUF5n2YcTjgLvbwgbcB/iGETZigcFnDhxeEPRMXcu/dG+68XQDu4jWYAnM/Ght7OjX10uDBdyZMgD0lbFifLlhwZ+LEq7m557OzOYlNfPzh6GhYF2H2F7C7Peru6cnpZUR3/DrRaSMcQ9IeTgjacy+gXz+uj6uPj72rVW5uba0t6UQSzLiwSsx7Mu9cVhbsdLNGnPON3QP/aBrxdpVOQSAyYuyR5yw8UFBovt/pyXI5PDbA/hUOr3+pbjJpws6hDdwZ4u3KRqkMtP0HHbS9v5q2o6l2B2eHqkYcG8Vhv8UO3x3Y3RF1Z2Tu77Ew954q5q6hl9GJ3XWRdzmFxwzNn6LRdgpwdwFzx0qQmOLtun0yxlB7Lxpb76TVP1MydVjA2Z0eaZd7Y8icHQfZeYwegB0bcAN3TzWC10PeTUredZB3inOG7nwneWZ66iLvbKMnDbXTaDvlmNRIuON7jCtN7gaZ+1d6mPsXLMy93cvc3ZG5GwTuKo07/4+DAvdOauD+DxS4/04TuAeLwD16N+yoYS8dN+DokHGXbTU1N0aPvjho0L3p04Vtc8yRmLADYUH7g6DghnoXClAu5L6JC7lzVpk1dquMc/umWsLcNVG7+WD73/QH2xXZdnW8HQfcJeYuhNw5scy3vFhGHnJXAHevHV6hDaFTf506Kf8O1AhQj0ANAgWIAHN3eHpCWQHlzO28vJHXR86e/xDKKK/IHX1CtvC0fb2wt5QZ1fiACFejBQo1mv0jnKCk+oGjLzyaMyftdFpgXaD3Tm/fPb7JJ5PhSZe8WAJfD4SGwvNuElunKkLuq0QULhtoON00jtcllnFeyL3NrDImWqc6K+Tubszd5di9fQ9noPY2Cra7mra7SaPUjni7W8bbX/N2qR0+GU3g/hd25s7xI4m59/yOK3T7rITaXigPuvEBQ25Lh4Qp+oVt8wjf7hmxHfaC3lE7+0fvgh2eb+we/7i98A3UD/CV4/IJdVBFJAw6Xl3TOvnu5ITjCVA5xB2LG3B+gHDx7Jn0dJhYuV6pfMJd8Mms5rv3wK9ht7iogDucDHDWCbsZ+FmYtmC6hIXkSEzM6dTUq7m5zeXl+YUPam21E+9MzH+QD9/YamtflJY+mTfvQX7+zbFjL+bknM/OPpGUdDQu7lB4OCd2FzqpenltEz0zG/kjW9qlbeTz9Vyq3dsbJtxDERGwV4ZnPJmc/LigIO92HvxqMNNHHIqY+WAmPB38dlGZh+Efx2Fv9/kFoe1IyFHMeMoSkSJz79JvlQK4ixfFY5tqkrq9WQ3Zu8oHGV8yxdtlRg6iuh2l7ahMBoUyGl1SBW+78E9Npe0irbNDdihmpCt50SGRd4HZCXhOydx91lrhcyd8vkKSHsjfXLbcJSXwzgbfPzCB2lmBu1OZuxZt17a3f209bSezdW28TkiyKyG7Hs5OjbTLLO0q1E62tLNF2jGcXQOycydmT9kHZgwDS+EV8F0Re5eTd7xqxptM3j1pknc8eScJZ7ThOyN5/461HTcWxPdk0yUpgu1GaTs55P49kbn3NMbcKQ1O9Opl9DF3Z8rc27CB6v+4vcZd3TcVAe6Cxp3fYGsBd0fTVNHhLihlODwqbJVjso6kDj09ctL1qurW2xMmwDZyxLURmWczk04kwfYS9pZCVFlg7lAFCiZ3LuQuWmVQjTvaN5UJuGtq3D+xFLVb0hzVPGqn0HY24I7tnmoPufPAHWpEqEQ54L65t/dO78jGSKiGoCZ6MHPmkehorvzhiw6hSRXUF1DOXBsxYunLpaOn3AhK2g91Vu/gzbAewWEjj+yI2RGpRhOvSIYfgXIMKq+K5orSl6WRhyL99vgF1gXmXs2Fg2ranHuV1S1Q+8Bzbe7TR2qd+jNfr8qMmqqBRfAWM3fzIXdy69T2ZJVhDLlbLZaxmLl3YHf34OzORu2vOW3viLe/5vF2F/lk9ND2Dp+MC4A77Fv+j6OnE4m584XBGzLm/hXP3LnyQFS6r4QK/wPPnxzY3ZfzbMCujkOQQZtgF9gnZLPQwMcjnIfvkTvhq2fEDvjaP3qXX9ze4KT6xJwTJc9LJt2ZFHs0VlgioHiAKqLWVlvVUnV+wACYIqWdH7xzP/PNS3/id1eCUkYN3LkwiJfXLtHkDlNzY2TkyeTkG6NH19ba8qbfHj7halV1C5Qr2eezs85l5VzKybudV/ikUAD9JUufl1U0wzdzH899WVp6d/Lkp/Pnn0xKEsLvMKUKWvmt/IknbL+EVDvMiUdiYuAHYTfM9WLNy7uamwt/HHZlWPLJ5ITjCcOvDn84a1bhoidJg0/6xe7l7e0b4R+Nl8ms7aam7SKHcpjEeToD2+gPvOzAvYuocccDd6pmhMDZZYRdJ2THAdCuuoE7k0yGtVEqAmKUtH0VtUuqirbzNE1AbAJ9E9k6HO2qEbSpFzfs2F3O3NdRcu405t7HAHM3GnWnYHcN8m6AvzM8oJy204B71zak7ez2djJwZ6HtuuQwbJBdM8xO4OzWRtopqJ0p0o7h7HLIriLs9qtSepE/OeOG4+KVjTj+7ngKFXl3QeBdTd7ZY+8rzZH3FWTybkZ/tKIT+YjVS9uJv6ny11zB0HIcy9y/oTF3/XoZBrfMq8zcVT73/3lVgPunYpaFANz5y0Zh3ujJ55G5pqlRu/xhn5xcH5nRmDDoeObws7kTrk6bc+/54sWwO53y65SJdybC3nXU9VE5F3NSTqVEHY4K2h8EJTLH3Df3gdoLSiJ7yF2wyqg17uq+qX/9rRGNuwHs/gkTajfikHE2akdpOwLc7Rp3SsgdMbkLVhkoBKHchOpWAO5JJzk1/8LFzybdnXQ6NXW3ry+XN+K1llBoQJXREBICNcWiZ4tqam1QQMFBYi8ifLgKAlYKtOeHcO2mUKPBuiMeWlugBAtNOVBa/rK5ogJKrYyzGUknkvIf5A8dfzlj+NmK5oqjsbFQQMEzbkCsMlLIHSMwVdWc2syd7576A7WHqqbM3bKQO2PrVKdaZaxrnaodcneeWMYJzL0DuzuPs7cZam+HtP01lck4p1eqS+PtHe1SO3wyInC3nrZrAfc/k5m7vTD4b5S5c5jpS3uXp4+XczxIyA7znVQFw4wAhT/sb7+GUSTvG6TuPQJ5FwbsEYXkTlDi/qScE+WVzZPvTo4+HA2zKcxwMC/CIpB2Jg22lS9LS6+NGAGzGHd5Y+/e0uWNa0Rtur1JqeBwF/qm8gl3yXgIk2xjZOTptLSm4uKiJU2jJl9Pzz2TOeLc3IWPJ9yekHo6Nf5YfAzXhYoL1yeeSMw8lzmOeBUqAACAAElEQVTsyrCipqKCRwWwE12w+Gl1TevUOffgxXDu9aoqLnqflgYPK3jehcwCfA8rwbmsrHvTp8NWOHvkOdi5zp7/8OmCBZUtleNujRt7c2zpi9IH+fklS18k5pzwj98nJlPWO5IpatqOAHepb6fgeec21p7/6uLh0LiLwF3m9dagrh8ROTszZP+cYegB7kzxdoq6Hd8oVU7bf1TSdk81bV9Dpu1isN2B2jcLHy+hg79RwO5C2l1gc6qcu93njumhKjI1pzB3uWiY1TJsiLxbMVS03YXAnaFRKpW2G5XJmGtzykbY5ZCdyNk7kzk7PtLeTxVpt8wewxhpV3F2FWRXUfVNWoOE4FF/1AZy5l0z8E4yvFtE3g3E3vWRd3ryneVCDdwh3Zsp2C7ztuN+Owpz1xLLsDJ3Nr2M4tIietRdn8/dmcz9j/qY++/MMXcXRd3NA3dS31T9wN3zX3C+81R0fS9e4A6bZL/YvSHJDTFZRzJyz46ZemPh4mew/yxvLi9rLltQ/HR6wf1pc+4VLHgEW2i4vbmiAr4OvDAwspHLLEMBCiWdFHLHWGVIwP1vv2XVuBtj7p8wo/Y/ugdqx9F2dbydBNzxJvcfOr/343sy4L6JA+5Qj0CVkTL01LyiJxcGDtwXEAC1j9C/FKobKGoao6LgXYaComDho8CEOqinuGtkff8NqwafwnFEcMRcFPdZDvwVd3T5cMwdFi/4Kb+4vdkjz0Olc3PsWHhAKMHmP50/btrNGXPvQ9lyMCwMnkuSeQpll1DNalakqxTaGSxz51G7YmDJu0HmTg25G7PKbHI3q0ybhNzbjrkfYCTIHZzdeai9TYPtry9tf41lMh3x9g6fTPv1yUjAXc3c/0pk7l15Nsozd1EvI0bdoVSwG2ZWcTwFuYYRS97F2PtWqc9qwqDjLZWVsx/Ojj4cDTMcTC1CdxiYILPPZ0tuGZi24LTZhDQvtZvTRdqujLf377+X75h6JCbm0uDBS5a+qKlpHT7hauKg47EDjibmnBg79SY8ctrpNHheWKlgEYDpHJ4UvsIqAbfA7SmnUnIu5cDdFi5+Wrjoia22du7juS0VFfAVNqmHIiJghoXJUXDIXBsxgguelDx7XlIye/7DKbN+nV/8tLKqpaKqpWhJE9wCz5ieeyYi/RDsdD0jtjt6pYoyGTlmlSWvBeAu5DplwB2TcJeAOxpvZ8g4M3J2VsiuCdz1xtuZZDIWNEp10Pa1SpOMI9suo+08Yd/SN9Qx4I/8sGN3Mequi7n/5HzmblA0jCfvXZ2K2hlpu7VKmWXW0favraPtzKidHbLTObu2OkYj0m4Ateuxx6CKdoU3RgXZA5WEvTf28hT6UCN4bOcGedtk1sB7f8bAu/KjWTx593Apecch+BW4vgJsF2fgD1pqsL0veVjO3Huo+5B/bUHUXUMv8xleL+OGzN2cz90lzN2pwP0vTMC913dwBMIpyTVG6r+mu+8vMHvAzkHwfoSmHEgderp4SVNxaVN1a/X4W+OHXxs+8c7EpwsXvliyJG/G7YGjL6QPOwP3yRxxDv4IW9Cq6talL5fGHo2FjTQUkVCHdf+lO5QmklVGV99UDY07hbnrHX+02CHDhNo/1ZlqV6B2BW2XlDI6rTJQYkIlAzW35w5PqD7mPZk3edbduQsfQ00haNyhqBF6U+0PCroxenRTcXFFVfOAURf84/dBMQWrDCwfXflsO0zpaD8nKRclMncu5w5LEqxiXpE7ojIPw9FyY8yY6yNHPl2woPRFKZQqj/kGWlA6ccCdl3kK1xZLIffVDGWqmrkrMPoPOOBux+4szJ0klhGra3zIXW/rVLpVRhVyt9wqY6Z1quGQe5sxd2ux+2tF3nVy9rZE7SaD7a8Bbe+It78u8XZ3bpfK96p0d59M+wDu7/xZD3P/DOo9pdK9uwA9vxWxuz1J0cWO3X/CYHd/O/7gyTvH3L0idvjF7Y0bcKyiuWJJ2Yu4Y3EwacFMIHxMBmcwzLLjbo2rtdWWNZddzc2FeYdj7r17w7GF7o02Itl2uMNOpGEpbByfLVxYXdNqq60dMu5yTNaRiLRD4WkHo7MODxh1vrKlcvClwdGHo2ERgAkVZkGY6oTeU8K0BN/AS4psjMw8mykUOSMnXYcHGTz2Um2t7VJODtdkNSLiSEwM7Fmnzbm36NmiQRcHpZ9JH3J5yIhrI6A6qmqpaioqGj/9VnruGfjBkOQGKKI8I3b0Dd3SK1CSySC03eNfmEyoyIIRpQzZ4Y74ZOw4oPs3zEaRZTp1MWy0XRu4E8AliiwJMhkz6vYPZOp2BPaJ/aaEo7c74m1X0PY+ojeJH1ulazjgexG7S8xdoHKSW0bsoSpwN9QsgW2gimXuvbWZO76NKvFCB62PXnCHwRvOgO8Ezv6GwWspnIbaXUPbKflf6yE7BV+S1TEskXZ+KrMQtSsj7f4kbwwdsm+WhuIiFeVA7qk2R2HIOynwjhre9XhmWAPv2uQdK5z5URd5Z4fv+kbvFUZ69tJRu0uZu1ajFGLUnV0v04bM3QU9VOlK9/9xBm1vY+Dexw7chY6pQgDZJ3p3WOrBoeMvl74ohT3w6Buj086kpZ5OHXB+wNzHc29PmAB7TpvNBnvRxJwT0VlHIjMaozIPpw49XVPT+mzRogVPFyQcT4BdNBR/XMh9zYdQRrz3o13j/vbyt+0a9y+MaNyZQu7ugNr/rkTtxiPtatSuou2OeLsE3L98Sx1yl1qnOvqmrukGxSvU1h7bPALqAtJOpxU8KiireMn1l7LZTiQm7gsIgIqkLjDwbGZmVXXrkhdLnsyblzfjtn/8PthkwpoCRw4cPzCxc4UAXwXY98a9hLZbP0htt4RjDJYn2KNCMZI0+GRp+QsoZ8orm2tsNY/nzr0ybNix+HhH9yw+XC9YZaSQu4TdVyNDUazKmDszbSdhdzpzZw+5u8wqs92FVpk2CLkzMnenRd0P6OLLHZzdDGfXj9rdSyPTQdtdQtvbRbzdWuDeEW9vdz6Z1a71yQjA/U8oc/9PBXPv/Dd7kcYVb59i2qgqo+6oYUaO3SXPjI/Dy9EjYAPfuoczVPrE7I5Mb4Q95YslS7LOZcHUCKc4nHDCaQHfD7ww8HlJyYQZt6HqOBITA5OFIE93HNOiQl0ItsN+BSYsmO5hy3h/5szW6ur5T+bbamuzR56HJwpJrg9K3B+cVA+VDFQpS8pewFPHH4uHdQBmR5ixhDkGZg54DXBCw3kMX2GegDkSSh2487Q596IyGuFnx0y5AQ97Jj39VErK1eHDYbc69ubY6CPRMPXCI8D9Y4/G5t3Ouz9jxq3x40uWPocfCU054Be31ytyB+x04V+gh//67ry6XU7bFQALYe4in3IoRxCfjMALBIH7Oz0VPhnZRe6s/m7jeXaL4u2sMpnvXCKTcQRmFdl2BLVv8+DaBW+Db7g/4pi76HMXc6/6Ze5dlA1Uf3hXJ3PXH3VfxnhgvIEZ/8QPDFhXjM91o/auVnN2DGpXBttxXVJVtF0tk+lBUbezKa11O9npxhhtzq4Vaddjj7EcteMV7co8O8LZsYR9C8PA8ncMeScF3lHPjLyx6i8IeV9L8MzgA+/WkPd+dPKuE74zgnimz4d0tRNgx+4GmXsnWQ9YFr2MArsbjroztFEVmft/v0LM3WnY3Wrg/jYBuHdGgftn9o00n1xBgPuqD/iOqTAtwJQCu0TYrMJuU3DFwN445khM9OFo2KwOuDCg1lZ7eciQ89nZD/Lz5xc9SRlyKjIDNrcNsLmFr7DVhB95Uli44OmCoP1BUHFCNQZ1j2SVQfumclYZOnAnWWX+9BsLcu5/tFjXrtse8xlrpF0DtROAOy3kjmrcf+4KbxC8TVD1QBmScDyhuKkYaqKyiubmioqa1prTaWmNUVFQ1MAfh10ZBsVFWcXLhYuf+cXuhZUIVkNYHWC25+LtUAVwtH25cCUoTFaOnlu8/FMSy8Ca5RmxPSB+X0zWkawR56DIKnhUkP8gH573dGoq1FBCv1Yu4SReVbyGD7mry1r0FhlzNwHc8cyd3EDVcMidpXVqO7XKUELubs3cnYTdXw3yrh+yt2vU3n5pu2vU7U6VybRNr9RXK97uonapHT4Zt4y3S8Bdk7nL26h+oNDLLHtLjLq/jUTdUez+vhK7c0YUsbHqBl5SucUrcmdwcv24abdaq6uhSICKAuYPOOHgkIfjFM7jxBOJVS1VXBufqpZzWVkwm8OUJHzsJvjThQv0BF07zIywQsBm8XFh4f3p06fdm7bkxZLZ8x+mDD0VlnogMKHOP26vX9xe//h9QUn7ozIaJ868A6XL4EuDYR2D2RFmI3hGAbXDqQmnF5w68DLgK5y1MBcOvDCQkydOu5k98tyQcZfh+2sjRsBYWv4S/g82wcIHBnBneBwokOAO8JovDhoEO+a4Acdga+sdtbNf2FbY6TrU7QhtVxEQNIvtyIdKENYeb6f7ZKTAHQatUmm7Baj9c6G2tLBXql6ZzHumZDK/kGQyDtoegtD2cBjbxaFm7mSxjK8hsUxfuViGyNy/VTH3b7CuYS3pwTJdlz68Yd1407mofRkbZ8cE2w3S9o+ZabtmsN10mJ2JsxMi7UbsMW2A2jfJexpv7hOshOx95T4ozaHm7yh5l9lmkMA7Cbuz6d2ZAu9Y8v4BhrxbrXqXw3dtBG+95siJzB1pRY5E3Xu0UdRdk7m/r8Xc33Mdc/8NE3P/X6PM/X+sou0awP1NDHD/Dw3g/uf/lAP3/5I20krgvkIA7nDywikPswTsKGCbmjr0tCBUzDqXJTgP4StsMkdeHylYFk8kJZ3Pzm6tqho1mbvsMjipHn7KN3YPfAO3PJw9e+GzhXB/2ItCbQe1EVQkUB/YNe6afVNJGneKWOaPJjg7HbX/2QrUbkgdo+TsZNSOpe0aVpkfOKuMpHGHahhqDXi/kk4mvSgtfThrVubws1GZh8dOvdlSWXlh4MDLQ4ZUt1Znns1MO5MGt2Tknu0fvQtWHFg4YC3gfTIr3+WBO8xFfCKKa7hlN39yRRlXkfEh97ViyH2Ld9SuoKT6xEEnFhQ/HX1j9IDzA+Y/nd9cUSGobLZ7eGzmLylex5fW9pA7WuiqCmCUuQvlqAK4M9J2rNWdInO3OOQuWWXIIXe3ssoYD7mbE8s4kbk7D7u3O/huFLIb5+yGUHsHbXdzdXtHvN094+2vfrvU19UnwwF3x6WvUm3AwNxFpTsx6q6B3b1XS5KZj/3W9QzYADtFj/Bt/nF7h4y73FRc/GTevGFXhkUcioBZRDhBYQaKPxZf/Lx4wozbS8tfXhk69GRy8vH4+BOJiVBswNdDERH1/Fp+NDYWNqMXBw26MmwYV6PU1tby/yta0pSUc0IoRXxidsP2FAZ8A08aktyQOeJcTU1rWXNZwvEEmJthNoInlWg7nBNwvMNBCkcofAO3w2SccSajAnajlc2T8u/Mmf/o/owZ8DywT005lRLZGMnpaPb4wQwE0+rQy0PhhTRGRV0bMaKsojkyoxGe1yNsG0/bN0i0vauMtqOkQ+JcCNVC0Il4/5WOmDPeJyMr+F1N27sa7pXqPJnMKoUfXw7cHY0Z7YBP5Ho95fF2Httx9K1fqJ22e4Zv94yAsQO+csydz7mLbhlcyD0AF3L3kYXcmcQyOpj7ck0YRCJBAomm+f0Zjhkr8LolnH2ZHs7OhtqRg5ZgkjFI29lRO3uYnRoQxnJ2bXuMs1F7dyaBjAy1KyLtKGeXQ3bhPN3aD7FCqYd0N2y3BiTzrgq8Kz0zRvXu9MC792ql5F1J3n8ikndt4cxK1ti7jF9jQHxnLFtnPFxpnP1H6sBjd+WvoFbV69HLOC3qrqGXMcDc/6stmTt7G1UnYXc6bdcJ3N9yAPffsAP3D+XA3WMVnL9wvsN0AfuHiPRD3DbWVjvmxhghDgIjpCEE9sMlz0tg23ksPv5wVNTRuDhBLJM5/GxoSoNvzB6hz2rG8LPV1a3llc0z788MrAuE3SxUUVC12DXu6r6pn8uBO5tVBs/c/6iTs6tRO0uwnQG1UyLt9FaorJAdi9q1gPvby3mrjErjbrfKbOrltcMr+nA0lBiVLZVpw86EpR6EEmbizDtPFy68O3ly/oP84VeHwzFQuOgJ/BW83bDQ2IG7lHDvJWZulM7PVYJVBtYOzuQesB5WKzjY/PlOWtKFFBlnM+D7q8OH2/u19unDAXe+b6oDuItDYtlrxL+SbDOMwP17+dCMuhsQyxBD7hJw1xNyd7ZVpt2F3N2EuRsn727I3838IiY5u7uhdnO0fb+zaXuHTIaRtnfE2zt8Mu3BJ8MC3Nl9MnbgjmfuSqX731RKdyTq3s0edRfY09uoYUbsp4pid8lF/iG/2/vYf13PwA19QrZ4R+0MTzs4gW/3VLykqaipKP54fFRjFOz8kk4kDTg/QNC4t1ZXw3bzybx5cLeamlYh+9NUXHw+O1sg2kvKXhQtaWqprIQSBcbjwsKcMRcjMxoDEup8YnbDs8De1DNiB3yF7+GWgPh9UZmHp875tbqmddGzRZGNkTAdwvwBJzqcgnA+wXkABzKnv+SzJ3AjzFiwGKaeTh15beScR3M4pm+rnfrr1KGXh8KNsUdj4W+FnqvwyuH2quoW4aXCbxeYUCc1SkVpO09AZLFlFVZQBUtRtQhqb6f4ZHTF26nkVF/02Hm9UlFGqSGTWan+6EJfvF1ub+cpnqNRqhRvF2g7f5g5Qu4OmXuw4ZC7nLn302bunUjMXRHDJOhlVCRID3Y3a/x3HmcnQHZ2zu5A7TTaTgi26zTJUILtpjj7Sk3O/h6Zs5PsMcZQu0jb1yK0XW9bVCbUjkTat/RRcXY5Vd9GHVj+jpJ3NPC+CQm8OxO7awferSDv/ajwmoW/6x+mITsDeVdH3fUwd229jPrTze5fsTRT1aOXYVO6W8PcKW1UzTF3Zr0MGbv/jzHarhVvxytlEKuMBnD/LQNwf58D7j/DWQ8zRv+oXcmDT74sK4MBG2Ao36H8hc1ncH1w2um0eUVPLuXkHIqIaAgJEdyJL5Ysaa2pSco5AXtd78idAQn7uGtGq6paKipelJSEHQyDvSvsYO0ad75vaqdvO2H6pjJaZehiGV3jT+Z07X/7LStqZ+DseiE7hrOTaDsK3AlWGaggBasMVPz+e/0zz2XCO8hB8BHnMoafzc27Mnv+o2eLFs19PLeqpQoKioSBxwP4mqKXANztDnd7x1RpmkL7pkoJ925iCSZ0C/CN3ZM69DSUTqmnUgPrAqGQgcLm/owZcIDt8PJSA/c1ctouUWyH5J0M3PGo/d137YNM3nUxd/Mhdzxwx4bc28IqY7B1qjNC7iaYu/Ow+wHTwNqlCN6SV2ues7sNarcg2P5a0fb2I5N5ZeLtZtultl28vcMn40qBOw/c7bUBC3MX26iiSvf3Jb2MKuqOGGbsYvfeAvcUcCfHZVDmzm/4tvnF7oUCY/HzxXcmTLg1fvzsh7Nt4n9C1yDYCy59uXTWw1mjb4zOPp+dcipl4p2JhYueQO3xcNaskuclUJbA7UVNRSVLnws/OHT85bBUzpnuHbWTB6B2aMJbtrd7Re7widkdnFQ/eOyl5yUlcP+cSzmw9AnhejhThYQ7HMtcwn0dl3CH81UA7vDsuVdzCx4VNBUVLVz8bGnFy8qWyhn3Z4y4NiLnYk7uldzxt8bDhvXe9OnFS5qE1x+RfgheRp+QLTxtXyeZZGD720X0sGMv1UeNKHYQ1pdgFBGveae0S7WWtr/hCtrOFG/H0nZKr1RyvB1rb18n2dvpPhkeuNuHCNy3EawyMpN7d3zIHemeihPLIDJ35ZGgh7lTo+4k7K7ZZddK/v6FayE7DbUTgu16NTJMtF0naqdnhOngEsvZtSLt+J6ohlH72o98tR0yZlA7EmlXcHZpXWAbKv6Oknc08K7yzFiO3RWeGUXgnZm861S9d2FIjqODAcSv7Cz/EaoQBnsdmNbQwu6m9DKaUfeP6VH3rwxG3ZmV7sbbqHZSYXcac1dg9z/oV7pbgt0VCF7jPlrxdkbgjvRNFbfTuoB7Nx64w7whAFBhH5t0Igm2nVBiQhEcdiBs8t3JZS/Ljick7A8KEkBbfXDw6bS01upqGIPGXIwbcDRh4PHCRY8v5uRcHjIEHiH0QChsaKEag8oG6gmoADp/31nWN3UZoW8qYpWhhdz/1Kao/W841E6KtNM5u94YO5mzswJ3wSrzo8MqA7UG1B3wdgfuDxx4YSBUNMJhUM0Hd8qbyxcUPx079WbG8LNRGY3+8ftgqwmLi71pKhQUHqschklkP4zGnuzA3Wctd51x4EZYs6AUShlyCh5/7uO5MUdihl4e2lpVBcdTY2QkBrgjIXcHcBdKazJwt7NyNW2XULtiUJk7pYGq3pC7BVYZEcfossrsNGOV0dk61UzI3Y2Ye1thd0tYvPNeSdtxdvel7QY0Mu2NtnfE2zvi7a91vL2d+GQQ4I5n7n/GMHe8XsbRSRWNutsNM2Sxu2PP5/tLD//1Quue4KT6OQsewYbyQT7XtAc2fzfGjDkaG3s2M/PG6NG22trZ8x/OejhrwIUBsUdjYXaMOBQx/tb4khclS18uhSIE9qajb4y+OXZs0ZKm1KGnItIPBfLBdq/IHWLQeAsSb9wKN/LX3u6Be46bdququmXeoifDrw6HtUvG3Df3hhMCzg84L2F2gWUk/Ux64ZNCeHl3Jk68nZdXXNo0LO9Kbt6V/MIHsEV9XFjYXF7eVFxc8rykorkih6t/jsGvhtB2h7ddIWHHaXCx5F2GMJBQ83d62qU6O95OpJ8I6yQIOjR6pX5rtlcqNd7+oQj+6D4ZTLtUXuBuB+48bcdp3BVWmQ2oVUYMua/VDrkTZe4q5o6RDutg7izYXQd5x4N41bCo8SmzLoYM2bVT7TiNDKO03f6h0bdMGhn9LSUZMsLa6hjWSLtJ1G5A1y6i9p54VzsRtSPSmG39lJCd+5zMUxgRqoG0Z5AGSt6p2J2Wdtftdlfo3TUD78bJOwN878dgbjE7lCl1JsJOGMRXS9DLvGs46k6wujN/wKkRdWfVyziDuXdiZ+7WRt0NY3cybXcFcOdjKw7g/k85cP9OAu5wysO84R+/b/iEqzWtNaVlLybdmQSVPVSiUIWnnEppLiu7N23agbAwKJ6FIhaK3v1BQVeGDpVCKjPm3l+4+CnsTmEvCnta+HEoN6Es44D7ah64E/qmKjTuGKsMgbkT3TIsnJ2gayc6ZPSgdnykXbP9KQteJxB2PG2nAHeFVeaX7vBOQUEP73jAvoDIxkh407PPZw+5PGTszbFQB92fMaOiqmXIuMsx2UcCEuqgioElBsooWEa78lYZvqZwfIIoLP3c1OchBZ7swF3QuMPxJlxRUV3TenvChGn3pnHxo7EXoRY7FBHBAtwlii0pZRwOd0K8nYbaqdhdzdw1u6cqQu5rCSF3F1hldriDVcZYyN3CBqptgd2dC9/baBywZLgnan/1aPsrqW7viLcbi7czAndG2v6qt0t1N5+MAeD+iSZzJyvdcXoZIbPTTYy6I4YZHHaXXdgomARh4xiUtB+2fbl5VwoXPZ77eO6dSZOOxcVdGDDgxZIlE2bcHjzu0uLS54ufL848lxl3LG7IJS688yA/P7/wwczCB1KxAY8QlFTvG7vHEWwP3Qp7SpR6CKgU/gruExC/L2XIqQVPF5zLyoLtLOxrY4/GwmwKs47QPRXOafgGJrbow9Ez7s+orGq5P3Pmuezss5mZ10aOhIooI/dM/MBjXLBo0PG0YacHj72UNeJc5ohzsdlHgxL3c972cN4kI3rbYVssa3kq7IzVSToFWSPl72TObrm93aBPxknedutkMkzx9pVG4+0EnwwWuMuVMkjTVAnGIUoZBLj3kgF30Srjh1plEJO7NynkjhXL/PAuG3N/R28Ak4LdleR9mWlobkXjUybIrsHZiaj9IxbUrilt/5ZJI6Mftb9nUh3jRNRuqa49CAm2Y1ztRNQuz7NjCfsO1diuuoRluzzzvlX8gI2K3RG3e0/92L27HLvTAu9OIO+qPqurGLLk7Cwe/4NaGfZVWoOO3TWj7hS9jLGou5ZhRnfUXaWX0at079y2bVT1Rt0x2P0/jNH2NxlouwHg/g4WuP/dfnkoCtw/lgH37jxwD0yoq6puLX1Ren3UqNLyl4knEiMbIwdeGAjb1EUlz2DnCfU2lJ1QK27hGR/UsfuDgm6NGwcb4BHXRsx5NKes4iV8P+7WONgqQ3UOZSWUZVAAQfEBpQAH3Fd0UvZNRTXuLFYZFXOnpd2xnF0vav+rftRO4uw4yG4YrGugdp62Y4E7vAuoVUYKuXMX1G7tx3Wx2usf0hAScSgCjoGR10c+mT//0uDBN0aPrm6tHjPlRnjaIZ/o3bDccFEeX94qI+Z4hClOplLkF26u7BKuMPbhtriw6MDaBMVXeNpBKK8ezZnTXFEBxxiUOddHjqwPDt6Bc7ivUTvcpRvFpqnqeDuWtq8gDAV2JzJ3PWIZvSH39miVMRVyNymWcSVzN4HdD3RAdrdE7VZpZDpouytlMlb2Su2It7tDvP3jj//d4ZOxzicjAXcCc38Hx9zxehlZ1P0NkbSqDDOi2L0X2r3nRy5toere4xe7F3Z+IyZeEy6lrGiugBpjUv7dpMEn4wYcTRlyqnDR4xdLljSXlwtdfWy1tYPHXkoYdDwm60hkeiPXHBVF7fbgoWTz2CglInnszjH3/lG74KeGjL8MD/hy6dKikib4JuNsBlQ4sCjBZAyTKywFaafTWmtq4K+uDBt2OCoKxvGEhNt5ebA3TRh4PCz1IDxIYOL+gIS6gPh9/nF7fWO4l+ERvh2eHZ6uh//67r6/wDZXpO1ov1NcGc/QIBH5ERltf0dB20k+mQ91x9tdS9t190p9F+2Vqive7r1G2S7V998kgTsK3KULJuTMXRZ9pQB3ucZdaZWhh9zVYhlyA1U6c1/OSIII2P1LDMJ2EXx3AmRHOPvvSJwdj9oN0HYGjYxu1G6AszNE2p2O2q1zyGBc7STUruDsfIcPvgcDbSjguzzzTsbuypaqvZTYfYNO7E72zKgD70bJuzZ892AF3CiOxw+mfPoq04MBuxOs7mxR9++wUXedhhnGqLsZvczfnaV0xzJ3Y3oZjag7DrszZ97/A0/bnQDchb6pAnDvImyYHcAdjgo4Zrimqf3sDneYJfzi9o6bdhN2myeTk+9Onpx3O2/C7QlLlr5YuPjZk8LCA6GhQu7YXpL16gXfwy31wcGXhw59Mm/e44ICbvPcUjHsyrDow9FQcKuBu6xvKkXjrrbKaDF31vFn07p2RtSOemM0IbsBtv7lW0q8rh5Y4P5tJ0njzlllVr0vhdyhPoZ63WObR/9d/f33+QfVB0UfiZ58d/L9GTPgkDiRmAhlSMnzkokz70DdIVllPkJMlcgsLW56+aneHi4RYiV+62C5ESovqFySB5/Mm3F7SdmL54sXXx816lg8VDL+XNPU3r2hmF/HF9iypqlIeFxC7RJtV8bbVbR9BcPQy9yZQu6U1qkScNcTcidaZfQCd5NWGRMhd8vEMqaZuyuxe7vg7wcsHyY4Ow21d9B219P2DpnMKxxvR4D7hg6fTLv1yaDAnYG5M+llpKg70TDzNsYwY9fLwBZQ9Llv6he2tX/UrpDkhsFjL42cdH3ctFupQ09HpB+CW4IS98PmMjKjceDoCwuKn04vuN9aVZWbdzU87WBgQp1v7B74Qa8ITiAjIU5J19snZLPQqVLEGUJamYu6c8w9mnvGrBHnqlqqHs6adWnwYChXJt6Z2FJZOfvh7JxLOZnnMuc/nT9q8vXm8nJYGGBOhNUFdr1wt8mz7sJLgtfmH7dPaM3qKb4G4Unh6WBf+5HPL7DNFVqkosF2VUT9O1abs7LUV9lCulvfLtU5tJ1dJqPulaor3r5KZp1m9ckIAncW4L5V3V9RAd0cwB3pm2p3N2tZZVQhd1X3VLXM3Shzp0TdydidSN5V/H2ZSUuMxYSdnbPLUbueYLtZ2m4Jau9iINKOFbWbQO3sunaCQ2YDk0MG42onoXZ7J21k7IThLR9e9kEk79i0e18cdseL3YMUYncG7I7zzKgD71jJO4m8d9Uk7xj4rsnfmVm8AaruoTUYXgnZMMMUdccaZt6x2DBDiLo7XS8jY+6mle7OiLoTsTsafncMjTtjH/9/rQPu/0CA+zLuStCPv+GAe28euHuthrMY5gTYRsZmH62ttT2YOfPOxImLny8uLX85esoN2HDC7hTqZ6gAhdCxQAmh1hKY+/6goOMJCTdGjy5Y+Hj89Ftw/8QTiYqEOxQKXN9UFXBHNe54q4xVzP3PztG141A7PtKu4OyMKXVj42uEtmOBu6BxF60yUDsKIXdBLOOxnWfue/0jDkXMeTTn/vTpR2JiDoSGNkZGPl+8eOnLpVAfQe0D6wvqq+wqhjOUe11hRRaX4I/twH0TLFt+cXtjso5MmHE7/0E+jLuTJsETcRdSeHhs4oH7vxXAHVvlIiUrViaDp+1c0F8+sNhdrpdRMHdjIXdS61TnWmUQxuR0q4x1IXdnMXfzUXfryLs78PcDThrmOLu7o/a2pu2vnbq9rWQyr1a8vaNd6ivvk+GB+1vy8JHI3H+DFE4U5v5bibkTo+4Ow4xM7I4YZiS9jL2NqqAU5AMXQvAc9pF+sXt8Y3b3j94Ff4QiBIZP9G7YGgYm1AUn1XN59ri98FeeETv6hW1DkuybxNijHb7AjUKPSnlwkjOECMwdHjY87WBp2QtBzv5k3rzyymb4/u7kybCvLW8uL3nONVa9mpsLCw/MrbDfvTV+vK22NnP4WXgZ/nF7BV88vAxeXwNPx6F22NF+JAu2/0sWbBdqdVQC29OO5PDGCUnxjL+MfTlGJuOo4b9kAu7dvnAlbWeRyZiKt0vAXRlvp/lk9AP3LfIejFsVKVc7a3NQNlnCHQfcEasMNuSu6J6qlrnrYu49NKUHurD7lzTw3U053iSP32HHh+zjS3bO/pYGZ2dH7VZoZPDBdr32GGdF2rGovasKtevStXMOGT8Gh4yuYDvG1S5D7fI8O8/WoxiGHL5jsTv5UzdWsbtl2B1P3n9mI+8G4LuDv7+vTb11IPX3TYwuDGF8DHYnRN07s0fdnWOYebX0Mq7C7m8ao+3/V/ViJOD+B33A/T0EuHdVAPfv4QiE0w1OXjj3YQIJiN+XmHMib8bt4tKmquoW2HzCRvTy0KH1ISFQc0I9BqWRQD/hK9Q/UHpBZQhl8MHw8PszZoyZciN16OmiJU15t/MC6gIEhzsH3H/uChUDB9y/fxftm2q3yig07n8nA/e/qLi5Xs6OoHazDhkKaidxdgMpdUOcXU3bJeCOatwlqwzUhVBiwjsFxTGU3VDuC/1yQw+EFjUVNZeXH4mOFkjNlWHDalq5i26hcoE1CNYRzuTOXx+JpjSQLe5axRYXlpKeInCHait+4LGXS5cOvDAQxuLS58cTEvb6+W3jgft6EbhDVYyG2VHO/pOctqtlMhjazn3igB8K7E5h7iSZu66Qu2brVHewyuzWtMq4IOTuKube5tjd2SD+gGuGac7uVNTelsH214e2t6FMpiPe/pq3S6UC9zWvgU9GAO5/IDN3TaU7qpdRRt2FcgJvmEHE7rxhxh5179JX0MvwUXcOu6+zo/BgFGg6Bu8HcPg65LoYB6RAs5B22i4yTQmn8nfb2Dt4Mzxa/+hdoSkHMnLPjp58Y3rBvYXPFt6dPPlQRMT57Oxfp06tqbU74p8UFl4ZOhSKn9bq6uLS5xHphySJDbwweKheKGoX8yayYHtve7BdKMsxNbmquSIO1WG6tJFp+1faWTmzIXedtN2QTIalV6rwQY6OeLsO4C443DfaOwEE4+K0oRJnJ8XbCcAd1bgTrDKYkLuqeyoqc2dj7sxRdxx2f0sKhn+oH75bP77UlWTX5ux01N7WwXanWNrNoHZvdtRuJthONrZrBttxqF3F2bnPd7lPeRWD+9B3F3pPPHZXdXEwZJjBYXd/NXYn6911qmZk5N2bQN5x8J2Bv+NZPPP4lxVjFTWGr8buepqp0qLuFhhm8M1UrYy6W6WX+ZNzo+5M2P3/WonajQP3P2kB988R4P4tHEVw1MGpBCcpnOlcH0t+O5o69PTkWXcLHhfYamouDxlyODoaSuitfLwdah6oRqBIgHoDyhuopqCWg4q0Pjj4ZVnZuGk3w9MOzlnwqPBJYXB9MNSgWOCO0birrDJMIXcSeSfd5y8WOWRYUDuBs7OAcvPDjtoR2v72ciVwt1tl5CF3qGuhUIaiHCp+rx1egfsDp/w6pbyy+dLgwQJHuztpUs7FnNaamqScEz4xnMkddpWcWEbYPaIfe0umRD/FmsttazngHrYNqpjM4WdfLl2acDwh8UTi4tLn5zIz9/j5bevXb1OvXgJwh+IZFbWvJhSrTLSdjNpJ2F3tllmJMneyWEZXyN1Y61S3tsq0ScidZ+5tE3V3PnlvB8MKzu4i1N5B291E3d6ueqVud2Pa7vp4++vlk2lX8XYJuBtj7gS9jIZhRi12R6LuXLGBWN35tLsUwegh5y9yBLNBTP+tkyzYKojjaErpyA4jG1B7yiNoE2xYvSJ3+MdxEvkBo86XvSyz2WzPFi16XlIiqGMWPF2Qcylnwu0J8McZ92e0VlcnDDruF7eXD7ZzfVl7BW2Ch+KeS0DtvENGYWyXoXYM7rQPIrZTjuWYBpiO0v0rlwB3mglEFUmm0XZdvVK14u0IcPdYpZRjyLM/KoE7GbhjQu6Kj4UcZA2nkrBjtZ4ocA/AAHeMVcZ7NTnkTmTuIhVaYYS568DuX/1Om7xbzt+/ZB16ITuNsxNROzHYjqXtvXC0vfcK5mC7s+wxRlE73SHzC8khwxhs72nY2I4NtuNRO4Gza5F3B3ZHJDNkwwz/IkP0GGZ0Y3f9gXeSbUZO3lngu4y/e/7LIlxu7SCRd3XTV+caZt7RmGwtjrob0suwMHer9DLWYndG+K75CDja/jvUJ0MH7n9RAfdPFcAdDgk4ZuAYg/MFzkQ4o2EqgJkkMKEuechJ2G0Ovzp8yq9T7s+c2RgZCbUu55Pp0UMA7gJDhPIGiiWo36Da3B8Y2FpVtfDZwkn5d+9NmwbfB9cHSwl3qFc44P7je52/72wH7nSrjDrkzsLc/2wOtVOC7XpQOxNnJ/FxBSVXj6+Zh/wHOdouV8o4gLsUcv+5G1Sr3dd1h3cNynSPbR6+e3xTT6XCwdBcUdFSWXltxAh4c+GoaKmqSh58MiB+HxwwsJrAYsEXIP9GKh2kmEJ2m2LeyKGUGTnp2oP8/NkPZxc1FS0tf3l5yBDu051+/TZKwF3wyRBS7WiXVEtoOxNzp4plzITcdQN3lVVmm8IqgwPuO6jA3bmtU9sJc28wSY07OLv7ofY21si0d9r+islk2qRXake71A6fjMuBO4G561G6y6Puf/9vjGGGgN3tOFVhmPlR8H442vv0xwQk5UBBThOwlMdHGfpwhJr5zWgPLuuxUVK6ByfVDxx9YVL+neLSpty8K6lDT6UNOz17/sOq1qqKKu7y3mF5V2Kzj8Im1TNiu6Ss+dh/PQdMBdTuvVp0yKxCHTJCHY7JpBMHlr8vV2F6XFCOWqv/jmLTZmXuX5ig7Zrqdkvi7dh2qUqfTDdJ4O4jA4Iy4B6wQWWVkTN31dUYWIMEBrj7U4C70irTVQncHSF3FrEMhrlr6mXEg4oFu8sy7x99qYOJWzsMEHYCZ9dqi/qNxidk5GB7J+1guy5Xuy57jMtQO8UhQw22kzQy2GA7TiOjFWx3oHYFZ/eJ3u0TQxjRu9F7OrA7IpkxEnVHDTNBROzeg4rdNTwz7OSdLfaOwHcN/o4H8S4bWuSdhN2dbJj5ltUwo9lMlR51x3dSdQ+9DGvU3Tx2Nzz+Fx9vtwS4d1sGbyi813bg3mclHJNc31TfX+CshxnDP25f1ohzsNtMOZWSdiatpqb1RGIiFMaCwF1yagtKGSirBOAOxfzFnJxaW21VdUtLRcXwq8Oh+pcc7gJwhyKg8w+dO63oJNO4L7MDd4dVRtE6FWHuKDc3iNrNB9v1oHaaV50O1q0dy5XAHd4FDrh/31nAxvaQ++qudrHMuo+h5oZC32unV+iB0Km/TrXV1qYNOwPFyPOSkpIXJZNn3U3PPROWegCWJ1hoxEpEuJbXseb2EMLs/MrCLSLiZ9vCBb4ccI/dkzLkVE1rTXNZ2YLip5UtlcLBtrVvX8Ff5BC4i51R1aidxduu4OnfSgP+SZA/krA7I3M3EnLXZZURAQreKqPSuDvLKmN1yJ1FLON05u4M7P4Kk3frILsGZ3cr1P6a0XZnq9vdQSaz45WQybgu3t7hk2kPPhkFcGdk7gS9DMXq3uVTrNhd3U9VJnbnyKlAS3kqJDAgiZDaic/qrhQQgLUJS+xAfk8703d0EFrPW923eIZv7x+9yz9+X2BCHTeEfq3pjZkjzo2cdC1x0ImgxP1wByiKYLeKoHZR1+4loXaHQ0YAnQhqV+baVINI997+GEtFSYU6pUqnAPcvTKB2DdrOKpPREW//nhhvJ/lksB1TWYH7RjFmu1kRs1UNDG1X6o/kwL07+hER2SojfJyjHXI3xNwpUXcldu9O49e/cw18/wgzWAk7E2c3hNp7UNowsGhk2B0yJkTt1qJ2skOGGmxXXsak2R/VoEYGE2yXpdoVqN3XPrg+IkTszhx176c76o4TuwfKxO5KtztO7+4E8o6B7wb4u2sGA3zXjd01DDO9V1ghdqcaZpwYdbdKL+OSqLuzsfvv2ID720aAO7dHsgP35Z34xIm9bypvlYHJwTd2T86Yi01FRcknkxOOJ7RWVd0YMwYKbzR0LCFCqL6gooOCE+5wIjHxSWHhwsXPxt8aH3MkBuppqCkl4A61hQDcHX1TUY07i1VGIXOnY/e/MKN2A8F2BWqX7DFkzk4j7MsRIE4dwj25YQC1Sz4ZCbiLGnfBKsOF3H/iQu6oWKbf1n5cyP10alVLVeGixwULH9tstqbiYltt7dyFj7NGngtLPcCXJFvtDavE63qFdZa3dG6yX4YbKK0gji5WcLDFZB0ZO+2moM28lJNzIDR0p7f3lr59N/LteWXAXWFsx9H2lSIQJ2Xb7ZCdNFTYXZO5y8QyekLuv1gVcne9xp0M3J0acm8r5t5gFVnugOxtiNrdJtj+itP2jl6pHfH2jnapbR1vVwN3GnP/DYm5Y6PuBMMME3YX0+52t3tvKa2MwCMWrysKj+zYCF+BC3+0g1dH2t2O3XsHb+Z88Ty48YzYzmGaqJ0CZLE3R+VQ+0Z5qv3nD0RdexcBtSMOGb7MRq4ix7BLvdFasvdDqz7XAO4y7K4a3TRQuwHarimTYY23k9ulqn0yrMDdH+WA9LAtZmCUESI+IwD3fxOBO751Kj7kTpG5U5k7OXppFLtjku/GQPxHxPGWXsJOgOxs9hht1G55sN161I7l7PpRu1rXruWQUQXb9fZH1aTtNI2MozMqCbVzhD2WMGL2YLG7POqutLqT9TLUqDtF7M6E3dXkXY3dcdeHiR+fMMP3n9XwHUfhRRDfdjieSt5ZsDtd7P69xWJ3vYYZ1qg7rZPqfxmOuneyPOquB7s7hbzTaLs54P7ZG/w2mLvcUwDuXN/UH7i+qZ4/wakHpzDMAzCrJOWcKG8uFxyG0wvu3c7Lg/ofik+o8aAYcyRwe/SAOg1uhL+Ckv58dnbRkqaRk67NezIv/GC49y5vKBahROv+S3coYjjgvqpL55WdsRp3olVGFXIX0LkSu5MHHbVrB9s/kwfbSal2NWoncXY6XlczYF0gXj6wDy6BZBlw/7EL1HOOkPvaj6DG5cQym3t7bPfw3+sfezR28KXBuVdyx94c+3zx4qu5uTfHjYMjZMLMO+Fph2TMXVwX+BVW2Lvyl1ciba5E4L7dL3ZP3ICj8DjjbnKPdjYjY39g4A4vLzioNiDAHSpeySdDo+3yeLtu2o5gdxbmziKWwYbcGVuntqFVZrcTrDKsIXerGqgaZu7Oxu7tCL47gbAzcXaLULsbBts7aPurLZNpr/F2BLi303h7B3DXBO505k7Uy+Ci7ohhhhG7y9zujsB7JxFIoUS1Mxk8IdpitT8B2ypNln0WJDZQ7XCNW32llqpKiwi3ZxXaoortiRBXu4ja+2qgdi0pBwYIvk0dbzGV5TqBu5Ghl7ZrymSWK/FlLwpwX0nxyWh2TGUD7kTmrsbuKGpXx9v1AnfGkHuXvqhYhp25Mzf3o2F3RvLOQOGJVF0/WNcN2ekfcTGidguD7VTU3rfNUTvdIWM02O4UaTtWI4NH7X72sZcf3Pca2N0CvQwm6o4zzBCxu7ZnhqiawZJ3UuxdBt8x/N17NQXBE1i8mfGTcrDDdwuwO5Nhhl3szm6YcULU3Rl6GeNRd4dhxvXYHf/4dOD+Rxpw70wE7vCOc9d38n1TOY27989wnsLJDjNGaMqBsoqXjwoKmsvKmoqLLw0e3BASAgUtVIlQwjlqs169oNKDG6GCrQsMfJCfb7PZChc9nv9kfkhDCNS1UBdCZQYFkwTcZX1TGawyjpD7X+XQnIG5Y1A71iGjGWxXOGTYUTspab6cyHoR10knbTC8nHl8K4+3Cw53ROMuWGWEkDvXPXXNh6hYxnO7p+8e3+D64Ogj0dnnsgUyfjg6+vqoUfD97PkPg5PqYQGClYXbcAY62LpjeZXfIsTeYYXyj9sr+IsSjifA14uDBu0LCBA+2tEA7miRySaTUdB2jQ879DB39pC7RutUZqvMZmarzHaEuSuBu56Q+x5rrTKuCbmL2L3BbbG7uyF45/12bYXa251GxgBt1wvcnUDb3Ucm0xFvb/t4+yvWLrUd+mQ44C4XUJKYO6GNKiXqrjTM2MXuOrC7GHiXyPs7CGklgypVGrQv45DyoUrybs+8+ygTmgKk+BCJtCOudmqqXaqcqcCRAAq/ZhgEoQe2X6VTgDuVtn9Ip+2oTIbcKxUbb6e0S9UUuHuv0QTukl3aYZXBMHcHdpcPJW13CCIcHVNxwN1XDtyVVhllyP19esidnbmrdQdGsDvD50kuG92/YruIhJJntwC1WxdsdxlqX61E7d5rTDhkKMF2kkaGKG23irZjg+12zh6HGzLsTmbuUSzMXaWXwUTdcYYZPHbfQMTuxMC7bvKOge/9lfAdx991UHiTg8jidWfenYLdTYjd9VzBRou6O7WTqrGouxOwuynyTnlYrMBdB3D/LzVw5/umwmHAA3dB474aTkPBKgPTS3TWkWF5V4pKmmY9nGWz2Y7Fx0MRDiUoFIRQ7NmpH0/6oOCEerg+JOTq8OFwz5elpSOujQisC4SCFQXuUItwfVNX8n1TJY07wSqDhtyJzF1Mu0vwXfojhrMzOmQYg+1yhwyK2hWRdiL1/lZPB0+VelwHgv8WQ9sdTVPFhLsMuPMhd4dYZmOvvlv6wrvps9snaH9Q3NG4GlvNzbFjD0dFXRo8eMqvU+CPcQOO+sfv46/B3QrLB79YoGuEgrZvhMUFDjOviB0B8ftGTrp2d/Lk/Af5i0qeXczJgcMMjqjNvXtvIChllMDdULyd4bMJJXaXMXeCWIYScv8ZZe6Wt059JawyTmXulmP3BuezaSdSeNe8+Lbg7O6C2l8N2u4kdXtHvN01tF0/cN/g2nap/+7wyTgn3m4H7vqY+9sazJ2PuisNM2zYXdlS1YFlkZypyLlwugZFdFSNsRzje+WQd9pEM9EO4YzXasXl8xJkFyjne2KkXWyL6kDt9rJZWSczmDToHuruyKDrsz90GXDnUTs7bSfLZHC9Ulni7Ui7VJrAHdcxVQncf5EjQjUWlDNBGXZXDUIXxB4K4O7HBty9ZcAdH3Iny9w7azMgfO7yHVrnAC3yTj1QnYDXv2I2Nenh7BTUTnPIqILtvZloux6HjAtQO03XrjfYTumPyiJt74NpkWqKtnOidjTYzrN1f9UQmTuC3dmYu5fE3Fn1MiJ2DyYaZoxhd2zgHUPefQnkXRO+4/g7lcLLibw0nIXgdQfe8diduZ/qu0awO5thhrjW06Lub7SLqLs+7K5F3u3w/X+1Ofub9MchxNsNAvd/CjteAbgLfVMFjTscqHCWwQkLJztMF/7x+2J510fOxZyZ92c2V1QcCA2F6heKT6geJcAHFSYUrlBsHwoPf1xYmF/4YMqvU2KOxEDVDnUq1IICcIf6RgDuksado8Y4q4wy5K4Qy/wVR9I1x1/Zgu3/oBrbccF2JWrHNSlVw25Vdto+REj8LnojC4JnkKTIX8AKHHBHrTI/d5NC7vAOQrEuMffg+uBxt8aVVTTX2mqbiourWqpmz384YNSFqMzDPHPfCSsLLCJ2jYwj3r4BaUe0Ce4Ad4NFKjChLj33zKKSZ7ba2helpUfj4nb7+MBBtQkL3PmmqahShpJwVwB3RtqOwe7oPxtdLGMi5G7WKiPyGlPAXWGVUTEybauM6ZC7mzL3Nsfu7XY0tF/U/krSdgbgvqc9ymSc2Su1I97ebuLtptulvoLAncDc/0Bh7jKl+zt/Zoi6S2J3KnaXBd6/kFgtmlHVcHz3wFB4tcOhEzIUgVNV4005zJLV3j86ILuUZ7eHhe01s8weI3F2LPv+kAypPzTSAZKgxpbRdkuB+zI22v4lK223Jt5OFbhTgftHSuDucF/0JDB3PHYPwjIyR+WD+mTUwP0jkXB1o1tllCH3VcoYJraBKpW54/UypKg7rvev9tUY3V3B1qlGpm80WiPgI+1sqN15DhmXoHbDDhlTwXaWFqkY2r7NbLbdQdv3IrR9n3+8fEjY3SBzVyndUb0MW9Sd0E+VjN0ZA+9a5F0TvhP5OxnB68TxDLxeB3zHx97ZsPuPJrC7brG7KcOMhVF3nZ1UdUTdXYbd1RRex/1/Twbun1gK3DmNO5w1cDLC6QxTAUwjwcn1U+f8WlnVsvDZQpvNdjwhAcp7KIChHJVAHlStUBVDYX88Pn7B0wX58x5MvDMx7EAYVNVwDwdwX/shlCl24I5q3LFWGWzI3Rhz/6vOYPuntGC7DLV/yYTa1S04JaquHN+LYwVt0BC8SkfjuEV+T4dPRgXcJauMFHLnxDIbekL5LjH3iEMRcDzMmvegcNGT0helTxcsqG6thuMkZcipwIQ6OHK4XlMhW/hVA91/Ckstt5rA33qEbYN7BiXuzxrJKWVKnpdcHjJE+FBnKwLcod6GKnqNaJX5iRpy/wHXMdXxz0MC7oLxnoG5s4hlNELuWq1T10khdxarjDM17masMi4IubcBc6di9w7y3oac3WJdu4jaXSptdw/a7m7q9nYkk3kF4u0bXRtvbx/tUtunT0YG3InMnVXp/idZNcWI3SW3excUuyOBd4m8d1uGwPcv9Ym/ESLmGHQFBJnnYkpooWzmf/AdB2dHI+3qShiLvBmA9YcszSEpjSiXOQe4LyNoZHTRdppMRke8neqTMQbcu/upM7kk98XGXg68jo6N2ESqA4oxAHeCxn01BbjLQu595f39zLgO6Gl3HHl/mw2IWz6IhF0DslMi7fpQO8UhozPY3q5QOz3YbkDabp62RzKaZBDazhP2AGQ4gbmT9DK4qDtV7K7G7j1ZsLte8k6H7yr+TkPweli8OUyvCd+dgt0707G7XrG7hmFGtQcwG3X/1LVRd92GGSp210/eTdF2NXBHwyh44M7veGGjKwJ3oW9qL65vqqBxh0MXzjU4YXtzIfdtvkJDy9ra0vKXlS2Vv06d2hgZCUU7VMI7RVoH30PJXR8cfCYj42VZ2dKXS1NPpwbtD4JyGQpQqPm4pqk8cIfCRdK4s1plkJC7TCyjid3/qhrOCLbLXe3KSDuJs38vG3weGzMUd8OyeO38O26gL0MAxhjgLlploJYVxDIoc/fd7RtxKCLnYs7wq8On3Zt2Z8KEsxkZTwoLbTZbypBTATxzh+OHX002Ix/W2ldYuBGWG1iJYM0KSW6YNe/BuFvjZj2cdXnIkP1BQVyrABG4r+eBuzrkrsnc0ZC7WimDoe3owDF3ulhmpZq5m26datwqo6lxd71Vxn2YuxmlOxt2b+iA7G2F2t0v2P7K0/b2pG5vK5nMqxVv72iX2i7i7bAV+T9S5WCEuTNE3WWGGW3sTg68i+T9zW5KkitjuDLEhsFnlPGOGtOrOZqghsCH0ZBimM7ZmQC3lgb9Q2pjSbygZpkauL9pAXAnfU6gSdsp75fyvcB/HKLXJ+OBYEcEL9KAu1LjjjZ4JIFC8lAQMYSFIQJ3Cbj/IgPuPhrAncjc+zLI3PUxdz3YXWWbcSp/J/cTZoTsdM6O+QBPB2o3HWyX69rVbZ/NoXbGzqhUh4xWsF3VH5UibXcybZfLZLAmGYS2J9TZB8LcJbcMUw9VAnP3ZGDutGaqxrC7fvLeHUveNeG7nb8rETwThcej+TWmQbwh8s6G3d9jwu7G+qnSDDNuH3VnsrobM8y4Crv/XgO4v20YuH8uA+72vqm8xt1rNZxBcA7CWQynP0wdMAXFDTg2fvqtvNt5Npvt2siRB8LCoHRHE69Q+R8MD380Z86Iidcm3pkYcSgCCneobqHQFIA7VFdQEnF9U1d/wGncf3wPY5X5UmWVQUPuJObOMrCoXVd/VMHYTnHICKl2krllhQqv/6BzYBG8gryzwHc595deicPhjgJ30SojhNwl5t5nSx+PbR79d/UPrAuMbIwccGEAHBjnsrJuT5gw9/HcUZOvx2QdgcMGFiNYbviVZYu0iAgLCtwC6w4sSbByhacdnF/8tLW6embhA3iQff7+O7y8hN68HHDv0WOdBNz5kLsZ5o4B7jxh/0bZ3RbH3NnEMrSQu0usMs7VuDvDKkPvnuo05u4C7N7QAdmdzNmdhNrdRCPzCtL2diGT6Yi3m463u3u7VAJwNxtvd0fgLmPuf2Bj7tSoOzN2/60Suys8MwryrobvX/xOwd8VVFclmlDzPgyYUwE4JX37mFr0Kr0xWpC9K4MSnW6bYRrLqPH2ZWaD7Vq0XZ+6XW+8ne6TsQS4Y0PuclxIw+50CqaOt/sh2VIFcJdr3DWtMlSxDDtzN43dqfAdO5hhOhmvMxH2b2SfumlydkpbVLOo3fnBdnv3SAbUrlPXbiTYjpe2K1sQS+FuRNquy9u+w9shk8HS9t3qLqmyeHuCDLjjmPseNXOXnkgXc0eV7jqi7sEaV9JoeWbYyDs99o50W6XxdyqFN4vjqUQeA9/NBt7p2N0Z/VTR+VavYQb9oN3to+5msDuevP/eGtSuEW//RN7oSAncfysB9y4IcIftE2yQun8Nb6sE3OHQguMQDmk4s+BUhXMcZgaYT4IS9yfmnChrLmupqmoqKjqTnn4gNBQK/r0iRKsPDj4aF/eksLC8uTz9THrQ/iAorKGoheISBe6Cxl0KuautMiwhd6Vbhh21s2tk/knWyJBQ+3JcS1IFZ1cw9JWdHb0+CYMLTrPA9xUM8H0FJmXv8MmsfE+wjwu0HepFB3DnA9goc4fyHer+ftv6ee/09tvrF3EoYuaDmUvLXy5czHnYbTZbwcJHqUNPByXVw5IH6w7/ye5WxUoKCxCskrD8RaY3Tphxe/HzxXcnTz4cHb3Hz2+Hp+fWvn039+69sVcvDrijIXeEucsaqCI+dwPM/RtzzN14yJ1klZEDd1NWGZMadwutMk4NubcVc2cm7w2vLWR3Dme3HrWbDLZ30HY3l8m4R7x9SzuNt1vuk2Gj7R3tUg37ZBDgbj1zxxhmdGN3JPAuI+987F0N3+Vs2rj6nMLrMQZqamWruojbXtxSB3sn0mUGUTvBZuMU1M5E279WfsJBi7d/964OnwxJ4K4J3Neq4rrr8CF3GXPfIEIunrwHopydljn9mOKToQF3XMjdQ1ssw8LcSeink5K5K7E7K3mX8Xd9IB4P1lnZOiHMzsLZTaN2d3DI6ELtZIcMQ7DdrLRdN233QGk7u7pdO96uCdypYhm9zD2cyNwtwe46Au+kDqss8F3O37URPAbH04i8DijPAt/x5B1jeG9L7G7UMNPGUXdnGGZo2P0PWtidHb7/nkTb/4O2PdYE7n+DXS6/v7UD9zdF4P42B9wFjftKrm+q50/d7FaZdXAWw4kPcwXMVyHJDUmDT06d/euYG2NstbUnk5MPhIUJiKE+OPhgePjZzEybzTb74eyow1EBdQFQMUPlCrUmFIhQ1UEdhlploHqQQu6cVWY5Z5XBt04lMHftqDsJtZuRtqtou8zVjou0Kzi7Eqn/SB5Y/o6D7xTyTpfFy+LtauAuOtxR4O5g7ht55r61n+cOT989vpGNkVN+nTLzwcyipqKbY8feGjeu1labnnsmOKkeDh7vyJ28zUy6oIr/oDpiB6xTXGPe7KO2mpobo0ffGj/+QGjobh+f7QJw79NnY69e9pC7nLmvESthZdRdwu5I1J3E3OnAXZO548UyqpD7v7RC7qxWGZF6YIA72SrjDI27U6wybcXcrcXuzOS94ZUn7E6D7E5F7e1DI+Ns2v5KqtsN0fZ23Cv1NYy3d/hk5LRdDtxNMnftqDsDdld5ZuSGd5S842LvMvhOyoajRFgnvCbaWpbRYuxynv4GeTCQ92XUX0rP6GYMuKtc85bQdovi7ahPRkvg/hNKGynAHdG4Y0PuWOYuI+9K2qUGXijnwgjc8cBdn1UGI5YxzNyxUfdvlahaL3l30VjOANnpnN161M7cHLWNdO26g+06NTLW0PZt7LSdKJOh2NsJwJ0eckeZu7cmc8e0URWxO5W59wk2g931kncafO9Oge8yBG+IwjMTeV35d7pthhR4txy7v8vWxVpb7K7bMIPZq7g26q7LMMOK3dkC7/oHyb74NqVjKgtw/4KzI/LJg3d6OvqmChp3wSoDpyofct8K8wbMM8FJ9QmDjpeWvSh5XtJSWXkiMfFQRMSBsLCD4eFHY2NvT5hQ+qI042xG2MGwgH0BUF5DjQtVKZSSukLuXOtURcidzNztaXf5UNxBEWzXIW1Xa2QEY7vaIYN1o3+PS7L/aFelywa1eMIieGXy/Xs95P17HHD/UQbchXi75HAXgLuauaNtVIPrg2OOxAy7Msxms92fMQMOhkn5d1OHng5NOQCrFaxHcBRJ6w4sQ7AqwYIVmFiXlHOC65i69MUlXuC+q39/Drj367e5T59NvXtv5Et9lLljsftqpIhVYHeph6qMuTOE3BXMHSNzp4TcpTeW3DqVxSrTXjTuBlqn6gu5tyPmrpO8uyeCbzA8nMnZnYLarQ62t6G03Z1puw51+2sok3FmvH2TG8bbX/t2qW0L3HUxd62ouz7srta7I4H3Lp+qbDNo7P2fSnJtqhHoF28qeTQDmybi9X/KK1j56Op48W+wY/du1tJ2yu+1jA21M9J2ikxG1SuVJd6O9cmYB+40q4ySuZOx+wYNyOWPi7fLgfuHLMDdC6sbZhPLsDB3bNRdE7sryfvytiLsDJAdz9lpkXYaaneBQ6btUbs62K5HI6OUtiO0fbMJ2o5Xt2NlMuR4O6ZdKq51KinkrsXcI5mYO0UvQ46607B7r0AD5F1n7N0B3xn4u5LCO0D8R6ZAPBuCp5D3NsfuRsTuhpqp0qLun+uLultlmLEYu8vJ+1tmUft/aOyKdQH3T+XA/StuC9TDDty5vqmCxr3/Gjib4HyEUxjOdJgZYPYQmHvcgGNzFjxqbW19PHfuyaSkIzExME6lpNhqa6ffnx5/LD70QGhAXQBU5FzIfYcnFKNQPkLNRzG5q1unOkLuolhGJnNXYXfiYAm2M9N2dbBdcsio25DK8uwoZEdKJfkFw45Bqqgw5J0eeP8ej9oxnweoO6bKfTLSEF0niF6GV7p77/T23+sfcShi2r1pS8tfLnmx5EF+fkVzxahJ18PTDsLiBWsTtx6JSyQsT7CEBSfXZ+SeLVn6vKmo6Fh8fF1AgATct/BWmU08FJBy7grsrhF4lxtmpKg7lrl/w87cDYXcTVpl3Frj7h4hd1PM3UnY3RB5dyWFb7BkOBmyO4uzm0fthjUyrxttd6a6vQ1kMh3x9o52qW7vk1EBd6YGqlrMnd0wQ8XuSs8Mlbxj4DuWvzttsIJ1zUHC7vRWpd10o3YycKcNraczQNs1ZDLkeDuzT0YvcO+/lqRxVzB3OUnUwu4BWrRdCdx/YQfuXeUwSBZyZxTLaBMffNSdgN2/xRNtJXy3HMEv10nYcZCdhbNTUDte125Rc1TduvbVljhkjAXb9UnbGWk70ijVI4xO21F1Oxpvx9B2X0W8XQTu/uzAXR5yJ4tlcMw9Us3c8Up3RdS9bwg7dtcKvBsj75rJd2MIXovFf6QPwWvBdyJ5J3hmrMLufXROwlpid3XU/W2DzVQ/12OYoUbdjTdT1Y/d9ZL3t3RxdnIS5W1TwP0NCbh/ZAfu8F7DkSABd0HjzltluJA7zAAwS8BkAnNOSHJD3ICjY6fetNlsv06Zcjot7VRy8sWcnIXPFg66OCj2aGz4wfDg+uCAfXbmrsi5d1/XHWojQSyjDLl/jYTcP7eH3PFiGU3s/nfV0JK2G6ftgkMGJ2lx5NlRwv4vPUPB31HyTsXuGPL+Pb5xq+MjAUXHVDHeji2FsXoZeK/hTQ9tCE06mTT6+uimoqIn8+cXL2kaOPpCZPqhwIQ6WLCEFcqH72IC61pY6oHcCVdbq6tbqqoaIyP3+fvv6t9/h5fXNg+PrTyGELDCRgS7o+Td7pmRZ95Xi+Rdgd3RqDvGLUMA7ljmrhly/5EScjdnlWk3GneG1qksIXfXM/d654FjqwC3OwznQ3YXoPa2Cba3c9reftXtO5wgk3HzePvGjni7de1S25dPBgfcLWXuv1FG3dmwO90zoyTv/5Bd5iyD758ZB99mx2d6BhG7M7jdVeQdC8S7YYalqJ2NtuuVyaji7Ro+GSPAXXS4e6uB+1pcjHcdlbmv7+GAVtixno22owJ3KnD3Xk21ylBD7nrkBuSoO4Ld2cl7D4SG4ym8vvEOK15n5+yUSLtFqF1XsN2VunYnBNt7qNsLW0jbDclkaD4ZRuAeTwDu5JA7KnNnZe4KvQwx6k7D7r2DmAPvVPJuAXxXInj9FJ5gp9HbqVUHeXcydu+snIetE7vraabqHlF352J3GnzXGCybYWn3+ycN4P6eBNw/wwH37zrzfVPfl/qm+vwCZxacmHAiwykPc4I3H3IPTKgLSz0YP/BYbt5VW23trfHjLw4adHvChHlP5mWezUw4nhB9ODriUETogVAOu9cFQB0v+NyFBqpQtAkydyhQpJB7pxWdtEPuEnP/B46nU4aE2tlou7a0HdHISMlxDL9G8uwKzs54ybG6/FKUWYrAOyN2R2m7UuCOA+5QH3cn1Mcyvczm3vAWwxvdf3f/wLrAqMNRM+/PrGqterZwYVnFy0n5d6MzDwcn1cMSJq56+4IS90dmNObNuP1s0SI4ig6Ehe0Vgft2T08BZGzhZe6bRY4gkXep+FfCd4m8I9gdfi3UMGPP/Rti7kZC7mSrzM8mrDLupnF3RcjdBczdBdi9ncJ3VxF2p6N2JwTb27ZFagdtd0eZTEe8vb3H253mk9ETt3AmcNdg7sai7ljDjAZ2Rz0zZPIui71/KtaEn73x/mc6Cbj+8b5UgrIODezelYDdddnVyUM3Z2cPthuk7Vrx9p7fdVKRTTnNXKkSuP+o9G/QgDtV4+7LHuNlG2poZRC4/4xlQFohdzPMHRt1/07i1ATs/i0bB1eCeOLooXd8SxwsnF0j0s6ua7euOapTHDLODrYrpO0GaXs/FtqOymTw8fbdSLx9j8TNFcDdn0bbFRp3QsjdEHNXtFElRN3JYnd27B6k2W1iA3YG04Dvuvg7hsIbAvFyCs+efKeQd1LgHeuZaQvsbtwwY3XU/VN9UXej2P03OrC7BnnX4u9/+A+Nn/2EFm/HA/e/EoD7MhG4L1cCd65v6lo4leBM7IUC95g9AQl1oSkN0ZmHk4eczM27Wl3TenfSpKaionG3xg26OCjrXFbm2cyMsxnpZ9JTTqXEH4uPaowKaQjx3+sPVTJUq1ApCsxdEMvQQu5fICF3hLnjo+4E1I4JtqtoO2uL1OVk2q5ys6D8Gg/ZV39AKt2wdRuevDOn3ZXjBx3AHS2CFcWuPeq+/mMlc9/VH97xsINhyaeSK5orbDZbWcXLCTNux2YfhYMnKHF/YEJdYOL+kOQGuKVgwaPyyuaTyckNISH7/P13+/js9Pa2M3eebgjkQmITEn1QIHih4Fe0VxUC73bsjkTd4d9AF3OniWV0WmV+cplVRlPjjgJ3l2ncTYbcXcPcXYbd3RbBuxyvYzj7K4baO2i769Xtr4xM5jWMt1vULnXN6+qTIQB3Vpm7uai7IeyOD7yL5J0K391qUMi7mai7pnfeKGdnD7Yz0Pa3SLRdZ7yd4pNBO6Z2QTGlHuD+oRw1Wsbc/bVouxK4rzUH3FXdU9mYO8lsoIXdNQPveuC7qfGtBZBdT6TdEGp3J4eMBcF2/bQ9mEzbHcB9a18Cbdcpk8HH2zWBuz+WttOBOyXkLm+gqoO5a0XdWbE7wTPTK5CFvBuF7yJ/14fgTYJ4Fv5OybwjHVZdiN0pU7E+sbs5w4yyM80bWOz+vrXNVHWJ3dmw+9us2F3/ILYyMg7cu/PAved37/LAHY4ZOJx44M4n3O1KmS12pUzs3qDE/WGpB2OyjqQMOTVozMXx029V17RWtFTMeTSnorkCvi9uKi58Ulhe2VzVWmXj/xt3a1zq6dSwg2FQr0NpyzH39T04mbsglvmxi0bIHRXLoMz9H2yoXR5sN0nbZdJ2UrCdhNpRyP4zeZDhO1qQYdLupJaqCvL+Awa4Y5QyvMNdapqqLHPlzN3hc+fdMvAue+/09tvjF1wfHHc0bsS1EcKRAEdL/MDj4WkHQ1IaYISnHUrKOdFaXf10wYKjsbEccA8I2MMDnV39+wtUBYUmCj4i4fgtcvmMJHwXyLsCu6PMXdLL6GLuFoTc2awy66SQezvVuJOsMvpD7gaY+37zzL1NsLuLKXwb/mqu5OyWOGRcr5FxGm3f6xLarrdR6qsab3e7XqluH29vZ+1S3dInQwbu1jJ3YtT9T8qCihW7EwLvCHmXw3cRwWtS+C5WDEPkXSdz/9xcx1dLULsZ2k6RyRiLtzP4ZDz+haJJNuC+loQa1ZzRjhr9WVC7mrYT4+0fycEQCbhrWGUUzJ1NJUyJulMNM6rAe89vNfC3KQr/LetQQnYTnL0XKdKOR+0UXTsl2N6mDhm2YLsf/WMnCm3fZJq2E9XtqEwG7ZWKAndfTeAet0/B3DFDAdxVVhlqyJ3O3Fn1MozYvQ8OuyOBdx3knRZ7V85yVP6OIHjzFN4C+E4j7xqeGVPYva/Oq47oYneDhhldzVT/6WzDDFHsrsLuBMkMhbx/4hza/glur/tnNuD+TwS4f40Cd4dSRnS4w4kMpzzMEjC3CD6Z2Oyj6blnRky8NmfBo+qa1sXPF9tqa2fMvT9myo2h468MGnNx4OgLQ8ZdnjjzDtzBZrM1FRUVlzYVNxXHHY0LqAvgmPum3lCc2cUyq97XF3IXmbsDu6sGBrWrW6Sy0PZvcLR9BY62I652JWqXODtftznqOWrlpyjy8NhdV9SdMJQfFQgvG17zzw7mThpK5r6xJ7yzfbY4mLvvHt/A/YGRhyKzz2cXPCqYfm/61Dn3kgafjMo8HJneGJ11JGP42eIlTVdycw9HRzeEhOwPDNzHAyMFBpLorZ3VyumSLBQvdlu1k3cUu/NVsT3qLtfLsDB3JpO7ntapRqwyzMDdYo27OeCuL+RukczdMubuDtj9lR7O5exujNrbH23vkMm4Qbx9U0e8nTne/gq3S7UQuP/+N0aYu7Gouw7sLg+8y8m7Hb47+DsOwbtyaGN3TeauM+quD76bRe002s4gk2GPt1sL3L1wwL0/PuQrB47qbO86CTP1UA0igVKTJjPAXTvkvkpX+z46c2fA7obhu+nRE0vYqZBdztmtRO1u4pDxXmOgOSou2K6tkaFL2w3R9q1K2q4tk6HE2+U+mdi9hoD7XhVwp4XcrWLuol6GZphR91MlYneyaoZG3lngu17+bpLCs6fgjZF3t8TuZg0z+qPuzmqmym6YMYndzZL3T4i0XSFwlwH3/2cUuNubpsJ5BKekEG/34Wl7ZHpj2rDTk/LvVFQ2lzeXT7gzYfSN0fOezLs3fXpNTevISdcyhp9NHHQiJvtIVObhqIzGmKwjqUO5+9tstkcFBbMfzh5+dXhgXSAUr1D22cUymiF3KnOnDQpt/9xotl1O20nBdqG0UnJ2sbxz1H+4ulBRBaLVniZ217C6swB3JOQuvWzVVdky5q4Ouffd0hfeYq8dXv139ffb4wfvePjB8KQTSVN/nTrn0ZyZc+/DURE/8BgcKkPGXX5ZWnouM/NIdPTBsLAGOXRrCA09GB7eGBl5NDb2ZFLS8YSEUykpN0aPvjx06Mnk5BOJiRcHDbo5dix8Az+7PyioLjBQyMjv9Pbe5uGxpU+fTb17S9gdKvM1YtR9FRp118/csSF3UutUFLgTQ+4Kq4xRjbuT+qa61CpjacjdGr1MB3Zvj5F2q1B7B213H9ruZJnMK9MrtSPebm28vT36ZKjAXV/InY25G8Luv1Vjd23yroLvSgpv4fgHdugk7y5g7l+0B9pOird/9y6rT4ahY6o2cCdbZbSZuxK+0x3HNNquFLijwJ3QN5UC3BnEMkzMnYjddZB3GX83T+HlD6WPsBvl7EZRu9s7ZLSC7QY0MpbRdoK6XW+8HeOTwQD3vZYAd2LIXSFzVzF3rwisXoYl6o5Nu2t7ZoiqGd3wXYO/60bwxig8Y/6dgbyTAu9Uz4wR7K6ckzHY3bjYvX00U+38/yzA7uzk3QHfP2Hi7AwSRbVPxgRw/xccTnAEwvEMpxWcsHDiw9QRlLg/dsDR6QX3bDZbTU3r+FvjM89xrvYhl4fU2mqvjxx5Oy8P/mrQmIsJg45HZjSGphwITqqHn4KvEemHBo6+sHDxs5dLl8J9Uk6lQAUPlShUclA2OULuK97t9G0nDmrKQ+4yscxncoz+qRZnRzUyzqbt6lS7lGeXODsaD1/7kWKoK0UleSdhd3LUHa+XQcdK4i8ifWCAjeRLwhkujbauu6x76pa+/bbZQ+4+u3389voF7Q8KPxgefyw+92puZUvl3IWPs0aeyxh+dty0W03FxWfS04/FxR2Ojj4cFQVfj8bGnkhKOpeVdXnIEO6jmjlzni1cWNNaU9FS8Xju3FkPZxUvaYLb702fPu/JvLLmsgVPF9ydPPlMWhr8yP0ZM26OGdMYGbnX39+O3fv2FbA7FPxS1F2pl8Exd4tD7sasMlZo3F3UN9WEVabdMHcEu3eQd/fl7M5E7e4gbX+laLt+dftOC2l7R7y9fcbb22m7VFf6ZHQBdxcwd03DjCZ2x5J3Kn+3dhBAvC7s7mTm/oXRzqiGaDtWJvOxVq9U1ng7XeCuA7h3led/lVYZH62or986VmykRduJ8XZjwJ0acmdi7kTsvsIEdsfzdyKL76mJ1HXidRlk1+LsRlA7TdfOEGw345CxrDkq29GurZFxBm2nyWQY4u104M4aco9jAO6KkLtJ5s4SddeD3ZHAu3XkncX53iYIXhO+k8i7jsC7c7B7HxPYXYdhxjXNVM2L3VmwOynwTiXvGAT/CXlbS7qO808Y4P4uFbh/8E/YxSmAe2cUuPushQNeiLfDLBGYuD916KmChY/vz5xZ+qI082xm3LG4uKNxSSeShl0ZVmurvTBw4Pns7Af5+TabLT33TFTm4ZDkhoCEOpigfHl3VmhKw+RZdx8VFNyewIXiww6EQfUMNaIQcocKA4qDzt93tltlFCF3SSwjMXc1dicNLdr+5rI3zdB2hUZGEWx3xMPlDhaWgZaMeOxuHXOX7on5dbA+HGbg7rXTHnIPqAsIaQiJOBQRfzx+0MVBS18unbPgUe6Eq3PmP7o1fvy5rKwzaWln0tMvDhokfHLzcunSloqKF0uWPF+8eNq9aVWtVXDPKbN/rWipKK9shmNsUv6dsormxaXPc8Zeyhx+dn7RkwczZ7babKOuj6qubm2prDyVklIfHLzHz2+nt/d2T8+tPHZf36MHF3UXrO6iXkbJ3HmSTgy5W9Q6FbXKrEFD7nLg/m+5xn29JX1TScDdmRp3q0LubsHcOwLvZiC7Uzm7hajdacF261ukdtB2Z8tkLO+V+hrG2/nrzNos3v76+WT0Avff/8Zi5o6zumsbZliwu0jeifzdzNAL38lOecty7qb0Mi6l7Ybi7Ui7VG2fDCNw/wAD3DFWmQ+xMms/XObXb50uVISBRKp4u6JjKgG44zXu1JA7zWPAzNy/x+LpTkbIOzuO/87UYIfsmpzdKagdQ9s/YAy2e1sbbDfQH1W7Raph2k5TtxN6pXLxdopPhgm4k5k7lrYTgLsi5G6Suas7qZrF7uTAu5y8G4fvcv6+gbGztGEXjTZ/p2tntMi7k7E7pZ/qSuKcrFvsbplh5g0adv9Up2HGOdjdMHl/Wy9t/yNuK2sYuP/IAXfvnzmfTMB6OD3h9A+I35c0+GRldcvTBQum3ZuWeCIx4lBE+MHwyMbIhOMJk+5OelJYeDo19URi4tmMjJaqqnmLniTlnAhPOxiYUAcTEcwwML3ARBSZ0Ti94H5TcfHsh7MHXhgYWBcI5SmUa1AYQbECBUTnHzq/u+JdziqDhNyVYhl25v4ZRtqug7Z/w0rbZRqZ1R9gUbuiy6jmQMtKNXZXR921mbtOsQw+sC9PuzuAu1ops5VTynjucCTc4e0OqQ+BwybmSEzyqeTBlwYXPCooWPi4sqrl9oQJt8aNezJvnq22dtGzRUJ71cInhfA173ZeUVPR+FvjR98YvfTl0rE3x466Pgpub67gmvTOejjr/owZMwsfDB57aersX5eWvxR+Fm4RvjmVnHwoIqIhJKQuMHCPr+92T88tffo4ou68XkbJ3Pl3myKWMW+VcfTQpVplzGvcsX1Ttzu5b6oOq4zLmbtTsHsHeXcTzu4+qN3FGhln0vY9zqftbqJud9N4OyNtb+t4+/rXNt7uVu1S9QF3IyH3P1ADQcxRdwPYnUje7fxdhuCtx/Ga5B2L3d2CubsXbe+h4qo4BorG25UC974ymmkUuK+hhH9xzB3B7n6GeJAaAKE+GXbgTrTKsGEdLebOiN0x5L3Xd2ZxuSnC/h3yevRxdpZIO10gYwy1O6E5KnOwXb9GRi5t103b+yhoO6VRKkUmQ4i39+cxNzbergXcccw9jgzc+b6pKquMZsidhbnT9DKIYUYbuyN6d9bAO63DKh6+k/l7oJq/OwfBs/B3Cnn3UX3kScPuaxj07gzYvZ8R7O42hhnWqLsJsbsmdtcbeP+jBagdu5vtRALuf5MB9/cF4P45bMDe+uhLBXCH4wSOKDhE4ayBsxhmj/iBx2w2W0tV1dzHc+OPx4c0hATtDwquDw47GJZwPKGipeLu5MnH4+MPR0UdiYm5MGAA3HnqnHvwU8FJ9TARwWQCUwRMJvDHmYUPSl+WLih+CvdJPJEIxbFgcoeahgu5o61T0ZC7JJZBmDsNu39mGW3ngDvPU+m0HR9sl0faHQXluu6UqrT7OlnpicfubMxdr89dH3NXA/cNPbh4+yY+3r5VHm/fFyAcMNGHo+GYST+TPuTykLzbefOfzm8uL6+11RY8LoA/DrsyLPt8durpVDg2Yo/Gwp0jD0WGHwwPOxAWeiBUGPAgkY2RUYejoo9Ep55KXfx8ccnzkqUvl06+O7moqeh5ScnQ8ZeDk+uTck78f/buwzuKK00f/++cne/szHrsYTwG22ODUJa6W6GVc0IoIpIQiBwlgkASEsrhn9iddDbNeLxj7MHYHoITmAzKEiByzjmDAIU+v7fqdldXVVe4t0J3S/RsLUcWQmp13S71/fSj511b/uzewoUXpk69nJd3d/78Szk58AkO+vvvmTx518SJYuaOQu4S5q5jqwyvxp3bKiNQ46733FQ5cMetcdc75O4O5s6tmunyILvTkF1/avdoO8Ghk7brUd0+2spkRnu8/XvN4+1jcVyqhn0yW8nBXSdzx4y647G7jLwLW7zEQcj02pj7L8TMfbzd3H+p3NwVxNtJtd2xul2oTMZhVqpUvF2+T4Zf4M7p6MAGd6GQ+07Ztg0Bdnc4ROknSC7ergjcHUPuWKYjZu7S7D7pHxjy/g+OgLuJsGM5uwpqF6trV9Qho3w4qsJg+3cKgu2O2j4JV9v3YGu7VJmMRLydHNy55s7VdiFwlwu5KzB3hzGqwuwuZO7E7E4m75j4LuPvWhA8Jr4rk3fBwLtUz4xSdv8am921mKfqrg0zerD7z2QC75j+LvRPBLMj77AnpoqC+7+ywP3fOOD+JZx3CtzpAnd4oMFDPjS5a86SW3fnz6/c9DL9bHpoVyja95s6TOE94alnUlstrTdmzToWE9MbEdFrNsMbNwsLVz5euWDlvZjMY8aEdriSwOMdPlVYSndLy8jjlStvzZkD/2rqhamw54ZNJGzF2KNTrSH3zxxC7kLmbmd37sH8rYy2s8H97zS4M9q+WYm2cyR6J5fa2c7+w+8EN6/snatd3m3szjN3ht2FzZ085I5r7qxXFDjx9l0fw9bfa48X0nZ2tj28Oxz9PkTmhczCm4XlA1Qh+6uqqielpRs2vih7Xjbrxiz4q+RTyXH9cfCR5h4zrDRTp8nYboTFFnwkOOhIEI924D2wFJHjo0++/NHy2/PmWSyWtIKzGTPOFS6+ifrfN77cuPj+Ynj72Zo1EuaO+ty32MxdbIDqZj1bZdTUuLvF3FTSVhkXmbuO7P5G9ry7Btk1p3Y9g+0uHJE6ZrTdUybjibd7xqXix9v1BHdtzF0y6i7L7sTyTqDzcvguxu445u6EkDtpvF1C22UGpaqOt7PHpcr2ySgDd9bcVP8dmCF3kSCwokOwWViiwF0G3CVaZUSKZYjNXaRhRjLwLoTvXH/nHfKeLsrrWMLOWlHK2mMIqd2Fw1H1C7bLlrar0Xa56nbRWam8eDsxuAubuwO1k4A7P+SuwNz9cMydlN0J5F0pvpP6uzKCx/d3jNc+JeSdqGfGueyupthdScPML3VpmJGYp6oVu7PkXQbfMQ7h39T8I3diKjm4e1nBHRYYLFp4MMJ1Iynv1Kp1jwcqKhbcXWDuNcOWHe2tDe2GiN6IrItZ9Y1DF7Oyes3mzpCQDpOpKzT0WEzMgyVL1j1ft7jkfnz2CVNiB3weuGpFZx5raBw6l5FxKinJYrHAv4XPA9tN1CoDexfYSTiG3KXMncXuAsdfxLUdc1Aqo+0I3BmSZg0XFdV2FrUzm077PpXey7I3uLzdLbOFZdidE3WXM3fBYhn56akY5m4Fd3a83dbeztP2oCNBxg5jeE94zPGY9HPps2/Obh5prn5VPdLSAsvjWkHBtenTn5aWLlp1f+Xax5UvK3Mu5SSdTIo+Gm3uMYd0hcC/DW6jnD3gUAB8NmQtSEoYJqFC9Af8kOzDx8MXWv98fcNQw0hzs6W1FdZYfcMQfMXlj5bnXc4rHyh/VVV1JT8fFuoBPz9k7j84mDuvzJ0M3AlbZdjgvh27xl2/uanuCO76FMs4w9yFYu9dY1XYnYzsTqF29wm2azMiVW9tH7XV7Z54uxvF2zHAfadnXCqetusH7grNHbtehpDdrVudP+uB7wTszsq5qwq5a2DuROBOqO1YZTLCs1Jx4u3agzt+yF0Pc8fRdgFw3y4I7rghd0xzd2wwwIq6ywTe5QheyfFrokP0NmM6u62o3QnU7pRgO/Y0YEUjUkm0XXxQKr+6nSzeLl7gjg3uoocguOOF3BWbu3J29w4XlXcvCXkPk5N3fHxX4O8KiuBx8F069i42YVUw8O40dp9Mwu7aN8x8ym+YmaCiYUZZsTspu4vL+8948v62MmoXeuL6jkJwf4sH7vTEVFjP8LA1JXY0Ng9vfLmxuvZV9sVsY4eRok+aOGErH9EbUXSraMPGF2dSUjpDQmBvjwCuw2g8Hhv7cPnyxuFGi8Uya+GNafOuphWczZx1YVPt6+szZlyfOXO4oSGuPw726LAxhR0e7KKYVhnr6FTHkLutWIZv7n+RpHZSbRerbhfSdsTQONrOOLt9U7vL4WDjO4/dxc2dN0NVuFhGMOS+hXuImzsvyM+Pt//wO7u27/OG5UHxd7vR3GOOPxE//dr00ielNa9rkIDfmD37XEbG6ZSUM6mpl3Nz4Z0zF1zPm3tlbfkzNIw39ngsBe6dIYZ2A6Ptvgd8EYp47/VmJAO+HHoD3on64uHrmjpMkX2RSaeSsi5mweIcaW6ubRhcsOLuyrWPyqsGmkfg/5pPJSVZ+9y5OXf4/uAbZcrcHYtlNjPgrqBV5t13FbTKaFPjrh+4k9e4y7bKEIXc1Zu7k9hdBN+7RrWwuwTZNXd2nando+3O0/ZRUSbjibd7xqU6ZVyqYnB3ibn/QcjcxdhdTt41jsCz2F0zc8cJuasplnGytkuXyUjF20kL3HHB3RcT3Hfg5oKDFFK7hOmI9skIUA4+uIvGJyXMXTjqzmV3cXnf8mtSENfjwEJ2GWcXn4nqRGp3RrD9O6E5BPKl7dpqu0yZjPJ4Oxa4ByvTdilw54bcHYtlMM1dMOoeyZi7GLvvw2R3WXmXj70L4LuMvyuLwH+M6e/Y+K5A3t+XvlDry+5aF7u7Z8OMQnb/Ez67C8TecQ/ZJ6sOE1NFwP2XAuD+NawQWGaw4OGxHJbSbbFYLufmDtbWpp9Nh404bFVh3wk7Wng76mgU/G3TSNPx2Ng2gwG20Fa28/eHrT688/WmTXWDdcONjRtfboSPXLPhaVnl84fLlsHb065Oi+yLhG06bFVhhwc7LdjrUNFsW6uMcMhdwtzFDkXaLl8mw52SKqjtwtS+62P7Dlhoo8zshu3s7hh1xzd3fHAXMnc+uMM3i+LtDto+eQ81JRW9EhPeHZ5wImHV41Xrn69f83SNpbV1oLz8xqxZp5KSYFVQXf8xMScTE69OmzbS3JxVeDF12pmpsy+0tFo2vd6UcS4D1hVqLgo6HOR/iHqBx2e/D6y6yXsnI59g+AHut0k2aWbC9QGHAoztxqi+qIKrBU9KSp6tWwdfIjSlKzy1J2/uFVh7N2fP7goNPRwYiGao7qJnqMIGHu5Fytx5xTL0cmCbO1vbXVbjTg7uezHA/YB+4K5byF1Lc3cOu0v6e5fb2rqreN3NqV1NsN1ppe3up+2HRoW2u7BMhgvuuz3xdjeMt7t9n4xrwZ3c3GWj7vTe5mcK2F2DLLyYuWMWyzg55I4J7qLajlPdTlomw4+388elChe4j+MAqCy4fyMP7rzRqQHy6WBidg8iLC4IUA3ueMUycuaujt2djO9yt4TI2cXbY/CoXbPhqGqC7VrWyGCNSNVO22XKZMTj7cJ9Ms4Hd5GQO4m5E0Xd8did0zNDLu/82LsIvpP6u1KCx8q/y+K7mLyTsbvoFXuCUnZ3vGJrNk/1I2l2169hxhXsLifvLH//A5mzCzxNdYy3k4N70Lew+KnW9dTuJaUPHixd2tQ8knwqGfbisO+E/R/sRGFDn3Y2zWKxPCkt7QkPh1007F1h54mMD96GTXhvRMTNwsIVax9lXsiccW3GyscrWy2t1a+q592el3omNbwnHIE7mptqrXFnt8qwQu5vfcovlpE3978KaDt7UCoH3D8TKZOxafu4reOEAdqhYsVR29FGlkF2znaZu5lmb5rZ7C4QdRcyd06xjFDInQfu1vYT28Fmd37I3Zblh68FXxS+Ovoerdq+d7LvfipgHtIZkngycdH9Raser1q06p6ltfX5unW3i4pOJib2RUbCOukOC4M/4W14z/1Fi5qah1MLzsRn9yfknMguvAjLCVYIrI2I3ghThwkl3ClwR9n2PZMpbUf3EnplYtfH7JcxqJT9TxS7wz8xtBvQ+nxeVjZ9/jVDQrspsSN26vGqmlewYuEGdJhMlLn7+Pzk5QWfAO5XuDv5xTK8kDtj7g7gLlDjzrTK6FrjjgPuDjXu+1nmzgd3wrmpeoC7WnMfXeyOQfDacnwX5uFyXndw9lFE7XoF298obXen6vY3pUzGE28fK+NSMcD9LZXg7jRzl2Z3FfJOloLHM3exkPtvnRly54K7U7VdOt6utk9GGtx5rTKOjokbchc2dxa7Ozom768EqR2/r0A8NfkefshdxtxJou7cbncseSdsnlFj6yLIjuPsEu0x+lK7/sF2rWpknK3t3DIZjHi7ZIG7BLgHKwf3NhFwFwi5Y5m7TNQdo2FGkt25gXdZeVeH78L+rmkEHjP8LiHvEj3voiVgOC+U7nAKu+PNU2W9tu2Uhpm/8sz9FzINM6rYXb5nBk/eCY8/CsXbscH9fRrcf8cH94kUuB8wp/XMXHC9tn6w+nX1/LvzQ7tCYWsL+0vYCpt7zBUDFRs2vri3YEGH0YjCwrADtArgpEmw7YQNc094+N3586kgfPPwQHn5QEVFWeXzjS83Zl/MjuiLgP097GvhH8C2DNW4w1YDuTAVcv9cIOQuYO7ocKB2UW3XokyGU2i+XVzbUbAdpdrZcWyRfTY7u82k3dnmjnLugjNUHUPuUuC+RQDc7a8ucL9l5gUGCtzpeDtb2xngjuyLTD+XbkH/a2mxtLa+2LDhVHJyb0REV2io1afoln94z+nkZPioVeseJ+SciJpyNDKjLy6rf/r8azV1r+sG65JPJ4d3h8PnZIO71x4v3j3D/j0A6729yxq3h38Fy3XV41Xw2eoaBuGTw5eIzz4xd+ltWIf9cXHdYWFtBgMs0X0+PnCvw7+GDb+1WIYOuX8pOD3V4dCkxn2bXI3797I17iTgvo8H7hKtMnLgrqDGXY+Qu1bm7hbsrtTiiQ+3+gadE2kXoXaPtr+B2v4GlcmwwP3H0Rxv94xLdTdw/3cycFdl7sLsrpm8Kzd30ZA7VpO7GLirCrkrAndpbRcrk1Eeb9ca3BXWuOO2YEvJOw61i6mNrabgfS1rChybCojMnYDdseVdr0MY2VU5u67U/k8Jatcz2I5TIyNS2u6o7aHqtJ2oTIYs3k4G7sGk2k4actfJ3CXS7hFsdieW98kY8i5UO6OpvxO1wOPguz32ji3vBG1gGD0zytmdfJ6qmzfM4MxTVc7uEvL+R02p/Y+sqsM/O4D7fwmB+ycccJ9Edbgz4A6P9JjMY62W1g0vNgw3NtbWD2ZdzELl2hG9EYvvL64brLNYLKeSkmAjbR1B+dFHzC4LNm+wdYQtbrvReCw6+kxq6pX8fPj4wsU3F6y4a2lpST+bbuwwwiYYNo52cGdaZZiQO92cLWzujuzOo3ZSbd9MUCbDaLu1YmWnsLaj/S7aH3vZNFRwO85swdEmmx1155j7d3xzdwy5i7XKyII729yt4E4n+u3xdvp1Bba2+x/0N3WY4GzCyV37bO2KNY8Wl9yHt89lZPRFRnaGhLQbDMh92oKD4W14T19ExIXMzOGmplkLb8AaC0/tCUvpNqf1xGX1r1j7aPmah8sfLU88mRjaFRp0JIjqcN/vawd3XvEOK/7P3PPwAZS5H6TMfdrVabT/j0ydfWHKzPNzFt96sX49rEZYk93h4bA4YfXu8/HZTZv7t3SxjOD01M9JwF3DVhllc1P3iNW4O4D7fqeBu84hdw3N3X3Z/Q059HB2Nwm261za7tF215bJeOLtnni7C8alKgH3t7QDd+3NHTvqLhx4/5Nu7G7rc5cPubt2dKosuKuqblcQb5cZlzpRrE/GYWKqJuCu2tyVHIHY7QTk4C4UcnfMS+KZOw67i8j7ONcIOy6yc6pjJCPtyqldm+GoyoPtgvNRCWpk9NB26UGpBNrOj7eTgTthyD1YIbgLm3sAmblrwO5SgXcceceLvYvgu4y/T1Lr7zj4rkzeVU29VsvuPirY3ekNM/8m1DBDWuyuBbv/GZfdFeL7HyW13QHcfyMD7r+ygvsWNDQVFhIsXXgsJ+ScaG4ZsVgsJxMSrhUUwBspp1OSTiXVvK5pHG5saBp+UlLSEx4O+9jdtuGTaMODuBA2ZrAthL0rbObhw86mp9cO1k6ddSEl//Sa8mdVr6oi+yJhbw1bTNjDwXYKNj1MqwzFwayQO79Y5m+/5Jm78PGJSHX7p2/xwX0zRrxdbHyoLd7OTEnlaDsKtqNUO0PteyfzNu7sWaBWdkdRdxxzlw650xsyK7hvFe2TkQJ3Vrydo+37vAMOBYR0hsCSGKqvh+UBS+LF+vX3Fiw4lZTUFRpKzdFloQy8De/pNJmORkXdKS6GpQWLISK9NzS5y5TUEZLUGZ7ak5hzsnT9E1gbJU9K4vrjTB2mwMOB1O9V7KMqZeBu5PXdw93C3CHMwZg7rC64eSlnUlY9XvV606ZFq+4vLrn/eNWqa9OnX8nLu5STcyY1tTciAtYnrFI0QBVO5jbW9FTZkDsP3LWvcdd2bqpKcHc0dxFwV98q43Jz97D72HZ2JdTu3sH2N1HbR2eZzOieleqJt4+SPhkRcH9LRtu1BnfNzV2K3TWQd/Uhd5Iad6WtMvLgrmW8XV2ZDGG8XUdwHy8BmoFY2WGV2q4duGOH3FWYuzy72+X9y3HCFK5c4cdJHfjCjuPsXGr3dgq1iwXbA+SD7cTzURWVtnNHpGqj7cRlMrLxdtXgHqwhuIsVy4ibe4CjuYtF3ZWxu3TgHU/ehfBdO3/XYASrbOc7WdsMbuBd2VRVUnbXaZ6qkoaZ/+M3zLwv2TDjdHYnk3eOvwsdss8/HbT9/9n6ZOB7EQf3z+AUwNmB8whnHNYMLFEf877w1J7S9U+Gm5pOxMefTk5+sWHDvNvzFtxdUFL2JCnvlMVieblxY5vBAPtJlA6Gncw2evIkqshgzB32uvBh8BkahhqS80+j8ZUv1q9PPZMKG3fYj1rnpu6YADsY2HnApsE+OpWWTk7I3dHcP5Gidru2azcrVaJMhult52k72nmz5ld6M/t79rYe7drZ00H53TJMmfu3H8qG3EVbZdjg/g/b4QDu9gqdbe+heDvibJRth3MX0RuReT5z/t35y1Y/nDLz/KrHq24WFvZFRbUbjYcDAw/a5uiiaZyHAgKOBAd3hoT0x8U9X7cO1g8shrDUbmNiB/oBB2/A2siYca7F0tI43Fj5sjL6WLSh3eB/yN9nvw81NNX2OgS6S+HuhbsF3RtMrz06EZS5756IbmRYd1jSqaSCqwWlT0pr6wdfVlbC568fol4hWL3hqaWl5WRCwpGgILjjf/z4Y9GQu4i5KwF3FTXuzgZ32ZC7VuCuUchdc3P3sPuorGh3N2p/w7WdBnf30Xb3LZNx4azUMRFv94xLlQP3t+TB/V+ID/KQO8vcf6bQ3PVkdw3AXYsad+Uhd8J4uzZlMtr3yYzjC6kDg0qAO39uKlnInWPugbppu2CfjCJwV2bu707WiN1J/J38+JJc2ImdXTdqxx+OShJsVzgfFbe0XU7bf5LTdrzqdpJ4u2yfjODEVBu4S7XKOLJ7sDy4S5s7XrGM3dwJou7K2J0beBeSd/6EVVF8n4yP73r7Ox/ftZN38cA7Xr27huz+NR674xS7O6dh5hOJqDvhPFUV7E4q77jHnyTi7fLg/sH/0eD+OQ3uWylwD9gB6w0eRHDpyJhxztLa+qSk5Epe3p1582oHa1ssLcXL7yxcec9isfTHxcEOGbZ/sLNC0eBv0G6BxkTY2MBWCjZysOGELTd88KbXm4qW3IrJPLZh44uR5ubF9xcHtwXDzhX2grDrYrfK2EPuX3BD7hLmLnKIabvArFQF8XahMhn2GE+7tqNUO+Ps+32QBLABAO3vOea+m2vuP1jNXSLkjtUqIwjujLmzwJ3pk6FmpX77AeyzqfD43skBhwLMveZWS+vzsrL6ofqNNa8ahhtuzZnTFxnZFhxMUTttHIztHvDzo8A9KKgrNPRsWlpVzStYP3FZ/SFJnfDzC70kDOvNmNAekd5bUHwVPueztWsLrhZE9kXCIvE7aA25M7U8cEfBfYvAnX0noJdAKHP/8SP4SL8DfsYOY1x/3LSr0yoGKl5u3AhfFxZe7uXc1DOp8OemutdPV6+2r2Q65O7Y5C5YLPO5NLiT1Lhvl61xVzM31f4qj7fG4K5obqquIfcOQWPVQm898j46kH0UUruW2k5C7cq0/bB+2u7y6vZRUSbjibd74u0Y2m4D97fwj3/XB9wVh9wVmbt6dn8jwV2vMpmP5LRdT3DHaZXBNfdAxdQuoe1CNCMH7uMJwF21ubPY/Tf47C5M8ISHl7KDc4NFnF26PUaC2rHr2p0abMeskdFZ2wkGpQqUyZDG2wMc4u0qwZ3gkAd3Lcwdq2HGgd21kHeH2DsRvrvI32Vj79KFM8SBd5x6d33Z3SnF7ro0zAjNU9WW3cUC72rw/U/i2s6fmCoN7nBvw7mAUwZnFhYDrChY1fBYDknqTJ9+bn3li+aR5uHGxsGamsam4dZWy8Nly86kpHQYjbBBteaCJ0ygcsG0UcKf8DZsWmALBPsuFHLvjYiorR9c8mDJirWPXtfU3F+0qOhWkaHNAPtaNDcVtlOcVhmRkDunzP1vhNruWCajRbxdsEzGUdvRht6XM63SrgVIAgTN3ToplGktlw25M60ysuD+D0lwt/XJoHg7KpNBI0lNHaa8y3kjTU0ba15aLJYX69efS0/vDg8/EhR0wM8PvlG2TcB/wnd50N+/LTi4Jzz86rRpAxUVS0sfRGb0GRPa4ScR/NDxp3+YwtvGxI7ozGOwSAbrqCEBsGDMPeagI0FwR1H3DDJ3mi7gnrGD+473rd/+drr6ZidVfQP3G9yrxnZj2pm0kebmuwsWPC8rQxXzs27Mij0eC58Z3q5vHHq0YgXcNuZ3NSRC7gy7fy4G7qy5qRrWuIvOTR1F4K5JyN2l5s5hd4+8u6GzO5HaR3uw3WnaPkqr20fFrFRtwN2m7T86Xds98XadxqXawF13bVcK7pqZuz7srqbG/V3Fc1P/V2Nw16tMRs8+GayJqZjgLtkqg2fuCtmdS+3S2u6AMkLg7r9Nacgdw9w59TJfiSK1gsC7kw5MZJeNtBNTO2GHjMpgu7Y1MsLaPlEnbZctk1EQb8fok9EF3FmtMqTFMsLdMjFS5i7RMOOHy+5K5Z0I353g70rwnUTexUreBQPvJPXuWrH7u0TsrqrY/TMSdhdqmFE7T5WQ3WXl/dciTxTfIXyG6fhM0nYDWOD+30Lg/jc2uMMJghOK5qbCsoRHFlwHwlK64rNPTJ19oWjp7ZZWS+Nw490FC85PmdIbEQHbb8cijq20KsLb22hwhw0VbPxg79phNN6eO7dppKl2sPb1pk3lA+UJJxOC24Jhmwu7RtjGUTXuOybIhNy5xTJS5v43vrYrj7czzSq2eDtSXTa4s+PtTJmMtbed0XaUaj/gy9JNOyFY2R1F3RlzdyyWcQy501UqwuD+DTG4219psBW4o3i7tUzmp0lwIw1thphjMaufri5cfDMuq9/S0vK6poZaD0FBB3x999EYwXADvA3v2Y/A3WA4Gh3dYmmhyHvhjfDUbvhpBWuM+QkCP1/gp5IpsSMh52RLy8iTkpLWVkvGuYyw7rDAw4HM9FTr6xC7JsJNQr8bYU33204QusFwj8GdGdIZsv75+nsLF17Kzh5pbs6fdyVv7pWhurp5d+ZNOT+lYqBiwcp7D5Yu7QwJQU3ucL/CfSkccmeZuzS4O3luKg6473UauCubm4ofcne1uXvkXRmy6+vs2syGR0QAAIAASURBVFK7+mC7R9udUt0+RrR9VMxKHf3x9jdnXCopuCvWdk3A/fc/czdzdya4az83VUG8Xdsymc3ceLs2Be5qwR0r5C5s7gLszvN3x/dLULtu4C4yPRXL3LlRd3l2dzW+828JgbPLRtqlqR2jQ0Yi2D5Bo2C7lLYbNBmRqom275XTdscyGZx4u2CfjJPBXTzkLlYsYzN3zaLusuwuG3hXi++u83ccfJeT94/E5V2c3b/XZqqqNuwuNE/VC5vdJaLuuMXun/LZfYK6Yne92B1H3uWOX0tp+/8bx3o2KAHuH34G9+07NLjDGYRzDcsDVhcsaXiowqUjLKU7IefE3KW31zxdU3SrqKVl5HJeHgJ32FL+iELBtFGiShkkidtt4I5aZeCDj8fE3CwstND/m3Z1WtTRKNj3w04X9pGMnMJ2RyLk7lgsI8Duf5PUdsd4+2bhePu4rawec6ZPZhu3T4bX3s6Lt9NTUq1NMrS2Iy1wxAbEDMgP7Dl3oZA7r8ldtlVGMbgzfTLwOa2B8V0T4YYFHwmOPR6bezl33bN1C1bcLSl7AmfzRHz8keDg/b6+8L2yWQGx714a3A8FBHQYjaeSkuDjq15VZcw4F5LUCT+A4EcG/FBAl314A/4T3hma0lVQfNXS2vps3bqSJyXw5UK7QgMOBTBl7kyBO4q3I21nThN1m7/9AD4AbnBYd1jjcOOtoqKL2dn1jUPx2SciM/rSp59tbBp+uHRpw3DDYF3d5dzc7rAwODlMqwwanYp+Y4MJuYuaOym449W4K5ibOlrAXW3IHc/cncDuHnx3MbKLO7tO1O6ONTIKStvHhLa7Q3W7m5bJjL14u7P6ZLaNlT4ZfHBXo+0qwJ0o5K6luY9tcJfok9FpVqqKeLtUn4wycP9GFtwVmzuL3UXwneXsCrWdBTES4D5eGtxFQu5C5i4ddf9KUrGdie9bCYUd09mlqf0bAmon7ZDBW3sf6FMjIzwi1eRA7Vpou2x1u1yZDH6fjGvAnaxYRnG9jDS7y/bMKJR37fBdV39XGXsnD7wL9szoyu4OF3YHdieYp6q4YUaTYve/cp/nqGX3nwuyu5y82/H910TU/iex54r2eLsDuP+CA+5/p8D94y/G2eamwjKA9UOH3PfAo9uY0B6X1d/QNDz7xuyMcxnwp8ViOZmYSI2a9PaGPdt3dIf7dnpiKhPapdzwgw++t4E7bKp7IyLuL1q0aNX9hSvvlTwuieiLgH08Be5MGTdqlaFHp8J+ggJ3GjvtIXdesQzL3K3szqZ2xfF2pX0y1vZ2W7ydXSbDZNsRZPJwwsrudM7d2i0jGXJHG18m5M5pldlmDbnz56aSgrst3g6flqlEhxsZ1x8HZ/91TU3TSNNQff2d4uIT8fHtBsMBPz+4vXY7YLTdBu6HAwO7QkPh4+sbhzZsfBGf3W9IaIcfIvCDgH1Vh2s+/OyAH1jmNGq4bn3DEPX6TEtLyukUU4eJGqC6z8exTwb9YgQ6XzxwD+0KrRuk2mmWPliaW3QZFjP8XIOfmAk5J5eUPqjc9LLqVdXtuXN7zWY4CT/R4A535zbWb2xsoUPu/7CRuoC56wPuCuamCoO7w9xUJ4D7EY3AvV0duHeIaaw++Nv1ZuK7wzfe6ZxDW2cfPdTu0XZdq9vfoDKZMRlvJwJ394m3azouFRPcVVK7Tdvlwd0JIfc/4m2W8MydDNz/S09w/4ve4K51mYwrwV2uxt0h5O6/g9TcHdhd4Hhf+ghQAO6CNe66mDsxuwvhO4vg8SF+qzCsEwi7KmfXgdq1CLarqJEhKG3XStsVVLdzy2T8+Np+UDjejlfgrhe444bcyc1db3bHaZshxXeX+bsifMfKvOMH3uXq3dWzu68ku+tR7K62YYa02F0rdieV9z9znxayCB7zlyNZX0UQ3H/hAO5wp8H9CfczmpsKJxF+TMAigTUGqxced3A9ic8+0TzSnH0pO/pYdPyJ+JHm5iclJUwLB2yxYF+0g7WBQWgI74S/osDdywuBu8ViyS68OHX2heHGxuij0QjcqcDyLmurDIOnUiF3drEM19xltF023q5Vn4ytvZ0Xb2e0nY0ZjLlbc+7YIXesVhmmxl0W3NkF7nSfDPX9bh+P2ttRvN3Qbph7e+7rTZteVVVtqHpR9arq6rRp3WFh8G3BN/qTl5cVBSZNglvN6XD38zsSFNQXGTlUX597OReWQWRGH/xIgp8OcBmHay9zvYWrNDJ3+IlG9dVYLHfmzbtTXLzg7oLEk4mmThPcUXBL0Jqx/2KErYkI3Wz0IgFTKTPn1pyXGzcWL78TltINP27g0k2t6vi2xNyTIy0t+VfyqZB+QgKcB/gWmBp3dqsMO+TON/d33hEFd9vcVLu5v/suQasMObjvZr/awbzgoSe4HyYCd9lWmdFv7qL4Ppb83VXCrlOkXRNq92i7W2n72CuTGVuzUt0z3j56x6USgfu/a0Ht+PF2LHCXC7mrMHcFIfcxAO6yfTLazEqVjbcrLHBXAu7YrTIY8yplzF3VIaHtGoI7mbnjsPtX2OQtjuaYx2TS4ys8Zydvj1FG7eqC7TI1MsFalrYr1nYvHG1XWyZD2CcjOjFVX3DX3tztre6K2F1beSfFdyf4Ow6+K5Z3e8k7RuAds95dBbu/J8juPkrZnbjYnahhRm2xuyp2/41idhdTeNxniT/n9Mn8F/N8z/qkzgbu1DMueB71u8/g2dGv7a0y/3zfGnLfBQ8TuCbEZ5+wWCyzb84O6w6Do/JlZdNw04n4eCoU7OUFGza0fUI7H6YQA94JWzXYAaKEe19kZHPLSGPTMHyqiuqB6GPRqJgbtqewg+S1ysAWBPYQKOROKebn4iH3T6WoXUzbmXi78j6ZnfY+GdiMMuDO65Oxx9sPUuDOaDujIMjcEVGIhtwxWmW0AndOn8wOKioOXw5uA9w2OPXo3KVOOzN/xd3Cm/B/he0GA9xeWAbMVh9u6R4vL6t00MgLZ7/daDyTmvps3brawdpp866GJnfBzxS4ksMCg+sn+2c6XHvh/fAzxZTYkTHjHBrKWvWqarixMedSDpVzP+gPd479FyNs7f/oHKF4u3Vo6j4fU6epYqDi9ty5MxdcN8S3w08K+CrwEwF+nEVlHG1ttcD30NQ8fD4zkwPuqMadaZURNHfb8YU4uOs9N3UX6dxUtwF3DULuJObuKnaX8vdRQfAit7zTJceYpHZnlrZ7tH1MaLsn3u7CePuoGJfKgPu/Ox7/ouUxGsD9HS3B/eduD+6jNt7OA/et+oD7NuzEsT7mztJ2NeBu7xwgCLkTm7tQtzuhvOt4fKXK2TWgdtcH28lqZAS1PcSJ2k5cJoMfb3c6uOOE3PHMXWHUncPuooF3RfJOiu9a+7sqfBeIvUvLu4KqGayeGRXsPl6Y3aWK3TVjd00aZlzA7tiB93F/JsF3nKeI/8mNt2OA+0ef22rcv4LzCGcclgcsLVjP8FiOyuhD1dv5V/IzzmU0t4ysXPf4wtSpqFUG9ng/2Mydl8n9kebXvTS495jND5YsoVqza2tXPl5p7jFT4H7Al4+nrFYZzuhUh5A7x9wZeee+561P3+KUyTjG22X7ZMgL3HnjUh3j7UFHgpCgIHC3mjsCd6bJXbpVRqTGXRTcv5IHd06BO2tcKnxRuDFwCyP6IqpfVc9aeCMyoy9nziXULHQoIGDP5MmwBuBcIwiGt+H2onGp+2wF7t1hYa+qqmDlvK6pSZ9+zpjQDj8O4FIMF1LeRZIxd/hZE5LclVZwdl3F86H6etT+T+XcO0xwY+BTs5fN+7ZXe5C2w/vhfoM709RpKrpdBP9w6qwLBvqL0k8D9sOPM3Na79ryZ5bW1uaR5hPx8YfoV48QuMP+fBu9Z/6KG3L/B5fXHcH9C0xwl26VIZqb+gaAu77m7kR2lyd4V0G8+I3pdPmhh7NjUPuYCba7qbYTgbtSbdesut0zK9UTb3efeDsmuP+LxryuuE9GI3BXF3J3Mbj/1p3AXe94O864VMmJqRqC+3vKx1fusNa/OE/bScFdOOQuae6sGapq2d3J+P4VIbKLOrsqasfrkNE+2I5VI+MabZ+sTNsVx9uJC9x1B3e9zB2P3XEC71jyTo7vCsLvWvi7ML4Txt5JS95HAbuLzFMVK3bHa5iRYfe/a1Ps7sjuv1XH7tKBd+LYu+iTQ068nVPgzgV36lkZ9YyLBnemxp1ulUGjU4O/h3UIDytTUuf8FXctFsvDZcsqX1bWNww1Djeey8joMJlgA0ylm2lsZW+9OPbq7Q378J7w8BuzZlVUD9S8rkk/mx7SGQJ7dNhMo1YZ2CCy08qcVhl2yH2zLeQuZu6fYsTbPxOKt4v3yfAK3Blw//DbDzngvksG3BFL8MA96HCQMLjvI6xxx5ibKgruW4QK3G19MvClffb7wK2NPhq96vGq4uV3ps66sHHTy/uLF3eFhlILYNIk2MAzp9563mnw3eftfcDPD77X4zExww0N2RezYRXFZ/fDDyC4klNlMryrovXHPTL3/fDzKCK9F1H7ifh4WH5Ft4pSTqdE9EZQE3f3U33u1gGqNhKgftVg18dwj8EdCHepqdM068asp6tXZ82+aKLHtKIfUvBzMDKjb13FszVP19yaMwcWJ9xOBO5oJgGqcf+a3tluRXebkLl/IQLuGs5NfbPAXWdzl2J3F8k7rsLrfHS62yF5pkY9tXu0/Q2vbnftrFR8cEc9Zm94vF0HcNc73q43uKvWdmJw/8PoAff/1g7cRYamkvXJuEG8XUGBu3pwx2yVcQB3ropqwe4BfG2Xjbfzwd1fHNyVmrt41P1rUcKWkndt/V3qq0giu4iz40TaFVM7XoeMXLAdfz4qQWm7ntqOMyhVcZnMwQC8PhmMAnd9wF0rc9ee3bWRdzJ8Vxp+J/N3THzXRt4xAu8kPTM47D5BD3Z3u2J3zdj9Xxl2l+yZkZd3WX8f92ep54SseLs8uH9oBXeqxt1rK9Uqg0anBn0HawwWOVwHUqadbhhqeLRixUB5efNI89PVqy/n5vZFRsLOHDausF1kMs72vgtbnTd8AGzI++gO99yiy80tI8mnk43tRth2wxYZVXIz4E7VuLNbZbaOEwi5s4plxMzdnm13iLeL9clggrvUxFT8hDttJ1IJd1aNuyO482rceXNTccF9i1SBO+pmofpk9nj5HfQzdZri+uNmXp9ZXftq2eqHL9avP5Wc3G407vfx2T1xImzIUWyN/ZsN1Kn39obvuys09Ep+Pqyc2sHaWQtvhKV0ww8IOt7+E/fnO3P1o94DCw8u+/BTLDH3JKycl5WVj5Yv3/Biw0hTU9NIU+LJREO7Ae40n/0+cFczL0tY2/P3ecOdCXdsSGdI5oXMV9XVOXMuwdc1JrSjH3/GxI6k3FOva2pWPl55s7CwA74R+pUDBO47bUOAOSF3ND2VVSxDAO6SNe5kc1N54I4eaKTgbjP3UQTuGpq7m7O7VjrfORoP/Zzd6dSufbBdmbaTUntg4KFRqu2eMhlPvN3V8XZicNcn3u4Bd6XgLrUlUwzu/6MpuH+iCtw/kAZ3xfF2hX0yysHd2wFPfTFaZRSauwp2x9R2QnDHDbnjmDspu+Piu2aHnLCLIzvf2aUi7UqpXWRFYY/k1adGBrO03QXa7lgmo0G83SXg7kxzx2F3zMC7gLxL4nskOb47oXwGD98Vy7tY4B23ZwaH3YNI2X2bGLurmqeK1TDzxdvaFbs7zFPVhN3lA++48o57/KdDvJ0N7v/LBvdf2sEdzU1latypVhk4ubASYNnAgoQHlyGhPTH35PT514qX32kYblh8fzEaaNkdHm6fmcna+yH7o4ZnTp4M22DYwx+LiYF/smHji+GGhoSTCcFtwSjeDvtU2Fayu0Gs4M60yjAhd5FiGer49C3hYLtYvJ3dJyNU4I45MRUf3AU73O3aznS4OybcGXBnatx/kJybus3aKiMA7lutAGwHd9bBvNLAFLhTfTI/Un0ycCMj+yJzLuXAea96VfWquvpOcfHplJQOGtzR4NyddBML7IHt3f1eXnDq4Rs9kZAAp75xuBH+TCs4C2sJLuBwwaQugLZIO7paUhc926vvdnOPb4udehzW3poNT1HavW6wDv5MOpUU1h1m7DAa2gxwZ1K/MGEjHLgzgw4HwV+FdYWlnkmFD54x/1pEem9ocpcxsd2Y0B6e2pM390pT80iLpeVUUtLhoKB93t672eBua5WxhtzZxTKS5i4zN5Woxl18bupoBXedQu6KzH1ssPsYOXR1dg2pffQE2z3aroe2j4pZqbvwtF3LeDu+trtDvN0B3LeNrXGpeoM7kbaPGXDHmJj6G7IC93/laLsG4K62T4Y03q5hn4zUxFS14P6eojCykLkTsrsQtYtquxpwV2juOFF3DHmn8f1dbXldXtjlnR0/0q6e2rUNtjtb20O103ZtymTE4+1uCu745q4hu2sh74rw3XX+jonvxPKuVeBdpGdGHbv7k7C79vNUv1Bf7P4WcbH7X7lPhyTYnbBnRjN5d9B2pk9GDtypp08I3Cd9CafD2ipjHZ36IyxgeFQaE9qjphzNnHl+uLFx6oWpcIy0tNwqKuowmWDzDFvTPcw2ksY+K/P5+MC2+QhdKvJw+fIRi2XRvUURfRFoYip8BOw+kSMz4I7U2NoqIxhyp4tl+OYudsjF2wUL3FHQ217gLgfuApUytqGpsPt3DLkzB0ILSttpgRAemsoD9x8lwX27KLgLh9y3SBW4w1eEmxTaFbrg3gI43Q+XLRuqr698WVkxUPG8rKzXbD7g67sbgTtdwwI3AYE71d3PirevebYm70pec8tIfPYJ+LECV1orr4dYbR2VudMvK/5ofbZg+hE+AK6l8LPAkNAen91fU/e65EkJfLb+uDhYS/B2+rn0jHMZcNtWPl6Zcjol+li0leDbDcZ2Y0hnSHhPeOLJxPrGoeLld6Izj4WldIcmd4Wndifmnhxpbl7xaMXlvDy4hdSLRpMn72ZNI6Bq3IVC7rLFMjrOTWWB+w8qwd1VlTL6hdx1YnePvLsI2Z3m7JpTuybBdtfUyHi03RNv98TbnRlv161PRj9w10jbRyG4az4x1SngTtQno0+83WngjtkqIxZyFzJ3KXZnDgFkF6Z2SW2XBneBGnfZkDuRuWOw+9d4CC7M8fzDW/HxtQbOTkLtWnTIEAXb8WtkCEvb8bTdK5SHlSLaTlzdLl4mozTeLlHgHsTWdv3A3SHkrtbcSdgdM/BOJO9a4LsO/o6N7/Kxdwl5J62acSq7c38u8H4KEBe7f+UWxe66sjuBvP8nMbWPc3geyMTbrc/3hMGdNTeVbpWZbGuVoUenwsqBtQcLHh68xoT22KnHG5qG596em30pu6J64FV19fGYmDaDAbbHsJXdazO+/bSzo50wbLPbDYaTiYkWi2XF2kd5l/NCu0Jhs87E22G/yAgygmOGjNlN7o7FMvLm/nfReLtUgbvjxFQccLcNTYU9tLXYhGZOe8gdmbutzJ050Dvt8XZ8cP9eO3D/0gHcbQXucNuSTyfX1A+ez8y8VVRUUvaksvrlzBsz64bqLmZlwXdgnzVKh7JRpcweLy/4bjqMxjOpqfcWLlz5aGXly8r5K+6GJHfBhR2uirCo2E8G0G/wwIWLdaWinjnA+ylzjzoQkty5cu2jxuHGu/Pnw1q6nJs70ty88N5CWFTzlt2xtLS0wP+PtCx5sGTqhakxx2LMvWZzjzmyLzLxZCL8q2WrH8Znn4jM6ItI743L6l9ccr92sPZVVdXR6OgjQUGwSvfQv6LxIz2K4Ft6q68s5P4P3eamSoD7rjEG7k43d4+8uwmya+Ps7kbtzq+ReYO13VMm477a7om3O6tPRidwJ9V2NwR3vftkFIP7X9SBO0GfjPp4u8S4VLE+GdeC+3u4NSD45i6C7yLOLqPtDvF2YnBXZe6k7P61Ci7XWtgFkF2dsyumduxg+/vKgu0qS9udqu2YZTJq4+0SBe7OA3cic2fVy2jN7pLyjt/zrhjfFfu7mdDfMfFdD3nHH6wqUu/uOFVVE3bXvNj91y4sduez+19UsLtg4N1B3m34zvJ3gePn0k8CmSd+v8UDd7rGfRxV425tlYHTbQ25h/4Ejwt4XIckdU6bd9VisTwvK2saaXq2du3VgoKjUVFtwcGwo4atrxX1fH0Poj2znx/szDtMpnPp6Rtfbnyxfv2U81OMHVSBOzUudY+XFdx/tII7O+SOmtylimUYc/+7pLbz4u2OfTL44M7qcEfmbgX3H6zgDjtjBtyZVhkm5M6YO+9Af2XXdlTg7jA0VRTcvxUAd+YVC1lwH2dTYf7E1B9+B1898HDgjGsz5i69fae4uG6oLmPGubSCM6ja5casWe0GA3x/qIwFNYzDnv8nukwGlsSZtLSWlpHq2ld1DUPzlt2OyTyG4u1wQUNJdtvlyPYGuhbZnnLAf8LHIHOHnxfmtN45S27B1x1uanq4bBmsvYahhpKyJ0tKH9QO1j5ascJi+1/zSHPm+cyEEwlx/XEpp1OWPlgKH5Yy7XRcdn9izsmZC643NY/AJzmRkNBhNMIZ2GfrRKLmENj66JmQ+9ckIfd/SNa4q5mb+j2vxp0H7rYeJ2eC+xF14O6G5t6BIcIefNcc2TVz9lFO7drUyHi03cllMlxtHwuzUj3x9lEeb9cc3P9DT23XE9x17JPBnpiqDtx/qT24449L/UzRuFTSAvctnN0+NriLzE39BqsSBJtN8dhd/pigEtylWmU0MXcHdseSd20JnuQrEjm7NtSuVbBdoxoZt9F23Op2jDIZwXh7gHS8XbZPRm9wV2juuFF3GXbHD7wLy7scvgvXzujo75rju7S8S7TNkDW8Y9e7y7C7wEjVHXqwu+pi98+1KHbXkd3lAu9C8s7195+LOjtP23l9Mo7g/gl8jyxwp+emohp3W6sMnFk4+x8ZaPQM2wOPHbgImNN65i+/W1E1sGHjiyUPllS/rn5VVXUsJqbdYIB9OBNsR5YHO+0jQUFdoaEXpk6taxhc9XhV7PFYQ5sBgTuVcP9pElNNbjX3ndToVHaxjN3c6ZD7O5+LmLvDwdF2oXg70yeDD+5UyJ0L7rAx5YA7t1WGCbkz5m7TTQ4/oA9AKoB2/KjAnQ3u1qGpNnBnXqKQAXfbHcgGd7a527t0bBNT4ZNYJ6bS4J58OrnyZWWLpWXu0tumpE74eRGX1Y9ou4dV4o+0l2qS8fNrMxiORkWNtLTUDdUte7js6erVsxfdCKXj7XB9o8LscAli8TpzneE8M4FnIMHf/c5gN/eQpM7E3JP5c6/MW3andP3Tmtc1j1asuDZjRn9cXHdYWG9ExMmEhKvTpg1UVMBtK75TnHk+E455d+at2fA0c9aFjOnn4Ga0tFoGystPJSXBsjwcGAh3/N7Jk61DCGiS+J42dxRy/6ct5K64VQa/xl0a3AXnpuoI7g7E5j7g3o6DqqrpttOD76MF2bGdXQ9qdy9tJ6d2j7a7eXW7J97uibe7FtwVULvm8XYccHdpnwxBgTsGuI8XB3fFfTLY41J/5aw+GcGJqSrBHbtVRjzkLm7uE/SgdqE+GUxwxwy5c8xdAbuTybuehwCy4zq7XtTuv0OLYLvKGhmbtpuEtN2B2rXTdvFBqRhlMqKzUkn7ZNwB3In63HVid0Xy7k8k74rD71r6Oya+ayfvRIF3zJ4ZZ7E72TxVL3l2f0dVsTshu4/HYPf3hNhdeKqqWOBdXN5FD95zv//+Of/5Hgvcx1vBnXr25QDucLfDSYFTRrXKBH4LawNWEaxAWNLwKIPrQ2hKV3z2icLFN9c8XVNwtaCs8vn1GTOORkW1G42we2fvtOE/2wyGHrP59ty55VUDq5+ujuiNCG4LpsB9vw9sZClQ3u1g7t/yzd069nOLqLk7sjtP2wXj7bwCdwJw38kCd4e5qbyQO9vcfQ/48oCBcQWrtrPj7Qjcd2OBu/Ue44I79SsCjuDOMndOvP2rd60TU7dPYMA94FBAXH8c4vXE3JPwYwIu5qHJXXOX3ob3HI+NbbO90IJ+mwHWQF9k5MnExEs5OU3DTSmnU/Kv5I80NeUWXYZ/C0sILlNw8YHLC1xSBH5phvukF7E7vQKpl3zgam+Ib4tI70uffra+cWjhvYUjFsup5OQjwcHw1duCg7tCQ2Edwnuuz5yJxqvOujGr+E7x2vJnM+ZfW7jy3suNG1EpTU94ONxyKt7u47MHgTvNHHAfU2l9Vshdr1YZ/LmpbgDuh50P7urNXQt2J5D3NxnfSe6lDldQe/soonYn1si4nbZ7qtt11nZPvP1NiLdrBe7/ob+2Y8fb3x4zfTJWcP+FEnD/RCW46zouVSNw36oHuJOF3CXNHV/eJ2AeQjcAE9zxzZ0k6v4ND7VdJu8+Ysj+tfy3gOPsqqhd/2C78hGpWmh7GF/bFQ1KJSiTEYm3q+mTcSK4qzN3GXaPJWF30rYZYXwn8HdfzfxdG3yXjb1LyTtp4N0N2H08Drtzr+1yxe5fEhe7f6Sk2F1wnqqm7E4UeMfxd+GkBTfe/j/0s7u/CIA7NTf1M7hz3rHOTbXXuDOtMnSzBzXBEtY8PAzhsW9K6ojNOl5RPfCktBRp7JOSkv64uM6QkLbgYDvJBQd3mEx9kZF3iovrh+pzLuWEd4cHtwXDxh3201TIXcLcWd0yjgNUKXPfzDJ3G7vbj8+EtV24T4YN7l8RgLtjjTsv5M42d9Qt43gwWiCg7ewCdwTuP2gG7taDW+BOgfsOO7j7wUW3L6qlZaRhqCFj+rmQpE5jQnt4as/U2RfgpJ9OTu4OD4dT3G4wwKmHBXB3/vzmkWb4q8crV5Y+KZ1za07jcOPikvthKd1wjYUrGKwlStvp6wYKdjBXCc4lwvaUmPo1i8Bv4bpknd9Lz1CFtdc03JR9KXvpw6W3iorajcZDAQEI3HvM5qPR0aeSki5mZ99buHCwtnbV41Vllc83VL14VV19ddo0+CtYkHBrjwQFHaRnDyBwZxAE7mbU5L6DngTLb5XRqcZdAtx5Ne4uAXchqlMC7vg17nLg7kxzV4LvY5jgye+HDhc5uwuoffTUyBwmpfaxou06Vbd7ymTe3Hg7KbjrHG9XCe7/oY7aJbXdId7u/n0yP9e9T+Z/nVjgrve4VLUF7qrAXbTGXSbkrszcBfF9Aunhjwnu2+XAndDcsdj9G0fpflc/f/eRFvavsW6w3dllI+3OoHb5+ajYNTJEpe2u0HbCMhnd4u18cI937kFUL4MfdVcQeFcg72rw3Zn+jonvesi7SOBdsGfGFeyudJ6qlsXum4mL3YXZ/RM92R1H3uUOXsyCF28XBve/U8+jmLmpTI2737b36VYZVOsBCxIWOTw04GEFD2RjQntM5rH8uVdWlT0uulVksVjuLVx4IiGhOyysw2i0gprR2BUaejw29mVl5auqquTTyWHdYfAXsN2H7TiKdVvrU4TYnTND9evfUub+5TjRnLv4YdV2Xp8MHrgjg0abMCu4O8xNZVpleCF3AXO3qyefChgGQLt5WXDndbiTgfuXfG1HfTJoYioD7vCl4RyZOkzTr00fqKhYWvogasrR8NSe6MxjGdPPNQ03nc/MPBYd3RcZCaf42owZNYM1jU3DZZXPS8qe1DUMNTUPr9nwNLfosjmtFy74cHGD6w9cTOByAZcI9ARS6DpgP6hXffy2TWCPE6Bz7qHJXZXVL+EGbHixAW4YrDpYZp0hIahY5lhMzMnExPNTplwtKLi/aBGsvaH6+kfLl8MtPJee3h8X12M2d5hMbHBnW8muiRPhPra2ypCDO9/cldW444H7jy4EdzEBJAF39ebuEnZXiO+jlOAVfZsdOh3Yzj76qN2j7Z4yGfcok9EW3DXUdufH292lT4ar7fqBu3pqJ9L2sRJvd0dwd864VAV9MpqDu5qQu2bmrvwQ/LqC4C4fctfJ3IXlXZjgyY/fSh3YN8+XKNIuSe0yv/2wQ89gu2SNjLrSdldou2CZjFbxdveYmKpJ1J007c4JvJPJOxm+u8Tf1eK7xvKuXeBdU3YPkGR33o8GNyt2x52n+r5jsTsRu+PLOzm+C/xS4//IgPv7DLiz56Z++Ru6xv09VOPObZVBhV3woIBHIlwlwlK6k/JOtVhaWlotZc/LLBbL2bS0vogIBKDwZ6/ZfDIxEd5fPlAe3x8f1h1mbDcGHQmCTT9s4tHIUEd5h00kYmVULwPbIxlz34yt7bw+GfFKGQTQ1pD7NlvIfYfA3FTBkLuAuVvh05uNAWwDYLb4zPad6ZNBL0XIgPsOEnBnHRLgDrcNzlT0sWg4gw1Nw9mFF2Ozjsdl9WfMOAfvuZyXdyo5+Uxq6qOVKy2trQvuLkg9kzrl/BT0Agz8L6/oclRGH10msw+uRbCQ4IoxwUbt3EYp9oPd/tTayu4sc4cnA/AjI3bqcao0pmEQrbqrBQVnUlJgpZ1OTj6XkXElP//u/PlDDQ3wVyVlT9Y+W9tqaX20fPmlnBz4GGvCHU369fGB+36PjUVQwp0H7t+oAXe5VhkpcOfNTUXgTpu7ruB+yH3AXUNz103eleO7+1i86hvfoeuhk7MTUruGHTLqg+1OLW33aLsba/sYmJU6quPtbtgngw/u/yF8/EofbVfc3v62+49L1a7AnXxiKnafjG7jUpX3ybgU3Lm0Kmzu/rpquz7gLmfuKthdBt9VH98oQ3Z5Z+dS+3gMatcp2K5Q243qRqRqre2Y1e1kZTJ6xNvJwd3APbQyd13ZnUDetcB3V/u7CnwnkHfSwLvL2F2DeaqSxe7jRNn9H84odteZ3YXlXczf3+U83+M85futGLj/lQ3ugjXuQq0yu6hLNH01hkVL1ctEHoCHuSmxIybzWHbhpZGmJktrq8ViuZSTczw2ti8iojci4mh09Nm0NHj/nFtzYo/HhveEh3SGGDuMSC8QPPD8nZmnitgdRd155v5rGj7Z5i7A7pv52s6Ot3MmpsqCu1yrDC/kLmDubHYXOpj9vV3bWfF2teCOSvC3ioI7U+AO/xw+FXxmK7jv9YaTAucr+VQynNmm5uH8uVfSCs5mzb5YWz94Y/bsy7m5T0pK4K+yLmZFH42mzmybIfdy7v1Fi+D9OXMumZI64KIK1yW4tsDlAi4F8NiHxzj9uprtQc375RXW5CTq4e/zNYq6w4XFau7he+CnhjmtJ2M65f5D9fUVAxUNjUPobfhzpLm5ctPLwkU3C4qvLSm5v/Th0pnXZ659trZpuOn23Lmnk5NhZXaYTIcDAw+wWmUobZ848UdbpYxicP9CaY279NxUfcGdHW93K3DX3Nx1Y3ftCd6NDyfchx2Ep3VUUruTg+0ebXdpdbunTMYTb3dCnwwC9/8gPn6l8vi9DvH2P4yteLuaAnfJiala9Mn8Svs+GWJw/w0+uHtjg7uakLuu5i76FcnAXZm589ldibwrg3h1X0WFs2tF7RxtDyQKthPVyLhW2wUHpRJqO9asVJ3i7cTgbpA8XMHueD0zXHkPxJd3NfjuEn/Hx3eM2LuUvGsUeHdndscrdt+qZ7G7inmq2Oz+CzF2F5J3B3yXOsSf7GGCu63GHbXK+FCtMijkDmcfFgZdC0YtLXR9hhULDwF4zBriqV7v5LxTRUtu0eRuuVlYeCopqT8u7kRCwsWsrFfV1bmXc+P64yL7Is29ZnMPffSa4T+jjkZFH4uOORYDb8A7w7qoCHzg4UDYfMMmmEq7//ixtV5m+wRZcxc+PneIt7P6ZChw/9IB3L+SBHexkLu4ubPZfbJ4lI6n7fw+GTQx9QdrgTspuAuG3Jlv2Vqes308fDYG3OG2wYmA0xHaFZp0Kmnd83Wvq6sXrro3c+H11RueUqpeWlo+UJ59MTv+RDycwZDOkPDu8KUPlw6Ul1taWpLzTwfEHIbLF1xhKG0P2GHVdm+Wswv9kortCfmXzMs/aDVS5h70HXw2WIFUn3t8W/SUo1NnXyhcfHP9xher1j2et+zOtHlXM6afgy+dkn86c+b5NeXPiu8UTzk/BY65t+dWvqyE9XkxO/toVJTV3H19UcjdCu4ffcR0uIuCu6S2i7bK4NS4OxPcWeblKnDX0NyJ2d0p8j4GCL7DyYeuzq4htbsw2O7RdrfRds+s1FEXb98+1uPtW8eN+/+cIuzuoO2ujre7f4G78/pkCArc7eDupSm4+xCCO665b3emtouA+3YJcFds7jqwuw4HKbI7h9p1DrYTj0jVXdv3imk7XnW7NmUy0uNSg/TRdpezu+7yrhLfdfF3bfBdjbyLVs2IBN4J2f1Hd2N3gmL3SaTF7p/LF7uLzlNVzO4YgXcRef9XXGrna7swuE9ggTs9N5Wpcbe1ythC7qjJHZk7danfRafdd7PNHa4qocld0ZnHMmdd2FT7uq5h8OGyZeczM8+lp18tKGi1tGZfzE4+lZxwIiHxZGLK6ZSsi1nFd4qXPFhiaW2tG6yzWCyNTcPz786velWFsvChXaFBR4Jgkw07WthZUvUyOz9A5m6doco29y/esao6nraz+2QcwV1wbiq7VUY45M4qlhEwdx67OxzsvTuzO7fH23UFd1ufDDUxdfsEBO7w5eA2eO/1hlMQcCgguC04vCc84WRC/pX89S/Ww/laW/5soLy89EnpjOszppyfknQqKa4/Lv5E/MzrM1/X1Gysebm45L4pqcPHvA8WDFwrONpOP2yZByn34Wl/uo6en8PjmnkFyFpzFPQtLEVYgbD84NoOP5tMiR1hKd3hqT3mNHT0Rmb0xU49nj79LNxUuEmw6uDmwfLLu5JHRfWHmx6tWHEiPr4zJORwQMB+X9+9dMhdENy/lgT3z22HRMj9S5a5E81N5YA7be4/MDXu6sBdl4mp+oE7trkrYXfnyrt7Wrxr7wEFp0xvZ9eX2p0ebH/DtV2zQameMpmxHW8nHZfqlvF2Gtx/9R9OPHTTdreLt2veJ+O0AnfdxqXi98kIgPuXasBdbG6qxOhUpcUyWkfd/RWBu2TIXY25C7C7r3shu2JnV07t/gqoXTjYrmdpu9O1Ha+6XbRMxgHcA9wg3m4gPDQZporF7soC7+rx3bX+Thp+x8R36dh7OKa8YwTeMXtmdGF37eep6l7srj27k/fMSMq75MF/jvcLIXD/JXqS9oFDjTsVcufEitHUSupHBvx0MKCo+4/I3GEdwhpGY1QNtLlHZvQl5Z2aseB6S8vIYG3t9Rkzbs+dWz5Qnn8lP+dSzoxrM1Y9XmWxWNY/p9D2VVVVzeuaobq6usG6O8XF8PHDDQ1PSktLnpQU3iyEfxLWHQb7eNgEw14TmTvqlqHMfSvf3K1Rd6GDB6JWbecWuIuBO07InV0sI2DubHb/ySEgx924s3fn/D4ZvcF9GwXucCfD54cvBzfGZ5+P3wE/OAVBR4JMnabIvsjkU8m5l3MX3F2w8eXG2vpBSt6frV3yYMmi+4vgDfhPOIn1Q/VTZ10ISeqEKyFceWDNwPoZb9N2a6rd7uwOk41tT+bRo9XK7syLQH7/nGCd5fs9XMHgiudNzfI9AFd46mdx3BFYh8bEjtCUrqiMo5kzz1dWv4QbHHMsJqI3wtxrjjoalXk+E25nde1rauRAenpnSMihgID9dLHMblalDJzhbSLg7qjtjuaOE3LHnJvKBvfv3QHcJVhQP3AnMXeF7O5qedcQ6EfFN+IMZx8T1K5W2xVQ+6jW9tFV3e4eZTIuibfv9MTbdYi3f+lEcP+9Am1/U+PtZAXuv3BGgbsWfTIfCcXb5cB9nJPBnSTkLmnuWrC7nLYrBneV5i4q774u4HUyZCeLtBNTux7BdmuNjKrSdpu2h7hU251YJqMHuBuUHs5Lu6uUd03xXaG/R2vr71L4rqm841XNOJndgwTY/X1Mdtel2B2vYQaj2F10nuoH/GJ3NezO6pmRkPf/Idf2/2E9uxMCd4dWmXd4vknXZ0+gm8oczH03zZ17mRmqRjpoHDXlaGLuyezCi0tKH1haWx+vWlX6pHTZw2VNw00Wi6Ws8nnx8jsFxVenzr6QPv1sWsHZ1IIzOXMuTZ9/bdGq+43DjfDxr2tqKqoHGhqHFt5bGNYdBrt/2Bkjc2f63IXN3YHdBSmUE28XB3eBVhluk7tYsQzH3LnszpF37sHbmvPi7ewCdx3BnZ6YSoH7ro+99nj57ve1g3sHDe6nk2dcnwHn8eHy5S2tlnnL7hQtvb109YONNa/qGgaXrXmYP/dKbNZxQ0I7pe2hP8F1A56KwMOc0Xb0kIQHIPO447/WRR+2p/f003iHNQlXD2qcbzAa52t94Ydh92A68x6Z0Te9+NpARUXGuYyI3oiQrhD4FkI6Q8w95rSzafAtzFlya6Sl5UxaWldo6KGAgH3e3nD3s8F9Ow64s1/ZIW2VYdW4S4A7v1WGDe60uWsI7ur7ZEjBXT9zV87uo0TeR+Wh6HQ4x9k1p3ZNOmRcUCNDa/tB99F2Lri7ibZ7ymQ88Xb3jLc7Ddx11vZRHG+X7JPRrMDdzftkFExMxQF3RXNT5UPuROaugt0xtF0c3EnNfZsyc5eSd/UEL/lpldxUgkg7xlkOcEawXavSdvXa7uUMbSeblao43h7kRG1XJe9q2F1x24xW+C7q74ec4e/4+M6PvcvK+158eVfUM6MJu38nyu68qDuP3f13jMFid5XsLht45/s76/it+IQeYXB3qHH/3WZ7yJ3VnY2KZbjmTnXLwLKhwD3cBu6xR4wJ7aEpVMg9PvtExoxz0+dfW1r6oLZhsL5xaMXaR7MX3cwuvJg67Qz8bXTmsYj03vDU7tDkrpCkTjjgDXhPUt6p/HlXLBbLQHn5+czMuoah9LPpYd1hgYcDYX8MG03rDNVt42ErQ1Ey29xlq7XZ2i4L7pghd8FiGSFzt7P7bodJag6bcvbOGxfct5OD+1YOuMO/5YC7LeGOKmXgLMSfiJ9za07Vq6rbc+demz59pKVl1qIb6dPPJeWeisvqj55y1JzWY0rsgGs4XMrgmgMXDeugVN9/0tq+FR6J9O+a0A835lHG/cXWtzhP+zfbXgf6gp9zp8x9Jz1dAL32swe+KFy94aujpRg15WhVzavGpuHkU8lw443tRmRghnYD/OfUC1PRGNgWSwt8Lx0m00E/v72TJ8NdDncz3Ls72eBO3388cOdru6O5O7TKEMxN1Q7cGW13DrjLK6QacCc3d7Xy7sF3Vwi7cmd3T2p3SbDdOTUyo1fbR1d1u8tnpXri7S6Nt2OC+5dOAfffjwZt/5NibXdWvH2M98m4BtyVhdyVmDshu+NRu3pwFzZ3peyOhe8qDuW3Ct/Z9aF2uWC7ZqXtTtb2yULajjcodb+Uto+teLtO7O5UeXfAd4X+HqOTv2uJ7zKxd0l5Jw2849a7mwTq3RWx+9godncyu5ME3nEPHHBnt8pstrXKbBlHPe356l0m5I7K3AOZkLsN3FGNe/QhVKVtTuuJnXo8reDszAXXq2pe1Q3WlT2H/ysrrxqA90yZcS4h52T0lGPwYaHJXcbEDrjswD+0PvBjD8N/hqf2zF50o2Go4WZh4dM1a+bdmTf1wtSoo1GBhwNh44tmqMIGCzZGjuYuw+4O2i4M7uIhd3uTu0SxDK9bRoLdhQ7eztuu7bbds5PAna6U8d7n7XfAD+55U4cprj8Ode7fnD37bFrauYyMRytWLF/zMDnvdFRGX1hKN5xNOJVw5YRLFq3tP8KlgKpup7T9a3hgjrNru/WR5fho4m0H0PN/6vHIN3dbnzsr5+4dvhcuwmghGRPa47L6YdVter0JbjncfsRgCKJQJf20q9MGyssXl9xvHmk+HhsLf7/f1/cnLy+4vwXBfQsCdybeLlhfhBFyl6hx54O74NxUpeDOmZjKBnfxiakaF7hrAu6uYnePv+sv7O7l7C6ldo+2u9GgVJdXt7+ps1I98XYF8XZdwf33+mu7a8tklMTb3+Q+mdEG7tLmvp3c3G3y7q8NtcuBuzpzV8fuihVewy9K5uwaULsOwXbc0nYpbRcsbXemtotWtxOVyegSbz/ifG3XvGdGhbwrxXd9/F1JBY2C8Dsf33WQd+WBd8meGY3YnXSeKnGxu7f6YvcvVBS768/unMD7/2qg7Qy408/f/o1V4860ynBlUyDkDmfWBu5obirV4Y6IMzy1Jz67P7focn3DUP1QffGd4lk3ZlUMVNydP//+okUWi6Vw0c3UaWdiph43p/WEJHUaEtrhWgEPT3iIwSeBhwM8ZOA/4a/Sp58tKXsC/6Shabi8agDeiD4aDft12KfCBhG2a2iAKmXKbHNnszv3sFM7PriLhdzFi2X45v7DR/Z9MMPuu7j7bMeDre2y4L4TA9y3YoE7p1IGDU3d5+1/0N/QZog+Fr3m6Ro4C7eLik4kJByLiTkRH399BtUtAycUBdvhBwecR7hkwaUGrhhwEWCq2+GBCY9BW5PMZnuqXeCxY90mMJuCXwn0HVlnqI63zVCFBfkx3efOTBSA25NWQE1MbbW0wsoxtBuQQsG3g0pygtuCY47HNA03zVlyCz7scm5ub0QEfAgKucN9vPODD+AM28F9HLVSmImpn4uBu1jIndcqY11cQnNTbYigEtwl+mTY4O7UAndNWmXUmbvG+O4heC2EvUPdqfRQu2tK28eQtutU3e6CMpnRNSvVE2/XFNy/1BPcFVO7U7TdyWUyevTJvEfUJ/OJ+/bJ4E5MVQ3u3oTgTh5yH08I5Vod6sHdwdz1YndnHH4aODsmtesXbNeiRsYdtF2TMhnXx9sNOh8q2F2FvGuI727t7zL4Lh97VyHvurB7iBPY3QnF7l+qLXYnmKeqjt0J5P1/cahdEtyFatw/RA0ezOjULb+xyianyR2BO9OdTcXbYw4ZEtrNaT0p+afLKp9XbnpZ9rws51JOxrkM+LPV0npj1qyL2dk3Cwtfb9q0at3jtIKz0VOOUploGtzhUQyPKfg8aCXD8ob/hM+2cOW99S/WPy8rKyl7MtzUlH8lP7gtmFMsw5S5f2XT5C32qLvosYWr7VscOs2lQ+7cYhkpc+fVyziyu9zB3l5LgzvadEqD+7it4+TB3WFoauDhQHOPGWn783Xr+uPieszmnvDwvsjI81OmlA+U5xVdhpOFTiVc3GBJwKUDVgg82FllMlR1O+ptpx5NH36GtN32eBHeNbDM/TPer1+gl4LQ60DUmgz+Di5HcPmiytwjYP1Qr9nkzLk0WFu75MGSiN6IoCNB/gf9fff7wnfkvc8b/oT/NHWY0s6mrX++vrllxNLaen/x4q7Q0P2+vrsnTYJ7mqpxnzBhG721pjrcbeDu2CezmT7Y5s4Lucu2ynDA3Wbu+oG7ywrctQV3LdhdY3l/Ewheu3up3RXOrhO1j+5gu0fbNdF2/avbx8asVE+8Xb9xqZqD++/JDrfQdukyGTeJt+MXuLt/n4z+4K7J3FSskPs2QeZ2J3AnMPdRzO5+ipzdGdSuINguViOjqbaHaqvt2lW3axFvDySKt8e5WNvdQt61xXdhf9ewgkYHfMeJvUvLu4LAO37PDA67GzVgd22L3QkaZry0bJjRgd1lAu9C8i51CDy142Ym7ODOaZXhjE6lYgS+dJrYf4cVNw0/oEAxwnG4pESk92YXXrJYLOufr1/yYEnqmdT4E/EJJxMyL2RaWluvTpt2JiUFDnhjuKmptn4wa/bF6ClHQ5O7DAnt8M/hAQjLHtYqWpCwzo2JHZtqX9cN1Z1NS7uYlQWfuW6wLrQrFDbisJGF/SIVct8xwVrm7mjuzCHk7GLajhly5xXLCJq7Y9Sdw+5WK/1Yitq5e2tmo4wP7sx+ThTcvxQHd3poqt8BP1OHKeNcRlXNKzgFZ1JTu0JDO4zGzpCQ7rCwk4mJ8M51Fc8j0vtQvJ1fJkPF2+1lMm/bymT42s55XDCbCK65C8wYYJe5M8UyVMcR3JKwlO6GpuHXNTVwC8N7wgMOBcDK8d7rjchk8p7J6LWE2OOxTSNNaHXBx59OTj4UELBn8mTUKgObfDjP39iGpnLAnUXtmx3NXbxVZiuvVYYN7txWGZeDuy7xdhFwV2XuWrC7jvg+SiFen3ug3W2dffRTu0fbx+Cg1DE8K5Uo3i6i7Zjgvu0NiLdrDu6/10Tbf0ak7aOiTIY43v4G9sk4Gdy1C7m7h7nLg7sqc+eyu5+7I7uWzo5D7dIdMsqC7WpL291Z20Wr2/201HZXxdvbhQ4nV82olncBfFft7/pWwGuP7zrJO1HgXS92D5Zld32L3X/j0mL3t+inOljsPuET9pMrcXbny7ssvgtnKZincxOYVplP+a0yiDXZrTK+tvoOTpqYqsyGy0JkRl/x8jv1jUMvKysLbxbGn4iP7IuEI+Z4zJTzU1otrVfy8k7Exx+PiemPj7+YlUUFii2WoiW3YqceD0uhmtzhkQsLHoWjYWnBZ4YrTEHxNfgw+jNFPl2zpvJlpbnHDHt92CLDNhQ2grBjsxbL2Mrc7a0pWxzkXVDbt4iEvh1D7kTm/u2HwlF3R3Zn4fvH4kk29gaaDNwlCtzFwJ2ulIF7GO7ngEMBscdjq15Vwcm9PW9ej9ncFhyMWrw7jMZjMTED5eVwjuA80vH2/ax4+0545MKycYi3o4cM/bqUgLZ/wlqW3JXp8GrQb1jFMnD1gCc8cAmCrw6LBy7F4ak9Gze9vDVnTtnzsvDucFg2lLb/5IV4Y9LuSZP3TPY76BfRG7Gp7nVJ2ZOUaWdgoV6dNg2+wX3e3tZWGUJw3ywYcpeucWfNTd0mVOOuO7g7uU9GHNzVmrum8u4kf3cVyjv3O3IhsusaadeQ2kdTjcyo1nZ3GJTKBfddbl4m46J4+44xE29XPS6VVNvVgPvvFR5vjwVt1z3erqxPZry79smoLXDfwtN2J4K7rLlvd625j9fa3EXY3dXy7ieF7O9hfmuaUbuSDhl7sD2IPNjuPtoejqvt2NXtxGUyWPH2WOfE29sJD53lXXN8F/d3bSPwCglegb/j47ts7F1Z1YxI4F0Hdv9Bgt0/ZLN7EJfdnVzsTpm7BsXuTmV3PHmXO/hP6litgNKtMvYad25f9o9UX3bEfniQRqT3FRRfHaioqK0fnH5tesyxmPDu8NCu0LDusKijUVPOT6EKsvPyjsfE9EZE9JrNR6Ojz6WnU8no5+vWVTxLzj8dntoDlyx4TKH6b/gxAQvekNCeWnCmabjpbFraqaSkp6tXI3APPBwIm2wUcqeKZXa8j4iZKXMXkOUt4oeYQduLP8jNfecHwlF3NruLybvIQQru6HaqAvfdE+F+NrQZZl6f2TLSAufr2vTpHUbjQX//A76+B/38jgQF9UVGwvs3vtyYlHcKLuBw+kTi7ai9XTjebn0gWH/b4xPesuSF3H/FD7lvRUN96ZD7TjrkvgsucXD5jczoW7Tq/mBd3YK7C6yv0+yhXqdhivVhCfnu9w3pDCl9Urpw5b00WGzNw5dzc+F7pEanTpr0A6pxFwJ31CezWeQQDLkL1rhjzU0VA3fa3FWCO2mB+xH1fTKS4K6Nuesg767091F4aHaf6+rsY4banRlsdzdtd8tBqW9omQxRvF2LMhm3jbd/49J4OwL33+vI6xjU7iRtJ6tud594+6jqk1FU4K5gYqoV3Ce7A7i72NzH62Pu4uzuIO96+LufvLC/h/+9EP0igipqx9B2DWpkpEakjlZtd794O4G2J2AfSv1dc3xX7u/Oi8AfVuzvRPiur7yTBt5dzO5aFrtbR2HbzP23vIYZb5mGGY2K3fVjd7HA+1+ItZ0N7uMdwJ3TKsMuy+YMqEQ5YlhXsP7DU7tXrntc1zA4WFOz5P6S6GPRIV0hCF1COkMieiOmnJ9S9arqSn7+0aio7rCwzpCQrtDQHrP5VFLSk5KSZQ+XVVQPFC+/EzP1WEhSJzVAlb4OwyXFnNaTOu1Mde2rG7NmXc7LG2luzr2cG94Tbmg3wCYedsOwAbWH3LfhBroxD+XmvkPG3PnsjifvUuD+rabgTg9Nha8y6adJcD/D2Zxza86ClXfhRJxJTT0SFLTPx2fP5Mn7vL0PBQT0RUW9rKxsaRnJmn0BThlceeBCwW1v/xoeblS8fSIVb6dfqRIDd87mgtsqgx1yD/4OrkVwTYNrcmLOybLnZXDzKje9jOuP8z/k77XHC+5JdKf97offTdpNgbupw4ReE5q79HbzSPPZ9HRYnwf9/fd4ef1I17ijuanagLtIjbvzwJ2ZmOrCPhmngbue8u4heF14XSNnH0XUPkprZDza7imTGSOzUsdivJ0Bd52PtzUJtmuo7c4uk8GLt+vSJ/NLN+qT0azAXUtw95i7cnkXwXdtjm2qkF1B4Y/e1K5/jczHfGrXRNv3SGi7+kGpYvH2ANF4+2E3iLeTU7uMv+ss7/rhu04RePUtNPzwuxb4ro28izW8y7C74FRVpeyuxTxVvYvd8RtmyOap/p1f7E7A7iL17qLy/hcsbeeAO6fGndcqwzdNX7tpfkSZ5k+wLI2JHWkFZ6lZmuvXb3ixIfZ4rKnTFNwWHHQkCP40thvDe8Izz2euq3h2bcaMvoiITpMJUUi70dgVGtofF3e7qKi+cWjx/cWryh6Xrn+SnH86PvtExoxzWbMvwpFbdHnByntPS0sfLlu25tmalNMp5h6zod2A6kFg80qF3L+lQ+7bxwuWqDCHYH259ua+3W7uTL2MGLvbu93tgCqK784Hd6+fvPwP+Uf0Rcy8PpM6xWVlZ9PS2oKD93p7w+Z/7+TJhwMDT8THt1ha1r9YX7TkFg3ue+GCACsEnsCMp+Lt38AjjuqToeLt4uNSBSpleKNT+eAu0OTu+0/rq0HGH2BxwmU2IedEw1DDqaSk1lYLrBxYk9S4XRu4W19ROOgHKyr3cu7KxysrqgceLV9+ITOzLzISvjX4NuGO//bDDzngTpfD8PtkfvUr6+Fg7mKtMvJzUx3A/Vs2uNPmLgXuNBjxwF2+wN058XY5cNeL3fXH9zdB4XW837Q4v7o6uwC1j9Jgu0fbx1h1+9gqk1EVb9dT20dLvF1/cH9bq2C7u2i7i+Ptmhe4u7hPRjG4byUGd2+14K7M3Me7C7irMncMeVcA8Vifivh2+pNS+w7F1C47HFVxsH1sabvTymQOO0/bE7Q+XIbvWvu7MMHrMYhVH3wnlnctAu/4PTM47G6SZ3fl81Txi92VNczgs/vHauapasPueIF3jIP9jI6bJubUuFPg/gUH3P23v0+3dsBJh4UEj5S4rP75K+4+W7vWYrFkns8M6QwJOhKENvSBhwOD24LDusOmXpg60tJys7Cw12xuNxqtbEFzA/xnb0TE9Zkzh+rqmpqHF99fbGlpqal7PVBRgYZYDjc2llU+h7erX1XPujEr9Uxq1NEoU4eJapXZ7wM7XcpPv/8QhdwZaLZPChXZr+hl7qyou93cd35Axu4/CLM7ezONtsvClTJwJ2yzFrhTHTsscOd37HC/Rz64//jR5D2Tgw4HpZ1Ng1MzWFu74cUGOBE9ZvNBf/99Pj4H/Py6QkMv5+aiM5U+/RxcjeGSAlcAa58MirfT41Jt4L4ZPTqYR4Td3K05d15q51P760AscOdWHqHfwKDAfTw9OhWezMCFC1XKwC2/U1wMtzDrYhYsRb+DfmjNwHc3cddE773ehjbD9GvT0csJDY1DNYM1Q/X1Z9PSYGXC97hr4kRqbioN7l87gPtmFrh/Rh9sc8dplZEC9/HjdwjNTf2eNncicFdW4K5jvB0P3HU0d+fi+yi1eCfdIRqdyrY3j9pVBtt1H5Hq0XZPmYwn3q463o4J7l86D9y1pHY30Xat4u169Mn81bV9Mu4D7r/hgLvqVhnMkLtLzX28E81dqb9v04vXlTs7NrU7NdiuVWm7VdsnaaHtk8W03ayFtisok4mR1HbV4K57sF0Hfw/W0981IHjNi2gU+7tyfNdS3ol6ZvRidwMJu5MXu/Oi7u9xGmZwit3VNMxgsvv/6cLupPI+XgDcRWvcWeDOgCacR1gAsORCU7qaW0bKX1AzM2den2nuNQcdCYKtOWy14U/Y2Qe3BYd2hU69MHV95fObhYXMvM3DQUHWDby/P/xnp8nUHx8/1NAAn6d5pJkapnq7KPpodOaFzMKbhaVPSwcpjh+peV0z/+78KeenRB2NMrYbraNTd1OV3FTEG4XcedbM2tM47l2IzV16huo/+eYuHHX/9kPF7M4H9++xwZ33/XL76yXA3dBmKB8ovzVnTuWmlwtW3oNTcyknpzMkpN1g6A4Lu1NcXF41AGtg9YanVId77BG4gMCDHR7Ctj6Zr2x9MkyB+2bb0FSeuX8qFtPhbRPQg8v2GxjWub72VpnAnXBtgYsVXEXDU3vy515pbBqGlVMxUDHn1hxYjVQZEW0t3vu8YYnGHIuprR+8nJfXamldte7xgnsL4MMahhp6I+C5hS8WuNu0XczcZVpl5OamKgD3PdjgTtQno1m8ncTcncHuLvV3J+u8678pTU+ZE5xdc2rXRtudGWz3aLvzq9tHVZmMJ97ubvF2HcD9belDAbX/AY/atdB2d4i3v2F9Mu4D7mpD7q4z9/HEh5bsTmrxGn8tZfd5AA61K++QkQ62y2u7USdt/0lG28PUajtRdbt7xtudHWx3t/D7KCV4Zf3v+J3vGPKOVzWD1TPjSnZ3QrG7soYZL+UNM05jd4XyLgvu1hp3W4iYAk1rgpiaS0lVdlAd2bCkY6Ye3/hy4+W8vJq61zmXcowdFIKj3TNsuAMPBxraDaFdoXlX8ppbRp6uXt0THn6EpnbYje+nN8x7aQqE/zwcGNgVFnYiIeFKfn5dw+DLjRtnXp859/bchuEG+IdwLFp1v3DxzQ0bXzxfv75ioCL+RDx8cvhCnJD7jgkcc7dtfdj7G94mBjfqvnUc39wZdv8Gt15GsGGGiN05IXdbq4wAuP/zPcF2HRlw/0oA3IPbglGfzJQZ50OTu2YtvDHc1HQyMfF4bOy16dOral6VPCmB0/GkpCRz1gW4NsKFAh7g8GhFfTLwKKP6ZOgCdwFwF/zNjw/EfxfWnnB3bJXZSrXK0JVHcFWBSxNcJyPSeouX36l+Xf2qunrl2kfoZSFYkLAyYaHCn/D2wnsLX1dXV1QPpOSfzi68SP2ixoXMEYvldHIyLMvdLHCnKmXgPvv1r/9BAzoD7p9xwZ1t7vyQu61VRnpuqjS4f6cfuEv3yWir7STg7mx2d2+CH32HDufFOc7uptTu5BoZj7a/mdruJrNSdY2327R97MXbNQV3OWrXM9gupe0/c6m269Qn80s36pPRFNwnuQLctQy5b5PG7jfH3HU8/FW8tqGO2gk6ZDSrkXErbZcblBqhkbYrjrfHYYC7kjIZ12m7O/g7HsEHuw/BKwi/Y8be1ci7WOBdpGdGObuHiLG7/erxESG7Yxe7K2qY8dGiYUblPFVHdn8fm90nSLC7nLyPlwF3FImwNWU7gHvADjg7cEJhwcDjNDnvVNNI062iIovFEnMsJvBwIGyd0Q4Y3mAS7jmXcsoqn98pLu4OCzscGAi7a9gDw84W9qtoIwpvwB4Y3k+xe2jopezsx6tWtYy0vNiw4eq0afCf9xYuXFLyIGPGuZT80wXFV4cbG+ErJpxIoFq593mjkDvV5L7zfXbEm8PuXHlXYu5fEpq7WNRdqGFGit25OXdpcGcK3B3B3V5hv4UP7ujlBEdw99rjBec0/Vz665qa/HlX4rL6p8w839pquZKfT73KUj+YfTE7vDt8/t35jcONmTPPwyULLgjwiIZHKA3uX1sL3O3gbh2aKj3qQGKPIAzurFaZCfSMAbgcweUxdupxWCdzbs25v2TJ1YKCZ2vXwjqE2xzWHWbqMMHKhCVEBdvLHpvTeuDSDX/Cx9cP1cOf/XFxB/z8dnHB/UtHcHfQdoGQO16Nu9jcVFXgzpuYyoA7eZ+MZmUySsHdxfLuIXiXCns70SJxP2fXitpVBts92j7WBqWOnjIZbePt2z3xdsl4u2pwfxvn+IPyYLsabXdVmYyKeLv+fTIqwf0zFQXuxBNT3RPc1YTc9TP38QqPbaNJ3lW9mLFDS2rXKdguUSPj1trujDIZl8bb3Unb3cTfnabwmoxjVYTvMrF3AnnHDbzL1bvrxO6K56mqbJj5J2HDjA7F7nLISM7uGPIucHCf1Nk+m8jcVAdwpzRzF6yrsJTuguJrG6petFpap1+bHt4dTg0y3eeNtq2w04XdNgoRUyDbPDxQUdEdFkbVf3t7U9Q+cSLaK1pVmUZDeD9spw8FBHSYTN3h4b0REUejok4kJNyYNWvjppdJeaci0/siM/qKlty6v3gxfFpzj5lp5YY9IiqWsQ8OZW2kmM2Qo7nzh6luESJpiag7Tr2MAnbnmrtjsQwb3NEmlQ3unImpDvF21GzCC7nzwZ0emopmipY8KbFYLDlzLuUUXlpV9vj+okVPSksX3luYcS4j5XQK/FVLq8Wc1gurAtYGrBBrgbsPXeCOJqYy4P6R4+9/fMYK2fz9LfHjVyLgbms9sv4SBlw60BKNzTr+dM0auHkXpk5tCw7ui4y8t3ChpbU1+XRy1NGomOMxsG4bmoZgXZmSOuHSHZLcVbj4ZvlA+Z1582D5MZUycPa+YYE7pe02cP9MCNwdQ+44Ne5i4L5DI3BX1SejebxdBbi7i7x7IF43W3eVs7s1tbsu2K5sRKpbaLsDuLtG2/WvbvfMSvXE29WB+9v4xx9UULvbabtbxdvdsU+GtMDdLcFdg5A7nrmPdyNzd2N299fiBYwA51K7HtouNiLVJDIiVU9t12RQqjPLZILGtrZr4e9aErwT6mhURuCJ8B0n9i4t71iBd4yeGe3YXct5qvjF7vo0zOAUu7sfuwsfIuD+NxFw/xJpJtPXAUsxOf90/VB9zeuayk0vN7zYQE2kPOAHe1a0v4T9KOyGYdeOwL14+Z0npaVdoaGwJ4dtLewqYX8Imzr2bg1JIuwh4RPAPhm264cCAtoMhp7w8ItZWSPNzfAVQ5I64VGfmHuyvnGotn5w1o1ZwW3BsKuGfSoVcv/uQys9I3O37bf4gfevxbtWWOBuJ+ktWFF3xtxFo+5Mwwz2PFVBc2fAnelwZ3/XvAJ3/vdo03a7uYuDO5xH3/2+cA/H9ceVPCkZqq9ftvrh0tIHLysrq19VF90ugvt/48uNFoslreBMsG1iKqvAHU1MZcD9C6kHhePhYPHsTQED7u/Qz+StNe70XF+4AfQvYewLTe5auPJe7WDtufT0rpCQHrP5dAr18sDc23NTTqeknU3b9HrT/BV347L6w1K6YWlFTTkKf7v4/uLb8+a1GwywCOH+hpMD6wjuTh64b5YE98/EW2V4Ne5ic1PVg/teInB3srZrZO7u6+9jzOKde485Gdl1p3YXBtvHtLbv01PbXTModWyXyYzaWamjLt5Og/vbv9f6UOPsrtB2DctkfqNA21WPS1XWJyMB7k7qk3E6uHsz4K5nyH1Umrt7yLs/LrJj3Hs7nEjtyoPtympknKHt4S7SdsIyGZ3j7aNN27Uj+FGj8Gr8HR/ftZR30p4ZV7C7VsXu/hqwu04NM3LF7tqzuwS+C/7C4r/x5qYy4E53ZNvBnZ5ICat06qwLLSMtN2fPfl5W1jjcGN4dDntu2InClhH2gvAnbGFh427uNZc+KbVYLDdmz+4MCYE9NuxOKW2n92k76T0VEwFHsMhhdz+/tuDgEwkJw42NK9Y+Mqf1mhI7MqafG6qvf7xy5frn60M6Q2DjDltee8jdFvdmdmZ2eedFv0XKzdkk7RgGl6mXEY+6CzbMyM5TZXbMAuD+nR3cpQvcHePtmOCOJovCnRzXH5d7OXfx/cUVAxVNI00W+n+bal/PX34XJcThsgNXA2piauC34wXAnfp1EIHHheAhz/GbhcHdhwb3wJ1wM+BiBVfsrNlULfuj5cv74+KORUefTEy8Nn36SFNT3pW8gmsFrZbW7MKLcVn9kRl90ZnHCoqvNgw1vK6pgfV2KCDgJy8vuON3fvDBNgTudJSMNzFVCtzZ5o5T484F922S4P49EbiLFbjjxdv10nYdzH3UELy7ubwbfPtt7uPsWlC7+wTbnV8j86Zp+xtbJjMG4u3/HOXxdueA+x+cS+3O0XaJMhmt4+26j0vVo8B9s/4TU7UEd+WtMkQh91Fs7g747u8WvE5wjwVoQ+1OCLYr1/YQN9J2kkGpBxRou4vj7UqZ26ju8Ch8sAb+rgTfZQau4sm7ZoF3mXp3Zey+Syt25xW7EzXMyBe7a9IwozG7f0rM7uLyLnqQgzucblicSXmn6ofqz6anX87NrXpVZe41w04d9qnUCNPvPoQ/YRcLm/74E/EtlpaK6oHhxsYOoxE2ybCrhE0d7MFg4wQ7H2YzgzY2sE3aYWN3+EjYCcO2vzss7OXGjQh584ouz1ly68GSJXfmzVv1eFVoVyhK1sNuFTaU9sQ3a/dmxejtoubO6zd3BHdcdv9aPuouz+5i5s6MTv3BDu7WAnfMPhnB1xLEwX3i7onee6lfUzC0G+D8Jp1Kyr+Sv+7ZuielpRs2vpi58PqUGedipx4PTe6CaxpcPeDxThW4B+6Exx08vujHEQ3uk+z9S29zfgWEfozYn7d//rbwL4jw9wJvC4E7PGApcPfbBjeAflmIqnEPS+0uWnpr/Yv19xcvPpeefjYt7VJOzov16xfeW7js4bLlax5OnXUhOf90Sv7pwsU36xuHYIGdSUtrNxj2+fjsphcqnBxRcGfx+t/pQ75VRqTGXXhuKgvcd2oI7g4F7sTxdq20XX9zH/UKP6aPNtc5e5tuzu4W1K442D5GtX3UDUrdpaG2u0mZjCfe7sR4u3pw1wTZR4O261Um4+59Mm/JxdvHGLhrGnLfphkiu8bcxQkeh+OFP17Jl56g2tn1oXbpYLvEfFSJGhk31naSQamE1e2qy2RiVc1K1VDbjTof7qnwuvXCqyZ4Bf6OGXuXlXe1gXf5endl7C5S7L6LZJ6qixpmvLEbZib9g6DYXWSe6q9E5qlisPvfVLD7J3Lg/rkN3L9igzssuciMvorqgQdLlsCx4O6C+P744LZg2BnDLpNKuO+eCG+bOkyZ5zOra/9/9t77P4orz/e+P+zsvbuesbHv2BgDyqnVCq2ccw4gIYkgIZIABQQooiz9GXdm93me3bs74xkbbIyNwUMWIkgIBRRAgMg556DYr+dbdbqrK3ZXV1dVV0ttn5dejZC6q+qcU5zz7k+/vxMlFS/vLl/eo1LB5hZpOjDajm9j9uE7DQI7IuAIOyiCucNW+ayX15X4+B0175OuJVV9qKrY+fZtRYVWq02+nuzf5+9xxgN22PC6FAxN2ueh/RwNSbOH3I0Cd1bszj/qzmqYMSl2Z1G6G4m37+eOt5PPaw83cP9FB9zhFQngrj6nDhgIiBmL2fhi44edO++vWDHV0LBy/cPozLHAhEG4mcN4gJsDzO5FKhy4YxVTceDuiIA79r4Ui+mR/iFU1veryO9U0bYAHMBdX2kA7lpwjw1MuJBbdA8OGAbM07VrH+TlwdfWmdb22fY1mx7nFN1bueFRc8t0u7b9Y03Nlbi48z4+p93cTjg6wkBFFVPhokJn7uUG7n8jNS6rDKvGfS+Hxn2/3ipjOXCnVUw1zycjeqFUJZF3O4W3AcIuNmSXNNIuImq3yCEjp0ZGQIlUm6btdnW7NDKZ+R5vVwBw/z/k9k/WQe3y0XbBtVIliLfzL5cqu09GqMCdH3Bn0nYrAXdXc4C7m3l8+Subwe4yNd5naj5ntxi1ixNsF69EqpJou8gyGQ8rymSUxNkVA+KtkYgXC8FbAN9FIu9Ww+4OfLE7Zz1VY2J3L+PYXYmGGX5i979TK0aKgd1NkHfKT9KB+yI8R8wG3KFnYYz5x/Ynr7i+o+b9RF1d5bvKsjdlUZeivLq9YAMNW174qupWJY4n1k/Wa7Xat+XlY9HRZz09MU0HOTWMvNi4GhshSAy7U5k7bFNhT97n5/dq8+bmmebyN+WNU43wtEVPiuKvxgcMBHie9cRAv94qQ5BoglyjBzrLOZEB38cjA76H1JjYXUDU3RzsbtjaHlpE2xaTabvZ8XbqGaEToQD3XynAHSllQoZC8h/kQ1feysgYT0i4l5sLjxNzxoMSL8CNF/fJnICJDDMUBgk7cKcxd5rmkT6JdD/GraD5ng2474PZjUr7wsHAIcHtDu7qAfEDMVmXc9feK93+prl1pq19dra9vaNDC1/hLCZqa58WFV1PTh4OCen18Tnj4XHS2fmYg8PhxYvRO0PQaXA54Vr+QAXuf2cD7n/jYZUxWTd1P1XjLg5w5xC4k30y/GUyPbI161F4O4i3Al6XBrJLzdnFRO3WDrbbabvS1e1zXiZjj7dbTNsRcP8//Ns/id/+ZIO03Rbj7VL4ZEwJ3M2tmCoWcBdWN9VMq4zymftXcxaym+bslqJ2y4PtomlkFEjbT8pF260lk7El1D4f1TTcCF4Qf+cB3/kIZ3iQd3MD76x6d4ux+zG+2F1GwwyNuZtrmJFK7M6sp7qIIXYXht115J3aaLGJhWTg/i12JN/gIeKle+AcYZ0DVwlHmTpZh19MX0re9V1Nk60zrTW7Pi4vvKvVasNHw73PeXt1e8HXiNGIpummyfr6uoYJ+KvLsbFnPDxgF4pSw7CNIVehJFgkYu6we4Ht0AGcucOmETa6p93dBwICriUnP8jPf1NeXlLxEp4z/0F+yHCIqkcF+3ikjyenv8khcSIJTi4rykKlmUlwZhMadWcRuxupp8qIutMaYc7hZW9n0nb9uXAC90Mk4N7nmzSe1NQy/aSw8GJExEhYGKo+urXydUjSENwk4WaCC9yPwMSEQfJHMnB3/JGYF5/qm34Fvucz2sKbmE0U7M5qfkcLfiZwx0Yp3BPgHgIDFZYTcJOEfzs0cQPhqaPxy65mrbqNKql2aDserV59KyPjanz8aHg4jK5zajUM0S4XlxOOjkeXLMF8Ml9//asp4G5A7Z98wivkztC4m6ybelCvcRcM3I0J3Dni7Yqg7Qom8naeLhpelwyyzy/ULrNGZg7QdgZwn2u03V4rdb7G2zHg/k+SYHSJgu0i0nZR1e1ixtuNlUu1pk9GZIE7a8VUOYG7CFYZm2DuSibv5p+Iac5uAWqXNNguTCPDg7b7SUTbO8Wj7ZbJZKSMt1tC29U23pTJ4i1G8IL4Owm+i0XeRQy8i4Hdj3NidxHqqSrfMCN9PVXB2J2zUYH71wi4/x0H7rvh1JCvA64hknXAOPGP7d9Z+6HwSWHbbNuDvLw35eVarRYeR1yMCBwMDB0O3fxqc1Xdh7CUkeItT3dN7rqekgIbe9hbwm4Ntkk/446OHxYs2P3pp4hdfocTSQQif8LTvrB3gs0YbAIxsYyz81lPzwGN5mp8/HRzc07hvaxVt6caG3Pv5fqe9yU07qzAnaxeYQHuDI27CeDOj7mTo+4YdmdG3Y1g94Mskhlao9N2/UmxJPe5aPseg1VGB9z3sQB3z7OeQReC0CcVLsfGQhf0+/sPBQc/XLkSvpOw/Crc3mE8wBoAq5jq9RsO3H9hBe60vMsCHJRjrJy0wNbVS9DPIwZzNzS02v/MKHCH2xTc/eCu6xt9PijxQnTGWNbq23DYqx+v3vBiw+vS0mvJyYi296rVMMBOubnBSMPq+uI+GbjGv+o/ioENV/yasQP3Tz7RNbaQuzGrDHfdVCZw/40K3A8LAO484+22QtuVSuTtYN2KhF1Wzi4Saj9rbdQuubR9btF2q6vblS+TUWKt1HkTb7cicP+TNWm7ImQylsfbJfDJfG1evF1s4P6D5MBdHKuMuSF3RTB3q8N3C45ZGGeXE7VLQduPSk/bScA9wIxCqcZou+3E29lpe8S8oO3WxPHmg3j5+HsYb/guBnlnD7wLrKoqCnbnrKfKJna33DDzKyd2dxXDMEPD7pzMXZjY3SR2/wsZu/+rmdj9X40A9yW7P8OA+15MkO3+K1xk6CAYDJq4fqyE6a3M9g7tSGjoObX6UnS0tqOj+Flx/NX4lOsps21tKSuuh6WM5BXfh58cDgmBLfdRXOAO2x4kxUbx9u9wXvn33//+eyMhdwcH+PUeb+9LkZG1E7VJOeOhKcPrS5/DM4eOhBIad8wqc/gbJnMnA3czNO57TDN303oZnoYZbsmMjryTfPSESQbRduMyGfK54LhX1wwhd3TMP31uAO4H9cD9pLOqW5V8Lbld2/66tPRCcPA5nJSd9/UdT0yEi79u6zO/mD64jTgQwN39V2weYROHBNzJzF235DagdvISGs0vlHY3ztxNAHfvw3CTgRsU3PrgLu0bcz44cSgxZ7yuYWLji42pN1Izb2d2aDvu5eaOhof3+/vDSWHxdlfXTicn5JNBwJ3iPoIL9umn3+NvEVEE7gRtZzB3plWGHbiT6qYygfsBArjjIXcxgTv/eLuN0na7O95aPF12wi4PZxcftSsg2C5ziVQF0vYTc5S222Uy8zPebhXgLj5ql5G2C5LJGI2327xPRpqKqdYB7uZbZUQPucvD3KVG8OIcmMcBnm2hmTVRzdS1WxpsN66RkY22O4pE2xUkkxG5Viov2i4a1I5Crdecpv+tOUnkzQHxlvN30WPvAsm7FbG7uWL3eWSYMSF2txi7/8V0vP0rw8qNCty/0wF3x71w+lhFSs+D0B3Q1zArq+s/TtbXQxsJDT3v43MhKOhGaioyvax6tGp7zfu0/JvQ2rXtj9es6fXxgT3zEVbgjuNLlHAngDthcj9Iqp56xsMDXgteMrfoXnDSUE39x/YO7fK7y726vWBHjoA7LeRObP6YwJ0eBmcNuf9gKXPnhd1/4cTuBtWMvhEbUN25ENl2IzIZgrbvJjXE3AmrDBznvi+wI/n1S7hWCLi7nHRR96qLnhTlFd+fqKvr12igC065ufWoVFfi4nZN7dJ2dAQlXoBbCgtwd9IBd0p5YTJtxxfSMK7IK2Q0y/TM/QdqwVXagn83L+AechopZaIzx1rbZpummxLHEyMvRcZcjil+VgzD9Up8PJwXAu6nqMD9AAO476YCdxbarmfuLFYZszTuaCwIA+44UUIcir1iKsMnY5K298zbZlWJvA03GfuoWxbOPqdQuxgaGTttt8tkbLFWqrjAXZm0XWbgLgy1K5u2yxFv5yiXKp9Phr/AXbSKqdYF7iKH3G2BuSumHbCUs4uH2kUJtpuWts9l2j7XZDKW4fVe2ZvV6LwEIF4kBC8AvvO0vZussGoUu5vnmeGJ3TUM7O4vA3a3kmHGRNRdXLG78XqqRrE7xTPzF6O0nQLcPyEDd1LdVLh63+AadxhIIcnDG8terH++/mlR0Wh4OLTxhISHBQVarbb0TemG0ueFJU+ap5ufFRcPh4Sc9fSEbfARvBAlgpgUKbY+/EtWymDAHbfKwDbvCG5yhw3/QEDAbFtb3UQd0ri/LCnJup3l3eNN1E0lA3cybdcVTWUtLkqE3MlbGT7YnQ9zNwe7k0uqGsg7wd/1j4mdJeFtN5u2442ucWcAd9cuV78+v5x7OdX1H19s3DgUHIxi4OfU6hupqR3ajp21H0JTRuA+gzncvQ/DvCOA++cswP0HwiSDL6oRbf/ZsNbVzTsDc6eG3PVThljtLzWtlIFj84nqDUsZaWiaggGTfjM9dDg06EJQyHBI4jgW0n++fj2cF5xRt5fXaVwpQ66Yuh/fdcNFNQB3mk+GA7j/zYhVhlvjTq+bygrcceZuHnBnE7iz+2TstN1O5BXM1q3C2bvF5uwioHb5g+3ySNvttN32abs93j5/gLtg1C4zbSep22WRyYgdbxfTJ/OJRD4Z6YH75woF7vvtwN1yyC4maucZbFcJq49qkbR9CQtql5e2y6NuV5RMRnTabh3IbgGdtxUczwPBm8nfhcB3ici7GYF3nm53HtjdZD1VHmJ3KxlmnC01zOiw+xKR66nqsPtCDre7PvBOhe/MwAQrcP/+M7xuKqFxR1YZ6GsYotEZY1qttnai9mN19f28vLvLlz9atep1aWnTdNOsVvu2vPzusmUXIyP7/PzOeHjAXhcl3H+laTpI+BrxR8Kt8SsusIadHuwhYfsKu/FzajW8RM3HmqoPVVMNDeVvymPGYrzPeaO6qbBzJYA7nbazCVgMIXfSXoeya6Fh9x/YaTvT586K3Q3bLAZ25yTvJP5O/g6xcWSeBQtt3/0peyNC7nrgDs8GT24A7qdcAwcDd03umm5qqnhb8Wzdun5//14fn4sREUjZr21vj192Be4zNOD+hTHgrou3Y5MI1sawAMZWrbrJqPe/7zOE3ClThrrUx4H7AgNwx56KUjQ18CTcJAPiBwtLnkzU1m55tSV0ONQfzgFvYSNh8J2GqYbxxMQ+X18MuLu7Y8B96VICuGMVU/E3h37kqpiKE/Zv9c14yJ2mcf+RoXGnA/cvv2QC939YBtyZPhlj8XY7T7dDeatSdb6QXVLOPmdQu8Kl7Uqj7corlGpLMhlJa6VKHG//2cbj7TIAdwlQu3Vou2mZjKTxdgX6ZKwI3D8XB7hbqHG3h9xlhewcnF1K1G55sF20EqkCaPtx07RdIy1tF10mY1683SyZjIi03cY4u7LQvEQIXnz4bjl5Vz52Z4+608TuUhpmjETdDdh9n0nDzAIhhhl2sfsfTBpmzMXuNP7OXLl9TQXu2KKLqJu6F84dWWXgmkOXwWCAkRyaPJxbdK98x5tdjZNarbaq7kPp9teN041TDQ0PV668lpQ0Gh5+3tf3jLt7Jw7cMVMH4ph4IUpCnG5I++LVI3/RJ3wRakRWmRO4VeZCUNCdZcvelJXtrP2w6eWmmLEYda/a9ZQr7J7JdVPpxUWpwJ3J3OnYnbazYZL3H8xn7mzY3QR5/4W0U6RuFlnfMzBB27/XN1rInaibqgfuiw4tgosJVzV0OLSxebquYSIp9xr0743U1LGYGLj4xc+K026mTdbX5xXfh/sPzOhvMOB+8EujwN1QKBUH7ijeDutVbMXleRC+fom/44UD95+wqUS3yuymAvc9euCufzYcuMMdAG4XcEhw+/KJ6k3MGYfjrKn/CEPFt8/X+5y3qkelPqfWDGiy72Rvr37/eM2awcDAbi+vU25uMMZgpMF4w94ZIg3UHxjAnUnbKcydHHLno3E3WTfVfOB+kgbcOQTudto+rwG94q+GzJBdOtR+ViTUbsVgu522zyl1+zyRycy/eLt0wP1PlqF207T9dxLQdpllMhaVS5XEJyObwJ2tYioVuC8QAtz3igDc+Wjc7SF3GSG7hZzdLNTOzyFjOtguSNp+xLRGRpG03Xx1u9JkMuLR9rmP2q3G5cVF8ObCd1HIu5HAu3meGQuwuxMDu5uspyqXYeaA4g0zwsXun3z9V4ZkhgO7mwLuv0fAHde440xzH7LKwLWF7oCuhIEBw9Ivpi84cSgi7WJc9pXUvBuFJU9KX5cWPSlqm217tGrVWHR0v7//WU9P2D8jlEnUotyHbzko5hUSc0TxXgy444QRdp7IKtPr43M5NrZD25FXfL+uYTL/Qb5fn5/bKTfYUtOBOy3e/itbPJyMrdnIOzPzzgrfdbT9B/bdDxO70yQzTOzOCt9puz2uuq+ItlM0Mt9/qtOa4I1g7uzA/cBCuIBwMV26XDQDmpaZlk3lL6MzxwrWPXxbUfEgLw96Nvl6cvK15NelpTFZl+GuArMY5uBCArg7mwXcf11oHnDfbQDuDhhw/1wP3LE3hGB8qrDxCTccuOOFpYxsrXw9UVe3+vFqOBevbi/ErjzPevr0+sRdiZusr4fhCqO0R6U65ep6wtHx6JIlaJTCeDEAd0bFVATcv2VrtJA7q1XGANz1VhnzgDvO3LmAu7GKqVSfDGe8XTARtuNye5MUstscZxcFtVsl2G492t5pp+12mYydtjMaT9r+g9jA3XLObhS12xJtlz/eLplPxiKBuxKBu+hWGSlC7vOZsBvl7NKhdsuD7aY1MsJLpEpL2zuN03YXFto+L2QyVkHtPhK3uUHkxeLv8pF3YYF30bC7mPVULTPM/GYEuxsvpiqfYUao2N0odv+WDbuzwnfDX33CBdyRxh23dmB4FA+5Q9dAz8LwgAEJU8wvpi8o8UJs1uWy7W/WPF6Tej01+052y0zLu23bxqKje9Vq2L0f19uxUXZYx9xJge+fmbRdXygSA+4ODrAz71ap4Am1Wm1M1uWconuN043BF4LdT7szgTuxtyO2bkzmziTvRuA7y7aG1oxug4xh958ouzTdNo5jn8d6eOglCO+NgbZTUTudueNWGezI9y5AwB2uDFwuuICw13fudPbu8c68lfmusjJ/3YO84vstbTNvyso2vNiw4v6Kusm6zRWvNHEDcH+AacsHuLMqZb40rpRx2PMZ3cK0m1Ix1cGA73WfwFBhgxNuR3DrXrPpcbu2vab+Y8r1FO9z3m6n3RAEcjvlpoJ77Wg4DKSKnW+vJSdjQ9TV9bijI/ocxkHWiqlknwxbvJ0VuLNYZfho3GnAXT8XaMD9CD/gThe4G4+3W5i8tiNjexOXsEsJ2W0FtctdH1UMabudts8Bdbu1ZDI2A9y5afs+frRd9Hi7WMD9TyKhdnM1Mtaj7Z9bKpORq1yqlXwyQiqmSgfcJdC420PuEhB2sTg7CbXzqozKM9gujkZGwbRdxEKpypTJSELbLUDtPjbbFMvizeHvksF3SwLvpj0z8mF3DsMMJ3a3wDAjZTFVyQ0zImL3vzITEuQVGnoJQ91UvVWGbO2ALoOOhgEDQxGGun9sP7K659zLiboUFXkpMula0lRDw8fq6rGYmG6VqhMPuSOaieLDtD0MEqiQaTsZuMPmFp7hrKfnxYiI1raZ7dXvmltnppubIy5GeJzxgI047Hdhb8oO3MnMnelD3286SG4CvvNuLBspGnn/yfQGjrxLM6aRIdP27/SNYO60kPtPn8PJwunDtYKrB1fS6YQTXNiAgYCMWxmtM63Qs9V1H9tn25umm+Dxqg2PwlNH4VYGUx6mKm/gzlY0Fa1vOYum7mFd3pMqpmIfv8DYve7doMMwMuGWpYkbKN3+5n5uLhxt5MVIz7OeziedHU84wnm5dLnAH8NGwsrflk83NT0sKOjz88PeE3J0PLJ4MRIfkSumsvpkvuVu9JA7h1XGOHDfLxtwN0nb55yoxN6UTtilh+wScnaFoXarBNu7pNDIyE7bj5tD2+emul3SeLtdJiNBvN0S4P4nUTk7r2C72dJ2XrTdfHU7H5mMhfF24z4ZSeLtyhS42wxwn5ch9wOiEHZTnF35qN24RoZfiVQ7bbdAJuMlgUyGH22fR5BdGYBeAv4uAL6LQt5NBd7Fx+4BPLC7KbG7FQwzwoqpugiNuptrmOFVT/VvbOuuvxoj77TVmm5hRgD373F3h07coXOA4CF36A7oPuhuGCowzHyie6Mzxzq0Hdm3s4OHgjUDmoDBgJTrKVqtdqa1dSgEbscesKE9jIAmztz349jdoCsnEUaasRoD7kuXwu76tLv7YGAgPOfODzunGhsr3laEjoRiLLXTGXbAsE9lOtwNzN1YEa6vmHs4mnyG2EUZc85YQt73GjZhzF0ac39GPJWJYPt3jEYKudPqpmLA/VccuB9e7HDcwfWUq/c5b+jNxPHEvAd5cLU/VldvLHuRtep2VMYl/9h+uKvA1IbpCTMOB+5UJwyC5sQ4JzN3J4K5G5bHaBKR4u0IuO/mA9wx3xFe1BfuBnB7gbtiRNro2s1P3+/YUfKyBAaJxxkPxxOOMEJgnDifdPbq9oq7EveusrK6/iMMJxhUzA9h0ATuBp8Md7ydwtx5WmWM1E1Fw5aom6qfEYcEAXeawJ0l3i6WT1w50NZos4Pv+UbYJefsYqF2Cx0ydtouA2230UKptiuTkbhW6pyJt5sL3EWH7HOStlsl3v7fpuPtQnwyYgvcFQfcRdO4SxFyn8N43QzOLiFqF422L54DtF02dbtSZDKW0XYzg+0+9iYhlBePv7PBd0vJOz/VjDWxu0mxu5mGmcVU7G6lYqpmGmYchBlmzBG7s2N3EnmnNuYKjUi440us3XqyaShNiZFN78PQIwRzh1GNgHvBw4KAwQCsOmW3KnAwcPOrzTPNzW+3bev394edOexLD+NFKbGcO76D0oV5EV4kaWQO64tDEsAdttBI4z6ekPC6tHRn7Yfip8Whw6Fe3V6wg4f9MexlWTTurFs9HvtCsvwdbdqMk3eB/H3vAr4ZJ9rz/2BA7ezBdhJkx6Hv78nM3Thwh6vvcMwBrqrnWU//fv+oS1EFDwpmWloerV4929q6bM3d8NRR3+jzcN+A6QzrikUIuLvth3mhB+7YUKcPcnrOfS95/YymjOEX6fF2esVUYljCSptcYAAGpF9M35Ztr+on6+GYtVpt2o00GCROnZh3CHsjoctV3atOuZ6yreptWv5NDLgHBMDQOubgAKPu4Ndf/6r3yexl+GRo8fa//uu/Eo1PyN04cGdq3CnAXT81dMAdadzNBO5nuIG7cdR+Tt9kBu7diml2bi5yf8lF2OXg7J6eZ2wdtQvTyMhTInUO0XaRC6XajkzGHm+XJ96OgPufzGufitv+LIlGhjdtF6puF1ArVaR4uxQ+GdkE7mYD9x+tCNwlscq42QRwPyARXpeCs8uB2i3QyFiBtvuz03YncWi73Op2aWQyFtJ2O2dXOIsXg7+bBd/NIO/GsftZbs+McOzONMy4mF9P1YRhRo6ou0TFVIUaZoSJ3bH2LQd5/9bIBxB/TwbuhMYdt8qgKDEKucP1hAuuZ+5dMPDC00Zn29q2vNoSPBSMILjveV+tVrtl2ytte/vV+Piznp6wT0Z1KRFzp2y08OKQsM07jDtkYJsKXwngDn+EPTNs73tUqosREU3TTcsL77Z3aGMux6h6VLDRh00zpnHXW2WInDtlR0jaJi76jbSzPLSI2JIuIm1JiaS8Dr5zkHdW+C5YO6Mvpok3jn0VBbXv4UTtv/+OpBLHG4W5I407FbjDRhbOF67D0mNLnU86I+CeOJ4I/Xg/N/d6SsqjVauaWqbjl131i+lDwH0JBtz/QQXulJQ6cxFuKKBKWmATnwLhpu0U4L6A8T4QHAYMSLg1RaRdhAPe+nrrk6Ki5taZ2olaOAv30+4wJl27XGHARIxG5D3I29U4uaPm/f28vD4/P+zdIAcHcl1fdp8MB21nZ+6CrDL0uqliAXc2nwx7vJ0B2ZlNUuBuKRxnRa52NG/dN0LkxeuycXbRUbstBdvttH2OFkqdM7VS52G8nQdw/1S69mfbo+2yx9slKJcqp8Cds2LqnATuf7Rh4C4tXufH2Q+Yy9lZULtZDhnpNTKmabuvcmm7gEKpc0AmIwptlxtJRyugKRzEiw3f+ZB3IaoZI54Z7qqqgrG7NQwzfIup8oq6u7MzdzGLqRo1zAgXu5uF3YmFGQO4U0LuuL5Dz9yPwL8gzppOGDBBiRe0+H/Zd7IDBgJ8en2Ch4LrJuoyCm6W73hzOzOTXJoStn8oQmXYkuGbN8zYvnjxMZweIuZOgEX4DmzXz3p6joSFwausWHu/owNTxnuf84atP+yzkVUGhdwJ7M5s6G/RhlW3xz26hLZLRjtjtOsle+FhR6jLvP/Ci7xbhN0ZeykdZ2ei9t2mUTuduZM07jrgjtdNhVPTAfejS507MeAeeCFw88vN001Nl2NjR8PDr8TGTtTVNTRNQXfDDYQncP9U31jS7g7Ut6CInycP/iWUck2GiqmO1Iqp3ofgXgF3qsj0iy2tMy83bRrQaMYTE5tbZ6LHomFAqnpUvud9E64mtHdoP1RVdWg7Xm/dCj9w3scHffwC+Y72s/lkaPF2Jm2nMXcUcqdbZczRuFPqphLAnfAs6efFUZPAnSFwp8fbGbT9HI8mLm1XMrSVmtfbPExXVE/JxdnnCGqXUyMzD2m79IVS55JMxh5vt5y248D90z/J3v6seNrOSyYjRq3U/5Qp3i6nwN1ExdTdLLTdCHB3FATcnRQO3PcrALjLBNn5cnaBkXazULs8wXbjJVKPcAfbRaftJyyi7aKp2/XAPdQCmUyYAmQyPDQyVuLp5xXcZMX0ovB3mci7MM+MEOxuaT1VMQwz5hdT9ZS7mOrnPKLulond/04srviS90XfUlZlFOD+PabMdthjKFCJ800kloELC1ceOgs6HSba+tLnr0tLaz7WYHU1H63KuJVR8rJk3dZn2o6O6ykpAxrNWU9P2HUj5n4YZ+7kTy4bSqTiDJEFuDs7n/HwuBAUNNvW1jjVCK+Scj1F3at2O+WGadyPO2CsHDF35jb0MA7Zj2CQHYeUmF0ENtywR3fGCaXLSR02QBgAvg+bdew5jy2lyGoOfo0JZ/DAOxd5N1Fh9Qe+zUDYSZydhtppwXYjqJ1witOsMvBCNOAOp4mAu1e3V9SlKLjOT4qKLgQH9/v7w8V/kJ8/q9Um5V6DOw/mcDcF3OkjmWtxTkft1DHPBO4sFVN1wD08dRSO+dHKlXC0FyMjYbRk38kOHQ4NHgpOvZE6UVu7a2oXsrfv/LDz7vLl5318oPNRUd8DhMCd6ZMxRdtZmLuZVhnOuqn6CUIUNtB98gOF3EnA/QR/4M6Mt/Om7ZzMXUS8a21oq0A0r6ymvIsvD2cXTdRuo6jdTtslpu3WVbfbZTI2HW+3CnCXErULoO0LRKXtJmulWhRv5yyX+i+WxNvlFrgrAriLWjdVKquMTUN2KTi79KjdnGC7yNJ226HtRtTtc1gmI1uw3faQusR0XnIELwi+m0fehapmZMPu5ovdOQwzFhdTZUTd+RVT3S+smOoXJqLuwgwzRrE7Z+DdWCOvxwzAXW+VISuzsUwxYu7eh6AjoAdhCIUmD6/b+qx1pvVZcfGTwkKtVrvt3bbquo+vNm++mZ4+GhHR5+d31tOzC2fusB2FfSN5K0grCGnYgpKA+2l3d3iSG2lpWJa+oyPpWpLPeR/30+6wfcf4+DEdcyfy6QRkRzF2+AEMsnc6YXaRU67wix5nPLzOeql6VD69Ppp+jV+fn/qcGr4D34e/dTvl5tLlgvg7rS4rJfCOtnc//xFty0xgdyNIndn2cHB2k6j9b4zGFnInNO4G4H4AA+5wueCsvXu8Cx4W1DVMPMjPh8ve7eXV6+MDXbnm8ZqSipdwL4VJDb3PcLjrgbtuGLMVPqWs1XezjPPF9KZb7XNVTPXE6grAvQLuRZq4gR0172GAXImLg/Zi48bCJ4WJ44kZtzLgmwXrHwYnDYWljGCfxridPVlXByfV6ewMY+Q3QuBO9clwxdv/QmpM5s4acieAOxFyZ9W4s9ZNNQ3cUcidH3Cn29vNpO3nLKbtc4qzzz1AbyMX8KxsnF3ESLsoqF0ZtP2knbbLT9sVoG63lkzGHm83GeH4H3Mn2C4pbZdEJiNKvF1mn4w0AneZgbuzKeCuDKvMXJTGyI3ahThkpNbIyEzbjQB3M2m7VOp2yWQystF2sQm7mBTbV0lNTBwvCX8XAb6LH3gXA7sLq6dqoWFGvGKqYkbdJTPMCMTuvzeN2snrMf2Ka8n3jEyxTiyjk7l7YTJ36BToaBjbOYX3Sl6W3F+x4npKyuM1az5UVTVNN7XMtMy2t78sKbmZnj4UHNyjUsEOH3bIxwhRuyGG/g1tY4mo4jEScO9Vq8eTkuobJ4s2P13zeI1fn5/HGQ/Y+sOOHLbRGHOn7YaP6Tn7CYyzu51yg5/37vHWDGjCRsLCR8NDR0IjLkasuL+idba18l3lqker4Juafo1vn69Prw80da/aq9sLfhFegonddYF3qmqGmXY3pojhIOwGzm4UtWO0nYHa9YU7dY3C3ImQO7lu6k+fw2HDPhX2vjrgftIZTjznXs726nePVq7s9/c/4+Fx3sfnXk6OVqtdt/VZQPwATHCYid9wA3eWxPoS8uqd0v7AxtkZwJ0mcN8Hc1BXyBcbh9iHLWAcxi+7Cgf5tKjoVkYGjMPNrzbn3s9tnm5eueFRZPpF/9i+wIQLNfUfG5qmXm3eDAPyhKMjDDYkcIcdtc4nwx1v/wtbMxlyN26VMV03lQDu+velRADupHg7haer1bomAXC3c3Z7sxXILnKkXXmoXX6NzByg7XO2UKpdJiM9bZcWuH/22f9QBGfnRO0Kpe0Ca6XKF2+X2SdjecVUKwL3fXMduNs2Z2cXtfNF7XIH222ZtgsvlGpE3W4rMhnBtF08zm7zMN16aF44hRcG3yUk75Jid5HE7iYMM2IVU/XiX0z1V07s7iptMVUzxO5c2J1K3jkaNfFAAu5UyqkTy2CVKvUyd1wscwJGgiZuoHDTE63+v+Itz+Dryocrl99dvvHFRnj8oarqekpKr48P7PxhF32cpI5hbiwNlSEdHE7gwB1+65y39+XY2Mp3lbPt7eufr9f0azzPerqecoV9POaBwffTaA+NHiNpjGsXlmf36vbyPe8bOBgYPRbdMtMy3dzc1j5b/bF6zeM1LW0zy9fchSNsnMZkNUnXkiIvRcZeiV31aFXp69LCJ4XwW/BChgKtJL075pmhGt4Nkhn+zJ0Vte82hdq/M4HaKcydAdwNdVN/+hx2k3DkOuB+BAPucK02PN8AV6nsTdmtjIwLQUFjMTFwcba/3/5+x47I9Isw32EmwpzCgLu7MeBuHKazj2Tqsp8ucHciCdw9DuBv/OjsRnDrC0y4kJZ/Aw71TVnZs3Xrdn7YWfWhat3WZykrrkemXwpLGUkvuLnt3ba3FRVDwXDPcjtG8snADvlHkk+GHG83QttZmTt/q4yQuqmoAAFRN1UQcGeh7QRqJzeTwF0YarfjY3tTJmQXPdIuAWqfJxqZOU7bbVfdrlSZzHyOt0sN3M1D7cKD7Xxp+79LRtvFqJUqcbz9X0XyyQivmDqXgfsvUmjclZ9ql5Szy43aRdHI2Aptl6NQqs3IZGSl7UIhu6+9mYfjhVB4c53vFpN3E4F3bux+Vm7sbqZhxqxiqrJG3S0qpmrEMLOHV9TdCHbXkXdGo/7MH74xLLrYPB4GscxXerEMXHnoLxgMMC9CU0aiM8disy4n516r3TWRdz8veiw6dDg0/Wb6TGurtr19PDGxV60+7e4OO3DYHiNjO+vWVBdvd3CAfTUC7j0q1XBIyPP162vqP8IzBwwEYPHz03r3C7E778Q4O6aOwVG7qkfl3++fcDVh3bN1pa9L1z9fv7P2w+SuXVcTEh6tWjXV0KDVal+WlIxGRIxFRz8pKmqcasx/kA/f3Fr5unT762fr1q18uDJsJAyeB54Q9vSY253kizd4ZvC0O9rzUQwzTL0MN3A3htq5HTIUwv4tqTGYu3HgDieCAfdODLijN04Sc8Z3Te66nZX1YuPGgocF8VfjZ5qbI9Jw4O5HAPdfYUhwAHcjPJ1P07/xs4TFJ/Ml9V0fuM/Anc0/tj8ibTS94Ob6rc/h+FtmWsp3vFm98dGyNXezV99Zt/VZ9cdq+D70freXFwyZI4sXM30y3xPlUrni7f/yL7rGYO7MkDvTKmNS485eN5UA7sTbUTTgjpg7Adxx5s4XuLPSdjGAux2125twwi4jZBc/0i4Warcw2G6n7XbabkV1u7kymflcK9WCeLt0wP3P8gXbRaPtUshkxIu3i1Au1bRPhvL5ZWECdyPAfakR4M5K2+3AXaHB9oUKRu3mOGSsTtuPGWi7nzJou8zqdgXIZITRdhk4u52qiw3izePvZsF34Z5344Z3o4F3vtg9mB92l9kwwz/qrpI36m68mKoohhkDducg799wC/24QCerWIYicz8B3Q0jB8awJm4gLGVk1cZH9ZP1UZeifHp9wkbCbxjt7AAAgABJREFUtFptYcmTJ0VFw6GhvT4+mNLd1bVTj92PkXetOh+MHiY6OcEe/pSbW7eX12Bg4JuyshX3VzRMNQRdCFL1qDzOeCDfumG734XZY9zPuKu6VX59fuGj4Wk30xA+vr9ixdtt25qnm2daWu4uX/5+x45tVe92vt8JfzUWHX05Jga+Cc9f9aGqpOLlsjV3k1dcb2qZhr9ta5+NuxKHmDtmdT+u09foyPuhbwi3O6qqajrqTmbuJl3tPIPt37I1k8B97+dwkBhw/xUD7ouPLIYThDNF7zqkF9ws3vLsdWkpPIbvbHixYWfte1wpwwrcfzIB3L8hj0z2Rl3/E5+02E33yegF7kQtAbjtwB3PP7Y/PHUUOm71xkft7bONU43QodDdrW2zrTOtcBbPN2wYjYBbpzcMGejDQ998c2DhQl251M8/N5RL5Yq3/8u//DepkbG78ZC7MasMt8adtW6qiMCdRtt7eQB34bTdTpPtTWmEXSLOPm9Ru2JpOwO4HxNX3S6UtttlMjLTdiHAXUCtVNnj7aID9z8LQO0WBdvNoe2/E4O2C6uVyjvezgXc/1sZPhnLBe7WAu4/SQXcpbTKKI22y8DZbRG1c2tk5ghtF13d7sGTtosmk7EqbTcHtdsq6Y5ha0pH8Gbwd3HJu7ieGW7szhp1P82vnqpww4zFxVTliLqzYHcxou78sLsw8s4BOhFwJ4WLsfUPTSzj9Q+4sHDxoZugQ2EwwJDzi+2Lzbrc0aGt/liddiNt2Z1lW19v3VHz/tm6dbcyMi7Hxl4IDu5Vq894eBDY/Tgi7/p2XE/b4W9ht38aB+79/v73V6zQdnSUvCwJGQ5Rn1N7nvVENU6JhlVD7fby6fUJGQopflrc2Dw1297eoe2YqKt7uWlTXcNEScVLrVZb3zi5bM2d1LwbLa0z8MfaiVpklandNdE83fyusnKitnayvv5NWRl8v7L6XcXbiqALQZjEpssVFVPFirUe1xVrZS+p+gt7MVU6c2cF7qy0nSvY/i134wLuuzmA++HF0BNwDYOHguGU29pmt1a+bmyervpQ1TLTsq3qHXQr3J1gIi/15Q/cTX32gnMokgTuDJ8MSeB+DAYe3JrgxhuSPJyUMw7HDL22+vHqsjdlTwoLb2ZkjCcmXo6JGQkLgyEEAwlGHQyww+R4O+6TQeVSyfF2Mm3/byptp2B3jpC7EavMjzSrjFGNu+m6qSTgftJ84N5LanyBux2125uNEnaJ1DGSoXZZje3Wpu0nbI62226hVLtMZq7E20UE7qKgdluk7VaMtyvEJ2M2cP/MpoC7FTXuyqHt5nF266B2/g6ZuUDbHblpu5NotH2Oy2Qkp+38OLviQLmimnwInhd85297t4C8y4DdTdRTldoww1ZMVa6ou5vQqDvvYqpCsLvRcPEfmLR9MWmVRQLupJC7Xiyj13pgzN3nKHQN9CN0Ogwk/9h+ndW9o+NZcfGHnTs7OrQNUw3ts+3wvcn6+sdr1gwGBPSoVKfd3WGTfxLfexu200gPgxK7rq7wM91eXn1+flcTEj7W1MAzhI2E+fT6eHV7eZ71JGgH/NH7HFYWNe5K3OrHq+HH4KVfbNqECGzxlmdRGZdCk4dDkoY0cQO+MX1+MX1BiRdiMsfil19NXD6eln9jQ+nzza82T9bVXYmL6/f37/P3vxQV9bq0tHzn2+V3l8Mrup9xd+1yRYDB+aQzht3xeqpktzuB3QnDDB/mzg7cObLtvGi7nvvSgfv3LMAdjhb203AKcDpwgupedfhoeNbtrHXP1u2a3NXQNLVm0+Ok3GtwueB2AXOWDtxdEHDfaxS4/90c4M4QuLP4ZHRGIxhycAMMSR7OKbzX0jZTO1GbcSsj5XpK4ZPCtxUVV+Pjh0NDBzSaXrUafbQCBtiRJUswe/vChfs54u2ETMY4bTfC3HlaZbg07gfYNO6cdVMJ4K6fMjrgjjN3Y8Bdn23nA9zNpu0y4FqJm52Pi99Z1iPsEnJ25aB2S4LtCi+RaqftdpmM9DIZW4y3Wwjc/2x2ExG1y0fbLZXJWBxvF6VcqkKA+x6bAe4uNgrcbTrSbjFqFyfYLlOJVJlpu1yFUm1fJmM5beeB2m0BqfdZqclK5EWF7/zIuxTYnbukqkCxu/mGGY5iqrYddedTTNWY2N00dv/ebGu2YaFFTbg76IE7EXInZO565g7XHDoFeg26GIaNJm4gr/hB22zbu+3bOzq0WypfbXyxMeV6StyVuJnm5oqqt7ezsoZCQs77+narVGc8PE65uXXRdu/68o9ncOAOP3kpKgoF0iMvRfr1+Xmf8ybojnePt+953+Ch4IxbGTtrPzwpKmppxdjrxvIX0RljwUlDfjF9MCPgwGDouuuHKDyAP8Lgh0kHP7Nu67OChwXNM83wQohUwotejo2FF938anPgYCC8EJGpJ9LuRNSdjt25DTML9BssCnPnAO6cJplvBQF3ZsL9Zwy4wwHDwcOJQB/AaQYMBEBPrX269k1Z2YsNG+CSJuaMB8QPwi0CZisC7tD1X+HAHRvbMJIx4P4jGqg04P57/sB9MXvlXnjyL5xwo5HbL9R4exfc1kJTRmp3Tcy2tkKPw2FHXIyIuhS17M4yzNgeHz8YGGig7U5OR3GZzEHe8XYaXv8vVubODdyNWGX4aNyF1E3F2Rkv4E5NuFtI28VF7coCtXY6b4NsXVpvjOJRu3KD7fOTttugun1ey2RsJ94uDLj/WWCzQrCdStvNKpTKU93ORyYjWblUCX0yogvc5z5w/0UBwH1+oXYzHTJiBdvFKZEqF23vNEnbhRdKVZ5MRjrabn6wXXbULhJM91NkM5vLywjfRSHv5nlmpMXu5hhm5mLU3VLDjMMek9hdEHn/nknbdUVTqRp3vVVmH7Z6wRYbv+LM/Te4bt9gzP0IdAHSy8DAgMkSkzmWsuJ6wvLxjJW3Zlpasm5nRVyMKH5WXFX34cWmTY/XrLm/YsXlmJh+f/8eb++znp6n3d0N7AB/gIhhj0p13td3JCzsY01N22xb7OVYzYDGp9cH0UF4oOnXwDNve7etdaa1Q9sBbdmaO9EZYwHxAzBBYEjDsIQRiA8z3aBCYwkewHeQBDwu+wocZFv77M309F4fHzgkeNHhkJCXJSVTDQ3w/PBCKFOPsDtKu+skM8extDtdMnOAit2pxVRpzN0QcjcK3M2It/MD7nBgcISwaV50aBEcP5wOnKB/v3/StSS4FHeWLbuZlvahqmpT+YuQ5GFywp0E3H/GRzI2dEnAfbe5CXeqT4Yl3g6jDqYYLAvxcqlH4RYBt6bw1NEt21693769dbY18mJkwGBAwEBA8FBw8vXk2l0TN1JTB/DPUsBY6nR2PoZkMosWwc7fYG9fsIAWb/8rEW+nonZa4xtyN2WV4aNxP2RS446TLIPGXT990AwiA/ductFUHuVS5aHtCmW10tD5s3OApyu/s2Th7CKgdst17VYJtttpu43SdrHV7aLLZBReK3UfP9ouW7ydP3D/s0XNOsF2PrRdcpmMCPF2pfhkeAjcbQq4fyEWcHdVCHC3UXuMYNRu7WC7Umj7CV60XS51u7sx2i6zTEZ22m4q2G4Nwm4bPF1UHC8agjcXvvPxvIsZeLccu7OJ3U0bZvgWU6VF3Y/bWNTdxUTU3WzDzFLGooiTvHM32vqKtIjSAXd8aYQdsAsp5I4KqOqY+yG4wnDl9VF3rJIqjEOYR8FJQzlF916XltY3Tr6rrNR2dFS8rSh8UlgzUdPQNHU7K2skLAx5P7pVKvIH/xElROx7KCTkYUFB22xb4nhi0IUg/35/vz4/+AqP467Elb3BlOvNLdP56x7EZl/BUHtUrx61d+lR+wn8rRp8nOjHBu6gPw7jEA41OfcaKrI6Fh09GBBwIShoODT0dmYmHCS8BLwWitUTUAcdJeLvLl0YfCc8Mwi7M8XulKg7B3M3Ddz50XY+RVN1wP3AQjhaOGynE05wRgEDAXA9P1ZXj8XEjIaH30xLK3lZkpZ/Ay4pXChUNBU6HQPubmzAHR+QfyBC7jxrCXDE2+nlUvF4O3QZ3F40cf3bqt5N1NZ2aDuiLkX5nveFDlL3qjX9mFmopv7jw5UrBwICdOp2XCaDxdsXLjQZbyfT9v/ibjTmzivkbr5VxiyNu9l1U8nY3XxvuyWofY4QdlkAvdWarV3PM5JydhEj7dKgdguD7TJrZCSh7VTULjVtPyo6bbdpdbvyZDKKrpX6+ec/WhxvZwXufxatfWYctc9D2m6teLt8Ppk/CKiYKgFw/9yqwP2PYgB3+Wn7HEXtsmlkrE3b5SqUausyGUlouzyo3Uy87jfvmzEKb3nyXXzyLj125yl252GYsUfdzTLMcKfdd+szCroVFBdnZ1lckeLtBqUMAdz1Vhk85E5i7l7/gGu42BB1Pw7dB12MFVMN79HE9afm3cAi5LNtazc/1Wq1mbczs25ntbXPvtu2baqx8U1Z2XhCwoWgoD4/v161mmB857y94Y/wzaHg4Jvp6dqOjvSb6aEjoYGDgdBCh0OTriVte7etdqJ2a+VreIngpCGYhjCwYVjCkIOhpUftJ/B3aI7howIbBkTXIz8JDEU1ztybW6bh8MaTki5GRFyMjLyZltbYPAWvEjwU7N/v73veFxpi/QGDAXAMQReCNAMada/aq9vL44yHa5er0wkn2LjDDhs2xBSx+y9UsTuZuZPFMrSQu+XA/TvzgHvYSFjTdNPT4mLUHaPh4bsaJ9vbZwPiB+CSwnSDXoZ5AeMfxgAO3Pch4C5U427a3o7KpcJIg7kJPQg3Crj7xS+7Aj31YuPGwieF0CPoLRD4Ch0UeyV2prX1XWXlQEDAGQ+Pk0S8/euvafH2PbR4O1Umo2Pr/+t/0RuTubOF3CnAHQ+5m2GVsUDjbtwqQ4TcexiEXWrUbofs9mZjYXYpIu1WR+2iBtvttN2KhVLnp0xG4bVS5Yy3I+D+Z/GbFKhdbtouWCbzH+bLZMSKtwv3yXzCwycjSsVUFuDuwAXcf5QQuJtTN1Uy4L5fNOBue6j9oADU/rUMqF1i2u6gdNo+x2UyUtJ2aVA7b8Jux+sWIXhpYu8mybsgz4wI2F2YYcZkMVWOqPsJy6Pu3ygn6s7PMGM+dqfAd7bG8pFBWrxdr5QxAHe0gPlSL5aBC4L94+tFRN0N2B06DjoXRgIMwsCEwbCUkcj0i1mrb0/U1b0sKZlpbq7+WI0Zt9vbP1RVPV279u6yZRcjIgYDA7HKpX5+53194euARjMUEnI1IWG2rS33Xm7UpaiwkbDIi5FpN9NqJ2pbWmfy1z2ITL8UED8AswOGMaLtrmTarntvRgfcod/hUFG3QkfDkICfgbEKMzE263J1/UetVnt3+fJrycm3s7LgcdqNtMhLkfCi4aPhsZdj4YALnxS2zLRsfLFxtr29caox41YGHE/ocKhmQOPV7eXS5eJ43BF25LB7ZjXMGJj7Xm7mTgu583e4U+PtZOD+GY57acAdNsRwkIuPLHY84ehxxiN6LHpHzfuXmzbBZT/r6TkcGvph586a+o/hqaMwweFKQv8i4P6lAbj/pAPudKsMmbl/Z+oTrvoBaRh7eynxds/fYCkFBwD9G7/sKvo4ws4PO+Ovxqt6VAgauZ929+n1SRxP3Fb1FkYUnMJpd3fM3m5OvJ1J2/8vtZGxO1Msw6d0qtlWGULjzm2VOcltlWENuRPYvYcG2cVG7XbIbm+2B9mliLSLomu30CGjAI2MnbYrtlDqPJTJ2HS8XQLgLhFql422z7l4uxCB+zcSCdx384m3KxC4S1I3VUzgLjVtlwy120awXRm03d+mabuyZTLS0HbJOLsdsiuFvwsn7yYD71bB7nwMM5zFVDt5FlM1I+qu5h1197J+1N2U2P0H2sqH2zNjqtGWUsSqyQDcf2ID7vu/0jP3hYi54/+MkrA7ksxgbncYA5hnJqLHP7YvKuPSqg2PstfcKd6CBd4/VFXB11UbH9U1TLzeuvX5+vXjiYmj4eFDwcEXgoLg60hY2JW4uPc7dhQ9KUq4mhB3JS7rdlaHtgN+KzXvRljKiCYOp+0RPTAmDSYZnbGd+IcPGyE4cD8ExwnHjCX0PQ/CH1HIHQZ/QPxAdOZYwfqH8MxPi4sfrlwJD5bdWZZ2I2353eVlb8qmm5omamu17e1wMNONjZO7dt1MT59ta9v4YuNUY2NTy3T81Xj1ObVrl6vjCUfYphP1VA1R9/16qztZL/ODDruziGXM0rj/jd0nYxy4wz4bjhMO2POsJxx/62xr3WTdjdTUoZCQ+ytWwBV4t21b9uo70H1wGSnA3VUH3NFAJVtlPl3yPRtzNzQyaifRdmPxdug7uBXAjbG6/mP523IYKpvKX0C/eHV7YT79Tif30+7+/f6lr0tn29tfbNrUr9GccnM77ujIM95OyGQI2v5/ORoLczcZchfRKkMAd4ZV5iTZKsMIuRsE4jSSbkrULgC12zm7vdkkZJci0i4Nald6sF0kafv8oe12mYyt10qVOd4uHnD/TCGoXUm0Xcp4u+w+GUUB97124C4KbZcBtVvJISM+bV9ig7RdWKFUpclkVGbH2+Wi7dwaGQk4u5Ige6wymoT83Wz4zpO8Cwq8c3tmjGJ3Tzbsbo7Y3aJiqvyi7sfmeNSdKXZnx+68yftSU7Rdty6iA3fdmkT/eTjsH3dPfdSdBbtjJVUJzwyMJRio/rH9wYlDiTnjK9beh6bVaqebmmrqP9bumpiFP3R03MvJGU9MHIuJgQYPHq9ZU/62PPNWZu693Lb22U3lLxOWj4eljATED8B8gYHtpYu304D7CVQfFRqMEzgYOCo4PDjaLzEljgG4w69r4vpDU0bil13NKbq3o+b924qK6o/Vm15sapttw+zzO9+uXP8wc+WtpJxrKSuuZxTcQjnr2ba25taZ0u2v0R8TxxNVPSqkl0FWd9hS66LuB+lRd+HM/W+mabsh3o7jXiZwhy2sAbgfxxLu6TfT4RTgwjZMNdzLzYXHKddTmqebMwpuwnyHKwkTB3+7AgPueN3UfYTGfYF+KBIfrWCp3Mu24Geh7Y7YJypI8Xa8m3yPQc9Cd8NRPVu3bjAw8NWWLcXPin3P+2I+/TPuarj/XYqabW/PK34AP9Pn59fl4nJs6VIh8XZu2k5j7kyxjJHSqZJYZcwJuXMyd5Oo3c7Z7W2uEnbpIu1KRe122m6n7VLT9jkjk1FsvF0M4C4palcmbbdyvJ1fuVSBPhkLBO4iVUz9zJTAXT7g7mIucP/FhoC7GbTdeqid7pARO9guVolUCWj7cT603UkwbZdR3a5omUzUOctou3jBdqOc3YaQur80TX4Wzx5+l4i8y4bdRRC7myymKmLU/YigqPtvckbd6cVU+RhmGNidRN718J2lMVZQhvXSj2zxdr3DHSXcScD9K+KfeD1210lmsH80sX/4sH/RdJ4ZLPAO/Y6Td11t1YD4wbDUkbjsKxkFtzZve1Vd/7GjQ1ux8622o+N1aen9FSvuZGc/XLmyebq58Elhh7Zj1YZHiTnjEWkXgxIvaOL6ScAdS7jDuNIL3NFQ6UT/VMFjOAboejzkrjtCGAzwDyKMTDXuvYnKuJSadyO/+EFJxcv6xsnG5qnNFa/yih+krLgenTkWkjwcED8AB4wmHTyOzbpcUfW2carxZlrateTk9tn2yneVgYOBnmc9XbtcsWKqxx1hW08vpsrUy/Bm7nTsTm0G2o7i7YTA3RRwdzju4H7aPXQkVKvVFqx/uL70+bvKSjiXdc/WwUmFp47CvIYLCJcLe7vCA3u7AgfuP1OAO8XkvvsPrMydutSn03ZyvN0Vi7fD0FqkL5cK9xDoI+iXhwUFl6KiHuTnl7wsQTKf4KHgvAd5W15taWiaamieupme3qNSdTo7H1my5B+LFvGJt3PR9v8kNTpzZ4hliJA7s3SqRVYZfcid0yrDWjoVhdy5mDuO3VFjD7PbBGeH8zLS7OTaTthtl7NbjtotCbZbWyNjp+0W0nabULcrQiYjRrx9r6TxdjbabgFw58XZLUPt1qHtxtXtNhZvF+KTkaJi6hIxK6bagbv0tF0hqN36wXYZaLuDmLR93slkFEXbbZKzi0bS+2VvZnJ5cZPv5pJ3XoF3k54ZYdjdQsMMn2Kq5kbdjwuIui82EXU3v5KqlFF3XtjdgW1FROfvxhZOFNpuKt7+JVvRF5R2X4j+pcah9iLVIbLeHXlmsMB7YBeMARgqMKjgTgsDG6ZhUOKF8NTR2KzLafk38tc9KNvxRqvVzrS0vK2omG1ra2ufLSp5krnyVvyyq5HpF3ECPgiTEQY/PAMKuZOY+0nSv2LYmIGXxt560Xc6HA+MGRh+MBdCk4czVt6Cl5ttbUWK9oq3FW/KynY1TS4vvBuXfQV+QIOn6QlTPLwQvO6qjY/gCC9GRFwICsKKu2q10WPRPr0+nmc93U67uXS5OHU6ORx3QIaZRYd0Vne6XoZaRtWYz12P3cnknfgOC23X2Uww4L4At5lQgPuvGHCHrbzDMQfXLlef8z5J15JqJmrgLFpaZ+Dr5m2vkldc08T1w8nCXNMBd08ycKdbZT6jVBTgqNmry9Ps5qDtP6G3dnTaH9UhmLbQfXBLgSNBFxwu9ZPCwvXP18MBZ9zKgIHROts61dDQoe2A7w+HwALCA/lkDn79Nc94O422/ydbM8bcGSF3qawyxkuncoTcz5AAtFn1TuXm7FZkr+gq2WG9LG+TWLeXJeHsIqL2uRJsl0TarkzaTgLuh+3q9jkhk9mnVJmMIOD+mTJRO0/abkahVPNlMuLG2//LzHi7VXwyYlRMtQN32YG7pLT9aymC7WKidpGl7fOAtp8yStttQCZjVqFU+Wi7VTi7cLDeb2uNB4iXBb4LIe+WYXcvmbC7LFF3H5NR90NcUXeqXuY343oZPXbfT8HurgKi7jTDDB/s/gMXdv/M6JJpgTGZjD7e7vYLnbZzLCEM5F3nmUHYnZJ2h650wbE7DAwYQjDkYLjimfeB4KShiLTRuOwrafk38vDIedss/N/W1DK9sezFirX3U/NuwN/Cz8BPEsFzGMMwOAnsrh9LaAjprO5oVDhi3L8TRiP8YnLuNcSXt7zaknkrM+1GWs7dHPjjw4KC5+vXN7dMp+XfDEvF9DUw4+A4Ybii4Ydnri+0a9ufFBZejo29npKi7ehIupYUMBCg7lWrelQ67H7ShTDMoGKqRvQyOua+xyhzJ8N35je/o9jbyfF2DLj/RAXuBzHgvvToUueTzl7dXkEXguD4C58UTtTVtbZhNWmjMi7BbYcG3KGvYSQYgDs15E5j7p8u0QVoSDEaKm0nqduxIYfLZJC9/Ws83g79BXcAuL3ArRg6val5GvrlxaZNG55vKH5aDD21vPBuWMpIbtE9+M7H6uoBjabL1fXo0qX0eDtO279HtJ0t3k6n7f/zf1IaA7uTxTJcIXcTpVO5rDJ4yP03ZulUnOwYCbkjk7tJ5i4Mu4sJ2a2OXO1ofs6n12Xj7IpC7WIH2+203fZou10mo7xaqeLG2/kB98/M4uwWo3b5abvVZDKSxdtF9smIJnCfs8DdVWTgbiXaPueD7RKUSLUWbZeiUKq11O1iyWQsVrfPTdRuNl7vn7tNZAQvlLxbA7vzF7szmXsIo5iqxVF34ZVUfXjrZWSNunMUU2UXu3Ngd5PwnblSciTLZIyWS3VneY/hK9p6Q7dI0GN3Nrc7Ur5gevfg01jaPbwbRiMMb00cxtwj0y8m5V5bueFRh7aj5GXJ661bH61c+Xz9em1Hx46a9/B1e8373KJ7ybnXojPGdIH3mD41XkMV/kVA5B1/j4cE3/F/wuA7MIDh5+saJptbprVabfyV+PDR8IjRiLgrcQUPC2bb2m6kpl5PTn5dWtrSOpOSdx2OB6YbDty74MiX4lZx+E7C8nH49Qf5+XeXL2+daU29kRo2EhYwGKAZ0Pj2+arPqb26vdxPuxNid9iUo6i7rpIqq9J9D4dehhW701A7W7yd8MnQgDvspGE3v+ToEqdOJ48zHv59/nD6zdPNj1atgtbaNgNnB5cUA+4aGnDH66aSNe4o5E6IZUxWESB/tEL3Ho9usMGT6+zteLwdrjbcHJBnPyr9UvaaO1V1H97v2LHzw87K6nfLC+/GZl0OTR5eteERHPnb8vJz3t6dTk6oXKqReDu9Vqpx2k7F7gbmLkrIncsqwzvkzmJy58HcWTwzEhF228frdi6v9NC6nHVQbQe1y6GRESZtn4u0/YidtltJJjN/aqUaBe6fGWu/kxS1K5e2C5bJCIq3S1su1SoCdztwtz5wlyvYLitqF6KREYu2+0pF2x1ZaPsJobTdWup2JctkrETb5UHt5hH2/vnduPm7JbF3CwLvwrC7FGJ38aPuGlmi7qJUUuUbdf+ZJerOxzBDwu6c5J270Wm70Xi7oVAq8R4D27sLaEFCLC2IqDtcTypzP25g7iGnYeTAYPNBVVWThmIyx/KKH3R0aPMf5EObaW29nZV1LSkJ2q3MTIy84xVWq+o+TDU0VOx8u27rs/SCm7FZl8NTRwMTBpHhHYY9jG18GGP3f3iM9DUhSUPZq++82rIFniPmcozPeR//fv+Q4ZDE8UQE0C9FRY2Gh1+Jj59paWlumc5ceSso8QLMGhjPaHDCaIfnic4cyy2619Qy/Wzduubp5uw72fAM8VfiE64mwIHCg5ixmKALQcgz49rl6njCEfbxsI0mKqkivYwRpbsu6q7H7jryTm1k1G6g7SjeTvLJMIE77NGXHFnidMLJ/bS7X58fHP90c/N4UhKc+PsdO7ZXv4ez1jvcj0L3wZj/il43VWeVgUH4GSXnzobdyXV69bR9AT7kCJnMl7hMBqYbirfD8IADgF6DLotfdjV37b3S7a9bZlqg67dWvl654dHywrvQ9Y1TjdCbQyEhp9zcsHKpRuLt3DIZArX/B1tjMndeIXeRSqfyCrlzyNzJPvczMvDfeUzYRaDzSgP0SubpyuDs1kftNh5sn2+03eqFUu0yGRutlYraHgy4f/ZnPu13SkTtCqHtssfbpfPJSAzc2Wj73ATuf5QBuNtpu3TBdtuk7eYXSrVI3e7Oh7YrUCZjFdrOgdpl4Ox2wi4Cf5eWvPMIvIuP3Vmj7mcFFFO1WtTdvEqq/xCxkiqfqDurYYYFu5tJ3tlWR3sZ8XYCuOsYOqGLgX/lKcDdcHakRYt+gcGRcz/u5G9wy8A4gQGGSpJGpF1csfZ+O07bk64lpd9M79B23F2+/HJMzGh4+EhY2GhEBDy+nZn5dO3axubp6ebmXZO7tr/b3tqG+WGKSp6UVLwsLHmSsPxqYs54esHN6MyxqIxL8Jzbq99tr3m/asOjjWUv3pSVbXu3LXgo2Kvby7/fP/JSZPnb8qnGRnjmwcDAAY3mQmDglbg4eMLm1pnyHW+iM8Y0mFvmPEzP0JSRpJxry9bchaeC14LfqnhbUfq6tGWmBR5/2Llztr19qqGhqu4D/HrqjdTosWh4CY8zHk6dTjqrO1Mv8xNdL8OC3Unknd6otN0QbycE7jjfZQJ3x+OObqfdNAOaqg9VbysqRkJD4fTvZGfvmtoVt+wKTHPoI1ioQN9BJ5KAO2aV+cLJEHJfwPhoBWf9AMPbPARt18lkvsJlMjABYbbC68KogFtcRNpoTuG95pbptrbZdc/WbXm15cXGjU+Lit7v2KHF/3uQnz8UHHzGw+MEbm83xNvx7S5chu/18XYumYxx2k5j7uxiGaMhd0tKp5oIuSPmjiMwiliGmnMnR93FJe92Vm5vioLsUnF2cSPtkqF2O20XQtupwP2IvVCqXSaj1Hi7CeD+O3k4uwXBdpFou3gyGT61UqWOtxv3yUgmcDcF3HnF2+3AnTdwVwRtlwS122m7YNpuc+p2cWQylhZKFUDbLQu2i4faeUF2qyLsOFmalPxdGHznSd4p2D1aRuwexobdJYu6OxuPuvtTsbsfFbtbVEn1ED+9jFxRdxPY/ccFlCUQ67qIvjQi1kJfsPtkDOgciezRCZJoO30lg77Pwdx1IXdnPOSOgDsMORjwYSkjOUX3tFpt8dPi2CuxkZci46/El70pe7116+WYmKGQEETDocGD4ZCQS1FRN9LSphoaPuzcWd84mf8gv+YjVvyz6GkRfJ1ta9NZ2re9+lBVBQ9y7uVseL6hYaqheaZ5x/sdRU+K4q/Gp91Mw3j9bOvN9PSBgIBeHx9o5318+jUaxNwr3lbA18bmqezVd5qaMfLbMtNSO1EL3y9/U94+215Z/a6o5Elu0b2MgpupeTeyVt+GP7a1z74pK6ubrNtZ+6F+sj7oQpDHGQ/nTuelx3TM3YRehmx1p2F3tsak7QaBOwdwX3xkMQLugYOBcIJwDeGS9vn53cvNbZ1phY6A+wPMOJgvBuBO1E3VW2WMMHfOCr0k2o4toV1JMhlvVCu1E+4YcPOEi4nK5657ti71Rir01Prn658VF19LTobxgBWtDQ6Gnjrj4dHp5HRkyZJ/mBNv50/bWZk7uXqqkZC7JaVTTYTc2cQyxpg7A7ubB9/tYNfe5htkFz3Sbuuo3U7b5wBtt8tkZKiVKk28nQW4/45vExG1K5y285XJSBxvF6tcquwCdztw5wTuFlRMFZe2226wnYdGZs7QdikKpdplMmpJabtEAhlFcXZuDq6Rt0mM4wXCd1EC72Jhd8sMM0aj7lawustWSZUz6q5bIRiPupuF3TnIO9ei6HN6vJ0NuFMS7rqzY9J28jqHML9jZTA9D1LFMoRVBtO4w/iB8RmMy16ap5vL35THXo4NHQ4NGQqJuBiR/yBf294+npg4FBzc7+9/3tcXY+JqNYbFfX3hO4OBgaPh4bcyMx+vWfN07drS7a+rPlQhRJ53Py/3fm71x+p2bfuqR6uix6Lh62xbGzxh4aYnK4rvw49tKH0OX+9kZw9oND0qFea2Vql68AbPfykyEklsVtxfAV8n6urgGcJHwxOuJmTfyS57U/aypGSmpaVg/cOE5VeR0wZmuiZuIDbr8pbKV/ArH2uw9wBKX5f69fm5n3Z36tRXUmXoZWBHqNPL4OEoYptlwO56+E5p5L/ao5PJkOPtmE/mpy/+N56mpgD3w4sdjju4wcwbCsben9BqX2zadD05uXbXxKaXm+A7cEuBGQedBesfGOoLEXDHNe7onSHdgHRkMHfOz1UYxhsxzLC3Z/QyGRgbMH/hzgDXcPXGx/WT9U3TTRm3MuCCh42ExYzFrHu27tWWLZeioqDTz/v4dHt5nXJzO+HkdHTp0kPffHNw4cL9eLwdo+0LFuzBaft3jFqphEyG8LYTVP3/YzQ6c+cSy7CF3PmUTt1HssqYFXLnEsuwMHce2F2ZINWMZmfQdsiuZM6uENQuf7DdTtvnm7rdLpORLN6OAfffmQHZReXslmlklEHbRZfJCPDJ/NUS4C6HT8YO3MUH7lam7aKg9q9lCbYrjrb7GaXt/iLSdhJwF0zbgy2g7XNAJiMmbRcDtZvm7FZg6xobaaJSeAZ8F4m8i4PdIziwu9mGGdmi7ieoUffj1Ki7bVVSNR51543dafyd428ZwH2fDrgTShl9Vp18Uii2z37w+tUOLR2P6bm9DcAd+g46F4u3R54LTBjMXn27vQOThCRdSwoeCg4YCIAWMhSScj2lbbbtQV4eyl/3qtU9KhVR3bEb8XFv714fn35//6Hg4CtxcdeSk2+kpU03N8+2ts60tj4pLISn3VHzvmbXR3hwKyPjzrJlDVMNyEkCf3s1Pv68r+9ZT08dFtEjkjMeHvDM8LrP16+faW5+t21bdf3H1Y9WR1yMSL6eXPq69GNNze2srIcrV2KHnXMtJGkIJiBMBzgpmF8F6x/C9y8EBd3JzoYHYSNhqh4VPK9zp7PjcUzpbtDLHCDpZchRdxJ2ZyHvu03QdrrA/Zc/wqtQgPsxB9dTrgGDAS0zLdlr7uys/fBq8+aSlyUbX2xcX/ocbhcw3WBBslgH3A+id1kMVhndmIThZ2DuC4z6i+i0HVO371+Iy2SQuh3mPtwe0wtuwhV7W1GRfScbhoFvn6+mXxM+Gl76pvRDVdVIWBh0N/RXl6urgbYbrZX67SefkGulkuPtRmi7aebODLnrgbskIXfE3Gkhdx7MnYbd5SbvHJRcOmBqx/Rzj7BLDtkVjtptMdguUolUO22fD+p2aWUyiqyVam68nT9w/zcJULv1aLtZ6nbxa6UKjLfzL5cqrk9GzoqplCW+A/cOU3bgbpq5iwfcv5IJuCtJI6OSUiNjUYlU26ftdpmM/LRddIeMVTi7JGx9QLJmFQRvNnmnqGaUg93ljLoHWBB1N6qXWSJMLyO4kqooUXee2N3IWogl4a53uOuZ+5fkwL4bF23fR2HuRMjdYJXBgLsDBtxPQPdBX8PIgYmTnHutpXWm8l1l7v3c4KFg/z5/3/O+fn1+AQMB0WPRs+3t73fsuBQZ2e/vf87bu9vL64yHB8FHCJiI/Bjwt/Az5319BwIChoKDLwQHD4eEXImLe5CXdzU+Hr6DSWkCAkZCQy/Hxg6Hhp7H0e0pV9dOZ2cyKUAEs8vVFZ6218dnKCTkZnq6Vv9fZfU7OKTxhIRLUVFXExK0HR2bt70KTx2FqQcjHAYkDHv4I/zk7cxMaNr29tjLsf79/qoeFRy3S5cLvIbDMQfYu+ui7gcWkvUyKOrOit0N8H0PCbLrUTudtpN9MmzAHY5E3atOu5nWPN28o+b9dHMzPCjd/jo6YwxmPQbc/Y7BRIDRjqmESMCdEnInM3fDByx+ZKsT8BOFtiN1u+dvML9gMsJ1gxctKnlS/qYcOr3kZUnQhSD01opPr0/YSFj1x+o3ZWUXgoKwbLueth/+5htM3c4lk2HE203Q9n/+Z0Njw+5MsQwRcv8rOeSOgDsp5E4pnUoKubOUTuUTcjfJ3Hlgdwqeti0wKg+dt1PvOU/YpePsykHtYgfb5dTI2Cpt1wN3G6btMqjb7fF28YD7v0nYhKB2RolU8Wi7IHW7pfF2a5RLtQP3OQHc5yNt56+R4SlttynaLlGhVFuXydgAbbc42C4nZxcHrw8otZmJ4C2E7xYH3oVhd4sNM9JE3QNNRN2l1MsYqaT6m5SVVHkXUxWK3amroJ8Ih/sXLqSQO8HcDYetP1rmQRLLIb2RRmeVISXc4fpDB6F4O4zSmMwxjGF3dBQ9KQobCfPr81OfU3uf84av8DhkOGTLqy3w9zfS0gYCAs6p1Wc9PU+7u59yc0MkwkATyNleEoUnRNUGTI839AwYZ3d0hE07ZROO78lh6w67/RNOTvAq8LvnfX2xeq1ZWQ8LCq4mJAyHhOAp/IDh0NA72dnNM82Fm54EJw3BlIEBD/MoLGUkf92Dibq6x2vWtM60Jl1LCh0JhV/wOe+j6sax+0kXx+OO8EqwL2eppMrA7jq3OwO+E6idTNvJPhkmcIddOLwonCFcOK9ur+ALwek30ze+2Pixunpb1bvMVbdDkoZgdhuAu+ofyN2vA+74KCWH3CluGeYnSp04aLteJgMzDiYpzPrAhMH29lk4DGTy0fRr3E65wbXy6fWJuxLX3DrztqKiX6PBvO3OztBBWKFUXN2+n2etVAZtp6H2/1ffmNjdOHNnhtz/Ll3InczccVDFn7lzYXd7sxN5q+uD5O5cuTi7TaJ2m9DIzEvable3z7daqVzA/d8kbwsUQttFlckoJN5uulyqtSqm8gXuC+QF7l/YJHAXibZ72GZ9VPlo+1GJaftxo7Rd2kKp0qrblSaTMbdQqmDaLmKwXbZIu0WQfcD2Gz/+Lhl5Nxl4lxC78zfM8Iu6u7FH3Tn1Mi5CKqkeY426y62XMV5J1YyoOxd232tmvH0vddmzjx5XpzaOY9tngPWswB0vmgodAZ0FHQ3jKjx1dM2mxyUVL7VabcLVBP9+f+9z3rgpxkvVrVKfUwcMBKTfTO/QdrzasmU4NLRXD9y7XF1PurgYYunExp4bARC7erRRRxtvtIVGm15iN0tsg1GmGLbx8OvwcvC6Z728MKeNXmtzztu7z88PDmyyHhOOt7bNxC+7Gpt1OWXF9ezVdwrWP6zY+fZdZeWml5ty7uXAiaTdSEu6lhR1KSroQhCcnfsZd+eTzljUHVVSPfg1WS+js7rrt3q0vRptW0ZG7US8XeeTQQJ3GnA/9M3So0udOp08znjAZYeLD13waPVqOOD1W5+HpgzD7CYD968RcMc17uSQO4W564cf2xqbjbZ7YB99gMmF4u1wowhLGWmbbbuekgINrmfwULB3jzcMiZChkNqJ2pbWmQf5+b0+PtD70JXQd9BZhLodyWR41kqlZNupqJ3WmMydT8j9byZD7qh/GCF3iskdZ+6GkDtVLEOWuRsKqHIwdyZ2t5N3mQw2drYuu1PIOpzdFlD7nKLtVNRup+02qm6fOzIZyWqlkoH7v8nXBKJ2RdN26ePt5pVLFeiTkVbgvpudthsH7o524C4FcFcMbVdZWdpus7Rd+kKpc10mo2jaLgNnFwjZB+ZBExe+m0ve+XhmhGJ3sw0z4kTd5aukKpdexvyo+z5h2N0oeWddBZFC7uS4OkujHwl5pUQYaajAHSuaCtcZugP6EYZHYMLgrqapuom6+sn6rNtZAYMB3ue8Pc96Ik4DD1Q9Kl8YuWPR001NM83NV+Pj+/z8ur28Tru5delpO22vTmzFid012jYTO2EyW/+NtBcl7zZ1u1BSvhh+F54KnvmEo6OOaeIoE0Pwnp69avWlyMj29tnce7kNTVNvysoaphoq3lbUTNQ0TTdpOzoIF81Ebe27ysp2bTs8Tr2RGjYSBqfs2uWKWd2JSqoH2KLuBHY3maHaS6Lt+ng7K3BfcnSJ0wkn99Pufn1+y+8uh6NKHE9MzbtRO1GbnHsNpjzMNZgsMAtw4I7VTTVYZQwhdwZzd2J9F0f3TozeNaQbFTCb8Fqpx2FIwM0EA+7tsw8LCh6uXFn2piz+ajz0fs69nM0vN9c3Tja3TI8nJp718uokFUqlyGSIWql/+IOxWqm8aTuNufMMuX8rQcidJpZhytxpzJ0/djfAdzt/t5ZTfu5SdaVYhhiQXUzOLj1qn8vBdtloOwm12zBtl6BQKn91u10mY8V4u4zAXThqtxJtF1cmw6dcqtnxdlvwyZiomGoH7uYD93lE2w9Zt0SqDLTd0Shtl1/dPt9lMuLQdkWidiGQ3XrgO55fsxJ/Nx++m4/dY6TF7gINM8yoewgj6m5xJVVl62UOiKmXMWKYocaNF1Ab9yqIknOn2fOYB0BeMjHRKjXIfAj5ZKCDoJdhfMYvu6rVau8uX97WPhtxMULdq/Y86+l+2h0xDHgAf/Q+5x08FLz26drm1pnn69dfCArqUalOu7tj8XY9baftw2FrTRB2Mlv/jWDr+i0ieeOnw536lDFNqE0m7zrWiVNOOAaUfD+nVl+OiXm5efNkff3ODzvhmJOuJRU8LGiZaXlTVlZS8TJ79Z2k3Gtxy66k5l2Hs36/Y0fTdFNL60z2nWw4cTJzhy01rZIqE7vTM+/kVDuVthM+GRbgfmSJ4wlHuNT+/f6ts60NUw0hQyFhqSNweBvKXsDNBCYaLD+g12Co43VT9cDd7RdqyH0fdRwyV9GkqgD6UrowR5BMBh8SJ+FWAPclePXctfemm5pebdmy8cXGdc/WzbS01NRj1W7hm/dXrOjXaGB0wMXHZDJff30A0XaSTIZWK/Wv1FqpLDIZU7Sdk7lTq6eKFnJHzB3RDQ6xDJfMneaWITN3FuzOQd7pCF5pbd5CeWsxet6HpMQLaw3OrkDUbqftctL2w+bQ9jmpbrfLZKSIt8sF3C1D7dLRdmvJZCSJt0vjk5EYuP8gHLg7iQvc99kIcJdb3S4SbZdRIyMjbV/KTtuPKZ22K0wmI2G83WZpu2ioXVGQHafkAfI28dC8UfguauDdOHY3IpkR3zDDUUzV7Kg7o5LqnNXLGK2k+r/pChdTUXem5cPRiPeDxNxZlkA/majdSmLudE+3DrgfRVlmGDnRmWPrtz6bqKvTarVZt7P8+/29ur3cT7sTuAIxd/gm/FXOvRyUEB+Lju5Vq894eHS5uKB4O7EJ1+3V9bQdoXYE2dEe8lf9To/YvLFvyUg7N1romJW8w4t2OjnBUfeoVEMhIW/Ky+sbJmsnane839HaNvto1ar7eXlw5OkFNyPSRgPiB2F6hiQNbSp/MdPS8nrr1obmqciLkapuFcbcT2BKd4peBj9oGnZnknd6Q7Qdxdv1PhnY3WLA/QAVuB/HgLtmQFP+phyz+ownpKy43tA0BY8DEwZh3kF/YcDdGwfuNKuMq+nPOtDrARhoO1K3H4aph96AgbsKvGJM5lj26jubt72a3LULjqGk4mXmylthKSPlO96Uvy2/Gh/fjcfb4cpDLxzgkMl8Z7RWqhHa/v9Qm3HmLnXInat6KqfM3QhzJ0fdSdi9i0wJxQWRYjc7nReB0QttNnZlOAbDKcVG2hWM2mXWyMwv2j43CqXapkzGFuPt0gN3i4Pt4tD2zyWh7WLG20UqlyqqT4afwF2SiqnzF7h/JSFwtwJtX2Sn7UoqlDq/ZDJC1O3WoO1SoHbzOLv4YD3AFpoFIN5S8m597C5B1F1oJVUx9DJU5q5gvQyfqLv52N3Ucsiku4ZHYczDS3G6Cn0dED+o1Wq3v9ve1DK95smakOEQVQ9WR9S1y9XlpAviBPDA9ZSrxxkPNdyGL0XBz8MP38vJGdBoznp6YvVOacAd3+TDA9gtE7T9AK4cgT0esW3bp99TMXdKVGT9uT4gTlFss5J3DLvjknc4sMGAgFsZGW8rKh6vXj2emDgWHX01Pv5DVdWG0ufhqaMw72DwwzRJybs+1dh4NQEzp2fcyvDv9/c86wmn73TCaemxpbDL1+lliKg7vjc1YHcyeac2ArUTtJ3wycDRM4E7XGR49Q5tR8bKW3AwVR+q8h/kz+qA+2mYL0zg/qW+6gDDL8S0+VOE/oi2k8cDTE+Y6XDPCU0ZSS+4ubHsBdbR000NUw3ajo4t217lr3uweuOjxqnGmZYW6Hro92OETAbvVoNMhlQrFcXb/0LE2zlkMlyonQu7G2PuwkLuiLmT3ukxhNyNiGX4MXeuqPtJBna3LfguJp23G2/mRpMHsoseaRcLtVvokBE72G6n7XZ1+9yQySgq3i4lcLcItbPR9s8tp+1iy2RkibebWS5VkE/GMoG7AoH7F3MVuMsokxGftosvbRdUIlUW2u4gKW0XWd1+yhLabkMyGZFpu7JRu3yc3UbwOi8ELwZ8503ezQ+8i4/dJbe6m1tJVUa9zCGL9TLCmfv/ZmXuxqPuQtLuezmKsrItq/AfoAN3XB4C14dQdcOwic4ca5ttu5aUpNVq1z5d69fn53HGw7XL1fmks26j3+nk3Ikxd7dTbl7dXoEXAtc9W9fWPls/WX8pKqpHpTrl5tbp7KwD7nrBC+zzYYN9GK+lSaPtOtROKmxF7HaIzcwPpOgxGcHTMsiwUdQFkPH0MYHdsdqqeNT9rJdXr1p93te3z8+v399/KDj4dlaWtgMj2gHxgzBBYHLBFUD594m6uuw72aHDob7nfeFM3U67wUXA9DJHl8D2nYi6E1Z3ArtjJVVZt4/7WGg7F3B3OO4Al13dq868ldmh7dhZ+6FxqhE6JXv1Hbil4An3EzALYITDqEajV2+VoTF3Q6UB2noY/RiFtnv9AxVKxWn7GXihzFW3d9S8n21vr3hbkXM3J+8+9pkAuDiP16yZrK+famh4WFAwGBh42t0dehnJZH5lk8nwrJXKn7ZzMXfpQu7kt3bYxTJGmfsxbubOjt3ZyDudv88VEG82kbeDbDtkt03UruhguzCNjJ22W4+224S63fZqpSoCuC8Qh7b/s7Jpu7Li7Yr2yYgL3PfOY+AuX7ydnbZ72Wk7b3W72bTdkkKpClC3W08mI0WhVOvRdhki7XbCLhF/F07eZcHuQoqpShR1F0Mvc5xVL7PUunoZN4n1MkbF7hztR54NLasowJ1UGxMBVujfwITBjJW3ZpqbH61apdVqMaFKj8rtFAaaYRNPbMrhsXOns2sXFnL3Pe+78uHKip1vS7e/vpme3ufnd8bd/aQeuKOtNWFvh90sMslgtJ2Uakf7IhSFRnyWtaEA8h4qfOdUf+h5KMLuR1BhVVzsfgoHdhh89/EZCQ39WF0909KyasOjpJxrKXnXl625U7zl6URt7WxbW+793KTxpKhLUcFDwX59fhh2P+Xm1IlH3Q8vXnRokSHqrjfMGLA7jbwTqJ1kxjH4ZHCCSwHuxxxcTrrAK4YMhyy7s6zyXeVkXd3azU9jsy7DbQEmGkwWWM/AUCfVTdWH3N243g2ioHb4MQZtx+RCMBNhasNNMmvV7cldu2rqP6bdSIPBED0WnXEro7Vt9mZa2lh09EhY2GBgYK9aDRfzhEmZDA7cybSdGW9HEXVO2v673+kaB3MXPeT+I1vInUUso/9QBVPmzsLcTWJ3VvLODd+NUXiuZmfx9iYLYT8t6ZAQnbMrB7VbEmy303Ybp+3WVbfbZTICaLsEwF30YLt8tN1CmYyc8XYRfTIyAffPbBS4u9gYcJ83tP2womm7n+Jou1VkMp5Wk8lYpG6XnLZLg9ql5exSQe1BGZts/hlh5J0UeLcQu8scdRelkqpcepnF5Ki7cOZ+UIDSXdxKqmbBdKw5oKZbYlFXXHrmrrPKkIA7zlgxW7ffMegmuFUuL7yLLOFVH6pSb6SieLvLSRdE24kdNsHc3U65qWAcjYZXvqusb5h8uWnTaDgMIy+kcUfAHe2WCXX7QX223RBsJ1A7TtW/x9Hnd9T2vb4Z4LuevFMC78wwsp6KEtgdSWY6nZy68JKqvWr1OG6PqZuo+1hdvf399h3vdyArffN0s1b/X9tsW/1kfdyVOM2AxvOsJ1wTh+MOukqq/1iEtsgo6s6C3dnaH3/+IyXeTgXui48shusMVxheK2AgIOt2VuN048r1D3dN7krKvYYD99MwU2AKQPdhwF1vlflK/84QyxtCtLUu/mNf6Wk7UTsXfdYBXmJ7zXu4GnARMm5lwFn79/uHDIVk3spsnWm9HBs7GBAAlw4ZhE44OiLaflBP28kyGZZaqbR4O5tMhoba/53aaNidNeT+H9KF3BnVU1ll7vyZu0nsfpJGAC1AiqcsbHYWb29GCftpqbtbCs6ueNSuUI0Mg7YfnVe0fc6o2+0yGX60XRbgbilql4m2C1W3C5LJWBRvF1AuVUSfjBgCd+MVU40B9x/nOHAXVjFVYLzdPJmMlUwyh+Y0bT/Ok7YbL5Qqgbp9LspkzFK3W5W2W+qQ4YXaFQLZBxXcpIPvbOTdYuzOz+0usmFGykqq0utlfHjrZUwo3X+zhtKdSwuzVwBhZ23YDzCBO0ngDhcN/uWCHgxNGXlXWVn5rnKqoUGr1cZejvU+540C3Yi2L9Xn1Qnm7tLlghHhwYANLzbMtrdve7ft8Zo1vT4+mFUGAXd8q0ym7Qf0JhlE24lgO5GDRnCW2SjknYTdf6DlkbmwO0kycwS53R0cOp2dT7u5wQFfiYt7t20bOutld5dtfb0VLkV1/cf8dQ8yV93OWn27pOLl661baydq4Weix6K9ur1cTrogvYyukqo+6k7D7qzw3fBX+w3AfSHObgngDtfZudPZ44xHwEBA6evSwieFsVmX4TDqGibgbgP9RQLuOo27zirDxtypC9r9umA7jbarj8DkglkJUz48bXR7zftbmZnE+Xr3eAcPBcOVge+MhIWdwwvknnRxOY7Tdp26Hclk9B9Z2MNdK5U93s4mk/l3Bm1nxe6mxTKkkPtfjIbcdzND7karp7LK3FmZO1PpTo+6k7A7F3kXl79LxejtLH7e4PXT8nQl92BTCmqfQ8F2qaTtdto+z2i7FWUycsbbRQLuIqB2BdB26WUyAuPt1vXJyAjcF1gK3H9SjlJmTsTb7bRdZNruaJK2C1W3u7DTdrtMRkm0XcRgu2nULpyzz3W8LjKCF0DeeQbe+WJ3YYYZs4qpWhB1l0YvI1jpfpSbuR+2WOl+QCbmzuFhJ3F2DsjOvQxDzN0A3F1/1gnc9T4Z6AXo9PhlV2snaq8lJ7/avLl9tj3yYiSKcsOuHdF22B8bmPtxB/i+80ln99PuPud9ip8W1+z6mL36zrvKysHAQAzFOjsfx4E7O23HlSN7GbQdsfW/4WloQ8O/83cqGDWwUWok2SzsrnO7u7mdU6uRtn4Wz7M/37Dhfm4uPFheeDc6Yyw4cQhaTtG91pnW2bY2+H7whWDs4nRhzB0uCGzxiUqqWNRdb5ghSqqyt/2MePvBr2ErjwH3wxhwd+p0gssbOBhYN1m36cWm0OHQ8h1v6hsnQ5KGYOrBZIEpgBUKhiGNigB76EPuBuauH6L6FeyXJNq+kKDtqkMwZVChVJjCcA+Jy74Cp4kJ7rXauCtx/v3+mgFN6o1U+OPTtWv7NRoabSfU7T/r1e0/4B9ZILpVWLzdCG3nYu5cYpn/YopleIfc+Ytl2Jk7yefOGXXnxu7GyTsLf5cLxAuH8vYKrjbL1uUj7FJzdltA7XbaPndou5UKpf5qC7TdijKZH8Wg7RYDd3FQu/JpuyXx9v8SHG83q1wqf5+MuAJ3Cyqm2oG7DMDdBmj7N3baLrW6XQKZjIdpmcxZJchk+BdKlY22WxRslwi1K4CwB5psCTwa969Lzd/5xd7NDryLjt35R91VYkbdzWDuruzM/aRRpfsJJSvd/0gqU8mldGdl7uw+dy7grkft1JUVfenFsiQjgLsjC3DHfTKYQgQGT2LOuFarvZaU9Hz9+sp3lZoBjftpd+dOZ9h/Y7Rdn9SFxwgWwobeqdPJtctV1a2KGI3o0HZsrXz9sqTkckzMOW/vLldX2MxjwB2n7VihVHw3qGOyVOWIAcvqySyt/Y0MRo0wd5phhhu7IzB6GJfMwHF2ubh0e3kNBgZe+v/Zu++vuNE0b/j7w3PefeY8O7Mzu9Nhum1CkavIOeeMwQYDNjbJBhtsk3Oq+jt2d8LuzuzOTHdPp+ncbWOCbcDZYLBxwjkbZzI67yXdFVRVkkpSSSpVUT06DMYYqm5JIH348r3i4mCbjo29nJj4tLy8uX0hLmcGTkY4I2KypvvX++eysmCVkmeTA08H+pzwgafvdtQNFkRfL2MUdSfd7/6aXJKKqB1txn0yBnA/vBk+MgJ3+IzVdfNVdfP1r+rXMSwqYwpOPXctuP+Ez00lt8oYm7v51ak22I6PzNVr+4+Eth+FUxWeKXw1S86/0te/9qyqqm2pbdvdbaUPS/vW+jqXOw81v7mRmTmu2796bf9GVxP0OWWZDJd4O3ttZzZ3liH3/+UecjcqluFi7j9RmjsVu1uQd0Z8ZyJ4W1j8iAPn4u3R5bk/LxvsAls4uyNRu+xK253abotBqWJUt9tBmYyEs1KtBndRqV1SbZeoTEb8eLvAfTKynJgqMLiz75OxPbiLH293aru42u5A1e2OUiZzigO4G2u7DYLtYlC7LZCdp6QLu/GHeEHknWvg3Xp25xF15zBJlUe9jCdzvUyocPUysqp052/uRuBO0Sdjru0Uzk5cklHO1zEGd7zA3fMreFLaPpngo7AT4djOLLqBYdjTigoUalZNqDxGPODGHe6nDffHhzehPhl0T4+3ygwrUO1J4b3CvrU+VLpyLjQUDdKE2+wfydXtukGpppUjpBA0klnyRmHu+noZ43mqfzOLujOwO+JRuNn+kYi6DxFR9xM+PuNK5Sl//7MhIVdTUzuWO0qqHkakT8KpHZ97ad+hl8+qqjCNJmsuK3IqMvB0oN+4H/5jiWF3fb0MirrDHbaW3c3knUztBm3X9cmYgLvnqCd8ltKHpd29qxoN1r3Svbv2SWjKeRzcQ4bgFIA9SAZ3Xcj9m3fprkLRJSVxKYimpJpp+5nY7Ons4rny2qfwTFsWW/r613ZUP9xV8wQ++/3t288GBx/z9DxK/DTFRNuZ9yxFvP3//l/aeDs7bTcxd+Zimf+2OD2VHHKnMvcvzIplTMvc2Zg7fdSdlt0Z5J2dv7OFeGk53n6L448Jvkml5/KCdXbIPirUISc3are7YLtT22U7KNXxymTsYVaqFeAuGLWLo+08BqWKMStVrHg7j3Gpti1wd4K7DcHd6up2p7ZLou02qW6XokwmylHKZGyr7SJQu2TIbmNY56XwQuE7J3kXj935R90lrpeRR6X7Bxwq3a0do8rK3M1D7ubgTmg7ZXvML/TUTl/6pwu568Bd8YVhYqqftk8GjofUrVfrm161dS51LneWPCiJmoryG/NDNeUo3o7IEIE78gCkg/jo1GOeAacDDr45+LaxsXL/MwzDLsXHn/DxGXJ3R+COm+x7732tL5PRVY5QmKxO2/+k20zNnTHkbm7ulOyO4snweEzmqR5xcdEPUx338zsXGvqsqmrv8711ja/wqapdS/sbXmIaDTzT0oelBXcKMm9kxs7EBp0J8h3zRVH3zUc2wyqRo+5kdkebwdnR9o023m4E7j/h4A7L6zHqoYLvfjNxZY/L2pfbWzsWs7bfgC8vxuCunZuqnUNgNnuAfJ2pr5Ex0XY4SeEwiMqY2lp2t6ntLT4ztm+1dbEVnm913XxB2Z2agy/gjTNxcfo9S9Z2o1J+VCbDKd7+j//IHG//d7PN1NxZhtz101NNQu7GxTIf8yqWIQ9Q5WruzOzOIO9W+jtni5eE4+16gqu4Lm/XpM4R2WXq7DKmdqe2i6rt3zu1fUOWyVgG91/84h9sRO08amT4a7uNymT+y1ptt3mfjPzA/VcbFNxtEW93ajuTthuDu6ja7phlMmM2K5OxhbbLhdrFd3Z7EnZ2BC++vAvG7raMurOpl4ngXC8jcqU7izGqZpXunMaosjJ32j53mpA7BbhTZ9uZqJ10naYH918S4P6vOnCH6wF4+rB0sEfCUs5javWORzswDGtqW8A0mriZON8xX/dhd1SWor+phdfhJhvdtaPbdLj19xjxUI4rc2/iAzaTtsx29axcTU3FW2UUCrhFh39nHoKmrhzRsSy+/exnfyKpKN2IS3NwJ5u7ZXY3aZj58MPDmzYNInb38Bjz9Z2MjHy+Z09v32r+7fytd7fWvKhZ6+8/1PKmniD45Y4OeLnrya7kK8n+J/3RgFn9ipmwO+p2N9/e00Wj0W26KbiPePiN+0VNRbUutpY+LK05+KJs72P4sqMD90E41LU17lpz/9bI3E2uJNF1IFzU+SFt/wlOFqTt8AUkpeDqwMD6gHq9vPZJTslNeL5wJDzauXO+qmq1t3e1p2c2KWlcqRyG3bp5s3a3kn+OYl7Kjxr5rY63/zvNxsPc2YTc9eb+CYtiGQ7mbjxGVV8vw4ndLcr7EA0FDvO2Rdnk4h1G4Tf6Jg2yS0vtgnTISBFst2mNjNy0/QfH1XYxymS+tIcyGZvE21mDu8DUbpfaLuisVDn0yYhc4M5xYqoT3IUGd6e2WwB3MbXd9tXtopfJiDMrlW+ZjMNqu1DULhGypzjuxjb/znvCKqd6dyHZnTLqznKSKt96GSZz97RJpbsVY1TfM650f9csPsw8RtUk5P6vZiF3C+BuEm+n1Xb8Uu3nm8hXbtq/QjN1dHNTteAOD1tf4A67KSZreqW7G8OwOwUF8LKjezntWprPCR/3IXdtZFt3I4vMnTw9Fe7g3Yfd4Z0jJiPal9qr6+bhI9zIyjoTHHzMywtu703AHW6laOPtOmr/I2mzAO7GlTJG4M7A7sY5ZaOGGUJF4Znpi92nIiPX1Wq8zmUVX6Kn5eVdPSt5pbeStswmbrlcc/DF+sDAgHo943qG6qTK85invvWebO4Gdje/vUba/q1W243AfdBVMaLwHfONnY5t6VhMuZKSW3pLrcEi0i7AqQeniQHcda0y2mIZ0gQC5Ozaq0F0XUfSdjib4DSErwNZ2+fqG18NrA9s2XE7In3yYkzMzZyc3r7V65mZM3Fxk5GRZ4KCYDWGdT9E0dYEGZfyM5fJoD2LwP0/jcel/s4Y3Nlou7m5mxTLkKenUofcdUfX/7KcnsquzJ2VuVNG3amK3VnJOz2+MxG81QrvhHjnJhSyS+bsNqb2DRxs3zja/p042m4v1e12USbzqaDazgLcRaN2W2v7763WdpHi7X+k13bp+mREn5jqBHfZ9MlYU91u39rOBtwD7XJQqrNMRphBqbbSdgvBdrEj7U5kFwTfBQq8WzT3RH4NMzyj7rapl7Gm0j2QqdKd5xhVX9ZjVBnM3YPW3C2E3E3BnRRvp9d2/IKN4jcU0dUa/k/MwF07MRVWEvZXdObFpoWmOwUFpwMDb+XlrWNY7HSs93FvvCOFBMd6Dkbyrg+8o9meIWdD8m/ntyy2rHR1LTQ3zyYljfn6Drm5wS00/LtviAJ3fZ8M3URNfevIH9l0bdP1yZhv9Oxu2jBDCClqmBl0cRl2dz/h43MuNPRqaur1jIyrKSk3MjNXe3sLyu5EZkzBGZeQd3m1p+deYWHzQnPEhQjlhBKWQlvFc2SzSdRd3+1usr2v01nt8v74Ab6wCNyHcXCPvxSvXlfDp+gfgJ2DxWRNw6kHZwqcAnCc6+amGsz9ffPrQO1FHXGRpvxxk07b4byDDwVf91o7Fu/k568PDMAHH1cqJyMiHu/atdjSMh0TA0fFuJ/fMS8vWA0jbX/33b8bl/KjMhnmeLvlcamstZ3C3AUJuXMpluFq7ub1MnTsfoSO3c3knRO+i03wToV3biyFfVTw/S6Gs8uH2oUOtsuuRkbO2s4j3i5bbbe3Mhk5z0pF2s4I7sJTO7/SdtG03WazUqWKt1sE9w9sV+C+kcFd6AJ3gbT9W6e2y2pQKq/qdrHLZI7bf5kMv0GppwOk0XZbUrtsnf28cJtNamesDbyzYneJou5862VkVekuxRhVgc2dGdxN4u2stJ3YtNdv+lYZPbh7/h0eOTxB+H6KJqaGp13o7Vu9u3XrTFzcvcLCzuXOsPNhZHA3ePF3BhqGe1Zk7nA37znqGXw2uG2p7fWBA62di8UPijEMOx0YOKxQwL03Du7vvYfAXd8nY+j4poq3/zexmZMopYd+wli+aSLvZHanbJihHKY65ut70t//TFDQZGTkwx07BtYHUgquhqWeT8qfbetcmt+zZ9/LfclXkmHd/E/6+5zwQZXueL2MbpKqEbtTbYZ4O/pJhg7c0W8PwHrCwrYvtze2vo1InySDO35gK7Uhd9NaJMMV3ffaYLvyR3h/OEcIbR+GvQ9fMWKzpw+1vHlSXg6f5WpqKh5vz81d6++/v337meBgeO6jHh6wDibarh+Bq61uZx1vZ+6T4aTtdOZumJ6qC7n/gXfInb5YxqTM3bK5G1e6U0bdqdmdtbwfNRc9dho47FR4J8SLL+yjIu1c+6R2uQfbHVLbnYNSHVTbbVUmQwPuvxSJ2u1Y2yWOt7Mdl8oK3K3okxG3wP0TJm23CO5ulsDd3ZHAXdp4u5ja/hsZaLvdDErdYGUyPOPtUpTJsNZ2mQTbxXN22ah6GLtNUou3IO+yY3eeUXcB62WsrnS30RhVK839K7bmTjE6ldwqYwbu5Hg7rbabXs6RWmXMwN3ve1gNWFLYWXCEb6+4v9jaeqegYLWnJ/92fvDZYD24a6UYRbNJRSjIiOGuF+7LPUY8gs8E9w+saTBNasFVeGWpre1caOiohwfctMMtLvxTuNMzgDuJZf/XOARNCe5aD6Vq/PiEKsNuchNl3jbzKbkkhD7qDnfyeKu7q+uQu/uop+cJH5+TKtV0TExP3yoG/6nVqPV+patr/8v9FU8rdjzckTWXFTEZoZpQeR3zch9yJ0+dxVdSd69vRO3fmf72gL4rXzGsgB0BuyPnZk7ncid8uq277sLXNB24H4XjnPhJ0o9GB7Du0P2NjtqJYDs+IhXe2YWYkupBZNvha0hU5lRm0fXy2ifL7e2H3hzCn5YG61/rh2cHz3TMz2/Ew+Oom9thorcdaTu5kf9zXbJMq+26n6OYx9vNx6X+wXxcqqV4+79ZMnfKYhmK6al8Q+7MZe4WzZ2hXoYruw+a6BsbfGft7xYIfmMqvNPiufP6qKi7TyRnlxW1yybY7tR2R9J20cGdn7bb26xUtH1sBO5iOTvvGhnZaLuM4+0S9slIODGVFtw/sxW4W9B2UcFdftr+vlPbrdd2+ZXJSDIr1UZlMnai7XKjdtGcXQBMF2oTheC5yztjzwzLkarM7M4r6i5CvQzXSncPVpXuVo9R5WbuPwhi7sxl7lQhd5bgblHbDVd06BKOHtwPw6qiRpH0wuuNrW9f7t9/4PWBrLmssPNh2g53AtxRBTnc+Rlu6b5+B/4Ib4e/hRtxxbAi4FTA/pf7DzS9Dk+7kFtyE8Ow82Fh2hp3M3DXt46Yjks16ZMhgbtRvJ2KQSnuqejvmv5GmVkmtbp/Q2p1/4lodT/q6jrs7g7P6KRKNZuUtNjSAmtVeK/w4JuDS21tew883/V4V8PbBngdXsLbA08Heh/3xutljrpqo+6EJejT7iabrnDECNzdh93hg8CHyruVd/D1weLKB83tC2GpCNxH4FIEDnWixl0bcjf9oZHf97pLMvyCCt4T3h/X9rAROIXh4xSU3cF/eKDR9A+sdy53tnUu7dr7OK/01qu6uuvp6fBMR2m03TAoVV8mQxNvF6pP5t+MNyZzty7kbj49lbpYhr25EweSublTRt2Z2Z23vFvv7xuH4HlCvKNyPPdFEH3v2MLZOVO7aB0y8q2RcWq7ww1KdZbJcAF3Eamdd7Cdq7YLWN3Ot0xGdvF22xW4bzRw99xY4G5tmYxdarvMB6U6y2TEqG6XRNuZgu22oXYRnN1qW08VbuNJ8MLKu0jsLljUXdB6Gc6V7iKMUWVh7gFM5v6hQObOaYAqY6sMNbj/wgTcabVdd12nbZXRg/tnZuA+DPs0MmOqcPe9xra3ajVeEd621JZ+LV11UqUYVsCtNtzU4uD+zXtwP4du1ODWCl7CH+HGEQf3wzi4qyZUGdcz4J9nF8/tqH70cv/+82Fhx729j7q5/UTMTf2ayERbAHdSyP1P9PF2VPRhAqDmd19/00Gwyd2REbvTtbojMyWo9HuiXuanTZuOuLighpkJlepKcvJiays838dlZU92735VV3ctLS36YvSW21vQBNqUKykBpwK8j3vj9TJDbmiSKoq669nddPvRMJbW5YgLAnevY14BpwN2Pd7Vutiav/M2fOSozCk49eBMgVOAOM4P60LuP+qPYdLF2I8o2A7vRtb26MyL7V1Liy0t5bVPYJfdKyrCNJrHu3Ytd3SsDwzghf4BAfBM6bT9S0ZtF7xPxkDt/+f/0LG7NSF3HsUyhjJ3Lub+nbm5k9mdbO5s2N1M3q3Cd47+vtEI3iqIlzPKW/d0JFp5S8fAsEwi7fZO7RKPSHVqu7O6XcIymU/F0XYC3DeatktVJiNovJ0B3P+XZZ+M4AXuLMBd4AJ3BwZ34fpk7F3bf+Cq7R9Kr+1iV7eLE2/3crBZqXET/MpkZKjtVgbbBXb2ZBGRXTpVFxTircX3ZO7yzobdbR51Z1kvI0alO6cxqkGUY1QZzP2wPMzdOOTOHtw3mYM76VrO6AJP1yqz+eN/dvkEgTt8OnxoKgHu8E0T1haOhMLd93pWeyqfVS40NbV2LBaV31/t6Ym4EOE56gm36ajDXQvuf/813E79CwGN8Dq88Tc//AbuyD1GPPxP+idcSqh9Ubun/jmGYbfz8ycjI8f9/PAad2JuKtwlfkkMTTVUyujAnTw0lbz9D3O83TifTr5tM5i7/t5Jd1+k3/SEahJ1p6iXee+979AkVV3UfcTDY8zXF690j4iYjom5lp6OaTQ3c3PPh4UlXk6E11/u37/t3rboi9GBpwN9x3xhJd2H3VHUnczuuLz/aKB2wyjaw5txcD+qA/dTASUPSg40vdZgmv6BtaiMKTj14EwhwF1X444OZsNkAv1V1k86bR+Eswb+FZyk8FVo36GXeGm7RhORPnkxOvpeUdFSW9vVlBR4OvAsJpRKU21//32ytmvLZHTV7YZZqaRBuKZ9MnpwJ/XJsAF3A7WTN2ZzZ5ieSh9yt1gsw1zmztbcOUXdzdmdn7wz4vtR+uILJ8FLavHy3mywqmI7u1TUbqfBdnG1nUTtTm3f6NoufZmMELNSJQD334qr7XIrk2EVb5dJn4ytC9wdFty/khjcecfbKbTdx6ntUmi7m420nbFM5pgkZTI2irdzKpNJMAJ322m7jahdemRPlfcmOL4Lw+7WFrvzjbpzq5fhUeku3RjVQKYxqpbM3cDu7M39XYvmzjbkzgHcf24C7sSlndlvMRpaZeDqiwrcR+BQxDAs52ZO+ZPyh6WlT3bv7ulbXe7oSLmS4nPCB+7+4c4YB/dv34NbPQTucDOkBXci4Q536l7HvELOhmTPZVfPV/eu9r5tbHxcVnYlJeV0YOCopyfcyeNzU999F27h4LYK9X3TdY+YaztFvF3nnp8Z13p8qbvf05u7IeRuBu4MivoFTb0Mirrjre4uLtpWd2KY6vmwMHi+LYstS21trYutja1vMY0GlqLkYQmsSdRUlP9Jf1Qvg09SHXTZfGQzMglTZvhJG283AXfVSVXC5YR9L/d1966UVj0MT7ugA/chYm6qNuS+iXww66kdvzo6Au8GZw2cYr5Eb3tczkx946v5PXtgm4mLu5qautrTc6+wEJ7ISZXqhI8P3tvu6mqi7V+baDuLeDtDnww3cDfRdhK7symWsSbkzrLMXQBzZ8fulIF3Znnniu/S+buUBG8jhbdHkbfxQrHYlaI6u4NRu/xL253a7jjV7RuvTEZUcLdTbbdhvP2PvOLt9lng7ujg/o6A4M6jT0bceLsV2u7HRdvZl8lYpe0OUN0uVZmMNLNSZVMmI662W18jIy9qZ43sqfa8WcB36wPvnEpm2LA756i7YPUyIlW6h4k2RpXB3P2ZzP0DIcydRcjdtMadBbjrC9wN2fZ/Im26Kz0yuP/NAO5e38DT2UQk3OHgxDSalsUWDMOmY2LOhoTczs9vbl/YenerckKpGFbAvTjc6WpbZb56h1wpA2+Ev3I76uY37pd3Kw8+wvyePfCy4W1DzfMaeOVKSsqYr+9RV1e46YXbSzK4f6ybrolwVu+zRpt5xYfOPc0D6eRbREPbCUmE0faRbqOIutNXupPrZfCo+6ZNR1Cru0JxzMtr3M/vQkTE04qKdbW65EFJ62IrAnfY+tb62pbaCu8VBp0J8jnh4zHigU9SRVF3wjNMHYLQdvgrl0EXWFj3YXfPY56wI2KnY+FDFVc+6OpZ0YH7KJwFxKF+xLQxSXeZhGpk4LyA94RTDE5e+BqVnH+lcPe92oMvVrq7u3tX4KHiG4ZdjI6eUCrh6Qy7uw+6uh7etIlW20nLq19buni7vk+G38TUf2MGdzNz51Qs89+WpqfSFctQlrmzNHfzMaps2P0nOnZnkHeW+C6hv0sTgbcjgpfM6OX+TNntr+GNR+2yrpGRsrRdltr+nTXa7niDUh2iTIZHvF0kcOdN7eJp++/F1Xa5xdut6JNhVeDuBHerwF28Ane+8XYeZTIy0XYW4L5ZqkGpVla3u1Nru+izUr0Zwd1HhrNSuZXJyFTbramRESTYLgS1s3P2VEfcBJJ3odhd0qg7tblP8K50t3KMqkjmvllYc/emM3eKYhnakDupVeaX+pA7A7gb98noqJ1UHoj+ijQ3Fa6v4BMR4P41PAV44rCGsPe37rrbv9b/ZPfuM0FBY76+kxERK52dOx/tDDwd6HXMSzs6VdfkDvd8aGKqvsDdY8Qj5FwIhmE3MjNf7t+/u/ZJ/8Ba7q3c0oeliy0tpwMDh9zd4W5ZOzeVsNq/6TLRyGe1gWgzcyfHjf/6T/9Ebm9H3GlUuY5uPukj2FptR35KUlQO5k6apGqIuru5oYaZ8+Hhj3ftetvQ8KCkBNbh0Y4dCZcTUq6krHZ3rw8MJM0mBZ0OQvUyKOruOmhg983GkooK3OF94D1xcB9Xxs3EqdXrFbVPe/u1lTJwssC5QMxN1Zo7OrD1V0Q4teM1MkfhxIETDU7k2OxpvPBHo6lvfFVz4PlyZ2d370rl/mcr3d2zSUkTKtWopyfsLHhSP23a9OMHH5C1XbuwpB9mWIi30/XJkCem0oD7v3ME93+zLuRuYXqqpWIZDuZOHD8Wo+7khhmL7E4XeGcj7/zwXVJ/l57g7UHhHWSTEtnFcHahqN1Og+1Obeei7TYblOoskxE/3i44uP/WhtounzIZacal2rZPxrqJqTzB/VdM4E7SdjcW2m4rcOc2MVVG8XbuZTI/bLhBqXIuk7HFrFRfuyyTYVfdLry2Sxdst5raWTh76kbaaPFdaHYXIepupbmrBDJ3C/UylsydZowqd3MPlMrcvb5hXSxjqVXG5VNW4G6k7TpzN7TKGOamwmeBz/4OAe7wTGHFYB8l5F7CQ9kYNhkRcSYoaCoq6nV9/a4nu8LOhyknlFpzP7IZlbmjG014BW5n4e7Z9air93HvuJm4tqU22Cr3P4vNns7bcatvre/Qm0PwMc+HhY0oFHCbDf/uK9Lc1E/ImWhdyF2fc9f/8c/0fTL6eLu+9UVfMv6FyUhPSm3XbRbM3dj0jepljKPux729T/r7nwsNvRgdPZed3bPaczMnZy4ra6m9HdNoCu8VJs0mwZKqJlRokiqsqp7dtfJOUDuyUhzch7Tg7jfuFzUV1bTQpNZg+w69jEifhFMPzhQ4HYhjflBn7rprHuLyhkgJDMG5A2cZnL/wr2B3wIPJKbmZlD/7eNeu+erqO/n5sM3ExWm13c3tCKHtP5hoO2OZjEm83bxPhuXE1N9y7ZMRM+TOXCxjjbkz1MvQRd2p2Z2fvEuG7/L2d24E71R4CYVdSme3e2oXOtguxxGpTm2Xq7Z/yVrbHbhMRnBwt2ttt75MRqR4uy36ZEQHd0Zt33jgLlCBu4jxdpGr2+1B251lMnKZlSpCmYwVg1Kl1Ha5UftGd3Zh5V0gdg+yyO4J9OwuXL2MGGNUTczdk4u5u3M29yPim7ulYhnddQh5dColuP+SN7h/QAb3jxG4w6eATwqPBx4wPEFYGVhtOH6q6uZbF1tv5+dPx8bOJiW9qKkpfVgafyk+7HxYwKkA1IUCN/dwq41ulNFgT3iLYkShnFDufAT/21m4+x4chLDH4QPuqZ/vH1ib37PnfCh8h/OAW3TD3FSzVhkTczfSdnKfDBW4G2rW338f7mO/NgZ3k5GeyIX1G525f0pn7uQxqrp6mR+JSaraVncPjxM+PhMq1fmwsOc1NZhGU/Wsqm2pradvVYNpltrwn0lkXM8IPB0IS6qNug+5IV/RYwlyFLxPZshdD+7hF8IrnlbUvKjZd+hleNoFOPXgWz/+Ox9w5AcdJR3n2usZOBGI0vYRON3gLA5PPZ9ReB0j/pvLzr6RmanWYHNZWRciIk4HBo75+uKl7W5uRzZvNtJ2WE+TQakmXT0kbf8r2o9mU3DJfTJigTuDubMJuVuanmpSLENZ5v6ZbnIvJ3P/lsQ3BnMXhN2p5J1l7J03vtu1v3MmeKfCCyrsI4LuSrGcXXxqlyjYLlyNzIbWdocblOosk+FaJiMguNNTu8Nru7Dxdmn6ZMQucN9kXZ+ME9zl1yfj1HZRtd1GZTLixtutn5WqYgHugmr7Kflqu42pXRbOHm5hu8C4Mf1bUeWdW9uMgOxuy3oZsczdwhhVanMfpjR3NxHMnWGGKrnM3YK5M4fcjVpljGvcmTvcKcBdH3In1bibgvsPsA6wmLDLItInDzS/bl5oflBcfCsv70Vt7c7HO/Nu5W29u7X4QXHq1dSgM0Fo7KfeA1DhiddxL/irymeV3b0rMVnTfkTVCRwVyflX6l7VoYT7qA7c0dxUk1YZcjL6z2babiKeJhNTtQl3nYPrdRgFsSlLxs23jxjDy6bdMsTnQpXuSEuRueNRdxcXFHUf9fTEG2ZCQ2EZMY3m5b59q72994uKYBn71vowtTr5SjIsmt+4n9cxLzzqPuyOtEYvLkgu3Yfc4W/hffzG/MLOh3Uud+5+shuWFE+4x4zDKQPnBd4qQxz55O47OCNgt8KOgFMPzv2EvMtVdc+6ela6e1fXMexA02v4IK/274ddoy1tVyjg0+La/uGHFrX9M+MyGco+GboCd1uBO6eQO3OxDGWZO9ncvzCe4mtu7qaV7pai7hbZXQB554rvNvJ36Qmej8JvWIjnvlDDYmySR9ptQO22CrbzrpGRt7Z/L3Ntd1a3y7hMRihwl7O286puF35WqvDxdhH6ZGRT4C4NuCvsG9z59clIVibDs7qdhbbLZlDqoJDV7XIuk5Em3i5mmYxI1e2SabuVwXahqF1KZ+fu6YJsIig8v8A7O3anKXa3GHWXztzZjFH1Ya50F8Xch+Ro7oZiGYaQO12rjKHGnbj00l6MsQZ3Q427dm6q4gt4GPDw4FnAE4cVg5WHnR6ZMZW/83Zf/9piS8vrAwfqXtWpNRhe9n3wBUpGR05FooYZ5Cueo55ex7UWjN4hPO0CHCqw6+HISc6/strTA288GxIC7w7383AbjGrc8ZA7oeGf0Jj7n821nQbcEYUjB0d3mOiO0ahPRvdZjMBd1xNiMHeq8PJnpNGsZHPXj1ElR91/0kfdiVb3Ez4+pwICJiMjLyUkPCguXmpvn8vOfrlv33J7+45HO9KupUVciPA/6a+Nuo8oEAXpCQfF2/XgHnIuZOejnQPrAzUHXkSkTypxcD9ODDkYJhUraS8/4O1wKsGOgBM/vfB6e9dSXeOrbbvuvm1ogAcAO2WxtfVCRMS4n5+2tN3V9TCztpuUyZAXll2fDOXEVCHBXaCQO4diGSpz/5yTuVuKugvC7hblnX3sXW74bhN/56/wjmTxVqyATZBdpEg7Z2oXrUNG1tpOonYe2v6DU9sdUtt5V7fLrExGEHC3skaGh7ZzHJTqYPF2a/tkhChwtxm4s56Y6iDgLn683VeMeDvn6nbhBqUeFnxQqmjV7WKXyYyy1XZacD8hu3i7yGUydqvtjkDtwth6mqXNCoIXSt6FZ3eRou5iVbqPcR6jGmFpjCq1ubMboyq4ufsxmPu3ZHOnK3OnmZ7K3CpjMjeVPbj/hdwqQ5qb+oV+bio8U1gZWGTYfXA4RWdezC6eq9j3tLN7ubNnpbpuvqDsTlzODLwFw7DmheZtd7eFnA1Rjit9T/j6jvkqJ5T+J/0jpyLhb2sOvoDTEA4/OKLgKN2y43bti9p7hYWn/P1HFAq4z8fB/f33UeXL57qQ+yeE2OoLSYzYnXidAtz1Q1N1rTJfmNwKMsfbyR+TpKgMZe6fGddzG5m7eb2MPuru7n6MiLqfCgiYiop6VVfXttSG99prNAdeH+hf7+9e6U6+khx4OhBW0uuYF2J3xbAC+RBSPe1PNcb9gs8Gw+JXz1e3dizCOsM5CKcPPvAgdER/FqCrC9ibcE7BDoUvEQm5l2DfvTl0KH/n7dtbtsCnvp6ePh0Tg6bjjnh4DLm5Dbq4HN68+Uedtn9H0nb9DzDIZTKU8fa/kvad9eD+H6KBO/P0VJOQ+/8Yh9wNxTJmvw9h8uMZWnMnTfdlNvfvyOZukd1Fkncx8d1m/i4awVul8DJEeYGey7Com6jO7qR2G9bI8NN24qulw2u7vKrbN0iZjGjgbn2wXZbaLnW8/Y8Cx9ut75MRu8B9M8+JqY4C7l/bCtwFiLc7y2TsrkxG7Hh7NJ94u1L0eLs0g1JF1nabBdvpqd22wp4m/ia2v/MIvPNvmLE66m7TMaqmX5Q4mXsYD3PXsbvw5v4dhblbLHNnF3LnVONOCe5GrTK6GnfD3FSf7z7Ea9zxVhnYL3AARKRPZhfPYRi27+W+1/X1L2pre1Z71vr74Y8LTU3ltU9XurvLHpdFX4wOPB0YcCoAXgadCYqZjulf7y/b8zgyYxIdrlGZU7UHX/T1r80mJY37+Q0T4A630N8RQzi/Qh3rZiF3PYX/hUTtdFMrDSF3km8aak/o4u3GH/YvJuZOCrkzlLlbNPefCOscdHXFo+4KxTEvr3Gl8kJ4+L3CwoelpS9qah6XlSXNJsGSwsImXk4MOReinFD6nPBB7G5Ar1H81wi8j3vj4H4mePv97eg3CSKI3ySA8wgffkA6NeB1eAvsSry0Pe1CccUDeOcB9Tps9Y2v1tXqW7m5Z0NCJpTK497e8MCOEiNSD2/aRNZ2NHvWdFAqi3i7SYG7kODOulXm3/iOTrUYcqcslrE8QNW8z5250p0h6s6b3ZnlXf74brf+LjzEy34blmZjt2flT+1ObRe2Rsap7c7qdpvE23mDuyy0/f+zrbaLHm8XZlzq/7O2T4ahwJ3fxNQNDO5eXMBd7D4ZsctkNoC226hMxsazUlnH220xK1W8MhkhtV22wXbRqZ0DsqfJY7OE7xIF3kWLuvOsl2E/RtUuzD1YTHPnNEDVrFiGW8jd8tzUv1hulTGpcff7AZ44apWBPRudefFQy5vKZ5VF94swjeZmTs5sYuJMXNx0TAxs94uKXtfXV9fNH3h9IGk2Kex8WMjZEHgZfym+c7lzR/XDmKxpOK0iM6ZySm6q19VPysvPhoSc8PEZVigGXVzg9huvK9HPNSUNNSUn0P9iZuJ/MTNxrXKSYsXmv25sjsKUH5xDyN3c3ElsajD33/zmR129jD7qPurpiRpmzoeFXUlOVmNqDMM0sMTEVvWsKvpidMCpAL8xP+/j3ji7H/P0hH9zzBNe9znhg8A983pm21IbrD8O7nEn4ZzCzxrdaQJ7EM4jON3QD06KKx/UHHietX1uvrr6+Z49L/ftg72Jgu3wgeEh4aXtxE5h1na6eLt2XCp9gTsluJt2uP/jP/7O2Nz/Q/xWmd8R4G4h5M6iWMa0zJ2vuVuIutM3zJizO2XPDEPgXQx5H6S3RduG39n6uyQE7wAWPyzxxnr3iefs9krt1sxHtZ/SdllrOyO4bzhtl1mZjDWzUnmD+2/tQdtZVrdLUCbDGty5xdulLHDnPzHVZuDuzgrc2Wu7BXA31vZf26DAXbx4uyNVtx8RvrpdzDIZO52V6mt1mYxS6lmpDqftMqN2tmH2NHvYhMV3idjdmnoZiceompv7CQ7mHj7qYczutjD3H0jmbrnM/V2SuVuanvqFIeSuH50qQquMtsYdtcp4f6NvlYH1hN2atu3a+sBAxvWMtGtpGIZdz8g4ExR0wsdn1NPzuLf3SX//ycjI+9u3D6jXO5Y7sm5kxUzHRF+MTppNal5o3lH9KDHvclz2DHwQTKNZamubjo09qVKhmZyoJRxujPUhd9S0bpJD/ytVDp0uhE5WTtMbLfPOE6p4uymh0n98ymIZOnM3qpcxjrqP+fqeDgy8nJCw0Nw8v2fPcmcnrPbbxsbdT3bHX4oPPhusmlD5jvn6nPDxhhUnNlTdE3wmGN5Tg2m6elYi0ibhrIRTDM4jw3f2qBPwPRdO+YS8y5X7nzW1Laz29iLSv5KcfD48HHYfHmz38ECl7fiIVEpt11W3W4y3m/+YhAe4/14acOcVcqecnspU5s7a3I0q3VlE3b8zdiJW7C6CvMsO36Xxd2kJXiYuPyyHTRpkFyPSLhS123+w3antNtF2m1e3b6h4O1dwl5DardR2x42327hPRtwCd0cA93dsAu52GG+XX3W7s0xG8lmpMXZWJsOhul1ybecbbJeG2u0Z2TngOy9558TuYkXdRamXEcTcLYxRdRhzNxTLcAu507TKfCxAq4ziS3gweMhd+QM8d1g92I+Fu+/1rPbETseGXwhvXmh+UFIyoVINKxRw7z3k7n7c2xv+eC409Gpq6mpPz4B6fdvdbSlXU9Kvpde+qC3b8zh927Ws7Tea2hYwDLuSDAdr8Lif3zEvL9QVjuepP/zQPOSuNXcd4FoYbWqsnHroJN9TfWIswh8xavtfSJ+CfVXIl5TmTpqhalov4+Jy1M0Nj7p7eODLqFSeCwmZiYt7vncvrFXvam/fWp8aU2+/vz3iQkTAqQDlhNJ3zBdtfuN+qpOq4LPByVeSu1e6q+rmI9In4TyFM057WsE35ZhxOEnha0hy/hX4gBX7nr6oqXlVV7fW2zublHQ6MHAM7QiFAi9tRyNSzbWdqG43KpMhxdsFBHc+c1N5tcrwC7n/N33InbbMnWqAKktzN62XMWZ3uqi7AOwurLxLgu+i+rt9EbzDblz2gtjObt/UvmG0/Xuntkui7c4yGUHAXVpt/5Wk2m7jeLto41Ltr8CdHtx/ZTtwl9XEVOv6ZCSJtzur221WJmMx3n5c1Hi7OLNSJ3iUybADd5lpu9Q1MmJRuwVnT3PEjUre5cfu1tXLCGTuSsvmPrYBzN1ysQyLkDvt6FRrW2VcPsVD7oov4NoGHhg8eHiO8E0Ndllp1cPXBw5kzWVFTEZgGLbe33/S339YoTjq6jqERoD6+Z0ODDwXGnopIeHRzp247T6tKLhTUD1fXV77dNuuu83tCwvNzdfS4LQJPxUQMObre9zbG1HvUZOQ+zvvoAC1qbmTM+nGm0kIXc/i5jdIH5vx/V/4gjuZUD83Drmbl7kzmDuql4FlRFH3E76+sLawSre3bMFXUqN5Wl6uwTTb72+Pm4kLPhvsf8pfNaFSTijhJbwecjYkaTZJva6u2v8sMn0SzmU4E7XfWONOwh/hjcUVDwbU6xoNttLVpQ22h4WdVKnQ7ygME6XtaESqqbYTg1LJZTKU8XZDnwzjxFRBwJ1nyN0SuPMLuVMUy1gaoGpi7p/TmbvFehnGhhk27C62vDsqvnPzdyfB2xGys3D2DU3t0tfIOIq2i1fdLpa220t1u4zLZNiD+28dTtvZlMnINt5u4z4ZJ7hLAe627pPhOCtVxDIZ2Wj7oKXqdjmVydhFvF0Gs1IdQNvlQ+0b0dkFl3dTdufUMCNcvQy7SnenudOZ+wfczP2b9ywVy7AMuQvSKvML4jqNFHL/Gh4qfL+G1YCVT8i91L8O/+uvf13f0rH45tChc6GhqIcENtSIciog4ExQ0IXw8EsJCbfy8hZbWtqW2mpf1O479LKvf+1ZVdX1jIzpmBj4h6f8/cf8/E74+CDwHXJ3R6XhcJMMt69fk4plTGac6q38IxNqNwN3Q77Y7I7IKCxPr+0MlTLUfqrD0y/pi2UYzH2QIMVhhQJF3ceJH2BMRkbeKShA9S+7n+yG/0u7lhZxISLoTFAALDcxnDb0XGji5cS+tb7quvmojCk43/EzN/4UvISvD3E5MyWVD7p7Vx6WlLxtbLy/fft0bCx8ZPj4x9FvGLi7U2u7WZmMeXs7S3CnTLj/SQ/uP/sZNbizr3Fnbe7sW2UEKZaxfMxQmTt1pTt91J0zu7MOvHOTd6Fj70LhuwT+zpngnQovhLAL6ewiRdrFp3Y7CLbbg7Z/Z5/a7qjV7Q4Tb2cD7nak7Xyr22UXbxejT0YeE1PFAvfPNzS421u8nUWZjIDV7Yc5Vbe7CFLdLvNZqbTgfkJ+8XahZ6WKXd1uv9ouALVL6uwRImxykXf27G4p6h6cLFi9DJ8xqqRz2aK5+20Uc+dQLPNrqmIZfcid3+hU5lYZ05C7rskdHjk8X1hAOELU6vWX+/e/bWzUYJpXdXXX09PRpE3k5uN+fif9/eEt58PCpmNirqak3M7Pf1ZZudLdvdrd/ayq6k5BwdXUVPgreIfTgYETSiX6t8dQwpoIuf+oL5Z5992/M5g7id0/smTuRtRuVk3DpO1cwZ2yyV1n7gYk1amoFkDNzd3dHf0MAxYHVulMcPB0bCys3mpPD6ZWw+KXPCyJm4lDk2lDzoWEXwhPvJwIby/b+zgm6yJ86YCvAPAlIjJ9MnXr1ZaOxV01j5fa25c7Oy8nJp4LCUHB9mN6bScoR6/tiDbIZTIU8XazPhmTialsKmX+pJNrI3DX1biLFHKnBHeKVhk2IXdLxTKCmLt5vQx11N24YeY7M04yNymegXer5V3u+G4rf9+YCs93oYYkdHbbU7v8gu3yrZFxartctf2LDantFsGdkdpF13Y5l8kIEG/nMC5VJn0ybCem2hLc/0XW4G6DAndJ4+02KpPZvGHKZKSYlSrjeLtws1J5lMnIUts3BrVH2HSzQ3a3PurOa4wqB3OfsGzu0dzNPcLW5q6iNfff6M2dfZm7jELueJM7CrnDIsMxmV08V1L1YGB9oORBCYZh89XVk5GRZ4KCTgUEnA4MPBscfD4s7GJ09GxS0s3c3KcVFesDA/VNrw++PqjBNMvt7Q9LS29kZl6Kj5+MiIB3Punvj+esvb3xVhNiXCcbc//EBNDJ+K57CwO1mxTBW9R2k3oQ9uBu1CpjFnL/Th9ypzJ3VC+DBtKOET/JOBcaejkh4UFx8WJra9tSG4q6R1+MjpyMjJqKSp5Nhp1SWvUwLmcmMmMKNniloOxOa8ci6pC5lp4Oa64NthMLjpe267LtRwhPQRqi13ZyvJ0DuNN3uP/ZBNy5tMowh9xZmbtZpYzFVhl+xTLWmrvuNyRY1cswRt0FZ3eLgXcBCmekxXfJ/J0/wTuMxVv39IcE32zh7PKhdumD7U5tt6G2O6vbhSyTEQjchQq2y03bHTjebnWfjGDg/gktuLtYAneLE1P5gPsXsgB3UQrcuffJyCTe7iyTsatZqbKPt8ugTMZOtF2QDhmm9hiHQHbh/d06dhcg6i6NucdTmXscO3OPEcXcPY3N3UNKc1eSzJ1jmbtxsYzAIXcaczcPuf/NEHL3+vo3vt/BE4RlgTWHwyA2ewbDsJIHJbUvatf7+982NLw5ePBGZub1jAzY7hQUPKusXO3tbW5fONj8prD83q69j/e/3L/17lb4J2pMvdjSAv/8ye7dc1lZM/Hx58PCTgUEjOvmdh51czvCbO5U7G6E7yRzN3oLKQVvEdzNtf0jckcNaRyrRXA3aZX5hhRGxgFUXyzz4YeH6cydaHWfUCpPBwZeCA+/kpz8oqZmra+vc6Wz6F5R8pXkhMsJadfS2pfaSyofJOfPJuRdTtt2bU/9fFvn0kJT0+38/OmYGPTjDdSbb6Ttrq5HjMtkyO3tQoK7ccidLbizDrlbNndmcGcdcidPT/0jZcidocxdKHM3i7qzb5hhz+4Cy7s4sfdBRtwUHt+F83dhFF5uIi/c0xkSaRPP2WVI7TYMtktfI+PUdnvUdjNw/8yx4u104O7UdlHj7TzHpcqhT0bwAnfO4O7mBHdx+2REjbc7y2RsNCtVuHh7NJ94u1K8eLvIZTLWafsZ67RdqBoZIYPtolK7cCw+yW6THN/NAu8yibrbZoyqA5n7JmHMncX0VEFC7h/SgLtRyP1jFHKHj4+H3D2/ek87PfUwrA8sMuzTxC2XMQx729DQ1bNS8rCka6Wrd7UXXvas9nSvdvev9e+pf55dPJdScCV169XiygeNbxszrmckzSYlX0nOu5XXstiy2tvb3rV06M2h53v33issnImPPxMUhNh9yN19EPW5m81Q1TeG/82Md2kLZBi0nQD3v5pTO7228xuAaQ7u35Ik9AeddWpD7ps3D6IZqqhbRm/uPj7jSuWpgICzISFTUVHX0tLmq6sxjabhTQMsae7N3PrX9aXVD2HZt+66q9Fga72997dvv5yQcCE8HC/wUakM2u7hMUzAE9J2bbyd1N5u2idDKnDnBO4f0YO7easMj5A7tbnTsTsjuNO1ylhbLMPV3PU/s+FaL8PcMMOe3TkG3iWSd1vgu038XXiFt59tyKbIbhfUbjfBdqe2O7Xd0avbrQF3oWpkJNN2Yctk5BdvF7dPZkOCu0Le4C5en4zA8Xb2s1KdZTJ2PCvVseLtLMpkpKlul1bbrQ+2i0Ttgql6utWbFRxvZeCde9T9vNT1Mk5zJ74juFCY+2EW5s44QJVXsYw+5P4vbjpzFyHkDh8HPiy5WAaeAjxNWBBYRviCDwdz0pbZjMLrHd3LGIZV181rNFhp1cO80lsJeZejMqbgzIpMn4zLmSkqvwfvkHIlJWoqKvxCeMSFiOiL0alXU8sel6k1WHfvCkb8d6eg4HpGxvmwsDFf3xEPj6NubnDPTzZ3uBv8ghR1/1R31/QJTeCdunPG3Nx17E52dsvazhBvNxmaygbc9a0yZiH3YYUC73NH3TK+vri5+/ufDQ6+EBFxKT5+LifnVX29BsPnqda9qqvY93RP/fPVnp7HZWXX0tIu6uryT6pUaETtMS+vUQ+PYap4O7lPxhzc6RLuRkNTjX/54COqual8WmXMQ+70xTIGczdhd90bLYI7m1YZ85A7q2IZY3OnPIo+Y2PufKPuLNmdX+BdDHm3P3wXx98dD+KHpNkkcHZ5Urtsgu2SjUh1arv12u6sbhcj3m4C7r91aG2XMN4ugz4ZIQrcJZ6Yap/gbsuJqez7ZOQUb7ffMhnrwT1U3vH2KAni7ROs4u1x8om3O5y2C9vVLp2zC2rrfBReBHm3lt2lrZeRlblHydbcKQaoUps7ZZk7RbHMVzTFMpxD7izMnRxy/wgPuRtPT4XHAw/yN7i5/wSLAAsFiwx7B/YsHCfo8IPjDQ4k/PAgjgd4BQ6wyIypwt33evpWk2eTw86HBZ0JCjwdGHAqIOh0UOi50LiZuJ2PdmIYtr/h5WpPT8XTisXW1ovR0SdVquPe3sPu7kdcXFC9DNyvfk2Ar0nU3STtTifvFnLuZttHvLSdLt7OUCnDEtxHPT3RDFV8Mq1KdTow8FxIyGRk5KX4+OsZGfe3b3/T0NC+1N7Xv/a8pkY7nDY29kJ4+Jng4FMBAWg+LSzpMRRvZw3udJUyXxqDO13bD3OrjDUhd4ZiGSNzN97+nRncGVtlOIXcLZe5C2TubKLurNidR8+M/ci74PguE3+XP8cPSb+x3zViOrsdU7sdlrY7tX1jDUrVXfvxAXfJtZ0M7k5tZ9R2W8fb7afAXZSJqQ4J7lwnpnItcOc1LpVXvN1ZJiNImYwz3i5SvD2BT7xdxOp2KUrbBauREZbaeSJ7umw21vjOi93Zdbun8GN3Y3NPFqbSXUxzH7cPcw9gZe4sBqjynp76ucHcTULuhLmTQu6mxTJm5m4Ad5PpqfjFlUJb5k6Y+/fwpOD5wmrAWsFKwvLCgpN2B/G9I3oMdiscEnDcbt11F8Ow1KupIedC/E/5KyeUynGl37gfbKoJVfDZ4MTLiTse7VhsackrvVVVN/+ssnImLu5caCi846iHx6Cr60+kSvevdAlryng1s7xTpt1pNzK1M2r7ZwzaThlvJ3e4I9nU8eVhHT6ag/txb28jcA8NnYqMvJSQcCMz82FJyWJra0vHYudK56u6urvbtl1LS5shwP2sCbh7eVGCO7lS5gc9uOs63L/RgftXxuBO2SrzN3KrDEPInXWTOz9zN5F3undgA+60IXeL01ONy9x5mDtDpbtpvYyo7G5l4J2TvNshvsvT30UC+iEZblyQ3Vpntzdqly7Ybic1Mk5td1a3S1Ymg66C/kHo0nYhtV2k6nZBymQkj7fz7pMRqMDd+ompVoD7r9iDu7tA4O4hOLhLXeDOtU9GnHi7I5TJyGJWahhPbZd5vF0lq3g71zIZeWu7fVK7/JDdOnwXld2FrpexwtwT7NLcFezNnVzmbqW50xTLsDB3s+mpFCF3LsUy2jL3vxpdEH5ICrnrpqfqytwNOXd4zPBc4Js1PGXih9ZH0fdBtJLo+xd8Y4IdBLsVDra80luLra05N3NCzoaoJlS+Y77KcaXPCR+vY16weR/3Vk4oo6aiMAxranu7o/oRvPKsqmr+Yp11AACAAElEQVSlq+vRjh1ng4NHPT3J5q6vl/mSqtXkU3N25yTvummrH5sF2/U2+in7bLuJtr/77rfs4+36DndSvH3Mz29Cr+1RUbNJSXe3bl3p7l7HsJ17HtU1vCp/Wl7xtKJ9qf1Fbe1cdvZMXJw25O7vP65Uwkcw6XA/SlgPeWjqj/qhqZZaZSyE3Dk1ufMtlvmtsZj/O/eNEtx5hNwtF8uQytz5mTv7qDttw4wV7C5M4J1R3gWLvdsLvsuP4O1pkxjZxXB2AandfoPtTm0Xp0zm787qdhmUyXykA3cBg+0ctX1Dxtt/Rqvt0vfJSFzgLiNw5xJv/1KWBe5i9MmIHG/fyGUyVsxK3eDxdn/h4u0Cl8nw0PYkO9d2EandTpCdr7zzYHenuYtk7h5im7s/jbkrLZs7c7HMr8nmTjc91ZVjsYwh5/5X4wtCUsgdFcvoyty15u79DX7Z4Pc9PC94mgS7H0HfOtH3R6JFbQTvnIk6AQdJXumtpfb2PfN7Qs+FImr3Pu7tOeqpGFEohvHNY9TDd8w3/EL4trvbGt82ajDNwTcH82/nt3Uu3SsqOh0YOOLhgY9RJcwdr3RHUXcqdjcPvFtsm6HbPjGjdgOJSqvtx/VlMv7+Z4j29suJifcKCxdbW9UarGLf0+ziOdgONL0ufViadSMr71Ze71ovptG8qK29kZk5HRNzLjSUnHOnMHcCXAwhd2TuiBtMRqeSbtG5NblbXywjgrmzBHdWIXdSscz/UBbLsDd3ygOMpblzj7oLwu62lXfrY+8i4Ttnf3cSvEDCLpmzb3Rqd2q7/LTdOShVJmUypuC+QbTdnuLtbMalsumTEajA3XYTU20L7rKYmGptn4wdxdtFL5PZQLNSHTreLtasVPHKZOxC24Widsd3du7yLkqxu/X1MjSV7nZj7pGyMPfNdOZucYCqdcUylqen6otlNpsUy1Cb+8+pQu66Yhkjc4eH9z5RLwNPB56dObvjbTNhI7BHYL+nFFzFMKz2RW3kZKRyQul93Ntj1EMxrHA76uY66Ooy6AIv4Y++sIcvRjctNL1tbKyqm4d/otZgXStdc9nZ435+wwrFERcXuLdHY1S13eKkkhM9/prcmP2Nsm3G7BeEPzEWdkpnZ5DQL1n0ths1ySBtR0xJ3yRzzMsLn5VK1MicCQqajIi4kpLyoKQE02i6elf6+teyi+cS8i7H515K3Xq1o3u55EFJ0mxS/KV4eFl0r6hzuRPec6ULX8OLMTFnQ0JO+vuP66anartlOJm7lcUyjOZuAPef/ey/JDH3/+AO7pQhd4vFMpQDVD9inA3wKRdztxx158vuTFNVLco7vdDxl3dJYu+DFo3VOsMdciq8aMIuDLKLF2lnpHYbdMjIINju1HZbartdVbfbXZmMEbhvIG23WbxdnD6Z94Xok+FW4C43cP98g4K7wH0yzng73zIZm8fbIzZ0vF3YMhm71Xaq0nYbBdtt4uyRwm1iy7vwDTOOb+5jDmnufMvc2UxP/QyF3GmLZajM/eemF4T6kLuJuX9hau6+enPHvwvrxqLgywXf/mC1YbcmbZltfNuIYVjylWTVSZXXcS/FCK7tLoMucLuPbtzhdY9Rj5CzIfBubxsb4Z/AwZm69epKJ15KfjY4+JiX15CbGzL3H3VR929JCkzXc2IyX8ti0OlvVPTJvlybZbD9B0tTUg3U7u8PT38qKupmbu6zykpMo1nv74dVKiq/H59zCb5qwReNyIwpWLEB9Xrpw9K4mbiIyYiICxFRU1GpV1M7ljvaltp6VnvgH97KzZ2Ji0Psboi6Uw1QNeqWEdbcWZa5szP339GY+38IC+70rTKUIXeGMncTc/+YvbmTx6iSjjquUXdh2d3KwLvY8m4X+H6ULys7GsRbtw5HJXR2J7XbMtjOW9u5ULvY2v6NPLTdBoNS5VfdLmqZjAHcHVfbRSmTkfm4VFH6ZMSZmMoa3K2ZmGpf4C54gTurPhmbxtsFnJV6xAjcA+1gVqoz3i7NrFSbl8lIo+02D7ZLRu2R0m7Wybsw7C7AJFVe5k7D7nZo7uGCmbsrO3PfZGru7Aao6otlfMQolmE09w9NLgg/0ofciemphjJ3rbl76s39O5Rz14XcDd9MUcgd9ldUxpRGg70+cCD/Tn7w2WDv496KYYXrUVe444c7b3Q3DLfv7kPuqglV+dPyvv41OIPgwICjenfNEwzDLkbDXvcd8fAYcnMb1KGwnoO/NSs8MYHgz/nes5Fv9iwGjc2p/Rvu1D5KUDteIKNUng4MPB8aejkhYb66+lll5UJz82pPD6zkoeY3SVtm4asEnLzE96Oz8HUgMe+yWoPtfrI7+mJ06LnQ4DPBsMEr8Me8W3kaTNOy2NK10rXe338rN/dyYuK50FAyu2vHqOqj7gSmoKg7ZZ+76VIb/3qBsOb+nyzNnYrd/4MdtTOAO12rDG3InVwsQ1Xmzs/c+UfdJWN3ecu7IJ0zEuC7AAQvc4sX6NkdFXwTz9ntgdqlm49qXY2MU9ttou3O6nZ+ZTLosucf5Kbt8iqTsWG8nW+fjB2B+y+lAPcvJAP3d7iAu3UTU23YJ2OTePthO52V6s5zVuqIpVmpGzjeHi+LeLtw2n7WMbRdAmqPlM0mYOBd6qi709x5mzs55E5t7keYzZ3TAFXTMneBimVMy9wpzd3kUlB31WcIueMXY4S5wwWS51fv6vrc4bnAUzMG90E85B46DPsCDrAd1Y80mKanbzVpNkk5rvQY9XA76obAHd3gwivwFt8x39SrqZhGk1JwBY5nOAtySm62LrZeio8/qVId9/ZGzeNHSexuQGEGeSfju4m/02+fmxMnvbMzF8iY17WbFMiMKBR4V7u395ivL94eExw8HRt7r7AQtnW1Gk+1q9UDA+sYhqVtuwZfPeA0xE8u4myCUw/O7sS8y509K3uf742aigo6ExRwKsD/pD9sgacDQ8+Fxl+K3/FwB+yCymeVyx0dbw4delFTA6t6ITz8dEDAmJ+fgd3Nou7keplvSYtsMkOVuc+dtltG2Jw7jbmz3FiCO3PInbJYhrLMXVhzZxN1Z2qY4cTuvHpm2FTNcJJ328beB1n4rIAcPCTqJhtGl1TYWTu7SNR+RKC6dnsKtsu+tN2p7XLUduPfU7SjMhl6cHdUbZdvvF1ufTLcC9w3GbSdF7h/as/g/hULcJd5gbso8fYPWcfbN+asVGe8fUPE2+Wt7ZIE2x0B2YXBdyHYXVxzT3aaOy9zDzQ398Mkc2c7QNWqMnezYhkhzN045L5ZH3JHZe5f4MUyuLl/8562WAZvcid/24XFgaWDdYZj4FDLGwzDnpaXV81XhZwL8Tnhg4fcB13h9h3dhW8+vNl9yB3eHn4hHN6zum4+PvdSbPZ0bsnN3rXeywlweAWOkcvHqVpQGOSdfHtpfsdIvic0vYG0ZJoWnV0badd3tZtE2nUzUSeUSuTss0lJc9nZsAgHm9+sq9V1ja/qm17DHzOKrkdmTMHZB2eNMkb7/RdegbMJztakLbPdvSsVTysiJyMDTweqJlR+435og9fhLbCwmTcydz/Z3bncuf3+9he1tc/37l3p7n5YUjIZEQHLO65UwsNgYHd9VJC5XsbwIw0rZqiSzZ1yhuofzMzdenb/LekjsAF35pC7hTJ3kc2dZ9RdCHYXJPAujbxLiu+C+rsUCm/r7aitkV0ukXa5BtvtoEbGqe3SarujVbdbXSaDvr//g4Nqu4CzUm0Zb7euT0ZOBe4OCe6etgN32/TJyCDeLptZqRbj7QpnvN328Xaus1JtXyZjX9ouErVH2uEmOruzj7qzqHS3V3OPdjBz5zxA9R3KMncFQ5n7p9Rl7tTm/hHlpaAO3HUhd+JqzVAs42FULIOmp+q/XxPmfhTWE/Zdcv4VDMMel5UdenMoey479FwoMnfU5O466Oo25OY56uk37hdyLiTzRuZyR0de6a3UrVeLyu/BP7yUkICax0+qVBNKJSpCOeblhVeQo8mfRB0KDsQ08v416QaV5W2nyQ2qkbCb9cZ8a0yTJnl2uuoYPM/u738mOPh8aOh0bCxe0Q7/aTTw9B8UFxeU3Vlobi6vfbplx+3Y7Gk4B+EcgcMeHer4d3P4Zh09Bm+EMzSl4Epz2wIsb8RkRMCpAFhJWGHYvE94w0vfMV/lhDLodFD0xeiDrw+2L7X3rvaq19UaDP6neb5nz5WUlEvx8efDw2GFEbuPkFfV7Eca37GIupvUy3xCjroTd6HM5v4nnV9bMHe6qDtHdv8tV3BnHXLnZ+6fsDd37vUyPBpmBGd3R5V3W+G7XUP8UWk2CZxdttRuv8F2p7azAHentsuzTIYK3EXVdkGq221aJmNNvN1R+mR4T0zlD+6/EhbcFZKDu7QTU2UwLtUZb2c3K9UZb7d5vJ1TmYzDa7utqT3SITbJ2J11pbsgY1RlbO5RQpn7CLW5h7A1d3KZu4v1A1TZlLlrr0a+NDb3zynL3Fmbu+lmuPDThSdQyJ1U5o5f5KBiGVTmjr7145Xu/ri5w7rB+sOBlLfjVmvnolq9vu/Qy6aFprDzYcpxpfdxby98PKiXzwkf+CMKYideTtz1ZFdLx2L+zjt76uefVlRcTkycjIg4FxJyFrbgYO0WEgJvORMUdFKlGvfzO+HrCx9pWKE46uqKA7GZDn9LuiUm3+Uy3M3S5YLJSfbvjOutTcPs5N4YXT/7mK/vBFHRfjE6+lll5euDB+8UFLyoqXnb0AB/bO9a7u1fg4Vq7Vzq6F6Oy54JRtQeNQbHs/4Yhlfg2IZjHs4ROBkziq5rMM3+l/sjJiP8T/r7jvlq11a3wR/hjaoJFSxi/KX4gjsFLYsttS9q57KyltraXtXVda10YWr11dRU7VRVomcG781nx+5fMYyuZY66kyrdTc2dHHUnmztjvYwpu1uS99+aaTsFuHMMuZuaO7lYho25k6PuZHM3G6MqTNTdanZnqHf/wRK7SyfvssV3kf1dDiJ/1FYb+10gprPbN7XbtEbGqe12r+1SVbd/Ko62WxlvNwZ3WWu7GGUydhFvt65PxhEmpnIBd3e7BncbFLjLJd4u4KzUABvOSnXG2zdavF1obU+WUttFCrZz7moXV8AzWG+yYXe51MvYwNwn2Ju7Lx9zP0Zr7sYhd49QSnOnGKBqpblLW+ZuNkCVZO6/YDB3A7jrQ+5GxTKozB2ZO34RgtiduFRAre6wMrCqsDcT8i5jGLauVj8uK4NXdj7aGTMdE3MxJvlKcsLlhPhL8XEzcbAlXEpIuZqy5faWlsWWyv3P4D3vFRVdS0+fTUqCDV65V1gIH2G5o+PJ7t3wt2u9vXNZWbOJidczMq6kpJwJCjrh4zOsUOCNKGYt5Oa34uS7a/LNM4M8fk8n7AjZN28edHE56uo65OYGD2OENAd1QqU6Fxp6MTp6KioKXsIDRnn2in1P1wcGFpqb83feySy68XL//ub2hYyi67HZ03AywhkBRzUct2Y/HMIvCeDwhvMCTsyckpvVdfM9qz0RkxGqCZXPCR+vY16eo54eIx7abdQD/ojY3f+kf8SFiIqnFfDZ8Yg7pukfWIOXbw4dgpc3srIuxcfPxMZeIALveL07ucPHIrvTNMzQRd0Z6mX+xKlexiK76/DddKN6N67gzrJYhm6AqgVzF61ehl/DDBO7ix945yrvosTeeeG7bP3d0TYuyG6ts9sbtdtXsN2p7QJrOxdw/8JZ3S6EtpPA3abaLrsyGSHj7XbXJ8O7wN2BwN1D3uAu6z4ZUeLtspuVan28PWwjxNvHzbWdAtzjJhww3i5XbbeyRka+1M5K1afMNtEhnvdIVXbsbnW9jDTmHm/B3FUWzH2cnbmfMDF3bwHMfZi1uQ+am/tmGnNnMUCVfZn73+nMnUWZO9nc6aPupMu/fyaF3H9JXJXpy9yRuWuvWPTsrjX3I7BcsP5w6GIY1ta5dDE6+kZmJrxe+rAUXnZ2L/et9TW3L8CmVq/3rPbsfb5395Pd1fPV8LdvGxufVlQ837Nnqa0N/tjUtgAfQb2u3lM/39272tKxuGXHbfRuNS9qWjsWn1VWXoyBo8Rv1NNzyN0dFZEf0dGDiSMgETDheDo6JFuhVv10vK6lNCLIOaxPsvv6jiuVE7CpVKcCAs6Hhc1lZa3396/19y80N98vKoKH/aC4+EpKStX+Z5hGAw++t38NI/5LLbgKJ51SR+1wcKID0ngk+wgct/BNH04HeOf8nbfXMWzP/J6IyQj4rN7HvZG2K4YV7vCYiA1eh7cgdvcb9ws8HRg1FZV2La38afnL/ft3Pto5HRPzsKQEHt7zvXvVmBoeCTzmsyEhE0S9O2rP16/qYcpudzN2N2+YYY66c6uXYcHutPJOv/2OJbhTtcpYLJahM3ftzTnp7p2PuTPXy8iA3cUKvIss77bEdyfByxDZRXJ2emrfWMF2vjUy34tP7bLSdscelOoAZTIkcHdsbec/K1WCeLs141KF6JOxHbj/0nbgLujEVD7gLsc+GceItwfaMN4+7Iy3O3a8XbwyGfvXdltQO1tSt2YTzN9tGXW3O3OPFdbcj0th7kGszH0Te3PnV+buQVvmzt7cTdnd5PJPD+4o5O6KimV0OXdihqqe3d8n2J0wd3ySKqwh7MGMwuvdK92v6+sfFBe/3Levbamt9tCLQy1vFpqb57Kyrqen38zNvVdU9GTXrud79ryqq1vt7m5624T8vfhBcf7t/Oy57IzrGWnX0rLmsvLv5Pf0reL5bAxDVD2gXm9ZbFloapqKjBz389OPVx2CTV9ugP5IbOSxq4fNLY/G4/QtMcjWRz090XYMNiLJflKlwnk9O/vu1q2zSUkXY2Iuxcc/q6zs7FmGB7m75kl94yt4yvPV1Vnb5+JzL6k12PO9e0urHibnX4nOvKhPtcPxiXccEQce+Wc8aIoMLCn8LRzJcPzDP9nf8BK23rXeyMlIBO4eo4S2D7mTCx3wp03Iu57dg84EpVxJIWLumoqnFVXPqpba2mDX7H+5f6Wrq+ZFzf3t2ycjI88S7T2n/P3HfH3xwar0PTNc2Z19qztD1N20YYaK3X/HS9vpwJ1HyJ2uzF1Uc7ccdWfZMCMGuzuevPPFd87+7iR4HismiLPbJ7XbKtju1Hantm84bacA91/JfFCqVWUydh5vl1ufjOUCdxHA/TNGcP/cCe5y6pNxxtvtJN4eaUnbo/jE2/3sNd4ugzIZm2i7UMF2yahddGHnQvByYHdHN3elmbn72dTc3bmZ+xEac6ccoEpv7j4M5m5S5s40QJW1uZPY3fzybzMp5G5s7sTF1Zfo0sjA7jpzh+dLFMuMwv6Nz7m0c8+juoZXB5tfd610vdy372Zu7pmgoAmlEl5ORkTMxMZeTUm5vWXLi9ra2kMv+gfWix8Up19Pj78UHzkVGXouNOhMUMCpAP+T/vAS/phwOWHfy32vDxxI23YNjuf0bdfwFprCwrMhIeNELvu4tzfaUHn6uJ8fHjn39z8VEACvH9eltg2Cow+qKxSI0dFoVvjjMLEhZEcVMfBZLoSHnwsJOR0YCB/zNJFkv1NQ8KahYaG5ed+hl6s9Pfe3b3+8a9dqb++NzMzpmJhtu+/C36o1KMuO9Q+swdbVsxKXPQPnCxzbcKDC0UgcckMmv0Khv26BtxPmPgLHMBz8cBYXVz7Y3/DywOsDeMJ9XOl1zMtjxAPX9qNups501BXJO2J3nxM+sJjRF6Nzb+XufLRz1+NdzQvNmEZzr6hoOjb2Vm4uvH47P/96RsbD0lLYKfAK6u3B2V2hGNL/0MKc3d97jzxSlVwyw8DuRg0zBEzTtrr/7Gf/xdwwQ7A7pbz/joWzmw9N5QruFoplhDV3XvUyTFF3gdidud6dW9WMNPJu09g7f393bILntyACIjsLZ3cQanfWyDi13a4Gpcq5TIYfuFuj7WJXtwtbJsMu3i7auFQx+2Qkn5i6mf/E1F9aNTFVOnB/hwncBZyYyrLAnWWfjJjjUqWNt8t+Vqoz3i6neLuYZTIbSdu5BduFc/YpeWw88d1p7qbmHietuUeIZe6uFsz9sCVzZzFA1VDm/g1zmTvFAFW3z35JY+5adt9Ewe4U136k6zqSuX+Grrj+1Zjd38WL3fXmfhjWB1YYdiIch0lbZiv2PUWlMXNZWRMqFQqGnw0JmYqKupqa+rSiYmBgvaDszs49j3vXetOvpUdfjA49Fxp4OlA5rtQXlMNL1YQq80bmgHo9b8ctONpjs6fL9j5ebG2djok5Exx8KiAAttOBgedCQ+EtdwoKbubkXM/IeH3woAbT3N26dTIyEn32Y15e2qA66lsnhppORkRcio+/EBEBr48rlWO+vmNEUQz8cTo2Fj4U3krf3w+f7lp6OrwFT7JXVcEjh7fDG3ftfbynfn6prW2trw8+V3zuJXju2yvuv6ithXeAZ5dReD1t67W47Bk475QEtePtMSHDcFyhw4n82xL6Sx2dueMhd1hSOAvgq0F902v1urppoSlqKspv3A9WBsXbETiZMyEiPS27H/NExe6wwomXE7tWuu5v397wtiFyKvJKcvKjnTsXmpoWW1pgf5U/Lcc0msdlZbAy5HUbUShQ1QwKvBvYXR94t47d2TTMmLP7H1iwu8Xt98zgbtwqw7lYRjhztybqzrlhhh+7SxV4t4m8i4rvg1Zws11CvJXPV0BkF9XZHY/abVUj49R256BUQbRd6DIZHuDuGGUy8om3i9cnI1yBuzATUx0Y3GVc4C51n4wz3u6MtztmvF3c6nb71XaxqV1QZI9i3ISRd9uzO2OluwjmTgXu9mHuXhKYeyALc1dRmbtAA1T5mPvmj2mv9Iwu+UzNHc1Q1f2ioYHddeb+DTJ3eO6wSri5x07AcVux7+nORztTr6b2r/XPxMaeCQpC2n4tLe1tQwOGYTklN5PyZzOKrsPrux7vip2ODT4brDqJjwP1HPVUDCtQdttjxCPgVEDJgxJ4t6ztc8n5V7bsxFvdr6amwkdDkfkbWVlrvb2LLS0aDbb3wPPF1tb6V/XLHR1tS23w8lJ8PB6xV6kmlMqTKtWZ4GB4y4Pi4vvbt2t0OXR4HT4aPEL0IO8VFbUutja3L/T2rWYUXi+tegjvc6egAJ/jqtHM5eTA+0zHxGyvuH/g9YF1tXodw/Ydella/RA+O7zn6/r61o7F2OxpOI/gWyEct0RR+4gu0j5odMzor4h0Fz/I3OE94ZKDAPdx+KqCd+JXPVSvq6MvRvuN+xmWiNB2Sr/Ryjti9xGF1zEv3zHfoDNBOTdzula6Vnt6mheaK55W7Hu5r71ruWMZXy74LAtNTZ3Lnc9rai5GR8Na4dH+gICT/v6ow2eYxO6UgXfE7tqeGTbszrHY3bxkxjzw/nuu2m4J3DmF3BnM/a/8zF2Iehk+UXcR2F0O8n5YVHkXAt8HrfZoWXC8sM9CWGRn5+wORe32WyPj1HZH0nbHKpPhCu6/k3eZjAzj7aKNS7X/AnepwP0LEcFdkomp9ton44y3ixdvD+cZb/eWfbxdZR/xdptVt0us7YLUyEhP7VFCb6LKu9RRdyvMPZiHuSewN/eTNjd3T0ZzVzCYO8UAVSpzpxmgSjZ3qweofkU3QFV0c3f5VB91J7E7cR3l+fd3qMwddmv6tmtLra29q719/WuLLS2wPSgufn3ggAbDkTuz6EZ05kU4F2KyprdX3Mc0mpybOWHnwxC4e4x4uA25bT6yedNPm9yOusFbwi+EI3OHdy4qvwev3MrLu5aWBi/fNjQcaHq90tXVutS63NGx3t/fsdzR3L4AHzlpy2xT28Lr+vrp2NjzYfDhw2bi4uarq5fa2ytqn+Ke3r+6texOXuktVFMzm5h4JSXl5f793b0rzQvNOx7tUKvX2zqXyvY8rmt8BW9f6e7ecnsLfDQ4EeCYz9txa62//83Bg7trnpRUPmhsewsfp7puvnL/M/jyAge5vj0GRdrhgEHHidkRYrhq0pn7IFy0uCNwjxmHL0FdPSu79j7uXu2OnIxE4O4+jMfbXQa12k5JLAgXXY5o2R0W1vu4N2qYgQUve1yGts7lTtgFD0tLYX0mIyLQ9Nf7RUWXExNnk5PvFRXBjoO/hQU0GVdLKe/anhljdv9cfHY3kndL+P57Km1nC+40IXdWA1R5mTtlpTubehlBGmbo2P07Riaznt1tI+/C4rtA/j4oNF7bxTYoxmY7Z+dD7Y4SbJestJ2Htn/j1PYNpu2fCKrt7MHdDrXdHuPtAvbJ8AT3j+QG7r9yOHAXv8Bd2D4ZDtr+gTPebrN4u2R9MuO26JOxUbxdtmUyttT2SRG1nZezR0m4icHuXKPu9m/up0zM3Z+rucewNXcfPuZu+MLrIYS5u7AwdwsDVP2sGaDK2tyNKt1ZsLuxuRtF3c3YHY+6E9c5JuYORwIKhh9oel3zoqZ7tbt1sRWX7n1PE/Iuw9GIDiE49uJzL2kwTftSe+rV1KAzQb5jvrgmD7kj9oBXfE74BJ8NTricUHivcGB9YO+B5+sDA4/Lyt40NHR2Lx98c3DL7S3wt5FTkRGTETHTMeVPyuEd0guvJ+Zdziu9pdFgN3NyZpOS5rKy8IqYgYEDrw80vW3a8WjH24aGksoHGUXXiysfrPb23issfFVfD48z80YmfCh4MOEXwnNv5dY8r+lY7uhb69v3ch88htStV2Ozp+Fl38Dajays1e7u3JKbMVkX4TyF5wVnBxzS3pEn4ABzx9tjyM6OhP1Hcr8/+coKXTvBexIhd7zGHf3GQFz2TM2B5z2rPRVPK1ClDFoibbxdp+2UYIkwEgXetew+6gFLqppQBZ8JjoQvVNfSkbbD4sDzDTwdiJfzbN0Kb3xQXAy7DJYLPu/zvXuf7N59OTHxVEDAcW9v7bhaIsc6SJJ3o8GqpJ4Z8lRV7b20UOxu1jNjKu8kfP89PbX/3uyDUIK7lSF3wczd+qi7NOwubOBdxvIuJb47pMIPirqJ7ezCRtpFo3abBNslK213ajtbbbeHQal2USbDHtx/Z3fV7eLH2207LlWmBe78wd1VKnBX2DW4cylwt2GfjDPe7nDxdovgLla8Pc5+4u0bRNvlQe1RMtiElXfBou5im3uSnM19zIK5R1oy93DRzd1sgCo7c/cV19x5Rt3J5k5mdxfdrydq2Z1UL6Mzd90M1RGiz/1cTNb0lh23q+vm07ddi8uZgSMNDgDYp/i3nphxOAbgOIR3eNPQ0LzQnHYtTWvuxzwVIwqUyA44FRA5GZlyNSX/Tn75k/KWxZaVrq6O5Y6yx2XZc9nxl+LDz+NM7Dfu53PCBzb4CNvubltqa6vY97So/H5j69tHO3c+LClRq9drXtTAp0CYDlvibGLTQhOGYbWHXnR0Lb85dGjfy31Zc1kxF2PQw1BNqBIvJ9a+qH3b2NjXv1ZVN7/W3w/vv9bbC+88sD7QP7DW0rEIpzkc5PCMjCPtqDrmsP4Y+IDU5m9+9YUusXBw9z8MFz/wzxG4w9mRW3prT/3z1o5FeO4JlxLgmXqM4r8E4Droiv8ewGGDtlOKpl7eDew+jLM7rK3qpApWAxbhRW1tz2pP4b3ChMsJaKn3HXoJz3r/y/3b72/PuZmz1tcHn319YGAuKwsWb9zPD59Y6+WlLXknJtMO6marGrE70TPzFV3PDKdud+ORqmzknQLfabY/cAd3Kcyd/RhVoaPu3Nhd/J4ZO5J3m+C7HUH8oDQbO2S31tllS+02D7ZLWyMjgbZ/7dR2WWq7DctkWIK78NrOtrrd/uPtNuqTEanAXUhw/6UY4O6+ocFd9D4ZZ7zd+nh7qL3H28ec8XbBymSc2m5K7fbh7NzlnS27y9jcz/I2d6Yyd8HNPdrM3KNENnf6MneduQ+yMHfKAar05u7DYO5f0Zj7F5bMnb5ehjO76+X9U6N5qnDF5fGlttLd51t4RvBMYR1gxWB5YUfA/lISOxF2E/wR/cIBvER/BQcDHPM79zxCdeo5N3OiL0YHng5UnVTBy5jpmK13t7YstsBf9fatLrW1vT5woKltof51fcGdgqTZpMipyKAzQcoJpfdxbzRHFF4JOReSfj29er56YGD9UMubNwcP9q71Ft4rhPcPvxAecCoAb4o/5gmfIm4mbtvdbSiD37HcUf60HB5A/KX4sPNh8NkjLkQ0vm18snv3g+Ji+FBZ2+dSCq5kFt0oKr9fse9pbukteAucU/DU4OiCg8ddWx1j4uzG83J1O538R3QlRlxloZC7HtyPwfrAJ+roXk6+ktzXvwaPDQd3onUH75Mh4u04tetQxFwvyPJOZnc0T1U5roQF71rpanjb8KqubqW7G9No1gcGNJhmrb8flrppoen1wYP3CgvvbdsGf9u31nc1NfVcaOjpQFihwDNBQfD62eDgCZVKW/KuY3ejhnedvBsF3o3Z/RMdu39kzO5/pmF3hsA7pbz/gZ2zG2k7HbjTh9x5mvvPf25u7taPURU+6m4Fu4si7yzYUUh5FwnfRfZ36Tl+0IabDJxdbtRug2C73ZW2O662C1YmY6btnMD9U0csk5EG3O2uTEaaeLuV4C5Sn4w4E1PtDtwN2i4IuEs0MZUjuAvfJ+OMt1sTb/cQJN5uEdyliLePO+PtAlW38x+UaittF4nao+xks8zuQkfdZWPuZ0Qyd3NwV5mVuSstl7mzMXeeA1SZzD3ISnP/wRRhGQaoGpv7rynN3Z3C3H/FaO4cW90pA+/keaqGehltpbvfD/CUERzDipl/k4UVhl0A+wh2LhwbcTkz/QPrL2rw8pbu3pX9L/cjMV/p7lar1x+Xld3Mzb2Zk3N369bF1tayvY/3HXrZvdKdeSMz+mJ08Jlg5YTS67gXPkd0yM37uDdKryNJH1gf6F3rrXhakXszF0m6/yl/PbgnXE6oeV6z2tPzqr5+74HnDS1v4GGg6piSByXwADq7l2eTkp7v3VtdPx+deRG+I+AHOTENGI5POOp0kXZUHWPs7Ib9a+myTW/uKOQecBiBOxy0sDipW68OqNd3PNzRv9aPV8qMEeB+1M3liMumw5uQppCp3UQjTOTdwO6DLvBB4EPBagSeDoycjEy9mpp1IytrLivvVl7503JYEw2muZ2ffyEiAp83GxR0OSHhzaFDmFoNazIdGwsvn1VWwgovNDfD2+HdtCXvbm5HjNmdtmqGpt79I13g/S9UPTN/Mu+Z4SjvFjeytrMBd8qQu5TmTq505xN1lyG7y0PeBYy9yxDfHWRjjewCOLvMqV0ewXY5l7bbvbY7q9vF1/aPWWu7RXCXv7YLNCtVXvF2WxW4izQx9RMBJqYKB+7CxNuNwf0dccBdigJ36fpkNnS8XWFdvN1z48bbT9p5vN3aMhkZaPukDbU9yj43K9nd4cz9NJO5x3M2d4EGqNrK3I+QzP2wqbmrrDB3r28oB6ji5q7gbu4un3COujPUu7tq2V0fdf81irp7f4tfkPh9/4E+ta39vo8vEXzvJhRea+6w4+B4iM2eKdv7uH2p/XZ+/uOyso7ljvaupQH1+qWEhHMhIVNRUbNJSfeLivoG1nKKb2YW3WhofQt/m3srN2oqClXKeB/3RhU0SbNJda/qevtWn+/d+6qubk/9fEf3MnxkeOe4mbjQc6EBpwPgnyRcSlhXq5/s3n0nP//1wYPFRJ97XumtA02vl9rbMQx729AAL7tWuuAlPDy8NyZqjEjoj+J5dqKiHfY+PCnY0fj+JfYsbTs/5dUd2dyJkPsmlRG4w/kFTxYeUt9aX+nDUlNwR/H2Hz5AwkHjEKb4TmZ310HDPFVYQ1i9kHMhsTOxux7velpefn/7dnjuoedDfU74nPT3vxAefj09Hd7yoLj49pYta729B98c3HZ3mwbT1B588XDHjtlE+HIQCPthWKE46uaG6t2RHJnPVjVid+Z6d0Le/8yxZ8ZE3v+TE7XTgztdqwzl9NT/0T1ggc1d0HoZCw0zfNn9O0u4ZlHuxKiaEV7eRcV3J8FbLezSOLuw1G7zDhlHrZGxd213+EGpsqtutw7cN2CZjF3E2yUtcLftxNRfstZ2mYK7Fztwl7bAXYw+mQ+FAXdnvJ1PvN1KcDdouyDjUmNZgHucGH0yAsfb7bRMxg603aGpXQp2l9bcQ2xl7nESmPtxoczdXWxzJzeNMJn719aaO9UYVT7mrrs+NGF3fcMMPBJtqztxCfSej07edQluwt8P68LveNQdlh32ERwG8TmXMLV6fWDgeU3NWm8vhmFPKyouhIefDgycioycy84eWB8oKr8flzMTnXkxacvs/oaXyx0d1fPVadfSoqaiws6HRU5GVj6r7Olbfbxr142srNtbtqx2dxfuvpdTfLNy/zP4gE0LTWWPywrvFRbdL+pY7oC3TEZEwEfu619LL7wOZzGcO3DqxWXPZG2/kb7tWkrBVXiJ98bEjHvivTFU/ex6Z0d7UL/7iGqg9xguArXXeN+hJfqNdokIcA8chAMPjl54PPDYGt40rBOVO4mXE1GljOtRosBdD+56bf/2fQZs0PuoObu7DbkpRhRex7zg4wefDc67lQdrO5uU1Pi2MXsuO/RcKGzRF6NTt14tqXyw1t+P/yTj+R54t/hL8Tk3c3pXe9uW2uARvqipORsSMubrO+rpOaxQDLm7H0WzVV1dj+jGqyJ5R4F3c3bXB94/oQu807O7BXkn4bsJwf8nDbWbazsTuDMWy3A1948ZzZ1rpbu1UXfx2H3Dy/sRrnzsRHbJkF28SLuY1G5/wXantju13d6q2/X1d/8gJ2230axUrvF2mfXJ/D8p+mTkDu7/Yhtwt9MCd+n7ZJzxdkvabhHcbRRv93XG2+VQJsOtul1SbXdSOy92Z1XsbsfmzmGAKp25n5Ta3E3K3IUzd/IAVddAGnP3pzb3D6jN/TszczcUy1g2d4UY5v7RL+iuGPWBd3TVp2V31DCD0u7G8q6TZV13ymFS5wyedof9C2dBdvFcwc47pdUPD705tPvJbgzDbufnP9mNv9LcvhCbPQ2HKxx48DI+Z6a89im8fbmjA1XAVz2ramx7+7q+/lxo6Exc3N1t2+CNqVuvxmRNwz/M3j7X1bPytrFxrbf38a5da319eIy9sRFe7j3wHE43OETRQFf9hnrn4fCAXa/tZ/dHzv6j/hcU0C4z3V+6XcZwcWgwd1+jldGDOxzJ8KWmu3els3u5/Gl5R9dy9ly237ifYkSBg/vhzR/+ZCiTef+79/WoQOcHejGlY3c87T7q4TvmG34hvPFt4575PRpMs65WH3h9YOudrfm384srHlTtf9bUttC10tW80Ny+jP8qAKbRwMI2tr6FV1d7emDZz4aEoMGqx4jBqvptVDdelY7dWQXeqXpmOMs7lb+bUDultjOAOznkLhNztxx1594ww4fdre6ZYc/uXKtmRJF3K/D9CHdZdvK69M7ukNQufbDdltrOSO1ObXcYbf9ETG2nA/ff2WuZjGzi7Y7QJyPaxFRHAHebTEyVY5+MgONS7SvePuQY8XZHGZcqw3g77zIZ2Wi75MH2KMfdeEfdGetlpDL3ZM7mHsTN3EUYoGov5h7AYO4/sjP3b6U2dxpt/7nZZnr1SM3un6PrMeLK6qt3dBdFhsw7qbIc75kJOgpLDbsGdjocb/E5l3r6VjUY/E9T+ayyb2Ct9tCLqMwpOKLQCFY4POC7A5wvhbvv1Te9xjDsVl7e24YG+Aev6uqupqbeKSgYUK8Xld+H98FHDiTg3yDg9dStVzu6lls7FkurHuJYrFbvqH4EJwscWnCQwGGg2+PEXiZ2LnJ24zA7FbLrd5BuHzFcPRrYXWfuBnD3xytl4GHAkQxfKzQaLGv7XPKV5PrGVwmXE/zGCHAfJMCdHG9H2Xa9thMwQPaAd0mGSpZ3I3Y/shmfpzqi8DnhE3ouNGsuq/BeYd9aX9dKV+9qb89qT+PbxqpnVQffHMR/t6BuHhY/vfBadOZF+GICX5Sytt/Ax9v2r11LSzsbEnIqIOCkvz+8PBscPBkZOR0TMxkRoe2cIbE7db07+4Z3KnY3b3j/bzM3/09LG622k8CdTcidssxdcHOnrnQXIurOgd0JeefN7vIKvHOR98PiyPsRK9x5g/C6wMguqrMLS+2CdMhYH2y3UtutoXbW2v6NU9ul13Y7HJTKqbpdaHC3pO3OeLt0fTKyn5j6z2JMTHVjoe1OcOfQJ+PA41JlEm8f4RBvD+cZb/cWMN4eLYq2qzZUvF3K6nb5aLt8qD2T3WZH7G4cdbeJuQdzMXdrBqjyMvcxc3NnMUDVyNyNwD181MPY3BUM5k4uljE2dxcW5v6hJXN/X3xz/yUrc9dp+4f0G/lKkoLdP0PXbOgCDFXNvEMbeP/JJYDE7rETcCKUVj3MK72VU3wzIfcSHGaw62FXoh0H3z3xmavRY3CYxWRNN7a97epZKdv7WK1e33pn67pa3bHcsbvmCZw+cFzhWXXieIBjA41phcMVDmY4KeCwh8/1/7N3399Vm+m+wM8P556TOTMTSEJ328Vtu9vYxhXjgjHF2JjeTO/FFBfc9t9xz52ZTCbJJCEhQEIHd4ptejPN9E7oHTet+2hrF/W2JW1pW1nvYhlCs6RXSB++fB+4NuB0E+tiCBNQcY0xuDNCPB2OqbauwbbUfz2JnwNk/xsI519ChO63DZt1gTv8tmGbL171Ej6RmU9mlnWXJZ5PDG0NNTXTgLtL253OzvTe78R3h7yT2N2/3t/YZAw8HAi/VuSJyJFnRyZdTErpSEm9lJpxNWPC7QkIgqD/5sBqnTTzLvwO4SzAKYPfLZyjjElX+xDk06ZNl9PTzycknE9MvJKe/mLhwr6amjUb3vVWVXWXl19MSmoPCzscGNhoMNT7+WH17i52twXedzmUgSzv/AarsgTe/8Ug6TwXO7hr2NwVZHcle2ZUJO9u43u92zDtSYuX6jcvubDzc3Yvpna9RkbXdj7arplBqUqVyTCBuybKZLQbb5e1T0Z9Be5+7BNTdXCXYWJqqNrAXfp4ux8Pbff3/nj7ET3ezgvc+0G8XVx1uxq03cO2rjjBa8Tc5RugekraAarhlGKZMErI3UIOuQs093i1mnuoisydDtxpHi9x7P4zdaSqq2fGGXhnqJqxjQytt40MRUtm0D/LbCfX5uxY9tx55NE/r+EEYd8NLh64LOFqz5h0dcW6N1PnP4QP4LKEHw5n2Wybcer8Ux77o9xxlu217CyzT4cSkd321OcUdvJjpPNRE79Iz5kUc7cPUMWDO/ze4FJPyr1YNO+h1YpU91UX3C9IOJfgBHffOrTAHR9vd2m74y2f/uV+1yCCvGNtM0R296vz82/wNzQZzC3moCNBIcdCwtrDok5GjYQ7SmfWlp4tdydNul9YWFndCzc62GhwPOFL2MtwLxpbdKOvuvrBlCnXMjNv5ub2VFZW9lQWPSwqelD0ccOGOYv/+GPOnEupqaeio4+FhDSbTOhsVcpU1T10mXdn1QzW8M6/Z+Y7HIi7I+//EgjunANU5TJ34fUybMNUuYrdZWJ3PoNVtSrvUuC7lASv+lUv05Lb2WWmdq0G23VtV0Db9ep2+bWdCu4eLZNRflaqsHi7wHGp2u+T8TZwNykP7rslAncZCtwl6pMRNi5Vj7fLEW/36nGpkTz6ZLwl3u6t2q5UsD1XkSUXu/cfc1fDAFXVmbsfztx9ac09TFJzN9sfeHiY+6/05s4G7j8xL2fgnTxVFXsadLA7JfDulHcbOg93oLOtaqYe//frpGm02MODrYvG3gIP5wvOKZZhh2vD1r3e4uheb/An/9g6QozdgezMwr6bKuzOo41bOymL8BRKY+74kLtlv73DPboRrkPYIxNn3LEi1rKusorK7rXv1qZeSkU73JtN/g3+vod8Rxx0xdtJ2s7zzZ4k7+S0ex2adjc0GuBXDDwcGHIsJOJEREpHSl9NzZ2JE88nJiIIMmvRE9jmsAFhh8IHcLdJn3BlWvEj+D4Ppkx5t3btoheLxt4Ym3QxKfpU9KS7k+CHfNywAWvP70hObrVYWsxmNOruYHfMgJyFAxia7CaOVyX0zODZHdczwx54/xYn5v/CSTqHs1O0nQrufELuUpn7NkHmLlPU3U12l7ZnRoaqGfflvU4Refcygq+XdXnO2dVD7R4JtourkdG1Xdd2FZbJSATuHiiTkTfe/pl4bXe/T0ZTBe68Jqb+4kaBuxBwN0oE7mbFwV2yianq7JMRPi41UjS4SxxvN3DF240yx9v1cakS9sl4MN4uaFaq2DIZlWm7ksH2XM8txdldGXPvrwNUqebOu8ydZO7MZe5CzP2Qus2dN7jTP3aSAu80PTNUebcDNEWfuZ5VDmBPKdjDhqML3gn0uNB6OF1dPv4gU4Wd+cAS/xkBfjE+qRKeTkmfMrHa3gnucDXGjDmNIEjh/cI179bAB8XLn8PHYe1hLnA/QAF3TNsd7+uc7+gkeedgd1u3e/Sp6AXPF9T01bxdtaq7vHzV+re5RTfhZgW3EbgXJY/ryJx8LX/WXfj2N8uXr32/durDqeNvj8/szIQFn8WHkhL4suhBUXVfdVdp6fnExDaL5XBgYJPR2BgQgFkYxlUYM+GT71jm3cnuOyiDVXn2zDDKOx3BMzk7T3DnY+4/4s3d8RovxtwZxqgKqpfhGXUXwe4K1LvLGniXXd5lwHdNKHy9YouHs6su0q4qavdssF3Xdl3b5dZ2gfF2Erj3szIZeeLtgselSlvgPkJt4C7FxFRPgDubthPBnX+fzGAFCtz7QZ+Mp8elNuvjUjU7LlWyeHusuuLtEml7tqZqZHJVszRp7mLL3DP7zQBVoeZODLnzMPcG9Zn7Tv7m/jnV3Kngbnvg/AtxEZ9CSYF313OjPfBOlnc8vtNUnDM/I+H+kR8J6C344nVnaB13AAljTll4nWTrO3B/h8GxyA+uZHPfRSi1x4E7XEtwZcKuXLvhPYIg6RMuz3g8o6a2DwX3Nhu417vA3d7e7oi301D7zq+oL9xfEUtGCG0zuwfTlswENATALx1yLCT+XPzy18vXbXxf2VP5dvXqTxs3ri55B2vWoiezF/+xaOWLVevfbir7VGsbegu//77aWsRqrUVq4VOYu+TpxJl34Bu7Nm+GL9+sWHEuPr7NYjkSFNRiNjcbjU3E1WgwNAQE1Pv5OSesooF3IruT6t1JPTMsgXeSvDP6O/P6lmFJae5EGpDE3EVE3ZVhd149M5IG3j0l73V88FcpifYqVReF7BI4u5qpXaIOGU3UyEis7XTUrmu7GrVd8TIZErhrtUyGeVaq1PH2wR6Nt8tb4O7uxFR5wZ1L2/mDuzR9MmLBfYjnwV3VfTJ+CvbJGPj0ycTK1CdzWECfTIImxqW2ece4VLni7SJmpcpWJiNa2xOkqJHxCLUn5V4UvRSQd+2ZO8sA1Qw1D1AVbu4Jspl7tKfNPZDOiwnmbmd3lj53ornjQ+4ucHc4O8MTKW3gHdczMwBXPOh89nM+4GG/c9yDGcMjGekBDPeUNYThEA2mG2rKYOskWCc+qQawLsozLf7xFf/ZsYM7bDQEQRatfAE3h6zOrJXr32ZczcA63P3r/X0OoRNTSfF27M2entqp79Ykf8fJOy27O+epBh8Njj4VnX45Pft69so3KzeXfyrvLi/b0mVFrBs/bix+Xjzj8YwFzxd8WL++tLxr+oLH46ffHpN/De6K8BmhDwDpJ+EzmjgDZXf4797kyadjY9sslmMhIUeCgmAdDQ6Gj1stlvawMFitoaHwjc1GY4O/v4vdiSUzJHZ39sywB97x8v4ds56TIP5bHus7Jc1dxBhV/lF3j7C7RgLvUsm7qvDdGxZvZJfV2dVG7Z4KtntZjYzatP03lWi74x+c9Sttdw/cNV0mI328XQN9MmqYmOpF4L5LPnAf6lFw1+Ptqo+36+NS1RlvV3RWqsLV7arQdvmFXQJ/l5DdxZj7OcXNXcEydwEDVNu5B6gmUcrcR3GVuctr7vXqN3fHgxxtmTsl5M6o7YSnU+bA+8+kh8mBjgmrA11PhpRHPqbHPK5HO1IVzFcmuh4YAwXWA4j/FIC6/HGLpT7RsJ38NwqkOH8Q2mIPJxQH7vVwUcFVCpurYM79jaUfx029OfPxzMqeyoTzCSHHQozNRiq4U+PtpNfrL6gv07ZF8ndM3pnY3R51bwwwtZiCjwaHtYVFn4pOPJ+YdDEppSMluSMZVtrltLE3xi55teTZ/PkvFi5cXfIuu+A63Hxg29om36JzbmGTwt1j7JQbm8o+IQhyNQPuJjHHw8Pbw8Lgy5NRUecSEjqzsp7OnQs/yc3cXPj4ZHT0kaCgJoOh3s/voI/P/uHD91K63V3sTht45y3v3/FTdW5zZwB3D5g7v0p3wQ0z2mJ375B3Hd/VgOwKUrvHO2SUD7br2q45be9v1e0kcPdomYwXxds93CejhYmpA3hPTB3o1sRUOcE9UEJwV25iqof7ZPRxqV48LjVZ2XGp6R4el+qFZTLq13aPOrsYefcqc9fwANUwyQeoCjR3o3hzr5PL3IN2kQZ7ijF3ujJ3csidF7izy/tW3APnLzT+7k95aBTWPbiDrvtlO8XTtzMwOi71L3BRH4O/IP8tgv1h1dnkTgJ3uE7g0oKLFjZdzpQbW6p65i97hlit42+PjzsT5wL3gz72AnesT4YYb3e+Xgt4dXbiOybvjsA7id3xDTPGJqO5xRx0JAh+V5Y2S3h7eNTJqJFnR2ZczSjrKnswZcqtvLxPmzYVL38Odx7YgLBHbJ9dE2w32MJwk8mbdququvf5ggUXk5LOxMWdiY09n5BwPSfn3erVi1e9hM960coXfTU1pV2l79asgf97LCSk2WRqCAggNMyQ2N0xVZUceCdWzeDZnV7e3cN39pD791RwJ5r7T7KZu9B6Ge6ouzvsLsVUVdkD756Q9zr+gqwjuxc4u1cG272rtF3Xdr26nRbcPVUmo4Z4+zfaiLdL2CejZIG7H/vE1G2STUz1enAPUdvEVAHa7qPBcalGjY9LVbZPpl2lfTKjeY9LVUG83d0yGRVru9zUrqSzC5Z3j5h7Nj9zV3yAqtJl7m4MUOU0dwK4u2HuAUqZ+1DZzJ2jWIYW3IcTF5u8ux5QaZ5ISQpPfObk/Y8pSYy+jZnRmZ91HeWKtIv98ZjM7gb6gbEUcD8EFwlcXXBVw42oaN6DFevedJeXL321dPzt8fFn40NbQxnBnVbbca/FbG/A2wfSyjs7u2PzVAMaXfIOv73IE5EpHSm9VVX3Jk++lJramZVV21ebVdAJuxL2C+wLU2wzPAjBV+HPerg9zlz4GEGQm7m5l1JS4PvfmTgRfmxVb1Xh/cKc6zmT7k56v25dRv5V+D43xo49ExfXFhZ2ODCw0WCoc0bdHfNUSey+A/fv3HkG3vHyTsZ34f5OAnfuYhkh5v6LVOYuKOruOXbf5wl2Fx14P8RksnLju3cTvNDjICGyy0rtEqba+1+wXdd2ybVdr27nqe1iwV0ds1LFx9s9MC5V+j4ZLUxM9SC471QBuKttYqrAAnev6pNRJt6uj0vV+2RUWiajSW1XN7ULkHc5K93lNfd+XebOau7xZHM3E83dpDpzd0Tdg/YIMvcvRZg7e8jd7uw/0C3O5DvlkZXlSZXPnCF6MXf8WF8ZFsNfEgyktNWTQu4kcPdFwb0BLjnYLAuWPy/5ULLizYqu0tKV694gCDL6ymhLm8Xe4W4Dd2efjCvejvW2E7Wd45WXCd8xecf3zOwaRC2Z8T3k61dvD7wHHg60tFriz8bD7/b1smUXRo06HRMDH9citXADgR2HPQ7BB7Bn4XOE29SY/KtrN75/sXDhzdzcu5MmIVbr7D9mZ1zNSDiXEHUyKvJEZN6tPPgZ1m18/8fs2XcmTrw6Bu5EMUeDg5uMxnp//0M+PljUfa8NWfDsTpV3fNUMbeCdr7zzw/fvRJi77XdCNfet6jB32oYZpmJ3ceyuzp4Z9ci7GH/XKMGL+DTlQHZWZ/dCavdQsF3Xdl3b1antUoO7Z8pktBNvV2ufjNiJqVs9NDFVB3ePgLsW+2QavHNcarzoePtRvtouSZ9Miqr7ZKKlHZeqoni7+2Uy3INSPabtHM6uLmrnxe6eNvd+Ueae2i7jANVErgGqqjJ3C97c95HNPdhp7rulNHe2YhkSuLseX5kfa6UeTSTN+ol1MfwoX2I9DkNJDs7cySF3R427HdzhRMM1AJcKXIGwu2v6ajKvZVqtyLylzxatfDFnydP5z+aHt4ebmk1+9X4EcMfa238bZI+347Sd9LI7gP0Fd9sAkr9jPwm+Z4aF3bGRqoFHAiOOR+Tfza+o7Pljzpx7+fndZWUIguQUXof7SbjtX6jAl7Dr4X4CN7r0iVfyZ93r2bLl8YwZHzdsmPt07tgbY1Mvpcafi486GRV+PDznes7qd6trkdqNHzeuersKfqoP69efT0xE62Vsk1TrfH2xqLud3W0lM055t2fev/pqB2W2KiHw7jBuUuDdHXmnBXfBA1QlNXf2SndvYnclAu8qkPc6sSqtLoV357OQCdlldXbJqR2n7Qc8F2yXYD6qzDUyIrR9lxdru5tlMqrRduWr26UC93/o8XZF+mRUXeD+uawTU6UCd5Oy4K7IxFQPFbjr41K9eVyqAn0yEUr3yXh1vF22MhkVaruaqV1+dleDuStfLCOyzD2cR5m7es09ShpzHy7M3HdJZ+7kYhlKyJ1G2znXXxjXj1z/xFOx9RPz8/ZW+m4cPLvjpsJij75c4N4IFyHs9E1lnyoqu8cW3Ui9lIogSE1N39JXS2nAHd8n44y3k7QdT+2cb7EUfCcH3unYHS2ZOeQDvzFDkyHoaFDcmbhFLxYhVuuMBY9Ly7u6y8uxTyG78HryuItw04ObYUpex+hJV8ZOuTF59r1FK1++W7t2zbs1Mx7PyL+Xn3crL/t6dmZnZsH9AviBz+bPX7vxPXww/vb43Ju585Y+fTRtGpZzxyrd6/z8sKi7U3z2OvxlN6ltxibvzsC7q+GdrmdGgLw7eJ0G3FlD7mIGqHKaO+XfLbCYO5+oO/+GGc2zu/yBd/nk3V1/lw/lJf9dyYfscju7nNSuB9vFU7uu7TJru5dVt4sFdy+Nt8s8LlV7fTIKTUyVCtyNEoG7WTC4D5Yd3PlMTJWhwF3vk1HruFS9T0bycaneHW/3Im2/qKklj7nnyGDu8hXLaKvMPYkyQHUUTZl7sKABquzmjh+gqiZzR9mdau5GPubOr1jGEXKne7i1PfQO472GO9cPSi6B7k/XSk9gdzpzt4fcbY+s8FCKB/ewA3AZwDUDVyDsXKsVWbvxPWzGyBORE+9MLNn8YeyNsZY2i7HJ6FfnN+LgCLTAnQju+Hi78zWX+v7K9pJq+18kfCfIOwO7D9trj7rD783QZAg+Ghx3Jm71u9UVPRVzns6xIta7kyZ1lZXV1PYhCLK65B18WVXdC1/C/6pFamv6aqp7q8u3dCOO/z5u2PBp06ZPmzfDx5VVPblFN6fMfQA/A3x/WG9WrLiek3MyKgoz90aDod4WdcfoCo9HeH8njVelZXfawPsPAtmdvFhD7mIGqP71rz/Lae7Cou5SsPseN9hdwnp3JQPvh1hgV1JBrveKVSf3YnV2r6d2vUbG+7Rd1kGpv/bv6nZJwN1js1K9Id6uXJ+MiiamigF3gwfAnU3bpQT3PVKCu2b7ZPwk7JNxO95ukGRcapy4ePthKcalqrBP5rjSfTKeHpeq+ni7FNXtkmu791C7lFF3Kcydf5m7hotlpBug2ip0gKpazD2cydz3k809hGDuQzjN3SSVubODuxBnJ6/v/8znX4vKtChP6cxpGPxzuDPtbn+oxpk7Htx3OMD9dzy4+znAHXbZsjWvV61/i+bBLyQWPSyyItbkjuSQYyF2cD8wApuYii9wp8bb8e+vgt9Nf8bhOybvlJ4Z50jVIbtdUXffOt+AxoDAw4FhbWExp2MS4I51Pae0qxRBkJIPJTW1ffAlYrWuertqxuMZk+9NLrxfWPy8+N2aNfCN0xc8njD9dk7h9YxJV1PHX4LbI9yI4I4Bdwa41WQXdG4o/bhmw7u5T+fWWpHr2dnHIyKOBge3mM1NBkNDQEC9w87wznXQofCYv2NV70qzu/BiGf4DVPmaO2ulu+iou4bYfb9QdvcuedcQwdcpthRwdjpqP6hTu67tmtV2vbpdFLj3u3i7d/TJ/Ch9gbtU4B4gGtx3iAB3afpkzDwL3KUDd3UVuOO0PUzvk9H7ZPrNuNQxsoC7Omel6tquBLvLYO5SDFAVWSwjxtxHa6bM3WPmTtPnXu+muQ8TZO5mKc2dGnInPNkyY7rzgZkxv8K2vhO7uH5m9md48hM7M7uTcu6OkLurVQabm0oC98g6uHjgaoSNM3767VqkdtzUm2NvjC3vLp/zdE7s6djgo8GGJgMZ3J19MsR4O5u2b/2c/V3z862M8o45Lj272xpm7FH3ej9Do8HcYobfc1hbWPSp6Phz8QnnE5IuJo26MCrxfCIs+CDtclruzdwNHzf8MXv2s/nzN5Z9zJ16M3lcB9xkYKfDoYBNhz2MwX6E3Q33pbxpt2r6ahAEeTp37rmEhPbwcLu5G42NBkNjQIB9wcfOFRCAtr07mmdQdh861MnurpIZx8s8Yaqqo2fmR1GDVXmF3N0uc3fL3AVG3eVid349M9Kwuzw9M25WzRxix1/59dmbYV0dzq4iane7Q0YTwXZd23Vtl6O6/SfHX8n/h7La7p3xdpnB/QdFC9zlBPeBXgDugdKBu1ITU/t3gbvAcal6n4y39MmIGpeq/ni7erT9vNza7gXUrk5zd6fMXT3FMpH8Qu5qMfc4mcy9jsvcD5DNPZSfuVPGqMpg7sSQO+XplxnZKY/ZQ1zrTzTrW7HrOx4P+VwE7wjN2J/Y8exOMXdqyN1V444Dd3gAg4ciuH7g4oQNNSb/2tqN7+cufVr8vLjkQ8noK6OjTkYFHQ3Cg7tzYio+3j5wO663HdN2FmdnepVkwndM3p09M9sHktkda5jZN2z4AXvDTEBDgLHJaG4xBx4JDD4aHHIsxNJqCWsPizgeEX0qOhH+zLkxFuucuZWX937dusWrXqbkdcCdAbYkHA3bBqmDL2ETwaaDjQwHp3DO/dLyrs1dm2+PH386JqbNYjkSFHTYDL+IfR0ODIRvORYS0hoaCv8XvjwaHAzfiM1ZPeTra2d3W8kMFnUnjVRlYneWtPt3AhdTsYy4MvefceDOYu7C6mUENswwsftuhdld0nr3A26yu+Tyrgi+e+HiPKpSObsWqN1TwXYv0XY3qF3Xdg8PSpWoTOYn29+C/4e6Z6V6abzdvT4ZVRW4M09MdQvc3ZuYqgZw3y03uMs4MbW/9skYufpk5Iy3630y/W5cqifi7TJWt+vaLobdVTVAVcoyd3mKZSQqc5dugCrB3AMFmXusxObuG06qdLf/qS3Y3IN2OdhdGnMnDFDFl7mTQu7c2k4QdgGYjk1jYnvaF/cW4Hj+p33mpz7h06TdXY/i9kdurFjGGXJ31bg7wX0vnEc4xXBJwEUFlzTcEPKm3Zq39KnVipR3lxc9LEq/kh59KpqUcCeBOznezqLtxHfHv2DvjrhF6+94eXcF3nHsjtEsVuw+dA/aMIOl3X0P+frVo/JuaDSYmk3mFnPQkaCQYyHhx8PjzsSNuzWupq/mek7O5bS0G2PHwscFc+7DfQN2H2wT9G+bLAdgI8A2gT0FexB2N9yaZi16YkWsr5ctu5CYeDwiojU09FhIyNHgYAzZj4eHn4mNvZSS0pmV9XLx4nuTJ3ekpJyLj8dq35uMxno/v4M+PvuHD9+Li7ozsTvTVFW+UXc+4C6uWIZzgKooc3cz6v47Z9RdInbf6xF2V1bedXyXG9mldHb5qd3jHTLeUCOja7v6tH2bBrWdN7h7Vbz9G77aLv+4VHUWuEsE7tt0cBcB7kMFgzufialSxttHaKlPRplxqXqfjFb7ZCQfl9pv4u0SlcnQU7t3arsKzL1fFMsoN0CVau4kcGc092ax5t5ANXc/HuY+gsPcWcaoks39K97m/jmNudOXudN2uBO1nUrttKpO8zD/Gf36hmtx5nJo3giILwKuB356dqcxd2LInRbcQ/bCeYSzDJeErcD9zIwFjxGrteRDSWVvZVlFlxWxFtwviD8XT+pwd4E71ifjbG93xNudb5zUt8m//ESMT7MsvL8T5Z2J3Z3zVJ3sDr9hn0No4N2/3t/QaDA2GwMPB4a2hkafip5we0JtX+21MWPOJSScT0x8WFTUU1kJ91XYjLBZ4LCg42Rt4A5bCXYcfDvcEOA7LFn9au37tTfGjj0dG3s8IqI9PBzWicjIsyNHdmZlvVi0yDmCdeHKF29Xreqtrq7qrbqcltZqsTSbTFjU3W7uzqg7rmGGMe1O7HZ3J+ouOOQuosxdkLkLj7qLb5jpt+wuk7zr+C4E2RVwdnVRu0c7ZKQMtsuj7bt0bZdV272rut0dcNfj7Ur2yfTPialugvtOD4M7rwL33RqcmOrtfTKxep9Mv+mT0XS83Zu1/aLXLwXMXcZimUx1FsuckKdYhqe5H5Ha3JtkNHeU3feRx6hKYO7bxZo7rliGC9xpqJ3o7GRSHyTpIr5EsLwv0Mg7/mmf3twdxTLOkLu9xt0F7kMc4A4nGi4PuEpzi24iCDLp7qRFLxa9Xr58U9mn6cWP4FvG3RwX1hZmbHaA+95hQ3aj4O4qcCfG250vptzU/gPDYsF3TN5JPTO4bnc8u6MlM3sJ7I72zDQbg44ERRyPGHtjLHx2N3NzMTe/lJICXy1e9hw2O+wmdF+gj5T1sFlgN2HgDjsdnaFaeH1LZc/LxYsvJiWdiY09HRNzJi6uIzn50bRpFT0VFZU93RUVS14t6aupQazWqt4q+Gl7KyvhywuJia2hoS1mc0NAAKlexhV1Z2J3x7GUJOrOHXIXUSwj1ty5o+7ezu6y9sxIFXjni+/9yt89guzyRdploPZ+EmxXbWm72rR9h5za7vXV7dj6kRe4e2+8XQV9MkoUuKt0Yqo/jwJ3Hdw1XeAuVZ+MJ8el6n0y7vTJtHtDn4wgbR+j2nj7eXZwV7q6vb9qu/TmLluxzEjvKpaRr8xdVnM3MJu7P5O5R5DMnWOM6lDeY1Qp5r5TtLmTytx5gTs1207r7DSvAJRXBrr3Cx6vG7RvFsRXCcbMO5HdiebueETHhdzt/wyUCdzRialwSZdWdCEIMv72eIzdK6t6xk29OX/Zs+Wvl0ccj3CC+9C9Q4fsHgKv/uQ+GVK8HWuSoaV2m6rjZJdx0RA8Tt7tgXdadv+NJu2OlszU+QY0BJiaTaGtockdyfCZvl29+sKoUSi4p6Wt/7C+t6oKbm6wMWE3YbsGDg58DFsPvhG2OdxJ4OY5b+lTxGq9np19MSkJfviV9PQXCxdWVfcufrk450ZO0sWkkWdHxp+LH31lNPwSi1e+TBt/CT64M2HC6ZgYzNwbAwLq/Pxck1SHDNnlwBFadic0zNANU/1eCLt/zy/kLqhYRpi584i682+Y6b/s7jl5P8TbmvunsCvp7Dq1SxVs17Vd13aJtV3qMpkfRYG7OuPtMoxLla9PRs0F7jq4CwF3tyamBql1YqrsBe56n4zeJ0PS9uNq7pPR4+3SV7f3b233tLnLXiwTK9Dcoz1XLEMx91bPmDtphmqsKHOPZDD3cG5zH8bb3FF2Zzb3L8SZ+3Aac8eBO0O8naztjMhOfJX4WvhiUngWeSeyOx9zxzW5k2rcSeAOJxHONVwtcG0XzrmPIEhZRdeY/GuwMfNu5ZV2ldbU9sGXNOBOKXAnxNuZtJ3k7P/msUj+7vipqIF3Arvv+MI1T3XXYPgNw2972L5h8PtHzb0xIPBwYPSp6IqeimnFj14vX/58wYLHM2bAp19Z3ZtdcB3uJ7BhYeuZbQ9asA1hb8K3wFGCOwzc1rIKOisqux9Pn34tM7MzK+t5cXFVb9Xke5NTLqXEnYmLPBFpabOEHAsJaw/L6syyItb8WfcWrnjxaNq0i8nJp6KjWy2Ww4GBjQZDHa7SHR91Jxe7DxwobdT9e3lC7oLMXfKo+29C5ql6hN33qYPdJZf3Q4IY2nt5XS5klzXSLjm1S9Eho6EaGV3bvV7b1VPdzhvc9Xg7n3i7F/XJcBe4KwnuBh7gzq/AnRvczVoCdyETU/U+Ge54u5x9Mof1Phm9T8bz8Xb1lMl4VtvHCV9qN3cZimWyZCuWyfBEsYzAMndx5h7EZe5mCcy9kcbcowSau4gxqkqYu7NYxvkMTE64E8Dd0SRjf56no3ZuZP/SueheWL7keENhkHd6dne8JpDN3ZmbIYTcbU/RFHDfBacDThOcQTu4p7RPmftgycslBXPuw76A6zDuTNyiF4v6ECT3Zi5aKdNk9K3zHb5/+NC9Qwfvxk1MpYu3O18l//ITXaqdFta//zMegP/8PZu/u+QdC7zzYXdH1B0zd0OjIfho8KgLoxa/XIwgSN60W8vWvK6q7sW611esezN60lW4b8DWtj+0pLTDfQDuIXBHgvvh6IlXps1/1LNly938fFTqa2sn3Z2Udjkt4VxC9Kno8OPhIcdCzC3mwMOBcBgL7xciVuuaDe+ezplzZ+LEzqysi0lJJyIjSWNUXVF3Z8MMXbE7fas78biSMF0ouAtocmcNubtl7pI2zHg3ux+Qit2lkPdDopDa8xAv+rctn7DLHWmXh9rVEmz3eI2MR7VdKLWrS9sdf+R5vbaLi7cLBXc93q5wn4x2J6b+4s7E1IG84+1ygDubtpt5TkzdJW5i6hDVT0yVENz93AJ3vU/Go30yyXqfTH+Kt2td28dJtFRj7goWyyg4PVW1xTIM5h6ssLmTKt1pzL0eZ+7ixqiyVLrvYqh0F2HuzmdOsrmzh9yJ4I6Pt1O0nYnaaWzdtXi80fCWd9sbB6lkhs3ccU3uzhp3GnAP3gOnyQbu9fBMApfuxJl3EKt1/PTbsF/C28PjzsRV9VaVb+lOv5IecizE0GjwPUQB9x04cKfE2/HaTkvtNO7Luljk3dUzQ2F3Z7E7GnXfMwQzd786P2OT0VksU9NXg3a/vFz8ZsWK2xMmvF+3rhapzZ91N7vwekpeB9zosD8Q4TYId++0CZezCjrh/5ZWdD0vLrYi1mmPpo29MTb9cvqoC6NGnh2Jmnt7OPzk8CUcvXnP5pV8KLFa7ZNU4dfqrar6Y/bss/HxeHPH6mWwqDuGMq6GGWfUnVovwyPqzmvxaJVx19xt7P4rj3oZVbM7juRUyu6qkXe3/F1akZfwt6EAssvt7N5I7eqqkdG1Xa3avk372s4F7qqKt3vHuFTJ+2R0cFcS3APlBfeh4sBdnRNT+RS4630yGumT4Sxw54y3h0vQJ3NC430y3hZv14C2j5Nnad3cJZmemuXZ6alSFctIPkBVnLm3SGvurGNUxVS6s49R/dLkhrmzlblTO9wJ4E6Jt+OD7SRqp7F1x/o762J42WGTd1fanfJa4Xo7sGduhmPmztAqgwP3wQ5wh5MIpxsuFbhKU/I6EASZXvwIdvrIsyNTL6XCV5e9XhZ3Ji7oSFBAYwAZ3HETU8nxdqxMhknbv6dQu8ApnyQbpmd3W7c7FqtG2R2Luu8ahNXL2HPuTWjOPfZ0LHyy6ZfTs69nWxHri0WLPqxfj1it79et66msxKrt1258v2bDu/nLni1Y/rx4+XPsg+VrX3eVlq54s2Lu07nTHk7Lv5s/7ua4zM7MtMtpyR3J8HPm38uvtSJPZs58tWTJ6pJ3q9+unnhn4phrY2Y+mQm/EPy0Z2JjjwQFNRkM9X5+h2zmjkXdSQ0z+Fb3bexRd9HszlTkIxzcOc2dZ9SdtmHGI+y+p3+wu9zyLrG/K7gOKbYYnN3rqV1FwXY11cj0Q23f7nFtV2V1u2hw13q8XV19MooVuMs6MfVzkX0yHOD+hQzgrtzE1ECytg8WPTE1WFsF7nqfDCO4630y3t0nI9O4VAXi7cqVySip7VxinsxvKcbuUpi7jMUyHp2eeipKRLGMBGXuGjF3T1e6U839S4OD3UWYu7PMnTbkTg/u39CBO32qnYzsXwhZuFch5sy7822FGnWnybnTh9xpwd2MA/fwg3DG4YKByxL+gChe/nxLZc+1MWOupKcX3i+stSLZ17MjjkcEHg4MaHCA+56hg3eh4E5T4I6PtzNoO7uz/+m7P1EXi79zsjt91H334KF7h8LnAp8RNkM1+Giwpc0SdTIq9VLq8tfLsbQ7fFndV13WVfZ+3Tr4uLeqqqy7bNOnTaverlr4YuH8Z/OXvV6Ggvu6N0tXv9pU9qmmpg9NsFutVsQK37mmr6a7vLynouLZ/PnwzYVz7m8u/zT14dSE8wkpHSkVld3w1asZGe3h4VifO2ruvr4HHey+d9gwe9SdWC+Dj7r/4nzJp0TdBbM7M7gzNblLb+7uRd09yO57Wdl9nyfYXf3yrlqFP6T8UsDZidR+wFuoXQ+269rutYNSGeLtrODuHfF2b+6T8daJqb+6NzHVi8BdqYmpWitwbyCAu94nwwXuoVoAd71PRh5wV0e8XTFtdxvZBeO758zd+6anxoiYniqoWCa1XeIyd82aO496GcHm/pXT3I1s5j6Ay9xZQu6uVhkacKeLt9NoOxOp/41hMb0fEV+CSOyOf0NhMXdHyJ3aKkML7nAu4DTB8xWcdLh+4EKFrZcz5UZtbd+DKVPu5efX9NVgOhzWFmY+bA5oCPA55EMFd1KfDH2ZDFXbScj+Le9FIniSvGM9M0523/rXz7dSGmZsUXd8vQw6RrUhwNhkDDwcGHIsJPJkZPy5ePjEkzuSc67njLk2BlbG1Yy0y2mpl1LRLPyV9KzOrPx7+dV91c8XLEAQZMrcB+Om3swuuA4rt+hm/qx704ofrdnwrmjeg1Xr305f8DhtwmW4M8Ph7UOQpa+WLnqxqKK7oq+29lZe3pnY2GMhIS0mU2NAQL2/fx3G7o6oO7nVHVcvQ22YcYfdGafVimqV+dn5T/IFmjtH1F30PFXPsjufqLsq2V15eVfM4g+pYSnu7Gqj9v1SUbuu7bq294PqdqHg7l683RvHpcrbJ+P5Ancd3MWCO6+JqYqBu94n4/19MsH84+2jZOmTCdP7ZFTQJ6NkvF2lZTIyODtfeZfD3NVQLKP26anii2V4lrmLGaAqj7kbieZuYDF3d+tl+Fa6M49RFWPuTGXu9CF329BUHuCO13b+yP43Xv7Oxu7EqDvZ3GlD7vhWGTK4wxGGww7nAgX3iDq4EuCigusctnxO4fW5S56+Xb363Zo1xc+LMzszR54dSQvu+ImpHPF2Uo0MH2f/F2Ux4DtJ3hnZHWuYwUfdfyNE3VF2P+TrX+9vaDSYmk2BhwODjwaHHgu1tFnC28MjTkREnYyCFX0yOvZMbML5hPQr6dMeTesqLb1XUPBqyZLFq17a296zz8EdCe4zkbapy9jfwGEbH+4DcOcZO+XG5k+bXyxciFittX21nzZuvJGTAz/3kaCgZpOp0WBowNjdFnVnmaTKwu4sxe6M8s44npY3uIswd9Wwu4rmqQ4btp8/uyvVM8Mo74rjuzcsZmSX2Nllonabtu/3smC7bDUyurbLpO2/9mNtZwb3fhpv11qfjPIF7hoA951aAHdJJqZqDtzV0yfTqPfJ8Ad3lfTJSAPuHu2T0Vi8XUNlMopQOwe7q8LchRbLqDLkznt6qqTFMm4NUBVn7oEkcx9JNncTvbm7V+kuRb0MfaW7iXGMqsPcfyWYuy+nuTuKZdhD7kx9Mo54O122ncjoA+3r/1CW838xyjuZ3amt7kRzJ5W520Pu9lYZTnC3T0yNa4brE/bsuKm35i55umLdm/It3es/rJ/zx5xxt8aNujDKXinTSKiUoQV3QrydNtvOpO3/olmf/eszbNH+X3p5J7K7nYp/+gt9w4wz6m5rdcfY3eeQj1+dn38DKu/GZqO5xYzhe8ixkNDW0LC2sMgTkXFn40ZfGY0gyOMZM65nZ9+eMAE+Lph9D27mcPOB2wJsZNihsPts/6DEntWA3Qd7Fu4PqeMvFcy5P2/ps4UvFhY+KNxU9qkzM7MtLOxwYGCzydRkNDYZDA0M5r7LYSs7icXu9OzOUOyO69L/My21869xJ4XcJTZ3nd3VF3jX5V0Dzi4ntaurQ8Y7gu2Ka/tOXds1ou3ugHt/ireruE9GILj/JOfEVFnBfbsO7p6ZmKqNAndt9sm4Ae7BeoG7RwrcVdEnI+O4VO8pk1GW2mVld6WLZTQXcpe/WEat5i5VvQxT1N3NehnSGFVx5v6Ty9yJZe4MIXcSuH/DCu4M2u6y9f/HtRz+zszunOb+J5y5E0LujlYZ2+O67QncBe474AkWji0ccHjks01MbYCrCHbT/GXPqnqrFjxfsPDFwt6qqrUb0BmhCILk382PPRMbfDTY0GjAwH3IniF2cMdNTCX0yVDi7XhtZ6F2p7B/9g3zoio87mdjYXdSwwy51d3B7ljJjM9BH/hk/er9AhoCDE1o5t3cYg46EhRyLCS8PRwOSM6NnA0fN9zKy7uUmnolPf3JzJlwrMbkX4N7Duxx2IywuWDX2P5GCt0XsEdg18CeQuvyR7XCDSpnynX4IZmdmRWV3V2lpadiYo6FhBw2m1tMJizqTjtG1c7ujrQ7fp4qvtudT7E7+/qBGdwFhdxpzZ22XkYQu+9QzTzVfsvuB1kEWed1jyC7fM6umg4Z1QXbPT0iVdd2z2q7koNSJQB3FcTbNd0n4/ECd1knpvYLcB/sDrgHKwHu0k1MlbjA3Y8nuIuMt0sC7sr1yUhW4K5MnwwfcE9VdYG7JvpkvDje7jXazsjuGgu5n5c75C7/9FSJimVoy9yFDFBlMPcjnjR3d+tl9jPWy/Aeoyrc3GnK3B3mTg65k1plCJUynPF2vtROlndK5t356oR7P6I3d5piGVerjL3GnQzuXznB3TYxFc44XIR5026VVnTl3szNu5W39v3a58XFiNVaOPdB4Zz78NWxN8Za2izGJiMjuFP7ZPhoO8nZvxG16OSdnt2JDTPkYaq/Odh9DzO7t5iCjgTBoYg9Ezv14VQEQa6NGXM+IQHW1YwM+OrCFS/gDgbHE3Yc7BrYEXDZY0/XcPHDdoCdYjP3ZtjjcDcr39L9dtWqqureZ/PmXUhMbLNYjgQFtZjNdnD398fPUN3nMKY9DnnfTZV3KrvTNcz8IAjcKZUy7OAu0tw52Z131N0j7M5i7tpgd5nkvR/iO/vRkMnZtULtqgq2a7+0Xdd2Tm33pkGpXOAuTZ+Mp+PtCoxL1XCBu9LgPpAE7gE8wN3AA9z5FbhrAtzJ2q4QuOsF7vL2ychd4C53n4y3F7j30z4Zb4i3q4DaVWLuGg65j5Er5K5ImTsPc0+QyNy5xqgaonnXy0TyqJcJOzCcGnVnq5fhb+7bSeb+OdXcmcrcuUPuaEYHB+5fu8BdMm13LSK700XdqX3uxGIZSquMfW4q+hBOBffgPXAW4JTB2YerGkGQsoquxPOJUx5M+bRx4+3x49+sWDF1/sOUvEsbNn9c8WZF5IlIY7ML3AftGuQC920DWfpk2LWdkdr/ybVY5J2T3W0NM66ou414v9hhb5jBit0xdreXzBx0lMw0Gcwt5tDW0NgzsXBM4KBdTks7HRt7KibmXHz8gylT1r5bmzn5Gmx52GKwNeBJGC5v7NEdbcwP3Q/PvbaceyPsSrgVJI/rmLvkaUV3RXVfNRzzE5GRR4ODUXA3GjFwtw9QtZk7xu74fCge32mnqm6zOQJTw8wPEoE7n5A7k7kLaphxq9jd0+y+V8XsLlXgnRvfvdLfOT9l+ZCd4uw6tXuc2jVT2q5ru7LavlU6becD7orF27/2fLxdmj4ZbRa4+yg2MVWV4O7Sdk5w36U9cPeeAneJ+2TkLHA/rBe4630yyvTJSD8uVZJ4e7/RdsnN3e1iGa8NuUs5PZWxzL1N/ADVURi4S2PuZi5z56h0p4+686mXOSi0XoZHpTv67xHFmzvfkDuxxp0F3Fm0fcD/0i+WtDsfc6cLuf8PPuSOm5tKAfff4JkTDjWcCBu4N8PlvWLdmw/r1yMI0lddfTUj43xCwo2cnMqeygkz7iC2/6JPRdOCO02Bu+11kD7eTtV2Vmf/73/+N+1iw3dOdic1zFCHqeIbZvagUXf4lNGoe51vQEOAqdkUfDQ49nTskldLkNraS6mpJ6Oi2sPDT0RGdqSkVNf0WREr3ENgr8G+gKsdjrPtaX8X9jccWMgdtg/sONi2cA8ZPfEKHN7J9yZX9Vadi49vDQ1Fm9xt4N7g71/v54eZO+Z6eGjDTy90Fc7g2J27YcbB7j+wlMmIAnd3zV0+dtd4sfs+IcTpFrsrIO/a9Xeen5qszi5rpF1N1O6dwXZd23Vtd0Pb6cBdVfF2CcalekmfjLITU9UM7jtkBvff3Qb33dKAe4j74K7YxFQPFLhrv0/msIA+mf5Z4C4m3i4NuOt9MnLE271Y2+nZXQ+5KxVyj5Iw5O5mmfso+mIZIeZ+mGLu4utl3I26i6yXYTB3Z9Sd2dz/ytPcmUPuJHD/b/7gzkTt3PJOqZdxmfvXjOZOapXBzU1lBHfLfjhlcPbhMp5og/X369Zdz84+Hh7eGhp6Kjr6Q0nJ5k+bu0pLZ/8xO+J4BFYpM2zfMBTcfx8Er+zwhk0P7rTxdnZtp0X2r5kXrb8Te95p2Z2lYcYedd9OjroP22s3d786P0OjIehIUPSp6OreajhinZmZJyIjj4WEwDodGwtHrKKyB27dsCVhg8A1jyXc4XqGy9sO7miZez1sLtiSWLEM/Dw9lZVw8C+lpraHhaGtMiZTk8HQGBCAmju2/Pzsy/kttlXn51dnQ8CDjtoZdLyqg9134NmdNerOuJi0nQXcmUPuIqLuCrO7JordtcXumvd33rwuu7ArEGmXlNo9G2wXPR9V1/Z+qO2aGJTKH9zdG5f6lXeOS1ULuI9QfGKqrwITU3/9QgZw/0oScA9UBbgPkwnclZqYylzgrqE+mWaV9MnoBe6eLXCXs09G4+NS5Yu3S0btHTyWds29v4bcmcw91e1iGQ2Yu+cnqTJXuosxd+cAVdpiGXLInb5VhgXcRWk7I7tTou5kc8e9v1BaZbBPjRbc4YjBAYRDOhQH7nDpFi97Pu3RtPdr156OjT0aHNxsMrVaLJfT03srK2v6asZcHWNptRgaDT6HfFBw300Gd/Rtdevnzj4ZarzdVSZDrZEhUfvXwhczuxPS7t/9SWTU3Wnuh3z8G/zNLebw4+EF9wtKK7qeFRefiY3Fhp3Coauu6UMQZNHKl7C7YeM4OtxtD9vwFG3ZD0+/WMIdNhTsPti2cPDTJ17ZWPZx1dtVdydNOhkVhf5sgYFwCppsOXfnaoJlNDYbjS0mU4vZfNi2sMJ3+PaGgIB6Wxb+wIgRKLvbSmboo+7EVndq2p2k7ZzxdlpwF2fuXsbusha7y83u8sn7QSGErRzEi/hdKYbsCji7yqh9n+TUrr4aGV3bdW0XF2+ngPuX+rhUT/fJeK7AXXPg/qUYcP9NYXAfIhe4q3ViqmoK3A18wD1W3gL3QL3AXT0F7hnuF7hrpU+mv8TbZXN2d/FdEnPXQ+5KTE9lLJZRk7nzqHR3a5Kq+Ki7oEp351MZ0dwD+Js7tViGM+TunJsqNbjTsDvV3BmKZQZ/Q2yVsb8a0IH7dhe4h+yFgw8nC847XJ8zFjxGEOTl4sWnYmKOhYQcDQ5uCwu7nJYG31hd05tyKSX4aHBAQ4DPQRe4w0u5fWLqNvo+GVptJ2fb+VD7PyiLj7wzsDt91J3a6r7d1epuN3fbGFXfOl9DkyHkWEhmZ+aHkpJNZZ9uT5hwLiHhdEzMldGjsXKY1SXv4AYCGw22hu2yR69224Mx+nwLxxz2Duwp2HewW+EOADe0VSVvS7tK36xceXbkyDaLBY7/4cDAFrMZtXUHrx8JCoJvb7VYjkdEnIyKOhUdDSfrTFwcfAknCyt/b8JGrfr47B8+fK8j6r7zq692YOY+cCCpXgb/bv8Dw/pRBLjzMHcJ2X07O7tLOk9Voah7/2B38f7uuXVQ+aUpZ/d4h4wXB9uV0fYdurardVCq3OCu0nGpep+MEhNT+zm48ylwD9qjGnDv1wXuRj7gzhlv1wvc9QJ3TfXJ9ON4e4cUS0PmLjTkfk5jIXdZp6cKLnOX1NzjacxdRL0MeZIqO7uLi7rzq5dxjVHlb+4+TnPnVSzD0irDDe5sqv5/HUuQuf+daO72lx1qq4z9bcI5N5UI7l9g4G7+DZvhCcffBu5NcNWljb9c0V3xfu3asyNHHo+IaA8PPxkVdT0nB0GQNe/WxJ6ODTwc6N/gTw/u1D4ZZ7wdXybDou18kJ1pCWJ3flF3THzx9TJOc4cj4F/vbz5shmNS2VO5uuRdd3k5HKV3a9Y8nj69t7p69bvVU+Y+gNsXbGHYVrBB7BvB9kBr03Y03g6HHfYg7Fb4bnC3yZzcWVPb11dTczEp6URERGto6NHg4CNBQRiyHwsJabNYTkRGwtm5lJr6x+zZH0pKns2b97CoCK3dr6m5N3kyduKwCvgmg6HOzw+Luu8eMgRfL+M095/pzP1HLmrnq+0OcN/KAy9kZfd+UewuZJ6qaHZXRt7VRvAHPbi0FmlXKbXr2i5VsF0l2s4F7qrS9q3yaDs7uOvjUvtNgbsO7l4M7kpNTNUL3PUCdw+AuxYK3L1gXKoq4u3itb1D0qWcuas25D5S6pB7rBIhd4HFMsLNnQruzOZ+lM7ceY5RZTN3zkmqpFZ3f7ei7gz1MkF7WCrdvzTxNHfWMndSsczgb7lD7oLB/f8yLC5zpy2WIYfciTXudOAOD8xwfOBYwaGDgwkHGY4/Bu5wdcF2W7fxfVdp6aXU1DNxcadjYy8kJr5aunRLVU9mZ2ZYe5ipxeRf7z/iwAhOcCf0yVDLZHDaThNsJ2L6f/3jv1gWh7yLjrpT62Vw5o4Vyxga0ZD7qAujip8X92zZklN4vWDO/ZLNH7orKtZtej9j4eOsgk64R8Feho0Gu8a5R2xPm42wrWDfwa6EnQsHH+4ecINFEASOdmdm5qmYmPbw8DaLpTU0FL7E/vLjfGLi7QkTsAG2W3q2zFr0pHj5897Kytq+2oUrXsA3PiwqupqRcTkt7XxCQltYWIvJVO/vf9BZL0OsdCebO65ehn1RtZ0T3LfyUww1s7s2GmaUYneF5V0Biz+oqqWAs6uS2j01HFWJGhlPlLbr2q45bRcL7toYl6qOPhkd3Bm13U1w3+4euO/UALgHc4L7XinAXY0TU72iwL3F6wrcPQnunitwP+0FBe5q7JORKd6uFm0XwO79NuQexxxyj5U55C5yeipXsQzvAaoymTvPehnmqHuMklF31kp3FnP3F2TuDCH3wfxC7qShqcza/p/ExcjuOHNnKJaha5Uh1bjjwH0AEdzhYMJBhlMAJwtONFxFsAtyi25arcjtCRM6kpMvJiffzM3dUtUz68msuDNxIcdCjM1Gv3o/FNz3Dhu8e7AL3Le5wB1f4O7qkxGu7QRY/zvDYpJ3N6PujkmqrnoZZ6W7zdyH7hk6fP9w3zpfOCBhbWHjbo5DEGTthndzFv9RUdm99v3a18uXv1m5sqK7omxL9+hJV+BuAPsRthj+sRDTdtjm6JNVUit8H7ibTZhx59WSJfcmTz4XH38yKupEZCSsk9HR8NUbOTk9lZXwC20u/1Sy+UNZVxl8DCer5ENJX03NmPyrRfMewre8XbkSE/kHRUXHw8ObSeZuq3THm/svRHP/SUJtF2XuUrK7UsXumm6YkZLdPSHv3rOoB1MmZ/dGatdQsF2rpe3epO04cNeutrOAu2bHpQ4Squ0S9skoU+Au98TUrXIWuG9jj7drBdwHSw3uQz0L7qzaPkIvcNcL3PkWuKsV3D1T4O4lfTJqi7d7mtoVNXeZQu6KjE6Vt8ld5PRURnNvl6jMnZ+5J9KZO+9Kd15Rd6ENM/yGqdJG3cmTVHH1MjSV7ibCGFVmc/8Zb+4sZe5/4i6WoWmV4QPuLmr/3LbI7M5p7kwhd2erDA9wN9nAPXgPCu7hB+F8wXkPsbWapOR1LFvz+t2aNTfGjoX1Yf36Ne/WpF5KjTwRGXw02Nhk9KtjBXdnn8wPXPF2qrZTqf3vvBeV3XlG3b/FRd1Z62XgcySY+96hcBzgaJiaTeHt4RlXM5a8XDLv2bz8u/nTH09/v24dHL2rtj53+C8j/yrcXmCPwyaFLel8Zgu2ZdvhsQr+F9w64JY1euKV0oqu58XFHcnJZ0eOPBMbC192pKQ8nTsX+6lKu0rnP5sP5ybtchqcl6SLSVmdWfCNNX01qL8jVvh4zh9zVr1d9aGk5Ep6emtoaJPRWOfnx8fcWdj9JwZq/4lTHEhCIYQ2mORdMnZXW9Sdd8OM2thdl3cNObtO7doKtuva7uXaLqpMRjC4e+24VL3AXbmJqbzB3dC/wT1EReDePwvcTXqBOxe4hysxMfWk0uDenwvcVdsno0Zt14q5q2x0qkIhd77TU8UXywgcoOqWufOsl6GLusvSMBNGx+5Mk1Rxle4MY1SFmjtLsQw2PdX9Vhmctn9Ot7jNnU/I3VHjTgPuP9vA/Vc4LHCU4LjBwYSDDGcBziBcD3D5wb6AW9D46bcRBHk0ffqzefM2fdqUcyMn4VxCxPEIO7jTJdzRiam/oO+gtAXutNpO7m0nafvfRS2hUXce9TJ8zB0OCxyc8OPhMadj4s/Fj7k6pqYPbVS/mJT0bP789R/Wz136tHDO/ezC63CXg/sG3AFgpzsemdD7ANwr4A4Dt6+UvI7i5c8/bd58dcwY+OGwro0Z82H9+i1VPdW91eNvj0/uSI49Ext5IjKsPczSagltDbW0WaJORo26MGryvckfN2xYs+Ed/FrL1rxe/349nMdTMTFHAgMbcX3upG6ZbUzmzmNt5b8o7L7V0+yu/qi7JA0zCrO7Lu+ikV1GZ5ch0q5ru67turZ7Vtt/cIG7NvpkvvEsuP+PDu6qAndjvwP3YZKCu0YnpuoF7nqBu3wTUzVe4K66PhkPlcl0KLhUD+6qHp2qqpC7FGXusps7f3ZvUqhhRmi9DE9ztz1SYub+V1/mAap8p6cKapXhAnce5k4Kuf+3K+ROAfchDOAe8CscFjhKcNCG2gvc0T4ZuJDgIoednjm5M3/W3QUrnr9bs8aKWIseFmV1ZiWeT4w8ERlyLMTUbOtwP4h2uNvBfYcL3EkF7jR9MqQyGVpt/7t7iz3qLq5exlHpjikvydzRbplDvgENAXBwgo4EWdosMadiJt2dtHL927KusnUb31f3Vr9dufLZvHkIgqxY9ya36GbGpKtwt4Q7le0WZH/SgJsV3ANT8jomzLjTXV5+Ky/v2pgxN3Nz369bh1itRQ+K0i6njTw7MupkVFh7WOix0OCjwYGHA80tZlOLCT6AXzf9cjo2uxVOJdwV5y19Bh9fTILbR2iL2dwYEFDn63tgxIi9jhmqO7/6aoct5E4wdx7svtWdJVbe3Wd3kcXuqh2mKluxuyTsfoDWlHVnVxLZdWoXTe3qqJHRtZ2/tqutul0BbWcCd0+OS1Vln8y34vtkhrrbJ6MMuPPuk/EsuO8QDO4macF9lzrAnffE1FAVFbjzAXe9wF1wgXsii7ZrFtxlL3A/pYECd71PRmS8vUPxpay5q2Z0arynR6cKDbm7XyyjuLkfEWfuEjTMENkd3zBDO0x1OFPUPXgvXaW7EHO3PYIylbmTi2Xs01Pt4P4Za8idtVWGVdtZzJ095G77zZBq3FnA/UsM3NGJqWifDJwjuCTgMk6bcHnOkj/KKrqsaDE4uip7K1e9XTXt0bQx18bEnY2ztFnMLWb/Bn+fgz54cB+4fSAK7j/TgbuzT4ZaJiNI2/9GWRLm3DnN/QdcpbtjjKrT3IfsGQJHA46JX51fQCPK7sFHg6NORo29MbaquhdBkLlP0TaYOxMnvlu7trqmF76Ery5b83rJqpeFc+5nFXSmT7ickofe9uHL0ROvjJt6C/0XBtOm3cvP7yotLe0qHXdzXEpHCqbt4e3hoa12bYdfy9BoCGgIgF8XTk3kicj5z+bDj4VbNNxLc4tuwseX09OPh4cfDQ5uNpngOx7y9d0/fPjeoUN3Dx6MmrsNU5jMXaElEN9p5Z2W3T3fMKOqqLs4dtflXXNhdtnaY9RD7XqwXdf2fjsoVSZw/1rvk5GjwF1LE1P93JyY+usXHgF3PtrOF9x36+CuF7grAu7HJJqY2qZPTNUL3NU7LnWcJsBdiLmrPOTOB9wlDrmf9njInV+xDFuZu0zmLlHUna1hRnixO23DDN96GSHmThqgSjR3rMx9GKnMXUTInbFV5j/dNndiyJ2mxp0b3I07Bpl/wyamwjGHMwhXYNbkTgRBtvRsmfJgStGDoqWvlr5dvXrFujezF/+xofQj/K+8W3nRp6KDjgQFNAZg4D5k9xB4v0fB/VcXuJMnpjL0yVDBnV7b/8a6+Jv717zNnbZehmTuP9vN/YsdX8ARGPT7IDgUw/YOG35guM8hH796P0OjwXzYbGm1xJyOSTifkHQxCY5eWVdZRWU3HNiu0tI+BOmrrX1QWFhrRd6tXl1a0QVHeMmqV0XzHkyaeXfy7HsLlj9/tXTp+3XrFr9cDD82/Up64oXE2DOxGLhb2iwhx0IwcIfT4Vfn53vIF35R+MbkjmT4qQrm3M+YdHXC9Nvwq1xOh5tXVHtY2JGgoCajER2g6uOzf/jwPUOHYmXuOx1l7tscJPEzT3any6oLVQmWn1Zhdu8Xw1SFN8xIyO4HGOi5nwi7EsguZ6S9X1C7N2k7D2rXtV3T2u4Adwn7ZFQRb9dmgfswPtouw8RUHdwF9snwB3cabQ/aoyi4u1XgLhDcFZuYKn+Bu7HfF7j304mp2ilwT9ACuPePeDsvc3cz5N5/RqeqIOQusszdfXMPppq7oHqZkS0mhdmdbpiqM+pOXy9DGKMq1NzZy9y5imW+/FpIyJ0fuLvMnSvkbm+VIdS4Y+D+J1pwhwdmO7ijE1PheMKRh1MPu8+KWMu6yjKuZsAquF/QV1v7ZObMqpre/Fl3c6bcmLP4j48bNmR1ZllaLYYmg+8hXzZwxwrcv8eBuxzazm7u7CF3Eeb+b8oYVczct3/x5c4vB/0+aPDuwUP3DIXDMuLACDg+/vX+cKDMLebgo8GhraERxyPizsQlXUxK7kiGw1j0oGj87fHzn82f+WTm6rerF71YtPHTxlqkttaKTj3tQ5CSzR+6y8tXvFkx/fF0+J6Z1zJTOlISziXEnI6JPBEJP1tYWxj8zPDzGxoNfvUucI87GzfxzsTeysqCOfdnLnzyft26y+npp2Njj0dEHAsJQYtlmMvcXeY+YACjNchgE+7IuzvsztYwo8VWd+2wOxu+a9HfWT4XxZBdzki7VNQuV4eMWoPtKq+REaHt23VtV0d1Owu4e7JP5jMZ+mQ+k7ZPRgsF7n8RX+DuheD+VX8Ed31iqhYK3OM9VuCuT0xVBtz1Andl4+0dqgV3hUPuiaofnRonANxFhtyjOELuJxhD7kzFMkIHqIo0d371MoIaZuiK3bnZPYrA7kzF7nyi7uxjVGnNfSCHubMXyzBOT2ULudPWuH/uTsidAO7/RVvjzgbu2+GAYOAOhxROBFw8E2xTUgvuF8Sejk27nLb50+bH06ffHDfu/dq1U+c/TMnrSB1/Cb5DdV911MkoU7OJBtx/cYC7Y2Iqrz4Zlimpf5MZ3PmZu7Ne5s/fM4xRdZi7vV5m9xCs1X3EwRG+dTZ2bzTAEQs8HIjJe1hbWPjx8MgTkXAkY07FxJ2Jiz8Xn3ghMbkjOf1KelZn1vjb46c9mrbyzcqusrLVJe/gsFsR69JXSwvvF2Zfz07pSIHvH3M6JuJEhKXNgpr7YbOx2Qgr6EgQ/LRJcF+/mTvv6by1G9+v3/Th8YwZnVlZF0aNQs09PNxu7rRl7hRzFwET9EghXeeMeHZnKXYXG3Wnly+Wehm1Rd2FN8xIWO/OF99V6O/sv1slhV2ZSLs6qF1zwXZtl7br2q4FbZcQ3LXYJ/Mv6eLtXjMx1T1w91cO3L8UA+6/yQvuQTq4e2piqjIF7s1S9ckEylzgrk9M1SemKq3tMoN7sgbAXc0hd5W3ysgccpehWIauzF2IuY/CzJ13vYzAqDv/Ynfe7M5U7E5umMFF3XlVurOa+69Ec6cZoGp7TuZdLCMi5P65WyF3hlYZdnDfioH7Fxi4B/4Oj4VwPOFcwJW2ZPWrh0VFq9+tHn1lNNZ5cjkt7WJS0t1JkxAEgbsQbK6NpR/LusoSziWYW8y+dQzgTi1wJ41L5Rlvl1zbOcGdaO6CxqgO3DbQOUYVH3Ufvn+4z0EfjN0DGgOMTUY4dEFHgoKPBoccC4EV2hpqabOEHw+POhkVezoWjm3qpdScGznzns77sH79y8WLF618UTDnfuGc+3CC4ETU9NVs/LSx+Hlx7s1cV6X78fCw9rDIE5HJF5OLHhQtf7189dvVK9+s3Phx46dNm+AneTp37qNp026PH38pNfV0TEyrxdJiNuPL3Hfhytyd5r6NSBW0wM2XKqRue3eT3YU1zHh91F1N7M6N7worPM/fjEeQXU5nlzDS7nFqVyjYrpe269quuLbbwF3vk+lHBe6c4P4zH3B3a2KqP4+JqV4M7ny0XRFwHyEduLs3MbVen5gqHtzdLXDXJ6aKnZiaKTG4e1+Bu+J9Mh3qWNoHd2VaZTIFgbtsIXcxxTIiBqgymnuIGHNXCbuTG2ZYou6Eehnh5j7Aae7sZe6MxTKEkPt/yxVyF1DjzgvcDdvhCRYODhw0eBiDcwFX19iiG73V1RU9FWs3vKvsrbySDhd35PGIiPMJCYjtv+nFj14vW9ZXW5t4IVEycPestjvAnd7cSWNUv+Uwd2elu71eBh91PzACLXav8/NvQEtmTC2moCNBzoXF3sPbUXMfeXZk6qXUwgeFPZWV9wsLHxYV1VqRCdNvj8m/NnrilczJnYVz78MJ+rhhA1JbW91XDf932qNpxc+LC+4XFD0sKtvS/WnTpgdTpjyaNu3Z/Pm9lZWlXaXwfxc8X1DeXb5h88eq3qqnc+deGT26PTwcNXdbmbu9WMZR5u4ydxK78xANQeDORyXEybtodhcTdRc3SVUIu+9RJOq+TyzLHpBT3gX4O3+ad/8n9BSvK1Idow1q14Pturb3P23nA+56n4yH+mQYwP0v3gfuATq4qwHc+9vE1CYlJ6YG6hNT9YmpOrj3rz4ZgSF391tlxqq+VSZLUKuM+kLuqe2SlrkLNndhk1SFsru4bncmdqdrmLFH3V31MsyV7ozmvt1u7v6/YuA+gLXMnVoswzY9VcKQO7VVhr7GnQ7cB9OBu58d3OFQDLaBu48N3OEqSs27tGTVqy09W96uWnU9O7s9LOxwYCCsNovlRk7O5k+brYi1q6xs/rP50aeinZUyg3cPhjd+eB3nAHdSnwx7vN0dbf+HEG2nBXeh5u4co/oLodIdjbrvQiep2qPuB9CoO2buWM4dDi58iX0QfDTY0maJPBkZfy5+7I2xvZWVj2fMgLNwc9w4BEGmzH2QNuEy3GyxP6Dhjp1V0Llk9au1G953lZZ+2ry5u6zs6dy58D3hqxeTky+lpt6ZNAlOVvHy5xvLPk5/ND37enb6lfTMa5mLXy5Ge4F6q6+kp6PmbjLV28rcncUyzjJ3zNx/5VIPWt2gMQvRMMGJ7+zsrkfdvYjdJVZ4TcC6ss6uNmr3YLBd4XxflyEAAIAASURBVPmourZ7gbYrOSjVtf785//Q+2QEgLuH+2Q4J6b+KNfEVG2A+04vAXc+2h7CY2Kql4B7g8ITU036xFQR4J6qfXD3/MRUvcBd6/F2dYfcczTdKnOaFdzZQ+4CpqfyKpbxrLmzRN0lYfdYIexO2zBDibqzV7pzmHsAwdyZy9z5FMvgQ+7/oA+5D/xfweY+gCXkTpmbygvcfxloB/ff8OAOV8voiVdqrUjx8+IHU6acio4+EhjYGBDQEBBwODAQvnqvoABBkNKu0sxrmWHtYcYmo88hHxpw38oF7lLF20WXttNpO1vInX2M6g+uMaqY+7rMnaFexp5zbzTAMURXs61k5miQpc0SfTI65VLKpk+buisqOjMzL6WmXhk9+sWCBWs3voezA7dEuE05bz5wK4NbcXbh9SlzH/RWV9f01axY92bZq2Vwmt6sXFnVWzV78R/jpt6aufDJ2vdrM65mYLXvCecTVr1dtX7Th1dLl17NyGgNDW00GLBimT3OYhmKudNrCAVEmMydqhU/ubcUYHflou50fifA3IVE3RVg9/2Ks7s4mj+grSW/s8tI7d4dbPectiszIlXXdonj7VJru6Tg3n/7ZFQ5MVVacPdTFtwNqgb3wWoA91CVgbsnC9z1iakyg3sKH3CXfGLqCX1iqkLx9hwvKHDXwV3yVplzHm6VUS7kzjI9VXixjLTmLiO7c/fMsLM70zxVctSdVC/D29y/xMzdgDd3ujJ39mKZwd/ymJ76N3eLZQbwa5XBwP1LnuD+KzzoEsG9Aa6HrILOqureNe/W/DF79vGIiMNmc6PB0BgQAB/AVx8WFc1c+KS0vCvjakZoa6ih0eBz0GfY3mGDdzGD+/couLsmpkrVJyMDtZMT7mLNnTxGFWfuQ/YMIVe6NwQENAY4G2bC2sLizsQV3Cuoqem7N3nyxaSkcwkJ8OXtCRMqeypzi27CfQ+94aSdgLuEbdcfQ5+4ktvgPgO3Nbhtpo6/tGTVy+VrX69Y+ya74Dr2h93YKTd6KivH3hgbezrW0mYJaw/Lvp79afPm8u7yyqqe07GxLWZzvb//gREjyMUyDnPHszublTCbO0krOBmCsKRgdz4NMzTmLmnU/XdFJqlKGXUXW+zuqcC7Fy5FnN37qN0jwXb118j0O23HgfvP3ljdjmk7Cdz7WZ+Mlxa4/8VTE1N1cFcbuOsTUzU9MdVz4O5+n4wU4H4yUp+Yqhe48wL3Dq2Ae7Inwf2CbDXuKhmdKk/IXWlzFxx1F8PuIxnYnV/PDCu707e6k+plWM39d5e5E8rcieaOK3MXUywjYnrqANnBHX3Oh6d3363wCcInawf3oN3DMHCPaoAzDht/S1VPb1XV7QkTTkREHAkKajGZYMEHJyIjXy1ZUl7Z3VNRkXopNehoUEBDwIiDI4buHcoI7s54u7TgzkntvIWdTduFmvu/hZk7HDrfQ75o1L0ejbqbmlFwD4f7QUdKWVfZp02bLqenn4mLOx0Tc3bkyCujRyNW6/xlz+COimp7chtsatibjr2GPkDCx7ArYUfDLQJ/b4EbFNyuEQRZ935d4oVES5sFVnZn9obNH8fkX1v+evnFpKSjwcGNuOmpu20hd6e57xBiKxiUOLGDgBcsMMGlD5z4LoDd5Ym6a65eRpmouy7v/cfZpaJ22TtktB9s17Vd13bJwb3f9Ml4/8RUucH9VynB3aiDu/iJqSoEd31iquCJqWLBXdUTU9P4xds9B+5xCoC7XuCu4Xh7f6pxdz/kPkaG0aniQu4ipqfKY+7iou7i2J2pZ8YkIbuzmvswFnM3Uc3dMUCVpsz9RwZzl2R6Kpe5iwD3r2iGpsLvH57eP3eAO3zi8FxqA/d98CQGRxhOJVznsxY9mfds3h+zZ5+Kjm4NDT0aHAyr1WI5Exf3bP78isqe2X/Mjj4VbW4x+9f7jziAA/ftdnDHXj3hXZA0MZWpwN1euc4H3IVSOx9SZ1/fyGnuB+zmHtAQYGo2wYGOOhk14faExatevly8+FxCwsmoqBORkXAiLiQmfigpQRAkbcJluLHABofNCFsJtoxtgzj3BbpH4FtgB8G2gu8AOxS2PPyQvGm3eioqlrxakn09O/VS6qQ7k9ZtfD959r3a2r6LSXDjCG02GrEmd2fInWDuPCyG3tzpwF0QtTPiu0zszmTuFHaXvF5ml5L1MsKj7jq7e5Oz69SuhmC7ikrbdW3X4KBUp7ZLB+4a65P5l7r6ZIbxLnD3anDnX+Cug7t6wJ1vgXuEPjFVbRNTtQzu4gvcpQD3TInBXZ+Y6l3g7oU17vK1ysRJ2SqjeMidpcydxdyTmM1ddL2MAHYXEXhn7JmhsDtr1J1Y6c7P3HeSzZ1Y5v5XvLmLK5bhF3JnM3fq0FTR4O7zE3xSTnCHgwDHBI4SHD04sPDsAZfcuKmozL5evvx8QsLxiAg0Dx0WdiIy8nJa2qZPm2pr+9Ivp1vaLMZmo1+dnwBwF1Tg/neBBTJ0zs4B6Oowd6xbBgP3kGMhI8+O7EPQ/26MHXsqJqY9PLwdDn5ExJnY2DsTJ1b1VhXMuQ+3INjCsK1gg8BZs13/B12TDCz74WP4Fvh22COwcWCLwe6GG+CilS+tVvQntyLWRS8XVVb1rN/04fHMmecTE+EUt5jNDQEBh3x8nCH3XQ4M4vYaCrvjWYQN3MXSA7u8U9mdT8OMW1F31nqZ39RdL6Mwu+vy7kFk1x61qz7YrtfI6NrucW1XC7h/phe4KzExlRPcf3YL3P3VB+4macF9Fxe479YKuGtnYmp9P5uYekTKiamjlJqYmqL9iakZHp+YetaNPhkd3HVw92yNO4e5x0k9OlXCkLuM5p7Eae6tIULrZdxkd3Z5593wTsfu5HmqJHbH1ctwmjv6QIU9ejEMUCWWuYsplmGZnsrD3AfQxttFVcoM+fZ/XOD+ox3c/bfBZwqfNQnc4VzAlQObcc2GdwiCXB0DGyb2ZFTUyejoc/Hxj6dPL63omvt0bszpmOCjwYZGg2+d7/D9wwngvm0gvODCCyj6TukmuLMsJmpnn3rKc/EBdynMHZuhioXc/Rv8Tc2m0NbQ5I5km7cjl9PglhHRarHAOhEZCWfhSnp6TV/N4lUv4bYG+xd2DewFuPLhascKlAiP/fAwH7oPHsLhzMJOgT0FGz8lr6MWqX0wZQqcyndr1tTW9r1evvzOxIkXk5PhlzgSFNRoMNT5+lJD7r+RcIeOe1zsTgm5s4P7j1IsbnbnF3Xvj/UyIqLu7hW76/KOR3btOrvXULt3B9tVWyOjjLb/oj5t/0kGbceDu7f1yXwmUZ+MdgrcfxQ3MVUouA/wMnDno+2iwJ1G24P2qAPcD2gH3BsUAXcVTUwNUtvEVB3cFQJ3uQrcxYG7PjFVB3dV1rhzh9yjxIfc+U5PFVjmzmHuYuplpGB3flUzLWyBdwZ251Evw2XugTTm/gXtAFX6Ypl/MxTLsE9PpRTL0Jk7gd0J2u42uI/AgbvBBu6Bv8MBgcc5G7g3wCmASwIu77FTblgR65NZs9ChnfHx5xMSrmVmdpeVIQiSdDEprD0s8HBgQGOA7yEbuO9RFtxpC2Tw1E6RcfrFH9+/kcLctznMfafN3HcNGrJ7yNC9Q7GQu389Cu6WNsu4m+MQq/X9unUXRo1qDws7hvX5hIa2h4efT0yE41/TVwM3atjCsEHgyocHabi84SQODnJcz7bXDbi84TqHa3546D74PvA9YWfBHWNM/tX1mz5UVPYsW/MaTvG69+v6ampujht3Ji7uWEgI1ipz0McHBfehQ3cTzZ2DgXDmTg65E8GdU9t/YF5ysLuIqDufehlVmLusUXfp2L2/yLsnkF2ndrUF23Vt17Vdcm1XP7h/oxe4i5mYKgTcP5cM3HlMTNUouAcqBu57NQnunpyYqk1wV/HEVDK4p/AA91S1gjvvAveYMbKBu8onpua4HW/Xwb0/z02VuVVG/OhUpUPuMpg7v6g7G7tLKe/MgXc8uzM3zODqZejNHXvOsYH7HkexzC6GAaquMvfPqeZOKZaRbnoqDbvTa7sgcLe9SsCLgA3c0UfxgTZwRyemBu6CJ0M4RHDc4JDCiYDzDhcqbO35y54hCHI9O/tyWtrVjIyXixd3l5dndmbGnIoJbQ01t5hd4E6slGED92/cA3faYDutszspnGsJwHeh5v6Dy9wx5SWZOxw0rFhmxMERfvV+pmZTWHvYrCezFq18CUf+fGJiq8VyJCjosNl8ODDwWEjImdjYFwsXVlX3ZhV0wtaGTQFnDc4dnEE4j9g17Hx/gVcSO7sH7xlmM3d4BobNBfcKuFuOnnilYM79iu6K/Lv5Mx7PqKjsuT1+/ImIiMPEVhks5L6Ltx9huOMslnGF3BnAnVsWnJogBN+p7M63YUbuehmB5v47n0p3T0fd90lNwwe8DN89h+xyOLuE1O5+XbuiwXaPzkfVtV3XdkXAXWMF7t+qr8BdanD38XJw/1KF4B6kCnAfLjm4h6sc3DU2MTXQ0xNTOcE9TAy4H+cG97T+Be4jtQLuMvTJKAvuHTq4a3tuqoKtMiKmp4oolpHD3Dmj7hzszkfe+bbNMATecezOGHUnVrpjY1QZzH03t7kLK5b5lmzuXzEXy/A2d0ZtFwru8KYAz/kYuPv9Ao/K8Gmi4G4LQcNRgqMHBxbOC1wScLnCvssq6Kyp7Xsya9bNceMeTJlS1Vs14faExPOJkSciQ46FuMD9AA7cd8gJ7tRguzPVzsDf3EsSeedv7r84zH0Hau72Ypm9Q0ccGOFX52dsNoa1h427NW7D5o8fSkqwQaYtZnOTEf6P8UhQ0KnoaARB1rxbU7z8Oex62A5wnaPx9qDdcAHDpYtdtOgK+NXG7nZzH0r4RwwtcE+A2+D46bfLu8tHXx2d3JG86u0q+JnhVzwWHExolXGE3HfRETBerOzjVTFzJ4bcGcGdiRXoKIFmucnuTFF3oZNUvazSXWzUfZ88XqxJfMf/tj2B7BqmdnV2yHhlsF3Xdre1XYHqdv7a7gR3cdr+D8/3yQwS1SejhYmpf1ZgYqqPoImpUoB7AMvaLge4Sz4xdZDcE1OD2bVdUnB3e2KqVOAu58TURiUnpppln5jqLrgrMDFVCnA/qTC4x+rgrp4Cdx3c2ZaC4C5pjbv4Vhm1htyVM3c+7J7Ij91lkHc8uxuY2R1XL8Nl7sF7uQaochfLiJmeyrdYhsru/ysO3P9EB+5ME1PhIMPpgz+U4bKHjTwm/2rRvAe1VuTxzJlWxDrt0bSMqxkJ5xKiTkaFtoYGHg40NBrIQ1N3uIamCgb3f4gKtpPUG4/p3znsm7Lgf6GLTt5FsjtPc//ZZe5YmTsWch++f7jvIV9jEwruE+9M7K2s3PRp091Jk9odg0zr/f0PBwaejol5tWTJstfLCufch5uDDdwPwvUM1zC8jMAVa79Q/dDKIMzcsZy7vVvG/u8YGmEDwq0mt+hmdV91SkdK5InIKQ+mwCl+Nn9+e3h4s9FY5+eHgTsWct9NS714+cKbuyPkLgjcBWs7b3knsTtn1J2zXkYqc9+pvLnLHXWXjd3J+K4qfyf9xjwn7PI5u/aoXcIOGYmC7bq269r+o2xlMu6Du3oL3P+kUIG7shNTh8s6MXWrWxNTdXCXCtzd7ZPZxzkxVTXgXq8IuDcpCe6BioE7m7Z7GNw5+2T4gHsUD3CP9kpwz9bBXQd33iH3scJr3D0M7vTmHiusVUYtIXcBZe58zZ1P1J2b3YXLOx98J/yRx8XudFF3ujGq5G6ZkH3EAaq78WXu6D9bZC6W+Stm7sSQ+585pqcyFsvwM/f/Zdf2/2PXdhy4f0UD7ljyBgV3Xye42yjW0ScDBxPOBVxFcM3DTSBz8rUJ029PK360Yt2b92vXLnm1pOB+Qfb17OSO5NgzseHt4UFHgoxNRr96vxEHRwzbN2zwbnnA/R+Mje0ubSdSuwvWv2deeHxnYnc5zN05QHWbvVhm0O9okzscQJ+DPoZGQ2hr6Pxn82v7agvm3P+0efOZ2NijwcHNRjjSxmMhIVdGj7Za0Xmqc5c8hdsLbAQM3OGtAc4mnFN4k0Jf0LBTjP4jBrSmH94+8MUytjJ3dIBq+oTLPZWV6z+sz+zMrOypzJt2q7u8/GRUVIvZXO/vfxDXKrObaO5ObXcJmu07OEPu9lYZLnAnswLRDv7NugSxO2fU3f16GS+sdBcddZeZ3WnwXTGCp/t196tj7esf1N6vgu1K1sjo2q51bZcC3DXWJ6PRAvcf3J6YqoO7Du7Sg7vME1PrFZmY2iSswD2OK94uL7jzjrfr4C4DuMfJAO7xOrjr4K7pualqbJWROOQuTZk7p7lLFXUnszuXvPPEd1p5583utJXuZHMPpTN3GYtlCCF3jmIZQeYuEtx/+tymsfAYDI+vaNmIrU8GDhocZLTdO+tsbtFNbJxmH4JU9VZt+rQJsSkvfMv69+uLHhaNvjo69kyspc2Ctso0BPgc9Bm2b9iQ3UO++u0reJsXB+405v4PXo3ttMaNMvf3bF5LlXdC4F101J3d3G306zJ3W7EMFnLHWmX8G/yDjgSlXEqBoz1z4eOu0tI7Eyeei49vCwtrtVhOx8S8Xb26orsCzkh1XzXctWAjkMDdlnBHX7Wwv1Oxg7utqZ8Ycm+APQjnGn6hu5MmYed3xbo3T2bOPBkVha9xd7bKkFQX03aMVu3fx1E74wJ3rMadCdyprMCP2jnknTe7C62XEVHprgZzd7deRnTUXRF251Z4nijP58eqxtaVcXZNUrsXB9tVVdqua7v6tP3fHgf3z1Ra4K65ianug/vPOrh7BbjvVwTcDykC7g2KgLvUE1PFg/vRIAknpurgLhO4Z+rgripwv6iDu/eDu6StMvKG3BUwd/7sjpN3ofjOXjtDlXd84J0x6k5v7gfpzJ1a5s5eLPPLAB7TUx3FMv8SUiwj3NwHMoH7Pxzg/k8iuKNvCvCoD79tVGOdE1PtfTJovB1OOuzHTWWfuisqSj6UFNwvmHhn4tSHUyt7Kt+sXLlo5YuieQ9nLnyCIEhVdW/+vfy4M3Ehx0IMTQZsbuqQPUMG/T5IAnD/B4XaeQTbCdROhFj8Cys1Pk1md/nNHbNe+wDV7WixDBZyh2PoV+dnajFFnogcf3v8xo8b+6qrl79eDgf8xli4z466mpEBH2dey4TzUmtF4L4Ez5PweAxP7LaJqTvRvx+y/c3QAGKNO/r2gQN3rD4INhHcWCbNvFvTVwNnvLe6+uXixdcyM09GRh4ODGwMCDjkqHHHh9ydnmuPtztUjgruO+jAHeMM+j4ZUdrOKO8s5s7K7gLqZTw0RnWX8mNU3Ym6e4Ld+8nShLOrhNr1YLuu7by0XZ5BqQpouxPc9QJ375qYOkJAgbuC4P4rX3A3iAP3nTq4ezG4B2gI3OPVAe6iJqZ6GNylnZg6mqrtOrjr4K6DuyfAnbPGXfpWGYe5p4sLuavB3PmzOw95F4fvXJ3vJHmnpN1d7I6rl2E2dwtm7gxl7kzFMv7UYpmf/sp/eip3sYxAc8d9Z1eBOxXcB3OAO3zicDTgKMGBhS2wbtP7rs2b5z6dm3Y5LfVSalZnFnz8ZsWKxzNmIAgyccadMfnXsiZ3LljxoqeycsqDKVEno8wtZr96v+EH3AB3OnN3UTuntmNF7d+7UNvZ38L+OsvE7nzN/Z+f4YP2Qs0d3uydxTLOkLuzVQYOflVvVV9NzYyFj6fOfwgfP54580FhYXVv9eR7k9d/WD+9+BHcQGALwOU93DY0Fa5beCVx9iBhbzpwDcNZxuamYuBua5WxD8iFDQt3wtyiG4tXvcRk/2Zu7qno6CNBQfi5qS5wx0jLCbh4U8M6Z3CVMvzBHa8J/3Z78WV3SepltG7uytTL6OyuEWfXqV0Nwfb+ou1c1O412i73oFT8H53/oRe492dw/1wguA/o9+A+WPvgPkJacHd7Yqob4N5IAPcYjYA7Z5+Mt4N7pMfA/bRAcBdZ4C4fuCfo4K5xcE9SK7gn8gB3WWvclWyVkWB6KnuxDPsAVT7mzjPqjmP3EJ7sTsF3sc0z1LYZMrszm3sDztwP2c3dPkD1AHGAKnuxDO301J+5p6cOYZyeyl3mzm7uxO/JDO7fOMD9Ozu4oxNTUXAfiIL7DqzAHQ4IHC44y1mTO18vR9U18UJi7OnYxPOJuTdz4av3Jk++lZfXXV4+df7D1PGXYM+m5HUsX/u6orI7qzMr5FhIQEMAOjd1z1AU3HfawR1eXkWAO83ip+1ObXWSKg2mOl6F//ITDbsTzP07Hub+T+KimDttAJ9g7o5iGXvI3TY61a/eLxCu93Pxm8u7Pm7YMHriFbgl5k27tbn80+tlyzZ83LDm3Zpla16njb8M9wfYCHCFw5M2XMO2kLurDQl7Z0FfTNB4++/w+oC+CzjAHWuVgR8ONxY4p7W1fZPvTZ7+eHpXaem5BNiuwU0GAzY31V7jjg+50wEufHUXtcOdP7gzx9u/h0Xbw8+T3RkaZqStl1He3H/3iLnr7O6lzq4ctWunQ8atYLvaamQ8OiJV13ZltN1tcNcL3LU7MVVacPfXwV0r4H5AjeAepWZwb5EC3I9oEtxTeIB7qg7uOrjr4K4VcL/gneCeIQe4uxdyl9LchbG7MHkXTfAufKdjd2fDjKPV3V4vQ86519nN3V7mfpA4QHWv3dyD9tAXy0g+PZW2WIbW3GnZnfx9cH0yNOCOvpL8DwHct35un5iKgjt87nBM4LkFrsm5S572VlVNeTAl8kRk+PHwURdGLXm55ENJyZXRoy+npT0oKrJakbQJl7GNMH767dfLlk1/NB2+p6HJ4HPQZ+jeoYN2EcAdpW03wZ1V2+mnkjoA9fOt9G/Yzvdm56swX3NnB3cGdieYuyOGTxigum0AGnLfSQi5h7WFzfljTlVv1ZaqnnFTb06ceWfOkqclmz9U1/QuXvUSvgp/BMApg60B1zmcQbiSh9jM3XHp2hf2cmGPt9vAHR7dMXDHWmXgDpCSd6mvpibjagassi1dnVlZraGhTUZjnZ+ffW6qrTFmD8m2iOC1y9En85tNiGjAfcAAZ4c7E7jTaDvr4Ft2eZc86i54jKoy5q7wGFX3zV1nd3X0s3s3tXuqQ0b5YLvKR6Tq2q6YtisJ7v/UC9x1cGcB9y8EgbtRB3dFwD1cCXD3lwLcOftkDFwTUxUAd7cnpurgroM7nbbr4K7FPhlNgHsOP3CXv8ZdxpB7mjTTU9mLZcSbOy7qzs3uksi70BYaZnYnRd1pzN0WcvdjHqA6lFrmLs/0VJu5f00oluFj7vb1v7Tf/l/Uiam296bPnOA+xAHu6MRUFNwH2MF95yDbxFQ4JnD00PmZVuvLxYs3f9ocdyYu5nTMlAdTyrd0X8/OPjty5Jm4uMvp6TV9NUXzHsA1Dxde/qx71b3VtX21sWdiTc0mn0PugfvXzNTOJ9vuCLY769Gx8Dh1Od/LXexOjLpzdMvwMfd/cpg7Ns0VfkXsd4ufnopvco84EZF7M3fDxw2I7b+SDyVLXy19t2ZNb1XVqvVvc4tuwimDnQuPlHB5w/U8zHYNO//GyEnt2JvCUEe8Hf0XqGEH4LkatgbsF9iA8EcGNhp34YuFxcufP54xo81iaTYa6x3gTlPjTgdbTmkig7vD3JmGpjKBOy9txy05ou7umjvTGFUmc7exu8fNXTF21+Xda5xdw9SuZW33vtL2/qztP7qn7fTgrhe4S9InIzG4yzsxdSuXtv8sosBdUnDfoYO7kuDuIzu416sR3OPcAvdA1YO7hQvcw8SA+3HNg/sYj4P7OR3c3QD3izq4ywnuUs5NFVLjroZWGWHFMm6aO8+oOy92p8N3Cfwdp/A0+I6Xd0LUncHcCcUyRHPnLJahm56KD7mzT0/9E9f0VGKxDB9z/3808XZCnwwO3AfhwB3eJobRgDt8pvDIB8cEDh1c/D1bttwvLKyt7Zv2aBo2GfVZcfHpmJi2sDBYp6Kjn8yatfHjxgUrnmcVdFZU9lwbM6YWqR15dqSp2eR7yHfY3mGDdw1GwX27Ddx/ZgD3fzGA+9d01O7U9n9yaftPf3Gm2jEKpeHPbQOdb/OutDsfcxcK7pzmTlsssxMtlhm6Z+iIAyP86/3NLWZLmyXuTFxyR3LG1YycGzmznsx6uWTJ3fz8p3PmwAmavegPuOnBZoGrHU4iejHj/97I+Y6AUTum7bbndgzcYVPAToE9BXdL+Nnerl6NyX5nVhYK7iZTvb8/E7hTucqJTTs5wR0XcmcBd6HazsLunFF33dw9FnXXA+8Klsbo1K4Nate1XWZt/9lLtV00uMtd4P6NXuAuJN6uUnAfqIO7suA+XBpwPyghuPupBtyNXODOq8A9jivergy4j5IC3OUpcA9n1HbFwT1DBeCepYO7Du46uHuwVYbT3E/IG3LnY+7J/MxdNLsz4Lvgmas88R3H7qSoO97csT53fxpzd5a5E4plBE5PFRFy51EsI8Tc/4uxT8YO7o6Jqd/92QHu8ChuA/ftDnDfh4J7bDNchHnTbiEI0lVaurn808yFT+DjsyNHHg0ObjGbYR0LCYGvwjdOujup1or01dS8Wrp06aulUSejjM1Gn0M+TnCHF3Q+4E5v7hRtx8fbmdjaru02DcUmkaKZcTo5wCQAe613Rd0d5k7tluEolvmnFOaOL5ZxTE8dcRA1d1OzKfhocPjx8LgzcUkXk6Y/nv56+fKrGRmXUlJuT5hQ2lU6d+lTuInBLoDrHB6V4dnb+bdH9uWkdoud2mHB9Q8n3QbujfBj4UaUXXh92ZrXmz9tfjpvXkdyshPcD/n4kOemMms7CdydQ1NJNe4/U8Ddae6SgDtTyYzE5i5kjKo6zV2aehlJ2X2fHmZX0tk1R+16sF35Ghld2/lrOw7cFdB2qcHdqwvcdXCn9sloDNxNCoP7bi5w36MucA9zF9x9eYK72xNT/em1XRJwl3piqrzgzjveroN7vwL3HHWBuwTmPk67rTIX+YJ7rg7uAsFdoyF3ac3dTXbnrfDMOs8o7xR2F2HuzMUyYqansoXc7dNTBxOmp372/9m7778m0vV//J9fvu/3ee/u2aKLdAIhgRS6gHREaaIiihULdhEbivTyj5xz1t11d9Vdd/WsbS10lCZiRex17R0rZR7fa+ZOmSSTZJLMJJNw786DRwwhTGbuezLzzMXrGm8uWEZl7v9iXd7OGOCuB+4/U+C+G4E7vBA4ZVWBu/I4bC4YM4nZ/QWrnpZ9KntbXPykoODCJNh5wc0BAY1+frDAjQ6ZbCAlZbiykiCIiuGKpc+WJl1OknfKNRnuWnDfqwb3XUbA/XsW4L7DeHS7ukuqJrddpe17v9JQO4Ni7hunYXdW5m4QLGMC3NHaatfZkN2ZyvPJ9ac+LaAHy7gddPM44gGb1K/BL6AlQNouVXQqIvsi8/7O+1ha2p+Y2Bse3hcZ+XrNmpGqqrUbX8PhAkY+DHLYlWhI65y0y/+izsZ1TrA14A6zRoH6ptYT8x7Ogz17OSkJgTvs9OM+Pox9U41puyG46xW5/8a6yN2Q0XcaWawudbcg0p1JbbC5c2/uY6Pg3Z7IzlNJO6Z226ndzjEyjgxtZ6Htv2Ftt1nb7QbuYybA3WJw/4ULcN9tM7j/isHdHLgfsAjcJ1gD7oedBNyPY3C3MMCdDbifxOCu0XYM7mMd3J24yJ3f8nbBg7tzxrjbWOTOpblbwe5cyLsNUs8k76r3NVWpO1tz1w+W8dQEywSrzV1T5C7hpMjdTPdUa83dUNsNwN1NA+5Ux1TPX2A9YYVh5eGFaMAdNgVsKBgMyTmXhysrFz5eSBDEQHJyl1JJljlTQd6wNPj5tQYG9oSGXp86dai8fHXxq5UvV066MCn4VLB/E1/gzia6ndR2lCSj0fZ938BqINLQuAjiDXL19hmYOz1bxiBYxlSRuxFw12d30+auFyyzjwyWmXBwgtbcm0lzV3Yr06+nl1V8uj1tWm94OCyDRUXTbk+DnQWHUJgvcHpJmjuMbdpfb3jKNSXtJzSdDND5M5wVwzktTBk4ICRPHxiuqEjsT6wcroTn71QoWsXiRpHouI/PMQrcjRa5M9kTc5G7sWAZI0XuP+ma+04Wi8XsblGp+5df7sHmbk92dy15tz+y81TSziG1O3uGDI6RwdrOl7ZbHibjGuDOc4C783RMNQnuewQB7iIM7laCu4el4C53KXAXsQH3CNcH92BnAPcQDO4Y3McuuF+0d56Mi4O7fVJlrClyNzD3Lhbm3smxuTOxu73lnebv9HcrTbU7C3M3CHNXgfsxgyJ3TbCMVUXuXkaK3NmY+zfGzP1fzNpuAO6aAPf/VXVMReC+0wi4/1cN7sdgE8GOzpl3myCI5IHk0dra/sREVN5+wtf3qJcXLHCjJSCgUy6/mpZWVjmUnX9rpLo67mJc0MkgUaPI65gXK3D/0QDcd5jUdhPl7WptV0WyUEkymsJ2RO10aEG4AvczmrsK3HebLHI3Du6G2m7M3NGTGA1zp4JlUJj7hEM65g7bOeZ8DFFfD/vozbp192fNel5YuOb1ms3b3idPH4CDDMwIGPYw1GGEo8+T1CfYx+EeuB/mguYzJ/gKt8kK96hW2PVJOZffbdy45f2Wletf3ps5s0uhaA0MbBSJTlAftxzVgLuxYBkL69zZmruF4G6M3bG5227uhxxl7s6cNuMQZOevpF1o1D7WCtvHurbbRu1jQdsZwF0AAe47XCBPxv7gbll5u+DA/Q/HgDsbbecT3N0tA3ezHVPHFLg3OSW4x4xZcO/B4O6aGe78x7g7j7lfFFqAO+fgHsMruFsT426vInfbg2WsMndW7K4v79zju0x3MSHvhqXuBuaOeqiSb8qGRe6+xrqnaovcD+kVuaPuqTYWuRvpnqoJlmE2d7T8f7SFQduZAtxRx1QtuJMdUw3B/TBsBNg+sGFnLLg7VFFR+LywaNObgeRkBO4NVK4ILHCjJSCgQy6/nZMzUlOTV3CfIIj4i/HSdqlfg5/XURLcvz3wLQO4/6ID7qRZf28uxn2HheXtmjAZdW07qe0H3ejAg3iG0dzRFTzLInfGVBlj4K7D7sbD3FXBOHv+CWuCPjYYv388bExYbc+/PJG5i1vEii5Fxo2M6pHqwrXPl6x+Vlc3WjNSs2bD6/wlDybPvAKHKbLOPaoV9iY5zmnF7HAOTIE73N+oOUOG2ypwn3QKDrlLVj+FHfp67drLycmdFLg3UeCOYtz/MjR3wwaqhuyuRqI/jOS5M5g7DRSsA/ed7FLdncbcKZJzRnM/zAclqxVbuLzuIGF3WEn72KN2Jypsx9putbbvcUJtdyi44wB39uDuxQu4f+mc4D7OzuAusSO4BzsbuJvUdpcA91YuwL2dDbgHcQjucabBvVPg4B7GAtzDMbhjcBeWuV8UYJ6MsMBdx9z7BBLjzl2Ru8XBMkbN3YpSd6Pyrk/wJpcOU4vJX2eM3RnM3WiwjH73VP6L3Nl0TzUMc6eZO43ddandWJ6MDrh/ZgDuX9PAHV4vnIbBloENCAeQ2rrR0dratxs3XkpI6JDJWsTiJpEIZbg3+fu3BgZ2KhTX09NRb1X4GtUXFdga6NvgS4L7IaPgTuK1hq0NwX2HEW03m96u7pWqCkCnytvp2u5+2B1BFEKjCQcnqMx9/3iU585Q5L6LRZG7CXBn+uTAqLkbBsvs+VInzP2AG6y2ytwb/SRtkvDe8JIPJbDlN5S8rR2trSfqnxcWvl67Fu5Ztf5lQvYlmNdwoghjXj3aVSfD6jNe1T1+KoJvhskCswmOikvXPFv6bCk8D+z6TrmcBHd/f/RxyzFdcz9MUzbT8m6M3eml7nrm/osRc99p+WK21J3jNqquau62xcsc5pWYHYrvQhB2Xp2d25J2gcS1j53Cdtwi1Z7avlsA2m4DuNvWMfUfGNwd2zHVKnD/CoO7UW1nAe5BdgB3swHuf3kJENzDbAV3fzbgHonBHYO7ncB9IgZ328E907nA/eJYB3e79E21NsadkyJ3roJlrDR3y9jdDL5bqOqW/DpDdqebO+qhyhgsY7R7KkdJ7v/ULXL/XL/Ind491WyYu665My//1s2TYe6YSl4vkB1Td8FKwtpS4L5PA+7w8mGbwEaDUZo991bpp1KCIK6kpnYpFG0SSYtY3Ozv3xwQADfapdKe0NDbOTml5R+3fdyWdjVN0aUIaAnwPeHr+ZcnAvfx+8drwX0PDdx/ooG7YaqMiZLw7xlKwvXzZNTp7ai83e2A24SDKm3X2Bj8E9W504vcERXQk9ytS5UxCu7mzJ05WEYd5q5j7se9RY0iSZsk7HRY6pXUrFtZ025PWz+4/uHcuQPJyTcyM+tG62DHwTEW5jtMBDjbpI95tNBPieG0FqaGBtzLKj4teLyAqKuDZ+uUy9sCA2G/N/r5oSL3Y1Ss0F9qW9TxOENQY5J3TciMXqm7CkQMzP1n0+ZOflqhu2BzNzR3Jn+0n7nzlzBjrv79CB+qLgxbN+PsmNpdq7DdVWNksLbzoe32AXfcMRWD++8OAffxGNwFD+5+PIJ7s6DAXcoS3GMxuOMKd4vA/dxYAHfBm7sl2o7BnR9wt63IvYePIneOzN02dud6kRsshvLO2tz1i9z92Be5S2wocvf8WTdYxmSRu1Fz/zcbbf8fzaWTeXD/DU6VVeAuVYE7nCbBhoLBkDJ9gCCIje82vigsPB0Wdio4uE0iaQ0MhKVdIumQyfqiouABMxfeg6/R56KDTgb5N/v7HPfRA3e45jYEd8a+qabajVqVJ4Oi21EAOqoNhwVukHXuVJE7uZJWpMqwAXeTDWB1QnK+Nxksowlz15j7YdLcYTuLGkWwM2QdsrDTYTHnY2bem4k+Hbk6eXJd3Sjczp57C46ocNCAGQFTgBr8mh4GGnlvRAkzcFIKp5QwieCgt2zt85Hq6pGaGlThDvu9OSCgUSRq8PVFRe4ac//LgB31mE+n/l0tX/SCdw2765S6qxVDz9xNg/uPqqFhAbsLxdwNwItbcz8gMHM/7FieNqRzY4uQSN3+zo6pHRe2u4y27xGqtu+yXNtdF9zdnKJjqrDB3YdTcPcTPrj/F4O7kMC9wc7gHsAG3KNsAncJBnenBfdIDO5cg7tDi9wvump5+5gEd65j3Hkvcufa3JlK3eWOFPZO5ncQ9Roym7s2z91EsAytyN1kkvsEepF7oAVF7l/oF7mz755qwtz/bVTbDfJkdDumkuBOXQtQ4O6zB9YW1lwN7gfV4H4CNhFsQ5g4NbUjtXWjzwsLz8XEdCkUp4KDT0qlJ4OC4EZ3SEh/YuK7jRuHq6oWP10c2hMqaZOImkQacHc74KYF99+sBHe98nbmABZk0wbgTkaf64K7F9Xy1RDczaTKsI9xZwnu7ILptWX76jB31UcIB1Xm7n2czJYRt4il7VJFlyL2fGztKPxfW1E1RBAEfK2sHt687f30+Xfg6AfzBaYDnFiq2V31mRMKSIQ7YXbAZIF5BMe3vIL7RZvfDBYXn4+NReDeEhDQpC5yP0Hl+GvY/SgN35nrgmkQr4l919S8q9hdkzBjEC9j3txp2k5fjLG7RW1Usbkf4jDSXVDs7uSLw5zdcdTu8AwZrO1Y251F2/XBHQe4O7xj6udWdUzlC9x97Q7u/hjceQX3oxaAu3IMgTurjqlR5srbMbhjcHc6cE9nBvdY4YG7UM39osPK210S3NPMgbvQU2XYBctYae72Y3cGZI9nt1AriZ7E0NzZFLmzSHI/pF/krm6dSi9yR+BuaZE7vXuqJebOtGjL2w0C3FXgTgW4k+C++0s1uMNLgJNSLbiHnICNAycPMNJSpg+M1tWVD5VfT0/vDQ/vUig65PJOubxLqeyLjHyyaNGilU/WvF4TeyEW7g1sDRQ16oL7f8ejqBa4YlYltPzyhWlwp5u75h5jleD64E4FsDBWuNMjZVCMuypShg247+IB3L+zJliGwdypHqr+zf6SNgnsgriLcfVEfUXV8Jb3WwiCeDBnzv28vIqhitXFr+BACscKmBowHSh2b6GfmsK8gAkC8wUmERzfVm949WbdOniGczExsLvbpVKUJtRIhfg3+Ppq2J1cvNFfDphcaC6vCaI5pK5512F3TcIMLV6G0dzNgrsJdreojSpXPVT3Wmju+wzMfT82d4zsfDq7S1G7kAvbOeyPymGMDNZ2F9J2a8F9PAZ3vsD9C6cE970Y3F0J3L05AndfrsA9nCdwb7EM3CdicMeRMjyB+1mW4B7NF7gLNVXG+iL3iwLRdh7L260B9/PCB3dbY9x5aJ3KS5G7peZunN3lfGXFmHF2hcFCW1WdOnfdYJk2ytwNitzD6UXuWnD31oC7qsj9sGGRu26qjKbIfS9HRe46Ye4WmLuRPJl/qK5KdmrA/Z8kuP+qAfdvaeAO2wFOcuAcA7YqzKAVRS9q60afLV16Pjb2dFhYT2goLL0REf2Jie83byYIIuNGRnhvePCpYHGL2K/Rz/u4NyO4k6nou/+pD+4/6vYd3WFk0SsD16j0T5/rgbtepAzZNPWAkaaph9RNU6lIGVZ9U3/6nFtwZxUss/sLnWx6deU+CqZH5u57wlfURMXLnJJFnolMupw05dqUlS9Xvli+/GZm5khNTcn2D3mL/06dcQWOZjBrYGqgGaE94ZzYCvfA/bDT4fxk1qJ7tbWjT5csOTtxIgL31sDAloCAZn9/snEuYne0+PqqFs09VFtdvaVBzfQaoNfg+yF3d1Tw/ue33+4fP16bMKMbL0M395+YzP1HQZr7bybN/XfezN3SBqoOMHfM7kJydkztPFG7yxe2W6ftv2Ft51nb7QDuO3DHVEeD+x4M7hjcWYP7MZbg7sMS3EOtA/dGDO4Y3DG4Y3C3rcj9osOpncPyds7yZPgH92jHgbtQUmX4M3eT7C7nIpDdaGgMm7cJ6uUwmLvRIvcWk0Xu5GmGfqoMrchdr3UqKnLXgrtIkyrDssh9J63I3VSYu9bcx1lQ3q4D7hN+/EwL7rtgrUhwh7NlEtz3w8uBk0YPLbg3wkkIbEYYh3BIqawarqoevpGRcS46+kxkZF9k5PnY2L9nz66oGpr7cG7MuZiQ7pCgk0EBLQF+jX6qCvfDKnAft2+cDrjvshzcv2cN7vRIGXXouarInSJDREdIgxDk0Jummgd3pr6p1oO78WAZE/H02td1wMDcG0WwC6TtUnmnPOx0WGJ/YvlQ+cr1L0vLP37YuvXlypUEQazd+BoOy7BbYbKgT6Q0J41wG/Y4zCk44s1d9vDhvHnPly3ri4rqVChOBgWR8f1iMWnuiN11F1UrXaqbLkr5b0OLRKJZENk3UWXyDaj/KpVLo8Puugkze7/+2qi5WwLujjd3xmAZi8yd2waqwjF3zO4u5+yConYnLWzHMTJjUdu5aJTqGuD+g4M6ptod3PnpmPpPCwPchQ3u+zG4Y3AfK+A+yV7gnoDB3WZwTxu74C4Yc7/oQG3nsLzdlcB9IvfgzmmqDD9F7lyauw67M8u75UunJSXtRl6L6hWpHk8PltEvctdJlWmhJVlT7/vsW6dK2bVOtaLInTFYRt/cmdh9nErbjYG7tmMqAncvLbjDatPA/QgN3Ftgu5H1zqln0nKv1RP1H7dtG0hOvhAbe2HSpGtpaRVDFUWDRQmXEsJOh8k75NJ2aUCzLrgf1AX3Xw3AfadRs7YO3FWV4L9pwV1V5E6ZO1nnTjGPBnKQttPzZL7ey9Q01aDC3Ty4f8d60Q2WMdM9lRYsgxqoosp9Mp7+mBdseTJepsk/sDUw6GSQoksRcz5m9t+zYSn7VPZgzpzXa9fW1Y0uWvlkat51OB7CMUROTRbV+R6czsV1wJEEDomzCu7Xjtbez8vri4xE2f3tUqmmZW6rWKxaKFVvl0jgu/CYDpmsU6HoCQnpDQ/X/jFEePjZiRPPRUfDPZ1y+cmgoHaE7+qMmhO+vlp2pwwOIZem1N3Q3BmCZcyBu5bd7WLuNoW5O87cDwrA3DG728fZMbU7cWH7WIiRwdpum7Y7Ibi7ORzcf7IjuO9yXnD/2hJw/waDOwZ3ywLcBQnu0byC+ykbwV2OwX1MgnsMBncuzf2i9dru+DwZ+4D7OdbgflZQ4G5jkbv1wTJWmzs37N5pIbV3mn1T0Jq7QZG7VKfIvRUVubNsneppRetUK4vc9YNl/jGeIcxd39x1Fvol1Xe6Ae40cIeLBdQx1XuPCtz9/4CXAOec8OrglWrBPbIFzh9gY8I4hFk5Y8HdbWUf782adSU19erkyU8KCgiCmHp96sSzE0N6QmQdMkm7JKAlAGW4ex318jjiQbYk/fNbsnj8j29IxdaAuzoP3XZw1ysD16i0TpE7hZFIUDQ2g/6p0nam8nbGpqkWRMpYAu4si9xR91RTLWEpc/dtIONlApoDAtsCg08Fh3SHRPVFpV5JLR8q31L6vp6of7JoUdlQWf7SB/D+AocvOIwo4lWTEeYR7G44bOYvefCmqOj2tGl9kZHdSmWHTEb2yw0KapdK0YIa58L9XQpFT2hoX1QU+iSmPynp8cKFMDY+btt2d+bMq2lpd2bMqCPqNm97/2L58hvp6fBIeHyXUtmpUCB/bw0MbKKxO8p2h72ESt2ZzZ0xzB2bu6Vh7nyaO2Z3DpDdIc7Oa3oMT9TOdYbMWClsx9ruutr+k4XgjjumsgxwdwJw/xKD+1gGd4XV4H5cGODepAPuEc4O7iedFdwTMbhjcOc/VYYbc79oT2rnVttdB9ynWAHulvdNtUOMO7fBMraYuz67m/V3g0eae34The0Mn7yqv8Vc5E6Bu9SC1qksU2WMtk7VFrn7WFbkTuueahgsY2ju+sv/Gs2TMQLuvr99TYE7vAp4RQjc4YXDRoBtoqpwp8AdJlFyzuVFK56M1tTcmT79Xm7uSHX1rHuzEvsTo85GhfaEyjvJCndxq1jUJPI94et9zJsE90MG4L5HB9wZ+qZ+b1zbzYG7JuucnipDJrmr69w17K6idrW2a8vb6eC+hwHc2TRNNZUn8x9qYVnkvpNVkbsmWAaZO2x5ZO5+jWSpu7hFLGmTIHaPOReTdi0t/0E+QRCj1AL/Zc+9BcdbOFKRRxvyxKkHbsMhN6/g/lB5+fWpU1U+TuF4h0xG1rDL5fDP7pCQ3oiI87Gxl5OSbqSnk09YWwtP+GL58q0ftlaPVC9e9XTr9g9vi4thqBQ8KRitq4PvVo1UPcjPhx+5FB9/NS3twZw5N7OyzkREnAoKagkIaPDzO+7jc9TLS5Uwg1LdDc0dmQVTsMyPfJv7F1/Yz9wNaMwxDVTtbO4G7H54DCI7P87u4JJ2TO28FbY7RWi7dS1SsbZbre3wRvb/LC5vx+Bue8dUD2Ztx+COwd1qcPfE4D62wV1mM7grMLhjcBdskTtn5m6FvF90uLZblyfDDO7pTg/utsS4O7zI3SJzt4zdjcq7kSXeImpnp+10c6cVufOdKmOydervOqkyqMhdBe67tOCuV+Ru0D3VhLn/rwlt114x0TumqsAdXQsgcEcdU2G1EbjDC4QXC+dacEYEWwY2F2xA2LBIYJNyLmfPvVW85e2LwsJXq1cvf7E882Zm0uWk2POxEWciQrqpIvc2iX6qDOqb+sc3cEUOl87GwF0nxv171uCuWwNurMhda+77dVxEgxyIH7TaTs+TUeEuF+D+H92F0dxZJ7nD2qLifW2R+2GqyP2ol8rcT/j6NfiJGkX+zf7iVrG0XQo7iKx2PxuVfiN93qN5BEGUVQ5VVA2tKn6VnHMZDqHosAZHPziMz1ny90hV1dXJk89OnNgbHt4TGtodEtITEnI6LOwM5exXUlPvzpxZN1o3Wls7XFVV9qksr+D+rIL7m7e9q6kdLVj1FN5B4J8wYOrqRos2vZky6xo8bc682/B7H86d+3jhwnqifuuHrcVbBp8uXnw+JqZDJmsVixt1S90PTpig6qSqa+5Gw9zZgbsV5v4La3Pfw5u5s2mgykuYu0Xmbnu8jKuzu52RnaeSdkztY7Ow3Z7a/ivWdqu0XfO2+P/4zJP5bgx2TP3MhvJ2DO6swD0AgzsGd/uAe6uzgXsHW3CPx+AuFHCfyAm4u3yMuwG422zuxvydm+cUQnm7s4J7Gn/gLogid5Nh7jabuzGFt/wHFeyTZAxer0GqDBO4RzOAu384PVVGC+7eCr1UmcP6qTLmWqd+pZ8qY6TI3V2vyJ2tuTNfNKkf/A/djqn/p+2Y+gusCawVAnc4oaUHuMMWgA0CWwne+mGrwjiHSZ0yfSBzzs1Zi+4vXvW0vp6oGK5Y8nTJnL/n5NzJmXJtSmJ/4sSzE0N7QpG5+zf5+57wJVNlDnvoxbiT4L6b8mvDvqk/WAbu9AJwwxh3fXPXsPs+HdvQcIUmvZ2hvF2vY6ruauusuYmOqf9hWowVuf9AK3LX5NTTP07YazzJXQ3uPidIc9eUuge0BAS2BkpPkuwOewr2V+qV1EVPFhEEUVM7Ulk9PG3ebXgzQu/dCdn9c5c+HKmqujJ58vmYmL6oKLJTblQU3L6cnHx3xoy3GzYMV1bCUlE1NKvgPjzJSE1N7WgtjI3lL5bXE/VviorgK9y/4sWK4YqK4aqqjNk34O1gat71hSsej1RXww8veLwABs+2j9uoUnviUnw8ae6Bgc3+/vRSd4250+vcbQ9zZ2PuP/Nv7k7TQNUh5s7E7oddrJKdT2cfO9SOC9txjAyDtrOjdiFruy3l7XyD+w4BgPuPTgTuX2BwN6ftjgV3NwzuTgrukU4P7sEY3McIuE+xAtyF0TeV71QZfs2dy4X38nYe8mQEBe6CjXG3psg90dIidx7M3XZtjzf7XqCr7UzgzhzjHmUyxj1UJ8bd1lQZWutUC4rc9YNlduhc6Rhld52rIc01jqq8nQbuqo6pJLirO6YGHYITOaq8nWyXCtsNBh7M0IzZNwpWPdla9qGiarhutG7rh63bPm7bVvZxw5a3VdXDtbWj9UR9yYeSRU8WpV1Ni+qLknfKA9sCUZK751+emlQZVd/UPVSMu1lw/94kuOslrvz0OWORO1kJrjZ3LbsbLBpIMExv1w9w/5mhYyozuLPRdpNF7ha1TtWkyuiAu8bcUak7leoubhVL2smEGUWnIux0WPTZ6NQrqfMezquuGYH9u2T107Tca0k5l1NnXJlf+Ojdpk1X09IuxcdfjIvrT0i4NmXKi+XLP2zd+nzZMoTppR9LYdcXvy3OvpUNS979vJSBlPhL8ZOvTp7zYE7mzczkgWS4DY/5tH07PL5k+4fyyiG4UT5UDkNoS+l7+KUbSt5u3Pqucrjy2dKlfZGRHTJZm0TSEhBAlrpr4mWQuVPZMnu//vo3gzB368DdUebuLA1UD5gDd4vMnXN2P4yR3e7OjqldONruaoXtWNu51nZnA3fHd0zdaceOqWzAfbc14O7jCHAXYXB3OXA3qe1swT3MVnD3dyJwj8Hg7vLg3ofBfYybO+fazmWejKUB7i4M7sIscheGuZvVduYG2jpNU1n2TUVF7uRbMIsYd9tTZRhap5osctcLlmFv7vpXQwwB7ipw36UCd1WA+36UJ4PK22GbwBaDcZuWew21viwfKl/8dPGMuzNgWfh44aeysg8lJQWrnkyffycr/+b0BXfWbXpTVTMMj1z6bGncxTh5p1zcKvZr8PM66oVSZRj6pv6s233UENy/N9B2PXA3jHGnF7nv+VLH3PeaggQNDKgu9HXL2w3zZEwX5lsA7v+xMlWGBPe96pawVDC9Ftypvqk+J6iFxu465t4mCToZBLsppDskojci9nxs2tU02He1o7Xbyj7OWHA3K/9WwconL1euvJmZeW3q1NvTpr1csYJE83oyBKbsU1nOnZyp16fGX4yPPhcdeSYy7HRYaE+oslup6FTA08KiIDuiKhRdCrgfHpN5MxMGT979PPhB+Arj6u2GDfMLH8HRHrXkXbjiMdx5dfLk02Fhqk6qYnGTvz+Kl9E3d7Nh7g4ydxNh7ntcNFjGfuZuUt4PC5zX7YLsrJwdU7vzUzvWdq60fbdLa7ugwJ23PBkuwf2nMQvuX2FwdxZwl2Nw19F2R4N7OwZ3PsA9jENwT3UmcB/TMe7CNvc4+2g7Bnc24G6PGHf2Re4chLnbk91tAXed8namCvcgBnA33TdVL1VGBe4MqTKBjKkylrROZSpy1+ueymzu478z3uaKdplDC3CnOqb+TAW4k+Cu7ZgqPYjapcJGgA0Fg3bRiif1RP3HrVsXPVmUeiU1sT8xeSA582bmxncbnxQUPJo/v7pmZNrc28nTB1BA1tRZ19ZseP1u06ZN7zbFX4yXdcj8m/19jvt4HFGlyuiDu5qwTYH79yzAnZYqo1/kTjd3Dbvv1fEDugportoZ09utD3D/j7mFTaoMDdx1UmX2fYNi3DXg7n3MG/E6fFWBOzJ3vWyZdmnwqWBk7uG94dHnohP6E2D/rnixorp2ZPGqpyuKXjwvLHyQnz9YVPSprAwGA4yEjBsZMBJizscgZFd2K+EZYF8HnQyCJ5S0SWCBJ4dF3CpGN+Ae9LsUnSS+R/VFpVxJIQjizvTp8BWOtHD2COMtKecyUV//cN68c9HRveHhXUrlqeBgeL5mqpMqMneULbNv3Djug2XsYu7ch7kLP1iGD3M3J++HBcLr9kJ2AZW080ftfMS1c67trKkdazvWdjtou0XgjjumYnDH4I7BnUtw98Pgrgb3IAzuGNwdCO7OVeQuSHPnSdsxuDODu+Ni3EPtAO4ONXcFO3A3fEfQW3kUHy+zBNwDInT7ppqJcbchVcaKInc25m7kOkh7jaO+KlGDu6pjKpxjw3myKsA96BC8QHjhsE1gjGXl3xqpriYIIud2Tsz5mKi+KBJkLyXMuDujnqi/k5NzKytruLKyYOWTpJzLMA3RBEnIvrRmw2sUNhJ1NkrSJvFt8NWkynyzjwxvMdM3lb2568a4GzN3TZ67lt1/Y/AA7VX+Ht0wGbSeqgpq1nkyVoM7m1SZ3QypMmTf1INujODufdwbFm0PVd0id1mHDBWhR56JhB2ddDkp40ZG/oP8ze83byl9/27TpjqibsmzJdPvTJ98dXL8JbKePeJMBFnM3qWUd8iDTwVLT0oRsotbxPDM/s3+/k3+8FtEjdqFVH74pS3kL4UfieiNKHxeSGbHj9ZMm3uLPBuhWvIuWvnkzbp1A8nJ52Njz06ceCYysic0FKW6w9OozN3N7b+0Bqp7NOZuCO6fffajU5m76TD3P7C5WyXvtkD8YesWewk7387uwtSOC9v5pnas7ULQdgzufAS4cwruXjaC+x4M7hjcMbhjcMfgbhW4n2EA98k8gftZDO42mnsc1nZT2m5Vx9R01trukuDuwCJ3k+ausKu2mwJ3Y6utU94e1xGsappqGtxVfVP1wN03xHyM+wQ6uDOmyoiMpcoYLXL/bIKx7qkWmTu9vF2VJ0N1TN1JXQuowJ3eMRVeEbxM2AKwrVJnXFk/uJ4giFn3ZkX1RYX2hJIg2xeZ1J+07s2612vWXElNHUhOvpebW1c3mj77OsxQGL0wrmCUTp55dbSu7u2GDVOuTSGL3Jv8vY6RqTJkjLulfVMtLHLXC5ZRmTu91F1rnF+qkF33+p5+Ia4XJmOsvJ1cZ9N5Mga8/j//+R9YzBS5m02VMYhxR31TPY54kBnux1UZ7t7HvNFiAtyVXcqw02GwoyddmJQ8kJx1K2v+o/mb32/+tH17PVGPtD3tahpd2xVdCk1Ve2AbWcwe0EJSO3J2+C2I+0nxP6GbI98ogkdKT0rDe8Nn3J1RR9TBMFtV/Cor/2bmnJv5Sx98LC29O2PGnenTny5eDKPoSUHBjYyM02Fh7VIpae5eXofd3Q+4uaEGqtwHy9hg7vYIc3dcsAwf5n6ID4C2WsmdhNftEx3DbXoMpnZc2M6G2rG2c67tWnB30Y6pPwixYypbcOexYyorcPdlB+5+toP7HxjcxxK4N9gZ3APYgHsUBnerwD2BF3AP5QTcU8YYuPMT447N3WJqz+LyNdqnvJ2DjqlacD/LA7gLK8bdyiL3xC7hm7ut4E7Xdr0A90mn0HuZ1By4+4eb7JtqNMZdJ1VmnIlUGcPWqV67Ptea+0+0Indj3VNZmrthebtOx1QK3HfDCbka3MkAdzjZgxcLmwLGxpwlDx4vWEDU1SVcSkC0Cl8j+yLTr6fX1o3enjbtwqRJ52NjLycnfygp2VL6Ho4YMCbR1oZ5tLLo5VBFxdyHc8N7w8UtYjJV5rAHinG3uG+qEXA3X+RuYO767K57vU6/ENdeWDNpu3ZtrcqTQdquWcyYu8kYd/Jjg71faWPcdfumeh3z0mg7Hdz1ImVQzAvs3EkXJqVdTct/kF8xXDFcVfWkoAB27rI1z+vriVWvVmXdzErsTyTBvTcipCcEfgp+NuhkkKRNotJ2qqrdr5FG7ai4nvrtmpUhV6PBFx4c2BYITxJzPmbG3Rmb3m0iCKKiamjl+pfDFRXvNpH/XP1qddGbonqifvO29zAaz0ZFtUkkDb6+f3l6HuInWMYmc2ffQJWPMHdhFLkLxdz583cH2bpAnd2+1C6EuHbnK2wfUzEywtP2XY7WdicFd746ptoR3H/B4I7BHYP72AF3KQZ3lwD3SNbgbpG5cwHugolxtye4GzH3OBfWdgzuAgR3/orc7WvuClMLG23XXSvNuw8X4M7YN5Uhxl3yJ4tUGXOtU00UuesGy9DMfQfjFZDOBQ49wF3VMfUXOHv/kgJ3WEnUMRVeF5w+wWaBQT532cMPJSXLXyyP6osiUbVdIu+UR5+LXvN6zWhtbX9CwpmIiN7w8LNRUbenTasbrctddA9mAWxk2Lww18g+q6Wl6zcPpl5JJVNlTviqYtz3j7embyqLInfT5k5msDBUGjNfgjNqu6ny9h8saJeqp+365s4yVWYXLVVGN8ZdVeR+2MPzL08Vu6vlHUk3me7S7E+Wt7dLkLaHnQ6beHZi8kDy3Idzifr64aqqxwsW3MrOvjtjxkhNzZwlf89ceHfT1nflQ+XT70xPuJQAQwJ+hPwY5pQMhcmokmSa/Om17T4nVNoOK4BWRrPAPbAyfo1+8IOwDvBscRfjMm5kzH80v3iweJQgigaL8h/kT70+Fe5PupxUPVJdT9Q/X7asS6FoDgg47uOjCZYhi9y//vo3VOROD5axo7kLLVhmPzZ3V1z4dnbXp3Zc2G4jtWNtF6q2/2xc250K3N14B/fP7APunoIC918xuGNwx+COwX1sgHuvMMHd0hj3GCdMlbG/ucfZn9qzOH5pVmu7AwLcBQjuAkyVsaLI3Zy5K+wE7pS5x5tfPbW26+fJqALcSXBvNwnuKFXGANxDdMFdrgV3hhh3k6kyeq1TVUXunqjIXRfcGbqn6gfL6Jo7Y4Tm99o8GU2AuwrcVR1Tv6J1TIWzOHjVsIlSZ1ypHK4crqiorB6OuxgXdDIosC0wpCck61bWtrKPjxcsOBMR0aVQdMrlXUrluejoV6tXD1dVTZ9/B+YXDPLJM68SBNGfmAhfp1ybIm2XqmLcD04w0TfVihh3nSJ3w2AZNYUysLuRReeq2oi2my5vN50nw6jtzObO1DpVJ8Z9F0OMu7bI/ZC7xxEPzyMq3SZLy497a8rbNUHqyi5lxJmI+Evxs+7PqhiqeLlyJezKGxkZA8nJAykpt7KzR2trYbem5V5Nz7u+qvhV1XDVoieLki4nRfVFwXiQd8q1Fe7NAaowmUY/TZE7/FKk7SgPW2OH5LpRQfPwMGTusBopAylLni55v2ULUV+/uvhV9Uj1jLszYs/HhveGl3wombPkwaft22HgkUXufn5HvbwMi9z3qIvcGcPcOTZ3rsPcnaXInT9zx+xuvbPbs6TdCal9LGbIjLXQ9jGu7c4A7rzlydgX3D93QXD/zWZw/x2DOwZ368E9nHdwF2Nwx+DuVOBu5xh3oRe525Hd4+xF7VyXt1sd4G4NuE90fnDnJFWGfZG7QMxdwXbpUi/G18GgvN1ScBfpgLv5vqkMMe5ifXC3oHUqQ5G7JliGwdz12F33YkenvF3bMdXjZyrAXQfc4VXAS4MXDhtq1qL7lcOVd3Jy3m3alHc/L/JMJCwZNzIIgtjyfsvFOHgjl7dLpW0SCXztVCiQrVfXjNQRdYtWPplf+OjV6tX3cnPhzriLcdJ2qV+Dnxbc930Dl+8oLZ0B3G0pcmc0d71Sdx0HNXIx/csXete+OtputrzdCLjrCPu/1YslRe5GY9z3fq1NlVEXuWtcG4E7WVGO0ttbApC2h3SHRJ+LJndrfX3VcBXsrHuzZsGuvBAbez429lJ8/K3sbPhW5pybCdn98B6UMmNg8aqnaza8XvdmXdrVNNLcu0NkHTIyw701UBUpo+6PCr/It4GMlFGB+2EP90PuWts7pMq98T7uDY+XtEtCT4dm3cyCdXgwZ85obW1ewf1ZBffhn7BiWz9sLR4sLtn+4fGCBbBip4KDm/z9j3l7H/bwOEAvcqd3T7U5WIbR3DlpoGpdsIygu6dic3dOZ8fU7sKF7YKOkcHabkdttzu4O0WA+wQLtd2dt46pvIH7l1yC+14hgrvY6cD9MAZ35wV3CQZ3LsG9x8nBvc9h4C7sGHcHmruN8m72mfl4OXYrb+cG3KcIC9wj7Azu9ihyF5S5d7LSdhLcT9HzZFDHVArc26wGd6N9U3Vj3C1JlTHeOpWxyN0gzN3M1Y0bHdxReftP6o6pzOAOmygp5/L6wfU30tPvzpy56d2m6XemEwTxafv24UpS4buVyjaJpDkgoMnfv9nfvzUwsFOhuDZlyrpNb6Zen7rq5aotpe8Hi4vr64mZd2dG9EZI2iQkuB/1nHBoApd9U00EyzCZu4rdfzFzfWx47ctK282VtzNQu1lzN0yV2amTKqNqBktLlRm3f5wK3A/qgjtV3k52K20mtV3WIQs/HZ7Yn1g5XFn6sfT5smVD5eXX0tLOx8T0RUaeiYjoi4q6MGnS3RkzRmtrp+Zdh2M4eaow9Vxidv/8wkcVVUPwUzAqos9Fh3SHBJ8KlrSritz9YUxQFfQBLQGw0xG4o9p22PtI4749oF1D+C6sGPxsaE/o2tdrHy9YcH3q1NG6uqmzrsO7Q0J2/7K1zz+WlsI92z/B/9vhu90hIS1i8Qkfn788PQ/SitwZu6c60Nz1P9+xJVjG9u6pVoM7f8EymN2tRnabnZ2P9BhM7a5Z2C78FqlY201qO3tw/24Mgbs7BncM7pyD+yGrwd2DO3D3wuBuFbgHjg1wl7siuLONcRcEuDs6xp3DVBlHmTsLdmfp72yfJ9Ne2o7BnQ9wd0CqjC1F7l2WwTf/5s7wDDrabljeToF7tAbcW42Ce7ghuKv7puqDu9kYd3WRu5/JVBk9c3c3KHI3au7fm7m0oV2S6HZM3QUrAKvxNQnu++BcFIE7vGo4r4AxvGztc4IgnixaVE/UVw5Xzi98lLvoHtyDGlc2iUQnfH2P+/ic8PFp9PNrFYu7lcp7ubnVtSPw+KGKitKPpfMfzU+6nBTaExrYFujX4Od11EsP3Bn6pu6kWbYerO/4hzZihTFYxoi567A7zUTpl8LGrnq1F6x62m4iTGaHyTCZfxtZ9MydRetU86kytOQWMkym0Q9pu7xTPvHsxJzbOWter5lX+Gj7p+0P8vMvJSSciYw8HRbWEwp7LLQ3IuJCbOzDefOqa0Ymz7wKB88I6pgGRz94j5iz5G8YErDk3suNvRCrMncqyZ38BAZ9DtPkDzsdRcqQ4H7I3e2gG4I0RFlwA1YSvgWPgRWDJyl+Wzy4fv319PSKoQp4C4AZDfMXDndJOZdnL/5747uN+Q/yq0eqz8XEaFNl3N3hKfePG6cpcqd3T7U9WMZ6c8fBMtjcXcDZMbVbS+04RsZO2s6O2seyttsV3P+BwZ1jcN+NwX0sgfsR5wJ3XwzuQgZ3VkXu3IJ7NwZ35wV3Ds2dd3C3kN2tXzKdRds5y5PB4O7IVJkEVuBun1J3oz9IvcVotF1T3q6XJ6MC94nmwd3POLijvqnuDH1TTcW4W5Mqw1zkbmju3zNf1LgZ5MnogbuvIbifgA0Cezw+6+LsxX+XlH4g6uu3V3wiqP8GUlJQoMdxH5+jXl6oBeYxb+8GP7/WwMDukJD+xMR7s2bBjyxf96JqpCr1SmpId0hgqwrc3Q+5k+C+Xw3uxmLcGYvcd1hi7ppsGWPsrleQbPAtnatVJm03BHfzYTL/NrmwK3I3mirDBO6eR9TtSRsobW+XKLoU0eeilz5biv4EAfbUg/z88zExp8PCupTKTgV8X9GtVMI/L8TGPluyBB6QMn0ADnrkMYc8oeqBgxgc2BeueAzjobxyaOO7jXEX40J7QvXM3a+RynA/5o0C3Mny9gNupLbvH4+oCdYT7kFF7qJGkbxTvvzF8s3b3pV+LF2/ZRAOSjArYT7CJIWDT/L0Afh1adfS4Out7OyTQUGNItExL6/D7u4oVUa/yJ27YBlLzd2KYBnru6daVOROmTuPRe48mPsh7OwcObvg0mMETO1jsLDdWULbsbZboe0WgrsDO6YKGdw9MLhjcLcXuMvGArg32gXcWzC4uwS4n+YG3FMtAXfXj3F38iJ3vtmd59W2RdsdU97uhODOrm8qT6ky/Ba5c9hG1YIlTlfbmcrbaXkyeuDeYhm4K7TgbqZvKi3GnV2qzK7PLShyZzR3w4sX9SWJKk9G0zFVA+6/qcAdRcrIjsCLhU0Bmw7GeVru1eXrXhS/LX63ceP9vLz+RBg9SjLNw9f3qKfnYXd3pGlHPDyOeXs3ikTtUmlvePjtadO2V3zKnntr/ebBJc+WhJ0OMwR3M31TzYI7O3M3LHUnqfonM1exhtTORtutDJMxYe4mUmVMxLjvV0E27BiPw+ry9gZf/2Z/SZtE2aVMvpyc/yCfIIic+Xc2vtt4IyOjLyoKdmuHXH4qOBiWDpmsS6EgwX3SpOGKCnhk4rR+OHDBIUJ1qpbQBccfOEovXPF4uKrq7YYNhS8K066lwY7WmrsRcId1G7dvHPIhuEEWuR+aAAMDhkfQyaDE/sSSDyXwG1OmD8DMhWkIExBmJUxbODLXjtbCt0rLP16bMoX81EckglEHYw+lyugVuXMbLGPe3NkHy7Awdxcrcrfd3A+NTWQXsLMLk9qdJkNmDMbIYG13nLarwP1/nQncf2AN7j86Atx/xuCOwR2DOwZ3DO48gnuyPcHd2fqmOkORu13NnUN5t8uq8lLejsGd9xh3exa5dwkO3E1ou3FwRwHugVEacG+mwL3JanBHfVPNxbhbkirDXORuibm7GebJqDumkuC+Ww3uvyNwh7NHeFHwSmEjwIaCgZqVf5MgiNl/z64crrw7c2ZfVNTJoCCyvJ0GnQfc3A67ux/18mrw9UXBMo/mzdu49R3MbrLpZX19VF8UynBXgfsBXXCn+qayinHfYZu572R9baofQfKZjrz+wC5MxtLydpq5W5Aqg8B9jxFwP+KBEtL9m0htV3QpEvsTK6qGPmzdCrv147ZtNzIyzkREdFLUDnu2XSqFr3Ab7ukJDb2UkDBUXl6y/UN81iU4EKGAF9UpX1wHHFvgsAy7eGvZh9G6uurakclXJ0f0Rsg6ZPC7AloC6E1TVZEyanBHoqMBd8+jnvBI+Knoc9FV1cOweiS4TzqFKtxhYsIZLBwPZyy4WztaO7h+/aX4eNWfWXh7/+XpeWjChAMUtO375htU5P4bxTGmgmUsB/cfDcB9p83BMnvYmTuXRe58J7nzae6HxgiyO8rZMbWPvQwZOxW2O65FKtZ2pwJ3N97B/TMBgrsXD+Du49zgPg6DOwZ3DO4Y3DG4O3OqjAPA3Wp8t++62ajtVuTJ2Bvc0zC4m2qdKrRgGXbUrpvbbiRMRj9PRrdjqjiSPbgfU4E7inEPZtk3VZsq85XRVBla61TPn80WuZs3dze98nZVnowG3MlTdx8DcA8+Ai8TXj5sIhioRZveLH+xPGUgZfbfs99v2dIXFdUulTaqK4tJ6KT8hQR3T88TPj7NAQGdCsXjhQuHKyuz828RBFFdMxJzLkbSJvFt8CXB/TClrvvHf/PHN3BlDxff6IKYLHI3iHE3D+4szV2P3U3ju+7DDAvb+dV2dkXu9Bh3Vd/U377UgDvZNPUgGdXi+Zenz3EfUaMosDVQ0amIPR+79NnSgpVPlq55Vj1SfXXy5NPh4R0yGezTNomkLTAQvrZLJCeDguDOntDQgeTkkepq2InwRgBHEphZ2nkUcxLmFxwx4PC7fvPgx23bXixfvvrV6oWPF0afi5Z3yuGJSHNvFGmK3MmmqQcnaP6+ARYYBppIGb8GP1jJ8N7w9YPrYcyk5V6Dow2cvqJzXfi9cCSct+zh3Idzibq6i3Fxqg9+qL6pmlQZVOT+O73IHZk7U5H7j0Izd867pxpPleG3yN1Gc3cVdj/kIGfnr6R9bFG7HTNkxk6MjHBbpLq0tgsE3HnLkxEouP/CAtx3YXDH4I7BHYM7h+Auswu4s+mbyhW4s4xxdwS4O3OM+1gwd6EuAipvT7ckwN0h4G7O3LkEd+GkyginyD2OqbBdT9tN5MnogjvKkwmg8mT8wylwD9OCu6+l4K7tm2o6xl0nVcaCIndGc3dj/pPc/zMW4O65C34j/Pav6OAuOQAvB14gvHYJ2Tf1DEEQhS8KI89EZt7MrKkduTBpkgbcEXQi/Dri4XHUy+uEr29zQECHTHY7J2f94PrS8o+vVq+uqyfgxwNbA3XA/b/jv9n3jcUx7juMLwbsrsFxQzHVl3em5f8MS6A11M6rtuuZu/oJTYD7F7u/MAR31IyULG9v8A1oCZB1yJIuJxU8Kdjyfsuytc9Ha2sfzpvXGxFBartE0hoY2CIWw9IqFrcFBsIuhvtPh4XdzMyEAbB+8yAckGHuwzyiBFyVxQSTCO5RUOaeV3B/09Z3SOdXvFwRcy5G2aWUtkuRufuc8NEzd6RcqAzf8wgZeuPXSIK7sls5/c70p4sXz136EI6BMKPR5IUbcERFnxNU1Yyci4YzWmmTSKQBd/THFvQkd3r31F2si9yNjRoT5s4yzJ3b7qmCKnI/wDm4szD3Qy6D7A50dgeVtAuK2p06Q8YhMTIODm3H2m65ttsX3AUa4G5fcPfkGNz/icEdg7sK3P/iEtyVGNydEdxPOTe4J9kB3HudBtxdJlUGm7tjy9vt0DFVC+5nhQXudu6bykWqjFL44E6jdrbaTpblGgtw1++Yahm4o76pQaz6phqJcVenyjC1TjUoctcPltE3dzej2k4PcFd3TDUC7vKjcIIEW4ascN88WF45hCJlKquHB5KTycpiCjpRx9QjHh6wqPqmqsH9Unz888LCiqqhNa/XTL0+VdmtFLeIfU/ogDuZK/L71/RUGZvA3XSp+w+mY7lpy4+mFJax4p57bWcMlqGnyhjGuNPAffx+smOq+yFVebt/k7+0XTrx7MS6utGXK1fW1I6+KSq6mZl5htL2NomEpPaAgGZqgRutYnG7RALf6g0Pv5ebu+jJou0Vn+DgCVMPpg/qeaA6d41qgX/CnTDf4QGF657XjNRcT08nCGLOgznp19PDe8ODTwWLW8VktgwtzB3WDQEhqsEnI+Y1oTedVOjNUMXK9S/hOeGYpqCaIaNS+rUbX2/9sBXW6nRYGKx5o3ocav7YQpPkzlDkbtg91bi2m2V3i8PceS5y/8P1itxZs/shZxR27pDdSmfH1C6ADBkcIyOI0HaatnNG7QLT9p0Y3PUD3CdYqO3u3HRMtRXcLQlwtwO4f43BHYM7BncM7k4F7hE8gLuzpsrYq8gdmzuH2m5Fu1RHBbg7Fbg7a6oMn9TOVNiu0vYORm3XlLfr5ckwgruIFbgf1QH3YOPgbjrGnTlVRrd1Kq3IXTdYxtDcjVyhTKAFuBsF9z9U4B50CF4anETBBoHBULR58OmSJR+3bauoGhqtq0PZ2c0BAQ2+vse9vY96eaHlmLf3cR+fRj+/FrG4QybrT0wkCKJg1dNN7zZNujBJ1iELaA7QgvtBN/2+qXv+SV7s/mIuVYbG6yrmRgxtI7ubWH4wUtjOQtv5Bfcf9cGdzHD//etv9n2DKsfpOS3KLmX6jfTR2tpp827DfoEb52NiOuRypO0ktfv7kwsyd7G4jQL3vsjIxwsXVg1XzS98BMdAmGIwcVC3A82JLtyGGQQzC6YnHM9XrX8Jz/9p+/bt5Z82b3u/4PGCqL4oeaecLHVvDtD0UPVSjxu47XPcx7fBV9QkEreI4WGKLkX0uejyoXIYbwnZ/XBEhaMcHK/gOJk8feBDCdlPdSAlpVMubw0MbBSJTqg/+NErcqd3TzVR5G4W3M18WMN/sIytSe6ct04VqrnbB98P2b5w5+y8lrRjaseF7bhFqstoO0tw/852cP+Hs4C7OwZ3DO4Y3DG4Ox+4BzsPuLNIlTkdyh24h/MB7pMxuGNz51nbHVjejsHdHjHu/KbK8Ert5rXddHk7Q8dUfXCnTgDQqYIK3H3Mg/shOribiHH/WjfG3XSqzOceP2mL3I0Ey/yfOW3XC3CngfuvJLiLELjvhzWfoAJ3sm8qbDqYjAWrnmwseVv2qezF8uX9iYmkdYrFpHX6+h738TlOUTssDb6+TSJRa2Bgl0Jxd+bM7RWf0vOuEwQRfTY66GSQf7M/AnePIx70IG+41idTZfbQUmV+ohW5GwF3jbYzs/v35tjdtKTqPoaB2k1ou0Xl7f+iLSbMXS9VhtY31RDcVW1IqTwZsry92T/4VPDEsxPz7uetKHqRMftGzWjN/by87pCQdomkhaL2Jpq208H9XEwM7L4NbzeUbP8AhzKYUDBlkLZrT4AjmuAUF2YQzCmYlXDwzJxDdtn9uHXrnZyc0ZqanDs5if2JsAKKLoWkXSJuEcPvE8HoQUuTCP4Z0BIQ2BoobZfKOmQh3SFRfVHTbk8brqqCtYWDNjpgwnF+3rKHJR9KnhYU9EVFnQoOblEPQpRuRBa5u7sfVBe5a7qnGktyZ0yV+YEfc2cTLGNFkfvvNhe5WwTuHBa5H7QCl60FbofBOm/ILuiSdj6D2nmkdvtmyAirsN21QtuxthtrSYPBHYO7YMDdH4O7YDLcMbjbF9yl5sA9CIM73+AulL6pFsS485gqg83dqbSd7/J2bsHdjLZjcBcUuJuldnParlvezpAnYxbcfWjg7k2BuxcF7p7o/AedLGli3KmzMtbgbjJVxmyRu665m7wS0ZS3qzqmGoD7Pg24w4uCVwpbADYRjIeE7EvL1jxf/HTx+sH1z5ct6w0Pb5dKmwMCGkWiBl/fE76+8LXBzw/+CXe2SSQ9ISF/z5lT8qFkqKKCIIiI3ghpu9S/iQbuhyZ8e+BbC2LcWYA7e3Y3iu+Mzm6E2m3V9n8xLeaK3A1j3BnAnQpwdz+kKm+XtElg+2fdylr2fNmGkrewOx7OnXsmMvJkUFCLWNzk70+hN7njWgMDW6lsGQTunQrFxfj4ofLyojdFMxbchUMNzCCYKZqWwrCozn4Ru0e2wLSCyQiH2YqqoZra0VvZ2U8WLSp+W0zU18Pvzb2XG9kXqehUyDpksMg75LCg26p7OuXKbmV4b3hUX1TKlRT4qXnLHsZlXYSjOhz/J8+8sq3s4/aKT5eTkrqVShiBLdQIRJ/6HENF7upgGWNF7vRUGUNwNzcijCcS8Rws4yytUwVr7o5ZuEZ2vp0dU7vwM2TGaIwM1nabtZ0ncN/BG7j/4Krg/oWwwf0rDO4Y3DG4Gwf3QHPgLnFlcO/iAdx7LAH304IEd2ti3F28yB2bu/20HYO7ncBdsDHu3Dm7SWo3q+208nbTeTJWgftfDOAu1QN3UzHuX2nA3SBVhql1KlORu2lz15S36+TJaMB9jwG4/4nAHc7E4LXDNoENCKN6RdGLBY8XpN8g47n7k5I6ZLLWwECyOFpbqUyhrVh8MiioNzz8/qxZ1TUjxYPFU65NUXYpJW0SBO7ex7xRhLexGHedVBnDGHeT2s6W3Q3wnWFh/BFD7rcuSeZfxhd2qTL64L77iy/3fPnVb1+hjqkoTwY2NWxzead83qN5H0pK3m3aVE/UPy8sJP9GQaGA3Udqu58f+UmJnx/cRk1TEbi3S6XdSuWtadNgJ8KSnncdDhcwcWA8wOxAJ8YUsjfr+HtEM8wpmIxwKJ5f+Ag5O3yprh2BG1vLPhY+L0y4lDDpwqS0q2nLni8reFKQcycn915uykAK3Dnx7MTIvsiovqjoc9FJl5PgwRtK3qbOuJKQfSl5+kDh2ufwJLeyss5ERqLoedVHPn5+yNy1wTLGktwZU2UsAfcfHFTkbmvrVO5SZRxc5C58ducB2a13dkztLpMh4yyF7Vjb+dH2n63SdmvBfbxzgfuPdgJ3DwzuGNwxuGNwHyvgrsDg7hLgjs0daztneTLsO6YKDNzDLQJ3PvqmJvIF7pxTu0Xazlzezpwnwwe4o1SZP/X6po7zN4hxZ5Mq4/kziyL3H83W/egHuJPgvtskuB+FFw5bA04tYDxk598arqws/VhaXjl0MzOzJzT0ZFAQae66zTZRFMn52FiCIPIK7hcPFkefi5Z1yALbAv2b/P0a/FDbTL0Yd7j0h6tzdLlMFrmbiHE3BHc6eVvB7iyXHWwL223SdhPmbgzcf1KD+69ffrWXBHcywP2gG5knc8JH3CIO7w0vGyobrqpas+E1Qf13MS5OlcJPUfUJH58T1B8oNIlETVSwTAv1qcnpsLDny5Yte74MfiRj9g2YmDBlYDygeQFf4TYqeFdPE/L8GeYO3AnzDo5dCdn9c5c9XD+4/s26dTAkrk6ePFRRMf/R/LkP58JzLl71lMyrKXlbVT28seQtDK21r9dm3MhIupyU2J+YciUl914uPCAr/9aUWdfmLHlQO1p7Py8PnqcnJATWv40ae+jzHlj5BrW5H9EtcjeWKmM1uHNg7nwWuTs8VcZO5i4oeecH2Z3U2TG148J2h2j7bqztJrXdScDdDYM7BndnB/eD3IB7sL3AXYHBXQvuYgzulqTKGAf3bs7APZk1uFvSNzVSKH1TbU+V4b3IHZu7QLRdUOXtdgX3VAGCu71SZXgCd4uoXaXtBu9E+tquX95uOk/GBLh7Ww3u9L6pRlNl9rBLlTFW5P6jyb+y1V5HqMF9lxbc/TTg/l8S3KUqcIeXDNuB8tNTMClWF78q2f5h28dtg8XFF+PiOhWKdqm0LTCwNTAQvrZJJO0SycmgoG6lciAlpWakZqiiYvHTxWGnw4JPBUvaJKhnps9xHzJV5rAqxn38/vEkuJtOlTEB7t8ZWYyxu6X4voMFtXOr7ZaCO+W4sN1U4E51TJ1waILnX54oT2bi2YkjNTXzCh/Bca+0/FNl1fDZiXCyKNGkn5Pdbr29T1AR/I2UubeKxaeCg+FhTxYtWvFyBUEQcJCHmQUjgZwXqKtB6An12XKDqsMBtVD3N8JsghkHx6Ips65VDleWln+8MnkyLA/mzIFnqx2tXbL66aIVT2CQ3J81615u7t9z5rwoLPxUVgbfhcfPuj8r+1Z27r3cOqJuzpK/85c+2Fb28eHcuf0JCWciI7uUSgTuLQEBTdTfWKClQR3mrlfkbjZVhhnc9f7mwRJzZxMs46gi9/1Cap3Kgbk7hN15E3a7OTumduegducsbBd0i9Sxqu1CAHfeAtwtAffPuAH3nzG4Y3C3FtwPmQP3wxjcOQX3ZmcDd/N9U1mDe4fLgHsYp+AumL6pY7fIfYyYu3C1nf88GQzufIM7V1ntpqidjbabLm83Bu7hVoD7ESZwP6ABd7Yx7nqpMvqtU3+mg/tnEwzMXcvuhhcgOxk6pmrBfa8+uAerwB3hKdkPM74TJuacJQ+WPltaPFg8WFREJnvI5SeDgtqlUvjaIZOdgq9yeW94+N2ZM7eUvl/zek3CpQRFlyLoZJC0XSpuEYsaRT4nfDQx7sZSZUzFuLMEd7MF75Yspn6dIbXbqO2G5k5PlTEJ7l/vVXVMdT/s7nXMC7a29KQ0+mw0UV8/fcGdxGn9G0revlyxoickpFUsbvDzO+btjWJY4OsxqvNtA5Ut0xoY2CmXX586lSCImtqR+csfwfEQphKMBD1e10wKzTk8zA6K3RvIv42IboOjU17B/dLyj/BUQ2VlQ+XlcGO4snKwuPjh3LnnY2O7lMrukJDeiIjzMTGXk5JuZWc/W7oUHlMxVLHk6ZJN7zatKHoB6w8Pvjp5MjweHqkCd4mkRSxuppq+oo6vjX5+qMj9sIfHwQkTSHAfP14vVYYtuDPmDFlr7nwXuTtBqgzf5s6rvPPM6xw4uz1L2scStTt1hgyOkXERbbc5ul0L7v9rH3D/FoO7AMHdrLZjcHc8uLtjcMfg7hhw73QZcB+jqTJcFrljc+df24UK7tEY3F0b3Jmo3Vxhu2XarlvergvuTHkyXIE7Y99Uhhh3y1JljBS5G18+swDcqaapdHCngrlhe8JoSZzWXztaSxDE2+LiK6mpp8PCOuXyU8HBaOmQybqVyvMxMaO1tSWlH+Y/mh9xJkLWIZOelJLg3ioWNYnIvqnHvHRi3A1TZRhj3GlV56y03bi8s8F3/R/5zrbCdou03UJwh82lAvffKXA/8K3HYQ/v497+zf6wV6LPRS9+unj5uhezF/9dPVI9kJLSpVC0iMUnfH1RAMthD9gbHsjcG3x9m/z92yUS2LMvV66Ex49SIexwpIK5A1MD5gI5CxRaYUfn9rQLAfKfFLufgEkEIwcmOBx7U2dcycq/lbvo3tqNr9e8XvNh69Yrkyd3UmtyMiioS6k8Exl5NirqYlwcjKtb2dmP5s8fXL8eBttQefmzJUvuTJ9+dfJk+G5fZGRPaGgn9UlPa2CgxtxhtRvU4K5KlaHkbh8F7nuNxLhbBu4G7M42WIaHInf2qTL7TBe58wDujjR3GwneXrZuf2fnidr/dBZqx4Xtrhgjg7Wdvba7NLhPcG1w343BHYM7BndnAPc2LbhHjwlwZxPjHmre3E+Hugq4CzZVRrDBMpS5Xxhb1G5HbecyTwaDu7ODuzWF7ca03UiYDIvydiZwb+AZ3I3HuGtTZXZ9rlPk/pP5Inemq4zPLKtwP6gBdxFV4Q6nH7DpYCPDgJyad331hleFzwsJgrgUH386NLRToeiQyzvl8i6Fojc8fCAlBb618d3GpMtJId0hKE8msDUwoDlA1ChCfVNRjLs2VWaf0VQZUzHu31m17GC9mHgSiwrbLdX2f5nqm2oG3KmOqZoAd0WXIu5iHApD31r24fHChZeTk7uVylY1uJPpK5RL/uXpSYK7n19LQMCp4ODzMTHvNm6EHyz9WJq3+D5MeZgpMB1gSKiQXaZCdnd1nhL9OoK8IpAfhckCP0LGy0S3w2EBjo1JOZe3lL6f82DOwscLX69dezos7GRQEPy6LqUSbvdFRp6Pjb2clHQjI+NBfv67zZs3bX1X/La4nqj/uG0b3HN96lQYcn1RUT2hoeivK9rU5t5EJbkzxriTqTJGYtyZwZ2pb64V5m5xkbvjUmX+a4dUGXPgftAR2O3AxamdHVO7YKkda7tZbd81JrUdg/tODO4Y3DG4j3FwD3A8uLcLBNzZpMpwAu4hGNydL1WG6yJ3c+buYqXudtF2R+bJWBjgftYWbcfgbgzceSxsN6ntrMrbTYB7hC64h1kB7ofp4O6mA+66fVNNpMp4m0uVscbcadcRZsB9vxrcD8ML1GS4i6nTD9h6sOVh6E6ddW24spKoq3s4b9752NjTYWHdISGwwI2z0dH3cnNrakcXPl448exElCcT2BYobhH7N/vTwV0/VeYPk6kyHIK7jYul1G6FtlsH7r+R4D5+P9kxVRPgHnEmIudOzpb3WwiCqIf/CeLp4sVno6LaJJIGPz8E7gfc3BC4H/fxaRSJ4Funw8PvzZw5uH79xncb1258A0dsmFAwNWAiwPk5qmfX/4RJPebRxQh5cUGxO/WxzQlqFLXCPIXD49I1z4oGizJuZBRvGbyZmdkXFQXDpjc8HG5cmDRpICXlzvTpb9atg1UtWPlkyeqna1+vzbuft+DRguoR+L/61apVt3NyLsXHn4mI6FIoNNkyTf7+jX5+J3x8TMS479HEuDOBu155O2OkP+fm7qSpMgecqMjdlZwdU7urU7sDC9sdEiNjdWj7HvsWtruAtmNwZwnuP5kF98/ZgvsvbMHdC4M7BneOwd3TOcC9AYO7reA+iQW4xwkc3HssAffTFoI7R31T+YlxtyJVxlmL3MdMvAy31M5XeTuveTKcdkzlAtx7WYP7acvAPck+4G5bebulhe02abt+u9TAKHqejNGOqRS4n+AG3Fn1TdXGuBukyvzCCbh/bhbcA0lwh5dDBoMoj8MWgG2CTldgi8HGhB0Bgzxj9g0yaoQg7s6YcT4m5kxERG9ERF9U1KWEhNG6Org/eSA5vDdc0UmCu6RNogX3Bl/UNxUVubsddPv2z29VqTKoyH2PusidTYy7wKndOm3XM3d24A6bjgT3/46fcHCC51FP2NSyDlnWrazK6uGH8+Z92r5987b3BU8L1g+ufzR/fodc3uTvf9zH5y9PzyMeHtrydrG4Uy6/mZlZtHmwtnYUdnHuontwpIK5AzMCBj+p7cGacX5A0xxY1a5Aczkj+RO+RRtIqNS9BWYrvBmVVw69Wr0adU+FX3EvN/fuzJl/z5nzbOnSj6WlcM/6zYPT5t3OnHNz7rKHW95vybiRkXoldcq1KQseLagZqdlQ8haG3v28PPIPLMLCOmSydqmUNHeqb+pxDbgzxbjrgftPhuBuXNtZmrvVRe68p8rYMcYdF7k7t7NjaseF7ThGxrW03U7g/g9nAXd3nsHdkyW47+IV3L/E4I7BnX9w98HgjsGdV3BPZg3u3PRNtX+Mu5BSZRxq7k7N7pwXtpvRdnuWtzsuT8a+Fe5OA+48x8iw13YLy9uNgXsoA7h7mQZ3A4tEfVPHmeybakmqjBXmbg7cfX+jwP2PcRS4u2mclErihu0gok5yyGyZia2weWFHw6TInHOzZPuH0dram5lwHJl0Ljoavl5PT/9YWpr/IH/ShUlhp8MUXYrgU8HSdmlgK1Xk3uTv1+hHFrkf92bfOpUxVcZO4P4fhsUe2m4RuO/6ArbYV7999c0f3yBwh20LmzqkO2TTu00vli+/kZ5eWzeaM/9OHVFXOVw5WFTUGxHRJpE0ikQnfH2P+/icoGrbW8XiDpns7MSJsE+XPls6696sR/PnL13zDI4GME2o8vajMNRhhMMIUY1tbVzSfp0LIuqqhxxLqCUAVeoOzwAnwzBn4e1j5sK7BSuflH0qG6mpWfdmXc1ozepXq8sqPm0oeQvjKinnckL2peTpA3OWPIDHpF1Ni7sYF3M+BgbV5KuTFz9dTBAEPLieqH+Qnw8Dr0upPEmZO3pFhqkyjH1TrQN3RnPnscidTaqMq8S4u56529PZnaWkXWjUPsYzZLC2jxFtx+COwR2DOwZ3DO7GYtxdDdxlfIF7lwPBHafKCCFYxi7m7nTsfsGO2s5LeTvrPBnhgHuvYME9RCDgbq22B7PRdjPl7ewD3LUdU9mCezAd3A/qgbuFMe5MqTKeVoL7Z+zBPWA/QlJ3NZLCS4aXT5l7I2wf2GIozB3GEsyp9LzrW8s+EARxIz29PylpICXlQX4+/HPKtSkx52MieiNCukMUnQrZKZmqzr1VN1jmKBUso0lyVxe5k+C++wv91qnswf0/LBbLf1Dr7HxTu6VNU/XA/ZAK3EN7QmFf1NWNbnm/JXvuLTjOwDFz2drnxYPFA8nJHTJZa2Ag6jjaIha3S6U9ISEXYmOvp6dXVQ9n3sycdnsa/HjqzCswp2Dvw8iHIUFqO/WnG5qUJJ3xTC3qiynyykjF7uqPcFBIEQwhOA5ETD6Tlnt1+vw7Mxfenb347ymzriVk98MBH47AcMiF0RWfdWnesof1RH3KQMrEsxNhOIX3hkeciYg9H5t1K6vkQ8mq4lel5R8fzp17bcoUFAdPmjuV5E5PldGPcTcH7t+zWEybu0OK3K2PcbcF3LG5c47srlvSjqnduQvbeYqRwdpuF21nA+7fWQjuO3gD9x8wuGNwx+A+5sA9DIO7sMCdTZG7cXDvxuDurKkyfBe5szB3Jyp1n+Ty2m5VgLtLgnuoncHdSIC7XVukahulGtd2Wq9Uenm7YZ6MfoA7A7gftwrcD5gBdxEd3NmmytBap7Ix953GwP0LOrj7qcAd1lZVlRx8RF3kjsy9EU51YHPBmQZsZ9jdMG5h2qbPvlFZPfx2w4ZbWVk3s7Lebd686Mmi1Cupky5MIpH0TETY6bCQnhBFl0LWIdPGyzT5+zaQde6GwTKqInd161QzqTLWabuFi2XUbru2swf3n4yCu6hJpOhUTLtFovmaDa/hAAjTASZU4rT+OiqPBYWxnAoORj1LL8bFDVdWVo9Uo/z0Zc+X1RP1eQX34WACMwUGAAwGuEZA2k79uYbBH2qgv9Xw+019Ffa7+lMc1IxXp9Qd5hr51xKxJ2H6K3QPO/AVfikcIeFtpWDlk4qhiqTLSTCQYBQpu5QwkEK6Q+CfaVfTCOo/eEDZp7J7M2eqzD0goMHP75i3Nypy14lxp/VN/ZkW424FuNtu7r8YK3K3P7ib6JvqIHA/iJ0dp8dgaseF7VjbudN2ZwB3NyvA/UcM7hjcMbhjcNea+xgC91NOD+7O0zfVrqky1rdOdSpzd352Z7P+tmwfq8NkHJknw75jKgZ3VuBuVXk799puNkzGgvJ23Y6pNHAPMQfuMhW4uzOBu27yhhrcjce4f8kA7uZap5oydx1w1zZN9dQD970aG9Wmb8v+ohe5U6kyZIU7AncYkDBZ4rMuZeWT2TIvV658OHduHVGXey936vWpqVdSky8nJ/YnwhJ/KR75e3hvuLJbKTslk7RJApoD/Br9fI77qMydCpb5Zp/NRe6cC7udqZ0rcG8UBZ8KTruW9nrNGoIg4GgJuwzmO9wo2vTm1erV52NjeyMiToeF9UVF3Zk+vW60rrJ6eMHyx1u3f6iuGVm1/mVm/k04ysE8UpW3Bx8mk2QC/4RhDGNYd+gyXsSpLtB0/ngCxlWQKtUdBhU8c0BEM8xE1JIXfhcMLZjvcKyAYxq8KSxb+xxWHoZQ2OkwZZdS3ikPpj4ikHXIQntC4y/GF78thgdkz71VM1ozkJyMzL3Z3/+Ej89RqshdlSqjjnFn7JtqHbh/bzZYhv9UGVMx7haCu/36prqWuWNnH4PU7vAMGVzYzre2/+Jy2o7BHYO7i4J7AC/g/i0GdwzufIN7jPXgHsw9uHdaB+5sUmW4Bnehx7i7VpG7481dgCEzfFO7UMvb+e6YygDuESzBPWWsgLv9td0wut2y8nazAe4M4H7MBnBXRXCMMwLuRmLc2aXKaMF9pyXgvksH3EW0YmQK3HVTZRr9SRttJQulJ52CEQKjF+V+pOVem7Xo3pbS92/WrSsaLFr4eGHBk4KiN0WE+r+KoQr4uuLliu2ftqffSI+/FB92Oiz4VHBga6CoUaQy90Pu3x5gKnL/2cIid1tI3Tpk51zbGcH9O9bgfnACbE/fBl9JmyTmfAxRX19ZPTxl1jV0gIIDdd7i+8OVlQPJyRcmTboYH/8gP3/ztnewa2bcnTHr/qwVL1a8Xrt2Y8nbhOx+mNcwTeBcGoY6DGy1tv+h+ssM1UdE2uGqez2ILvd+1bD7OH80uuhdeTVNAtDoUgUWwVECDk3wFlBTO4LAPbQnVN4pl3XIpO1SeF2SdknQyaCQ7pDJVyePVFcvXvW0rOLTk0WLbmVnn4mIaKfi6VGR+0F1kfvvlEb9yim4f29FkbvNqTKcgLsjY9xZg/tB10Z2y50dU7udqB0XtnNd2O4KMTJOru3wfoTB3QZw98DgjsFdeOAuw+DuIHCf6ETg3uFwcBdu31Rhpcpw0jrVZc1dCAXvFqyqMLXdGfNknBDclYIAd3603SBMxmx5uzZPRgPu4czg7sMluLPpm/qr8Rh3K4rcjYE7FePuvZsJ3P+kV7hTkTJk31RU3g7bH8ZAGKXtCdmXpsy6RjbAXPWkeMtgdc1IRdXQhpK3K9e/XLrm2eJVTwvXPl+78TUsBEFUVg0/nDcPbmze9m7ly5WTLkwK6Q6RtElETSLv496aMHdV91RU5E5rnWq0yN2iNqfcCjsf1P4vgyfXA/fv1eC+0xS4+5zwCWgJUHQppl6f+mHr1tLyj8nTB+BwHZ91adrcW9Uj1TczM6+mpf09Zw7skZl3Z0afi1Z0KsJ7w0s/lt7OyakZqYEDPswpmA4w4GEwwHiGaxmVtlPUTmUf6QxRnatIL/SJDkNsEb2ZKp3dqSYBZM4MHAHgEATvGkWbB2F9ki4nwVChd9+FBW7AP+H+lIGU5S+Wwwpverep6E3Rq9Wru5VKeAjqnoqK3PePH0+PcTcK7hZqu3lzt67I3YpUGZZ9U+0L7pyY+0EXQ3YHOjumdiendgcWtuMYGWfXdtbgPp4ncOetY6ol4P4ZBnfnAfdvMLg7PbifcB5wbxEUuAfZBdyt7ZvaPXb7plqRKiPI1qmCM3cL2d3u8n7BbtRuo7azKG+3R54M/wHuloF7GFtw7+GkaSo34C5cbTcSJkMvbzeaJ8MQ4K4P7kqbwd1831QTMe67WIP7ToZLDFPgvgedSBtWuKsz3MnydthQsBlh+8OYgfGPkmSWrXlWVT1cOVy59vXapc+WEvX1o7W1Baue5sy7nZZ7LSnnMjwMHX8Ssi9NzbuOEkterlo1WFS0/MXyBY8XRJyJIM29UeR9zNvjsIcqWMZkkTsd3BnMnb22/5uL5V88LLrabim4ux108zji4XPcx7/JX9ouDe8Nn3V/1oetWzeWvM2YcyMt9+q0ebcJgvh79uwHc+bU1RO593ITLiVEnolUdiuj+qLgW5/KyurqRuEYhcrbYXjDeIaBgZJkVNruvQdRO/0PLwwuOXWG2ZeqUneDYab+XIcy92Yy2z2GzCyCNx1YGRhRyQPJyi4l0vaA5gB4XaImEXwVt4iDTgZF9kWuerXqbXHxsjXPhysqhquqzsXAIUBKL3LXpspYCO47dBdOitzZp8pwGOPu1OB+0AWQ3YHRMfZydkztgqV2Z4yRGSvabjm1W6ftGNwFAe5fWAvu/8TgjsEdgzszuDc5Hbhz3DcVg7sN4O6KqTKcFrmbC3Pn0twtZ3de5d3ilcngWdsdXN4uqAB3FwF3jsvb7aztumEy9PJ2NnkyWnDXdkzVA/ejLMHdTQPuJvummopx9zaIcWdIlWE09506f0FrEty/1AV3WtNUMk9GzaCktsMghENKzvw7tXWjZRWfKocr5z+an30rG5YFjxe83bDh0YIFQ2Vlsxf/nTrzChysYOrBpKCGcQ98hYmTlHN52drnW8s+oLQZ+PHQntDA1kC/Bj+vo15ksAzXRe68ODtP1G6svF0N7ir0/eEfZJ4MhbiwcWATfbnny6/26oC79zFvv0Y/2LCyDllkX2Tmzcy60bqR6uqClU/mLPm7aPPgi8LCeqJ+3sN5U65NSbiUEHM+JvZCbP6D/HebNsF3J8+8ChMNJgIMdXdVmAxd29XUjoai3iA03TBAleoOI02d6k6a+xG1uZMf7cC0haMEjJ8NJW9hjKVeSVV0KVDuv6hRBEPFt8EXvsJtcatY2aVc9nxZ9Ug1jMzUGVdgUA2kpHTIZC0BAWSRu6fnIXd3TaqMKsadYhSz4L7DyMJhkTvbVBmuwN1YjLvgwd1u7H5QAM4+lkvaXY/aXq6SfQAAgABJREFU/3Bmah87oe0ur+32Avdv7Q7uE+wP7j9jcLcV3EUY3McWuPvaDdwjxh64T2IB7nEcgrsQ+qaOgVQZG4vcndfcrWJ3rqLerf7VfGq7UMrbucyTcQ1wT7QruFsa3c65tpsKkzFS3s6QJ2OsY6odwZ1djDvLInfT4P6zeXAnDRR1tmyCTQd7B4b9lFnXampHakZqCIJY8HhB6pXUhP6ExP7EKdemrH299mlBwa3sbJQbM33+nfisSzChYAzDMIORgHYxjC6Yg0vXPIPH3MzKGq2rS7iUoOhUiFvEPsd9PI54uB00X+RuJsndBLgL1tkZtd1GcG/wC2gJCDoZpOhSRPZFJl1Oyr2XWzxYXD1SvWnbu09lZStfrsx/kD/9zvTsW9nwre2ftg9XVlYNV6XMGID9BVMDzrThnF8TJgODRE/b0dgz2q2XNuTU400dL0OZ+zgdcyf/nAJ1UoV5CkMladrlokGyE0De/Txll1LSJvFv8vdt8IVxAq/O+7i37wlfuAdeYNzFuNra0Zz5dzJm36gbrbsyeXJ3SEibOsn9sIeHXqrM7n/+0xZwN2ruHBW5Wx3j/rvVfVPtD+7WmvtBZ0F24Tk7pna7dkbFhe32KWx3Tm3/ye7a/iMGd1cAd28M7hjckbmPRXAXORjcW1mCu8SFwJ1NkbudwN3CGHenS5Wxf5E7h8EywjF3BywZzqDt1pW32zVPxkpwD3cOcOc/T4ZXbTcXJsOuvN1UgLsG3L11wd2TJbhLjIM7uxj3f7ICd6Pm/hkjuHvog7s6w50GoPK/4CwLzn+QfsLsKFj5ZNvHbZ+2b68aqZpybUrs+diJZyfCMunCpKnXp1aPVN/Lzb2SmnotLe15YSFBEJlzbsIE14A77Cy0j+DZYNoWbR58t3FjzWjN3IdzEy4lBJ8KFjWK9Irc4aKfbZG7cXPnRtv/xf/CpO2MHVP1wX23LrgfcPM47OF1zIsE9+YAabtU3ikP7QmFPZV0OSnrVtaCxwtgP1bVjGze9q6mdrS6ZgT9tcGmre/mLnsIx3w51SsVRj7ZK1V6EEYvGSbjtxcGJ5Ukg7SdRu3UlS/DBTJ1nYsGnqrUnd42gFbnTm+jClMPJiZM+fisi3X1xNOCgln3Z8H6o+ghnxM+MEg8//L0POrpfZys4of7w3vDZ9ydAS9h0conw5WV16ZM6YuKUhW5+/jAY1GqDB3cd5kD9x3mFpZF7uxbp7KPcR/j4G6jvB/ke7Hc2cd4egymdlzY7sAYmTGi7WMc3HdicMfgjsHdenBXjjFwZ1Pkbhbc2cS48wnuMnuB+9iJccdF7nY1d+HLe4ZzazvH5e225sn0Wd8xFYM7x9puPkyGVXk7mzwZDbhrO6ZS4K7gANzHMYI7ixh3vVSZz42A+2cmwN2dAdxVTVPVDS1h/eFMD14jbAFEnzAl8wruj1RXv1ixYv3g+oRLCRFnIsJOh8ECN2LPx2bfyq6vJ25mZl6Kj78YF3d18uRPZWUEQUzJvQbTCoYuDB7YWdReaIGvMGxSZ17ZvO09UV+/qvjVaF1d9LnowNZAVZH7Abfx+1kXuX9vpsjdenD/l70WYyugW96uAXcEujrg/qsOuLsfdvc66uXb4IvAXdGlCOkOiTwTmdCfkHM7p3yo/EVh4YeSkoUrHufMu50x+8bkmVcTp/XDXoajDexu2Ecw/skwmeDDcNEBowKFydC0/WdK28n0VPKKWHvJTLuydvtew+7mzF3VpxeNOjh1h/kIsxveaFaufzlcWVnwpCCqLwpeiKhJBCPE8y9PeIEwTuA1+jWowD3jRsaKFyu2l396s3btg/z8gRQ4qoa1SSQNfn5HvbwOTZjw57ff7vvmm71ff60B91/U4L7TKnA3be6MRe5WpMoYjXFnAve9YwzchbUIz9kxtbsUtTtDYbuLhLa7orZjcMfgjsEdgzu34H7cMnAPHQvg3mZfcD/FKbh3ujS499oxxr3POnC3rsjdTt1THWjuGS7r7Fxpu5OVt7PPk3EZcLe5Yyo30e2TeAmTMVne7kBwZ9U31fpUGV1ztwzcxftJ+gw6BK+LLG8Pb4KtCoN587b3m99vrhyuXPx0cdzFuNCeUEWXAhZltzLsdFjM+Zj5j+YPV1RcSU09Fx3dFxV1Pibm+tSp5ZVDFVVDqTOuwNSAkQMnGLDxYQsjTk3Lvbrk2ZIXy5ejbPEp16YEnQzya/DzPOo54dAES4vcTZi7xeD+LwFQO728nbFjKgXuyGuNgvsJX/9mf0mbRNYhC+kOiT4XnXEjo2K4Arb5nZycJ4sWFW95OzXvelzmRTgwwlGI/FAk9iSl7Y0w1Gm9UmlhMuokGVTYrtZ2dK2tvQansbsxc9fmuWuCjNypgedNDrxGmNrxWZeqR6o/bttWuO45DI/gU8HwchC4wwhBsTmiRhEMm/hL8fDId5s21daNrh9cDwvcuJGe3imXN/n7k6kyVIz7PhTjTuubyhbc/1f1RxQcFrnrg7vZVBmzMe5OB+6uYe6OdXZ7lrRjauc/rh0XtjuFtv/shNqOwZ0NuP+EwR2Du6uBuxyDu2XgLnYScOekb6rCifumOi7G3WmK3F3L3B0u7/y8olibG6XyX97uOHBPdWVwt3d5+ySOwmT0eqUylLfr58kERJjumNqgDXBnAPe/zIC7VAvupLlTp3zM4G4qxn0Pa3DXL3JnurLQgvvn+uD+O6yPyj2DD6PydthWsN9Tpg8Q9fU3s7IqqoYS+xNDukNkHbLgU8HwVdGlCDsdNunCpLWv137ctu1SQsKZiIjTYWG94eHnoqNv5+SguJKUGVfCqNJp2BEI3OF2CtXf8nxs7OWkpC2l7/Pu58ET+jf5ex/zdj/s7nbAbdz+cV//QbZOZShyVxOpqWAZwyJ34Ze0m9Z2NfHqgTtsHC2479cF9yYVuIf3hqddSxuuqnq3adO1KVMGUlJuZWfXE/XZc2+RsT8pp+HQod5BTTDaYWyTvVIlfxqUt1O57VSSDNJ2LbXrX62rr7INzJ36sIfqoYqaB+j/aQWZKgNzOS7z4mht7Y2MjOfLli14tECTKgMjBF4deoEBzQHKLuXWD1sfzp37cuXKwnUvYKxm38qe/2j+UEXF2SiY8OLjPj6qGHdN31Q1uMP2Mw/uGm1nYne2Re62x7hjcHd+Z3dWahekswuI2oWRIYO1HWu7CW23B7j/A4O7cMDdB4M7Bncbwf2YMMCdTd9UDO5Wgrtr903lIlXG3q1TuS9ydz1zt7O88/kq7KHtXJS3CzbAnU3H1HAW2i5wcBdQdLvp8nZW7VJNdky1HtwP6IC7BX1TGWPcmVJljBe5WwDu6nAPNwo94ZWSVcaxJ+FoML/w0VB5+Whtbc7tnLDTYcGngqXtUljgBqpwT+xPJAji/ZYt52NiekJDYelWKntCQs5OnPggP///Z+++/5rI9/2B//S93/M9Z4vrUXoJSWhJ6BB6E6VIURBQFEGRoljovfwf996z55w9Z8+u7q5t7R3EAqiooAjYde1dUfo8vu+ZSZkkk8kkmSSTMOfMwwerlGTmM0PmyYvXe7atbQ5BklbcgRMEDjccKfi0sFDjM0bb59pH4+NHExKaWqaX3V3m2+vr0eWBt8rYHbTDR6cu+G0BCu6kIXdSc6cIuVuc2mlG7InaTlrgTgD3r376igrcu3hwpOAwxQzHzLa2wnG8vWTJoFQK20hs7ER19dbqcTjEcA2BcxYODZwUsPJhkaOzUrXG22W97fJsO07t3/8Xtsnu3EnMXd7nDrerjv8hX3t4yN33GJx3cM7CdbKhefplQQFs616tixqOkvRLUHM/4+52yg023hn02YVcC9k6vrVxurF824e4jJHC0tflH8qL3xRvr/l8KyamRyg86eJyRDu4/0gG7lTaTmnuRrbKUNW4swzcD8xbcGels3PUboPUbiXBdq603Sq0nQN3zV/55MCdA3cO3OcJuKuaO3vAncrcmQb3CObAnebc1Gh9wd1iNe6ma5WxlpA74+ZuJnY3Eb6b/jFLLartpo+3WzO4x9AB935t4C42J7hbXNt1xNtp98mogPtx+uCuaJXRAe7kc1M1atwNCLnb0wd3WZs22uwh2A+P3NHnCDxf2EuwomobJss/lCOdnSXvSsIGw3wu+gh7hPyzfMFZATqN86Kv/2X/ZXeXzbW3v1i9+mpQUJ9Y3Ovre9EH3tGnTyS6FhLysaKidrJ2trV1a/V4fMZoTNpwZMqNqNTh5Jx77XPtj7OynuXmIggSeSPSt9eX3813PemKd4YoWmXQkPsuZcgd7lz1LXPXAe4scXYKbdeYmIqC+4+6wd2jy8P7gnfo9VA4iHAoH69YcT00dCAwEI7UYFjYs7w82PNwUOAaAicavMKEU4AQb8fb2/eg8XYXWXv7n2WzUlXj7Si1/+2/vsM2VXOXg/s/ZSF3O23FMsqQO1pnhC0/uObEZ47Cw/68ffvW8a3NM2iZe+BAoNd5L1h+sAhhKYp6RUl3kj6Ula1a/xSuq3DZgW8usBphxcJHDUqlKLi7usrAHZubygy4E8ydJORuWKuMrrmpJgV3A+Pt8wfc51OknaN2s1G7BTpk5newfd5quxWB+w8cuHPgzl5wF9IAd08O3A0BdzezgXuQVYG7EXNTfefz3FSTtcpYW8jdBMUyLDR3Ywje7A+PKW03VZmMSePtDBS4D5imT8Z04G7peLuhg1LVq9vpx9tp9slogrtYBu5OxoH7X6nB3dga9x/Vbx/sSO4mKMAdFU80YnwUnj7sQDgpmltn3m/aNFFdjSBI4JVAz3OeHl0evC4e/CnoEXhf8Ia/zHmSs6P28/3U1Mv+/hd8fM55evYIhbDBGxd9fK4GBz/Lze1EOovfFtc2TH6sqIBP1dY+t3bTy+01n98UF3d2IukP08MGw0R9IsFZgdtpN6fjTnirjMroVCzkDnfG1MUy6uZOJ+TOJmrXoe0KcP+3bnB3O+UG+1PSL0l7kFa+7QPs9qHwcPz3D/olkoHAwDtLl9ZM1OQUPoErEpxZcGrAysfb22EBw2KAJQEL4xtFn4ysvf3fWHu7Mt6OZttRbf9fFXOnKJZxkBXLoPePykYj/BcsDuC/YAHnJlwiIlNurtv0qnmmGR58QclL+LPoTVHYdXSpoI1GvaLAgcB1r9bNIUhE8g14fzj34TKYteZx5afK8cpKWHs9AgEO7geJ4P7NNzuJ4P7nP5ODO4W2azd3A1plDJibqi+4q2k7B+7W7uxWEWnnqN2GO2Q4bbcubefAnRlw/wsH7hy4MwLuXhYH92McuBsF7iFGgTtzc1MvMjo31brAneWtMhqjU00ccjdrsQz7zZ2tm/m0nYEyGXrx9iX6xNu5Anczx9uptZ25eDtxXCppnwwvwCzgrjI3de9CJbirz00lrXGnbJWhNHc9wB2NGMNTgGcH+wF2LJxoCILcT019sWbN2ldrJf0SwVmB+2m00AP+5Hfz8fR0W/tc43TjaHx8n0h0ztPzLJ/f5eGBb2cFgvNeXlcCAh4uX/6+tLShaSrnaU7srdjsJ9mbP21uaplpm2tb+3Jt0p2ksMEwcb9YeA4tDHE+4exwxGHxwcVoq8ze79RD7sRiGdrmbgFwN4bav1fN6ZMVuFOAu8Nh2UBRz3Oe4UPhpe/RPf84M/Oyv/9FH58L3t4XfHz6JZLh6Oj6pqmOTgQulXBmwRkBCx6OPqxkWLoafTI/q45L1QR3XNu1gbuOkPt3eMgdbZVBRwjAyQgXgdj0EViBG95ueLV27ZPs7DfFxfCf5R/KI25EBF4JDBwIhDdqJ2uLyt7AU4DLFFxw4NJasf1j4avC2dZWWHh4hzsJuH/99U9ffUUT3FUPhbEhdyWp0KtxNwW4M1bgbiS4s9bcDXV2LtJu89RurR0yqtpuQWo3pkbGIqXttqHtNgnu/+LAnQN3JsFdYEJwtzM3uB+lA+5ONMDdmSa4S1gB7jzDwb2bA3d0Yx7cGa1xZ0+rjNWF3C1n7hy706B2M2k7K+PtHLgbHG8336BU+axU+vF23QXuiomprmoF7gpw96UG90O6wZ1mjbuLBrjrG3LXC9yFv8OzgFdfsENgb8NJt27Tq/ebNrW1zybfS5ZcQsHd7ZSb8wln+JPfzRf1ihLHEhH4X2fnYFjYBW/vbj7/DI932g0v2XaDN7p4vB6hsE8sHo6Obptta55pznuWt/71+ra5ts87dmyrHoePXv18dexIbMCVAK/zXmiN+0kXZasMPjpVEXLfKQu56y5zp2/uFu1qJ6F2Um3XKHAnB/f9GLgfcYBjxDvD873oC3t7qqGhZqLm7tKlfSIRHIuzAgH8edHHZyg8fLKurq5xMir1Jpx0cC7gfTJ28nGp32F9Mug6dFIUuBPBnVgpg7XKLPyb9hp3Gbirhtx/hs+saHIn/o4FnIZwsi9deadpumnD2w0P0tJgCV0JCLiTlAQLpvBVYdRwVOSNSFh+s62ty/MewHcQ/JoJ39E2b/8409z8LDcXni8svxPOzsRKmd++/fYXfcD972SbASF3fVtlrAPcdZGxlYE7S5zd9tpjOGpnjtq5YDun7QZoO+vBfTEH7hy4WyW4L7YMuB9hEtxFFgR3OjXu1gfuQh3gfo45cDd2bqqIXXNTTV3jbuZWGfaE3E1T5q5i7lzU3WhtX8oqbdcv3s5snwxDBe62C+5MlsmcN75MRlu8Xb8+GebBXefcVP1q3FVHp/5IdTfhQA3uB1BwRws9zsBhiki+sXrDi4amqfqperzD3fOcp/tpd5eTLnh6OmggCEGQxubpjxUVVwICeoTCMzzeKVfXEy4ux52d8Q3ePuXm1u3hccHHZ1AqfZqT86Gs7GVBwZOVK99u3FhY+jp73ZO6xkn4EvGj8eJ+MW76TsdUWmUW/KYSclcWy9AcoEosljE1uDNI7XLZVemTUQP3nzXA/SAK7i4nXDy6PST9knWv1uUVPevoREZiYy/6+KA/EXF3Rw+Ht/eNiIgtVZ+mGxuz1jyGw42Cu/iEWp+MvMCdCO7/hpvcPxGHpmLmrnLbTrgfVwF3xehUtZC76y+w/uF0kI3tRacIoHNT4TsU+uOcjo67S5f2SySXJJLBsLAHaWk7ar9kPspMHEtMf5g+09yctPIOvCdc8+F7Vk7hk5qJGnhS10JCznl6nnZ3h0V42N6eWXDXNHdtIXd9W2U0wX0n+8D9gO2BO4sj7fOwPYZd1M51yGijdq5Gxnq0nXFw/wcH7hy4mxzceQaA+z5d4E63VcaU4G5sjTsdcHc0I7i7WBjcz5gL3E1Q424EuHszAe7mnJtqkVaZQBa0yjATcmetuXNRdzMG26X0jqDl4u3mK3A3ycRU48Cd2QJ3M2i7wWUyZPF2beNSmQN3b1Vw91KC+2J9wZ28xn2XKrgbFnL/UR9w74L1kL3uSfVEdd1kHYIgOYVPS9+XSi5J8KGpnuc88XGpbe2zRWVvnufn94pE3R4ep1xdjzs7H3V0POLggG/w9jEnpxMuLmfc3XuEQni3K4GBg2Fho3Fx70pKVm94npA5lpg11to2WztZG3UzyvuCN+8Mz/m4slVGNjpVHnJXL5bRx9xNHnI32Nm/12q6RM1VCC41uDsecXQ96So4Kwi4EpD5KLOxeXqipmYsMVFxjLo8PC76+IzExjbNNG18tzEt9wEO7s4YuMPSxfpk9sKtk7LAXQ7uf0bvW5Uhd8zc/6Htflx5ry0Dd9JWmZ3qrTLyRQgXn7S8ByXvStACeqkUn/UKDxvWG/xN5uPM1S9WV1aNJ628E7P8Vmz6SE7hk22ft41v3ToSF9fr69vN58OTheUnA/eFC/UAd0ptpxVyp9Eqw2ZwN0efjMXBnYu0c9Ruq9TOpmA7p+0W13YO3M0M7j9x4G4acN9rJLj/lQFwp9Eqw4G7BcE9kAlwD7ZFcOdq3KlbZcwzOtWyIXcWmLuU03Yr0Hazxdst3yfjb9KJqSaOt5unTEaPeDtxXCppnwxdcD+mCu5HdIO7kAju+xfSmJuqo8ZdW6uMDnPXA9xhF8Gqa2iaSr2finR23l269GNFRXXdRMytGL9LfpJ+Sej10OqJ6qmGhta22felpYNSqSJNfNTR8bC9/SEFZtnZwX/CX8I/4VH3815e/WLxYFjYh7KytSUv4YID5+DSlXfebtxY8LIAPj+/m6/WKoOG3PEmd0WxjDHmbiJwZ5DaidquEW9HJ6bi4P4TCbjbHbSDXed6ylV4Thg2GFb5qXK6sbFmomYOQa6HhsLOx4v1rwYHvywomGlqqm2cjM8chTMXA/fjDoQCd1iTCnBXJNxhLWHgrgi5/xO/odZ+6/1PUnBHl6IjRavMMTgT4aSGqzf6WxTTjeNbt47Gxw9HR8Of91NTP5SXl7wr2fJpS0HJy+X5DzNWP6qs+rQZ/r9ly60YuA5KYEGe4fFOurjA2jtkb39g0SJmwZ065E7dKkMH3H/WH9x3GwruFuuTsRS4G+Hs1htpt52idhugdi7YbqOl7azVdg7czQjujhy4GwzuewwDd1PMTeXAnQlwP8ksuLubBdz55gR3KnPXB9zD2QzurKpxt7qQuzWaOxd1H5JanbYbEG9nYFwqSwrcWQfuFi2TMTzerrNPRlngTgHuIpOCO+ncVF2tMlpHp/5Ifh8hv1n4StvQVKzDHfYMLJKqui8IgrwuLLwkkVwLDf20efP61+ujhqNibsVUjlfWN04Vl7+pnqh+v2nTZX//bj5fiZuLFxNx58CiRQft7I44OBxzcjqJxavxSapvioqq6yfgBIeFEZ023N4xB18u8maksEeo0ipDDLljeICG3KnNnXSAqumKZQyYifq9Dsf9k0ZwWpGXVsTbKcAddqDXea/U+6nvS0thr64vfT3X3v5i9eqBwMB+ieRqUNCb4uKCkpd1k3VT9fXL8x/AKYyDu3xi6j7ZxFTXXzBwl1fKOGDrSh5yJ+TclfJOcouN3UQrK2XwG15ZjftP6L0k2irzK9Yqs5fQKnMCzlO4LMC3iU1b3sGzaG2b/VBW9iQn50l29suCgummpk6kE/6psXka6ez8smPHg7S0Ian0kp8fLDBYkKfd3E5gPwE6ZGf3uwa4/2w0uP+dXsidqsZdbW4q5kGMgPsemuBu2T4Z84P7vKT2/TZT1M5ROxdst8XSdjNoOwfuHLibBNy/5cDdsuDuYzXg7sqBu97gPj/npjJa487O0ammn57KSLGMqc1dylH7Mv12Lz1tt2C8nStw1w3uZoy3U2u76eLtOvtkNCemYuAuZgDcUXPXCu5UNe7fkIM7nZD7j/TAXSVcDE8BniDsEDgicRmj1RPVX6qqBsPCBqXS+6mpcwiS/jA9/3l+TcNkXPpIZMqN2dbW8a1be319z7i7H5d3d+z/61/3YriJS9++hQt/J5j7KVfXbj6/VyT6Y8WKmoma/OLnEck3sgufvFy7FkGQ5HvJXue93E+7o60yh9FWGZWQO1YsoyxzJ5r7v8nNXWWAKkWxjCmD7XpRu3qwXS3ergnuu1BwX/DbArWEu+d5T6zzZ66o/A1cK5auvFM/VT+WkHAzMvJRRgbs6iW3l2Q+znxVWLij9jOcwnAuwGtvWMZwo7GQBNwJrTL2+N3rv+TdMj8Q0u6k99E/KOLtauCurHHHW2XQGvd9i7HftIB1CCcjnLxw0YBrbFzGyKr1Tzfv+FTfNIVm3luma+onkI6O95s2PcvNvZ+Scism5npo6CU/v4s+Pj1CYRc2TuA4NjHVMHD/O31w1xZy17fGnUFwVzXE+d4nwx5nt8n2GI7abZHazT0fldN2U2q7tYL7/+PA3TBwd+bAnQN3RsFdzAS4+1kQ3LvYBu6erAF3m69xt3SrjGVC7hYzdz3rZaTzi9qHDKN2k2u7EfF2M/bJsBrcjSpwpwnudOLtJi2TCe0R0Iy3E/pkeJR9Mq7yeLuLvE9GE9wd9Ad3eY07+kqSztxU+q0yZCF3krsGanDH2jyOwk6AfQhrta5xsmm66emqVWOJifdTU8crK4veFGGV7k+Sc+4Vlr5Cy7XDw3uEwpOurkcdHQ9isrl34cLdGC78ijngHrm5H8LM/biz82l39/NeXsPR0TX1E0Wvi2obJiurPr1Ys6a9Yy7mVoysxv0EWuOOt8rgIXfl9FSd5v6Dhrn/3TTmrkvb6bfHqKTaSbVdrU+GGtxPugp7hNJBKRygiu0f4btAbPrIlh2fnq9e/WD58tnW1oxHGfCvS24vmW5sTM29DycgvNCFtQ1rGFYsLFEiuOML7y/KkDsh5y5nd3ng/QeqgBoR3Mlq3BfgNe7ydQhnH5ybsBThogGXO7i2R6bcTMgcS1l1P6fwaVv7bMm7ksna2kcZGSNxcYNhYZcDAnpFIrQ2h89H+2QMAvd/6APuFCF38lYZveamMgTuJilwt5Z4O0ft1l7UblXUvpujdovWyBhT2m7b2s6BOwfubAD33VYE7otYDO4ObAH3E2YBdzo17nqAu3Zz1xPcQywP7mabm2qOGncrbZUxU8id2WIZc5r7vGB3qSmD7eYtkzFnvN20fTKmmZhq8T4Z85fJMBJv113gbipw1zk3VVerDJm5/0ht7rKbBUcNcHfbjbZ5CPbbqbZ5wHlXXPG2YaoB7ZZZv/7txo3wdmXVpxKs4mOytnY0Pr5XJOry8DiBySYeb1ewJtx4w5+/LViw97vv0G6ZxYsP29vjxTLdfP5lf/8vVVWl70srPlY0t84gHR25T3NDr4ei4N7FczmB1rjbH0JbZWQh973f4Z5Bbe6yO1HDytz/xoS2kwbbqdLR2qldTdvxeLtiYiqms0pw3ysDd4cjDi4nXfjdfEm/JPdZ7vjWrVkFj5dl3121/ulMUxMcx8pPlan3U5PuJG0d3wrHEa60cBLB4ofX57B6Ya0SwP1X7Ec+O5U/4yGauxq7E+SdZJO/j+LeVsssAewHP9g6hDMOzkd48QwPD64hcDWD63B48lBi1u3C0tdbPm3JepxV/qEcnuDtxMTrYWFovN3X95ynpxLcnZzMBO70Qu76zU2lAe6/GQ3upuiTOcgGcOeK2jlqtzZqZ2OHDFcjYxPabllw/ycH7hy4c+DOgfu8AnehDnCfb3NTbbNVxppD7qY3d4PYXWqb1D5kWmrXru0GlMmYKN7OfJ+MFRa4myvebpoyGep4O8m4VIMK3NGJqTJwd9QP3A/IwF1ABPd9ZOCuV4279pC7g454OxHc0dfksvrsPbL6bO8j8GRhn8CehOMLp0l8xuiKtX+sL3tdsf1jZycyvnXr68LCRxkZw9HRl/39ZeNS8T4ZOWv++u23uzDWRMH922/VQu4nnJ3P8HgXvL0HpdIn2dnvN22qb5qq+lKV9iAt5FqI9wVvjy4P15OueI273UF5yF1eLGN5c9erRsaASDshI03UdpV4Ow7uOzFw/1UJ7osPLkbB/YQL7wzP64IX7M/cZ7kdSMfW6vHC0tfV9RMzzc1Fb4rWvVrXPNNci1UDwakNpwmseVjSRHBfIAP3X5QLj7DeCMuMTN613/nKbmwd1MBd9psWshp3vFXG9xichnCewukMVwO4KMElFL67peU9aGmbzXyUmTiWmHI/BUGQD2Vlw1FRVwICen19z3t59QgEBlTK/NMgcP+7VYH7vIi3z8+idltqj7ENaueC7Zy2s0bbOXDnwJ0D9/kK7r4Gg/txM4O7GxPgzjMc3LsZAnc9a9xZB+6mrXFnR6uM+UPuVy0ScmdqgKqZzV1qO85u+mC7kdrOTJkMc/F22ylwN3u8PdzIePs5vWalGtono1rgbk5wJ8xNNbBVhqa5k4I7Oq+SpD4bTRYHdcH+F2Ox4siUm8k59zZufrvp/abW2dbn+fljiXCmhfSKRGcFglNubsecnA7Z2xNZE7////Xbb3cTWmXwJvfjTk7wIfCB/WLxcHT0m6Ki9WWvYaueqI64EeFz0cejWwbueKsMHnLXYe4/GWru32vXc4Pmo1IF2/+hdSaqVmoneC0x3q6YmEoK7s7Hnd1Puwt7hKI+UShcTe8k5T3LK/tQVjNR09g8vb3m84bNbzPXPIpKHYarDbzqgzMCljq8dFcD929l4C4Puauau0aLkULe/61V26nBHf1Niz0ycMdbZcQn4NyEExkuCPhSjF1+q6Z+onayNm4kDlZL1M2orMdZTS0zrwsLr4eF9UskvVjIvcvDA9aYgeBOb2IqrVYZS4A7ycTUeRJvZze1c0XtRjo7R+3aqN3ag+3zTdv/bXZt58CdA3fbBXcPDtw5cDcbuJt5buoFy8xNZUGNO+Mh90BrDrmTTE+1InM3gt2lVuzsRlG7JbSddpmMvvH2RAvE2y1f4E6zT0b/eLs5ymRoxNuN6ZOhDe5HmQZ32jXuNELuf5HfGmjeL8hvB36SgbvTTuW8So36bHhVA7sXjjIsQjglk3PuIR0dK/5Ykf0kuxPpfJiefj00tNfX9yyff8rVFQd3NOGOVcrsVogDphLo6FQM8g7a2R3GRqeedHXt8vC46OMzFB6OIEha7oOEzLHm1hn45OI+Mb+b73bKzfm4M9oqg4XcVcx9rxnNnf5GT9vpRto1Bm4Sy7/VwB32A+wQGbgfWOxwGAV32IGwG70vePtf9sfr2vOe5c21tX2qrCwqe5Oy6n5U6k24ssHxhdMHzgJY57CYYekSwH23DNxdVH/YQ1ZnpF3e/61yt2tPDu6qv2mxD2550HXocxTOOzgx4RTGf/YD3z5Wb3g+vm1byr2UsMGwkGshwVeDo25G1U7WwiqCNTkQGNgrEqmB+0E5uMOq+VUO7j9RgrumqtPq4add484wuGPGx0ifjLVqO0ftXHvMPKF2LtjOgtJ2q9P2Hzhw/zMH7hy4c+CuzdzFNFpldIK7xDBw129uKs/wual6gnswG8Cd2bmpVlTjztrRqQyE3BkrlrEuczeO3S2L71LzUrultN3i8XYz98mYucDdLPF2Km03Zlaq/vF2jT4ZrRNTdYG7j2Hgvn8hXx3cSWvctbXK0Am5K83dgXin8B8KcFevz8agU5YsjuqDM3Hdple1k7WJY4nxo/F5z/MQBBlLSOgXixUJd7RSButw34tFiffI7W8vFm9HO9xxcLe3P+boeMLF5QyPd97La0gqrZmoSVl1Dy4ONQ0T5R/L/S/7C84KFODucMTB/hCZue9Rmjt+02+wuRvL7jprZKipndLZlU0yRG0ngPs3u75RA3f7w/ZOx5xcT7l6dHt4nffyu+QXBlflu0vxX014kp0919aWsfpRRPINuILBSQqvKuEUgCOuDu7uu791ky1Ckp/36JZ3qrta5VLE1yEG7vhvWih+8KNYhyi4S8/DhTFp5R1YeNvGt4UPhQdcCYCnBlvQQFDSnaTpxsbmmebhaLjwSRgHd52zb/VolVGdm2oguBs/MVXPPhn2lsnMP2rfz1G79VM7Sztk5k2wfb5pOwfuHLibAdx/mxfgLqQB7p40wN3L1OB+1InZGndKcHexLXDnmwXc59nc1H6WgTs7Qu4sKXPXx9wtzu5mwHcjHtigebXdiEGploy36zsu1XR9MnoWuDPfJ8O+eHuoUfF2D4K20y9wdxHLwV1jYqpucPfUAe4LeVRzU4ngrtEqQxZyd/wPhbn/hQzcv1KAu2Z9tugYvHaCHQWvKOBYwzWkqWW64GVB+FB4yLWQqJtRCIJ83r79WkiIrMOdIJv7MamRSQrmLzjkHVi8+BCWcD+KgTt8FHzs9bCw6voJ+GxrN716tXZtx1xH4ECgoEfgftrd5YQL3iqDhtwP2VHn3PU2d6ai7nppu17OTqR2Qihapu34xFQKcD/p6tElA/eIGxFlH8qmGhruJCWNJSa+LCiAHR6fMQoXJTgN4UyBxa8F3GWtMmq/ZqGyCMl+2YIk8E68pXVQBXditZHiNy1Uf/ADlxH4HrS95vNsa2vKvZSAKwGiPpHvRV/fXl9xvzj0euiGtxta2mbel5VdDQ6+4O3drQHue+XgvksN3OUkoQ3cvyfbyM2dTquM+cGdVfF21mi7VVI7u9tjOGq3og4Z2wy221JpO6PazoE7B+46zf1XHeZudnD/zrbA3Y5hcD8yP8HdnVXgHmKF4M5wjbs1tcpYe8jddsydOXZnhOAZegAMUDsj2m7b8XYWFrhbRbyd/FsMI/F2PfpkqMH9OLPg/lcFuOuem6qrVUZLypjI7n/RvEcgBXfyNg+0PhsOZXTq8JeqqrxneUFXg8T94oDLAbnPcjdUvL2XnNzr69vF451wcTnq6HjIzu7A4sUyc5dvCm0/aGd3yN7+CFYpg4N7j0BwJSDg8/btW8e3NrVMTzc2wqf1v+wv7BGi4H7Sxem4Ex5ydzgsY/fFB/U2d5Td5beefyJMxqSKun9vELWTaTt5sJ2sop3c2TW1XR5vl4H7L3Jw30MO7nCw0h+mV2z/+CAtbSg8fFAqHY2PRxAEDh9cOeHgysBdRAB3/j5YmUpwJ1mHBHxXqTlS+dkPjfm9dMAdnd8LF7TU3PsfN29uaJqKuBEh6hPBU/M85wkbXpuT+SgTnlR7xxw8O1nTkTZwx9wHZxcluP/pT6Tg/r32jW6rDHWNO21w1+yT0Qnu5oy3m1vbWRJstzFqN4+zc9Q+D4PtnLZbVNttFNztOHC3MnBfwHJwFxgC7osZBXea5k4H3B1ZAe6q5m5JcFc1d9ODu1AHuJtgbioLatytqlWGsdGplgy5W6+5q7M7Y/Ju9s281G5BbTdpvN0UBe420CejM95OPStVatisVD3i7br6ZPQrcDctuFPMTdXdKkNRLKPtdkAB7rJ5lbI2D7l1woN3kI1OPQm7Do5XXPpI21xb7WRt0ECQ13kv317f5Q+WI/C/jo6BoKCzAsFJrMb9sL39Qbm5q4AdhlyHsD4ZJbi7uZ3l8/vE4pG4uDdFRTX1E2UfyhLHEiWXJCi4n3F3PenqfNzZ6Rhq7rJuGU1z36PF3H8mmPuPquauK+quLu9Ef1f9SyqC1R5sJ6f2f1M5u5q2y8B951foxFQiuO/DwP2QPewuHNy9L3iHDYbNdXTAsboZGXklIOCyv//10NC3xcWVnyoTs27D+c5HK2VOOZGBu2I1EsyduO0in+hLVe9ONktA1uFODu5wksIVAL47FJa+/lJVteblmsArgfC8BD0Cfjeff5YvPCeEBRk9HD3X3l5ZNf4wPR2eY49QSPzFC7zpSAHuP8vBHe+TUYA7zXi7OcF9l3ZwJ5+YqqVPxth4u61oO0ftrI20MzgTlaN21lL7PKyRYYO2c+DOgTsH7uYEd5PXuFsruPsZBu76zU31MO3cVDrgbn1zU62yVcako1OtKORuOXM3DbsPzitnt4C2M1YmozvezsS4VJP0yfgb0CcTw2ifjGXj7WEmibfT7pNhFtwPEsEdNXc+7bmp1K0yFCF3R73BXWGdKq0y8tGpsK/giESm3ESw/yXdSQq4EhB8NXjr+NasgsftHXPD0dGKVpmjjo4Kc1fBODs7hbbD+xyXg3s3n3/R1/dGRMR0U1Ne0bOmlumUeylEcHc54YKaO3zAMSdc3h2OOKiY+151c5fNUN2pNHfNehll1F2z1Z0MWdXxnZratWk7sUOGIs9Odr+uct9P6JPRBPdFBxbh4O5y0sWjy8O31xd2actMy+vCwqtBQb2+vhd9fC75+d1ZuhQ/oHBpgvNILeH+Vwzc8V+8UCxF+U+A1Da19Slfmeo//qGcJaAd3NHhvYFdcD1ZsfaPsg9lzS0zq56ukvSjKwSeHSwS3hkePhs2bDCs9H0p0tkJ282oqPNeXmcU4I6PFsBm+f6KARMO7j/Kwf0HLeD+va5NW6uMZo27VnCXt8roAHfKian69cnoE29nRtttrEbGOql9nrTHcNRuug4Zqw62z3Nt58CdA3eWgbs7m8H9d13gfoBF4O5jLnCnMzd1XoA7O+emsr7GnaWtMhYJuVuyWIal5k7O7oNW4OzLGHjultV2fctkTBFvZ25cqm31ydCNtzM7K5VOvF33uFSerj4Z0ompBoM7Zu66wV17jTuhzYNmyN1Rh7arg7uyVWa3cmQlxp3wSgz2DLyigBNhbclLBEGKK95uHd+a9iCtba4tp/AJ/M1wdPRFH58uDw885I62v9jbHyIAGU7thx0ccG2H9znu7HxSAe4+PvAZtn/eHps+UlzxpuRdid8lP2GPkHeG53oKA/cTzrDBGzi+o+Z+GDN3vM99n4a5YzhBXi+jPepOwu50wFX7AE1Nbdekdj2QXUPbtYL774tg5+AJd343X9IvKf9QvnrD8/GtWy/7+5/z9OwRCHp9fUfj47d82gKHD67PcIrBuUDscMeW6F7ZL16oLkiSGy7CT4awJapq7o66f/AjB3eVX7Owk/3I5yScy3D5Ki5/8zw//+3GjSv/WCnqFcFTczvtBs/R7ZQbr4vnBRePIelce3vJlndN001PsrNhXZ3h8U6ogvtvCxb8QgR3XRNTDQF3XSF3s4E7RZ+MftpOCe7m1nZDwZ2jdqaofS9H7ealdi7YbtkaGbNqO4HamdV2DtznI7h/bRFwd2M7uNOvcefA3fzg7sYEuPOYAndbnZvK8hp39oxONWfInUXmft0Ac2eM3dkr78w7u1Tfnayd2k2u7YzF240el2qZPhlTgDvNcanWE2/Xs8CdFNydzAfu2mrcFa0yOkPuOpRTG7jLuVMRcj+MiyfsSVgta0teln8ovxUT8zw/v2Ouo26ybmvV+OuiopuRkX0i0VmB4LSb2wkXF4W5o+yO/akItuPUDhu820lX19Pu7t0eHhe8vW/FxjZON27Z8WmiuhpBELzDnXeG53bKzeWkC07tOK2ire6KMaoH7RYdWIR7kszcMXHBnUMWdafT6q7J7v8gY/S/63J2itJ2DW0npXaqO365HCi0He2T0QD3hfsWqoD7WT7szNxnuZVwpNavvxYSct7LC45Un1j8IC1tuqkJ/j46bRhOSTgjVMF9vxLcCeauNcOkaJ6hb+6ydajRa8RTAXc4K+FMh4tnVsHjj5s3479jIepDwR2eICwGWBI4uIcPhSMdHfGZo00t04+zshSjBRTgvkcO7jsxcP+PLnBXsXXirzfoqBEyPbhrL3DX3SdDFm83uEzG3NTOMm3n2mNsrKjdJqmdC7Zbitp/tESwXZu2c+DOgbvx4P6rlYA7Y3NT2QzuDnqBu6/B4H7cesDdQnNTrQTcWVPjbvlWGdONTrVwyJ1xc0+ynLlTyfugxYSdOWe3fW1n97hUE/bJRDHXJ8NEvN3LuHi7kDreTrNPRleBu4uYaXAXqIP7Qh7J3FSarTIqIXcSc/9Jm3KSgjvOnfJWGfUSbTg00WnDza0zHysqnufnfygvn2tv/7x9+7O8vNF4WP0B5728ujw8Trm6Hnd2PubkdNTR8QgWaT9CCLafwILtJ11dYTtFAPfBsLBPW7a0zbYhCJL+MF2RcFeC+0kCuGNjVNXK3BUzVJVRd23s/h9d7E5H3v9OO9iuqe2KAhltzq6FDWTG8DMh3q4L3AVnBYEDgRvfbZxpbt72eduboqIrgYGXJJIbkZHNM82N040fN29es/ElnNRwXijBXagEd5VlKb9jItwoqfy4SGnusm6Zn6nMXWVyLwruism9KLgLf4ezCU43OEPhmgDfaPKLn9c3TtVM1Kx5sSZoIAhWiNtpdD3AquB380V9ophbMdUT1WtLXsLzGomLQ8Hdw0Md3L/9lgLctcbb/0ujUkifVhmSGnca4L6TEXA3Pt5umLabgtotqO2mD7ZzRe3zndrN0yEzz4Lt861GhkLbOXC3CXB3Mhjcd1kruNM0dz5zrTJCGjXuHLhrA3eJYeCu39xUdoG76eemeplrbiqLWmViDG6VsXDIPciyIXcWmDvz7K4D3xkkeMovsdRy1M6Uthtc3W7QrFRLjEu1oj4ZK4q3GzIuldgnQyxwNy+4719IMTeVVqsMacidzNwd/0PYfiIBdycc3NVbZeChoiF378NYyhgdnQqHPip1eN2mV+XbPqwve93QNLXh7QYEQSaqq+8sXYrXlZzh8U4SzF2x4dqOI/tpNzd445SbGw7u5728rgYFPcnJ2VbzuX2uPWEsQdwvVoA7XuOOmzuO74omd/tDaMgdNXdMv2RRdyK776bF7sobXAp2/4duajdA28kD7IqNAiEU8XYMYknBHXaX4Kwg9Hoo3tW+PP9hx1zHg7S0WzExr9evL35THHEjoq19dlPle5EM3E+g4O51CG4xMHDfh69M9Xsl7IZI/ZZH/p6waL9RM3fHn0l+60JlERJLjTBw5+9bhK09ON3gbIXrTHbhk8rxysbpRngiGyreZj3OEvWK4Nl5dHnwz/J9LvrEDMds/rh5x5cdTS3Tr9atG46O7hWJFOB+YPHifarg/pMC3LVPTNWq7ZTmbmpwN6BPxoB4O7W2H7SIthsE7vON2udFUTtH7WahdosH2zltZ1DbOXDnwJ0Ddw7cKc1dbLq5qQyDu7vh4K5q7qYFd/PXuF+0XI07K1plWBRyn/fmbip2p4XvDG2mefAGUbtJtN0a4u022idjvnj7eSbj7Yz1yZCCu6LAXQbujiTgflgT3O0MAXftNe5UIXed5q7lNb8S3LEGbXmrjGJ0KjxsRcgddhHsYTi+sPgjU24sy77b1j674vGKpXeXrnu1rr5p6mF6+iU/vx6h8Iy7+0lX1xPOzvJBp07K0nZM2OHPU25usMF7dvP55728BoKCZpqbM1Y/qm+cSr6XLO4jAXe8yR0doKoAd6yzBs+5o33uCnbH0u5oyQwx8I6zO6HbnXyeqia7y+VdBd9VN2WHDB1tVwu2qxXF0Nl2qsTbScD9oB3sH9hp/G5+wJWAbZ+3lW39EJlyM6vg8XRj45Ps7Na22bQHaUtuL4E3luc/hMNKAe6KkPt3BG3H72gIqxrrR4L3dNutWixDDLn/pPaDH1mfjJP6FAH4bPgPe+C8gwcGly8EQTa93/Rlx447SUmTtbVo9fz1MN9eX+8L3qJeUcSNCPibP1aunGtvr5usa2ufu5ec3C8WdxPBfeHCPd999+u33+765pudmNf8h3Ji6vc6wZ1g7qStMsyCO50CdwPi7Qxru+moXX9tZ3+HDFfUbtmidgap/TeO2m0o2G6T2s6BOwfu1gLuezhwZw7cjzoxW+NuILifZCm429DcVFPVuM+XVhk2Fctw5m4pgjf947RqbbdsvN3CfTLRBvbJGDcu1dB4u9Sc8XaKPhkjJqYaCO4H1MD9r2TgTtIqI3+hqwLuFCF3GuaufJ1PBe6EkLusyf0E7DHY23CIYUlHpw4jCJL5KFM6KIWtZqKmeqL6fkpKL1bmLjN3Fxe8sf04RuUnXVzwVPtpTNtPE8D9alAQfLaW1pkPZWWZjzNl4N6lBHec2lFtxxQfj82jVTWHleyOsxxOZThoacr7t7+pj1RVY3diyQyFvJNv/1RD1j+pIqtS29G7eY0JqCqSTrap/+suHeAOOw32oW+vb8ajjJnm5pXrnmSteVxZNf6+tHTLpy2rnq6qnaxtbp2BizCcesoOd69Di+XgvlAO7oSbI+xmh4+uDbglwe470EUOaxsHekLIHV2i8ib3n8nXoebYXvkPe2TgLsbAPaovv/g5rJDRhIQ+kWg4OhreTr2fGnw1OPBKYPhQOF5GtHHz28w1j9vm2lb+sRL+87K/Pwruzs6H5eC+e8ECFNwpJ6Zqi7f/jbBRh9w1a9zND+7a4u10ymQM1HaTUrv+4M7yYDvXHsNRu5nq2s3TIWNDwXZb1XYO3K0b3L9iA7i7cuCuD7h70gB3LyPB/YhOcHdkGbjTqXF3Z2JuqhWBO6tq3FnZKsP06FRWhtwNLnM3i7lbCbuzeAuzUm230nh7HBdvt2S8XaVPhljgrh+4y1/GKF72GA7u+3SAO9noVB0hd4K5f0Xxal/+zoqX68oad1mrDCHk7n0EnjjsGdiHsPPh6MPZVL7tQ91kXcSNiLDrYU3TTblFz96VlFwNCrrg7X2Wzz+DxdjlE0/lrTBYdbusT8bN7QyPh4P7lcDAJ9nZM83NW8e3xo3EifpEwh6hR5eH+2l3ZcKdAO6ouR9TFtYoquLt5aNacX+XJd9/Vx2sSuiZMZDddW4aI1JVtJ0s2K7G6LoJZJeyT+abX7+BZ0QEd3jiKLgfd4Yd6HnOM3AgMPNRZutsK4Ig26o/Ix0d9VP1HUhHwcaX0WnDcBmB0wpOBxVwF+yXL07ZylTcB6E/icGy7fBu2O3DYaz2HTf6vepN7nJw/4oa3PGf9xB+uwI+uYMc3GG9rVr/FNbY3aVLr4WE3IiIeFNUVPKuJOZWTPRw9OoXq+F5xaWPwIUOlmXbbNuWT1tgZV4JCOjy8IBVAyvi90WL9uLgjvGTzgJ3Cm3XZu50WmUMAHdtBe66+2QMircbou1moHYzgztH7bZb1M5RO8uD7fNoRKp5tZ0DdzOCuwMH7mYHdw/zgrvQQHC3owfuNM2dA3cKcOcxAe5mmZt6jnlwn4etMvM75M6IuZs06h7GUTuj1G6F2s7KeHsso+NSo5kdl2q6ePs5I+LtevfJUBa4awd3XxOBu+qASrqtMrTM/SvSF/nyV/Kq4C7r0cbdE51dibkqPC+0WEZ0HPYP7Ew4ELCEUnPvT1RXt7XPVU9UV3ys2F77+WVBwa2YmMv+/qi5CwRneDy8rh2dkop3sMvHpeJR9y4e7ywO7gEBT3JyNlS8nW1tjboZJepVgrt6q8xxlQ31d2JzjXxTQLzM37HkuyLzrje7E+X9Bx3UrkPbfyRou2obuxLQNRxFm46Qgjs8x8UHF8MTh/2ADhQ9y/ft9Q25FpIwlrDijxUb3m6YqKnZVvM5e92T+MxRuHLCeQ3nEZwO6uDOJ4A7jwzcPQ/CzYJqKH4v3ExRjk4l3nX+TJyYiq49bOHhP+lZjP2YRzawV3o+IvkGgiCTtbUjcXEjsbGPs7LwkHvGo4yphoa03AfwDQWuinCdL9nybral5Y8VK3pFojPu7rAcDtnZoeD+3Xe/LVigPjFVS4E7Edz/pmUzEbgrf9tBzwJ3fePtemm7haldT3DnqN0W2mM4amc/tXPBduvRdvgexIG7OcH9Pxy4a9tsEtwXGwLuhxgDdx9zgTudualGg7sbU+Buk3NTGaxxp9kqE2XaVhkJPXC3eMg9MIEzd2PNPYyjdgtru4GDUvUok7FYvF2vcakM9MnM83i72rhUffpkqCamkoK7A0PgvpCnu8ZdtVXmF7VWGZJiGZm5/6yd2ongvosI7oRWGWXIHZ+eipa5+52CvQoHCM6FTZXvZ5qbn+fnf6mqapltQTo7x7dte5iefi04+KKPz1mBoIvQ2H5KLd7u7g7/Cu9zwdv7SkDAeGVlbcPkTEtL1DAG7ueE/G4+7wxPYe4ouxMD8xjh43/vqkzOyzf5O6t1vuPyLmP3vTTYXaPeXUXeNTbl3e2/KKekyrVdrYpdpudynlH3GFV5V+g87q8ycN+LgfsBGbjDfvDo8vA67+V3yS98KDzlXkrrbOvLgoKPFRVw7BIyx+DCCCc1nEduGLg76gXuwgN4TSWsc3Rt8/erVsqog/tXpCMEVH+7Am7B0FUnUII7PDA48eHSl7LqXsN0w9uNG++npuLgnv88v3qiuqDkZXzmqHTZEHxbSVp5B58QOyiVnvP0hIVw1NHxoJ3dfi0TU6n6ZCi1ndrc9QN34txcYr2QMeCuFm/XmJVqrLabmdo5bZ9X1G629hjLjUVlitp/YYLauWC7uWtkLKHtHLhz4G4qcP/WxsBdQBPcLV/jblvgrl+NO8/wGndzgrvN1rizsVWGnSF3C5S5m9rcGWD3MM7ZqbSdIWo3UtutLd5uW+NSjYq3e1k03i4H99NUBe5awN2JIXDHXVId3I1qldEecleX959JtF0B7i7awH2fojwEXvVh5n4C9hjsWzigcFVBi2UaJ9eXvUY6O1c9XZX9JLupZQYXz4u+vj1CYbeHBxp1x6rbZZu7+xks3t7N58M74OD+KCNjtqWl/EN5+FC4qFfkec6Tf5bv0eUhM3e8912xnXZzRz+jO/wrr4sH78aHz3WWLzgrIG4e3eiHwzvjGXmn4zJ5R+esKthdo9sdxwNNdlcJvFPc6f5LH21X7WEnSKoK8KjwjEJWfqEE90P28GThWcMegJ0p7hfDjl3zYs1Uff29lJT7qalwjApLX8MRFOEJ9wAc3I/aY+COLVTVShn5zRF+s6Mwd/k740NW98jBXb5EnVTAXfMHPyoF7m6/4cMD4BNqTuuFy/iy7Ls19RPwyF8XFn6qrKz4WLFlx6fMNY+XrryTmHU7q+Ax/NNUQwOspT6RqIs4MRUDd3xiqqzAnTAxVQbuGvH2vxkD7mRzUw0Gd/ICd+bi7WzXdtrgzkJtt4WZqLZX1G6T1G57wXZbL203p7Zz4M6Bu1WC+3cWA/ff2Q/uDnqBu6/B4H5cP3CXmAPcTTw39azV17iHW6TGXa9WGb1Hp3IhdwND7qYzd47dGaZ202q7GcpkWB5vN2GfDN1xqRaKt4cZFW9XH5dKv0+GRoG7iyLeTgruPkaDO19/cNc+OlWHuWt5GU/ok9EAd3dCnFmI94egxTKwB1xk5t4NRxCWLlxhEjLH6hunVv6xMvR6aMXHiuLyN4+zsq4FB/eKROc8PfGoexcP5XF8g7fReDsO7j4+KLhnZr5evx5BkLDBMFGfyOu8l6BHwO+WmbvKJhd2eAfPc57wnj4XfST9Ev/L/rD5XfKDP4MGgkKuhcAb8E/wPii+d3m4n0HD8qi8H3NSYXdCt7siSE7F7vTukpV32Gra/pNGtv1XOZr/RiJG5Oz+iw5wh2eHgzs8a2GPEPZP3EhcS+vMHytW3IyKuhkZ+SgjoxPpTMt7ABcWeYf7CQpwX0Bm7oqNODFVtU9GC7gTV6CLAtx3awF3dKXBdQ++HyVm3c4pfFKx7WNnJ9LUMlNZNV6+7QOu8C2zLZ+3bx9LSLgkkfQIBKfc3NA+GWKBu3xiqu4Cdxrxdk1zZxDctU5MpR1vN17b2ULttMF9flE7C4rarbI9hqN25qidq5Fhu7ar/g4eB+4cuFOD+y/zB9zpt8rMA3A/RhPcjatxty5w754H4E6/xt2irTJWHnK3XnM3W9TdBuSdgT1gA9qub5kMNy7ViHi7tznj7Ub0yWgrcCefmMosuMtbZXSAu65WGaPNXeWFuhzcf1WA+wL3PcpWGXl/CPoi0AcdoAr7B8+5w2GC5QFnTXr+wy9VVY3TjZXjlQ1NU283bHiYkXEjMvKSn98Fb+8eofAsH42hd3t4yDY+v0cgOOfpeVEO7q2zrfDhYddl4C7sEQrOCrCPkW9Yhh3+XoHsQQNBoddDo4ajCl8XIghSO1mbej912d1lNRM18J9lH8rgP+F9xH1ieH/0c2JNNe6n3V1OuDgedbQ/bL/4INbtrhip+tsCvGEGZfedVOwuk3fNm+Z//z+VO2wybVf0tqtoO+qmC9QgSo3dSc1GE9wXHVhkd8hOMTcV9pj/Zf/cZ7kNzdOjcXEDQUFXAgPh0EzW1dXUT8B3CjgT4QSBYwoLmwTciWtS9pOYPWo3QXi2fQGu7dgqVe2T+Zk83u4k/2GPK3Fi6j60xQgfG4CDO/ajHXF0H1zMo9OGU1fdLyx93TTT1Il0vi4sfJ6f/3TVKlhsYwkJ10ND+8Tic0LhGR4Pj7fjfTJ0Ctz1jbdTgPvf9QH3/+gEd119Mnv0AXcDtZ0eix+i3NgI7qbRdq49Zl4XtbOe2tneIcOVtptA220U3Bdz4M42cP9NJ7gvMAe4M1bjPk/A3dxzU/3NMTfVgzVzUxmqcT9Pr8ada5UxMuR+hfmQuy2bO5PsHjbfnJ0etVtK27l4u8HjUnXG20XWF2/Xq0+GToE76cRU5sFdY26qdnDXHXLXNPed1K/eVV6oK16Kq4C7rFUGfRErwIdkosUySnMXn3DzOwU7Fo4FHGU4d9ZsfIEgyOft25tapkvelWz7vG22tfVBWtqVwMBeX9/zXl49QmGPvPEF1XahEP4S/ulKQMC95OTxrVs3vN0Qej1U3C/2vuCN+7iwR7Ypwuzwr4EDgRE3IvKe5TVMNTTPNMNH7aj9Al/6eX7+bEvL5o+bK7Z/3FbzeaKmBm/6jroZFTYYJh2SwkcFXw2GT8Lv5rudcnM67qTeMIMVuyvYXVHsTmR3uE2ndcP9o6q2a5TJaHI5fHUVK8V+BiBjd23m/qv6Z/jrvr8u+n2R3UEVcIdnPYcgnUjnjYiIPpHooq/vQGAg7B/Ydcty7sLZDeeLHNwPU4O7KrvvkVG7UttJ4+0/a423y/tkVCamYnN68f4ieNUNpzZcQODSB99EErLGisrfwGHNfZZbOV75Ys2aO0lJw1FR10NDL/v7w1o65+nZ5eFx0tX1mJPTYXt7RZ+MWoE7VZ8M7Xi70tx11bjj4P6DnuBOVeBuULzdEG03DtkZk3cr0Xarp3arbY/hqH1eBds5bddX2zlwJ5g7B+4cuBs/N9VqwP0oG8HdzxzgzjMnuNOZm8qOGnczt8qIjW+ViTGkVcZCIXfji2Ws2dyZY/cwm3d2E1G78dpuffF2GxuXqj3eHm76eHso/Xi7FnAPoC5w15iYKiGbmGoMuAt1grvm3FTqVhktIXcVc99JQu1O6q/SVfpkNBLuKoXd2AtIdIAqZu6wi2CnwY7FSz/gjFiy4nZ6/sO1m16VvCuJGY5BEORLVdWdJDj/Q/slkos+Pue9vM55euIbvH3B27tPJLoSGHgvObl1tnXT+02h10Ml/RLfXl/c3GGDN3wu+oh6RX6X/EKvhabcT9n8aXPZhzL45OOVlY+zsj5v346Gndevv7N06dsNG+DvJ2pqHqanXw8Lu5+aOtfRkf0kO+dJDrzPVH19Q9NUyr0U+BKCswK3027Ox53xqLvdQTs06q5a7E7O7mqBd8pNRds14u3q2r5voZq6Ec1d2S1DCu4YwWqCOzxH2NewV2G3tHfMDUdHX8RUeiAwEPZY80xz9roncHmBIwiHEgV378PyIaj7lNF1+WpU/71h1SVKzLZ/TVx7WuPtxD4Z4sTUA9iQ3mNwPsLqgtexcBWC6/aSrNv4s1j+YPnSu0tzn+XOtbWNJSbCgVZoe7eHxyk3t+POzkccHQ/Z2Wn2yfxEo0+GFNb/V99WGWPAnZE+Gf21nWaw/ZDRG7Pgbry2syfYzk5qnyftMRy1z4dgu/WOSDVG2zlw58CdfeDubjC47yUF94VsA3dPGuDuZSS4H9EJ7tYzN/W0irkHzK+5qfOuVcZ6Q+7mKpZhj7lbJOrOKnxn+BklzRNtt+p4+yWD4+0GgjuL4u16jEul2yejbWKqFnB3NA24L+TRqnHXGJ1KNj1Vbu6q7E76cp2g7cR4u7LDXQXc0SZ3vFgGHaCKmbvvMdg/qLn7n4Z97onVy8CpEZ02jCDIXHv7dGNj03RTW/vsZF3daDycRYF9YvFFX98L3t7o5uPT6+vbLxbD399esmR869aClwWh10P9LvmJ+kS+8G/YJu4T+1/2DxsMS7mfsvbl2s5O5E1R0dsNGxqbp6snqtvb54or3jY0TyPY/wpLX5dseVf8phjeHomLu5+a+rqwsOpLVUvbbE7h07j0EaSjo3K8MulOkuSS3NxPOBOHqao0zKjOU1Ww+1c/faVy3//jX6ionajtinj7Llm8XQble2TarqRQTP+Jj4Q85K4B7vB54GMXH1xsf9je6ZiT2ykU3KVD0s0fN+M/crgeGnolIAB2eE39RON0I+wouBrDOQXHEQ6odnAnu8/SWJaKdag6s1cz3v6zcngA9pMe+W9UyAvcvdGf6MC5CesK/VlO3JWklXeQzs76qfpld5dF3YyKGo5KvpcMT+FBWtq1kBBYRee9vM4KBGfc3U+6uODx9oOLFxP7ZEgK3Gn0yfyvxmYKcP/JUHA3LN6uW9tNRu0Gsjuz4M7KYDtH7Ry1s6uunenhqPMx2M4abf8nB+4cuNME92+MB3c3RsGdZ1PgbkcP3Gmau22Bu3417rz5V+PupQB3KXPgbm2tMmwIuVtFsQzB3K+Z0dxNyO7m9HdTPXjTUbtFtZ398XZ/A+LtDI5LtWi83dOIeLte41Ip+mS0Fbi7iM0L7ga2ymgvllGVd7IX6rtUy2QI8XY3WZ+MPFkiB3diyB0zd/TFHmbueKU7Wi8TfBat247qC182VFT+Zt2mV3Pt7WkP0hAEeV9a+iAtbSg8/EpAQL9E0icSoZtYfMnP72pw8FhiItLZuerpKumgNOBKgN8lP0m/BP6Et0PhmnF7ydqXa6vqvrxcu7axebrsQxn8mbH6Ue76Z/GZo9JlQ/DlIlNuwBUMLjix6SN1jZONGMG3z7XDn61ts4j8f9UT1TUNkx0dc1mPs0S9IrRb5rRskqrjEVnUndgwoyx218buOg3gJ2WZjHp7O7F7HUumo/NOMWKUlcsTi2520wD3PeTgHjMc87Gioqjszbaaz2+Kiu4kJU1UV6c/TE++l9zZicCFHc4vOBFghZODO6mwqy5F+TpUy7aTx9uJfTLfKOb0Egrc4fxC+2QCTsPpD9e9pJV3tn/e3jjduOzuMlgPQVfRobgxt9BfoXhXUgKLql8sJsbbj2Lx9gOLFu1buFCzT+ZHyj4Zam3Xau5MgPvPmuBucJ+Mwdpuemc3xNzZqu37mdB2y1A71x4zD6idC7bbhrb/YLS2c+DOgfsvNMydJeC+xwrAXcgIuB9iDNx9TArux1kI7madmxpsanC3oVYZ1o1Onb/FMoybO6vYnSmFN9MjpE3tFtd2k5bJMB5vD7BwvL3fluPtzPXJMADu3rrBfbER4K5rdCoNc9f24txFa7x9gXIwpuyFKwHcD9jJzP2w3NyP4pXuWL3MaWySag+sCljecIVJzb3f2jY729a2bXzbl6qqLzt24MMtrwQEXPb3hw3euBYSAn+JdHbmPM0JHwoPvhocOBCID0SNHYnNe5ZXXT9RtvUDgiDNLTNpuQ8SMsfg2gInGpwOsG5hHeKLDX0pEn4BViycNXDpiEq9mbTizpqNL7Z82jJVV/cgLW0kNnY0IeFdSQl8qoqPFfD5vc57eXR7uJ92dz3pitfLyKLumt6tmKeqYPedX6nL+0/qzi7TdmK8naxPRjbsFIfyQ/ao+8vj9kr3301e447bj1pSHj4WB3d4XoIeQdj1sA6kI3PNo2U5d1vaZl+tXQt7IPNxZtGboh21n+GyhiXcdYG7tt+xcCEsPCptV4+3k/TJ4AXu3ofh1gCWE5zRcBVKzBrbvOPTpy1bcp/lwtqQXJJI+iWwdKSD0pqJmrmOjlsxMTi4d/F4eHs7Pi6VtE9GrcBd0SejGW//XzODO42JqXTj7fpoO3Ww/ZCJN3ODO7Pazhpq5yLtZnV2jtqtLdhu2dJ2Nmi7ZcH9Hxy4WwDcnU0B7r+yF9w9LAzu1jw3lS64G1fjzgi4s3huKgtr3G20VYYVIXeTF8vYgLmbpNvd+jZTUzsbtd3YMhmrGZdqQ+3tBoxLpeqT0XdiqphsYipT4M4nA3ceEdy1hYspwH0XLW1XKZPREW+XvTTFKmVkIXe5udsTzB2tl5GchH0L+xyODhxQWDawyCNTbizLuVtTPzFRU9M804wgyIs1a27Fxg6GhV0LDr4WEjIoleLgnv0kO2o4Sgr/PSiFN9IfpldPVK/b9KqucbJky7vErDHp0kE4v2CFw2eGpQVfAvsFiLPyNSB7HSXAv3pkL1wK8oqfrXmxpmmmaTg6+oK3d6+v7/XQ0FeFhfAJk+8li/vEwnNCfjff/Yy72yl51B1vdVc0zBCK3TXZXRl4l7uCirP/RFCHnep9MjrBXSn+exZQg7vap0LB/ZA9PBGXky7w7MT94pwnObDnCza+LC5/M1lXVzleuXV8a1v7XHzGKFwf4Hjh4A6L2U47uGuZ2UucHKBd28nj7b/I4+2EPhmfI7CW4FSFgwjfBeBBTjU0bP+8PWwwTNQnwtqIvOGNoKtBec/y4EndT03tl0h6hMIz7u4nXFyOOjri41L34+NS6ffJ0Iu3a5q7ZqvMP+TmbjC4U/TJaIu3k5bJ0NV2s1O7HubOPm3nqJ2jdhukdlYG2y1eI2Mb2s44uP99foL7n40D97+YCtx3cuDOJLgLaIL7AVsBd4K5i801N9V//sxNZX2NO/OtMvMi5G76YhnGzJ3xSneO3RmndivVdrbE2+O4eLul4+26C9wpJ6YaCe6eeoE7ZY27mzZwJzX3XdQvyFVeflO1tyvj7YsIrzDtlOZ+SM3cXVBzPwU7HIXvkB444rC6YLVLlw4m59wrLH39ZceO+sap9va5R5mZI7GxNyMjh6Oibi9ZMtXQkP0kO340PvZWbNKdpLIPZZ1IZ0fH3JqNL+LSR7BI+2VYyT4otZ+HdaJwdvxYy3+UIktOYKNcz8I7x2eMIgjS2Dw9Ehd30ccHtsv+/mMJCXMdHbnPcgOuBPhc8PE85yk4K+B18dxOu+FRd3J236s+T1WF3XX5hDLeTgru8kqZxQcXq1fKqHW4qyHNr2R2f2ARPHIU3E+48M7wvM57BV8NTr2fWvq+tGaipnG6cUftl7UlL5dm34UrLZzg2NBUHNyPyMF9vwLclfF29ckBO+WN7arjeam0/WfZR8nj7YQ+mf2wxtA+Gd+j8HIdHhIc7oTMsbn29pdr1qx+sdrvkh96pHoEwh6h9wVvOHaFrwvzi5+/KSq65OfXIxSednc/Ie+T+V17n8y/afTJ/K8+4E4RcjcE3DUK3En7ZPbIwZ0i3m6Yth8y+2YOcGe5ttsGtZuzPYajdnZTO1cjY6bSdnrazoG79YL7zzYH7rutBNx/txVwP+rEbI07I+DOmrmpHkaBu2laZYyrcbemVhn2hNzjSMHdNMUytmLuHLuzjNoN0naDq9ttNt5+icl4e5TtxNv55PF2tT4ZsgJ3uhNTdYC7vYHgvn8hoVWGHNzJatxJQ+5azJ3610wJ2k4ab1crkyH8AqUdqbn7KMz9BLyUwutl8LA5LAlYcnBqwFUlIXNs9YYXtQ2TdY1TEzU1D9PT7yQl3U9J+bJjR96zvJT7KVmPsxqnG5tapletfxqfMQoXLjgTYf3DmoTPAy9IYGHAAsAPOkHbT2EHUXbg8Fp5FG2j+zPXPKqZqPlQXn4tOPiyv/9AUNDNqCgEQTa92xRyLUTcJ/bt9fW+4C3oEXh0e/DO8NxOoeyuSLs7HHagxe4U8r7zKyVsaIC7YtipbGjq78qhqbirUfTJaAX331Fwdzji4Hzc2f20Ozw1UZ8oDC7qd5IKXhbAroZtfdlrOBZwYfTBwN0NB3cfDNyFJOCunIzqoj3YTq7tPxHvHFXi7XifDPYDHjg1ZH0yomNwksK1QrpsCJYK3rwfNxLne9GX382HAwSHyeu8V8CVgNxnubCKnuXmwmHtEQjwAne0TwYfl6pXn4w+2k4ecmcc3Gn0yexVi7dTl8kYSe329nQ3toE7Q9pufdRuxqJ2Njs7R+1WR+2ctjOr7Ry4z1Nw/5pZcHe1ALh/Zxpwp98qYwPgzs1NZcPcVKFFatyZbZUx1ejUflrgbhMhd4MHqNqEudu6vOvp7GFG7HZSame1tlsy3q7nuFQu3q4ZbzeiT4Z2gTuT4I5nhzXBfSFPrxp3miF3ndpO3t5ONiv1gJaZQNQ599NwOOB4wdGEow9rCVYsnEpwLYpNH0EdvH4C6ez8UFb2LDcX/lz/ej1snZ3Iuk2vlq68E5V6Ey4dyq728AtemLbDMiBoO7rBF4JDCccODpbiGMHDgGMN7w+fobTyfcNUw6PMzBsREUPh4bdiYsa3bq34WCEdkvpd9lOYu+c5T2GPkH+W79GFybs88K7sdpf3qpOy+ze7vtEhH7vkE1PlUK7oXpeZO0FMiV9Fa7ydFNyxsLzdQRTc8bmp/G6+z0WfwIHAxLFEBEGerlr1ODMT3sgvfg5XezjT4RjB8YLVjoK71yG4xSCC+wI1cCfE22lpu0aZjEa8XaVPBk5AOLhw0LfXft7wdsNMU1NV3Zf0h+lwjOC4uJ5yhT+9znuFXg/t6ETqm6bgiQwEBp4VCE5hBe7G98mwDtwZibdTajsDyG4EuxsG7tal7ayidi7SbkvUzgXbWVEjw25tt1Zw/xMH7oyB+y7Tgfu3bAR309e4MwXuXkaC+5F5C+5mm5tq+zXujLfKWG3I3Xzmnmg75m4UuyfNR2c3hbaHMKPtJqlut8F4e7Ttxdt7aMTb6fXJaC9wpzMxVRXcj+gJ7gc0wZ3e3NTd9MCdnrmrvepWaW//jRhvV5TJEEvbsad2SPFKkrJb5oSrsltGae6weGBNwvqHszUi+UZ8xmh6/sOi8jdzCPJ5+/bqierNOz5lr3uydOWd6LRhuIjByQvvjJa2y+Lt5xTxdryaD18GcKBRcBefwDPa2LE4DK8/4WjC+8AHwlVlXemrmomaP1asGI2Pv52Y+L60dP3r9VE3o4KvBvtf9ve75CfpR6dxivvFRH/HI9Wup2TsjpbMHLRbdEA5T1Uru2tCyC4ScFeG3HFzV+jpXuUnp9L2X9TbaeCjZO00B5VzU3GhDhwIzH6SjXR23l6y5FZMzKOMDARBknPuwWUETi44L2DB4+C+WAbu+wgd7spKGSW46463q9xOfk0abyeOS8X7ZPxOwuPB29sbmqYeLl+OD7mFw4QX7sNxkVySJI4lNrVMZ6x+NFVXd9nfv5vPP+nqqtIngwmdzj4ZHMrJtf3//B/1TYu5K2rc9QN3woRdbQXu5H0yzGm7Ac5+GNuYZXfzgLtFtN1WqX031x7DUbstBtstW9puIm3nwJ2d4K5HjTsH7lYJ7p6HdJn7YSND7o561biLjJ2bShfcWTM31fZq3Om0yvjYaqsMC0PuBhXLsMPc2cDu1izvSZagdhNou6Wr260g3i6xlXg7KbgLDB+XaliBu7nAXWAouOsKueswd81X3YTXz7KXwTJwl8fbcW0nvDhUPEH1F5nYvzpg5g47Ci91gd3rjs1QxfrcZd0ysMBg3cL5AleJyJSbiVm3M9c8Kq5424l0Tjc1VVaN5xY9S1l1Ly59JDx5CC4CaMI9Wp5wl8oS7nz5QYc1AP8JX8INB3dfWSkK7HNs9uYJ+Cf4unASRSTfyF73pHmm+Xl+/sP09PHKyrxnefGj8ZE3IyNuRETdjEoYS1h2d9nqF6vTHqRlPMpY/nB56PVQySWJz0UfYY+Q18VzPenqdMyJGHUnNsyQsDhR3hXavot83qmMywmbLDv6m0aZjAJp1MD9NzRuiiflFeCOz02FB49Hwtvn2j9WVAxJpVeDgm5ERn6pqkIQBA4E7CI4QeCoOSrAXYCD+16Voam0wJ2wOZFqO3m8HRaSvE/mFBxl6dLBhqmGZ7m5A4GBd5cta51tlQ5JJf0SdFzqQFDW46ySdyWNzdPw+O+lpPSJRF0eHidcXNA+GTs70j6ZH/Xtk8GE/X8Im6a5a4bc9QJ3ZbxdF7iTjkvVViajQ9spgu1abJ3mZoy56wvuZtN2i09GtXlqnz/tMTZM7T+zg9otXiNjWW3/J+XGgbtNgLsT+8H9N53gvoABcN9LCu4LzQnuQkbA/ZBZwd3XWHC3yrmpgSYFd/PXuFtLq4zJR6fqb+5X2GPuwRY1d9NF3Q1ld1V5T7JBZDcBtVtC201ZJhNIS9vnTbw9wkTxdub7ZHgUfTIkBe4nNSemkoO7ok/GROCOxor1rXHXZe4uJPF2jT6Z3Wp9MvDI4YnI0uvE56j6IlNp7mohdz9lyB0OHxxitFgGB3e0WOZ6zPJbaXkPKqs+1UzUbHi74WN5+at162aam9s75lZveCFvlbkO7wxngQgLuXvJO9yJv9wABxq+EFYpcwyOjizh7nsUjin8K3xR+HC4Tsalj6wo+ANBkDdFRdONjXnP8zIeZaz8Y2Xp+1L4y7b22amGBrzfvKF5Ct6hZbZl2d1liWOJETciRH0i/lm+2yk30qg7Cbv/ql1Z1NpgFFyuAVEKPSJFfMWnIn4GJbgfWGx/yJ44NzV6OBr27ceKioHAwF5f34GgIHi76ktVfMYonM5wvsAOhJ1mj4E7HH0c3PEf/8hr3NU73NXBXcv2tWqZjCLejlUYob9OoeiTgZMOTlW4JsC3g8bm6ZcFBcNRUXeXLm1umUkYSwgfCo+9FQurZbqpCQ5T62zr2w0bbkZFXfTxOcPjHXd2xvtk9uF9MvJ4O/0+GaK2/w/ZphPcv6cH7kb1yVDG22lqOwW1HzZuM8zcTQLubNN2S1D7/GmP4aidddRu88F2i9TIGKTtHLhz4E4H3H8xN7i70wN3nnWAO4tr3I9xc1NZVONuVa0y8y7kzt4ydzOauyXZnX34nsSAs4cZvT8ZK203r7abokwmQA9t1zPeHjPv4u36jEs1pE9GpcBd28RUMaHAXXTM0YzgblCNOwHc1diddHKSRp+MFnCXMbq8qoUI7srXnGTgfpzYKqNIuMOqg7MAzveYtFvZ6560tc9ter8p41FG3rM8dIbq8uX3U1Of5+XNtLS0tc9W108sz3sQnTYcgpa5o90ysAKxnPs57Acw+BpAjzgcWTiOzlirDP6SEg4lHHRYRbCq4aSOSL6RkDmWnv+woORlfdNU22zbji87mlrQiPT2ms9F5W/yi5+vWPtH+bYPRWVvKj9VPlm58mNFxY7PO+Bfp5uaUu+nSvolgrMCt9Nu+DxV9ai7WsOMthmnpA3sv2rVI+Jn0BaW1wR3eDwKcHc+4ex+xt37gnfMrZiOTuRDefmgVNonFg+GhcFzn21pKSx9DTsWdiOcBSi4ex+GA4p1H+3TMjeVcmiqVm2Xl8loxNuJfTLYUTsD1wQ43DmFT+ARwnp4mJ7e3jGX/jB9+YPlzTPNFds/LllxO3PN463jW+EdbkZGnvfyOu3mdszJ6ZC9Pd4nI4u3q/bJ/Iu0T4a2tlObu05wl2k7o+BOEW+nq+0MObtudjfY3A0Dd8tpu/monYu0s76onS3UbtMdMlxp+z+tHtwXceCuA9y/si5wdzMS3PdYGNwFNMHdauammgXcuRr3+dAq0yuKMvnoVFOG3NlXLMMKczdJ1J0JedfAd1MTPOmXM+LxhzJP7UYE29ml7QaUybAh3k4T3OnE23tNFm83w7hU4wrcLQzudGvc6Zo7YTMU3A/Cq0H89Z46uKu+5sReQ6LvqQR3LOEur5TpgQUAiwqWN5zj8RmjJVvezSFI4evCJbeXJIwlZD7ORDo77yUnj8TG3oqJub1kyYs1axAEaWqZ3lbzubjibULmmHTpIJyMCnb3RNm9B1sJXdjhPo0d2ZOKrwtrCc4C+KhlOXfXlrzcVj0On7AT6dzxZcd0Y+PGze9Wrv1jWfbdmOW3wpeh9TVw7sO5DJcU+Fro+9d8hndrm2trmmlqaJ5eemepb68vv5vvftodN3fHI7Ko++IDi3FpU0bddy8gRXMqc1fd1DLyFO00KuC+RwnudofQuanOx53hAXtf8E68nThRU9Mx1/GlqmokLu7pqlWb3m/a+HZjW/scXJdgN8J+g0VOAHfVuanEGne65r5TVdt3yYqMsCX3HSHeLuuT8T0GJ6O8Bag/KnW4YvvHybq65/n5cNQKXhZ0diKrN7yA4wWHKS59BI5mR8fcoFR6ViDAC9xlfTLffYeCu3xc6k/EeLu8T4Yi3v4/lOD+PyYGd+o+GdJ4O31tNwO1U7G7AeBuiXj7fga13XqpnYu0c9RuLcF289fIWJu20wb3hfMZ3P9ND9x/5MCdpeDuwTi4/24z4G7Lc1MDbAncLdoqYy2jUw0NubOwWEb/Mnfmzd3UUXeG2F0XwevF8To+AzOPM9TmtN3kZTIMz0plcbw90jTxdqkWbQ8zIt5Ot09Gd4E75cTU42QF7pYDd3oh92+0ajs5uOvX4a6m7YqQuzq445Uyp+GgwIGDYw0rBxYzXCuSV91DEKS9Yy73WW7MrRi8Qj3lfkon0nkvJeVmZORgWNj1sLCh8PCxhIRX69bBOxeXv2lunWlumVme9yA+YxQuGnA2wZKGz0kMvOPrgY/5PixX+FqZax61zrZO1tU1TDfkPcvLepyV8ySn6kvVm+Ji+LQ5hU/iM0ely9DprHDe4aNZ8d4buMo1tkw3TTcNR0ffiomZa2vb/HFz4ECg13kv3NxdT8omqVJE3Ym1MLQC72RmQ8EwFOC+6MAiIrh7nvdMGE1AOjth722qfI+X6mQ/yS5+U1xZ9QmeOw7ucOBgJcMhhhsN1bmpKq0y3yh/f4Jo7iobkdpVtJ0s3g6LB+2TER2HV+BoC1DYebjEwXerpSvvFJW9gYc9194Oy2Ptplepufdj00ei04ZLK9/XT9U/XbWqXyzuIvbJLFxI3ieD04aWcak04+2aIXcGwZ2kwF2feLtWbdcMtpue2g0wd5bE2y0VbJ+n1G6LkXaO2udPsN1atN0c4P5/zQ3uPxgI7nYcuOsA92/mC7jvtxVwP2IWcLfmuanWWOM+H1tlWB5yN7JYxirM3YRRdxPIu54QbxpYN4mza6d2a9F2C85K5eLtBsfbGe6T0WNiqk5wV2i7QeBOMHeGwP0X+uCuMjTVjQjue7FXrbKQO/E15GJSbVeAu7JSRj40Fe2T6YbDCisEFrN06WDG6kdt7XPNM83ZT7Ijb0SGXAuBTTooXXJ7Sftc++OsrKHw8KvBwVcCA68EBAwEBQ2GhY0lJDzLy6uun9jwdkNL6wzS0VFc/mbF2j+SVtyBKxuc0XBawYJXvjCI6oNzLWb5rfaOOfh/9UQ1Phw1ejg6cSwRvi6CII8zM+FzwhupuffDlw3BiQ8nESxgWHjoS6/gs/B50vMfoo0lUVGDUik8MHjMeJk7au5n+bwzPLdTynoZRdQdZXd51N0odlejdgWi0Eu4o+B+EAV3eHjwOIU9wqCBoNrJ2q3V4+s2vYLn1TjduPnjZngjNn0EXj5h4H4Kljq8sMfA/YAc3FVq3BUhd3Vzl8u7xv0gUdsJZTLu6O9SEOPt8j6Z03Cyw2qBYwqrZcmK2zmFTzfv+AQ7v7MTgTfWl73eUPEWwf73eds2WCE9QuEpLN5+yM7u90WLNMel/ofGuFT62q4t5G4MuKtPTCX0yajE2zFwV4m309N2zWA7lZI7OOjeDDZ3o8GdhdpuS9TOtccw7Ozzh9q5GhkWazsH7hy4U4I7/bmpbr8yAe67LQnuDNa4ezIyN/WwWeemiubJ3FTT1LgbFXI/x2CrjDeNVhlv/VplLD061SZC7jZr7kyzu4nl3QIbw/uH2WA7u7XdNLNSuXg7zXi7CftkyArcLQ/uCw0Bd7ohd/KX3ITMirxVZg8h5E7Iuatuiwgb/jeqHe6KAnc03g6HDxYGrOfw5KGqui8IgrTOtuY/zw8fCg8cCPS/7B9wJSD4WnDcSFzTdNOrwsKh8PCBwMBLfn79Ekm/WHxJIrns738tJGQ0Pv5JNmrl61+vr56onmpoaJ9r37j5XcmWdzUNE8ty7salj2QVPM4rfp6W92Bp9t31Za9fFhS0d8xJB6WSfgl8LfiKSXeSOpHO5/n5YwkJY4mJH8rLm1tmlqy4DdcTOGtgrcLSwuf0wPqECxQ8YPgk8J4P09PhS8fcioFHK+oTeV/wFvYIPbo86Ebd9WJ3zVS7mqbQAfffMXA/jII7PEJ+N98XTvGbkXnP8rZ93lY7WdvQPFVU/iY55x5cwOHsVoK7zxE7bG4qLNSFhBr3BfLl9w2Jue+iuAFU13bt8XZXLN4Oex6uafDtBo4LHMT29rkNbzds/7wd1gYcuDdFRe83bXqxejUclCsBAec8Pc+4u6PxdgeHA4sX79dzXKq+ZTJ0Qu6Gg7tqgbuyT0Z7vF2tTEaHtlNQu1zSj9DY9JV3miF3xsHdMtpuXmqfJ+0xjDs7R+1csH1eaTsK7v+lA9y/Zwe4/5MDdw7cSeamGgLu+6wE3Nk3N1XMzU3lWmXmfcid7WXu2s3dqtg9lHN2MwbbDdF2w6rbTTorle3x9j4riLeHGhhvVwd38j4Z/SamOhMK3C0B7ipzU7/Vs8b9G50d7pqtMm7yl8HKJne5uWt/RaoG7rBz0IGlaJ8M2qIORw3WACzmmOW38jc8L9/2saMTyXmaEzYY5n/ZX9IvEfeLJZckgVcCo4ajEAT5smPHzcjIKwEB/WJxr6/vRR8fdPP17RWJLkkkV4OCbsXGPs7Kerthw7bq8dxnuVVfqmZbW8s+lDXNNFVs+/hxMxrZ3vZ522xLy/aazzNNTXnP8oIGgnx7fQMHAmNvxcL7wzuMxscPSqWwjSUk4FnphMwxONlhkcMK5GEvzOBhwzVhWfZd+Nenq1Y9y8trmGpIGE0Iux4WfDUYHjN8Tq/zXii7d6uwOx51X3RgEbHVXaXYnaLbfZf2YLvOhPtuEnCHB+N4zNHlpAuviwePNuByQMytmJV/rEQ6O9+VlFTXT8AThGspDu5wXsCaV4C72txUlZC7ctXtIr/RI1I7ubbvlf0KhSzejg65ldXuR/dHJN/IK37eNtvWiXRmPMpIe5BW+r705Zo1t5csGY6OhgM3EBjYJxKh2s7jnXBxIYm3f/PNTkyC9BiXSlvb6YP7P3SBO+nEVB19MhTxdkpt1+bsRwzd6LO7+cDdjNpuTLCdPdTORdptldrZ1iHD1chYUNs5cDcvuGs3d7OCu7MJwN2V7eC+0JzgLlQHdxbXuB/j5qZyrTLMgbsVhtzNVixj8+ZuGnYPnefOnqRlVzMXbDebtrNgVioXb2cm3q5vnwzdAnfLgrsHAdx56uC+wGhw/5puyB0vlpGZ+0LiS1bNF6hCZecMWuCO9cng41Jht8ORwsu4o1KH8Q4T2PKe5UkHpX6X/ES9Il+U0n1FfSL/y/7hQ+GdSCe820gcnFcBfSLRRR+f815esJ3z9MTfgL+Bv7/s7z8UHv44K+tlQcGboqLN2z8WvCwoflOMdHbWTtbiI1jXvlyL/mfD5FxbW8m7ksSxxMzHmejn7+y8u2zZtZAQ+BKwXQ0Ovpec3D7XDn+fsuoeXILwXng4HeDsjki+sXTlnfzi5/CoPpSVFb4uTLmfAp88diQ2ejg68mZk6PVQ+CzwFDzPeXp0e7idRhtm0Kj7YbpRd3UB0gvciTNXcXDfowLuiw8uRsH9qCM8Kvcz7sIeobhfHHEjYuO7jW+Lix8uX/6xomLLjk/wNOH5wikGpwYcOziIsJIJc1OVrTIqIXdXjQojkls8jfG8sp/oYD/OEcji7Y4+R+DrwhkKJztc0OIzRusaJ2fb2mCHx43ERd2MihuNg7fhENyKiYFDdkkigZXQIxR28XgnXV2POTnh7e2yePuCBb/QG5f6N1VwVyP1/1bdKFplSMH979rAHXs82sCdtMCdOt6uWSajru2kwXYjnN0wdtdp7nTA3URlMuYMtnPUbpGBqBy1cx0yVlbazqi2c+BuHLjbsx/cd1oW3L/VE9wXMADue9kB7lYzN9XJpuamWnGNO1OtMl7W0irDvpC70cUytm/uFom6sxzfTfh8l5gg2K61RoYRbWe0TMZG4+0iI+LtPtq13ZuJeLtx41INKXCnAHcni4L7d8aBu9LZCb9a+jVFk7uauSu7ZWSvadVfu+KvVBXgLou3H0Hj7ZITsJPxbhBYsdFpw6s3PH+9fv3n7dvrJuvCh8Il/RKfiz7eF7y9znvBn/A2/E3o9dA1L9YgnZ33U1MHAgN7RaIL3t7nPD17hMKzAgG+9cAmFMrkXSy+EhBwIyLiZUHBh7KyZ3l5rwoLN25+hyBIw1TDXEfHi9Wr4e301Q9rGiba2me313yerK29u2wZfPJ+sRi2PuzPq0FBT3Nytn3e1t4xB++fsupeQubo2pKXO2q/1DZMVlaNl239sK16HB7Y5o+b8YA8+r+ODjRKP74N/lx6d2nItRD4XMJzQt4ZnstJeav7IfvFB5Xmrq3VXdPctUrMLi3xdjm44yKrCe7Ox53dTrvBHhT1iWJHYmHnwE4ejo6+k5RUP1Wfve4JXHzgvINzBJY9LG9YzERwx373gjA6lcTcVX7So/UnOkRt5++HxQOnCZxBsGbgfITzGi5EcRmjLTMtsFfzn+dLh6RBA0HBV4MjbkSsfrF6urHxZlTUZX9/hbafcnU97uR0xMHhoGa8/euvf6Iel0oZb/9vsk1byN0wcNc6MZW6T0ZLvF0PbWeO2vUyd0PA3Szx9vlF7Uy3x8zDSDuzM1FZS+1csN2SNTJMa/s8B/d/WTm4/2wMuOs5N5URcP9ND3B3pwfuPLODu8C6wJ2bm2oVNe621CrTSwruthZyt0iZO2vM3eLsbll/N8dTMxG125S2X2FW27l4u8HjUk1S4E4H3L2NBPf9tMFdr7mpBHCnyrtoN3e33YQ+dxV2X0h4EasAdyzefogYb8e7QWDtJWSOIgjS3Doz3dhY9aUqejhacgnVdq/zXp7nPPHN+4K3qFcUNBC09tXa0velb4uLrwYH94pE5728cG3v5vO7PDwUG/znWT6/RyCAj77g7d0nEl3y87sSGDgklT5ZufJ5Xt6DtLThqCjYHmVktMy01E3WvVq3Dv5+KDy8XyKBD8Hz8rLUvK/vQFDQw+XLW1pnVjxe0TjdWN809b60dO3LtZmPMlc9XbXu1brK8crppqYNFW9zi55lrnmcsfrRynV/bK0e70Q64WvBEyx5VwKPPPR6KHxG3hme60lX8kmqqlF3lXoZanPfRa7tmgXu6uB+yN7xCAbup9xgr4n7xPAckY6OkdjYKwEBg2Fh8ODhicPlHc5KOFNg/cNBhPUsm5sq2K9olVELuVOO7SUrLJL/8gRhVuoBWDb4rFRYMHAlkS4bWrfp1au1a9tm26RDaPO+qE/kd8kPdmzBy4LOTnSAbZ9YDMcdlsEpN7fjzs54mcyBRYv2kcbbaY9L1antmuau2SqjPjeVOXBXj7fT1na9qd3RUbYZzO50zN0U4G4D2m5iaufaY1gVaeeone3BdisvbbcEuP+VA3d9a9w5cLfE3FQ9wP13FoG7N1vAnatxpwB3VrbK0A+591ptyN2w6ak2Y+4mGaOqYe4WZnfTKbwFHv8Stms7O6rb9dB2Lt6uqe1MjEvV2iejf4G7rompomOOKuB+xDrAXXup49eUSWSyqDtJ2l0G7p4HVOPtaJkMHDhYS3A9aWmbnWlunqqrq5uqix2J9bvk533B2/OcJxpWx1Lrwh4h/KfPRR//y/7L7i5DEOR9aelQeHgfDu64tvN4Z2Bzd1fZsL+U+Tsh+a5ofoc3+iWSgaCgayEhl/394T/Pe3oS+b4b+1j4Ehe8va8EBLxYswYPr7e0zqx/vR4eT+TNyOR7yYWvCydqal6vX7+t5nPKqvsxy2+FLR3EL0dxGaObKt83t840Nk83NE2VfSgLGgiCp4Obu7LSXbVeBo+666iX0W7u6tquC9wdjjg4HXdyPYXOTRX3i3Of5VbXT9xJSrokkVwPC5usrW1qmUnIHINzGc4dOAsU4C6vcZe3ysib3BeQLkKV7Vf15UTQdmKZjAO6Zo7DWQmnP3yXgUeC/oLCdEPq/VRJvwT/kYhvr2/ItZC6ybqGqYbhqCg4jnAQT7u7n3BxOeboeNje/iBWJqOItxsyLpWetv+3rlYZdXCXz02lBe5aCtxJ4+3qs1J1art2Xj/6/9m77/+m7X1/4L/cx9nntqctULIT29l7L7JDBiOMkISwCYVASEgge/jfOOd777ltz+kubekpq6xsCAkjIQHC3nuXFbL0+L4l2bIkS7ZsS7Jk61w9ckOaBPujgf30y683t40jwZs2dxvBnfcyGZu03VmpXfrO7vjUbq/JqKJ3yDhMjYzdtV0BdwXcOYL797yBu4cMwF0yc1P32Rhyn+1oc1MdvMbdbq0yooxOtWPIXW7FMmKZuwhRd7vKu8w2sahdYtrOBO4pYpfJOGW8vdeaeLtxn0yEDX0y1ImprOAeQAJ3Sp+MreD+oTDg/lfT4M4edX+POepu1DBjAHddnwwsBRZvR8tk4BELHC1wms9dcq11uvVGXt5EQ0P5q/Lw0+H+ff7qHrWqW+XT5ePd5Q0fcXP3O+YXfCI443LGWHU1PtR0IDj4qK9vt0rV6e3d4eXV7ump2zw8jsDm7g7bYewjunl4wNfbSRCPWzzO8biw47+E+Fnip+BH4L/2ajQDQUHDsbHXc3NbWqcamyeLHhQturuobrwObs/NefNu5Oc3t0wtXH47IecsXCXgXINTA86v5PzRza8231648HpODlovcyUrsD8Q7hFq7kd05v7xfqzS3ap6GfpG/q/69nbyxFQKuO+eAX8vCu4HXGCxcHBf9WQVXp5zJSvr7uLFG3/biPa3rHkApz+cRHA6wNEORzVpbup/8OOTFHL/0bjdiO15GXUwgL5MxjArFY+3d8Jizi++VT9R/6aycnPVq0V3FgUcD4AjBA4P+CRuJG7rG7S952x8/DE/PzTeTi2TgRVF4+2YthPx9q/4jrebCLnbAu5sE1NpfTKm4+2WaTtnZ2eQdy7mblWrDC/gLpC2WxdstzO1K+0xCrXbg9odLNjuANqOv9dKAXeSuSvg7uTg7iM1cFfmpkqixl1plZFlyN2exTLOZe4Ku0ua2u2q7dIok7FoVqoSbxeyT8ayiakHzRW4k8F9rzTA3Vy8nZnduUfddY9ydWyK98no4u26MhnYy3Bql1e9qmsYn2pC+7hXP10dMxwTcDxA3aNGqb3T2wtPrXd64aiq6dUEwnF6LkGLoJNOr+XknAwNNYA7oe2YmB92dz/k5gbbQVdXCzYXlwPUDf86/B74hfCbu3x88Kj7nYICuM3NLVOTTU2PV6y4mJp6NiFhNDn5UWkp3KOUeRfgCgDnBRyfcNzCRaO+ceLW/PkXUlLeVFUtubck/FS4/zF/VY8K7p3HEXSMKrleBkdBM/UyXOhoJz3erpuYiqEsI7jDsgceD1z5ZOWmypeLV9wdq6l5t2PHsvvLGicbsxZfhXsEZxPsQTjg4dieSZ6bqmuVIYfcf3yPaaiA/sgxOnho2k6Ot6Pt7d1w3auuHRuvrT0THf18/frih8UhJ0Lwiv+wU2GL7y5Ga/On287EwBVE04HF29EyGf2sVFhIU/F2lnGplsbbzYL7P7mB+5cs4M6xT8ZEmQxd2400/FcbqJ1j2t3qkLv14C5TbReS2pVIu9ScXcrULrUOGWeskRFY2x0X3GeIDe5/4hncLZib+lcz5i4vcP/xbzzMTTUL7uLMTd2jzE11nhp3H/HB3eZWGWtGp9oWcucI7txD7gJPTxWyWMbhzF1hdylSuyltH3QEbRdrVqoc4+2+3OPt0UzaHmVNvJ3eJ2MTuJudmLp/Fv/gvkswcGd/WG6y1f09fdQdf2BMB3c03r5vdgA6KxUvk4FDcUHJrboJNBte3zix+unqxHOJQf1Bml6NT5ePV6eXJyHoHZ7wR/iiukcd0BcQcyZm40s0cI1otYORkcf8/IiEO4bz6Md2DNwPurqiaE6N3HLsjya+QhAkju/wa+H3w9/Y5+9/KizsTHT0UFTU6fDwk6Gh+B8vpaXBTdtc9So2axhOLjiY4QiHC0L+shtIW9utBQvebN266M6imOGYkBMheJbfu8sb7ialXmYPU73MT6R6GbPsTlC7cbydHdzdDrvB8vkd80s4l4Dfi6rtb+sn6rWItnT9o5isYTidyeA+Cwd3XY27Ucjd+JhkeOb1I1Xb0ep2XZkMKd4Oxwyc/nCpXPXJk9cVFbDIj5YvL35YHDscGzEYEX82vuBOQeWbyuXrH03U18OOgB10xMPjAId4+5d6bTc9LtUibWcwd/a5qZzAXQ9ejOBO65NhiLdz1nZeqJ1j1N2EuVsA7oLF24WukVGoXRBnVyLtCrU7arBdeG0XAtw/tQTcP1PA3XZw/4uI4G7K3D12ShzcPxAb3JW5qUqNu9O2ysg+5G5psYzszF0Udlfk3VJnF4faJaLt4pTJCBRv77cU3AOkEG+3cVyq5X0yFhS4Owq4M2n7tyY3w3cyN8zQarhpxSBYVNkVjbcfgd0BxwOcswiCPCotvZyRUVH9ummyKeJ0hO9RX59uH68OL892Tw+8F6bdAz6Hr3h3oiF3v2N+EYMR8IMFpXfqJupG4uL6AgJ6yOCOVcTAz6Hl3S4uOPnt0+MdLnQEwJkWNxpT4vh+YPZsHbtjafcetbpXoznq63vMz68Pq4Mfiox8sWFD5ZvK8qpXSbnn4W7CVS4x93zu0uubKl8+W7cObvyC2wuSR5Njh2PDT4UHDQTBnULrZbCou+shUr0MzdxJUXcauxvwnezsZG3X147o+mSMwX3fx/D3uh1y8+zwVPeqQ0+Gpl5MLXpQtOX1lsmGhlWfPMlcdAWuliRwP4iBO73G3fAODKq5v8/whIv0pmGqtmOl//RjBq4VcLXMXnIV0WrvFBS8KCsrflCccz1nxeMVk42NsObTbW2vNm++mJp6PCCg08tLF2/HZqVyj7fTwN26eDu/4G48MdVsnwxbmYwJbWfk8gPY60ymNhvMXVRwF0zbrQi229IhIx1qd87qGIXaFW13YG1XwF0Bd3Pg7iZHcN8lLLirFHB3qBp3L5HBXW6tMnRzFwXc7TY9VdxiGQ4DVHk3dzGi7hawe4bi7AJQuxS03d5lMjKYlSp4vP0ox3i7mlu8nec+GRMTU4MoE1NlDu7fctuY2J2IuuvrQSjdIPSocgfsSjhck/LONzZP3po//3pOTn3jRPbV7MD+QLxiBdX2Ix7uR9zJ4I6H3H2P+oaeDJ1/a/62HW/Ha2svpqT0BwX1qNW0Shk83k5ou87ZSZSG0xgzb+lnThJJYcLf92BYieskyu5ubkewUvhOLy98sOpRX9/+wMCRuLip5uaiB0WN2HhPrRaN4++of7dx60v4pOJ1Remj0sL7hUvvLS24U5B1JSvxXCLcKbRhplsFt95QL7N3Flrpvvsj/BYT9TIM7M7oVT8waTtR4I7dNxq4ux5yhQWHmxF4PDBmOGb+zfltbdMPS0paplryi27ClRYD9y44O+Dgh4OcNjdVf6AyHZy645P+9IrSQeRjXCZjeEsEXGTg0jonf3TlhidvKithW/NsTeNk4/rNz9MWXMpafLV6rHqyoeFMNDww1bR7eBx0cdn38cfErFS2eDuOJqbHpZrQ9n/oN9Pmzjg3lUdwp8TbaeBOq26nvnWDUdvNILvl8m5pk7t14G5nbRc42C6donZpRdpFqY6RRXuMQu3yqpGRwojUzxwG3P+ggLst4O4qALhzapUxD+4catx3WVPjzj+4/yISuEttbqoT1bg7SquMg4XcxZ6e6mTmbi92z3B2Z4/mb9mdQtvtOCs1iYO2J3LUdoeKt/M2MdUqcJ9pf3DH+mRMa7uL0cb4oJ304NwwAFOnqBi4490gejx1R5u4u+BIS8g5t6DkdmXNm2fr1jU1TxbcLgg7FaY5qvHuxMpV8FGnh1FwR7W90wvffLp8NL2a4IHg7KvZCILUjte+2rz5ZGhor0bT6e1NDDs9jPW243UiezFt3z1jBu5oOHjhCEXxI7IBkWiJlhrG88J7ZsxAA+/Unpkj2GDVLm/vHrW6PzAQL5aZamnZ/m57+qV0uMGF9wvLXpRNNTdv2fZ6Q8WLzVWvphGkZbplor6+tW265GFJ8mhy6MlQuIPoJNXD7uRKd1NRdz2AMWrW+5Q7Q+2ToYI7/EUouB90hTWHdfbv848+E/3Jb5+serLqSmbm0lX34O4k5p6D8x32IJwjKLgHYOCOz01V/0JtlWExdwZqZ9J2zV78FRr4W+DvgtMZLhRwTYN/NVLnXyxYfueTit8mGxtr68dL1z/KLbyenD+at+xG81TzWHX1QHCLe2nEAACAAElEQVQw7AUi3o6WyXz44U/6ePt3lsTb/0mNt7NR+z/Y2d303FSLwZ00MdW4T4Y2LpW5TMZI23mgdtJmqbmzhdztCO7Cabu9qF2JtCvU7gDUrgTbRdB2Bdz5BfcvFXDnFHL3lPDcVAO4K3NTBa5xD3GqGne7tMoIEXIXDtxlXiwjZ3MXNOruvPKeIWdqN6Ptg3bRdivLZJR4u0DjUnktcKeAeyBHcN9nf3A3FW9noPa/sGxGD+NJUXe8WwZ7/KwDd5+fcT+Fe43hKRpVhl0cN3ekZapl29ttTVNNNWM1S+8tjRuJCzgegOa7O1BtdzuMTTs97Aafw1fg6+gAVaxVRt2jDjwemHs9F2lrW7rq3lRz81Bk5FFf3y4M3PFBqYS249n23VRqJ4QdJxvWaaNERpyWINZrpo7d8Z4ZjN0PYYH3Di+vHpWqPzDwXELCm61b129+Pu/mvJxrOaWPS6dbW5+sWoVWypTcSl94KTlvdE7+aOHq+3gffVPzZONkY8RghMHcD7roKt1J9TJ41B1vdTcUuzOqGBXMDPF2fZ8MI7jDmsM6+x3ziz8b3zzVDDc+5kzMnHkX4DbCgsOFBU43Atw/xsEdq3E3CrnTRvv+RHnq5EUZrkvVdny+7q94mQycuXDMwN8L/1plFlxZvv5RfeNE7Xhtw2TDWE1NS+vUxq2/bdvxFhbw1ebNw7GxeLwd9sg+YlbqBx/8iO1xhng7Du6Wx9sNyP5f/6XbmMydd3A3UeBu3CdDL5Mxqe3Gen6QfbMi6r7fhLlzBndr+mQE0HZLa2QcltoddxqqRJ1dVtTukMF2x9Z2Hbj/jgu4f+DM4P6FnMGdrxp35wB3Hmvc5QTuvLTKHJJmjbunBMHdWUanyjbkbl2xjA0DVG0xd1lE3a1hdznie4adnF0AbY+wStstHZTKubqd/zIZZ42395rXdp76ZDyp2k4rcDc3MdUA7rOtBne1EOC+kwTu33MFd4Otm3lUT3owj5u7PuSua5VBHwB/iIM75qfwsA0WE3YHHGmFq+83TTVtfbP1VXn5pq0vy1+WRw1F+R719e709jji4XbYzfWQqysK2K7wOXwFrXTvwEandnipulX+ff4JZ9GRnsvWPJioqxuJje3z9+/y8UHB3YS2YwL1AxZzxoGGIiCEX+i/Qsjm98aySQq8G7P7YXd3uCXdKtXxgIDR5OTx2tqa2jHY3m7bdiM//0ZeHtzyRaV3EnPPwTUKzm64tuQWXq8Zq3mxYQOK2veWBg8Eo5XumLnjY1Q/3odVumP1MsZRd0rJDNNmQDi9thMF7vAL4ddSwP2wDtyTzifVNU4U3i+MOB2RMu9Ca+t0edVLuLVwGsL5Ao+fUXDH5qYaWmUMIXcjc2d6ikTTdvR5ir66HXs/xGE4W+GaAKuUOv8irOFEQ0PV26rFdxfDpkW09wsLby9cCB8fFBdfzc4exF566cDa29E3N5BnpZqLt1s6LpVC7VRzN90qYx24M0xMZeuTMY6367Wa1tvORu0HscPY/GZC3i0NufMB7qbj7UJpu+3Bdqeh9p1KpF2hduuo3Y7BdjvWyNhD2zmC+//ZCO6/twXcP7IC3P9lJbjPFB7c2c3dicDdQwrgLs7c1D1Kjbskatytb5XpssjcVRJrleFxdKojhdyFLnOXr7mLw+5WynuGrJH9DPUui0ntktJ2aZbJKPF2e/XJcAD3AImBu+kCd1Pa/g3njfToXRdyR/9GGrjDfcRHX8Lawl6Do/2Tit8mGhquZmVdz82Fz1umWsJPh6t71Gi8HSNmneQddIHP3Q65ofUyWJ87fINPl4/fMb+ooajiB8VNzZMvN226nJ7eHxjY7ePTThqUuk/fJENo+4/6VDtO7Ti8fsNICXqA+NYkcRJp991kdsf4Eo+6d3l7H/X1PRkaOhwbezY+Hj7Cdj4p6dHy5QiCJOeNwiUCP01is0eap5ovpKTcW7IEVgPunX8f2ueOmvsRvbljle7kehlD1J0j0eHaTu2ToYE7LDusNvy9sMgpF1K2vd0GN3XxyrtbXm1B31WAIHAZh/MRzho4F+CYp8xNVf9CC7mTjtVdtGdGxJOgD6najrYP+e2H36yv+++FS2XeshuVbyrRW3J38ZzRObDNvTZ3uq3tZn4+rOdwTMzp8PD+oCC0WcjL6zBeJkPE20mzUpnj7SbHpVqg7Szmzh3cPzcGd+ymcgF3rvF2k9rOydk5sjvnkLuw4M453i6EtlsXbJcCtSvVMXw5u0LtSrBdRtqugLvcwf0bEcH9e7HAnZe5qT8LW+OulufcVJtbZeQD7kqrjKWtMhINuQdxDrkLXywjcJm7Pc19UHxzt0ne7evvlt1OIZ09g2Fn2aVGRmhtt0uZTLB12p5ogbbzHG+PtTDebmZcqpB9MiYnprqy98nMJj+8kRa4s8TbzWr7bDPmToTc8bmpH6Dgjk1M9d0LC+KG9smgaWU4obZse/V8/foz0dHnEhPbtGimO6g/yKfLB423Y/NCCaLD9Y5gd/gG705vzVFN1FAUgiDTbW0VrysmGxtPhoZ2q1Ttnp44uOPpZry3naLtGKDg1P61Hl6/MnpK/5VeOU1AJ6Gchm5345Gq7u4dnp7dPj69Gs0xP7/jAQEDwcGDERGXMzLa2qaL1j6AKy1+6sVkDW/Y8uLR8uUPioo2v9qccC4BnaHa56/uUetS/8QYVVK9DI3dzcg7SdtpfTIGcN+PLrjbYTevDi9Y5LiRuLrxuuK1D2CpW6dby56Xbdz6G1we4fSEXYmCeyAG7rRWGRXDEYtu9ODRz4zaTqpub8denkG1vWr721ebNxfcKYD9Hn46PBr+vbqcoUW0V7Ozh6KiYFVheXvU6g4vL1hzvExmj37v47NSd5JeZfmaqu2W9sn8wzS4Y+bOF7h/xQTuzO+6MAZ3crydWiZjrO3Gkn6IaTPB7lzNnVuNOydwl7W280vt/M1EVaahOk+k3Ty1y7yuna9gu0RqZETQdnmB++dSBPdZvIH7nxVw5xPclbmp9p6bqtS4K6NTHSjkLlKZeyoXcBfD3EVmdyN5txzfhYB4W26D0M4uTLBd7toucJkMT/H2eNHj7TaPS7WhT0bAianM4K6RArib03b8ET5j1IZu7rqH6MTcVLidcMuJAnd4KAW7Aw4MOElL1j18sWHD5fT02wUFTVNNCWcT/I75eXd6GxpUSCCHuSAKwa6HXPHwtbpXHTkYiSBIadnjpSvvTbe0DEZE9KjVOLgT8Xbc0Yj+boq2k5yd/uwa+yNF3qlpd7w+mx51p7I70TBzyNX1CMbuXd7e3SrVUV/f44GBQ1FRz9asmW5tXb/5ecbCy2kLLs1dcg1vcn+1eXPJw5L0S+lxI3Hhp8KD+oN8j/r6dPsQ2X9yvYwh6k6wO03e9ZvB+X6mxtup4A6rjYL7ITfPdk91jzr0ZGjO9ZyasRotoq1vnFi76Vn6wktwvcIS7h1wXqA1Sv6/EuA+Q3/0Gh20Pxs/5SGe3dC1XVfdjh4tcJHJLby+uerVVHNzxeuK6DPRAccDAvsDI05HzL02t7ll6lJ6+snQ0GN+frC2hLbDyu8xmpVqabzdxLhUM9puFHJnrXHH/jrewJ2pT4aItxtr+wG9tpMLZHSwjg1QYN3Y5J3bDFXxwV18bRe1Q4Ynalci7U4Vaeed2pVgu9yD7Qq4U8zdQcDdRQxwN2XuHjvtA+5ecgZ3ydS4u8i3xj2Uhxp3Lw7gLrVWGfuNTpVUyF1GZe7SN3c7szuTvNuG76JuoiC7EMF26Wq70NXtSrxdqD4ZiwrcbQV3Xzq4z7ALuHOMt1OpnekpgO47/2owdyZw99sH6wNrCzsLTXNnnslfdgNBkAfFxW1aJP9GfvipcHxMKDnHrVM37BOc3QkLVvWoQk+Grn++vrTs8eIVd8dqagYjI3s1mg49uBN1Ioz93TRypT0Z1nGnyU4Pw8hKUr7YYO6khplfiYYZPbv3qNXHAwMvzJnT0jpVPVYNN75+or5hsgEWZHvdu7rxurIXZaufrl75ZGXh/cLMK5kxwzFB/UHo+nSy1MvoW90p7G7Mfj9TtN0suKu6VYHHA+NG4hbcXqBFtOWVL9eVP58z7wJcl+AMhfPIHQV33dxUQ407JeSOHbc+9Oc4huc1KpK2a1Btx6vbsTKZdjjx4VLZ0DTxfN2667m5zVPNEafRcbL+ff5RQ1ErHq/YUf/ufFLS8YAAItt+0NWVeHOD8axUQ7z9z3/GVYVxXOr/mY23m9Z29pC7jeD+rfHhp3+nxU9sfTJGZTK0bDuF2k07Oxd25xBy59gqwwjubH0ytsTbZRxsd4JI+/fOFmlXqN3hgu3y0nb4x0gscP9QAXc7zk21Ddx5rnH/kY+5qbsEnJuqUuamOkaNu8O3yvTyCO52CbnbYXqqaMUydu2WETzqLjy7s+P7kGSFXQxnN0/tjqbtvJfJKPF2HsalWt4nw2Fi6iHGiamWg/seqYC7sbaTqN3cEwFayJ0K7qr/wL2Duw/LBUutwfq4U+dfLFx1f2v164mGhpWPV6ZfSg89Garp1Xi2e7odcsMT3Lgm67a9M+GPuLm7HnT1OOKh6lYFnwjOupKFIEjV9jcPli0bjoUDzg+flomCu35WKrm/m6ztBm/VkyuxcRxcaYyeu5ii7uSGGbzYvdPLq0et7g8KupCS8mrz5jYtknguMe9G3sonK9uQtoamiVWfPFlR9rii+jWC/Q++mHs9N/pMNPomgC60Xsb1kCulXkYfdTewO03eydRO1Xa0wH33DN0ik8Ad/hafLh+ctksfl657vm5+8a3G5skFJbfh+ganKgruIYdht2Lgjte460Puaoaj1/jpDH6Qz9Bp+x74Dai2BxyA8wtOQziL4QIC13xYkHtLltycN69hsiH+bDwcKpGDkTnXc/DFGYqKOurr2+ntfQTTdrbXWr5nea2FNi6VrU/m//EE7mytMtaDO1OfDKd4O7u2H2bfGNndrLlzDbkzgrvA8Xa7B9vtSO0/8EftcqmOkXSkXaF2iWm72NQuDW1XwJ1PcP+TAu7cW2U8pTA39T/K3FR7gLvSKuMYo1MdIOSumLs82N0kvotJ8EP2EXZBqd22EalWaLuUymTsOStVCHAXKN5uSZ8M3xNTpQLuPzCDu6V9Mua0nfJ0wBBy189NpYG7/35YN1h8OGxS519EEKTyTeW2t9vqGsbh85KHJZGDkTi44/Ft1JGJ7PZuXQQbN3eXgy44uIeeDF10Z1HrdGvzVDP8kuu5uf2BgZ3e3ofc3PZj4E7u7zauE/k3Nd1M3szOruQYNKZF3fGGGaLYvUetHggKgpvdNNkEtx9PuD8oKppsbFyy8l76wkuJueeS8s6v2fgUvl69Yww+xg7HEuZONN0TL04wszuZDKlfNMTbjcDd9ZAr3pUPf13MmRhY4fm35sfPPVuy7qFWiw5NhVMYzikDuOtr3Mkhd90BrGJ42kI8N6FpO17dDmcfHCpw4sOlKTrzDKzGm61bn6xatfbZ2nk35y1/hM6b3f5ue8W214+WLx8IDka7+z08DmHabqhu17/WYhxv14G7XkMs6pPhqu1G5s4/uDNOTDXqkyHi7WzaTqd2d3dTGyO7WxFy5xXcZaDtcqF2kSPtirOL5ewSp3Yl2G7f0naC2h0d3K2rcXcecHdVwN2R5qY6dY27Bwdw57NVJlKkVhmRR6f62WN0qhAhdwmVucve3CXH7tz83WqO5/QL7XB/BaN2Rdu5gXu//OPtnMalWtgnY2OBu0ODO3u8nfrIn/kJAi3kjj5KJ4E73IuZGLjD0sGugeO/pnas+GHxojuLJhsbx2pqlq1BB3KmXUrzPeqLg/vH+z8mhoKSdXjmHlSEXQ64uB9xV3WrIgYjWlqnX27atHHrb8vuL4NfcjI0tAsHd32FN94oQgScv/7LXyjYSjwX1aebzdLn10Sfu9EMVYI+jdu06VF3F5fDbm7tnp7dKlV/YOBIXNy1nJyr2dkXU1Mvpac/XrEC7lFy/ihcteAEj8k8A3ft1vz5E/X1hfcL0bcCHNWg5t6OmftBF129DBZ1JzfMMMs7Odv+i+HFDHRt984igzsssnenN+yUuJE4LaJd83RN/Nyz23a8hRsDtw3OcTi54DRBW5UCDlDAnWruZHn/iPxURR/0wZ5EkLX9sFdYB5zgcJGBq2tCzrn8ohuVNW/eVlWVvyqHv335+kcLl99ua5t+vn79cCxcUHzRMhlsUu4+/X7Hy2R+wov7Tcbbbe+T+TtpsxrcPzUL7uQpAkxHHd5o9DNTnwwRbzeh7cbUfgTbuLK7aXPnCdwtiLdzKJORn7ZLidqdvDpGoXYJUrui7bxou0Dg/qkl4P6ZAu52BHcLa9x3ijU39Sc+5qb+LEqN+25ZzE39WJLgLnaNexgHcJdKq4wSch+QVrGMbWXuAps7h0p3/qLukmJ32yBekrZujtqdQ9up1e2OUSZjp3g7/+NSrS9wP8KlwN2Vru2s4D5LEHD/iTO4W9Inw6DtJp4mUEPu8NtQcP+eBu6wGrCMsL/gIjDd2rrxt41NU0035827kZfX0jqFIEjBnQK/Y36eHQZw/2g3isUEZcHnM3bPIIN75FBk3Xjd+vLn8XPP1jaMv9m69VRYWJePz2Es4b5n5kxDnwwp3m7AVmNp1RdqE/pJdMtwb9M2mDsOoOxRd129jLd3r0ZzPCBgIDgYbv+Z6Oirc+e2TrfmLL0G1yU4xeAqtHrj0wfLlj0sLl77bC3R5+7T5ePZrhujami9J0XdibQ767abGm/fO+tjrOQbBfeDKLh7dXrh4N4y3bJ20zPYKl5X1E/Up86/iIM7nC9wOuBzUz8mpgGjx7P+SFYzPh8xvK1Wp+1+mLYHHoTTzVOv7XD3k/NHF5TcWrPp6Y76d02TTZXb3yxf9yi38Hp+0U24GY9KSweCgmCPH9EPSiWq2/F3NpBnpeKSZV2fjAlw/7vRJiy4G73M86PR2F7Dazz6l3nI8XZ8UCo+JdWg7VRkRzcPD8PGiO80c6f1uZtrlTEL7ns5g7tw8XZHonZni7TLztkVandSaheyRsY6bVfAnXdw/1KS4M7z3FThwf1HPsBdmZuq1Lg7RasM36NTpRtyt3OxjGzNXYiou8TZ3RE24ajdsbRdMrNSxYm3H+M13s59XKqpPhkbC9z5APe9QoP7e1RwZy9w1z3qZiyT4aTtFHPXgzte404D94Bf3TFwh5Nr1SdPtIj2ycqVp8LCToSE3CkoqK0fz7mW49/njw9Nnf3rbALc/7brb7gYffDzBx/98tGsvSi4exzxUPeoIwYj0KqT4pvxc8+uK3822diIJtx9fA67u/9KAvcf3n+fCDgTZTJEkQiNWY0rPv6lH6BKa3Ingzstbkw2dwYGxUPH+lZ3uLXt+kmqx/z8+oOChmNjx2pqEATJWXotIedcyrwLi1bchT++3LSp+GFxyoWUqKGo4IFgv2N+qm4VrBilXoYcdSfYfbcpbcfj7bo+mX26ybQouB92h1+u6dWEnw5f/3x9Td2YVovUjtdu2PIiNmsYA/cuOF/gpEDBndYqQzuejZ+A6BM8+JRU+HF4uO6Gans7nN1wUYqbO7Jyw5Pp1la44/BJycMSOGaerlkz1Qz7vBnRah+WlAxGRMCiweqRq9vxHiGiTGYnpmysk3Kpb3Gg98kYFbib1XYu5o7PTRUO3Nn6ZGjxdlzbiWA7HdkZNxq7G5m7iZC7aXC3uE+GQ7xdgtoua2pXqmNkFGmXB7Ur2i5JbbcQ3D+QFrj/QQF3krk7O7gLMzeVO7jLYW6qs9e4i9kq48OhVYb/0akx3MBdNiF36RfLOJu5K+yuUDtHbRdpUKr12u5Y8XZmcI+2blyqzX0y5grcTYM7a5+MTeD+CyO4fyAQuDPF2y3Qdv0zBTzkzgzuvnthQbCEexcc3psqX658svJqVtZAcHB/YOBocrIW0eZezw04HuDd5e1+2N3lgMusfbNm7J5BB/fdH8HXXQ+6enZ4+h71jRyMLH5YvK78eX7Rzda26eu5uWidNxXciQJ3ok+GEm83ahHBDZQScteD+xfs4L7TGNyNzJ1Wrk2PumOt7l0+Pr0azUBQ0NXs7PqJeq0WGauuRhAE7l31jrHGyca1z9YWPSgquF2QeSUzdjg2eCAY1oGxXgaNulPZnXnTaztR4E4Gd1hndY8a/pY5o3OWP1reMtVSWz8+r+gmXOT14N5OA3dSyF2Xc2ccFmWk7Qfg98BjYzij4RqVMu8CHCS/bdy4fN2j1PkX0xZcnH9r/nRb2438/MsZGRdTU8/Gx58ICYG1gkXDZ+RSqtvxMhkO8Xa2PhmOBe4SAXfGyQGUPhlavB0vk2HS9naWzYS5sxbL8A3uXOPtYmm7XKndqapjbHZ22UXav+Hb2XmndgcOtsusRoZF2w3g/jsF3K02d0vBnd3c5QLupszdYycv4M6hVWaXMjfVSnCXWo27k7fKiDc6VQm529/cw60291QezF1sdlfk3WZn55PaHVbb7V0mk8hR2+UXb7etT8aiAvdDXArcZ5Mf1ZAfCFkJ7j/zBe5mCtxp8XaG5wVf/tn4GQQB7i6MCfe9WKXMIdgjcIAtKLnV1jZ9p6BgKCpqMDLyUlpaS+t02sW0oP4gVY/KUOO+Z+ZHv3z0wc8f/G3X33SVMntmwNfdDrn5dPkEwoF8NmHh7YWt060bKl68KCsbnTPnBDY/84gRuKMZZ6M+GXKu+Z9WgztOn0bgTjAoYe4Mre4YuxOt7uSGmZMhIddycmBZVjxekXM9Z+XjlVpEW9swvq78WdmWF/DJdEtLy1TL/JvzY87E+Pf50+plmNmdJpR79Nqu75NhBHdVtyrgeEDcSNyml5tKH5Wu2fh049aX0Zln4EyHkw4HdzgRcHDHj/OZFHNnek6BP1OgajucenDywq9NyjuPwP/a2tZsehaTeQYu0SNxcbcXLkS02gspKUORkSdCQvr8/XvUatbqdlqZDB5vJ+r7qeNSre6T+bvJzSy4/68xuP/+9zyC+x4SuBv6ZIgyGVKTDIXaPT0ZNiZ2ZzZ3ccDdtng7L6Xtwmq7A1C74uzyj7Q7LLVLONguBW3nDu58zE39yPa5qf+yrFVGbuD+Z9vB3UUYcOe5xv1HZW6qUuOutMrIYHSq3UPu0i6Wkaq5ixN1V9hd5Ei70NTOoUZGYtoum1mpZuPtcYKOS6X/y6KyeFyqbX0yQkxMlRa4M05MZWlvN6L2P33MMgsKD7nr5qZi4O6+06jD/RDsAjgMojPONLVMjdfVXUpLG01OvpmfjyDInAtzwk6F+R3z8+ny8TjigZaS78PMXY9nM/boCtw92z3h2xLOJXzy4pPGyca6ibrxHTuerFx5OSPjVFhYr0ZzxMPDGNwNBe6kPhnjIpF/GiWOGcCdRJ+MfTJkbWdkd3LDDCXq7uqKRt29vFBzDw19umZNS+t0U/PkZEPDw+LiycbGJSvvpi+8lJR3Prfwen3jRG39eMNEQ8yZGHzddOZ+yGDusIZkdmfe9NrOAO7tnj7dPv59/rDabUhb1pWszEVXasZqkvNH4VIAJx2cQXB24HNT8WMen1JAPryNnz7gTxBo2g7nKVwH4NpYuv7Ri7KyB0VFy9c/gmsgOlQ2Nvbttm3jtbXDMTH9QUFHfX27fXw6PD1xbWesbsfLZEzE25n7ZEyCO8d4u1lwp9e4G03rhRtmKbjr3kjBXuBO9MkYymRo2o7ZeofRRmN3hpy7AOAuXLxdWG23N7Xz0h6jjEJ1tEi7w1G7vIPtUqiRMantn8oN3D+XIrjPEhjchZubajdw/8FBwF3guakz7QDuSo0751YZWY5OdfSQu03FMraY+yl5mbt92F2Rdysj7UO27iN5aLtY1e32KZORdrw9iineblmfDI8F7jyD+0d8gvtOLuBuqk+GUdupzyYYQu6u3zKB+34c3GFfw1GdMu8CWkpeXn4jP/9hScmGFxsyL2fGn40POxWG57Xdj7gTg0B18zyxYZ7uh7FxqYORzVPND4qKHi1f3tI6VTNWs/HlxsmGhvNJScf8/No9PQ+4uOzVg/vO9977jlTgzgbuho2xw52FPtna29k2Q8MMEUbGo+56FcVb3Tu8vHrU6gGsz310zhzYLqWlPVm1akPFi6S883D9getV1fa3N/Ly3m7blncjL/RkKGru3T5eHV6wdG6H3FwPuqIFIkTUnWB3o42s7Qzg3oWCe/Joctt02/JHy5esvNs02TS/+CZcK+AchDMIThOsW+kAOeQ+y8TTBPwpAKHtQYfgjIMDA05zuObAvzUl6x7CPX2+fv2dRYtGYmNhBeATRKuFjydDQ4/6+nb5+LQbaTtR3U4vk6HG2xn7ZKwocP87d3AnmbvI4E4rcDe0t+vLZPAmGVzbdcLu5UXfyOxONXeGkDu1xl0QcDcRb+dL2/mg9l1SoHbRIu3yH4Uqx0i7nKjdcYPt0qmR+dxmaife7KWAu5TB/Wthwd3VruDuwSe4/80ScHfiualyrXF35wDuHhxr3B20VcYBQu5yKpaxq7mHS87cB5mMWJF3y5xdstQua20XvkzGgni7SW3v8xMk3i56n4xtBe5cwd2PDu4zxQF3dxK4c5yYyh5vp2s76TkFE7h/pwN3r11wF+A+wjrA6sHiw26FQxHO98yCK9t2vH1dUfFy06Y1T9eUPCzBP865MCeoP8inG825EwUpBAF7d3r79/lnXcmqrR9/vn5942Tj0lX3tFok/0Z+2Yuyl+Xl/UFBHV5eZHD/wRy4E+lmfGMs1DbVJ6PXdu64xjhMFY+64zB6yM2tHat0P+rrezwg4ERIyFBk5NXs7B3vduQX3cQvmAtKbsHq/bZx4+K7i+NG4kJOhKBjVHtUXp1eaKX7YTdyvYyB3Q2cqd9wbcd6vmfvn20M7uj7Cc4mIAhStf2tFtFWvqnMXnwVLiBwMsIOxcBdV+OuO+ypry3RnhToHuHTtb0bripwLU3MPVdQegeBPdrWtnrj0zqsPKd5Cp2Sei4xsc/fH9f2Q4S266vbyWUyeGs/PiuVNd5O9MlYVeD+d4vM3bhVhgru/2cE7uSj7ksc3PEDjx3cGQuLKAXu5PZ2Y23HeL2TtLGZu+mQuxXgbrZPhnu8XSLaLi9ql36kXabOrlD7Vwq1y1DbFXA3mPufeJubKl9w/05K4P4jH+C+S0xwt21uqvPWuDtcq0wXBdwlNjrV14LRqbyF3O0xPVVUcw+TrrmLzO6KvPPl7EM87Au+tD1VDG0XvrrdjmUydoi3WzQulcc+GbMF7hzAnaztdgP3960Gd6MCd8Z4O6u2G5s7PjcVHqK774RHznAj4cbPwMDdFQX3dhzc4RxMzD0/v/hW2ZYXUy0tjc2T8EnJuocbtrxAEKT4QXHwQLCqW+XZ4YnmtQ+7uR929zji4dXhpenVRA5GIlrtREPD5qpX8Etis4bXbHq27vm6qrdVjZONp8LCOr28DtLAnVwpQx6aqsdW2sZGnzT3ZOzRJjMcYWo0IzNm91/0Uy4p9TIeHh1eXt0+Pkc1muOBgWeio99UVVW8roA7vm3H23Xlz2vq3iFtbcUPi3Ov5865MCdqKCpoIEhzVEPUy+CTVMnsriuZoW64tuPxdh24H0LB3aPdw7vL2/eob8TpiII7BbDCzS1TK8oeJ+ScCzCA+xG8xh1/wYnhLR2GB//6d6+ij9gPwk+Rs+1whU+df3FR6Z21m55V1461tU2XV75ctOJuztJrb6uqrufkDAQH96hUlGw7SdspZTJM8XbTfTK02bmigrvxmypo4G504HECd8YCd1KfDE3bUWT39qZsZHY3HXJnaZVhA/f9JsGdS7zd0jIZobTdrh0y9qR2paJdss7uiNTuwNoukRqZz6gPgUQE9w8lDe5/dHBw53luqhTBnd+5qSo5zU2VXo37QVmDux1aZZSQO//FMtaXuQs+QFVv7mGSMnc7snu64uz8OTtXahdqRKp0tV3IWamBQmi7ROPtvBe4G8DdRYLg7mEFuDP2yRjF22dxA/fZ+hp39+/hlsBtw8B9NywCrBisOexEOMzgTEyZf3Hlhidt022147XvduzYsOVF/rIbsVnD9U0T8MX0y+khJ0I0vRrvLm/c/Lw7vdU96sDjgemX0ltap+saJ+DqgT5IiDuWkHMO0WqbW6aerllzIiREB+6zZv3y0Uc4uH/PNDSV5q3G2s44vtIY3CniiaEnLndkc2f0MrZZl4ZJqq6uh93c2rFJqj1q9fGAgPOJiS83bWqdbp17de7qp6u3v9u+o/4dLKAW0b6tqkIQJPd6btRQFF4vo3u54pAh6m5gd4N0Gv5IaLvLQRK4d3rDXgg5GZJxOQP+ljWbnlXWvEnIOYuDO5xWHji461tlDEe+n+7IJx7nz9YH212p2g5XJ/iFVdvfTjQ01NaPryh7vP75+lfl5bBPaxvGp5qb323fPhgR0avRoFNS3d1xbd83a9aemTN367V9F67tRJkMS7ydrU+G34mpHOemWgPuf/mLFeBOKXAn+mSYtL1Lv5HZ3djcOYE7e4e7RX0ynOLtQmq71ILtirNLwtnFrY4RKNKuULuz1MhYou2ODu4zFHAXCtxNmbvHTl7AXawa9/8oc1Nl0Srj4dytMs4Tcpd5mbu45m5Bpbv4UfdBFlA2J+/pjozs4lA7L8F2aWq7XcpkhJqVaku8PVbYeLuFfTJmC9y5TUy1Dtx9ZQLu5uPtXzCYu6FVBpubqgP3n+F+wX2HVYJFhj0IR1pM1vCGLS+ap5qX3FtSP1H/oLj48cqV8MfG5sltb7fVNU40t0yVPCzBq8nVPWrYNL0a+DzsVFjZ87K327alzLsAhzr+MANO7fWbn5e/Kr+1YEF/YGAHCdx3EeD+17/iuECQ6+ckcv2Mqu30PhmmianfY95EiCe5H4bIXBPmbixlZHanaekeo3oZfJJqj0oF9+5CSkrTZBOCoLUrz9asmW5rW7zibuaVzLnX5jZMNDQ0Te54tyNqKMq/z1/VrfLq8PI44qGbpKqPujPIu17biT4Zt0NuZHAPHgjOu5EHvzmj4HJL6zR8hKsKnJ4ouIce0c1NJVqVaAMMdKn2X3XaHkTW9m648qQtuIi0tU02Ni5acWdO/oUrWVm/ffLJw+Li6zk51+bOhft7KizsqK9vJ6btB11d4WbqtF0/KHUX46xUE/F26t43UeAuJrh/yg3cv7UK3A+QwZ3okyFpO+rsPj6GzVpwZx6ayrlPxpp4u/jarlC74uwyj7Q7PrUrNTLWartw4P6pJeD+mWOB+5eig/s3YoC7MjdVqXEXrFXG3XFbZXx4aJWxz+hU6YXcxSyWkZO58xh1F4bdbZB3ufh7utXIPsTnOvMYbHcobbeoTEYys1LFibcbxqVa3icTLkSfDEuBuzXgvltIcDc8NjY5MfVrVnCnU7vR0w2jVhnS3NSf4R7BvYZVguWFfQdHaW7hdQRBcq7lZF7J3PZ22+2FC88nJZ1LTLySmXlz3rzn69e3tE7XT9TnXs8NOxUWcDzAv88fPgYPBMcMx9SO126uehWbNQxnBP5vOlzW4Ldtf7f9zqJFff7+HfjQVBzcP/jgh/ff14E7qcadCLl/TntGStZ29omphj4ZnDtJtTD49gspef2TPnxN9y+qubPWyxCTVD09u1WqvoCAM9HRF1NTL6WlXcnKerlp08OSknMJCbBQ82/Nf7R8+VhNTfbVbHz8rLpH7d3pTdTL4FF3MrvTNvy/0sAdfgms/NJ7S1umW5auugf7pXDVfbj4wHkKpxicQehLU0GHKOauPwuIz/HTBNd2ONfgfIQjAa4b8G9BY/PkvaVLEa02JvPM6fBwuF/w+fXc3OGYmFNhYccDAnrVakZtRwelUqvbyWUytHi7ZQXufIA72dwZwf1/WcCd+ZUeMrgb1RlZAe7tBLiTtL0b25jNnQu4k4em8tEnI4a2i1kjYydqV5xdds7u5NTuCMF22Wq7Au4WgfsXvIE7u7nzAO4uTgruUpibqtS4O0yNu3RbZaK5tcooIXd7DlCVsrnbkd0H2dGZM76ny0bYxXN2Xqnd6tJ2sbRd0Op2QWalSiLeLkqfjJjgPktQcPcUFNxp8Xb2pxtEyN3lG/SxPTE31XsX3BG4s7AssKqw++DsqNz+pnqsOv5sfNxIXNXbqlsLFpwKC+vz98dnhA5GRMBXEAQZr63NupoVcToi9GRo2Kmw8FPhSeeTGicbl62+H515Bs5iOC/gt83JH4VvflNZeTYhoVejaffwIIP7j++/vxPjG8PcVGqvCO2JK03bGSem0vpkcCjXKSctfE2Au5F8kdmdoV5G/9t09TL4JFUPjy5vb7iPsEonQ0KGoqJu5OXVT9TfyM+H+w4fYR3GqqsX3VkECxV+OjzweKCmF6t07/D0OIJOUiWzOyrvByjUjms7Gdy9Or3UPeqg/qDsq9n1jRONzZMtUy3Zi6/i4A7nmg7cda0yB2nv9iAemeOPtOGEIrQdrgxw9UvMPb+j/t3jlStfb906mpx8DuvMmWppOZeQMBAcfMzPr1ul6qBq+169tlOq27EyGeN4u4k+mc+ZCtxNgTsJ0P9ubcj9f4xq3C0C92/YwX2XReCOVbF3EOCOU7tKpdto5q4PuVsE7lz6ZHiJt1uh7XzVyDgstSvO7ojO7oTU7qjB9s8Fo3Y6uP+OC7h/IC1w/4MQ4D7TnuD+Z6cCd5nMTZVFjfvHvLbKuIjUKnPYWVplJDc61T4hd1unp4pQLCM5c7dPvYwwxe6c5N0yfBcB4i2/JZGiObsF1C5tbZdqdbt9Z6WKEG+3Bdw9bS5wtwDc0Qct+82Du0Zy4G48MdVcvJ30jEMH7l8xtcro5qbCMsIug3OquWUK/i9uJC5yMLJhsuHWggXHAwI6vb2PYKB8zNf3ZFjY1ezsqeZm2NIvpUcNRUUMRkSfic64nNGGtOUWXsfAHT21Y7KGV254UjNW86C4+ERISLdKdQQD932zZu3+6KOfcXB/7z0c3MmtMjR7pW2WgjuunLiPEyJMdIsT+WsKZhHsbsLcjetljCapIgjSONmIVswgSH3jRN143ZZXWza+3Fj0oCjlQkrYqTC/Y366epl2D13UHZNRF1rNtl7b4b+ig2qPuHu2e3p1eql6VAHHA2BnlT4qrR6r3rj1t+T8Ubja4OAOpxI2N/Wwa9Ahes8STu3YA2+sRkan7XAuw3UDrpPxOWdhV67Z9PTd9u0V1a9hX7/ZunVH/fjDkpKToaFHfX27fHzQKamEtpPW1vj1DLZ4uwHcqTv9M2mA+z/J4P7735sYHvA1G7jr32ZBAXf9kcPQ4U4C904C3FWwn9ENN3cGcLco4W51nwxPZTJC18jYh9oVZ3dcZ5ddpF1y1K4E23nSdovAnY8a949sr3H/lwBzU20G91nCgTuPNe7fsZm744C7UuMu6xp36829XbatMnYbncpvyN2+xTJBloTcHdvchYq6C8XuguG7uFuk+W1QIGrnM9juENouSrz9uCPH263uk7G8wJ0J3A/YBu57+AP3H7mB+3fcwJ2tT8bMM44/k0PueKuMxw9w8+A24zXusG6wg+Cw37T15UR9PYIgpY9KC0rv3F28GK2C8fLSlZVjA0JPh4dfycqabm2Fb0u9mBp/Nj7hXELu9Vz4Y9aiK3HZI9GZZ+Dj/OJbW15vebFhw0gsHIh+nd7e+FxNFNxnzPj5ww9/ItW400LubOZO0XaT4E6ulNmNESct4U7mYFyEydtOPZvqzJ2QU6Mxqrp6GcxM4Q62e3oSk1RH4uLGa2urx6rXPls73dKCaLXLHy1fem8pLFTTZJOh0r1HhdfL4K3uBLvTt0O6eDsO7vAj8IPw4zFnYra/277k7pLm1qn0hZfhEgTnL5x3cFphL1Ydpgw5ID3exh5UH8a0vR3OSjiX/bEWoILld5qaJ5G2tu117+A2b9vxtmjtg/rGiTdbtw5FRcGuZNT2PWRtp8bbv2ePt5sucBehUoahxp0F3D/jDu7YCAHi1Rq2l2pQ2mYH9w4yuKOzEtRcwZ1zgbt18Xa7aDvvwXaF2hVnd7xIu0Ltjq3tcgT3zxVw5x3crZubKgK4c2iV2WX/GncewV2CNe5O3irjyKNTpR5yl0axjIjmnmIXc5cOuw9GcpJruQj7kIALxTe1WxJst4O2h0pL250x3u5tVZ+MB61PhnliKldwpzySIT/4wR4aSRHcTUxMZQR3hucg5NGpzK0ysFCw+HBQlZY9frd9+7O1a+sm6hAEuZKZ2R8Y2O3j0+nl1YU5cp+//wmsMuXa3LnwDRtebMi4nJF2Ma3gdgEO7kl555PzR+cX34Lf8LaqajQZzp/gXo0Grx8hwP0/H36Izk0ltcp8zTRCk/7cGPsiIZ6M6EmOGKMN2kYd7oz14sabpeZO1Mvoou4qFazVcEzMnUWL7i1ZcnvBgrHqavjkfGJi8mhy63Tr64qK3Ou54afDA/oC1L1qny4fXdQdE1McSlF5P6SjdnQ7jPXJHPHQgXu3DtzRF0gel8LHRSvuwnUJzmIfCrgfJr0uhT2cxk4clNpDjsB+99Zre3TmGfglUy0tJesezl1y7X5h4bsdOx6WlLzesuXp6tXDsbHH/P112o4ZLlnbd+PaTlpb1ng7dVyqpMFdb+6fscxNJc8PIIP7TjZw1x8ze2fN2ofp9q+mO9wZK2X0He6UoamW9slwi7ebLZOxm7aLG2wXm9oVZ7efsyvUrgTbpantCrhTzP1PvM1NlSa4f8svuJsyd4+dYoG79XNTP1Dmpgpe4y7HVhl7h9yjpR1yl8L0VHuYe6i8zD2Vf3MXkd0twHcRFN7CWyLwsqTx3yFjS42M1LVdmmUyAsXbhRuXKlCBezBV24OM+2SsBHfdoyy1UOD+3ybA3cVacJ9J3Sghd/Sn2Fpl4BEdrC3sTTgZC0rvfFLxW0vrFIIgD4qKBiMjj/n54RnbXo0GB/dT4eEjcXHXc3MRrXbN0zX5N/KLHhRVbHudu/R69uKrRWseTLe2/vbJJ6PJySdDQ8l93wdcXPZ//PGemTMNNe7vvfcdbXSqvmOE8Xn1v82B+3cYJxlKtPWFHjraI+evSdpOwSY2czfqljGudEfrZfRR9y4fn6O+vgNBQaex5bq9cCEs6dXs7CuZma+3bn2zdSssWurF1KihqKCBIN+jvmi9TKeXLuqOszs5pXxYF29Hwb1DB+5+x/wihyIrXlc0NE1otQgsvg7cI7vQt49g55HB3PUPmPGHxPCf4NSDExNOariMwKU1r/AG7DXYp3HZI+cSEp6tXftk5crROXPOxMScDAkxZNvd3A5i+Wi0pWfWrD1s02jJy6uPt5vtk7E/uGPmzhHcv8TBHX+DhR7cv6eBu36WAA7uxAGzj3TMYG9gcD1MhNxxcNebO21oKqeJqTzG28XRdhFqZMQtalecXXF2EZxdoXbn0XbRwf1DBdzlDO7K3FRp17g7QqtMiLRC7t7SG52qhNytKZaxtcxdluYuRNRddHa30t9F3MRaAYGoXV7azkd1uyxmpQoTbxeiT8aCAnfLJ6YeYJuYKklw/5YbuJMnplLi7fS32xqH3HWtMkTI/We4X2irTOBB2BFweMB5mlFwGUGQBbcX1I7Xvtq8+XRExPGAgGN+fn3+/vDJQHDwqbCwoejo80lJN/PzJxsb1z5bu+bpmnXlzwtX3auseQM/e3fxYvivp8PD+wMDj/r64uB+BCshwbvU8SJ1olXGOOT+hdFzbPKzbqJPhjVlbDy4Uk91ZrTdBnOn1Mtgk1TRehmVCpZuIChoODZ2or5eq0XKX5Y3TDZMI4gW0bZMtzRONmZdzQo/Fe5/zF/do/bu8vbqoLC7YcO03aOdAu7wg/k38xsmGuA3p86/iIH7UTgl4VzDTij6G0R01I7WyHTAGQpnN1xP4NKalHd+6ap7YzU1rysq7i5Z8njFCviFlzMyYF/DTu/VaOC+wD06RNN2WnU7qUyGHm9n6ZORN7hTG42I13tohx9+tLDOTXVBS/tprTIUc8fZHfukkzoutcPm9nbeymT41nZnpnbF2SXn7Aq123s4qqMG27lruxOAu3WtMvID92/kCu4eIoC7DTXuKqXG3QS4y7tVxlP8VhlbR6faLeTukMUy0jd3e0TdubK7/eTdvgpvj7tpgbMPWrSveaiREUPbrRiUKv0yGbPx9qNCx9tt6pMRqsCdZWKqw4P7TAq4G56PsIXc3b9/Hw2574J7MRMNuf8K6wl7Co6fqIyhHfXvVj9dveHFBgRBbs2ffzY+/lR4+ImQEDTeHhY2GBExHBNzPinpSmbm3UWLXldUVL2tqtj2GtFqH69YcS0nB/7TUFQUfHNfQMBRX98etRqfvHoI7yEhtcqQQ+50c9eXjRhvRLzdAO7s6ElAuXHVyfd6dSK7j1lz38Vm7sb1Mu7uHVjUvVejwVvdYT1bp1sn6uvHamoelpTkXs8tf1UOX1x6byleL6Pp1fh0+6Ct7him6iVVv7WjfTJeHV7eXWiHu98xv9CTofCzK5+srK4dy1l6DS5ccI7DuYm+pwQ7uYwf5WIPXDvhVIVTHq5CMVnDS1beg9ug1SKtrdM1tWMl6x5Ot7beX7bsdHg4+v4GlarTy+sIN23/iWmFyX0ybAXukgL3/6WC+6d6cCdq3I1HCLC93mN6biq9VYYccieZeyeJ2q3RdnKZjIl4u4jabmONjKjULttIu+LsdnR2p6N2JdguWLBdBHD/1InB3SZz5wHcXRwG3J1vbqqj1bgftAu4y7tVxkFC7jIolhFwgKqUzN3yqLu82J1fi5fMXUgTktodS9v5rW7nUiYjwXi7ZeNShe+TkRa4qziAu5cY4M7WJ6N/GmJ4VmIy5P49JeTuuxeWC5Ya9iAceCnzL1aPwf9V10/U4+x+p6DgSlbWaHLy+aQk+HgpLe3a3LnwxSerVr3bsaO+cWK8tvbxihU35827mJo6Ehc3GBFxIjj4eEBAn7//UV9foo2E3CpDC7l/y1Tw/QVTtp0R3Mkhd8LcCSv/gRS7NqHtzOau/z0/WmLuhnoZD49OL68erNX9dEQErN7l9HS0IX379tE5c/Jv5r8qL694XZF2KS1yMDKoH6uX6VGhUfdOL09DaYh+6/CEr/t0+RDgvvju4pq6serasdzC6yEGcO/Sv6alO7PwswwLtnfCI0lU2xP7Y7NH2rSotS8ouX1vyRL45Pn69dNtbc/WrsXbhHTvTsC0/QCbttPKZMjxdvY+GSHA/R+Wgvt//RcN3E3MTf2cl7mpWI07Q6sMtckdN3eC3ekbW5MMT2UyktN2K4LtsqJ2xdlFc/Zv5OzsTkjtirZLENw/kwm4fyECuP/ZBnC3em6qZMFd0Br3Dx27xt3Pxhr3X12UVhnc3CPEG52qhNwlV+buGOYuGrtLTt5luFlM7eIF2x1N25P6JTQrVX7xduM+GfYCd04TUxVw/zebuePPGrCQ+7ekkDve5L4bFgRWD5YdNfeE4/Fzz85dcq1sy4uqt1UIguAfJxoatte9g0+QtraW6Rb4/+vKn5ese9jQNLHm6Roton1eVnY9N3c0OflMdPTJ0ND+oCC8jobcKvPr7Nl7iZC7vsn9eyLkTjJ30xbACO40cye4nHAuco0Mg/5QzZ0x5G6RueOKik9S1UXdAwNPhYWdS0yE1ZtubUW02qbmyR3jO+om6jb+tjH1YmroyVD/Pn90kioWdScizSi1Y5/AF326fNQ9ar9jfiEnQtIupTVONrZpkbQFl+BSBqc/nLPYS1+dxLmGP1L1xoLtcC7DpQAuU1EZQ/nLbrzesgX26dn4+AdFRa/Kyy+mpY3ExsK+w18m6fD0hL1G1vZ9em3frUdVcpkMc7yd2ifDODGVI7j/rxG4WxFytw7ciVaZf5ubm8pW487WKkNucqeYO5nd9Vu7Y2i7kMF26VK7DJ39W6dydilH2uVA7UqwXThtp4P777iA+wfSAvc/CAHutoXc/yzdGvfv+J2b+p4yN1WpcbcI3J2xVcbBQu7HzIK7DdNTRStzl4+5m6l0t5jdI4Rk9wiF3cV2dlGD7ZaXtttD2yVbJiP5eDuffTJcJ6bSwP0AM7j7mwH3mRaA+38kDO4Mz004hNx3wf2Cew0rA2sIj45gD6ImmzQQnXmmoPROybqHZZufIwhSXvkSPq7f/Hzpqnu5hdczCi5nLroyv/hWQ9NkwZ2C+bfml78qn2xsfLZu3ZWsrJG4uFPh4QNBQX3+/r0ajYmQu2lz/5Jd2wnxpASNCXMnsfv3VGr/jgRAZJShmzt7yJ1ILhNtIcaFIZS2EGySaqe3d7dKhQ5TDQ4+n5SEYE0urzZvflVevvD2wi2vtsAX0Er30+EBxwPwqLtPlw+pvRvburx9unXgHnwiOPViatNkU03tWPbiqyi4xx2D0xZOTN1paMh8oI8k4T/BN8C3JeaeW7Ly7oaKF61t080tU3Aztte9u5KZSZS2w9+J7i9390NYIQmh7Xsxe6VpO2O8na1Phhdw/x+ewP0f5sCdlxp3xlYZWsidOFTI5q5jd728t+v/SFA7v9q+T0htl2Cw3Tpql1SkXXF2B3Z2p6V2Bw62W63tloI7HzXuH9neKvMvAeamOgm4f8svuMtnbuou28Hd4WrcRWuVOWS3VplQ8VplRBydqoTcbQu5WzdAVQLmbteou7Xsrsg7Z2eXErU7qbbbs0yGa7z9qFDxdlv6ZDgUuJuZmBpEjbczgPt+XsD9Q9mBu8mQ+3tYyB0tllH9AncfFgeWEVYbdhPsaDhs4HCFkwjO6OiMoejMM7otA/0Ymz2clHd+XtFNBEFyruWkXEhJu5S2+O7ihomG2obxycbGq1lZw1hcGjV3rMkdH7yJN7nvwTpJiGKZnRgVMaahTWzG4E7k3L81DUksQPMt9We5hNzp5q7PL+8jlXTj9TKUqHtAwFBU1IU5c67NnTvd2np74cL7y5a93bZt5ZOVmVcyo89EBw8E+x3z0/RqVN0qn24fny791u0DX4Gvo+AOV6zRZC2i1WqRzEVX4LoHlwg4o/UviRkeQ8JZDF+HywhcIdMXXmpsnqysebN8/SO0u12rhZ11c968k2FhutJ209rOUiZDxNt3Ut9G8A2twN0qcOexVeYfpmvcyeBuYm4qhxp3xlYZ45A73dzJfe4keadsVGpn7G23i7ZbUSPjyNTuzM7OhOyKs9ud2p2qQ8aRtF2m4P65xMH9Tw4M7k44N9Xha9z9Rapxl3erDE8hd5X0Q+6xnEPuzmbuc6Rs7lJkd0Xe7e7slnfI8FUjI762S7tMRkrxdt77ZIQpcOcG7r6Wg7uPPYemWgju/6ZMT2UJuePTU+Fu6s39AKww7AXYWbBn4UiAgwf95xuOTziGE/vhjIBzDa4M8XPPLiq9o0W06ZfS40biYoZj4GPapbS1z9ZWVL+ebGycbmtD2T0mZiAoSFfmTjJ3crGMoczd2NzZ3IHEE18bmzsprv4tB2pnxnqjkPsP5JA7yVKJkm42c9fVy+ij7j0q1TE/v/6goMGIiOu5uYhWu+HFhqmmpso3lc1TzXXjdSkXUkJPhuJRd3WvWgU/0K3b1D1qTa/G/5h/8EBwwtkEWP/ahvH0hZdgp8A+gp0Fu4x02qIP+eAiAPsOLsXJ+aOrPnnyprLyRl7eo+XLX5SVXc7IOBsffyIkBHYQXv4D+4hZ2/XV7fRZqSzxdmZwJ6GPeXD//e/Ngrul5m4FuJudm8rcKkMKuf9sFHInN7nv1xfLkM2dYHfWjUztVkxJtaFJRsAaGQegdsGmocrU2b9xIGcXidoFcHbpU7s0g+2f27VGRgF3VnOXM7h/46DgLtrcVOnUuO/hA9yVVhnOrTJKyF2A6amiFsvYYYAqL+Zu53oZaxtmLGZ3urynKc5uhbNbRe2y0vZQS7Tdtup2ocpkJBVvF7hPxqYCd0vB/WMquM+SIrh/Jwy4/9tUyN0NDbnjxTJomTth7gEHYFVh2WGn4JM28ZQ0TrdwKMKxDadbbPbI6o1PEQSZc2FO1FBU2Kkw2CJOR8QOx+Zcy4Gvr930bLy2Fj5B60rCw/v8/btVqnZPTy7m/o1eRhglgoYUXzOZu3Wb6VYZcsjdUCxjibnjk1R1UXe1GtbkZGjopfT0B0VFj0pLX5WXX0pLG6uuXvNsTerFVHySqn+fv+9RX02vRg0/0ItqO/wRvhg8EBx/Nl6LaOsaJzIKLsN1Eq4nsIPgvNY9xovpxV8swUvbl6y829I6PY022aDVQBMNDRdSUgw1Mj4++IjUw1gtCUXbjavb2eLtTAXujBNTOYK7pa0ytoI7Zu5mwZ1e465vlfnOqFXGdMidXCxDNncyu+vknbQdom0swfYDJGq3Wtt326DtwgbbbaR2+UTahXD2bxVnd5pIu7N1yDhMabu9wf1DSYP7Hx0G3F0cB9yVGnfBWmV4AXc5tsrYe3SqnEPu9i2WEbTMXUxzl3/U3Rp2d9LYe5qNzm43areqRoYnbedpUKqUymQkHG/nt0+GtcDdQcD9PXHB3WTI/Tt4HP6+vlgG7p3O3P32w7rBwsJSw47wNLB7FxwDaDlJXB+cNbHZI03Nk61t00nnk8JPhQcPBAf1B8EGn8AfE88nFt4vfLd9e96yGwiC3Fm06GJq6kBQUA/J3A0DVPGUNG7uWLcMufvbrHeQwf1rC5mGE7gTPSG0Jnf2MnfT5o7Wy5Ba3fsDA09HRJxPTHy3Y8dYdXXjZGP9RL0W0W78bWPcSFzIiZCA4wF+x/x84VuxDT6Hr8DXY0diy1+VN7VMpi24CBdPuObAVcLwqCzuGFxh4HIXkzU8r+jm5qpX8PF5WdmTVaselpSMJsOlMAStkVGru7y90RGpLNpOK5Mxbm9n65OxBdyZa9xtC7mzabt5cOdQ405plWEanfoz26syxuZOZneSvJORneLsNGqnBdtp2k6rkeGo7dbVyAgTbJcWtTuns9u1NMZhnF3q7THCU7tjB9v50vb/cwpwn2EXcOfX3C0Ad6vnpv63o8xN/ZuA4G7PGnelVUYZnWpryD1GoiF34YplFHMXnt15kvc0BdntRe08BtvtpO1CVLeLViYjRLxdsHGptoG76YmpB5kL3BnAfZ8o4P6TNeDuagbc/4w/TbAM3P9tAPdZenDXmft3pGIZXZk7xdwDcXNHo+7YQx3c3Huwqar9cXNHKmve1IzVJJxLCDkREng8MOB4AGz+x/z9+/yD+oOihqJKHpZMt7Y2NE1se7sNQZDrubkDwcE9anWHlxebue8kRaS/4cbuXxuZ+9ecmcZKcKc1uZNC7ubN3dX1sJvbEWwYZqc+6n7Mzw9WZjgm5s6iRQ9LSqZaWm4vXPhu+/Zl95fNuTAn4nRE8EAwurZ9/vgW2B+Igvtw7OZXm1vbptMWXIKrLlyg4Kqif/h0HC5NcFFNzhstr3ql1SKwI95UVk41N48mJ5+OiOgPDMRrZPDSdmNtp5XJ0OPtTH0ydHAnlt00uP/xjxTj4FbjbiLk/g+z2m4S3MlzUz/lVuNObpUxHXKnF8uQzJ3G7kTa3czGTu3cS9v38lfabnWwXaF2mTq75JBdDs4u9fYYuVG7Y2u70OD+qSXg/plMwP0Le4A7jzXu3ylzU52rxt3PRnCXd6uMh2RbZTiae7TDhNylXOYurrnzUunuQOzOjO9pzozsg9btAr6o3ZG1nd/qdv5mpdoWb7d1XKrQBe7yA3cv7uD+vQjg/kdSqwwt5I4+dHfXFctgZe6YuWv2zMK6ZWZj3TKw+LBfYGcR9TJw/MBBnph7rmWqpbllKuFcQvBAMNp8cswX7xzX9Yz3+YedCsu8kjnd0rKu/HnB8jsIgpxLTDwRHHxUo+kkzH3mzN0Y3hnMnVQv8y1ZWziKiSU0Y2JoKiO401tlWELuxrUhDOZO1Mvoo+7HAwJOhoaOxMbeLywcq6mZqK8ve1GmRbS513NjzsSEngyFdQ7sD4QNPoE/xg7Hrnm6pqFpMnXBRbiGw/UtSP8gBz6Hf1bSFlxaV/5Mq0UelZY+X7/+3tKleGM7OskWq5GBvYBqO9YJjve2H9BDLaHtJuLtPxGyaQ7cTQ1NtblVhtHcyfL+D+vA3WhuqtlWGRMhd4ZiGXZzJ7O7Ifau3w4wbSao3fpgu3U1MgJ0yAhK7YqzK87uAJF2R6Z2qQXbRamRMfwjaAzuv+MC7h9IC9z/IAS42xZy/7MyN1WWNe7/cYwadydplXEXv1VGCbmLOj1VMXd7mLut7G6rvMvG35luZIQ9nN1aapdEsF1cbbeyut1us1L5jrfb2icTbiLebsPEVB24H3A0cHdhBPevrAJ3EyF3/fRUXbGMfoCqZg+sDywdMUMVfzMfXiwDhw0c5Em555uaJ7e/2554PjFoIAil9h61qlvl0+Xj3ent3eUNn8MXw06FbX2ztbVtel7xzbrG8dsLF15MTR2Kiurz92c19/ff36mvl/nOaNipGVuxVtt5AXdGTjWu6qabO14vo4+64w0zF+bMuVNQgGi1WkSLT1VNOp8UORgZejI05EQIfAw/HR47Elt4vxC+I3XBxcj0IbiKwjUQropwfY7NRmtk4D9t2fYKaWsbr6tDg+3h4XiwHa2RwUrbydrOXCZDjbcz98nQJqYaV8owhtzJ+MKhVcZ0yN2Euf+DM7hzn5tqtlWGIeROLZZhPEj26X2cTOcHWITduKidmdrlHmx3XGrn3dkdBtkdz9kFjbTzRu3CT0Z1hGC76NpuBbhLZG7qvwSocVfAXQF3J6xx328BuIvcKuP0o1PtEnL35TvkLoMydyZzD7GPuTsSu/Mj76z+LibEs//tPN3B01KgdifUdnZwPy5umYwo8XZ79clwAHcX7uDuJ09wn20ruP+RMjqVFHKnTk+lF8v47yfAHdV27DEMBu49cGCnLrhY+aZy2/a3GZczggaCNL0aVbfKu9Pbs8PTs93To90DPsIffY/6Rg5GLru/bLqlpaZ27N2OHQj2v8sZGcf8/Dq8vA66uu7/+OO9M2filod3lfyImTtRL2PM7paJjDlqZ9B2PZtShqZaAu67mSyVYu7YDEyDuWP1Mj1q9VFf3z5//xPBwUNRUVcyMx+WlEw2NSFabcXriuyr2bEjsbCeEacjIoci48/GL767uKllKm3BpZjMM/i/CNEZQ8l5oxsqXmi1SFPzJPwg/JLhmBg82H5Uo+lWqdDSdlzbPTwOu7sfYi+TIeLttD4ZRnDfaRG4s9W4mw25szS5W2buloK7yVaZr4hWGfaQ+0/mGv/36k3cwOVMns620ZydmdqlFGznkdp/EJTaxYm0K84uLrKL6uwypHYl2G7HGhmatssX3AWcm/onh5mb6qrMTVVq3Hmpcf/VRe6tMlIZnSq3kLtci2WsNvcTdjR3gaPudmR3PuWdq8ILsAlwF07bg9r5DbbbS9sFG5TKf5mMLOPt1vfJ2D4x1TJw3ys4uHsygvtO0qNiq8H9S8vA3Xh0KjXkjpm7PuSu+kUXcsemp8IeIR7PwP6FgwSO4eT80enW1pebNmVfzQ4+Eazp1fh0+Xh2eHoc8XA/7I6Pd4TPvbu8A/oCEs8lrnm6Zry2FkGQwvuF5a/Kp1tahqLgAYr6iIfHQReX/R9/vMfI3Cm5aRItWYE4pr/nW1p7u1G8fSdV2xnAnVbjbrIzhGjoZjT3bpWqV6PBo+4nQ0OHY2Ku5+Q8W7v27bZtdRN1RQ+K5ozOiRuJix2JTTyfuPD2wuaWqYyCy/Fzz8ZmDyfknM1adKW+aaKtbRppa7u1YMG5hIRT4eH9QUHwC3tNajs53i42uFsYcmcrluFq7ti32QjuhpA7qVWGMeTOWCzDbO4kdt9nBOj72UehmnB2s9S+x5Gond+ididxdmcKs4vm7EJH2uVF7c4QbBdO2xVwd2hwt2lu6veOODfVCWvcnaBVRnqjUyUbctdwDblbVSwTL/ViGQc3d+Gi7tgWkcbXNijmZj9MF8rZead2RdvtUybDYVYqa7w9hku83dJxqdz7ZGwtcHczV+BOAXd/+4D733gCd+NWGWvBnRZy/4oh5E6angr31Djk7qkfnQrHAxyiCTnnNm79rXmquehBUfjpcN+jvt5d3p7tnm6H3VwPuroccJl9YDZ84tHuoenVxJ+Nx3V+ycp7n1T8NtXUVD9Rf3fx4v7AwE5v78Pu7gdcXPZh5o53y/xMmDs7uxtn3q3bTGi76Xi7qYQ7S6uMcbEMau7u7ugMVSNzx1vdB4KDT4eHn42Pvzlv3lRLC9LWpkW0c6/NTbmQknoxdeHtha1t09mLr6bMu5C24OKi0jvwR0SrfVhcfCElZSgq6kRIyPHAQIO2Y73tHXptp5XJMPfJWAjuxm9KoI29Nd8qY0nIndncTbC7kbZbBO4mWmVYQ+7UYhlGc2dld0Z5Z0R2c87OhdoF6ZCRBrVLqzrG6Z39a0csjREn0u741C5WsF3iNTL2BvcPJQ3uf+QN3Pk1dwvAXZmb6kQ17kqrjLijU+Uccrfn9FR5mHuypMxdYlF3PgPvdpB3e2/8LJqkqd2yEakianuSgNpuh1mptsbbheiT4X1iKg3c93MCdw03cFfZAO4e5sH9r1aA+6wv/shDyP27/9aF3KnTU4km96BDsDvwMnfY9XAQJuWdr3pb9aayEkGQ+LPxfsf8fLp8PNo93A65uRxw+Xj/x7P2zpr962z3w+6qblXMcMy2HW+bppqiM8/AWZm24CJeLDMYEdGjVrd7euJl7vtmzcKRl+gK/4nU6k5rCf+OyY8sc3ZjamfSdtPxdu7gTm+VIYXcdebu6dnh5YUW4JPMvc/fvz8o6GRo6FBU1Ghy8u0FC8ZqalqmW5bdX5Z3I2/x3cWNTZPzim/mF93ctPXldFvbi7KyK5mZI3Fxp8PDB4KDjwcE4Nreg2s7U7z9ICnebhG404emGr8uQp15y2fInYu5G7O7SW2ngfs/MXBnqHFna5Whhty/o75gY8bcSQcMM7tz3vYKTO3/EYbaf5QYtUvK2ZUwu+LsfDq7PKndCYPtooH7p5IA9xn8gvsX9gB3pcZdqXFXWmWk0SrDcXSqE4bc7VEsI0lzP2GxuYsddZcOuzswvp+WgLOfNnEMyFXbBaxu56lMxl7xdpH7ZKwrcJc3uP9gIbgzzk390toa93//iUvInX16Kqw27AvYZbCX4TCLzRpGEORKVtZ4bW3G5YzggWB1j9qzA0244+A+c+9MHNx9un3CT4fDN1dsew1XADg7ItMHV298Cl8ZiYOj2a/T2/uIu/tBV1fU3LE+dxx5deyu9ziCzyikZcKkmHTJ+NsYqd2stjP2ybBmlpnA/QAjuOMhd2yGao9ajXfLoDl3zNwHIyPPxsdfSk+/t3Qp3uq+4vGK+saJFWWP27TIqy1bbuTnjyYnn4mJOR0efiI4GM+241NS8TIZPN7e7uGBzkq1HdyJkDt115hplTEXcv/cZMidsVjG2Nwp7E7a/p9F4M6xVYY95G5cLMNm7rTDZg+Jy/eSGJ2V142Q3byzOzS12yvSLgtnd2BkdzxnV6hdssF2cbQdB/d/SgbcP5MWuCtzU5UadyZwl1urzH4ptcoc5AncpTk61aFC7vadniqouQcLZO6SrJcRkN0FkXe5+zvPS2EbtQsRbLe9RsYCbQ+RqLbzUyZjdbxdw3+8nac+GasmppoF94+lCe7uJsD9W5PgbvXcVEqrjHHIHX0M706ZnqorlsHMHe2WCTiA9bkfhh0KBwycvMtW3x+rrh6vqyu8X5hwNsG/z58ccicqZVQ9qtCToWufra2uHYvNHoFrSFTGUOGq+5NNTecSEvoCArpVqg5Pz8OYuR/A2HcvHnXH7O9nrNXdwO5GBSbfM6mWWYT6zgS1szTJsGm7mXi7UYc7a8KdaJXBwZ0ccg8MPBEcfCo8fCgq6mxCwqW0tJvz5j1ZtWoKG0ULe+FBUdG1nJzROXNGYmMHIyNPhoYOBAUZ4u1qNfxCvL3dInCndbj/R4+t+JsPuLfKmA25W1Qsw93cuWwGbecG7rRWGVMhd2qxzA9cxu2S2V0v73uojG5628Pk7DaORRWE2h0r0i45Z3emxhjxnf0rUZxdjtTuPNr+qVjazgzuv+MC7h9IC9z/oIC7MjfVAWvc99gC7rMEqnEXsVVG9iH3SGmH3J2iWMYxzF3QqLtk2V0W/i7IXbbZ2TlQu7XBdmfQdj7KZGyalSpOvN1cn0yn6T4ZSwrczYI7t4mpZsB9j1lwp9a4M4L7LkZwf980uLtxAHce5qaSQ+5f0kLufyGF3IliGQZz1/W5t8OBAadDyrwL6zc/1yLaiurXCILEDMfgxTK60alH3D3aPbw7vTW9mpATIXOvzYXvSV94OS57JH7u2ZJ1DxuaJs/Gx/cHBvZqNF0+PmixOEbAOP7q5nZiMmjIVjOlqsmZ9+8t0i4jNdtJC7Zbq+1s8fb91Hj7QaLDnVwpg4O7SkUk3HXgHhJyOjz8THT0ucTEyxkZtxcufFFW1twytf3d9umWlkelpTfy8i6kpIzExdHA/SgO7rSEu75ShqHDHTd3ErjvJmms1SH3b9ia3LkXywhg7v9jHbibC7nTi2UsMXfyUbSbJOZ7aJjOtplAdvZIu6hd7Xandv4i7dJ3dgXZnT3SrlC7hIPtXLTdOnCXyNzUfwlQ4/6FMjdVtLmpTlLjLkSrjIA17vJslRFldGoHr6NT5RJy579YRjF3saPuorG7GPJuX4UX437xsBcE6ZCxqUZGaG0XaVAqz2UyYsXb2calWtInY3OBuylwd3EccGeem8oJ3G0KuX/1F6ZiGUZzn42aOxpyh30Nh2ty3mjbdBuCIM/Wrp1sbFzzdE3E6YjA44G+R33VPWpVtwo+ao5qAo4HhJ0KSx5NrhuvK1x9P2XehdT5Fzdve/V669bh2NiB4OBjfn49ajVq7l5eOAQTBExmd1rJDLlA/AcSpVmhZgzObpLaLdZ2pompbPH2TsZ4O67tMTHnk5Ku5+S8KCubbm1ds+nZ8vWP6ibqih8W147XIlrt/cLCS+npZ+PjcXPvDwrqY+9wP4IPTcVC7gesCrkzj07lVizDOj31j3/83FJzp/a5/4/o4E4LuX+tB3dasQytzN30KzfG8k73d6ZtN9tmobNbEGkXgdplEWm3o7PLJczOE7I7sLMLHWmXFrUrNTKcN/mCu4BzU0UH9694B3dZzk11uhr33aLWuEusVcaC0akhkhydapeQe5QjhtzFKHNXzF1Edhdb3m1Hefvf1HBJU7tNNTIM2p4sJW2XVJmM3celcu+T4Vbgbjwx1c10gTsHcJ9lB3D/kQbu71HA/XvT4M5xbqrlIXeWYhmKuf/EYO4Bv8JegD0IR1Rc9sh0a2tL6/RQdPSVzExEq828kpl8PjnlQkrCuYSIwYjQk6GwhZ0KixqKSjqftPju4vqmidzC63nLbsBP3Zw3bzgmBnXhwMA+f3+0ahxLYaMirM9fEwq8Vz9P1cDuVPBlwHeWQOtOqrAbOzsrtTPxqKm5l+RsO6btB9i0naW9vS8ggJiYei4x8UZe3qvNm2HNq3eMzS++NXfJtUUr7rYhbfk38nOu5Sx7sKxpCv6v6X5h4cXUVFjbUxzmplLMXR9yN93kblh/7sUyjGXuZGPiUOZukbn/j4XaThS4s4G7casMbXSqIeTOVCxDNnddzp1gd9JLOP8xOq4MR5cRvu82J+xsyO4Y7TGKsythdsXZFWrnk9olqe0KuFs9N/VLZW6qUuMu/Rp3pVXGilYZBwm5iz49VY5l7vI0d/mwu4TkXYobT8guOrVLX9uT+iVaJmPzrFQO8Xa+xqUKU+BudmKqPMFdzLmpupA7Y7EM9gRBV+bOlnP33QtrCOsMewcOAziDFq+4W/6y/Oa8eddzc19XVKx8srJ1urWxeXKspgZBkK1vti66syjtUtqcC3NSL6bm3ciDLxatfbB8/aN327dfycxE+08iIk6Fheni2P7+ZBom5B3nYFyBKezOUm/yI+dsLCOykzHURKrdVLCdpbddNyiVsUnG2xvucrdK1atW64LtemofTU6+vXDheF3dy/LyuobxwtX3UxdcTMo7nzLvwsLlt9uQtqyrWcnwTaPJ2Vezt73dhr7tQKt9tnbtpbQ0lN3DwvC11U1P1Ze522LurMUyNpS5227u/2tk6Gzybvw9/8sO7laH3M2au+mouzG707bd1O0XDhsbsts30i6/6hjnC7M7D7KL6eyypnbpd8jIukbm/0j/2NkJ3D8UHdxn8AvuXyjgrtS4czR37uCutMrIaHSqiCH3bgFC7sJNT7VzsYyjmTvvUXe7sLuC76I7u8117Txq+wlxtd1O1e1yjbcL2SfDOjH1kImJqWKC+4c2gftOG8DdRI07Z3OnhdwNZe7mzR1WFRYfD7nDlaRw1f3WtunplpbXW7Y0TDRsqHhRvPZh1duq8draserqlqkWBEFqx2uLHhQtubtk1ZNVeOH7/WXLrmZnX0hJOZeYeDY+fiQuDt1iY89ERw9GRp7Gotk4vnfrq2bwwDuN3Y39l4yAP3KO1pLD7MzObiG1U0rbTQTbmah9ICjoVFjYcGzs5fT0h8XF73bsGK+r02qRFWWP0xdeips7Ep15JiZzODH3XMHyO02TTemX02H5os9ExwzHJJ1PKrhTAOv/yW+fTDQ0wA9ezsiAX4Wye2AgPepuNEDVRLcMa86dD3PnK+dugt1NbzaBOzXkTpmeSi1zN2PuZHY3knfT+G4dskurOkZ6kXZeKtrlG2ZXkF02zi5iUbtA1O4kwXYrtF0ccBdpbuoflbmp0p2butNu4C71Vpk9SqsMp1YZ2Y5OtUvIXSrFMnEcwV2W5h5sjblLJupuR3bH5D1cQXY5UDufNTLy1fYEqWg7j/F2/vpkeJmYepAabzcN7vv4A/f/CAnuls9NtTLkzmju37KZO6zADF2xzAHYQbDT4diDi0bKvAuLSu9sqnzZONn4oqzs7uLFZ+Pj8Qmf55OSrs2d+6Co6E1lpRbRwtY02QSfP1+//tmaNS82bHhbVYUgCJ6Ih//Bb3iycmVzy9TzdevgZwcjIvDOmV6NptPb+wiWdtfN9iTq3WkKTC4ZNyJ4tm0XSTxNoKchXEwu1DZZ106jduZUO1Ygczwg4ERIyFBk5Ghy8tXs7MnGxnc7dsDKVG1/U175MnvJ1bjskYi0QfwqDZ/EzR1ZsvJu01RT2qW06DPR4afDw06FwUf4PPVi6qonq+A/PS4thVV/vXXrnYKCkbi4U+Hh/UFBulcycHYnRd2ZZ6hy63P/yXSfu+luGfY+d9oM1c/Yzd0Wdidru1lwNx1y/5IIuZOKZcybOzXqTjsCfzYp5lZsPyvOLn1nV5DdEZ3dSaldzsF2e9XIENpOgLul5v6pjSF3IcD9D9IDd/nPTf2On7mpMqlx/0CaNe4O3yojzdGpHM09wklC7qIUyziquQsbdReN3QWQd4fGdwGQXRxqF6BGxuIRqcJruyDV7RKLt1s/LtWWPhlewd3fJLj78gzuH9DBnTI3Vf/AdSfz3FQyuLPOTf2aP3BnMffZzDn39/TmDncZFgFWCSuWOQg7Do4HOIYj0wczF13RItoVj1dMt7aeT0rq8/fv1Wj6AwNPh4ePxMXhgnx30aLnZWXbdrwtf1m+8slK2NY/X7/l9RYEQWrGUHCfqK/fsOVFW9s0fE9p2ePJhoY7ixa93LTp1ebN5xITjwcEdKtU7Z6eh93cDupT2AYO1rdXGwd7GWGRdWOPFe9mdHZapJ08GZVWIEOajIp2tatUPUSkPTh4MCICFupiairc2bHqatgelZZOI8jGrS/nFd1MyDkL/y7AxRC/gsFFDy62sVnDRWsetEy3pF1MixyMDD0ZGgy/aCA45ERI2KmwmOGYeTfnNU011U3Uvdu+fby29nFp6b2lSy+mwb8xEQNYyYyO3akNM8ZR933EyxvEOhu9wsHnDNU//YnV3M1F3a1gdzZtZwZ3S0Lu5GIZVnPXj1FlHBiwy+jg/NkWXmc/ERRnd2Zn/9ppZp86trPLkdqVYLtZbbca3CVS4/4vAWrcHQfcHXxuqhPVuEurVWY2N3A3Z+5cwF2w0alyDrmr7BRy514sI2KZuylzD3ICc+enYUYK7O4Q/h4uILKfNrtfeKR2W4LtDqztjhhvt7JPhmOBu/mJqTpwP2ALuM8UCNy92MD9B2Zwt3Buqs017gxl7szdMq7G5v6fjwzFMuj0VDiQ4AxKmX+htW0680rm5leb7y5ejMeojwcGoi3k0dHnExOvZmc/Xb26rnFi+bpHCIIsvL0w43JG8mhywrmEOF2hTNyc0TlZV7PKnpe1Treu2PC4suYNotWWPCypn6h/XVFxJTMTfm23SoU2zOAubIzChAtTaZhLvQZzR7be8SnTUI3y7Hh1DMXZsWJ0vKjdhLOfCgsbioq6nJEB93SqufllefnjFStWf/IU/rhl2+sVZY+T80bhHwi4ssGVB7uq9MFHuDrB1TI2a3hT5UtYq7RLaeGnw4MHggOPBwYcD4ANPoE/hp8KTzibAAsIv+2T3z6Bj2+2boW/5fbCheeTk4djY2Hv9AUE4N3uxml3Wqs7fn9NRN0Z6mUIOTVRL0OiN2Nzt6JehoHdMXnHN4qzU6ndLLgztsowhNw5mjvG7j9Qo+5s7L6L/fUh1s3ca0umkV1xdvGcXeLI7hDCbhdkF8TZFWp3jhoZhwF3J5yb+o1S4y7HGnfHbJWR0+hUpwq591gUcrdmeqqdytx5G6AqGXOXUNTdYnYXWN7l4O9C8rr41M5DsJ2P0nY7aDtfZTIcZqUeM6ftR01qu2Xxdjv3yVg/MZUd3P1EBfe/WQDu3/+Vlxp3m8zdqFtmNrO5wz2F+w4rA6sHiwz7CHY6HIcxWcMIgqx9tnbzq82TTU2jc+acjoggWmVu5OdPNTXBN8wrvplXeKO6dqzoQdGcC3NihmOIaHZgf2Dg8cCggaCI0xGpF1OX3lta9baqrnF8U+XLHfXvWqdbm1um8Jx7j+r/s3ffb1Hk6f7wf3nO891zdnfOzDhmYpNzzjkLKCAgiiiKoCiI5NhN/xvn+Z6zZ3cnpz27s2fUGceABAM5CJgVc06IgoS6nru6OlRXV3VXd1dVV3WX1+fiQgTsLro+3fXy7ft2OauYp3oaG/ipakHR6LA2EKuNWJ2C17OO4gLsGl7HCbs6yY5HdsqKdpyzY70xF7y8+hUV7XBYnuzYcT83FxYcHKxaRypbgYODvm2cj8mcRqk9ZgA2E2wfUL6UijgPH4HdLzx1Yt+hV62LrUnXkgKGA+AAel7w9Djv4X7OHd7C8rroBQcWjjAcz60PtsoR+YE3B+5kZyOdnbOVlUutrY+LijB2V9a7U7M7acOM/kmqpkXdKSvdjY+6k7C7oUXUdr3gTivkTsPc9bO7rrzr83ejeN0EZBedXcjOboPIblXOLiBq53OHDLc1MuZruwjuggN3cW6q9dW4i60yXI9OdaAEdxsMufOqWIbDMndzzZ2RMar8i7qbwu6cyLuOwgdyH11P5PZu0jjy/KN2Hmk7Q9XtvCiT0RNvN3pcqvl9MqyD+6/a4P4LJ+COr3EnB3eyGvcfjJ6bup5xcNdv7t/omjvcL9TcXf4Jrz/hMMJhhx8WPDDg7Mjdef9DczOshoUGBEFmDx58Wlz8rKQE3t//Zn9lzWxK3o2YzOm47Cvb9jyCDyZeSwwZC/Ef8vfu9/Y47+F2zs211xWWW5+b10WviEsR8DkfmpqiMqZgn0nOuQ6/fbFnz3Bg4HkPD3UiGx37iU3+xJZq/ie+i1w9/1O9jlGs4zrrFx1e1xV2LMlOLI1RlLPD7cScHW3XUZTGTEZGTkVF3dm8ua19qar27ZGGd3DE4ECl5N5Y7uhobV/M2jYDhyg4aQy2LNgl4BxXt0JhL8ngI/Bx2OvC0y5JZSu172uTrqPgDgcNPYzw9/W5ufa5Yu9g7O436Bc2Hlb8tBir0ZetyLB3kM7O1+Xl1xITL8fGwg1DA++qnpmzWM8Mddpdi93pt7qzFnXXw+5/MpLaCfF2XXA3LuSuKnPXMvc//vEHsnqZv+kd5Ks7bMDopc3rtISdNWS3RWcXkd16kd2anJ09aheD7cZqu0XBfRXn4L6aWXAX56YaU+PuQNvcHQVT4y62ylj36FSa5u7MeMg9mOmQu5CKZYRg7jHmmTtT9TLsRd212T2An+xOQ+SNXry4/Vw6O0WHjKjtfCyTYTze3m0w3k6/T8aYiamWAHdX88HdjLmpFDXuDLXKKJeWua/VMfcNGnP/WMvcj2LmDj9BeLTAWZaw5erm7XfkiLz5Q7NUtlLyrEQqW0YQZPP2u1EZUyHJY8FJo2GpEyl5N2ob3+c/zA+bCPMb9PO84OnW5+bS4+J81tmxy9Gpy0nSI/Hp99n5dCd8bVzWlaDEkYj0SzvLnyGdnZciIgZ8fS94ep5zd+9zc1MQPW65uChngTo7ozFtFRZj5TPqpDbNpYR1la2rC9nVXTHq8afKCajOzj0SCdwMrE5nwMcHbuqgn99ocPCNlJS5w4cRuXy+ru5xUVG7dPnu5s13srPfH0FT/LLOFbkcaWlbTNt6Mzhx1EdF7XDmEs5QOHPh1IbNAY52ZPpkVe3blsWW5OvJ/kP+cBjdz7nDUXDBjoJiYf+AAR/3uugVMBwQORmZdjOt4nXF20OHMm5l3ExLW2hsfLl3r4Lf5Y8KCyfCwgZ9fS96eRED79r/mcBEdlcZq9Gt7sZG3VVy8SeKpcfZ9cTbDYO7oWIZSnPXYXeD8k70d3rr7/QXz5Dd4s4uoDC7iOxW4uwitdtOsJ1a2zkDd47mpv4r/+am/l6Yc1PFGnfGW2Xog7uNtsoIenSqbYbcWS2WsT1zZzrqzgS7mxh45xO+C2YNC5TaRW03q0zGvFmpjMXbjemTMbLA3ZiJqWTgvs4C4P4P88Cdfo07ecj9X/Wbu77LGbJKd80YVV1zRweoqs0dfoLwwICHK5yeEemXCnc/zNw2Aysp51pY6gTsOehpq3jugw0kMmMSUfyKvxKPSbFrn6tzt7PjGUf7U/Z2J+3gHbc+t5CxEPicyprZuOwrsZmXt+y4C7+9oiirGfTzG/Dx6VeJ9khg4FhIyKiixGY0OBjeh4+fc3fvwcpnMC9WkLFmYR9RLYzR8esUXtXVSxGox2fY+9zczsFyd4eFOruX15C//1RU1JMdO7AJpXCDH+TlIXL5h6am6tq56rq5xZaW57t3ZxTczim+B++0tS+lbr0ZlTEVnDSKptojLsDJi56eihOQ8CIQzlA4rzFwj940jQXV02+lY4cR/XeLXhdJj0TSLUH5v9sZ3oGFynufq8d5D+9+78CRwNQbqS2LLfCFlbOVNe9q4Hs0f2hekcngg2/275+OiZkICxsPDYWD2e/tfU4deCfrmSGMVFWXzOhnd2MbZr4kY/e/UrP7n+mxOx1t1w/uhFYZQsj9K9W90GPu3+NQWA3NVOyOyjs1vpu7aAs7u8jOXJj9B56VxlgZsn/NH2QXnd32qJ3PwfY/M0ft2POXGtyNNfc/mxlyZwPcxbmpXM9NFWvcrbBV5heegbulQ+6Bwg6588DcL1h8gKoQzJ3JqDur7C7Ku4WdPYGJHygptXMVbLeMttMflGpcdbs1xNvN7ZMxa2KqpcFdYh64052bylCN+2qdpT/qTlbpjr6wJ3bLoOau6HNHZ6jCQwUefvDYVp0Oige5qn8cHvxwlgUljmQXoUH41sXWsIkw735vtz43SbfE8Yyj3Um7DSc2OJx2cOlx8R3wTbiagCDIzvJn6fm3corvrchk15OTL0VEjIeGToSHT0VH387IeLJ9++uKClnnymJz88P8fPj81vbFpzt3Xo6NHfDxwdi929n5rCKHjkbRsTS6gst7cIn4LnVBjXb3OiE+36uaenrR23s4IACd9hoePhocDO+PBAZORka+Li9fbGlB5PI9B14stbU92bFDLkfuZGXBZ8Lb+bq6dulyY8sCVpgDb1PybsB+DpsMnPVuaKQdc3biCaV4rYi+3oPzF44k7GyxWZebWj/AYUy+nuw35Odx3gNupaRHQe1nnZ1wd9hZEb9Xs7vvoG/4pfDUm6k593J2P9/9rqYGDiDccji2cIMfb9/+sKAAvi0c7dubNo0EBV308jrn5tarPlCYvFPUu+uOVFV3uzPC7voaZqjYHScatKgdp+00wV1/yN0Ic9dldwp5N4vgjbF17pFd2M7OYZjdBmPsFkd2dp1dpHbhB9sZ1Hb1E5PJ4M6TGvfP2atx/zexxl2scecRuIutMmLInSzkzsb0VAsVy1iNuVumXoYDdhflnUNkZyHSzotgO2PaHtPP5qBUQ9XtjJTJcB5vN2pcqlOAfnA/bWyBu2Fw9+IxuDM4N5VQ477OWHCnc3WjFXXXrXRXmzt+hiocQzjI8IOAHxz8WOEBgL2GUb9uwepQ4BELpwacyNGbptqX25fa2vLu5wWNBnle8HTpdXE664R1sTt1Obn1ufkM+IRPhG+6vUmOyHdVPNu+98mHpqaZzMzrycm30tOf7UQLZ5DOzuJ9T2UrsuKyp6UHXiy1tx9+d3hFKoU/gfevJiQM+vmp+2f6FFF0+G2/tzeWi58ICxsNDh7w9UUbVLCCGnzxumK66aXwcPg0eGfAx+ciOtjVe9DXdzw0FG7D89270dsgl8ONuZaYCDfsXU1Nu3T5zf79ss6V6rq5mvp3yx0dz0pK0vNvRW+aLjv46mlxMXx+RsHtuKzLEemXghJHYOeBMx0ODpx0yhOK8P9CFK8tMXNXHMleOP1h90vberOuab5xoTH7TrYG3LslqLZ3OTmq//VA9W8IqLwr2B0OBBxw30HfkLEQOLwLjY1wANNvpafdTHuyYwfcPPjRFD0uOvT2UCfS+f7IkYnwcDhc6FBbrGrGza1HIulycjIQeKczUtWYkhmj2P0vegREb5yQoCFEbTcE7uqQO01zN4LdDck7s+tvxgs7v5Ddos5uNcj+Na+Q3ULCbsXOziq126C2/zcL2m4F4C7OTeUJuDNa4+5gLTXuLiaCu9gqw9HoVIGH3AVRLMNembuVmrt1s7st47upzs4/ameuRmZQP7VbVtvNqm7nLt7OVp+MWQXudCamCgPc/04f3A3WuNMNuVOB+2oqcKdmd0LUHT9GFTX3HzBzh7sMhwIOzhos6q5gd/gBwU8NfpSKF1ToTx/14qBuePjBIx9OK9jWNm+/27bUhja8390cPBrsddELa3KH5X7O3bvfO2gkKGoyKuVGytYHW1sXWysPz745cOBpcfF8fX1N/Tv4woaFhoKHBTn3cmAdnD2479U++GBV7dvI9Mm47CtNrR/e1dRMRkaiVu7rO+DjM+jnNxYcfC0x8cmOHfdzc1+VlWEx82clJWh3uZ/fRYUpo84eGHg5Lu5OdjY29PVDc/PLsrLpmJjx0FBYVxMSZg8erKh+LZWtlB96lbltpq5pHj7zdUXFXHX19eTksZAQ+HuL9jxebG1taF6Qda50yhGpbHm5vR3e5u96GJKsmokadg5OQzi/4AzCzhf1CaJ8Rap6/ak+hnCewg4AW2JGwe2q2rnK2UoU3Af94KChPfjdCm0/4+igmSSrWmcc4OPwp85nlewOxzxoNKjwUeHhucNopL2zU7Yia15Ex95Wz1XDPXpcVIT+c0JJCdz3SxER8BbuO1ajj/7XAXXDO6m8U/fMENldFXg3s2TGYODdKBPR/UJScDcYctdn7tRRdwK7/6ir2yoHZ8XW2eB1poWdqTD797wPs4vIblPOLgBqF0Swnec1MrS13dLgbsVzU9cJvsb9Ix7XuIutMhy1yug19w08DrlTg7t1hNxZmp7KtzJ30dzZMHfm2F1H3k3C92FR2Fl2dmpq53ewnffazlSZDKPx9hA68XaW+mT0TkwlA3eyPhk+gTuxVeZvxs1NNaPGndzc9Wk7bpE3zGhH3QljVFFzRyvd0XoZ158xdkdfDcIrPe8TitdvJ7HYu2OA0tzhMQwnF9bk/mT79saFxsrZyuTryYEjgf5D/kGjqLOn3kzNvZ9b9Lio5FlJ2auyqrmq9qV26bL04OxB+OCm25virsSFT4QHjQTBl/gO+MLbiEsR8A3h06I3TcE3Ty+41daxdCs9Hauggbc309IWW1oWm5tLD7yorpvDuL9431N4+2LPnqmoqLGQEFhT0dFPd+6E7wOfJpcjB2tm0/NvVdXOvSoru5maenvTJrQ4HUEe5uffycqCb9javnToyNsPTU1z1dX3cnLisq+EJI1FZUzB5zzbtaup9UNW0R34DpnbZlJyb8DHYSdEi9pD+1SRdszZcWeBzktWlbmj/28AA3f4Jmlbb6IN7og85UaKBtwVg2cxbbcnFNUrOunh43h2h6/yGfCBux0zHQM/gi33tsC9m6uqelhQMBIYCMcNu78Ptm6Fj2B3fKmtDe44HKiLXl59ioZ3ZWOPo+MZtbzjAu/HcIH3n6l7ZtTsrqZYBtndfFvBa7t+cNdj7t8YNHdSdtcv7zoEb8Sioeqm8zo7wm4jYXYukf1rsSuGS2S3tLMLkdptp0aGtPeMM3D/s4DBXchzU8Uad/PAXWyV4bZVxkZC7kGGwd1S01PZLJZhZYCqFym4W8zczah0Fy67MybvQvd3E+8ya87OMLWL2k5X25mYlcqbeLs5Be66E1NPGipw5xrcV2mD+6f6wJ3G3FSaNe6mtcrQBHeSwLvmmuX3mqi71hhVddT9U0XUHWN39BUmXt590MA7PAxQMg7ugUcvnKcJm69WVL2WrchQKO9YKnxUmH0nG95fkUqPNLxHOjvfHT78orT02c6d8FaBvcj2J9vTbqbFXo4NHQ/1H/L37vdGq1T60JJ1eCdsIqx1qbVDuoyNbK2pf/eosPB6cvLN1NSXe/fCbxcaG/e/2d+x3LHv1b75urrC0keR6ZOZhTNS2cqd7OyrCQk309KWOzrQYa2zlXtf7oW30mXp5u13CnY9hA9ihTBwe67Ex48GBQ34+kakXdpa8qDqbdVyezt8Qk3Dux1lT+DbVtXOzdfXvz10aOe+p/A5sFfD/YW9QtUeg0XaNc6uecDr5EiwF66Kf7E4A68V4VSFbwLPGnsrXzZ9aGppW9xyb4vfEArukh6J01lFvF2h7ejgV7JpsPBHWOAdZfduZ5de5X8pCBgOiJ2OhXtxJytLjsjjLsdFT0XDAXlWUvKupgY+UvS4KPFqYgv6rxYt8GlTUVGDvr4XPD3Pe3hgpT29rq7dqrYZksA7adUMWc+MVr27mkd12V1PzwypvJuK738xEtwNFMtomztJvYwOu+sG3g37uxnrRz7xOoPIznNnt11kt7Sw24iz2wS1CznYTjVlBA/uJs1NXSWgualfiHNTxRp3rltlXMVWGb6NTrXRkLuAimWMNXdvnpg7D6PuHLM7w/LOc4I3604FsOvsnFC7NWk7zUGp3JTJmBFvZ2pcqpl9MmZMTOUE3F2owd3ZeHCnnpuq1SqjBe4mtcoYB+5EdtdE3Q3UyygmqSrYHX3Vqs3uWM8MFnWHxxU8jGFzyNw2s/fl3vu5ubc3bVpqa6t9X1t28BWCIJdjY9EOk+joq4mJ8Eevysv3Vr7cvvdJu3R5893NMdMxwaPBvgO+nhc8XXtd0Vj3GUdJt8QLTsTJyB1PdsB32FXxvPzQqxelpY+LiqQraKt77r1cTOqDRoLgbfHT4nc1NUV7HucU34NvDp/5sKBgRSo98OZA8vXksImwgOEA+Fs23d5UN1+HyOW1je8XW1tLX5TCR6I3TcFODhtIRNqlhuaFV/v2LTY3b9vzOH/Xg6rauabWD/DXNbYs7N7/PCxlnNDSDncfTgSVs2MPb80DeyPxde9JdTmPolVGAe4R54MTR+H776l8KUfkcJP8hvzczqGDZ526nBzOONifVmr7xpMbN/6ms05uVMr7aXs1u2P/YuE/5J9+Kx3txkc6O5Y7mj40HXp7qPFDoxwNtyvy9Agye/Dgm/37lzs6llpbp6KjR4OC0IGxQUFjir6dIX//8x4ePS4uypJ3uBXwd27YoKfknU7g3Zyemc+p+IZaYUiYBveFf6UAdzohd7y5k0bd9bM7aebdAkvb1hnndQaFnecTUMUYu5UjO7WzCybSbkXULqAaGabA3dxWmd+Jc1PFGncWa9z/zi64Mx9yPyq4VhkrGJ3KbMjdiV7I3ZmNkDvvi2V4NUDVNHPnqF7GCtidRXy3iMIzc5sDuHB25qndnGC7oLSdqzIZS8TbqcalOpNqO0WfjDkF7vwB98+0wP2fOHD/yQhwZ7vGndLcidc1v6NYFCUz+Kg7eb2MfnaHnwhW767Ia5+BRxQ8noMTRytrZhsWGubr6pba2mQrstnKymuJiec9PQf9/MZDQy/HxT3Iz19BkKyimdStN3eWP0M6Ozfd3hQ2EeY36KcGd4czDs7dzvDb4NHgxGuJ+Q/yq95W1TfNv6+tbfrQVPCwIOl6UsSliIDhAO9+b/dz7rD8h/yTriXtf7MfQdDemPdHjqx0dhY9LoLPxL65x3kPWMFjqLnvfbkXkcvhG7Z1LBXve5pRcCsu63L85iuHjrx9XVFxJyurpW0xNe9GZPpkWMo4rJDkMVTkYwbgPsLpBncWTg308a9yduVDWmcOgfarYrW5YyF3HLgnjZYdfLV975Mj74/AzYNb69aHgjvaJ4PF20/aYby+AdNu7YX9kSbwrmB3+HJ0Vm2/T9h4GByEbY+3bX+yfeuDrXBMOpY74O4/Liqajo4e8vcfCwm5mZaGfeRqQgKsR9u2wY8P/d8JMtl0LGzffljJe5eTE1pvY2+Ppe0J41WPrV2LlbzrC7wTGt5VhPqt8YH3z80HHTIVIgV33ZC7ieauYPfvKVT6R/b8XYfU2VB1A8JuEWRnP8zODbKLwm5JZOeHswuX2vnfIcOZtlsY3MW5qZzWuG80p8b9BxuucbfFVhlrD7mfEVLIne/FMmyVuYvmrmvujLO7PwfsHk8OzYG2sbhCdg6p3fRguxnaHm2utgumTIbLeDuTfTIGCtxpg7uWtrMD7v9LA9z/QQLuZHNT/50S3FlqlaGl7eTXRPqi7t9qou5Yq7sWu/9TXTIDBxx+CljDDBZ1h0cRPGhhr4jJnM4ouFW4+1Hzh+bK2crX5eXjoaFjISHTMTGPCgvr5uu2ljyAz4lMn0zYfLWtfQlBkOw72aHjob4DvmilTK8rVkfuP+QfMx2z+e7mPS/2tC61LjQ2yuXI7ue7M2cyYy/HhoyFYEaPDRf1uuAVNhGWcTtj57Odte9rpbKVA28O5N3PS7qWFD4RDt/K66KXN5z9U1H182g5zIs9eyqqXxfsflhVO7fU2rrU3r7Y3AzvtHcsdUiXd5Q9CVWMQoV9AM5iuF861TGYs2MTCNAHLfGfiHRnHanMXRlyR8G9C85W2FLCUsYLSx9JZcuH3x1Ovp6MgTvcKcczjli8Hcu2Y7y+/sT69b8SF0Helex+1knSI3E7h85The8ZNBoUcSkCDtGKTPawoECOyCMnYb/zGgoImIyKurtly3JHx8P8/Jd79jQsNMBhL3xU+O7wYfjxPdi6FX6CaMm7omTmrLNzF1byjp+wShivanC2Kq5qhk7gnVLetdtm6ECPnk/+XA+40zF33XoZKnanCLwbgHhj1g9cre+Z5nUR2fmD7DwUdu6QnTfOzgG1i8F2VmtktMH9ExsDd87mpq4V/NxUW26VWWXlrTLHOWyVEULIPYBXIXeBFctwUuYuUHPnX9TdguxOje8BVi/sCawe1SE2qZ27YDtj2m7p6nYzZ6WyGW83o0/GnAJ3sompwgF3I+emkoTcv2WuVUYPuP+VbFGxOzHq/gftqPtHWNTdQfHfSdEXzz8R2V3VMAM/cYUg98JpAttRfPYVOSLPnMlEEORtFdqK3iFb7ljuKCl/Fpk+GZSI/oehkOSxxC3X4INLbW0VrytipmOCRoP8Bv1ghV8KL3hYIF1G22Oe79r1ZPv2D01Nuyqew2/hM1NvpioT7heVCXf4kqRrSdVz1Sudna/Kyuqb5tE2Gzna0JJ2My16Kjp8IjzuShw6+3Tnzptpaa/27dux90nC5qsxmdNwG3J23Dtc925ryYOSimfp+bcCE0bgXpCNQlU6O/aI1SC7wdgK9jpZ8X8C7HwwcD+NgTtsPnAz4IbB4aprmi98VOg/5I+Cu6JaRx1vV2q7StjX/bIOv3TlXYvdFWl3zwuecJTgUMBhuZeTg3Xow2FEj8zluJnMzL2VL+eqqho/NBY9LoIfXN79PDjmjQuNZa/K3h48eCkiot/H57yHR5+bG7pcsbJ91x4Xl7POzmccHU/Z22OZdw27KwLvdOSdtOH9W5Va6pf3L3RcyTQY+tx4cDfW3Knk/XsOfZx5WDfb1tlA9u8EiOyisPMC2fnk7CK1CyjYTkfbeQDu4txUscadBNz/Jowad7FVxtZGp5obcj/LeshdcMUyVmzufI66G2Z39uVdr78HWIGwJ3BwAKmdPd6sh4c5wXZGa2T4oe1MVbebXSZjSrydelwqS30ywgN3CTW4G13j/sMfmWuVMVjjTtR2Q/WbhP/sq6/VndAwQ87uaLG7KuquqJcJOwen/6bC221LaDMJvP3Q2Hik4X1W0Z2Q5DHYChSn50U434MSR5NyrrV1LD0uKqp9XwufvOPJDpTp5XLpsvROdvaV+Pjrycn38/LQIHzRHXR6asM7eL/gYQGWcw8cDoS38NuG5oVHhYUzWVlPi4sPHH4Dfzt8fn3zPDY3Fatib5cuP9mx42FBAfyNyTnXg5NGYZfTPEHHDMANg1MYzbOremPgUY0+hn1O4sLs6MOS/KGo+zIbZ+6KV8hYyF0N7r3wN2YWzshWZAW7H3YinXCs1OCOFrifslfH24nUfhy3CPh+Yj0Ju/dIsH+ZyLidsdTeDn/jXHU1HJOqt1X7Xu079PZQ84dmOSKXypbhbftS+3x9PRzPu5s3w+fAjwZ+eyk8fMjff8DXFxa8MxocPBEWNhYSgnXOdEskeHbXCryrMu8/q9tmVq3Cy7tu1Yxu4J1K3r/U41P0UOlzMm3/XEe+yM0dh5XfUNTL0GJ3HL5zTPDf01wMqTpjws6TMLvAkZ2fvM61sFufs1uU2m1Q2/9Ee3EJ7uLcVAbN/Vuxxv0T7lpl/im2yrDfKmNdIXermJ4qmrvC3Pstb+7csrs/9+xOw9/5oPAGbx6Hx0oo1G5N2k6zup2dMhnG4+1M9MkYWeBuQXD/mT64f+rEaI07s60y5OBOre3EiybcJZK6YYas1f0PikuGj+yIxe4k7K4odoefJvzo4TGDZbdDksciMyZjMqdjM6eDk0bhXIbTx131yIdzAT4HdqqknGtHGt63tS+9OXDgaXExgiANzQvPSkoGfX3HQ0OvJSW9q6nZvf95XPaVqIyphM1XDx6ZXWxt7UQ6973a17DQsOv5Lvj8l2Vl8MnXk5OX2tu3ljyI3jQdnnYpetNUdtGd8qrX1XVz8G3hbzlw+A2ClsjfgZ0c/na4DXCiYaeS4h+lzuKdHX2sKsPsWsiOe+wdW0v5Olz9Yhtn7ljIXQnuZ+F0hn0sJfcG3KTELdeOvD9S9LhIWSlz1tnhtAPaJ6Oj7WuPr9Wz8Jl3PLs7nnGE7+na5+rT7xNxKSL5enL56/KDswfbltrKXpYVPiosflq80tmJyOVPtm+/npQ0Ghw84OMz6Od3KSICfihwnO/n5k5GRo6HhcHbmczMD01NS21tS62tqMUr8u99bm5o2l3RM6Nmd0zelfiuO2FVNV5Vq2qGYraq/sy7Lr5/YZRD6XzmF0aG3PVUulOx+3d0YJq+iRu1WAB01nld+EIS/K0AAIAASURBVMguCruI7BaPtIvU/t8W0nZdcDfW3P8szk212rmpYo27lbbKiCF3wYXcGZ+eyjtzjxSquVu0Xoahhhla7M65vNMmeAZF3ti/yxIHZIh9amc62M5PbdcGd0+uymTYj7ebMC7V/D4ZZiamkoH7L8aA+zFScF9tLLgbOTeVpMadvVYZc8BdH7tTRN2VDTPfwx3Ux+5osftxTcNMQBc88OBBiz2w4R308Yl7BKJ/GtILJwWczuFpE6iJy+ULDQ1tHUv18/UIgsxkZt7KyMAGeCZsvhqcNAa7X2DCSHjqRE7xPUTx615OztuDB6XL0uX29gf5+e+PHIEPxmROw06OhdZhRwpKHIlIuxSZPhmVMRW/+Upoyjj8jXAOwimj3RhzGnvEKsPs2ONQ+ZDTCLvuP+1QvT5XvwhXmrsG3E+qwL0PbmF89hW4zTv3PW1dbE26luQ74Ova5+p01gkF95MacNfS9mNr1xxbQ7pQ1daWdw27n7Z37HLEGmawYvfAEfT/B4RfQltl8u7nvaupebxtm3RFei0pacDHp8fF5YKn55C//2RU1JMdO+AHAT+O68nJj7ZtkyPyPS/25D/MX+7o2Fv58mlxMXzJWEgIfD58FTZeFat3VwT0Nyqnvar8XV31rj/wru4iJ2mbwfW808R3ozzrC73gbrK5f6uWYgpN/l746zvGF8t1MVaM7F+Jwm4jzi5EareZGhkGwV2cmyqoualijbsAWmV+5k+rDM9Hp9pcyJ2Z6aksFsuwV+ZOMkCVY3PnSb0Mq+zOc3k3D+LNWpa/v4acPd7cH71Fgu080XYuqtuFEm833CdjSoG7ZcDdjS64ryIHd8q5qYZaZb5nuVWGDNw/M3IprpuoGmY0UXf1MFVlsbvekhkVu8NPVjkg1E/3f0IoX3rBAwwehPBghtMHtrjYrMspuTeyts0gCFL0uAjpVGTYmxeSc68HJgzD2Y2dj3BSwzYVnjqRv+tBU+uHkvJnlTWzB2cPtkuX4Qvhm8BeBJ+Gnmjq1zlhfapTD82zOysbY9S17ARk/1WD7O7H8by+muwfcnQ7IbXYHXu9rXghDd9fDe7YmFm41+n5t/ZXv/nQ3Fz2sizxWqLfoB8e3Df8phyUqtZ2pa0f1azVR1fD0nwEJ+9Y4Qye3eHbOnY5Onc7u/Siw2k9L3j6DviGjIVkzmQutbffSEl5WFDw7siRoJEg+KOL3t5DAQFwqOFH8PbQoZd79jwuKkLk8tz7ufFX4oNHg+GrWhZbsAqg5fb2y7Gx/d7efW5u3RIJyu6Ojmcc4C9ULXt75ZDVjRsxeYfbiFW9EwLv5sv7Vzq+ZqaI6QF3SnOnZneD8s4riP+O+yVkZBcD7LwTdl4iu9VQu1CC7RbXdlsFd9ubmyqIGvd/N7rG/X9ogPvfTQR3wbfKHKPbKmOdo1MFFXK36WIZ0dz51DBjBLvzRt6teQ2xGmlnhNqtWdtZqW63VLzd2HGpTBa429Htk2ET3F2pwN3YuamGa9yNaZXBmzvNVhkmwF2X3QlRd2LDjJrdcSUzDorgi9Pf4YgRR6p6KP6LpLK+XOt1IPZKTyny/mfgEQiPYThH4BSGTS9h89WG5oXC0keZ22bCUydgN4AzS9H9ony0w/uKT74Ie1dgwkhY6kRSzjVFsH3ESznvtFuVXu/SfgCfJtSy4+tiiDF2qmIiV9WLec2r+v/VelWveA2PvUpfqzB39aHY6K0Bd7gLcMsRBKmcrWxu/VBdN7fz2U7/IX8U3Luc7E+jE1M18fbj6/DajiH76p/JltrfMXlXBd6JaXdFyYxLD8ruPrDdTkfLEfnjoiJYjQuNmTOZYRNhwaPB8BYObGrejYLdD+VyZL6uDsu2b767OedeDtzshcbGuqb5HU92wB15VVY2HQN7t885d3dspGqPRIIueMfFpVfxFrP40w4OJ+3s1ENWtdgdk3cFu+PbZrR63g1VvVPiO3X43ShwJ5q7Dn0SzP0bavn9zkh8t8Klw+tsCLv1IftXorCbiuzW4OzWS+1WViOjA+7i3FT+1LgLHtxp1LhbaavMZ2KrDEetMie1wN0iIfcA3ofcRXPXY+5RFjd3JqLubLO7KO98dnYmqZ1ZbR+wOm1nv0yGpXg7rXGpDBe4mzcxlUNwd6EN7qbVuOtplTEq5K63VcYQuNO7vNJhd51hqvrZXdkzgx46iSbwTnBn6lrzk/AQgscYFnjH6t1hwZmFZtKDNd0v6hdj8Fusl0bh771Ya41E8ZmqiphTuAfebwpep4qxE4SdctCu1iOHKmSDS7ur7rtygKo6+K8A9264dzGZ002tH2SdK9tKH1XWzLYttQWOBCrBXTExVQ3umiYZTNtVvP4ZNooUv37+DI/vmLwrA++k7N7t7Nbn5jfol3Una6m9/eDsQTkin62sRBBk78u9RY+Ldj7buf/N/obmBbkckcqWW9oW2zuWpLKVw/Xvtu99kpx7PTbrckn5s+q6Ofh8+KrJyMhBX98LXl7nPTxgXfD07PfxGQ4IGAsJgTUSFIQWvru6nsXYXdH2TmB3LXnXxnfS2LueqneD+P4lHWrX0XaDIfevCSZriN3JCd4qLZ70DrIj7FaG7CKvCxrZGXN2S89EFVaHDB+C7ZYCd3FuqljjLrbKcNgqw7/RqdYecu8yIeTO+PRUNopl3IwolmFxgCo35u5tqrnzIOrOHbuL8i5QZ2eN2s0Otsf0W6G20yuT4TTebmyfDDMF7uyDuztdcDdY424suCvN3Y5+q4yxo1NNAPe/GFqE6yn1pdMX5OyOL5lRXk2Q9sz8HXtRjb02xl76EktX1Olvdd2KuoXG/zTuUad4dGEPJ82jSPm4Ur32Uz0C8SXsqvS65vFDqGJ3Uwk7rX+PMbTwr/9xdxb+Fs3d1ID7GTg3YVeJypiqqX+Xnn8rbCKsbh4Nj6MJ914VuGMF7r+s18TbcdpOdHbSpcZ3tbxj7P7L+vUn1qtLZpzOOsFf6jPgE3s5NnMms+BhgWxF1rLYsiyVIghSPVdd/LR426NtB94cmD14sLpuLnfn/cQt10JTxmEnV7weQ/+rAdyXxpYF+KoXpaUTYWFDAQGDfn5D/v5jISHXk5Nf7dtX+752ub19uaMD3scXvmNDVgn17uitVsm7Lr5rDVlVx9515V1v7P0rmmBHQXtfGQq5U5n7N4yC8ndMLdYknTNbZxvZRWHno7DzHtmtLNLOHrXzP9hupraTgrs4N9XK5qZad437/7AI7gJslVljdKuMGHK3VMidjemp7BXLGFvmbvXmzvOoOwvsLsq78J2dKWoXtZ27MhkexNvJ+2Q4Afd1NMB9LSW4HzUZ3D/VA+60atxNbpWhGXKnMzT1L7SXnoYZKnYnCbx/pHp5r3xxrpytqnyBrX61rBUGJ6i0KvmuXpqHBO5fX8hfjqofLTrRdUI/jN5+oZ+0HwwGltbVAcHc1f+0oA3ujhi4R14IT0MrZXKL76XdTJMj8syZTHRoaq+rY5cjBu5a8XaVtuNT7aswkKZYuvKuYffjmrQ7/F2OZxTzVM+5eV/09h/yDx0PjZyMjJqMwt7GXo7NuJWBdc68rqiorJmNU3Tlw66l+E8JPbATwm8j0yerat/Cp91KT78UETERFjYVHf0wP3+ptXWlsxPuad18XU39u/3Vbx4VFk6Ehw/6+Z338OiWSM44Op7Cdbsr7u5aZVO9Kqz/v3h/J7S94zLv+LaZ76jlnRa+Uy9Sf/zaoLlrs/s37NMz96BvqdtpBcgu8jojws4fZOc40s4BtVt5sJ2dGhlmwV2cmyoMcOdZjTtj5v6J2Coj0NGpthFyd2Ij5C6EYhmjBqhayNwtXenObNSdM3bXK+8ivjOJ7NZF7SbUyAhE2y00K5WBeDsXfTKCBHf6Ne4OPxrTKsPQ6FRaIXft6ynDV1702F3T7a4JvP9BE3jXlnc1vitfn6sjL5pX1NiPA/sxaU0cJfxkDS5DsP6Zbo+QTpWQzk+fZJFcOEiId0fzzwlEcD8FJxScubAjhadNFO5+dLj+3Z4Xe6rnqqOno336fVx6XXTBXRlvx2XbtWwdTYCv+vSnT9UL+wgJvmPyfnQ11jOjy+5Ysbtbn5vHeQ+vC15we/yH/EPGQhKvJXYsd9zdvPlWevqyVFq87yk8ocDuBJsG7DxopX50f1DiSFz2ldrG9wsNDTdSUq4lJj7YuhU+ufBRYdzluNDx0KjJKDki31/95u2hQ4+2bbufl4d1vve6uqLF7qqRqic2bMDkXdFdv07RQk8keMKcVXzm/Qf98q49Z/VrCuI0itr1gPvXVJhLTcPfiss2kJ23wv4l35YhYecVsnPv7IKmdquvkRHBXZybats17lbSKnOUyVYZBkan/rrBakLuVjE9lX6xDB/K3D1ML3PnqbmbH3XnO7sbLe9DIrJz7+z6qJ0XwXaeaTtuUKrly2RC9ZbJhNCMt7PSJ2PmxFQKcP/VUuBufo274VYZdkan0gJ3sisvikswMnbXXDHhLnlwgXddef+j+noBF7JR+/vHmpfr1BF4kxbJOFwKVcddFPzdpIXH95/I/wlBU+OOB/cuOK9h54zffLV439OG5oXmxeZtj7bFTMf4DPhgCXe7U3YbflMVuOPj7QRt13Z2ReuKahH8XVveqdgd/l6H0w5wA9Ty7nnB02/QL3oKnap6d8uWycjI68nJnZ0r8dlXYEfFXjTCbgnbeGDCSGT6ZEbBLUQuxzy9c6Uz/2F+wtWE8EvhAcMB8H3yH+Q3fWhqWWzZ92rf/jf7pcvSmczMQV/fPje3s87OaNRdxe7o2gA3SrN+Xb9eGYFft+4YYdQqrm3mb8bIOx18p7X00qph56XDxzSWrQs7v5Gdn8L+pSjsfHN2kdqtqEaGDNzFualijTutGvfvxRp3q2mVYXF0qpeZ4G51IXdGp6eyWCwj1AGqAjd3xqPuHLO7IXmnwPchEdnZQ3buqF1o2m4lZTKmxtvN6JMxXOBOH9yJ2s4ouK8xGtyNnJvqSA3u5K0ybIxONQLc/88qw0v7QkyL3fUH3nXkXdU2Q4LvP3ykfQmgE4H/O8X/Q6VT8IL7fCdqT3fU+f8KRi6dyw3NjVReJiib69FX8vBQhMcnBu7wsIdzBM41OPdDkscaWxYOvDnQsthS1ziPIMiWu1v8hvxQcD/jaHfSDpuYio+3Y2UyRGpXCfsn//hEd+n6Owm7H1Wy+7pf1hFHqp51dul18TzvGTQaBDd1qa3tWmLirfT0qrdVO/c9DU+bgOcFn5h+eC6AJ7vQ5LHoTVMpeTe27XmMyOVvDhwoe1mWcy8n/VZ60rWkhKsJWx9s/dDU9K6mpqLqdfVcdeqNVLjXrysqrsTHY+beLZF0OTmdcXQ87eBw2t7+lGKdxhZ8BPugnd1JVQoe63wnZXeSkncyeacqnPnaKBulga3fsL2sUee/YQ3ZbVbYvxSFXXR2K6V2nmu7RcDdxuemijXuBsCdxNwZqHHnrlVmFSOtMq70WmUEOTqVwZD7KSsLuQuhWIaDMnchmjuD9TJCZnd6+G69/j5ktLCz4+zsUzsTNTKmlbabqO2WqW63VLzdhHGpjBa4a4H7Rr6A+89GgTszNe4mjU79PTOjU/WDO+VFGfn1F3ng/Yt/I828q3veVZcnuOsO9QXFD5qBqwSC1wThmVsO/6N9ZfG3f6e39ASAPnGkNHd1k7sWuPtg4H4Wto6ELVdlnSvbn2wve1WGIMjm7XfliDxoJAgP7uo+GWK8XVvbP8GYWf/C+zsu867umdGaqvrr+g2/bVCOVO1yculx8broFXclDm6ndFla1zgvh9uKoG8Kdz+Kz74Skzkdl3U5KedaRsHtvJL7uyqeVdfNwWfWz9e3L7fDJ67IZO+PHFlqa4PvsLXkQcLmqwW7H3YindhQ1obmhevJyQO+vufc3XtcXLqdnc/CcnJCl7Nzt0QCH+x1de1zc4O3vfAJEkmXIguP1b6jgXcCu+Mb3rVL3unI+zd6/FTb2b8yhl+/4cniK8p/w6awf8OZsIu2zgSv81nYmXd266B2MdhOvf5LsUjBXZybKta4sw/uYsido1YZYY9O5V/IXcfcAzmbnirIYhmrMXduo+5ssztf5F2vvw8Jjtcti+yMUztbje1mBdv5o+2clcmwH29npE/GvImprII7+ahMxmrcqVplaI1OZS3kTgXudC/QjJJ3rbYZrdg7MflO9HcCwdvR66XUD+UGrz6MWiSXJzh2J3Tj4ELuZOB+Gk5D2Ebis6+0dyzVN81HZUxm3cmSrkhlK7LAkUAqcMfH29XarkvtH2PpbsL6+8cEfCfIuzrwTmB3dbe7S4+L90XvuMtxnSudS+3tZa/K5qqrH2zdKkfk83V17dLlTqRzoaGh9n1tZ+dKxeuKytnK+fr68qrXhaWPsrffSdt6My77SljqBDzxKbbxi/DMEpF2Ce2fQZDGhcbX5eWXIiIGfHzOe3goYV0h7Ofc3S96eQ36+Y2Hhk7HxMDnwDsjQUHwwR4XFy12J6TddQPv+uX9j3/8lqxwhuPJmeYv7pPy37BB6kwI+zc2I+xfirwuRGQ3xtlFahe6tjMF7uLcVLHGXWyVYR3crWh0qhhy51uxTC+rxTJaA1RFc7dIw4wF2d1IfNfr7xaxeAO3xIi7FmchZ2eW2i2p7ReN0HY2BqUyVSZDY1aqq2nazui4VKo+GTYmpnIM7kbPTaVf426xkDtlq4wx4E68UvsdLXn/XEveqfB93dfa1zJaFyna1yakFyA/cLeo5lHhr1MozF0PuDug4N4N+0xM5nTnSmfmtpnAhBGsIb3kWYnfoJ9Lj4vDGQcNuGMF7rh4O6m2kzs7xSLKu3bVjKbe/fja9b+g3e5Y1N2529njvEfAUEDYeBjc4PyH+csdHfte7UMQ5ODbg3tf7t18d3PqzVRY8E7zh+bnu3YhnZ1Fex8n5VwPT52AZyjYPGHvcla8voUtDnZdeHpNybtxsGa24nXFq/LysdDQAR+fC15eFzw9YfV7ew8HBFyOjX1RWvr20KFlqRT+rrmqKnh7Pzd3KCDgnLt7t7PzGQeHk3Z2JzZs+EUxYRXf7a4beMeqZkjlnTL2Llh8Z5LjGWqZZ5XXOfgZ8aElRui2LiBhtx1nF6mdbW3XBvdPxLmpYo272TXudoyDu9W1ymibO79aZWiG3L04DbnbcRdyP82HkDsvimVYNfcIXpi7F5W5s1kvY+GouyF250Lejfd3IyGerWXabebgYDIbaTe/Q0bUdkvG24Op4+0s98kIHdxNqHHHmfuPOHP/gYnRqUyG3E0Cd+My73Txfa3OdRDx0kZvJeZG/et705d+2ce3z2u132iZO6FVRj03VQXuJ+HcgTMU9pzw1AkEQfJ3PYzNupx+K725bTHlRop3v7ekR+JwxmHjyY1aE1MV4K4pk8Fpuxamoynuj/8dE2Wdhf0puqjlHc/uWNodG6mqjrpLuiVufW4e5z18+n0ChgOCRoKCR4NhBY2i74SOh0ZNRWXczmhYaLiXk3M/Lw/uY07xvbCUcdiuYeOCLQU2CjgIsBeh5h5xAZ5YE7ZcXZFKlzs6ricnjwYFDfr5wRry9x8PDb27ZctSa2td03zLYgtaY4Mg7R1LNfXvELn89qZNwwEB5z09e11cupycTiui7iewqaoqdlf8rwBNz4z6XyiImXc8vlPI+7cUFkyftsVcPLOwbgvC/qVV8PoXAlyfs7Rsj9ptNthO0HY+gbsNzU0Va9zVr1nFkLtNj061gZA7X6ansl7mzvQAVWGbO/NRd6bZ3eKBdyb8nUGUZ/AGcHbQGI+0G6B2NoPtPNF2BqrbGSqTYSPezlifjJkTU2mCuycT4O5mFriT1bibFHLfqD/k/o35IXcDrTJmgbvRsXcKfKf0d5IokvYVkEmXPMS8kdYVEL2LIJJLHm12V5u76tJDE3JXzU1VgDu8ePY6YYeC+xk4f2GDCk0Zz9/1oKF5YcuOe1hCPGwizOuCl6Rb4nBaBe7H1xH6ZCi1neDsP1IvvL8T5F3N7j9psTs6UlXVMGN3Slns7tzt7NLj4trr6nYO9XfPC57e/d5+Q36h46EZtzKQzs5b6elXExLu5eQgCJKcex12eNivYMfYoJocC7+FfRK296DE0dStN5el0tcVFdMxMWOhoWMhIZORkffz8mSdK9Jlafad7JjpmKipqLSbafDd0vNvFZY+mq2svBwbOxocPODre97Do0ciOePoeMrO7jfFPFWM3dFxs2j7PTHwrvm/Afh/qtAzZBVXOPOthcZ1fkWKv6oP8lHhWVvWKuxibt06kZ2vzm46tQsx2G6hGhk64P4na5+banSrzL+JNe4mtcqINe58aZXhbnSqTYbcrahYhicDVC1q7ozUy3DRMMMqu1tA3lkgeHYX50fGjx1qN79DhpVgO9vaHmmCtjNYJsNqvJ3BcalGFbibCO7rLQzuHLbKWDjk/meGlqHku27tDPGyS/eS6isdiP/K2KukP5jx/4B1Lo7w8k6Wdsd1y2iH3DXgvlYB7vAIh9MBTjE4wWGrjEyfzC6609iy8Lqi4sj7I+m30kPGQjwveCrB/TcU3JUF7up4uxrcqbRd29Y/+vEj3aUf37HvrJ/dN5zYsPEkGniH2+l4xtHprBPcZpdeF/dz7l4XvQKHA9NupskR+Y2UlInw8MnIyNnKSgRBQpLHYOuDu4+9xoZdCLYy+Ahs1PCkFp46kbvzfifSeSc7+3JsLKw7WVnz9fV7XuyJuxIHR8Zv0A++uc+AT/L1ZPhu5VWv56qrHxUWwrqfmzsdHT3g69vr6opF3U9u3HiCgt018q7Gd93kux55p9NLzoQXM2m+wid466tiFzqsC93WuUB2Hju7cKldcDUypoC7WOMu1rjzu8ZdwK0y1jw6VQy5mzM91QLFMmyXuZtm7heEau5cRd3ZYXd+yDtPIJ4H992AszNM7cx1yMT0817b6Q5K5XmZjNnxdqYL3H3J+2Q4BPejBsDdnBp3YqsMndGpTIXcv6Td5G4kuH9KseiH3z+jHX4nvxD78l/JL7VMvaQiu5giXkORXTHpdsprszvR3LGrD0WUBwP3f2qBu/cJODvgdIONIjhpdMuOe7WN72WdKx3LHQdnD+bcy4m4FOF10QutlMGDO65PBh9v/1iVzSZQ+0fqbhQ6C+/vmLzjh6ziemZIRqqeUATeT9qh8n4GzbyjbTPn3HwGfOKuxCFy+b2cnLGQkAFf35tpae3L7cVlT+G5APY35evb4B54Hw4F7NjwzBWSPBaXfaWi6vV8ff3tjIyZzMwPzc27nu9KvJoYPhEeOBII39bjvAes6KnokmclDQsNckR+6O2hPS/3IAiy1Nb2Ys+eIX//Pje3s87Opx0c0Ki7Lrur5B2rmiH3d115p9E2YyzBWxh/+U3wX3Mj7BwiuwjrIrLbDrXbcrBdj7bbPLiLNe6Wb5X5mxhyF1CrDF9Hp7IYcnewopA7P8rcWTd3T0GZO4/YXVjyzgjNC+GOsBdpZ6RDhq0aGf5oO7fV7ezH27nvkyEtcGcC3D2MBfefaYO7nhp3tkLuf7BsyF3D6/Qu9z41z98/07pkoxeHorL4L/WGnGhdYWmup7QvnXCXS/iJVjhzxy5YNCF3VY27DrjDaQJnImxi2UV3ZCuyosdFDQsNzW2LeytfIgiSdSfLd8AXHZqqH9xx8Xa8tpNT+/fK9UeFFqt/qw/fCYF3bXb/7OfP1CNV1YF3jN0du9CGd4/zHiFjIbXva+EeXU9OHg8Lu5OdXfG64nDdXGT6JDxZwHaKvVCEd2DHho8ExA+HpozHZE5vKrwNX/W0uPj57t2H5w5nzmQmXE2ImooKGw8LGgkKGA4IvxQOR+x1efm7mprqurm9L/cmX0+OnoqWda7AF16Jixvw9cXM/YyjIxp112V3hbwr8V3h70qCx+Xff1q1Ci/v6rYZ8gmrevFdT/8MT6LWjBO8QZS3VE89Z8dWhHXbEnaBOLugqV0QwXb92q4D7mKNu1jjzjG4C6VVxtlC4M716FQLhNw3CjjkzpfpqUabO9PFMlZu7ryKuluS3YUp78JcrDo7F9Rubmm7kdoeaVFtp10mw7d4O2WfTIDBeDtzE1OZBPdjVODOTI27/pC7PdXoVDohdzOKZRgJudPVdtOuAf9Ci+D1Kbz+/5dMdXVGW+F1r7Co2V15EWT/A1nIHX3YkIH7b3DKwHkKWzeCIGWvyrY92rb/zf5dFc9Lyp9t2XEXPhg4EqgL7soCd8W4VGW8Hd8ko6vtOGGns4j+jsk7LvCu1TODsTsWeMexu3qqKtx+737vzJnMusb5xdZWuFMrMhkil1fXze2vfpO7835k+mRgwjD2HBeQMBycNBqWOhG9aSpxy7XMwpkdZU/gk2GVPCvJf5Cfcy9n893NsPIe5JW+KF1BkOX29helpXVN85u3321sWaiaq9rxZEfNu5rljo4H+fmTUVEDPj59bm7dEkmXk9MZB4dTqoYZJbsr5B2/jisgXm3x+M53LPNOyu4/6LI7zeS7XnpmUHL5ie9cCzsnyC52rNuisAvH2W2R2vkUbLc4uIs17mKrjNgqI4bchRNyt2CxTDAjxTKsl7nz29wv0DR3wUTdOWB3Ud4tjOzMV8cwSO0c18jYiLbrm5VqRryd9T4ZAwXuQgF301plLBFyX6sbcv/C3JC7WdpOfWFIh+BX0bjiMwXiSS/ZvqI5r1WH3Qnm/oPG3AmtMkRwPw6PZHjkw+kDZ7F//NCeypeyFRmCIDGZ03HZV+RypKb+Hfw2aCRIDe7rflm39thadGIqabydQtu1MP072osM3ykD7wp21/TMqNgdi7qj5t7r4jfol34rfamtbee+p5WHZ2ve1bzZv/9ebi7cx/qm+R1lT0r3v8gsnNmy497m7Xfzdz0sKX9WUfW6rmm+vWMJjkaHbLmtYwkWfD72tlOONLYswDu79z8v3P0oMn0yJHksetMUfNVic/OyVNqw0HDo7SH4hMtxcf0+Pufc3XtcXAhRd3Qp5P03bGEfwX2cWPuOC7xT9syo5J0mvuPNnSa4MyWztoDvHAi7COs2LewmIbulnF3o1G5N2q4f3I019z+bGXL/HTOtMp+LNe7stcp8JLbK2MjoVDHkbnLIndNimW7WimXMG6Bqq+ZunexOW95FfGcrzM6Es3NF7ZaqkWFV29kvk2Ev3h7EXLydqk/Gj7zAne7EVAbBXbdVxnRwZ7ZVhuWQO81iGZPA/f81fpmq8MZk4Y0updFtpNG6QKNmdzJzV10EaULuqlYZ9GGjAnd4HMKjFB7PCnA/g4J73NCh2rf18/UJm6/Cfug36Jd7P7e1fbHgYQG8L+mR2J+23/DbBipwJ5TJfISjX1Jq/8N3f/iDnty14k918Z1c3gnsjk1VVZXMaJl7jws24LT0RSncu+w72dIV6YvSUgRB5Ij8+a5diy0tC42NH5qa3tfWdix3yFZke1/uLXxUuP3J9tbF1nc1NXsrX+YU30vPv5W45Vps1uXIjMnQlPGAhGF4foE9HNt44Z2A+OG47CuZhTNS2UrG7Qz4/gsNDWMhIf3e3uc9PHpdXZXmroi64xd8BBb8Eawuxdszio8oy98V8n5s7VoNu5Ol3Yn/r4DqHzuoo+4GwZ09wLUOfOcgxs5bWP/Chtfn3C9BOTs31C64YLsFtZ1ZcLelGve1Aq1x52WrjIPYKmOwVYaL0alrLdMqI4bcrabMvc/YkLt7+HnhmTsPo+6csbsBeRfxnYUwO4vOzgK1x/Rbn7YzUN1ufpkMO/F2xsDdV8jgbqjG3bhWGXNC7padnkpRKUPm6X+ivehfRTLcSGNwNCu5vBMu0Eii7poLJa1iGXXInRLcT8JpBWc3bMi7Kp63S5djMqfhiSBwJDDnXk5V7dusmSzvi97O3c72p+w3nEDBfc0xrQJ3TZ+MKt5Oou14Z//W+IXHd4K8q6pmsMA7Pu2uHqm69vhaZb3MaXvns85ufW5wj/wG/YJGgmIvx+57tU+OyIseF9XP1yMIAu8UPy1Ov5WeeC0R/jTuSlzy9eT8h/mLzc2Pi4oQubyw9FFSzrWItEtBiSPw1AM7NjZzVbVZdcHmBh+BXT0wYXhT4e3Flhb4qrnq6hspKcMBAf3e3uqcu5LUMV53coKPdEskvS4ufW5u5z08Lnh6wlv45F5X1x6J5KyT02kHB6yIRs3umpIZnW53grxTxt5pmLtx1KtHY60X361H2EVV562tm4fsQnV23lC7UILtRmm7CO42WuMutsqIrTKctMrgzN1biCH300yH3M0olgliuFjGlDJ3FgaoWszcTa90Z6hexhLsbil5F/HdaGSPY+bHxCC1sx9sN3dEqgW0nZUyGfbi7XTHpdLok6EF7huNA/dfWQF3N33gTqvGnbFWGaZD7uYWyxgOuVNS+ycmLVMuMA0NZV1l7FBWGvJOuEZTX3Npmbt2yN0QuMPpAGcWnOywkabk3ZCtyNK23oxIuxQ9FV31tqp1sTXiUoTHeQ/ns2Tg/tMqfJ+MpkyGTNtJqP0braUuESd8nBLfteXdALvjou4Opx2cupwkPRLXPle4a74DvgHDAbACRwKDRoIChwOx38IKGg0KmwiLuxJX+qL0VVnZ7U2bHmzdKkfkm3fcjUi/BE+dsHvDxghbFuw22DYCxxN2IXixDVsi7NIB8UNwPPdXvy55VoJ0dk5HRw/4+mIh9x6JpNvZuVuB7PA+fOScu/tFb++hgIDx0NBrSUmPt2+/npw8ER4+FhIyEhSEtsC7unY5OZ2yt/9t48Zf16/HSmawbnd1wwye3Q3Ku5rddbtljAZ3ehRrGsHzsHbGGoRdhHX+27p5wm5ZZBepnc/Bdmpwt7q5qb9jBtzFGncLgLvYKmMbo1OtLeTO+fRUYZe5m2ru5zkwd/brZQTO7rTw3Xb93c8SyG4Bamch2G5Jbee4ul048XaqAncjJqaSgrsXl+DOVI07YyH3PxJD7qwXy+gNuesBdzOo3TiO13/Vqdffqa4cSZLvOvJOwu7k5q66elKH3NGftS64w0MOHpDwoIUHOZwdcNLBVgDbaVTGVGv7YvG+pyl5N7LvZFfXzWXNZAUMB7idc3M666QH3Eni7QRt13H23+PHdOrWh+v8EQm+E+TdILsfXb32mLLVHRumism7c7ezS4+La6+ra5+rW5+b+zl3j/Menhc8vS56+Q74Yil42YrscVHR1YQEWE+2b5fKllPzbgQmDMOeDJsb7DxwJLGtAHYM2FtQcw/sgh0SPiEgfjht681lqbS9Y+nuli0jQUEXvbzOubv3ubnB34n+tYo8e7+3N/zRjZSU+bq690eOIIpfLW2LL/fseVFa2iFdho+Ph4bCZ3Y7O59xcDhpZ0cedcexu355J7I7bXOnolsTKNNYfDdn5upXvJ90akFbF1WdL7bOBLLzwdltndp5H2znA7iLNe4sgPt61mvcxVYZMeTO75A7y+YeYGvFMqK5s1wvQyPqLgx2pyXvg2QGbcPCzp2zs0Tt5gXbLaHtzA5KpVMm48rmrFQm4u1MFbjTmpjKNLgfNwTuDNS4f+rEYcidbrEMbXM3uliGFNzpZ9v/i/YyCuKprkPp4LteeccdOtzFHYm54/rctUPuuBp3FNydtMHdEwV3OE3gfIR9A54mojKmcorvyTpXHm3b1rHcsf3J9qipKN9BX7c+N6cuJ7tTdii4H1+35uiaz34m65PBxdv1aPvv9Uzn1L8I/k6QdwK7/6hhdxShMXb/WcPu639dj8m73Uk7+9P2DmccHLscUX8/64yG33td3c+5e1308h/yj70cu9Te/mDr1qmoqInw8MuxsbMHDiAIAocL9nAFuJ+CnQG7okHn0Hr/Bq/wYb/CumXgWSAocRQObNtSW4d0Gb580M/vopfXeQ8PrDcGTbX7+09HR78uL5+vrz9c/66i6rUckdfUv9u+90lD80L9fP2u57swgh8LCYGv6pFIuhwd0ai7YqTq8bVrj+Ki7uqGGTW765F3jN0Nmrs+F2ZIbDmSdzKI/4orUudI2EVbF4qqMyfsPEF2c52dT9QuoGC7ydpuENxto1VmjVjjziq4/2AY3K2vVcZSo1PFkLtJ4G7B6alO+sDdxGIZ0dzpmbv5le7MRd0tx+6syDtdfCf3dz+h2jptYY9j/oDzjdpN1nYv69J2RmelMhdvZ79PhgrcN7AA7mvNBHcTW2WIo1PNC7nTLpZhuMzdGHBnxtnN43h9/k5+malH3snYXX2JR2HuxJA7rsYdB+7w0FKDu2Ji6mk4nWF/C00ZT8m9XrDr4aEjb98dPlz+qjxzJjNyMtJv0A8P7muPryUFd2W8HV8mQ9B2/dT+1e/1wKQef8fLuzrwruyZUdS7k7C7qmQG7gtR3hWxd8cuR+ezaOzd/Zy7LzznTMd0LHc82rZtIixsJDBwJCjoanz8cnt7Q/OCf/wQHD1Nwt3jF2wOLWw+sE3B/gZ/CtsyPCuFp060dSytIMiDvLyx0NBBP79+Hx9Yg76+o0FB1xITZysr65vm5YhctiLLu5+XNZNV+qK0+Gnxkfdo2j11683MwplOOTKTlTXk74+au4tLl5PTabJ6GTTqrkq7U8k7kd3V/z5igrkz7aH05f0rAS4ueV30dF4vs4WdP8guUrvggu0iuIs17oJtlXG02VYZMeQuTk9lvliGvQGqxpq7Byfm7slrc2ehYUaL3S0h78b5uz6Ft4jF+xlYxtyvWI6d3URqZ71DxuTSdu60XRhlMvrj7Wb3ybAH7id4DO50W2XMCrkbnp5quTJ3PeZuLLV/bOqir/C4a1Wtq1F98k7F7hRRd/XFmlaxjFarDAHcV6nAXZnFRiemdsGeEJQ4mr/roRyRty211c/Xt3csdSKdZS/LUm6kBI4Eup9zdzqrDe7qiamEPhl1vJ1K27XR3DSzJJaDEORdFXinxe5H1xDkHWN3xzOoubv2unrBpj4ZCUfj5d69E2Fhg76+/d7ew4GBr/bt65QjyTnXYX+GjQs2FmzTgJ1EUeOuTLjDVgmHF54aAuKH47OvrHR2tnUsXYmLGw0ORlviAwPHQkKuJycvtrYerpvb/Xx3wtWEkLEQ/yF/3wFfWMGjwcVPixEEic26HL1pavf+56/KyyfCwwf9/LAi+LPOzqd16mV+/uwzIrvryDue3U0wd1bB3crkXeR1G/V0doSdb8jOgLPbBrXzU9spwF2scRdr3MVWGSGMTl1tDri70wN3vobcNwo75M6VuYewVuZufebOfr2MJaPuFg+8m47vdCGe5WXSDWbzMNJyduapna1gu1VrOyOzUs2JtzPQJ2NcgbsG3H+zFLivoQfuzLbKGB9yN6FYhrEy999RFsuYB+44Ov8XzfpPI5fyC6kVnvTSlXChSpPdcdeJRHP/imDumpA7Kbg7oh3uSnDHTUyFUxK2uC077iEIsuXelsJHhXJE/r62dlfFsz0HXshWZLGXY70ueKmHpq49vnb10dVKcMcXuKva29VlMn/4jlrbdfPs9MVRT/hdW961emZ+VNW763S7Yz0zeHZH0+6n7FBz73Z2P+ceMhYilyOdnStX4uIGfX3Pubv3e3u/rqiomqtqaVsMiB+GPRP2K3WHFfqiHY23d8HupwD3c7Dnw9NfaPL45u133h0+/GDr1smoqPGwsEvh4deSkhYaG+GbZ9/JDr8UHjAc4N3v7XHew63PzaXXBd4GDgfufblXJlvJLrpTtOfx7IEDV+Ljx0NDh/z94WbAjemWSM44Op5SmTu+XgZjd6zbnSjv2uyuWy9Dau5fkZo7y9orRHbnQNhFRrcFW+ctslsltdugtlsc3JmucV9tWzXuYquMpVplhD86VQy5sxRyZ71Yhkdl7vTM3Z17c7dMpTvdqDuf2N3S8s4AwZtJ80z/vewfK5Yi7RxSuzml7RfpUrup2s6jMhlLxNsp+2QYKXDnCNwZmJtKs1WGZshdae52phTLMFnmTn+AKnnInapVhlzbTXV2AwpPC9915d0gu+Oj7mTmrrxkW4+ZO65VRjfhrg3u8NiG0wRO2ID4YTkir56rjp6KPvT2UPHT4uJ9T8sOvkzJvVHXNH9w9qDvgK+kW2J/yn79r+s14I6bmKov3q6j7fphUv9sR/3Iipd3LXb/TmeqKjW7rzuuiLr/tgE19y5Hl14XuPtb7m2BQ4TI5VNRUcMBAWOhoc93797+eDt8KCpjCp5BYNuEzU21cXUpXjmj2g7bLGzd8EwBz31BiSMxmdP7Dr2C73M9OflybOy1pKTXFRXw2/Rb6RGXIgKHA30GfDwveKLa3uPi1OUEC34bORm548kOBEHKD716VVZ2d8uWmczM2xkZVxMTx0ND+318el1d4XPxle7H1qxBo+4qdtfIu3bVjDLtjquXMdncTeBUE+Wdy4Z33gi7KOm2Y+t8FnaLOLtI7SxR+3/9y7/AMgjuxpr7n80Muf9OQDXua4Rd4y6UVpmPrb5VhuejU60j5O5rZshdKNNT+Vbmbp3mzlHUnR/szqm8s0jwwrN1U5ydJWqP6edBsF3UdtrxdgbGpRrbJ2MWuK9nENzd9YG7ETXuOuZOBHezQu5k01OV5v6t8WXuHJo7PXBngdpp4jv9wLsOu+s3d5KQO77GnQDu6Mv+NRi4oxNT0QL3oMRRRPWroXkhNutyUs41OSJPyrkuk63AB/2H/CXdErtTdnhwJy9wV7W3G9Z2XWQ33l9JkVVTOIMF3gk9M3rZHSuZgfu4/hfU3O1P2TuddXI/5x41FYV0dpZUPJurqoID8mb//pdlZbXva/dXv9lUeDsyfdI/bgj2c9hX1fsk7KWw5aLajsbbB+AT4DhHpF9Kz78F3+phfv6t9PRHhej/J8iayYqejg4ZCwkYDvAd8PW66AV/o0uvi/NZZ+duZ++L3tFT0Xn38ypeV8AnL7W2Yj+pjuWO9o4leOdWRsZIYGCfm5vS3LFKd6xeRsXuP6t6ZvCZ9398+qm6ZEa3XoaOudMplqGplrwerMo2sgtT2D+3tcUOrAtC2BlzdiujduFrOxvgLta420SrzEdiqwyfW2XEkLs5IXfrK5YRzZ2FMaocRt3ZZHf+y7tlLd7Sd9aXzUg7d9TOZY0Mv7Td9DIZXsXbTe2TMRPcf2EI3BlqlTE4OtVgyN2UYhnzBqgaMHe6Ze56Q+6k2k4P3P/9/9JaNPGdVN5VV7JUaXdD5q5T5k7SKkMG7q4ouMMjFh7hiompvYEJI8X7nrYutR44/CY8dQJ2zoD4od3Pd9fN183X11fOVvoO+jp3OyvB/dja1T9rwJ2kTwZXJvN7babVpUoDskjfZfH4rifwTpPdj66Gu7nul3WouZ+2l3RLvC96J19PhkOxIpVu2XF3a8mDg0feSpelyx0dGH/DoYvLvhIQPwxHD54dlC/hoi7Cb1XaPhKaMh6VMZWUc71oz+MPzc2Ptm1D5PKChwXwnWOmY8InwoPHggNHAv0G/bz7vT0veHqc9/Dp94m/Et+y2LLU1oZl4eHHBF+SejM17kpc1kxWJ9IJfwo3YzggQJNzV5g7Vi9zDEu7Ywsn71jaHR91J9bLUFS6E/rcmQJ39tj9S4HE2EVPt3pSFxavM+zsvKR2wQXbGdd2anAXa9wFXeO+Xpg17mKrDG9Hp4ohdzOmpxpXLBPITrGMhc39HDfm7mGSubNVL8Nw1J0Wu3Mm73zBd2tcvkY5O4vUPkDnkclijQx/td286naLxtuZ7ZMxdmKqgMCdVquM+SF3o8vcDQ9QZd3caYE7E85O6e//l3bmnSrtboS5U4TcDYL7z/BQhActPObV4I4gyO7nu9Pyb8LuCh/xvOAZNRlV2/gezblfS/K66IUOTT2pAXf8xFQD8XaCtuundgoJw4yKJtNSyjsNdv/0H5+u+kkVdT+2BjN3h9MOkh6JT79P4rXE5Y6OptYP1bVzcGTKX5W/2rfvdkbGjZSUxoVGOIZZRXc2Fd5OyrkWkX4pPHUiTLEi0i5Fpk/GZE7HZ19Jzr0On5C/60FN/bu3hw5VvK7Y+mBr1kxW2s00OM7xV+JjpmMiJyMjLkXAiruMknpz64eHBQW30tPh79pb+RJW5Wxl4tXE4NHggOGAg7MHt+y4uyKVXo6Lu+jl1ePigvW5q80dY3dsqfEdq5rRRN2NrJehnKHKkNsy3jBjGr5/ae3CLkq6yOtcOLvtUTuvg+3a2v6fPAB3m65xt3irzB8F0ipj0ZD7T9YbcqczOtXmQu5Cmp7KWJm7jrmH8sLc3YVg7txF3S3A7qK8W5uzc0rtjNbIWFLbaQ5KZaVMhtF4O7N9MlQF7gIAdxNbZShGp5occjetzJ1jc/9vY83dALibqe20wu/62J0s6q6+8CSYu6pYRnVZR2iV0QPuq9Xg7vMbnFBwsvvHDe2vfrMilSblXIPNHPYrb9gdJ6MQBJHJVqKmotzPuTt2OW48uXH9r+vXHFtDBe6E9naSJhkqbdexdcNMhfs0KqwlICt5vTuO3dGMN8buiqi7xtxPKHPuXhe9oqeic+7lZN/JTrqelHErAw7Rw/z8G6mpc1VVHdLl+bq6t1VVNe9qKg/Pwh/VNLxD5PLaxvdwGBtaFhpbFlrbl+RyNBG/giBS2YpcUQyP9cPAO9IVKYL71dz6YfbgQdmKbKmtDb5zY8uH1K03YcFXlb4ojZyMDBkLyb2fe+DwG/j+N1NThwMDz3t4oDNUHRxOKsz9hKLSXS3van9XNryro+6qehm1uZNPUlVH3fH/b4Edc/+cnag714sfyC7quQjrgnB2AVC7FQXbMW2nCe62UeO+WqxxNxnchdsq83fWW2UsNjqV6ZC7J99C7r/RC7nzf3qqsMvcTTf3cJ6bO3P1MkJkd5PkXcR3dpCdQ2dnmNotpu0ePNZ2RmelchFvZ7rAnVFw96AH7kbXuNNulTEm5E5aLENd5k5zgCofzF0X3P+LC203IO9U7I67jDVo7qQhdzW4byAF95/gsQQPM3hYwsMYTgQ4v+C8hk04c9tM5WxlRsHtoMRR/7ihwJHAlBspUtlKxesKeN+119XxjOPG3zau+2XdmmNrPvv5MxTccRNTtfpkdOLtRG0ns0AGvIqA77ptMwbT7j9+pBV1V9TLYJXuG06gM1SdupzgUHhe8PTp9/Eb9AseDU69mdrZudIhXd5f/ebQ20MLDQ1Ptm9vbV9abG19VlKCIMh8XZ1cjvJ6+evy4qfFeffzcu7lFDwsODh78O2hQwcOv8nf9XDz9rtZ22bgbf6uB8X7nh5peNfStljXNA9fXt80v6PsCbyzrfRRZPok/HSCk8aSc6+3L7W3LLbAd4a30mXp3OHD93JypqKjB/38+tzczjo7n8aZO35pqmbIzJ0k6q7TMKMbdWfP3D9nM+pufcguorkI67xwdh5TuxCD7X9iJ9j+n2yCu1jjbhM17tbZKiPM0amrzQF3vobcN/A05C6gYhluy9z5aO7Ci7rzjt1NlXcR381GdmacnVlqZz3YblqNDPvazkx1O4/j7az3yVgC3OnPTaXRKqMv5P6J/pC7CcUyG8nL3Nk097/SMXfqMnd6rTIG3Pz/o7eMYHcaUXeqbhndkLsa3L/WD+7wcFqtmJgKj2Q4I+B0g/MdNsboTVMIguyqeBaVMTUeFhY9FV32sqz5Q3P8lXjvfm9Jj8ThtAMluJP1ydDXdgOCpd91qPFdl2xpsrumYUbR6o7Vy6w9tnb9r+vhCNifsnfscnTudnbpdXE/5+7T7xM+EZ73IG/L3S2J1xI33d50YPZAxeuKzJnM/Af58NvEq4mxl2OjJqMiJyNhxUzHJF1Lyr2fi8jlj4uK4O220kcpeTdiMy9Hpk+GpU6EJo+HJI8FJ40GJcIa8Y8fgqdmeBKEpx7sSQGeR+ApOGHzVals5fnu3bOVlY0tC1VzVbIV2XJ7+7XExAEfH6zM/bS9/Uk7u5Mb4VajC95REzy5uetMUiVJuxtid7U7M2jBAoi6c47sopuLmG4dzi4Mahd6sJ1a23kM7lzXuLPRKvMVHXM3H9xZbpX5XmyVEWyrjI2F3G2lWEY0d4Gau4XZnQF5NwPffUVhNwHZY839eVmI2rnV9gir0nbLxNtN6pNhamIqI+CuZe5upta4MxVydzQq5C5Yc/+E0txNAnelp/8/NJYBfNcXdSczd9I+d4qQu6ZVRnEZpR/c4REOpwmcfbAtwPYYmjJeuPsRgiA3U1OvJiRsvrtZjsi33NsSNBLkcd7DudvZ/rT9ht82oOB+dM1n/4sD9799jO+TUY5LpYi3kwfbDSGQHqox7O9qeScE3snYXWnu36saZsii7ut/XQ/Hwe6kncNpB8cuR0m3xLXXFQ6R10Uv735vnwE0+e4/5A9vsQXvY78NGAoIGg0KnwhPuJpQ9rLs1b59M5mZDwsKVmSyzMKZ6E1TocljgQnD8OQITzfwdAAbO+zMsNkqNk/Va/XALvgt7NLwBBSeOpG78/7Wkgc7y5/BN0y/lV7+unyptfVKfPwFT0+0WMbR8bS9/Sk7u5OKdcre/rSDA3GkqmqS6v/qsDuWdqeap6pumLFpc+cK2UVGFwGdv8jOe2dnm9qFWCNDD9zFGnfbqHEXW2XE0ak2F3Lnbnqq8MvcRXNnPOrOeMMM9+xunrxbvb/7mrIs4ezMUjszwXYBajtnZTLmxdsZ7pNhGNx/NQPcWapxpxydSj/kbq65bzDe3HXZncTcCeyux9z/Yoy502hyp6ntH9FYBuXdYNRdn7nrhtzV4P6VXnD/Bzxm4OEEjz31xFQ4W2E/gY09LGU8Ne9Gh3T50bZt93Jz5Yh8x5MdUVNRfoN+7ufcnc8qwP0EDtx/WvXJP0gK3PXE2w0H26mQXT+lUPk7VduMTs8MObsThqkqWt0/+1nJ7lix+8bfNtqdUsq701kn525nSY/EpcfFtdfVrc/N7ZwbBvHY8un38R/yDx0PTb6e3Il03svJuZqQcD05ea66+kjD+8QtV0OSx+A5Gp5oYGOHLRe2TdgAFeMo0P1qg+qKA7Y12AzhT2F7hydK+Kq0rTcRBIm7Epd+K72k/Nn7I0eG/P2xYpkzDg6ouasW9v5JVbe7xtwVY1Tx7K4r7/ieGTy7E1rdvyKwO004xn5EgjB3TsLsNo7pookLw9lFahdysN1YcBdr3MVWGYG3ynARcv+nMEeniiF3nhTL8KTMnc/mfs4qzJ2dqLtS3ge4lncm8F3QCm/G/WUS2flJ7aK2m6rtTMfbTe2TcTCs7cIDd+NaZYwIudMtljF9gCqdGaoMmfvvzDF3qmIZveBuhLZTyrt+dqdj7tQhd0KNuxLcv9MB939+ppiYiitw74VdLihxNCZzOqPgVvG+p+9ra98dPlz6ojT1Rmr4RDgdcCcWuKvj7V/9XqPtX+poOxkFMUAyuviuJ/BOyu7fEtldOUz1Hxp2X30ULZlZd3wdGnjH5P2knf0pe4fTDg5nNP6uxnc4hp4XPH0HfEPHQ3Pu5Sy1t99ITZ2MipqKirqZmoogSEXV68j0SXjWhqcD2JBhn4QtDrYs2Ihge9Fc9cC1jBf87H6DjQ52Ttic4ekmJHmsqfVDY8tC9Rxq989KSsbDwi54eva4uKDFMtrmjh+mioI7Zu4qdj+6ejUWeCfiu7a8q9n9exy7U0bd6VAy3luZMndm2Z1lZBeuqouQbXPIbqqzC4naLdchw7G2swfuYo27ZcFdbJVhvFWGh6NTrSLk7sVYyH0jMyF3Hk1PtS1zD2PR3E0eo2pmvYwg2J1JeSfBd7P8nVcK78vAGmAD2Y1z9ph+FqjdjGA7E6XtLGu72YNSGSmTCTag7c6BjPTJnDa+wJ04MdWOQtstDO40a9zptcrQCrnrFss4EMDdpAGqhsz996TmzuAY1U//TNPcjQm5q8D9I1OXHnbXXy+jMXfqkDspuK8nAXd4bMDDRjkx1etXOE3g3IT9JzhpNDXvxq6K5zUN7+qb55vbFo+8P7Lr+a6sO1kx0zEBwwEe5z0k3WiHO75S5tOftCemfv+Ruk9GN95OR9tpkYwuitDAdxJ5J2X3r3TYXVHsrmmY+Rsaddewu6Lbfc0xZeBdLe8bT6Kxd/vT9o5nHJ26nJzPorF3rHbGZ8AnbCKs7FVZ50rn5bi48dDQsZCQSxERD/LzpcvSnOJ7QYkj8MQBuy5sfai2e52AbWSN+t/k3NB/LEH79z1/hf0KfoKKCv4eeKpK2HxVtiJDOjtbF1vfHjp0PSlJPT0VLZZRNMmcUtXLqCepYuauZnf1wvxdTfA/68xWJbK7dtTdFHMnMC5/zJ01Z+chrIs8LSK7FTi7oIPtnNXICATcraHG3aZaZX4QW2XEkLsYcrfVMnehmLsFou5MNcwYz+79FmN3Snwf8GVGrpmkeTZv0gB7yG6ks7NA7ZYKtvNU22lWtzNSJsN9vJ2BPhmLgLveuakmtMqYEnI3qliGT+b+V4Pm/n9MMHdTwP0/KJYedqdj7uqrXZ2Q+ypNyF19eahV464E928xcMeiQvAA0IC7osAdTiLYAQIThov2PEbk8orXFdseb9vzYs+HpqbqurnKmlnZiqzkWUnkZKR3v7dLj4tmaCoB3PX3yeiUyWjBHiHYzoiaGJR33Z4ZCnYnNMx89ONH6oYZIrsfXaMr78q2mTNo2l3SI3Hrc4MjGXEpAlH8moyKGgkMHPL3Hw0OnoqOXpZKm1o/xGVfgScv2HVhx4OtCTYW2CXQ0x87313QH98a1cxbdc4dtnF4cozZNJ2/62H1XHXR4yL0+0dGoiF3iQQLuavj7Ri4/6YAd8zc9Swlx6sj8Cp5/2nVKi12VzfMaLe6m27u5oG7ueauUxrzJU+QXcR0cXEs7OY5u0jtFg+2G9R2Q+Au3Br3z0RwF1tleDY6lZWQ+1FrD7mfYDTkbgPFMrZp7uzXy7AedWeP3S0beLeov1tisSvsJjn7AP2HCnfUbkvazkGZDEPxdiPA3dQ+GQuCu+Ead7JWGWNC7uTTUy1l7vTHqNKvdGfP3PWA+3/QWER2J4m6k3fLUJs7ScidFNy/x8D9YyW4KyemwmMVHvZwxsGWlbb1ZlXtXM69nISrCVl3smQrsue7diEIkldyf8uOu20dS4feHgoaDXLrc3M844iB++qjq/WBu6pPhjTerqvt5CqjAyEGFYSWvJOy+1/1svs3lOz+8d8/xrM71jOjxe6K2ar2p9Cou/NZZ9deV++L3tFT0U0fmt4cODARHj7o5zfg4wNvR4KCbqWnV81VlR54EZgwAps27H4ouHschw0BznTsFNbMvHU/BnsO7E6wpymK+NE+d3iWT9xytVOOpN5MrW18/2jbtgFf3z5XV3zIHQP3kxvRID7pgj86qRqyStB5dec7VviuZHfVSFVC1F1j7gp2N9rcGSxzp2/ufHN2UdXFZSlhF6Czc9AhY001MqaBu1jjLsAa9/VGgrvttsrwaXSqGHKnAnfupqfaTLGMaO6mm7vg2J038q7P3wWk8NS3n50j5sNapN14ard4sJ0X2s5Mdbv5s1JZireb0CfDCbivowXuZtS4mxdyp1Esw5y5b9AxdzpjVJmsl9FT6W6UuVOB+38Ys4wwd0PFMiaBu4prsYmpcDrAuekfNySVrSAIEjkZCWvPiz2vKypmsrLe19ZuLXkQl3V5U+HtFak05UaKx3kPxy4ycP8bEdwp4+2EMhkqbadCdoNcocffaQfeTWB33bQ7xu6aeveTG+1P2zt1Obn0uHhd9IqZjmltX4RjPhEePuDjc8HTE1a/t/d4aOjbQ4cWW1pS8m7AswPsjThw/0kL3BUt/LDhqEPusFvCVoy1A8F3hh9fe8fSw/z80aCg8x4eWMhdMz1V29NhwUeweapo/7wj/Jwd4fPPqhb6tTivx+QdG7UK9xUrmcGi7rTqZZiQ6C9MM3cqdmfH2VkVdlGcRWHnp7OL1G5JajdJ21kFd+uucf+CAXBfaxq4i60yZoxOdbJoyN2F9yF3D+GG3MViGZ6UuQvA3C0bdWew2J2bwDsX+G6Y4C3F8TRuD8uHxYfNSDvX1M6ctnswru3htLWdwep2ruPtjPfJ8BXcTa1xZyjkbqhYxmRz3/jdH1isl/nCpHoZVs39P0w394/I6mX0mTtFyB1rlcHVuKvA/RtFh7sa3P9HA+6KialwdsD5G5gwgiDI6/LygocFB94cgPevJiRMRUXdz8ura5oPT52Iy7oMH8x/mO910cupywkF9+MouK/656pP/0EEd3yBu4F4uyFtNxc5aMo7bXZHc9oU81QpS2YUUff1v6DmbnfSzuGMg6Rb4nnBM2oqqn6+frGlBY5zv4/POXf3PlfXc25uA76+j4uK9rzYs33vY/+4IfjpwJalrpTBznF05q0i4a4Gd9i14NNgS4TdFXZ1eCqMzbpceuBF9Vw1/OCmY2Iuenv3urp2OzsrzR03QBUTdiWyOzmddXbukUjgk/vc3OBWnff0vOjl1e/tDW/ht+g3UcE9fO1vGzdi7H4Ui7or5qmS18uwYO6mgzuNxamzi7wuLovzOhPIbilnFzq1W7BGRjjgLta4i60yBsD9b9y2ynA8OlUMufMl5C6au1nmHsaiubtb3twZj7pzw+48lnfTLZ7Nxe1d9mE50s4TarcZbTe1TIbVeLupfTJ6CtwNgfsJXXBfbya4exxXv4YxHtyZCrkbXyxjtLkzWC+jYXeiuetG3Y2plzHO3MmKZcwOuVNF3UnNXbvMXR1yJwX31brg/q0WuDui4A6PE3hErcEmpvqdgpM6IH4of9cDBEEamhcwbR/08xv09Z2MjETk8tb2xX2HXt3Pza2aq/K66IUl3NceX7v6ZyW4EyemEvpktOPthDIZItIwRe0U8q6vbcYQuyuD0GTzVHXZHQ7Lqp80xe6ouSu6ZexP2TuddXI/5451uFcenr2ZmgqH+pybW7dEctbZ+YKn5+2MjBWZDP40YfNV2Mxho4NdCPaQ1Qpzx66/1B3u6OWM168bNeDeBT9QeLIIiB/O2jZTOVvZstjyorR0yN//nLt7j4vLWczcHR3Vqwvn7H2uruc9PAZ8fEaDgy9FRFwKD4e315KSZisrn+3ceTkubjgg4KKXF3xOn0reUXbfsOGXdevQqLtinira6k42SZVxc2cJ3DmidpHXxWVBWLcWZ2eA2q1U2//T+GUI3MUad1trldkotspY5ehUMeTOx5C7oz5wN73MXTR3DsydMupuoYYZE9ndDHm3GL4zSPM8u/Em/yCM/aF7M1TXzkWw3YTSdlO13d1obTe3ut38Walsxdv19MmYUOBuUXBnrFWGNORuRLGMrrn/SMvcTa50X/81C1F3inoZfZXu9M2dkZA70dz1dMtQhNxJW2XogLtqYqoK3OEE948bKix9VDVXNXvw4NXExH4fn15XV1jwzv28vMaFRrkcHe+ZcDUBrZQ547jhxAYScCcUuOP6ZJSKqVMmY0Db2YANeoF3+uyu1TDz/UcYu6Nd5vhi958/U5v7xpMb4QDCwQ0YDtj1fFdjywJW447ONXVx6ZZI+r29X5SW1r6vhQO+q+I5PH/BngkbF/ywYBvBXy7B1RDsM7ALwQYF2xcG7rCFwiYM+z88J0ZlTP3/7N2HXxP5vj/+3+Pe77337D2ua6NICyVACKEEpHdBVBBRsWDvioAoSJGW/+H7vfeee85xd885u3t2dXVXd+2KFFHpRey9rmXtHRHy+L1nJmWSzExmJjPJJMzu58EDqSEzmck8efF6q1Ww6VS/L1nSHxnZHhR0yt8f+S4+Ps24Bd+01c/vtL8/fEB3aOhAVNT19PTq2uG6EQT9nyxd+qm6et6DefClaoZrHs6ffy4mpi8ioicsrCskBLvZjRLJcTTqrquXwSapElS6c2fu3/AD7rZ1dpGeRVW3I2S3rbOL1M6ttjMFd2vXuP+HWOPOBNyF0Soj0NGp4x15dOp+7sBd0CF3h5ieasUydy4HqArf3IVQL8NPw4x12D2ePbsLF9/tYQVb0dmFQ+08lrbbi7ZboUyG93g7gz4Z7sCds7mpTFtlyELuZMUyHJn7jwzMnWbUnaNWd3P1MkRjVG1i7kxC7iStMpoad1Jwh80q+WmCDtwDD8GOrU2499TWjWTezFSr1X0REacDArDabnhlICrq+erVxVvfLnq8KKI/QnpK6nXCCw/u4/eONwV34z4ZijIZQm1njRN8sjseeqmL3Q2i7jhzdz3kCnedZ4OnT4uPvEOefSf7Q2lpTe3wsxUr4H7GRqf2R0a+WLMm937u/IfzVxc8D03qhgM1HP3gGAXHHDjC6C92sEsY5MIEubKATakF92b4FDjLhKX0zJh/q/xjOWzWS4mJnQoFkkz392/18zupXa1SKWzlNpTa4WPeFBR82r79zaZNZYNlsxbdzcm/W7T1be1w7aaSNyk5V2bOvw1f6v6cOTczMx8vWvSpqupBXh7sMPA1mySS4x4eiLm7uFBXunNl7sLRdkucXWRokdHtDtlHD7WPhhoZq4G7QGvcxVYZ4YTcOWuV8eK+VYb/0aliyF0wIXf601MdZ4CqLcydHbsL29wFy+62kncR3/lFdis4O1fUzlmwnXaNjBC0navqdpvG220M7jJOwJ2HVhnGxTI8m7u1ou6f0W91N1svQ8PcOQJ3WuZuEHInbZXRgruzAbh/joG7pxbcfVBw90fBXa4B95DErq3lH1Rq1ZvCwt7wcKx7BNaZwMCzU6bUjtTm5N/d/G5zaHcovNWzwXPykckuB10m7Z+kB3eyAnejPhmjMhn62s5UILiSdyN2/weO3U3nqWobZjRRd3y9DGbuB51dD7u6H0NC7v6n/OMvxCPN+MseYANOR2pr7+fm3pw+/cnSpaueryr9UAp3e0RaH5xo4EgLx0A4fMEmwx+F4J/o5QZyvQDHQzhmwkEVjsNw9IYTB5yIkZC7Wl1TO3wnK6snPBxrgzntD9/cH6tob5PJuhSKgaioWzNmvFy3rna4NnvhnW2Vgx/Ly+tG6rbXfCp4U/Cpqgq+SFLWpfTca/mrHw+WlQ1VVsItnP9wfvHWd89XroR9Br5ao0SCVbozMvdvWZm7QLTdfp39b+IaPctRkF2kdp6C7fYD7paYu/2B+3ejDdytODr1Z4cenWrXIXecuXMQcrfPYhmBlLmL5h7TZsOoOx/d7uzZ3bK2GdHfuRR2ts4uNGoffdpuuzIZY3Bv5KpPhrTAnf3EVH7AnUaNO5uQO/1iGX7N3U6j7oIxd9KQO1GrDCG4u6HgDlc9aDwItjU2MRV2M1cNuJ+ABzIcVKfNvbH53eZXGzb0RURg4zFhdcjlF+IRFB4sK1v0aJG8Xe7T7ONx3GPykcnOB50n/Tpp4r6JyMRUPLibFLgTxtsZaDtrh2BeNcOM3Y3mqZo2zGjrZXTm7rTfyeUgUiwD9yHck3B/pl5NLXhdUPWpqq5+ZH3Rq3VFL2uGa94UFJQNlm0qeZOTfzdx5qXwlF443cAxGQ6SsL3gIIa/lIB/euq1HXmCDRsUjupwyoBznDK1Lyf/XknZ+5fr1p2dMqVToYCN2yaTISsoqCM4uCc8/FJi4lBFReGWt1u2vf+4bdtIfX3eg7zce7n5j/PTrqUlX05e8mRJedXHjxUV9fUjsDOo1KrKoco1L9bMvje74mPFYGnpvdmzu0JCTvr5nfDywps7NkaVwty/Izf3b+xd223k7KIvi4tDYReOs3ND7QLokBFgsJ0JuDtCjbvYKiO2ylhjdOoEbltlxJA7v9NT7aVYRjR3ZubOutJdIFF3Wuxun/I+evydu7urw0rObo7abRVsZ1Ujw4u20xyUylW83ceyWalM4u2c98kIDtzNt8rQCrn/QhFyZ1AsI/lJ9/TVzAxV+pXudKPu3LG7+ai7mUp3a5k7/ZC7aauM4dxUU3B33zkWBXfYlLC5MXCHnQ32Vdjb4XEET8DgmBY/48JgaenH8vJzMTFdISEdcjmmsXeyszdufr36+eqos1EBpwOQianH3V0Pu2LgPmHfBANwxxe4f2cC7pRlMgTOYaFGcNLwTo/diaPuuHoZA3M/5IIUy5zw9Dvpp+hUpF1LU6P/xUw7l5pzJW/5g00lb1Rq1UhdnUqlrqj6uHTtk6TsyyFJ3XAWgCMtHCq1v25s0D3bx7QdDtRwCvBDn/Ei4B7bFprUnZh1aaiiArbsxYSEnrCwToUCtmxncDBs5f7IyJuZmVgEHj5gw6sNmTcz4y/EK3uVIV0hwR3B8nbYD+TwemR/JLw9/Xr6wkcL32/ZUlL2bt6yB3DD1ha+LHlfMlJbeyUl5UxgYLOPDzJD1d39MLW5jxmjN3ddsQyRuX/DCbXrvj5+WQDuQnB2kZXFxROvC83ZRWq3jrazAHexxp3A3C0C91HfKiOOThVD7vZVLGNfZe48mHur/Zm7EOplBMPuFsk71/juGAQfzP1iv4FYOTu/1C5qu7XLZCyLt3PcJ2NFcKdV406vVYZ2yN18sYwF5s5P1J2Q3V3I2J1mwwyNehniMaq2M3d8yJ2kVYYOuCMTU71+gm0N+wbsSLDjwb4Kuz08lOCxDAeoiNS+pWufVA5VXk1Lw0Zi9oaHX4iLe11QMFRZmXkzM7gz2O+kn1ejl/sxFNwP4MB9Dwruu8YaF7jr+mTMxds51naOZquyY3ejqDtSL7NbUy9jZO5eJ7ykrdLw3vDSD6V1aHi8YPPrupG6dS/XbXqz6cmSJXdnzbqbk4OBeOX2ocip/XACgiM8+stOgyMq/BMLtsPpAI7zcC6AMwic40ISu6IyBhaufPRu8+Yb06b1T5kCW7Y7NBQ27kBU1J2srMFt25Dv+7oANnHUQFRod6i8XR54JtD/lD/cNtjivid94aX0lFTWJoObmns/98nSpfApsZnn4VQekda3auNzuM33cnM7FYpWP78micTI3HXdMroZqpqQO21z/4b1iFRCaicydz60XbR1cdkRrwsN2TlzdmF0yAi2Rsaa4M5rq4xY4y62ythqdOpeK41OdaSQu8wGIXebT0/1ogJ3AZt7pFDN3Sr1MoGW1cuMCnbnqO3dviCe55/Xom0ht3dqt1qNDCNtjxKktlsYb2c9LpVdn0wwVYG7zcHdTKsMo+mpjM39J2pzp6iXYRZ1p1XsTsruZMXudBtmzNfL8G3uTEPujMD9RwTc4fpCNzE14CDsw/BwkIQ2YuAemtSdNvtq3Ujdw/nzL8TFDURFnY+Luz9nTkXVx7wHeRF9EYFnAn1bfJGJqcfcTMF97O6xhOCusUwycOdc27kFEqPAuym7m8xT1VAuLuqur5fBm/sBJ2SA6jE3r0bE3MN6wtKvp294tWHJ70um35yecT1j/sP570tKrqalnZ0y5XxsrFqtRipcFt+LyhiALQVnRthkiK0bHMaRgzx2RoAzCJye4OQYktgVkdY/Nfdaff3Io4ULYZvCF+xHv+bdWbM+VVfDV869nxt3Pi68Jzy4I1jWJvM/5e/X6gfb2rvZW9IkgVsIS9Io8WnxgX0g4WJCSdn7qk9VUeln4TbAU474GRfhiwzX1vag7f8tvr6NmLm7uR12ddWZ+17M3L/4At1TeDF3us5OZO6Wajun1O4Abku1RDQX2Db6WnhLpHZrBtsZgrsjtMpYBdzFVhmbtcrs4a5VRgy5Mwy5BzpIyN3By9xFc7duvQyHDTO8sjs38s4/vvON8ja6/Zbe7XIhULutgu0WlLaz0narVLcLOd4eQh5vZzsx1c1U2ynAXUYC7oFk4E5Y407YKrOffqsMVbEMf+bOKOrOObs7m2N3Q3P/A1XUnWmlu+Xmrv9cpuCO/pk1LXBHJqb6/QJ7FzYxFR4j8DCER70MBffYzPNL1j5RqVXX09OvJCffmjEDXl/xbEXs+VhFp8L/lL9Ps4/nCU+3o8bg/sWeL8buRgrcCcDdpE/GfLzd5s5OP/COZ3fCqLtRvQxJzt23xTfgdEBwR3BId0h4T3hkf2TKlRS1Wv0gL28gOvpcTMzzVauK3xWvLniev/oxvJyz9Le46RfCknvgBA2nNjg9GT4tRE5YcH6E98JmjUjrS5h5cc2mF4Pbtl1JTb0QF3cpMfHurFnDNTXbP23PuJ6hCbZ3yGVnDLW9UQKb26PBw/24u8dxD3jdp8UHPiz7TvaLNWum590MT+kNT+mB3Wbrtg/vS0r6IiLaZLJWqVRn7kcxc3d21pn7T+PG7TEqcx8z5p8WmzsbamcO7rxSu30bumj39rbJvhbqcjBqtyNtH1XgLuAadxfm4C62ytj76NTRFXI/zHnI3VGLZSS8lrmPSnPnuF7G0qg7r+wuDHnnp3bGgRYH97DcYah99Gi7bcpkGMbbDcalMuuTESK4M6hxZx5yZ1TmztTcCcao0oy6W5ndGTXMkNfLWM3cSVplKOemIj8RCbgjFzv4ialYgTvWJwOPVjiMwBE1LKUnJvNc5rybmPMi8eft2ze82pB8OVnZq5S3y6WnpN7N3p4NJOCOTUxFy7mxThU9uDOKtwvK2S1gd3zUXV8vg41R/Wnc+L3jdeaOzVD1avTyafbxa/ULOB0Q1B4U3hs++97s2rrh9yUl9er6uvqRmtrhd5s3P1m69OmyZWWDZfCuGfNvTZt7Y2rutehp55SpfeEpPaFJ3SGJXdiC18OSe5SpvVPSz8bPuJC98M7H8vLbM2demzr1DpptL3hdkHo1NWogKqwnTNGpCGoLwppk/E76+bT4eDd5w02Cze1+zB22ONxIJI9/wgt2A2Wfcu3LtbCfpMy6Ept5PjHrUtHWt89WrOiPjOyQy88EBp7y98fM/biHh87ckTL3iRP3kg9QNTZ3euzO0tlNzN0m2i7CurhEZBep3bY1MhaCuy1aZawN7mKrDIW5cwHu4ujU0RRyt/n0VEEUy9jBAFUHNnehRd0Fze5cyrvo7xwJuxWc3U6pPZBNaTvH2m7NMhmz4C5hEG9n3SfDrMDdKuDOZG4qWasMgbmzCblzZO6EUXde2f173tidVtSd2tz/zSJzZ1bjzgDcPVFw9/55grbAHemTURyHRx8cFpDRmsndURkDSdmXp+fdWrL2yduiopfr1m18vXH6zelxF+LCe8Pl7XLihPveCeN+HmcA7ujEVOI+GZN4O4F8WE7trFmFybcwZnfDYneyqLuBuf88fuK+iXAfOh90hvsT7lWE3U94eTd5+530CzwTGN6DFKZXDlUWbnlbXPoOM+57s2efj419tX69Sq1SqdSDpaWrnq9aXfBidcHzLdvez5h/Kz33enL25fgZF2Izz8dMOwcv46ZfgC2bmXezrGLw0aJF9+fMGamtXfZ0Wdq1tNjzsRF9EaHdocGdwRi4B5wOkJ6SYgl3HbhPPjLZ5SDyiwH4J9y2YHiudDFh+6ftG4pfZcy5Pm3uDbhh93NzB6KisHG7WM692cen0csLM/dDrq4HMHM3GaD6A26AKqG5f8ttpJ1VyN2stvPo7MJDWFGuRWEXorPTpnYx2E64/oKC+w57rnH/m+Bq3Edtq4y7DVplhDg6lY+Qu9R2IXcbTk+Vj55iGf7K3B3M3C0Zo8q1uXPYMMMXu3Mg79zju8bfO0Ret4az8xFpN6B2mwfbHUjbrRJvt3afDMXEVAvA3dVScOc55E5WLEPD3KnrZagbZnhkd1e67G5S7E4ddWdU6f5nC6LuZmvcmYE7cqchV0m7xiITU/egE1PRAne0TwYblwpHOWVqb1L25dmL7y1f/3Rt4csNxa+qqoe2fti65Pcl2Xeyky8nTzk7RdGpCDgd4NPi43XCcGjq3gnjfsKB+w+G4E7RJ8M63m62ad1k0VIWVt+XmN1No+6mle7oGNXxP4+fsE9bL3PQxYDdm72lrVKMtvMe5M24NSP1SipsjvqR+uGamtUFL2ADfdi69XZW1mBZ2aft2x8vWjRUWVlfP/K+pKSi6mPdSN3Gza83lbxZuPJRTv697IV34OXSdU/eFBbCB6x4tgK+IGzZ2POxkf2R4T3hIV0h8g55UHsQfEfY0H6tSMgdKXA/4QW3B0u4w3aXNEqwWxV1NmrajWnwXZaufTJv2W8qterWjBnnY2P7lErM3M8EBhqY++TJh1xcDjg56cydrMydwNxNBpxygOwMQ+6caDvfwv61HS7RxEehsIvULjRt/4t20QZ3sVVGbJURR6eKIXeBhdwduVhGGObuJ3xzt1a9zChnd17k3e5T8B188DoHyM5TpN3m1G632s7PrFSu4+2s+2QsAPfJXIM7xdxUWq0yNjR3DqLu9Nmdcc8MG3ZnHHUnqpfhZowqC3D/igDcXQzB3WOXwcRUtE8GHgvwSIQD1JSpZ1dseFZTO1w/Ur/mxZrFvy9e/Xy1ur6+uPRdedVHtVoN/0y/nh7ZHxnUHuR30k/SKKEGd+MCd/I+GTbxduqOl6/MiA6VuLDusTEdqYpjd9Oou6ZeBlfpjtTLoFF3pwNIwwye3X2affxP+cvaZPIOuaJTEdYTFn8hftHjRRtebZh+a/rse7MrhyphG8FWg5fbaz6te7lOpVYVvS2Cl6UfSuFlVfVQdc0nLA6/rXKwXqWG9y55siT3fu70m9NTr6bCF4weiMZy7vAtkCb3NhmSc29Fc+5YscwJT88GT9j0sAPAbqDsVcJnZVzPmPdgHnzltYUvX61ffyc7+9rUqZcSE8/FxPRHRnaHhXXI5boZqsc9PI6g5k5d5m7G3M2t78wtduBuubZziOxfj+4lkroD7AlfOS6122mw3RbgbmetMt+IrTIWj079cZSOTuUx5L5/dIXcOZ2eaotiGYGYewtDcz/p0ObOSdSdt4YZVuxuZXnnHd8FF4fnEdb5cXahUjuX2n7aPrTdimUyvMbbWRa42xzcmbXKMAq5a83dh7W5M4m6c83uHPXMELG7wTxVg4YZGlF3dpXuf6Y5NJUc3HE17vTAHe7AsVpwh22NFLijfTLwYIFHfXhKb2n5h48VFUjByNW0qdemzro7q2yw7PmqVWq1et6yB7mL720t/wCvz743O7w3POB0gHeTt8dxD2Nw342C+05KcLcw3m42XU6beUj1xZJJrRTsTh5119TL7EHqZbBJqkjDzAFnI3aH+9ynxcfvpJ/0lDTwTCCC712KkK6Q0O5QZZ9yytkpkf2R8DLmXEz0uWh4GXs+Nu5CXMLFhKRLSSlXUtKvp8+8PXPeb/PWvFjzobS0YPPrwi1vVIjBqzGdn/9w/rQb0xIvJUYPRMMXRBpmOoJ17A7f1/ekr18r0nIT1hOWfDk570EefKmNrzcWvCkofldcXYsUzQ+WlQ1XV38sL3+/ZcuHrVufLlt2NTW1LyKiPSio1c+vSWvuB11c9qNl7j8TlrlrB6jqzP07i5GdLrvTB3cm2m4hsn8trlGv8460RURqF7K2swZ3QbXK/F1slRFHp7IPuXvzFXK32ehUKbfgPkpD7o5d5i5Ac5faj7nzFnW3GrtzKe9WxXdaNM9wCeCWc7Mh6Dm7nNV+xQO1t7GmdkFqO7fV7azKZHiNtxuAO0W8ncXEVFuBO4NWGYYhd3rm7k1t7rSi7gbsTiLvn3MVeDfL7i502N006k49SZWTehmLwd0JB+6uGLj/APceMjFVA+7IxFTY92DHhscaHN+m5l57s2lT2WBZzLmYqLNRSZeTFv+++P2WLfdzcz9s3Zq3/EHa7KspOVeWrXv6rrh42o1p8g65T4uPx3GPyUcmMwB3y/tkqGlbS2tGoklMVhTmzs5FKG6badT9W1zU/YcxY3YaRt21DTOT9huwu/sxd48GRN4ljRI9vrdK/U/5B5wOCDwTKDsjk7XJgtqD5O3y4I5gRacipDskrCcsoi8iaiAq/kL81GtT8x7kqVWqp8uW1dQOz1lyf+aC29mL7uSvflxfPwL/143UqdVqeLnw0cLsO9lJl5Jgl4BPhy8S2h0KK7w3POVKCnxMSdn7D6Wlvy9e/HDBAnj5asOGLdver32xdv7D+XPuz8EsHr5OeSXy5xHDNTW3pk/vVChapVLE3N3dDxuWue/RmvvOzz/faVjmjjd3zhejkDs7bWdH7aKSjx6mHz136VcitQtvPqqptuvA3dFr3CexBXcnYYO72CpjxdGp4wXWKiOG3NlPTxVusYxo7ozHqLKudLewXkbI7M4s8M6dvAsI34W9OLzD+XV2cmq3XbDd4bRdiPF2Lvtk7AXcLQq5W2DuZutlOGF3osA7u4Z3puyOm6eKb5jBR93N1Mv8lUm9jJG8m7yLE3DXTExFwd1rD2xB2AGwAnfY5+HRGprUXVX9Sa1S5dzNUXQplH3KzJuZVdVDt7OyrqWlPV60aFPJm6SsS1PSzybMvFhXP6JWqyP6IvxO+nk2eFKDu/HEVLI+GTpiQVgg8zXxqFIK9SRld8rbQGAe2rewYXdzUXddw4wBu6Pd7nCHa+T9uIfnCU+vRi9Jk8S7GcF3LH6O+TtG8Bi+KzoVod2hEf0RcRfipt+arlKrHi1ceDcnB7b4vGXIr1ISZ16Kn3ExMetSeu61RaseFZS8gU08uG0bvETS7+h/Cx4ugJdVQ1ULHy3c+mHrsnVPkeGo0dEXExKuZ2Q8XIC8d8ma3+tG6rC6/9jzsdHnouMvxM++N7tssGx90Sv4gCspKV0hIa1SaaOX1zE3N6zMnaxYxlJzh0/BL4bmTj/ezkbbRWQXl+jsjkXtjhFsZwXuYo37qGiV+YHTVhnHGp3qbdNWGaGH3A8xC7nLOAF3zqen0i+WaTAGd3ssc7d7c3eEqLut2Z0XeRf9nUdkZ+LsFkfabUrt7GpkeNX2KQy03XplMhbH29n3yQgE3OnNTWXdKsOduTOpl6Fmd6/dVPLuwapqhr68G1yM4OvdSdmddtSdeaU7Mbv/mWdw36UBd2RiKgLusHPCwwEe1BFpffUj9TcyMta9XBdzLmbqtal1I3VPli07Hxs7EB19PSNDpVal5lwNTepWpvatL3qlUqnjL8T7n/L3PEEE7ru04G44MdWiPhl64XHMsjWcrV3GLGrK7uZuBi3woJB3/O8GCKPuppNUjRpm9k3E5qlq2P2Q6+TDkycfnex2DKma8Wzw1GTem719WxBzRxaWfD/tjzTPtMtDukIi+yOTLydveQ//b4FtfT09/fclS8qrPqbNvhabeX7K1H7YDWBFTu2PmXYONnfukvuwoauqh7Z/2v7b3LkfKyqGKitvZma+XLeudrj2bWHh5aSkXqXyYkLC/Tlz1CrVnKW/zZx/u6Ts/aLHixIvJUb0o13wXUjd/LQb09RqddHWt89XrbqTnd0dGnrS17fB0xMplnF2pi6WwZs7FbsbfhjFomXutOPtnFC7CLLiEqldpHbhaLsl4G6LkPsk+2mVcRFbZeynVWZ0jE517JC74ItlRHMXrrkLJOrOH7szkfd2nuR9tBE8L/deHP/OziO1WxRsZ1EjY5/aTqdMxvJ4eyOzeLu5PhnWBe7WAnduQu4WmvsEb7ZRdzPsziLwzqG8kwXeCbvdidjdJOpOWC/zb4zrZSi0nSa4f40D93/owB298tKCu+eP4zTgrp2YioD7ybDkno2bX79cu3brh61YpvldcfFAVFSXQgHrbFTUUGXl1m0fYqadS5hxsXKoclvl4MzbMwNOB+jAfeIvE3Xg/jnKpWO+H8NZgTv9qpZ/mKnfJp7aSji41Qjc6RuGkbxTs/s//mA0SVUfdd81duxuXMMMyu7IPFWU3Z0PGvbMoGl3SaPEpwWZrYqUrbf4YuYOmymoPSi0OzT6XPT8h/Nh696eOfNiQgKsWzNmfNi6NXvRnZjMc8rUvtCkbkVilyKhE1ZIYhfsFVOm9ifMvLho1eOVG54tX/90zYs1WOC9aMvbVc9Xba/+BPvMx23baoZrZi++l5h1CdacpffhA1KvpCp7lfIOeeCZQFjw3XPv547U1ZV+KN38bvNvc+a0yWRNEskxrFjGyenXSZP2YsUyX3xBaO7f0/Z01uzOAtyZabvo7OISnd3hqN1Og+3U2o4Hd0dvlXHUGnd7b5Xhb3SqGHI3MXdicPe3fshdLJYRzV1YY1Qtj7pbj92tLO984rvDEDy/d5F1nJ1bauc42M5a20/ZRtsFXSbDX7zdauB+mBrcGbTKsAu5k5S5c2TunLG7BfJurm2GMvBOxe74Ync2UXeqehkz7P4FUbxdD+64a2EcuP9BD+7foOD+nSG474aNAlsT9gFnDbg3wOM9JLFr2twbBZtfq+vrK7YPqdXqc9HRbTLZKan0lL9/h1x+PT29vn5EpVatLnj++5Il8AFpV9PwCfeJv0wcv3e8DtzH7BxDE9zN96d/STsqritGJ1oG7E5h7paDuym7E/62wOT2G5m7vtVd1zCjK3bXsjtm7ljJDGbuWLG7TzOysLR7wOkAebs8vDc87Vpa3Ujdy3XrLiUmDkRFDURHX05K+lRVtankTcLMi8rUXkVil+6MDOdB9Fki8nQOnjOEJnVHTu1PnnUlNedqYtaljLk3YB/4WFEBu8SaghepOVfgvfAVsI+Bd+U/zo/sjwxqD5K2SuFmwCsLHi6A75W96E517fDboqLu0NAWXcjdxWU/ViyDhtw1xTL4Mncm5v490SI2dxN2pwvu5uLtNqH2r2y6RGIWlxCc3b6pXQDBdrbgLrbKmDP3/xR+q8xkYbbK/Gj1Vhkx5M5byN3a01OFUiwjkDL30WzuXNbLcBV154zdOQu8s5R3/vFd4BBvzR+fqbMLldqtFWxnUSPDXNulAtR2LsDdk/c+GQpwP0IG7q78gDt1q4yFIXfz5k5dL8OQ3enLOzexd7PybobdqaLu/2EQdWdn7jh2x+P7F3htJ463k4L7JC24o1d5GLgjPzJcGXns0k5M3Qu7BOxXsNPqwD174Z3KocqywbIH8+adi4HjoKzFx6dRImny9m6VSnvCwt6XlGz9sLWmblilVi15skTZq8Q63F0PuzodcNKA+55xY3ePRcD9ByJw/ztzcP+SRkLccAapxqxxC4+pOjqlFbe3BNy1i3XUHWFmXdT9R+OoO1bsDve8pmEGZ+5Iqzs2UrUZGakacDoguDM4eiB6xbMV77dsuTl9+tkpU3qVyj6l8lx0NGzuN5s2Tc+7FZHWp0jo1J0T4XSjOWtonzzDOQXeCGcuOD/CGT8suQdD9hCE6Tuw53vBCZ3wxtUFzz+Wl0+7MS20OxS+u7RVGtwRnH0ne8u299EZA3nLH3yqqoLvrmlyJ5+ealDmjmP3783xOsWijrpTh9xpxtuptd2uVV1EeXFZe7cUqd0W2m4LcBdeq8xnYquMODqVUcjdZ7SE3J3tLeQulGIZOzX3CM7N/aTVzd2hou5WYHeG8t5uE3m3gssL5cdhjuxyC3cAQVG7NbV9ij1ou5L/MhlmfTLcFbhbG9xZtcrYytzpsjtl4J2k5J03eSfumaHF7oRRd4J6GaJKd3J2x8v7vxFqOzW4TzQG9//EgbtmYqoW3GGvgH0Mdl1PFNxDk7vVavXse7OXPV12b/ZsZKyln1+jl9dxd/cGT89mH582mexCfPzT5cs3l71b/2p98uXk4I5gnxYfj+MeenD/GQX3HzXgjukmMbhT9Ml8SUTtZNlw09GjWDz8ex3QjsE7q/EEV7OJex24M3ULGuxO68chanU3GKb6K2LuzgedDcxdW+mOgTvW6JJ+Pb1muAa28oW4uJ7wcNjE3aGhfUrllZSUyu1D2yoHY6adUyR2wWkRzkpwBoG9Aj2eI4do3KFYcxUAb4f3Gj4PR54/w+fC85PErEvllR83l76bfmt61Nmo8N7wqIGombdnwjfKnHdz+fqnbwoLe5XK0/7+Td7exz08CEPuu5HfMhiYuym769cY/DYf8wNuGbyLiN2/IzN3Vn0ynFP7V6NmiWwtIrtdUPto0HYLwV1QrTJ/F1tlRnmrjK1Hp46GkPtBXkLu9M2d05C7jYpl+CtzbyIAd/s3d0HUy9ia3fnumWEl7zZLvjvaYoXsnDq7MKmd99J2q2i7BdXtbGalCq5PRijgzqRVxoJiGQbmblgvw5bdTeSdFN+5jL2TyzsaeDftmTFid6OGGaKou0m9zHimUfe//JuBsxNpO2GBO3Kd+5URuOsnpmLgjvTJ7MQmpsLWgY2LgHsAAu5owr0lDAX3muGauvqR+3PmtMvlJ319EXD38EDA3dv7dEDAQHQ0fMycJUhDd8LFBFmbzLvJ2/2Yu+shV6f9GnD/Ys8XpuCuB246Be5kC5cKp+ZpjVBr15idGnnF/wKANHRvdJPIwJ0+WlCzu1HU3XSSKjoJVBN1p6iXMTR39+PuiLk3enk3e/u1+sGWiuyPXPdy3faaT/dmz+6LiOhSKDqCg2F1h4bCZn22cmVd3ci0uTdCk7vh5AjnFzgRwAEcjsZwjEUOpOjR0ujAiB0zseMqHHjhyAwfD2cBOGGFJnWvK3z5av36io8V5VUfYYdZ8HBB3oM8tUq1aNVj+OfNzMze8PAzgYEtvr4nvLyOubnpmtyxkLt+eqqJuRsbuiGvU6/vSdppmIE7/9r+lbhEixedXaR2G1G7KbgLrcZdbJWx21YZMeQ+KkPutp6eyn+xjNDL3JsYhtwd3NxtHnW3CrtzHHhnJe8ivrMTdusiO41IexC7PVMAwXaBaLvdlclwF2/nrsCdNbgH0gV3zkLujM2dOupOxe7jqdmdvrybx3cKfyeNvVMF3s2zO3XUnV69DCm7ky/c55KA+9+MwR2uyzQF7hpwhw2EgLtUD+7wiA5O6Jy37Deklbu8/GpaGgLufn5N3t5IpYxE0uLreyYw8GJCQt1I3cz5tz9VV8dfiPc/7e/V6OV21M3lkAsC7vtIwF3b4kIaJ/+KmbYbwbRpAQsG0/q1a6xmiKtRyw3+1wB/Jwm5Ww7upuyu63anjrpT1MvgJ6nizB3plsH63I8hOXevEwi4S1ul8g550qUklRoZdno1NbU7NBS2b5tM1hYU1BEc3Bsefic7e+3LtcvWPY2c2h+EgHsrHM+12n4cjoewn6CHMs0hS3+dhV09wcVR0BE4SMLRFT4FDv5w2opI68tb/qD8Y/mDvLybmZkv166FG1AxVFFbN/w4P/9KSkpfRATcjFapFHYwTcjd2Xn/pEkGIXdtsQxm7jtpkPpOokXA7uTmzhrcybTdqo7JECvNLxHixWW1DTraqF3A2s4K3G1a4y62yoitMgIenWqzkPskwYXcBT49VVhl7sIZoGpVc4/k29yFFnW3IrvbUt5Ff+dS2Plx9nZunN22wXYLStst0PZWG2k7nTIZq8fbqftkbAPuLGrc2YTcOTR3puxuXt6J8N0CfyfEd5LYO0XgnZDdaUbd9fUyXzKvl6ED7jtogvsf9eC+C+6WcSi4w4aGXcVFD+7NcGxMnHlRrVZveb/lenp6Z3DwKX//k76+LT4+Lb6+rVJpu1x+OTl5pK5uqLJSpVIr+9AC9xOeCLgfdJn066QJ+ybowX2nFty/+yPjialf0iqTMdZ2w94VuBn6tfsLDbvvJGqWN/1NABZyN1QWS+nCLLvTzu8TVLprzR2ZoYqaOxZyx8Dd/5R/aHfo7Huz6+tHXm/cOBAd3REcfEYmOxMYCKstKKhLobgQHw+b9UNpafKsK/AEAM4jcACHgy2q7UfhyAZHKjgiYb/qMzqqoFdtyOUYfAx8JHw8HIfh0+HkGDf9POxR74qLb2dlPVqw4E1BwfaaT8O1tU+XL785ffr5uLju0NDTAQHNPj4Nnp5H3dwOubgcQFtl8CF3XbHMLt0fLRAK++efm1+U5v6dqbkzAXdLtN32qu5wNC8SuZ3N4BU2tdt1sJ31KctCcLdFq8wksVXGFq0y4uhUBwq5O1kYcneg6an2WOY+yszdxpXu9sbu3AfeLcZ3Q3+PG1W83sH6TuNs2/ERaeeE2i0JtjuOttt3vN3iianswZ3LGneqkDsNc/dlYe5s2d1Y3mngO5f+TozvOHnHV81Qsju9qDudepl/Yxd1N/gUgwJ3Q3BHrhm14I5ekWnBHSlw9/oJthRsbicE3A+h4H4cHptwgIpKP1s/Ul81VPVo4cLu0NAzgYGn/P1bpVJ4Ca/DW36bO7doy9vid8UpV1KC2oN8mpEC98lHJjsfdCYDd4MCdwvB3QijDdPfem3XMjS2xv2MNJ4jtwqFW/1vAojK5SlC7mb04s/ki5LdadbL0DR3p/1OiLkfcoGN4n7M3fOEJ2yjgNMBkf2R5VUfyyoGP2zdiuTKg4JOB8CbA5CQu0zWLpfDG98WFq5/tX724nuhSd1w6oFjOBxg4agIewii7f4H4MCCHjr24dulsKtI2J0weYejFhzrkKi7ogHOCHDaTZh5EamUUalKyz8sW/dky7b3y54ug2+0vebT4/z887GxHcHByLQAiQQbnXoQG51qEnI3NneitYt84T+MytxNQu5k4E4Vb6et7fbN6/Zp8SKjC6vIiPm+9KUYbOef2gnBfYc917gLoVXmW3tolRllIXeJGHIfdSF3NuauEHKZO5G5h9u3udtXvUwAF+bOB7tbM/DOEb4TEXycY9h6h+X3DD/OLnxq57lGhldtjxSktlseb7dGgbsVwd2SkDtLc/9Fb+70ou4M2J01vuv9nSbB08d3E3nHB95N2N1M1F1XLzORqF5mvLl6GWp2N/xIw3j7l5pr1Ylf/2GidmIqcg2Im5jqthN+WN3EVA24Bx6C/RkDdzi8hCZ1z1362/ZP25+tWNEfGdkhl2M56DaZrDM4+FxMjFqtXlf4cuPrjeG94f6n/CWNEvfj7q6HXZ0PaMB93M/jDMCd3cRUJvF2vUHjtR0dKKpb8E+9ue8y98sAFuCOwvr/+fP/IVvE8k4SdTeb5Tcw9936H3niPoNiGbdjbp4NCLgHwunrHLLtlq598nDBgu6wMOxXKbAwdod/doWE3Joxo6Z2GD4sKmMAzlkouDfAcQ+OXRpt9/0FfbCjj1nd1St2QYqWFCHsLv0VPhj2KzhUeqJ/OQHnytDk7uhp55KyLmXOu1lbNzzn/pz06+k5d3OGa2reFhVdiIuDHQwLuRuMTtWG3E3NXWfoxrA+Fvs1hPHahftEanOnBe604+0Wyabw8FGEeFHYv7Jp8ZFI7dbUdrbgPl6scRdbZRxpdCqbkPsEMeRuw+mpDlIsY5G5ewvM3H0Fbe4CirqTFrvzwu78yjtH+E4J8XECVHVubJ17ZOfV2bmido6C7Sy0XWqX2m6dWam89Mk4CrhThdxpmjujqDvRSFVz8m6I78z8nVkKngTfjeTdsGqGiN2NGmaMo+7k9TJf0a2X0Swqaqfsk9FMTP0DFm/Xgzt+YioC7kgeGYNRNIwMj0c4esC5I2HGRbVKVbH946XExO6wsM7g4A65vFOh6FMq7+bkwNtL3pckXUoKag/ybfH1OuGFTEzVgfveCYhr7+YH3PG5b6zfHJspqi2TwZpk4AbAzcD6VXQLKZfXmbvJQFeDm4drlSEFdxNtp6B28/JOHXWnYe5Yfw4Scsd+8P1IsQzWKoOBu6xNlnIlZfO7zUOVlbdmzOgKCTkdENDq53cSXdhfMGB9Qds/bS//WJ6UfRlOnXBghx0Di7c7abUddh7sD0pwV8G70T+b2DMemcS7F6kq8tOau7ZbBk5k8JwhPKUXvjIyA+D2zNjzsdED0fCKWq2GW9WrVMLNaERHpx7CjU7VhNxxxTJGeq5zdlNk303O7oTmbhRyZw/uFmq7kLTRliIvttM4Eq/bW6Rd1Ha+wP3f6YC72CpjH60y4uhUFua+Twy528/01GM8FMsIdICqaO4cRd0Fze42lHd+/J0Gx/O4+PpBuL/naTg759Ru7WA7uxqZKIbBdp60nWZ1u5KWttOJt3vZtk+GusDdKuButlXG7OhUZiF3mubOiN0JAu/08J2U4C1VeIr+GRN5Nw68E7C7acOMcb0Mk0p3sqg75fr3cYbXv2Ympv6TYGIqqqKwc2pVtAmODHDYjEjrm7fsQeHbwrs5OWenTOkJC4PVp1ReTkr6WF6uVqszbmSEdof6n/b3afbxbEAK3JmCO762hSm4E/TJ4OLt4/ZoylWwoLfzQWdYTvuddHU38AHIzdtFfvOYgjsTbSdld6OoO4m5G/2aQW/u2t804H92l0MuOnAPag9a+mTp+5IS2HzPV6/uCgk55e/f4uvb7OPT7O0NL0/6+Z0JDByIinq1YUNN7fDsxfeCEzrhgI+BOxyFYG+BfQYeibD/wF6keXRorq+Ry2QsUoZEwbz15o51y2B7F5yk5PEdsZnnq4aqZt2dpexVKjoVUQNRpR9KYb+6MW1ae1BQk7f3cQ8PrFVGMzrVMOS+mwjW8cK+G/swoqVndxNzNxNypwHu9LWdkUJ+6SjLsWe3irbuSJF2q1H7DmFTO1fgLrbKiK0yYsidRauMYEPuBzgNuTtmsYxo7rYzd6JKd6tH3blqmOGpZEYI8m4Vf7ebxdc9HMtzpJ1DarddsN2K2n7SQm1nVSbDKt4eykjbLemToQb3I4zBXWYW3LkMuXNn7jTZnVTeJ3hbhu/kEM+6Dp4M3wnknZjdCRtmsKg7cb0MkbkT1svQZ3cjbac/MXW3dmLqL1jdNuyxsOfDowkF91Y4SIYmdSdmXdpWOfhu8+ZLiYlno6JgXYyPf7569cbNr2ffmx3RHxHUHuTX6ufd5K0B90OuTgec6IL73xiCO+0+GQ067x2PVZljtSrILwMOOk/aPwneqAm57yavmMf/PoA1uP8v5aLB7sb1Mia/aTA29104c8f9+JOPTPY47oGBe87dnA3FrxeufPRw/nwM3Jt9fBolkkYvL3gJr8Nb+iMja2qHS96XVAxVhKf0wCkAAXfZETjmwFECHrbjNNqOPBb01+m63+UY5Nx/mYT1uSO/0UF2MDhTwDkxcmo/1loT2R8pa5NFDUQNVVSo0f96wsNbfH2xVplD2lYZ3ejUPZTmrlN1/aBc7FPQz9LOzcVl5HXmThRypwPu1PF2ZgbquM7Ou8ILleD5pnl7+qnZblyHonZ7C7ZTgLvQatzFVhm7aJXhZXTqWCuCu52H3H+1QsjdmbeQO3/FMm68FsvwM0DVQczdKmNUHSPqTsXuPAberSrvo4rgeb8breDs/FL7KNd2nstkrBBvtxDcgyjBXWYBuFvUKkMdcjdj7oyi7uzZ3Qy+W6DwrNtpTP2dWN4p2V1zIaNvdTeul2EyRpU2u+8gjrdrLlGNJqZ+q52YuvNzowJ3tPQDm5gKDzd4LMPBBA6hIYldURkDsxbdra4dvj1z5qXExEtJSfdmzy55X7Lw0cKYczEhXSGBZwL9TvpJmiQeDR4Wgjs3Be47x2DNKro+GUSc0cGhGLjDP8nA/Y/f/ZE9uBtp+//SXkbsztzc8dNi8f31upA71irjcdzDu9lb1iZLvpxcO1JbXvnxt7lze5VKDNxPeHk1eMA29GiUSFql0j6lUq1WZ9/JrqsfiUjrg/MFHFTh2AW7Cuww8BCD/Qf2IkTbtX/egY0H0Pw6BzN3JOSO9rn7YVN5D8I+BkdX2Mfg3BSa1L2h+DV8lw2vNiReSpx+c/qWbe8z5t6oHKrsj4QzmRRu0lE3t0MuLppWGcOQ+x5dYh3Ls5tQ+0/IfFyCpfd6k/mr5ltlzIE7zXi7WYv8Ulyjj+AddtmbszsGtXOr7RaAu+U17mKrDDW4u1ilVWb0jE71EuDoVHsPuQt8eupoKXMXzZ2VuXMVdbcPdmcm79bCd8cgeOvdV7H8V8fwTO1WCrY7rrZzMyvVbLydiz4ZCwvcrQPuDEPuZsrcmUbdabA7DXynS/DcuTyFwpPKOxG74xpmiKPuxJXuf6NV6Y6aOzm77yDQdrICd6OJqfoCd6M+mWNI40dYExwN4NgFR+zQpO4p6WdTZl3ZUPzq5bp1N6dPv5OdPVxTs+TJi0evvQAAgABJREFUksRLicpeZXBHcMDpAN+TvubB/XtrgDtipThw10W8nQ86uxxycTnogtXd6GvceQL3/2W1KNgdVy9j1tx1Ze74ewC2i/sxd9hMWId71VCVWq2Gl1dSUtpkshYU3I+5ux91c2v08jrl7392ypSny5aVvCtZvv5pVPpZOBPBvgHHNBTc98HDBwF3912wO8HeruEC/d9P7MQVy2hD7ppiGbTMHR2gCk8AZi64vW1w26OFC+HGrHi2Yn3Rq5Ubnr0uKOgNDz8llTZKJHCTCFtljM2dhNrhg02X7tONzH0niblbAu4itYsELyK7fVG7GGznFdztt1XmH/bTKiOOThVqyN3HfkLuUtrgbpvpqTYscz9u6zJ3BzD3FsvN3Sb1Mrw0zAiV3YUs70K2eJvdCbSRnQdntym1W6ztUjvSduuWyTCMtzPvk+GiwJ0vcDcbcregWIaJubNgd9r4Tuny+MUZ0Jv6Oxp7N5qzOlY/H1LP7oRRd4vN3ZjdtfK+Q0/t40wueyd8+R8mfTLGE1MNC9xh2+mix/C4gEcfPOrhEASH7pCkroi0vtjM8yk5V2Yvvle5fejRwoVvi4pWPV+Vfj095lxMeG84Bu5+J3GVMmQd7obgrum95iPhjkW8dxt2uO93cjqALKxPRtPhbnmljOXxdoq0O7m5I/cDhbnrytxxIXeXg0iNu1ejV+CZwKzbWb8vXrx03ZO6+pGny5d3h4ae8vdv8vZu8IRt6Nns7d0WFHR/zpwt295XD1erVar0Odfh9AcHXthJTMAdS7h/q50QoAN3pLNI1+SO/V5Hs6ehzUWwp8E5LmbaObVa/WjRomcrV8I3Kq0YfLNp07WpUzU3SSI57u5+ZPLkg7hWmb1aNMdXxODbY/DUDh+8Fz4Fv0zNHTdDlTNwp59tF6ldLKIRnV0wDwEx2M4U3MVWGbttleFldOpO+x+dKobc7WB6qisDcHfIMnfR3C0ydy6j7gJnd2vIu+DwnVugF/QPEmtdZ+ec2nnpkGFdI3OKObXbXNvZl8lYI97OWYE77+DOV8idvrkzYXeG8s6dwjNXeyqFp5B3YnbHGmbwre74ehl8pTvFGFVCc//S4MJ2HG4RXvAa98mYTkzFF7hjMy2RPhl0oKWmXBuOQvL4jvCU3php51JmXcmcd3PWorvzlz9cV/TybWFh4dvCOffnpF9Pj78YH9kfGdIVImuTSVulyNDUE57ux9z14L6PGNw/Q83SGNy/4gLcvzPsMd+jiXjDLZn4y0S4SUi2HdN2LN6+54uxu8diZSJmZroagrueTOjH2/9EvuhE3fH1MoZjVI3uBIPJsbvH6kLusFEmH5ns2eAJGyvuQpxarZ4x/1bWgtuD27ZdTEjoCgk5HRBw0te3xdcXXulTKgfLyuBj8h/nP1m6tKZ2GE7rcGRGhqaaVsrgRgePIQZ3tFUGa3LXhdxDGuCEAs9kkrIvry54XrT17ZZt71Vq1ZMlS66mpvaEhcHNwOamYjXupq0yPxk1s+NKY3TUvg/WRPjpkbUP83oiczcIuVsA7ozj7Rw54w6el0jw4uIP2R2c2h1F2y0D9/G2BPfR1irzn6OnVWYUhNwnjsaQu0MXy9Auc+d0gOooMHfr1svw1TBjAbtbIfDOJvZuJ/5uT4shsgdxtelJqD2QI2q3frCdxxoZRtrOflAqv2UynMTbaffJ2CO4W9/cyeWdDb5bZxk/4yXwd6PYuzG7a57wf+5hGHWfbBh111e6mzV3c1F36qvdCYZ9MqQF7j/gCtzRPhltvB0epHAUCknsipt+IW/5g5Ky93X1I9s/bVepVbAqPlaM1NXBK2WDZSufrcy5m5NyJWXK2SmKLkXgmUCkVaZR4n7cffKRychgUgzcf7YquBvku7FOFVRhEXPX4CsCrpi2w7s0t23X55iwUjXe6G4bSZ8Mlbb/ifYiYnfTehk9gpKYu1GxDBZyR1plDrvCBvJp9lF0KvIe5I2o1cvXPx0sK3u5du2r9esvxMV1KhQdcnl3SMiV5GS1Wp1wMQG2L+wA+aseI+Ae1giHPthbsKGpX+CGpuqvylFt13W448Bd0yqjmxYAx174gnAKU6D7W/aiO/UqxPfh+/6+ePHZqKg2mazZx6fB01NT4+7s/CvaKrPPUMyN1s9abcdTO/qrlkmaTzeJyetD7kZN7sivb1Bwx5u7BeDOVbB9h5CW4/u7SPC8IbtA/qpDpHazCxvpzRW4i60yxOb+n+LoVN5Hp+4W6uhUMeTOrljmiO2KZexugKqNzF3Jk7lbUukuqKi7ddndevIu4rtDIDsfkXa+qN1htJ3b6nbeZqVaHm+nV+BOOjGVLrgfpgR3XlplmJo7K3Y3lndjf+ec4H0J1kSSZe42mEbgTTLvxOxu2upOaO7f4sz9H0zMnVDevyTQdtM+GaMCdzdtn4xE2ycTeAj2dnieBoeU0KTu6Xk3VWrV28LC4nfFc3+bO+PWjJm3Z+Y9yKsYqnizadPqgucLVz6Cl3UjCL7Pfzg/7kKcokvhf8rfu9nbo8Fj8pHJLgddJu2fhNW2IClyanD/mi24GxaqwJfFwN0g5I62eiPmjuvwNtJ2fYE75c2jKnCniLf/ifkijLpTmPvXJuZuWCwDP+yEvejo1IPObkfdJI2SgNMBkf2Rs+7OKnpbBBux4E3Bmhdr4JXf5s49Hxt7Pi7uTnZ21VBVypUUWLChZy64DedcOGjDfgJ7Cxw34MECj4Uv0D/1QPZ83fW1VtvhcYH8UocA3JFWGe3AgBNwWoEzrzK1N3vhndrh2owbGdNvTd9WOXgvJ6dToTjp64vNTdXUuOtaZdCQu6m542tk9mmpfT8sJyds6czdqAseC7nTbJUxD+5mtZ15tn2HvS1H9vdRS/Dc3YFfjjJqdwBttyNwF1tlbNsq84NwW2W4DrmPt9Mmd0eZniqsYhkBDFBlau7mwN025u7LytxtVS/DSdTdrtmdHr6L/s6JsLebvZ9lDk/tlgTbrVDazpO2K+lpO3dlMnTi7ZyAuxsH4H6YJbgzr3G3nrkzYHdSfOd6/WLxwnG8Cb7jM+/6wDuO3XUNM7hWd7Pm/g2puU+kNneyK1m8tpv0yejB3ajA/RfYc2BHhUcKPOoVCZ1zl/5WuX3oY0XF7Huz4y/Gx56PTbiYkHE9Y8WzFa/Wr3+cjwSQsxfeSc+9ljH3xvL1T+GfxW+LU66kBHcE+5308zrh5XbUzeWQi9N+J2QwKRm4/4MtuONi3QbgbhJyH7MTZ+4Yu6P9I19oR23itZ0g3k4H3E37ZCzXdnJ2N6qXoTJ37HcP2l88YCF32BxYyN2jwcO3xVfRqUi9mgqbb7CsLH/14xl5t2DTwz9fbdhwa8aMh/PnF7wuyLqdtezpsrKKwehp5+AsCYdxOGDC4QuOLVirDFyQfqHZ+TVXypqrY09cvB25Dt2rqZRBa9zh8IVUGAUdRf6oIqwJTnyhSd0LVz2CHSnmXEzUQNS2wW1wS/oj4QwnbURHuerA3Sjkjjd3A22fMEGj7Wh1P3wurANEX4FFqwwH4E6bHXc40HJkf3dUhef6LvpyNFC7AwXb8dpOAe5iq8woaZUR+OhUmiH3PWLInS9wd8jpqfZW5m7O3JvsydxtUuluu6g7H+wuSHknx/fRTPCxwkB2Yme3uD2GmNptHmy3G23ns0yGx3g7v30yXIM721aZAxTPoJiau8XsztTif+Fm+dFY5LfNAN9xgXdjdsei7sT1MgRjVBmauzl21169/gdln4xpgTv8UFifDOzS8HCD41j8jAtIeYxanX0nO7I/MqwnLKIvIu5CHPyzrn7kbk7OnawseG/u4nuJWZdiMs/FTb+Qk3+3ZrgG3hh7PjbwTKB3kzdW404F7mSi/RVdJNOBO1mrjMaadyIVIUhu+cexY3dr5H0s1h5iou20+mQIC9zJ4u0mhv6vf/pXZP0P0frTv3Jg7ti9oR2gijXa60Lu4/eO141OlTRJYGMlX04eqqj4bd683CX35XHtEWl9U3OvFZS8eb9ly7OVKze+3rjq+art1Z8y5l5XpvbCuRIO+HBQRWrcAw7CngOPC425a37tpLng1V3VahJgaLzdCNx1rTKw48HpSZHQuXTtE9iLEi8lxpyLGamr2za47WpaGlLjrp2bqqtxNwq5Gy18mQx8MKbt8LmwEHN3ctpvEnI3apXZadgqQ1HjTh/cWWj7Dkdfju/vdqfwPN0DAtvKO8RgOytt5xbcBdUq83fhtMp85pCtMmLIXQy5W2d6qv2UufM+QFU0d6tG3e2f3XmQd9r4bs7fY0eVrdMS9iAeNhaFswuC2rkItjOrkbF7bbeDeLvVwJ19jbtlIXd25k7A7n6/cIbjHJE6zR/EzA9oiO/4zDuO3TUjVXFRd4N6GU7M3Qy7E2m7YZ+MSYG7O67AHeuTCT4GD2dFQmfWwjvvt2yp+lQVNRAl75AHdwSH94YnXU6qHKp8tmLFldTUq6mpz1auLNzyJjHrUmRaf3hK75T0swtXPhqpr68ZrgntDvVt8fVo8EDA/YDTxF8owR0/kpQM3AlxjqjG3TTkjpm7jt018r5r7Oe6om6dtn//R/Px9q8YxttNtf1//pXWMpV3U3anNve/48z9n/qQ+7ifxuma3GEb+cGZoT9yuKZmuLp67aYXMdPORWUMJGVfhn1g5YZnapVq2+C2jZtf5+TfhTfChoZzMZw44CAMB0DYZ+DwAg8T9OHws8EffOguWjXZ9p8naOLt+7DHpiG4a1pl5HHt85c/HKqsxMa0rtn0oqxi8Hp6+pnAQIO5qc7O+0162I20nSDe7uJyyBV+aFfNVyAcvsqoVcYScKdBkDtG5Rot/i4Qi7fCTye8DbrDsYLtf7UitdsduAukVcbqIXfrtMqIo1MdMeQ+SYghd0cvluHV3MNsa+7sxqie5KTS3YZRd64aZnhid1vJO0N/p0HwdgHxNH8K2neLzHrOLnxqt0awXdR2evF2s+NSWfXJ2BO40yyWYWbutpF3C2Fdil/7JxH++FKSH1N7G7SFMzh2N4m6jzVo2NCPUSU3939QmrtR1P0rwitW/QWpKbg7mxa4I+AOt3wCWuDuivbJwIEiNvO8Wq0erq3d8n5LeG+4/yn/oPagyP7Ixb8vrq75dDUtbSA6+lxMzO2ZM+HDps6+pkztDU7oVCR2JmdfHqqqqlepY87FwGd5nvBE5qYecLYU3ClAzijk/nd9yB1pU8Gb+/dj9OyuXWN2at74Ry2m6rXdXLzdFNwJ4u2mwfb/YbxI2Z3c3PW/hDApc0emp+5Bi2V+mahrcsdC7mterHmcn7+59N2CFQ/nLXuwYsOz7dWftn6A/7duqxxcsPLR1NxrURkDioROOG3BIR2OonCIg4MS7DzIgwLJue81GHKgpXZtiktzeYg+DJGrNg24y47AsRQO2nDugJNy8qwrsF+9WLOm/GN5cem79yUlsLOdCQxs9vZu8PBA5qaatsqYmDtZn4xBwp27VhnW4M6xCZqEarlZor9b2d8tMXqB3DyhdvfvEIPtFms7nHn+P1rT28VWGQdqlXHM0ameNEenchty3yuG3O2xWMam5n5iVJp7i43MXYhRd/7Y3bbyztzfmSi8dVCe3Y1h+CPzuwn4c3Z+qJ2jYDu7GhlhazuHZTI2GJdqtsDd5uDOYcidCp0pF4u2FjYlMMxtncYTSDP3DJm8G7O7pmHGtF4GP0YVb+76PvdvcOb+d2pz/w+T61Pjq1RjbTdf4O6EFLgfgQcOHJSm5l5Tq9W3s7Jq64Zjz8di8fY59+dUbB96OH9+f2Rkd2hoT1jYhfj44draVQXPI9L64MgMB9XYzPObS99VfKxIu5oWeCbQq9GLCty/5Q7cjULuhOauY3etvOtT7Uba/u1n+BtmJt7+V7rxdnbaTszutM1dV7OjuR9wxTLY9FSXQy7ux9y9m7xhe005O2Xls5VbP2wt/1heNli24tmKeQ/mLX+6/MWaNY8WLhyuroa9Yv6Kh3HTzwcndMJpCI7YcJyEg5gzZu5+2C+i8EOGddeS+7AmGa22/+qEA3d0bipS4w7nBTj9hSX3TM+7tWbTC5VK/a64+E52NuxyCLj7+DR4eurmph7ADT7Vmbt+oW/Rgztm7miBu3GHOxG461pldplrlTGocecI3IWjewK0eNHfhby+FPByPGq3lbbzDu5iq4w4OlUMuXMbcjd/7UQ/5C6lH3If1cUyvJe5h/A1QNWRzd3aUXc7ZXebyTtbf7fY4vla7H8QmW2QnTtn55DaLQy2c1kjY3fabut4O8fgTq3tR1wtBXdzc1MtDrkTd8tILStjsXixja6z+ZtIJxr3GB7fTdndIOqu7bMmMffvGZo7Qb0M6Zr4NUWfDFrg/k+0T8ZkYmrQEXhwwXEJK3C/PXPmh9LS2fdmz7k/R61Wl1UMwsuzU6Z0yOVtMll7UFBPWNiDvLyRurpp826EJHZhRTSl8DkVg5vfbZa3yyWNErejbpaCu1l1I2py1xXL6Lpl9OxOtP5Ta6j6bLuuTIaLeLt5bf9v7aJZMkNY6a4z9y9NzJ2yWMb9mLukSSI9JQ3uCFb2KqMGorAZualXU5f8vuT5qlU3MjKuTZ36YN68mtph2BMy592EzQ1nFjggw0FSZ+7I48KgeWmfLtWuoXYs245puym4ozXu8riO2Mzzi1f/vvbl2nUv1z1fvXogKuqMTIaB+zEU3PGdMFhEXWPuGLtrtV0H7rqQu26RgjtRq8xO1q0yZOBuibZbV/QYW/zoxvcvRWQfhdTuWB0ypNSu1XbOwV1sleE95P5HhxqdymnI3UsMudsg5G6HxTJHaYfchVjm7kjmzrrS3bZRd3thd0HJO0cEz63Oc38zrHpnWsHZhU7t/JS286ftvJfJEIO7p3XGpRqAu4V9MpaBO9tWGYvNfb8l5m42CD/J4o51Bs8PaUYxyJfR7NlJqC3i2V3X7Y5vdUeftBub+xhic/8Wb+5/MGPuX5NehJpqu75PxrjAHZuYCk/14aeAXQgB99ATcJBRpvYuWvV4pLb2XXHx5neb12x6sWDlo0/V1edj4Ugta5VKT/r5wUt4/VxMjBr9b+Pm19Pm3qjcPnRj2rQ3BQUrn68Mag9iAO4416YF7jtIQu4U5q5ld+L1LaW2Y+D+JZN4Ox1t/29zi2bUnY65E5W5Y8UyTgc05u7V6OXb4ut/yl/WJlN0KpR9ytjzsUufLH23efOlpKSB6OiBqKhrU6eWVQzWDtemz7muSOiEUwYchOFgqDF3/wPYQ0P/6yjdwxxLteuoHdP2AOS4h1XKeCBzU0/AF4TzfnTGAOxUs+7OmnZjmkqtupqW1h4U1OLre8LT85h2biq+VcbY3A3BHW/uuoW9xRTczYTcteb+HWruBKNTiULu9MGdJur9VZDLtgQvZPAVkX30UPto0Haz4L5D+ODuQK0y4uhUYY1OtUbI3YfXkLs9TE/ltFiGhzJ30dyFY+781MsImd2tLO9Wx3erQDxfy2b3lTlnFzi1s+mQEbXdqmUyvMXbBQfu3ITcOaqX4XMxR3ZGqQvqvyHAy7sJuxtE3XHmvoeuuTvTNncNu39Ncvn5N4o+GZOJqXvhR9CAe8gJOKqEJHYlz7q8ZM3v5VUfVSp1Te2wWq2+mpbWJpO1+Po2SiSNXl5NEslJX98Oufz+HCT/vvDRwlI0Av84P39r+YeUKykBpwMYVMoYgTtNMjFr7li3jJbdNQ0zJuszw5SyvkmGMHS/49/1pmIUbycrk2FB7dTyThJ1JzB37J4xKnNHp8jCttCVuWPm7nbMzbPB07vJ2++kH2w+eYc8oi8i/3E+7AMXExJ6wsI6g4O7Q0PvZGcP19Z+KC3Nyb8HTx7gXABHXczcXdCHCXaQ0R499jsZRtoNLrXQqycM3N1RcIevBifZ6GkDwzU12XeyEy4m1AzXPFqwoCM4GAF3Ly8M3HWtMkZBdeOFarsO3DXdMtrXjRppfiYKueub3GkUyxiF3LkEd2FTOzOCH934bo8K/6UdLkeldhvWyHAN7pbXuPPVKsNfyN1BW2WEOzpVDLlbND3VyarTUw/yFXJ3qDJ3xzV3649RtUHUnRd2D+CZ3e1C3oXD8QK6B2Js6ewWUbutg+1MR6RarO0clMnQ0naWZTKcxNsdBdy5C7k7MRklahNkn0TvGSD1Uz76f8uou/+N5d2I3SnMXd8to5uh+gPe3HUDVJmZO/nVpUG8XdcnYzIx1QjcPRFwP6lI6EyZdaW86uPaF2sHS0vv5uScj4trl8t1EWNYxz08Gr28WqXSXqXydUFB/Uh95VBlvbq+6G3RjFszwnvCpa1SM0NTScCdVrydiblrou46didc/8AF2ym13bRMxky83XJtJ2F3BuaOH6D67WdGZe7j92rN/ZCr21E3jwYPSaPEt8U34HRASFdI9p1stVp9PSOjOzT0dEDAmcDAKykpI/X18x/Oh7crU/uwAapw1IVDIhzr4PFi9NspnbPrLpoMLqDgsihIA+6w+8GpBM6tUelnt3/aPlRZueHVhgUrH71ct65ToTjp5we73HF0bqpRq4xRzp0C3H811HajCnh9yN0Sc6dslaEAd2rX+6v9L+vju90xscjr9kHttuiQEUKwnT9wF1tlxNGpYshdACF3sViGvzJ30dw5MHfOKt1tGnU/xYO5W4Pd6U5YFSS+j6IVY63eGGFSO8fBdvvQdnuNt9Puk7FPcLfM3KXWFHZ6I3wonJ3sqZ2Z53IGy3Rb6O5wHLvro+5k5j6WyNzRS5h/4s39M8zcnbTmrr/EQ64QaZg77ppRG28nLnDXgPs+I3APSepetOpx4dvCrDtZCLamp3eFhLRKpY1ovvjw5MmHXF2PTJ583MOjydv7TGDgQHT0vdmzhyorS8re5/+eH38xPrgj2LfF16PBw/Wwq9MBJzy4j9k5BhtSyg24mzV3HLvr5d1wYe/Cx5LNa/tfra7tROzOyNyNy9y/H6Mx95/05u5yyAUx9+OouZ/0lbXJEi8lwj7wqarqfGxsp0IBe8KVlBR4S87dnHqVOm76eXlcO5yP4FAPh184csJehETdjY5amiT7Yd2x0eCaKEhTKYOCe5M/Ojd16donwzU1KrVqqKoK9sCO4GAE3CUSDNx1rTIHDPth9IaufZ0C3MnMnSznbmaAKlGxjGnInTG4OwS1i/guHJH/0nHXDjHYbhVtpwPuYquM5SF327bK8DU6dYyNRqeKIXd24C7o6alcFsvwW+ZOY4CqaO4szV0QUfcpAom6W6NnhnHsXcR3Wwo7D2F2M9R+mhNqt3aHjKjtDLVdQPF2Pbgf5hbcGbXKWGLuZthdyh+y8+TshM/caOUkcBtLt1GM2R3fXk1t7p9j5q4plvmBfIAqkbmbibr/jTDe/plxn4x2YqrkZwTcpb+64MA9PKW3Xl2f9yAv5hxS0X575kws3t7g6XnUzQ1LFh92dT3m7o6F3HvCwu7PmVOw+fXcpb/BxydcTAhqC/Jp9vE4joL7fqeJ+1Bw3/3F2F3swR0vHHTN3ZTdKZYRtRNqO5MyGWbU/l9Ei07UXVcvQ2nuFANUx+42NvfJRyYj5t4kkbZKw3vD1SrVvGW/vVy37tWGDXdzcrBfrqx+sXp90auUWVeUqb1Bse1wqkJy7iEn4KCKRN11pB5ooOrYRQccV7WHx8Oayxz5MTg4Y+AOX0qR0JmcfXntpheFbwpfrV9/MTGxQy7HwL3Bw0PXKkNh7nS0ndjccd0yxn3u2qg7Y3NnDe4Oqu3m/V3Ed3GJ1G4Vav8LQ2rXgvu4HWKrjNgqY9WQO6+jU8WQu1CKZTgPuR+2abGMlcrcHcbcrV/pbmHUXZANM5SBd97l3Ry+i/5uXWS3lrPbmtqtXCNjd9pOs0yG03g7k3GpwgF39iF3C82diN1N5F1qIa//avT1ndg5uyG1k+XZNU/VyP76kHxT4reaAbvTMXcvnbkzK3OnNHeKzJbmMtCoTwY3MRUFd++f4Rk73GwtuDfAMUSZ2ouNQp3729zqmk/3c3PbZLJmHx8M3A+7uh5GE+4acPfz6wkLG66tzcm/m5R1CT5r6rWpsjMy7yZv92PuLodcnPY7Tdg3gQ24G2m7ic+RmbuG3b8mYncjfMe90bT4g662E8XbjQelMnJ2mvJuGnXHm/tftOa+w8TcsQGq3xmb+4S9ExBz36819wYP72Zv2JRJl5KK3hapVaqSsvcr1j+rqx8ZLCtTqVUrNzzLXXJ/au616GkDisQuOGPCuQOO4XDshaMoxu66pRuLin7Acfx7UYjXgzvsgfK49sSZF+G75NzNgT3q2tSpWMK9SSJpQEuNdK0yB3Hmvp8S1jUF7rq5qSZl7vgiePOV7kYzVA3NHfvbib+bM3drajuZtY3y5LtI1SK1C7lDRmjBdl7B3XFaZf4gtspQmvvnNgq5cwTu3Ibcf7b/kDsP01PFMvdRZO42GaMqqKi7g7A7S3wX/Z0bYec5zB5DuiPxQ+3CDrbbQNubudZ2nuPttuiTsS64H+QD3MnZnQTfaS2CL+XEMbWbd3by52DkW1l2xIjd9VF37I4iNXfCAarmy9wJzd2U3f8w0fBSUR9vNyhwR653EHDfPQ4F94mG4A6HhZDErq3lH15v3Fg5VFlXN3I1NRUD9xNeXsdR64R1zM0NqXGXSFql0r6IiG2VH7dVDi5Y+UitUqVeTQ04HSBplMDHuRxymbR/0oR9E8b9NM4MuH9NCu6kvEFm7oRRd628E6yvyamdXNspymRoaft/MV9szV1352jMHT9AVWvusHWMzB02n2eDp2+Lb3BHcObNzBdr1y5e/fuM+beWrXuiVquHKiperls3WFoKr9er6+cu+y06YwCeEsAZR4LUy5yAgy3K7pqjKEbq2PEcA3f0kXUEu67RvRcD96C49pRZV2BfyrieoVKrHs6f3xkc3Orn1+TtfcLTE9sJ9SF3zNx17K7FdP3SvR1dB7QL/0azxe54dsdH3anM3RJwZ4V6PKncaMB3Ua5FZxeD7TS1nSa4i60y4uhUvltlxJC7Q4bc7bBYRjR3PszdDupl7IXdbSDvLPFd9He2wi7jbTuSU/tp21O7jbTdVwjaznuZDFfxdkv7ZIQI7ryF3GmwO8vlxNDZqaeh0qR206de9J5faZTQoIfaKOpObO7IU26NuRMOUCUuliEboPp38ovEv+GuBPF9MtoC98lYnww6MdXrJ3h6DzfSSQvu8MCBB3tQbFvCzIvL1j0tGyxDCj3i49uCglp8fRvRfPFxDw9snfDyavb2PuXv3x8Z+bawsGqo6l1xcW3dcMy5GM3E1KOTnQ86T/qVN3Cnz+6m8v41gbMbUztZbzuj6nautJ2M3cnM/c9E5k4yQJXK3E94+p30C+0OzX+cr1arh2tqCt8WLni4oGa45re5c69NnXolNfV1QYFKpd7+aXv8jAtBWKV7eDMcz+GwjLI7dqTVXUpgEK9/TGHvhQO4DtzhmUZi1qWP5eVDVVWbSt7cz81FwF0qRcAdnZt6zNDcsW4ZHbsTLOxd6McYrQO4z9pv0k5jyu76hhmSehmz5k4T3IUDc0JQeDH2Lq7RQ+0C13YtuIutMtZvlXGw0aliyN1yc/flx9ylDjY9dTQNUBWmuQu00p3jqLvFDTPk7M6RvAfaQt4t8vcYkddtgez8RdqFRO2818jYkbZzWCbDON7OSZ8MnYmp5sA9kD9wZ2Pulss73e/CE7WbPrMyfAZF+sQJt0totj62fbGoO87cNd0yyFPcfTpzNyxzp1EsY1rm7mR0uUd+hYj722WTPhn9xFQcuB9Cwf04PIThYKhM7Vu27mn+4/zSD6U3MzM75HIsX9zo5XXC0xNZXl5NEkmLry82NPX5qlVbyz+se7ku40ZGcGewT4uPR4PH5CNacN/LHtzpIgcluxvIO9EimCe4gwtt/x9OqZ0GuzM1d4SHzZm71wkv35O+8nZ5RF9E7PnYuAtxKVdSVr9Y/WzFigvx8d2hofCydrgW9pb81Y8j0vrlce1wHoSzDJwL4ACOsnuD4UFY91DSPLLQPpkGOAtowD2mbUr62UWrHqlU6lcbNlxOTu5Awb0ZBfcGHLhrzF3H7lp5N17oew0W7rN0Sx+Wd3bW4bte3nXsThJ1t8TcWYD7X4S0RHkXl0jto4HaeQV3sVVGHJ0qhtztMOROND1VLJax5QBV4Zm7t4ObO7dRd97ZnSrwzr+8E+E7E3+3a4hn8WNaTdgpnZ2DSDsP1C7oGhkhaDu3ZTJWjrcLANxZtMrwYe50CJ7lVzP7zM1cV7vZVDuBs5PPuTHeZ7S7Bz7qTmnuZMUyu/DFMuiFzD/NFMs4mV70mVwbOhH3yegL3NGJqXBj4IZpwD1QA+7wmIVjUUhi1/L1SMK9Xl3/rri4OzT0lL9/i69vk7d3k0SCLG/vFh+fVqm0Mzj4dlZWRdXHhSsfLX+6PLI/EumTaZK4H3d3PezqfIA5uH/JCtzNsruhv+sXuesYfGuetf1f/utfkPX/TNZ//YuF5k5ngKrG3HeOgQ1E1i3j3ewtbZXK2mTBncHKPuW0G9M2lby5O2vWQFTUleTkt0VF61+th30mbfbV6IyB0KRueF4BOxKcQSQadsfk/Tgu835Ml3xHryZOwHkBTi5wUoMzfkRa36qNzxev+V2tViPgLpcj4O7jo/szC8zcj2LmjrL7YVNDR99yWLswoNeto+gyeiP+6xxE5wMfwMk7MbubRN0JzZ1ZyN2utN0m/i7OWRWdXdR2m2g7fXAXW2XE0alcj04VSsidJrjbc8hdLJax5QBV0dyZVrrzM0nVwdnd9vJO7u+sCF4IHG/hzTa5H6y0FXh1dg6pnZdgu6jt3JXJcB1vFy64k4fczZg7R+xu0fJnRu1sg+0GT6IMnyPReBak3X80Owm6GxiZu2aGKvqU1bRYRhtyR8wduXZwR647iELuxsUy5OZudA2ovazD98loCtzx4P4zAu5+v8DdjgP3RmxqZXruteGaGrVK9fvixf2RkW0yWatU2uLr2+zjAwteafXzOxMY2KtUvi0qqq0bxoasKjoVfif9vE54uR9DwN3pgNPEXyayAXfTgDlrdt/B2HWIqZ0fbSdAdpJlnt3NmjvZANVv0TL378d8vvNzQnNHZqge9/Bq9IJtj7F7RH9E2WBZ0da3lUOVsOlHamtrh2vLKgZraoe313xavv5pUvblEHSSKuxOcB6B/QrH7vijtOZiAd4Lpww46WjAPbUPvs7zVavgK1/PyOgIDj6lBXck5K4192PoRAFd2p1wHdV+DPLx7u7HYWlrkWA14F4/jn4A/mti+I7JOym7GzbMEJo7ccidLbj/xa6WKO/iEqldCH+wwpW248BdbJVh2Sojjk7lMOT+oxhyd4zpqaOgWOaYRWXuTM09lH9zD+PD3JttZO7k7D6Fi4YZQbO7UOTdHMFbrPDCWmdsxuu0nN1eqJ3nYDuL0nbm2u5jQ223frydMbgf4bDA3dbgbmtzZ0/tBwmeg9ENth8zStrin+dQ7mx4dseZu65bBvsR9GXuyFNiXMj9JzbTU2mau1G83RmLt2sL3LUTU+EGjEfAfR/cQripeHCHwwgchJWpfTn594reFqnUqsvJyZ3BwacDAlql0pN+frDgFfhnR3DwxYSEt4WF8DHVw9Ux52ICzwT6NPt4NnhiE1MtBHcC8GBEeqbyTrmovp2O2rnTdvrUbobd6Zg7+QBVWuZ+EDF392PusGUlTRLfk76yNlnUQNTyp8vVavW8ZQ9Kyz9sfrf5+cqVd3Ny7uXmfqqurq8fyZx3Myy5RxbbBidHpGEmHEu76+VdQ+0abUf6ZOB8BKc/2P3CU3qXrPl9pLZ2uKYGS7jr/sYC6zVqwBM5Tsmxib7HtG/HeB0+uAHtQYLVKJE0av9KA1YzLB+fZvR15F3oxyBfH2/6ugGthuyOL3b/0aReBjP3b0zMnVarjKNouzXxXZR30dntkdr/alfUzje4i60yQmqVcYyQu6cYchdayN0uimUEOUBVYOYusbK5K21n7oJhd77lPVBg8k5P4YVs8VS32WZ3phWcnR9qZxls57hGRlDa3iQgbecw3s6wT8ZG4G4/5u5P+0kaB8F2vLbjnxThn/Pgn88YPmkx3BW14x+PE5q7abHMBF/mIXeCYhlDc3ci13bSPhndxNQ9cGNIwL0FjpOKxK7ErEtqlUqtVj/Iy+sND28PCjoTEHAaXWcCA+GffUrl640b81c/HqmtTb6crOhUSFulkiaJx3GPyUcncw/urD1vBym+k+LKX3jUduL2GEvY3dTc/2TO3I0GqH6DDlDVmfuPGnMfv3c8bMFJ+yc5H3R2PezqdtRNE3Vv8Qk8ExjZH7nw0cINrzbk3s+d92Ae7CrX09N7wsOfLl++6vmq1QXPU2ZdmZJ+NiSxC87vcL7D2N0bOzsYPsNHn7Q3wwfAh8EHhyX3ZC+6U7T17XBNzYW4OB24N6MsrjNxg3w6LrTeoJ000IgOG8AakE76+mK/K4J1Cpa/P+zJbTJZu1wOC3ZpeAt8AHyXFvTPOPQEr8X3I5MnI4F3HLvv1bG7tmGG1NzNhdzpgPtfHGU5kryL+G7Hzm5rardHbXc0cLe/VhlHCbl/Lobc7Sbk7iDFMuzL3IVj7iF2Z+5NXJm7vUXd+WB3qwXezWXebY3vTCCeD5pn8O2EckdF28bZBULtVqqRIdb2ZmtrOw9lMp70tF2IfTL8gTtlyN2cuR+wkrn7056yQ/p8jHWNjKG2E1G74bMU491Vs0MamvtkrbmbFsugIfdfmIbc/6gDd5Nimc/013R/N1xG8alvSSemev2EgLsvAu7OGnA/Cj8O/IwYuAfHd0Sk9uUtf6BWqz9VVZ2Pi+sKCWkPCkKAMiioXS7vDg29nJT0rrh4qKpqzYs14b3hgWcCfVt8vRq9EHA/goL7fmNw/3zn52O+H0MG7sYTU1mzBFf4QUjtFNr+3zS0/f/9CzfLqN6dzNyNBqiSlbn/47PPvtWa+w8m5r5v4qRfJzkfcMbqZbCou3cT0uoub5eHdYdF9EfEX4gvfFsIe8uL1avfFherVaot297DP2vrRhaseBgz7VxwQifsVxi7w1nG5JyCPLuGcxmcRuHJTFhyT/7qx5vL3sFXwMD9NKrhBg6uTaPrBvliwt6ICjtWfKT7awzYaWEH7lUqe8PDYdeF1+Fln1J5JSXlybJlz1etupKcfHbKlE6FAvbwM4GB8Cmn/P1hIUDv59eirY/XsDuuZGaflt0Nou4m5m5a5k4Vcnd0cLcOvovyLlI7I2p3sGA7T9puCO62b5X5SmyVEUzI/QeuQ+5U4C6G3AU5PdXaxTJ2XeY+2s09XMjmztUwVfJid/tgdxryLiR859Tl7UTSBeLs1qN2/oPtbEvbedT2cB60XfDxdhuBu3VC7jxH3f1JqZ1JsJ25tpupkSGkdpJnHdpdVzcHEmfumo1OHHL34SLkTmDuRJd4+j4ZogJ3z93IJYD33olacHfVg/sJOAjAMUoW06ZI6IzNPF9TO6xSq+5kZfVFRHSFhHQqFBhWDkRHvy0snL/i4bIny2LOxQR3BPuf8vdp9kEK3I+7a8DdKOH+I1tw55X0SKDCABhYaDsPwXYzUXcTc2dQ5o4foEpu7rBBXQ66GEXdpa3SwDOBik5F7PnY9a/Wq9XqVRuflw2WvS0qujd79m9z5xa8KSja+jZ+xoWw5B55XDvG7nA6Q+UdOxlhT6GR57dwkpXFIuA+c8Ht7TWfXhcUnIuJ6cAajdD4OWbu2Pxe434YLbKf8vdH/ghDLofdtRt19osJCe9LSuC2DVVWPl227NrUqZeTkm7NmFFXP7L25dqq6iE1+t/tmTP7IyN7wsLgs2A/7wkPPztlCqzusDD4gvDF4dsd9/A46uZ2GOt2d3Lab9QwQ2nuBMUytMGde3SjXA4j7ztsIe8ivgvX2QVA7X+1W2q3AriPplYZOx+d+keuWmXEkDsRuI+3Ssh9VBbLiOYuCHO3aIwqq3oZB2qYMcfutpJ3O8F3B1/RZp2d632D1NlPs9y3OaJ2a5a286rt3vag7QLtk7EduNMzd07ZndLZnej9xSFVaTv9bDu1thNQO+FvmHDmrsm5a/YcypC7UZP7HlzIfReDkDu5uRsFp7Txdh2478RNTP1pAgLuv8CTZ7idcAfCvQSPFPih4GeEQw0c7oJQ98yYc12tUo3U1V1MSOhTKnvCwmD1T5lyMzNTrVZXDlUmXU6CNwW1B0lbpabgPunXSRpw32MI7t+ZgPtXDMGdDyD8M21q/xPDGhlqOv+/NBYjc6dZ5v4VQZk7Yu7fm5j7z+Mn7JuAmPt+J6xeRt/q3ijB2B0ZptoXkXM3Z96DebPuzKr6VPVowYKb06d/rKgorfiwcsOzhSsfJWVfhp0qCGV35ExqcO5DnpTC24Ni2+FjpufdXFv4Ul1fPxAd3REcjFS+oCMEdJUvmvm9uCQ75uwd6J9fXIiPfzBv3qOFC+9kZ8NteL5q1dInS+tH6ou2vt1c+m77p+1Pli59tWHDsqfLcu/nviksXLPpRW3dSMm7kocLFsCufj429nJS0ou1a2uGaz5VVcGufikxsROd3drk7a2PuqMNMwfwDTPaSaoU5k5WLMMhuP+Zn+VQ8m4t3hVtXSjOPjo6ZPjW9v9lCO47HL9VhmXIXWyV4XB0qq1C7nTNXXAhdyFMT+W+WEYQZe5u3A9QZWruJxzL3C2pdOc+6i6whhnr1buL+G7nyM67swdY7uy27ZCxTmm7kpDaba7tNMtkOIy3c9YnwwjcXbgFd3OtMrTNXcvu/rw4O/2/NeRG2+X0tN2Y2gkeEThzR3c/MyH3X41C7tgzcG3IHd8qQzPk/g3VdZwzUZ+MfmLqj9qJqQi4O2HgLtOAO9wP8LjWVWkrEjqj0s/mr35cNVR1NyfnXEwMEviNirqclPRm06aPFRXp19OVfUpFp0LWJpO2Sr2bvQnAfd+E8T+PZwruBhBCwgl4BrBIB02d3YjaLSxtt5DazbE7XXP/M70yd3SAqsbcd6Hmvkdv7tgYVeeDmnoZLOrueQIdptri63/KP6g9KLQ7NKI/Iu1qmlqt3lD8qrT8w1BV1e/5+W+LkBm80+bdwIrdg+La4TmA5ryMPuGEkzXsdfK49rCUnsx5N0fq6uBTBqKiOlFwP60teDmpXfD6KbQxBnH24ODe8HDYRS8mJNzIyIBvVPi2sKp6qKxiUK1SDW7bVv2pesHKR5FT+xOzLuUuvl+09S0i6SrVusKXydmXlam9sZnnZ+XfxYYW3J45831JSdHboqw7WQWvC1YXvHi+cuW1tLSe8HD4ds0+Pie8vLCoO9YwgxW766LuSL2MqbkblrlTh9xZO50ZNKdjaoLxdweT9x0iso9uancMbUfA/d/w4M5/q8y/222rjDg6VQy52zTkbqtimQMCL5YRRpm7vZt7o23N3ZJ6GdtF3SnZ3c4C7/TmrIr4biNh5yvMLmRqJ+2Q4a1GxrG13abxdvsBdw7NHcfu/nSE3byzM/orQ7bajp+SepSyt133VIRA2w3P9c26+mmNueuLZdD9x6jJHf1JTUan7sVaZcYZt8poQ+6Tf0CvZQzB3Tjk/g2ltmv7ZMxOTJXud8HAXa6plIEfTQfuwfEd4am9iVmXyioGhyorr6alXYiPv5SU9CAvb6S+ftbdWVEDUSFdIUHtQQGnA/xO+mHg7nHcw+2om+shV+cDzgTg/oM5cDeamEpd9mJukfGDGVEgoXam2k5VI/N/LViMzN2wzN1MsYzhANUxOw3NfS/O3NFKd6xexv2Yu0eDB2x67yZv3xZf6Sl9ycz8h/Pn3J+z6vmq1xs3Plu5snq4euu2DxVVH2fMvxU5tV+Bsrsspk3z5CHmjCy2DdnrUnrT51zftOXNizVrzkZFIdXqQUH4anVs5CnWG9MVEtIXEXEpMfF9SclwTU3lUOX7LVuqhqo2l76LmXYuc97N1QUv4I2wx67Z9CJ+xoW02VfzVz9WqVW1w7VqtXrRqsdwS+BmRKT1JWVfnrv0N7VKBd9305tNOXdzki8nZ97MrP5UXfGxAr7Ih61be5VKzNwbvbywqDu+YQZpdTc0d2SGKjIn+I/GxTIMQ+4soY0LZaMD8SK7i/guUGcXqZ2jI8D/WgvcxdGpvLXKiCF3MeQurOmpjlcsw98A1ePG4C6au0Ci7oJkd+vLOwN8F/2dX2S3ibMLgtqtGmwXlLaHmWq7EMtkOBuXyrjAnTdwD+AW3Enw3Z8ZsrP4+0Im2m4A7m7E1e34pzRG8XbdUwsjbTd9cKEPEE23DEHIHd2+yCbjolXmn9oLJTrm/o1RvF1zSWU0MVWin5jqpJmYegRuPDyy4E6AHw0OPliVdnBCZ3hKD6aW9Sr1g3nzrqen3545c6S+ftHjRQkXEyL6IhRdiqA2DbgjlTKNWnA/7Op80HnS/kkT900c//P4cXvGIeC+iza4E0IFQ21nYwmsqf2/aQfb/y8Xi4m50y2W+ZthsYy2zB0x993G5g5bFjF3tNJdH3Vv8IQdQMPu2m53Za8y7kLcimcrqms+bX63ec2LNQtWPqr+VD1nyf3ErEvK1L6QxC55fEdQXDsseEWR2AVvnJp7raZ2+PGiRWejorpCQjrk8jaZTLfag4I6FYqesLBzMTEP8vLeFhe/WLOmbLDs2cqV0/NubSh+XTNcM1hWVrTl7dbyD1veb1n6ZOm74mJ4L9aPVPyueM79OfD2/5+993Br4873/Z977r3POdkkjhtgOqgAavQiei8GA8YV3A22sXHDphfpH/jtnrZ7smeTu2dLsllnndhJ3GIbbNM7xlT33uPe6PP8PlMk1FEZjUZiku+jRxbS6Dua73fKS2+9Pk9yc+Hx3K1PxKmDkUuHYZyv3vSocO+bqaqq0vHS2ula3O1eVTMFi9r2altF1cSt1FToTzOX24DZ5Ovd3OpcXBSLqeKVVNWZuzaxjOaQu4HAzryo3UD+zpD3OQvfv6RbmwO6dsqC7UYDdyuxyjClUy0bcndmQu4GhdyPWjbkbhNiGUpk7gxzJ7OMKsl6GdvF7hYm7wZoZxgEbxpeNztkD9U8fkjg7GRVRjVLsN04abvFaDttZDK0jbdbEribwNyNb/bG0XaNVVLNIpORnyqo0HZiYqJzkGDuRMjdVSnkLrPKeCtbZQjgrmyVcTPQKqMiliGY+181JaW+UhO4q1dMlQnc1eLtsN9DzR4RHb7R3YHxF8OSB+Iyr6ze9Gi6puZBTs6rgoLtr7cnXk8MHwwP7Av07fbld/C9W705TRxWA8v9vLtrnavzGcwqc8LB7hhaN3XB0QXzv58/77AycP/KQOBuUCz99zMSFX2frAO1qxjbjdbI/AfZbVbmrkMs88UMc8eBu6pY5uuPVWXu382ff4Rg7oTPXZm5o1F33DBzzl2O3b1avPjtfP8e//Ch8IRrCZWTldt2v6qeqt5W9KpmqiZjzR1xymBAXC8MNmFUlyiqyzemOyihLyH7GiKRPFq1qj8kpMfPr1Mo7BAIoOF1UC8GBg5HRt7Lynq2YcOe93vgzo49r6WIdLKqCkGQwjeFqx+vhjul46UrH66MGomKHI7MvpcNb7r8/vL4a/HiQTGM3vQ76RJEAk+bqq6GXqFkXSotGSvZ9mrb6IEDu4vfrdjwID7rWkhSP3QvNKk/d+sTnL8PhYe38/nNXC7ulMex+0wxVXt7vJIqztz/IWPuSjJ37WIZbVYZA3CbuVG7ReG7DWN3K4XvX9Kz0QC1WzjYbh7aTgB3xirDlE5lQu7UMPeF1lg91SximRMWFcvQpICq9TB3mupl6BZ1t3nsbhR8n4MIPpROhF0vzk4j1G5ksN0EjYwlaLvVy2RIK5dKO+BOO+Zu0G8KdZxiGSSTMSreLj/oK9J2YgrDI3jIHZ6sYHIngDs6TjRo3I+paNxxq8xn2qwyeobctbRfqQncP1EXuLN/tOMeg8+WiLeL6twxezuebRdi2fbghEvi1MGYjMtJOTey8u4V7X/7qqCgZqom50FO0o2k6JHosIGwwItKzF0x5I5r3Bf9uIiom3r4MwK4f6M3cNcdb/892e1zw1G7/hqZ/zBP08bc9RPLyAmfqljmKwWxjFzmLi+gehQLucuZ+0k15l7n6lbvhmL3CzPYndfOE3WLQi6FwOCBIYQgSHXN1MHyMakUSVx+PTS5PzD+on9sb0DcxZCk/sTsa6Xl42jlgNDQXlm13l5//76goJHo6PvZ2WMlJe+KiqDhRU0Pjh1c8XBF0duitFtpMCyD0WoDwQG9AaIukaBDAONT0CkQdgrhPnQDGtyBJcZcjsl7mpd9P3vjs43pd9ITriUk30iGR17m57/esWN9wS/BiZfgRAiO6Twx6pxZs/mxBJFAr6Az7TLLTROHgxpm3N3lxVRPODjgSneUuX/22T/mzTukwNzVxTJ/xJrRIXcL03b94LtVkPcv6UTeacvfv6R5mzOonUqNDMXAnbHKUFY69Wu9gfvfDAPuTMjdeODOiGWMFMvMDeZeZxXM3br0MnTD7hySsTt9yLsJ/N1mKLxRK04FYaeAs1OB2mmmkbEF2k6zeLv+Phllgbu5gLt+IXd7CwfbSaHthsfbZ7G3E3MEP3bLDsH4vMaBewMO3BWsMsZq3PWxyqiG3HUzd20+mW/nyQXumE8G+iaLt+O0vRH2tHzMoC1OGUzIupadd2/DtmeFe9/sLn637+CH/SUfpmtq9r7fW/imcMuLLWsfr112d1nCtYTwoXDULdMpxJm7xwUP13o05E5YZTCNOw7c5307Tw7cf/XVrwwA7iq03WyEXatAxtzB9n+frZnM3GcXy8hC7rOLZWQFVFHmfpyooarI3J3POssNM+7n3T0veLIaFbB7lyiwLzDmckz2vWypFIH/ayXTuVufxGRcDkseCE3qF6cOJuXcKK0Yv52ePhQefikk5FJwcH9o6GWsfsBYSckvGzbAq97u2rXz7c7Me5k4ZIdB6NfjJ+hEkToMRXgvbjMX3hQvsQodQFsD0eARoj9tPBzHQ6/g5aEDoSsfrnyZn38jOblysjIibQgmBcx6OEcSRXWFpw5JEMn7PXsGQkNR0Q0Wum/z8UELurLZOHZHo+6YXuaYnd0PysxdXeZOSsidRrRdD/jOBN6ti8J/aUWNHqjdJjUyJgJ3qqwyCxmrjFWG3D9lQu7mDbkzYhkziGUY5m5h5m62qLstY3c9yDvV8N1kBE9DHE/GulBH2LVzdi/zcHYLo/a5SdsNUbdbNt5uiE/GyoC7vaVQu5G03bh4uz4+Gc3AnRWoNEkVE+7KwP2sNuBuJwPui+TAXYPGXatV5uMlX+sdcpdfhekQuKM+GaxcKhpvh57DWsA6wjHCL6YnKn0kdwuqzqiunUIdG4g0/2X+msdr1j5eu+3Vtg/79m3f/Xpd/tON25/V1E7jho39H/bDX2Mux/j3+vPaeShzP+/hUicLuR+zwzXu8rqpM8D9r0YBd1LB+uyRdv2C7UbS9n83vBnB3BXFMvpXT5WF3AmxzLczYhki5P6D5pC70xmMuWuKurMb2dxmrnerN7+dj2L3i4GRw5EZdzJgmMEoOlg2lr7mTuyyKzEZl1NX3pJKkTvp6Zejo4cjI6/Exj7IyZmqrh4vK6ucrITnp99Oj70SG9If4t/jL+wSwgJxyM5pRgk7vJdngye8KQxF9/Pu0AG3c27QE8UGD8Kf4Any7wNQ6XyXMO5KHIzqe9nZcLtq0yOYFPzwdkFEB9wJTe7PzrtfK5mG/vQFBfX6++PR+25f3y6hsJ3Ha+ZyL3h61ru6wsdAMPeFC7+fP//wZ59pkLmrVU/VHXK3PuBOFXn/Ys4E3s3E4r+09sagdvMH21WBu+2F3P9ljobczQbcmZC7buBujdVT2aaG3CkUy1hXAdW5zNzJVLpbIupOLXa3cfJONoK3kkY1XjeAs9MJtZvLIWMejYwFaDv9ZDLmjLcb6pMxDriTaJUxH3M3grYbGm/XDdwVz3BcDAfuSg532ZT0nHG4qyhlzuJjSQm4z1I3VYPG/VMCuP/9Y2NC7jNXW/gLlQTucFHg/j2cosvj7fCxQP9hpXzEbSFJ/Ss2PEQQZLykpHKyctPzTUnXk2Iux8RciUm8nph9PxuRSn9Ztw5ul6+7n5RzIz7rauLy6znrH8BLJsrKSsrHVj5cKR4U8zv47Ea2+zl3IuR+3J7QuON1Uw99+sk3mMbdEOCuFwn43PimlbPridp/Swlq15u5mynkPu/beerVU5WA+2lZwl3WVJi7Z4MnGi1vRqPlPm0+gk6BX7dfUF8Qjt0Pjh2sqJrYuP1Z+urbWbn3yisn7mVl3UxNvZ+dPVpcDH+tna5d8WBF7JXYsIEwXBcDgw2Wg4fZ2U1ojB3n7ARkr3dzrXeFDrjUuUBPnM86K/ZNKYmP9RBeC8uBxcK7HCgdrZqqmqquXl/wizhlMDihDyZIRNpQ6sqbMOBvL116OTp6JCrqWkLC/eXL3xQWPlq16uGKFf0hIe18fiObXe/mdtrJ6YSDw0+LFx/FmLs2sYzG6qkGhdxNZG36FD4wH3lnsDvTbAO1zxHabsvA3VSrDFM61fTSqUzI3eDqqZYKuVMnlrGnQizDMHfaMXeq9DLmMsyYjN2bKMHu9CfvShTeyxbAeqvlP0kKOPss9hgSUTtD2+kuk6EJcHegB3C3pxK1G0/bNcXbtfpkTjvrJXBXB+4ambv81yTElMGLprqJdCplNAH3hRqA+2wad+WQuxbmrhBv1yZwx30yaLz9BPQTeg6rg9P20opxBEEqJiq2vdoWczkmpD8kqC8o+FKweFAcfy0+/yX8n3932bJXBQVbCl/EZ10LTx0KTeqHFrl0OGfDA6kUqZ2unZZIIocj+e18VgPLtc7V8WdHwiqDadz1BO4zyESfeLvRhF0HZNeG2kkJtv87Sc0g5q4z5G6kyR23yhxbjAN3NN5+xgmF2spce4Zon1fKuRPMvUPg2+0beDEwbCAs9kps1r2sA6MHphFkfcEvcPs0L+9dUVHNdM2WF1tSb6VGjUTBsJSb2eHl3q3euDdGEbXjYfYZzo51A43en3aCTqo3/E/QbXgJvJzdxIaFRwxFZN7LhBkxXVsLt7lbn6SuvJmccyNjzR2YKY9Wr76fnf1+z56D5WOIVDqBeeT3HHgPd64nJvb4+TWy2XWurrD44/b2P6qJZQyonko2cDfFwMQE3hnsTmfObvOonQ60HQfuX5jLKrPANq0ytCudSlnI3YkJuVsy5E6P6qnmEctYjczdSOZuaAFVSpk77cqo0jfqTjp255gLu+tH3mkE3zWweC8GqRsO2cnn7LaE2o3VyFgpbbeqeLv+PhnzA3cvw4C7PTWoXftpldIKepsab1cVuBsK3P01HsfxSXRewSdjEHCfqZuKn3srAncdGneV0qkKzP0rpesvB80+GbgYQX0ybjKfDPc4fJLQYVgL2AmHJg+s3fJkoqzs/Z49G59tDOkP8e32FXWJ4DbgYkDYQNjS20slUuRORsa1hIS7y5ZJEWnqylvilMHA+It+MT3QAuP74rOuVU1WPcnN3fR8U8RQhHert8d5DzTkfnKJ3TE7ucadqJsqB+5/MQS4G0vb9cLrujk7rVC7CcxdQ8j9ixnmjgN3POSOAncs5D5jlTmkZpXBNO5y4O581hkn3XDH6YyThhqqCv4WrxYv3C0j7BT69aA5d/GgOPZKLAy2vKd5lZOV0zU1MKLW/7I+405G3NW48MHw4L5g/x5/DcH2BhYsFrXHKKbaZZF2RdS+5NQSaNBblTYjoMdWAZYGC4eOQZegP4VvCmH8461g18ude9+8KSysnqre8MsG+Cv0OXI4MvF6Ytl4WXXt1J73e8ZLSjqFwguenmddXOAN1cUyeMj9K43VU3WG3E0B7qTXGGYC7wx5Z1D7F3MJtasCd8YqM7dKpzIhd5qG3BmxDNliGbMWULV+5m4Bpbs1Rd0tgd3NRt6tE74bQ+q1NytfQb0gO/mcnQR7DCmonS7BdtrTduNlMnrWSqU83m6owN1U4E4dc7c3jbYbEW8nAbiLZk4n1Jm7h9ohXj5liHg74ZORA/fThgD3I9qBuw6rjGbmrkTbZT4ZdYE74ZORxdthfyKK7iqtGN/zfg+CIDkPcoL6ggQdaNlJaMJOIW7ZPjh28F1R0ZXY2KGIiKtxcR/27y/c+yYibSggrlcU1SWI6MAN1wlZ1/Yd/FBZNQmLgheyG9l4yN3uuB1qlTmyQDNw//O/4BJrg4G7cYoYQzm7/g6Z/6QQtevB3HWJZUgpnXp0AaFxP26nCtxlmJvQttS5uNa7agXuXShwD74UHD4UHn8tPuteVsGrAkQqraqelCLSvKd5abfSYi7H4GVRfbt95WVR5TVRFbPtM7RdOdg+g9pPONifsLc/jjboOVr0FbsvL/0Kz4eXQ2+hn6jVvVOIS2+SbiQtf7B8y4stJWMl5RPlcAe6Gnc1LrQ/1K/bD9Yi+nL06+3bczY82P9h/6BY3MzlnsPFMvb2qFhmwYLvZGKZbzDmrm/11Nno3qzc7ffmbwx2Z1A4g9rnAm23ceDOlE5lQu6UhNy/X8BUT7V+mbsjLQqo2h5zp2vUnUSxu3Vgd0PIu43Ad1tpVIbZbRK12wptdyOdtls23m5WgTvlwN0I7G7YwvV09GmMt3trOjsyHrhrDrm7++k47uNT45xavJ0A7vhgUCiaqhW4L3CX1U3FzucV66bKNe5arDJKzF3tmkseb1cXuB+Bd4eTZPh4oauwCrDvDU3qRxDkalxcrWQ6eiSa3873avHCYaigUxDUF5R2K62mdupORsZAWNil4GC4xetJJuXcCEroE0Z1+YjbvMNa4TYgrre8cuJJbi78NfZKLCzB/Zy702kn+xP2BHD/TgG4f60A3P+kCbjrFrhbgrMbE2zXH53/m5ZmKHPXP+T+31pD7rNYZb6bscoQdVNP2OOomsDcWLxdEbjPJNwVNO68Nh6qccfi7RFDESk3UwpeFUxLJM83b4ZRVFM7nbv1aWX1ZPFo8dLbS6NGooIvBcOThZ1CReCOymQU4+0YbVcE7vJsu8NJArWjnP2Y3eJji6Hz8gaPoPD9hCytf4aIusO78Dv4Ab0BkcOR6XfS93/Y/6awcHfxu6L9b6unqrPuZUUMR/h2+8LToHu107UZa+9M19aOREe38XhKIfdFizSG3FWqp/5RU/VUU4D776lt9CTv1GF3hrzPDdRu+WC7hWi7HLjT0yrzx7lolWFC7nMq5E5J9dQ5LJYxVuZuA8xdxDB3a8Hu1JN3Br7bDGSnkrOTjtoNc8iQrZEhW9puKG3XDNzrKVa3G0XbLe+T0Ru4n6AYuNubA7Xrm104aYBPxjjgrskqo8rcNZ0SuM/QdtV4uzNfDtxPKQD347MDdzzkrg7c1a0y6iF3jZdXS9QE7i6EwB3Ot6EzmE/mLOwc+OHtMRmXa2qnX+bnb32x1b/Xn9vMZTWilm25UgNBkNEDB4YjI3sDAnr8/C4GBIxER4+XldVKpsOSB4SRnd6hrfhOkh/ekZB9baq6eqykJPVWqrBL6Nng6XzG2eGkw+KfFi84igL3ef+YZyRw10nbDUPtv5utGYTaTaHt/2ZIM4K5//afNITcP9c35K7LKqNJ4y4Xs8ibisMdjbc3EPF2vGiqf49/aH9owrWE/Jf5tdO1o8XFd5ctu5mS8iAnp6p6MmPNnfTVtwv3vpEi0twnubFXYnHmjgvcYSFEwl0TcFdUyqDx9pNL0Gy7nLZjkB06r9KIwP6JGeYOHfZu9fbt9o0aiSp6VwQz5fGaNZXVk1m59/Aiw9BtPIOfcScD1mLHntcwXy7HxHSJRE0cTr1KyF1uctcUcv+TUSF3HfTt95Zrcwe7M4F3ijn7HEHtf6AfatcA3JnSqUzIndqQ+7dMyN0qq6dyDBHLWKnMnWHu1DB3OmD3IDpIZvTA7uYn7wx8pyFhNy9kNz9qt75gu5XTdjPJZPSKt/MVabs5fDKUCNyN0rjrQ96NXdQJ4+LtZAB3jLkLNVhltDD3c1pnga+cthPxdheBqk8Gugp9tjcauKto3B3/pivkrnZtpeSTISqmHp5PAHdM4O5zCiYX7JQC4i7mbX1aVjFeNlG28uFK325fdiMbBaMNqMPar8cv50FOVc3Ug+XLLwYGdgqFHXw+3PYFBj5evVqKSDPW3PGL6YbdPl5L1kfcFpt55UDpqASR7Hm/J2wgjNPEcalzWXJqyeJjWN3U79C6qZ8c+uTjbwjg/tFfPpoFuP/37MCdHMiunbNbHrXrg931FMuohdxVS6f+EQu5a7fKzPtWg8Zdng3HmTvaTjvOAHeZT0ZO23ltPGGXMLAvMOZyTO7T3Oqp6umamqfr1l2NixuJiroSE3M/O1siRZJzbsRkXI7Purpm82MEQfZ92Jd2Kw3GFcHcW33kDndUKSMH7nUuqMSmzhXeF94dD7nPxNsx2o7j9YU/LIRVmGk/LCQkOccI5g4vh27Du8DUyLiTUTFRcSs19U5GBiKVJuXciFw6HJd5paDo1dtdu6B7zzZuHCspmaqpeZmffystrS8oqNXb+7yHxxln55M6TO76VU+1OuBuKnk3D3b/gsHuDGq3BtROW9o+N4A7Uzp1FuD+N8OAu42E3A9bKORuNdVTrUMsQ4MCqrRh7nWGM/d6o5i7TUXd6YfdLUXeDYfvDH83G2HXBNmthLNTgdrNG2y3YtpOhUzGEvF2igXuJAF30pqe8XaDBO66gPtpVeCuJeSuyty1nzzIR7iMtqvF2wngfnIGuOMnouyfsLPZH7QCd1cMuGusmzoTcv9aJ3NXiLcvkftkDs3DK6a6YxVT2T9Cl6CTMBlhz5m84sbud7srJioQ7L/gS8GcZo7HeQ92I5vfwY+9Eos/PhQe3ikQtHp7t3h5wS3cH46MhMdLy8djMi7zIzrw/aEgomPrzpfFo8Uf9u1bs/lx7pNcrxYv13rXJadm6qbO+8e8Tw99ahJwN4i2/45mqP3fSGqzMndtIXe9S6cSVpm/Klll1DXuM1aZ4/YOJxyWnFwyk3M/g9YgxePtuEwGp+38dr5fj594ULzq0SoYe2MlJe92776VmgrDrD8kpD80FEbXwxUryion4rOuilMGw5IHItKGM9bcqZmukSCSordFUcNRAb0Bgg4BLpaRh9zlDndoKOK/4AF3oBty4G53nDDJyGn7giMLlNpRIraPMveTDrAW0Hl2E9u/x3/v+73PNm4cjoi4nphYM1UTnXHZP7ZHFNXlH9sbl3kFkUrhwaL97yTTki0vtpRXTtzNzOwWiRrZbOjOz46Ox+3sfly06IhiyP3jjw0IuWtn7tow3O/p1OY0dmfIu5XbY+gSbKcBbVcE7paxyjClU5mQu3WE3G2heqoFxTK2WkD1tHEFVBnmTtOoO72xO4ci7G4sfGcQvGmEnSLIHqLh+xt6onYzBNspk7bbGm033N5uxng7VcCdJszdxHi7McDdSStwVzW5u4pm+dmc4vBWpu2yeLu6wN0k4K6hbqpayP1r9eupj2d8Mjoqpp6GtYCdedqqWwiCPM3LwwF64rVEYZeQ18YTdYmiR6IRiQQevLNsWZdI1OLl1cRmN7LZcAv3u31972Vl4Tg+LvMqWj01ujs0qb9WMn0jOXkkKmq6tnbZ3WXerd5u9W5o3VSNwP0rU4G7VpOM6ZxdW1lUHaj9P4xE7f/r3/6X7mYic9cactdilVHVuP9VQeN+SIPGHbfKqITciXg7bm/HfjPBaeLICwPguvb9H/ZPVlY+37TpcnT0peDg3oCAXn//i4GBg+HhT3JzSyvGY5ZdCU68FBh/ERqMrqTl12G8FRS92v1u99JbS2E5wk4hnnPHTe5EyL0ezba7nUOt8arAXRZvl9N2WAu0fTcfXaPv5iu66e2P2zuecoRVYDWw/Hv94a2hVz1+fteTkuB+SFK/j7gNP8fwDmv1jekOTx1KXYlOqNRbqRl3Msoqxi/HxMBkUSqdioXcceBuaMj9S90hd3oDd5PIO4PdmUg7E2ynAWrXDNznmFWGJqVTLR5y/4YJuZMhljnCiGVsQuZuU8zd1WjmTq1exsSou6dhzN2KsLvFybtp/D2EYes0IOzm5uwkonYygu2kamSsl7aTIZMRGCyTIb9cqhE+GVsC7l5UAHdH1bOdMzpC7hqY+2znGPKhSwxLgWK8Xckng28jwifD+UkJuHsYANw1aNyX6Lp0mvHJYBc4hMBdGbg7YcAd9qWRS4cL3xTeXrp0UCx+tnHj6sero0aiEq4llI6XIgiy98B7uL0UHNzi5dXAYp338Djv7g63cB8e6QsKmqioKBsvGy0ulkqRZWvv4vj+ZkrKzdTUaQSJuRzDbeYSwP24EnD/5JtPfoWBRkXg/s9//GeDgTupivbZUft/konaZ+Xss2N3UkLuGq0yOjTu32rSuKtZZWZkMjLa7tPm49vtGz4UvuHZhvd79tTUTkumJY9WrRoIC+vx9+8SiaB1i0S9/v4wGp9v2iSRItHpI4HxF/1iun2ju/1ieoLi+2KXXcnf+bK0YlyKSHMe5MDS4GWwZJy5z4hlMOaO+9xRpcwpDcB9wdEF84+ghP2z7z6D1UFj+4c/m7Hl/LBw8bHF8CpYEc8LntBzCUJ8/wS3RfvfiaK74CiPF0+GYyXc54W3hyUP1EqmYQbBPJqqroap0cHnE1YZB4djixerWGXUQ+4aq6eqh9ytF7iThd3/YA3YnSHv1o7amWC71QJ3pnSqhUqnMiF32lZPpa1Yxo6UkDvD3C3N3E1SuptdL0NK1J1a7G4G8s6lzjYzC383DMHbEog3cK25FEN2fTk7CaidTV/UTg9pu5lpu0HxdmfzymQsXS7VdoD7CfMA91OzAXdVq4yKyd1FqPmUQ+lMQ23cKtF2tXi7kk9GJnBXBO7Y2fKR+foAdzWNu6aQuyJtVxK4K1ZMxYD7D9ANBxlwh52ef2zvtt2vpmtrb6WlPV67dturbWufrJVIprPz7u858H6irGw4MrLNx6fB07Peza3O1fUsKsd2gfsXPD1bvb2HIiIQBNn6cmvKzZSKiYqtO1/APx+vWSNFpBufbfTv8ec0cVzrXJWA+2ECuH/89cdy4P4vf/oXfYG7btpuAmfXZY8hFbUbytlnwe4Ghdx1l07F6KBSyF1F466jbqoMuC85ScTb5bSd1cDiNnN57bzAi4ErHq7Y835PxWQFOkikyNX4+L7AwC6RqEMgaOfz8QoBPX5+g2LxeGnptEQSuXQYhqgwqksQ0QFNiPlbopaO7Nr3FkZaeeVE1WRV9Ei0f68/LF+VuWO0XV40VRW4y+LtBG3/x7x5385T+i7h6AJ4GrwEXg4LhOVver5p576342Vle97tycq75xPWCodC9GjCOw17A7gPE8o3unvX/rcwofJf5q8r+GWqpqZLKITJctbZ+RSucVe2yqiG3A2pnqobuP/eGhqD3RnOzqB2aoLtJO4TFIG7JqsMUzrVakunMiF3S4TcaVk9lWUIcLdSsQz5zP00w9wtopchJ+puMbG7BbC7Rcm7Vv5uDIKnJ443YS24FiHs1HB2M6B24x0ypgXbrYS215NF28mXyVAYbzfFJ2N9wN3LLMB9iQbgrskqo4u5q/jcNZ541Cmjdi20nUd86aLkk+EeU6qYysJ9Mjhw/94Q4K5HyF0p3q5QMRUD7nAmrwjcYb1gN8WP6IhIGyra/26quvrl1q0Hxw5W1Uyt3PgwZcXNyqrJ9/v2dQqFDSxWvavrGWfn005OWC1MR7hf5+ra4OnZwec/Xru2tHx87ZO1G59thJePl5ZWT1WvfLgyfDCc38FnNbBQ4H4KBe6LflikBNz/hgH3v2oA7ihzVwHu+sTbzRRpJ0/Xrouk/6uWpg9218HcZw25z2qV0RO4H0MFLHi8HZfJ4BZ1lLa3cIWdwpD+kGV3l+Hefxgkv6xbNxId3ePn1yEQtPn4QGvFbmFEdfv6DoaHT5SXV1VPRqYN+8X0CCI6eOHtPuI2nrgdRqxvdLc4ZXDHnjcl5WPbX2+HlvskN7gvGMabV4uXnLmjFVPrCOCuQSkjB+4Ybf/0209RPT3W8LWDv6Im9+N28FpYFLeZG9ofuu6XdWMlJVsKX4QmD8DJCRzg8KMA7AdgQsFhGjqZtPy6ZFoyXVs7XlZ2MyWlUyCAmXLWxeXUkiW4xv3oggVoyH3ePI0hd3WxzP/TUj2VROD+ud6NFtjdCg0zurD7nCLv1sDZKUbtf7CSYLsu4M6UTmVC7jqBOxNyp2f1VPLEMmZk7icsKHM3qYAqz8ACqgxzp4i5mzHqTjp2J9Uz06SFn1qWvM+C4E2l8DRuXMvidSo5O3Wo3VLB9rlD2y0rkzGoXCoJPhkGuBtildGLubvoPhVRHpPOM7T9DD5sVOLtyj4ZBeDuqQrcP9MC3D/VDtw1MHeVZJKCwB297nBVBe7QW1gpFsYHA+IuxmRcXrHhwc69b2qna6VSzMsulT7fvLk3IKCJw6l3czvj5HRqyZKTDg4n7O1PODjA/dNOTvWuro0sVpdQeC0h4dmGDS8LCt7t3n2wbGzT801J15OC+oJ82nw8Gzxd6lzQoqky4P7Z4c8+/fbTT/5uKnBXtbcbh9r/01jUbkiw3WDIrh9518XcZw25z2aVUambSgD3v2kF7mjRVMwng8tk5LTdq8VL1CVKuZmy6+2ufR/25W59Ul45MXrgwEBYWJdI1M7j4ZV48Qb34ZFuX9/hiAgYgdAi0oZE0d288HbvsFY8NwB3eOJ2UVRXaPJAzvoHew++n6iogGeuebwmdCBU2CWEBbEb2QRzlytlfnZEQ+4nHNCiqXKljCJwP4SNSZkzB187eA6sF7wQFgLr4tvtu/Xl1kerVsH8wIE7HBDRwxD/DNzCoQ0OuNDDoIS+VZsewcrC067GxXXw+ThwR+umKmjcD5MaclfHc6SjdnPz9zkSdf9CJ3Gem5ydVqidLsF2utJ2UoA7CaVT/5lk5v4npnQqFVYZJuROasidsuqpFhbLmEXmzjB3Epk72WVULVRJ1TqwO8Xk3TLwfRYEb0UsXo+1sNDHSy1nJwe1m+6QsQra7mswbaefut2q4u2k+GRoAdxPmAjcHbSfHWk8BVI/yVE7jTnrrPlcpU5LU7EYaaPtKvF2TQJ3DcD9sKHA/eMl6r8D/lrxIkgmcD+EXmtgiRx4Rxy42+PAXVgHuw6v0BY8L5yVew9BkB2vd7zcuvVuZublmJhef/8WL6/z7u5nMBvGCXv7Y3Z2Py1efGzx4uP29ieXLDnj5HTOza2Jw+kSCgfF4jvp6RIpsnbLk+qaqZwHOcF9wShwv+DpchYD7sf0Bu7/Tz/gPmu8nbao/V9NaEYwdx2lU+VWGS0a95m6qV99pBm4HyXqi9odt3M4QcTbYYsr0va4K3EwtCYqKmqna98VFd1fvrw/JKRTIGj19m7mcmH84A3uw3hr8/HpEolg+JVVjCNSaXjqkDCqy0fcBgMVTg842IkfnMB4h7UKIjuDEy7l5T+tqZ1+sHw5vMWWF1vSb6f79fh5t3qzm9h4DVXXOlclq8xxNOQ+43BXAO54IV+4RVfw8LwZ4H5yifNZZ48LHvwOfsGrgmmJZNurbdHpI96hrTCDsLoO6PELjobwT+ief2zvgdLRrHtZMJvuZWV18PkXZMAdr5v6w8KFcquMYsgdZe6oMH/26qn6hNzNjdrNRN7pgN0pA7u2T96tirPbXrDdTGopFeDOlE61vdKpTMjdoiF3WxHLLLaUWMasMvc5y9wpVLpbNupOD+zeSAl2txbybjCINzeaN6oPNPjogqni7LaI2o3TyHiQUCLVQrSddjIZY+Lt1AL34zYM3A0LueuL3XUUDDgjr5I6Q9sVZTKKwJ1zTF3gjgH3IwRwd/sej7frBu7qGncV5v6xcrxdJnDXBdxhjWBXALtfYVRXdPpIRdXE2idrcx7kIAhyIzn5YmAgrm6vc3XFQeGxxYtRG8bChT8sXPjT4sXwCDx+1sXlgodHq7f3xYCA+9nZB8vGknNuZObek0xLokaiVIA77nDXANz/ogW4f6E3cDeEtlOD2jXQ9n8lqWlj7kaH3NU17up1U9WB+3dYBvwoIXC3P07Y22Fzu9W7sRpY3q3eAb0BsVdit7zYsmbz47RVt7a+QL/LgaHVwee3eHk1cTiNbHYji4U2Nhtn7jDqukWiq3FxExUVEikiThkURnZ6h7VitF1+dEZPEb1CW/gRHUEJfVl59/aXfKiumSqvnJAi0qW3l8L78tp5nGaOInPXEHLHrDKwIrhSRiXhTihlsIQ7vNz9vDusUdyVuAOjB8oqx+Myr/DC26EzcLTFD5Ewm+BoDr0KjL9YPVVd8Kpgsqrq6bp17crAHa2bimncidKp2kPuf9YecjcduH9utmYB7G61hpnZsbuVkvdZV4pB7VZL260NuDMhdybkbhhz1w+4u5IfcreF6qlWInOnmrnzGeZuPr0MfaLu1GF385B3K4XvZEJ50xpdPwoDIDs1nJ1c1G4AbfekRbDdFmm7UbVS6R9vn8PAXX+rjEbmru6WUcbuAt2Fec/opu1LVGi7uk8GB+5YvH2Buxpwd9EG3LWF3AnsrnYFRPhkZiqmuh6erwjcuSegt7BGMOth7+ob3Z279UnZRFn81fi4q3H7P+x/tHp1j79/M5crj7crqjCOLljw46JFx+3s0JC7szMecofnv925E5YTmjwQuXS4snoy72kev4M/C3D/Wgbc/ywD7n8kA7hTjNr/nSrUrgW7Gxxy12aVkVFGwiqjDbh/SwB31CdzlPDJOJwgZDJu9W6w0b1avIL6gva+34tK28dLC4pe1UqmX2zZcik4uJ3Hg6HVyGY3sFgNnvBcT7htwJg7Adx9fW+lpdXUTpeUj4lTBgURHV6hLShtx46qnrJzYDgEw4kEL7w9IK43OedG8Wjxs40b72RkVE1Wpd1KixiOEHWJuC1cVgNLhbnPmNx/WESE3L9T0Lh/K4u3Y6uGfpGAA/dz7txmbsDFAHijhytXbtz+TBTd5RXSAr2Sn7RDl7zDWoMS+rYUvpiuRe1M1xMTYY3Oe3gQwN3B4RiuccemkuaQO87cdYfctVll9GNtn1PSLIvd/2Bt2N3qybsekJ2GnJ0JtpMC3L+wiFWGKZ1qzpD735iQu/WH3C0oltGfuR+nhcyd/AKqtGbuLlbE3K0s6m4D2N1A8m4F8H3utWDKObs5Iu3koXYzBNvnGm23uEzGAvF26xO4GwrcyQm5/+xkAHNXPYHRPLoUB5J8nCjKZLxP2quVS5XF25UE7jLg/p3JwF2VtmuomKoK3I9jwP0MzG7YzQbGXzxYNrb1xdaQ/pCgvqA1j9dM1dRcDAxs4nDOYfb2k1ixR7kK4+jChT8uWnTMzu6kgwNhcmeze/39EQTZvOO5X0xPeOog7vcQdgo9L3g6n3VeclIXcP/oL6hV5p+xNK+ewF1J4K5fvN12ULsac9cqllELuatbZVSBu4rGXTtwn/8dIXAn4u2YTMa1ztXjgge3mevb7bvq0Sq8GED1VPXL/Hz8ZxMobedwGlisC56eFzw8zmMN7sA/G1ksGHKt3t49fn73s7N/Wb8eXhuWMsCP6OCGtMBhFztcyo9x6HEQjrYwgPE6BBu2PSseLX5VUDBeWgpvW1s7nXEnA7qB6mUa2fA2rvUYcz+tibkfmQ+rAyMTbd8RqhylLxLOosCd3cSGIZ33NK+6Zip/18ughD6euA1ObNCzCOwsGk5meOHtockDZZXjhW8Kn6xd2xcU1IJ9cYUD95My4E5YZZRD7t+YFnLXE7h/Tm1jou4kY3dawXc9e0tXzs4E20kG7kzpVCbkbkshd6Z6qqXEMpaRuTPM3dxlVM2rl7Eq7G7l5F0XfGf4+5yC7GaKtNMBtRsdbKcrbTdroVSjZDKn9aftesXbfYyi7bYjcJ8duJMRcjco567NMKNrOCmOIkcV2q4uk1GIt+sQuM+fqZhKGnD/REHgrhG4Q9/gM4Q1grkMu9yQxEvTtbVFb4sCLwaKukR5T/MQBOkPDVUsl4on3FFQuGgR3ML94zLgXocD94CAqurJ8ony7Lx7B0pHR4uLYSHCTqHHBQ/nM84OJx2oA+7qqP23xqL2/6AratfB3A0NuWvXuBN1UxWBu3JNURUqjarbz7tzmjmw3SOGImAApK++nZRzY/PzzS/z8/uCgtp4vCactnt4nHd3PydrcB8eaZAB915//3tZWRMVFfk7X4Ym9fPC2+GEAcu2o8c4xTNz+CccNOFw7xPW6hfTE7vsyprNj+F93+/dC0O6rGI84VpCQG8Av4PPbeZ6XvB0q3fDa6jKfe4zBVSPLlhwBGtHlcrAElb6OtRKz25k89p54UPhaGFhiSQ6fUQY1QXdQ/3y2Bmmd2irMLIzafn16tqp9b+sf7J2bZdIhH5x5e5+1tkZB+7y766OYlYZpZC7ftVTVUqnGgTcP7dQY6Lu5iLvFPN3g3pFY85OPWq3DdqOT2drA+5WaZX5iwWAu7WG3A9ZLuRu3dVTbV8sY5YCqhQyd4H1Mnca6WVIMcxYBXY3J3ln4LvVEHadkL2ZzCFBZ9ROO9p+zmpou9AQ2i4whLbbcLydLsD9OCnAfbaQ+ykt5z86TnW0hwmUvrBRGioKI+GURto+E2/Hy6Uq+mQUBe5GAHdHfePt2oA7dAZOZaG3sC4wZ2GHGZx4qaxivLJqct3TdSk3U6prphAEGY6MbOZy0YS7rGLqcTu7Y4sX/4S1Y3Z28Ag8TiTcWaxuX993u3cXvCo4WDb2ZufOVwUFuU9yee089/PuOHBffGyxKnDHalR+9BUB3JU07orA/Q+agLs2n4xBtP0/zBNs/1cK26xiGUM07noC93nfEhVTFx6dibejMplzbuwmtqhLFDUSlXkvE5FKs/LubS58MVFefjkmpoPPR2m7p+d5D49z7u71bm7yhjJ3Dw/4EzyhzcfnYmDgtERSPlEOSwhNHuCJ22CUwvERp+0q5/NwFIPDIupyCW31je6OzbxSOVkJLx8MD3+ydu3Wl1vT76Qn30gOvBjo3erNamTBgFTVy6Ajm7C64z56GKuKNWCdzzq71rt6nPdgN7J9Wn0CegMK3xRC39LX3PGP7RVGdeI1Xb3DWnnh7fBIZu7dWsl0acX4tYSEdh6vgcWqx+YRAdxl310dVQi5/0Mh5P63jz+WA/e/6BFy16ZxpxVwNx27z03mbjB5JxfBG/fW9ObstKPt1hNs/1wncKfGKmNTpVMtFHL/mhYhdycm5G7pkDu9xDLWxdx/tmbmftZKmbvVRt3Nh931C7yTT96bdPJchr/TjbA3k7z1zcTZ6YTaqdPI0JK2m0XdbgJtt0i83cEaabvBVhk9Qu4GyNx16GU0n+doGyeKw0Bh+xLby17veLuSwF0FuDvrBu7fzHrJI7uWwS5DXDQBd84xFLjzTsM0hD2Yf2wvIpXeych4V1S0883OrTtfVk5WDoSGosBdIZmLMncMu8Mt3IdH4PEzzs71bm6NLFanUHgtIeFVQUFN7dSB0QO5T3JDLoVwW7hu59ycTjvNAPcjKHCf9+28Tw4RwJ2om6oO3L9UBu7/bQxwN5K2U+OQ+c1sjZSQuzarjM66qTqAu7xiKlpT9IeZeLtrnatngye/g7/iwYpayTQikVRWTUoR6avt20eiojoFAhhOSrTdFV6BNrgD/0RD7p6eTWx2m49PX3AwgiCZd1FkH5x4yUfcBkdhOALitF3lEoBg7v4oc/cKbfGL6V618VHNdM37PXtebNkCHSitGN+x5/Wed3tC+0N57TxuswarO4xPtJ3A2kmHJSeXwIO4kt7lrAt00f28O6wdp4nj3eot6hbFXYkbLyurrpkKTeoXRXXxw9t54jZeeDvcx31K219vv798eW9AQIuXF6zXDHDHvrs6piXkfujTT7WF3OUmd/2tMnSj7Qx2twx5p6p9YSWNCbabSNtnAe5MyN26rTLGhdwdmZC7bVRP1V8s86NFxTIWLqBqOHM/bQXM3RqU7tRG3a0eu1NC3ptmQ706+TuD4I3C6xaA7PpydjqjdvppZCxD20kulGoWmQzPaNo+t+PtxlllDBfL6HTLKGB3vU54lEaIyhhQp+0qMhmVeLuaT0ZN4O6Kn+1/awJwV463EwL3b2HJGHD/Xgm4e52EFYFJB/sWXnh7Us4NRCIZLy2drqkZLS6+l53dFxjY4uWFF3s8jVll5EASY5IOeLz9LFY0tZHN7hQKrycmour2nS92vN4RczlG2ClkN7Jd610dTzvCaxb/hAL3BUcWoMD9H/M+PfTpx1iaVxtwJ0LuswJ3nT4Zkmm76aj9N0Y1spg7vu6/VWDuWuqmqgN3FAB//atPvvkEB+6owB33yRy3U6wpGtofKkWkzzdtQkuejpW82Lp1JDq6SyRq4XIbWCylbLsMuNdhwP2cHLjzeANhYc83bz4wemDtlseB8X3eYa1wFIZjGRyD4NihcKRADyWynPs5OBrCQdkrtEUU1RWRNpSZe29L4YvKycoP+/ZNVlbCyCx8Uxg2EObb7cvv4Hu1eBFp93pXl7Mu0H/FBo+gnL3OFToK6+Vx3sOzwRMGM7eFy2vjCbuEoQOhW19uhWXGZFzGQu5dgshOeN/A+Itpq25N1dSUVY6PREXhoX5Ya1hZHLijPxaRWWXkJvfvZSF3leqps4fcrRO4m4jd5zhzpxt8/4JB7ZYOtlNM28kF7iSUTv1npnQqE3I3S8jd+qqn0lwsQ43MnWHuVsPcrSPqbkXY3eLkfXb4Pjt/n7MUPth0wt5slm1qfs5ODmoPJAG1M7TdXOp2c8tkLBtv96IPbScz5G4ic1f9eR/PkFGh+EWL9ykHjbRdQ7ydKJeqzSejBtzRy4dPtAF3R620XaNPZh52OYCaIXHgzsKB+wlYF5hKsDeA/bxfTE9c5tU1mx9XTFYgCPJ4zZr+kJBWb280nIuxwtOOjqcwXChveLy9zsXlvLt7E4fT4+8/UV4OS0hbdQuWED4U7tPm43nB06XOxfFnR/sT9jPA/TsCuH/yzSczwB3DigRwV9S4GwTc9aHtlnLI/MbkRhZwVwu56wnc0YqpOHA/PE/uk3E44YDXSmU1sPjt/KW3l37Yvx/GwNLVt7e+2DpdU3MpOBgGUiNO2+UOGawphtzPYRp3GEjtfP61+Pjd+99JEWlF1WRgfJ9XaAscRmGgwlEGPVLIrymEZ11FMyfzGHM/D0dbGM/8iI7gxEvL1z/If5k/WVnZFxR0NS4OhmXWvazkG8nZ97Lh1q/HD6+nCqPU4wJRvBXuw4qgrZEFf8IbB7rVzPFq8YIhLewSirpEQX1BsKbQw4w1d0ISL/nH9sAMCojrjVw6DO8yWlx8Jz0dZgSx4u7udfgkkn9xJQu5q4hl5NVT9Q25mwm4o2J/nc26sLvtMneLwPcvrLMxwXZSULtu4K7JKsOUTrXm0qlMyF0v4O5qYMidEcvQXyxjaAFVHwPFMjbE3K1UL0OKYYZ07G5D5F1f/q4vgrcZEK/3ynIsRdjVODv56hgzoHaTHDKWCLabnbaLzEnbzSqTYeLtVJvcjWfuSwyranPacdafOKh8y6KJtmuQyWiKtxM+GU0CdyOBu6NCvF3RJ6MduEOHYS1gvsAUht0aT9wenHhpxYYHBS8Llt1dJpUit9PTOwSCRjYbtcq4uOC48GdHR7zB/TNOTvB4vZvbBQ+PFi+vQbG4smpy1aZHaatujRYXhw2EebV4eZz3cDmrHbjrUzeVMuBuvmD7b8hr+jN3o+um6gbusoqpcp8MGm8/6wwbGja3X4/fyocri/a/C08dis+6iiDIi82bO4VCPOWNE3aUrbu5ncf4NgyeGeCODSR4Joy6mykpJWMl2fezS8rHAuJ6vUJaUJ8MEW+f2f/DfRi9+EENU83UY/88B0+GUwV+eHvU0hHoAyKVwmCGZf6yfn3R2yJ4YMO2Z2MlJZufb44cjhR2Cn3afLxbvfHoeuDFQGj+vf54E3WL4An8Dj6/HWsdfPinb7cvPCf6cjQsavOO5xFpQ8EJl4IS+sQpg6s3Paqeqn6/b19/SAi8qBnL9Z/DgPtZ2QxSYe4/LFqkoXqqcshdpXSqDo27DuCuP2r/Lz0aifydibrTnL9/YeXtDwxtJ5W2zw7crd8q8z/kA3eLhNwdmJC79YbcTaieSpVYhmHuc5W5U690115JlQaGGWvE7pSTdwP4u2EInoY43vCecwxoZt5GQWaOtFOK2q0r2D5HaDttaqXabLydZLGMg351bgwsbKNtu6ts1pNqtF2HTOZH2Wmtik9Gk8BdL+D+zezxdmWBuzbgDrMApiTsUuAA4RvTnbv1yfbX20P7Qzc934QgSF9QUDOXewEDozhzP+PkhKN2uA+P1GHB5AYWq83HZzgyEl5SXjnxdufO6pqpgIsBnCaO2zk35zPOeGlKVeD+rQJw/0oJuGuom/rf/9dQ4E4FbacStevN3PUJuWvVuMuA+//98v9qA+5oxVRc4P7jItisjj87utW7sRvZgk6BeFC88uHKbbtfLVt7t6xifLy0FIYQLjE/h7N1bMzUqwH3Ohy4e3o2czhdItH1pCQYSzvf7Fy+/r5vdDcMThiicLjBaTu+Y4f9PA7clVUzhGQGHoSTAX54e2TacP6ul4jsv2mJBAYntLJx1MBePlEefzU+CHrZFxQ1EnVg9IBUitTUTq//Zf10bS08P+9pHtyPuxoHqwbPwSl8QG9AcF9wxHDE2sdrYTXjs66Gpw5GpA2lrrxZWT05XVMDc6Hb1xcmBV4klgDuCt9aKTJ3FbGM5pA7bpXBQu5yq4xGjbvxwF1v1K4LvlOO3RnmbiKR/8Kmmw2jdgvSdtKBOwlWGaZ0KhNyt56QOyOWsZzMfW4ydwGFzJ3WehnzGmZojN0NJO8UwXfDELypLJ4ezfD1pWQrGADZm0wah7NwdspRu65gO71ouyv9aLuh6nbz10pl4u0WZu7GnBFp+2ZFHmz3PjmzUVRpu5JMRjXerssnozdwd9RC21V9MjMVUzHgflTucEeBu/cpGPww0WD6w26QH9GRvvo2IpVuer6pZrrmYNnYSFRUm48PHtGtx2jpWVnDyaliKvlydPTrHTtqJdPFo8UpN1P4HXxWA8ut3s3pjJMcuC/6YdGCIwvmfzd/3mEZcNddN5Vc4E4lbf+NOZvJIXeDgftfZcD90Ce4wJ3wyZx0cD7j7HHBg9fOixyOXPlw5ZYXWw6UjiII8jQvb1Asbufx8B9J4MT5LP49jYsLXiiVeFA+ljw9m7nc3oCAp+vWTVZWFpeOpq68JYrqgpMBOK7BwQUOAcSOHbtIwUPuBGoXKCXf4UEY1XDs9g5r9Y3uFqcMJi2/nrv1yd73e0eLi2+mpPQFBQ1HRr7evh26CsMVGlp+oPBF9rr7FVUT5ZUTazY/rp6qLtr/tqp6shhbo83PNyfdSILVFMOKDYqjRqKW3l5aOVkJsyYu82ryihsl5ePTEsnVuLiLgYEwI1q9vXHgfh7T1uPTR/6tFV6I+Li9/TGZWEZjyN1Qq4yRwN1Y1K6ZvNMZuzPMfc40JthuJtquG7gzpVNJB+5MyJ20kLvtVk+lt1iGTULInTSZu6HM3cdA5s6zBebuYl7mTseoO52xO2XknW1J8m48gqcPkTe589R+1NRydga1GyNtp4C2m7VQKm1lMmQBd/rSdvMx95NGxhHUmvYNqriZlD5q7GzwmHaZjC6fzCwVU3UDd0cV4K7uk5ED9yNqwB2tm4paZUT1sOfxCm0RpwwiCPJ6+/bqqeq3O3dejY/vEgrRkDuW0lUUgOAa7vMeHg0sVouXV4+f3/NNm/J3vdy1723mvczAi4GoT+aCBzzb6bQMuB9bvOjHRQuOLpj//Xy0buq38z459IlS3dS/qAH3Lw0B7oq0/bck03bDNDK/MX8j0SqjAtxxDKkO3L/+FWwsomLq9/MX/rAQ98nAJuY0ccKHwiWS6RdbtrwtKpIgkre7dt1MTe3190fj7VjJ0LMy0Hwa+3kE+gsJeZMB9wZPz1Zv74GwMBiEB0YPvCks3LLzhTCyEw7WcJCC4wUab8d317KLGsVd+kxhZBmLh+MUppdp5od3BCX05ax/sPn55oJXBTdTUjoFgouBgVfj4l5t2waPbHmxBUZv6spbCdnXdr3d9WzjxnuZmbiI5uGKFfCc93v2SBHp3gPv977fm/MgJ+lGUsK1hLRbaWUTZas3PcpYewdG/uiBA9eTkvpDQrp9fTv4fAK4y+T1RJZf9pXVDHPHxTJqIfdv5CH3jz76q1rpVDKBO0m0nSzsbqXMncHucxy1/2EOBNstDdxtt3QqzUPuH9tmyF1/5n6YEcvQWixjrgKqNGbufAOYu7MpzJ16pbvFo+4Wxu7UBN5pHns3C4inU7PcxxhEIWenMWo33iHD0HaK1O2G1kq1hXi73uc8ZmXus5wmGVFh3pBNqbKNlKQ9SrSd85NSrVTd8XbNAnd14P6NBuCudl0jj7drFri7H4FuwCk09A0H7g44cOefweLA52HHKIjoiMu8sq7gKYIge9/vfbtzZ39oaJuPTyObfQEL6p6TNVwJ0uDp2cRmwxMGxWJEIlm+7n6tZDrpRpKgU8Bp4rifd3epc5EDd7tjdot+XLTw6EICuCvWTdVT464/cNcz3k66tP03VDVDrTJGA/c/qQJ3QuD+4yL74/awcWE0+LT55D3NgzHzcOXK4pJRiWR668utzzZs6Pb1beJw8BoAigUA8BoAcvh+1tlZ0U00FBFRXTMVPRJdOl6ave4+P6IDjrBwSIKDAk7VZ2alpnmKPw47ati9w6EBMyYRepno9JHJykpY7NuioqtxcSNRUdeTkqDPo8XFUkS6Y8/rsopxWIv7y5f3BgR0oMJ2fqdQ2OPn1xcUBCMcXnI/O/vtrl0SRALP3/R8E57oz9/1cvvu1+/37r2VljYcEQFPlgP3Zi63kcWSf18lLxiLO5rwGqpysYxiyP2QLOSuapWRAfc/6tC4awJzlNF2UrA7w9yZZiOo3RZp+6zAnSmdatmQ+1fWF3J3pCTk7ky/kLtlqqeSz9zJF8uYUeZuEHM/NceYu+XLqJoYdSetmCqNsTvF5J2W8J3+OJ5OH47BkJ1+nH121E5RsJ06jYxlaLtZ1O20k8nQLN5up0ejFXM3zr+nm7OrbjvFbaFM2+3UaLtcJqNfvF2LT0Y/4P6JXgL3o9ArOXDHE+5O/JkssFdIi290d+yyK7hno3S89NW2bd2+vi1eXgRzxzg73GlgsaDBgy1cbqdQeCU2duzgwanqakQqDRsI8271hj+7n9MM3PXRuJMM3OlD23+ts1EQctdSN1WOOXUA90++wSqmYgJ31CdzAvPJnPcQdAhWP14NY2Z38bvo9JGde98sf7B8vLS0SySCQVLv6nrG2ZkQl2PucrgDbab6rgy4w3BC3UQxMbCodU/XwW1E2pBPWBuMTMwncwan7YozUdu+EXYU6PD2QdPuitKkpOXXtxS+ODh2EAbqVFUVIpHUTtceLBurnKyEof4gJ2ckOroLq/IKPW+C4e3l1c7jwYrALOgNCOgPCRmOjLyemHg/O/tlfj4sZN+HffDyNzt3wmvhcfjrpeDgHn9/mBTwQng5vqgLMHHwb6qwL6vw1D/+saiE3L+bP/8wZpU5pN0qQxpwNxtttxR2Z5g7Q9sZjYy5abu+wJ1+Vhlah9w/YkLutA65W7J6qq2KZfRg7haTuRvL3H+mGXO3dBlVS+hlSIm6G26YMRN21y/wThV5txL4zjRLQHbbRu3kB9ttnbbbvEyGjFqpdoY3Spm7Eb8I1Od8SXnDOehA7bppu5ZaqQrx9plyqZp9MmoCd/2A+981CtxVKqZCP6HbDljRVDlwh1mMhtwDG33CWoPi+8oq0ahv9VT1aHHxQFhYB5+PZnXZbDlnx3UZ8GCbjw8q3c7L27XvbfFocdL1JFGXiNvM9WzwJID7GSfHU44OJxzsjtvJ66YaoXGfoQ44cP+cCuBOmkbm14Y0SqwyxgD3vxPAHRW4H1u85OQSl7MusKFhi+MlScOSB3zEbfFZ12qma+5nZ7fzeBc8PetkUW68TCje4D5O3n92dMSB+3kPD1zg/njNmtEDB6prp1ZufBiU0OcV2oIK3IV1aLzd52fC5qS0m9J8mWaPD3LvU4Q3Cf1KqcE7tNU3pjty6XDKipvpa+6krbq1bO2dLYUv8l/mQ//hrWG0w5DGrevQeRjkMNTRtLtA0CUSQfcuhYQMRURcjY+/k54Ow37s4MHKyUopIn1bVPRo1aqbKSkj0dH9oaHwTHh+O55z53DwnPsFDLVfkBWMVQq54yZ3mVXmHyqlUzGrDA7c1a0yRgJ389N207E7lcydwe4Map+zwfbfGzgxzQHcrad06qI5UzqVCbnbQPVUWollzCtzt3wBVYa5k8zcGexuaOCdNPJuLHxn+LuVQXYqObslUbtlgu0MbWdkMuShdhKwu5e5sLvyKZMmBK/8J+2bRsMnrJu26x1vn9Unoy5w1xu4u2qpmMo9jn4yKHA/7UwA9zqY/pjwuokf0ZGQfa16qrqiagJBkHtZWb0BAW0+Ps1cbhOb3chmw20zRttbvLw6BIKhiIjS8dI1Wx6XT5QHXwrmtfE4TRwcuLvWuTqfcXb82dHhpIP9cVndVLnGXdEqI9e4/9lAjbtxwJ0y2v5rY5tpzJ1M4P4XFLijFVP//om6wJ3VwBJ2Cdc+WQtDJTx1KCihL23VrVrJ9HBEBAyP8x4eZ11cZgqE2tnhDe6fUADu9a6uFzCB+5XY2INlY7Co0eLiaQSBpXFDmjGB+1k03u59CqftKpNOed7NXPcRQx37bkkedYcjvldoCz+83Te6G5Yfk3F5x57Xax6vybiTgY/2ToGgEcukoyF3DgfWAgZ/B5+PA3c85H4jOflpXt5kZeWm7c+kUgRWP/dJLk7exw4efLR69Y2kpMHw8IuBgSh2l0XdYbENnp74L0WUgLuDA26VIULuyqVTtVllrAi4m4LdGebONBqi9jmokTEIuDOlU80TcrdnQu7WHXKnU/VUK5a5W6yA6hxm7kaXUbW8XsYCYnc9sLsZPDMss2D3Rv2grRb4zvB3agk7pZA9SOmbHjI5O4mo3YzB9tk1MsZJ2w2m7UKKaLuxhVIZmQyZqN1k7G4EczcAuxvTFDaHpmD7cfkJoXbarn+83TifjL4VUxfgFVPVBO7y8pIYcEdD7rB/44a0iKK6YjIu7zv4Ift+NoIg15OSukWiNh+fFi63mcNpktH2Nh6vx8/vRnLyRHk5PC3tVpqoS+TV4sVuYrMaWB7nPdzq3ZzPosB9ycmZuqmExv07GXDX0ypDInAnt0qqOWi7nszdBI27BuD+uXbg/pUScMcF7rBZYfuyG9nCTmHi9cTRAwdSVtxMyL5WtP/di61bewMCYJCcc3c/4+wsN5X/hOW44Rbu4zl3Ari7uTWyWB18/u309JqpmrgrcYhUCiMqIK4XDugwMlGfDBZvx2m70u9IWIqXigpXkdhF4gx2xwwz8ooFKHYPaRFEdAQnXtpS+GLjs43hQ+HJN5Jrp2svR0e3Yz/pIAa5nLb7+/eHhl6OibmXlTVWUlJeOZG97n5m7t1pBFl+fzl8AtCW3V0mRaSwkA/79k3V1Dxdt+5qXBy8qlsBu+OGGfhk6hStMvb2qFVm0SKl0qmffIKXTp3FKqOlbqoupkY5bVfC7gxzZ5qtonbb1cjQBrjTunQqE3JnQu7WXz2VdmIZcxZQZZg7+WVUbTfqThfsbinyri98Z/g7/Qhe/qBoAAA1yklEQVS7RTg7nVE7TYPttkTbqVS3L5l7tN0k8q7fmpqXvCtsC42iHm20XU3drkTbVePtOsqlzgLcNV/RaAHumE/GTbli6oxPhqDtLsTpE3qqg1aYDGz0Dm31i+lZtvbuaHGxRDL9dN26gbCwTqGwzcen1du7xcsLbuE+PNIfEoJIpWs2P177ZG1QXxCvncdt5rKb2JwmDquB5XbOzeUsoXFHrTLHlKwynx3+DLXKHNLDKqND4z4rcNcz3v5vRsXbzUfbjWbupAJ3lO/+5V9g06DA/dAn8w7PIyqmniAqpnKaOaIuUeRw5K63uzZuf7Z2y2MpIr2WkNDj54cm3GXAnQDKC2HjL8SZ+3EZcD/r4gJPa+Zy4SV3ly0rfFMYfy0eQZDVmx4JIjrg2AqDE3bgsC+FaUjQdk3liPFZpnw1elSpUDCO3VHDDFG0gBvcLIzsTF15C94u827m8gfL9x388DQv73J09MXAwG4RrJkIegX3YfxfjYt7uGLFh/37EYlkW9GrpJwbscuuwG1V9eSKByuiR6LFg+KwgbCI4YjUW6lbXmyBZRbtf1szVTNZVXUjOXlQLIZFodgdszOhzF1TyF29dKrcKmMbwJ2yqDvD3BnazgTbzUHb9QTuX1BilbHO0qlMyN32Q+5mrp5qW2IZygqo2ptUQJVh7hZj7qZH3emJ3U32zFiQvJPE3xkEbyBeN5CwN5G5uc3K2clG7RYLtlOrkaGctpNdKNUCMpmTFlG325m/UYjdT8x8mMZCdk2o/YTqZ0Wgdo20fQYFapLJaI63G+KTUbmo0QO4q1RMRYH7SblkQ3HmYiF3TCwT1OQjbguMv5i97j6CINtfb3+2cWNfUBBeCrLNxwduOwSCHj+/K3FxYyUlUkQadzVO1CXybvXmNHFw74xi3VQlq4w85H5YLeSu0SqjqHHXUTeVPOBOF9puAnDXYJUxFrh/9JePcOAOWwo2GVEx9SRWMfWCB2xx/17/mCsxKx6ugKFSVTP1NC/vRnLypeBgGCcXPD3PurjgwB2nyUfmz/9h4UIcuMPjp52c6l1dG1isdj5/KCLi4cqVJeMlBa8KDpaPhSUPeIe2wlEPDg2wQ4ZZCddcBG33/EFd0zRf/ZIWj4V5HFHC7jLDDAx4WDg3pDkgrreg6NVUdfWrbdtqJdPFo8W4kv5eVtaT3Fy4fVNY+GbHDkQqLZ9Af8mxdPXtyKXD0D1xyiBeYTjvaV7EUERQXxB8FNACLwaGDYSl3EzZ9HzTZGXlqk2PxktK4Gmvd+wYCAvrEolafXyaOBz4cBTFMoohd3npVF1WGS11U9WBuzov+y+LAnfKou40Ye4MdrcN1D7HNTJGAnemdCoTcrdcyP0QaSF3F1XgbivVU+eczJ0y5u5oLcydQqW73noZc0bd5yR2N5vn3Rj4PjuCD2LYOj0Iu8Gc3UZQuynBdmM0MjZD2+msbict3k5T2m5u7K6dvKsheNWmxwfO1RFs16aQVqPtOuLtBvtktF7RGAbcFfQaMM0VJzUhlgls4IY088PbgxL61uU/naioGC0uvp6YiDupOwWCTqGw29f3UkjIL+vX57/MX/FwRVBfkKBD4NXihWfbPRs8UaXMOTeXOhdc477kFGqVsTtmhwJ3LaVTNVplNGjcTQHuVkTb9WHulAH3b2TA/SgK3GFrwpZlNbIEnYKokai8p3mVk5WIRILeIshUdfX97OweP79GNrvO1fVnR8cTsoT7USzhjiplFOLtLV5eg2LxdE1NTe0UIpUW7n2TvOKGX0wPnITAcQr28LBfhTkoo+1H5YKmz1TKIeBXxMSl8cxlryp2l0XdMas7ytwD4y9u3fli5763MNpLx0uz72dXT1Xveb9n64utEkSS+yQXVgr6lpl7NyIN9dQHxPVCgztR6SPwp11vd4kHxf69/qIukQCdHgJhp9Cvxy9sIGzlw5W73+2WTEuK9r/bXfzuxZYtV2Jj+0NC4FnNXC7B3OViGYWQu7x0qgarjILG3RjgTgPaTn/m/geGuTOonQm2Uw7c50zI3UjgzoTcyQy5M2IZMsUyLEXgbnGZ+3GDfyVtKHP3sQXm7mwp5m41UXdLYHerJ+/G8PfZEbxtgPggctm62SA7hZydKtRO12A7Q9ttWt1uZ7lGutvdEPiu94es8bPSl7Zrk8mo8UHN8fZDWuPtmi9qSEi4E2dQ2NkRGnL3vwA7W6/QFkFkZ2hS/8qND7cVvZJKkRFMtdHj54d7NuCfiFS69/3e6JFoeIjfzp8B7hcI4I7WTT3rjIbcT+kMuSuWTpVZZXRr3P/35/9bm1WGvsD9/6MLcP+n3/6TMcD9u89gw9kds8MF7rC5w4fCEQR5u2vXo9WrJ8rL9xS/2/hsY+a9THjwbmZmm4+PolXm2OLFcoE7PELY29nsTqHwl/Xrdxe/m66trZqqGi8tXbr6tjCyEw7HMCaJeDvnmCzbfoRA7ZonkVLDr6M/k7uV5BNBFnWHYwoc7OB0gidu94vpCUnqz8y9B53fd/DD9t2v4c7mHc+z8+7HZ12DP/nH9oiiuqBj0OCOf2xvRNpQdc1U1WSVeFDs2+3L7+Dz2ng+qHrJB27hnzAvIocjJdOSsorxVZsewQLHSkpKysfuZGR0iURy5o7L3E9gH5E85C4vnarNKqOxbuqswF1/IP47nc1SehmGuTOonaHtFqTt+gN3mymdyoTc6RZyZ6qn2pJYhg7M/STD3GmplzFX1J3O2J2MwDutyLuR/N0wEE8HKG9gP9m0wutUcna9Iu0Nhs0pMlC78cF2KqXt1NB2gYm03TzqdlNlMnOItlMQeDepcWdB7QRtZ89C2xd6qNVK1S/e/qmOePtsVzTo87EXKhVNdTs8i8Nd6SwLD7mjJnc05B7c7CNuE0V3iVMGt+x8caB09PWOHcMREZeCg/uCggbCwu5kZEzX1mbfzw65FILSxna+d6s36nBvxIqmXvBwP+fuVk+E3GdM7seVTO4zIXeZVYYIuZugcTcauJudtssbWcx91rqppgD3/1EG7t8qAXf38+6CDsH219sliORKbCwMhoqqyeXrHyAIknEnY+/7vYhUiobcWax6V1fcmnLSwQFv8lqpDSxWm49Pf2govCr3SW7USBQs7eGKFRu2PeOHt8M4hIMCjFU83q5K22c4u/LEUb4ql02Hb4kawsT3T+pR93P4Dzt44Sh5xzPsAXEX4b4wqosf0cETt/uEtXmHtUKDeQGP+EZ3h6cO7Tv4Yc/7PeJBsahLxGvnwRTwavHiEkVXufBPQacgtD90+YPlhW8KcSkN/FcxUXE1Pr5TKGzx8mqQMXe5WEYecidKpypYZTRq3MkF7r8zsDHMnWHucxG1z1XaTg/grrN0KhNyN4q5f23FIfe5VD3VhsUyZDP3E2Zj7qesn7lbWOluol7GkKi72Q0zxmJ3CgLvhpN3KuC7SfzdVBxPYSNvNRspg+zm5ez0RO3mCrYztJ3uMhmbp+0mkXeuOTi79k9JBbWrBNs10vbZZDJ6lUtVjbfrvqjRCNxlhNHtOxS4eyhprHGrDMwR+YkZfq6lCNw5wU3eoa38iA6/2J6ItKHtu1+Xlo/fz84ejowcCg+/EhPzevv2iomKmMsxQX1Bvt2+gg6BT5sPwdwxh7vnBU/38yhzR3PuisxdQSzz2XdqIXdFqwwO3L/UqXE3EbgbGm//zdwG7j8stDtuB5vSA45jvf4oPJZILgUHw2BYs/mxXGs+VV09dvAgDJVWb+8LHh51rq5nnJ1PO8HrnOAO/PO8u3sTm93G4/X6+19LSJiurY2+HB14MXDzi80SRJKYfc0rpAWORzBEYZe4GI23o952nLZjX1Zhs2ZmvqhNFo1fROGTgvjZBzEjYL7D3hv/wQe8Iwx+ONzDGYhSTkJ+XhfcxA1p9gptQb+LiuoKTx2ClZUi0vChcGGnEB//Xi1e6PhvZEFjN7JhOsDj/j3+idcTJ8rLq6onw1IG1hX88nbXLkLpjjH3OuxriZOy6qnykLu8dKoOjbsBwJ1s2k4WeWeYO9OYYDv9UbuhwJ3epVMX0rR0KhNyn5PVU80hlpkrzN2eYe4y7G5+5m4RvYyZo+40xu4kBd71Iu8sC5B3s1B4MwF6NkWNqg/cMMhOAme3NdROsUZGpBG104i226y63UDabkfvZm9kIyHJruUjOjYLbWfpT9tlwF1RNj1LvP3vesXbNQJ3p0OKMo35MrwIPYRuo8BdZpWBMY9PFvy8Sx24e4W28MLbRVFdgfF90ekj+bteIlLp7aVLr8bHw+1kZWXm3cyIoYjgvmD/HkJgzW/ny7E7rpfBo+5yt4ySzF0mllEJuaOlU/+kKeSuUeNuDuBuDnu79QB3FOLqAdz9evwQBNm5980YVhRUnDLIE7f5hKHldnO3Pll+f/nbXbs6hUK0QKiHxzl393o3N2jn3d0bWKxWHx/UShQVdS0h4f7y5WXjZSk3U9JupcFyNm1/DkMORiAMSDzeDuMWZhZB22HWYFNmhrPLJgKKAtQQgXyO4BMEXoh9F0XYlnDDDFFMFUu7w1FGNhHQM3z8RB0/zYbjO/QKToe4Ic3eYa3CyM7w1KG9B97v/7A/cjhS2ClUHPaoVQlW+4KHZ4Mnu4kNfwroDTgwegBWMH31bfynAHcyMmAq9QUF4V9LnHVxUfTdEyF3BauMqsZdXjeVJOD+OzIaw9wZ5s4E222YthsD3Ode6VQm5G6jIXdSq6dah1jG2mXuc4+5O5nI3I2OuousNepOomHG7NidKvJuafhOKYW3ULPE5xlILWc3R6SdPNRuYrCdoe2m03aj1e1L6Foo1c56mj3lTbUPHF2oXV/arkUmY0y8Xa+LGvziRQ7csTCv3F4t02hg9mrUpIGH3OXMXQbc69xwhzsKFhs5wc3eoa288HZhVFdAXG9Y8kB81rVtRa/GSkruZWY+yc3d/2F/yo2UqJEo8aA4pD8kqC8o8GKgf6+/X48fCt87BLhhg9PMYTWi2B3Vy5x1kTP3xccWL/phkUrI/VeYO0NPq4yqxp3mwP3XRtH2X1vA4a4LuB9FgTuulOF38FNvpcIwKKsYX7HhoRCl5I1wsPMOaxWnDpaUj33Yv78vKKjNx6eJw2lksRpYrEY2u8XLq0skup6YKJFM19ZOV09Vv96+ffe73fkv86eqq3O3Pg2M7+OGNMM4xOLtJ2ECojIZ9yN4tl0ebJdNDZwGYLiAAAsznEGBLRB8QBG7E7//kE0N4rso5XkhUy3V4/WEYWrg5Q1gHQWRnZFLhxEEgVWIuRwj6BQQ2XbZl0yoUumcG9x6nPeAKYAz96x7WfD8sspxeOE07peRSofCw1u43HOY7/7kkiXH5SF3eelUmVVGXeMur5uqD3A3N203EbsbxNx/bz7mrsZYGeY+R1A7lcF2K6XtFAD3OVM6VTtz/4gJudtMyJ1mYpkF9A25W0DmbhxzX2JFzJ1PLXO3UNTdhrA7leTd6uC71eF4enxKxkB2cjg7TVG7RYPtFGlkbIm2W1jdTj1tP2ZIswL4bqcz0m438wNHg2i7HrVSDYu3/80Q4P6NSt1UDcAdVVcfUwfuGuPtPuI2AeaqDoy/GJY8EJNxeenq27v2vX1VUDB64EDuk9yMOxmpN1PxbPLS20uX3V2WfjsdWuL1xLirceJBMW6b4bXzvFq8WI0s9/No1N3pjIy5YzL3+Uc0hdyVS6caZJX5p98aA9zN65MxpZkBuBNfThgH3PGiqefcvFu9Ueu6ZPr1jh0Za+4IIjuxn9w1eoe2+sf2bN7xvKpmaiQ6ulMoRMuIesPTvdv5/L7g4GcbN44dPHiwbCw558amHc9Ly8fLKyc2Fz5PW3krJPEST9wGR2E4msD4hIkJgxaVyaC0/TCMavT6WjYvcNQ+A9m10QnsrxhnIDLvMuwu+xWIfIKwsXqqeJ0D1QmCZt7hGA3nIQRwj+iIXDpcW4ti85grKHDnNnNR2n6eqF4AQx1vcB8egT/hzD3pRtKO1zsmq6rghTkPcuD26bp1XSJRA4sFT9cRclfXuJMF3H9nhkZD5k6fkDuD3WmI2m1MI2Mm2m4ocGdC7vQLuVMM3I1j7hYLuTNiGduTuTPMnW5lVM0WdafaMGMx7O5JJnY3gLxbyPlOE0ZvPatpJGSnjLOTjtpJcchYJNjO0HY6q9spo+1qJJ2jR6Mrgte6WI5eqF07bVctlKpBJjMD3P9BRrz9a42XM+p1U5WB+1ECuHNUgDt6roU7NJRkMuI2YWSnX0xPUEKfOGUwOuNycs6NrLx76wp+OVA6WjZetuf9Hsm0pGKiorxyoqxyvGj/u7KK8emamo3bn1VNVk2Ulxe9LUIQZN0v66JGooIvBQs6UCLpecHTrd7N+YwzytyPY8wdE8sohtw/+kp76VQTrTLmA+6/tnLg/nsZcP9iFuC++Nhi2Hauda6cJk7YQFhN7dSzDRtgDPjF9niHteLf0/hGdydkX9v1dtettLTegIAukQhat6/voFj8qqCgqmYKkf235cUWeNqbwsLCvW9ill2GF3KDZfF275MwB2F+oTIZ18NwUUzQ9hnUTnB2DFDoZhpy8o5RhRnsjs0UBbG7HLsr/xBEztzPwUEfDbmHtAgiOuIyrx4YPXCwfCzjTgYO3NG6BefcXetdXepcXM6i5YKhwR34uFDm3sjit/NjLscgEsn7ffuWr7sPk6W0HE27wyfTLAu5n1IOuX87b56SVQbTuMuBu4rGXRdwp5C2m4LdGebOoHZGI0NP1I7vRmgD3G2gdCoTcidXLGNsyN2C1VOtSCwzt5i7N8PcjVG6k6CXoUnUnRbYneLAu8nw3fr4u620QMtBdgPUMcZwdhJRu9mC7WbUyFBJ2531p+18a6XtDvSi7QYSdo5xIN6y7hrNndSF2g2l7bpkMvrF29UuWxQvdn6lcrGjaJWRAfd5OoE7UTdVnt6V10oNw2qlxvQEJ16KXDqcsuLmqk2PCve+qa6ZkkxLikeL97zfg0ilmwtfrNz4cNnaO6krbyWvuAFt6arbWXn31hf8su/gBwRByisn3u7c+TI/Hyfv2fez/Xv9fdp8WI0sOXO3O47K3AmxzLfziJD7V0TIHS2dqtsq818GWmXmBnCf8eSQCNwPffrZ4c8WHF2w+KfFDicdnM86ezZ4+nb7lo2XSRHp7uJ3EWnDwqguGDno9zSxPbhu5fGaNQOhoRcDAvqCgoYiIl5v3y6RIisfrgwbCIPXwniIvRILT7u/fDncJmRfE0R0wCCE4wsMTlm8/YhM3a5A2/FUO44mCHAhZyCqhGSGftj9WQG7f0243QnDjJYKw3jaHftqCmYKHP5w5xJMEz4G3Keqqp5t3Jh5N1PYKeQ0cQh1Up0LXiVY3uCfrnWuHuc9uM1cWHd0dkyUhyUP+EZ3w/SB2XQ9KamNxyOqpzo6nnBw+Gnx4qNYyF3JKqNF465UN9UQ4P478zeGuTPMnc6ondHIGETbjQDuNlM6lVYh978yIXcDQ+6MWMY0sYwJMnf6M3cH2jN3RyqY+xkymbtl9TL0w+4UBd7JJO+GwXeGv1sPYW8kbYToy9mtHrVTrZGxMdpufYVSzYrazcPZaYTgdXVGG2pXC7ar0XZPvWi7yfH2r3+lqWkMucvqpmoB7thpJwxgeYlIGW1v5IagVVL9YnrCkgfSVt1al/9UgkhKK8ZrpmuK3hUtv788407Gigcraqdrn2/aJJFMZ6+7n5B1LXLpMDw/OPFSUEJfYHwf3IYm9UemDaevvl1SPlZVM1U1VfUyHzV0L7u7TDwoFnYK2U1st3o3p9NODicdFh/DxDLfz593GA25f/yNaulUA6wytgfcf0Mz4H5kwaIfFzmccIBt537O3avFK3QgdO/7vQ9ycvYd/BCaPACDxz+2NzD+YnjqUMGul2937RqJjh4Ui0eiomDMTNfWpt9OD+oL4rXz2I1sbjMXxgOMkMHwcLyaqI+4DQ6LMCzReDv7J7RWqtv3mLr9EMwOnLbjDhkZaleG7BqhigyVqGB3udt9Juru8g+NNQ9kzP00xtzRyQJnO/zw9qj0EZgdMLBhpUTdIhS4n/dwrSfqAzv+7Ljk1BK8wX2Uude7shpYMP5XPVo1XlYWtXQEPqjojMuw7jdTUzsFgiYORz3krmKVsTrgbhx2pwVzN7/Mfc4y9zkYbLdu2o5PSWxuGgncmZA7E3KnacidntVT565YRm+ZuxbmTlIBVYa5U6N0tz3sbsnAu9nIu8HwneHvNCPs5HN2s0TayUXtpjtkzBJsN2OJVMpp+2nKaDt16nbuCbPRdmo5O0UUXt81mgW1KwfbddF2tFCqDpmMPvH2b7TF24kLHE0XPoohd0WNO3rV4PoPVeDO+UleGRJmjYy2o5YM77BWUVRXWPLAuoJftu9+XbT/ba1kWoJIVj5cmXAtIWokKnokOv5aPPxzsrLyXlbWsw0byionUlbcjEgbCk645B/b6xvdLYzqFER2CrCYM/wzKKEvNvMKgiDv9+x5sXnzvvf7pIh0++vtvt2+7Ea2a72r42lHXOa+4KhayJ0sq4xujbv1Avd/nQ24/7uBwP2//w8O/2YF7vbH7R1/dnStQ/Exv4MPwwM28XhZ2baiVxFpw8GJl0Kwb1xy1j+Ax28kJV2Nj3+4YkVF1WTGnYzQ/lDY+j5tPtxmrk+rD4yrvQfejxYXwzOj00c4wc1woJmJt7sf+YxQtyvQdjsZbZej9hnAopHGyOgK9mQZdsctuDqj7grfUeHMHZ8ycPCF8w1eeHvi8usVkxXVtVO107UBFwNgjVDgXufqfMYZp+0OJx0cTqBtyUmUubucdXE/T3xLUTJWsqXwRVzmleQVNxCp9FpCQrevb6u3d4OnZ72r62knJyLkLiudqlvjrg9wtyBtNzdzt/aQ+x8Y1M5oZKyEtlMG3G0j5P5nJuTOVE+lLuROmljGdguoMsxdMIf0MgYaZqwIu1uWvDcYhXo18XeGwuvH1i1P2A3m7DaC2o0PtpMsbbcR2u5oMG0/ZSu0nU6ondq2WCdq1xxsV66SqkLbZ5HJGBZv14O2y6599AbuqJwa98kQ8XYBQds5wU288PbgxEvL1t7ZvOP5y/x8RCotHi1e/Xh11HBUSH9IUF9Q8KXgsIGwuKtxe9/v/WX9+utJSTdTUkaLi/cefB+beQVe6xfTI4zs5Ie3+4jbvMNa8eaDieBDkvoz1tzZvvu1FJHi5u7Um6m8dp7nBU+Xsy6EWOaHRXKT+0zIHbfK/I9Oq8znplll6Azcf0Mb4P43FLjPOzwPthFsKdhesNWczzi7n3PnNHGEncLoy9E1UzXTtbWVVZPJOTeiMy7HLrsCG72yevJeVhZqjJFKcx7kRA5HwkDy7fYVdAoEHYKA3oDVj1ZPVVeXV07k73opiuqC0QiHANhbwgSEyYXLZGA8w9hGpwBB2xWC7ThXIdiLTm4jJ+8KafeZqDvMoxnm/i1+aazI3PGvqXCxDBxD4VyCJ25btvZuVc3k3WXLYEjDNPFq8cKBu9NptCywwwkH++P2dsfs4OOyP2EPjzidcfr/2zvzr6bOdY/fdc65P9hqaVVQkJBAApmBEAgBwiiCgIoDDgxiAaWgCCiUUfgPPOcH255ye7ra29723Lbeap0HBpmHyCCgOCsOtQUVRQVlyLrPHoAEEjInO2S73pUVGUL2zvO+O/uzv/k8TlVO9Ho6X8oPvRUKvxWfOhCX/AT2262wsC6hEPZKg6trDY12EQ25w68en2OVwTTulgjcP9MBuJPMnUTtpEaGABoZ+c/H6ADcF3rr1GWGssqQIXeye6ppxTI0/cUyliZzdzVwA1XTMnfLVLoviKi7MbC7CQLvCuSdMPBdDYL3Itm6PqPWwji7Rj1RTYva9Q62m1sjY4QuqSaj7awFRtutFLUrcPZ5ULvhaPtsmYyW8fb5aPss5m6PB3WnueEs4D6d1YWyx4TUKG1v4Pq3itb0ZB8cyRjOkJUjTDx3NFfSJ/Hq9PJo93C/7A5D0CEQdYvCb4eXTpQ+WLeuTwLfl9xbuxZ+ODFt0H/tVUFIBy+gjS1uwTpnuvo0wCMzvOvhDkvcDN/d/vGfe17ugd96snVr1usseHAMUK66sAoRy0yF3Jf8tAQLueOtU+WsMtPM3ZBWmX8oY+46APfDRPHJGBG4/4wA96XHl9qetIWXzOG8A6WK4nzJGV5HXhtP3Cve/HhzwVgB0gr1k+frtj+IjX90IH90MClpsqxsx587Vt9e7X/VH7t+A6++b4/vxkeIuv1FWhr8sGdwB0NYDzUJKy1UKUw3qNsPkHj7tLp92iSDoXaUtk+jdpznKEE9cmAHYTLTnpnZzB3Xy6BGJmTuKDL3qStVcMSBJwnvDVi+TZLoPnj+D2Nj4RY2n9XMgr2BA/czeE/gZb8tg1v5PUavo3PbuH5X/TY83FA4VpiZ/ep5SgrMqRvBwVe8vVs4nDo6vcrJ6Zy9/Sk7u2mrDALcFy/GgTsacpcH7l9ZCHD/jDBimS+JJ5apIFE7qZEhJG2fNStNBtxNGHInqlWG+CH39xZWyF3P7qkWJ5b5yAQhd5K5WypzJ4pehqIFc7dO7K4peTdy7F1f/q6ewlsoi593c1wMMGrNDdl15+yGjLQTAbXrp5Ehabsx1O3mp+3WCNnn4+yqUPtcjcy8tH0+mYy28Xb1tH2FYsZIrm+qInDH+0BCnWDQEGYxLE0M73q+RBqy/mZc8pM3WVn90dE5eSMRdyO8r3jzpXxuK5fTwuG0cnhtPI92D1G3aNPjTTKZ7FZYWI+vb7ePz1V//z+2bt2b83pj4iNReDc/UMr2a8Gy7a4+DXCUwdZtzFfjE95dWDz2NCnpSVxczkhO0PUg98vujHqGU5WT/Tl721O2uMn95w8W/6+61qn6WGU00bgTAbjrGW9XLXBXAO6fawrc4UXBgfuxpUjf1NMrcEdKNZVeR2c2MaFIhF3CwOuBsY9i973eVzhWmJs/mpH9ajQ3N+1FGlTO2ntrV99eHXozNPx2+JbftxSOF75ISysoGssvfCcI6YSCgWMcVCYsenLxdnmZDG6SwWj7VLAdQ+1TVMemYvaQAz5y2F0+6o7qZey+e89uRuk+zdwRt4zcp0OQi1Xsc3CAg7nDFDVBzSftHhzJzk5/mR5+Jxz2gEudC6WKgjUnwBoCw+5adnzZ8pPLMfE9VDvUPFR+2K2w5GfJ+e/yZWVlJRMlyOc+ysuHUlN7xeJmFusSjXZh1aozclYZpRr3GeCOhty1Au6fmW+QYhnrYe4VVkzbF5JGRn/grqx1Khly1xe4kyF3snuqxYlliN5AlWTuhmDuRIy6G9AwY1zsvkDIu2H4u3Ys3sRoXpsnY9BdYbTXyzSc3Tio3cgOGX2C7caRtuvWIlU/2u5g3bSdRO3zEnb1nF0FajcQbVchk9E03j77TEfZ2ZACcP9xLnDHUrrTxBCmJCwscLDg+rdGb+vPHc0tGi+aKC2F28i7kZ4dnpxWDquZxWxiwoA78F+Pdg+/Xr9yWflkaek1iaRLKOwQCOC2TyJ5vW8fYonZcs8rtBMekCVuZvk2u/o0wNINCyYVfUMCxxq2X0vA2mupmUPv8vKy3mSlDqVG3Y/iS/nOtc4zIfdfP7L5BQ25/7jYdK1TCQjcDxvRJ6MjcP83CtyP4sDd7rSd/VmkEahTlZPzJWdEyN7M4rXxBJ0Cca849Gbouv51CQMJ+9/sLyweg/IoHi8uLp2AOxMlJa8yMuDOgU9H8wvfBcVcdw+6jNB2jxo4CsDSClUKcw2NtyO9UjGZDKpux2j7N/K0XRln/1JuzCXvilF3lcx9xi0Dkxph7tPXq1hn4XnC9HETNfqu6cnYP1wwVpB9cAS2CCYI7AdqNRV2y8qzSMJ9GrhPJ9zhuzCnAq8HFpWMP01OHkpJ2ZvzOnskO/ZRbEx/DOwleJwr3t71DEYlhYJZZY4tXXoUtcoo7Zv6L7m+qcYD7lNTylqZuwlD7hUkaieD7QSm7foCd7J1quWE3L+3upC7Xt1TrU4sY2KZO8ncicDczauXMUjUnQDY3QSBd53Iu9Hhu+ERvGG4vH7D+Ftk5FdEQDTObg7UTrhgu3FoO4ek7Sag7QsWtS9XOU6o5exqUPtc2k7Tgrar6JU6b7x9Ptqu+oRIJXCX02LQf7NFPdSoE6MK1liWuFkU3j1RXPwsOXkkJ0cmkwXfCMYbWja6ujYgw63RjdWEA3f4btF40WBSUo9I1O7hIeXzL7u7d3p53QoLe5efP3rgQOiGmx5B7Wy/FjdRI8O7HpZWWMGwC36wJLr6NAjDuhLTBpFUr0yWkDoAtxseboA/QamiICb3k7ZLjy398Cgacjdq61QjAffD5qftGgH3I3+R98loC9w/Oob3TcU07vDa0S7RGPUMdjMb6gTqR9glDLgWEHkvMm0o7VVm5tuDB+NTBzbEP4zZ3h+zDRmRW+5BqYgjej2DO6BaoFTggAjHDliW7bBeqbRfoW6XzMTbUZnMckzdroq2f/m3D5QPBfKOSWbmYe7Tbhn5Hqryl6zQGQTHX6jnoJjr2W+yy8omn+7cWSYrW/9wPdKZoBa3yiAh95O2y08sX35yOb67Lq5yvuTMa+MdfHtwMDHxzpo1MAXidj7JK3gb+yjWt8d3zZ01xSXjv2/Z0sJmV1OpiFVGXuM+q28qCty/nhe4yxM0HYD7kXmHyZi78WTuxAy5V5ConaTtRJK2zwXuFQvLKvO1kVunGj/kbkeG3BdIyN1ixDIEbKBqycx9pSUyd530MqaNuhvKMGMe7G4g8k5k+G46Cm85w1T7XGvIXqtXES5o1G5qjQxJ20nabgqMrgFhZ5zQ5O3czNs/NcF2DWi7vLrdMPH2WTIZNedE+PnOHOA+7cRA8rmIvf0szFBYptxEjYKQjjWb7shksvtRUWMFBXte7vFo92A2MRn1DHodHRn1dLdGN04rYpURdAhi+mPSs14+io3t9PKS8njolzlwp0so/GPbtpyRnOyDI0Ex1/mBUqZvEwbcYSGCZQHpM+leRRfWe4ddkZWV7X+z/88dO+DvHix4m/U6i9vGpdZQHc47YIlgxCrzi9atU4kScj9sfNqurU9GncBdK+Buc9QGA+5Y31RESl5JodXQoFSQCzMtHP5lvvcV75CbIVBOE8XFD2NjBxMTM/YPQ6VJovt81/QIw7o8gzugSDjohRm6sA6n7exzK1CZDEw0JN7uOBVvn5HJTHVJnU3bp9n6P1UMReyuCXOf6aGKnG7bTE8iBjqJ2OfgMAoVLo7oPVQ2CRvY7uEBt7DJnu2eWGcCx4uO9ufsV55BWqeuOLMC31dVFNhRwi4hFP+b/fth0iWkDsBuiYq7j13ugimWtPvpREmJlM+vodHOOzhgGve5fVO/ne6bOhe4owBxfuCuJ2o3FHknQ+4LDLtXkLR9IUrb5wB3mwoy5E6G3E0Vcl+I3VPNL5b51QBiGWeTydxJ5m4U5m65ehkrxe4mJO9mhe9WQuHNsUt1gezE4+wGRe1mC7brJ20nabthGqUakrabDrUvN+k4oWTQNR1qULtKjcws2q7QKFWNTEYeuDtoG2/X4IQIB+4/yAN3myngDhuF+mTOwJSBdYAurPMIao9NeLR73wsZ+i9+IF7YJWQ2Mel1dOdaZ+dLyHCpc2E0MFhNLG4r1/uK96HJQ8XjxbdXr2738GjlcFrY7GYWq5nNbuPxukWiV5mZu57t2pvzKiDqGi+gzU3UCGs7rGawJqCJYARQeq++UlQ8/mL37k6B4FZY2ERJyd5Xe90vu8PfQqwyp5VZZb6fbZXRKuT+lyMmB+6HzUbb1cTbVQH3LzQG7j+hwP1XHLjjXUArKdQaROOOXZvx7PCU9EnShtJKJ0rvR0XdDA3tj44eKyyM2npfHNErCOnkS6TcgFaMtsNbDjgswkEHKmQFKpPB4+2UXxTi7bbfzZbJYN72GdqOgvUlML5QGNow91k9VPHLV6jMHQ+505CPiWBWGTjkQXm7B17OK3j7JjsbNvPxpk3pw+n+V/2hnmFXYN1ToaphF8FAPgqAXpmAKRZ0PehQ2eTBT98mpA54Bndw/VsFIR27974YSknJHsnO2D/8bNcuKZ8PU/CCg8Pp6b6pisD9v5UB9/8yEHA/otOwUOZO2JC7ZTF3ErVbvEZGM9pueuBuwtapZMjddCF37cUyDgTunuqoQ/dUq5S5E7GB6kJg7vZaM3fL0ssYMepOGOxuysD7JS15KxHgu4XieHPvJYHOkL1W3xqzAtRODI3MAqTtK0nablK8fkLNoGs9VHP2eYPt6mm7GpmMyl6pKuLt88lklJ8izQSMZgN3vGMq4pOBYkb10zVM36Z12x/kjuZmDGfIysszX2VK+iScVg69nk67RKPWUKnVVFoNzfmSMwZSuW1c/2v++e/ySydLr/r7t/F4LWx2K4fT6AbfdGtiMuEr1wICEJl7eXnxeLEkqo8vkbr5NMIKj1hl3Kth7cWaTE6Wlt5evVrK53f7+GCs36Pdw6XWxfGi48ozK5efXK7SKjO3daoBQ+7/0Ji5HzYac9eZtmsTb58L3GcgpVbAfUpK7ljpiAF3ZhOTL+X7XfVLHUrNPjjSHxMDpdIrFt8IDh4vLEzb+8J/7VXP4Haufytb3AwVSBfWw6EWDkyIup111k4+3q5gb/9u0UyvVLl4O4rO5Wg7Dtn/ig5V2F0Fc/96DnOfJXPHQ+7YhSs4EMBzhuM+S9wMG5Vf+O5FWtrTnTvTXqRtfLwxpj8GdgKnhQP7BOYRpYpCqaQ4VTlhewmmUtpQ2lBKStLuQfegy9gHQdxEjaI1PelZw4XF46/27r0VFtbK5WJ9U2eAu42NcuA+1TfVUMD9iB6DDLlbIXOvIGn7Qpe2KwPu+jF3snUqsULuBmPuP5BiGeOIZRaqzJ1k7uqYO0sn5k5QvQxxo+4Gx+5UY2J3g5J3/eA7gfi7CRi9hWymGSG7FpxdF9RONQhqV+OQMVewnaC03d6KabsZUbtxAbrhwLqOqN2wtH0+mYyu8Xb0zEjZR4Exq8yUxn2Ofhrr9whTAGY0rKjcgLaEtMGyctmTuDiZTFZWNunb44vFcp2qnRBEWEWBO7QamkudC3ydL+XH9MccmjyEdXRsYbMb3dwaXF3rGYx6Oh1um5hMKZ9/KyysuHQicTBx974XGxMfCUI6sSCzm08j07eJJ5H6RfbCD9xbu7bH17cvMBCeQPxAPE/KQ4B7pSOicT9lu/T4UsQq8/Nsq4zS1qkENblrhd01f7S/axZvNy1wx4LbjHoGp4Uj6hYlDCSkZAwNxMf3isWdXl4w4LX+ffPmA28PhG+64xncwZFT/MNxDZfJyMfbnY5+MMvebqtgb//PqXj736bj7Thq//yvi6fGEmTMYe5zc+5fzTD3ecUy8lMJFnM4GFFRjbtHUHtY7K2PM57D1CgaL9qX8xo2H+4jDYEv810bXKG2sc+LYNeuBB2CT4Y/KSgak0T1scTNWJ8DurCOL5Gu2/4AvpX3Nu9OREQLh1NDoykk3G1sflqy5MfFi3HgvmiRMYD7EUMMMuRuJcy9gqTt1iFtNzxwJ0Pu1h5yJ7unElIsQ1CZuzUyd4Ir3c2llzFIM1UD9lPVDLsvUPJu+fx9oQyBnpCd2JydeKhdT9ruaDJpO0nbLYq2G52q04045N/X6YDataPtymUyqnulOsjRdpXxdgXavkhxyJ0lzQ/cj+OUcMon4x54+VM0lovo17dvzxnJ8ezwZNQzkEBuJcXxoiMMRBVSTXWpdWE2MQUdgu1/bt+T9RLTVTcxmfUMRp2LC+aegds6Or3RzU3K598OD3+VmVk8USyTyT7+5Pnqjbcjt9wNROXd4ojekPU39+W+/n3LllthYY83bSooGgu6HsRp4cBfgT9nf84e07jLW2Xe/5/3F32/SGXrVLOE3LVi7of15uwGoe2zfDJHFAXuc4H71+qVMivP4F5yKAKsSBIHEyfLyl6mp1/192/39MTb6goEN0NCDpVNZuwf9l59hePX4urTgOqGcJkMEm93PSUXb/8FmSbojEBqHo+3f6My3o6aZORo+2fy2F0Jc58Vcv9QicxdXiwDz0Qu5I5bZTCNO11Yz5dIg9fdSMl4njuaO5KdXVg8tjnpd5hcpROlyc+SvTq9WM0st0Y3rP8wp5Uj7hVjH+zwCu1CY/5IZoLhjTzO7r0v4p7EpQ+nwwRpZrNrqNTzKoA7OiEQjbvmwF2TjqlHDDeMxNw1755qGuButcydRO0LTCPzhTbXvf5jVhNqMuROhtzJ7qlKgbsliGUsROZuCuZ+2sqZuwn1MkQwzFgKdjcLedcRvpP83XIIe61h6kQLzm4Me4x2qF1fh4xZg+2WQ9vPaU/bz5qWthtEI2Mw1G5gwk436dCAs/82/c5QJW2n6ULbbRRp+7y9UrWJt89wdoXTJXnmPtM3dS5wZ5yEEoW5BmuOqzcSy92264+Xe/bcjYgYLypa/2A9t42LUO+qKev0BQfHi44YcGc1syR9kpGcnNKJUvj5Ni63wdW11sWlhkarplKrnZzgFu7XOjvD16V8/v3o6MLisQ0PN+SO5srKywcTE9/m5U2UliamDa7f8TA5/dmz5OTfN28ul5VvfLRR2CVkN7OxPw1/F9e4H/vI5qjNBz/JWWVmtU5VG3L/nDAhd4OMvxsr3j7TMVUH4H52JVSLU7UTvZ7Oa+NF3o0sGi/KK3h7NzKy3dMT6gSKoRW97RaJoNgmDx0K3XCTF9Dm6tOAx9u5SuPtP8OZspp2qfL2dizejqP26TGdc9dJLGP77SLb797DxDLYhEIFTbACIFYZ15Ooxr3SxQtJpkNV57/Ljx+If5me3h8T8yQu7unOnVD5MpksYSDB+4o37BxOC9Ji2P2ye/CN4JHs7I0JjzyDO9jiZtgVMB+Zvk2CkI6UjOcwKdIyh+5HRTW6ucHMOm9vf0oRuP978eIf3n//+/feIzhwNy5zt8qQewWJ2knabiZpu1GAu/Fbp/7L+K1TyZC7hYTcLbN7KvHEMkSQuZPM3RjMnUh6GWIYZnTC7tVmx+5GIO+6w3cl/J1E8HrjdT0Ie63BSsKonJ2oqN2SNDIkbbcE2q4vZKebZyhAdvr87/SOaxxs14G2q+6VqnO8XQltx8+YFELuc4G701F42ksVxdNuokZBSGfE5ruHyiaf79qV9SYr6EYQDtwrEeq98uxK+3P2qy6uolZT6fV0vpQf3R+9c8/TQ4cm+ySSZharzsWlhkqtcnKqpFAqHR2RQaHAf2totHoGQ8rn3wkPf5me/iY7u2SiZNPjTX69fpH3IlOHUmUyWXrWy1eZmbLy8q1PtgZeD/Tq9GI3s+l1dKdqJ4cLDivOrEA07kqtMlOtU7ULuZu3eypBaLtmwB3Hh5oBd7tTdlAnjhcdsUagWHC7qGT86c6dXd7erRwO0lAXHS1sdoen5587diQ/S45LfuIZ3O7m0wjH6zn29uMwrZB2qavm88koaZeqBrhrGHJHkI7qkDs6oSg/41YZxokVyGy6CO9e+IFS2HAo8oi7EaMHDnQJhS0cThuP1ysWw64oKZ2IexLn0+3j0e4BQ9glhInwNi9v9cbbgpAOjn8rS9wMgxvQFhB1rUxW9um7T5/ExXUIBHV0Osypc+qA+zdywP0rZcD9n8qAuwlouw7M3UJD7hVWw9wrSNpurdJ2IgB3MuROhtxN3j3VssUy//cRwWXuhmDutiRzNz9zJ1zUneDY3ZLJu778XTmCJym8arauH143KGQ3AWc3NWqvJjRqN3OLVJK2q6btxuXshCPsSiA7Xd27O5WofV6NzFzajgD3o+rU7XrG29XS9lnMXSVwxzs9Ipnci7BgssUtvmt6NsQ/zNg/LCsvzxjOiH0UK+gQMOoZTlVOSMz8zAr7c/YIS72EsFT/q/57X+/NL3w3mJjYIRA0uLrW0GhVFMpFR8cLq1add3DABtyvdHSsplLr6PQWNrtbJHq2a9e2j/9Ifpbs2+MbfCN43YN1SU+Tckdzi8aLUp6nwH8lfRKvTi9OCwex2dRQV11chWnclx1f9uGvH85YZVS1Tp0bckf5xAxF0EMsox64/53YtF0pcD+iGrh/qQy4f6sMuB9DgftpOygSSiXFpc6FJ+VF3otMzxrel/u6PyZGyuMhin8GvKoMqBasp+6tsLDJ0lKZTOYXeZXp24QCd9QnwzwDyxfMXDi/gxNJrF0q7pNZ8f0i2+9wn4xGwP1zTYH7PCb3uSF33OQu1zqV/psdqnGH9wa8gLacvBHYrqw3WXAL217r4gJb3cbl9ohEMGVkZWXR96NhCvh0+4h7xZsebyopnQiKue4V2smXSLn+rTyJ1DvsysefPIdZBo+AXdO6RKPB/Dq7cuVJW9vjFgvcj5g15L7wrDJmwe4VFjJMidq/tD6NjPz4f7dLYp0E2mhQAAAAAElFTkSuQmCC
Sei $$U \subset \R^n$$ offen. Eine Funktion $$f: U \longrightarrow \mathbb{C}$$ heißt
//$$k$$-mal stetig differenzierbar// oder auch $$\mathcal{C}^k$$-Funktion, $$k\geq 1$$,
wenn alle partiellen Ableitungen $$\partial_{i1}f,...,\partial_{ik}f$$ $$k$$-ter Ordnung auf $$U$$ existieren und stetig sind.
Den Vektorraum der $$\mathcal{C}^k$$-Funktionen auf $$U$$ bezeichnet man mit
<$latex text="
\mathcal{C}^k(U).
" displayMode="true"></$latex>
Auf Grund des Satzes von Schwarz (Satz \ref{diffbare_funktionen:stz:Schwarz}) spielt bei einer
$$\mathcal{C}^k$$-Funktion die Reihenfolge der partiellen Ableitungen $$\partial_{i1}f,...,\partial_{ik}f$$ keine Rolle.
Schließlich definiert man
<$latex text="
\mathcal{C}^{\infty}(U) := \bigcap \limits_{k}^{\infty} \mathcal{C}^k(U).
" displayMode="true"></$latex>
Eine Abbildung $$f = f_1,...,f_m : U \longrightarrow \mathbb{K}^n$$, $$U \subset \mathbb{K}^m$$,
heißt //$$k$$-mal stetig differenzierbar in $$U$$//, wenn alle Komponentenfunktionen $$f_1,...,f_m$$
$$k$$-mal stetig differenzierbar sind.
Den Raum der $$k$$-mal stetig differenzierbaren Abbildungen $$U \longrightarrow \mathbb{K}^m$$
bezeichnet man mit
<$latex text="
\mathcal{C}^k(U,\mathbb{K}^m).
" displayMode="true"></$latex>
Man setzt außerdem
<$latex text="
\mathcal{C}^{\infty}(U, \mathbb{K}^m) := \bigcap\limits_{k=1}^{\infty} \mathcal{C}^k(U,\mathbb{K}^m).
" displayMode="true"></$latex>
Sei $$e_i=(0,\dots,0,\underbrace{1}_{=k_i},0\dots,0)\in K^n$$. Das heißt der jte Eintrag von $$e_i$$ ist genau $$\delta_{ij}=\begin{cases}1 & i=j\\0 & i\neq j\end{cases}$$.
Sei $$T\in \text{Hom}_K(K^n,K^m)$$. Da $$T(\underbrace{e_j^{(n)}}_{\in K^n})\in K^m$$ ist, existieren $$t_{ij}\in K$$ für $$i=1,\dots,m$$ mit <$latex text="T\left(e_j^{(n)}\right)=\sum_{i=1}^mt_{ij} e_i^{(m)}." displayMode="true"></$latex>
! Matrizen
$$T$$ ist nach [[Existenz und Eindeutigkeit linearer Abbildungen]] durch die $$m\times n$$ Matrix $$(t_{ij})_{\stackrel{1\leq i\leq m}{1\leq j\leq n}}$$ bereits eindeutig bestimmt. Üblicherweise schreibt man Matrizen rechtsseitig mit $$m$$ Zeilen und $$n$$ Spalten:
<$latex text="\begin{pmatrix}t_{11} & t_{12} &\dots & t_{1n}\\t_{21} & t_{22} &\dots & t_{2n}\\\vdots & \vdots &\ddots & \vdots\\t_{m1} & t_{m2} &\dots & t_{mn}\end{pmatrix}." displayMode="true"></$latex>
$$M(m\times n, K)$$ ist die Menge aller $$m\times n$$ Matrizen über $$K$$ und ist isomorph zu $$K^{n\cdot m}$$.
!! Transponierte Matrizen
Die ''transponierte Matrix'' entsteht durch Vertauschen von Zeilen und Spalten:
<$latex text="(t_{ij})_{\stackrel{1\leq i\leq m}{1\leq j\leq n}}^t=(t_{kl})_{\stackrel{1\leq k\leq n}{1\leq l\leq m}}" displayMode="true"></$latex>
und ist eine lineare Abbildung von $$K^m$$ nach $$K^n$$.
Für die [[symmetrischen Gruppe|Permutationen und Zykel]] $$S_n$$ gilt <$latex text="\#S_n=|S_n|=n!" displayMode="true"></$latex>
!! Beweis: Vollständige Induktion über $$n$$
!!! Induktionsanfang:
Für $$n=0$$ ist $$S_0=\{\text{id}\}$$, daher gilt <$latex text="\#S_0=|S_0|=0!=1" displayMode="true"></$latex>
!!! Induktionshypothese:
Die Behauptung gelte für ein festes $$n$$.
!!! Induktionsschritt:
Wir zerlegen
<$latex text="S_{n+1}=\bigcup_{k=1}^{n+1}\underbrace{\{\sigma\in S_{n+1}|\sigma(n+1)=k\}}_{\eqqcolon S_{n+1,k}}." displayMode="true"></$latex>
Es gilt dann 1.:
<$latex text="\#S_{n+1,k}=\#S_{n+1,n+1} \text{ für } k=1,\dots,n+1" displayMode="true"></$latex>
und 2.:
<$latex text="\#S_{n+1,n+1}=\#S_{n}." displayMode="true"></$latex>
Beweis zu 1.:
Sei $$k$$ fest und $$\tau=\begin{pmatrix}n+1& k\end{pmatrix}$$. Für $$n+1\neq k$$ ist $$\tau$$ eine Transposition und für $$n+1=k$$ die Identität. Insbesondere ist in beiden Fällen durch
<$latex text="\Phi:S_{n+1,k}\to S_{n+1,n+1},\sigma\mapsto \tau \circ \sigma" displayMode="true"></$latex>
eine Bijektion mit inverser Abbildung
<$latex text="\sigma \mapsto \tau \circ \sigma" displayMode="true"></$latex>
gegeben, da in beiden Fällen $$\tau\circ \tau=\text{id}$$ gilt.
Beweis zu 2.:
Folgende Abbildung ist eine Bijektion:
<$latex text="S_n\to S_{n+1,n+1}, \sigma\mapsto \begin{pmatrix}\sigma&\begin{array}{c}n+1\\n+1\end{array}\end{pmatrix}" displayMode="true"></$latex>
Dann gilt folgende Rechnung, da die Zerlegung von $$S_{n+1}$$ in die Teilmengen $$S_{n+1,k}$$ disjunkt ist:
<$latex text="\#S_{n+1}=\sum_{k=1}^{n+1}\# S_{n+1,k}\stackrel{1., 2.}{=} (n+1)\cdot S_n \stackrel{\text{IV}}{=} (n+1)\cdot n!=(n+1)!" displayMode="true"></$latex>
Eine $$\textcolor{blue}{\text{reellwertige}}$$ ZV $$X$$ wird durch zwei fundamentale Größen grob gekennzeichnet:
* der ''Erwartungswert'' $$\textbf{E}_P(X)$$ gibt den ($$P$$-gewichteten) mittleren Wert von $$X$$ an, und
* die ''Varianz'' $$\textbf{V}_P(X)$$ misst, wie stark die Werte von $$X$$ typischerweise vom Erwartungswert abweichen.
!! Warnung
<$latex text=" \textcolor{red}{\text{Nicht jede reellwertige ZV }X\text{ besitzt einen Erwartungswert und eine Varianz!}}" displayMode="true"></$latex>
$$X,Y,Z$$ seien normierte Vektorräume und $$V$$ offen in $$X$$, $$U$$ offen in $$Y$$.
In $$V \xrightarrow{g} U \xrightarrow{f} Z$$ sei $$g$$ differenzierbar in $$a$$ und $$f$$ differenzierbar in $$b := g(a)$$.
Dann ist $$f \circ g$$ differenzierbar in $$a$$ und es gilt
<$latex text="
d(f \circ g)(a) = df(b) \circ dg(a).
" displayMode="true"></$latex>
Für Ableitungen bedeutet das
<$latex text="
(f \circ g)'(a) = f'(b) \cdot g'(a).
" displayMode="true"></$latex>
Sind $$f,g$$ stetig differenzierbar, dann auch $$f \circ g$$.
<$details summary="Beweis" tiddler="Beweis">
Beweis (Siehe Kapitel 3 in Konrad Königsberger. Analysis 2. Springer Verlag, 1997.)
</$details>
Es sei $$ \gamma = \gamma_1,...,\gamma_n : I \longrightarrow U$$ differenzierbar in $$t_0$$ und
$$f: U \longrightarrow \mathbb{C}$$ differenzierbar in $$a = \gamma (t_0)$$. Dann ist $$f \circ \gamma$$
differenzierbar in $$t_0$$ und hat dort die Ableitung
<$latex text="
\frac{d(f \circ \gamma)}{dt}(t_0) = df(a) \dot{\gamma}(t_0) = f'(a) \dot{\gamma}(t_0)
= \sum\limits_{i=1}^{n} \partial_if(a)\cdot \dot{\gamma}_i(t_0).
" displayMode="true"></$latex>
Mit Hilfe des Gradienten lautet die Formel nach Definition (8.1.2) ([[Definition: Differenzierbareit]])
<$latex text="
\frac{d(f \circ \gamma)}{dt}(t_0) = \langle \text{grad}f(a), \dot{\gamma}(t_0) \rangle
" displayMode="true"></$latex>
<$details summary="Beweis" tiddler="Bemerkung">
{{Beweis: Kettenregel (1. Version)}}
</$details>
<$details summary="Beispiel" tiddler="Bemerkung">
{{Beispiel: Kettenregel (1. Version)}}
</$details>
Wie konstruiert man eine orthogonale Matrix $$Q$$ mit den Spalten $$\{ q_1,...,q_n \}$$?
Idee: //Gram-Schmidt-Orthogonalisierung//.
Seien $$a_1,a_2,...,a_n$$ wie in Gleichung (vgl. (4.2) [[Die QR-Zerlegung]]) als Spalten der Matrix
$$A \in \mathbb{C}^{m \times n}$$ gegeben.
Im $$j$$-ten Schritt soll $$q_{j} \in <a_{1},...,a_{j}>$$ berechnet werden, sodass
<$latex text="
q_j \perp <q_{1},...,q_{j-1}> \qquad \text{und} \qquad \|q_j\| = 1.
" displayMode="true"></$latex>
<$details summary="Bemerkung" tiddler="Bemerkung">
$$(q_i^*a_j)$$ ist äquivalent zu $$\langle q_i | a_j \rangle$$.
Die erste Gleichung kann als Matrix-Vektorprodukt aufgefasst werden,
wobei die erste Matrix aus dem Adjungierten zu $$q_i$$ besteht,
also einer (komplex konjugierten) $$(1 \times m)$$-Matrix im Produkt mit einem $$(m \times 1)$$-Vektor.
</$details>
Lösung: Setze $$4q_j := \frac{v_j}{\|v_j\|}4$$, wobei
<$latex text="
v_j = a_j - (q_1^* a_j)q_1 - (q_2^*a_j)q_2 -...- (q_{j-1}^* a_j)q_{j-1}. \qquad (4.6)
" displayMode="true"></$latex>
Stellen wir nun jeweils die $$i$$-te die Gleichung in ((4.5) [[Die QR-Zerlegung]]) nach $$q_i$$ um, so ergibt sich:
<$latex text="
\begin{array}{rcl}
q_1 &=& \frac{a_{1}}{r_{11}} \\
q_2 &=& \frac{a_2-r_{12}q_1}{r_{22}} \\
q_3 &=& \frac{a_3-r_{13}q_1-r_{23}q_2}{r_{33}} \\
&\vdots& \\
q_n &=& \frac{a_n-\sum_{i=1}^{n-1}r_{in}q_i}{r_{nn}}.
\end{array}
\qquad (4.7)
" displayMode="true"></$latex>
Die Koeffizienten in (4.6) lauten daher wie folgt:
<$latex text="
r_{ij} :=
\begin{cases}
\quad\qquad q_{i}^{*}a_{j}, & \qquad (i \neq j) \\ & \\
\quad \left\|a_{j}-\sum\limits_{l=1}^{j-1}r_{lj}q_{l} \right\|_{2}, & \qquad (i = j)
\end{cases}
\qquad (4.8)
" displayMode="true"></$latex>
<$details summary="Algorithmus CGS" tiddler="Algorithmus CGS">
{{Algorithmus: Klassisches Gram-Schmidt-Verfahren}}
</$details>
<$details summary="Beispiel für
das klassische
Gram-Schmidt-Verfahren
" tiddler="Beispiel für
das klassische
Gram-Schmidt-Verfahren
">
[img[qr_bsp_klassisches_gs.png]]
</$details>
<$details summary="Problem" tiddler="Problem">
Die klassische Gram-Schmidt-Orthogonalisierung ist wegen
fortgeführter Rundungsfehler numerisch instabil! (vgl Kapitel 5)
</$details>
<$details summary="Beispiel: Der Fall n=2" tiddler="Beispiel: Der Fall n=2">
{{Beispiel: Der Fall n=2}}
</$details>
<$details summary="Beispiel: CGS für zwei Vektoren" tiddler="Beispiel: CGS für zwei Vektoren">
{{Beispiel: CGS für zwei Vektoren}}
</$details>
Sei $$P \in \mathbb{C}^{n \times n}$$ eine Projektionsmatrix. Dann ist auch $$I-P$$ eine Projektionsmatrix.
$$I-P$$ heißt //komplementäre Projektionsmatrix//.
<$details summary="Beweis" tiddler="Beweis Komplementäre Projektionsmatrix">
{{Beweis Komplementäre Projektionsmatrix}}
</$details>
$$\R^2$$ ist ein [[Körper]] bezüglich folgender Operatoren:
<$latex text="(a,b)+(c,d)\coloneqq (a+c,b+d)" displayMode="true"></$latex>
<$latex text="(a,b)\cdot (c,d)\coloneqq(ac-db,ad+bc)." displayMode="true"></$latex>
Man schreibt für diesen Körper $$\mathbb{C}$$ und schreibt Elemente aus diesem Körper oft als
<$latex text="(a,b)=a+ib" displayMode="true"></$latex>
mit $$a,b\in\R$$ und $$i^2=-1$$.
!! Notation
Betrag:<$latex text="|a+ib|\coloneqq\sqrt{a^2+b^2}" displayMode="true"></$latex>
Komplexe Konjugation: <$latex text="\overline{a+ib}\coloneqq a-ib" displayMode="true"></$latex>
Realteil:<$latex text="\Re(a+ib)\coloneqq a" displayMode="true"></$latex>
Imaginärteil:<$latex text="\Im(a+ib)\coloneqq b" displayMode="true"></$latex>
Die Cholesky-Zerlegung benötigt $$\approx \frac{1}{3}m^{3}$$ Operationen und hat somit eine
Komplexität von $$O(m^3)$$.
Die Algorithmen klassisches Gram-Schmidt-Verfahren ([[Klassisches Gram-Schmidt-Verfahren]])
und modifiziertes Gram-Schmidt-Verfahren ([[Modifiziertes Gram-Schmidt-Verfahren]]) benötigen $$O(mn^{2})$$ Operationen, wobei eine Addition,
eine Multiplikation, eine Wurzeloperation, eine Division und eine Subtraktion jeweils eine Operation darstellen.
<$details summary="Beweis" tiddler="Beweis: Komplexität der Gram-Schmidt-Algorithmen">
{{Beweis: Komplexität der Gram-Schmidt-Algorithmen}}
</$details>
Die Householder-Faktorisierung benötigt $$mn^{2}-\frac{1}{3}n^{3}+O(mn)$$ Operationen.
<$details summary="Geometrische Anschauung" tiddler="Geometrische Anschauung">
[img[qr_gs_komplexitaet.png]]
</$details>
<$details summary="Bemerkung" tiddler="Bemerkung">
Die Komplexität liegt also wie beim Gram-Schmidt-Verfahren in $$O(mn^2)$$ und kann daher
anschaulisch mit dem Volumen einer Pyramide verglichen werden (vgl. oben).
</$details>
Der obige Algorithmus (6.1) in [[Algorithmus: LU-Zerlegung]] benötigt etwa $$\frac{2}{3}m^3$$ Operationen.
<$details summary="Bemerkung" tiddler="Bemerkung">
{{Bemerkung: Komplexität der LU-Zerlegung}}
</$details>
Das Hessenbergverfahren benötigt $$\dfrac{10}{3}m^3$$ Operationen.
Die Komplexitätsklasse des Verfahrens ist also $$O(m^3)$$
Das Skalarprodukt kann verwendet werden, um einen beliebigen Vektor in orthogonale Komponenten zu zerlegen.
Sei $$\{q_1,..., q_n\}$$ eine orthonormale Menge von Vektoren und $$v$$ ein beliebiger
Vektor. Dann ist der Vektor
<$latex text="
r = v - (q_1^*v)q_1-(q_2^*v)q_2-...-(q_n^*v)q_n
" displayMode="true"></$latex>
orthogonal zu $$\{q_1,...,q_n\}$$:
<$latex text="
q_{i}^{*}r = q_{i}^{*}v - \sum_{j=1}^n(q_{j}^{*}v)\underbrace{(q_{i}^{*}q_{j})}_{=0, \text{wenn } i \ne j}
= q_{i}^{*}v-(q_{i}^{*}v)\underbrace{(q_{i}^{*}q_{i})}_{=1} = 0
" displayMode="true"></$latex>
Es ist also möglich, $$v$$ als Linearkombination von $$n+1$$ orthogonalen Vektoren $$\{q_1,\dotsc,q_n, r\}$$ darzustellen:
<$latex text="
v = r + \sum_{j=1}^n(q_{j}^{*}v)q_j.
" displayMode="true"></$latex>
Falls $$\{q_1,\dotsc,q_n\}$$ eine Basis des $$\mathbb{C}^n$$ darstellen, so kann es keine Vektoren $$r \ne 0$$ geben, die orthogonal zu allen $$q_i$$ sind und somit ist $$r=0$$ .
Jeder Vektor $$v$$ kann daher in diesem Fall darstellt werden als:
<$latex text="
v = \sum_{j=1}^n(q_{j}^{*}v)q_j
" displayMode="true"></$latex>
<$details summary="Basisergänzungssatz" tiddler="Basisergänzungssatz">
Diese Tatsache ist aus der linearen Algebra bekannt als ''Basisergänzungssatz'' (BES).
__Zur Erinnerung:__ In einem endlich erzeugten Vektorraum $$V$$ seien linear unabhängige Vektoren $$w_1,...,w_n$$
gegeben. Dann kann man $$w_{n+1},...,w_r$$ finden, sodass $$B = (w_1,...,w_n,w_{n+1},...,w_r)$$ eine Basis von $$V$$ ist.
</$details>
<<list-links "[tag[Kondition]sort[scriptorder]]">>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/ydYS83yz_B0?rel=0&start=0" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
Das Problem der Berechnung $$b = Ax$$, gegeben $x$ und eine nicht-singuläre Matrix
$$A \in \mathbb{C}^{m \times m}$$, hat ebenfalls die Kondition
<$latex text="
K_M (A) := \| A \| _{M} \| A^{-1} \| _{M} \qquad (5.9)
" displayMode="true"></$latex>
bezüglich Störungen von $$x$$.
<$details summary="Bemerkung" tiddler="Bemerkung">
Die Pseudoinverse einer Matrix ist eine Verallgemeinerung der inversen Matrix
für nicht-quadratische oder singuläre Matrizen $$A \in \mathbb{C}^{m \times n}$$.
Es gilt: Hat $$A$$ vollen Zeilenrang,
berechnet sich die Pseudoinverse wie folgt:
<$latex text="
A^+ = A^*(AA^*)^{-1}.
" displayMode="true"></$latex>
Hat $$A$$ vollen Spaltenrang, so gilt:
<$latex text="
A^+ = (A^*A)^{-1}A^*.
" displayMode="true"></$latex>
</$details>
<$details summary="Beweis" tiddler="Beweis">
{{Beweis: Kondition der Berechnung b = Ax}}
</$details>
<$details summary="Kondition und Singulärwerte in nicht singulären Fall" tiddler="Kondition und Singulärwerte in nicht singulären Fall">
{{Bemerkung: Kondition und Singulärwerte in nicht singulären Fall}}
</$details>
Die Exzentritt ist ein Maß für die Abweichung der Ellipse vom Kreis. Es gilt
$$\left ( \varepsilon = \sqrt{1 - \left ( \frac{b}{a} \right ) ^2} \right )$$
<$details summary="Exzentrizität einer Ellipse" tiddler="Exzentrizität einer Ellipse">
[img[Exzentrizität.png]]
</$details>
<$details summary="Kondition und Singulärwerte im singulären Fall" tiddler="Kondition und Singulärwerte im singulären Fall">
{{Bemerkung: Kondition und Singulärwerte im singulären Fall}}
</$details>
<<list-links "[tag[Kondition einer Matrix]sort[scriptorder]]">>
Wie ändert sich $$b = A^{-1} x$$, wenn $$A$$ um $$\Delta A$$ variiert?
Sei dazu $$A$$ nicht singulär. Betrachte dazu die Gleichung
<$latex text="
\begin{aligned}
& (A + \Delta A)(x + \Delta x) = b \\
\Leftrightarrow & \underbrace{Ax}_{b} + \Delta Ax + A \Delta x + \underbrace{\Delta A \Delta x}_{\approx 0 } = b \\
& \text{d.h.} \qquad \Delta A x \approx -A \Delta x \\
\Leftrightarrow & \| \Delta x \| \leq \|A^{-1} \| \| \Delta A \| \| x \| \\
\Leftrightarrow & \frac{\| \Delta x \|}{\| x\|} \leq \| A^{-1} \| \| A \| \frac{\| \Delta A \|}{\| A \|}.
\end{aligned}
" displayMode="true"></$latex>
($$\Delta A$$ benötigt ein anderes $$\Delta x$$)
<<list-links "[tag[Kondition und Stabilität]sort[scriptorder]]">>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/ydYS83yz_B0?rel=0&start=0" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/v4p0lnH3K1w?rel=0&start=0" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
Sei
* $$(\mathcal{X},\mathcal{A},(P_{\theta})_{\theta\in\Theta})$$ ein statistisches Modell,
* $$\Sigma$$ eine Menge und $$\tau:\,\Theta\rightarrow\Sigma$$ eine Abbildung, die $$\theta\in\Theta$$ eine zu bestimmende Kenngröße $$\tau(\theta)$$ zuordnet,
* $$\alpha\in\R$$ mit $$0<\alpha<1$$ ein ''Irrtumsniveau''.
Eine Abbildung $$C:\,\mathcal{X}\rightarrow2^{\Sigma}$$ heißt ''Konfidenz-'' oder ''Vertrauensbereich'' für $$\tau$$ zum Irrtumsniveau $$\alpha$$, wenn <$latex text="\forall\theta\in\Theta:\,P_{\theta}(\{x\in\mathcal{X}\mid\tau(\theta)\in C(x)\})\ge1-\alpha\text{.}" displayMode="true"></$latex>
* D.h. unabhängig von $$\theta\in\Theta$${}, erfüllt ein experimentell bestimmtes $$x\in\mathcal{X}$${} mit Wahrscheinlichkeit $$1-\alpha$${}, dass $$\tau(\theta)\in C(x)$$.{}
* Der Konfidenzbereich $$C(x)$$ ist zufällig und $$\tau(\theta)$$ deterministisch aber unbekannt.
* Ist $$\Sigma=\R$$ und jedes $$C(x)$$ ein Intervall, so spricht man von einem ''Konfidenzintervall''.
* Die Wahrscheinlichkeit, dass $$\tau(\theta)\notin C(x)$$ obwohl man $$x\in\mathcal{X}$$ beobachtet hat, ist kleiner als $$\alpha$$.
* Es muss $$\forall\theta\in\Theta:\,\{x\in\mathcal{X}\mid\tau(\theta)\in C(x)\}\in\mathcal{A}$$ gelten damit $$P_{\theta}$$ definiert ist.
* Formal sind die Bedingungen der Definition erfüllt, wenn wir für jedes $$x$$ einfach $$C(x)=\Sigma$$ setzen. Da wir aber genaue Informationen über $$\tau(\theta)$$ wollen, müssen die Mengen $$C(x)$$ aber möglichst klein sein. Je kleiner das Irrtumsnivea $$\alpha$$, desto größer müssen die Mengen $$C(\cdot)$$ sein.
* Wenn beim Reißnagel das Experiment den Schätzwert $$T(x)=0.4$$ für $$\tau(\theta):=\theta$$ ergeben hat, und Anton deshalb z.B. das Konfidenzintervall $$]0.3,0.5[$$ zum Sicherheitsniveau $$95\%$$ angibt, so bedeutet das: In $$95\%$$ aller Stichproben enthält das durch sein Schätzverfahren ermittelte Zufallsintervall $$C(\cdot)$$ den wahren Wert von $$\theta$$.
Gegeben seien abzählbare Ereignisräume $$\Omega_1,\ldots,\Omega_n$$, $$n\ge 2$$. Weiter sei $$p_1$$ eine W-Funktion auf $$\Omega_1$$ und für $$k\in[2:n]$$ und $$\omega_i\in\Omega_i$$ für $$i<k$$ sei $$p_{k|\omega_1,\ldots,\omega_{k-1}}$$ eine W-Funktion auf $$\Omega_k$$. Sei ferner $$\Omega=\prod_{i=1}^n\Omega_i$$ der Produktraum\ und $$X_i:\Omega\to \Omega_i$$ die $$i$$-te Projektion. Dann existiert genau ein W-Maß $$P$$ auf $$(\Omega,2^\Omega)$$ mit
# Für alle $$\omega_1\in\Omega_1$$ gilt $$P(X_1=\omega_1)=p_1(\omega_1)$$.
# Für alle $$k\in[2:n]$$ und $$\omega_i\in\Omega_i$$ gilt <$latex text="\textcolor{blue}{P(X_k=\omega_k|X_1=\omega_1,\ldots, X_{k-1}=\omega_{k-1})=p_{k|\omega_1,\ldots,\omega_{k-1}}(\omega_k)}," displayMode="true"></$latex> sofern $$P(X_1=\omega_1,\ldots, X_{k-1}=\omega_{k-1})>0$$.
Das W-Maß $$P$$ ist gegeben durch <$latex text="\textcolor{blue}{P(\{\omega\})=p_1(\omega_1)\cdot p_{2|\omega_1}(\omega_2)\cdot p_{3|\omega_1,\omega_2}(\omega_3)\cdot\ldots\cdot p_{n|\omega_1,\ldots,\omega_{n-1}}(\omega_n)}" displayMode="true"></$latex>
für $$\omega=(\omega_1,\ldots,\omega_n)\in\Omega$$.
!! Beweis von 1.
''Eindeutigkeit'' von $$P$$: Erfüllt das W-Maß $$P$$ die Eigenschaften (a) und (b), so folgt die behauptete Formel für $$P(\{\omega\})$$\ aus $$\{\omega\}=\cap_{i=1}^n\{X_i=\omega_i\}$$\ und der Multiplikationsformel für die Ereignisse $$A_i:=\{X_i=\omega_i\}$$.
''Existenz'' von $$P$$: Sei $$P$$ für $$\omega=(\omega_1,\ldots,\omega_n)\in\Omega:=\prod_{i=1}^n \Omega_i$$ definiert durch
<$latex text="P(\{\omega\}):=p_1(\omega_1)\cdot p_{2|\omega_1}(\omega_2)\cdot p_{3|\omega_1,\omega_2}(\omega_3)\cdot\ldots\cdot p_{n|\omega_1,\ldots,\omega_{n-1}}(\omega_n)." displayMode="true"></$latex>
Dann folgt für alle $$k\in[1:n]$$ und alle $$(\omega_1,\ldots,\omega_k)\in\Omega_1\times\ldots\times\Omega_k$$:<$latex text="P(X_1=\omega_1,\ldots,X_k=\omega_k)=\sum_{\omega_{k+1}\in\Omega_{k+1},\ldots,\omega_n\in\Omega_n}P(\{(\omega_1,\ldots,\omega_n)\})" displayMode="true"></$latex>
<$latex text=" \begin{aligned}=&& p_1(\omega_1)\cdots p_{k|\omega_1,\ldots,\omega_{k-1}}(\omega_k)\cdot \\
&& \underbrace{\sum_{\omega_{k+1}\in\Omega_{k+1}} p_{k+1|\omega_1,\ldots,\omega_{k}}(\omega_{k+1})}_{=1\text{ da }p_{k+1|\ldots} \text{W-Fkt.}}\cdots \underbrace{\sum_{\omega_{n}\in\Omega_{n}} p_{n|\omega_1,\ldots,\omega_{n-1}}(\omega_{n})}_{=1\text{, da } p_{n|\ldots,}\text{ W-Fkt.}}.
\end{aligned}" displayMode="true"></$latex>
!! Beweis von 2.
Im Fall $$k=1$$ ergibt sich $$P(X_1=\omega_1)=p_1(\omega_1)$$, also (a).\ Indem man über alle $$\omega_1$$ summiert, erhält man, dass $$P$$ ein W-Maß auf $$\Omega$$ definiert: <$latex text=" \begin{aligned}
P(\Omega)&=& P(\bigsqcup_{\omega_1\in\Omega_1}\{\omega_1\}\times \Omega_2\times\ldots\times\Omega_n)\\
&=&\sum_{\omega_1\in\Omega_1}P(X_1=\omega_1) =\sum_{\omega_1\in\Omega_1}p_1(\omega_1)=1.
\end{aligned}" displayMode="true"></$latex>
Für $$k>1$$ ist wegen der Gleichung (1) auf der letzten Folie <$latex text="P(X_1=\omega_1,\ldots,X_k=\omega_k)=P(X_1=\omega_1,\ldots,X_{k-1}=\omega_{k-1})p_{k|\omega_1,\ldots,\omega_{k-1}}(\omega_k)," displayMode="true"></$latex>
woraus (b) folgt.
Es sei $$\Omega$$ eine höchstens abzählbare Menge. Dann gilt:
# Jedes W-Maß $$P$$ auf $$(\Omega,2^\Omega)$$ ist durch die Folge $$(P(\{\omega\}))_{\omega\in\Omega}$$ bereits eindeutig bestimmt, denn für $$A\subseteq \Omega$$ ist <$latex text="P(A)=\sum_{\omega\in A}P(\{\omega\})." displayMode="true"></$latex>
# Umgekehrt liefert jede Funktion $$p:\Omega\to[0,1]$$ mit $$\sum_{\omega\in\Omega}p(\omega)=1$$ vermöge <$latex text="P(A):=\sum_{\omega\in A}p(\omega)" displayMode="true"></$latex> ein W-Maß auf $$\Omega$$.
<$details summary="Beweis von 1." tiddler="Beweis von 1.">
Folgt aus der <$latex text="\sigma" displayMode="false"></$latex>-Additivität und der Voraussetzung,
dass <$latex text="\Omega" displayMode="false"></$latex> höchstens abzählbar unendlich ist.
</$details>
<$details summary="Beweis von 2." tiddler="Beweis von 2.">
Nach Definition von <$latex text="P" displayMode="false"></$latex> ergibt sich: <$latex text="P(\Omega)=\sum_{\omega\in \Omega}p(\omega)=1" displayMode="false"></$latex>. Weiter ist <$latex text="p" displayMode="false"></$latex> absolut summierbar und nach dem Umordnungssatz gilt für eine Folge <$latex text="A_1,A_2,\ldots" displayMode="false"></$latex> von paarweise disjunkten Teilmengen von<$latex text="\Omega" displayMode="false"></$latex> mit <$latex text="A:=\sqcup_{i\ge 1}A_i" displayMode="false"></$latex> sofort <$latex text="P(A)=\sum_{\omega\in A}p(\omega)=\sum_{i\ge 1}\Bigl(\sum_{\omega\in A_i}p(\omega)\Bigr)
=\sum_{i\ge 1}P(A_i)." displayMode="true"></$latex>
</$details>
Ist $$\Omega\subseteq \R^n$$ Borelsch, so bestimmt jede Funktion $$\rho:\Omega\to[0,\infty)$$ mit
* (a) $$\{x\in\Omega\mid\rho(x)\le c\}\in{\mathcal{B}}^n_\Omega$$ für alle $$c>0$$
* $$\int_\Omega\rho(x)dx=1$$
genau ein W-Maß $$P$$ auf $$(\Omega,{\mathcal{B}}^n_\Omega)$$ vermöge <$latex text="\textcolor{blue}{P(A)=\int_A\rho(x)dx} \quad\text{für $A\in {\mathcal{B}}^n_\Omega$.}" displayMode="true"></$latex>
Die Funktion $$\rho$$ heißt dann ''Dichtefunktion'' von $$P$$ oder auch ''W-Dichte''.
<$details summary="Beweis" tiddler="Beweis">
<$latex text="P(\Omega)=1" displayMode="false"></$latex> folgt aus (b). <br>
Ist <$latex text="A_1,A_2\ldots" displayMode="false"></$latex> eine Familie paarweise disjunkter Borel-Mengen, so folgt mit <$latex text="A:=\sqcup_{i\ge 1}A_i" displayMode="false"></$latex> und <$latex text="1_A=\sum_{i\ge 1}1_{A_i}" displayMode="false"></$latex> mittels der Eigenschaft <$latex text="(\sigma)" displayMode="false"></$latex> bei Lebesgue-Integralen: <$latex text="\begin{alignedat}P(\bigsqcup_{i\ge 1}A_i)
&=& \int_A\rho(x)dx= \int 1_A(x)\rho(x)dx \\
&=&\int\sum_{i\ge 1}1_{A_i}(x)\rho(x)dx =\sum_{i\ge 1}\int 1_{A_i}(x)\rho(x)dx \\
&=&\sum_{i\ge 1}\int_{A_i}\rho(x)dx =\sum_{i\ge 1}P(A_i).\end{alignedat}" displayMode="true"></$latex>
</$details>
* ''Schritt 1'': Für alle $$\theta\in\Theta$$ wähle ein $$C_{\theta}\in\mathcal{A}$$ mit $$P_{\theta}(C_{\theta})\ge1-\alpha$$.
* z.B. für $$P_{\theta}(A)=\int_{A}\rho_{\theta}(x)dx$$ in Analogie zum Maximum-Likelihood-Schätzer: <$latex text=" C_{\theta}:=\{x\in\mathcal{X}\mid\rho_{\theta}(x)\ge c_{\theta}\}" displayMode="true"></$latex> Dabei wird $$c_{\theta}>0$$ gerade klein genug gewählt damit $$P_{\theta}(C_{\theta})\ge1-\alpha$$ gilt.
* ''Schritt 2'': Setze für alle $$x\in\mathcal{X}$$ <$latex text="C(x):=\{\sigma\in\Sigma\mid x\in\bigcup_{\theta\in\Theta,
\tau(\theta)=\sigma}C_{\theta}\}\text{.}" displayMode="true"></$latex>
* z.B. für $$\Sigma=\Theta$$ und $$\tau(\theta):=\theta$$: <$latex text="C(x):=\{\theta\in\Theta\mid x\in C_{\theta}\}\text{.}" displayMode="true"></$latex>
Für allgemeinere Probleme kann man so genannte Kontraktionen betrachten.
Diese sind interessant, weil sie genau einen Fixpunkt haben, der sich
iterativ approximieren lässt.
$$\Phi:\, D\subset\mathbb{C}^{n}\rightarrow\mathbb{C}^{n}$$ heißt //Kontraktion//
wenn für alle $$x,y\in D$$ gilt
<$latex text="
\|\Phi(x)-\Phi(y)\|\le q\cdot\|x-y\|
" displayMode="true"></$latex>
für ein festes $$q\in\R$$ mit $$0<q<1$$. Der Faktor $$q$$ heißt //Lipschitz-Konstante//.
<$details summary="Beispiel" tiddler="Beispiel">
{{Affin lineare Kontraktion}}
</$details>
Angenommen $$|\lambda_1| > |\lambda_2| \geq ... \geq |\lambda_m| \geq 0$$ sind sortierte Eigenwerte, $$q_1\in E_{\lambda_1}$$ mit $$\|q_1\|=1$$ und $$q_1^T v^{(0)} \neq 0$$. Dann gilt
$$ \\
\| v^{(k)} - \pm q_1\| = O \left( \left| \frac{\lambda_2}{\lambda_1} \right|^k \right) ,
\qquad |\lambda^{(k)} - \lambda_1| = O \left( \left| \frac{\lambda_2}{\lambda_1} \right|^{2k} \right)
\quad \text{f\"ur } k \rightarrow \infty
\\ $$
Das Vorzeichen bei $$\pm$$ wird hier in jedem Schritt so gewählt, dass das Ergebnis kleiner ist.
Die Rayleigh-Quotient-Iteration konvergiert gegen ein Eigenwert/Eigenvektor-Paar für alle Startvektoren
$$v^{(0)} \neq 0$$. Falls sie konvergiert, ist die Konvergenz kubisch, d.h. falls $$\lambda_J$$
ein Eigenwert von $$A$$ und $$v^{(0)}$$ hinreichend dicht zum Eigenvektor $$q_J$$ liegt, dann gilt
<$latex text="
\|v^{(k+1)} - (\pm q_J)\| = O(\|v^{(k)} - (\pm q_J)\|^3)
" displayMode="true"></$latex>
und
<$latex text="
|\lambda^{(k+1)} - \lambda_J| = O(|\lambda^{(k)}-\lambda_J)|^3)
" displayMode="true"></$latex>
<$details summary="Beweis" tiddler="Beweis">
(Hier ohne Beweis. Siehe Lloyd N. Trefethen and David Bau III. Numerical Linear Algebra. Society for Industrial and Applied
Mathematics, Philadelphia, 1997 ,Kapitel 27.3. )
</$details>
Die Matrizen $$A_k$$ werden im Verlauf der Iteration zu oberen Dreiecksmatrizen.
# Konvergiert eine Folge $$(\varphi_n)\subset T([a,b])^\N$$ gleichmäßig gegen eine Funktion $$f:[a,b]\to\R$$, so konvergiert auch die Folge der Integrale<$latex text="\left( \int_a^b \varphi_n(x) dx\right)." displayMode="true"></$latex>
# Konvergieren zwei Folgen $$(\varphi_n),(\psi_n)$$ von [[Treppenfunktionen|Zerlegungen und Treppenfunktionen]] gleichmäßig gegen dieselbe Funktion $$f$$, so ist
<$latex text="\lim_{n\to\infty}\int_a^b\varphi_n(x)dx=\lim_{n\to\infty}\int_a^b\psi_n(x)dx." displayMode="true"></$latex>
!! Beweis
''1.:'' Wir zeigen, dass die Folge der Integrale eine [[Cauchy-Folge]] ist. Sei also $$\epsilon>0$$ beliebig, aber fest vorgegeben.
Da $$(\varphi_n)$$ gleichmäßig gegen $$f$$ konvergiert, existiert ein $$n_0\in\N$$, so dass für alle $$n\geq n_0$$
<$latex text="\Vert\varphi_n-f\Vert_{[a,b]}<\epsilon" displayMode="true"></$latex>
ist.
Für $$m,n\geq n_0$$ ist also nach der Dreiecksungleichung
<$latex text="\Vert \varphi_n-\varphi_m\Vert_{[a,b]}<2\epsilon." displayMode="true"></$latex>
Aus dem letzten Fakt aus [[Fläche unter Treppenfunktionen und Integrale]] folgt dann:
<$latex text="\left\vert \int_a^b \varphi_ndx-\int_a^b \varphi_mdx\right\vert\leq 2(b-a)\epsilon." displayMode="true"></$latex>
''2.: '' Wir zeigen, dass die Folge <$latex text="\left(\int_a^b\varphi_n(x)dx-\int_a^b\psi_n(x)dx\right)" displayMode="true"></$latex>
eine Nullfolge ist. Sei also $$\epsilon>0$$, aber vorgegeben.
Da $$(\varphi_n),(\psi_n)$$ gleichmäßig gegen $$f$$ konvergieren, existiert ein $$n_0\in\N$$, so dass für alle $$n\geq n_0$$
<$latex text="\Vert \varphi_n-f\Vert_{[a,b]}<\epsilon" displayMode="true"></$latex>
und
<$latex text="\Vert \psi_n-f\Vert_{[a,b]}<\epsilon" displayMode="true"></$latex>
ist.
Für $$n\geq n_0$$ gilt dann wieder wegen der Dreiecksungleichung
<$latex text="\Vert\varphi_n-\psi_n\Vert_{[a,b]}<2\epsilon" displayMode="true"></$latex>
und analog zu 1.:
<$latex text="\left\vert \int_a^b \varphi_ndx-\int_a^b \psi_ndx\right\vert\leq 2(b-a)\epsilon." displayMode="true"></$latex>
Es ergibt sich Algorithmus [[Algorithmus: Levenberg-Marquardt-Verfahren]]. Dieser garantiert zumindest
in gewissem Sinne Konvergenz:
Sei $$f:\, D(f)\rightarrow\R^{m}$$ stetig differenzierbar. Sei $$x^{(0)}\in D(f)$$
und sei $$U\subset D(f)$$ kompakt mit
<$latex text="
\{x\in D(f)\mid\|f(x)\|_{2}\le\|f(x^{(0)})\|_{2}\}\subset U.
" displayMode="true"></$latex>
Dann gilt für die Iterierten des Levenberg-Marquardt-Verfahrens
<$latex text="
\lim_{k\rightarrow\infty}\mathcal{E}'(x^{(k)})=0
" displayMode="true"></$latex>
wobei wieder $$\mathcal{E}(x):=\|f(x)\|_{2}^{2}$$ das Fehlerfunktional
bezeichnet.
<$details summary="Beweis" tiddler="Beweis">
Siehe Grundlagen der Numerischen Mathematik und des Wissenschaftlichen
Rechnens, 3. Auflage von Martin Hanke-Bourgeois, S. 191 ff.
</$details>
<$details summary="Bemerkung" tiddler="Bemerkung">
{{Bemerkung: Konvergenz von Levenberg-Marquardt}}
</$details>
<<list-links "[tag[Konvergenzbegriffe]sort[scriptorder]]">>
Als Faustregel erwartet man, dass sich bei einem Iterationsverfahren mit Konvergenzordnung $$p$$
die Anzahl der korrekten Dezimalstellen bei jeder Iteration ver-$$p$$-facht.
<<list-links "[tag[Konvergenzgeschwindigkeit einer Folge]sort[scriptorder]]">>
Für eine reelle nichtnegative Nullfolge $$\{ \varepsilon_k \}_{k \in \N}$$ wird
<$latex text="
K = \limsup\limits_{k \rightarrow \infty} \varepsilon_k^{1/k} \qquad (10.5)
" displayMode="true"></$latex>
als //asymtotischer Konvergenzfaktor// definiert.
Die Folge $$\{ \varepsilon_k \}$$ heißt //sublinear//, //linear//, bzw. //superlinear//,
je nachdem ob $$K=1$$, $$0<K<1$$ oder $$K=0$$ ist. Gilt im superlinear konvergenten Fall zudem
<$latex text="
\varepsilon_{k+1} \leq c \cdot \varepsilon_k^p \qquad \text{für ein } p>1, c>0 \text{ und fast alle } k \in \N,
" displayMode="true"></$latex>
dann hat die Folge die //Konvergenzordnung// $$p$$.
Entsprechend wird die Terminologie für konvergente Folgen $$\{ x^{(k)} \} \subset \mathbb{K}^n$$ mit Grenzwert
$$\hat{x}$$ über $$\varepsilon_k := \| x^{(k)} - \hat{x} \|$$ eingeführt.
<$details summary="Bemerkung" tiddler="Bemerkung">
{{Konvergenzgeschwindigkeit}}
</$details>
<$details summary="Beispiel" tiddler="Beispiek">
{{Konvergenzordnung p=2 (quadratische Konvergenz)}}
</$details>
Heronverfahren mit $$\nu = 2, a>0$$:
<$latex text="
\small
z_k = \frac{x_k - \sqrt{a}}{x_k + \sqrt{a}}, \qquad
z_{k+1} = \left( \frac{x_k - \sqrt{a}}{x_k + \sqrt{a}} \right)^2 = z_k^2 \qquad (10.6)
" displayMode="true"></$latex>
Für $$\{ x_k \}$$ des Heronverfahrens ergibt sich unter der Voraussetzung $$\sqrt{a}/2 \leq x_k \leq 2 \sqrt{a}$$,
dass auch $$x_{k+1} \in \left[ \frac{\sqrt{a}}{2}, 2 \sqrt{a}\right]$$ und es folgt aus
(10.6):
<$latex text="
\small
|x_{k+1}-\sqrt{a}|=|z_{k+1}(x_{k+1}+\sqrt{a})|=\frac{|x_{k+1}+\sqrt{a}|}{|x_{k}+\sqrt{a}|^{2}}|x_{k}-\sqrt{a}|^{2}\le\frac{\frac{3}{2}\sqrt{a}}{\frac{9}{4}a}|x_{k}-\sqrt{a}|^{2}
" displayMode="true"></$latex>
!! Lemma
Konvergiert die [[Potenzreihe|Potenzreihen]]
<$latex text="\sum_{n=0}^\infty a_n(x-x_0)^n" displayMode="true"></$latex>
in einem Punkt $$x_1\neq x_0$$, so konvergiert sie auch in jedem Punkt $$x\in\mathbb{C}$$ mit $$|x-x_0|<|x_1-x_0|$$ absolut.
!! Beweis
Da die Reihe konvergiert, ist $$\left(a_n(x-x_0)^n\right)$$ eine Nullfolge. Es existiert also ein $$M\in\R_+$$ mit
<$latex text="|a_n(x-x_0)^n|\leq M" displayMode="true"></$latex>
für alle $$n\in\N$$. ALso haben wir für $$x\in\mathbb{C}$$ mit $$|x-x_0|<|x_1-x_0|$$:
<$latex text="\begin{aligned}
|a_n(x-x_0)^n| & = \left\vert a_n(x_1-x_0)^n\frac{(x-x_0)^n}{(x_1-x_0)^n} \right\vert\\
&=\left\vert a_n(x_1-x_0)^n\right\vert\left\vert\frac{(x-x_0)^n}{(x_1-x_0)^n} \right\vert\\
&\leq Mq^n
\end{aligned}" displayMode="true"></$latex>
mit $$q\coloneqq \left\vert\frac{(x-x_0)}{(x_1-x_0)} \right\vert<1$$. Nach dem [[Majorantenkriterium|Majoranten- und Minorantenkriterium]] konvergiert die Potenzreihe also in $$x$$ absolut.
Daraus folgt direkt folgender Satz
!! Satz und Definition
Für eine Potenzreihe
<$latex text="\sum_{n=0}^\infty a_n(x-x_0)^n" displayMode="true"></$latex>
tritt genau einer der drei Fälle ein:
# Die Potenzreihe konvergiert für alle $$x\in\mathbb{C}$$
# Die Potenzreihe divergiert für alle $$x\in\mathbb{C}\setminus \{x_0\}$$
# Es gibt genau ein $$R\in\R_+$$, so dass die Potenzreihe für alle $$x\in\mathbb{C}$$ mit $$|x-x_0|<R$$ absolut konvergiert und für $$|x-x_0|>R$$ divergiert. $$R$$ heißt dann auch ''Konvergenzradius''.
Im 1. Fall sagt man, dass der Konvergenzradius unendlich is und im 2. Fall sagt man, dass dieser Null ist.
Eine Menge $$K\subseteq \R^m$$$ heißt ''konvex'', wenn mit zwei Elementen auch jedes Element der Verbindungsstrecke zu $$K$$ gehört. Formal bedeutet das: <$latex text="\textcolor{blue}{x,y\in K\quad\text{und}\quad \lambda\in[0,1]\quad \text{impliziert}\quad \lambda y+(1-\lambda)x\in K}." displayMode="true"></$latex>
!! Bemerkung
* Da $$\R^m$$ konvex ist und der Durchschnitt von konvexen Mengen wieder konvex ist, gibt es zu jeder Menge $$X\subseteq \R^m$$ eine kleinste, $$X$$ enthaltende konvexe Menge, die sog. ''konvexe Hülle'' $$\mathrm{conv}(X)$$ von $$X$$. Diese ergibt sich als Durchschnitt aller $$X$$ enthaltenden konvexen Teilmengen $$K$$ von $$\R^m$$: <$latex text=" \textcolor{blue}{\mathrm{conv}(X)=\bigcap_{\text{$X\subseteq K$, $K$ konvex}} K}." displayMode="true"></$latex>
* Ist $$X=\{x_0,\ldots,x_r\}$$ endlich, so kann man die konvexe Hülle von $$X$$ auch beschreiben als Gesamtheit aller ''Konvexkombinationen'' von $$x_0,\ldots,x_r\in\R^m$$, das sind Vektoren der Form $$\lambda_0x_0+\ldots+\lambda_rx_r$$, wobei $$(\lambda_0,\ldots,\lambda_r)$$ eine [[Zähldichte]] ist.
Sei $$V$$ ein $$K$$-[[Vektorraum]] mit $$\dim_K(V)=n$$.
Ein Koordinatensystem von $$V$$ ist ein[[ linearer Isomorphismus|Lineare Abbildungen]] $$\phi:V\to K^n$$. Für $$x\in V$$ schreiben wir
<$latex text="\phi(x)\eqqcolon \sum_{j=1}^n\phi_j(x) e_j^{(n)}=\begin{pmatrix}\phi_1(x)\\
\vdots\\\phi_n(x)\end{pmatrix}," displayMode="true"></$latex>
wobei $$\phi_j(x)$$ die ''Koordinaten ''von $$x$$ bezüglich des ''Koordinatensystems ''$$\phi$$ sind.
!! Bemerkung
Ist $$\phi$$ ein Koordinatensystem, so gilt für $$x\in V$$<$latex text="x=\phi^{-1}\phi((x))=\sum_{j=1}^n\phi_j(x)\cdot \phi_j^{-1} \left(e_j^{(n)}\right)." displayMode="true"></$latex>
Daher erzeugen $$\phi^{-1}(e_{1}^{(n)}),\dots,\phi^{-1}(e_{n}^{(n)})$$ $$V$$. Da $$\phi^{-1}$$ injektiv ist, muss es sich dabei bereits um eine Basis von $$V$$ handeln.
Ist umgekehrt $$\{b_1,\dots,b_n\}$$ eine Basis von $$V$$, so existiert nach [[Existenz und Eindeutigkeit linearer Abbildungen]] genau eine lineare Abbildung $$\phi:V\to K^n$$ mit $$\phi(b_j)=e_{j}^{(n)}$$ für $$j)=1,\dots,n$$. Das heißt
''Koordinatensysteme entsprechen in eindeutiger Weise den Basen von $$V$$.''
<<list-links "[tag[Korollar Differenzierbare Abbildungen]sort[order]]">>
<<list-links "[tag[Korollar Differenzierbare Funktionen]sort[order]]">>
<<list-links "[tag[Korollar Singulärwertzerlegung]sort[order]]">>
Ein [[Ring K mit 1|Ringe]] heißt ''Körper'', falls $$K^*=K\setminus\{0\}$$ bzgl. der Multiplikation eine [[abelsche Gruppe|Gruppen]] ist.
!! Anmerkungen
# Falls $$K^*$$ nicht abelsch ist, nennt man $$K$$ einen Schiefkörper. Klassisches Beispiel: Quaternionen
# Körper haben immer mindestens 2 Elemente, weil die beiden neutralen Elemente per Definition enthalten sind. Man kann schnell zeigen, dass diese verschieden sein müssen.
# In Körpern darf man kürzen! Es gibt also keine [[Nullteiler]].
iVBORw0KGgoAAAANSUhEUgAAA7gAAAEqCAYAAAA/CPw6AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAABt7SURBVHhe7d1/jNd1HQfw9/FXx1wjwDAHuvyDM2OFzbtYh3Fzjh+WgQeuou1oCa0VuvUHzGlmLucKtmxAm3+oAWv0Q7g0TYPZdk5vI2CDNoZ4q5XATKdctDGvvyDfH97H/eAgxbv7ft/vezy27z7v9+d7bM2ON5/n5/X+0XD2PQEAAAAyNyldAQAAIGsCLgAAAEUQcAEAACiCgAsAAEARBFwAAACKIOACAABQBAEXAACAIgi4AAAAFEHABQAAoAgCLgAAAEUQcAEAACiCgAsAAEARBFwAAACKIOACAABQBAEXAACAIgi4AAAAFEHABQAAoAgCLgAAAEUQcAEAACiCgAsAAEARBFwAAACKIOACAABQBAEXAACAIgi4AAAAFEHABQAAoAgCLgAAAEUQcAEAACiCgAsAAEARBFwAAACKIOACAABQBAGX7Bw6dKj6AOTikUceCX19fakHUN/27NkTenp6Ug/yIuCSna6urvDcc8+lHkD9++UvfxmOHj2aegD1LT5nvfjii6kHeRFwyc7vfve78MADD6QeQH2LVZC//e1vXswB2diyZUt49tlnUw/yIuBSUydOnKimwfT29qY7l56CHH/uH//4R9WOfxZgPPWPWXHK8WCxf7HpfP1VEAEXGG/9Y1YMrIOftTo7O6v7I+l/BvvTn/405M9ALgRcaqa7uzts3749LFq0aMiD344dO8KNN96YekPFP/Pmm29W7YMHD1ZXgPFy5MiRcODAgXD//fefD7RxbW3sP/7441V/uP4qSHw558UcMJ5ef/316rnp7rvvrpZ49YvPXz/4wQ9Sb6jBP/fqq6+mFuRDwKVmWltbw3333RdaWlrC4cOH090Q7r333rBs2bLUG2rw28bf/OY34ezZs6kHMPYWLlwYVqxYUbX/+c9/VtfGxsbwyiuvhHnz5lX9wWL1I1ZBorffftuLOWBcxWetjo6Oqj14H4Ann3zyos9acSlY//NVfNaC3Ai41FxbW1tqnRPfFt5xxx2pN1ScYtMvVnrtSgqMt9mzZ1fX06dPV9do69atF4xl0fDqh4dFoBbWrVsXTp06dT64xplzCxYsqNqDDV4KFv3xj39MLciHgEvNffrTnw4bN26s2jGwxnZ/hWSwuCbk2muvTb0QrrzyyvDaa6+lHsD46g+4cS3bkiVLwtSpU6v+YMMDrRdzQK38+9//rq5xeUWcOReru8MNXgoW/fe//3VcENkRcKm5K664IrVCePTRR8OGDRvC5MmT050BcU1IXEty++23V/043c+mLUAtrF69unpAjGtqX3jhhdDe3p6+GWpw9eOaa66prl7MAeNtzpw51T4B/YWEhx56KH0z1OClYPF561//+pfjgsiOgEvdiFWQmTNnnp/+N9xTTz1VDba//e1vq35sC7hALXzsYx+rqiHxIfEnP/lJujtUrHrEqX5//vOfq35cpxtDrnELGG/9xYRYSPje975X7R0wkrgU7Mc//nHVjs9b8VnLcUHkRsCl5q677rrqunfv3vMbIQwX14TE4BsH2/5BObavv/56u5ICNRGrIXFd27Rp09KdoWKFN4bbW265perHF3hx+t/f//73qg8w3uJz09y5c1NvqLgU7Gc/+1m1u3JDQ0P1vBWfta666irHBZGVhrO2oaXGYpVj/fr14de//vVF3yjGEBsfIvu/jwNv/NWNU21OnjxZPTgCjJdY5Ygv3eKuyhcTx63+sSmOWWfOnKmug+8DjIc4S+6NN94Ia9euTXcuNHhsmjRpUjVmRfFZK35G2mcA6pEKLjUVB8xYBYkPixcLt1EccEf6Pt7zoAiMp1iFjS4VbqOLjU3GLGA8xeAaZ8nddddd6c7ILjY2xWct4ZacqOBSE3ETgxtuuCFs2rQp3HPPPR/4ga+/ggswHuJMk507d1bT+/5fFWQkgyu4AGMtTil+7LHHwk033VRtEhX3C7hUIWG4wRVcyI0KLuMuPiguWrSo2nX0csItwHiL62mffvrp6migDxpuAcZbPIM7rqU9cODABw63kDsVXGoihtyL7Zb8fqjgAjlRwQVyooJLzgRcsiTgAjkRcIGcCLjkzBRlAAAAiiDgAgAAUAQBFy5T3HZ/2bJl1ZTDlpaW8Morr6RvAACAWrAGlyzVwxrcGGr379+feuecPHnSWXHABazBBXJiDS45U8GFyxB3gR4ebqOurq7UAgAAxpuAC5dh+vTpqTXUddddl1oAAMB4E3DhMsRpyJs3b069c1avXh3mzp2begAAwHizBpcs1cMa3Ki7uzu89dZb4Yorrgg333xzaGxsTN8ADLAGF8iJNbjkTMAlS/UScAHeDwEXyImAS85MUQYAAKAIAi4AAABFEHABAAAogoALAABAEQRcAAAAiiDgAgAAUAQBFwAAgCIIuAAAABRBwAUAAKAIAi4AAABFEHABAAAogoALAABAEQRcAAAAiiDgAgAAUAQBFwAAgCIIuAAAABRBwAUAAKAIAi4AAABFEHABAAAogoALAABAEQRcAAAAiiDgAgAAUAQBFwAAgCIIuAAAABRBwAUAAKAIAi4AAABFEHABAAAogoALAABAEQRcAAAAiiDgAgAAUAQBFwAAgCI0nH1PakM2Ghoagl9dIBdxzDpz5kx1hRJ1dnaGvXv3Vu2VK1eGuXPnVm3yNGnSpGrMghwJuGRJwAVyIuBSshhuly9fnnrnHDx4UMjNmIBLzkxRBgDgsm3fvj21BuzYsSO1AMaXgAsAwKiaMmVKagGMLwEXAIDL1tHRkVoDbrvtttQCGF/W4JIla3CBnFiDS+lsMlUWa3DJmYBLlgRcICcCLpATAZecCbhkScAFciLgwujr7e0NXV1dVbulpSXMnDmzavPhCbjkTMAlSwIukBMBF0ZXT09PaGpqSr1zHE00egRccmaTKQAAsrJz587UGuBoIiAScAEAyMqpU6dSC2AoARcAgKzMmzcvtQZcc801qQVMZAIuAABZWbJkSdi8eXPqhbBu3bpw1113pR4wkdlkiizZZArIiU2mgJzYZIqcqeACAABQBAEXAACAIgi4AAAAFEHABQAAoAgCLgAAAEUQcAEAACiCgAtcoKenp/r09fWlOwAAUP8EXOC8GGi//e1vh6ampuqzYMGCcOLEifQt1EZ82dLZ2Rn27NnjpQsAcEkNZ9+T2pCNhoaG4Fd39MUAsXjx4iH/bZcuXRp+//vfV//NYbzFYLtixYrzv5OrV68OmzZtCo2NjVU/F/Hvz5kzZ/w9ArIwadKkasyCHAm4ZEnAHRvr168PGzduTL0BHsyplZF+73bv3h0WLlyYenkQcIGcCLjkzBRl4Lxbb731ggfwWDGDenL69OnUAgAYSsAFzrv55puHBNrm5ubw4IMPqjpRM3GK/HBz5sxJLQCAoUxRJksxcPnVHTtxU59o1qxZ2a11pCxxk7O77747PP3001V/27ZtoaOjo2rnxBRlICemKJMzAZcsCbhATgRcICcCLjkzRRkAAD6E7u7u0NLSUr3Eihs2OtIMakcFlyyp4AI5UcGFcsVlPfHs+MHWrVsXNmzYkHr5UcElZyq4AABwmQ4fPpxaA0Y6cg8YHwLuBBGnzjzyyCNhy5Yt1aYtAAATVW9vb/UByiPgTgCdnZ1h/vz54f777692I21vbw/Hjx9P3wIATAxxbWxcIztt2rTqMxrrZdva2qpj9QaLO74DtWEN7gTw+c9/Puzbty/1ztm6dWtYtWpV6uXHGlwgJ9bgQn2IM9niy/7BNm/eHNauXZt6lydWg7u6usLRo0fDggULQmtra/omT9bgkjMV3Alg//79qQUAMHEdO3YstQaMdO+Dmjp1ajVD7r777ss+3ELuBNwJ4OGHH06tAZ/5zGdSCwBgYpgyZUpqDRjpHpAvAXcC+P73v19Nv4niGpHdu3eHG2+8seoDAEwUHR0dQ9bLxna8B5TDGlyyZA0ukBNrcKF+xPWyBw4cqNo33XRTNb2YoazBJWcCLlkScIGcCLhATgRccmaKMgAAAEUQcAEAACiCgAsAAEARBFwAAACKIOACAABQBAEXAACAIgi4AABQh+KZvT09PaGvry/dAf4fARcAAOpMZ2dnmD59emhqagqTJ08O3d3d6RvgUhrOvie1IRsNDQ3Bry4wWmJ15Pjx41V79uzZ1XU0xTHrzJkz1RXg/zlx4kSYNWtW6g04efJkmDp1auqNnUmTJlVjFuRIBReACS0+SLa1tVVVkvhZs2ZNttMBY8Vn2bJl1Se2gTy9++67qTXUO++8k1rAxajgkiUVXGC0xDD4zDPPpN45u3fvDgsXLky9D288Krgx0K5YsWLI2Lhr167Q3t6eekAuVHDh8qngAjChDQ+30YEDB1IrH3v37r3gxd9I94D6N3PmzLB58+YhL8W2bds2LuEWcifgAjChLV26NLUG3HTTTakFUBtr164Nx44dq2ZixD0COjo60jfApZiiTJZMUQZGS5wKuHz58rBv376qv3r16rBp06bQ2NhY9UfDeExRPnToUPjc5z43ZGw8ePBgmDt3buoBvD+mKJMzAZcsCbjAaCplF+UYcp9//vlw6tSpsHLlSuEWuCwCLjkTcMmSgAvkZLwCLsBoEHDJmYBLluoh4MaKzwsvvFC1Z8yYEVpbW6s2wHACLpATAZecCbhkqdYBN4bbBQsWhP3796c7IWzdujWsWrUq9QAGCLhATgRccibgkqVaB9w9e/aERYsWpd4Af52AkQi4QE4EXHLmmCC4DKdPn04tAICJo7e3N/T09FRXqEcCLlyGOXPmpNaAkc7SBAAoRXd3d5g2bVpoamqqrrt3707fQP0QcOEyxGNEXnnlldDc3Fz147mZmzdvrtoAAKWJFdv58+en3jmLFy+uzhKHemINLlmq9RpcgA/CGlwgJyOtwY3TkmPldrjXXnttTM4Ph8ulggsAAFzS5MmTU2uoi92HWhFwAQCAS5o5c2bYtm1b6p2zadOm6j7UE1OUyZIpykBOTFEGcnKpY4LimtsjR46EG264QbilLgm4ZEnABXIi4AI5cQ4uOTNFGQAAgCIIuEBN9fX1VR+AXBw6dKg6MgUgB3EH7Il0nJOAC9TcPffcE77xjW+EZ5991nl6QN2bPn16+OIXvxi+8IUvhJ///OdV4AWoV7NmzQr33XdfuO6668IPf/jD0N3dXXRxwRpcsmQNblniIPu1r30t/OEPfwhXXnll+OQnPxluv/328OUvf7k6c6+xsTH9JOTJGtzyxJdxra2t4dixY+Haa68Nr7/+eli7dm1YuHBhdX/q1KnpJyE/1uCWJz5rffWrX62KCVdddVV48803q2etFStWhFtuuaWoDcMEXLIk4JZn8MDbL4bdt99+O6xcubIKwDfeeGP2A7CAAxPHli1bqrA7d+7cdCc/xiyYOEp5ts464Bp0YeJYvHhx+PrXvx7uvPNOFV2yE/+9UsEtz+Aq7nBxzIrVkVtvvTXMnj073YU8qOCWaaRiQtQ/e+4vf/lLupM3FVyyFB8S/eqW5eGHHw4PPPBA1f7EJz4RPvKRj4QvfelLVeX2U5/6lOl+ZE3ALc/gcGvMojQCbnkGh9sSZ8gNJuCSJQG3LHEaX9xoatGiRSoeFEnALUsMt3GPgBhsjVmUSMAtSwy33/3ud8ORI0cmxB4nAi5ZEnDLEY/aePXVV1U8KJqAW5Z45EbcSdmYRakE3LL0n1BRUpX2UgRcsiTgAjkRcIGcCLjkzDm4AAAAFEHABQAAoAgCLlAX4gYIe/bsCdu3bw+dnZ3n78V+3IQKoN7EtbiPPPJIWLNmTTh06FB1L16XLVt2fhwDqBdx35P4TLV+/frq+SqK63NjP45lpRBwgbrx8Y9/PLz88sth+fLl1SAcd1Y+fPhwePHFF9NPANSPuHNyR0dHddzGj370oyrc/uIXv6h2VZ4xY0b6KYD6EDfGi0cDRatWrarC7dq1a8OcOXMcEwS1ZpOpcsXBdtasWWHp0qXVg2N7e3v6BvJlk6myxdknixcvDl/5ylfCk08+aXdlsmeTqbLF2SfxmKDm5ubwq1/9qrhjzlRwgboS3yDGATe64447qitMdHG6a0tLS/Xpn1ZG/bjhhhuqa3wpJ9wC9a4/0MblFCWe4S3gAnXn6quvDm+88UbqwcTW3d0dVqxYEfbv31994rQyIbe+vPvuu9XVuAXkIO5xEosJ+/btS3fKIuACdSVO9Yvig3z/weQwkT3zzDMXLMmIm4RYplEf4oPixo0bw1133XV+v4B4D6BePfroo6Gtra369yXueVLamCXgAnUhDrAx0MYHxP5dk48cOVJNzYxrRWCimjJlSmoN+OxnP5ta9S/+HY47dMZPSTsLx/EqjltPPPFEuPPOO8OSJUuqh8V4/8EHH0w/BVAf+p+z4qyguBxs9erV1f1XX321Crzx+1IIuEDNxart9OnTw0MPPVTtnNy/DveBBx4Ip0+fLnJ9CLxfcXry8M2pYqDKYcOqGGjjruixwhk/sd0/SyN3mzZtCtOmTavaCxcurNZHR3FjvHvvvbdqA9SL5557rtrEc+vWrdW/K/HZKj5rzZ8/P9x2221F7R9gF2WyZBflssSpMS+88EI1XaZ/gI1vGV9//fXQ2tpa9SFnH3YX5TiLYefOnVU7PojMnTu3ate7WLWNwXawdevWhQ0bNqRevmK1I669HXy0Rhy3YuhtbGxMdyBPdlEuT3zWOn78+JCiQX/VtrTN8QRcsiTgAjn5sAE3VyUHXCiZgEvOTFEGAMZEPM96uJUrV6YWAIw+FVyypIIL5GSiVnCjuKFJ3HwpiuE2l+nVMJGp4JIzAZcsCbhATiZywAXyI+CSM1OUAQAAKIKACwAAQBEEXAAAAIog4AIAAFAEARcAAIAiCLgAAAAUQcAFIGvxnNWWlpbqCJ54PXToUPoGgHoVx+o1a9ZU4/aWLVtCX19f+gY+HOfgkiXn4AJRb29vmDZtWuqd09zcHF566aXQ2NiY7tSec3CBnIz1Obg9PT3h+uuvH/Ist27duvDTn/7UOMmHpoILQLbeeeed1Bqwf//+cPz48dQDoN4cPnw4tQZs3LgxteDDEXABKM7kyZNTCwCYSARcxsyJEyeqtRVxqsn69eurPsBomj17dli9enXqnbN58+Ywc+bM1AOg3rS1tVXLSQbbtm2b6cmMCmtwGRNxo4A4eO3bty/dObcurqura1QqK3EA9KsL9IsbTb311lthxowZobW1Nd2tH3HMsgYXyMVYr8GNYuHj6aefDseOHQvz5s0L7e3t6Rv4cARcxsRImwdER48eDU1NTal3+QRcICcCLpCT8Qi4MFZMUQYAAKAIAi5jYqR1cbEf7wMAAIwFU5QZM3Ed7lNPPVVtBT9nzpxw5513jtq5lKYoAzkxRRnIiSnK5EzAJUsCLpATARfIiYBLzkxRBgAAuIQ4MzEeexlfVMZPbMd71B8VXLKkggvkRAUXyIkK7oW2bNkS7rnnniHPn7t27XK8UR1SwQUAALiEeF7v8OLK3r17FVzqkIALAADwAU2ZMsXMnDok4AIAAFxCPO5ycJhtbm4OHR0dqUc9sQaXLFmDC+TEGlwgJ9bgjqy3tzd0dXVV7ba2tjB16tSqTX0RcMmSgAvkRMAFciLgkjNTlAEAACiCgAsAAEARBFwAAACKIOACAABQBAEXAACAIgi4AAAAFEHABQAAoAgCLgAAAEUQcAEAAChCw9n3pDZko6GhIfjVBXIRx6wzZ85U13rW19cXnnjiiXDs2LEwZcqUsGLFijB79uz0LTBRTJo0qRqzIEcCLlkScIGc5BJw169fHzZu3Jh655w8eTJMnTo19YCJQMAt14kTJ8KmTZuqsb65uTk8+uijobW1NX1bBgGXLAm4QE5yCbgj/e/btWtXaG9vTz1gIhBwy7VmzZrw+OOPp945r732WlGzdazBBQAAmACGh9vo8OHDqVUGARcAqKxbty61zonT19ra2lIPgBJdccUVqVUGU5TJkinKQE5ymaIcN5l66qmnqrf5cZOpjo6OMHPmzPQtMFGYolyu7du3h29+85vnn6Pji8yXXnopNDY2Vv0SCLhkScAFcpJLwAWIBNyydXd3h4MHD4arr766mqVT2kaCAu4gvb294bHHHgunTp2q3lx/5zvfsXNknRJwgZwIuEBOBFxyZg3uIN/61rfC/fffX22bHa+xH6drAQAAfFB79uwJLS0t1QvOeBRbPKaHsaWCm/T09ISmpqbUG1DattmlUMEFcqKCC+REBXd0jJQv4mZ+GzZsSD3GggouAADAKBvp+J04U5SxJeAmsUq7dOnS1Dsn9lVvAQAA8mCK8iBxk6kdO3aEY8eOhWuuuSasXLnSJlN1yhRlICemKAM5MUV5dMS9fBYsWBD279+f7oSwbdu26gg2xo6AS5YEXCAnAi6QEwF39MQCWldXV9WeMWNGaG1trdqMHQGXLAm4QE4EXCAnAi45swYXAACAIgi4AAAAFEHABQAAoAgCLgAAAEUQcAEAACiCgAsAAEARBFwAAACKIOACAABQBAEXAACAIgi4AAAAFEHABQAAoAgNZ9+T2mTo0KFDYceOHVV73rx5ob29vWqXrqGhIfjVBXIRx6wzZ85UV4B6N2nSpGrMghwJuBnr6ekJTU1NqXfO1q1bw6pVq1KvXAIuUCvxxeLzzz8fPvrRj4aFCxeG2bNnp28uTsAFciLgkjMBN2OdnZ1h+fLlqTdgIvxfKuACtdDd3R3mz5+feuccPXr0gpeNwwm4QE4EXHJmDS4AvE/btm1LrQE7d+5MLQCg1gTcjM2ZMye1BsQpygCMjb/+9a+pNeA///lPagEAtWaKcuaGbzK1ZMmS0NjYWPVLZooyUAvbt2+/YJ+Dl19++YJpy8OZogzkxBRlcibgkiUBF6iFvr6+8MQTT4S77747NDc3h3vvvfd97V4v4AI5EXDJmYBLlgRcICcCLpATAZecWYMLAABAEQRcAAAAiiDgAgAAUAQBFwAAgCIIuAAAABRBwAUAAKAIAi4AAABFEHABAAAogoALAABAEQRcAAAAiiDgAgAAUAQBFwAAgCIIuAAAABRBwAUAAKAIAi4AAABFEHABAAAogoALAABAEQRcAAAAiiDgAgAAUAQBFwAAgCIIuAAAABRBwAUAAKAIAi4AAABFEHABAAAogoALAABAEQRcAAAAiiDgAgAAUAQBFwAAgCIIuAAAABRBwAUAAKAIAi4AAABFEHABAAAogoALAABAEQRcAAAAiiDgAgAAUAQBFwAAgCIIuAAAABRBwAUAAKAIAi4AAABFaDj7ntQGAACAbKngAgAAUAQBFwAAgCIIuAAAABRBwAUAAKAIAi4AAABFEHABAAAogoALAABAEQRcAAAAiiDgAgAAUAQBFwAAgCIIuAAAABRBwAUAAKAAIfwPAel/7HjkyoAAAAAASUVORK5CYII=
Für ZVs $$X:[1\colon n]\to\R$$ und $$Y:[1\colon n]\to\R$$ bedeutet
* große positive Korrelation ($$\rho(X,Y)\approx 1$$) (bzw. große negative Korrelation ($$\rho(X,Y)\approx -1$$)), dass die Punktepaare $$(X(k),Y(k))$$ ziemlich gut auf einer Geraden mit positiver (bzw. negativer) Steigung liegen.
* Ein Wert $$\rho(X,Y)\approx 0$$ besagt, dass kein geradenartiger Trend vorliegt.
* Das folgende Schaubild zeigt links den Fall $$\rho(X,Y)> 0$$, rechts den Fall $$\rho(X,Y)\approx -1$$ und mittig den Fall $$\rho(X,Y)\approx 0$$.
[img[Korrelation.png]]
Sei $$n \geq 2$$ und $$(\R^{n},\mathcal{B}^{n},\mathcal{Q}_\theta^{\otimes n}: \theta \in \Theta)$$ ein reelles $$n$$-faches Produktmodell. Dabei sei für jedes $$\theta\in \Theta$$ sowohl Erwartungswert $$m(\theta)=\mathbb{E}(\mathcal{Q}_\theta)$$ als auch die Varianz $$v(\theta)=\mathbb{V}(\mathcal{Q}_\theta)$$ definiert. Dann sind der Stichprobenmittelwert
<$latex text="M=\frac{1}{n}\sum_{i=1}^n X_i" displayMode="true"></$latex>
und die korrigierte Stichprobenvarianz
<$latex text="V^*=\frac{1}{n-1}\sum_{i=1}^n(X_i-M)^2" displayMode="true"></$latex>
erwartungstreue Schätzer für $$m$$ bzw. $$v$$.
!! Beweis
Sei $$\theta\in \Theta$$ fest. Dann gilt
<$latex text="\mathbb{E}_\theta(M)=\frac{1}{n}\sum_{i=1}^n\mathbb{E}_\theta(X_i)=m(\theta)" displayMode="true"></$latex>
Für $$V=\frac{n-1}{n}V^*$$ ergibt sich aus Symmetriegründen
<$latex text=" \begin{aligned}
\mathbb{E}_\theta(V)&=\frac{1}{n}\sum_{i=1}^n\mathbb{V}_\theta(X_i-M)=\mathbb{V}_\theta(X_1-M)\\
&=\mathbb{V}_\theta\left(
\frac{n-1}{n}X_1-\frac{1}{n}\sum_{j=2}^n X_j
\right)\\
&=\left(\left( \frac{n-1}{n}\right)^2+(n-1)\frac{1}{n^2}\right)
v(\theta)=\frac{n-1}{n}v(\theta)
\end{aligned}" displayMode="true"></$latex>
Durch Multiplikation mit $$\frac{n}{n-1}$$ folgt $$\mathbb{E}_\theta(V^*)=v(\theta).$$
Mit der Linearität des Erwartungswertoperators folgt:
<$latex text=" \begin{aligned}
&&{\mathrm{Cov}}_P(aX+b,cY+d)\\ \\
&=&\textbf{E}_P((aX+b)\cdot(cY+d))-\textbf{E}_P(aX+b)\textbf{E}_P(cY+d)\\ \\
&=& ac\textbf{E}_P(XY)+ad\textbf{E}_P(X)+bc\textbf{E}_P(Y)+bd\\
&&-(a\textbf{E}_P(X)+b)(c\textbf{E}_P(Y)+d)\\ \\
&=&ac(\textbf{E}_P(XY)-\textbf{E}_P(X)\textbf{E}_P(Y))\\ \\
&=&ac{\mathrm{Cov}}_P(X,Y).
\end{aligned}" displayMode="true"></$latex>
Dies beweist (1).
Wendet man die [[CSU|Cauchy-Schwarz-Ungleichung]] auf die ''zentrierten ZVs'' $$X-\textbf{E}_P(X)$$ und $$Y-\textbf{E}_P(Y)$$ an, so folgt (2).
Der Begriff der Kontraktion ist also für affin lineare Abbildungen nützlich. Man kann ihn aber auch auf nichtlineare Abbildungen anwenden. Dazu prüft man ob die Taylorapproximation erster Ordnung eine Kontraktion ist.
Sei $$\Phi:\, D\rightarrow\mathbb{C}^{n}$$ stetig differenzierbar und sei $$\hat{x}\in D$$
ein Fixpunkt von $$\Phi$$ mit $$\|\Phi'(\hat{x})\|<1$$. Dann existiert
ein $$r>0$$ so dass $$\Phi$$ auf dem Ball $$B_{r}(\hat{x})$$ vom Radius
$$r$$ um $$\hat{x}$$ eine Kontraktion ist.
<$details summary="Beweis" tiddler="Beweis">
{{Beweis: Kriterium für Kontraktionen}}
</$details>
iVBORw0KGgoAAAANSUhEUgAABwUAAAL6CAYAAADXD4mDAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAABjaVRYdFNuaXBNZXRhZGF0YQAAAAAAeyJjbGlwUG9pbnRzIjpbeyJ4IjowLCJ5IjowfSx7IngiOjE3OTcsInkiOjB9LHsieCI6MTc5NywieSI6NzYyfSx7IngiOjAsInkiOjc2Mn1dfQi8DfcAALM8SURBVHhe7N0JnN3T+T/wEyEktlJraSyJaEX2IJRYaym1NdpqS4mlLVFCW0r91FbbvyXooo1oQ9USaymKIikiKyrWICgSJMhiK/L3HN8bd8ZMZJlJ7r3zfr9e9zX3fs+9kwkzuWfOc57PaTX7IwkAAAAAAACoWUsUHwEAAAAAAIAapSgIAAAAAAAANU5REAAAAAAAAGqcoiAAAAAAAADUOEVBAAAAAAAAqHGKggAAAAAAAFDjFAUBAAAAAACgxikKAgAAAAAAQI1TFAQAAAAAAIAapygIAAAAAAAANU5REAAAAAAAAGqcoiAAAAAAAADUOEVBAAAAAAAAqHGKggAAAAAAAFDjFAUBAAAAAACgxikKAgAAAAAAQI1TFAQAAAAAAIAapygIAAAAAAAANU5REAAAAAAAAGqcoiAAAAAAAADUOEVBAAAAAAAAqHGKggAAAAAAAFDjFAUBAAAAAACgxikKAgAAAAAAQI1TFAQAAAAAAIAapygIAAAAAAAANU5REAAAAAAAAGqcoiAAAAAAAADUOEVBAAAAAAAAqHGKggAAAAAAAFDjFAUBAAAAAACgxikKAgAAAAAAQI1TFAQAAAAAAIAapygIAAAAAAAANU5REAAAAAAAAGqcoiAAAAAAAADUOEVBAAAAAAAAqHGKggAAAAAAAFDjFAUBAAAAAACgxikKAgAAAAAAQI1TFAQAAAAAAIAapygIAAAAAAAANU5REAAAAAAAAGqcoiAAAAAAAADUOEVBAAAAAAAAqHGKggAAAAAAAFDjFAUBAAAAAACgxikKAgAAAAAAQI1TFAQAAAAAAIAapygIAAAAAAAANU5REAAAAAAAAGqcoiAAAAAAAADUOEVBAAAAAAAAqHGKggAAAAAAAFDjFAUBAAAAAACgxikKAgAAAAAAQI1TFAQAAAAAAIAapygIAAAAAAAANU5REAAAAAAAAGpcq9kfKe4DAABAeu2119IjjzxSPGrYeuutl9ZZZ53iEQAAAJVOURAAAIA6brjhhvS73/0uvf322+nBBx9MM2bMyNd79OiRVl111Xz/hBNOSH379s33AQAAqHyKggAAADTopZdeSt/97nfT3XffnU488cR00kknpdatWxejAAAAVBNnCgIAANCgl19+OT3xxBP5fu/evRUEAQAAqpiiIAAAAA2aMGFCLgx269YtbbjhhsVVAAAAqpGiIAAAAJ/y3nvv5fMEQ9euXdMXvvCFfB8AAIDqpCgIAADAp0yfPj09/vjj+X6nTp3Scsstl+8DAABQnRQFAQAA+JTnnnsuPfTQQ/n+Zpttllq1apXvAwAAUJ0UBQEAAPiU6BKM8wR79eqV1ltvveIqAAAA1UpREAAAgDriPMGxY8em2bNnp4022iitvvrqxQgAAADVSlEQAACAOuI8wcceeyzf//KXv5yWX375fB8AAIDqpSgIAABAHeXnCfbu3Tt/bMybb76ZC4jRVQgAAEDlUhQEAACgjvk5T/DOO+9Mt9xyS/EIAACASqUoCAAAwByl8wTDZ50nOGvWrHTrrbemrbfeOrVq1aq4CgAAQCVSFAQAAGCO8vMEN9hgg7Tccsvl+w0ZOXJkevfdd/PzAAAAqGyKggAAAMxRfp7gZptt1mgH4JQpU9IFF1yQ+vbtm1ZYYYXiKgAAAJVKURAAAIA5xowZk88T7NatW2rfvn1xta7Jkyenn/70p2nSpElpyy23LK4CAABQyRQFAQAAWri33347TZ06NT388MPpzjvvzNdWWWWV1Lp163w9btEZOGLEiHTqqaemPn36pEsvvTSfJbjuuuvm5wMAAFDZWs3+SHEfAACAFua9995Lxx13XDr33HOLK/PummuuSXvvvXfxCAAAgEqmKAgAAAAAAAA1TnwoAAAAAAAA1DhFQQAAAAAAAKhxioIAAAAAAABQ4xQFAQAAAAAAoMa1mv2R4j4AAFUqpnR33HFHmjlzZlpppZWKq3W99NJLqXPnzqlbt27FlU+UXj9u3Lj0xS9+MX3hC18oRlKaNWtWWnbZZdM222xTXAEAalnMGW655Za07rrrptatWxdXP/H000/nse233z4/fvXVV9O1116b1l9//bTUUkvla+U++OCDtMoqq9SZg7z77rvp/vvvLx7VNWXKlNSnT5+0zjrrFFcAAGgKioIAADVg+vTp6dBDD01XXnllceXT1lxzzfT3v/899erVq7jyiddffz0deOCB6YYbbiiu1PX73/8+/fCHPyweAQC17Jprrkn9+vUrHjXsggsuSAMGDMj3b7311vTNb34zzZgxIz9uSPnzwxNPPJG+9a1vpYceeqi48om5zVkAAFhw4kMBAGrACiuskK644orc8ffkk0/m3fUl119/ffrf//6Xd/03trgW3YXxvEmTJqXddtstLb/88unYY49Nzz//fN7dryAIAC3HN77xjTyniE1H/fv3L66mdM455+RUghgrL/DtvPPO+blxO+igg4qrKZ188skNPj9suOGGafz48Xnesuuuu+a5x9lnn52mTZs21zkLAAALTlEQAKDGRDxX3EpatWqVllxyyeLR3MWi3RtvvJFOOOGEdNppp+Uo0SWWMGUEgJZo6aWXTiuuuGLx6OMOvogUb0wU9sojP1dfffW5Pj/mKPGcz3/+8+nXv/51+slPftJoDDoAAAvPCg8AQI1ZZpll0tprr108SrnINy/ef//9dNlll+UFv4ginddCIgBQm9q0aVOnSPfMM88U9+bNK6+8Utxr3F133ZXefPPNtMcee+QiIQAAzUdREACgxkRRMHbdlzz33HPFvbl74IEH0rBhw9KPf/xju/QBgGx+NglFEXDs2LHFo88Wz7/kkkvSYYcdllZbbbXiKgAAzUVREACgxsQu+/Kor9dffz299957xaOGxXMGDRqUz/TZbLPNiqsAQCVad91103XXXVc8al7t27cv7s19ThER5DfccEO68cYbiyspTZ48Ob3zzjvFo7pKz19jjTXSVlttVVwFAKA5KQoCANSg8t32M2bMyNGgjYlFuZtvvjm99NJL6ZBDDklLLbVUMQIAVKJIAfjnP/9ZPFp03nrrrfTBBx8Uj+qaOHFiuvzyy9M+++xTXEn5uTHPaEj8HSKh4OCDD05t27YtrgIA0JwUBQEAalB0EJS88MIL6e233y4efVos4v32t79NAwYMqPM6AKAy9ejRI02YMKF41Ly++MUvFvcaL/LF5qM///nPafvtt89RoCVRRGxoY1J8nr/97W+5Q7B79+7FVQAAmpuiIABADVp++eXTBhtskO+/9tprOe6rIe+++2666KKLUpcuXdLXv/714ioAUMk6d+6cRowYkZ588sniSvNp3bp1ca/xjUYPPvhgGjNmTPre975X5wzCODOwobjRKGjed999n3o+AADNS1EQAKAGtWvXLq2wwgr5/vTp0/NO/Ybcc889OX4sugSXXXbZ4ioAUMmOOOKI/PHYY4/NH5vTMsssk9Zcc83i0adFkXDw4MGpX79+aZ111vnM58eGpKFDh6bdd989Px8AgEVHURAAoAattNJKaZVVVsn3n3rqqXyuYH2vvvpq7hI86KCDcqcgAFAdNt100zRw4MB0/fXXp5NPPrm42jyWW265OWcVN5Q+EJuLpk6dmvbcc8/UqlWrOs+fPHlyfk252JAU0eVRFIznAwCw6CgKAgDUoLZt29Y5A2jSpEnFvY/FeUCXX3553q3/rW99y6IcAFSZ008/Pe29997pl7/8ZT6b769//Wt66aWXitHmEecDxnmAJREPeskll6RDDjkkrbrqqsXVxkVBcciQIenAAw9Mq6++enEVAIBFRVEQAKAGxfk8ca5gSSzalfvPf/6TLr744hw/tsYaaxRXF484+zCKkm5ubm5ubm7zfouo8GuvvTa/l/773//O5/OttdZa6aijjsrXmkokD5TmChFHHhuKQmwwuuGGG/JYFCVLyp8f84+ZM2fm++Ef//hH+tznPpd23HHH4goAAItSq48mcbOL+wAA1JBTTz01/d///V++f9JJJ+X7SyyxRJo1a1aOHIszB0877bR89s/iFIuYL774YvEIAJhX7733Xnr44YfnFN5io81PfvKTdOihh+bHTSGiQb/73e+m2267LT+OAuRXvvKVnELwwx/+MM8levfuncfC3J7/gx/8IHc4lj8fAIBFR1EQAKBGDR06NH3/+9/P92MR7je/+U3uKrjiiivSoEGD8ngsHgIA1SeiQvv06ZNeeOGF9Itf/CIdfvjhzdL9H+cSx+e+9NJL8+M4EzCKfGeffXaOEj3uuONyQkHJm2++mQ4++OA0bNiw/Lj8+VG8jDMQy58PAMCiIz4UAKBGRTxXyX//+9/0zjvv5F36F154YV7c69ixYzEKAFSb6PqPguDw4cNzOkBzxYFHAS82FZXEnzlhwoR077335o7A+gW+Nm3apM9//vPFo0+ef/vtt6f9999fQRAAYDFSFAQAqFHlC3IRGRo7/f/0pz+lDh06pN133z2fRwQAVJ+77747XXXVVTkavPw8v+YQ84XWrVsXjz6eU/zud79Le+yxR1p33XWLq40rf36nTp2KqwAALA6KggAANWqVVVZJ3bp1y/dff/31dOONN6YbbrghHXHEEfk8QQCgOkWRbe21185RnM0tzh4u70I866yz0uTJk3ORr6ENRm3btk1rrbVW8SilSy65JD9/3333tSEJAGAxUxQEAKhRyy+/fFpppZXy/Yceeij9+Mc/zmcM9ujRI18DAKrTww8/nPr161c8WrReffXVdOCBB6bVVlutuDJ3ER16wAEHzPPzAQBoPoqCAAA1KnbqL7vsssWjlHbddde033771YkAAwCqzxNPPFHn7ODmts4668zp8vv2t7+ddthhh3y/MeUFwL322ittu+22xSMAABYnRUEAgBoVcV8RLRaiazBiQ8vjvwCA6hSbfL7+9a8Xj5pfaUNRFAcPPfTQOpuOGrLccsvlj6Xnr7jiivkxAACLl6IgAECNKj/TJxbktt5663wfAKhuQ4cOTT179iweNb/YXBS++93vpu7du+f7c1PqFIznb7bZZvk+AACLX+tffqS4DwBAjXnvvffybv5jjjkmrbLKKsVVAIB59+GHH+aPcT7xyiuvnO/PTcw/wrw+HwCARaPV7I8U9wEAAAAAAIAaJD4UAAAAAAAAapyiIAAAAAAAANQ4RUEAAAAAAACocYqCAAAAAAAAUOMUBQEAAAAAAKDGKQoCAAAAAABAjVMUBAAAAAAAgBqnKAgAAAAAAAA1TlEQAAAAAAAAapyiIAAAAAAAANQ4RUEAAAAAAACocYqCAAAAAAAAUOMUBQEAFrHZs2cX9wAAAABg0VAUBABYRGbMmJG+853vpJNPPrm4AgBAc7jrrrvSwIEDi0cAAARFQQCARWDUqFGpV69e6W9/+1uaPn16+vDDD4sRAACaUqQyXHXVVem8885LvXv3Tk8//XQxAgDQsikKAgA0s0GDBqWtttoqTZ06NV1++eXpN7/5TVpiCdMwAIDm0KpVq/T73/8+XXrppWnChAmpe/fu6frrry9GAQBarlazHWoDANAsIi70oIMOSldffXXadNNN88f27dsXowAANLcoCu6xxx65W/Dwww/Pm7PatGlTjAIAtCy2qAMANINSXOiwYcPScccdl0aMGKEgCACwiHXu3Dk9+OCD6Xvf+1767W9/m7bYYgtxogBAi6UoCADQxMrjQm+66aZ0xhln2JEOALCYLLfccjlKNG6PPvqoOFEAoMVSFAQAaCIRF7rPPvuko446Ki82jR8/Pn3ta18rRgEAWJyiW3D06NFp9dVXT3vttVcaMGBAeuedd4pRAIDapygIANAE/vOf/6TevXuna665RlwoAECFqh8nGvO3iRMnFqMAALVNURAAYCFdfPHFabPNNkuvvfZauvnmm8WFAgBUsPI40ThfsEePHuJEAYAWQVEQAGABleJCDz744NSlS5c0bty4tMsuuxSjAABUsugWHDNmTFpjjTXEiQIALYKiIADAAoi40F69eqVhw4blBaSIC11nnXWK0cr26KOPppNPPjk999xzxRUAgKYRyQkxz4iz+6pBxInGOdDlcaLRPQgAUIsUBQEA5lPEhfbp0ydNnTo1XX311emCCy6oqrjQCRMmpF/+8peKggBAk3v11VfzPGPUqFHFlcpXP060e/fu6brrritGAQBqh6IgAMA8Ko8L3XjjjfOu8n79+hWjAABUs1Kc6Oqrr5723ntvcaIAQM1RFAQAmAf140KHDx+e2rdvX4wCAFALIk70wQcfTPvtt584UQCg5igKAgB8hogL3WyzzdLkyZPnxIUuvfTSxSgAALUk4kSHDh1aJ070+uuvL0YBAKqXoiAAQCPK40K7dOmSxo4dKy4UAKCFKI8T3WuvvcSJAgBVT1EQAKAB9eNCR4wYkTbYYINiFACAlqAUJxoFQnGiAEC1UxQEAKjnz3/+86fiQtu0aVOMAgDQkkScaESJlseJXnbZZcUoAED1UBQEAChEXGj//v3TgQcemDp27CguFACAOUpxouuss07ab7/98u3tt98uRgEAKp+iIADAR0pxoZdcckmOC33ggQfEhQIAUEfEiUZhMAqE0S24ySabiBMFAKqGoiAA0OKVx4VeddVVOS60bdu2xSgAAHximWWWmRMn+swzz4gTBQCqhqIgANBiRVxoRIWWx4Xus88+xSgAADQuugVHjx5dJ070nXfeKUYBACqPoiAA0CJFXGjv3r1zl6C4UAAAFkT9ONGYX06cOLEYBQCoLIqCAECLU4oLffnll9PVV18tLhQAgAVWHica5wv26NFDnCgAUJEUBQGAFqN+XGjs6u7Xr18xCgAACy66BWN+ue6664oTBQAqkqIgANAiRFxor169cpfgAQcckONCO3XqVIwCAMDCizjROGewPE50woQJxSgAwOKlKAgA1LwoBPbp0ydNnjw5XXLJJfkmLhQAgOZQP040CoNxHwBgcVMUBABq1ttvvz0nLrRDhw5p7NixuUsQAACaWylONOah+++/vzhRAGCxUxQEAGpSxIVuttlmc+JCR44cmTbYYINiFAAAml/EiUZhUJwoAFAJFAUBgJpz8cUX57jQiRMnpsGDB+e40Hbt2hWjAACw6NSPE910001zgRAAYFFTFAQAasaMGTPSPvvskw4++OAc0/TAAw+kgw46qBgFAIDFJ7oFR48endZbb70cJSpOFABY1BQFAYCaEHGhvXr1SsOGDUsDBgzIcaFdunQpRgEAYPHbeOON06hRo+rEiUb3IADAoqAoCABUvYgLjfMDp06dmq6++up0wQUXiAsFAKAixTy1PE60e/fu4kQBgEVCURAAqFoRF/rNb34zx4VGV+D48eNTv379ilEAAKhc0S04ZsyYtM4668yJE3377beLUQCApqcoCABUpVJcaHQGRlzoiBEjUvv27YtRAACofJ07d86FwVKc6CabbCJOFABoNoqCAEDVKY8Lveqqq3JcaJs2bYpRAACoHssss8ycONFnnnlGnCgA0GwUBQGAqhFxofvss0+duNB4DAAA1S66BUePHl0nTvSdd94pRgEAFp6iIABQFSIutHfv3mnYsGHiQgEAqEn140Rj/jtx4sRiFABg4SgKAgAVrxQX+tprr+UzBMWFAgBQq8rjRON8wR49eogTBQCahKIgAFCx6seFjhs3LvXr168YBQCA2hXdgtE1uO6664oTBQCahKIgAFCRIi60V69edeJC43wVAABoKSJONM4ZLI8TnTBhQjEKADB/FAUBgIoTcaF9+vRJU6dOFRcKAECLVj9ONAqDcR8AYH4pCgIAFaM8LnTjjTdO48ePFxcKAAAfKcWJdujQIe2///7iRAGA+aYoCABUhPpxocOHD0/t27cvRgEAgIgTjcJgFATFiQIA80tREABY7CIudLPNNqsTF7r00ksXowAAQEnEiQ4dOrROnGgUCAEAPouiIACw2JTHhXbp0kVcKAAAzKPyONHoHBQnCgB8FkVBAGCxqB8XOmLECHGhAAAwH0pxolEgFCcKAHwWRUEAYJH785//nONCJ0+ePCcutE2bNsUoAAAwryJONKJEhwwZMidO9JJLLilGAQA+oSgIACwyERfav3//dOCBB+a40LFjx4oLBQCAJhBz7FKcaMy5I0405t8AACWKggDAIlGKC41dy6W40A022KAYBQAAFlb9ONEePXqIEwUA5lAUBACaXXlc6FVXXSUuFAAAmkkpTjRur7zySo4TjQIhAICiIADQbCKuKGKMyuNC99lnn2IUAABoLtEtOH78+BwnGlGicZs5c2YxCgC0RIqCAECziLjQ2JUcXYLiQgEAYNGLgmDEiR5++OG5W7B79+7pkUceKUYBgJZGURAAaHKluNCXX345XX311eJCAQBgMYk40QsvvDBdd911acqUKWnTTTdNgwcPLkYBgJZEURAAaDL140JjV3K/fv2KUQAAYHHZc88904MPPpg6d+6cDjnkkLTXXnuJEwWAFkZREABoEhEX2qtXrzpxoZ06dSpGAQCAxS3iRO+7774cJ3r99dfnONEJEyYUowBArVMUBAAWWhQC+/TpkyZPniwuFAAAKthSSy01J0502rRpaZNNNkl/+tOfilEAoJYpCgIAC6w8LnTjjTdOY8eOFRcKAABVIOJEH3roobTRRhulQw89VJwoALQAioIAwAKpHxc6fPjwtMEGGxSjAABApfviF7+Y7r///jyfL8WJxkY/AKA2KQoCAPMtCoGbbbZZnbjQpZdeuhgFAACqRcSJxny+FCe6+eabp/POO68YBQBqiaIgADDPyuNCu3TpIi4UAABqRClOtGvXrmngwIE5TvT1118vRgGAWqAoCADMk/pxoSNGjBAXCgAANaQUJ3rsscemG264IXXr1k2cKADUEEVBAOAzNRQX2qZNm2IUAACoFREneuaZZ6Zbb701zZw5U5woANQQRUEAoFFvv/126t+/f44L7dixo7hQAABoIXbcccf04IMPpi222CLHie6zzz5p6tSpxSgAUI0UBQGABkVcaHQHXnLJJTku9IEHHhAXCgAALUj79u3TnXfemY477rh0zTXXpJ49e6ZRo0YVowBAtVEUBAA+pRQXOmnSpHTVVVfluNC2bdsWowAAQEvRunXrdMYZZ6Sbb745zZo1K2211VZp0KBBxSgAUE0UBQGAOSIuNKJCy+NCIyYIAABo2XbZZZc0bty4fMbgUUcdlX9PmDZtWjEKAFQDRUEAIIu40D59+uQuwQMOOEBcKAAAUEf9ONEePXrk3xsAgOqgKAgAzIkLffbZZ/MZgnETFwoAANRXHic6c+bM1LdvX3GiAFAlFAUBoAWrHxc6ZsyY3CUIAAAwNxEnOn78+LTFFluIEwWAKqEoCAAtVMSFRndgeVxop06dilEAAIC5izjRO+64o06c6KhRo4pRAKDSKAoCQAsUhcA4P3DixIniQgEAgAVWP050q622Suedd14xCgBUEkVBAGhBIi50v/32y3GhHTp0yN2B4kIBAICFVYoT3XzzzdPAgQPFiQJABVIUBIAWohQXetlll+VC4MiRI1OXLl2KUQAAgIUTcaJ33nmnOFEAqFCKggDQAkRcaBQEy+NC27VrV4wCAAA0jYbiRAcNGlSMAgCLk6IgANSwiAuNqNC4dezYUVwoAACwSJTHiR511FHiRAGgAigKAkCNKsWFRpdgFAKjICguFAAAWFTEiQJAZVEUBIAa1FBcaNu2bYtRAACARUOcKABUDkVBAKghERfav39/caEAAEBFaShOdOrUqcUoALAoKAoCQI0oxYVGV6C4UAAAoNLUjxPt2bOnOFEAWIQUBQGgBpTHhQ4ZMkRcKAAAUJHK40RnzZolThQAFiFFQQCoYhEXGlGh5XGhcR8AAKCSRZzouHHjUvfu3efEiU6bNq0YBQCag6IgAFSpiAvt06dP7hIUFwoAAFSbiBMdMWLEnDjRHj165N9rAIDmoSgIAFWoFBf61FNP5ahQcaEAAEA1atOmzZw40ZkzZ6a+ffuKEwWAZqIoCABVpH5c6MiRI3OXIAAAQDWLONHx48fnbkFxogDQPBQFAaBKRFxodAeWx4V27dq1GAUAAKhuESc6fPjwOnGio0aNKkYBgIWlKAgAVSAKgXF+4MSJE8WFAgAANat+nOhWW22VzjvvvGIUAFgYioIAUMHK40I7dOiQuwPFhQIAALWuFCfavXv3NHDgQHGiANAEFAUBoELVjwuN8wO7dOlSjAIAANS2iBMdMWKEOFEAaCKKggBQgaIQGAXB8rjQdu3aFaMAAAAtQ0NxooMGDSpGAYD5oSgIABWkPC60Y8eO4kIBAAA+Uh4netRRR4kTBYAFoCgIABWiflxoFATFhQIAAHxMnCgALBxFQQCoAA3FhbZt27YYBQAAIIgTBYAFpygIAItRxIX2799fXCgAAMB8aChOdOrUqcUoANAQRUEAWExKcaHRFSguFAAAYP7UjxPt2bOnOFEAmAtFQQBYDMrjQocMGSIuFAAAYAGUx4nOmjVLnCgAzIWiIAAsQhEXGlGh5XGhcR8AAIAFF3Gi48aNqxMnOmPGjGIUAAiKggCwiERcaJ8+fXKXoLhQAACAplU/TrRXr1759y4A4GOKggCwCJTiQp966qkcFSouFAAAoOmVx4lOnTo19e3bV5woABQUBQGgGdWPCx05cmTuEgQAAKD5RJzo+PHjU48ePcSJAkBBURAAmknEhUZ3YHlcaNeuXYtRAAAAmlPEiQ4fPrxOnOioUaOKUQBoeRQFAaAZRCEwzg+cOHGiuFAAAIDFpH6c6FZbbZXOO++8YhQAWhZFQQBoQuVxoR06dMjdgeJCAQAAFq9SnGj37t3TwIEDxYkC0CIpCgJAE6kfFxrnB3bp0qUYBQAAYHGKONERI0aIEwWgxVIUBIAmEIXAKAiWx4W2a9euGAUAAKASNBQnOmjQoGIUAGqboiAALITyuNCOHTuKCwUAAKgC5XGiRx11lDhRAFoERUEAWED140KjICguFAAAoDqU4kQHDBiQhg0bJk4UgJqnKAgAC6ChuNC2bdsWowAAAFSDiBO94IIL0tVXXy1OFICapygIAPMh4kL79+8vLhQAAKCG9OvX71NxotOnTy9GAaA2KAoCwDwqxYVGV6C4UAAAgNpSP060d+/e4kQBqCmKggAwD8rjQocMGSIuFAAAoAaVx4lOmzZNnCgANUVREADmIuJCIyq0PC407gMAAFC7Ik503LhxdeJEZ8yYUYwCQHVSFASARkRcaJ8+fXKXoLhQAACAlqV+nGivXr3y74UAUK0UBQGgAaW40KeeeipHhYoLBQAAaHnK40SnTp2a+vbtK04UgKqlKAgAZerHhY4cOTJ3CQIAANByRZzo+PHjU48ePcSJAlC1FAUBoBBxodEdWB4X2rVr12IUAACAliziRIcPH14nTnTUqFHFKABUPkVBAPhIFALj/MCJEyeKCwUAAKBB9eNEt9pqq3TeeecVowBQ2RQFAWjRyuNCO3TokLsDxYUCAAAwN6U40e7du6eBAweKEwWgKigKAtBi1Y8LjfMDu3TpUowCAABA4yJOdMSIEemII44QJwpAVVAUBKBFikJgFATL40LbtWtXjAIAAMBnizjR888/v06c6KBBg4pRAKgsioIAtCjlcaEdO3YUFwoAAMBCK48TPeqoo8SJAlCRFAUBaDHqx4VGQVBcKAAAAE2hFCc6YMAAcaIAVCRFQQBahIbiQtu2bVuMAgAAwMKLONELLrhAnCgAFUlREICaFnGh/fv3FxcKAADAItNQnOj06dOLUQBYPBQFAahZpbjQ6AoUFwoAAMCiVD9OtHfv3uJEAVisFAUBqEnlcaFDhgwRFwoAAMAiVx4nOm3aNHGiACxWioIA1JSIC42o0PK40LgPAAAAi0vEiY4bN65OnOiMGTOKUQBYNBQFAagZERfap0+f3CUoLhQAAIBKUj9OtFevXvn3VgBYVBQFAagJpbjQp556KkeFigsFAACg0pTHiU6dOjX17dtXnCgAi4yiIABVrX5c6MiRI3OXIAAAAFSqiBMdP3586tGjhzhRABYZRUEAqlbEhUZ3YHlcaNeuXYtRAAAAqFwRJzp8+PA6caLxey4ANBdFQQCqUhQC4/zAiRMnigsFAACgKtWPE42Nr4MHDy5GAaBpKQoCUFXK40I7dOiQuwPFhQIAAFDNSnGiXbp0SYcccog4UQCahaIgAFWjflxonB8YvzABAABAtYs40REjRqQjjjhCnCgAzUJREICqEIXAKAiWx4W2a9euGAUAAIDqF3Gi559/fo4TnTx5cv49+OKLLy5GAWDhKAoCUNHK40I7duwoLhQAAICaF3GiY8eOzek4Bx98sDhRAJqEoiBAE4sDwf/9738Xj1gY9eNCoyAoLhQAAICWYIMNNshxogMGDBAnCkCTUBQEaEKxa2/cuHFplVVWKa6woBqKC23btm0xCgAAALUv4kQvuOACcaIANAlFQYAmNGXKlPS///0vrbHGGsUV5lfEhfbv319cKAAAABQaihOdPn16MQoA80ZREKAJPfvss2mttdZKK6ywQnGF+VGKC42uQHGhAAAA8In6caK9e/cWJwrAfFEUBGgis2fPzkWsnj17piWW8M/r/CqPCx0yZIi4UAAAAKinPE400orEiQIwP6xaAzSRmTNnppdeeil16tSpuMK8iLjQiAotjwuN+wAAAEDDIk50zJgxdeJEZ8yYUYwCQMMUBQGaSBQE33vvvbTmmmsWV/gsEXPSp0+f3CUoLhQAAADmXf040V69eqWHH364GAWAT1MUBFgIr7zySrr88svTvvvum/bYY4903XXXpe9973vpj3/8Y5o6dWrxLBpSigt96qmnclSouFAAAACYP+VxopMnT84bb8WJAtAYRUGABTBr1qx07rnnpr59+6ann346nXLKKTm64w9/+EO+HoWurbfeOt166635rEE+UT8udOTIkblLEAAAAFgwsSYxduzY1LVrV3GiADRKURBgPj333HNpv/32S3feeWf6xz/+kU488cS0xhprpGnTpuXoyyh0nXHGGenb3/52+uEPf5gn5fMqPvdVV12VY0jLRSHthBNOSNdcc01xpTpFXGh0B5bHhcYvLAAAAMDCiTjR4cOH14kTjd/DAaBEURBgPkyZMiUdeeSR+fzAc845J62//vr5ev3zBJdccsm0yy675Gs33nhj+uCDD/L1uXn//fdz7Ojtt9+e75eLzsOIAnnjjTeKK9UnCoERYzJx4kRxoQAAANAM6seJxsbcwYMHF6MAtHSKggDzKAp7Q4YMSTfccEM64ogj0pe//OViJKXnn38+rbbaamm55ZYrrqR8P66NGzcuTZ8+vbjauPvuuy8Xyl544YXcGVhu0qRJaeWVV07bbbddcaV6lMeFdujQIXcHigsFAACA5lOKE41Eo0MOOUScKACZoiDAPIoOt4j23GKLLdKWW25ZXP3YmDFjchdc69atiyspvf766+mZZ54pHs1dPPeKK65InTp1Su+++26+lUQxMs7d23HHHVP79u2Lq9Whflxo/D3iFxIAAACgeUWc6IgRI/LGZnGiAARFQYB59MQTT6SHHnoode/ePa2++urF1ZR32kUn37rrrltc+Vg8N8ai0LfssssWVxt26623pp122iltv/32uUBYvntv5syZ6emnn05bb711naJjpYtCYBQEy+NC27VrV4wCAAAAzS3iRM8///w6caIXX3xxMQpAS6MoCDCPSoW6NdZYIy2zzDL5fohzBj/88MO0zjrrFFdSmjVrVu6KW3755dOuu+6aJ+GNiYLihAkTcidgeOutt+p0Cr788su5mNazZ8/iSmUrjwvt2LGjuFAAAABYzMrjRA8++GBxogAtlKIgwDyK8wEb8uyzz6ZVV121znmC9957b7rmmmvSoYce+qmo0XIRDXr99denb37zm6lt27Zp/fXXz5115RPzJ598Mn+OlVZaqbhSuerHhUZBUFwoAAAALH6lONEBAwaIEwVooRQFAeZRt27d0u67757Gjx+fIz5LHnnkkTrnCcbOu5NOOil9+9vfTscff3xaeuml8/WGxOdq1apV6ty5c3HlY9EtWLL55pvnHX2VrqG40Ch0AgAAAJUhkowuuOACcaIALZSiIMA8ik7Bo48+Oj366KNp0KBBOSI0OvqiCBbnBk6fPj0NGTIk7bvvvulrX/taOvfcc9PKK69cvPrT4vU33nhjLviVCoqlbsRXXnklfwzRhbjiiisWjypPxIX2799fXCgAAABUiYbiRGNdA4DapigIMB/69u2bbr311vT888+nrl275s7Bv//97zkmdOONN04PP/xwuuGGG9IvfvGLtOyyyxavatgdd9yRi4trr7127haMW5wrOHv27DpFwUpWiguNrkBxoQAAAFA96seJ9u7dW5woQI1TFASYT+uuu27uCHzsscfS4Ycfnvbbb79cCHzmmWfSeeedl7785S/nAt/cRERH7MiL4mIUAUu3xx9/PHXv3j3NnDmzeGblKo8Ljf8e4kIBAACgupTHiU6ZMkWcKECNUxQEWEAxcX7qqafyhHmllVZKSy65ZDEydx988EG68sorc5dhY7GgUTR85513ikeVJeJCIyq0PC407gMAAADVKeJEx4wZUydONI5MAaC2KAoCLKCYHL/wwgv5PMF59eGHH6a77rordxlGR2F9n/vc59Iqq6ySC4fROVhpIkakT58+uUtQXCgAAADUjvpxor169crHpABQOxQFARbQtGnTcuFujTXWKK7M3W233ZY22mij9NWvfjVddNFFeefdG2+8kceiKzDOIYyuwzhrMMa/8pWv5OJbpSjFhUZ3ZESFigsFAACA2lIeJxopRrExWJwoQO1QFARYQM8991xaa621Go0ArW+nnXbKZwaWzg/829/+ljsDwzLLLJNOO+20NGnSpDnj48aNy914i1v9uNCRI0dWxNcFAAAANI+IEx07dmzuHhQnClA7FAUBFlAUA7/+9a+nVq1aFVdqT8SFRndgeVxo165di1EAAACgVkVBMDYGl8eJxjoBANVLURBgAXXr1i3falUUAiMmZOLEieJCAQAAoAWKdYDyONHYODx48OBiFIBqoygIQB3lcaEdOnTI3YHiQgEAAKDlKsWJxrEihxxyiDhRgCqlKAjAHPXjQiMmpEuXLsUoAAAA0FJFnGhsHD7iiCPEiQJUKUVBALIoBEZBsDwutF27dsUoAAAA0NJFnOj5559fJ0704osvLkYBqHSKggAtXHlcaMSAiAsFAAAA5qY8TvTggw8WJwpQJRQFAVqw+nGhURAUFwqLzgsvvJBOO+20NGvWrOIKAAANue2229IVV1xRPAIqQSlOdMCAAeJEAaqEoiBAC9VQXGjEgACLzuOPP57ef/99Ub0AAHPxwQcfpHvuuSd94QtfKK4AlSLWES644II6caKx3gBAZVIUBGhhIi60f//+4kKhAowZMyb17NkztWrVqrgCAEB906dPz8WGddZZp7gCVJryONHSESXxswtAZVEUBGhBSnGh0RUoLhQWrzhvI+JDO3XqVFwBAKAhMWdabrnl0qqrrlpcASpReZxodAv27t1bnChAhVEUBGghyuNChwwZIi4UFrOXXnopvffee2nNNdcsrgAA0JAoKqy33noi16EKlMeJTpkyRZwoQIVRFASocREXWoruKMWFxn1g8Xr++efT2muvnVZYYYXiCgAA9cV5ghMmTEi9evUqrgDVIOJE47iE8jjRSEsBYPFSFASoYbGjtk+fPnlXnrhQqByzZ8/OP4/OEwQAmLvXX389vfzyy84ThCpUP040ivsPP/xwMQrA4qAoCFCjSnGhTz31VI4KFRcKi9f777+fRo8enU488cS09dZbp7PPPjv98pe/TEceeWS6//7704cfflg8EwCgZZs+fXq6+eabc2fRjjvumK655pp00EEH5flTpC0A1aM8TnTy5MlzNi4DsHgoCgLUmPpxoSNHjsxdgsDiEV2B48aNS3vttVc65ZRT0hZbbJEXtL7xjW/kBa5Y6IrC4BFHHJGmTZtWvAoAoOV599130+WXX5623HLLdPvtt6eBAwemH/3oR+kXv/hFLiJEwkKMxf3YcAVUj4gTHTt2bO4eLK1ZiBMFWPQUBQFqSMSFlg7xLsWFdu3atRgFFrVYrBo6dGjabbfd0p577pmGDRuWdtlll/zLb0RgrbvuumnXXXdNf/nLX9J9992XfvWrX+XFsHkxderU/LlnzpxZXAEAqF6xOeroo49O559/frr44ovTueeemzp37pyeffbZ3FkUZzH/5Cc/yfOl2FAVnYRAdYmCYGxcLo8TjXUMABYdRUGAGhET6vhleeLEieJCoQJEh+BVV12VfvzjH+eFq+9///tp6aWXbvA8wQ4dOqRtt902/eMf/8g/w58lPse1116bLr300twdDABQzWbNmpUj1qPQd9ZZZ6VNNtkkz5PqnycY17baaqt8Tvr111+fX1fujjvuSJtvvnl+XukWj/v27ZtWWGGF9KUvfSmdeeaZ0hlgMaofJxobm2P9AoBFQ1EQoMqVx4VGYSGKDeJCYfF78sknc0zoNttsk38+l1xyyXw9Ovv++9//5i7BkjZt2qSVVlopPfbYY+mRRx4prjYuPvdvf/vb9Oqrr1rUAgCqXhT4fve736VDDz00x4OWvPTSS3metPLKKxdXUlpuueXS8ssvn7uLomBYbocddkj33HNPjh2N+1OmTMlnNw8fPjyfUxhFiCuvvDKddNJJNlbBYlaKE41jT/r37y9OFGARURQEqGL140IjhiN2zQKLV3TyxaLTQw89lLbeeuu02mqrFSMpL0598MEHc3a8h3feeSdfnxcRL3rFFVek1VdfPb311lvzHDcKAFCJXnvttXTZZZelNddcM5+13Lp162Ik5Q1T0d0XRcCS6B6M1zQmin/xuvi9aMUVVyyufiyKD5GuMmLEiPT8888XV4HFJeJEY2NznK8uThRg0VAUBKhSMWGOgmB5XGi7du2KUWBxisWoKAjGAlZEVpWLc3FWXXXVvMu9JLr9Hn300bwYFotVcxO/NK+yyippv/32S0899ZTdtABAVXvuuefyvCmi1ddff/3iasqbqOL6xhtvXFz5WMylortovfXWy3Oq+qK78Omnn87FhYhuLxdxo/HnxesiThRY/CJONM4SLY8TjfUOAJqHoiBAlSmPC43igbhQqDzvv/9+LtbFwlbEgpYbM2ZM3qFefxd8LG7ttNNOeTd8Y2Jn/C233JL22WeffEZOiG5BAIBqFYkJEQO69tprp2WWWaa4+vEmqygQRCdRSRQKo8svUhl23nnnT3UChugyirj2+nOqeM2tt96aRo0alWNKYzMWUDnK40RLax42QAI0PUVBgCpSPy40CoLiQqHyxNk35ZGhJfFL7aRJk+qcJxgLXkOHDs3Fw8MPPzwtu+yyxcinxULWtttumz936XO88sor+SMAQDWKZIXywl/JCy+8kJZaaqk65wlOmDAhDRs2LG+Q2nvvvYurn4iiYTxnww03zJ936tSp+RbnOcdZz9GJdNttt+XiA1B5SnGiAwYMECcK0EwUBQGqRENxoRGzAVSeWISKrr+IvIqFqZKICV1iiSVS+/bt8+Po/D333HPTPffck373u9/lX3obE8XEJ598Mm211VbFlY/FTngAgGoVRYDtttsuPfjgg7kzsCTmPtHtV4r5jNjP448/PicxRIGvfhpDiFSF8ePH52MVrrvuujR48OB8i9+dSgkrEUdaSlwAKk+sc1xwwQXiRAGaiaIgQIWLokH//v3FhUKV2XPPPdORRx6ZzjnnnDR69OgcWRVFvdVXXz2fJ/jII4+kgw46KN1+++15x/suu+zS6AJVxJFee+21aa+99pqzGaC0q16nIABQzWJuM3DgwLTkkkumM888M7366qu542/kyJF5w1T8PvT3v/897bHHHmmdddbJBb7y1IVypfMEv/Od76Rjjz12zu3EE09Mp59+ejr55JPTL3/5y/Tuu+8WrwAqVUNxopGyAsDCURQEqGCluND4xVdcKFSXiAE966yzcmEwin9bbLFFXpS68cYb06abbpoOO+ywtNtuu+UIq969e891x3rsnI/D97t165afF7e4/9RTT+Ud8Ra2AIBqFnGf0dm36qqr5kLgDjvskK688srcGRidfbGB6ve//33uHornNKax8wRDFBLjXOfYkBXRpEDlK8WJxnpIdAvG703iRAEWjqIgQIUqjwsdMmSIuFCoQksvvXTad999c4zoNddck3r27JkuuuiiNHz48HyLXexzO0MwzJo1KxcS77333txtWLq99tprOaL0rbfeyrvpAQCqWRT7opvvmWeeSaeeemracccdc2HwscceS3/5y1/S5ptvnmPYG/Pee+/lrqLOnTvPiWov98477+SEhZifxVmFQHWIdZBYD4nblClTxIkCLCRFQYAKE/E4pWiMUlxo3AeqV3T2RfEuPnbq1CnHh86rm266Ke+IXWuttYordf33v//Ni1wAALUgYkRffPHFPGeK+U+bNm2KkbmLWMEoIEayyoorrlhc/UTEud9xxx05hnTttdcurgLVIroFx4wZUydOdMaMGcUoAPNKURCggkQMRkTaxK43caFQW5599tm8sLXCCisUV+YuugEffvjhdP311+fdsPUts8wy6Qtf+EI+b/DDDz8srgIAVLdIQIiUhYgRnR/PPfdcfl337t3rFBJjrhRnEh566KH5rPaIcG/dunUxClST+nGi8e9E/M4EwLxTFASoEKW40DgjrBSNIS4UascjjzyS40PndnZgSfxiGxFZcW7gFVdckb797W+nSZMmFaMpn6cTvwDHvxNxJuGWW26ZfvWrX6X//e9/xTMAAKpTnAkYZyavs846xZW5i7lQ375907bbbptefvnlPCeKiPW4bbfddmn99ddPl156aZ43/eY3v5mvxAag8pTHiU6ePHnOxmoA5k2r2bENHYDFJuJCY7dqTGKjK/Cyyy5LXbt2LUaBWhDRoSeeeGLeob7hhhsWVxefq6++On3zm99M99xzT15EAwBoKhHhudFGG6ULL7wwHX744cXVeff444+nwYMH53MFbZIE5iY2Vffr1y9vqozuwfPPPz8tv/zyxSgADdEpCLAYRVxo6ZDsUlyogiDUnugO3HrrrVP79u2LKwAANCQKgbvttpuCIPCZIk505MiRdeJEY50FgMYpCgIsJjFhjZiLiRMnzom+8Isv1Kb42d599939jAMAfIaIDd1mm22KRwBzF79jlceJxsbruA9AwxQFARaxiAs98MAD861Dhw5zDskGAAAAYP7FusrYsWNTx44dU//+/fOay4wZM4pRAEoUBQEWofpxoRFzEecIAgAAALDgIk40Nl5HQVCcKEDDFAUBFpGYkEZBsDwutF27dsUoAAAAAAsj4kSHDBlSJ0401mMA+JiiIEAzK48LjRgLcaEAAAAAzac8TrS0JiNOFEBREKBZ1Y8LjYKguFAAAACgkrzwwgvptNNOS7NmzSquVL9SnGisx4gTBfiYoiBAM2koLjRiLAAAAAAqyeOPP57ef//9mjvmJNZhSmsy4kQBFAUBmlzEhfbv339OXOhDDz0kLhQAAACoWGPGjEk9e/ZMrVq1Kq7UlliXeeSRR9Kmm26a12v22WefNHXq1GIUoOVQFARoQqW40NiBNmDAgBxTEXEVAAAAAJUoztqL+NBOnToVV2pT+/bt05133pmOO+64dM011+Qi6KhRo4pRgJZBURCgiZTiQidNmpSuuuqqdMEFF4gLBQAAACraSy+9lN577720xhprFFdqV+vWrdMZZ5yRbr755nx+4lZbbZUGDRpUjALUPkVBgIUUcaERPVGKCx07dmyOoQAAAACodM8//3xae+210worrFBcqX277LJLGjduXNp8883TUUcdlddxpk2bVowC1C5FQYCFEHGhffr0yV2C4kIBAACAajJ79uy8lhFRmkss0bKWiuvHifbo0SP/twCoZYqCAAuoFBf67LPPpquvvlpcKAAAAFDx3n///TR69Oh04oknpq233jqdffbZ6Ze//GU68sgj0/33358+/PDD4pm1rzxOdObMmalv377iRIGapigIMJ/qx4WOGTMm9evXrxgFAAAAqDzRFRiRmXvttVc65ZRT0hZbbJELgt/4xjdyp9yOO+6YC4NHHHFEi4vSjDjR8ePH525BcaJALVMUBJgPERca3YHlcaGdOnUqRgEAAAAqT3QHDh06NO22225pzz33TMOGDcuFsBkzZqR11lknrbvuumnXXXdNf/nLX9K9996bfvWrX6V33323ePXCie7Dww47LL366qvFlcoUcaLDhw+vEyc6atSoYhSgNigKAsyjKATG+YGTJk0SFwoAAABUhegQvOqqq3IHYHQCfv/7309LL710nfMEW7VqlZ/boUOHtN1226V//OMfaeLEiflaySOPPJJ22mmntMIKK+Tnxy1eG8///Oc/nwuLRx99dHrhhReKV6T0wQcfpL///e/pqaeeyoXJStemTZs6caJbbbVVOu+884pRgOqnKAjwGcrjQmNyPHbsWHGhAAAAQFV48sknc0zotttum9c2llxyyXw9il5RwItiXkkUxVZaaaX02GOP5SJguY033jjddttt6eSTT05dunTJz4k40n/9619p6tSp6d///nf+s6LwWOoKjD8jCoLRlbjGGmvka9WgFCfavXv3NHDgwBwnGl2VANVOURBgLurHhY4cOTJtsMEGxSgAAABA5YpuwEg7euihh9I222yTVltttWIkpSlTpqQPP/wwx4eWvPPOO2ny5MnFo0+LjdNR+Ntwww3TmmuuWVz92Nprr53XUK677rr8nPDcc8+ll156KXcYlroRq0XEiY4YMWJOnGivXr3EiQJVT1EQoBFRCIzJbHlcaLt27YpRAAAAgMo2ffr09PDDD6fll18+bb755sXVjz377LNp1VVXTcstt1xxJaVp06alRx99NBf8OnbsWFz9xOuvv56eeOKJ1K1btxwjWi4Khi+++GL68pe/nD73uc/la7Gm0qlTpzrdiNWkPE40uiEjTnTQoEHFKED1URQEqKc8LjQmwOJCAQAAgGoU5/hF7OX666+fY0HLjRkzJvXp0ye1bt26uJJyJGisg0Rn35e+9KXi6ieikBjjXbt2/VTn3/33359uvfXWdPDBB+fXRpdixIt+/etfT8suu2zxrOpUHid61FFHiRMFqpaiIECZ+nGhceC2uFAAAACgGkWnW3lkaEkUtKKLr7yDL7oKhw4dmlZeeeV0+OGHN1jIi3MG11prrfw5o3MubhFDOmTIkHTKKaekwYMH56JZFBrj873xxhuf6lCsVqU40VgvGjZsmDhRoCopCgIUGooLbdu2bTEKAAAAUF0iNnTHHXfMZwpOmDChuPpxTOgSSywx5zzBSE0699xz0z333JN+//vf54JXffGc6JaLouEdd9yRC4Bxu/jii9Mtt9ySvvOd7+QCYHzeEEXFKBCuscYa+XEtiCJrrBfFupE4UaAaKQoCLV5Mavv37y8uFAAAAKg5e+65ZzryyCPT2WefnUaPHp1jPZ988sm0+uqr5/MEo/vvoIMOSrfffnvugNt5550/FQ0aSucJxvgJJ5yQjj322Hw7/vjjc6HsxhtvTD/4wQ/y88KSSy6ZOxEb+lzVLtaN6seJRmckQKVTFARatFJc6CWXXCIuFAAAAKg50bF31lln5cJgFP+22GKLXMyLIt4mm2ySDjvssLTbbrul2267LfXu3bvRIl7pPMEuXbp86jnRDRjrK/E5o3DYEtSPE43/drHOBFDJFAWBFqs8LvSqq64SFwoAAADUpKWXXjrtu+++OUb0mmuuST179kwXXXRRGj58eL5F9GdDZwiWi/PzovOvU6dOxZVPvPvuu+m1117LnYdLLbVUcbX2lceJRiRrrDNFnCpApVIUBFqciAuNqNDyuNCIeQAAAACoZdHh99Zbb+WPUdyLIt68iLWU6ADccMMN05prrllc/USMRfzoN77xjbTRRhsVV1uOiBMdN25c7qI8+OCD8zrTjBkzilGAyqEoCLQoEePQp0+f3CUoLhQAAABoaSIGdK211korrLBCceWzvfLKK3lNpXPnznVe9+GHH6aRI0fmswQ33njj9Itf/KLFpjDVjxPt1atXevjhh4tRgMqgKAi0GKW40Jj8RqyDuFAAAACgpXnkkUdyfGhjZweWi6LWzjvvnJ9/33335bWVnXbaKd+++tWv5o3WJ598cvrJT36SLr300rT66qsXr2yZyuNEJ0+enDemixMFKomiIFDz6seFjhkzJsc6AAAAALQkER363//+N8eAzouuXbumW2+9NU2dOjXNnj07TZo0KceE3nbbbfnj008/nW655ZYcGxrnFvKxWHeK42riv584UaCSKAoCNS2iLaI7sDwutKEDsQEAAABqXXQHbr311jnqkuYVXZTDhw+vEyca61QAi5OiIFCzohAYMQ2xi01cKAAAANDSxbrI7rvvbn1kEakfJxob1wcPHlyMAix6ioJAzSmPC+3QoUOOaxAXCgAAAMDiUIoTjWNtDjnkEHGiwGKjKAjUlPpxoSNHjsxxDQAAAACwuMT6VBxrc8QRR4gTBRYbRUGgZkQhMAqC5XGh7dq1K0YBAAAAYPGJ2Nbzzz+/TpxorGcBLCqKgkDVK48LjRgGcaEAAAAAVKryONHSmpY4UWBRUBQEqlp5XOgBBxyQYxjEhQIAAABQyUpxonH8TaxriRMFFgVFQaBqlceFXnLJJfkWMQwAAAAAUOliHSuOvxEnCiwqioJA1Ym40P79+9eJC40uQQAAAACoNg3FiU6fPr0YBWg6ioJAVSnFhUZXoLhQAAAAAGpBKU401ruiW7B3797iRIEmpygIVI3yuNAhQ4aICwUAAACgZsQ6V+mInClTpogTBZqcoiBQ8SIutBSdUIoLjfsAAAAAUGuiW3DMmDF14kRjfQxgYSkKAhUtYhL69OmTd0WJCwUAAACgJagfJxpdgw8//HAxCrBgFAWBilWa8Dz77LNzohPEhQIAAADQEpTHicZxOqWN8wALSlEQqDj140IjLiF2RQEAAABASxPrYnGcTnQPihMFFoaiIFBRIi60dIhyKS60U6dOxSgAAAAAtDxREBw5cmSdONFYRwOYH4qCQMWICU3EIEQcgrhQAAAAAPhEeZzoxIkTc2Ew7gPMK0VBYLErjwvt0KFDjkMQFwoAAAAAn1ZK11p33XVT//7903777ZfeeeedYhSgcYqCwGJVPy40YhAiDgEAAAAAaFiXLl3yxvrYZH/ZZZelHj16pAkTJhSjAA1TFAQWm1L+eXlcaLt27YpRAAAAAKAxESc6ZMiQdOmll+b1td69e+cCIUBjFAWBRa48LrRjx47iQgEAAABgAX3ve99LY8aMycfyRJSoOFGgMYqCwCJVPy408s/FhQIAAADAguvcuXMuDEaBMLoFo2tQnChQn6IgsMg0FBcaMQcAAAAAwMJZZpllcpRo3J5++mlxosCnKAoCzS7iQvv37y8uFAAAAACaWUNxorE+B6AoCDSrUlxodAWKCwUAAACA5lc/TnSTTTYRJwooCgLNpzwudMiQIeJCAQAAAGARKY8Tff7558WJAoqCQNOLOIKICi2PC437AAAAAMCiFd2C48ePrxMn+s477xSjQEuiKAg0qYgL7dOnT+4SFBcKAAAAAItfFATL40Sja/CRRx4pRoGWQlEQaDKluNBnn302R4WKCwUAAACAylAeJ/rcc8/lcwbFiULLoigILLT6caGx6yi6BAEAAACAyhLdgg8++GBexyvFic6cObMYBWqZoiCwUCIuNLoDy+NCO3XqVIwCAAAAAJUm4kRHjx49J060e/fuacKECcUoUKsUBYEFFoXAOD9w0qRJ4kIBAAAAoIqUx4lOmTIlnzMY94HapSgIzLfyuNDYVTR27FhxoQAAAABQhUpxorHOt//++4sThRqmKAjMl/pxoSNHjkwbbLBBMQoAAAAAVJsoCI4ZMyYXBMWJQu1SFATmWRQCoyBYHhfarl27YhQAAAAAqFYRJzp06NA6caJRIARqh6Ig8JnK40I7duwoLhQAAAAAalR5nGh0DooThdqhKAjMVf240AceeEBcKAAAAADUsFKcaBQIxYlC7VAUBBrVUFxo27Zti1EAAAAAoFZFnGhEiYoThdqhKAh8SsSF9u/fX1woAAAAALRwDcWJzpgxoxgFqomiIFBHKS40ugLFhQIAAAAApTjRww8/PHcL9ujRQ5woVCFFQWCOUlzoxIkT05AhQ8SFAgAAAABZxIleeOGF6brrrkuvvPKKOFGoQoqCQHrnnXdyVGgpLjS6A+M+AAAAAEC5PffcM40fP75OnOjMmTOLUaCSKQpCCxdt/ptssknuEox88CgIdunSpRgFAAAAAKirfpxo9+7d0yOPPFKMApVKURBasHjDjjb/iAuNqNBLL71UXCgAAAAA8JnK40SnTJmSGw/EiUJlUxSEFijiQkut/bGrZ/To0emAAw4oRgEAAAAA5k3EiT744IP5WCJxolDZFAWhhYm40NIhwBEXGm3+G2+8cTEKAAAAADB/So0H5XGisQ4JVBZFQWhB4g052viffvrpHBUat2jzBwAAAABYGPXjRKMxIdYfgcqhKAgtQHlc6Prrr5+7A6NLEAAAAACgKZXiRKN7cP/99xcnChVEURBqXP240Gjj79y5czEKAAAAANC0oiAYjQkDBgwQJwoVRFEQali84UZBsDwutG3btsUoAAAAAEDziDjRCy64YE6caBxrNHjw4GIUWBwUBaEGlceFlnbliAsFAAAAABa1UpxoHGt0yCGHpL322kucKCwmioJQY+rHhUZBUFwoAAAAALC4lBoXDj/88HT99deLE4XFRFEQakhDcaHRpg8AAAAAsDjFOuWFF14oThQWI0VBqAERF7r//vuLCwUAAAAAKlopTnSjjTaaEyc6Y8aMYhRoToqCUOVKcaHRFSguFAAAAACodNHYcP/998+JE+3Ro4c4UVgEFAWhipXiQp977rk0dOhQcaEAAAAAQFVYaqml5sSJvvLKK+JEYRFQFIQqFHGhERVaiguNdvu4DwAAAABQTSJOdPz48XXiRGfOnFmMAk1JURCqTLTRx66Z6BIsxYVGYRAAAAAAoBrVjxPt3r17euSRR4pRoKkoCkIVKcWFTpo0KUeFigsFAAAAAGpBeZzolClT0qabbipOFJqYoiBUgfpxodFOH12CAAAAAAC1JOJE47ikzp07ixOFJqYoCBUu4kKjO7A8LrRjx47FKAAAAABAbYnGiPvuu69OnGiskwILR1EQKlgUAuP8wOeee05cKAAAAADQYtSPE4110j/96U/FKLAgFAWhApXHha6//vq5XV5cKAAAAADQ0pTiRDfaaKN06KGHihOFhaAoCBWmflzo6NGjc7s8AAAAAEBLFOuj999/fxowYIA4UVgIioJQQaIQGAXB8rjQtm3bFqMAAAAAAC1TxIlecMEFdeJEBw8eXIwC80JRECpAeVxo7HoRFwoAAAAA8GnlcaKHHHKIOFGYD4qCsJjVjwsdM2aMuFAAAAAAgEaU4kQPP/xwcaIwHxQFYTFqKC50mWWWKUYBAAAAAGhIxIleeOGFOU502rRp4kRhHigKwmIQcaH777+/uFAAAAAAgIUQcaIPPfRQnTjRGTNmFKNAOUVBWMRKcaHRFSguFAAAAABg4Xzxi1+sEyfao0cPcaLQAEVBWITK40KHDh0qLhQAAAAAoAmUx4m+/vrr4kShAYqCsAhEXGhEhZbHhcZ9AAAAAACaTsSJxvpreZzozJkzi1Fo2RQFoZlFm3rsSokuQXGhAAAAAADNq36caPfu3fO6LLR0ioLQjEpxoZMmTcpRoeJCAQAAAACaX3mc6LRp09IWW2yRzjvvvGIUWiZFQWgG9eNCx48fn7sEAQAAAABYdCJO9KGHHkrdunVLAwcOFCdKi6YoCE0s4kKjOzC6BKM9PdrSO3bsWIwCAAAAALAoRZzofffdVydOdOzYscUotByKgtCEohAY5wc+99xzuS092tPFhQIAAAAALF7140Q333zzdO655xaj0DIoCkITKI8LXX/99dODDz6Y29IBAAAAAKgcpTjRrl27pqOPPlqcKC2KoiAspPpxoaNHj87nCAIAAAAAUHkiTvT+++9PAwYMECdKi6IoCAshCoFRECyPC23btm0xCgAAAABAJYo40QsuuKBOnOh5551XjEJtUhSEBRDt5KW40OgKFBcKAAAAAFB9yuNEBw4cKE6UmqYoCPMp4kKjnbwUFzpmzBhxoQAAAAAAVaoUJ3rsscemG264QZwoNUtREOZDKS50ypQpc+JCl1lmmWIUAAAAAIBqFHGiZ555Zrr11lvFiVKzFAVhHkS7+P777y8uFAAAAACghu24446fihOdMWNGMQrVTVEQPkMpLvTSSy8VFwoAAAAAUOPqx4n26NFDnCg1QVEQ5qI8LvTaa68VFwoAAAAA0AKUx4m+/vrr4kSpCYqC0ICIC42o0PK40GgTBwAAAACg5Yg40VgfLo8TjfVjqEaKglBPxIXGro/oEhQXCgAAAADQskWc6AMPPJCOO+64HCfauXPn/BiqjaIglCnFhU6aNCldd9114kIBAAAAAEitW7dOZ5xxRrr55ptzp2Dfvn3ToEGDilGoDoqC8JH6caHjx49Pe+65ZzEKAAAAAAAp7bLLLnn9eIsttkhHHXVU2meffdK0adOKUahsioK0eBEX2r179zpxoR07dixGAQAAAADgE+3bt0933HFHjhO95pprUo8ePdKoUaOKUahcioK0aFEI3GSTTdKUKVPEhQIAAAAAME/qx4lutdVW6bzzzitGoTIpCtIilceFrr/++unBBx8UFwoAAAAAwHwpxYluvvnmaeDAgeJEqWiKgrQ49eNCR48enc8RBAAAAACA+RVxonfeeac4USqeoiAtShQCe/fuXScutG3btsUoAAAAAADMv4biRAcNGlSMQmVQFKRFKI8Lja5AcaEAAAAAADS18jjRo446SpwoFUVRkJpXPy50zJgx4kIBAAAAAGgW4kSpVIqC1LSG4kKXWWaZYhQAAAAAAJqeOFEqkaIgNSn+kd1///1zXGjnzp3FhQIAAAAAsMg1FCc6derUYhQWLUVBak4pLvTSSy/NcaH333+/uFAAAAAAABaL+nGiPXv2FCfKYqEoSE0pjwu99tprc1zoUkstVYwCAAAAAMCiVx4nOmvWLHGiLBaKgtSEiAuNqNDyuNC99tqrGAUAAAAAgMUv4kTHjRtXJ0502rRpxSg0L0VBql7Ehfbo0SN3CYoLBQAAAACgktWPE4317QceeKAYheajKEhVGzx4cNpkk03ywazXXXeduFAAAAAAACpeeZxoJOH17dtXnCjNTlGQqhT/SEY86CGHHJI22mijHBe65557FqMAAAAAAFD5Ik50/PjxaYstthAnSrNTFKTqRFxo9+7d0/XXXz8nLjTarQEAAAAAoNrE+vYdd9xRJ0501KhRxSg0HUVBqkrEhW666aZ5p4S4UAAAAAAAakH9ONGtttoqnXfeecUoNA1FQapCeVzol7/85fTQQw+JCwUAAAAAoKaU4kQ333zzNHDgQHGiNClFQSre2LFjc1zoDTfckI499th03333pS9+8YvFKAAAAAAA1I6IE73zzjvFidLkFAWpaNEeHTsiYifErbfems4888zUpk2bYhQAAAAAAGpPQ3GigwYNKkZhwSgKUpFKcaHRHt21a9ccF7rjjjsWowAAAAAAUPvK40SPOuoocaIsFEVBKk79uND7779fXCgAAAAAAC2SOFGaiqIgFaWhuNClllqqGAUAAAAAgJZHnChNQVGQihD/iO299945LnSzzTYTFwoAAAAAAPU0FCc6derUYhTmTlGQxa4UF3r99dfnuNC7775bXCgAAAAAADSgfpxoz549xYkyTxQFWazK40JvueWWHBcabdAAAAAAAEDDyuNEZ82aJU6UeaIoyGLx+uuvp7322qtOXOhOO+1UjAIAAAAAAJ8l4kTHjRtXJ040mnCgIYqCLHKluNAbbrhBXCgAAAAAACyE+nGiPXr0SA888EAxCp9QFGSRKsWFzpgxI916663iQgGgGcVGnOnTpxeP5k1088cOQwCAuXn44YfTlClTikfzZubMmXl+AgA0vfI40XjP7du3rzhRPkVRkEWiflzogw8+mHbcccdiFABoaldffXXq3bt3WnHFFdNaa62V9ttvv/Tiiy8Wo3U99dRTae+9906rr756WnnllVOvXr3SvffeW4wCANT1+OOPp27duqU11lgjrbTSSmm33XbLRcKGvPbaa+nggw/OHQzLL798np9cdNFFxSgA0NQiTnT8+PG5W7AUJxpNOhBazf5IcR+aRewCjILgf//73/Szn/0snX766boDAWARiOiQ+++/P40aNSr9/e9/T23btk2/+MUv0gYbbJC++c1vpnvuuSfddNNN6ZxzzsnP79evX16o22KLLfIB5QAAjYlIsn//+99p9OjR6cYbb0xvv/12OvTQQ9MPf/jD1LNnz3ThhRemWHI64YQTcnLBzjvvnDcJ9+nTJ98HAJrXe++9l0466aR01llnpY4dO6bLLrssbbrppsUoLZWiIM0mvrWiPTnODYydg0OHDtUdCACLSeze79+/f96s893vfjf99a9/zUXAYcOGpe222y798Y9/TB06dCieDQAw71566aU0YMCAdN111+XuhFtuuWXOfGOjjTZKQ4YMyQVBAGDRi/fl733vezlSNAqE0T1Iy6UoSLOIuNBvf/vb6Z///Gfacsst84JjRJIBAIvXtttum+6+++7iUcqxoXEIOQDAworC4G9/+9viUUpdunRpNFYUAFh0nn/++RwjGklCsUE4NuxErDctj6IgTa5+XOhpp52WllxyyWIUAFicXn311bxjP873WW+99fJC3XLLLVeMAgAsnDibeNy4cWnZZZdNjzzySFp33XWLEQBgcRInSlii+AgLLerL5513Xtp8883zPzC33nprOvPMMxUEAaCCrLrqqjnWK8TuwFiwAwBoKpEaFOJ8YgVBAKgcbdq0SWeccUa6+eab09SpU/N7dRz/Na9efvnldOeddxaPqFaKgjQq/nH4yU9+Ujyau4gLjYPCBw4cmM8JeOihh5wfCAAVqnfv3nM+tmrVKt8HAGgK5fMMAKDyxEbh8ePHp+7du+fzBSNWdMaMGcVo4/bdd9909NFHF4+oVoqCNGr06NHp17/+9WdW/yMutFu3bvl5p5xySj6nyPmBAFC59txzz/TNb34z7bDDDsUVAICmEelB3/nOd/INAKhM7du3TyNGjEjHHXdcuuaaa3L8d5w32Jjbb789DR8+PB1zzDHFFaqVMwVp1BtvvJHPGvrSl76U7rvvvk91EsS3TrQXx7mBK6+8cho2bFjacssti1EAAAAAAKCS3XLLLel73/temjlzZjr77LPTkUceWYx8omvXrvnIsMcff7y4QrXSKUijPve5z6Wf/vSnaeTIkWnKlCnF1Y9FXGi0GZfHhSoIAgAAAABA9WgoTnT69OnFaEqvvfZa+s9//pN222234grVTFGQudppp53yx+eeey5/DP/+979zXOgdd9yRTj31VHGhAAAAAABQperHicbZwKU40TfffDN/XGWVVfJHqpuiIHPVrl27/DGKghEXetppp6Vtttkmtwrfdddd6Re/+EVq3bp1fg4AAAAAAFB92rRpk84444x08803p2nTpqWtttoqHx/24Ycf5vG2bdvmj1Q3RUHm6r///W/+GO3CO++8czrxxBPT9ttvn+NC4x8FAAAAAACgNkSc6Lhx4+bEiR5//PFp1VVXTffee2/xDKpZq9nR/gWNOProo9O5556b1lprrTR58uT0y1/+Mp1wwgmpVatWxTMAAAAAAIBaEmmBJ510UjrrrLPS8ssvn5ZYYon0+uuvF6NUK52CNOrRRx9NF110Ub4fucE//elP0957760gCAAAAAAANeill15Kv/rVr1K3bt3SmWeemY8ViyTBN954Ix1yyCHFs6hWOgVpUPyA9+jRI02aNKm48omePXum73znO+lHP/rRnDMHAQAAAACA6nXjjTemPfbYI9//0pe+lPr165fPFHzqqafS7bffnusGESd6+umn5+dQfRQFadCf/vSndOihh6YDDjggF/822mij9Pzzz6frrrsunXfeeem1115L2223XT50dJlllileBQAAAAAAVJtY699tt93Smmuumf7whz+k3XffvRj5WBQETz755Hzm4I477lhcpdooCtKgt956Kz377LOpc+fOxZW6TjnllJwnvP3226ebbrpJYRAAAAAAAKrQlClT0hprrJHWXnvtNGLEiLTuuusWI9QaRUEW2LBhw9L++++fLr/88rTnnnsWVwEAAAAAgGoSkaD77bdfat++fXGFWqQoyEJ5+umnU4cOHYpHAAAAAAAAVCJFQQAAAAAAAKhxSxQfAQAAAAAAgBqlKAgAAAAAAAA1TlEQAAAAAAAAapyiIAAAAAAAANQ4RUEAAAAAAACocYqCAAAAAAAAUONazf5IcZ8mNHXq1PS3v/0trbzyyukLX/hCcbWuDz74IC2//PKpV69eqXXr1sXVlN599910//33F4/qmjVrVlp22WXTNttsU1xJ6e23386fa7nlliuupPT++++nGTNm5Oe2adOmuAoA1IJ47495RkzjOnToUFxt2Oabb56WXnrp4tHH84+xY8fmeUL5/CP873//y5971113nTP23nvv5WsrrLBCatWqVb724YcfpjfffDMts8wyqW3btvkaAFC9FuXcYubMmfl++RyitIZRf24RX8/06dPz/fK5CABQPRblPCMe16+VlNYwllpqqTrXQ8xL4vOsuOKKaYklWkYPnaJgMxk5cmTacccd8zfr3Jx66qnphBNOqDOxfeaZZ9J3vvOd9MADDxRX6ho8eHA66KCD8g/RlVdema644or0/PPPp3333TcddthhaejQoemaa67Jn/OFF15Ihx56aPrxj3+cllxyyeIzAADVbOLEienb3/52nhjPzQ9+8IN07rnn1llce/3119OBBx6YbrjhhuJKXSeeeGL6v//7vzxvGD58ePrNb36TXn311bTJJpvkecvtt9+eLrroovzcmGfssssu6ZRTTskbkQCA6rQo5haxWPdZaxixHvLDH/4wHXXUUWn06NHp9NNPzwXDmIusu+666fzzz09rr7128ZkBgGoQ84x43x8zZkxxpWExz4g1iHbt2hVXPp5n9O/fP11//fXFlbpinnHSSSflecZnrWE899xzaeedd06nnXZa+u9//5vXMuK5pQ1Lv/vd71LXrl3zc2taFAVpXvfcc08UXvNts802m/3YY48VI42bPn367AMOOCC/Zqeddpr90eR69muvvTb7ww8/LJ4xe/azzz47+5hjjpn9xhtvzP7oG3j2OuusM3ufffaZ/Y9//GPO8/7yl7/MXnPNNWd/9AOXHwMAtSXmFR9NWvOcId7zR4wYUWe+0JD3339/9vHHH59f89FEefbQoUNnv/jii7M/+OCD4hmzZ0+bNm32kUceOfujifLsyy67bPYKK6wwu1+/frOHDBky+3//+19+TmmOE/MUAKA2NNfc4qWXXpr985//fPabb775mWsYp59++uzTTjtt9syZM/P1xx9/fHa3bt1mn3rqqZ/5tQAAlSvmGV26dGnyeUbMGWKeUVrDWH755RtdwzjppJNm/+xnP5v9yiuv5Ouvvvrq7F122WX2D37wg9lvvfVWvlbLnCm4CMQu+pLu3bun9u3bF48aFrvgrrrqqnTvvfemSy+9NO+223333dPnP//5Oh2FDz/8cOrRo0feoRcV82nTpqW9994779gvPS8q3C+//HJ655138mMAoLZEZPmkSZPy/W7duqUvfelLdeYL9X00/0v//Oc/09VXX53OOeecdNddd6X99tsvx52XR2XETv2PJuj5+kcT5Rzdtemmm6b9999/TvpAKZ7js5IRAIDq0VxzizgmpXPnzjki9LPWMF588cXcLVhKIojXxP0YiyNXAIDq1FzzjAkTJuQI0NIaRqxTNLaG8eCDD6ajjz46rbrqqvlxKVY0ugdbQh1FUbCZRX5tfEOWRBGvvP21vvhmjZbXKApGrMb3vve9Ohm65eKswC233DIv0j322GNpzz33zPm55SKSIxb0YgINANSeRx55ZE5RLuYZK620Ur7fkFhEu/DCC3N0+e9///t0zDHHNBr7GZn6EasRE+Innngin2f83e9+d84kOsSEOcQZyQBAbWiuuUWshczrGsb3v//9Op/ntddeS88++2zq2LGj9Q0AqGLNNc/48MMP53kNI4qKq6++er4f3njjjfTSSy+lTp06Nfr5a4miYDOLyW509IVYMNt4443z/YZEpm1MfOM1cfBm/FDMTXyTr7POOvkb9umnn05f/vKX6yzKxQ9XTLSj4h7PAwAWnccff7y413xishvzjNg5F2L3ffmEt1zsxo+dcLGr7rrrrkvbb7/9XHfj9enTJ88hYid/TKg32mijtPLKKxejH298euihh/JzNtxww+IqANDcnnrqqeJe02vOuUVpDSPWPmIO0dAaRsyf4s9cb731iqsfizOI4ryfFnHODwAsRvE+3VxK84ySWGeYl3nGtddeO89rGNEl+J///KfRNYwuXbrksXJPPvlkuu+++/IcJBqxap2iYDOL6ND4pgq9evX61MQ2xGT7zjvvTPvss0/+5o7DMMu/YT9LfJPHLwW9e/curnwsdtGNHDkyfeUrX8nRowDAojF69Oi80BXv780pJsmPPvpovr/BBhvkyW1DIhojdsh97nOfS3/5y1/ma7NQzCfGjh2bP3f5zvwpU6bkeUZMvD8rGh0AaBqvvvpq3oxz8cUXF1ea1qKYW0ThL2JAY42kXMwt4s+OPzPiv0pmzZqV5xybbbbZpxbxAICmFZGbAwcOnLNBqCkt6Dxj3XXXLUY+W3QDRr0kNhKVr2GUmrdiHhWpBCVRLBwxYkSOMY31jZZAUbCZRT5uaRdf/ep0KLXA/vSnP03nnntuOuywwxqNC23Ie++9lxfqGio4xkJk7KTbcccdc/tsVNUjsxcAaF6RYR/iPbo5xYJadPGFiLn44he/mO+XxPt/5O4fcMABqX///unUU0+d76jPUaNG5Y+x465c7Ni/++678zwjzjeOxbrm3FEIAKQ5Z9+MGzcuf2xqzT23mNsaRmkjUvfu3evs0o91lQceeCBtvvnmabXVVsvnHkf0GADQ9GI9o7nWMhbnGkapeSu6AVdYYYXiasqdhXHucWw+iuJjbMC69957i9HapCjYjKLKHAtkJfWr0/VbYKOjb24tsA2JCnfssouCY3kO7ptvvplbXqO6HVX3+Oa+4YYb5hyqCQA0n7XWWisfUh3nCjfH7rqSKMzFpDrEPKN8Yvv222+nX/3qV+mCCy5IQ4YMyYkE5Ydwz4v4HDFhj4W78m7AWNCLgmDsIIy489jBP2zYsGIUAGhOscgVc4zm0Nxzi9J5gvXXMEL82WussUZerCv3z3/+M+/632mnnfKfd9NNN6W33nqrGAUAmlK8D48fP7541LQW1xpGiPlHNG/17NmzzueNpKc77rgjJzjGeYLRNRjpBbVMUbAZRZfexIkT8/2oaJdXp6OQt+++++YFtJ///Ofz1QJbrrHzBEuHY8YPV8Ru/OMf/0jbbrttnQgOAKD5RAzGjTfemF577bXiStOKwlxph12IeUYpi3/y5Mnphz/8YTrxxBPTUUcdlSe9C6Kx8wRjoh277OLvGAt6sYsuYsPEiAJA84v35XvuuafOPKApLIq5RfkaRvlCYJwnGIt18WfWjyKNtZVSZ2GspcQO/o033rgYBQCaUswz4r33+uuvL640jYbmGaUGpphn/OAHP8jzjCOPPLLJ1zBK5wnGnxnxoeViDlKKMo1iYKQTbLXVVsVobVIUbEalw7NDqTpdaoGNA7Zjt1t08EX1eUG7CGJBLn5o+vbtW1z5WHQo7L777vkXhWOOOSb/0O26667FKADQ3OL9NzbpRER4c4hiY2n3XkxgY3Et5hNRoIt5xtChQ/NYzAUirnxBxDwlory22GKLHBFaEot4e+21V44UiUl7TJoj2mN+Ew8AgPn34x//OH+M996mtCjmFo2tYUTqQHQDbrLJJmmllVYqrn5su+22y+O//vWv06BBg9KAAQNSu3btilEAoCnF/CLei6M4FxuCm8pnzTMuvfTSPDZ8+PAmWcMoT2yMv0dsTIqko7XXXru4+rGIDY2kgj/96U/p2GOPzX//Ulx7rWr10X/45su0auGiO2DPPffM39xxOOdJJ52U21+jGBhRoWeeeWZ+3g477JAPzCydPzQ/3n///fxNHRFl9Rfi4s+NaI7Y2RfjAMCiFTvd/vjHP6aDDz44L2I15QJWFOS+/vWv5+iNfv36pd///vfp5ptvzgtmMf8YPHhwHouJdmxIqh/FNS9iM1Psmos0goZiO2L3YOy4iyKhgiAALDpnnHFGOv744/Mi2mWXXZY+//nPFyMLblHMLRpbwyitX8QmpPLzBEviNe+8806ekzgWBQCaV7z/x5wgzvm98sorcxFvYS3uNYxYv4g6SfmG55JoqCq9rqF5SK1RFGwmsUAWO+djoh6iWyCq0fFNd9ppp+Vr+++/f86rDVEJ/973vpfvV5r4YYoKPQAw/2Kie9VVV+UorJjobrPNNvnjwrroootyjFeIOUXs5Is4rnPOOScf1n3EEUekSy65JI9HLv/PfvazORFglSY6DZtyByIAtASxSPeHP/wh72bfe++9c0fdLrvsUudokflRS3OL+iJ2NDoUAYB5E+mGZ511Vu7Wj7pFRGpGUW/NNdcsnjF/PmueEUkAf/7zn/N4tc0zqk4UBWl6b7zxxux+/fpFwTXfPpqUzz7//PNnv/POO3n8ww8/nP3rX/96zvgBBxwwe+bMmXms0sTX3KpVqzlfq5ubm5ubm9vC3U466aTiXXbBvPvuu7MHDhxY53Med9xxs6dPn148Y/bsa665Zs7YDjvsMPull14qRipPx44d6/xd3Nzc3Nzc3BbsFmsLC6LW5hb17b///nX+bm5ubm5ubm7zf+vdu3fxzjp/GptnvPnmm8UzqnueUW10CjaThx9+OLfBPvXUU7kzILoEItajPB5jwoQJaZ999smHaUeFPQ7v3HTTTYvRyqFTEAAW3IUXXpg+mtzm+cAee+yROwXjPL6FEekD3/3ud9Pdd9+duwF+85vfpAMOOKBOnFbEbpSnEsTXEF0ElUinIADMv1Kn4GqrrZbnFjHH2HXXXReoU7DW5hb16RQEgPlT6hSM2kDUObbccssF7hSMeUZ0G9511115nnHuueem73//+zUzz6g2ioLNJCbn3/72t/P9OE8wzg+sn0cbB2ZGG+z555+fH0fcaJw7qC0WAGrDcccdlyfRBx10UH6/b6ozBUeOHJl23HHHnHkfk/M4EPtzn/tcMfqxmOLFRDsizEMs7MXZxs4ZBoDqF8XAH/3oR012pqC5BQBQcv/996evfOUr+UzBYcOGpfXXX78YWTAxz9hpp53y+cExz4jzA1dcccVi9GMNzTNik/Wyyy6bH9N06p62SJOI8wQfeuih4lHKPzwNHVC59NJLp913333OLr5//vOf6fnnn8/3AYDq9sQTT+SCYOyGiwlvUxUEQ8wzYtEuxOHbK6ywQr5fLtIJYtIdh3SH2267LacUAADVberUqennP/952nzzzdMtt9yy0AXBYG4BAJQceOCBafXVV0/33nvvQhcEw/zMMzbaaKP82Dyj+SgKNoPXX389jR8/Pt+Pdtr4Rm9Mz5490w477JDvR3TWjTfemKviAEB1i0l07JyPnW5NKWI2S/OMEHOJJZZoeErXsWPH9NWvfjXfjyiOq6++OicVAADVK3bQv/HGG+mSSy4priwccwsAoOScc87Jm5wjDaBt27bF1QVXmmeUah4xzyg/Yq1c/XnGVVddZZ7RDBQFm0Fk5D799NP5fhQE27dvn+83ZKWVVsqZ/6UfhJtuuknOPQBUuZgLRNxGnO/TFLv3y8Xmo5ighy5duqROnTrl+w2pn0rwj3/8I02cODHfBwCq09ChQ1Pfvn3ThhtuWFxZOOYWAMB1112XU47+9re/5aSjb3zjG8XIwpnfeUacW2ie0bwUBZvBf/7zn/TUU0/l+/GNXj8ft77tttsubbbZZvl+HKQZi4gAQPV65ZVX8seNN9640R1wC+rZZ59NY8eOzfdjMfCzDvkuTyV47LHHcgSHVAIAqE7RIRhijtFUzC0AgFtvvTUdffTRacqUKalXr17F1YVnnlF5FAWb2HvvvTfnmzx069atwfMEy33hC1+YUxQMN9xwQz50EwCoTu+8807+2JQT6ZJRo0Z9ZhZ/uUgl2GKLLYpHH6cSRCcjAFB9Ys0hxIJZUzG3AACOP/74NGvWrNzZ15RrGU0xz3jxxReLRzSF1r/8SHGfBfTCCy+kIUOGpOHDh+czAf/yl7/krNwQ38SPP/54PpQz2l7XWGONfD28//77adiwYTkb9+9//3s+LDzEwZsRP/rMM8/kKNGooDeW5w8AVJ611147T6J33nnn4sqCmzZtWo4Ju/POO9Mtt9ySLr300jlzhphnPPfcc3meETn75QeAx066SCC4/PLLcwxIabFu0qRJ+bDu559/PicbfOlLX0pLLbVUHgMAKtuyyy6b+vTpk/bZZ5/iyvwztwAA6vvc5z6X6xFRmxgwYEBOQFwQzTHPePTRR80zmlCrj/5j671cSBdeeGE64ogjikcNi4Jg5PHG+YElUUzcd9998w9BY0488cR00kknpdatWxdXAICW5Oabb0677bZb8ahxcQh4TNxLInXg0EMPTVdeeWVx5dMOOOCA/LrllluuuAIA1DpzCwCgIRFTHpubo7vvD3/4Q37fn18xz4hzAT+r7LSg84yoxcQmKRacoiDz5OSTT04bbLBB/kdh5ZVXLq4CAAAAAAC1IBIQ+/Xrl/7xj3/kdIKddtopX48y0oorrpjPHaS6KQrymd566620+uqrp5kzZ+bHcf5hdDxGgXCTTTbJ1wAAAAAAgOr24YcfprPOOisfkzZx4sT0wQcf5OvRARjHp1HdFAWZZ7fffnvOAY5dAk888US+ttpqq+Xi4Ne+9rW044475lxgAAAAAACgOsRZgLHuH/Gft912W3r99dfz9SWWWCKfNxhJghHv2aZNm3yd6qUoyAKJA0Fvuumm/A/FXXfdlduKw1e+8pVcINxll11Sjx498jUAAICS0u8Obdu2zR+bUqSbxEKFxQoAAJi7cePGzSkExjmC0SEY5wLvsMMOafvtt8/dgjG/fuSRR9Jaa61VvIpqpyhIk7j11lvzPyDRSRgtxWHNNdes00W4wgor5OtQi+JN880338wfF9Tyyy9vAQsAqGmx8PDb3/42/d///V9aZ511iqtN55577kkXX3xxOuOMMyxcAABAmSjw/fOf/8xFwFjHf/nll/P1DTbYIB8XFuv422yzTVpqqaXS+eefn4488sh07bXXpr322is/j9qgKEiTi6JgFAjjFr+Uv/POO/l637598z8scevSpUu+BrXi3nvvzR2yM2bMKK7MnygIxptyHOALANSm6JB78MEH07vvvltc+Vic3/3lL3+5eDR377//fnrooYc+NeeISJ+YY7du3bq4Unkee+yxdPjhh6ezzz479e7du7j6aa+99lrejTw36623XoNFxfj19m9/+1saNmxY+v3vf5//2wIADYv3zenTp+f5xYJq165ds3T/A03j8ccfn9MNOGLEiPS///0vLb300nmtPgqBu+++e55b17fHHnuk4cOHz4kRpXYoCtKsYuHjX//615wuwmeffTZfj127pZjRr371q7ktGapV/DN6+umnp8GDB+dd77F7pvx8zXPPPTcdffTRabPNNsuLVKU32njdSy+9lH7xi1+k//znP+mKK65IHTt2zGMAQO155pln0s9//vN8XsdTTz2VI/nDYYcdln7961+nZZZZJj+em9iI9N3vfnfOa2NDUSRyRLzPMcccU7FFwVdffTX94Ac/yPP/gw8+OLVq1aoY+bQbbrgh/e53v5tTRC0VQON4glVXXTXfP+GEE/JCRkOi6Brj8TEKkBYqAaBhTzzxRPrWt76VNxwtqFjLiM8BVIb33ntvznp8FALjd5Cw9tprz2nYifX4KOg3JtYs43eMeO6VV15ZXKVWLFF8hGYRv4DHjoOICIp/gGJnwm9+85u8E/pPf/pT2nvvvXOH1HbbbZf+3//7f+nRRx8tXgnVY+rUqWnkyJFp0KBBqX///nUKgrGYFZPs0L1797TGGmvk+yEWw6JA/p3vfCdf//znP1+MAAC1aP3118+/VMcv5zEPLi2gvfLKK5/qHmxI7NK9/PLL85wi/PjHP0533313uu2229LPfvazii0IxqJCfN0ffPBB3ok8t4JgiF3J8XeKRcZevXrlayeeeGI+5ySux62xgmCInc8HHnhgTi2JJAYAoGFjxozJ63VnnnlmjhGMI1HifTtusUknxPFADzzwwJzrcYsNTscff3xe02uOOHBg/rz44ovpD3/4Q/r617+e1yVjI15ssouf31/96ld5o90LL7yQLrroojzXnltBMMS8/a233korr7xycYVaoijIIrXhhhumgQMHpttvvz1nGMcEI3YMP/300+mnP/1p6ty5c55M/OhHP0p///vf06xZs4pXQuWKol/sWt92222LK5+IRb7oAgydOnVqcKd6vBHH971d7ADQMsQ5xJGgsdVWW+UduG+88Ube0Ts3sQAX53l07dp1TgFxk002yQWwSjdp0qSclhAFwfmJ84zFydLmqogbXXLJJfP9efGlL30p7bnnnukvf/mLyCMAaEBsYo4owVNPPTVvLorNyqWNOzHvePjhh/P9bt265Y1N5aLoEJub4v15lVVWKa4Ci0oU7SLa87jjjstHCEQXYKynR9NCbD6MDXmR1PHvf/87J5XEz/H8iHl3NDI8//zzxRVqiaIgi82yyy6bFwZiF0PEH8W5Ieecc07q0KFDvhZjESsa7cwRv1haEIBKEhPlu+66K+/EiUW9+v773//momDsntt0002Lq3XFQlm8ec9LZBgAUP3il+vYDBQLabHIFr+wx477uYnEjdjJH7/Qx4a6DTbYoGrO6Y74ojhnfMsttyyuzJsJEybkwmD8nWNz4fyIrsmtt9463XHHHXnBEwCoK+YjkXzUr1+/T3XxxzmDpUjRSPtqaL0jNiZF0UDqESwace720KFDc0E+ivEx142o/KWWWiofTXTfffelKVOmpEsvvTTtu+++dZLMFkSs0cdcnNqjKEjFiC7Bn/zkJ3nRIM4NiZ3Qcd7IY489ls9ji92+sWgyYMCAnIkcO5pgcYud/VH4K0Vb1RcxV/H9XNq105CYiNffdQcA1K4o8K277ro5KSDSBmLRLX7Jb0zMe2O37wEHHJALgnEeYSQQfPGLXyyeUbmiK/LWW2/NXY3z8/VG52TEHIXojvzCF76Q78+PWMSMOdqdd96Zi5IAwCciOnTzzTdv8D128uTJeb4Revbsmdq0aZPvl4u5SxQLpR5B84hGhPg5PeWUU9Jmm22WEze+//3vp1tuuSWnlQ0ePDgX7caNG5c7fuPneYklmq7cE12IES1M7VEUpCJFh+Bee+2Vzx2MgksslMQ/QrGQEOcTxjmFkWkc+cjnn39+mjhxYvFKWLRWXHHF3OHavn374sonys8TjKLgaqutlu/Xd9RRR+XvdwCg9kXUT3TA9enTJydnxDkfIea8jYlz8aJTbr311suvDVEoa2jXfqWJRJCYy2+00UafeXZJuehQiM2BIQqg8fvB/Iod1D169MiLKbG4CQB8LKLIx48fnzuNGjrrN9Yy4v075imxSb8hMXeRegRNK+bAw4YNS/37988F+9hYd9JJJ+WNdrF+GCkY0eEbzTQHHXTQfEXzz6+ddtop7bjjjsUjaomiIFUhFj2OPfbYdM899+R/BK+++urcBh0TlCOPPDLHJ8Ut7t92223Fq6D5xQ6ciAZtaBJdfp5gLOQ1thAWu+oa2nUHANSeON8udt5Hp2BE/cQ8IkT6QENefPHFdP/99+eo8nhOLOCFiNScnzP2Fpco7MXfd+ONNy6uzJtSMTHEzuiG5lqfJeZXMQeL+ZjoIwD4RLxHRqEhNs/UV/88wUg2aEhsbo4iBbDg4udt9OjR6fTTT099+/bNcbz77LNPPo87fv6iGSaOHYqkkV//+tdp++23z79DwMJQFKTqxI7oyDsfMmRIeumll3KLdPzDGTsj4h/KnXfeORdfdtttt/S73/0uLyjA4jAv5wkCAC1LzF9jrhoLbLGzvrS7N4pWsShQ7v33309//etf89w30gnitaXzBCMasxo8+eSTucsgUj7mRyx8xH+TiP+MDskFFX92RLnHfzcA4GOx2SbWKhqKGpyX8wRDFBZFh8L8iyaCSy65JDe8xFECsWYYZwLGOeOHH354uvnmm/N54xHBf8QRRzRamIcFpShI1YtdTccff3z697//nf/BvOKKK/KOithlEf+Qxi7smMTEuYTRYg2LSuk8wYVdzIqYsYgOKOX5Ly5RYL/qqqvyGT/lIib1hBNOSNdcc01xBQBoTGwYWmuttebEYZZ+yY94y/rn3j3wwANp6aWXnrOLP167oOcJRszQ0KFD08yZM4srzS/mCNHpGBHq8xP/GXONsWPH5vsRO7owsUix2zo888wz+SMAMHfl5wnGekbMRWpdpDIcdthhuSgDTS3ieuM4gJ/85Cf5eKGY20Y8aBT9ttlmm/THP/4xz5kjYeO8885LX/va1xTcaVaKgtSUlVZaKX3rW99Kf/nLX9KUKVNyYTAOY/3c5z6Xzj333PTVr341L0jsscce6aKLLkovvPBC8UpoWm+99VZ69NFH8/2IrYrvzQUVZwdFrMfijL2KToWYpNx+++3pf//7X3H1Y/HLQhQtG4s9AwA+VjpPMKKAWrduna+VnylYXhSMmNEbb7wxz23juaXXhvk9TzA6EOPckUsvvTQX6uZHbKrbfPPNc0dB6RaPI94ovoY4ZyjO/o7NefXF/CHmRLEDen46BaNDIToFQ2zuK0WsLoh4bXRWLkj8KAC0RKXzBOP9MwoYnyXWCH71q1/lOUFprhCbcrbbbrvUs2fP/HiHHXbIc5GYGzSnRx55JJ+DFnOU0tcSX0N8LfE1ReNANA2UrwfGHOvvf/97Xtto7q+PliPm7b/5zW9yol2sCcb3ZRT8Yl36//7v/9K9996bXnvttbyedsghh+TzA2FRURSkpvXu3TudeOKJecdP7I6O+KU999wz3XfffemHP/xhat++fT7f5Gc/+1m66667ilfBwovdZaWiYOzuX9AdPrFwFzG48bkWZxE7fmYi2iC+hvqLiZFtHhOcmGQDAI0rnSdYHv0ZRau4xVgUw0KpiBdnhqyxxhr5WoyXnydYKirOi4jw/O1vf5vnJw0V7+YmFvHiXO+BAwfm+xF3FHPr4cOH5683zvqOpI7YwFR/jhAdf/H8+FobiidrTPl5gjGfn5s4bzx2VdePXi2J7oaIa22oExMAqCveT+OYntChQ4d5KlTE+WaR4HXbbbelLbbYIs8Jotjxr3/9K3+uKLrtt99+6YADDsgFkOYUa3zxdZx88sm5oBlzhPga4muJdcFIGYt50ZFHHjmnKzBSFGJ+tssuu8yZd8H8io3yV155ZTrooIPS2muvnb8XjznmmLye953vfCcnb8X3YMyj4/szflbmZz4PTUlRkBYjdifHP8KXXXZZfuMfOXJk3pkRiwTnnHNOLmjETqK99947DR48eLF2ZVH9YjErCmmxyBcTgQUV8QKlBcJFGfdVLhYhY7Evosoi8iBuJTG5j5+lHXfcMRfZAYDGxZmAURwrj/6MjTXrr79+np9GgStEl1x0Dm699db5cVjQ8wTjfTvexyOmKLr2yt/H51XMRWJRLRbX4mzDch07dkx9+vRJI0aMSM8//3xxdeHMz3mCd955Z7rllluKR42LOUtjhUMA4GPxnl9KJogNzvOTehRzl4g6L3UHlsTcJ+YKMd+5++6783ykOcUmpSj8RWpTKZGhJIo1m222Wbruuuvyc0Ks38Q8Kzq5yr9umJuYW0aROZpR4nsqOlG//e1vp7/97W95HTC6BONnKebHsc4cR13Vn0fD4qIoSIsV/2DHzow49y0WYYYOHZp23XXXvBO61LbduXPndNRRR6WbbrppsRVkqE6lc3AW5jzB2FkfBbcf//jHqXv37vnxwogIkDFjxhSP5l1knMfkOLoVokAY5ySWxM/FxIkT86KlHU4AMHexUBa77sujP1dZZZW8Kz12qMd77KxZs3IUfmxmKz/DZ0HPE4xzCePPiB36pT9jfpUKkjGvadOmTXH1Y/H1xmJaRITOT6RpY0rnCUYB77POE4w/O7oBYh7yWYt4sUGw/tcOANQVm3Ji7SDEmtj8/J4f0Z1R+ItiXH3RORjn+8Y5wwvyfhzzg4hVn5cY9Fi3iL9DJCvUn5vE6+PstthgFUcNhUg/ivlVRIvC3ESB7w9/+EPaa6+98txyq622SqeddloudEeqRsxL4/sv1tHiccxloRIpCsJHSgslsZsjWrmjUBh56LFAM2jQoPT1r389d3xtueWW6Ze//GXOfYbGxGLbgw8+mO8v6HmCsRAWcVwRX1F6fUxeYyfSgoqJdxQZ52eXfEyOY2dTdAKG+h0G8QvDsssum3cQAgCNi/fweE+tH/0Z78+xQBbifTfOtIndxdGBV1J6bZif8wRjUSK66GJncqlotiC786MgGRuB4qygcjGniEWPmDvHprr6u/EjkSMW2GJuNK8b7EpdiSEW6OLclcbEvCYiQeN5jYlFyIgiXWaZZWxgAoDPEN1z8b4/r+cJlsR6RayDxOvqR3CWNjzFHGb//fdPSy65ZDEy7yKiNNYf5iWV4Nlnn80bjOLPq79pKKIbY+5y8MEH53lNzGUiXjTW/WJtA8rF927MzQcMGJDnm+uss0760Y9+lBMyYr1uyJAhacqUKfln5v/9v/+X187KN/VBpVIUhAZssskm6ec//3mOI4qJTUQ4xrmDsegQ3YVRHIwiYUwaomhYWqSBEGf1xG76EEXBBTlPMCbisYAWGeOlDoL4vLE7bkGV4j1LERmfJRYgr7/++vTNb34z/x1ix1/9DoP4XPHzEDukAIDGRYEuuuvrR3/GwkG814dYdIiu/phjli9ixWtLG47m5zzBWPTadtttc9GxtPt9fpMHSgXJmNPE/Dc20MUtIsLOPvvsvInp9ttvz4XH+uLrjMJgLKjM63l+5ecJRrJHYx2AsQBzwQUXpL59++av67OUCq8AQMPiPT823IR5PU+wpNSdF697//3358wXHn744fSDH/wgrxlEZGf5pqf5EfOBbbbZJs854uucm+hYXGuttfJ7f+nriHlDFHBOOeWUHOUYqWAxT4nNSHEW3Oabb168mpasVCQ+44wz8vdbbNLffffd00UXXZTTK+L7J1I4Yj4d8fwHHnigOSZVSVEQPkPsKv7qV7+azjrrrLxIExOdWPz47ne/m3cxx0QidnPHzujoNozdT5MnTy5eTUsQhbrSRDO+J+Lg7FI3aUxWY9EsxuJ7JybHnyU68a666qr0jW98o84OutjZPy+vb0xMeGPB7tprr80Fxs8yfvz4PPGOyJBy5R0GMXHu169f8QgAaExEZsWcof4CW3QKllIBYiEuziKpf95IqVA2P+cJRtdhbN6JWKNy8xuJH/OXmBNEcS8W82IhLW6XXHJJXhQ54IAD8lyhoeJd/N0i6jS+9ujYmxcx345OgCh+NnZeccy1f/rTn+a/41e+8pXiasPiOSE2NwEAjSsdDxJivjE/seCl7rzYCFSaK8Qt1shik/G+++47ZxPUgopOrSjMRGGwsQSk2Ngf85YoQt5xxx1zvo6LL744pydEPHusY8Q5hyG6A2Ndr353Iy1H6UipWOeN76+Iyz/++OPz/Lt///7pmmuuyfPh6A6M8wM33XTTOd8/UK18B8N8iszxKIJEhnRMluJNIiYYsYMksqNjYSQKhDGBirPgIvN8Qc5uoXrEAllMbuMWeeE/+clPipGUF6xiMSzGomg8L98LUVCMw69LO+hKsWKxE6m8UzAKhDExKRUk5+UWRcb4Xj3mmGPy7qfGJtIxkY/v3fheL3UjlHY/lXcYxPlBDkoGgIbF+3ZsDoq5wrHHHpu7/WIhK3arl7+nlwpWhx9++JxI7tKmo1hki8WIONcv5qGxOSeux6JXY2KOEJuA4ryTUmJBdNNFUXF+OwVL5wnGIlr8HUq3WBQ5/fTTc4pGxOs31gkYm+dC/HdoTPxd4u8U3QSR1BFi7hRzkNIcJv6bxWLMqaeemvr06ZMuvfTSfJbg3M7/iXlOpBxE/Nn8nMMIAC1B+ZpCzDdi7vDvf/87j3344Yf57L3S+3D5vKUh0Z233nrr5ZjF8vlCRCrG+/V2222XbrrppuLZH4siZOnzz8stNjdHQkBsIDrvvPPyukV98feJjsWdd945nXDCCXO+jijyRMJArHNE52I8L8QaScwlGksmoPbE912kc0QxOOaIsdb1/e9/P91www254Hf++eenxx9/PP9MxNrv3nvvPdc4e6hGrT76RWneD5cCPlMsZsRupLgNHz58ziQldiLtsMMO+RaTGGhITEx/+MMf5k7B+iJK9PLLL88Z5iEm3TfffHO+Pz+iezG+P2Mn3EknndTgIeAxGWqsiPnrX/86HX300cUjAKAxV155Ze78qy82j0XyRKkbPzYExfvr73//+7xDOTT22pKILPrWt75VPKorFstiY09sXqtv4MCB6cwzz8ybjubFX//617zJKRZPYud0uSjmxeeLPy/O5o6iY32xMBdf59e+9rVc0CttNiqJRcbjjjsunXvuucWVeRfF0lioaUzMY6LQGi688ML56ngAgFoXCQVxBtpnbV6O9/+YdzQW/VmaD0ThLjbN1984XJoLRHd/zHcikSs2E8VcZ0GStmLD0j333JPf42Njfpw3WBJzqjjrLTYP7bHHHsXVT8Rc5JxzzsnHBMUmI2pfzDXj+yI2nsUt5q1REI9CcCRTxM/ATjvtlNM1yr+XoJYpCkIzi8JgqUgYBxqHiCeIwmDEkkaRcH4Ob6Z2xT/HsfAWu5RiUlIuJq6x8BWT5oaKePMqJj6//e1v82Q+JsoNRR7EpPx3v/td7ngsXzwrTeQj1jS6AwCAyhMb0iL2PnbBx3k6JbFQF7FIsRs+CnDzcuZxqWD3n//8J29MioSAcrGZ6aCDDspdfDGHaahrL2LR42zuiDKNBbqFjQ6bH6W5y49+9KP83wMAaHqxCSkSBWKNKzYe1++6GzVqVNpzzz3zZqf52ZjUkHhvj6jH6PKqPy8JMceJiPNYO6kfuV6ak8TGrIY2O1Eboss1krFKRcDofi0lbEQ36/bbbz/n1tD3ELQE4kOhmUXxLw6ive+++/Luq4gqiMWTmDRFt1XXrl1zx1Ys0sTEJXY80TJFHG3EE0S0RkPiLKJSxMWCuuuuu3LRMXbrN1QQjC7CmDzHQcqN7aaPomFjEWEAwOIV0Vy9e/euUxAsFzGe9d/HY6HkzTff/FSs+PTp03N8UmxgaygufPTo0XnjWyz0NRbPufTSS+fIsFicibMFF6VSBFpEpwMAzSPmFrGBKCLQ6xcEY2NyJBFFITA2GC9MQTDmJdGxGEf1NFTMiflMFA1jI3Uc61NfjEWMe3wdcfQLtSPmq7EBPhIkYgPaJptskje2xdwzOkb/9Kc/5XXYWFeL+1GgVhCkJVMUhEUoMqi//vWvp0GDBqUJEybkXdWxYzqyziP6IA6wjQWcmMBEDML111+fF2iofVHsix1tW265ZV48qy++L6KoHEW7BRV/xgMPPJALfg3l5cduqigaPvbYY5/aURfiHKOYXMXXoMkcACpLvDdHjH3MHzfbbLPi6iciqusLX/hCXpyL9/ySWGA78MADc9R9zE/LxeJJLKZ07969ziJefI7YYX/ooYfm+ethhx32qVjQcrFJLjY9xea4RbWxKOY9EbMenYKNxZ0BAAsvOgEjLaBTp07FlY/FHOO0007L57JFh2AcibIwousr1kxKUev1xbnJUZyMePbyTc4x74mo1EgNiLOOf/GLX8xTYgKVKzarR8donAW49tpr5zWsOM8yvkcipjbW12JeHOuuEXF/8MEHp/bt2xevBsSHQgWJXUulqNEozpQKgrGwUzqP0E7n2hKT5IjpjN1uUfRbeeWV05AhQ+Zk348dOzZPbGICG2I8okXjsO7GOgAaE5/r6aefTt/85jeLK5+47bbbcvxG7K4KsWsqJu7RFRCLdzGRv+yyy+acTRQ7AGN3XuT3AwCLVyx6RIEuNv+EmC9GAkUpzvOCCy7Iu6djrhliA9r++++fzwqMAt/xxx+f40FjASXiv2JecPrpp6cHH3wwz0/i+aUzjf/3v//ldIM4hydiOaPY11D6QH2xAe7II4/Mu7Nj93Zzi7lVzGX+/Oc/NxhrCgAsuIgYj7jy6667Lo0fPz5fi7lBqRgXax2xQWfXXXdNRxxxxEK/F8efF/OZKALVjyKPeVDEgkaCwbRp0/KcJc45jvlJFASjOywKllEY2m233RrciE1li/XRUhxo3Epz2vh/GRvbSnGgm2666Vw3qgEfUxSEChYLO6Ui4d13352vtWvXLh9+WzqPMA7FhXkRk+iwMHEdAEBtis1DsfknYpeaQxQff/3rX6dHH300L+o1FlPeFCZNmpS7AaLY2VgsOwBQPWL5OuJBo8OvoeQjaktsTh8xYsScImDE0EeBNwq9cRZkRNNHETDWRyMNA5g/ioJQJWLyE2+IpSJhaSdWZGDHG2EUCHfaaafcNg8AAPMjOgVjs1lEbjWXmM+effbZefHmmGOOSUsuuWQx0nRmzZqVz5CJXeP77ruvhUMAgAoXx9REDG0UAP/1r3+l++67L7377rt5LKJBY90zCoFxa+ica2D+KApClYpIhHizLBUJIw4hxJkpUSCMTsJ4s4xz4AAAoDERB3r11Veno48+utkjtWKBJyI9u3TpstBnCzUkYsziV9z/396dx9hVnvcDfw0GvOMF23jDNja28QI2GMxSIGmitn8kVVolDd2itGorNZWiVFWbVDQ0VdVFkZo/glIpVaSoRW0SVdAsldqQpMQBE8AYs3jHGzY2XsfLjBfAht/veX3O9Z07d8YzZsaeOfP5SK/Oue97rodxFu493/M878c+9rFutTUFAODSW7duXa0SMNrMR8vZMGPGjFo70Li/ef311+d5oPcIBaEidu3alZ544okcEMa/UA8dOpTnY8+W+JdojAgJAQCg3qpVq/JeO9GBAgAAetsbb7yR962OSsC4b7l///48P2HChPTBD36wFgTGfpBA3xIKQkW99NJLtSrCaDt68uTJ3Hv9F37hF2qVhMuWLSuuBgAAAAB4/6LDWVm4EGPbtm15fuTIkXkvwDIEXLp0qXbvcIkJBWGQiFL8MiR89tln81w8jVOW48dTOdF6FAAAAACguw4cOJCefPLJ9LOf/SyP9evX55buV111VVqxYkUtBLzrrrvyHHD5CAVhEGptbc3/oi5Dwo0bN+b5KVOmpPvvvz8/sRPH2OsFAAAAAKC0ffv2WgAYHcpij+pw9dVXpzvvvDM98MAD6QMf+EC69957c+cyoP8QCgJp3759uZS//Bd5GRKOGzcutxstQ8J4sgcAAAAAGDw2bNhQCwFj7NmzJ88PGzYsV/9FCBjjnnvuSddcc01eA/onoSDQQfT9jnajZUi4Zs2aPD9ixIh0991310LCOI9/+QMAAAAAA9+7776b1q5dW7svGOPQoUN5LfYEjPuBZQgYBQRRHQgMHEJB4ILa2trSqlWr8oeA8gNBqT4kjOOYMWOKFQAAAACgP3vnnXfS888/X6sCfOaZZ9Lx48fz2ujRo3ML0DIEvOOOO9LQoUPzGjAwCQWBi/L000+3+7AQ+xSGW2+9tRYSRu/wiRMn5nkAAAAA4PI6depUfvi/fPD/2WefTadPn85rY8eOzVsJlSHgbbfdlq688sq8BlSDUBDoFS+++GLtw0SMgwcP5vmbbrqpFhLGmD17dp4HAAAAAPpWVP2VD/bHiG2Czpw5k9cmTJiQ79uVIWA87H/FFVfkNaCahIJAn9i0aVOt3WiMXbt25flp06a1CwkXLVqU5wEAAACA9+fw4cPp//7v/2r35V599dW8T2CYNGlSvh9XhoCLFy9OQ4YMyWvA4CAUBC6JvXv3pieffDJ/GIkPJRs3bszz48ePz20JypAwepMDAAAAABe2YcOG9NJLL9UezC/vuYXrrrsub+8T99ziuGTJkmIFGKyEgsBl0dLSklauXFkLCaN1QRg5cmS6++67ayFhPLUEAAAAAIPd22+/nVavXp33BIzxzDPPpEOHDhWrKc2YMaNWBRgjtvUBqCcUBPqFtra2/GGmbG0Qx9I999xTCwmjqnD06NHFCgAAAABUUzxUH/fIIvwrg8B6CxcuzOHf0qVLcyXgvHnzihWA5oSCQL/19NNP11ofxIef1tbWPB8fdMqQMD7wxKbIAAAAADCQbd68uRb+xYjXpeHDh+dtd+KB+XvvvTePa6+9tlgF6B6hIDBgvPjii7UqwhgHDx7M8/EUVASE9913Xz7OmjUrzwMAAABAfxStQF944YVaABgPxJf3usLkyZNr4V+M22+/PQ0dOrRYBbg4QkFgwNq0aVOt3WiMXbt25fnp06e3CwmjlQIAAAAAXC5HjhzJ97HKEDACwbfeeiuvDRkyJC1YsKBdFeDcuXPzGkBvEgoClbF379705JNP1qoJN27cmOejvWgEhGVIuHz58jwPAAAAAH1hy5YttQAwRrQCLW/FDxs2LN+fqg8Bx40bl9cA+pJQEKis2Ix55cqVtWrCNWvW5PlRo0ale+65pxYSxgAAAACAi1G2Ao0WoGUIWN8KdOLEibXwL0a0Ar366quLVYBLRygIDBptbW35Q1kZEsaxdOedd6YVK1bUhhYNAAAAADQTrUCffvrpWgAYgeDp06eL1ZTmz5/frgpw3rx5xQrA5SUUBAa1559/Pj377LPpueeey2Pbtm15PlqOlkHhXXfdle6+++40ZsyYvAYAAADA4PHaa6/VAsAYmzZtqrUCveaaa3Ir0DIAjDBw/PjxeQ2gvxEKAtSJJ72i1UMEhBEWrl69Oh09ejSvxVNd9dWE9iYEAAAAqJZ33nknV/6VAWDcJzpw4ECxeu5B8jIAjBH3hyIYBBgIhIIAFxBPf5UhYRzXrl2b52NT6Ntuu61dUDhr1qy8BgAAAED/t2PHjloHqfK+T30r0HhIvD4EXLBgQbECMPAIBQF6KD4YxhNj9W1Hd+/endcmTZqUw8FoOVoGhaNGjcprAAAAAFw+ra2t7e7nxDh48GCxmnLbzzvuuKN2Tye2kxk3blyxCjDwCQUBekG0kYiWEuUHymg7euLEiby2cOHC2ofJCAtvvfXWPA8AAABA3zh79mx6+eWX2wWAmzdvru0FePXVV+d7NOU9mxg33XRTXgOoKqEgQB955ZVX8gfO8gm09evX5/kRI0bkfvP1HzqnT5+e1wAAAADouddff71dAPjiiy+mU6dOFaspzZkzp3Yf5s4778xbwkQwCDCYCAUBLpGoHKwPCWPs378/r02dOrVdy9H4cDp8+PC8BgAAAMB5bW1ttXsrjfdYQrQBjXsrMeI+izagAOcIBQEuo3iKrT4kjKfYys2sb7nlllpIGIHhokWL8jwAAADAYPHuu+/WujGVY9OmTXk+aAMK0H1CQYB+5oUXXqh9yI3A8LXXXsvzo0ePbrfZ9T333JMmTpyY1wAAAACqYPfu3e0CwDVr1qSTJ08Wq+3bgMZYtmyZNqAA3SQUBOjnjh07ln7+85/XKgqff/751NLSktduuOGGdm1H77333jwPAAAA0N9F2FcfAMY9j7179xar59uAxj2POGoDCvD+CAUBBqCoHqxvOxrVhaXYKDs+LJdh4fz584sVAAAAgMsj2n2uX7++XQgYr+vbgC5durQWAsbQBhSgdwkFASrimWeeqX2ojsAw9isMY8eObfeBOtqOeqoOAAAA6EsHDhxIq1atqt2riAea29railVtQAEuB6EgQEUdPny49uE7QsLVq1en1tbWvNb4wTsGAAAAQE9t3LgxB37leOmll9rtATh8+PBcAXj77ben5cuX57Fo0aJiFYBLSSgIMIhEW476tqOvvPJKsZLyB/R4Ki9GnMcYPXp0sQoAAAAMdrGdSX0AuHbt2toDyKXoVhTBXxkC3nLLLcUKAJebUBBgEIsn9yIYjA/x5Vi3bl06ffp0Xo+KwjIoLMPCKVOm5DUAAACgunbs2NEuAFyzZk06duxYsXpOGfyVx7h3AED/JRQEoINXX301B4TR8qM8Hj16NK9Nnjy5XVVhDBt/AwAAwMC1a9euWvBXhoAtLS3F6jlxL6A+AIwBwMAiFASgW+IJwfqKwhh79+7Na6NGjUq33npru7Dwtttuy2sAAABA/xHf5cvgrwwCDxw4UKyes2TJknYB4IoVK4oVAAYyoSAAF+3gwYMdgsItW7YUqynvGxABYX1YOGbMmGIVAAAA6EuHDx9Ozz33XLsQ8M033yxWz1m4cGG7ADAe8h02bFixCkCVCAUB6FUnTpxo13Y0ji+++GKxmtLs2bNrAWEZFk6bNq1YBQAAAC7GkSNH0urVq9sFgLt37y5Wz5k/f367ADCOI0aMKFYBqDqhIACXxMsvv9yuojBeHz9+PK9NnDixXTVhnC9YsCCvAQAAAO2tW7cuvfLKK+nVV1+tHRsDwLlz5+bgrz4EjO0/ABi8hIIAXDbbtm1rFxTG2LdvX16LJxXL9qPlWLx4sRYmAAAADBp79uzpEP7FsVF05akPAO+44w7bdwDQgVAQgH4lNjePTc4jICzbj27durVYTTkYbKwqHDduXLEKAAAAA8/Jkyc7hH8xWlpaiivOiaAvvhcvWbIkP0gbx1tvvVUACEC3CAUB6PdaW1trAWE5ov1oaebMmbWAsAwLZ8yYUawCAABA/7F58+YOlX/bt28vVs9buHBhDv3qA8BZs2YVqwDQc0JBAAas+pCwDArb2try2oQJEzpUFMYXKgAAALgUosovvqvWB4Dr169Pp06dKq44Z+rUqbXwrwwA4zssAPQ2oSAAlbJly5ZaSFhWF0ZL0jB8+PD8BasMCmPE65gHAACAi/Xiiy92qP7bv39/sXrOyJEja60/yxHfS8eOHVtcAQB9SygIQOXt3bu3FhSWY8eOHcVqSnPnzk2LFi3KlYQx4vzmm29Ow4YNK64AAACAlL9LNoZ/mzZtKlbPmzdvXq3lZzniuycAXE5CQQAGpWgzGm1bGscbb7xRXJHSnDlzaiFhGRjGUFkIAABQbcePH89bVNSHf+vWrct73tebNGlSh/Bv+fLlxSoA9C9CQQCoE1/wGoPCDRs2tAsLZ8+eXQsK6wPDESNGFFcAAAAwUETYVx/+xXH37t3F6jnxcGh876sPAG+77bY0fvz44goA6P+EggDQDfGUaH1IWJ7v2bOnuCKlWbNmtQsKy2PsGwEAAMDlFd/fGsO/ODaKrjER+tUHgPPnzy9WAWDgEgoCwPtQHxbWj9jHsHTDDTd0CArjOGrUqOIKAAAAesvJkydrgV8Z/sVoaWkprjhnwoQJtdCvDADjaMsIAKpKKAgAfeDYsWNNw8I333yzuCKlGTNmdAgKY4wePbq4AgAAgM5E5d+mTZvS5s2b2x137dpVXHHe0qVLOwSAU6dOLVYBYHAQCgLAJRRhYexX0RgW7tu3r7gipenTp+eQsD4wXLx4cRozZkxxBQAAwOAR1X6NwV8c29raiivOi20dyvCvDADjOxUAIBQEgH7h6NGjHcLC2LuwPiyMp1jLkLAMDGOMHTu2uAIAAGBgiu8+EfY1Bn87duworjgv2nvOmzcv7/MXY8GCBfkY35O0/gSAzgkFAaAfO3LkSC0sjJCwDAz3799fXJHSlClTaiFhGRhGZeG4ceOKKwAAAPqH+D7TGPzFiK4qjeLByPrQrzxGNSAA0HNCQQAYgOrDwvpx4MCB4oqUJk+eXAsKy2OEhePHjy+uAAAA6H3xvaQM/eoDwG3bthVXnDds2LB00003dQj/4vvLiBEjiqsAgN4gFASACmlpacn7bURVYXzpjvMICw8dOlRckdLEiRPzF+xTp06luXPn5i/gcSzPJ0yYUFwJAADQucbQrzyPhxgbXX/99R0q/uI4e/bs4goAoK8JBQFgEIiw8NVXX21XVfjcc8+l06dPF1ecN3r06HTzzTfnL+dlYFgeJ02aVFwFAAAMBtHWM7qUlMFfedyyZUtxRXvRpaQx/Iu5kSNHFlcAAJeLUBAABrG9e/em1157LW3durU2ytcnTpworjpvzJgxTasL4xjtSgEAgIEpQr7G4C/G4cOHiyvOi8/+jRV/cZwzZ05xBQDQHwkFAYCm9u3b1y4wrD9vbW0trjovKgzLoLA+LIwxZcqU4ioAAOByic/x0TWkPviL48aNG4sr2ottBxrDv5iLz/4AwMAjFAQAemz//v1Nw8IY0V6oUbQK6iwwnDZtWnEVAADQG7Zt29Yh+IvjgQMHiivOiz3HGyv+4hif1QGAahEKAgC96uDBg00Dwzg/evRocdV5I0aMyG2GGsPCOJ8+fXpxFQAAUDp16lTasWNHbezcuTNt37497yW+cuXK4qr26iv94rP2vHnz0pIlS/IWAQDA4CAUBAAumdiPpFlYGMe4gdFo2LBhnQaGN9xwQ3EVAABUT4R8jaFf+To6d9SLzhyzZ8/O48iRIznwi7F48eL8+TkCQQAAoSAA0C9E29EtW7Y0DQwPHTpUXNXezTff3CEsjOOsWbOKKwAAoH968803ayFf44gQsFF81i2Dv8Zx3XXXFVcBAHROKAgA9HvHjx/PgWFjWBij2b4oIZ6GbhYY3njjjcUVAADQd6Jir1ngFyNCv9OnTxdXnjNjxoymgV8MbfUBgN4gFAQABrS2trZOA8N9+/YVV7U3c+bM3H602YjQMPY5BACArjTu69c4ohNGvYkTJzYN/GLEw2sAAH1NKAgAVNbJkydrgWFjW9Jo19SZsWPHNg0MyxFPcQMAUH31+/g1jsZ9/UaPHt008CtH7PsHAHA5CQUBgEErAsNdu3al3bt352P9iLl4+rszzcLC+nHttdcWVwIA0F/t3bu3aeAX4/XXXy+uOm/evHlNA78YEyZMKK4CAOifhIIAAJ04dOhQ07CwPI+bSJ0ZM2ZMl21KYwAA0LdaWlqaBn4xIvRr3NcvPqM1C/xiTJs2rbgKAGBgEgoCALwPcUOpMSysH62trcWVHUUb0sagsH5EG1MAAJp744030p49e7ocJ06cKK4+Z9KkSU0Dvxhz5swprgIAqCahIABAHzp27FiHoLA+QGzWlqoU+9JEONhZxWHMAwBUTXx+ahbwlSO6NXS2P3R0a2gW+JVjxIgRxZUAAIOPUBAA4DKLp9w7qzSM+cOHDxdXdjR9+vSmgWE5xo0bV1wJAHD5xWebxoCv/nWMxuq+UnRZmDp1am7jWX+sP7evMwBA54SCAAD9XOx1s3PnznZBYX1wuHXr1uLKjkaNGlULCJtVHM6aNau4EgDg4h09erRpwFc/9u3bV1zd3nXXXdc07Ks/Tp48ubgaAICLJRQEAKiAAwcOtAsK60eEiJ3dhAsTJ07MN9rKcf311zc9nzJlSvEOAGAwaazuaxwRBjar7hs5cuQFwz4PKAEAXDpCQQCAQSLalEY4GGP//v2188bR1tZWvKOjeJK/PihsDA7LcwEiAPR/Ud3XLOCrfx2fDZqJFuZdhX1x1MoTAKB/EQoCANDB9u3bO4SFjSOqBroSAWJjaNjsddw0BAB6V3QLuFA7z5MnTxZXn9fYyrP+vDzGv8sBABh4hIIAAFy0I0eONA0MGysR43VXygCxWWhY/zpuRALAYHP8+PF06NChdPDgwXxsPG983dLSUrzzvAu18owxe/bs4moAAKpIKAgAwCXRGBLWv64f0cqsKxMmTOgyOCzP4+YmAPRHUcHXVahXfx7XNhOtOWNf4HLEAzZdvY5QEACAwU0oCABAvxMtz5oFhuUoQ8Vmbc/qxQ3TCBHHjx+fR3l+oSMAdFdU5XU34Ivz1tbW4p3txQMt9UFeVyGfvXsBALgYQkEAAAasuLHaWWBYP2LfpJ6IYLAc3Q0Sx44dW7wbgIEqHja5UKhXnsc4cOBA8c72hg8f3iHI6+p1/HsEAAD6mlAQAIBBIfZjimqO2AcxxoXOy+OxY8eKP+HC4uZuV8Fhs+Po0aOLdwPQ2yK06yrUa1w7depU8c724sGPrkK9xtdadQIA0B8JBQEA4AIOHz7cITSsP282F+PEiRPFn9C1SZMmdStArD+64QxUWQR0UQ0eD3R0dzRe39bWVvxpHUWrzsYgr9nrONeqEwCAqhAKAgBAH4p2pvVhYWcBYv16vKc74kZ1dwLE8hjh5qhRo3J1YhyjvR1Ab4kQrj6UazYuFPRFxV5Pla06m4V6zV6PGzeueCcAAAwuQkEAAOiHYl+r7gSIjXMR/PVEtMSrDwrL48XM2VcRBqb4/48ylLvY6ryetFquFw8tjBkzJo9rr722x+cR8gEAAN0jFAQAgIo5evRoLSwsA8MY69atyzfwo5onRrPzzvbT6om4yX+hQDHan0Z1z7Bhw/KxcXQ2P2LEiOKnwOAS//s8ffp0j8eOHTvaBXgR3pWvY8Q1FyMeAugsqGucixHVefG///o1/3sGAIBLSygIAAC0E6FBZ6Fh47Gz8/IYoWRfiFChWWB4zTXXdJgvR2dBY4xYu+qqq/K4+uqrm56XrwUZg1PsEdoYuJXjrbfeyoF6s7ULjXhfV+/v7t6k3VUfytWfN5vr7NyepgAAMDAJBQEAgD4XbU3rA8MIQMqQJc7rR8xF+9SersX8pRYBYWN42Ow8jkOHDr3gdfXnQ4YMSVdccUVtNL5uNtdX74lx9uzZ9O677+bR2fnFrjVeVz/X1XUXs9bZdeV/v+pHzMV/Z3tDGT43js7me2vs2rWrXaAHAAAMXkJBAACgUqLSsT4sLEezILEcb7/9dq7Weuedd/J5HBvP61+fOXOmdn39fLPz+Ln0rQi/InS98sor8yjPOzs2zkUIG1WmjYFajPcb2gniAACA/kIoCAAAcIlE1Vln4WH9eYSO9dVs5Yivbz153WzuYt/TLEzrbK47axdzbXkeYRsAAAA9IxQEAAAAAACAiruiOAIAAAAAAAAVJRQEAAAAAACAihMKAgAAAAAAQMUJBQEAAAAAAKDihIIAAAAAAABQcUJBAAAAAAAAqDihIAAAAAAAAFScUBAAAAAAAAAqTigIAAAAAAAAFScUBAAA4LI6c+ZMam1tTe+9914x03tOnTqVBwAAwGAnFAQAAOCyaWlpSX/xF3+Rnn766WKmd+3cuTP9zu/8Tlq/fn0xAwAAMDgNea8vHsUEAAAYxKIy7aWXXkpvvfVWMXPO5MmT080331y86lpUz7388su5gq7e2LFj05IlS9KVV15ZzAxcJ06cSJ///OfTTTfdlD772c+mIUOGFCvtHTp0KK1bt6541dzs2bPTzJkzi1ftrVy5Mn3pS19K//zP/9ztv38AAICqEQoCAAD0su3bt6e//Mu/zFVwr732Wnr99dfz/Gc+85n0T//0T2nYsGH5dVdWrVqVfvu3f7v23rvuuiuNGTMmfehDH0p/9md/NuBDwbNnz6avfOUrOex75JFH8u/Wme9973s50CvD1jIoXbZsWZo4cWI+f+ihh9L999+fzxvF196vfvWrORz8+te/XnsPAADAYCIUBAAA6CNvv/12+sIXvpD27t2bvvOd76SPf/zj6Rvf+Ea69tpriyuaO3LkSPqrv/qrtGfPnhyIRRXdl7/85XTNNdcUVwx8L7zwQvr0pz+dvva1r6UHHnigmO1a/D1GUPrTn/40ffGLX0wPP/xwGjp0aLHatTfffDN96lOfSh/5yEe6rEoEAACoKnsKAgAA9JFjx46lHTt2pPvuuy9Xwh09ejQHhV2J5zYff/zxdMstt9Taj95xxx2VCgTj93r00Ufz73X77bcXsxcWwd7mzZvz+fLly7sdCIYpU6akBx98MH3rW9/K+wwCAAAMNkJBAACAPrJr1640fPjwHGDdeOON6eDBg7mlaFc2bdqU24/eeuutadu2bXm/vdhDsEq2bt2afvSjH6UPf/jDadSoUcXsha1fvz4Hg/F3M3/+/GK2+6IF6/Hjx9N3v/vdYgYAAGDwEAoCAAD0kQj4Zs2alWbOnJn3sXv55ZfToUOHitWOYs+8//iP/8htNSMQjP0I582bl2bMmFFcUQ1PPPFErvLrSZVgVFjGfoIhqiinTp2az3vihhtuyAHtU089dcFwFgAAoGqEggAAAH3g7NmzubItqtNGjhyZ21eGN954Ix+bibAsKuBmz56d3xsiAIvWo1XR2tqa1q5dm3/P8u+kO6LCb+PGjfk8gtKeVBiWRo8enZYtW5aeffbZXI0JAAAwmAgFAQAA+sCRI0dypV9UCl511VU5kAqxr2Aze/bsST//+c/TRz/60XxNBGchWmX2ZO+8/m7//v1pw4YNuS1qT4K9119/PVdahhUrVqQhQ4bk855avHhxbkEaLUwBAAAGE6EgAABAH9i7d28aMWJEbh06bNiwNHny5DwfgdR7772Xz0tnzpxJ//7v/54+/vGPp2uvvTa/t9xP8Oabby6uqoYIBdesWZPbqV555ZXF7IVFK9b4u4uWo1FJebHGjx+fKxQjsAUAABhMhIIAAAB94NVXX03Tpk2rVcNFOBj27duXTp8+nc9Lzz33XLrmmmtya8sQ773Y/QQPHz6c/u3f/i21tbUVM/3Lzp0783HSpEn52B2xn2AEiWHhwoW1gPVixH8e8bOjMjP2cAQAABgshIIAAAC9rNxPMFp/ltVw9XsK1oeC0Wb0+9//fvrkJz+Zry3fG3q6n2BUID7++OPp0UcfbRp4PfbYY+mhhx5KJ0+eLGa69uMf/zjdfffduVVnOeL1/fffn/+5FixYkP7xH/8xtbS0FO84p/w5zf4ZyrCyJ2Fn7CcYlYIhKifLVqwXI947bty44hUAAMDgIRQEAADoZeV+gvWtPyOMihFrEXKFMsT70Ic+lK6//vo8F+v1+wn2pMXmli1b0te+9rV08ODBDkFda2tr+t73vpdbk7777rvFbNc+/OEPp5UrV6Y//dM/zecHDhzI+x7+7Gc/y7/Df/7nf6Zvf/vb6a//+q9rAeCFfk78GaEnv1f9foLLly/Px84cO3Ysbdy4sUOL1lJUZMZoDGcBAACqTigIAADQyyIQu+KKK9pVw0V12o033pgDuwiuQlS/RTj1wAMP5NfhYvcTfOutt3JAF601oxIwXteLkDD+3I9+9KO1lqbdEeFfhGxLlizJ+x3Wmzt3brrrrrvSU089lXbt2pXn6n/OyJEj89z71ZP9BH/yk5+k//mf/yledS72cexuOAoAAFAFQkEAAIBeFnsCzpkzp13rz+uuuy5XA0YFYVTTnThxIv3rv/5r+q3f+q1cuVa62P0EY1/C+Bm/+7u/W/sZ9aKKcMSIEbn9Z0+UIWUEcldffXUxe078DlHFN3HixNrvWv6cCAt7Q7mfYFT+XWg/wfjn+eEPf5hD1mh12pXYV7Dx9wEAAKgyoSAAAEAvarafYIgAKoKosHPnzvSDH/wgLV68OFfblS52P8FoORrVcZ/4xCdqYVjjvoHr1q3LgWD5z9BdEVLGPoCxf2C9COn+93//Nz3//PPpD//wD2t7Jl7o50S1ZDh8+HA+XkhZqRgiKO2qyvHZZ5/NLUHjus4cOnQo7du3LweXQ4cOLWYBAACqTygIAADQiyKg27p1a4fWn1ENGJV8IQLBF154IbfYrK9oi/e+9NJL+bwn+wlGOPfBD34wB3GzZs3Kc+XefSECwqge/MhHPtKjvfzKkHL+/Pl5P8QI8mJEy9Mvf/nLeU/BH/3oRzmMDPU/p7PALf6c0FjJ2Jn6/QRXrFjRaQXg/v370yOPPJLuv//+2s/oyvjx41UKAgAAg4pQEAAAoBdt3749t7ycOnVqMXNOBFCxr2CIirYHH3ywwx59ZQDWk/0Eo+owWnbed999xcw5Ud1Xin0MozJu0aJFxUz3REi5du3a/N7/+q//St/4xjfy+OY3v5nblX7605/Of2YZ1HXn50ybNi1XFcbfU3dEeBr7CUZIesMNNxSz7UXl35//+Z/nv4t77723mG0uKgXj7zj+rJ4EpAAAAAOdUBAAAOB9ihAwquciOPv85z+fq/2igi6q12KtVLbO/JM/+ZO0bNmyfB7rUX23Y8eO9Nhjj+U9/MaOHZur7mL+1KlT+bpmzpw5kx5//PH0a7/2a2n48OF5LqrkIlSsrxSMCsLPfe5zaeTIkcVM95T7Cca+h/F7leOLX/xi+ru/+7v0N3/zN+lLX/pSbtkZuvNzIhCMysMI8sr3NYrfOX73V155Jf3kJz/Jc1FlGSFeWa0Yf7dPPfVU+tu//du8f+Gjjz6a9xIsKyU7E79P6G7oCgAAUBVCQQAAgPcpwsAZM2akX//1X08//elPc8VfBGnR0jPaaZYisIoA71Of+lStSi3eG4FXBIb/8A//kOdWr16d9+WL+e9///t5rpkIH7/61a/mKrqo1osR5/Ezo8qvDCQjMJw+fXo+74nO9hMM8btEGBfh5+7du/Ncd35OVEtGKLhhw4bU0tJSzJ4X/8wPPfRQ/t3jd4kWpSHCwQg7Yz7G9ddfn1uFPvzww/nvO0QoOGzYsHzeTLRD3bRpU/rABz7Qbi9HAACAwUAoCAAA8D598pOfTO+9916HEcFXfSvNaG0ZlX2TJ08uZjp/bzlivZkTJ07kwHDVqlXtro/2mL/8y7+cKw0jBLtYEc6tWbMm//M3a9sZVX5RjRh7JV511VXF7IVFcPhLv/RL+c+O6shG0Wb1K1/5SrvfqbsjQtmulO1QI3Ct/88AAABgMBAKAgAADED//d//nZYvX5736Gsm2pl21p6zXrTqPHbsWA7V6h0/fjxX1S1ZsqTD3ochqhl//OMfp4997GO5SrInbrvttnTLLbekH/7wh7kF6qUSewlu3Lgx/cqv/EoaOnRoMQsAADA4CAUBAAAGkAjvYq+97373u2nFihXF7HnRPnPq1Kk5bHv33XeL2eYi+Pu93/u9XDm3fv36YvacaMkZIdrSpUtz9V4p/twf/OAH6Y/+6I/S7//+76fPfOYztVao3TVz5sz0iU98Ij3xxBNp165dxWzfeuutt3JlZQSCd9xxRzELAAAweAgFAQAABogIAyPAi732vv3tb6cHH3ww7dy5s1hN6ZFHHkm33357+uY3v5mr8KJd6d///d+nd955p7iivWj7OWXKlHT48OH8Z4d4X+zVF/sh7t27N78/2pHG+MVf/MW89+Gjjz6af0a0+Rw5cmR+X0/E3ofxzx77AkbA2Fil2BdeeOGFtHLlyvQHf/AHuYUpAADAYDPk/3/56vtvXwAAAPRbsb9fVAZeaE++3hYh3Re+8IX09a9/PbcT7Suxl+Af//Efp1/91V9Nv/mbv5lDSQAAgMFGpSAAAMAgt3nz5jR//vzi1aUTFYkPP/xwrkbcv39/Mdu7ot3pv/zLv6Rly5al3/iN3xAIAgAAg5ZQEAAAYBDbunVrrhKcO3duMXPpREAXe/x99rOfTY899lg6e/ZssdJ7nn/++TR27Nj0uc99Lg0dOrSYBQAAGHy0DwUAABjEVq1alebNm5cmTpxYzAAAAFBFQkEAAAAAAACoOO1DAQAAAAAAoOKEggAAAAAAAFBxQkEAAAAAAACoOKEgAAAAAAAAVJxQEAAAAAAAACpOKAgAAAAAAAAVJxQEAAAAAACAihMKAgAAAAAAQMUJBQEAAAAAAKDihIIAAAAAAABQcUJBAAAAAAAAqDihIAAAAAAAAFScUBAAAAAAAAAqTigIAAAAAAAAFScUBAAAAAAAgIoTCgIAAAAAAEDFCQUBAAAAAACg4oSCAAAAAAAAUHFCQQAAAAAAAKg4oSAAAAAAAABUnFAQAAAAAAAAKk4oCAAAAAAAABUnFAQAAAAAAICKEwoCAAAAAABAxQkFAQAAAAAAoOKEggAAAAAAAFBxQkEAAAAAAACoOKEgAAAAAAAAVJxQEAAAAAAAACpOKAgAAAAAAAAVJxQEAAAAAACAihMKAgAAAAAAQMUJBQEAAAAAAKDihIIAAAAAAABQcUJBAAAAAAAAqDihIAAAAAAAAFScUBAAAAAAAAAqTigIAAAAAAAAFScUBAAAAAAAgIoTCgIAAAAAAEDFCQUBAAAAAACg4oSCAAAAAAAAUHFCQQAAAAAAAKg4oSAAAAAAAABUnFAQAAAAAAAAKk4oCAAAAAAAABUnFAQAAAAAAICKEwoCAAAAAABAxQkFAQAAAAAAoOKEggAAAAAAAFBxQkEAAAAAAACoOKEgAAAAAAAAVJxQEAAAAAAAACpOKAgAAAAAAAAVJxQEAAAAAACAihMKAgAAAAAAQMUJBQEAAAAAAKDihIIAAAAAAABQcUJBAAAAAAAAqDihIAAAAAAAAFScUBAAAAAAAAAqTigIAAAAAAAAFScUBAAAAAAAgIoTCgIAAAAAAEDFCQUBAAAAAACg4oSCAAAAAAAAUHFCQQAAAAAAAKg4oSAAAAAAAABUnFAQAAAAAAAAKk4oCAAAAAAAABUnFAQAAAAAAICKEwoCAAAAAABAxQkFAQAAAAAAoOKEggAAAAAAAFBxQkEAAAAAAACoOKEgAAAAAAAAVJxQEAAAAAAAACpOKAgAAAAAAAAVJxQEAAAAAACAihMKAgAAAAAAQMUJBQEAAAAAAKDihIIAAAAAAABQcUJBAAAAAAAAqDihIAAAAAAAAFScUBAAAAAAAAAqTigIAAAAAAAAFScUBAAAAAAAgIoTCgIAAAAAAEDFCQUBAAAAAACg4oSCAAAAAAAAUHFCQQAAAAAAAKg4oSAAAAAAAABUnFAQAAAAAAAAKi2l/weBAk32dt48IQAAAABJRU5ErkJggg==
Dies sind endliche W-Räume mit Gleichverteilung. Genauer:
* $$\Omega$$ sei eine endliche, nichtleere Menge.
* $$(\Omega,2^\Omega,{\mathcal{U}}_\Omega)$$ wird zum W-Raum mit Gleichverteilung, auch $$\textbf{Laplace-Raum}$$ genannt, indem man für $$A\subseteq \Omega$$ festlegt: <$latex text="\mathcal{U}_{\Omega}(A)\coloneqq\frac{|A|}{|\Omega|} =\frac{\text{Anzahl der günstigen Fälle}}{\text{Anzahl der möglichen Fälle}}." displayMode="true"></$latex>
* Dieses Modell wird gewählt, wenn aus Symmetriegründen
(fairer Würfel, faire Münze, usw.)\ alle Ergebnisse gleichwahrscheinlich sind.
* Zugehörige W-Funktion ist die auf $$\Omega$$ konstante Funktion <$latex text="\omega\mapsto \frac{1}{|\Omega|}." displayMode="true"></$latex>
Im (abstrakten) Setting des [[Färbungsproblems|Ein Färbungsproblem]] betrachten wir den Ergebnisraum
* Alle rot-blau-Färbungen der $$n$$-elementigen
Menge $$F$$:
<$latex text="\Omega=\{\varphi\mid \varphi:F\to\{\text{rot,blau}\}\}=:\{\text{rot,blau}\}^F." displayMode="true"></$latex>
* Wichtige Ereignisse, die im Verlauf des [[Beweises|Las-Vegas-Färbung Beweis]] benutzt wurden:
<$latex text="\begin{alignedat}
RR_i&:=&\{\varphi\in\Omega\mid \varphi\downarrow S_i\equiv \text{rot}\}\\
&&\text{Menge aller Färbungen, bei denen $S_i$ komplett rot gefärbt ist,}\\
B_i&:=&\{\varphi\in\Omega\mid \varphi\downarrow S_i\equiv \text{blau}\}\\
&&\text{Menge aller Färbungen, bei denen $S_i$ komplett blau gefärbt ist,}\\
E_i&:=& R_i\sqcup B_i\\
&&\text{Menge aller Färbungen, bei denen $S_i$ einfarbig ist,}\\
E&:=&E_1\cup\ldots\cup E_m\\
&&\text{Menge aller Färbungen, bei denen mindestens ein $S_i$ einfarbig ist.}\\
\end{alignedat}" displayMode="true"></$latex>
!! Bemerkung
* Memo: $$S_1,\ldots,S_m\subset F$$ sind $$r$$-elementig & paarweise verschieden
! Aussage:
Es gilt folgender Satz: Es sei $$r\ge 2$$ und $$m\le 2^{r-2}$$. Dann gilt:
* Es gibt eine $$(S_1,\ldots,S_m)$$-zulässige Gesamtfärbung.
* Im Mittel ist der Las-Vegas-Algorithmus spätestens nach\newline zwei (!) Färbungsversuchen erfolgreich.
! Beweis:
Es sei $$\Omega$$ die Menge aller Gesamtfärbungen von $$F$$ und $$\textcolor{red}{R_i}$$ bzw. $$\textcolor{blue}{B_i}$$ sei die Teilmenge von $$\Omega$$, bei denen die Elemente von $$S_i$$ komplett $$\textcolor{red}{\text{rot}}$$ bzw.
$$\textcolor{blue}{\text{blau}}$$ gefärbt wurden.
$$P$$ sei die Gleichverteilung auf $$\Omega$$. Dann gilt für die Wahrscheinlichkeit, dass alle Elemente von $$S_i$$ komplett rot eingefärbt wurden:
<$latex text="P(R_i)=\frac{|R_i|}{|\Omega|}=2^{-r}.\quad\text{Analog ist}\quad P(B_i)=\frac{|B_i|}{|\Omega|}=2^{-r}." displayMode="true"></$latex>
Die Wahrscheinlichkeit, dass ein fest vorgegebenes $$S_i$$ komplett rot oder komplett blau gefärbt ist, beträgt
<$latex text="P(R_i\sqcup B_i)=P(R_i)+P(B_i),=2\cdot 2^{-r}=2^{1-r}." displayMode="true"></$latex>
Für die Wahrscheinlichkeit $$q$$, dass mindestens eine der Mengen
$$S_1,\ldots,S_m$$ einfarbig ist ($$S_i$$ einfarbig: $$E_i:=R_i\sqcup B_i$$), ergibt sich mit der
Voraussetzung $$m\,\textcolor{blue}{\le}\ 2^{r-2}$$ die Abschätzung
<$latex text="q=P(E_1\cup\ldots\cup E_m)\le P(E_1)+\ldots+P(E_m)\le m\cdot 2^{1-r}\ \textcolor{blue}{\le}\,\, 2^{r-2}\cdot 2^{1-r}
={\frac{1}{2}}." displayMode="true"></$latex>
Die Wahrscheinlichkeit, beim $$k$$-ten Gesamtfärbungsversuch die erste erfolgreiche Gesamtfärbung zu erzielen, ist $$p\cdot q^{k-1}$$.
Als Erwartungswert (= gewichteter Mittelwert) für die Anzahl der Versuche bis zur ersten erfolgreichen Gesamtfärbung erhält man also
<$latex text="\sum_{k^\ge 1}kpq^{k-1} =p\sum_{k^\ge 1}kq^{k-1}." displayMode="true"></$latex>
Um diesen Erwartungswert auszurechnen, betrachten wir die für $$|x|<1$$ gültige Beziehung der geometrischen Reihe
<$latex text="g(x):=\sum_{k\ge 0}x^k =\frac{1}{1-x}." displayMode="true"></$latex>
Für die Ableitung von $$g(x)=(1-x)^{-1}$$ ergibt sich mit der Kettenregel einerseits
<$latex text="g'(x)=\frac{\mathrm{d}}{\mathrm{d}x}(1-x)^{-1}=(1-x)^{-2}," displayMode="true"></$latex>
andererseits führt termweises Differenzieren von $$g(x)=\sum_{k\ge 0}x^k$$ zu
<$latex text="g'(x)=\sum_{k\ge 1}kx^{k-1}." displayMode="true"></$latex>
Mit $$p=1-q$$ erhalten wir als obere Schranke für die mittlere Anzahl von Färbungsversuchen bis zum ersten Erfolg:
<$latex text="\sum_{k^\ge 1}kpq^{k-1}=p\cdot g'(q) =p\cdot (1-q)^{-2} =
{\frac{1}{p}}\le 2.\quad\quad\square" displayMode="true"></$latex>
!! Anmerkung
Beweisdetails werden nachgeliefert, sobald wir erste Grundkenntnisse in W-Theorie erworben haben:
* [[Las-Vegas-Beispiel: Ergebnisraum und Ereignisse]]
Für jede Funktion $$f:\R^n\to[0,\infty]$$ mit <$latex text="\text{für alle $c>0$ gilt $\{x\in\R^n\mid f(x)\le c\}\in {\mathcal{B}}^n$}" displayMode="true"></$latex> ist das ''Lebesgue-Integral'' $$\int f(x) dx\in[0,\infty]$$ definiert. Solche Funktionen heißen $$({\mathcal{B}}^n,{\mathcal{B}})$$-messbar, s.u.
Dieses Integral besitzt folgende Eigenschaften:
* ($$\rho$$) Für jede Riemann-integrierbare Funktion $$f$$ stimmt $$\int f(x) dx$$ mit dem Riemann-Integral von $$f$$ überein.
* ($$\sigma$$) Für jede Folge $$f_1,f_2,\ldots$$ von nichtnegativen messbaren Funktionen gilt <$latex text="\int\sum_{n\ge 1}f_n(x)dx=\sum_{n\ge 1}\int f_n(x)dx." displayMode="true"></$latex>
* Das [[Riemann-Integral|Bestimmte Integrale von Regelfunktionen]] erfüllt ($$\sigma$$) nicht. Siehe [[Bemerkung zu Integralen und Maßtheorie]] für einen etwas ausführlicheren Vergleich
Ist $$(a_k)\in\R^\N$$ eine [[monotone|Monotonie]] [[Nullfolge|Grenzwerte von Folgen]], so konvergiert<$latex text="\sum_{k=1}^\infty (-1)^k a_k." displayMode="true"></$latex>
!! Beweis
O.B.d.A. ist $$(a_k)$$ monoton fallend. Da sie außerdem eine Nullfolge ist, ist sie durch $$0$$ nach unten beschränkt.
Es reicht zu zeigen, dass $$(S_{2n}),(S_{2n+1})$$ beide konvergieren und den gleichen Grenzwert haben.
Es gilt
<$latex text="\begin{aligned}
S_{2n+2}-S_{2n}&=a_{2n+2}-a_{2n+1}\leq 0\\
S_{2n+3}-S_{2n+1}&=-a_{2n+3}+a_{2n+2}\geq 0.
\end{aligned}" displayMode="true"></$latex>
Insbesondere sind beide [[Teilfolgen |Teilfolge]] monoton.
Außerdem folgt direkt:
<$latex text="S_2\geq S_{2n}\geq S_{2n+1}\geq S_1." displayMode="true"></$latex>
Damit ist die Folge beschränkt und [[konvergiert daher|Satz von der monotonen Konvergenz]]. Es existieren also $$s,r\in\R$$ Grenzwerte der beiden Teilfolgen.
Dann folgt:
<$latex text="\begin{aligned}
s-r&=\lim_{n\to\infty} S_{2n}-\lim_{n\to\infty}S_{2n+1}\\
&=\lim_{n\to\infty} S_{2n}-S_{2n+1}\\
&= \lim_{n\to\infty} a_{2n+1}=0.
\end{aligned}" displayMode="true"></$latex>
Die Konvergenz von $$(S_n)$$ folgt direkt, indem man das Maximum der zu Konvergenz nötigen $$n_0$$ nimmt.
<<list-links "[tag[Lemma Differenzierbare Abbildungen]sort[order]]">>
<<list-links "[tag[Lemma Differenzierbare Funktionen]sort[order]]">>
<<list-links "[tag[Lemma Eigenwertprobleme]sort[order]]">>
<<list-links "[tag[Lemma Grundlagen]sort[order]]">>
<<list-links "[tag[Lemma Lineare Ausgleichsrechnung]sort[order]]">>
<<list-links "[tag[Lemma LU-Zerlegung]sort[order]]">>
<<list-links "[tag[Lemma QR-Zerlegung]sort[order]]">>
Die Householder-Transformation ist eine hermitesch unitäre Matrix mit
<$latex text="
Hv = -v, \qquad Hw = w \qquad \forall w \in \{v\}^{\perp}.
" displayMode="true"></$latex>
<$details summary="Beweis" tiddler="Beweis: Householder-Transformation">
{{Beweis: Householder-Transformation}}
</$details>
<$details summary="Geometrische Anschauung der Householder-Transformation" tiddler="Geometrische Anschauung der Householder-Transformation">
[img[qr_geom_anschaauung_householder.png]]
</$details>
<$details summary="Bemerkung" tiddler="Bemerkung">
{{Bemerkung: Lemma: Householder-Transformation}}
</$details>
Seien $$\mu_k$$, $$Q_k$$, $$R_k$$ wie oben definiert und sei $$A_0 := A$$. Dann gelten die folgenden Identitäten:
#$$A_{k+1} = Q_{k}^{*} A_kQ_k \ \ $$ (d.h. insbesondere, dass die Matrizen $$A_k$$ dieselben Eigenwete wie $$A$$ besitzen)
#$$A_{k+1} = (Q_0 Q_1 Q_2 \dots Q_k)^{*}A(Q_0 Q_1 Q_2 \dots Q_k)$$
#$$\prod \limits_{j=0}^{k}(A-\mu_{j}I) = \underbrace{(Q_0 Q_1 Q_2 \dots Q_k)}_{Q} \underbrace{(R_k R_{k-1} \dots R_0)}_{R} $$
<$details summary="Beweis " tiddler="Beweis ">
{{Beweis: Lemma: QR-Verfahren}}
</$details>
iVBORw0KGgoAAAANSUhEUgAAAbAAAAEgCAYAAADVKCZpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAYU0lEQVR4nO3db2yVZ/3H8c/paaqtDhYtrS3F1VJS+odDAwfb+AArXXEw7cSRyVwmBiImWzTRONwTDJotY4kPdGKmlc0hiS6ZU7vIgtNKjWlw3dmGfwCbiutW2tI/g9o5kI7T6/dgbX+ntPScw33uc9/XOe/Xo3L+fs/d7Xx6Xff3uq+AMcYIAADL5HhdAAAAN4IAAwBYiQADAFiJAAMAWIkAAwBYiQADAFiJAAMAWIkAAwBYiQADAFiJAAMAWIkAAwBYiQADAFiJAAMAWIkAAwBYiQADAFiJAAMAWIkAAwBYiQADAFiJAAMAWIkAAwBYiQADAFiJAAMAWIkAAwBYiQADAFiJAAMAWIkAAwBYiQADAFiJAAMAWIkAAwBYiQADAFiJAAMAWIkAAwBYiQADAFiJAAMAWCnX6wLcUlhYqPLycq/LAACr9PX1aWxszOsyEpKxAVZeXq5IJOJ1GQBglXA47HUJCWMKEQBgJQIMAGAlAgwAYCUCDABgpYxt4gCAbBOdMursGdGpwQnVli5RU1WRgjkBr8tyDQEGAJZYLKCiU0b3PvGiTvaP6/JkVPl5QdWvuFlHdjdkbIgRYABggXgB1dkzopP947o0GZUkXZqM6mT/uDp7RtRcXexx9e7gHBgApEl0yqjjzLAe6+hVx5lhRadMws+NDSijuQElSacGJ3R5OrxmXJ6M6vTgRCo/gq8wAgOANHA6xbdYQDVXF6u2dIny84KzIzBJys8LqqZ0Sco/i18wAgOANIg3gopnJqBixQZUU1WR6lfcrIK8oAKSCqYDsqmqKMWfxD8YgQFAGsQbQcUzE1DXjuBmAiqYE9CR3Q3q7BnR6cEJ1dCFCABIBadTfIkEVDAnoObq4oxt2rgWAQYAaRBvBJWIbAuoeAgwAEiDbJzicxsBBgBpwggqtehCBABYiQADAFiJAAMAWIkAAwBYiQADAFiJAAMAWIkAAwBYiQADAFiJAAMAWIkAAwBYyXcBtmvXLhUVFamurm72tgsXLqilpUWrVq1SS0uLLl686GGFAAA/8F2AffGLX9SxY8fm3HbgwAE1Nzert7dXzc3NOnDggEfVAcD1RaeMOs4M67GOXnWcGVZ0ynhdUkbz3cV8N27cqL6+vjm3tbe3q7OzU5K0c+dONTU16dFHH01/cQBwHdEpo3ufeHHedilHdjdwxXmX+G4EtpDh4WGVlJRIkkpKSjQyktgW3ACQLp09IzrZP65Lk1EZSZcmozrZP67OHr6v3GJFgCWqra1N4XBY4XBYo6OjXpcDIIucGpzQ5ZjdliXp8mRUpwcnPKoo81kRYMXFxRoaGpIkDQ0Nqaho4R1M9+zZo0gkokgkomXLlqWzRABZrrZ0ifLzgnNuy88LqqZ0iUcVZT4rAqy1tVWHDx+WJB0+fFh33HGHxxUBwFxNVUWqX3GzCvKCCkgqmD4H1lS18B/ccM53TRx33323Ojs7NTY2prKyMn3729/Wgw8+qLvuuktPPPGEPvzhD+uZZ57xukwAWSo6ZdTZM6JTgxOqLV2ipqoiBXMCCuYEdGR3gzp7RnR6cEI1MffBHQFjTEb2eYbDYUUiEa/LAJBBsqHT0KbvTiumEAHAD+g09BcCDABiLLYYmU5Df/HdOTAA8Eq8KcKZTsNLMSFGp6F3GIEBwLR4U4R0GvoLIzAAmLbYFGFzdbHrnYbX63DEwggwAJiWyBRhMCeg5upiNVcXp/S9s6HDMdWYQgSAaV5OEdLhmDxGYAAwzcvFyPGmLzEfAQYAMdyaIoyHDsfkMYUIAD5Ah2PyGIEBgA9wLcXkEWAAMorNreheTV/aigADkDFoRc8unAMDkDFoRc8uBBiAjMHFdrMLAQYgY8y0oseiFT1zEWAAMgat6NmFJg4AGYNW9OxCgAHIKLSiZw+mEAEAVmIEBiCr2LzQGXMRYACyBgudMwtTiACyBgudMwsBBiBrsNA5sxBgALIGC50zCwEGIGuw0Dmz0MQBIGuw0DmzEGAAsgoLnTMHAQYgaaylgh8QYACSko61VAQkEkGAAUhK7Foqae5aqkSn5RYLKBYbI1EEGIB5FguYxdZSJRJg8QIqFQGJ7ECAAZgjXsDMrKW6FBNiyaylihdQTgMS2YN1YADmiHe5JadrqeJdDYPFxkgUIzAAc8QbATldSxVvBDcTkNeOAFlsjGsRYADmSGSK0MlaqngBxWJjJIoAAzCH2yOgRAKKxcZIBAEGYI50jICcBBRrxDDDmgArLy/XTTfdpGAwqNzcXEUiEa9LAjKWX0dArBFDLGsCTJKOHz+uwsJCr8sAEIdboyTWiCGWVQEGwP/cHCWxRgyxrFkHFggEtHnzZq1fv15tbW1elwPgOuKtI3OCNWKIZc0IrKurS6WlpRoZGVFLS4tWr16tjRs3znlMW1vbbLiNjo56USaQ9dwcJbFGDLGsCbDS0lJJUlFRkbZt26bu7u55AbZnzx7t2bNHkhQOh9NeI4DE1pHdKNaIIZYVU4hvv/223nrrrdmfX3jhBdXV1XlcFYCFOL3UVDwzHZJfaV41e2UQZCcrRmDDw8Patm2bJOnq1av6/Oc/r9tuu83jqgAshFES0sWKAKuoqNBf//pXr8sAkCC/riNDZrFiChEAgGsRYAAAKxFgAAArWXEODEDyuOgtMh0BBmQgLnqLbMAUIpCB3LycE+AXBBhgqeiUUceZYT3W0auOM8OKTpnZ+xa7nBOQKZhCBCwUb4rQzcs5AX7BCAywULwpQrcv5wT4ASMwwELxrvieyOWc6FKE7QgwwCVuBkQiU4SLXc6JLkVkAgIMcEEqAmKxAHS6L1bsFKQ0dwqS6xfCFgQY4AKnAREvAJ1e8d3NTSeBdKGJA3CB0zb2RNZxOdkXa2YKMhZdirANAQa4IJGA8HIdF12KyARMIQIuiHeOyut1XGw6iUxAgAEuiBcQ8c6ROW3SSLRGNp2EzQgwwCWLBUQq1nEB2Y4AAzzgdB0XAJo4AE/QRAE4xwgM8ABThIBzBBjgEaYIAWeYQgQAWCmlAfaxj31Mx48fT+VLAgCwoJQGWFtbmw4ePKjm5madOHEilS8NAMAcKT0HVldXp2effVavvPKKvvWtb0mSHnroIdXX16fybQAAcOccWGVlpfbt26eysjKFw2E33gIAkOVSOgLbtGmTent79d73vlc1NTWqqanRU089lcq3AABAUooD7Lvf/a6qq6uVn5+fypcFAGCelAbYunXrUvlyAABcF+vAAABWIsAAAFYiwAAAViLAAABWIsAAAFYiwAAAViLAAABWIsAAAFYiwAAAVrImwI4dO6aqqipVVlbqwIEDXpcDn4hOGXWcGdZjHb3qODOs6JTxuiQAaZLSS0m5JRqN6v7779fvf/97lZWVacOGDWptbVVNTY3XpcFD0Smje594USf7x3V5Mqr8vKDqV9ysI7sbFMwJeF0eAJdZMQLr7u5WZWWlKioqlJeXpx07dqi9vd3rsuCxzp4Rnewf16XJqIykS5NRnewfV2fPiNelAUgDKwJsYGBAK1asmP13WVmZBgYGPKwIfnBqcEKXJ6Nzbrs8GdXpwQmPKgKQTlYEmDHzz2sEAvOniNra2hQOhxUOhzU6OpqO0uCh2tIlys8LzrktPy+omtIlHlUEIJ2sCLCysjL19/fP/vvcuXMqLS2d97g9e/YoEokoEolo2bJl6SwRHmiqKlL9iptVkBdUQFLB9Dmwpqoir0sDkAZWNHFs2LBBvb29eu2117R8+XI9/fTT+vnPf+51WfBYMCegI7sb1NkzotODE6opXaKmqqI5DRzRKaPOnhGdGpxQ7QL3x+P0+QDcY0WA5ebm6uDBg/rkJz+paDSqXbt2qba21uuy4APBnICaq4vVXF087z6nXYp0OQL+ZkWASdLWrVu1detWr8uARWK7FKW5XYoLBV6qnw/AXVacAwNuhNMuRbocAX+zZgQGJGumS/FSTAhd26W42DmuRJ4PwDsEGDLWTJfiteewZroU453jivd8AN4iwJCx4nUpxjvHlUiXIwDvEGDIaIt1KS52jmvm8Ys9X6LNHvASAQbHbP0Sd3qOizZ7wFsEGByx+Uvc6Tku2uwBbxFgcMTmL3Gn57gSmYIE4B4CDI7Y/iUe7xzXYmizB7zFQmY4ks1XhOdiwoC3GIHBkWxeK0WbPeAtAgyOZPuXuJMpSADOEGBwjC9xAF7gHBgAwEoEGADASgQYAMBKBBgAwEoEGADASnQhwnW2XuwXgL8RYHCVzRf7BeBvTCHCVbEX+zWae7FfAHCCAIOrFrvYLwA4QYDBVdl8sV8A7uIcWJZw0kjh5LnZfLFfAO4iwLKAk0YKp00Y2X6xXwDuIcCygJNdk1Ox47LTi/3Shg9gIQSYJZx8iTvZNdnrHZdpwwdwPQSYBZx+ic80UlyKCaJrGymuF5CJPNdNqRgBAshMBJgFnH6Jx2ukWCwgvW7C8HoECMC/CDALOP0Sj9dIES8gvWzC8HoECMC/CDALpOJLfLFGingB6eWOy16PAAH4FwFmAbe/xL0e5SzWoEIbPoDrIcAs4PaXuJejnEQaVLwcAQLwLwLMEm5+iXs5yqHLEMCNIsAyhNPFvl6NcugyBHCjCLAMYPNiX6/PvwGwF1ejzwA277k1c/6tIC+ogKQCugwBJIgRWAaweRqOLkMAN8r3I7D9+/dr+fLlqq+vV319vZ5//nmvS/Id2/fcmjn/9pXmVbPrzgAgHitGYF/72tf0jW98w+syfIvFvgCykRUBhsUxDQcgG/l+ClGSDh48qFAopF27dunixYtel+NLTMMByDYBY4zxuohbb71V58+fn3f7ww8/rMbGRhUWFioQCGjfvn0aGhrSk08+ueDrtLW1qa2tTZI0Ojqq119/3dW6ASDThMNhRSIRr8tIiC8CLFF9fX361Kc+pX/84x9xH2vTLwEA/MKm707fTyEODQ3N/vzrX/9adXV1HlYDAPAL3zdx7N27VydPnlQgEFB5ebl+/OMfe10SAMAHfB9gR44c8boEAIAP+X4KEQCAhRBgAAArEWAAACv5/hyYTZzsyeV0Py8AyDYEWIo42ZPL5v28AMArTCGmiJM9uWzezwsAvEKApchie3K5+VwAyFYEWIo42ZPL9v28AMALBFiKzOzJVZAXVEBSQRJ7cjl5LgBkK5o4UsTJnlzs5wUAySPAUmhmT67m6uK0PhcAshFTiAAAKxFgAAArEWAAACsRYAAAKxFgAAArEWAAACsRYAAAKxFgAAArEWAAACsRYAAAKxFgAAArEWAAACsRYAAAKxFgAAArsZ1KEqJTRp09Izo1OKFa9uwCAE8RYDEWC6jolNG9T7yok/3jujwZVf70rslHdjckHGIEIACkDgE2LV5AdfaM6GT/uC5NRiVJlyajOtk/rs6ekYQ2oUxFAAIA/h/nwKbFBpTR3ICSpFODE7o8HV4zLk9GdXpwIiWvDwBIDgE2LV5A1ZYuUX5ecM79+XlB1ZQuScnrAwCSQ4BNixdQTVVFql9xswryggpIKpieAmyqKkrJ6wMAksM5sGkzAXXtOaqZgArmBHRkd4M6e0Z0enBCNUk2YcR7fQBAcgLGGON1EW4Ih8OKRCJJPWemS/BGAsoPrw8ATt3Id6dXGIHFCOYE1FxdnFBXoR9fHwCyCefAAABWIsAAAFYiwAAAViLAAABWIsAAAFbK2Db6wsJClZeX39BzR0dHtWzZstQWlALUlRzqSg51Jc+vtTmpq6+vT2NjYymuyB0ZG2BO+HUdBHUlh7qSQ13J82ttfq0r1ZhCBABYiQADAFgpuH///v1eF+FH69ev97qEBVFXcqgrOdSVPL/W5te6UolzYAAAKzGFCACwEgEm6YEHHtDq1asVCoW0bds2jY+PL/i4Y8eOqaqqSpWVlTpw4IDrdT3zzDOqra1VTk7Ooh1F5eXlWrNmjerr6xUOh31TV7qP14ULF9TS0qJVq1appaVFFy9eXPBxwWBQ9fX1qq+vV2trq2v1xPv8V65c0ec+9zlVVlaqoaFBfX19rtWSTF1PPfWUli1bNnuMDh06lJa6du3apaKiItXV1S14vzFGX/3qV1VZWalQKKRXXnnFF3V1dnZq6dKls8frO9/5jus19ff36xOf+ISqq6tVW1ur73//+/Me49XxSisD87vf/c688847xhhj9u7da/bu3TvvMVevXjUVFRXm7Nmz5sqVKyYUCplTp065Wtfp06fNP//5T/Pxj3/cvPTSS9d93C233GJGR0ddrSXZurw4Xg888IB55JFHjDHGPPLIIwv+Ho0x5n3ve5+rdRiT2Of/4Q9/aL785S8bY4z5xS9+Ye666y5f1PXTn/7U3H///a7Xcq0//elP5uWXXza1tbUL3n/06FFz2223mampKXPixAnz0Y9+1Bd1HT9+3Nx+++1pqWXG4OCgefnll40xxkxMTJhVq1bN+z16dbzSiRGYpM2bNys3992dZRobG3Xu3Ll5j+nu7lZlZaUqKiqUl5enHTt2qL293dW6qqurVVVV5ep73IhE6vLieLW3t2vnzp2SpJ07d+o3v/mNq++3mEQ+f2y927dvV0dHh4zLp6S9+L0kauPGjfrABz5w3fvb29v1hS98QYFAQI2NjRofH9fQ0JDndXmhpKRE69atkyTddNNNqq6u1sDAwJzHeHW80okAu8aTTz6pLVu2zLt9YGBAK1asmP13WVnZvP9gvBIIBLR582atX79ebW1tXpcjyZvjNTw8rJKSEknv/g8+MjKy4OP+97//KRwOq7Gx0bWQS+Tzxz4mNzdXS5cu1ZtvvulKPcnUJUnPPvusQqGQtm/frv7+fldrSpSf/x88ceKE1q5dqy1btujUqVNpfe++vj69+uqramhomHO7n49XqmTNhpa33nqrzp8/P+/2hx9+WHfcccfsz7m5ubrnnnvmPW6hv4wDAee7KSdSVzxdXV0qLS3VyMiIWlpatHr1am3cuNHTurw4Xol64403VFpaqn//+9/atGmT1qxZo5UrVzquLVYin9+tY7SYRN7z05/+tO6++2695z3v0Y9+9CPt3LlTf/zjH12tKxFeHK9ErFu3Tq+//rre//736/nnn9dnPvMZ9fb2puW9//vf/+rOO+/U9773PS1ZsmTOfX49XqmUNQH2hz/8YdH7Dx8+rN/+9rfq6OhY8JdcVlY25y/Rc+fOqbS01PW6EjFTR1FRkbZt26bu7m7HAea0Li+OV3FxsYaGhlRSUqKhoSEVFRUt+LiZOioqKtTU1KRXX3015QGWyOefeUxZWZmuXr2q//znP65PVSVS1wc/+MHZn7/0pS/pm9/8pqs1Jcqt/6acig2OrVu36r777tPY2JgKCwtdfd933nlHd955p+655x599rOfnXe/X49XKjGFqHe7sh599FE999xzKigoWPAxGzZsUG9vr1577TVNTk7q6aefdrWDLVFvv/223nrrrdmfX3jhhet2S6WTF8ertbVVhw8flvTuHyQLjRQvXryoK1euSJLGxsbU1dWlmpqalNeSyOePrfeXv/ylNm3a5PpfyInUFXue5LnnnlN1dbWrNSWqtbVVP/vZz2SM0V/+8hctXbp0dsrYS+fPn58d7XR3d2tqamrOHwFuMMZo9+7dqq6u1te//vUFH+PX45VS3vSO+MvKlStNWVmZWbt2rVm7du1sZ9jAwIDZsmXL7OOOHj1qVq1aZSoqKsxDDz3kel2/+tWvzPLly01eXp4pKioymzdvnlfX2bNnTSgUMqFQyNTU1PimLmPSf7zGxsbMpk2bTGVlpdm0aZN58803jTHGvPTSS2b37t3GGGO6urpMXV2dCYVCpq6uzhw6dMi1ehb6/Pv27TPt7e3GGGMuX75stm/fblauXGk2bNhgzp4961otydT14IMPmpqaGhMKhUxTU5M5c+ZMWurasWOH+dCHPmRyc3PN8uXLzaFDh8zjjz9uHn/8cWOMMVNTU+a+++4zFRUVpq6ubtHO3HTW9YMf/GD2eDU0NJiuri7Xa/rzn/9sJJk1a9bMfm8dPXrUF8crnbgSBwDASkwhAgCsRIABAKxEgAEArESAAQCsRIABAKxEgAEArESAAQCsRIABadLY2Di759fAwEBa9m4DMhkBBqSBMUZvvPGGbrnlFknS3/72N61Zs8bjqgC7EWBAGvzrX//SRz7ykdlrHRJggHMEGJAGf//73+cEViQSUSgU8rAiwH4EGJAGFy5cUH5+viTpzJkzOnr0KCMwwCEu5gukQX9/v26//XatXr1adXV1+slPfuKbnY4BWxFgAAArMYUIALASAQYAsBIBBgCwEgEGALASAQYAsBIBBgCw0v8BxO2atneFYPEAAAAASUVORK5CYII=
iVBORw0KGgoAAAANSUhEUgAAAbAAAAEgCAYAAADVKCZpAAAAAXNSR0IArs4c6QAAIABJREFUeF7tnQm8zlX+x993w5Xl4iJLIkJJaVGhJBGhSZpqarSMmpqlKVPoSklkbdGMmhr1r2balzGaEElpkUhRNJKKS0hky5Lc5f86zzN0ucvvWX6/3/M7z/P5vV5eynOW73l/v/d87vf8znNOWnFxcTF6REAEREAERMAyAmkSMMs8JnNFQAREQARCBCRgCgQREAEREAErCUjArHSbjBYBERABEZCAKQZEQAREQASsJCABs9JtMloEREAEREACphgQAREQARGwkoAEzEq3yWgREAEREAEJmGJABERABETASgISMCvdJqNFQAREQAQkYIoBERABERABKwlIwKx0m4wWAREQARGQgCkGREAEREAErCQgAbPSbTJaBERABERAAqYYEAEREAERsJKABMxKt8loERABERABCZhiQAREQAREwEoCEjAr3SajRUAEREAEJGCKAREQAREQASsJSMCsdJuMFgEREAERkIApBkRABERABKwkIAGz0m0yWgREQAREQAKmGBABERABEbCSgATMSrfJaBEQAREQAQmYYkAEREAERMBKAhIwK90mo0VABERABCRgigEREAEREAErCUjArHSbjBYBERABEZCAKQZEQAREQASsJCABs9JtMloEREAEREACphgQAREQARGwkoAEzEq3yWgREAEREAEJmGJABERABETASgISMCvdJqNFQAREQAQkYIoBERABERABKwkkrYDl5ubStGlTK50io0VABEQgUQRWr17N5s2bE9V9VP0mrYCdcsopLFq0KCoYKiwCIiACqU7AprlTApbq0arxi4AIiEAJAhKwAISDTU4IAC6ZIAIiIAIhAjbNncrAFLQiIAIiIAIHCEjAAhAMNjkhALhkggiIgAgoAwtKDEjAguIJ2SECIuAXgamL13HPrBWs37aHhjnZDO7Rir4nNoqqe5vmTi0hRuVaFRYBERCBxBGoSKDMZ0OnLGXPvsIDBmZnZTC2X9uoREwCljj/WrmOGwBcMkEERCDgBJwEqtO4N1m3bU+pUTTKyWZeXteIRycBixiVdwVtcoJ3FNSyCIhAkAjEs8TnJFDN8qZTXMZg04BV43pHjMGmuVNLiBG7VQVFQAREIHYCThmUU8tOAuUkcE7t7/9cAhYpKQ/L2eQEDzGoaREQgYAQiFdgnOrHK5ASsIAEijFDAhYgZ8gUERABnDIoJ0SRCFQ8S5QSMCcP+Pi5BMxH2OpKBETAkYBTBuXYABCRQH31JjTtDBmZkTRZqoxNc6fegcXkYlUSAREQgegIRJJBRdfiIaW3fwMzhsCK6fCLSXDSlTE1JwGLCZu7lWxygrsjV2siIAJBJRBRBhWt8YUFsOAReGsMFBdBlzzo8EfIyIq2pVB5m+ZOZWAxuViVREAERCAABL5ZBK8OhI1LoWVPOG8C1DoyLsMkYHHhc6eyTU5wZ8RqRQREIGUI/Lgd5oyED/8PqjeA88bDMedDmvnWV3yPTXOnMrD4fK3aIiACIuAfgeJiWPYvmHUb7NoEp14PXYdB5equ2SABcw1l7A3Z5ITYR6maIiACKUNgy9cwfRB8NQcangh9Job/dvmxae5UBuay89WcCIiACLhKoGAvzPsrvHsvpGfBOcOh/TWQnuFqN/sbk4B5gjW6Rm1yQnQjU2kREIGUIbD6PZj2Z9j8BRzbF3qOgxoNPB2+TXOnMjBPQ0GNi4AIiEAMBHZ9D7PvgCXPQM6R0Ps+OLp7DA1FX0UCFj0z12vY5ATXB68GRUAE7CRQVBQWLSNee3+AjjdC58FQqapv47Fp7lQG5ltYqCMREAERqIDAd8th2s2w5n1o0iG8SaPeMb4jk4D5jrx0hzY5IQC4ZIIIiECiCPy0G965B97/a3g7fPeR0K4/pKcnxCKb5k5lYAkJEXUqAiIgAsDK2TD9FtiWDydcDueOgsNyE4pGAhYH/gEDBjBt2jTq1avHsmXLQi1t2bKFSy+9lNWrV9O0aVNefPFFatWqVWEvNjkhDlyqKgIiYCOBHRtgZh78dyrUOTq8XNjszECMxKa5M3AZ2DvvvEO1atW48sorDwjYkCFDqF27Nnl5eYwbN46tW7cyfvx4CVggwl1GiIAI7CfgeFhvUSF8+BjMGQWFP0HnQdDpJsisHBiIErA4XWEyrT59+hwQsFatWjF37lwaNGjAhg0b6NKlCytWrJCAxclZ1UVABNwj4HhdyvolMG0grF8MR50d3hpfp7l7BrjUkgQsTpCHClhOTg7btm070KpZPjRZWEWPTU6IE5eqi4AIBIBAeRdWHl0TZrd7Fxb+HarmQs+xcNxFrhy868WwbZo7A7eEaBwSq4BNnjwZ88c8mzZtIj8/3wv/qk0REAERKEWgWd50ig/612J6pH/IiKx/0iBtK5wyIHwMVHZOoOlJwOJ0j5YQ4wSo6iIgAr4TKJmBNWITd2U9SbeMxaxMa8rRAx6DI9r7blMsHUrAYqFWos6hAjZ48GDq1KlzYBOH2ZU4YcIELSHGyVnVRUAE3CNg3oHdMWUxlxdN46bMKaFs7MHii2l9wRAuODm+Sybds9K5JQmYM6NyS1x22WWhDRubN2+mfv363HXXXfTt25dLLrmENWvW0KRJE1566aXQrsSKHpucEAcuVRUBEfCZQLk7DdcsYPvLN1Bzxxe8Xngyj1S9nit7nkHfExv5bGF83dk0dwbyHVh8+MO1bXKCG+NVGyIgAt4TKGun4eFZe3juqJk0y38JajSGXhOgdW/vjfGoB5vmTgmYR0GgZkVABJKPwME7DYvpmz6P27OeJidtJ5kd/gBdhkLlalYPXAIWAPfZ5IQA4JIJIiAC/yNQ0ZeR9+80bJa2gbszH6dTxmcsLmrBsH0DmDH2j0nB0Ka5UxlYUoScBiECIuAGAacvI589diYX7HqB32f8h71UYkLBpTxbeA4Ncg5jXl5XN0xIeBsSsIS7QO/AAuACmSAC1hEo78vIjXKymXdJOjv/dSPVduXzSmFH7t7Xn03kkJ2Vwdh+ba3brFGecyRgAQhbm5wQAFwyQQREACj9ZWSow3buyHqavhnzoFYz5rW+jSGLc1m/bQ8Nc7IZ3KOVa+LleJaiD16yae7UEqIPAaEuREAE7CBQMgNLo4hfZbxFXuZzVE37iazON8OZN0NWtieDcVq+9KTTMhqVgPlFuoJ+bHJCAHDJBBEQAWC/iDQpWMXorMc5Jf0LFhYfy45zxtOtc2dPGVW4fOnj+zWb5k5lYJ6GpBoXARGwisBPu1j54u00+/JJdhRX5eGs39Cm1+/oe1Jjz4dR1vKl6TQNWDXOv++VScA8d7VzBzY5wXk0KiECIuA5gRUzYcZg2L4GTuwP3UdB1YpP/HHTJmVg0dNUBhY9M9UQARFIJgLb18FrQ+DzaVC3dfh25CM7+j5CvQOLHrkELHpmqiECIpAMBAoLYOFkeGs0FBXAWUOgw58gs1LCRqddiNGhl4BFx0ulRUAEAk4gIhFY9xG8OhC+/RRadINe90LtZgEfmT/m2fT6RQLmT0yoFxEQAR8IOC7D/bgd3rwbFj4K1erDeePg2L6BvR3ZB2SlupCAJYL6IX3a5IQA4JIJIpAUBMrdCFGzCvPO3w4zh8LOjXDqb6Hr7VClZlKM281B2DR3KgNz0/NqSwREIKEEytqKfkTaRkZmPsnZGZ9AgxOgzwPQ6KSE2hnkziVgAfCOTU4IAC6ZIAJJQaBkBpZFAb/NmM6NmVMoSsugas8R0P63kJGZFGP1ahA2zZ3KwLyKArUrAiLgO4H978COK/iM0Vn/R8v0dcwqPo3iHuPo2VFZVyQOkYBFQsnjMjY5wWMUal4EUofA7i3kP38LR66ZwjfFufyl0nV06tXftcN2UwGkTXOnMrBUiEiNUQSSnUBxMSx5Fl6/HfbugA43hL/XVemwZB+56+OTgLmONPoGbXJC9KNTDREQgQMENn0B0/4M+e/BEaeFT9Ko30aAYiRg09ypDCxGJ6uaCIhAggns2wPv3gfvPRDOtLqPhBOvgPT0Cg2L6IvOCR5aIruXgCWS/v/6tskJAcAlE0TALgJfzoHpt8DWVXD8r+Dcu6FaXccxOH7R2bGF5C9g09ypDCz541EjFIHkIfDDRpg1FJb9C+q0gN73w1FnRTy+oJz4HrHBCSgoAUsA9EO7tMkJAcAlE0Qg2ASKCuGjJ+CNkVCwB868BToNhKwqUdkdlDu3ojLa58I2zZ3KwHwODnUnAiIQJYENn8K0gWAO4G3WGXpPhNwWUTYSLq4MzBmbBMyZkeclbHKC5zDUgQjYSGDvTpg7Fj54OHyxZI8x0PbiuA7e1Tsw50Cwae5UBubsT5UQARHwm8Dn02HGENjxDZx8NXQbAdm1XLFCuxArxigBcyXM4mvEJifEN1LVFoEkIrBtLbx2K6yYDvXahL/T1eS0JBpg8Idi09ypDCz48SQLRSBwBFzPYsztyAsehrfGAsXQJQ9O/wNkZAVu7MlukAQsAB62yQkBwCUTRCBiAq6/R/pmUfh25I1LoWVP6HUPU1dlcM+sFazftoeGOdkM7tFK5xlG7KH4Cto0dyoDi8/Xqi0CKUfAjZ18RgQfnvkxV+x6gssz32RvlXpkX3AftO7D1CXrGTplKXv2FR5gm52Vwdh+bSViPkSbBMwHyE5d2OQEp7HocxHwm0BFS4Txfpdq6sff8O7Uv5OX9g9qs4MnC3vyt7RLuaPfqSGBckMg/eaVTP3ZNHcqA0umyNNYRMAFAk5LhHEJzPdfsfCh33Bq0Sd8UnQUt+27hs+Km4WsbpSTzby8rsQrkC4gSOkmJGABcL9NTggALpkgAgcIOAmUk8CVibJgL8z7C7xzLzsK0rmn4FKeKexGET8fvJsGrBrXWxlYgmPRprlTGViCg0Xdi0DQCESSAUW1C3HVu+HrTr5fCW0u5IIv+/DJ9uxSw96fgcUkkEGDaLE9ErAAOM8mJwQAl0wQgYgzsIhR7doMr98BnzwLOUeGD949uhuRCFRUAhmxQSoYCQGb5k5lYJF4VGVEIIUIRCIwFeIoKoIlT8Ps4WCOg+p0I5w5CCpVPVBNAhXcgJKABcA3NjkhALhkgggcRCBmgflueXi5cM18aNIxfJJGvdau0o3ZNletSN7GbJo7rcnAmjZtSvXq1cnIyCAzM5NFixZVGEE2OSF5fxQ0spQh8NNueGcCvD8JKlcPXzDZ7tdxHbxbFru4s8OUcUjsA7Vp7rRKwIxo5ebmRuQZm5wQ0YBUSASCSmDl7PDtyNvyw6LVfRRTv/jRk5M0nHZIBhWRTXbZNHdKwGyKLNkqAkEisGM9zBwK/50KuS3Dy4VNz4hok0asw4hkh2SsbatemIAEzINIaNasGbVq1SItLY3rr7+e6667TkuIHnBWkyLgSMDcjrzwUXjzbij8CToPDm/UyKwcquplluRl247jTpECEjAPHL1+/XoaNmzId999R/fu3Zk0aRKdO3c+qKfJkydj/phn06ZN5Ofne2CJmhSBFCawfkn4duT1i+Gos6H3fVCn+UFAvMyS9A7M+9iTgHnMeMSIEVSrVo1BgwaV25NNTvAYl5oXgfgJ/LgD3hoNCydD1VzoORaOu6jMTRpeZ0nahRi/Oytqwaa504p3YLt27aKoqCi0C9H8t8nAhg8fTs+ePSVg3sayWk91AsXFsPw/4Usmf/gW2l8DXe+A7JxyyShLsjtoJGAu++/rr7/mwgsvDLVaUFDA5ZdfzrBhwyrsxSYnuIxLzYmAOwS25sOMQbDydajfFs5/ABqfElHbypIiwhTIQjbNnVZkYLF42SYnxDI+1REBzwgU7oP5D8Lc8ZCWDl2HwanXQ0amZ12q4eAQsGnulIAFJ25kiQgknsCaD8InaXz339Dlkpw3Hmo2TrxdssA3AhIw31CX35FNTggALpmQ6gR2b4E37oSP/wk1GkOve6B1r1SnkpLjt2nuVAaWkiGqQYvA/wiYTRqfvgCzhsGerdDhD3BWHlSuJkQpSkACFgDH2+SEAOCSCUlIwHEjxeaVMP1mWPUONG4fPknj8LZJSEJDioaATXOnMrBoPKuyImAJgQq3sh9XB96bCO/dD1nZ0G0EnHQ1pP98O7Ilw5SZHhCQgHkANdombXJCtGNTeRFwIlDel4kvqP4Ff6n+FGz5CtpeDD3GQLV6Ts3p8xQiYNPcqQwshQJTQ00uAhUtER56nFMu27k96yn6ZrwPtY8KHwHVvGtyAdFoXCEgAXMFY3yN2OSE+Eaq2qlIwOm0i/0ZWBpFXJbxFrdmPkcVfuKZzH4MyJsEWVVSEZvGHAEBm+ZOZWAROFRFRCBoBJzOGzQC98SUadyZNpmT0r9kfuGxjOJaruvXk74nNgracGRPgAhIwALgDJucEABcMsEyAhWe+D6yC8wdS9H8v7G9+DBG/fRrFlTvzuCerQ8SL8ddipYxkbnuELBp7lQG5o7P1YoIlCLgpUCUl4FdWn0p46s+DdvXwolXQPeRULV2mbYNnbKUPfsKD3yWnZXB2H5tlaGleCxLwAIQADY5IQC4ZILLBJzeUUXSXUUCeGj7DfieUZX/Sbe0D6HuMeHvdB3ZodxunJYgI7FPZZKTgE1zpzKw5IxBjSrBBOIViEgE0JS5f+Z/6bbzFQZlvUSlDMjscit0uAEyK1VIwMtLJxOMXt3HSUACFidAN6rb5AQ3xqs2gkUgXoGISAC/+Sh8O/K3n8LR54bPL6zVNCIQEbUfUUsqlGwEbJo7lYElW/RpPIEgEIlARPM9rv2DSgNWjTgD5oyCDx+D6odDz3Fw7AVl3o5cHoxIMrxAgJQRvhOQgPmOvHSHNjkhALhkgssEnATC6fOyBbCYK6t/zMjKT8OuTXDqdXD2MKhSIybrvdxkEpNBqhQIAjbNncrAAhEyMiIZCVQkEE4Z2qECd0TaRkZX+ged05ZAg3bhTRqNTkpGbBpTgglIwBLsANO9TU4IAC6Z4DOBSN6RGRGbOHMZfXa+zI1ZU0nPzCKr+53Q/lpIz/DZYnWXKgRsmjuVgaVKVGqcgSLglIGFjF09L3w78uYV4Xdc5l1XjYaBGoeMST4CErAA+NQmJwQAl0zwmUCF78BaVoHZw2HJ05DTBHrdBy3P9dlCdZeqBGyaO5WBpWqUatwJJ1DqHdm5LembNhdevwP27oCOf4LOQ6BS1YTbKgNSh4AELAC+tskJAcAlExJN4LvPw7cj58+DI04Pb9Kof2yirVL/KUjAprlTGVgKBqiGHCAC+/bAO/fCvL9ApcPg3FHQrr9uRw6Qi1LNlJQVsI4dOzJ69GjOPvvshPvcJickHJYMSAyBL9+A6bfA1tVw/K/g3LuhWt3E2KJeReB/BGyaO13NwJYtW8add97Jtm3buPvuu+nQofzDRL2OFpuc4DULtR8wAj98CzOHwmdToE6L8HJhs84BM1LmpCoBm+ZOVwVsv8M//vhjhg8fHvpfI2Tt2rXzPRZscoLvcNRhYggUFcKix2HOSCjYC2feAmcMhMzKibFHvYpAGQRsmjs9EbAdO3awfPlynnjiCR577DEKCgp8DxSbnOA7HHXoP4ENn4S/07XuI2h2VjjrqtPcfzvUowg4ELBp7nRVwLp27crKlSupUqUKxx57bOhPmzZt6N+/v+9BY5MTfIejDv0jsHcnvDUGFjwMVetAjzHQ9uKoDt71z1j1JAJ2nWLkqoCZpcNjjjmG7OzshMeBBCzhLpABy6fBa0Ngxzo4+TfQ7U7IriUuIhBoAjbNna4KWJC8YpMTgsRNtrhAYNsaeO1WWDED6rWB8x+AI051oWE1IQLeE7Bp7pSAeR8P6iFVCBTugw8ehrljwyPuMhRO/z1kZKUKAY0zCQhIwALgRJucEABcMiFeAms/DN+OvHEZtDwPek0In2OoRwQsI2DT3KkMzLLgkrkBI7Bna3hb/KInwifFnzcBjukTMCNljghETkACFjkrz0ra5ATPIKhh7wgUF8PSl2HWUNj9PZz2ezh7KFSu7l2falkEfCBg09ypDMyHgFAXSUbg+6/CB+9+PRcanRz+TleDE5JskBpOqhKQgAXA8zY5IQC4ZEIkBMzpGe9NhHfvD5+ecc5wOGWAbkeOhJ3KWEPAprlTGZg1YSVDE0rg67fDWdf3X8JxF4W/kFz98ISapM5FwAsCEjAvqEbZpk1OiHJoKu4ngZ2b4PXb4dPnoVZT6H0ftOjmpwXqSwR8JWDT3KkMzNfQUGfWECgqgsX/hNl3wk+7oNNN0HkQZCX+lBlrGMpQKwlIwDxw28yZM7npppsoLCzk2muvJS8vr8JebHKCB7hSpsmpi9dxz6wVrN+2h4Y52Qzu0Yq+JzaKb/wb/xs+eHftB3Bkp/Amjbqt4mtTtUXAEgI2zZ1WZGBGtFq2bMns2bNp3Lgx7du357nnngsdFlzeY5MTLInrwJlpxGvolKXs2Vd4wLbsrAzG9msbm4iZTOvt8TD/IahcI3zBZLvLdfBu4Dwvg7wkYNPcaYWAzZ8/nxEjRjBr1qyQ38aODR/VM3ToUAmYl5Ec8LY7jXuTddv2lLKyUU428/K6Rmf9F7Ng+iDYvgba9YfuI+GwOtG1odIikAQEJGAuO/Hll1/GLCGau8XM89RTT7FgwQIefPBBCZjLrG1qrlnedIrLMDgNWDWud2RD2b4OZt4Ky1+F3Fbh5cKmnSKrq1IikIQEJGAuO/Wll14KZV8lBWzhwoVMmjTpoJ4mT56M+WOeTZs2kZ+f77Ilai5IBOLKwMztyAsnw5t3Q1FBeINGx5sgs1KQhihbRMB3AhIwl5FrCdFloEnSXMzvwNZ9HD5419yS3Pwc6H0v1D4qSahoGCIQHwEJWHz8StUuKCgIbeKYM2cOjRo1Cm3iePbZZ0O3PZf32OQEl3GlVHNOuxBLft6iZjGPNJxB89XPwWF1oedYaNOvwk0aTu2nFGwNNiUI2DR3WrGJw0TNjBkzGDhwYGgb/YABAxg2bFiFwWSTE1LipyIBg/w5QyugV/oC7sz6J3XZzuqjLuOoS8dBlZoVWhVzhpeAsapLEXCLgE1zpzUCFq1zbHJCtGNT+cgImHdkadvzGZn5JF0zlvBZ0ZHctu8aNtdsG9EuxbjesUVmokqJQOAI2DR3SsACFz4yyBUChfsYP/wGbsycQiHpTCz4JU8W9qCQDCLdpejKLkdXBqNGRMA/AhIw/1jrHVgAWAfOhPz54ZM0Ni1nZmF7Ruy7km/5+TtdJb8nVtE7LmVggfOsDPKBgATMB8hOXdjkBKex6PMICezeArOHw+KnoOYRfNA6j9+8n1vuSR1O77icPo/QKhUTAasI2DR3agnRqtCSsWUSMLcjf/I8vD4M9myDDn+ELnlQ6TDizbC0C1Exl2oEJGAB8LhNTggALntN2PRF+J6u1e9C41PDJ2kcflxE43HjHZcELiLUKmQRAZvmTmVgFgVWUE1NyCS+b0/4ZmRzQ3KlqtDtLjjpKkhPjxhTvO+4tMQYMWoVtIiABCwAzrLJCQHAFbMJCZnEv3oTpt0MW1fB8ZeGT42vVi/qMcRre7wCGLXBqiACPhCwae5UBuZDQCRzF75O4j9shFm3wbKXoXbz8O3Izc+OC2882aMbS5BxGa/KIuABAQmYB1CjbdImJ0Q7tiCV92USN7cjf/QEvHEXFOyBM26GM/4MWVUSisJX8U7oSNV5KhGwae5UBpZKkenBWD2fxL9dCq8OhHWLoFln6H0/5B7twUiibzLeJcjoe1QNEfCegATMe8aOPdjkBMfBBLiAZ5P43p0wdyx88DBk14IeY+D4SwJ3O3I8S5ABdqtMS2ECNs2dysBSOFDdGrrrk/jn02HGENjxTXhnYbcRULW2W+aqHREQgQoISMACEB42OSEAuIJhwvZv4LVb4fNpUO/Y8He6mpweDNtkhQikCAGb5k5lYCkSlIEeZmEBLHgE3hoDxUXhUzTMaRoZWYE2W8aJQDISkIAFwKs2OSEAuBJnwjcfwbSbwGzWOLoH9LoHah2ZOHvUswikOAGb5k5lYCkerAkbvjmzcM5IWPQ4VD8czhsPx/wicJs0EsZHHYtAgghIwBIEvmS3NjkhALj8M8EcvLvsX+EvJO/aBKdeD12HQeXq/tmgnkRABMolYNPcqQxMgewfgS1fw/RbwBwF1aAdnP8XaNjOv/7VkwiIgCMBCZgjIu8L2OQE72kktof/LFrFhpkTuGrfSxSmZfJl25s54cJbID0jsYapdxEQgVIEbJo7lYEpgD0l8O7sqTR8byjN09YzrfA0Ru67kh+ychnbry19T2zkad9qXAREIHoCErDomblewyYnuD74IDS463uYfQcseYY1RXUZXvAb5hb9vFzYKCebeXldg2CpbBABEShBwKa5UxmYQtddAubg3SXPhMVr7w889FMvJhVcyI9UPqifNGDVuN7u9q3WREAE4iYgAYsbYfwN2OSE+EcbkBa++xym/RnWvA9NOkKf++n0+AbWbdtTykBlYAHxmcwQgUMI2DR3KgNLkfCN57xCx7o/7YZ374V5f4XK1aD7KGj369DtyJ4d9psiftMwRcBvAhIwv4mX0Z9NTvAaVzwi4lh35Rsw/WbYlg8nXA7njoLDcg8akqMAeg1A7YuACERMwKa5UxlYxG61t2A8d3aVV/eEmnt4pcU0+OzfUOfo0HJh6L4uDx4JoAdQ1aQIlENAAhaA0LDJCZHgimcSj+fW5EPrplNE/4zZDMp8kRqZRdB5MHS6ETIP3qQRyZgiKeOYAUbSiMqIgAhETMCmuVMZWMRuTVzBeCfxSDKw8gSyZN02aasZnfUY7dK/5sP0E2j/xyegTnNPwURiu6cGqHERSDECErAAONwmJzjhincSdxLAij43to2aspA/FL/A1Rkz2UINxhVfxZl9r6fvSY2dTI/783iyx7g7VwMikIIEbJo7lYFZEKBuTOIVLUGWK5A1qzCv7252vzKIKj9u5JmCc3jmsKv4Xc+TfTtFI17xtsCwDhfZAAASIElEQVS9MlEEAkVAAhYAd9jkBCdcXk/iZQlkIzYxMutJzslYDPXbhm9HPqK9k6muf+6UPbreoRoUgRQnYNPcqQzMgmD1ehIvKZCZFDAg4zUGZk4J3c1V9dzb4bTfQ0amZ6ScNqg4fe6ZYWpYBFKQgAQsAE63yQmR4PJyEt8vkMcULGd01v9xTPpa3ig+hcJzx9Gjk7dZl9fiHAlblREBEfiZgE1zpzIwRS7s3sKqF4bQLP8l1hXX4a+VfkuHXlf68p7L6+VRuVcERCA6AhKw6Hh5UtomJ7gBIKYMzdyO/OmL4duR92yF038PXYaGj4Py6XFjg4pPpqobEUgJAjbNncrAkiAkY1qG2/xl+AioVW9Do1PCmzQaHO87DWVgviNXhyJQIQEJWAACxCYnxIsrKhHY9yO8NxHeux8ys6HbcDj5Nwm7HTkm8Y0XmOqLgAiUS8CmuVMZWBIEcsTLcF/PhWk3w5av4LhfQo8xUL1+wgnEtPyZcKtlgAgkJwEJmIt+HTFiBI8++ih169YNtTpmzBh69erl2INNTnAcjEMBxwxs53cwaxgsfRFqNYPe90GLc+LtVvVFQASSkIBNc2fgMzAjYNWqVWPQoEFRhYpNTohqYGUULncZ7sI29C16A964E8ydXWcMhDNvgazseLtUfREQgSQlYNPcKQFLkiA8dBluVIc0uq4cA98shCM7hTdp1G2VJKPVMERABLwiIAFzkazJwJ588klq1KiBAXvfffdRq1Ytxx5scoLjYKIp8NMumDsO5j8EVWpCj9FwwmWhUzX0iIAIiIATAZvmzkBkYN26dePbb78txXX06NGcfvrp5ObmkpaWxh133MGGDRt4/PHHy/TB5MmTMX/Ms2nTJvLz8518lVyfr5gJMwbD9jVwYn/oPgqq1k6uMWo0IiACnhKQgHmEd/Xq1fTp04dly5Y59mCTExwH41Rg+zqYeSssfxVyW8H5D8CRHZ1q6XMREAERKEXAprkzEBlYRTFkMq4GDRqEikycOJEFCxbw/PPPO4adTU5wHEx5BYoKYeFkePNuKCoI347c0dyOXCnmJlVRBEQgtQnYNHcGXsCuuOIKlixZElpCbNq0KX//+98PCFpFYWaTE2L6cVn3EUz7M2z4BFp0g173Qu1mMTWlSiIgAiKwn4BNc2fgBSzWsLLJCVGN8cft4Yxr4aNQrT70HAttLtQmjaggqrAIiEB5BGyaOyVgtsSxOXj3s3/DzKGwcyOc+lvoent4p6EeERABEXCJgATMJZDxNGOTExzHuWUVzBgEX74Bhx9PaJNGo5Mdq6mACIiACERLwKa5UxlYtN71s3zBTzB/Erw9AdIzwxlX+996ejuyn8NTXyIgAsEjIAELgE8S4YR4DqU9tO64U37gzBVjYNPncMz50HM81GwUALIyQQREIJkJJGLujJWnMrBYyR1SL55rQUrWzeEHhmY+x6WZc9md3ZCqfSdCq54uWalmREAERKBiAhKwAESI305wPBG+Aibhuru5KP1dbst6hhrs5rHCXrx82OXMGep88n4AcMsEERCBJCHg99wZDzZlYPHQK1E34ju5yuiv29DJ3J31OKenL2dRUUuG7RvAiuImmNMLV43r7ZKFakYEREAEnAlIwJwZeV7CbyfElIHt2wPv3se+dyayq7gy4wou44XCLhSTHuLTKCebeXldPWelDkRABERgPwG/5854yCsDi4deibpRvwP7cg5MvwW2rmJt4/P5Vf75rNtX7UCL2VkZjO3Xlr4nauOGSy5SMyIgAhEQkIBFAMnrIolwQkS7EH/YCLOGwrJ/Qe3m0Od+OKoLEdX1GpraFwERSHkCiZg7Y4WuDCxWctHWMwfvLnoc5oyCgj3hm5E7DYSsKtG2pPIiIAIi4BkBCZhnaCNvOFBO2PBp+ODddYug2VnQ+37IbRH5YFRSBERABHwiEKi502HMysC8DIq9O2HuWPjgYciuBT3GwPGX6OBdL5mrbREQgbgISMDiwudO5YQ74fPpMGMI7PgGTr4auo0Ii5geERABEQgwgYTPnVGwUQYWBayIim5bC6/dCiumQ7020GciNDktoqoqJAIiIAKJJiABS7QHAN+dUFgACx6Gt8YCxdAlD07/A2RkBYCGTBABERCByAj4PndGZlaZpZSBxQHvQNW1H4Y3aWxcCi17Qq97IKeJGy2rDREQARHwlYAEzFfcZXfmixP2bIM5I8Pb46s3gF4ToHUfbdIIgP9lggiIQGwEfJk7YzOtVC1lYLGANLcjmy8im9uRd2+G034HZ98GlavH0prqiIAIiEBgCEjAAuAKz5zw/VfhI6C+fgsankToduQGJwRgxDJBBERABOIn4NncGb9pysBiZliwF+b9Bd65FzIrwznD4ZQBkJ4Rc5OqKAIiIAJBIyABC4BHXHXCqnfDmzS+Xwlt+oW/kFyjQQBGKRNEQAREwF0Crs6d7pqmDCwqnrs2w+u3wyfPQa2m0Os+OLpbVE2osAiIgAjYREACFgBvxeWEoiJY8jTMHg7mOKhON0HnQZCVHYCRyQQREAER8I5AXHOnd2aV2bJ2IR6KZeN/YfrNsGY+NOkYPkmjXmuf3aLuREAERCAxBCRgieF+UK8xO+H1O2DxU9B9FLT7NaSHb0c2j+7sCoBjZYIIiICnBGKeOz21quzGlYGV4GIEatLMT9i2fTtVcuozuEerAzciR33jchm8JYAJiHB1KQIiEBUBCVhUuLwpHK0TnASq07g3WbdtTyljG+VkMy+vq+MgnNp3bEAFREAERMAHAtHOnT6YVG4XysD+h8ZJoJrlTTdH9JZ60oBV43o7+tCpfccGVEAEREAEfCAgAfMBslMX0TrBSaDiFSCn9p3Go89FQAREwA8C0c6dfthUXh/KwCLMwOJdAoxXABMZJOpbBEQgdQhIwALg62idEIlAxbMJI5L2A4BNJoiACKQ4gWjnzkTiUgZWgn48AhWJE71uPxIbVEYEREAEKiIgAQtAfNjkhADgkgkiIAIiECJg09ypDExBKwIiIAIicICABCwAwWCTEwKASyaIgAiIgDKwoMSABCwonpAdIiACNhGwae7UEqJNkSVbRUAERMBjAhIwjwFH0rxNTohkPCojAiIgAn4QsGnuTNoMLDc3l6ZNm8bk702bNlG3bt2Y6npZSXZFR1e8xCs6AtGXTsYYW716NZs3b44eRgJqJK2AxcMyqL+ByK7ovCpe4hUdgehLK8aiZ+ZmDQlYGTQVlNGFmHiJV3QEoisd1PgyowiqbUG1KzrPO5eWgEnAnKPEoURQf1hkV3SuFa/oeEnAoufldg0JWBlEJ0+ezHXXXec267jbk13RIRQv8YqOQPSlFWPRM3OzhgTMTZpqSwREQAREwDcCEjDfUKsjERABERABNwlIwIDBgwfz6quvUqlSJZo3b84TTzxBTk5OKc4zZ87kpptuorCwkGuvvZa8vDw3fVGqrZdeeokRI0awfPlyFi5cGHphXNZjvi5QvXp1MjIyyMzMZNGiRYGwy29eW7Zs4dJLL8VsAzZMXnzxRWrVqlWKheHUtm3b0L83adKE//znP57wchr/3r17ufLKK/noo4+oU6cOL7zwQsxf/YhmAE52Pfnkk6GfiUaNGoWaveGGG0Lx7vUzYMAApk2bRr169Vi2bFmp7oqLi0M/fzNmzKBq1aoYO0866SSvzcLJrrlz53LBBRfQrFmzkC39+vVj+PDhntq1du3aUOx8++23pKenh155GDYln0Tx8nTghzQuAQNef/11unbtGpr8b7311hCi8ePHH4TKiFbLli2ZPXs2jRs3pn379jz33HMce+yxnvnLCJcJzuuvv5577723QgEzomW+++bHE4ldieA1ZMgQateuHfrFYty4cWzdurWUHw2fatWqsXPnTk9RRTL+v/3tb3z66ac88sgjPP/88/z73/8OiZiXTyR2GWEw8fTggw96aUqptt95552Qb8zEXJaAGeGaNGlSSMAWLFgQmrDN314/TnYZATM/n0Z8/Xo2bNiA+WME/IcffuDkk09m6tSpB81HieLlFwPTjwTsENpmEnn55Zd55plnDvpk/vz5oWxo1qxZoX8fO3Zs6O+hQ4d67q8uXboESsD2D7giuxLBq1WrVpjJpEGDBqEfbmPfihUrSvnHDwGLZPw9evQIxVSHDh0oKCjg8MMPx3wxNi0tzbOYisSuRAmYGbTJnvv06VOmgJlf5IxPL7vsshCfkv72DNj/Gq7IrkQI2KHjNRmgyZS7d+9+4KNE8vLaH/vbl4AdQvr8888PLUP179//oE+MqJmll8ceeyz070899VTotz8/fkt1EjCzdGGWyszEZ4LWrx2UFdmVCF5m2Xfbtm0H/GaYmCzs0Mdk2u3atQtl3CZb69u3r+s/b5GM/7jjjgvFlMnozWOWr01MeZlJR2KXETDzi5k5jcasOkycOJEjjjjCdUZlNViRUBhhM/4644wzQlXPOeecUIZd3tK6mwY7CdhFF10U8mPDhg1Dv2y2adPGze4rbMvY1rlz55Do16hR40DZRPLya/ApI2DdunULrRcf+owePTq0fm0e899m6WTKlCmlfgs276NM9lVSwMx7KbOkEc8TiV1OArZ+/frQD853330X+g3M2GQCOp4nXrsSweuqq66KSMD28/r6669DS8dz5swJiYebTyTjN5OciamSAmZiyrwP8+qJxK7vv/8+tJRXuXLl0PKmeZf45ptvemXSQe1WJBS9e/cOCWtJAZswYUJo+czrpyK7duzYEVrqN8zMsp1Z2ly5cqXXJoXaN0vhZ511FsOGDQu9eyv5JJKXL4PXEuLPmP/xj3+EfljNZGZeEB/6RLL04pXTnASsZL9mScr8IA0aNMgrcw60a+sSYkkwV199dWjJ6pe//KWrvCKJl6AuIZYEYd6ZmfeK27dvd5VPeY3ZuIR46FjMBiI/3knv27cvFLsmjm6++eZSSLWE6EvIJr4Ts4xjAuDtt98u9xBf847CLKcYgTO7s8wmjmeffdaXpYKKhGLXrl0UFRWFdiGa/zYZmNkB1bNnT8/BVmRXIniZnXMme9m/icPsSjS/oZd8zJKi+QXFZBfmwFLz/umVV15xfTNOJON/6KGHWLp06YFNHCbzN9mOl08kdpn3h+Y9onnMO2GzTPfBBx94adaBtisSsOnTp4eW7Pdv4rjxxhtDu3P9eCqyy6zs1K9fP7RqY+wxvwzl5+d7+i7T7DA0Kw7ml4sHHnigTASJ5OWHT0wfKbOEWBHQFi1aYLY071+6Of3000OTillqMtuHzQ+MeczfAwcODG2jN1trTdru5WMmjz/96U+hF/vm/Y55b2OWnEraZZbBLrzwwpAZZnK6/PLLA2FXIniZpa9LLrmENWvWhLbHm+Uy8wNufhs2/jTLv++//37oPaFZ8jHCb/x5zTXXeOLGsuLF/HJh3tn84he/4Mcff+SKK65g8eLFITvNTsSjjjrKE1tKNupkl1mmM18tMO8IjV0PP/wwrVu39twusznDbIgwv1gYQbjrrrswWYZ5fve732EmbbNRwfzCaX4JMV938eP9l5NdRlQNI8MrOzub+++/n44dO3rK67333uPMM88MfR3ExLJ5xowZE4r9RPPydOCHNC4B85O2+hIBERABEXCNgATMNZRqSAREQAREwE8CEjA/aasvERABERAB1whIwFxDqYZEQAREQAT8JCAB85O2+hIBERABEXCNgATMNZRqSAREQAREwE8CEjA/aasvERABERAB1whIwFxDqYZEQAREQAT8JCAB85O2+kppAuYL8ubLyuaooXXr1oXO4PT67raUBq7BJz0BCVjSu1gDDAIBc4qEOYLMCJc5cui1114LHRtlTpPQIwIiEBsBCVhs3FRLBKIiYE4nNwcHz5s3L1TPnC+YlZVV5iGsUTWswiKQwgQkYCnsfA3dPwLmoF5z87c5k9E8F198cehMRnNtjR4REIHYCEjAYuOmWiIQFQFzkPBnn30Wuhxy+fLloTusVq1aFTq0Vo8IiEBsBCRgsXFTLRGIisDatWsxFwyaU93NTcyPPvoo5t/0iIAIxE5AAhY7O9UUAREQARFIIAEJWALhq2sREAEREIHYCUjAYmenmiIgAiIgAgkkIAFLIHx1LQIiIAIiEDsBCVjs7FRTBERABEQggQQkYAmEr65FQAREQARiJyABi52daoqACIiACCSQwP8Dpz9IRWq+JyEAAAAASUVORK5CYII=
iVBORw0KGgoAAAANSUhEUgAAAbAAAAEgCAYAAADVKCZpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAQhklEQVR4nO3df2iV9d/H8ddxU1mpjHAjtwm712Sezn45jz/iK/4IdWlDbINYLag0FhFECpNbynRRaIrg0D/iUFFYJASiw9VGNoyQYB2ZoklDwsHO2aDjH0utY56O1/1Ht/JVy7a5nc95b88HBO5yc68Lj+fpuXY1fZ7neQIAwJhJrgcAADASBAwAYBIBAwCYRMAAACYRMACASQQMAGASAQMAmETAAAAmETAAgEkEDABgEgEDAJhEwAAAJhEwAIBJBAwAYBIBAwCYRMAAACYRMACASQQMAGASAQMAmETAAAAmETAAgEkEDABgEgEDAJhEwAAAJhEwAIBJBAwAYBIBAwCYRMAAACYRMACASQQMAGASAQMAmETAAAAmETAAgEkEDABgUqbrAWNl5syZKiwsdD0DAEzp7e3VpUuXXM8YknEbsMLCQoXDYdczAMCUYDDoesKQcQkRAGASAQMAmETAAAAmmQpYMpnUvHnzVFNT43oKAMAxUzdxtLS0yO/36/Lly66nAEDaOdId1Z6OHvUPxpWXnaWm6hKtn5fvetaYMfMKLBKJqK2tTS+99JLrKQCQdo50R7X18FlFB+PyJEUH49p6+KyOdEddTxszZgL2+uuva/fu3Zo0ycxkAEiZPR09iieStx2LJ5La09HjaNHYM1GDY8eOKTc3V/Pnz7/n+4VCIQWDQQWDQcVisRStAwD3+gfjwzo+HpgI2MmTJ9Xa2qrCwkLV19ers7NTzz333F3v19jYqHA4rHA4rJycHAdLAcCNvOysYR0fD0wEbOfOnYpEIurt7dWhQ4f0+OOP69NPP3U9CwDSRlN1ibImZ9x2LGtyhpqqSxwtGnum7kIEAPy9m3cbTqS7EH2e53muR4yFYDDI90IEgGGy9Nxp4hIiAAB3ImAAAJMIGADAJAIGADCJgAEATCJgAACTCBgAwCQCBgAwiYABAEwiYAAAkwgYAMAkAgYAMImAAQBMImAAAJMIGADAJAIGADCJgAEATCJgAACTCBgAwCQCBgAwiYABAEwiYAAAkwgYAMAkAgYAMImAAQBMImAAAJMIGADAJAIGADCJgAEATCJgAACTCBgAwCQCBgAwiYABAEwiYAAAk0wE7Nq1a1q4cKEqKioUCAS0fft215MAAI5luh4wFFOnTlVnZ6emTZumRCKhJUuWaM2aNVq8eLHraQAAR0y8AvP5fJo2bZokKZFIKJFIyOfzOV4FAHDJRMAkKZlMqrKyUrm5uVq1apUWLVrkehIAwCEzAcvIyNDp06cViUTU1dWlc+fO3fU+oVBIwWBQwWBQsVjMwUoAQKqYCdhN2dnZWr58udrb2+/6ucbGRoXDYYXDYeXk5DhYBwBIFRMBi8ViGhwclCTF43EdP35cc+fOdbwKAOCSibsQBwYG9PzzzyuZTOrGjRt6+umnVVNT43oWAMAhEwErLy9Xd3e36xkAgDRi4hIiAAB3ImAAAJMIGADAJAIGADCJgAEATCJgAACTCBgAwCQCBgAwiYABAEwiYAAAkwgYAMAkAgYAMImAAQBMImAAAJMIGADAJAIGADCJgAEATCJgAACTCBgAwCQCBgAwiYABAEwiYAAAkwgYAMAkAgYAMImAAQBMImAAAJMIGADAJAIGADCJgAEATCJgAACTCBgAwCQCBgAwiYABAEwyEbC+vj6tWLFCfr9fgUBALS0tricBABzLdD1gKDIzM7V3715VVVXpypUrmj9/vlatWqVHH33U9TRgQjrSHdWejh71D8aVl52lpuoSrZ+X73oWJhgTr8BmzZqlqqoqSdL06dPl9/sVjUYdrwImpiPdUW09fFbRwbg8SdHBuLYePqsj3fyZRGqZCNh/6+3tVXd3txYtWuR6CjAh7enoUTyRvO1YPJHUno4eR4swUZm4hHjT1atXVVdXp3379mnGjBl3/XwoFFIoFJIkxWKxVM8DJoT+wfiwjgNjxcwrsEQiobq6OjU0NKi2tvZv36exsVHhcFjhcFg5OTkpXghMDHnZWcM6DowVEwHzPE8bN26U3+/X5s2bXc8BJrSm6hJlTc647VjW5Aw1VZc4WoSJykTATp48qYMHD6qzs1OVlZWqrKzUl19+6XoWMCGtn5evnbVlys/Okk9SfnaWdtaWcRciUs7E18CWLFkiz/NczwDw/9bPyydYcM7EKzAAAO5EwAAAJhEwAIBJBAwAYBIBAwCYRMAAACYRMACASSkL2MqVK3XmzJlUfToAwDiXsoDt3r1bmzZt0osvvqiBgYFUfVoAwDiVsoBVVVWps7NTNTU1euKJJ9Tc3Kx4nO9eDQAYmZR+DczzPJWUlOiVV17R/v37NWfOHB08eDCVEwAA40TKArZkyRLl5+dr06ZNikaj+vjjj3XixAl1dXWpsbExVTMAAONEyr6Z7/vvv69AICCfz3fb8f3798vv96dqBgBgnEhZwEpLS//x59ra2lI1AwAwTqTF/wdWVFTkegIAwJi0CBgAAMNFwAAAJhEwAIBJBAwAYBIBAwCYRMAAACYRMACASQQMAGASAQMAmETAAAAmETAAgEkEDABgEgEDAJhEwAAAJhEwAIBJBAwAYBIBAwCYRMAAACaZCdiGDRuUm5ur0tJS11MAAGnATMBeeOEFtbe3j+nnONId1X92dep//rdN/9nVqSPd0TH9fJhYeHwBoyvT9YChWrp0qXp7e8fs1z/SHdXWw2cVTyQlSdHBuLYePitJWj8vf8w+LyYGHl/A6DPzCmys7enoufXkclM8kdSejh5HizCe8PgCRp+ZV2BDEQqFFAqFJEmxWGxYH9s/GB/WcWA4eHwBo29cvQJrbGxUOBxWOBxWTk7OsD42LztrWMeB4eDxBYy+cRWw+9FUXaKsyRm3HcuanKGm6hJHizCe8PgCRp+ZgD3zzDN67LHH1NPTo4KCAn344Yej+uuvn5evnbVlys/Okk9SfnaWdtaW8QV2jAoeX8Do83me57keMRaCwaDC4bDrGQBgiqXnTjOvwAAA+G8EDABgEgEDAJhEwAAAJhEwAIBJBAwAYBIBAwCYRMAAACYRMACASQQMAGASAQMAmETAAAAmETAAgEkEDABgEgEDAJhEwAAAJhEwAIBJBAwAYBIBAwCYRMAAACYRMACASQQMAGASAQMAmETAAAAmETAAgEkEDABgEgEDAJhEwAAAJhEwAIBJBAwAYBIBAwCYRMAAACYRMACASWYC1t7erpKSEhUXF2vXrl2u5wAAHDMRsGQyqVdffVVfffWVzp8/r88//1znz593PQsA4JCJgHV1dam4uFhFRUWaMmWK6uvrdfToUdezAAAOmQhYNBrV7Nmzb71dUFCgaDTqcBEAwLVM1wOGwvO8u475fL67joVCIYVCIUlSLBYb810AAHdMvAIrKChQX1/frbcjkYjy8vLuer/GxkaFw2GFw2Hl5OSkciIAIMVMBGzBggW6cOGCLl68qOvXr+vQoUNat26d61kAAIdMXELMzMzUgQMHVF1drWQyqQ0bNigQCLieBQBwyETAJGnt2rVau3at6xkAgDRh4hIiAAB3ImAAAJMIGADAJAIGADCJgAEATCJgAACTCBgAwCQCBgAwiYABAEwiYAAAkwgYAMAkAgYAMImAAQBMImAAAJMIGADAJAIGADCJgAEATCJgAACTCBgAwCQCBgAwiYABAEzKdD0A+DdHuqPa09Gj/sG48rKz1FRdovXz8l3PAuAYAUNaO9Id1dbDZxVPJCVJ0cG4th4+K0lEDJjguISItLano+dWvG6KJ5La09HjaBGAdEHAkNb6B+PDOg5g4iBgSGt52VnDOg5g4iBgSGtN1SXKmpxx27GsyRlqqi5xtAhAuuAmDqS1mzdqcBcigDsRMKS99fPyCRaAu3AJEQBgEgEDAJhEwAAAJhEwAIBJBAwAYJLP8zzP9YixMHPmTBUWFo7oY2OxmHJyckZ3kCOcS/oZL+chcS7p6n7Opbe3V5cuXRrlRWNj3AbsfgSDQYXDYdczRgXnkn7Gy3lInEu6Gk/nci9cQgQAmETAAAAmZezYsWOH6xHpaP78+a4njBrOJf2Ml/OQOJd0NZ7O5Z/wNTAAgElcQgQAmETA/sG2bdtUXl6uyspKrV69Wv39/a4njVhTU5Pmzp2r8vJyPfXUUxocHHQ9aUS++OILBQIBTZo0yewdVu3t7SopKVFxcbF27drles6IbdiwQbm5uSotLXU95b709fVpxYoV8vv9CgQCamlpcT1pxK5du6aFCxeqoqJCgUBA27dvdz1p7Hn4W7/++uutH7e0tHgvv/yywzX3p6Ojw0skEp7ned6WLVu8LVu2OF40MufPn/d++uknb9myZd4PP/zges6w/fnnn15RUZH3888/e3/88YdXXl7u/fjjj65njci3337rnTp1ygsEAq6n3Jf+/n7v1KlTnud53uXLl705c+aY/T25ceOGd+XKFc/zPO/69evewoULve+//97xqrHFK7B/MGPGjFs//u233+Tz+RyuuT+rV69WZuZf/3LO4sWLFYlEHC8aGb/fr5ISu/+QZVdXl4qLi1VUVKQpU6aovr5eR48edT1rRJYuXaqHHnrI9Yz7NmvWLFVVVUmSpk+fLr/fr2g06njVyPh8Pk2bNk2SlEgklEgkTD9vDQUBu4c33nhDs2fP1meffaa3337b9ZxR8dFHH2nNmjWuZ0xI0WhUs2fPvvV2QUGB2SfL8ai3t1fd3d1atGiR6ykjlkwmVVlZqdzcXK1atcr0uQzFhA7YypUrVVpaetd/N/9W/O6776qvr08NDQ06cOCA47X39m/nIv11PpmZmWpoaHC49N6Gch5WeX9zw+94/xuyFVevXlVdXZ327dt329UXazIyMnT69GlFIhF1dXXp3LlzrieNqQn9LzIfP358SO/37LPP6sknn1Rzc/MYLxq5fzuXTz75RMeOHdM333yT1k+aQ/09saigoEB9fX233o5EIsrLy3O4CNJfl9vq6urU0NCg2tpa13NGRXZ2tpYvX6729nbzN9rcy4R+BXYvFy5cuPXj1tZWzZ071+Ga+9Pe3q733ntPra2teuCBB1zPmbAWLFigCxcu6OLFi7p+/boOHTqkdevWuZ41oXmep40bN8rv92vz5s2u59yXWCx26w7jeDyu48ePm37eGhLXd5Gkq9raWi8QCHhlZWVeTU2NF4lEXE8asUceecQrKCjwKioqvIqKCrN3VB4+fNjLz8/3pkyZ4uXm5nqrV692PWnY2travDlz5nhFRUXeO++843rOiNXX13sPP/ywl5mZ6eXn53sffPCB60kj8t1333mSvLKyslt/Ptra2lzPGpEzZ854lZWVXllZmRcIBLzm5mbXk8Yc34kDAGASlxABACYRMACASQQMAGASAQMAmETAAAAmETAAgEkEDABgEgEDUmTFihX6+uuvJUlvvvmmXnvtNceLANsm9PdCBFKpublZb731ln755Rd1d3ertbXV9STANL4TB5BCy5Yt09WrV3XixAlNnz7d9RzANC4hAily9uxZDQwMaOrUqcQLGAUEDEiBgYEBNTQ06OjRo3rwwQfV0dHhehJgHgEDxtjvv/+u2tpa7d27V36/X9u2bdOOHTtczwLM42tgAACTeAUGADCJgAEATCJgAACTCBgAwCQCBgAwiYABAEz6PxT7t5cmxMr0AAAAAElFTkSuQmCC
iVBORw0KGgoAAAANSUhEUgAAAbAAAAEgCAYAAADVKCZpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAc1UlEQVR4nO3de3SW5YGu8YuTGAVEKygQKkWYEMOZcLBSTqNQlToK1qI42mob29rW1g52PHWkIx6gKlTb2lRtrdZNbYetDOyBURFEqmJoUPCAqKAkoMZDBCRASN79xxuoAtYEkjx5kuu3FmuRz7hyLw3fzffm/Z67WZIkCZIkRaZ56ACSJB0IC0ySFCULTJIUJQtMkhQlC0ySFCULTJIUJQtMkhQlC0ySFCULTJIUJQtMkhQlC0ySFCULTJIUJQtMkhQlC0ySFCULTJIUJQtMkhQlC0ySFCULTJIUJQtMkhQlC0ySFCULTJIUJQtMkhQlC0ySFCULTJIUJQtMkhQlC0ySFCULTJIUJQtMkhQlC0ySFCULTJIUJQtMkhQlC0ySFCULTJIUJQtMkhSllqED1JWjjz6abt26hY4hSVFZv3497777bugY1dJoC6xbt24UFBSEjiFJUcnNzQ0dodq8hChJipIFJkmKkgUmSYpSVAVWUVHBgAEDGD9+fOgokqTAorqJY9asWWRnZ7N58+bQUSSp3jxUWMyMhWvYWFpG5/YZTBmXxZkDuoSOFVw0r8CKioqYP38+3/zmN0NHkaR681BhMVfOWUVxaRkJUFxaxpVzVvFQYXHoaMFFU2A//OEPmT59Os2bRxNZkg7ajIVrKCuv+MRjZeUVzFi4JlCihiOKNpg3bx4dO3Zk0KBB//Dz8vPzyc3NJTc3l5KSknpKJ0l1Z2NpWY0eb0qiKLBly5Yxd+5cunXrxqRJk1i0aBHnn3/+Pp+Xl5dHQUEBBQUFdOjQIUBSSapdndtn1OjxpiSKArvxxhspKipi/fr1zJ49mzFjxnD//feHjiVJdW7KuCwyWrX4xGMZrVowZVxWoEQNR1R3IUpSU7P7bkPvQtxXsyRJktAh6kJubq5nIUpSDcX03BnFJURJkvZmgUmSomSBSZKiZIFJkqJkgUmSomSBSZKiZIFJkqJkgUmSomSBSZKiZIFJkqJkgUmSomSBSZKiZIFJkqJkgUmSomSBSZKiZIFJkqJkgUmSomSBSZKiZIFJkqJkgUmSomSBSZKiZIFJkqJkgUlSY5EksO4J2LUzdJJ6YYFJUmPwxlPw+/Fw71fg+T+FTlMvWoYOIEk6CMV/g8enwauPwuEd4dTp0Pec0KnqhQUmSTF6+8W0uF6eBxlHwslTYUgeHHJY6GT1xgKTpJi89xosvhFW/QVat4VRV8Gw78Ch7UInq3cWmCTFoHQDLLkZVj4ALVvDSZelvw47KnSyYCwwSWrItrwFS2+BFb9PPx6SB8N/BG2PCRqrIbDAJKkh+ug9WDYTlv8WKsthwPkwYgockRk6WYNhgUlSQ7L9Q3jql/DUr2DnVuj7NRj1Eziqe+hkDY4FJkkNwc6P4Jk7YdkvYHspnHAmjLoSOvYKnazBssAkKaTy7VBwDzx5K3xUAj3HwZiroVO/0MkaPAtMkkLYtRNW3g9LZsCWjfCFkTDmGug6JHSyaERRYNu3b2fEiBHs2LGDXbt2cfbZZzN16tTQsSSp5ior4PkHYclN8MF6yBwCE34DXxgROll0oiiw1q1bs2jRItq0aUN5eTnDhw/n1FNPZdiwYaGjSVL1VFbCSw/D4zfAu6/AsX3hvAeh51ho1ix0uihFUWDNmjWjTZs2AJSXl1NeXk4z/4dLikGSwCsLYNE0eHsVHJ0F5/wBen0Fmnue+sGIosAAKioqGDRoEK+++iqXXnopQ4cODR1Jkj5dksDri2HR9VBcAEd+Ac7Khz5nQ/MWodM1CtEUWIsWLVi5ciWlpaWcddZZrF69mt69e3/ic/Lz88nPzwegpKQkRExJgjefhsf+E954Etp1ga/Mgv6ToUWr0MkalWgKbLf27dszatQoFixYsE+B5eXlkZeXB0Bubm6IeJKaso2F6Suuj0+bDLwQWh0aOlmjFMUF2JKSEkpLSwEoKyvj0UcfpVcv39wnqYF4+0WYPRnyR0HxinTa5LKVMPQSy6sORfEKbNOmTVx44YVUVFRQWVnJOeecw/jx40PHktTUfXza5JA2MPLf4cTvwqFHhE7WJERRYH379qWwsDB0DElKlb4JS6an0yYtDnHaJJAoCkySGoS9p00GfxO+9GOnTQKxwCTps2x7H568LZ02qdj592mT9l1DJ2vSLDBJ+jT7TJucAyN/Ap87PnQyYYFJ0r52fgTP/AaWzUqnTbLPgNFXO23SwFhgkrRb+XZY8bv051y7p01GXwWd+4dOpv2wwCSpohwK74cnZsDm4vRk+NF/hM97ZF1DZoFJarr2mTYZDGf+GrqPDJ1M1WCBSWp69jtt8mfoeYrTJhGxwCQ1HUkCa/8XFv0nvLUKOvSCr96b3qThtEl0LDBJTcPrS9KDdouWw5HdnDZpBCwwSY3bm8+kr7jWL3XapJGxwCQ1ThtXwuPT0kuGh3eEL98Eg77h6fCNiAUmqXF556X05oyX5sKh7eHk62BIHhxyeOhkqmUWmKTG4b3XYPFNsOrPTps0ERaYpLiVboAnpkPhH6umTX4AJ/3QaZMmwAKTFKctb1dNm/wu/XjIt2D45U6bNCEWmKS4bHs/PWT3md84bdLEWWCS4rB9Mzz9q3TeZMcW6PNVGPXvTps0YRaYpIZt50ewPD991VX2QdW0yVXQMTt0MgVmgUlqmHbtgILd0ybvQM+xVdMmA0InUwNhgUlqWCrKYeUfYckM2FwE3b4EX7sPPj8sdDI1MBaYpIahsgJW/QUW3wgfrKuaNvmV0yb6VBaYpLAqK+Hl/05Pzyh5GY7tA+c9mF4ydNpE/4AFJimMPdMm18Nbz8PRWU6bqEYsMEn1b+9pkzPvhL7nOG2iGrHAJNWfDcvTaZN1T6TTJuNnpm9EdtpEB8ACk1T3Nj0Hi6bB2oVweAenTVQrLDBJdeedl2HxDfDiw+m0yT//FIZ+22kT1QoLTFLte+81WHIzPP9gWlYjfwLDvgsZ7UMnUyNigUmqPaUb4IkZUHh/Om3yxe+n0yaHfy50MjVCFpikg7flbXjyVii4J709fvDF8KUfQ9tjQydTI2aBSTpw296HZTPhmfyqaZPJVdMmnw+dTE2ABSap5rZvTmdNnvol7NzqtImCiKLANmzYwAUXXMBbb71F8+bNycvL47LLLgsdS2p6dm6rmjaZmU6b9BoPo6+GY04InUxNUBQF1rJlS2655RYGDhzIli1bGDRoEKeccgonnOAfGqle7NrB8w/PpMuqX/E5Snmq+UC2j8xn9OixoZOpCYuiwDp16kSnTp0AaNu2LdnZ2RQXF1tgUl2rmjbZ9uiN9C17i6crs7mk/AcUJL3IWFTJje2LOXNAl9Ap1URFUWAft379egoLCxk6dGjoKFLjtde0ybpm/8S0nRfx18ocID0hvqy8ghkL11hgCiaqAtu6dSsTJ05k5syZtGvXbp9/np+fT35+PgAlJSX1HU+KX5LAS3P/Pm1yTB8490+M/90uEvadNtlYWhYgpJSKZrOgvLyciRMnMnnyZCZMmLDfz8nLy6OgoICCggI6dOhQzwmliCUJvPK/kD8SHrwAkkr46u/hkicg68t0bn/Yfv+1zu0z6jen9DFRFFiSJFx88cVkZ2dz+eWXh44jNS7rnoB7xsEDX4Wy0nTa5LtPQ85Ze3a5pozLIqPVJ6dOMlq1YMq4rBCJJSCSS4jLli3jvvvuo0+fPvTv3x+AG264gdNOOy1wMiliH582adsZxt8G/c+Hlofs86m7f841Y+EaNpaW0bl9BlPGZfnzLwUVRYENHz6cJElCx5Aah49Pmxx2NIy7AXIv/sxpkzMHdLGw1KBEUWCSasEnpk2OSKdNhlwCrduETiYdEAtMauzeXweLb4JVD0Krw2DEFXDipU6bKHoWmNRYfVgMT0xPp02at0xL66QfOW2iRsMCkxqbre/A0t3TJpUw6Bsw4t+cNlGjY4FJjcW29+Gvv4BnfgO7dkD/c9MlZKdN1EhZYFLstm+Gp38NT90BO7ZAn7Nh1JVOm6jRs8CkWO3cBs/+Fp6cCWXvQ/ZXYNRVTpuoyai3kzhOPvlknnvuufr6clLjtWtHeplwVj945KfQZSDkLYav3W95qUmpt1dg06dP50c/+hHHHXccN9xww555FEnVVFEOKx+AJdNhcxEcNxzO+QMcd2LoZFIQ9fYKbODAgSxatIjx48fz5S9/malTp1JW5knW0meqrIDn/wy/HAL//QNoewz860Pw9XmWl5q0ej3MN0kSsrKy+M53vsPtt99Oz549ue++++ozghSPJIGX/ht+fRLM+Wb6JuRzZ8M3H4PjR0OzfedNpKak3i4hDh8+nNdff52cnByGDRvG73//e3r16sWsWbNYunTpnh0vqclLEnj1sfSg3U0r4XM94ezfwQln7jkdXlI9Ftidd95JTk4Ozfb6W+Ptt99OdnZ2fcWQGrZ1S2HR9bDh6fT9W//yK+j7NWjhDcPS3urtT0Xv3r0/9Z/Nnz+/vmJIDdOGZ+Hx6+H1xdC2E5x+Kwz41/1Om0hKNYi/1nXv3j10BCmMTc/D49PglQVV0yY3Qu43oJVLx9JnaRAFJjU5Ja+kxfXiQ+m0yZhrYei3nTaRasACk+rT++tgyc3w/J+cNpEOkgUm1YcPi+GJGVB438emTX4Ihx8dOpkULQtMqktbS+DJW+HZu6umTb4OX/o3aOdJNNLBssCkulD2ASzbPW1SBv3PSy8XHnlc6GRSo2GBSbVpx5Z02uSvd8COzdB7Ioz6dzi6Z+hkUqNjgUm1Yec2ePYuePK2dNok63QYczUckxM6mdRoWWDSwdi1A/72B3ji57D1LTj+n9Pi6jIodDKp0bPApANRsQueq5o2+XADHHcSfPV3cNwXQyeTmgwLTKqJygpYPQcW3wDvv56+0jrjF9Dd0+Gl+maBSdWRJPDyPFg0DUpegmN6w6QHIOs0i0sKxAKT/pF9pk16wNn3wAlnOW0iBWaBSZ9m/ZPptMmbTzltIjVA/kmU9lZUkL7i2j1tctrPYeCFTptIDYwFJu226Xl4/AZ45X/gsM/B2Gkw+GKnTaQGygKTSl5J7yp84f9C6yNgzDVV0yZtQyeT9A9YYGq6PlgPi2+G52dDy4z0kN0vfg8yjgydTFI1WGBqevaeNhn2XRj+I6dNpMhEU2AXXXQR8+bNo2PHjqxevTp0HMVov9MmP4Z2nUMnk3QAoimwr3/963zve9/jggsuCB2FhwqLmbFwDRtLy+jcPoMp47I4c0CX0LH0afZMm9wJu7ZDv3Nh5E/qfdrE7xupdkVTYCNGjGD9+vWhY/BQYTFXzllFWXkFAMWlZVw5ZxWAT0YNzZ5pk9s/Nm1yZZBpE79vpNrnUQI1NGPhmj1PQruVlVcwY+GaQIm0j/KytLRm9YPHp0G34fDtJ9MTNALtcvl9I9W+aF6BVUd+fj75+fkAlJSU1MnX2FhaVqPHVY/2njbpPhrGXAuZ4adN/L6Ral+jKrC8vDzy8vIAyM3NrZOv0bl9BsX7edLp3N43uwZTsQue+z9V0yZvwudPTF9tdTspdLI9/L6Rap+XEGtoyrgsMlq1+MRjGa1aMGVcVqBETVhlJaz6C/xyCMz9Hhz+OTj/v+Ab/9Ogygv8vpHqQjQFdu6553LiiSeyZs0aMjMzufvuu4PkOHNAF26c0Icu7TNoBnRpn8GNE/r4g/j6lCTw0jy48yT4r4uh5aHptMm3HoceJzfIeRO/b6Ta1yxJkiR0iLqQm5tLQUFB6BiqTUkCrz2WnhC/sTCdNhl1JeRMcNpEqiUxPXc2qp+BqRHbZ9rkl9B3ktMmUhPmn341bEUrqqZNHk+nTU6/BQZc4LSJJAtMDdRbq9P3cK35f06bSNovC0wNy7tr002uF+ak0yajr4FhTptI2pcFpobhgzdgyc3p+7mcNpFUDRaYwtq8MT05429/gGbNYeh30mmTNh1CJ5PUwFlgCmNrCSybCc/eBZW7YOCFMOLfnDaRVG0WmOpX2Qfw1zvSU+J3lUG/82DkFDiyW+hkkiJjgal+7NgCT99ZNW3yYfrm49FXBTsdXlL8LDDVrfKy9DLhk7fBtvcg6/S0uI7tHTqZpMhZYKobu3bC3+79+7TJ8WPSW+IbwLSJpMbBAlPtqtgFz8+GxTc32GkTSY2DBabaUVmZvvl48Y3w3qvQeQB85TY4/p8b5OnwkuJngengJEl63NOiafDOC9DxBPja/dBrvMUlqU5ZYDowSQKvLaqaNvkbHHU8TLzbaRNJ9cYCU8298de0uN5YBkc4bSIpDJ9xVH3FK9Liem0RtDkWTvs5DLwAWrYOnUxSE2SB6bO9tTo9IX7N/Kppk+sh92I45LDQySQ1YRaYPt27a9O7ClfPgdbtnDaR1KBYYNrXB2/Akunw3ANV0yaXwxe/77SJpAbFAtPfbd4ES38OK+512kRSg2eBCT56Nz2rcM+0yQXpoOQRXUInk6RPZYE1ZWWl6enwu6dN+n4NRv4EjvpC6GSS9JkssKZoxxZ4pmraZPuHkHMWjLoKOvxT6GSSVG0WWFNSXgbP3g1P3ppOm/zTqTDmaji2T+hkklRjFlhTsPe0SffRMOYayMwNnUySDpgF1phV7ILn/wRLboLSN6HrMJh4F3zhS6GTSdJBs8Aao72nTTr1h9Nvgx5Om0hqPCywxmTvaZMO2U6bSGq0LLDGIEng9cfTg3aLV8BR3WHCb6H3RGjeInQ6SaoTFljsPj5t0i4Tzrgd+p0LLVqFTiZJdcoCi1XxivRS4WuPQZtj4NQZMOhCp00kNRkWWGzefiEtrjXzIeMoOOVnMPhbTptIanKi2X5fsGABWVlZ9OjRg5tuuil0nPr37qvwl4vh1yfB+qXpyRmXPQcnXWZ5SWqSongFVlFRwaWXXsojjzxCZmYmgwcP5owzzuCEE04IHa3ufWLa5ND0dPgvfh8OOyp0MkkKKooCW758OT169KB79+4ATJo0iYcffrhxF9h+p01+CG06hk4mSQ1CFAVWXFxM165d93ycmZnJM888EzBRHfrovfSswt3TJgP+FUZMcdpEkvYSRYElSbLPY83288bc/Px88vPzASgpKanzXLWqrBSe+iU8/Sso3+a0iSR9higKLDMzkw0bNuz5uKioiM6dO+/zeXl5eeTl5QGQmxvJQbU7tlZNm/winTY54UwYfRV0yAqdTJIatCgKbPDgwaxdu5Z169bRpUsXZs+ezQMPPBA61sEp3w4Fd8PSW2Hbu+m0yeiroFPf0MkkKQpRFFjLli254447GDduHBUVFVx00UXk5OSEjnVgdu2EwvvSaZMtG6H7KBh9DXQdHDqZJEUligIDOO200zjttNNCxzhwFbtg1YOw+CYofQO6DoUJ+U6bSNIBiqbAolVZCS8+BI/fAO+trZo2udVpE0k6SBZYXUkSWPM/8Pg0eHt1Om1yzn2Q/RWLS5JqgQVW2/Y7bXIX9J7gtIkk1SILrDa98VTVtMmTcERXp00kqQ5ZYLVhY2FaXK8+Cod3hFOnw6CvO20iSXXIAjsYb7+Y/ozr5XmQcaTTJpJUjyywA/Hea7D4Rlj1F2jdFkZdCcO+C4e2C51MkpoMC6wmSt9Mp01WPpBeHjzpsvSX0yaSVO8ssOrY8hYsvQUKflc1bXJJusvltIkkBWOB/SMfvQfLboPlv62aNjm/atokM3QySWryLLD92f4h/PWOdNpk50fptMmon6Tv6ZIkNQgW2N5W3AuP/BS2l8IJ/wKjroKOvUKnkiTtxQLbW4tW6UG7Y66GTv1Cp5EkfQoLbG/9zoX+54VOIUn6DM1DB2hwPGhXkqJggUmSomSBSZKiZIFJkqJkgUmSomSBSZKiZIFJkqLk+8AUlYcKi5mxcA0bS8vo3D6DKeOyOHNAl9CxJAVggSkaDxUWc+WcVZSVVwBQXFrGlXNWAVhiUhPkJURFY8bCNXvKa7ey8gpmLFwTKJGkkCwwRWNjaVmNHpfUuFlgikbn9hk1elxS42aBKRpTxmWR0arFJx7LaNWCKeOyAiWSFJI3cSgau2/U8C5ESWCBKTJnDuhiYUkCvIQoSYqUBSZJipIFJkmKkgUmSYqSBSZJilKzJEmS0CHqwtFHH023bt3q9GuUlJTQoUOHOv0adSXm7BB3/pizg/lDqo/s69ev5913363Tr1FbGm2B1Yfc3FwKCgpCxzggMWeHuPPHnB3MH1LM2euClxAlSVGywCRJUWpx3XXXXRc6RMwGDRoUOsIBizk7xJ0/5uxg/pBizl7b/BmYJClKXkKUJEXJAjtI1157LX379qV///6MHTuWjRs3ho5UbVOmTKFXr1707duXs846i9LS0tCRauTPf/4zOTk5NG/ePJo7sxYsWEBWVhY9evTgpptuCh2nRi666CI6duxI7969Q0epsQ0bNjB69Giys7PJyclh1qxZoSPVyPbt2xkyZAj9+vUjJyeH//iP/wgdqWFIdFA+/PDDPb+fNWtWcskllwRMUzMLFy5MysvLkyRJkiuuuCK54oorAieqmRdffDF5+eWXk5EjRybPPvts6DifadeuXUn37t2T1157LdmxY0fSt2/f5IUXXggdq9qWLFmSrFixIsnJyQkdpcY2btyYrFixIkmSJNm8eXPSs2fPqP7bV1ZWJlu2bEmSJEl27tyZDBkyJHnqqacCpwrPV2AHqV27dnt+/9FHH9GsWbOAaWpm7NixtGyZLuoMGzaMoqKiwIlqJjs7m6yseMYsly9fTo8ePejevTuHHHIIkyZN4uGHHw4dq9pGjBjBUUcdFTrGAenUqRMDBw4EoG3btmRnZ1NcXBw4VfU1a9aMNm3aAFBeXk55eXlUzzV1xQKrBVdffTVdu3blj3/8Iz/72c9Cxzkg99xzD6eeemroGI1acXExXbt23fNxZmZmVE+ijcX69espLCxk6NChoaPUSEVFBf3796djx46ccsop0eWvCxZYNZx88sn07t17n1+7//Y8bdo0NmzYwOTJk7njjjsCp/2kz8oOaf6WLVsyefLkgEn3rzr5Y5Hs54Zf/xZdv7Zu3crEiROZOXPmJ66exKBFixasXLmSoqIili9fzurVq0NHCs5F5mp49NFHq/V55513HqeffjpTp06t40TV91nZ7733XubNm8djjz3WIJ9Mq/vfPgaZmZls2LBhz8dFRUV07tw5YKKmpby8nIkTJzJ58mQmTJgQOs4Ba9++PaNGjWLBggVR3lBTm3wFdpDWrl275/dz586lV69eAdPUzIIFC7j55puZO3cuhx12WOg4jd7gwYNZu3Yt69atY+fOncyePZszzjgjdKwmIUkSLr74YrKzs7n88stDx6mxkpKSPXcJl5WV8eijj0b1XFNnQt9FErsJEyYkOTk5SZ8+fZLx48cnRUVFoSNV2/HHH59kZmYm/fr1S/r16xfVHZRJkiRz5sxJunTpkhxyyCFJx44dk7Fjx4aO9Jnmz5+f9OzZM+nevXty/fXXh45TI5MmTUqOPfbYpGXLlkmXLl2Su+66K3Skalu6dGkCJH369Nnz/T5//vzQsartueeeS/r375/06dMnycnJSaZOnRo6UoPgSRySpCh5CVGSFCULTJIUJQtMkhQlC0ySFCULTJIUJQtMkhQlC0ySFCULTKono0eP5pFHHgHgmmuu4Qc/+EHgRFLcPAtRqidTp07lpz/9Ke+88w6FhYXMnTs3dCQpap7EIdWjkSNHsnXrVhYvXkzbtm1Dx5Gi5iVEqZ6sWrWKTZs20bp1a8tLqgUWmFQPNm3axOTJk3n44Yc5/PDDWbhwYehIUvQsMKmObdu2jQkTJnDLLbeQnZ3Ntddey3XXXRc6lhQ9fwYmSYqSr8AkSVGywCRJUbLAJElRssAkSVGywCRJUbLAJElR+v8aZzRYXwcw8AAAAABJRU5ErkJggg==
iVBORw0KGgoAAAANSUhEUgAAAbAAAAEgCAYAAADVKCZpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de3hU1cH24V8OBIIBI5IoIQiNQIjhECACUipQOQgiYlBAUVFQrNZa5S20vK1FfFUQaoWi/WysVkUURRGQKCmIiOIBhwZEqYBIJAmoQQ3HECaT/f2xhBZFTSAzK2vmua9rLmAyyTzCOM+stddeO8rzPA8RERHHRNsOICIiciJUYCIi4iQVmIiIOEkFJiIiTlKBiYiIk1RgIiLiJBWYiIg4SQUmIiJOUoGJiIiTVGAiIuIkFZiIiDhJBSYiIk5SgYmIiJNUYCIi4iQVmIiIOEkFJiIiTlKBiYiIk1RgIiLiJBWYiIg4SQUmIiJOUoGJiIiTVGAiIuIkFZiIiDhJBSYiIk5SgYmIiJNUYCIi4iQVmIiIOEkFJiIiTlKBiYiIk1RgIiLiJBWYiIg4SQUmIiJOUoGJiIiTVGAiIuKkWNsBgqVp06a0atXKdgwREacUFhaye/du2zGqJWwLrFWrVvh8PtsxRESckp2dbTtCtWkKUUREnKQCExERJ6nARETESSowERFxkgpMREScpAITEREnqcBERMKF58GG+VBZYTtJSKjARETCxYb58OKN8P6ztpOEhApMRCQc7CmGV34LZ50HWaNtpwkJFZiIiOs8DxbfAlV+GPZXiI6xnSgkwnYrKRGRiOF7DD55DS66H5qk2U4TMhqBiYi47KtP4J93QFpfyB5nO01IqcBERFxVFYAXb4LoWLjkQYiKsp0opDSFKCLiqjWzoegdyHkETk21nSbkNAITEXHRrvfhtXvhnEugw+W201ihAhMRcU1lhTnfq2ETGDIr4qYOj9AUooiIa169C77YBFcuMCUWoTQCExFxyfbV8PZDkD0W2g6wncYqFZiIiCvKy8yqwyZpMOBu22ms0xSiiIgrXv4N7NsF45ZD3Cm201inEZiIiAs2Pg8bF0Cf30FqV9tp6gQVmIhIXVe2A5ZOgNRu0GuC7TR1hgpMRKQuqwrAwhvBq4KcXIjRkZ8j9DchIlKXvfkA7HgLLv0bNPmJ7TR1ikZgIiJ1Vck6WDUN2g+HjiNtp6lzVGAiInVRxT54fhwknAkX/Tlid9v4IU4VWCAQoHPnzgwZMsR2FBGR4Hp5EpR9CsMfgfhE22nqJKeOgc2ePZuMjAz27t1rO4qISPBsfB42PA29fwste7KooISZ+ZvZWVZOSmI8EwemM6xzc9sprXNmBFZcXExeXh7XX3+97SgiIsHzdSEsvR1adIfzJ7GooITJCzdSUlaOB5SUlTN54UYWFZTYTmqdMwV22223MWPGDKKjnYksIlIzAb857gXmGl8xsczM30y5P3DMw8r9AWbmb7YQsG5xog2WLl1KcnIyXbv+8Nnnubm5ZGdnk52dTWlpaYjSiYjUktfugRIfDP0LnNYSgJ1l5cd96PfdH0mcKLA1a9awZMkSWrVqxahRo1i5ciVXXXXVdx43fvx4fD4fPp+PpKQkC0lFRE7QtpXmnK8uYyDz0qN3pyTGH/fh33d/JHGiwKZNm0ZxcTGFhYXMnz+fn//85zz11FO2Y4mI1I79X5jdNpLawYXTj/nSxIHpxNeLOea++HoxTByYHsqEdZJTqxBFRMJOVZW5unLFXrhmEcQ1PObLR1YbahXidzlXYH369KFPnz62Y4iI1I41s8z04ZAH4IzM4z5kWOfmKqzjcGIKUUQkLO14B1beDZk50PU622mcowITEbHh4Ffw/FhIPAsunq2tok6Ac1OIIiLOq6qCRTfBgVJzdeUGjW0ncpIKTEQk1N6eA1uWwaAZkJJlO42zNIUoIhJKO96BFVPhnEug23jbaZymAhMRCZUDX8KC68xxr6FzdNzrJGkKUUQkFKqq4MXxcPBLuH45NDjVdiLnqcBERELhjT/BxyvM+V7NOtlOExY0hSgiEmzbXoPX7oWOI3W+Vy1SgYmIBNOeEnhhnNnncMgDOu5Vi1RgIiLBUnkYnr8O/IdgxJMQd4rtRGFFx8BERIJl+R1Q9C5c9hgktbWdJuxoBCYiEgwbn4d3H4YeN0P74bbThCUVmIhIbft8Eyz5FZx1HvS/y3aasKUCExGpTYf2wHNXQ/1GcPnjEFPPdqKwpWNgIiK1parKXFn560IY8xI0OtN2orCmAhMRqS2rZ8KWV8wmvS172k4T9jSFKCJSG7bkw6pp5mRlbdIbEiowEZGT9eU2eOEGOLM9DJmlk5VDRAUmInIyKvbBM1dAdAyMnAdxDW0nihg6BiYicqKqquDFX8CXH8PVC+G0lrYTRRQVmIjIiVo9Ez5aCgOnQVof22kijqYQRUROxL+Xwqp7oeMo6HGT7TQRSQUmIlJTn38IL94IKV3gYi3asEUFJiJSEwe+NIs24hJg1DyoF287UcTSMTARkeoK+GHBGNj3GVz3MjROsZ0ooqnARESqw/PglUlQ+AYMexhSs20niniaQhQRqY61j4DvMfjpryHrCttpBEcK7NChQ3Tr1o1OnTqRmZnJlClTbEcSkUiybSUs+x2kD4YL9P5TVzgxhVi/fn1WrlxJQkICfr+fXr16MWjQIHr06GE7moiEu9It8Ny1kNQOcnLNjhtSJzgxAouKiiIhIQEAv9+P3+8nSstWRSTYDnwJT4+A2Di44hlzjS+pM5woMIBAIEBWVhbJycn079+f7t27244kIuGssgKevQr27oRRT2ubqDrImQKLiYlh/fr1FBcXs3btWj744IPvPCY3N5fs7Gyys7MpLS21kFJEwoLnwUu/hh1vwbC/QotuthPJcThTYEckJibSp08fli1b9p2vjR8/Hp/Ph8/nIykpyUI6EQkLb/wJNjwDff4XOlxmO418DycKrLS0lLKyMgDKy8tZsWIF7dq1s5xKRMLSxudh5d3mwpS9J9lOIz/AiVWIu3btYsyYMQQCAaqqqhgxYgRDhgyxHUtEws2nb8Gim6DlT2HoHO1xWMc5UWAdO3akoKDAdgwRCWdfboP5V0LiWTDyKYitbzuR/AgnphBFRIJqfyk8lQNR0TB6ATRsYjuRVIMTIzARkaA5fBCeGQX7PocxL0GTNNuJpJpUYCISuaoC8ML1ULLOTBu2ONd2IqkBFZiIRCbPg1d+C5vzYNBMyNDCMNfoGJiIRKY3/wzvPQI9b4Xu422nkROgAhORyLP+aXj1LugwAvpNtZ1GTpAKTEQiy9YVsORXkNYHLnkIovU26Cr9y4lI5Cj2wXNXQ/I5MGKu2WVenKUCE5HIULoZ5l0GCWfAVS9Ag8a2E8lJUoGJSPjbUwJzcyC6Hly9EBKSbSeSWqBl9CIS3g58CXMvhUN74Lo8nagcRlRgIhK+KvbBvOFQ9qmZNmzWyXYiqUUqMBEJT/5DZnPeXe/DqHnQqpftRFLLVGAiEn4CfnhhHGxfDZfmQvog24kkCLSIQ0TCS1UVLLoZPlpqtojqNNJ2IgkSFZiIhA/Pg7wJsPE5uOCP2iIqzKnARCQ8eB4svwPW/QN63Q4/+x/biSTIVGAiEh5euxfemgPnXg8XTLGdRkJABSYi7nvjflg9AzpfZY57RUXZTiQhoAITEbe9/ddvdpa/HC7+izbnjSD6lxYRd619BPInQ8bFMOxhiI6xnUhCSAUmIm5671F4+TeQfhEMfwxidFprpFGBiYh71j1ulsu3vRAuf1yXRYlQKjARccu6x+GlX0Pr/jDiSZVXBFOBiYg7fP8w5dVmAIx8CmLr204kFmnSWETc4HsMlt6u8pKjNAITkbrv3VyVl3yHCkxE6ra3H4JXJprVhiov+S9OFFhRURF9+/YlIyODzMxMZs+ebTuSiITCmw9A/v/COZfAiCdUXnIMJ46BxcbGcv/999OlSxf27dtH165d6d+/P+ecc47taCIRY1FBCTPzN7OzrJyUxHgmDkxnWOfmwXkyzzN7G66eYXbYGPawzvOS73BiBNasWTO6dOkCQKNGjcjIyKCkpMRyKpHIsaighMkLN1JSVo4HlJSVM3nhRhYVBOH/Q8+D/N9/s7fh1XDp31ReclxOFNh/KywspKCggO7du9uOIhIxZuZvptwfOOa+cn+Amfmba/eJqgKw9DZ45yHo/otv9jbU9lByfCErsH79+rFhw4aT+hn79+9n+PDhzJo1i8aNG3/n67m5uWRnZ5OdnU1paelJPZeI/MfOsvIa3X9CAn5YeIM5UbnXBLhwujbmlR8UslfHjBkzuP3227nuuuvYtWtXjb/f7/czfPhwRo8eTU5OznEfM378eHw+Hz6fj6SkpJONLCLfSEmMr9H9NXb4IMy/Ej54AfrdCf2m6JIo8qNCVmBdunRh5cqVDBkyhAsvvJCpU6dSXl69T2+e5zFu3DgyMjKYMGFCkJOKyLdNHJhOfL1jp/Li68UwcWD6yf/wQ3tg3mWwdTkMmWWupixSDSEdn3ueR3p6OjfddBNz5syhTZs2zJ0790e/b82aNcydO5eVK1eSlZVFVlYWL7/8cggSiwjAsM7NmZbTgeaJ8UQBzRPjmZbT4eRXIe77DP5xERSthcsehezraiWvRIYoz/O8UDxRr169+OSTT8jMzKRHjx50796ddu3aMXv2bCoqKsjNza3V58vOzsbn89XqzxSRWvTVJzD3UthfCiPnQusLbCcS3HrvDNna1IcffpjMzEyivjWvPWfOHDIyMkIVQ0Tqgp3rYd7lUFUJY16C1K62E4mDQlZg7du3/96v5eXlhSqGiNj28avw3DUQfxpclQdJbW0nEkfViTWqaWlptiOISCisfwaeHgGn/QTGLVd5yUmpEwUmImHO82D1n2DRL6BlT7guDxo3s51KHKf9WUQkuAJ+yJsA/3oSOoyASx7UprxSK1RgIhI8h/bCgmth26tw/kTo+3udoCy1RgUmIsFRVgRPj4TSj2DoHOhyje1EEmZUYCJS+4rXwTOjoLICrnoezv657UQShrSIQ0Rq14cvwuODoV48jPunykuCRiMwEakdngev3werpkGL7jByHiRoU20JHhWYiJy8wwdh8c1m9NXpSrh4llYaStCpwETk5JQVmUuhfLYR+v8f9PyVVhpKSKjAROTEFa4x20IFDsOVz0LbgbYTSQTRIg4RqTnPg7WPwJNDzZ6GN6xUeUnIaQQmIjXjL4elE2DD09BmIAx/BBqcajuVRCAVmIhU39efwrNXwWfvQ5/JcP4kiNZEjtihAhOR6tnyT1h4g5k+vOJZSL/QdiKJcCowEflhVQF47V54409wZgcY8SQ00SWQxD4VmIh8v32fw8LrYftq6Hw1DJ5pdtgQqQNUYCJyfJ+sghdugIp9cMlD0Pkq24lEjqECE5FjBSph9Qx4fQY0bQtjlkByhu1UIt+hAhOR/ygrMgs1drxttoS66E8Qd4rtVCLHpQITEWPTYljyK6iqgpxHoOMI24lEfpAKTCTSVeyDZb+DgqcgpQtc9qhWGYoTVGAikazoPTNlWPYp/Ow30Od3EFPPdiqRalGBiUSiysPm2l1v/hkap8K1edCyp+1UIjWiAhOJNJ9vghfHm8ufdLoSBk3XXobiJBWYSKQIVMJbs2HVdKjfGEY9De0usp1K5ISpwEQiweebzBWTdxbAOZfA4PshIcl2KpGT4sw20mPHjiU5OZn27dvbjiLijsrDsOo+yO0NZTvg8sfNXoYqLwkDzozArr32Wm655RauueYa21FYVFDCzPzN7CwrJyUxnokD0xnWubntWFLHhfx1U+yDxbdA6b+h/WUw6D44pWnwnk8kxJwpsPPPP5/CwkLbMVhUUMLkhRsp9wcAKCkrZ/LCjQAqMfleIX3dHNoLK//PXDG5cYoufSJhy5kpxLpiZv7mo29CR5T7A8zM32wpkbggJK8bzzO7aTzUzZRXtxvg5ndUXhK2nBmBVUdubi65ubkAlJaWBuU5dpaV1+h+EQjB6+bLbfDKb+Hj5eaaXSPnQWrX2vnZInVUWI3Axo8fj8/nw+fzkZQUnIPUKYnHvxbS990vAkF83Rw+CCvvgb/2gB3vwMBpcMMqlZdEhLAqsFCYODCd+Hoxx9wXXy+GiQPTLSUSF9T668bz4MMXzXTh6hlmafwt78F5N0NMWE2siHwvZwrsiiuu4LzzzmPz5s2kpqby6KOPWskxrHNzpuV0oHliPFFA88R4puV00AIO+UG1+rr5bCM8PgQWXAsNEs02UMP/Do2b1XZskTotyvM8z3aIYMjOzsbn89X8G99fAJsWQb+p0LR17QcTOVF7d8Frd0PBPIg/DX7+B+h6LUTH/Oi3ilTXCb93WqC5hm+r2Gsupf7X7pA9Fnr/VufOiF0V++Dth2DNXyBwGHreYnaOj0+0nUzEKhXYt507DjIuhlXT4L1HYf0z8NNbocfNUD/BdjqJJAE/rHvc7Bp/oNQc5+p3p67VJfINZ46BhVRCMgx5AG5+G9J6w2v3wF+y4N2/QWWF7XQS7qoCsGE+PJgNL/8GmqbD9a+aLaBUXiJHqcB+SFI6jJpn3jyS2sErk+AvXcD3D/PpWKQ2VVWZE5H/X0948Uao3wiuXADXLoXUbNvpROocFVh1pGbDmJfg6kVmpdfS22BOV1j3hNksVeRkHCmuh3vBc9eAV2U23R2/GtoOgKgo2wlF6iQdA6uuqCg4uy+k9YGty2HVvfDSrbB6JvS6DbKugnoNbKcUlwQqzblcb/4ZvtgEp7eBnL9D+xytLBSpBhVYTUVFmU/FbfrDx6/C69Mh73/g9RlmoUf2WGjQ2HZKqcv8h+D9+fDmLPh6u5meVnGJ1JgK7ERFRUGbftD6Ati+Gt58AFZMgTf+DNnXQrcb4VSd3Cz/pfxrs7L13b/BgS+gWRaMfArSL4JozeaL1JQK7GRFRZmVimm9zdVu35wFb80x5+20Hw49boKUzrZTik27P4Z3H4b1T4P/ALTuBz1vhZ+cr+NbIidBBVabUjrDiCfg60J452EomAvvPwstukP3GyFjKMTUs51SQqGqCj5eAe89Alv/CTFx0GGE+UBzpq4qLlIbVGDBcForGDQd+k42n7rf/Rs8PxYSzoDOV5vtfxJb2E4pwXBgN6yfZ6YKyz41/+a9f2dOkE9Itp1OJKyowIKpwanmE3e3G82ncd+j8Mb9ZtVZ636mzNIHaVTmuqoqKFxtTqv490tQ5YezekK/KdDuYoiNs51QJCypwEIhOtqsXGw7AMp2mDe69fPguavhlCToOBI6jTIXIhR3fLUdNjxjthvbs8PsDN/tBuhyDSRn2E4nEva0G70tgUrY9ir860nYkm8+tSdnQscRZvGHphjrpgO7zblb7z8HxWuBb84PzBoN7YboXEBxXp1/7/wvGoHZEhMLbQea28Gv4IMXzP53K6aYW4se5rygjIuhcYrttJHt4Ffw0VJTXJ+8Dl4Aks+BC/5oRs+nptpOKBKRNAKra776BD5YaArti03mvtRupsjSB+saZaGydyd8lGeKq/BNqKo0i3POGQYdLtdKQglbLr13qsDqstIt8O/FsGkJfPa+ue/0NpB+IbTuD2edpwUCtaUqYM7j25IPW/Nh1wZz/+ltoN1FkDnMnHis87YkzLn03qkCc0XZDti8DDbnQeEac8wsLgF+8s1J1Gl9oGlbvcHWRNkOMyW4baW5iGn5VxAVbUa8bQeaY1pJbW2nFAkpl947dQzMFYlnQffx5lax32xf9fFysx/j5jzzmIQzodVPoWVPaPlTcx0pbVFkeJ6Znt3xDny6BgrfMAUG5u+t7YVmMUbrftCwid2sIlItKjAX1U+AdoPNDczOH5+8bkrt0zXm+BlA/VMhtasZUTTvYqbAGp1hLXZIlX8NO9dDyToo+ZdZMXig1Hwt/jRT8OfdAq1+Zpa8a+Qq4hwVWDg4rRV0bQVdx5iRxtfb4dO3ofg9c1s9w1xjCqBRilmAcEYmnNHe7IR+emt3l38HKs3I6otNUPoRfLYRdr1vzss64vTWcPYFcFYPc9PIVCQsqMDCTVSUuex8kzToPNrcV7HfvLHvLIBd6+GzD8xxn6rKb74nGhJbmjf6I9+beJY5F+3UVHOCrs0RyqG9ZlVg2Q6zPdPXhaa0dm81ZX3kv4MoOP1scwHS7OugWScz8ow/zV52EQkaFVgkqJ8ALc8ztyMqD8PuLWbUsnsLlG7+zzGiw/uO/f7YeDP12KiZ2TmkYRNoeLophvqNoH5j82tsA6gXD7H1ITrW3KKizagQz4wCKysg4IfKQ+A/CIf3m4I9VAblZebXA6XmhOH9X8C+z46Tp4Ep2eR2kDHEjCKT2plFLHENg/7XKSJ1gwosUsXGmanEb5/P5Hlw8Esz0ikrgj1FpkSO3HZvMV8/+JU5obc2RUWb/SNPSTK3M84xiyoap5jbqS3gtJZmg1wdsxKJeCowOVZUFJzS1Nyad/3+x1VVfTN62gcVe+HwAfCXm1vlIVNugUrza1Q0EGV+dmx9c2mRmDhzGkDcKebW4FQzktOxKRGpJhWYnJjoaGjQ2NzQladFJPT0cVdERJykAhMRESc5U2DLli0jPT2d1q1bM336dNtxRETEMicKLBAI8Mtf/pJXXnmFTZs28cwzz7Bp0ybbsURExCInCmzt2rW0bt2atLQ04uLiGDVqFIsXL7YdS0RELHKiwEpKSmjR4j9XKE5NTaWkpMRiIhERsc2JZfTHu+JL1HFOZM3NzSU3NxeA0tLSoOcSERF7nBiBpaamUlRUdPTPxcXFpKSkfOdx48ePx+fz4fP5SEpKCmVEEREJMScK7Nxzz2Xr1q1s376dw4cPM3/+fIYOHWo7loiIWOTEFGJsbCwPPvggAwcOJBAIMHbsWDIzM23HEhERi5woMIDBgwczePBg2zFERKSOcGIKUURE5NtUYCIi4iQVmIiIOEkFJiIiTlKBiYiIk1RgIiLiJBWYiIg4SQUmIiJOUoGJiIiTVGAiIuIkFZiIiDhJBSYiIk5SgYmIiJNUYCIi4iQVmIiIOEkFJiIiTlKBiYiIk1RgIiLipFjbAURqYlFBCTPzN7OzrJyUxHgmDkxnWOfmtmOJiAUqMHHGooISJi/cSLk/AEBJWTmTF24EUImJRCBNIYozZuZvPlpeR5T7A8zM32wpkYjYpAITZ+wsK6/R/SIS3lRg4oyUxPga3S8i4U0FJs6YODCd+Hoxx9wXXy+GiQPTLSUSEZu0iEOccWShhlYhigiowMQxwzo3V2GJCKApRBERcZQKTEREnKQCExERJ6nARETESSowERFxUpTneZ7tEMHQtGlTWrVqFdTnKC0tJSkpKajPESwuZwe387ucHZTfplBkLywsZPfu3UF9jtoStgUWCtnZ2fh8PtsxTojL2cHt/C5nB+W3yeXswaApRBERcZIKTEREnBRz55133mk7hMu6du1qO8IJczk7uJ3f5eyg/Da5nL226RiYiIg4SVOIIiLiJBXYSbrjjjvo2LEjWVlZDBgwgJ07d9qOVG0TJ06kXbt2dOzYkUsvvZSysjLbkWpkwYIFZGZmEh0d7czKrGXLlpGenk7r1q2ZPn267Tg1MnbsWJKTk2nfvr3tKDVWVFRE3759ycjIIDMzk9mzZ9uOVCOHDh2iW7dudOrUiczMTKZMmWI7Ut3gyUnZs2fP0d/Pnj3bu/HGGy2mqZn8/HzP7/d7nud5kyZN8iZNmmQ5Uc1s2rTJ++ijj7zevXt77733nu04P6qystJLS0vztm3b5lVUVHgdO3b0PvzwQ9uxqu3111/31q1b52VmZtqOUmM7d+701q1b53me5+3du9dr06aNU3/3VVVV3r59+zzP87zDhw973bp1895++23LqezTCOwkNW7c+OjvDxw4QFRUlMU0NTNgwABiY80VdXr06EFxcbHlRDWTkZFBero7F7Ncu3YtrVu3Ji0tjbi4OEaNGsXixYttx6q2888/nyZNmtiOcUKaNWtGly5dAGjUqBEZGRmUlJRYTlV9UVFRJCQkAOD3+/H7/U691wSLCqwW/P73v6dFixbMmzePu+66y3acE/LYY48xaNAg2zHCWklJCS1atDj659TUVKfeRMNFYWEhBQUFdO/e3XaUGgkEAmRlZZGcnEz//v2dyx8MKrBq6NevH+3bt//O7cin53vuuYeioiJGjx7Ngw8+aDntsX4sO5j8sbGxjB492mLS46tOfld4x1nwq0/RobV//36GDx/OrFmzjpk9cUFMTAzr16+nuLiYtWvX8sEHH9iOZJ2uyFwNK1asqNbjrrzySi666CKmTp0a5ETV92PZn3jiCZYuXcqrr75aJ99Mq/t374LU1FSKioqO/rm4uJiUlBSLiSKL3+9n+PDhjB49mpycHNtxTlhiYiJ9+vRh2bJlTi6oqU0agZ2krVu3Hv39kiVLaNeuncU0NbNs2TLuu+8+lixZQsOGDW3HCXvnnnsuW7duZfv27Rw+fJj58+czdOhQ27Eigud5jBs3joyMDCZMmGA7To2VlpYeXSVcXl7OihUrnHqvCRrbq0hcl5OT42VmZnodOnTwhgwZ4hUXF9uOVG1nn322l5qa6nXq1Mnr1KmTUysoPc/zFi5c6DVv3tyLi4vzkpOTvQEDBtiO9KPy8vK8Nm3aeGlpad7dd99tO06NjBo1yjvzzDO92NhYr3nz5t7f//5325Gq7Y033vAAr0OHDkdf73l5ebZjVduGDRu8rKwsr0OHDl5mZqY3depU25HqBO3EISIiTtIUooiIOEkFJiIiTlKBiYiIk1RgIiLiJBWYiIg4SQUmIiJOUoGJiIiTVGAiIdK3b1+WL18OwB/+8AduvfVWy4lE3Ka9EEVCZOrUqfzxj3/kiy++oKCggCVLltiOJOI07cQhEkK9e/dm//79rFq1ikaNGtmOI+I0TSGKhMjGjRvZtWsX9evXV3mJ1AIVmEgI7Nq1i9GjR7N48WJOOeUU8vPzbUcScZ4KTCTIDh48SE5ODvfffz8ZGRnccccd3HnnnbZjiThPx8BERMRJGoGJiIiTVGAiIuIkFZiIiDhJBSYiIk5SgYmIiJNUYCIi4ijaX/wAAAAHSURBVKT/DxJJnVnPJSQYAAAAAElFTkSuQmCC
iVBORw0KGgoAAAANSUhEUgAAAbAAAAEgCAYAAADVKCZpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXhU1eHG8e8kYQlrQBMlCULDEkJYAkTAiiCVXUQIikBQVDSutUJ/YF2RVlRAW1HbalwRERREQLYoIktRC8FAQSqCgmRBCGJYA5kk9/fHLVQrSAKZOTkz7+d5eITJQF5wMm/Oueee43Ecx0FERMQyIaYDiIiInA0VmIiIWEkFJiIiVlKBiYiIlVRgIiJiJRWYiIhYSQUmIiJWUoGJiIiVVGAiImIlFZiIiFhJBSYiIlZSgYmIiJVUYCIiYiUVmIiIWEkFJiIiVlKBiYiIlVRgIiJiJRWYiIhYSQUmIiJWUoGJiIiVVGAiImIlFZiIiFhJBSYiIlZSgYmIiJVUYCIiYiUVmIiIWEkFJiIiVlKBiYiIlVRgIiJiJRWYiIhYSQUmIiJWUoGJiIiVVGAiImIlFZiIiFgpzHQAXzn//PNp3Lix6RgiIlbZuXMn+/btMx2jTAK2wBo3bkxmZqbpGCIiVklOTjYdocw0hSgiIlZSgYmIiJVUYCIiYiWrCqykpIR27drRv39/01FERMQwqxZxTJ06lYSEBA4ePGg6ioiI38zLymVKxlbyCgqJjghnbO94BraLMR3LOGtGYDk5OSxatIhbbrnFdBQREb+Zl5XL/XM3kVtQiAPkFhRy/9xNzMvKNR3NOGsK7N5772Xy5MmEhFgTWUTknE3J2Eqht+QnjxV6S5iSsdVQosrDiinEhQsXEhUVRYcOHVixYsVpn5eenk56ejoA+fn5fkonIlIOxUWQ/yV8twn2fw0H8+BgLhzdD8XH3I87pVC1JlSrxcQjxWSHRbLLiWKncyEbS5uwl3rkFRSa/psYZ0WBrVmzhgULFrB48WKOHTvGwYMHGTFiBG+++eZPnpeWlkZaWhpg1814IhLAio5C9mfwzUrYscotrlKv+zFPKNRuAHWiIeIiCKvu/gAoOgxFh7kw7FuSSrcT4Tly8o/Mdc7j36EJsOEgNO8NNeob+IuZ53EcxzEdojxWrFjBU089xcKFC3/xecnJydqJQ0TMKDoC2z6AL+a5//UehZAwiL0YGnaCBm3ggtZQPw5Cf3kcceIaWBXvAZp68kgK+Zrk0O10D99O+PF8twQb/RraDoPEQVC1xjlFt+m904oRmIiIFXZvhMzXYNNsdwRVM9Itlvh+cFFnqFar3H/kidWGUzK2klVQiz2129KmdzzhbRvA7izYusQtyvl3wtL7oc0Q6HwHnNekov92lY51I7Cysum7CBGxWGkJfLkQ1kyF3PXuFGBiCiQNg0aXQkio7zM4Duz6FNa/7pbZddPdqcWzYNN7p0ZgIiJno6QYNs6ENc/A99vd6cC+k90RUHg9/2bxeNxpxEa/hj5PQvW6/v38hqjARETKw3FgyzxY/phbXA2S4NppkHCVf0ZbZxJECzpUYCIiZZW9FpaMg7wsiEyAYbOgeR93BCR+pwITETmTw3vhw/Gw8S2oHQ0DX3CnCivDiCuIqcBERE7HceDzafDBI+5S+C6j4bL/O6vVhFLxVGAiIqfyw05YcA/sWAmNL4P+f4Hzm5lOJT+iAhMR+THHcZejZzzg3iTc/xloPxK0D2ulowITETnh6H5Y8Fv3vq64y+Hqv0LdWNOp5DRUYCIiADv/Ae/eAkf2Qa/HoPNdGnVVciowEQlupaXwyVT46I9QvwkMf8fdq1AqPRWYiASvwgKYdwdsXexuhDvgOahW23QqKSMVmIgEp33bYOZQd7Vhn0nQ6TbdkGwZFZiIBJ/ty2D2zRBaBUa+7+4hKNbRFUoRCS6fvQAzroWIhpD2scrLYhqBiUhwKC2BjAfhn3+HFv1h0IvaUcNyKjARCXxFR2Hure79XZ3vdJfJax9D66nARCSwHd0Pb10HOevcxRqdbzedSCqICkxEAtfB3fBmintu15Bp0PJq04mkAqnARCQwff81TB/ojsBS50BcN9OJpIKpwEQk8Oz9Et4YAKXF7jL5mPamE4kPqMBEJLB8twneuBpCqsCNiyGqhelE4iO6D0xEAkfu5/B6fwirDjepvAKdRmAiEhhyP4c3BkJ4XXfasF5j04nEx1RgImK/vCx3wUZ4BNy4yN1lQwKephBFxG67N7ojr2p14caFKq8gogITEXvt2eIu2KhWG258HyIuMp1I/EgFJiJ2OnGfV2g1GLlA17yCkK6BiYh9CrLdkVeJF25aAvXjTCcSA1RgImKXw/nuyOvYQXfkpaXyQUsFJiL2OHYQZgyGA7lwwzyITjKdSAxSgYmIHbzHYNZw+G4zDJsFF3U2nUgMU4GJSOVXWgJzb4Gdq2FQOjTvZTqRVAJahSgilZvjwJL74N/vQ+/Hoe11phNJJWFFgR07doyOHTvStm1bEhMTGT9+vOlIIuIva56BdS/BJXfDJXeZTiOViBVTiNWqVWP58uXUqlULr9dLly5d6Nu3L507aw5cJKD96x1Y9ii0Ggw9/2Q6jVQyVozAPB4PtWrVAsDr9eL1evF4PIZTiYhP7VgN8+6ExpfBwL9DiBVvV+JH1rwiSkpKSEpKIioqip49e9KpUyfTkUTEV/K/grdT4bwmcN2bEFbNdCKphKwpsNDQUDZs2EBOTg5r165l8+bNP3tOeno6ycnJJCcnk5+fbyCliJyzI/tgxjUQWhWGv+PuMC9yCtYU2AkRERFcfvnlLF269GcfS0tLIzMzk8zMTCIjIw2kE5Fz4i2EmcPg8F4Y9jbUa2Q6kVRiVhRYfn4+BQUFABQWFrJs2TJatND2MSIBxXFg/t2QsxZS0iG2g+lEUslZsQpx9+7djBw5kpKSEkpLSxkyZAj9+/c3HUtEKtKqKbB5DlwxHloOMJ1GLGBFgbVp04asrCzTMUTEVzbPhY8nQtth0GW06TRiCSumEEUkgOVlwbw7oGFnuGoq6BYZKSMVmIiYc2gPzBwONSO1XF7KzYopRBEJQMXH4e0RcKwAbs6AWlo5LOWjAhMR/3McWDjGXXF47TRo0MZ0IrGQphBFxP/WpsOGN6HrOEgcaDqNWEoFJiL+tfMfsPR+iO8Hl99vOo1YTAUmIv5TkA3vjIT6cTDoRW3QK+dErx4R8Q9vobtoo/g4DH0LqtcxnUgsp0UcIuJ7jgOLfg+7N8DQmRDZ3HQiCQAagYmI72W+ChtmQLf7oEU/02kkQKjARMS3stfBkvugaU/o9gfTaSSAqMBExHcO58M7N0CdaHeHeS3akAqka2Ai4hslxTDnJijcD6M+hBr1TSeSAKMCExHf+Hgi7FwNV/9NO22IT2g8LyIVb+sS+Mefof0N0C7VdBoJUCowEalYP+yE926DBm2h7xTTaSSAqcBEpOJ4j7mLNgCGvAFVqpvNIwFN18BEpOJkPAC7N7o3K9drbDqNBDiNwESkYmyaA5mvwK9/q5uVxS9UYCJy7vK/ggX3QMPOcMV402kkSKjAROTcFB2F2SPd613XvAqhVUwnkiCha2Aicm6W3gd7t0Dqu1A3xnQaCSIagYnI2fvXO/D5G9BlDDTrYTqNBBkVmIicnX3b4P174aJLoPuDptNIEFKBiUj5eQth9o0QVg0GvwKhuhoh/qdXnYiUX8aDsGczDJ+t615ijEZgIlI+X7z3n/u97oHmvUynkSCmAhORstu/w73fKyYZrnjEdBoJciowESmb4iJ4dxTg0f1eUinoGpiIlM3yP0Huerh2GtRrZDqNiEZgIlIG25bBJ89C8s2QONB0GhFABSYiZ3LoO/d8r6iW0Ptx02lETlKBicjplZa65VV0BK55DaqEm04kcpIVBZadnU337t1JSEggMTGRqVOnmo4kEhw+mQrfrIC+T0JUC9NpRH7CikUcYWFhPP3007Rv355Dhw7RoUMHevbsScuWLU1HEwlcOZmw/DFoORDaj2ReVi5TMraSV1BIdEQ4Y3vHM7CdbmIWc6wYgTVo0ID27dsDULt2bRISEsjNzTWcSiSAHTsAc26G2tFw1VTmbcjj/rmbyC0oxAFyCwq5f+4m5mXp61DMsaLAfmznzp1kZWXRqVMn01FEApPjwMIxcCAHBr8M4RFMydhKobfkJ08r9JYwJWOroZAilkwhnnD48GEGDx7MM888Q506dX728fT0dNLT0wHIz8/3dzyRwLDhLdg8B7o/BBe53yjmFRSe8qmne1zEH6wZgXm9XgYPHkxqaiopKSmnfE5aWhqZmZlkZmYSGRnp54QiAWDfdlg8Fhp1gcvGnHw4OuLUqw9P97iIP1hRYI7jMGrUKBISEhgzZsyZf4OIlN+JraLCqkJKOoSEnvzQ2N7xhFcJ/cnTw6uEMrZ3vL9TipxkRYGtWbOG6dOns3z5cpKSkkhKSmLx4sWmY4kEluV/gt0bYMDzPzsiZWC7GJ5IaU1MRDgeICYinCdSWmsVohhlxTWwLl264DiO6Rgigevr5f/dKiqh/ymfMrBdjApLKhUrRmAi4kNH9sF7t0NkC+g10XQakTKzYgQmIj7iODDvTigsgBFzoWoN04lEykwFJhLM1r4E2zKgzyS4sJXpNCLloilEkWC15wv44CFo1gs63WY6jUi5qcBEgpG3EOaMgup14eq/gcdjOpFIuWkKUSQYffAw5P8bRrwLtXTTv9hJIzCRYLN1Cax7CS65G5r2MJ1G5KypwESCyaHvYP5dcGFruOIR02lEzonfCqxHjx5s3LjRX59ORP5Xaal7v1fRURj8CoRVM51I5Jz4rcAmT57M6NGjuemmm9i9e7e/Pq2InPDZX+Gbj6HPExCpPQzFfn4rsPbt27N8+XL69+9Pnz59mDBhAoWFOopBxC92b4RlE6BFf+hwo+k0IhXCr9fAHMchPj6eO+64g+eee45mzZoxffp0f0YQCT5FR9wl8zXPhwHPacm8BAy/FViXLl2IiYlh9OjR5Obm8vrrr7NixQrWrl1LWlqav2KUzfHDphOIVJyMB+D77TDoRahR33QakQrjt/vAXnjhBRITE/H8z3d/zz33HAkJCf6KcWbLH4OsGTB680/OQxKx0pYFsP51uPReiOtmOo1IhfLbCKxVq1Y/K68TFi1a5K8YZ3ZhGziUB19/bDqJyLk5kAsLfgvR7aD7g6bTiFS4SnEfWFxcnOkI/9W8D4TXhw0zTCcROXulJfDebVDi/c+S+aqmE4lUuEpRYJVKWFVofS18uQgKfzCdRuTsrHkGdq6GfpPhvCam04j4hArsVJKGQ8lx2DzXdBKR8svJhOUTIXEQJKWaTiPiMyqwU2nQFqISYcNbppOIlM/xQ/DuKKgTDf3/oiXzEtBUYKfi8bijsNxMyN9qOo1I2S0eCwW7ICUdwuuZTiPiUyqw02kzBDyhGoWJPf41GzbOhK5jodGvTacR8TkV2OnUinJPqt04C0qKTacR+WX7d8DC0dCwE3QdZzqNiF+owH5Ju1Q4/B1s/9B0EpHTK/HC3FvBEwIpL0GozqmV4KAC+yXN+0DNKFg/zXQSkdNbOQly1sFVf4F6jUynEfEbFdgvCa0C7UbAtgw4mGc6jcjP7fwHrHoKkkZAq8Gm04j4lQrsTNpfD06puz+iSGVydD+8eyvUj4O+k0ynEfE7FdiZ1I+DX3WDz99wT7QVqQwcB+bfDUfy4ZpXoVot04lE/E4FVhYdRsKBXfDNctNJRFzrXoati6DnBIhOMp1GxAgVWFm06O9u8KvFHFIZ7PkCMh6Epj2h0x2m04gYowIri7Bq7s4cWxfDoT2m00gwKzoCs2+C8AgY+HcI0ZewBC+9+suqw01QWuxeCxMxZekfYN9X7unKtSJNpxExSgVWVuc3hbjusP417cwhZmx+1/0GqstoaNLddBoR41Rg5dHxVjiY604livjTDzvh/Xsh9mLo/oDpNCKVgjUFdvPNNxMVFUWrVq3MhWjeB+o2hHUvmcsgwae4CObcDHjc05VDq5hOJFIpWFNgN954I0uXLjUbIiQUkm+CHasY/vg0fvWHRVz65HLmZeWazSVWmJeVy6VPLi//62b5HyF3PQx4VltFifyINQXWtWtX6tevbzoGi6v0osgJo9fRhThAbkEh98/dpBKTXzQvK5f7524it6CwfK+bbR/CJ89B8ihIHOiXrCK2sKbAKouJK/JZWNqZwaGrqUkhAIXeEqZk6OBLOb0pGVsp9Jb85LEzvm4O5sF7t8EFraD34z5OKGKfgCqw9PR0kpOTSU5OJj8/3yefI6+gkDeKe1HbU8g1oat+8rjI6Zzu9XHa101JsbvPobcQrnkNqlT3YToROwVUgaWlpZGZmUlmZiaRkb65RyY6IpwNTlPWlzbjptClhFB68nGR0znd6+O0r5uVk+Dbf8CVf4bI5j5MJmKvgCowfxjbO57wKqG8UtyXxiF7uCLkc8KrhDK2d7zpaFKJnXjd/NhpXzdffwyrprhHpCQN81NCEftYU2DDhg3jkksuYevWrcTGxvLKK68YyTGwXQxPpLRmc+2u5Djnc0e1DJ5Iac3AdjFG8ogdTrxuYiLC8QAxEeGnft0c2gNz0yAyHvpNNpJVxBYex3Ec0yF8ITk5mczMTN9+kk+egw8egrSV2hFczl1pCUwfCNnrIO1jiEownUiCkF/eOyuINSOwSqn9DVC1Fnz2N9NJJBCsnAQ7VsGVT6u8RMpABXYuqteFdiPcPeoO5plOIzbb/hGsnOxe92qXajqNiBVUYOeq0+3glMJnfzedRGx1MA/m3uqOuvpNMZ1GxBoqsHNV/1eQOAgyX4XCH0ynEduUeN3zvbzH4NppULWG6UQi1lCBVYRL74Wiw7DOzMpIsdiyRyH7M3efQ93vJVIuKrCK0KANNO3hTiN6tSOHlNGWBfDp83DxrdD6GtNpRKyjAqsoXUbD0X2Q9abpJGKD77+G+XdBTAfoPdF0GhErqcAqSqNL3cMGP3lWJzbLLys6Cu/c4B7Pc+3rEFbNdCIRK6nAKorH447CCna5y+pFTsVxYOG9sOcLSHkZIi4ynUjEWiqwitS8L0QlwqrJ7q4KIv9r3cvwr7eh+wPQrIfpNCJWU4FVpJAQuPw++H67RmHyc7v+CUv/AM16w2X/ZzqNiPVUYBWtxVXuKGylRmHyI4f2wOyRUDcWUl50v9kRkXOir6KKFhIC3cbB99tg81zTaaQyKC5yy6uwAK57E8LrmU4kEhBUYL6QMACiWrqbs2oUJhkPwK5P4ern4cLWptOIBAwVmC+EhEC3+9xR2KY5ptOISVkzYN1LcMndullZpIKpwHwlYQBc0BpWPO5OIUnwyVkPC0fDr7pCjwmm04gEHBWYr4SEwBWPwA874fNpptOIvx36Dt5OhdoXwDWvQ2iY6UQiAUcF5kvNero7dKycDEVHTKcRfyk+Dm+PgGMHYdgsqHme6UQiAUkF5kseD1wxHo7s1XlhwcJxYNEYyFkHg/4OFySaTiQSsFRgvnZRJ4jvB2umwtH9ptOIr332N3dD567joOXVptOIBDQVmD/85mE4fghWPWU6ifjSVxnwwUPuAp7L7zedRiTgqcD84YKW0P56WPsi7NtuOo34wt5/w5xRcEErGPSCdtoQ8QN9lflL94cgrDp8+LDpJFLRjuyDt66DqjXcRRtVa5pOJBIUVGD+UvsCuOz3sHUxfLPCdBqpKN5jMHMYHN4DQ2dC3RjTiUSChgrMnzrf6Z7/tPQBbTEVCEpLYf6dkLMWBr0IsR1MJxIJKiowf6pSHXr+EfZ+oZubA8GKx91jc3o8CokDTacRCToqMH9rORAadYFlE9xrJ2KnrDdh1RRodz1ceq/pNCJBSQXmbx4PXPkUFB2GZeNNp5GzsX0ZLLgH4rpD/7+4/09FxO9UYCZEJcAld7nfxe/6zHQaKY/dG+Gdke5xOUPegNAqphOJBC0VmCldx0GdWFg4BkqKTaeRsijYBTOuheoRkDobqtcxnUgkqKnATKlWC/pOchd0/FP7JFZ6R/bB9EFQfAxGzIE6DUwnEgl6KjCTWlwJzfvC8onw/dem08jpHD8EM66BAzkw7G13ClhEjFOBmeTxQP8/Q2hVWPBb974iqVyKi+Dt62H3v+Da16HRJaYTich/WFNgS5cuJT4+nqZNm/Lkk0+ajlNx6kRD74nw7RrIfMV0GvmxkmKYewt88zEMeBbi+5pOJCI/YkWBlZSUcNddd7FkyRK2bNnCzJkz2bJli+lYFafdCGjyG/hwPPzwrek0Au5o+P3fwZb50Gui+/9IRCoVKwps7dq1NG3alLi4OKpWrcrQoUOZP3++6VgVx+OBq551/zv/Lk0lmuY4kPEAbHgTut0Hv77bdCIROQUrCiw3N5eGDRue/HVsbCy5ubkGE/lAREPo8wTsXA2fPmc6TfByHFj+J3dlaOc7da6XSCVmRYE5jvOzxzyn2P0gPT2d5ORkkpOTyc/P90e0itXueki4Cj76E+RtMJ0mOK2cBKufhvYjoffj2mVDpBKzosBiY2PJzs4++eucnByio6N/9ry0tDQyMzPJzMwkMjLSnxErxompxJqR8O4tUHTUdKLgsuopWPEEJI2A/s+ovEQqOSsK7OKLL2bbtm3s2LGDoqIiZs2axYABA0zH8o0a9d0Tfb/fDhmavvKb1X92pw7bDHVXHOpEZZFKz4qv0rCwMJ5//nl69+5NQkICQ4YMITEx0XQs34nrBpf+Dta/DhtnmU4T+FZMgo8mQOtrYeDfICTUdCIRKYMw0wHKql+/fvTr1890DP/5zcOQux7evxcuaAUXtjKdKPA4Dix/DFY/BW2Hw9XPq7xELGLFCCwohYbBNa9C9brw9ggoLDCdKLA4DnzwkFte7W+Aq/+q8hKxjAqsMqsVBUOmwYFseO923R9WUUqKYcHd8Onz0DEN+k/VNS8RC+mrtrK7qLO7nPurJToAsyIUH4c5N7pnsXUdB30nq7xELGXNNbCg1jEN9n0FnzwL5zWFDiNNJ7LTsQPudOyOVe43BZfcZTqRiJwDFZgNPB7oMwn274BFY6BeY3elopTdwTz3MMr8L2Hg3yFpuOlEInKONHdii9AwuPY1dwT29vXw3SbTieyxZwu83AN+2AnD31F5iQQIFZhNqteF1Dnuac7TB+kQzLLY9iG82htKS+CmJdD0CtOJRKSCqMBsE9EQrp8HTim8cTUcCLBNjSuK48Cnf4W3hkC9RnDrR9CgjelUIlKBVGA2imwOI+a6ixLeuBoOfWc6UeXiPeaecJ3xAMT3g5szoG6s6VQiUsFUYLaKTnKv5xzaDa/1hYLsM/+eYFCwy50yzJoOXcfCkOlQtabpVCLiAyowmzW6xJ1OPPI9vNYP9n9jOpFZ2z+CF7u6/w5DZ8JvHtI9XiIBTF/dtmt4MYxcAEWH3RILxtWJJV74cDy8ORhqN4C0FdAiiPbNFAlSKrBAEJ0ENy4CTwi82sddeRcs9n/jThmueca9wfuWj+C8JqZTiYgfqMACxQUt4ZZlUD/OXXm37mXTiXzLcSDzVXjhMvfstGunwVVToWoN08lExE9UYIGkTvR/7nXqCYt+D/PvCsxTnQt2wfSBsHA0xHSA29dA4kDTqUTEz1RggaZaLRg2012Bl/WmuwPFvu2mU1WMkmL33q6/XQI5mXDln+GG+e69cSISdFRggSgk1F2Bl/quu8w+vZt7urPjmE529nb90/17ZDwAjX4Nd3wCF49y94kUkaCkAgtkzXrA7ashuh28/zt32u2Hb02nKp/938DsG+HVXu6hntfNcO9/q9fIdDIRMUwFFujqxsINC9zptpxMd/pt9Z/d3Soqs0PfwZL74PmO8FUGdPsD3PVPSOivUZeIADpOJTiEhLjTbc16wZJx8NEEyHwNeoyHxJTKdbNvwS5YMxU+nw6lxdD+erj8fqh9oelkIlLJqMCCSURDd4HHNyvhgwfh3VGw6inoci+0GgyhVczkchz49hNY9xL8+33A4x550uVe97YAEZFTUIEFo7hukLYSNs1xbwB+7zZY/hgk3wRthkLdGP/kOJADm+fCxpmwd4t7XEyn290fp1lZOC8rlykZW8krKCQ6IpyxveMZ2M5PeUWkUvE4js1L004vOTmZzMxM0zEqP8eBbR/Ammfh238AHmjSHVoOhGY93XvLKvJz7d3i7lm4dQns+sR9PLq9W56trvnFG5HnZeVy/9xNFHpLTj4WXiWUJ1Jaq8REKohN750agQU7jwea93Z/7P8GNs5yR0Tv3+N+PCoRGl8KDZLcLavOawZhVc/85zoOHN4D+76C3M8hLwuy/+ku6weIagndH3SnLsu49dOUjK0/KS+AQm8JUzK2qsBEgpAKTP6rfhx0f8BdNLH337D9Q3dfxawZsDb9v8+rGeVOM9Y4D8KqQ1g194DNoiNw/DAcyYcD2VD8o5WOEY3c+7fiukOT35zVNGVeQWG5HheRwKYCk5/zeNy9FS9oCZf+DkpL4PuvYfcGd5R2IAcO5sLR/VB8HEqOu7+vai2oVhuiWrgjunqN3VKMbgc16p9zrOiIcHJPUVbREeHn/GeLiH1UYHJmIaHuKdCRzY3GGNs7/pTXwMb2jjeYSkRMUYGJNU5c59IqRBEBFZhYZmC7GBWWiADaSkpERCylAhMRESupwERExEoqMBERsZIKTERErKQCExERKwXsZr7nn38+jRs39unnyM/PJzIy0qefw1dszg5257c5Oyi/Sf7IvnPnTvbt2+fTz1FRArbA/MGmXZv/l83Zwe78NmcH5TfJ5uy+oClEERGxkgpMRESsFProo48+ajqEzTp06GA6wlmzOTvYnd/m7KD8JtmcvaLpGpiIiFhJU4giImIlFdg5evjhh2nTpg1JSUn06tWLvLw805HKbOzYsbRo0YI2bdowaNAgCgoKTEcql9mzZ5OYmEhISIg1K7OWLl1KfHw8TZs25cknnzQdp1xuvvlmoqKiaNWqleko5ZadnU337t1JSEggMTGRqVOnmo5ULseOHaNjx460bduWxMRExo8fbzpS5eDIOTlw4MDJn0+dOtW57bbbDKYpn4yMDMfr9TqO47TSHmsAAAQDSURBVDjjxo1zxo0bZzhR+WzZssX58ssvnW7dujnr1q0zHeeMiouLnbi4OOfrr792jh8/7rRp08b54osvTMcqs5UrVzrr1693EhMTTUcpt7y8PGf9+vWO4zjOwYMHnWbNmln1b19aWuocOnTIcRzHKSoqcjp27Oh8+umnhlOZpxHYOapTp87Jnx85cgSPx2MwTfn06tWLsDD3SLjOnTuTk5NjOFH5JCQkEB9vz2nMa9eupWnTpsTFxVG1alWGDh3K/PnzTccqs65du1K/fn3TMc5KgwYNaN++PQC1a9cmISGB3Nxcw6nKzuPxUKtWLQC8Xi9er9eq9xpfUYFVgAcffJCGDRsyY8YM/vjHP5qOc1ZeffVV+vbtazpGQMvNzaVhw4Ynfx0bG2vVm2ig2LlzJ1lZWXTq1Ml0lHIpKSkhKSmJqKgoevbsaV1+X1CBlUGPHj1o1arVz36c+O554sSJZGdnk5qayvPPP2847U+dKTu4+cPCwkhNTTWY9NTKkt8WzikW/Oq7aP86fPgwgwcP5plnnvnJ7IkNQkND2bBhAzk5Oaxdu5bNmzebjmRcmOkANli2bFmZnjd8+HCuvPJKJkyY4ONEZXem7NOmTWPhwoV89NFHlfLNtKz/9jaIjY0lOzv75K9zcnKIjo42mCi4eL1eBg8eTGpqKikpKabjnLWIiAguv/xyli5dauWCmoqkEdg52rZt28mfL1iwgBYtWhhMUz5Lly5l0qRJLFiwgBo1apiOE/Auvvhitm3bxo4dOygqKmLWrFkMGDDAdKyg4DgOo0aNIiEhgTFjxpiOU275+fknVwkXFhaybNkyq95rfMb0KhLbpaSkOImJiU7r1q2d/v37Ozk5OaYjlVmTJk2c2NhYp23btk7btm2tWkHpOI4zd+5cJyYmxqlataoTFRXl9OrVy3SkM1q0aJHTrFkzJy4uznnsscdMxymXoUOHOhdeeKETFhbmxMTEOC+//LLpSGW2evVqB3Bat2598vW+aNEi07HKbOPGjU5SUpLTunVrJzEx0ZkwYYLpSJWCduIQEREraQpRRESspAITERErqcBERMRKKjAREbGSCkxERKykAhMRESupwERExEoqMBE/6d69Ox9++CEADz30EPfcc4/hRCJ2016IIn4yYcIEHnnkEfbu3UtWVhYLFiwwHUnEatqJQ8SPunXrxuHDh1mxYgW1a9c2HUfEappCFPGTTZs2sXv3bqpVq6byEqkAKjARP9i9ezepqanMnz+fmjVrkpGRYTqSiPVUYCI+dvToUVJSUnj66adJSEjg4Ycf5tFHHzUdS8R6ugYmIiJW0ghMRESspAITERErqcBERMRKKjAREbGSCkxERKykAhMRESv9P3Wwr/3pfxNMAAAAAElFTkSuQmCC
iVBORw0KGgoAAAANSUhEUgAAAbAAAAEgCAYAAADVKCZpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deVxVdeL/8ddlETeULCgF0khFBMTlulTmUiqW5jqZitn6xZqatsnm2zhN2S+nbZrWKWMqa9TSbNzSSUpNM9MQQ9Mc16QAN6xwZblczu+PU36n0sTg3s893Pfz8fAB4n3c81bhvu/nnM/5fFyWZVmIiIg4TIjpACIiIr+GCkxERBxJBSYiIo6kAhMREUdSgYmIiCOpwERExJFUYCIi4kgqMBERcSQVmIiIOJIKTEREHEkFJiIijqQCExERR1KBiYiII6nARETEkVRgIiLiSCowERFxJBWYiIg4kgpMREQcSQUmIiKOpAITERFHUoGJiIgjqcBERMSRVGAiIuJIKjAREXEkFZiIiDiSCkxERBxJBSYiIo6kAhMREUdSgYmIiCOpwERExJHCTAeorlatWhEZGUloaChhYWHk5uaajiQiIgY5psAAPvzwQ8455xzTMUREJADoFKKIiDiSYwrM5XIxYMAAunTpQlZWluk4IiJimGNOIa5evZoWLVpw4MAB+vfvT7t27ejVq9ePHpOVlXWi3LZu3Uq7du1MRBURcaz8/HwOHjxoOka1uCzLskyHOFMPPfQQjRs35t577z3lY9xutyZ6iIicISe9djriFOKxY8c4cuTIic/ff/99UlJSDKcSERGTHHEKcf/+/QwfPhyAyspKxo4dy8CBAw2nEhERkxxRYAkJCWzcuNF0DBERCSCOOIUoIiLyUyowERFxJBWYiIg4kgpMRKSusCzYOAvKj5hO4hcqMBGRuiL/Y5g3Af7zrukkfqECExGpK9ZPg/pNIXm46SR+oQITEakLjh2ELQshbQyENzCdxi9UYCIidcGGN6HKA12uN53Eb1RgIiJOZ1mw/nWI7wExSabT+I0KTETE6fJXwbe7wH2D6SR+pQITEXG63GlQPwraDzWdxK9UYCIiTnbsoD1tPogmb/xABSYi4mTrp9mTN4Ls9CGowEREnKuyAta9ChdeBtGJptP4nQpMRMSptiyAI3uhx29NJzFCBSYi4kSWBWtfhLNbw4WXm05jhApMRMSJCtfBns+g+y0QEpwv5cH5txYRcbq1L0JEU3v2YZBSgYmIOM2hQnvdwy7jIaKx6TTGqMBERJxmzYv2x26ZZnMYpgITEXGSY9/Y936lXg1R55tOY5QKTETESXJeBs9x6HmX6STGOarAvF4vnTp1YvDgwaajiIj4X/kR+HQqtBscVKvOn4qjCuzZZ58lKUn/aSISXObnFXHJY8v5y8P3QdkhVsSMMx0pIDimwAoLC1m8eDE333yz6SgiIn4zP6+I++du4mDJIW4O+zcfe5O59UMX8/OKTEczzjEFdtddd/HEE08QEqQ37IlIcHoyexulHi9Xh64kxlXCi96hlHq8PJm9zXQ04xzRBosWLSImJoYuXbr84uOysrJwu9243W6Ki4v9lE5ExHf2lJRSn3J+FzaPnKpEPqlKPvH1YOeIAlu9ejULFy6kVatWjB49muXLlzNu3M/PAWdmZpKbm0tubi7R0dEGkoqI1K4WUQ24NvQDznWV8FfPKMB14uvBzhEF9uijj1JYWEh+fj6zZs3isssuY8aMGaZjiYj43P2XxfLbsHf5yJtKjmVPYmsQHsrE9ODbPuWnwkwHEBGRUxt8fD64jvBGg2txeeyR18T0RIZ1ijUdzTjHFVifPn3o06eP6RgiIr53/FtY8wK0G8yroyeYThNwHHEKUUQkKH38N/vm5b6TTCcJSCowEZFA9M0uWDsVOmbAue1NpwlIKjARkUD0wZ8htB5c/oDpJAFLBSYiEmh2r4Kti+DSuyHyPNNpApYKTEQkkFR5Ift+aBoPF91uOk1Ac9wsRBGROm3DTNi3CUa+CuG6WfmXaAQmIhIojn0DHzwI8T0gZaTpNAFPBSYiEije/xOUH4arngGXy3SagKcCExEJBLs/go1vwiV3arPKalKBiYiY5imDRXfDWa2g10TTaRxDkzhERExb9Vf4ZieMm6uJG2dAIzAREZMK18Oqv0HaGGh9uek0jqICExExpeI4zJsAkc1h4GOm0ziOTiGKiJiybDJ8swPGL4AGUabTOI5GYCIiJny5Aj6dCt1vgYQ+hsM4kwpMRMTfjhbD3Alwdhu4/EHTaRxLpxBFRPypygv/ugnKSmDcv6BeQ9OJHEsFJiLiTyufgN0rYcgLcF6K6TSOplOIIiL+sms5rHwc0sZCp3Gm0zieCkxExB++2QXv3GgvEzXoKa11WAtUYCIivlb6Hbx5DeCC0TN13auW6BqYiIgveT0w53r4Lh+uWwjNEkwnqjMcMQIrKyujW7dupKWlkZyczIMPatqpiDiAZcG/77Xv+RryHLS82HSiOsURI7CIiAiWL19O48aN8Xg89OzZkyuuuIIePXqYjiYicmrLH4H1r0PPe6DjWNNp6hxHjMBcLheNGzcGwOPx4PF4cOkCqIgEstXP2avMd7keLv+z6TR1kiMKDMDr9dKxY0diYmLo378/3bt3Nx1JROTk1r8BHzwAySNg0N8049BHHFNgoaGhbNiwgcLCQnJycti8efPPHpOVlYXb7cbtdlNcXGwgpYgEvdxp8O6d0Lo/DH8ZQkJNJ6qzHFNgP4iKiqJPnz4sWbLkZ3+WmZlJbm4uubm5REdHG0gnIkFtzYuw6C5oMwCumQFh9UwnqtMcUWDFxcWUlJQAUFpaytKlS2nXrp3hVCIi37Ms+OivkH0/JA2xyyu8vulUdZ4jZiHu3buX6667Dq/XS1VVFaNGjWLw4MGmY4mIgLcS3psIua9B6igY9hKEOuKl1fEc8a/coUMH8vLyTMcQEfmxssPwzg2wcylccpe9NUqII05s1QmOKDARkYDz7Zcw+1o48B+46ll7urz4lQpMRORMbV0M824FF5AxB1pfbjpRUFKBiYhUl9djr66x+hlongaj/glntTKdKmipwEREquPAVpg3AfZusE8XDnxcMw0NU4GJiPySKi+sfQmWPQz1GtmjrvZDTacSVGAiIqdW9BksutsedbW9wl5RvnGM6VTyPRWYiMhPHf8WPpwC6161C2vkq5AyUmsaBhgVmIjIDzyl8OlUWPU0VByB7hOg7x+hflPTyeQkVGAiIp4y2DADVv0NDhdBm3To9xCc2950MvkFKjARCV7lR+GzN+y9u47ug7iuMCILWvU0nUyqQQUmIsHn292w7hX4bDqUH4JWl9rFdUEvXedyEBWYiASHygrY/h7kzYAdH9j7dLUfCt1vgfhuptPJr6ACE5G6y7KgcB1s/hdsegeOH4TIFtDrXnDfCE1amE4oNaACE5G6paoKinLhP+/ClvlQ8jWERkDbdOh0rb1uoXZJrhNUYD/15QooyIHe95lOIiLVVX4EvlwJO96H7Uvg6H4ICYMLekOf+6HdIE2Fr4NUYD/11RpY+Tj0uBUiIk2nEZGTqfLaq2Ps+tB+0/n1WqjyQL1IaH0ZtLsK2vSHBlGmk4oPqcB+KrYLYMHejZpKKxIoqryw/wvI/xjyV8FXq6HskP1n56babzjbpkN8dwgNN5tV/EYF9lOxne2PRZ+pwERMqayw30R+/Ql89Ql8veb/CqtZgj178ILe9q/G0WazijEqsJ9qdA5EtYSi9aaTiASPimP2bMGv1tijq8JcqCy1/+zsNtB+GLS8BFpdAk3jzGaVgKECO5nYzlCoAhPxmbJD9nWrr1ZD/mr7elZVJbhC4NwUe7+tlhfB+Rdp9Xc5JRXYycR2gS/mwdED+uERqQ0Vx+3TgLtXwu5VdmFZVRASbv+8XXyHPcKK7wb1m5hOKw6hAjuZ2C72x6LPIHGg2SwiTmRZ9qSLnUth1zJ7tOWtsAsrzg2X/t5evim+G4Q3MJ1WHMoRBVZQUMD48ePZt28fISEhZGZmcuedd/rugM3T7FMZe1RgItXmKbXvxdr2b3uppiN77K/HJEO3TEjoAy0vtnc1FqkFjiiwsLAwnnrqKTp37syRI0fo0qUL/fv3p317H211UK8RRCdpIofIf5mfV8ST2dvYU1JKi6gGTExPZFhSJGzPtle82LnMnnhRLxIu7AttBtirXmi5JvERRxRY8+bNad68OQCRkZEkJSVRVFTkuwIDeyLH1kX2qRCtTi1Bbn5eEffP3USpx0t9yul4eC2N50/B++5GQqs8ENkcOo2DxCvs20/CIkxHliDgiAL7b/n5+eTl5dG9e3ffHii2C+RNh+922/ediASxJ5dsJaXyC0aFreCK0Bwau8rYb0UxxzWQ0Tf+zt5HKyTEdEwJMo4qsKNHjzJy5EieeeYZmjT5+UylrKwssrKyACguLq7Zwf57IocKTILVsYOQN50ZpS9xQcR+jlr1+be3O/OqevJpVRJWeQijz/fxm0mRU3BMgXk8HkaOHElGRgYjRow46WMyMzPJzMwEwO121+yAMUkQ1sAusNTf1Oy5RJymIAdy/mFf2/JWUBLannvKh/NeVTdKqX/iYbFRmkEo5jiiwCzL4qabbiIpKYl77rnHPwcNDYfmHTSRQ4KHtxK2vgtr/m6vihHRxN4zy30jXxU25r25myit8p54eIPwUCamJxoMLMHOEQW2evVqpk+fTmpqKh07dgTgL3/5C1deeaVvDxzbBXKngdejBUKl7qoshw0z4eNnoOQrOOsCuPKvkDYGIhoDMOz75QZ/NguxU6zB4BLsHFFgPXv2xLIs/x84zg1rX4T9m6FFJ/8fX8SXPGWwfhqsfhaO7IVYN6RPgcQrT7rh47BOsSosCSiOKDBj4r+/OF2QowKTuqOywp5h+9Ff7ZuNW/aE4VPtld11y4g4iArslzSNgyZx9jI43SeYTiNSM5Zlr/G5bDJ8l2+/QRuRBRdcajqZyK+iAjud+G72CEzEyb7+FN6fZE/OiEmGsXPsHYs14hIHU4GdTnx3+GIuHCrUPkTiPEf2wfsPwKa3ofF5MOQF6Dj2pNe4RJxGBXY6P9ykWfCpCkycw1sJn06FFY+Bt9xe/b3nPSdmFYrUBSqw0zk3BcIb2qcRU0aaTiNyekWfwbt3wL5N9oK6Ax+Dsy80nUqk1qnATif0+w33vl5rOonIL6s4BsunwKcvQaMYGDUdkq7SdS6ps1Rg1RHfHT5+2n6B0F5GEoi+Xgvzb4Vvv7RXz+j3ENRvajqViE/VyvLR/fr1Y+PGjbXxVIEpvjtYXvvUjEgg8ZRB9iR4bSBUeeH6xTD4aZWXBIVaKbAnnniCu+++mxtuuIG9e/fWxlMGlrjvFwYu0GlECSD7t8A/+sKaF8B9A9z6ib0Xl0iQqJUC69y5M8uXL2fw4MEMHDiQyZMnU1paWhtPHRgaNoPodrofTAKDZcGnL0NWHzhWDBnv2KMuzTCUIFNrO9BZlkViYiK33norzz//PG3atGH69Om19fTm/XBDc1WV6SQSzEq/g1lj4b37IKG3Pepq0990KhEjaqXAevbsSWxsLHfffTdFRUW8/vrrrFixgpycnBP7czlefA8oK4HiraaTSLAqWg8v94Id70P6ozD2bWgcYzqViDG1Mgtx6tSpJCcn4/rJdN3nn3+epKSk2jiEeS0vtj9+tRrObW82iwQXy4J1r8CS+yHyPLhhCcR3NZ1KxLhaGYGlpKT8rLx+sHjx4to4hHlntbIX9s3/2HQSCSaeMlhwO/z7XriwL0z4SOUl8j2f3weWkJDg60P4h8sFrS6BXcvtd8S6OVR87VAhzB4He/Kg9x+g9/9CSK1dthZxPP00nImWl9izvg5uN51E6rqCdZDVFw7uhNFvQt8/qrxEfkI/EWfih3tsdBpRfOnzOfD6IKjXEG5eCu0GmU4kEpBUYGeiWQJENleBiW9YFix/BObeDHFd4eblENPOdCqRgKW1EM+Ey2WPwnZ/pOtgUrsqK2Dh7fD5bOg0DgY9DWH1TKcSCWgagZ2plpfA0f3wzU7TSaSuKC2BGSPs8ur7J3vTSZWXyGlpBHam/vs62DltzGYR5zu8B2aMhIM7YPjLkDbadCIRx3DMCOzGG28kJiaGlJQUs0HObg2Nz7VvaBapiYM74NUBUPI1jHtH5SVyhhwzArv++uu5/fbbGT9+vNkgLheFTTsTsWkZ3dYtokVUQyamJzKsU6zZXBLw5ucV8WT2NvaUlHJZk0Je5FEiwkLh+kXQopPpeCKO45gRWK9evWjWrJnpGMzPK+KVglii+ZaWrn0UlZRy/9xNzM8rMh1NAtj8vCLun7uJopJSeoR8wXPlD1BcHsYHF/1T5SXyKzmmwALFk9nbWOmx13fsGbIZgFKPlyezt5mMJQHuyextlHq89A3JY1r4ExRZ5zCi/CEeWl1uOpqIY9WpAsvKysLtduN2uykuLvbJMfaUlLLbOo9C65wTBfbD10VOZU9JKYNC1pIV/je2W3FcU/EABzhL3zciNVCnCiwzM5Pc3Fxyc3OJjo72yTFaRDUAXKzypnJxyBeE4v2vr4uc3PWRn/Jc+PPkWa3JqJjEdzQB9H0jUhN1qsD8YWJ6Ig3CQ/m4KpUmruOkuXbRIDyUiemJpqNJoMqbwZ89z5FDMtdV/IEjNATQ941IDTmmwMaMGcNFF13Etm3biIuL49VXXzWSY1inWB4dkcqXkV2oslxc2Wgrj45I1SxEObncabDgNlwX9qX4qn/SLOosXEBsVAN934jUkMuyLMt0CF9wu93k5ub69iAv94bwBnDjEt8eR5wpdxosugvaDIBR0yG8vulEIqfll9fOWuKYEVhAurAvFK6DssOmk0ig+eyf/1de18xQeYn4gAqsJi68DKoqtTq9/FjeTFh4B7TuZ4+8wiJMJxKpk1RgNRHfHcIbwpcfmk4igWLTO7DgNkjoA9fM1MhLxIdUYDURFgEtL4ZdKjAB/vMuzM20F3we/abKS8THVGA1ldAXvtkBJQWmk4hJOz6AOTdAbBcY85a9m7KI+JQKrKZaX25/3LnUbA4xZ/cqmD0Ozm0PGXMgItJ0IpGgoAKrqeh2EHU+bM82nURMKPoM3hoNUS1h3DxoEGU6kUjQUIHVlMsFbQfClyvAo3XtgsqBrfZmlA2bwfj50Ohs04lEgooKrDa0TYfKUvtUkgSH776C6cMhNBzGL4AmLUwnEgk6KrDa0LInhDeC7VqRIygcLbbLy3MMrp0HzRJMJxIJSiqw2hBe316VY3s21M2VueQHZYdh5kg4vAfGzoFzk00nEglaKrDa0jYdDhfCgS2mk4ivVJbD7AzYtxlG/RPO7246kUhQU4HVljYD7I86jVg3VVXZNynv/giGvQhtB5hOJBL0VGC1JfI8aNFJ0+nrIsuCJf8LW+ZD//8HaaNNJxIRVGC1q+1AKMiBY9+YTiK1afUzkPMy9LgNLv6d6TQi8j0VWG1qmw5YsEOjsDpj4yxY+hCkjIQBj9j3/YlIQFCB1abmHaFpPGxZaDqJ1IZdy+2V5VtdCsNeghD9uIgEEv1E1iaXC5KGwK5l2uTS6fZtgtnj4ZxEGD1Te3qJBCAVWG1rPxS8FZrM4WQlBTDzantR3ow5UL+p6UQichIqsNoW1xUim9sz1sR5Skvs8qo4BuPegaaxphOJyCmowGpbSAgkXWVvr1J+1HQaOROVFfD2tfDNTrhmhlbZEAlwKjBfaD8UKstg5wemk0h1WRa8e4d9o/KQ5yGht+lEInIajimwJUuWkJiYSOvWrXnsscdMx/ll518EjaJhywLTSaS6VjwGG9+CvpOg4xjTaUSkGhxRYF6vl9tuu4333nuPLVu28NZbb7FlSwCvORgSCu0Gw/b3tUeYE2x4E1Y+Bh3HQa+JptOISDU5osBycnJo3bo1CQkJ1KtXj9GjR7NgQYCPbtoPtbfb2LnUdBL5JV+uhIW/gwt6w1XP6EZlEQdxRIEVFRURHx9/4vdxcXEUFRUZTFQNrS61TyNummM6iZzKga0w+1o4u7W9unxouOlEInIGHFFg1kn22HKd5J1yVlYWbrcbt9tNcXGxP6KdWmiYvfzQtiX21GwJLEcPwJtX2zcoZ8yBBlGmE4nIGXJEgcXFxVFQUHDi94WFhbRo8fMt3DMzM8nNzSU3N5fo6Gh/Rjy5DteAt1z3hAWaiuPw1mh7Z+WxsyHqfNOJRORXcESBde3alR07drB7924qKiqYNWsWQ4YMMR3r9Fp0gnPawudvm04iP6iqgnmZUPQZjHwFYjubTiQiv5IjCiwsLIwXXniB9PR0kpKSGDVqFMnJDrjJ1OWCDqPgq9Xw3Vem0wjA0gfhP+9C+hRIGmw6jYjUgCMKDODKK69k+/bt7Nq1i0mTJpmOU32po+yPmsxhXu5r8Mlz0PVm6PFb02lEpIYcU2COdVZLOP9i+Hy2vdqDmLFzKSy+F9oMgIGPa7q8SB2gAvOHtGvg4HbYu8F0kuC0/wt4+3qIaQ+/ec2eISoijqcC84f2wyA0AvJmmk4SfI7sg5mjIKKxPeMwItJ0IhGpJSowf2gQBcnD7NOIFcdMpwkeFcfgzWug9Du7vLQ1ikidogLzly43QPlh2Pwv00mCQ5UX3rkJ9n0OV0+D5mmmE4lILVOB+cv5PSA6CXKnmU4SHLL/CNvfgyuegLbpptOIiA+owPzF5QL3DbDnM9ijyRw+tfYl+HSqPVW+2/+YTiMiPqIC86cO10BYA1ivUZjPbF0MS+63t7MZ8IjpNCLiQyowf2oQZS/wu+kdKD9iOk3dU7Tevu4V2xlG/MPel01E6iwVmL+5b4CKo/aMRKk93+62Zxw2joExs6BeQ9OJRMTHVGD+FtvFnhH36cv2wrJSc8e/hZlXg9cDGe/YJSYidZ4KzN9cLrj4Dntljh3vm07jfJ4yeGsMlHwNY96C6LamE4mIn6jATGg/FJrGwyfPm07ibFVVMG8CFKyF4VOh5cWmE4mIH2lROBNCw6HHrfa9SkXr7dOKUi3z84p4Mnsbe0qO83ijtxjlXWTPNkwZYTqaiPiZRmCmdB4PEU3hkxdMJ3GM+XlF3D93E0UlpdwcuphR3kW8UXUl8+sPNx1NRAxQgZkSEQnu62HLfG12WU1PZm+j1ONlaMjHTAp/k0XeHjxUMZYn399uOpqIGKACM6n7LeAKgTUahVXHnpJSLg35nCfDX2aNtz33eG7FIoQ9JaWmo4mIASowk5q0gLQxsP51OFRoOk3Au7xJAVPDn2anFccEz91UEA5Ai6gGhpOJiAkqMNN632fv1PzRX00nCWzF2/k7j/INUVxX8QcO0wiABuGhTExPNBxORExQgZkWdT50uQ7ypsN3+abTBKaSApg+nIjwcLb2f4N6Uc1xAbFRDXh0RCrDOmmfL5FgpGn0geDS38Nn02HlEzDsRdNpAsvRYpg+zN5L7fpFDGiexoCepkOJSCDQCCwQNGkBXW+GjW/BwZ2m0wSO0hKYMRwOFcHYt7UppYj8SMAX2Jw5c0hOTiYkJITc3FzTcXyn590QVh8+1BYgAFQcgzdHwYGtMHoGtLzIdCIRCTABX2ApKSnMnTuXXr16mY7iW42j7TUSv5gH+atNpzGr4ri9snzhOhj5CrTuZzqRiASggC+wpKQkEhODZJbZJXfaayS+dx94K02nMcNTBrMzIP9jGP4yJA8znUhEAlTAF1hQqdfQXtdv/+bg3LW5sgLeHg+7lsPQF6DDKNOJRCSABcQsxH79+rFv376ffX3KlCkMHTq02s+TlZVFVlYWAMXFxbWWz6/aD4VWl8LyRyB5BDQ623Qi/6gst8trRzYMfho6jTOdSEQCXEAU2NKlS2vleTIzM8nMzATA7XbXynP6ncsFVzwBU3vC8ofhqmdNJ/K9H04b7lxql5f7RtOJRMQBdAoxEJ3b3t5uZf3rsOtD02l8q+I4vDUadi6DIc+rvESk2gK+wObNm0dcXBxr1qxh0KBBpKenm47kH5f9Cc5uAwtuh7JDptP4RtkhmDESvlwBQ/9ubzEjIlJNAV9gw4cPp7CwkPLycvbv3092drbpSP4R3sDeZfjIHljyR9Npat/RYnh9sD1V/jevQacM04lExGECvsCCWpwbet4DG2bAtvdMp6k9JV/DtIFwcAeMmaXdlEXkV1GBBbref4BzU+1TiSUFptPU3J4N8Eo/ewR27Txoo5uUReTXUYEFurB6cPU08FbA7HHgcfDmjTs+gGlXQkg43JSt5aFEpEZUYE5wThsYkQV7N8C7d9n7hzmJZcG6V+zloc5OgJuXQkyS6VQi4nAqMKdIvAL6/BE+nwVrXzKdpvoqK+DdO2Hx76H15XDDe9CkuelUIlIHBMSNzFJNvSbCvs8h+4/QOAZSf2M60S87st9eXaNgrb3nWd9JEBJqOpWI1BEqMCcJCYER/4CZv4G5mRAWAUlXmU51cjuXwbwJ9rYov5mmmYYiUut0CtFp6jWEsbMhtjPMuQG2v2860Y95PbD0IZgxAhqeA/+zXOUlIj6hAnOiiEjIeMeeCDE7AzbOMp3Itv8LeLU/fPw0dL7OLi9N1hARH1GBOVWDKBi/AOK726fqlj0MVVVmslRWwIrH4OXe9r1qV78BQ56zR4siIj6ia2BO1rCZfTPw4t/DqqegeJu9IG7DZv45vmXZ93a9PwkObofUq2Hg48GzBYyIGKURmNOFhttbrqT/BbYvgb93hy0LfH/cfZvt61xvXg1VXhgzG0a+ovISEb/RCKwucLngotvsjTAX3GZPXU+6Ci77M0S3rd1jfb0WVv3N3niyflNIfxS63myvGCIi4kcqsLqkeQd74sQnz8HKJ+E/i6D9EHtB4BYdf/3zHv8WNv8LNr4FReuhQTP7nq6uN/vvdKWIyE+owOqa0HD7puFO4+HTlyDnH/YpxXMSod0gSLwSzkuF8Pqnfg5vJezdCF99DLtX2ft1VXkgpr29W3SncVCvkd/+SiIiJ+OyLKctrFc9breb3Nxc0zHMKztkT7PfugjyV4PlBVcIRLWEs1vbRRQSan/t6H57FuHhInvxYLA31WybDmmj7eITkTrNSa+dGoHVdfWbQvcJ9khoJeEAAAYISURBVK/j38LulXBgqz1r8JudUFlmT8KwqqBRtH2DdPuh0DwNWl4Ckeea/huIiJyUCiyYNGwGycMh2XQQEZGa0zR6ERFxJBWYiIg4kgpMREQcSQUmIiKOFPAFNnHiRNq1a0eHDh0YPnw4JSUlpiOJiEgACPgC69+/P5s3b+bzzz+nbdu2PProo6YjiYhIAAj4AhswYABhYfZs/x49elBYWGg4kYiIBIKAL7D/9tprr3HFFVeYjiEiIgEgIG5k7tevH/v27fvZ16dMmcLQoUNPfB4WFkZGRsYpnycrK4usrCwAtm7ditvt9k3g7xUXFxMdHe3TY/iKk7ODs/M7OTsov0n+yJ6fn+/T569NjlgL8Y033mDq1KksW7aMhg0DZ5dfJ60Z9lNOzg7Ozu/k7KD8Jjk5uy8ExAjslyxZsoTHH3+clStXBlR5iYiIWQF/Dez222/nyJEj9O/fn44dO3LLLbeYjiQiIgEg4EdgO3fuNB3hlDIzM01H+NWcnB2cnd/J2UH5TXJydl9wxDUwERGRnwr4U4giIiInowKroQceeIAOHTrQsWNHBgwYwJ49e0xHqjanL9M1Z84ckpOTCQkJcczMrCVLlpCYmEjr1q157LHHTMc5IzfeeCMxMTGkpKSYjnLGCgoK6Nu3L0lJSSQnJ/Pss8+ajnRGysrK6NatG2lpaSQnJ/Pggw+ajhQYLKmRQ4cOnfj82WeftSZMmGAwzZnJzs62PB6PZVmWdd9991n33Xef4URnZsuWLdbWrVut3r17W+vWrTMd57QqKyuthIQEa9euXVZ5ebnVoUMH64svvjAdq9pWrlxprV+/3kpOTjYd5Yzt2bPHWr9+vWVZlnX48GGrTZs2jvq3r6qqso4cOWJZlmVVVFRY3bp1s9asWWM4lXkagdVQkyZNTnx+7NgxXC6XwTRnxunLdCUlJZGYmGg6RrXl5OTQunVrEhISqFevHqNHj2bBggWmY1Vbr169aNasmekYv0rz5s3p3LkzAJGRkSQlJVFUVGQ4VfW5XC4aN24MgMfjwePxOOq1xldUYLVg0qRJxMfHM3PmTB5++GHTcX4VLdPle0VFRcTHx5/4fVxcnKNeROuK/Px88vLy6N69u+koZ8Tr9dKxY0diYmLo37+/4/L7ggqsGvr160dKSsrPfv3w7nnKlCkUFBSQkZHBCy+8YDjtj50uO1RvmS5TqpPfKayTTPjVu2j/Onr0KCNHjuSZZ5750dkTJwgNDWXDhg0UFhaSk5PD5s2bTUcyLuDvAwsES5curdbjxo4dy6BBg5g8ebKPE1Xf6bK/8cYbLFq0iGXLlgXki2l1/+2dIC4ujoKCghO/LywspEWLFgYTBRePx8PIkSPJyMhgxIgRpuP8alFRUfTp04clS5Y4ckJNbdIIrIZ27Nhx4vOFCxfSrl07g2nOzA/LdC1cuFDLdPlB165d2bFjB7t376aiooJZs2YxZMgQ07GCgmVZ3HTTTSQlJXHPPfeYjnPGiouLT8wSLi0tZenSpY56rfEZ07NInG7EiBFWcnKylZqaag0ePNgqLCw0HanaLrzwQisuLs5KS0uz0tLSHDWD0rIsa+7cuVZsbKxVr149KyYmxhowYIDpSKe1ePFiq02bNlZCQoL1yCOPmI5zRkaPHm2dd955VlhYmBUbG2u98sorpiNV26pVqyzASk1NPfH9vnjxYtOxqm3jxo1Wx44drdTUVCs5OdmaPHmy6UgBQStxiIiII+kUooiIOJIKTEREHEkFJiIijqQCExERR1KBiYiII6nARETEkVRgIiLiSCowET/p27cvH3zwAQB/+tOfuOOOOwwnEnE2rYUo4ieTJ0/mz3/+MwcOHCAvL4+FCxeajiTiaFqJQ8SPevfuzdGjR1mxYgWRkZGm44g4mk4hivjJpk2b2Lt3LxERESovkVqgAhPxg71795KRkcGCBQto1KgR2dnZpiOJOJ4KTMTHjh8/zogRI3jqqadISkrigQce4KGHHjIdS8TxdA1MREQcSSMwERFxJBWYiIg4kgpMREQcSQUmIiKOpAITERFHUoGJiIgj/X8YFko6WDgmCAAAAABJRU5ErkJggg==
iVBORw0KGgoAAAANSUhEUgAAAbAAAAEgCAYAAADVKCZpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXhV1aH+8W9GxjAnkEkwhCGEhABhUiugzCpDEIpi61is6K1DL7RUi9IrTuj9SR1vtCgFC62IgEyRQUVxgECYRCKIkSSABDEQSCDT/v2xGZRBEnLOWWef836eh+dATLPfh4bzZq299loBlmVZiIiIOEyg6QAiIiKXQgUmIiKOpAITERFHUoGJiIgjqcBERMSRVGAiIuJIKjAREXEkFZiIiDiSCkxERBxJBSYiIo6kAhMREUdSgYmIiCOpwERExJFUYCIi4kgqMBERcSQVmIiIOJIKTEREHEkFJiIijqQCExERR1KBiYiII6nARETEkVRgIiLiSCowERFxJBWYiIg4kgpMREQcSQUmIiKOpAITERFHUoGJiIgjqcBERMSRVGAiIuJIKjAREXEkFZiIiDiSCkxERBxJBSYiIo4UbDpAVRUWFnLXXXexbds2AgICmDFjBr169brg5zdr1oxWrVp5LqCIiA/Iycnh4MGDpmNUiWMK7P7772fQoEHMmzeP0tJSiouLf/HzW7VqRWZmpofSiYj4htTUVNMRqswRBXbkyBHWrFnDm2++CUBoaCihoaFmQ4mIiFGOuAe2e/duwsPDuf322+ncuTN33XUXx44dMx1LREQMckSBlZeXs3HjRu655x6ysrKoV68eTz311Dmfl56eTmpqKqmpqRQUFBhIKiIinuKIAouJiSEmJoYePXoAcOONN7Jx48ZzPm/cuHFkZmaSmZlJeHi4p2OKiIgHOaLAWrRoQWxsLNnZ2QCsWrWKDh06GE4lIiImOWIRB8ALL7zA2LFjKS0tJS4ujjfeeMN0JBERMcgxBZaSkqJl8SLinY4fgX2boKIUQutDaD1o0hpC65pO5tMcU2AiIl6lIBvWvw45n8CBrwDr5/89tD60vw6SRkFcXwjS262r6W9URKQ6vvsM1j4PXy+H4NrQ8kroMAxiUiE0DEqPwokj8M1q2L4QtvwbIjpAWjq0SDKd3qeowEREqqL4ECz/s11IdZtCn0nQ7S6o1+z8n584AoY8CzsWw/JJ8No1cM0j0Os+CAzybHYfpQITEbmY7YtgyR+h5BD0/hNc+UDV7m8F14KOI+HyPrD4flgxGXLWwq9nQ7B2E6opRyyjFxExoqIclv0J/vMbaBAJ4z6Evn+p/uKMek1h9CwYPA12ZsCC30NlhTsS+xWNwEREzqfkR3j7dtj9AfS8F/pPgaCQS/96AQHQYxyUFcPKR6FOY3uKMSDAdZn9jApMRORsh3bD7BuhcA8MfRG6/MZ1X/uqB6D4B/j071AvAvr8yXVf28+owEREfurgTph5A5Qfh1vfg5YXPnfwkvX/Gxz9Hj56ClpfA7HdXH8NP6B7YCIip3y/Hd4YApXlcNsS95QX2NOGQ56FsChYeC+UHXfPdXycCuxspcXw43emU4iIp+3fBm9eZy9xv20pNE907/VqN4Ch0+FgNqx5xr3X8lEqsLOtfhxe7gWWdfHPFRHfcGg3zBphP5h82xIIb+uZ68b3g5Rb4JPnYW+WZ67pQ1RgZwtrAWXH4ESR6SQi4glH9sE/h9vThr9dAE1be/b6A6dCvXBY9F9QWenZazucCuxsYZH2a9F+szlExP2KD8HsNHtV4C3zILyd5zPUaQQD/gf2b4Ud73n++g6mAjtbWAv7tWif2Rwi4l7lpfDv38APu2DMWxDd1VyWjiOhaRv48GmNwqpBBXY2jcBEfJ9lwXt/gO8+gWEvQ1wfs3kCg+wtqg58qVFYNajAzhbW3H7VCEzEd338LGyeA33+AsmjTKexdUzTKKyaVGBnqxVmH4mgEZiIb9o2315tnPxr6D3RdJozNAqrNhXY+YS10AhMxBft3woLxkNsDxj6gvftQ/jTUZge5bkoFdj5hLXQCEzE1xz7AebebG+iO3qWfdSJtwkMgivvt0dhez43ncbrqcDOJyxSIzARX1JRDvNug6LvYczsM/e6vVHHNPs2xsaZppN4PRXY+ZwagWkIL+IbVkyGb9fADc+bXS5fFaH17IUlX75rH+kiF6QCO5+wSKg4oW8eEV+wbT58/hJ0HwcpN5tOUzVdbrV3w9/ytukkXk0Fdj6nH2bWfTARRyvItrdoiukOA6aaTlN1USkQ2cmeRtRM0AWpwM7n9MPMug8m4lgnjto7bQTXhlFvQnCo6UTV0+VW+H4b5G80ncRrqcDORyMwEWc7tdPGDzth1BvQMNp0oupLGgUhdWHjm6aTeC0V2PloP0QRZ1v/Omx7B675K1x+tek0l6Z2A0hMg63v2OcUyjlUYOcTUgdqN9IITMSJ8jdCxl+gzUC48gHTaWomebR9vNM3q0wn8UoqsAvRs2AizlPyI7x9K9RvDiNehUCHv8W1vNJ+8PorbS11Pg7/f9eNtBuHiLNYFiy41z6gctSbULeJ6UQ1FxQM7a6D7OX28S/yMyqwCwmLVIGJOMnnr0D2Eug/BWJSTadxnYQb4MRhyFljOonXcVSBVVRU0LlzZ66//nr3XyysBRzdr2MNRJwgb4O920a766DneNNpXCuuD4TW1zTieTiqwKZPn05CQoJnLhYWCZXl9lHjIuK9Sn6Et2+z/80Of8n7dpivqZDa5IVfzaEN79L6z+9x5VOrWZCVbzqVV3BMgeXl5bFkyRLuuusuz1xQS+lFvN+p+15FJ+971WlsOpHLLcjK59k9bWnCYboGZJNfWMKk+VtVYjiowB544AGeeeYZAj21quj0bhy6DybitT5/+eR9r79BjJdv0nuJpmVk835ZMiesEAYFrQegpKyCaRnZhpOZ54gCW7x4MREREXTt+svfoOnp6aSmppKamkpBQUHNLqoRmIh3y11v3/dqfz30vMd0GrfZW1hCMbVZU5nMwKD1gHX64/7OEQW2du1aFi1aRKtWrRgzZgyrV6/mlltuOefzxo0bR2ZmJpmZmYSHh9fsovVPnhekEZiI9yk+BPNuhwZRMOxF37vv9RNRjeoA8H5lV6IDfiAhYM/PPu7PHFFgTz75JHl5eeTk5DB37lyuueYaZs+e7d6LBodC3WYagYl4G8uCBePtHy599L7XT00Y2I46IUF8XJEEwBWB26gTEsSEge0MJzMv2HQAr6ZnwUS8z6d/h6+XwaCnvf9wShcY3tneiHhaRja7iqPoV+srkm54+PTH/ZnjCqxPnz706dPHMxcLa6ERmIg3+e4zWDkFOgyDHnebTuMxwztH24W19Hris2ZDUg1vkfgIR0whGqPtpES8x9EC+75X45Yw9AWfvu91QXF9oKwY8tabTuIVVGC/JCwSjh2AinLTSUT8W2UFzP+dvXhj9D+hdkPTicxodRUEBMLuD00n8QoqsF/SIBKsSjj6vekkIv7tw6dg9wcwZBq0SDKdxpzaDe37fiowQAX2yxrE2K+H88zmEPFnX2fAmmeg8y3Q9VbTacyL6wP5G+D4YdNJjFOB/ZKGJwvsiApMxIgfc2D+OHvUNeRZ02m8Q1wfsCogZ63pJMapwH5Jw5PLVA9rzzERjysrgf/8FrBg9Cz7pHSBmG4QUlfTiDhwGb1H1W4IoWGaQhTxNMuCxQ/Cvs1w01xocrnpRN4juBa0vEIFhkZgF9cwBo5oBCbiUeteg81zoM8kaDfYdBrvE9cHDmbDkb2mkxilAruYhtEagYl40nefQsYkaDsYrp5oOo13anml/brnc7M5DFOBXUwDFZiIxxzOg//cCo1bQdr/gaeOT3KaFkkQXAdy15lOYpS+Oy6mYQwUH4Sy46aTiPi20mKYe7O9eOPXb/nvw8pVERQC0V0gTwUmv+T0UnrdBxNxG8uCheNh3xa48R8Q0d50Iu8X083++yrz33PBVGAX0+DUUnpNI4q4zZpp8OW70O8xaDvQdBpniO0BlWWwd5PpJMaowC5GIzAR9/ryXfhgKiSPgSvvN53GOWK62a9+PI2oAruYBlH2qx5mFnG93HUw/26I7Qk3TPfPHeYvVf1waBLn1ws5VGAXE1LHPpn5cK7pJCK+5dC3MGeM/UPimH9BSG3TiZwnprtdYJZlOokRKrCqaBitKUQRVyo+BG+Nsk97GDsP6jU1nciZYrvZRz4Vfmc6iREqsKpoGKspRBFXKS22R16F39nL5ZvFm07kXLE97Fc/nUZUgVWFHmYWcY2Kcph3h/2Gm/YatLrSdCJni+gAofVVYPILGkZDaZHO3xGpCcuCxQ/A18vsgykTh5tO5HyBQfYDzblfmE5ihAqsKk4tpdc0osilsSxY+ShkzbL3N+z+O9OJfEdsD/j+Syg9ZjqJx6nAqkInM4vUzEfPwNrp0O0u6PsX02l8S0x3+4DLvVmmk3icCqwqTh1sqZOZRarv0xfgwycgZSwMnqZnvVwtKsV+3bfZbA4DVGBVUb8FBARpClGkur5Ih/cfgcQRMPQF7S7vDvUj7PeofVtMJ/E4fTdVRVAwhEVqClGkOj57CZZNgHbXwYh0e8GBuEdkMuxXgcmF6GFmkapbOx0y/gIJQ2H0TAgONZ3It7VIhoJsv9uZXgVWVXoWTOTiLAs+fBpWTIbENLhxhn12lbhXZLK9kOPAdtNJPEoFVlUNY+wRWGWl6SQi3qmyEpZNtBdsdLrJflBZ5eUZLZLtVz+7D6YCq6qGMVBRCscKTCcR8T7lpTD/d7AuHXrdB8Netu8di2c0bgW1GvrdfTB9h1VVo8vs18I9ENbcbBYRb1JSCG/fCrs/hGsfhase1FJ5TwsIgBZJGoHJBTRqab/66a7PIud16Fv4xwDI+QSGvQS/ekjlZUqLJHtHjsoK00k8xhEFlpubS9++fUlISCAxMZHp06d7PkTjkwX2Y47nry3ijfZ8Dq/3g6Pfw28WQOdbTCfyb5HJUF4CB3eaTuIxjphCDA4O5rnnnqNLly4UFRXRtWtX+vfvT4cOHTwXIrQe1AtXgYnfWpCVz7SMbPYWFnNf/Q95sOINAhtfBje/rSNRvMGphRz7t0BEe7NZPMQRI7DIyEi6dOkCQFhYGAkJCeTnG3gmq1FLTSGKX1qQlc+k+Vv5obCQZ0Ne4Y/lr7GmMpklPXSel9cIbwdBtfxqSylHFNhP5eTkkJWVRY8ePTx/8cat4EcVmPifaRnZxJR/x7uhkxkRuJb/LbuR2088xBMf7DcdTU4JCoGIBL9aieioAjt69CgjR47k+eefp0GDBuf89/T0dFJTU0lNTaWgwA3L3Ru3tB9mrih3/dcW8VaWRd+iRbwX+jDNAg5ze9lE/l6RhkUgewv9a+cHrxeZbK9EtCzTSTzCMQVWVlbGyJEjGTt2LGlpaef9nHHjxpGZmUlmZibh4eGuD9Gopf20u3alF39xZB/MGcPjIW/weWUHBp94mo8qO53+z1GN6hgMJ+dokQzHC+FwrukkHuGIRRyWZXHnnXeSkJDAQw89ZC5I41b264/fnfm9iC+yLNj0Fiz/C1ScYGvHPzN+cyeKOfOTfZ2QICYMbGcwpJwj8uQPF/u2nHl21Yc5YgS2du1aZs2axerVq0lJSSElJYWlS5d6PkhjPQsmfuDgLpidBgvvheaJcM+nJN04iSfSOhHdqA4BQHSjOjyZlsTwztGm08pPNU+0HyaPSDCdxCMcMQK76qqrsLxhTrdBjH0umJbSiy8qPQZrpsGnL0JIHRjyLKTeefoMr+Gdo1VY3i60nv0wuZ9wRIF5jaBge09ErUQUX1JRDpvnwAdPQNFeeyPeflO0ZZp4PRVYdTXWs2DiIywLspfBqilQsAOiU2HUG3BZT9PJRKpEBVZdjVvZ/+hFnKqyEna8Z08X7t8KTVrD6H/ah09qH0NxEBVYdTVqaR+pUnrMnm8WcYqy47D1bfjsJSj4CprE2RvwJv9a53aJI6nAquvU8vnCPX6z0kcc7she2DATMv9h//AVkWgfNpmYpjO7xNH03Vtdp58Fy1GBifeqKIddK2HDm7AzA6xKaDMQeo2Hy3trqlB8ggqsuk6dC6aViOJtLAv2bYLN/4Zt8+zRVr0IuPIB6PJbaHK56YQiLqUCq656zSCkrlYiinewLHv38e0LYPtCOLQbgkKh7SD73lbbgbq/JT5LBVZdAQEnd6XPMZ1E/FV5Kez5FHYstVfEHt5jP2Af19sebXUYCnUam04p4nYqsEvRqKWmEMWzivbb97S+zoBvPoDSIgiuDXF9ofcEaHcd1GtqOqWIR6nALkXjlpDzsT19o5vh4g7lpZD7hV1au1bB91vtj4dFQcc0aDMAWvfVoxzi11Rgl2DLscYklx6ly6S51GnUnAkD22mPOLmoBVn5TMvIZm9hCVGN6pz7ffNjzpnC+nYNlB6FwGC4rBf0ewxaXwstkvRDk8hJKrBqWpCVT8bmCl4JgpYB35NV2IBJ8+2fjlViciELsvKZNH8rJWUVAOQXljB5fhbNCj7jqsoNsHMF/LDT/uRGLSF5NMT3g1a/gtrnHt4qIiqwapuWkU2t8ggIglYB+8my2lBSVsG0jGwVmFzQtIxsSsoqaMBR+gZuYkBQJlcHbiXs0xIIqgWtroJud0J8f2jaWqMskSpQgVXT3sISgomg3Ark8sB9UHnm4yLnVXyIXxUtZUjI5/QK3E5IQAXfW414r6IXqys78/pjf9S9LJFLoAKrpqhGdcgvLCHXCicuYP/PPi5yWtlxyF4Km+fCN6t4KqScnMrmvF4xhIyKbmy24rAIJLpRHZWXyCVSgVXThIHtmDR/K99akVwesA/Q0eryE/u2wIY3YOs7cOIwNIiGnuP5IORXjF9dQUl55elP1feNSM2owKrp1H2ugsWx9Cz/ipiGtfjvQQm6/+XPykvhy/mw/nXIW28/n9VhmH0w5OVXQ2AQfYEnG11kFaKIVItLCqxfv34899xzdOrUyRVfzusN7xwN5X1gyXt8Mj4BGupNyC+VFNqb5X7xKhTtg6ZtYOCTkHLTeXfCGN45WoUl4kIuKbBnnnmGBx98kJYtW/LEE08QGRnpii/r3ZrG268/7FKB+ZuSH+0ztT5/1d4RI64PDHvRfk5LqwdFPMYlBdalSxdWr17NO++8w6BBg0hLS2PixInUqePDCxuatrFff9hl70Envu9EEXz6Inz+Mpw4Yk8T/uqPEOkfMw8i3ibQVV/IsizatWvHPffcwwsvvECbNm2YNWuWq7689wmLtHel/+Eb00nE3SrKIfMN+Htn+Ogp+weW36+F0f9UeYkY5JIR2FVXXcXu3btJTEykZ8+evPnmm7Rv357p06fz8ccfk56e7orLeJfAQGjS+szuCeKbcj6BpRPgwHZ7S6eb/w3RXU2nEhFcVGCvvvoqiYmJBJw1///CCy+QkODDpxY3bQ37t5hOIe5w7AdYMRk2zYaGl8GomfaUoe5xiXgNlxRYx44dL/jflixZ4opLeKem8fDVe/Yy6uBQ02nEVbbOs0ddJ47Y52v1/hOE1jWdSkTO4vbnwOLi4tx9CXOaxoNVYZ/O3KyN6TRSU8WHYMkf7We6orvC0BegeaLpVCJyAXqQuSZ+upReBeZs33wA7/4eig/CNY/AlQ9CkP55iHgzl61C9EtNW9uvB7WQw7EqK+CDJ2HWCKjdEH63Gq6eoPIScQD9K62Juk2gblN7BCbOc/QAvHMXfPuRve3Tdc9pY10RB1GB1VTTeD0L5kT7NsOcm+0pw6EvQudbtMJQxGEcM4W4fPly2rVrR3x8PE899ZTpOGc0jdcIzGm2L4QZgwAL7siALr9ReYk4kCMKrKKignvvvZdly5axfft25syZw/bt203HsjVtDUf329sMiXezLPj4OfjPb+3Vhb/7AKJSTKcSkUvkiAJbt24d8fHxxMXFERoaypgxY1i4cKHpWLafrkQU71VZYT/btepvkDQKbl0MYc1NpxKRGnBEgeXn5xMbG3v6zzExMeTn5xtM9BPNTh5IWPC12RxyYWXHYd7tsP41uOK/YEQ6hNQ2nUpEasgRizgsyzrnY2dvWwWQnp5+et/FgoICt+cC7CnEwBB7rzzxPqXHYM4Y+HYNDJgKV9xnOpGIuIgjRmAxMTHk5uae/nNeXh5RUVHnfN64cePIzMwkMzOT8PBwz4QLCoFmbeHAV565nlTdiSKYfaO9Ie+I/1N5ifgYRxRYt27d2LlzJ99++y2lpaXMnTuXoUOHmo51RkSCRmDepqTQfjg59wsY+Q/oNMZ0IhFxMUcUWHBwMC+++CIDBw4kISGB0aNHk5joRXvURSTA4Vw4fsR0EgH7/4fZabB3k31mV8c004lExA0ccQ8MYMiQIQwZMsR0jPOL6GC/FuyA2O5ms/i70mPwr1/bDyqPngXtvfR7RkRqzBEjMK8XcfLMM00jmlV+AuaOhdzPIS1d5SXi4xwzAvNqjVpCSF0t5DCpohzm3QG7P4BhL0PHkaYTiYibaQTmCoGBEN5eIzBTLAuW/jfsWAyDn4HOY00nEhEPUIG5SvMOGoGZsuZZ2PAGXPUQ9LjbdBoR8RAVmKtEdIBjBXDUQw9Qiy1rNnzwuH0cyrWTTacREQ9SgbnKqYUcBRqFeczuj+C9+yGuL9zwd+0oL+JntIjDVU4tpT/wFVx+tdksPmxBVj7TMrKpdXg3C2o9CmEtaTB6JgSHmo4mIh6mEZir1G8OdRprIYcbLcjKZ9L8rRQVFvBayLOUWQGkFT7Agq+Omo4mIgaowFwlIMAehWkhh9tMy8imtKyUl0OmExNQwN2lD7KrrCnTMrJNRxMRA1RgrhSRYBfYeXbPl5rbW1jCn4PncFXQl/yl7C4yrfanPy4i/kcF5koRCXDiCBzOM53EJ90atp7fBS/ljfKBvFN55j5jVKM6BlOJiCkqMFc6vZBD98Fcbv9WHql8hUyrPVPLzzyoXCckiAkD2xkMJiKmqMBcqfnJHfL3bTGbw9eU/AhzxxJctwkFg9Jp3iiMACC6UR2eTEtieOdo0wlFxAAto3el2g2haTzs22Q6ie+wLFgwHo7shduXMTi2E4N7mQ4lIt5AIzBXi0yBvVmmU/iOz16E7KUw4H8gtpvpNCLiRVRgrhbVGY7kw9EDppM4354vYOVjkHAD9Pi96TQi4mVUYK4WlWK/7tU0Yo0UH4J5t0PDGBj2kraJEpFzqMBcrUUyEKD7YDVhWbDwPnsUO2qmfW9RROQsWsTharUb2As5dB/s0mX+A7KXwMAnzoxoRUTOohGYO0R11hTipfp+O2Q8DPH9oMc9ptOIiBdTgblDVAoU7YWi700ncZayEph3B9RqAMNfsU+6FhG5AL1DuENUZ/tV98GqZ+Vj9nlqI16B+hGm04iIl1OBucOphRy6D1Z1u1bBF6/ay+Xj+5lOIyIOoAJzh1r1oVlb3QerquJD9m4b4e2h32Om04iIQ6jA3CVKO3JUiWXB4geg+AdIew1CtLO8iFSNCsxdojrD0f1wZJ/pJN5ty39g+0K45mGITDadRkQcRAXmLpEnn1/SQo4LO5wPSydAbE+44g+m04iIw6jA3CUyGQKCIG+96STeybJg0X9BZRkMfxkCg0wnEhGH0U4c7hJaDyI7wXefmU7inTa8Cd+sgiHPQtPWptOIiANpBOZOLa+A/A1QfsJ0Eu/yY46920ZcH0i903AYEXEqFZg7XdYLKk5A/kbTSbxHZaW9UW9AIAx9UbttiMgl8/p3jwkTJtC+fXuSk5MZMWIEhYWFpiNV3WU97dc9mkY8bcMMyPkYBk6FRrGm04iIg3l9gfXv359t27axZcsW2rZty5NPPmk6UtXVa2Y/0KwCs/2YA+9PhtbXQJffmk4jIg7n9QU2YMAAgoPttSY9e/YkLy/PcKJquqyXfbJwZYXpJGb9dOrwhr/rgEoRqTGvL7CfmjFjBoMHDzYdo3paXgEnDsOB7aaTmLXhjZNTh49r6lBEXMIrltH369eP/fv3n/PxqVOnMmzYsNO/Dw4OZuzYsRf8Ounp6aSnpwNQUFDgnrDVdVkv+/W7z6BFktksphTmworJ9qrDLreaTiMiPiLAsizLdIiLmTlzJq+++iqrVq2ibt26VfrfpKamkpmZ6eZkVWBZ8P8SIbYHjHrDdBrPsyyYPRL2fA7jP4PGLU0nEpFf4DXvnVXgFSOwX7J8+XKefvppPvrooyqXl1cJCLBXI373qf1m7m/3fjb968wDyyovEXEhr78Hdt9991FUVET//v1JSUnh97//velI1XdZLyjaZ6/C8ydH9kHGJLjsCj2wLCIu5/UjsF27dpmOUHMtr7Bf93wGTS43m8VTLAuWPGTvQjJMDyyLiOvpXcUTwhOgblPY/aHpJJ6z7R3IXgp9H9ZehyLiFiowTwgMhNbXwq5V9vNQvu7YQVg2EaK6QM/xptOIiI9SgXlKm/5QfBD2+cEpzcv+BMePwLCXIMjrZ6lFxKFUYJ7S+logAHauNJ3EvbKXwbZ5cPV/Q/MOptOIiA9TgXlKvaYQ3QV2rTCdxH1KCuG9ByAiEa56yHQaEfFxKjBPiu8PeZlQfMh0Evd4/2E4VgDDX4LgUNNpRMTHqcA8qU1/wIJvVptO4nq7VkHWbLjyDxDV2XQaEfEDKjBPiuoMdZrATh+bRjxRBO/dbx8d0/vPptOIiJ/QEjFPCgyC+Gth10p7Ob2vPNy74lE4nAd3vg8htU2nERE/4SPvoA4Sf2o5/SbTSVxj90eQ+Q/7ea/Y7qbTiIgfUYF5Wvyp5fTvm05ScyeOwqL7oElruOYR02lExM+owDytXjN7d/ov37X3C3SyFZPts76GvwyhDjwpQEQcTQVmQtKNULADvv/SdJJLd2rqsNe9diGLiHiYCsyEDsMhIMjescKJjh+BhSenDvs+bDqNiPgpFZgJ9ZpB62tg6zvOnEZcPgmO5MGI/9PUoYgYowIzJelGOLwHcteZTlI9O5bCptn2VlGx3UynERE/pgIzpf11EFwbtr5tOknVHTsI7/0BWiRB7z+ZTiMifk4FZkqtMGg7yF6NWFFuOs3FWZa928bxwzAiXXsdiohxKjCTkm60H6DB/NkAAAlKSURBVGr+9kPTSS5u40zYsRiunaxjUkTEK6jATIrvD7Uawua5ppP8soKvYdmfIa4v9LzXdBoREUAFZlZIbUi5yZ5GPLLPdJrzKz8B79xhrzYc8arv7N8oIo6ndyPTetwNlRWw/nXTSc5v5RTYvxWGvQxhLUynERE5TQVmWpM4aDcEMmdAWYnpND/31WL4/CXoPg7aDTKdRkTkZ1Rg3qDXeCg5BFv+bTrJGYd2w4Lx9hlmAx43nUZE5BwqMG/Q8kr72arPX/GOnTnKSuA/v4WAABg1E4JrmU4kInIOFZg3CAiwV/cV7IBvVpvNYlmwbKJ93ystHRq3NJtHROQCVGDeomMa1G8OH/+v2VHYutdg4z/hV3+EtgPN5RARuQgVmLcIrgVXT4DvPrEfGDZh1ypY/id7UYl2mRcRL6cC8yZdb4fwBHj/Efv5K08qyIa3b4OIDvbUYWCQZ68vIlJNKjBvEhQMg56AH3PsBR2eUvQ9/Gu0PQq8aY69T6OIiJdzTIE9++yzBAQEcPDgQdNR3Kv1NdB2MKx5Fo4ecP/1ig/BrBH2tcbMgUaXuf+aIiIu4IgCy83NZcWKFVx2mZ+8uQ54HMqPw4rJ7r3OiSJ4axT8sBPG/Evne4mIoziiwB588EGeeeYZAgICTEfxjGbxcOX9sHkObJzlnmuUHoM5N8HeLBj1JrTu657riIi4idcX2KJFi4iOjqZTp06mo3hWn0kQ1weW/BHyN7j2ax8tgDevh+/W2hv0tr/OtV9fRMQDgk0HAOjXrx/79+8/5+NTp07liSee4P3336/S10lPTyc9PR2AgoICl2b0uKBgGDkD0vvAv38L4z6E+uE1/7qHdsPskfbu92P+Be0G1/xriogYEGBZ3rB30flt3bqVa6+9lrp16wKQl5dHVFQU69ato0WLX94ZPTU1lczMTE/EdK+9m2DGQIjsBDfNhbpNLv1r7VoF794NleVw838gtrvrcoqIT3DSe6dXTyEmJSVx4MABcnJyyMnJISYmho0bN160vHxKVIr9XNbeLHjtGvt5reoqLYalE2B2GtRtCne8r/ISEcfz6gKTkzoMg9uW2AsvXu8HO5ZWbbupykr46j1I7w3r0qHneHsqMrytuxOLiLidV9wDq6qcnBzTEcyJ7Q6/Ww1zb7J/RXW2NwBOHA5BIT//3KMH4OsMWDvdXiLf+HL4zQKtNBQRn+KoAvN7jWLhzhX28vrPXob5d8GSh6BhjH1aclCovYv8kXz781skwY0zIGGYvShERMSH6F3NaULqQOod0OU22LUSdmZA0X4o2mff62p5hT06i+lm//KXZ+dExO+owJwqMBDaDrB/iYj4IS3iEBERR1KBiYiII6nARETEkVRgIiLiSCowERFxJBWYiIg4kgpMREQcSQUmIiKO5NXHqdREs2bNaNWqlVuvUVBQQHi4C87oMsDJ2cHZ+Z2cHZTfJE9kz8nJ4eDBg269hqv4bIF5gpPOzTmbk7ODs/M7OTsov0lOzu4OmkIUERFHUoGJiIgjBT322GOPmQ7hZF27djUd4ZI5OTs4O7+Ts4Pym+Tk7K6me2AiIuJImkIUERFHUoHV0F//+leSk5NJSUlhwIAB7N2713SkKpswYQLt27cnOTmZESNGUFhYaDpStbz99tskJiYSGBjomJVZy5cvp127dsTHx/PUU0+ZjlMtd9xxBxEREXTs2NF0lGrLzc2lb9++JCQkkJiYyPTp001Hqpbjx4/TvXt3OnXqRGJiIo8++qjpSN7Bkho5fPjw6d9Pnz7duvvuuw2mqZ6MjAyrrKzMsizLmjhxojVx4kTDiapn+/bt1o4dO6zevXtb69evNx3nosrLy624uDjrm2++sU6cOGElJydbX375pelYVfbRRx9ZGzZssBITE01Hqba9e/daGzZssCzLso4cOWK1adPGUX/3lZWVVlFRkWVZllVaWmp1797d+uyzzwynMk8jsBpq0KDB6d8fO3aMgIAAg2mqZ8CAAQQH24dy9+zZk7y8PMOJqichIYF27dqZjlFl69atIz4+nri4OEJDQxkzZgwLFy40HavKrr76apo0aWI6xiWJjIykS5cuAISFhZGQkEB+fr7hVFUXEBBA/fr1ASgrK6OsrMxR7zXuogJzgYcffpjY2Fjeeust/va3v5mOc0lmzJjB4MGDTcfwafn5+cTGxp7+c0xMjKPeRH1FTk4OWVlZ9OjRw3SUaqmoqCAlJYWIiAj69+/vuPzuoAKrgn79+tGxY8dzfp366Xnq1Knk5uYyduxYXnzxRcNpf+5i2cHOHxwczNixYw0mPb+q5HcK6zwLfvVTtGcdPXqUkSNH8vzzz/9s9sQJgoKC2LRpE3l5eaxbt45t27aZjmRcsOkATrBy5coqfd7NN9/Mddddx5QpU9ycqOouln3mzJksXryYVatWeeWbaVX/7p0gJiaG3Nzc03/Oy8sjKirKYCL/UlZWxsiRIxk7dixpaWmm41yyRo0a0adPH5YvX+7IBTWupBFYDe3cufP07xctWkT79u0Npqme5cuX8/TTT7No0SLq1q1rOo7P69atGzt37uTbb7+ltLSUuXPnMnToUNOx/IJlWdx5550kJCTw0EMPmY5TbQUFBadXCZeUlLBy5UpHvde4jelVJE6XlpZmJSYmWklJSdb1119v5eXlmY5UZa1bt7ZiYmKsTp06WZ06dXLUCkrLsqz58+db0dHRVmhoqBUREWENGDDAdKSLWrJkidWmTRsrLi7Oevzxx03HqZYxY8ZYLVq0sIKDg63o6Gjr9ddfNx2pyj7++GMLsJKSkk5/vy9ZssR0rCrbvHmzlZKSYiUlJVmJiYnWlClTTEfyCtqJQ0REHElTiCIi4kgqMBERcSQVmIiIOJIKTEREHEkFJiIijqQCExERR1KBiYiII6nARDykb9++rFixAoBHHnmEP/zhD4YTiTib9kIU8ZApU6YwefJkDhw4QFZWFosWLTIdScTRtBOHiAf17t2bo0eP8uGHHxIWFmY6joijaQpRxEO2bt3Kvn37qFWrlspLxAVUYCIesG/fPsaOHcvChQupV68eGRkZpiOJOJ4KTMTNiouLSUtL47nnniMhIYG//vWvPPbYY6ZjiTie7oGJiIgjaQQmIiKOpAITERFHUoGJiIgjqcBERMSRVGAiIuJIKjAREXGk/w8VEk39IcdmVwAAAABJRU5ErkJggg==
iVBORw0KGgoAAAANSUhEUgAAAbAAAAEgCAYAAADVKCZpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAeiUlEQVR4nO3de1SVdaL/8Tc3Ca9oSsollTBEUFDxUqFoo5Jmptg0ltV0ssNMp063GZzTmmnK+c10kSxvTUV2G6eOp/nlqKOz5GSeEC+JOGhoSZZRXDQxRUURNpvn/PGsPFNZgcL+8oXPa61WQiSf5aL97tn72c/j5ziOg4iIiGX8TQ8QERE5HwqYiIhYSQETERErKWAiImIlBUxERKykgImIiJUUMBERsZICJiIiVlLARETESgqYiIhYSQETERErKWAiImIlBUxERKykgImIiJUUMBERsZICJiIiVlLARETESgqYiIhYSQETERErKWAiImIlBUxERKykgImIiJUUMBERsZICJiIiVlLARETESgqYiIhYSQETERErKWAiImIlBUxERKykgImIiJUUMBERsZICJiIiVlLARETESgqYiIhYKdD0gJbSs2dP+vXrZ3qGiIhVSkpKOHLkiOkZjdJmA9avXz8KCgpMzxARsUpycrLpCY2mpxBFRMRKCpiIiFhJARMREStZFTCv18vQoUOZOnWq6SkiImKYVSdxLFq0iLi4OE6cOGF6ioiIz6wqLCcrp5iKqhrCQ0PITItl+tAI07OMs+YIrKysjHXr1nHnnXeaniIi4jOrCst5aGUR5VU1OEB5VQ0PrSxiVWG56WnGWROw+++/n/nz5+Pvb81kEZELlpVTTI3H+7XP1Xi8ZOUUG1rUelhRg7Vr1xIWFsbw4cO/9+uys7NJTk4mOTmZyspKH60TEWk5FVU1Tfp8e2JFwLZs2cKaNWvo168fs2bNYuPGjdxyyy3f+rqMjAwKCgooKCigV69eBpaKiDSv8NCQJn2+PbEiYI8//jhlZWWUlJSwYsUKrr76av785z+bniUi0uIy02IJCQr42udCggLITIs1tKj1sOosRBGR9uarsw11FuK3+TmO45ge0RKSk5N1LUQRkSay6bHTiqcQRUREvkkBExERKylgIiJiJQVMRESspICJiIiVFDAREbGSAiYiIlZSwERExEoKmIiIWEkBExERKylgIiJiJQVMRESspICJiIiVFDAREbGSAiYiIlZSwERExEoKmIiIWEkBExERKylgIiJiJQVMRESspICJiIiVFDAREbGSAiYiIlZSwERExEoKmIiIWEkBExERKylgIiJiJQVMRESspICJiIiVFDAREbGSAiYiIlZSwERExEoKmIiIWEkBExERK1kRsDNnzjBy5EgSExOJj4/nkUceMT1JREQMCzQ9oDGCg4PZuHEjnTt3xuPxkJKSwuTJkxk9erTpaSIiYogVR2B+fn507twZAI/Hg8fjwc/Pz/AqEZFWxnHgk41QX2t6iU9YETAAr9dLUlISYWFhTJw4kVGjRpmeJCLSOjgOfJQDy34Ey2fA+/9lepFPWBOwgIAAdu3aRVlZGfn5+ezZs+dbX5OdnU1ycjLJyclUVlYaWCki4kOOA/v+Dtnj4I0boboSpi6EIbNML/MJK14D+2ehoaGMGzeO9evXk5CQ8LV/lpGRQUZGBgDJyckm5omItLyGBti3FnLnwxdF0L0fTFsKibMgIMj0Op+x4gissrKSqqoqAGpqatiwYQMDBw40vEpExMcavLBnJTx/Fbx5K3hOw/Tn4Z6dMOzWdhUvsOQI7ODBg/z0pz/F6/XS0NDAjTfeyNSpU03PEhHxjQYv7P0rbMqCyn3Q83JIfxESZoJ/gOl1xlgRsCFDhlBYWGh6hoiIb3nroegvkPcUfPkx9IqDG16GQdPbdbi+YkXARETaFa/HPZNw01Nw7FO4JAFu/BMMvA78rXjlxycUMBGR1qK+Dna/AXkLoOpz6JMIP3kdYqcoXOeggImImFZfC4XLIe8ZOFEG4cNgchZcnga6aMN3UsBEREzxnIF//Ak2PwMnKyByBFy3CGJ+pHA1ggImIuJrdadh56uwZRFUH4JLr4Dpz0L0eIWrCRQwERFfqTsFBS/DlsVw6jD0GwMzl0G/FIXrPChgIiItrfYk7FgGW5fA6S/dI63U16DvlaaXWU0BExFpKWeOQ342bHsWao5BzARI/RVEjTS9rE1QwEREmlvNMdj+Arz3RzdiA9LccEUON72sTVHARESay+mjbrS2vwC1J2DgVBibCeFJppe1SQqYiMiFOvUlbFvqPl1YVw1x09xw9RlielmbpoCJiJyv6krYuhh2vOReGT5+OoydC5cMMr2sXVDARESa6uQh94zCHS+BtxYSboCxv4ResaaXtSsKmIhIY52ocN98vPNV94K7Q34CY34BPWNML2uXFDARkR9SVQpbFrqXfXIa3Dsfj/kF9Ig2vaxdU8BERL7Lsc9g89NQ+Lr78dDZkPIAdO9ndJa4FDARkW86esC9pcnuFeDnD8Nuc8MVGmV6mfwTBUxE5CtHPnbvfvz+m+AfCMlzIOV+6BpuepmcgwImIlJZ7N79eM//h4BgGPVzuOpe6NLb9DL5HgqYiLRfhz+E3Pmw968Q1BGuuAeuvBc69zK9TBpBAROR9udQEWzKgg9WQ4fO7utbV9wDnS42vUyaQAETkfajYpcbrn1rIbire9WM0XdBxx6ml8l5UMBEpO0r2wmb5sNH6+GibpD6HzD65xDS3fQyuQAKmIi0XaX5kPskfLzBjdXVv4GRGW7ExHoKmIi0PZ9tdcN14F3oeDFMeBRG3AnBXQwPk+akgIlI2+A4ULLZDVdJHnTqBRN/576XK7iz6XXSAhQwEbGb47hHWrnz4fOt0PkSSHscht8OHTqaXictSAETETs5Dnzyjhuu0u3QJRwmZ8GwWyEoxPQ68QEFTETs4jiw/7/dpwrLd0K3KLh2AQy9FQKDTa8TH1LARMQOjgPFf3fDdXA3hF4K1y2CxJshsIPpdWKAAiYirVtDA+z7G+RmwRdF0L0/XP+sezPJgCDT68QgBUxEWqcGL3ywyr3I7uEPoMdlMP15GPxjCNBDlyhgItLaNHhhz0r3kk9HiqHn5ZC+DBLSwT/A9DppRawIWGlpKbfddhuHDh3C39+fjIwM7rvvPtOzRKQ5eeuh6C/u/bi+/BjCBsENr8Cg6xUuOScrAhYYGMiCBQsYNmwYJ0+eZPjw4UycOJFBgwaZnibSbqwqLCcrp5iKqhrCQ0PITItl+tCIC/+NvR54/7/cpwqPfQqXDIYbl8PAqeDvf+G/v7RZVgSsT58+9OnTB4AuXboQFxdHeXm5AibiI6sKy3loZRE1Hi8A5VU1PLSyCOD8I1ZfB7vfgLwFUPU59EmCWf8JsZPBz6+5pksbZkXA/llJSQmFhYWMGjXK9BSRdiMrp/hsvL5S4/GSlVPc9IDV10Lhcti8EI6XQsRw9w3Il6cpXNIkVgWsurqamTNnsnDhQrp27fqtf56dnU12djYAlZWVvp4n0mZVVNU06fPn5KmBf/zJDdfJCogcCdcthMt+pHDJebEmYB6Ph5kzZzJ79mzS09PP+TUZGRlkZGQAkJyc7Mt5Im1aeGgI5eeIVXhoIy7ZVHcadr4CWxZB9Rdw6ZUw4znon6pwyQWxImCO4zBnzhzi4uJ48MEHTc8RaXcy02K/9hoYQEhQAJlpsd/9L9VWQ8HLsHUxnKqEfmNg5jL37wqXNAMrArZlyxaWL1/O4MGDSUpKAuCxxx5jypQphpeJtA9fvc7VqLMQa09C/ouwbSmc/hKix0Hqr6DvlT7dLG2fFQFLSUnBcRzTM0TatelDI77/hI0zxyE/G7Y9CzXHIGYipM6FqJG+GyntihUBE5FWrKYKtj8P7/3RjdjlkyE10z27UKQFKWAicn5OH4X3nnPjVXvCfePx2EwITzK9TNoJBUxEmubUl+7rW/nZUFftXuppbCb0Hmx6mbQzCpiINE71Ydi6BHa8BJ7T7sV1x/wSLtEVccQMBUxEvt/JQ7BlsXtKvLcWEma6R1y9vucUehEfUMBE5NyOl7tvPt75KjTUuzeQHPML6BljepkIoICJyDdVlcKWhe5ln5wGSLwJxjwIPaJNLxP5Gp8FbMKECSxYsIDExERffUsRaYpjn8Hmp6HwdffjobMh5UHo3tfsLpHv4LOAzZ8/nwceeIC+ffvy2GOPnb09iogYdvSAe0uT3SvAzx+G3w4p90O3SNPLRL6XzwI2bNgwNm7cyFtvvcU111xDeno6c+fOJSSkERcDFZHmd+Rj9+7H778JAUEw4k646j7oGm56mUij+PR2p47jEBsby1133cWSJUsYMGAAy5cv9+UEEakshrfuhGdHwN5VMOrncN9umPyk4iVW8dkRWEpKCgcOHCA+Pp7Ro0fz6quvMnDgQBYtWkReXt7Z+3iJSAv5Yi9synKjFdQRrvx3uOLfoXMv08tEzovPAvb8888THx+P3zduo7BkyRLi4uJ8NUOk/TlUBLnz4cM10KEzpDwAV9wNnXqaXiZyQXwWsISEhO/8Z+vWrfPVDJH2o6IQcrOgeB0Ed3XffDz636BjD9PLRJpFq3gfWHS03l8i0mzKdkLuk7A/By7qBuMecl/nCgk1vUykWbWKgIlIMyjNd8P18QYI6Q5XPwwjM+CirqaXibQIBUzEdp9tdcN14F3oeDFMeNQ9JT64i+FhIi1LAROxkeNASZ57ckZJHnTqBRP/H4yYAx06mV4n4hMKmIhNHMc90sqdD59vhc6XQNrj7tUzOnQ0vU7EpxQwERs4Dnz8jvtUYVk+dAmHyVkw7FYI0tVspH1SwERaM8eBj3LccFX8A7pFwbVPw9BbIDDY9DoRoxQwkdbIcaD47264Du6G0L5w3SJIvBkCO5heJ9IqKGAirUlDA+z7m/sG5C+KoHt/uP6PMORG94K7InKWAibSGjR44YNVsOkpOPwBXBwDM16AhBsgQP+ZipyL/ssQMclbD3tXuhfZPfIR9IyF9GWQkA7+AabXibRqCpiICd56KHrTPeI6+gmEDYIbXoFB08Hfp3c5ErGWAibiS16Pe+fjvKfgWAlcMhhuXA4DpypcIk2kgIn4Qn0d7HodNj8NVZ9DnySY9QbEToFv3GJIRBpHARNpSfW1ULgc8p6BE2UQMRymLIABExUukQukgIm0BE8N/ONPsHkhnKyAqFEwbTFcdrXCJdJMFDCR5lR3Gna+AlsWQfUXcOmVMOM56J+qcIk0MwVMpDnUVkPBS7B1CZyqhH5j4IaXoV+K6WUibZYCJnIhzpyAHS/C1qVQcxSix0Pqr6DvFaaXibR51gTsjjvuYO3atYSFhbFnzx7Tc6S9O3MctmfDtqVwpgpiJrjhihppeplIu2FNwG6//XbuuecebrvtNtNTWFVYTlZOMRVVNYSHhpCZFsv0oRGmZ4kv1ByD956H956D2uNw+TWQOtc9u/AH6OdGpHlZE7CxY8dSUlJiegarCst5aGURNR4vAOVVNTy0sghAD0Zt2emj8N4fYfsLUHvCfePx2EwIT2rUv66fG5HmZ03AWousnOKzD0JfqfF4ycop1gNRW3TqiPs0Yf6LUHcKBk2DsXOhd0KTfhv93Ig0vzYVsOzsbLKzswGorKxske9RUVXTpM+LpaoPw9bFsOMl9z1dCTNh7C8hLO68fjv93Ig0vzYVsIyMDDIyMgBITk5uke8RHhpC+TkedMJDdVv3NuHkIdiyGApeBm8tDL4RxvwCel1+Qb+tfm5Emp+uHtpEmWmxhAR9/TYXIUEBZKbFGlokzeJ4Ofx9LiwcAtufh/gZcE8BpL9wwfEC/dyItARrjsBuuukm3n33XY4cOUJkZCTz5s1jzpw5Pt/x1esVOpusjagqhc3PuNcrdBog8Sb3iKtH/2b9Nvq5EWl+fo7jOKZHtITk5GQKCgpMz5DW6lgJ5D0Nu95wPx56C6Q8AN37Gp0lYppNj53WHIGJNIujByBvgXtPLj9/GH47pNwP3SJNLxORJlLApH048rF7E8n334SAIBjxr3DVvdA13PQyETlPCpi0bZXFsCkL9rwFAcEw+i648l7oconpZSJygRQwaZu++MAN196/QlBHuOIeN1yde5leJiLNRAGTtuXg+264PlwDHbrAmAdh9N3Q6WLTy0SkmSlg0jZUFEJuFhSvg+Bu7pXhR/0cOvYwvUxEWogCJnYrK4Dc+bA/By7qBuMecsMVEmp6mYi0MAVM7PT5dsh9Ej55B0K6w9UPw8gMuKir6WUi4iMKmNjls63w7hPwaS507AkTHoURd0JwF9PLRMTHFDBp/RwHSvLcpwpL8qBTGEz6AyT/C3ToZHqdiBiigEnr5Thw4H/ccH2+DTr3hmuecK+eEaSruIu0dwqYtD6OAx9vcF/jKtsBXSNgylMw9FYIusj0OhFpJRQwaT0cBz5a74arohC6RcG1T7sX2g0MNr1ORFoZBUzMa2hw37+VOx8OvQ+hfeG6xe6tTQI7mF4nIq2UAibmNDS4V8zYlAVf7IHu/eH6Z2HIT9wL7oqIfA8FTHyvwQsfrHKvnFH5IVwcAzNegIQbIEA/kiLSOHq0EN/x1sPele4R15GPoNdAmPkSxM8A/wDT60TEMgqYtDxvPRS9CZuegqOfQFg8/PhViLse/P1NrxMRSylg0nK8Htj9n+4dkI+VQO/B8JM/Q+y1CpeIXDAFTJpffS3seh3ynoHjn0P4UPcNyJdfA35+pteJSBuhgEnz8ZyBwuWweSGcKIOIZLh2AQyYqHCJSLNTwOTCeWpg52uwZSGcPAhRo2DaYrjsaoVLRFqMAibnr+40FLwMWxbBqcPQN8U9Hb7/WIVLRFqcAiZNV1sNBS/B1iVwqhL6p0LqK9AvxfQyEWlHFDBpvDMnYMeLsHUp1ByF6PEw7j/g0tGml4lIO6SAyQ87cxy2Z8O2pXCmCmImQuqvIGqE6WUi0o4pYPLdao7Be8/Be89D7XGInQJjMyFimOllIiIKmJzD6aOw7VnY/gLUnYSBUyF1LvRJNL1MROQsBUz+z6kj7okZO5ZB3SkYdL17xNU7wfQyEZFvUcAEqg+7p8IXvOy+pysh3Q1XWJzpZSIi30kBa89OHISti91weetg8I9hzC+h1+Wml4mI/CAFrD06Xu5eNWPna9BQD4mzYMwv4OLLTC8TEWk0Baw9qSqFzc+41yt0GiDxJjdcPfqbXiYi0mTW3NNi/fr1xMbGEhMTwxNPPGF6jl2OlcCae2HxUPjHn2DoLXBvIVy/VPESEWtZcQTm9Xq5++67efvtt4mMjGTEiBFMmzaNQYMGmZ7Wun35CeQ97d6Tyz8Qkv8FrroPukWaXiYicsGsCFh+fj4xMTFER0cDMGvWLFavXq2AfZcj+927Hxe9CQEdYOS/wlX3Q9c+ppeJiDQbKwJWXl5OVFTU2Y8jIyPZvn27wUWt1OF9sCkL9rwFgRfB6H+DK++FLpeYXiYi0uysCJjjON/6nN85bteRnZ1NdnY2AJWVlS2+q9X4Yq8brr2rIKij+zThFfdA516ml4mItBgrAhYZGUlpaenZj8vKyggPD//W12VkZJCRkQFAcnKyz/YZc6gIcp+ED/8GHbrAmAdh9N3Q6WLTy0REWpwVARsxYgT79+/n008/JSIighUrVvDGG2+YnmVORSHkZkHxOgju5l4ZfvRdENLd9DIREZ+xImCBgYEsXbqUtLQ0vF4vd9xxB/Hx8aZn+V5ZAeTOh/05cFEojP81jMyAkFDTy0REfM6KgAFMmTKFKVOmmJ5hxufvuU8VfrLRPcq6+mE3XBd1Nb1MRMQYawLWLpVsgdwn4NNN0LEnTJgHI+ZAcBfTy0REjFPAWhvHcYOVOx8+2wydwmDSH9w3IXfoZHqdiEiroYC1Fo4DB/4H3n0SSt+Dzr3hmidg+O0QFGJ6nYhIq6OAmeY48PEG9zWush3QNQKmPAVDb4Wgi0yvExFptRQwUxwHPlrvhquiELpdClMXQtLNEBhsep2ISKungPlaQwMU/90N16H3IbQvXLfYvbVJYAfT60RErKGA+UpDA3y42r3I7hd7oEc0TH/OvQtyQJDpdSIi1lHAWlqDF/b+1b1WYeU+uHgAzMiGhJkQoD9+EZHzpUfQluKtd68KvykLvtwPvQbCzJcgfgb4B5heJyJiPQWsuXk98P6bkPcUHD0AYfHw49cgbhr4W3MDbBGRVk8Bay71dfD+CshbAMdKoPdguHE5DJyqcImItAAF7ELV18Ku1yHvGTj+OYQPhbTHIXYynOOeZSIi0jwUsPPlOQOFy2HzM3CiHCKSYerTEDNB4RIR8QEFrKk8NbDzVdiyCE4ehKjRcP1SiB6vcImI+JAC1lh1p6DgFTdcpw5D36tgxgvQf6zCJSJigAL2Q2qrYccy2LoETh+B/qmQ+gr0SzG9TESkXVPAvsuZE7DjRdi6FGqOwmVXw9i50PcK08tERAQF7NtqqiA/G7Y9C2eqIGYipP4KokaYXiYiIv9EAfumd34HBS9B7BQYmwkRw0wvEhGRc1DAvinlfhj+U+iTaHqJiIh8DwXsm0Ivdf8SEZFWTQETq6wqLCcrp5iKqhrCQ0PITItl+tAI07NExAAFTKyxqrCch1YWUePxAlBeVcNDK4sAFDGRdkhXmRVrZOUUn43XV2o8XrJyig0tEhGTFDCxRkVVTZM+LyJtmwIm1ggPDWnS50WkbVPAxBqZabGEBH39btYhQQFkpsUaWiQiJukkDrHGVydq6CxEEQEFTCwzfWiEgiUigJ5CFBERSylgIiJiJQVMRESspICJiIiVFDAREbGSn+M4jukRLaFnz57069evRb9HZWUlvXr1atHv0VJs3g5277d5O2i/Sb7YXlJSwpEjR1r0ezSXNhswX0hOTqagoMD0jPNi83awe7/N20H7TbJ5e0vQU4giImIlBUxERKwU8Oijjz5qeoTNhg8fbnrCebN5O9i93+btoP0m2by9uek1MBERsZKeQhQRESspYBfo4YcfZsiQISQlJTFp0iQqKipMT2q0zMxMBg4cyJAhQ5gxYwZVVVWmJzXJX/7yF+Lj4/H397fmzKz169cTGxtLTEwMTzzxhOk5TXLHHXcQFhZGQkKC6SlNVlpayvjx44mLiyM+Pp5FixaZntQkZ86cYeTIkSQmJhIfH88jjzxielLr4MgFOX78+NlfL1q0yPnZz35mcE3T5OTkOB6Px3Ecx5k7d64zd+5cw4ua5oMPPnD27dvnpKamOjt27DA95wfV19c70dHRzieffOLU1tY6Q4YMcfbu3Wt6VqPl5uY6O3fudOLj401PabKKigpn586djuM4zokTJ5wBAwZY9Wff0NDgnDx50nEcx6mrq3NGjhzpbNu2zfAq83QEdoG6du169tenTp3Cz8/P4JqmmTRpEoGB7h11Ro8eTVlZmeFFTRMXF0dsrD03s8zPzycmJobo6Gg6dOjArFmzWL16telZjTZ27Fh69OhhesZ56dOnD8OGDQOgS5cuxMXFUV5ebnhV4/n5+dG5c2cAPB4PHo/HqsealqKANYNf//rXREVF8frrr/O73/3O9Jzz8vLLLzN58mTTM9q08vJyoqKizn4cGRlp1YNoW1FSUkJhYSGjRo0yPaVJvF4vSUlJhIWFMXHiROv2twQFrBEmTJhAQkLCt/766v+e//CHP1BaWsrs2bNZunSp4bVf90Pbwd0fGBjI7NmzDS49t8bst4VzjhN+9X/RvlVdXc3MmTNZuHDh1549sUFAQAC7du2irKyM/Px89uzZY3qScbojcyNs2LChUV938803c+211zJv3rwWXtR4P7T9tddeY+3atbzzzjut8sG0sX/2NoiMjKS0tPTsx2VlZYSHhxtc1L54PB5mzpzJ7NmzSU9PNz3nvIWGhjJu3DjWr19v5Qk1zUlHYBdo//79Z3+9Zs0aBg4caHBN06xfv54nn3ySNWvW0LFjR9Nz2rwRI0awf/9+Pv30U+rq6lixYgXTpk0zPatdcByHOXPmEBcXx4MPPmh6TpNVVlaePUu4pqaGDRs2WPVY02JMn0Viu/T0dCc+Pt4ZPHiwM3XqVKesrMz0pEa77LLLnMjISCcxMdFJTEy06gxKx3GclStXOhEREU6HDh2csLAwZ9KkSaYn/aB169Y5AwYMcKKjo53f//73puc0yaxZs5zevXs7gYGBTkREhLNs2TLTkxotLy/PAZzBgwef/Xlft26d6VmNtnv3bicpKckZPHiwEx8f78ybN8/0pFZBV+IQEREr6SlEERGxkgImIiJWUsBERMRKCpiIiFhJARMRESspYCIiYiUFTERErKSAifjI+PHjefvttwH4zW9+w7333mt4kYjddC1EER+ZN28ev/3tbzl8+DCFhYWsWbPG9CQRq+lKHCI+lJqaSnV1Ne+++y5dunQxPUfEanoKUcRHioqKOHjwIMHBwYqXSDNQwER84ODBg8yePZvVq1fTqVMncnJyTE8SsZ4CJtLCTp8+TXp6OgsWLCAuLo6HH36YRx991PQsEevpNTAREbGSjsBERMRKCpiIiFhJARMRESspYCIiYiUFTERErKSAiYiIlf4XlL9DQDlABM8AAAAASUVORK5CYII=
iVBORw0KGgoAAAANSUhEUgAAAbAAAAEgCAYAAADVKCZpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXhU5f3+8XcWwLBGJBFIQGQxxLAEiCyKClaICyIElSUgAhq1Vqteol+/rvTrjvYn1VqNK5uASgwBhChFtFItDUbLoohINAmoQQxrgElyfn88ilVBEpiZZ57J/bquXIUhzdx4DXPPOec5nyfC8zwPERERx0TaDiAiInI0VGAiIuIkFZiIiDhJBSYiIk5SgYmIiJNUYCIi4iQVmIiIOEkFJiIiTlKBiYiIk1RgIiLiJBWYiIg4SQUmIiJOUoGJiIiTVGAiIuIkFZiIiDhJBSYiIk5SgYmIiJNUYCIi4iQVmIiIOEkFJiIiTlKBiYiIk1RgIiLiJBWYiIg4SQUmIiJOUoGJiIiTVGAiIuIkFZiIiDhJBSYiIk5SgYmIiJNUYCIi4iQVmIiIOEkFJiIiTlKBiYiIk1RgIiLipGjbAQKlRYsWtGvXznYMERGnFBUVsW3bNtsxaiRsC6xdu3YUFBTYjiEi4pS0tDTbEWpMpxBFRMRJKjAREXGSCkxERJykAhMRESepwERExEkqMBERcZIKTEQkXHgefDwXKg/YThIUYXsfmIhInVLlg0U3QuEsqNwPvcbbThRwKjAREdft2wGvXA5frICzb4Oel9tOFBQqMBERl5UXw8uXwbbP4OKnoEem7URBowITEXHV12tg9qVwYA+MnQ/tB9hOFFQqMBERF32xAuaOhQZNYOJSODHFdqKgc2oVYlVVFT169GDIkCG2o4iI2LPmNZh1CcS2gSuX1cnyAseOwKZNm0ZycjI7d+60HUVEJGhyC0uZmr+BLeUV3NT4LW6ofBFO6g+jZkNMrO141jhzBFZSUsLixYu58sorbUcREQma3MJSbs9ZQ2n5Xm6LnsMNlS+S7/Uhr+sTdbq8wKECu/HGG3nkkUeIjHQmsojIMZuav4EDvgNMjX6Ga6IXMrPyXK7dfz0PLyuyHc06J9pg0aJFxMfH06tXr9/8vuzsbNLS0khLS6OsrCxI6UREAmdb+Q7+Vu9xLo1+l8crM7ircgLVRLKlvMJ2NOucKLCVK1eSl5dHu3btGDVqFMuXL2fs2LG/+r6srCwKCgooKCggLi7OQlIRET/at5M5MVMZHLWau33jebzyEiACgNaxMXazhQAnCuzBBx+kpKSEoqIi5s6dyznnnMOsWbNsxxIRCZw938H0i0hlA7dUX8+MqvSDfxRTL4rJ6UkWw4UGJwpMRKRO2bkFXjwfyj4lcvQc+g+/loTYGCKAhNgYHszoyrAeCbZTWufUMnqAAQMGMGDAANsxREQCY/sXMONi2Ps9jM2BdmcwDFRYh+BcgYmIhK1vPzXlVXUAxudBQk/biUKaCkxEJBRs+QhmZUBkNEx4A+KTbScKeboGJiJiW/EqmD4U6jWECUtUXjWkAhMRsanoPZgxDBqdYMrrhA62EzlDBSYiYsum5WYob7NEU16xbWwncooKTETEhs/ehJdHmSOuKxZDk5a2EzlHBSYiEmyfvgFzx5hrXeMXQmNNDjoaKjARkWD6ZCG8Mg5adYPLF0DD5rYTOUsFJiISLOteh1fGQ+ueMO71Or8dyrHSfWAiIsGwdj7Mvwra9IbMV6FBE9uJnKcjMBGRQDtYXn0g8zWVl5+owEREAmnNazD/Smjb94cjr8a2E4UNFZiISKCsnQ85V0HbfjDmFZWXn+kamIhIIKzNMacN2/YzR171G9lOFHZ0BCYi4m/rcs1pwza9zZGXyisgVGAiIv70yUKYPwkST9M1rwBTgYmI+MuGJfDqBGjdA8ZqtWGgqcBERPzhszfhlcuhZVcYO1/lFQQqMBGRY7VpOcwba2YbjsuB45rZTlQnqMBERI5F0XswZwyc0BHG5ULM8bYT1RkqMBGRo/XVBzD7Mjj+JA3mtUAFJiJyNEpXw+xLzT5ely/QligWqMBERGrr67UwM8OcLhy/UJtRWqICExGpjbLPYMbF5ubk8XnQLMF2ojpLBSYiUlPbv4AZQyEyCi7Pg+Pb2U5Up2kWoohITewogekXQ+V+mPAGtOhoO1GdpwITETmSXd/A9KGwr9xc84pPtp1IUIGJiPy2vdth5jDY9TWMex1ap9pOJD9QgYmIHM6+nTArA77bZAbztu1jO5H8FxWYiMihHNgLL4+Er9fAyNnQ/mzbieQXVGAiIr9Uud/MNiz+AEY8B0nn2U4kh+DEMvp9+/bRu3dvunfvTkpKCvfcc4/tSCISrqoqzWaUm/4OF02DLiNsJ5LDcOIIrEGDBixfvpzGjRvj8/no378/559/Pn379rUdTUTCSXU1LLwBPsmD9Aeh5+W2E8lvcOIILCIigsaNza6mPp8Pn89HRESE5VQiElY8D/Jvh49mw4Dbod/vbSeSI3CiwACqqqpITU0lPj6eQYMG0aePVgOJiB+9/QD862no9wc4+zbbaaQGnCmwqKgoPvroI0pKSli1ahVr16791fdkZ2eTlpZGWloaZWVlFlKKiJP++SS8+wj0GAeD7wOd4XGCMwX2o9jYWAYMGMDSpUt/9WdZWVkUFBRQUFBAXJy2NhCRGvhwBrx5B5w6zCzaUHk5w4kCKysro7y8HICKigqWLVtG586dLacSEeety4WFf4SO50LGs2ZIrzjDiVWIW7duZfz48VRVVVFdXc1ll13GkCFDbMcSEZd9vswsl0/sDZfNhOj6thNJLTlRYN26daOwsNB2DBEJF1/9C+aNg7jOMGYe1G9oO5EcBSdOIYqI+M3Xa+HlS6FJKxiXAzGxthPJUVKBiUjd8d0mmDkc6jWCy3OhcbztRHIMnDiFKCJyzHZuMduiVFfCFYsgtq3tRHKMVGAiEv72bjdHXnu3mw0p45JsJxI/UIGJSHjbvxtmXwLbN8PY1yChp+1E4icqMBEJX5X7Ye4Y2PIRjJwJJ59lO5H4kQpMRMJTdZW5z2vzOzDsb9D5QtuJxM+0ClFEwo/nwaIbf9gW5QFIHWM7kQSACkxEws+ye82MwzNvgX7X2U4jAaICE5HwsnIarHwc0ibCOXfaTiMBpAITkfDx4Ux4625IyYALHtVk+TCnAhOR8PDJQlh4A3T4HQx/RpPl6wAVmIi474t34LWJkNDLLJfXZPk6QQUmIm4r/dDc63VCRxjzCtRvZDuRBIkKTETcVfaZmbLRsDmMzTH/K3WGCkxE3FRebIbzRkTCuFxo2sp2IgkyTeIQEffs2WaG8+7fBVcshhM62E4kFqjARMQt+3eZ04Y7imHc69Cqm+1EYokKTETc4dtnFmxs/Q+MehlOOt12IrFIBSYibqiqhPmTYPO7MDwbks6znUgs0yIOEQl9Pw7n/XQRnPcwdB9pO5GEABWYiIS+t+6Gwplw1mToe43tNBIiVGAiEtreexz++Rc47UoYeIftNBJCVGAiErpWT4dl90CXEXD+VA3nlZ9RgYlIaFq/wFz36nguDHsaIvV2JT+nV4SIhJ5Nb8P8KyHxNLhshobzyiGpwEQktJQUwNxMOKETjJmn4bxyWCowEQkd335ipmw0joNxORBzvO1EEsJUYCISGr4vMvMNoxqY4bxNWtpOJCFOkzhExL5d38CMYeCrgAlLoPnJthOJA1RgImJXxfcwKwN2fwuXL4ATT7WdSBzhxCnE4uJiBg4cSHJyMikpKUybNs12JBHxhwN7YPZlsO0zGDUL2pxmO5E4xIkjsOjoaB577DF69uzJrl276NWrF4MGDeLUU/VJTSRYcgtLmZq/gS3lFbSOjWFyehLDeiQc/Q+s3A/zxkJpAVw6HTqc47+wUic4cQTWqlUrevbsCUCTJk1ITk6mtLTUciqRuiO3sJTbc9ZQWl6BB5SWV3B7zhpyC4/y32F1FeRkwablMPQJOHWoX/NK3eBEgf23oqIiCgsL6dOnj+0oInXG1PwNVPiqfvZYha+Kqfkbav/DPA8W/hHW58Lg+6HHWD+llLrGiVOIP9q9ezcjRozg8ccfp2nTpr/68+zsbLKzswEoKysLdjyRsLWlvKJWjx+W58Gbd/4wWf5WOP0PfkgndZUzR2A+n48RI0aQmZlJRkbGIb8nKyuLgoICCgoKiIuLC3JCkfDVOjamVo8f1ruPwvtPQu+rYeD/+iGZ1GVOFJjneUyaNInk5GRuvvlm23FE6pzJ6UnE1Iv62WMx9aKYnJ5U8x/yr2fg7fug+2g47yFNlpdj5kSBrVy5kpkzZ7J8+XJSU1NJTU3ljTfesB1LpM4Y1iOBBzO6khAbQwSQEBvDgxlda74KsXA2LLkVOg+BoU9qsrz4hRPXwPr374/nebZjiNRpw3okHN2y+XW5kPcHaD8QLnkBopx42xEH6GOQiATOxmU/bYsyajZEN7CdSMKICkxEAqNoJczLhPjOMOYVbYsifqcCExH/K10NL4+E2LZmsnxMrO1EEoaCVmDnnnsuH3/8cbCeTkRs+WYdzMyAhs3NcN5GLWwnkjAVtAJ75JFHuOmmm5gwYQJbt24N1tOKSDBt+9xsi1IvxpRX09a2E0kYC1qB9ezZk+XLlzNkyBDOO+88pkyZQkVFLe/iF5HQ9f2XMGMoeNVweZ729JKAC+o1MM/zSEpK4tprr+WJJ56gU6dOzJw5M5gRRCQQdm4x5XVgD1yeC3Gn2E4kdUDQCqx///4kJCRw0003UVpayksvvcSKFStYtWoVWVlZwYohIv62+1uYPhT2bIOxOdCyq+1EUkcE7Y7Cp59+mpSUFCJ+MT7miSeeIDk5OVgxRMSf9m4317x2lMC4HEjsZTuR1CFBK7AuXboc9s8WL14crBgi4i/7dsDM4fDd5zBmHpx0uu1EUseExEyX9u3b244gIrWxfxfMusQsmR81GzoMtJ1I6qCQKDARcciBPeYm5dLVcOlLcEq67URSR6nARKTmfBUwZzR89T5kPAunDrWdSOowjZISkZqp3A/zxsLmd+Hip6DrJbYTSR2nIzARObLK/TBvHHy+DC76C6SOtp1IREdgInIEVT54dQJszIch/w96jbedSARQgYnIb6nywWsTYcNiuOBRSJtoO5HIQSowETm0Kh/MnwSf5EH6g9D7KtuJRH5GBSYiv1ZVCTlXwfoFkP4A9Pu97UQiv6ICE5Gf+7G81r0Og++HftfZTiRySFqFKCI/qfLB/CthfS4M+j84/Q+2E4kclgpMRIwfr3mtXwCD74PTr7edSOQ36RTiL5V9Bh/8zXYKkeD6cbXhj9e8VF7iABXYL304HZb+DxS9ZzuJSHBU7odXxv+02lDXvMQRKrBfGvi/cHw7yLseDuy1nUYksHz7zISNDYvh/KlabShOUYH9Uv1GMPQJ2P4FrHjAdhqRwPFVwNwxP03Y6KOd0cUtKrBDOfks6HUFvP9XKFltO42I/x3YA7MvhU3LzWxDTdgQB6nADmfQn6BJK1hwnblGIBIu9u2EWSPgy5Uw/BnNNhRnqcAO57hmcNE0KPsE3r7fdhoR/6j4HmYOg5J/wyUvQPeRthOJHDUV2G/pNAh6joeVf4GvPrCdRuTY7C6Dly6Cr9fAZTMgZbjtRCLHRAV2JOn3Q2xbeP0a2L/bdhqRo7OjFF48H777HMbMg84X2k4kcsxUYEfSoAkM+xt8XwRv3W07jUjtbf8CXjwPdn0N43Kgwzm2E4n4hTMFNnHiROLj4+nSpUvwn7zdGebmzoLn4bP84D+/yNH6Zj28cB7s3wXj8+Ck020nEvEbZwrsiiuuYOnSpfYCnHMXnNgFcn/Pkvc/4oyHlnPy/yzmjIeWk1tYai+XOCO3sDS4r5uS1ea0IREwYQkk9Azs84kEmTMFdtZZZ9G8eXN7AeodByOep2rfLhovvYEt5XvwgNLyCm7PWaMSk9+UW1jK7TlrKC2vCM7r5osVMGMoxMTCxKUQnxyY5xGxyJkCCwnxnflz5BWcGfExE6J+OpVY4atiav4Gi8Ek1E3N30CFr+pnjwXsdbMu19ykHNsWJiyF5if7/zlEQkBYFVh2djZpaWmkpaVRVlYWkOd4avdZvFnVi9ui55ASsfng41vKKwLyfBIeDvf68PvrpuBFePUKaN0DJrwBTVv59+eLhJCwKrCsrCwKCgooKCggLi4uIM/ROrYht/mu4jua8lS9aTRh7w+PxwTk+SQ8HO714bfXjefBO1Nh0Y3Q8VwYlwsxx/vnZ4uEqLAqsGCYnJ7EvnrHc/2B60mI2MbD9bKJqRfJ5PQk29EkhE1OTyKmXtTPHoupF+Wf1011FbxxC7x9H3QbCaPnQP2Gx/5zRUKcMwU2evRo+vXrx4YNG0hMTOT555+3kmNYjwQezOjK181SmVo5kguiVjE3dQ3DeiRYySNu+PF1kxAbQwSQEBvDgxldj/1149tnThn++zk4/QYY9jRE1fNHZJGQF+F5nmc7RCCkpaVRUFAQ2CeproY5o8xE74n5kNgrsM8n8t/2boe5mfDVP80uytqIUvwgKO+dfuLMEVhIioyE4U+bC+WvjDOz5kSCofwrc4NyaQGMeF7lJXWSCuxYNWwOI2fB3u/MqZwqn+1EEu62fgzPDYLdX8O416HrJbYTiVihAvOHVt3NpoBfvqd5iRJYn+XDC+dDZLQ5bd2uv+1EItZE2w4QNrqPhC0fwgdPQctukDradiIJN6uehSW3QsuuMOYVaNLSdiIRq1Rg/jT4PvhmHSy8AZq3h7Z9bCeScFBdBW/eaT4cnXKeuebVoLHtVCLW6RSiP0XVMxsFNkuEuWPMhXaRY7F/F8wZbcqr99Uw6mWVl8gPVGD+1rA5jJ5nFnO8PMq8AYkcjfJieD4dPl8GFzwKFzwCkVFH/v+J1BEqsECIOwUufRHKPtXKRDk6X74P2QNgRzFkvgq9r7KdSCTkqMACpePv4MLHzKfnRTeZWXUiNfHhDJh+ERzXDK78u3kticivaBFHIKVNgJ2l8O5UaNYGBtxmO5GEsiqfWazxr6eh/UBzFK+BvCKHpQILtIF3wI4SWPGAWfbca7ztRBKKdpeZ081fvgd9r4NBf4Io/fMU+S36FxJoERHmJufd35qtLo5rBinDbKeSULKlEOaOhb3bYHi2uadQRI5I18CCIbo+jJwJib1h/pXmupgIwOrpZqUhmMkaKi+RGlOBBUv9RjBmHsR3Np+2v/rAdiKxyVcBC64zN72f1A+ufhdap9pOJeIUFVgwxcTC2BxolgCzLoHiVbYTiQ3fbYLnB0PhLDjzFvOaaHSC7VQizlGBBVvjeBi/EBrHwcwMKHFj3x3xk3WvwzNnmykto+fB7+7SzckiR0kFZkPT1jB+ETRqATOHQ8lq24kk0Hz7YPEtZqVhXBJc8w9IOs92KhGnqcBsaZYAVywyo6dmXAxFK20nkkD59lN49hz497PQ7w8wYQnEtrWdSsR5KjCbmiWaN7OmrWDWCNio1YlhxfNg9UtmJNTub2DMq5B+v1mVKiLHTAVmW9PWpsRadIQ5o2Bdru1E4g97tsHcTFj4R2jTG65dCacMtp1KJKyowEJBoxbmmlhCT3ON5F/ZthPJsdj4FjzVDz5/y+wRNy5Xm0+KBIAKLFTExJo3uqTzYclkeOtuqK62nUpqY/8uyLsBZl9iPpRc9Tacfj1E6p+ZSCBolFQoqd8QLptpCmzlNNhRChc/CfVibCeTI9n8LuReZ7Y/Of0GMwOz3nG2U4mENRVYqImKhgv/bKbX/30KfL/Z7MKrU1Chad8OeOseWP0iNO9gxkG17WM7lUidoHMboSgiAs68GUbOMkuwsweaga8SWjYsgb/2hQ+nm+Xx17yn8hIJIhVYKEu+CCblm0kNz6ebjQ7Fvp1bYN44s2o0JhYmLTPL4+s3tJ1MpE5RgYW6ll0ha4UZ+Jp3vbnOcmCv7VR1U1UlfPA0PNkbNr4J59wJWe9AYi/byUTqJF0Dc0GjFmbg64qH4N1HzOnES14wk+0lOIpWwpJb4Zu10OF3cOGj0Ly97VQidZqOwFwRGQXn3AGZr5mpDtlnw6pnzbQHCZwdJfDaJHjpArNg47IZMHa+ykskBOgIzDWdBsG1/4QFv4c3bjE3zV40zYyjEv/Zvwveexzef9J8SDj7NjjjRl3nEgkhOgJzUZMTzVy98x6Gze/AX/vAhzN1NOYPlQfMke1fesI/HjULaa4vgIH/q/ISCTHOFNjSpUtJSkqiY8eOPPTQQ7bj2BcZCX2vMUdjLbtA3h/M1izfbbKdzE3VVfDxPPjraebI9oSOcOVyGPGcJseLhCgnCqyqqorrrruOJUuWsH79eubMmcP69ettxwoNJ3QwcxQveNRsjvlUX1h+v1Yq1lR1Fax5zcwufD0LGjQx1xknvKHVhSIhzokCW7VqFR07dqR9+/bUr1+fUaNGsWDBAtuxQkdkJPS+ypzqOnWYWan41z7mjVnzFA+tygcfzzWFP38SRESalZ1Z75rrjBERthOKyBE4UWClpaW0adPm4O8TExMpLS21mChENWkJI56FKxbDcc3MG/OzA+GLFbaThY79u+H9p2BaKrx+NURGw6UvmVOxXUZo8K6IQ5xYhegdYnFCxCE+IWdnZ5OdbbYiKSsrC3iukNWuP1z9Lqx5FZb/n9nx+aT+MOA2aHdm3Ty62P4FrHoOCmfC/p1w0hkw5M/QaXDd/O8hEgacKLDExESKi4sP/r6kpITWrVv/6vuysrLIysoCIC0tLWj5QlJkJHQfCadebAbNrpwG0y+CNn3hjD/CKenm3rJwVuWDz/LNrMKNb5m/76nDoM810OY02+lE5Bg5UWCnnXYaGzduZPPmzSQkJDB37lxefvll27HcUO846Hst9Jpgjj5WToO5o+H4k80beepoc7oxnHyzHv4zDz6eY276btIKzpoMaRN1v5xIGHGiwKKjo3nyySdJT0+nqqqKiRMnkpKSYjuWW+odZxZ69JoAn+TBB3+DpbfBsnvNUVrPcdD2dHevAX23yfy91syHb9ZARJQ5PdhrPHQcZLapEZGwEuEd6gJTGEhLS6OgoMB2jNBW+qGZcL92vrku1DQRUoZBynBI6BXa14aqq2DLR2ao7qeLzIxCMLm7jTJ/h8ZxdjOKOMil9059LK3LEnqar/QH4JOFsC4H/vWMGZ/U+EToeK75aj8AGja3m9XzYNtG+PI9M1h303Ko2A5EQNu+kP4gJA/RTccidYgKTMyIpO4jzVdFudmocWO+ObL5aLb5nhZJZkuXhDRo1Q3iOkN0g8Dk8TzYUQzffmIm75d+CFs+hD0/rCxtfKI5PdhpEHQ4x365iogVKjD5uZhYs7AjdbTZ/6q0AL5cCV++D2tzYPVL5vsio824pebtzVezNmZGY+MToeEJUL8R1G8M9WKACHM60qsG317wVZj7sfZugz3bzEKLHcVQXgzfF8G2z+DA7h8CRUBckrmO1bavuUWgefvQPr0pIkGhApPDi4o2pdG2L5yJmeqx/Qv4+j/ma9tG8/tNb0NlxTE+V31olmhOAaZmmr3O4jqbDT0bNPHLX0dEwosKTGouMhJadDRfXTJ+ery62lyP2v0N7P4W9n4HB/aYoyhfBeCBB0QA9RqZo7L6jcxGnQ1bQKM4c+Tm6gpIEbFCBSbHLjLSlFGjFnCibm8QkeDQR14REXGSCkxERJykAhMRESepwERExEkqMBERcZIKTEREnKQCExERJ6nARETESSowERFxkgpMREScpAITEREnqcBERMRJKjAREXGSCkxERJyk7VTEKbmFpUzN38CW8gpax8YwOT2JYT0SbMcSEQtUYOKM3MJSbs9ZQ4WvCoDS8gpuz1kDoBITqYN0ClGcMTV/w8Hy+lGFr4qp+RssJRIRm1Rg4owt5RW1elxEwpsKTJzROjamVo+LSHhTgYkzJqcnEVMv6mePxdSLYnJ6kqVEImKTFnGIM35cqKFViCICKjBxzLAeCSosEQF0ClFERBylAhMRESepwERExEkqMBERcZIKTEREnBTheZ5nO0QgtGjRgnbt2gX0OcrKyoiLiwvocwSKy9nB7fwuZwfltykY2YuKiti2bVtAn8NfwrbAgiEtLY2CggLbMY6Ky9nB7fwuZwflt8nl7IGgU4giIuIkFZiIiDgp6t57773XdgiX9erVy3aEo+ZydnA7v8vZQfltcjm7v+kamIiIOEmnEEVExEkqsGN011130a1bN1JTUxk8eDBbtmyxHanGJk+eTOfOnenWrRvDhw+nvLzcdqRaefXVV0lJSSEyMtKZlVlLly4lKSmJjh078tBDD9mOUysTJ04kPj6eLl262I5Sa8XFxQwcOJDk5GRSUlKYNm2a7Ui1sm/fPnr37k337t1JSUnhnnvusR0pNHhyTHbs2HHw19OmTfOuvvpqi2lqJz8/3/P5fJ7ned6tt97q3XrrrZYT1c769eu9Tz/91Dv77LO9f//737bjHFFlZaXXvn17b9OmTd7+/fu9bt26eevWrbMdq8beeecdb/Xq1V5KSortKLW2ZcsWb/Xq1Z7ned7OnTu9Tp06OfXfvrq62tu1a5fneZ534MABr3fv3t77779vOZV9OgI7Rk2bNj346z179hAREWExTe0MHjyY6Gizo07fvn0pKSmxnKh2kpOTSUpyZzPLVatW0bFjR9q3b0/9+vUZNWoUCxYssB2rxs466yyaN29uO8ZRadWqFT179gSgSZMmJCcnU1paajlVzUVERNC4cWMAfD4fPp/PqfeaQFGB+cEdd9xBmzZtmD17Nn/6059sxzkqL7zwAueff77tGGGttLSUNm3aHPx9YmKiU2+i4aKoqIjCwkL69OljO0qtVFVVkZqaSnx8PIMGDXIufyCowGrg3HPPpUuXLr/6+vHT8/33309xcTGZmZk8+eSTltP+3JGyg8kfHR1NZmamxaSHVpP8rvAOseBXn6KDa/fu3YwYMYLHH3/8Z2dPXBAVFcVHH31ESUkJq1atYu3atbYjWacdmWtg2bJlNfq+MWPGcOGFFzJlypQAJ6q5I2WfPn06ixYt4u9//3tIvpnW9L+9CxITEykuLj74+19e760AAAIkSURBVJKSElq3bm0xUd3i8/kYMWIEmZmZZGRk2I5z1GJjYxkwYABLly51ckGNP+kI7Bht3Ljx4K/z8vLo3LmzxTS1s3TpUh5++GHy8vJo2LCh7Thh77TTTmPjxo1s3ryZAwcOMHfuXIYOHWo7Vp3geR6TJk0iOTmZm2++2XacWisrKzu4SriiooJly5Y59V4TMLZXkbguIyPDS0lJ8bp27eoNGTLEKykpsR2pxjp06OAlJiZ63bt397p37+7UCkrP87ycnBwvISHBq1+/vhcfH+8NHjzYdqQjWrx4sdepUyevffv23n333Wc7Tq2MGjXKa9mypRcdHe0lJCR4zz33nO1INfaPf/zDA7yuXbsefL0vXrzYdqwa+/jjj73U1FSva9euXkpKijdlyhTbkUKCJnGIiIiTdApRREScpAITEREnqcBERMRJKjAREXGSCkxERJykAhMRESepwERExEkqMJEgGThwIG+99RYAd955JzfccIPlRCJu0yxEkSCZMmUKd999N99++y2FhYXk5eXZjiTiNE3iEAmis88+m927d7NixQqaNGliO46I03QKUSRI1qxZw9atW2nQoIHKS8QPVGAiQbB161YyMzNZsGABjRo1Ij8/33YkEeepwEQCbO/evWRkZPDYY4+RnJzMXXfdxb333ms7lojzdA1MREScpCMwERFxkgpMREScpAITEREnqcBERMRJKjAREXGSCkxERJz0/wFcJ/UgZy706gAAAABJRU5ErkJggg==
iVBORw0KGgoAAAANSUhEUgAAAbAAAAEgCAYAAADVKCZpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXhU5aHH8W8WAmENW4AkQAhLCAmQhLAIiCAEEFBZ1KKIWNBor60VWrxSV6xeUbTK1dtq6lrU4sYmaKKAuCCKwbArAhIkCxCWCIEQspz7x1EqsiVkZt45M7/P8/AMDMOc36PD/Djvec/7BliWZSEiIuIwgaYDiIiIXAgVmIiIOJIKTEREHEkFJiIijqQCExERR1KBiYiII6nARETEkVRgIiLiSCowERFxJBWYiIg4kgpMREQcSQUmIiKOpAITERFHUoGJiIgjqcBERMSRVGAiIuJIKjAREXEkFZiIiDiSCkxERBxJBSYiIo6kAhMREUdSgYmIiCOpwERExJFUYCIi4kgqMBERcSQVmIiIOJIKTEREHEkFJiIijqQCExERR1KBiYiII6nARETEkVRgIiLiSCowERFxJBWYiIg4UrDpAO7SrFkzoqOjTccQEXGUnJwc9u/fbzpGlfhsgUVHR5OVlWU6hoiIo6SkpJiOUGUaQhQREUdSgYmIiCOpwERExJFUYCIi4kgqMBERcSQVmIiIOJLPTqMXEfGYykooWAfHDoJVAVYlNO8MTdqZTubTVGAiIhfCsmDnx7B5AXz7Hhzdd/prWnWHLqMh8Tpo0NLzGX2cCkxEpLr2boGMu+wCC6kPHVMhdiQ0jobAQLCAXatgyyJYPhNWzYHL50D8aNPJfYoKTESkqk4cg2X3w1fPQ+2GcNlsSL4BatU5/bVRPaDf7VD4HSy8Fd6aBNuvh+GPQu36ns/ug1RgIiJVUbQb5l0HezZCzykw6G6o2+T8f655J5icCSsfgU//Bns2wY1LVWIuoFmIIiLns+tzSB8Ih3Lgujdg5BNVK6+fBdWCwffB+NdhzwZ4ezJUlLsrrd9QgYmInMvmhfDK5RDaGG5eAZ2GXfh7dR5hl9+2THh/uj0RRC6YhhBFRM5myyL7bCmqJ0x4E+o0qvl7pkyGoh/gsyftSR/9/ljz9/RTOgMTETmTb979qbxS4Pq3XVNeP7v0PuhyJSz/K+z71nXv62ccU2DR0dF07dqVxMRER+1XIyIOtH05vHUjRCTBhLehdgPXvn9gIIz8G4TUg6XTNJR4gRw1hPjRRx/RrFkz0zFExJft3WKXV/M4uP4dqNPQPcep1wxSH4R3b4f1/7ZvdpZqccwZmIiI2xXvg9d/A7XqwnXzXDtseCZJE6F1b/jgHnsZKqkWxxRYQEAAQ4cOpUePHqSnp5uOIyK+pqwE/n0tHNtvl1ejKPcfMzAQRj0JJUX2DdJSLY4ZQly1ahURERHs27eP1NRUOnfuzIABA055TXp6+slyKywsNBFTRJxq6Z8hby385lX72pentIiH3rfAl89C/6nQJMZzx3Y4x5yBRUREABAeHs6YMWNYs2bNaa9JS0sjKyuLrKwsmjdv7umIIuJUX8+Fda/CgOkQN8rzx+97OwQGw+fPeP7YDuaIAjt69ChHjhw5+fMPPviAhIQEw6lExCfs2Qjv/RnaXQID7zKToWEr6PYbWPcaFGv0qKocUWB79+6lf//+dO/enV69ejFy5EiGDx9uOpaION3xw/DmJHuVjXEvQGCQuSz9/gjlpfZQolSJI66BxcTEsH79etMxRMTXvPdne33DG5dAfcOXHZp1tIcvv/on9L/D9fee+SBHnIGJiLjcpndgwxtwyX9D276m09j6TYXjP8Lal00ncQQVmIj4nx/zYMlUe43Di/9kOs1/RPWA6Ith9d+1Wn0VqMBExL9UVtobTFaUw5jnIMjLrqT0uhmO5MPOlaaTeD0VmIj4ly+fhZ2fwGWzoGl702lO12m4vQLI+jdMJ/F6KjAR8R8HdsDyB+2SSJpoOs2ZBdeGhHH2avilR0yn8WoqMBHxD5WVsOj3EBwCo56CgADTic6u+7VQXgJbFptO4tVUYCLiH776J/zwOQx7xL5x2JtF9bSXlFr/b9NJvJoKTER838GdsOwB6JDqjG1LAgKg23jI+dTevVnOSAUmIr7NsuDdP9prDV4+x7uHDn+p2zX244Y3zebwYiowEfFt6/8NOz+G1JnQKNJ0mqpr0g7a9IX187Rj81mowETEdx3dD5l/gdZ9IPlG02mqr+tVcGAbFH5rOolXUoGJiO/KmAGlxfbQYaADv+5iL7Mfv8swm8NLOfD/qIhIFWxfBhvfhIunQXhn02kuTMMIaNkNvss0ncQrqcBExPeUlcDSP0HTjtB/muk0NdNpOOz+Eo4dNJ3E66jARMT3fPqEvU3KqL9BrTqm09RM7HCwKu0zSjmFowqsoqKCpKQkRo0ysOW3iDhD4Xfw2VP2fVTtBphOU3OtkqBeuK6DnYGjCmzOnDnExcWZjiEi3sqyYOk0CKkLQx8yncY1AgPZ1bQ/Rza9T8e7FtFv1goWZueZTuUVHFNgubm5LF26lJtuusl0FBHxVhvetFevGPKA+R2WXWRhdh6P72xHA47RI/A78opKmDF/o0oMBxXYHXfcwWOPPUagE6fCioj7lRTBB3dDZIoz7/k6i9mZW1lR1oVSK5hLA7MBKCmrYHbmVsPJzHNEGyxZsoTw8HB69Ohxztelp6eTkpJCSkoKhYWFHkonIl5hxUNw7IA9ccOH/qGbX1TCUUL5sjKOwYFfn/K8v3PE/+VVq1axePFioqOjGT9+PCtWrOD6668/7XVpaWlkZWWRlZVF8+a+MXwgIlWQvw6yXoCeN0Gr7qbTuFREWCgAKyqTaB9YQOuAvac8788cUWCPPPIIubm55OTkMG/ePC699FJeffVV07FExBtUVtr3fNVtBoPuNp3G5aYPiyW0VhCfV8YD0CfwG0JrBTF9WKzhZOYFmw7gdUoOweF8aBFvOomIVEX2vyAvC8akQ2iY6TQuNzrJXoD48YxgDhxvwKDa2+h3+R0nn/dnAZblm8scp6SkkJWVVf0/mHk3fPUC3F3gnG0XRPzV0QPwTA8I7wI3LvX9v7NvXA8F6+GOjW47xAV/dxrgiCFEj2oUZW/lfXS/6SQicj7LZ8LxwzDyCd8vL4C2/e0NLot2m07iFVRgv9aotf34oz4gIl4tNwu+/hf0+R2E+8kCB9H97Mddq8zm8BIqsF8LU4GJeL3KCnvFjQYtYeBdptN4Tng81AmDnM9MJ/EKmsTxaz+fgekUXcR7rX3JvhZ01YtQu4HpNJ4TGAht+6rAfqIzsF8LbQwh9XUGJuKtigth+YP2Qr3xY02n8bzo/nBopz1b2s+pwH4tIMCeyPFjrukkInImyx6AE8dgxOP+MXHj19r+dB0sR9fBVGBn0qi1PdNHRLzLD1/AulfhotuguZ/eyNuyK9RuBLs0jKgCO5Ow1hpCFPE2FeX2ihsNo+CSO02nMScwCNr00RkYKrAza9TaXpGjtNh0EhH52VfPw95NMPx/IKSe6TRmRfeDA9vgyF7TSYxSgZ1JWBv7UWdhIt7hyB746GFoPxjirjCdxrw2F9mPec5YMcNdVGBn0ijKftREDhHvkHk3lJfCiNn+OXHj11p2hcBgyPv6/K/1YSqwMzl5L5gmcogYt+Mj2PQ2XDwNmrY3ncY71Aq1Vx/JW2s6iVEqsDNp0NL+142GEEXMKi+F9/4MTWKg3x2m03iXiGTIzwbfXI+9SlRgZxIYBA0jtRqHiGmf/y8c2G7f81Wrjuk03iUyGY4XwcHvTScxRgV2NmFtdA1MxKSDO+GTx6HLaOgw2HQa7xPZw37MzzabwyAV2Nk0itIQoogplmXf8xVYC4Y/YjqNd2oeB8Ghfj2RwxEFdvz4cXr16kX37t2Jj4/n/vvvd/9BG7WGIwVQUeb+Y4nIqTa9AzuWw+B7oWGE6TTeKSgYWnWDfBWYV6tduzYrVqxg/fr1rFu3joyMDL744gv3HjSsNViVcDjPvccRkVOVFEHGDIhIgp43mU7j3SKSIX+dvUqJH3JEgQUEBFC/fn0AysrKKCsrI8Dd94JoWxURM5bPhGP7YdRT9oQqObvIZHsH+cJvTScxwhEFBlBRUUFiYiLh4eGkpqbSu3dv9x7w5M7Mmsgh4jE/fAFZL0LvWyEi0XQa7xeRbD/66TCiYwosKCiIdevWkZuby5o1a9i0adNpr0lPTyclJYWUlBQKCwtrdsCTq3HoDEzEI8pLYfHt9j8eB91tOo0zNImxV6b304kcjimwn4WFhTFw4EAyMjJO+720tDSysrLIysqiefPmNTtQrTpQL1yrcYh4ymdPwv6tMOpJqF3fdBpnCAyEyCSdgXmzwsJCioqKACgpKWHZsmV07tzZ/QfWtioinrHvW/uer65XQ8dU02mcJSIZ9m6GsuOmk3hcsOkAVVFQUMCkSZOoqKigsrKSa665hlGjRrn/wI1a29s3iIj7VFbCu3+0z7qG6Z6vaotMhspy2LMRWvc0ncajHFFg3bp1IzvbwN3mjaLguwz7pkqtgC3iHl/9E3Z/AaP/AfVrOPTvj1p2sx/3bvK7AnPEEKIxjaOh/DgU+/emcSJuc3AnLHsAOqRC92tNp3GmsDYQ0gD2bTGdxONUYOfSONp+PLjTaAwRn1RZCYv/AAFBcPlTGuW4UAEB9tYqezebTuJxKrBzadzOfjykAhNxubUvQc6nMOyh/9y2IhemRbxdYH62tYoK7FzC2kBAIBzKMZ1ExLcU/QAf3gcxAyF5kuk0ztci3t5a5XC+6SQepQI7l+AQaBilIUQRV6qshIX/Zf/88v/V0KErtIi3H/3sOpgK7HyaRGsIUcSV1jxnDx0OfwQatzWdxjeEx9mPfnbbjwrsfBq30xmYiKsUfmfPOuw0HJImmk7jO0Ib26NFe3UGJr/UONpeGbv0iOkkIs5WUQ4LboFadTV06A4tuvjdTEQV2Pk0+Wkmos7CRGrmk9n2mn2j/gYNWphO43taxMP+76D8hOkkHqMCOx9NpRepuV2r4ZPHoPt1ED/GdBrfFB4PlWVwYJvpJB6jAjufn8/ANJVe5MKUFMH8myGsLYx4zHQa39Wii/3oR8OIjlgL0ag6jSC0iYYQRS6EZcGSqXCkACZ/ALUbmE7ku5p2hMBaflVgOgOriibtNIQociHWvQab58PAGRDVw3Qa3xYcAs06qcDkVzSVXqT69m6BpX+G6Iuh/1TTafxDi3i/uplZBVYVTdrBj7lQUWY6iYgzlBbDW5PsIcNxL0BgkOlE/qFFFzicByWHTCfxCBVYVTSOBqvCXr9NRM7NsmDpNDiwHa56QVPmPalFgv3oJzc0O6LAdu/ezaBBg4iLiyM+Pp45c+Z4NoCm0otU3dqXYcMb9nWvdgNMp/EvLeKhaQcoO2Y6iUc4YhZicHAwTzzxBMnJyRw5coQePXqQmppKly5dPBNANzOLsDA7j9mZW8kvKiEiLJTpw2IZnRR56ot2r4H3pkP7wXDxn8wE9WcNI+APa02n8BhHnIG1atWK5ORkABo0aEBcXBx5eXmeC1C/JQTX0b1g4rcWZucxY/5G8opKsIC8ohJmzN/Iwuxf/D08sgfemAiNImHc87ruJW7niAL7pZycHLKzs+ndu7fnDhoYaF8HU4GJn5qduZWSsopTnispq2B25lb7F+Un4M1JUHoYfvMa1G1iIKX4G0cMIf6suLiYcePG8dRTT9GwYcPTfj89PZ309HQACgsLXXtwTaUXP5ZfVHL25y0L3r8Tdn8BV70ILRM8nE78lWPOwMrKyhg3bhwTJkxg7NixZ3xNWloaWVlZZGVl0bx5c9cGaNLOPgPzsy27RQAiwkLP/vwXf4e1L9n3eiWM83Ay8WeOKDDLspgyZQpxcXFMmzbNTIjG7aDsKBTvNXN8EYOmD4sltNap17RCawXxRPd8yLwb4q6AS+8zlE78lSMKbNWqVcydO5cVK1aQmJhIYmIi7733nmdDNG1vPx7Y7tnjiniB0UmRPDK2K5FhoQQAkWGh/H1wMH2+vhMiEmHMc/a1YhEPcsQ1sP79+2OZHrpr1sl+3L8NovubzSJiwOikyP9Mmz+0C14YCqFhcO08CKlrNpz4JUcUmFdoGAnBoXaBifizo/vh1bFQXgKTM6FBS9OJxE+pwKoqMBCadbB3PBXxV6XF8NrV9tqgExdCeJzpROLHNGhdHc06+dVupyKnKDsOb1wPBevgqpeg7UWmE4mfU4FVR9OO9th/2XHTSUQ8q/wEvHkDfP8RXPE0dB5hOpGICqxamnUELDi4w3QSEc+pKIO3fwvbMmHk3yDpetOJRAAVWPX8ciaiiD8oPwHvTIFvl8DwR6HnFNOJRE5ySYENGTKE9evXu+KtvNvP94KpwMQflB2HNyfClkUw9GHoc6vpRCKncEmBPfbYY0ydOpXf/va3FBQUuOItvVNIPWjUWjMRxfeVFsPrV8N3Pw0b9v296UQip3FJgSUnJ7NixQpGjRrF8OHDmTlzJiUlZ1780/GaddRMRPFtRw/A3DGQ8xmMeVbDhuK1XHYNzLIsYmNj+d3vfsfTTz9Nx44dmTt3rqve3ns07WgPIZpeGUTEHQ5+Dy+kwp4NcM2/oPt404lEzsolBda/f38iIyOZOnUqeXl5vPzyy6xcuZI1a9aQlpbmikN4j2Yd4USxvXmfiC/JzYLnU6HkENywGOIuN51I5JxcshLHs88+S3x8PAEBAac8//TTTxMX52N36p+cifgdNGxlNouIq6x/A9693V4WasI79qozIl7OJWdgCQkJp5XXz5YuXeqKQ3iPZh3tR03kEF9QUW5vh7IgDSJT4KblKi9xDLevhRgTE+PuQ3hWg1YQUl/bqojzHdkL82+CnZ9A71th6EMQVMt0KpEq02K+1RUQYJ+F6QxMnGz7clhwC5QegSv/DkkTTCcSqTbHrMQxefJkwsPDSUhIMB3Fvg6mm5nFicpPwLIH7O1Q6jaDtJUqL3EsxxTYjTfeSEZGhukYAGw50QJ+3E3cXfPpN2sFC7PzTEcSB1iYnUe/WStod9dSM5+b/HWQPhA+exKSJ8HNK7QdijiaYwpswIABNGnSxHQMFmbn8dzmIABiAvLJKyphxvyNKjE5p4XZecyYv5G8ohIs8OznprwUPvofeH4wHDsA174BV/yvdlEWx3NMgXmL2Zlb2VQeAUBswG4ASsoqmJ251WQs8XKzM7dSUlZxynMe+dxsXw5/vwg+fhTix8J/rYbY4e49poiH+NQkjvT0dNLT0wEoLCx0yzHyi0oIpCXHrVrEBu6Gyv88L3I2Z/t8uO1zc2gXfHivvRBvk/Zw/TvQYYh7jiViiE8VWFpa2smVP1JSUtxyjIiwUPKKSthmRRIX8MMpz4uczc+fmzM971Ilh+CTx2FNOgQEwqB7oN/tEFzbtccR8QIaQqym6cNiCa0VxFarDZ0D7SHE0FpBTB8WaziZeLOfPze/5NLPzfHD8MlsmJMIq/8Pul4Df/gaLpmu8hKf5ZgzsGuvvZaVK1eyf/9+oqKimDlzJlOmeH6V7NFJkQD8sDSG8PJPiG90gpuH9zr5vMiZ/Pz5mJ25lfyiEiLCQpk+LLbmn5uSIljzT1j9DBwvgo7DYPB90NILbjcRcbMAy/LNZdVTUlLIyspy3wF2rLC3nLhhMcRc4r7jiJzJoV3wxT8ge669uHSny+CSOyEy2XQycTi3f3e6kGPOwLxOi5/+hbtviwpMPKOyEr7/CLJehK3v2de4Eq6Ci26DVt1MpxPxOBXYhaofbq9ksHeT6STi6w7nw4Y34Ot/2ft11W0K/f4IPW+GRhq6Fv+lAquJFvGwd4vpFOKLSoth6/uwYZ49XG1VQpu+MPAv0OUKTcwQQQVWMy3iIeslqKyAwKDzv17kXMpKYPsy2DQfvsuAsmPQMAou/hN0vxaatjedUMSrqMBqokU8lJfAoRx9uciFOX4Ytn8I37wL330AZUftIcLu10LXq6B1HwjU3S4iZ6ICq4nwLvbj3k0qMKm6w/n28ODW9+D7j6GyDOo1h+6/gS5XQtv+EKS/miLno78lNdG8sz0TbO9m+4tH5EwsC/ZsgK0ZdmkVrLOfb9wO+twKsSOhdS8NQ4tUkwqsJkLqQpMYu8BEfqn8BOR8ahfW1vfhcB4QAFEpMPh+iB0BzWPtDVJF5IKowGoqvAvs2Wg6hXiD0uL/XM/a9iGUHoZadaH9pTDoL/YqGfWbm04p4jNUYDXVIsH+wiothtr1TacRTys9Yg8Nbl5gzyCsKLXvD+xyJXQeZd/kXksLPYu4gwqsplp0ASzY9w207mk6jXhC+QnY9gFsfBO+y4Ty49AgAlJ+C3GXQ5uLdD1LxANUYDXV8qclfArWqcB8Xf46yH4VNr0DJQftmYNJEyFhHLTurenuIh6mAqupsDb2fTv560wnEXcoLbbPtNa+DAXrIbgOdB4J3cbb17Y03V3EGP3tq6mAAIhIhvyvTScRVzq4096mJHuuPRmjRQJcNhu6XQ2hjU2nExFUYK4RkQQ7lsOJoxBSz3QaqYn8bPjsSdiy2L6O1WU09L4FonpqyruIl1GBuUJksr3YasEGaHuR6TRyIXatho8ftbcrqd0I+k+FXjdDwwjTyUTkLBxz1TkjI4PY2Fg6dOjArFmzTMc5VUSS/ahhROfJWwtzx8JLw+0b0ofMhKmbYMj9Ki8RL+eIM7CKigpuu+02PvzwQ6KioujZsydXXHEFXbp0MR3N1qClPY06P9t0Eqmqg9/Dh/fDN4shtAmk/hV63mSvriIijuCIAluzZg0dOnQgJiYGgPHjx7No0SLvKTCwhxHzdAbm9Y7/CJ/Mhi+fg8BgGDjD3tG4dgPTyUSkmhxRYHl5ebRu3frkr6Oiovjyyy8NJjqDiCT4dgmUFEFomOk08muWZd+/lTEDjhZC4gS49B5o2Mp0MhG5QI4oMMuyTnsu4AwzwtLT00lPTwegsLDQ7blOEZlsPxasg5iBnj22nNuBHbB0Gny/0r7lYcKb/7luKSKO5YhJHFFRUezevfvkr3Nzc4mIOP0Ce1paGllZWWRlZdG8uYcXTW2VaD9qGNF7VFbA6v+Df/SFvGwY8TjctEzlJeIjHHEG1rNnT7Zt28bOnTuJjIxk3rx5vP7666ZjnapuE3t/J03k8A4HdsCi2+CH1dDpMhj1pIYLRXyMIwosODiYZ555hmHDhlFRUcHkyZOJj483Het0kcmwe43pFP7NsmDd6/DedHuZp9HPQvfxuglZxAc5osAARowYwYgRI0zHOLeIJHuiQHGh9n0y4fiPsGSq/f8g+mIY8xw0ijSdSkTcxBHXwBwj4qeJHLqh2fMKNsBzA2DzQnt24Q2LVF4iPk4F5koRSfa9RT98YTqJf1n3b3gh1d6n67fvw4Dp2o9LxA84ZgjREULq2iW263PTSfxDRRlk3AVfPW8PGV71koZuRfyIzsBcrc1F9hBiWYnpJL7t2EF4daxdXn1vh4kLVV4ifkYF5mpt+0HFCXuRWHGPwu/g+cH2UO2Y52DoX7WxpIgfUoG5WpveQIC9PYe4Xs4qeGEIHD8Mk5bYU+RFxC+pwFwttDG0iIddq0wn8T2bF8Dc0VC/Bdy84qd/LIiIv1KBuUObi+wbmivKTSfxHV88C2/91r5VYXImNG5rOpGIGKYCc4e2faHsKOxZbzqJ81kWrHgYMv4bOo+EGxbay3aJiN/TlW93aNvXftz1OUT2MJvFySorIXMGfPksJE2Ey+ewcP0eZmduJb+ohIiwUKYPi2V0km5YFvFHOgNzhwYtoUmMJnLURGUFLP6DXV59boMrnmbh+j3MmL+RvKISLCCvqIQZ8zeyMDvPdFoRMUAF5i5t+sIPn9tnEVI9FeWw4BZY9ypcchcMexgCApiduZWSsopTXlpSVsHszK2GgoqISSowd2nbF0oOwX59uVZLRTksSIONb8Hg+2HQjJMryecXnfnm8LM9LyK+TQXmLj9fB8v5zGwOJ6koh/k32avJD5kJF0875bcjwkLP+MfO9ryI+DYVmLs0jrZ/bF9mOokzVFbYw4abF0DqX6H/Hae9ZPqwWEJrnbpIb2itIKYPi/VUShHxIl5fYG+99Rbx8fEEBgaSlZVlOk7VBQRAhyGw8xMoO246jXerrLQnbGx6G4Y8AP1uP+PLRidF8sjYrkSGhRIARIaF8sjYrpqFKOKnvH4afUJCAvPnz+eWW24xHaX6OqTai83+sBraDzKdxjtZFiydButeg4EzoP/Uc758dFKkCktEAAcUWFxcnOkIF67dxRAUYg8jqsBOZ1nwwT2w9iW7uC75b9OJRMRBvH4I0dFC6tmr02/70HQS7/Tp47D6GeiVZs84/Gm2oYhIVXjFGdiQIUPYs2fPac8//PDDXHnllVV+n/T0dNLT0wEoLCx0Wb4a6ZgKmX+Boh8grI3pNN5jzT9hxUPQbTwMf1TlJSLV5hUFtmyZa2bqpaWlkZaWBkBKSopL3rPGOvxUYNs+hJ5TTKfxDhvfhvf+DLEj4MpnIFADASJSffrmcLdmHe0zr+3LTSfxDtuXw4JboW1/uOolCKplOpGIOJTXF9iCBQuIiopi9erVjBw5kmHDhpmOVD0np9N/DOUnTKcxK28tvDERmneGa1+HWnVMJxIRB/P6AhszZgy5ubmUlpayd+9eMjMzTUeqvg6pcKLYnk7vr/Zvh9euhnrN4Pq3oU4j04lExOG8vsB8QrsBEFQbtr5vOokZR/bCq2OBAJi4wF6tX0SkhlRgnlC7vj0bcctC/1udvvQIvH41HC2ECW9C0/amE4mIj1CBeUr8GDhS4F/DiBVl8OYNsGcTXP2KNvcUEZdSgXlK7GVQq6690ro/sCxYfDvsWAGXz4FOQ00nEhEfowLzlJB60GkYbFlkbxvi6z76H1j/ur2+YfJE02lExAepwDwpYRwc2w85n5hO4l5rX4FPHoOkiVrfUETcRgXmSR1SIaQBbJpvOon7bPsQlky1730b9aSWiBIRt1GBeVKtOtB5JHyz2Ddvas7PhjcnQYt4uPplrbIhIm6lAvO0hLFw/Ef4/iPTSVzrUA68dg3UbQoT3gFPoAoAAAoESURBVILaDUwnEhEfpwLztJhBENoY1r1uOonrHDsIr14FFaX2Khu6UVlEPEAF5mnBIZA4Ab5dAocLTKepubIS+Pe1ULQLrp0HzWNNJxIRP6ECM6HnFKisgLUvm05SM5UV8M5NsPtLGPMctO1rOpGI+BEVmAlNYuxZemtftlercCLLgvfvtM8khz9iX9sTEfEgFZgpvW6G4j3wzbumk1yYz/4GXz0PfW+HPr8znUZE/JAKzJQOQyCsrV0CTvP1v2D5g9D1Ghgy03QaEfFTKjBTAoOg502waxXs3Ww6TdV9swTe/SO0HwxX/h8E6iMkImZ4/bfP9OnT6dy5M926dWPMmDEUFRWZjuQ6SddDcB344h+mk1RNzip4ezJEJMNv5tozKkVEDPH6AktNTWXTpk1s2LCBTp068cgjj5iO5Dp1m0DyJPuesAM7TKc5t/xs+Pd4aNzWvlE5pJ7pRCLi57y+wIYOHUpwcDAAffr0ITc313AiFxvwZwiuDR89bDrJ2e37BuaOhdAwmLjQLl4REcO8vsB+6cUXX+Syyy4zHcO16ofbs/g2vQN7NppOc7oDO+BfV0JQCNywCBpFmk4kIgJ4SYENGTKEhISE034sWrTo5GsefvhhgoODmTBhwlnfJz09nZSUFFJSUigsLPREdNfo+weo0wiW/9V0klMd3AmvXAGV5XZ5NYkxnUhE5KQAy7Is0yHO55VXXuHZZ59l+fLl1K1bt0p/JiUlhaysLDcnc6FP/wbLZ8LkTGjTx3Qa+8zrlcuh7JhdXq26m04kIh7gpO9OrzgDO5eMjAweffRRFi9eXOXycqTet0D9FpAxw/yOzQd2wMuj7HUOJ72r8hIRr+T1Bfb73/+eI0eOkJqaSmJiIrfeeqvpSO4RUg+Gz4L8r+GzJ83l2LMJXhoBFSfgxiXQsqu5LCIi5xBsOsD5bN++3XQEz0kYa68t+PEs6DTU82c+OavsleVD6tnlFR7n2eOLiFSD15+B+Z0Rj0PdZrDgVig77rnjfrME5o6BBi1gygcqLxHxeiowb1O3CVz5DOzbYk/qcDfLsieQvHG9PVw4ORPCWrv/uCIiNeT1Q4h+qWMq9EqDL/4ODSPsafbucOIoLPwv2LIQ4sfaxakVNkTEIVRg3mr4LCjeBx/cA7UbQo9Jrn3/vVvszSgLv4HUB+1tUQICXHsMERE3UoF5q8AgGPtPOFFsr/4eUg+6XlXz960oh8/nwMpZdjFOeBs6DK75+4qIeJiugXmz4BC4Zi60uQjemQLv3Wnfm3WhfvgSXhxq7+UVOwJu+1LlJSKOpQLzdiF1YeIC6P07WPMcpA+CgvXVe4+CDfDaNXZ5Fe2Gq16Ea16Bes3ck1lExAM0hOgEterAZbOg4xB70sVzAyD6YuhxI3QeZf/+r/2YB5sXwOb5kLfWXmtx8P32ih+aqCEiPkAF5iQdhsDvVsPaF+HrufawYlBte4X4RlH2Na3DeXBoF5QctP9Mq+72JI3kSfZ2KCIiPkIF5jT1msKA6dD/T7BzJez4CH7MtX8c2WuXWatEaNrevs7VtL3pxCIibqECc6rAQGh/qf1DRMQPaRKHiIg4kgpMREQcSQUmIiKOpAITERFHUoGJiIgjqcBERMSRVGAiIuJIKjAREXGkAMuyLNMh3KFZs2ZER0e79RiFhYU0b97crcdwFydnB2fnd3J2UH6TPJE9JyeH/fv3u/UYruKzBeYJKSkpZGVlmY5xQZycHZyd38nZQflNcnJ2d9AQooiIOJIKTEREHCnogQceeMB0CCfr0aOH6QgXzMnZwdn5nZwdlN8kJ2d3NV0DExERR9IQooiIOJIKrIbuvfdeunXrRmJiIkOHDiU/P990pCqbPn06nTt3plu3bowZM4aioiLTkarlrbfeIj4+nsDAQMfMzMrIyCA2NpYOHTowa9Ys03GqZfLkyYSHh5OQkGA6SrXt3r2bQYMGERcXR3x8PHPmzDEdqVqOHz9Or1696N69O/Hx8dx///2mI3kHS2rkxx9/PPnzOXPmWLfccovBNNWTmZlplZWVWZZlWXfeead15513Gk5UPVu2bLG+/fZb65JLLrG++uor03HOq7y83IqJibF27NhhlZaWWt26dbM2b95sOlaVffzxx9batWut+Ph401GqLT8/31q7dq1lWZZ1+PBhq2PHjo76b19ZWWkdOXLEsizLOnHihNWrVy9r9erVhlOZpzOwGmrYsOHJnx89epSAgACDaapn6NChBAfbm3L36dOH3Nxcw4mqJy4ujtjYWNMxqmzNmjV06NCBmJgYQkJCGD9+PIsWLTIdq8oGDBhAkyZNTMe4IK1atSI5ORmABg0aEBcXR15enuFUVRcQEED9+vUBKCsro6yszFHfNe6iAnOBu+++m9atW/Paa6/x4IMPmo5zQV588UUuu+wy0zF8Wl5eHq1btz7566ioKEd9ifqKnJwcsrOz6d27t+ko1VJRUUFiYiLh4eGkpqY6Lr87qMCqYMiQISQkJJz24+d/PT/88MPs3r2bCRMm8MwzzxhOe6rzZQc7f3BwMBMmTDCY9Myqkt8prDNM+NW/oj2ruLiYcePG8dRTT50yeuIEQUFBrFu3jtzcXNasWcOmTZtMRzIu2HQAJ1i2bFmVXnfdddcxcuRIZs6c6eZEVXe+7K+88gpLlixh+fLlXvllWtX/9k4QFRXF7t27T/46NzeXiIgIg4n8S1lZGePGjWPChAmMHTvWdJwLFhYWxsCBA8nIyHDkhBpX0hlYDW3btu3kzxcvXkznzp0NpqmejIwMHn30URYvXkzdunVNx/F5PXv2ZNu2bezcuZMTJ04wb948rrjiCtOx/IJlWUyZMoW4uDimTZtmOk61FRYWnpwlXFJSwrJlyxz1XeM2pmeRON3YsWOt+Ph4q2vXrtaoUaOs3Nxc05GqrH379lZUVJTVvXt3q3v37o6aQWlZljV//nwrMjLSCgkJscLDw62hQ4eajnReS5cutTp27GjFxMRYDz30kOk41TJ+/HirZcuWVnBwsBUZGWk9//zzpiNV2aeffmoBVteuXU9+3pcuXWo6VpWtX7/eSkxMtLp27WrFx8dbM2fONB3JK2glDhERcSQNIYqIiCOpwERExJFUYCIi4kgqMBERcSQVmIiIOJIKTEREHEkFJiIijqQCE/GQQYMG8eGHHwJwzz33cPvttxtOJOJsWgtRxENmzpzJfffdx759+8jOzmbx4sWmI4k4mlbiEPGgSy65hOLiYlauXEmDBg1MxxFxNA0hinjIxo0bKSgooHbt2iovERdQgYl4QEFBARMmTGDRokXUq1ePzMxM05FEHE8FJuJmx44dY+zYsTzxxBPExcVx77338sADD5iOJeJ4ugYmIiKOpDMwERFxJBWYiIg4kgpMREQcSQUmIiKOpAITERFHUoGJiIgj/T/CdE/8MzQJgAAAAABJRU5ErkJggg==
iVBORw0KGgoAAAANSUhEUgAAAbAAAAEgCAYAAADVKCZpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAcg0lEQVR4nO3deXTU9aH+8SckgJHFqCSVJCjGYBKGLMAAwUMBFYggIgZraeNVL9ioxdrq7+K93rrhz61S+pOCFuNSvS6lt0qBQksqcrX+ZAnBgCwSUYhmUxMxQGCAYfK9f3wDImBJIJnPfGber3M8hwzx5DkY8zDf5flGOY7jCAAAy3QwHQAAgFNBgQEArESBAQCsRIEBAKxEgQEArESBAQCsRIEBAKxEgQEArESBAQCsRIEBAKxEgQEArESBAQCsRIEBAKxEgQEArESBAQCsRIEBAKxEgQEArESBAQCsRIEBAKxEgQEArESBAQCsRIEBAKxEgQEArESBAQCsRIEBAKxEgQEArESBAQCsRIEBAKxEgQEArESBAQCsRIEBAKxEgQEArESBAQCsRIEBAKwUYzpAe+nRo4d69+5tOgYAWKWiokL19fWmY7RI2BZY7969VVpaajoGAFjF6/WajtBiHEIEAFiJAgMAWIkCAwBYyaoCCwQC6t+/v8aPH286CgDAMKsu4pg9e7YyMjK0e/du01EAIGgWllVrZnG5ahp8SoyL1fS8NE3sn2Q6lnHWvAOrqqrS0qVLdfPNN5uOAgBBs7CsWvcs2KjqBp8cSdUNPt2zYKMWllWbjmacNQX2i1/8Qk888YQ6dLAmMgCctpnF5fL5A996zecPaGZxuaFEocOKNliyZIkSEhI0cODAf/p5RUVF8nq98nq9qqurC1I6AGg/NQ2+Vr0eSawosPfee0+LFy9W7969NXnyZK1YsULXX3/9cZ9XWFio0tJSlZaWKj4+3kBSAGhbiXGxrXo9klhRYI899piqqqpUUVGh+fPn67LLLtMrr7xiOhYAtLvpeWmK7Rj9rddiO0Zrel6aoUShw6qrEAEg0hy+2pCrEI8X5TiOYzpEe/B6vWwhAkAr2fSz04pDiAAAHIsCAwBYiQIDAFiJAgMAWIkCAwBYiQIDAFiJAgMAWIkCAwBYiQIDAFiJAgMAWIkCAwBYiQIDAFiJAgMAWIkCAwBYiQIDAFiJAgMAWIkCAwBYiQIDAFiJAgMAWIkCAwBYiQIDAFiJAgMAWIkCAwBYiQIDAFiJAgMAWIkCAwBYiQIDAFiJAgMAWIkCAwBYiQIDAFiJAgMAWIkCAwBYiQIDAFjJigLbv3+/Bg8erOzsbHk8Hj3wwAOmIwEADIsxHaAlOnfurBUrVqhr167y+/0aNmyYxo4dq9zcXNPRAACGWPEOLCoqSl27dpUk+f1++f1+RUVFGU4FADDJigKTpEAgoJycHCUkJGj06NEaMmSI6UgAAIOsKbDo6GitX79eVVVVKikp0aZNm477nKKiInm9Xnm9XtXV1RlICQAIFmsK7LC4uDiNHDlSy5YtO+73CgsLVVpaqtLSUsXHxxtIBwAIFisKrK6uTg0NDZIkn8+n5cuXKz093XAqAIBJVlyFWFtbqxtvvFGBQEBNTU267rrrNH78eNOxAAAGWVFgWVlZKisrMx0DABBCrDiECADAsSgwAICVKDAAgJUoMACAlSgwAICVKDAAgJUoMACAlSgwAICVKDAAgJUoMACAlSgwAICVKDAAgJUoMACAlSgwAAgndR9JAb/pFEFBgQGA7RxH2vEP6dXrpKcGSVsWmU4UFFY8DwwAcAKHDkqb/yytmit9/oHUJV4a+Z9SykjTyYKCAgMA2/i+lta9KK0pkvbUSPHp0oQ5UuZ1UsczTKcLGgoMAGyxc4e0+ndS2SuSf6904Qhpwm+liy6XOkTeGSEKDABCXWWJtHKOtHWJFNVB6netNHSa1DPLdDKjKDAACEVNAbewVs6VqkqkM86SLrlDGnKL1D3RdLqQQIEBQCg50OgeIlz9tNTwqXR2b2nsE1JOgdS5q+l0IYUCA4BQsLtGWvOMtO730v5dUq8h0piHpfQrpQ7RptOFJAoMAEyq/UBa9ZS06XXJaZIyJkhDb5d6DTKdLORRYAAQbE1N0sfLpVVz3BuQO3WVBv1Eyr3VPWSIFqHAACBY/PulD/7ovuOqL5e6JUqjZkgDb5Ji40ynsw4FBgDtbW+9tPY5qeRZaV+9dF6WlP+s1HeiFNPJdDprUWAA0F7qPpJWPyVtmC8d2i/1yZMuuV3q/X0pKsp0OutRYADQlhxHqvj/7j7hR8uk6M5S9mT3xuP4NNPpwgoFBgBtIeD/Zli3doN05rnSiP+QBt0sdY03nS4sUWAAcDp8Dc3Dus+4w7o9Lpaumi1l/VDqGGs6XVijwADgVHxdIa2eJ5W9LB1slC4c7hZX6qiIHNY1gQIDgNaoXOvev/XhX5qHdSc1D+tmm04WcSgwADiZpoC0dal7fqtyjdT5LOmSn0mDb5HOSjKdLmJZUWCVlZW64YYb9Pnnn6tDhw4qLCzUz3/+c9OxAIS7A43S+lfdYd2vK6S4C6QrHpf6Xy917mY6XcSzosBiYmI0a9YsDRgwQHv27NHAgQM1evRo9e3b13Q0IGIsLKvWzOJy1TT4lBgXq+l5aZrYP0zffeyulUqekUpfcId1kwe5ixkZVzGsG0KsKLCePXuqZ8+ekqRu3bopIyND1dXVFBgQJAvLqnXPgo3y+QOSpOoGn+5ZsFGSwqvEPt/ozjxtfF1yAlL6ePdQYa/BppPhBKwosKNVVFSorKxMQ4YMMR0FiBgzi8uPlNdhPn9AM4vL7S8wx3GHdVfOkXa8I3XsInmnuMO656SYTod/wqoCa2xs1KRJk/Tkk0+qe/fux/1+UVGRioqKJEl1dXXBjgeErZoGX6tet4J/v7Txv913XHVbpW49pcsfkLz/KsWebTodWsCaAvP7/Zo0aZIKCgqUn59/ws8pLCxUYWGhJMnr9QYzHhDWEuNiVX2CskqMs/BG3b1fucO6a5+V9tZJ52VK1zwjefIZ1rWMFQXmOI6mTp2qjIwM3XXXXabjABFnel7at86BSVJsx2hNz7No269+m/tua8Mfmod1x7gPjrxwOMO6lrKiwN577z29/PLLyszMVE5OjiTp0Ucf1bhx4wwnAyLD4fNc1l2FeGRY9ynpo781D+v+UMqdJiWkm06H02RFgQ0bNkyO45iOAUS0if2TQr+wDgv4pc0L3cUMhnXDlhUFBgAtsn+XtO4ld1h3d5V0bh9p/JPu40wY1g07FBgA+339qbRmnvT+f7nDur2/L43/jZQ6mmHdMEaBAbBXVam7T7hlkTus68l3h3UTc0wnQxBQYADs0hSQyv8qrZwrVa52h3WH3i4NuZVh3QhDgQGww8G90vrX3GHdnduluPMZ1o1wFBiA0La7Viopah7WbZCSvNIP7pfSr5Ki+REWyfivDyA0HT2s23RIyhjvHio8P9d0MoQICgxA6HAc6eO33Pu3tr8tdTzT3SbMvY1hXRwnaAU2atQozZo1S9nZPHYbwDEY1sUpCFqBPfHEE7rzzjt1wQUX6NFHHz3yfC8AEWzvV1Lp81LJs9LeL6Xv9ZMmzpP6TWJYFycVtAIbMGCAVqxYoTfeeENXXHGF8vPzdffddys2lrvjgYhTv829mnD9H6RDPil1lPvgyAtHMKyLFgvqLeqO4ygtLU233Xab5syZoz59+ujll18OZgQAphwe1n1tsjTXK5W9ImVeK/10tXT9G1LKSMoLrRK0d2DDhg3T9u3b5fF4lJubqxdffFHp6emaPXu23n333SMPogQQZgJ+dylj5Rypdn3zsO6/Nw/rJphOB4sFrcDmzZsnj8ejqGP+hjVnzhxlZGQEKwaAYDnhsO7/k7J/xLAu2kTQCqxfv37f+XtLly4NVgwA7a3hM2n14WHdPe6w7pWz3AdIMqyLNhQS94GlpHB/B2C9qnXu/VtbFrvnshjWRTsLiQIDYKmmgFT+N3cR/rNVzcO606Qht0hnJZtOhzBHgQFovWOHdc86X8p7TBrwLwzrImgoMAAtt+fzb4Z1fV8zrAuj+I4DcHJfbG4e1v2Te1l8+pXujce9hnDvFoyhwACcmONIn6xwz299ssId1h14k/vgyHMvMp0OoMAAHOPQAfed1qqnpC+3SF3Pky6/Xxr4r9KZ55hOBxxBgQFw7dsprX3ePce190spwSNN/J3U71qGdRGSKDAg0tV/LK1+6tvDukNvZ5sQIY8CAyKR40ifrnTPb5X/TYruKGVdJ+VOk77X13Q6oEUoMCCSHB7WXTVXqimTYs+Rhv+bNOgnUrfvmU4HtAoFBkSC/bul95uHdXdVSuemSlf+xh3W7XSm6XTAKaHAgHDWUCmtmeeuwh/cI10wTBo3U+qTx7AurEeBAeGo+n33MOHmhe7HnmukS26XEvubzQW0IQoMCBdNTdJHf5NWzpU+Wyl16ibl3ubeeBzXy3Q6oM1RYIDtDu6TNrwmrXpa2vlJ87Duo1L/f5HO6G46HdBuKDDAVnu+aB7Wfd4d1k0cIF37gpRxNcO6iAh8lwO2+WJL87Duf38zrDt0mnT+UG48RkSxpsCmTJmiJUuWKCEhQZs2bTIdBwiuI8O6T0mfvOUO6w640T3HxbAuIpQ1BXbTTTfp9ttv1w033GA6ihaWVWtmcblqGnxKjIvV9Lw0TeyfZDoWQtwpfd8cOiBtfL15WHez1PV70mX3Sd4pDOsi4llTYMOHD1dFRYXpGFpYVq17FmyUzx+QJFU3+HTPgo2SRInhO7X6+2bfTvfcVsmzUuMX7rDu1U9LmddKMZ2DGR0IWdYUWKiYWVx+5IfQYT5/QDOLyykwfKcWf9989Ym0+mmp7FV3WPeiy6Vr5kkpl3J+CzhGWBVYUVGRioqKJEl1dXXt8jVqGnyteh2QTvJ94zjSZ6vc+7fK/+oO62Ze516YwbAu8J3CqsAKCwtVWFgoSfJ6ve3yNRLjYlV9gh9GiXGx7fL1EB5O9H0TrYAKuq2Xnv21VPO+FHu29P3/Iw0uZFgXaAHG0Fppel6aYjtGf+u12I7Rmp6XZigRbHD0901X7dPU6L/qH53v0kP+WdL+XdKVs6Q7t0iX30d5AS1kzTuwH/3oR3r77bdVX1+v5ORkzZgxQ1OnTg16jsPnK7gKEa0xsX+SYvfV6KsVczT+0N/VPcqn+nO90ujfShdfwbAucAqiHMdxTIdoD16vV6WlpaZjAO5zt1bOlTb/2f3YM9F94nHSALO5gBOw6WenNe/AAKs0NUkfLXMX4T99j2FdoB1QYEBbOm5Yt5c05hFpwA0M6wJtjAID2sKeL6S1z0prn5d8O93nbk16Xuo7kWFdoJ3wfxZwOr780D1M+EHzsG7aOPfBkQzrAu2OAgNay3Gk7f/j7hN+vFyKiXWfvZX7U6lHqul0QMSgwICWOnRA2vSGW1xfbJK6JEiX3SsNnCJ1Odd0OiDiUGDAyezbKZW+0Dys+7mU0JdhXSAEUGDAd/nqE2n176T1r0r+fe6g7sSnpYsu4/wWEAIoMOBojiN9ttq9MGPrUqlDjJR1eFjXYzodgKNQYIAkBQ5JHy52i6t63VHDuj+Rup1nOh2AE6DAENkO7JHe/y9p9Txp12fSOSnSuF9LOT+WOnUxnQ7AP0GBITLtqpLWzJPWvSQd2C2df4k09vHmYd3ok//7AIyjwBBZata7hwk3/9k939X3avfG46SBppMBaCUKDOGvqUnaVuzev1XxrjusO/gWKfdWKe580+kAnCIKDOHL75M2/MEd1v1qm9Q9WRrzcPOw7lmm0wE4TRQYwk/jl9La59x/9n0l9cxpHta9WoruaDodgDZCgSF8fLn1qGHdg1LaWPfBkRdcwo3HQBiiwGA3x5G2v908rPtm87BugZQ7jWFdIMxRYLDToYPSpte/Pax76b2Sl2FdIFJQYLDLvp3Sut9La4rcYd34DGnCXCnzB1LHM0ynAxBEFBjssHO7O6xb9krzsO5I6eqnpNTLOb8FRCgKDKHtszXSqjnSh0vcYd3MH7jDuuf1M50MgGEUGEJP4JC09S/u+a2qtdIZcdL375IGFzKsC+AICgyh48Ae9xDh6qelhs+ksy9kWBfAd6LAYN6u6qOGdXdJ5w+V8h5z7+NiWBfAd6DAYE7Nevcw4eYFktPkLmUM/ZmUzLAugJOjwBBcTU3Str+7ixkV70qdurrntobcKp19gel0ACxCgSE4jhvWTZJG/193WDc2znQ6ABaiwNC+Guuktc8eNaybLeU/J3kmMqwL4LRQYGgfdeXuYcINf5QCB6SLx7r3b/Uexo3HANoEBYa24zjSjneklXObh3XPcC+BHzpN6tHHdDoAYYYCw+k7dNC9knDVXOnzjVKXeGnkf0qDpkpdephOByBMUWA4db6vpdLfSyVF0p5aKT5dmjBHyryOYV0A7a6D6QAttWzZMqWlpSk1NVWPP/646TiRbed26a/Tpd/0ld6aIcWnSQVvSD9d7V5VSHkBCAIr3oEFAgFNmzZNb775ppKTkzVo0CBNmDBBffv2NR0tshw3rHtt87BupulkACKQFQVWUlKi1NRUpaSkSJImT56sRYsWUWDBcKJh3WF3ujcfd+9pOh2ACGZFgVVXV6tXr15HPk5OTtaaNWsMJooABxqPGtb9VDq7tzR2pntVYeeuptMBgB0F5jjOca9FneBeoqKiIhUVFUmS6urq2j1XWNpVLZU8I5W+6A7r9sqV8h6R0sYxrAsgpFhRYMnJyaqsrDzycVVVlRITE4/7vMLCQhUWFkqSvF5v0PKFhdoN7v1bh4d1MyZIl/xMSubPEUBosqLABg0apG3btmnHjh1KSkrS/Pnz9dprr5mOZb+mJveG45VzvhnWHfQTKfdW95AhAIQwKwosJiZGc+fOVV5engKBgKZMmSKPx2M6lr38PumDP7oXZtR/1Dys+5A04EaGdQFYw4oCk6Rx48Zp3LhxpmPYrbHOHdVd+5y0r55hXQBWs6bAcBrqPmoe1p3fPKx7hTT0doZ1AViNAgtXjiPt+IdbXNv+/s2wbu5PpfiLTacDgNNGgYWbgF/adHhY9wOGdQGELQosXPgapHUvSmuekfbUSD3SpKt+K2X9kG1CAGGJArPd1xXS6t9J778s+fdKF46QJvxWuuhyqYM1W80A0GoUmK0q1zYP6/5Fiuog9Wse1u2ZZToZAAQFBWaTpoC0dal7fqtyjXTGWdIld0hDbpG6H79MAgDhjAKzwYFGaf2r7rDu1xVS3AXS2CeknAKGdQFELAoslO2ucZ92XPqCtH+XlDzYXcxIH8+wLoCIR4GFotoP3JmnTa83D+te5d543Guw6WQAEDIosFDR1CR9vNy9MGPHP6SOXaRBN0tDbpXOudB0OgAIORSYaf79Rw3rlkvdEqVRM6SBNzGsCwD/BAVmyt56d1S35Fl3WPe8TOmaIslzjRTTyXQ6AAh5FFiw1X0krX7KHdY9tF/qM8Y9v3XhcIZ1AaAVKLBgcBz3gZEr50rbiqXozlL2ZPfG4/g00+kAwEoUWHsK+KXNf3ZvPK7dIJ15rjTiP9yLM7rGm04HAFajwNqDr0F6/yV3WHd3tdTjYumq2c3DurGm0wFAWKDA2tLXFdLqeVLZy9LBRve81vgnpdRRDOsCQBujwNpC5Vr3MOGHi5uHdSc1D+tmm04GAGGLAjtVDOsCgFEUWGsdaJTWv9Y8rLvDHda94ldS/+sZ1gWAIKLAWmp3rVTyjFT6e2l/g5Q8SBr1oLtTyLBu0Cwsq9bM4nLVNPiUGBer6Xlpmtg/yXQsAAZQYCfz+UZ35mnj65ITcJfgL/kZw7oGLCyr1j0LNsrnD0iSqht8umfBRkmixIAIRIGdiOM0D+vOlba/3TysO5VhXcNmFpcfKa/DfP6AZhaXU2BABKLAjrVlkfQ/j0p1W6VuPd3DhANvkmLPNhwMNQ2+Vr0OILxRYMfaVS116Chd84zkyWdYN4QkxsWq+gRllRjHzeFAJOLu2mMNLpRufdfdKqS8Qsr0vDTFdvz2BTOxHaM1PY89SSAS8Q7sWNH8kYSqw+e5uAoRgESBwTIT+ydRWAAkcQgRAGApCgwAYCUKDABgJQoMAGAlCgwAYCUKDABgpSjHcRzTIdpDjx491Lt373b9GnV1dYqPj2/Xr9FebM4u2Z3f5uwS+U0KRvaKigrV19e369doK2FbYMHg9XpVWlpqOsYpsTm7ZHd+m7NL5DfJ5uztgUOIAAArUWAAACtFP/jggw+aDmGzgQMHmo5wymzOLtmd3+bsEvlNsjl7W+McGADAShxCBABYiQI7Tffdd5+ysrKUk5OjMWPGqKamxnSkFps+fbrS09OVlZWla665Rg0NDaYjtcqf/vQneTwedejQwZors5YtW6a0tDSlpqbq8ccfNx2nVaZMmaKEhAT169fPdJRWq6ys1KWXXqqMjAx5PB7Nnj3bdKRW2b9/vwYPHqzs7Gx5PB498MADpiOFBgenZdeuXUd+PXv2bOeWW24xmKZ1iouLHb/f7ziO49x9993O3XffbThR62zZssXZunWrM2LECGft2rWm45zUoUOHnJSUFOeTTz5xDhw44GRlZTmbN282HavF3nnnHWfdunWOx+MxHaXVampqnHXr1jmO4zi7d+92+vTpY9WffVNTk7Nnzx7HcRzn4MGDzuDBg51Vq1YZTmUe78BOU/fu3Y/8eu/evYqKijKYpnXGjBmjmBj3kXC5ubmqqqoynKh1MjIylJZmz9OYS0pKlJqaqpSUFHXq1EmTJ0/WokWLTMdqseHDh+ucc84xHeOU9OzZUwMGDJAkdevWTRkZGaqurjacquWioqLUtWtXSZLf75ff77fqZ017ocDawC9/+Uv16tVLr776qh566CHTcU7JCy+8oLFjx5qOEdaqq6vVq1evIx8nJydb9UM0XFRUVKisrExDhgwxHaVVAoGAcnJylJCQoNGjR1uXvz1QYC0watQo9evX77h/Dv/t+ZFHHlFlZaUKCgo0d+5cw2m/7WTZJTd/TEyMCgoKDCY9sZbkt4Vzggt++Vt0cDU2NmrSpEl68sknv3X0xAbR0dFav369qqqqVFJSok2bNpmOZFyM6QA2WL58eYs+78c//rGuvPJKzZgxo50TtdzJsr/00ktasmSJ3nrrrZD8YdrSP3sbJCcnq7Ky8sjHVVVVSkxMNJgosvj9fk2aNEkFBQXKz883HeeUxcXFaeTIkVq2bJmVF9S0Jd6BnaZt27Yd+fXixYuVnp5uME3rLFu2TL/61a+0ePFinXnmmabjhL1BgwZp27Zt2rFjhw4ePKj58+drwoQJpmNFBMdxNHXqVGVkZOiuu+4yHafV6urqjlwl7PP5tHz5cqt+1rQb01eR2C4/P9/xeDxOZmamM378eKeqqsp0pBa76KKLnOTkZCc7O9vJzs626gpKx3GcBQsWOElJSU6nTp2chIQEZ8yYMaYjndTSpUudPn36OCkpKc7DDz9sOk6rTJ482TnvvPOcmJgYJykpyXnuuedMR2qxd99915HkZGZmHvl+X7p0qelYLbZhwwYnJyfHyczMdDwejzNjxgzTkUICSxwAACtxCBEAYCUKDABgJQoMAGAlCgwAYCUKDABgJQoMAGAlCgwAYCUKDAiSSy+9VG+++aYk6d5779Udd9xhOBFgN7YQgSCZMWOG7r//fn355ZcqKyvT4sWLTUcCrMYSBxBEI0aMUGNjo95++21169bNdBzAahxCBIJk48aNqq2tVefOnSkvoA1QYEAQ1NbWqqCgQIsWLVKXLl1UXFxsOhJgPQoMaGf79u1Tfn6+Zs2apYyMDN1333168MEHTccCrMc5MACAlXgHBgCwEgUGALASBQYAsBIFBgCwEgUGALASBQYAsNL/AkUHDk/ws1qSAAAAAElFTkSuQmCC
iVBORw0KGgoAAAANSUhEUgAAAbAAAAEgCAYAAADVKCZpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXyU1aHG8d9kAcIakEQkQRCBEMISIGwVZZFFNCKCCxIriNxYtXWreLWKiK0rtZWi1huVqrhQsQgIGNbigkIcDAgoiEo0CVSCGNYEsrz3j6O2LtQEkjlzZp7v5zMfIQnkkUzmyTnvec/xeZ7nISIi4pgI2wFERESOhwpMREScpAITEREnqcBERMRJKjAREXGSCkxERJykAhMRESepwERExEkqMBERcZIKTEREnKQCExERJ6nARETESSowERFxkgpMREScpAITEREnqcBERMRJKjAREXGSCkxERJykAhMRESepwERExEkqMBERcZIKTEREnKQCExERJ6nARETESSowERFxkgpMREScpAITEREnqcBERMRJKjAREXGSCkxERJykAhMRESepwERExEkqMBERcZIKTEREnBRlO0Btad68OW3atLEdQ0TEKXl5eezZs8d2jCoJ2QJr06YNfr/fdgwREaekpaXZjlBlmkIUEREnqcBERMRJKjAREXGSCkxERJykAhMRESepwERExEkqMBGRUOF5sHEOlB+xnSQgVGAiIqHiwwXw6tXwwcu2kwSECkxEJBQcOQhLfwctukC3y2ynCYiQ3YlDRCSsvPVH2F8IF/0NIsPjpV0jMBER1+3ZDu88CqkZcGof22kCRgUmIuIyz4MlkyG6PgyZZjtNQKnARERc9uEC+OyfMPgOaBhnO01AqcBERFx15ABk3w4tukLaVbbTBFx4XOkTEQlFqx+AA7vg0tlhs3DjP2kEJiLioi+3wNq/Qs/xkOjOGV41SQUmIuKaykpYdDPExMLZU22nsSb8xpwiIq7b+CLkr4ULHoP6zWynsUYjMBERlxz6CpZNgVZ9ods422mscqrAKioq6N69O+np6bajiIjYsfwuOLIf0v8MEU69hNc4p6YQZ8yYQXJyMvv377cdRUQkYObnFjJ96TYS973P3+s+z8ftJtHh5E62Y1nnTH0XFBSwePFiJk2aZDuKiEjAzM8t5PZ5m9hdfIDfR8+iwGvO2G1nMj+30HY065wpsBtvvJGHHnqIiDAfMotIeJm+dBslZRX8T+QiOkQUclfZBPaWRTN96Tbb0axzog0WLVpEfHw8PXv2/K8fl5WVRVpaGmlpaRQVFQUonYhI7dlZXEJr37+4IepVllT0ZlVlj+/eHu6cKLA1a9awcOFC2rRpw9ixY1m1ahWXX375jz4uMzMTv9+P3+8nLi689gQTkdDUskk97o16miNEcXfZ+H+/PTbGYqrg4ESB3X///RQUFJCXl8ecOXMYPHgwzz//vO1YIiK17i8pH9M/cgsPlY9lN00BiImOZPLwJMvJ7HNqFaKISFg59BU9t05nb9NurD6cjm/fEVrGxjB5eBKjuifYTmedcwU2cOBABg4caDuGiEjtWz4FSvfRbPxrvH1yiu00QceJKUQRkbDz6T9hwwtwxg2g8vpJKjARkWBz9DC8dgOc1A7OutV2mqDl3BSiiEjIW30fFH8OExZDdD3baYKWRmAiIsFkZy68+xj0GA9t+ttOE9RUYCIiwaKiDBb8BhrEwdB7bKcJeppCFBEJFmsegS83waUvmMMq5b/SCExEJBgUbYM3HoJOoyBZR0ZVhQpMRMS2ygpY8Guo0wDOnW47jTM0hSgiYlvOk1CQAxdmQcN422mcoRGYiIhNez+DldOg3VDoeontNE5RgYmI2FJZCQuvh4goOH8G+Hy2EzlFU4giIrb4n4a8t2DkTGiizXmrSyMwEREbvv4clk+F0wdD91/aTuMkFZiISKBVVsLC34AvAs7/i6YOj5OmEEVEAm39LNjxBqQ/ArGtbKdxlkZgIiKBtHcHLLvLTB32nGA7jdNUYCIigVJZCQuug4hIs3BDU4cnRFOIIiKBkpMFn6+BCx6HJom20zhPIzARkUDYsx1WTIX2wyF1nO00IUEFJiJS2yrK4dWrIToGRmrVYU3RFKKISG17+89QuB4umgWNWthOEzI0AhMRqU27NsIbD0DnMeYhNUYFJiJSW8pKYd7VUL85nPtH22lCjqYQRURqy8p7oOgjyHgF6jeznSbkaAQmIlIbPlsNax+DXpOg/VDbaUKSCkxEpKaVfA3zr4WT2sHQ39tOE7I0hSgiUtOWTIaDX8JVy6BOfdtpQpZGYCIiNemDl2HTXBjwv5DQ03aakKYCExGpKV/nweLfQqu+0P9m22lCngpMRKQmVJSbJfMAo7MgUldoapsTBVZaWkrv3r3p1q0bKSkpTJ061XYkEZHve/tPkL8WznsYmra2nSYsOPEjQt26dVm1ahUNGzakrKyM/v37M2LECPr27Ws7mogI5OfA6geg80XQ9RLbacKGEyMwn89Hw4YNASgrK6OsrAyfNsMUkWBQUgyvXAVNEiD9T7bThBUnCgygoqKC1NRU4uPjGTp0KH369LEdSUTCnefBoptgfyGMmQX1mthOFFacKbDIyEg2bNhAQUEBOTk5bN68+Ucfk5WVRVpaGmlpaRQVFVlIKSJhZcMLsGUeDPodtOplO03YcabAvhUbG8vAgQPJzs7+0fsyMzPx+/34/X7i4uIspBORsLFnOyy5FdqcCf1vsp0mLDlRYEVFRRQXFwNQUlLCihUr6Nixo+VUIhK2ykph7gSIqmuWzEdE2k4UlpxYhbhr1y7Gjx9PRUUFlZWVXHLJJaSnp9uOJSLhatkd8OVmGPcyNG5pO03YcqLAunbtSm5uru0YIiLw4UJ47yno92voMNx2mrDmxBSiiEhQ+PpzWPhraNkDztaGCrapwEREqqL8KLxyJXjARbMgqo7tRGHPiSlEERHrVkyFwvVwyWxodprtNIJGYCIiP++j12Dt49DnV9BppO008g0VmIjIf7N3B8y/zlz30unKQUUFJiJyLGWlMHc8+ICL/6brXkFG18BERI4l+39h10a4bA40bWM7jfyARmAiIj9lw0uw/hmzTVTSCNtp5CeowEREfujLLWaX+db9YdCdttPIMajARET+U0kx/P1yqNfY3O8VqSstwUpfGRGRb1VWwqu/guIvYPwiaHSy7UTyX6jARES+9faf4OPX4ZwHoXU/22nkZ2gKUUQE4JOVsOoP0OVi6HO17TRSBSowEZG9O+CViRDfCc6fAT6f7URSBSowEQlvRw/BnAzz67HPQ50GdvNIlekamIiEL8+DBb+Goo8gYy40a2s7kVSDRmAiEr7WzIAt8+Dsu6DdENtppJpUYCISnj5eBivuhpQL4YwbbaeR46ACE5HwU/Qx/OMqaNEZLnhMizYcpQITkfBSUgxzLoPIOjD2JS3acJgWcYhI+KgoN8vlv/4cxi+E2Fa2E8kJUIGJSPhYdgd8uhJGzoTWv7CdRk6QphBFJDz4Z8G6J6DvddDjCttppAaowEQk9O14E5ZMhnZDYdjvbaeRGqICE5HQtmc7/P2XcFI7uOhpiIi0nUhqiApMRELXoa/ghYshIgrG/R3qNbGdSGqQFnGISGgqP2IOpty/EyYsgqZtbCeSGqYCE5HQ43mw8Hr44h1zqnKr3rYTSS3QFKKIhJ5/3gcfzIFBd0LnMbbTSC1RgYlIaHl/Nrz5EHT/JZx1i+00UoucKLD8/HwGDRpEcnIyKSkpzJgxw3YkEQlGn66CRTfC6YMh/c/a4zDEOXENLCoqiocffpgePXpw4MABevbsydChQ+nUqZPtaCJhY35uIdOXbmNncQktY2OYPDyJUd0TbMf6t10bzXL5uI5w8bMQGW07kdQyJ0Zgp5xyCj169ACgUaNGJCcnU1hYaDmVSPiYn1vI7fM2UVhcggcUFpdw+7xNzM8Nku/Drz83y+XrxZqDKes1tp1IAsCJAvtPeXl55Obm0qdPH9tRRMLG9KXbKCmr+N7bSsoqmL50m6VE/+HwXnh+DJSXwuX/gMYtbSeSAHFiCvFbBw8eZMyYMTzyyCM0bvzjn7CysrLIysoCoKioKNDxRELWzuKSar09YI4ehhcvheIv4Ir5EN/Rbh4JKGdGYGVlZYwZM4aMjAxGjx79kx+TmZmJ3+/H7/cTFxcX4IQioatlbEy13h4QFWUwdzwU+mHMU9pdPgw5UWCe53HVVVeRnJzMzTffbDuOSNiZPDyJmOjv7yEYEx3J5OFJdgJVVsLC38D2ZXDen6DTSDs5xKqAFdiQIUPYuHHjcf3ZNWvWMHv2bFatWkVqaiqpqaksWbKkhhOKyLGM6p7A/aO7kBAbgw9IiI3h/tFd7KxC9DxYPgU2vmRuVE67MvAZJCj4PM/zAvGJ3n//fW655RZat27NfffdxymnnFKrny8tLQ2/31+rn0NELHjzj7Dq99A7E0Y8pHu9aphLr50BG4H16NGDVatWkZ6ezjnnnMO0adMoKbF8AVhE3PLeU6a8ulwC5zyo8gpzAb0G5nkeSUlJXHPNNcycOZP27dsze/bsQEYQEVd9MBcW3wIdRsCoxyHCiUv4UosC9gzo378/CQkJ3HTTTRQWFvLMM8+wevVqcnJyyMzMDFQMEXHR1sXw6tXQ+gy4+G/aZUOAAN4H9sQTT5CSkoLvB0P+mTNnkpycHKgYIuKaT1bC3AnQMhXGzYFoi0v3JagErMA6d+58zPctXrw4UDFExCV5a2BOBjRPMrts1G1kO5EEkaCYRG7btq3tCCISbPLfgxcvgdhW8MtXIaap7UQSZIKiwEREvqdwPTw/GhrGwxULoaF21pEfU4GJSHDZuQFmX2hGXONfg8a1e8+ouEsFJiLBY9cHMHsU1G0CExZBk0TbiSSIqcBEJDjs2gjPng91GsL4hRB7qu1EEuScOk5FRELUzg3w3AVQtzFMeA2atrGdSBygEZiI2FW4Hp4b+U15LVJ5SZWpwETEni/WwnOjoF7sN+XV2nYicYgKTETs2PEWzB4NDeLgytdVXlJtKjARCbxPVsALF5ublK9cAk0snCsmzlOBiUhgfbgAXhwLzdvBhMXQqIXtROIoFZiIBM6GF83GvAk9YPwiaNDcdiJxmApMRAJj7V9h/jVw2lnf7G0YazuROE73gYlI7fI8WPUHeOuP0DEdxjwN0fVsp5IQoAITkdpTWQGLfwvr/wY9roD0RyAi0nYqCREqMBGpHWUl8I9JsHURnPlbGDwFfnCgrciJUIGJSM07vBdeugzy18E5D0LfX9lOJCFIBSYiNav4C3h+DHydBxf/DVIutJ1IQpQKTERqTuH78NJYKCs1Kw3b9LedSEKYltGLSM3Y9jo8cx5E1oWrlqm8pNapwETkxHgerH0C5oyDuCSYtALiO9pOJWFAU4gicvwqyuD1W8E/y9zjNToL6jSwnUrChEZgP1T4Pqy619y/IiLHVvK1WazhnwVn3AiXzFZ5SUBpBPZDWxfBWw+b483HPAn1mthOJBJ8ij42izWKv4ALHofuGbYTSRhyZgQ2ceJE4uPj6dy5c+1+osFT4LyH4dOV8ORg840qIv/28VJ46mwo3QfjX1N5iTXOFNiECRPIzs6u/U/k80GvSeYbs3SfKbGPXvveh8zPLeSMB1Zx2m2LOeOBVczPLaz9XOI85583nmdmJ168FJq2gczV0Lqf5VASzpwpsLPOOotmzZoF7hO2/gVkvgFxHeDvl8PyqVBRzvzcQm6ft4nC4hI8oLC4hNvnbXLvxUgCyvnnTel+832w8h7oPBomLjWHUYpY5EyBWdEkwRx1njYR1jwCs0fxVPY6Ssq+v8CjpKyC6Uu3WQopLpi+dJu7z5uij82U4bbXYfh9Zjf5OvVtpxIJrQLLysoiLS2NtLQ0ioqKauYvjaoL6X82F6oL3mNW6U30jfjwRx+2s7ikZj6fhKRjPT+C/nmz+R/w5CCzt+EV86HfddqQV4JGSBVYZmYmfr8fv99PXFxczf7l3TNg0kpKI+rzQvS9XBs5Hx+V3727ZWxMzX4+CSnHen4E7fOm/AgsmQyvTISTU+DqN81BlCJBJKQKrNa16MwHIxaQ7fXj1uiXeTb6QeIoJiY6ksnDk2ynkyA2eXgSMdHfPwcraJ83e3fArHMgJwv6/RomLDbT6SJBxpkCu+yyy+jXrx/btm0jMTGRp59+2kqO9N4dKBv1JA9EXUPviK0srXc7T/ffx6ju+gaXYxvVPYH7R3chITYGH5AQG8P9o7sE3/Nmy6vwf2fBV5+aG5OH3wuR0bZTifwkn+d5nu0QtSEtLQ2/31+7n2T3RzD3Sij6CPpeB2ffpaPSxU1HD8PS35mTkxPS4KJZ0LS17VRiQUBeO2uIMyOwoBSfDJn/NPeNrX3M3DP25Y8XeIgEtV0bIWuAKa8zboCJ2SovcYIK7ERFx5idO8a9DId2Q9ZAeOdRqKz82T8qYlVlBaz5Czx5Nhw5AFcsgKH3aMpQnKECqykdhsM178Lpg2HZHfBsujmRViQYfZ0Hz54Py6d889x9B9oOtBxKpHpUYDWpYRxc9hJc8Bjs+gD+eobZqTs0LzOKizwP3n/OPDd3fWDub7z0eagfwF1uRGqICqym+XzQ/XK49h1I6AmLboLnRmo0JvbtKzDHnyz8DbTsbp6j3TN0Y7I4SwVWW2JPNdcUzp8BhbnweD9Y+1edMyaB53mw/ll4rC988S6MeAiuWGieoyIOU4HVJp8Pek6A69ZCm/6QfRs8NQT+tcl2MgkXX31qrnW9dj20TDXXuvpcDRH61hf36VkcCE0SzSrFMU/Dvnz4vwGw7E44ctB2MglV5UfN0SeP9zPXutIfMaOuZqfZTiZSY3Qic6D4fNDlIrNKcfld8M5M2PwqjHgAOqbrOoTUnLy3YfFvoWgrJI+Ec6dDoxa2U4nUOI3AAq1+M7jgUZi4DGJizRlLL1wEe7bbTiauO/AlvPoreOY8KDsMl82BS2ervCRkqcBsObWPOTBz+P2Qn2OmepbdaQ4OFKmO8qNmRD+zJ2x6Bc78LVy7DpJG2E4mUqs0hWhTZBT0u9ZMLa6cZnbw2DgHBv0Oul9h3i9yLJ4H25ebPQy/2g7thsI5D0DzdraTiQSERmDBoGG8ufn5f1bBSe3NvWNP9DcvTroJWn7KvzbD7FHw4sXgVZhFQpe/ovKSsKICCyYJPeDKJeYYi/JSc23s2fOhYL3tZBIsivNh/nXmB5xdG82I69p1ZjsokTCjOapg4/NBp5HQ4RxY/wy88SA8NRiSz4dBd5gd8CX8HPoK3v4T5Dxpft/vOjjrFohpajeXiEUqsGAVVQf6ZELqZfDuY+b62EeLoPMYGHgbNG9vO6EEQsnX5mu/7gmzsrDbOPP1j21lO5mIdSqwYFe3kXnB6p0J7/wF1v0fbJkHKaPNarOTO9lOKLXh8F7ztV77VziyD1IuhAG3QXxH28lEgoYKzBX1m8GQu83Jz+/OhJynYPMr5ibo/jdDYk/bCaUmHNwN7z4K7z0NRw+ar+/A26FFZ9vJRIKOCsw1DePMoYNn3AhrH4ecLNi6CNqcaU7TbTdEu3q4aM8n5geTDS9BZZlG2CJVoAJzVf1mMPhOU1rrnzXXyV64CJonQd9fQdexUKe+7ZTy33ie2fZp3ROwdTFE1jHXPPv9RsvhRarA53mheaNRWloafr/fdozAKT8KW16FtY+Z5dX1Ys25ZGkT4aTTbaeT/3T0EGz+h7nG9eVmiGlmvk59rjb3BIpY5NJrp0ZgoSKqDnS7FLpeYs58WveEWQDw7qNmA+GeE6DDCPNxYsfureaE7o1zzMKM+E4wciZ0uRiiY2ynE3GOCizU+HzQ+hfmsX+XOT5+/TPw8hVQvzl0GwupGbq2Eiil+82q0dznoeA9M03Y6QIz4jq1n65XipwATSGGg8oK+GQl5D4H216HynJo0cVcJ+s8Ghq3tJ0wtFSUmX/vTS/D1iVQXmKuTfb4pfk3bxhnO6HIMbn02qkRWDiIiIQOw8zj0B5z/WXjHFh2h9kB/9R+psiSz9fRG8erohzy3oQt8+Gj16Bkr9klI3UcdLsMEtM02hKpYRqBhbM922HzPDPFVbTVvC2xl7n3KOlcs9uHXnSP7egh+HSVGWV9nG1KK7oBJJ1jrmudfrauOYpzXHrtVIGJsfsjs1XV1tfMKkaApm2g/TBzb1nrX5hdQcKZ58Gej+GTFeaRtwYqjkC9JtB+uNnDst0QLcgQp7n02qkpRDHik81jwGSz4/n2peY4l/dnm5ulI6LM6KzNmabMEntB3Ya2U9cuz4O9n5lVnTveNI8Du8z7midBr0lmtHVqP4iMtptVJAypwOTHYluZF+dek6CsFPLXwWerzeOtP8KbleCLNAtBEnuZ6zste5j7zSIibac/fqX7YdcGKHwfCv3wxTo4tNu8r35zOO0s8zh9MDRtbTeriKjA5GdE14O2A8yDqeZFviDHTJ8VvAcbXoT3vjniI7qB2bPv5M5mNBfX0TwaNA+ua2nlR83Ias/H5trfvzaZG4r37gC+mVGPbW2K6tQ+ZoQV1zG4/h9ExJ0Cy87O5oYbbqCiooJJkyZx22232Y4Unuo1Ntd52g0xv6+sMCWwMxd2fQD/+gA2zYUj+//9Z+o2hmanQdPToEkiNGkFTRKg4clm54kGcRBdv2YKorLCHEFyaA8c/BL274QDO8206Nd55lH8hTnF+FvN2sLJKWa1YMse0LI7NDjpxLOISK1yosAqKiq47rrrWL58OYmJifTq1YuRI0fSqZNuxrUuItK8+J+cAt2/eZvnmWtFuz8yKx33fmYeX242q/XKS3/890TWMcvO68WaPRyjG5j/RkRDZJS5BgfgVZqSqigzf095qdm1vXS/Kc3SfeZjfiimmSnRhB7mTLXmHSCuA5zUPvSv5YmEKCcKLCcnh3bt2tG2bVsAxo4dy4IFC1RgwcrnMzdHN24J7c7+/vs8Dw5/BfsK4FCRGSUd3A2lxVBSbP579LA5vPHgbnPTdWW5KSyfD3wRgA+i6kJUPfPfJq0gvpFZJRnTzExZ1j/JjO4aJ0CjU7SxsUgIcqLACgsLadXq3yfQJiYmsm7dOouJ5Lj5fKZgGjS3nUREHOdEgf3UrWq+n7hekpWVRVZWFgBFRUW1nktEROyJsB2gKhITE8nPz//u9wUFBbRs+eP9+zIzM/H7/fj9fuLitN+ciEgoc6LAevXqxfbt29mxYwdHjx5lzpw5jBw50nYsERGxyIkpxKioKB599FGGDx9ORUUFEydOJCUlxXYsERGxyIkCAzj33HM599xzbccQEZEg4cQUooiIyA+pwERExEkqMBERcZIKTEREnKQCExERJ6nARETESSowERFxkgpMREScpAITEREnqcBERMRJKjAREXGSCkxERJykAhMRESepwERExEkqMBERcZIKTEREnKQCExERJ6nARETESSowERFxUpTtACLVMT+3kOlLt7GzuISWsTFMHp7EqO4JtmOJiAUqMHHG/NxCbp+3iZKyCgAKi0u4fd4mAJWYSBjSFKI4Y/rSbd+V17dKyiqYvnSbpUQiYpMKTJyxs7ikWm8XkdCmAhNntIyNqdbbRSS0qcDEGZOHJxETHfm9t8VERzJ5eJKlRCJikxZxiDO+XaihVYgiAiowccyo7gkqLBEBNIUoIiKOUoGJiIiTVGAiIuIkFZiIiDhJBSYiIk7yeZ7n2Q5RG5o3b06bNm1q9XMUFRURFxdXq5+jtricHdzO73J2UH6bApE9Ly+PPXv21OrnqCkhW2CBkJaWht/vtx3juLicHdzO73J2UH6bXM5eGzSFKCIiTlKBiYiIkyLvvvvuu22HcFnPnj1tRzhuLmcHt/O7nB2U3yaXs9c0XQMTEREnaQpRREScpAI7QVOmTKFr166kpqYybNgwdu7caTtSlU2ePJmOHTvStWtXLrzwQoqLi21Hqpa5c+eSkpJCRESEMyuzsrOzSUpKol27djzwwAO241TLxIkTiY+Pp3PnzrajVFt+fj6DBg0iOTmZlJQUZsyYYTtStZSWltK7d2+6detGSkoKU6dOtR0pOHhyQvbt2/fdr2fMmOFdffXVFtNUz9KlS72ysjLP8zzv1ltv9W699VbLiarnww8/9LZu3eoNGDDAe++992zH+Vnl5eVe27ZtvU8//dQ7cuSI17VrV2/Lli22Y1XZG2+84a1fv95LSUmxHaXadu7c6a1fv97zPM/bv3+/1759e6f+7SsrK70DBw54nud5R48e9Xr37u29++67llPZpxHYCWrcuPF3vz506BA+n89imuoZNmwYUVHmRJ2+fftSUFBgOVH1JCcnk5TkzmGWOTk5tGvXjrZt21KnTh3Gjh3LggULbMeqsrPOOotmzZrZjnFcTjnlFHr06AFAo0aNSE5OprCw0HKqqvP5fDRs2BCAsrIyysrKnHqtqS0qsBpwxx130KpVK1544QXuuece23GOy6xZsxgxYoTtGCGtsLCQVq1afff7xMREp15EQ0VeXh65ubn06dPHdpRqqaioIDU1lfj4eIYOHepc/tqgAquCIUOG0Llz5x89vv3p+d577yU/P5+MjAweffRRy2m/7+eyg8kfFRVFRkaGxaQ/rSr5XeH9xIJf/RQdWAcPHmTMmDE88sgj35s9cUFkZCQbNmygoKCAnJwcNm/ebDuSdTqRuQpWrFhRpY8bN24c5513HtOmTavlRFX3c9mfffZZFi1axMqVK4PyxbSq//YuSExMJD8//7vfFxQU0LJlS4uJwktZWRljxowhIyOD0aNH245z3GJjYxk4cCDZ2dlOLqipSRqBnaDt27d/9+uFCxfSsWNHi2mqJzs7mwcffJCFCxdSv35923FCXq9evdi+fTs7duzg6NGjzJkzh5EjR9qOFRY8z+Oqq64iOTmZm2++2XacaisqKvpulXBJSQkrVqxw6rWm1theReK60aNHeykpKV6XLl289PR0r6CgwHakKjv99NO9xMREr1u3bl63bt2cWkHpeZ43b948LyEhwatTp44XHx/vDRs2zHakn7V48WKvffv2Xtu2bb0//OEPtuNUy9ixY70WLVp4UVFRXue5RRIAAAEuSURBVEJCgvfUU0/ZjlRlb731lgd4Xbp0+e75vnjxYtuxqmzjxo1eamqq16VLFy8lJcWbNm2a7UhBQTtxiIiIkzSFKCIiTlKBiYiIk1RgIiLiJBWYiIg4SQUmIiJOUoGJiIiTVGAiIuIkFZhIgAwaNIjly5cDcOedd3L99ddbTiTiNu2FKBIg06ZN46677mL37t3k5uaycOFC25FEnKadOEQCaMCAARw8eJDVq1fTqFEj23FEnKYpRJEA2bRpE7t27aJu3boqL5EaoAITCYBdu3aRkZHBggULaNCgAUuXLrUdScR5KjCRWnb48GFGjx7Nww8/THJyMlOmTOHuu++2HUvEeboGJiIiTtIITEREnKQCExERJ6nARETESSowERFxkgpMREScpAITEREn/T96/sx1aFGlzAAAAABJRU5ErkJggg==
iVBORw0KGgoAAAANSUhEUgAAAbAAAAEgCAYAAADVKCZpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXhU5f3+8fdkAYICYUkUEjRshhAgAQJI2QSBgCBCcAHRomhjrf25tVj9utK6U1upttXUtWilpSIgSAKIIlIEg4CAElGIJAEkCGENJJmc3x9PpaWAJmRmnjkz9+u6vCIxzrlbh7k55zzn83gcx3EQERFxmQjbAURERM6ECkxERFxJBSYiIq6kAhMREVdSgYmIiCupwERExJVUYCIi4koqMBERcSUVmIiIuJIKTEREXEkFJiIirqQCExERV1KBiYiIK6nARETElVRgIiLiSiowERFxJRWYiIi4kgpMRERcSQUmIiKupAITERFXUoGJiIgrqcBERMSVVGAiIuJKKjAREXElFZiIiLiSCkxERFxJBSYiIq6kAhMREVdSgYmIiCupwERExJVUYCIi4koqMBERcSUVmIiIuJIKTEREXCnKdgB/adGiBUlJSbZjiIi4SmFhIXv27LEdo0ZCtsCSkpLIz8+3HUNExFUyMjJsR6gxXUIUERFXUoGJiIgrqcBERMSVVGAiIuJKKjAREXElFZiIiLhSyC6jFxEJCgd2QFkRVB01fzVOgHNSweOxncz1VGAiIr52aDdsnA2bZkPRqpP/eex50HEUpE2All0Dny9EqMBERHylqgJWPgPLpkFVOcSnwuD7oFU3iIqBqPrwzSbYvAA+fgFWPQ8DfgkDpkBktO30rqMCExHxhcIVMP8O2FNgzq4G3wfxKSf/XGIG9JgE5ftg4d2w7AnYshiy/gIt2gc+t4tpEYeISF04Dqz8E7wy0px1Xf0PGP/6qcvrv8U0hazn4YpXYO9WeOFiKC0ISORQoQITETlT3ip455eQdw90HAk/+wguyKzda6SOhez3zCXE1y6Hg7v8kzUEqcBERM5ExRF44ypzL6vvbXDlDKh31pm9VrO25sztyLfw+hVw7KBvs4YoFZiISG1VVcA/fgxfvgujnoahv4aIOn6cJnQ3lxO/2QSzrofqap9EDWUqMBGR2vBWwewb4cvFcOnTkHG97177gmEw/HHz2ute993rhigVmIhITTkOvH0bfDYXhj0CPa7z/TF63gjn9YHF98Nhd2wsaYsKTESkppb/Fta9BgPvhh/93D/HiIiAUb8398EW3eefY4QIFZiISE0ULISlD0PXq+Ciu/17rPgUszBk/Ruw7QP/HsvFVGAiIj+ktADe/Am0TIdLpwdmjuGAKdA0yTwc7a30//FcSAUmIvJ9ju6HNyZAdAPzgHJ0TGCOGx0DmY/Ct1+auYpyEhWYiMjpOA68fTvsKzTPeTVJDOzxLxgB8Z3gw99rWf0puKrAvF4v3bp1Y9SoUbajiEg4WPe6mSg/6P/g/D6BP35EBPS9HUo/hy2LAn/8IOeqAps+fTopKT8wX0xExBf2bIF37oKk/tDvDns5OmdxJKYV62c+SJu7F9D38aXMWVtiL08QcU2BFRcXs2DBAm688UbbUUQk1FUdg39ONtufZOVARKS1KHM+3c1ThzNJczaT4dlMSVk598zeoBLDRQV2++238+STTxJR13EtIiI/ZNkTsOtTuOxZaNzKapRpeQW8XjGAPU5jbo6aB0B5pZdpeZpc74o2mD9/PvHx8fTo0eN7fy4nJ4eMjAwyMjIoLS0NUDoRCSkln8CHT0P6NWbCvGU7yso5Sn1eqcpkcOQ62np2HP9+uHNFga1YsYJ58+aRlJTE+PHjWbp0Kddcc81JP5ednU1+fj75+fnExcVZSCoirlZ1DOb8DM6Oh8xHbKcBoFWsWbb/d+9FeB0PWZHLT/h+OHNFgT322GMUFxdTWFjIzJkzGTx4MK+99prtWCISapY9aVb8XfoHiIm1nQaAKZnJxERHUkpTPqjuytjID2kY7WFKZrLtaNa5osBERPxuxzrzvFX6RDMVPkiM6ZbAY1ldSIiN4U3vABI835LTv5wx3RJsR7PO4ziOYzuEP2RkZJCfn287hoi4gbcKXhhsdkO+ZRXENLWd6NQqy+G3ydDxEhj7nF8O4abPTp2BiYh8/BfYud7sxRWs5QVmvFTqGPhsHhw7ZDuNdSowEQlv+4vNlPn2QyF1rO00Pyz9aqg8DJ/Ps53EOhWYiIS3hb+Cai+M/G1gpszXVeve0LSN2WolzKnARCR8bV4Am+eb/b2aJtlOUzMeD6RNgG3LzdljGFOBiUh4qiyHhXdDXAr0ucV2mtrpnAU4ZpPNMKYCE5Hw9OHvYf92c+kwMtp2mtpp0QGatYMvcm0nsUoFJiLhZ+82My6q8+WQ1M92mjOTPAK2fRDWqxFVYCISfnLvMWddw35jO8mZu2A4eCtg63u2k1ijAhOR8PLFIvhiIQy8y/qk+To570Jo0AQKwvcyogpMRMJHVQXk3g3NO0Dvm22nqZvIaGg/BLbkQXW17TRWqMBEJHysfh72fmUmbkTVs52m7i4YAYdLoWSN7SRWqMBEJDwc2m2mzXfIhA5DbKfxjQ5DwBNpLomGIRWYiISHpb+ByiNBs8+XT8Q0hfP6hO19MBWYiIS+HevgkxnQ+6fmGapQkjwcdm+Csu22kwScCkxEQpvjmGXzDZvBgCm20/he+6Hm69b3rcawQQUmIqHt83mw/V8w6N6g2WXZp+KS4aw4KPzQdpKAU4GJSOiqOgaLHzDzDrtPsp3GPzweM02kcIU52wwjKjARCV2rnod9hWbhRmSU7TT+c35fOFBs/reGERWYiISmw3vgg2nQYRi0v9h2Gv9K6m++htllRBWYiISm9x+DisMw7GHbSfwvLhkatlCBiYi4XmkB5L8MGZPNh3uoO34f7MOwug+mAhOR0LPofqh3ltlpOVwk9Qu7+2AqMBEJLV+9Zwbc9v8FnNXCdprA+W5fszC6jKgCE5HQUe2FRfdBk/PM1I1wEtcRGjaHr1fYThIwriiwo0eP0qtXL9LS0khNTeXBBx+0HUlEgtG6v8E3G2HoQxDdwHaawArD+2CuKLD69euzdOlS1q9fz7p168jNzeWjjz6yHUtEgsmxQ7D0YUjIgNQs22nsSOoP+4ug7GvbSQLCFQXm8Xg4++yzAaisrKSyshKPx2M5lYgElX89A4d2Qeaj5mwkHB2/DxYelxFdUWAAXq+X9PR04uPjGTp0KL1797YdSUSCxYGd8K8/QKcxcF4YfzbEdYTsZZA23naSgHBNgUVGRrJu3TqKi4tZvXo1GzduPOlncnJyyMjIICMjg9LSUgspRcSKpQ9DdRUMech2Ers8HmiVDhGRtpMEhGsK7DuxsbFcdNFF5OaevIFbdnY2+fn55OfnExcXd2YHWPknyBlUx5QiEjA7P4V1r0OvbGjWxnYaCSBXFFhpaSllZWUAlJeXs2TJEjp27Oifg3mPwY5P4OgB/7y+iPiO45hl8zGxMOCXttNIgLliPPPOnTuZNGkSXq+X6upqrrzySkaNGuWfgzVNMl/LvoZzu/jnGCLiG1sWwbZlMPwJiGlqO40EmCsKrGvXrqxduzYwB/uuwPYVqsBEgpm30px9NW8PPW+wnUYscEWBBVTTf19DD6N5YiKutOYV2PMFjH8DIqNtpxELXHEPLKBiYqFBLOzdZjuJiJxOeZnZLiWpPySPsJ1GLFGBnUrTJJ2BiQSz5U/Bkb1mp+VwfWhZVGCnpAITCV57t8Kq5yD9amiZZjuNWKQCO5WmSVC23Uy2FpHgsvgBiIiGwffbTiKWqcBOpVkbqK6EAztsJxGR/7ZtOXz+NvS/Axq3tJ1GLFOBncrxpfRayCESNKq9kHcPNGkNfX5uO40EARXYqfz3s2AiEhzW/Q12bTDzDqNjbKeRIKACO5XGiRARpQITCRZHD8C7v4bEXtB5nO00EiT0IPOpREaZyxQqMJHgsPy3cHg3XD1Ty+blOJ2BnY6W0osEh2+/MrtEpE+EhB6200gQUYGdTtMkTeMQCQZ590JUA7j4QdtJJMiowE6naRKU74Wj+20nEQlfXy6BLxbCwCnQ6BzbaSTIqMBO57uN8fZ9bTeHSLjyVkLuPdCsLfT+qe00EoRUYKejpfQidq16zkybz3wMourbTiNBSAV2OnqYWcSeg7vg/cfhguGQPNx2GglSKrDTadDE7PCqMzCRwFt0P3grYPhjtpNIEFOBfR8tpRcJvMIVsOEf0Pc2c/9L5DRUYN+naRsVmEggeatg4V1mkEC/O22nkSCnAvs+322r4q2ynUQkPKx+Hr7ZCJmPQr2GttNIkFOBfZ9mbaG6CvZvt51EJPTtL4H3HoUOwyDlUttpxAVUYN+nRQfz9duv7OYQCQd595g/MI54UvMOpUZUYN+neXvzdc8WuzlEQt2WxfDZXBjwy/8MERD5Aa4osKKiIgYNGkRKSgqpqalMnz49MAdu2BwaxMK3KjARv6ksh3d+Cc07wI9utZ1GXMQV26lERUXx1FNP0b17dw4ePEiPHj0YOnQonTp18u+BPR5zFvbtl/49jogLzFlbwrS8AnaUldMqNoYpmcmM6ZZQ9xde9oRZ7TvpbU3ckFpxxRlYy5Yt6d69OwCNGjUiJSWFkpKSwBy8RQfYowKT8DZnbQn3zN5ASVk5DlBSVs49szcwZ20dfx/u/BRW/AG6XQNtBvgkq4QPVxTYfyssLGTt2rX07t07MAds3h4O7oBjhwJzPJEgNC2vgPJK7wnfK6/0Mi2v4MxftNoLb98KDZvB0N/UMaGEI1cV2KFDhxg3bhxPP/00jRs3Pumf5+TkkJGRQUZGBqWlpb456HcLOfZqJaKErx1l5bX6fo2seg52rIURT5gSE6kl1xRYZWUl48aNY+LEiWRlZZ3yZ7Kzs8nPzyc/P5+4uDjfHPi7pfRaiShhrFVsTK2+/4P2FcLSh6FDJqSe+vezyA9xRYE5jsMNN9xASkoKd94Z4PEyzdoCHi3kkLA2JTOZmOjIE74XEx3JlMzk2r9YdTXM/Tl4ImHkU3rmS86YKwpsxYoVzJgxg6VLl5Kenk56ejrvvPNOYA4eHWPmsqnAJIyN6ZbAY1ldSIiNwQMkxMbwWFaXM1uFuOYlKFwOmQ9DbGufZ5Xw4Ypl9P369cNxHHsBmrfTJUQJe2O6JdR92fy+r2HRA9B2EHSf5JtgErZccQZmXYsOZpyUzRIVcbvqapj3c/BEwOhndOlQ6kwFVhPNO0DFQTj0je0kIu6V/yJs+0CXDsVnVGA10byd+arLiCJnpvQLs8ty+6G6dCg+owKrieNT6bWQQ6TWvJXwVrZZEHXZs7p0KD7jikUc1jVOhKgGKjCRM7HsSfPA8pUzoNG5ttNICNEZWE1EREAzrUQUqbWi1bD8t5A+ETqNtp1GQowKrKZaaCq9SK2U74N/3mCeoxz+uO00EoJUYDXVvL0Zf1NVYTuJSPBzHJj3/8wg7MtfhgYnzy4VqSsVWE21uAAcL+zdajuJSPDLfxE+fxuGPASJPWynkRDlkwIbMmQI69ev98VLBa+4juZr6ed2c4gEu10bIPf/zJL5C2+xnUZCmE8K7Mknn+SOO+7g+uuvZ+fOnb54yeATlwx4YLcKTOS0ysvg79dCTFMY82ezAErET3zy7urevTtLly5l1KhRDB8+nKlTp1JeXod9goJRdIyZTK8CEzm16mp466ewvwiu/Cuc7aMtjUROw2d/PHIch+TkZG6++WaeeeYZOnTowIwZM3z18sEhPkUFJnI6Hz4FXyyEzEfhvADtmC5hzScF1q9fPxISErjjjjsoKSnhlVde4f3332f16tVkZ2f74hDBIb6T2Zm58qjtJCLB5cslsPQR6HIF9Aqh3/MS1HwyieO5554jNTUVz/+MiHnmmWdISUnxxSGCQ3xHcKphzxfQsqvtNCLBYc8WmDXZ/AHv0ukaFSUB45MzsM6dO59UXt9ZsGCBLw4RHOI7ma+6jChilO+Dv10FkdEw4Q2od5btRBJG/D4LsW3btv4+ROA0awcR0bD7M9tJROzzVsKs66BsO0x6G5qebzuRhBkN862NqHpmMn3pZttJROxyHFh4F2x9Hy77E5zfx3YiCUN6SKO24lN0Biay/CnIfwn63gbdJtpOI2FKBVZb8Snmksmxg7aTiNix7m+w9DfQ5Uq4+CHbaSSMqcBq67uFHKUFdnOI2PDlEjOkt81AuOyPmrQhVundV1vfzUTUZUQJN1//C2ZeA3EpcNVr5p6wiEUqsNpqmgRRMVpKL+GleA28fiU0SYRr39L2KBIUVGC1FRFpBvuqwCRc7NoIr2VBw2YwaZ5mHErQcE2BTZ48mfj4eDp37mw7irkPpgKTcLBzPbx6qXlAedI8aNzKdiKR41xTYNdddx25ubm2YwCwsaoVHNpFt7tn0vfxpcxZW2I7krjAnLUl9H18KW3uXuCO903xGlNe0Q3//aByku1EIidwTYENGDCAZs2a2Y7BnLUlPP1pNAAdI7ZTUlbOPbM3BP+HkVg1Z20J98zeQElZOQ4E//tm+0fw18vMvl7XvwPN29lOJHIS1xRYsJiWV8DayvMA6OQpBKC80su0PC2rl9OblldAeaX3hO8F7fumYCH8dQw0OgeuX6gRURK0QmqUVE5ODjk5OQCUlpb65Rg7yspxaMIOpxmdIwrB+5/vi5zO6d4fQfe+yX8ZFtwJLdPg6llasCFBLaTOwLKzs8nPzyc/P5+4OP/8xmsVGwPApuo2dPFsO+n7IqdyuvdH0Lxvqqth6cMw/3ZoPwQmzVd5SdALqQILhCmZycRER7KxOom2np005Cgx0ZFMyUy2HU2C2Hfvm/8WNO+bY4dg1o/hg2nQ7VoY/wbUP9t2KpEf5JoCmzBhAn369KGgoIDExERefPFFKznGdEvgsawu7GyYTITHYUDjXTyW1YUx3RKs5BF3+O59kxAbgwdIiI0JjvfNvkJ4KRM2L4DMR2H0MxAZUncWJIR5HMdxbIfwh4yMDPLz8/13gAM74HcpMOJJ6H2T/44j4i9f5MFbN5ldxi9/GdpfbDuRBAG/f3b6kP6odaYatYSz4syDniJuUlUB706Flc/CuV3gile1TF5cSQV2pjwes1JLBSZusudLeCsbStZAzxth2CMQ3cB2KpEz4pp7YEGpZboZKVV51HYSke9XXQ0f/Rme6wfffmXOukY+pfISV9MZWF20TAPHC7s3QUIP22lETm3Pl/D2bfD1h9AhEy6dDo1b2k4lUmcqsLpomWa+7lyvApPgU1kOy5+CFdPNFkCjnzHL5D0e28lEfEIFVhex50GDWNixznYSkf9wHPh8Hix+wCyT73oVDP2NGQ0lEkJUYHWhhRwSbIo+hkX3QtEqs3PypLehzQDbqUT8QgVWVy3TYNVzZmmytlgXW3ashfefgC8WwtnnwKV/gPSJeihZQpre3XXVMg28FVD6+X/uiYkEyvZV8OHv4Itcczl70H1w4c0aBSVhQQVWVwndzdeSNSowCQxvFWyebx5ELv7Y7Nk1+D7odRM0aGw7nUjAqMDqqmkbM5GjaDVkTLadRkLZgR3wyQz45FU4UGJ2SL7kt5B+NdQ7y3Y6kYBTgdWVxwOte5ub5iK+VnnU3NdaPxO2LDbPHba72MzgTB4BEZE//BoiIUoF5gute5lLOodKtYeS1J23Cgo/gE1vwWdz4eh+aNQK+t4K3X8MzdraTigSFFRgvtC6t/la/DF0vMRuFnGnyqOwbZnZ1mTzfDjyLdQ7GzqOhLTx0GagzrZE/ocKzBdapkNEtLmMqAKTmjq4y1wW3JIHXy6FysNQrxFcMAxSs8z2JtFBsmOzSBBSgflCdAOzArFote0kEsy8leY98tW78OWS/zwA3zgB0q4yZ1tJ/SGqvt2cIi6hAvOV1r0h/0U90Cz/4Thm8vvW9+CrpbBtOVQcBE+keb9c/IAZrntOquYTipwBFZivtO4FH/0Rdm2ARA32DVvl+2DrMlNYX70H+7eb78eeD10uh3aDoe1AaNDEbk6REKAC85XjCzlWq8DCSXW1GeP05WJzWbBkDTjVUL+xmUHY91ZzL0srB0V8TgXmK41bQpPWZiHHhTfbTiP+dOwgfPkuFCw0pXVkD+AxU1n6/9IUVkIPiIy2nVQkpKnAfKl1L9j+ke0U4g+H95gl7p/Pg20fmPmXMU2h/VDoMNQ8XHxWc9spRcKKCsyXWveGjW/C/mJokmg7jdRV+T7zIPHGN6HwQ3NpsGkS9MqG5EvMf29NexexRr/7fKl1L/N1+0fmhr24j7cSvsiDdX+DLYuguhKat4f+v4BOl8E5nbViUCRIuKbAcnNzue222/B6vdx4443cfffdtiOd7NyuUL+JmaigAnOXb7+CNS+bmYOHS+Hsc6H3Tea/Y8t0lZZIEHJFgXm9Xm655RYWL15MYmIiPXv2ZPTo0XTq1Ml2tBNFREJSP7OMWoJftddMwlidYx4ujoiCC4ZDt2uh/RBdHhQJcq74Hbp69Wrat29P27ZmKfL48eOZO3du8BUYmGd8ChbAvkJzv0SCT2W5uUS48lnYuxUatYRB90L3SdDoHNvpRKSGXFFgJSUltG7d+vivExMTWbUqSLcvaTPQfN26DHokWY0i/+PoAXO29dGfzdL3Vt3h8pch5VIteRdxIVcUmOM4J33Pc4p7Ejk5OeTk5ABQWlrq91ynFJds7p9sfR96TLKTQU507CCset6ccZXvM0vf+90O5/fVvS0RF3NFgSUmJlJUVHT818XFxbRq1eqkn8vOziY7OxuAjIyMgOU7gcdjLiN++a6Z0hARYSeHmLmUa16GZU+aM64OmXDRr8xDxiLieq74dO3Zsydbtmxh27ZtVFRUMHPmTEaPHm071um1GWg+MHd/ZjtJeHIc2DQH/tgLFt4F8Slw47sw8R8qL5EQ4oozsKioKJ599lkyMzPxer1MnjyZ1NRU27FOr+2/74NtWwbndrabJdx885kprcLlEN8JJv7TrCjUpUKRkOOKAgO45JJLuOQSl2wW2SQRmrUzCzn63GI7TXg4dhCWPmIWaTRoDCOfgh7XaxdjkRDmmgJznbYD4dN/mMkOWuHmXwULYcEv4MAOyLgeBt8PDZvZTiUifuaKe2Cu1GYgVBwy22uIfxzeA7OugzfGm/21blgMo36v8hIJEzoD85c2A8ATYbbbOO9C22lCz+dvw9u3w7EDMPg++NFt2glbJMzoDMxfGjaD1hfC5ndsJwktRw/A7Jvg79dA41aQvQwGTFF5iYQhFZg/dbwEdm8yY6Wk7orz4bl+sGEWDPwV/GQpnBOE48REJCBUYP6U/O9VkzoLq5vqalj+O3gp0zzjdf1CGPR/WhwjEuZUYP7UvB3EdYQCFdgZO7IX/nYlvDvVzCz86XI4r7ftVCISBFRg/pZ8CXz9L/NBLLVTnA/PDzAPhI/8nRm8GxNrO5WIBAkVmL91HAmO1+zuKzWX/zK8NNxM0JicBz1v0DQNETmBCszfWnU30+k3L7CdxB2qKszy+Pm3m4fBs5dBQnfbqUQkCOk5MH+LiIDkEWYqR+VRiG5gO1HwOrQb/n4tFH0E/e4wEzU0CkpETkNnYIHQcSRUHoZtH9hOErx2bYS/DIad6829riEPqbxE5HupwAKhzQCo3xg2vWU7SXAqWGiWyFdXweRc6JxlO5GIuIAKLBCi6kOny+CzuVBx2Haa4PLRn+GNCdC8PfzkPWiVbjuRiLiECixQ0iaYy4ifz7edJDhUe2HhryD3bnOJ9fqF0Lil7VQi4iJaxBEo5/WB2PNh/RuQdpXtNHZVHIE3b4SCBXDhLTDsNzW+3zVnbQnT8grYUVZOq9gYpmQmM6Zbgp8Di0gw0hlYoEREQNp42Pq+2bcqXB3+Fl691EwnGfEkDH+0VuV1z+wNlJSV4wAlZeXcM3sDc9aW+DeziAQlFVggdb0KcODTv9tOYse+QnhxKHyzEa6aAb1vqtW/Pi2vgPJK7wnfK6/0Mi2vwIchRcQtVGCB1LwdtO4N62eaobThZOd6eGEoHPkWfjzXzDWspR1l5bX6voiENhVYoKVNgNLNsHOd7SSBs3UZvDwSIuvBDYvOeIPPVrExtfq+iIQ2FVigpY6FyPrwyV9tJwmMTXPg9cuhSaIpr7jkM36pKZnJxESfeL8sJjqSKZln/poi4l4qsECLiYUuV8C6N0J/Qn3+SzDrOjMPcvJCaFK31YJjuiXwWFYXEmJj8AAJsTE8ltVFqxBFwpSW0dvQ52ew7jVY8zL0/4XtNL7nOPDBNHjvEbhguBkNVa+hT156TLcEFZaIADoDs+OcVGg3GFblmOnroaS6GhbeZcorbQJc9ZrPyktE5L8FfYHNmjWL1NRUIiIiyM/Ptx3Hd/rcAod2wcY3bSfxnaoKmP0TWJ0DfX4Ol/0JIqNtpxKREBX0Bda5c2dmz57NgAEDbEfxrXYXQ1xHWPnH0FhSf+wQvHEVbPwnXPwgDHvYPLwtIuInQf8Jk5KSQnJyCK4y83jMWdg3G9y/zcrhb+Gvo82UkdHPQP87tXuyiPhd0BdYSOtyJZwVZxY8uPUsrGw7vDzc7Od15Qzo/mPbiUQkTATFKsQhQ4awa9euk77/yCOPcNlll9X4dXJycsjJyQGgtLTUZ/n8JroBDLgLFk6BLYvggkzbiWrnm03w2jgznPfatyCpr+1EIhJGgqLAlixZ4pPXyc7OJjs7G4CMjAyfvKbfZVwPq56DRfeb+2KRQfGf5IcVrjD7eNU7yzzjdU6q7UQiEmZ0CdG2yGgYOhX2FMDaGbbT1MyGf8KMMdDoXDNdQ+UlIhYEfYG99dZbJCYmsnLlSkaOHElmpssus9VEx1Fmv7D3HoVjB22nOT3HgeW/gzdvgMRecEMexLa2nUpEwlTQF9jYsWMpLi7m2LFjfPPNN+Tl5dmO5Hsej1l2fng3fPi07TSn5q2E+bfDu1PNKKxrZ0NMU9upRCSMBX2BhY3EDLNf2IqnoWSN7TQnOrIXZoyFNa+Y0VdjcyCqvu1UIhLmVGDBZMQTcPa58OZPzIPBwaC0AP4yGIpWm+K6+AE9oCwiQUGfRMEkpimMfSrzn+gAAAdfSURBVA72boVF99pOA5/Ng79cDBWH4boFkHaV7UQiIsepwIJNm/7Q91ZzuW7zAjsZvJWQdy/841qzf1f2e9C6p50sIiKnoQILRoPug3O7wuybYMfawB67bDu8eimsfBZ6ZcP1C81mlCIiQUYFFoyi6sGEmeaS4ows2L3Z/8d0HLPJ5p/7mrFQWS/AJdNMFhGRIKQCC1ZNEuDHc8yDzjPGwL5C/x3r4C6YNQnm/NQ8lHzzh9D1Cv8dT0TEB1Rgwax5OzNjsLIcXr4Etq/y7et7q2Dln+CZDCjINdugXLcAmib59jgiIn6gAgt256TCpLfNmdjLI2DFdLPrcV1UV5sVhs/3h7x74LwL4WcrzTYoEZG+yS0i4mcqMDdo2RVu+gBSRsHiB+C1sVD0ce1fp+qYmWP45x+ZFYZVx+Cq12DiLHO2JyLiIi4ZfS40aAJXvAofvwDvPQIvDoHz+8KFN5uvDZud+t87dhCKP4aNb8Jnb8Ox/WYn6HEvQupYnXGJiGupwNzE44FeP4G0CfDJX81S979fY/5Z8w7mcmNkPfNzlUfMfl17t5p/Xq+ROYPrcjm0HaxpGiLieiowN6p/NvT5GfS8EYo+MmdYRR/Drk/B+ff9sYhoU2hpE6BlGrQZANExdnOLiPiQCszNouqZYmozwHYSEZGA03UkERFxJRWYiIi4kgpMRERcSQUmIiKupAITERFXUoGJiIgrqcBERMSVVGAiIuJKHsdxHNsh/KFFixYkJSX59RilpaXExcX59Rj+4ubs4O78bs4Oym9TILIXFhayZ88evx7DV0K2wAIhIyOD/Px82zHOiJuzg7vzuzk7KL9Nbs7uD7qEKCIirqQCExERV4p86KGHHrIdws169OhhO8IZc3N2cHd+N2cH5bfJzdl9TffARETElXQJUUREXEkFVkf3338/Xbt2JT09nWHDhrFjxw7bkWpsypQpdOzYka5duzJ27FjKyspsR6qVWbNmkZqaSkREhGtWZuXm5pKcnEz79u15/PHHbceplcmTJxMfH0/nzp1tR6m1oqIiBg0aREpKCqmpqUyfPt12pFo5evQovXr1Ii0tjdTUVB588EHbkYKDI3Wyf//+438/ffp056abbrKYpnby8vKcyspKx3Ec56677nLuuusuy4lq57PPPnM2b97sDBw40Pn4449tx/lBVVVVTtu2bZ2vvvrKOXbsmNO1a1dn06ZNtmPV2LJly5w1a9Y4qamptqPU2o4dO5w1a9Y4juM4Bw4ccDp06OCq/++rq6udgwcPOo7jOBUVFU6vXr2clStXWk5ln87A6qhx48bH//7w4cN4PB6LaWpn2LBhREWZTbkvvPBCiouLLSeqnZSUFJKTk23HqLHVq1fTvn172rZtS7169Rg/fjxz5861HavGBgwYQLNmzWzHOCMtW7ake/fuADRq1IiUlBRKSkosp6o5j8fD2WefDUBlZSWVlZWu+qzxFxWYD9x77720bt2a119/nV//+te245yRl156iREjRtiOEdJKSkpo3br18V8nJia66kM0VBQWFrJ27Vp69+5tO0qteL1e0tPTiY+PZ+jQoa7L7w8qsBoYMmQInTt3Pumv7/70/Mgjj1BUVMTEiRN59tlnLac90Q9lB5M/KiqKiRMnWkx6ajXJ7xbOKRb86k/RgXXo0CHGjRvH008/fcLVEzeIjIxk3bp1FBcXs3r1ajZu3Gg7knVRtgO4wZIlS2r0c1dffTUjR45k6tSpfk5Ucz+U/dVXX2X+/Pm8++67QflhWtP/790gMTGRoqKi478uLi6mVatWFhOFl8rKSsaNG8fEiRPJysqyHeeMxcbGctFFF5Gbm+vKBTW+pDOwOtqyZcvxv583bx4dO3a0mKZ2cnNzeeKJJ5g3bx4NGza0HSfk9ezZky1btrBt2zYqKiqYOXMmo0ePth0rLDiOww033EBKSgp33nmn7Ti1VlpaenyVcHl5OUuWLHHVZ43f2F5F4nZZWVlOamqq06VLF2fUqFFOcXGx7Ug11q5dOycxMdFJS0tz0tLSXLWC0nEcZ/bs2U5CQoJTr149Jz4+3hk2bJjtSD9owYIFTocOHZy2bds6Dz/8sO04tTJ+/Hjn3HPPdaKiopyEhATnhRdesB2pxpYvX+4ATpcuXY6/3xcsWGA7Vo2tX7/eSU9Pd7p06eKkpqY6U6dOtR0pKGgSh4iIuJIuIYqIiCupwERExJVUYCIi4koqMBERcSUVmIiIuJIKTEREXEkFJiIirqQCEwmQQYMGsXjxYgDuu+8+br31VsuJRNxNsxBFAmTq1Kk88MAD7N69m7Vr1zJv3jzbkURcTZM4RAJo4MCBHDp0iPfff59GjRrZjiPiarqEKBIgGzZsYOfOndSvX1/lJeIDKjCRANi5cycTJ05k7ty5nHXWWeTl5dmOJOJ6KjARPzty5AhZWVk89dRTpKSkcP/99/PQQw/ZjiXieroHJiIirqQzMBERcSUVmIiIuJIKTEREXEkFJiIirqQCExERV1KBiYiIK/1/+0V9/M4I5ngAAAAASUVORK5CYII=
iVBORw0KGgoAAAANSUhEUgAAAbAAAAEgCAYAAADVKCZpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de1hVZd7/8TdsxfCAZIInUCINEUxUFCtTtDRLpxK1Ujvrw4zTPJ2mpzlUMzqVNpal2ZFqtGxGq2l+j/5ycioVNfIQipZadFAKxARTBDmzWc8fq7FMazzAvve9+byui+visHF/LpX9Ya11r+8d5DiOg4iIiGWCTQcQERE5FSowERGxkgpMRESspAITERErqcBERMRKKjAREbGSCkxERKykAhMRESupwERExEoqMBERsZIKTERErKQCExERK6nARETESiowERGxkgpMRESspAITERErqcBERMRKKjAREbGSCkxERKykAhMRESupwERExEoqMBERsZIKTERErKQCExERK6nARETESiowERGxkgpMRESspAITERErqcBERMRKKjAREbGSCkxERKykAhMRESupwERExEoqMBERsVIz0wEaS/v27YmJiTEdQ0TEKnl5eezfv990jBMSsAUWExNDdna26RgiIlZJTk42HeGE6RSiiIhYSQUmIiJWUoGJiIiVrCmwkpISxo8fT8+ePYmPj2f9+vWmI4mIiEHWLOK4/fbbGTVqFH//+9+pqamhoqLCdCSRk+Ktd8jMLWJHYSkJncNIjYvEExxkOpaItawosNLSUtauXcvChQsBCAkJISQkxGwokZPgrXe4/sWNbM0vobLGS2iIh6TocBZNSVGJiZwiK04h7tq1i4iICG6++Wb69u3L1KlTKS8vNx1L5IRl5haxNb+EihovDlBR42VrfgmZuUWmo4lYy4oCq6urY8uWLUybNo2cnBxatWrFww8/fMzjMjIySE5OJjk5meLiYgNJRY5vR2EplTXeoz5XWeNlZ2GpoUQi9rOiwKKiooiKiiIlJQWA8ePHs2XLlmMel56eTnZ2NtnZ2URERPg6psiPSugcRmiI56jPhYZ46NU5zFAiEftZUWAdO3YkOjqa3NxcAFauXEmvXr0MpxI5calxkSRFh9MyxEMQ0PLba2CpcZGmo4lYy4pFHADz589n8uTJ1NTUEBsby4IFC0xHEjlhnuAgFk1JITO3iJ2FpfTSKkSR02ZNgSUlJWm2oVjNExzExfEduDi+g+koIgHBilOIIiIiP6QCExERK6nARETESiowERGxkgpMRESspAITERErqcBERMRKKjAREbGSCkxERKykAhMRESupwERExEoqMBERsZIKTERErKQCExERK6nAREQCxaE9sPzXUPa16SQ+Yc1+YCIi8iMOF8N7j8MHL4BTD90uhMQ006kanQpMRMRWlQfh/fmw4Vmoq4Q+k2DoPXBmN9PJfEIFJiJim+rDsPEZt7yqDkFCGgz7PbTvYTqZT6nARERsUVsF2S/CusegYj+cexkMvxc69jadzAgVmIiIv/PWQs4iWPMIlBXC2UNh+P0QPcB0MqNUYCIi/qreCx+9Dpmz4GAeRA2EtOfg7CGmk/kFFZiIiL9xHPh4GayeCcWfuKcIJ70GPUZCUJDpdH5DBSYi4i8cBz5/F1Y9AHu3QftzYcJCiL8SgnXb7g+pwERE/EHee7DyAcjfAOFd4apnoPfV4NHL9I/R34yIiEl7NrvFtWs1tO4Io+dA3xugWYjpZH5PBSYiYsK+HbDqIchdDqHtYOSDMGAqNA81ncwaKjAREV/65gt3ccb2N6BFGxh2Lwya5r4vJ0UFJiLiCyX5sHY25PwVPCFw4e3uW8t2ppNZSwUmItKYDhfBujmQ/Rf34wFT4aJfQ5sOZnMFABWYiEhjqDgA7z8BG5+DumroOxmG3APh0aaTBQwVmIhIQ6ougw3fDtqtLoPEcZD6O2jf3XSygGNNgcXExNCmTRs8Hg/NmjUjOzvbdCQRke/UVrr7cb33OFR8A3Gj3UG7HRJMJwtY1hQYwOrVq2nfvr3pGCIi36mrgZyXYe2jULYXYoe5g3aj+ptOFvCsKjAREb9R74UPX4XMh6HkS4geBONegJjBppM1GdYUWFBQECNHjiQoKIif//znpKenm44kIk1RfT18vNS9l2v/p9Cpjzs9o/slGrTrY9YUWFZWFp07d6aoqIgRI0bQs2dPhgw5ekuBjIwMMjIyACguLjYRU0QClePAZ2+7g3a//ggiesLVL0P8FSouQ4Icx3FMhzhZ06dPp3Xr1tx9990/+pjk5GQt9BCRhrF7nVtc+RvhzBhI/T30Hg/BHtPJGpxNr51WzOcvLy+nrKzsyPtvv/02iYmJhlOJSMDL/wBeugJeGuNO0hgzF36VDX2uCcjyso0VpxD37dvH2LFjAairq2PSpEmMGjXKcCoRCVhff+QO2v30LWjZHi6dBcm3QPMzTCeT77GiwGJjY9m2bZvpGCIS6PZ/5i7O2PEPaNHWXQ6f8gto0dp0MjkOKwpMRKRRHfwS1syGbX+DZqFw0d1wwa8g9EzTyeQnqMBEpOkq+9q9AXnzQggKdo+2Bt8FrSNMJ5MToAITkaan4oA78mnT81BfC32vhyH/A227mE4mJ0EFJiJNR9UhWP80rH8Kag7DeVdD6m+hXazpZHIKVGAiEvhqKmBTBmTNhcqDEP8zdyfkyHjTyeQ0qMBEJHDVVcPml2Ddo3B4nzvuafh90Lmv6WTSAFRgIhJ4vHWwbTGs+TMcyoeuF8CEl6Db+aaTSQNSgYlI4Kivd+/hypwF33zuHmn9bB6cM1zzCgOQCkxE7Oc4kPsWrH4I9m2HyF5wzV+h52gVVwBTgYmIvRwHdmXCqgdhT7a7mjDtBUhM06zCJkAFJiJ2+mqjOyE+bx2ERcEV86HPRPA0N51MfEQFJiJ22bvNPeL67G1oFQmXzYb+N0GzFqaTiY+pwETEDsW57jWunUvhjHC4ZDoMTIeQVqaTiSEqMBHxbwd2u8vhP3wVmreEob+B82+FM9qaTiaGqcBExD+VFsLaR2DLyxDcDAb9EgbfCa3am04mfkIFJiL+pXy/O2j3gxeg3gv9bnQH7YZ1Mp1M/IwKTET8Q2UJrH8SNjwDtRXuisKhv4Ezu5lOJn5KBSYiZtWUw8ZnIesJqCqBXle5g3YjzjWdTPycCkxEzKitgs0LYN0cKC+GHpfC8HuhUx/TycQSKjAR8S1vLWz9K6yZDaV7IOYiuPZvED3QdDKxjApMRHyj3gvb/wGZM+HALuiSDFc9DbGpppOJpVRgItK4HAc+eRNWPQTFH0OHRJj4Kpx7qQbtymlRgYlI43Ac+GKlO/apMAfO6g7jXoSENAgONp1OAoAKTEQa3pfvw8oH4Kv3oW1XuPIpOO9a8OglRxqO/jeJSMPZs8U94vpiJbTuAJc/Cv1u0KBdaRQqMBE5fUUfu8X1yZsQeiaM+BMM+C8IaWk6mQQwFZiInLoDuyDzYfjwNQhpDam/c2cWnhFmOpk0ASowETl5hwrc+7hyXgFPCFzw3+6g3ZbtTCeTJkQFJiIn7nCxOzkj+y/g1MOAKXDRr6FNR9PJpAlSgYnIf1Z50J1VuPFZqKuCpEnuoN3wrqaTSROmAhORH1d9GDY+A1nzofoQJI5zr3O172E6mYhdBeb1eklOTqZLly68+eabpuOIBK7aKsh+EdY9BhX74dzLYPh90DHRdDKRI6wqsHnz5hEfH09paanpKCKByVsLOYtgzSNQVujOKRx+P0Qlm07mV7z1Dpm5RewoLCWhcxipcZF4gjUWy9esKbCCggKWL1/Ovffey2OPPWY6jkhgqffCR69D5iw4mAdRAyHtOTh7iOlkfsdb73D9ixvZml9CZY2X0BAPSdHhLJqSohLzMWsK7I477mD27NmUlZWZjiISOBwHPl4Gq2dC8SfQsTdMeh16jNCg3R+RmVvE1vwSKmq8AFTUeNmaX0JmbhEXx3cwnK5psWKi5ptvvklkZCT9+/f/ycdlZGSQnJxMcnIyxcXFPkonYiHHgc/egYyh8NoN7pL4CQshfS2cO1Ll9RN2FJZS+W15/VtljZedhbq04WtWHIFlZWWxbNky/vnPf1JVVUVpaSnXXXcdr7zyylGPS09PJz09HYDkZJ2zFzmuvPfcQbv5GyC8G1z1LJx3NQR7TCezQkLnMEJDPEeOwABCQzz06qzpI75mxRHYrFmzKCgoIC8vjyVLljB8+PBjyktE/oM9m+Hlq2DhaCj5EkY/Br/KhqSJKq+TkBoXSVJ0OC1DPAQBLb+9BpYaF2k6WpNjxRGYiJyGfTvczSRzl0PLs2DkQ+4EjeahppNZyRMcxKIpKWTmFrGzsJReWoVoTJDjOI7pEI0hOTmZ7Oxs0zFEzPnmC3dxxvY3oEWYO69w0C+gRRvTycSP2fTaqSMwkUBT8hWs+TNsXezuwzX4DrjgNg3alYCjAhMJFGX7YN2jsHmh+/HAdLjoLmitazMSmFRgIrarOABZ82BTBtRVQ9/rYOg90DbKdDKRRqUCE7FVVSlseBrWPwXVZdB7AqT+Fs46x3QyEZ9QgYnYprYSNj0P7z0OlQeg5xgYdi906GU6mYhPqcBEbFFXA1tegrWPwuGv4ZyLYfi90OWnJ9SIBCoVmIi/89bBh6/CmofdFYZdL4Dxf4GYC00nEzFKBSbir+rrYef/uhPi938KnZJgzOPukZdmFYqowET8juPAp/+C1Q/C1x9BRDxc84p7rUvFJXKECkzEn+xaA6segIIP4MyzIe15SBynWYUix6ECE/EH+R/Aqj/B7rUQ1gXGzHXv5/I0N51MxG+pwERM2vshrH4IPl0BLdvDpbMg+RZofobpZCJ+z2fbqVxyySVs27bNV08n4t+KP4XXb4LnLoKv1sPw++H2bXD+L1VeIifIZ0dgs2fP5s4776Rbt27MnDmTTp06+eqpRfzHwS/dQbvbFkOzULjobndKfGi46WQi1vFZgfXr149Vq1bxxhtvMGrUKNLS0rjnnnsIDdWeRNIElO79dtDuSxAUDCnTYPCd0DrCdDIRa/l0R2bHcYiLi2PatGnMnz+fHj16sGjRIl9GEPGt8m/g7fvgiSR3Snzf6+C2HBg1U+Ulcpp8dgQ2ePBgdu3aRUJCAoMGDWLhwoX07NmTefPmsW7dOjIyMnwVRaTxVR1yh+yufxpqDsN517iDdtudbTqZSMDwWYE9++yzJCQkEPSDGzHnz59PfHy8r2KINK6acndbk6x5UHkQ4q9wB+1G9jSdTCTg+KzAEhMTf/Rry5cv91UMkcZRV+2eIlz7KJQXQfcRMPw+6JxkOplIwPKL+8BiY2NNRxA5Nd462PY3WDMbDuVDzEVwzSLoOsh0MpGA5xcFJmKd+nrY8Q9YPRMOfOFuaXLFfIhN1bxCER9RgYmcDMeB3H/CqgehaCdEJsC1iyHuMhWXiI+pwEROhOPArtVuce3ZDO3OgXEvQkIaBPv0bhQR+ZYKTOQ/+WqDW1x566BtNFzxJPSZCB79+IiYpJ9AkR9TuNUtrs/fgVaRcNls6H8TNGthOpmIoAITOVbRJ+6E+I+XwRnhcMl0GJgOIa1MJxOR71GBifzbgd2Q+TB8+KpbVkN/A+ffCme0NZ1MRI5DBSZSWujex5WzCIKbwQW/ggvvhFZnmU4mIj9BBSZNV/l+WPcYfPACOPXu9a2L7oYwbfUjYgMVmDQ9lSWw/kl30G5dJfSZBEPvgTO7mU4mIifBigKrqqpiyJAhVFdXU1dXx/jx45kxY4bpWGKb6sOw6Tl30G7VIUgYC6m/h4hzTScTkVNgRYG1aNGCVatW0bp1a2praxk8eDCXXXYZgwZp3pycgNoqyP4LvPcYlBfDuaPcCfGdzjOdTEROgxUFFhQUROvWrQGora2ltrb2mG1ZRI7hrYWcV2DtI1C6B84eAsMXQ/QA08lEpAFYUWAAXq+X/v378/nnn3PrrbeSkpJiOpL4q3ovbH/DHbR7cDdEDYCrnnYH7YpIwLCmwDweD1u3bqWkpISxY8eyffv2Y/YYy8jIOLKzc3FxsYmYYpLjwMf/3y2u4o+hQyJMfBXOvVSDdkUCkHVTSMPDw0lNTWXFihXHfC09PZ3s7Gyys7OJiIgwkE6McBz47F3ISIXXrof6Ohi/AH6+DuJGqbxEApQVBVZcXExJSQkAlZWVvPvuu/TsqS3aBcjLggWXwV/HQcUBuPJp+OUGSNSUeJFAZ8UpxL1793LjjTfi9Xqpr6/n6quvZsyYMaZjiUl7triDdr9YCa07wOWPQr8bNGhXpAmxosDOO+88cnJyTMcQf7Bvpzto95M3IbQdjHgABkyFkJamk4mIj1lRYCJ884U7aPej16FFG/cG5EHT4Iww08lExBAVmPi3QwXfDtp9BTwhcOHt7lvLdqaTiYhhKjDxT4eL3EG72S+6Hw+YChf9Gtp0MJtLRPyGCkz8S8UBeP8J2Pgc1FVD0reDdsO7mk4mIn5GBSb+oboMNjwD7z8J1aWQOA5Sfwftu5tOJiJ+SgUmZtVWuvtxvfc4VHwDcaNh+L3QIcF0MhHxcyowMaOuxt0Bee0jULYXYofB8Pshqr/pZCJiCRWY+Fa9Fz58DTJnQcmXED0Ixr0AMYNNJxMRy6jAxDfq6+Hjpe6g3f2fQqc+MHoOdL9EswpF5JSowKRxOQ589g6segC+/hDax8HVL0P8FSouETktKjBpPLvXucWVvxHOjIGxz0HvCRDsMZ1MRAKACkwaXkE2rPwT7F4DbTrDmMeh7/XgaW46mYgEEBWYNJyvt7uDdnP/CS3bw6UzIfkWaB5qOpmIBCAVmJy+/Z9D5kzY/g9oEQbD74OUX7hDd0VEGokKTE5dyVew5s+wdbG7D9fgO+HC2yD0TNPJRKQJUIHJySv7GtbNgewF7krClJ/D4LugdYTpZCLShKjA5MRVHICsubAxA7w10O96GPI/0DbKdDIRaYJUYPKfVZXChqdh/VPu0N3eEyD1t3DWOaaTiUgTpgKTH1dTAR88D+/NhcoD0HMMDLsXOvQynUxERAUmx1FXDVtedgftHt4H51zsrizs0s90MhGRI1Rg8h1vHXy4BDL/DIe+gq4XwISF0O0C08lERI6hAhN30O7O/+cO2v3mc+jcF372uHvkpXmFIuKnVGBNmeNA7lvu9Ix92yGyF1zzV+g5WsUlIn5PBdYUOQ7syoRVD8KebGgXC2kvQGKaBu2KiDVUYE3NVxvdCfF56yCsC/zsCUiapEG7ImIdFVhTsXebe8T12dvQKgJG/Rn63wTNzzCdTETklKjAAl3xp+41rp3/C2eEw8V/cAfthrQynUxE5LSowALVwTx3OfyHS6B5SxhyD5x/K4SGm04mItIgVGCBpnSvewPylpchKBgG/dKdEt+qvelkIiINSgUWKMq/gfcegw9egPo66HeDO2g3rLPpZCIijUIFZruqQ/D+k+6w3doKOO9aSP0NnBljOpmISKOyosDy8/O54YYb+PrrrwkODiY9PZ3bb7/ddCyzasph43OQNQ+qSqDXle6g3Yg408lERHzCigJr1qwZc+bMoV+/fpSVldG/f39GjBhBr15NcCp6XbW7keS6OVBeBD1GuoN2O/UxncxveOsdMnOL2FFYSkLnMFLjIvEEa7KISKCxosA6depEp06dAGjTpg3x8fHs2bOnaRWYtxa2/g3WzIbSAoi5CK55BbqmmE7mV7z1Dte/uJGt+SVU1ngJDfGQFB3OoikpKjGRAGNFgX1fXl4eOTk5pKQ0kRfu+nrY/gZkzoQDu6BLf7jySYhN1bzC48jMLWJrfgkVNV4AKmq8bM0vITO3iIvjOxhOJyINyaoCO3z4MOPGjWPu3LmEhYUd8/WMjAwyMjIAKC4u9nW8huU48Mly9ybkop0QmQDXLoa4y1RcP2FHYSmV35bXv1XWeNlZWKoCEwkw1hRYbW0t48aNY/LkyaSlpR33Menp6aSnpwOQnJzsy3gNx3Hgi1Xu2KfCLdDuHBj3IiSkQXCw6XR+L6FzGKEhniNHYAChIR56dT72Fx4RsZsVBeY4DlOmTCE+Pp677rrLdJzG89UGWPkAfPketI2GK56EPhPBY8U/k19IjYskKTr8mGtgqXGRpqOJSAOz4pUxKyuLRYsW0bt3b5KSkgCYOXMml19+ueFkDaRwq3vE9fk70CoSLnsE+t8IzVqYTmYdT3AQi6akkJlbxM7CUnppFaJIwLKiwAYPHozjOKZjNLyiT9xrXB8vg9Az4ZIZMPC/NGj3NHmCg7g4voOueYkEOCsKLOAc2A2ZD8OHr0JIaxj6Wzj/l3BGW9PJRESsoQLzpUN73EG7OYsguDlc8N/uoN2W7UwnExGxjgrMFw4Xw3uPu4N2nXrofzMMuRvadDSdTETEWiqwxlR58NtBu89AXSX0mQRD74Ezu5lOJiJiPRVYY6g+DBufgffnu9PiE9Jg2O+hfQ/TyUREAoYKrCHVVkH2i7DuMajYD+deBsPvhY69TScTEQk4KrCG4K11F2aseQTKCuHsoTD8fogeYDqZiEjAUoGdjnovfPQ6ZM6Cg3kQNRDSnoOzh5hOJiIS8FRgp8Jx3JuPV8+E4k/cU4STXnP35tKgXRERn1CBnQzHgc/fhVUPwN5t0P5cmLAQ4q/UoF0RER9TgZ2ovPfceYVfrYfwrnDVM9D7ag3aFRExRK++/8meze6E+F2roXVHGD0H+t4AzUJMJxMRadJUYD9m3w5Y9RDkLoeWZ8HIB2HAVGgeajqZiIigAjvWN1+4qwo/+ju0aAPD7oVB09z3RUTEb6jAfij7L/DJchh8B1xwmwbtioj4KRXYD130a7e42mgvKRERf6YC+yEdcYmIWEE3L4mIiJVUYCIiYiUVmIiIWEkFJiIiVlKBiYiIlVRgIiJiJRWYiIhYSQUmIiJWUoGJiIiVVGAiImIlFZiIiFhJBSYiIlZSgYmIiJWsKbBbbrmFyMhIEhMTTUcRERE/YE2B3XTTTaxYsaJRn8Nb77Dy4308sfIzVn68D2+906jPJyIip86a/cCGDBlCXl5eo/353nqH61/cyNb8EiprvISGeEiKDmfRlBQ8wUGN9rwiInJqrDkCa2yZuUVszS+hosaLA1TUeNmaX0JmbpHpaCIichwBVWAZGRkkJyeTnJxMcXHxSX3vjsJSKmu8R32ussbLzsLShowoIiINJKAKLD09nezsbLKzs4mIiDip703oHEZoiOeoz4WGeOjVOawhI4qISAMJqAI7HalxkSRFh9MyxEMQ0PLba2CpcZGmo4mIyHFYs4hj4sSJZGZmsn//fqKiopgxYwZTpkxpsD/fExzEoikpZOYWsbOwlF6dw0iNi9QCDhERP2VNgS1evLjRn8MTHMTF8R24OL5Doz+XiIicHp1CFBERK6nARETESiowERGxkgpMRESspAITERErBTmOE5ATa9u3b09MTMwpfW9xcfFJ3wjtC8p1cpTr5CjXyfPXbKeTKy8vj/379zdwosYRsAV2OpKTk8nOzjYd4xjKdXKU6+Qo18nz12z+mquh6RSiiIhYSQUmIiJW8kyfPn266RD+qH///qYjHJdynRzlOjnKdfL8NZu/5mpIugYmIiJW0ilEERGxkgrsB1asWEFcXBzdu3fn4YcfNh0HgFtuuYXIyEgSExNNRzlKfn4+w4YNIz4+noSEBObNm2c6EgBVVVUMHDiQPn36kJCQwB//+EfTkY7i9Xrp27cvY8aMMR3liJiYGHr37k1SUhLJycmm4xxRUlLC+PHj6dmzJ/Hx8axfv950JHJzc0lKSjryFhYWxty5c03HAuDxxx8nISGBxMREJk6cSFVVlelIjcuRI+rq6pzY2Fjniy++cKqrq53zzjvP2bFjh+lYzpo1a5zNmzc7CQkJpqMcpbCw0Nm8ebPjOI5TWlrq9OjRwy/+vurr652ysjLHcRynpqbGGThwoLN+/XrDqb4zZ84cZ+LEic7o0aNNRzmiW7duTnFxsekYx7jhhhuc559/3nEcx6murnYOHjxoONHR6urqnA4dOjh5eXmmozgFBQVOTEyMU1FR4TiO40yYMMFZsGCB2VCNTEdg37Np0ya6d+9ObGwsISEhXHvttSxdutR0LIYMGUK7du1MxzhGp06d6NevHwBt2rQhPj6ePXv2GE4FQUFBtG7dGoDa2lpqa2sJCvKPfd0KCgpYvnw5U6dONR3F75WWlrJ27doj+/6FhIQQHh5uONXRVq5cyTnnnEO3bt1MRwGgrq6OyspK6urqqKiooHPnzqYjNSoV2Pfs2bOH6OjoIx9HRUX5xQuyDfLy8sjJySElJcV0FMA9TZeUlERkZCQjRozwm1x33HEHs2fPJjjYv370goKCGDlyJP379ycjI8N0HAB27dpFREQEN998M3379mXq1KmUl5ebjnWUJUuWMHHiRNMxAOjSpQt33303Xbt2pVOnTrRt25aRI0eajtWo/OunyDDnOAsy/eU3d392+PBhxo0bx9y5cwkLCzMdBwCPx8PWrVspKChg06ZNbN++3XQk3nzzTSIjI/1yeXNWVhZbtmzhrbfe4qmnnmLt2rWmI1FXV8eWLVuYNm0aOTk5tGrVym+uSwPU1NSwbNkyJkyYYDoKAAcPHmTp0qXs3r2bwsJCysvLeeWVV0zHalQqsO+JiooiPz//yMcFBQUBfwh+umpraxk3bhyTJ08mLS3NdJxjhIeHk5qayooVK0xHISsri2XLlhETE8O1117LqlWruO6660zHAjjy/zwyMpKxY8eyadMmw4ncn8eoqKgjR8/jx49ny5YthlN956233qJfv3506OAfO7i/++67nH322URERNC8eXPS0tJ4//33TcdqVCqw7xkwYACfffYZu3fvpqamhiVLlnDFFVeYjuW3HMdhypQpxMfHc9ddd5mOc0RxcTElJSUAVFZW8u6779KzZ0/DqWDWrFkUFBSQl5fHkiVLGD58uF/8hlxeXk5ZWdmR999++22/WPHasWNHoqOjyc3NBdzrTb169TKc6juLFy/2m9OHAF27dmXDhg1UVFTgOA4rV64kPj7edKxG1cx0AH/SrFkznnzySS699FK8Xi+33HILCQkJpmMxcXkIx0sAAAGJSURBVOJEMjMz2b9/P1FRUcyYMePIhW2TsrKyWLRo0ZHl1wAzZ87k8ssvN5pr79693HjjjXi9Xurr67n66qv9asm6v9m3bx9jx44F3NN2kyZNYtSoUYZTuebPn8/kyZOpqakhNjaWBQsWmI4EQEVFBe+88w7PPfec6ShHpKSkMH78ePr160ezZs3o27cv6enppmM1Kk3iEBERK+kUooiIWEkFJiIiVlKBiYiIlVRgIiJiJRWYiIhYSQUmIiJWUoGJiIiVVGAiPjJs2DDeeecdAO677z5uu+02w4lE7KZJHCI+MmPGDP7whz9QVFRETk4Oy5YtMx1JxGqaxCHiQ0OHDuXw4cNkZmbSpk0b03FErKZTiCI+8tFHH7F3715atGih8hJpACowER/Yu3cvkydPZunSpbRq1Yp//etfpiOJWE8FJtLIKioqSEtLY86cOcTHx3P//fczffp007FErKdrYCIiYiUdgYmIiJVUYCIiYiUVmIiIWEkFJiIiVlKBiYiIlVRgIiJipf8DAfThYSrijUgAAAAASUVORK5CYII=
iVBORw0KGgoAAAANSUhEUgAACgQAAAb8CAYAAADRT2i0AAAACXBIWXMAAC4jAAAuIwF4pT92AACAAElEQVR42uzdcYhdV53A8WMYyiihO7JTWjGypRvq/lGkf0Q2YsT8MX+EpdgiSigq6m4ppYQlLPkjYpaOhKXFlLbY3T9kka3IUjAlLQ3YwrAMbpAikVrtoqK4oQwylgFHE0lK0uXuuXnntTfTN2/eve/Nm/vO+3zgh5i59755xwfDe+/ruSEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM5N44M+k/AQAAAAAAAAAAgAnzvjiPxynivJ7+8/H07wAAAAAAAAAAAMAEKHcEfCZ0IsCN80z6OQAAAAAAAAAAANBi749zNvSOAbvzYjoOAAAAAAAAAAAAaKG5OOdC/xiwO+fS8QAAAAAAAAAAAECLfCjOz8JgMWB3yuNvs3QAAAAAAAAAAADQDnvj/G+oFwN257dx/toSAgAAAAAAAAAAwM66O87vQ7MYsDu/T9cBAAAAAAAAAAAAdsCn4/wpDBcDdudP6XoAAAAAAAAAAADAGN0X50rYPPBbrfnvRbrevZYWAAAAAAAAAAAAxuPv47wdNg/7fhbnS5v87Evp55ud+3a6PgAAAAAAAAAAALCNPhrn/8LmQd9/x/mLOPds8vPy3+finAv9o8CPWmoAAAAAAAAAAADYXg+H3iHfi3Hen47pFwSGdNyLmxzzsCUGAAAAAAAAAACA8VgMN0Z8z8SZqfx8qyAwpOOf2fDzRywtAAAAAAAAAAAAjNe/hU7EdyrO+zb8bJAgMKTzHk8/+1dLCgAAAAAAAAAAAOO3K869m/xs0CCw6950PQAAAAAAAAAAAKBF6gaBAAAAAAAAAAAAQAsJAgEAAAAAAAAAACADgkAAAAAAAAAAAADIgCAQAAAAAAAAAAAAMiAIBAAAAAAAAAAAgAwIAgEAAAAAAAAAACADgkAAAAAAAAAAAADIgCAQAAAAAAAAAAAAMiAIBAAAAAAAAAAAgAwIAgEAAAAAAAAAACADgkAAAAAAAAAAAADIgCAQAAAAAAAAAAAAMiAIBAAAAAAAAAAAgAwIAgEAAAAAAAAAACADgkAAAAAAAAAAAADIgCAQAAAAAAAAAAAAMiAIBAAAAAAAAAAAgAwIAgEAAAAAAAAAACADgkAAAAAAAAAAAADIgCAQAAAAAAAAAAAAMiAIBAAAAAAAAAAAgAwIAgEAAAAAAAAAACADgkAAAAAAAAAAAADIgCAQAAAAAAAAAAAAMiAIBAAAAAAAAAAAgAwIAgEAAAAAAAAAACADgkAAAAAAAAAAAADIgCAQAAAAAAAAAAAAMiAIBAAAAAAAAAAAgAwIAgEAAAAAAAAAACADgkAAAAAAAAAAAADIgCAQAAAAAAAAAAAAMiAIBAAAAAAAAAAAgAwIAgEAAAAAAAAAACADgkAAAAAAAAAAAADIgCAQAAAAAAAAAAAAMiAIBAAAAAAAAAAAgAwIAgEAAAAAAAAAACADgkAAAAAAAAAAAADIgCAQAAAAAAAAAAAAMiAIBAAAAAAAAAAAgAwIAgEAAAAAAAAAACADgkAAAAAAAAAAAADIgCAQAAAAAAAAAAAAMiAIBAAAAAAAAAAAgAwIAgEAAAAAAAAAACADgkAAAAAAAAAAAADIgCAQAAAAAAAAAAAAMiAIBAAAAAAAAAAAgAwIAgEAAAAAAAAAACADgkAAAAAAAAAAAADIgCAQAAAAAAAAAAAAMiAIBAAAAAAAAAAAgAwIAgEAAAAAAAAAACADgkAAAAAAAAAAAADIgCAQAAAAAAAAAAAAMiAIBAAAAAAAAAAAgAwIAgEAAAAAAAAAACADgkAAAAAAAAAAAADIgCAQAAAAAAAAAAAAMiAIBAAAAAAAAAAAgAwIAgEAAAAAAAAAACADgkAAAAAAAAAAAADIgCAQAAAAAAAAAAAAMiAIBAAAAAAAAAAAgAwIAgEAAAAAAAAAACADgkAAAAAAAAAAAADIgCAQAAAAAAAAAAAAMiAIBAAAAAAAAAAAgAwIAgEAAAAAAAAAACADgkAAAAAAAAAAAADIgCAQAAAAAAAAAAAAMiAIBAAAAAAAAAAAgAwIAgEAAAAAAAAAACADgkAAAAAAAAAAAADIgCAQAAAAAAAAAAAAMiAIBAAAAAAAAAAAgAwIAgEAAAAAAAAAACADgkAAAAAAAAAAAADIgCAQAAAAAAAAAAAAMiAIBAAAAAAAAAAAgAwIAgEAAAAAAAAAACADgkAAAAAAAAAAAADIgCAQAAAAAAAAAAAAMiAIBAAAAAAAAAAAgAwIAgEAAAAAAAAAACADgkAAAAAAAAAAAADIgCAQAAAAAAAAAAAAMiAIBAAAAAAAAAAAgAwIAgEAAAAAAAAAACADgkAAAAAAAAAAAADIgCAQAAAAAAAAAAAAMiAIBAAAAAAAAAAAgAwIAgEAAAAAAAAAACADgkAAAAAAAAAAAADIgCAQAAAAAAAAAAAAMiAIBAAAAAAAAAAAgAwIAgEAAAAAAAAAACADgkAAAAAAAAAAAADIgCAQAAAAAAAAAAAAMiAIBAAAAAAAAAAAYCrtivNgnJfjXIxzNc7lOD+K889xbh7i2uW5xYAzKoJAAAAAAAAAAAAAps6tcX4S+od6q3E+3vD69wRBIAAAAAAAAAAAAGyrcmfAbgz4izhfiDObfnZTnM/GeS39/M04H2rwGF9P5399jM9LEAgAAAAAAAAAAMBU+WrohHJlFPiBTY4pA8Fz6binGjzGc+ncT4zxeQkCAQAAAAAAAAAAmCovhk4ot7DFcR9Px73R4DHK2w1fHvPzEgQCAAAAAAAAAAAwVS6GTii3a4Bjy+Peqnn9m9N53x/z8xIEAgAAAAAAAAAAQA/lbYPLoO5izfO6Yd6xOEfj/Ffo7BZYhoVrcZ4NzW4lfGe69mbzjSAIBAAAAAAAAAAAgPe4PzTb6e/r6by3Q+9ArzvfrnndxS2ut9kIAgEAAAAAAAAAAJha5e2Efx46Qd2nap77XHg3xvuXOHsrPyt3Hbwvzo/Sz79T47qLQRAIAAAAAAAAAAAAtZQhXxnT/WeDc1fTuV/tc8xMnFfTcZ8c8LqLQRAIAAAAAAAAAAAAA/ty6IR0r8XZvY2P8/n0OM8OePxiEAQCAAAAAAAAAADAQMrb+ZYR3YU4t27zY30wPdbagMcvBkEgAAAAAAAAAAAAbOkzca7GeSPOh8b0mEV6zEHcGTpx32bzjSAIBAAAAAAAAAAAYModjvN2GG8MuCt0gr3LI7rePUEQCAAAAAAAAAAAwJSaifNU6IRzP4lzywiueTFd7+YtjrsjHffjET0XQSAAAAAAAAAAAABT6dY4PwqdaO65OLMjuu4L6Zpf3uK4I+m4kyN6XEEgAAAAAAAAAAAAU+djcd4MnWDuayO+9hfSdX8eOjsQ9lLuHljenri8XfCHR/S4gkAAAAAAAAAAAACmykdCJwYsY7yFbXqMH4ZOjLcc55NxdqV/L3chPBznf9LPHxzhYwoCAQAAAAAAAAAAmCrfDb3DuX6z0Wb/3nVLnFe2uOaodyYUBAIAAAAAAAAAADBV3grbHwSWyl0BHwqdXQLL3Qivhs7OhP8R5+5teF6CQAAAAAAAAAAAAMiAIBAAAAAAAAAAAAAyIAgEAAAAAAAAAACADAgCAQAAAAAAAAAAIAOCQAAAAAAAAAAAAMiAIBAAAAAAAAAAAAAyIAgEAAAAAAAAAACADAgCAQAAAAAAAAAAIAOCQAAAAAAAAAAAAMiAIBAAAAAAAAAAAAAyIAgEAAAAAAAAAACADAgCAQAAAAAAAAAAIAOCQAAAAAAAAAAAAMiAIBAAAAAAAAAAAAAyIAgEAAAAAAAAAACADAgCAQAAAAAAAAAAIAOCQAAAAAAAAAAAAMiAIBAAAAAAAAAAAAAyIAgEAAAAAAAAAACADAgCAQAAAAAAAAAAIAOCQAAAAAAAAAAAAMiAIBAAAAAAAAAAAAAyIAgEAAAAAAAAAACADAgCAQAAAAAAAAAAIAOCQAAAAAAAAAAAAMiAIBAAAAAAAAAAAAAyIAgEAAAAAAAAAACADAgCAQAAAAAAAAAAIAOCQAAAAAAAAAAAAMiAIBAAAAAAAAAAAAAyIAgEAAAAAAAAAACADAgCAQAAAAAAAAAAIAOCQAAAAAAAAAAAAMiAIBAAAAAAAAAAAAAyIAgEAAAAAAAAAACADAgCAQAAAAAAAAAAIAOCQAAAAAAAAAAAAMiAIBAAAAAAAAAAAAAyIAgEAAAAAAAAAACADAgCAQAAAAAAAAAAIAOCQAAAAAAAAAAAAMiAIBAAAAAAAAAAAAAyIAgEAAAAAAAAAACADAgCAQAAAAAAAAAAIAOCQAAAAAAAAAAAAMiAIBAAAAAAAAAAAAAyIAgEAAAAAAAAAACADAgCAQAAAAAAAAAAIAOCQAAAAAAAAAAAAMiAIBAAAAAAAAAAAAAyIAgEAAAAAAAAAACADAgCAQAAAAAAAAAAIAOCQAAAAAAAAAAAAMiAIBAAAAAAAAAAAAAyIAgEAAAAAAAAAACADAgCAQAAAAAAAAAAIAOCQAAAAAAAAAAAAMiAIBAAAAAAAAAAAAAyIAgEAAAAAAAAAACADAgCAQAAAAAAAAAAIAOCQAAAAAAAAAAAAMiAIBAAAAAAAAAAAAAyIAgEAAAAAAAAAACADAgCAQAAAAAAyF4RwlycRSsBAADkTBAIAAAAAABAtrohYJz1ovM9GAAAQLYEgQAAAAAAAGRnYwjYHSsDAADkTBAIAAAAAABANjYLAQWBAADANBAEAgAAAAAAMPGKEObjnNosBBQEAgAA00AQCAAAAAAAwMQqQpiNcyTOWr8QUBAIAABMA0EgAAAAAAAAE6cSAq4MEgIKAgEAgGkgCAQAAAAAAGBiFCHMxVkcdEdAQSAAADBNBIEAAAAAAABMhCKE+aYhoCAQAACYBoJAAAAAAAAAJkYRwllBIAAAQG+CQAAAAAAAACZGEcJdca4JAgEAAN5LEAgAAAAAAMBEKUJ4vkEMuB5n0eoBAAA5EwQCAAAAAAAwUYoQ7q6xS+D1EDDOnJUDAAByJwgEAAAAAABgx5ShXpyjcWZqnvc9ISAAAMCNBIEAAAAAAACMXRHCbJzjKdwrA757ap6/TwgIAABwI0EgAAAAAAAAY5NCwGNxLmwI+V5vsEvgS5XzV1NgeJtVBgAAppUgEAAAAAAAgG2Xbg18MoV7m93m976a17wrzkoKDHdbZQAAYNoJAgEAAAAAANg2lR0B+4WA3flpg10CZ6wyAABAhyAQAAAAAACAkUshYLkj4NoAIWB1vmj1AAAAmhEEAgAAAAAAMDLlrXsbhoDdOW8VAQAAmhEEAgAAAAAAMLQihPk4i0OEgNU5ZEUBAADqEwQCAAAAAADQWAoByx0B10cQAnbn9TgzVhcAAKAeQSAAAAAAAAC1lcFe2hFwlCFgOStxjseZtcoAAAD1CAIBAAAAAABopAhhecQh4LE4u60sAABAM4JAAAAAAAAAGilCWBhBCLiabjksBAQAABiSIBAAAAAAAIDGihDONwwB1+I8KgQEAAAYHUEgAAAAAAAAjaVdAq/ZERAAAGDnCQIBAAAAAAB4RxHCbINzTg8QAq7bERAAAGB7CQIBAAAAAAAovyCai3M8zkqcfTXP3TfArYHnrDIAAMD2EgQCAAAAAABMsXJHwDhfSbfy7UZ8yw2us7whBLwS55QQEAAAYHwEgQAAAAAAAFNow46AvXb2O1jzegfTeZfiPBnnNqsMAAAwXoJAAAAAAACAKZJ2BCxDwPU+t/kt51yDax8VAgIAAOwcQSAAAAAAAMAUGGBHwF7jOyMAAIAJIggEAAAAAADIWNoR8Eic1RohYHfOWkEAAIDJIQgEAAAAAADIUNoRcDHOWoMQsDoHrCYAAMBkEAQCAAAAAABkJO0IeCzO+pAhYHeWrCoAAMBkEAQCAAAAAABkoHJr4JURhYDdKcPCeSsMAADQfoJAAAAAAACADBQhnB5xCHgpzsny1sNWFwAAYDIIAgEAAAAAADJQhHAwzrURhIBrcRaFgAAAAJNHEAgAAAAAAJCJIoSlIXcEfFoICAAAMLkEgQAAAAAAAJlIuwQ2CQFPCAEBAAAmnyAQAAAAAAAgI0UILw0YAq7HORnndqsGAACQB0EgAAAAAABACxUhzMY5Emd/zfP2bxECXolz3I6AAAAA+REEAgAAAAAAtEglBFxJAd9ynJma1zjXZ0fAPVYZAAAgT4JAAAAAAACAFugRAlZnoea1FuJcS+deivO0HQEBAADyJwgEAAAAAADYQVuEgN1ZbnDd03EWhYAAAADTQxAIAAAAAACwA8pQL86JOBf6hIDVOWTVAAAA6EcQCAAAAAAAMEYpBCx37lsfMATszitWDwAAgH4EgQAAAAAAAGMwRAhYnQNWEgAAgM0IAgEAAAAAALbRiELA7izFmbGqAAAA9CIIBAAAAAAA2AZluBfnyIhCwOosWF0AAAB6EQQCAAAAAACMWBHCPXFWRxwCXorzaLnjoBUGAACgF0EgAAAAAADAiBUh3DXCEHBNCAgAAMAgBIEAAAAAAADboAjh+SFDwPJWw6eEgAAAAAxKEAgAAAAAALANihD2DbEj4KIQEAAAgLoEgQAAAAAAANukCOFsjRDwUpwnhYAAAAA0JQgEAAAAAAAYQBnqxbm95jkLQkAAAADGRRAIAAAAAADQRxHCbLqF73qclxqcv9kugeX1TsWZt8oAAACMgiAQAAAAAACgh7Qj4PE4KxtCvoM1r7MvzrUeIeBtVhkAAIBREgQCAAAAAABUbNgRsNfOfksNrvm9dL2TcfZYZQAAALaDIBAAAAAAACD03RGw1+yree09QkAAAAC2myAQAAAAAACYakUI81vsCNhrzls5AAAA2kYQCAAAAAAATKXKjoCrNULA6ixYRQAAANpEEAgAAAAAAEyVFALW3RGw5y6BcWasKAAAAG0hCAQAAAAAAKbCCEPA6nzOygIAANAWgkAAAAAAACBr2xQClnMpzgNWGAAAgLYQBAIAAAAAAFkrQjg44hCwDAtPxJm3ugAAALSJIBAAAAAAAMheEcKSEBAAAIDcCQIBAAAAAIDsFSEcGCIEXEu3HJ6zkgAAALSZIBAAAAAAAJgKRQjnGuwIWIaAu60eAAAAk0AQCAAAAAAATIUihH1xrtUIAfdYNQAAACaJIBAAAAAAAJgo5Y59cY7Heb7BuUtbhIAn3BoYAACASSUIBAAAAAAAJkIRwnwKAdcrEd9CzWsc6hECrqXrCgEBAACYaIJAAAAAAACg1cpQL86xDSFgd841uN5SJQQsbw282yoDAACQA0EgAAAAAADQSmlHwMVNQsDqHKh53f1pR8BZqwwAAEBOBIEAAAAAAECrlDv29dkRsNecjzNj5QAAAJh2gkAAAAAAAKAVUgh4tEYIWJ0FKwgAAMC0EwQCAAAAAAA7qghhLu0IuNYgBOzOS1YSAACAaScIBAAAAAAAdkQlBFwdIgS0SyAAAAAkgkAAAAAAAGCsUgh4Is7KiELA7py2ugAAAEwzQSAAAAAAADA2KQa8MOIQcCUFhrNWGAAAgGkmCAQAAAAAAMaqCOHsiELA8lbDx+PstqoAAAAgCAQAAAAAAMasCOGuONeG3BHwaJx5qwkAAADvEgQCAAAAAABjV4TwfMMdAY/YERAAAAB6EwQCAAAAAABjV4Rwd41dAssQcFEICAAAAP0JAgEAAAAAgKGUoV66he9MzfO+t0UIuBbnRJw5qwwAAABbEwQCAAAAAACNlKFenJMp3CsDvntqnr+vTwh4XAgIAAAA9QgCAQAAAACAWnqEgN15vcEugS9tuDVwudPgvFUGAACA+gSBAAAAAADAQMpQL85inPU+t/m9r+Y170ph4RE7AgIAAMBwBIEAAAAAAEBfaUfAMgS81CcE7M5PG+wSOGuVAQAAYHiCQAAAAAAAoKdKCLgyQAhYnS9aPQAAABg/QSAAAAAAAHCDFAKe3OLWwP3mvFUEAACA8RMEAgAAAAAA1xUhzMd5dIgQsDqHrCgAAACMlyAQAAAAAACmXAoBy1sDXxpBCNid1+PMWF0AAAAYH0EgAAAAAABMqTLYSzsCXhlhCFiksPBUnFmrDAAAAOMjCAQAAAAAgClWhLA8whCwvNXw8ThzVhYAAADGTxAIAAAAAABTrAjh0IhCwJNx9lhRAAAA2DmCQAAAAAAAmHJFCC81DAGvpBBw3ioCAADAzhMEAsBEKe5Pn7e/WOOcj737Gf2O/d6fjvOdOK/G+XOct+JcjnMhzrNxDsfZtcm5L6bf/37/+wMAAMA2vXMP4WDNEHAtzqIQEAAAANpFEAgAE6P4SJyLca7G2TvgObvj/GLngsDizjg/HvC7hF/F+XiPa9yRnvPFzhoAAAAAW74jD2G2wTmvDPAG/lKcp+PMWWUAAABoH0EgAEyM4uX02fsTAx4/UzlnB4LA6zsT/qHmnYYud3YTfM+1vpl+/rLXAQAAAPR5Nx7C7jgPxFmNs6/mufdssSPgCSEgAAAAtJsgEAAmwju3Ci5vt/uXAxx/c5yl9352P7bfd1ecX1ceu9zd77E4n4hzU+WYv+0EjsXblWPffO9zLP/79WsUndsLAwAAADe8cw5hNs5DKQTsvsk+2+A65zZ8mLAe51Sc26wyAAAAtJ8gEABa7/pOf2+kz+G/McDxH9sQ4+1EEPgPlcf93da3OL4eCl6snNPjeRYn08/eeDcqBAAAgCn/1KCzI+DROL/ZZGe//TWvdzCdd8WOgAAAADB5BIEA0HrF0fQZfrmL3q19jrs53Vq3utvehR0KAs9UHvfzA55zpHLOaz1+/uHKc/snrwsAAACm+tOCzo6Ax+Ks9LnNbznLDa5dBoZ7rDIAAABMHkEgALTa9dvqrqTP8F/Y4tg/bvjM/+U4t+xQEFjd7W/XgOfMVs65vMkxL6Sfrwx+XQAAAMjok4JOCPiVAULA6hy0cgAAADAdBIEA0GrF4crn95/d4tjucWudW/a+59+Llj/XXQMEgdX1OOz1AQAAwNR8QtAJAR+Ic6FGCNh4l0AAAABgMgkCAaDViqX02f3VODdtcWy5K9/JOLs3/PukBIF3V37XVzc5ZrZy2+AfeH0AAACQ/ScDIczEeahhCFgdn/sDAADAFBAEAkBrlWHfO/HbDwc4fpNgcGKCwG9VftdH+hx3Lh1Trs3NXicAAABk+alAZ0fAo3F+OWQI2J0lqwoAAAD5EwQCQGuVtwh+53P7J4a4zgQEgcUnb7xdcPHhPsd+a/DbKAMAAMCEfRrQ2RHwWJzfjCgE7M6VOHusMAAAAORNEAgArVU8Vfnc/vAQ12l5EFjcGefNyu95dIvjD1eOfcrrBAAAgKw+DQjh2RGHgOtxFuPMW10AAADInyAQAFqrOFP5/H5hiOu0OAgs9sb5XeV3/P4A53y6cvwZrxMAAACy+jQghINxro0oBHzUroAAAAAwXQSBANBaxRuVz/E/MMR1WhoEFndt2Bnw5Tg3DXDe7so5F7xOAAAAyO4TgRCWhggBL8V5Os6clQQAAIDpIwgEgNYqLlc+z981xHVaGAQWn4rzh8rv9oPBYsDr5+6qnPdnrxMAAACy+0Sgs0tg01sDCwEBAABgigkCAaC1irdHE/K1LQgs7ovz1o23CS5mGj6nq14nAAAAZPmpQAgv1QgBT7o1MAAAAFASBAJAa+UYBBZf2/C9xRNDPidBIAAAAO1+dx/CbAr2DtQ8b79bAwMAAAB1CQIBoLVyumVwcUuc5crvUsaODze81oxbBgMAAND6d/Uh7I5zIs5qehO7HGem5jXO9QgBr6TrCgEBAACA9xAEAkBrFb+tfN7/wSGus8NBYHF3nJXK77Ea5xNDXO/myrV+5XUCAABAq97Nd0LA4+lWvhtjvoWa11qIc82tgQEAAIBBCQIBoLWKM5XvDA4NcZ0dDAKLT8W5WPkdlju7BQ51zUOV653xOgEAAKAV7+JDmO8TAnZnucF1T8d51I6AAAAAwCAEgQDQWsVjle8M7h/iOjsUBBZ3bYgBHxnRdb9QueZjXicAAADs6Lv3EGbiHNsiBKzOIasGAAAAbBdBIAC0VvGZyvcF/z7EdXYgCCx2xflF5bEPj/Da365c9zNeJwAAAOzIu/Z3Q8DfDBgCducVqwcAAABsF0EgALRWMRPnavq+4NUhrtMgCBw2Iiz+sd53Ib1m02u/lo652lkjAAAAGOO79U4I+FCcC0O86T1gJQEAAIDtIAgEgFYrXqh8X3BLw2vsRBD4k+0JAotbK8ec8foAAABgbO/QQ5hNIeBaMfyb3qUyLLSqAAAAwKgJAgGg1Yq/q3xf8GDDa+xEEPj2NgWBD1aOOeT1AQAAwLa/Mw9hd5wH4qyOIASszoLVBQAAAEZNEAgArVdcSN8VLI/5cZ/q3Ja3VWuxnNbi114XAAAAbPu70BAObUMIeCXOk3HmrDAAAAAwaoJAAGi94uHK9wZ7x/i4343zxxatw97KOjzsdQEAAMC2vxMNYX+cayMMAU/FmbeyAAAAwHYRBAJA6xUzcd5I3x88McbH/XWc51q0Do+nNSh3TNzldQEAAMBY3o2GcFoICAAAAEwKQSAATITi/vQ9wuU4t4zh8Y6mx7uvJc//lvTcy9/psNcDAAAAY3tHGsK+hiHgpXRr4NusIgAAADAugkAAmBjFD9N3Co+N4bG+FuepFj33b6bnvux1AAAAwNjflYbwfI0QcD3OSSEgAAAAsBMEgQAwMYo74lyMczXOX03Z876anvsdXgcAAAAM9S4zhLk4t9c8Z58QEAAAAJgEgkAAmCjXbx38VpwzU/Scz6TnfL///QEAAGj87jKE2ThH4qzGOd3g/KUtbg08Z5UBAACAnSYIBAAAAAAgW2lHwMU4axtCvv01r3NXnGtCQAAAAKDNBIEAAAAAAGRnw46AvXb2O9vgms+nWwOfEgICAAAAbSQIBAAAAAAgG0UI83EejbOySQhYnbtrXnuPEBAAAABoM0EgAAAAAAATr3Jr4PUBQsDuLFs5AAAAICeCQAAAAAAAJlYRwu4GIWDjXQIBAAAA2kwQCAAAAADAxClCmI1zZMBbA/ebZ60mAAAAkAtBIAAAAAAAE6MIYT7OqTirQ4aA1dlvZQEAAIAcCAIBAAAAAGi9IoS5IW8NvNmsxbnPCgMAAAA5EAQCAAAAANB6RQgHRxwCrqfAcM7qAgAAALkQBAIAAAAAMBGKEJZGEAKuphBw3ooCAAAAuREEAgAAAAAwEYoQDgy5I+CxOLutJAAAAJArQSAAjM5c+ht6Ks7pOOfjXKjM+fTvT8b5XLATAQAAANRWhHCuZgh4Jc5JtwYGAAAApoEgEACGMxPnK3Gej3Nlk7+r/eancY4GcSAAAAAMJL6Z3hfn2oA7Ap5wa2AAAABgmggCAaCZMgQ8EmclbBr7zcTZE+f2NLP9wsAyJix3DrRbAQAAAFMhvVE+XnT+T3Z1z13aIgQsdwS8zSoDAAAA00YQCAD17Q+dnf02/P3cG+dYnNNxfrnJZgUr6TuLR+IcSNHgDddZC53QcMYyAwAAkKPy1r0pBFypvGFeqHmNQz3edK/FWXRrYAAAAGCaCQIBoJ4y1rt049/NhThnB7xb0cb5ZYoI5zb+LV4ObmkEAABARtKOgEfirPZ4g3yuwfWWKjsCloHhbqsMAAAATDtBIAAM7ukb/17+TZzlBhFgrym/C3lo49/j1+PcbtkBAACYZOn/BbeYdvDr9+b4QM3r7k8hoP9DHQAAAEAiCASAwWyIAY823BFwqykDw9urf5NX4uy1/AAAAEyaSgi4PuCb4vNxZqwcAAAAQHOCQADY2pEb/04+uQ0hYHUuxTlY/bu8GuwUCAAAwIQod+yLc6pGCFidBSsIAAAA0JwgEAD62x/nUhhbDHjDdyDVv83ng10SAAAA/p+9+wmtK03zA/ylEUEE0SigoT1EARNMU4tiMMQDDuOAF154UYQiVJgK0zBuKBovvPBCEA3tgBoxeKGFBxwIYQhFKIKh3eAQLxwQwQyiKYKHqWYqpBZemEYE0WghaIVW02o4eU/ru61Tqnulc8499+r+eR74bcq6R1WvFqe/1s/vxwSLw+ti5EGNq4HPyyuTBAAAAGhPIRAABisLeF+kr10TXIwx5ZXE71ffz0/8SAAAAJg0lSLgbld/Q85UAQAAANpRCASAwSpXBb+XC3rFmPM2stR7Px9HrvuxAAAAMAnioLoc2RhyI2C/vDRdAAAAgHYUAgGgv3I74O7pu/H1JZQBe9mqvqO3/WgAAAC4bHFAXYkcdHwA3ssFw2UTBgAAAGbJtyI/iPyPyC8jv4n8KvLTyL+PfLvD76UQCAD93Tt9L965xDJg7+rga9X39G0/HgAAAC5bHFBfdHTwPchFwCVTBQAAAGbNdyJ/m/qX9HrZi/xxR99PIRAA+ntx+l58dcmFwCL/juX37+lnfjwAAABctjigvpf/Flvbw+6hjYAAAADALCs3A/bKgP8n8meRxfxn/zDyryM/y3/+i8gfdvA9FQIB4JvKX0Qcn7wTrw35u40utwSu9N7T+8nWBAAAACZAy79F19sIuGqCAAAAwCz7fjr5JX9ZCvxHA76mLAju5K/7qw6+p0IgAJz7flybgDJgL9/zrgYAAGCixAH1VoO/SVcWAbdsBAQAAADmxX9PJ7/gv3PB1/1x/rqfd/A9FQIB4Ju2Tt+JzyeoEPis+q7e8GMCAACgS3HYXIo8aPG5iw7PR4qAAAAAwDz6ZTr5Bf+3anxt+XW/7uB7KgQCwDc9P30nvp2gQuC76rv6mR8TAAAAXegVASO7+QB6p+Hnbww4yB5GnkSumDIAAADAYOW1wWUR4JcdPEshEAC+6c3J+3Chwa1H48pi7139xo8JAACAYeRD5nq+yrd6+NwpD8UNn7V95mrgdRsBAQAAAOr5t+mkCPDjGl/73XRS7huUHyWFQAA4693J+3B1wsqAZa723tXv/JgAAABooyzq5cLe7jkH0JsNn3k9shd5XB6oTRkAAACgnvI64b9PJ0WAf1nj6zdS/8LfRVEIBGCe5ULgVYVAAAAAZkbeCPggF/cuOoC22RK4YMoAAAAAzfxlOikB/NeaX7+RFAIBoKlp2BD41o8JAACAOnIRcDOy3/AQ+qHpAQAAAIzOn6eTAsDPIks1P7ORFAIBoKk3J+/DhcjxhBUCF3vv6h0/JgAAAM6TD5FrLYqAvWybIgAAAMBolH8Ts3c94HcafG4jKQQCQFPPT9+JbyeoDLhbfVc/92MCAACgn1wEvD9EEbCauyYKAAAA0K1/FflN5OeRP2z42Y2kEAgATW2dvhNfTVAh8Hn1Xb3mxwQAAEBVBxsBbQkEAAAAGLE/jfw2tSsDlr6bTsp9g/KjpBAIAGd9cPpOXJ+gQuC96rv6hh8TAAAAPR1uBKzmKPIfy6KhCQMAAAAMZyHyV+nkF/5/G/mDEX2fSuFBIRAAsuWU/sFvT96J1yeoELjae08f5P+tAAAAAL8Th8UvOzyAHkaelgdRkwUAAAAY3nciP00nv/D/SRrt375UCASA/t6cvhe/nIAy4Hb1Pf2ZHw8AAABVcVi829FGwLIIeNVEAQAAALrxR5FfpJNf9v/FGL6fQiAA9Pfw9L34cAIKgbeq7+nbfjwAAACcFQfGN0MUAZ/YCAgAAADQrX+aTsqAv4rcGdP3VAgEgP7Ka4P/38l7cTGye4llwJfVd/QbPxoAAAD6iUPjRy2KgI8VAQEAAABG47+k/uW88zIshUAAGGzr9N1475LKgIfl72Wq7+gP/VgAAADmQ/k31Fp8ZqdBEfCKKQMAAACMzq+TQiAATJLlyN7p+3H7EgqBn1Tfz9t+JAAAALMvr6pfy+vq32/42bsXFAG3IiumDAAAADCbFAIB4Hz3T9+PV/PGvnGVAZ9FFnrv5sPU8JdAAAAATJdcBLwfeVs5HL5q8Zyv+hQBHxUnf/ENAAAAgBmmEAgA51tIJ5v58jvyVuR4DGXA7fx7oN+/m+/5UQAAAMymfAAsC3v7Aw6JNxo+r7cl8CBvBHQ1MAAAAMCcUAgEgIuVGxTenL4nb494U+Czs2XAR34EAAAAs2fARsB+ed7i2WuKgAAAAADzRyEQAOpZjbw9fVdei3zZcRGwLBl+Ur0muMxjowcAAJgtcdhbuWAjYL/cMjkAAAAALqIQCAD1XYvsnr4vF/LNS0cdlAFfRVbPvo9tBgQAAJghcdBbijxsuXb+lQkCAAAAcBGFQABoptwUuPP19+bVyGcti4Hb5ZKHs+/hw8g9owYAAJgNcdBbjmxEDob822TvmSYAAAAA51EIBIB2tiLHX39/losePo58Gvkqctzndzd7keeRe/02ApbZjrxvvAAAANMvDnmLkbUOioC2BAIAAABQi0IgALRXFvdeDXiX5iuFV/MGwav590CDvja9iXxopAAAANMvHwAfRHY7KgL2UhYLV0wYAAAAgEEUAgFgeDcjn0b20uDCX78cRD6L3DZCAACA2ZFXw3dZBDyMbJZXD5suAAAAAOdRCASA7ixG7kTW00nRr9z69y7nbWQn8jz/+Y3IgpEBAADMniKl25HjDoqA+5ENRUAAAAAA6lIIBAAAAADoWJHS9pAbAZ8qAgIAAADQlEIgAAAAAEDH8pbANkXAR4qAAAAAALSlEAgAAAAAMAJFSq9qFgEPIpuRq6YGAAAAwDAUAgEAAAAAzlGktBhZi1xv+LmbFxQBjyLrNgICAAAA0BWFQAAAAACAPoqUliKfRN7lAt/rFs/YOWcj4KopAwAAANAlhUAAAAAAgIq8EfBBZK9Pme+Dhs+6EznOnz2MPLUREAAAAIBRUQgEAAAAAEhfuxr43TnX/LbZEvg8sqEICAAAAMCoKQQCAAAAAHMtXw1cFgH3zykCVnPX1AAAAACYRAqBAAAAAMBcyhsB1yMHNYuArbcEAgAAAMA4KAQCAAAAAHOlvLo3FwF3GxYBq7ltkgAAAABMGoVAAAAAAGAu5I2ADyJ7QxQBbQkEAAAAYGIpBAIAAAAAMy0XAR9G9jsoAtoSCAAAAMDEUggEAAAAAGZWkdK9ERQBDyOPy6uHTRgAAACASaIQCAAAAADMrHKLX4dFwLJYuKEICAAAAMCkUggEAAAAAGZakdLnQxYBDyKbioAAAAAATDqFQAAAAABgphUp3R1iI+C6IiAAAAAA00IhEAAAAACYeUVKLxsUAQ8jjyMrJgcAAADANFEIBAAAAACmSrmxL7La8DN3al4N/MhGQAAAAACmlUIgAAAAADAVchGwLOztRp63+PzOgCLgXmRDERAAAACAaacQCAAAAABMtCKlpVzY2z1T5LvZ8DlntwTu2wgIAAAAwCxRCAQAAAAAJlLeCLiZi3v9Nvu9bPHM13kj4LoiIAAAAACzRiEQAAAAAJgoNYqA1Vxv+OxrkRVTBgAAAGAWKQQCAAAAABMhXw28njf4FTXz2uQAAAAA4IRCIAAAAABwqXIR8FHkXYMiYOstgQAAAAAwqxQCAQAAAIBLUaS0mDcC7rYsAvbyzDQBAAAAQCEQAAAAABizXATcjOwPWQSs5qbJAgAAADDvFAIBAAAAgLGoXA2812ERsMjPu2vCAAAAAMw7hUAAAAAAYCyKlG53XAQ8iDyILJsuAAAAACgEAgAAAABjVKS03UERcD8XAVdMFAAAAABOKQQCAAAAAGNTpHRryKuBH5ZXD5skAAAAAHyTQiAAAAAAMFZFSjstNgKWRcBF0wMAAACAwRQCAQAAAICxKlK6ETmuUQQ8iKy7GhgAAAAA6lEIBAAAAABaKVJajmxEXrT47HaNIuCyKQMAAABAfQqBAAAAAEAjlSLgQaXEd7vhM+4OuBpYERAAAAAAWlIIBAAAAABqGVAE7OV1i+dtnykCLpkyAAAAALSnEAgAAAAAnOuCImAxxJbAm7kIuGjKAAAAADA8hUAAAAAAoK8GRcDWWwIBAAAAgO4oBAIAAAAAX9OiCNh6SyAAAAAA0B2FQAAAAADgd4YsAtoSCAAAAACXTCEQAAAAAOZcR0VAWwIBAAAA4JIpBAIAAADAnCpSWoo8iOx1VATs5ZnpAgAAAMD4KQQCAAAAwBwqUlqJ7HdcBCw3DD6KLJowAAAAAIyfQiAAAAAAzKkipZcdFwGXTRUAAAAALo9CIAAAAADMqSKl9yPHQxQB93MRcMU0AQAAAODyKQQCAAAAwBwrUnrVciPglo2AAAAAADBZFAIBAAAAYI4VKd1ssCWwLAJuRlZNDgAAAAAmj0IgAAAAAMyIIqUrkQctPvf8giLgUeSJIiAAAAAATDaFQAAAAACYcuXVvXlz30Eu8F1v+PlbFxQBV0wZAAAAACafQiAAAAAATKmyqBfZqBQBe3nV4lk7Z4qAW+XGQVMGAAAAgOmhEAgAAAAAU6ZIaenMRsB+ea/hM29GjnMR8JopAwAAAMD0UQgEAAAAgClRpLSYi4D75xQBe3ne4vk2AgIAAADAFFMIBAAAAIAJlzcCPors1SgCVnPD9AAAAABgfigEAgAAAMCEyhsBH7QoAvbymSkCAAAAwPxQCAQAAACACZM3Aq5FdlsWAXs5jlwzUQAAAACYDwqBAAAAADAhipQWIvc7KAJW88xkAQAAAGA+KAQCAAAAwATIRcD9DouAZY4i66YLAAAAAPNBIRAAAAAAJkCR0pcdFgEPI48jV0wWAAAAAOaHQiAAAAAATIAipbsdFgGXTRQAAAAA5o9CIAAAAABMiCKlNy2LgOVVwxuKgAAAAAAw3xQCAQAAAGBCFCl91LAIeBTZVAQEAAAAAEoKgQAAAAAwIkVKiy0+s1OzCFheDbxiygAAAABAj0IgAAAAAHSsSGkp8klkL3K94WfvnlMEPIw8UQQEAAAAAPpRCAQAAACAjpQbASP3cxGwV+L7rMVzvhpQBHQ1MAAAAAAwkEIgAAAAAAwpbwR8GHnbZ6vf8RBbAvfz1cCKgAAAAADAhRQCAQAAAKClvBFwLbJ7zjW/ZV63ePaaIiAAAAAA0IRCIAAAAAA0lIuA92oUAau5aXIAAAAAwCgpBAIAAABATbkI+EnkXYMiYC8vTRAAAAAAGCWFQAAAAAC4QJHSQuR+yyJgNbdMEwAAAAAYFYVAAAAAABggbwR8GPlqyCJgL9umCgAAAACMikIgAAAAAJyRNwKuRd52VATs5SiyasIAAAAAwCgoBAIAAADAGUVKn46gCLgVWTFdAAAAAGBUFAIBAAAA4IwipRsdFQEPI08iV0wVAAAAABg1hUAAAAAA6KNI6eWQGwGfKgICAAAAAOOkEAgAAAAAfeQtgcctNgJuKQICAAAAAJdBIRAAAAAABmiwJbBXBFw1NQAAAADgsigEAgAAADDzipQWI5uRWw0/d/OCLYFHioAAAAAAwKRQCAQAAABgZhUpLUUeRfZyge91ZKHhM14oAgIAAAAA00AhEAAAAICZk4uA65GDPmW+Ow2fdaOyJbBXBFwxZQAAAABg0igEAgAAADAzyqJeZGNAEbCX1y2e+yzyJHLFlAEAAACASaUQCAAAAMDUK1JazFcDn1cErOauqQEAAAAAs0YhEAAAAICplYuA5dXA+zWLgL18bnoAAAAAwKxRCAQAAABg6hQpLUXWWhQBq7llkgAAAADALFEIBAAAAGBq5CLgwwZXA5+X7ciCqQIAAAAAs0IhEAAAAICJV6S0kq8G7qIIWM0d0wUAAAAAZoVCIAAAAAATrUjp4xEUAY8iTyLLJgwAAAAAzAqFQAAAAAAmWpHSRx0XAbfKjYMmCwAAAADMGoVAAAAAACZekdLnQxYByw2DjxUBAQAAAIBZphAIAAAAwMQrUvqgZRFwL7LpamAAAAAAYB4oBAIAAAAwFYqUvmhQBNyPbESWTA4AAAAAmBcKgQAAAACMXbmxL3K14Wdu1ygCHuaNgIqAAAAAAMDcUQgEAAAAYGyKlBYjD/JVvs9bfP6LczYCPlIEBAAAAADmmUIgAAAAACOXNwJu5OJetch3s+FzPj7z+YPIuiIgAAAAAIBCIAAAAAAjdGYjYL/Nfi9bPPPz/Lw1RUAAAAAAgFMKgQAAAAB0rkhpJfI4sjugCFjN9YbPvqYICAAAAADwTQqBAAAAAHSmcjXwQY0iYC+vTQ4AAAAAYHgKgQAAAAAMrdzY16II2HpLIAAAAAAA36QQCAAAAEBrRUqLkQc1rwY+L89MEwAAAABgOAqBAAAAADRWpLQS2YrsDVkErOamyQIAAAAAtKcQCAAAAEBtRUrLQ14NPCj7kQ9NGAAAAACgPYVAAAAAAGorUroROe6wCHiQC4bLpgsAAAAAMByFQAAAAAAaKVJ60UERcC8XAVdMFAAAAACgGwqBAAAAADRSpHRzyI2Aa5ElkwQAAAAA6JZCIAAAAACNFSm9bFgEPIpsuRoYAAAAAGB0FAIBAAAAaKxI6UbNIuBh5EnkiqkBAAAAAIyWQiAAAADAHCtSWoysR160+OzrCzYCPrYREAAAAABgfBQCAQAAAOZQWdTLRcDdSonvTsNnlFsCj88UAQ8ia4qAAAAAAADjpxAIAAAAMEfyRsAHkb0+W/12Wjzv8/zZ/ciGIiAAAAAAwOVRCAQAAACYA3kj4EYu7hXn5FbD597KGwEXTRkAAAAA4HIpBAIAAADMsCKlK5HH+SrfokbeRBZMDgAAAABg+igEAgAAAMygIqWVyFbksGYRsJo7JggAAAAAMH0UAgEAAABmSL4aeK3G1cDn5ZVJAgAAAABMH4VAAAAAgBmQi4AbDa4GtiUQAAAAAGDGKAQCAAAATLEipSuRzQ6LgL28NF0AAAAAgOmiEAgAAAAwpYqU3oscdlwE3MubBpdNGAAAAABguigEAgAAAEyxIqWdjoqAB7kIuGSqAAAAAADTSSEQAAAAYIoVKd0dsgh4aCMgAAAAAMBsUAgEAAAAmHIttwT2NgKumiAAAAAAwGxQCAQAAACYckVKdxoWAbdsBAQAAAAAmD0KgQAAAAATpEhpqWjx/83EZ17X3AioCAgAAAAAMKMUAgEAAAAmQJHSQuReZDdyHLnW8PO3FAEBAAAAAOabQiAAAADAJSpSWow8jOyfKfI9a/GsncrnjyJPI1dMGQAAAABgPigEAgAAAFyCfDXwWmRvwGa/NlsCb1aKgKumDAAAAAAwXxQCAQAAAMYobwRcz1cDFxfksxbPXzFlAAAAAID5pBAIAAAAMAa5CLjZ52rgi/K+6QEAAAAAUIdCIAAAAMAI5SLgWosiYC+fmiIAAAAAAHUoBAIAAACMQC4C3h+iCNjLUeSqiQIAAAAAcBGFQAAAAIAOdbARsF+emSwAAAAAABdRCAQAAADoSEcbAfttCHxsugAAAAAAXEQhEAAAAKAjRUpvOiwCHkaeRK6YLAAAAAAAdSgEAgAAAHSkSOmDjjYCPlUEBAAAAACgKYVAAAAAgA4NsSWw3Ai4pQgIAAAAAEBbCoEAAAAAHSpSutuyCLhqegAAAAAADEMhEAAAAOAcRUqLLT7zuubVwIqAAAAAAAB0RiEQAAAAoI8ipeXIemQ3cqPhZ28rAgIAAAAAMG4KgQAAAAAV5UbAyL3IXqXE97rFc14PKAKumDIAAAAAAKOgEAgAAACQvrERsN9mv9sNn9fbEngYeRK5YsoAAAAAAIySQiAAAAAw1/JGwLIIeHDONb9ldlo8+6EiIAAAAAAA46IQCAAAAMylGhsB+8X/ZwIAAAAAwMRSCAQAAADmSt4I+CCy16AI2MtLEwQAAAAAYFIpBAIAAABzIW8E3IjstygCVnPLNAEAAAAAmEQKgQAAAMBMyxsB1yIHQxYBe9k2VQAAAAAAJpFCIAAAADCTKlcD73ZUBOylLBaumDAAAAAAAJNGIRAAAACYSUVKzzsuAh5GNsurh00XAAAAAIBJpBAIAAAAzKQipduR4w6KgPuRDUVAAAAAAAAmnUIgAAAAMLOKlLaH3Aj4VBEQAAAAAIBpoRAIAAAAzKy8JbBNEfCRIiAAAAAAANNGIRAAAACYaUVKr2oWAQ8im5GrpgYAAAAAwDRSCAQAAACmQrmxL7IRea/h525eUAQ8iqzbCAgAAAAAwLRTCAQAAAAmWqUIeJALfC9bPGPnnI2Aq6YMAAAAAMAsUAgEAAAAJlKfImA1TbcE3okc588eRp7aCAgAAAAAwKxRCAQAAAAmygVFwF5etXju8/xcRUAAAAAAAGaSQiAAAAAwEWoWAau5YWoAAAAAAHBKIRAAAAC4VC2KgL1smx4AAAAAAJxSCAQAAAAuxRBFwGpumSQAAAAAAJxQCAQAAADGqqMi4O+3BEYWTBUAAAAAABQCAQAAgDEpUlqMPOyoCFjNHdMFAAAAAACFQAAAAGAMipTuRfY7LgIeRh6XGwdNGAAAAAAAFAIBAACAMShSutthEXA/XzmsCAgAAAAAABUKgQAAAMBYFCl9MWQRsLxqeFMREAAAAAAA+lMIBAAAAMaiSOmDITYCrisCAgAAAADA+RQCAQAAgLEpUtppUAQ8jDyOrJgcAAAAAABcTCEQAAAAaKXc2Be52vAzH9W8GviRjYAAAAAAANCMQiAAAADQSJHSYmQjF/detPj8lwOKgHv5uYqAAAAAAADQgkIgAAAAUEveCLge2T1T5LvW8DkfnPn8vo2AAAAAAAAwPIVAAAAA4FxnNgL22+z3vMUzP88bAdcVAQEAAAAAoBsKgQAAAEBf52wE7JcbDZ/9XmTFlAEAAAAAoDsKgQAAAMDXlEW9CzYC9ssLkwMAAAAAgMulEAgAAAD8TmUj4F6DImA110wRAAAAAAAuj0IgAAAAzLlcBGy6EbBfnpsmAAAAAABcHoVAAAAAmFMdFgGruWGyAAAAAABwORQCAQAAYM6MqAhY5KuG/X8KAAAAAABwSRQCAQAAYM7Ewf92x0XAslj4oCwami4AAAAAAFwehUAAAACYQ3H43+6gCLifi4ArJgoAAAAAAJdPIRAAAADmUBz+bw15NfDDyJJJAgAAAADA5FAIBAAAgDlVpLTTYiNgWQRcND0AAAAAAJg8CoEAAAAwp4qUbkSOaxQBDyLrrgYGAAAAAIDJphAIAAAAU668ujcX9l60+Ox2jSLgsikDAAAAAMDkUwgEAACAKVVu7Its5OJer8R3p+Ez7g64GlgREAAAAAAApoxCIAAAAEyZsqgXeXSmCNjLTovnbZ8pAi6ZMgAAAAAATB+FQAAAAJgSeSPg4wFFwGpuNXzuzVwEXDRlAAAAAACYXgqBAAAAMOHKjX15I+D+BUXAXt5EFkwOAAAAAADmi0IgAAAATKh8NfBmjY2A/XLHBAEAAAAAYL4oBAIAAMCEiYP5lchGyyJgL69MEgAAAAAA5otCIAAAAEyIOJCvDLER0JZAAAAAAACYcwqBAAAAcMnyRsDHHRYBe3luugAAAAAAMD8UAgEAAOASxSH8WmS/4yJgWSx8FFk0YQAAAAAAmB8KgQAAAHDJ4iD+RYdFwPXIsqkCAAAAAMD8UQgEAACASxYH8btDFgH3FQEBAAAAAACFQAAAAJgAcRj/quVGwE1FQAAAAAAAoKQQCAAAABMgDuMfNdwIuKEICAAAAAAAVCkEAgAAQMfiYL1YtDhbx2feXFAEPIw8jqyYMgAAAAAAcJZCIAAAAHQkDtQLkbXI28hx5FrDz3/vnKuBH9kICAAAAAAAnEchEAAAAIZ0pghYLfI9a/Gct2c2AroaGAAAAAAAqEUhEAAAAFrKVwM/jLwbsNmvzZbAjytFwFVTBgAAAAAA6lIIBAAAgIbyJr+yCLg/oAhYzWctnr1iygAAAAAAQFMKgQAAAFBTLuvdj3xVowhYzfumBwAAAAAAjJpCIAAAAFygUgR827AI2MunpggAAAAAAIyaQiAAAAAMUCkCvmtZBOzlKHLVRAEAAAAAgFFSCAQAAIAzOiwCVvPMZAEAAAAAgFFSCAQAAICKXATc77AIWOYg8sh0AQAAAACAUVIIBAAAgIo4FL/uuAi4Hlk2WQAAAAAAYNQUAgEAAKAiDsV3OyoCbkZWTRQAAAAAABgXhUAAAAA4Iw7Gr1oWAY9yEXDFFAEAAAAAgHFTCAQAAIAz4mB8u2ERcD+yoQgIAAAAAABcJoVAAAAAZl4cdBdbfObzGkXAw8jTyLIpAwAAAADAbPjrdFKiG9a3U/9yXr90RSEQAACAmRUH3KXIJ5G9yPWGn/3ggo2AjxQBAQAAAABgtvy71F1Jb1A5TyEQAAAAGig3Akbu5yJgr8T3WYvn7JwpAh5EtiJXTBkAAAAAAGbHQuQ/pG5Lej/Mz/nhGP87FAIBAACYGXkj4MPI2z5b/Y5bbAm8nT97ZCMgAAAAAADMpvKXBz9L3W/t+0l+zr8Y43+LQiAAAABTL28EXIvsnnPNb5nXLZ5dFgxXTRkAAAAAAGbLP4/8OH29OPc3qbtC4F7kV2P+b1IIBAAAYGrlIuC9GkXAam6aHAAAAAAAUC3M/d/I98/882F8Oz/jx2P+b1IIBAAAYBoP6GUR8JPIuwZFwF5emiAAAAAAAFAW5f4u8oPIwpl/PmwhsFfMW4s8jPzPdLIt8NeR/cizNJqrhBUCAQAAmKaD+ULkfssiYDW3TBMAAAAAAObbHw34510UAn+Yn/Hb1L+g18t/6vi/SSEQAACAiZc3Aj6MfDVkEbCXbVMFAAAAAAD66aIQ+JPKc/4ycq3yZ4uRDyM/zX/+nxs897vppNw3KD9KCoEAAABM7oG73Ai4FnnbURGwl6PIqgkDAAAAAABndVEI3MvP+P45X1NeU/x3+ev+pOZzN9L5GwcHRSEQAACASThwP+u4CHgQ2YismC4AAAAAANBPF4XAuv5N/l7Pan79RlIIBAAAYHoP3Lcjxx0VAR/bCggAAAAAAFxknIXAf5y/137Nr99ICoEAAABM96F7e4gi4GHkaWTZJAEAAAAAgDrGWQjsfb/f1PzajaQQCAAAwHQfum8PcTWwIiAAAAAAANDIOAuB38rf61c1v34jKQQCAAAw/QfvVw2KgJuuBgYAAAAAANrqohD4y/yMb1/wdf8sf93/qvnc76aTct+g/CgpBAIAADC+A/RiLuxda/i5m64GBgAAAAAAxqGLQuB/y8/48wu+7kH+us2O/t0/SAqBAAAAjP7gvBR5FNnLBb7PWjxjp08R8Cg/VxEQAAAAAADoRBeFwD/Lz/j7yMKArym3B/48nVwX/E86+ndXCAQAAGCUB+ayCLier/I9W+Z7r+Gz7kSOXQ0MAAAAAACMUheFwNLf5Oe8jvxJ5Fv5ny9G/jTyv/Of/6DDf3eFQAAAAEZxUF6JbAwoAvbyaYvnPo88thEQAAAAAAAYlbqFwIu+7g8in6f+Bb1e/qLjf3eFQAAAALo8IC/mK3zPKwL2Um77u25qAAAAAADAJOmqEFgqtwLeTydbAsurgX8T+UU62Zowil+SKAQCAADQxcF4MV8NvF+jCFjNM9MDAAAAAADohkIgAAAArcUBcimy1qIIWN0SeNUkAQAAAAAAhqcQCAAAQGO5CPiw5tXAF+VTEwUAAAAAABieQiAAAAC1xYFxJV8N3EURsJr3TBcAAAAAAGA4CoEAAADUEofFj0dQBCyf96jcOGjCAAAAAAAAw1EIBAAAoJY4LN7usAh4GHlcbhw0WQAAAAAAgG4oBAIAAFBbHBh3hiwCHkW2IsumCQAAAAAA0C2FQAAAAGqLA+ONITYCPolcMUUAAAAAAIDRUAgEAACgkTg0vmxQBDyIbCoCAgAAAAAAjJ5CIAAAwBwrr+6NXG34mTs1ioB7kUeuBgYAAAAAABgfhUAAAIA5FAe/xciDXNx73uLzr8/ZCLilCAgAAAAAADB+CoEAAABzJG8E3Ijsnyny3Wz4nLNbAvfzcxUBAQAAAAAALolCIAAAwBw4sxGw32a/ly2e+UV+3npkyZQBAAAAAAAul0IgAADADIsD3krkcWR3QBGwmusNn32tLBqaMgAAAAAAwGRQCAQAAJhBlauBD2oUAXt5bXIAAAAAAADTSyEQAABghpRX97YoArbeEggAAAAAAMDkUAgEAACYAeXVvZEHNa8GPi/PTBMAAAAAAGA6KQQCAABMsTjArUS2IntDFgGruWmyAAAAAAAA00chEAAAYArFwW15yKuBB2U/8qEJAwAAAAAATB+FQAAAgCkUB7fbHRcBD3LBcNl0AQAAAAAAppNCIAAAwJSKw9t2B0XAvVwEXDFRAAAAAACA6aYQCAAAMKXi8HZryI2Aa5ElkwQAAAAAAJgNCoEAAABTLA5wOw2LgEeRTVcDAwAAAAAAzB6FQAAAgCkWB7gbkeOaGwEfuRoYAAAAAABgdikEAgAATIA4iC1G1iMvWnx2+4IiYLkR8IopAwAAAAAAzDaFQAAAgEtUXt2bi4C7lRLfnYbPuNunCLgf2XA1MAAAAAAAwPxQCAQAALgEeSPgg8henzLfTovnbVc2ApYFwyVTBgAAAAAAmC8KgQAAAGOUNwJu5A1+xTm52fC5N3MRcMWUAQAAAAAA5pNCIAAAwBjkjYAbeYNfUSOvTQ0AAAAAAIAmFAIBAABGqHI18G7NImA1t00QAAAAAACAuhQCAQAARiBfDbzWsgjYywuTBAAAAAAAoC6FQAAAgA7FgWohst7gauCLcsNUAQAAAAAAqEMhEAAAoAP5auBPIm87KgL28tJ0AQAAAAAAqEMhEAAAYEhxiHpvyKuB++Uo8qR8tgkDAAAAAABQh0IgAADAkPI1wV1tBjyMbEaumiwAAAAAAABNKAQCAAB0IA5SH3WwEfDTyKppAgAAAAAA0IZCIAAAQAeG2BJYbgR8qggIAAAAAADAsBQCAQAAOhKHqfsNioAHka3IsskBAAAAAADQBYVAAACAPuJgtBi50+JzX9S4GlgREAAAAAAAgM4pBAIAAFSURb3IemQ3chy51vDz3zvnauAnkSumDAAAAAAAwCgoBAIAAKTfbwRcz1f5Vot8zxo+ZyHy9sxGwCc2AgIAAAAAADBqCoEAAMBcO7MRsN9mv3JL4GrDZ35cuRp4xZQBAAAAAAAYB4VAAABgLuWNgA8iewOKgNV81vDZC4qAAAAAAAAAjJtCIAAAMFdyEXAzsl+jCFjNddMDAAAAAABgkikEAgAAcyEXAddaFAF7+WtTBAAAAAAAYJIpBAIAADMtFwHvD1EE7OU48r6JAgAAAAAAMKkUAgEAgJnUwUZAWwIBAAAAAACYKgqBAADAzOloI+DZHEUemy4AAAAAAACTSiEQAACYOXGo+bLDIuBh5EnkiskCAAAAAAAwyRQCAQCAmROHmrsdbQR8qggIAAAAAADAtFAIBAAAZlIcbN4MsRFwSxEQAAAAAACAaaMQCAAAzKQ42HzUsgi4anoAAAAAAABMI4VAAABgKsRBZbHFZ3ZqXg2sCAgAAAAAAMDUUwgEAAAmWlkEjKxFdiPvN/zsXUVAAAAAAAAA5oVCIAAAMJFyEfB+5G2lxPeqxXO+6lMEfBRZMWUAAAAAAABmiUIgAAAwUXIRsCzs7Q/Y7Hej4fN6WwIP8kbAK6YMAAAAAADALFIIBAAAJsKAjYD98rzFs9cUAQEAAAAAAJh1CoEAAMClKq/uvWAjYL/cMjkAAAAAAAD4OoVAAADgUsTBYynyMHLYoAjYyysTBAAAAAAAgK9TCAQAAMYqDhzLkY3IQYsiYDXvmSYAAAAAAACcUggEAADGosMioC2BAAAAAAAA0IdCIAAAMFIjKAL2Uj5vxYQBAAAAAADghEIgAAAwUnHAeNNxEfAwslkWDU0XAAAAAAAATikEAgAAIxUHjO91VATcz5sGFQEBAAAAAACgD4VAAABg5OKQ8dWQGwGfKgICAAAAAADA+RQCAQCAkYtDxr2WRcBHioAAAAAAAABQj0IgAAAwcnHIWIh8UbMIeBDZjFw1OQAAAAAAAKhPIRAAAGgkDgyLbQp78fUfX1AEPIqs2wgIAAAAAAAA7SgEAgAAtZRFvchaZC8X+D5t+PlyS+C7czYCrpoyAAAAAAAAtKcQCAAAnKtPEbCa/8/e/YbWld75AReDCKKIoLIKa1iVFUEEvzDB0JQmdJadF3lhyrAMi8s41C9UOgQTTDFFUC0IoqAXDqslDuvCUIZiil8Y1mUm7MBuYF6YMC+G4hIHDOslpoggglgEqyVa4jAKqL8zem58rLlXuufcc+89fz4f+L6IR+fY97nX95yDv/k9lwqeazV37GHkromAAAAAAAAAUA2FQAAAoK+0NXBWBNw9Y5vfeyXO+3FkUxEQAAAAAAAAqqUQCAAAvCIeCOZTEXD/jCJgL0eRi1YNAAAAAAAApk8hEAAA+EyaCLgeORiiCDjSlEAAAAAAAACgegqBAADQcdnWvakIuFuwCJifErhiJQEAAAAAAGC6FAIBAKCj0kTAm5G9kkVAUwIBAAAAAACgRhQCAQCgY1IR8FZkv4IioCmBAAAAAAAAUBMKgQAA0CFxs79acRHwOJ0v23J43goDAAAAAADA9CgEAgBAh8TN/pUKi4C7qQg4Z2UBAAAAAABg+hQCAQCgY+KG/0kFRcANRUAAAAAAAACoF4VAAADomLjhf3OEIuCarYEBAAAAAACgnhQCAQCgg+Km/+MCRcD9tDWwIiAAAAAAAADUmEIgAAA0XNzAL0SWCh5zdcgi4KYiIAAAAAAAADSDQiAAADRUKgJupK18H5Y4/umAIuCeIiAAAAAAAAA0j0IgAAA0TFbUS4W93VNFvq8XPM+bp47fTQXDBasMAAAAAAAAzaMQCAAADZEmAm6lrXz7Tfb7sMQ5P0kTAddNBAQAAAAAAIBmUwgEAICaG6IImM/lgue+GFm0ygAAAAAAANB8CoEAAFBTaWvg9TTB73jIPLJyAAAAAAAA0E0KgQAAUDOpCLgR2SlQBCw9JRAAAAAAAABoB4VAAACoibgRn0sTAXdLFgF7eWA1AQAAAAAAoHsUAgEAYMpSEXArsj9iETCfr1tZAAAAAAAA6BaFQAAAmJLc1sB7FRYBj9P5rlhhAAAAAAAA6BaFQAAAmJK48X6j4iLgQSoYLlhdAAAAAAAA6B6FQAAAmKK4+f6ogiJgttXwpiIgAAAAAAAAdJtCIAAATFHcfL8+QhHw0ERAAAAAAAAAoEchEAAApixuwD8pWAR8kYqAi1YPAAAAAAAA6FEIBACAKYsb8DcKTAS8Hblg1QAAAAAAAIDTFAIBAKAiWVEvsh25W+LYR+dMBLyrCAgAAAAAAACcRSEQAABGlCsCHqYC31FkpeA53howETA775JVBgAAAAAAAM6jEAgAACX1KQLmc6/E+R7nCoXvKgICAAAAAAAARSgEAgBAQXHDvHhGEfB4hCmBV1IRcNEqAwAAAAAAAEUpBAIAwJDiRnkhshk5OKMIONKUQAAAAAAAAICyFAIBAOAcJYqApacEAgAAAAAAAJSlEAgAAAOMUAQ0JRAAAAAAAACYOIVAAAA4paIioCmBAAAAAAAAwEQpBAIAQBI3wnORtYqKgPnctboAAAAAAADAuCkEAgDAyU3wxchuxUXA/cjtbOKgFQYAAAAAAADGTSEQAABOboJnI88rKgJmEwa3FQEBAAAAAACASVIIBACAJG6Er1UwEXArsmQ1AQAAAAAAgElTCAQAgGSEKYHZRMANEwEBAAAAAACAaVIIBACAnLgZvl6gCHgYuaMICAAAAAAAANSBQiAAAK0VN7ZzxyXubeOYp0NMBNyOLFplAAAAAAAAoC4UAgEAaJ209e9a2v73KLJS8PjVMyYC3o5csMoAAAAAAABA3SgEAgDQGqeKgPki34OC58kmC+6cmgi4FVm2ygAAAAAAAEBdKQQCANB4qcB361SJL58yUwKvpYmAm5ElqwwAAAAAAADUnUIgAACNlSYCZkXA/QFFwHzulzj3olUGAAAAAAAAmkIhEACAxkllvRuRZ0MUAfO5ZPUAAAAAAACAtlIIBACgMXJFwOcFi4C93LOKAAAAAAAAQFspBAIAUHu5IuBOySJgLy8iy1YUAAAAAAAAaCOFQAAAaqvCImA+D6wsAAAAAAAA0EYKgQAA1FIqAu5XWATsTQhct7oAAAAAAABAGykEAgBQS3FT+rTCIuBh5HbkgpUFAAAAAAAA2kohEACAWoqb0isVFgEXrCgAAAAAAADQdgqBAADUVtyYPi5ZBMy2Gt5UBAQAAAAAAAC6RCEQAIDaihvTqwWLgC8iW4qAAAAAAAAAQBcpBAIAMDFxozlX4piPhywCZlsDL1plAAAAAAAAoKsUAgEAGLu4wZyPvBPZi1wueOyVM4qAh5E7ioAAAAAAAAAACoEAAIxRNhEwcjMVAXslvvslzvNsQBHQ1sAAAAAAAAAAiUIgAACVSxMB1yK7fab6HUUuFTxfb0rgftoaWBEQAAAAAAAA4BSFQAAAKpMmAq4PKALm82GJc68pAgIAAAAAAAAMphAIAMDIUhHwRprgdzxkLls5AAAAAAAAgOooBAIAUFraGvhmZK9AEbCX+1YQAAAAAAAAoDoKgQAAFJaKgOsli4C9HJkSCAAAAAAAAFAdhUAAAIaWioAbkZ0RioD5PLSqAAAAAAAAANVQCAQA4FypCLgZ2a2oCNjLi8iSFQYAAAAAAAAYnUIgAADnihvER2MoAm5HFq0uAAAAAAAAQDUUAgEAOFfcIF6tqAh4GLkTuWBVAQAAAAAAAKqlEAgAwFDiJvHJCEXAg8hWZMFKAgAAAAAAAIyHQiAAAEMpOSUwKwJu2hoYAAAAAAAAYPwUAgEAGFqBKYHZ1sAbtgYGAAAAAAAAmByFQACADoobvrm0he9KweOuDTERUBEQAAAAAAAAYAoUAgEAOiRu9OZTYW8vFfjulzjHkwFFwPXIglUGAAAAAAAAmA6FQACADkhFwPVU3Dtd5rtY8FxXc8fup4LhvFUGAAAAAAAAmC6FQACAFosbu8XI5oAiYC/3Spz3o7TlsCIgAAAAAAAAQE0oBAIAtFDc0M2lyX1nFQF7OYpctmoAAAAAAAAAzaYQCADQIqkIuJ628j0ukAdWDwAAAAAAAKDZFAIBAFog27o3slaiCJifErhsJQEAAAAAAACaSyEQAKDBUhHw1pBbA5+Xe1YUAAAAAAAAoLkUAgEAGihu2BbT1sBVFAHzuWh1AQAAAAAAAJpJIRAAoGHiZu3aGIqA2fk2somDVhgAAAAAAACgmRQCAQAaJm7WrlZYBDyM3M4mDlpZAAAAAAAAgGZTCAQAaKC4YfukgomAWRFwwWoCAAAAAAAAtINCIABAA8UN25sli4B7kS1FQAAAAAAAAID2UQgEAGiouGl7UqAIuB/ZjMxbOQAAAAAAAIB2UggEAKiBbGJfZLngMW8MUQQ8TBMBFQEBAAAAAAAAWk4hEABgiuLGay5yM23l+7DE8U/OmAi4oQgIAAAAAAAA0B0KgQAAU5AmAm6m4l6+yPf1gue5dur4g8i6IiAAAAAAAABA9ygEAgBMUJoIuJ6Ke/0m+31Y4pyfpAmDa4qAAAAAAAAAAN2lEAgAMAFxg3UhcjuyO6AImM/lgudeUQQEAAAAAAAAQCEQAGCM4sZqMbIdORyiCNjLIysHAAAAAAAAQFEKgQAAYxA3VAuRzTO2Bq50SiAAAAAAAAAAKAQCAFSogiJgLw+sJgAAAAAAAABFKAQCAFQgbqAuRN6toAiYz9etLAAAAAAAAADDUggEABhBKgJuRw4rLAJm2Y+8ZYUBAAAAAAAAGJZCIADACOLG6WrFRcCDtOXwgtUFAAAAAAAAoAiFQACAEcXN05MKioB7qQi4aEUBpvJt/q30lfzXZ/zMH0f+Z+SnkX+O/Cby68hO5EHk7chrU34dX315aTn3Z/86/ey3vP8AAAAAANAOCoEAACOKm6drI04EXIvMW0mAqX2T/6vIryKfRlb6/PevRP7PkF/tfx/5N1N6HXEtOf67AoXAL6fX/KuTNQAAAAAAAJpOIRAAoAJxA/W0YBHwRWTb1sAAtfgW/3H6ev5Bn/+WTdz7x4J971+fTBOc6GuYzb2OIQuBnx335+nnf+xzAAAAAAAAzacQCABQgbiBujpkS+QwcidywaoB1OIbvLdVcLYF8O+d+m+vRX6e+xrPJul9P/KNyBdyP/NvT8qEx7/N/ew/fP58Y3sNX4x89PlLzlDH/l56XccnWx4DAAAAAABNphAIAJCTbd0buRlZL3jcbOT5ORMBb5sICFCrb/1sqt4v0lf19/r89/+c+yr/Zf/thF/5+W/kynUDzln5a/jqqdJiwULgZ+fYSsf84mXREQAAAAAAaCKFQACAmd8V+m5EDnIFvuWC51jt08Y4ityNLFllgNp9+99KX9fZZL/f7/Pf3899pf+HIc95M3fMz8b4Z/9i2u43P5Vwp2Qh8A9y5/mvPhcAAAAAANBcCoEAQKflJgLu9CnzvVvifI/TsVmxcDOyaJUBankFyLb63U1f+T8a8DP5aX+vDXneudwxvx7jn/+fTl22fhz5UrlC4Gfn+1E6bnf41woAAAAAANSNQiAA0EnZ1r2psHdwzja/iwXP+2aaCKgICFDvK8Hbua/8P63wvK9NqBDY+z32T7Y2/tyvH4+wHm/7fAAAAAAAQDMpBAIAnRI3OnNDFAFHmhIIQCOuCB+lr/pPI1+o8LyXc5eRn47xz59NL9yKzJ/69bKFwLnctsF/4/MBAAAAAADNpBAIAHRCKgJmWwPvDlkE7OUosmwFAVp1VZjPld9+UvG5/zJ3GfnuGF/DgBJj2ULgZ8d+nI7N1uaLPicAAAAAANA8CoEAQKulrYHXShQB87ltJQFadXX409zX/A8qPO+/e3W74OM/mMJrG6UQ+Jfj2UYZAAAAAACYFIVAAKCV4oZmNrJeYGvgs3JoSiBAq64SP8x9zb9d0Tm/EvmH3HlvTem1jVIIfDt3/A99TgAAAAAAoHkUAgGAVklbA78TeV5BETCfu1YXoDVXi/dzX/HfrOB8K5Ff5s75V1N8baMUAv84d/z7PicAAAAAANA8CoEAQGvETczFEbcGHjQdcDOyZIUBWnPF+EXuq/5fjHiuS6cmA/448oUpvrZRCoHzueN3fE4AAAAAAKB5FAIBgNZI2wRXNRnwQBEQoLVXjF/nvvJfG+E8fxT5x9y5/ma6ZcDP/kyjFAJfyx3/zz4nAAAAAADQPAqBAECrxI3MtQomAt6JLFhNgNZeLX5bvjT3u3O8FfnNq9sEH8/W4LUdj/bafnf8pz4nAAAAAADQPAqBAECrjDAlUBEQoDtXixELgcd/duoy8oMavTaFQAAAAAAA6DCFQACgdeJm5nrBrYG3FQEBOnWlKLll8PGXIo9yx2bFwu/U7LWNsmXwrC2DAQAAAACg2RQCAYBaixuT+eMS9yZxzNMhioCbioAAnby6/L/cJeFfDnnM5chu7ri9yDdq+NpGKQR+MXf83/ucAAAAAABA8ygEAgC1lLb+XY3sRo4iKwWPX1UEBGDAVeL93KXhyhA//0eRX+WOeXQyLbCWr22UQuCV3PHv+5wAAAAAAEDzKAQCALUSNyJzkVuR/VNFvgclzrOjCAhAn6vE93OXmG+d87OXTpUBv1vz1zZKIfA/5o7/vs8JAAAAAAA0j0IgAFALaWvgtcjegMl+ZaYEXlMEBKDPFeJPcpeY9874udcif5f72bcb8NpGKQT+j9zxf+JzAgAAAAAAzaMQCABMVZrkt562Bj4+J/cLnntWERCAPleI2cin6fLy0zN+7r+cf2k6L5875wiFvaFe2yiFwJ+lYz89WSMAAAAAAKBpFAIBgKlIRcCtPlsDn5dLVg+ACq5EP8pdXr404Gf+b3cKgce/nzv2fZ8PAAAAAABoJoVAAGCiUhFwrUQRsJd7VhGACq5I/z53efn2gJ/5bYcKgd/OHXvF5wMAAAAAAJpJIRAAmIhUBLwxQhGwlxeRZSsKQAVXp510eXk04d/3hyfb8tZqLR6ltfi5zwUAAAAAADSXQiAAMFYVTATslwdWFoAKrlLfyV1eVib4+/6vyD/VaB1WcuvwHZ8LAAAAAABoLoVAAGBsKpoI2G9C4G2rC0AFV6rZyC/SJeYHE/x9fx753zVah79Ia5BNTHzN5wIAAAAAAJpLIRAAGJu4qXhcYRHwMHIncsHKAlDh1epb6VLz68iXJvD73Uq/31s1ef1fSq89+zO97fMAAAAAAADNphAIAIxN3FS8WdFEwLuKgACM8Yr1k3TZ+f4Efq8/i/ywRq/9z9Nrf+RzAAAAAAAAzacQCACM1QhTArOJgNuKgABM4Gr15civIp9G/rBjr/vT9Nq/7HMAAAAAAADNpxAIAIxV3FhcLVkEXLJ6AEzwipVtHfybyPsdes3vp9f8Le8/AAAAAAC0g0IgAFBI3CjMFfz52cjzIbcGVgQEAAAAAAAAgJIUAgGAocQNwmJkI7JXtLQXP7+qCAgAAAAAAAAA46UQCACcKZsIGLmVtvLtlfjuFTxHvymBvSLgolUGAAAAAAAAgNEpBAIAfcUNwUJkPbLbZ6rfUWSl4Pl6UwKzYuGdyAWrDAAAAAAAAADVUQgEAF6RJgJmRcCDM7b5zXK/xLnXFQEBAAAAAAAAYDwUAgGAz5wzEXBQvmblAAAAAAAAAKAeFAIBoOPSRMCbkb0CRcBePrSCAAAAAAAAAFAPCoEA0FFpIuBmZL9EETCfi1YTAAAAAAAAAKZPIRAAOiZXBDwYsQjYy0OrCgAAAAAAAADTpxAIAB0xhiJgL9n5Fq0wAAAAAAAAAEyXQiAAdERc4B9XXAQ8jGxlRUOrCwAAAAAAAADTpxAIAB0RF/jrFRUB99OkQUVAACZlNj2n3oo8iDyKPIvsRJ5HPp452cJ+LfK19PMAAAAAAACdoxAIAB0SF/lnI04EvKsICMAEXY7ciewNeHYdlIPI/cgblhAAAAAAAOgShUAA6JC4yK+WLAJuKAICMEFZEfDRzMDC32xkKbKcMndWOfBx5C1LCgAAAAAAdIFCIAB0SGpQPBmyCHgQ2cqaFlYOgAnJtvrdjhy9+ow6H7kauZ+G3R71uWztRh6k7vtSv+fcj2Zc0wAAAAAAgJZTCASAhsom9kU2IysFj7t2ThHwRWTdREAAJmw58vTVZ9Os2HcnDastOuD2o8jrp591DyOrlhoAAAAAAGgrhUAAaJhcEfAgNR7uFzw+mxK4c8ZEwCWrDMCEZVsE7868siXw7dRRPx4xH/abGLhhyQEAAAAAgDZSCASAhuhTBMznYsFzreaOzcYu3TUREIApyYroey+fR1ciTysoAh6futS9c/q597alBwAAAAAA2kYhEABq7pwiYC/3Spz343ReRUAApiW7Bj1/+Sx6KbJfcRkwnweROZMCAQAAAACA1lIIBICaGrII2MvR8cl2iwDQJB+8fA69GNkbYxmwl49OlwKveRsAAAAAAIC2UAgEgJopWAR8ZeyR1QOgQW68fAbNLn3PJ1AGzE8KnO09/x5Glr0dAAAAAABAGygEAkBNjFAEzE8JXLaSADRAtlXwwctn0I8mWAbs5Z38M/BH3hIAAAAAAKANFAIBYMoqKALmc8+KAtAA2y+fP9+cQhkwy2FkKf8c/Ja3BQAAAAAAmJT3Zk7+gaJqCoEAMCVxwZ2L3KqoCJjPRasLQI3lpgNm2/buTKkQmOXD/HPwk8istwcAAAAAABi3/zbz8h8oqqYQCABTEBfb1ch+xa2G7HzrkXkrDECN3Xz57Lk6xTJgL6+bEggAAAAAAExENpngv8+8WtSrmkIgAExBXGyvVNhk2E1FwDkrC0ADfPTy2fOTGhQCP8o/C3/g7QEAAAAAAMbhcuRnM58v6lVNIRAApiQuuE8rKAJuKAIC0CDZdsFHJ5fByzUoA/ay1HsWPkx/RgAAAAAAgEr868hfzbxazvvJjEIgALROXHCvj1AEXLM1MAANlHsGXa9RIXA1/zx81dsEAAAAAABUJf+PEL+M/KdTv141hUAAmO6F/3GBtsJ+ak8oAgLQVNsvnzsf1qgQ+DD/PLzlbQIAAAAAAKqS/ePDTyPfjsye+vUyhcCvzJyU+wblezMKgQBQ1UV8IbJc8JjrQxYBNxUBAWiBhy+fO5/XqBC4m38efuhtAgAAAAAAqvLVAb9ethC4OdO/8HdeFAIBYEhx4ZxLhb2DyAcFj509oxGxpwgIQMs8fnn5O6pRIfA4Xc4/ex5+7G0CAAAAAADGTSEQAOp3cV5IW/junmoUrBQ8z9U+Y4o2svNbZQBaZufk0rdUszJgluXe8/COtwkAAAAAABg3hUAAqM9FOT8RsF+j4GGJcz5OEwHXTQQEoMVSIXBZIRAAAAAAAOg0hUAAmP7FeNBEwH75WsFzX4wsWmUAWq4JEwKfe5sAAAAAAIBxUwgEgOldhBfPmQjYLx9YOQD4nMcnl9bZyFHNCoFzvefhj71NAAAAAADAuJUtBH5l5qTcNyjfm1EIBIBBF9/eRMC9ks2CFasIAK94+PK581mNyoA7+efhh94mAAAAAABg3MoWAs/z5oxCIACcvugulJgI2C8KBQDwqu2Xz51/W6NC4IP88/CatwkAAAAAABg3hUAAGP/FdrGiImA+X7OyANDvGXStRoXA6/nnYdduAAAAAABg7BQCAWB8F9kLke3IYcXtgmyrYddUAHhpIXJ0cvldqUkZ8Cj9fwI+exY+iMx6mwAAAAAAgHFTCASA8V1kVytuFuynSYMLVhcAPufRy2fPj2tQCPwg/yz8nrcHAAAAAACYBIVAABjfRXY28rSiiYBZEXDeqgLAQKsvnz2v1mA64IrtggEAAAAAgIlTCASA8V5or4/QJjiIbJgICABDmZs52Zo3PX9+MsVC4Hb+OfiRtwYAAAAAAJgUhUAAGO+FNpsSuKsICAATcfPl8+cbaVLfpMuAz7Ohvr1n4KPIZW8LAAAAAADQdAqBAJDEBXB1yAbBfioCLlo1AChlNvLk5TPoxhS2Cr6Ufwa+6y0BAAAAAADaQCEQgNZJ0/5uRNZLHPf8nImA2yYCAkAlXp85mcyXnkM/mGAh8Jv559/nM67tAAAAAABASygEAtAacQGbS0XA/fSv/S8iywXPcWvARMBNRUAAqNytl8+hsxMoBR6mLYp/9+y7N1PwXgEAAAAAAKDOFAIBaLy4cM1H3ons9fmX/3cLnisrFe7kWgN3FAEBYKw2Xn0e3Uhb+lZdBnwUWck/9+5Gvmb5AQAAAACANlEIBKCxUnnv5oAi4HFuSuBiwfNm5cLbioAAMDFrrz6TZlP8PqmoCLiXBgjP5p95n0YuWnYAAAAAAKBtFAIBaJz0L/rZv+zvDtkEeNeqAUDt3YwcvPpsenWEYuCzyFr2/ws4/bz7aKbg/1kAAAAAAACgKRQCAWiMVARczW3pO2yyfQeXrSAA1N6lyJPPP6NmW/2uR/42Ff2OBkwCzLYF/m7k9dMTAbPsz5yUDmctMwAAAAAA0FYKgQDUXtoaeLXARMB+uW0lAaARssLejcjegOfVVPZbyvr+KXPHg3925kXkTmTB0gIAAAAAAG2nEAhAbcUFaT7yTomJgP1yaEogADTKXOTazMkWvy9mBhf+BiWbNHhrxvbAAAAAAABAhygEAlA7aczPjbT333GFuWN1AaCR5iPfjGxFHkYeR3ZyeZx+PbvWX51RAgQAAAAAADpKIRCAWomL0ErkecVFwP1sy+BjWwUCAAAAAAAAAC2mEAhArcRFaLbCQuBBZFsREAAAAAAAAADoAoVAAGonLkTXKpgIuBVZspoAAAAAAAAAQFcoBAJQOyNMCcwmAm6YCAgAAAAAAAAAdJFCIAC1FBej6wWKgIeRO4qAAAAAAAAAAECXKQQCMHZxYZk7LnFtiWOeDjERcDuyaJUBAAAAAAAAgK5TCARgbNLWv2tp+9+jyErB41fPmAh4O3LBKgMAAAAAAAAAnFAIBKByp4qA+SLfg4LnySYL7pyaCLgVWbbKAAAAAAAAAACvUggEoDKpwHfrVIkvnzJTAq+liYCbkSWrDAAAAAAAAADQn0IgACNLEwGzIuD+gCJgPvdLnHvRKgMAAAAAAAAAnE0hEIDSUlnvRuTZEEXAfC5ZPQAAAAAAAACAaikEAlBYrgj4vGARsJd7VhEAAAAAAAAAoFoKgQAMLVcE3ClZBOzlRWTZigIAAAAAAAAAVEchEIBzVVgEzOeBlQUAAAAAAAAAqI5CIAAD5YqA+xUWAbMcRDasMAAAAAAAAABAdRQCARgoFQKfV1wEXI8sWF0AAAAAAAAAgGopBAJwprgoXKuoCLgVWbKiAAAAAAAAAADjoRAIwLniwvCsZBHwRSoCLlpFAAAAAAAAAIDxUggE4FxxYbhesAi4H9lUBAQAAAAAAAAAmByFQIAOii/6uRLHPB6iCHgYuRtZsMoAAAAAAAAAAJOlEAjQIdnEvsh6ZC+yVPDYN8+ZCLihCAgAAAAAAAAAMD0KgQAdkBX1ImuRg1yJ716J8zw7VQTMzrcduWCVAQAAAAAAAACmSyEQoMXSRMBsct9un6l+R5Hlgue7ko59YSIgAAAAAAAAAEC9KAQCtFCaCLh1aiJgv9wtce5bRbcbBgAAAAAAAABg/BQCAVokvsDnU2HvvCJgfkrgJSsHAAAAAAAAANB8CoEALZAmAq5F9ocsAuZz3woCAAAAAAAAADSfQiBAg6WJgOuRvRJFwPyUwGWrCQAAAAAAAADQbAqBAA2UJgJuRHZGKALmc8+qAgAAAAAAAAA0m0IgQIOkiYCbkd2KioC9HGTntsIAAAAAAAAAAM2lEAjQIPEF/ckYioBZwXDR6gIAAAAAAAAANJtCIECDxBf09QqLgFuRJasKAAAAAAAAANAOCoEADRNf0s9GLALejixYSQAAAAAAAACAdlEIBGiY+JJeLVEE3I+sKwICAAAAAAAAALSXQiBAw8SX9GzkSYEi4JYiIAAAAAAAAABA+ykEAkxRfOHOpcLeSsHjrg1RBNyMzFtlAAAAAAAAAIBuUAgEmIKsqBfZiOylAt/9gsdnUwJ3+hQBD9LWwIqAAAAAAAAAAAAdoxAIMEGpCLieinuny3wXC55rNXfsXjrvolUGAAAAAAAAAOgmhUCACciKemkL34Mztvm9V+K8j1IRcM4qAwAAAAAAAAB0m0IgwBhlRb20NfBZRcBejiKXrRoAAAAAAAAAAGUoBAKMQSoCZpP79ocoAubzwOoBAAAAAAAAAFCGQiBAheILdD6yVqIImJ8SuGwlAQAAAAAAAAAoSiEQoAKpCHhryK2Bz8s9KwoAAAAAAAAAQFEKgQAjiC/MxbQ1cBVFwHwuWl0AAAAAAAAAAIpQCAQoKb4sr4+hCJidbyObOGiFAQAAAAAAAAAoQiEQoKT4srxWYRHwMHI7mzhoZQEAAAAAAAAAKEMhEGAE8YX5eMQi4IvIdmTBagIAAAAAAAAAMAqFQIARxBfm1REmAt6JXLCKAAAAAAAAAABUQSEQYETxpfmkQBHwILKlCAgAAAAAAAAAQNUUAgFysq17I8sFjxlmSuBeZMPWwAAAAAAAAAAAjItCIMDJF99c5GYq7j0seOxs5NkZEwG3FQEBAAAAAAAAABg3hUCg09JEwM3I/qki39cLnufKqeP303kVAQEAAAAAAAAAmAiFQKCT0kTA9TTBr99kv4clzvkkTRjMzjtvlQEAAAAAAAAAmCSFQKBTclsD7w4oAvZyFLlY8Nwr2fmtMgAAAAAAAAAA06AQCHRCgSJgPh9aOQAAAAAAAAAAmkIhEGi1+EJbiGxEdgoUAfO5aBUBAAAAAAAAAGgChUCglVIRcDNyULII2Mt7VhMAAAAAAAAAgCZQCARaJW0NvFFBEbCXI1MCAQAAAAAAAABoAoVAoBVSEfBmZLeiImAvLyLXrTAAAAAAAAAAAHWnEAi0QioDVlkEzCYM3oksW10AAAAAAAAAAJpAIRBohTQhcKeiiYB3I4tWFQAAAAAAAACAJlEIBFojvrxujDgRcDOyZCUBAAAAAAAAAGgihUCgNdKUwP0SEwG3IgtWEAAAAAAAAACAJlMIBFqlwJTAbCLghq2BAQAAAAAAAABoC4VAoJbii2g+cjOyXvC42cjOORMBt00EBAAAAAAAAACgbRQCgVpJhb4baYJfr8C3XPAc62dMBLxglQEAAAAAAAAAaCOFQKAWchMB+033e7fEuXZyhcK7tgYGAAAAAAAAAKDtFAKBqcq27o1s5iYCDtrmd7HgeVfTeW0NDAAAAAAAAABAJygEAlMRXzRzQxQBS08JBAAAAAAAAACArlEIBCYqFQGzrYF3hywC9nIUWbaCAAAAAAAAAADQn0IgMBFpa+C1EkXAfG5bSQAAAAAAAAAA6E8hEBir+EKZjawX2Br4rByaEggAAAAAAAAAAP0pBAJjkbYGfifyvIIiYD53rS4AAAAAAAAAAHyeQiBQufgSuTji1sCDpgNuRpasMAAAAAAAAAAAfJ5CIFC5tE1wVZMBDxQBAQAAAAAAAADgfAqBwFjEF8nVCiYC3oksWE0AAAAAAAAAADifQiAwFiNMCVQEBAAAAAAAAACAEhQCgbGJL5MbBbcG3lYEBAAAAAAAAACAchQCgaHEF8Nc5JsljntyThHwhSIgAAAAAAAAAACMTiEQOFNW1IusR3YjR5GVgsdfP2dr4AtWGQAAAAAAAAAARqcQCPSVJgKup61880W+BwXPMxt5fmoi4B0TAQEAAAAAAAAAoFoKgcArTk0E7DfZL5sSuFTwnNdyWwMvWmUAAAAAAAAAAKieQiDwmTQR8GZkb0ARMJ/7Bc89qwgIAAAAAAAAAADjpRAIHZeKgFuR/SGKgPlctnoAAAAAAAAAAFAfCoHQUfEXfT6yVqII2Mt7VhEAAAAAAAAAAOpDIRA6JhUBb0UOShYBezmKXLKiAAAAAAAAAABQDwqB0BGpCLgxwkRAUwIBAAAAAAAAAKDGFAKh5eIv9GxkvYKJgKfzInLbCgMAAAAAAAAAQD0oBELLxV/ouYqnAh5G7kQuWF0AAAAAAAAAAKgPhUDogPhLfaOiiYB3FQEBAAAAAAAAAKCeFAKhA9KUwN0RJgJuKwICAAAAAAAAAEC9KQRCR8Rf7LWSRcAlqwcAAAAAAAAAAPWnEAgNlU39K/jzs5HnQ24NrAgIAAAAAAAAAAANoxAIDRN/QRciW5G9yGLBY28oAgIAAAAAAAAAQDspBEJDxF/M+cjNyG6uxPduiXMcnCoCZv97o2i5EAAAAAAAAAAAqBeFQKi53ETAgwFT/ZYKnq83JXA/cjs7v1UGAAAAAAAAAIDmUwiEmhowEbBftguedy6ypggIAAAAAAAAAADtohAINZNt3Zu28D04pwjYy1FkxcoBAAAAAAAAAEC3KQRCTaSJgLcih0MWAfN51woCAAAAAAAAAEC3KQTClGVb90Y2C0wE7JdDWwADAAAAAAAAAEC3KQTClFRUBDQlEAAAAAAAAAAA+IxCIEzYGIqAvexE5qwwAAAAAAAAAAB0k0IgTFj8BXtccREwKxbeUAYEAAAAAAAAAIBuUwiECYu/YNcrKgLuRtayiYNWFQAAAAAAAAAAUAiEKYi/ZM9GnAi4aSIgAAAAAAAAAACQpxAIUxB/yVZLFAEPTQQEAAAAAAAAAAAGUQiEKYi/ZLORJ0MWAffTRMBFKwcAAAAAAAAAAAyiEAgjyrbujWxFlgsed+2cIuCLyHpk3ioDAAAAAAAAAADnUQiEkrKte9MWvnupwHev4PHZlMCdARMBt0wEBAAAAAAAAAAAilAIhIL6FAHzuVTwXKu5Yw8jd00EBAAAAAAAAAAAylAIhCGlrYGzIuDuGdv83itx3o8jm1nR0CoDAAAAAAAAAABlKQTCObKJfakIuH9GEbCXo8hFqwYAAAAAAAAAAEyaQiAMkCYCrkcOhigCjjQlEAAAAAAAAAAAYFQKgXBKtnVvKgLuFiwC5qcErlhJAAAAAAAAAABgkhQCIUkTAW9G9koWAU0JBAAAAAAAAAAApkYhkM5LRcBbkf0KioCmBAIAAAAAAAAAAFOhEEinxYd9teIiYJaDtOXwvBUGAAAAAAAAAAAmRSGQTosP+5UKi4BZsXAzsmBlAQAAAAAAAACASVMIpPPiA/+0gomAG4qAAAAAAAAAAADANCkE0nnxgb9esgh4GLmtCAgAAAAAAAAAANSBQiCcfOgfF9waWBEQAAAAAAAAAACoFYVAWic+wEuRxYLHDDMl8EVkWxEQAAAAAAAAAACoI4VAWiMr6kW20la+2wWPnY3snFMEXLbKAAAAAAAAAABAXSkE0ni5IuB+rsR3VLTA12dKYFYsvJtNHLTKAAAAAAAAAABA3SkE0lipCLgZORgw2W+7xDmfpYmA70YuWGUAAAAAAAAAAKApFAJpnFQE3IjsDigC9pIVBRcLnvv1yIpVBgAAAAAAAAAAmkYhkMaID+Z8mgh4XhEwn7tWDgAAAAAAAAAA6AKFQGovPpBzkVuR/QJFwF5eFJ0SCAAAAAAAAAAA0EQKgdRWmgh4M7JXogiYz4bVBAAAAAAAAAAA2k4hkNqJD+BsZK2CImAvh6YEAgAAAAAAAAAAbacQSG3kioDPKyoC9nIQecMKAwAAAAAAAAAAbaYQSG3EB+9GxUXAbDLgZmTJ6gIAAAAAAAAAAG2nEEhtxAdvLrJTQRHwRWTDNsEAAAAAAAAAAECXKARSKyNOCTxIRcALVhIAAAAAAAAAAOgahUBqJU0J3C+xNXBWBFywggAAAAAAAAAAQFcpBFI7BaYEZkXArciyVQMAAAAAAAAAALpOIZCxSdP+bmbT+woeNxvZOaMI+CJyO7JklQEAAAAAAAAAAE4oBFK5XBFwN1fgWyp4jvUzioCLVhkAAAAAAAAAAOBVCoFUpk8RMJ+7Bc81n5sSeJiKgBesMgAAAAAAAAAAQH8KgYwsbfE7qAh4PMKUwHdSEXDBKgMAAAAAAAAAAJxNIZDSsqJeZPOcImA+71k1AAAAAAAAAACA8VAIpLBcEfBgyCJgL0eRFSsIAAAAAAAAAABQPYVAhjZCETCfe1YSAAAAAAAAAACgegqBnKuiIqApgQAAAAAAAAAAAGOkEMhA8UGYi6xVVATM567VBQAAAAAAAAAAqJZCIH3Fh+BiZLfiIuB+5HY2cdAKAwAAAAAAAAAAVEshkL7iQzAbeV5RETCbMLitCAgAAAAAAAAAwP9n7/5DLDvLPIG/NIUU2dpshVSwgyU20rhZCU5gRmaDI0YIEkRcCSOdbCLTYiON20gjzU4NllhurbSkJR2MGCRII2EISMiGrIiQDSE7OwQZUVFJxCCFW5ttpHZTbip093b3cvY9Xe9N3r7eH+fce+6te299PvBous573nvue07V+efL8wKjIxBIV/FBuK+BjoDrsZatJgAAAAAAAAAAwGgJBNLVEF0Cy46AqzoCAgAAAAAAAAAAjI9AID3Fh+HBGkHAnVhnBQEBAAAAAAAAAADGTyBwH4k3dr4Y4N7Gc35VoSPgmVhLVhkAAAAAAAAAAGBvCATuAykIeCpt/3sl1uGa5x/t0RHwdKyDVhkAAAAAAAAAAGBvCQTOsCwIuNEW5HtygHk22joCrsc6ZJUBAAAAAAAAAAAmg0DgDIo3cCHWyVibXTr7DdIl8L7UEXAt1rJVBgAAAAAAAAAAmCwCgTMkdfI7mTr4FX3qiZpzz8VassoAAAAAAAAAAACTSSBwBmQdAV+tEATM63arBwAAAAAAAAAAMBsEAqdY6gh4qsfWwP3qnFUEAAAAAAAAAACYDQKBUygFAVdibQ0YBGzVxViHrCgAAAAAAAAAAMD0EwicImlr4FMNBAHzetLKAgAAAAAAAAAATD+BwCkQb8hc6gi43WAQsNUhcMUKAwAAAAAAAAAATD+BwCmQtghusitgGSxcjXXQ6gIAAAAAAAAAAMwGgcApEW/K8QaDgItWFAAAAAAAAAAAYLYIBE6J1CVwc8Ag4PlYa4KAAAAAAAAAAAAAs0sgcIrEG3OqZhBwR0dAAAAAAAAAAACA/UEgcA+VXf9qjp+L9WqNrYGXrDIAAAAAAAAAAMD+IBC4B8qgXqyVtJXvUs1zj/cIAm4JAgIAAAAAAAAAAOxPAoFjVG7dm7b93c5CfI/XnGOh7fxWEHCtPGaVAQAAAAAAAAAA9ieBwDFIHQHLzn2bHbr6XYm1XHO+VpfATUFAAAAAAAAAAAAASgKBI5Q6Aq536OjXXmdqzjufOg3OW2UAAAAAAAAAAABKAoEjkLb1PVkhCNiqnViHrBwAAAAAAAAAAACDEghsUOoIWHbu26oYBMzrMSsIAAAAAAAAAADAoAQCG5A6Aq7EOj9AELBVF2MtWU0AAAAAAAAAAAAGIRA4hNQRcDXWxhBBQF0CAQAAAAAAAAAAGJpA4ABSR8C1WJsNBQFbVW41PG+FAQAAAAAAAAAAqEsgcABxgV5oOAhYbhd8xpbBAAAAAAAAAAAADEogcABxgf66oSDgTqyzsQ5aVQAAAAAAAAAAAIYhEDiguEg/HyIIuB1rPdailQQAAAAAAAAAAKAJAoEDGrBLYBkEXLM1MAAAAAAAAAAAAE0TCBxCjS6B5dbAq7YGBgAAAAAAAAAAYFQEAne/8Hzawne55nn3VegIKAgIAAAAAAAAAADAyO3rQGD8oospCHg+BfjODDDHz7sEAVfK+T1iAAAAAAAAAAAAjMO+DARmQcDttiDflViHa87119n5W6kj4IJHCwAAAAAAAAAAgHHaV4HAcuveWGsdgoB5PTrAvM+lgKEgIAAAAAAAAAAAAHtiXwQCy6Bel46AnarsEnjIowEAAAAAAAAAAMA0melAYLY18FaFIGBe5zwaAAAAAAAAAAAATJOZDATGL7A0YBBQl0AAAAAAAAAAAACm0kwFAlMQcC3WzoBBQF0CAQAAAAAAAAAAmEozEQiMF7zcYBAwr9s8IgAAAAAAAAAAAEyDqQ8Exos9Getiw0HA7VirsRY8IgAAAAAAAAAAAEyDWQgEHmswCFh2GDxdbj3s0QAAAAAAAAAAAGCazEIgcC7WRgMdAcsg4KJHAgAAAAAAAAAAgGk09YHAsHvBxwcMApZbDa8LAgIAAAAAAAAAADDtZiUQWHYJfLXm1sBrsQ56BAAAAAAAAAAAAJgFExkILIN6sZZqnnO8YkfAcmvgZbceAAAAAAAAAACAWTJRgcD4wQuxTqYOfmcGOP+VHh0BBQEBAAAAAAAAAACYWRMRCIwfuJi28N3OQnxXYh2qOc+xDh0BHxMEBAAAAAAAAAAAYNbtaSAwftB8rJW2IGBeZ2rON5e6BJZBwEcFAQEAAAAAAAAAANgv9iQQmIKAJ2JtdgkCtqoMCi7VnPtfxzro1gIAAAAAAAAAALCfjDUQWCMImNejbhMAAAAAAAAAAAD0NpZAYJxwMdZqrI0aQcBWXazbJRAAAAAAAAAAAAD2m5EGAlMQcC1t/VsMUatuFQAAAAAAAAAAAHQ3kkBg2hp4tYEgYKt2dAkEAAAAAAAAAACA7hoNBKYg4IlYmw0FAfNA4F1uFwAAAAAAAAAAAHTWdCDwaMNBwLLD4OlYy24VAAAAAAAAAAAAdNd0IHAu1kYDQcCLsdZjLbpFAAAAAAAAAAAA0F+jgcCwe/KxITsCrukICAAAAAAAAAAAwKgdiHU81nOx3oh1Of3/s7E+M+TcN4bO4bxO1ZTGA4Fhd4JfDdAR8IyOgAAAAAAAAAAAAIzDfKwXQ++g3kthN9g3iE+E2QkE/nXFIOBOrLOxDnq8AAAAAAAAAAAAGJeHwm5Y7vVYX4p1c/r5O2OdivVmOv7NAef/cjr/y2P8Tj0DgfE/FmKdiLVSZ9I4fi7Wq32CgGs6AgIAAAAAAAAAADBuN8S6FHa3CPf8oEUAAF1nSURBVH5/lzEfCbthunIL4QMDfMZT6fw7x/i9OgYC/3kI/yb+x/FY29mWvofqTBzHH+2yNfCjsZY9UgAAAAAAAAAAAOyFI2E3LPf3fcY9k8Z9coDPOB/rwpi/13WBwIVYJ2K9GcIfOoT5HqszceoSuJnOLYOFp3QEBAAAAAAAAAAAYK99L+yG5u7vM+6BNO7bNee/MZ33gzF/r2uBwMVYa7G2u2/x2+rut1Rn8jj+mK2BAQAAAAAAAAAAmCQ/DLuBvQ/3GXdnGvd8zflbnfpOxTqZzi+7BZbbFG/FejKMYCvhW0O4d61/EHDgLoEAAAAAAAAAAAAwaV4Pu4G9+T7j5tO412vO/+V03tWQbeHbob7bxJeJE83HOnEhhK2iehiwrCuxDnkcAAAAAAAAAAAAmFZlp76i4thy3IWa8z8V3g79fT3W4exYGTL8VKx/TMe/V2Pe94Xd7oPX6s9COPJf4vkDBAHzOu1xAAAAAAAAAAAAYFq1wnpVx16uOf/5dN5ne4yZi/WzNO5DFeddK8fHE4uVelsD96odXQIBAAAAAAAAAACYVmXAb5SBwKo+neZ/ssrgfxHCfzwWx7/aTBAwr0c9EgAAAAAAAAAAAEyjcgvgUW4ZXNVNaf6tChdx2x9D+D8NBwHL7oBrsZY9EgAAAAAAAAAAAEyj18JuEG++z7j5NO71EV5LpQ6EcdDc/wrhfzcUBNwWBAQAAAAAAAAAAGAWPBt2g3h39Bn3l2ncj0d0HQdCjQ6E/yGEpxroCHg21qJHAAAAAAAAAAAAgFnwnbAbxPt0n3FH0rhzNed/I513Y59x703jflJl0ltD+Fc7IfzPukHAKyFcFAQEAAAAAAAAAABgFt0bdoN43+8z7vtp3JGa8z+TzvubPuNOpHHrVSeOgx+sGgTcjnUm1p/Vv34AAAAAAAAAAACYCu+IdSnW5Vgf7DKm3C74ahqzUHP+B8Ju0O+Xsea6jLnxxhD++ydD+L/xv99VZ/I48a/6BQHXYi3uXkNZn3DLAQAAAAAAAAAAmFUPh92wXLm975di3ZJ+fnP6d2vb34cGnP/FdP4LsT4U60D6+fw/C+Hf/rsQ/sdmPP7/Qvh/cdDhOhPH8Uc7BQEvh/Dm2vVBQIFAAAAAAAAAAAAAZt5NYbeDX9GjylDffJfzW2O6KQOGL+XzxYmKk7G2/jTM92SdC4/j52NtZOdvx1pLWwN3+h4CgQAAAAAAAAAAAMy0cuvgL8Z6LtaFsBueK///x7GOh7e7+nXSLxAY0vnHF0P4r/8+hMvnu2/ze2WALoH3tYKAsRbTjz8RBAIBAAAAAAAAAACgWamT30qszaJ7GLBVT9Scey4LArYIBAIAAAAAAAAAAEBTUhBwPdZWhSBgXrcP+dECgQAAAAAAAAAAADCsIoSFWKcGCAK26tyQlyAQCAAAAAAAAAAAAINKQcCTsbYHDAK26mKsQ0NcikAgAAAAAAAAAAAA1JWCgKtDdATsVE8OcUkCgQAAAAAAAAAAAFBVEcJcrJUGOgJ26hB4eohLEwgEAAAAAAAAAACAqooQ5mNtNhgE3Il1NtbBIS9NIBAAAAAAAAAAAADqKEI40VBHwEcbCAK2CAQCAAAAAAAAAABAHUN2CSw7Ap5pMAjYIhAIAAAAAAAAAAAAdRUhHB8wCLg8oksSCAQAAAAAAAAAAICy61/N8XOxXq24NfAog4AtAoEAAAAAAAAAAADsX0UIS7FWY52vG9qL449OQBCwRSAQAAAAAAAAAACA/afsCBjrZNrKtxXiO1dzjk5dAltBwKUxfyWBQAAAAAAAAAAAAPaPIoTFWCuxNjt09bsS63DN+VpdAstg4dlYB/foqwkEAgAAAAAAAAAAMPtSR8AyCLjdY5vfsp6oOe9cmvfgHn9FgUAAAAAAAAAAAABmV5+OgN3q9in8qgKBAAAAAAAAAAAAzJ7UEfBErPM1goCtenQKv7JAIAAAAAAAAAAAALMjdQRci7U1QBCwVVdiHZ6yry4QCAAAAAAAAAAAwPTLgoDbQwQB83p8ypZAIBAAAAAAAAAAAIDpNYIgYKs2ym2Hp2gpBAIBAAAAAAAAAACYXkUI/9RwELAMFh6fsjBgSSAQAAAAAAAAAACA6VWE8GBDQcDNWKfKjoNTuhQCgQAAAAAAAAAAAEy3IoRXhuwIuDaFHQHbCQQCAAAAAAAAAAAw3YoQjg4QBNyZ8o6A7QQCAQAAAAAAAAAAmG5FCHOxfl4xCLiVOgIuzdgyCAQCAAAAAAAAAAAwOcqOfSmwd7jmeff1CQJejLUSa2FGl04gEAAAAAAAAAAAgL2XBQG3U4DviZrnl10CN7p0BFyfwY6A7QQCAQAAAAAAAAAA2DsdgoB53VZzrqPZuTuxHp3hjoDtBAIBAAAAAAAAAAAYvz5BwFadG2Def0jzLu6zJRUIBAAAAAAAAAAAYHwqBgFbdSXWHVatEoFAAAAAAAAAAAAARq9mEDCvJ61eJQKBAAAAAAAAAAAAjM4QQcC8S+AhK9mXQCAAAAAAAAAAAADNayAImNc5K9qXQCAAAAAAAAAAAADNKUKYj7XaUBAwr9usbk8CgQAAAAAAAAAAADSjCGEl1lbDQcDtNO+CFe5JIBAAAAAAAAAAAIBmFCGcaDAIuJWCgItWthKBQAAAAAAAAAAAAJpRhDAXa6OhjoBLVrQWgUAAAAAAAAAAAACaU4RwbIgg4KqOgAMTCAQAAAAAAAAAAKA5RQgLKdxXZ2vgNUHAoQkEAgAAAAAAAAAA0F0RwnxZNc85WSEIuKMjYKMEAgEAAAAAAAAAAPhTqdNfGdjbLDv41Tx3Pp3Xa2vgJavcKIFAAAAAAAAAAAAA3pbCfMfaAn3ltr4LNec5JQg4VgKBAAAAAAAAAAAAvBUEPNGjs996zfkWUwiwrDOxDlrlkRIIBAAAAAAAAAAA2M9ScG8tdQEsetTFuqG+OP7uWMtWeSwEAgEAAAAAAAAAAPajrCPg+T5BwIG7BDJWAoEAAAAAAAAAAAD7SeoIuNJja+BeVW7/u2gVJ5JAIAAAAAAAAAAAwH6QbQ28PUAQMK8zVnMiCQQCAAAAAAAAAADMsiKEuVjHYm0NGQRs1cVYB63sxBEIBAAAAAAAAAAAmEVFCPOxTgy4NXC/bYPvtsITRyAQAAAAAAAAAABgFqUwYJNBwJ205fCy1Z1IAoEAAAAAAAAAAACzKHUI3Ghoi+DVWEtWdaIJBAIAAAAAAAAAAMyqIoTjQ24NXAYBD1rJqSAQCAAAAAAAAAAAMKtSl8CtAbYGLoOAi1ZwqggEAgAAAAAAAAAAzLIaXQLLIOB6rENWbSoJBAIAAAAAAAAAAEyDIoS5FO5bGeC8jR5BwIuxTsdatspTTSAQAAAAAAAAAABgkqVtf49nW/9erNvFrwwR9ggCLlnlmSAQCAAAAAAAAAAAMImKEBZiHYt1vkOY77EB5trItgYug4AHrfJMEQgEAAAAAAAAAACYJKkj4IkuQcC8u99SzXmPpSDgolWeSQKBAAAAAAAAAAAAk6AIYS5tDbzZIwg4cJdAZp5AIAAAAAAAAAAAwF5KQcCj2Za+VetKrENWkEQgEAAAAAAAAAAAYC+krYGP1ugI2KlOW0kSgUAAAAAAAAAAAIBxKkJYiHVsgI6AnWpHl0ASgUAAAAAAAAAAAIBxSB0Bj8c630AQMK+zVpcgEAgAAAAAAAAAADB6RQiHY73acBBwq9wyONaiFSYIBAIAAAAAAAAAAIxeEcJcg4HA7VhnBAFpIxAIAAAAAAAAAAAwDkUI9zXQEXA91rLVpAOBQAAAAAAAAAAAgHEYoktg2RFwVUdA+hAIBAAAAAAAAAAAGJcihAdrBAF3Yp0VBKQigUAAAAAAAAAAAIBBlEG9WHcNcN6vKnQEPBNrySpTg0AgAAAAAAAAAABAHUUIC7HWYm3G2qrbwS+OP9qjI+DpWAetMgMQCAQAAAAAAAAAAKiiCGE+1noKAeZBvtMDzLPR1hGwnPeQVWYIAoEAAAAAAAAAAAC9pK2By8De+R5b/NbtEnhf6ghYdhpctso0QCAQAAAAAAAAAACgk7Q18HoK/BV9ar3m3HOxlqwyDRIIBAAAAAAAAAAAyKUg4Grbtr796qKAH3tMIBAAAAAAAAAAAKBUhDAfayXWZo0gYF5rVpE9JBAIAAAAAAAAAADsb1kQcGvAIGCrzsdatKLsEYFAAAAAAAAAAABgf8q2Bj4/ZBAwr9NWlj0iEAgAAAAAAAAAAOwvRQhzqSPgdoNBwCLNd9IKs0cEAgEAAAAAAAAAgP0lBQJfbTgIuGK7YPaYQCAAAAAAAAAAALD/FCEcbygIuB5r2YoyAQQCAQAAAAAAAACA/akI4ZUBg4A7KQioIyCTRCAQAAAAAAAAAADYn4oQjtYMAp6PtSYIyIQSCAQAAAAAAAAAAGZDEcJ8zfFzsTYrbg18WhCQCScQCAAAAAAAAAAATLcihKVYK6mD31LNc0/0CAKWYcFTgoBMCYFAAAAAAAAAAABgOpVBvRTY285CfI/XnKPsEvhql62BF6wyU0QgEAAAAAAAAAAAmC6pI+Bql+1+r8Rarjnf0Wxr4BOCgEwpgUAAAAAAAAAAAGA6pI6A620dATvVmZrzzsc6WXe7YZgwAoEAAAAAAAAAAMBkKzv2pcBevyBgq3ZiHbJy7DMCgQAAAAAAAAAAwGRKHQFPxdqqGATM6zEryD4jEAgAAAAAAAAAAEyW1BFwJdb5AYKArbpoC2D2GYFAAAAAAAAAAABgMqSOgKuxNoYIAuoSyH4lEAgAAAAAAAAAAOyt1BFwLdZmQ0HAVpVbDc9bYfYJgUAAAAAAAAAAAGBvFSG81HAQcDsFDG0ZzH4iEAgAAAAAAAAAAOytIoQHGwwCrsdatqrsQwKBAAAAAAAAAADA3itCeGXIIODpWItWkn1MIBAAAAAAAAAAANh7RQhHBwgCbsVaEQSEawQCAQAAAAAAAACAvVeEMBfr5zWCgOuCgHAdgUAAAAAAAAAAAKBZRQjzKbC3XPO8+yoEAddiLVhl+BMCgQAAAAAAAAAAQDPKjn2xTsU6nwJ8Z2qeX3YJ3OgQBNxOWwMLAkJ3AoEAAAAAAAAAAMBwyqBeCuydbwvyXYl1qOZcR7Pzz6d5l6wy9CUQCAAAAAAAAAAADCZtDXyqS1e/Vp0dYN4XUhBw3ipDZQKBAAAAAAAAAABAPSkIeDLWZo8gYKsu1u0SCAxEIBAAAAAAAAAAAKgmCwJuVQgC5vW41YOREwgEAAAAAAAAAAB6K0JYSEHAV2sGAfMugUtWEkZKIBAAAAAAAAAAAOgsdQQ8VXFr4H512orCSAkEAgAAAAAAAAAA10tBwKMNBQFbdSXWIasLIyMQCAAAAAAAAAAAvK0I4b5Y5xsMApa1U3YIjHXQCsPICAQCAAAAAAAAAABvK0I42XAQ8PFYh60sjJxAIAAAAAAAAAAA8La0XfDGkEHAi7HOxFq0ojA2AoEAAAAAAAAAAMD1ihCODtER8KytgWFPCAQCAAAAAAAAAADXK0KYi/VqzSDgY4KAsKcEAgEAAAAAAAAAYNalbYDna55z3NbAMFUEAgEAAAAAAAAAYFYVISzEOhFrM9ZqzXPLLoEbPToCrsdatsowMQQCAQAAAAAAAABg1pQd+2KtxdpuC/Et1ZznVFsQcDt1BBQEhMkjEAgAAAAAAAAAALMibQ280hYEzGttgPm209bAj9YNFAJjJRAIAAAAAAAAAADTLgX3WlsDFz1qq+weWHPuuwQBYSoIBAIAAAAAAAAAwLSqEQTM66yVg5kkEAgAAAAAAAAAANOm7PIXazXWRo0gYKt26nYJBKaCQCAAAAAAAAAAAEyLFARci7U9QBAwrxWrCTNHIBAAAAAAAAAAACZd2hp4tYEgYN4lcMnKwkwRCAQAAAAAAAAAgEmVgoAnYm02FATMA4F3WWGYKQKBAAAAAAAAAAAwqVIYsMkgYNlh8HSsZasLM0cgEAAAAAAAAAAAJlXqELjRQBDwYqz1WItWFWaWQCAAAAAAAAAAAEyyIoTjQ3YEXNMREPYFgUAAAAAAAAAAAJhkqUvglo6AQB8CgQAAAAAAAAAAMOlqdAksOwKuxlqyarDvCAQCAAAAAAAAAMC4FCEsxDoRa6XmeXOxNvp0BDyjIyDsawKBAAAAAAAAAAAwainQdzx18GsF+A7VnGOlR0fAg1YZ9j2BQAAAAAAAAAAAGJWsI2Cn7n6PDTDXRhYofNTWwEBGIBAAAAAAAAAYnSKEp9uCD89YlWvr8taaTOtnjOM7MN3PIPg9C4ux1rKOgN22+V2qOe/RNK+tgYF2AoEAAAAAAADAaBQh3BLralvwofz3LdZGIJDZfwZhH/9+zVcIAg7cJRCgB4FAAAAAAAAAYDSKEL7UJfjwJWsjEMjsP4OwD3+vWlsDb1YMArbqSqxDVhBogEAgAAAAAAAAMBpFCL/Owg4PZ//9srWZ/jCWQJlnEHjr92mxZkfATnXaSgINEAgEAAAAAAAAmleEcGcWcthMP/t99rM79/n6CATi/sH0/x6VHQFPDxkEbNWOLoFAAwQCAQAAAAAAgOYVITyehRzW08/Ws589vs/XRyAQ9w+m9/dnfsCtgfvVo1YXGJJAIAAAAAAAANCsFJS4kAUc3pt+/p7sZ+Xx+X28RgKBuH8wnb87d8XaajgIuJO2HF62wsCQBAIBAAAAAACAZhUhfC4LObzQduz57NjnK8xVK7TUb3z84Y2xTsb6Uaw3Yl2OdSl1eXoqXfs7KnzODbH+NtZLKdxYzvOLWF+oci1Vv1c8+MHUbfG36Tovp2t9ItZHmli7cp5Y59KWzpdSbaTPvaPO/PE/7o71ZFrbq2lt/jHWV2Ld3Oc6JuLejGr94/98NNbLaZ7fxfpG2/gyMPuNWM+msFHr2st6M9ZPYz0S6wMV1qAM5X4x1ovZPL+OdSrWgXGtAczoO26xwUDgtiAg0DCBQAAAAAAAAKBZKQDWCjt8tu3YA9mxf6wwV2OBwBRW+0OFgMZrvYJO8dj7U6Cr2/k/ToGsgQOB8YcLsb5f4VqfjnXTIGsXf/jOtoBmt3qo3/xlUC8FxHrN83p5D7rMNTH3ZhTrH+u2tq6Z185t+/4XaoSIHhpiDcrfz5vGsQYww++5Uw10BDxbhgutJtAwgUAAAAAAAACgOSn41Ao8vNHe0S3+ey7WH7Mx7+szXyOBwBSSqhO4Kq/9PR3mL0N05yuc/8SggcAUrnuxxrW+1Gn75T6fcUvqCFj1M9Z7zZ+62lWZ583WFtITfG8aX/8uwctPp3E3VQxDttcDHT7z3RXnenocawAz/K5bTN39BAGBSSMQCAAAAAAAADSnCOGbWfDhW13GPFKl01ka21Qg8Kns2E9ifSIPK6aA3OfaAmXf6jB/Pk+5depXyyBaOlaGsb7eKQRS53u1rWEZlFtPobkD2eecSh33WuO+XfMznm67xu+UW9GWn5Hqg2nr3tbxcvvf27rNn40pr/2ObJ4PdOgy9/CE35vG1z/Vuda2yfH/31WGY9N/fzUbU24p/LH2cF0a//m2EOcLHT7zR23X/ret7n1pjq+Ncw1gxt93p2tuDXxGEBAYA4FAAAAAAAAAoBkpAJZ3J7ujy7g7sjF/aIWMuoxtKhCYd6C7qcf5H8jGbbYdO9wW8LinyxyfHjQQmIJWV7Mtdu/oca3vTlvotsJ476n4Gbe1Xd+RHp/xTLcQXtscl2J9uMc857KxP5vUezOq9Y/10x7z/CYbd3uf5/v9ebfFHutztdv9iD+/d1xrAFP0/io7/t1V85yFCl1JLwoCAmMmEAgAAAAAAAA0owjhU1kI4pd9xv4iG/upHuOaCgReyo59fMDv95V829k+Y58aMBD4d9mx4xWu6bPZ+C9X/Iy8S9wP+sx/W48QXs8thdvGfqBHkG1i7s2o1r/s7tfg79lbXRDbfr6eHfvuJKwBTMF7qwwCrqUOftt1g3tx/GqfrYEPWmVgzAQCAQAAAAAAgGa0bVf6xT5jT2Rjf9hjXFOBwBfbwhrPp+DTx/PtafvM/WzV4FpbOLJOIDD/jBsqXNMN3daxx2fk9+kTQ9zvfD0/2GfsgR5Btom5N6Na/15d9iqs2+2pq9/DbUHa9mv/cY01uHccawAT/L6aj7WSQoD57+rpmvMstc2xk7YS1hEQ2CsCgQAAAAAAAMDwihDelW0zWrfK897VZd6mAoEf6/P5P0kd1u7sMfcb2Tnv6HMdCwMGAt8YcA3L+uMAnzE/xD3PP/vALNybUa1/rLmKa1pup/1QrKdjbfX7nRpiDW4exxrABL6rFlMQcLPLM1z+3i3UnLMVLCy7BS5ZZWCPCQQCAAAAAAAAwyu3Ch0iRFTWV7rM20ggMB37m3K72grX8lragna+7fyrDV5LtzDW5SHW8FLFz6j1PQb5ftN6b8ax/l2u5+a2znyVatLXACboHTWfOtOer/Acr9ece0FHQGCCCAQCAAAAAAAAwytC+N2QgcDfdZm3sdBZOn5rCi/+rMI1/TTWTdm5lyc8EHi57mcMec9n7t6MY/07XMs72rcCzupC2lL5+7E+G+t9Ex4IvOyvIRP2bppPHUa3ajzHF2MdtHrAlBIIBAAAAAAAAIZThPDRLEixUfPcfNvGD3c4XqfL2lzN8e+MdSTWuRTI6rQ968PZ+Hwr1Rv6zH1DA1sGzw15X8a2ZXDT4/fq3oxj/TuM+3JbAPDrse7utO1vuTVzxWu/sc9nvmMcawB7+F4qu/adqhkEzGvVKgJTSiAQAAAAAAAAGE7qXtZz698e565n536/w/GrVcNJ8fhf1g2ptZ1fhqTubetQ94fs+I+yn3+iz1yfGDAQ+GJ27O4h70u3z3ihxve4MRv7xyrz172eSbo341j/DuN+nY29t8/YXh0C8zX4ZJ95PjqONYA9eB+VQcCTsbaH7Fq7rUsgMKUEAgEAAAAAAIDBpfBFvsXoe2qe/558u9FyvrbjF7LjH+gz19d6hJxey469u8J3ao29lP38q9nPv9dnjscHDAR+Mzv29JD3pttnPJwd+26fOT6XjX2yyvwDXM/E3JtxrH+HcZdrdE5c73HtX6167fH4t8exBjDmd9HqEB0BdQkEZoVAIAAAAAAAADC4IoQTWXjiuQHneD6b4wttx36ZHTvXY44PlwGxHiGn73YLtnWY685s7G+znx9uC4vc3eX8j7UHSzqM6Xadt7Wde6LG+v+w4mf8eXas7MD4sS5z3xLr99261zUYCJyYezOO9e8wRx56/cse4z7TIbA012MNPt1lno+0b8E8qjWAMbyDyq3iVxroCNipQ+AJKwxMIYFAAAAAAAAAYHBFCL/IAhRHBpzjgWyOn7Yde7gtpPGDMtCWjh2I9cFY30oBpz/2CDl9oG2ectvcT5Zb0WZj3h3ri7Fez8Z9tW2efHvkMoD4d7FuTcduTf++NGggMB17ou38Z8qAWyv8lbbPvSetRT7uzhqf8cO2zoxfbXV3TAGbI2XgLhvzcp3v0OU+T8u9Gfn6t43Lt/o9n4J/822f9UyX0NLNbXOdazv+jey+3pytwdVxrAGM4R0033BXwK3UaXDR6gJTSiAQAAAAAAAAGExbkKsMah0YcJ65tkDHB7Jj72nroNarPt0n5PRQzWDIr1vBrGyOm9u65lWqDtfS69hNbUHLKvWNmp/xzratenvVG522a24qEDiB92bk69827qNDhJfu6XDtv6tw3iPjWAMY07voeEMdAdfat60HmEICgQAAAAAAAMBg2kJFj4xqrvjvj6dQWrcgR9nx7DNpbM8QVoeOg93quXLL3C5zHG7rntdeV1M3u7eur8Mc/a6zDGQ9VeE6y8861WWOfp/xrlgv9Zm/7Fj3oUHmH+B6JuLejGv928b+bYXPei2FXl/OfvalDnPd2ue+vpi6qo38GYQxvYvK53lzwCDgTgoC6ggIzAqBQAAAAAAAAKC+1NUv36L39iHnu72t2+Bc2/FbYn0l1k9Sx8CrqRvct2O9NxvXN4SVPuvhtrnKbXN/E+t7sT5S4XrLLVNPpnBVa47X0vm3t13Lmx3Or9o97kOxHk/X1trq9c1Yz8f6WrmVbo9zq37Gp1Lw6/W0DhdSoOwrvbplNR0InJR7M+71z8Z/MG3V+1r6zpdSyKm8N59rbaGctnNuzf1Sj/keSOHJ1hqUQcIvtzp5juMZhDG+k04NEAQ8E2vZ6gEzRiAQAAAAAAAAoGltHdh+bUXcG6De72nN8WVI/dUKQcCLgoDAjBMIBAAAAAAAAKgidUZrhUpu7jP2nmzsD6yeewNU+l1ejLWetitfqnnucUFAAIFAAAAAAAAAgEqKEDaycMlXe4xbiPWLbOwXrJ57A/T8HS5/N0+kbbJbv5+PDTDHdlsQsPz3at1wIcAUEwgEAAAAAAAAqKII4VttQZOHY90e60A6fnOsz8R6ORvzeqwbrZ57A3T83W11BNzu0tVvueZ8rS6BW7FOl/NbZWCfEQgEAAAAAAAAqKII4dYUMilq1MetnHsD/MnvbKeOgJ3qTM1552OdEgQE9jGBQAAAAAAAAICqihD+PNZvKoTNzse6x4q5N8B1v6dLaQvf7YrB3SuxDls5gMoEAgEAAAAAAADqKLehjfXZWE+lcNmlVH9IPyu3rJy3Uu4N8NbvZtkR8GSsnZqdPMt6zAoCVCYQCAAAAAAAAABA88qte2Ot1egI2Kl2bAEMUJlAIAAAAAAAAAAAzWkoCKhLIEB9AoEAAAAAAAAAAAxvBEHAVm3Y7hugkhEFAov705/kZ3uMuT3WI7F+EetCrMvp/1+K9fVY79uDN9MQ11R+12vf+X6PFQAAAAAAAACw7xQh/FPDQcAyWHhcGBCgshEEAot3x3ojhekOdxnz7Yp/2r8Ta25Mb6Uhr6l4b/rOb+yuAQAAAAAAAADAPlKE8GBDQcDNWKfKjoNWFaCWUQQCf5z+PD/c5fjjNf/M//0Y3kgNXVPxUDr+Y48WAAAAAAAAALDvFCG8MmRHwDUdAQEG1nAg8K2tgt+MdXOH4x9p+1P+y3TODen4DenfL7eNu3OEb6IGr6n8ztc6BJbHj3i8AAAAAAAAAIB9pQjh6ABBwB0dAQEa0WAgsNxGt/h9+lP9tS5jns/+nP8g1oEu4+ZjvXD92JG9iRq+pmI9HS/X4h0eMQAAAAAAAABg3yhCmIv184pBwK3UEXDJygE0oslA4Mn05/pqrHd2OH5r9if9Uqwb+8xXjr+cxl9+u2Nfo2+hEVxT8a60BuWYL3nEAAAAAAAAAICpVHbsi3W2bue+OP6+PkHAi7FWYi1YZYBGNRQILLvqFZvpz/YzXcbcn/1pf7LivE9m59w7gjfXiK6pXINrxze7dxwEAAAAAAAAAJhAZce+1LlvOyUk1mqeX3YJ3OjSEXBdR0CAkWkqEHikQkju8WzM31Sc9zPZOY+P4A02omu6bj2OeMwAAAAAAAAAgImXOgKuZkHAVu3EOlhzrqNt5z+qIyDAyDUVCHwu20b3HV3GPJu9Ku6uOO892TnPjuBNNqJrKuazbYN/5DEDAAAAAAAAACZWEcJ86ty33WOb37UB5v2H1Glw0SoDjEUDgcBiIQu/vdhj3Eb2mrip4tw3Zuf8YQRvtBFeU/EPaczV3XMAAAAAAAAAACZI2bEvdQQ83yMImHf5s9UvwGRrIhB4b/bn/+Ee497Mxh2oOPeB7Jw3R/BmG+E1Fd/qv40yAAAAAAAAAMCYpY6AK306AjbSJRCAsWoiEPhI9qf/SI9xV98eV+st1Jr70gjecCO8pnIt3hr3iEcNAAAAAAAAANhT5da9KQi4WTMI2KptXQIBJloTgcCnsz/9d/cYVwwZvrs6gjfdCK+p+Eg27mmPGgAAAAAAAACwJ1JHwBMVtwbuV49aUYCJ1UQg8PfZn/0beoy7PIEdAkd4TcVCNm7DowYAAAAAAAAAjFUKAq7G2mogCNiqi7GWrS7ARGoiEHgh+7N/oMe4N6uNu+6cA9k5b47gzTfCaxr1tQMAAAAAAAAAdFGEcGyIrYG71ZVYj8U6aIUBJlITgcCr1brslV3yqnQSvO6cvMve5gjefiO+prfGXfaoAQAAAAAAAABjkzoDNtkV8GysJSsLMNHGGQh8NntV3F1x7o9m5zw7grffiK9JIBAAAAAAAAAA2ANpu+BhOwTu6AgIMFXGuWXwd7Jx91ec+/7snO+N4O03wmsq5mwZDAAAAAAAAADsmSKEk0MEAU8LAgJMnSYCgb/LXgk39Rh3JBt3ruLc5+oH9mq9+UZ4TcWN2bjfeNQAAAAAAAAAgLEqQliItV0jCHgl1plYh6wewFRqIhD4dPZquKfHuFuy7YXf7B0evDb+pjSuNfe7RvDmG+E1lWvx1rinPWoAAAAAAAAAwFBSwG++5jlVugRejHVWEBBg6jURCPxG9S5+xfPZ2GdjdXlHlT8vfpiNfWGEb8sRXVPxQDb2Gx41AAAAAAAAAGAgZQgw1vFY52OtDnDuZo+tgcsg4JJVBpgJTQQCP5m9Kh7vM/butlfLy7E+E2shHV9IQbqX28Z9dIRvzRFdU/HdbOwnPWoAAAAAAAAAQC0pzFd2+Hu1LcS3VHOeU21BwO20NbAgIMBsaSIQOBfrcnpl/KzC+B9W35n+Wn2vx1zZuKHeoA1e01tz/iKNvby7RgAAAAAAAAAAFaQg4Km2IGBeazXnW0whwFYQ8KBVBphJDQQCr705nsleO7f0GVt23HuyYvDu27EO9JirqUBgg9d0bb53ZuOf9pgBAAAAAAAAAH1lQcCNPumFrTLkV3Puu2MtW2WAmdZUIPDj2Wvn8xXP+WCs7+x2FSwuxLqa/r/89yOxbq8wR0OBwCav6do8n8+u7R6PGQAAAAAAAADQVQoCHqsQBMzrrJUDoE1DgcBrb6eN9Mp5YcxvxUd2t+WdqDf1C2ktfusRAwAAAAAAAAA6KkKYi3W8ZhCwVTt1uwQCMPOaDAR+IXvtHB7j2/H7sf44QW/rw9k6fMEjBgAAAAAAAABcJwsCvjJAEDCvFasJQKbJQOBcrN+nV87DY3xL/jbWUxP01v5mWoOyY+IBjxgAAAAAAAAAcE0KAp6K9eqQQcC8S+CSlQUgaTAQeO3NdX965VyIdcsY3pQn0+d9akLe3Lek715e0xGPFwAAAAAAAAAwiiBgq7Zj3WWFAUgaDgRee4u9mF473xjDG/PvYj0yQW/wh9J3f8GjBQAAAAAAAABck7YHbjIIWHYGXIu1bHUByIwiEPjeWG/EuhzrPfvo7f3e9J3f2P1vAAAAAAAAAIBwLYkxH2ujgSDgxVirtgkGoIsRBAKvvcnKrYMvxXp6H729n07f+X6PFQAAAAAAAABwnSG7BG6nIOBBKwlADyMKBAIAAAAAAAAA8JbUJXBrgK2ByyDgohUEoAKBQAAAAAAAAACAcajRJbAMAq7HOmTVAKhBIBAAAAAAAAAAoI7U7e9E2b2v5nlzsTZ6BAEvxjoda9kqAzAAgUAAAAAAAAAAgCqyIOBmFuBbrjnHSo8g4JJVBmAIAoEAAAAAAAAAAL10CALm9WjNuRayLoE7KQh40CoD0ACBQAAAAAAAAACATtIWv92CgMUQXQKPpSDgolUGoEECgQAAAAAAAAAAuTKoF2utTxAwr9NWDYAuDsQ6Huu5WG/Eupz+/9lYn2n4swQCAQAAAAAAAABKWRBwu2IQsFXbuv0B0MF8rBdD55Beq16KdWNDnycQCAAAAAAAAADsb0MEAfNas5IAtHlo9zUTXo/1pVg3p5+/M9apWG+m499s6PMEAgEAAAAAAACA/amhIKAugQB0ckOsS2F3i+D3dxnzkd3X0bUthA808JkCgQAAAAAAAADA/tJwEDCvdasLQHJk95UT/r7PuGfSuE8O+DlzYTfwdzJ03574v4XdjoR/kcYDAAAAAAAAAEy/IoS7RhAE3Ip1WodAADLf233thPv7jHsgjft2zfn/KtbjsbZC5xBgt9qO9USsu9wiAAAAAAAAAGCqFSEsNRgILOdZFwQEoIMf7r52wof7jLszjXu+4rxlN8BXQtfA31ys5ViHUs33Cgf+U6xPuVUAAAAAAAAAwNQqQlhpoCPgmiAgAD28vvvKCfN9xs2nca/3Gbcc64XwJ6G+Mud+X6wnYr0S60qH19ZmrCdjHU1hwT8JBj4X65BbBgAAAAAAAABMnTLIN2CXwO0UJlyyigD0cWn3lVP11RQu9Dj+YNjd6jcL8f1FCgFeGeB19lysv2oPBe7EOuq2AQAAAAAAAABTpwhhtUZyYifWaR0BAaj3qqkVCLzc5dhKrCtvz3cw1n8aMAjYXv+5U8fAVbcOAAAAAAAAANgzqePfXTXPmU9b/9oaGIBRuByGDwSuhOvCeg9WeHXVrTLzfqw9FHja7QMAAAAAAAAAxqoIYSEF9jZTQmKx5vlrPYKAq4KAAAzhQhhuy+C2MODphoOA7fVkysrrFAgAAAAAAAAAjFFKLKx3aJN0uuY85b6L221BwBVBQAAa8NruqybM9xk3n8a9nv3swXDdNsFnRxwGbNVz7aHA+9xGAAAAAAAARuxfWgKAfSptDVwGAc93STJsD9AlcCXNdzLWklUGoCHP7r5mwh19xv1/9u4/xNazwA/4s5chTO2QTsiIV5zSsJVUFrGBKiJGzLL+0T+CDakhFRVNSeVCL3IJA50lt+yEQW7xinfZWGUJEoPYFFeqTYUNZCWkKrKsqNWlQtPlIoOdykCGZmxuSFJOn8d5TuZk9vx6z7znnPd93s8HvsR773te7zxznvPMmfne53lvvu7p/OvNmMOwsJ0Bh+0UuNIvBB7F3OZTCQAAAAAAwJz865j/F/MvDQVAh+SjgXdP7eY3Krsz3NuOgADU7UvHy0y4b8J19+frHs+/fja8Xgb8+ILLgP08OLhL4DM+lQAAAAAAAMzBTjj5mdRrMf/MkAAULpf1Lsdcr9BiuGGnPwAa4N785uWJCdc9ka9LxcC7T970nM8n2S+jEHgUszlYCrzHpxMAAAAAAICanIv59+HkZ1H93Ij5oOEBKFB8lV/NR/nuzdhk2DGKACzZTTEvx7wS854R16Tjgl/L16zF/OLkDc+3llQG7Oe/DL75+knMik8pAAAAAAAANUg7AfZG5P/E3GGIAAoxUAQ865ZI+44BBqABvpDfuLwY81DMm/Pv35p//WL+88/F3HnyRufdMa8uuRCYcqddAgEAAAAAAJiHz4fRpcD/HfMPDRFAiw0cDbxfY4vhipEFYMluifnZmDczKc/FrMY8dvJ7X2tAGTDlmcG/57d8OgEAAAAAAKjJ78R8NYz+GdrfxJw3TAAtE1/BV/KOgIc1NxjS/T5lhAFogHR08Gdinol5Kb+BSf99OuZCzLlwfBzvwfGfbTRkd8B+Nvtvuo6C3XcBAAAAAACoT/oZ2VNhdCnwvwU/nwJol3xE8EGNrYV0r4upTWF0AWiRu0/e2PyLBpUBUz41+KbrIz5VAAAAAAAA1OjvxHwvjC4Ffi9fA0BbxFfvCzUVAdNOg2tGFIAWuhQad1xwP382+IZr16cKAAAAAACAmqVdANNugKNKgWkXwZVRD749HO++ISIiDclbQ7j3pRl3CUyPezqEx9I9jKWIiLQ4z528oXm+YYXAvcE3W9/3uRIREREREREREREREZE55BMx+2NKgV+N+Z1hhcCdMQ8SEZElZatiO+EwP2bV2ImISFFZiXm1YYXAlFWfGxEREREREREREREREVl2Pq8QKCKypFQt6q3EPD9lEXA7Zt0Yi4hIkdlsYBkw5TafGxEREREREREREREREWlC7lMIFBFZYDZyYW8//+8qj70wpolwoAgoIiKdyG0KgSIiIiIiIiIiIiIiIiKj84BCoIjIApKKeukI38OB9sBjFe+xdurx/SLgTv4z4ywiIuXHDoEiIiIiIiIiIiIiIiIiI/LVMIRCoIhIjUm7AF6O2RvSHng15nzF+/V3CUz3SzsCrhpjERHpVFZiXm1gIXDV50ZERERERERERERERESWmedibhpWCLw95m4pMo+MeDI8YmxE6s8/DuH+H4bwH18J4TfjGgTpmipz9u+F8Nm/COErbw3hXuMsYo0V6VCeO5lbv2hYGfD64Lz/vs+ViPVVxHw1X0XMWRExX0XMV/NVxHwVEXN2DvnimDLg8zG3Bjrn7hFPiLsNDdQnTqq1mEsxh1O2CI5iNs1ZsMYCY108mVuPN6wQ+OTgvN/yqQLrK5iv5iuYs4D5Cuar+QrmK2DO1uwPYl4dMR6HMf/I08UksbBBzeJkWo/ZijmYoUlwzZwFayww1jtP5tZHGlYI/PjgvH+3TxVYX8F8NV/BnAXMVzBfzVcwXwFztkbvCMelv2FjkUqCf+CpYpJY2KBGeUfA7Zj9MzQJ0i6B6+YsWGOBsQ5Olt4bDSkDvhqzMfivr1Z8msD6Cuar+QrmLGC+gvlqvoL5CpizNUnHAP/PMPqo4H/laWKSWNigJnlHwMsx12tqFFwzZ8EaC4z16Mn8+lpDCoHfGpzzj/kUgfUVzFfzFcxZwHwF89V8BfMVMGdrclPMfw2jy4Cf9xTBwgY1yNsS7cTs1dwoSEcNr5qzYI0FRrojHG97HufXbQ3YJTDtDvh2xwWD9RUwX8GcBcxXwHwF8xUwZ+fhiTC6DPifY855imBhgxrESfNXNbcJUpvhajpv0JwFayww0Z+fzLErSy4EXh2c78/61ID1FcxX8xXMWcB8BfPVfAXzFTBna/JAGF0G/EnM3/X0wMIGNYmTZqumFsFROiY45rw5C9ZYYGoDuwSuxPx8SWXA5/Omwb+d66/mvxdgfQXz1XwFcxYwX8F8NV/BfAXM2TqkEyb/w5CP/X/FbHpq0Hd7zB8Nye2GBqYXX13XY/bP0CA4jNlN9zFnwRoLzOTqyZuet+eO/aKPCn7n4BuvR31KwPoK5qv5CuYsYL6C+Wq+gvkKmLNzkD7e/s+k/m/Muz0tAOYgF/pmKQLuDDkaGACoZiXm5ydvfu7KJb1FFQI/NFgGfD5MLvkDAAAAAADArD4a81LMPzcUAHOSzwjcq3A08NUxRwMDANXdFrMXXi/m3bmAnQKPcvnw9TLgfv57AAAAAAAAwDzpnABMKx8BfK1XcXefeP2lKXYEfLTn7HYAmJd3xlwPrxf0bot5Zk5lwGfz8cSvlwFTGdGW7AAAAAAAAADQBOno3nyE72H+Sf92xcenIuG+HQEBYKlS8f4n4aSoF/NghY18JyUt9RdiVgbLgOm44ncYegAAAAAAAABYslzkuzxQBBzc0W+j4r0unCoC2hEQABYv7fL7Z+ENpcDVmK2Yn89YBPxFfvxG7433Dc+Gil8vAAAAAAAAAAA1y82A3SFFwMHsznDP53MR8DajDABL9WDMfnhjgS/mjrQRcMyf52V71E6A6VjgP4q58/SOgCkHMRdjVgwzAAAAAAAAACxJL4S1vCPg/hTbAaWy4HrF+ysGAEBzpHX8asxR+FvFwH5S2W8zdflzVnujrw03Yq6Fil8fAAAAAAAAAMzTY+H4B5pndXMY/cPS04Glyj/d356wI+CwbHVsXgPjnYu5EPNMzIsxr+T/PhXzCesqNNZazKWYv4p5tcJc6+cn+fEbDXm9AOuqdRXaxPtVaP/8s65CM752/nTM0wNfO78U84OYf5vnKdC++WeNhWa4JeaRmJ/m+Z3m+f+I+ZOYtxseaOXcs8bSOf+mxif13SYQTZd3BNyK2atYBOznoHdcIujKvAZGW415bsJ698Mw+zeArKuwGOt5vqWdA78/Yo6l3087AX4kVCsBLur1Aqyr1lVoC+9XoYz5Z12F5XpLzI8mzL39mPcYKmjd/LPGwvK9K+ZXY+ZeKig9YJigdXPPGktnpGNMv1jzk/rhfJ+HDS9Nk3cEPEsRcDA7HZrXwGify/PshZiHYm7Nv5++KZR2E/1N/vPPW1ehNUa9Iby74a8XYF21rkLTeb8KZc0/6yosT9qZrF9G+u8xHwvH/7gmuSnm3nC8o0r681/HvNWQQavmnzUWlit9P2o/z8N0YsUH8txP0u5k/27ga+oPGC5o1dyzxtIJdwx8QVrnN4K+me/zPkNMU+Qi4IW8s1+vpjRxl8B5zWtguDfFvByO/zXK74245oN5Hr448EWrdRWabR6FwEW8XoB11boKTeb9KpQ3/6yrsDwP5Pn3o/x19DCpoPS9fN0fGzJo1fyzxsJy9UtHXxtzzaV8zXcNF7Rq7lljKdo/iflGeOM3fwaPZDqr1Nh9yTDTFPFJ/fGY/RqLgCmHMbsNKgTOe14Dw92f59jXJ1z37Xzdh62r0ArzKAQu4vUCrKvWVWgi71eh3PlnXYXleSrP4w9NuO49+bpfGjJo1fyzxsJy/U2ev/9gzDUr+ZqXDRe0au5ZYyna4DeA0tnbD5z6/bO4Od/jG4aZBj3hd2ssAh7FfDnmfIfmNTDaV/Ic++iE6z6Wr/uidRVaYR6FwHm/XoB11boKDX5b7v0qFDj/rKuwXC/mOXhuytcCZQVoz/yzxkI7vCnP1d8YCmjN3LPGUrz0BP9xzKfDcXt28PfP+o2g/g9Pt8LxVp1pm86X8he7BzFPBltvsvgn/FoNRwWnHQGvxKx3cF4Do30nz7EPTLjufWG27autq7Ac8ygEzvv1Aqyr1lVo8Nty71ehwPlnXYV2WM1z9UVDAa2Zf9ZYaIdH8lz9iqGA1sw9ayzFe9eI36/jG0EP53u8Fob/ELWfP/VpYJHik25nxiLgjbzD4HqH5zUw2gt5jq1OuK7/zZ8XrKvQCvMoBM779QKsq9ZV8H4VWOT8s65CO3w02AUF2jb/rLHQXGln0HRc+LfzPNyLeYthgdbMPWssnVXHN4K+OXCfz8a8feDP0g9t7on5QdCWZ/FP7o28y1+Vo4EvN/Bo4GXMa2C0lyvMsXTdS9ZVaIV5FALn/XoB1lXrKni/Cixy/llXofnSD05/FqbbhRtozvyzxkLzpCNKXw5v/F7xczG3Ghpo1dyzxtJZdXwjaD/f44Ex16TjKX6cr3u/YWfGJ+tqb/LOIacfc2nKo4FTEXDTvAZqnmPpulesq9AK8ygEzvv1Aqyr1lXwfhVY5PyzrkLzfTbPv68bCmjV/LPGQvP80zzn0u5kqYz0Sp5/P4p5h+GB1sw9ayydtchvxN6X/7+eNOxUfJKuxVyM2UvFvRkeezimCJiOFd4wr4EKXgnNKPhYV6Fe8ygENuX1Aqyr1lXwfhXwfWAo3yfz3PtpzJrhgCLnnzUWlufNMU/kOfjr4NhgKG3uWWMpziK/EXRL/v86MOxM+eRcz4W9w1PH+m5UvM+VIUXAa+n+5jUwg5dCM44Ata5CveZRCGzK6wVYV62r4P0q4PvAULZ78ry7HhQUoOT5Z42F5ftGnod/YiigqLlnjaVxemNS5fGL/Pva+YRJT5J0NPD2mJ39direL+0SeJDLhFdbUARs27yGrq2rv8q/nnSE+Wq+7gXrKrTCPAqBTXq9gKayrkI3v94Gyp9/1lVYnA/n+fbLmLcaDih+/lljYbnekefhnqGA4uaeNZZGaVNx6Fyw8wnjn4yrA0cD98bkoGqpL15/V689xyQoBEKz599T+dd3TLjXe/N1T1tXoRXmUQhsyusFNJl1Fbr59TZQ9vyzrsLi3B/zWlAGhK7MP2ssNOdr65cNAxQ196yxFDlhzvqNoBfzPW6ecN3v5uv+0rBz6kk4bRFwMNeM3FznNTDal/Icu2/Cdffn6x63rkIrzKMQOO/XC7CuWlfB+1VgkfPPugrNsRLzx3mu/SjmzYYEWj3/rLGwfP15+LYJ192Ur3vRkEEr5p41ls6q4xtB3873+OSE6y7m63YNO/nJtx5zOeZ6hSJgP0ctOPq3zfMaGO3ePMeemHDdE/m6+62r0ArzKATO+/UCrKvWVfB+FVjk/LOuQjO8JeYHeZ59M2bVkEDr5581FpbvP+X59ZkJ192Tr/uOIYNWzD1rLJ1VxzeCPpbv8bNw/K9ihklt27Rldtpe822GvfNPulQE3Ik5nKEIOJhtozm3eQ2Mlv4FStqO+pWY94y4Jh1r+Fq+pupx5dZVWI55FALn/XoB1lXrKni/Cixy/llXYfneFfPrPBf/0HBAMfPPGgvL1//+8PUw+vtPb4r563zdPYYMWjH3rLF0Vl3fiH0u3+fZmPeH4/O1k/QvY+4fmJyfNuSdfrKt5h0Bz1oEHNwlcMPIzm1eA6N9IZxsS/1QODkW4tb86/7205+zrkLr3nTWWQhcxOsFWFetq+D9KrDI+WddheX5++G4jJR+UPkhwwHFzT9rLCzfU3me/TDm9wfmYfoHramE9NP8508aKmjV3LPG0knTfiNo0nVvzpOzNyb+tVp3n2SpCHgxZq+mIuBgIfAuIzzzvAZmd0s4/pck49a958LoIyOsq9A88yoEnvX1Aqyr1lXwfhVY5PyzrkJzPTFh7g0L0Jz5Z42F5ku7k313wjz8ejguKQHNmXvWWJhhYlS5LrVoL4TjVm36FzLpOKf0r2Uej7nDUHf6SXap5iJg2mHwSsym0T3TvAbOJn3R+ZmYZ/K618v/fTqvh+esq9Aq8yoEnvX1Aqyr1lXwfhVY5PyzrkJzvRwUAqHN888aC+3xiXDyParXYl4IxzuT/b6hgUbOPWsswDLkHQIPaigC3ojZjVk3qgBAzeZZCAQAAAAAAACAcpxxl8C0I+COHQEBgDlSCAQAAAAAAACAaeRdAvdn2BHwqh0BAYAFUAgEAAAAAAAAgGn1Qtiasgh4FHMt5rxRAwAWRCEQAAAAAAAAgO7phbAWczFmu+Lj1vPxv+OKgDt2BAQAlkAhEAAAAAAAAIDu6IWwEnNhoNSXjvS9reI9dkYcDfxozKZRBgCWRCEQAAAAAAAAgPIN7Ah4fUiZ78sz3GsvP/YwHyNsR0AAYNkUAgEAAAAAAAAoVz7id2fCMb9pd7+Nivd90NHAAEDDKAQCAAAAAAAAUJ5eCKtTFAFn3iUQAKCBFAIBAAAAAAAAKMfA0cB7UxYB+3k15jYjCAC0mEIgAAAAAAAAAO035dHAk3LFSAIALaYQCAAAAAAAAEB75R0Br5yxCNjPkV0CAYAWUwgEAAAAAAAAoH16IazOeDTwpDxqdAGAllIIBAAAAAAAAKBdeiHcFXNQcxHwKB85vGmEAYCWUggEAAAAAAAAoF16IWzUdERwL99HERAAKIFCIAAAAAAAAADt0wthu4YdAa/FrBtNAKAQCoEAAAAAAAAAtE8q8s24S6AiIABQKoVAAAAAAAAAANqpF8LlikcDX1UEBAAKphAIAAAAAAAAwPLlHf/uqviY1ZiDKYqAO4qAAEAHKAQCAAAAAAAAsDy9ENZiLsXs5XLfesXH7ygCAgD8lkIgAAAAAAAAAIs3UAQ8PFXku1LxPudP3WM/ZlsREADoIIVAAAAAAAAAABYnFwG3hxQBB3f2q7pL4HYuAm6l+xtlAKCjFAIBAAAAAAAAmL9eCKu5uLc3ogg4mN2K915TBAQAUAgEAAAAAAAAYI5yEXA35mCKImA/N2I2jB4AQCUKgQAAAAAAAADUL+/at1WxCDiYHaMIAFCJQiAAAAAAAAAA9clFwEsxhzMWAfvZj1k3ogAAU1MIBAAAAAAAAODschHw8hl2BByWK0YWAGBqCoEAAAAAAAAAzK4XwkrMdg07Ap5Out9FIwwAMDWFQAAAAAAAAABm1wthNWavxiLgQd5p0HHBAADVKAQCAAAAAAAAcDZpJ7+adgTcSUcPG1EAgJkoBAIAAAAAAABwNmfcJfAoFwHtCAgAcDYKgQAAAAAAAACcXS+ErRmKgFdjNo0eAEAtFAIBAAAAAAAA+NvSrn8Vr1/Px/5OKgLeUAQEAJgLhUAAAAAAAAAATvRC2Ii5HLMfc77iY3cUAQEAlkYhEAAAAAAAAIDjHQFjLuWjfPslvt2K9xi2S2C/CLhhlAEA5kohEAAAAAAAAKDLcolvO2ZvyK5+qdy3XvF+/V0CU7HwWtVdBgEAmJlCIAAAAAAAAEAX5R0Bt4fs6Hc6VXcJXMtHDisCAgAslkIgAAAAAAAAQJdM2BFwWNKRv5tGDgCg8RQCAQAAAAAAALog7wh4MWZ/yiLgYB41ggAAjacQCAAAAAAAAFCyvCPgTszBDEXAfo7SfYwmAECjKQQCAAAAAAAAlGigCHh4hiLgYK4aVQCARlMIBAAAAAAAAChJL4TzqbxXYxGwn+vp2GEjDADQWAqBAAAAAAAAAKXohbASs1dzETAVCy8oAwIANJ5CIAAAAAAAAEBJeiFcrqkImIqFW+noYaMKANAKCoEAAAAAAAAAJemFsHbG44LTY3fsCAgA0DoKgQAAAAAAAACl6YVwZYYi4JEdAQEAWk0hEAAAAAAAAKA0vRA2KuwSeJB3BNwwcgAAraYQCAAAAAAAANBk6ejemAvpKOCKj9uZUAS8EbNd9b4AADSWQiAAAAAAAABAE+Ui4MWYvVzgu1jx8Rv5GOBhOwLu2hEQAKA4CoEAAAAAAAAATTKkCDhY5Ku6S+CjA48/yr+2IyAAQJkUAgEAAAAAAACaYEwRcDCXKt5zIxcJr8asG2UAgKIpBAIAAAAAAAAsUyrqxWxPKAL2s1+12JeKhkYZAKATFAIBAAAAAAAAliEXAXdiDqcoAg7mstEDAGAIhUAAAAAAAACARTpDEXBwl0C7/gEAcJpCIAAAAAAAAMAi1FAEHMwFIwoAwCkKgQAAAAAAAADzlHbzS8f81lQE7OcgZs3oAgAwQCEQAAAAAAAAYF56ITwYs1djETDlKOZK2nHQCAMAMEAhEAAAAAAAAGBe8hHBioAAACyCQiAAAAAAAADAvKRjfWP2azgeWBEQAIBJFAIBAAAAAAAA5qkXwqUZi4CHMbuKgAAATEkhEAAAAAAAAGCeeiFs5ON+py0C3rAjIAAAM1AIBAAAAAAAAKiiF8JqSsXH7E5RBEylwWupQGiUAQCYgUIgAAAAAAAAwDR6IazFXI7Zi9mp+Nj1fATwuCKgHQEBADgLhUAAAAAAAACAcfKOgA/mImC/xHeQCoIV77NzqgiY7nHVjoAAANREIRAAAAAAAABgmFwEvHiqCDiY3Yr36+8SeJiLgHYEBACgTgqBAAAAAAAAAINycW8n7+DXG5MbMecr3vtDMZtGGQCAOVAIBAAAAAAAAEgGdgTcn1AEnHmXQAAAmCOFQAAAAAAAAKDb8o6A22OOBh6XQ0f/AgDQEAqBAAAAAAAAQDcNHA18OEMRcDBXjSYAAA2gEAgAAAAAAAB0Sy+ElZgHYw7OWATs50bMeSMLAMCSKQQCAAAAAAAA3dALYTXm4oxHA086NvhDRhgAgCVTCAQAAAAAAAC6IZcB6ywCHuUjhzeNLgAADaAQCAAAAAAAAHRD3iHwek1HBF+O2TCqAAA0iEIgAAAAAAAA0B29EC6c8WjgVAQ8byQBAGgghUAAAAAAAACgO/IugQczHA2cioDrRhAAgAZTCAQAAAAAAAC6pcIugakIuBtzm1EDAKAFFAIBAAAAAACAduqFsJZ37vtUxcetxFwfUwS8EXMlZtMoAwDQIgqBAAAAAAAAQLvkIuB2zGEu8O1XPc43P35UEXDDKAMA0EIKgQAAAAAAAEA7pKLeqSLgYLYr3mttYJfAo1wEPG+UAQBoMYVAAAAAAAAAoNnS7n/5aODDMcf8pl0CVyve98FcBFw3ygAAFEAhEAAAAAAAAGimVPAbsyNg76y7BAIAQGEUAgEAAAAAAIBmycf5bsUcTFkE7Cddv2YEAQDoKIVAAAAAAAAAoBlyEfBShR0Bh+WCkQQAoKMUAgEAAAAAAIDl6oWwMeOOgMOyF7NuVAEA6CCFQAAAAAAAAGA5UnEvFwEPaygCDuaS0QUAoIMUAgEAAAAAAIDF64VwZ97Nr84iYLrfdsyqEQYAoIMUAgEAAAAAAIDFy8cEH9ZYBLysCAgAQMcpBAIAAAAAAADLkXfzq2NHwDWjCQAACoEAAAAAAADAkvRCWJ9xl8BUBLyoCAgAAG+gEAgAAAAAAAAsTz7qd9oi4EHMjiIgAAAMpRAIAAAAAAAA1CPv+HdXxces5qLfuCLgviIgAABMpBAIAAAAAAAAnE0q6uXC3l4u961XfPzOmB0BL1e9HwAAdJRCIAAAAAAAADCbvLvf7pAd/q5UvM/5mMNTOwJuKwICAEAlCoEAAAAAAABANflo4N1c3Bu2s9/hDLsEbuf7XYrZMMoAAFCZQiAAAAAAAAAwnXw08O6p3fxGZXeGe9sREAAAZqcQCAAAAAAAAIyXy3qXY65PUQTs54ad/gAAYKEUAgEAAAAAAIDheiGs5qN89yoUAQezYxQBAGBhFAIBAAAAAACANxooAh7MWATsZ98xwAAAsDAKgQAAAAAAAMCxgaOB989YBBzMFSMLAAALoRAIAAAAAAAAXTewI+BhjUXAXr7fJSMMAAALoRAIAAAAAAAAXZeO9a25DHiYC4aOCwYAgMVRCAQAAAAAAAB++1PC7ZqKgLsxm0YUAAAWTiEQAAAAAAAAeP3Y4IMZi4BHuQhoR0AAAFgehUAAAAAAAADgWC+EyxWLgPsxO4qAAADQCAqBAAAAAAAAUKq061/V62P2pjwa+IoiIAAANIpCIAAAAAAAAJSmF8JazHbewW+j4mMvjikCprLgliIgAAA0kkIgAAAAAAAAlCLv8Ld9ape/xyreYy3vADjsaOA1owwAAI2lEAgAAAAAAABtN1AEPBiyq9+rMecr3u/CwNHAFxUBAQCgFRQCAQAAAAAAoK3ybn4X8w5+vTHZrXjfVDC8VPW4YQAAYKkUAgEAAAAAAKBtcmFvmiJgP0cxm0YOAACKphAIAAAAAAAAbdELYSVmK+b6lEXAwVwzggAAUDSFQAAAAAAAAGi6gSN8ZykCDu4SuG40AQCgWAqBAAAAAAAA0FR5R8BUBDw4QxFwMLtGFQAAiqUQCAAAAAAAAE0zsCPgL2oqAvaTioWrRhgAAIqkEAgAAAAAAABNkncF/EnNRcDDmJ2YDSMMAADFUggEAAAAAACApumF8GiNRcArMZtGFQAAiqcQCAAAAAAAAE2TdvKLOTpjEfBqzHmjCQAAnaEQCAAAAAAAAE3UC+HaDEXAo7wj4LoRBACAzlEIBAAAAAAAgCZKu/vlnf6mKQLeiNlNOwsaOQAA6CyFQAAAAAAAAJi3XggrMVtVd+7LJb9JRwPvKAICAABBIRAAAAAAAADmZ6AI+Hwu8G1XfPz5vPvfsCJgKgtuGmUAACBTCAQAAAAAAIC65SLghZjrQ4p8GxXv9eVTj79SdadBAACgExQCAQAAAAAAoC69EFZjLsUcjDnmd7fiPTdi9hUBAQCACRQCAQAAAAAA4KzyjoAXc3GvNyGHVYt96f5GGQAAmEAhEAAAAAAAAGY1cDTw81MUAQezZfQAAICaKQQCAAAAAABAVQNFwOsVi4D9pCOF14wkAABQI4VAAAAAAAAAmFYuAn7qDEXAwewYUQAAoEYKgQAAAAAAADBJL4TVvCPgQQ1FQLsEAgAA86AQCAAAAAAAAOP0Qvh4zH6NRcCUw5hdhUAAAKBGCoEAAAAAAAAwTi+EKzUWAY9ivhxz3sgCAAA1UwgEAAAAAACAcdIufjXsEHgj5mrMuhEFAADmRCEQAAAAAAAAJumFcPkMOwJesyMgAACwAAqBAAAAAAAAMEna2S/mwNHAAABAgykEAgAAAAAA0D29EFZTKj5my9HAAABAgykEAgAAAAAA0B29ENZiLsbspWOAKz52I+ZwzI6AuzGbRhkAAFgShUAAAAAAAAC641ShL5X4Nio+/vKpIuBh3hFQERAAAFg2hUAAAAAAAAC6Y8jOfjsVH7+aS4DpaOBHqxYKAQAA5kghEAAAAAAAgO4YUgg8iFmveI+7FAEBAIAGUggEAAAAAACgO4YUAlOuGRkAAKAACoEAAAAAAAB0x4hC4FHVXQIBAAAaSCEQAAAAAACA7hhRCEzZNjoAAEDLKQQCAAAAAADQHWMKgWmXwA0jBAAAtJhCIAAAAAAAAN0xoRB4lxECAABaTCEQAAAAAACA7hhSBDyMuRKzaXQAAICWUwgEAAAAAACgOwaKgDdidmPWjQoAAFAIhUAAAAAAAAC6I+8IuGNHQAAAoEAKgQAAAAAAAHSHHQEBAICCKQQCAAAAAAAAAABAARQCAQAAAAAAAAAAoAAKgQAAAAAAAAAAAFAAhUAAAAAAAAAAAAAogEIgAAAAAAAAAAAAFEAhEAAAAAAAAAAAAAqgEAgAAAAAAAAAAAAFUAgEAAAAAAAAAACAAigEAgAAAAAAAAAAQAEUAgEAAAAAAAAAAKAACoEAAAAAAAAAAABQAIVAAAAAAAAAAAAAKIBCIAAAAAAAAAAAABRAIRAAAAAAAAAAAAAKoBAIAAAAAAAAAAAABVAIBAAAAAAAAAAAgAIoBAIAAAAAAAAAAEABFAIBAAAAAAAAAACgAAqBAAAAAAAAAAAAUACFQAAAAAAAAAAAACiAQiAAAAAAAAAAAAAUQCEQAAAAAAAAAAAACqAQCAAAAAAAAAAAAAVQCAQAAAAAAAAAAIACKAQCAAAAAAAAAABAARQCAQAAAAAAAAAAoAAKgQAAAAAAAAAAAFAAhUAAAAAAAAAAAAAogEIgAAAAAAAAAAAAFEAhEAAAAAAAAAAAAAqgEAgAAAAAAAAAAAAFUAgEAAAAAAAAAACAAigEAgAAAAAAAAAAQAEUAgEAAAAAAAAAAKAACoEAAAAAAAAAAABQAIVAAAAAAAAAAAAAKIBCIAAAAAAAAAAAABRAIRAAAAAAAAAAAAAKoBAIAAAAAAAAAAAABVAIBAAAAAAAAAAAgAIoBAIAAAAAAAAAAEABFAIBAAAAAAAAAADopHMxF2KeiXkx5pX836diPnHGe98chpfzhqUuCoEAAAAAAAAAAAB0zmrMc2F8Ue+H4bjYN4u7g0IgAAAAAAAAAAAAzN3nwnFZ7oWYh2Juzb//lpitmN/kP//8jPd/OD/+4QV+TAqBAAAAAAAAAAAAdMqbYl4Ox0cE/96Iaz4Yjst06QjhczP8f3wzP/59C/y4FAIBAAAAAAAAAADolPvDcVHu6xOu+3a+7sMz/H/sx7y04I9LIRAAAAAAAAAAAIBO+Uo4Lsp9dMJ1H8vXfbHi/W/Oj/vGgj8uhUAAAAAAAAAAAAA65TvhuCj3gQnXvS9f992K9+8X87ZiLuXHp90C0zHFBzFPhtmOEr4933tUHgkKgQAAAAAAAAAAAHTIC+G4KLc64brVfN0LFe//cH7ca2F4Qa+fP614350J9xsVhUAAAAAAAAAAAACKlHbq6015bbrupYr3/2Y4KeN9NubtA3+WSob3xPwg//lXKtx3JygEAgAAAAAAAAAAwOv6Rblpr32l4v338+MeGHPNSsyP83Xvn/K+O0EhEAAAAAAAAAAAAF6XCn7zLARO6758/yenvH4nKAQCAAAAAAAAAADA69IRwPM8Mnhat+T7H0x5/U5QCAQAAAAAAAAAAKAjxhXj+n6Vf7064V6r+boX5vz3nXYHwtvDcblvVB4JCoEAAAAAAAAAAAAUYppC4FP513dMuNd783VPz+nvei7UuwPh3UEhEAAAAAAAAAAAgA75Ujguyt034br783WPV7z/i/lxN0+47nfzdX9Z08elEAgAAAAAAAAAAECn3BuOi3JPTLjuiXzd/RXv/+38uE9OuO5ivm63po9LIRAAAAAAAAAAAIBOuSnm5ZhXYt4z4pp0XPBr+Zq1ivf/WDgu4v0sZmXENWn3wF+G4+OC31bTx6UQCAAAAAAAAAAAQOd8IRyX5dLxvg/FvDn//q351/1jfz834/2fy49/Nub9Mefy76+G4x0H/zr/+adr/JgUAgEAAAAAAAAAAOicW8LxDn69MUmlvtURj+9fM0oqGP5wwv3/sOaPSSEQAAAAAAAAAACATkpHB38m5plwfHRvL//36ZgL4WRXv2EmFQJDfny6z7P5vun44V/HPB5zxxw+HoVAAAAAAAAAAAAAKIBCIAAAAAAAAAAAABRAIRAAAAAAAAAAAAAKoBAIAAAAAAAAAAAABVAIBAAAAAAAAAAAgAIoBAIAAAAAAAAAAEABFAIBAAAAAAAAAACgAAqBAAAAAAAAAAAAUACFQAAAAAAAAAAAACiAQiAAAAAAAAAAAAAUQCEQAAAAAAAAAAAACqAQCAAAAAAAAAAAAAVQCAQAAAAAAAAAAIACKAQCAAAAAAAAAABAARQCAQAAAAAAAAAAoAAKgQAAAAAAAAAAAFAAhUAAAAAAAAAAAAAogEIgAAAAAAAAAAAAFEAhEAAAAAAAAAAAAAqgEAgAAAAAAAAAAAAFUAgEAAAAAAAAAACAAigEAgAAAAAAAAAAQAEUAgEAAAAAAAAAAKAACoEAAAAAAAAAAABQAIVAAAAAAAAAAAAAKIBCIAAAAAAAAAAAABRAIRAAAAAAAAAAAAAKoBAIAAAAAAAAAAAABVAIBAAAAAAAAAAAgAIoBAIAAAAAAAAAAEABFAIBAAAAAAAAAACgAAqBAAAAAAAAAAAAUACFQAAAAAAAAAAAACiAQiAAAAAAAAAAAAAUQCEQAAAAAAAAAAAACqAQCAAAAAAAAAAAAAVQCAQAAAAAAAAAAIACKAQCAAAAAAAAAABAARQCAQAAAAAAAAAAoAAKgQAAAAAAAAAAAFAAhUAAAAAAAAAAAAAogEIgAAAAAAAAAAAAFEAhEAAAAAAAAAAAAAqgEAgAAAAAAAAAAAAFUAgEAAAAAAAAAACAAigEAgAAAAAAAAAAQAEUAgEAAAAAAAAAAKAACoEAAAAAAAAAAABQAIVAAAAAAAAAAAAAKIBCIAAAAAAAAAAAABRAIRAAAAAAAAAAAAAKoBAIAAAAAAAAAAAABVAIBAAAAAAAAAAAgAIoBAIAAAAAAAAAAEABFAIBAAAAAAAAAACgAAqBAAAAAAAAAAAAUACFQAAAAAAAAAAAACiAQiAAAAAAAAAAAAAUQCEQAAAAAAAAAAAACqAQCAAAAAAAAAAAAAVQCAQAAAAAAAAAAIACKAQCAAAAAAAAAABAARQCAQAAAAAAAAAAoAAKgQAAAAAAAAAAAFAAhUAAAAAAAAAAAAAogEIgAAAAAAAAAAAAFEAhEAAAAAAAAAAAAAqgEAgAAAAAAAAAAAAFUAgEAAAAAAAAAACAAigEAgAAAAAAAAAAQAEUAgEAAAAAAAAAAKAACoEAAAAAAAAAAABQAIVAAAAAAAAAAAAAKIBCIAAAAAAAAAAAABRAIRAAAAAAAAAAAAAKoBAIAADA/2/XDm4YBIIABm411Hl0HkV8QflyzozkLgwAAAAAAECAIRAAAAAAAAAAAAACDIEAAAAAAAAAAAAQYAgEAAAAAAAAAACAAEMgAAAAAAAAAAAABBgCAQAAAAAAAAAAIMAQCAAAAAAAAAAAAAGGQAAAAAAAAAAAAAgwBAIAAAAAAAAAAECAIRAAAAAAAAAAAAACDIEAAAAAAAAAAAAQYAgEAAAAAAAAAACAAEMgAAAAAAAAAAAABBgCAQAAAAAAAAAAIMAQCAAAAAAAAAAAAAGGQAAAAAAAAAAAAAgwBAIAAAAAAAAAAECAIRAAAAAAAAAAAAACDIEAAAAAAAAAAAAQYAgEAAAAAAAAAACAAEMgAAAAAAAAAAAABBgCAQAAAAAAAAAAIMAQCAAAAAAAAAAAAAGGQAAAAAAAAAAAAAgwBAIAAAAAAAAAAECAIRAAAAAAAAAAAAACDIEAAAAAAAAAAAAQYAgEAAAAAAAAAACAAEMgAAAAAAAAAAAABBgCAQAAAAAAAAAAIMAQCAAAAAAAAAAAAAGGQAAAAAAAAAAAAAgwBAIAAAAAAAAAAECAIRAAAAAAAAAAAAACDIEAAAAAAAAAAAAQYAgEAAAAAAAAAACAAEMgAAAAAAAAAAAABBgCAQAAAAAAAAAAIMAQCAAAAAAAAAAAAAGGQAAAAAAAAAAAAAgwBAIAAAAAAAAAAECAIRAAAAAAAAAAAAACDIEAAAAAAAAAAAAQYAgEAAAAAAAAAACAAEMgAAAAAAAAAAAABBgCAQAAAAAAAAAAIMAQCAAAAAAAAAAAAAGGQAAAAAAAAAAAAAgwBAIAAAAAAAAAAECAIRAAAAAAAAAAAAACDIEAAAAAAAAAAAAQYAgEAAAAAAAAAACAAEMgAAAAAAAAAAAABBgCAQAAAAAAAAAAIMAQCAAAAAAAAAAAAAGGQAAAAAAAAAAAAAgwBAIAAAAAAAAAAECAIRAAAAAAAAAAAAACDIEAAAAAAAAAAAAQYAgEAAAAAAAAAACAAEMgAAAAAAAAAAAABBgCAQAAAAAAAAAAIMAQCAAAAAAAAAAAAAGGQAAAAAAAAAAAAAgwBAIAAAAAAAAAAECAIRAAAAAAAAAAAAACDIEAAAAAAAAAAAAQYAgEAAAAAAAAAACAAEMgAAAAAAAAAAAABBgCAQAAAAAAAAAAIMAQCAAAAAAAAAAAAAGGQAAAAAAAAAAAAAgwBAIAAAAAAAAAAECAIRAAAAAAAAAAAAACDIEAAAAAAAAAAAAQYAgEAAAAAAAAAACAAEMgAAAAAAAAAAAABBgCAQAAAAAAAAAAIMAQCAAAAAAAAAAAAAGGQAAAAAAAAAAAAAgwBAIAAAAAAAAAAECAIRAAAAAAAAAAAAACDIEAAAAAAAAAAAAQYAgEAAAAAAAAAACAAEMgAAAAAAAAAAAABBgCAQAAAAAAAAAAIMAQCAAAAAAAAAAAAAGGQAAAAAAAAAAAAAgwBAIAAAAAAAAAAECAIRAAAAAAAAAAAAACDIEAAAAAAAAAAAAQYAgEAAAAAAAAAACAAEMgAAAAAAAAAAAABBgCAQAAAAAAAAAAIMAQCAAAAAAAAAAAAAGGQAAAAAAAAAAAAAgwBAIAAAAAAAAAAECAIRAAAAAAAAAAAAACDIEAAAAAAAAAAAAQYAgEAAAAAAAAAACAAEMgAAAAAAAAAAAABBgCAQAAAAAAAAAAIMAQCAAAAAAAAAAAAAGGQAAAAAAAAAAAAAgwBAIAAAAAAAAAAECAIRAAAAAAAAAAAAACDIEAAAAAAAAAAAAQYAgEAAAAAAAAAACAAEMgAAAAAAAAAAAABBgCAQAAAAAAAAAAIMAQCAAAAAAAAAAAAAGGQAAAAAAAAAAAAAgwBAIAAAAAAAAAAECAIRAAAAAAAAAAAAACDIEAAAAAAAAAAAAQYAgEAAAAAAAAAACAAEMgAAAAAAAAAAAABBgCAQAAAAAAAAAAIMAQCAAAAAAAAAAAAAGGQAAAAAAAAAAAAAgwBAIAAAAAAAAAAECAIRAAAAAAAAAAAAACDIEAAAAAAAAAAAAQYAgEAAAAAAAAAACAAEMgAAAAAAAAAAAABBgCAQAAAAAAAAAAIMAQCAAAAAAAAAAAAAGGQAAAAAAAAAAAAAgwBAIAAAAAAAAAAECAIRAAAAAAAAAAAAACDIEAAAAAAAAAAAAQYAgEAAAAAAAAAACAAEMgAAAAAAAAAAAABBgCAQAAAAAAAAAAIMAQCAAAAAAAAAAAAAGGQAAAAAAAAAAAAAgwBAIAAAAAAAAAAECAIRAAAAAAAAAAAAACDIEAAAAAAAAAAAAQYAgEAAAAAAAAAACAAEMgAAAAAAAAAAAABBgCAQAAAAAAAAAAIMAQCAAAAAAAAAAAAAGGQAAAAAAAAAAAAAgwBAIAAAAAAAAAAECAIRAAAAAAAAAAAAACDIEAAAAAAAAAAAAQYAgEAAAAAAAAAACADRxzzX1PnWMIBAAAAAAAAAAAgNdbcz/8/coQCAAAAAAAAAAAAC+yxhAIAAAAAAAAAAAA21tjCAQAAAAAAAAAAIDtrTEEAgAAAAAAAAAAwPbWGAIBAAAAAAAAAABge8dcc99T5xgCAQAAAAAAAAAAYHvf8c8QCAAAAAAAAAAAAJszBAIAAAAAAPA3PsS3NTxue7prAAAAAElFTkSuQmCC
Seien $$V,W$$ $$K$$-[[Vektorräume|Vektorraum]].
<$latex text="T:V\to W" displayMode="true"></$latex>
heißt ''lineare Abbildung'' (auch Vektorraumhomomorphismus), wenn für alle $$v,w\in V,\lambda\in K$$
# $$T(v+w)=T(v)+T(w)$$
# $$T(\lambda v)=\lambda T(v)$$
gilt.
Falls $$T$$ [[bijektiv|Injektivität und Surjektivität]] ist, spricht man von einem ''Isomorphismus '' und im Spezialfall $$V=W$$ von einem ''Endomorphismus''. Ist $$T$$ sowohl ein Isomorphismus, also auch ein Endomorphismus, wird $$T$$ auch ''Automorphismus ''genannt.
Außerdem bezeichent $$\text{Hom}_{K}(V,W)=\{T:V\to W| T \text{ linear}\}$$ die Menge aller linearen Abbildungen von $$V$$ nach $$W$$ und $$\text{End}_K(V)$$ die Menge aller Endomorphismen auf $$V$$.
!! Bemerkung
Aus der Linearität folgt direkt:
# $$T(0_V)=0_W$$
# $$\ker(T)=T^{-1}(0_W)$$ ist ein [[Unterraum|Unterräume]]
# Falls $$U\subset V$$ ein Unterraum ist, dann ist auch $$T(U)$$ ein Unterraum von $$W$$
# Falls $$W'\subset W$$ ein Unterraum ist, so auch $$T^{-1}(W')$$
<<list-links "[tag[Lineare Ausgleichsrechnung]sort[scriptorder]]">>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/oqGQvtb9KnI?rel=0&start=0" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
Unter einem ''linearen Gleichungssystem'', von $$m$$ Gleichungen und $$n$$ Unbekannten versteht man das System:
<$latex text="\begin{aligned}a_{11}x_1+\dots +a_{1n} x_n &=b_1\\a_{21}x_1+\dots +a_{2n} x_n &=b_2\\
\vdots & \\
a_{m1}x_1+\dots +a_{mn} x_n &=b_m
\end{aligned}" displayMode="true"></$latex>
bzw. in Matrixform:
<$latex text="A\cdot x =b." displayMode="true"></$latex>
Dabei ist $$A$$ ist die Koeffizientenmatrix, $$x\in K^n$$ der gesuchte Vektor und $$b$$ der Zielvektor.
!! Problem
* Existenz und Eindeutigkeit von Lösungen
* Verfahren zur Bestimmung aller Lösungen
* Beschreibung des Lösungsraumes $$L_{A,b}=\{x\in K^n| A\cdot x=b\}$$
Die Gleichung heißt ''inhomogen'' für $$b\neq 0$$ und homogen für $$b=0$$. Beachte, dass der Lösungsraum der homogenen Gleichung $$L_A=L_{A,0}$$ stehts die triviale Lösung $$x=0\in K^n$$ enthält.
Eine Teilmenge $$M\subset V$$ eines [[Vektorraumes|Vektorraum]] heißt ''linear unabhängig'', falls für je endlich viele $$x_1,\dots, x_n\in M$$ und $$\lambda_1,\dots,\lambda_n$$ folgendes gilt:<$latex text="\sum_{j=1}^n\lambda_jx_j=0\implies\lambda_1=\dots=\lambda_n=0." displayMode="true"></$latex>
$$M$$ heißt ''linear abhängig'', falls $$M$$ nicht linear unabhängig ist.
Seien $$A \in \mathbb{C}^{m \times n}$$, $$m\geq n$$, $$b\in\mathbb{C}^m$$. Dann heißt das Minimierungsproblem:
Gesucht sei $$x\in \mathbb{C}^n$$ mit
<$latex text="
x=\argmin_{y\in\mathbb{R}^n}\|b-Ay\|_2
" displayMode="true"></$latex>
lineares Ausgleichsproblem (LAGP).
<$details summary="Anmerkung" tiddler="Anmerkung Lineare Ausgleichsrechnung">
Das Ausgleichproblem heißt ''linear'', da die Parameter $$x$$ nur linear in den Defekt $$Ax-b$$ eingehen.
Wird statt der Ausgleichsgerade ein Ausgleichpolynom vom Grad $$k$$
<$latex text="
g(u)=\sum_{i=0}^k a_i u^i
" displayMode="true"></$latex>
zu den Daten $$(u_i,v_i)\in \mathbb{R}^2, i=1,\cdots,n$$ gewünscht, so ergibt sich folgendes lineares Ausgleichsproblem:
<$latex text="
x=\argmin_{y\in \mathbb{R}^n}\|b-Ay\|_2
" displayMode="true"></$latex>
mit
<$latex text="
A=\begin{pmatrix}
1 & u_1 & u_1^2& \cdots & u_1^k \\
\vdots & \vdots &\vdots & \ddots & \vdots\\
1 & u_n& u_n^2 & \cdots & u_n^k
\end{pmatrix},
x=\begin{pmatrix}
a_0 \\ a_1 \\
\vdots \\a_k
\end{pmatrix},
b=\begin{pmatrix}
v_1 \\ v_2 \\
\vdots \\ v_n
\end{pmatrix}
" displayMode="true"></$latex>
</$details>
<$details summary="Beispiel (Gaußsche Glockenkurve)" tiddler="Beispiel (Gaußsche Glockenkurve)">
{{Beispiel Gaußsche Glockenkurve}}
</$details>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/oqGQvtb9KnI?rel=0&start=1236" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
* $$X\in{\mathscr{L}}^1(P)$$, $$c\in\R$$ impliziert $$cX\in{\mathscr{L}}^1(P)$$: klar.
* O.E.\ sei $$c\ne 0$$. Dann gilt: <$latex text="\textbf{E}_P(cX)=\sum_{x\in X[\Omega]}cx P(cX=cx) = c\sum_{x\in X[\Omega]}x P(X=x)
= c\textbf{E}_P(X)." displayMode="true"></$latex>
* $$X,Y\in{\mathscr{L}}^1(P)$$ impliziert $$X+Y\in{\mathscr{L}}^1(P)$$:
** $$X+Y$$ diskret, denn mit $$X[\Omega]$$ und $$Y[\Omega]$$ ist nach dem Cantorschen Diagonalverfahren auch $$X[\Omega]\times Y[\Omega]$$ abzählbar.
** Zeigen als nächstes $$\textbf{E}_P(|X+Y|)<\infty$$. Dabei benutzen wir die disjunkten Zerlegungen <$latex text="\Omega=\bigsqcup_{x\in X[\Omega]}\{X=x\}\quad\text{sowie}\quad \Omega=\bigsqcup_{y\in Y[\Omega]}\{Y=y\}.
\hspace{2cm} \textcolor{blue}{\boldsymbol{(*)}}" displayMode="true"></$latex>
<$latex text="\begin{aligned}
\textbf{E}_P(|X+Y|)&=&\sum_{z\in(X+Y)[\Omega]}|z|P(X+Y=z)\\
&\le& \sum_{z\in(X+Y)[\Omega]}\sum_{x\in X[\Omega]}(|x|+|z-x|)P(X=x,Y=z-x)\\
&\le&\sum_{x\in X[\Omega]}\sum_{y\in Y[\Omega]}(|x|+|y|)P(X=x,Y=y)\\
&=&\sum_{x\in X[\Omega]}|x| \sum_{y\in Y[\Omega]} P(X=x,Y=y)+\sum_{y\in Y[\Omega]}|y| \sum_{x\in X[\Omega]} P(X=x,Y=y)\\
&\stackrel{(*)}{=}&\underbrace{\sum_{x\in X[\Omega]}|x| P(X=x)}_{=\textbf{E}_P(|X|)<\infty}+
\underbrace{\sum_{y\in Y[\Omega]}|y| P(Y=y)}_{=\textbf{E}_P(|Y|)<\infty}<\infty.
\end{aligned} " displayMode="true"></$latex>
Also ist auch $$X+Y\in{\mathscr{L}}^1(P)$$. Eine ähnliche Rechnung ohne Betragsstriche ergibt die Additivität des Erwartungswertoperators.
Für $$\lambda_1,\dots,\lambda_n\in K$$ ([[Körper]]), $$x_1,\dots,x_n\in V$$ ([[Vektorraum]]) heißt <$latex text="x=x_1\lambda_1+\dots+x_n\lambda_n" displayMode="true"></$latex>
Linearkombination von $$x_1,\dots,x_n$$.
Die Exponentialfunktion (als Funktion über $$\R$$) ist [[streng monoton wachsend|Monotone Funktionen]] und besitzt daher eine [[Umkehrfunktion|Umkehrfunktionen]]
<$latex text="\log:\R_+\to\R" displayMode="true"></$latex>
welche nach [[Umkehrabbildung von stetigen, streng monotonen Funktionen]] ebenfalls streng monoton wachsend und stetig ist. Diese Funktion heißt ''der natürliche Logarithmus'' und erfüllt für alle $$x,y\in\R_+$$ die Funktionalgleichung
<$latex text="\log(xy)=\log(x)+\log(y)." displayMode="true"></$latex>
!! Beweis
''Monoton wachsend und stetig:''
Für $$x>0$$ gilt $$\exp(x)=1+x+\sum_{n=2}^\infty\frac{x^n}{n!}\geq 1+x>1$$
und somit für alle $$x<x'$$:
<$latex text="\exp(x')=\exp(x'+x-x)=\exp(x'-x)\exp(x)>\exp(x)." displayMode="true"></$latex>
$$\exp(\R)=\R_+$$ folgt direkt aus der Betrachtung der Grenzwerte
<$latex text="\lim_{x\to\infty}\exp(x)=\infty" displayMode="true"></$latex>
und
<$latex text="\lim_{x\to-\infty}\exp(x)=0" displayMode="true"></$latex>
sowie dem [[Zwischenwertsatz|Zwischenwertsätze]].
Die Monotonie und Stetigkeit folgt dann aus [[Umkehrabbildung von stetigen, streng monotonen Funktionen]].
!! Funktionalgleichung des Logarithmus
Seien $$x,y\in\R_+$$ und $$x=\exp(\alpha),y=\exp(\beta)$$. Dann gilt:
<$latex text="\begin{aligned}
\log(xy)&=\log(\exp(\alpha)\exp(\beta))\\
&=\log(\exp(\alpha+\beta))\\
&=\alpha+\beta\\
&=\log(x)+\log(y).
\end{aligned}" displayMode="true"></$latex>
!! Definition
Für positive reelle Zahlen $$x,a$$ heißt <$latex text="\log_a(x)=\frac{\log x}{\log a}" displayMode="true"></$latex>
der ''Logarithmus von $$x$$ zur Basis $$a$$''.
Sei $$f:\, D(f)\rightarrow\mathbb{C}$$ zwei mal stetig differenzierbar und
$$\hat{x}\in D(f)$$ mit $$f(\hat{x})=0$$ und $$f'(\hat{x})\neq0$$.
Dann konvergiert das Newtonverfahren (mindestens) lokal quadratisch
gegen $$\hat{x}$$.
<$details summary="Bemerkung" tiddler="Bemerkung">
{{Beweis: Lokal quadratische Konvergenz des Newtonverfahrens}}
</$details>
Die Funktion $$\Phi:\, D(\Phi)\subset\mathbb{C}^{n}\longrightarrow\mathbb{C}^{n}$$
sei $$p$$-mal stetig differenzierbar und habe einen Fixpunkt $$\hat{x}\in D(\Phi)$$.
Ferner sei $$p\geq2$$,
<$latex text="
\begin{aligned}
d^{(1)}\Phi(\hat{x})=0, ..., d^{(p-1)}\Phi(\hat{x}) & =0\\
\text{und}\quad d^{(p)} \Phi(\hat{x}) & \neq 0.
\end{aligned}
" displayMode="true"></$latex>
Dann ist die Fixpunktiteration $$x_{k+1}=\Phi(x_{k})$$ lokal superlinear
konvergent gegen $$\hat{x}$$ und die Konvergenzordnung ist genau $$p$$.
<$details summary="Beweis: Lokal superlineare Konvergenz" tiddler="Beweis">
{{Beweis: Lokal superlineare Konvergenz}}
</$details>
Sei $$f$$ eine reelle Funktion auf $$X \subset \R^n$$. Man sagt $$f$$ habe in $$a \in X$$ ein //lokales Maximum//
bzw. //Minimum//, wenn es in $$X$$ eine Umgebung $$V$$ von $$a$$ gibt, sodass
<$latex text="
f(x) \leq f(a) \qquad \text{bzw.} \qquad f(x) \geq f(a) \qquad \forall x \in U
" displayMode="true"></$latex>
gilt. Kann $$V$$ so gewählt werden, dass sogar
<$latex text="
f(x) < f(a) \qquad \text{bzw.} \qquad f(x) > f(a) \qquad \forall x \in U \backslash \{a\}
" displayMode="true"></$latex>
gilt, so heißt $$a$$ //isoliertes Maximum// bzw. //Minimum//.
Ein Iterationsverfahren $$x^{(k+1)} = \Phi (x^{(k)})$$ mit
$$\Phi: D(\Phi) \subset \mathbb{C}^n \longrightarrow \mathbb{C}^n$$ heißt //lokal konvergent gegen $$\hat{x} \in \mathbb{C}^n$$//,
falls eine Umgebung $$U \subset D(\Phi)$$ um $$\hat{x} \in U$$ existiert, sodass $$\forall \quad x^{(0)} \in U$$
die resultierende Folge $$\{x^{(k)}\}$$ gegen $$\hat{x}$$ konvergiert.
In diesem Fall spricht man von einem //anziehenden Fixpunkt $$\hat{x}$$ von $$\Phi$$//.
Das Iterationsverfahren heißt //global konvergent//, wenn $$U$$ der gesamte Raum $$\mathbb{C}^n$$ ist.
<$details summary="Bemerkung" tiddler="Bemerkung">
{{Bemerkung: Lokale Konvergenz}}
</$details>
Die Funktion $$\Phi:\, D(\Phi)\subset\mathbb{C}^{n}\longrightarrow\mathbb{C}^{n}$$
sei stetig differenzierbar und habe einen Fixpunkt $$\hat{x}$$ in $$D(\Phi)$$.
Ferner sei $$\|\cdot\|$$ eine Norm in $$\mathbb{C}^{n}$$ und $$\|\cdot\|_{M}$$
eine verträgliche Matrixnorm in $$\mathbb{C}^{n\times n}$$ mit $$\|\Phi'(\hat{x})\|_{M}<1$$.
Dann ist $$\Phi$$ in einer Umgebung $$U$$ von $$\hat{x}$$ eine Kontraktion
und die Fixpunktiteration
<$latex text="
x^{(k+1)}=\Phi(x^{(k)}),\qquad k=0,1,2,...
" displayMode="true"></$latex>
ist lokal konvergent gegen $$\hat{x}$$.
<$details summary="Beweis" tiddler="Beweis">
Dass $$\Phi$$ lokal eine Kontraktion ist haben wir bereits bewiesen.
Mit dem Banachschen Fixpunktsatz folgt die Konvergenz.
</$details>
Es sei $$f:(a,b) \to\R$$.
# $$f$$ hat in $$x_0\in(a,b)$$ ein ''lokales Maximum'', falls ein $$\epsilon>0$$ existiert, so dass<$latex text="f(x_0)\geq f(x)" displayMode="true"></$latex>für alle $$x \in (x_0-\epsilon,x_0+\epsilon)$$ gilt. Tritt diese Ungleichung nur für $$x=x_0$$ ein, so spricht man von einem ''isolierten lokalen Maximum''.
# $$f$$ hat in $$x_0\in(a,b)$$ ein ''lokales Minimum'', falls ein $$\epsilon>0$$ existiert, so dass<$latex text="f(x_0)\leq f(x)" displayMode="true"></$latex>für alle $$x \in (x_0-\epsilon,x_0+\epsilon)$$ gilt. Tritt diese Ungleichung nur für $$x=x_0$$ ein, so spricht man von einem ''isolierten lokalen Minimum''.
<<list-links "[tag[Lokale Minima und Maxima]sort[scriptorder]]">>
!!
Aufgabe: [[Beispiel zum Nacharbeiten (i.i.d.)]]
!! Lösung
# Der Ereignisraum des Münzwurfexperiments ist $$\Omega = \{0,1\}^n$$. $$\sigma$$-Algebra ist die Potenzmenge. $$\mathcal{A} = 2^{\Omega}$$. Wahrscheinlichkeitsmaß ist die Gleichverteilung $$P(\omega)=2^{-n}, \forall \omega\in \Omega$$.
# Der Ereignisraum für $$E_1$$ ist $$\Omega_{1} = [0:n]=\{0,1,...,n\}$$. Der Ereignisraum für $$E_2$$ ist $$\Omega_{2} = [1:n+1]=\{1,...,n+1\},$$ wobei das Ereignis $$n+1$$ angibt, dass keiner der $$n$$ Münzwürfe Zahl lieferte. $$\sigma$$-Algebra auf beiden Ereignisräumen ist die Potenzmenge $$\mathcal{A}_{i} = 2^{\Omega_{i}}, i=1,2$$. Die zugehörigen Zufallsvariablen $$X_1: (\Omega, \mathcal{A}) \to (\Omega_1, \mathcal{A}_1), \quad X_2: (\Omega, \mathcal{A}) \to (\Omega_2, \mathcal{A}_2)$$ sind wie folgt definiert:
<$latex text=" X_1: \Omega \ni (\omega_{1},...,\omega_{n}) \mapsto \sum_{i=1}^n \omega_i" displayMode="true"></$latex><$latex text="X_2: \Omega \ni (\omega_{1},...,\omega_{n}) \mapsto
\begin{cases}
\min\{j \in [1:n] \mid \omega_j = 1\},& \text{falls } (\omega_{1},...,\omega_{n})\neq (0,\ldots,0) \\
n+1, & \text{sonst }
\end{cases}" displayMode="true"></$latex>
* Für die Verteilungen $$P_1 := P_{X_1}$$ und $$P_2 := P_{X_2}$$ ergibt sich: <$latex text=" \begin{alignedat}{3}
P_1(k) &=& P\left( \left\{ \omega \in \Omega \mid \sum_{i=1}^n \omega_i = k \right\}\right)
= \binom{n}{k} \cdot 2^{-n}, \quad k \in [0:n]
\end{alignedat}" displayMode="true"></$latex> Berücksichtigt man für $$j \in [1:n]$$ und $$\omega \in \Omega$$ mit $$X_2(\omega) = j$$ <$latex text="\omega = ( \underbrace{\omega_1,...,\omega_{j-1}}_{\text{$$j-1$$ Nullen}} , \underbrace{\omega_j=1}_{\text{erste 1}},
\underbrace{\omega_{j+1},...,\omega_n}_{\text{beliebiger Binärvektor}} ) ," displayMode="true"></$latex> so ergibt sich für $$P_2 := P_{X_2}$$<$latex text="\begin{alignedat}{3} P_2(j) &=& P\left( \left\{ \omega \in \Omega \mid \sum_{i=1}^{j-1} \omega_i = 0, w_j = 1 \right\} \right) \\
&=& \left(\frac{1}{2}\right)^{j-1}\cdot\left(\frac{1}{2}\right)^1\cdot 1 = \left(\frac{1}{2}\right)^j \quad \forall j \in [1:n]\\
P_2(n+1)&=& P\left( \left\{ \omega \in \Omega \mid \sum_{i=1}^n \omega_i = 0 \right\}\right)=P(\{(0,\ldots,0)\})= \left(\frac{1}{2}\right)^n.\end{alignedat}" displayMode="true"></$latex>
Der Vektor $$A^{+}b$$ ist die eindeutig bestimmte Lösung des linearen Ausgleichsproblems
<$latex text="
\|b-Ax\|_{2} \longrightarrow \min
" displayMode="true"></$latex>
(vgl. Gleichung ($$\bigstar$$) in Lineares Ausgleichsproblem in [[Einleitung Lineare Ausgleichsrechnung]]) mit minimaler euklidischer Norm.
<$details summary="Beweis" tiddler="Beweis Lösung des Ausgleichsproblems">
{{Beweis Lösung des Ausgleichsproblems}}
</$details>
Sei $$A \in \mathbb{C}^{m \times n}, b \in \mathbb{C}^m$$. Jede Lösung $$x$$ des linearen Ausgleichsproblems
<$latex text="
x=\argmin_{y\in\mathbb{R}^n}\|b Ay\|_2 \qquad (2.2)
" displayMode="true"></$latex>
ist eine Lösung der "Gaußschen Normalengleichung"
<$latex text="
A^*Ax=A^*b. \qquad (2.4)
" displayMode="true"></$latex>
Umgekehrt ist jede Lösung $$x$$ der "Gaußschen Normalengleichung" auch eine Lösung des linearen Ausgleichsproblems.
<$details summary="Beweis" tiddler="Beweis Lösung des linearen Ausgleichsproblems">
{{Beweis Lösung des linearen Ausgleichsproblems}}
</$details>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/oqGQvtb9KnI?rel=0&start=1587" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
<<list-links "[tag[LU-Faktorisierung (Gauß-Elimination)]sort[scriptorder]]">>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/aNEHyot-H6k?rel=0&start=0" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
<<list-links "[tag[LU-Faktorisierung (mit Pivotisierung)]sort[scriptorder]]">>
<<list-links "[tag[LU-Faktorisierung (ohne Pivotisierung)]sort[scriptorder]]">>
<<list-links "[tag[LU-Zerlegung]sort[scriptorder]]">>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/aNEHyot-H6k?rel=0&start=0" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
Betrachten wir nun die LU-Zerlegung unter Berücksichtigung von Permutationsmatrizen:
Seien $$k<i$$, $$P_i$$ und $$L_k$$ wie oben definiert. Dann ist $$P_iL_k = L_k'P_i$$,
wobei $$L_k'$$ bis auf eine Vertauschung von $$l_{i_i,k}$$ und $$l_{j_i,k}$$ wieder die Form
von Gleichung (6.1) in [[Einleitung: LU-Faktorisierung (ohne Pivotisierung)]] hat, d.h.
<$latex text="
L_k' = I-l_k' e_k^*.
" displayMode="true"></$latex>
<$details summary="Beweis" tiddler="Beweis">
{{Beweis: LU-Zerlegung mit Permutationsmatrizen}}
</$details>
<$details summary="Beispiel" tiddler="Beispiel">
<$latex text="
\begin{aligned}
L_3' & = L_3, \quad L'_2 = P_3L_2P_3,\quad L'_1 = P_3P_2L_1P_2P_3 \\
L_3'L_2'L_1'P_3P_2P_1 &
= L_3 (P_3L_2 \underbrace{P_3)(P_3}_{= I} P_2L_1 \underbrace{P_2P_3)P_3P_2}_{= I} P_1
= L_3P_3L_2P_2L_1P_1
\end{aligned}
" displayMode="true"></$latex>
</$details>
Damit erhalten wir die allgemeine $$LU$$-Faktorisierung
<$latex text="
PA = LU.
" displayMode="true"></$latex>
Für $$(a_n),(b_n)\in\R^\N$$ mit $$|a_n|\leq|b_n|$$ für alle $$n$$.
# ''Majorantenkriterium'': Ist $$\sum_{k=1}^\infty b_k$$ eine [[absolut konvergente|Absolute konvergente Reihen]] Reihe, so ist auch $$\sum_{k=1}^\infty a_k$$ absolut konvergent.
# ''Minorantenkriterium'': Ist $$\sum_{k=1}^\infty |a_k|$$ divergent, so ist auch $$\sum_{k=1}^\infty a_k$$ divergent.
!! Beweis
Es reicht 1. zu Beweisen, weil das Majorantenkriterium das Minorantenkriterium impliziert.
Die Folgen
<$latex text="\begin{aligned}
S_n=\sum_{k=1}^n |a_k|\\
T_n=\sum_{k=1}^n |b_k|
\end{aligned}" displayMode="true"></$latex>
sind monoton wachsend. Aufgrund der Voraussetzung des Satzes gilt auch $$S_n\leq T_n$$. Da $$T_n$$ nach Voraussetzung konvergent ist und nach [[Grenzwerte reeller Folgen erhalten Ordnung]] durch den Grenzwert nach oben beschränkt ist, ist auch $$S_n$$ beschränkt und damit nach dem [[Satz von der monotonen Konvergenz]] konvergent.
* Die bedingte Verteilung von $$X_{n+1}$$ bei bekannter Vorgeschichte $$x_0,\ldots,x_n$$\ hängt nur von der ''Gegenwart'' $$x_n$$ aber nicht von der ''Vergangenheit'' $$x_0,\ldots,x_{n-1}$$ ab.
* Die bedingten Verteilungen hängen nicht vom Zeitpunkt $$n$$ ab. Diese ''Zeitinvarianz'' von $$\Pi$$ bezeichnet man als Fall der ''stationären Übergangswahrscheinlichkeiten''.
* ''Fazit'': Eine Markov-Kette $$(X_n)_{n\ge 0}$$ ist ein stochastischer Prozess mit kurzem Gedächtnis von genau einer Zeiteinheit und ohne innere Uhr.
Eine Folge $$X_0,X_1,\ldots$$ von ZVs auf dem W-Raum $$(\Omega,{\mathcal{A}},P)$$ mit Werten in $$V$$, d.h. $$X_i:(\Omega,{\mathcal{A}})\to(V,2^V)$$, heißt ''Markov-Kette'' mit \textbf{Zustandsraum} $$V$$ und ''Übergangsmatrix'' $$\Pi$$, wenn für alle $$n\ge 0$$ und für alle $$x_0,\ldots,x_{n+1}\in V$$ folgende ''Markov-Eigenschaft'' erfüllt ist:
<$latex text=" \textcolor{blue}{\begin{aligned}
&&P(X_{n+1}=x_{n+1}|X_0=x_0,\ldots,X_n=x_n)\\
&=&P(X_{n+1}=x_{n+1}|X_n=x_n),
\end{aligned}}" displayMode="true"></$latex>
sofern $$P(X_0=x_0,\ldots,X_n=x_n)>0$$.
Die Verteilung $$\alpha:=P\circ X_0^{-1}$$ von $$X_0$$ heißt die ''Startverteilung'' der Markov-Kette.
iVBORw0KGgoAAAANSUhEUgAAAtwAAAF0CAYAAAAQDu53AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAHjlSURBVHhe7d0HeFRl+gXwAwFCL4EQegu99yYqIILYXcQKtnWt2Nay6tp1XXddO3asIPYuSFGQ3iEBUoBQkpAeSO/JzD/ncy7/IQRImUlmkvN7dp5MZkI2g+TeM+99v/erYy8GERERERFxi7qOjyIiIiIi4gYK3CIiIiIibqTALSIiIiLiRgrcIiIiIiJupMAtIiIiIuJGCtwiIiIiIm6kwC0iIiIi4kYK3CIiIiIibqTALSIiIiLiRgrcIiIiIiJupMAtIiIiIuJGCtwiIiIiIm6kwC0iIiIi4kYK3CIiIiIibqTALSIiIiLiRgrcIiIiIiJupMAtIiIiIuJGCtwiIiIiIm6kwC0iIiIi4kYK3CIiIiIibqTALSIiIiLiRgrcIiIiIiJupMAtIiIiIuJGCtwiIiIiIm6kwC0iIiIi4kYK3CIiIiIibqTALSIiIiLiRgrcIiIiIiJuVMdezHFfRES8hM1mQ1FRkflI9evXR926qqGIiHgiBW4REQ9WUFCAnJwcZGdno7Cw0HzOW0ZGBtLT082NOnXqhJYtW5rQzRsDuK+vL5o2bWo+iohI9VHgFhHxIKxYM1xbIfvAgQPYtm0bgoKCkJycjLi4OHNjoLaq2vwzDOFNmjQxt0aNGiEgIADdu3fH5MmTMXToUPMYbw0bNlQlXESkiilwi4h4AIbmzMxMREVFYc2aNdi+fTt2796Nw4cPm/Dcr18/c2vevDmaNWuGjh07mhs/Z5U7JibGfGTlm/d5CwkJQVJSErp27YoBAwZgyJAhJnx36dLFVL4VvEVEqoYCt4hINbIq2gzaixYtwnfffWcq2IGBgRg9ejQuvfRSjBkzxvHV5cMAHh4ejs2bN2PZsmWmSt6hQwfMnDkT5513Hjp37qzgLSJSBRS4RUSqCdtGDh48aCraX3/9tQnaF110Ea6//npTzXYlK3x/88035v+PVfJp06bhggsuMBVwtpuIiIh7KHCLiFQxVrXT0tLw+++/45133jFBe+LEibjuuusqXM0uK+fgvWrVKtOuctVVV5nw3apVK1W7RUTcQIFbRKQKcXHjoUOHsGDBAqxYscL0Vt94441uD9olMXiz1eSjjz7Chg0bcNlll+G2224z/d2aaiIi4loK3CIiVSQvLw87d+7Eyy+/bCaPzJkzBzfccINZ+FhdGLwZuhcuXIi+ffuaKvv48ePVYiIi4kIK3CIiVYD92mvXrsXcuXORkJCABx98EDNmzHA8W72savdnn32Go0ePmh7y6dOnK3SLiLiIAreIiJsxbC9ZsgRvvvmm6ZN+4IEHqryFpCw2bdqEl156yYRutpdwkgmnmIiISOUocIuIuBF7thm2Wdlmf/R9992H/v37O571PGFhYfjf//6HXbt24c4778QVV1yhSreISCUpcIuIuAnDNoPrK6+8ghYtWuDhhx82W7B7Oobu//znP2bTHb5BmDp1qtnVUkREKkbzn0RE3ICj/7jT44svvmhGAM6aNcsrwjZxBvjtt99uNsb59ddfTQDn6xERkYpR4BYRcQPO1n733XfNzGsuQhw7dqzjGe/AHvNbbrnF9HNzhGF0dLTjGRERKS8FbhERF+Miye+//x7BwcFm9J+nTCMpL84InzJlCtatW4f58+cjMzPT8YyIiJSHAreIiIutXr0a3333ndk9cubMmY5HvQ/ng19++eWYPHkyFi9ebNpLioqKHM+KiEhZKXCLiLgQq8DcQbJBgwa45JJLqnVTG1fgz3/llVeaySrbt283M8RFRKR8FLhFRFyECwsXLVqElStXmqqwJ87argiOM+zTp48J3Kzec/qKiIiUnQK3iIiLsPq7Zs0a9OjRAxdeeKHjUe/HKjd3nuzatat5fREREY5nRESkLBS4RURchIsLOZXk7LPPds/mNnYbCnOzkXYkAbGHD2H/gQPYf/AQDsfGISklHTn5RXDXxgqsco8aNQr79u1TlVtEpJy08Y2IiAvk5eXhueeeQ2hoKJ5++mkMHDjQ8Ywr2FGUl4W0pGiEbduMdRvWIzQyEvuT8oG69dHWzw/teo7GmWdNxOhhvdDRryl8fRx/1IWioqLw5JNPgqeNJ554wlTyRUTk9FThFhFxgd27d5vqds+ePU012JWK8tKwf8O3+N/d12LWzffg86AC9Lv0cbz73vv44Lk7cFaHHGz+6DHMvmIWbv/Xl9gQmYF8N+xT07JlS7Rp0wapqalITk52PCoiIqejwC0i4gKs/jZp0gQTJkxw7WQSez4St/2Ed154Hq/9vBcNz/gr7n/2eTxw5Rno3yMQvUdfgjn/+CfunjkRPfJCsez9/+Lld37AriOFjm/gOnxdw4YNQ3Z2tqnki4hI2Shwi4hUEttJuJCwTp066N69u+NRF8mLQtAvy7Fu6V7Yuk/G+TOvxbRR7eDcMeITMBhjzx2JkYPqA9l7sXHLKqwPiYc7JmYPHjwYHTt2NBVu9XGLiJSNAreISCWxnYTTO1q0aOHydhLUqY/Gfm3QtmMHnDlpLKaNHQB/x1P/zxf+7XuibfvO5rOk/QnYV3xLM5+5Fl+fv78/wsLCEBkZ6XhURERORYFbRKSS4uLiTMWX/c0u3+jGtyvG3nQXHnv/XTw4+1IM6+LreOJ4PvXrw6degz8/SchDbmIucv78zKX4+rjle2FhoQK3iEgZKXCLiFQStzvnYkm3jAIs5uvXA2OmX4hzJ/SHf33Hg8exIy8no/iWaT5r0M8Prfu2RjPzmetx8WR6ejqio6Mdj4iIyKkocIuIVFJaWpoJoD4+bpjFVxZFGYg7FIbY6MOo69sMA4f0xbi+HeCuTeVZ5eZowIyMDMcjIiJyKgrcIiKVxDF5DKCs/LqXHXabDbbi/y9rAwV7YR4yDm3Cql93YdfBVuh+9izMnn0NJvZzV9wG6tevj7p165qt7EVE5PQUuEVEKomVXobPZs3c1cTxp8KsZERFBGNHcDBCwsLMwsXgDb/hs3nz8MPuJPS44kH89/lHccvk3m6rbhOnlDRt2tS80WA7jYiInJoCt4hIJTBwMmyzncTdLSUpId/ircevxMUXXYKLLrwIF198IS675gG8v6kpxv7tWTzxwDU4I7A1Sm3zdiHrtaakpJh2GhEROTUFbhGRSsjMzDT926xuu3xCSQl+PSbjijmv492PPsdPS37HH38sx/efPIqr+ifi93/dgsv/8jc88t4ibIlMRXaB1XTienydfL1ZWVnmJiIip6bALSLiJXza9MaIM8/DhVPGY1CvrujYsQeGTp6NB//9Ep6+6wIEpq/FJ0/fh/ufmYfl4anIc1OLNav6vFnBW0RETk2BW0SkErh4kDcrhFaLZr1xzpWzMfOisWidfxgbv3ofH8z/GbvdsL07sXebrSRV0UYjIlITKHCLiFQCK7ytWrUyrSUMotXFp3N/jB3TD6M6FH/C7d23rcH68Hi4o8jNFhouFOVrV4VbROT0FLhFRCqJW7rXqVOnWgM34Ie2Xfzg79hZPikyGQeLb+6YlM1KPqv6DRo4drYUEZFTUuAWEakkVnk5h5tTO9yB39vcHJ+Xzgc+9X1QzxpREpWJTN4cn7oS31jwTUanTp0cj4iIyKkocIuIVBI3gsnOznZDhduOguwUHN4Xgt0RkTiSfaqebG6Kw5vj0+7N0JQ3x6eudOTIERQWFqqdRESkjBS4RUQqqWvXrvDz80NiYiLy8/Mdj7qAPRdRqz7FY9edi8k3PoX56w7jpNP+7FnITOGNn9RF4w5t4N+htVsCd1RUFJKSktCwYUPHIyIicioK3CIildSlSxe0bdsWoaGhOHTokONRF7AdQXRwKKJ2JiJ5RzDWrdyC8PSCUltLirKjsG9nNPZHFB/YG7bFWQOH4Oye7eHqGSK5ubkmbHfv3h0DBw50PCoiIqeiwC0iUkkdOnTA4MGDzSYwBw8edDzqAj7+6DFuCAad2QFNCnZi3e9f4aflu5GclQ/bsdRtR1FeOqI2rsKP67ZiR2ETdBx3Ec69+FwM7Oj6kX07duzAnj17EBgYaF63iIicns9TxRz3RUSkgo4ePYqgoCCzGcyIESPMFI/Kq4cWHbsgoGl9pMfF4ED4HoTsiUFWg1Zo06QOcrPSkXI0Bvs2fo+PX/8Ey7cehf+YS3Dr3XNww7kD0MoNI7IXL16M/fv3Y/r06ejVq5fjUREROZU6di59FxGRSjl8+DCeeeYZE7T5kS0mrpOHlAPbsPyLhfh88UaEJdrg1y4A7Ts1R35KPOLjEmBv2hdjz78G11x1Lkb0aAVfx590JbaTPPHEE6aHmx/79+/veEZERE5FgVtExAW4EcyLL76I7du34+GHH8aECRMcz7hYQR7Sk2MQk5iE9Lziz32bwb9tJ3Rs0xy+1khAN1m7di1eeOEFDB8+HA8++KCmlIiIlJF6uEVEXIDh8+yzz4bNZsOyZcvMboxuUd8Xzdv3QL8hYzBmdPFtSH/0aO/+sM3q9sqVK83r4+tU2BYRKTsFbhERFxk9ejTGjRtnAvcvv/xidmSsKbZu3YpNmzZh5MiR5nWKiEjZKXCLiLgIq76XX345hg4dim3btiE+Pt7xjHfj9JXff//dbF8/adIkVbdFRMpJgVtExIW43Xnfvn2xa9curFixwrUb4VQDVukZtvlaGLZ5ExGR8lHgFhFxIVZ/p02bZkbmrVq1CiEhIV7dWhITE2PaY9q0aYOzzjrL8aiIiJSHAreIiIuxyj127Fjs27cPH330kRmj541SU1Px9ddfIzY2FrNnzzb92yIiUn4K3CIiLsYq96WXXoorr7zSVLkZut02tcRN+PPOmzcP33zzDaZOnYpzzjnH8YyIiJSXAreIiBswdLMqPHPmTCxZsgRffvmlWXzoDdh3/sMPP+Dbb781bSRcCKqFkiIiFafALSLiJgypDNzckfHTTz/Fr7/+6vGhm/O2OWGFPyvbYu655x506NDB8ezx2JvOSjhbZri1vYiIlM7nqWKO+yIi4mKNGjXCkSNHsHnzZuzZswdNmjRBt27d0KBBA8dXeA6+GWALzMsvv2xGGrKVhD8rMVxz05vCwkJkZmaa1xQREYHFixfj7bffNs8NGzbMfK2IiBxPW7uLiLgJA+zy5cvxwQcfIC8vD9bhlq0m5513Hlq3bg0fHx/zWHXjAslFixbhk08+QUBAANLS0sw4QG7jPn36dFPlbt68uXkNXAwaFBSE0NBQ1KtXDxdccAFmzZqFPn36OL6biIg4U+AWEXEDK2y///77JljffffdJrS++eabpp+bIZWPsYJcnaGblWuG7Y8//tiEbYZrtpEwfD/77LOmku3r64vGjRubjwzYfn5+6Nixo9lx8pJLLlHQFhE5DQVuEREXcw7bDKf33nsvRowYYZ7LyMgw/dycXHLmmWfi5ptvRufOnU2rSVUGbwZt/pyHDh0ybwDWr19vwjYr1XxjwPnh//73v82GN9zIZ8aMGWYsIEceMmyLiEjZqYdbRMSFSoZtVoud51ezStyvXz+0aNHChNnVq1cjOzvbBG7eqqK3mz8j+8m5oc2rr75q2kPmzJmD22+//dg0Ev4cmzZtMhNLWrZsib1796Jr165mAShfA7d5FxGRslHgFhFxkdOFbQsDa48ePcyNm8pwIsiGDRtMiG3VqpVp23B18GZFm4sd4+LizELHF154AWvXrjVtIY899pipbjvjtJI//vgDTZs2xVVXXWV+TlbB+aaAFXmFbhGRslNLiYiICzBsL1u2zGwWw55thm2rjeRU2GKydetW0z/Nj927d8df/vIXM5KP4ZYLFdk/XZEAbrWN8P+DQZuB+fvvv0dkZCQmTpyIO+6446S7R7J3+8knnzSLPZ944gnzOfvPrV0nGdD5syl0i4icngK3iEglOVe2yxO2nTkHb7aZ1K1b1yxGHD9+PMaMGYPAwEATuvm49ZE937wxWBcUFJiPxPv8mRiSt2/fblpDOFGEk0fYN36qoG3Zv3+/Cdzt27c3gZutJmw9UegWESk/BW4RkUpwRdh2xuAdHh5uwjd7vLl4keGabRz+/v6m6t2mTRs0bNjQhGDe+GcSEhJMLzi/NikpCcHBwSZwMzAztI8aNcrcyjpRhC0ubDuZMGECHnzwQcejUOgWEakABW4RkQpyDtslp5G4ilX53rJlC2JiYsznDLvc3dGqaLPKzYWNDN8Mv5wywkkiDNesZJd3qgi/73vvvWfmcN9yyy1mAxxnCt0iIuWjwC0iUgElw/bJFki6C4M3t1Unhl1ruogrMNg/88wzJshzQWVpW7s7h+7rrrvObOSj0C0iUrq6jo8iIlJG1R22iQGblWveXBm2idvQc5ElJ5iUFrZp6NChuPPOO83z8+fPx5IlS8wbANVwREROpLGAIiLl4Alh291YtebM7SlTppwyzLdr1w5dunQxCzI1MlBE5OTUUiIiUka1IWxXBNtL5s6di/j4eNPTrfYSEZHjqaVERKQMFLZPju0l3KmSFW+1l4iInEiBW0TkNBS2T0+hW0Tk5NRSIiJyClbY5g6SDNt33323wvYpWNNLuOhS7SUiIn9ShVtE5CRKVrYVtk/Pml7CDXdU6RYR+ZMCt4hIKRS2K06hW0TkeArcIiIlqGe78pxD94IFCxS6RaRWU+AWEXGisO06VugOCAhQ6BaRWk2BW0TEQWHb9RS6RUQUuEVEDIVt9xk2bJhCt4jUagrcIlLrKWy7n0K3iNRmCtwiUqspbFcdhW4Rqa0UuEWk1rLCtrWpjcK2+yl0i0htpMAtIrWSc9hu1aqVwnYVKhm6ly5dqtAtIjWatnYXkVpHYdszWNvAx8fHY9asWdoGXkRqLFW4RaRWUdj2HBoZKCK1hQK3iNQaCtueR6FbRGoDBW4RqRUUtj2XFlKKSE2nwC0iNZ4Vtj/44AOFbQ+l0C0iNZkCt4jUaM6V7ZYtWypsezCFbhGpqRS4RaTGKlnZvvvuuxW2PZxCt4jURArcIlIjOYdtq7I9atQox7PiyTSnW0RqGgVuEalxSoZtVba9j3Ponj9/vkK3iHg1BW4RqVFKC9uqbHsnhW4RqSkUuEWkxlDYrnkUukWkJlDgFpEawQrbztNIFLZrhpKhWwspRcTbKHCLiNdzrmxrGknNpIWUIuLNFLhFxKupsl17qNItIt5KgVtEvFbJyrY2tan5VOkWEW+kwC0iXqnkAkmF7dpDCylFxNsocIuI1ykZttWzXfsodIuIN1HgFhGvUlrYVs927aTQLSLeQoFbRLyGwraUpNAtIt5AgVtEvILCtpyMQreIeDoFbhHxeAzbv/32m8K2nJRCt4h4MgVuEfFoVti25mwrbMvJKHSLiKeqU3wg0pFIRDxSyTYSjf6TstixYwfefPNNJCQkYPbs2Zg6dSpatGiBOnXqOL5CRKRqqcItIh7JuY2EYYmVbYVtKYuSle5ly5ap0i0i1UoVbhHxOFogKa5QstI9bdo0NG/eXJVuEalyqnCLiEdR2BZXUU+3iHgKBW4R8RgK2+JqCt0i4gkUuEXEIyhsi7sodItIdVPgFpFq57xAUmFb3EGhW0SqkwK3iFQrK2xrzra4W+0O3XbYbPbi1+r4VESqlAK3iFQb57Btjf5T2BZ3qq2huyA9HhFRMYhNyy+O3iJS1RS4RaRalAzb3NRGYVuqQu0L3QWIWv0+/vXe+/gxNAk2x6MiUnUUuEWkyilsS3WzQnfbtm09LHQXoSC/AAWFNpdVou15hxCydT/a1mmDQZ384eN4/ER22IrykZudhczMTGRm5yCvoEhtKCIu4PNUMcd9ERG3U9iuAvbisMaUVKcOtMXLybVv3x5dunRBSEgINmzYgCZNmqBz587w9fWtls1x7EW5SE/cj+0hcci0NYJfq4anCMdlZUd2+O/49IcU1Os/BdPO7obmJ3xTGwpz0pCcGI+4mGgcjDxkbpHRMYiNT0V2nh0+DXzh26Ae6uoflEiFKHCLSJVh2HYe/aew7Q4FyEqIRGJSBooatkCj+kpIp2KF7tDQ0GOhu1OnTlUQuu0oys9Dbk4OcrIzkJoch+h9m/D9u//FM1+Hok73wRjTuw0aOL66wuzZCP99IVbnNsKwqVNxRuemJS5tFyI3NRb7d6zETz+swOZDWWjUujVaN6mLzP2b8cO77+Gjn7YgoU4LBLRrixZNfFFP18ZFyk2BW6SWsRUWorCwCKjrU6XVqpJhWwsk3aTgMNZ++D98uSIKDQeOR4+WSkenw9DNynbVhu5cxIfuRND2ndgVvg0bl3+Fzz/7EguX7UBEnR44e9KZOKOPf6UDty0zDMs/WI2MBkMx+bxx6Nj0+H8PttxobPzuCyw91AzjZl6P2ReMQ/8eXYtffzf0HjYBZw72xd51X+LND5cjsk4H9O4XiHbN6qkfVaSc9DsjUlvYbcjPPIoDO4IQHLQfKfmOx6uA1UaisF2CrQgFBQXIL3TVMjY78mP2ImhfY+S0GIHuAadoSLAX/3/nZiMrMwMZmZnIzs1Hoa32Nus693QvWLAAy5YtQ1pamht7ujOQuDcce3YeQGpxkB32l8fwzKO34bwRbRzPu4IN6WGbsT7HD/WGDEXXE/49FD+/ewW+XhOCXZHJyE5NRnr+8a+3xaDxuHD4QAwt3IkfFi7AN6tCcLTQ8aSIlJkCt0gNZS8qDnI5mchIT8PRpFgc3LcLf3zzFp655x/4z/sbEJXj+EI3c+7ZVtj+f7aCHKRG7caGbbsQEpfteLSS7Lk4uGsjwhrkwX98H3Ru6Hjcma0QOWmJiNq7E9s3rseaP1ZixdJf8euyFVi3PRQHY48iK792zrEoLXS7byFlWwydcT1uf/zv+NuVF+DMQV3QtrGPC3q2nRSlITxoG+q0b4gRg7vgxCifi5j9G3Fo46f44uV78OSbX2JLdJ7jOUsLtOjUBE38i+8e2IS9QWGITvnzGREpOwVukRoqPyUSYVuWY/myJfjp60/w8gtP46nn3sPiDVHIcnyNu5VcIFl7w7YNhfm5yM7MQFpKMuKjDiB04y/44N/34bZ/z8X3+12TYOw5kdizIwmt6vTCWX07ndiOUJSHtNi92Lz4M7zx2rv4dPFWHIiPQ+Su1fj61X/i1lmzMefxd/DzhggcycyvlePjSoZubx4ZWJi8G5u31EHThkPRp1Mrx6PO7KjXsBVatvBHK7+2qNOgIYrsJcvXf26W8+fL599D8ZtD7/urEKl2CtwiNVT2kUjsC9uKfQkF8Ot7Hu7552P4x7UT0dHxvLuVDNu1eoGkLQtxe3Zi7bJlWLrkOyyY+yKeffxxvPbjSoSlOb6m0mzIPhiKdQkNkB44HN3blayVFiEnZidWfPMNVid2wBWPvIw3//sw7rj5Vtz91Bv45LP38fw1vZG85BU8dP8TeGdxMJKyixx/tnbx3JGB5VGIxOLf/52N/eA3egC6lpa30QSBZ16H6297ALfc/hDuuvpCjO7W1PGcgy0XOSl5yOO79CZD0a5dT/iV+BIROT0FbpEaqlWfc3D5rf/CP+6chYsnD0PPgCbwqaLfeIXtEnJTEbt3L0LCYpDVqBvOuPFJPPbPa3HeAMfzrmDLxL7gTUitn4+ho3qiY4m8bc9PwPZ1axHTsBcuuOpyjOrc2PHMn3zbD8cF192Gay4cgIJdX+K9t97H9xvjkFtLd0nx+tBdEI+wrSFo2qQ5hvXqgJNl5Hp+/XHOrIfwwnP346oze6FVPccTDrb0w4gITURcfEO0Gj8Ow8b1Rofj/+mISBkocIuISylsl6JxZ4yZMQv3/fNu3HjpVIzr1w6tSuuvrgRbegRCt+ehed2RGNUzwPHo/8s9uAUro1IRWS8ArZCJ3FKK177dhmPy5NEYF1gfUavWYtmitdiTUXv3JWTonjNnjleG7oKoYKwPaYKGrUegd4cKlqRtuUgK2og/DkYjod0ZuO6ii3HuoFJalUTktBS4RcRlFLarSxFS9gVjW15xRho2CF1bOx4+xoaEqK2I+OkZvPWPO/H3137GjsQCx3POmiOgWy8EdG1bfD8M+w/vwIGYKlpd66G8M3QXICpsOw60aYoOo3qjY5kr0nbYbDYUFRUgLzsNCRFr8MPXvyE6szOufewfuOWaCeihdhKRClHgFhGXUNiuRkXJ2BMUjKJ6jTFmWM9Sp1HkZNmKb/WRfTQcv25Zg1UHkhzPHa9x42bmRhFH07G/+FbbeVvoNlu5bzsAf992GN69XZkr0rb8dBxJiMahQ3uxc+0PeOOpV7DwQCtMefQ/+OcNU9C/tUtnqIjUKgrcIlJpCtvVqyAxAkG766JOo5EY2PnPsHy8xvDvNhT9h41Cz8BeOKtPDwxuU9rXFWf3oiJzI3vxGYI38abQbUf2vh1Yu68tGnQcjZ4dyt4AUpAcib1BG7F+7XZs3X0IqU07oW+v9micEYkDBw4jJatAA0pEKkiHUhGpFOewre3aq0MBYsO3IMSnEC3GD0S3Fo6HS2gz9GLc/cR7WPjJl3j10TswpU9pgbsIaamJxbejxfd9McA/AP39T/INayErdAcEBBwbGejezXEqwJ6NA7u2IrVjffQc2RX+5ShK+3YYjDOmX4nZ18/G7X9/EnPn/ht3Tq6PzW/dj1vueBzv/xqE2Iy84n8lIlJeCtwiUmElK9va1KYaFMRif3AEmtrbYly/bjh5u64vWnUfgFFnDEP/Ds1KbzMoSERUeBiiDxxB/WYD0K/nCAQGaCSFM4buqtscp/xsmREIWp8KP/TCoC7+ldtIp0FrDD7/Jtx40Ti0DP8Mzz/zPN5esgsJebV3Ia1IRSlwi0iFqI3EE/y5lXtwRGMUtB6DXh0rMz/ChrzondiyLgS74puhx7nn4ryLR6NXc8fTckzJ0O057SXcyn0LNtjaoMHo4ehxqq39y6pBFwyZOAo9BwUgbdcP+PqL77E2LBXa3V2kfBS4RaTcFLY9hD0HB3dtQljjAgSc1R9dKzFq0J53FMHrluO34D0oGHAhLr/iSpxTHLK0TK50Hhm6HVu5o1k9DO3dCaXudXMc7oCajayMTOTkFxZ/VrqA9oFo3bqDCQx71wZhU3AEklXkFikXBW4RKReFbc9hz4nCnqAktCzojjMC21U8HBfl4GjwUnz97VoEFYzFDbfdhpvPH4aA+o7npVRW6Pb39/eI0M2t3LdsBZo2GnaSrdyPV5gVh5CNv+KbhV9h0bpQxKTnl74oskFD+NVrANP1nxiDI1HJSMs2z4hIGSlwi0iZKWx7kj+3ct+U2ACZPUaWspV7GdnzkRm5Hl8t+BKrYwNw1X0P4e5rzkK30oeYSAmeE7odW7k3aQW/MSfbyt2ZHUeDvsFLT95d/Abrr7jh76/hq3VRKHXqum9TtKrf6M/AXfy2rm7duqhbx3wiImWkwC0iZaKw7WHMVu6bkeNbiDHjep+wlXvZFCEnOQTLv56PRQeb4ty/P477r1PYLq/hw4dXf+h2bOXepFELDAs8+Vbu/68I6amRyM5MNJ8VHExHSmwWSitcF6UnY09WGg7zkyat0bxFczTS1Q+RclHgFpHTUtj2PLa0CITtyIVP0VAM6HbiVjenZ0N+ZiQ2/foVFh9oism3PoL7ZoxEBxdvOV9buCJ0FxUVmp0eUVgEW5HtpD3VpTFbue9uAl+/EejdsSzbQdZD89a94NemDzp27oWJs8/AGeO6lNL3bUNKYiQyUhnMG6DluIHoO7wL2mp/d5FyUeAWkVNS2PZERUiJCMZ2x1bu5c/b9uKwHYfQlT9iaXHYHn7Vvfjb+YPQ2rlqWZiN9IwMpOdo6nJZlQzdZR8ZaC8O2Pk4ciS++OtTgcSjSElIQWqBrfjPOr7klPIRGbIN+1s3RcfRZd/KvW3fCZhy1vW49a4X8cI/bsa5/VqdsA7AlpeMkO0bEXkwBk1aD8UVU6dhYr9OZd69UkT+pMAtIieVmZlpwvYHH3ygsO1JCrmV+07Y6jfG+BG9StnK/dSKco5gz5ofsXiXDf2mzsasST3RrMTZwJa4C2s3bsTGA5mOR6QsGLrLtiNlEbKPRCEiJBi7QkKwe1fx3/X2XUhKL0CzvCRE79yOzVt2IyRkF3YGheJgbCpyT/Lex563HzvXRiCgbjuM7FH2rdzRchCmXdofjW0hWLpsFYL3RCH+aAay8wpQWJCHrNR47F39Lb79KQyH8wfjwjvuws1XTUDf06/HFJESFLhFagvbn1t2Fxaf6G28f5rr1axs//7776ay3bx5c4VtD1KQtA/BIXVhazASfTuVr+G6KDcNkUG/YVWUL/qcezWuGt/FsRjOmR1ZR2KK/w2kAg0bOR6TsuJCyjvuuOM0le5cRG38DK8/di8eeewFvPHeQqyJboVeZ16Da64dhXb2UCxf8BZe/fc/8OC9z+DDn3ciPs/xR4/Drdx3YWNMe9TvMRo92pev9tyi3wWYM+tcBCb8js/efh9fLVmHrTt3YnfwVqz65WO89s632F3YC9c++xKevfcKjOrcxPEnRaQ86hQfAMreYCYiXslut6EwZiM+efFZ/PP1TQi84j48Xnwin9qtPnxKGTfAyjbDNivbCtvuYEPUH8/h2aefxLyi6/HPJ5/GM+d0LWMFpACRK9/Eiz8fQJtJc/DQRb1Psbvk8ez5GTi49Rd8tzYOLfpOwnljOpRaDbUVZmPfsi8RXtQOwy65AaP8HU9IuWzfvh1vvfUWEhMTMWvWLEybNs38PtWp48IRH7ZM7Pziaczd2RBnXD4Hs0ZWdHZ6IbISD2Lv7jCEhochLCEXvq26ov/wERgxuBc6t2yomewilaDALVJD2XLTkBAfg4T0ItSra0favlVYOP9jzP99HzqPnI6r/3oHLhzUGvVQhDqNWqFdh45o3dhHYdvt7MWBNgOhPz2LZ5/9H76y/QX3/PNJPP2XgWhery5OG8UKDuG3uf/D0qh2OPeuhzC1RxkrmkU5SN65CG/P/RpronzQvU8AGtdzPFdCXnoMQrbVxaC/3IS/PzIVZf2/kBPt2LEDc+fORVJSkltCty11Gz555G3s9ZuEK++7FkMrsn5WRNxOgVukhsqNXIMFH7yF+ZvS0bFLF7QoLTQVZCI+LhboPhk33nEvJneyK2y7RT4y4+IQl5CKvPrFKTc3Bpt++BAff7YYwfZBmHb1Dbj5L+PQqRFQWNAALdq2R4cOzUqpPtuRv38p/vu/FYjrdB4eenAyupYpDNuQG70aC/77LP7z4QpElGXTki4XYM7TT+KJG0ZBBe7KYaX7zTffdEPotiF184d45NMDaDvpatw7Y1AZdpcUkeqgwC0ihirb7pSIoA/m4b2PV+Bwpw7o6Fd6H2z20VjExLTHWdfcgltvG44Ax+PH2LOx55eX8NLqowi86AE8cFbHMl7mz8bBle/hvfcWYPk+x0On0386brz1FvztjM6aSOECbgndhUex4YPH8FlkW5xzzT24bKDitoinUuAWEYVtL2HLCsPPL72N9am9cPEDd+CMDuqq9SauDt2FMX/gjSe/Q1LgNNww5wL0Lt/6WRGpQppSIlLLKWx7Cxsy9+/C+jhf5PQag54K217HtTtSFiJxXxBCmzVF82G90EFhW8SjKXCL1GIlw/bdd9+tsO2pbJk4sHsbChoXYsSoHie2m4hXqPjmOCUUJCBsayiaNm6JYT3LspW7iFQnBW6RWqq0sD169GjHs+JpitIiEBqUj3oYjkHdNYrCm7kkdKfEIiq5L7p0PQv9Oytui3g69XCL1EIK296mCAkbP8ILX4eh0dib8MjMAaVsViPexurpTk5ONj3dU6dOLUdPdx6OJhe/Aavni+YttaxVxNOpwi1Syyhse6HCZOzfFVJ8wPbFiP6l7Qwp3siqdLdp06YClW5f+LVpprAt4iUUuEVqEWu7doVt71KQFIHg0LqwNRyF/uXcyl08W+VCt4h4CwVukVqCle3ffvvtWNjmNBKFbe+QnhSL5K5t0eWcoQhs4XhQagzn0D1//vxKTi8REU+kHm6RWsCqbM+bN0+VbW+Um4rU3OKPDVuiZcM/H5Kap3I93SLiyRS4RWq4kj3bmrMt4rnctw28iFQntZSI1GClLZBU2BbxXC6b0y0iHkWBW6SG0jQSEe+k0C1S8yhwi9RACtsi3k3TS0RqFgVukRpGYVukZlDoFqk5FLhFahCFbZGaRaFbpGZQ4BapIRi2V6xYobAtUsModIt4PwVukRpAYVukZlPoFvFuCtwiXs45bDdt2lRhW6SGUugW8V7a+EbEi6ln2/sVFRWhsLDw2H3eiI9Z950fJ+fnSvLx8UG9evWO3efNum89Ts7P8XHrvng+581xZs+erR0pRbyAAreIlypZ2eYOkgrb1Y9BOC8vD/n5+eajFZatz/nRCtjE/44ZGRnmPj9a950fz8nJQXZ2trnPcMz7fM4K0M7fr3HjxmjUqNEJ95s1a2b+nVj4OW/Wfes5K5jzY4MGDeDr63vsIx+zPpfqpW3gRbyLAreIF1Jlu3qcLEzzPkMwP/K/TVxcHGJjY5GYmGjCMr8+LS3NfM6bFZ6tcGvh59bN+XGGYedwbN23QjL/Py3OoZ0fnZ8rWRm3fn6ynuP3ZkhnqG7durW5+fn5oW3btub/r0OHDujcufOxn7NkELfuW4+L+yh0i3gPBW4RL6Ow7V4MnQzEvFnB2grZqampJ4Rp3vh4VFQUEhISjqsKt2zZ0gTY9u3bo3fv3ua+c3h2vk+8X/JrXKlkAD9ZOOd9vk7rxtfL12gFdL4268ZAzoBuBXP+3AzlnTp1Mq/fCuCstls3/jlxDYVuEe+gwC3iRRS2XYfBkVVdq12DoZpB88iRI9i3bx8iIiJw9OhREzT5kQGbX1MyTDMcM0wzZPI+wzVv/Nwdobm6WIGcHxnAnQM5H4+JicHhw4ePC+UM4vz7atGihQngXbt2RZ8+fcx9K3g7h3EF8YpR6BbxfArcIl6CoYY92/PmzVPYLicGQIZlK1zzxgCdkpKCgwcPmnDNlo/w8HATWhiUWbG1KtM1PUy7ihXKOTnDCuIM53wDs2fPHhPI+XfPkN2tWzfz75hvXBjE+/fvbz6qGl4xCt0ink2BW8QLWGGblW0GPYXtk2O4tkI1b1bVmgHwwIEDOHTokKnGRkdHmwo3e5NbtWqFnj17om/fvmjXrp0Zv9axY0fHdxRX4X8LBu/4+PhjQTw0NBSRkZHHrhqoGl5xCt0inkuBW8TDOYdtVlk1jeT/OVeuWVW1wjWD3P79+02wDgsLM5Vs56p1r169TJizPqpaXX2cW1T27t17ymo43xh16dIFAwYMQI8ePcx/NwXw4yl0i3gmBW4RD1YybLOyPWbMGMeztU/JgM2Qxoo1K9cMagzXzi0hzsFaVWvvUrIazjDOajgXpzJcs62HodtqR1EA/38K3SKeR4FbxEMpbP+JIZvhi4sXGbycAzZ7rtl7zao1A7VaQmo252r41q1bze8Hr2KwCs7WIAXw/6fQLeJZFLhFPFBtDtvOAZtVbLaI7Nq1C9u2bTsuYA8bNgz9+vXDkCFD1GJTS/HfCX9XGLr/+OMP8zvDCjhHEbICzisbtTmAM3TPnTvX/A4pdItULwVuEQ/DAGGN/mNAqOk921bAZp81AzZH8DFgb9682QRs/n0wPFkBe/DgwQrYUiqrAs72E4ZN/hvigkxuImT17rMH3ArgVl+4tRtnTaRKt4hnUOAW8SBWZZuj/2pq2D5ZwN6wYYPpwc7KyjIBm+0h7L+eMGGCArZUSFkC+Lhx48y/M4ZQTknhx5pW/VboFql+CtwiHsKqbH/44Yc1bhqJc8hm/+2mTZuwfv1604fN0M3w0717dzOa76yzzsLIkSNNIBBxJWuhbWkBPDAw0FxFGTFihPm3yMo3bzUlfCt0i1QvBW4RD1ATK9slQzYXuVlV7NzcXLOhDBc3WjfOWxapSs4BnD3g/DfK30UuwOS/SV5dqUnhW6FbpPoocItUMyts14QFkqWFbC52ZCWbz/ESPqvY06dPr9XjDcUzMYDz3+zq1atN9TshIcGEb1a9zzjjjBoRvhW6RaqHArdINSoZtr2xsn26kM2gMmrUKAwdOtQsehTxBjU5fCt0i1Q9BW6RauLNlW0rZPOEzZC9Y8cOhWypscoSvhlYGb69ZeKJQrdI1VLgFqkG3hi2SwvZDCARERFo0qSJ+fkVsqWmO1n4ZrvUmWeeiUGDBnlN+Gbo1pxukaqhwC1SxbwpbJcM2UFBQVi1atVxIXvixIla9Ci1Usnwzd8Thm/O+LbCt5+fnxk36KltJ7wyxUq3QreIeylwi1QhbwnbVtDmFurr1q1TyBY5DYbvPXv2mGknK1euNJXv1q1bm7YTjrrkVZ+AgACPrHordIu4nwK3SBVh2PbkOdvO1WxuFsJq9uLFi83nZ599trkpZIucnlX5XrRokZk5n5aWZnZIvfTSS03V2xMXWzJ0v/XWWyZ0X3vttTj33HPRokULhW4RF1HgFqkCnlzZLq2affDgQVPN5gY0V1xxBcaOHev4ahEpj8OHD5uq948//mh+xzy56q1Kt4j7KHCLuJknhu3Sqtm//vorEhMTTbvIBRdcoN0eRVzIW6reJSvdCt0irqHALeJGJcN2dbeROFez165daxZ7sZrNn41VN1WzRdyPVW9eSWLVe//+/abKzXYtjhjktJN27dqZ38nqYoVuviFXpVvENRS4RdzEUyrbp6pmsy+b1WyO81M1W6RqlZxyEhMTgy5dumDGjBnmjW91Vr3VXiLiWgrcIm7gCWFb1WwR78HwzWPGwoULPabqrdAt4joK3CIuVp1hW9VsEe9WsurN3+POnTvj8ssvN+G7TZs2aNasGXx8fBx/wr0UukVcQ4FbxIWqK2w7V7PZG8qTdVRUlKrZIl6M4ZujRFn15u82t5CfPHmyOaZ069bNbKhTFcFboVuk8hS4RVykOsK2c9DmSD9Ws3l/woQJuPrqq1XNFqkBGLy3bNliFlnu3r0bvr6+ZqzgOeecg65du1ZJn7dCt0jlKHCLuEBVh+3SgjZ3tuNJ+Morr1Q1W6QGYvDmbpbfffcdli9fbgLv+PHjTavJwIEDTd+3O4O3QrdIxSlwi5SCJzbOyWXliAH6VKoybDNop6ammkVVnOXrHLTZNjJu3DjHV4pITWUFb26ow2MAxwxyfv5ll12Gvn37mgWW7tpMxzl0z5492+xIqdAtcnoK3CKlYID+6aefMG3aNEyfPt3x6ImqKmwzaPMEt2/fPtOfzZNsfn6+qW6pP1uk9goNDTWb6TB8c4Fl//79zWY6Q4cORfv27U9bMKgIhm5tAy9SPgrc4tUYRAsLC83CoXr16jkerTxOB/jPf/5jFik999xzaNiwoeOZ/1cVYZuhmhVsjvP77bff8PPPP5tLxjzBsUd7wIABjq8Ukdqs5AJLzvNm8Ga7iTtGClqV7qNHj5r2kuqodPPYz3MAj/1VNbVFpKIUuMXj8YDKcMtWiry8vGMHWd63Wj8aN24MPz+/YwdeLirijY/zJFBaYD6V7OxsvPPOO1i5ciUef/zxE3aHdHfY5vePi4tDREQEfvjhB9OnzXFgXAx5zTXXmCqWiEhJPCZygeX8+fPNAstOnTqZVhNeDXN1xds5dLur0s3jPY/xXLPCYz6P/bm5uaYYwcd5rOb/J4/zVuHFOv43adLEPF7d2+WLkAK3eCQrZCclJZnLpDt37kRwcLA5sFsHW86W5n0eYPn1PKjyZMKDLsO3v7+/mV/LxUTsa+SBtyw92Ra2bbzyyitmYdADDzzgeNS9YZvfm/2Y69evN9Xs6OhotG3b1rSN/OUvfzGvQUTkdE4VvHlsdNUsb1eHbgZsBuusrCxzjOfumzt27DA96/z/4LGej7EAw1DN18A/w2Nx3bp1Te86Xx+PlbxCyWIJJ7nwnFBdu3aKkAK3eBQeZBk4eUBlbyL7ldm3zINojx49TIWGNx7Q+Zh1n1UOq9oRHx9vqsP83GrH4IG2Z8+e5uDLcMxqcevWrU/ZhsKA/9JLL5mD97/+9S9TJXdH2OYJhNUb/twM2l988QUOHTpkToxclKTRfiJSUSWDN+d3T5482RwLGUhdMcvbFaHbqmSHh4ebK3tcGM4rjDwusnDC0MzjPdtjrMo1P+dVTOvYzwIFN/3i53ytPI/wGN+hQwezayePqTwP8M/xe4hUJQVu8QhW0N64cSM+//xzc7DlQXLYsGFm9T0PluxJLC8ehHft2mUWFPGkw81geIJhiL344ovRp08f83lpeKBn4Gbg/+9//2t+HleGbStoO4/245sDnhTYNqKgLSKuYgVvzvIOCQkxlV4G70mTJrkkeHNqEhdSMuyWJ3Q7B+01a9Zg8eLFSElJMcdbHl/ZRsfzAAsf5cHvycILvy8r5FyXwyumPI/MmDHDfG8Fb6lKCtxSrazWEO6OyAoMK7ucuMHAyQMiD9iuwvDNIM8D+tKlS83lSE4hOe+880zVpGTwZhh+7bXXzMH6qaeeMmHYVWGblfK9e/ceN0ObW6/PnDlTo/1ExG0YvK1Z3gyhDN7cQGfKlCmm+svjW3kxNIeFhZmrkjy+WqH7dHO62RbC8G8FbZvNZt4EcEF4v379HF/lGvyZ+KaA5xn+rAreUtUUuKXa8MDPMPvVV1+ZwM0xVrfddpupaLiTVfVm6wZbVtgjzeDNFf3sc7TaTHgyePXVV83XshrOE1Rlw7Zzjzb//zlWS0FbRKqaFby//fZbbNiwwfQ48xjIK2wMoOUJ3mzdePbZZ81aGV6N/Pjjj017ycmmlzCg8woiF4Tziiafc1fQLqm04H399debNxwK3eJOPk+xdCdShdhKwaDJOddclMjLhzfffDMefPBB9O7d2/FV7lO/fn0TrLlZDNs2eOD/+uuvzcmnV69eprebi29YeecoPp6M2IrCnnH+nHxjwPepp+r/LomVfC7+ZDWb7Sn8yMWcjz32mPme7FEUEakqvMLXsWNH08vN4x6Pf7/88oupevP4xvDJrynLIkMWTng8HzJkiFnczeMre6gZbBnc+Tm/F4M1wzYXwb/++uvmz/CK5jPPPGMWhpe3baQiuBYnMDDQVPX5BoE/C39OHs+5UyeP8zz+i7iaArdUKYZthldWQD799FNTDXnxxRdNH2F5R/dVlnPw5oGWfd6RkZGm4s2TBH9OVmC2bt1qfraRI0eaExEP0OwNLCgoMNVyfp+TnZT4ermIhwf0d99911Rz+KaC1aA777xTQVtEqhWDMBeks8LMcaPOwZtY+WYIPVV/99q1a027Hq9Ocl0M+69LC93W8fP55583vdW33nqruXFBZFWzgjffcPA1s12QbYR8jBV5hW5xNQVuqTKs8vKgzLC9ZMkSXHTRRSZ0VmQxpCsxMPMgy5MNexC///57E5TZY/3RRx+ZAzO/hivgg4KCsH37dtMSwgWUrOzk5OSYr2GFxHrTwD/Pyj37ExcsWGBmenOEIU8uf//7302vpIiIpygtePNYyCIEj388tp0seDNEs0AxYsQIcyylkqGb34Pfi1c1eSxk0YE91NXdxsF1Qmzn4zGb5yW2/XGKFd8kaISguJJ6uKVKMGzzwPvGG2+Yg/P9999vFkZ6Equ3myGbH3nAZSWbVRv2eLNyYy3i5Gp3Bm/2nvNrWaFhH+AFF1xwbPLI8uXLzUIgnlwuueQSM+JPFW0R8Qbs8WZLHa/KsdeZO1ZeddVVGDx48AkTTVhU4FqcG2+80cz6dsaRgf/73/9M8YFXBdmSx+M/rxh6EvZ283jN9kIWT2666SYzIcsqoohUlirc4nasHPCAzYkfDNus8HIFu6dhBYYVGVZoWK1hzzX7q7lIkicJVj24WQRvbEHhY1wQxBMH/ywrNdywgZdj33//fVPVYbXon//8p6nkuHLiioiIO7HizQWMnOLEfQw4E5s3FiZ4DLSu/LH1glcGeWxnGC+5Cy5bUliAYGGCC8S5Voe93p6Gr4dXW7lglOcrXuHkfR7rKzunXIQUuKVMWKXlpTa+8y9vbxsXJbI/jm0YrGx4Yth2xoU7XNDI6vaiRYvMyYXV7dIWSfKSI6s9/DMcGzh37lwz6o+XVnliYdWbPeEiIt6IwZvFBRYW2Cb3+++/m6o1zwd8jlcCuY8Cj+9sI2GYtgIqF0jyePjZZ5+ZXmnu2MsFmp6KoZsFF77B4AQrtsBwRrm1kF6kMhS4pUxYvWDPMt/tl6dSy9F6HDvFg9df//pX01bhDRiiWd3gXHBWZrianzfng27JySNcdMmgzTcVmjwiIjUJCwfWRBOOAWTwthZWMmhzZ14G8gEDBpiqNsM2K9/cPIzrXDjy1RMr26Vh4GYlnz3dbBF0bicUqSgF7kpg+7tpga9TB2XfwNY7LVu2zMwtZaAs6yJHVj0Ytj/88EMzgonVXm/qh2PlhgGbK/C5gIgjpHjSKTl5hPO0eRJ6/PHHFbRFpMayFlayn9t5lCDDNoMpR6ny+MdF4WwjYdhmb/Sjjz5qpkF5C56n+Pr4mtjTzc/ZKsPXL5VUnJlsZuVgcW6q6cGpBAXuirLlIyPuMKIPJgN+rdG4hrd4cXtzHlxZ4ejWrZvj0ZNjKOUlxnnz5pkD11133WWq496E/Yl8c8GDLVtL2GLC0M1xVlxIZE0eueWWW0xfOl+niEhNx+DJYyNbTXhc57GebSZsq+OsbZ4jOOGEI1V57Oeic2/D4/6gQYPMeh4uHuUVT77ZUD935eQdPYjdsVlAvUZo2tCnxhcrnSlwV5A96xDWf/4pPv7sIAImj0fXGr5BFQM3Lx8yVLK/+XTYt81Qyt3GHn744SrZ0MYdGLrZ08cth63exS+//NL09nH3SVa1uRDImyr3IiIVxVYRto6wqs12uoiICLO+hVd7eZzkpmasdHMqFad8cCMcb93Bkcd1thLy3JeQkHCsXUYqKg/7fvoXnloWjWad+qB/QJNaFbhrxSoAe1Eh8vNykV/keKDSipAVfwgh8QlIGD4CPU+xJs5uK0J+bhYy0tKQlpaBzOw8FNgcT3oRvrtnDxt78njAPRX2NnNcHg9SnLXNKoE3a9y4sTlx8DIpTzJctc83E7xMqvYREakteEWPew9wChOPf2wnYcsIj/Hs0eaVPm7PzqowN4/hsbIqdo90J742nsc4tYTnNJ7fagV7EfJyC1BQaIOrZkfbc/Zh24Zo9GjWEb0D/E4RQIvfvBXkIiszw/z7SsvMRl5BEbtRvFoNr3DbUZibjti9QQjZcxAFLbujTSPHU5VRlIb9m37FivUH0OeSazGtazPHE05sBchJjUdkRBhC90Rg7759iNizB2F7IxGfkYMie134NmoEXx/veH/H6gXDNg863IqXi0pOhpcVWQVm1YMbvdSExSbs52bfNv8OzjzzTFPV1qp1EaktuAB+zZo1ZqY2Qzd3B2bo/tvf/mb2KuCuwdxAhgsq2WLCPQmmT59urhJ6O04pYdjm5mfs5eaI2JrMXpiNo4dDsH5nIgobNIVfC18XVGftyAj+Ge/+YkenCVNw9sj2aHLCN7UhPyMJscX/hmJionGw+I1b9OEoHIqMxuHDyUjPtaF+w4bwbVAPdb2wNF6zAnfxO7KCvBxkZmUjO+MoEmIOYffGJfjs1X/h098PIXDy5ejX2vG1lVCUehBbl23CjvjBmHH9JHQsEeLthTlIjwnH5uXf49ufl2NbnA+aNC5E6sGd+P2nhViw8Fus25OB+q3aol3rlmjiWz19TOyz5kYE/EinCpAMzXxnzxFPrPhy3mppX88KyNKlS037BTd74UG5JuBJgwddXirlGwpWPXRpUURqAx7XuQD+1VdfNRXrZ555BrNmzTqhes0Nwd566y1zvrjhhhvM9JKagK+HYxBZ0ecEK7ZVljYm1jvZUZCbg5zsbGRlpuJIfBQOhK7B56/9G/9amoCAgYMxpGsrVPptkz0DO3/6AOsadMXEc8/C0IDGJXJPAbKSDmHPtj+K/57XIyzZjhZtW8OvOF9l7N+C7999H/OX78SRui3RNsAfLRs3gI+X1bxqVOC2ZR9BZNhmrNoagkMhW7Fi2Y/4fME3+OO3nbD3GIhJF7gicBcH5/0bsXTDZsQNuRTXntkRx+VteyEyD+/Eim8XYf3Rvrj8vntw80VnYMTQ4Rh91hRMO2cMuuYdwMr58/H92gjYAnqjb2AHNK3vnsjNMM2V1uw/46I/9h7zdvjwYdN7x5F37M/mO3ceLPk1/FoGS1Y0OBqJLSRcCMPQya/nbdSoUeaSYcnQzQ0DOM2Ez7Hy4a7qNivuRQV5yMlKR3rKESQmJCM1pwj1mzRGAzf9EnKhEKvcrPLwTQcntoiI1HQ8L7Bfm62F9957r1ksWRoe+znRinstTJkyxfGoKxUf9/MykX4kETHFP1P0oUOIS0hEMts1cwtR16d+8XnKPdVPLgQNCgoy501uCFTeIQA8j7LAxTcvPCdziheLWHyMG6bxxvM1z6lVe/U0G4e3b8X2oBCE7d2GTSu+xzdffY+vVuxEVMMBOH/qGRjugsBtS9uBH+auh0/XszBp4hC0bXT8fyRb1n6s/GwhVqZ2xXnXXIMZ54xA766d0bFTN/QeNgETBtqx/dfP8M6C1UhsXPxYny7wb1r839rx571BjdraPT95HzasWYI/IptgcK+eCBzUFoVrv8Z/r30CoVOuwtNvfY7LKjtIojARQT8Wv9P6Zj8GPPw6bhrS1PHEn4qyorBlya9YE94S5915JQa1dDzhJP3QGsx/8SE8/tYOtBh7Bf7+wsu45ew2cNXAIf7S8t04Fy7y8h5DMA8UVuDmLzvDIwM0f7H5kX+Gv/C8zzDJgM0ReO3atTPblnOxJBc+ckQeV5/zYHr++eeby2vO7/R//PFHMyrvuuuuM9sAu1YhslMSERcZh6T0LKSlJCD+cAQOHTiA0D0ZaD70Qtz+4CwMd2MHC0ddvf766+Y1P/fcc1osKSJSjOec++67z9znQnkuNncle0EmjsZHYW/QRmzcGISdMUdxJCYWBT6+qNe0JZq164qRYyfhrLHD0aezH5r5un6aCEfcchOfOXPmnLCFPTFU8++BhSorRFs3DhDg4+xJ5rmYs8lZkGrU6P9Ldqyec10QWzZ5juZiU15Zde95Jh5bFizC9rg8NOzZC337D4R/7Jd44IlX8H3+BXjjxQfx17O6H19YLDcbkle9jDnvpGJUcTb46/TeOD4a2XBkzWu4951tqNtpNK679hKM6tsFzRs4h/JD+OXvt+HxeUsR1O5K/Ovlx3HbeQPg50UXGmpU4D7REYR+8Raeudp1gbswYQe+f/8z/HhoBB55/WoMaOx4wihCatgSfFMcSHe1uQ5zLhiEzu1boWHJt2C2ZOz6+k08fetT+NY2AOf+9Qm89sIV6FfJxM3QzNXjrFhv377dtHaEhISYd+IcZ8QbwzN/wa1FkAzX/Mhffh4EWNXmgYHBnI/t37/ftFAQv5a/+KzyskLObc25cxjbS4jv3Dkqj5fduBEMe/pcKw0H1i7Cwlc+xtL9cTiSnYnUI4lIPJpd/DffHZOv/Qf+/catGH3y9vJK4wHz7bffNpvccEIJxySKiNR2PCY++eSTZgTgPffc49LJJPa8VEQHL8OX897G+7/uQVaH8bhm9rW4fNpQtC48gvA/vsRH87/Ab3vqos95N+HBu67H9OFd0fS4wFZ5LLjwTQULTlyfxIIVz5ksYvEjrw5zbCwXjfIxhmteLebVY05wYYjmzRotyOo2H7fwc55jeYWY52WGb848526X/JwtOlUx8SVtw+v42z9ewtd5LgrchUlY8fJdWJg1rvi/242Y3LO54wlLJnZ8cAPue+FbrIoAJt73Ll6473qM6ewcilKx7rUb8eBLP2BDdHtc+/x7eOy2C9HXjed7V6vhiyZzkLR7C1Z9uxJJrmgpsRcgPmwFft28AfmTrsM1Q1vj+DdXmYgJWoav//MffPTLekTk+aPviEHo2LhE4q7TALbcA9i792esC81Ds5btMOiMc9DXr2IXRxi0OYqJu0F+9dVXps+Oi/s4wogHBb4bv+mmm0w/NUMw+4/5C8zQzcUf3Lqc76g5V5VVbO4Gxk0KuFnN5Zdfbi4PMljy3TsXTTKAM4zzAMM+Zi6UIc7p/uGHH8z3vPLKK93wrrwhWrTvi9HnTcf5F5+PSWf0g39BHMKDopCOVug+eAKmnD/yhJ56V+IVAL5u9rLz/vjx4x3PiIjUXpxVzXa7yZMnY8yYMY5HXSEPR4O+xRv/eh5zvwtGZo8ZeOCpx3HPlWeil38r+Pl3QO9RY9Cn3mHs2b4Oq//YgsOF7dFj4EB0a9PApS0HDNg89rPoxODMghQLTLzq+8EHH5grvDxH8vzIcYLWlvic1sLzKDdG4/mYE1248zLPkzNnzsQ111xjbhw1y6EELJLxKjPP49wDYvHixWamOR/j1VUG9gYNil+bm1pP8g5vws+/bUBoUW+XtJQUxK7Fwo/3oXHfqZg0oQ9anVBczEfKvk3YHByJhPyW6DR6GiaP7o9OzZ3/X3MQteFHLNsQjsPpwJBzLsZZI/u5ZhBGFXHPf60ayp4Xj8jQMByNbYfpw3oUx7+SipCfno+s2OJ/GskR2LVxCbbuz3Y856we6vk2RCPTjZKOtKxIxB7JNM+UF8M2tx9nZfnuu+82fXYXXnghFi5ciNdeew2XXnqpqWpXBvvMWP3mwSU9Pd0EdraMsLo9Y8YMx1f9OXuboZwj9Phu3B3qFofcRq0C0ClwAMZOORdTx4xDVW8WzDcmnTp1Mn8nrOqLiNR2LMTwXMP+ZpcqjMGGRT9i+ZpQJNXphekXX4QLx/Yq0UrQAv1GTULvnr3gizRsWP47/ti6B0ddNgr4TzyvMUCzis3zLVtn2GbJIMzgPHfuXHMOZkB++eWXjxW7WLhipZpXmXml2MLvx8KXdePGaiyMMZDzKjHHz3LiF6+msoDF7//II4+YthZeveYVV89XgNjgddjt3x1dhvdA+1KGugFN0fucW3DTrffiljmP4u6Zk9C/fYkkbctGZnI+8vmSm49Bxw6d0eK4DgPPp8BdZnbkJRzCzv3pONj9AgzpVlrjUDO07tMPQ2cMLj7oDMHQ/kPQt21pb7/ssNtsxWGZ97lAoj586pW/34xBmO0jXBXOgM1ZofwF5WW9yoZsYpjnpTD+wj/99NOmXYVjoLjVLfuYuSjS+v/hz8I2FC4E6dOnj3msKvBvrapbuHjQ5NUDnmBYzRARqc2shfkM2y7fcTcnE2nJBcjKqYsG/cZi2JiB6OZ34vnSt11XDGjpDzMXJTYYkfsOISndPOVSvNrLvmpe3VywYIEJ2Oztfuihh0ybpStHBrKnmyGchTOe51955RUzsIBVb56TWV3nOZrnao+VdxhB68IQ0K4dBnbxP2lrSr02gzD9xofx/BN34MJhndGsxH9i29GDCN19FIlHmyBgykSMGNYV/l62074Cd1kVv7uKP7gL0UmxGDJ5MLqXmvLqoW2/abjpqS/w0bz38PxTd2FSacHcnoOctDSkxhffr9sCrf26o3u74xdflgUDLttHVq5caYKwq4K2hQfQjz76yLybnjp1Kt544w3zLr606rW1sxgvs7l6sYynYYWCr5GX9Hh1QUSkNuMOvJx0xWKEyze6adYVw6efhXMuOAPnTR2B4T3aoNTCJtu1j7VsRxWH7XikZ7t+lzm+Rq6DYhjmrarwvMt2E26Vzw2GWPFmFX3evHnmaqunyjuwGSv3tEPbjoPR1b+C/R+2LMRsXI3fYpOR23UKbptxAc7o2bbKi22VpcBdRvbseBzcnYAjyaMxZfApdhf0aQS/Lv0wZvxI9DtJiLbnJiFm777igFr8rtyvF7oPmoTe5ZswZFoZVq9ejS1btpjLT7Nnz3Y84xqsVHO8E3vTuKkBe8FPFeatnm5rEWZNxx46vmb2zouI1GZcRM/NwTjVyvVaoN/59+F/H/+CL564EWcHniTk2m2w2e2wpkBk5uQiN9/1u0Ly/MZFjTzfcSJJVeP/Pwtgb775pun55tVtnqfZ7ul58nAgeAOiu3dAjyFd0LbMy7rssNmKUFiYj5yMZETtWoYvv1qNrIaDcfNzj+L6C4agg5e1k5ACd5n8uZV7aHwSjo4cj76VOqYUIiN6L7au24jthc3R+8yxuGTmWJTaoXIKbGVYsWKFudzEVeGuxMtTDPJsJeElwtOFbeKf4cCbmrMZwKlxoSkXTXKii4hIbca1O5ye4b4JGvXg26Q5GjVqiJNtzlyUnY6jednIMp81R5c2/mjT3D3j9NhSwukiLLpUF1bX77jjDtPzzWEJ3GzO09YUma3c1x9GoH83DOjYpswVaVvuUcQfPoQD+8OwfeU3eOXJufg5rSf+8vjzuG/GKHRv4Z3RVYG7LIrSEb0nCNExGZhw9iC0dzxcEUW58di95VcsXhWKpkPOwyWz/4bzB5a/nYQTQdhDzFnYrmwjIfZjc/wRq9U33nhjmb4/3+lz1mhN3/LWwhML31xw7JOISG3GK30Mn9a4u6pXiKR9QdgVF4Wk4s8atDoLPbv1h3/J6XMuwiozF0pyjF91YujmtBNOGfvuu+/Mpjyew46MkI1YGdULbXsMQmf/shfj8pMjEbF7O7ZtDUXIwUQUte+HwT1boig2FGF7o5GSXXDsSoY3UeAug6K0OBwMTUZiwXiM6V3xoY/2gmzE71iDn79biV3NJ+Oav83BrRcMLDEA/vRYTbY2r2GF29XYn8ZLVuwJP/PMMx2PnhpXS/Pn4jv/2oD926xws7IjIlKb8Uofj4e88lcdirIOYtOatcWBMxbwbYUBl56JM87oAf9K70deOr5WbirH8YDVjWN8ORecPw/nf3sMewb2bNmAvP6t0XtAe7QqR9ps2Gk4zjp/Jq6+9mrccs8TeP21J3Hj6AKsfu1+3HHfv/Dpb7sQm5kPD14qWioF7tMqRFrsPoQlx8J25ij08nM8XF5FeUg7sB6LvvgCf0R2w+y7HsQ9s89EpwaO58uB/dVcmcxw6+rqtoVj76wNbcqC7/T5jr829G8TK/mcQc7JLQrdIlKbsX+Y1W3nXROrTGEmolZ/j28Wb0d4eit0HncNrr/6Uozt6WemWLmDtfujp0wHGThwoCnAMRfwCrUnsKWFFr8Jyke3Fn3Qu12ryoXNBv4YftltuGnaINQP+hBPP/UiPv0jHEfyXL8o1p0UuE+n8Ciiwnch8XADTD1jICpU37YXIDs+GH98txCLIppiysNP4IEKhm1i6wZDN3/Zq/uSloXBMzY21vFZzce/ewZt/ndQW4mI1HZssavyNTyF2UgOX4bPPv4aGw8WIHDidXjssbsxe2Jvt275zcISz73V2cPtjBva8WcKCwvzkHVFNhwNXou1jQPhP6o/OlZwU7/jNOiOUVNHo1PP1kjZ8QUWfLEE2w5mwJvKXQrcp1F4JAb7wlNxuPFkDOlRkQUYRchLPYAtv32HlRE+OOeup3D/5cPQpoJhm7ganFu8coEERzF5AvZ783Jiban2soXGqurw8qKISG3FoM3qdpUeCwszkRSyAh+9MRffhaQi8OJ78NzzD2HW5OKw7eYfg+c5XtGtvp7147G6zf8G/Pv3iJ+p8Ah2btqCph1aYVCXtjh9o5ENBbmZSE/LQE5+YfFnpWvfqTdatmhjgmvo75uxZU80Ur2oyK3AfSr2AiRGhiLkSBSaTx2BwHKPoSkO2+nR2LnqF6zZXw+Db3wSt5zX67iebXt+FjLTkpFSjsXFPLBxcxle0tq0aZPj0erFX3Jeyqot1V5WuDmVhVUFjogSEamt2F7HAgRbGqqCPS8VscGL8MFrr+L7kCYYc/Nr+N8z9+CioR3Q+CRTTFyJ5zkWmVj8KgtWwzkrm4tL3dGGwsWS/Lvn+aha2npKKIjfhrXbmqGD/xB0Czh93C5IP4itK77DZ58sxE/rwhCbkV/6okjfxvD3qQ8zCyc+Gkkxqcjyos2eFbhPgVu5HwqNQEpcd1wworSt3E/FjoLsBISv/xm/70xH1/Pn4PoJnU74HrnxYdi1YSk2lrMbo2PHjqbKvWvXLrNBTXXjgYcrpT2lxcXduGiVr5UnGhGR2oxBjwvJq6Kn2ZabgshN32LuS+9ieUogLn/k33j8lvMxsH3VDWZmKwmDLUN3WXCi2Ntvv41Vq1aZllBX45Vu/kz8eaq/wl2A2KD12BXQDZ2Lc1PpW7k7syNp06f415P34457bsPND83D0qB4lJqjfZugVb0Gjt0q68Gnbl3UqYI3WK6iwH1Sf27lvutgEvZ3OwsDupSnIcyOwpzig8KOddh20IbAC+/C1WPblTKDsggZKalIjj2CBuXsVuncuTMmTpxodpt87733qr1vi+0k/GWvLRVutpSwwl1bprKIiJwM2xm4EQwLEe5kLw7bB9d9jbn/W4itGI+bHn4Uf5s2sMo3QeE0EJ7r6hYHvtNhEP7xxx/N1WieI8sa0suK33/t2rVmROCgQYOqv8Kddxg71oehXdt2GNj55Fu5/78ipKdEIi8n1XxWeCgDaSl5KO1tSWFKIkJyMpHIT1q0RauWTdHIizo6a3bg5s5T3K2o+K6t+H5hUTmafWzZiONW7olxp9jKvXRFeWk4uG0pFv2xCzmdJmJMQB4SYmLM2B7nW3RkGHYGRyLysD/albNQyl+qc845x4zvW7Rokdl+vTpDt1Xhri093HydrOionUREajvrSh8XkbsLw3bkhq/x5qufY0/Lybjj4btw2ZiuaFbF6zSJVzd5vjtdSwnDMKvavHF036hRoxzPuAZ/jq1bt5qt9ceNG4f+/fs7nqmcwqICk51QUGhyU3napLmV+6o97RFQ5q3c66FFu/5o3boPuvccjOm3no1xg9vhxDOrDclxEcjKYM5pBP9Jw4pfbzu0qob//hVVcwO33Y6irEykphw174aysnIRn3QUBbayjUu3ZcXhwK5YHEkedeqt3EvgrO2E4N8w/6NP8fHve7F7yTy8+PwLeKGU27OPP47nPvkO632K36lVYD0mD3KXXHIJxowZYwL3vHnzzA6U/CWvajzw8J07+8iq4/+/qrGaw8ksntAvJyJSnQICAsw5wG0tJbYcJG7/AXOf/xjr647FzLuvw9TBAThVrTg/Kx2Z2TnF53zHAy7CXnW2cfKqLqvKJ8MC2PLly/HKK6+gS5cu5lztyiuiPM9yR+hPP/3UfN/Jkye74PvbYSvKRWLiYWRmZgCxSUhOSkN68V9icaQqg1zs37YB0d3Kt5V7+4FTMP3sa/G3e/6Dp++YgVFdm50QTm3ZsdixYR3iYo6gRYexuOGCqRjdvW2Zd6/0BD5PFXPc934cERRzAMHhB5CUmIy4vcFYt2Yl1u5LQm6T4nejfgHwb5SLlITDiIxPRXaD5mjduLT/XEVIP7QVy1ZvxN7AizDrvOJ30Y5nTq0QWZGb8NMbL+KVeb9h76EQbN2yGZtPctu+MxwxDbti2CWXY+agiv3DYeju1auXWYzxww8/mF9AVl7Zx8WVy7y5Ew+wPABxJGBwcLDZoXLAgAGmx9z9shBf/Mu96pd12INW6D54AqacPxId3ZyBeaBbunQpDh06hCuuuALt2lVqr38REa+3bt0608vNjVhc20dsQ3bcBnzx0iv4LqwDLp5zB66e3BstT1UuLMxE+Mo12JdiQ+OAti6tgrN949tvv8UZZ5xh2jpLTmbh+ZA929xune2eDNtz5swx50VXYFWbYf6PP/7A888/j/j4eDz00EOYMGGC4yvKqwgZcfuwd+8BHE5IRFx0GLb8sQgbdx9GRlpD+LX3R8umPsg9chjRkcnI82mMxk18Ua+U3ml79m4sfutn2NqPxzmTRqF9kzLWdBu1R9c2idiyKwwxR/JQv1491KnrU/zvqA7q2PKRmRJX/N9zIeZ9vA778wJx/t0P4I6Z49HT3eNoXKxmBe6MGGz4dT6eev1LBO+NxP6ow0jzaY3AoUPRr3s7NMiIRGjwZqxZ8St+2ngAKZ2GYGK3UjZqKUrDwc3LsW5LDAbMuAHndCprgsvC4Z0bsfKXzUhp18X8op3u1n/YaEydcg7GdCr/9u4Whm7+snFyCRdR/vzzz9iwYYP5xeTBgOMDGYw5xqgyY5v4PXjJkL/siYmJJnBy7ufvv/+OL774AqGhoeb/g+/8R48e7fhTbmTPROzWDfhj0XrsrcLAzdf89ddfw9/fH1deeaXb39SIiHgyBmy2TbBVkm0N3BjMZfISsWHhq3hj4e+oM34GLps6Cu3qZpl+8VJvaSlIDP8NC97ajtRmPTBoeEc0c2H+Z7GF51e2c44YMcI8xnPi/v37ze23337Dm2++ifXr1+Pss8/Gfffd55KwbQXt7du3m23cP/nkE3Puf+655yoRtikb+5a9jbff/hK/bw3H3gOHkFTQGh17DsXQoZ3Q1JaMQ2HB2LL6R/z0Uwhy/HuiV8/2pbyJsSMjeBHeX+6DLhOn4KyR7co1MaZRQH+M6loXkX/8jJXbDyIpz4bC3FQkHz6I4LU/YsFXqxDfaBBmPvQo5sw8E4Gtve+8W8fOlV9ynMIjIVjy4Xx8v6sbbnv1NozyokEUrL6yp2vBggXmF5MVhx49epgdKXv27GluDN28/MePXPRRMoQzWLNHmR8Z1rlAkN+XN1aw9+3bZ7a05SgiVtZZzW7fvr25nMXFJJye8t///td97RamN9+Ggqz9WPnWi3j6kQ+wEZ1wxuX34JlX5uDM9g3gU6du8WtzfL2L/frrr3jppZdMD/0jjzzieFREpPZiNffLL7/E7bffjssvv9zxaGXZkRP+LZ596Dm8/XMc2o8ZhxGDO6PlqepG+WmI2rUWQS2m4YFH/4Fbzu4GV0azBx54wLRu8tjPvmlikevFF1/E5s2bzRQSbkRz/fXX48wzzzTnQ/Z788pzeTBg83tlZmaaBZo8t3Lh5ZIlS8wiVbaQXH311eYKt0ewpWHzu/djbkxfzLz2JlzQz6+CPcuFyIzfj/Dde7B3XzjCk4rQrG039Bs2AsP7d0O7Zg28thdagfsEhUgM/hHz5n+D/QMexms3DkHFa8/Vh+E4JCTEXHZiAGc45i8pK9D8xe/evTuaNGliQjHDN3+5LZynzZDN0M2KAUcOHT582FRy+Wf4rppbyXJFdO/evY+9u2b4fv311807ex58hg4dah53nYLiX8QYRO87hIT8bKREBWPJl/Px2dIwZBUfUjsNnYKZN16Hc/q2QaMGbdChc2d0C2xVznGOp8Y3IR9++CEWLlyIe+65B5deeqnjGRGR2mvNmjX43//+h2nTpuHmm28ud8AslT0LQQsexsP/noelYeUZuOyDfrOfwouP3oUL+pZyFbuC2C5y5513mnMggzenhRHbTPjaeb5ltZ9Xr1mAYsGL1e2RI0ea1kM+x/Ow9ZF7aVjtNzwHOxe7OLebIZtFLrao8Ioyz78M8R4VtB1syWvx+l3v4OjIazDr5vPR23V/7TWGAndJhYkI+nEePv/uAIY8MhfXDHRlXKseDN9c5MfLUTt27EB4eLjp++Jj1vPO4/wYwnmg4AGjb9++5j4f4wHDqpafzPz58/Hqq6/i73//O6699lrHo66Sgn0/fYkP/7sAaxyPnFw/nHXJXzHnwbHo4HjEFXgQ5JsJXjrlAdY64JbEqgSvDnBRDQ+sIiI1GcPoo48+asLi/fffb66mVpotFmvfmYuPvl2NPeUaX10cTK/9O268ahp6t3I85AKsLvPqJqvXs2bNcjz6J4ZuVvk5OIATSXjOZEjevXu3WePEcM03IbzxnMDw3LZtW3OFmX9nbNfklVueOxi+WeQiVsg5GGH8+PEYNmyYCxZGuoMNyatexl0LMjHmqln46zk9y7jurXZR4D6OHQXx2/H9vM/xU9RIPPrqVehfxfM9vR0POv/6179MMP/3v/9do8bm8aBoXTpk/96TTz7peOZ4rPSz7YRvaGbOnGlW8IuI1HQfffSRGVN7zTXX4MILL3RNldtD8A3FCy+8YKrOd999d6nrlLhw9IknnjC93bwCynZLFrNYqGGRi1eOecWY5wg+bhW7+DgLW2zNtApenPrFq8eeVskuVUECfn/5PnyZMxZXz74RkwIVt0tTsxZNVpY9D3Ehf2Dx5q2wTS1+BzuoVQ0fVO56XCzDyi4vrfFgw5aTmoKjoLjynH11XHXO6oQzBnJWN9jH+M477xxbPMqDp4hITcc1QbyKynDJoOjSxZPVjCP+uFie1WZWsEvbwIatJAzTrIR36tTJXCFmgObfQ7du3czfCdtL2BZy7rnnYvr06bjsssvMtKuLL77Y9GXzOZ43PLeafaKC6D/w6SfRaDXkXEw6oxdaeNfwkCqjPOnEnpeE6D0HkR7XFecP6uJV8x09BQ9CPCAxjP7yyy+mjaUmYF87qxccfciV59aqc+tSIE8wXDDzxhtvmF3FWNnmZdWTtZyIiNQ0XBvEQMlpWZzkweNmTcDqNkM0J1OxR/1UbyS4YJTFJv4d1JTz36kVIDZkM8Lbt0fAoK7wV1fASSlwH/PnVu4hB5MQ2WNiObdyF2d8V8936ly0ydaKmoCLVpYtW2Yu/XGRKcP1xo0bzUjEb775xvStc9X6ihUrcNVVV+Ef//iHqXCIiNQGXOzHq39si2CnKhdR8rhZE6xevdqcz8466yz069fP8WjpWOVmQYaTTLjgscbLO4ygdXvRrm0HDOpSlq3cay8F7mOKkJl5BPVaAlMuGFaurdzleKxy88DESSasCrMVw5uxSsNxTDx5cIELFwaxP5GXAG+66SZT1eZlVL7m999/H3/9618df1JEpObjrrusaPP4xz5u9m5zMhZbC7kI0Jtxz4mffvrJXLUdO3Zsqa0kJbHoxP5s/tkaLyUW0VljMbjfGAQGKG6finq4j6mLhs06omf/sRjYoz0auXKjrFqIK7BZDWYFmIsH+Y6fvWzehmE7KCjI9G5zlipXprNPm5ULfs72knvvvdcskDn//PNP6OsWEampGLRZyeUux2+99ZYJ2dyBkVf5uFcDrwRyygarvtb4O2/CVhK+iWCFm33WkyZNOmHfitJwISQHCHAzOo7PrdGatkWPEUMxrF87tGqkGu6pKHA7qVPfF76NmylsuwAPSgyk7G1m6OYMb46J8qZdGdmfzT681157zawsv/XWW81mN7xcalW7ecLh13BeOV8vX592nhSRmozV28jISFOI4HhUjpplG+HDDz9s1q8EBgaaPme2YfDYybUs7H/mokpvwdfIiSt8jbyiydnXZV0Az/Pe4sWLTfsJN8Gp2eqhcROOO1TYPh0FbnEbHpx4oGVFmJvv8FIcF9WUpULgCThr+91338WWLVvM9ryXXHKJ+dk56pBjnjiXnI9zYQwPzNu2bTMVcU4n4Wv1ltcpIlIW7NPmcZHbuLMQwTUrHF3HEakM2gzVFq5hYWsJtzpnawUndHBfAm/AOdjsQedr5JsHtg6WZwE8izWcwc1t7tleIkIK3OJWHGvEA29oaKjpg+aCGn7u6ZcXOdrpiy++MKOgZs+ebQ64FlaweRmV1RvO4+alRs5d5YmIf4YtKGyp4RsOttF4U1VHRKQkK2hv377dbO7CnXZZeOAkJq5ZYdtIaViUYPjkxCpu6sIAyg1gPBnDNiv23OCGPzNbBsu7azKP/ez35psMFV7EosAtbsfwyZ21uOU7QypbS3i50VNDN8M2d8z8+OOPTT8iw7bzpUQeQPk1XCjJig1npvJNBOencsMfVsRZ1WG7CSs8/HoFbxHxNgza1g7Fb7/9tlkQybU5N9xwAx588EEzK/pUgdJqJeSfWblypdmjgTsV85zgiaywzTcVXOz50EMPmXNARfCNhcK2OFPgFrfjQYeBlAdZ9nPv2bPHVLr5uSctpHTeuIaBm1NHTjZLm9UetpCwgsNKBvF1cqOfcePGmRMN22g4SpBb9HKUIG/euHBURGoX56D9/fffm4WDbAthNfuxxx4zxYWyhmYeC7lonj3fH374oQm1DOFsu/OkIgR7tq0KPttBrrvuOnMOUGgWV1HglirBgxb7t7khAFeus9rBgzorwp4QQtl7zTcCPCEwJHMHsNtvv/2kfXtcNMmDM19TyS1+WfXmSESuTuclSa5w54p1rnjnZVj+XSh4i4gn4pU5FhOsoL1//34znYMLIrnpS0Wq0wzdXDzIgM3dGrmokP3eXO/iCdu/89jMvvTnn3/eFFO4pwIXSipsiyspcEuV4cGLlW5WgVlJ5gGOQZfVjuoMoLx0yDYQztPm3Nhrr73WTCQ51Yg/XnbkrpMM1UOGDHE8+v/4WgMCAswlV4ZvziLnqnXOJedEEwVvEfEkDNocd/rdd9+ZYyGDtvPkEecFkRVhVbpZ4eZxlgULBm6eE6ordPNnYeWei97feecd82bimWeewcSJEx1fIeI6CtxSpRgyWeVmH19UVJSp/lq7N7LPuyoDKMM+2z0YhDlDlpdQH3jgAdOzzZPDqTA48w0DV+hzIdDJWG8yeAmWCysZvLn7JiveGiUoItWNrRRsoeD4O4ZOBuHx48fj8ccfd0nQdmaFbi4m5MJzbpbDq4Dsd+atKoM3j/es5H/yySdmYxtW4FnZZpFExB3q2DlUWKQacOEhL1vyQM8FlJxxfd5555kV735+fo6vcj32anNTBqs/kQd9huFbbrnF9F+Xxbx580xwfuKJJ0qtcJ8M31xwbjf7xPlmg2Gcly65gQ7vq+ItIlWBQZsFB05VYpsHAzAr2jfffPMpiwiusnHjRtMvzYX0POZz7CpbV7i+x53Bm0E7NjYWS5YsMdV8/n9df/31uOiii8xifhF3UeCWasUAygMuD/isGDNoW8GbBz9rtF5lMWSzT49BmzO0Oe6PB1z+f1x55ZX4y1/+Yto8yoozWnn59bLLLivXn7PwdfOEw/FaXFzJNpvLL7/cVFcUvEXEXdg6wsDJUa2ff/45wsLCTMDm5BEG7or0aFcUj8ls5/vss8/McZAL0Bl8+fOwss6fxRXTrNg6wh2PeYWRx30u3ucVRl6hvPHGG82OkCLupsAtHsE5eHMzBS485CU+Vp65cQCDN8N4ecJtyZDNAzqr2Vwtz/aViy++2PRrl2dDA1fj6+br/fTTT02FyQregwcPNq037HEUEaksK2iz2MAWCn7OdSYzZszApZde6tLWkfLicZpXG7/99ltTdecOjQzDDMKsfnM/B54DylP5tkI2F0HyxiuaLHJw/RCnj7CSr6AtVUmBWzwKAygrHmy54KJETjJhyOY0E24+wPYN9kWz6sGePwZn3ufqd8545S0vL88cbPm9uLiRB1puL8yDOqvHnKvKCjoXM3oK5+DNyjl/TlZ6WPHhCYe93iIi5cHjJ4M1AyerujzGsADBNTTc0KuqK9qnw2M0f04e/1mAYH+3deznAnW2m/B4z+M+j/+8z/MBv47HfescYBVbeOxfunSpCdldunQxIZ4TqNhHzrGEIlVJgVs8llX1ZqsJq9P79u0zwZoLb/iR7SBcbMn7PPCymsGTC08onDzCAzKrNqNGjTI90jxoV2c1uyyysrLMjpxsNWGvNys75557rtnRUsFbRMqCQZvHQ7aLsP2No07T0tIwZcoUU9FmePWkoF0Sw7J1VZIL1DmyldNErIWVPAfw2M6wzXMA8djPYM3jPwM3H+fXcGwrF4Hy+K8ebalOCtziFRi+ObuVB2F+5I0HZetxVrS5CQ0rIKyIs3rBz1kd8fSQXRoGbwZuLijlCcc5eHNcIYM3qzwiIpbSgjZP8Rxzx7UqVbEY0h14rGfoZpjmfR7zeeznmwgu/uQxn8d7Hvet+2wXUcAWT6LALeLBSgvebInhpWDOL1fwFpHSgjbbLDj1w5uDtkhNosAt4gVKBm8udmI/Ii+VduvWzQRxTTYRqV0YtNlGwerv+vXrFbRFPJgCt4gXsYL3L7/8YvobiZNNOEqRE10UvEVqPgZtttcxaHORIXduZH8zp28oaIt4JgVuES/E4M2tlznii9sSs4edi0O5cQ9neXOkoIK3SM3C2dGcOMLRphztxzF3HJfKqUtcDMmrXSLimRS4Rbwct2XmZg4rV648NsubJ19WuRi8NdlExHuxmm2N9tu8eTN+/vlnM6uaCwO58RZv1TlDW0TKRoFbpIZg1Zuhe/78+ab6zcrX+eefb/o5eZ8r9lX1FvEOVn829xLghl28msUpHdwUZtasWaaNzJNH+4nI8RS4RWoYBm9rlvfu3bvNDm3c6IGb6KjqLeK5rGkjrGCzor127VrTo803ynzjzNYRT5+hLSKlU+AWqaGsBZarV6/Gtm3bVPUW8VAnq2Zzx9kxY8Zg5syZ5k2ziHgvBW6RWuBkVW8usuQlalW9RarWyarZnDbCOfuqZovULArcIrWIc9WbYwUPHDhgRglOnz5dVW+RKqBqtkjtpMAtUksxfHOs2Oeff66qt4gbqZotIgrcIrVcaVVv515vVsC1oY5I+Z2qmj169GhcccUVqmaL1BIK3CJyjHPVOywsDC1btkSfPn2OVb05+5eP1atXz/EnRMRZyWr2unXr8Ntvv5lqtjVpZPDgwapmi9QyCtwicgIGb041YVjgbG+r6j1hwgRTmWOFjr3ebENR5Vtqu5Ihe+fOnVi2bJmpZrM1i73ZqmaL1G4K3CJySs5Vb7accBt5Bu6hQ4di5MiRpvKt8C21TVlCtqrZImJR4BaRMrGq3kFBQabfmx8ZOgICAkz4HjFihNlYR+Fbair+e7e2WWfQZshmuwj7tK0pI1oAKSKlUeAWkXJj+I6PjzeBY9GiRcfCd9u2bTFs2DCFb6kxcnJykJaWZv69lxay2WLFsZoK2SJyKgrcIlIpJcM3RwwSwzdDyJAhQxS+xas4h2wuHua/aU4ZcQ7ZahcRkfJQ4BYRl2H4zsjIwKFDh7BkyRKzuyUvwVvhm60nvXr1MuFbowbFU/DqTG5uLjIzM4+F7JCQEKxfv14hW0RcQoFbRNyGAZwzvp3DN6vc1gY7DN8cM9i0aVMTYhTApapY/dhHjhxBdHQ0IiMjzRtFhmw+zpA9fPhwhWwRcQkFbhGpEgzfbDtZs2aNmXYSFRVlwne3bt3QuXNnM+/bCuCsfjdr1szxJ0Uqzzlgc7oIp4nwzSAr2fv27UN+fv6xkM3t1QcOHOj4kyIilafALSJVrmT45pxvYqsJAzhDD6vgrCoqgEtFMGBbwZr92GwNYcAODg4+LmCzVaR79+5mxKVCtoi4iwK3iFQra9GlNXJQAVwqwgrY/PfESjYnijBgb9u27biAzbUEgYGBZpoOF/SqVUREqoICt4h4lNICOAMTN9zh1vI9e/Y8NnZQAbz2OlnAjo2NxZ49e0xfNgM237CxVYkLdhmwOTdeRKSqKXCLiEdjoLLCN4M3w9TJAjgXX7IvnB95a9iwoeO7iDdjuLamiFgBm2/KduzYYYJ1REQE4uLiFLBFxGMpcIuIV2HgYsBiAOdH5wDOcMWwxeDFtoEuXbocF8IZwHmrV6+e47uJp3GuXFvzsNl/zYDNKSLc5XHv3r04evSo+e/q7+9v2kMmTJiggC0iHkuBW0S8WmkVcFY9WRFleGMA4wQUTkJh6wnDOEMag7dVCWdrikYSVi3nqjU/8mYtcmTlmlNsONOdb6r435itQ+zp51UNVbBFxNsocItIjcJwxqCWkJBwbCIFq6OsjLJS6uPjY/q9GbQZ1qxqOAM5H2OwUzXctRiuGaytmxWsrao1q9j8bxYeHm7uW+GawZr/bfhR4VpEvJkCt4jUCgziDHi8sSJ+smp43759TQhn4OvYsSNatWplQrcVwJ2DuHW/NrMq1daNn5esXvMj/765uQz//k9Wtebff/v27RWuRaTGUeAWkVrLuRpu9YQzEHLiBSuwrIbXqVPHfGQbCgMi+4YZEq0KOSvjDN81MZSXDM8nC9PWGxn+neXl5R17nG9muNEMXz//vpyr1lzsyrYQBWsRqQ0UuEVESnAOkayG86PzY2yJsMInw3j9+vVNuGYgL0so50eL9XjJ+3Sqz0s+Z/08FufPrfvOj5Hz5yXvMzTzdVqvm9VpPlZamLZufO18zbwxULNybf0dWBVsEZHaSIFbRKScGDitG8MoK+RWGLduzqHcCse8MYgznFrhloHU+pyLN0s+x5vF+fOSz1k/j8X5c+u+VX22WAHa+T5/Rn5ktZo/R1nCNO9bn4uIyIkUuEVE3MAKubw5h3Lnxy3OnzvfZ+C1wjed7HMrzFusz0s+bgVmi/Pn1n3nm8K0iIhrKHCLiHgo5/BNJ/vcCsgW6/OSj4uISPVQ4BYRERERcaO6jo8iIiIiIuIGCtwiIiIiIm6kwC0iIiIi4kYK3CIiIiIibqTALSIiIiLiRgrcIiIiIiJupMAtIiIiIuJGCtwiIiIiIm6kwC0iUtPYbLDzpm3NREQ8ggK3iEiNko/0w6HYH74XSdlK3CIinkCBW0SkJsmPwaav3sEHH/6EkCM2x4MiIlKdFLhFRKqLrRB5efnIK3BVMLYjNzocOw42RJ7fCHQP8HE8Xgq7DYV5WchIT0FKSgrSMrORV2gr/g4iIuJqdezFHPdFRKSK2PIzkXxgF7bF2eDXfRDGdGvueKYS7JkI/eElvLYqBYGX3o97J3ZGA8dTx9gKkHk0HvGJR4tDdhZyc3OQm1+A/MIi2H1bwr9DV3TvFAC/JvVVkRERcREdT0VE3M6GgtxspKccRXJiDA6F78Tm377Bey88hHtf+QCLDqU5vq5y7FlRCN95BM18emNCnw4nhu3CbByJ2oNtq37Fj4t+xbqwRBTUb4EWjesh4+A6zH/9cTz45H/w4eItiEjORqHjj4mISOX4PFXMcV9ERNyhKB3Ru3diy+YghO3fjW0rfseiHxfip/XFwbbpMJw9cRImdWvh+OKKsiEjfCUWrolHdt8puOSsLmh2XEnFhuzozVj8w1KE+QzBJdfMwvlj+6Fb5w7o0LkHBowYgyEtExD007v44OcwZLXqgf59OsPPV3UZEZHK0pFURMTd8jNxNDYOh+PSgZa9MGH2P/DAfZdjcl/H865QlIZ9QduQUc+OoSMD0b5k+7YtHfvWLsKa9esRHnkEsZFJyHZuHa/bFL2GTsaoQaNQL2Ilfv7iSyzdFo98x9MiIlJxCtwiIu7WqCOGX3g5brvvb7j6/IkY2bstWjR0POciRakRCNmZjyb1R2BkoL/jUSd5iYgKjsTmrxfjwyf/jXcWbkBUjuM5S5OmaFt8458+vPMQdu2KxJE/nxERkUpQ4BYR8XqFOLI3CMH5gM+wgejq53j4OA3QuK0/2nQJQECnJmjR0gc+JYej2O2w8cb7eXVQJ68u6pgnRESkMhS4RUS8XUES9gSFosinOUYPDUSpebtRZ4yccQ1u++fduPuhOzHrsvHo0czxnIMtJxspuTlIL77fbGAAOvb3R2U7y0VERIFbRMTr5SfsRdCeOqjTbAQGdG7qeLQkH7ToPgaX3vIoHr3rKkzo61f8iDMb0mIPYE/sIcQ39sfoUcNw5oAuaOR4VkREKk6BW0TEq+UjJnwr9tQtQuuxA9G1RNW6rGzZCdi5dTX2HExE5/FX4YJLLsTwricMFhQRkQpQ4BYR8Wb5MYgIPoTGaIex/TqXvSJtt8FWVIjC/FxkHInG7lU/4ceVUcjueg0evPdvmDWxJ05WKxcRkfJR4BYR8Vp25ESHI+hQQxS1HYOeHcpakbYhLy0JsQf2Ym/oDqz7ZR5eevtLhNQbjTn/fBA3Th8E/3qOLxURkUpT4BYR8Vb2bBzatQX7Gxahw4S+6OzrePy0CpGeHIuIkBCE7NmL6CNFaBs4AH07+uLI3mDs3BOLlJySI0xERKSiFLhFRLyUPSsSYcFH0MwWiHGBASUWQZ5KA/j3HIaJl87EzCuvx9/+/hxeeOpuXNI+Gt/95yHMeeQ1fLM2AslZ2txdRMQVFLhFRLySDRkHdmNrcj3k9RqBHm3LHrdL49OiF86eOQszJndG4q9v4cXnX8N3G6OQqcwtIlJpCtwiIt6oKB0RQduQW78ORo/ujXaVy9uGT4d+GD2qL4Z1zMS+Pxbh62+WIzhJm7uLiFSWAreIiBf6cyv3PNStOxQDupW61c3xbIXIzUxHSmoGsvOLHA+W5IeALv5o24XpPRLbw7dg694EnOyrRUSkbBS4RUS8TiGO7NuBnfl2+AwfdJKt3J0VIuPwTqz9aQE+/ORLLNu0F0eyS18UWd+3pbnR0aQ0xBTfcsxnIiJSUQrcIiLehlu57wiDrV5zjBt2kq3cndlTELrkA7z00J144N678chrC/HbgSzHk8fz8W0CnwZNHJ/URR3e/vxMREQqSIFbRMTL/LmVO2BrOhJ9O5VhexpbNjITim9J/MSOhNxsJOSUVrcuQmbKgeJblPmsWcvm8GvZDPXNZyIiUlEK3CIiVY67PBbf2NVRVFT8v+L7fz5RBn9u5b7XbOU+oGxbufs0Q5vAtmg/uAcCh0zFdZMnYVKP1o4nnRSl4Eh0Ko7GFd/3bY0RA/tjbM8AaIN3EZHKUeAWEalKdjtsBelIScpA2tHiz1PTkZF0FGkFNj51enmHsSfoEHzt7TG2f5cybuXuh8CRkzB51mzMvv9+3HH9VAxoXXKsiQ05ieHYvmEfwqObIWDopTj3vGkY1FlxW0SksnyeKua4LyIibpGHtEMRCAsKxcGEeMRFhmDTmnXYFByLjIImaN2iBVo0tiMtPgoHI5KQbWuEZq0a4sTd1e3IObAeX/0ag/ROk3HJ1EC0KOM4wAat26F1YQwOh+9CxFEf+NS1o44PP9aFvTAbKXF7sf6nz/Hpb9uR2OFs3Hj7bbjh/OFop7wtIlJpdezFHPdFRMQtkrB7wQJ8+sUaxHRoj/atSq9L56TEIz6uHcbNuA7X3zAY/o7Hj7FnIezHl/Dq2lT0vvQB3DuhQzl2l6R8JIX8ge++W4N9trYYMrIfurdqAuQm4WDwKqxYsxfJLUZjxuwrcPGEPvBT2BYRcQkFbhERL2HLCMH3L72HjZl98ZcHbsG4iu52U5SDozEHER4ejoiIfYjLrINmHftg8KDB6N+zC/waV/D7iohIqRS4RUS8gg0pO77AC/O2I3/oVXj0byNPrICLiIhH0qJJERFvUJSGA7uCUdgQGDGih8K2iIgXUeAWEfEChSn7sHt3PnzqDcegsmzlLiIiHkOBW0TE4xUiac92BBfVhe+YYQhU3hYR8SoK3CIinq4gCRE796IOGmNEv84ow96SIiLiQRS4RUQ8nNnKfV8d2JuOQr+ybOUuIiIeRYFbRMTDZaamIK9XZ/ScMhTdy7KVu4iIeBSNBRQR8XR5aUjLLf7YsAVa+P75kIiIeA8FbhERERERN1JLiYiIiIiIGylwi4iIiIi4kQK3iIiIiIgbKXCLiIiIiLiRAreIiIiIiBspcIuIiIiIuJECt4iIiIiI2wD/B5JW5CBUcWwtAAAAAElFTkSuQmCC
iVBORw0KGgoAAAANSUhEUgAAA/4AAACXCAYAAACsj4DCAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAIk4SURBVHhe7Z0FfJT3/cc/uDvBIbi7uxUKNai7d13brbJ2na9d165dZZ3U1tVdqVK0uLs7BAiEOIS4X/73fppn/ywEGsglubt839vzuuQuDbnnfvL9fO1XKc+LDMMwDMMwDMMwDMMISirnPxqGYRiGYRiGYRiGEYSY8DcMwzAMwzAMwzCMIMaEv2EYhmEYhmEYhmEEMSb8DcMwDMMwDMMwDCOIMeFvGIZhGIZhGIZhGEGMCX/DMAwj4PDk5io3J0ee/O8NI+jJ8ygnx6NcG/SGYRjGOWDC3zAMwwgsck7qyNpVWrVgq6LS8p8zjCAn9dgWfb96tTYcTTKHl2EYhnHWmPA3DMMwAorchANaNnuWZizcrxM5+U8aRlCTqvDVM/TN7PnaGZuR/5xhGIZhFB8T/oZhGEapkZ2errTkFGX5LESZpfiwbdqdkqpq/XuoXf38p0/Bo9yMZCXERiriWIQiouOUkJIhT17+y4ZRWuRlKzU5Talp2T6LzHsSw7RpfbzqVGmn3m0bn954y/MoIyVBsdHeMe8d95GxJ5WckWsZAoZhGIYq5XnJ/9owDMMwfIMnW0nRB7R+8RadqNVBwy8Yrra18l8rCZkRWv7WS/p8S2WNuu/XuqZ3w/wX/p/s5Fgd3L5JOw/FKKNKNe8TaYo/Hq/UrJpq2b63+g3ur+7tmqpW1fz/wDB8hCcrQUd2rNbCndlq03eYxvdroRr5r507Hp3Y8K7+8p8dqjfyet170yCFnDJ2c5QWd1i7tuzUgehE5VatKk/GScXFJiunRiO17dFXg/v3VvtmdVWtUv5/YhiGYVQoqjzmJf9rwzAMwzgnPFmpSk6IV1xcnI4d3q0Na5Zr3ucf6L035mhvdqgGT+yvljXzf7gEZEVt1rz5uxVbf5SmX9xfTavnv+DgUVrsAe+/vUzLN4TpRIZUJ6SFmtaposyTR7R7zRLNnrdcG8OTVbleMzVv3kh1TAUZ54xHGckndeL4ca/APqqDO9dq5dK5+uSdt/Tmihg16jlQI7uF6H+G6LngSdD2mTO0KbWBBk89X4Nb1db/jtoMJRzcpFUr12jj7mNKq1xLjb3jvn6NbCUf26t1i2dpzrINOpQg1W/WXCGN6qm65XsahmFUOEz4G4ZhGCUmLXKHNq1ZpHW7oxQVGaFDYbu1ZelKrd90Uk0GjdXEyb4Q/umK2Dhb83fGqMGYabqgT+P/EVWelEhtWbVIC/dmqMPY6bpm+mQN6dVFnbv21IDBwzS4dwtlHF6p776crTWHPGrUppM6hzZSTRNBxjmRrCMb1mrNqi3aF3VMx44e0oEdG7Rw1Wbtzg7VuIljNdoHwj8nfou+/WizUhoO1uSpg9SiViHZH7tVSxct1/aUVhp58eWaPnmk+nTrpC7d+2noyGHq3bayIlbP03ezV2pXWgO16dxR7ZrWVpX8/94wDMOoGJi5YxiGYZSYvEqVVaVmbTUIaavugyfrxltv1FUT+qpx/us+IT1SezcfVWZWaw3r00Z18p/+gSwd37tROw9kKHT4RbpoaKjqVct/CarUUYteY3XN1ZfqvC552rXgY7338UxtOJaa/wOGcbbkqVLlaqpdp5FahPbR8Avv0E9uuERDu55afnLu5Ch+91rtqlRbjQb0UbtGhcw2z0kdXL5J+5NaaejkSRreqYmqF/QLVG+s7mOu0M1XTFaPWhFa+Okb+mT2Kh1OzM3/AcMwDKOiYMLfMAzDKDF12/TX6Atu1lUXT9Dwfp3UqmFNVfFxFn1qxF5tjcpWbuhw9W5VKH0gK157123SpqUbdDjsoA4dSy6ioVk9teszSsOHDFSLrHBtXb9cS9YfkUl/49xooA4jJurC6y/T1LFD1Lt9MzWsUdm3hlVmrHat368q9Rurf6823n+xEIkHtGLFNm1at037Dx1UxMms/BcKUL2Feo8aqX69QlUrZpOWLl+l9QcTZdLfMAyjYmHC3zAMw/B/PMk6umujorIz1H5ED7UonD+dHKuwg9v15Vef6IUn/q4P5+xQXBEaqHLjEHVu0lLdvV8nH4pQ2M7Disn+4TXD8DcyorZr3cEqqhkyQN1a18t/9v/JijmiHeHL9cHnL+uvf35Pc9dFFunIqtOsndo3aq4m3q8P7wrXvsPRSvvhJcMwDKOCYMLfMAzD8Hs8yeHaviNeGV7JPqJ7MxXM4nfxKE+5Slf84UPas/uY4osS9FWrqka1aj90Wk9OVFpsglLSnVcMw8/IUOSuDTpSo45aD+yu1nXzny6Ap5JUu1Il1cpI1uEdh7TvyImiBX31mqpdrYacPJnwRCVHppjwNwzDqGCY8DcMwzD8nFwlHd6ubSdypJ4j1bVpEW3J6rfWsNGTdduVl2jaVRdr4theal7U8YG5ucrOzZGTDFCtpqrXqqUaRXkRDKO8ST2qbeuOqkbNlurXpbmKGs41W/TVxMmX6Nrpl+jKm8/TyEEtdWpegJecLGXkZP8w7uvXUrW6NWSnWRqGYVQsTPgbhmEY/k1Ogg5t263UjOoaNKSzQopqR14tRN2nXKv7nnlaTz9xr26a2kNNi9jhPEknFXXyhI55v67WsqVadGmjZkUpKsMoZ1LCt2pdVC3VbDNAXYv0Ynlp0FkTrr9bjzz9tJ59+EZd2KflD1H9QmQcj1ZE0nGd8H7d2PszoZ2bFu0gMAzDMIIWE/6GYRiGX5ObEK4dezOUVXOwBnc6/TkBlWs2UquOPdWjY0s1cHL5C5OrxCN7tSNst8LVUB379dPgoR1ObZhmGOVOio7s3KQT9euow4DOalbkeP6BavVbqUP3nurQppFqFhnG9/6uPVu0N/yIUuqEasigARrQoUmJjxk0DMMwAgsT/oZhGIYfk6X4sG3al5apOkP6qX1JVHp6tHatXaW1m8JVp8MwXTz1Qk3s1tQ2QsPv8CQe1KYNCapXq6MGdAwpUVp+zom9Wr1irXbuz1bo4Ms0bcoE9WxRVF6AYRiGEcyYvWMYhmH4L5mx2rd5n1Iz6mtY/44liM5zzv9yLZyzRPuyu+n8G2/QNdMGqY2l+Rt+h0cn92/U5oR6qtt5gDqGlED2555U2JL5mr9ov9JajdMNN12hiwaHqoFZf4ZhGBUOW/oNwzAMvyUr9qB2hmcpq/Eg9WpbO//Zs8Wj1KgdmvfNV1oQXkWDrr9H99x0sQa1OdffZxiliMcr1jfuUFbdOurer50anbOllqG4vYs049PZ2pfbSZfd+zPdPG2wQuub6WcYhlERsdXfMAzD8FPSFbV/i45kZqr58D5qWyf/6bMkK+GwVn/zib5alahWU+/VA3deptFdGtkGaPglOfF7tW5ntmo16Kne7c51nHqUfHSjvnnvcy0/0ULj7vql7r5qvLqFWIq/YRhGRcXsHsMwDMM/SY/U3i1HlZnVRiP6tNO5xOc9qVHaMX+mvl0SqWZjb9bDd13hFf2NbfMz/JQcxe9Zq92Va6nRoL5qd47h/oy4PVr0xddaeLixht/4S/382onq3sxEv2EYRkXGbB/DMAzDL0mN2KNtUVnKbDtUXVuew2H7WSd0aO0iLVwZqcbDbtBdd1yqwaH1bOMz/JfMWO1av0+VqzdUn86tzunIvZyko1o/b56WHaqtYdfeqTuuGKoOjezUfsMwjIqO2T+GYRiG/+FJ1pFd2xWd5VGHkT3U8mzPHkP0r1+m75cfUY3BF+j6myepb4uCOQO5Sjx2TBGHjyk5L/8pwyhnMqK2a93BqqrZbIC6tzl72e9JPqpNS7/X8n1V1f+C63Td1P5qW7egqZem6INHdexYgrLynzEMwzAqBib8DcMwDL/DkxSu7TuOK0M9NbJ7M51VvN+TqqidG7RqRZjUdYwunD5WXZsU/g2piti+U9s2hOlk/jOGUb5kKHLXBh2pWUetB3ZX67r5TxeXjDjtWbNSq3Znq/PEKbpwfHc1L5zdnxOnnZt2ac/+eGXnP2UYhmFUDEz4G4ZhGH5GrhLDt2n7iTTl9hiozk2q5D9fDDxpitm3Tes3RKhqj9G64JKR6lzU2WWZxxWVmKy4rNqqXSn/OcMoT1KPavv6CNWo3lL9OjXXWZ00mXFCYZvXa91+j7qMnqzJo7qqSREl/Z4TkQrPSFNitVqqkf+cYRiGUTEw4W8YhmH4ntxsZWVnKVNZysnJUFZO/vPFISdBh7btUWpmdQ0e2kUhxdb9WTpxaI0WzpypDbE5qtGgik7s26rNmzYXutZp5dy5Wh52REmNG6t+/n9tGCUlKytD2dmZUnqWsjKyzyqqnhK+VWujaqpmuwHq2uIsZH9uko5uWKiZM1crplJ11aqSqMPbC49577V+tRZ558ae2FhVblhPVvVvGIZRsaiU5yX/a8MwDMMoMR6v6E8/tFSvPfukHn99gzpddq9+/8TvdXG3Oqpe9cf9zdkxa/XhC59qQ8Yg3fnoDerXIP+FM+JRavRWzXzrWb3+zTal1O2kVvVO5zHIVHLUYWV3mKxbH35Utw1ukv+8YZwrHuVkpWrvnGf0p6de0Bd7B+j2P/5Bv7lngjrVqqYqPzrsk7Xjw6f08oYqGnTNvbp1eItiCvMMxe2ap3f+9pK+2XpS1Zu1UoMap/nHclIVdzhcrafep/t/cbdGtTHpbxiGUZEw4W8YhmGUmOyEQ9q0frW2HM1U3bq1lR21TYsXLdCirZEK6TpE48+/SEPa1lJ2RorUuIuGjBilHiFFdezLUuTKd/Ty51uUM/xn+v21vVUs3Z8WqRWfv6zHnn5VC/ecyH/yTNTW8Gsf1p/+8kdN7XQOJwYYhnesxu1dpTXr9ul4Xl3VrJGhIxtmaf6Sddob20p9x5+n8yb2Vatq6UpLrqHW/YZryKCOalzEcPMkbtYHf3pV22sN07UP3axBIcUT5Vnxm/TJS3/RM/+ZpV3RxWnX10PX/uEp/fFXl6pXsSaWYRiGESyY8DcMwzBKTFbsTi2e/50W7U1Tk5AQ1S5Kt+RmKOH4cVVqOUDnXzRNQ9sUUYScGaHlb72sr7dX1aj7f6fLuxfz9P6kw1r+/RzNXLZHmflPnZl66jJssi64aJw6mQAyzolMHdswU7PmbVRkXhM1blyzyPrJ3LR4xcfXVOcxF2nKpD5qcUpxvUcnNryrJ1/brfqjr9O9Nw5Qk2IWYmYc26BvZs3Tqp2x+c/8GB018uILNWlCFzWxgL9hGEaFwoS/YRiG4TekhS/SW6/M1N6aE3T/r6epS538FwwjWMmJ19rXn9QHBxtrzE336sq+jawBk2EYhuFzbG8xDMMw/IR0Re3dovCsTLUc0VdtTfQbFYCc+L1atzNLtRr0Up/2JvoNwzCM0sH2F8MwDMM/SI9U2PYoebLaaWjP1iqiEMAwgowcxe/boL3V6qpR/15qY0dMGIZhGKWECX/DMAzDD/Ao+ehubY7OVlb74erRwhruGRWAjGjtWHdAVWs20YBurVQv/2nDMAzD8DUm/A3DMIzyx5OsIzu3KTorT51G9VDLohr+G0aQkRG5XesOVlWt5gPVvY3JfsMwDKP0MOFvGIZhlDuepKPateukstVdwzuF2OZkVAAyFLVns47VqqEWfTurea38pw3DMAyjFDDbyjAMwyhncpUUvl17TqapSu8h6hRiW5NRAUg9qm3ro1SjZlv179JcpvsNwzCM0sSsK8MwDKOcyVNOldrqMbi3LhzbRab7jQpBjkfVW43VsMHj1bOFyX7DMAyjdLFz/A3DMIxyx5ORovTsXFWq1UC1q+Y/aRhBTbaSk3JUuUo11aljg94wDMMoXUz4G0ZAkafcXI/y8iqpalULixqGYRiGUQHIzZZHVVSpcmVVqpT/nGEYZ4UpB8MIIHKTo7R93TJ9szpcqfnPGYZhGIZhBC9JOrzia61Yv0sxqRavNIxzxYS/YQQMuUqO2KTFsz7QrB3HlZP/rGEYhmEYRtCSdEALPvpG81eH6XiWCX/DOFdM+BtGaZCXo8z0NCUmZsqT/1SJyTqpo7t369ixXA0a0FEN8p8+hbw8ZacnKz76qI5GHNWx6DglpOb47u8wDMMwDMMoipx0nUxKU3pWbv4TJcWj47tXaXVKGzUK7awW9c8gXXLTlRQfrUiv7XM0IlKxJ1OVlWuOAsNwsRp/w/AxeTmpiju4SUvWHVZay1G6+ryOqp3/WknIjt2ir956R98c6qmHnv6pBjXKf+G/5CozKVphW7doW1issqpVUxXvJng8NlZJWXXVolsPDRw4WL3aN1YNq48zDMMwDMOH5CRHaNfy+Zqf3FbjR43Q4DZ1818pAZ44Lf/Hw/pP3EBdc+sturB7Q1XJf+m/ZKcoct8Wbdx5WAnplVStWo7S4mIUlZKrOk07qs/gYRrYo40aW+dYo4JT5TEv+V8bhnHW5Ck7I1UnY2MUFx+tI/s2au3Sufrys4/0xtfrFNdyqC4a1tYH5zNn6/i+lVq0bquyhlyta4c1V/X8V34gWykxe7V5xVKt2nlMKdmV1aB5azWtW1VZCUe1e80izf5+kbYdzVD1hiFq0byJap2ycxqGYRiGYRSHHKWeOK7jx+MVcyxMu9au0pL5n+md1/+j92MaaeCggerXvE7+z547nrgN+viDHardY7wmje6hpoUjF+lx2rVqqVZu3KWD8dmq1ShEzZvVU7WsZB3bs1oLZs3Vym1HlVKloVq2bKoGtavJYh9GRcWEv2GUiAwdD9uu1XOWa0dMrKKPhevI/t1avWa1VkXXVI+R52u6L4R/Rqx2L1uoVVtyNOLKKzWoWY38F34gOzFcW1cv0NIDVdV94qW6ctpEDejeWZ269FD/wUM1sGdTZe5fpdlfzNbaSKl+aDf1aFtf1fL/e8MwDMMwjGKTGa2ti1Zp3fY9Co+J0rHwKO3bMlOLN+9RRMtxumzcUB8I/2xFrfxQb+2qpZ4TJmpMtyaFMhbTFbl2jr5fd1iVu07U5ZdeoLGDe6pzxy7q3n+YRg3poRaZB7Ro5kzNW39Auc06qUv7VmpY0yIfRsXEavwNo0TkqVKVqqpdt7FatOmi/uOu0vU33aiLBofkv+4bMuLDteNAtGJCxmpwh3r5z+aTl6qY3bu0c1uW2k2cpqn9W6tWwY2xal216jVBV157jSaEZmrLgo/13kdfaVustQc0DMMwDOMc8EhVatZR/SYt1L77MJ1/4z26+bK+6tws/3VfkBWtLct2qUGbNurXuYXqFVItnuO7NW/jUVXtOV7nj+2rVg3+N5xRvVkfTbrhVl02NlQ6MFvv/nuGFm2OUrKv2g8YRoBhwt8wSkRthXQerEk3X62LJozQgK5t1bR2Ffm2iixdcYd3KTz6hNqNH6TQwg70tGjt2bxOcxbuUsTBHdoTnZ7/QgGqNlDbnoM0Ykwf1U88rF3rFmj2llg7GcAwDMMwjLOnVisNnDJF0y+9QOOH9FanFnVVy8cl9JmRm7Rqf0O1a9tHHZqdmj2QsGueFm7frvUbdujgkVglZ+e/UIDqbQZr4uge6tiyho6tnq2l63cqKtnaHRsVExP+huHn5KXF6OD2Q4qJC9WE/m30v0n+Uk5ivMIPrtIXyz/Q3x59Ue/P3K+T+a8VpEaDpmrTsoNaeb+OP3ZcO7YeVOIPLxlGmZKVlaWkpCTFx8fr4MGD2rVrl3Nt2bJFa9asKfLavHnzf3/uwIEDioiIcK7Y2FhlZGTk/2bDMAwjOEjXkQ3LdbBJK7XtHaqQU7okZ+pY2FZFLn9f7/3zSf3502XaFV9E4EN11bJjB9VrzFlIB7TlYJgiE4r6OcMIfqyrv/FfcnJylJaW5jxilPM1VK1aVbVr13Ye69ev73xtnJ6M8BV6528P6Z5vq+qyX/5Nb94/Uqc04C82eUoJW6AP3vhYK6tep2cem6xWhUrTsiPX6ZN//kH3PrdASXUH6+I7n9DLf5+qdvmv/5e0Q1ry+rP61S9e1YZq/XXhbX/WS/+Zpg75L1d0EKMISFeUumKyevXqqlmzpurUqaNGjc79k6wouPcxOTlZcXFxzr1072dKSopOnjzpfJ2bmyu2n9TUVOdr4HuPp+hIDJ9BlSpVnP+2Vq1a//26cuXKzmfTsGFD1ahRQ/Xq1VODBg3++8jnFxIS4nxtGGUNY9SdE8wD5kVmZuYpFxT8vlKlSs7YdWH8F/U9475u3brO9+zPXAV/zjDKkgPf3KL7H3tPczo9qncfvVc39y1B2WPaHn38h8e1uulFuum2KzWkVeGwR7q2vnu/fvHU+1qyL1MhN/5Vb/zhbk3r3jD/9f/n5Kp/6LZf/V1fr4pQrWue1PuP3q0rejbOf9UwKg4m/CsoiPuYmBjt37/fiZoRecvOznaMEh5PnDjhGCrVqlVzfhbDAmOicePGjvjB8OZq3769unbtqiZNmuT/ZsOnwj83Wfu/f1Pvfb5KdW96QQ+Pb3HqMTZpMdqx6Au9/t48Ha3fTxOvvlm3nt9Zpxyik7Rf3//nr3rw129rZ4Nhmnb3U3rl6Ylqnf9yRQKxybg/dOiQwsPDlZ6e7hjbPM8j4595gLhkicTZhXBEQDIPMLKZB126dFHr1q0rrEMAQcPaQdTdfeTi/nFPWUNwGOJERKAD4gdxgmDhvnIvXWdiwa+Lgt/JVfBrLpwJCCUcCDziAODzwyHA+sVjq1at1LRpU7Vp08b5HM0ZYPgKV9y78yAxMdHZS3nkOXecMi+YC6whjEvgkf+ese9+zc+wvzKO+b3A/HHnELjfszfzyFrF/szF3HLXKeZas2bNnLHPIz9vGKWFL4V/0vb39PunN6vNRTfp1isGqkVh3e/lxM5v9M47X2h5WLa6T7tDt14yRt2anPqDMYuf0k9++4K+WxejVrc9p9d/d6cu7GLrv1HxMOFfQcCgQOgfPXpUCQkJ2rFjh6KiopwLoUNkzo0WcGF8I/oxPPh5jBYMaYx2fhfGPNG75s2bq0OHDurVq5djUOMIaNu2bf6/WjHxpfDPPblX895+RzO2NNVPnv+lRjbNf6EQuekJiouKVGJeE7Vu20J1iwj4ZEeu1yf//KMeeG6+svtM0W2PvKBnrurqg6MG/R+MZ8a6myKO2D9y5IhjiDOmeb3g+HeNboxpN0LNz/CzLJlcOAkQjz179lSPHj2c8c9caNmyZf6/Glzw/rkP3DP3PkZHR+v48ePO86wL7vrA+tGiRQtHbHNf+B6RjfhAjCBOziTwzxZXLLFW8ffwmfH3sW7xXGRkpLNekU3A38FnW9AZ4Aoj/lZzBhhngrHGOGfPROTzNesJAp/91XVCsUci/hmDrCmMMbJQWFsY/67znAsKfg18zXhlfwbGN/+2i/s9j8xJ/l3+Fi7+bV7jv2ee4QTg3+7cubPzd+AYYKybM8DwNb4T/kna9ObD+vuezrr0xts1vV/T05xClKXEo0cUmVpdjVo3V0g9776d/8r/k65t7z+oB558X0v21tG0R1/W4z+/VP2a2blGRsXDhH+QgxF+7NgxrV69WqtWrXIinBglGAVE6rt16+Y8IvKJWroRA4wEFwx+jGYeMTD4GtGDcMK43rdvn/P7GEoY0sOGDXMioQgiXxr3gYLvhH+uTu6eq7ffn6Gtre/W338+TOeemJahqA0z9M9Hfqtnl2Sp37Sf6rG//FaXdglug48xi0hdsWKFUyMeFhbmjFXGOmIdRxViHSFYcPwjCl0KZwLwNZG8nTt3Ohkz7nMIWn7f4MGDnXnFxXOBiuvoQNwwz7mPCGiENM8B76+gwHfvoSuo/QU+c9ZBPn/eC+/DdQa4Dk5EEu+Bz41HywowgHmPoGfMs+cxhpjzfM/4wTnIz5BtgojmYvwwB1wxz5wo7cwg1wHAxXjn72Od4nnmLo4J5rQ7d3FGsM/ztzKH3b8b5wB/r2GcCz4T/kmb9MbDf1dY1yt0w23T1LtJCY7fS9qu9//4Cz357iJFNb9Sv3/mMd1xYS81LSKDwDCCHRP+QYob4d+4caPmz5/viBQMkD59+jgR+SFDhjhR+pJ6+jEk+Hd2796tDRs2OE4AxAL/1qRJkzR06FBHWFUkB4DPhH/WcW3/7l198N1udfrZM/rp4HM3xnJTDmrZB8/o94+8r7BmF+r2Pzyqh6/pq6ZBepStK/iXL1/uOL2IyCHKQ0NDHcN2wIABzvgvKRj8ONO2bdvmzAEa1TH+MfDPO+88jRw50hn/gQL3DUHMveNCJCNuEBC8V4Q+WT4dO3ZU37591alTJ78S+GcD4oj3ynskG4Q1knGCAwBR5JY2de/e3RFEvGfeuxHcMC6I5nMh+JkHZMi5mW84zhkPjAXGB1+T5VMW4v5ccbMDEP04Ltxxz96NQ4AsGeY24571inWS92eOAONs8Y3w9+j42lf061ci1fuym3TLxT3U+JxPC8hW3PJX9Nvf/EOf7q6h8fc/pj/fNU0DWtWx7uZGhcSEf5BRUPAvWbLEMVqo/0OEjxo1yhE8pYXrBODfnjt3rmNME0kYPny482+TWVAR8JXwz47doq/f+kAzj/TWr565VX0KHd9fbDypilz3jV569Cm9vau+pt71Kz18zzT1CkLVzxhk3K1du1azZ892hBwR3HHjxjlCnKhWaYEwxqCmA/3ChQudrxGL/Lv9+/f3WweAK/bplo/jDmGAQEDgEO3mPRC9RAAEstD/MQpmBfDo9n/AEeCKPdbPYHICMGbd9HAuvi/4HCAGyYjg0f2aTAi+Dhb47BHCOH/YM3HgIYa5F0APGz5vMtl69+7tzAN/FPhnCw4B3rfrDOC9swaQNeA6AsiMYu8mYICzNNicAHz2rIE4dRjzlGfwPc9jO7njvmDPBL42isYnwt8Tp+X/+JVeOzlY1910s6Z2rX/OIt0Tv03vP/Nb/fXzPaoz6m79/lfe39e3heqY6ndgDUA38Oiu++737P9u1hKZcTzyHKVERuBiwj+IYMNCdMyZM6dMBX9h2DSJlBBpJcWa9EiEw5QpU9SvX7+gdwD4RvhnK3bL13r7w291pO+v9cxNfU5t1lcsspUUsVZfvfCcXv0qUh2uvU8P3Hm5hrULvhR/Ilc4uxhzGLJks1x66aWlLvgLg1hANC5atMjJOCBa7m8OAFfsU/6wd+9eR+hyIXKJXg4cODDgI/olpaAjAGfmnj17gsIJwPhE7OHooVQFR5lbroKgcRu68hw/S9kLewmPpLXzNe/ZLYlgjOAICDQKi30uelZAsAr9H6MoRwDf8zyfO/eBbAAuSvnY1wNNBPO5u00Xt2/f7qzVjHPGP2MeBwBmsdsolDHPXoLoJ3ORrI527do5Yx9naEUYF2eDL4S/J3apnvn1+0odfLVuuXmSutQ/R5WeHqmNn/xTf3hpkU52uFD3PniHLh4SqoYV2G/DXGbMoxfY+7HP3cbe7prvjn9KgXhk7DPPmQeMe5yAPGLLFywLNgIDE/5BAmmJ3377rWbOnOl8j+AnzRgDvrxwHQBLly51RBCpkiwU99xzT1CLf58I/4wobfjiXX04L0bDfveEru1xLkI9T+nxe7Two1f0+hf71Hjirbr7tkuCUvQTofv444+dcYZQnTBhgsaMGeOTdP5zpbADAIOSEpvrr7++XMS/K/YLRva5MOjdnhyUAmHMVlSxfzqK4wRADHPv/LEngCv2cfQg9lmXEfxs/4hc/maMO6K57gWM2YIXhiFN5Cj/4J4AazlRYbfRJffDXzmT2MeYZb+sSEL/x3AdAdyn9evXOyVN7OOuE8DNBggEJwBrMfMWseP2bGA9xNHFeudG8hH3bvNPRI875t0sAJxizH33HuAEcB0hOE0DzRHia0ou/LMV+f3T+vVnORpx7S26eUJH1TsX3Z97UgcWvKm/vTxX4Y1G66a7b9WFgyqm6HfF/uHDh52SRPYw9gQcYIx31nvGP3MBcc8jgp6fYfzzczgH2ANY+xn7zBHWS8Y/mb0ENWzNDAxM+Ac4bEKko86YMcOJ9A8aNEg33HBDuQr+wrgOAJwSX375pbNB3nLLLRoxYkT+TwQXvhD+GRFr9elbH2te4nj95alL1fEcmtBkJ0Vo/ZyP9NaX21Vj8LW666bJ6tsiuHY9xhZG6UcffaSVK1dq9OjRuvbaa8tV8BfGdQB89913jhOAOXr77beXmfjnHrHh09yTDR8BS6oekSvmIs4IjPeK2IjzXMD4QTAUdALwHGmQCH+ymnAE+MPpJq7g57MnG4y/GWGCo4c5gqMH8eIK/eLAe2UMUfdOXxciRhiWiCL6IZx//vnO+/eXLADuAfuPif2ScSYnAGOJpr6Mf66zGU+lDWsv2YeMf/52IpuIFdZfslb4290eDYiZonCbu/LIe8Z5wNzHgcr3ZAUwlygpI+BSlhlm/kaJhX/WUc15/DeaVW2Crrv1Bo0KPZd9ybtGb5yhN9/4RrtrjdBVN1+nSb1bqV4FzFBnjH7//ffatGmTs0aT6eJmrbD/47wju4nxfzqnFWIfO4JH1nvmEdkylPa6az/2PGW9NDe2ddS/MeEfwCD68d699dZbjgFGlJNour8eJ8YiMWvWLKf2mkjZHXfcobFjxwad4Ci58E/X0ZWf6K0Pvlfa1Cf0xPROOlu5npsWrz0rZuuzWduV1+dCXX/FWHVvFFw1/RhhCJoPP/zQqce97LLLdPHFF/ut0YX4ICuB+n+E11VXXeUYy0RafQ2bdMFUfgQfDkI2fDZomm6a2C85rhMAEewKAWokERSsx4hJIuAlyQIgm4WII7+ruL+nsODndyDEx48f7zh6EGc4KkqK6wRgfLEHIQjZl4j+TJ482XEAEEkqD7gHGKg4BJkHhcU+go/7YEbq2VPYCcDnj/HPvu46E3n0RRYAwp3fe7a/C0HOmPzmm2+c+cmai8hhPrIGltQxx/7j3gN6ymCL8Rxji/JKHLwV0QFQUuGfefhbPfHbuao+6Qbdcv0onb3uz9bJA4v00SffaW/lvrrk8uka2bWZalewmn72IhxeBBuYQ5TuERhhvWNdLunYxAmATcHcZ5/h32M/YOxj15gDwH8x4R+gMMHw4L333nvO5Lv66qt1wQUX+K3od0GQYCC/+OKLjiPgzjvvdAxE0k2DhZIK/7y0w1r24Vv6dIlH0556RFNDzy7cn5cerwMbl2rmgoOq2mmspl0+TO3//3Q6L5k6GXPcaxhVUovuLQPyHH+MOgT0u+++6xj4d911l6ZOnfo/x/D5I3jbcXx98sknjhF79913a+LEiT4T/4Wj+2zK/G6EKEYvESnSUg3fw5qMwHajK4gVxDUlADhaEELnYmzh2EW4/PSnP3Ui6j8GjofFixc7p7kUFPw4WRG6pQXvnygQ758+G6SL4oi78MILyyz9343uu/0L3BpuorvcAxP7vsd1ApAB4K45iAKENQKDbArG/rlmAbz88stOhtKVV15ZLDsBB8TWrVud/WHZsmXOOsvecMkll5RaFg6CHwcrTY1xMlVkB0DJhH+6DnzxqP68qJ4m3nS7rhneRmen+z1e0b9M8+ct1fYqvTVl6gQNDW2s6pXyX4bko9p9vKqaNm6qkPrBd44/QRAE/1dffeWsgW5/IXpsldY4ZL6TUUVgj0fWBMY+c5b11poB+hdVHvOS/7URIGBg4WFGPGPkPPjgg7rmmmsCoskGKXGkFbEB87djLGCsIUaCJfqYk3hEW1bN06y9ldVj5PmaPqztWYjrPKUe2ahFy1bpQMvpuuHCLjqrvjbZSTq2Y50WLj+oKj3G6rJLhqptYS1M7dv2ndq6M0vt+7ZSoJ00j1G1YMECR/RjwN93332OuChpZKkswDGBACfyjjhct26dY8wyH0qyObLxEt36+uuvnQvhheDHqXbbbbc55Q+koDds2DD/vzB8DUIXw4r7jLHP54oIR4RiiGGEMXZZ54obuee/pzyKaDXG24+JJ6LvGHxklhB5nzZtmm6++eZi/bclhffPuCbai9CmhwDjEOcDUX8cEKVlALKHILzccjL+XRzL1J5i8HIPyMDg7/NFpoPx//C5M9YR96S580g9MJFwRDAZAez1iAFslLM5Qphx/8Ybbzi9KIjS/5hjF4cw4uO1115z/k0cbpRVsT+U5vhn73GborK+44B1S2HoE8D67u9OaV9xYu/XmrNkqw40HqfLxg1Vv+Zn8b7TwjTvnVlKaDFUk8YPUehZ5uanR23WwoXLdbBaP0f0Dwpt9L+i30t2+BLN3pOl2g2bq2WD4BL+jHnKHrGNcDwTEPz5z3/uzMvSHH+Mf5y7btkg9gjOZ/YjoIeGrbv+gwn/AANjDm/2P//5T6c5zcMPP6yLLroo/9XAwBX/RK+IgOIlp7aOBQMjItApkfDPTdGR9fO1fPV+tb7kFk3pWLf4x9hkpyh631atWHdElduP0EUXDFTLIv7hvJQI7dy3X/s9oRrVq6kCqQAA4UTnfoQNhtYvfvELx7gLJNz6ekQixiHGMaIIz/zZgmFMVAvB8/nnnzu/jw0YsXPrrbc6gs9faq0rCqxhiAzWN2oeiXjgrKUXAGnnOAAQBsVxAJDNRW8IBOz06dPPuD6Savzmm286vV4QX8wNIp2lLfgLw9/Yvn17J7UUiLzi4OU9MGd9Kf4R/OyHpHPT54a5gLDkfV933XW64oorHGPUIvxlA589nzMCmHUZwYvNglMGZwzZSIx9fo7xjy1wJljPaFrMWKJZ65nGDpkdrIGffvqp44hA8ODwJKhQWg6nwhR2AOD8orkx94C/oyKI/5II/6Q9s/XOvGS1HDJJ4wa1Vd2z+NjSY3dp9co1Oli1l3ffG6W+berr1NXSo9jNs7UnK0Rt23dS8yA6049U+7ffftsR3Kx5BETIJizLUquCDgCcfKz72Gs8T08BE//+gQn/AAOP3jvvvON40wNR9Luw4bMgYfiSGshihRAiJTnQyTgepnVLZ2re7qrqMnCCLhzTodhH8eUmHda6BSu09lgXXXbT+cWvb/OkK37fOs3/cr52pDVQ1x7N5TkepajIQlfEEe3fsFhrdx1SlV4TNDo0cAwRDEYipy+99JITzX7ooYec1N1AxBX/XAgXxD/CvzilOtwH1gE2VPobIPRI76OG9cYbb3QEP/V1Ft0vfxA41CbzeSBeiMKcjQOAaDmfMxF0nDhFgfhFIP373/92MkgQvWR5IDzKE9Z30ryJ9pD1gPhDADEuS2qMMv4RVDiNP/vsM23ZssWZS0R23eg++8mZHCVG6cF9LyoLgHGAA8DthYHDH4FwOgcAtgE/TwYNdcOnA6cXmQGUmeBse+CBBxzxXVaCvzCuA4C5T9STU10YszjhuH7M4RG4ZCtm21de4b9dYfVG6pJxw9S3ZXGDF0na+d0bWpzRTqMmj9eA1nWKHZTwnAzTkm++0NxdeWoX2koNK6UotrDt472OhG3Twi/XK7tlH/Xp1UGN/D9JsFhgF7366quO8wsHMVku2BPlNc6Y1zh/2beYm4x/snYqivPL3zHhH0DgPf7ggw8cLxrevEAV/S4sShiFRP+pCyItjigZEYPAJE+enHRFh63V4tmfa6VX+Lds20fDx/ZQSPWqqlIo5exUcpQYtkYLVm5QdK8rdMP4NsXMFMhW0rGNmv3OS3pzxjKFHY/R7rXLHcP4lGvxQs2bv0wR6SGacPFl6hkSOAYIQol6Z46WuffeewMu0l8YjFLGPtFISncQhDgyTheddAU/xi1RLcodSKlDEN500026/PLLnfljYsf/4DNxywDo/l1cBwC106RKYzAhoAqD6McxQB003ZaJcOL4QQT7A7xv/nb+HkQcY5au6hiF5yL+XcFPxg+Cn8aKZFTQKJP3TTq4Rff9C8aAmwXgOgAY86x5jAnGA6IAQYBgLgiigfFPrwDmTlHgNMUZjGOJOn4cPwgOf4A5j0OWeYqTioANc4Hng07853mUnR6t7Qu+0txlexWR10UjhgxQn9DGqlm5snfNy/+503Fyu756e4U87cdo0rj+alHcbnzpkdr87Rv653/matvBwzq4d6NWLivC9vFei+Z/pzkb6qnn5Ika3re5Aj3gT/kMov+VV15xSpt+8pOfOMLfH9ZAxD/RfyL92Cn0nCFD8Wya1Bqlgwn/MoaIB81nztY455x+RD/1m3Qv58i+YIDNz635Lyj+iRYEBjlKityhld99rrmr9ujAoZ3atH6Ntuw+rJScOqpbvbJ3P0xS1N4t2rh6vfZGVlLj0JZFHyuTdVz7Vi7Uyo0J6n/lNRrdqniyPyfpiFbPfEPPvvyxlu+L1tGD+7V3396ir/1hOhxVTc27X6xLrxmtQAn4E/mkbg1xQ5MzjgwLBhD/bI7MA7rvUvqC0Vp442bDJLJPU0AMGOpGiW4S2cXYxbA2we//FHQAkAHAUWiIG9cBgEBAALmGEQYTwgeRTKpzYXAC0+uF6CknuuAMLuvU/h/Dfc84ABjfnDKAUYgByGNxQPDPmzfP2QNxHiAeSSdF7LMXkllgaaT+TWEHAFlbOG7I1qApIOeFM84LZgC4ji9+vijhj+h//vnnnZIYxgK9jhhr/gRrOX877wsnHfMcZwB2T+BzUmFz52j2vOXa7LUv9uzYoFVrduhgXI73M6yhOtVylBIfqd2bVmrFsmjl1m+spiG1i0zBP75phl5bU1Wdx5yncX2bqWaxRHmmote/rxf/8Zq+Xb1DYUcO6UBhm6fAdeDwMZ0IHa7pV07U0A6Nzvq0JH+DTFmcvgTQsIvYI86mh0ZZQOYLQRr2KPQLZW+U9TIfjPLBhH8ZghFH2hobmVv/WBxwFLBhIHxIYcSjHUyTxhX/GLwYdxgDiP/A8ArmKi3+sHZvXK/9cR5VrlpJVWs3V4c+ozV69GD17d5ctfOylJGSoPjYk8qu3lKderVXoyI0Wvbx/Vq5cLU2pQ3WtdeOUPNiNvPPTUvwCsM4Jdfu4kS8fvya4IyjEYNaqV4ABB0QCxj81ApTs0un8MKRoUAG8U8dPt57RD2wMSJkEPwIHRr20LQKoUgqN2sAdfxWvx+YFHQAFMwA4DQGooIIYgQDY4PnMJaI+Bc8/QGHAemdpBJTz3zppZf6rfjl/bLGE+mnARulCexhRIPOlI6N4CdSxPzH8cX4Z9yT4ULjQpwH/G4jcHAdAIx7txQEhy7jHAcv2S+MYzJgcHDyPA4BbKaC6z5pzS+88ILzyNHAOED91Wbg72as8r6w5bAFEf8lLXkpf1IUtW6TtoZFKkl53v9VV8O2PdV/uNf+GdxdbRpWlycrXUnx0YqJqaEWXTuobat6pwpuT7w2znhPm2p01fhJY9Q7pIZ+NEHSIVsnjuxXnBortE9Rtk4R15TzNWVYD4U2qFH8/kl+CJF+en2xd9Dgm/fmr3YRfxdznUfEf8H5YJQ9dpxfGYL3+u9//7sT2Wbws7EVB37+iSeecIy+v/71r8WqAw5EMAiJaHJdf/31zhFtFYcMRW34Um9/ME9RQ36jv97Qs9h9AYIZjEAE73/+8x9H+HD8nb9FdHwFIofmbIgiRA1ZLzgKSYmlLprj2BA95V27bfgehD2iBycPQhdjjhMZOBKJ4x+pjaanhVvewl5CejOZAkS86d7sb5H+08H4xmHhZilgsBaGch5OvaCxGxFh5jzOSjJ9zqUJpuHfELHH6c96hyhGFDAu+vfv7/SuwDagbh9nAfA9nfvJkqK8hTKnQAgU0JyWU1coU+FoVXqyBOt+djZkRy3Sc7/5RBnDr9ItN52nTvUCPAe/lKFHxp/+9Centw9lj5T7BULtPHP7ySefdDJ1sPFx1llpVtljEf8yhIgeA57Othj2xUnJOXnypNOpFi/xb3/7W8drFqzg/cP7jwef+8TGX2FqgTKitWvxIq3aUlljbrxCA5pYFAtIiyTThawQhA9p8cEKY50IEGmvRP4xhjm5Y/To0frZz37mbJIW4Q9OCmYAIGyp13QjoOwbRPVxFJMJhTOMDvaMEfYRDKhAEf1ApJ+13j3ikPfrjmu3Sz97Hg5gDFtKWshowBFiRmJwgmMThyaZTmR1IGxoCEb2H2IBm4ByQF53j7jkJBO6lpPeHyilgW6kk35NZLBR+kkWTMVueJatyJUf6KO99dR74nka1S3wU/BLE9ZEnGEEBAmOkQEYKOOH8U+WF85fMp+x52iAaVlbZYsJ/zLE4/E4aZzbt2930pWLY8RQw0l0hGjnnXfe6USCghkWMOo3qV3COKQbdkUgI3q3li5Zpx3Vx+nGK/qoUfk0I/YriI5g3CFwMO6IkAQ7CDjEPpFfnHz333+/I3zYHI3gBwOIWnhON0EU4AQi2o9QoM8LRhNp0ZzmgJOAHg+BVivMe2Q8s9Yzt3lv9LVA5HF0IWn9GLW8P7pT49ywqGjwU7AEAIHP+k/PH5wAjHkcXjyPTUQHf+r+qetnTgQSiB8ED84MnF+s+cx5nq+QZEVq5fuf6VjDvpo4cYQ6NzQReCZY+3H8Eggg0yXQnKE46Rj/iH/mNg4/An5G2WHCvwzBk+2e68qmxSZ2JjD06N7NBPnd735XIYx/IruUNLApEvFC/GAMBDV5qTq2daEWr9mlupOv1/SeDQPqbP3Sghpmxj/jHqdXRYiKUO/MHMBByCObeyBFc42SQcQbY4jz6OlSTkozgpheD5SCUJmH8OGRk13oaB+IuA4OShxo9sd7Js2bNZ9SNlKgKWHAAWLRoIoFZSxk/DHmsYHYB7CbyIBCHDNOyH4hxTlQMyDJcEDsYNvxPqn3r6jZXOmHF+nDb6LVuP95Gjeso+rbdD8tlD0988wzzrin7DFQMyBZ4+ljQ2YXexnrfMXOeilbTPiXIRjyeLHZuEjhHz9+/GmNGqI9GER4tklxJJ2zosACgADCG05aH+fyBrPxl5fqNXQWLta6/Y104c3T1bW+1bcxT6htJh2MaH9FyfwAhL67TvB1MJf3GD+A4EcEfPPNN040h7UfRzHRELrXc+Esdp0A7AeBfrIFazrRKoQdR1QifJjrt9xyizPfrfFTxQJxT50/pV30uSClGWHDEac09qMkhNIQmr3iGKLnw5kaQ/o7lHaxztOnA0cA4r/iRf3TFbbgbX2b0FyDz5ugIe3ryZIdi4aSL5r5Mf5p5kdGVCBDpprb1JMgKKU87HlG6WPC/yxBkFNzxoJNSi7ClIvIBYP2xwQqP4Phtm7dOuds2tOdt8zP0ACQM25/+ctfBtDxdiUHBwm1ztxX7hM1cYGWzld88pR6dKMWr1yjsBbTdP3UTrK+Nv8f7SfFlw72/nZETWmCMYs3HCFIlAvRZ0ffBC+IfpycNLCkkSMZLmR6cCYznfopcaF5E5lPrIcIIMRx4HcE/6GvC05wshloXkmTQkv7rHiw3r///vtO4ztsKM4iJ+MDR9AFF1zgiHz2AnodYTch/AM9EwqRj+OLcgZ6edC/I+izGwuTFqbv352tkyGDNXHcYLUr8pxjAxj7pPkzN3D6BrpjFBuHtZ4AB2U8jH+zc8oGE/6nAYGP+GZRZmDSiAXjjK+ZgDSeoaMs33PxGulppGFisFPHT7o6ERoELMY86WkMdoQtv5dza6ndL8pZwO9hI8QApHlHRYN7wjGGeAP5LIK2vjs3ReHrF2nV2nC1nXa9JneoF9BHzPgK5hfpzhh+CN+KBtEg0ryJBlnUP7jhM6aPC+scNftcdO8vKOzZQzjSEYFEtD9Y5gTrPE49Ij9cODWsn0XFAruJEyro64CtQwkLQp90YMr+GCP0NiITBoHMUY7BMv6J9NP7CZuS+U6GT0WK+iftma13FqapzZDzNG5gG9Ux3V8kZL9wIhjaAacvPVGCAbJ7aVxLhhvZPUT9i9JDhm/xa+Gfm5Wl9KRkearXVNVSVkOFhT6ph6SbkXqGYcYZy4h4ovxMQiLxLNBcRPtJwyE6Ryoajwh3Lo4kIkpDp2JqNtm4aF7H76CBHV5sjJ2Cg52MAv59/juOO6pwXmAvLHBs+kSCuG907y3u8YcBRV66EqNSlJPdWSOnDlULy251BC9p/swx6tgqYu0XjkKMXdYP6lw54cJSn4MPov04uTi+jg7NkyZNKvJzpskfncxJeeb4smAaC7wX9k+yHciIo6QBB7kR/ODcp7yFBpZke+DoLapZJfYTji8E/xVXXBFUewLZnNRucw9IeT5dFmgwkhazT0cbdtbgof3UPaSmBT1OAzpk7ty5zhwZM2ZM0DiHWOeJ8qO7KPVh7Q/6nkZ5GTqZkInI8f6/ssqjXbt/nuOfl6v0hGPatmyltkfU1ZhbLlG3UsoAQfBTM4NhhRAnSk8kHuGJV42FmI2IVHMGpJtyjFDne8QpAgUxz3+HaOdrxAvfc/H7cQZwRBO3m/QuXmewk8aOwUd3TjfFkcZeePf4PTz6Q/pLXk6GkuKP6mDYYUVGRCsuNVkZ1ULUynsPmrXrpA4dW6t5Hd966kj/wSh4++23naMMSQUNPjzKSs9UZkauajeqa039vFDXz7in5vHxxx/Pf7ac8c7b3NxMpaUk6WTcCcXHRSk2VWrUrrf6dwspleOHEPzPP/+8k0H01FNPOaLPCC5wGuNQxgA6U6OmV155xVkLaWhGFljpkKPMk7E6HLZPB49FKu5kttdCqKUmrVqrbedu6tCqqeqVUjAmLCzMOZcaR8ijjz763/PajeAGhw+iF6jlP93xvS+++KKTdeke61haeLz2YEbKSZ08Ga8T3vX3WGyWGnTsrh5dWqtBKUajceqx1uP4uOOOOyqOszszUYk5NbzrX03VtGj/aWHdJzD5xz/+Uf37989/1pd4lOnVXEcPhWt/ZKzivDZ+ds16qt0wRM1at1W3Th3UvGFtVSsFzwz6CRv/22+/ddb+H7PzWTPIgMNZziMazn2OC6eI2/uDYKH7NfoKzeZmEpUHuenR2r1qvmYdaqEpU4erd5v65dLTwi+Ef15OptKT4hWf7BVA3sdDh/Zr18b1WjVrqQ7XnK6nv3pME0uh4SkDh3RiUvYxPIiwjRo1yonC0y3ZV2mHCHhEP/8GXl02MJwMiH8GIE3+6NTpGjtEPp5++mmntu2nP/2p81y54clSStwhbVq2WEtWbtC+6DTVatxM9WvnKDU9W9nezfG4mqvXyHE6f9IEDendXL6MyyMCaWgyaNAg5xx3I/ih0+vrr7/unF1PjXO5khavsJ0btWzjXsV514vkxATFezfG6MhwRVRup/HXP6Q/3jxIRZurJQMR9OabbzoprhzrV+73ws/w5ObK492+Kns39mCOFOEAeuKJJ5z9AnFcKp38cxJ1dOcaLZwzX8t3HFNGnYYKaVBf1dJOKPZ4ijz1O2vYeRdoyviB6tSsls/vNw6Qv/3tb86+yDrPcbdGEeR5lJPrNdwqV1aVChIeJRL4yCOPOEY766DvO5knK2LTeq+tsVuHE5K94iFex+OjFRMZqUMR9TXu7l/onpvHq2MpJhxS5vLAAw847+3hhx92TrwwDCDrFWcQZcHYRL4+2tSTEqFdG1ZqydIV2rgvQZ4GTdWwSrYqV66kxONRis2qqXbdR2ri1Cma0C9UTXwc4AMyehj3HM9JENTNaEPQM/8JoOL44F6wH/I9+yE2EhKWchmc5/x8rtcucI89J2iK/sI5gAPALafhkWayzDdOFCidHlK5Sj0Rr8Q0r75NiVN0+D7t27dT33vtuXm1r9arz/5M0/u0KJWg0Y/hF6n+WYmR2rPqSy3cGqu4mGgdORausE1rtHJhmDzthuiCa8ergw8doAyCw4cP64svvnBEBgMILzINY6666irHo0aE31eRdrIH8DwxQElbZ5HHoUAdJzVtpHeS4sK/R8YAjgjEPymd5drUzpOhhCObNefdV/SPl97X/M0ZCh13qa684RpdNvV8je3bVvVzY7VpwRf6dNYaHUqrqkYdu6pbSG2fpa8waemXQKnFmdL9mfCUTxSnwaLhvzAXSfOn7ovmTuV+xFHGSUUc2KlV6zdr34EDOrh7q9atXKLVOw4pMq+Zuow8TxcMbK3S8B+zUTGuKRnCQTh69Oj8VwzlJOjQ6nXavvO4qrVurfpBXBZLDTQ1wOxL7BU+X99yk3Vsy2x98OLz+sfnG5XYcoQuu+4WXT99skb2a6sqx/do6ddfau7Kfcqo31Kh7duoaW3fxil4T2R40cOAiMzAgQPzXzEKknJ0g77fekgJlRqqdcOa5ZImWtZQavnZZ585Jz1gA7gRPN+Rrphd27V1/UZtCzuoQwe2avXylVq9ea8iYmqrx5gJGjW0kxqX4hrDeyIDlH2PeV6R0v0rMtisiNQzremU/bIHXHTRRU7WH3rCV3gS9mvFN+/olX+9qNcXHFXlLmN0+VVX6uqrp2vc4D7q0ChT4au+0hffLNKGAyfVoG1XtW/ZRLWq+XblIcMFpy8Re+4F+wA6aMGCBZo1a5az//EcgUDKrbHzyQ6iJwBaiuxQyiFxjiDs0VMEUsnYRtzjSMMxgIMZ/YW+wq6inJo5h52Fs4GL3+0bErRr9vdaszNMh6MjFBMVqUM7Vuu7lbsU3WCwrrpwmLo3L58sX78Q/rlZKToZf0ypNdqqQ+deGjp8oLrXidOKLzYp3cfCH9FP1P0f//iH01CCaPvtt9/uRNNKq6kQ/ybp+xxTg6hhkNKgCUcDHToZoK6TgbRPNjkcAHi3y7PWMTPhkFZ++S898fxH2niykYZf86Ae+c0tGtelqerXraP6Ie3UsZPX6E7bp6WzlmtH+FElVwnV0KG91NiHfzZ9E9j86eZ7Ok84jgE6AnMfMRyNwATHGLVsZNtMmzat/GvZqtdRk3Y9NHTESI0dM0LDujVVevQ+rd0XLzXqqP5jJpWa8AcMQs44Z7NjUwum2u6SkBu/QzM/mqlFB2uq19jeahbEJeH0AKBUDCcxhoxv8Sg1Yp2+eP2fevmTlcrodInuvP9B3Tyll1o2qKcGIaHe/aq1aqTu1folC7R2b7rqtemuHl1bqLaPLRbGNpEfojhkeJXn3uefpGj/3P/og5VHVLP9IPVvVadCCP85c+Y442LKlCmllOZcUw29gqb/yBEaMXqMRg5po0phB7R/X6SS1FIDJ03S6FIW/uxzOL0pOSUCSYdzI7ghek2XfoQ8NuvpBD3BSdZCMoB92+8rUftmv6Lnnn9dX69LVKvz7tbvf3OXLh3RRc3r1VG9hk3VrkdvdfAc1Op1m7Rx3RYdyQlVr4Hd1bZJTZ8KVt4fexxCHCcHTb2ZC8wJMn2w++ltwOk2aCb0GhffUxrAkd8IfkqnEf00Q3Yv9hJ6g+A0pEk4egsNhtMAZzNNRZcuXeoEgyk7IKPCN/3E0nT8UKwya9RXSPvu3vXlfA1velQLVnjvY62B5Sr8/SJZrEaD1uo98VZdc8l5GjGou0Kb1iqVZn40knFTx4ki0x2W1BkGRmmB6EeUkrKLqMHJ8Lvf/c4x4ooSqHi8MPIZwL7KODg3cpUUtVfrFszSpiipeafBmnr1VPUN+d9hWr1RC3XrP0QjvG8lKy5cu5bP1bKDafmvlhwmIJOebAkmaFGQFcBr3333nXM0lBG4kNaF0wsDzy/qHCtVVtVq1Z1NsFW77hrQf5DXKOuY/2LpQ8YDvUZIb8N5GIhkp6UpNSlFWZ78J0pMpmIPbNVe7zip0d9rhJx2mfQoNyNJJ2IidOToER2JjNGJ5Ax5/K+rzWnhcycyQRSkVDo555zQ/iXzNee7DdqfGqpBIyZowvAOalhgma/VsrfGT5qoYb0bKGrbEn353fdacyQ5/1XfQe8bxjuOefbngCYvSynJqUpJzfaOQt/gORmmjRsSVKdqqHq3bXR64y3Po4zkE4qJ9I5577g/FpOg5Ixcn/0dZQ0CiQg4zuDSoop3ftWo31Qt23ZQz6HDNMT775V1S2UCG+4JFxwXbQQ3ODiJZNNEHJu/KBj7OL0Y/z4/5jQ9XKtmLdHG3TFKbTRYl1x2vkZ0CVHt/1lY6qnLkPHq1aKV6ihFWxcs0NpdEUrKzn/ZhyDIsd9J20ekk/r/5JNP6rnnnhPxabKxOcaQn6Pv2rlkvqGp6CVCUInjcvm9v/71rx3HAEHXt956yzlhB+cDerFkNFWviy7RRZdO1YRh/dSpRX3V9gpbf3DW+oXwLysQFRyRR6094pvzwUtbXDOY+Dfpzn1b/lFNZ4pII/wZ/KXj2T4b8tA8qla1umrUCFGrTiM1ok+zU71TVWqrTrMQtWzPN2mKSTqiDUeKXsTOBTzhpOrghXObIxaGRRNjEc8g3j4jcCH1jfotvz3Lm0lRqex8tHjC3fUCIyCg8GQrMWKHFn8+Q9/O3abozPznS0pmrPZvDlNqRgMN6RdaZH+F7KRo7Vo+WzM++UyzFizVskVz9cVHr+mlf72gNz6cqw37Y5WWk//Dfgz7Bw4f0hpLI5MpO263Vq9ao/X7T0pteqp9395q37iwWeAdg50GqGennmqsGO3YuFYrNx7WSR8rSSL+RG1w/JHWGah4Mk/o4Ia5+mDGXC3fHy/f2MgeJezfoM2JdVWvc391aFJUunuO0mL3ae2cL/X5jK81f/FyLZn/jT5642X964V/64NZK7U3OlnZAeT4wmaLiIhwMl3K8ggzVviyNo4p6yTrFPuU920EN/Rqwc4nIMg6XxQ4QDkJDOHP0Y8+xVNZVWvU9JozVdRgwHAN7kUJ16mytHrTlupQq46cw2XjNuhQeIwS052XfIp7uhn3hFp/IvqIfN9E34sG/Tds2DBH/NNAnFI6mikTqOUkhWANJFYY4Y8xQbo43jMGVel1Rv5/+Dfx6JFGctlllzk1Oj8G0WuaU/i6gcfZU1X1W/XXeTf8Sg/ce6euuWqcOv7/sdIF8C4UlbxGSP56kZKaroiY4/KVjQ9Efln0qMMpDPeLiBiZHHjtKuLRh8EEXnA+09Jc7AMNxD/3BIeIP+PJSlVi3DEdOXxAOzct18wZH+jfzz+rZ596VZ8v2Kd4Hy0KmTFh2nEkS55mw9Q/tLAx5FFazF6tXjpf36/dp6jkPFWr31QtvOtpk9oexe1arPdeeU6PP/+WZizbq+g0/46DkorI50+Ew/dlHjk6cWirth/aoWPe7xp3aq6O3qso87JqSEt1C2klYq6ZB/fpwLb9Opryw2u+BOFD46WSR1vKCo8ykk4o5tgRHdzv3YeWfKVP331Fzz39jJ5+Z6ZWH0nw3mUf4EnQgQ07lF23gXoOaK/Gp+j+DB3fv1aLFy7Wml1HlJxbTfUaN1fzZk3VoFKC9i75WC//7Uk99+qnWrozUskB4PQC9zQkRHH520SlC3YO6ceIDRzgRvCDzcpaR815UZ85J4Kx7jP2fV72WCdUo66/UXfe/3M9ePNE9W/TsOhGc6jE//oDohR14rhSM3Lzv/cd7HEEfLBzqMUvS9xMgDvvvFO/+MUvnAAjkX/KwQNnLyo+FUb4Ey3juAi8xtSKlQWka1GjwkkBnD1bHDDwufwhzbl6gzYafMnP9Pjjv9Rdl/RWk/zn/5c85XlyleuGNbwTJi/P49O0QkQgwh9HSmHcz5WJSg2UEbggcljwGftkbxg/wKaEJ9zfjcG06D3atOxrzVm4Uuu37Na+sL3avXmH9u6L88oSX5GmqH1bFJ6ZqZChPdWmUDNeT8oxbV+3QssOZKrthKv0k7vv1LWXTNGkCy7VzXf9Sn985H5d2r+Sdn79ov767Bv6esVBnfS9DeMzEAE0diyd/jOpijp4UFFhMc537Ro3UHvvVaRRUKuRQlo3VAibQGa4jh3br8h43+d7ss7zfnEABgYpitiyVktnzteS1Ru0bc8Bhe3Zrg27whR+Miv/Z0pOTvxerduSpRr1eqpnu4anfEYZMdu1YvVa7UptruFX3Kqf3HGTLr1gkqZccp1++vAf9civbtLwGuGa/9pzevLfX2rZ/nifOudLC4xu9oPS6brtfzD2yfqk1tgIfmjwTR36zJkznZp2bP+CoCHIePV5tN+hnjqOuUkP/OEp/e6qserc5DSdinJzle21r/9r03vte+x8X8McJ7OBsV/Wwt8FW4t+AZRkozvor0CpNiXbwUSFEf54jWmSRff+0mriVxgGEU4GzukvTpomg4sjBtns/CXiWalKVdWoXUu1TldOk5OulNg4RRIy8tKgQR11DW0pX8amXOFfeDEgBfCdd95xzgHGsdKvX7/8V4xABMcO4tY9asX4ASK+dJotKuPFr6haTTXrNVKzVu3Va8hkXX/TdbpsbC81yn/ZJ6RFau+WY8rIaq1hvdsWOjo0U3G7N2nXwUx1GH6hpg5qq7oF160qtdW8xxhddeV0nde1svYs/kwffDpT60sjdO0j3P3A99F+LzmJOn7Ye0X88G29WjW91+n+nTqq18YrwJyT1JJ0MP6YDh5PdF7xJe77xOERKOK/Wo3aatC4mdp26qcRF9yqW6+5UIO7+PKAzxzvuF6rPZVrqUn/3mrXsJDZ5jmpsGVbdDiplYacN1FDOjRW9YIZu9Ubqeuoy3TDFZPVo06Ulsx4U5/OXqnD/uzxyofoH3t/RdkPiHiy1geO48soCWSoUrtOXfsnn3zi9KoqKP7Z89n/z6WevXhUUfVadVS9elXln4B3ChnHj+lIeop+2CU7qFPLFmpQx9cna/wAmok5X962Dn3fOEKRhn8EFum1E0xUCOHvCmoolTOQTwOCle6sxe3EzGDHQYHxQ9pLIJCdGKOw7Zu0nhKlGk3UvsMgTeru2/psUpzcrrfugoDof+2115yOvzRKLIvSDaN0QfjTr4HPulSEToCCJ5yol7+nnNVt1Vcjzr9el10wTkP6dFDLBjVU5TTGxLmScmyPtkZnKbf9cPVqVajre2a89q3fqA0L12rfnr06EJFUROZRXbXtM1LDBg1Uq6wj2rZhhZZuOJJv1PgfCGDX+PM5mWlKSU5TsqMxGqtu7RDvdTqToLpq1vXOy/xEtJjUdOfyNbxP5j/vm8v/qa/QYeM05eppmjxqkHqGhqhBjcq+NawyY7Rr/X5VqddU/Xu2+aHWtiCJ+7V85RatWbVRu/bv19GEIkRj9ebqPXKE+vUKVe3YLVq2YrXWHTwpf5f+jH26nRMJrwiwziMCC0d+jeCFgBWNxjm9ivRyylZdO9cVnKUn/H+MNB3etEp7Y6NFu8kGPSarT9dQNSol86xJkyaOXvOH8c8pAmRkrFixwjnyL5jwi+P8TiE3RbF71mn2DN8c50e6zOrVqx1vGhPMX9OIMXToCUBdD00AS8XY8yU5KYrculgfvfWO5h3KUpMO4zTtzvt07Zg2quNDy4dFgCYnfH6cdsDxVqTgLFy40Dnv+fLLL3fuFY4BuwL3ookN4x/j58orr8z/9P2M1ChtWL1Us1buLZPj/IASCIwBUuDIWPL9OdalRJZXiK9arkVLI1R/0FhNnNxfLUtyozzJClvxlZaFJard+VfqvI6FjsI5eVCLZ87Qy+98rTU74lStWRf16d1OdQvdrko1spW0eZN2LNqkfan11aZLPw0b2UWNyq5nY7HhWCOcnBMmTHDqf31KyhGtX/i95q3dpwS1V98xF2nypN5qXuS2U1kpEcu0bPlSbT7s/bZZT40eNUpjujTx6XFEjG32asY6JXKlk+JaumRFb9OCxcu0PrGVxk0cq9HdQoqunS0mGRGrNGNWmHLajtWUCT1POVYuK3yNPvzyA7317ffasa+KWnbqpR6dG53yb1ZTkvYtX6+NWw/pqKedeg8epCE9QuTPVsayZcuccj4M8NMd5et7EnRg1nwt2bBHx8roOD8XOvpj15DhQPCnqH3SruC7ONEEhw99yGguhwbApuUse6LgiFBEcVmTcWylPn79Lc1bf1iJdXrogrt/qpum9lfbetVKpTs9EXZ6drH209ejPOH+02+NUxc4YpOgcUltr/TDS/XJnPXlfpxfpbyi2qSXN5nR2v71i/r5ta/rxKif6YWvHtPEEmR6MbE4puGLL77QBx98UKrHwpQEDLznn3/e8fxR81PpdLk3fkG2kiM26JuXntCfXl6ixObDdNmt9+u+u6adcuRfScFx89577+nFF190OnDSbRNPKLVPCH8WTSPwwdOL+O/bt69eeuml/Gf9jJhNevXvf9Y9z34rdTxPt/zur/rXT4YU2VneV+BtfvbZZx3H4N///vdyMQDOieQ9mvm3J/WHx9eozZ1/0F+evVUDS6DjPCe36/OX3tDS+I668Xf3aWTzQt7FE1v0ztNP6PfPfamoan112f2P6onHr1CvU6qmjmn1M0/pz799RfPUXdN//ogef+p69S2yeWn5wn7A2ca/+c1vnLXOp0Su1D/+/Gc99tr3XknYQ5c/+Cc99tg16nOa+3B06WPe1/+st5Z4v+l1hR7+06P601V95evq60ceeUSHDh3So48+WuxsOX8iecv7+u2jf9Er4YP0yBN/1G+m9dS5xy0ydHDWc/rbwjR1v+Ru/XRC6ClOxsy9X+mx3z+uF77corTG0/Xws4/q13cM1Ckm08lNevtXf9RTb8zRgRoX6sHn/6Tf/Hyo/Dm38E9/+pNTovnQQw85jdDKhoOac88v9dirX2udBuiOp5/Wb+89X53LoO0Swu/3v/+9k+WA0EAMGhUHTv/iRBMyHslkZexzTv0DDzxQho6vfNIitPzNP+sPf/9cm1NaachVP9ev7rta47oVPvLPd3z99df617/+5az9OLvLG07U4fQ3mrOT+l/SoPGJxY/r0vtf1vLGd+izl+7X9D4tSuQUPldK6ePzL/DSkHZP5Nifm6bwdxLt5O90U338E+/fF7dXy796X69/t1lpPabq5gd/pfvuvMjnor8gpDvhCadfAl+794h7ZlfgX6S0c2wZXxv/DxH/YOwse3bkKvHwNu04maNKvUaqa0gRW1e91ho2doruuO5yXXH9ZTp/fG+1KCrDIDdXWbk5clqvVaul6t69oWZ57L7FAMOfz75Uan69vzvJk+sV/f4H/VzKq8GTX5FyRFvXRap6jVbq16l5kZlFNVr21aQLLtONV16u626fotGDW6nIQ4qzM5WRk/3DuG9UW9Xr1ZS/5w6R4u/zbuYBAO/bLfGyq2JcrPNE+nmk1wMOfre3T5mnvqfFaNv37+i1D+Yqono3XXj7g3rkAa/o71p6oh9wePlTwLN0TtMpfypExJ9J8/333+vJJ5/Ufffdp2uvvTb/Ff+CPgTvvvuuZsyY4TSt82VmgicjSccjDyn8+GkWkCo1Vb9pK3Vo11hnrCbKy1Zy7C4t/fR1vf7JOkU2H6bLb7pB158/XKGl1HiX+/LGG284KXBEwPCC8nniGR08eLBuvPHGgIwMGf8LRze98sorjth54YUX8p/1DVlJcYqOCFcshWpFUbOBQlq0UWjIjyzy5RDxZ5w/9dRTjjGIN9xfGn/+KL6M+OfEadNHL+iDtanq85NHdNuAorN8PBkJiomOUVJeQ7Vo1UINishj9pzYps/++rge/dsXOhx6ge754+P6808GF3mMXXnz+uuva8GCBbr77rt9HwGJXaeXiPi/MlvHzzbi3+cqPfzoo/rTlb19GvHHwfHHP/7RyXIh6kOPnEDDlxH/lJ2f6y8vrlLl/lfovttGq+Vp8vKzk6MUGZWovDot1KJ5Q9UsQtFn7P1Kj//+Cb345WZVn3Sf/vLYb3XHqFblEnEqLuwDlPb97Gc/K8MIYPlF/LFxsFOxaW644Yb8Z41gh6bGH330kT799FOnnJVoP9dzzz3nBCsffPBB9ejRI/+nS5m0CG2e9YFeeusL7chupXHTbtcNV0xQj1b1/7dpaCnA+fncByrQKW8oDjhGyBbFLvJ1GSS/e9q0aU7EnzJxGk+XBIv4lyFEh6kXwXvDJuKv4NmmngdHRVFH15WEnORIbZ3/ph7/8+NFX39/XR+uOKwz5hl4MnXy6BbNfu81vT5zr6oNuUGP/u5h3Xdp6Yl+INWf1H4+R9L7p0+f7qSDMiE5Z/P999//b02UXYF7Mfbdxl6+jvalRm3Swo+LGPfu9dqn+m5fQv5P+xesBzhDqHcOGNHvY3JPhGv7vkxl1R6sQZ1OX9pTuWYjtWzfXd06FC36yRw4eWSPtoft1hE1Uuf+AzRkaIdTG6b5CTh7iPqUSsZHjVpqxuV8k6GsbC7nmx+ndk1Vr+O98r/1FZTl4eilfCsQ6/t9S4rCd25SYr266ti/s0LOUIxfrV5LhXbtrvatixb9zu/avVl7D4UrpW4HDRs8UAM7NvZr0Q+Mf463c5szBzsIQN4z47+oPdKu4LuoIyfFnb5V1Lbj5L/11ludjv/YRGXZ7C438YBWffWaXnp3nqKbTdbNDz2ph269QP1al77oB5wcpNMXN8qOMOc0BHrhuBnAvoTSU/4mPofya7DoeyqE8AdSxIkOUzu4YcOG/Gf9C7ckgYmO2PUleTkZSog9pK07thZ97T2gg8czT9/l1+P97w+t1bdvvaz3lsSr1YX36je/vEOXDA1V3VIeRaQ64whBFLrn+eLEIXODxn40/uPIjdKY+EbZwefLgu929/clORnHFXW0iHHvXgcPKyLVd+du+xIMXzZ+f21KWvpkKu7AVh1Iz1S9wf0UWhKVnhalnWtWau2mI6rbabguvuBCTezaxG83QgxDRD+C2OfUqKlaXpHxgyspXhmZXM43RZCtzDSuH75r0LCumjaoWyrCH8cfop+yn4qM52SYNq0/qbq1O6l/x6YlSsvPid+tVcvXaWdYjjoMuUzTpkxQj+al2ZLUN7DmYXBjA1QEsPuwcVw7xwh+6BpPlBt9cv/99/9Ppi/2EOthWdi22cf3acmHr+qljzcou9dluueX9+umyb3Von7ZuQd5nzi+iiuyZ8+erbfffts5AtDX0X4gAwe7FL1RGr+/vKgwwp8NZNKkSY4nlXRZOsT7Gwx2/j5qXIhg+5IqdVuq98SbncYxRV733aZrhrUt+vx9RP/hNfr23Vf12cZ09bn8Pj10+8Ua0q5sNifX41nYC+iKf5qfMEH37NmT/4oRiCByqHUj3dfXG13t5gM04Yoixr173XqFLujonxFG7gebTsA09fM1mbHat+WA0tIbamj/DiUoq8hU3J5lWjhniQ7k9tTUm27UtZcMUCs/1j8IYPYDjD+fU7O+QlrVV1PHn5SslPTj3ut0kaVkJcaneK8fvmtbv65z+RoyfXB0sNYXN+oTnHiUsH+jNifVVb0u/dWxaQmMztwEHVg8X/MX7VdG24m68eYrdeHAtqofANYfax51vxXlXHvGP3Yge6ER/GDn0HS8WbNmTvO4wuW9BCzJ9ittx1fuCUT/v/XGVwdUZ/gNuvtnN2ly7xaqX8ZBbnQP+11xhD/Z25QADx8+XKNHj/Z5NiQnDHBcOL+/V69exXZGBAIVRvjzofXu3VtXX321Uz+Il2jXrl35r/oPGDuIf19H/KvWa64eo6/SXT+9q+jLawxcPLTNqcLfEf1r9e2br+rTNZnqdd2Duvea0erSoOwOoWBx5H6wOBYG8Y/wx1i0qH9gwxxl/LPJ+TrVv06LHhpxSRHj3r2uukBjO/un8Od+0Iqloqb5Z8aEaeeRLGU2Hahebc71HniUErlD877+SgsjamrojffonhsvUP9W/n1PiX5A6TS68wr/Ti0V0uWH4uXIkyne6zTNbz1pSolJVYpzrHQTtWzcxnv5/t6R3cJ4r/DCx5OgsA07lF2nrrr3baeG52ypZShm9wJ9/vkchVXqpit/fo9uvGiA2gWC6vdS0SL+pPqT+h1MIsM4PXTxp2cV9fxF9aki86O0U/0R/Uu9ov/lL/ep4cQbdfcd0zQ4tJFqlMMSgfAnrf7HnL6I/r/+9a/Oz1IW4euj/9CG//73v537zmeDzggmKozwBwxnvDeXXnqp0zDrn//8p9+l/bPgE93zdarzuZGn9OP7teKLV/TevKNqPfU+3TVtuNqcKdCTlaqk+CiFJ/huoUL0c+H9LKrjJ8eccAQcZ53TIM4ITDD2ce6QWoUBZPwAYog6M1cEVizSFLVvqyIys9RyWB+1OccGW5knDmrV1x/pq7WpCr3oPj3wk+ka0amR32+ArHlE/TGIfF/nXEvN2vdSx9COTvO56NiTCvdeRboYkk8oIjJBEfgFGnZT64491Lqx7+8epXhEd4PN0DpbcuL3at3uHNVs1Fu92zU8x3HqUVL4en397hdamdhWE+/5pX565Vh1DQmcdQThT8Q/KirK532P/A3SlbFfqO3mMoIbglRfffWVY+8TUS6qvKNt27ZOUOvIkSOlE9TKidOOmW/rxdfXK2/Qlbr+hknq07LeGUu4kqPDFZ2QpIzT1gWfG4x95nnr1q0dQV8U/Azp/Yh+MiFuv/12dejQIf9V34AmRBtu27bNySju379/0Dni/NPuyc1VTma6UpSrXE+q0n3o7GUjoSkcHygTiQ+YphqkdfgDDHgMvbCwsPxnyg9Papz2LPtGb369Wcn9rtBt145RxzNmd2YrOXKzNiz4VBsifPehYfCS6nq6c0wRi5zvz+T0l8/RODcweBj/eMGNH6L9bvobG2KFIy1Se7ccU0ZWGw3v0za/Hv3s8KREase8mfp2SaxaT7xVD/3k0oAQ/dC+fXt169ZN0dHRpbK21WvTW4P69lbXht6x5v394bsPK6aIPoKpxw5q97EwHVE1tejTR/0HdVNplIhHRkY6879in9KSo7jda7Wnck01GdhH7c4x3J8Ru0sLvvhaSyJCNOqmB3X3leMCSvQDqf5E84jA7d27N//Z4ARxx0W6d6tWrfKfNYIVRCwBSLrXd+7cOf/Z/6WPd61F/DP2fR8MzFbM1m/1zrszdLTZKF191RQNbNPwzH1b0iK0+uPF2rAzRik+Fv6rV692gj4I7YL9XbhPS5Ys0Zdffql//OMfTno/JaEPPPCAxo0b57NMSD4Lfvff/vY3517jVCBD3JcllhkZqV55myOlZCg926tv858va/zO9snz5Coj8YSOHTuqo0r1ivMwHT6aoAzvTfIFiEOMKYT/Qw895BgZH3zwgZ599ll9/PHHjpfH12n2Z4I0HqKb+/fv16JFi5wBToSPwU4n+/IjUwnh67Tgo4+09GgtNQ/1bkTHvKJ+/YbTXGu1etlsfe79+c/n7pFq+MZDxr1gQuLdwytaFCwW/fr10xVXXGEbZoDTsmVLx/mF15UIiL/B+uRh4S4j2IDoLEv5T5cuXfKfrTikROzR1phMZbYbqi4tzmFNyTyug2sXasGqGDUbc5PuuvViDWxXNyBEP5DyyJF2pByWSg+Tem01YMxojRvQTvVid2vXhnXaHp4sT/7LDtkJOrB1o3btPKisJt00fMIEje/bquh+MCUgJibGET5EcHB2VFgyY7Rr/X5VrtZYfTq3OqfjEnMSw7V27nytPFJfI6+/U7ddOljtGwVecyqMesQPzs8yC4Z4bY1sT57KbpX/AWxP0vxx8FqNf/CD3XrBBRc4R8WdLsOJLIABAwY4Tl+i4T4lcb++/+Azzd6aoPqdm6la8lHt3liUbZ9/rV6mOR+/rNfn7FV0ilTVx9W+O3bscE7tQp+5EfZ58+Y5Rxr++c9/dqL8dO9nf+B4Q1+IfoK/NAfnGMEnnnhC7733nmOD/vKXv9RFF13kwwazucrOSPDqugPef9OrL8O9+vbYcZ1M99qT5XCgfpXHODCxnMlNi9eBtd/q/W+WaHfYIe3csl5rNm/TgcRs1a1fTZWUp9Sofdq2cZVWbg1TTuPOatugZJsY6WNNmzZ1NhUmFx41xMaWLVscQxsxzqAgDQfvkq9A6DOBGeQs9KT6cE4zF3UrRDqJbmPo4ekur8hHXnqMdiz+VC/9+1sdyfSagcnR2rV2pZYuXXqaa4kWzZ+j2UvCldT6Ut1w/RC19EEzUD6L7777zpmMV111lbNYFgXCCPFvKXKBD403N2/e7Hh+8Xb7A3lOFlKq4sLWacHsmVq+K9a7czdVx+4DNaKfVzRVqaRKlSuriEqUEsEa8f333zv9SaZMmZL/bICQFa99q5Zr0dII1R80VhMn91fLswk4epIUtvw7rQhLVuiUy3Vex7o6K1sD0b9uqeYtPqRq/SbpssvHqPv/RDxzdTIiUrHHk1SpYX3VKIPjis4FUj1Xrlzp1PnT+dm3JR/VVK9hU9XOS9WR/Vu141iaajTpoO5dWqlxLe8em5Ou2N3f67N339e3W9LUetLN+smtV2hsl/re/9K30N2avcRt1hSoZEVv04LFy7Q+sZXGTRyr0d1Czur0g4yIVZox22vntB2rqRN6qvFZ7qOepHCtX7JAS3dKPSdN1zTv72hZu+DgTlPUgUglpnlUo36tEp0WUBbg9F+7dq1zhjYlfaezAUqMJ0c52ZlKOrpV87+ZoyW7jypRtdS2/2AN6ttRTbzzoXKlyt4r/+d9zFtvveXYfZdccokFMCoAZB8TzEL0o0dOByUupLfjEMIh6pu081zFbXhfL74xU2vDsuXJOqFDu9Zr1bKibPv8a/E8zfx2tvaEjtSV08aod4s6PnOgE+hk/OPkJgPCTfVnTyAwi03I+0aI4xRjnkRERDiOYoKDBIkI2HKveL1gB350HBclZJwac+DAAacsGM2FbUUDP/4dMoeJ8N92220+us8ZOrJmhr6auVyb9+zVrp0btGb1WoXF5Xr3zuqqWSdPKceP6cAW7u9BZTdqoSaNaqt6GUQl/EL452UkKSpsk9bsjvHaId4PrVotNQ3t4wyAYQP7qk39yl6jO01JJ4/rREYlNe/ST50al3zwM9mI+Pfs2VODBg1yxCOiHGObKDODjQHC10TkGTQMLB4xwhhw7sXAYoNi8BG5YCAjWqlZxKPE78F4I6o/f/58LV68WFu3eg2tHTucQYpg7dGjh+PF4u8h5ZHfed555+X/tWVLRvRuLZnxql5fcsxreKYp7miY9u3fd4Zrv8IORyqhdjsNvPR63Tw+1CcRIaJcy5Ytc0TPwIED8581ghXmJIv5unXrHM8u4r9cSYvR1tUL9P5nXrG/jLk7R4tWbFJUYg55+MpOTlBsZJh2bFirteHedaF+C3Vs5DthxoZLAyCMwYBLfy6h8Pck7tPiWWsUlt5NF102VqF1zsLi9qQocvtaLV2yT55uYzTlohHq1LCwxElR2KrN2h+erAY9Q9XAT4U/MB/YS3Bu4gT1JZVqNlLzNi0VUj9PJ/bt187d+3Qk/riOR3r3rtWLNfPjGVqwN1khY67RXbdfp0sGtVcDX6t+LzNnztTRo0d18cUXO1GfQKVkwt9rLK6coblHpY7jpmpCt4ZnJ8wzYrRzxTIt25mhjmMna/LILmpaeM7lRGrt4j2Kz6yp1u2bnJVTojzA2MdWYmwgDHzf/yFRh76fp9lffqM5y5dp0exZmrVyk/YneG067+eRnpHqnQsHtXvLRq1bGy9P3UZq2sK3R1nScPqzzz5zbMDzzz/fp8Emw3/BiXUm0e8ya9YsR18UToM/Z/KOa+0HL+vjBZt1NCVVCbFHdPBAUXZ9gSvssCITPOp70c26ZsJAry7zncuQoCenG3A8N85t955QAoGQxyYkG4bvCdQyX9BpBIh4RCNQKkBGAN+jt/iaC63F70d/cfoXF69jV6G9KCEmun/nnXdq6NChPmyinKW4PWu8oj9OqR6vmq9UTQ1a99WgYWO82raP2jeppSo5mUo7Ga2YuMpq3q2b2jarVyZNFSvl0S7acMCL5KaUMdAQ3whPGmvhLWKSMlDwBBVuxMFzeKn4HXif+G+YqPw8A5f/nueo1UXkY8TjYerUqZNzFTTm2OBeeOEFx9nw+uuvOw2eypq02L1aN/9Dzdp6dt2kqzbrqP7nX6lr+pX8b8ahgrePiP8zzzzjZGcYwQ+ZNy+++KKzyD/yyCP5z5YTyce0etl8fbmkGCeAtOmt4edfoit6+Oa8fdaR559/3lkHSHc7XY8LvyV5j2b+7Un94fE1anPnH/SXZ2/VwGIfnJCrhC2f6O8frNLxrrfo8Z8MVdPiboieNEXv3aw1y/coq1U/jRg/UG3rFvEfZxzS999sUmRuqC65frB886n5HpzM//nPf/T111/r7rvvdsrUSoOck+HavmqJFqzerqOJOapWs6YqZWUoM6umWvQYpLHnjdbAri1Vx3f23n9hz3v00Ued/ZE5f7qGTcwFyl9YG8pjXywOyVve128f/YteCR+kR574o34zrafTPLFYpOzT18/9Q0uyeuqye+7UuHZn4SnLOK79G9doxbYkNR8wQiMHtVfDIhw0nthVent+jBp1GKJpo9r4fcQfEMVcZP2RGu3bqP8J7flipuav2aGj+c+cnl4af8VkjR3eWkW3Hzs33nvvPb377rv62c9+5pQsGoYLwcbf/OY3ji4h5Z1+ViXGE6dNn8/Qgi0HFXdWNS21NPCiGzRpWDeF+LDWi7WfyDt2zvjx4/Of/QHe/0cffaR33nnHacx+5ZVXOnsigVX0GnYSwVgypcmoJmBKXzC+BoQ8+oxHsoYI8JJNjQORe1kRj0k24X8GEPEMKNcZwEBz62x4jQHmwiAj2k9NJgaJ6xxgsDHI+JrnGHQI/jNFbRi0bAIcOYjhP3HixPxXKhZkWjz++OPOff7www9PcbYYwQllNggd5hu9N0iJq4jglX7ppZectLPf//73+c8GEAnbNeO5J/T7v65V6G2/0xPP3K3hxdVqOXHa+OEL+nBdmvr85I+6bUCj/Bd+jEwd379Ms79cqH05HTVgZL+iRb+86/fRTfp+V6aaD7lcd0/p4PPUdV9CZAPnJ07j3/3ud6Xa9d6Tk64krzGVmJwuT/W6qtewsRrWqa6qpRiJYL/DsLvmmmuc45kKlzNQ7kDm3Keffuo40m+++Wa/7QNwfN3r+t2jT+r1g4P16788ot9d3U/F9Xel7PhMT768WpX6XaH7bhutlsUt9c5NVPiKOfpy7g5ltu2rQf07FCn6lZOh49tmamFKR42eep2m9/JVDWvpQikm4x8b4N577w2q5o9EL5nTjOuHH364Yve3MIqEtHRq0Mn8IxU9mMQqdv5PfvITp7yLhn1Flbkg/p9++mknKPTb3/7W+dmC6fzAz6DLCLCi2/gaXO1FYBb9xdcVHb9I9fdXSDch5QqhTorZiBEjNHnyZOciBZ/z4ydNmuRcEyZMcAYjZz6SrsLrlCpQr0j6FlF90hcx3Nz6ldPBv4v3ijQVBi2/pyKCoTdjxgznvnNfjYoB45+0ZhpdMvcofalosIlRf4bzg82eTs9FgSMSo5hI6Y+tK2WJJzdbqcd2aNH3czV700HV7tBF/YYOU+fG1VSlGEWy2XHb9f2sLTpaZbAuuXSomhdLAHFW/zbNfv8FvfHlMu2OiNWBjcv/t07xv9cizZvzvQ5nh2j4pCka1MrXrep8CwYLxszGjRsdxzL7UWlRqXI11axTXw0bN1ajBnVVu0aVUqtrBqL4dFOm584dd9xxSiSf7Ltvv/3WcQxg1LHf0vPix856Lns8yslK1uFNszRn/hLtDq+vrv0Gqn+/UDWqWpx7mKS98z7Viria6j15qkaGFrcJZYZids7T+6+8qq9W7tDBo2HasmpZEWPeey3+3vu3rZdaDtGE8SMD5jx/Aig4hHGGYhOR8VFqtf5lDJk8pCJPnz5do0aNOkXQGAZ2EMFHhC99AWiCFyyQ3ckaj0PvdLYec509kKwAovZoqsLrPz/Dc5RCoLNwIHCxrxA8QssVp6yiImDC/xxhADHI3ItBxeDyhfHN78b7S6kB4p+JXtGavXB8FdEdGnj8+te/LtUIl+FfYPgwB6jVotnlkCFDnMW+IoHTi1NGEEE0nCmq7gzBREMcatUwhNnsypPsE2Fau/hbfbVgrXZ7P7dtm9Zq7c4DisnKVe26XiOdaGP4Tq1fs0KbjiSqRpO2alanqI04UzFb5mru1mOqMWyaLh4UomIlPKce05pv39Xzr3yupTsiFBm+v+haRecKU3hUulr3PU8XXzRJnRv5t0HAnED0It5w9mAgBUPUh0j+J5984uxz1DbzviiLQ+TRhInazffff9/pjcP4JhsAp7r/OLmyFLtrseZ9O1vLNu3W3r1btH6td/wfSVBuntcuqJGnjNQ4Hd6xWquW71Bsdl01adFYtYsYbp6TOzX3o1U6WauvJl84XK3rFE+UZ8Vt1ZdvvahXPl2kLWERCj94hnEfdkgR8c3V97zLNWVCTwXK6X5E6QiGsNbxyAknwWATIObIbmNsU8Zgdo5RFIhaHF70ByO7GMcv3wc6OLIpa77wwgudPl5F2TkuZElzrCdOAnrdIOiNc8OEv5/CBED8r1mzxjGC8ARXlBQVUnTwgFPfz3EnbIhGxYKmmwgAxgEeXBb6igLRfhqd4fignpvjfArC2f5sgBiM3B/WBq4zbZplQW5KjA7s2aFdEYmqVLWaqtZqpHbdBjgZS4N6dVaI98/jZISEE8eVXrWh2nboqlZFNQjKjNLmOQu0I7q+Rl56sfo3Lea6l5mgY9EJyqodqmH59+TM10RNmHiehvbtoEZ+fHoWvU4QxpwAQ9NYIv8YfUS9Az06yDhG+DPmgfFMB3eEPumtfE02i5viSoNX/3rPOUqM2KWdO8MUm15ZVbx/W52mndRrEA2cBqhbaCPVzMtWZvJx7z6erdrN26t9+2aqe8pb8OjE9jmasS5FDQZN1vnDWqlWMbMschKjFX4iR3Va9ylijBd1na/Jk0eqT5fGqhUAAX+ynmhuxjnerH2UXuL4ISU+0KP+1PaTxUCJC9mhFu03TgcRb3qhsBeQQUwJcSBHsCnh5cx8SpvvuuuuYh1XTON0OvDTjD3geh75EVbj78fQxAjxO3fuXKeupXDTi2CFjR4vIJGtp556ylnkjIoHKexsDEQ6n3zyyQozDvCC//3vf3c82jQ64xGDlw2SLCDS/ehUy/yYNm2abrjhhqDyfqcdXqg3/j1T+2tP0i8evlidKmiDaxxfnCzjHvVKs1iEG2c609CIeshALgNjPOO8wpAl0u8KfhzeHOPJe2PP4/F0zf6Chpw4rf7Pk/r4UFONueVeXdGnoc+OygpUcHAxJr755hunDpgxQVYIJWC8Rmow5ZWBKv4R/DRrw4F33333Oce1GcaZIBOQMUO2F2fNB3KvC7eZHxmN1113XbFOK2Av/NOf/uRcrAXGuWERfz+GCD/GHo2dSH0n2hHsx7zgBaS2mXNLETQcb2hUTIjq4JfEQMKzzTEvwQ6CjmNtEPZs7sx7jnLjezY9NkvuB2VFbJYI/+BKeUtT+NqZWrwnXs0mXK4pPc7yOLMgAMGPuOezpukdR75yfjkRb44dYg/AEYCDNFBT/hH9ZLWw1iPsb7/9dmevo3yFdGf64SD0iOpSzxrspT45MZv09Zfbld5smKaeP0AhfpyBUtrQsRvnJqV+n332mVMOQjfve+65xxkrZDZxdBcnLhU+ESlQYA2ncTNp28xrxL9h/Bis/WTE0hcikFP+2b9effVVJ8qPHVPcOYw9xL7BsXs4PSpXruju0XPDhL8fg9hhopMGSVSE9Gfq/YMZat44uoPN/ac//alfNSwzyhbSHvECE+XesmXLf4/ADGaIcGHwMtcRR6+99poT4UIQIX7YKKlxvuWWW5yml+Wd3u9z0sK1ftYyHTjeUuMvO19dGlSsZjz0NMGwQfBw7jDjgA72OEEx8ugngyDGIeZGPunv4JOzncsIhBxODRr6MZ6p23dPvsHhwTjn6FbuBfeAsc/75T0Gp+M7RzGbvtbX+zPVfORUTerj/2frlwYIfjJciPCT6UiDV/q7cL42zX3d010QCcwD6p0pg6TRVyCNf2ycf/7zn86+xtgna4EsF8P4MchuYc10A2RoBJxfzIdAgYzGv/71r87fztxm/ha3ZAGbkKwHyh9peFzc/874X0z4+zlE/THu2QQRBRhE/np+cUnB0KNzMxkO1DaPHDky/xWjosJGRwSUui4inIj/YD3eD4FDIzOOBcXphYFLuUNubq7zNRskR3tygkh5N/IrHTxKOrhSM5cf0Mm2k3XZxI6qV0H2ddY+sjqod6e0CxF88cUX68Ybb3TWwYKGHXsCUXFq/+kBw/eI/8JH4PkrNGgj2sN7/PnPf/5fZzZOXpp50seAs9rJZqG+f+vWrY7jmz0QQ4/5H1RCKf2Y1nw5S2E5rTRm8gT1bFyxZH9BwY/TEycvpR04vEgDxsAvWPvOeOd1xA+lIZRBIX4CIfJJRhfHNJPRgDOPTv4VrXGtUTKwiVjvOQaSPYM1kQypQBD/cXFxTqYLexein74WZ7NvsUew/rNnBJKzz98w4e/nMKlJ5STSwSTHW8ymF2ziH889mz4NfGjod+WVVwZkCpPhWzD4WOgxDon+kebmRj6DCTrVEgHFIKTRE11uyW6gmQ1zg1RQmlrhAOE5NwIaVPfBk6gDy7/T8oNp6njBZTqvfV2V4ilyfkFhwU/6JhkdnGuMk+d0Ti4MIFLgMaCIgOAcptmRvzcH42/997//7YxpGjoVLOVC0NHXhjnAeyHKS1NP0v25L5S84OigwRXrQbBkAGQcWanP5x5WXuhYTZ3Qvejz94MQMj8oY3EFP58tpxfh9MfhxWd/OlHAWKEmntRfAiKUiZAJ4882A6L/888/d2wcxj3vM1iDOEbpwjhHB1DuwvhnPjD+/dkeQPTTzBLHL6VdHIt+LhmL7A2WCVwyTPgHAG6Ug8m9cOFCx9hDCARL2iNGHJ57op3UcdO0Kjgjmsa5wOaAyCESzibneryZD8EApTx0bCd1lSgnTi9X1LBZEvXHGYZDgOgWxjIRUBwB3APuTzA4ADyJ+7Vk9jodTOuiC6ePVds6wSv7EfwIfdY8ejcgbMeOHeuk/mIQFedYL7o8IxxwGnECBBFQxo0/RkLI2iGS++abbzqZO5zUQnOmwuOWo9oQgKz/ZDq4Ao99gcgvYhEHADWiOACYOxjBgRs1zdCR1V9ofoRH7cecr3Fdgr+nBeUpHNNInTLrHuOC9Z3o90033aRhw4YVy7ZhnPPf4QjlmEvGGJFPfxT/RGcp36GMEduNaCfj2TDOFTQBF+s/zlLq3f1V/NOck/IdendxQguXP+5TFQUT/gECnm83vZNNk8gOkc9AFz9EcKn5eeWVV5z0zQcffNARdYZREAx7mtiRDo/oJQumOMe/+DsIF4QfUS+ad2IQus36mOOkOhMlxai9/vrrnXpQDEaMXeYNadA4BnAIcE8C1wGQq5N7FmrOhkPK6nGRLh3VWrWDUPcXFPzUuWOscX4xEU6EMCL3bNZ0RA7jBeOP34uoIhLkT0YVY5cx/vLLLzt/n5vijOOiMDi66F3AXocjxIV7QqSH1FDGP44SjgJE8FECgEMgIB0AKQe1ZMZiRVbqpPFTxqhTUcdbBgl8Tjj4EfyIABxArOGXX365M/7pWXK245axz5yhNwRjgYwRnAGny5QpD8jSJNLJHOAYMpoUUrZlGCWFNRSxT3kUmWPsJ/6W9o+TliwvynncAEZxHNtG6WHCP4BA/NPsiU2OyD+Tnq7OgQqiH9GCEUyjm1/84hdW12+cFre+iw2EqB8bXCAfgYRYx1hFEDGXMQhpclYQxD8Ch4gRHa35Od4zabA8kgXhpkAj/kgnZdMvSlT5Nx6lHj+qjJr11GvYWPVpGjw13Ahf1myaMSF4EPxkcVHDj6MH4U9Zx7k4cflv3DFB+jyiGfGMMegP3f5pUIlDgiaVjOU77rjDKWU43fjkiEreA++noPB3KegAoAQAQxdhRRkQ/QFwAPDvEDHm0e/JOK4jx+qoedfBGtK/pWoHWU8LPo8DBw44Yx7xS1YTmSn9+/d3xD5OIL4uSfYi4p+9gHR/SqEYD8wnnmeelSd07+fISjdriw7+Fuk3fAXZj5TH0AOIDCiCgjiXEdZohfIc/8xzRD9BPfYBenaQ6WXlLeWPCf8Awq33d5t+YSBhQGHknYvRWJ4g+klZpq4ZUUN6PymuhnE6MORdg45oN6LZnQ+BNv6J9DN/Gf+8L5qcEfEvDI39eK/MEc40d8UchjLRMv4bN0MGg5dsCBwFlM8ElgOgsmrWb632HXuoXUgDVQuCU3pcwY/oIc2X8UpvBgQ/NfxE+H0RmWT8YEwR6WePoIaSMYBRyHgpj6Z/CD4ivER3qd/GOH3ooYec2uYzRaOoWSWLhSa2REdPB/Md5wA/Q+o0mTEIf4Qf752SAQxP3ntJRGWpU6O+WnTuqK6dmqlBzeA5morPn/2dz5+adj4XcE8koZwJx42vxiZ7Ap2++axxLvBvMyaYX+WR+s96TXbDW2+95XyNk+OKK64w0WOUCpRG0fiYNW/WrFnOvsP4Z7yVR/Sf1H72PI6jZU7Sz4W5b40s/QMT/gEGhh2TmagHkwujEsOPDQ4PXyDA4kStNlEgNkUMAYxhw/gxGOsIfcY7UT6ELl8TKQ8U8U9Unlo3NwqKICKF/3Qg/PHi4xgrHMXFcCbaRV0sZ71TLuOWQyCA8LTjBAiEPgCVqlZXteo1A17081lh9PMZY4QxTvmcWOOo4feV4C8MTh4yQTCuEFpEfygJISpOCnVZOQDIPPn2228dw4/eA4xLDD8efwzOZydCTNo3wvDHYM7jDOR94wDgvbKnMPaZAzgDcLIxzzBAefQvqqh6jWrecR/4ot+N7pPhwZGUjAEykYg+0rukYDlLaXwOjAWcXwh9/g7mgFsGwvgvCwcAay0OPgQPjzi8mPM4bU30GKUJewrZM+zzOFDd6D9rIq+VxUkoZJvheCOgwdxnzSfSz7n7fu2ArWCY8A9ACop/94xzUiQxgPzdo0w6KgYxGyNpyvfee6+JfuOswGikjtN1fpFOSc2vWwrgz9CF+osvvtCMGTMcB8bPfvazM4p+hDuZAfT2oNP/6WpguSdEvYiUIoLY5Kn7oz8A9wdDAIcDRgAGsP8JoMCmcDo/9bx8dqzJGP2InjN16fcVfK5kgOEIo5SE6DkZAETAEf44h0vrsyfVlLWd94/jA6HDsXxEd4ub3syYJWWbSD7zo7gUdAAQ+SUCRrYMdeQ0vsIBgUMCpzPj34xQ3+CKfcYZBj/RfQQH6xVH7JHeTsM+1jjWp9Jed1zxj9OIz591z3UAEAFl/JeGAxTBT8kV758MF94/7x3RjxgLquMnDb+FLC8yAbmYm+z9BNlwAOD8xzlcGgESN63/448/dmwbxju1/HTvp58Ff5fhP1TKI/fQCEhIlye6wYZLczA2PFKG/bVxDKKH42xI/0O4EQWymn7jXEFsIWoYUxj4GPwILAxOf4RIPKJo8+bNTpdyzqimQeeZwLHx1FNPOaLtX//6V7GPv+He4Awk8sk9coW/2y0dw5gSgbMRV8b/wj1G7PK5cnGvEa44ZxD7iB3GYnllWiBGyBYhK4y+GDiFEdQ4zHAOcJ1tM7WC8P5xbnC6BKnVOKgoQWNM8f4nTZp01vXM7Gf8XiKlJc1Q4P279f9EnzB++Z2uc4z3j4Hs785yfwNBgZOLz4r1iXvL3u4etUpvBtY3MpHKU/AiRpiX8+bNc8YAjgBKo/j8+exJjS6JI47xxX1AXLH/sK5zD4hu0rWcDBQT/EZ5QaYTTk/6geH8Yp1jXrIn4RjGBjjXLBTmFms/Ngb2BU5VHF/sJ+wxF110kTO/SsPJYJQcE/5BAOk1iB88zWy2l156qWN0+otBw2ZIyiWiByOBxkycYYvxZRglAZHApkNKNQ4wDE/EP84vf0ltZwMmK4c5SgTeTXslAvZjYFC+8847jqeeEy/OBe4RBipdf9mcyY5g2ScF1+0RgAAKnH4A5Qf3EgHJeuaKfQwgHDJ8now71l5/OpmErDCMP9ZeRLob9eZvZb644hdRjOFWlFjhfSP4eOR34PBA5DOucCjxHPcAwU8Glz81MEOgcQ9wTrhGKveAzALeuzkBfhxX7ONIwYmIyKWMhKwSRARigvuH6Ode+hN81mQkkIWDA4z3giBh/DNPGfOshcwJdw5wEaVk7PAeeSSKz1znkQwC1gHmARdzhrlEKQNlV5bWb/gLbj8hIvLYE+z/ZN6w7jEH2LcYr8wJ1nDGvvu9K/Cx4fmase8GFFhTWftx+jF/mEtkeOHwMsHv35jwDxI4xsatKcUIo4nS1KlTnRqb4kYJfQ2LBRskgoN0IwwHPIF08rVz+g1fQvSJTBJSrdm0EF94t8vTAYDBiDjCIYHHnRId0t8mTJhQLNEPbLps1ryHH8sO+DEQbWzabnQKI5jNHCOAbCHuFUa7ZQL8LwXFrise+VzcZqtkmriRFH9xNhUG4cJnj3Dj7ydSm5yc7BiBzBdS3xE9REBJh0bIuBF33iulAvwOLow9Srb476nXJrLDeyfSg+D313sA/P2sFYz9gk4AosG8D6JgCFnmAaUDFVnAIZDJYCGV3xX77OfcK0S+K/Y5bYR75u/wObvOOj5/hDvlhoxjd7xjK+EA5eI5/hvmP4/cD37edQKQlcJ4Z9ywdvJ1RR4vhn+DA4B5zEUAAsEO2CnMaUphcH654x/xznhnvceWx1HK72DtZz5gj7BOcrIYaz9ZvCb4AwMT/kGEG1mnxoboDp476kpplMQmXVYOAP4OFhWiizgiMByoc8MbTkSIxcUwfA3GGAKb1GaMe2r+EdkYpoz/ssIV/NS60qwMzzjiEG84Dgl/ACOWOeqWAriRgIKZABXZCYCxjzBAKLCmcn/4XDF8ELasqUQ2MPb9va9EYRAunKfvOoEYA3zNmGAOYQBy0Q8CMPKIfiKE3OgohqHbVd+fovtnQ1FOAD5fDFzWDt4XjgDXCRDsjoCCQp974Tq7MPwRxzjrA03snw7GNPOb8c/FWohzy43u8+jCfGfcuw4x7ChEDin9PBpGoME6x9xm7OMMZq4z/rEBmBs4exHxXG4WAOOffQD7nTWRkkHLkApMTPgHIUxg0nqobWNzI7qIIU/0H0OmNCYrYh+jkcwDt96TCD8b5fTp052O5BblN0obBBtGHHWXpHZiwLJJkYKK0VrSus7TgaFIyQ3pr3jUyb5B8OMNJ/vmbKL8ZY3rBMAAoCQBIYQBwKbPvcK4Zc3gPiL6+BrhF0y4Qp/7gBjkM+TzKxzZZwwhCBG9wQJChzHgOgTc77mASCift5sREGyfPbhOAAxh+iLguEPsEgkjIwZjN5gcAXy2jG3WKwRAQaHPfSDSx3vj/RLZw/mH/RDIYv/HQPCwDvDeeXQhG4Yxjy1jGMEKzgDseB7ZBxD52ACsfaz7Fs0PHkz4BylMYAxZIv80tmFDx3PHxt2rVy/nkfReGj2dK25kHyMJ0UB0jOgAAohNkuZORMaslt8oazDciF65tW04pdjACqa0I+JKIuAQ+xjJRISJkhE5ZeyzcWIo0mvDnwV/URR0AiCCSO3lexwBREKJArNmuPcwEB0BjA1ED5+VK3p4jwh9It28T+4D/VIYL4Ea2TfODdcBwnhgHjCvEciMG8Qh4wMxSKo3zmzmACKZqJg/OgQYy/z9rmPSFfm8R9J2uVizXKGPbYCzjzHPxfsyDMMwggMT/kGO6wDgOCMEOiIFjzbPY8hiwBPNwngnssEmj4PA/RqvH0YyF0YPYBiRGkp0H2GAwCLLgJ8nKoDRYILf8AdcBwBZKNQ1I2YZ/whZDFw6PDNuSedkrLsGPNFNvifay9jHccC4R+zzNc9hPLtpovxO0oOJ8COMR40aVeKafH+goCOA+4eDg/fP/UP8cI+4XzhQeP84A3AC8DwCiPTA8qSgyHcjmmQisZZxEdVlLeS9IOIQ+sEY1TfOHTcDAoHslgUgoNnz2AMZ90B2AHsqYwdnAGsIc4PLXVeYF+7zvogg83cxxl1xz3jma3eN4uLvxEHppvK6Ne2sf8xR5qsJfcMwjIqBCf8KBAYuxgEOAIwXjBgEPFE8xD8GDl8T9SKtx01vIzKAscBQ4XmcAhgW/CwGDunTGBDuMUmG4Y9gICNiEbCMf8QskS5gTGMwM6YxzHF+MfYR/ox/hD3jn4uIHxevIQ4R+zwyD4JB7J8J7hH3EIcHYgKnCpFRHCJcCGjuJfeatYH7guhx62P5mvvL164o4vuzxRU7BR8Lih23ZpHn+ewQ+YgeHlnfiOazvpHC7Aoei+gbxcF1BJDdxjxgnOEUwAnOuGMeMAYZbzgUWVO4WFMY6zxHtgBzoSDuvHDhe9YbxjC447zg1+7fwiN/D48F1yicEfxO5qI7H3Fw8Wgi3zAMo+Jhwr+C4joBMFx45HsMB0QOhgwGMs9hxGAcYLiTKu06BLgwJIiQWe2+EWhgNLsClqgd3zP23QtjmrGP4eyOf9cZ4I5/xj3GcyCl8vsa7pN7z7ifOAPcr1lDuH8IECKd/Cz3sGDzOEQQ97Y44p/PA2EDfF78frYv93LFDj+D2Hezlrj4vBBbXKxZCB/D8CWMO8Y++6jbH8IV5DzPvsoYdtcW5oD7NbjzwsX9mrHN/GAuucKfce4+z5rEHGI/5nvmlLtGuRfj3US+YRiGYcLfOAUEv9voA0MDwwHRbxgVAVdU8oixzfhHsBrFB0GD6EH8EA11H93neXTFEFsQ2RM8dyZ4HcFDpBRxA4ge1yFDxJ7PynUmIPLd7w2jvHHHvesMYH1xnyv4ugtrkJuBxBgu6Bxzv3cfydgzYW8YhmH8GCb8DcMwjHLBFULu44/hCnwT84ZhGIZhGGeHCX/DMAzDMAzDMAzDCGIq5z8ahmEYhmEYhmEYhhGEmPA3DMMwDMMwDMMwjCDGhL9hGIZhGIZhGIZhBDEm/A3DMAzDMAzDMAwjiDHhbxiGYRiGYRiGYRhBjAl/wzAMwzAMwzAMwwhiTPgbhmEYhmEYhmEYRhBjwt8wDMMwDMMwDMMwghgT/oZhGIZhGIZhGIYRxJjwNwzDMAzDMAzDMIwgxoS/YRiGYRiGYRiGYQQxJvwNwzAMwzAMwzAMI4gx4W8YhmEYhmEYhmEYQYwJf8MwDMMwDMMwDMMIYkz4G4ZhGIZhGIZhGEYQY8LfMAzDMAzDMAzDMIIYE/6GYRiGYRiGYRiGEcSY8DcMwzAMwzAMwzCMIMaEv2EYhmEYhmEYhmEEMSb8DcMwDMMwDMMwDCOIMeFvGIZhGIZhGIZhGEGMCX/DMAzDMAzDMAzDCGJM+BuGYRiGYRiGYRhG0CL9H+eFWyQLBTyZAAAAAElFTkSuQmCC
* Bei den Produktmodellen waren die Projektionen $$X_1,X_2,\ldots$$ Folgen ''unabhängiger'' ZVs.
* In diesem Abschnitt geht es um ZV-Folgen mit einer besonders einfachen Art der stochastischen ''Abhängigkeit'': Eine ''Markov-Kette'' ist - grob gesprochen - eine ZV-Folge mit ''kurzem Gedächtnis'': das Verhalten zum Zeitpunkt $$n+1$$ hängt nur vom Zustand zum Zeitpunkt $$n$$ ab.
* Von Interesse ist besonders das Langzeitverhalten solcher Folgen: wir diskutieren hier nur die ''Konvergenz ins Gleichgewicht''.
* Der Aspekt der ''Absorption in einer Falle'' kann aus Zeitgründen nur angedeutet werden.
<$latex text="" displayMode="true"></$latex>
Sei $$A\in \mathbb{C}^{m\times n}$$ ein Matrix vom Rang $$r$$ und sei $$B\in \mathbb{C}^{m\times n}$$ eine Matrix vom Rang $$k$$. Für jedes $$k\leq r$$ und jede Rang-$$k$$ Approximation
$$
\hat{A}(k):=\sum_{i=1}^k\sigma_i u_i v_i^t
$$
von $$A$$ gilt
<$latex text="
\begin{aligned}
\hat{A}(k)&=
\argmin_{\{B\in \mathbb{C}^{m\times n}|rang(B)=k\}} \|A-B \|_2,
\\
\|A-\hat{A}(k)\|_2&=\sigma_{k+1}.
\end{aligned}
" displayMode="true"></$latex>
Sei $$A\in \mathbb{C}^{m\times n}$$ und $$\sigma_1$$ der größte Singularwert von $$A$$. Dann gilt
<$latex text="
\|A\|_2=\sup \frac{\|Ax\|_{2}}{\|x\|_{(2)}}=\sigma_1.
" displayMode="true"></$latex>
Sei $$B=(b_1,\cdots,b_n)$$ eine Orthonormalbasis von $$V$$ und $$A=DM_B(f)$$, so gilt
<$latex text="
f \ \text{selbstadjungiert} \Leftrightarrow A^t=A
" displayMode="true"></$latex>
! Satz
Die $$n$$-te Potenz $$\Pi^n$$ der zeilenstochastischen Matrix $$\Pi$$ enthält an der Position $$(x,y)$$ die Wahrscheinlichkeit,
in genau $$n$$ Schritten vom Zustand $$x$$ in den Zustand $$y$$ zu gelangen:
<$latex text="\textcolor{blue}{P^x(X_n=y)=\Pi^n(x,y)}." displayMode="true"></$latex>
!! Beweis
Für beliebiges $$n\ge 1$$ und $$x_1,\ldots,x_n\in V$$ gilt nach der Produktformel
<$latex text=" \begin{aligned}
&&P^x(X_1=x_1,\ldots,X_n=x_n)\\
&=&P^x(X_1=x_1|X_0=x)\cdot P^x(X_2=x_2|X_0=x,X_1=x_1)\cdot\ldots\\
&&\ldots\cdot P^x(X_n=x_n|X_0=x,X_1=x_1,\ldots,X_{n-1}=x_{n-1})\\
&=&\Pi(x,x_1)\cdot \Pi(x_1,x_2)\cdot\ldots\cdot \Pi(x_{n-1},x_n).\end{aligned}" displayMode="true"></$latex>
Durch Summation über $$x_1,\ldots,x_{n-1}\in V$$ erhält man für alle $$x,y\in V$$: $$P^x(X_n=y)=\Pi^n(x,y)$$.
Sei $$p\in K[X]$$ mit $$\deg(p)=n\geq 0$$.
Dann gibt es endlich viele paarweise verschiedene $$\lambda_1,\dots,\lambda_r\in K$$ und $$q\in K[X]$$ ohne Nullstellen, so dass
<$latex text="p=q\prod_{j=1}^r (X-\lambda_j)^{\nu_j}" displayMode="true"></$latex>
und $$\nu_1+\dots+\nu_r + \deg(q)=n$$.
$$\nu_j$$ heißt ''Vielfachheit'' von $$\lambda_j$$.
!! Beweis
Vollständige Induktion nach $$n=\deg(p)$$.
''Induktionsanfang:'' $$n=0$$ folgt sofort.
''Induktionsschritt:'' Sei $$\deg(p)=n+1$$. Dann gilt entweder
* $$p$$ hat keine Nullstellen, daher sei $$r=0$$ und $$q=p$$
* oder $$\lambda \in K$$ ist eine Nullstelle von $$p$$. Dann folgt<$latex text="p=q(X-\lambda)=\tilde{q}\left(\prod_{j=1}^r (X-\lambda_j)^{\nu_j}\right)(X-\lambda)" displayMode="true"></$latex>
da es nach der Induktionshypothese ein solches $$\tilde{q}$$ und $$\nu_1+\dots+\nu_r+\deg(\tilde{q})=n$$ gibt.
!! Korollar
Stimmen zwei Polynome $$p,q\in K[X]$$ mit $$\deg(p),\deg(q)\leq n$$ in $$n+1$$ Punkten überein, so gilt schon $$p=q$$.
Dies gilt da $$\deg(p-q)\leq n$$, aber $$p-q$$ mindestens $$n+1$$ Nullstellen hat. Also gilt schon $$p-q=0$$.
$$\| \cdot \|$$ bezeichne die zum Skalarprodukt gehörige Norm. Aufgrund der Cauchy-Schwarz-Ungleichung
<$details summary="Bemerkung" tiddler="Bemerkung">
Cauchy-Schwarz-Ungleichung: $$|\langle g,h \rangle |^2$$
$$\leq \langle g,g \rangle \langle h,h \rangle $$.
Gleichheit, wenn $$g$$ und $$h$$ linear abh\"angig,
$$\cos \varphi =$$ $$\frac{ \langle x,y \rangle }{\|x\| \cdot \|y\|} $$
</$details>
gibt es einen Winkel $$\varphi$$ zwischen den Vektoren grad$$f(a)$$ und $$h$$ derart, dass
<$latex text="
df(a)h = \partial_h f(a) = \langle \text{grad}f(a), h \rangle
= \| \text{grad}f(a) \| \cdot \| h \| \cdot \cos \varphi.
" displayMode="true"></$latex>
Nach dieser Darstellung zeichnet sich der Gradient durch folgende Maximalitätseigenschaft aus:
*Seine Länge $$\| \text{grad}f(a) \|$$ ist das Maximum aller Richtungsableitungen $$\partial_hf(a)$$ nach den Einheitsvektoren <$latex text=" \| \text{grad}f(a) \| = \text{max} \left \{ \partial_hf(a) \quad | \quad \|h\| = 1 \right \} =: M " displayMode="true"></$latex>
*Im Fall $$M \neq 0$$ gibt es genau einen Einheitsvektor $$\hat h$$ mit $$\partial_{\hat h}f(a) = M$$ und mit diesem ist grad$$f(a) = M \hat h$$. Der Gradient zeigt also in die Richtung des stärksten Anstiegs der Funktion im Punkt $$a$$.
Es sei $$({\mathcal{X}},{\mathcal{A}},(P_{\theta})_{\theta\in\Theta})$$ ein statistisches Standardmodell; dann ist jedes $$P_{\theta}$$ durch eine W-Funktion
oder Dichte $$p_\theta$$ gekennzeichnet.\medskip
''Idee'': Wird $$x\in{\mathcal{X}}$$ beobachtet, so bestimme den Schätzwert $$T(x)\in\Theta$$ so, dass
<$latex text="\textcolor{blue}{p_{T(x)}(x)=\max_{\theta\in\Theta}p_\theta(x)}." displayMode="true"></$latex>
''Bemerkung'': Da im stetigen Modell $$P_\theta(\{x\})$$ typischerweise gleich Null ist, sind wir zu Dichten übergegangen.
!! Definition: Likelihood-Funktion
* Die Funktion $$p:{\mathcal{X}}\times\Theta\to {[0,\infty)}$$ mit <$latex text="\textcolor{blue}{p(x,\theta):= p_\theta(x)}" displayMode="true"></$latex>heißt die zugehörige ''Likelihood-Funktion''.
* $$p(x,\cdot):\Theta\to{[0,\infty)}$$ heißt die ''Likelihood-Funktion zum Beobachtungswert $$x\in{\mathcal{X}}$$''.
!! Definition: Maximum-Likelihood-Schätzer
Ein Schätzer $$T:{\mathcal{X}}\to\Theta$$ für $$\theta$$ heißt ''Maximum-Likelihood-Schätzer'',
(engl.: $$\text{\textcolor{blue}{M}aximum \textcolor{blue}{L}ikelihood \textcolor{blue}{E}stimator)}$$,
kurz: $$\textcolor{blue}{\text{MLE}}$$, wenn für jedes $$x\in{\mathcal{X}}$$ stets $$T(x)$$ eine Maximalstelle von $$p(x,\cdot)$$
ist, d.h.: <$latex text="\textcolor{blue}{p(x,T(x))=\max_{\theta\in\Theta}p(x,\theta)}." displayMode="true"></$latex>
!!! Bemerkung.
Zur MLE-Bestimmung ist es oft bequem, mit der sogenannten ''Log-Likelihood-Funktion'' $$\log p(x,\cdot)$$ zu rechnen, die wegen der
Monotonie der Logarithmus-Funktion dieselben Maximalstellen wie $$p(x,\cdot)$$ hat.
Bedingte Wahrscheinlichkeiten ermöglichen es uns, mehrstufige Zufallsexperimente systematisch in Angriff zu nehmen. Wir beginnen mit einem vieldiskutierten Beispiel, dem ''Ziegenproblem''.
Bei einer Spielshow gibt es drei verschlossene Türen. Hinter zwei Türen befindet sich jeweils eine Ziege (Niete), hinter einer dritten der Hauptgewinn: ein Auto. Die Kandidatin hat die Möglichkeit, durch die richtige Türwahl das Auto zu gewinnen. Die Türwahl verläuft in Etappen:
* Zunächst wählt die Kandidatin eine der drei Türen. Diese Tür bleibt zunächst weiter verschlossen.
* Der Moderator öffnet eine andere Tür, hinter der sich eine Ziege befindet.
* Jetzt wird die Kandidatin aufgefordert, ihre endgültige Wahl zwischen den beiden noch verschlossenen Türen zu treffen.
!! Frage:
Wie soll sich die Kandidatin verhalten? Soll sie bei ihrer ersten Wahl bleiben oder lohnt es, dass sie sich umentscheidet?
Die Konstruktion [[mehrstufiger Modelle |Mehrstufige Experimente: Motivation]]umfasst Markov-Ketten als Spezialfall. Setzt man <$latex text="p_{k|\omega_0,\ldots,\omega_{k-1}}(\omega_k):=\Pi(\omega_{k-1},\omega_k)," displayMode="true"></$latex>
so sieht man, dass die Markov-Eigenschaft ein Spezialfall der Bedingung (b) im
Satz über die Konstruktion mehrstufiger Modelle ist.
Nach diesem Satz existiert zu jeder Startverteilung $$\alpha$$ auf $$V$$ genau ein W-Maß $$P^\alpha$$ auf
<$latex text="(\Omega,{\mathcal{A}}):=(\prod_{k\ge 0}V,\bigotimes_{k\ge 0}2^V)" displayMode="true"></$latex>
derart, dass die Projektionen $$X_n:\Omega\to V$$, <$latex text="X_n:(\omega_k)_{k\ge 0}\mapsto \omega_n," displayMode="true"></$latex>
eine Markov-Kette zu $$\Pi$$ und $$\alpha$$ bilden.
Ist $$\alpha=\delta_x$$ für ein $$x\in V$$ (//sicherer Start// in $$x$$), so schreibt man kurz $$P^x$$ statt $$P^\alpha$$.
Sei $$(\Omega,\mathcal{A},P)$$ ein W-Raum und $$(A_n)_{n\ge 1}$$ eine aufsteigende Kette von Ereignissen $$A_n\in\mathcal{A}$$. Ist $$A:=\bigcup_{n\ge 1}A_n$$, so gilt: <$latex text="P(A)=\lim_{n\to\infty}P(A_n)." displayMode="true"></$latex>
!! Beweis
Mit $$A_0:=\emptyset$$ gilt unter Verwendung der $$\sigma$$-Additivität von $$P$$:
<$latex text=" \begin{aligned}
P(A)&=& P\Big(\bigsqcup_{i\ge 1}(A_i\setminus A_{i-1})\Big)\\
&=&\sum_{i\ge 1}P(A_i\setminus A_{i-1})=\lim_{n\to\infty}\sum_{i=1}^n
P(A_i\setminus A_{i-1})\\
&=&\lim_{n\to\infty}P\Big(\bigsqcup_{i=1}^n(A_i\setminus A_{i-1})\Big)\\
&=&\lim_{n\to\infty}P(A_n).
\end{aligned}" displayMode="true"></$latex>
Damit ist die $$\sigma$$-Stetigkeit von W-Maßen bewiesen.
! Definition
Es seien $$(\Omega,{\mathcal{A}})$$ und $$(\Omega',{\mathcal{A}}')$$ Messräume.
$$X:\Omega\to \Omega'$$ heißt ''$$({\mathcal{A}},{\mathcal{A'}})$$-messbar'' oder eine
''Zufallsvariable'', kurz: ''ZV'', wenn das $$X$$-Urbild von jedem $$A'\in{\mathcal{A'}}$$ zu $${\mathcal{A}}$$ gehört:
<$latex text="\textcolor{blue}{\forall A'\in {\mathcal{A'}}: \quad X^{-1}[A']:=\{\omega\in\Omega\mid X(\omega)\in A'\}\in {\mathcal{A}}}." displayMode="true"></$latex>
Statt $$X^{-1}[A']$$ schreibt man oft suggestiver: $$\textcolor{blue}{\{X\in A'\}}$$.
!!Achtung
Die Notation ist eine Abkürzung und mathematisch nicht akkurat.
!!Bemerkung
* Im Fall $${\mathcal{A}}=2^\Omega$$ ist jede Abbildung eine Zufallsvariable.
* ''Sparversion der Messbarkeitsbedingung'': Wird die $$\sigma$$-Algebra $${\mathcal{A'}}$$ von $${\mathcal{G'}}$$ erzeugt, $$\sigma({\mathcal{G'}})={\mathcal{A'}}$$, so ist $$X:\Omega\to \Omega'$$ bereits dann eine ZV, wenn gilt (Übung): <$latex text="\textcolor{blue}{\forall A'\in {\mathcal{G'}}:\quad X^{-1}[A']\in {\mathcal{A}}}." displayMode="true"></$latex>
* Die $$({\mathcal{A}},{\mathcal{A'}})$$-Messbarkeit von $$X:\Omega\to \Omega'$$ schreibt man oft kurz als $$\textcolor{blue}{X:(\Omega,{\mathcal{A}})\to(\Omega',{\mathcal{A}}')}$$.
Die Produktabbildung aus [[Gemeinsame Verteilungen]] $$X:=X_1\otimes\ldots\otimes X_n\colon
\Omega\to \Omega_1\times\ldots\times\Omega_n$$ ist $$(\mathcal{A},\mathcal{A}_1\otimes\ldots\otimes\mathcal{A}_n)$$-messbar.
!! Beweis
* $$\mathcal{A}_1\otimes\ldots\otimes\mathcal{A}_n$$ wird erzeugt von allen $$A_1\times\ldots\times A_n$$, wobei $$A_i\in\mathcal{A}_i$$, für alle $$i\in[1:n]$$.
* $$X^{-1}[A_1\times\ldots\times A_n]=X_1^{-1}[A_1]\cap\ldots\cap X_n^{-1}[A_n]$$.
* Wegen der $$(\mathcal{A},\mathcal{A}_i)$$-Messbarkeit von $$X_i=\pi_i\circ X$$ liegt $$X_i^{-1}[A_i]$$ in $$\mathcal{A}$$.
* Da $$\mathcal{A}$$ unter endlicher Durchschnittsbildung abgeschlossen ist, liegt auch $$X^{-1}[A_1\times\ldots\times A_n]$$ in $$\mathcal{A}$$.
* Nach der Sparversion der Messbarkeitsbedingung (siehe Folie 5) ist $$X$$ also $$(\mathcal{A},\mathcal{A}_1\otimes\ldots\otimes\mathcal{A}_n)$$-messbar.
Im reellen Fall kann das Minimum in Gleichung [ [[Lineares Ausgleichsproblem]] ] alternativ mit Methoden der Differentialrechnung bestimmt werden.
<$details summary="Details" tiddler="Details">
Sei dazu $$d\in \mathbb{R}^n$$, so berechnen wir die Richtungsableitung nach $$d$$ an der Stelle $$x$$ gemäß
<$latex text="
{\tiny
\frac{\partial}{\partial d}\Phi(x)=\lim_{t\rightarrow 0}\frac{\Phi(x+td)-\Phi(x)}{t}.
}
" displayMode="true"></$latex>
Wegen
<$latex text="
{\tiny
\begin{aligned}
\Phi(x+td)-\Phi(x)&=&\frac{1}{2}(b-Ax-tAd)^*(b-Ax-tAd)-\frac{1}{2}(b-Ax)^*(b-Ax)\\
&=&t(Ad)^*(Ax-b)+\frac{1}{2}t^2(Ad)^*Ad.
\end{aligned}
}
" displayMode="true"></$latex>
folgt
<$latex text="
{\tiny
\frac{\partial}{\partial d}\Phi(x)=(Ad)^*(Ax-b)
}
" displayMode="true"></$latex>
Nullsetzen liefert eine notwendige Bedingung für ein Minimum.
</$details>
<$details summary="Beispiel (Normalengleichung)" tiddler="Beispiel (Normalengleichung)">
{{Beispiel Normalengleichung}}
</$details>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/oqGQvtb9KnI?rel=0&start=2810" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
Sei $$n\in\N$$ mit $$n\ge2$$, $$\Theta:=\R\times\R_{+}$$ und <$latex text="(\mathcal{X},\mathcal{A},(P_{\theta})_{\theta\in\Theta}):=(\R^{n},\mathcal{B}^{n},(\mathcal{N}_{m,v}^{\otimes n})_{(m,v)\in\Theta})" displayMode="true"></$latex>
das Gauß'sche Produktmodell mit unbekanntem Erwartungswert und Varianz $$(m,v)\in\Theta$$. {}Für $$i\in\{1,\ldots,n\}$$ sei $$X_{i}(\omega_{1},\ldots,\omega_{n}):=\omega_{i}$$ die zugehörige Projektion.{}
#Sei <$latex text="\begin{aligned}
M & :=\frac{1}{n}\cdot\sum_{i=1}^{n}X_{i}\text{,} & V^{*} & :=\frac{1}{n-1}\cdot\sum_{i=1}^{n}(X_{i}-M)^{2}\text{,} & T_{m} & :=\sqrt{n}\cdot\frac{M-m}{\sqrt{V^{*}}}\text{.}
\end{aligned}" displayMode="true"></$latex>Dann ist die Verteilung $$Q:=P_{m,v}\circ T_{m}^{-1}$$ unabhängig von der Wahl von $$(m,v)\in\Theta$$. Sie heißt \textbf{studentsche $$t_{n-1}$$-Verteilung}.
# Sei $$0<\alpha<1$$ und sei $$t$$ das $$(1-\frac{\alpha}{2})$$-Quantil zu $$Q$$. Dann ist <$latex text=" \left(M-t\cdot\frac{\sqrt{V^{*}}}{\sqrt{n}},\,M+t\cdot\frac{\sqrt{V^{*}}}{\sqrt{n}}\right)" displayMode="true"></$latex> ein Konfidenzbereich für $$\tau(m,v):=m$$ zum Irrtumsniveau $$\alpha$$.
Sei
$$S_{m,v}:\,\R^{n}\rightarrow\R^{n}$$ die Standardisierungsabbildung: <$latex text="S_{m,v}:=\left(\frac{X_{1}-m}{\sqrt{v}},\,\ldots,\,\frac{X_{n}-m}{\sqrt{v}}\right)" displayMode="true"></$latex>
Dann gilt $$P_{m,v}\circ S_{m,v}^{-1}=\mathcal{N}_{0,1}^{\otimes n}$$ (Übung). Weiter gilt\vspace{-2mm} %für das Stichprobenmittel $$M$$ und die korrigierte Stichprobenvarianz $$V$$: <$latex text="\begin{aligned}
M\circ S_{m,v} & = & \frac{1}{n}\cdot\sum_{i=1}^{n}\frac{X_{i}-m}{\sqrt{v}}=\frac{M-m}{\sqrt{v}}\\
V^{*}\circ S_{m,v} & = & \frac{1}{n-1}\cdot\sum_{i=1}^{n}\left(\frac{X_{i}-m}{\sqrt{v}}-\frac{M-m}{\sqrt{v}}\right)^{2}=\frac{1}{v}\cdot\frac{1}{n-1}\cdot\sum_{i=1}^{n}(X_{i}-M)^{2}=\frac{V^{*}}{v}\\
T_{0}\circ S_{m,v} & = & \sqrt{n}\cdot\frac{M\circ S_{m,v}}{\sqrt{V^{*}\circ S_{m,v}}}=\sqrt{n}\cdot\frac{M-m}{\sqrt{V^{*}}}=T_{m}
\end{aligned}" displayMode="true"></$latex>
Daraus folgt: <$latex text="Q=P_{m,v}\circ T_{m}^{-1}=P_{m,v}\circ(T_{0}\circ S_{m,v})^{-1}=P_{m,v}\circ S_{m,v}^{-1}\circ T_{0}^{-1}=\mathcal{N}_{0,1}^{\otimes n}\circ T_{0}^{-1}" displayMode="true"></$latex>
Dabei hängt $$\mathcal{N}_{0,1}^{\otimes n}\circ T_{0}^{-1}$$ offensichtlich weder von $$m$$ noch von $$v$$ ab.
Aus der Darstellung $$Q=\mathcal{N}_{0,1}^{\otimes n}\circ T_{0}^{-1}$$
ist ersichtlich, dass $$Q$$ achsensymmetrisch verteilt ist, d.h. $$Q(A)=Q(-A)$$
für alle $$A\in\mathcal{B}^{1}$$. Es folgt: <$latex text="\begin{aligned}
& & Q([t,\infty))=Q((-\infty,-t])\le\frac{\alpha}{2}\;\wedge\;Q((-\infty,t])\ge1-\frac{\alpha}{2}\\
\Rightarrow & & Q((-t,\,t))=Q((-\infty,t])-Q((-\infty,-t])\ge1-\alpha
\end{aligned}" displayMode="true"></$latex>
Dies entspricht dem Ereignis $$-t\le T_{m}\le t$$ welches
äquivalent ist zu: <$latex text=" \begin{aligned}
& & -t<\sqrt{n}\cdot\frac{M-m}{\sqrt{V^{*}}}<t\\
\Leftrightarrow & & M+t\cdot\frac{\sqrt{V^{*}}}{\sqrt{n}}>m>M-t\cdot\frac{\sqrt{V^{*}}}{\sqrt{n}}
\end{aligned}" displayMode="true"></$latex>
Die Wahrscheinlichkeit, dass der angegebene Konfidenzbereich $$m$$ enthält beträgt also mindestens $$1-\alpha$$.
Sei $$f$$ eine reelle differenzierbare Funktion in einer offenen Menge $$U \subset \R^n$$.
Ferner seien $$a,b \in U$$ Punkte, deren Verbindungsstrecke in U liegt.
Dann gibt es einen Punkt $$\xi \in [a,b]$$ mit
<$latex text="
f(a)-f(b) = df(\xi)(b-a) = f'(\xi)(b-a)
" displayMode="true"></$latex>
<$details summary="Beweis" tiddler="Beweis">
{{Beweis: Mittelwertsatz}}
</$details>
Es sei $$f:[a,b]:\to\R$$ eine [[stetige|Stetige reelle Funktionen (Über Grenzwerte)]] Funktion, welche auf $$(a,b)$$ [[differenzierbar|Differenzierbarkeit: Analysis]] ist. Dann existiert ein $$\xi\in (a,b)$$ mit
<$latex text="f'(\xi)=\frac{f(b)-f(a)}{b-a}." displayMode="true"></$latex>
!! Beweis
Folgt direkt aus dem [[Satz von Taylor]] mit $$n=0$$.
!! Verallgemeinerte Version
Es sei $$a<b$$, $$f,g:[a,b]\to\R$$ stetige Funktionen, welche auf $$(a,b)$$ differenzierbar sind. Außerdem sei $$g'(x)\neq 0$$ auf $$(a,b)$$. Dann existiert ein $$\xi\in(a,b)$$ mit
<$latex text="\frac{f'(\xi)}{g'(\xi)}=\frac{f(b)-f(a)}{g(b)-g(a)}." displayMode="true"></$latex>
!! Beweis
Folgt aus dem [[Satz von Rolle]] für $$h(x)=\frac{f(b)-f(a)}{g(b)-g(a)}(g(x)-g(a))$$.
Es sei $$f:[a,b]\to\R$$ eine [[stetige|Stetige reelle Funktionen (Über Grenzwerte)]] Funktion und $$g:[a,b]\to\R_{\geq 0}$$ eine pnicht negative [[Regelfunktion|Regelfunktionen]]. Dann gibt es $$\xi\in [a,b]$$ mit
<$latex text="\int_a^bf(x)g(x)dx=f(\xi)\int_a^bg(x)dx." displayMode="true"></$latex>
!! Beweis
Da $$f$$ stetig ist, nimmt die Funktion auf $$[a,b]$$ ein Minimum und ein Maximum an. Wir setzten
<$latex text="m\coloneqq\min\{f(x)|x\in[a,b]\}" displayMode="true"></$latex>
und
<$latex text="M\coloneqq\max\{f(x)|x\in[a,b]\}." displayMode="true"></$latex>
Da $$g\geq 0$$ vorausgesetzt wurde, gilt
<$latex text="mg\leq fg\leq Mg" displayMode="true"></$latex>
und nach [[Eigenschaften des Integrals]]
<$latex text="m\int_a^bg(x)dx\leq \int_a^bf(x)g(x)dx\leq M\int_a^bg(x)dx." displayMode="true"></$latex>
Gilt also $$\int_a^b g(x)dx=0$$, so ist auch
$$\int_a^bf(x)g(x)dx=0$$ und der Satz ist wahr. Sei im Folgenden also $$\int_a^b g(x)dx\neq0$$, also insbesondere
$$\int_a^b g(x)dx>0$$.
Dann ist
<$latex text="\mu=\frac{\int_a^b f(x)g(x)dx}{\int_a^b g(x)dx}\in[m,M]" displayMode="true"></$latex>
und die Aussage folgt aus dem [[Zwischenwertsatz|Zwischenwertsätze]].
Bei vielen Experimenten können wir annehmen, dass die Messwerte durch eine normalverteilte Zufallsvariable mit unbekanntem Erwartungswert $$m$$ und unbekannter Varianz $$v>0$$ modelliert werden können, die wir beide aus den Experimenten schätzen wollen.
Machen wir $$n$$ unabhängige Experimente können wir als statistisches Modell das ''$$n$$-fache Gauß'sche Produktmodell'' wählen:
<$latex text=" (\mathcal{X},\mathcal{A},(P_{\theta})_{\theta\in\Theta}):=(\R^{n},\mathcal{B}^{n},(\mathcal{N}_{m,v}^{\otimes n})_{m\in \mathbb{R}, v>0})" displayMode="true"></$latex>
Die zugehörige Likelihood-Funktion hat die Form
<$latex text="p((x_1,\ldots,x_n),\theta)=\prod_{i=1}^n N(m,v)(x_i)=(2\pi v)^{-n/2}exp\left[ -\sum_{i=1}^n\frac{(x_i-m)^2}{2v}\right]" displayMode="true"></$latex>
Die Likelihood-Funktion wird maximal, wenn $$m$$ so gewählt wird, dass die quadratische Abweichung $$\sum_{i=1}^n (x_i-m)^2$$ minimal wird.
Die ist der Fall für den ''Stichprobenmittelwert'' <$latex text=" m=M((x_1,\cdots,x_n)):=\frac{1}{n}\sum_{i=1}^n x_i" displayMode="true"></$latex>
Dies folgt aus der ''Verschiebungsformel'': <$latex text="\frac{1}{n}\sum_{i=1}^n (x_i-m)^2=\frac{1}{n}\sum_{i=1}^n \left((x_i-M(x))^2+(M(x)-m)^2\right)," displayMode="true"></$latex>
die aus dem Satz von Pythagoras folgt.
Weiter müssen wir $$v$$ so wählen, dass $$(2\pi v)^{-n/2}exp\left(-\sum_{i=1}^n\frac{(x_i-M)^2}{2v}\right)$$ maximal wird.
Differenzieren der Log-Likelihood liefert <$latex text="-\frac{d}{dv}\left(\frac{n}{2}\log(2\pi v)+\frac{1}{2v}\sum_{i=1}^n(x_i-M)^2=-\frac{n}{2v}+\frac{1}{2v^2}\sum_{i=1}^n (x_i-M)^2\right)" displayMode="true"></$latex>
Nullsetzen des zweiten Terms liefert
<$latex text="v=V((x_1,\cdots,x_n)):=\frac{1}{n}\sum_{i=1}^n(x_i-M)^2" displayMode="true"></$latex>
! Satz: Maximum-Likelihood-Schätzer im Gauß-Modell
Der Maximum-Likelihood-Schätzer im $$n$$-fachen Gauß'schen Produktmodell ist $$T=(M, V).$$ Dabei ist
<$latex text="M=M((x_1,\cdots,x_n))=\frac{1}{n}\sum_{i=1}^n x_i" displayMode="true"></$latex>
das Stichprobenmittel und
<$latex text="V=V((x_1,\cdots,x_n))=\frac{1}{n}\sum_{i=1}^n (x_i-M)^2" displayMode="true"></$latex>
die Stichprobenvarianz.
Zur Modellierung der Rechenarithmetik machen wir folgende beiden Modellannahmen:
*$$x \bullet y := \Box( x \circ y )$$, wobei $$x, y \in F$$, $$\circ$$ die mathematische Grundoperation, $$\Box x$$ die Rundung von $$x\in \mathbb{R}$$ zur nächstgelegenen Maschinenzahl und $$\bullet$$ die Realisierung dieser Grundoperation auf dem Rechner ist.
*Die //Rechneroperation// soll den tatsächlichen Wert innerhalb einer //maximalen relativen Genauigkeit// bestimmen, d.h. $$\forall x \in \mathbb{R}, \exists \varepsilon : | \varepsilon | \leq \varepsilon_{M}$$ mit <$latex text="
\Box \text{ } x = x (1 + \varepsilon ). \qquad (5.10)
" displayMode="true"></$latex>
Dabei ist $$\varepsilon_{M} = \inf \{ x > 0 : 1 \oplus x \neq 1 \}$$.
<$details summary="Bemerkung" tiddler="Bemerkung">
$$\varepsilon_{M}$$ steht für $$\varepsilon_{machine}$$.
</$details>
<$details summary="Bemerkung: Machine Epsilon" tiddler="Bemerkung: Machine Epsilon">
{{Bemerkung: Machine Epsilon}}
</$details>
Unter beiden Modellannahmen 1. und 2. sind alle Elementaroperationen auf dem
Rechner in der folgenden Weise realisiert:
<$latex text="
\begin{aligned}
\forall x, y \in \R, \exists \varepsilon :& | \varepsilon | \leq \varepsilon_{M}, \text{ s.d.} \\
x \bullet y =& ( x \circ y ) (1 + \varepsilon ) \qquad (5.12)
\end{aligned}
" displayMode="true"></$latex>
d.h. jede Operation der Floating Point Arithmetik ist //genau// bis auf einen
//relativen Fehler// in der Größenordnung der Maschinengenauigkeit.
* Ein statistisches Modell $${\mathcal{M}}=
({\mathcal{X}},{\mathcal{A}},(P_{\theta})_{\theta\in\Theta})$$ heißt ''parametrisches Modell'', wenn $$\Theta\subset\R^d$$ für ein $$d\in\N$$. Ist $$d=1$$, so heißt $${\mathcal{M}}$$ ein ''einparametrisches Modell''.
* $${\mathcal{M}}$$ heißt ein ''diskretes Modell'', wenn $${\mathcal{X}}$$ diskret, d.h. $$|{\mathcal{X}}|\le|\N|$$ und $${\mathcal{A}}=2^{\mathcal{X}}$$ ist. Dann ist jedes$$P_\theta$$ durch die W-Funktion $$p_\theta:x\mapsto p_\theta(x):=P_\theta(\{x\})$$ bestimmt.
* $${\mathcal{M}}$$ heißt ein ''stetiges Modell'', wenn $${\mathcal{X}}$$ eine Borel-Teilmenge eines $$\R^n$$ ist, $${\mathcal{A}}={\mathcal{B}}_{\mathcal{X}}^n$$ die auf $${\mathcal{X}}$$ eingeschränkte Borel-$$\sigma$$-Algebra von $$\R^n$$, und jedes $$P_\theta$$ eine Dichtefunktion $$p_\theta$$ besitzt.
* Ist $${\mathcal{M}}$$ diskret oder stetig, so sprechen wir von $${\mathcal{M}}$$ als ein ''Standardmodell''.
Der Urneninhalt $$\textcolor{red}{\bullet}\textcolor{red}{\bullet}\textcolor{red}{\bullet}\textcolor{red}{\bullet}
\textcolor{blue}{\bullet}\textcolor{black}{\bullet}\textcolor{black}{\bullet}$$ ($$4$$ rote, $$1$$ blaue, $$2$$ schwarze Kugeln) wird durch folgende Parameter beschrieben:
* $$N=7$$: Anzahl der Kugeln
* $$F=\{\textcolor{red}{\bullet},\textcolor{blue}{\bullet},\bullet\}\equiv \{\text{rot, blau, schwarz}\}$$
* $$N_{\textcolor{red}{\bullet}}\equiv N_{\text{rot}}=4$$, $$N_{\textcolor{blue}{\bullet}}\equiv N_{\text{blau}}=1$$,$$N_{\bullet}\equiv N_{\text{schwarz}}=2$$;
* $$N=7=4+1+2$$.
Vom klassischen zum modifizierten GS-Verfahren}
Das klassische Gram-Schmidt-Verfahren ist numerisch instabil, d.h. maschinell errechnete Ergebnisse
können von den tatsächlichen (exakten) Lösungen teilweise deutlich abweichen.
Zur Stabilisierung wurde das Verfahren daher wie folgt modifiziert: anstatt wie der klassische Algorithmus (vgl. 4.3 [[Klassisches Gram-Schmidt-Verfahren]]) eine einzige orthogonale Projektion vom Rang $$m-(j-1)$$ zu berechnen
<$latex text="
q_j=\frac{P_{j}a_{j}}{\|P_{j}a_{j}\|_2}, \qquad (4.11)
" displayMode="true"></$latex>
berechnet das modifizierte Verfahren dieselbe Projektion von $$P_j$$ als Folge von $$j-1$$
Projektionen
<$latex text="
P_{\perp q_{i}}=I-q_iq_i^*, i=1,\cdots, j-1 \qquad (4.12)
" displayMode="true"></$latex>
vom Rang $$m-1$$ auf die jeweils zu $$q_1,...,q_{j-1}$$ orthogonalen Unterräume.
Ausmultiplizieren und Ausnutzen der Orthogonalität von $$q_i$$ und $$q_j, j\neq i$$ liefert
<$latex text="
\begin{aligned}
P_{\perp q_{j-1}}...P_{\perp q_2}P_{\bot q_1} &=(I-q_{j-1}q_{j-1}^*)\cdots (I-q_{2}q_{2}^*)(I-q_{1}q_{1}^*)\\
&= I-q_{j-1}q_{j-1}^*-\cdots-q_{2}q_{2}^*-q_{1}q_{1}^* \\
&= P_j.
\end{aligned}
" displayMode="true"></$latex>
Das heißt eine zu Gleichung (4.11) äquivalente Aussage ist
<$latex text="
q_{j}=\frac{P_{\bot q_{j-1}}...P_{\bot q_{2}}P_{\bot q_{1}}a_{j}}{\|P_{\bot q_{j-1}}...P_{\bot q_{2}}P_{\bot q_{1}}a_{j}\|}. \qquad (4.13)
" displayMode="true"></$latex>
Der modifizierte Algorithmus berechnet also $$v_j$$ auf die folgende Weise:
<$latex text="
\begin{array}{rcl}
v_{j}^{(1)} &=& a_{j} \\
v_{j}^{(2)} &=& P_{\bot q_{1}}v_{j}^{(1)}=(I-q_{1}q_{1}^{*})v_{j}^{(1)}=v_{j}^{(1)}-q_{1}q_{1}^{*}v_{j}^{(1)} \\
v_{j}^{(3)} &=& P_{\bot q_{2}}v_{j}^{(2)}=v_{j}^{(2)}-q_{2}q_{2}^{*}v_{j}^{(2)} \\
& \vdots & \\
v_{j}=v_{j}^{(j)} &=& P_{\perp q_{j-1}}v_{j-1}^{(j-1)}=v_{j}^{(j-1)}-q_{j-1}q_{j-1}^{*}v_{j}^{(j-1)}
\end{array} \qquad (4.14)
" displayMode="true"></$latex>
Dabei ist $$v^{(i)}_j$$ der Vektor $$v_j$$ in der $$i$$-ten
Iteration des Algorithmus, d.h. nach der $$(i-1)$$-ten
Projektion zur Berechnung von $$q_j$$.
<$details summary="Algorithmus MGS" tiddler="Algorithmus MGS">
{{Algorithmus: Modifiziertes Gram-Schmidt-Verfahren}}
</$details>
Sei $$D\subset\R$$ und $$f:D\to\R$$. Dann heißt $$f$$
# monoton wachsend, wenn $$x<y\implies f(x)\leq f(y)$$
# streng monoton wachsend, wenn $$x<y\implies f(x)< f(y)$$
# monoton fallend, wenn $$x<y\implies f(x)\geq f(y)$$
# streng monoton wachsend, wenn $$x<y\implies f(x)> f(y)$$
$$(a_n)\in\R^\N$$ heißt
* ''monoton wachsend'', wenn $$a_n\leq a_{n+1}$$ für alle $$n\in\N$$
* ''monoton fallend'', wenn $$a_n\geq a_{n+1}$$ für alle $$n\in\N$$
* ''streng monoton wachsend'', wenn $$a_n< a_{n+1}$$ für alle $$n\in\N$$
* ''streng monoton fallend'', wenn $$a_n>a_{n+1}$$ für alle $$n\in\N$$
* ''monoton'', wenn sie entweder monoton wachsend oder monoton fallend ist
!! Lemma 1
Für $$(a_n)\in\R^\N$$ monoton wachsend und [[konvergent|Grenzwerte von Folgen]], so gilt für alle $$n\in\N$$:
<$latex text="a_n\leq a." displayMode="true"></$latex>
!! Widerspruchsbeweis
Angenommen, es existiert ein $${n_0}\in\N$$ mit $$a_{n_0}>a$$. Dann gilt für alle $$n\geq n_0$$:
<$latex text="a_n\geq a_{n_0}>a." displayMode="true"></$latex>
Für $$\epsilon\coloneqq \frac{a_{n_0}-a}{2}>0$$ und alle $$n\geq n_0$$ gilt also
<$latex text="|a_n-a|=a_n-a\geq a_{n_0}-a>\frac{a_{n_0}-a}{2}=\epsilon" displayMode="true"></$latex>
Daher kann $$a$$, entgegen der Annahme, kein Grenzwert der Folge sein!
Aus der Definition des Erwartungswerts und der $$\sigma$$-Additivität von $$P$$ ergibt sich (Begründung folgt unten): <$latex text="\begin{aligned}
\textbf{E}_P(X)&=&\sum_{x\in X[\Omega]}xP(X=x)\\
&=&\sum_{x\in X[\Omega],y\in Y[\Omega]}xP(X=x,Y=y)\\
&\le&\sum_{x\in X[\Omega],y\in Y[\Omega]}yP(X=x,Y=y)=\textbf{E}_P(Y).
\end{aligned}" displayMode="true"></$latex>
Man beachte, dass die Summationsreihenfolge wegen der absoluten Konvergenz der Reihe irrelevant ist.
Da nach Voraussetzung $$P(X=x,Y=y)=0$$ außer wenn $$x\le y$$, gilt die Ungleichung, womit die Monotonieregel bewiesen ist.
* Als erste Anwendung des schwachen Gesetzes der großen Zahl diskutieren wir die Monte-Carlo-Integration.
* Es sei $$f:[0,1]\to[0,c]$$ messbar.
* ''Ziel'': numerische Berechnung des Integrals $$\textcolor{blue}{\int_0^1 f(x)dx}$$.
* Zunächst interpretieren wir dieses ''Integral als Erwartungswert'':
* Ist $${\mathcal{U}}$$ die Gleichverteilung auf $$[0,1]$$, so hat diese die Indikatorfunktion von $$[0,1]$$ als Dichtefunktion $$\rho$$: $$\rho(x)=1$$.
* Daher ist (siehe Kapitel 6: [[Erwartungswert bei W-Maßen mit Dichtefunktion]]) <$latex text="\textcolor{blue}{\textbf{E}_{\mathcal{U}}(f)=\int_0^1 f(x)\underbrace{\rho(x)}_{=1}dx=\int_0^1 f(x)dx}." displayMode="true"></$latex>
* Sind nun $$X_1,\ldots,X_n$$ unabhängige, auf $$[0,1]$$ gleichverteilte ZVs, d.h. <$latex text="X_i:=([0,1]^n\ni\xi\mapsto \xi_i\in [0,1])" displayMode="true"></$latex> und $$P_{X_i}={\mathcal{U}}_n\circ X_i^{-1}={\mathcal{U}}$$, so folgt aus dem schwachen Gesetz der großen Zahl: <$latex text="P\left(\left|\frac{1}{n}\sum_{i=1}^n f(X_i)-\int_0^1 f(x)dx\right|\ge \epsilon\right)\le \frac{\textbf{V}_{\mathcal{U}}(f\circ X_1)}{n\epsilon^2}\textcolor{red}{\le} \frac{c^2}{n\epsilon^2}." displayMode="true"></$latex>
* $$\textcolor{red}{\text{Letzte Ungleichung}}$$: beachte, dass $$f:[0,1]\to[0,c]$$ und <$latex text=" \begin{aligned}\textbf{V}_{\mathcal{U}}(f\circ X_1)&=&\textbf{E}_{\mathcal{U}}[(f\circ X_1)^2]-\textbf{E}_{\mathcal{U}}[f\circ X_1]^2\\ & \le& \textbf{E}_{\mathcal{U}}[(f\circ X_1)^2]=\int_0^1 f(x)^2 dx \le c^2. \end{aligned}" displayMode="true"></$latex>
* Man kann also durch zufällige Wahl von vielen Punkten $$x_1,\ldots,x_n\in[0,1]$$ das Integral $$\int_0^1 f(x)dx$$ durch das arithmetische Mittel von $$f(x_1),\ldots,f(x_n)$$ mit hoher Wahrscheinlichkeit sehr gut approximieren!
! Satz
Die Anzahl der Farbenfolgen der Länge $$n$$, in denen die $$c$$ Farben $$1,2,\ldots,c$$ mit Vielfachheiten $$h_1,h_2,\ldots,h_c$$ vorkommen, ist gleich dem Multinomialkoeffizienten
<$latex text="\textcolor{blue}{{n\choose h_1,\ldots,h_c}=\frac{n!}{h_1!\cdot\ldots\cdot h_c!}}." displayMode="true"></$latex>
!! Beweis
$$h_1$$ der $$n$$ Positionen werden mit Farbe $$1$$ belegt.
Das geht auf $${n\choose h_1}$$ Weisen.
Von den restlichen $$n-h_1$$ Positionen werden $$h_2$$ mit Farbe $$2$$ belegt.
Das geht auf $${n-h_1\choose h_2}$$ Arten.
Insgesamt erhält man durch Induktion:
<$latex text=" \begin{alignedat}{3}{n\choose h_1,\ldots,h_c}&=&{n\choose h_1}\cdot{n-h_1\choose h_2}\cdot{n-h_1-h_2\choose h_3}\cdot\ldots\cdot {h_c\choose h_c}\\
&=&\frac{n!}{h_1!\textcolor{blue}{(n-h_1)!}}\cdot\frac{\textcolor{blue}{(n-h_1)!}}{h_2!\textcolor{red}{(n-h_1-h_2)!}}\cdot\frac{\textcolor{red}{(n-h_1-h_2)!}}{h_3!\textcolor{blue}{(n-h_1-h_2-h_3)!}}\cdot \ldots\\
&=&\frac{n!}{h_1!\cdot\ldots\cdot h_c!}
\end{alignedat}" displayMode="true"></$latex>
Damit ist der Satz bewiesen.
Kommt in der Urne mit $$N$$ Kugeln die Farbe $$f\in F$$ genau $$N_f$$-mal vor, so ergibt sich bei $$n$$-maligem Ziehen mit Zurücklegen ein bestimmtes Farbenhistogramm $$H$$ mit Wahrscheinlichkeit <$latex text="\textcolor{blue}{P_{Zr}(H)=\binom{n}{H}\cdot\prod_{f\in F}\left(\frac{N_f}{N}\right)^{H(f)}}." displayMode="true"></$latex> Dabei ist der ''Multinomialkoeffizient'' definiert durch: <$latex text="\binom{n}{H}:=\frac{n!}{\prod_{f\in F}H(f)!}." displayMode="true"></$latex>
!! Definition
Dieses W-Maß auf dem Raum der Farbenhistogramme heißt die ''Multinomialverteilung'' für $$n$$ Stichproben (mit Zurücklegen) zur W-Funktion $$(F\ni f\mapsto N_f/N)$$. Allgemeiner kann man die Multinomialverteilung definieren, wenn man von beliebiger W-Funktion $$\rho$$ auf $$F$$ ausgeht.
!! Beweis
Für die Wahrscheinlichkeit, dass sich das Farbenhistogramm $$H$$ ergibt, gilt:
<$latex text=" \begin{alignedat}{3}
P_{Zr}(H)&=& P_{ZR}(X_{Zr}=H) \quad = \quad
P_{ZR}(\{\textbf{f}\in F^n\mid X_{Zr}(\textbf{f})=H\})\\ \\
&=&\sum_{\textbf{f}\in F^n: X_{Zr}(\textbf{f})=H}P_{ZR}(\textbf{f})\\
&=&\sum_{\textbf{f}\in F^n:X_{Zr}(\textbf{f})=H}\,\,\prod_{i=1}^n \frac{N_{f_i}}{N}\quad(P_{ZR}\text{ ist Produktmaß auf } F^n)\\
&=& \sum_{\textbf{f}\in F^n:X_{Zr}(\textbf{f})=H}\,\,\prod_{f\in F} \left(\frac{N_f}{N}\right)^{H(f)}\\
&=&\binom{n}{H}\cdot\prod_{f\in F}\left(\frac{N_f}{N}\right)^{H(f)},
\end{alignedat}" displayMode="true"></$latex>
denn die Summanden im vorletzten Glied der Gleichungskette sind für alle $$\textbf{f}\in F^n$$ mit $$X_{Zr}(\textbf{f})=H$$ gleich.
Ferner ist die Anzahl der Summanden der Multinomialkoeffizient $$\binom{n}{H}$$.
* Eine Urne enthalte $$4$$ rote, $$1$$ blaue und $$3$$ schwarze Kugeln.
* Hier ist $$N=8=4+1+3$$ die Gesamtanzahl von Kugeln,
* $$N_r=4$$, $$N_b=1$$ und $$N_s=3$$.
* Bei sechsmaligem Ziehen ($$n=6$$) mit Zurücklegen werde $$3$$-mal eine rote, einmal eine blaue und 2-mal eine schwarze Kugel gezogen. Hier ist <$latex text="H=\left(\begin{array}{ccc}\textcolor{red}{\bullet}&\textcolor{blue}{\bullet}&\bullet\\
3&1&2 \end{array} \right)\quad\text{und}\quad {n\choose H}=\frac{6!}{3!\cdot 1!\cdot 2!}." displayMode="true"></$latex>
* Damit ergibt sich für die Wahrscheinlichkeit $$P_{Zr}(H)$$, bei sechsmaligem Ziehen mit Zurücklegen
dieses Farbenhistogramm $$H$$ zu erhalten: <$latex text="P_{Zr}(H)=\frac{6!}{3!\cdot 1!\cdot 2!} \cdot \underbrace{\left(\frac{4}{8}\right)^3}_{\mathrm{rot}}
\cdot \underbrace{\left(\frac{1}{8}\right)^1}_{\mathrm{blau}}\cdot \underbrace{\left(\frac{3}{8}\right)^2}_{\mathrm{schwarz}}." displayMode="true"></$latex>
Sei $$T=(t_{ij})_{\stackrel{1\leq i\leq m}{1\leq j\leq n}}\in M(m\times n, K)$$ und $$S=(s_{ij})_{\stackrel{1\leq i\leq r}{1\leq j\leq m}}\in M(r\times m, K)$$. Gesucht ist die Matrixrepräsetation von $$S\circ T$$.
Direktes Ausrechnen:
<$latex text="\begin{aligned}(S\circ T)(e_j^{(n)})&=S(T(e_j^{(n)}))\\&=S\left(\sum_{l=1}^m t_{lj} e_l^{(m)}\right)\\
&=\sum_{l=1}^mt_{lj}S(e_l^{m})\\&=\sum_{l=1}^mt_{lj}\sum_{i=1}^r s_{il}e_i^{(r)}\\&=\sum_{i=1}^r\left(\sum_{l=1}^ms_{il}t_{lj}\right)e_i^{r}\end{aligned}" displayMode="true"></$latex>
Dies begründet die folgende Definition
! Definition
Für $$S,T$$ wie oben ist die ''Produktmatrix'' $$S\cdot T$$ gegeben durch
<$latex text="\left(\sum_{l=1}^ms_{il}t_{lj}\right)_{\stackrel{1\leq i \leq n}{1\leq j \leq r}}." displayMode="true"></$latex>
Ist $$(\Omega,{\mathcal{A}},P)$$ W-Raum, so gilt für $$A_1,\ldots,A_n\in{\mathcal{A}}$$ und $$A:=A_1\cap\ldots\cap A_n$$ mit $$P(A)>0$$:<$latex text="\textcolor{blue}{P(A)=P(A_1)\cdot P(A_2|A_1)\cdot P(A_3|A_1\cap A_2)\cdot \ldots\cdot P(A_n|A_1\cap\ldots\cap A_{n-1})}." displayMode="true"></$latex>
!! Beweis
* Nach Voraussetzung sind alle bedingten Wahrscheinlichkeiten rechts definiert und von Null verschieden.
* Wendet man die Definition der bedingten Wahrscheinlichkeit an, so sieht man, dass sich rechts alles weghebt bis auf den Faktor $$P(A_1\cap\ldots\cap A_n)=P(A)$$, der auf der linken Seite steht:
<$latex text="\textcolor{red}{P(A_1)} \cdot\frac{\textcolor{blue}{P(A_1\cap A_2)}}{\textcolor{red}{P(A_1)}}\cdot
\frac{\textcolor{red}{P(A_1\cap A_2\cap A_3)}}{\textcolor{blue}{P(A_1\cap A_2)}}\cdot\ldots\cdot \frac{P(A_1\cap\ldots\cap A_n)}{\textcolor{red}{P(A_1\cap\ldots\cap A_{n-1})}}." displayMode="true"></$latex>
Damit ist die Multiplikationsformel bewiesen.
Seien $$S,T\in\text{End}_K(V)$$. Dann gilt $$\det(S\circ T)=\det(S)\cdot \det (T)$$.
!! Beweis
O.B.d.A. seien $$T,S$$ invertierbar, da sonst auf beiden Seiten $$0$$ steht. Sei $$x_1,\dots,x_n$$ eine Basis von $$V$$, dann ist $$T(x_1),\dots,T(x_n)$$ ebenfalls eine Basis von $$V$$. Es folgt
<$latex text="\det(S\circ T)=\frac{D(S(T(x_1),\dots,S(T(x_n)))\cdot D(T(x_1),\dots,T(x_n))}{D(T(x_1),\dots,T(x_n))\cdot D(x_1,\dots,x_n)}=\det(S)\det(T)." displayMode="true"></$latex>
$$f$$ und $$\varphi = (\varphi_1,...,\varphi_k)$$ seien stetig differenzierbar auf einer offenen Menge
$$U \subset \R^n$$. $$\varphi'(x)$$ habe in jedem Punkt $$x \in M$$ den Rang $$k$$. Dann gilt:
Ist $$x_0 \in M$$ ein Extremalpunkt von $$f$$ auf $$M$$, so ist $$f'(x_0)$$ eine Linearkombination von
$$\varphi_1'(x_0),...,\varphi_k'(x_0)$$: Es gibt Zahlen $$\lambda_1,...,\lambda_k \in \R$$,
sogenannte //Lagrange-Multiplikatoren//, mit
<$latex text="
f'(x_0) = \sum\limits_{i=1}^{k} \lambda_i \varphi_i'(x_0). \qquad \qquad (9.9)
" displayMode="true"></$latex>
Im euklidischen $$\R^n$$ bedeutet (9.9)
<$latex text="
\text{grad}f(x_0) = \sum\limits_{i=1}^{k} \lambda_i \text{grad}\varphi_i(x_0). \qquad \qquad (9.10)
" displayMode="true"></$latex>
<$details summary="Beweis" tiddler="Bemerkung">
{{Beweis: Multiplikatorenregel von Lagrange}}
</$details>
<$details summary="Niveaulinien" tiddler="Bemerkung">
{{Niveaulinien}}
</$details>
<$details summary="Beispiel" tiddler="Beispiel">
[[Punkt mit minimalem Abstand zu (1,0,0)]]
</$details>
Die Information, dass ein Ereignis $$B$$ eingetreten ist, sollte zu einer Neubewertung der Wahrscheinlichkeiten aller Ereignisse $$A$$ führen.
!! Beispiel
Zweimaliges Ziehen ohne Zurücklegen aus einer Urne mit $$N=\textcolor{blue}{b}+\textcolor{red}{r}$$ Kugeln: $$\textcolor{blue}{b}$$ blaue
und $$\textcolor{red}{r}$$ rote.
Wir denken uns die Kugeln durchnummeriert:
<$latex text="\textcolor{blue}{[1:b]}\quad\text{bzw.}\quad \textcolor{red}{[b+1:N]}" displayMode="true"></$latex>
seien die Mengen der $$\textcolor{blue}{\text{blauen}}$$ bzw. $$\textcolor{red}{\text{roten}}$$ Kugelnummern.
Das führt zum \textbf{Ergebnisraum}:<$latex text="\Omega=\{(i,j)\in[1:N]^2\mid i\ne j\}\quad \text{mit Gleichverteilung.}" displayMode="true"></$latex>
Wir betrachten folgende Ereignisse: <$latex text=" \begin{aligned}
A&=&\{\text{die erste Kugel ist \textcolor{blue}{blau}}\}=\{(\textcolor{blue}{i},j)\in\Omega\mid \textcolor{blue}{i}\le \textcolor{blue}{b}\}\\
B&=&\{\text{die zweite Kugel ist \textcolor{blue}{blau}}\}=\{(i,\textcolor{blue}{j})\in\Omega\mid \textcolor{blue}{j}\le \textcolor{blue}{b}\}
\end{aligned}" displayMode="true"></$latex>
* Vor Beginn des Experiments rechnet man mit Wahrscheinlichkeit<$latex text="P(B)=\frac{(N-1)\textcolor{blue}{b}}{N(N-1)}=\frac{\textcolor{blue}{b}}{N}" displayMode="true"></$latex>mit dem Eintreten von $$B=\bigsqcup_{j=1}^b([1:N]\setminus\{j\})\times\{j\}$$.
* Wenn man beim ersten Zug eine $$\textcolor{blue}{\text{blaue}}$$ Kugel gezogen hat, d.h. $$\textcolor{blue}{A\text{ ist bereits eingetreten}}$$, wird man die Wahrscheinlichkeit des Eintretens von $$B$$ revidieren,\ denn jetzt sind unter den $$N-1$$ Kugeln nur noch $$b-1$$ $$\textcolor{blue}{\text{blaue}}$$ Kugeln in der Urne.
* Die Neubewertung sollte also zur Wahrscheinlichkeit <$latex text="\frac{b-1}{N-1}" displayMode="true"></$latex>für das Eintreten des Ereignisses $$B$$ führen.
<<list-links "[tag[Nichtlineare Ausgleichsprobleme]sort[scriptorder]]">>
<<list-links "[tag[Nichtlineare Gleichungen]sort[scriptorder]]">>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/szPnGtEqqYU?rel=0&start=0" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
Betrachte den Fall $$f'(x_0) \neq 0$$ und $$k=1$$. In diesem Fall besagt die Multiplikatorenregel,
dass sich die linearen Approximationen von $$f$$ und $$\varphi$$ im Punkt $$x_0$$ berühren.
Die Notwendigkeit ist leicht einzusehen (siehe Abbildung ):
<$details summary="Abbildung" tiddler="Abbildung">
[img[diffbare_abbildungen_multiplikatoren_niveaulinien.png]]
</$details>
Eine Norm ist eine Abbildung $$\| \cdot \|:\mathbb{C}^n\rightarrow \R$$ mit folgenden Eigenschaften:
#$$\|x\| \geq 0 $$, $$\|x\|=0$$ gdw. $$x=0$$
#$$\|\alpha x\|=|\alpha|\cdot \|x\|$$
#$$\|x+y\| \leq \|x\|+\|y\|$$
<$details summary="Beispiel" tiddler="Beispiel">
{{Beispiel Grundlagen Normen}}
Beispiel für $$p$$-Normen: von innen ($$1$$-Norm) nach außen ($$\infty$$-Norm)
</$details>
<<list-links "[tag[Normen]sort[scriptorder]]">>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/Cpjo9PzZliU?rel=0&start=4333" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
Sei $$U \subset \R^n$$ offen. Hat $$f: U \longrightarrow \R$$ in $$a$$ ein lokales Extremum
und ist $$f$$ in $$a$$ partiell differenzierbar, so gilt
<$latex text="
\partial_1f(a) = ... = \partial_nf(a) = 0. \qquad (8.19)
" displayMode="true"></$latex>
Ist $$f$$ in $$a$$ differenzierbar, so besagt (8.19) $$df(a)=0$$.
<$details summary="Beweis" tiddler="Beweis">
{{Beweis: Notwendiges Kriterium für Extrema}}
</$details>
Der Nullraum (auch als Kern bezeichnet) einer Matrix $$A \in \mathbb{C}^{m \times n}$$,
geschrieben als $$Null(A)$$, ist die Menge der Vektoren $$x \in \mathbb{C}^n$$,
für die gilt $$Ax=0,$$ wobei $$0$$ der $$0$$-Vektor im $$\mathbb{C}^{m}$$ ist, d.h.
$$Null(A)=\{x\in\mathbb{C}^n\mid Ax=0\}$$
<<list-links "[tag[Nullstellenbestimmung reeller Funktionen]sort[scriptorder]]">>
Sei $$R$$ ein [[Ring|Ringe]] und $$a,b\in R\setminus\{0\}$$. $$a,b$$ heißen ''Nullteiler'', falls $$a\cdot b=0$$.
!! Anmerkung
# Hier ist mit 0 das neutrale Element von $$(R,+)$$ gemeint, was die natürliche Zahl $$0$$ seien kann, aber nicht muss!
# In Ringen mit Nullteilern darf man im Allgemeinen nicht kürzen!
Wenn der Vektor $$h^{(k)}$$
<$latex text="
\|f(x^{(k)})+f'(x^{(k)})\cdot h^{(k)}\|_{2}^{2} \qquad (11.1)
" displayMode="true"></$latex>
unter der Nebenbedingung $$\|h^{(k)}\|_{2}\le\rho_{k}$$ minimiert,
existiert ein $$\lambda\ge0$$ mit
<$latex text="
(f'(x^{(k)})^{T}\cdot f'(x^{(k)})+\lambda\cdot I)\cdot h^{(k)}=-(f'(x^{(k)}))^{T}\cdot f(x^{(k)}). \qquad (11.2)
" displayMode="true"></$latex>
Falls $$\|h^{(k)}\|_{2}<\rho_{k}$$ gilt $$\lambda=0$$.
<$details summary="Beweis" tiddler="Beweis">
{{Beweis: Optimierung in Trust-Region}}
</$details>
<<list-links "[tag[Orthogonale Projektionen]sort[scriptorder]]">>
Ein Paar von Vektoren $$x,y$$ heißt orthogonal falls $$x^{*}y=0$$. D.h. falls $$x,y \in \R^{m}$$, so bedeutet das, dass $$x \perp y$$ ist.
Eine Menge von Null verschiedener Vektoren $$S$$ ist \textit{orthogonal}, falls ihre Elemente paarweise orthogonal sind.
Eine Menge von Vektoren $$S$$ heißt \textit{orthonormal},
falls sie orthogonal ist und $$\forall x\in S$$ gilt $$\|x\|=1$$.
<$details summary="Orthogonale Vektoren Beispiel" tiddler="Orthogonale Vektoren Beispiel">
{{Orthogonale Vektoren Beispiel}}
</$details>
Die Vektoren $$a = \begin{pmatrix}3\\2\end{pmatrix}$$ und
$$b = \begin{pmatrix}-1\\1.5\end{pmatrix}$$ stehen orthogonal zueinander, denn:
<$latex text="
\begin{aligned}
a^{*}b &= a_1*b_1 + a_2*b_2 \\
&= 3*(-1)+2*1.5 = 0
\end{aligned}
" displayMode="true"></$latex>
$$a':=\frac{a}{\|a\|}$$ und $$b':=\frac{b}{\|b\|}$$ sind //orthonormale// Vektoren:
<$latex text="
\small{
\begin{aligned}
\|a\| &= \sqrt{a_1^2+a_2^2} = \sqrt{3^2+2^2} = \sqrt{13}\\
\|a'\| &= \left\| \dfrac{a}{\|a\|} \right\| =
\left\| \dfrac{1}{\sqrt{13}} \begin{pmatrix}3\\2\end{pmatrix} \right\|
= \sqrt{\left(\dfrac{3}{\sqrt{13}}\right)^2 + \left(\dfrac{2}{\sqrt{13}}\right)^2}
= \sqrt{\dfrac{\sqrt{13}}{\sqrt{13}}} = 1 \\
\|b'\| & \ \ \ \ \ \ \ \text{analog}
\end{aligned}}
" displayMode="true"></$latex>
<<list-links "[tag[Orthogonalität von Gradient und Nullmenge]sort[scriptorder]]">>
Das Einheitsintervall $$(0,1]$$ sei mit der Gleichverteilung $${\mathcal{U}}$$ versehen, und für $$k=2^n+m$$ mit $$m\in[0:2^n-1]$$
sei $$Y_k$$ die Indikatorfunktion von $$(m2^{-n},(m+1)2^{-n}]\subset(0,1]$$.
! Satz
$$(Y_k)_{k\in\N}$$ konvergiert stochastisch aber nicht fast sicher gegen $$Y=0$$.
!! Beweis
Beachte, dass für alle $$k$$ zwischen $$2^n$$ und $$2^{n+1}-1$$ die ZV $$Y_k$$ auf einem $$2^n$$-tel} des Einheitsintervalls Eins und auf dem Rest Null ist. Daher konvergiert die Folge der $$Y_k$$ stochastisch gegen $$Y=0$$. Genauer ergibt sich für $$k\in[2^n:2^{n+1}-1]$$ wegen $$k/2<2^n$$: <$latex text="{\mathcal{U}}(|Y_k-Y|\le \epsilon)\ge 1-2^{-n}> 1-\tfrac{2}{k}." displayMode="true"></$latex>
Die Folge $$(Y_k)_{k\ge 1}$$ ist aber nicht fast sicher konvergent, da für beliebiges $$\omega\in(0,1]$$ beide Werte $$0$$ und $$1$$ unendlich oft in der Folge $$(Y_k(\omega))_k$$ vorkommen. Hier ist also <$latex text="A:=\{\omega\in\Omega:\lim_{k\to\infty} Y_k(\omega)=Y(\omega)\}=\emptyset." displayMode="true"></$latex>
Für die fast sichere Konvergenz müsste $$P(A)=1$$ gelten. Stattdessen haben wir $$P(A)=P(\emptyset)=0$$.
Für eine relle Zahl $$p \geq 1$$ definiert man für einen Vektor $$x \in \mathbb{C}^n$$
die $$p$$-//Norm// durch
<$latex text="
\|x\|_p := \left( \sum\limits_{i=1}^n |x_i|^p \right)^{1/p}.
" displayMode="true"></$latex>
<$details summary="Beispiel Euklidische Norm" tiddler="Beispiel Euklidische Norm">
{{Beispiel Euklidische Norm}}
</$details>
Eine Reißzwecke wird $$n=100$$ mal geworfen. Sie fällt mit Wahrscheinlichkeit $$\theta\in[0,1]$$ auf die Spitze.
* ''Stichprobenraum'': $$\mathcal{X}=[0:n]$$ (grobe Betrachtungsweise)
* ''$$\sigma$$-Algebra'' auf $$\mathcal{X}$$: $$\mathcal{A}:=2^{\mathcal{X}}$${}
* ''Familie $$(P_{\theta})_{\theta\in\Theta}$$ von W-Maßen'': $$\Theta:=[0,1]$$ und $$P_{\theta}$$ Binomialverteilt, d.h. <$latex text="P_{\theta}(\{k\}):=\binom{n}{k}\cdot\theta^{k}\cdot(1-\theta)^{n-k}\text{ für alle }k\in\mathcal{X}\text{.}" displayMode="true"></$latex>
* Anton und Brigitte führen das Experiment durch.
* Ergebnis bei Anton ist $$x:=40\in\mathcal{X}$$ und bei Brigitte $$x':=30\in\mathcal{X}$$.{}
* Beide verwenden einen Maximum-Likelihood-Schätzer $$\theta(X_1,\cdots,X_n)=\frac{\sum_{i=1}^nX_i}{n}=\frac{x}{n}$$, vgl. [[Schätzung der Erfolgswahrscheinlichkeit]]: <$latex text=" \text{Anton schätzt: }\theta :=\frac{x}{n}=40\% \text{, } \text{Brigitte schätzt: }\theta' :=\frac{x'}{n}=30\%" displayMode="true"></$latex>
* Wer hat recht?
Sei $$f: U \longrightarrow \mathbb{C}$$ eine (nicht notwendig differenzierbare) Funktion in einer
Umgebung $$U$$ von $$a$$. Dann versteht man unter der Ableitung von $$f$$ im Punkt $$a$$ in Richtung des Vektors
$$h \in \R^n$$ im Existenzfall den Grenzwert
<$latex text="
D_hf(a) = \lim\limits_{t \rightarrow 0} \frac{f(a+th) - f(a)}{t}.
" displayMode="true"></$latex>
Die Ableitungen in den Richtungen $$e_1,...,e_n$$ der Standardbasis heißen //partielle Ableitungen//
von $$f$$ und $$f$$ heißt //partiell differenzierbar// in $$a$$, wenn alle partiellen Ableitungen
$$D_{e_1}f(a),...,D_{e_n}f(a)$$ existieren.
Weitere Bezeichnungen für die partiellen Ableitungen sind:
<$latex text="
D_{e_1}f(a) = \partial_{1}f(a) = \frac{\partial f}{\partial x_1}(a) = f_{x_1}(a)
" displayMode="true"></$latex>
Sei $$S_n$$ die [[Gruppe|Gruppen]] der Bijektionen (Permutationen) von $$\{1,\dots,n\}$$. Elemente aus $$S_n$$ (auch symmetrische Gruppe genannt) werden oft als Matrizen geschrieben:
<$latex text="\sigma=\begin{pmatrix}1 & 2 & \dots & n\\\sigma(1) & \sigma(2) & \dots & \sigma(n)\end{pmatrix}" displayMode="true"></$latex>
!! Zykel
Seien $$a_1,\dots,a_r\in\{1,\dots,n\}$$ paarweise verschieden. Ein $$\sigma\in S_n$$ mit <$latex text="\sigma(a_i)=\begin{cases}a_{i+1} &i < r\\a_1 & i=r\end{cases}" displayMode="true"></$latex>
und $$\sigma(x)=x$$ für $$x\notin \{a_1,\dots,a_r\}$$ heißt $$r$$-Zykel (oder für $$r=2$$: Transposition). Oft schreibt man diese durch $$(a_1,\dots,a_r)$$.
!!! Beispiel:
$$(1,3,5,2)\in S_6$$ könnte man auch als
<$latex text="\sigma=\begin{pmatrix}1 & 2 & 3& 4 & 5 & 6\\ 3 & 1 & 5 & 4 & 2 & 6\end{pmatrix}" displayMode="true"></$latex>
schreiben.
Eine Permutationsmatrix ist eine binäre Matrix, die in jeder Zeile und in jeder Spalte genau einen 1-Eintrag hat.
Sei $$\pi$$ eine Permutation der Länge $$n$$. Eine Permutationsmatrix $$P$$ zur
Permutation $$\pi$$ ist dann gegeben durch
<$latex text="
P_{\pi} :=
\begin{pmatrix}
e_{\pi(1)} | ... | e_{\pi(n)}
\end{pmatrix}.
" displayMode="true"></$latex>
<$details summary="Beispiel " tiddler="Beispiel ">
Ein Beispiel für eine Permutationsmatrix: Vertauschen der $$i$$-ten und $$j$$-ten Zeile (2,4)
<$latex text="
\underbrace{\left(
\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}
\right)}_{P}
\left(
\begin{array}{cccc}
\textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
x_{2,1} & x_{2,2} & x_{2,3} & x_{2,4} \\
\textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
x_{4,1} & x_{4,2} & x_{4,3} & x_{4,4}
\end{array}
\right) =
\left(
\begin{array}{cccc}
\textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
x_{4,1} & x_{4,2} & x_{4,3} & x_{4,4} \\
\textbf{x} & \textbf{x} & \textbf{x} & \textbf{x} \\
x_{2,1} & x_{2,2} & x_{2,3} & x_{2,4}
\end{array}
\right)
" displayMode="true"></$latex>
</$details>
<$details summary="Allgemeines Schema für das Vertauschen zweier Zeilen:" tiddler="Allgemeines Schema für das Vertauschen zweier Zeilen:">
<$latex text="
P_{i,j} =
\begin{array}{c}
\\
\\
\\
i \rightarrow \\
\\
\\
\\
j \rightarrow \\
\\
\\
\\
\end{array}
\left(
\begin{array}{ccc|ccccc|ccc}
1 & & & & & & & & & & \\
& \ddots & & & & & & & & & \\
& & 1 & & & & & & & & \\
\hline
& & & 0 & & & & 1 & & & \\
& & & & 1 & & & & & & \\
& & & & & \ddots & & & & & \\
& & & & & & 1 & & & & \\
& & & 1 & & & & 0 & & & \\
\hline
& & & & & & & & 1 & & \\
& & & & & & & & & \ddots & \\
& & & & & & & & & & 1\\
\end{array}
\right)
" displayMode="true"></$latex>
</$details>
<$details summary="Bemerkung" tiddler="Bemerkung ">
{{Bemerkung: Permutationsmatrizen}}
</$details>
* In einer Stochastik-Vorlesung sitzen $$n=91$$ Studierende. Die Wahrscheinlichkeit $$p$$, heute Geburtstag zu haben, ist (idealisiert) $$p=1/365$$.
* Gesucht ist die Wahrscheinlichkeit $$P(k)$$, dass genau $$k$$ Studierende heute Geburtstag haben.
* ''Exakte Lösung'': Bernoulli-Experiment mit $$n=91$$ Stichproben und Erfolgswahrscheinlichkeit $$p=1/365$$. Gesucht ist für $$k\in[0:91]$$ der Wert der Binomialverteilung: <$latex text="B_{91,1/365}(k)={91\choose k}\cdot 365^{-k}\cdot \left(\tfrac{364}{365}\right)^{91-k}." displayMode="true"></$latex>
* ''Approximative Lösung'': Wegen $$p\ll 1$$ und $$\lambda=n\cdot p=91/365\approx 0.25$$ wird die Binomialverteilung hier gut durch die Poisson-Verteilung $$P_{0.25}$$ approximiert: <$latex text="B_{91,1/365}(k)\approx P_{0.25}(k)\approx e^{-0.25}\cdot\frac{0.25^k}{k!}." displayMode="true"></$latex>
Für jedes feste $$k\in\Z_{\ge 0}$$ erhält man mit $$n\cdot p_n=\lambda$$ für $$n\to \infty$$: <$latex text="\begin{aligned}
B_{n,p_n}(k)&=&\binom{n}{k}p_n^k(1-p_n)^{n-k}\approx\frac{n^k}{k!}p_n^k(1-p_n)^{n-k}\approx\frac{\lambda^k}{k!}(1-p_n)^n\\
&=&\frac{\lambda^k}{k!}(1-\frac{np_n}{n})^n=\frac{\lambda^k}{k!}(1-\frac{\lambda}{n})^n\to \frac{\lambda^k}{k!}e^{-\lambda}.
\end{aligned}" displayMode="true"></$latex>
Also existiert für alle $$k$$ der Grenzwert und dieser stimmt mit $$P_\lambda(k)$$ überein.
Es bleibt zu zeigen, dass $$P_\lambda$$ ein W-Maß auf $$\Omega=\Z_{\ge 0}$$ definiert. Die $$\sigma$$-Additivität ist für alle diskreten Fälle klar (Stichwort: großer Umordnungssatz!).
Zeigen noch $$P_\lambda(\Omega)=1$$:
<$latex text="P_\lambda(\Omega)=\sum_{k\ge 0}P_\lambda(k)=\sum_{k\ge 0}e^{-\lambda}\frac{\lambda^k}{k!}
=e^{-\lambda}\sum_{k\ge 0}\frac{\lambda^k}{k!}=e^{-\lambda}\cdot e^{\lambda}=1." displayMode="true"></$latex>
* Allgemein ist die Poisson-Verteilung ein natürliches Modell für die Anzahl von rein zufälligen Zeitpunkten in einem Zeitintervall.
* Für kleine Erfolgswahrscheinlichkeiten $$p_n$$ (hier: $$p_n=\lambda/n$$) ist die Poisson-Verteilung eine gute Approximation der Binomialverteilung.
* Die Gesamtanzahl der weiterzuleitenden E-Mails im Zeitintervall $$(0,t]$$ ist daher grob modellierbar als das Ziehen von $$n$$ Kugeln (mit Zurücklegen) aus einer Urne, die zwei Sorten von Kugeln enthält:
* $$\textcolor{blue}{\text{Sorte 1}}$$: $$\textcolor{blue}{\text{eine}}$$ E-Mail ist im aktuellen Teilintervall weiterzuleiten; $$\textcolor{red}{\text{Sorte 0}}$$: $$\textcolor{red}{\text{keine}}$$ E-Mail ist im aktuellen Teilintervall weiterzuleiten.
* Kugelanteil der $$\textcolor{blue}{\text{Sorte 1}}$$ sollte $$\textcolor{blue}{\alpha\cdot t/n}$$ betragen.
* Also handelt es sich hier grob um die Binomialverteilung $$B_{n,p_n}$$ zum Erfolgsparameter $$p_n=\alpha\cdot t/n$$.
!! Satz
Es sei $$\lambda:=\alpha\cdot t$$ und $$p_n:=\lambda/n$$. Dann ist für jedes $$k\in\Z_{\ge 0}$$ <$latex text="\textcolor{blue}{\lim_{n\to\infty}B_{n,p_n}(k)=e^{-\lambda}\frac{\lambda^k}{k!}=: P_\lambda(k)}" displayMode="true"></$latex>
$$P_\lambda$$ definiert ein W-Maß auf $$\Z_{\ge 0}$$, die sog. ''Poisson-Verteilung'' zum Parameter $$\lambda$$.
Wir beginnen zur Motivation mit einem Informatik-Beispiel.
* Wieviele E-Mails werden in einem festen Zeitintervall $$(0,t]$$, $$t>0$$, über einen Mail-Server geleitet?
* Ergebnisraum: $$\Omega:=\Z_{\ge 0}$$ (Anzahl der weiterzuleitenden E-Mails).
* Ereignisalgebra: $$2^\Omega$$.
* W-Maß: $$\textcolor{red}{\textbf{?}}$$
!!Heuristische Vorbetrachtungen:
* Zerlege das Zeitintervall $$(0,t]$$ in $$n$$ Teilintervalle der Länge $$t/n$$.
* ''Annahme'' (bei großem $$n$$): pro Teilintervall ist höchstens eine E-Mail weiterzuleiten.
* ''Ansatz'': Die Wahrscheinlichkeit, eine E-Mail in einem bestimmten Teilintervall der Länge $$t/n$$ weiterleiten zu müssen ist proportional zur Teilintervalllänge: $$\textcolor{blue}{\alpha\cdot t/n}$$, für eine Proportionalitätskonstante $$\alpha>0$$.
In der Praxis verwendet man die Poisson-Verteilung als Modell überall dort, wo gezählt wird, wie viele von vielen möglichen, aber einzeln relativ unwahrscheinlichen unabhängigen Ereignissen eintreten. Es folgen einige typische Szenarien, in denen sinnvollerweise mit der Poisson-Verteilung modelliert wird.
* Die Wahrscheinlichkeit, dass ein bestimmter Einwohner einer Großstadt an einem bestimmten Abend in ein bestimmtes Kino der Stadt geht, ist sehr gering. Da aber in der Stadt sehr viele Menschen leben, liegt die Zahl der Leute, die an diesem Abend in dieses Kino gehen, typischerweise in einer uns vertrauten Größenordnung.
* Über eine bestimmte Straßenkreuzung fahren jedes Jahr sehr viele Fahrzeuge und pro Jahr passieren dort durchschnittlich nur 2 Autounfälle. Frage: Wie groß ist die Wahrscheinlichkeit, dass es nächstes Jahr <$latex text="
\textbf{(1)}\text{ zu }0,\quad \textbf{(2)}\text{ zu 4},\quad \textbf{(3)}\text{ zu weniger als }3\text{ Unfällen kommt?}" displayMode="true"></$latex>
* In einem Land gibt es pro Jahr $$30$$ Selbstmorde pro $$100.000$$ Einwohner. Wie hoch ist die Wahrscheinlichkeit, dass in einer typischen Stadt mit 120.000 Einwohnern im nächsten Jahr $$40$$ Selbstmorde passieren?
Sei $$V$$ ein $$K$$-[[Vektorraum]], $$f:V\times V\to K$$ [[bilinear|Bilinearformen und Eigenschaften dieser]]. Dann gilt für $$x,y\in V$$:
# Es gilt die ''Parallelogrammgleichung''<$latex text="f(x+y,x+y)\pm f(x-y,x-y)=\begin{cases}2f(x,x)+2f(y,y) & +\\2f(y,x)+2f(x,y) & -\end{cases}" displayMode="true"></$latex>
# Falls $$\text{char}(K)\}\neq 2$$ und $$f$$ symmetrisch:<$latex text="f(x,y)=\frac{f(x+y,x+y)-f(x-y,x-y)}{4}." displayMode="true"></$latex>
!! Beweis
# Sei $$c\in \{-1,1\}$$. Es folgt durch die Bilinearität:<$latex text="f(x+cy,x+cy)=f(x,x)+cf(x,y)+cf(y,x)+\underbrace{c^2}_{=1}f(y,y)." displayMode="true"></$latex>
# Falls $$f$$ symmetrisch ist, folgt direkt aus 1.: <$latex text="f(x+y,x+y)-f(x-y,x-y)=4f(x,y)." displayMode="true"></$latex>
!! Bemerkung
Falls $$f$$ symmetrisch ist, sind Bilinearformen also schon eindeutig durch ihre Diagonale $$f(x,x)$$ beschrieben
Seien $$f,g\in K[t]$$ mit $$g\neq 0$$. Dann existieren eindeutig bestimmte $$q,r\in K[t]$$ mit
<$latex text="f=qg+r," displayMode="true"></$latex>
wobei $$\deg(r)<\deg(g).$$
!! Beweis
!!! Eindeutigkeit
Seien $$q,r,\tilde{q},\tilde{r}\in K[t]$$ mit
<$latex text="qg+r=f=\tilde{q}g+\tilde{r}," displayMode="true"></$latex>
wobei $$\deg(r),\deg(\tilde{r})<\deg{g}$$. Wäre nun $$q\neq \tilde{q}$$, dann gilt einerseits
<$latex text="\deg(\tilde{r}-r)=\deg(\underbrace{q-\tilde{q}}_{\geq 0})+\deg(g)\geq \deg(g)" displayMode="true"></$latex>
und andererseits $$\deg(\tilde{r}-r)<\deg(g)$$. Da nicht beides gleichzeitig gelten kann muss schon $$q=\tilde{q},r=\tilde{r}$$ sein.
!!! Existenz (Konstruktiv)
Ist $$\deg(f)>\deg(f)$$, setzte $$q=0$$ und $$r=f$$. Sonst sei
<$latex text="f(t)=a_nt^n+\dots+a_0t^0" displayMode="true"></$latex>
<$latex text="g(t)=b_mt^m+\dots+b_0t^0" displayMode="true"></$latex>
mit $$a_n\neq 0\neq b_m$$ und $$m\leq n$$. Dann setze
<$latex text="\begin{aligned}q_1&\coloneqq\frac{a_n}{b_m}t^{n-m}\\f_1&\coloneqq f-q_1g\end{aligned}" displayMode="true"></$latex>
Es gilt nach Konstruktion $$\deg(f_1)<\deg(f)$$. Ist $$\deg(f_1)<m$$, so terminiert der Algorithmus mit $$r=f-f_1$$. Sonst Wiederholt man das Verfahren:
<$latex text="f_2=f_1-q_2g=f-(q_1+q_2)g," displayMode="true"></$latex>
wobei $$\deg(f_2)<\deg(f_1)$$.
Da sich der Grad in jedem Schritt um mindestens $$1$$ verringert, terminiert das Verfahren nach endlich vielen Schritten.
!! Polynomring
Der Polynomring $$R[X]$$ eines [[Ringes|Ringe]] $$R$$ ist definiert als die Menge aller Folgen $$p=(p_i)_{i\in\N}$$ mit $$p_i\in R$$ und
$$p_i\neq 0$$ für nur endlich viele $$i$$. Oft schreibt mal $$X^j=(\underbrace{0,\dots,0}_{j-1 \text{ Nullen}},1,0,\dots)$$ um die Polynome wie gewohnt als Summen schreiben zu können. Außerdem ist der Grad $$\deg(p)$$ der höchste Index $$i$$ s.d. $$p_i\neq 0$$ gilt.
!! Auswertung
Sei $$a\in K$$ und $$p=\sum_{j=0}^n p_j X^j\in K[X]$$. Dann ist
<$latex text="\eta_a : K[X]\to K,p\mapsto\sum_{j=0}^n p_j a^j" displayMode="true"></$latex>
ein (Algebra-)Homomorphismus.
Man schreibt oft auch $$p(a)\coloneqq \eta_a(p)$$. Außerdem heißt $$a$$ Nullstelle von $$p$$, falls $$p(a)=0$$.
Sei $$R$$ ein [[kommutativer Ring mit 1|Ringe]]. Sei weiterhin
<$latex text="X=\{(a_i)_{i\in\N}|a_i\in , a_i=0 \text{ für alle außer endlich viele}\}" displayMode="true"></$latex>
mit
<$latex text="(a_i)_{i\in\N}+(b_i)_{i\in\N}=(a_i+b_i)_{i\in\N}" displayMode="true"></$latex>
und
<$latex text="(a_i)_{i\in\N}
\cdot(b_i)_{i\in\N}=\left(\sum_{j=0}^ia_jb_{i-j}\right)_{i\in\N}" displayMode="true"></$latex>
Dann ist $$(X,+,\cdot)$$ ein kommutativer Ring.
!! Notation
Sei <$latex text="t^0\coloneqq(1,0,0,\dots)" displayMode="true"></$latex><$latex text="t^1\coloneqq(0,1,0,\dots)" displayMode="true"></$latex><$latex text="t^2\coloneqq(0,0,1,0\dots)" displayMode="true"></$latex>
<$latex text="\vdots" displayMode="true"></$latex>
Somit ist
<$latex text="(a_0,a_1,\dots)=\sum_{j=0}^na_jt^j" displayMode="true"></$latex>
mit $$n=\max\{i | a_i\neq 0\}$$. $$n$$ wird auch als der ''Grad'' von dem Polynom bezeichnet, dieser wird allerdings je nach Literatur auf $$-\infty$$ gesetzt, falls $$n=0=a_0$$ ist.
Man schreibt $$R[t]$$ für den ''Polynomring'' in der Unbestimmen $$t$$. Innerhalb dieser Wiki wird $$R$$ immer ein Körper sein.
<<list-links "[tag[Potenziteration (Power Iteration)]sort[scriptorder]]">>
Sei $$\lambda_J$$ der Eigenwert, der am nächsten zu $$\mu$$ liegt, $$\lambda_K$$ der zweitnächste, d.h.
<$latex text="
|\mu - \lambda_J| < |\mu - \lambda_K| \leq |\mu - \lambda_j| \quad \forall j \neq J.
" displayMode="true"></$latex>
Des Weiteren sei $$q_J^T v^{(0)} \neq 0$$. Dann gilt für die Iteration der Potenzmethode
<$latex text="
\| v^{(k)} - (\pm q_J)\| = O \left( \left| \frac{\mu - \lambda_J}{\mu - \lambda_K} \right|^k \right) ,
\qquad |\lambda^{(k)} - \lambda_J| = O \left( \left| \frac{\mu - \lambda_J}{\mu - \lambda_K} \right|^{2k} \right)
" displayMode="true"></$latex>
(für $$k \rightarrow \infty$$ und gleicher Bedeutung des $$\pm$$-Zeichens wie oben.)
<$details summary="Beweis: Potenzmethode (Inverse Iteration)" tiddler="Beweis: Potenzmethode (Inverse Iteration)">
{{Beweis: Potenzmethode (Inverse Iteration)}}
</$details>
Es sei $$(a_n)\in\mathbb{C}^{\N_0}$$ eine [[Folge|Folgen]] und $$x_0\in\mathbb{R}$$. Die [[Reihe|Reihen]]
<$latex text="\sum_{n=0}^\infty a_n(x-x_0)^n" displayMode="true"></$latex>
heißt ''Potenzreihe'' in der ''Variablen ''$$x$$ mit ''Entwicklungspunkt'' $$x_0$$ und Koeffizientenfolge $$(a_n)$$.
$$\Z,K[X]$$ sind [[nullteilerfreie|Nullteiler]], [[kommutative Ringe|Ringe]] mit $$1$$,
Gradfunktion und Division mit Rest.
Die Gradfunktion auf $$\Z$$ ist durch
<$latex text="\deg(a)\coloneqq \begin{cases}-\infty & a=0\\\log|a| & a\neq 0\end{cases}" displayMode="true"></$latex>
definiert. Sei also $$R\in\{\Z,K[X]\}$$.
Ein Element $$a\in R$$ heißt ''Einheit'', falls ein Element $$b\in R$$ mit $$ab=1$$ existiert. Sei $$a\in R^\times=\{a\in R: a\text{ Einheit}\}$$.
Die Einheiten in $$\Z$$ sind durch $$1$$ und $$-1$$ gegeben.
Die Einheiten in $$K[X]$$ durch konstante Polynome ungleich $$0$$, da
<$latex text="0=\deg(1)=\deg(a)+\deg(b)" displayMode="true"></$latex>
gelten muss und $$K[X]$$ nullteilerfrei ist.
Für $$a,b\in R$$ und $$b\neq 0$$ schreibt man $$b|a$$ (b teilt a), falls es ein $$c\in R$$ gibt, s.d. $$a=cb$$ gilt. Falls $$a|b,b|a$$ gilt, so heißen
$$a$$ und $$b$$ ''assoziiert'' und man schreibt $$a\sim b$$. Insbesondere sind in diesem Fall $$\frac{a}{b},\frac{b}{a}$$ Einheiten!
Da für jedes $$m \geq 5$$ ein Polynom $$p(z)$$ mit Grad $$m$$ existiert, das rationale Koeffizienten
besitzt und eine rationale Wurzel $$v$$ (d.h. ($$p(v)=0$$) mit der Eigenschaft, dass $$v$$ nicht als Term
mit Radikalen, d.h. mit Additionen, Subtraktionen, Multiplikationen, Divisionen und $$k$$-ten Wurzeln
aufgelöst werden kann (Theorem von Abel-Ruffini, Galoistheorie), können wir die exakten Wurzeln eines Polynoms nicht mit einer endlichen Zahl
von Rechenschritten berechnen, d.h. wir sind auch nicht in der Lage, die entsprechenden Eigenwerte
der Matrix exakt zu berechnen. Das bedeutet:
Jeder Eigenwertlöser muss iterativ sein!
Das beste, das wir erzielen können, ist eine hohe //Konvergenzrate//.
<$details summary="Bemerkung" tiddler="Bemerkung">
Zur Erinnerung:
Eine Matrix $$A$$ heißt //hermitesch//, wenn sie gleich ihrer Adjungierten
$$A^*$$ ist, also gleich ihrer komplex konjugierten Transponierten: $$A=A^*=\bar{A}^T$$
</$details>
Die Vorwärtsanalyse ist häufig sehr schwierig, da die Abhängigkeit von der Konditionszahl subtil ist.
Die Lösung des Problems ist die Rückwärtsanalyse:
<$latex text="
\frac{\Delta y}{y} \approx \frac{f'(x)}{f(x)} \Delta x
= \underbrace{f'(x) \frac{x}{f(x)}}_{K_{rel}} \frac{\Delta x}{x} \qquad (5.14)
" displayMode="true"></$latex>
Sei $$x=A^{-1}b$$. Dann gilt $$Ax = AA^{-1}b = Ib = b$$. $$x$$ ist also der eindeutige Vektor,
der die Gleichung $$Ax=b$$ erfüllt. D.h. die $$x_i$$ sind die Koeffizienten der Darstellung
von $$b$$ als Linearkombination der Spaltenvektoren von A.
Die Multiplikation mit $$A^{-1}$$ ist ein Basiswechsel:
{{Produkt von Inverser Matrix und Vektoren.png}}
iVBORw0KGgoAAAANSUhEUgAAB1YAAAIVCAYAAABiPh2fAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAAAhdEVYdENyZWF0aW9uIFRpbWUAMjAyMTowOToyMyAxMjo0MzozNoH3XVEAAP94SURBVHhe7N0FnFTV/8bxB5bulhRESgEF66eiAnYCKihY2KIYgIqFgfG3FVvsLuxu7MJEREJKSgHpjuW/33vPhbvD3d3ZnJmdz/vl171xZnb3TrBzn3vOKbMxiwAAAAAAAAAAAAAAOSrrvgIAAAAAAAAAAAAAckCwCgAAAAAAAAAAAAB5IFgFAAAAAAAAAAAAgDwQrAIAAAAAAAAAAABAHghWAQAAAAAAAAAAACAPBKsAAAAAAAAAAAAAkAeCVQAAAAAAAAAAAADIA8EqAAAAAAAAAAAAAOSBYBUAAAAAAAAAAAAA8kCwCgAAAAAAAAAAAAB5IFgFAAAAAAAAAAAAgDwQrAIAAAAAAAAAAABAHghWAQAAAAAAAAAAACAPBKsAAAAAAAAAAAAAkAeCVQAAAAAAAAAAAADIA8EqAAAAAAAAAAAAAOSBYBUAAAAAAAAAAAAA8kCwCgAAAAAAAAAAAAB5IFgFAAAAAAAAAAAAgDwQrAIAAAAAAAAAAABAHghWAQAAAAAAAAAAACAPBKsAAAAAAAAAAAAAkAeCVQAAAAAAAAAAAADIA8EqAAAAAAAAAAAAAOSBYBUAAAAAAAAAAAAA8kCwCgAAAAAAAAAAAAB5IFgFAAAAAAAAAAAAgDwQrAIAAAAAAAAAAABAHghWAQAAAAAAAAAAACAPBKsAAAAAAAAAAAAAkAeCVQAAAAAAAAAAAADIA8EqAAAAAAAAAAAAAOSBYBUAAAAAAAAAAAAA8kCwCgAAAAAAAAAAAAB5IFgFAAAAAAAAAAAAgDwQrAIAAAAAAAAAAABAHghWAQAAAAAAAAAAACAPBKsAAAAAAAAAAAAAkAeCVQAAAAAAAAAAAADIA8EqAAAAAAAAAAAAAOSBYBUAAAAAAAAAAAAA8kCwCgAAAAAAAAAAAAB5IFgFAAAAAAAAAAAAgDwQrAIAAAAAAAAAAABAHghWAQAAAAAAAAAAACAPBKsAAAAAAADI0/jx0tdfSxs3ug0AAABAmiFYBQAAAAAAQK7++ksaNUr6+GPpn3/cRgAAACDNEKwCAAAAAAAgRxs2SO+951ayLF/uFgAAAIA0U2ZjFrcMAAAAJLXhw91CHvr1k9q0cSvFYNIk6fnn3Uoerr7aLSTYmDFuIcuKFdLnn7uVLOeeK9Wt61ZK2Lp10u+/+yfsq1WTunWTdtzR7UwyRXEMC/L7hr+v+egj/37M7rtLBx3kL8OXSs8plDyeHwXz1VfSJ5+4lSw9ekidO7sVAAAAII1kXJPFLQMAAABJbfJkqXr1zVWhgrRqldsZYpcObr+9WykGo0dL8+e7lRAL1mrXzv4z7ryz25lgjzziHz+rGTPcRme33aQqVdxKCbMhJT/9VMrMlFavliZO9H+WJk1cgyRSFMewIL9v+Pta2W0DTZtKrVq5FXhS6TmFksfzI/+WLvWHAA6/9zRuLDVv7lYAAACANMJQwAAAAEgZZ5yRvfr3lxo18nunVqrkGmWZM0f67z+3UsTsfi1U3W47t8Gxn8N+ntifMVkcdZRf1jurbBJ9Cli82C04ForbSfxkVBTHsCC/b/B9Dz9cyshwG5GjVHpOoeTx/Mi/Dz7Y3Es+wFDAAAAASFcEqwAAAEhZ1iO0Vi2pYUOpdWu3McuiRdK4cW6liNn91qnj99YJs5/Dfp5k1bGjX127Sgcc4DYW0pdfSs8951bSQHEcw3gE39d6Px93nFSunNtRCqXbcwqpLR2er1OnSuPHu5WQZcvcAgAAAJBmCFYBAABQKrRv7xac4gxWY79XqgmH0Im2555+UF2mjN8bc6utkmf45NwU9BgW9vdt2bJ0B6tFIVWfUygZPD/it2GDPxdtjRpbDnVOj1UAAACkK4JVAAAAlAo2FK+dIA9Yb5opU9xKEbH7q1jRn9cSRaNZM+m886SDDpJ69JAGDPB7/5ZW6fb7JgLHGLnh+RG/77+XFiyQDjxQqlnTbXTosQoAAIB0VWZjFrcMAAAApJyXXpLq15e6d5e++Ub66CO3I0u7dtIxx/g9kwrL/mq272XDDttQsF99JX3yiduZxeZcte+VCmye2HvvdStZzj1XqlvXrcRp/Xpp1Cj/uNjwtOmmKI5hQd18s7R6tb+8++5+QFQapPtzCqmltD9fLTi197gmTaSTTvKHPJ482e3MYr19hw1zKyiQWbNm6Y8//vC+zpkzx6v/sv5xWbt2rTZs2JD13OJ0HQCgeJQtW1blypVT1apV1ahRo6x/75uocePG2mabbdSxY0dVtKuJAeSIYBUAAAApLRysLlkijRjhdjh24tdOABeWDYl4/fXSwIFSvXoEq6tWSbfc4g+JS7BKsFoU0v05hdRS2p+vr74q/fGHdPbZ/r95b70l/fyz2+kMHSpVruxWkCs79fbDDz/oww8/9L7++OOP+ueff9xeAACShwWuO+ywg3bZZRfttddeOuyww1TH5lEAsAnBKgAAAFJaOFhdt0565RVp4kS3M0vW58CsD4VupRB+/FGaMEHq08cfDjjdg1WbX+/22wlWAwSrhZfuzymkltL8fJ0xQ3riCWmPPfxhgM3o0dIXX/jLgXPO8f/9RTQ73fbxxx9n/V3yit58803NnTvX7fFVrlzZ6yVUo0YNVa9e3SvrOWQntMsUxVAbAADkwkZHsFESli1btqkWLFig+fPnZxs1wXq37r333urVq5eOPfZY798uIN0RrAIAACClhYNVY0MVvvii38PUNG4s9esnVavmrxeEnUC3+9xrL6ltW39bugerNgTm+PEEqwGC1cJL9+cUUktpfb5mZkojR0orV/pz0Vao4G8fM0Z6911/OXDiiVLLlm4Fm6zMOnhPPPGE7rrrLk2aNMlttbl8a6ldu3baeuutveEWa9eu7fYAAJA8LGy1URVsqPopU6Zo2rRpXghrypcvr759+2rw4MHq3Lmztw1IR2XdVwAAAKBUsJPcWZ/3Npkzxx8iuDDs9tbRJAhV013WZ2z99ZdbAYoAzymkktL8fLUAdd48v6dqEKqa6tXdQohddITNZs+erUsvvdSbp27gwIFeqGrhaffu3XX22Wd7J6EPOeQQtW/fnlAVAJC0KmT9AWAXAe2555468cQTdckll6hPnz7afvvtvYD16aef1k477aRu3bp5IzJk2lVZQJohWAUAAECpk/U5L5tffnELBWS3j73PdGUXK3//vV3J7DYAhcRzCqmkND9fV6zwh/xt3lzq2NFtdKJGfVi2zC2kudWrV+viiy9WixYtdPPNN2vx4sXeCWnr0XP++ed7J54bNmzoWgMAkFoqVqyoDh06eMMADxo0yAtcbdvnn3+unj17Zv3N0FHfffedaw2kB4JVAAAAlDqx075Yr9XCsNszlYw/RKQNvTxunNtQhKZPl6ZN82vhQrexFEu33zcnPKeQKAV5fhTn8zUZfPSRHxgfeqjbEEKP1Wg//PCD12vntttu83rs2Mnls846S6effrrXsycjI8ObL5WiKIqiSkPZsPYHH3ywLrrooqy/Fw71RmAYP368unTp4o3aYMMIA+mgDHOsAgAAIJXFzrFq7PPcU0/ZsHz+ekaG1KuX1KGDv54fdgL922+l/v2zD4tY0DlWbZjFsA8+2Dwf7D77ZP89wmbOlP75x61ksWnbgqEobejjyy/3l+OR3/lBp06VFi/2f+dFi9xGx753bvPX7rtv9HGfMiV7T+I///RDC2Nz2e63n78c5aef3ILz6af+fICmXTvp2GP9ZTNxov/4zZjhNjj2c9WsKe2wg9uQT/k9hoX5fWOV5ByrNiSoBU/2s//7r9votGrlf/9tt3Ub8iHZnlO5sdfnjz/6v3/4/o1NLbXVVtIuu/jvM/GIff6+917O7wH2PX/+2cIbt8HZeWf/Yo9OneL/vkUp9newQG7NGn/ZjkmPHv6yWbpUGjs2+/ul2WYbqX17f47OnEZFteee/e4TJrgNjj2eder43ytehXl+FMfzNdnY8MaPPir973/SwQe7jSH2HL3+erfi2OPXu7dbSTN24nj48OG66aabvEC1QYMGOuqoo7y5UwEASBfr16/XZ599pi+//FIWM1nP1ieffNK76AgozQhWAQAAkNKiglVjgegrr7iVLHau84wz3Eo+PPywH5rEnsAvaLA6fLhbiJBbsGoBbE4jLBV3sGpBXpgFKMGniLJlswfOsSz0s/AnloUlFihFySvkyO0YWrBqJ/rnz5fefVdat84f0rJFC9cgSxCw2Ny5NjqjzSVoXytWdA3ikN9jWJjfN1a8waqF+F984VZyYD/zySe7lRCbU9jCM+utXbWq//wPj2T522/+a8x6rNlry36H/ASsyfacyon9jhbcW5hmz6E999z8ONtz4Jtv/J6PFgzGG6DF8x5g921hrl0Q0KCBH3YFPv/c327PAQtYY+fCLAm5/Q5BsGpBpB2/8eOlypWl/fd3DbJY0GrbLXS1YPr447P3iLTnn/2ett8CfHt/Ddjr2gJne2136SJ16yaVK+d25qIwz4/ieL4mE/tdHnrIH9r3vPNyfi+85RZp1Sq3ksWGDI56/yjtfv31V/Xv3z/reTzW672zV9YTyOZRLRfPExEAgFJo1qxZevXVV7VgwQJvtIZhw4bpiiuuyPqcmvVBFSiFCFYBAACQ0nIKVrM+0+m++9xKljJlpKuuciv5cO21fiAbOxRwQYNVCxqMhSIWlq5f76+b3IJV661qv5OxHmzWkytQ3MFqrHvu2Tx0ZuvW0nHH+cv5YSfnLZSz4zBqVPa5+vIKOcK9fu04WM+zgAWrFvRZGGaBhgVdUb3JLLB5/vnNvYAt+OjZ01+OR36PYWF+31jxBqsWjH72mf99o9SqJdWr54daYRZqPfus1KyZtNtufs/CKPYceOYZP3S015cFfNbegqb8SvRzKpb1gH7rLf/5VamSdPjhfrAam5vY69eC1bff9r+vHasjjpCqVHENIgS9Pa39xx/7ywF7D7Dn8HPP+T05d91VatrU7Qyx38+CSZNTD8PiFPwOFm7a+1iYBav2ezz9tB8423PUwtFYNk/p++/7y/b+agGdBZTBRTF2Hzvu6PdMjfXII5tHJLBgtWtXfzk3Rfn8KIrnazKxEP+dd/yRHeyY5+T++/2LVgL22FgQm05uueUW70Sx9dCpl/UGar1Um9mbJQAAaW5d1h+Gn2R9QP7mm2+83quds/4ofCXrj7ptcvowAaQw5lgFAABAqRQ7TKRdTjh6tFuJk7W3YM56jBUVuz8r6wXbt2/8IZT1Fgxua7fbemu3I0VZDzYLxO18dL9+8fU4C1jYFFSfPtmHEbUhQ7/+2g86LNDJaYjOGjX84Z2DXpi//uqHOcHQoEWtML9vQVlvxlNP9cPTMBv+2ELQc87ZMlQ1FrKsWOEfS+vhFw6gwuw1Zre3gNZeXxaw2W0TpaiOsfVGtMDYfn8LVU84wQ8Go+7Pttk+a2Nt7TZ222BY3Cj2uFhZb0u7GCP2PcBCbQtXjzwyOlQ14TkwLaC0529JCn4He43Zay22M4Jd8GKvy+DYRbFAOHhuWpj/+uv+xSP2OrSAzy4yiQpVzWGHuYUsdvFA7FDBURLxGkwFdhGBXSRkxyWvodFj309zumijtLLeN5dccokXqu6xxx5Z76HnZB23rAMHAAC83qk2/+ppp52W9Xdgbf3yyy/q1q2bptqcCkApQ7AKAACAUsnCCjvpHw4tbPhJG/41HtbO2u+xR/HNYWhDpxbkvq1XV3ho21RnvdUK0svRWE/JWAcc4Pciy4sFYTb9T/C9rafchx/6vfCKU2F+3/yy7xN8L+tRa73LLLSy53VOI3OF56O13mnhIbVj2X2Ge2pbEGs9OBOtMMfY5i+2oM/YHJKxwXQUa2Ntjd3W7iMe1tM9/B5gvdEtpM5rWioLCcNt7GKCRLHXWnjoWAs57f3Tei/nxXqKBqx3sAWydtFDXgGfHe+2bd1KFhtBID9K8jWY7CxUtQsBLKyPej8NCw/XbGw+c6t0YKHqDTfckPW8Kau+fftmHa9DGd4QAIAIzZs318CBA72vf//9tzdcPuEqShs+SgAAAKDUsp6m4RPFNudfbj3Jwqydtbf5/5A67PHKqYdcFOv1ar2HA9b7LxgeuDSYONEfttjmt7Teg9YDMK/wJL8sVAsHLuGhQlPNzJn+EMDGfqe8As4waxscB7sPu6/8sh6AdtGEBX+5sVAw3Hsw3gtGSoINuWu9Vdu0cRtyYSFqwIboteeOzWOb13PU8qzwcMvJ9PunEptD2cJ8ew8Mz6Gck6gRANKh12psqNqhQ4es52gZiqIoiqJyqEqVKnnzkbfI+sOWcBWlEcEqAAAASjULlMJi5zTMibXbd196NaUaC3Rq1nQrcYrt/RvM+5jqLFS13mh77+0PO2tD9sYj3JvVQlPr+Z0bC2ttPtBAIocDLqxvv93cY9mmg8rP3MPWNphCyu7D7qsgwsP8pqrwUL35YT1RbYhgFD/rGf3uu35Abf/WxSO2x6rJaajw0iI2VN1+++3dHgAAkJsKFSropJNOIlxFqcRpIgAAAJRqdg40HI5YL7K8hiq1/XayuGNHtwGlWvPmUuPGbiWL9ZqzUDJVWQ8yGxr1hRf8eSq7dnU74mRzZ/buLR18sHTssf58n+nAhkC24WgDwdC++RG+jd1XeFjleFivVxvmN5XZEL3xDJ8cJTw0MIrXL79Is2f7Fx/ZsOjxSLceq4SqAAAUDuEqSiuCVQAAAJRqNtRkeP4/G24yrx42tn/Dhvh7+CG1WY+tcLBgvQ1TtReW/dyjRknjx/vzqcYzz2UUG8bVeg4GPTDTwb//+u8PAQvc8yt8G7svu8/8sOAq1XvJ2+upoFNPhocGRvGx4ZqtN3uTJlKnTm5jHKKC1VR9r8zLI488QqgKAEARiA1XDznkkKy/RbL+GAFSGMEqAAAASr0DD3QLzkcfuYUc2P7Y26B0s4AhLBWHA1671g9V//7bD0VtiN7iCunswoO//tpcpSFcKY65YVN5vlmUXqNHSytX+vXEE9Ljj8dXH3zg7iCkNPZYnTFjhgYPHuwtH3300Wrfvv2mOeMoiqIoisp/VaxY0ZtzdautttKkSZN02WWXef/OAqmKYBUAAAClXsOGUqtWbiWLnQj++We3EsO2168vNW3qNiAtdO7sFhwLDlPJmjXSM8/4Q12bSZP8r0XFXjMLF0ovvig9++zmeucd6b33pFmzXMMUVhxzw6byfLMonf75x39eWq9iC1atV3W8tWiRu5OQ0tZjdePGjTr11FOz3vOWq2PHjuqUny69AAAgR9ZztU+fPt5oEHfddZc+//xztwdIPQSrAAAAKPVsKODwEJMbN0r//edWYtj2qlXjn3MOSLRvv5Xuu0+qXl0qU8bfZkMBv/qqP6xxYdl8rY89Jt1zjzRhgrRggT+Pps3BOnCgP+Twdtu5xgCSlv3b9+67/nDNQ4ZIl16a/4od5rm09Vi9//779emnn6patWrq0aOH2woAAIpCo0aNtO+++3rLp5xyinchE5CKCFYBAACQFg46yC04338vLVniVhxbt+2xbYFkZQGqBZ9du0p9+kj77y+VK+fv+/33gg9Faz1g7bVw7bX+XIx2zsPmax02TLrgAn+oYavgewFIfmPH+r3a7X2ioBcPxc6zWpp6rE6ZMkVDhw71lo888khVrVpVUcMZUhRFURRV8Oqa9cGlSZMmmjZtmi666CLv310g1RCsAgAAIC1UqOAHQwEb6vWbb9yKY+s26l/lym4DCsWOsQ0fi+KzdKkfkuy8s7++555Sgwb+srE5V62HaX7Y8KCvvOLPM2s93Oz1cNRR0iGHSBkZrlGC8JxCKkmm56tdLGHzh9t80jvu6DYWgPWMDystHU0yMzN18sknZ73/rfSG/92ObvgAABSLjKwPFL179/a+jhw5Muvvk6w/UIAUQ7AKAACAtFG3rltwYocDtvXatbP+SOav5CJhvSVt+FgUH+s1Gjs/bO/eUp06/vLixX7P1XitXi29/ro0ebLbkOWww6R27dxKghXnc8qGRy1qxXGfSB3J9B44erS0YoV06KGbhwwviNhgddWq1JuTOsp9992nr776SjVq1NARRxzhtgIAgOKw1VZbaX+7OjTLaaed5l3YBKSSMhttZn4gTdlVqfPmzdOcOXO0aNEirVu3ztvGywIAUFzKli2rcuXKqWbNmmrcuLEaNmzoraPgXnpJql9f6t7dbciFnfx98MHNPfjs5HLfvlKbNtKkSX4PPZszMp5eeTb8qg2RGrDOLccc41by4f/+b/M8mPvsE9/vYewk+Rdf+Ms2593ll/vL8bAA+d573UqWc8/dMnTOjQUFQS+s1q2l447zl2P98480cqR09dVuQy5uvFFau9Zf3msvab/9/OV43H23sv6W85ctADz2WH85P+x59OefbiWLfc7v0sWtRCjsMSzM73vzzX4AanbfPXro6s8/lz77zF+257MNFWzfJ69A5YcfpPfecytZmjWT+vXLuxe3hbG//eYvW4/Zs8/2l+OVDM+p2N/d5pO0+Znzw3oF3nSTW8livXzDPeWjJOI9oKjdfvvmnosW9Mc7NeW0adJTT7mVLCedJG2zjVvJw5tvSr/84i/b8LQXXugvx6swr8HieL4Wp6yPvN6/ffbYFDYz/PBDf17nsEGDlPV3jVtJQXYeoEWLFt55gZOynoT0VgUAoPjZOXib23z27Nne17Pz+wECSCCCVaSNmTNnasyYMV79+OOPmjBhgubOnasNpeHyWgBAyrI5Rho0aKBWrVppl1122VRt27b19iFv+QlWza+/Sm+84VaybL21dMop0uOPSx06SLvu6nbkIdHBqn1v+xkMwWrhg9Wnn5amTnUrWayXZtZLMUfJHqxmZvrPc5tTMXDZZf6Q2LmJDZhtCOCOHd1KLnILVoNjldvzIBmDVQuU7aKL/LALNJ5/3q1kIVjNHcFqyXjiCenff6Xzzit8L+qvv5Y+/titOKedJjVt6lZS0LPPPqsTTjjBu9jtAptEGgAAlIhx48Z5/w63yfqj287Vcw4EqYJgFaWWXfXy7bff6vXXX9cbb7yhyeHxzBx7s66S9cmyevXq3lfrRWQFAEBxsT+97N+o1atXa9myZVq+fLm3HstO7tlQdL169dJ+++2nivntNpVG8hus/v23H6IGqlaVLrpIuu026cgjpW23dTvykMhg1YZztJ83QLBauGDVejA/99zm+7DnhP1OjRv761GSPVgN3HmnPw+rsbkVLSy03y8nw4e7BWfYsPh6cJeGYNWO6UMPbX4e7LCD/56QH6+9tjnMtmHFzzxTqlTJX88JwapbyUKwWvTs+WjPSxsCON4Lh3Jjr3N7vYfZe26yDBdeEHZB208//eTN97ZzMGE1AAAodnYu5LasD7Y2kuRbb72lww8/3O0BkhvBKkod64Vq86M88sgj+tcuy3UqV66spk2besMuNmnSxDthXS3rE7hNlA0AQKLYBwmbT8SGprchcGwYulmzZmlpkIRksX+vjjvuOA0aNIjh6SLkN1i1v35ffdWujnUbsthozBao2snheC+STWSwOmOG3wMpQLBauGDVwikLqQLWQ9N6auYmVYJVu7bQQpBg2qK8eqAWJFi154I9H5ct89dTNVg1P//sDwlur0mbS7J///gfV/s9n3zSPw72mjz4YGmnndzOXBCsupUsBKtFy/6UsO9vx2fAgPj/fcvNlCnSM8+4FaeoQttE+CLrRdS1a1fvb61LL72U6RkAAChhNsf522+/rX333Tfr83XoAzaQxOiah1Lj119/Vf/+/dW8eXPdcMMNXqhap04ddenSxZsEe+jQod7wPvYmbcMr2tx2hKoAgESzkRLsZF7Lli21995769hjj9WFF16oc845x/s3q1GjRl6v1oceekjbb7+9Dj30UH300Ufu1igIO7EcO3fm+vX+tkSMPBTuHGMn+fO67NFmMfjmG7eSIOHjN3OmX1Hs57RwqiTNmuX3So6XBVrff+9WsrRo4Q/fWlpY6JP19rKJDXU7caJbKSIWbgWhakEly3PKgtCg17r9Tha0xsvaBsfB7iOeUBWpKZnfAwN2MYUNcW5f7WKKovr3LarHexCqp6I7rVt/lt13351QFQCABNh11129Ebo+/fRT/RYMgQMkOYJVpDy7wrR79+7q3LmznnrqKW/O1A4dOuj000/35kc58MADtfXWWzPELwAgpWy11VZeD4oBAwbo/PPP12677aby5cvrvffe8/5t69ixo54PT+SXpqyHmPUI+uuvzT344mFDdMaK2lYSsh7qTb77bnPPwpxkfd70enlZABiwsNV6EZWU8LGy475qlVuJYb1IrQdeSbIT/LHDVObEgmx7GYWPuYVhlSu7lVIi3APSHqvcjk9sqPzuu24hB/YatN7fhQ2jk+k51auX1KiRv/zHH/5Q0XmxNtbW2G3tPlB6JfN7oJk71+8JHDx3c/r5CiIqRA1GDEg18+fP15tvvuldcG3BKgAAKHkWqlq4ah577DHvK5DsSJqQsmzYRAtO7aTzZ5995r0JW+9UGybxmGOO8cJUm0OVoiiKolK96tWr5801ctFFF+mAAw5QjRo1NG7cOG944J49e2Yb+j5d2LS01kvOhh+1E7pz5vgnkYNgIy82ZW142Ec78W1DJcbLgkz7nmGLFxes116HDlKnTm4li50Qz4kNUWrz5dk8mVl/6mxix+OFF6Qff/RDrvAwx1EsjA6LXc+Lhbrh4WffeGPL+3jnHT90y3r65sl6e4WnGrZjGwzRmV/Wm8pu++GH2e8zloWpr7zih9TGOiodcYT/eMSjMMewML+vvdzt+Rew4CS/x8qCIPvdo3r22ryi1ss1YK+pCRPcSgwbCvXZZ/25aO12e+zhb7fHPevPc4/NB2y9ZLP+ZM9VMj2n7P3hhBP8OWmXLPGHPbWLN6xneyzbZvusjbW129ht7T7iMXt29p/TXv9R3yeWtQm/V9h92H0lgv0cwVDGxp6TeV0gEojt6ZlTz89Ydv/hwNu+f27vnbEK+55T1M/XwrLg1H4H+3dx1Ch/ruDwnwZ20Y79+2G/d34uQjL2b5vdl70PfPCBP/x+LNtnvXPtZ7C2wTDJyc7mcrMpGVpnvenZ6CEAACAxdtxxR+/rG/ZHFZACmGMVKenbb7/1hv2dPHmyd3XpPvvsoz333NMLVwEAKO1sdAYbIuf999/X6tWrvaHv77//fm8Y4dLu4Yf9r/YXbNRJdBvlP+gBWquW1KePvxzFet3YyWcLKGw+yNyGa3zttewn8XP6/jYXY+yfI2ec4RZysWaNf9Lb5sO0+7ahW/fe2+3MYifNbT7FefOkI4/0g6/w/IpRYuf0e/xxt5Bl/vzsPZish6bNUxs45RS3kAsLJb78UlnPRT/ctuPXu7c/1+P48f6wqD17Sm3auBvEeOABt5DFHovYIMbCiGDAkfB8nVFi51i1kM/m0e3Wze+Baj9TeIRH+93fekv6809/e7NmyvpbUmrVyjXIQWGOYWF+3/D3tZAjNAWzx4LN4Pez3yH83LEQxAI/CzxiVamyOfQJ/7z2s9nxmT7dD2Hsd7Pn5L77ugZZ7HG3XtL2Ojv8cKlSJf8xsKDVwqQyZfzhcC1Yted0375SzZruxjlIpueUsQslbNhkC4zs57EwzZ4nwZyr9nvaPjtO1oPR9rVtm/fQr/a+E7DH0o5RmL2HBT+nPZeDjnQWjtmFFcaOVew1NXZRQY0abiXLmWe6hWIQ/h3sWMdeVGLH2h43Y6+voEezhdDW6z5gr6NwkGzP4/DryJ5zwevSAvogeLUgNfyebOy4h7Ox2N+/qJ8fhX2+FhX7OW65xf93JB4W/p9+ulvJg/2b9NxzbiWf7AKg4v7dC8suTrMeq0cffbQ3MggAAEgMi6j+7//+L+tv46X65Zdf1Cl85TGQhAhWkVLWZH1avPLKK3Xbbbd5b7g2TKJ9CGrYsKFrAQBA+rAPHXZFp11oZPr06eMFrNbDtbQaPtwtxMEOw8CBbiUHd93ln6C/6CK3IQcWIuSnN1RYbMCZGwu/rNeZBSjhHj8WbNlwrhY4BEMAh4NVC5TDvaeMG01pk/wcu/z8zBba/f679MknbkOW7bf3v3/ws0Ypyp8nNli1awzsZTFmjP/VtjVt6u+33p527Ixtt58zPAdpbgrzM5fUbe1i7/AwtDZ9YGwQGyXqGFuPVnve23Pxhx/cRse+jx07C2nCgl6swfPXeqp27px3qBqWDM+pMHvOWG9wCzKtR2CY/W4WhO6yi/86jEd+fk4LVYPXtvUWtPeGeOXnd8yv/PwOFowef7y/bMGwXagSL7uQxMJlY88rC2bjVZSvwdwU9PlaVOyMzrff+v+WWTBtZeGuhcT23LXg2ipYtp8p3vc8+90sILYLJez5HVu23e43uO9g2b73//4Xf8/tRLARsOrWreudYxg2bBg9VgEASLDXsv5I/C7rj92rs/4Qu+aaa9xWIDkRrCJl/Pjjj14v1fHjx2d9UCvr9VLt1q1b1ge6rE90AACksZ9++smbe9VODjZo0EAjR45ULyb4QxqJClaNDe1pPdMs9LBehQHrSWnBh51Hr1DBbQQApI3Ro0dr3333VbNmzXTuuee6rQAAIFH+/PNPPfHEE5um/QOSGcEqUsI777yjo446SmvXrlX9+vW9XqpNYi+PBwAgjS1evNi7wnPq1Kneuo3ucOGFF3rLQGmXU7AKAECUW2+9VUOHDvWmFOJiNAAAEm/FihUaPny4qlevriVLlqiMDY0BJCk3gwiQvMKhqs17cs455xCqAgAQo1atWjr55JN1yCGHeB9ALrroIt1+++1uLwAAAAI2IpZpGowTDwAAEqpq1areeY1ly5Zp4sSJbiuQnAhWkdTCoWqXLl3Uo0cPlS9f3jthTFEURVFU9rKh8u3fyyOPPNJbJ1wFAADYEsEqAADJJ/h3Ofh3GkhWBKtIWrGhqvXAAQAAedtpp50IVwEAACKsX7/emzrBLkjbaqutsl2kRlEURVFU4qpRo0bev9WTJ0/2vgLJimAVSSk2VD300EMj32wpiqIoioqunXfemXAVAAAgxty5c72v1apV88JVAACQHGrUqOF9nTNnjvcVSFb8BYmkM3r06C1CVQAAkH+x4eoDDzzg9gAAAKSn4GRtcPIWAAAkh5o1a3pfCVaR7AhWkVSWLFmik046yQtV99xzT0JVAAAKKQhXzeDBg/Xnn396ywAAAOkoOFlrJ2/Do31QFEVRFJXYIlhFqiBYRVIZNGiQZs2apebNmzP8L0VRFEUVUe2yyy7abbfdtGbNGvXv318bNmxw//ICqe+ff5T13HYrWRYvlpYudSsAAMSwC7pNlSpVvK8AACA5BP82B/9WA8mKYBVJ46233tITTzyh8uXLq3fv3sx1AgBAETrkkENUu3ZtjRkzRjfddJPbCqSmkSM313PPSStXuh1ZLGjN+pNy0/6XX3Y7AADIsm7dOu9rRkaG9xUAACSHIA8I/q0GkhXJFZLCwoULdcYZZ3jLBx10kOrWrestAwCAolGxYkUdffTR3vLw4cM1duxYbxlIRRaeBrVsmdsYsmjR5v0LFriNAABkyczM9L7aqB4AACB5BMFq8G81kKzKbMziloGEOe644/T888+rZcuWOv300/mAAwBAMbERIr755hvtuOOOXu9VGykCAAAgXYwcOVIDBgzQHnvs4Y2WBQAAksOyZct0zTXXqFGjRsyziqRGj1Uk3CuvvOKFqtaTxj7UEKoCAFB8gpEhfvvtN1133XVuKwAAAAAAAIC8EKwioTZs2KALL7zQWw7mfgMAAMWnQoUK6tOnj3chk821OnfuXLcHAAAAAAAAQG4YChgJNWrUKB1zzDGqX7++hgwZQm9VAABKyHPPPefNs3rFFVfo+uuvd1sBAABKt/BQwHaxGQAASA42FPDVV1/NUMBIevRYRULdeeed3te99tqLUBUAgBJk//aaBx54QKtWrfKWAQAAAAAAAOSMYBUJ8/333+vbb79VlSpVtNNOO7mtAACgJGy99dZeLVy4UE8//bTbCgAAAAAAACAnDAWMhDn22GP10ksvad9999VBBx3ktgIAgJJiQwE/++yz2m677fTHH38wegQAACj1gqGA99xzT4YCBgAgidhQwFdddRVDASPp0WMVCTF37ly9/PLLysjI8OY1AQAAJa9Dhw6qVauW/vzzT3388cduKwAAAAAAAIAoBKtIiNdff12ZmZleD5kaNWq4rQAAoCSVLVtWu+66q7f8yiuveF8BAAAAAAAARGMoYCSEDf374Ycfqm/fvsyvCgBAAtkoEnfeeac31M7s2bMZDhgAAJRq4aGAjznmGLcVAAAkmg0FfOWVVzIUMJIePVZR4pYuXarRo0d7vWTatWvntgIAgESwDyx16tTxAtYffvjBbQUAAAAAAAAQi2AVJe6TTz7RunXrtM0226hKlSpuKwAASJT27dt7X999913vKwAAAAAAAIAtEayixH3//ffe15YtW3rDDVIURVEUldiyi50MPVYBAAAAAACAnBGsosT9+OOP3temTZt6XwEAQGI1a9bM+xr8Gw0AAFDaRV1sRlEURVFU4gpIFQSrKFEbN27UTz/95C0TrAIAkBxq1aqlatWqacGCBZo+fbrbCgAAAAAAACCMYBUlaubMmVq8eLFq1KihmjVrRl6ZQlEURVFUyVdwwdPYsWO9rwAAAAAAAACyI1hFiZo1a5b31XrGAACA5BH82zx79mzvKwAAQGkXdbEZRVEURVGJKyAVlNloY7MCJeTll19Wnz591LFjR/Xv399tBQAAifbhhx96NWzYMF133XVuK4DSaO1av9as2XI5dtu6ddL69dKGDfmr8G3sE6dV+DxJ7DmTvNbLlpUyMqRy5fwqyHL58lLFirmXfR8ApdvIkSM1YMAAdenSRccee6zbCgAAEm3p0qXeOYlGjRppzpw5biuQfAhWUaLuvvtuXXDBBd4HmKOOOsptBQAAifbdd99p1KhROvXUU/Xoo4+6rQCS1erV0sqV0qpV/tegwuu2HBWYImcWwkYFrkFVqiRVqeJX1arZl+22AJIfwSoAAMmJYBWpgmAVJerKK6/U9ddfr4MPPlgHHHCA2woAABJt/PjxXqB6+OGH66233nJbAZQUCzyXLdtcy5dLK1ZEB6dWmZnuhkga1iM2p9A1WLaqVk2qXt1vD6DkhYPVvn37uq0AACDRLFi94oorCFaR9AhWUaKGDh2qW2+9VUcccYS6devmtgIAgESbNGmSd6LxwAMP1AcffOC2AigsGxI3HJjmVPQkTT/W+9UC1ho1/AqWw18tiGWqKaBoEawCAJCcCFaRKghWUaKGDBmiO++8U7169dI+++zjtgIAgET766+/dP/996t79+769NNP3VYAebGepYsXb65Fi6QlS+ykgB+Y2pC9QEHZnK9RgWvNmlKtWlLt2n74CiB+BKsAACQnglWkCoJVlKjBgwdrxIgRBKsAACSZIFi1ESVGjx7ttgKw4Xdjg9PwuvVIRe7CPS759Fn0KlTwA9YgaA2XbWPuVyC7IFjda6+9CFYBAEgiFqxefvnlBKtIegSrKFHhYLVr165uKwAASDQLVu+77z6CVaQd+zRkvUv/+09asEBauDB7eFrahui1kNOCOKuKFbdcjtqWkeGXBXTBcn4qnqFsYz+Vhtdt2cpC7A0b/K/xLMdus8dyzZrcy9qVNjana2zYal/r1PF7vwLphmAVAIDkRLCKVEGwihJFsAoAQHIiWEVpZ6GaBadBgBoOUtetc41SiM3PWbmyPwxsUOH1YNnahUPS8uXdHSCSBatRgWtQq1b5vZhXrPC/hpctwE019nyoV29z1a27+Ss9XVFaEawCAJCcCFaRKghWUaIIVgEASE4EqygN7JON9TKNClBtLtRkZiGW9R4MV9Wqm4PScFhqX23uTSQXC+jDgWs4dA0v29y7VsneO9Z6toZD16DseQmkMoJVAACSE8EqUgXBKkpUEKweeeSRBKsAACQRC1bvvfdeglWkDBu+999/pXnzNn+1ADXZwioLQGMD06iynqVILxay2vPYQtbw1/Dy6tWucRKx52o4aK1fX9pqK6lmTdcASHLhYLVfv35uKwAASDQLVi+77DKCVSQ9glWUKIJVAACSE8EqkpUNvxoOT4OvyRI42RC7wbyVwdyV9tVCJgtMrYcpUFDWCzbo4RoOXYN5gO1rsgxlbYGrBazhatCA4aeRfAhWAQBITgSrSBUEqyhRBKsAACQnglUkWmamP2yvBafhEHXJEtcgQSwUCgemscv0NEWi2RDD4aA1KFu310+iP/HXqbNl4GqvnTJlXAOghBGsAgCQnAhWkSoIVlGiwsGqnbgFAADJwYLVe+65h2AVJcKG67XQ1D4rW82dK82fn7hhfC0crVvXLxva1IKgIEClxylSmV2wYOFqVPBqFzJYj/BEqFDB780aBK0NG/pF71aUhCBY3XvvvQlWAQBIIhasXnrppQSrSHoEqyhRBKsAACQnglUUl3CIagGqfbXeqBb4lCSb69SC0iA8DX+tWtU1AtLM8uX+3MSxlYie4taD1V6TjRtvLgtby5VzDYAiQrAKAEByIlhFqiBYRYkiWAUAIDkRrKIoJEOIaiFpuPdp8NVCVQtXAeTN5m21Hq2xgattW7/eNSoB9pq1nq3hsNXWMzJcA6AACFYBAEhOBKtIFQSrKFFBsHrUUUcRrAIAkEQmT55MsIp8sU8RFprOmuUHqCUdotqQoRawhIcTtWWG7gWKj73uly7dHLQGcyHbVwtjS4KFqvZ6D4et9etz4QTiFw5WjzvuOLcVAAAkmgWrl1xyCcEqkh7BKkoUwSoAAMmJYBV5Wb1amjnTD1Lt6+zZ0tq1bmcxsuFBbc7TcHhqX20OVNsHIPHsrILN22oha7hsW0mw4YJt2OCmTf3aemupenW3E4hBsAoAQHIiWEWqIFhFiSJYBQAgORGsIsw+IVhvNAtQgzDV1otbtWpb9kC1nmjMsQikJrv4IujVGq41a1yDYlSjhtSs2eay4JVerTAEqwAAJCeCVaQKglWUqCBYPfroowlWAQBIIhas3n333QSracpCjqAnqn21Ku7gw3qTBcN4Zn1u9r7a/KgASr8lSzaHrP/84w8lvnix21lMbPhwe58Jh62VK7udSCvhYPX44493WwEAQKJZsDp06FCCVSQ9glWUKIJVAACSE8FqerFQY/p06e+//TB1/ny3o5gEIWoQoBKiAoi1atXm+ZqDsvlci1PdutmD1nr1GGI8HRCsAgCQnAhWkSoIVlGiCFYBAEhOBKulmwWp06b5YaqVrRcXC1HDAaot2xC/AJBfy5dvGbauWOF2FoNKlfw5Wps3l1q08N/DGD649CFYBQAgORGsIlUQrKJEhYPV7t27u60AACDRLFi96667CFZLiZIKUitW9EMIqyBIJUQFUJysF2ts2Gq9XYtDhQrS1lv7IauVXShC0Jr6CFYBAEhOBKtIFQSrKFEEqwAAJCeC1dRWUkGqDZNpIaoNmWlf69dn2EwAiWfzswbzRFvZvK3FcabDLiYJgtZttpEaNuQ9MBUFweo+++xDsAoAQBKxYPXiiy8mWEXS41pLAAAAIMVYcPrrr9Lrr0sjRvj1xhvSb78VXahqPbUsONhnH+m446ShQ6WBA6WePaWddpIaNCBQAJAcatWSOnSQDjlEOvNM6bLLpP79pX33lVq3lipXdg0Lac0auxBJ+ugj6aGHpJtvlp5/Xvr22+ILcwEAAAAkF3qsokQFPVZ79+5Nj1UAAJKI9Vi1f6PpsZqcSqJHap06m3ui2leCUwClhZ31+O+/zT1arRYscDuLkM3RavOz2kUp1quV99HkRI9VAACSEz1WkSoIVlGiCFaBxFu/arEWLVqiJUuyKusPlmXLlmn58pVataGWOu7fXe1qMpgBkI4IVpNLcQepdqLf5gq0E/8WAliYWqWK2wkAacDmZQ0PHzx7trRundtZRKynbDhoZfj05BAOVk844QS3FQAAJJoFqxdddBHBKpIewSpKFMEqkFgrf35C1z0+Rksz3Yawstuo15VDdEADglUgHRGsJtbatdLUqf4Qk/bV5gssSuEg1crmCLS5AgEAvsysv4///XfzBS0zZvhD/xYlu4AleB8OglaUPIJVAACSE8EqUgXBKkpUOFjd1ya8AVCi1s0aow++n66V69Zo5aJZmvDH35tC1rIN9tPgYUdr23L+OoD0MmnSJILVEmbDUFqQamUn8O2kflEhSAWAwrEzJXPnZg9a7SKYolS1qtSypT8PbKtWRTcXLHJHsAoAQHIiWEWqIFhFiSJYBZLIhtl6+5Yb9e5MO5NfRtV2O0PXndxJnHcH0hPBavGzISbt5HwQphZlr1SCVAAoXnbxS2zQWpRDB9v7uA3LbiGrVcOGbgeKXBCsdu3alWAVAIAkYsHqhRdeSLCKpMd4jwCQrtbN1T8Lgu5R5bR1q5Yq79YAAEVj0SLphx+kZ5+VbrlFeu45acyYwoeqdgK+cWNpzz2l446TLrlEOuMM6YAD/BPyhKoAULTKlpWaNJG6dJGOP1669FLptNOk/fbze52WL+Qf0nbJu831+umnFvxJd9whvfmmNGFC0feUBQAAAFBwBKtIiDJlylAUleBaP3OKZqx2L8qyjdWqVXVlRLSjKCp9CoW3YYM/R+oHH0j33ivdfbf03nvSX39J69e7RgVgDw9BKgAkDwtarYfpXntJJ57ovy+feqpkAzNts41UrpDTayxbJv3yi/Tii9LNN0tPPSV9+60/jDwAAACAxCFYBYC0lKn5k6dpkRsMvmydltq2Pv8kAEBBLF0q/fST9MIL/snvp5+WvvtO+u8/16AACFIBILVkZEjNmkl77y2ddJLfo/WUU6Ru3fwh2m1/QdkwxNOmSR9+KN13X9FdtAMu+qYoiqKoZCogVXAWHQDSUeYy/TVlrvyBgMuoUotW2rqQV9UDQLqwE9w2t97HH0sPPCDdeaf09tvSxImFm2+valVpxx2l3r2loUMJUgEglVmQavNdd+0q9e/vB60nn+yvN29euKA1PMy8XdBjw8z/+KO0ZIlrAAAAAKDYEKwiYaKuSqEoqoRq3RT99XdweXuGtm61rSpGtaMoKq0KOVu+XPr1V2nUKH+u1CeekL7+Wpo3zzUoIJuvz3ozWYh64YVSr15S+/ZSpUquAQCgVLChgS1Qtfd8C1htJIJ+/aRddpFq1nSNCsB6rE6eLL3zjjRihHT//dJHH/kXANmFQAAAAACKFsEqAKShdTMma9rKYBzgRtq2VXX+QQCAkI1Zb5GzZkmjR0sPPSTdfrv0xhvS+PHSmjWuUQFUrix16CAdeaR08cXS6af7vZds2F+ybQBIH+XLS23aSIcdJg0aJJ1zjj9KgYWvNn9rQc2fL33zjX8BkF0IZBcE2YVBK1a4BgAAAAAKpczGLG4ZKHaDBw/WiBEjdMwxx2i//fZzWwGUrA2a/fZNuuGtv7OWsv4hqNNVF1x7nLYr7+8FkJ4mTZqk22+/Xd26ddNoSxPT0KpV/nx11vPHvtp6UWjY0B/O16ppUwJUAEDu7AKeKVP8f4+siioUbdTID3Pt36N0vqBn5MiRGjBggPc3z4knnui2AgCARFuyZImGDBmS9TdLI82ZM8dtBZIPHZQAIN1kLtdff831QlVj86u2IFQFkKb++Uf64gvp0Uf9nj2vvir9/nvhQlWbD3W77aQePfzhfc86S9p3X6lZM0JVAEDe7N+R7beXevb0/x2x4eJtCGEbPr4w5s6VPv9ceuQR6bbbpNdek8aNk1avdg0AAAAA5IlgFQDSzdq/NGlGML9qOTVr1UoV3RoApAO78PXjj6W777ZeK/5wvzbsb2E0aCB16eLPmzd0qHTMMVLnzlK1aq4BAAAFYBfkWO9SGzbeho+3YeRtOPnCzse9cqU0dqz0yiv+hUWPPy599ZX077+uAQAAAIBIDAWMEhUeCnj//fd3WwGUpHUTntdVd47Wf/bun9FEh146TL2ar9eCP7/T6M+/17jpc/XfsvWqUL2+mrXrrC7776fdmlbxb1zkMrX077H67a9FqtC4vTq1a0DICyTIxIkTS+1QwPbX7uzZ/vyoVkuWuB2FYHPjtWy5eYjfGjXcDgAASkhmpn9hUDBkcFGForVq+T1mrQrbSzYZhYcCPumkk9xWAACQaDYUsOUHDAWMZEePVQBIKxv07+QpWuwuqSlTfRttW32qPhp5g64b+an+rb2zep42RJdfOlB996qnBT+8pUduvE73fzpTa/ybFKEN+ueLB3T9jffr6Ree16N3Xq+bXx6vIppCCkCaszD177+l99+XRozwh/r99tvChap160q77y7ZdGyXXCL17SvtvDOhKgAgMcqWlbbeWtpvP2nAALuQWTr8cKltW/8CoIJavFj65ht/yGD7N/SDD6SZM/1/WwEAAIB0R7AKAOkkc5km/zVn0/yq5Wqu1Dd33av3l+ygk68YpnOP3U87tW6mxs3aabfDB2hwvx1Ubf1/+vWle/TUD4uU6W5XJNaM03tvjNXi4IfZuFqzPn1LX80r0u8CII3YCd/p06V335XuuMMf1vD776WlS12DfCpXTmrVSjrkEOn886Vzz5UOOsjvqZqR4RoBAJAk7EIfu+DHLvyxC4DsQqD//U+qU8c1KAC7IOm776THHvNDVrtgyS5cImQFAABAumIoYJSoYCjgY489lqGAgURYPUYjL3lYP64M3vrLquaO/TTkrG5qHHVV+5pxevrKu/XFoo0qU2sPnX3Nqepc1e0rrJVf696Ln9Bva926KdtIB196lY7eppzbAKCk2FDAt912W55DAf/4o/TTT35PmAMOkJo1czsSxIZBtDDVhvidMEFaUchu7zb8YTC8b4sWhevxAwBAsli4cPOQwfbv5obg4sYCsjnEt9vOHy64eXN/LthUER4KuH///m4rgFJt3XL9t7ysateuQi8jIInZUMCDBg1iKGAkPf4tAYA0sm7aZE1bFYSqZVR528N19qk5hKqm4jZq0dQPOTcu/lmjv/+v6HqtVmqv/3WqlfVTbFZh6120i/t+AJLPtGnSO+9I//zjDwk4alThT8wWhIWpf/0lvfmmdNtt0tNP+2FvQUPVpk39kHjgQOmCC6RDD/WDVUJVAEBpYb1WrffqCScUzXD2y5dLY8ZITz4p3X67//eB/Z1g/0YDQDJZ+fcXevyGS3Tx5U9oTNHPcQQASEMEqwCQNmLmV626g4458zBtW8Vfj1ZB1apWdOHnGk39Y4JWestFoGwt7XriBTrloJ3VtmUrddjraA085zA1J8gAktasWW7BWbZMmjHDrRQzC3AnTZJef1269Vbp2WelX36RVq1yDfLJ5qQ7+GB/PrrTTpP23FOqV8/tBACgFLMLh2weVpuP1f4dPPtsyQaUKugoFHZhk41o8dRTfsj61lvSlCmErAASJHOdli+YqQk/vK/n77tOV1z/uL6YsVIb16/TetcEAIDCYChglKhgKOC+ffsyFDBQ0jIX6ZM7LtPzE+yjRBlV2eUM3TRgN+Waq2qNfhx5kR4c4ycXZevvpwuv66e2dCoFSh0bCvjWW2/NdSjgr7+WPv7YrThHHy116OBWitj6rLcr65lqw/xaqLqmEFeY2xCFNlShDVloQxfaEIYAACA7u2jqzz/9f3sLe/FU5cp+gGv/9ibT/OTBUMDdu3dnKGCgNFk/WaOuG6GPZ6/UmvUbVbZSPW27Q2tlTPpOE+wK83KddMZ9g9SlomsPIOnYUMAXXHABQwEj6dFjFQDSxerJmvx3MGZnhrZu01qV3FqOMldo8dLNk6BuXLFcy7kcB0hbNuxfrKIOKNet80/mvvyy3zP1xRel338vWKhqYaqdyLUeORdeKNm50113JVQFACAn1atLu+0mnXyy/2+nDY9vc44XZA5VG1Xi11+l557z/023USfsQqlETCMAIA2UbaCdjzhepwwYpEuH36p77rtNV5x1kFpX4/Q3AKBo8S8LAKSJdTMmaWowv2pGQ7VqVSPvfwQ2/Kt/5m8ew2vjxkxl/QcgTc2d6xZCCjo3W9jatdIff/hzttqJV/tq67Y9v8pmvbG1aiX16CFdfLF04on+HHJVq7oGAAAgLnYhkl2QZBcmWchqFyrZBUsFCVntAqnffpOef97/t/7VV6UJE/zRKQCgSJStqZa77Kndd9lR7ZrXV9Uk6SUPACh9CFaRMGWyPo1RFFVSlal/J03VkmB+1erbqFXjchHtstfGhdM1M7hRljJVqqlaRnRbiqJSv3KzerX0999uxalUSapVy63kk51gtZ6o1iPVTrBaD1XrqWo9VvPLhhZs00bq1csPU48/Xurc2R+CEAAAFJ5doGQXKtkFS/ZvrV3AtO22/gVN+VWUfwMAKB6ZS//Ue0+M1OOfTFUBrnUEAKBUI1gFgHSQuUyTp8xRMOpWhRattE15t5KL1dOnaU5oqK6y9RtqK676BNLS5MnWa92tOK1b5++EqoWzRdVbpVw5qV076aij/BO8/fpJO+7oh70AAKD42IVLdgHTCSf4/wb37Jn/vwkCRTlqRUFEXWhGUWlfG5fp5xce0kuffauvvvxd8zMj2qRMuRe7J2tli/35qA2rtHjebE2f/Id++eFrff7xe3rz1VF6/tnn9cH4JdoYdRuKovJdQCogWAWAdLBuqqaG5ldtsm0rVXFrOVunGVP+1mq3Zv9kbLVNS9XgXw4gLY0b5xZC2rZ1C7mw0NR6obzwgn/CtDDzq1mYut120tFH+ydyjz1W6thRqljRNQAAACXKLmjq1Ek67jhp6FDpyCP9vw9sNIn8Ksp51gEU3KoJb2jU94tk11RmLl2sJUwHJK34QSOHnKtBQ6/QNTfcqrvuf1iPP/OiXn3zHX3w0ccaM503KgBIJ5weR0JEXY1CUVTxVeb8mZodzK9atq5atqqvjIh22WrDLI2fsND7MOUpW0/b77C1yke1pSgq5Ss3//7rh6FhwVymUaxn6/Tp0ptvSrfd5vc+mThRyizASZkKFaT27aU+ffwTtsccI3Xo4G8HAADJwy502mEHqW9f/wIoG1XCRpewC6Pyyy7MslEtbHQLC1lttAu7yIvhgoFitm6q3nvxc/3rLoLcuHypFhfggshSp3xD7dD9AB24/77qumcntagZunqkbH21alOXk+wAkEZ4zweANJC5YIEWBYFGxa3Vcuu8z25s+Hec/vh3cwqS0XAX7b5tHOMHAyh1vvjCLYRYz9HYnqLz5kkffSSNGCE9+aT0yy8F62Vi92s9Ua1Hqp2Y7d1b2n57qTxvQQAApISi/LfcRrmwC7xeecW/YOu116QpUwp2wVZY1IVmFJXetVH/fPqSPpwRuoJhw1ItXbYxom0KlftVTOT+eKpic+151HE64aSTddqAC3RG96YKotUyVbdV2+blo29HUVS+C0gFBKsAkAYy167VWtf1NKN+YzXJs6dXpub99rtmbboytZLadu+qFgW42hxAaps/3x+WL9Y++/hfly6Vvv5aeuABv775xt+WXzaUoM2RanOlFraXCwAASB7h0Sfs33gbfcLWCzL6hM29Onas9Mwz0p13Sh98IM2d63YCKJTM/77WS29NUDDYlWfjMi1ezFjA2a3V7DnzFZwuKb9NG7XiAlAASCsEq0iYqCtSKIoqnsqoWFEV3EVfZWrWUd1y0e02VeYc/TBm+qYPChmNuqrH3g3yHj6YoqiUrihRvVXbtJFmz/Z7pdpJzY8/9nur5lflylLnztLxx0sXXST16uXfd0HmZQMAAMnPeqzaqBfWg9VC1mC+9IKErMuXS999Jz30kHTfff7fLIsXu50A8idzmX599VX9uq6qqob/Ft+4VEuYZDW7ddM1aeoqt5KhJq3bqDpn2AEgrfC2DwBpoEyNGqoWZCYZGZuGrMnJinEf66u/XaxarrH2PaGH2sYM+VlUNqyYpykTJmrmogKMFwqgWE2b5s9nFuuvv/z5U20e1fyyMHXnnaUTT/TD1B49/LlaCVMBAEgvNiqFjU5ho1TYPOo2aoWNXhE71UA8FiyQRo+W7rpLeuwx6ccfpVVB7pGLqAvNKCoda83kt/TSN8vV8rDe2q126ILLjWu0dOkqbYy4TapUdtFt8lMb503SlEWuW2/ZumrdtiEXoVNUERaQCspszOKWgWI3ePBgjRgxIusDUz8deOCBbiuAYrd6jEZe9IC+W7FRGe2O160X76/aOV1as2aSXrzuFr0/24LV8mp26MW6vE9rVfL3FqFMLR07SiMe+kDTsn4ula+vnfqdr7O7NxUjfwIlb8KECbr55pvVrVs3jR492htq7/77pSVLXINCsNC0bVtphx0IUQEAQO5sTtWpU/2pCCZOjC8gjVI26/NO69b+3x82IkYwvcDIkSM1YMAA7bvvvjrllFP8jUA6Wz9Dr19/rd5Yc6Auu2ovjb/xCr0ybdP4Vdq65zW6tneLPC/Q9mQu0/gPXtN3c9Yqs6jPOJcpq6qt9lW/ri3chjhsmKZRw4brTZvnqFxnnfnAEO1dqJMbmVr8ya0a8sQ42Uy0ZarurnNHDNRuRX/CBEhLS5Ys0bnnnqtGjRppzpw5biuQfOixioSIuhqFoqhirMrttXPH6rLrvjLnzdHczIg2Xq3WlHee16deqJqherv118Cj2qhyZNtC1oa/9PazH/qhqlk3Xz+PeklfL94Y3Z6iqGKvsI8+Knyous02fo9UG+rP5lWzcJVQFQAA5Mb+VrBAtGdPf3QLmzLAhgu2YYTzIzPTD2ZHjZJuu80fbcNG46B7ARCWqX9Hv6D3ptfUXscerjaVa6lWjfDngkwtXbwk6/9x2rhQf371qUZ/9rk+/7yI67PR+ui7Ke4bJcpaTZowXevdWrkWbdW6AEOZAwBSGz1WUaKCHqvHHXccPVaBErZu6qu6/sY3NWN9PXUfcr36d4y9pHKtZn96v2595lctzsxQ3Z1P1IUDuqlxPk9gxG3F57rjgsc1NvhEYso21MGXXa++remzCpQ067F60003eT1W77hjtHfysSC22srvGWInQKtXdxsBAAAKyUbTyPpzRWPH+j1aC3o2q2zZ5Xr++f5q1GixTj31VLcVSE+Zi77RvcNGamLbs3T9uXuqdtm1+uWhQbrji6UKXmLlO5+pey/cR1Xdel7Wr1iohcvWaENRn3EuU1YVq9dTnWyTwObBeqxecY3e8Hqs7qSzHixkj9V14/XU0Bv14Xz75TLU4sjrNPzorePrzQsgT9ZjdeDAgfRYRdKjxyoApInyLQ/Tyb3aZX0YWqCvnn9W3/9rA9c4q2fr+xfu0K3P/qrFGfW041EX6sqBxRiqmsqt1b5V9k80Zeu00/ZNCVWBRCpfvpbee8+txKlGDalLF+nss6UBA6Q99yRUBQAARatCBf/irRNOkIYMkQ46SGrUyO3Mh8zMalq58j+3BqSzFfr91VH6ad126nnM7m66oAzVqFkj2wnjzKWLtSTuLqtSuap11KBhIy8YKdJquFX+QtVisOGfCZq00CXGZWpp27aNCFUBIA0RrCJhooYgpCiqOKuSWh5+vi46sYsaLf5KI6+9Ujff85AeuucmXXHJNXrwo9mq2fkwnXH5cA3q2V61M6Luowgro4kOOP1MHdKhoapXqqLa2+yhfmcfo45VItpSFFUiZWrU2E7rQtdd5MSaN23qD883aJC0//5SgwZuJwAAQDGqVk3afXfpzDOlc8+V9tlHqlXL7cxD2bLLNGPGF24NSF9rJr+tF75couaH9NO+DYNTxGWyXkvZr5DcuCx/wWrplamlEyfJmznJVN5WbVsW59XoAIBkRbAKAGmlqlrud6aG33ajLjquu9o1qqlaTXfU/n0Hatgtt+va847RXi2rldg/Dhn1d1bfi2/WvSMf0IhrBujAVlX5hwlIsGXLJsc1D6oNvzdrlvTKK9Inn9jt3A4AAIASVLeu1L27dMEFko3su8suUuXKbmeEypX/yvp/UY9RCqSYDTP14XMfak6D/XTcIc21edyosqpWs4bC04ZmLluiJUGYmNbWaNKEaZvnV23eRm0KM6wwACBlcf4aANJQ2aqN1H6vg9WrT18de9Sh2nfPzmpVr6LbCyCdrV27QCedJDVsKFWM421h9Wrp66+le+6Rfvih4POdAQAAFFazZtJhh0kXXij17Sttv71ULmamkUqVJntfo0bvoKj0qI1a8MWLentqNXXp21NtK2ffX65WLVUPnzFeu1RLVmzM1iaVSv7APJ6o/XHX+mmaMGWluywjQ43atFOdjDJaM/8PffLc3br2kkEacNopOv3sQbr8pof06ncztSrqfoqoNi6doZ8++1AffzNe89ZEt6GoVCwgFRCsIiGi3jQpiqIoikpchW29tXTWWdKll/rzptowv7Ytplk2Nnywzc36xBPSf0xbBgAAEshG32jbVurTR7roIqlHD6lFC//CsfLlF7lWQHrKXDJGL736uzI691bvztW3ODlctmZNVQ//3b9xqRYvTtGxgDeuy/qcElz5actusQA2zJ2gvzbNr1pD27apob/evVvDrrhbH86to//1PluXXXuNhvTvpgbzvtWr916ly+/8UNNX+zcpShvmfKoRV1ylOx95Sk/cf6OuuPY5jVvhdgIAih3BKgAAAHJk86Z26SKdcop/YtKG2qta1e2M8Pff0oMPShMmuA0AAAAJZCNwdO4s9e8vnX662wikrVUa/9pL+n51W/U4di/VjTgzXLZmLdUIb9+4TEtSIljN1JK//9DY337Vr7/8pB++/lRvPv2ivpnnfvb1k/Teoy/q/c+/1Ziff9Gvv/2m3yf/q/hyT39+1VnBkMjlamnlFzfr1rcWaaczr9cNF52og3drpxZNW6j9HkfqgstOUudq6zX/x6d1+8PfaGGRHr41+u2tUfp5UfDDbNSqGR/oldH/ZP2UAICSQLCKhIjqKUNRFEVRVGIrL1WqSPvsIw0eLPXqJW21ldsRY/166aWXpD/+cBsAAACSQOw88lF/D1FUaa51U97R85/9p60P6acDmmREtilTsaZqVg19Nti4UouXro1um1S1QZPevke333mX7r7vQT3y9Ci9/+O/KlOrrurVq6e6dapq1eTP9cbzj+uh++/VXXfertuf/FrzM6PuK7bWZptfVeum6ceJW6nfsCt0/G5bqUJM+4yt9tKBu9VWGWVq4ffP6aWfV2TbX7jaoOXLV8fMFJ2pFctXaGNke4pKrQJSAcEqAAAA8sVOSu64ozRggNS7tx+4xrK5Vl95RZozx20AAAAAkDgbZuuj59/XzLrdddxh26q827yFsrVVK3uXVS1btFhB/8jkVUG7DRypp558Qo8/+ogeHvmgHrj/Pt137z26++67dc+99+q++x/QgyMf1iOPPqYnnnxaT95wtLaOueAi0rqp+vOvYH5VqUyVNjpy0Dnav2lOR7Gitt12a3lTPG9cpB8++kbzi6w7aWXt0GVn1Q7nTxVbaPf/Nfe/HwCg2BGsAgAAoMDat5cGDpQ6dnQbQixc/ewztwIAAAAgQTL131cv6s1JlbT7sUdqu8puc5QyNVWrulv2ZGrpksVpPczshrl/avKiYH7Vaup8wnk6sk3E1aUhFapVUyUXfq6ZPFbji2wO1LKqvcfpumTA4dpt+9Zqu2M39RsyRL1a5hiVAwCKGMEqEiaqqz9FURRFUYmrgrIeq0cdJR1wgNsQMm+eWwAAAEgiUX8LUVRprY3Lf9Gol3/Rxh1669jdaikjos2myqimWjUravOng41avmSpMqPapkVt1NIJEzXbddktU6WD9vpfvdyPYVYpc73WB11c183SjFkbItsVrKqo+T7Ha/CV1+qaS89Sjx3qqlxkO4pKrQJSBcEqAAAAisSee0pdurgVp00btwAAAAAgAVZrwuvP6+sVrdSjX1fVz/NscFnVrFUjFKxK65cu1pK07bK6WhMnTN80v2q5Fu3UtpJbyVGmli9aqrVuTRtXaOmydO7zCwClC8EqAAAAisz++0uHHSZ16CB17y4dfLDbAQAAAKDErZ/+jp79+F817H609q67RitXrsyjVqty1WrZgtWNS9I4WF03VeM3za+aoUZt2qhmnmfUN2ju3Hmbh0/euDHrv6D7KgAg1ZXJelPnXR0lZvDgwRoxYoROPPFEHcyZVgAAksaff/6p66+/Xt26ddPo0aPdVgAAgNJl5MiRGjBggPbff3+dfvrpbitQSmX+o/f/73I9OS4IBgumTNUuGvTAefpfBbchjWyYMUpXXP6KpttQwGVqq/vQu3RW5zwOROYcvXH1xXp+cjB+cH0dOOwOndqeeVCB3CxevNj7N7pRo0aaM2eO2wokH3qsAgAAAAAAAECpkqmF37yg1/6sqO3266GePXvGXUfs1VJVQl1WN65eoiUr07HLaqaWTpy0aX5VVWiptq3jSJdXT9WUWcGNspStr0ZbZbgVAECqI1gFAAAAAAAAgNJk+W96+cUxyux0jM457Tj169cv7up7ROeYuViXavHidBz0cJ3+mrx5ftWMZq3VpopbycW6aZM1bbVbyVK2UWu1rsVpeAAoLXhHR8KUKVOGoiiKoqgkKQAAAAClxRpNfOM5fbGstXr020f18nkGOKN2bdUMf0TIXKZFi9Kwx+qGfzR9ZjCMclnVa91WDfI8lus1Y+wf+m9TDl1W9Tt2UvNybhUAkPIIVgEAAAAAAJB2oi42o6jSUBtmvq9nP/xHTQ4+QQc3KxfZJteqXEu1KofHAl6upUvXR7ctzZW5QPMXBoFyRbVovY3KR7ULV+Y/Gjt2rjbF0BmNtftebVQhqi1FUVsUkAoIVgEAAAAAAACgNMicp9HPvqkptbrquB6tFceMoFsqW1u1amTrsqqlixdvDgvTxcY1WrPGdT3NaKhmTfM+mpn//qxf/t48v2rl7Q/Q/i3prgoApQnBKhIi6moUiqIoiqISWwAAAABSWaYWf/+CXvm9vHY7to92qOo251fZWqqdbSzgjVq6KA2D1TIVVbGCOw5laqpO3Qx/OUcbNOvrbzU1yFUzmmjfo7rFMXwwACCV8LYOAAAAAACAtBJ1kRlFpXptXPqLXnzuO61pf7T67VlbGRFt4qqMGqpdM9w7M1PLlixRZlTb0lwZtUI9d8upXPmINuFaMVbvfT5Dfq5aTk0POk192leOblvYylyhf/8arwl/L9LaqP0UlaIFpAKCVQAAAAAAAABIZZkL9PWjj+iz/5rowGP3VcNCnfXNUK2a1bOdOF67dLGWpVuX1XLN1GqbKvKjnlVatTK3A7BaE15/Vl/M99tUaHG4zuzbQVW8taKVueQXPXPl+Rp0xXBdffH5uvC2D/X3ercTAFDsCFaRMFFXpFAURVEUlbgCAAAAkIIyF2vcS3fr8e8XqkzjnbRby/JuR0GVUbUa1Vyg6MtcsliL024s4ErqsFsneZ1WM//VrFmb506NtWrS63ri/ZmyfLNcgz11+qBj1K6Sv69ordeE1x7X238td0Mzr9W8H57TM58tTL+hmgEgQQhWAQAAAAAAkHaiLjSjqNSqjVo552e9MeJq3fTqBC3fKGX+95cmzl0f0TYftXqWfhv/b7agLnPhbM1eHdG2lFf1XQ7V/i0q2AHQb9+P1+qINutmfai773hdU9dK5ertptMuO1fdm5Tfol3R1Br9M3dBTIi6WvNsW2R7ikqtAlIBwSoAAAAAAAAApIQVmvzp83rk3lt13WXn65whN+nZ7+Zqrdu7ceU4PX3FIF156/164u2xWhRPN8ZVUzT6hcf1yEP3a8SNw3TBwMv09LgV2uh2e1b+qMcvv1q33vOAHnrkUT32zLv6Y0ka9JEs31pHntVH21fbqHmfPanHv56rdW6XDQ888+un9H/XP66fFmaowU59dfn/DdH+TQvbYzg3ldVuhzZZ/w8pW0/tO26t4vyuAIDNCFaREFFXo1AURVEUldgCAAAAkOTWzdKYd97WR1/9oomzlqlstVqqU6ee6tWto1o1a6halcqqsGGhJv/4hUZ/P1VLs6Wj0Tb885Pef/M9ffTpl/ph3Awt2lBR1WrUVK06dVS3nn/ftW3O1aXT9Nu3X+jTjz7QBx//qOnWRTYNVNy2l4ZecZq6Nlmkz+++XBddc6vuuftWXT3kfF1613uaWXMX9Rp4rW665Gh1rJ3hblVcMtTkkHN0bo8d1bhGJVWps6327n+BjtsxW9QKAChGZTZmcctAsRs8eLBGjBih/v3769BDD3VbAQBAoo0fP17Dhw9Xt27dNHr0aLcVAACgdBk5cqQGDBigAw88UGeeeabbCgBx2LBCs/8Yo58nztai1Rmq2aCxmmyznTq0qa9imU4VSDOLFy/W6aefrkaNGmnOnDluK5B86LEKAAAAAAAAAEBuMqqqyQ7ddESf43XSiX3V86B9tAuhKgCkHYJVJETU8IMURVEURSW2AAAAAAAAAOSMYBUAAAAAAAAAAAAA8kCwCgAAAAAAgLQTNYIHRVEURVGJKyAVEKwiYaLeOCmKoiiKSkwBAAAAAAAAyB3BKgAAAAAAAAAAAADkgWAVAAAAAAAAaSdqFA+KoiiKohJXQCogWEVCRL1pUhRFURSV2AIAAAAAAACQM4JVAAAAAAAAAAAAAMgDwSoSJqqnDEVRFEVRiSsAAIB0EfW3EEVRFEVRiS0gFRCsAgAAAAAAAAAAAEAeCFYBAAAAAAAAAAAAIA8Eq0iIqG7+FEVRFEUltgAAANJJ1N9DFEVRFEUlroBUQLAKAAAAAAAAAAAAAHkgWAUAAAAAAAAAAACAPBCsImGiuvpTFEVRFJWYAgAAAAAAAJA7glUAAAAAAACklagLzSiKoiiKSmwBqYBgFQAAAAAAAAAAAADyQLCKhIi6GoWiKIqiqMQWAAAAAAAAgJyV2ZjFLQPFbvDgwRoxYoROO+00HXHEEW4rULzWrVunTz75RNOnT9f777/vtvr23XdftWnTRl27dlXlypXdVt+4ceM0a9YsPf/881qyZInb6rP2Bx98sLbbbju3BUhfc+fO1W+//ebWpKefflorVqzwlnv27KlTTjnFW0Zys/e8YcOGqVu3bho9erTbCgAAULqMHDlSAwYM8D7PnXPOOW4rAABItEWLFql///5q1KiR5syZ47YCyYdgFSUq3YPVXr16uaX8ufTSS7X77ru7tWhXXXWVxo4d69ZydvbZZ+uggw5ya6Xb4sWLvbDn1Vdf1YwZM7Ttttt6IU+zZs1cC+nTTz/VpEmTtHbtWvXo0UPdu3fX5MmT9fLLL2v8+PEqV66cdt55Zx122GHuFr7PP//cCyEaNmyos846S9WrV3d7St4PP/ygF198UVOmTPFODFjoW7FiRbcXKH5ffPGF7rjjDreWHcFq6iBYBQAA6YBgFQCA5ESwilTBUMBImKghCEt7tW7dOltVqFDBHY3sWrRoka2dhXZR9xeupk2bqnbt2u4ettSqVSvvvmrVqhV5+9JUxkKBm266SXfeeacWLFigCy64QDfeeKMXOrZs2XJTnX766br++uu10047eR+w7777bi/ItrByjz320BVXXKHzzjsv222sTjzxRO9DuAUR9957b+TPURL1+++/e7+jharm/vvv93rYRrWlqOKqdu3aea8xe01Eva9F3YZKzgIAAAAAAACQM3qsokSFe6xa78B099prr+mJJ55wa77OnTtr6NChqlKlitsSP+tpefnll3u9L01GRoaOPPJIr1fl/vvvnzYnzd977z09+OCD3nKdOnW8HljWWzXKmDFjvGA1lh23k08+2a1lt3TpUt1www2aMGGCt25DCA8fPlxt27b11kvS119/rVtuucWt+bp06eI9h4BEsR6qCxcu9Jatx+qpp57qLSO52YUidjEJPVYBAEBpFvRYPeSQQ+ixCgBAErEeqyeddBI9VpH06LEKJJD18oplvVULEqoa65FqYarZfvvtNWrUKK9n5QEHHJA2oaqFnh9++KFb84PqnEJVY8FkLOv5a0F0Tv77779NoapZtWqVfv31V7eGRLrtttu8HrsAAAAAAAAAABQ1glUkRHjYwXSvKFHt4qn58+crMzNTnTp18nqu2vygUe1Kc/3888+aOnWqdxzt97d5baPahSuWzWdr87BGtQ0qSlS74q6OHTt6wxhbr1ljV3TZ/MVRbSmqpCosaj+VvAUAAAAAAAAgZwSrQClhvSivvfZaby7VIUOGqEaNGm5Penn88cfdkrTffvupefPmbi2a9WiNZcOY5sbmqbV5VgOVKlXyeggnQs2aNXXNNdd4j7lN7m7DWiXqZ0k0G9me0e0BAAAAxCvqQjOKoiiKohJXQCogWAVKARtz3uYRrVatmheuWvCH+Oyzzz7q06ePW4uPDRV83XXXadCgQd78kQ888IB22GEHtzcx/ve//+noo492a+nJhmf+8ssv3RoAAAAAAAAAAEWLYBUJEXU1SrpWrKg2udW8efO8MLVevXpeuFqhQoXIdulSsaLahKts2bKqWrWqa+2Lahdb1iPYesSefvrp3rGPakOVbNlrIRC1nyq5ihXVhkq+AgAAAAAAAJA7glUghS1YsMALVevUqaMLL7xQ1atXd3uA9PP666+7JQAAAAAAAAAAih7BKpCibPjfK6+80gtTbY5NG54WSFczZszQ4sWL3RoAAAAA5C1qFA+KoiiKohJXQCogWEXCRL1xpmNFiWoXrn///XfT8L8WrlaqVCmyXTpWWNT+nCosaj+VvGWvh+HDh+u///7j8UuSCovaTyVvAQAAAAAAAMgZwSqQQtavX68XXnhBN910kxeq2vC/1apVc3uL1meffabzzz9fhx9+eLaybbavqEydOlUPPvjgFt/nhhtu0LvvvquFCxe6lsjNd999p5dfftkrWy6IVHssNmzY4IWq1mN7/vz5bqu0bt06rVy5cotatWqVaxEfnps5e/rpp/XYY49tqtWrV7s9RYNjDwAAAAAAACAZldmYxS0DxW7w4MEaMWKEzjjjDPXs2dNtTV9//vmnLr74YrfmO+qoo3Tqqae6tewsaPjkk0+8Xqo77LCD21p0LHyaPHmyHn74YW9Y1ZYtW27xs1iIYqFHrVq1vMexdevWqlKlitsbvylTpujtt9/Wjz/+6AVhZ511lrbZZhtv39KlS73gZuLEiWrQoIH2339/HXvssZG9qWJD3gceeEArVqzwlu0YHXjggd5ybn744Qd98cUXbk264IILVL58ebcWzd4677//frcm7+fr3bu3W9vS2WefrZkzZ7q1/LPbH3bYYW7Nd+aZZ7oladGiRZuCw7322kuXXnqptxyPonos3nvvPbck776+//57tya99tprm46pPX8+/PBD73uGde/eXYceeqi22247tyVnr7zyijcc9gcffOC25K1p06beaygvqXg8SsKYMWO8427Hp2bNmmrXrp3bI/3888/ecOT23tSwYUOddNJJm8LPI488Uqeddpq3nJeiPvZLlizRM8884y0b69m88847e8sWxtv7abC/efPmOuaYY9S1a1dvPR39/vvvuuyyy9StWzeNHj3abQUAAChdRo4cqQEDBnh/a5977rluKwAASDQ7v3n88cerUaNG3nk/IFkRrKJEBcGqBUIEq9L48eO3CFaPPvroLcJMCxgeffRRvfPOO966BZo9evTwlouK9Ya9++67vaChXLlyXm/YffbZx+3NzkLI22+/3bvNfvvt5/VitdvEy3pU2u0tyLXbDR06VF26dHF7N7OA9/XXX/eWLWCxHmtly2bvaB8bNibKCSecoH79+rm1LdkH9yBYtYCvb9++3h8JUaZPn6577rnHrckL4Oy1Exv4WAhvMjMzvedIwIJVC0fiUVKPhd3Wepja83jSpEleaG/3EXj22We94NECu06dOnlBss0fnJMrrrjCLfnGjh3rHQdjwZ5VrPr162vQoEFuLVqqHo/iZH/Ufvvtt3rkkUe817xdQGCv+yZNmrgW0oQJE/TSSy95F2T873//0xtvvOGFmsaC1dNPP91bzk1JHHsLVnfZZReNGjVKX331lerWrev9wW7rX375pfdas/U+ffr4N0gzFqzaRRkEqwAAoDQjWAUAIDkRrCJVEKyiRBGsZhdPsGqB2XPPPeeFFoFmzZp5AUTVqlXdlsKxQMqG2LRgwwIN63Vm4UNurEfZdddd5wUtu+++uxd0xYYbUSwssvlhjYUYw4YNy/F7TZs2zQtCgmFe7XcO95Izb731llvyPfnkk5t6blpPv3h6n/3666/e7x6wEMiOQ05sLk8LYsLiDVbtd7XfOeitGMXCtldffdWtyQthTzzxRLe2JRsO1+4z+IMj3mC1qB+Ljz76yPtqvS8taAuCTmM9NC2Y+/TTT3XjjTd6PZ3Dli1bpuuvv17jxo3z1vfcc88twtPcWMi8Zs0ab/m4447z/gjLr9J0PIqK/RyXX36516vW2AUdFmbmxHq12tDMYfEEq8V17K33q/3swbG32y1fvty7jV08YgGiiQ1ig4tY0g3BKgAASAcEqwAAJCeCVaSKvFMQAAllQ++GQ1VjAd0333zj1grHhs297bbbNgWLFoDkFGiEWZsgLLHb2n0EQ/DmxAKOW2+91a3l/b1sCFDrtRawYUBjHXHEEdmqUqVKbo8/tGfs/qiKHWr1kEMOiWwX1Mknn7ypx1x+2BCkeYWqFrSF79tCawsKc7PVVlt5PR7zozgeiwMOOMAru9/Yn/mOO+7wnrNRIaKx3piNGzd2a/4w2SWJ4xHNLoQJQtUOHTpkG346yq677prrRQBRivPY33XXXdl6Att7lA0TbNuCUBUAAADpy6aVoCiKoigqeQpIBQSrSJioN850rCi23YYJtfkgbXjKIUOGuD2b2fye1pst9v7yWzYM6eeff+7dpwWR1jMuql1UWVu7jbH7sPuKaheUBYZBb9IWLVrE9b3q1KmzKSy1+7e5HKPaBRUrqk1UhUXtj62MjAzXerOodlY2h6v1rjv44INVoUKFyDZWNgSqHaOgd13lypW93n7WezaqfbhiRbUJV0k/FvY8tmF427RpE9nWKhw+2nyaFoBFtYuqsKj9eVVpOx5FUTZUrvVgDNjwuNYrPaptuA466CDVqFHD3Srxz8Uwm5/V3jeDuVmDOuecc7zvbWXL4X3pVgAAAAAAAAByRrAKJCEb/tfmWPz444+98MWGs7VhisJD7a5du9YbjjYIJArKesQGrJdcvXr13FrerG143sfwfcUKwo+A3c7mN8yLDf1gQY2x4NGGvU01FqraXJk2hHNObHjSq666SlOmTHFb5A2X3bFjR7dWdBLxWOywww5bDNcaq3bt2m5J3oUFwRydxY3jsSWbJeCpp57a1Avdeqvm9fMGLPTMbSjtsJI+9jb3q80PGz62xnqw2tDLVuEergAAAAAAAAAQRrCKhIjqJZOuFcUCSuvFdfXVV2u33Xbzejmed955W4QBNs+pzTEadb/xlAW306dPd/cmnXHGGZHtciu7TcDuy+4zqp0FhjZOfsCGP41ql1MFbF7KqP1BhUXtz6nCovZHVVjU/qBMw4YNvd69UfutbA7O8HCvFmL17t07sm1OFYjaF65EPBYWhFkvxqh24QqL2p9TxYpqk1OVxuNR2LK5SWfPnu2+sz+vczw/b1CxotpYlcSxj5XT97BA1ypqX7oUAABAOon6e4iiKIqiqMQWkAoIVoEkY4HGF198oSuvvFI77rij2+q7+OKLtwhXX3jhBY0dO9at5Y/1jA2GnTXh+UnjFb6N3ZfdZ5RXX33VLflsHtOCWL16tVsqPf766y/deeedbk1q0qSJLr/8clWtWtVtKVqJeCzyO+9mSeJ4bOmff/5xS76+ffu6paJV0se+YsWKatCggVsDAAAAAAAAgPwhWAWSjM3dOXjwYO28885uy2YWtMZut0Dh5Zdf9oYGzi+b57Go5XSf4d5v6WbbbbfVXnvt5da29Nlnn2Xrtbf33nurfv36bq3oJeKxCM+5mWw4Hlt67bXX3JIv9oKOolLSx956pO6xxx5uDQAAAAAAAADyh2AVCRPV1T8dK5bNpWrD/0a1tRo4cKA6derkWvvGjBmT5zCkUfXrr7+6e/BFtYmnwuw+82pjzj77bPXo0SOuevPNN92tfFH3H1SsqDaxFSuqTVTFimpj1b59ex1xxBGR+2zoZJv3MdClSxcdd9xxkW1zq1hRbYKKVRyPRayoNlEVK6pNVIVF7c+tYpWG41HYihXVJreKFdXGKlZJvC9E7ac2FwAAAAAAAICcldmYxS0Dxc56Yo4YMUJnnXWWjjzySLc1fY0fP15Dhgxxaz6bV/P00093a9E+//xz3XbbbdmG3a1Tp45uueUWNW3a1G3J28EHH+yWfA899JC23nprtxafv//+W2eeeaZb873//vtuabPY7zVs2LACD8nZpk0bt7Slfv36ber9acOKXnDBBd5ybkaNGqVHH33Urcmb3zavYZE3bNigww47zK35Q7sef/zxbi0+dh/2+E+cONFtkW6++eYthoCOxw033LCpt7D1eL3iiiu85Sgl8Vg899xzeuqpp9yavLmAy5cv79ai2fPZAujASSed5IXM8ejZs6fWrFnjLZ9wwglexas0Ho/Cij0m8fy8YfZzLly40Fs+6qijtniPCJTEsX/ggQc2XbzQuHFjbw5rRLNh5YcOHapu3bpp9OjRbisAAEDpMnLkSA0YMMD7PHf++ee7rUDxss93H374oaZOnepNARV2wAEHaLvtttO+++6rypUru60++xt95syZevLJJ7VkyRK31WftDz/8cO9ibiDd2YhY4Q4kdp5vxYoV3vLRRx+d43kJJBc7p2vTUTVq1Ehz5sxxW4HkQ49VIAV17dp1izkaLcS46qqrNoVLya558+ZeEFKQKg2WLl2qSy65ZFOoah+eLBwtSKhaWOn+WMTieCQOxx4AAAAoXgcddFCB6uuvv3b3kLNLL7008rax9e6777pblH6LFy/Wp59+qnPPPVd33323dw7AjtP999+/qapVq6aPPvpIF154oTeqlbF2w4cP17XXXqtnnnlGu+++e7bbWNkF9g8++KD+7//+zzvHkGjfffed93vaY/zee+95U1cBJWXSpEneayyoIFQFgOJAsIqEiBp+MB0rJ1FtY8vm7GzWrJm7hc+u5LFei1HtoypWVJt4KlZB2xRFhUXtz6nCovZHVVjU/tzK/uAbN26cu7W0zTbbaJdddolsu379eq9ncNS+oGJFtQkqVlSboqiwqP1RFRa1P6eKFdXGru61KxZjt8eK3V9UFRa1P6rCovYXV8WKapNbhUXtDypWVJvCVqyoNtTmAgAAQOnWtm3bbFWxYkW3J7uWLVtma1e9enW3J2d2jsLCvpzYBZF2XzVr1nRbSi8bINDCUgtHbWSq+fPn66KLLvJGH+vevbu23XbbTWU9qG0EMjsncM8993htbMS3b7/91huRyu7DRrsK38bqlFNO8Ubpsl6td955p/vOiWE9BW+66SZNnjzZW7fR6p5++mlvGSgJ1uvbXmP2mqhQoYLbCgDFg2AVSFFNmjTRNddc49Y2sz+m//jjD7eWu/wMGxyvnO4ztodtOrMPGnfccYdbkzf8svVezcncuXOLdMiSdH0sli1b5g37HIvn5pZatGjhlooXxx4AAACJFHWhWWkvC+7CZVOOxLKAzz6zhtvZ6EpR9xcu661oIWA41MjIyPCGdbRgMLgvu1A86valqaxXrgWkNgVUMHXTgQce6I1WFdv2+++/96aBefHFF71enhbI2tRBffr00aBBg7wwOvY21kP14osv1sCBA72hMy3YnDBhwhbtSqrs8/aqVavco+6bN29eZFuKKo6yoWPtNWbDvNtw27EXeUTdhkrOAlIBwSqQwmwuQptTI8z++I4Kj6LY3IdhBRmmJfY2sfcZqF27tlvy2bAw6eqzzz7bNP+ksQ+VDRs2dGvFj8ciO47Hlg499FC35HvnnXfcUtHi2AMAAACJtf3227ulzWxEpSpVqri1/LEQsFy5ct5yhw4dvIDj1FNP1cEHH5w2J8xttKTwcMcWVLdu3dqtbclGHotloZCFRDlZsGCBF9oGVq5cqZ9++smtIZFsaGZ66wJA6UawioSIvRIlnStWVJucyobssasaK1Wq5G7tsyFmf//998jbhMuG4QkHGw899FBku9zKbhOw+7L7jGoX+72s12ZUu9zK5iZ57rnnIvcFFSuqTWxFiWoXW7Gi2oTLhgJ688039dprr7lbyBvW57jjjotsH1QwL0TUvnAFovaFqyQei1hRbaIqVlSbqAqL2h9U1P7SeDwKW3ZyJTw814wZMyLb5VSxotpYJeJ9IWo/tbkAAACAwvj333+VmZmpnXbayRtly3qsppsxY8bor7/+8pbLly+v3r17e8v50aVLF290q1Sxww47eAGy9cg1jRs3Vq9evbxlAABKG4JVIMW1b9/em3sjzIZgufTSS7V27Vq3JZqFGrvuuqtb829nVz3Gy9rabQJ2X3afUWy7/ZEd+PPPP735QvLDrr588skn3VrqsQDovvvu83oVG/uAaT0D85r74YknnnBLRYPHIjuOx5bsmHTu3Nmt+cNRBwF/Xmw+4HXr1rm13HHsAQAAkChRF5mla0WJapdX/ffff7ryyiu9v/PtnIRdrBnVrrTXww8/7I6idMABB3g9gKPaBRX+TBQ444wzItsGZT1abZ7VgF1w37Fjx8i2JVF2weyNN97oPe6nn3669xktkT9Poiosaj9VshWI2kclbwGpgGAVKAV23nln7bnnnm7Nt379ej322GN5Du979tlne7c306dP19dff+0tx8Pa2m2M3YfdV27OOeccdevWzVu24OWll17yluNhc3W88sorKXvFo81/MmLECLcmb1glm1c1OPY5sblSLLw+5ZRT3JaiUdoei7p167olP8AOwuuw8PDLsdL5uZmTHj16bOoN/8svv2jSpEnecm6sV7YN5xu+4CIvHHsAAAAg9c2ePdub87NatWpewBYemQa56969u/r16+fW4hPM2zp06FAdffTRevzxx9WpUye3N3Hs3NSxxx7r1tKPDc9s0z8BAEo3glUkTNQVKelYUaLa5VZ2FehZZ53lbr3Zq6++qkcffTTyNkHZh55wKGFD+9qwNVFtw2VtwsMA233YfUW1Dcr22wetgAU1P/74Y2Tb2Lrpppu8wCyYlyWnihXVJqrCovZHVVjU/nBNnDhR3333nWvtz1ljH56i2obr119/1ZQpU/I8trGi2oSrpB+LqP1RFRa1P6cKfwh96623vPllYts8//zz6tq16xbbrUrb8SiKsquLzzvvPPfdpdtuu827kCKqbVCffPKJF3SGRbULV3Ef+7Co/dTmAgAAAArin3/+0RVXXKH69etr+PDheY7KhOzsb3H7XJRfNWrU8HrEDhgwQPXq1XNbkUj2WgAAlH4Eq0AC/fHHH25ps2nTpnmhUH5F3Zd54403dPPNN3s9yXKy++6769prr/V6T1qPMZsHJbcr7GyftbG2dhu7rd1HPOwDlv1M+++/v3f7q6++Wl9++aXbuyUbftTaWKBjIUp4qJtYU6dOzTb88axZs/LsOWc9G2N74k2YMMEt5Sy2jYWfOQ29bPsslArYPCmXXXaZW8uZfY+77rrLreXMemLa1cEBW86td2aguB4Lu69gPpmADfGal9g2dh92X/E46KCD1KpVK7e25X1ZqG2P8+GHH+62bKk0HY+iYh/SbSinsmXLav78+d7V0PYeFeXtt9/2emXbCZVwD2K7wMMC2g8//NCrKMV17O291IYmDti6zRcLAAAAmNgLzdK1YkW1yalsiqBhw4Z5wd7ll1+etsP/hissan9UxYpqQyV/vfzyyzx+SVKxotpQyVlAKiizMbe0BShiNheonXi3IWOPOuootzV9nHvuuW7JZ6HAmjVr3NpmLVu2VPny5d2aP7fGjjvu6NY2s/Dsqquu8pYtRMxtDkSb4yT4x+nee+/1vsay2z/44IP64YcfvJ9ru+2205lnnun2+qyXqgU+FStW1G677eZdGVm1alW3N372vR544AGv56sFkttvv703D0eY/Sw2lLEN92kf1CyQjPXVV19tGjrUPtBZ+BNmPUOD4UwtAK5Vq5a3fOGFF3oBTmZmptebNMw+CDZu3Nhb3nfffTf16LXgKAiGbM5J6ykXZsfY5k01d999t/fV2DA44aDT5k858cQT3dqW7L6td+WSJUs2fQ8Lpmxo1rDgsbHHas6cOd5ywH5+e4xMuGdxlKJ6LM4//3zva1RYbce9UaNG3rKFZ8Hv8uabb+rjjz/2lvNzTKPY3Jw2/JEFf9WrV/feb4LvabetXLmyd5FBXkrL8ShKFvI/88wzGjdunPd6t3mTwu9R9hyz4a4t4LbXS9++fWXzK0X56KOP3NKWivrY233YhQ1hW221lTdsVsCGzbKezJB+++03XXTRRd7QzKNHj3ZbAQAASpeRI0d6n2PtostBgwa5renLLtK+4IIL3JrvmGOO2eJcQBS7qNf+JrfPN3bBY/AZNN316dPHm9bHHHbYYd5n07y8+OKL2eZmtZGY7DMsUoed47MLk+3c1EknneQVEsfOxQXnJXr37u297yP52XunvYfaObPYc51AMiFYRYkKglWbUy8dg1ULUArChtLp0qWLW9vs33//1fHHH+/W4hcENzmxnnEWnr7zzjtb9LSzXoH2wcBC13APwYIKvpeFlrEBiP3RYz3fbMjcnFgQFW/A9MILL2waHueQQw6Jq/df+I8vG1bZAs94hI9xQR/3MAtWe/bs6dZ88d5vXo93oLCPRbw/j/1xaxcLGPvgaB8g4xHP72FBmoXfFpbbXJ+B0047zet9mZ/hkUrD8ShqP/30k3cFrgWfYTYUuf2+wTxK4Q8wO+20k/bZZx9v2eTWazhQUsfeDBw4UEceeaRbS28WrNpFJwSrAACgNCNYza6gwapdCGojMTVo0MC74LsgQ9mWVgSr6ccCILtIdd68ed46wWriEaymJoJVpAqCVZSodA9WAQBIVgSrAAAgHRCsZpffYHX9+vXeRcvffPONN5qNDf8bXGBZHD755BONGjUq8qJvO/m+3377uS0FZ/f9/vvv6/XXX3dbfHaBu404teeee2ab7iQv6Rys2vNi5syZ3nKzZs28Y5cfRf1YFDcbocpGTrPXQXgamn79+nkjOcWyaXby87im2vEoSTZiWbjDhAXZwYh1prDBKsc+MQhWkSoIVlGiCFYBAEhOBKsAACAdBMHqEUccQbCaxYLVYCqNgAWrNipNlHvuuUcffPCBrrvuOnXu3NltLVo2RYhNp3L//fd7J9ktRI2apsiCDwt17RyTTZuS32mKJk+e7IUmNh2SjX5k0zdtu+223j6b6uSxxx7zRtKx6UQOPvhgb8SwqPn/LPwNu+uuu7zfwXTq1EmHHnqot5wbm9om/Df4xRdfnG36lSg2tZF9r8AJJ5wQGeYFTj31VM2YMcOt5Z89T2JH0jLhnpk2DZJN22JsypVg+qq8FNVjYYF04Pvvv/eOa8BCsuCY2shI77777hahmY1+ZFP1tG/f3m3JmYXhNi2X3U+8LGx+4okn3FrOUvF4lAT7HezCDjs+NgS5TR8UsJG1bNqf66+/3gvl7H0sCFYtqIs3WC2qY2+C429TfVkQHLjxxhu96dWM9XK2kdeC/S1atPDu06YmS0f2HkKwilRAsIoSFQ5WbV47AACQHCxYHTJkCMEqAAAo1QhWs4s3WLWeYQ8++KA3HY+x8zrFMaWG9Yi9/fbbvaDBQh+bs9L+Po3y2WefeXO72s924IEHehcJlitXzu3NnfWstNtaAGrfx3ochqcwCTzwwAPedCjGAhYLFq3XYVhR9JotCieffLJOPPFEt7alcLBqAZ8FsY0bN/bWY02bNk133HGHW5N3jIYOHRoZ9gTBsQW94R6E8QarJfVYWJBozy97D7DpgyywDwfFFnha8GiBnU1pY6+L6tWru71bsuMR9ssvv3jHwFgoFHVs69ev74XmuUnV41GcLGz7+uuvvfcge47ZBQT2mm/atKlrIS/sfPbZZ72LMaw36auvvqrFixd7++INVovy2Jucjn8QrNp0Y59//rk3bZW9fm3d3tfse/fv39/r+ZxuCFaRKghWUaIIVgEASE4EqwAAIB0QrGYXT7BqQcZTTz2l5557zm2RmjdvrrvvvrtI51a1UOrqq6/2wg0LFoYPH67//e9/bm8068Fmt7Gf0cIUu01UwBFm93/llVd6y/Z9rr322k29x2JZT75hw4Ztmjvz3nvv1XbbbectB1577TW35LMebStXrvSWradf9+7dveXcWChnwVHAnqO5hcQLFizweu6FxRus2u9qx6lChQpuz5YswLIhmAMWwp5yyiluLdq///7rhYazZ8/21uMJVov6sbCw0Lz33nsaP378pqDT2DYLxD766CMvNLZezmHWG9GeS2PHjvXW99prL+84xcsC5jVr1njL1ovXgrH8Kk3Ho6gsW7bMm7/WeqgbGwFx4MCB3nIUe0+wQDQsnmC1qI+9CY6/9YC12wTH34JV+70sxLWLR4IANjaIje0Nnw4IVpEqcv9LAwAAAAAAACiFbPjGdK8osW0sjA6HqsYCOgsCY9sWtKyHmIUMFm4YC0F23333yLbhsjZBYGK3DXqbRbW1snDj//7v/7z2xi78t/A2qq2V9eKzACVgoWlsGwt6wlWxYkXXWtpmm2222B9VsUOtWvAf1S4oGxo5CG3CYn+2cBkLimwYZ/sZo9pYffzxx3rllVe89sYCawsJo9qGq2HDht7xCotqF1RxPBaHHHKIVxb6xwabN998s7766isvRGzbtu0Wt61Zs2a2HpAWRMa2ya3CovbnVaXteBRV3XrrrZtC1R122MELVaPaBWXvCXYRQayotkEVx7G3Co6/vYeGewPbe9Tbb7/tbbPhloP2scL3lU4FpAKCVSRE1JsmRVEURVGJLQAAACBgw4RaIGNDVV5yySVu62Y2IpmNelIUbBjPoHeWzTFovePiZW3tNsbuw+4rJzZ8ZzAHqIWeXbp08ZZzY/M2VqpUyVu2IVNtLsdkkJGR4ZbyZkO6Wo9S61VpvfFysnz5cu8YBT3rqlSp4vUey8/3ildJPxY2xKr1qLUQMSfhHr82L2Z4jtLixvHYkv2Mv/76q1uTNzRuPJ9b7XluwXC8SvrYW0htPYFtLtWwCy64wPv+VrYMIHkRrAIAAAAAAADYZO3atd4cix988IEXvtjcmj169Mg2zK61seFog0CiMB5++GG3JNWoUcObizJe1tZuEwjfV1hs+GG3sbkN82JzZR522GHesvU0++eff7zlVGJDltpcmTaEc04sVL3ssss0efJkt8UfdnXHHXd0a0UnEY9Fp06dtP3227u1aBaWBTZs2LBpjs7ixvHYks1e+Pjjj3u/l7Heqnn9vAH7ueOdbzkRx97mf7U5YsPH11gP1ltuucWrcA9XAMmHYBUAAAAAAABpJ3b0jnStKBZO2nCwN9xwgze0ps3HOXjw4C2CAJvP0OYPjLrfeMvC26lTp7p79IfhjGqXW9ltAnZfdp+xbSZNmqRFixa5Vooc/jSnCrN5KaPaBBUrqk1UhUXtj6qwqP1BGZuz0Hr2Ru23sl50NuduwEKsvn37RrbNqWJFtbFKxGNhQZiFZlHtwhUWtT+nihXVJqcqjcejsPXGG29o5syZ7jtLW2+9dVw/b1BhUfuDKqljbxWW0/exUNcqal+6FJAKCFaRMFFvnBRFURRFJaYAAAAAY4HG6NGjvbk4O3fu7Lb6Lr/88i3C1aeffjrbcJ35ZT1fg6FnTTC8Zn6Eb2P3ZfcZy4b7DAt6m+XX6tWr3VLpYb1UrZdcoFmzZrr66qtVtWpVt6VoJeKxOOWUU9xS8uF4bGnOnDluyXfCCSe4paKViGNvcxw3aNDArQFIRQSrAAAAAAAAADw2n+bQoUO16667ui2bWdAau90ChRdffDEyzIyHzeFa1KLuM9z7Ld20atVKXbt2dWtb+vjjj7Vw4UK3Jq9tcQY/iXgs8jPnZknjeGwpNvCMvaCjqCTi2FuP1PzMIw0g+RCsAgAAAAAAIK1EjeCRrhXriCOO8Ib/jWprdcEFF2innXZyrX3fffedHnzwwcj2edXPP//s7sUX1SaeCrP7zG2/Oe2007x5DuOp1157zd3KF3vfsRUWtT+2YkW1iapYUW2sOnbsqF69ekXus2GTbc7HwD777KMTTzwxsm08FYjaF1Ss4ngsYkW1iapYUW2iKixqf24VqzQcj8JWrKg2uVWsqDZWsYrrfSFWVBvKLyAVlNloM0EDJcTm4xgxYoTOPfdc9e7d220FAACJZsO3DRo0SN26dfOGfgMAACiNRo4cqQEDBqhHjx4aMmSI25q+xo0b552jCbN5Ne0Y5cb+Xrzxxhuz9VK1HmV33XWXN4xsftjfn2FPPvmkmjdv7tbiM2PGDPXv39+t+T777DO35Iv9PsOHD9dWW23l1vKnXbt2bmlLRx111Kben4cffrguuugibzk3zz//vPfcDLz33nuqXLmyW4u2YcMG7bfffm7NH9o19hjkZf369TrvvPP0559/ui3SnXfeucUQ0PG65pprNh13O962HqUkHounnnpKjz32mFuTPvroI5UvX96tRVu3bp0OOOAAtyadeuqpOumkk9xa7g466CCtWbPGWz755JO9ildpPB6FFXtM4vl5w44++mj9999/3vIxxxyTbR7msJJ6X7j77rs3XcDQpEkTPfvss94ysrP3TnsPtTmhY4eDBpIJPVYBAAAAAAAAxK179+5bBEd2QvzSSy/dFC4lu2222cYLQgpSpcGSJUu8DhBBqGpB7q233lrgULUw0v2xiMXxSByOPYB4EKwiYaK6+lMURVEUlbgCAAAA4mVDxm699dZuzTd79mxGP0kREyZM0O+//+7WpJYtW0bOq2us5+L06dPdGgpq8eLF3pDZAIDURrAKAAAAAACAtBN1oVk6VpSodrFlQ/7+3//9n7vFZtbr8Y8//oi8TVRFDR0c1S63imX3GdvGhsoNi91fVBUWtT+nCovaH1VhUftzqsmTJ+uWW25xt5Q39PKVV14Z2dbKhuS0HspR+8IVK6qNVTI/FmFR+3OqWFFtli1bphdeeGGL7aXxeBS2LOgPi2qTW4VF7Q+qpI69VSBqH7W5gFRAsAoAAAAAAAAg32wuwvAcjMbm/nzuuefcWt5s/sOw1atXu6X4xd4m9j6NzQEb9vbbb7ul9PPxxx9vmn/SdO3a1ZvTsKTwWGTH8djSEUcc4ZZ8b7zxhlsqWhx7AAVBsIqEiLoahaIoiqKoxBYAAACQHxUqVFCvXr1UqVIlt8U3duxY/fbbb24td23atMkWbtx///1uKX7h29h92X3Giv0+EydOdEvxW7RokZ566im3lnoyMzP16quv6uWXX3Zb/FD1hBNOcGvRli9f7paKBo9FdhyPLbVv3141a9Z0ayq2oag59gAKgmAVAAAAAAAAaSXqIrN0rChR7XKrjh07aujQoe7WPhvydMiQId7cnFG3Cdd2222n//3vf+6W0tKlS7VgwYLItlFlbe02Absvu8/YdrZtt912c63kDVf89ddfb9EutxozZoweffTRyH1BxYpqE1uxotpEVayoNuGyOT7vuusur1exycjIUI8ePbxgPKp9UPY7m6h94YoV1caqJB6LWFFtoipWVJuoCovaH1TU/tJ4PApb7dq10y677OK+q7zhqFeuXBnZNrZmzJihtWvXulv6otpZJfP7QroWkAoIVgEAAAAAAAAU2K677qq99trLrfnWr1+vkSNHxjW073nnnefdh5k2bZq++OILbzke1tZuY+w+7L5ycv7552u//fbzli30zc+QxRbqvPTSSzr66KPdltRi4bPNfxuoUqWKhg0btum458R649ltzzjjDLelaJS2x6JevXpuyT9mQXgdFh5+OVY6PzdzctRRR6ly5cre8k8//aQJEyZ4y7nZuHGjN5yvXdwRL449gPwiWEVCRF2NQlEURVFU4goAAAAoKBuyc+DAgW5ts1GjRunBBx90azmrVq1atmDChvb97rvv3FrOrE14GGC7D7uvnNi+yy67zK1JkyZN0vfff+/Wcnf99ddr4cKFOuyww9yW1DJ+/Hh98803bk1q2bLlpjApNz/++KP++uuvXI9rQZS2xyI8nPLrr78eOXzy008/re7du7u17NL5uZkT6w0/aNAgtybdeOONmjJliluL9sEHH3hBZ35w7AHkF8EqAAAAAAAA0k7UxWbpVjbsZaypU6dq1apVke1zq3Hjxrl7yM7m9Lzhhhu85ajbBdWlSxfddNNNXg9K6zV2xRVXaPTo0ZFtrWyftbG2dhu7rd1HVNtwVaxY0QtfDjroIG+40Msvv1yff/55ZFsr65Fm38eOy5133qnWrVtHtrOy0Cc8BOnMmTO9gC2qbVDWs9GCnLA///wzsm24rE2YhZ92LKLa2s9lxyfQvHlzXX311ZFtw2Xf4/bbb3e3yv3xs3Bp9uzZrqW8ZdsW1Tao4nosrLf05MmT3U/is2A5qm24rE2Y3YfdV1Tb2LJgLTy3b+z3s1Db5u+0OYnD28NVmo5HUdUhhxyiK6+8UmXLltW8efM0ePBg7/eNavvmm2/qtttu0zXXXKO6deu6n1renMIDBgzQ+++/71XUbYvzfcHeT2144oDd1taj2lJc9I3UUGaj9Y8HSoj94zdixAhviIU+ffq4rQAAINF++eUX79/nbt26eSepAAAASiMbmtZOsPfs2VMXXXSR25o+zjzzTLfks1BgzZo1bm2zbbfdVhUqVHBr0tlnn63OnTu7tc1saNOgp9fff/+tFStWeMtRbM7E4KT5Qw895H2NYvdxzz33eL1R7Wdr37699/3DHnjgAS8UtjBk991394b/rVq1qtsbH/s+d999t9czzYIU+z723Ai79957vaGMLRgZPny4F0jGsqGIg6FD58+f74U/YXYsbQ5TYz3uateu7S3bz2xBaGZm5hYhaa1atdSkSRNvef/991fv3r295TfeeEPvvfeet2xzTtqQs2Ft27ZVuXLlvOVwT2EL88LD0Nqckqeeeqpb25KFota7csmSJZu+h53Ts6FZY5188sneVztO4WDV2O8Q/O5PPPGE9zVKUT0WZ511lvfVwmoLMcPsmDZu3NhbtvAs+F0s+LdAzdgxtXlow+yY2ly0xt4/cmNzcz788MNekF2jRg1dfPHFm76nBdQ2/LKFcHkpLcejKFnIa8+h33//3TuO1113Xbb3qPvuu88bstqCWHu9xD7nw7788ku3tKWiOvYmOP52P3bhQ1jDhg1Vp04dtyb17ds3x97M6cQuxrB/nxs1auQ9/4BkRbCKEhUOVo855hi3FQAAJJoFq3Zyh2AVAACUZukerO69995uKX+sx+k+++zj1jb7559/CnThfG7BRsB6x1l4ar3QYnvbWe+wHj16eKGHLRdG8H0stIwNP84991yv55uFmzl57bXXdMcdd7i13FloVb9+fW/ZhuG1wCUvxx57rPdzGAukLfCMR/gYF/RxD8spWI33vvPzmBf0sYj3Zzn++OM3hWUWQD/77LPecl7i+R3sMbVekRaW21yfAQvZLMAMHv94lIbjUdTGjBmjF198cYuhem0o8gMPPHBTWBkOVnfZZRfvc27A3v/zUthjb/Lzurvgggs2XUCRzghWkSoIVlGiCFYBAEhOBKsAACAdhINV600GAACSgwWrdtEMwSqSHXOsAgAAAAAAAAAAAEAeCFaRELGTUlMURVEUlfgCAAAAAAAAkDOCVQAAAAAAAAAAAADIA8EqAAAAAAAA0krU6B0URVEURSW2gFRAsIqEiXrjpCiKoigqcQUAAAAAAAAgZwSrAAAAAAAAAAAAAJAHglUAAAAAAACknagRPCiKoiiKSlwBqYBgFQkR9aZJURRFUVTiCgAAAAAAAEDuCFYBAAAAAAAAAAAAIA8EqwAAAAAAAEgrUSN4UBRFURSV2AJSAcEqEibqjZOiKIqiqMQVAAAAAAAAgJwRrAIAAAAAAAAAAABAHghWAQAAAAAAkHaiRvCgKIqiKCoxBaQKglUkRNQbJ0VRFEVRiS0AAAAAAAAAOSNYBQAAAAAAAAAAAIA8EKwCAAAAAAAAAAAAQB4IVpEQUcMPUhRFURSV2AIAAEgnUX8PURRFURSVuAJSAcEqAAAAAAAAAAAAAOSBYBUJE3VFCkVRFEVRiSkAAAAAAAAAuSNYBQAASWCdls+fpSnjf9X3n3+kd157UU8/+qDuufM23fHs91qQ6ZoBAAAARSDqQjOKoiiKohJbQCooszGLWwaK3eDBgzVixAgNGTJE/fr1c1uL1q677uqWisaAAQO01VZb6fDDD3dbUFq9/PLLbkl6/fXXNXHiRG95v/3200033eQtRyno7QAElurjq47RsPf+0wa3JSxjh/M06qGT1CzDbShBX3zxhR555BH9+eefuuKKK3TwwQerUqVKbm/p8tNPP3n/5nXr1k2jR492WwEAAEqXkSNHen/zHHXUUbr00kvdVgAAkGj//fefDjnkEDVq1Ehz5sxxW4HkQ49VJETU1ShFVe3bt89WFSpUcN81u3bt2m3RNly1atXy2j344IO6/vrrdeKJJ+r777/XihUrIr8vlfp18803b6ogHDVRbcNV0NtRFBVUJbXocpT69T1WvXsdqr3b1VU59zqSMtR0h05qVC7qdsVbP/74o6688kovVDU33HCDdyIuqm1pKQAAAAAAAAA5I1hFqfPkk09mq1NPPdXt2ax79+56/PHHt2gbrltvvdU7od6gQQNlZmZqwoQJOvfcc70rWq0HE0qf//u///Nqu+22U7lym2OdvBT0dgACFdX64LM06KKLdemwa3XrNUepVfBSKlND7Tu1UXm3WpKWLFmilStXujXfP//845YAAACQ6qIuNKMoiqIoKnEFpAKCVZR6O+64o1vazAKw8uVzP03fuXNn9ezZU++++66GDRumDh06eNu/++47byhjhkksPBtW86GHHnJriXfggQd69fTTT3tDYcaroLcDEG3NlGmatd6tVNxOnTtWdCsAAAAAAAAAkDgEq0iYqCtSiqNyEtU2p+rVq5c3N2w4pB0+fLg+/PDDyPZUfBWI2pfoihXVJqpiRbWhKCq3WqcJv41X0E+0XMtO6lQ7I6Jd8dcuu+yiPfbYQ1WqVPF+lmbNmnnzg0e1LS0FAAAAAAAAIGcEq0CcateurZtuuklt2rTx1pcvX+4N//rNN99468ifjRs3egUA2WyYqV9+n6dMbyVDDXfopGYZ3kqJs/f9e++915tn+/zzz9frr7+uTp06ub0AAABIZVEXmVEURVEUldgCUgHBKpAPNt/q4Ycf7tbkhauvvPKKNmzY4LYgXmPHjvV6/AJAWObCX/TrVDcOcJmqat95u4TMrxrWtWtX9e/f360BAAAAAAAASFcEq0iIqKtRirNiRbWJtw477DA1atTI3ZP02Wef6f77749sS+Vcc+bM8Y5f1L5kqFhRbaIqVlQbiqJyrjVjf9afa90LqHw7dd6xcmQ7qngKAAAAAAAAQM4IVoF8sqEhbc7VsI8++kh///23W0M8nnnmGbcEAIG1Gv/zOC1zo4R786vW4U8VAAAAAAAAAMmBs5VAAZxxxhmqWbOmW5Nmz56tDz74wK0hL1OmTNHChQvdGgA46//Wz7/96+ZXLat6HTqrRTlvBQAAAChyUSN4UBRFURSVuAJSAcEqEibqjbO4KkpUu/xUrE8++SSyHZW9LIQ+//zzNW/ePHfkkvfDbCBqX24ViNpHUVTOtXFxaH5VVVGHndqrYkQ7qngKAAAAAAAAQO4IVoECOvroo92Sz+YM/e6779xa3mbMmKFRo0bppJNOUufOnbOVbf/iiy9cy+QwduxYDRs2bIuf9c4779Srr77qtbHlI4880luOtWHDBu8YWag6d+5ct1Vat26dli9fvkWtXLnStYjfxIkTdfPNN2/xMw4ZMsQ7pvPnz3ctkSj2eNvzJVy//fab27uZzV188sknb3oMDzjgAK+nc2nz7rvvqm/fvtmer1a2zfalm1W//qzxm+ZXbatOnaq6lcSy5+MTTzzhlS0DAAAAAAAASE9lNmZxy0CxGzx4sEaMGKGLLrpIxx9/vNtavH744QedddZZbs03cOBAnX766W6tYGxe1aFDh7o13xVXXKHevXu7tWgWLN13333ez1WhQgX16NFDHTt2dHvlDSlsZUPltmvXTjfeeKMaNGjg9ubs5Zdf9r4uWrRI999/v7ds7r33XnXp0sVb/ueff/TWW29t2r/tttt6x+Hggw/21qMsW7bMCyu/+eYbNWvWzGvfsGFDt1d66qmnvEDZ5p6dNm2amjZtqtdee83t9T355JNekBy7PTctWrSIu/2ECRP0wgsv6Ouvv9aaNWt0ySWXqE2bNt6+JUuWeMdg3LhxatSokXe87XfIq3eWPbb2GBsL9W655RZvOS/x3u7FF190S/J+7i+//NKt+c/Z8uXLu7XNLIC039VYUH3rrbd6y+acc87xhqjOSfD8MF999ZU+//xzt5b9+1k4bcc9/POZww47TH369NGOO+7otuSPPY9+/vlnPfTQQ16wXq9ePbdH3nN9zz331CmnnKIaNWp4j5+1t8fKvt97772n5557znv8iiNstCAzHlGPS/jxjvLLL7+4pc3swoHx48frtttu03///ee9zgcNGuT2+ux90h7runXreu+X22+/vapVq+b2binRj2/RWKsxNx2pAS/O8YYCLtfqND35/Lnaft1sff/2i3r53a/1x7Q5Wriusuo0batdu/fM+nfkYLWp7t+6qPXs2dMtSQsWLNh0sUde7wep/Fj8+OOP3vtIt27dNHr0aLcVAACgdBk5cqQGDBjgfXa//PLL3VYAAJBodp7MzrvYOUDroAMkK4JVlKggWL344otLNFg988wz3Zrv3HPPLZJg1X6PsH79+nmhUE4sDHv00Ue9YLNJkya655571LJlS7d3MwshLSizYXPbtm2rXr166dhjj1XZsjl3Mu/UqZNbys5CXAtWH3vsMe9ntpD27LPP9tY//PBDL9y1D5Wnnnqqu8VmFgJfffXVXrB1+OGH65prrlFGRobbu5kFZnYfa9eu9QLR119/3e3x2b4we0wyM/1ZFC2ItYq11VZbafjw4W4tZ9Z7zHrSWlhlgYUF0fvvv7/bu5mFWM8884y3bI9RXsfTHttwQBoOMXMT7+1yerzMmDFjtgjwzF133aXHH3/crWVnz5fY53lYXt9v/fr1uuOOO/THH394zzk7PoEHHnjAC4csPN9999112WWXeQFoflxwwQXefdjz7eGHH84WGgXHrHLlytpmm228x+Xuu+9WnTp1vP0HHnjgpqGjf/31V+9rUTrxxBO9rzNnztTixYu95YDNpbz11lt7y3bsy5XLPuGnvYbffvtt/fvvv26Lzy5aqFKlip5++mm3xWevqWuvvda7wMEe4+uvv14HHXSQ25udXWBhz227zRFHHKGrrroq8nlhEv34Fon1k/Xgif304J82FHBZNTjyLj3VY7ruGP6QvivbWUf07qn9dmquKkv/0hcv3KtHPp2lMo331aA7blC/dpX9+yhCdiyMvVfZe1sgr/eDVH4sLFi1fxsJVgEAQGlGsAoAQHIiWEWqYChgoAg9//zzbimanbQOeotaaGphWNTwps2bN/dCFBMMb2s93HJjIaTVdtttt0VgaL38rNemBUgWzlkPOQtVjQUGFmJFeeWVV7zbWs/B6667LjJUNTvttJP3e1WtGj1s54MPPpitLFwLWGAbu98qnlDVAgjr6Wehqt2nhfZRoaqx3yHoaWvH00KNRLJgxapr1645HrdYdqzsNhYMx9OLOSx4fljoE/s4WnBkwzi/8847XpBnYbo9R4KyIHDnnXf2ekNbyG4Be7xWr16tCy+80HusatWq5T0PY3vi3XTTTV4vvVWrVnnPc3tdBKGq2Xfffb3XhLUpDhZ+WlkoH3ts7Hkf7I8NVc15553nhasWhAXs9WDhcWyoasfZQuQgVLVjnlOoamyftbG2dhu7bXBBQqxEPb5FKXPhz/plSjC/annVW/amzjnvcc3b5xo998Lduvi4/bRTu1Zqt9vBOvPWkbpkn1paO+dT3Xb+NXrv3+jjUhjWE9/KLhQJwvV4lIbHAgAAAAAAAEA0glUggWxo3j///NOtZWcn5ffYYw+35vdkyo0NW2ll4W64B5QNqWoBqW079NBD3db4BN+ze/fu3tfc7LLLLqpevZjG5IxggbP15gpYeBcMeRzFhga2AC9gAV8iWVhoZUF3//793dbcWS9Iu431jLZgJj+C54fNERk7NPaVV16pTz/91AsDbcjZWOFem8bm242XheSffPKJt2w9k3fbbTdvOczCJwu+A/bzTJ8+3a1Jl156qRde3nDDDW5L8bDXmwWlYTa0dF7suWUBmbHXrf3O4WDY2OvQhgoP5ue0eX/32msvbzk31sbaGrut3YfdV6xEPb5FadUvP2n8OreiNRo/+lc1u+BhPTRkPzXdfC2GL6OJDj12PzXI+itmw7yPdOe9n2mp21XUGjdu7PUsjVdpeCwAAADShU0RQ1EURVFU8hSQCghWkRBRb5rFVVGi2hWkokS1C8p6VVasWNG1lNcDrlKlSpFtbXswRKmxE+zW4zWqbVQF7HY//fSTN29eeL8NedSqVSuvbDm8Lyibn9RYj9Co/bEVzC8btS9csaLa5FU2rG8w56H9DhY4RrULV/369b3hZo31WLV5Y6PaWcWKahNVsaLaRFVY1P6oCovan1uFWe9l62HXoUOHyLZW4YDIhsu1eSSj2oVr1qxZ2YYTtYA+qp2VhUn2OBob9sOG1w3vtx6r4fXiqqOOOipbb2A7NlHtospuZ72/7TUeu8/m+LUeiMZ+z/3222+LNjmVtQ2Ojd2H3VdUu3CFFdfjW7S1Tn/8PE4rgskJylRXpzNv1w3HtFLFyPZlVKVjB7XxRkbO1LyPX9J7czdGtiuKihXVJqcKS4XHAgAAAAAAAEDOCFaBEmRDhIZ7WdqcmDZufE5at27tlvweb9bDNb+ee+45b37GunXrui0+68EaDLsb7uEaJd7eneGftzgFoWjAhpiNZ2hc6zFpwZmxsJix+n277rqrdthhB7cWrV69em5J3hyRNlRpXuz42nzBgWDOyijWKzDcU8+GYE0E6zHYp08ftyb9/vvvkcN1x7LhYu12dvso1jM5YG1sDuF4Wdvw/YbvKx7F9fgWqfXT9fNv8+QP6FtGNfe5UDefuaNy7QNfqZZqVnZB4Krf9M2Y4uqzWnRS4rEAAAAAAAAAkCOCVaCE9erVy5tv0uq0005zW4tX1JCTxnpwWuVl3rx53tx/ec3zaveV23C8RcV+DuvVGMjp98vL7bff7pbSmwXONWrUcGto3769W/KH685r2GXrFT5mzJhstwt78803NXnyZLfmD1udX+Hb2H3ZfcYrFR7fzP9+0s9T3fyqZarpf4fur4Z5/YWSuV7r1gddXNdqyoS/tGkk4STFaw0AACC5RI3gQVEURVFU4gpIBQSrSJioN87iqihR7fJTOYlqG66yZcuqdu3aXpUvXz6yTbjCovZHVZgNKdyoUaPIdnnV8ccf791HZmamN0/r+eef7w0p/O6773pzYFqtXbt2U3sb3vKSSy7Jdh9RFRa1P6+yYYDDjj766Mh2OVVg1apVkfuDCkTty60CUfuiKlZUm6iKFdUmqmINHDgwsl1sxYpqE65YUW3CFSuqTUmUzRcc7l1rc8RGtQvKetfac99uF7XfXiMbNmxw9yZVqVIlsl1uZbcJ2H2FX3exFau4Ht+irJW//qwJQSpafnvtvFO1yHbh2rh0gRaudrdRppYuXqyNEe2KqgJR+3KqWKnwWAAAAAAAAADIGcEqUIRyGgY0XtYL85ZbbtlU999/v9tTcDZErs0/WhBHHnmk6tSp49ak+fPn64cffvCGM+7Zs6dXV1xxhe644w7XomRYoIuiYyE/Noud39h6bH/55ZduLTub5/f999/32tvtoti8mkUtP/eZ/I/vWv3x4+9a7jqflmuxozrVzfvPk/VZ7wOz/LGDs2zUxsyNbijh5MVrDQAAAAAAAEhtBKtAEbIenflhc+e99tpruvjii7Xzzjt7861ab8wVK1Z4ZT0qE6lNmzZ66KGHvB6vObGA54knnvB+/uIIkOJhPVbt+8dTNucsSoY9fzp27OjWpP9n7y7gmzq7MIA/FSju7u7uxX24M2QMGwxnwGCwDTZk6NiHDxsw3BlDh7s7xd3drbRUvpwrkIbbNvUkff6/nfXe3DehSW7S5J57zrtq1Spt6XOXLl3CmTNntDX1OY1KOXPm1JbU5OnixYuVym1L27dvV+ZgNR9v6dChQ9pS+ImI24wyPtdx7PRjLSnqjCT5CiKLq7ISBF/cO3cejz8+Jc6InygRXLQ1IiIiIiIiIqKQ+YDXj27jytkTOHviAHZuWouVi+dixpQJGDt6LOYffGLzJ3QTUeRgYpWihFH7wYgMS0ZjQhNGjMZZhlTALVmyBO3atcOvv/6KY8eOoV69epg/f76SwJH5TCX69u2r3arK6LYCC3NG260NSRj99ddf6NChA9KmTavd4uc+fPig/M5btmwxvB3zsGQ0JqiwJNW98+bNsyoWLlyoPMZ6GN2+hCWjMUZhyWiMUZgz2m4U5oy2BxXmjLYbhTmj7ZaRNGlSpapZd+HCBcNxEnKSgbwuRLZs2VC2bFnDcZEVMl9wq1atlN9H7N27V0msWo7buXOnMk7GW27Tw5LRGGvCktEYPcwZbTcKc0bbIyr8X5zEaX1+VbghT+GCiGUwLmB44pzHNejXko8zaTNmRAzDsWEPS0ZjAgtzRtuNwpzR9ogKIiIioujE6PNQeEWhQoXCNWbOnIm1a9ca/lsMx4ply5Z9jObNm3/cB+SEfKPxeoT2egwGQ4/X2PJzTVSqXhdNvmqHr9p1Qa/+gzBs9Dj8OXMOFixegq0XPOWPh8X1Iid27dqFli1bKq9rKdJ5//694ThHCCJ7wMQqUShJEtRc+vTpUaFCBW3NmL+/v5LY69q1K0aMGIHr168jXrx4mDx5MgYPHqzM0yhhazJkyIDvvvsO06dPx5AhQ5SoWrWqMkesq+un0rJXr14p90PaBUcmScTpj11IgyJWkyZN8OWXXyrLUpUq1c2WJKE6fvx4ZTldunRKC+xUqVIp61FF5kJu1qyZ8vrULV26VFtSyf25fPmyMk7GU+h4nT71aX5V1+woWOjTYx4o7/M4deGdtmLikhEFCiblhxoiIiIisgmW3ztjxoypbQkoV65cn401j0SJEinjpkyZonzXlu8e+/fvx+vXr5XLyfHIsSI95ORka4X2ekSkc0Omsk3QsmULfNmwDhrWqYDcSc3aabmkRcHCqaOkU5Z0LZNp2c6dO6esy3HZqVOnKstEFDV4DJIolCQpak4q81KmTKmtGZME6qhRo5SEjMibNy8OHDig/LQHGTNmRKNGjZQYN24cjh8/rswv2aJFC20ElC940ho1rJ49exbpc7dS+HNxcUGcOHGUn2LChAlYv369cmadHtJC+/z580rVp7xGgmo9HZkyZcoU4MSBf//992NVrXjx4oVSaSvjKLR8cOvCFbzW5ld1SZ0fhdIG/zXlw8X9OPzgUwMelzSlUDZnDG2NiIiIiChqyQnV5tGxY0dtyydVqlRRpgKyHGse8r1bEqopUqRQOuhIwqxLly5KFaJ0zyHHM3r0aCXy5MkT4PtocEJ7PSLSuSFHrS74vv8A/Dx4OAYP/x+GNc0G/dXklDA/CueImuMOUsgi01SZu3fvnrZERFGBiVWKMkal/hEVRozGWRuSGJXWt+bc3d0Nx+qxYcMGzJkzRxsNJEuWTGn1azTWPCwZjbEMS0ZjrAlpT3z37l3DbXpIZeFPP/2khH4WrlS2Go3Vw5zRdgn50CCPl9G2bt26addWGY0Ja1gyGmMUlozGWIYlozFGYclojFFYMhpjFJaMxljG48ePlSpVORggCVVJyg8YMADFixf/GD4+PsqZdzt27FCqj41uJ6rCvB23HMSQ+6Nvk4Mc1ryGjRKvRuOCCktym0bjJCwZjTEKS0Zjwj/8cP/eI/hq/2bsXAWRJ6bROPPwxa39B3BTv5Lpa06m6nVQyM1obPiEJaMxRmHJaIxRWDIaE1FBREREFJ0YfR6KiJDWjZYkASbfoY3G61G0aFHlO9TWrVuV71QFChRQrisnaEtXqe3btxtej2F9yPfTadOmGW6LiqhZs6YSMn1U5cqVledbGI01j9Bej8FgBBbeuHrt7scpiNzyFEGh2EbjIj6MGI1zlCCyB0ysEoWQJIGkJaj5mUJSrSoJoaA8ePAgQDJWWukWK1ZMWws5qZzr06ePthYxpCpXEpzBkT960udf2riKp0+fKj8jiszdaW7FihXaEtkamQtIVK9eXalEHThwIFatWhUgpH2JedWzLSlXrpzSnku3aNEi5acc2JBW2LI9OK1bt9aWVJ6entqS9SyvY3mb9stPuW9qwaor0mfLCjdlOQi+t7Frz6VP86vGLYZmTfOA9apERERE5MgaNmyIiRMnBkjSDho0CBs3btTWiIgofHib/juHE2ffauuuyFqoMBJFUSZFjh+XKVNG6QgnZMq2r776SlkmoqjBxCpFCcszUSIyjBiNszYkabhs2TLtllS//PKLMhej0Xg9pLrNnCRFjcZZhjnzy9++fYvNmzcHuEwPS0ZjrAkhv7fRNqPo3bu3ch1htF0PS0ZjJALbJq2TpeJXJ3MMGI0LKqTVsLWVtUbbggqd0bbAwpLRGPPw8PDQRqqMxgQVlozGmIclozFGobfO1delJXDOnDkDhLTQNr+OLYXsZwkTJlTug7h27ZpyuZwoIWeXy3bL61iG5f46duxYw3FBhVxHJ7clt2k0Tg9LRmPMw5LRmIgJF8SOEwvqb+CEpKlSI4bhuE/he20jNp3V06quyNKkCxqmdzUcG56hM9oWVFgyGmMelozGRGQQERERke1KkiQJfv/9d+V7lHjz5g2GDRuGffv2KesUMv7+/koQEQXge8v033GcfqhNQeSSCgWLZIiS+VWFvPdLUcLIkSPRq1cvrFu3DoULF9a2ElFUYGKVKAQePnyo/AHTSTJ1ypQpiBUrlnZJ+NLnYo1KMoektD+1Jfny5VPO1NKdPHlSaYEUEvLFc9KkSdqa/ZH5Pu3JiRMntCX788MPP2hLahJfqmxl/l/zy4Mi+2vZsmW1NXVuVnkvsZaMlevo5LbkNh2DE5IlTfzxw0iMYOcCeol9C1bjgpZXjZG1BX7uUgzqOZtERERERNYzOsksIsOS0RhrQqbjka5ZOkmuLl++XJmD1Wg8I/A4ffo0/vvvP+VxNNoe1WHJaIxRWDIaw2AwAg//58fx/PhxXNWOPTjFzY+ieYNu3R4ZIW2+v/nmG8NtjhJE9oKJVSIrSYXj999//7FSUJKqv/76KypWrKish9TLly+1JWNeXl6YN2+ethZ1ZF7JvXv3amtB0+9TcG1dU6RIoS2pj6uv78fJEj8KLpkrc3LWqlVLWZYWy7Nnz1aWrSHVvnPnzrWZthn6vDrWkgnqjxw5oq3ZB5nn5datW9qafYkfP/7HqlU5WCHtjWPHjq1cbi2Zt6d06dLK8pUrV5RWwtaSsXIdIbcht+U4YiJrvtyIp+3+b9+8gXY+qKF3x2bif2vuqWPccqHN4B4oZf3TQERERETkEGrXrq1MtaKTE42lTTCFzJ07d7QlIqJP3p84hhPHzklDYEUMmV81YmpqiMhOMbFKUcbyjJSIDCNG4wILqVDr1q1bgKq7ESNGKF9mjMYbRZUqVbRrqqRa0micHn/88QdOnTqFkiVLatdQmY+xXDcPndE2a0MnrSaOHj1qOMY8pHpXZM2a1XC7Hh07dlTGCUm4yRm2lmNmzJiBGjVqfHa5HgkSJFCeA93Zs2eVBLDRWMuQxJS0dG7cuLHhdglLRmOMwpLRGMuQs83M5409cOCA4Tg9NmzYYJikNBprFJaMxhiFJaMxliHPodixYwe+/vprZV8KLiRRbnRbURUyd3C9evWU+yHksZd1udxovFHI/tqqVSvtFqC079qzZ4/hWPOQMTJWJ7cht2U0Vg9LRmOMwpLRmIiIeO5VUTaJ/Pu+uH3tGnwNxijx7hRmjV6MKzJVdYy0qPnr/9C9aNAt2MMrLBmNMQpLRmOMwpLRmIgKIiIiIrJ90hayUaNG2ppKpgqy15NZo4otnMxORLbGG2ePeeCYx2uojcJdkbVwYSRhFoWIzPAtgRyeUQtSScJ5e+vnHRmTKsqVK1eiUqVKyhyq0iJGSMWYJBCrVq2qrFtLqjilylUnybGlS5dqawGtXbsWW7ZsweDBg5V5QOPGjatcbp5gkWWjVqRSjXn16lVt7fP10JDbkN9VEr1G5LGSClKZd7JOnTpo2rSptsWYfAHMnTu3tobPbnfnzp3Kc9SsWTPtEmNS6SmVm5Lkkueze/fuypfJwEgCt0ePHrh8+TL++usv5MqVS9sSkLRdvX//vrYGZdm8FWtgQns9IXPu6ubPn4/Xr19rawHJWchSbWu+Lwip2JXkv1Q3BlUNKY/T+fPntTVVYM+rOcsxchvBvYZEuXLlkC1bNmX5yZMnWLBgQbAhJxPUrVsXGzduVK5nC+S1FiNGDGVZflrbBticVLfLe4e8h0jyWPbFoO6jbJMxMlZ/3wmuQj6yn99wkbASvm6aC27ww8O9W3D4rXa5Oa/LWNyvF2aefW96AtKg6sBpGNkgE2JqmyOSVM+bH6CSZWvao9vlc0FEREQUzRidaBZRYcRonLXRpUuXj511hFRfyncIo7GMz0OOk0gHLWG03RbCktEYo7BkNIbBYAQSvrdw7OQDnHyg9dNyToYCRbIghtFYRoQEkT1w8ucs7RSJevfujfHjxysVg61bt9YuDV+WybiLFy8aHpSWxJ5rEPP5SctPSe4JFxcX5MiRQ4mffvopRC1Azcn8jHJGpFRWygf4OHHiKI9FgQIFlO2SeJLkyfXr1zFkyBAUL14ciRIlUhJt48aNUxIs+lj5HYYNG4bkyZMr682bN1d+yn2V9r3m0qRJg2TJkmlrQNu2bT9WEgYlT548yu/Yt29f3L59W0n4SoKnffv22gg1eTht2jRlu8z9+PPPP1v1+EgF44QJE5R5ZOXLoNxfqQAUQ4cOVZLJs2bNUtaDIwnTUaNGYffu3cr9L1SoUIBEpRg9ejQ8PT3x7t07ZX7MLFmyaFs+0fdJSSRbJkRkf9ET3JZntYb2euZkfzh48KDynEpLZXmeJRmfP39+ZbtcNnnyZGUfkhbUMq+C3M/AyDhz+v4hSXB9v9bJ2c76Yy9z9eitnBcvXvxxLlf5kq5/6dTlzZtXeW0IqTwOzJkzZ5RqVWlvHRJy20WKFFHur9HzFdnkNSNJtQwZMnychyc0ZH+V/XHXrl3KY1KwYEHlNWZu7NixSoLNzc0NFSpUQP/+/QOcmGEpKp/fcOF5Bn917ohxRzyRpdEITP6lFjJqWdO3Vzbgz9/GYP7hR3BOWwGdhw1Fx1LJof5mEadBgwbKz/fv33925r/sA/rc2qtXr1Z+6uz5uZATVdq0aaMk8OU9moiIiMgRycnLnTt3xpdffqmcRB0ZDh06pHQqMtezZ098++232lrolClTJsA0Qzlz5lROEKegyfELOa6hnxjdtWtXJWyNHNfQTx6vXr26cizDGqG9HhEBfo+XoFON33DcC1COYsWvhjGbx6EWpyGKFHJsXI5JSLt7mQqNyFYxsUqRSk+sSnVjRCVWzSshw4N82UmVKhUaNmyoXRJ2Uv0qiS+Zq9H8j4QkSeXDfPbs2VG0aFHtUtXff/+tJGOEVFpKMjNlypTKugjJ/Zbkp3lb0sDIbUqir0mTJsr68uXLcePGjQDzmcofOvkyKL9TUIk+I5IElaSEzFu7YsUK7VJ1P5Gkg/n9s4YkNSUZJdW1lsllSUzJ4yvtmwNj7WNolDy1huX1jBw7dkz53aWiViqAdZJgl4pcSTC6u7srj50k5HTyoUMS2zrL+WOt/R07dOigzCUspB21/B7WCOy+SbJIEkEnT55Ufid5LQVFWt8ePnxYW1NlypRJOfghyayoJAcoBg4ciN9++01pIx1W+v66bNkyw31KDvTIc2zNcxdVz2+4euWBxSN+wfi1l+GUoShKFEgJ//sXcPL0FbyMmxsVG7dCx3b1kT9x5DTbCO3r2p6fC3ntMbFKREREjs6REqtyfMX8c6Sc5CxJNPnOaA35fi+/m3xv07t06QYNGqR8Jw+ua05kku9P8v1STvo2165dO2TMmFE5diGfraULluUYISc/yvdsqfa9du2adqn62VzCkrOzs3KyeUjI93mZTmrRokXaJSqZHkpOVJeTpPUT5IPDxGrEkKIF/cRWnXTasjymJd+J5IR/OZ4hpGBB1mX6K0ezfv16zJkz57NjaXKsT15fQR1LczRvN/VDtb4b8dofSivgGMX7Y8Osr5HaBvp+yj6pv3fJ8UHpsuhomFgle8HEKkWqyEisEpFtkLa+Y8aMUb60yGtfDiToVXeBkepACTnYIV8E9Q9RUrFnnnwnR+WLV9cPYfvOE7j+2BOuydIhU+ZcKFKyENKG7HgGhQITq0RERBQdOFJiVb4zWXZrkvsk9y0o8h1t0qRJStck6ZIjJzbr3bGEdOiRtsJPnz5VThyU73XWnPgsJ40K6cAiHZd0cmK4fiKwVIlKUkvfLgkteRxq1aqlrBuRqXJGjBiBffv2IX369OjUqVOAk3blRPT9+/crHWIk6SBjLBOrcoL4zZs3Q1TRmzlzZsMErRE5AVKSqXKysJwILce9pIJYyBRB8nhL8lo6isnjLfchuJaXkZFYle45OumuJp2VdDK1lj4ljjlJNOonfEqyWjqI6eSEcHl9GdH3DyEdxyQBrjP/tyS5J8+T+e8mZMog6VIX0pP6da9evVJOZpf9UfZD885usq/LPiqv0wQJEqBfv37KeOlkJP+eTOcl3eTk+dMf2/CUL18+bSloRs+J+fNtRLqIGZFuWtJlSYo45P5LElU/+VcnJyrI85E0aVKlYEGOzQTVTSuqn+Ow88ah4XXRcfFdqI2AXZH924VY3jMvvO8cxNrFS7Fu7xlcu/cMH2IlQfpcJVGl4df4ulZORFRBq/l7oyQdpROfCOq1bc/PAxOrZC+YWKVIxcQqUfQgSRlpbysf+KTaWyqfg0uqWpKzkfW2qnL2sZz1G9KzhYnIekysEhERUXRgnliVaUcigyQwLROr3333XZgTq5s2bfossSqdgmQKo8BIImzGjBlKYlOmqfjzzz8NK/CkmlWSfzJVhSRcGjVqpExlIVWcgZGkixFJZJUrV06prpXfWZK03bp1U9YliRszZkxl3ahqVJLA0jlIKurq1asX6HdLSZjJ9SWpKQnRdevWaVtUlrctyW6ZAkpIIlafssOcJG+lY1Fwtm/frhznkkSVJCwkES1JD0ty+dy5c5VlGd+yZcsgH095buXxEl988UWIEqvWXi+w50xIAkaeG0tye4FN3dSjR49AE6vB/Vs+Pj7KtDiSCJR9Tp86Rci0WfIdRZLnUpEtndjM5xi2hiR95TbkPkl1pnnSSH/M5JiD7D/yvMi/KQlFIZWBjx49UpYtp3wJD/p9lWloJBFvTu6nHBMRkty1nNZMjrPKCQDmXc+EvK5lairLpJmQ15W8/8lJDrLPSnI8sCnD5DUq05jJdeSkAJnKyzK5q4vq5zjMfC5hSoum+POcj7runAKNpyxC/Wu/49dpB+FctB6+bFANRTPHwatLO7Fw4gxsu+2EtFW+x4RRXyF3BByy0jsayvuVvL/pgnpt2/PzIIlVmRKLiVWydTZQxE7RleXE1AwGw3FC2jNJUlU+xEs7JvngbzQuqJA5fvUWVnJmsbSNNhrHYDDCL4iIiIjIvi1cuFBbMibz6uvVopI0leTplStXlHVzMiWLJFCEVDVJxWhwCSVJQkrIdznLhKEkOidMmKCcyCf/vlTCSsJGSLJg3LhxyrIlmZJIriuVg/I7BHbCriQfJGEs30GNSBLXPMwThlKdZbldwpqkqiQgJJkoSVW5TalMNUqqCklKSbJAjBw5MtBKwsg0ceJEJSRxGNhjZ0kS3HIdSeCnSJFCuzR4+v5RpEiRz55HqfuR6khJEErCb+jQoco+oodcr1ixYko1tCTZQ1JtLl2xevXqpTxXMs2SJPotK/F+//13ZT+Q4xiyn0sSVk+qimrVqimviTp16miXhC9JfkrI72H52Mh+r2+3TKoKuW9ygkTixIm1S9TXg1RyGyVVJUEnhS96UlX22cCSqkK2yRgZK9eR6+onJViKquc4vPg9O4bjV7SkqoiRHK9Xd0LX2Y9R4belWDFlAFpVK4rc2XKjZK0uGPfXT6iYyBt3t41Gt1/W46HxwxImctKIhDwm1k6RZe/PA5E9YGKViIjCnbQaEfLFzHK+YGvJl1Jr5wYiIiIiIiKikJOWqOfOndPWAipcuDDKlCmjrSFAe18j0q1IQpKh5hVQ0spXvyykiSn935S5SYNTvHhxpY1rZJGE8w8//KCtQVmWytzASGtgSZzpJNEc1WTuVwl5nNu3b69dGjRp3yzXkepovTLWGvr+IVWXXbt21S5VSQXv1q1blUpSo2o7SYjqVZtCn/fUGlKBt2XLFmVZqpNLliypLJuT5JMk73VSpXf9+nVtDUoSWZKX0jY3Isk8vJIoNefl5aUtBU72LUmQCUmmyYkBUnFoSV6LUn0qSWYhLY+D2md1MkbGCrmu3IbclqWoeo7Di+fxozj3QVsRXmex7XgG9Jk9C/2qpodl/bZLujpoXi0lnOGLh5vGYsKOl9qW8CdtqCXxaQ17fx6I7AETq0REREREREREFK0Yde+IyDBiNC6kYcRonB5yAqvMq6qTKrTYsWMbjo0VK5ZSYaqTOUKl4tVorFHo5HpHjx79OK+oHoMGDUL27NmVkGXzbXq8fKkmKqQi1Gi7ZTRt2lQZb7TNPMwZbbcm5s2b93G+Q7kPVatWNRxnHsmTJ/84xY1UrMq8sUbjJCwZjTEKS0ZjjMKS0RijsGQ0xjIsSYJWKuXy589vOF6iS5cu2mh13lqZR9JonHncvn0b27Zt066lJpKNxklINaAkjYW0I5WKPvPtUrFqvh5R0bhx4wBzGstjYzTOKOR6kiSX17jRdg8PD6UKUch9lUpco3FGIWP1x0duQ27LaJweliLqOQ6/+IAzR0/jjdmkiU7xC6PLhFFont348XRyioMC+XNAaYzs9whbFm/APX+jceETlozGWIYl238ePv+diWwRE6sUJYzeNBkMhuOETr5kypdoozHBhczfIV++zRmNYzAY4RdERERE5Niko5DMWaqT+TADa10rcuTIoS0Br169UipcQ0qqpqQNbrJkybRLVFLBqrfdNa9wNSKtZ61h/vtGJD0pqpMqL2va4krFpCTOhCSL7969qyxHdyVKlEDBggW1NWPm+4/MESmtSoMjj69MLaQLqitW2rRpA1Tq7d+/X1uKXLIvyRzQOjmmYtSu29I///yjXE+uHxjzOTllnHkCNzgy1vy2rZ3zVxdRz3G48bmOoycfQe3ma/pu7JQQFX8Yi86F4iuXBCa26TGJrX2VfndqLw6/Updtlc0/D0R2golVIiIKd8OGDVPOepYviitWrICvr6+2xXqXL1/+2FJY2s7IF3EiIiIiIiIKm0aNGilJI4mOHTtql0Yso5aTQio4JYLz8OFDZT7A4OZ5leRm2bJltbWII7+HVDXqArt/wTFvDRydScI5YcKE2hpJNaFOTmaQeYaDcurUKRw6dCjA9SytXr0aly5d0tbU1tUhZX4duS25TWvZ+nPs9/Qojl/V5ld1im/6zx21q6cONnni5/MBPnqVq9dVnL/sra3YJr7WiMIHE6tERBTu5CxJaZPj7OystAxZsGCBMkG+ta5du4aePXsqy9LCRr7sx48f9FmCREREREREIWHUwSOiwpLRmNCEEaNx5iHf0xInTqyEtAI2GmMe5oy2G4U5aSks8wMajQsuvv76a+U2/Pz8lHlaZb7Adu3aKYmmGzduKOHt7f1xvCSWZD5M89swCktGY4KKuXPnatdUyXdgo3GBhU66PBltl7BkNMYoLBmNCSzMGW03CnNG2wMLc/L932iMZZgz2m4U5oy2W4Y5o+2RETJfsMy3qpM5Yo3G6XHgwAEUKFBAuZ7Rdgl5nZif9C4tqY3GBRV6G2sht2X+2jMKcxH5HIdHvDt+7NP8qjHymP4rhmLxjMd+Cn+8fPIUH2fB9XuJ5y8i7ve2ZDTGKMzZ+vMgQWQPmFilKGH0pslgMBwr/v33X2VSfDFixAjlTNzr168bjjWPJUuW4JtvvsGdO3eQL18+5QtCqVKlDMcyGIzwDSIiIiKyb0G1AbXG06dPMXLkyI8xadIkbUvoSQtRmdsyNKRtbtKkSbU14PHjx0plnlTO1apVS4kBAwZEeuWnJHQp/IR1v3U0cjJC69attTW1YnvXrl3aWkBv377Fhg0blPFyvcD8999/2lL4Cclt2vZz7I0zRz7Nr+qauTAyFy6MpMFmTnxw4/odfExX+/ub/lObCdsqvtaIwgcTq0REFGG++uorrF27VpnDYfHixWjbti3q1q2LvXv3Kq1qzKN///7KtiFDhiBu3LgYOnQoZsyYgXjx4mm3RkREREREREHp1auXtmSd58+fY+XKlejTp49S8VapUiXMmzdPSdZIeHp6aiOjRs6cOTF79myl4jUwktyRMfL7b9q0Sbs0csnUNfLvWxPS0Ykih+w/8pjrZKqiwEhrW5nPVNe0aVNtKWrkzp1bW1IrmxctWqRUblvatm2bMger+XgjBw8e1JbCT0TcZpTwuYajp/T5VZ2RJH8h5C+UFa7KehB87+LMef16Js7xkSiRi7ZCRI6MiVUiIoowrq6uyhcZ+eL4xx9/oHv37siYMSPat2+vfEkxD/kyIG2eJKE6f/58NG/ePMCE+UREREREROHFqHtHRIYRo3EhicAYjbWMR48eKYka+Q42cOBAHD16FA0aNFAuk5a7w4cPV8JyHkaj2woszBlttzbkO+WcOXPQqVMnpE2bVrvFz3348AG//PKLklw1uh3zMGe0PbiwNHbsWOWxsyaWLl2qPMZ6GN2+HjqjbUGFzmhbYGHJaIxRWDIaYxmWjMYYhSWjMeYh1c4NGzbURgPnz583HCfx7Nkz5XUhsmfPjvLlyxuOi6yQuYfNq1Z3796ttN+1HLdjxw5lnIy33GYelozGWBOWjMZIWDIaYxSWjMaEd/g/P4GT+vyqiIV8RQqiSMFYhmMDhOdZeFzRr2fikh6ZMgbfXj0soTPaZhSWjMYYhSWjMREVRPaAiVWKMkZvnAwGw3GjatWqaNasGaZMmYLLly9/FseOHVO2S8iXH6PbYDAYERdEREREZF8s5/nMkCGDUnEaFH9/f+VE1m+//RbDhg3DtWvXlC5BU6dOVdZljlIJWyMn6Pbu3RuzZs3Cb7/9pkT16tWVOWIldK9evcKgQYMivZJOEnH6YxfSoIgl89/Kidvi4sWLyj5kSVrtysngIl26dJg+fTpSpUqlrEcVmQu5RYsWAbp4SScwc3J/JGScjKfQ8Tp9Euf1+VVds6NQ4fgw/Rcs77Mnce6dtmLikrEACgXfP5iIHABf6URERERERERERHbm+vXr2pJKKk5lPtOgTJw4UalElWSMyJcvn1KtKj/tQaZMmdCkSRMl5L54eHhg69atyjQ0utevX+Pq1avaWuhJBWNkz91K4c/FxUWZbkh+ivHjxytTFr1///5jdOvWDefOnUOKFCkwbdq0IFtPR6bMmTMrncB0q1evVpLAOmnlLSHjKLR8cOvcZbzW5ld1SVMQhdO6wPRfMLxxYd8hPPjYB9h0ndLlkSumtkpEDo2JVSIiIiIiIiIisll37wIbNgC7dgE+Zl0XozNJjErrW3OlS5fWloxJMumvv/7S1qC0DrVs9WtratasiTt37mhrxiSZLO2MJWLGVLMaf/75p/IzLF68eGFY3Sh69OihLZGtk0SkPI8y7ZDMx9u4cWP069cPhQoV+hjyWpL9R9rtZsuWTbumbTB/jUorY71dsZAW1Na+hiMi+eoYCV1f3Ln30PR/VezcBZDb9DYSbH7U5yb27r/x8XpwzYwv6hQM/npE5BCYWKUoYdSCkMFgMBgMRtQGERERka2RpOrs2cCRI8DOndL+FvD9eCQ7bIw+D0VEGDEaZ23IPIvSEvTt27farUGZR1La0RqN10MSTObJ2GrVqqFEiRKGY83Dkn65JHh69eoVYKwelozGWBNSlSvtfY22mYe0QZX5YtOnT6/8e0+fPjUcp4clozESgW1LliyZsk0X3FypoQlLRmOMwpLRmMDCnNF2ozBntD2wMGe03SjMGW03ihkzZijja9SooczR++uvv2LNmjUBYubMmUrVs9H1ozoqVqyI3LlzK/dBLFiwQLlcKrXlRALZbnkdo2jbtq12CypPT0/DcUGFXMec3KbROD3MGW03CnNG28M//OHl+R5qwaorMpjeR2MbjgsYfrd3YvelT2f6xC3eAs3yuRmODa+wZDTGKMwZbTcKc0bbIzKI7AETq0REREREREREZJOkY63fx1aLgBQvLl8efslVe/TkyRMsWbJEW1MNHjw4wFyMRqS6zdz333+vLYXOmzdvlArAiGb5ewclrPfJWnnz5g2QXD179qy2ZD1J/oZHZW1UOn36tLZku8xb5wpJwufMmTNABNdCOyolTZoUCRMm1NagzIss7t27pyRWZbs1LPfZ0aNHa0vWM7+O3Jbcpv1zRqzYblDTeU5IljI1PjVfDowPrqz/D2c+zsuaBV92a4T0wbYPJiJHwcQqERERERERERHZpESJtAUzkmz9+29JMGoXRCOSJOrevbu2BiWZKnNCxooVS7skfF26dElbijoy1+njx4+1NduQP39+lC1bVlsDTpw4gW3btmlr1tmzZw8mTJigrdknmfPTXshzZK9+/PFHbUlN4q9YsUI54cD88uDIPluuXDltTW11bZl0DoqMlevo5LbkNu2fVKAn/pgkcY0RfFoVL/di/j/nodarxkDWr35Bt+JxlDUiih6YWKUoY1Tqz2AwGAwGI+qCiIiIyNbIcXuj5KpUrk6bJsmpgBWtIWH0eSiiwojRuKDi+fPnSutdDw8P5fqSVJV5IytXrmw43jIsBddi19vbG39LBtuM5Rijy/QwZ7TdmhAXLlxQkpBG2y3j5cuXynWCa+uaIkUKZZyQxK2faSeyHCOVwcLycj0GDRqEOnXqKGOkxbLMX2s0zijevXunPLatW7c23C5hyWiMUVgyGmMUUv0oP3WW2y3j/v37OHz4sDb6E6OxlmHJaIxRWDIaYxRi0aJFuH37tuF2W4/48eOb3gfVN0LZV6W9cZw4cZTLjcYHFjKPbJkyZZTbuXz5MrZs2WI4zihkrFxHyG3IbRmN08OS0RijsGQ0JnzDDdkL5EF87Z9+++YN/A3H6eGJYzPGYvVd9Q+PW+52+K1XaSQwHBu+YclojGVYMhpjFJaMxkRUENkDJlaJiIiIiIiIiMgmxYgBtGwpSUTtAjPSDnj7dmDiRODAAcDLS9vggKRCrVOnTjh+/Lh2CTBq1KiPiT1rVK1aVVtSBVctOWbMGJw8eRKlSpXSLok6v/32m2ESz9JE2RlMsmbNqvwMTOfOnbUlNeEmSWZLU6dORc2aNbW1z0lSS54D3ZkzZ7B7925tLWh9+/ZVWgE3btxYuyTqdezYMUCr2H379mlLxtauXYubN29qa7ZL5lYV201vFs2bN1f2peBCTiqwJenSpUP9+vW1NSiPu6zL5SEh+6wk83Wy/+7atUtbC5yMMd/X5TbkthxFXPfqKJtEEnq+uHXlqlaJauzNiRkYseAypAtwjHS1MGR8TxSNq24jouiDiVUiIiIiIiIiIrJZyZMDbdsCCRJoF1iQIsXNm4H//Q/YtElaXGobbIR5MlQn7TyDS974+voqCVVpufnzzz/j1KlTyuVSLSbtf6tXr66sW0uqOM3nYV23bh0WL16srQW0Zs0a02O6GcOGDVMqMePGVTMH5skVmW9xwIAB2tonMvfqlStXtDXg7du3AdZDQ25D5pWVRK8Reaz69++PBw8eoG7dumjWrJm2xZgkNPPkyaOt4bPb3bFjh5IobdGihXaJManylOdXklzyfHbp0sW0D5p2wkDIY9O1a1elxfKcOXOQO3dubUtAUp0sFaE6WZbLghPa6+nM56idO3cuXr9+ra0FNH78eOX3/+OPP7RLVLKvSNJaqhsljMjjdP78eW1NFdjzas5yjNyGNQnQChUqIHv27MqyVCHPmzcv2ChatKiSVN+wYYNyPVsgr7UYcqaJifw0eu1Zo1KlSsr7h7yPSKW17I9B3U/ZJmNkrP7eI7cRlMh+jsMsYWW0aZYbbvDDw72bcOit6T1H22TO6/IifN9zOs68Nz0Haarjlxlj0ChzTG1rxJJ26OYnMshycC3S7e55ILIjTv4m2jJRhOvdu7fy4UvapbRr1067lIiIiKLaoUOHlANHFStWxIgRO3D2LFCgAJAvHxCH08UQERGRDXj/Xk2cWnFcGGnTAjlyAJJPSZ1au9Bk+vTpSuJHPvdIG92IYFmFKK1sjQ5KS2LP1TXw+fyk5ack94SLiwty5syphBxTCW21mCR0pQWtVFZKC1xJmP70008oWLCgsl0O1E+aNAnXr19XkqolS5ZUWpBKkk3mdJTkij5WfoeRI0ciuWS+TZo2bar89PLy+uxgflrTE6KPE+3btw+yGlQnCTH5HX/44QfcunVLSfhKcqdDhw7aCDV5OGXKFGW7JKF//fVXqx4fmRN13LhxuHjxonIf5f6mT59e2TZ48GDl37VshRwYSUCOGDFCqeyT+1+4cGH069dP26qSx0paAEtItbBRVW1LKc82kUTyuXPnlGWd7C96gluqbM2F9nqWpIr2wIEDyv2XtsryXEtCvoB8MTCRy+R3l39DXj9VqlRB3rx5lW1G9NaxQt8/fHx8Pu7XuiRJkiBDhgzKsiSpW7VqpSwvWLAA//77r7Isz6/ss+bymb6s6K+h5cuXKz+NSPtsec3LcxMS8rqTJKvc1+CqoCODPN7yOMhjFdI5fS3JPiv75M6dO03vre9RqFAh5eQEc3LyhCTZZA5n+Z4oc7oG9dqKyuc4zDw9ML1De/xx+B2yNhmDQmXzYXDtjHBTNr7F5fWTMGTkXBx66Ix0lbphxG+d4J7CRdkakfSuBJ6ensrjY04ez9ixYyvLcqKMzp6fBzn5wd3d3fR3OzXu3bunXUpke5hYpUjFxCoREZFtMk+sNm++Aw8eqJfLFCfZsqnzm+XKpbbjIyIiIopKV69KRaXMEapdEAw5SUymJyxSBDh6NOITq3p1XHiReVXlIHOjRo20S8JOql8lySpzNd69e1e7VKqDk6N79+7IkSMHihUrpl2qmj17tpKIEVJpKddNlSqVsi5Ccr/luJB5S9LAyG0OHz4cX375pbK+bNkyJekrlZE6eWzkOZXfSRKaISGJtn/++QenT58OkCyQys0GDRoEuH/WkISjJKKkutYyuSxJKZnbNaj2zdY+huYJSxHa6wXm6NGjygkBciKCVAHrJAH93XffIUuWLChdurRywoB5YlUqGcuXL6+t4WPSRlj7O3777bcfk9K///67sp9ZI7D7tnr1aixcuFB5Xr7++utgn1M56UC+G5nLlCmTss9lzJhRuyRqyD4qJ0JIEl9PnoWVvs8uXbrUMCkv1d+SdDWv8A5MVD3H4ebVaSwcNhD/W3MJb5ziIWOxkiiQyh/3z53AqSsvETd3ZTRt8y2+aVAAiSOpD2hoXtv2/DwwsUr2golVilTmiVU5O5GIiIhsw8GDB5UDjLVqtUaJEnO1SwOKGVNNrsoJ61myqElXIiIioqggBaBHjgAy7aa1CVaRMOEO9O5dOUITq0RkG6Str7SvlkprSZbLPLJShRoUqd6UkDl2//vvv4/JHanYkyQ8OTpfvLp2EE/uP8LO41fxyDMGkqXLhMy5i8G9cFqwmVPEYmKV7AUTqxSpmFglIiKyTXpitV27+ciY8dOZ5YGR6bmkTbAkWU3feYiIiIiixNu3wNatUnWlJluDEyvWJQwYkFP53COtX4nIMW3fvl2p9pbWy9KeW6o8g0uqWpJKziZNmijLUq26du1axOE8KUQRRhKrpUqVYmKVbF4kFa0TERERke1zQooUVbXloL15I8lYQLoFTZkC7NkDvHihbSQiIiKKQD4+MlcosHgx8L//qXOuWpNUFTFiPNKWiMiRSftfSarGixdPaZsb0qSqkPa30vJY3Lx5EytXrlSWiYgoemNilaKEk5MTg8FgMBgMG4v48VPD3/+D9tfaek+eyBnhwIQJMveWzMkEeHpqG4mIiIjCgfRbu34d+PdfmQsOWLECuHQJ8PPTBlghQwaZbzXgvJdE5Jh27dql/IwbN+5n8wVbK2bMmB8Tq0RERDomVomIiIhI8fr1PRw+3BodOgAlSsiBR21DCNy+DaxfD4wdCyxZorblk6oSIiIiotB48ADYvBkYN07mSwxZdaq5uHGB5s3lRO8QZGKJiIiIiCwwsUpEREREAaRNC9SsCXz/PdCypTqXqqurttFKUj1y8SKwfLlaVSJds86fBz6EvCCWiIiIopmXL4G9e4GpU4Hp04EDB+QEMG1jKNWpA8SOra2YGHXvYDAYjhM6aQd86tQpwzHBxQfTl5cjR45ot8T3DQYjMoLIHjCxSlHC6E2TwWAwGAxG1IYlZ9MnxezZgcaNgX79gIYNgaxZ5e+4NsBKUlVy5gywbJmaZJVkq8yLxiQrERER6d6+VacT+PtvYPx4YNs24FEopkM1mkZRThLLlUtbIaJoYfjw4YgdOzZev35t+v6xHL6+vtoW6126dOljS+Hy5cujQYMGyjIREUVvTKwSERERUbBixgQKFABatQL69AG++AJInVrbGAKSTJX2wDIv2pgxarJVkq6haelHRERE9k2qUA8fVpOpMo2ATCdw86a2MQSkElWmUKxaFbDMncSIoXbiIKLopXnz5sicOTOcnZ2xZMkSzJs3D/4yWbOVrl27hu7duyvLbm5u6NSpE+LHj6+sExFR9MbEKhERERGFSLx4QKlSwLffAt26AeXKAYkSaRtDQOZelfbA0iZYkqwyJ+vp04CXlzaAiIiIHM6rV8DBg8Ds2cD//gds3Bi6ZKpMU5AnjzpvqkxfULu2evKWpaDmjTfq4MFgMBwn1q1bh4EDByqv999++w2jRo3C9evXDceax+LFi9GmTRvcvn0b+fPnx+HDh+Hu7m44lsFghF8Q2Qsn/5CcqkMURr1798b48ePx66+/4ptvvtEuJSIioqh28OBBfPnll6hYsSJ27NihXRoyt26piVFp8/v+vXZhKEgLvyxZgLx5gZw5gVixtA1ERERkl168UJOeEnfvaheGUubMaheN3Lmliky70OTKFWDhQm1FI8nXXr2AuHG1C0ymT5+Ozp07o2XLlkqihYgcm4+Pj+n94QqGDBkCDw8PJEyYUIkff/zxswrUBQsWmN6nziktgLNly6YkV6tWrYrkyZNrI4goIj1+/BglS5ZE6tSpce/ePe1SItvDxCpFKiZWiYiIbFN4JFZ10oJPDm56eMi8RGGbS1XmeZUkq1SkyNxo0uqPiIiIbN+zZ5+SqffvaxeGUsqUajI1f34gsE6cMr2AdMIwJx02ZPoCc0ysEkVfW7duxZMnT5R5Uzdt2qRd+kmCBAkwYMAAZbl69epIkiSJskxEkYOJVbIXTKxSpGJilYiIyDaFZ2LVnCRVJckqB1UlyRqWuVQlyZopk5pklSqVwNr6ERERUdR4+lTtXCF/9x8+1C4MpQQJ1ESqJFRTpNAuDIRMLyDTCpifzCUdMKRaVaYwMGeeWB0+fLh2KREREUU1SayWKFGCiVWyeZxjlaKEUQ91BoPBYDAYURcRJUYMNQnauDHQr586D5ocIDVv3WctPz/g2jVg3Tpg7Fhg3jzg6FHg7VttABEREUW6x4+BnTuBP/8EJk8G5Pys0CZVJZlasiTQrp2aFK1aNfikqrhx4/MOGdIy2DKpSkREREQUVkysEhEREVGkkHnOZM7Uhg3VJGvLlkChQqGbQ1V6rly/DqxfryZZ//4bOHwYePNGG0BEREQRRhKnkkCdMkVNqO7apSZYQyNRIsDdHZCmVpJMrVEDyJBBTsjWBlhBumJYypFDWyAiIiIiCkdMrBIRERFRpJP2fNmzA/XrA337Al99BRQuHPo5VG/eBDZuBP74A5g9Gzh0CHj1SttIREREYSbzpG7bBkyaBEybBuzeDTx5om0MocSJgTJlgI4dge++k7kMgXTpQpZMNXfnjrZgJrjEqlEHDwaDwWAwGFEbRPaAiVWKMkZvnAwGg8FgMKIuoookWbNlA+rVU5OsX38NFC0a+jlUb98G/vsPGDcOmDULOHAAePlS20hERERWu3sX2LIFmDABmDED2LsXePZM2xhCSZMC5coBnToBPXuqbX7TpNE2hpHlyVRx4wIJE2orREREREThiIlVIiIiIrIZzqZPp1myAHXqqEnWNm2A4sVDP0eaVLBs3gyMHw/MnAns2wc8f65tJCIiogCk1b6coLRpk/q386+/gP37gRcvtAEhlDw5UKEC0KUL0L07ULkykCqVtjGcyO9sOd96/PjaAhERERFROGNilYiIiIhskhTRZsoE1KoF9OkDtG0LlCgR+oOl9+4BW7cCEyeqVTfSwlDaGhIREUVnkpjUW+pLtwdpqX/wYOi7PaRMCVSqBHTrBnTtClSsCKRIoW2MAPJ5wc1NW9H4+WkLREREREThzMnfRFsminC9e/fG+PHjMWTIEHTo0EG7lIiIiKLagQMH0KRJE1SsWBE7duzQLrVN8ulVKlHPnVMjrHOpSjWstCKWudikWtby4CwREZGj8fVVk6nnzwMXLgBv3mgbQil1aiBPHjWSJNEujET//gucPKmtmBQoADRsqK1YmD59Ojp37oyvvvoKI0aM0C4lIiKiqPb48WMUK1bM9LkiNe7JmdFENooVq0RERERkV6QyJX164IsvgF69gG++AdzdgUSJtAEhJAeT5WDssmXAmDHA3Llq20PTdzoiIiKHIRWoR48CixcDo0cD8+er66FNqqZNC1SrBnz3HfDtt0DZslGTVBVSIZszp3pyVPbsarcLIiIiIqKIwMQqEREREdktSbKmSwdUr64e2O3YEShTBkicWBsQQtI68MYNYMsW4M8/gQkTgA0bgMuXAR8fbRAREZEdsPybJnOmrl8PXLoEfPigDQoh8xObpAlV6dKhP7EpPCVIADRvDgwYALRsye4TRERERBRx2AqYIpV5K+COcuSTiIiIbIK0Am7cuLFdtAK21oMHaqvgs2eBZ8+0C8PA1VWd81VaBks1jC0cSCYiIjIn1adyMpDEtWuAl5e2IQwyZlRb/ObOHfp5zm2J3gq4VatWbAVMRERkQ6QVcNGiRdkKmGweK1aJiIiIyCGlSgVUrgz06AF07gyULw8kS6ZtDAWpWL1yRa1glUrWKVOAzZuB69fVueqIiIgim5wqf/s2sH27JAyBP/4A1qxR504NbVJVukHIiUTSTvf774G2bYESJRwjqUpEREREFFZMrBIRERGRw0uZUp1/rVs3NaR1cObMpg/DYfg0/OSJVPoC8+apc7PKHK0nToR+rjoiIiJrvHsHnD4NrFwJ/P47MHs2sGeP2qkhtCSZmiULUKcO0Lcv0KYNULw4EC+eNoCIiIiIiBRsBUyRSm8FPHToULYCJiIisiH79+93uFbA1pBqHmmVqLdNDK+kqFTL6i2D06ZVD1gTERGFhhy1uX//09+qu3e1DWEk85Bmzar+rcqZE4gdW9vg4MxbAY8cOVK7lIiIiKKatAIuUqQIWwGTzWPFKhERERFFW3JQWeaMq1dPbXfYqZNa2ZounTYglKRqaPduYNYstZpo1SrAwwPw9NQGEBERBeH9e3WO8NWr1fa+M2cCO3eGPamaIgVQpoza3veHH4CmTYFChaJPUpWIiIiIKKyYWCUiIiIi0kilqczF+s03QL9+QKNGQP78YTvgLMlUSapKcjW8WjYSEZHjefgQ2LsXmDNHbTG/YgVw6hTw9q02IBRixFCrUaXFb+/eQJcuQNWqQMaMYWuHT0REREQUXbEVMEUqvRXwsGHD2AqYiIjIhkgr4EaNGkW7VsDWkk/Md+58asMYXknR+PHVFowSMrddzJjaBiIicnje3gHb0b9+rW0Io6RJP/1tkQSqi4u2gRTmrYBHjRqlXUpERERRTVoBFy5cmK2Ayebx/EQiinq+z3F5/3qs3n4R4TS1HZFD8r17FP9t2otzD99rlxBRZJE5UtOnBypXVtsF9+kD1K0L5MoVtmSoHEQ/fhxYuhQYPVqtUpK89o0bgI+PNoiIiBzGkyfAgQPAvHnq+768/8vfgbAkVV1dgWzZgJo1gZ49ge7dgS++UE/YYVKViIiIiCh8sWKVIpV5xeq3336rXUrRlc+jI1j21ywsXLEJx+76IJn795i/rBcKs1qHyIAfHizvgXo/rsZNzzjI4l4Pbbr1QOtKmRBHG0EUFlKx2rBhQ1ashoKvL3DrFnDpklpx9PSptiGM5GC4zPWaOTOQKZO6zAPkRET25cUL9WQZPV6+1DaEUaJEn6pS5e+EJFfJOqxYJSIisk2sWCV7wYpVIooC3ri5fhDqV2qA3hO34E2Jvpi3xwOnVjOpShQ4Z6RqOgWHTx3A6jHNkOLCYvzaohKqd5mDEy/9tDFEFBUk2SkHtaU6SKqEpFpIqoakeigsiVBJ2N68CezcCfz9NyDHfufOBXbvVhO5sp2IiGyLJFJPngRWrwbGjwcmTAD+/VedKzUsSVWZD1X+1lSvDnTrBnz3HVCrlppYZVKViIiIiCjysGKVIhUrVgnwwfUlndHk+7W445sUZX+ci1k9iiMRT/MgChHvG6vQu1kPrLjhi0Ql+2L+/L4okVDbSBQKrFiNGB8+ANevf5o/L7wqlYQcSJf2xHpFa9q06oF3IiKKPBFVkSoSJFBP0pHkKefhDj96xerXX3/NilUiIiIbIhWrhQoVYsUq2TwmVilS6YnV3377jYnVaOrd8dFo0OgPnHznjLRNZuC/yfWQkgeBiULl7dERqNdwPDy8XJD+yxnYMLEuX08UapJYbdCgAROrEcz0PVFJsErb4Nu3Ab9wLDiPEQPIkEFNskqkScNEKxFReIvIRKrM5y3v43oyNWVKbQOFKyZWiYiIbBMTq2QveKiFiCKP7yXM+XUqTr4zLcd1R5d+tZkEIgqDuMW6oFfdlKY/5r64vXIYxu58pW0hIluVPDlQujTQti3www9A06YwfXEE4sXTBoSBVMdevQps2wbMmgWMHg0sXAjs2wfcvRu+SVwiougiolr76uLGVf8OyN8D+bsgfx/KlmVSlYiIiIjIVjGlQUSR5t2+vzD7iGRVgbilm6JhxjBMPEdEJolRpVEVpJC/5r43sGL6Ktxn4oTIbri5AXnyAPXrA99/r86ZV7s2kDeveqA9rLy9gStXgK1bgb/+AsaMARYtkupk4P59JlqJiIxEdCJVqlLTpQMqVQKkiZO8/8vfAfl7ECuWNogijZPpCWEwGAwGg2E7QWQPmFilKGP0xslw5PDCwX834a5yENcVuUu5I6mL0TgGgxGSiFuyLIrEVt5W8fbAWmx44G84jsEILijqJUsGFCsGNGkC9O0LdO0K1KqlHmyPE0cbFAZeXmob4i1bgBkzAOl+OHcusH27evn799pAIqJo5OnTiE+kyhzYZcoAX30FDBgAfPMNUL48kDq1up2IiIiIiOwHE6tEFDl8LuHw8cdQi2PckDpdKrBelSgcxEqLdCm0V5PXKRzSqsKJyP5J2+DixdX2kJJo7dIFqFkTyJULiK2dUBEW0jpY5gfcs0etZJXWwVOmAGvWACdOAE+eaAOJiByE+fve4sXA778DkydHfCK1QwegalV17tSYMbWBRERERERkl5hYJaLI4X0N1275qMtOsRA7Nt9+iMJHLLjF0Bb93+H2jQfw1VaJyHHIgfoUKYASJYBmzYB+/YDOnYEaNYCcOcOvfaQkUyWpKslVSbLq7YMlCSHJCElKEBHZi+fPgdOngQ0bgOnTgZEjP1XqX7oEvAuH89GYSLVfRh08GAwGg8FgRG0Q2QNmNihKGL1pMhw8vF7hpZe2A/h74b0X25UyGOESeIPXb/y1Fxfg6empHOH7bByDYUWQ/ZCnK2VKoGRJoHlz4IcfgE6dgC++AHLkUOdvDQ/yliJtgiUJIckISUpIG+GNG4EzZ8KnuouIKDz4+AC3bgH79gFLlgBjxwITJwL//AMcOQI8eGD6GvLpI1OoyfsvE6lERERERNEXE6tEFDlcXOGqLQLv8eDuI1bVEYUH70d4/Eptsi1ix4kDpseIoh850J8qFVCqFNCiBdC/P/Dtt0C1akD27OF3oF+SEvfvA4cPAytXqvMRSvJi4UJgxw7g4kXgzRttMBFRBJH3Ipkb1cNDPdFj5kz1xI85c4CtW9X3ordvtcFhxEQqERERERGZY2KViCJHrLRIk0x/y/HFxVOn4KmtEVHoeZ89hQv6i8kpHjJnS8P5i4lISQSkTg2ULg20bKkmWjt2VBMBkmgNr9bBQpIXV64Au3erVWJ//KGGzF+4a5da8Roe7TaJKHrSk6hSJb95M/D33+qc0DI36qpV6oke9+4Bfp/OMwsTJlKjF6MOHgwGg8FgMKIuiOyBk7+JtkwU4Xr37o3x48dj+PDh6CwTg1H04fcQc5oWRt+daj9gl6xdsHbvbyjJAxNEYeCLm3/WQ8lBB6FMe+haBD/v+Q99cjC1SiG3b98+1KtXDxUrVsQOKT0khybfAGQ+1du3P4UkLiJSggRqsiJNmk8RngleIrJ/8t4k86JKolRCKuQlvPQpRSKAq6v63pQuHZApE5AhA5Onjm769OnK8YjWrVtjjEwmTkRERDbh8ePHyJ8/P1KnTm36LGj6MEhko1ixSkSRwzmx6Q9jxo+VdL63PHDycTidVk4UbXnixLFz8NHWnJLlQf6MTKoSUfDkRODkyYEiRYD69YHu3dV5WqWNcNmyQMaMQIwY2uBw8uoVcP48sG0bMH++WnEm8x+uWKHOiSiVra9fa4OJyOFJEvXZM7USdcsWdR5neV+YNEltNX7gAHDjRvgnVRMmBPLlA2rWVCv5f/wRaNuWFalERERERGQdJlaJKJLERK4CuRFHW4PfPdy6paeDiChUfB/h5p130FtPuGbOiZzhnAghougjdmwgRw6gShU1ySDtLyXpUKMGkDevWnEa3qQy7exZdU7ERYuA//0PkOIhSbD89x9w4oRatebDjwxEdk2So7duAUePAuvXA7NnB0yi7t8fMUlUFxcgfXrA3R348kvg+++BXr2Axo2BEiXUynlnHhUhIiIiIqIQYCtgilR6K+ARI0awFXA05H1oEMrWmYIrvqYV59Ros/Q4xlVxUzeGlfcjeOzYgA2btmHXkQu4df8hnrz2Raxk6ZC7SGU06tgNbcqnA09Ajwai077gcwYjq1TG7x6ScXBCwiZzcH5GPbCzJoWGtAKuW7cuWwFTkKTqVG8dfOcO8OAB4Ct/1yOYVNgmSQKkTBkwEiXSBhCRTZD3A2kr/vAh8OiR+lNC3jsig5wAIi19JZkqkSqVmlwlMqe3Am7Tpg1bARMREdmQR6YPkGwFTPaA52YSUaRxjh8PcfU5yJ3c4BYrHCYk976HA7P7o1HJIqjYoh9mHPZHgab9MGHJZhw4uA0rxndHGWzHsMYV0XDMQbzUrkYOKDruC04xEetjhtgJ8eMnMP2fiCjiSNJCqlelirVDB+Cnn4BOnYC6dYGiRWH6Amz6ex8B3zDkVFBJ1pw7B0jef8kSYMIEYNQotfJNKuCkEk4q3t680a5ERBHqpenDlLTw3rsXWLUKmDoVGDFC/Snrcrlsj6ikqrTslbblUo3apImcxKtG06ZAqVLqvKlMqhIRERERUXhjxSpFKlasRm8+p4ejUtU/cFaK61xLYvChdeiZOfRHO95dXIFfuvTD3ydfwj9ebjQbMhFDWxdFMsub9HuCLf1q4qv5QPtVuzCq7MeGxOQgou++8BJLvsqLrhvfmZadkfrrJTg+oSrCqQ6cohlWrFJ4kYo1qVCTE4wl7t4FHj9Wk6ORxc30Rpgs2eeRODETLUQhIW24ZR5UObHhyZNPPyXCu21vUCSJKiduSOte/adUsUs1O1FIsWKViIjINrFilewFE6sUqcwTq126dNEupeji/YauyN9qMZ6Y3nWc07XHyqN/oGKoMkC+uLd+IFp2nY5Tr/zhlKgMBixZgL4lEwVahu97bQJqlRyKe61X4egfFZh4chjRfV/wwZlRVVBp9GnTEhDri8k4v+QrsDMmhcbevXuZWKUI8+GD2jZYT7ZKSGImskkSRpKrlgnX5MlN76Hso07RmFSVWiZP5eeLF9qASMQkKkU088Tq77//rl1KREREUU0Sq/ny5WNilWweWwETUSTxwdkjJ/BcOZXDGSkrVEPxUGW0/PBk569o2XmakkhDjKz4avJfQSbShEvSpEjk7I/Xr16CZ5M4Cu4LgCtyVK2ILFr1lffpQzj6Xl0mIrIlMWKo8x2WLAk0bAh06wb8+CPQtq3aVrhwYTV54uqqXSGCyCmlUn136RKwfz+wZo3aSnj0aECOrc+ZA6xeDezaBZw+rc4l+/q1dmUiO/f2rVpBfuYMsHMnsHKlJJjU9r3jxgHz5gEbNgCHDgFXr0ZOUlVv5yutexs1Arp3BwYMUN8bqlcH8ucHTB/dmFQlIiIiIiKbwcQqEUUOrxNYs/EyfGU5Ri40b1sZcZUNIeN9dhrat/8Tp5T505yRvtlvGFY7VbBvZt7nzuGqrwsyZ8+OGNpl1vJ6dhv3Xyq/OdmQqNgXbFHMwq3QqkRsZdnv4U5sOPhWWSYisnV6QkWSrfXqAR07qnO2SmJF5kgsXx7ImRNImFC7QgR79w64dQs4dUpNOv3zj5p0/d//gOHDgSlTgEWL1MTTgQPAhQtqy+PIbIdKFBRPT+D+feD8eXUflX1V9tk//1STp2PHAn/9pSZU5eQBSbBKJblUlEc0SYxKdbjM0VypEtC8OdCz56ck6hdfMIlKRERERET2ga2AKVLprYBHjhzJVsDRig8uz2yKaj/swAt/V2RqswA7xtVA4pCe2uFzFuPrfIHBB5VMGpwSVsbYXcvxTaZgJkvzvYl5raqg157c+G33anTVy/uC9RKn5w9Cj0ELcK3iX7j4dyNwdlYbEen7gm17s38QqjWYhPPeQHz3wdj0by/kialtJLKStAKuU6cOWwGTTZLkpSQxzePRI8Db9L5nC2LHVlsMSyRKpCaD48cHEiRQI25cJoso7CRxKhXUz5+r1aQS5su2kuSPFw9ImVKNFCnUn5JUjeiKdCJrmbcCHitnHBAJ3+e4fHAfzrzPjmpVcsL0VkZEIeF7F0c2n4FXhoIoljcVOMsGhYa0As6bNy9bAZPNY2KVIhUTq9GRD+5s+BEtv/0Lp984I3m5n7FocR8UD/G3FD88XNoWZTqvUeZoNb19IVnTuTg2sx6CLGR5eQYLfuqI/ovvo8iva7D8uwJBfrjz83qO21fO4viODVj9zz/YdOw+pLNqzJpTcX1xi1BV2VJ4i5x9wb68g8fUVmj083Y89ouNXG2mYsmYBsjEyYQpBJhYJXsj32IkmaQnWWVOSD0iowIvJCSpKolWPdlqnnQ1v0xaJlP0IycIyBynkjQNLN68MX2qlgnVbYjsr3ri1DyJKicaENkyJlbJnM/DI1j6119YuPw/HL3rg+Sl+2LB8t4ozBNViULE78EydKs7AKtveCJOVnfUb9MdPdtURiZWKFAIMLFK9oKJVYpUTKxGH+8fXcaZE/vx35JZmLXmNJ47JUfxdqMx9bdGyBaaZI/vJYyvWQ6DD2un4ptur9m845heN766bs7nJW6e2oNN/yzHouUbcepNetT7eRomdC6ORIFUyXofGoJqzWbg/Ku38PZzQbwMxVCtVEwcXLEH9/2YWLUpEbwv2K93uLjsJ3T6YT5OvvBDgly10bZtI1QtV1o5W5TfZSg4TKySI5EklXmiVQ9JUNmyWLE+JVqlyjWO6c1bwnxZX5exrIK1XVI9Ku2l9ZBqU5nj1DJhKmFrJwJYkgpsqTiVNr3mP2Vf5T5I9oiJVVJ54+a6oejcbxaOPo2FXA2/x8DvW6FqjkRwjL5GRFHhLW7t/wfTR43ArANPECt7Q/wyZQzaFk7I+QjJKkyskr1gYpUilZ5YHTVqFBOrjsznDEZWroBRp7TT6l3Tos7YlZjVLneoKwR9L/6OaqV/wzH9TH2XNHBvVAlZlLNI/eH7wRNvXjzFwwd3cfvaDTx4GwPJcxRDhRqN0KZjK5RPH3Q21+/RUazbcR1InBoZc+RD3kyJgBPDUK7qWJwz/Zsxa07DjSVMrNqCiN4X7J3X5UXo0qQnVt7QjtK6ZEOP/w7gtxI85ZqCJonV2rVrM7FKDk0qA40Srs+emf6+2Nl06pLQkspAo6Srvuxm+pNnGZKQdeaRLavJPiMhiVJJjponSi0Tp+bLfn7aDdgJ2TcsE6fyU4ItfMnR6InVtm3bMrEabfng2uJv0aj3GtzxTYpyPy/AnJ6OePItURTxvoGVvZqi27Lr8E1UCj8sXIh+JYPsMUakkMRqnjx5mFglm8fEKkUqJlajD5+Xt+BxeA+2rp6DGUuO4JFvXGRr+Cum/68jioV4clU/PJjZEAX67oQ+dVSsPPXx7RdZ1DNJnZzg4hoTseImQpLkqZAha07kyp0D6ROG7SiQDxOrNihq9gX78A4XlgzAt/3n49QLZ6Qo0RLdOzdHtZJ5kS1dIjCtSsFhYpWiM72tsCRYZc5Kfd5Kffm9zAvgQFxMfzQtE66BhSTVZLz8DMmyRESRpKUkwoMKaZurL8t48wSp+c/gLnMkMU0fBvR5gJMkCZhAlXlRiaILJlbp3fFRqN9gLE68c0bapn9h05R6SMWkKlH4ensUw+vWx7jTXnBJ/yX+2jgZdflCo2AwsUr2golVilRMrEZHvni0YxhatBmPoy+BBEX7YsnKgSiTWNtsFS/s6FMEjWbdgXryvyuKDNyHrf1yRWiLHiZWbVHU7Au27y2OjWuGJkP34JlfHORpPxPLxtZB+uj9oFAIMbFKFDhJrJonWs0Tr/JTknf0OUmy6tWx5i1jLdvHBrUuy5aJVDImc55K0tQ89ESqBOc+JVIxsRrN+V7C5PpVMfjgOyBuWQzfuRKdMvOLE1FEeL62C8p9sxwP/FyQqe1ibB9bGQm0bURGmFgle8HTRChSOZkdJZFlRnQIV6Ss/AvmDK2GxE7+eHXsf+g8aAOe+huNDSx88fDBEy2RZuKcHPkLZ4Gr4djwDO3fE6Zl4zGMyI2o2hdsO17tGoJOv0lSFYjvPgCzxtRFBlfjsQxGUCH0n0T0ibTPTZUKyJ0bKF0aqF0b+OoroHt34Oef5eRBoG1boEEDoFIloGhRIHt29TrSkje6kqpR8wpQPSRRbR7SOtc8zFvsyrykcpncRnRPqkoFsVSYZs2q7mNVqgBNmgAdOgB9+wI//QR07Qq0bAnUqqXuq7LPpk7NpCoRke7d3pmYddj0B8YkXpmmaJSRSVWiiJK4SiNUSSHpB1/cWDEVK+9/PJpDRGTXmFilSOWi9QTzkaMsFI24IGPLAWiX29W07Itbi4di8jEvdZNVPOH53uzDl0tW5MoVQ1uh6CWS9oU313Fw3VIsWb0dHg+N+wD6PL+Kg/+twqL5C7B87U6cfhDYPu2LF9cPY/M/izF//hKs3noMt16H45cJn/OYOfRvXJa3Ved0aPR9B+Rl318KhQ8f1Hl5XaXEjIisJuciJEgAZMwIFCwIlC8P1KmjJrc6dQL69QMGDgS++w5o315NhFWvDri7A3nzAhkyqNWEEdk6l2ybVJpKa17Zh/LlU/cN2UcaN1YT9j16qEnTAQOAbt2AVq3UfaxsWXUfSptWnVuXiELO8iQzhqOHFw6u3oS7ytcxV+QqVRpJXYzGMRiMcIm4pVC2qHZ215sDWLv+AfyNxjEYZkFkD5hYpUjlJqdZm8jBW6M3ToYDR6zCaFw3l+mri4nPRSyeuxPvjMYZRlwkiPcpeeYUPx0ypnAxGBf+8YnxdkZkR8TvCx8uL0C78tXR9c9VWDy8DcoVKIwGI3bgkVZl7fdwL6Z0rYYCxepjwLRV2LrjP8z59WuUz5sbZdpPw9GX+m354cmhmehVqxCK1u6LySs2Y8fmBfitfVUUzFMKrScdxPMQVW4bx4ej87HohJrUdU5RGXXKxTccx2AEF3piNaZMwkdE4UqSppI8TZ9eTYTpiTNJsrZrpyZdJfkqSVhJxko1bMOG6hhJnhUpAuTKpV5f5sNk9aHtk6890oZXkp7ZsgEFCgClSqlVplLZ/PXXanWpJEslaSrJU0miSjJVT7xLklWSrZJ0leQrERGFkc8lHDr+SOuAFAtp0qeK5lPKEEW0WEiXLoX2OvPCyYNHoNaLExHZNyZWKVIlk95VJtIvnaIbV+QsURTJlXcdPzzcuRlHrS5adUGqVMk/vmE5xYuPhDyBKZqK4H3B9wKmfTcYNxovxJ6Ny/DP0u9R/MNtbB/dEf3/eYTnh8ejSaUOWBuvNeYdOo1d/y7EnDkLsXHPcnTL+gIeK37E1wPW4ZnfW3jMaI2qrRfCp8F07PfYg7WL/sacBeuxb01f5Ht7AasHfY2+/z7+1NY4VHxwfutO3NBaI7rmLYKi0bjlJIWN/rc5efLkyk8iinzSNljaB+uJOEmuSSKubl2gWTO14lXaD//wAzBokNr+VZJzkpBr2lRtUSytiEuUAPLnB3LkUBNzcpuS5JPbZ2Ws9ZxMnzEkQSoVyfI1Jl069TEtVOjz50aeA3ku5DmR50YSpj17qm169UT5F1+oiXKpbM6SRd5v1dsnIqJI4n0NV29pHdSc3BA7Fg+LEkU0Nzf9xF1/vLtzHfc5Xz4ROQAnfxNtmSjCLVu2DM2aNUPDhg0xb9487VKKLnzOjkDFsiNxSr7HuJbG8BMb0DOTdUf3Xiz9Cnk7rMEr07JTyq+x7MyfqBFL3WYtv2e7Maz593jUczum1ImvXRo4nxNDUaby7zhn+n1j1pqOW0tbIvRd1rzx9NJJnHuRFPmKZEXicOy06fP8Gk6cuY/Y2QojX2prs2o+eH7tBM7cj41shfPB+qs9x7UTZ3A/djYUzpcaVufwvJ/i0slzeJE0H4pkTaxWLodSRO4LbzZ1Q4meHzD60AzUTSQXLEKzTJ2wwQuIV+wLFL57EUl/WobpbXNb3Hcv7OlbDHWm34BfvFr4dUhM/P2/d+i6dC66FoynjdF4H8Gg0tUw/qIv4nwxGWdWtEHo01jPMf/LnOi60dO07ISUXy/DmT9rIIQPB5FizJgxGDZsGH766ScMHz5cu5SIHJHMVWo+52lgIYXsMoOHhFzHctnoMvPliPqmKR3LJUEckpCKTynIl0RmUD/Nl1klSuSYpk+fjs6dO6Ndu3b4448/tEspWnj2N5rk6YPtymwv8VD/rwuY08jqb7VEFGJe2Pl9MTSZc1c5qdw1z/fYuvNnFODsMxQIOeE7V65cSJ06Ne7du6ddSmR7mFilSLV3716UK1cOpUqVwtatW7VLKbrwOSOJ1RE46WNaccmKbhuOYHSZmOrGYPg9XIAWRbpg/UvTW1bM8vj9zDp0SROCs0tfH8UfzRpjxL16mL95Amopk+cHzefEEJSp9DvOmn7fmLVm4PayUCZW/e7h3z6N0GXWGbySXz99LYxYNg+d84c1/eWHR5sHoWmHSTj2zPQRNVYm1B21FHM75EWQj6rfI2we1BQdJh2DerW6GLV0LjoEMzGn36PNGNS0AyYde2b6l2MhU91RWDo3+Pk8/e79iz6NumDWmVfwN/1m6WuNwLJ5nRHaux9x+8ILrGpXGP1jT8WpP2soiVMfj99QvtwonJZ91vTFu+iANVg/sIRpyZI39v5QDLX/vAZfOMMlbj70XLUJw8oYJPB9jmNw6coYe84HrgUGYM/ugcgf2i8VvucxupI7hh2XX9AZadqtgsekqnBTtxKFSO/evTFz5kxMnjwZ3WQSPyKiMJJvmpJk1ZfNma8HtixkXSpH9QSpM4uLiCiMmFiNxl4uQPOcPbFZSay6ouSQw1jXIxPbARNFmNdY3jovOq17o6y5FvsF+zf2Qja+6CgQTKySveDXUopUaWWSIZPbt28rPyl68Xv1Cq/1g2X+XnjvZXHkLAjOKRugY+P06heeD6ewe+cTq1uoet/aiEGNm2LkjbIYu/h3q5Kq4clrz1j8NFtNqgrv2xswqM80XNQONIaa936M7TtZTaqK9zew9peBWHAv6EfGe/9Y9J2sJlXF+xtr8cvABQj6at7YP7YvJitJVfEeN9b+goEL7gXzPHhhz9ifMFtJqgpv3N4wCH2mXURo736E7QvvD2LrHn+UqeKuVaP64dnRY7isJFWBeO4/YMoPRklV4Yk7dx5r98kNBb+bgp+Nkqri/XVcv6uOdEqUBEnDsjv6f4C3clBA+OHtm9fa40wUcnfu3FF+6n+riYjCShKiUl0qIdWf5qFXh+oVonrEihUwZD5Z+SnXYVKViIjCJFZapFHnJzLxxYVTJ03f5Igownifxcnz+qvMCfEyZUUaJlWJyAHwqylFqowZMyJ+/Pi4e/cunjx5ol1K0YXX7Vt4qGfTnGIhbpyQTI4ZD5V/Hokv05s+gfm/xNbps3HmY0IpEH5PcWLhD6hXuRUW+LfA3xvnol3uWNrGyPP2+nXct8j8eR5ZiX/Cmll9exVX7ljcxtsbuKLPGROIt1ev4POrXUHQV3uLq1fuWCRD3+LGlVsI5l/D9ev3LRKfnjiy8p8wJJYjaF+IkRtNBk9CvxoJtQve48iBU6b/mzhnQoufOiFfYNW53qdx9PRbZdE5dWP071Y40Ha83icP4cQbSX+6IF3eAkgWlr/ETnFNryNt2eTt3dt4aG2WmcjCyZMnlZ/58uVTfhIRERE5OicnJ0Z0iph5kT97DO3Z98ebU0dx9oPBOAaDES7h9+A4Tt7SD/64IEuuXIhlMI7BMA8ie8DEKkUqZ2dnFClSRFk+ceKE4Zsnw1HDF9cuX1eTVMIlLTJmimEwLvBwSdUA4xb9hqqpXOB57A+0770Ul999Pu7Dk3P4b8bP+KpcUVTtvwdpe/2LA/+NRN0Q/nsS5oy2WxOJSlVAUcsewj6XcfqMp+F4qyOhOyqXDFgV6ZKuHCrlczMer0VC98oIeDUXpCtXCfncjMerkRDulUsi4NXSoVylfHAzHK9HIpSqUPSzFso+l0/jjKfReOsiQvYF10yo8nU95IunrX84jb2HnyoVoM7pq6NhmXifX0cLv2v7ceiOZDSdkLhcTVRMZDxOXgcXdu2F8r3CKSlKVywSzOMXTLimQpaM8U3/qsr3kgc8vAzGMRjBxIMHD3D//n0kTpwY2bJl0/YoIiIiIiIH4pwYBQpkVLsfmfjeOo2Tj3hmKlFE8Tx+TJleS+GUDHnyf3r9ERHZMyZWKdIVK1ZM+Xn8+HHlJ0UTfk9x7Ojlj9WNLpmLoEgoeqDGL9ITy7Ytw8C6GXB/wTcoWaAM6rfqhB7f9UDn1k3whXtOZMxWAd3+OoMkTSZhz5n9mN2jHFJH4cT4Lrm74s8pnVE+a1LEjZcKBRv0Resifnj+5IU2IpRccqLLtJnoVTU7ksVLiDRFmmHU30NRNZAOtDqXnF0wbWYvVM2eDPESpkGRZqPw99CqAZOmn3FBzi7TMLNXVWRPFg8J0xRBs1F/Y2hw/5jperm7/okpncsja9K4iJeqIBr0bY0ifs/x5EXYvsBG9L7ge/sADt9QMqBILMnxQCcu9cPj/QdwQdm5Y6NoOb2VsAHfS9i46ZzyOnBKWBpVyoRq1l4zcVC0WF7od8n/xTmcuhJ0DTGRETnZSRQtWlT5SURERETkeGIiV4Hcn0789buHm8F0fCKi0PLFo5t38E6fr8g1C3Ll0ivGiYjsGxOrFOlKlCih/Dxw4IDyk6KJD2dw8rzer9UJiYuURN7A2qoGwy1TDfy45Dgun92O2T99CXdJEMZPgUxFqqJ57wlYf/YmrhxZg8l96iFvYlt4m3NDjqZ/YOPpW3j08Cr2L+yJ4kpSOeztLVwz1cXwf0/i5sN7uLxnNrqWSGzFG7srMtUdjn9P3sTDe5exZ3ZXlLDmcXLNhLrD/8XJmw9x7/IezO5aAlY9vG450PSPjTh96xEeXt2PhT2Lq/OKhkN3j4jcF14ePIRzynfsWChcplTgyVK8w8G9x9VqbNd8KFsuWaDPgc/51Vh3WkmrIlGl+qieWL089JyRqlgRZNJP+fS5ijNn1ZbERCGh/00uXry48pOIiIgoOjDq5MFw7HBLnx4p9O9P/p54b/oiZzQuNPH2+jbM/Lkd6lcpiXyZ0yJd1oIo06AnJu+8BS+D8YxoEm+vY9vMn9GufhWUzJcZadNlRcEyDdBz8k7ccuiOU8A7Ty/txWZ6ncVNg/QpXQzGMRgBg8gehOwoM1E4qFq1qtISeNeuXXjz5o3hGyjDAcPrHu4/1isUXZGrUCHEMRoXgoiXoRQadeiFHwePwKjhv+DH3l3QvllNFE0fDy4G40Mc2m+rMNoe2vB7jCfPXZA4WWLj7Q4efo+f4LlLYiRLHH4fqMN/X/DCkX3HoKQoXXPDvXSKwG/nw0nsO/JSaRnskqU0ymVyNR7n5IvTK1fDQ8mrJkf1Jl8gib7t1Sn8s3gv7vubj7cu3PIXQd6PWd/3uH/nAfwMxjEYQcXatWuVPahGjRrKTyIiIiIiR+QcLx7i6V/2ndzg5hb2g/h+z49iRufyyF+iCfrPP4dElbpi1MJN2LpqInqUfIa/29RAmxln8M73PjYNqo086dIgd4OJOKWfe06Oye85js7ojPL5S6BJ//k4l6gSuo5aiE1bV2Fij5J49ncb1GgzA2fe+eL+pkGonScd0uRugIkOs2M4wS3WpwpVp3jxkZA5MyJyEEysUqRLkiQJypcvjw8fPmDz5s3apeTwfH0+tgGWCsAUaQKv6nN4nudx7mYm5M0dS7sgevE8fw43M+WFTd9979PYe+gR5FQA57QlUCZr4LOA+Glodw4AAEY4SURBVF7Zi4O3tZbBRUshf2CV2F6HsHTlBeV14Jy2DlpUT6ReDl/cXPAjuo79D3c+vUisFyM5kif89Gry/eCjJHmJrHXp0iVcvnwZyZIlQ5kyZbRLiYiIiIgckI/ZsQmnlEiTNiwzPvrh2YEJaFWpDn5YchofcrfHnF27MW9QW9Qtkx+5C1VEi5/mY92Uyrg0tDvGTBuJflP24d6bd7i/bzP2c35Xh+X37AAmtKqEOj8swekPudF+zi7snjcIbeuWQf7chVCxxU+Yv24KKl8aiu5jpmFkvynYd+8N3t3fh8371WMR9s8FKVKnxMdDJL6+ZscFiYjsGxOrFCXq16+v/FyzZo3yk6KBOImQKLa27OSGWDGj79vP+8M7cThWMZTOFYUTv0aZ9zi88zBiFSsNW777vnf348BVNVmasHhZFA5qftV9B7SWwbFRpExJBJYv9jq0Emuvy226IEvDr1BRn9jH5wIWLT6KzA2/RJHQtMd2iocE8T+eco34CRPxjzuFyLp165SfderUgYtLWA4sERERERHZNp+7d/FAvpaZOKfKi4JpQvv51w/P941C8xaDseHGe8TK2RbTlv6OBlksvxE6I3XtIRhY9S4m/7oQt7SMmXOa3MibnN/cHJHf830Y1bwFBm+4gfexcqLttKX4vUGWz44VOKeujSEDq+Lu5F+x8NOOgdx5kzvMd/p4+fMju3bsx+/5QzzwVJeJiOwd/4JTlGjYsOHH1oPPnj37rCUhwwEjRk7kyKx9mvJ/D8/3/sbjbCj8vb3gpZf+eZmWDcaEPN5gx7JNQPX6cI9luS0axJsdUO++O2IZbbeReLlvHzw+yBPvhsLlSiOewRg13mH/vuNQZg1xzYPSZZMH2jL4w63beKCUwKZAmcpF4aZc7odbS4bhrwe18X2nAohhcR2rAp54+07bUZ2SInO2wH8HBsMyxN9//638bNy4sfKTiIiIKDow+mzEcPTwxdkjJ/Bc+frkjJQVv0CJUH4v9zwxEV+3+h2HX5huLFYh9PxzNOqmDWRaGJfkqNWyBpL7aRld7QTeotHxmICjh+cJTPy6FX4//AL+iIVCPf/E6Lpp4Wo01skFyWu1RI3kfvi4ZyQsjrJFYxmMtc+IkbM6KmbRTl7wPo3DR70MxzEY5kFkD5hYpSiRMWNGpTLm/fv3mDlzpnYpOTTX7ChTIo32pvMe927d/fjB0Sb4PYTHzi3YvOk/bFz3DxbP+h39fl0GpcDQxHv/JHT7dTLmLf8X6zduwubN23Dw2ht1Ywj4nJ+J/61JiGZtK0AvWIw+fHB+5v+wJmEztK1gy/f+HQ7sPvJxftUyZYM4W9TrOPYclC9MgEtGd5TNHPjZzrELF0U+pfI1JmIr1du+uL9tGL75xQNVfh+JxilD+Sf55VVce6id3Rq3CNyLRc8W0xQ6GzduxJUrV5A5c2bUqlVLu5SIiIiIyAF5ncCaDZfVYxExcqFFu8qh+17+ej9G9RiJvUqGNibydBqNXsF8D4uVOw/0/JJMj1S0rDviaGvkKF5j/6geGLn3uXKMIGaeThjdq1igXa0UsXIjz6cdA7GKloW7I+0YMQvj669LQDkE4vcQOzccUI+1EBHZOSZWKcr07t1b+Tl9+nR4e3PGfsfnhtJN6iKT8nnRB2f27MZjW5o0wvsA/teqCb5s0QptO3RDvyFTsOaqE1Knz4AMGdIjXeLXODR3DH76rhPat26BL5s0Rp9FN0I2P4TfXSwZMhHXq/dHt1D1fLVvfneXYMjE66jev1voWt5GGk88f+GpfBGKW7wR6ucIomexz3O8fCMj3ZDHtE8UD+J+uebrgQkjGyFH3DtY3KsB6lUpDPdOO5Bv9FpMbqSfdBBybw7sxXGlZNYJCSs2QI2kysVEVpk4caLys2fPnnB25sdCIiIiInJUPrg8dwTmXZK0qisytfwVPUL1xfQFdg7riT/PKF/C4JS4Or7rXiLYBO2HSxc/nrgt3Y7cyyQL/UFZr2e4ff+lbZ2sTnixcxh6/nlG7WjllBjVv+uOEsHvGLj4acdAHvcySOZQX8tckL39L+iQW15rfri1fDRmnuMxYCKyf07+JtoyUaQrXLgwTp48iVmzZuGrr77SLiWH5XsVU+qUwvc7XgNxymDkgc3onTPwCj/H8h4eExuh1rh4GL5jMVqrGebo470HJjaqhXHxhmPH4tZagt12+T47j12HnyFT2TLIEk+70JAfXl7egwP3UqNUuRxIZMUXIO+H53Do6AU8cU2HQqWKIXPCMHxr8nuIhc0Lo8OaZ/B3zYau6w/hfzZdDUy25PTp0yhRogTix4+Pu3fvKj+JiIiIHJ2c3N25c2e0b98e48eP1y4lx+aDO+sHoHnHmTj9xhnJyw3E4qXfo0SQ3/WMeZ8eiapVRuKkdnJrypaLcHxabQT9SdoHx4eWRdWx55STs12y9cDGg8NRKhR53Zen5+HnbgOx4FpFzLo8D41Z9mobvE9jZNUqGKnuGHBK2RKLjk9D7WC+YvkcH4qyVcfinLpjoMfGgxgemh3Dxr3z+BNfNfgJ2x77IXauNpi2dCwaZlZaehEF8OjRI2TLlg2pU6fGvXv3tEuJbA9LEyhK6VWresUMOTiXrOgwpj/KJHAyfao6gEmDl0Kfn9+x+eHBuj5oOfwBGk+dhFbRLanq9wDr+rTE8AeNMXVSK5tPqgqXJLlRuUZwSVXhjITZK6BGBeuSqiJmyjwoV7sRGn5RImxJVZMXu8bg943P4A9XZGk1CgPKMalK1tP/9nbs2JFJVSIiIiJyOO8fXcKR/+ZiWNuKKNtqBk6/T4YS3/6F/1aFLqkKPMeGibNwSs2dAU7JUaVuxWCSqiZ+d7F//2Wt45UTkpYqgwLW5s78vPDs5lnsXTUJP35dGSWqdse8Uy9MF3vDi6UyNuP5homY9WnHQPIqdVEx+B0Dd/fvx2WtFZpT0lIoY/WOYV/i5O+KhRumo12hRPC+MBdty5VDy0FTsXL3WTx4pw0iIrIjTKxSlGrevDlSpUqFU6dOYenSpdql5Mjc8vfG7KlfI7ubH+6t7o3WQ3bhkcMnV/3h7Z8dHReuwx81Uka/N15/b/hn74iF6/5AjdDOI0qfeXd2Fjp3no4LH5yRtMJgzBtbByn48JKV5O/ukiVLlPa/0gaYiIiIiMih+JzB/xqXQpUve+D3VafxzCkt6vyxDuvGNkb2UBbK+d3/B/M2PFKmjRFOCUujahkrTm59sQ/7PD5oK3FRrEzJ4OdX9T6IweUyInWKlMiU3x11u0/HUZesyJaYX/psjt99/DNvAx592jFQumoZK+bvfYF9+zzwcc8oVgYlHbgCOU7OZpiwZSsmN84E11cXsG5Cf7SrUxa1RxzSRhAR2Q/+NaYoFTNmTIwcOVJZ7tWrFx48eAAnJyeGQ4crMjWZio3Lf0aV1O9wcHQ9VGg6BEuP3Ie34XhHCFdkrNcH31VLC1fD7Q4erhlRr893qJbW1Xg7I0Th/+oyNk/pgmrVe2D17bgo0HYatvzTD8XjG49nMCzjw4cP+Oabb+Dj44MePXogY8aMyt9hIiIioujE6HMSw4EiRn70X38Ku1dOxaCvSyAF7mJdr8oo03YGjr3wN75OkOGPxxvXYv8bbQcyiVOyKiomNBobMLyO7Mext9qVYhRA2bKJDccFiBhZUbffGEyavQwb9nrgxu2z2DqrG0qZJVYNr8eI9PB/vBFrA+4YqFoxoeHYAOF1BPs/7RgoULYsEhuNc5DwvLAEPatWRbeVN+CfoiTaDPsbGw+dwfZfSxmOZ0TfILIHTKxSlGvbti1q166N58+fo2vXrtql5Nhckf6LX7DuxEEsHNgAKc9ORvty2ZHBfQgOcA57okD44d6ClsiatgDqD9qCGJW/x5+bj2Hf9DbIyw7AFALDhw/HmTNnkCNHjo8nNxERERERORrXhBlQuHor/PDnZhxY1QfFE7zD5VX9UL/RcOx9rg2y2lsc2HMcntqaJMIKVayIpMEeWfWGx75DeKx16nLJWhLuaayYH8c5BYrVb46m9b9AuYKZkMhVu5xsztsDe3D8046BGIUqomLwOwa8Pfbh0KcdAyXd08BRJ456e+x/aFKzM/4+9QKx8nyDeTs3YXKvxiibJx0SOWb3YyJycEyskk2YOXMmEidOjA0bNmDevHnapeTonBPlQ5NB87Dr4h1cPbEFi8e1QkF+oCIKhDNSVfsBfy7dglPXLmHXgt/wTbn04EuGQuLYsWMYM2aMchbo33//jdixY2tbiIiIiGzLwzPAHg9JSxGFlQtSVPoFc4ZWQ2Inf7w6+gc6/bzuY7LTKj5X4HHh9cc2wHDJguIlUwd/YNX3NvYeuApfZcUJSYqURB5+iXMgPrjicQGvP+0YyFK8JFIHv2Pg9t4DuKruGHBKUgQlHXXHeLkTv3Ychj1PTS+4+KUxYPYY1E3vqClkCi+sXCVbx8Qq2YTUqVNj8uTJyvL333+Pu3fvfiz/Z0SHiI00ecugins2xDXczmAwJFxSFUatOuWRKwnbKjNCHt7e3koLYD8/P/Tr1w/u7u7K310iIiIim/IeOL0e+HslsHMv8CQkyS8ryBzzQj4TGX1mYjhquCJTq5/QPo+Ufvri1uJhmHLc22BcIOF7F7cfaFkwE6f4+VEkr5vxWPN4vh/7z/ho14qNQu7FEdtonJUBs1yD0XZGZIcv7t5+oCXOTZziI3+RvHAzHGsez7F//xl83DMKuaN4bKNx9h6+OD9zCP6+LPfUGeka98W3+ax43TCibcjfZqH/rSayVdxDyWa0bNkSjRo1wqtXr9CpUyftUiIiIgoPv/76K86fP4+8efNi6NCh2qVEREREUcwfeP8KuH0J2LMBmDYJ+Oeokl+Fv2nbx0KwcOLqqvZUlfnmKZpxK4TGdXJB2QN8LmDRnB3QZ7gMlt87vPP8tDe6ZMuHvLG0lSC8PbQXx99pK655UKZ0sgAHY98dmY7+E3bjhbZO9sYP7955mlUyZ0M+63YM7P20YyBPmdJIFnDHwPT+E7DbcMd4g+sH1mLJ4n+wzeOhcVW/z3NcPfgfVi6ajwXL1mDH6Qfw0jZZ8n1xHYc3r8Li+fOx+J+tOHbrtelehRPvI5i/8IT6bzunQOU6ZRFP2UBkTP/brP+tJrJVTKySTZk2bRqSJUuGLVu2cN43IiKicLJmzRqMGzcOLi4umDt3Ltzc3LQtRERERFHED9gxA/jtN2D0OGD2UuDEQyBLNmmmGXESJkyo/Hzxgqms6McVOUsWRXLlaKgfHu7cjCOBZZssOcdDvLifykXjZsyC4LuZeuPU3sN4qmXdXDKVRtnM5ld6j31z/8DCIw/MC1HJrjgjXry4n56/uBmRxYo2t96n9uLwpx0DpctmDvC+937fXPyx8AgeWO4Y3pcwv21ZVO3yJ1Yu/g2ty+RDwXq/YdtDLRXq+wC7J3VGlXxFUfcH05gt27Fhzi9oVTY3crq3w59HPr3v+T46iBk9a6BAkZroM2k5Nm3/DwuGtUXl/LlQotUEHHgW9vSqz/kt2HFDq+d1zYuiReOoy0SB0P82J0iQQPlJZKuYWCWbkjx5csyaNUsp95fKGn0eOAaDwWAwGKGLdevWoXnz5vD391cqVYsWLar91SUiIiKKQk5A9jJA7fpAizZArx+Anu2AStkjNrEqUxGJ+/fvKz8penFJkxYptKOhfvfO4NT9T+19g+SaDulT6numMxImSRL8fupzAdt23vg0v2oxd+Q3n0bT+wS2732B/O6lEF+7KDJ5P72Ew3sO4+rzcK7e9nmOa0d2Y5/Hfeg1mdbweX4NR3bvg8f9EF0Lz68dwe59HgjR1eCNp5cOY8/hqwjb3XdFuvQpP+4LzgmTIEnwOwYubNsJPd/olKQY3APuGDixfS9e5HdHqQA7hi8uTP0Ov15vjEV7N2L5P8vQt/gH3N4+Gh37r8LD54cxvnFFdFgbH23mH4TH7jVYNGcOFm3cixXds+GFx3L82Ko/1j3zw1uPGfi66tdY4NMAM/afwd61i/H3nIVYv38t+uZ7iwurB6FV39Uhm4fYwOvTHriqPb5OidMgbVTs6GRX9L/NadKkUX4S2SomVsnm1KtXD/PmzVMOBg8cOBCjR4/WthAREVFIrF27Fl9++aXSTmfAgAH46aeftC1EREREUcwJSJcXKFwAyJEJSBhJDTX0g7Vy8NbyhDRGdAizg6H+D3HvnpVz7cbIhZJFk2vX9Yen5zvTPmww7mP44day0Zh3Ts/axUDeEsURx2yM74Xt2HUnFypWSQcXs8uDDO3WFEbbrQp/3F/TCxXyF0XlmpVRMGt+fDndA16GY0MW/o83Y2CVgihUqRa+cM+PEi1m4dwH47Gfwh+PNw9ElYKFUKnWF3DPXwItZp3DB8OxZuH/GJsHVkHBQpVQ6wt35C/RArPOfTAeax7+97GmVwXkL1oZNSsXRNb8X2K6h5fx2GAjBnJ9rII27RmennhnepaMx6rhd2sZRs8793F+1Rh5S6B4HLMxvhewfdcd5KpYBelczC5/uxWTpl1F1X49USq+ad01FVImlSyuPx79NxndvvoKf8UbgH//HYs2JVLCVb+eU3wUrVkB6Uy/o+/dfzFv9l/o1PwPeHVegY1Tu6Bs6hif/o3Y+UyPSVa4SEX3ukXY8Ey/jdCE6TbuPcQH9W7CySUGXJ2NxjEYn4KJVbIXTKySTfrK9GFg/vz5yhsqk6tEREQhZ5lUZYt9IiIiok8Vqw8fPlQ6elD04vfqFV7pT7u/F957WbsPxEK5ZvWQUalG9MeLWzfxJNBqPj883PwjmvdZj8d6JtQpAdKkTWx2INYbR5eswKVcNVA7e7AljuHLaw9+/3E2PPQHwvs2Ngzsg6kXrazeDZQ39v/eF5OOPdPm6HyPG2sHYeCCe9p6ILz34/e+k3BMbz37/gbWDhqIBfeCLpf03v87+k46hk9XW4tBAxcgmKuZ7v7v+HG2x8f9wPv2BgzsMxWhvfuxyjVDPXXHgP+LW7gZ+I4Bv4eb8WPzPlj/acdAgjRpkdjsCL330SVYcSkXatTOHqAq+sXmJdjgUw2NqiRSL/C5hut3tV/6zVHsfdsWc6a3Qx6DbrtOzs5wVv7JN/hv2CBcbzwHc7sVMpjv1Bkuri5qAt/7Pu48CEs5rz+8P+hpVdN9f/sab/iWS8F48OCB8pOJVbJ1TKySzbJMrrItMIPBYDAY1gWTqkRERI7PywvYtAk4dEi7gKwSM2ZMZMiQQfmcdOXKFe1Sii68bt/CQz2B5hQLceMEqAENUpyy3dG7ShIl6fTh+EZsuGOUQPPF/S2/oFm7JUjQez4Gl9eyXE4x4Bbz07/l93Qj/lp+D0WbNUceV+3CyPL2Gm7ct/jdPY9g5aqL2kpovcWVq3e01se6t7h++dbH6kxDb6/g6h2LrObb67h8K+ik3tsrV/H51S4jmKuZ7v4NfH73V2JVaDOrccqie+8qSKLuGNi44Y5hItn3/hb80qwdliTojfmDy0PdM5wQwy2mmsgUfk+x8a/luFe0GZoH2DHe48DWPfAvUwWltV3K79lRHLuk3dl47vjhzx9Q4vNMqcLzzh081u6eW8HvMOXnMoG0n36P69fuqs+hU0IkSRqW1IET4sWJrS2bvL2L2/pcsESBOH/+vPIza9asyk8iW8XEKtk08+Tqzz//jMGDB8PPj3+EiYiIArN48WImVYmIiKIBSaoePAjs2KFdQFbT55w/ceLEZyeoMRw5fHHt0nW8V559E5e0yJjRrA1qcOGaFe0mjEPzrDGBNzsxdsBCXPH+tN3/1UWsHlwP5VsuQ9IfVmBZ//po3+drZJP8mN8TnPW4BT8Z638P//T9AavitsZP7bOZtWwNLtRfW2W03cpI5I4KReNqt6PzwWWPM8bjrY6EKF2pZMCEnUs6lK+cD26G47VIWBqVSgZM87mkK4/K+dyMx2uRsHQlBLyaC9KVr4x8bsbj9UjkXgGf3/3L8DjjaTg++HBF1nYTMK55VsTEG+wcOwALr3h/2u7/ChdXD0a98i2xLOkPWLGsP+q374Ov1R0DT8564JafjPXHvX/64odVcdH6p/am/Ua/fYmYyNt0CCb3r4lE2mVeRw7ipLIzOyNTy4Hokj+wx+sDPI6exltlaBo0GdADRWIbjTPFh1M4dOINpLDUJV0+FEzuYjzOqnBFqiwZEV/fb30v4fTp0LZcZkSXOHbsmLK7FCtWTPlJZKuc/Nn3hOzAwoUL8fXXXyttetzd3TFnzhxkz55d20pERERPnz5Ft27dsHz5cmU9spKqQ4ZoC8Fo0QLIkUNbiQCXLklSWVsJxq+/agtR7MgRbcHk7Vtg1y5txaR7dyBpUm0lkknHLg8PYONGIF48oGJFoGBBbaONCY/HMDT31/zfFVu2qLcjSpUCvvhCXSaVPe1TFLm4b4TenTvArFnaisnPPwOukV31FkE+nAHGrgS8TctOyYFvOgNpw7ksQD4jydzz3U1/LKQ7FkUTfg/xV4Pc6LlVTa265OyNrYeGo2RMZdVqPjc3YESvvpiw6RZiZiuHqqUzIeaLKziy6wieZWqIfqNHoHv51Fob13c4O6cbvvphKS475UC1+iUR5/J2bL2TD4NWLECPQpYZviD4HMdg94oYc9YHiFkbM+8ux1chuLo5r0vL8VPPoVh27CFiZKuGVgVv4c/rzfBkk+kDVFj43MCaX3pi0IKDeOSWEzV6jcX/upQM0OrWiM+NNfil5yAsOPgIbjlroNfY/6FLSfPWyUZ8cGPNL+g5aAEOPnJDzhq9MPZ/XVAyuH8MXri0/Cf0HLoMxx7GQLZqrVDw1p+43uwENnVPr40JBZ+b2DCiF/pO2IRbMbOhXNXSyBTzBa4c2YUjzzKhYb/RGNG9PFJr/X3fnZ2Dbl/9gKWXnZCjWn2UjHMZ27feQb5BK7CgRyEE/dR640D/Yqg+6Qp8nTOi0/qTGFchkImqfc9jVIWSGHrcB05Jv8SC83+jYSCVrT6nhqFsuZE47eOEFF8twdmZdYP5PYLmd2sSauTvj73K52RXFPxxL/YMKmBaIvrc8+fPkTZtWsSNGxcvX76Ei0skt0knCgEmVslubN26Fe3bt8ft27cRO3ZsjBgxAj169FDOZiEiIorO1qxZg06dOuHRo0eIFy8exo0bhw4dOmhbI9bMmdqCRtoSPn2qrZjJmxdo0kRbiQArVgBnz2orZiSx5mZxjKFjR20higWVlI7KxKpeAaWTj1o1awLFi2sX2JDweAxDc3+D+neZWP2cPe1TFLm4b4SOHMWRv7/372sXmHz3HZBIm3bP3kVGYnXLli2oXr266T27FLZv365dSg7Paxt65KuPWXelE5oTkrVYjPOz6oUyceSNRx5bsWHbCVy9/xK+8dIhf/naqFMuK+Ib7K9edw9j05aDOH31KVzTFkXtZnWQP9gEoIVwTKxaejq7PnIvrYZHYU2s2qWnmF0/N5ZWO45N3dNpl4We9yMPbN2wDSeu3sdL33hIl788atcph6zGOwYOb9qCg6ev4qlrWhSt3Qx18geXUDbxvYr/VS2MgYckWdoMC87PCTRZ6vfgLzTI2xNbPYE41Sfj7Kr2SGn4D/ji3KiKKDX0GHycEqHh7LNY2Cyxti2UvA9iQPFqmHhZ7UMcr94sXF7SAgmVNaKA5Nh/vXr1UKZMGezdu1e7lMg2hfAvOFHUqVq1Kjw8PNCuXTt4enqid+/eqFKlCq5fv66NICIiil5evHiBtm3bomHDhkpStXLlyjhz5kykJVWFJCnNo00bIHVqtTo1VixtkMm9e8YJ1/Agt/v4MZA7t3aBRn4P+X0sf0db0aiRGlKh5WxDn8pNu1UAcgD/1SttxcaEx2MYmvur/7t16gA8kTp49rRPUeTivhE6x48HTKqK16+1BbKKJFRjxIiBI0eOKBUylq0IGQ4aXvdw77E+vZQrchcuhDhG46wKN6QsUBvteg/Eb2N+x8hfvkPLitmQwMVorBNipSuJ+u2+w6DfhuLHLvVRIEkoW6xqv73CaHuows/0Wfo5XBInM9gWDcLvMR4/d0HiZImNt4cw3FIWQO12vTHwtzH4feQv+K5lRWRLEMjzHSsdStZvh+8G/YahP3ZB/QJJ4GI0zjJeHcShc+r8qrEKl0XpuAZjtPA8uA/HlSJtV+QvVx7JA9lHnXwvYPXaU8p8uE6JKqP+F0mMx4Uk3PKjSF5tUliT9/du44HS9pjB+Dw2yRl3JuXLl1d+EtkyJlbJriRMmBCzZ8/GunXrkCpVKuzatQsFCxbEtGnT4Ovra/imzGAwGAyGI4b8LcyfP78yF3mcOHEwefJk5QzPjBkzan81o0b8+GrFjOnPNMy79j9/Dpw5o62EM7ndJEmANGm0CzTye8jvY6tMT58SFSoA1appF4bRnj3AokXaSjQQEY+hNfR/V6boa9nScdpvGolu+xTZr+iyr3p6Atu2aStm3rzRFsgq8U0fEOSENDmOsGHDBu1Scni+PkrSSBULKVIn54FRhSfOn7+JTPnyaOvRjOd5nL+ZCfnymJ0VauPeH96Lo8qkqa7I7V4ayQPdkb1xfO9hvPQ3LbpkQelyGbUW1Z/zObUC/3goaVUk/6IJvvhYrPoSJ1ctxO57+kkJIREDKZIn+vQ68/0AH/ldiAysXbtW+Vm/fn3lJ5Et4+cHsku1a9fG2bNn0bJlS7x9+1aZUy5z5swYPXq0crYpERGRI/Ly8lJOMCpQoIDyZePevXsoW7YsTp8+rfwtlISrLZH2v+YiMrFq+W/ZG1uaOr50aTVRLbuTVGOmTKkmEG1daB/DsN7fLFkcO7EaHux1n6KIx30j5CSpKslVS6xYDbkGDRooP+VkNYom4iRC4tjaspMbYrnxsKji/WHsOBQbxUrn0i6IXt4f3oFDsYuhdC57+UDnjdN7D+GR5Dmd06JE2ayBJkvhewV7D96GNOJ1SlwMpfIHNqGwFw4uWYELkld1Toc6LapD7y7ve3MBBnQZi013Pp2WYD0nxEsY72OltVP8REjIlx0ZkC6Vt27dQpo0aVCiRAntUiLbxbcysltJTN/AFy5ciFWrViFfvny4e/cufvzxR6RPn145uHz58mVtJBERkX2TNr+DBw9GhgwZlDa/0u43Xbp0mDhxotK9IWvWrNpI2yKteOUguU4O+l69qq2EE7k9mUPV9HBQODF9lEKPHuo8ofXqAZ07O868fUai2/2NCnyMKTDcN0JG2uofOwZkzqxdYIYVqyGnV8Rs3rwZL1++hGV3EIYDRoycyJFZS575v8e79/7G42w4zBltD0282bEMm5yqo757LMPtjh1vsGPZJjhVrw/3WJbbbDT87mL/gatqsjRhCZQrEvjz5v9kHw5qLYNjFymDUrGNxzl5H8KqddeV23TJ0hCtKsXTtvni4qJFOJq5EZoVdQt4HasCePfWE2qRqhOSZsmGFIG1ImZE61ixYoWyl8gcq7JOZOuYWCW7J/PKyVktW7ZsQc2aNZX5V6dOnYpcuXIpk12PGTNGSbJavmEzGAwGg2HL8eDBA0yfPh21atVSEqpDhw7F48ePUbx4cSwyfbmVOcZ79OgBZ1uanNNCggRAgQLaiomXF3D0qDqHXniQ25Hbk0pFHogHfHyAO3e0lXBQsmTA58/RRbf7aw3uUxRZwrpvhPe+aovkb550rI0dW01CW2LFasilTp0aX3zxhXIMYc6cOdql5NBcs6N0yTTawdD3uHfrrpJIsht+XnjvpX+Q9sZ7Zd7MMPI5j5l//IuEX7ZFxbjaZdGIz/mZ+OPfhPiybUXYzd1/sRd7T39QFt2KyPyqyqKht/v24pjpO5i0DM5TpiySBfbV0fsWbt1XSmCRomxlFNUKW31vLsaQmQ9Qu28n5A9VQe9LXL36AGoT4bgoUqoY7KfhMkUW+Tv8119/Kctt27ZVfhLZOiZWyWFUrVpVmRvl3Llz6NSpk+kLZ2wcOHAAAwYMQM6cOZVo3bo1Jk2apFz+7t077ZpERERR68OHDzh16pTyZaJz584oWrQo0qZNiy5duuC///5T5v9q1KgR9uzZg8OHD6NFixZwtZPeo5Ytei9cAPxCMz2PAbkduT17bwMcXky7ES5d0laIwgH3KbIX0WFfPXkSuHsXqFJFPZkoRgxtgyakFav+pvGrJgFjxwK//x4xIbc9fTPM5rS0Pb1791Z+/vnnn/CRDD05ODeUaVIXmZW+qT44s3sXHofT59Lw54eHHjuwedMm/LdxHf5Z/Bd+7/cLll3XUsHe+zCp6y+YPHc5/l2/EZtM47YevIqQvRX44e6SwZhwvToGdC+CwJrEOiy/u1gyeAKuVx+A7kXs596/O7AbR/T5VcuUC2J+VS8c23MILyQX75IR7mUzB94yOHZhFMvnpiy6xVZTn773t2Jo+0E4U2UsRjVOGbokwpsD2HtcyezCKWFFNKyZVFkmMrdgwQI8e/YM7u7uKCln2xHZASd/E22ZyKFI4lSqWFevXq3MmfLkyRNtyyeJTN9IpXe7RPLkyZWD1PZyoJqIiOyTJEnlwJ3MCS5zpErI3yjLj2Rx48ZF9erVlfm/6tSpo7TAtxfLlsH0dxWoVEk92L1yJXDxorbRpHZtoFgxbSUMpFpVEqtNm6rtgPfuVeee0+XODXz5pbZi454+BSZP1lZMuncHkobwuIMcVP/jD7WCt2VL7cJoJDwew9AaPRofq0ZKlVLbmjqC6L5Pkf1w9H1V3l8mTQISJgQ6dpT2n8DEiTB9ltAGmEjrfWmlbC3/t8Dq2cBlz/DrJGFJfs+EhYFvqsnhf+t9OAOMNX128DYtO5k+T3xjul9pI7AsIG/evMoJ2vPnzzd9pjB9qCDH5nsVU+qUwvc7XgNxymDkgc3onTPQdFMUeo/VbbOi9T/vEMMtJmLGkIgBF1cXuLo4wd/0ncLX9J3iwwdveJs+cHt7ecEvT3/s2zMQ+ax8wb33mIhGtcYh3vAdWNw6U+BJN4f0Hh4TG6HWuHgYvmMxWmeyn3v/dH4T5Oq4Dq/juuO33VvQN29gT/hb0z6UHS2WPEPM/P2xed8QlAwif/zm2J/4tt2v+PdhWpQvmQR3Tt1E4oYjMXv0l8im5lxDyA8PFzZH4Q5r8MzfFdm6rseh/1Wwn8pgihRyHKRgwYK4dOkSli1bxr/DZDeYWKVoQQ5iSyXQ0aNHceTIEeXnhQsXTF9Qw6NvChERUdjEiBEDmTNnVtr8FitW7GPEimWfjZLME6tCpj1fulT+HqvradIALVoA8eKp66EhB9HlNsuWBXLmVC+L7onV5cuBc+eYWNUxsRp20X2fIvvh6Pvqxo3A4cNAhw5A2rTqZbNnA7dvq8siblygb19txc5FdmJ15syZ+Pbbb5XPYXvlwwQ5PC+P31Gz8iDse+WENI1mYdfClsgQzXr6+T1Yi27VvsHBynPx37iaSBmt7r8fHqzthmrfHETluf9hXM1QVmNGFd9nOLfrEJ5nKocyWYL+QuX38hL27L+PVO7lkDORFffS+yHOHTqC849jIH3hUiiWOWHoH5sXO/B9xbqYfP4DXLO0xZJdU1E3RTR7oVGwpEOXzHmeMWNGXL16FS4u0esUD7JfTKxStCZtBvRqIakcklaMkoTly4KIiCKCzJ0qc6JKd4QECRIo7X71rgmyzVFYJlaFeeJJmB8cDg1phyjToQ0cqF1gEp0TqzK34Pz5gLc3E6s6JlbDhvsU2QtH31cfPABmzAAKFQo4t6qeTDY3aBBMnzO0FTsW2YlVOeE6ffr0SgcRaadasWJFbQs5Ll/cXNkZddrNwyXvhCjVfzmW/1oB0Snn43trDSb8EwfNu1dFmmiXx/DFrTUT8E+c5uheNU00q9SNJO/OYlb7huj5z034Ja2AoWtWoV+xMJxVSw6rSpUqyklNf/zxB/r06aNdSmT7mFglIiIionBllFjdsgXYv19bMSlaFKhTR1sJhXXr1IPHtWppF5hE18SqVAKvXg2cOaOuM7GqYmI19LhPkb2IDvuqVKY+fgz06AHEiaNdaKJXsZqT45Hx42srdiyyE6ti5MiR+Omnn5AlSxalw5VMyUCOzge3N41Ap85jsO2eMzLX7oPBA75FwxJpEKqup0QkJbK4tGU+/jdkBOYee474BVrj97//hzZ5+Z5Kn5sxY4bp800PJEuWTKlWlZPPiexFNDoXi4iIiIiiSurU2oLm3j1tIZTk+pa3GR35+amJbD2pEJ5u3ACuX1fj2TPtQgcW3e5vYLhPUVQIzb4RkfuqrTh9Wm33W7lywKSqMEqgvn6tLVCI9e3bF4ULF8a1a9eUBKt0EmE4esRAhhq/Yv3Jg1g4sCFSnp2M9uWyI4P7EBz8YDSewWAEFf73F+CrrGlRoP4gbIlRBd//uQXH989A23zxDMczonfcMH34GzBggPI3ePr06Uyqkt1xYsUqEREREYUno4pVadE4b57awlfI1CkNGgD58qnrISEH0Q8cANq0AWLG1C40CW3F6pEj2oJm0ya1CkqULx/wfpiTg93SolF36RJw5Yq6HCMG8NNP6rI1Qlptee0a8OKFep+fP9cu1Mi/HdT8tXKA3uhxv3oVOHFCWzE5f15NXAiZy7ZKFXXZyLFj2oJm+3bg3Tt1OVcuoFkzdVlcvKg+fzdvahdo5PdKmBAoUEC7IIRC+hiG5f5aisyK1UeP1OST/O4PH2oXarJlU//9rFm1C0LA1vapoMjr8+hR9f6b374oXBhImRIoVkx9n7GG5f4rlYCBvQfIv3n8+OeVglKFLyd7SLvWyJ4ayvL3lw4BXl7qsjwe5u1jX71Sk3Xm75Uic2Ygb14gSxYgcWLtQguy38n9vnBBu0Ajz2WSJOq/Za2w7BsRsa/aInkOJ01SE6jffivTCWgbNCdPAv/+q61oZP7yHDm0FTsWFRWr4ozpA0aRIkWUKYKkJXClwD4AkIN6j/tnj+P865Smv6VZYXEuAxEFx+8hTmw6ijdZSqN0zsRssUyBknRU1apVsWfPHrRs2RILFy7UthDZDyZWiYiIiChcGSVWhSREV67UVkzSpAE6dtRWQmDmTDVpYnkQP7SJ1SFDtAUDQSVWJQF78KC2YiGiE6uSyDMnB+D1T/XSItk84WxJkn6S/LEkCRNJKBkJLtER1GMoidUmTdRWlhs2AB8+APnzA5kyaQNM9CTLy5dAqlRA9erqT7cQ9OIL6WMYlvtrydrEqiTxd+/WVgIhv3PbttqKmfv31QSaVGtLh0rZ/+Ux0p06pb7G3rxRX1tyH0KSYLW1fSowch8lcS8JNdmHSpf+9DzLPiAtx6X6UZKD1ibRrHkPkNuWZK6cEJAiBVCypDbAZNcu9XLZByTBKvtvUI9XeAvq99cTq5KIlMdO5uSMHRuoWlUbYCKJVrlckq6SlP7qq4DVkLLvyX2U7ZK8l/dWnbymJdksr+syZQCZmtLVVdsYhLDsGxGxr9oi/W9M+/ZA+vTahWbkRB7L45DSYl/2QXsXILGazPQYdAbSRdIRer0lcIYMGUx/l06YXgsO0FuZiIjIhkyaNAnff/+96btMKpw9exZJ5Aw9IjvDxCoRERERhavAEqtPngBTpmgrJlJ988sv2koIDB2qJmQtWwGHNrEqyQYhSRE5kO3jo66LoBKrUq0q90lIBZtUc+kiOrFqSaqa9PaZoZ1j0NNTTcrJ47B8ecCWksElOsyrfuVxkOoznSRWJdEnyTBJakiiy6iiTJI2ixd/qgKW5Ef9+uqyNUL6GIbl/lqyNrEqidGdO9V/10iiRECyZGpiy5wktiSBIsmVEiXU6kIjsg8sWKAmHeX1JQk+GS/JppCK6n3KklRAr12r7l+xYqkJJEmsWibx5PUriVWZh1n+XXms6tb9vI2qOb3iU8Zv3aou6+Q9QPbhRYvUas7ixYF06bSNZuT+SXJSSNK1Rg11OTLov78kN+U9zJwkVuU+zJ+vJptl/5TkqKVDh4D//lOX5b1VkvuSoNRPiJHbKFhQrUy19Ndfn7oRSGK1QgV1OSjhuW+Ex75qa+RElKlT1Qp+6e5gRBLa06ZpKxprH39b98q0P04w7Y9SxOxk+nvRvCeQw/R3NTL4+vqidOnSOHz4ML755hvTY2zxIBMREVGoXb58GUWLFjV9FvQ0fV5fh9q1a2tbiOxLJDRTISIiIiL6vFWknN63Y4e2YiUZL4k5qRgLL3J7ElIF27y59UkoqRbUryvXy5BB22CnpIpNEuKSvJN2ktZUnekk2aRH06YBW4lK29B9+9RkhyR1AmvTKdPqSHtnvQpT2lxKQkdvDxrewnJ/Q0sqyaT6TJKn5iR5IknQrl0/T6oKqZR8+1Z9LKXKL7B5FOU1JteXBK28viTJJteNKuH1GEtFoiSM5f5LUrVVKzU5aHR7cplskzEyVq4j15XbCIw8LxJScSknY1i+B0hSW5KrDRsaJ1VFrVragokkKWX/jSz67y+vL3mdyYkd5uRkF3lN6o+bEUkG6/ulJPJXr1ZPHJHXoCT25ASTwIoJzI+HyYkDlq2CjUTF68+eSCWwJLbNK4stGb2XBvbeYMte31ET+B4ewAnT+9XuzcCS3WpSVfi/Mb3vLQa2m/6OHDe9rmTcmbPAI+1klvDm4uKCuXPnws3NDbNmzTI9F6Yng4iIiMLM29vb9F2ovZJUbdeuHZOqZNeYWCUiIiKiSCHJCjnwb560kBaU0v7VGjJOxru7R9wchtI6NTS3LQfAzVvb2jupWAtNlaOwnAdQVKumVpIFRxJhRYp8+rflYPvmzWolXkQKy/0NKfl39H9LKmp79FATV7JfWybEdObz0Uolm3lLbUtym+aV2pKIlQrOqBaWx1jmL5Zkn5B5QC0T00ZkjIwVcl25DWtIpbv5e4BUo0uSWvbLoEii0HyMnEwQFeR1Zt5CW5Kc8t4plcvBkUpRnVQGS0JWTngIbt5jeaxz5tRWTKR7QEhE5uvPHsj7nrxmpfo0qPlipQrb8v02sGp4W3bvKPDvGmD9emDLduCQ6e/8K9P9kvuux4dHptfifmDrJnWczC17/pV2AxEgV65cGD58uLLcvHlz7JQzBoiIiCjUJKnarFkzHDx4EOnTp8f48eO1LUT2iV9fiIiIiCjSSKWp+YFgmfcvqEoyczJOxsscgGQ/5PkKrErOiFS9SvWwTqr/9PbAjuDiRbVtsVSiSQWhVAEaJaPDQhJr5tMCSjLWXt2+rbYAFnKfgktwmpOx+uMgtyG3FVKSqJKTJiT5FxRJDJonwaw9YSSiSctdqVbNkUO7IAiSRNVJi17Zb2QO2+D2TzkhwLzVsq3cd3vk7a2eTCJ/K4NLhsvzYpl4tceK1ZwNgJ9/AgYMAH74AejXF+hriu+//xSy3refaXt/dZyMrxCOnSuM9OnTB506dVKqaurVq6ckV51MDzqDwWAwGIyQxYcPH5QTlaT1b9KkSbF+/XrT506zD55EdoiJVSIiIiKKVJatDS3nNAyMjKtcmZVN9kaSOgkTaitWsqz+1ed+tHeSVJV5gMuVU9vOSstea5hXs0rSVCq/gyLJWpkPVBeV7YDD6sCBTxXLMl9qSOYelrH6fLRyG3JboWHe5tcehbbLmlSiSotgijy7d6vJUdnnrPlbZ5lYtceKVVslB4KnTp0aILm6I6TzFxAREUVzeqXq2rVrlaSq/C3Nnz+/tpXIfvGwFBERERFFqjx5AiZHpIosuFalsl0ONvM7WPSQMSOQJo22YiKVc5KUtFeS7JD2qEuWqHNVVqigbbCSzJ/ZpAlQowbQrJk632d0IC2QpSWtTm/tGxLm15HbMm+rbA2pepU2v/ZKWvRa0zrZiHlrYIp4MqetJP9l3m55D7SGeWW6kPcaaV1N4YPJVSIiotBjUpUcGROrRERERBSppOuP+RyA0nIyuPaFst3X1/oKP7Jv0lZU5lvVSbWhPba4FPJ7L18OnDunzqdqzVyXRqSVq1QP6hWY0cHDh+r7g87aZJM58+vIbclthoRUBNpzlby8lgKbuzc47NAWuWQ+ZFdXoHp17QIrWFas+vmp7Z8p/DC5SkREFHJMqpKjY2KViIiIiCKd5YHjLVu0hUDI9pAcbCb7lzattqCxx3bAMl+iJFVv3VKTotKiN6KSdHLiwZUrn8JeE9HmImJuWHueb5Yc1/nzwLVrajW7ZRVqUCwTq8IRXvu2xjK5WqtWLYwYMQJ+fn7KNgaDwWAwGJ/i7NmzKF26NJOq5NCYWCUiIiKiSJcqFZAtm7ZiIu0Ljx/XVizI5cmTA+nSaRdQtFC4sLagkcShPfHyAhYsUFtdi0uX1J/hRV4zz54BS5cCCxd+ivXr1cq3O3e0gXYsIuaGtef5ZskxSUX+pk3q8qFDwPjx1sfhw+r1zHGe1YghB4oludqvXz/Tc/YBv/zyi3LQ+LxkxYmIiMj0fc0XI0eORLFixXDy5ElkzZqVSVVyWEysEhEREVGkk1bA5m0mZU64p0+1FQtyedy4AVvDEtkymSdxyhS18szJSb1MWgGvWqUmUcJK5mudPRuYNAm4cEGdm1Hm0pQ5WLt1U1sO586tDSYim7ZnD/DyJZAihfp3Tv4+WhtGfxdZsRpxJLk6ZswY5SBx5syZcfToURQtWhRjx45VqleJiIiiq4sXL6Js2bIYOHCgcgJSN9OXklOnTjGpSg6LiVUiIiIiihJffKEtaKRSRw4um5N1udxyLJGtkgSqJD6lpWfTpkDVquq8icLDI/StaKUCVl4LQ4cC27apVWkyX+vAgcB336mthiX0f4uIbJ9Une/fDxQoAHTpEvJo3Fi7ITOsWI14FStWxOnTp5XWwF6mN+f+/fub3vMr4OrVq0rylcFgMBiM6BL+/v4YN24cihQpgsOHDyNjxoym7yrbMHnyZMSVs6OJHBQTq0REREQUJWLGVBNDOmn1KgeYzcl6oUJA7NjaBRQm8hjLgXyKOK9eqcnUokXV9dKl1Uo0ncy5KhWmIfHuHbBypTrPrFR3y+uhUSOgZk3AxUUbFEW4T5G9sMV9VV7T8hquVk27IISM5mNlxWrkiBcvHqZNm4ZNmzYhXbp0ps8r+1GwYEH07NlTSbASERE5Mh8fHyxatAjFixdH37598f79e3To0AEeHh6oXLmyNorIcTGxSkRERERRJmlSbUFj2Q5Y1hMnNn1o5afWcCHVktI+liKOVI1azg/bpAmQJIm6/OKFWrlqrffvgdWrgcuXtQtMatcGcuXSVqJYRO5TceJoC+EoIm6T7IOtvf9dvKi+ritWlCSddmEIGSVWWbEauapXr44zZ86gbdu28PT0VCp0cuTIgQYNGmD37t3aKCIiIsfw/PlzjB49WmmJ36pVK5w4cQJp06bFhg0bMHPmTNNnE4MPJ0QOiIeoiIiIiCjKSFVfsmTaism1a8ClS+qy/JTqolKl1HWKXrZs0RY0UgVqD5y0OVXNyckB0upTt2+fOq+iVJ8G5/TpgEnV9OmBLFm0FQcn7ZTDW0TcJlFI+fio1ary909OxggtOenI8mQBVqxGvoQJE2LOnDk4e/asUq3j5uaGNWvWKC2DixUrhqlTp+LevXsBWicyGAwGg2Ev4evri+3bt6NLly7IkCEDfvzxR9y9exf58uXDrFmzlE4NNaWVDlE0wsQqEREREUUZaYFYpoy2YiKJJkk6Cfnp7h71rU6t5eenLVC4kDlFzbm5aQt2qly5T8lVaUm6fTvw4YO6HpQbN7QFTfHiYW+NLZXgQ4ZoK3bk5k1tIQRCcx2iiCZ/36R6XY5BhrUjQ4IE2oKGFatRJ0+ePEq1zq1bt0zvsUOQMmVKHD9+HN26dUP69OmVdom//fYbduzYgVfSN56IiMgGybypFy9exIIFC5Sq1BQpUqBq1aqYPn063r17pyRRN2/erLT9bd++vXJCEVF042R6oVhxnjQRERERkXWWLQOSJwcqVdIuCMatW8CcOdqKSdy4QN++wNixQMOGQNas2oZg7N0LbNumrZjkzg18+aW2EgIjRnxKeJUvb939ePtW/X11MWIAP/2krVhBEl2TJ2srJt27f94mOSjS3lKfOzB7dqBlS3XZ0oMHMH0hBn79VbsgCCNHAt7e6nLZskCVKuqyNSZOlDZR6rK0rG3WTF22lsxBumjRp9uQfULuU5o06rqRsD6GYbm/o0erLXuFVFh/8YW6bGTcOHUeVpE2LdCihXr/AmOZAB040LqTDaR98KlT6rLM8dqli7os9McqqP3AFvYpeUxnzPi0H0hiWt4TQuKff9SqXyGVw99+C8SKpa4HJjTvAWLHDkDv/BnS94Dw9Mcfn5Jr0pa6Xj11OTjXrwPz5mkrJq1bA5kzayvBWLMGOHFCXZa2tt9/ry5bKyyvv4jYVyOSJFSnTFF/19D8jbK0YAFgPqWnqyvw88/aCkUpLy8vrFy5EqtWrVLmYn1jlvWWCiBpGVzY9CKVpGsa0x84CUnGxowZ0/Q8mp5IIiKiCOLn52f6vPsBr1+/Vroq6CEJ1WPHjn12ApBUp9avXx9fffWV6Xu26Ys2UTTHxCoRERERhauQJlbl0+iqVcCZM9oFJnI8URKqkpBzMmitaiQqE6tSFff339qKCROrYUusSnJKklS6/PmBRo20lUDYS2JV2vpK0vPdO3Vd7pfcv8CEJrEq+4Lsj3pLUHtNrIrjx9WWqfKalCmb2rSx/nmV+zl3rvo4yGuyRg2gSBFtYxCYWFUxsRox5KQReazlPSphQu3CMDA/iUI3YID9V/k7mvemPxLbTB9SJMF65MgRnDx5UrmMiIjIFknLX2lnX6ZMGSWhmtXas52JogkmVomIiIgoXIU0sSr0A97m2rdX55O0VnglVjdtAg4eVJclSVa9etDJXWnrKvdZnxtWRHZiVZJPa9eqy1KNJ4kFo8dOEtjSWrZPH+2CIIRXYlWSLE2bypdzdT04ktAaP/5T4jFTJvV5DK79rb0kVsXKlZ9OJJD7Vb8+kDOnum4pNIlVeR3I60EXmsSqLe1TS5cCFy6oy6VLA9WqqcvBkXl69+9Xl0OS4GdiVWUvidWI2FcjijxG8ljJXL8VK2oXhtHWrZ9a6Ou6dQs4fznZHh8fH9PfgTNKyDx1eqXQkydPTO8/H5TtPFxHREQRxdnZ2fR5NQbixo2L1KlTI23atErnhEymL19FixZV2v8SUeCYWCUiIiKicCMJm4UL1WTR118H33JTJ/NpjhqlrWjkwLwcoLdWeCVWT54E/v1XWzGRtsRBtWqV5M2RI2pbV30+TJkzTw7uW3tib1iTgpYJEWkvmyOHtmJm1iygYEGgWDHtgiCEV2JVSAvWnj21lSDIv7dkiXp/dMFVdOrsKbEq1XVSZaeT10n//tqKhcOHgY0btRUTqbisW1dbMSCPg7QGlfmJ9euFJrFqS/uUvD9I5en9+2qFX6tWwSeNpJ20PA4vXwKpU6uVrtZW8DGxqrKXxGpE7KsR4eJF9SQBOQLTqROQKpW2IYwOHAA2b9ZWNLK/y0kpREREREQU/py1n0REREREoebnpx5Ul/ajklC7d0890H32rDYgGJLwMD+QLsmMkCRVpWpU/k1zMo+d3go1JPLlAwoV0lZMJJkTGGlRKvM3yoF884pMeTwkQXj0qFqZaN7m2IhU7JqzXA+OHEA3T+ZJYtjyNtavVxNq1lQx3b6t3gedPLZ60iOkJCkt15UD/+a3aUkqVKWSU0+qSjtoSSDK82GNsDyGYbm/Dx+q+59OEnohfawkKSv3XeYbtiTzikp7U528pvTqTUuSsJUTG2QuWrmeJFeFPO87d6rLMh+wJFylYi4otrRPyfuDJFPl5AVJlErC9MoVqfjSBpiRy2SbnlSV68h1rU2q3r0b8PeU17/Rv2NJxpi/V8htyG1FNvkd9KSwkP1Rr/4OjjxH5izXAyO3L/+OTv79oN43LYX1/Sa899XwJu8PUlG6fLmaVBXmJ56ElbwHWZL7SkREREREEcOJFatEREREFFozZ6o/5ROl0YF0aVmaMqW6nCiR2hI2MFJhNWOGmqCQ6jqZTzEw//wT8EB+YP++VCxaJlQ6dtQWgiAVcpI0lfkw5bazZAHKldM2mnh6qtVpjx4BDRuqiS/zajUjltWBc+ZoCyaPH6u3qZOKX2mnrGvXTlsIgiQm9uxR59qTg/by+DVpolbOnTuntsuUlrNGlVxi6lRtwUSeC8tkjCQkpBJXmFc/GrGcY1WSfNKGU1pfSsWl/E6SONXJfZdWnufPq5dLG09p+ZotmzYgEGF5DMNyf83/XUngv3qlrWgksanfP7kP5vuOtI2WhJ/liQAiTpxPiR/z31d+N3l8pCJakrBy32SfrFxZG2Aiz/vVq+rrrE4dtQpWngNJtEqSRdpZSwW1JFZln27ePPj5HW1pnxJyooRU/Ul7X/l9JKEm+4lemSz3U7bJ4yRV0rJNWiwH9V4i5H1HJ8+lPEbm5D1M/z1lX5aqZCEtw+XECiGPlWWCS04qSJBAWzH59lttIZyZ//7yOFueUCKPszxnQl5bNWuqy5KA3r5dXRbyGjJPIss+bP4akv1Nf01Kcl5PvEoi1fz9WMhjbn5yjOV9D+99I6z7ani7c0d9b5DHSNrEy7K5/7d3xyqRQ2EYhs82WqutYG9v5U1sYeeleBFiae0teBtW9tYWgqJYWO36kYSNs+P8iQ7LDjwPDCYjOjFmFPLmnGTfHh21dnDQXZST9/QU2de5ACO/p8TjvOeXBfD8LTk+bm13t/s/nGMxf5cAAIDvE1YBAPiyxfs/rpIT5bnv2yoXF92J40y/u0pCwpwRUWOrpj9dlPiVUWcJKBkNOMhJ8EwPmugwTLc4Dqs5kb04HWxOoo/N2XdztjnR7vb247TIh4fd6w/busw6t2cxrObelonUmTI5H/Pc/n73+Yzmyr6LPJ/tTDSc4jvb/K++NlOP/vzZr7w7P/87xC6zbB8nqOS4z7GYKYLH8jrZdxmhOTaMYh2O34xUzfSwVVQd+x+OqbEcMxkNnpA5TD87yM+WEJrpXqt70Q7mbOd4qufx/ZinmPMzzjFn+xNGT0+75UThXKQyVS4iSViOHFMJs1Ot8/23yleP1XW6u2vt6qpfmWDO1MfX163d3PQrM52dfbygBQAA+BphFQAAWKtlYTUyvWdGpyV8DPejjYykTPzICLetrf5JgA2UGQ8y/XvC/jA6P4+MGs9FARltOjwy0jb3A88I0ylyMUFGqOZ7L3vE8Br5OCznQopqBgAAAGAaYRUAAFirz8IqAAAAwCbr71oCAAAAAAAAwGeEVQAAAAAAAICCsAoAAAAAAABQEFYBAAAAAAAACsIqAAAAAAAAQEFYBQAAAAAAACgIqwAAwNrc37f29tavvHt6au35uV8BAAAA2GA/fr3rlwEAAGa7vOwX3r2+tvby0q/0dnZa297ulvf2Wjs56ZYBAAAANokRqwAAwLdklOrwWIyq8fj45/MPD/2TAAAAABvGiFUAAAAAAACAghGrAAAAAAAAAAVhFQAAAAAAAKAgrAIAAAAAAAAUhFUAAAAAAACAgrAKAAAAAAAAUBBWAQAAAAAAAArCKgAAAAAAAEBBWAUAAAAAAAAoCKsAAAAAAAAABWEVAAAAAAAAoCCsAgAAAAAAABSEVQAAAAAAAICCsAoAAAAAAABQEFYBAAAAAAAACsIqAAAAAAAAQEFYBQAAAAAAACgIqwAAAAAAAAAFYRUAAAAAAACgIKwCAAAAAAAAFIRVAAAAAAAAgIKwCgAAAAAAAFAQVgEAAAAAAAAKwioAAAAAAABAQVgFAAAAAAAAKAirAAAAAAAAAAVhFQAAAAAAAKAgrAIAAAAAAAAUhFUAAAAAAACAgrAKAAAAAAAAUBBWAQAAAAAAAArCKgAAAAAAAEBBWAUAAAAAAAAoCKsAAAAAAAAABWEVAAAAAAAAoCCsAgAAAAAAABSEVQAAAAAAAICCsAoAAAAAAABQEFYBAAAAAAAACsIqAAAAAAAAQEFYBQAAAAAAACgIqwAAAAAAAAAFYRUAAAAAAACgIKwCAAAAAAAAFIRVAAAAAAAAgIKwCgAAAAAAALBSa78BO53ssSO14+UAAAAASUVORK5CYII=
Es sei $$\rho$$ eine Zähldichte auf dem endlichen Ergebnisraum $$\Omega$$. Dann wird durch <$latex text="\textcolor{blue}{\rho^{\otimes n}(\omega)=\rho^{\otimes n}(\omega_1,\ldots,\omega_n):=
\prod_{i=1}^n \rho(\omega_i)}" displayMode="true"></$latex> eine Zähldichte auf $$\Omega^n$$ definiert, diese heißt ''$$n$$-fache Produktdichte'' von $$\rho$$ und das zugehörige W-Maß auf der Potenzmenge von $$\Omega^n$$ heißt das ''$$n$$-fache Produktmaß'' zu $$\rho$$.
!! Beweis
$$\rho^{\otimes n}$$ ist Zähldichte, denn $$\rho^{\otimes n}(\omega)\ge 0$$ für alle $$\omega\in\Omega^n$$. Ferner ist
<$latex text=" \begin{alignedat}{}
\sum{\omega\in\Omega^n}\rho^{\otimes n}(\omega)
&=&\sum_{\omega_1\in\Omega}\ldots\sum_{\omega_n\in\Omega}
\rho(\omega_1)\cdot\ldots\cdot\rho(\omega_n)\\
&=&\bigl(\underbrace{\sum{\omega_1\in\Omega} \rho(\omega_1)}_{=1}\bigr)\cdot\ldots\cdot
\bigl(\underbrace{\sum{\omega_n\in\Omega} \rho(\omega_n)}_{=1}\bigr) =1.
\end{alignedat}" displayMode="true"></$latex>
Damit ist der Satz bewiesen.
Hier geht es um die Unabhängigkeit von ZVs im diskreten Fall.
Es sei $$p$$ eine W-Funktion auf der endlichen Menge $$E$$. Für festes $$n\ge 2$$ bezeichne $$P=p^{\otimes n}$$ das $$n$$-fache Produktmaß auf $$\Omega=E^n$$. Es bezeichne $$Y_i:\Omega\to E$$ die $$i$$-te Projektion. Für $$\omega\in\Omega$$ ist <$latex text="\textcolor{blue}{\{(\omega_1,\ldots,\omega_n)\}=A_1\cap\ldots\cap A_n}\quad\mbox{mit}\quad \textcolor{blue}{A_i=E^{i-1}\times\{\omega_i\}\times E^{n-i}}." displayMode="true"></$latex>
Zusammen mit der Definition von Produktmaßen folgt damit <$latex text="\begin{aligned}
\prod_{i=1}^n P(Y_i=\omega_i)&=& \prod_{i=1}^n P(A_i)= \prod_{i=1}^n p(\omega_i)\sum_{\omega'\in A_i}\prod_{j\ne i}p(\omega_j')\\
&=& \prod_{i=1}^n p(\omega_i)\prod_{j\ne i}(\underbrace{\sum_{\omega_j'\in E}p(\omega_j')}_{=1})= P(\{(\omega_1,\ldots,\omega_n)\})\\
&=& P(Y_1=\omega_1,\ldots,Y_n=\omega_n).
\end{aligned}" displayMode="true"></$latex>
Also sind die Projektionen $$Y_1,\ldots,Y_n$$ (wie erwartet) unabhängig.
* In einer Fernsehshow führt der Moderator einen Apparat vor, der Zufallszahlen im Intervall $$[0,\theta]$$ gemäß Gleichverteilung ausspuckt, wenn er vom Moderator auf den Wert $$\theta>0$$ eingestellt wurde.
* Zwei Spieler dürfen den Apparat $$n=10$$ mal bedienen und sollen dann $$\theta$$ möglichst gut schätzen.
* Wer besser rät, hat gewonnen.
!! Modellierung
* ''Stichprobenraum'': $${\mathcal{X}}={[0,\infty)}^n$$,
* ''$$\sigma$$-Algebra'': $${\mathcal{A}}={\mathcal{B}}_{{[0,\infty)}}^{\otimes n}$$,
* ''W-Maß-Familie'': $$(P_{\theta})_{\theta\in\Theta}=({\mathcal{U}}_{[0,\theta]}^{\otimes n})_{\theta>0}$$.
Oft werden statistische Modelle betrachtet, die die unabhängige Wiederholung von identischen Einzelexperimenten beschreiben.
Das führt zu folgender
! Definition
Ist $$(E,{\mathcal{E}},(Q_{\theta})_{\theta\in\Theta})$$ ein statistisches Modell und $$n\ge 2$$, so heißt
<$latex text="({\mathcal{X}},{\mathcal{A}},(P_{\theta})_{\theta\in\Theta}):=
(E^n,{\mathcal{E}}^{\otimes n},(Q_{\theta}^{\otimes n})_{\theta\in\Theta})" displayMode="true"></$latex>
das zugehörige ''$$n$$-fache Produktmodell''.
In dem Fall bezeichne $$X_i:{\mathcal{X}}\to E$$ die Projektion auf die $$i$$-te Koordinate. Diese Projektion beschreibt den Ausgang des $$i$$-ten Teilexperiments. Die $$X_1,\ldots,X_n$$ sind dann bzgl. jedes $$P_\theta=Q_{\theta}^{\otimes n}$$ unabhängig und identisch verteilt mit Verteilung $$Q_\theta$$.
!! Bemerkung
Das Produktmodell eines parametrischen Modells ist wieder parametrisch und das eines Standardmodells wieder ein Standardmodell.
$$\bullet$$ $$XY$$ ist diskrete ZV: denn mit $$X[\Omega]$$ und $$Y[\Omega]$$ ist auch $$X[\Omega]\times Y[\Omega]$$ abzählba\ also auch das Bild von $$\omega\mapsto X(\omega)Y(\omega)$$.
$$\bullet$$ $$XY$$ liegt in $${\mathscr{L}}^1(P)$$: denn
<$latex text="\begin{aligned}
\sum_z&|z|&P(XY=z)=\sum_{z\ne 0}|z|\sum_{x\ne 0}P(X=x,Y=z/x)\\
&=&\sum_{x\ne 0,y\ne 0}|x||y|P(X=x)P(Y=y)\quad\text{da $$X$$ u.\ $$Y$$ unabhängig}\\
&=&\sum_{x\ne 0}|x|P(X=x)\sum_{y\ne 0}|y|P(Y=y)<\infty,
\end{aligned}" displayMode="true"></$latex>
da $$X,Y\in {\mathscr{L}}^1(P)$$. Also liegt auch $$XY$$ in $${\mathscr{L}}^1(P)$$.
Die entsprechende Rechnung ohne Betragsstriche liefert die Behauptung.
Die Beweise der restlichen Behauptungen werden als Übung empfohlen.
<<list-links "[tag[Projektion mit orthonormaler Basis]sort[scriptorder]]">>
Eine quadratische Matrix $$P \in \mathbb{C}^{n \times n}$$ heiß
//Projektionsmatrix//, falls
<$latex text="
P^2=P.
" displayMode="true"></$latex>
<$details summary="Bemerkung: " tiddler="Bemerkung">
{{Bemerkung: Projektionsmatrix}}
</$details>
<<list-links "[tag[Projektoren und Projektionsmatrizen]sort[scriptorder]]">>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/YsuPBWx7-A8?rel=0&start=0" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
Sei $$A = U\Sigma V^*$$ die Singulärwertzerlegung von $$A \in \mathbb{C}^{m \times n}$$.
Dann heißt
<$latex text="
A^+ = V\Sigma^+U^* \in \mathbb{C}^{n \times m}
" displayMode="true"></$latex>
mit
<$latex text="
\Sigma^+ =
\begin{pmatrix}
\sigma_1^{-1} & & & 0 \\
& \ddots & & 0 \\
& & \sigma_p^{-1} & 0 \\
0 & \dots & 0 & 0
\end{pmatrix}
\in\mathbb{C}^{n \times m}
" displayMode="true"></$latex>
//Pseudoinverse// oder //Moore-Penrose-Inverse// von $$A$$. Man kann nachrechnen:
<$latex text=" A^{+}=\sum_{i=1}^{p}\sigma_{i}^{-1}v_{i}u_{i}^{*},
" displayMode="true"></$latex>
<$latex text="
Kern(A^{+}) = Kern(A^{*}) = Bild(A)^{\bot}, \qquad Bild(A^{+}) = Bild(A^{*}) = Kern(A)^{\bot}.
" displayMode="true"></$latex>
<$details summary="Bemerkung: " tiddler="Bemerkung">
Für invertierbare Matrizen $$A \in \mathbb{C}^{n \times n}$$ ist $$A^{+}=A^{-1}.$$
Daher ist die Pseudoinverse eine Verallgemeinerung der klassischen Inversen für singuläre
oder nicht quadratische Matrizen.
</$details>
Gesucht ist der Punkt der Ebene $$z = x + y$$, der vom Punkt $$(1,0,0)$$ den kleinsten euklidischen Abstand hat.
| Zielfunktion: | $$ \qquad f(x,y,z) := (x-1)^2 + y^2 + z^2 $$ |
| Nebenbedingung: | $$ \qquad \varphi(x,y,z) = x + y - z = 0 $$ |
$$f'(x,y,z) = \lambda \varphi'(x,y,z)$$
$$(\partial_1f, \partial_sf, \partial_3f)(x,y,z) = (\partial_1 \varphi,\partial_2 \varphi,\partial_3 \varphi)(x,y,z)$$
$$\varphi$$ hat vollen Rang $$\forall x$$.
Wir lösen nun das Gleichungssystem (siehe unten) und erhalten $$(x,y,z) = (\dfrac{2}{3},-\dfrac{1}{3},\dfrac{1}{3})$$.
$$(\dfrac{2}{3},-\dfrac{1}{3},\dfrac{1}{3})$$ ist der einzige Punkt, der für den minimalen Abstand in Frage kommt.
Somit ist $$(\dfrac{2}{3},-\dfrac{1}{3},\dfrac{1}{3})$$ die Lösung dieser Aufgabe.
<$details summary="Vervollständigen des Beispiels" tiddler="Bemerkung">
[img[Beispiel.png]]
</$details>
Der Vektor $$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 2/3 \\ -1/3 \\ 1/3 \end{pmatrix}
= \begin{pmatrix} 1/3 \\ 1/3 \\ -1/3 \end{pmatrix}$$
steht senkrecht auf der Ebene $$x + y - z = 0$$.
Es sei $$I\subset\R,f_n:I\to\R,n\in\N$$ eine [[Folge|Folgen]] von Funktionen. Die Folge $$(f_n)$$ heißt ''punktweise konvergent'' gegen eine Funktion $$f:I\to\R$$, falls für alle $$x\in I$$
<$latex text="\lim_{n\to\infty} f_n(x)=f(x)" displayMode="true"></$latex>
gilt.
iVBORw0KGgoAAAANSUhEUgAAEO8AABRXCAYAAADRjm63AAAACXBIWXMAAC4jAAAuIwF4pT92AACAAElEQVR42uzcPaieZx3H8SvGFKPEIkEMFjEgBgTBFIUqDg4NKBjBtQ46tA4OZolLl9ShSxzapUsy6BCHLB2SoUMKFRQiFDyQoRgpRAolRY5viRySYFP9P3DdbUhOzssvz/vz+cCPcELy3Nd9nWf+tgYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKvpiW1+BgAAAAAAAAAAAAAAAAAAAAA2caJ2u3as/3ys/3zC1QAAAAAAAAAAAAAAAAAAAADA5vbUflX7X9/N2jP9z+HvTvd/BwAAAAAAAAAAAAAAAAAAAAB0+2q/bR9FOobd3eTvzvV/DwAAAAAAAAAAAAAAAAAAAAAr70DtUnsw0rHVLvX/BwAAAAAAAAAAAAAAAAAAAAAr61Btre0u3DFsrf9/AAAAAAAAAAAAAAAAAAAAAFg5R2rXWhbuGHatfw4AAAAAAAAAAAAAAAAAAAAArIynauvt0cIdw9b75wEAAAAAAAAAAAAAAAAAAADA0jte22jjCXcM2+ifCwAAAAAAAAAAAAAAAAAAAABL67na+2284Y5ho8991hUDAAAAAAAAAAAAAAAAAAAAsIxeaJOJdty/U64aAAAAAAAAAAAAAAAAAAAAgGWxt3a2TSfcMexMfy4AAAAAAAAAAAAAAAAAAAAALKz9tYttuuGOYRf68wEAAAAAAAAAAAAAAAAAAABg4RysXW6zCXcMu9zPAQAAAAAAAAAAAAAAAAAAAAAL43DtapttuGPY1X4eAAAAAAAAAAAAAAAAAAAAAJh7R2vX23yEO4Zd7+cCAAAAAAAAAAAAAAAAAAAAgLn1dO1mm69wx7Ab/XwAAAAAAAAAAAAAAAAAAAAAMHd+VLvT5jPcMexOPycAAAAAAAAAAAAAAAAAAAAAzI1f1D5o8x3uGDY650m/MgAAAAAAAAAAAAAAAAAAAABmbU/t5bYY0Y7793I/PwAAAAAAAAAAAAAAAAAAAABM3WO1820xwx3Dzvf3AAAAAAAAAAAAAAAAAAAAAICpebz2u7bY4Y5hb/T3AQAAAAAAAAAAAAAAAAAAAICJ+3ztSluOcMewK/29AAAAAAAAAAAAAAAAAAAAAGBivlJ7py1XuGPYO/39AAAAAAAAAAAAAAAAAAAAAGDsvl37Z1vOcMewf/T3BAAAAAAAAAAAAAAAAAAAAICx+WHtVlvucMewW/19AQAAAAAAAAAAAAAAAAAAAOCR/ax2t61GuGPY3f7eAAAAAAAAAAAAAAAAAAAAABB7sa1WtOP+vegrAAAAAAAAAAAAAAAAAAAAAMBufbz2m7ba4Y5hv+73AQAAAAAAAAAAAAAAAAAAAADb+lTttSbace9e6/cCAAAAAAAAAAAAAAAAAAAAAA/12dqbTaxjs73Z7wcAAAAAAAAAAAAAAAAAAAAAHvCl2ttNpGOrvd3vCQAAAAAAAAAAAAAAAAAAAAA+9I3a35o4x042uqev+8oAAAAAAAAAAAAAAAAAAAAAMPK92n+aKMduNrqv7/rqAAAAAAAAAAAAAAAAAAAAAKy2n9T+28Q4ko3u7ce+QgAAAAAAAAAAAAAAAAAAAACr6fkmwDGOPe+rBAAAAAAAAAAAAAAAAAAAALA6PlZ7pc0udnFlwT53J3ul3ysAAAAAAAAAAAAAAAAAAAAAS+wTtVfb7CIXb9Q+PaHPfrx//qze7dV+vwAAAAAAAAAAAAAAAAAAAAAsoc/U/tBmF7c4X3usn2USn9/655+f4Tv+vt8zAAAAAAAAAAAAAAAAAAAAAEvkC7W32uyiFi/V9txznknFO1p/zkszfNe3+n0DAAAAAAAAAAAAAAAAAAAAsAS+Wnu3zSZk8UHt5CZnmmS8Y3CyP38W7/1uv3cAAAAAAAAAAAAAAAAAAAAAFth3av9uswlY3Kk985BzTSPe0frz78zo/f/V7x8AAAAAAAAAAAAAAAAAAACABfSt2u02m3DFjdrTW5xtWvGO1s9xY0b3cLv/HgAAAAAAAAAAAAAAAAAAAABYMPtqr7fpByuu1762zdmmGe8YOdrPNe27eL3/HgAAAAAAAAAAAAAAAAAAAABYQAdqa216sYo/1764g3NNO94xcrh2dYp3sdbvHwAAAAAAAAAAAAAAAAAAAIAFdqj21zb5WMXl2sEdnmkW8Y7Wz3d5Cndxrd87AAAAAAAAAAAAAAAAAAAAAEvgSO3vbXKxigu1/bs4z6ziHa2f88IE72K93zcAAAAAAAAAAAAAAAAAAAAAS+SbtY02/ljFmdreXZ5llvGO1s97ZgJn2Oj3DAAAAAAAAAAAAAAAAAAAAMAS+kHt/Ta+WMWp8ByzjncMTo3x+aN7Pe4rBgAAAAAAAAAAAAAAAAAAALDcftrGE6p49hHOMC/xjtbfYxxBk+d8tQAAAAAAAAAAAAAAAAAAAABWwy9bHqnYqH3/EZ8/T/GOkeP9vdJnv+ArBQAAAAAAAAAAAAAAAAAAALBazrbdRyrWa0+N4dnzFu9o/b3Wg+ee9VUCAAAAAAAAAAAAAAAAAAAAWD17axfbziMV12pfHtOz5zHeMXKkv+dOn3mx3yMAAAAAAAAAAAAAAAAAAAAAK+iTtT+27SMVf6p9bozPndd4x8ih2toOnje6t/2+QgAAAAAAAAAAAAAAAAAAAACr7WDtL+3hkYpLtQNjfuY8xztaf99LWzzrar83AAAAAAAAAAAAAAAAAAAAAGiHa++1ByMV52r7JvC8eY93tP7e5zZ5znv9vgAAAAAAAAAAAAAAAAAAAADgQ0/WbraPIhWna3sm9KxFiHe0/v6n73nG6H6O+qoAAAAAAAAAAAAAAAAAAAAAsJljtVu1n0/4OYsS7xic6PdyzFcEAAAAAAAAAAAAAAAAAAAAgK08MYVnLFq8Y1r3AgAAAAAAAAAAAAAAAAAAAADbWsR4BwAAAAAAAAAAAAAAAAAAAADMBfEOAAAAAAAAAAAAAAAAAAAAAAiJdwAAAAAAAAAAAAAAAAAAAABASLwDAAAAAAAAAAAAAAAAAAAAAELiHQAAAAAAAAAAAAAAAAAAAAAQEu8AAAAAAAAAAAAAAAAAAAAAgJB4BwAAAAAAAAAAAAAAAAAAAACExDsAAAAAAAAAAAAAAAAAAAAAICTeAQAAAAAAAAAAAAAAAAAAAAAh8Q4AAAAAAAAAAAAAAAAAAAAACIl3AAAAAAAAAAAAAAAAAAAAAEBIvAMAAAAAAAAAAAAAAAAAAAAAQuIdAAAAAAAAAAAAAAAAAAAAABAS7wAAAAAAAAAAAAAAAAAAAACAkHgHAAAAAAAAAAAAAAAAAAAAAITEOwAAAAAAAAAAAAAAAAAAAAAgJN4BAAAAAAAAAAAAAAAAAAAAACHxDgAAAAAAAAAAAAAAAAAAAAAIiXcAAAAAAAAAAAAAAAAAAAAAQEi8AwAAAAAAAAAAAAAAAAAAAABC4h0AAAAAAAAAAAAAAAAAAAAAEBLvAAAAAAAAAAAAAAAAAAAAAICQeAcAAAAAAAAAAAAAAAAAAAAAhMQ7AAAAAAAAAAAAAAAAAAAAACAk3gEAAAAAAAAAAAAAAAAAAAAAIfEOAAAAAAAAAAAAAAAAAAAAAAiJdwAAAAAAAAAAAAAAAAAAAABASLwDAAAAAAAAAAAAAAAAAAAAAELiHQAAAAAAAAAAAAAAAAAAAAAQEu8AAAAAAAAAAAAAAAAAAAAAgJB4BwAAAAAAAAAAAAAAAAAAAACExDsAAAAAAAAAAAAAAAAAAAAAICTeAQAAAAAAAAAAAAAAAAAAAAAh8Q4AAAAAAAAAAAAAAAAAAAAACIl3AAAAAAAAAAAAAAAAAAAAAEBIvAMAAAAAAAAAAAAAAAAAAAAAQuIdAAAAAAAAAAAAAAAAAAAAABAS7wAAAAAAAAAAAAAAAAAAAACAkHgHAAAAAAAAAAAAAAAAAAAAAITEOwAAAAAAAAAAAAAAAAAAAAAgJN4BAAAAAAAAAAAAAAAAAAAAACHxDgAAAAAAAAAAAAAAAAAAAAAIiXcAAAAAAAAAAAAAAAAAAAAAQEi8AwAAAAAAAAAAAAAAAAAAAABC4h0AAAAAAAAAAAAAAAAAAAAAEBLvAAAAAAAAAAAAAAAAAAAAAICQeAcAAAAAAAAAAAAAAAAAAAAAhMQ7AAAAAAAAAAAAAAAAAAAAACAk3gEAAAAAAAAAAAAAAAAAAAAAIfEOAAAAAAAAAAAAAAAAAAAAAAiJdwAAAAAAAAAAAAAAAAAAAABASLwDAAAAAAAAAAAAAAAAAAAAAELiHQAAAAAAAAAAAAAAAAAAAAAQEu8AAAAAAAAAAAAAAAAAAAAAgJB4BwAAAAAAAAAAAAAAAAAAAACExDsAAAAAAAAAAAAAAAAAAAAAICTeAQAAAAAAAAAAAAAAAAAAAAAh8Q4AAAAAAAAAAAAAAAAAAAAACIl3AAAAAAAAAAAAAAAAAAAAAEBIvAMAAAAAAAAAAAAAAAAAAAAAQuIdAAAAAAAAAAAAAAAAAAAAABAS7wAAAAAAAAAAAAAAAAAAAACAkHgHAAAAAAAAAAAAAAAAAAAAAITEOwAAAAAAAAAAAAAAAAAAAAAgJN4BAAAAAAAAAAAAAAAAAAAAACHxDgAAAAAAAAAAAAAAAAAAAAAIiXcAAAAAAAAAAAAAAAAAAAAAQEi8AwAAAAAAAAAAAAAAAAAAAABC4h0AAAAAAAAAAAAAAAAAAAAAEBLvAAAAAAAAAAAAAAAAAAAAAICQeAcAAAAAAAAAAAAAAAAAAAAAhMQ7AAAAAAAAAAAAAAAAAAAAACAk3gEAAAAAAAAAAAAAAAAAAAAAIfEOAAAAAAAAAAAAAAAAAAAAAAiJdwAAAAAAAAAAAAAAAAAAAABASLwDAAAAAAAAAAAAAAAAAAAAAELiHQAAAAAAAAAAAAAAAAAAAAAQEu8AAAAAAAAAAAAAAAAAAAAAgJB4BwAAAAAAAAAAAAAAAAAAAACExDsAAAAAAAAAAAAAAAAAAAAAICTeAQAAAAAAAAAAAAAAAAAAAAAh8Q4AAAAAAAAAAAAAAAAAAAAACIl3AAAAAAAAAAAAAAAAAAAAAEBIvAMAAAAAAAAAAAAAAAAAAAAAQuIdAAAAAAAAAAAAAAAAAAAAABAS7wAAAAAAAAAAAAAAAAAAAACAkHgHAAAAAAAAAAAAAAAAAAAAAITEOwAAAAAAAAAAAAAAAAAAAAAgJN4BAAAAAAAAAAAAAAAAAAAAACHxDgAAAAAAAAAAAAAAAAAAAAAIiXcAAAAAAAAAAAAAAAAAAAAAQEi8AwAAAAAAAAAAAAAAAAAAAABC4h0AAAAAAAAAAAAAAAAAAAAAEBLvAAAAAAAAAAAAAAAAAAAAAICQeAcAAAAAAAAAAAAAAAAAAAAAhMQ7AAAAAAAAAAAAAAAAAAAAACAk3gEAAAAAAAAAAAAAAAAAAAAAIfEOAAAAAAAAAAAAAAAAAAAAAAiJdwAAAAAAAAAAAAAAAAAAAABASLwDAAAAAAAAAAAAAAAAAAAAAELiHQAAAAAAAAAAAAAAAAAAAAAQEu8AAAAAAAAAAAAAAAAAAAAAgJB4BwAAAAAAAAAAAAAAAAAAAACExDsAAAAAAAAAAAAAAAAAAAAAICTeAQAAAAAAAAAAAAAAAAAAAAAh8Q4AAAAAAAAAAAAAAAAAAAAACIl3AAAAAAAAAAAAAAAAAAAAAEBIvAMAAAAAAAAAAAAAAAAAAAAAQuIdAAAAAAAAAAAAAAAAAAAAABAS7wAAAAAAAAAAAAAAAAAAAACAkHgHAAAAAAAAAAAAAAAAAAAAAITEOwAAAAAAAAAAAAAAAAAAAAAgJN4BAAAAAAAAAAAAAAAAAAAAACHxDgAAAAAAAAAAAAAAAAAAAAAIiXcAAAAAAAAAAAAAAAAAAAAAQEi8AwAAAAAAAAAAAAAAAAAAAABC4h0AAAAAAAAAAAAAAAAAAAAAEBLvAAAAAAAAAAAAAAAAAAAAAICQeAcAAAAAAAAAAAAAAAAAAAAAhMQ7AAAAAAAAAAAAAAAAAAAAACAk3gEAAAAAAAAAAAAAAAAAAAAAIfEOAAAAAAAAAAAAAAAAAAAAAAiJdwAAAAAAAAAAAAAAAAAAAABASLwDAAAAAAAAAAAAAAAAAAAAAELiHQAAAAAAAAAAAAAAAAAAAAAQEu8AAAAAAAAAAAAAAAAAAAAAgJB4BwAAAAAAAAAAAAAAAAAAAACExDsAAAAAAAAAAAAAAAAAAAAAICTeAQAAAAAAAAAAAAAAAAAAAAAh8Q4AAAAAAAAAAAAAAAAAAAAACIl3AAAAAAAAAAAAAAAAAAAAAEBIvAMAAAAAAAAAAAAAAAAAAAAAQuIdAAAAAAAAAAAAAAAAAAAAABAS7wAAAAAAAAAAAAAAAAAAAACAkHgHAAAAAAAAAAAAAAAAAAAAAITEOwAAAAAAAAAAAAAAAAAAAAAgJN4BAAAAAAAAAAAAAAAAAAAAACHxDgAAAAAAAAAAAAAAAAAAAAAIiXcAAAAAAAAAAAAAAAAAAAAAQEi8AwAAAAAAAAAAAAAAAAAAAABC4h0AAAAAAAAAAAAAAAAAAAAAEBLvAAAAAAAAAAAAAAAAAAAAAICQeAcAAAAAAAAAAAAAAAAAAAAAhMQ7AAAAAAAAAAAAAAAAAAAAACAk3gEAAAAAAAAAAAAAAAAAAAAAIfEOAAAAAAAAAAAAAAAAAAAAAAiJdwAAAAAAAAAAAAAAAAAAAABASLwDAAAAAAAAAAAAAAAAAAAAAELiHQAAAAAAAAAAAAAAAAAAAAAQEu8AAAAAAAAAAAAAAAAAAAAAgJB4BwAAAAAAAAAAAAAAAAAAAACExDsAAAAAAAAAAAAAAAAAAAAAICTeAQAAAAAAAAAAAAAAAAAAAAAh8Q4AAAAAAAAAAAAAAAAAAAAACIl3AAAAAAAAAAAAAAAAAAAAAEBIvAMAAAAAAAAAAAAAAAAAAAAAQuIdAAAAAAAAAAAAAAAAAAAAABAS7wAAAAAAAAAAAAAAAAAAAACAkHgHAAAAAAAAAAAAAAAAAAAAAITEOwAAAAAAAAAAAAAAAAAAAAAgJN4BAAAAAAAAAAAAAAAAAAAAACHxDgAAAAAAAAAAAAAAAAAA4P/s3LEAAAAAwCB/6znsLpAAgEneAQAAAAAAAAAAAAAAAAAAAACTvAMAAAAAAAAAAAAAAAAAAAAAJnkHAAAAAAAAAAAAAAAAAAAAAEzyDgAAAAAAAAAAAAAAAAAAAACY5B0AAAAAAAAAAAAAAAAAAAAAMMk7AAAAAAAAAAAAAAAAAAAAAGCSdwAAAAAAAAAAAAAAAAAAAADAJO8AAAAAAAAAAAAAAAAAAAAAgEneAQAAAAAAAAAAAAAAAAAAAACTvAMAAAAAAAAAAAAAAAAAAAAAJnkHAAAAAAAAAAAAAAAAAAAAAEzyDgAAAAAAAAAAAAAAAAAAAACY5B0AAAAAAAAAAAAAAAAAAAAAMMk7AAAAAAAAAAAAAAAAAAAAAGCSdwAAAAAAAAAAAAAAAAAAAADAJO8AAAAAAAAAAAAAAAAAAAAAgEneAQAAAAAAAAAAAAAAAAAAAACTvAMAAAAAAAAAAAAAAAAAAAAAJnkHAAAAAAAAAAAAAAAAAAAAAEzyDgAAAAAAAAAAAAAAAAAAAACY5B0AAAAAAAAAAAAAAAAAAAAAMMk7AAAAAAAAAAAAAAAAAAAAAGCSdwAAAAAAAAAAAAAAAAAAAADAJO8AAAAAAAAAAAAAAAAAAAAAgEneAQAAAAAAAAAAAAAAAAAAAACTvAMAAAAAAAAAAAAAAAAAAAAAJnkHAAAAAAAAAAAAAAAAAAAAAEzyDgAAAAAAAAAAAAAAAAAAAACY5B0AAAAAAAAAAAAAAAAAAAAAMMk7AAAAAAAAAAAAAAAAAAAAAGCSdwAAAAAAAAAAAAAAAAAAAADAJO8AAAAAAAAAAAAAAAAAAAAAgEneAQAAAAAAAAAAAAAAAAAAAACTvAMAAAAAAAAAAAAAAAAAAAAAJnkHAAAAAAAAAAAAAAAAAAAAAEzyDgAAAAAAAAAAAAAAAAAAAACY5B0AAAAAAAAAAAAAAAAAAAAAMMk7AAAAAAAAAAAAAAAAAAAAAGCSdwAAAAAAAAAAAAAAAAAAAADAJO8AAAAAAAAAAAAAAAAAAAAAgEneAQAAAAAAAAAAAAAAAAAAAACTvAMAAAAAAAAAAAAAAAAAAAAAJnkHAAAAAAAAAAAAAAAAAAAAAEzyDgAAAAAAAAAAAAAAAAAAAACY5B0AAAAAAAAAAAAAAAAAAAAAMMk7AAAAAAAAAAAAAAAAAAAAAGCSdwAAAAAAAAAAAAAAAAAAAADAJO8AAAAAAAAAAAAAAAAAAAAAgEneAQAAAAAAAAAAAAAAAAAAAACTvAMAAAAAAAAAAAAAAAAAAAAAJnkHAAAAAAAAAAAAAAAAAAAAAEzyDgAAAAAAAAAAAAAAAAAAAACY5B0AAAAAAAAAAAAAAAAAAAAAMMk7AAAAAAAAAAAAAAAAAAAAAGCSdwAAAAAAAAAAAAAAAAAAAADAJO8AAAAAAAAAAAAAAAAAAAAAgEneAQAAAAAAAAAAAAAAAAAAAACTvAMAAAAAAAAAAAAAAAAAAAAAJnkHAAAAAAAAAAAAAAAAAAAAAEzyDgAAAAAAAAAAAAAAAAAAAACY5B0AAAAAAAAAAAAAAAAAAAAAMMk7AAAAAAAAAAAAAAAAAAAAAGCSdwAAAAAAAAAAAAAAAAAAAADAJO8AAAAAAAAAAAAAAAAAAAAAgEneAQAAAAAAAAAAAAAAAAAAAACTvAMAAAAAAAAAAAAAAAAAAAAAJnkHAAAAAAAAAAAAAAAAAAAAAEzyDgAAAAAAAAAAAAAAAAAAAACY5B0AAAAAAAAAAAAAAAAAAAAAMMk7AAAAAAAAAAAAAAAAAAAAAGCSdwAAAAAAAAAAAAAAAAAAAADAJO8AAAAAAAAAAAAAAAAAAAAAgEneAQAAAAAAAAAAAAAAAAAAAACTvAMAAAAAAAAAAAAAAAAAAAAAJnkHAAAAAAAAAAAAAAAAAAAAAEzyDgAAAAAAAAAAAAAAAAAAAACY5B0AAAAAAAAAAAAAAAAAAAAAMMk7AAAAAAAAAAAAAAAAAAAAAGCSdwAAAAAAAAAAAAAAAAAAAADAJO8AAAAAAAAAAAAAAAAAAAAAgEneAQAAAAAAAAAAAAAAAAAAAACTvAMAAAAAAAAAAAAAAAAAAAAAJnkHAAAAAAAAAAAAAAAAAAAAAEzyDgAAAAAAAAAAAAAAAAAAAACY5B0AAAAAAAAAAAAAAAAAAAAAMMk7AAAAAAAAAAAAAAAAAAAAAGCSdwAAAAAAAAAAAAAAAAAAAADAJO8AAAAAAAAAAAAAAAAAAAAAgEneAQAAAAAAAAAAAAAAAAAAAACTvAMAAAAAAAAAAAAAAAAAAAAAJnkHAAAAAAAAAAAAAAAAAAAAAEzyDgAAAAAAAAAAAAAAAAAAAACY5B0AAAAAAAAAAAAAAAAAAAAAMMk7AAAAAAAAAAAAAAAAAAAAAGCSdwAAAAAAAAAAAAAAAAAAAADAJO8AAAAAAAAAAAAAAAAAAAAAgEneAQAAAAAAAAAAAAAAAAAAAACTvAMAAAAAAAAAAAAAAAAAAAAAJnkHAAAAAAAAAAAAAAAAAAAAAEzyDgAAAAAAAAAAAAAAAAAAAACY5B0AAAAAAAAAAAAAAAAAAAAAMMk7AAAAAAAAAAAAAAAAAAAAAGCSdwAAAAAAAAAAAAAAAAAAAADAJO8AAAAAAAAAAAAAAAAAAAAAgEneAQAAAAAAAAAAAAAAAAAAAACTvAMAAAAAAAAAAAAAAAAAAAAAJnkHAAAAAAAAAAAAAAAAAAAAAEzyDgAAAAAAAAAAAAAAAAAAAACY5B0AAAAAAAAAAAAAAAAAAAAAMMk7AAAAAAAAAAAAAAAAAAAAAGCSdwAAAAAAAAAAAAAAAAAAAADAJO8AAAAAAAAAAAAAAAAAAAAAgEneAQAAAAAAAAAAAAAAAAAAAACTvAMAAAAAAAAAAAAAAAAAAAAAJnkHAAAAAAAAAAAAAAAAAAAAAEzyDgAAAAAAAAAAAAAAAAAAAACY5B0AAAAAAAAAAAAAAAAAAAAAMMk7AAAAAAAAAAAAAAAAAAAAAGCSdwAAAAAAAAAAAAAAAAAAAADAJO8AAAAAAAAAAAAAAAAAAAAAgEneAQAAAAAAAAAAAAAAAAAAAACTvAMAAAAAAAAAAAAAAAAAAAAAJnkHAAAAAAAAAAAAAAAAAAAAAEzyDgAAAAAAAAAAAAAAAAAAAACY5B0AAAAAAAAAAAAAAAAAAAAAMMk7AAAAAAAAAAAAAAAAAAAAAGCSdwAAAAAAAAAAAAAAAAAAAADAJO8AAAAAAAAAAAAAAAAAAAAAgEneAQAAAAAAAAAAAAAAAAAAAACTvAMAAAAAAAAAAAAAAAAAAAAAJnkHAAAAAAAAAAAAAAAAAAAAAEzyDgAAAAAAAAAAAAAAAAAAAACY5B0AAAAAAAAAAAAAAAAAAAAAMMk7AAAAAAAAAAAAAAAAAAAAAGCSdwAAAAAAAAAAAAAAAAAAAADAJO8AAAAAAAAAAAAAAAAAAAAAgEneAQAAAAAAAAAAAAAAAAAAAACTvAMAAAAAAAAAAAAAAAAAAAAAJnkHAAAAAAAAAAAAAAAAAAAAAEzyDgAAAAAAAAAAAAAAAAAAAACY5B0AAAAAAAAAAAAAAAAAAAAAMMk7AAAAAAAAAAAAAAAAAAAAAGCSdwAAAAAAAAAAAAAAAAAAAADAJO8AAAAAAAAAAAAAAAAAAAAAgEneAQAAAAAAAAAAAAAAAAAAAACTvAMAAAAAAAAAAAAAAAAAAAAAJnkHAAAAAAAAAAAAAAAAAAAAAEzyDgAAAAAAAAAAAAAAAAAAAACY5B0AAAAAAAAAAAAAAAAAAAAAMMk7AAAAAAAAAAAAAAAAAAAAAGCSdwAAAAAAAAAAAAAAAAAAAADAJO8AAAAAAAAAAAAAAAAAAAAAgEneAQAAAAAAAAAAAAAAAAAAAACTvAMAAAAAAAAAAAAAAAAAAAAAJnkHAAAAAAAAAAAAAAAAAAAAAEzyDgAAAAAAAAAAAAAAAAAAAACY5B0AAAAAAAAAAAAAAAAAAAAAMMk7AAAAAAAAAAAAAAAAAAAAAGCSdwAAAAAAAAAAAAAAAAAAAADAJO8AAAAAAAAAAAAAAAAAAAAAgEneAQAAAAAAAAAAAAAAAAAAAACTvAMAAAAAAAAAAAAAAAAAAAAAJnkHAAAAAAAAAAAAAAAAAAAAAEzyDgAAAAAAAAAAAAAAAAAAAACY5B0AAAAAAAAAAAAAAAAAAAAAMMk7AAAAAAAAAAAAAAAAAAAAAGCSdwAAAAAAAAAAAAAAAAAAAADAJO8AAAAAAAAAAAAAAAAAAAAAgEneAQAAAAAAAAAAAAAAAAAAAACTvAMAAAAAAAAAAAAAAAAAAAAAJnkHAAAAAAAAAAAAAAAAAAAAAEzyDgAAAAAAAAAAAAAAAAAAAACY5B0AAAAAAAAAAAAAAAAAAAAAMMk7AAAAAAAAAAAAAAAAAAAAAGCSdwAAAAAAAAAAAAAAAAAAAADAJO8AAAAAAAAAAAAAAAAAAAAAgEneAQAAAAAAAAAAAAAAAAAAAACTvAMAAAAAAAAAAAAAAAAAAAAAJnkHAAAAAAAAAAAAAAAAAAAAAEzyDgAAAAAAAAAAAAAAAAAAAACY5B0AAAAAAAAAAAAAAAAAAAAAMMk7AAAAAAAAAAAAAAAAAAAAAGCSdwAAAAAAAAAAAAAAAAAAAADAJO8AAAAAAAAAAAAAAAAAAAAAgEneAQAAAAAAAAAAAAAAAAAAAACTvAMAAAAAAAAAAAAAAAAAAAAAJnkHAAAAAAAAAAAAAAAAAAAAAEzyDgAAAAAAAAAAAAAAAAAAAACY5B0AAAAAAAAAAAAAAAAAAAAAMMk7AAAAAAAAAAAAAAAAAAAAAGCSdwAAAAAAAAAAAAAAAAAAAADAJO8AAAAAAAAAAAAAAAAAAAAAgEneAQAAAAAAAAAAAAAAAAAAAACTvAMAAAAAAAAAAAAAAAAAAAAAJnkHAAAAAAAAAAAAAAAAAAAAAEzyDgAAAAAAAAAAAAAAAAAAAACY5B0AAAAAAAAAAAAAAAAAAAAAMMk7AAAAAAAAAAAAAAAAAAAAAGCSdwAAAAAAAAAAAAAAAAAAAADAJO8AAAAAAAAAAAAAAAAAAAAAgEneAQAAAAAAAAAAAAAAAAAAAACTvAMAAAAAAAAAAAAAAAAAAAAAJnkHAAAAAAAAAAAAAAAAAAAAAEzyDgAAAAAAAAAAAAAAAAAAAACY5B0AAAAAAAAAAAAAAAAAAAAAMMk7AAAAAAAAAAAAAAAAAAAAAGCSdwAAAAAAAAAAAAAAAAAAAADAJO8AAAAAAAAAAAAAAAAAAAAAgEneAQAAAAAAAAAAAAAAAAAAAACTvAMAAAAAAAAAAAAAAAAAAAAAJnkHAAAAAAAAAAAAAAAAAAAAAEzyDgAAAAAAAAAAAAAAAAAAAACY5B0AAAAAAAAAAAAAAAAAAAAAMMk7AAAAAAAAAAAAAAAAAAAAAGCSdwAAAAAAAAAAAAAAAAAAAADAJO8AAAAAAAAAAAAAAAAAAAAAgEneAQAAAAAAAAAAAAAAAAAAAACTvAMAAAAAAAAAAAAAAAAAAAAAJnkHAAAAAAAAAAAAAAAAAAAAAEzyDgAAAAAAAAAAAAAAAAAAAACY5B0AAAAAAAAAAAAAAAAAAAAAMMk7AAAAAAAAAAAAAAAAAAAAAGCSdwAAAAAAAAAAAAAAAAAAAADAJO8AAAAAAAAAAAAAAAAAAAAAgEneAQAAAAAAAAAAAAAAAAAAAACTvAMAAAAAAAAAAAAAAAAAAAAAJnkHAAAAAAAAAAAAAAAAAAAAAEzyDgAAAAAAAAAAAAAAAAAAAACY5B0AAAAAAAAAAAAAAAAAAAAAMMk7AAAAAAAAAAAAAAAAAAAAAGCSdwAAAAAAAAAAAAAAAAAAAADAJO8AAAAAAAAAAAAAAAAAAAAAgEneAQAAAAAAAAAAAAAAAAAAAACTvAMAAAAAAAAAAAAAAAAAAAAAJnkHAAAAAAAAAAAAAAAAAAAAAEzyDgAAAAAAAAAAAAAAAAAAAACY5B0AAAAAAAAAAAAAAAAAAAAAMMk7AAAAAAAAAAAAAAAAAAAAAGCSdwAAAAAAAAAAAAAAAAAAAADAJO8AAAAAAAAAAAAAAAAAAAAAgEneAQAAAAAAAAAAAAAAAACxc4dAcZ1rHIffmbsCEYFAICIqIhCIKxARFYjIiIgKRERERQUCgajITHduxZUIRCQiogIRUVFREVEREVGBiKiIiEDkziAiEMzc3HcvyQykgf3Oy55lWZ4n858ayn6cT56dHwAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAAQJF4BwAAAAAAAAAAAAAAAAAAAAAUiXcAAAAAAAAAAAAAAAAAAAAA3EDLufXck9x2bnhm3+e+y63mBh5Vr8Q7AAAAAAAAAAAAAAAAAAAAAG6ApdxGbi/3NtpDECe5P3I/x2nMg8kS7wAAAAAAAAAAAAAAAAAAAACYYaPgxrPch5hMGOLP3HZu0aOdCPEOAAAAAAAAAAAAAAAAAAAAgBn0TW4vdxL9BCLe537ILXjUVyLeAQAAAAAAAAAAAAAAAAAAADBjHueOop8wxJd7k1vxyMvEOwAAAAAAAAAAAAAAAAAAAABmyE5MJ9pxdh9yGx59iXgHAAAAAAAAAAAAAAAAAAAAwIx4EdMPd5zdj66gM/EOAAAAAAAAAAAAAAAAAAAAgBnwLK433PF5W66iE/EOAAAAAAAAAAAAAAAAAAAAgGs2CmZ0DTwc5nZzG7mV3ODM77ub+y7379zbwu9+6EqaiXcAAAAAAAAAAAAAAAAAAAAAXKP13Em0hx0Ock9yC42/f/Dp5//q8Bnvc0uupol4BwAAAAAAAAAAAAAAAAAAAMA1GYU1/oz2qMNOtEc7vjT6/553+Kx919NEvAMAAAAAAAAAAAAAAAAAAADgmmxFe9Bhc0KfOezwmauuaCzxDgAAAAAAAAAAAAAAAAAAAIBrcCf3LtpiDtsT/uwXjZ+775rGEu8AAAAAAAAAAAAAAAAAAAAAuAY/RlvI4WVuMOHPXoj2cMiSq7qUeAcAAAAAAAAAAAAAAAAAAADANXgTbSGHtZ4+f7Px87dc1aXEOwAAAAAAAAAAAAAAAAAAAACm7H60RRxe9HiGhdz7hjP87rouJd4BAAAAAAAAAAAAAAAAAAAAMGW70RZxWO/5HPsNZzjKDVzZhcQ7AAAAAAAAAAAAAAAAAAAAAKbsIMYHHA6mcI6taItJ3HVlFxLvAAAAAAAAAAAAAAAAAAAAAJiixdxJjA847E7hLA+iLSax5touJN4BAAAAAAAAAAAAAAAAAAAAMEXfRlu8Y2MKZ1mPtpjEumu7kHgHAAAAAAAAAAAAAAAAAAAAwJQt5h7kvs/t5l7ljuN8wGF5Cud4EOIdVyXeAQAAAAAAAAAAAAAAAAAAADADFnJruUe5p1P6zMfRFpP4p+u5kHgHAAAAAAAAAAAAAAAAAAAAwC21HW0xiWWP6kLiHQAAAAAAAAAAAAAAAAAAAAC31MsYH5J45zFdSrwDAAAAAAAAAAAAAAAAAAAA4Ba6kzuK8SGJfY/qUuIdAAAAAAAAAAAAAAAAAAAAALfQ02gLSTzyqC4l3gEAAAAAAAAAAAAAAAAAAABwyyznjmJ8ROJdbuBxXUq8AwAAAAAAAAAAAAAAAAAAAOAWWci9jraIxLbHNZZ4BwAAAAAAAAAAAAAAAAAAAMAtsZx7FW0Bib9ydzyyscQ7AAAAAAAAAAAAAAAAAAAAAG6BjdxhtMUjTnL3PbIm4h0AAAAAAAAAAAAAAAAAAAAAc2qQe5g7iG7xiB88umbiHQAAAAAAAAAAAAAAAAAAAABz5tvcMPc2uocjfrxhf+sw+gloXOcAAAAAAAAAAAAAAAAAAAAAmIIXub1P+zX3KvchasGIk9zmDXwGwxDvAAAAAAAAAAAAAAAAAAAAAKCjuzG5WMSb3NoNfQ7DEO8AAAAAAAAAAAAAAAAAAAAAoKNv4+qRiKPcZm5wg5/DMMQ7AAAAAAAAAAAAAAAAAAAAAOjocVw9EvH80+9ZvMHPYRjiHQAAAAAAAAAAAAAAAAAAAAB09DQmF4s4yu3m7t3A5zAM8Q4AAAAAAAAAAAAAAAAAAAAAOnoWk49GnOR2cks36DkMQ7wDAAAAAAAAAAAAAAAAAAAAgI5+i/7iEYe59RvyHIYh3gEAAAAAAAAAAAAAAAAAAABAR29yH3Kvcju5H3IP4zS6Mfrvk9zTOI18jH6ua0Di5NPvmHXDEO8AAAAAAAAAAAAAAAAAAAAAoKP7uYXGnx3EadBjFProGpJ4OOPPYRjiHQAAAAAAAAAAAAAAAAAAAABMyVbuQ7SHJI7jNBQyq4Yh3gEAAAAAAADz6WNs5YZX3nH8ayK/5+P/37cCAAAAAAAAAABA3MsdRHtM4m3uzoz+LcMQ7wAAAAAAAID59DHe5q7275fc0ZV/y+d/b10KAAAAAAAAAAAAny3mXkd7UGJnRv+OYYh3AAAAAAAAwHy6arzjZW5lYuEO8Q4AAAAAAAAAAAD+Zjl3GG1BiZPcvRn8G4Yh3gEAAAAAAADz6Srxjr9yS7lH4h0AAAAAAAAAAAD062G0RyV+nsHzD0O8AwAAAAAAAOZTNd5xlFv59P5tV7wDAAAAAAAAAACA/u1FW1TiKLcwY2cfhngHAAAAAAAAzKdKvOMkt37m/duBeAcAAAAAAAAAAAD9W86dRFtYYm3Gzj4M8Q4AAAAAAACYT5V4x+aZd2+DTzEP8Q4AAAAAAAAAAACm4LdoC0tsz9i5hyHeAQAAAAAAAPOpa7xj54t3b2sTDXeIdwAAAAAAAAAAAHCpzWgLS+zP2LmHId4BAAAAAAAA86lLvGM3N/ji3du2eAcAAAAAAAAAAADTsxptYYmDGTv3MMQ7AAAAAAAAYD61xjt+/Uq4Y7SX4h0AAAAAAAAAAABMz0K0hSUOZ+zcP4V4BwAAAAAAAMynlnjHm9ziBe/eDsU7AAAAAAAAAAAAmK4PIS7RlXgHAAAAAAAA9GVcvOMot3LBe7dvJh7uEO8AAAAAAAAAAABgrNEXzcQluhHvAAAAAAAAgL5cFu84zt2/5L3bE/EOAAAAAAAAAACA22ohN7imzxbv6E68AwAAAAAAAPpyWbxjY8x7tz3xDgAAAAAAAAAAgHm2lFvLbeSGuee533OHcfpFstVrOtdxjA9LHLq+c8Q7AAAAAAAAoC8XxTt+anjv9lq8AwAAAAAAAAAAYB7di7ZAxtY1nG0h2sISvox2nngHAAAAAAAA9OVr8Y793GDMO7c7uWPxDgAAAAAAAAAAgHm0mDuJ8fGGvWs422q0hSV+c43niHcAAAAAAABAX76Md7zKLTS8c3vQS7hDvAMAAAAAAAAAAGBGvInx8YbjOA19TNNWtIUlhq7wHPEOAAAAAAAA6MvZeMe73N3Gd24/i3cAAAAAAAAAAADMs71oCzh8N+VzvWo81wNXeI54BwAAAAAAAPTlc7zjKLfa4Z3bvngHAAAAAAAAAADAPHsSbV8oezHFM63kThrOdJxbdIXniHcAAAAAAABAXz7HOx52fOf2XrwDAAAAAAAAAABgnt2LtlDGaCtTOtN+zF5Q5KYQ7wAAAAAAAIC+jGIZWx3ft632Fu4Q7wAAAAAAAAAAAJghL6Pti2W/TOEs96M9JrLu6v5GvAMAAAAAAAD6shP/ia7v2zbFOwAAAAAAAAAAAG6DJ9H+5bL7PZ5jIfdn4zn+cG1fJd4BAAAAAAAA/Xgc/4j/Rtf3bTviHQAAAAAAAAAAALfBKJrxLtq+XDb68tdST+f4Ndq/5PbItX2VeAcAAAAAAABM3nruOCrv216LdwAAAAAAAAAAANwW30f7F8xe5+5M8LNH8ZBfOnz+H7mBK/sq8Q4AAOB/7N0vbFxnvsfhH4h0BxQEFBgEGAwwMLCuAgIWGBQUXFAQELDAoCAg4IKCgJVqaUGuFBAQEBAwICDAIMCgYIFBQUBAQUFBgYFBQUBAwKx0pPX9nWTcJo7/zIxnXs95z/Osvlppteo7857DxvoUAAAAWKz13NuY57e2r3ONeAcAAAAAAAAAAEBftDGMX2P6PzR7nft6Aee2/4yDGc59n9vwuM4l3gEAAAAAAACLczP3W8z7W9t3Sw13iHcAAAAAAAAAAACsoK3cOKb/Y7Pfc99d4by7ucOY7Q/cHnhMFxLvAAAAAAAAgMVo/wUIs/yLCL7cQ/EOAAAAAAAAAACAPmrjGLP+0dnPuXvx8Y/XLvN17n7uzRznPPN4LiXeAQAAAAAAAIvxPK76W9u+eAcAAAAAAAAAAEBfPYr5/vjsfXwMeTzJfZ/bmfz3w8n/1gY7mjn/2S9jujhI34l3AAAAAAAAwNW1v3Fe7Xe2G7l34h0AAAAAAAAAAAB99iyWE4KYZ+1nGXgkUxHvAAAAAAAAgKv5Lub/lxL8ta2lhzvEOwAAAAAAAAAAADpgFQIej3M3PIqpiXcAAAAAAADA/LZy72IRv7PtiHcAAAAAAAAAAADw0fe5cZSPdrRn/t31z0y8AwAAAAAAAOYzzL2NRf3ONhLvAAAAAAAAAAAA4C+3c2+iXLjjp/j4h3HMTrwDAAAAAAAAZncz92ss8ne2Q/EOAAAAAAAAAAAAPncj97+5o1hetOOX3B1XfSXiHQAAAAAAADCbQe4gFvkb21qRcId4BwAAAAAAAAAAQEe1EY//yf2Ua+Lqf7jWxkCexMdoxw3Xe2XiHQAAAAAAADCbF7Ho39i2xTsAAAAAAAAAAACYzlp8DHk8zr3OjePyP1T7Y/L/3c39LQQ7Fk28AwAAAAAAAKa3G8v4je1H8Q4AAAAAAAAAAADm93VuK7d9asPcV65n6cQ7AAAAAAAAYDr3ck0s4ze2A/EOAAAAAAAAAAAA6CrxDgAAAAAAALjcdm4cy/l97Tj/yeIdAAAAAAAAAAAA0FHiHQAAAAAAAHCxjdzbWFa4Y71YuEO8AwAAAAAAAAAAAJZAvAMAAAAAAADOt5ZrgxfHS9uOeAcAAAAAAAAAAAB0mXgHAAAAAAAAnG2QO4hlhjvajcQ7AAAAAAAAAAAAoMvEOwAAAAAAAOBsL2LZ4Y52v4l3AAAAAAAAAAAAQJeJdwAAAAAAAMCXHkWJcMcgNxbvAAAAAAAAAAAAgC4T7wAAAAAAAIDP7USJcEe77aLhDvEOAAAAAAAAAAAAWALxDgAAAAAAAPjLdm4cpeIdP4p3AAAAAAAAAAAAQNeJdwAAAAAAAMBHG7m3USrc0e4n8Q4AAAAAAAAAAADoOvEOAAAAAAAAiFjLtWGL46I7FO8AAAAAAAAAAACArhPvAAAAAAAAoO8GuTdROtyxXjzcId4BAAAAAAAAAAAASyDeAQAAAAAAQN+9iNLhjnY74h0AAAAAAAAAAABQA/EOAAAAAAAA+uxRXEe4o90z8Q4AAAAAAAAAAACogXgHAAAAAAAAfXU/rivc0e5AvAMAAAAAAAAAAABqIN4BAAAAAABAH23nmriucMcgNxbvAAAAAAAAAAAAgBqIdwAAAAAAANA3G7m3cV3hjnbb1xLuEO8AAAAAAAAAAACAJRDvAAAAAAAAoE/Wcm3A4vha91C8AwAAAAAAAAAAAGoh3gEAAAAAAEBfDHJv4rrDHe1G4h0AAAAAAAAAAABQC/EOAAAAAAAA+uJVrEK4Iz4kNMQ7AAAAAAAAAAAAoBLiHQAAAAAAAPTBo1iVcMf6tYU7xDsAAAAAAAAAAABgCcQ7AAAAAAAAqN39WJVwR7t74h0AAAAAAAAAAABQE/EOAAAAAAAAavZtrolVinf8KN4BAAAAAAAAAAAANRHvAAAAAAAAoFYbuXexSuGOdgfiHQAAAAAAAAAAAFAT8Q4AAAAAAABqtJZrQxWrFe4Y5MbiHQAAAAAAAAAAAFAT8Q4AAAAAAABqM8i9iVULd7S7c63hDvEOAAAAAAAAAAAAWALxDgAAAAAAAGrzKlYx3NFuR7wDAAAAAAAAAAAAaiPeAQAAAAAAQE2exaqGO9qNxDsAAAAAAAAAAACgNuIdAAAAAAAA1OL7WOVwR3xIZ4h3AAAAAAAAAAAAQGXEOwAAAAAAAKjBN7lxrHK4Y/3awx3iHQAAAAAAAAAAALAE4h0AAAAAAAB03TD3LlY53NHuW/EOAAAAAAAAAAAAqJF4BwAAAAAAAF12K9cGKY5Xfj+KdwAAAAAAAAAAAECNxDsAAAAAAADoqkHudXQh3NHuQLwDAAAAAAAAAAAAaiTeAQAAAAAAQFeNoivhjkFuLN4BAAAAAAAAAAAANRLvAAAAAAAAoIseR1fCHe3urES4Q7wDAAAAAAAAAAAAlkC8AwAAAAAAgK75ProU7mi3I94BAAAAAAAAAAAAtRLvAAAAAAAAoEvu5MbRtXjHSLwDAAAAAAAAAAAAaiXeAQAAAAAAQFds5t5G18Id8SGZId4BAAAAAAAAAAAAlRLvAAAAAAAAoAtu5n6LLoY71lcm3CHeAQAAAAAAAAAAAEsg3gEAAAAAAMCqG+QOoovhjnbfincAAAAAAAAAAABAzcQ7AAAAAAAAWHV70dVwR7sfxTsAAAAAAAAAAACgZuIdAAAAAAAArLLd6HK4o92BeAcAAAAAAAAAAADUTLwDAAAAAACAVbWTa6LL4Y7/iv/EWLwDAAAAAAAAAAAAaibeAQAAAAAAwCrazo2jy+GOdv8d/16pdId4BwAAAAAAAAAAACyceAcAAAAAAACr5lbubXQ93NHuXrwX7wAAAAAAAAAAAIC6iXcAAAAAAACwStZyv0QN4Y52z+KteAcAAAAAAAAAAADUTbwDAAAAAACAVTHIHUQt4Y52v8eReAcAAAAAAAAAAADUTbwDAAAAAACAVfEiagp3RBx+iGWIdwAAAAAAAAAAAEDVxDsAAAAAAABYBU+irnBHu5fiHQAAAAAAAAAAAFA/8Q4AAAAAAACu291cE/XFO3bFOwAAAAAAAAAAAKB+4h0AAAAAAABcp29y46gv3NFuW7wDAAAAAAAAAAAA6ifeAQAAAAAAwHXZzL2NOsMdbZBkIN4BAAAAAAAAAAAA9RPvAAAAAAAA4DrczP0WdYY72h18+JbiHQAAAAAAAAAAAFA98Q4AAAAAAABKG+TeRL3hjnbPPnxT8Q4AAAAAAAAAAAConngHAAAAAAAApb2IusMd7XY+fFPxDgAAAAAAAAAAAKieeAcAAAAAAAAl/RD1hzvarX/4tuIdAAAAAAAAAAAAUD3xDgAAAAAAAEq5n2ui/nDHX4EM8Q4AAAAAAAAAAAConngHAAAAAAAAJWznxlF/uKPdyz+/tXgHAAAAAAAAAAAAVE+8AwAAAAAAgGW7lTuKfoQ72u3++c3FOwAAAAAAAAAAAKB64h0AAAAAAAAs01ru9+hPuKPd9p/fXrwDAAAAAAAAAAAAqifeAQAAAAAAwLIMcgfRr3DHePK9PxLvAAAAAAAAAAAAgOqJdwAAAAAAALAso+hXuKPdm89uQLwDAAAAAAAAAAAAqifeAQAAAAAAwDI8jv6FO9o9+ewWxDsAAAAAAAAAAACgeuIdAAAAAAAALNrdXBP9jHfsfHYT4h0AAAAAAAAAAABQPfEOAAAAAAAAFulObhz9DHe0G352G+IdAAAAAAAAAAAAUD3xDgAAAAAAABblVq6NQ/Q13PE2d+OzGxHvAAAAAAAAAAAAgOqJdwAAAAAAALAIN3O/RX/DHe1++uJWxDsAAAAAAAAAAACgeuIdAAAAAAAAXNWN3Ovod7ij3cMvbka8AwAAAAAAAAAAAKon3gEAAAAAAMBVPQ/hjnZbX9yMeAcAAAAAAAAAAABUT7wDAAAAAACAq9gN0Y5249zgi9sR7wAAAAAAAAAAAIDqiXcAAAAAAAAwr/sh2nGyn8+8IfEOAAAAAAAAAAAAqJ54BwAAAAAAAPPYzo1DtONkT868JfEOAAAAAAAAAAAAqJ54BwAAAAAAALMa5t6GYMenu3fmTYl3AAAAAAAAAAAAQPXEOwAAAAAAAJjFjdwvIdZxerfOvC3xDgAAAAAAAAAAAKieeAcAAAAAAADTasMd+yHUcXrnBzHEOwAAAAAAAAAAAKB64h0AAAAAAABM62kIdZy1l+femHgHAAAAAAAAAAAAVE+8AwAAAAAAgGk8CJGO8/bDubcm3gEAAAAAAAAAAADVE+8AAAAAAADgMt/mxiHScd7unHtz4h0AAAAAAAAAAABQPfEOAAAAAAAALvK3EO64aO3dDM69PfEOAAAAAAAAAAAAqJ54BwAAAAAAAOdZzx2FQMdF+/nCGxTvAAAAAAAAAAAAgOqJdwAAAAAAAHCWr3K/hjjHZXty4S2KdwAAAAAAAAAAAED1xDsAAAAAAAA4bZD7KYQ5ptndC29SvAMAAAAAAAAAAACqJ94BAAAAAADAaXshyjHtbl14k+IdAAAAAAAAAAAAUD3xDgAAAAAAAD61G4Ic0+7o0tsU7wAAAAAAAAAAAIDqiXcAAAAAAABw4l6uCVGOaffq0hsV7wAAAAAAAAAAAIDqiXcAAAAAAADQ2sy9C0GOWfbDpbd6HHdy2yu0O151AAAAAAAAAAAAWCzxDgAAAAAAAG7lDkOMY9YJYQAAAAAAAAAAAADiHQAAAAAAAD33Ve6XEOKYdePcwOsDAAAAAAAAAAAAiHcAAAAAAAD0214Iccyz114dAAAAAAAAAAAAoCXeAQAAAAAA0F+PQ4Rj3j31+gAAAAAAAAAAAAAt8Q4AAAAAAIB+ehgCHFfZPa8QAAAAAAAAAAAA0BLvAAAAAAAA6J+7uSYEOK6yda8RAAAAAAAAAAAA0BLvAAAAAAAA6Jet3LsQ37jKDr1GAAAAAAAAAAAAwAnxDgAAAAAAgP5Yyx2F+MZVN/IqAQAAAAAAAAAAACfEOwAAAAAAAPphkHsdwhuL2EOvEwAAAAAAAAAAAHBCvAMAAAAAAKB+N3L7IbqxqG17pQAAAAAAAAAAAIAT4h0AAAAAAAD1exqCG4vaODfwSgEAAAAAAAAAAAAnxDsAAAAAAADq9jAENxa5A68UAAAAAAAAAAAA8CnxDgAAAAAAgHrdzTUhuLHIPfJaAQAAAAAAAAAAAJ8S7wAAAAAAAKjT7dz7ENtY9Ha8WgAAAAAAAAAAAMCnxDsAAAAAAADqs5Y7CqGNZWzd6wUAAAAAAAAAAAB8SrwDAAAAAACgLjdzv4TIxjJ26PUCAAAAAAAAAAAAThPvAAAAAAAAqMu/QmRjWRt5vQAAAAAAAAAAAIDTxDsAAAAAAADq8TwENpa5h14xAAAAAAAAAAAA4DTxDgAAAAAAgDrczr0LgY1lbttrBgAAAAAAAAAAAJwm3gEAAAAAAFCPm7ndEPFYxsa5gVcMAAAAAAAAAAAAOE28AwAAAAAAoD5txOOfufchurGoHXitAAAAAAAAAAAAgLOIdwAAAAAAANRrLfc4RDwWsUdeJwAAAAAAAAAAAOAs4h0AAAAAAAD1ayMeu7mjEOGYdzteIwAAAAAAAAAAAOAs4h0AAAAAAAD9Mcg9CBGPebbu9QEAAAAAAAAAAADOIt4BAAAAAADQP23E44fcuxDlmGaHXhkAAAAAAAAAAADgPOIdAAAAAAAA/XUztxsiHpdt5FUBAAAAAAAAAAAAziPeAQAAAAAAgIjHxbvvFQEAAAAAAAAAAADOI94BAAAAAADACRGPs7ft1QAAAAAAAAAAAADOI94BAAAAAADAaW3E41HufQh3jHMDrwQAAAAAAAAAAABwHvEOAAAAAAAAzrOWexz9jngceA0AAAAAAAAAAACAi4h3AAAAAAAAcJk24vEwdxT9i3fsevwAAAAAAAAAAADARcQ7AAAAAAAAmNYg9yD6FfG457EDAAAAAAAAAAAAFxHvAAAAAAAAYFZtxONJ7j9Rf7xj3eMGAAAAAAAAAAAALiLeAQAAAAAAwDxeRf3hjkOPGQAAAAAAAAAAALiMeAcAAAAAAACz2oz6wx3tRh41AAAAAAAAAAAAcBnxDgAAAAAAAGa1F/2Id9z3qAEAAAAAAAAAAIDLiHcAAAAAAAAwi61cE/2Id2x73AAAAAAAAAAAAMBlxDsAAAAAAACYxSj6Ee4Y5wYeNwAAAAAAAAAAAHAZ8Q4AAAAAAACmtZFroh/xjjceNwAAAAAAAAAAADAN8Q4AAAAAAACmtRf9CHe0e+ZxAwAAAAAAAAAAANMQ7wAAAAAAAGAam7km+hPv+LtHDgAAAAAAAAAAAExDvAMAAAAAAIBpjKI/4Y52X3vkAAAAAAAAAAAAwDTEOwAAAAAAALjMZq6J/oQ7jjxyAAAAAAAAAAAAYFriHQAAAAAAAFzmefQn3NFu3yMHAAAAAAAAAAAApiXeAQAAAAAAwEXWc+MoH9D4v9xRXE+84x8eOwAAAAAAAAAAADAt8Q4AAAAAAAAu8iLKxzP2J2cPcg+ifMTjW48dAAAAAAAAAAAAmJZ4BwAAAAAAAOfZzDVRPt5x+9TnOIl4/FHg7Pe5Gx49AAAAAAAAAAAAMC3xDgAAAAAAAM4zivLhjv0LPs/XucfxMbCxrPN/9tgBAAAAAAAAAACAWYh3AAAAAAAAcJZhrony8Y7bU3y2NuLxz9y7JZz/zKMHAAAAAAAAAAAAZiHeAQAAAAAAwFn2ony4Y3/Gz3gztxuLjXh879EDAAAAAAAAAAAAsxDvAAAAAAAA4LSNXBPl4x235/y8i4x43Pb4AQAAAAAAAAAAgFmIdwAAAAAAAHDaKMqHO54v4HO3EY9/5P6Y8zMc5m54/AAAAAAAAAAAAMAsxDsAAAAAAAD41EauifLxjq0FfodB7kHuaMbPsOfxAwAAAAAAAAAAALMS7wAAAAAAAOBTT6N8uOP5kr7LrBGPhx4/AAAAAAAAAAAAMCvxDgAAAAAAAE4Mc+MoH+/YWvL3aiMeu7l3l3yOb7wCAAAAAAAAAAAAwKzEOwAAAAAAADgxivLhjlHB73czLo54rHkFAAAAAAAAAAAAgFmJdwAAAAAAANAa5pooG+5oJueWdhLxePvJZ3njFQAAAAAAAAAAAADmId4BAAAAAABAaxRlwx3HkzOv0yD3IHeUe+oVAAAAAAAAAAAAAOYh3gEAAAAAAMAw10TZcEczOXcVtBGPW14DAAAAAAAAAAAAYB7iHQAAAAAAAIyibLjjeHImAAAAAAAAAAAAQOeJdwAAAAAAAPTbMNdE2XBHMzkXAAAAAAAAAAAAoPPEOwAAAAAAAPptFGXDHceTMwEAAAAAAAAAAACqIN4BAAAAAADQX8NcE2XDHc3kXAAAAAAAAAAAAIAqiHcAAAAAAAD01yjKhjuOJ2cCAAAAAAAAAAAAVEO8AwAAAAAAoJ+GuSbKhjuaybkAAAAAAAAAAAAA1RDvAAAAAAAA6KdRlA13HE/OBAAAAAAAAAAAAKiKeAcAAAAAAED/DHNNlA13NJNzAQAAAAAAAAAAAKoi3gEAAAAAANA/oygb7jienAkAAAAAAAAAAABQHfEOAAAAAACAfhnmmigb7mgm5wIAAAAAAAAAAABUR7wDAAAAAACgX0ZRNtxxPDkTAAAAAAAAAAAAoEriHQAAAAAAAP0xzDVRNtzRTM4FAAAAAAAAAAAAqJJ4BwAAAAAAQH+Momy443hyJgAAAAAAAAAAAEC1xDsAAAAAAAD6YZhromy4o5mcCwAAAAAAAAAAAFAt8Q4AAAAAAIB+GEXZcMfx5EwAAAAAAAAAAACAqol3AAAAAAAA1G+Ya6JsuKOZnAsAAAAAAAAAAABQNfEOAAAAAACA+o2ibLjjeHImAAAAAAAAAAAAQPXEOwAAAAAAAOo2zDVRNtzRTM4FAAAAAAAAAAAAqJ54BwAAAAAAQN1GUTbccTw5EwAAAAAAAAAAAKAXxDsAAAAAAADqNcw1UTbc0UzOBQAAAAAAAAAAAOgF8Q4AAAAAAIB6jaJsuON4ciYAAAAAAAAAAABAb4h3AAAAAAAA1GmYa6JsuKOZnAsAAAAAAAAAAADQG+IdAAAAAAAAdRpF2XDH8eRMAAAAAAAAAAAAgF4R7wAAAAAAAKjPMNdE2XBHMzkXAAAAAAAAAAAAoFfEOwAAAAAAAOozirLhjuPJmZx2HC9zByu0lx4KAAAAAAAAAAAALJZ4BwAAAAAAQF2GuSbKhjuaybmcdhyHuVX6z6GHAgAAAAAAAAAAAIsl3gEAAAAAAFCXUZQNdxxPzuQs4h0AAAAAAAAAAABQPfEOAAAAAACAegxzTZQNdzSTczmLeAcAAAAAAAAAAABUT7wDAAAAAACgHs+ibLij3ci1X0C8AwAAAAAAAAAAAKon3gEAAAAAAFCHjVwT5eMdG67+AuIdAAAAAAAAAAAAUD3xDgAAAAAAgDq8iPLhjn3XfgnxDgAAAAAAAAAAAKieeAcAAAAAAED3beaaKB/vuO3qLyHeAQAAAAAAAAAAANUT7wAAAAAAAOi+Z1E+3PHKtU9BvAMAAAAAAAAAAACqJ94BAAAAAADQbRu5JsrHO+64+imIdwAAAAAAAAAAAED1xDsAAAAAAAC67UWUD3e8cu1TEu8AAAAAAAAAAACA6ol3AAAAAAAAdNdmrony8Y7brn5K4h0AAAAAAAAAAABQPfEOAAAAAACA7tqP8uGOfdc+A/EOAAAAAAAAAAAAqJ54BwAAAAAAQDdt5ZooH++47epnIN4BAAAAAAAAAAAA1RPvAAAAAAAA6KZ/Rflwx75rn5F4BwAAAAAAAAAAAFRPvAMAAAAAAKB7bkf5cEeT23L1MxLvAAAAAAAAAAAAgOqJdwAAAAAAAHTPKMrHO/Zc+xzEOwAAAAAAAAAAAKB64h0AAAAAAADdsplromy4o5mcy6zEOwAAAAAAAAAAAKB64h0AAAAAAADdshdlwx3tXrn2OYl3AAAAAAAAAAAAQPXEOwAAAAAAALrjdq6J8vGODVc/J/EOAAAAAAAAAAAAqJ54BwAAAAAAQHeMony445VrvwLxDgAAAAAAAAAAAKieeAcAAAAAAEA3DHNNlI93bLj6KxDvAAAAAAAAAAAAgOqJdwAAAAAAAHTDXpQPd+y79isS7wAAAAAAAAAAAIDqiXcAAAAAAACsvq1cE+XjHRuu/orEOwAAAAAAAAAAAKB64h0AAAAAAACr72mUD3e8cu0LIN4BAAAAAAAAAAAA1RPvAAAAAAAAWG3D3DjKxzs2XP0CiHcAAAAAAAAAAABA9cQ7AAAAAAAAVtsoyoc79lz7goh3AAAAAAAAAAAAQPXEOwAAAAAAAFbXZq6J8vGOTVe/IOIdAAAAAAAAAAAAUD3xDgAAAAAAgNW1F+XDHS9d+wKJdwAAAAAAAAAAAED1xDsAAAAAAABW01quifLxjnVXv0DiHQAAAAAAAAAAAFA98Q4AAAAAAIDV9DzKhzteuPYFE+8AAAAAAAAAAACA6ol3AAAAAAAArJ5hrony8Y4NV79g4h0AAAAAAAAAAABQPfEOAAAAAACA1bMX5cMdz137Eoh3AAAAAAAAAAAAQPXEOwAAAAAAAFbLeq6JsuGO9rxNV78E4h0AAAAAAAAAAABQPfEOAAAAAACA1fI4yoY72j137Usi3gEAAAAAAAAAAADVE+8AAAAAAABYHcPcOMqGO5rcpqtfEvEOAAAAAAAAAAAAqJ54BwAAAAAAwOoYRdlwx/HkTJZFvAMAAAAAAAAAAACqJ94BAAAAAACwGoa5JsqGO5rJuSyLeAcAAAAAAAAAAABUT7wDAAAAAABgNfw/O3erHEeWhGE4L2OhQYEGAgYCc48DBxgYFDAYICAgOBezl2GQoPYo9jjWM+sfSe7O7sp6norEX8Qp/q5RG+7Y5iaXJN4BAAAAAAAAAAAA7Yl3AAAAAAAAXN8yLqM23JFzl0sS7wAAAAAAAAAAAID2xDsAAAAAAACub43acMc2N7k08Q4AAAAAAAAAAABoT7wDAAAAAADgupZxGbXhjpy7XJp4BwAAAAAAAAAAALQn3gEAAAAAAHBda9SGO7a5SQXxDgAAAAAAAAAAAGhPvAMAAAAAAOB6lnEZteGOnLtUEO8AAAAAAAAAAACA9sQ7AAAAAAAArmeN2nDHNjepIt4BAAAAAAAAAAAA7Yl3AAAAAAAAXMcyLqM23JFzlyriHQAAAAAAAAAAANCeeAcAAAAAAMB1rFEb7tjmJpXEOwAAAAAAAAAAAKA98Q4AAAAAAIB6y7iM2nBHzl0qiXcAAAAAAAAAAABAe+IdAAAAAAAA9daoDXdsc5Nq4h0AAAAAAAAAAADQnngHAAAAAABArWVcRm24I+cu1cQ7AAAAAAAAAAAAoD3xDgAAAAAAgFpr1IY7trnJNYh3AAAAAAAAAAAAQHviHQAAAAAAAHWWcRm14Y6cu1yDeAcAAAAAAAAAAAC0J94BAAAAAABQZ43acMc2N7kW8Q4AAAAAAAAAAABoT7wDAAAAAACgxjIuozbckXOXaxHvAAAAAAAAAAAAgPbEOwAAAAAAAGqsURvu2OYm1yTeAQAAAAAAAAAAAO2JdwAAAAAAAFzeMi6jNtyRc5drEu8AAAAAAAAAAACA9sQ7AAAAAAAALm+N2nDHNje5NvEOAAAAAAAAAAAAaE+8AwAAAAAA4LKWcRm14Y6cu1ybeAcAAAAAAAAAAAC0J94BAAAAAABwWWvUhju2ucktEO8AAAAAAAAAAACA9sQ7AAAAAAAALmcZl1Eb7si5yy0Q7wAAAAAAAAAAAID2xDsAAAAAAAAuZ43acMc2N7kV4h0AAAAAAAAAAADQnngHAAAAAADAZSzjMmrDHTl3uRXiHQAAAAAAAAAAANCeeAcAAAAAAMBlrFEb7tjmJrdEvAMAAAAAAAAAAADaE+8AAAAAAAA4v2VcRm24I+cut0S8AwAAAAAAAAAAANoT7wAAAAAAADi/NWrDHdvc5NaIdwAAAAAAAAAAAEB74h0AAAAAAADntYzLqA135Nzl1oh3AAAAAAAAAAAAQHviHQAAAAAAAOe1Rm24Y5ub3CLxDgAAAAAAAAAAAGhPvAMAAAAAAOB8lnEZteGOnLvcIvEOAAAAAAAAAAAAaE+8AwAAAAAA4Hw+RG244/lWz37DxDsAAAAAAAAAAACgPfEOAAAAAACA8ziNy6iPd5w8/Q0T7wAAAAAAAAAAAID2xDsAAAAAAADO41PUhzuePPuNE+8AAAAAAAAAAACA9sQ7AAAAAAAAft3duIz6eMe9p79x4h0AAAAAAAAAAADQnngHAAAAAADAr/sQ9eGOR8++A+IdAAAAAAAAAAAA0J54BwAAAAAAwK85jcuoj3f85ul3QLwDAAAAAAAAAAAA2hPvAAAAAAAA+DWfoj7c8ejZd0K8AwAAAAAAAAAAANoT7wAAAAAAAHi7u3EZ9fGOe0+/E+IdAAAAAAAAAAAA0J54BwAAAAAAwNs9RX2448mz74h4BwAAAAAAAAAAALQn3gEAAAAAAPA278dl1Mc77j39joh3AAAAAAAAAAAAQHviHQAAAAAAAG/zV9SHO548+86IdwAAAAAAAAAAAEB74h0AAAAAAACvdx/14Y4c997T74x4BwAAAAAAAAAAALQn3gEAAAAAAPB6a9THOx48+w6JdwAAAAAAAAAAAEB74h0AAAAAAACvczcuozbckXOXvRHvAAAAAAAAAAAAgPbEOwAAAAAAAF7nIWrDHc/36Nl3SrwDAAAAAAAAAAAA2hPvAAAAAAAAeLn7cRn18Y6Tp98p8Q4AAAAAAAAAAABoT7wDAAAAAADg5daoD3c8evYdE+8AAAAAAAAAAACA9sQ7AAAAAAAAXmYZl1Ef7zh5+h0T7wAAAAAAAAAAAID2xDsAAAAAAABe5iHqwx1Pnn3nxDsAAAAAAAAAAACgPfEOAAAAAACAn3s/LqM+3nHy9Dsn3gEAAAAAAAAAAADtiXcAAAAAAAD83B9RH+549OwNiHcAAAAAAAAAAABAe+IdAAAAAAAAP7aM+xz18Y6Tp29AvAMAAAAAAAAAAADaE+8AAAAAAAD4sTXqwx0Pnr0J8Q4AAAAAAAAAAABoT7wDAAAAAADg++7GZdTHO+48fRPiHQAAAAAAAAAAANCeeAcAAAAAAMD3PUR9uONPz96IeAcAAAAAAAAAAAC0J94BAAAAAADwbf8al1Ef73jn6RsR7wAAAAAAAAAAAID2xDsAAAAAAAC+7WPUhzs+efZmxDsAAAAAAAAAAACgPfEOAAAAAACA/7eMy6iPd5w8fTPiHQAAAAAAAAAAANCeeAcAAAAAAMD/e4j6cMdHz96QeAcAAAAAAAAAAAC0J94BAAAAAADwd+/GZdSGO5737jx9Q+IdAAAAAAAAAAAA0J54BwAAAAAAwN/9HrXhjuf76NmbEu8AAAAAAAAAAACA9sQ7AAAAAAAA/mcZ9zlqwx057s7TNyXeAQAAAAAAAAAAAO2JdwAAAAAAAPzPGrXhjm1u0pV4BwAAAAAAAAAAALQn3gEAAAAAAPBfy7iM2nBHzl26Eu8AAAAAAAAAAACA9sQ7AAAAAAAA/muN2nDHNjfpTLwDAAAAAAAAAAAA2hPvAAAAAAAAiFjGZdSGO3Lu0pl4BwAAAAAAAAAAALQn3gEAAAAAABCxRm24Y5ubdCfeAQAAAAAAAAAAAO2JdwAAAAAAAEe3jMuoDXfk3KU78Q4AAAAAAAAAAABoT7wDAAAAAAA4ujVqwx3b3OQIxDsAAAAAAAAAAACgPfEOAAAAAADgyJZxGbXhjpy7HIF4BwAAAAAAAAAAALQn3gEAAAAAABzZGrXhjm1uchTiHQAAAAAAAAAAANCeeAcAAAAAAHBUy7iM2nBHzl2OQrwDAAAAAAAAAAAA2hPvAAAAAAAAjmqN2nDHNjc5EvEOAAAAAAAAAAAAaE+8AwAAAAAAOKJlXEZtuCPnLkci3gEAAAAAAAAAAADtiXcAAAAAAABHtEZtuGObmxyNeAcAAAAAAAAAAAC0J94BAAAAAAAczTIuozbckXOXoxHvAAAAAAAAAAAAgPbEOwAAAAAAgKNZozbcsc1Njki8AwAAAAAAAAAAANoT7wAAAAAAAI5kGZdRG+7IucsRiXcAAAAAAAAAAABAe+IdAAAAAADAkaxRG+7Y5iZHJd4BAAAAAAAAAAAA7Yl3AAAAAAAAR7GMy6gNd+Tc5ajEOwAAAAAAAAAAAKA98Q4AAAAAAOAo1qgNd2xzkyMT7wAAAAAAAAAAAID2xDsAAAAAAIAjWMZl1IY7cu5yZOIdAAAAAAAAAAAA0J54BwAAAAAAcARr1IY7trnJ0Yl3AAAAAAAAAAAAQHviHQAAAAAAQHfLuIzacEfOXQAAAAAAAAAAAACaE+8AAAAAAAC6W6M23LHNTQAAAAAAAAAAAAAOQLwDAAAAAADobBmXURvuyLkLAAAAAAAAAAAAwAGIdwAAAAAAAJ2tURvu2OYmAAAAAAAAAAAAAAch3gEAAAAAAHS1jMuoDXfk3AUAAAAAAAAAAADgIMQ7AAAAAACArtaoDXdscxMAAAAAAAAAAACAAxHvAAAAAAAAOlrGZdSGO3LuAgAAAAAAAAAAAHAg4h0AAAAAAEBHa9SGO7a5CQAAAAAAAAAAAMDBiHcAAAAAAADdLOMyasMdOXcBAAAAAAAAAAAAOBjxDgAAAAAAoJs1asMd29wEAAAAAAAAAAAA4IDEOwAAAAAAgE6WcRm14Y6cuwAAAAAAAAAAAAAckHgHAAAAAADQyYeoDXc83+rZAQAAAAAAAAAAAI5LvAMAAAAAAOjiNC6jPt5x8vQAAAAAAAAAAAAAxyXeAQAAAAAAdPEp6sMdT54dAAAAAAAAAAAA4NjEOwAAAAAAgA7uxmXUxzvuPT0AAAAAAAAAAADAsYl3AAAAAAAAHXyI+nDHo2cHAAAAAAAAAAAAQLwDAAAAAADYu9O4jPp4x2+eHgAAAAAAAAAAAADxDgAAAAAAYO8+RX2449GzAwAAAAAAAAAAAPBMvAMAAAAAANizu3EZ9fGOe08PAAAAAAAAAAAAwDPxDgAAAAAAYM+eoj7c8eTZAQAAAAAAAAAAAPhCvAMAAAAAANir9+My6uMd954eAAAAAAAAAAAAgC/EOwAAAAAAgL36K+rDHU+eHQAAAAAAAAAAAICviXcAAAAAAAB7dB/14Y4c997TAwAAAAAAAAAAAPA18Q4AAAAAAGCP1qiPdzx4dgAAAAAAAAAAAAD+SbwDAAAAAADYm7txGbXhjpy7AAAAAAAAAAAAAPA34h0AAAAAAMDePERtuOP5Hj07AAAAAAAAAAAAAN8i3gEAAAAAAOzJ/biM+njHydMDAAAAAAAAAAAA8C3iHQAAAAAAwJ6sUR/uePTsAAAAAAAAAAAAAHyPeAcAAAAAALAXy7iM+njHydMDAAAAAAAAAAAA8D3iHQAAAAAAwF48RH2448mzAwAAAAAAAAAAAPAj4h0AAAAAAMAevB+XUR/vOHl6AAAAAAAAAAAAAH5EvAMAAAAAANiDP6I+3PHo2QEAAAAAAAAAAAD4GfEOAAAAAADg1i3jPkd9vOPk6QEAAAAAAAAAAAD4GfEOAAAAAADg1q1RH+548OwAAAAAAAAAAAAAvIR4BwAAAAAAcMvuxmXUxzvuPD0AAAAAAAAAAAAALyHeAQAAAAAA3LKHqA93/OnZAQAAAAAAAAAAAHgp8Q4AAAAAAOBW/WtcRn28452nBwAAAAAAAAAAAOClxDsAAAAAAIBb9THqwx2fPDsAAAAAAAAAAAAAryHeAQAAAAAA3KJlXEZ9vOPk6QEAAAAAAAAAAAB4DfEOAAAAAADgFj1Efbjjo2cHAAAAAAAAAAAA4LXEOwAAAAAAgFvzblxGbbjjee/O0wMAAAAAAAAAAADwWuIdAAAAAADArfk9asMdz/fRswMAAAAAAAAAAADwFuIdAAAAAADALVnGfY7acEeOu/P0AAAAAAAAAAAAALyFeAcAAAAAAHBL1qgNd2xzEwAAAAAAAAAAAADeRLwDAAAAAAC4Fcu4jNpwR85dAAAAAAAAAAAAAHgT8Q4AAAAAAOBWrFEb7tjmJgAAAAAAAAAAAAC8mXgHAAAAAABwC5ZxGbXhjpy7AAAAAAAAAAAAAPBm4h0AAAAAAMAtWKM23LHNTQAAAAAAAAAAAAD4JeIdAAAAAADAtS3jMmrDHTl3AQAAAAAAAAAAAOCXiHcAAAAAAADXtkZtuGObmwAAAAAAAAAAAADwy8Q7AAAAAACAa1rGZdSGO3LuAgAAAAAAAAAAAMAvE+8AAAAAAACuaY3acMc2NwEAAAAAAAAAAADgLMQ7AAAAAACAa1nGZdSGO3LuAgAAAAAAAAAAAMBZiHcAAAAAAADXskZtuGObmwAAAAAAAAAAAABwNuIdAAAAAADANSzjMmrDHTl3AQAAAAAAAAAAAOBsxDsAAAAAAIBrWKM23LHNTQAAAAAAAAAAAAA4K/EOAAAAAACg2jIuozbckXMXAAAAAAAAAAAAAM5KvAMAAAAAAKi2Rm24Y5ubAAAAAAAAAAAAAHB24h0AAAAAAEClZVxGbbgj5y4AAAAAAAAAAAAAnJ14BwAAAAAAUGmN2nDHNjcBAAAAAAAAAAAA4CLEOwAAAAAAgCrLuIzacEfOXQAAAAAAAAAAAAC4CPEOAAAAAACgyhq14Y5tbgIAAAAAAAAAAADAxYh3AAAAAAAAFZZxGbXhjpy7AAAAAAAAAAAAAHAx4h0AAAAAAECFNWrDHdvcBAAAAAAAAAAAAICLEu8AAAAAAAAubRmXURvuyLkLAAAAAAAAAAAAABcl3gEAAAAAAFzaGrXhjm1uAgAAAAAAAAAAAMDFiXcAAAAAAACXtIzLqA135NwFAAAAAAAAAAAAgIsT7wAAAAAAAC5pjdpwxzY3AQAAAAAAAAAAAKCEeAcAAAAAAHApy7iM2nBHzl0AAAAAAAAAAAAAKCHeAQAAAAAAXMoateGObW4CAAAAAAAAAAAAQBnxDgAAAAAA4BKWcRm14Y6cuwAAAAAAAAAAAABQRrwDAAAAAAC4hDVqwx3b3AQAAAAAAAAAAACAUuIdAAAAAADAuS3jMmrDHTl3AQAAAAAAAAAAAKCUeAcAAAAAAHBua9SGO7a5CQAAAAAAAAAAAADlxDsAAAAAAIBzWsZl1IY7cu4CAAAAAAAAAAAAQDnxDgAAAAAA4Jw+RG244/lWzw4AAAAAAAAAAADAtYh3AAAAAAAA53Ial1Ef7zh5egAAAAAAAAAAAACuRbwDAAAAAAA4l09RH+548uwAAAAAAAAAAAAAXJN4BwAAAAAAcA534zLq4x33nh4AAAAAAAAAAACAaxLvAAAAAAAAzuFD1Ic7Hj07AAAAAAAAAAAAANcm3gEAAAAAAPyq07iM+njHb54eAAAAAAAAAAAAgGsT7wAAAAAAAH7Vp6gPdzx6dgAAAAAAAAAAAABugXgHAAAAAADwK+7GZdTHO+49PQAAAAAAAAAAAAC3QLwDAAAAAAD4FU9RH+548uwAAAAAAAAAAAAA3ArxDgAAAAAA4K3ej8uoj3fce3p2Y4t/j7ul799+CgAAAAAAAAAAAJyXeAcAAAAAAPBWf0V9uOPJs7Mr4h0AAAAAAAAAAADQnngHAAAAAADwFvdRH+7Ice89Pbsi3gEAAAAAAAAAAADtiXcAAAAAAABvsUZ9vOPBs7M74h0AAAAAAAAAAADQnngHAAAAAADwWnfjMmrDHTl3YV/EOwAAAAAAAAAAAKA98Q4AAAAAAOC1HqI23PF8j56dXRLvAAAAAAAAAAAAgPbEOwAAAAAAgNe4H5dRH+84eXp2SbwDAAAAAAAAAAAA2hPvAAAAAAAAXmON+nDHo2dnt8Q7AAAAAAAAAAAAoD3xDgAAAAAA4KWWcRn18Y6Tp2e3xDsAAAAAAAAAAACgPfEOAAAAAADgpR6iPtzx5NnZNfEOAAAAAAAAAAAAaE+8AwAAAAAAeIn34zLq4x0nT8+uiXcAAAAAAAAAAABAe+IdAAAAAADAS/wR9eGOR8/O7ol3AAAAAAAAAAAAQHviHQAAAAAAwM8s4z5Hfbzj5OnZPfEOAAAAAAAAAAAAaE+8AwAAAAAA+Jk16sMdD56dFsQ7AAAAAAAAAAAAoD3xDgAAAAAA4EfuxmXUxzvuPD0tiHcAAAAAAAAAAABAe+IdAAAAAADAjzxEfbjjT89OG+IdAAAAAAAAAAAA0J54BwAAAAAA8D3/GpdRH+945+lpQ7wDAAAAAAAAAAAA2hPvAAAAAAAAvudj1Ic7Pnl2WhHvAAAAAAAAAAAAgPbEOwAAAAAAgG9ZxmXUxztOnp5WxDsAAAAAAAAAAACgPfEOAAAAAADgWx6iPtzx0bPTjngHAAAAAAAAAAAAtCfeAQAAAAAA/NO7cRm14Y7nvTtPTzviHQAAAAAAAAAAANCeeAcAAAAAAPBPv0dtuOP5Pnp2WhLvAAAAAAAAAAAAgPbEOwAAAAAAgK8t4z5Hbbgjx915eloS7wAAAAAAAAAAAID2xDsAAAAAAICvrVEb7tjmJvQk3gEAAAAAAAAAAADtiXcAAAAAAABfLOMyasMdOXehJ/EOAAAAAAAAAAAAaE+8AwAAAAAA+GKN2nDHNjehL/EOAAAAAAAAAAAAaE+8AwAAAAAAeLaMy6gNd+Tchb7EOwAAAAAAAAAAAKA98Q4AAAAAAODZGrXhjm1uQm/iHQAAAAAAAAAAANCeeAcAAAAAALCMy6gNd+Tchd7EOwAAAAAAAAAAAKA98Q4AAAAAAGCN2nDHNjehP/EOAAAAAAAAAAAAaE+8AwAAAAAAjm0Zl1Eb7si5C/2JdwAAAAAAAAAAAEB74h0AAAAAAHBsa9SGO7a5Cccg3gEAAAAAAAAAAADtiXcAAAAAAMBxLeMyasMdOXfhGMQ7AAAAAAAAAAAAoD3xDgAAAAAAOK41asMd29yE4xDvAAAAAAAAAAAAgPbEOwAAAAAA4JiWcRm14Y6cu3Ac4h0AAAAAAAAAAADQnngHAAAAAAAc0xq14Y5tbsKxiHcAAAAAAAAAAABAe+IdAAAAAABwPMu4jNpwR85dOBbxDgAAAAAAAAAAAGhPvAMAAAAAAI5njdpwxzY34XjEOwAAAAAAAAAAAKA98Q4AAAAAADiWZVxGbbgj5y4cj3gHAAAAAAAAAAAAtCfeAQAAAAAAx7JGbbhjm5twTOIdAAAAAAAAAAAA0J54BwAAAAAAHMcyLqM23JFzF45JvAMAAAAAAAAAAADaE+8AAAAAAIDjWKM23LHNTTgu8Q4AAAAAAAAAAABoT7wDAAAAAACOYRmXURvuyLkLxyXeAQAAAAAAAAAAAO2JdwAAAAAAwDGsURvu2OYmHJt4BwAAAAAAAAAAALQn3gEAAAAAAP0t4zJqwx05d+HYxDsAAAAAAAAAAACgPfEOAAAAAADob43acMc2NwHxDgAAAAAAAAAAAGhPvAMAAAAAAHpbxmXUhjty7gLiHQAAAAAAAAAAANCeeAcAAAAAAPS2Rm24Y5ubQIR4BwAAAAAAAAAAAByAeAcAAAAAAPS1jMuoDXfk3AUixDsAAAAAAAAAAADgAMQ7AAAAAACgrzVqwx3b3AS+EO8AAAAAAAAAAACA9sQ7AAAAAACgp2VcRm24I+cu8IV4BwAAAAAAAAAAALQn3gEAAAAAAD2tURvu2OYm8DXxDgAAAAAAAAAAAGhPvAMAAAAAAPpZxmXUhjty7gJfE+8AAAAAAAAAAACA9sQ7AAAAAACgnzVqwx3b3AT+SbwDAAAAAAAAAAAA2hPvAAAAAACAXpZxGbXhjpy7wD+JdwAAAAAAAAAAAEB74h0AAAAAANDLh6gNdzzf6tnhO8Q7AAAAAAAAAAAAoD3xDgAAAAAA6OP0H/buEEqKK23A8CdGICIQCARiRIsWLRAjEBEIxIqICAQCgVgRgUBERHDOP+dERCBWIBCIEgjEiBEjIhAREYgIRAQiAhGBQCAQiCv6v7Vd2Ww2IVM9U3W76s7z7PnUArfr64npvuedPCnKxzuWVg+fIN4BAAAAAAAAAAAA1RPvAAAAAACAejyL8uGOE2uHvyHeAQAAAAAAAAAAANUT7wAAAAAAgDqs8qQoH+84sHr4G+IdAAAAAAAAAAAAUD3xDgAAAAAAqMOTKB/uOLZ2OIV4BwAAAAAAAAAAAFRPvAMAAAAAAOZvmSdF+XjHDauHU4h3AAAAAAAAAAAAQPXEOwAAAAAAYP6eRflwx7G1Qw/iHQAAAAAAAAAAAFA98Q4AAAAAAJi3VZ4U5eMdB1YPPYh3AAAAAAAAAAAAQPXEOwAAAAAAYN5Oony448TaoSfxDgAAAAAAAAAAAKieeAcAAAAAAMzX9Twpysc7DqweehLvAAAAAAAAAAAAgOqJdwAAAAAAwHy9iPLhjhNrhy2IdwAAAAAAAAAAAED1xDsAAAAAAGCeDqJ8uCPluW71sAXxDgAAAAAAAAAAAKieeAcAAAAAAMxTE+XjHUfWDlsS7wAAAAAAAAAAAIDqiXcAAAAAAMD8rPKkKBvuSN25wDbEOwAAAAAAAAAAAKB64h0AAAAAADA/R1E23NHOsbXDGYh3AAAAAAAAAAAAQPXEOwAAAAAAYF4O8qQoH+9YWj2cgXgHAAAAAAAAAAAAVE+8AwAAAAAA5qWJ8uGOY2uHMxLvAAAAAAAAAAAAgOqJdwAAAAAAwHws8qQoH+9YWj2ckXgHAAAAAAAAAAAAVE+8AwAAAAAA5uMoyoc7TqwdzkG8AwAAAAAAAAAAAKon3gEAAAAAAPNwPU+K8vGOpdXDOYh3AAAAAAAAAAAAQPXEOwAAAAAAYB4eR/lwx7G1wzmJdwAAAAAAAAAAAED1xDsAAAAAAGD6Fnk+Rvl4x9Lq4ZzEOwAAAAAAAAAAAKB64h0AAAAAADB9TZQPdxxZOwxAvAMAAAAAAAAAAACqJ94BAAAAAADTtsqTony8Y2X1MADxDgAAAAAAAAAAAKieeAcAAAAAAEzbUZQPdzy3dhiIeAcAAAAAAAAAAABUT7wDAAAAAACm62qeFOXjHftWDwMR7wAAAAAAAAAAAIDqiXcAAAAAAMB0PY3y4Y5n1g4DEu8AAAAAAAAAAACA6ol3AAAAAADANC3ypCgf71haPQxIvAMAAAAAAAAAAACqJ94BAAAAAADTdBTlwx1PrR0GJt4BAAAAAAAAAAAA1RPvAAAAAACA6dnPk6JsuKM9b2X1MDDxDgAAAAAAAAAAAKieeAcAAAAAAEzPoygb7mjnqbXDCMQ7AAAAAAAAAAAAoHriHQAAAAAAMC2LPB+jbLgj5VlZPYxAvAMAAAAAAAAAAACqJ94BAAAAAADT0kTZcMe6OxMYg3gHAAAAAAAAAAAAVE+8AwAAAAAApmORJ0XZcEfqzgXGIN4BAAAAAAAAAAAA1RPvAAAAAACA6WiibLhj3Z0JjEW8AwAAAAAAAAAAAKon3gEAAAAAANOwyJOibLgjdecCYxHvAAAAAAAAAAAAgOqJdwAAAAAAwDQ0UTbcse7OBMYk3gEAAAAAAAAAAADVE+8AAAAAAIDdW+RJUTbckbpzgTGJdwAAAAAAAAAAAED1xDsAAAAAAGD3migb7lh3ZwJjE+8AAAAAAAAAAACA6ol3AAAAAADAbi3ypCgb7kjducDYxDsAAAAAAAAAAACgeuIdAAAAAACwW02UDXesuzOBEsQ7AAAAAAAAAAAAoHriHQAAAAAAsDuLPCnKhjtSdy5QgngHAAAAAAAAAAAAVE+8AwAAAAAAdqeJsuGOdXcmUIp4BwAAAAAAAAAAAFRPvAMAAAAAAHZjkSdF2XBH6s4FShHvAAAAAAAAAAAAgOqJdwAAAAAAwG40UTbcse7OBEoS7wAAAAAAAAAAAIDqiXcAAAAAAEB5izwpyoY7UncuUJJ4BwAAAAAAAAAAAFRPvAMAAAAAAMpromy4Y92dCZQm3gEAAAAAAAAAAADVE+8AAAAAAICyFnlSlA13pO5coDTxDgAAAAAAAAAAAKieeAcAAAAAAJTVRNlwx7o7E9gF8Q4AAAAAAAAAAAConngHAAAAAACUs8iTomy4I3XnArsg3gEAAAAAAAAAAADVE+8AAAAAAIBymigb7lh3ZwK7It4BAAAAAAAAAAAA1RPvAAAAAACAMhZ5UpQNd6TuXGBXxDsAAAAAAAAAAACgeuIdAAAAAABQRhNlwx3r7kxgl8Q7AAAAAAAAAAAAoHriHQAAAAAAML5FnhRlwx2pOxfYJfEOAAAAAAAAAAAAqJ54BwAAAAAAjK+JsuGOdXcmsGviHQAAAAAAAAAAAFA98Q4AAAAAABjXIk+KsuGO1J0L7Jp4BwAAAAAAAAAAAFRPvAMAAAAAAMbVRNlwx7o7E5gC8Q4AAAAAAAAAAAConngHAAAAAACMZ5EnRdlwR+rOBaZAvAMAAAAAAAAAAACqJ94BAAAAAADjaaJsuGPdnQlMhXgHAAAAAAAAAAAAVE+8AwAAAAAAxrHIk6JsuCN15wJTId4BAAAAAAAAAAAA1RPvAAAAAACAcTRRNtyx7s4EpkS8AwAAAAAAAAAAAKon3gEAAAAAAMNb5ElRNtyRunOBKRHvAAAAAAAAAAAAgOqJdwAAAAAAwPCaKBvuWHdnAlMj3gEAAAAAAAAAAADVE+8AAAAAAIBhLfKkKBvuSN25wNSIdwAAAAAAAAAAAED1xDsAAAAAAGBYT6JsuKOdxtphosQ7AAAAAAAAAAAAoHriHQAAAAAAMJxlnhTl4x1Lq4eJWsejPM2E5pE3BQAAAAAAAAAAAIYl3gEAAAAAAMN5FuXDHSfWDgAAAAAAAAAAAAC7I94BAAAAAADDWOVJUT7ecWD1AAAAAAAAAAAAALA74h0AAAAAADCMJ1E+3HFs7QAAAAAAAAAAAACwW+IdAAAAAABwfss8KcrHO25YPQAAAAAAAAAAAADslngHAAAAAACc37MoH+44tnYAAAAAAAAAAAAA2D3xDgAAAAAAOJ9VnhTl4x0HVg8AAAAAAAAAAAAAuyfeAQAAAAAA53MS5cMdJ9YOAAAAAAAAAAAAANMg3gEAAAAAAGd3PU+K8vGOA6sHAAAAAAAAAAAAgGkQ7wAAAAAAgLN7EeXDHSfWDgAAAAAAAAAAAADTId4BAAAAAABncxDlwx0pz3WrBwAAAAAAAAAAAIDpEO8AAAAAAICzaaJ8vOPI2gEAAAAAAAAAAABgWsQ7AAAAAABge6s8KcqGO1J3LgAAAAAAAAAAAAAwIeIdAAAAAACwvaMoG+5o59jaAQAAAAAAAIyVtKEAAIAASURBVAAAAGB6xDsAAAAAAGA7B3lSlI93LK0eAAAAAAAAAAAAAKZHvAMAAAAAALbTRPlwx7G1AwAAAAAAAAAAAMA0iXcAAAAAAEB/izwpysc7llYPAAAAAAAAAAAAANMk3gEAAAAAAP0dRflwx4m1AwAAAAAAAAAAAMB0iXcAAAAAAEA/1/OkKB/vWFo9AAAAAAAAAAAAAEyXeAcAAAAAAPTzOMqHO46tHQAAAAAAAAAAAACmTbwDAAAAAABOt8jzMcrHO5ZWDwAAAAAAAAAAAADTJt4BAAAAAACna6J8uOPI2gEAAAAAAAAAAABg+sQ7AAAAAADg763ypCgf71hZPQAAAAAAAAAAAABMn3gHAAAAAAD8vaMoH+54bu0AAAAAAAAAAAAAMA/iHQAAAAAA8GlX86QoH+/Yt3oAAAAAAAAAAAAAmAfxDgAAAAAA+LSnUT7c8czaAQAAAAAAAAAAAGA+xDsAAAAAAOCvLfKkKB/vWFo9AAAAAAAAAAAAcFFczrP/P7NnLcyMeAcAAAAAAPy1oygf7nhq7QAAAAAAAAAAAECNVnm+is1lyR/yvM7zIT59qfJdnp/zNN3fOwhRD6ZLvAMAAAAAAP5sP0+KsuGO9ryV1QMAAAAAAAAAAAC1WOb5V2xCHUNctvy1+/euX7A93olN8GRqw+/EOwAAAAAA4M8eRdlwRztPrR0AAAAAAAAAAACoweexiTuMefHyJM/BBdnn0yh/sVVcYjv2CwAAAAAAf7TI8zHKfneR8qysHgAAAAAAAAAAAJiza3mOYnMxstQlzPa8K5Xv9YcQ75g6+wUAAAAAgD9qovx3F421AwAAAAAAAAAAAHP2RZ53sZuIxNs8tyrd66Uo/1vpxCW2Z78AAAAAAPC7RZSNva+78xZWDwAAAAAAAAAAAMzVw5hGTOKrCne7iGmGO8Ql/sh+AQAAAADgd02U/96isXYAAAAAAAAAAABgrr6JaQUlagt43A7xjjmwXwAAAAAA2GjD5CnKfmeRunMBAAAAAAAAAAAAZufrOPslyvd5XuR5ludRnsNuHuf5ofv/z/pv36lox49CvGMO7BcAAAAAADaaKP+dRWPtAAAAAAAAAAAAwBx9nudDbHdx8l2e77q/e6nnGe2f3zbk0b6uVSV7fhHiHXNgvwAAAAAAELHIk6Ls9xWpOxcAAAAAAAAAAABgVtrwxpvof2nyY56Hea6c8bz27z2K7S57vs7zWQW7fhviHXNgvwAAAAAAENFE+e8rGmsHAAAAAAAAAAAA5qgNcfS9MPlLnusDnXsjtouGfDPzPV/r8Yzv/DhOgngHAAAAAAAX3SK2C7EPMak7FwAAAAAAAAAAAGBWLud5H/0uTL7Kc2Xg8/ejf8DjQ2wCGHP1jx7P+L0fyUkQ7wAAAAAA4KJromy4Y92dCQAAAAAAAAAAADA7h9HvsuTbGD7c8ZtVnnc9X8fhjHf9sMfzfetHchLEOwAAAAAAuMgWeVKUDXek7lwAAAAAAAAAAACA2WmjHH0uTN4a+XXc7fk6fs2zN9NdH/V4vtt+JCdBvAMAAAAAgIusibLhjnV3JgAAAAAAAAAAAMDs3Ix+lyWfF3o9L3u+npsz3fcvPZ7tmh/LSRDvAAAAAADgolrkSVE23JG6cwEAAAAAAAAAAABm50n0uzC5KvR67vZ8PYcz3PXlOP2i6/s8e34sJ0G8AwAAAACAi6qJsuGOdXcmAAAAAAAAAAAAwCz9HKdflnxV8PW04Yq3PV7TDzPc9ec9nuuFH8nJEO8AAAAAAOAiWsTpMfKhJ3XnAgAAAAAAAAAAAMzOZ9Hv8uXDwq/rqMdrejvDfd/v8VyP/FhOhngHAAAAAAAXURNlwx3r7kwAAAAAAAAAAACAWboZ/S5Mfl74dT3s+bouzWzfT3s80x0/lpMh3gEAAAAAwEWziH7h9yEndecCAAAAAAAAAAAAzNLX0e/C5F7h13Uv+l3m3J/Zvn/q8Uwup06HeAcAAAAAABdNE2XDHevuTAAAAAAAAAAAAIDZehqnX5j8dQev617UF+9oAygfT3me91E+lMKniXcAAAAAAHCRtIHxNupeMtyRQtgcAAAAAAAAAAAAmLlv8rzM8yY+fRnz5Q5e14OoL96x6vE8L/xITop4BwAAAAAAF0kTZcMd6+5MAAAAAAAAAAAAgKpczXOQ58s8X+X5Ns/XO3gd7bl9LnRemtFu/9njeR75EZwU8Q4AAAAAAC6KRXw69D7WpO5cAAAAAAAAAAAAAEZwFP0udM7Jox7PdMdb/weHUf43/I09AAAAAAAwRU2U/8y8sXYAAAAAAAAAAACAcVzK8z5Ov9D5ambP9WOPZ/Lb5f7oMMQ7AAAAAABgbO33E200veTn5Sl8LwIAAAAAAAAAAAAwmn9Ev0udj2f2XB9OeZ72/9875d9o//8bee7keRCbuMVvcz/Pl3muVvSzcBjiHQAAAAAAMLYmyn9e3lg7AAAAAAAAAAAAwHieR79LnXdm9EyLHs/z4yf+7n5sIhavov9vvfuY5zg2QY8rM/5ZOAzxDgAAAAAAGFP7HUbf7x+GmtSdCwAAAAAAAAAAAMAI+l4Qbf/MtRk91+0ez/T4f/5OGyd5GcNcgG1inpdgD0O8AwAAAAAAxtR+h1D6s/LG2gEAAAAAAAAAAADG0/eC6IuZPde3PZ7pbvdn22jHmxjnMuzzPPsz2tthiHcAAAAAAMBY+kbVh5wU8wyOAwAAAAAAAAAAAMzCKvpfEL09s2c76fFMX8YmSjL2pdgPeR7MZG+HId4BAAAAAABj6RtVH3IaawcAAAAAAAAAAAAYx16en6Pfpc7X3Z+fk197PNfHKHs59vs8Vya+t8MQ7wAAAAAAgDEson9UfahJ3bkAAAAAAAAAAAAAjOC76H+x8+7Mnu1aTDck0QZTphzwOAzxDgAAAAAAGEMT5T8jb6wdAAAAAAAAAAAAYBy3o/9vdvspz97Mnu/zmHZM4lVMN+BxGOIdAAAAAAAwtEX0/25mqEnduQAAAAAAAAAAAAAM7GaeD9H/Uuf1GT7j/RjmUuvbPC/zHMXmN9O1cxKboMmHOH/A4/IEd3cY4h0AAAAAADC09juG0p+PN9YOAAAAAAAAAAAAMLxVnnfR/1Ln4Uyf83mc/SJrG+v4Ks/+KWdc6vb5MM/PZzzr+QR3dxjiHQAAAAAAMKRFbILpJT8bT925AAAAAAAAAAAAAAzoWp43sV3E4tJMn/Wn2P4S6/d5rp/xvL08d7bc729zb2K7OwzxDgAAAAAAGNKTKP/ZeGPtAAAAAAAAAAAAAMO6mud19L/Q+S7P/kyftQ2OfNziWds/e2egsz+L7S/gvs9zeUL7OwzxDgAAAAAAGMoyT4ryn40vrR4AAAAAAAAAAABgOPt53sR2MYubM37eG1s869s8n4/wGr6K7S7QPpnQ/g5DvAMAAAAAAIbyLMp/Ln5i7QAAAAAAAAAAAADD2Y/twh3t3Jn5M9/t+Zyv81wb8XVsE/Bof+PeYiL7OwzxDgAAAAAAGMIqNt8BlP5c/MDqAQAAAAAAAAAAAIaxjO3DHYcVPPf9PO9Pec63sQmbjO3RFrt/MpH9HYZ4BwAAAAAADKH97L/0Z+LH1g4AAAAAAAAAAAAwjP3YBCq2ucz5uLId7MXmN9rdiU3Qo32+F3l+ynOr4Ot41XP/H/JcmsDeDkO8AwAAAAAAzquNrKco/5n4DasHAAAAAAAAAAAAOL+bed7Fdhc5n8YmdsHwbm3xPtyewOs9DPEOAAAAAAA4r2dR/vPwY2sHAAAAAAAAAAAAOL87eT7Gdhc5vw3hjrH92PO9eDyB13oY4h0AAAAAAHAeqzwpyn8efmD1AAAAAAAAAAAAAOdzP7a/CPokhDtK+GfP9+PNBF7r/4V4BwAAAAAAnMdJlP8s/MTaAQAAAAAAAAAAAM7ncWx/ifMwhDtKuRL9wypXLviuxDsAAAAAAJiz67F9bH2IObB6AAAAAAAAAAAAgLNpQw9n+e1tX1tdcT/2fG9WF3xP4h0AAAAAAMzZiygf7jixdgAAAAAAAAAAAICzWeZ5Hdtd3vyY547V7cTjnu/RRX9/xDsAAAAAAJirgygf7kh5rls9AAAAAAAAAAAAwPa+yPM+tru8+TbPLavbmQc936cHF3xP4h0AAAAAAMxVE+XjHUfWDgAAAAAAAAAAALC9h7H5LWrbXNx8nWff6nbqbs/36vCC70m8AwAAAACAOVrF9t/fnHdSdy4AAAAAAAAAAAAAPe3leRzbX9x8meeK9e3czRDv6EO8AwAAAACAOTqKsuGOdo6tHQAAAAAAAAAAAKC/y3l+iLNd2rxkfZNwM8Q7+hDvAAAAAABgbg7ypCgf71haPQAAAAAAAAAAAEA/1/L8FNtf2Pw2z571TcbNEO/oQ7wDAAAAAIC5aaJ8uOPY2gEAAAAAAAAAAAD6acMdv8R2lzXb3+z2pdVNzpc9379/XvA9iXcAAAAAADAni9h8N1M63rG0egAAAAAAAAAAAIDTteGON7HdRc23eQ6sbpL+2fM9/OKC70m8AwAAAACAOTmK8uGOE2sHAAAAAAAAAAAAON312IQ4trmo+TrPyur+1uVuduGw5/t40eMr4h0AAAAAAMxF+31OivLxjqXVAwAAAAAAAAAAAPy99qLnu9jukuYPea5c8L1dzfMgz7d5mtj8prt2L7/k+fBfu3q4o9d33PO9vHrB30fxDgAAAAAA5uJxlA93HFs7AAAAAAAAAAAAwN87S7jjWZ49q4tVz319v6PX96bHa3vrbRTvAAAAAABgFhZ5Pkb5eMfS6oFzWcftPPcmNLe9KQAAAAAAAAAAwJCuxfbhju9CuOO/9dnZ+x3srG9Y5MRbKN4BAAAAAMAsNFE+3HFk7cC5reNNnin97403BQAAAAAAAAAAGMrlPL/Edhc0H1jbn7zpubtbhV/XNz1f11feQvEOAAAAAAAmr412pygf71hZPXBu4h0AAAAAAAAAAEDFvo/+FzM/5rltZX/pWc8dPin4mvaiX5ilfV+vegvFOwAAAAAAmLyjKB/ueG7twCDEOwAAAAAAAAAAgEp9F/0vZn7I86WVfdJXPff4Ps9nhV7TvZ6v6Xtv37+JdwAAAAAAMGVtiDtF+XjHvtUDgxDvAAAAAAAAAAAAKvRF9L/g+bH783za/hb7/KbA62kDIW96vp6b3r5/E+8AAAAAAGDKnkb5cMczawcGI94BAAAAAAAAAABU5kqet9H/YuYdK+vlRc99fojNb8cb0+Oer+Unb9t/iHcAAAAAADBVi+gfER9yllYPDEa8AwAAAAAAAAAAqEwT/S9lfmddvd3dYq/PR3wd96L/Bd7b3rb/EO8AAAAAAGCqjqJ8uOOptQODEu8AAAAAAAAAAAAq8nn0Dzu8yLNXwTO3z7Dfcz475zmvo/+l129GeNZ7F/D9HYp4BwAAAAAAU7Qf/T/7H2ra81ZWDwxKvAMAAAAAAAAAAKjIq+h3KfNdnquVPPN+9L+Meu+cZ30R211+fTDgc7avve/l3Y95lv5z+APxDgAAAAAApuhRlA13tPPU2oHBiXcAAAAAAAAAAACVuB39L2X+mOdwYrN/xufej3LxjtaL2O4C7L/yfHaO867laWK737p3338OfyLeAQAAAADA1CxiE+QuGe5ov29YWT0wOPEOAAAAAAAAAACgEq+i/G9mG3JunvG596NsvONqnl+3fLa3sQlqXN7ynMM877c864n/FP6SeAcAAAAAAFPTxrtLfx/TWDswCvEOAAAAAAAAAACgAjdi3uGOOcU7onutZ/lNeB9icyn2fveeXfqvf7ONdSzz3M1zfMZ//6f/+Tf5nXgHAAAAAABTssiToux3Mak7F2B44h0AAAAAAAAAAEAF/hXiHSXjHa1bcbbAxljzKs8V/yl8kngHAAAAAABT0sa+S3+X0Fg7MBrxDgAAAAAAAAAAoAKvQ7yjdLyj1QY8Pkxgdy9DuOM04h0AAAAAAEzFIk+Kst8lpO5cgHGIdwAAAAAAAAAAADPXRhtKX/AU7/hd+7p/3eHenua55D+DU4l3AAAAAAAwFU2U/z6hsXZgVOIdAAAAAAAAAADAzH0R8w93zDne0bqW57jwvtpgyD/8+Pcm3gEAAAAAwBQsonyUPXXnAoxHvAMAAAAAAAAAAJi5eyHeset4x2++zPNzlPnteJf96G9FvAMAAAAAgCloP+Mv/R1MY+3A6MQ7AAAAAAAAAACAmfsmxDumEu9o7XXnvBx4Px/yPMmz8iN/JuIdAAAAAADs2iJPirLfv6TuXIBxiXcAAAAAAAAAAAAzdz02sYi5z9UzPv9nW5yx2MF783WeH+Jsl3Hf5nnWvfYrftTPRbwDAAAAAIBda6J8PL2xdqAI8Q4AAAAAAAAAAAAKaCMjyzy38zzI811sLsz+Nk/yfJvnfp5bsQl/7FnbYMQ7AAAAAADYpTYwfpbQ93kmRfmwOXBRiXcAAAAAAAAAAABA9cQ7AAAAAADYpTbkvS48jbUDxYh3AAAAAAAAAAAAQPXEOwAAAAAA2JVFnhRlwx2pOxegDPEOAAAAAAAAAAAAqJ54BwAAAAAAu9JE2XDHujsToBzxDgAAAAAAAAAAAKieeAcAAAAAALuwyJOibLgjdecClCPeAQAAAAAAAAAAANUT7wAAAAAAYBeaKBvuWHdnApQl3gEAAAAAAAAAAADVE+8AAAAAAKC0RZ4UZcMdqTsXoCzxDgAAAAAAAAAAAKieeAcAAAAAAKU1UTbcse7OBChPvAMAAAAAAAAAAACqJ94BAAAAAEBJizwpyoY7UncuQHniHQAAAAAAAAAAAFA98Q4AAAAAAEpqomy4Y92dCbAb4h0AAAAAAAAAAABQPfEOAAAAAABKWeRJUTbckbpzAXZDvAMAAAAAAAAAAACqJ94BAAAAAEApTZQNd6y7MwF2R7wDAAAAAAAAAAAAqifeAQAAAABACYs8KcqGO1J3LsDuiHcAAAAAAAAAAABA9cQ7AAAAAAAooYmy4Y51dybAbol3AAAAAAAAAAAAQPXEOwAAAAAAGNsiT4qy4Y7UnQuwW+IdAAAAAAAAAAAAUD3xDgAAAAAAxtZE2XDHujsTYPfEOwAAAAAAAAAAAKB64h0AAAAAAIxpkSdF2XBH6s4F2D3xDgAAAAAAAAAAAKieeAcAAAAAAGNqomy4Y92dCTAN4h0AAAAAAAAAAABQPfEOAAAAAADGssiTomy4I3XnAkyDeAcAAAAAAAAAAABUT7wDAAAAAICxNFE23LHuzgSYDvEOAAAAAAAAAAAAqJ54BwAAAAAAY1jkSVE23JG6cwGmQ7wDAAAAAAAAAAAAqifeAQAAAADAGJooG+5Yd2cCTIt4BwAAAAAAAAAAAFRPvAMAAAAAgKEt8qQoG+5I3bkA0yLeAQAAAAAAAAAAANUT7wAAAAAAYGhPomy4o53G2oFJEu8AAAAAAAAAAACA6ol3AAAAAAAwpGWeFOXjHUurByZJvAMAAAAAAAAAAACqJ94BAAAAAMCQnkX5cMeJtQOTJd4BAAAAAAAAAAAA1RPvAAAAAABgKKs8KcrHOw6sHpgs8Q4AAAAAAAAAAAConngHAAAAAABDeRLlwx3H1g5MmngHAAAAAAAAAAAAVE+8AwAAAACAISzzpCgf77hh9cCkiXcAAAAAAAAAAABA9cQ7AAAAAAAYwrMoH+44tnZg8sQ7AAAAAAAAAAAAoHriHQAAAAAAnNcqT4ry8Y4DqwcmT7wDAAAAAAAAAAAAqifeAQAAAADAeZ1E+XDHibUDsyDeAQAAAAAAAAAAANUT7wAAAAAA4Dyu50lRPt5xYPXALIh3AAAAAAAAAAAAQPXEOwAAAAAAOI8XUT7ccWLtwGyIdwAAAAAAAAAAAED1xDsAAAAAADirgygf7kh5rls9MBviHQAAAAAAAAAAAFA98Q4AAAAAAM6qifLxjiNrB2ZFvAMAAAAAAAAAAACqJ94BAAAAAMBZrPKkKBvuSN25APMh3gEAAAAAAAAAAADVE+8AAAAAAOAsjqJsuKOdY2sHZke8AwAAAAAAAAAAAKon3gEAAAAAwLYO8qQoH+9YWj0wO+IdAAAAAAAAAAAAUD3xDgAAAAAAttVE+XDHsbUDsyTeAQAAAAAAAAAAANUT7wAAAAAAYBuLPCnKxzuWVg//z84dAklSZgkcfwKBQIxAjDgxIkWJEiNaIBAtECtWrBhxAjECcQKBQCAQG7FixYgVI0aMSDEC0aJFixUjEAgEYgUCgUCsQCAQiBGfqPsqJgnYZborq7vqVeaXv9/Fc3f3Zb3OKiInIv/MkngHAAAAAAAAAAAANE+8AwAAAACAfVxEfrjjytqB2RLvAAAAAAAAAAAAgOaJdwAAAAAAMNbDOiXy4x0rqwdmS7wDAAAAAAAAAAAAmifeAQAAAADAWE8jP9xxae3ArIl3AAAAAAAAAAAAQPPEOwAAAAAAGKOr8yry4x0rqwdmTbwDAAAAAAAAAAAAmifeAQAAAADAGH3khzsurB2YPfEOAAAAAAAAAAAAaJ54BwAAAAAAu6zrlMiPd6ytHpg98Q4AAAAAAAAAAABonngHAAAAAAC7XER+uOMLaweaIN4BAAAAAAAAAAAAzRPvAAAAAADgJvfrlMiPdzyweqAJ4h0AAAAAAAAAAADQPPEOAAAAAABu8jzywx0vrB1ohngHAAAAAAAAAAAANE+8AwAAAACA63R1SuTHO1ZWDzRDvAMAAAAAAAAAAACaJ94BAAAAAMB1LiI/3PHc2oGmiHcAAAAAAAAAAABA88Q7AAAAAAB4kwd1SuSGO7bnra0eaIp4BwAAAAAAAAAAADRPvAMAAAAAgDd5Ernhju08t3agOeIdAAAAAAAAAAAA0DzxDgAAAAAA/ltX51XkhjtKnbXVA80R7wAAAAAAAAAAAIDmiXcAAAAAAPDf+sgNd2yGMwHaI94BAAAAAAAAAAAAzRPvAAAAAADg97o6JXLDHWU4F6A94h0AAAAAAAAAAADQPPEOAAAAAAB+r4/ccMdmOBOgTeIdAAAAAAAAAAAA0DzxDgAAAAAAftXVKZEb7ijDuQBtEu8AAAAAAAAAAACA5ol3AAAAAADwqz5ywx2b4UyAdol3AAAAAAAAAAAAQPPEOwAAAAAA2OrqlMgNd5ThXIB2iXcAAAAAAAAAAABA88Q7AAAAAADY6iM33LEZzgRom3gHAAAAAAAAAAAANE+8AwAAAACArk6J3HBHGc4FaJt4BwAAAAAAAAAAADRPvAMAAAAAgD5ywx2b4UyA9ol3AAAAAAAAAAAAQPPEOwAAAAAAlq2rUyI33FGGcwHaJ94BAAAAAAAAAAAAzRPvAAAAAABYtj5ywx2b4UyAZRDvAAAAAAAAAAAAgOaJdwAAAAAALFdXp0RuuKMM5wIsg3gHAAAAAAAAAAAANE+8AwAAAABgufrIDXdshjMBlkO8AwAAAAAAAAAAAJon3gEAAAAAsExdnRK54Y4ynAuwHOIdAAAAAAAAAAAA0DzxDgAAAACAZeojN9yxGc4EWBbxDgAAAAAAAAAAAGieeAcAAAAAwPJ0dUrkhjvKcC7Asoh3AAAAAAAAAAAAQPPEOwAAAAAAlqeP3HDHZjgTYHnEOwAAAAAAAAAAAKB54h0AAAAAAMvS1SmRG+4ow7kAyyPeAQAAAAAAAAAAAM0T7wAAAAAAWJY+csMdm+FMgGUS7wAAAAAAAAAAAIDmiXcAAAAAACxHV6dEbrijDOcCLJN4BwAAAAAAAAAAADRPvAMAAAAAYDn6yA13bIYzAZZLvAMAAAAAAAAAAACaJ94BAAAAALAMXZ0SueGOMpwLsFziHQAAAAAAAAAAANA88Q4AAAAAgGXoIzfcsRnOBFg28Q4AAAAAAAAAAABonngHAAAAAED7ujolcsMdZTgXYNnEOwAAAAAAAAAAAKB54h0AAAAAAO3rIzfcsRnOBEC8AwAAAAAAAAAAAJon3gEAAAAA0LauTonccEcZzgVAvAMAAAAAAAAAAACaJ94BAAAAANC2PnLDHZvhTAAixDsAAAAAAAAAAABgAcQ7AAAAAADa1dUpkRvuKMO5AESIdwAAAAAAAAAAAMACiHcAAAAAALSrj9xwx2Y4E4BfiXcAAAAAAAAAAABA88Q7AAAAAADa1NUpkRvuKMO5APxKvAMAAAAAAAAAAACaJ94BAAAAANCmPnLDHZvhTAB+T7wDAAAAAAAAAAAAmifeAQAAAADQnq5OidxwRxnOBeD3xDsAAAAAAAAAAACgeeIdAAAAAADteRa54Y7t9NYO8AbiHQAAAAAAAAAAANA88Q4AAAAAgLas6pTIj3esrB7gDcQ7AAAAAAAAAAAAoHniHQAAAAAAbXkR+eGOK2sHuIZ4BwAAAAAAAAAAADRPvAMAAAAAoB3rOiXy4x1nVg9wDfEOAAAAAAAAAAAAaJ54BwAAAABAO55Ffrjj0toBbiDeAQAAAAAAAAAAAM0T7wAAAAAAaMOqTon8eMd7Vg9wA/EOAAAAAAAAAAAAaJ54BwAAAABAG15Efrjj0toBdhDvAAAAAAAAAAAAgOaJdwAAAAAAzN+6Ton8eMeZ1QPsIN4BAAAAAAAAAAAAzRPvAAAAAACYv6vID3dcWTvACOIdAAAAAAAAAAAA0DzxDgAAAACAeXtYp0R+vOPM6gFGEO8AAAAAAAAAAACA5ol3AAAAAADM28vID3dcWTvASOIdAAAAAAAAAAAA0DzxDgAAAACA+TqL/HBHqfPQ6gFGEu8AAAAAAAAAAACA5ol3AAAAAADMVx/58Y4LawfYg3gHAAAAAAAAAAAANE+8AwAAAABgntZ1SuSGO8pwLgBjiXcAAAAAAAAAAABA88Q7AAAAAADm6SJywx3bubR2gD1t4lGdxxOaR/4oAAAAAAAAAAAAcFjiHQAAAAAA83NWp0R+vGNl9QAAAAAAAAAAAAAA/0m8AwAAAABgfvrID3dcWjsAAAAAAAAAAAAAwB+JdwAAAAAAzEtXp0R+vGNl9QAAAAAAAAAAAAAAfyTeAQAAAAAwLxeRH+64snYAAAAAAAAAAAAAgDcT7wAAAAAAmI+HdUrkxztWVg8AAAAAAAAAAAAA8GbiHQAAAAAA8/E08sMdl9YOAAAAAAAAAAAAAHA98Q4AAAAAgHno6ryK/HjHyuoBAAAAAAAAAAAAAK4n3gEAAAAAMA995Ic7LqwdAAAAAAAAAAAAAOBm4h0AAAAAANO3rlMiP96xtnoAAAAAAAAAAAAAgJuJdwAAAAAATN9F5Ic7vrB2AAAAAAAAAAAAAIDdxDsAAAAAAKbtfp0S+fGOB1YPAAAAAAAAAAAAALCbeAcAAAAAwLQ9j/xwxwtrBwAAAAAAAAAAAAAYR7wDAAAAAGC6ujol8uMdK6sHAAAAAAAAAAAAABhHvAMAAAAAYLouIj/c8dzaAQAAAAAAAAAAAADGE+8AAAAAAJimB3VK5IY7tuetrR4AAAAAAAAAAAAAYDzxDgAAAACAaXoSueGO7Ty3dgAAAAAAAAAAAACA/Yh3AAAAAABMT1fnVeSGO0qdtdUDAAAAAAAAAAAAAOxHvAMAAAAAYHr6yA13bIYzAQAAAAAAAAAAAADYk3gHAAAAAMC0dHVK5IY7ynAuAAAAAAAAAAAAAAB7Eu8AAAAAAJiWPnLDHZvhTAAAAAAAAAAAAAAAbkG8AwAAAABgOro6JXLDHWU4FwAAAAAAAAAAAACAWxDvAAAAAACYjj5ywx2b4UwAAAAAAAAAAAAAAG5JvAMAAAAAYBq6OiVywx1lOBcAAAAAAAAAAAAAgFsS7wAAAAAAmIY+csMdm+FMAAAAAAAAAAAAAADuQLwDAAAAAOD0ujolcsMdZTgXAAAAAAAAAAAAAIA7EO8AAAAAADi9PnLDHZvhTAAAAAAAAAAAAAAA7ki8AwAAAADgtLo6JXLDHWU4FwAAAAAAAAAAAACAOxLvAAAAAAA4rT5ywx2b4UwAAAAAAAAAAAAAAA5AvAMAAAAA4HS6OiVywx1lOBcAAAAAAAAAAAAAgAMQ7wAAAAAAOJ0+csMdm+FMAAAAAAAAAAAAAAAORLwDAAAAAOA0ujolcsMdZTgXAAAAAAAAAAAAAIADEe8AAAAAADiNPnLDHZvhTAAAAAAAAAAAAAAADki8AwAAAAAgX1enRG64owznAgAAAAAAAAAAAABwQOIdAAAAAAD5+sgNd2yGMwEAAAAAAAAAAAAAODDxDgAAAACAXF2dErnhjjKcCwAAAAAAAAAAAADAgYl3AAAAAADk6iM33LEZzgQAAAAAAAAAAAAA4AjEOwAAAAAA8nR1SuSGO8pwLgAAAAAAAAAAAAAARyDeAQAAAACQp4/ccMdmOBMAAAAAAAAAAAAAgCMR7wAAAAAAyNHVKZEb7ijDuQAAAAAAAAAAAAAAHIl4BwAAAABAjj5ywx2b4UwAAAAAAAAAAAAAAI5IvAMAAAAA4Pi6OiVywx1lOBcAAAAAAAAAAAAAgCMS7wAAAAAAOL4+csMdm+FMAAAAAAAAAAAAAACOTLwDAAAAAOC4ujolcsMdZTgXAAAAAAAAAAAAAIAjE+8AAAAAADiuPnLDHZvhTAAAAAAAAAAAAAAAEoh3AAAAAAAcT1enRG64owznAgAAAAAAAAAAAACQQLwDAAAAAOB4+sgNd2yGMwEAAAAAAAAAAAAASCLeAQAAAABwHF2dErnhjjKcCwAAAAAAAAAAAABAEvEOAAAAAIDj6CM33LEZzgQAAAAAAAAAAAAAIJF4BwAAAADA4XV1SuSGO8pwLgAAAAAAAAAAAAAAicQ7AAAAAAAO71nkhju201s7AAAAAAAAAAAAAEA+8Q4AAAAAgMNa1SmRH+9YWT0AAAAAAAAAAAAAQD7xDgAAAACAw3oR+eGOK2sHAAAAAAAAAAAAADgN8Q4AAAAAgMNZ1ymRH+84s3oAAAAAAAAAAAAAgNMQ7wAAAAAAOJxnkR/uuLR2AAAAAAAAAAAAAIDTEe8AAAAAADiMVZ0S+fGO96weAAAAAAAAAAAAAOB0xDsAAAAAAA7jReSHOy6tHQAAAAAAAAAAAADgtMQ7AAAAAADubl2nRH6848zqAQAAAAAAAAAAAABOS7wDAAAAAODuriI/3HFl7QAAAAAAAAAAAAAApyfeAQAAAABwNw/rlMiPd5xZPQAAAAAAAAAAAADA6Yl3AAAAAADczcvID3dcWTsAAAAAAAAAAAAAwDSIdwAAAAAA3N5Z5Ic7Sp2HVg8AAAAAAAAAAAAAMA3iHQAAAAAAt9dHfrzjwtoBAAAAAAAAAAAAAKZDvAMAAAAA4HbWdUrkhjvKcC4AAAAAAAAAAAAAABMh3gEAAAAAcDsXkRvu2M6ltQMAAAAAAAAAAAAATIt4BwAAAADA/s7qlMiPd6ysHgAAAAAAAAAAAABgWsQ7AAAAAAD210d+uOPS2gEAAAAAAAAAAAAApke8AwAAAABgP12dEvnxjpXVAwAAAAAAAAAAAABMj3gHAAAAAMB+LiI/3HFl7QAAAAAAAAAAAAAA0yTeAQAAAAAw3sM6JfLjHSurBwAAAAAAAAAAAACYJvEOAAAAAIDxnkZ+uOPS2gEAAAAAAAAAAAAApku8AwAAAABgnK7Oq8iPd6ysHgAAAAAAAAAAAABgusQ7AAAAAADG6SM/3HFh7QAAAAAAAAAAAAAA0ybeAQAAAACw27pOifx4x9rqAQAAAAAAAAAAAACmTbwDAAAAAGC3i8gPd3xh7QAAAAAAAAAAAAAA0yfeAQAAAABws/t1SuTHOx5YPQAAAAAAAAAAAADA9Il3AAAAAADc7HnkhzteWDsAAAAAAAAAAAAAwDyIdwAAAAAAXK+rUyI/3rGyegAAAAAAAAAAAACAeRDvAAAAAAC43kXkhzueWzsAAAAAAAAAAAAAwHyIdwAAAAAAvNmDOiVywx3b89ZWDwAAAAAAAAAAAAAwH+IdAAAAAABv9iRywx3beW7tAAAAAAAAAAAAAADzIt4BAAAAAPBHXZ1XkRvuKHXWVg8AAAAAAAAAAAAAMC/iHQAAAAAAf9RHbrhjM5wJAAAAAAAAAAAAAMDMiHcAAAAAAPynrk6J3HBHGc4FAAAAAAAAAAAAAGBmxDsAAAAAAP5TH7nhjs1wJgAt2sSTOv2E5ok/CgAAAAAAAAAAAByWeAcAAAAAwG+6OiVywx1lOBeAFm3ihzpT+p8f/FEAAAAAAAAAAADgsMQ7AAAAAAB+00duuGMznAlAq8Q7AAAAAAAAAAAAoHniHQAAAAAAr3V1SuSGO8pwLgCtEu8AAAAAAAAAAACA5ol3AAAAAAC81kduuGMznAlAy8Q7AAAAAAAAAAAAoHniHQAAAAAAEV2dErnhjjKcC0DLxDsAAAAAAAAAAACgeeIdAAAAAAARfeSGOzbDmQC0TrwDAAAAAAAAAAAAmifeAQAAAAAsXVenRG64owznAtA68Q4AAAAAAAAAAABonngHAAAAALB0feSGOzbDmQAsgXgHAAAAAAAAAAAANE+8AwAAAABYsq5OidxwRxnOBWAJxDsAAAAAAAAAAACgeeIdAAAAAMCS9ZEb7tgMZwKwFOIdAAAAAAAAAAAA0DzxDgAAAABgqbo6JXLDHWU4F4ClEO8AAAAAAAAAAACA5ol3AAAAAABL1UduuGMznAnAkoh3AAAAAAAAAAAAQPPEOwAAAACAJerqlMgNd5ThXACWRLwDAAAAAAAAAAAAmifeAQAAAAAsUR+54Y7NcCYASyPeAQAAAAAAAAAAAM0T7wAAAAAAlqarUyI33FGGcwFYGvEOAAAAAAAAAAAAaJ54BwAAAACwNH3khjs2w5kALJF4BwAAAAAAAAAAADRPvAMAAAAAWJKuTonccEcZzgVgicQ7AAAAAAAAAAAAoHniHQAAAADAkvSRG+7YDGcCsFTiHQAAAAAAAAAAANA88Q4AAAAAYCm6OiVywx1lOBeApRLvAAAAAAAAAAAAgOaJdwAAAAAAS9FHbrhjM5wJwJKJdwAAAAAAAAAAAEDzxDsAAAAAgCXo6pTIDXeU4VwAlky8AwAAAAAAAAAAAJon3gEAAAAALEEfueGOzXAmAEsn3gEAAAAAAAAAAADNE+8AAAAAAFrX1SmRG+4ow7kALJ14BwAAAAAAAAAAADRPvAMAAAAAaF0fueGOzXAmAIh3AAAAAAAAAAAAwAKIdwAAAAAALevqlMgNd5ThXAAQ7wAAAAAAAAAAAIAFEO8AAAAAAFrWR264YzOcCQCviXcAAAAAAAAAAABA88Q7AAAAAIBWdXVK5IY7ynAuALwm3gEAAAAAAAAAAADNE+8AAAAAAFrVR264YzOcCQC/Ee8AAAAAAAAAAACA5ol3AAAAAAAt6uqUyA13lOFcAPiNeAcAAAAAAAAAAAA0T7wDAAAAAGjRs8gNd2ynt3YA/kC8AwAAAAAAAAAAAJon3gEAAAAAtGZVp0R+vGNl9QD8gXgHAAAAAAAAAAAANE+8AwAAAABozYvID3dcWTsAbyTeAQAAAAAAAAAAAM0T7wAAAAAAWrKuUyI/3nFm9QC8kXgHAAAAAAAAAAAANE+8AwAAAABoybPID3dcWjsA1xLvAAAAAAAAAAAAgOaJdwAAAAAArVjVKZEf73jP6gG4lngHAAAAAAAAAAAANE+8AwAAAABoxYvID3dcWjsANxLvAAAAAAAAAAAAgOaJdwAAAAAALVjXKZEf7zizegBuJN4BAAAAAAAAAAAAzRPvAAAAAABacBX54Y4rawdgJ/EOAAAAAAAAAAAAaJ54BwAAAAAwdw/rlMiPd5xZPQA7iXcAAAAAAAAAAABA88Q7AAAAAIC5exn54Y4rawdgFPEOAAAAAAAAAAAAaJ54BwAAAAAwZ2eRH+4odR5aPQCjiHcAAAAAAAAAAABA88Q7AAAAAIA56yM/3nFh7QCMJt4BAAAAAAAAAAAAzRPvAAAAAADmal2nRG64owznAsA44h0AAAAAAAAAAADQPPEOAAAAAGCuLiI33LGdS2sHYC/iHQAAAAAAAAAAANA88Q4AAAAAYI7O6pTIj3esrB6AvYh3AAAAAAAAAAAAQPPEOwAAAACAOeojP9xxae0A7E28AwAAAAAAAAAAAJon3gEAAAAAzE1Xp0R+vGNl9QDsTbwDAAAAAAAAAAAAmifeAQAAMB39juetv1gRwBt9veP38wMras5F5Ic7rqwdgFsR7wAAAAAAAAAAAIDmiXcAAABMw//ueNb6ps5bM/tM9+q8rPPlNfPQnx1O6n6dP9f5vM7TOpf/9R3dfn+3UaG/1/m4zvt13p3oZ/nTjt/QH4ffJNqw/e9Hifx4x8rqAbgV8Q4AAAAAAAAAAABonngHAADA6XV1ftrxrHU2w8/11x2f6dyffpRtYOHBzIZp2sYrPqxzEa9jFrf9t59v6/wtXsc8puRyx3VfxfwiSLzZ08gPd1xaOwC3Jt4BAAAAAAAAAAAAzRPvAAAAOL2vY/cL53OzDZL8EuIdh/Bd5L+k7t8G2rKNbFyM+E7eZrYvfn5W592Z/O584naYve3f+dUJftdWVg/ArYl3AAAAAAAAAAAAQPO8oAMAAHBan+54xtq+oNzN8HN9NeL58dyff6d7dUqId3A7Z3W+TPqbb+/Tp3Xun/gzP9lxndu4hwjDvPUn+E27sHYA7kS8AwAAAAAAAAAAAJrnBR0AAIDT2UY5ftnxjPW3GX6uXUES8Y7x3ov5hTv828DpvVPnH3Ga8MtPdT6p89aJPvu7I35XX57w+rib9Ynu67XVA3An4h0AAAAAAAAAAADQPC/oAAAAnMb2xfHvYvdL8Pdm9rnO67wK8Y5D+b8Q72A/28jA9xO4B76qc/9EO/h4xPV94laZpYsT3MtfWDsAdybeAQAAAAAAAAAAAM3zgg4AAMBpfB7tvVzexevgyNjnx3O3wU4vQryD8R7V+XlC98GPdc5OsIdtHOmHHdf2S50HbplZ2cZgygnuY/cJAHcn3gEAAAAAAAAAAADN84IOAABAvm3k4tWOZ6vv6rw9o890r863ez4/nrsVdvomxDsY53GcJmywa7bX9KcT7OPDEdd26baZlecnuH9fWDsAByHeAQAAAAAAAAAAAM3zgg4AAEC+lyOerT6c0ed5J24XmTh3K+w0xRiDfxuYnkcTv1e2saL3T7CXr0dc2yO3zyx0J7rHV1YPwEGIdwAAAAAAAAAAAEDzvKADAACQ6+MRz1Vf1XlrJp/n7Tr/vOXz47nb4UYPY57hDv82kOssXscx7hrX2EaFntT5vM5HdR7X+azO3+tc1vnljmf8XGedvJv3R17XfbfR5F2c4HfsubUDcDDiHQAAAAAAAAAAANA8L+gAAADkebfOv0c8V/15Jp/nXrx+4f+2z4/nbokbfRjiHez+Dn53h7/TNojwQbyO8OyyDQptYxgv6pRbnvevkWcd0tWI63rmVpq0B3e452472/PWVg/AwYh3AAAAAAAAAAAAQPO8oAMAAJDnHyOeqV7O5LNsQyTf3PH58dwtcaMnId7Bzb685d9nG7To7nDu/8Tr8Mdtzn6avKPt5xwTfjhzO/kt/N08t3YADkq8AwAAAAAAAAAAAJrnBR0AAIAc2xfDx7xAfj6Dz7Ku8/0Bnh/P3RY3+ufIPb6q83hiw/E9usV37pc6/3fAa/hkuP/2uYbt7+AqeVdfjLiu7fftLbfV5HS3uMfuOmX47xwAHI54BwAAAAAAAAAAADRPvAMAAOD4ti+EfzvieerLGXyWD+r8fKDnx3O3xo1+GrnHr6xqkb8p+wZ0tt/bsyP9Jvyy57VcJe/rYYyLJz12a01OH7nhjs1wJgAclngHAAAAAAAAAAAANE+8AwAA4Pgej3yeem/in+PTGPcCvHjH3T3YY49PrWtxPt3zu1aO/H37yy2+/6vknY2JQGyDKG+5vSajO/B/c8Z+VzqrB+DgxDsAAAAAAAAAAACgeeIdAAAAx7V9Efz7Ec9SLyf8Gd6p8+IIz4/nbo9r7RND+Mi6Fveb8sOe37W/JlzXvr8Rz5P3to5xIYjHbrHJ6CM33LEZzgSAwxPvAAAAAAAAAAAAgOaJdwAAABzXRyOfpf400es/i3HxEfGOw/qrPXKNR3t+z76O18GPY7tX58c9ruuX4f8m08WI69q+yPqO2+zkuhgXWznklOFcADg88Q4AAAAAAAAAAABonngHAADA8bxd598jnqP+NcFr377s/3mdV3G8F6XP3SLXuthjj0IDy/Llnt+z9xOv7aM9r+1R8u7eG3ldn7rNTq6P3HDHZjgTAI5DvAMAAAAAAAAAAACaJ94BAABwPB+PfI56PLHr3r7g/k0c/0Xpc7fItb4fucNvrWpR3q1T9viOfZ18fduQzD7Bnycn2OHXI67rxxDFOaVuz/v8EFOGcwHgOMQ7AAAAAAAAAAAAoHniHQAAAMfxdp1/j3iG+nn4352CbRigj7yXps/dJtf+Hcb+DZ5b16J8vOd37NEJrvHlHtd3dYLrezzy2j51u51MH7nhjs1wJgAcj3gHAAAAAAAAAAAANE+8AwAA4DjGvmT/ZALX+ladz+J1SOQuz4P/qvNTiHfc1ft77PAj61qUL/a4N17VuXeCa/x8j2v8/gTX9/bI36kf67zjlkvXRV5A6tcpw7kAcDziHQAAAAAAAAAAANA88Q4AAIDD28Ywvh/5DLU+8XVu4w8/HOBZ8LLOu3v+/zp3q7zRZ3vs8APrWpR94jgvT3SNH+7523GKQMY/QhxnqvrIDXdshjMB4LjEOwAAAAAAAAAA/p+9u4WOYlnbBlwiIgKBQCAQESMiIiIiEAgEYgsEAoFAIBAIBAKBQGQtBAKxBQIRMQIRERERgUAgEAgEAoFAbIFAIBARES3yVb/TfIfNzk9Xz0z133Wd9YhzDqQrT1f11LBW3Q0Agye8AwAAYPHqHl5/3+IY74TFhHaU9SLMgkBCEN6xCK8TenhZu0ZjPXFdPm5pnH8ljnOthTFuxipqjO3rb882lm9S874ssorqugCwXMI7AAAAAAAAAAAAYPCEdwAAACzeu5rfnx70/Pvg91i3/vi5wjvm96lm/xy4G5cycKIM/DmsOT82Whrn9dD98I7S55rju2HqZTMNeYM7jqtrAkCOb1/COwAAAAAAAAAAAGDghHcAACzGWqw7sZ6G2SHAt2F2KLQ8DHHaIdtvYfZG9/Ig7m6s57HuxtrSTui1zZrfnY5iXe7x98EyoOTKCT9XeMd8VmIVNfu3q12jNQmz4Jxy37EX68sf8+ZHNZfacD30I7zjac3x7Ztu2eZ0EfIGdxTVdQEgx7cv4R0AAAAAAAAAAAAwcMI7AACauRTrXpgdnP65hD1Veaj/IMwOll7RbuiVnZrr/E1Pvw+Wh523w+nBAMI75rOZ0L/H2sVvLoRZANj9WE9aHMfdxGfKxZbGuR4EPHTJNOQN7jiurgkAub59Ce8AAAAAAAAAAACAgRPeAQBQ32qsB7Heh/xvBi+DPG6F0w/LA91QHkKvG+hzv4ffB8vAkfMOsQvvmM+9hP5d1S46aDukhQG16VPNcb5wW5dq0sLeWigLALm/fQnvAAAAAAAAAAAAgIET3gEAcL5LsZ7F+hbyvxH8z/oa62YQ4jE0T8Ls7e9jqKEfgH4Q6h8avtSj74PfQ/0AIeEd83mR0L9V7aKD3iTM4S8tj/VxwjPQelueaQt76qm2A5D525fwDgAAAAAAAAAAABg44R0AAGcrD+L/DO2HdvxZb2NdcXsG410H59iyaugHhD7U7MObnnwfPAyzMImUoBHhHfP5WLN3P7SKDlqp5mbdZ8DLlsc7SRjrLbd3afegyLwXKarrAkDOb1/COwAAAAAAAAAAAGDghHcAAJzsYqyD0O0QhPIt8NfdqkEQ3jEMG6H+AeT7Pfg+uBtrrcHPFd7RXBl8cBj6EwADf7qX+JnwVwfG/LXmWPfd3qWYtrAXmWo7AC18+xLeAQAAAAAAAAAAAAMnvAMA4L82Q9rh8zarDAq46pb1nvCOYXiS0Ie1Dn8fLOfj9Tl+rvCO5iYJvdvWLjqmDJ/5nDCHj2Jd6MC4nyeMd9VtXvgzrwj5984TrQeghW9fwjsAAAAAAAAAAABg4IR3AAD8Wxnc8SP0KwzhW6wrbl2vCe8Yhq81e/Cpo98H34bFhGkI72jubkLvbtb4eRuxHsZ6EetNrC+xDk/4DPlU3f+Xse4HB9tpJiXA6Lial11wM2HM99zmhZq2sA+ZajsALX37Et4BAAAAAAAAAAAAAye8AwDgf8rDyn0L7vhVu25frwnv6L+thB687ND3wSLW62r8iyK8o7nthN6dFtp0NdbfYRbUMW8w1Cv3iJrKeXKYML/KZ896R8a+mjD2t271QvfdReY9SBGEEwHQ3rcv4R0AAAAAAAAAAAAwcMI7AABmyoObH+fcB32PtR/reay7YXaQdTPW2m9VHhi8Fut2mB3S3gtph13PqqtuY28J7+i/pwk9uNaRMT8KpwdAzEN4R3P7Nfv2M9bKH59hD2O9X9K6/Vr9/FW3iBPcbLCX2e7p5/BRrAtu+UJMW9iDTLUdgNYI7wAAAAAAAAAAAIDBE94BADDzouHe50eYHUAtgzNWGl67/HtlyMerMDuQ3XQf9tpt7C3hHf33KdQ/+D30AAThHc39qNm3vd/+zp1Y3zKt3/I6N90mftu/PItVJM6jLx18Dj5PGP8dt35ukwbzZt4qqusCQDuEdwAAAAAAAAAAAMDgCe8AAAhhPTQ7QFgGflxc8FguVT+3yXgOlzAe8hDe0W9XEtbsxxHMZ+EdzVxI6NuTWFthFoLQxjqe+rwZvWuxPjeYO0fV3O2a2wm/w47bP7dpS88tAGiP8A4AAAAAAAAAAAAYPOEdAADpBwjLg6e3ljymG7F+NNiL3Xc7e0l4R7/dSvj9n49gPgvvaP7cr9u3D6FZyNMi61s1ZsblaqyDOebNnY7+XpcS1lQ591dMhcYmLTy/iuq6ANAe4R0AAAAAAAAAAAAweMI7AICxWwvpBwhvZRrbZqzDxLEduKW99HeYBXiMoXYHeP+eJ6zR2yOYz8I7mtkO/QzkERo1bKthFtLyNNb3gc+Vzwm/y6ap0di0hefUVNsBaJ3wDgAAAAAAAAAAABg84R0AwNi9TNzrPM88vgeJ4/vulkJ2XxLW6MYI+iG8o5nd0M/wjrKeuX29VoZzvAizAJntam+0F2ZhFsUC5kcZRHZ3YGvwgWnTyGRBcyqliuq6ANAu4R0AAAAAAAAAAAAweMI7AIAxW4n1I2Gf8zPWxRbG+DVxP3bRrYVsLoT6B5GPqjU9dMI7mkkJgRHgwSJtL3FelPN6syd9eJrwe702bRqZtvBsmmo7AJ0gvAMAAAAAAAAAAAAGT3gHADBmfyXucx61NM5HiePcdGshmxsJa/PjSHoivCPdpVA/BCa1ypCqz7He/VZloMLREq71yK3spZ0lzIVyPr+MtdqjPtwOaaEkpJks8Tl31jycaD0AnSC8AwAAAAAAAAAAAAZPeAcAMGYvE/Y430N7B1A3EvdjN9xayOZJwtp8PZKeCO9It7nA7+Rl/1+EWRDB2jnXvVx9ZryoPucWcVD+mtvZO+/CYsMSpqGfgQmTxN/1oqmTZBryBnccV9cEgG4Q3gEAAAAAAAAAAACDJ7wDABizrwl7nKctjzXlUPU9txay2U9Ym09G0hPhHekeLuC7+IdYf8VaaTiG8u+VQR7v5xxH+Xl1wS0d7JqtU5/DLCDtxhzzsS2HCb/nX6ZObWUwShHyBncUoZ8hMgAMlfAOAAAAAAAAAAAAGDzhHQDAWF0KaYcI11se7+cgvAO6KGVt3hxJT4R3pNsJ84Vl3A6LDUkof963Oca045b2xoWw3FCFch49jnWxJ/34EPoT7NYn05A3uOO4uiYAdIfwDgAAAAAAAAAAABg84R0AwFiVh5zLN8LfC7PDl/ux3sf6ecL+5ksHxruXsB974vZCtudIyqH3yUj6Irwj3fvQ/HD65SWNqQx1eD3Hvw24t/0wCXmCFH5U+62VjvcjZc7vmj6151gR8gZ3FCP6zAWgL4R3AAAAAAAAAAAAwOAJ7wAA+K8rsTZj3Y21HetOB8aU8sbybbcQskg99H5xJH0R3pFmNdZRg+/eDzKNb7vhvw18Dt0PaiCEayFvqMKnWBsd7sfLhN/lg+lTy6vMc+xXsBEAdIvwDgAAAAAAAAAAABg84R0AAP0gvAO652bCuvw+or4I70hzNfE7dxHrVuYxPmv47wO33d7Oe3DGPPunqm/Vf1/UvxsddnhuPEj4PX6YPudaX/DcqVvrWg9A5wjvAAAAAAAAAAAAgMET3gEA0A/CO6B7HiWsy88j6ovwjjR3Er9zP2xpnHsN/n3gY6wVt7jTymCWb9X9fRzrRqxLp/zZtTALLXpV/Z15/u2oDHS438F+3E78Pczvs70O+YM7DrQdgE4S3gEAAAAAAAAAAACDJ7wDAKAf3gbhHdA1LxPW5d6I+iK8I83Fqg93q+d3edi9DHv5fkK/XrY4zkunjMk97rfVOf7u1TALSpjn35DudqwfG4njXzOFzuxlEfKHd2xpPQCdJLwDAAAAAAAAAAAABk94BwBAt12OdS+kHYbf1jbIYjdhXb4aUV+EdyxOGZhRHoC/E+thmAV9tOl2g38jmLqNg1eu46+h2b8hHcXa7Ni+K2X8V93+U70K+YM79rUdgM4S3gEAAAAAAAAAAACDJ7wDAKBbykOj5eHol7E+h2ZvLN/WRsjiXcK6fDaivgjvGLb3iZ9J32OtaNvglfd4Gpr9O9KnWKsd+l1Sxn7TrT/ResM97LwlTAWA7hLeAQAAAAAAAAAAAIMnvAMAoD2XYt2I9STWXqxvC9qPbWstZPHVujyR8I5h+6vB59KGto3Gi4Z7ly4FHKWETtx3y0/0OuQP7tjXdgA6TXgHAAAAAAAAAAAADJ7wDgCA5SnfIn8l1lasu7Geh9lb6d/E+h6Wd3hxW+shi5/BAe+TCO8YvpTgmrIeadmoPGuwdzkMs1Czvj3D7Ln+qwzrKUL+8I4trQeg04R3AAAAAAAAAAAAwOAJ7wAAmM/FWFdj3Yr1NNZOrIMwO9h8FPIfXHSQFLr5fereiPoivGP4XiTO/z0tG52dBvuXv3v4DLPn+q+DFva+B9oOQA++PQrvAAAAAAAAAAAAgIET3gEAkKZ8q/d2rN1YX0I7bxZ3kHR4NsMsxGAMdXUg92w1cV3eHdF8Ft4xfDcT5/9nLRudlTALMkuZJz+qv9e2LwljfuFW/2c/08beeEvrAeg84R0AAAAAAAAAAAAweMI7AADOtx7reUg7kC68gxTvejK3FlFDOSC0lvh73xjRfBbeMXwXQ9oB/SMtG6XUkJey7vTsM3nqNv/L2xb2FQfaDkAvCO8AAAAAAAAAAACAwRPeAQBwuuuhn6EK225d7wjv6J+1xN/7+ojms/COcfiauAYuaNkovU+cJzs9+0wW3vE/Wy3sKcoQoU2tB6AXhHcAAAAAAAAAAADA4AnvAAD4r/VYb0J/wxG23cLeEd7RP2tBeMdphHeMw37iGpho2Sjd6eFnhPCOZqYt7Cn2tB2A3hDeAQAAAAAAAAAAAIMnvAMA4N8exvoZuhFycBhmh6NvxfoQhHcMmfCO/lkLwjtOI7xjHFIP6l/VslG6EOsoca5c7tFnsvCOmY1YReb9RFFdFwD6QXgHAAAAAAAAAAAADJ7wDgCAmdVYr0P7wQZfY+3EuhtmB15/STlIuu129o7wjv5ZC8I7TiO8YxyeWwPU9KZnc0V4R7q9FvYT+9oOQK8I7wAAAAAAAAAAAIDBE94BABDCSqyDkP/Q4c8wOyBaHoC+Hc5+07zwjmET3tE/a0FwwWmEd4zDtjVATY8S58qDHn0mC+8IYStW0cJ+Yl3rAegV4R0AAAAAAAAAAAAweMI7AICxWw3LD+74EetrdZ0yqONOmB04XEkYp/COYRPe0T8XE3/vuyOaz8I7xmE7CO+gnpuJc6XtfUzKZ/Lfbu//BZjk3kvsazsAvSO8AwAAAAAAAAAAAAZPeAcAMHYvwmJDOt7GehnrYZgdVL68oHEK7xg24R3D/z51b0TzWXjHOGwnroFrWjZaVxPnyquWx/vFnqu2Sayihb3EumUFQA+/PQrvAAAAAAAAAAAAgIET3gEAjNmNMN+Bw8NYB7Eex9pa8liFdwyb8I5+Snl+PBrRfBbeMQ4vE9f+RMtGay1xrkx79Awb+55rr4V9xIElBUAvCe8AAAAAAAAAAACAwRPeAQCM1Uqsrw33Oz/C7CD+pYzjfR8cJB0y4R39lHLA+9mI5rPwjnHYT1z7F7RstNZCv8I7fiaM9f6I7+tmmC8Er2mtW1IA9JLwDgAAAAAAAAAAABg84R0AwFjda7jXeRXyhnb84i3ww3Y5zA43j6GuDOi+fQ79OYze1efVdcu/tz4m3Ofv2rV0F2NtxbpZVZeshX6Fd6SM9faI59zLkD+4Y99SB6C3hHcAAAAAAAAAAADA4AnvAADG6muDfU6bb1dPeQv8ttsLWbxNWJdvRtQX4R3pygCfMnjhVpiFSz2K9TzMQgzKuVMGxWx2bMzfE+7zJ7d4bithFn60Ve1Hys/612EWovItVvFbv790bOxXE/dbz1oc66XEsY71GTaJdRTyh3esexQA0FvCOwAAAAAAAAAAAGDwhHcAAGO01WCP86TF8V5IHOt2x/pdHoRd+6NWTEMGYJqwLt+PqC/CO+q5F+tHQq/udmjsVxI/l3Y9Lub2MLHnlzo09ruJY3/Y4ljXgzCJRX/+Lar2PAYA6DXhHQAAAAAAAAAAADB4wjsAgDHaTtzflG+wX21xvKkHSbdbGGMZxnE1zA7cvg6zoIKv4ey3sn+P9SnWqzA7xL4ehHrQL88S1uWYDkYJ76jnTuKzfadDY7+dOPY7HhfZe367x/uuNoNqrieOdXWEc3EjVhHyh3dseAwA0GvCOwAAAAAAAAAAAGDwhHcAAGP0KXF/86Dl8aYe2N3OOLbNMAvf+LagvWQZ+FEGIkxMU3rgge9KJxLeUc9Gg+djV+wmjn3d42JuqUFeux0a+0Hi2LdaHOvdhHF+H+lc3Av5gzt2PQIA6D3hHQAAAAAAAAAAADB4wjsAgLFZiXWYsLcp3yx+seUxvwrdC++4GetjWP5BTSEedNn1xDl9aSR9Ed5Rz2r1GZMyh650ZNw/E8b8xaNiYVL2Lz9iXejIfDlKGPdh9Xfasp0w1g8jnIOXGzy3FlFrlj8AvSe8AwAAAAAAAAAAAAZPeAcAMDZXEvc2nzsw5m+hO+EdG7HehXyHNcsDojuhGweQ4U+XE+fz1kj6IryjvtQQpAcdGPODxDH/7VGxMG8Se3+rA2O+nTjmg5bHO00Y63SEc3An5A/ueG3pAzAIwjsAAAAAAAAAAABg8IR3AABjcy1xb7Pb8ni3GuzHdpY0lnuxDkP+Q5tllQEm101fOiglqOKOngjv+MOzxGfhp1grLY63vPbnxDGve0wszOPQryCM0ofEMT9sebzvE8b6ZGTzbxJmoWq594CeIQAMw3G4EmutQ3XFTQEAAAAAAAAAAIDFEt4BAIzN9cS9TdtvVX/dYD+2jDG/Cu2Edvxe5YHR+6YwHfMmYQ4/HUlPhHfUd7XBs7DNnt0P6WEjLM5GSA9P2GxxvLcazO+1lnt8lDDWv0Y2//Za2PvtWPYAAAAAAAAAAAAAAPSF8A4AYGyuJ+5t9lsea5M3nC86vKMLwR2/1wPTmA7ZTpi7uyPpifCOND8Sn4FvWxrnhVjfPK9b97FH+5gPiWN903JvL4d+BY3ktNZwTzpvaNuGJQ8AAAAAAAAAAAAAQF8I7wAAxmY9cW/zPdZKC+MsD0l/bbgfW2R4x8s59oVl795U43keZiEHZZVhIO9jHc7xs2+aynTEXwnz9vNIeiK8I82LBs/AGy2McydxjGXQx6rbu3BPG8yXzRbG+aTBOG+33NubCWP9x3Nq6bVjuQMAAAAAAAAAAAAA0CfCOwCAsVltsL9p463fr+fYj71e0BjKQ7Spb1kvD2uXB4u3Qr3QkzL4oAwIOUq8zs9YE9OZDlhLnLsXR9AT4R3pc6jJs/ZyxjHebfBZ9NCtXYpLIT38qgwOupBxjNcbzOmPoZ2wtN89ShjvmxHNuUmDfdq8VbS0/wYAAAAAAAAAAAAAgMaEdwAAY/QltBOGUdffc+7H3i1gDOWh8J8hLUyjPKjdNJjgSkgPLHkf2j/oC6WUsIpr+iG84wRNApveZHoG3gjpB/e/eD4v1XaD+TLNNLYycOGwwfhudKCv+wnj3R7RfJuGvMEdOecrAAAAAAAAAAAAAAAsjPAOAGCMXjbY42xlGtvOAvZj7zKP42OYvZV9EW7G+pFw7TumMx2QcrD5yQj60cfwjqvVuFPq9gKvXz5DiwbP+zL0Y5khGeX96UoQw6MG9+jKQNdYGZT1vcF9WfbzZyPxM7xrQQ1fg+ChRT2b5qligftKAAAAAAAAAAAAAADIRngHADBGNxvscb7EurTEMZWHFN8uaD/2cQFjqXtQ802s1QX3YjPUP/xbHs6+YErTsnsJ63N3BP3oY3jH9QbP2nsLHsOLhs/8gzALc1i0+7GOGoznxZLu0XaDsawNeJ09bjhfygCzlSU9B5sEvZSf95c70M/LCWM+WsLep6umIW9wR5fCXAAAAAAAAAAAAAAAIInwDgBgjMqwhyYHTD+FxQd4lAdoywO4Pxe4H/tnzjHVPaj5ISzv8OqNUP/Q+CNTmpatJazP72E5B+e7RHhHM6uJvfszYOrqgsZRBjgdhObhUcv6XNgOwjv+1DT0612s9QWNoQy92J1jz3KzI728EYQwnfQsKELe4I6iui4AAAAAAAAAAAAAAPSO8A4AYKyeN9zrfI311wKuXx7ev1f9vEXvx47mGFcZTlLnoGb5ZzaXfI+ehvohItC2lNCFLb0Q3nGKq2G+w/Jl+NJGw2tfifUiNAu3KutHWG5YxnYQ3vGnMjjje2gekrATmoeSldd+Nsd8KetJh3r5ouW130XTkDe449czDAAAAAAAAAAAAAAAekl4BwAwVhfDfAdO38S6W/2culZjXYv1MswOOTcJ5aj7Zy827MuDmj9/O8M9KgNO6oYArJvStGw7YX0+HXgvhHfM594Cvpe/D7NghPOejZNYD2MdhPlCQ4rq860ra2ws4R2/5u5RmC/wazfW/XP6tVLNp/LP7c+5hyrrVcf6+Mm8+s+zoQh5gzuK6roAAAAAAAAAAAAAANBLwjsAgDF7uKD9z7swe2N7eSD/3m/1oPrfyrCO8iD1z9D8MGN5WHYnLP9A/Nua47mU6R49rfn7PjSdadlWwvp8O/BeCO+Y34sFfkc/qu7Jh+rzqqwvYb7Ah5y9+GU7CO84zZ2wuKCFn9V8ef/bfPknLDbIYRpmYSBdcTnh93s3kjk1DXmDO37NCwAAAAAAAAAAAAAA6C3hHQDAmJUHR/dC/sOJKfU11tVqvE8T/t52w37UOcy9l/EelSEhdQ7U7prOdOB58i3UD1NYHXAvhHcsxquOfz79qtuZ7tF2EN5xlkdhsQEby6qd0K3gjtKdhPE/GsFcmrQwl4rqugAAAAAAAAAAAAAA0FvCOwCAsbsQ62Po5gHX19X4fkk5XNrkzfAboVsHtX+pc38+mMp0wMuENfrXgPsgvGNxHofuBjIcVZ9LuWwH4R3nuRPqhXC1UUV1D1c62Ldpwu9xZQTzaNrC/JjaQgAAAAAAAAAAAAAA0HfCOwAAQrgc61PozgHXH+HkA9FrIe1Q9cXEPtyv+bMvZ74/OzXG9N00pgOuJqzRFwPug/COxSoDk36GbgUx/NPCvdsOwjvqzuXvHZsv5b6my4FF38LygtH6ZhLyBwYV1XUBAAAAAAAAAAAAAKDXhHcAAMyUQRdvQ/sHXF+Gs8MxviT8rCeJPXhZ42d+aeHebNuH0iN11+jnAfdAeMfilQfb34VuBDFMY13o8GfB2MM7QrWP2OvIfDkI+UO/Umx0dM23ZdrSMwUAAAAAAAAAAAAAAHpPeAcAwP+sxHoa6zDkP7hYHsq+WmOM2wk/83P1O9X1NnTzrfN1f2fogkcJa3Qy0B4I71iex7F+hHZCGD7FutniPdoOwjtS3U1cj4usry3Pl0U/s8t1tzrw+VJ+JhWZ50kx4M9CAAAAAAAAAAAAAABGRngHAMB/lW+Iz/Xm8f1Y1xLGthXSDlbeSfjZT2LtxXofZod9T7rObgv342/7UHrkUsIafTrQHgjvWK6L1fM6VyjDx1i3Q1oY1DJsB+EdTZSBEw9jfQn5Ql7udWC+1PW55u/19wjmSq697+81tUQBAAAAAAAAAAAAABgK4R0AAKfbiPU81rew2DeMfwizN71faTiu8qDju5q1M2cPyiCTMjDkZqwHsW61cB9e1+jrN9OVDql7APrTQH//3YRn1GZHxryZMOZf9VfLY16pnslvYh0t+Hv9UTWPr4XuhDDcO+U+fArCO+q6EWYhXYcLni9lkMzL0J0wnrrWQv2wpcnA58YkpIXDLWpPPLEsAQAAAAAAAAAAAAAYCuEdAADnKw8ulwe7yzfXl4fSy7fX1z34+iPW+1gvwiwA44J2JvtYo89ftIkOuZbw/cnBZRZhNczCRLbDLCAqNczje5gFYTwNs4CH1R797jeC8I4m+5p55ksZmFWGxjwJs8COlZ72Ybvm7/t+BHNiGvIGdxxX1wQAAAAAAAAAAAAAgMEQ3gEA0NyVMDt4f/2PWo91OfT3MGvXelznTfC7WkXHfKr5/emxVrEkZVjUVpiFW9z7o25Xn1cboV9BHSe5e8b6umIaJM2Xq2EW6vHnfCnDx65Ve54hhZD9U/M5fWfg935Sc6+1yCqC8CoAAAAAAAAAAAAAAAZGeAcAAF32IAhAoJ8e1py75eFxQT/Q3NMz1pe1xWmu1XxG/wjDCiw5yTTkDe44rq4JAAAAAAAAAAAAAACDIrwDAIAu+1BzD7qlVXTMaqyfNefvTe2Cxl6dsq5+ag1neF3z+fx84H2YxCpC3uCOorouAAAAAAAAAAAAAAAMivAOAAC66nrN/ef3WCvaRQc9qTmHp1oFjX08ZV191BpOcSnWYagXMnFl4L2YhrzBHT7zAAAAAAAAAAAAAAAYLOEdAAB01bua+8+XWkVH1T0gfhTronZBsnLdFKesqx3t4RR1g5WGvr+YnLF+llVFdV0AAAAAAAAAAAAAABgc4R0AAHTRX8EhUIZhu+ZcfqRVkOzWGWvqsfZwii/2F/9nGvIGdxxX1wQAAAAAAAAAAAAAgEES3gEAQNdcivW95t5zT7vouAs15/PnWCvaBUkOzlhTa9rDCa7X3F+8GngfymCSIuQN7hC4BgAAAAAAAAAAAADAoAnvAACga3YT9p7XtYseeFZzPt/QKqhtI5wePvAlCMPhZHtByERpGvIGdxxX1wQAAAAAAAAAAAAAgMES3gEAQJc8Sth37mkXPXEh1s8ac/qtVkEtq7Hen7GWHmgRJ1gPpwe+/F4vB96HSc0+LLLGEIgCAAAAAAAAAAAAAMDICe8AAKArboT6h0kPg0Og9MuzmnN7U6vgTGVwx8EZa+if6s/An57X3F9cGXgfpiFvcMdxdU0AAAAAAAAAAAAAABg04R0AAHRBGVjwI2HP+UjL6JkyTOBbcMAZ5rEW6905a+gvbeIEF2P9rPEMfjLwPpTBZ3WD0hZVRRC4BgAAAAAAAAAAAADACAjvAACgbRshLbhjT8voqUc15/i6VsG/rFTr5zAIv6GZ7RrP3nIvcnHgfZiGvMEd1iUAAAAAAAAAAAAAAKMhvAMAgDaVb2L/mrDX/BKGf7CW4VqtOd9faRX8y0r1/D9r3byt1hj86UKsbzWevQ9HsOcqQt7gjqK6LgAAAAAAAAAAAAAADJ7wDgAA2rIZZm+5r7vP/B5rTdvouVvBYWdo4uoZa2YvCO7gdNs1nrufwiwkZsimIW9wx3F1TQAAAAAAAAAAAAAAGAXhHQAAtCE1uKMMM7imbQzEXo05v6NN8B8vT1grL8LwQxdobrXmfmNr4H2YVHupnMEdgqgAAAAAAAAAAAAAABgV4R0AAOR2NaQFd5R1T9sYkLVYR+fM+fL/v6JV8C8XY32v1sjbWNe1hHM8qrHHmI6gD9OQN7hjLH0FAAAAAAAAAAAAAID/T3gHAAA5lW+2P0zcX97XNgboaXDwGZq4EeuWNlBDGfby85znbBkmdnngfZjEKkLe4I6iui4AAAAAAAAAAAAAAIyG8A4AAHK5EwR3wC8rsT7VWANbWgXQyIsaz9i7I+jDq5A3uEP4FAAAAAAAAAAAAAAAoyS8AwCAHB6F9Le+C+5g6K7WWBdvtAkg2Vo4PzDsXZgFKQ3ZeoP91yJq3RQEAAAAAAAAAAAAAGBshHcAALBszxvsKQV3MBaPa6yHG9oEkGT/nOdqGewxGUEfXof8wR0Hph8AAAAAAAAAAAAAAGMkvAMAgGVZDecfnv2zyrfD39M6Rub9OeviU6wVbQKo5WaN/cadEfRho9pX5Q7v2DIFAQAAAAAAAAAAAAAYI+EdAAAsw1o4P5DgzzoK4zhMC3+aVPP/rPXxQJsAavl4zvN0dyR9eBXyB3fsm34AAAAAAAAAAAAAAIyV8A4AABbtWqzviXvIn7Guax0jdr/GGrmoTQBnenDOs/SfWFdG0If1WEXIH95x1RQEAAAAAAAAAAAAAGCshHcAALBIZQDBUeL+sTxIu6F1EF6es1b+1iKAU12OdXjGM7QMs9gcSS9eh/zBHfumIAAAAAAAAAAAAAAAYya8AwCARXnVYO/4KdYVrYP/s1qtibMOnm9pE8CJpufsOR6MpA8b1edF7vAOn08AAAAAAAAAAAAAAIya8A4AAOZ1IdZeg33j21iXtA/+pVwT18+oiRYB/MfKOc/O69WfGYODkD+448AUBAAAAAAAAAAAAABg7IR3AAAwjyuxPjXYM76Otap9AAALsxmrCPnDO7a0HgAAAAAAAAAAAACAsRPeAQBAUxuxvjbYLz6LtaJ9AAAL9TbkD+440HYAAAAAAAAAAAAAABDeAQBAM2Vwx4/EfWL5JvhbWgcAsHBbIX9wR7m329R6AAAAAAAAAAAAAAAQ3gEAQLrykGZqcMfXMDtUCgDA4k1D/vCOPW0HAAAAAAAAAAAAAIAZ4R0AAKS4EeswcX/4LtYlrQMAWIqNWEXIG9xRVNcFAAAAAAAAAAAAAACC8A4AAOorgzuOEveGu7EuaB0AwNLshbzBHWXtazsAAAAAAAAAAAAAAPyP8A4AAOpoEtzxLNaK1gEALM1WrCLkD+9Y13oAAAAAAAAAAAAAAPgf4R0AAJynPBSaEtxR/tl72gYAsHTTkD+4Y1/bAQAAAAAAAAAAAADg34R3AABwliuxfiTsBX/GuqFtAABLN4lVhPzhHetaDwAAAAAAAAAAAAAA/ya8AwCA01yI9SlhH1iGfGxpGwBAFnshf3DHgbYDAAAAAAAAAAAAAMB/Ce8AAOA0uwl7wG/BW9gBAHLZjFWE/OEd9nsAAAAAAAAAAAAAAHAC4R0AAJzkYcL+759YEy0DAMjmZcgf3LGv7QAAAAAAAAAAAAAAcDLhHQAA/Kl8o/phzb3fYfAGdgCAnMrQtKOQP7zDng8AAAAAAAAAAAAAAE4hvAMAgD+9S9j73dIuAICspiF/cMeetgMAAAAAAAAAAAAAwOmEdwAA8Lu7Cfu+Z9oFAJDVRqwi5A/v2NB6AAAAAAAAAAAAAAA4nfAOAAB+WY31reae70OsFS0DAMhqL+QP7tjVdgAAAAAAAAAAAAAAOJvwDgAAfnmcsOd7H2vasbrkFgIAA3Y5VhHyh3esaT0AAAAAAAAAAAAAAJxNeAcAAKWVWD9C/sOgDpYCANSz08L+6rW2AwAAAAAAAAAAAADA+YR3AABQuhP6HdwhvAMAGLJJrKKF/dW61gMAAAAAAAAAAAAAwPmEdwAAUNoPwjsAALpqr4W91Y62AwAAAAAAAAAAAABAPcI7AABYiXUYhHcAAHRRuccpMu+ryuttaD0AAAAAAAAAAAAAANQjvAMAgK3Q/+AO4R0AwFC9aGFftaPtAAAAAAAAAAAAAABQn/AOAAAeBeEdAABdNIl1lHlPVcTa0HoAAAAAAAAAAAAAAKhPeAcAANtBeAcAQBdNW9hTTbUdAAAAAAAAAAAAAADSCO8AAOBVEN4BANA1k1hF5v1UUV0XAAAAAAAAAAAAAABIILwDAID1WNcHUKtuJQAwINOQPwxtqu0AAAAAAAAAAAAAAJBOeAcAAAAAdMskVhHyBncU1XUBAAAAAAAAAAAAAIBEwjsAAAAAoFumIW9wx3F1TQAAAAAAAAAAAAAAoAHhHQAAAADQHZNYRcgb3FFU1wUAAAAAAAAAAAAAABoQ3gEAAAAA3TENeYM7jqtrAgAAAAAAAAAAAAAADQnvAAAAAIBumMQqQt7gjqK6LgAAAAAAAAAAAAAA0JDwDgAAAADohmnIG9xxXF0TAAAAAAAAAAAAAACYg/AOAAAAAGjfJFYR8gZ3FNV1AQAAAAAAAAAAAACAOQjvAAAAAID2TUPe4I7j6poAAAAAAAAAAAAAAMCchHcAAAAAQLsmsYqQN7ijqK4LAAAAAAAAAAAAAADMSXgHAAAAALRrGvIGdxxX1wQAAAAAAAAAAAAAABZAeAcAAAAAtGcSqwh5gzuK6roAAAAAAAAAAAAAAMACCO8AAAAAgPZMQ97gjuPqmgAAAAAAAAAAAAAAwIII7wAAAACAdkxiFSFvcEdRXRcAyOU4vI/1T4fqvZsCAAAAAAAAAAAAiyW8AwAAAADaMQ15gzuOq2sCADnNAjO69J9/3BQAAAAAAAAAAABYLOEdAAAAAJDfJFYR8gZ3FNV1AYCchHcAAAAAAAAAAADA4AnvAAAAAID8piFvcMdxdU0AIDfhHQAAAAAAAAAAADB4wjsAAAAAIK9JrCLkDe4oqusCALkJ7wAAAAAAAAAAAIDBE94BAAAAAHlNQ97gjuPqmgBAG4R3AAAAAAAAAAAAwOAJ7wAAAACAfCaxipA3uKOorgsAtEF4BwAAAAAAAAAAAAye8A4AAAAAyGca8gZ3HFfXBADaIrwDAAAAAAAAAAAABk94BwAAAADkMYlVhLzBHUV1XQCgLcI7AAAAAAAAAAAAYPCEdwAAAABAHtOQN7jjuLomANAm4R0AAAAAAAAAAAAweMI7AAAAAGD5JrGKkDe4o6iuCwC0SXgHAAAAAAAAAAAADJ7wDgAAAABYvmnIG9xxXF0TAGib8A4AAAAAAAAAAAAYPOEdAAAAALBck1hFyBvcUVTXBQDaJrwDAAAAAAAAAAAABk94BwAAAAAs1zTkDe44rq4JAHSB8A4AAAAAAAAAAAAYPOEdAAAAALA8k1hFyBvcUVTXBQC6QHgHAAAAAAAAAAAADJ7wDgAAAABYnmnIG9xxXF0TAOgK4R0AAAAAAAAAAAAweMI7AAAAAGA5JrGKkDe4o6iuCwB0hfAOAAAAAAAAAAAAGDzhHQAAAACwHK9C3uCOsqbaDgAdI7wDAAAAAAAAAAAABk94BwAAAAAs3nqsIuQP71jXegDoGOEdAAAAAAAAAAAAMHjCOwAAAABg8V6H/MEdB9oOAB0kvAMAAAAAAAAAAAAGT3gHAAAAACzWRqwi5A/v2NJ6AOgg4R0AAAAAAAAAAAAweMI7AAAAAGCxXoX8wR372g4AHSW8AwAAAAAAAAAAAAZPeAcAAAAALM56rCLkD++4qvUA0FHCOwAAAAAAAAAAAGDwhHcAAAAAwOK8DvmDO/a1HQA6THgHAAAAAAAAAAAADJ7wDgAAAABYjI1YRcgf3rGl9QDQYcI7AAAAAAAAAAAAYPCEdwAAAADAYhyE/MEdB9oOAB0nvAMAAAAAAAAAAAAGT3gHAAAAAMxvM1YR8od3bGk9AHSc8A4AAAAAAAAAAAAYPOEdAAAAADC/tyF/cMeBtgNADwjvAAAAAAAAAAAAgMET3gEAAAAA89kK+YM7ilibWg8APSC8AwAAAAAAAAAAAAZPeAcAAAAAzGca8od37Gk7APSE8A4AAAAAAAAAAAAYPOEdAAAAANDcRqwi5A3uKKrrAgB9ILwDAAAAAAAAAAAABk94BwAAAAA0txfyBneUta/tANAjwjsAAAAAAAAAAABg8IR3AAAAAEAzW7GKkD+8Y13rAaBHhHcAAAAAAAAAAADA4AnvAAAAAIBmpiF/cMe+tgNAzwjvAAAAAAAAAAAAgMET3gEAAAAA6SaxipA/vGNd6wGgZ4R3AAAAAAAAAAAAwOAJ7wAAAACAdHshf3DHgbYDQA8J7wAAAAAAAAAAAIDBE94BAAAAAGk2YxUhf3jHutYDQA8J7wAAAAAAAAAAAIDBE94BAAAAAGlehvzBHfvaDgA9JbwDAAAAAAAAAAAABk94BwAAAADUN4l1FPKHd6xrPQD0lPAOAAAAAAAAAAAAGDzhHQAAAABQ3zTkD+7Y03YA6DHhHQAAAAAAAAAAADB4wjsAAAAAoJ6NWEXIH96xofUA0GPCOwAAAAAAAAAAAGDwhHcAAAAAQD17IX9wx662A0DPCe8AAAAAAAAAAACAwRPeAQAAAADnuxyrCPnDO9a0HgB6TngHAAAAAAAAAAAADJ7wDgAAAAA4307IH9zxWtsBYACEdwAAAAAAAAAAAMDgCe8AAAAAgLNNYhUhf3jHutYDwAAI7wAAAAAAAAAAAIDBE94BAAAAAGfbC/mDO3a0HQAGQngHAAAAAAAAAAAADJ7wDgAAAAA43VqsIuQN7iivt6H1ADAQwjsAAAAAAAAAAABg8IR3AAAAAMDpXoS8wR1l7Wg7AAyI8A4AAAAAAAAAAAAYPOEdAAAAAHCySayjkDe4o4i1ofUAMCDCOwAAAAAAAAAAAGDwhHcAAAAAwMmmIW9wx3F1TQBgSIR3AAAAAAAAAAAAwOAJ7wAAAACA/5rEKkLe4I6iui4AMCTCOwAAAAAAAAAAAGDwhHcAAAAAwH9NQ97gjuPqmgDA0Ajv4P+xd4fAdVxXA8cPMCgICDAwCBBYICBgIGBQYPCBAoMPBAQEBBQUFBQUFGTm00xAQEBBgIHBAoMAAQGBgoCAgIKCwoAAg4IAgwADgQved9/oZhpHtrVPfjravfv7dQ5re947j+2s/wIAAAAAAAAAAKB74h0AAAAA8LqhTonccEdpewGA3oh3AAAAAAAAAAAAQPfEOwAAAADgdWPkhjs2bScA0CPxDgAAAAAAAAAAAOieeAcAAAAA/NdQp0RuuKO0vQBAj8Q7AAAAAAAAAAAAoHviHQAAAADwX2Pkhjs2bScA0CvxDgAAAAAAAAAAAOieeAcAAAAAXBrqlMgNd5S2FwDolXgHAAAAAAAAAAAAdE+8AwAAAAAujZEb7ti0nQBAz8Q7AAAAAAAAAAAAoHviHQAAAAAQMdQpkRvuKG0vANAz8Q4AAAAAAAAAAADonngHAAAAAESMkRvu2LSdAEDvxDsAAAAAAAAAAACge+IdAAAAAKzdUKdEbrijtL0AQO/EOwAAAAAAAAAAAKB74h0AAAAArN0YueGOTdsJAKyBeAcAAAAAAAAAAAB0T7wDAAAAgDUb6pTIDXeUthcAWAPxDgAAAAAAAAAAAOieeAcAAAAAazZGbrhj03YCAGsh3gEAAAAAAAAAAADdE+8AAAAAYK2GOiVywx2l7QUA1kK8AwAAAAAAAAAAALon3gEAAADAWo2RG+7YtJ0AwJqIdwAAAAAAAAAAAED3xDsAAAAAWKOhTonccEdpewGANRHvAAAAAAAAAAAAgO6JdwAAAACwRmPkhjs2bScAsDbiHQAAAAAAAAAAANA98Q4AAAAA1maoUyI33FHaXgBgbcQ7AAAAAAAAAAAAoHviHQAAAACszRi54Y5N2wkArJF4BwAAAAAAAAAAAHRPvAMAAACANRnqlMgNd5S2FwBYI/EOAAAAAAAAAAAA6J54BwAAAABrMkZuuGPTdgIAayXeAQAAAAAAAAAAAN0T7wAAAABgLYY6JXLDHaXtBQDWSrwDAAAAAAAAAAAAuifeAQAAAMBajJEb7ti0nQDAmol3AAAAAAAAAAAAQPfEOwAAAABYg6FOidxwR2l7AYA1E+8AAAAAAAAAAACA7ol3AAAAALAGY+SGOzZtJwCwduIdAAAAAAAAAAAA0D3xDgAAAAB6N9QpkRvuKG0vALB24h0AAAAAAAAAAADQPfEOAAAAAHo3Rm64Y9N2AgCIdwAAAAAAAAAAAMAKiHcAAAAA0LOhTonccEdpewEAxDsAAAAAAAAAAABgBcQ7AAAAAOjZGLnhjk3bCQBwSbwDAAAAAAAAAAAAuifeAQAAAECvhjolcsMdpe0FALgk3gEAAAAAAAAAAADdE+8AAAAAoFdPIzfcsZ3R2QGA14h3AAAAAAAAAAAAQPfEOwAAAADo0WGdEvnxjkOnBwBeI94BAAAAAAAAAAAA3RPvAAAAAKBHzyM/3HHu7ADAFeIdAAAAAAAAAAAA0D3xDgAAAAB6c1SnRH6849jpAYArxDsAAAAAAAAAAACge+IdAAAAAPTmaeSHO86cHQB4I/EOAAAAAAAAAAAA6J54BwAAAAA9OaxTIj/e8cjpAYA3Eu8AAAAAAAAAAACA7ol3AAAAANCT55Ef7jhzdgDgrcQ7AAAAAAAAAAAAoHviHQAAAAD04qhOifx4x7HTAwBvJd4BAAAAAAAAAAAA3RPvAAAAAKAX55Ef7jh3dgDgncQ7AAAAAAAAAAAAoHviHQAAAAD04GGdEvnxjmOnBwDeSbwDAAAAAAAAAAAAuifeAQAAAEAPvo38cMe5swMA1xLvAAAAAAAAAAAAgO6JdwAAAACwdMeRH+4odR46PQBwLfEOAAAAAAAAAAAA6J54BwAAAABLN0Z+vOPU2QGAScQ7AAAAAAAAAAAAoHviHQAAAAAs2VGdErnhjtL2AgBcT7wDAAAAAAAAAAAAuifeAQAAAMCSnUZuuGM7Z84OAEwm3gEAAAAAAAAAAADdE+8AAAAAYKmO65TIj3ccOj0AMJl4BwAAAAAAAAAAAHRPvAMAAACApRojP9xx5uwAwE7EOwAAAAAAAAAAAKB74h0AAAAALNFQp0R+vOPQ6QGAnYh3AAAAAAAAAAAAQPfEOwAAAABYotPID3ecOzsAsDPxDgAAAAAAAAAAAOieeAcAAAAAS/OwTon8eMeh0wMAOxPvAAAAAAAAAAAAgO6JdwAAAACwNF9HfrjjzNkBgBsR7wAAAAAAAAAAAIDuiXcAAAAAsCRDnYvIj3ccOj0AcCPiHQAAAAAAAAAAANA98Q4AAAAAlmSM/HDHqbMDADcm3gEAAAAAAAAAAADdE+8AAAAAYCmO6pTIj3ccOT0AcGPiHQAAAAAAAAAAANA98Q4AAAAAluI08sMd3zg7APBexDsAAAAAAAAAAACge+IdAAAAACzBgzol8uMdB04PALwX8Q4AAAAAAAAAAADonngHAAAAAEvwLPLDHc+dHQB4b+IdAAAAAAAAAAAA0D3xDgAAAADmbqhTIj/ecej0AMB7E+8AAAAAAAAAAACA7ol3AAAAADB3p5Ef7njm7ADAXoh3AAAAAAAAAAAAQPfEOwAAAACYs4M6JXLDHdt9R04PAOyFeAcAAAAAAAAAAAB0T7wDAAAAgDn7KnLDHdt55uwAwN6IdwAAAAAAAAAAAED3xDsAAAAAmKuhzkXkhjtKnSOnBwD2RrwDAAAAAAAAAAAAuifeAQAAAMBcjZEb7ti0nQAA+yPeAQAAAAAAAAAAAN0T7wAAAABgjoY6JXLDHaXtBQDYH/EOAAAAAAAAAAAA6J54BwAAAABzNEZuuGPTdgIA7Jd4BwAAAAAAAAAAAHRPvAMAAACAuRnqlMgNd5S2FwBgv8Q7AAAAAAAAAAAAoHviHQAAAADMzRi54Y5N2wkAsH/iHQAAAAAAAAAAANA98Q4AAAAA5mSoUyI33FHaXgCA/RPvAAAAAAAAAAAAgO6JdwAAAAAwJ2Pkhjs2bScAwO0Q7wAAAAAAAAAAAIDuiXcAAAAAMBdDnRK54Y7S9gIA3I5NfN8CHnOZ7/0oAAAAAAAAAAAAfXpQ57jO49/M9qX5D5znVol3AAAAADAXY+SGOzZtJwAAAAAAAAAAAAAALMa9uIxyfFnnH3V+iGl/SfNVne/a/+7jOvedcm/EOwAAAACYg23Id8qzwn1OaXsBAAAAAAAAAAAAAGD2Htd5Xudl7Oel+os6Z3X+Ny6DINyceAcAAAAAczBGbrhj03YCAAAAAAAAAAAAAMCsfVLnh7jdF+z/XefjEPG4KfEOAAAAAO7aUKdEbrijtL0AAAAAAAAAAAAAADBL25fev4vcl+3/GV62vwnxDgAAAADu2hi5zxI3bScAAAAAAAAAAAAAAMzSkzoXkf+y/XZe1fnMT7AT8Q4AAAAA7tI2yFsi9zliCSFgAAAAAAAAAAAAAABm6vO4m2jHb+cLP8Vk4h0AAAAA3KUx8p8fjs4OAAAAAAAAAAAAAMAc/S3mEe74Zb70k0wi3gEAAADAXRnqlMh9bljaXgAAAAAAAAAAAAAAmJX3CXf8q86zOl/U+XOdz9r8NS7/Aua/3+P/+y9+mmuJdwAAAABwV7bP/7Kjv6OzAwAAAAAAAAAAAAAwN7+P3f865jbY8cc6Dybu+CguAyH/id3/iuZjP9E7iXcAAAAAcBeG2P254vtOaXsBAAAAAAAAAAAAAGA2PqjzIqa/HP9jnSd17r3Hvm3E49UOO3+q86Gf6q3EOwAAAAC4C2Pkhjs2bScAAAAAAAAAAAAAAMzKSUx/Mf68zv097X0Yu0VDvvJTvZV4BwAAAADZhjolcsMdpe0FAAAAAAAAAAAAAIDZeFDnVUz/i5b39rz/IKYHPLyY/3biHQAAAABk2z4v3CTP6OwAAAAAAAAAAAAAAMzNVzHtpfjvY//hjl8c1Xk58XP83U/2RuIdAAAAAGTaRna3sd3McIe4LwAAAAAAAAAAAAAAs7ONcUyJZlzUObjlz/JpTHtBf/t5P/DTXSHeAQAAAECmMXLDHZu2EwAAAAAAAAAAAAAAZuVJTHsp/sukz/PPiZ/niZ/uCvEOAAAAALIMdUrkhjtK2wsAAAAAAAAAAAAAALPyPK5/Kf5VnQ+TPs+nMe1F/a/8dFeIdwAAAACQZYzccMem7QQAAAAAAAAAAAAAgNn5Ma5/Kf6bxM9zr85PEz7TP/10V4h3AAAAAJBhqFMiN9xR2l4AAAAAAAAAAAAAAJiVD2PaS/afJX+u0wmf6aWf7wrxDgAAAAAyjJEb7ti0nQAAAAAAAAAAAAAAMDt/iGkvxh8mf67PJ36u3/kJXyPeAQAAAMBtG2JaEHifU9peAAAAAAAAAAAAAACYnSmRjIs695I/12cx7aX9Az/ha8Q7AAAAALhtY+SGOzZtJwAAAAAAAAAAAAAAzNKzuP7F+Bd38Lk+C/GOmxDvAAAAAOA2DXVK5IY7StsLAAAAAAAAAAAAAACz9Mc639T5rs6PdS7i6svx39/B5/pLiHfchHgHAAAAALdpjNxwx6btBAAAAAAAAAAAAACARblf52GdP8Rl3OPTO/gMX8S0F/fv+bleI94BAAAAwG0Z6pTIDXeUthcAAAAAAAAAAAAAANjRaVz/4v6FM10h3gEAAADAbXkaueGO7YzODgAAAAAAAAAAAAAAu/ugzqu4/sX9753qCvEOAAAAAG7DYZ0S+fGOQ6cHAAAAAAAAAAAAAIDdPYlpL+7/fYaf/STy/wHDbQ8AAAAAPI/851Lnzg4AAAAAAAAAAAAAADezfSl/ysv7H8/ws5+EeAcAAAAAfTmqUyL/udSx0wMAAAAAAAAAAAAAwO4OY9o/BLioc3+Gn/8kxDsAAAAA6MvTyH8mdebsAAAAAAAAAAAAAABwM6cx7eX985l+/pMQ7wAAAACgH1Nju/ueR04PAAAAAAAAAAAAAAC7exzT/yHA45l+h5MQ7wAAAACgH88j/3nUmbMDAAAAAAAAAAAAAMDuPqjzn5j28v6/Zvw9TkK8AwAAAIA+HMX02O4+59jpAQAAAAAAAAAAAABgd89i+sv7T2b8PU5CvAMAAACAPpxH/rOoc2cHAAAAAAAAAAAAAIDd/Smmv7z/7cy/y0mIdwAAAACwfA/rlMh/FnXs9AAAAAAAAAAAAAAAsJv/qfMqpr24v/3vDTP/Pich3gEAAADA8m0jutnPoc6dHQAAAAAAAAAAAAAAdnNU5+eY/vL+XxfwnU5CvAMAAACAZTuO/GdQpc5DpwcAAAAAAAAAAAAAgOk+qvMidvurm/cW8L1OQrwDAAAAgGUbI/8Z1KmzAwAAAAAAAAAAAADAdA/q/BDTX9x/GZexjyU4CfEOAAAAAJbrqE6J3OdPpe0FAAAAAAAAAAAAAAAmOKjzIqa/uP+qzvGCvt9JiHcAAAAAsFynkf/86czZAQAAAAAAAAAAAABgmoPYLdyxnU8W9h1PQrwDAAAAgGXaRnRL5D9/OnR6AAAAAAAAAAAAAAC43vYF/F3DHScL/J4nId4BAAAAwDKNkf/s6czZAQAAAAAAAAAAAADgegd1fordXtr/YqHf9STEOwAAAABYnqFOifxnT4dODwAAAAAAAAAAAAAA7/a4zsvY7YX9kwV/35MQ7wAAAABgeU4j/7nTubMDAAAAAAAAAAAAAMC7fVLnInZ7Yf9PC//OJyHeAQAAAMCyPKxTIv+506HTAwAAAAAAAAAAAADA2/05dn/h//MOvvdJiHcAAAAAsCxfR/4zpzNnBwAAAAAAAAAAAACAt9v1Zf9t5OOzTr77SYh3AAAAALAcQ52LyH/mdOj0AAAAAAAAAAAAAABw1f0657HbS/rbfxjwSUc3+L8Q7wAAAABgOcbIf9506uwAAAAAAAAAAAAAAHDV9i9l/hC7vaT/c53HTrdX4h0AAAAATHVUp0R+vOPI6QEAAAAAAAAAAAAA4HVP4jLEscsL+j/VeeR0eyfeAQAAAMBUp5Ef7vjG2QEAAAAAAAAAAAAA4HVfxO5/nfP7Og+c7laIdwAAAAAwxfb53K7P9fYxB04PAAAAAAAAAAAAAACX7tX5OnZ/Of+szu+c79aIdwAAAAAwxbPID3c8d3YAAAAAAAAAAAAAALj0YZ3vYveX85/GZfSD2yPeAQAAAMB1hjol8uMdh04PAAAAAAAAAAAAAAARH9X5V+z2Uv72HwL80elSiHcAAAAAcJ3TyA93PHN2AAAAAAAAAAAAAAC4DHf8GLu9lP9znUdOl0a8AwAAAIB3OYjL2G5muGO778jpAQAAAAAAAAAAAABYu+3L9S9jt5fyf4jLfwxAHvEOAAAAAN7lq8gNd2znmbMDAAAAAAAAAAAAALB2j2L3cMd3dR44XTrxDgAAAADeZqhzEbnhjhKXYWAAAAAAAAAAAAAAAFit49j9hf6xzgdOdyfEOwAAAAB4m+1zu03yjM4OAAAAAAAAAAAAAMCabcMdr2K3l/G/dLY7Jd4BAAAAwJsMdUrkhjtK2wsAAAAAAAAAAAAAAKu0fan+Zez2Iv6fnO3OiXcAAAAA8CZj5IY7Nm0nAAAAAAAAAAAAAACs0v06L2K3cMfHzjYL4h0AAAAA/NY21Lt9hpcZ7ihtLwAAAAAAAAAAAAAArNI/YvpL+D/X+b2TzYZ4BwAAAAC/NUZuuGPTdgIAAAAAAAAAAAAAwCp9GdNfwH8Zwh1zI94BAAAAwK8NdUrkhjtK2wsAAAAAAAAAAAAAAKvzJKa/yP9znWMnmx3xDgAAAAB+bYzccMem7QQAAAAAAAAAAAAAgNW5X+enmP6XMx872SyJdwAAAADwiyGmx3r3NaXtBQAAAAAAAAAAAACA1dnlL3D+xblmS7wDAAAAgF/s8sxvXzM6OwAAAAAAAAAAAAAAa/T7mP4XOJ/XuedksyXeAQAAAMDWENOf+e1rStsLAAAAAAAAAAAAAACr8++Y9vL9izofOtesiXcAAAAAsDVGbrhj03YCAAAAAAAAAAAAAMDqfBzTX77fRj7Gmc2hn/A14h0AAAAADHVK5IY7StsLAAAAAAAAAAAAAACrsw1ybBY8j/2ErxHvAAAAAGAbvc1+Tjc6OwAAAAAAAAAAAAAAa/Qolh3uEO+4SrwDAAAAYN2GOiVyn9GVthcAAAAAAAAAAAAAAFbn7yHe0RvxDgAAAIB1GyP/Gd3o7AAAAAAAAAAAAAAArNV/QryjN+IdAAAAAOs11CmR+3yutL0AAAAAAAAAAAAAALA6h7H8cId4x1XiHQAAAADrNUb+87nR2QEAAAAAAAAAAAAAWKuPQ7yjR+IdAAAAAOs01CmR+2yutL0AAAAAAAAAAAAAALBKfwvxjh6JdwAAAACs0xj5z+ZGZwcAAAAAAAAAAAAAYM1OQryjR+IdAAAAAOsz1CmR+1yutL0AAAAAAAAAAAAAALBaB3EZvlj6fOinfI14BwAAAMD6jJEf1R2dHQAAAAAAAAAAAAAA6JF4BwAAAMC6DHVK5IY7StsLAAAAAAAAAAAAAADQHfEOAAAAgHUZIzfcsWk7AQAAAAAAAAAAAAAAuiTeAQAAALAeQ50SueGO0vYCAAAAAAAAAAAAAAB0SbwDAAAAYD3GyA13bNpOAAAAAAAAAAAAAACAbol3AAAAAKzDUKdEbrijtL0AAAAAAAAAAAAAAADdEu8AAAAAWIcxcsMdm7YTAAAAAAAAAAAAAACga+IdAAAAAP0b6pTIDXeUthcAYN028VGdgxnNR34UAAAAAAAAAAAA2C/xDgAAAID+jZEb7ti0nQAAbOJFnTn954UfBQAAAAAAAAAAAPZLvAMAAACgb0OdErnhjtL2AgAg3gEAAAAAAAAAAADdE+8AAAAA6NsYueGOTdsJAECEeAcAAAAAAAAAAACsgHgHAAAAQL+GOiVywx2l7QUAIEK8AwAAAAAAAAAAAFZAvAMAAACgX08jN9yxndHZAQB+RbwDAAAAAAAAAAAAuifeAQAAANCnwzol8uMdh04PAPAr4h0AAAAAAAAAAADQPfEOAAAAgD49j/xwx7mzAwD8hngHAAAAAAAAAAAAdE+8AwAAAKA/R3VK5Mc7jp0eAOA3xDsAAAAAAAAAAACge+IdAAAAAP15GvnhjjNnBwB4A/EOAAAAAAAAAAAA6J54BwAAAEBfDuuUyI93PHJ6AIA3EO8AAAAAAAAAAACA7ol3AAAAAPTleeSHO86cHQDgLcQ7AAAAAAAAAAAAoHviHQAAAAD9OKpTIj/ecez0AABvId4BAAAAAAAAAAAA3RPvAAAAAOjHeeSHO86dHQDgHcQ7AAAAAAAAAAAAoHviHQAAAAB9eFinRH6849jpAQDeQbwDAAAAAAAAAAAAuifeAQAAANCHbyM/3HHu7AAA1xDvAAAAAAAAAAAAgO6JdwAAAAAs33HkhztKnYdODwBwDfEOAAAAAAAAAAAA6J54BwAAAMDyjZEf7zh1dgCACcQ7AAAAAAAAAAAAoHviHQAAAADLdlSnRG64o7S9AABcR7wDAAAAAAAAAAAAuifeAQAAALBsp5Eb7tjOmbMDAEwk3gEAAAAAAAAAAADdE+8AAAAAWK7jOiXy4x2HTg8AMJF4BwAAAAAAAAAAAHRPvAMAAABgucbID3ecOTsAwA7EOwAAAAAAAAAAAKB74h0AAAAAyzTUKZEf7zh0egCAHYh3AAAAAAAAAAAAQPfEOwAAAACW6TTywx3nzg4AsCPxDgAAAAAAAAAAAOieeAcAAADA8jysUyI/3nHo9AAAOxLvAAAAAAAAAAAAgO6J/GqWlgAAgABJREFUdwAAAAAsz9eRH+44c3YAgBsQ7wAAAAAAAAAAAIDuiXcAAAAALMtQ5yLy4x2HTg8AcAPiHQAAAAAAAAAAANA98Q4AAACAZRkjP9xx6uwAADck3gEAAAAAAAAAAADdE+8AAAAAWI6jOiXy4x1HTg8AcEPiHQAAAAAAAAAAANA98Q4AAACA5TiN/HDHN84OAPAexDsAAAAAAAAAAACge+IdAAAAAMvwoE6J/HjHgdMDALwH8Q4AAAAAAAAAAADonngHAAAAwDI8i/xwx3NnBwB4T+IdAAAAAAAAAAAA0D3xDgAAAID5G+qUyI93HDo9AMB7Eu8AAAAAAAAAAACA7ol3AAAAAMzfaeSHO545OwDAHoh3AAAAAAAAAAAAQPfEOwAAAADm7aBOidxwx3bfkdMDAOyBeAcAAAAAAAAAAAB0T7wDAAAAYN6+itxwx3aeOTsAwJ6IdwAAAAAAAAAAAED3xDsAAAAA5muocxG54Y5S58jpAQD2RLwDAAAAAAAAAAAAuifeAQAAADBfY+SGOzZtJwAA+yLeAQAAAAAAAAAAAN0T7wAAAACYp6FOidxwR2l7AQDYF/EOAAAAAAAAAAAA6J54BwAAAMA8jZEb7ti0nQAA7JN4BwAAAAAAAAAAAHRPvAMAAABgfoY6JXLDHaXtBQBgn8Q7AAAAAAAAAAAAoHviHQAAAADzM0ZuuGPTdgIAsG/iHQAAAAAAAAAAANA98Q4AAACAeRnqlMgNd5S2FwCAfRPvAAAAAAAAAAAAgO6JdwAAAADMyxi54Y5N2wkAwG0Q7wAAAAAAAAAAAIDuiXcAAAAAzMdQp0RuuKO0vQAA3AbxDgAAAAAAAAAAAOieeAcAAADAfIyRG+7YtJ0AANwW8Q4AAAAAAAAAAADonngHAAAAwDwMdUrkhjtK2wsAwG0R7wAAAAAAAAAAAIDuiXcAAAAAzMMYueGOTdsJAMBtEu8AAAAAAAAAAACA7ol3AAAAANy9oU6J3HBHaXsBALhN4h0AAAAAAAAAAADQPfEOAAAAgLs3Rm64Y9N2AgBw28Q7AAAAAAAAAAAAoHviHQAAAAB3a6hTIjfcUdpeAABum3gHAAAAAAAAAAAAdE+8AwAAAOBujZEb7ti0nQAAZBDvAAAAAAAAAAAAgO6JdwAAAADcnaFOidxwR2l7AQDIIN4BAAAAAAAAAAAA3RPvAAAAALg7Y+SGOzZtJwAAWcQ7AAAAAAAAAAAAoHviHQAAAAB3Y6hTIjfcUdpeAACyiHcAAAAAAAAAAABA98Q7AAAAAO7GGLnhjk3bCQBAJvEOAAAAAAAAAAAA6J54BwAAAEC+oU6J3HBHaXsBAMgk3gEAAAAAAAAAAADdE+8AAAAAyDdGbrhj03YCAJBNvAMAAAAAAAAAAAC6J94BAAAAkGuoUyI33FHaXgAAsol3AAAAAAAAAAAAQPfEOwAAAAByjZEb7ti0nQAA3AXxDgAAAAAAAAAAAOieeAcAAABAnqFOidxwR2l7AQC4C+IdAAAAAAAAAAAA0D3xDgAAAIA8Y+SGOzZtJwAAd0W8AwAAAAAAAAAAALon3gEAAACQY6hTIjfcUdpeAADuingHAAAAAPw/O/eK5EiWhGHUl9GwQAABgQQCvZBZwOynYIMCBQIkaCAgINiLmWUUuCDmps1tm5qaeuRD8ozwOCfsx9fMg38AAAAAAOWJdwAAAADkmCM33LGMNwEAeE/iHQAAAAAAAAAAAFCeeAcAAADA/U19LXLDHW28CwDAexLvAAAAAAAAAAAAgPLEOwAAAADub47ccMcy3gQA4L2JdwAAAAAAAAAAAEB54h0AAAAA9zX1tcgNd7TxLgAA7028AwAAAAAAAAAAAMoT7wAAAAC4rzlywx3LeBMAgDUQ7wAAAAAAAAAAAIDyxDsAAAAA7mfqa5Eb7mjjXQAA1kC8AwAAAAAAAAAAAMoT7wAAAAC4n0+RG+542uzsAAArIt4BAAAAAAAAAAAA5Yl3AAAAANzHoa9Ffrzj4PQAACsi3gEAAAAAAAAAAADliXcAAAAA3Mdj5Ic7rs4OALAy4h0AAAAAAAAAAABQnngHAAAAwO0d+1rkxztOTg8AsDLiHQAAAAAAAAAAAFCeeAcAAADA7X2K/HDHxdkBAFZIvAMAAAAAAAAAAADKE+8AAAAAuK1DX4v8eMfvTg8AsELiHQAAAAAAAAAAAFCeeAcAAADAbT1Gfrjj4uwAACsl3gEAAAAAAAAAAADliXcAAAAA3M6xr0V+vOPk9AAAKyXeAQAAAAAAAAAAAOWJdwAAAADczjXywx1XZwcAWDHxDgAAAAAAAAAAAChPvAMAAADgNh76WuTHO05ODwCwYuIdAAAAAAAAAAAAUJ54BwAAAMBt/BX54Y6rswMArJx4BwAAAAAAAAAAAJQn3gEAAADwdqfID3e0vgenBwBYOfEOAAAAAAAAAAAAKE+8AwAAAODt5siPd5ydHQBgA8Q7AAAAAAAAAAAAoDzxDgAAAIC3Ofa1yA13tPEuAABrJ94BAAAAAAAAAAAA5Yl3AAAAALzNOXLDHU+7ODsAwEaIdwAAAAAAAAAAAEB54h0AAAAAr3fqa5Ef7zg4PQDARoh3AAAAAAAAAAAAQHniHQAAAACvN0d+uOPi7AAAGyLeAQAAAAAAAAAAAOWJdwAAAAC8ztTXIj/ecXB6AIANEe8AAAAAAAAAAACA8sQ7AAAAAF7nHPnhjquzAwBsjHgHAAAAAAAAAAAAlCfeAQAAAPByD30t8uMdB6cHANgY8Q4AAAAAAAAAAAAoT7wDAAAA4OX+iPxwx8XZAQA2SLwDAAAAAAAAAAAAyhPvAAAAAHiZqe9L5Mc7Dk4PALBB4h0AAAAAAAAAAABQnngHAAAAwMvMkR/uODs7AMBGiXcAAAAAAAAAAABAeeIdAAAAAM937GuRH+84Oj0AwEaJdwAAAAAAAAAAAEB54h0AAAAAz3eO/HDHn84OALBh4h0AAAAAAAAAAABQnngHAAAAwPP81tciP97xwekBADZMvAMAAAAAAAAAAADKE+8AAAAAeJ7PkR/ueHR2AICNE+8AAAAAAAAAAACA8sQ7AAAAAH5t6muRH+84OD0AwMaJdwAAAAAAAAAAAEB54h0AAAAAv3aO/HDHZ2cHAChAvAMAAAAAAAAAAADKE+8AAAAA+LkPfS1ywx1P7x2dHgCgAPEOAAAAAAAAAAAAKE+8AwAAAODnPkZuuONpn50dAKAI8Q4AAAAAAAAAAAAoT7wDAAAA4Memvi+RG+5ofUenBwAoQrwDAAAAAAAAAAAAyhPvAAAAAPixOXLDHct4EwCAKsQ7AAAAAAAAAAAAoDzxDgAAAIDvm/pa5IY72ngXAIAqxDsAAAAAAAAAAACgPPEOAAAAgO+bIzfcsYw3AQCoRLwDAAAAAAAAAAAAyhPvAAAAAPh/U1+L3HBHG+8CAFCJeAcAAAAAAAAAAACUJ94BAAAA8P/myA13LONNAACqEe8AAAAAAAAAAACA8sQ7AAAAAP7X1NciN9zRxrsAAFQj3gEAAAAAAAAAAADliXcAAAAA/K85csMdy3gTAICKxDsAAAAAAAAAAACgPPEOAAAAgP+a+lrkhjvaeBcAgIrEOwAAAAAAAAAAAKA88Q4AAACA/5ojN9yxjDcBAKhKvAMAAAAAAAAAAADKE+8AAAAA+I+pr0VuuKONdwEAqEq8AwAAAAAAAAAAAMoT7wAAAAD4jzlywx3LeBMAgMrEOwAAAAAAAAAAAKA88Q4AAACAiKmvRW64o413AQCoTLwDAAAAAAAAAAAAyhPvAAAAAIiYIzfcsYw3AQCoTrwDAAAAAAAAAAAAyhPvAAAAAPZu6muRG+5o410AAKoT7wAAAAAAAAAAAIDyxDsAAACAvZsjN9yxjDcBANgD8Q4AAAAAAAAAAAAoT7wDAAAA2LOpr0VuuKONdwEA2APxDgAAAAAAAAAAAChPvAMAAADYszlywx3LeBMAgL0Q7wAAAAAAAAAAAIDyxDsAAACAvZr6WuSGO9p4FwCAvRDvAAAAAAAAAAAAgPLEOwAAAIC9miM33LGMNwEA2BPxDgAAAAAAAAAAAChPvAMAAADYo6mvRW64o413AQDYE/EOAAAAAAAAAAAAKE+8AwAAANijOXLDHct4EwCAvVniY9+8on30UwAAAAAAAAAAAOC2xDsAAACAvZn6WuSGO9p4FwAAAAAAAAAAAAAAgGLEOwAAAIC9mSM33LGMNwEAAAAAAAAAAAAAAChIvAMAAADYk6mvRW64o413AQAAAAAAAAAAAAAAKEi8AwAAANiTOXLDHct4EwAAAAAAAAAAAAAAgKLEOwAAAIC9mPpa5IY72ngXAAAAAAAAAAAAAACAosQ7AAAAgL2YIzfcsYw3AQAAAAAAAAAAAAAAKEy8AwAAANiDqa9FbrijjXcBAAAAAAAAAAAAAAAoTLwDAAAA2IM5csMdy3gTAAAAAAAAAAAAAACA4sQ7AAAAgOqmvha54Y423gUAAAAAAAAAAAAAAKA48Q4AAACgujlywx3LeBMAAAAAAAAAAAAAAIAdEO8AAAAAKpv6WuSGO9p4FwAAAAAAAAAAAAAAgB0Q7wAAAAAq+xS54Y6nzc4OAAAAAAAAAAAAAACwH+IdAAAAQFWHvhb58Y6D0wMAAAAAAAAAAAAAAOyHeAcAAABQ1WPkhzuuzg4AAAAAAAAAAAAAALAv4h0AAABARce+FvnxjpPTAwAAAAAAAAAAAAAA7It4BwAAAFDRp8gPd1ycHQAAAAAAAAAAAAAAYH/EOwAAAIBqDn0t8uMdvzs9AAAAAAAAAAAAAADA/oh3AAAAANU8Rn644+LsAAAAAAAAAAAAAAAA+yTeAQAAAFRy7GuRH+84OT0AAAAAAAAAAAAAAMA+iXcAAAAAlVwjP9xxdXYAAAAAAAAAAAAAAID9Eu8AAAAAqnjoa5Ef7zg5PQAAAAAAAAAAAAAAwH6JdwAAAABV/BX54Y6rswMAAAAAAAAAAAAAAOybeAcAAABQwSnywx2t78HpAQAAAAAAAAAAAAAA9k28AwAAAKhgjvx4x9nZAQAAAAAAAAAAAAAAEO8AAAAAtu7Y1yI33NHGuwAAAAAAAAAAAAAAAOyceAcAAACwdefIDXc87eLsAAAAAAAAAAAAAAAAPBHvAAAAALbs1NciP95xcHoAAAAAAAAAAAAAAACeiHcAAAAAWzZHfrjj4uwAAAAAAAAAAAAAAAD8TbwDAAAA2Kqpr0V+vOPg9AAAAAAAAAAAAAAAAPxNvAMAAADYqnPkhzuuzg4AAAAAAAAAAAAAAMDXxDsAAACALXroa5Ef7zg4PQAAAAAAAAAAAAAAAF8T7wAAAAC26I/ID3dcnB0AAAAAAAAAAAAAAIBviXcAAAAAWzP1fYn8eMfB6QEAAAAAAAAAAAAAAPiWeAcAAACwNXPkhzvOzg4AAAAAAAAAAAAAAMD3iHcAAAAAW3Lsa5Ef7zg6PQAAAAAAAAAAAAAAAN8j3gEAAABsyTnywx1/OjsAAAAAAAAAAAAAAAA/It4BAAAAbMVvfS3y4x0fnB4AAAAAAAAAAAAAAIAfEe8AAAAAtuJz5Ic7Hp0dAAAAAAAAAAAAAACAnxHvAAAAALZg6muRH+84OD0AAAAAAAAAAAAAAAA/I94BAAAAbME58sMdn50dAAAAAAAAAAAAAACAXxHvAAAAANbuQ1+L3HDH03tHpwcAAAAAAAAAAAAAAOBXxDsAAACAtfsYueGOp312dgAAAAAAAAAAAAAAAJ5DvAMAAABYs6nvS+SGO1rf0ekBAAAAAAAAAAAAAAB4DvEOAAAAYM3myA13LONNAAAAAAAAAAAAAAAAeBbxDgAAAGCtpr4WueGONt4FAAAAAAAAAAAAAACAZxHvAAAAANZqjtxwxzLeBAAAAAAAAAAAAAAAgGcT7wAAAADWaOprkRvuaONdAAAAAAAAAAAAAAAAeDbxDgAAAGCN5sgNdyzjTQAAAAAAAAAAAAAAAHgR8Q4AAABgbaa+FrnhjjbeBQAAAAAAAAAAAAAAgBcR7wAAAADWZo7ccMcy3gQAAAAAAAAAAAAAAIAXE+8AAAAA1mTqa5Eb7mjjXQAAAAAAAAAAAAAAAHgx8Q4AAABgTebIDXcs400AAAAAAAAAAAAAAAB4FfEOAAAAYC2mvha54Y423gUAAAAAAAAAAAAAAIBXEe8AAAAA1mKO3HDHMt4EAAAAAAAAAAAAAACAVxPvAAAAANZg6muRG+5o410AAAAAAAAAAAAAAAB4NfEOAAAAYA3myA13LONNAAAAAAAAAAAAAAAAeBPxDgAAAOC9TX0tcsMdbbwLAAAAAAAAAAAAAAAAbyLeAQAAALy3OXLDHct4EwAAAAAAAAAAAAAAAN5MvAMAAAB4T1Nfi9xwRxvvAgAAAAAAAAAAAAAAwJuJdwAAAADvaY7ccMcy3gQAAAAAAAAAAAAAAICbEO8AAAAA3svU1yI33NHGuwAAAAAAAAAAAAAAAHAT4h0AAADAe5kjN9yxjDcBAAAAAAAAAAAAAADgZsQ7AAAAgPcw9bXIDXe08S4AAAAAAAAAAAAAAADcjHgHAAAA8B7myA13LONNAAAAAAAAAAAAAAAAuCnxDgAAACDb1NciN9zRxrsAAAAAAAAAAAAAAABwU+IdAAAAQLY5csMdy3gTAAAAAAAAAAAAAAAAbk68AwAAAMg09bXIDXe08S4AAAAAAAAAAAAAAADcnHgHAAAAkGmO3HDHMt4EAAAAAAAAAAAAAACAuxDvAAAAALJMfS1ywx1tvAsAAAAAAAAAAAAAAAB3Id4BAAAAZJkjN9yxjDcBAAAAAAAAAAAAAADgbsQ7AAAAgAxTX4vccEcb7wIAAAAAAAAAAAAAAMDdiHcAAAAAGebIDXcs400AAAAAAAAAAAAAAAC4K/EOAAAA4N6mvha54Y423gUAAAAAAAAAAAAAAIC7Eu8AAAAA7m2O3HDHMt4EAAAAAAAAAAAAAACAuxPvAAAAAO5p6muRG+5o410AAAAAAAAAAAAAAAC4O/EOAAAA4J4+RW6442mzswMAAAAAAAAAAAAAAJBFvAMAAAC4l0Nfi/x4x8HpAQAAAAAAAAAAAAAAyCLeAQAAANzLY+SHO67ODgAAAAAAAAAAAAAAQCbxDgAAAOAejn0t8uMdJ6cHAAAAAAAAAAAAAAAgk3gHAAAAcA+fIj/ccXF2AAAAAAAAAAAAAAAAsol3AAAAALd26GuRH+/43ekBAAAAAAAAAAAAAADIJt4BAAAA3Npj5Ic7Ls4OAAAAAAAAAAAAAADAexDvAAAAAG7p2NciP95xcnoAAAAAAAAAAAAAAADeg3gHAAAAcEvXyA93XJ0dAIDVWuIfff9c0f7hpwAAAAAAAAAAAMBtiXcAAAAAt/LQ1yI/3nFyegAAVmuJf/Wt6fuXnwIAAAAAAAAAAAC3Jd4BAAAA3MpfkR/uuDo7AACrJt4BAAAAAAAAAAAA5Yl3AAAAALdwivxwR+t7cHoAAFZNvAMAAAAAAAAAAADKE+8AAAAAbmGO/HjH2dkBAFg98Q4AAAAAAAAAAAAoT7wDAAAAeKtjX4vccEcb7wIAwLqJdwAAAAAAAAAAAEB54h0AAADAW50jN9zxtIuzAwCwCeIdAAAAAAAAAAAAUJ54BwAAAPAWp74W+fGOg9MDALAJ4h0AAAAAAAAAAABQnngHAAAA8BZz5Ic7Ls4OAMBmiHcAAAAAAAAAAABAeeIdAAAAwGtNfS3y4x0HpwcAYDPEOwAAAAAAAAAAAKA88Q4AAADgtc6RH+64OjsAAJsi3gEAAAAAAAAAAADliXcAAAAAr/HQ1yI/3nFwegAANkW8AwAAAAAAAAAAAMoT7wAAAABe44/ID3dcnB0AgM0R7wAAAAAAAAAAAIDyxDsAAACAl5r6vkR+vOPg9AAAbI54BwAAAAAAAAAAAJQn3gEAAAC81Bz54Y6zswMAsEniHQAAAAAAAAAAAFCeeAcAAADwEse+FvnxjqPTAwCwSeIdAAAAAAAAAAAAUJ54BwAAAPAS58gPd/zp7AAAbJZ4BwAAAAAAAAAAAJQn3gEAAAA81299LfLjHR+cHgCAzRLvAAAAAAAAAAAAgPLEOwAAAIDn+hz54Y5HZwcAYNPEOwAAAAAAAAAAAKA88Q4AAADgOaa+FvnxjoPTAwCwaeIdAAAAAAAAAAAAUJ54BwAAAPAc58gPd3x2dgAANk+8AwAAAAAAAAAAAMoT7wAAAAB+5UNfi9xwx9N7R6cHAGDzxDsAAAAAAAAAAACgPPEOAAAA4Fc+Rm6442mfnR0AgBLEOwAAAAAAAAAAAKA88Q4AAADgZ6a+L5Eb7mh9R6cHAKAE8Q4AAAAAAAAAAAAoT7wDAAAA+Jk5csMdy3gTAABqEO8AAAAAAAAAAACA8sQ7AAAAgB+Z+lrkhjvaeBcAAGoQ7wAAAAAAAAAAAIDyxDsAAACAH5kjN9yxjDcBAKAO8Q4AAAAAAAAAAAAoT7wDAAAA+J6pr0VuuKONdwEAoA7xDgAAAAAAAAAAAChPvAMAAAD4njlywx3LeBMAAGoR7wAAAAAAAAAAAIDyxDsAAACAb019LXLDHW28CwAAtYh3AAAAAAAAAAAAQHniHQAAAMC35sgNdyzjTQAAqEe8AwAAAAAAAAAAAMoT7wAAAAC+NvW1yA13tPEuAADUI94BAAAAAAAAAAAA5Yl3AAAAAF+bIzfcsYw3AQCgJvEOAAAAAAAAAAAAKE+8AwAAAPjb1NciN9zRxrsAAFCTeAcAAAAAAAAAAACUJ94BAAAA/G2O3HDHMt4EAIC6xDsAAAAAAAAAAACgPPEOAAAA4MnU1yI33NHGuwAAUJd4BwAAAAAAAAAAAJQn3gEAAAA8mSM33LGMNwEAoDbxDgAAAAAAAAAAAChPvAMAAACY+lrkhjvaeBcAAGoT7wAAAAAAAAAAAIDyxDsAAACAOXLDHct4EwAA6hPvAAAAAAAAAAAAgPLEOwAAAGDfpr4WueGONt4FAID6xDsAAAAAAAAAAACgPPEOAAAA2Lc5csMdy3gTAAD2QbwDAAAAAAAAAAAAyhPvAAAAgP2a+lrkhjvaeBcAAPZBvAMAAAAAAAAAAADKE+8AAACA/ZojN9yxjDcBAGA/xDsAAAAAAAAAAACgPPEOAAAA2Kepr0VuuKONdwEAYD/EOwAAAAAAAAAAAKA88Q4AAADYpzlywx3LeBMAAPZFvAMAAAAAAAAAAADKE+8AAACA/Zn6WuSGO9p4FwAA9kW8AwAAAAAAAAAAAMoT7wAAAID9mSM33LGMNwEAYH/EOwAAAAAAAAAAAKA88Q4AAADYl6mvRW64o413AQBgf8Q7AAAAAAAAAAAAoDzxDgAAANiXOXLDHct4EwAA9km8AwAAAAAAAAAAAMoT7wAAAID9mPpa5IY72ngXAAD2SbwDAAAAAAAAAAAAyhPvAAAAgP2YIzfcsYw3AQBgv8Q7AAAAAAAAAAAAoDzxDgAAANiHqa9FbrijjXcBAGC/xDsAAAAAAAAAAACgPPEOAAAA2Ic5csMdy3gTAAD2TbwDAAAAAAAAAAAAyhPvAAAAgPqmvha54Y423gUAgH0T7wAAAAAAAAAAAIDyxDsAAACgvjlywx3LeBMAABDvAAAAAAAAAAAAgPLEOwAAAKC2qa9FbrijjXcBAADxDgAAAAAAAAAAAChPvAMAAABq+xS54Y6nzc4OAACDeAcAAAAAAAAAAACUJ94BAAAAdR36WuTHOw5ODwAAg3gHAAAAAAAAAAAAlCfeAQAAAHU9Rn644+rsAADwFfEOAAAAAAAAAAAAKE+8AwAAAGo69rXIj3ecnB4AAL4i3gEAAAAAAAAAAADliXcAAABATZ8iP9xxcXYAAPiGeAcAAAAAAAAAAACUJ94BAAAA9Rz6WuTHO353egAA+IZ4BwAAAAAAAAAAAJQn3gEAAAD1PEZ+uOPi7AAA8B3iHQAAAAAAAAAAAFCeeAcAAADUcuxrkR/vODk9AAB8h3gHAAAAAAAAAAAAlCfeAQAAALVcIz/ccXV2AAD4AfEOAAAAAAAAAAAAKE+8AwAAAOp46GuRH+84OT0AAPyAeAcAAAAAAAAAAACUJ94BAAAAdfwV+eGOq7MDAMBPiHcAAAAAAAAAAABAeeIdAAAAUMMp8sMdre/B6QEA4CfEOwAAAAAAAAAAAKA88Q4AAACoYY78eMfZ2QEA4BfEOwAAAAAAAAAAAKA88Q4AAADYvmNfi9xwRxvvAgAAPyPeAQAAAAAAAAAAAOWJdwAAAMD2nSM33PG0i7MDAMAziHcAAAAAAAAAAABAeeIdAAAAsG2nvhb58Y6D0wMAwDOIdwAAAAAAAAAAAEB54h0AAACwbXPkhzsuzg4AAM8k3gEAAAAAAAAAAADliXcAAADAdk19LfLjHQenBwCAZxLvAAAAAAAAAAAAgPLEOwAAAGC7zpEf7rg6OwAAvIB4BwAAAAAAAAAAAJQn3gEAAADb9NDXIj/ecXB6AAB4AfEOAAAAAAAAAAAAKE+8AwAAALbpj8gPd1ycHQAAXki8AwAAAAAAAAAAAMoT7wAAAIDtmfq+RH684+D0AADwQuIdAAAAAAAAAAAAUJ54BwAAAGzPHPnhjrOzAwDAK4h3AAAAAAAAAAAAQHniHQAAALAtx74W+fGOo9MDAMAriHcAAAAAAAAAAABAeeIdAAAAsC3nyA93/OnsAADwSuIdAAAAAAAAwL/Zu0PkSLIkj8N+jIYFAiQQKCDQcI6zR1g4vOGAAgIBBBoICAg22CPsEeYAe4ACDmKfbF7b9MxUd5ekTM8Iz++T/bGbvUQC+UsAAKA98Q4AAAA4jh/GMurjHZ88PQAAvJN4BwAAAAAAAAAAALQn3gEAAADH8RD14Y5Hzw4AAB8g3gEAAAAAAAAAAADtiXcAAADAMSxjGfXxjpOnBwCADxDvAAAAAAAAAAAAgPbEOwAAAOAYnqI+3PHg2QEA4IPEOwAAAAAAAAAAAKA98Q4AAADYv09jGbXhjtd7d54eAAA+SLwDAAAAAAAAAAAA2hPvAAAAgP37KWrDHa978OwAAHAG4h0AAAAAAAAAAADQnngHAAAA7Nsy9jVqwx05dufpAQDgDMQ7AAAAAAAAAAAAoD3xDgAAANi3NWrDHdu8CQAAnIN4BwAAAAAAAAAAALQn3gEAAAD7tYxl1IY7ct4FAADOQbwDAAAAAAAAAAAA2hPvAAAAgP1aozbcsc2bAADAuYh3AAAAAAAAAAAAQHviHQAAALBPy1hGbbgj510AAOBcxDsAAAAAAAAAAACgPfEOAAAA2Kc1asMd27wJAACck3gHAAAAAAAAAAAAtCfeAQAAAPuzjGXUhjty3gUAAM5JvAMAAAAAAAAAAADaE+8AAACA/VmjNtyxzZsAAMC5iXcAAAAAAAAAAABAe+IdAAAAsC/LWEZtuCPnXQAA4NzEOwAAAAAAAAAAAKA98Q4AAADYlzVqwx3bvAkAAFyCeAcAAAAAAAAAAAC0J94BAAAA+7GMZdSGO3LeBQAALkG8AwAAAAAAAAAAANoT7wAAAID9WKM23LHNmwAAwKWIdwAAAAAAAAAAAEB74h0AAACwD8tYRm24I+ddAADgUsQ7AAAAAAAAAAAAoD3xDgAAANiHNWrDHdu8CQAAXJJ4BwAAAAAAAAAAALQn3gEAAADXt4xl1IY7ct4FAAAuSbwDAAAAAAAAAAAA2hPvAAAAgOtbozbcsc2bAADApYl3AAAAAAAAAAAAQHviHQAAAHBdy1hGbbgj510AAODSxDsAAAAAAAAAAACgPfEOAAAAuK41asMd27wJAABUEO8AAAAAAAAAAACA9sQ7AAAA4HqWsYzacEfOuwAAQAXxDgAAAAAAAAAAAGhPvAMAAACuZ43acMc2bwIAAFXEOwAAAAAAAAAAAKA98Q4AAAC4jmUsozbckfMuAABQRbwDAAAAAAAAAAAA2hPvAAAAgOtYozbcsc2bAABAJfEOAAAAAAAAAAAAaE+8AwAAAOotYxm14Y6cdwEAgEriHQAAAAAAAAAAANCeeAcAAADUW6M23LHNmwAAQDXxDgAAAAAAAAAAAGhPvAMAAABqLWMZteGOnHcBAIBq4h0AAAAAAAAAAADQnngHAAAA1FqjNtyxzZsAAMA1iHcAAAAAAAAAAABAe+IdAAAAUGcZy6gNd+S8CwAAXIN4BwAAAAAAAAAAALQn3gEAAAB11qgNd2zzJgAAcC3iHQAAAAAAAAAAANCeeAcAAADUWMYyasMdOe8CAADXIt4BAAAAAAAAAAAA7Yl3AAAAQI01asMd27wJAABck3gHAAAAAAAAAAAAtCfeAQAAAJe3jGXUhjty3gUAAK5JvAMAAAAAAAAAAADaE+8AAACAy1ujNtyxzZsAAMC1iXcAAAAAAAAAAABAe+IdAAAAcFnLWEZtuCPnXQAA4NrEOwAAAAAAAAAAAKA98Q4AAAC4rC9RG+543erZAQBgJ8Q7AAAAAAAAAAAAoD3xDgAAALic01hGfbzj5OkBAGAntvhx7C872o8+FAAAAAAAAAAAADgv8Q4AAAC4nMeoD3e8eHYAAAAAAAAAAAAAAACoI94BAAAAl3E3llEf77j39AAAAAAAAAAAAAAAAFBHvAMAAAAu40vUhzuePTsAAAAAAAAAAAAAAADUEu8AAACA8zuNZdTHO3709AAAAAAAAAAAAAAAAFBLvAMAAADO7zHqwx3Pnh0AAAAAAAAAAAAAAADqiXcAAADAed2NZdTHO+49PQAAAAAAAAAAAAAAANQT7wAAAIDzeon6cMeLZwcAAAAAAAAAAAAAAIDrEO8AAACA8/k8llEf77j39AAAAAAAAAAAAAAAAHAd4h0AAABwPr9EfbjjxbMDAAAAAAAAAAAAAADA9Yh3AAAAwHncR324I8c+e3oAAAAAAAAAAAAAAAC4HvEOAAAAOI816uMdT54dAAAAAAAAAAAAAAAArku8AwAAAD7ubiyjNtyR8y4AAAAAAAAAAAAAAABwReIdAAAA8HFPURvueN2zZwcAAAAAAAAAAAAAAIDrE+8AAACAj7kfy6iPd5w8PQAAAAAAAAAAAAAAAFyfeAcAAAB8zBr14Y5nzw4AAAAAAAAAAAAAAAD7IN4BAAAA77eMZdTHO06eHgAAAAAAAAAAAAAAAPZBvAMAAADe7ynqwx0vnh0AAAAAAAAAAAAAAAD2Q7wDAAAA3ufzWEZ9vOPk6QEAAAAAAAAAAAAAAGA/xDsAAADgff4W9eGOZ88OAAAAAAAAAAAAAAAA+yLeAQAAAG+3jH2N+njHydMDAAAAAAAAAAAAAADAvoh3AAAAwNutUR/uePLsAAAAAAAAAAAAAAAAsD/iHQAAAPA2d2MZ9fGOO08PAAAAAAAAAAAAAAAA+yPeAQAAAG/zFPXhjp89OwAAAAAAAAAAAAAAAOyTeAcAAAB8vx/GMurjHZ88PQAAAAAAAAAAAAAAAOyTeAcAAAB8v4eoD3c8enYAAAAAAAAAAAAAAADYL/EOAAAA+D7LWEZ9vOPk6QEAAAAAAAAAAAAAAGC/xDsAAADg+zxFfbjjwbMDAAAAAAAAAAAAAADAvol3AAAAwJ/7NJZRG+54vXfn6QEAAAAAAAAAAAAAAGDfxDsAAADgz/0UteGO1z14dgAAAAAAAAAAAAAAANg/8Q4AAAD4Y8vY16gNd+TYnacHAAAAAAAAAAAAAACA/RPvAAAAgD+2Rm24Y5s3AQAAAAAAAAAAAAAAgAMQ7wAAAIDft4xl1IY7ct4FAAAAAAAAAAAAAAAADkC8AwAAAH7fGrXhjm3eBAAAAAAAAAAAAAAAAA5CvAMAAAC+bRnLqA135LwLAAAAAAAAAAAAAAAAHIR4BwAAAHzbGrXhjm3eBAAAAAAAAAAAAAAAAA5EvAMAAAD+0zKWURvuyHkXAAAAAAAAAAAAAAAAOBDxDgAAAPhPa9SGO7Z5EwAAAAAAAAAAAAAAADgY8Q4AAAD4V8tYRm24I+ddAAAAAAAAAAAAAAAA4GDEOwAAAOBfrVEb7tjmTQAAAAAAAAAAAAAAAOCAxDsAAADgn5axjNpwR867AAAAAAAAAAAAAAAAwAGJdwAAAMA/rVEb7tjmTQAAAAAAAAAAAAAAAOCgxDsAAADgH5axjNpwR867AAAAAAAAAAAAAAAAwEGJdwAAAMA/rFEb7tjmTQAAAAAAAAAAAAAAAODAxDsAAAAgYhnLqA135LwLAAAAAAAAAAAAAAAAHJh4BwAAAESsURvu2OZNAAAAAAAAAAAAAAAA4ODEOwAAALh1y1hGbbgj510AAAAAAAAAAAAAAADg4MQ7AAAAuHVr1IY7tnkTAAAAAAAAAAAAAAAAaEC8AwAAgFu2jGXUhjty3gUAAAAAAAAAAAAAAAAaEO8AAADglq1RG+7Y5k0AAAAAAAAAAAAAAACgCfEOAAAAbtUyllEb7sh5FwAAAAAAAAAAAAAAAGhCvAMAAIBbtUZtuGObNwEAAAAAAAAAAAAAAIBGxDsAAAC4RctYRm24I+ddAAAAAAAAAAAAAAAAoBHxDgAAAG7RGrXhjm3eBAAAAAAAAAAAAAAAAJoR7wAAAODWLGMZteGOnHcBAAAAAAAAAAAAAACAZsQ7AAAAuDVr1IY7tnkTAAAAAAAAAAAAAAAAaEi8AwAAgFuyjGXUhjty3gUAAAAAAAAAAAAAAAAaEu8AAADglqxRG+7Y5k0AAAAAAAAAAAAAAACgKfEOAAAAbsUyllEb7sh5FwAAAAAAAAAAAAAAAGhKvAMAAIBbsUZtuGObNwEAAAAAAAAAAAAAAIDGxDsAAAC4BctYRm24I+ddAAAAAAAAAAAAAAAAoDHxDgAAAG7BGrXhjm3eBAAAAAAAAAAAAAAAAJoT7wAAAKC7ZSyjNtyR8y4AAAAAAAAAAAAAAADQnHgHAAAA3X2J2nDH61bPDgAAAAAAAAAAAAAAALdBvAMAAIDOTmMZ9fGOk6cHAAAAAAAAAAAAAACA2yDeAQAAQGePUR/uePHsAAAAAAAAAAAAAAAAcDvEOwAAAOjqbiyjPt5x7+kBAAAAAAAAAAAAAADgdoh3AAAA0NWXqA93PHt2AAAAAAAAAAAAAAAAuC3iHQAAAHR0Gsuoj3f86OkBAAAAAAAAAAAAAADgtoh3AAAA0NFj1Ic7nj07AAAAAAAAAAAAAAAA3B7xDgAAALq5G8uoj3fce3oAAAAAAAAAAAAAAAC4PeIdAAAAdPMS9eGOF88OAAAAAAAAAAAAAAAAt0m8AwAAgE4+j2XUxzvuPT0AAAAAAAAAAAAAAADcJvEOAAAAOvkl6sMdL54dAAAAAAAAAAAAAAAAbpd4BwAAAF3cR324I8c+e3oAAAAAAAAAAAAAAAC4XeIdAAAAdLFGfbzjybMDAAAAAAAAAAAAAADAbRPvAAAAoIO7sYzacEfOuwAAAAAAAAAAAAAAAMANE+8AAACgg6eoDXe87tmzAwAAAAAAAAAAAAAAAOIdAAAAHN39WEZ9vOPk6QEAAAAAAAAAAAAAAADxDgAAAI5ujfpwx7NnBwAAAAAAAAAAAAAAAF6JdwAAAHBky1hGfbzj5OkBAAAAAAAAAAAAAACAV+IdAAAAHNlT1Ic7Xjw7AAAAAAAAAAAAAAAA8CvxDgAAAI7q81hGfbzj5OkBAAAAAAAAAAAAAACAX4l3AAAAcFR/i/pwx7NnBwAAAAAAAAAAAAAAAH5LvAMAAIAjWsa+Rn284+TpAQCAN9ni57H/2dF+9qEAAAAAAAAAAADAeYl3AAAAcERr1Ic7njw7AADwZlv8fWxPf3/3oQAAAAAAAAAAAMB5iXcAAABwNHdjGfXxjjtPDwAAvJl4BwAAAAAAAAAAALQn3gEAAMDRPEV9uONnzw4AALyLeAcAAAAAAAAAAAC0J94BAADAkfwwllEf7/jk6QEAgHcR7wAAAAAAAAAAAID2xDsAAAA4koeoD3c8enYAAODdxDsAAAAAAAAAAACgPfEOAAAAjmIZy6iPd5w8PQAA8G7iHQAAAAAAAAAAANCeeAcAAABH8RT14Y4Hzw4AAHyIeAcAAAAAAAAAAAC0J94BAADAEXway6gNd7zeu/P0AADAh4h3AAAAAAAAAAAAQHviHQAAABzBT1Eb7njdg2cHAAA+TLwDAAAAAAAAAAAA2hPvAAAAYO+Wsa9RG+7IsTtPDwAAfJh4BwAAAAAAAAAAALQn3gEAAMDerVEb7tjmTQAAgI8T7wAAAAAAAAAAAID2xDsAAADYs2UsozbckfMuAADAx4l3AAAAAAAAAAAAQHviHQAAAOzZGrXhjm3eBAAAOA/xDgAAAAAAAAAAAGhPvAMAAIC9WsYyasMdOe8CAACch3gHAAAAAAAAAAAAtCfeAQAAwF6tURvu2OZNAACA8xHvAAAAAAAAAAAAgPbEOwAAANijZSyjNtyR8y4AAMD5iHcAAAAAAAAAAABAe+IdAAAA7NEateGObd4EAAA4L/EOAAAAAAAAAAAAaE+8AwAAgL1ZxjJqwx057wIAAJyXeAcAAAAAAAAAAAC0J94BAADA3qxRG+7Y5k0AAIDzE+8AAAAAAAAAAACA9sQ7AAAA2JNlLKM23JHzLgAAwPmJdwAAAAAAAAAAAEB74h0AAADsyRq14Y5t3gQAALgM8Q4AAAAAAAAAAABoT7wDAACAvVjGMmrDHTnvAgAAXIZ4BwAAAAAAAAAAALQn3gEAAMBerFEb7tjmTQAAgMsR7wAAAAAAAAAAAID2xDsAAADYg2UsozbckfMuAADA5Yh3AAAAAAAAAAAAQHviHQAAAOzBGrXhjm3eBAAAuCzxDgAAAAAAAAAAAGhPvAMAAIBrW8YyasMdOe8CAABclngHAAAAAAAAAAAAtCfeAQAAwLWtURvu2OZNAACAyxPvAAAAAAAAAAAAgPbEOwAAALimZSyjNtyR8y4AAMDliXcAAAAAAAAAAABAe+IdAAAAXNMateGObd4EAACoId4BAAAAAAAAAAAA7Yl3AAAAcC3LWEZtuCPnXQAAgBriHQAAAAAAAAAAANCeeAcAAADXskZtuGObNwEAAOqIdwAAAAAAAAAAAEB74h0AAABcwzKWURvuyHkXAACgjngHAAAAAAAAAAAAtCfeAQAAwDWsURvu2OZNAACAWuIdAAAAAAAAAAAA0J54BwAAANWWsYzacEfOuwAAALXEOwAAAAAAAAAAAKA98Q4AAACqrVEb7tjmTQAAgHriHQAAAAAAAAAAANCeeAcAAACVlrGM2nBHzrsAAAD1xDsAAAAAAAAAAACgPfEOAAAAKq1RG+7Y5k0AAIDrEO8AAAAAAAAAAACA9sQ7AAAAqLKMZdSGO3LeBQAAuA7xDgAAAAAAAAAAAGhPvAMAAIAqa9SGO7Z5EwAA4HrEOwAAAAAAAAAAAKA98Q4AAAAqLGMZteGOnHcBAACuR7wDAAAAAAAAAAAA2hPvAAAAoMIateGObd4EAAC4LvEOAAAAAAAAAAAAaE+8AwAAgEtbxjJqwx057wIAAFyXeAcAAAAAAAAAAAC0J94BAADApX2J2nDH61bPDgAA7IJ4BwAAAAAAAAAAALQn3gEAAMAlncYy6uMdJ08PAADsgngHAAAAAAAAAAAAtCfeAQAAwCU9Rn2448WzAwAAuyHeAQAAAAAAAAAAAO2JdwAAAHApd2MZ9fGOe08PAADshngHAAAAAAAAAAAAtCfeAQAAwKV8ifpwx7NnBwAAdkW8AwAAAAAAAAAAANoT7wAAAOASTmMZ9fGOHz09AACwK+IdAAAAAAAAAAAA0J54BwAAAJfwGPXhjmfPDgAA7I54BwAAAAAAAAAAALQn3gEAAMC53Y1l1Mc77j09AACwO+IdAAAAAAAAAAAA0J54BwAAAOf2EvXhjhfPDgAA7JJ4BwAAAAAAAAAAALQn3gEAAMA5fR7LqI933Ht6AABgl8Q7AAAAAAAAAAAAoD3xDgAAAM7pl6gPd7x4dgAAYLfEOwAAAAAAAAAAAKA98Q4AAADO5T7qwx059tnTAwAAuyXeAQAAAAAAAAAAAO2JdwAAAHAua9THO548OwAAsGviHQAAAAAAAAAAANCeeAcAAADncDeWURvuyHkXAABgv8Q7AAAAAAAAAAAAoD3xDgAAAM7hKWrDHa979uwAAMDuiXcAAAAAAAAAAABAe+IdAAAAfNT9WEZ9vOPk6QEAgN0T7wAAAAAAAAAAAID2xDsAAAD4qDXqwx3Pnh0AADgE8Q4AAAAAAAAAAABoT7wDAACAj1jGMurjHSdPDwAAHIJ4BwAAAAAAAAAAALQn3gEAAMBHPEV9uOPFswMAAIch3gEAAAAAAAAAAADtiXcAAADwXp/HMurjHSdPDwAAHIZ4BwAAAAAAAAAAALQn3gEAAMB7/S3qwx3Pnh0AADgU8Q4AAAAAAAAAAABoT7wDAACA91jGvkZ9vOPk6QEAgEMR7wAAAAAAAAAAAID2xDsAAAB4jzXqwx1Pnh0AADgc8Q4AAAAAAAAAAABoT7wDAACAt7oby6iPd9x5egAA4HDEOwAAAAAAAAAAAKA98Q4AAADe6inqwx0/e3YAAOCQxDsAAAAAAAAAAACgPfEOAAAA3uKHsYz6eMcnTw8AABySeAcAAAAAAAAAAAC0J94BAADAWzxEfbjj0bMDAACHJd4BAAAAAAAAAAAA7Yl3AAAA8L2WsYz6eMfJ0wMAAIcl3gEAAAAAAAAAAADtiXcAAADwvZ6iPtzx4NkBAIBDE+8AAAAAAAAAAACA9sQ7AAAA+B6fxjJqwx2v9+48PQAAcGjiHQAAAAAAAAAAANCeeAcAAADf46eoDXe87sGzAwAAhyfeAQAAAAAAAAAAAO2JdwAAAPBnlrGvURvuyLE7Tw8AAByeeAcAAAAAAAAAAAC0J94BAADAn1mjNtyxzZsAAADHJ94BAAAAAAAAAAAA7Yl3AAAA8EeWsYzacEfOuwAAAMcn3gEAAAAAAAAAAADtiXcAAADwR9aoDXds8yYAAEAP4h0AAAAAAAAAAADQnngHAAAAv2cZy6gNd+S8CwAA0IN4BwAAAAAAAAAAALQn3gEAAMDvWaM23LHNmwAAAH2IdwAAAAAAAAAAAEB74h0AAAB8yzKWURvuyHkXAACgD/EOAAAAAAAAAAAAaE+8AwAAgG9Zozbcsc2bAAAAvYh3AAAAAAAAAAAAQHviHQAAAPy7ZSyjNtyR8y4AAEAv4h0AAAAAAAAAAADQnngHAAAA/26N2nDHNm8CAAD0I94BAAAAAAAAAAAA7Yl3AAAA8FvLWEZtuCPnXQAAgH7EOwAAAAAAAAAAAKA98Q4AAAB+a43acMc2bwIAAPQk3gEAAAAAAAAAAADtiXcAAADwq2UsozbckfMuAABAT+IdAAAAAAAAAAAA0J54BwAAAL9aozbcsc2bAAAAfYl3AAAAAAAAAAAAQHviHQAAALxaxjJqwx057wIAAPQl3gEAAAAAAAAAAADtiXcAAADwao3acMc2bwIAAPQm3gEAAAAAAAAAAADtiXcAAACwjGXUhjty3gUAAOhNvAMAAAAAAAAAAADaE+8AAABgjdpwxzZvAgAA9CfeAQAAAAAAAAAAAO2JdwAAANy2ZSyjNtyR8y4AAEB/4h0AAAAAAAAAAADQnngHAADAbVujNtyxzZsAAAC3QbwDAAAAAAAAAAAA2hPvAAAAuF3LWEZtuCPnXQAAgNsg3gEAAAAAAAAAAPAun8b+8o198jTskHgHAADA7VqjNtyxzZsAAAC3Q7wDAAAAAAAAAADgXf43vv3llL96GnZIvAMAAOA2LWMZteGOnHcBAABuh3gHAAAAAAAAAADAm/1X/P4XVP56g+/x31H/C77iEm/jfQEAAG7TeoX/x1fPDgAA3BzxDgAAAAAAAAAAgDf5NPZ/Id7xW48h3rF33hcAAOD2LP/P3v1C13FdCxzewCDAwKDAIMBggICAgIBBgUBBQEFAgEGBQUFBwAMPBGStd9cKCDAICDAwGGAQICAgUGAQUBAQUBAQEBAQUBAQYGBwwH3nRpPErv9ornTvntGZ7+varNYZbw+Zrp6f6pTkb/EynAsAALAs4h0AAAAAAAAAAABb+TrefUlltcCdfB/iHXNnvwAAAMvTT/At3ls7AACwSOIdAAAAAAAAAAAAo30el19SWS1sJ3ci/7f4iktsz34BAACWpZvge70M5wIAACyPeAcAAAAAAAAAAMAoD2LcpZfVwvZyFPMMd4hLvMp+AQAAlqWf4Du8t3YAAGCxxDsAAAAAAAAAAAAu9Zc6L2LcRZXVwnbzMMQ7bgL7BQAAWI4uxgVIdzllOBcAAGCZxDsAAAAAAAAAAADeaZtwxxLjHV+GeMdNYL8AAADL0U/wDd5bOwAAsGjiHQAAAAAAAAAAAG/1QWwX7lhivOObEO+4CewXAABgGbo6Jfn7uwznAgAALJd4BwAAAAAAAAAAwBs9qPM8tr+wslrYnsbETX6caPiDeAcAAMAy9JEfz+ytHQAAWDzxDgAAAAAAAAAAgNd8Elf/LbWrBe2pG7GPn7xOsyDeAQAAsIzv9Kv+7xlXnTKcCwAAsGziHQAAAAAAAAAAAL97r87TuN6lldWC9vXXEfs491rNgngHAABA+x5HbrhjM721AwAAhHgHAAAAAAAAAADAYPNbYr+N619aWS1oZ49G7OMzr9YsiHcAAAC07aBOifx4x4HVAwAAhHgHAAAAAAAAAABA9bDO89jNpZXVgvZ2PmIfH3m9ZkG8AwAAoG1PIz/ccW7tAAAAA/EOAAAAAAAAAABgwd6vcxq7vbiyWtD+fhyxj/e9ZrMg3gEAANCuwzol8uMdx1YPAAAwEO8AAAAAAAAAAAAW6tM6z2P3F1dWC9nfn+Lyi0H/8ZrNhngHAABAux5HfrjjzNoBAABeIt4BAAAAAAAAAAAszEmdb2P7Sym/1PkxxDte3uNlu3jmdZsN8Q4AAIA2HcTlcc19zH2rBwAAeIl4BwAAAAAAAAAAsBCbSyWb3wp7lQspP9Xp6nwd4h2/+WTELj732s2GeAcAAECbnkZ+uOPM2gEAAP6LeAcAAAAAAAAAANC492NcdONts/mzd4efJd7xhzGXgz7y+s2GeAcAAEB7DuuUyI93HFs9AADAfxHvAAAAAAAAAAAAGncSV7+M8qjOey/9LPGOP/x7xC46r99siHcAAAC05zzywx3n1g4AAPAG4h0AAAAAAAAAAEDjTmL7iyjfD3/uv4l3XLgTl/9m35/r3PL6zYZ4BwAAQFuORnyb72OOrR4AAOANxDsAAAAAAAAAAIDGncR2l1D6Orff8rPEOy7cH7GHr716syLeAQAA0JZnkR/uOLd2AACAtxDvAAAAAAAAAAAAGncS4y6g/Csu/+2x4h0XHo7YwyOv3qyIdwAAALTjOPLDHaXOkdUDAAC8hXgHAAAAAAAAAADQuJN49+WTzf9p6aM6t0b8LPGOC49H7OGBV29WxDsAAADa0Ud+vOPU2gEAAN5BvAMAAAAAAAAAAGjcSbz50snPdT6uc3uLnyXeMX4P97x6syLeAQAA0IbDOiVywx1lOBcAAIC3Ee8AAAAAAAAAAAAadxKvXjj5qc4nde5c4WeJd1x4cckOnl/y52/FRdzjwfBv8UVc/Nbg3+bzOv9T5y8hArIr4h0AAABtOI3ccMdmzqwdAAAAAAAAAAAAAABg2U7i4qLJd3U+rnP7Gj9LvCOiG7GDZ2/4c7eGf4tNnOPn2O6S0A91HtX5s9f5ysQ7AAAAbr7jOiXy4x0HVg8AAAAAAAAAAAAAALBs79e5HxfxiOsS74j4cMQOvnjpv7+JpXxS56fYzYWhf9d5uKN/zyUR7wAAALj5+sgPd5xZOwAAAAAAAAAAAAAAALsk3nHx97tsBx/FRVxjE+14Hvu5PPRDnb80trebNgAAAOTp6pQJvv0OrB4AAAAAAAAAAAAAAIBdEu+IOB+xg4d1vo+cS0RP6ty+AXtbhXgHAAAAV3c6wXffubUDAAAAAAAAAAAAAACwa+IdET/F/CISP9Y5nPneViHeAQAAwNUc1SkTfPcdWD0AAAAAAAAAAAAAAAC7tvR4x/sx35DEL3WOZ7y7VYh3AAAAcDVfTvDNd2btAAAAAAAAAAAAAAAA7MPS4x0nMe+YxJwDHqsQ7wAAAGB7XZ0XE3zzHVg9AAAAAAAAAAAAAAAA+7D0eMfHcf3LP5sLR9/U+arOo2Ffm9n8FuHTOj9c8+f/Jy4uNs3NKsQ7AAAA2F4/wffeqbUDAAAAAAAAAAAAAACwL0uPd5zG1YMdm1jHB3XeG3HO7Tp/q/Psiud9W+fWzHa3CvEOAAAAtnNYp0zwvXdo9QAAAAAAAAAAAAAAAOzL0uMd38Z2l302F4we17l7jTPv1/kmtr9o9NnMdrcK8Q4AAAC2c9WI5nXmK2sHAAAAAAAAAAAAAABgn5Yc77hd50WMv+zzc50/7/D8T2K73za8+e8ezGh/qxDvAAAAYLy7W34H72ruWT0AAAAAAAAAAAAAAAD7tOR4x0mMv+jzfewnnPFhbBcQeTaj/a1CvAMAAIDxnkzwnffU2gEAAAAAAAAAAAAAANi3Jcc7/h7jLvr8q86dPT7HX2O73zx8PJP9rUK8AwAAgHG6Lb99dzUHVg8AAAAAAAAAAAAAAMC+LTne8bDON3V+esff/Yc6f0p4lv+J8RePTmeyv1WIdwAAADDO6QTfeE+sHQAAAAAAAAAAAAAAgAxLjne87Fadwzof1vm4zqM6X9U5SnyGZzHu8tGLOndmsLNViHcAAABwuXt1SvL3XRm+8wEAAAAAAAAAAAAAAGDvxDvm4zjGX0J6MIPnXYV4BwAAAJd7NMH33RNrBwAAAAAAAAAAAAAAIIt4x7z8M8ZdQupn8KyrEO8AAADg3bo6L5K/7UqdQ6sHAAAAAAAAAAAAAAAgi3jHvDyIcReR/jODZ12FeAcAAADv1k/wbddbOwAAAAAAAAAAAAAAAJnEO+bldoz/jcR3J37WVYh3AAAA8HZdnZL8XVeGcwEAAAAAAAAAAAAAACCNeMf8PItxF5KOJ37OVYh3AAAA8Hb9BN91vbUDAAAAAAAAAAAAAACQTbxjfr6IcReS/jbxc65CvAMAAIA36+qU5G+6MpwLAAAAAAAAAAAAAAAAqcQ75ufjGHcp6X8nfs5ViHcAAADwZv0E33S9tQMAAAAAAAAAAAAAADAF8Y75eRDjLiVN/e/yfyHeAQAAwOu6OiX5e64M5wIAAAAAAAAAAAAAAEA68Y75OYmbEe+YmngHAADAPPWRH2PsrR0AAAAAAAAAAAAAAICpiHfMz0mId4wh3gEAADA/XZ0SueGOMpwLAAAAAAAAAAAAAAAAkxDvmJ+TEO8YQ7wDAABgfvrIDXeshzMBAAAAAAAAAAAAAABgMuId8/Mgxl1O+vvC9yTeAQAAMC9dnRK54Y4ynAsAAAAAAAAAAAAAAACTEe+Yn3/EuAtKHyx8T+IdAAAA89JHbrhjPZwJAAAAAAAAAAAAAAAAkxLveNXdOsd1PqxzONEzfB7jLigdLvzdFe8AAACYj65OidxwRxnOBQAAAAAAAAAAAAAAgEktMd5xLy4CGU/rPKvzfZ2f4vVLRl9M9Hz/jHGXlO4s/N0V7wAAAJiPPnLDHevhTAAAAAAAAAAAAAAAAJjcEuMdBzHuEtDXEz3fzyOe7QevrngHAADATHTxehBz31OGcwEAAAAAAAAAAAAAAGByS4x3bIy5VPS8znvJz3Uc4y4pPfXqincAAADMRB+54Y71cCYAAAAAAAAAAAAAAADMwlLjHd/FuMtAHyY/16ORz/U3r654BwAAwAx0MS6Qucspw7kAAAAAAAAAAAAAAAAwC0uNdzyJcReCvkp8ptt1fh7xTM/r3PHqincAAADMQB+54Y71cCYAAAAAAAAAAAAAAADMxlLjHQ9j3IWgTSjjbtIzfTLymU69tr8S7wAAAJhWV6dEbrijDOcCAAAAAAAAAAAAAADAbCw13nGnzosYdzHos4Tn2QRCno98nmOv7a/EOwAAAKbVR264Yz2cCQAAAAAAAAAAAAAAALOy1HjHxmmMuxi0iXy8P5Nn+dor+zvxDgAAgOl0dUrkhjvKcC4AAAAAAAAAAAAAAADMypLjHScx/oLQeZ1be3qOL7d4jhOv7O/EOwAAAKbTR264Yz2cCQAAAAAAAAAAAAAAALMzx3jH7ToPR06X8Pf/bb7cw991tcX5X3ldXyHeAQAAMI3Nt3iJ3HBH2cH/BgAAAAAAAAAAAAAAAAB7Mcd4x70Yf3nn4TXPOo7tLhx9UefWjv6en25x7i917npdXyHeAQAAMI0+csMd6+FMAAAAAAAAAAAAAAAAmKWlxzs2Hsd2F4ZOh2e8qqORe395PvSqvka8AwAAIF8X20UwdzFlOBcAAAAAAAAAAAAAAABmSbwj4nad72K7i0Mv6jyK7SIem2hHP/zZbc5aeU3fSLwDAAAgXx+54Y71cCYAAAAAAAAAAAAAAADMlnjHhYM6P8fVLhFtdrgJeTwYfs69Ye7X+aDOp3X+fcWffV7nltf0jcQ7AAAAcnV1SuSGO8pwLgAAAAAAAAAAAAAAAMyWeMcfjuLqAY99zD/rvOcVfSvxDgAAgFz9BN/GvbUDAAAAAAAAAAAAAAAwd+Idr5pLwOMshDsuI94BAACQp6tTkr+Ny3AuAAAAAAAAAAAAAAAAzJp4x+sO6nwX00Q7NheTPq1zy6t5KfEOAACAPP0E38i9tQMAAAAAAAAAAAAAAHATiHe82e06jyP3twr/WOfEKzmaeAcAAECOLvn7+Le4ZWf1AAAAAAAAAAAAAAAA3ATiHe92PHJH15lfhh3f9jpuRbwDAAAgRx+54Y71cCYAAAAAAAAAAAAAAADcCOId49yPi4tDL2J3F5F+qPNZnfe9hlci3gEAALB/XZ0SueGOMpwLAAAAAAAAAAAAAAAAN8JRnZNL5l7yM7034pl+m7sTPNuHdb6o821sd4HpeZ1/xUWwY/Pst7x+1yLeAQAAsH+PIzfcsZne2gEAAAAAAAAAAAAAAGA5NjGP+3ER9PhHndVL80mdv9f5a1z8xuDb1rVT4h0AAAD7dRDbRSt3NQdWDwAAAAAAAAAAAAAAALB/4h0AAAD79TTywx3n1g4AAAAAAAAAAAAAAACQQ7wDAABgfw7rlMiPdxxbPQAAAAAAAAAAAAAAAEAO8Q4AAID9eRz54Y4zawcAAAAAAAAAAAAAAADII94BAACwHwd1SuTHO+5bPQAAAAAAAAAAAAAAAEAe8Q4AAID9eBr54Y4zawcAAAAAAAAAAAAAAADIJd4BAACwe4d1SuTHO46tHgAAAAAAAAAAAAAAACCXeAcAAMDunUd+uOPc2gEAAAAAAAAAAAAAAADyiXcAAADs1lGdEvnxjmOrBwAAAAAAAAAAAAAAAMgn3gEAALBbzyI/3HFu7QAAAAAAAAAAAAAAAADTEO8AAADYnePID3eUOkdWDwAAAAAAAAAAAAAAADAN8Q4AAIDd6SM/3nFq7QAAAAAAAAAAAAAAAADTEe8AAADYjcM6JXLDHWU4FwAAAAAAAAAAAAAAAICJiHcAAADsxmnkhjs2c2btAAAAAAAAAAAAAAAAANMS7wAAALi+4zol8uMdB1YPAAAAAAAAAAAAAAAAMC3xDgAAgOvrIz/ccWbtAAAAAAAAAAAAAAAAANMT7wAAALierk6J/HjHgdUDAAAAAAAAAAAAAAAATE+8AwAA4HpOIz/ccW7tAAAAAAAAAAAAAAAAAPMg3gEAAHB1R3VK5Mc7DqweAAAAAAAAAAAAAAAAYB7EOwAAAK7uy8gPd5xZOwAAAAAAAAAAAAAAAMB8iHcAAABcTVfnReTHOw6sHgAAAAAAAAAAAAAAAGA+xDsAAACupo/8cMeptQMAAAAAAAAAAAAAAADMi3gHAADA9g7rlMiPdxxaPQAAAAAAAAAAAAAAAMC8iHcAAABs7zTywx1fWTsAAAAAAAAAAAAAAADA/Ih3AAAAbOdunRL58Y57Vg8AAAAAAAAAAAAAAAAwP+IdAAAA23kS+eGOp9YOAAAAAAAAAAAAAAAAME/iHQAAAON1dUrkxzsOrB4AAAAAAAAAAAAAAABgnsQ7AAAAxjuN/HDHE2sHAAAAAAAAAAAAAAAAmC/xDgAAgHHu1SmRG+7YnHdo9QAAAAAAAAAAAAAAAADzJd4BAAAwzqPIDXds5om1AwAAAAAAAAAAAAAAAMybeAcAAMDlujovIjfcUeocWj0AAAAAAAAAAAAAAADAvIl3AAAAXK6P3HDHejgTAAAAAAAAAAAAAAAAgJkT7wAAAHi3rk6J3HBHGc4FAAAAAAAAAAAAAAAAYObEOwAAAN6tj9xwx3o4EwAAgBas48c6c/rPj/5RAAAAAAAAAAAAYLfEOwAAAN6uq1MiN9xRhnMBAABogXgHAAAAAAAAAAAANE+8AwAA4O36yA13rIczAQAAaIV4BwAAAAAAAAAAADRPvAMAAODNujolcsMdZTgXAACAVoh3AAAAAAAAAAAAQPPEOwAAAN6sj9xwx3o4EwAAgJaIdwAAAAAAAAAAAEDzxDsAAABe19UpkRvuKMO5AAAAtES8AwAAAAAAAAAAAJon3gEAAPC6PnLDHevhTAAAAFoj3gEAAAAAAAAAAADNE+8AAAB4VVenRG64owznAgAA0BrxDgAAAAAAAAAAAGieeAcAAMCr+sgNd6yHMwEAAGiReAcAAAAAAAAAAAA0T7wDAADgD12dErnhjjKcCwAAQIvEOwAAAAAAAAAAAKB54h0AAAB/6CM33LEezgQAAKBV4h0AAAAAAAAAAADQPPEOAACAC12dErnhjjKcCwAAQKvEOwAAAAAAAAAAAKB54h0AAAAX+sgNd6yHMwEAAGiZeAcAAAAAAAAAAAA0T7wDAAAgoqtTIjfcUYZzAQAAaJl4BwAAAAAAAAAAADRPvAMAACCij9xwx3o4EwAAgNaJdwAAAAAAAAAAAEDzxDsAAICl6+qUyA13lOFcAAAAWifeAQAAAAAAAAAAAM0T7wAAAJauj9xwx3o4EwAAgCUQ7wAAAAAAAAAAAIDmiXcAAABL1tUpkRvuKMO5AAAALIF4BwAAAAAAAAAAADRPvAMAAFiyPnLDHevhTAAAAJZCvAMAAAAAAAAAAACaJ94BAAAsVVenRG64owznAgAAsBTiHQAAAAAAAAAAANA88Q4AAGCp+sgNd6yHMwEAAFgS8Q4AAAAAAAAAAABonngHAACwRF2dErnhjjKcCwAAwJKIdwAAAAAAAAAAAEDzxDsAAIAl6iM33LEezgQAAGBpxDsAAAAAAAAAAACgeeIdAADA0nR1SuSGO8pwLgAAAEsj3gEAAAAAAAAAAADNE+8AAACWpo/ccMd6OBMAAIAlEu8AAAAAAAAAAACA5ol3AAAAS9LVKZEb7ijDuQAAACyReAcAAAAAAAAAAAA0T7wDAABYkj5ywx3r4UwAAACWSrwDAAAAAAAAAAAAmifeAQAALEVXp0RuuKMM5wIAALBU4h0AAAAAAAAAAADQPPEOAABgKfrIDXeshzMBAABYMvEOAAAAAAAAAAAAaJ54BwAAsARdnRK54Y4ynAsAAMCSiXcAAAAAAAAAAABA88Q7AACAJXgcueGOzfTWDgAAgHgHAAAAAAAAAAAAtE+8AwAAaN1BnRL58Y4DqwcAAEC8AwAAAAAAAAAAANon3gEAALTuaeSHO86tHQAAgF+JdwAAAAAAAAAAAEDzxDsAAICWHdYpkR/vOLZ6AAAAfiXeAQAAAAAAAAAAAM0T7wAAAFr2OPLDHWfWDgAAwO/EOwAAAAAAAAAAAKB54h0AAECrDuqUyI933Ld6AAAAfifeAQAAAAAAAAAAAM0T7wAAAFr1NPLDHWfWDgAAwCvEOwAAAAAAAAAAAKB54h0AAECLDuuUyI93HFs9AAAArxDvAAAAAAAAAAAAgOaJdwAAAC06j/xwx7m1AwAA8BrxDgAAAAAAAAAAAGieeAcAANCaozol8uMdx1YPAADAa8Q7AAAAAAAAAAAAoHniHQAAQGueRX6449zaAQAAeCPxDgAAAAAAAAAAAGieeAcAANCS48gPd5Q6R1YPAADAG4l3AAAAAAAAAAAAQPPEOwAAgJb0kR/vOLV2AAAA3kq8AwAAAAAAAAAAAJon3gEAALTisE6J3HBHGc4FAACANxPvAAAAAAAAAAAAgOaJdwAAAK04jdxwx2bOrB0AAIB3Eu8AAAAAAAAAAACA5ol3AAAALTiuUyI/3nFg9QAAALyTeAcAAAAAAAAAAAA0T7wDAABoQR/54Y4zawcAAOBS4h0AAAAAAAAAAADQPPEOAADgpuvqlMiPdxxYPQAAAJcS7wAAAAAAAAAAAIDmiXcAAAA33WnkhzvOrR0AAIBRxDsAAAAAAAAAAACgeeIdAADATXZUp0R+vOPA6gEAABhFvAMAAAAAAAAAAACaJ94BAADcZF9GfrjjzNoBAAAYTbwDAAAAAAAAAAAAmifeAQAA3FRdnReRH+84sHoAAABGE+8AAAAAAAAAAACA5ol3AAAAN1Uf+eGOU2sHAABgK+IdAAAAAAAAAAAA0DzxDgAA4CY6rFMiP95xaPUAAABsRbwDAAAAAAAAAAAAmifeAQAA3ESnkR/u+MraAQAA2Jp4BwAAAAAAAAAAADRPvAMAALhp7tYpkR/vuGf1AAAAbE28AwAAAAAAAAAAAJon3gEAANw0TyI/3PHU2gEAALgS8Q4AAAAAAAAAAABonngHAABwk3R1SuTHOw6sHgAAgCsR7wAAAAAAAAAAAIDmiXcAAAA3yWnkhzueWDsAAABXJt4BAAAAAAAAAAAAzRPvAAAAbop7dUrkhjs25x1aPQAAAFcm3gEAAAAAAAAAAADNE+8AAABuikeRG+7YzBNrBwAA4FrEOwAAAAAAAAAAAKB54h0AAMBN0NV5EbnhjlLn0OoBAAC4FvEOAAAAAAAAAAAAaJ54BwAAcBP0kRvuWA9nAgAAwPWIdwAAAAAAAAAAAEDzxDsAAIC56+qUyA13lOFcAAAAuB7xDgAAAAAAAAAAAGieeAcAADB3feSGO9bDmQAAAHB94h0AAAAAAAAAAADQPPEOAABgzro6JXLDHWU4FwAAAK5PvAMAAAAAAAAAAACaJ94BAADMWR+54Y71cCYAAADshngHAAAAAAAAAAAANE+8AwAAmKuuTonccEcZzgUAAIDdEO8AAAAAAAAAAACA5ol3AAAAc9VHbrhjPZwJAAAAuyPeAQAAAAAAAAAAAM0T7wAAAOaoq1MiN9xRhnMBAABgd8Q7AAAAAAAAAAAAoHniHQAAwBz1kRvuWA9nAgAAwG6JdwAAAAAAAAAAAEDzxDsAAIC56eqUyA13lOFcAAAA2C3xDgAAAAAAAAAAAGieeAcAADA3feSGO9bDmQAAALB74h0AAAAAAAAAAADQPPEOAABgTro6JXLDHWU4FwAAAHZPvAMAAAAAAAAAAACaJ94BAADMSR+54Y71cCYAAADsh3gHAAAAAAAAAAAANE+8AwAAmIuuTonccEcZzgUAAID9EO8AAAAAAAAAAACA5ol3AAAAc9FHbrhjPZwJAAAA+yPeAQAAAAAAAAAAAM0T7wAAAOagq1MiN9xRhnMBAABgf8Q7AAAAAAAAAAAAoHniHQAAwBz0kRvuWA9nAgAAwH6JdwAAAAAAAAAAAEDzxDsAAICpdXVK5IY7ynAuAAAA7Jd4BwAAAAAAAAAAADRPvAMAAJhaH7nhjvVwJgAAAOyfeAcAAAAAAAAAAAA0T7wDAACYUlenRG64owznAgAAwP6JdwAAAAAAAAAAAEDzxDsAAIAp9ZEb7lgPZwIAAEAO8Q4AAAAAAAAAAABonngHAAAwla5OidxwRxnOBQAAgBziHQAAAAAAAAAAANA88Q4AAGAqfeSGO9bDmQAAAJBHvAMAAAAAAAAAAACaJ94BAABMoatTIjfcUYZzAQAAII94BwAAAAAAAAAAADRPvAMAAJhCH7nhjvVwJgAAAOQS7wAAAAAAAAAAAIDmiXcAAADZujolcsMdZTgXAAAAcol3AAAAAAAAAAAAQPPEOwAAgGx95IY71sOZAAAAkE+8AwAAAAAAAAAAAJon3gEAAGTq6pTIDXeU4VwAAADIJ94BAAAAAAAAAAAAzRPvAAAAMvWRG+5YD2cCAADANMQ7AAAAAAAAAAAAoHniHQAAQJauTonccEcZzgUAAIBpiHcAAAAAAAAAAABA88Q7AACALH3khjvWw5kAAAAwHfEOAAAAAAAAAAAAaJ54BwAAkKGrUyI33FGGcwEAAGA64h0AAAAAAAAAAADQPPEOAAAgw+PIDXdsprd2AAAAJifeAQAAAAAAAAAAAM0T7wAAAPbtoE6J/HjHgdUDAAAwOfEOAAAAAAAAAAAAaJ54BwAAsG9PIz/ccW7tAAAAzIJ4BwAAAAAAAAAAADRPvAMAANinwzol8uMdx1YPAADALIh3AAAAAAAAAAAAQPPEOwAAgH16HPnhjjNrBwAAYDbEOwAAAAAAAAAAAKB54h0AAMC+HNQpkR/vuG/1AAAAzIZ4BwAAAAAAAAAAADRPvAMAANiXp5Ef7jizdgAAAGZFvAMAAAAAAAAAAACaJ94BAADsw2GdEvnxjmOrBwAAYFbEOwAAAAAAAAAAAKB54h0AAMA+nEd+uOPc2gEAAJgd8Q4AAAAAAAAAAABonngHAACwa0d1SuTHO46tHgAAgNkR7wAAAAAAAAAAAIDmiXcAAAC79izywx3n1g4AAMAsiXcAAAAAAAAAAABA88Q7AACAXTqO/HBHqXNk9QAAAMySeAcAAAAAAAD/z87dYleSXG0YPcNoWCDBBRcICDT8huQhmDdsUEAggUCBCwQEG3xD8TAKBEiH3GG3y/Wn36OMk3vnevFZK5I/AAAAlCfeAQAAvKY18uMdF88OAADAbol3AAAAAAAAAAAAQHniHQAAwGs597XIDXe0cRcAAAD2SbwDAAAAAAAAAAAAyhPvAAAAXsslcsMdD7vz7AAAAOyaeAcAAAAAAAAAAACUJ94BAAC8huu+FvnxjpOnBwAAYNfEOwAAAAAAAAAAAKA88Q4AAOA1rJEf7rjz7AAAAOyeeAcAAAAAAAAAAACUJ94BAAC81NLXIj/ecfL0AAAA7J54BwAAAAAAAAAAAJQn3gEAALzUJfLDHfeeHQAAgCmIdwAAAAAAAAAAAEB54h0AAMBLXPW1yI93nDw9AAAAUxDvAAAAAAAAAAAAgPLEOwAAgJf4PfLDHXeeHQAAgGmIdwAAAAAAAAAAAEB54h0AAMBzLX2fIz/ecfL0AAAATEO8AwAAAAAAAAAAAMoT7wAAAJ5rjfxwx8WzAwAAMBXxDgAAAAAAAAAAAChPvAMAAHiOc1+L/HjH2dMDAAAwFfEOAAAAAAAAAAAAKE+8AwAAeI5L5Ic7Pnl2AAAApiPeAQAAAAAAAAAAAOWJdwAAAE/1S1+L/HjHB08PAADAdMQ7AAAAAAAAAAAAoDzxDgAA4KluIj/ccevZAQAAmNIWn/r+f0f75KcAAAAAAAAAAADA6xLvAAAAnmLpa5Ef7zh5egAAAAAAAAAAAAAAAAD2SLwDAAB4ikvkhztuPDsAAAAAAAAAAAAAAAAAeyXeAQAAPNaHvha54Y6He2dPDwAAAAAAAAAAAAAAAMBeiXcAAACP9VvkhjseduPZAQAAAAAAAAAAAAAAANgz8Q4AAOAxlr7PkRvuaH1nTw8AAAAAAAAAAAAAAADAnol3AAAAj7FGbrhjGzcBAAAAAAAAAAAAAAAAYNfEOwAAgJ9Z+lrkhjvauAsAAAAAAAAAAAAAAAAAuybeAQAA/MwaueGObdwEAAAAAAAAAAAAAAAAgN0T7wAAAH5k6WuRG+5o4y4AAAAAAAAAAAAAAAAA7J54BwAA8CNr5IY7tnETAAAAAAAAAAAAAAAAAKYg3gEAAHzP0tciN9zRxl0AAAAAAAAAAAAAAAAAmIJ4BwAA8D1r5IY7tnETAAAAAAAAAAAAAAAAAKYh3gEAAHzL0tciN9zRxl0AAAAAAAAAAAAAAAAAmIZ4BwAA8C1r5IY7tnETAAAAAAAAAAAAAAAAAKYi3gEAAPyvpa9FbrijjbsAAAAAAAAAAAAAAAAAMBXxDgAA4H+tkRvu2MZNAAAAAAAAAAAAAAAAAJiOeAcAAPDflr4WueGONu4CAAAAAAAAAAAAAAAAwHTEOwAAgP+2Rm64Yxs3AQAAAAAAAAAAAAAAAGBK4h0AAMC/LX0tcsMdbdwFAAAAAAAAAAAAAAAAgCmJdwAAAP+2Rm64Yxs3AQAAAAAAAAAAAAAAAGBa4h0AAMCDpa9FbrijjbsAAAAAAAAAAAAAAAAAMC3xDgAA4MEaueGObdwEAAAAAAAAAAAAAAAAgKmJdwAAAEtfi9xwRxt3AQAAAAAAAAAAAAAAAGBq4h0AAMAaueGObdwEAAAAAAAAAAAAAAAAgOmJdwAAwLEtfS1ywx1t3AUAAAAAAAAAAAAAAACA6Yl3AADAsa2RG+7Yxk0AAAAAAAAAAAAAAAAAKEG8AwAAjmvpa5Eb7mjjLgAAAAAAAAAAAAAAAACUIN4BAADHtUZuuGMbNwEAAAAAAAAAAAAAAACgDPEOAAA4pqWvRW64o427AAAAAAAAAAAAAAAAAFCGeAcAABzTGrnhjm3cBAAAAAAAAAAAAAAAAIBSxDsAAOB4lr4WueGONu4CAAAAAAAAAAAAAAAAQCniHQAAcDxr5IY7tnETAAAAAAAAAAAAAAAAAMoR7wAAgGNZ+lrkhjvauAsAAAAAAAAAAAAAAAAA5Yh3AADAsayRG+7Yxk0AAAAAAAAAAAAAAAAAKEm8AwAAjmPpa5Eb7mjjLgAAAAAAAAAAAAAAAACUJN4BAADHsUZuuGMbNwEAAAAAAAAAAAAAAACgLPEOAAA4hqWvRW64o427AAAAAAAAAAAAAAAAAFCWeAcAABzDx8gNdzxs9ewAAAAAAAAAAAAAAAAAVCfeAQAA9Z36WuTHO06eHgAAAAAAAAAAAAAAAIDqxDsAAKC+28gPd9x7dgAAAAAAAAAAAAAAAACOQLwDAABqO/e1yI93XHt6AAAAAAAAAAAAAAAAAI5AvAMAAGr7GPnhjjvPDgAAAAAAAAAAAAAAAMBRiHcAAEBdp74W+fGOXz09AAAAAAAAAAAAAAAAAEch3gEAAHXdRn64486zAwAAAAAAAAAAAAAAAHAk4h0AAFDTua9Ffrzj2tMDAAAAAAAAAAAAAAAAcCTiHQAAUNN95Ic77j07AAAAAAAAAAAAAAAAAEcj3gEAAPVc9bXIj3dce3oAAAAAAAAAAAAAAAAAjka8AwAA6vkj8sMd954dAAAAAAAAAAAAAAAAgCMS7wAAgFquIz/c0fquPD0AAAAAAAAAAAAAAAAARyTeAQAAtayRH++4eHYAAAAAAAAAAAAAAAAAjkq8AwAA6jj3tcgNd7RxFwAAAAAAAAAAAAAAAAAOSbwDAADquERuuONhd54dAAAAAAAAAAAAAAAAgCMT7wAAgBqu+1rkxztOnh4AAAAAAAAAAAAAAACAIxPvAACAGtbID3fceXYAAAAAAAAAAAAAAAAAjk68AwAA5rf0tciPd5w8PQAAAAAAAAAAAAAAAABHJ94BAADzu0R+uOPeswMAAAAAAAAAAAAAAACAeAcAAMzuqq9Ffrzj5OkBAAAAAAAAAAAAAAAAQLwDAABm93vkhzvuPDsAAAAAAAAAAAAAAAAA/Em8AwAA5rX0fY78eMfJ0wMAAAAAAAAAAAAAAADAn8Q7AABgXmvkhzsunh0AAAAAAAAAAAAAAAAA/iLeAQAAczr3tciPd5w9PQAAAAAAAAAAAAAAAAD8RbwDAADmdIn8cMcnzw4AAAAAAAAAAAAAAAAAXxLvAACA+fzS1yI/3vHB0wMAAAAAAAAAAAAAAADAl8Q7AABgPjeRH+649ewAAAAAAAAAAAAAAAAA8DXxDgAAmMvS1yI/3nHy9AAAAAAAAAAAAAAAAADwNfEOAACYyyXywx03nh0AAAAAAAAAAAAAAAAAvk28AwAA5vGhr0VuuOPh3tnTAwAAAAAAAAAAAAAAAMC3iXcAAMA8fovccMfDbjw7AAAAAAAAAAAAAAAAAHyfeAcAAMxh6fscueGO1nf29AAAAAAAAAAAAAAAAADwfeIdAAAwhzVywx3buAkAAAAAAAAAAAAAAAAA/IB4BwAA7N/S1yI33NHGXQAAAAAAAAAAAAAAAADgB8Q7AABg/9bIDXds4yYAAAAAAAAAAAAAAAAA8BPiHQAAsG9LX4vccEcbdwEAAAAAAAAAAAAAAACAnxDvAACAfVsjN9yxjZsAAAAAAAAAAAAAAAAAwCOIdwAAwH4tfS1ywx1t3AUAAAAAAAAAAAAAAAAAHkG8AwAA9muN3HDHNm4CAAAAAAAAAAAAAAAAAI8k3gEAAPu09LXIDXe0cRcAAAAAAAAAAAAAAAAAeCTxDgAA2Kc1csMd27gJAAAAAAAAAAAAAAAAADyBeAcAAOzP0tciN9zRxl0AAAAAAAAAAAAAAAAA4AnEOwAAYH/WyA13bOMmAAAAAAAAAAAAAAAAAPBE4h0AALAvS1+L3HBHG3cBAAAAAAAAAAAAAAAAgCcS7wAAgH1ZIzfcsY2bAAAAAAAAAAAAAAAAAMAziHcAAMB+LH0tcsMdbdwFAAAAAAAAAAAAAAAAAJ5BvAMAAPZjjdxwxzZuAgAAAG9li1/7/m9H+9VPAQAAAAAAAAAAgNcl3gEAAPuw9LXIDXe0cRcAAAB4K1v8o29P3z/8FAAAAAAAAAAAAHhd4h0AALAPa+SGO7ZxEwAAAHhL4h0AAAAAAAAAAABQnngHAAC8v6WvRW64o427AAAAwFsS7wAAAAAAAAAAAIDyxDsAAOD9rZEb7tjGTQAAAOCtiXcAAAAAAAAAAABAeeIdAADwvpa+FrnhjjbuAgAAAG9NvAMAAAAAAAAAAADKE+8AAID3tUZuuGMbNwEAAIAM4h0AAAAAAAAAAABQnngHAAC8n6WvRW64o427AAAAQAbxDgAAAAAAAAAAAChPvAMAAN7PGrnhjm3cBAAAALKIdwAAAAAAAAAAAEB54h0AAPA+lr4WueGONu4CAAAAWcQ7AAAAAAAAAAAAoDzxDgAAeB9r5IY7tnETAAAAyCTeAQAAAAAAAAAAAOWJdwAAQL6lr0VuuKONuwAAAEAm8Q4AAAAAAAAAAAAoT7wDAADyrZEb7tjGTQAAACCbeAcAAAAAAAAAAACUJ94BAAC5lr4WueGONu4CAAAA2cQ7AAAAAAAAAAAAoDzxDgAAyLVGbrhjGzcBAACA9yDeAQAAAAAAAAAAAOWJdwAAQJ6lr0VuuKONuwAAAMB7EO8AAAAAAAAAAACA8sQ7AAAgzxq54Y5t3AQAAADei3gHAAAAAAAAAAAAlCfeAQAAOZa+FrnhjjbuAgAAAO9FvAMAAAAAAAAAAADKE+8AAIAcHyM33PGw1bMDAADAOxPvAAAAAAAAAAAAgPLEOwAA4O2d+lrkxztOnh4AAADemXgHAAAAAAAAAAAAlCfeAQAAb+828sMd954dAAAAdkC8AwAAAAAAAAAAAMoT7wAAgLd17muRH++49vQAAACwA+IdAAAAAAAAAAAAUJ54BwAAvK2PkR/uuPPsAAAAsBPiHQAAAAAAAAAAAFCeeAcAALydU1+L/HjHr54eAAAAdkK8AwAAAAAAAAAAAMoT7wAAgLdzG/nhjjvPDgAAADsi3gEAAAAAAAAAAADliXcAAMDbOPe1yI93XHt6AAAA2BHxDgAAAAAAAAAAAChPvAMAAN7GfeSHO+49OwAAAOyMeAcAAAAAAAAAAACUJ94BAACv76qvRX6849rTAwAAwM6IdwAAAAAAAAAAAEB54h0AAPD6/oj8cMe9ZwcAAIAdEu8AAAAAAAAAAACA8sQ7AADgdV1Hfrij9V15egAAANgh8Q4AAAAAAAAAAAAoT7wDAABe1xr58Y6LZwcAAICdEu8AAAAAAAAAAACA8sQ7AADg9Zz7WuSGO9q4CwAAAOyReAcAAAAAAAAAAACUJ94BAACv5xK54Y6H3Xl2AAAA2DHxDgAAAAAAAAAAAChPvAMAAF7HdV+L/HjHydMDAADAjol3AAAAAAAAAAAAQHniHQAA8DrWyA933Hl2AAAA2DnxDgAAAAAAAAAAAChPvAMAAF5u6WuRH+84eXoAAADYOfEOAAAAAAAAAAAAKE+8AwAAXu4S+eGOe88OAAAAExDvAAAAAAAAAAAAgPLEOwAA4GWu+lrkxztOnh4AAAAmIN4BAAAAAAAAAAAA5Yl3AADAy/we+eGOO88OAAAAkxDvAAAAAAAAAAAAgPLEOwAA4PmWvs+RH+84eXoAAACYhHgHAAAAAAAAAAAAlCfeAQAAz7dGfrjj4tkBAABgIuIdAAAAAAAAAAAAUJ54BwAAPM+5r0V+vOPs6QEAAGAi4h0AAAAAAAAAAABQnngHAAA8zyXywx2fPDsAAABMRrwDAAAAAAAAAAAAyhPvAACAp/ulr0V+vOODpwcAAIDJiHcAAAAAAAAAAABAeeIdAADwdDeRH+649ewAAAAwIfEOAAAAAAAAAAAAKE+8AwAAnmbpa5Ef7zh5egAAAJiQeAcAAAAAAAAAAACUJ94BAABPc4n8cMeNZwcAAIBJiXcAAAAAAAAAAABAeeIdAADweB/6WuSGOx7unT09AAAATEq8AwAAAAAAAAAAAMoT7wAAgMf7LXLDHQ+78ewAAAAwMfEOAAAAAAAAAAAAKE+8AwAAHmfp+xy54Y7Wd/b0AAAAMDHxDgAAAAAAAAAAAChPvAMAAB5njdxwxzZuAgAAADMT7wAAAAAAAAAAAIDyxDsAAODnlr4WueGONu4CAAAAMxPvAAAAAAAAAAAAgPLEOwAA4OfWyA13bOMmAAAAMDvxDgAAAAAAAAAAAChPvAMAAH5s6WuRG+5o4y4AAAAwO/EOAAAAAAAAAAAAKE+8AwAAfmyN3HDHNm4CAAAAFYh3AAAAAAAAAAAAQHniHQAA8H1LX4vccEcbdwEAAIAKxDsAAAAAAAAAAACgPPEOAAD4vjVywx3buAkAAABUId4BAAAAAAAAAAAA5Yl3AADAty19LXLDHW3cBQAAAKoQ7wAAAAAAAAAAAIDyxDsAAODb1sgNd2zjJgAAAFCJeAcAAAAAAAAAAACUJ94BAABfW/pa5IY72rgLAAAAVCLeAQAAAAAAAAAAAOWJdwAAwNfWyA13bOMmAAAAUI14BwAAAAAAAAAAAJQn3gEAAF9a+lrkhjvauAsAAABUI94BAAAAAAAAAAAA5Yl3AADAl9bIDXds4yYAAABQkXgHAAAAAAAAAAAAlCfeAQAAf1n6WuSGO9q4CwAAAFQk3gEAAAAAAAAAAADliXcAAMBf1sgNd2zjJgAAAFCVeAcAAAAAAAAAAACUJ94BAAB/Wvpa5IY72rgLAAAAVCXeAQAAAAAAAAAAAOWJdwAAwJ/WyA13bOMmAAAAUJl4BwAAAAAAAAAAAJQn3gEAABFLX4vccEcbdwEAAIDKxDsAAAAAAAAAAACgPPEOAACIWCM33LGNmwAAAEB14h0AAAAAAAAAAABQnngHAABHt/S1yA13tHEXAAAAqE68AwAAAAAAAAAAAMoT7wAA4OjWyA13bOMmAAAAcATiHQAAAAAAAAAAAFCeeAcAAEe29LXIDXe0cRcAAAA4AvEOAAAAAAAAAAAAKE+8AwCAI1sjN9yxjZsAAADAUYh3AAAAAAAAAAAAQHniHQAAHNXS1yI33NHGXQAAAOAoxDsAAAAAAAAAAACgPPEOAACOao3ccMc2bgIAAABHIt4BAAAAAAAAAAAA5Yl3AABwREtfi9xwRxt3AQAAgCMR7wAAAAAAAAAAAIDyxDsAADiiNXLDHdu4CQAAAByNeAcAAAAAAAAAAACUJ94BAMDRLH0tcsMdbdwFAAAAjka8AwAAAAAAAAAAAMoT7wAA4GjWyA13bOMmAAAAcETiHQAAAAAAAAAAAFCeeAcAAEey9LXIDXe0cRcAAAA4IvEOAAAAAAAAAAAAKE+8AwCAI1kjN9yxjZsAAADAUYl3AAAAAAAAAAAAQHniHQAAHMXS1yI33NHGXQAAAOCoxDsAAAAAAAAAAACgPPEOAACO4mPkhjsetnp2AAAAODjxDgAAAAAAAAAAAChPvAMAgCM49bXIj3ecPD0AAAAcnHgHAAAAAAAAAAAAlCfeAQDAEdxGfrjj3rMDAAAA4h0AAAAAAAAAAABQn3gHAADVnfta5Mc7rj09AAAAIN4BAAAAAAAAAAAA9Yl3AABQ3cfID3fceXYAAADgX8Q7AAAAAAAAAAAAoDzxDgAAKjv1tciPd/zq6QEAAIB/Ee8AAAAAAAAAAACA8sQ7AACo7Dbywx13nh0AAAD4D/EOAAAAAAAAAAAAKE+8AwCAqs59LfLjHdeeHgAAAPgP8Q4AAAAAAAAAAAAoT7wDAICq7iM/3HHv2QEAAIAviHcAAAAAAAAAAABAeeIdAABUdNXXIj/ece3pAQAAgC+IdwAAAAAAAAAAAEB54h0AAFT0R+SHO+49OwAAAPAV8Q4AAAAAAAAAAAAoT7wDAIBqriM/3NH6rjw9AAAA8BXxDgAAAAAAAAAAAChPvAMAgGrWyI93XDw7AAAA8E3iHQAAAAAAAAAAAFCeeAcAAJWc+1rkhjvauAsAAADwNfEOAAAAAAAAAAAAKE+8AwCASi6RG+542J1nBwAAAL5LvAMAAAAAAAAAAADKE+8AAKCK674W+fGOk6cHAAAAvku8AwAAAAAAAAAAAMoT7wAAoIo18sMdd54dAAAA+CHxDgAAAAAAAAAAAChPvAMAgAqWvhb58Y6TpwcAAAB+SLwDAAAAAAAAAAAAyhPvAACggkvkhzvuPTsAAADwU+IdAAAAAAAAAAAAUJ54BwAAs7vqa5Ef7zh5egAAAOCnxDsAAAAAAAAAAACgPPEOAABm93vkhzvuPDsAAADwKOIdAAAAAAAAAAAAUJ54BwAAM1v6Pkd+vOPk6QEAAIBHEe8AAAAAAAAAAACA8sQ7AACY2Rr54Y6LZwcAAAAeTbwDAAAAAAAAAAAAyhPvAABgVue+FvnxjrOnBwAAAB5NvAMAAAAAAAAAAADKE+8AAGBWl8gPd3zy7AAAAMCTiHcAAAAAAAAAAABAeeIdAADM6Je+Fvnxjg+eHgAAAHgS8Q4AAAAAAAAAAAAoT7wDAIAZ3UR+uOPWswMAAABPJt4BAAAAAAAAAAAA5Yl3AAAwm6WvRX684+TpAQAAgCcT7wAAAAAAAAAAAIDyxDsAAJjNJfLDHTeeHQAAAHgW8Q4AAAAAAAAAAAAoT7wDAICZfOhrkRvueLh39vQAAADAs4h3AAAAAAAAAAAAQHniHQAAzOS3yA13POzGswMAAADPJt4BAAAAAAAAAAAA5Yl3AAAwi6Xvc+SGO1rf2dMDAAAAzybeAQAAAAAAAAAAAOWJdwAAMIs1csMd27gJAAAA8HziHQAAAAAAAAAAAFCeeAcAADNY+lrkhjvauAsAAADwfOIdAAAAAAAAAAAAUJ54BwAAM1gjN9yxjZsAAAAALyPeAQAAAAAAAAAAAOWJdwAAsHdLX4vccEcbdwEAAABeRrwDAAAAAAAAAAAAyhPvAABg79bIDXds4yYAAADAy4l3AAAAAAAAAAAAQHniHQAA7NnS1yI33NHGXQAAAICXE+8AAAAAAAAAAACA8sQ7AADYszVywx3buAkAAADwOsQ7AAAAAAAAAAAAoDzxDgAA9mrpa5Eb7mjjLgAAAMDr2OJvfX/f0f7mpwAAAAAAAAAAAMDrEu8AAGCv1sgNd2zjJgAAAAAAAAAAAAAAAADAo4l3AACwR0tfi9xwRxt3AQAAAAAAAAAAAAAAAAAeTbwDAIA9WiM33LGNmwAAAAAAAAAAAPyTvfv1sew8Dzj+1FlgRc4vKUpdK5Ws9qS5kQaM0wEGAQsCCgIDAgr8BwQYFBRE6kiBBgUBCxYcsMBgwIABAQYBhgEFAQUGAQWFBQYLXnD6XvdN5bVnd+fOnPucc977+aweeh/pWXLI+x0AAAAA4CDiHQAArM1Qp0RuuKO0vQAAAAAAAAAAAAAAAAAABxHvAABgbcbIDXdMbScAAAAAAAAAAAAAAAAAwMHEOwAAWJOhTonccEdpewEAAAAAAAAAAAAAAAAADibeAQDAmoyRG+6Y2k4AAAAAAAAAAAAAAAAAgHsR7wAAYC2GOiVywx2l7QUAAAAAAAAAAAAAAAAAuBfxDgAA1mKM3HDH1HYCAAAAAAAAAAAAAAAAANybeAcAAGsw1CmRG+4obS8AAAAAAAAAAAAAAAAAwL2JdwAAsAZj5IY7prYTAAAAAAAAAAAAAAAAAOBBxDsAAFjaUKdEbrijtL0AAAAAAAAAAAAAAAAAAA8i3gEAwNLGyA13TG0nAAAAAAAAAAAAAAAAAMCDiXcAALCkoU6J3HBHaXsBAAAAAAAAAAAAAAAAAB5MvAMAgCWNkRvumNpOAAAAAAAAAAAAAAAAAIBZiHcAALCUoU6J3HBHaXsBAAAAAAAAAAAAAAAAAGYh3gEAwFLGyA13TG0nAAAAAAAAAAAAAAAAAMBsxDsAAFjCUKdEbrijtL0AAAAAAAAAAAAAAAAAALMR7wAAYAlj5IY7prYTAAAAAAAAAAAAAAAAAGBW4h0AAGQb6pTIDXeUthcAAAAAAAAAAAAAAAAAYFbiHQAAZBsjN9wxtZ0AAAAAAAAAAAAAAAAAALMT7wAAINNQp0RuuKO0vQAAAAAAAAAAAAAAAAAAsxPvAAAg0xi54Y6p7QQAAAAAAAAAAAAAAAAAOArxDgAAsgx1SuSGO0rbCwAAAAAAAAAAAAAAAABwFOIdAABkeRK54Y79jM4OAAAAAAAAAAAAAAAAAByTeAcAABl2dUrkxzt2Tg8AAAAAAAAAAAAAAAAAHJN4BwAAGZ5FfrjjxtkBAAAAAAAAAAAAAAAAgGMT7wAA4NjO6pTIj3dcOD0AAAAAAAAAAAAAAAAAcGziHQAAHNuTyA93XDs7AAAAAAAAAAAAAAAAAJBBvAMAgGPa1SmRH+943+kBAAAAAAAAAAAAAAAAgAziHQAAHNOzyA93XDs7AAAAAAAAAAAAAAAAAJBFvAMAgGM5q1MiP95x4fQAAAAAAAAAAAAAAAAAQBbxDgAAjuUm8sMdN84OAAAAAAAAAAAAAAAAAGQS7wAA4BjO65TIj3dcOD0AAAAAAAAAAAAAAAAAkEm8AwCAY/gk8sMdN84OAAAAAAAAAAAAAAAAAGQT7wAAYG4XkR/uKHXOnR4AAAAAAAAAAAAAAAAAyCbeAQDA3MbIj3dcOTsAAAAAAAAAAAAAAAAAsATxDgAA5nRWp0RuuKO0vQAAAAAAAAAAAAAAAAAA6cQ7AACY01Xkhjv2c+3sAAAAAAAAAAAAAAAAAMBSxDsAAJjLRZ0S+fGOndMDAAAAAAAAAAAAAAAAAEsR7wAAYC5j5Ic7rp0dAAAAAAAAAAAAAAAAAFiSeAcAAHMY6pTIj3fsnB4AAAAAAAAAAAAAAAAAWJJ4BwAAc7iK/HDHjbMDAAAAAAAAAAAAAAAAAEsT7wAA4KHO65TIj3fsnB4AAAAAAAAAAAAAAAAAWJp4BwAAD/W7yA93XDs7AAAAAAAAAAAAAAAAALAG4h0AADzEUOd55Mc7dk4PAAAAAAAAAAAAAAAAAKyBeAcAAA8xRn6448rZAQAAAAAAAAAAAAAAAIC1EO8AAOC+zuqUyI93nDk9AAAAAAAAAAAAAAAAALAW4h0AANzXVeSHOz52dgAAAAAAAAAAAAAAAABgTcQ7AAC4j7frlMiPd7zr9AAAAAAAAAAAAAAAAADAmoh3AABwH08jP9zxzNkBAAAAAAAAAAAAAAAAgLUR7wAA4FBDnRL58Y6d0wMAAAAAAAAAAAAAAAAAayPeAQDAoa4iP9zx1NkBAAAAAAAAAAAAAAAAgDUS7wAA4BDv1imRG+7Y7ztzegAAAAAAAAAAAAAAAABgjcQ7AAA4xEeRG+7Yz1NnBwAAAAAAAAAAAAAAAADWSrwDAIC7Guo8j9xwR6lz5vQAAAAAAAAAAAAAAAAAwFqJdwAAcFdj5IY7prYTAAAAAAAAAAAAAAAAAGC1xDsAALiLoU6J3HBHaXsBAAAAAAAAAAAAAAAAAFZLvAMAgLsYIzfcMbWdAAAAAAAAAAAAAAAAAACrJt4BAMDrDHVK5IY7StsLAAAAAAAAAAAAAAAAALBq4h0AALzOGLnhjqntBAAAAAAAAAAAAAAAAABYPfEOAABeZahTIjfcUdpeAAAAAAAAAAAAAAAAAIDVE+8AAOBVxsgNd0xtJwAAAAAAAAAAAAAAAADAJoh3AADwMkOdErnhjtL2AgAAAAAAAAAAAAAAAABsgngHAAAvM0ZuuGNqOwEAAAAAAAAAAAAAAAAANkO8AwCA2wx1SuSGO0rbCwAAAAAAAAAAAAAAAACwGeIdAADcZozccMfUdgIAAAAAAAAAAAAAAAAAbIp4BwAAXzXUKZEb7ihtLwAAAAAAAAAAAAAAAADApoh3AADwVWPkhjumthMAAAAAAAAAAAAAAAAAYHPEOwAA+LKhTonccEdpewEAAAAAAAAAAAAAAAAANke8AwCALxsjN9wxtZ0AAAAAAAAAAAAAAAAAAJsk3gEAwF8MdUrkhjtK2wsAAAAAAAAAAAAAAAAAsEniHQAA/MUYueGOqe0EAAAAAAAAAAAAAAAAANgs8Q4AAPaGOiVywx2l7QUAAAAAAAAAAAAAAAAA2CzxDgAA9sbIDXdMbScAAAAAAAAAAAAAAAAAwKaJdwAAMNQpkRvuKG0vAAAAAAAAAAAAAAAAAMCmiXcAADBGbrhjajsBAAAAAAAAAAAAAAAAADZPvAMA4LQNdUrkhjtK2wsAAAAAAAAAAAAAAAAAsHniHQAAp22M3HDH1HYCAAAAAAAAAAAAAAAAAHRBvAMA4HQNdUrkhjtK2wsAAAAAAAAAAAAAAAAA0AXxDgCA0zVGbrhjajsBAAAAAAAAAAAAAAAAALoh3gEAcJqGOiVywx2l7QUAAAAAAAAAAAAAAAAA6IZ4BwDAaRojN9wxtZ0AAAAAAAAAAAAAAAAAAF0R7wAAOD1DnRK54Y7S9gIAAACclik+rHO5ovnQfwoAAAAAAAAAAADMS7wDAOD0jJEb7pjaTgAAAIDTM8Wf66zp35/9pwAAAAAAAAAAAMC8xDsAAE7LUKdEbrijtL0AAAAAp0e8AwAAAAAAAAAAALon3gEAcFrGyA13TG0nAAAAwGkS7wAAAAAAAAAAAIDuiXcAAJyOoU6J3HBHaXsBAAAATpN4BwAAAAAAAAAAAHRPvAMA4HQ8idxwx35GZwcAAABOmngHAAAAAAAAAAAAdE+8AwDgNOzqlMiPd+ycHgAAADhp4h0AAAAAAAAAAADQPfEOAIDT8Czywx03zg4AAACcPPEOAAAAAAAAAAAA6J54BwBA/87qlMiPd1w4PQAAAHDyxDsAAAAAAAAAAACge+IdAAD9exL54Y5rZwcAAAAI8Q4AAAAAAAAAAAA4AeIdAAB929UpkR/veN/pAQAAAEK8AwAAAAAAAAAAAE6AeAcAQN+eRX6449rZAQAAABrxDgAAAAAAAAAAAOieeAcAQL/O6pTIj3dcOD0AAAB7Xat6AACAAElEQVRAI94BAAAAAAAAAAAA3RPvAADo103khztunB0AAADgS8Q7AAAAAAAAAAAAoHviHQAAfTqvUyI/3nHh9AAAAABfIt4BAAAAAAAAAAAA3RPvAADo0yeRH+64cXYAAACArxDvAAAAAAAAAAAAgO6JdwAA9Oci8sMdpc650wMAAAB8hXgHAAAAAAAAAAAAdE+8AwCgP2PkxzuunB0AAADgFuIdAAAAAAAAAAAA0D3xDgCAvpzVKZEb7ihtLwAAAABfJd4BAAAAAAAAAAAA3RPvAADoy1Xkhjv2c+3sAAAAAC8h3gEAAAAAAAAAAADdE+8AAOjHRZ0S+fGOndMDAAAAvIR4BwAAAAAAAAAAAHRPvAMAoB9j5Ic7rp0dAAAA4BXEOwAAAAAAAAAAAKB74h0AAH0Y6pTIj3fsnB4AAADgFcQ7AAAAAAAAAAAAoHviHQAAfbiK/HDHjbMDAAAAvIZ4BwAAAAAAAAAAAHRPvAMAYPvO65TIj3fsnB4AAADgNcQ7AAAAAAAAAAAAoHviHQAA2/e7yA93XDs7AAAAwB2IdwAAAAAAAAAAAED3xDsAALZtqPM88uMdO6cHAAAAuAPxDgAAAAAAAAAAAOieeAcAwLaNkR/uuHJ2AAAAgDsS7wAAAAAAAAAAAIDuiXcAAGzXWZ0S+fGOM6cHAAAAuCPxDgAAAAAAAAAAAOieeAcAwHZdRX6442NnBwAAADiAeAcAAAAAAAAAAAB0T7wDAGCb3q5TIj/e8a7TAwAAABxAvAMAAAAAAAAAAAC6J94BALBNTyM/3PHM2QEAAAAOJN4BAAAAAAAAAAAA3RPvAADYnqFOifx4x87pAQAAAA4k3gEAAAAAAAAAAADdE+8AANieq8gPdzx1dgAAAIB7EO8AAAAAAAAAAACA7ol3AABsy7t1SuSGO/b7zpweAAAA4B7EOwAAAAAAAAAAAKB74h0AANvyUeSGO/bz1NkBAAAA7km8AwAAAAAAAAAAALon3gEAsB1DneeRG+4odc6cHgAAAOCexDsAAAAAAAAAAACge+IdAADbMUZuuGNqOwEAAAC4L/EOAAAAAAAAAAAA6J54BwDANgx1SuSGO0rbCwAAAMB9iXcAAAAAAAAAAABA98Q7AAC2YYzccMfUdgIAAADwEOIdAAAAAAAAAAAA0D3xDgCA9RvqlMgNd5S2FwAAAICHEO8AAAAAAAAAAACA7ol3AACs3xi54Y6p7QQAAADgocQ7AAAAAAAAAAAAoHviHQAA6zbUKZEb7ihtLwAAAAAPJd4BAAAAAAAAAAAA3RPvAABYtzFywx1T2wkAAADAHMQ7AAAAAAAAAAAAoHviHQAA6zXUKZEb7ihtLwAAAABzEO8AAAAAAAAAAACA7ol3AACs1xi54Y6p7QQAAABgLuIdAAAAAAAAAAAA0D3xDgCAdRrqlMgNd5S2FwAAAIC5iHcAAAAAAAAAAABA98Q7AADWaYzccMfUdgIAAAAwJ/EOAAAAAAAAAAAA6J54BwDA+gx1SuSGO0rbCwAAAMCcxDsAAAAAAAAAAACge+IdAADrM0ZuuGNqOwEAAACYm3gHAAAAAAAAAAAAdE+8AwBgXYY6JXLDHaXtBQAAAGBu4h0AAAAAAAAAAADQPfEOAIB1GSM33DG1nQAAAAAcg3gHAAAAAAAAAAAAdE+8AwBgPYY6JXLDHaXtBQAAAOAYxDsAAAAAAAAAAACge+IdAADrMUZuuGNqOwEAAAA4FvEOAAAAAAAAAAAA6J54BwDAOgx1SuSGO0rbCwAAAMCxiHcAAAAAAAAAAABA98Q7AADWYYzccMfUdgIAAABwTOIdAAAAAAAAAAAA0D3xDgCA5Q11SuSGO0rbCwAAAMAxiXcAAAAAAAAAAABA98Q7AACWN0ZuuGNqOwEAAAA4NvEOAAAAAAAAAAAA6J54BwDAsoY6JXLDHaXtBQAAAODYxDsAAAAAAAAAAACge+IdAADLGiM33DG1nQAAAABkEO8AAAAAAAAAAACA7ol3AAAsZ6hTIjfcUdpeAAAAADKIdwAAAAAAAAAAAED3xDsAAJYzRm64Y2o7AQAAAMgi3gEAAAAAAAAAAADdE+8AAFjGUKdEbrijtL0AAAAAZBHvAAAAAAAAAAAAgO6JdwAALGOM3HDH1HYCAAAAkEm8AwAAAAAAAAAAALon3gEAkG+oUyI33FHaXgAAAAAyiXcAAAAAAAAAAABA98Q7AADyjZEb7pjaTgAAAACyiXcAAAAAAAAAAABA98Q7AAByDXVK5IY7StsLAAAAQDbxDgAAAAAAAAAAAOieeAcAQK4xcsMdU9sJAAAAwBLEOwAAAAAAAAAAAKB74h0AAHmGOiVywx2l7QUAAABgCeIdAAAAAAAAAAAArMBFnQ9umXOnmYV4BwBAnieRG+7Yz+jsAAAAAAsS7wAAAAAAAAAAAGBhj+p8Frc/Qrx0nlmIdwAA5NjVKZEf79g5PQAAAMCCxDsAAAAAAAAAAABY2G/i5Y8QL51nFuIdAAA5nkV+uOPG2QEAAAAWJt4BAAAAAAAAAADAgs7rfB7iHccm3gEAcHxndUrkxzsunB4AAABgYeIdAAAAAAAAAAAALOTNOv8Rr36IeOlMsxDvAAA4vieRH+64dnYAAACAFRDvAAAAAAAAAAAAYCHP4vWPES+daRbiHQAAx7WrUyI/3vG+0wMAAACsgHgHAAAAAAAAAAAAC/gw7vYY8dKpZiHeAQBwXHcJ0809184OAAAAsBLiHQAAAAAAAAAAACT7IO7+V8kvnWsW4h0AAMdzdsD37Zxz4fQAAAAAKyHeAQAAAAAAAAAAQKJ/jsMeNl462SzEOwAAjucm8sMdN84OAAAAsCLiHQAAAAAAAAAAACT5pzrP47BHiZfONgvxDgCA4ziPw+J0c82F0wMAAACsiHgHAAAAAAAAAAAACX5V5/M4/FHipdPNQrwDAOA4Pon8cMeNswMAAACsjHgHAAAAAAAAAAAAR/avcf+/Rn7pfLMQ7wAAmN9F5Ic79t/V504PAAAAsDLiHQAAAAAAAAAAABzJW3WexcMeJ1464yzEOwAA5jdGfrzjytkBAAAAVki8AwAAAAAAAAAAgCP4WZ0/xcMfJ1465SzEOwAA5nVWp0RuuKO0vQAAAACsjXgHAAAAAAAAAAAAM/tNnc9jngeKl845C/EOAIB5XUVuuGM/184OAAAAsFLiHQAAAAAAAAAAAMzkos6nMe8DxUtnnYV4BwDAvN+9JfLjHTunBwAAAFgp8Q4AAAAAAAAAAAAe6M06H8VxHjBeOu8sxDsAAOYzRn6449rZAQAAAFZMvAMAAAAAAAAAAIAH+KDOf8Xhjw8/q/OfId6RRbwDAGAeQxwnWve62Tk9AAAAwIqJdwAAAAAAAAAAAHCgR3V+VeePcb+Hh3+q8/06fwjxjiziHQAA87iK/HDHjbMDAAAArJx4BwAAAAAAAAAAAAfY/6Xxz+L+Dw+f1Xmr/ZZ4Rx7xDgCAhzuvUyI/3rFzegAAAICVE+8AAAAAAAAAAADgAI/jfg8O948cf13n0Zd+S7wjj3gHAMDD/S7ywx3Xzg4AAACwAeIdAAAAAAAAAAAAHOBxHP7g8JO4/a+Fi3fkEe8AAHiYoc7zyI937JweAAAAYAPEOwAAAAAAAAAAADjA47j7Q8P948bLOo9e8lviHXnEOwAAHmaM/HDHlbMDAAAAbIR4BwAAAAAAAAAAAAd4HHd7aPhxnR++5rfEO/KIdwAA3N9ZnRL58Y4zpwcAAADYCPEOAAAAAAAAAAAADvA4Xv3A8NM6F3f8LfGOPOIdAAD3dxX54Y6PnR0AAABgQ8Q7AAAAAAAAAAAAOMDjuP1x4X/X+aDOowN+S7wjj3gHAMD9vF2nRH68412nBwAAANgQ8Q4AAAAAAAAAAAAO8DhefFT4WZ0P67x5j98S78gj3gEAcD9PIz/c8czZAQAAADZGvAMAAAAAAAAAAIADPI7/e1D4+zq/qPPoAb8l3pFHvAMA4HBDnRL58Y6d0wMAAABsjHgHAAAAAAAAAAAAB/h+nbdn+i3xjjziHQAAh7uK/HDHU2cHAAAA2CDxDgAAAAAAAAAAABYi3pFHvAMA4DDv1imRG+7Y7ztzegAAAIANEu8AAAAAAAAAAABgIeIdecQ7AAAO81Hkhjv289TZAQAAADZKvAMAAAAAAAAAAICFnFK84zLyH38eewAAejXUeZ78bVXqnDk9AAAAwEaJdwAAAAAAAAAAALAQ8Q7xDgCANRoX+LYanR0AAABgw8Q7AAAAAAAAAAAAWIh4h3gHAMDaDHVK8ndVaXsBAAAA2CrxDgAAAAAAAAAAABYi3iHeAQCwNuMC31WjswMAAABsnHgHAAAAAAAAAAAACxHvEO8AAFiToU5J/qYqbS8AAAAAWybeAQAAAAAAAAAAwELEO8Q7AADWZFzgm2p0dgAAAIAOiHcAAAAAAAAAAACwEPEO8Q4AgLUY6pTk76nS9gIAAACwdeIdAAAAAAAAAAAALES8Q7wDAGAtxgW+p0ZnBwAAAOiEeAcAAAAAAAAAAAALEe8Q7wAAWIOhTkn+liptLwAAAAA9EO8AAAAAAAAAAABgIeId4h0AAGswLvAtNTo7AAAAQEfEOwAAAAAAAAAAAFiIeId4BwDA0oY6Jfk7qrS9AAAAAPRCvAMAAAAAAAAAAICFiHesbB7Ht8Q7AIBTMy7w3TU6OwAAAEBnxDsAAAAAAAAAAABYiHjHyub38aPpzXhDvAMAOBVDnZL8zVXaXgAAAAB6It4BAAAAAAAAAADAQsQ7VjRvxRvT83hv+kV8R7wDADgV4wLfXaOzAwAAAHRIvAMAAAAAAAAAAICFiHesaH4e356m+Mfpo/iheAcAcAqGOiX5m6u0vQAAAAD0RrwDAAAAAAAAAACAhYh3rGh+G+98Ee/4Y/xEvAMAOAXjAt9co7MDAAAAdEq8AwAAAAAAAAAAgIWId6xoPo0ffxHvKPHT6bvxDfEOAKBnQ52S/L1V2l4AAAAAeiTeAQAAAAAAAAAAwELEO1Yy+1jHPtqxj3fs55fxPfEOAKBn4wLfXKOzAwAAAHRMvAMAAAAAAAAAAICFiHesZH4Wb/1/uGM//x5/K94BAPRqqFOSv7dK2wsAAABAr8Q7AAAAAAAAAAAAWIh4x0rm1/GDF+IdNzGIdwAAvRoX+N4anR0AAACgc+IdAAAAAAAAAAAALOSU4h3/FiuOd1zF370Q7/ifOJ8exV+JdwAAvRnqlORvrdL2AgAAANAz8Q4AAAAAAAAAAAAWckrxjqW99Mb7SMc+1vHleMd+fhZviXcAAL0ZIz+UNjo7AAAAwAmY4v06j1c07/tPAQAAAAAAAAAAOA3iHXleeuOL+ObXwh37+U38jXgHANCToU6J3HBHaXsBAAAAAAAAAAAAAAAAAI5CvCPPS2/8L/HXt8Y7PokfiXcAAD0ZIzfcMbWdAAAAAAAAAAAAAAAAAABHI96R56U3vonh1njH5/He9Ga8Id4BAPRgqFMiN9xR2l4AAAAAAAAAAAAAAAAAgKMR78hz6333cY7n8d6t8Y79PI5viXcAAD0YIzfcMbWdAAAAAAAAAAAAAAAAAABHJd6R59b77uMcLwt37Ocy3hHvAAC2bqhTIjfcUdpeAAAAAAAAAAAAAAAAAICjEu/Ic+t993GOV8U7/hD/IN4BAGzdGLnhjqntBAAAAAAAAAAAAAAAAAA4OvGOPLfedx/neFW843m8N303viHeAQBs1VCnRG64o7S9AAAAAAAAAAAAAAAAAABHJ96R52u3fSve+CLO8ap4x35+Ed8R7wAAtmqM3HDH1HYCAAAAAAAAAAAAAAAAAKQQ78jztdv+PL792nDHfj6KH4p3AABbNNQpkRvuKG0vAAAAAAAAAAAAAAAAAEAK8Y48X7vtb+OdO8U7/hg/Ee8AALZojNxwx9R2AgAAAAAAAAAAAAAAAACkEe/I87Xbfho/vlO8o8RPp+/HI/EOAGBLhjolcsMdpe0FAAAAAAAAAAAAAAAAAEgj3pHnhbt+N77xRZTjLvGO/fwyvifeAQBsyZPIDXfsZ3R2AAAAAAAAAAAAAAAAACCbeEeeF+56Ht+8c7hjP7+Nd8Q7AICt2NUpkR/v2Dk9AAAAAAAAAAAAAAAAAJBNvCPPC3f9dfzgoHjHTQziHQDAVjyL/HDHjbMDAAAAAAAAAAAAAAAAAEsQ78jzwl2v4+8Pind8Hu9Nb8Yb4h0AwNqd1SmRH++4cHoAAAAAAAD4X/buF0iOI0348HsXAh1faCMEHPHp9jMQ6NuYCA0YTdWEDQQKCBgILDAwWGBgsODAAgEDgY4QMBD4gIGBQAMBAwGBAQsEGhgYGBgYLFhgYGBgICDQoEBe1kyt/6ylUfdMd3Z19/NcvOG4Pe1kTWaWwqR+BwAAAAAAAMAmiHeU8/OeXov/SC/jaKl4Rzd347p4BwAwdF9E+XDHc9sOAAAAAAAAAAAAAAAAAGyKeEc5P+9pHf9n6XBHNw/jv8Q7AIAhO8jTRvl4x/u2HgAAAAAAAAAAAAAAAADYFPGOcn7e0wfxfy8V73gR/y3eAQAM2dMoH+54btsBAAAAAAAAAAAAAAAAgE0S7yjn5z39e/z3peId87iTRvGf4h0AwBAd5mmjfLyjtvUAAAAAAAAAAAAAAAAAwCaJd5Rztp9dfKOLcFwm3tFNE38Q7wAAhug0yoc7Tm07AAAAAAAAAAAAAAAAALBp4h3lnO1nF9+4bLijm0n8UbwDABiaozxtlI931LYeAAAAAAAAAAAAAAAAANg08Y5yzvazi29cJd7xdRyIdwAAQ/Miyoc7Tm07AAAAAAAAAAAAAAAAADAE4h3lnO3nLP50pXjHPO6kUfyneAcAMBR1lA93tHmObD0AAAAAAAAAAAAAAAAAMAQ389x6y9ywTStxFt3o4htXiXd008QfxDsAgKGYRvl4xzPbDgAAAAAAAAAAAAAAAACwf86iG1cNd3TzWfw/8Q4AYAgO87RRNtzR9usCAAAAAAAAAAAAAAAAALBn0iT+uJJ4xyz+JN4BAAzBsygb7ujmuW0HAAAAAAAAAAAAAAAAANhPZ9GNVcQ7XsZRuhb/Id4BAGxSnaeN8vGOA1sPAAAAAAAAAAAAAAAAALCHRvGfaR53VhLv6OZuXBfvAAA2aRrlwx3PbTsAAAAAAAAAAAAAAAAAwJ5q4g8rC3d08zD+S7wDANiUcZ42ysc7Dmw9AAAAAAAAAAAAAAAAAMCemsQfVxrvmMWfxDsAgE15FuXDHae2HQAAAAAAAAAAAAAAAABgj3WxjVXGO9o4zv88umFnAYDCjvK0UT7ecWDrAQAAAAAAAAAAAAAAAAD2VIpmNI87K413nE/d2F0AoLDPo3y447ltBwAAAAAAAAAAAAAAAADYY11kY/XhjrN5YHcBgILGeeZRPt5xYOsBAAAAAAAAAAAAAAAAAPZYinqynnjH8Qu7CwAUNI3y4Y5nth0AAAAAAAAAAAAAAAAAYM+lqGbriXdU8xTNyA4DAAUc5mmjfLzj0NYDAAAAAAAAAAAAAAAAAOyxLq5xHtlYS7wjz/EHdhkAKOBZlA93fGnbAQAAAAAAAAAAAAAAAAD2XIq6WV+442we22UAYM1u5mmjfLzjlq0HAAAAAAAAAAAAAAAAANhzKerJmuMdM7sMAKzZkygf7nhq2wEAAAAAAAAAAAAAAAAAiC6useZ4x8sUzTU7DQCsyThPG+XjHQe2HgAAAAAAAAAAAAAAAABgz6VoRimq+ZrjHd3ctdsAwJo8i/Lhjie2HQAAAAAAAAAAAAAAAACASFE3BcIdeeqJ3QYA1uBWnjbKhju69Q5tPQAAAAAAAAAAAAAAAAAAXbxjUibeUX1ttwGANXgcZcMd3Tyx7QAAAAAAAAAAAAAAAAAAnElRzQrFO9oUt6/bcQBghcZ55lE23NHmObT1AAAAAAAAAAAAAAAAAABEimaUopoXinfkuVPbdQBghaZRNtyR+jUBAAAAAAAAAAAAAAAAAKD7+rRuyoU7zuahXQcAVmScp42y4Y62XxcAAAAAAAAAAAAAAAAAAM7iHZOy8Y7jF3YdAFiRaZQNd6R+TQAAAAAAAAAAAAAAAAAAOJeimpWNd1TzFM3IzgMAVzTO00bZcEfbrwsAAAAAAAAAAAAAAAAAAN0XqM3oPKZRNN6R5/i+3QcArmgaZcMdqV8TAAAAAAAAAAAAAAAAAADOpaib8uGOs3ls9wGAKxjnaaNsuKPt1wUAAAAAAAAAAAAAAAAAgHMp6smG4h2ndh8AuIJplA13pH5NAAAAAAAAAAAAAAAAAAD4RYpqtqF4x6sUzcgJAACXMM7TRtlwR9uvCwAAAAAAAAAAAAAAAAAA57p4RopqvqF4R566cQoAwCVMo2y4I/VrAgAAAAAAAAAAAAAAAADAL7p4xubCHWfxjolTAACWNM7TRtlwR9uvCwAAAAAAAAAAAAAAAAAAv+jiGZuNd1QzpwAALGkaZcMdqV8TAAAAAAAAAAAAAAAAAAB+q4tnbDjeMU/RjJwEALCgcZ42yoY72n5dAAAAAAAAAAAAAAAAAAD4RYrb18/jGRuNd+SpG6cBACxoGmXDHalfEwAAAAAAAAAAAAAAAAAAfivFyb3NhzvO4h0TpwEALGCcp42y4Y62XxcAAAAAAAAAAAAAAAAAAH4rRfVoGPGOauY0AIAFTKNsuCP1awIAAAAAAAAAAAAAAAAAwO+lqL4aSLxjnqIZOREA4ALjPG2UDXe0/boAAAAAAAAAAAAAAAAAAPBbKW5fP49mDCLekadunAoAcIFplA13pH5NAAAAAAAAAAAAAAAAAAD4vRQn94YT7jiLd0ycCgDwBuM8bZQNd7T9ugAAAAAAAAAAAAAAAAAA8HspqkfDindUM6cCALzBNMqGO1K/JgAAAAAAAAAAAAAAAAAAvF6K+puBxTvmKZqRkwEA/s04Txtlwx1tvy4AAAAAAAAAAAAAAAAAAPxeiqMbKap2YPGOPHXjdACAfzONsuGO1K8JAAAAAAAAAAAAAAAAAACvl+L4/vDCHWfxjonTAQB+ZZynjbLhjrZfFwAAAAAAAAAAAAAAAAAAXi9F9XiY8Y5q5nQAgF+ZRtlwR+rXBAAAAAAAAAAAAAAAAACAN0tRfzPQeMc8RTNyQgBANs7TRtlwR9uvCwAAAAAAAAAAAAAAAAAAb5aiagca78hTN04IAMimUTbckfo1AQAAAAAAAAAAAAAAAADgzVLcqYcb7jiLd0ycEgDsvXGeNsqGO9p+XQAAAAAAAAAAAAAAAAAAeLMU1YNhxzuqmVMCgL03jbLhjtSvCQAAAAAAAAAAAAAAAAAAF0tRnQ483jFP0YycFADsrXGeNsqGO9p+XQAAAAAAAAAAAAAAAAAAeLMUzbUU1cuBxzvy1I3TAoC9NY2y4Y7UrwkAAAAAAAAAAAAAAAAAABdLcacefrjjLN4xcVoAsJfGedooG+5o+3UBAAAAAAAAAAAAAAAAAOBiKaoH2xHvqGZOCwD20jTKhjtSvyYAAAAAAAAAAAAAAAAAALxdF8XYknjHPEUzcmIAsFfGedooG+5o+3UBAAAAAAAAAAAAAAAAAOBiXQzjPIqxFfGOPHXj1ABgr3wRZcMd3UxtOwAAAAAAAAAAAAAAAAAAC+liGNsT7jiLd0ycGgDsjYM8bZSPdxzYegAAAAAAAAAAAAAAAAAAFtLFMLYr3lHNnBoA7I2nUT7ccWrbAQAAAAAAAAAAAAAAAABYWBfD2LJ4xzxFM3JyALDzDvO0UT7eUdt6AAAAAAAAAAAAAAAAAAAW0kUwzmMYWxXvyFM3Tg8Adt4XUT7c8dy2AwAAAAAAAAAAAAAAAACwsBQn97Yv3HEW75g4PQDYaQd52igf73jf1gMAAAAAAAAAAAAAAAAAsLAU1aPtjHdUM6cHADvtaZQPdzy37QAAAAAAAAAAAAAAAAAALCVF9dWWxjvmKZqREwSAnXSYp43y8Y7a1gMAAAAAAAAAAAAAAAAAsLAufnEewdjKeEeeunGKALCTTqN8uOPUtgMAAAAwGCm+zDMb0HzpUAAAAAAAAAAAAOA1uvjF9oY7zuIdE6cIADvnKE8b5eMdta0HAAAAYDBSfJ9nSP/zvUMBAAAAAAAAAACA1+jiF9sd76hmThEAds6LKB/uOLXtAAAAAAyKeAcAAAAAAAAAAABshy5+seXxjnmKZuQkAWBn1FE+3NHmObL1AAAAAAyKeAcAAAAAAAAAAAAMXxe9OI9fbHW8I0/dOE0A2BnTKB/veGbbAQAAABgc8Q4AAAAAAAAAAAAYvi56sf3hjrN4x8RpAsBOOMzTRtlwR9uvCwAAAADDIt4BAAAAAAAAAAAAw9dFL3Yj3lHNnCYA7IRnUTbc0c1z2w4AAADAIIl3AAAAAAAAAAAAwPB10YsdiXfMUzQjJwoAW63O00b5eMeBrQcAAABgkMQ7AAAAAAAAAAAAYNi62MV59GIn4h156sapAsBWm0b5cMdz2w4AAADAYIl3AAAAAAAAAAAAwLB1sYvdCXecxTsmThUAttY4Txvl4x0Hth4AAACAwRLvAAAAAAAAAAAAgGHrYhe7Fe+oZk4VALbWsygf7ji17QAAAAAMmngHAAAAAAAAAAAADFsXu9ixeMc8RTNysgCwdY7ytFE+3nFg6wEAAAAYNPEOAAAAAAAAAAAAGK4ucnEeu9ipeEeeunG6ALB1Po/y4Y7nth0AAACAwRPvAAAAAAAAAAAAgOHqIhe7F+44i3dMnC4AbJVxnnmUj3cc2HoAAAAABk+8AwAAAAAAAAAAAIari1zsZryjmjldANgq0ygf7nhm2wEAAADYCuIdAAAAAAAAAAAAMFxd5GJH4x3zFM3ICQPAVjjM00b5eMehrQcAAABgK4h3AAAAAAAAAAAAwDB1cYvzyMVOxjvy1I1TBoCt8CzKhzu+tO0AAAAAbA3xDgAAAAAAAAAAABimLm6xu+GOs3jHxCkDwODdzNNG+XjHLVsPAAAAwNYQ7wAAAAAAAAAAAIBh6uIWux3vqGZOGQAG70mUD3c8te0AAAAAbBXxDgAAAAAAAAAAABimLm6x4/GOeYpm5KQBYLDGedooH+84sPUAAAAAbBXxDgAAAAAAAAAAABieLmpxHrfY6XhHnrpx2gAwWM+ifLjjiW0HAAAAYOuIdwAAAAAAAAAAAMDwdFGL3Q93nMU7Jk4bAAbpVp42yoY7uvUObT0AAAAAW0e8AwAAAAAAAAAAAIani1rsR7yjmjltABikx1E23NHNE9sOAAAAwFYS7wAAAAAAAAAAAIDh6aIWexLvmKdoRk4cAAZlnGceZcMdbZ5DWw8AAADAVhLvAAAAAAAAAAAAgGHpYhbnUYu9iHfkqRunDgCDMo2y4Y7UrwkAAAAA20m8AwAAAAAAAAAAAIali1nsT7jjLN4xceoAMBjjPG2UDXe0/boAAAAAsJ3EOwAAAAAAAAAAAGBYupjFfsU7qplTB4DBmEbZcEfq1wQAAACA7SXeAQAAAAAAAAAAAMPSxSz2LN4xT9GMnDwAbNw4Txtlwx1tvy4AAAAAbC/xDgAAAAAAAAAAABiOLmJxHrPYq3hHnrpx+gCwcdMoG+5I/ZoAAAAAsN3EOwAAAAAAAAAAAGA4uojF/oU7zuIdE6cPABs1ztNG2XBH268LAAAAANtNvAMAAAAAAAAAANikFCc3U1QH58GCf033v1fv2B32852oJ/sZ76hmTh8ANmoaZcMdqV8TAAAAALafeAcAAAAAAAAAAFBKiqNbKapP8nyRov4m//PVWz7m/ynF8Yv8z4cp7tR2kP14T6rZnsY75imakRsAABsxztNG2XBH268LAAAAANtPvAMAAAAAAAAAAFinFM21FPVHfYTjqh/3/zPPgzzvvH3d6tM+gvCWOf7AKTGg92V0HrHYy3hHnrpxCwBgI6ZRNtyR+jUBAAAAYDeIdwAAAAAAAAAAAOuQ4vb1FNXDPD+s4SP/+fnPvn39zetX08V+1vHHTovhvDd1s7/hjrN4x8QtAIDixnnaKBvuaPt1AQAAAGA3iHcAAAAAAAAAAACrlqL+aE3Rjn+fvMbJvdc/g3gHW/nuTPY73lHN3AIAKG4aZcMdqV8TAAAAAHaHeAcAAAAAAAAAALAqKY7HKarTDXzw/+D3zyLewTa+Q9Vsz+Md8xTNyE0AgGLGedooG+5o+3UBAAAAYHeIdwAAAAAAAAAAAKuQ4vh+iurHDX70/0WK5tovzyPewba9Q83oPF6x1/GOPHXjNgBAMdMoG+5I/ZoAAAAAsFvEOwAAAAAAAAAAgKtKcfyXFNWrAXz4P/1XwEO8g+17j+pGuOMs3jFxGwCgiHGeNsqGO9p+XQAAAADYLeIdAAAAAAAAAADAVXTxixRVO6CP/z87fy7xDrbtXaonwh1nM3MbAKCIaZQNd6R+TQAAAADYPeIdAAAAAAAAAADAZaU4/mAF4Y55nq/PYxtdvODneZr/s39c8uf/WbyD7Xufqplwx7/+TmhGbgQArNU4Txtlwx1tvy4AAAAA7B7xDgAAAAAAAAAA4DJSHL+fonp1hQ/0n+ef8ZcURzcuXufoRv6zn+T5bomf/WrxEIJ4B0N4n5pRH7IR7zibunErAGCtplE23JH6NQEAAABgN4l3AAAAAAAAAAAAy+pDA99e8sP8WYqTo8ut28U+qh9WGwkQ72AI71TdCHb8Jt4xcSsAYG3GedooG+5o+3UBAAAAYDeJdwAAAAAAAAAAAMtKUX1xyY/yP03RXLva2rev55/zRLyD3Xqn6olgx28jP24FAKzNNMqGO1K/JgAAAADsLvEOAAAAAAAAAABgGSnqwxRVu+SH+PnPH99f7XNUD8U72J33qpoJdvxm5imakZsBACs3ztNG2XBH268LAAAAALtLvAMAAAAAAAAAAFhGiuMXlwh3fLCeZ1lFwEO8g02/U83oPFYh2vHbqRu3AwBWbhplwx2pXxMAAAAAdpt4BwAAAAAAAAAAsKgUJ/cu8RH+X9f7TNVj8Q62+72qG6GO18Y7Jm4HAKzUOE8bZcMdbb8uAAAAAOw28Q4AAAAAAAAAAGBRKapnS36A/2SgzyXewYDeq3oi1PHambkdALBS0ygb7kj9mgAAAACw+8Q7AAAAAAAAAACARaR4790UVbvEh/c/5HmnzLMd3ejXE+9gC9+taibU8dqZp2hGbggArMQ4Txtlwx1tvy4AAAAA7D7xDgAAAAAAAAAAYBEpqs+W+/C+/qjs8x3fF+9g+96rZnQeqRDreMPfI41bAgArMY2y4Y7UrwkAAAAA+0G8AwAAAAAAAAAAWESK6oclPrr/LkVzbQPPOBPvYLveq7oR6Lgw3jFxSwDgysZ52igb7mj7dQEAAABgP4h3AAAAAAAAAAAAb5Pi5GjJj+4fbug574l3sF3vVj0R6LhwZm4JAFzZNMqGO1K/JgAAAADsD/EOAAAAAAAAAADgbVJUj5f42P5ViqMbm3vW+hvxDrbo3ZoJdFw48xTNyE0BgEsb52mjbLij7dcFAAAAgP0h3gEAAAAAAAAAALxNiurrJT62f7bhZ30g3sF2vFfN6DxOIdJx8dSN2wIAlzaNsuGO1K8JAAAAAPtFvAMAAAAAAAAAALhIitvXlwwMfLLZ563eydOKdzD8d6tuhDkWindM3BYAuJRxnjbKhjvafl0AAAAA2C/iHQAAAAAAAAAAwEWWDwzcqQfwzN+Id7AF79ZEmGOhmbktAHAp0ygb7kj9mgAAAACwf8Q7AAAAAAAAAACAi6SoHi7xkf08RXNtAM/8RLyDLXi3ZsIcC/+9MnJjAGAp4zxtlA13tP26AAAAALB/xDsAAAAAAAAAAICLLBfCqL8ZxjPX/yPewbDfq2Z0HqUQ51jw75bGrQGApXwRZcMd3UxtOwAAAAB7S7wDAAAAAAAAAAC4SBfkWOIj+y+G8czVXfEOBv5eNYIcS8U7Jm4NACzsIE8b5eMdB7YeAAAAgL0l3gEAAAAAAAAAAFwkRfXjtn1gn+LoRn6eVryD4b5X9USQY6mZuTUAsLCnUT7ccWrbAQAAANhr4h0AAAAAAAAAAMCbpGiuLfeB/fFfhvPsi0ZHxDvYyP2cCXIsNfP899HIzQGAtzrM00b5eEdt6wEAAADYa+IdAAAAAAAAAADAm6R4793lPrA/uTecZ6++E+9gmO9VMzqPUYhyLDd14/YAwFt9EeXDHc9tOwAAAAB7T7wDAAAAAAAAAAB4kxT14bZ+XJ+fZybewUDfq0aI41LxjonbAwAXOsjTRvl4x/u2HgAAAIC9J94BAAAAAAAAAAC8yfKRgePxcJ79+IV4BwN9ryZCHJeamdsDABd6GuXDHc9tOwAAAACEeAcAAAAAAAAAAPBmy8c7jm4N59mrqXgHw3yvqpkQx6VmnqIZuUEA8FqHedooH++obT0AAAAAhHgHAAAAAAAAAADwZuIdsOp72YzOIxRiHJebunGLAOC1TqN8uOPUtgMAAABAT7wDAAAAAAAAAAB4E/EO2PQ7Zf4t3jFxiwDgd47ytFE+3lHbegAAAADoiXcAAAAAAAAAAABvkqK6K94Bq7yX9USA40rztVsEAL/zIsqHO05tOwAAAAD8ingHAAAAAAAAAADwJimOx8t9WH+nHs6zi3cwxHeqmglwXGnmKZqRmwQAP6ujfLijzXNk6wEAAADgV8Q7AAAAAAAAAACAN0nx3rvLfVh//MFwnr06Fe9gWO9TMzqPT4hwXG3qxm0CgJ9No3y845ltBwAAAIB/I94BAAAAAAAAAABcZMl4x8cDeu6ZeAfDepfqRnhjJfOZ2wQAZw7ztFE23NH26wIAAAAAvybeAQAAAAAAAAAAXCRF9dMSH9V/OqDn/la8g2G9S/VEeGMlM3ObAODMsygb7ujmuW0HAAAAgNcQ7wAAAAAAAAAAAC6Sovp6iY/qHw/ouX8Q72Bg79JMeGMl8zJFc82NAmDP1XnaKB/vOLD1AAAAAPAa4h0AAAAAAAAAAMBFUtRPF/+o/vjFMJ756EZ+nla8g+G8R80o37e58MbK5q5bBcCem0b5cMdz2w4AAAAAbyDeAQAAAAAAAAAAXCRF9WCJD+p/GsYzn9xbIjjysVNm/XeybgQ3VjoP3SoA9tg4Txvl4x0Hth4AAAAA3kC8AwAAAAAAAAAAuMhyIYxujm5t/pmXCY4MI96R9/lmijt1fqY/d8/02+nOoD7M/7d33MhtfY/qieDGSmfmVgGwx55F+XDHqW0HAAAAgAuIdwAAAAAAAAAAABdJ0YxSVO0SH9X/dfPPfPzlkOMdKd57N0X9P/1z/nPJaMH3/X+vC5T4/36+Ne9RNRPcWOnkv5OObrhZAOyhozxtlI93+PdOAAAAALiIeAcAAAAAAAAAAPA2Kapvl4hhvBjA834/tHhHFxrowib9XrYrjBjkn3f8txS3r7upQ31/zgI4c8GNVU/duF0A7KHPo3y447ltBwAAAIC3EO8AAAAAAAAAAADeJkX1aImP6tsuVLG5Z71TLxcAWG+8ow83fJrn5ZpjBj/leSDiMcT3p26ENtYyD9wuAPbMOM88ysc7Dmw9AAAAALyFeAcAAAAAAAAAAPA2KU6OtuWj+rz2Z0OJd+SffT+v8X3hoMGP+bzuubVDen/qidDGOub4hdsFwJ6ZRvlwxzPbDgAAAAALEO8AAAAAAAAAAAAWkaL6YYkP679N0Vwr/4zNaMnnXEu8o3+Ox3naDYYNPt/EGfDad2cmtLGWmXfvmhsGwJ44zNNG+XjHoa0HAAAAgAWIdwAAAAAAAAAAAItIUX263If19Yfln7H+6BKRi49X+wzNtfxzT4cRNzh+IW6w6ffmLOQyF9pY2x3/wC0DYE88i/Lhji9tOwAAAAAsSLwDAAAAAAAAAABYRIqTmymqV0t8WP9jiqMb5Z7vLJrx3SbjHX2o4XRgcQMBj42+N3UjsLHWeeyWAbAHbuZpo3y845atBwAAAIAFiXcAAAAAAAAAAACLSlFNl/yw/knBZ3t0ybjFx6t7hvrpJQMEr/rox8M8n+Rnun8efTibD/v//PmS8ZSNnAO/uxMTgY21zswtA2APPIny4Y6nth0AAAAAliDeAQAAAAAAAAAALCrF0a0U1XzJj+v/uv7n6iIXSz/XSuMd3e95mfBAXv+DFM1osTWa0fmfr766xFqfuMGbeGe6MxbZWOO8zO/FNTcNgB02ztNG+XjHga0HAAAAgCWIdwAAAAAAAAAAAMtIcfz5JQIZ99f4POO8xk+X//j/6vGOFO+9m3/WqyXW/Ueeu1f8ve/nn/HDEmu+6p7TDS75rnSxlctGZcwSc9dtA2CHPYvy4Y4nth0AAAAAliTeAQAAAAAAAAAALCPF7espqh+X/Li+TXH8weqf5Szc8c+rffi/inhHNV1izWcpjm6s7izqvy+xtg8xi74rdSOsUWLqidsGwI66laeNsuGObr1DWw8AAAAASxLvAAAAAAAAAAAAlpWi/vASH9m3eT5Z3TMcv59/3k9X//D/avGOPiDSLrjeNEVzbbVn0Yzyz50t/vveqd3gYu/JRFijyHzttgGwox5H2XBHN2JvAAAAAHAZ4h0AAAAAAAAAAMBlnIcoLvWh/bM871x+3eZa/u9/tkQwY83xjoX34etVhzt+eYajG/nnf7fo/ru9xd6RmbBGkcl/F9y+7sYBsGPGeeZRNtzR5jm09QAAAABwCeIdAAAAAAAAAADAZaRoRudBikt9bP9TnocpTm4usV4X7fgkzz9W++H/5eMd/R68WmCd/GeOx+s9j+P3F/ydX3WxDze4yPsxF9YoNXdqtw6AHTONsuGO1K8JAAAAAFyGeAcAAAAAAAAAAHBZKap38nx/hY/uu7jBaZ6/dh/fdz/vl5/dxQ9OjlLUH+V52gc/1vDR/1XiHfWHC67zWaHzeLbY89Qfur3rPou6EdQoOg/dOgB2SBd9a6NsuKPt1wUAAAAALkO8AwAAAAAAAAAAuIoU9eH6whqXnldl4h0LxTLaFCc3y5xFdXfB3/lzN3ft78VEUKPkHL9w6wDYIdMoG+5I/ZoAAAAAwGWJdwAAAAAAAAAAAFeV4uhWiurHoXzEn6J+Wije8cPQogJ5zX8s8Ht/69au/RxmghpFZ56iGbl5AOyAcZ42yoY72n5dAAAAAOCyxDsAAAAAAAAAAIBVSFEd5Pluwx/wd8GEd/JM1x3vSHFyc8E1/lr2HBYKl7x0Y9d5Bs3oPCYhqlE43HPf7QNgB0yjbLgj9WsCAAAAAFch3gEAAAAAAAAAAKxKitvXU1Snm/lwv/57t/75c5SIdxzfX/C5DsuewfHfFnuu871iHWdQN0IaG5nHbh8AW26cp42y4Y62XxcAAAAAuArxDgAAAAAAAAAAYNVS1JMUVVvwo/1HKZprv6xfIt7RrfnWn/+q/N4ff7zY7310y01d6/0X0yg/p24fAFtuGmXDHalfEwAAAAC4KvEOAAAAAAAAAABgHVKcHKWovlrzx/r/THF8//drF4l3PFnk+crvu3jH5u9+NRPS2Mi8StGM3EAAttQ4Txtlwx1tvy4AAAAAcFXiHQAAAAAAAAAAwDqlOLm3hojHD3kevulD/ULxjj/n+ex8reMX+Z//OI8H/Obnf1V+v6sHi/3e773rdq5j/5tR3t+5kMampm7cQgC21DTKhjtSvyYAAAAAsAriHQAAAAAAAAAAQAl9xKOLavx0hY/z/5nn0xS3r1+81vrjHW9e++hG/rkH57/vyb3y+1w9Xuz3bq65levY/7oR0NjofOYWArCFxnnaKBvuaPt1AQAAAIBVEO8AAAAAAAAAAABK6qIRKY4/SFE9SFE/zf/8Lk/7hg/xf8xzmv/cJMXJ0aLBiU3GOza/v/XfF/i9X7mJ69r/6pGAxian/sYtBGALTaNsuCP1awIAAAAAqyLeAQAAAAAAAAAADEGKoxt5bp3Pe+8uGup4/c/az3hHipObF4RQfj0zN25dZ1B/I6Cx6Tm64SYCsEXGedooG+5o+3UBAAAAgFUR7wAAAAAAAAAAAHbN/sY7jv+y4O/9yC1Z2917KZ6x6blTu4kAbJFplA13pH5NAAAAAGCVxDsAAAAAAAAAAIBds7/xjurrBX/n+27JOvb/Ti2cMYh56DYCsCXGedooG+5o+3UBAAAAgFUS7wAAAAAAAAAAAHbNPsY7UtTNgr/zqxRHN9yStdy7T4UzBjEztxGALTGNsuGO1K8JAAAAAKyaeAcAAAAAAAAAALBr9jPeUc0W/H2/dEM2fQZmzTMXqAFgC4zztFE23NH26wIAAAAAqybeAQAAAAAAAAAA7Jp9i3ekqD9c/Pe9U7sh6ziD29fPoxHiGcOY4/tuJQADN42y4Y7UrwkAAAAArIN4BwAAAAAAAAAAsGv2Kd6R4uRm/j1+WvD3nbkd6zqH4/uCGUOa+v+7lQAM2DhPG2XDHW2/LgAAAACwDuIdAAAAAAAAAADArtmveEd1usTv+r7bsbZzeCCYMaQ5fuFWAjBg0ygb7kj9mgAAAADAuoh3AAAAAAAAAAAAu2Zf4h35+R8tETR45mas9SxOBTMGNa9SNCM3E4ABGudpo2y4o+3XBQAAAADWRbwDAAAAAAAAAADYNfsQ78jP/bclQgY/pTi56Was6yyaUd7jl4IZQ5u6cTsBGKBplA13pH5NAAAAAGCdxDsAAAAAAAAAAIBds+vxjhT1R/nZ2yUiBh+6FWs9j0YoY5DzmdsJwMCM87RRNtzR9usCAAAAAOsk3gEAAAAAAAAAAOyaXY53pDi5l597vkTA4Ikbsfb79kgoY4hTf+N2AjAw0ygb7kj9mgAAAADAuol3AAAAAAAAAAAAu2ZX4x0p6iY/88slAgbfprh93Y1Y97kcvxDKGOoc3XBDARiIcZ42yoY72n5dAAAAAGDdxDsAAAAAAAAAAIBds4vxjvycH+TnnS8RLvghxdEtt2Hd59Jcy3v9k0jGYOeuWwrAQEyjbLgj9WsCAAAAACWIdwAAAAAAAAAAALtm1+Idlwh3vEpxcuQmlDibO7VAxqDnoVsKwACM87RRNtzR9usCAAAAACWIdwAAAAAAAAAAALtml+IdKeoPlwx3tPl3uu8WFDufiUDGoGfmlgIwANMoG+5I/ZoAAAAAQCniHQAAAAAAAAAAwK7ZlXhHfr4/LxnuGHyMZAfv2kwgY9CT35+jG24qABs0ztNG2XBH268LAAAAAJQi3gEAAAAAAAAAAOyaXYh35Gf7NE+7RKSgFe4ofUa3ry8fVzHl5/i+2wrABk2jbLgj9WsCAAAAACWJdwAAAAAAAAAAALtm2+Md+Zk+XzJQ0EU+/uzki9+zu8IYWzGP3FYANmScp42y4Y62XxcAAAAAKEm8AwAAAAAAAAAA2DXbGu9I0Yzy83y5fLhjeAGS/bhnx38TxtiGOX7htgKwIdMoG+5I/ZoAAAAAQGniHQAAAAAAAAAAwK7ZxnhHiqMb+Xm+XjJM8CrFyT0nvrF7diqMsRXzqgvjuLEAFDbO00bZcEfbrwsAAAAAlCbeAQAAAAAAAAAA7Jpti3fk57ib54clgwQvU9SN097UmTWjfAZzYYxtGe8KAMV9EWXDHd1MbTsAAAAAbEiKr/qAx1DmK4cCAAAAAAAAAABcyTbFO/L6f8nP8WrJGEEX+jhw0ps8t5N7ghhbNY/dWgAK6v49rY3y8Q7/fggAAAAAAAAAAAAAAAAArEaK6pM+4LHI3N3MMzbXuqBAnnbJCMEsxXvvOuWN37FHghjbNPU3bi38Lzt3CGPZdR5w/ANWFGAQKQUGBgOu1Cf5VXqdeVYMChYEBBQUFAQaFBQWFBQEhLWSQYHBggUXLDAYMGBAgEEjFRQUFgYYGAQEBAQsOOD0THyb1PJ6d97szPfuOff3sz6Z2PqevnvkRf4DiV5Gfrjj1tkBAAAAAAAAAAAAAAAAgM34Jtxx/NXpAYLLL9q/+0MXXMM3vPxSEKO3efaelwtAgn2bEvnxjqPTAwAAAAAAAAAAAAAAAACbUOMnH9Y4/vfp4YHjv4sPrOUb3sVXrn4nhtHd/I3XC0CC55Ef7rhxdgAAAAAAAAAAAAAAAABgE2p8fKhx9dsHRAf+xfXW9B3/+iiE0eX8wusF4Int2pTIj3d84vQAAAAAAAAAAAAAAAAAwPBqHJ/VuPrdibGB39e4/Jnrre1bXn7SvucvzzMf/1v7+69PnV/HX9bHnof8juX3n+l2x597vQA8sZeRH+64cXYAAAAAAAAAAAAAAAAAYHg1Pv5pjatXJ4Y7flPjcnI9vv2WDhcnvqOVzeHCVwRgUPs2JfLjHUenBwAAAAAAAAAAAAAAAACGVuPyZw8Id/xXjcOPXI/vvifxDgBYqdvID3fcOjsAAAAAAAAAAAAAAAAAMLQal5/WuCqnxQ0uv6jx0fuux+vflHgHAKzQoU2J/HjH0ekBAAAAAAAAAAAAAAAAgGE9LNxx/GWNZ++5Ht//rsQ7AGCFvoz8cMetswMAAAAAAAAAAAAAAAAAw3pAuOPun/1Hl+Ptb0u8AwBW5hj54Y7S5uD0AAAAAAAAAAAAAAAAAMCQanz80xPDHX+ocfm3Lsf93pd4BwCszBz58Y5rZwcAAAAAAAAAAAAAAAAAhlTjuP8mxnHvmMHv27/zzOW4/xsT7wCAFdm3KZEb7ijLXgAAAAAAAAAAAAAAAACAsdQ4/KjG1W9OCBl8XeNycjlOfGfiHQCwHteRG+64mxtnBwAAAAAAAAAAAAAAAACGVOP4qxMiBl8Jd/CwdybeAQArcWxTIj/esXN6AAAAAAAAAAAAAAAAAGA4Na7++YSAwdfCHTz8rYl3AMBKzJEf7rhxdgAAAAAAAAAAAAAAAABgODU+PtS4enXPeMEf7v55V+Ph7028AwBW4C7EViI/3rFzegAAAAAAAAAAAAAAAABgODWu/vP+4YLjz12Md3tv4h0AsALXkR/uuHV2AAAAAAAAAAAAAAAAAGA4NS4/PSFc8K8uxru/OfEOADizQ5sS+fGOndMDAAAAAAAAAAAAAAAAAEOp8dH7Na5+d89owf/UePZDV+Pd3514BwCc2eeRH+64cXYAAAAAAAAAAAAAAAAAYDg1Lv/phGjBV23+Y13z8cFX7PHdiXcAwBlNbV5Ffrxj5/QAAAAAAAAAAAAAAAAAwFBqPHuvxtXXfUcUjs98yR7f3tVftJlPnTku6mPPQ37H3e/3FQHo2Bz54Y5rZwcAAAAAAAAAAAAAAAAAhlPj6u/6DneId2zy2T7+AMCW7NuUyI937J0eAAAAAAAAAAAAAAAAABhOjeNL8Q66e7biHQDwLq4jP9zxhbMDAAAAAAAAAAAAAAAAAEOqcfVb8Q66e7biHQDwUB+0KZEf77hwegAAAAAAAAAAAAAAAABgODUup/7DHeIdm3y64h0A8FAvIj/c8dLZAQAAAAAAAAAAAAAAAIAh1Tj+vXgHXT5d8Q4AeIipTYn8eMfO6QEAAAAAAAAAAAAAAACAIdW4+gfxDrp8uuIdAPAQ15Ef7njh7AAAAAAAAAAAAAAAAADAsGpc/UK8gy6frngHAJzqok2J3HDH3b690wMAAAAAAAAAAAAAAAAAw6px+FGbi/7n2Q99zY09XfEOADjVZ5Eb7ribF84OAAAAAAAAAAAAAAAAAADrI94BAKeZ2ryK3HBHabN3egAAAAAAAAAAAAAAAAAAWB/xDgA4zRy54Y667AQAAAAAAAAAAAAAAAAAAFZIvAMA7m9qUyI33FGWvQAAAAAAAAAAAAAAAAAAwAqJdwDA/c2RG+6oy04AAAAAAAAAAAAAAAAAAGClxDsA4H6mNiVywx1l2QsAAAAAAAAAAAAAAAAAAKyUeAcA3M8cueGOuuwEAAAAAAAAAAAAAAAAAABWTLwDAN5ualMiN9xRlr0AAAAAAAAAAAAAAAAAAMCKiXcAwNvNkRvuqMtOAAAAAAAAAAAAAAAAAABg5cQ7AODNpjYlcsMdZdkLAAAAAAAAAAAAAAAAAACsnHgHALzZHLnhjrrsBAAAAAAAAAAAAAAAAAAAOiDeAQDfb2pTIjfcUZa9AAAAAAAAAAAAAAAAAABAB8Q7AOD7zZEb7qjLTgAAAAAAAAAAAAAAAAAAoBPiHQDwelObErnhjrLsBQAAAAAAAAAAAAAAAAAAOiHeAQCvN0duuKMuOwEAAAAAAAAAAAAAAAAAgI6IdwDAd01tSuSGO8qyFwAAAAAAAAAAAAAAAAAA6Ih4BwB81xy54Y667AQAAAAAAAAAAAAAAAAAADoj3gEA3za1KZEb7ijLXgAAAAAAAAAAAAAAAAAAoDPiHQDwbXPkhjvqshMAAAAAAAAAAAAAAAAAAOiQeAcA/NnUpkRuuKMsewEAAAAAAAAAAAAAAAAAgA6JdwDAn82RG+6oy04AAAAAAAAAAAAAAAAAAKBT4h0A8I2pTYnccEdZ9gIAAAAAAAAAAAAAAAAAAJ0S7wCAb8yRG+6oy04AAAAAAAAAAAAAAAAAAKBj4h0AEDG1KZEb7ijLXgAAAAAAAAAAAAAAAAAA4Nxq/OTDGldfnTpfxV/Vx56H/I673+8rAnBGc+SGO+qyEwAAAAAAAAAAAAAAAAAAWIMah4saV7XfOVz4igCcydSmRG64oyx7AQAAAAAAAAAAAAAAAACANRDvAIAHmyM33FGXnQAAAAAAAAAAAAAAAAAAwFqIdwDAg0xtSuSGO8qyFwAAAAAAAAAAAAAAAAAAWAvxDgB4kDlywx112QkAAAAAAAAAAAAAAAAAAKyJeAcAnGxqUyI33FGWvQAAAAAAAAAAAAAAAAAAwJqIdwDAyebIDXfUZScAAAAAAAAAAAAAAAAAALA24h0AcJKpTYnccEdZ9gIAAAAAAAAAAAAAAAAAAGsj3gEAJ5kjN9xRl50AAAAAAAAAAAAAAAAAAMAaiXcAwL1NbUrkhjvKshcAAAAAAAAAAAAAAAAAAFgj8Q4AuLfnkRvuuJvZ2QEAAAAAAAAAAAAAAAAAYMXEOwDgXnZtSuTHO3ZODwAAAAAAAAAAAAAAAAAAKybeAQD38jLywx23zg4AAAAAAAAAAAAAAAAAACsn3gEAb7VvUyI/3nF0egAAAAAAAAAAAAAAAAAAWDnxDgB4q+eRH+64cXYAAAAAAAAAAAAAAAAAAOiAeAcAvNGuTYn8eMcnTg8AAAAAAAAAAAAAAAAAAB0Q7wCAN3oZ+eGOG2cHAAAAAAAAAAAAAAAAAIBOiHcAwPfatymRH+84Oj0AAAAAAAAAAAAAAAAAAHRCvAMAvtdt5Ic7bp0dAAAAAAAAAAAAAAAAAAA6It4BAK91aFMiP95xdHoAAAAAAAAAAAAAAAAAAOiIeAcAvNaXkR/uuHV2AAAAAAAAAAAAAAAAAADojHgHAHzHMfLDHaXNwekBAAAAAAAAAAAAAAAAAKAz4h0A8B1z5Mc7rp0dAAAAAAAAAAAAAAAAAAA6JN4BAN+yb1MiN9xRlr0AAAAAAAAAAAAAAAAAAEBvxDsA4FuuIzfccTc3zg4AAAAAAAAAAAAAAAAAAJ0S7wCAPzm2KZEf79g5PQAAAAAAAAAAAAAAAAAAdEq8AwD+ZI78cMeNswMAAAAAAAAAAAAAAAAAQMfEOwDgj6Y2JfLjHTunBwAAAAAAAAAAAAAAAACAjol3AMAfXUd+uOPW2QEAAAAAAAAAAAAAAAAAoHPiHQAQhzYl8uMdO6cHAAAAAAAAAAAAAAAAAIDOiXcAQHwe+eGOG2cHAAAAAN6oxodtLlY0H/ooAAAAAAAAAAAA8BriHQBs3NTmVeTHO3ZODwAAAAC8UY2v2qzpr698FAAAAAAAAAAAAHgN8Q4ANm6O/HDHtbMDAAAAAG8l3gEAAAAAAAAAAAB9EO8AYMP2bUrkxzv2Tg8AAAAAvJV4BwAAAAAAAAAAAPRBvAOADbuO/HDHF84OAAAAANyLeAcAAAAAAAAAAAD0QbwDgI36oE2J/HiHP7cAAAAAgPsR7wAAAAAAAAAAAIA+iHcAsFEvIj/c8dLZAQAAAIB7E+8AAAAAAAAAAACAPoh3ALBBU5sS+fGOndMDAAAAAPcm3gEAAAAAAAAAAAB9EO8AYIOuIz/c8cLZAQAAAICTiHcAAAAAAAAAAABAH8Q7ANiYuz83SuSGO+727Z0eAAAAADiJeAcAAAAAAAAAAAD0QbwDgI35LHLDHXfzwtkBAAAAgJOJdwAAAAAAAAAAAEAfxDsA2JCpzavIDXeUNnunBwAAAABOJt4BAAAAAAAAAAAAfRDvAGBD5sgNd9RlJwAAAADA6cQ7AAAAAAAAAAAAoA/iHQBsxNSmRG64oyx7AQAAAABOJ94BAAAAAAAAAAAAfRDvAGAj5sgNd9RlJwAAAADAw4h3AAAAAAAAAAAAQB/EOwDYgKlNidxwR1n2AgAAAAA8jHgHAAAAAAAAAAAA9EG8A4ANmCM33FGXnQAAAAAADyfeAQAAAAAAAAAAAH2o8dH7NS4/PXU+jR/Xx56H/I673+8rAvAGU5sSueGOsuwFAAAAAHg48Q4AAAAAAAAAAAAY3lP8z84A8NjmyA131GUnAAAAAMC7Ee8AAAAAAAAAAACA4Yl3ALB2U5sSueGOsuwFAAAAAHg34h0AAAAAAAAAAAAwPPEOANZujtxwR112AgAAAAC8O/EOAAAAAAAAAAAAGJ54BwBrNrUpkRvuKMteAAAAAIB3J94BAAAAAAAAAAAAwxPvAGDN5sgNd9RlJwAAAADA4xDvAAAAAAAAAAAAgOGJdwCwVlObErnhjrLsBQAAAAB4HOIdAAAAAAAAAAAAMDzxDgDWao7ccEdddgIAAAAAPB7xDgAAAAAAAAAAABieeAcAazS1KZEb7ijLXgAAAACAxyPeAQAAAAAAAAAAAMMT7wBgjebIDXfUZScAAAAAwOMS7wAAAAAAAAAAAIDhiXcAsDZTmxK54Y6y7AUAAAAAeFziHQAAAAAAAAAAADA88Q4A1maO3HBHXXYCAAAAADw+8Q4AAAAAAAAAAAAYnngHAGsytSmRG+4oy14AAAAAgMcn3gEAAAAAAAAAAADDE+8AYE3myA131GUnAAAAAMDTEO8AAAAAAAAAAACA4Yl3ALAWU5sSueGOsuwFAAAAAHga4h0AAAAAAAAAAAAwPPEOANZijtxwR112AgAAAAA8HfEOAAAAAAAAAAAAGJ54BwBrMLUpkRvuKMteAAAAAICnI94BAAAAAAAAAAAAwxPvAGAN5sgNd9RlJwAAAADA0xLvAAAAAAAAAAAAgOGJdwBwblObErnhjrLsBQAAAAB4WuIdAAAAAAAAAAAAMDzxDgDObY7ccEdddgIAAAAAPD3xDgAAAAAAAAAAABieeAcA5zS1KZEb7ijLXgAAAACApyfeAQAAAAAAAAAAAMMT7wDgnObIDXfUZScAAAAAQA7xDgAAAAAAAAAAABieeAcA5zK1KZEb7ijLXgAAAACAHOIdAAAAAAAAAAAAMDzxDgDOZY7ccEdddgIAAAAA5BHvAAAAAAAAAAAAgOGJdwBwDlObErnhjrLsBQAAAADII94BAAAAAAAAAAAAwxPvAOAc5sgNd9RlJwAAAABALvEOAAAAAAAAAAAAGJ54BwDZpjYlcsMdZdkLAAAAAJBLvAMAAAAAAAAAAACGJ94BQLbnkRvuuJvZ2QEAAACAsxDvAAAAAAAAAAAAgOGJdwCQademRH68Y+f0AAAAAMBZiHcAAAAAAAAAAADA8MQ7AMj0MvLDHbfODgAAAACcjXgHAAAAAAAAAAAADE+8A4As+zYl8uMdR6cHAAAAAM5GvAMAAAAAAAAAAAD6UOPZezUOF6fORfygPvY85Hfc/X5fEWB4zyM/3HHj7AAAAADAWYl3AAAAAAAAAAAAQB++CWBc1X7ncOErAgxt16ZEfrzjE6cHAAAAAM5KvAMAAAAAAAAAAAD6IN4BwMq9jPxwx42zAwAAAABnJ94BAAAAAAAAAAAAfRDvAGDF9m1K5Mc7jk4PAAAAAJydeAcAAAAAAAAAAAD0QbwDgBW7jfxwx62zAwAAAACrIN4BAAAAAAAAAAAAfRDvAGClDm1K5Mc7jk4PAAAAAKyCeAcAAAAAAAAAAAD0QbwDgJX6MvLDHbfODgAAAACshngHAAAAAAAAAAAA9EG8A4AVOkZ+uKO0OTg9AAAAALAa4h0AAAAAAAAAAADQB/EOAFZojvx4x7WzAwAAAACrIt4BAAAAAAAAAAAAfRDvAGBl9m1K5IY7yrIXAAAAAGA9xDsAAAAAAAAAAACgD+IdAKzMdeSGO+7mxtkBAAAAgNUR7wAAAAAAAAAAAIA+iHcAsCLHNiXy4x07pwcAAAAAVke8AwAAAAAAAAAAAPog3gHAisyRH+64cXYAAAAAYJXEOwAAAAAAAAAAAKAP4h0ArMTUpkR+vGPn9AAAAADAKol3AAAAAAAAAAAAQB/EOwBYievID3fcOjsAAAAAsFriHQAAAAAAAAAAANAH8Q4AVuDQpkR+vGPn9AAAAADAaol3AAAAAAAAAAAAQB/EOwBYgc8jP9xx4+wAAAAAwKqJdwAAAAAAAAAAAEAfxDsAOLOpzavIj3fsnB4AAAAAWDXxDgAAAAAAAAAAAOiDeAcAZzZHfrjj2tkBAAAAgNUT7wAAAAAAAAAAAIA+iHcAcEb7NiXy4x17pwcAAAAAVk+8AwAAAAAAAAAAAPog3gHAGV1HfrjjC2cHAAAAALog3gEAAAAAAAAAAAB9EO8A4Ew+aFMiP97hzw0AAAAAoA/iHQAAAAAAAAAAANAH8Q4AzuRF5Ic7Xjo7AAAAANAN8Q4AAAAAAAAAAADog3gHAGcwtSmRH+/YOT0AAAAA0A3xDgAAAAAAAAAAAOiDeAcAZ3Ad+eGOF84OAAAAAHRFvAMAAAAAAAAAAAD6IN4BQLK7/26XyA133O3bOz0AAAAA0BXxDgAAAAAAAAAAAOiDeAcAyT6L3HDH3bxwdgAAAACgO+IdAAAAAAAAAAAA0AfxDgASTW1eRW64o7TZOz0AAAAA0B3xDgAAAAAAAAAAAOiDeAcAiebIDXfUZScAAAAAQH/EOwAAAAAAAAAAAKAP4h0AJJnalMgNd5RlLwAAAABAf8Q7AAAAAAAAAAAAoA/iHQAkmSM33FGXnQAAAAAAfRLvAAAAAAAAAAAAgD6IdwCQYGpTIjfcUZa9AAAAAAB9Eu8AAAAAAAAAAACAPoh3AJBgjtxwR112AgAAAAD0S7wDAAAAAAAAAAAA+iDeAcATm9qUyA13lGUvAAAAAEC/xDsAAAAAAAAAAACgD+IdADyxOXLDHXXZCQAAAADQN/EOAAAAAAAAAAAA6IN4BwBPaGpTIjfcUZa9AAAAAAB9E+8AAAAAAAAAAACAPoh3APCE5sgNd9RlJwAAAABA/8Q7AAAAAAAAAAAAoA/iHQA8kalNidxwR1n2AgAAAAD0T7wDAAAAAAAAAAAA+iDeAcATmSM33FGXnQAAAAAAYxDvAAAAAAAAAAAAgD6IdwDwBKY2JXLDHWXZCwAAAAAwBvEOAAAAAAAAAAAA6IN4BwBPYI7ccEdddgIAAAAAjEO8AwAAAAAAAAAAAPog3gHAI5valMgNd5RlLwAAAADAOMQ7AAAAAAAAAAAAoA/iHQA8sjlywx112QkAAAAAMBbxDgAAAAAAAAAAAOiDeAcAj2hqUyI33FGWvQAAAAAAYxHvAAAAAAAAAAAAgD6IdwDwiObIDXfUZScAAAAAwHjEOwAAAAAAAAAAAKAP4h0APJKpTYnccEdZ9gIAAAAAjEe8AwAAAAAAAAAAAPog3gHAI5kjN9xRl50AAAAAAGMS7wAAAAAAAAAAAIA+iHcA8AimNiVywx1l2QsAAAAAMCbxDgAAAAAAAAAAAOhDjWfvfRPwOG0u4gf1sechv+Pu9/uKAGc3R264oy47AQAAAADGJd4BAAAAAAAAAAAAw3uK/xEbgP5MbUrkhjvKshcAAAAAYFziHQAAAAAAAAAAADA88Q4A7syRG+6oy04AAAAAgLGJdwAAAAAAAAAAAMDwxDsAmNqUyA13lGUvAAAAAMDYxDsAAAAAAAAAAABgeOIdAMyRG+6oy04AAAAAgPGJdwAAAAAAAAAAAMDwxDsAtm1qUyI33FGWvQAAAAAA4xPvAAAAAAAAAAAAgOGJdwBs2xy54Y667AQAAAAA2AbxDgAAAAAAAAAAABieeAfAdk1tSuSGO8qyFwAAAABgG8Q7AAAAAAAAAAAAYHjiHQDbNUduuKMuOwEAAAAAtkO8AwAAAAAAAAAAAIYn3gGwTVObErnhjrLsBQAAAADYDvEOAAAAAAAAAAAAGJ54B8A2zZEb7qjLTgAAAACAbRHvAAAAAAAAAAAAgOGJdwBsz9SmRG64oyx7AQAAAAC2RbwDAAAAAAAAAAAAhifeAbA9zyM33HE3s7MDAAAAAJsk3gEAAAAAAAAAAADDE+8A2JZdmxL58Y6d0wMAAAAAmyTeAQAAAAAAAAAAAMMT7wDYlpeRH+64dXYAAAAAYLPEOwAAAAAAAAAAAGB44h0A27FvUyI/3nF0egAAAABgs8Q7AAAAAAAAAAAAYHjiHQDb8Tzywx03zg4AAAAAbJp4BwAAAAAAAAAAAAxPvANgG3ZtSuTHOz5xegAAAABg08Q7AAAAAAAAAAAAYHjiHQDb8DLywx03zg4AAAAAbJ54BwAAAAAAAAAAAAxPvANgfPs2JfLjHUenBwAAAAA2T7wDAAAAAAAAAAAAhifeATC+28gPd9w6OwAAAABAiHcAAAAAAAAAAADABoh3AIzt0KZEfrzj6PQAAAAAACHeAQAAAAAAAAAAABsg3gEwti8jP9xx6+wAAAAAAAvxDgAAAAAAAAAAABieeAfAuI6RH+4obQ5ODwAAAACwEO8AAAAAAAAAAACA4Yl3AIxrjvx4x7WzAwAAAAD8P+IdAAAAAAAAAAAAMDzxDoAx7duUyA13lGUvAAAAAAD/p8ZnbeYVzWc+CgAAAAAAAAAAADwu8Q6AMV1Hbrjjbm6cHQAAAAAAAAAAAAAAAAAA2BrxDoDxHNuUyI937JweAAAAAAAAAAAAAAAAAADYGvEOgPHMkR/uuHF2AAAAAAAAAAAAAAAAAABgi8Q7AMYytSmRH+/YOT0AAAAAAAAAAAAAAAAAALBF4h0AY7mO/HDHrbMDAAAAAAAAAAAAAAAAAABdq/HR+zUuPz11Po0f18eeh/yOu9/vKwK8s0ObEvnxjp3TAwAAAAAAAAAAAAAAAAAAXatxuKhxVfudw4WvCPDOPo/8cMeNswMAAAAAAAAAAAAAAAAAAN0T7wDYvKnNq8iPd+ycHgAAAAAAAAAAAAAAAAAA6J54B8DmzZEf7rh2dgAAAAAAAAAAAAAAAAAAYAjiHQCbtm9TIj/esXd6AAAAAAAAAAAAAAAAAABgCOIdAJt2Hfnhji+cHQAAAAAAAAAAAAAAAAAAGIZ4B8BmfdCmRH68w3+3AQAAAAAAAAAAAAAAAACAcYh3AGzWi8gPd7x0dgAAAAAAAAAAAAAAAAAAYCjiHQCbNLUpkR/v2Dk9AAAAAAAAAAAAAAAAwP+yc4dAVlxrAsc/MbWFQKRqEYgRI1pM1c6rmtpM1SIQCMQTERERiAgEAhGBQCBStVMVgYiIQCBGtEAgRiBGRCAQiIiIiAhEBAIRgUAgRrS4e3qn2U14JHPunXvP7T7399v6HOF0f/fuzBOcPwBQFfEOgI10HOXDHUfWDgAAAAAAAAAAAAAAAAAAVEe8A2Dj9D83uygb7ujP27N6AAAAAAAAAAAAAAAAAACgOuIdABvn+ygb7ujnyNoBAAAAAAAAAAAAAAAAAIAqiXcAbJQmzWmUDXd0afasHgAAAAAAAAAAAAAAAAAAqJJ4B8BGaaNsuGM2nAkAAAAAAAAAAAAAAAAAAFAn8Q6AjdGk6aJsuKMbzgUAAAAAAAAAAAAAAAAAAKiTeAfAxmijbLhjNpwJAAAAAAAAAAAAAAAAAABQL/EOgI3QpOmibLijG84FAAAAAAAAAAAAAAAAAACol3gHwEZoo2y4YzacCQAAAAAAAAAAAAAAAAAAUDfxDoDqNWm6KBvu6IZzAQAAAAAAAAAAAAAAAAAA6ibeAVC9NsqGO2bDmQAAAAAAAAAAAAAAAAAAAPUT7wCoWpOmi7Lhjm44FwAAAAAAAAAAAAAAAAAAoH7iHQBVa6NsuGM2nAkAAAAAAAAAAAAAAAAAALAZxDsAqtWk6aJsuKMbzgUAAAAAAAAAAAAAAAAAANgM4h0A1WqjbLhjNpwJAAAAAAAAAAAAAAAAAACwOcQ7AKrUpOmibLijG84FAAAAAAAAAAAAAAAAAADYHOIdAFVqo2y4YzacCQAAAAAAAAAAAAAAAAAAsFnEOwCq06Tpomy4oxvOBQAAAAAAAAAAAAAAAAAA2CziHQDVaaNsuGM2nAkAAAAAAAAAAAAAAAAAALB5xDsAqtKk6aJsuKMbzgUAAAAAAAAAAAAAAAAAANg84h0AVWmjbLhjNpwJAAAAAAAAAAAAAAAAAACwmcQ7AKrRpOmibLijG84FAAAAAAAAAAAAAAAAAADYTOIdANVoo2y4YzacCQAAAAAAAAAAAAAAAAAAsLnEOwCq0KTpomy4oxvOBQAAAAAAAAAAAAAAAAAA2FziHQBVaKNsuGM2nAkAAAAAAAAAAAAAAAAAALDZxDsAJq9J00XZcEc3nAsAAAAAAAAAAAAAAAAAALDZxDsAJq+NsuGO2XAmAAAAAAAAAAAAAAAAAAAA4h0Ak9ak6aJsuKMbzgUAAAAAAAAAAAAAAAAAAEC8A2DS2igb7pgNZwIAAAAAAAAAAAAAAAAAANAT7wCYrCZNF2XDHd1wLgAAAAAAAAAAAAAAAAAAAD3xDoDJaqNsuGM2nAkAAAAAAAAAAAAAAAAAAMAH4h0Ak9Sk6aJsuKMbzgUAAAAAAAAAAAAAAAAAAOAD8Q6ASWqjbLhjNpwJAAAAAAAAAAAAAAAAAADAH4l3AExOk6aLsuGObjgXAAAAAAAAAAAAAAAAAACAPxLvAJicNsqGO2bDmQAAAAAAAAAAAAAAAAAAAHxMvANgUpo0XZQNd3TDuQAAAAAAAAAAAAAAAAAAAHxMvANgUh5H2XBHP621AwAAAAAAAAAAAAAAAAAA/AXxDoDJ2E3TRfl4x67VAwAAAAAAAAAAAAAAAAAA/IVZ/Nf2LD5/Pe+8jn/Mlj2LPEf//D5FYEM8ifLhjhNrBwAAAAAAAAAAAAAAAAAAWI1VXBIH4NP20nRRPt5xYPUAAAAAAAAAAAAAAAAAAACrId4BUM7jKB/ueGbtAAAAAAAAAAAAAAAAAAAAqyPeAVDGbpouysc7rlk9AAAAAAAAAAAAAAAAAADA6oh3AJTxJMqHO55ZOwAAAAAAAAAAAAAAAAAAwGqJdwCs3l6aLsrHOw6sHgAAAAAAAAAAAAAAAAAAYLXEOwBW7yTKhztOrB0AAAAAAAAAAAAAAAAAAGD1xDsAVms/TRfl4x0HVg8AAAAAAAAAAAAAAAAAALB64h0Aq/U8yoc7TqwdAAAAAAAAAAAAAAAAAACgDPEOgNU5iPLhji7NvtUDAAAAAAAAAAAAAAAAAACUId4BsDptlI93HFs7AAAAAAAAAAAAAAAAAABAOeIdAKuxl6aLsuGObjgXAAAAAAAAAAAAAAAAAACAQsQ7AFbjOMqGO/p5Zu0AAAAAAAAAAAAAAAAAAABliXcALN9Bmi7Kxzt2rR4AAAAAAAAAAAAAAAAAAKAs8Q6A5WujfLjjmbUDAAAAAAAAAAAAAAAAAACUJ94BsFxNmi7Kxzt2rR4AAAAAAAAAAAAAAAAAAKA88Q6A5TqO8uGOE2sHAAAAAAAAAAAAAAAAAABYD/EOgOXZT9NF+XjHrtUDAAAAAAAAAAAAAAAAAACsh3gHwPI8ivLhjmfWDgAAAAAAAAAAAAAAAAAAsD7iHQDL0aQ5jfLxjl2rBwAAAAAAAAAAAAAAAAAAWB/xDoDlaKN8uOPY2gEAAAAAAAAAAAAAAAAAANZLvAPg4vbSdFE+3rFn9QAAAAAAAAAAAAAAAAAAAOsl3gFwccdRPtzx1NoBAAAAAAAAAAAAAAAAAADWT7wD4GKupumifLxjx+oBAAAAAAAAAAAAAAAAAADWT7wD4GKOony444m1AwAAAAAAAAAAAAAAAAAAjIN4B8DimjRdlI937Fo9AAAAAAAAAAAAAAAAAADAOIh3ACzuOMqHO46sHQAAAAAAAAAAAAAAAAAAYDzEOwAWs5Omi7Lhjv68PasHAAAAAAAAAAAAAAAAAAAYD/EOgMV8H2XDHf0cWTsAAAAAAAAAAAAAAAAAAMC4iHcAzK9Jcxplwx1dmj2rBwAAAAAAAAAAAAAAAAAAGBfxDoD5tVE23DEbzgQAAAAAAAAAAAAAAAAAAGBkxDsA5tOk6aJsuKMbzgUAAAAAYGpm8VWa2yOar3woAAAAAAAAAAAA8Amz+PxKmnbeaWNntuxZ5Dn65/cpAhPRRtlwx2w4EwAAAACAKZrF6zRj+r/XPhQAAAAAAAAAAAD4hFns78zi89l0Z3/HpwhMQJOmi7Lhjm44FwAAAACAKRLvAAAAAAAAAAAAgGkQ7wAooo2y4Y7ZcCYAAAAAAFMl3gEAAAAAAAAAAADTIN4BsHJNmi7Khju64VwAAAAAAKZKvAMAAAAAAAAAAACmQbwDYOXaKBvumA1nAgAAAAAwZeIdAAAAAAAAAAAAMA3iHQAr1aTpomy4oxvOBQAAAABgysQ7AAAAAAAAAAAAYBrEOwBWqo2y4Y7ZcCYAAAAAAFMn3gEAAAAAAAAAAADTIN4BsDJNmi7Khju64VwAAAAAAKZOvAMAAAAAAAAAAACmQbwDYGXaKBvumA1nAgAAAABQA/EOAAAAAAAAAAAAmAbxDoCVaNJ0UTbc0Q3nAgAAAABQA/EOAAAAAAAAAAAAmAbxDoCVaKNsuGM2nAkAAAAAQC3EOwAAAAAAAAAAAGAaxDsAlq5J00XZcEc3nAsAAAAAQC3EOwAAAAAAAAAAAGAaxDsAlq6NsuGO2XAmAAAAAAA1Ee8AAAAAAAAAAACAaRDvAFiqJk0XZcMd3XAuAAAAAAA1Ee8AAAAAAAAAAACAaRDvAFiqNsqGO2bDmQAAAAAA1Ea8AwAAAAAAAAAAAKZBvANgaZo0XZQNd3TDuQAAAAAA1Ea8AwAAAAAAAAAAAKZBvANgadooG+6YDWcCAAAAAFAj8Q4AAAAAAAAAAACYBvEOgKVo0nRRNtzRDecCAAAAAFAj8Q4AAAAAAAAAAACYBvEOgKVoo2y4YzacCQAAAABArcQ7AAAAAAAAAAAAYBrEOwAurEnTRdlwRzecCwAAAABArcQ7AAAAAAAAAAAAYBrEOwAurI2y4Y7ZcCYAAAAAADUT7wAAAAAAAAAAAIBpEO8AuJAmTRdlwx3dcC4AAAAAADUT7wAAAAAAAAAAAIBpEO8AuJA2yoY7ZsOZAAAAAADUTrwDAAAAAAAAAAAApkG8A2BhTZouyoY7uuFcAAAAAABqJ94BAAAAAAAAAAAA0yDeAbCwNsqGO2bDmQAAAAAAbALxDgAAAAAAAAAAAJgG8Q6AhTRpuigb7uiGcwEAAAAA2ATiHQAAAAAAAAAAADAN4h0AC2mjbLhjNpwJAAAAAMCmEO8AAAAAAAAAAACAaRDvAJhbk6aLsuGObjgXAAAAAIBNId4BAAAAAAAAAAAA0yDeATC3NsqGO2bDmQAAAAAAbBLxDgAAAAAAAAAAAJgG8Q6AuTRpuigb7uiGcwEAAAAA2CTiHQAAAAAAAAAAADAN4h0Ac3kcZcMd/bTWDgAAAACwgcQ7AAAAAAAAAAAAYBrEOwCy7abpony8Y9fqAQAAAAA2kHgHAAAAAAAAAAAATIN4B0C2J1E+3HFi7QAAAAAAG0q8AwAAAAAAAAAAAKZBvAMgy16aLsrHOw6sHgAAAABgQ4l3AAAAAAAAAAAAwDSIdwBkeRzlwx3PrB0AAAAAYIOJdwAAAAAAAAAAAMA0iHcAnGs3TRfl4x3XrB4AAAAAYIOJdwAAAAAAAAAAAMA0iHcAnOtJlA93PLN2AAAAAIANJ94BAAAAAAAAAAAA0yDeAfC39tJ0UT7ecWD1AAAAAAAbTrwDAAAAAAAAAAAApkG8A+BvnUT5cMeJtQMAAAAAIN4BAAAAAAAAAAAAEyHeAfCX9tN0UT7ecWD1AAAAAACIdwAAAAAAAAAAAMBEiHcA/KXnUT7ccWLtAAAAAAD8L/EOAAAAAAAAAAAAmAbxDoBPOojy4Y4uzb7VAwAAAADwv8Q7AAAAAAAAAAAAYBrEOwA+qY3y8Y5jawcAAAAA4P+IdwAAAAAAAAAAAMA0iHcA/Iu9NF2UDXd0w7kAAAAAAHBGvAMAAAAAAAAAAACmQbwD4F8cR9lwRz/PrB0AAAAAgD8R7wAAAAAAAAAAAIBpEO8A+JODNF2Uj3fsWj0AAAAAAH8i3gEAAAAAAAAAAADTIN4B8CdtlA93PLN2AAAAAAD+hXgHAAAAAAAAAAAATMMsPr+Spp132tiZLXsWeY7++X2KwJI0abooH+/YtXoAAAAAAP6FeAcAAAAAAAAAAABUbxUX2AHW6TjKhztOrB0AAAAAgE8S7wAAAAAAAAAAAIDqiXcANdlP00X5eMeu1QMAAAAA8EniHQAAAAAAAAAAAFA98Q6gJo+ifLjjmbUDAAAAAPCXxDsAAAAAAAAAAACgeuIdQC2aNKdRPt6xa/UAAAAAAPwl8Q4AAAAAAAAAAAConngHUIs2yoc7jq0dAAAAAIC/Jd4BAAAAAAAAAADwf7bS3EjzIM3jNM/T/JLm9R/mZZpnab5L81Wa3eG/gzET7wBqsJemi/Lxjj2rBwAAAADgb4l3AAAAAAAAAAAAG64Pb9xK8zTNu1jsUu+bNIdptjd0hzfStCMc/p94B1CD4ygf7nhq7QAAAAAAnEu8AwAAAAAAAAAA2FB9tONOmt9ieRd8uzi75Nts2C6/i/KXqcUl5mO/wNRdHX7Plv5dsmP1AAAAAACcS7wDAAAAAAAAAADYQPtpfonVXfTtLxcfxlkgZBM8D/GOsbNfYOqO1vB75Im1AwAAAACQRbwDAAAAAAAAAADYMHfTnEaZS78v0lzZgJ2+D/GOsbNfYMqaOAtjlf49smv1AAAAAABkEe8AAAAAAAAAAAA2yLdR/uLvqzQ7Fe90O8YZ7hCX+DP7BabseA2/Q46sHQAAAACAbOIdAAAAAAAAAADAhlhHuOPDvEnTVLrXWyHeMQX2C0zVTpqu8O+P/rw9qwcAAAAAIJt4BwAAAAAAAAAAsAHuxuIXeN+meZnmRZpXsfgF4l/TXKlwt9+FeMcU2C8wVd+v4ffHkbUDAAAAADAX8Q4AAAAAAAAAAKByB2lOI//C7vs0j9PcjE/HNrbSXEvzQ5rfY77LwCcV7vdpiHdMgf0CU9TM+Tt8GdNHuvasHgAAAACAuYh3AAAAAAAAAAAAFbuU5k3kX9g9TrMz59//MM4u+uae8XVlO55nv+Id62O/wBS1a/jd0Vo7AAAAAABzE+8AAAAAAAAAAAAq1oc1ci7qnsbFohrX07zNPKv/c1cq2e+VjPd9n+bGmob/J94BTE0T88WxljHdcC4AAAAAAMxHvAMAAAAAAAAAAKjUTuRf+v1yCeftpXmTed6jSnZ8PeNdX/oqjoJ4BzA1bZQNd8yGMwEAAAAAYH7iHQAAAAAAAAAAQKWOIu+i7ndLPLOPWZxmnPk+zdUKdvxtbE6oZOrEO4ApaSI/wLWs6YZzAQAAAABgfuIdAAAAAAAAAABAhbYj79Lv8zRbSz7768i7JPxDBXt+kvGeX/s6joJ4BzAlbZQNd8yGMwEAAAAAYDHiHQAAAAAAAAAAQIX6MMZ5l3T7uEezovNPMs5/l+byxPf8U8Z77vk6joJ4BzAVTeQFuJY5q/zfBAAAAAAAbALxDgAAAAAAAAAAoDKX4iyMcd5F3ScrfIY+WJFz8fibie/59Jz3e59my1dyFMQ7gKloo2y4YzacCQAAAAAAixPvAAAAAAAAAAAAKnMr8i7qXlvxczzNeIafJrzng4z3e+nrOBriHcAUNJEXv1rmdMO5AAAAAACwOPEOAAAAAAAAAACgMmOJZuTELfrZnuiev854t0e+jqMh3gFMQRtlwx2z4UwAAAAAALgY8Q4AAAAAAAAAAKAiW2nex/kXdb8t9DyvM57l3kR3/TDj3b72lRwN8Q5g7Jo0XZQNd3TDuQAAAAAAcDHiHQAAAAAAAAAAQEX2I++y7kGh5znKeJaTie76Zca77flKjoZ4BzB2bZQNd8yGMwEAAAAA4OLEOwAAAAAAAAAAgIo8jPMv6r5Ls1Xoeb7OeJ63BZ9nmd6e816nE32vWol3AGPWpOmibLijG84FAAAAAICLE+8AAAAAAAAAAAAq8iLOv6x7UvB5tiPvAvH1ie15N+OdfvZ1HBXxDmDM2igb7pgNZwIAAAAAwHKIdwAAAAAAAAAAABV5H+df1r0/wme6N7E938p4p8e+jqMi3gGMVZOmi7Lhjm44FwAAAAAAlkO8AwAAAAAAAAAAqMRu5F3YvVH4uV5kPNPTie3624x3uuMr+SeHUfZieokBWIZ2DT+/WmsHAAAAAGCpxDsAAAAAAAAAAIBK3Iq8C7vbhZ/rccYz/TqxXT/NeKcDX8k/OQzxDoCPNWm6wj+7uuFcAAAAAABYHvEOAAAAAAAAAACgEvfi/Au779fwXPcj7zLx1oR2/fs573I6x/tcTbOf5sYfZi/NZ5V9Pw9DvAPgY+0afna11g4AAAAAwNKJdwAAAAAAAAAAAJU4ivMv7P6yhuf6MvIuEzcT2fNnGe/y81/8t5fS3EzzQ5oXcRb5OC+20v+5h2mux7QCJx87jCVcOt+Of5u9jn+MYmbx+ev557+2/agCBv3vvS7Khju6Cf2+BQAAAABgSsQ7AAAAAAAAAACASjyP8y/tPl/Dc12LvAvF1yey539mvMvjj/6bvTSP0ryLi126fhtnEYzPJvj9PIwlXDzfiX/roxkTnv0dP6qAQRtlwx2z4UwAAAAAAFg+8Q4AAAAAAAAAAKASr2Kcl3Z3Iu9C8a2J7PlBxrvcGf7sQZrjNF0s9/L1+zQPY1oRj8MQ7xDvAD5oVvC74bzphnMBAAAAAGD5xDsAAAAAAAAAAIBKvI3zL+4+XMNzXYq8S8UPJrLno4x3uT78uVVfzH6T5suJ7O0wxDvEO4AP2igb7lhXwAsAAAAAgE0h3gEAAAAAAAAAAFQi5+Lu4Yif7buJ7PmXjHf5PcpeyP42zdbI93YY4h3iHUCvidXHnT6ebjgXAAAAAABWQ7wDAAAAAAAAAACoQB9uyLm8e3dNz5cTs2gnsOfLUf7Cde48SXNpxLs7DPEO8Q4ght93pX9HtNYOAAAAAMBKiXcAAAAAAAAAAAAV2I68y7u31/R8r6OOi8XXYpzhjg/zPM4CI2N0GOId4h1AE+UjUN1wLgAAAAAArI54BwAAAAAAAAAAUIGdGHe841XGsz2ZwJ5vx3IvVL+Ns7BJP++X9HeepNka4e4OQ7xDvANoo3zYqbV2AAAAAABWTrwDAAAAAAAAAACowLXIu8D7xZqe70XGsz2fwJ4fx+KXp0/TPI2zAMhumkuf+Psvp7me5pthH92CZ30/wt0dhniHeAdstuYCP9cXnW44FwAAAAAAVku8AwAAAAAAAAAAqMCNyLvEe2NNz5cT73gxgT2/iPkvTr9Ncy/NZwucdzXOgiHzXvbu//w/R7a7wxDvEO+AzdZG2XDHbDgTAAAAAABWT7wDAAAAAAAAAACowI0Q7yjhNOa7NN2HNz5bwrm7aV7OefbvaS6PaHeHId4h3gGbq4n5Q0wXnW44FwAAAAAAVk+8AwAAAAAAAAAAqMCNEO9YtZ3IvzDdRz5uLfn8rTRtzHdx++GI9ncY4h3iHbC55v35vYxprR0AAAAAgGLEOwAAAAAAAAAAgArcCPGOVbuVueP3aW6u8DkexnwRkSsj2d9hiHeId8BmatJ0UTbc0Q3nAgAAAABAGeIdAAAAAAAAAABABW6EeMeqHUbeZembBZ7lOPIvcB9OaH/iHUCN2igb7pgNZwIAAAAAQDniHQAAAAAAAAAAQAVuhHjHqm2l2UvzZZoHab5L8yTNz2lOh3e4V+hZLqf5LfMz/3149nU7DPEO8Q7YPE2chZ1Khju64VwAAAAAAChHvAMAAAAAAAAAAKjA9RDvWLerUTaScSfyL3LfHMF+DkO8Q7wDNs/jKBvu6Ke1dgAAAAAAihPvAAAAAAAAAAAAKrATeRd6v1jT8/2c8WxPfYxz6UMhv2Z+7g9H8LyHId4h3gGbZTdNF+XjHbtWDwAAAABAceIdAAAAAAAAAABABXYi70Lv7TU93+uMZ2t9jHO7n/m5vxrBs/53iHeId8BmeRLlwx0n1g4AAAAAwFqIdwAAAAAAAAAAABXYDvGOTdRE/oXuyzW8cB+/EO8AJmAvTRfl4x0HVg8AAAAAwFqIdwAAAAAAAAAAABXYirxLvXfX9Hy/ZzzbQx/jQn7N/Ox3a3hZ8Q5gIh5H+XDHM2sHAAAAAGBtxDsAAAAAAAAAAIBKdHH+xd7DNT1bzqXj+z7ChRxl7verGl5WvAOYgN3M38nLnmtWDwAAAADA2oh3AAAAAAAAAAAAlfgtzr/Y+/0anuty5F06vu0jXMiDzP1+U8PLincAE/Akyoc7nlk7AAAAAABrJd4BAAAAAAAAAABU4kWcf7n3yRqeayfyLh7f9BEu5Hbmfg9reFnxDmDk9tJ0UT7ecWD1AAAAAACslXgHAAAAAAAAAABQiadx/uXeF2t4ruuRd/F430e4kJsh3iHeAYzFSZQPd5xYOwAAAAAAayfeAQAAAAAAAAAAVOJhnH/B99c1PNfXkXf5eNtHuJAbId4h3gGMQR+h6qJ8vOPA6gEAAAAAWDvxDgAAAAAAAAAAoBJ34/wLvqdptgo/14OM53q3hueqxY0Q7xDvAMbgeZQPd5xYOwAAAAAAoyDeAQAAAAAAAAAAVOJ65F303S78XG3GMz338S3si8zP/W4NLyveAYzUQZQPd3Rp9q0eAAAAAIBREO8AAAAAAAAAAAAq8VmcXeQ977LvzcLP9VPGM7U+voXdjrxL3l/W8LLiHcBI5YSqlj3H1g4AAAAAwGiIdwAAAAAAAAAAABX5Lc6/7Hu/8DO9y3imBz66hT2IvEve12p4WfEOYIT2Ii+etczphnMBAAAAAGAcxDsAAAAAAAAAAICKHMf5F37bgs/TRN4l5Jsj3umlNPtpbqS5FWexjO+HPf6Y5lWa/h9+3R/xZ97Pdg1fcPEOYKK/e5c9z6wdAAAAAIBREe8AAAAAAAAAAAAq8k2cf+H3t4LPcyfjed6luTzinV6LcV+kfpW5460avuDiHcDIHKTpony8Y9fqAQAAAAAYFfEOAAAAAAAAAACgInuRd+l3u9DzPM14lpOR7/RS5k7X8Y+/djKf7cdavuDiHcDItFE+3PHM2gEAAAAAGB3xDgAAAAAAAAAAoDJv4vyLv3cLPMdWmncZz/JgAjt9G3kXqvcLP9fdzOd6UMuXW7wDGJEmTRfl4x27Vg8AAAAAwOiIdwAAAAAAAAAAAJVp4/yLv88LPMeXkXcJeWcCOz3OfJeHhZ/r18znamr5cot3ABP83bDMObF2AAAAAABGSbwDAAAAAAAAAACozM3IuwC8veLnyLnU/MtEdno/c6f9PwDbGtnn/EtNX27xDmAk9tN0UT7esWv1AAAAAACMkngHAAAAAAAAAABQoTdx/gXgRys8P/dS872J7HMv8i9p3y7wPH0g5NcRPU8x4h3ASDyK8uGOZ9YOAAAAAMBoiXcAAAAAAAAAAAAV+iHOvwTcxyj2VnT+jxnnv09zdUI7/TnyLle/SnNpxc9yL/NZ+ojLVk1fbPEOYASaNKdRPt6xa/UAAAAAAIyWeAcAAAAAAAAAAFCh7ci7WPwilh93+DryLiH/MLGd3o38C9bfrfA5bkb+pfH7tX2xxTuAEWijfLjj2NoBAAAAABg18Q4AAAAAAAAAAKBSTyLvQvDREs/cT/Mu48z3cRYYmZJLad5E/kXrL1fwDP1+32ae/1uay7V9qcU7gDXbS9NF+XjHntUDAAAAADBq4h0AAAAAAAAAAECldiP/gvGjNFsXPG+esMSjJb7nTuRffr59wbPuznFWv/svlvie8+y3n3/W+KUW7wDW7DjKhzueWjsAAAAAAKMn3gEAAAAAAAAAAFTsh8i/HPw4zaUFz7mZ5n3mOX2A4soS33EnysU7+sDJq5gv4PHNEt7xdswX7mhr/UKLdwBrdDXyo1jLHD83AAAAAAAYP/EOAAAAAAAAAACgYn2Mo/9HSbkXhPs/e23Ov/9hmtM5zriz5HfciXLxjt7enO/bz8s59/rBjTQ/zXnWT7F4hGX0xDuANTqK8uGOJ9YOAAAAAMAkzOKrNLdHNF/5UAAAAAAAAAAAgGW6maaL+S4L/xhnoYurn/j7ttIcxFm0482cf++jFbzfTpSNd/TuxGKXsF+kuRdnAZCtv3mf/s/8ssDf//YvPrNqiHcAa9Is8Lt0GbNr9QAAAAAAAAAAAAAAAAAAMA6HsfjF4d/TvIyz8MSvaU4X/Ht+TnNpBe+2E+XjHb1v42IXst+n+WnYaz+vhl0vejn8XZxFVaom3gGsyXGUD3ccWTsAAAAAAAAAAAAAAAAAAIzL91H+4vGH+SXNlRW9106sJ97R+3aNO/3jvIkNCHdEiHcAa9H//+2iYaVFpz9vz+oBAAAAAAAAAAAAAAAAAGB81hGb+DVWF+7o7cT64h29+1H+UvfH+93ZlC+weAewBuuIXx1ZOwAAAAAAAAAAAAAAAAAAjNc3ad5HmcvHx7HacEdvJ9Yb7+jdSPMmyl/ufpjm8iZ9ecU7gMKaNKeFf7b3Qag9qwcAAAAAAAAAAAAAAAAAgHHbTfMyVnfxuI+D3EmzVeBddmL98Y5eHyn5Ic4uXa/6YvfPaa5t4hd3Fv9xeRb/eXveuR3/Plv2LPIc/fP78QOT0kb5MFNr7QAAAAAAAAAAAAAAAAAAMB2307yK5V047sMV/aXj7YLvsBPjiHd80KR5nOZdLP9C949pvogyUZTarOKCPVC3JsoEmT7+PdpYPQAAAAAAAAAAAAAAAAAATM+XaY7TnMZil41/S/MwykY7PvgszWHm7Bd+rttpnsXFQh6v03wXLnNflHgHMK82yoY7ZsOZAAAAAAAAAAAAAAAAAADAhF1Ocz3NvTRHaU7S/BxnAYkP8zLOghTfx1mcYsfasuyluZPm8bC/nz7a66tht31E5ds0X8VZsGPL6pZCvAOYR//zt4uy4Y4uhJoAAAAAAAAAAAAAAAAAAAAYKfEOYB5tlA13zIYzAQAAAAAAAAAAAAAAAAAAYJTEO4BcTZouyoY7uuFcAAAAAAAAAAAAAAAAAAAAGCXxDiBXG2XDHbPhTAAAAAAAAAAAAAAAAAAAABgt8Q4gR5Omi7Lhjm44FwAAAAAAAAAAAAAAAAAAAEZLvAPI0UbZcMdsOBMAAAAAAPgfdu5WSZLrWsPwAieMD5xwGAzIcBQo0BFqRwieSzMfKDBgQIIGAg0aNBTQpfgyBiyQ3nW0bcvS/KtrVe6dz6P48KrYOQ31AgAAAAAAAAAAALsm3gF8ztKWURvuyH4XAAAAAAAAAAAAAAAAAAAAdk28A/icNWrDHVu/CQAAAAAAAAAAAAAAAAAAALsn3gF8ytKWURvuyH4XAAAAAAAAAAAAAAAAAAAAdk+8A/iUNWrDHVu/CQAAAAAAAAAAAAAAAAAAAEMQ7wA+ZmnLqA13ZL8LAAAAAAAAAAAAAAAAAAAAQxDvAD5mjdpwx9ZvAgAAAAAAAAAAAAAAAAAAwDDEO4APWdoyasMd2e8CAAAAAAAAAAAAAAAAAADAMMQ7gA9ZozbcsfWbAAAAAAAAAAAAAAAAAAAAMBTxDuC3lraM2nBH9rsAAAAAAAAAAAAAAAAAAAAwFPEO4LfWqA13bP0mAAAAAAAAAAAAAAAAAAAADEe8A/i1pS2jNtyR/S4AAAAAAAAAAAAAAAAAAAAMR7wD+LU1asMdW78JAAAAAAAAAAAAAAAAAAAAQxLvAP5lacuoDXdkvwsAAAAAAAAAAAAAAAAAAABDEu8A/mWN2nDH1m8CAAAAAAAAAAAAAAAAAADAsMQ7gIulLaM23JH9LgAAAAAAAAAAAAAAAAAAAAxLvAO4WKM23LH1mwAAAAAAAAAAAAAAAAAAADA08Q5gacuoDXdkvwsAAAAAAAAAAAAAAAAAAABDE+8A1qgNd2z9JgAAAAAAAAAAAAAAAAAAAAxPvAOObWnLqA13ZL8LAAAAAAAAAAAAAAAAAAAAwxPvgGNbozbcsfWbAAAAAAAAAAAAAAAAAAAAMAXxDjiupS2jNtyR/S4AAAAAAAAAAAAAAAAAAABMQbwDjmuN2nDH1m8CAAAAAAAAAAAAAAAAAADAvmzxf/+zxd3rr93r+NP20vuW33H5/b4ilFraMmrDHdnvAgAAAAAAAAAAAAAAAAAAwL78EsD4bht3d699RSj1NmrDHZetnh0AAAAAAAAAAAAAAAAAAIBdEu8AvsKpLaM+3nHy9AAAAAAAAAAAAAAAAAAAAOySeAfwFR6iPtzx7NkBAAAAAAAAAAAAAAAAAADYLfEO4Aud2zLq4x33nh4AAAAAAAAAAAAAAAAAAIDdEu8AvtDbqA93PHl2AAAAAAAAAAAAAAAAAAAAdk28A/gCp7aM+njH954eAAAAAAAAAAAAAAAAAACAXRPvAL7AQ9SHO548OwAAAAAAAAAAAAAAAAAAALsn3gF8xrktoz7ece/pAQAAAAAAAAAAAAAAAAAA2D3xDuAznqM+3PHs2QEAAAAAAAAAAAAAAAAAABiCeAfwCXdtGfXxjntPDwAAAAAAAAAAAAAAAAAAwBDEO4BP+Cnqwx3Pnh0AAAAAAAAAAAAAAAAAAIBhiHcAH3Ef9eGObLvz9AAAAAAAAAAAAAAAAAAAAAxDvAP4iDXq4x2Pnh0AAAAAAAAAAAAAAAAAAIChiHcAH3Buy6gNd2S/CwAAAAAAAAAAAAAAAAAAAOMQ7wA+4DFqwx2XPXl2AAAAAAAAAAAAAAAAAAAAhiPeAfzGfVtGfbzj5OkBAAAAAAAAAAAAAAAAAAAYjngH8Btr1Ic7njw7AAAAAAAAAAAAAAAAAAAAQxLvAH5lacuoj3ecPD0AAAAAAAAAAAAAAAAAAABDEu8AfuUx6sMdz54dAAAAAAAAAAAAAAAAAACAYYl3AN1dW0Z9vOPk6QEAAAAAAAAAAAAAAAAAABiWeAfQ/RD14Y4nzw4AAAAAAAAAAAAAAAAAAMDQxDuAZml7H/XxjpOnBwAAAAAAAAAAAAAAAAAAYGjiHUCzRn2449GzAwAAAAAAAAAAAAAAAAAAMDzxDji8c1tGfbzj7OkBAAAAAAAAAAAAAAAAAAAYnngHHN5j1Ic7fvTsAAAAAAAAAAAAAAAAAAAATEG8Aw7tVVtGfbzD3y0AAAAAAAAAAAAAAAAAAABzEO+AQ3sX9eGOB88OAAAAAAAAAAAAAAAAAADANMQ74LCWtoz6eMfJ0wMAAAAAAAAAAAAAAAAAADAN8Q44rMeoD3e88+wAAAAAAAAAAAAAAAAAAABMRbwDDunyd5NRG+643Dt7egAAAAAAAAAAAAAAAAAAAKYi3gGH9CZqwx2XvfPsAAAAAAAAAAAAAAAAAAAATEe8Aw5naYCeld4AAIAASURBVHsfteGObDt7egAAAAAAAAAAAAAAAAAAAKYj3gGHs0ZtuGPrNwEAAAAAAAAAAAAAAAAAAGA+4h1wKEtbRm24I/tdAAAAAAAAAAAAAAAAAAAAmI94BxzKGrXhjq3fBAAAAAAAAAAAAAAAAAAAgDmJd8BhLG0ZteGO7HcBAAAAAAAAAAAAAAAAAABgTuIdcBhr1IY7tn4TAAAAAAAAAAAAAAAAAAAA5iXeAYewtGXUhjuy3wUAAAAAAAAAAAAAAAAAAIB5iXfAIaxRG+7Y+k0AAAAAAAAAAAAAAAAAAACYm3gHTG9py6gNd2S/CwAAAAAAAAAAAAAAAAAAAHMT74DprVEb7tj6TQAAAAAAAAAAAAAAAAAAAJifeAdMbWnLqA13ZL8LAAAAAAAAAAAAAAAAAAAA8xPvgKmtURvu2PpNAAAAAAAAAAAAAAAAAAAAOAbxDpjW0pZRG+7IfhcAAAAAAAAAAAAAAAAAAACOQbwDprVGbbhj6zcBAAAAAAAAAAAAAAAAAADgOMQ7YEpLW0ZtuCP7XQAAAAAAAAAAAAAAAAAAADgO8Q6Y0hq14Y6t3wQAAAAAAF7KFm/a1h3tjY8CAAAAAAAAAAAAL+sa//M/8MctbRm14Y7sdwEAAAAAgJeyxT/a9vTfP3wUAAAAAAAAAAAAeFniHbBPa9SGO7Z+EwAAAAAAeEniHQAAAAAAAAAAADA98Q7Yn6Utozbckf0uAAAAAADwksQ7AAAAAAAAAAAAYHriHbA/a9SGO7Z+EwAAAAAAeGniHQAAAAAAAAAAADA98Q7Yl6Utozbckf0uAAAAAADw0sQ7AAAAAAAAAAAAYHriHbAva9SGO7Z+EwAAAAAAuAbxDgAAAAAAAAAAAJieeAfsx9KWURvuyH4XAAAAAAC4BvEOAAAAAAAAAAAAmJ54B+zHGrXhjq3fBAAAAAAArkW8AwAAAAAAAAAAAKYn3gH7sLRl1IY7st8FAAAAAACuRbwDAAAAAAAAAAAApifeAfuwRm24Y+s3AQAAAACAaxLvAAAAAAAAAAAAgOmJd8DtLW0ZteGO7HcBAAAAAIBrEu8AAAAAAAAAAACA6Yl3wO2tURvu2PpNAAAAAADg2sQ7AAAAAAAAAAAAYHriHXBbS1tGbbgj+10AAAAAAODaxDsAAAAAAAAAAABgeuIdcFtr1IY7tn4TAAAAAACoIN4BAAAAAAAAAAAA0xPvgNtZ2jJqwx3Z7wIAAAAAABXEOwAAAAAAAAAAAGB64h1wO2vUhju2fhMAAAAAAKgi3gEAAAAAAAAAAADTE++A21jaMmrDHdnvAgAAAAAAVcQ7AAAAAAAAAAAAYHriHXAbb6M23HHZ6tkBAAAAAKCYeAcAAAAAAAAAAABMT7wD6p3aMurjHSdPDwAAAAAAxcQ7AAAAAAAAAAAAYHriHVDvIerDHc+eHQAAAAAAbkC8AwAAAAAAAAAAAKYn3gG1zm0Z9fGOe08PAAAAAAA3IN4BAAAAAAAAAAAA0xPvgFpvoz7c8eTZAQAAAADgRsQ7AAAAAAAAAAAAYHriHVDn1JZRH+/43tMDAAAAAMCNiHcAAAAAAAAAAADA9MQ7oM5D1Ic7njw7AAAAAADckHgHAAAAAAAAAAAATE+8A2qc2zLq4x33nh4AAAAAAG5IvAMAAAAAAAAAAACmJ94BNZ6jPtzx7NkBAAAAAODGxDsAAAAAAAAAAABgeuIdcH13bRn18Y57Tw8AAAAAADcm3gEAAAAAAAAAAADTE++A6/sp6sMdz54dAAAAAAB2QLwDAAAAAAAAAAAApifeAdd1H/Xhjmy78/QAAAAAALAD4h0AAAAAAAAAAAAwPfEOuK416uMdj54dAAAAAAB2QrwDAAAAAAAAAAAApifeAddzbsuoDXdkvwsAAAAAAOyBeAcAAAAAAAAAAACMYYu7/93i/u9fu7/Hn7eX3rf8jsvv9xWZ0GPUhjsue/LsAAAAAACwI+IdAAAAAAAAAAAAMIYt7l5v8d027u5e+4pM5r4toz7ecfL0AAAAAACwI+IdAAAAAAAAAAAAMAbxDtidNerDHU+eHQAAAAAAdka8AwAAAAAAAAAAAMYg3gG7srRl1Mc7Tp4eAAAAAAB2RrwDAAAAAAAAAAAAxiDeAbvyGPXhjmfPDgAAAAAAOyTeAQAAAAAAAAAAAGMQ74DduGvLqI93nDw9AAAAAADskHgHAAAAAAAAAAAAjEG8A3bjh6gPdzx5dgAAAAAA2CnxDgAAAAAAAAAAABiDeAfswtL2PurjHSdPDwAAAAAAOyXeAQAAAAAAAAAAAGMQ74BdWKM+3PHo2QEAAAAAYMfEOwAAAAAAAAAAAGAM4h1wc+e2jPp4x9nTAwAAAADAjol3AAAAAAAAAAAAwBjEO+DmHqM+3PGjZwcAAAAAgJ0T7wAAAAAAAAAAAIAxiHfATb1qy6iPd/i7AQAAAACAvRPvAAAAAAAAAAAAgDGId8BNvYv6cMeDZwcAAAAAgAGIdwAAAAAAAAAAAMAYxDvgZpa2jPp4x8nTAwAAAADAAMQ7AAAAAAAAAAAAYAziHXAzj1Ef7njn2QEAAAAAYBDiHQAAAAAAAAAAADAG8Q64icu/24zacMfl3tnTAwAAAADAIMQ7AAAAAAAAAAAAYAziHXATb6I23HHZO88OAAAAAAADEe8AAAAAAAAAAACAMYh3QLml7X3Uhjuy7ezpAQAAAABgIOIdAAAAAAAAAAAAMAbxDii3Rm24Y+s3AQAAAACAkYh3AAAAAAAAAAAAwBjEO6DU0pZRG+7IfhcAAAAAABiJeAcAAAAAAAAAAACMQbwDSq1RG+7Y+k0AAAAAAGA04h0AAAAAAAAAAAAwBvEOKLO0ZdSGO7LfBQAAAAAARiPeAQAAAAAAAAAAAGMQ74Aya9SGO7Z+EwAAAAAAGJF4BwAAAAAAAAAAAIxBvANKLG0ZteGO7HcBAAAAAIARiXcAAAAAAAAAAADAGMQ7oMQateGOrd8EAAAAAABGJd4BAAAAAAAAAAAAYxDvgKtb2jJqwx3Z7wIAAAAAAKMS7wAAAAAAAAAAAIAxiHfA1a1RG+7Y+k0AAAAAAGBk4h0AAAAAAAAAAAAwBvEOuKqlLaM23JH9LgAAAAAAMDLxDgAAAAAAAAAAABiDeAdc1Rq14Y6t3wQAAAAAAEYn3gEAAAAAAAAAAABjEO+Aq1naMmrDHdnvAgAAAAAAoxPvAAAAAAAAAAAAgDGId8DVrFEb7tj6TQAAAAAAYAbiHQAAAAAAAAAAADAG8Q64iqUtozbckf0uAAAAAAAwA/EOAAAAAAAAAAAAGIN4B1zFGrXhjq3fBAAAAAAAZiHeAQAAAAAAAAAAAGMQ74AXt7Rl1IY7st8FAAAAAABmId4BAAAAAAAAAAAAYxDvgBe3Rm24Y+s3AQAAAACAmYh3AAAAAAAAAAAAwBjEO+BFLW0ZteGO7HcBAAAAAICZiHcAAAAAAAAAAADAGMQ74EWtURvu2PpNAAAAAABgNuIdAAAAAAAAAAAAMAbxDngxS1tGbbgj+10AAAAAAGA24h0AAAAAAAAAAAAwBvEOeDFr1IY7tn4TAAAAAACYkXgHAAAAAAAAAAAAjEG8A17E0pZRG+7IfhcAAAAAAJiReAcAAAAAAAAAAACMQbwDXsQateGOrd8EAAAAAABmJd4BAAAAAAAAAAAAYxDvgD9sacuoDXdkvwsAAAAAAMxKvAMAAAAAAAAAAADGIN4Bf9gateGOrd8EAAAAAABmJt4BAAAAAAAAAAAAYxDvgD9kacuoDXdkvwsAAAAAAMxMvAMAAAAAAAAAAADGIN4Bf8gateGOrd8EAAAAAABmJ94BAAAAAAAAAAAAYxDvgG+2tGXUhjuy3wUAAAAAAGYn3gEAAAAAAAAAAABjEO+Ab7ZGbbhj6zcBAAAAAIAjEO8AAAAAAAAAAACAMWzxt1dbfPfz1+7n+Ov20vuW33H5/b4iN7C0ZdSGO7LfBQAAAAAAjkC8AwAAAAAAAAAAAKZ3jTgBjGKN2nDH1m8CAAAAAABHId4BAAAAAAAAAAAA0xPv4KiWtozacEf2uwAAAAAAwFGIdwAAAAAAAAAAAMD0xDs4qrdRG+64bPXsAAAAAABwMOIdAAAAAAAAAAAAMD3xDo7o1JZRH+84eXoAAAAAADgY8Q4AAAAAAAAAAACYnngHR/QQ9eGOZ88OAAAAAAAHJN4BAAAAAAAAAAAA0xPv4GjObRn18Y57Tw8AAAAAAAck3gEAAAAAAAAAAADTE+/gaN5GfbjjybMDAAAAAMBBiXcAAAAAAAAAAADA9MQ7OJJTW0Z9vON7Tw8AAAAAAAcl3gEAAAAAAAAAAADTE+/gSB6iPtzx5NkBAAAAAODAxDsAAAAAAAAAAABgeuIdHMW5LaM+3nHv6QEAAAAA4MDEOwAAAAAAAAAAAGB64h0cxXPUhzuePTsAAAAAAByceAcAAAAAAAAAAABMT7yDI7hry6iPd9x7egAAAAAAODjxDgAAAAAAAAAAAJieeAdH8FPUhzuePTsAAAAAACDeAQAAAAAAAAAAAPMT72B291Ef7si2O08PAAAAAACIdwAAAAAAAAAAAMD8xDuY3Rr18Y5Hzw4AAAAAAPw/8Q4AAAAAAAAAAACYnngHMzu3ZdSGO7LfBQAAAAAAEO8AAAAAAAAAAACAAxDvYGaPURvuuOzJswMAAAAAAP8m3gEAAAAAAAAAAADTE+9gVvdtGfXxjpOnBwAAAAAA/k28AwAAAAAAAAAAAKYn3sGs1qgPdzx5dgAAAAAA4L+IdwAAAAAAAAAAAMD0xDuY0dKWUR/vOHl6AAAAAADgv4h3AAAAAAAAAAAAwPTEO5jRY9SHO549OwAAAAAA8DviHQAAAAAAAAAAADA98Q5mc9eWUR/vOHl6AAAAAADgd8Q7AAAAAAAAAAAAYHriHczmh6gPdzx5dgAAAAAA4IPEOwAAAAAAAAAAAGB64h3MZGl7H/XxjpOnBwAAAAAAPki8AwAAAAAAAAAAAKYn3sFM1qgPdzx6dgAAAAAA4KPEOwAAAAAAAAAAAGB64h3M4tyWUR/vOHt6AAAAAADgo8Q7AAAAAAAAAAAAYHriHcziMerDHT96dgAAAAAA4JPEOwAAAAAAAAAAAGB64h3M4FVbRn2847WnBwAAAAAAPkm8AwAAAAAAAAAAAKYn3sEM3kV9uOPBswMAAAAAAJ8l3gEAAAAAAAAAAADTE+9gdEtbRn284+TpAQAAAACAzxLvAAAAAAAAAAAAgOmJdzC6x6gPd7zz7AAAAAAAwBcR7wAAAAAAAAAAAIAxbPG3V1t89/PX7uf46/bS+5bfcfn9viLf4HVbRm2443Lv7OkBAAAAAIAvIt4BAAAAAAAAAAAAY9ji7vUW323j7u61r8g3eBO14Y7L3nl2AAAAAADgi4l3AAAAAAAAAAAAwBjEOzigpe191IY7su3s6QEAAAAAgC8m3gEAAAAAAAAAAABjEO/ggNaoDXds/SYAAAAAAMCXE+8AAAAAAAAAAACAMYh3cDBLW0ZtuCP7XQAAAAAAgC8n3gEAAAAAAAAAAABjEO/gYNaoDXds/SYAAAAAAMDXEe8AAAAAAAAAAACAMYh3cCBLW0ZtuCP7XQAAAAAAgK8j3gEAAAAAAAAAAABjEO/gQNaoDXds/SYAAAAAAMDXE+8AAAAAAAAAAACAMYh3cBBLW0ZtuCP7XQAAAAAAgK8n3gEAAAAAAAAAAABjEO/gINaoDXds/SYAAAAAAMC3Ee8AAAAAAAAAAACAMYh3cABLW0ZtuCP7XQAAAAAAgG+zxV/aXu9of/FRAAAAAAAAAAAA4APEOziANWrDHVu/CQAAAAAAAAAAAAAAAAAAAMxOvIPJLW0ZteGO7HcBAAAAAAAAAAAAAAAAAACA2Yl3MLk1asMdW78JAAAAAAAAAAAAAAAAAAAAHIF4BxNb2jJqwx3Z7wIAAAAAAAAAAAAAAAAAAABHIN7BxNaoDXds/SYAAAAAAAAAAAAAAAAAAABwFOIdTGppy6gNd2S/CwAAAAAAAAAAAAAAAAAAAByFeAeTWqM23LH1mwAAAAAAAAAAAAAAAAAAAMCRiHcwoaUtozbckf0uAAAAAAAAAAAAAAAAAAAAcCTiHUxojdpwx9ZvAgAAAAAAAAAAAAAAAAAAAEcj3sFklraM2nBH9rsAAAAAAAAAAAAAAAAAAADA0Yh3MJk1asMdW78JAAAAAAAAAAAAAAAAAAAAHJF4BxNZ2jJqwx3Z7wIAAAAAAAAAAAAAAAAAAABHJN7BRNaoDXds/SYAAAAAAAAAAAAAAAAAAABwVOIdTGJpy6gNd2S/CwAAAAAAAAAAAAAAAAAAAByVeAeTWKM23LH1mwAAAAAAAAAAAAAAAAAAAMCRiXcwgaUtozbckf0uAAAAAAAAAAAAAAAAAAAAcGTiHUxgjdpwx9ZvAgAAAAAAAAAAAAAAAAAAAEcn3sHglraM2nBH9rsAAAAAAAAAAAAAAAAAAADA0Yl3MLg1asMdW78JAAAAAAAAAAAAAAAAAAAAIN7B0Ja2jNpwR/a7AAAAAAAAAAAAAAAAAAAAAOIdDG2N2nDH1m8CAAAAAAAAAAAAAAAAAAAA/EK8g0EtbRm14Y7sdwEAAAAAAAAAAAAAAAAAAAB+Id7BoNaoDXds/SYAAAAAAAAAAAAAAAAAAADAf4h3MKClLaM23JH9LgAAAAAAAAAAAAAAAAAAAMB/iHcwoLdRG+64bPXsAAAAAAAAAAAAAAAAAAAAwO+IdzCYU1tGfbzj5OkBAAAAAAAAAAAAAAAAAACA3xHvYDAPUR/uePbsAAAAAAAAAAAAAAAAAAAAwAeJdzCQc1tGfbzj3tMDAAAAAAAAAAAAAAAAAAAAHyTewUDeRn2448mzAwAAAAAAAAAAAAAAAAAAAB8l3sEgTm0Z9fGO7z09AAAAAAAAAAAAAAAAAAAA8FHiHQziIerDHU+eHQAAAAD4J3v3CxzFtu0BeImICF5VBCL1KiIiIiIiVS8CgYhAIBAIBAIRgUAgEAgEIlUIBAKBQCBGIBARCAQCgUAgEEcgEIgjEIgIBCJiRN7uN3PePUD+9J7p2d098323Vl1x76HX7F49w6ne/WsAAAAAAAAAAAAAgDMJ76AHtlINo3x4x46lBwAAAAAAAAAAAAAAAAAAAM4kvIMeeBPlgzveWHYAAAAAAAAAAAAAAAAAAADgXMI76LjtVMMoH96xY+kBAAAAAAAAAAAAAAAAAACAcwnvoOPeRfngjjeWHQAAAAAAAAAAAAAAAAAAAKhFeAcdthPlgzuGqbYtPQAAAAAAAAAAAAAAAAAAAFDLcWyvHMfOfm7tx38fN12T9FH17yzOrUGUD+84sOwAAAAAAAAAAAAAAAAAAABACbMIToB/bKUaRtngjuH4uAAAAAAAAAAAAAAAAAAAAAAzJ7yDWTqIssEdVb227AAAAAAAAAAAAAAAAAAAAEApwjuYlZ1Uwygf3rFp6QEAAAAAAAAAAAAAAAAAAIBShHcwK4MoH9zx2rIDAAAAAAAAAAAAAAAAAAAAJQnvYBY2Ug2jfHjHpqUHAAAAAAAAAAAAAAAAAAAAShLewSwcRPngjjeWHQAAAAAAAAAAAAAAAAAAAChNeAdN2041jPLhHZuWHgAAAAAAAAAAAAAAAAAAAChNeAdNexblgzteW3YAAAAAAAAAAAAAAAAAAACgDcI7aNJGqqMoH96xaekBAAAAAAAAAAAAAAAAAACANgjvoEmDKB/ccWDZAQAAAAAAAAAAAAAAAAAAgLYI76ApW6mGUT68Y8vSAwAAAAAAAAAAAAAAAAAAAG0R3kFTDqJ8cMcryw4AAAAAAAAAAAAAAAAAAAC0SXgHTVhNNYzy4R3rlh4AAAAAAAAAAAAAAAAAAABok/AOmvAiygd3vLTsAAAAAAAAAAAAAAAAAAAAQNuEdzCtjVTDKB/esWnpAQAAAAAAAAAAAAAAAAAAgLYJ72BaB1E+uOOFZQcAAAAAAAAAAAAAAAAAAAC6QHgH01hPNYyywR3V8bYsPQAAAAAAAAAAAAAAAAAAANAFwjuYxpMoG9xR1QvLDgAAAAAAAAAAAAAAAAAAAHSF8A4mtZHqKMoGdwxTbVl6AAAAAAAAAAAAAAAAAAAAoCuEdzCpQZQN7jgeHxMAAAAAAAAAAAAAAAAAAACgM4R3MImNVMMoG9wxHB8XAAAAAAAAAAAAAAAAAAAAoDOEdzCJQZQN7jgeHxMAAAAAAAAAAAAAAAAAAACgU4R3kGsj1TDKBncMx8cFAAAAAAAAAAAAAAAAAAAA6BThHeQaRNngjuPxMQEAAAAAAAAAAAAAAAAAAAA6R3gHOTZSDaNscMdwfFwAAAAAAAAAAAAAAAAAAACAzhHeQY5BlA3uOB4fEwAAAAAAAAAAAAAAAAAAAKCThHdQ10aqYZQN7hiOjwsAAAAAAAAAAAAAAAAAAADQScI7qGsQZYM7jsfHBAAAAAAAAAAAAAAAAAAAAOgs4R3UsZFqGGWDO4bj4wIAAAAAAAAAAAAAAAAAAAB0lvAO6hhE2eCO4/ExAQAAAAAAAAAAAAAAAAAAADpNeAfn2Ug1jLLBHcPxcQEAAAAAAAAAAAAAAAAAAABm7zi214/jf477W9vrzmJnDaJscMfx+JgAAAAAAAAAAAAAAAAAAAAAZQjvYEY2Ug2jbHDHcHxcAAAAAAAAAAAAAAAAAAAAgDKEdzAjgygb3HE8PiYAAAAAAAAAAAAAAAAAAABAOcI7mIGNVMMoG9wxHB8XAAAAAAAAAAAAAAAAAAAAoBzhHczAIMoGdxyPjwkAAAAAAAAAAAAAAAAAAABQlvAOGraRahhlgzuG4+MCAAAAAAAAAAAAAAAAAAAAlCW8g4YNomxwx/H4mAAAAAAAAAAAAAAAAAAAAADlCe+gQRuphlE2uGM4Pi4AAAAAAAAAAAAAAAAAAABAecI7aNAgygZ3HI+PCQAAAAAAAAAAAAAAAAAAANAO4R00ZCPVMMoGdwzHxwUAAAAAAAAAAAAAAAAAAABoh/AOGjKIssEdx+NjAgAAAAAAAAAAAAAAAAAAALRHeAcN2Eg1jLLBHcPxcQEAAAAAAAAAAAAAAAAAAADaI7yDBgyibHDH8fiYAAAAAAAAAAAAAAAAAAAAAO0S3sGUNlINo2xwx3B8XAAAAAAAAAAAAAAAAAAAAIB2Ce9gSoMoG9xxPD4mAAAAAAAAAAAAAAAAAAAAQPuEdzCFjVTDKBvcMRwfFwAAAAAAYL4dx4dUf3eoPjgpAAAAAAAAAAAAcALhHUxhEGWDO47HxwQAAAAAAJh/o8CMLv3nbycFAAAAAAAAAAAATiC8gwltpBpG2eCO4fi4AAAAAAAA8094BwAAAAAAAAAAAPSD8A4mNIiywR3H42MCAAAAAAAsBuEdAAAAAAAAAAAA0A/CO5jARqphlA3uGI6PCwAAAAAAsBiEdwAAAAAAAAAAAEA/CO9gAs+jbHBHVQPLDgAAAAAALBThHQAAAAAAAAAAANAPwjvItJlqGOXDOzYtPQAAAAAAsFCEdwAAAAAAAAAAAEA/CO8g08soH9zxxrIDAAAAAAALR3gHAAAAAAAAAAAA9IPwDjJspRpG+fCOHUsPAAAAAAAsHOEdAAAAAAAAAAAA0A/CO8jwPMoHd7y27AAAAAAAwEIS3gEAAAAAAAAAAAD9ILyDmjZTDaN8eMclSw8AAAAAACwk4R0AAAAAAAAAAADQD8I7qOlllA/ueG3ZAQAAAACAhSW8AwAAAAAAAAAAAPpBeAc1bKUaRvnwjh1LDwAAAAAALCzhHQAAAAAAAAAAANAPwjuo4U2UD+54Y9kBAAAAAICFJrwDAAAAAAAAAAAA+kF4B+fYTjWM8uEdO5YeAAAAAABYaMI7AAAAAAAAAAAAoB+Ed3COd1E+uOONZQcAAAAAABae8A4AAAAAAAAAAADoB+EdnGEnygd3DFNtW3oAAAAAAGDhCe8AAAAAAAAAAACAfhDewRkGUT6848CyAwAAAAAAhPAOAAAAAAAAAAAA6AvhHZxiK9UwygZ3DMfHBQAAAAAAQHgHAAAAAAAAAAAA9IPwDk5xEGWDO6p6bdkBAAAAAADGhHcAAAAAAAAAAABAPwjv4AQ7qYZRPrxj09IDAAAAAACMCe8AAAAAAAAAAACAfhDewQkGUT6447VlBwAAAAAA+BfhHQAAAAAAAAAAANAPwjv4zUaqYZQP79i09AAAAAAAAP8ivAMAAAAAAAAAAAD6QXgHvzmI8sEdbyw7AAAAAADAb4R3AAAAAAAAAAAAQD8I7+BftlMNo3x4x6alBwAAAAAA+I3wDgAAAAAAAAAAAOgH4R38y7MoH9zx2rIDAAAAAACcQHgHAAAAAAAAAAAA9IPwDsY2Uh1F+fCOTUsPAAAAAABwAuEdAEB/VPtOds+oNUsExS2fc11uWyIAAAAAAABokPAOxgZRPrjjwLIDAAAAAACcQngHANAPVTDHYZy+P+RnqtUO9r2Sav23WnY6OcWF32ZltSd9fzjj2hymuuTUAgAAAAAAQEOEd5BsxehmbOnwji1LDwAAAAAAcArhHQBAP7yLs/eHPG65v/VUe6mexehFM5/j/H0yP1J9TPUi1b1UV2IU9sH8q87z1VSPUr0Zz8uPM2blW6pP41m5k2qzY59n95x5/xpCawAAAAAAAKAZwjuI0caE0sEdryw7AAAAAADAGYR3AADd9yjO3h/yPdWFwj0txSiw4MX4+E3tdTlK9SFGAQ0XnPq5Us3M9VSvo5kXIFWBHg9TrXXk8523N+zACAAAAAAAAEADhHcsvNVo5qZzbjlvAAAAAAAAZxHeAQB0206cv+fkWsF+NlI9S/UjZr/v5WeqwXgN6K/lVA9SfZ3hrLyM9vdJrY9n9qw+bxoHAAAAAAAAmJLwjoX3IsoHd7y07AAAAAAAAOcQ3gEAdFcVevAlzt4f8r5QLxejXGjHSXWQastI9E4VLPOt0IxUITdPx7Palsfn9FhdP6vGAgAAAAAAAKZwHLvLx7Gzm1u78V/HTdckfVT9O4sTq944ct4bUGZRm5YeAAAAAADgHMI7AIDuehTn7w+5NOMellLdj/ZCO04KZ7hgNDqvOkcvWpqT7zEKDWnDSqrDOD+IZsmIAAAAAAAAQHmzuEFJWQdR/ib0C8sOAAAAAABQg/AOAKCbqlCO814W83zGPayl+hjth3b8Xl9j9DIdumk11acOzMm9lj7/zRq93TEmAAAAAAAAUJ7wjn5bj/M3UsziLSNblh4AAAAAAKAG4R0AQPcspfocZ+8POYrRvpRZ2Un1d3QvuOOf+pHqqlHpnO1U3zs0J89aun6/1pjfVeMCAAAAAAAAZQnv6LcnUf6m8wvLDgAAAAAAUJPwDgCgex7E+ftD9md4/EsxChc47nhVL7i5Zlw6o3rZ0GEH52S/hbW4WqOvV0YGAAAAAAAAyhLe0V8bMXrLSelNCVuWHgAAAAAAoCbhHQBAt1T7Tc4LzviWanlGx9+OfgR3/FPV3pxdY9O61VRfOzwn+y2syZsafd0wOgAAAAAAAFCO8I7+GkT5G80Dyw4AAAAAAJBBeAcA0C0f4/z9IXdndOyVmD6AoXrxzPtUz1LtpbqSajPV+riql9Lsjv+356k+xfT7Zb7HKDyC9nyY4vz9THWQ6k6qqzEKsFkf//c/s/Iy1eGUc3Kz8JrsjK+H82b3gvEBAAAAAACAMoR39FN183gYZYM7huPjAgAAAAAAUJfwDgCgO27G+ftD/kq1NKPjv4nJ9618SfUwJgvRWEv1IEZBBpMe//0M14WzPZnwnFVBMbdSLdc8TnV+r4+vgUlDXlYKr82rGn09NUIAAAAAAABQhvCOfhpE2eCO4/ExAQAAAAAAyCG8AwDohirA4Fucvz/k+oyOfz8m269ymOp21A9gOG8N9lMdTdjLvjEqbifyX3BU/f+rsJZpwlb2JpyTg8LrU+cFUNXn2DRKAAAAAAAAMHvCO/qnzk3Xpms4Pi4AAAAAAAA5hHcAAN2wH+fvD/krpgs8OM1qqh+Rv1/l/fifbdqlqBdkctL+mS2jVEw1i58iP+xlp6Hjb6f6OsGcXCu8TnVeAvXOOAEAAAAAAMDsCe/on0GUDe44Hh8TAAAAAACAXMI7AID21X1RzKxCB55H/l6VlzGbIJF/VKEgnybo661xKuZu5rn5Hs2Hq6yl+pjZx5dUyx28vveMFAAAAAAAAMyW8I5+qXuztckajo8LAAAAAABALuEdAED76rwo5tOMjj3JXpeDmG1wxz9WYrIAj20jNXNV+MW3jHNylOrSDOfk78wZudfBa/xroesKAAAAAAAAFpbwjn4ZRNngjuPxMQEAAAAAAJiE8A4AoF11wzOuz+j4TyJvn0oVMHCh4Pqspvqe2eNLYzVzdzLPye0Z97OV6mdGP1+ibFDGVs3rfM9oAQAAAAAAwOwI7+iPSd5EMm0Nx8cFAAAAAABgEsI7AIB2vYr2ggaqP/Mw8vapbLWwRtcjfz/NitGaqa8Z5+NtoZ5yA0VuFF6z1zV6qv5d4ILxAgAAAAAAgNkQ3tEfgygb3HE8PiYAAAAAAACTEt4BALRnO+q9KOb2jI5/I/L2qTxpca3eZ/Z6y3jNTG6YyqWCvX3I6Otj4XW7XLOv+0YMAAAAAAAAZkN4Rz9sRL3NFE3WcHxcAAAAAAAAJiW8AwBoz0Gcvz/kMNWFGR3/edTfp3KUarXFtdqJvH01z43XzOQEqbwr3Nvl6G6wSOVjjZ6+z/CaBwAAAAAAgIUmvKMfBlE2uON4fEwAAAAAAACmIbwDAGjHdtR7UcwsQyj+jvr7VF53YM3+yuj3sxGbidXI29+020KPnzP6e1y4tzs1+7pv1AAAAAAAAKB5wju6byPqbaZosobj4wIAAAAAADAN4R0AQDteR709IrPaH7IZeXtVrnZgzZ5E3t6aZWPWuAcZ5+BbqqUWerzT4R4vpPpRo69D8wsAAAAAAADNE97RfYMoG9xxPD4mAAAAAAAA0xLeAQCUV/dFMZ9m2MPtyNur0oUggWuZPe8YtcZ9yFj/py31uBJ5L2K6VLi/5zX72jNuAAAAAAAA0CzhHd1WdzNFkzWM2b1VBQAAAAAAYLEI7wAAyqv78P7tGfbwJOrvVfnckXVbj7w9NrtGrVG5oRiXW+z1bUafzwr3tl2zry9GDgAAAAAAAJolvKPbBlE2uON4fEwAAAAAAACaILwDaMdqqq0YPVh+M9Xeb3Vz/L9ditHD6kuWDOZGFYDwI+q93GVlhn28if7tVVmJvD02N41bo25mrP1hy79dt6Pb4TRfQgANAAAAAAAAFCe8o7s2Iu9tEk3UcHxcAAAAAAAAmiC8A5it5RgFcNyJ0cPvf6U6isnuF3+N0cP2T1LdSHXB8kIv3at5zb+bcR9fM75/HnXqb2/1a8+4NepJxtq/a7nXtcxZuVi4v4c1+3pr7AAAAAAAAKA5wju6axBlgzu69CYTAAAAAACA+SC8A2he9cDw7VSvU/2I2d5DrsJAqiCAi5YdeuPvmtf37Rn3cZjxXXO3I2u3FMI72vQ+Y+0fdqDfnBm/Ubi3zaj/0qhNowcAAAAAAADNEN7RTRtR/wZqUzUcHxcAAAAAAICmCO8AmrEcowd/P0T5e8lVHaV6kWrVqYBO2824pmcdylP9+VuprsQo5KIKW3iW6mD8Xfb3v77P9jqyfmuZ3403jVxjLmT+vl3pQM8HGf0+a6G/zzV7e2z8AAAAAAAAoBnCO7ppEOU3Ww0sOwAAAAAAQMOEdwDTWUp1J9W3KH8P+bQH/vdj9JA18+OfIIVFqCdzfi7r7jd536GeL3boO2U78ztx19dHY3Yy1/5iB3rez+j3Q4f7+zb++wYAAAAAAAAwJeEd3bMR5d+UNBwfFwAAAAAAgCYJ7wAmdznVX9GN0I7f60uqS07R3Pi7o3PmxSZ5qjCDo5rrcNfYn+hO5jytWbLG3MpY9x8d6flGRs/fW+jvUkZ/140gAAAAAAAATE94R/cMwuYUAAAAAACA+SC8A8i3lGo/yr/0Ibeqh6evOl1zQXjHfLibsQ7bxv5E78IeqbY8zlj3Dx3peSdzXlZb6PGwZm+vjSAAAAAAAABMT3hHt2xE+Q1Yw/FxAQAAAAAAaJrwDiDPcqq30Z8ghKMQAjAPhHfMhzc116A630vG/g8r4++0urP0lyVr1OuMtX/WkZ4vZn7/XGqhxxc1e/s5/jsIAAAAAAAAMAXhHd0yCBtTAAAAAAAA5ofwDqC+vgV3/FPfYvTQO/0lvKP/1qJ+8MRzI3+i25mz9NiSNepzxtrf71DfPzP63muhv72O9wcAAAAAAABzRXhHd2ykGkbZTSnD8XEBAAAAAACYBeEdQH2zeNnD9xgFM/xThzGbe89PnL5eE97Rf/cy1uCmkT/R58xZ2rVkjTrKWPsbPf3+fNBCfzn70d4aQwAAAAAAAJiO8I7uGIRNKQAAAAAAAPNFeAdQz15MH9LxMtWdVJdTXTzneGuprqV6mOpDqp/hxRGLTHhH/73NuFYvGPmpv4OrIKRly9aYlcz1v9Sh3j9G94OuPtXs78hcAwAAAAAAwHSEd3RDzlsOmiqbpwAAAAAAAGZNeAdwvipo43tMdt/3INVWQz3ci+lCHJ47lb0lvKPfqoftj2p+/s/G/Q9Lqb5mztETy9aozcz1X+tQ728z+n7ZUo9PM3q8ahwBAAAAAABYeMexu3wcO7u5tRv/ddx0TdJH1f+Cn8JB2JACAAAAAAAwf4R3AOfbj/z7vdWD5pdn0Ev1EPuDmOzlEz9iFCJA/wjv6LerYa/INO5PMEfblq1Ru5nrv9Sh3nP2fL1vqce9jB6fGkcAAAAAAAAW3nFsrx/H/xz3t7bXF/j0bcRkG5+mqeH4uAAAAAAAAMyS8A7gbGsxCr3Iud/7IdXFGfe1k+ow8u9F33RKe0l4R789c41ObDPVUeYMvbdsjbueeQ76ev19bqnH1YwevxhHAAAAAAAAFp7wjl7LeQODzSgAAAAAAAB9IrwDONujyLvX+y1mH9zxjyrAI/ehdvei++leqv0FqetzeP6+ZlyjW8b9F+8if8/NNcvWuL2M9f/esd73M3pv8+/h3zP6XDGSAAAAAAAALDThHb21kWoYZYM7huPjAgAAAAAAMGvCO4DTLaU6jLz7vbuFe9zP7O+T0wpFVWE+dfedHI2/d5js+62qD9ZwJu5GPwIwpu39R4t95gTVCKgBAAAAAABgsQnv6K1BlA3u8KYjAAAAAACAkoR3AKe7Gnn3ep+10ONKjB427sODyeB75Oz6bLn+3/WY7GU7lyzdTOxHf8M79jJnqC1PMnp8aCQBAAAAAABYaMI7emkjJtsIME0Nx8cFAAAAAACgBOEdwOleRP17vUepLrbU5/PIuy+95NRCMY8yrs2Xluv/bKY6jPw9N9ZvdvZDeMes3c7o8a2RBAAAAAAAYKEJ7+il3A1OTdTA1QIAAAAAAFCQ8A7gdDkPj79osc+9yLsvve7UQjFvMq7NB5Yr1lJ9jfz9NtXfny5Yvpl5lnEuPnSs9xuZs7TSUp87GT1Wfz8RxAUAAAAAAMDiEt7RO9VbPIZRPrxj09UCAAAAAABQkPAO4GRbkXev90qLva6H8A7oqh8Z1+a1BV+rSYM7qv09O0ZtpgYZ5+N9x3rf7clv5IXI26vmtxwAAAAAAIDFJbyjd15G+eCON64UAAAAAACAwoR3ACerHqKv+9D9YaqlFnvNfeB3y+mFItYjb9/I2gKv1UqqTzHZfpsHRm3mhHeUkRNec8VYAgAAAAAAsLCEd/RKtVEpZ2NTU+UtIAAAAAAAAKUJ7wDOVoVyVPeQb6a6m+pZqnepPsd/7iu/6ECf36L+veldpxWKuBZ5+0aWFnSdpgnueLfA61aS8I4y3mf0eddYAgAAAAAAsLCEd/TK8ygf3PHaVQIAAAAAANAC4R3A5JZj9JDvagd6+TuEd0DX3Mu4Lr8t6BpVwR05gQX/rr9SXTRmRQjvKONlRp9PjSUAAAAAAAALS3hHb2zGf96OVLIuuUoAAAAAAABaILwDmA/CO6B7nmVclx8WcH2q4I5PMdk+myrsZM2IFSO8o4z9jD7fGEsAAAAAAAAWlvCO3sh5g0FT9doVAgAAAAAA0BLhHcB8EN4B3fMq47o8WLC1qYI3Psdk+2x+pNoyXkUJ7yjjbkafX40lAAAAAAAAC0t4Ry9UN/aHUT68Y8cVAgAAAAAA0BLhHcB8EN4B3fM+47p8vEDrUu3P+RqTB3dcMlrFCe8o40pGn0NjCQAAAAAAwMIS3tELb6J8cMcbVwcAAAAAAECLhHcA/bWeaj/Vx8h7UcWupYMicgIq7i3ImlTBHd9j8uAOL8hpx4sQ3lHCTmavK0YTAAAAAACAhSS8o/O2I28zU1NlUwEAAAAAAECbhHcA/bGZ6naqQaq/Y/L71LuWEor4mXFd7i3AelxJdRiCO/rocca5+tCx3m9kztrFFntdD/vOAAAAAAAA4HzCOzrvXZQP7njjygAAAAAAAGiZ8A6gezZi9LDxnVRPUr2PvBAA4R3QvuXM6/LmnK/HrSm+x76HkIK27Wecr679XXYvc97adNHvOQAAAAAAANQgvKPTdqJ8cMcw1bYrAwAAAAAAoGXCO4DyllKtpbqS6n6MHop+mepTNBvS4WFfaM965nV5ZY7XovqOG074ffX3eC1p18MQ3lHu307q1y2jCQAAAAAAwEIS3tFpgygf3nHgqgAAAAAAAOgA4R3A7KynupHqQapnqT7E6KHmoyh/j1p4B5S//hf9uqyCil5M8V0luKM77kR/wzvuRd7LmNr/t5P6tWc0AQAAAAAAWEjCOzprKyZ/u8ekNRwfFwAAAAAAgLYJ7wCaU90H3o9RSMdhtBvQIbxjvtwbz9Yi1PU5OWfbmdflzpzN7Gqq91N8T/2Vas2l3xl7GefusGO970e/gkd+ZvR732gCAAAAAACwkIR3dNZBlN8I9doVAQAAAAAA0BHCO4DpVA+oV8EKf0V3wzqEd/Tf3z2ar2lrMCfnbDfzc6/P0bxuTTmzn1JddNl3yrXMc9glzzP6/tyz7/t9owkAAAAAAMBCEt7RSdVbS4ZRfqPJpisCAAAAAACgI4R3AJOpQjuepPoZ/QtH2HX6ekd4R//sxmKGd1xJ9WOK8/8u1QWXfOdcyjyPSx3qfZDR9/uefd/vG00AAAAAAAAWkvCOTsq5OdtUvXY1AAAAAAAAdIjwDiBP9UDyo+hWaEfVS86LK3adxt4R3tE/u7F44R33Y7qX6LxKtexy76S1zHO50aHe32X0fdCz7/t9owkAAAAAAMBCEt7ROdVN4mk2DExam64GAAAAAACADhHeAdS3lepzdCPg4EeMXh6xF6OH3XMe9t11KntHeEf/7MbihHcsx/Qv0HkYo3Akumkp83x26XfmU0bfz3r2fb9vNAEAAAAAAFhIwjs65yDKbzB540oAAAAAAADoGOEdQD1XUh1Ge4EG1cspquCQp6l24s+H3IV3zDfhHf2zG4sR3rGS6sOU3217LvFe+JFxXm/19PvzYc/63TeWAAAAAAAALCThHZ2yHaOb/6U3mGy6EgAAAAAAADpGeAdwviq442eUvb/8NUYvpXg4Pv6Fc3oU3jHfhHf0z27Mf3jH9pSzeej7qFe+ZJzbBx3q+yij75s9+77fN5YAAAAAAAAsJOEdnfIsym8uee0qAAAAAAAA6CDhHcDZdiLvwd+cqgJBPqV6GaMHnfdSXY7zgzpOIrxjvgnv6J/NzM+907PPV32PHE5xnr+El+D0zUHG+X3ekZ4vZs7lpQ70/C2j3zvGEgAAAAAAgIUkvKMzNmJ2G6vOKhsOAAAAAAAAukh4B3C6KkTjSzRzz7h6GPdVqvuprqVaS7XUYK/CO+ab8I7+Wc/83H26Lm/GdHtv3qRacVn3zrPMc9wFO5mzeaEDPef0u2csAQAAAAAAWEjCOzpjEOU3lhy4AgAAAAAAADpKeAdwuucx3b3it6lup9pOtTzjXoV3zDfhHf2zmvm5r/Tkc91LNZzi/D6OZoOLKOdOxnn+0pGeb0ReyFY3/u2kft00lgAAAAAAACwk4R2dsBXTbSCYtLZcAQAAAAAAAB0lvAM42UZMfn+5Cv1YL9zvYQjvmGcfYhTgsQj1ZK7+llG/bvXg8zya4nux+ufuupR7bSvjfB/F7EOr6tiPvMCttuWG/vg9BwAAAAAAYDEJ7+iEgygf3PHK9AMAAAAAAHSY8A7gZIPIvz/8LdWl1r7NPOwLXfM947q83fHP8jgm3zvzM9VV49B7SzEK5ah73rc70HPOXrEuBAetZ15bm8YSAAAAAACAhSS8o3XVmwkmffvHNLVu+gEAAAAAADpMeAfwp0nuL1fBHRst9iu8A7rnS8Z1ud/hz/EgJt83U3037hiFufEx+hVIc5jR740O9LubeX2tGkkAAAAAAAAWkvCO1r2I8sEdL00+AAAAAABAxwnvAP50J/LuDVdBH9st9rsT8xnecTdGgQa/17oRpSfeZlyXzzr6GR7G5PtmPrle586TjPM/aLnXtcx5vdiB9b2V0e+RcQQAAAAAAGBhCe9oVfV2o9y3IjVRmyYfAAAAAACg44R3AH96HXn3hp+33O/1mL/wjktx+n3+XSNKTzzPuC5fdbD/BzH5npmDVMtGYO7khEt8brnX2z3qdZJr7qtxBAAAAAAAYGEJ72jVQZQP7nhh6gEAAAAAAHpAeAfwp9yXQ2y33O+jmL/wjk897x8qOQ/if+pY77di8hflVKElS07/XFpJdRT9ePHR24w+n3VkfXMCf94bRwAAAAAAABaW8I7WVH1Puplg0qqOt2XqAQAAAAAAekB4B/Crzci7P/ylAz1/yuz5SsfPwX70P3wEKjczrssfHeq7usYm3WvzwGmfex8y5uFhSz2uZM5wV35XcgJHnhpFAAAAAAAAFpbwjtY8ibLBHVW9MPEAAAAAAAA9IbwD+NWVyLs/fNByv6uRf097r8PrfynVUQjvYD5sZV6bKx3ouQow+hGT7Ze545QvhAcZM/G5pR7vZfR4mGq5I2v71fUGAAAAAAAANQjvaMVGnL+pp+mq3tqwZeIBAAAAAAB6QngH8KtbkXeP+FHL/d6L+QnvqIJIvtXof9eY0hMXIm/fyuUO9Pt1gu+U6jNec7oXxnqM9kd1ea4/Z/T3vCPrupS5rttGEQAAAAAAgIUlvKMVgygb3HE8PiYAAAAAAAB9IbwD+NVe5N0j3m+x1+WY7EH7vQ6uexUa8Klm/7vGlB75knFt3mm511cx2V6Zm07zwnmXMR+vCve2mzm/lzqyphuR93KpC8YQAAAAAACAhSW8o7jqhmbO2wiaqOH4uAAAAAAAAPSF8A7gV7ci7z7xixZ7fRKT3dve69iaVyEkbzP63zWm9MjLjNl+3KPvvn/qrlPst7JG7RTqaynyAnM+dWhNr/a0bwAAAAAAAChPeEdxgygb3HE8PiYAAAAAAAB9IrwD+NXlyLtP/LWlPi/F5C+0uNeh9a6CO95k9r9rTOmRuxmz/b6lHldTHU7wXfLY6V1Y1Xf3t8gLm1gq0NejzBm+2aE1fZDR91MjCAAAAAAAwEIT3lHURky+SWnSGo6PCwAAAAAAQJ8I7wB+tRb594vXW+jx75j8/vZ+R9Z6kuAO4R30zZWM2f4eZQIOfjfJC3Jet9Qr3bGfOTOzDpzIDbX62rEZfpnR+x3jBwAAAAAAwEIT3lHUJJsKpq2BKQcAAAAAAOgh4R3Anw6jWw8k/1sV3PFXTHd/e78Da7yS6sOE/e8aUXrkQqqjjPku/eKYy5H/gpzP42t4kazGKKipbq0twJpUM/A9c3ZmFTqxNsFv9+2OrefXjN63fLUCAAAAAACw0IR3FFNtYsjdVDBtDaP85gkAAAAAAACaILwD+FNuqET1YP52gb6q+9JfY/p73M9aXt9pP8euEWWOv1NuFO7tY+TvkdlewHP4PnOdFuXvc/sTzE/TM74+wW9KFTqy3KF1XIn6+92q3pd8rQIAAAAAALDQhHcUM4iywR3H42MCAAAAAADQR8I7gD/tRf5948+pLs6wp7upfkQz97hftri212P04PE0/e8aUXrmUcZ8vyjY160Jrr+qv/Ue1UpDayW842RVAMa3CebofkPH35nw+Nc7to7XM3o/8JUKAAAAAADAwhPeUUT1dp66byFoqobj4wIAAAAAANBHwjuAP1UPe08SlPFXqrWGe6keTP4Yzd7nft/Cmi6lehzN3NPfNaL0zHbGfH8s2NeHKP+CnNK139BaCe843dUJv9sPpvjNrH5THqY6muC4rzu4hg8z+r/pKxUAAAAAAICFJ7yjiEGUv8k/MN0AAAAAAAA9JrwDONnTmOwe8s9U92MUADKNazF6WHwWL7D4Ungt12MUbNJU/7vGkx76VnO+qzCC5QL97Mb8B3cI7+j+b2Y170/GvxN1XZ/iN+V7NB+yVXK+hg38/QIAAAAAAAD6T3jHzG3EbDYtnXdDdMN0AwAAAAAA9JjwDuBkq6kOY/L7yT9SPU91NdXFc461lGoz1c1UBzEKAMk93oeMf65UOED1ue5P+HmEdzBvcl5Ic61AP69CeEcO4R3nf99/mvJcVYEcj8e/mzsxCvSo6nKqW6lexih8Y5pjXO3g2l0Y/y7X6f+jr1IAAAAAAACYzixuTM+jQZS/wT8wngAAAAAAAD0nvAM43e1o7v5y9cDx5xg9AP5PVQ86V9f80ZR/dvVAc/Xw75eMf+byjNduZ/x5Z3Gvftdo0kNXM2b86Yx7qb4vfoTwjhzCO863Nv7cXZ2FOx1dtytz8BkAAAAAAACgN4R3nG8j1TDK3tAdjo8LAAAAAABAnwnvAM52EN1+MP1BqqUJen04o/Vaj9GLMCa5h/88hHcwv5ajfmDG5xn3ciMWI7hDeEd526l+dnAOuvyCpidRf6/amq9SAAAAAAAAmI7wjvMNwk1dAAAAAAAAJiG8AzjbhVSfonsPIn9Ndfm3Xh9n/PPvGl6nzVRPY/KHth/9/7ey8A7mV87+lvUZ9vEshHfkEt5R3/b483dlBl7Ef0Kuuuhzzc/x3lcoAAAAAAAATE94x9k2YrI39kxTw/FxAQAAAAAA6DvhHcD5VqNbAR5PYhQq8rvLGX/G0fhzNWEvJr9vX4V93PjlW1l4B/Prasa18XCGffwVwjtyCe/Is57qSwfO/52Or9POHH0WAAAAAAAA6AXhHWcbRPkbuwNjCQAAAAAAMCeEdwD1VGEZr6Pdh5Crh8cvndPnYcaft9fQ2uxP+HmqAIHNP76VhXcwv5ZTfc+43mflKIR35BLekW8p1auWznv1W3ilB2tU9/ezCshaM1IAAAAAAAAwPeEdp9uIyd/eM2kNx8cFAAAAAABgHgjvAPLciPoP3zdVVcjFtZr9Pcv8c5uwH/n33e/H6MHuP7+VhXcw3x5nXCcrMzj+aixOcIfwjm64muprlNvX9XRG184sfKj5uV4bIwAAAAAAAGiG8I7TDaL8Tf2BkQQAAAAAAJgjwjuAfMupHqT6EbO9P1091FuFhSxl9LadeYzLDazHfuQFhlw681tZeAfzbSvqv6jmxgyOvx7COyYhvGM61e/Y7VSfY3ahHYPx9dUXOS+tum6EAAAAAAAAoBnCO06WcwOzyRu9G0YSAAAAAABgjgjvACZXhXjcTPU21VFMf0+6+jPexSgYZH2Kvu7F6IH1OtXEA8H7NT7b91R7cX4QifAOFsHbmrP+dgbHXsn4fpiHaur7Yu+UP/+0UA9/nzvdtVTPUn1r4HezCgN5FP3cz3Wv5mf8GnkhXgAAAAAAAMAZhHecbBDl38YxMI4AAAAAAABzRngH0IzqwdpLqe6mehGjEI7qev4ef957rh5Yrh44rh76fhmjsI7qn13u6Wffj7MDSar//ULtb2XhHcy/a1E/0GfVcvXy+8/f5+rZTnUr1ZNUb2IUVPH77+bwX7+bVaDNo/E1dLHnn/1zze+BfWMCAAAAAAAAzRHe8afqbQnDKBvcMYx+vqUBAAAAAACAsxzHh3GAR1fqg5MC9Mx+nHyf/XWq9exvZeEdzL8q7OdbzXm/b7k67fkp5+2zpeEMO1Fv71sV4LNmuQAAAAAAAKA5wjv+NIiywR3H42MCAAAAAAAAAL/aj18fNH4ZoweTJyG8g0Vxr+a8f7RUnfb6lPP23tJwhudhvxoAAAAAAAC0QnjHrzai3psHmqzh+LgAAAAAAAAAwK/2U30b//falH+W8A4WxUqqHzVnftNyddanU87ZgaXhFBdS/ax57W9bLgAAAAAAAGiW8I5fDaJscIe3GAAAAAAAAADA6VYa/LOEd7BIntac+SeWqpOWUx2dcs4eWh5OcaPmdf/GUgEAAAAAAEDzhHf8x0aqYZQN7hiOjwsAAAAAAAAAzJbwDhbJapwe/vDvOoxRUATdsnvGObtheTjFu5q/dVcsFQAAAAAAADRPeMd/DKJscMfx+JgAAAAAAAAAwOwJ72DR1N0Ls2epOufJGedr3fJwgq2o9+Kq95YKAAAAAAAAZkN4x8hG1Lt52WQNx8cFAAAAAAAAAGZPeAeLZj3q7Yf5bKk6ZSnVN+eKTE/9zgEAAAAAAEC7hHeMDKJscMfx+JgAAAAAAAAAQBkeamYRvTD7vfPwjPO0b3k4wcVUP2pc5x9iFA4DAAAAAAAAzIDwjoiNqPeWkSZrOD4uAAAAAAAAAFCGAAMW0WqqnzVm/42l6oTqO+i0fUxHMQppgN/dq/kbd9VSAQAAAAAAwOwI74gYRNngjuPxMQEAAAAAAACAcoR3sKie1pz/LUvVqp1Uh2ecn0eWiBMspfq7xvX9fvz/BQAAAAAAAGZk0cM7NuL0t1XMqobj4wIAAAAAAAAA5QjvYFFdTPUjvIymq6pAhYepjs44N99SrVgqTrBX8/dt21IBAAAAAADAbC16eMcgygZ32OgAAAAAAAAA/C97dxxiV3bfB/x4PbtoXTlRiTYMtgpjOqgKHZIpVsiaHchA1u7+sSX7hwzrYsrQOOCCCMIWRIUlHrqFdVjIBm9hCdv60eoPBYaiNSoR9kKmdMFrdyGycWETFmcoKhWN1ghHJJP4Ofv6u5nRakfSzLszc9859777+Ry+/yV+b++75+jcp3e+AspQ3kGfna9x/1flESdcqqyqQoVrafw/FPS4S8Uu3q4xt6+6TAAAAAAAADB5fS7vmE9bf7mds7hjuP26AAAAAAAAAEBeyjvos5lU75D/yy5VVkcjN9LevzX6vMvELp5N9X6vtuBSAQAAAAAAwOT1ubzjlZS3uKPKwC0HAAAAAAAAAEUo76Dvnkzj/6GbW5FjLlUrPpfNyBmXhz3UKeR50WUCAAAAAACAPPpa3nEqjf8xwiRyyi0HAAAAAAAAAEUo74CULtWYBy+5TNm9dM9nsBF53GVhD0/XmMvXI0ddKgAAAAAAAMijr+UdF1P+4o4rbjcAAAAAAAAAKEZ5B6R0InJ7zDzYjMy5VFlVBQvvRG5GzkaOuSTsYSZyrcafac+6VAAAAAAAAJBPH8s7FiLDlL+847TbDQAAAAAAAACKUd4BW87XmAsXXabsTkWOuwzUsFJjDl9NWyUfAAAAAAAAQCZ9LO94JeUv7rjsVgMAAAAAAACAopR3wF1vJv9QDXTRkcj1MXP3duSESwUAAAAAAAB59a28o/oXKoYpf3nH4241AAAAAAAAAChKeQfcVRVzjPsNzesuE7TOhRp/ll1wmQAAAAAAACC/vpV3XEz5izsuu80AAAAAAAAAoDjlHbDTCzXmxFMuE7TG8citMXP2amTGpQIAAAAAAID8+lTesZDG/4shk8hptxkAAAAAAAAAFKe8A3aqDvi/PmZOXEuKAKAtXhwzX29GZl0mAAAAAAAAKKNP5R1XUv7ijituMQAAAAAAAABoBeUdcL+5yOaYefGsywTFVf9w1W1zFQAAAAAAACZslBaPjdLp1f1mNX1s1HQO8j6q9z/hS7QYGab85R2n3Z0AAAAAAAAA0ArKO+DBPp/2/l3N9chxlwmKWh/z59crLhEAAAAAAAA0YJQW50bpk6PuZnFuwpfo9ZS/uOOKOxMAAAAAAAAAWkN5B+zulTFz42WXCIp5Zsz8fCNyxGUCAAAAAACABijv2NPplL+4o/rXSBbdmQAAAAAAAADQGso7YHczkWtp79/CPO4yQXbHIjf2mJs3I6dcJgAAAAAAAGiI8o49DVL+8o41dyUAAAAAAAAAtIryDgAAAAAAAAAAdqe8Y1cLaetf/shZ3DHcfl0AAAAAAAAAoD2UdwAAAAAAAAAAsDvlHbtaS3mLO6pcdkcCAAAAAAAAQOso7wAAAAAAAAAAYHfKOx7odGSY8pd3nHJHAgAAAAAAAEDrKO8AAAAAAAAAAGB3yjseaJDyF3dcdjcCAAAAAAAAQCsp7wAAAAAAAAAAYHfKO+4zHxmm/OUdp9yNAAAAAAAAANBKyjsAAAAAAAAAANid8o77rKX8xR1X3IkAAAAAAAAA0FrKOwAAAAAAAAAA2J3yjh0WI8OUv7zjlDsRAAAAAAAAAFpLeQcAAAAAAAAAALtT3rHDyyl/ccdldyEAAAAAAAAAtJryDgAAAAAAAAAAdqe8433zkc2Uv7zjlLsQAAAAAAAAAFpNeQcAAAAAAAAAALtT3vG+Qcpf3LHmDgQAAAAAAACA1lPeAQAAAAAAAADA7pR3/L2FyDDlL+9YcAcCAAAAAAAAQOsp7wAAAAAAAAAAYHfKO/7eWspf3HHJ3QcAAAAAAAAAnaC8AwAAAAAAAACA3SnvSLORYcpf3jHn7gMAAAAAAACATlDeAQAAAAAAAADA7pR3pFdT/uKOi+48AAAAAAAAAOgM5R0AAAAAAAAAAOyu5+Ud85Fhyl/eccqdBwAAAAAAAACdobwDAAAAAAAAAIDd9by8Yy3lL+541V0HAAAAAAAAAJ2ivAMAAAAAAAAAgN31uLyj+v8bprzFHdXrLbjrAAAAAAAAAKBTlHcAAAAAAAAAALC7Hpd3vJjyFndUedUdBwAAAAAAAACdo7wDAAAAAAAAAIDd9bS8Yz6ymfIWdwwjC+44AAAAAAAAAOgc5R0AAAAAAAAAAOyup+Udg5S3uGO0/ZoAAAAAAAAAQPco7wAAAAAAAAAAYHc9LO+YjwxT3uKO4fbrAgAAAAAAAADdo7wDAAAAAAAAAIDd9bC8Y5DyFneMtl8TAAAAAAAAAOgm5R0AAAAAAAAAAOyuZ+Ud85FhylvcMdx+XQAAAAAAAACgm5R3AAAAAAAAAABTZTayEnklcjXyTuRW2vljiOuRa5GLkfORJyMzLt2D9ay8Y5DyFneMtl8TAAAAAAAAAOgu5R0AAAAAAAAAQOcdi1yIvBkZpoMVKNxOWyUKj7ucO/WovGP+EPfPQTPcfl0AAAAAAAAAoLuUdwAAAAAAAAAAnXU08nzkZmq2UGEtctrl3dKj8o5BylvcMdp+TQAAAAAAAAAAAAAAAAAAAIDsnopcT5MtVliNzPT9QvekvGM+Mkx5izuG268LAAAAAAAAAAAAAAAAAAAAkNXzKV/Rwnpkts8XuyflHYOUt7hjtP2aAAAAAAAAAAAAAAAAAAAAAFm9kvKXLGxEFvp6wXtQ3jGf8pXB3Mlw+3UBAAAAAAAAAAAAAAAAAAAAsnkh5S/uuJMbqadlCz0o7xgUuJ8GpjMAAAAAAAAAAAAAAAAAAACQ0/l0sJKEW5G3IhfTVmHC1cjGAf+3fhA53rcLP+XlHVUhyzDlLe4Ypp4WwQAAAAAAAAAAAAAAAAAAAABlnI5spvrlCNcjF9JWQcLMLv+bs5FzkWtpf8ULV/f435xKU17eMUh5iztG268JAAAAAAAAAAAAAAAAAAAAkMXRtFXGUacUYRh5MXJsn6/xxcjtVL984Qt9+gCmuLxjfvueyVncMdx+XQAAAAAAAAAAAAAAAAAAAIAsXkr1ShFuRZYP8TqnIhv7eK3ZvnwAU1zeMUh5iztG268JAAAAAAAAAAAAAAAAAAAAkMVcZJjGFyJU/zdLDbxeVcjxdqpXwvBqXz6EKS3vmK95bzWZ4fbrAgAAAAAAAAAAAAAAAAAAAGRRFWTUKUX4YoOvuRC5mRQxvG9KyzsGKW9xx2j7NQEAAAAAAAAAAAAAAAAAAACyOJG2CjLGFSJcmcBrP1XztV/uwwcxheUd8zU/3ybTm7IXAAAAAAAAAAAAAAAAAAAAoB1eSuMLETbTVsnHJFys8fq3I8em/YOYwvKOQcpb3DHafk0AAAAAAAAAAAAAAAAAAACALI5EbqWyhQjzkWGN93B+2j+MKSvvqPu5Npnh9usCAAAAAAAAAAAAAAAAAAAAZPFsqleKsDjh9zGo8R7emvYPY8rKOwYpb3HHpEtmAAAAAAAAAAAAAAAAAAAAAO5zKY0vRHgjw/tYSPXKGean+cOYovKO6nMaprzFHcNpvz8AAAAAAAAAAAAAAAAAAACAdpmJbKbxpQjPZXo/b9d4Lxem+QOZovKOQcpb3DHafk0AAAAAAAAAAAAAAAAAAACAbE6neqUIpzO9n5drvJer0/yBTEl5x3xkmPIWdwy3XxcAAAAAAAAAAAAAAAAAAAAgmxfT+FKEG5GZTO/n2Rrv53bkyLR+IKP0y7Oj9Mn1/WY9nRw1nYO8j+r9x3/GIOUt7hhtvyYAAAAAAAAAAAAAAAAAAABAVm+m8aUIaxnfz4lUr6hhyUd3n0kUYhzEfGSY8hZ3DLdfFwAAAAAAAAAAAAAAAAAAACCbmchmGl+McDbz+7pd4z2d8/Hdpy3lHYOUt7hjtP2aAAAAAAAAAAAAAAAAAAAAAFktpHrFCMuZ39d6jfd00cd3nzaUd8xHhilvccdw+3UBAAAAAAAAAAAAAAAAAAAAsvp8qleOcDzz+3qlxnv6gY/vPm0o7xikvMUdo+3XBAAAAAAAAAAAAAAAAAAAAMjufBpfjHCrwPs6V+N93fbx3ad0ecd8ZJjyFncMt18XAAAAAAAAAAAAAAAAAAAAILuLaXw5wlsF3tfTqV5xwzEf4Q6lyzsGKW9xx2j7NQEAAAAAAAAAAAAAAAAAAACKWE/jyxGuFnhfj6d6xQ2LPsIdSpZ3zEeGKW9xx3D7dQEAAAAAAAAAAAAAAAAAAACKeCeNL0gYFHhfJ1K98oZlH+EOJcs7Xkl5iztK3ZsAAAAAAAAAAAAAAAAAAAAA77uVxhckvFDgfc2keuUNz/oIdyhV3nEqMkz5yztO+cgBAAAAAAAAAAAAAAAAAACAkuoUJKwWem91yiDO+wj3/XlOorzjYspf3HHFxw0AAAAAAAAAAAAAAAAAAACUdCTVK0n4YqH3d73Ge3vex7hDifKOhVSvaKXpnPZxAwAAAAAAAAAAAAAAAAAAACWdSPVKElYKvb+NGu/tVR/jDiXKO15J+Ys7LvuoAQAAAAAAAAAAAAAAAAAAgNLmUrvLO35Q470NfIw75C7vOBUZpvzlHY/7qAEAAAAAAAAAAAAAAAAAAIDSllK9ooSnCr2/9Rrvbc3HuEPu8o6LKX9xx2UfMwAAAAAAAAAAAAAAAAAAANAGy6leWcJyofdXp7xj3ce4Q87yjoXIMOUv7zjtYwYAAAAAAKCIUToRmWtRTvhQAAAAAAAAAAAAylpOyjumTc7yjispf3HHFR8xAAAAAAAAxYzSRqRNY8OHAgAAAAAAAAAAUNZyUt4xbXKVdyxGhil/ecdpHzEAAAAAAADFKO8AAAAAAAAAAADgHstJece0yVXe8XrKX9xxxccLAAAAAABAUco7AAAAAAAAAAAAuMdyUt4xbXKUd5xO+Ys7hpFFHy8AAAAAAABFKe8AAAAAAAAAAADgHstJece0yVHeMUj5yzvWfLQAAAAAAAAUp7wDAAAAAAAAAACAeywl5R3TZtLlHQuRYcpb3DHcfl0AAAAAAAAoS3kHAAAAAAAAAAAA95hL9coTnin0/q7VeG8XfYw7TLq8Yy3lLe6octnHCgAAAAAAQCso7wAAAAAAAAAAAOAec6leecJKofe3UeO9DXyMO0yyvON0ZJjyl3ec8rECAAAAAADQCso7AAAAAAAAAAAAuMeJpLxj2kyyvGOQ8hd3XPaRAgAAcMgH5cuRK5HzkdORGVcFAAA4xEOG8g4AAAAAAAAAAADuU6dA4Wyh93azxnt73ke478/zIOUd85Fhyl/eccpHCgAAwCEflNcjow/kljIPAADgEA8ZyjsAAAAAAAAAAAC4z2YaX6CwWui91Sl3OOcj3Pc1O0h5x1rKX9xxxccJAABAAw/K95Z33JubkbXI2ciCMg8AAGDMQ4byDgAAAAAAAAAAAO7zThpfovBSgfd1NNUreFjxEe4wiRKNxcgw5S/vOOXjBAAAoIEH5XHlHffmhjIPAABgj4cM5R0AAAAAAAAAAADc5/U0vkThYoH3NZfqFTw86SPcYRIlGi+n/MUdl32UAAAANPSgvN/yjnszjLwVeTHydOSYqwoAAL1+yFDeAQAAAAAAAAAAwH0GaXyRwnqB97Wc6pU8LPgId5hEkcZmyl/eccpHCQAAQEMPyoct71DmAQAAfPAhQ3kHAAAAAAAAAAAA93k+jS9SeLvA+/p8qlfyMOsj3GE0BVnzMQIAANDgg3LT5R33ZnP7NVYjy5EjrjoAAEz1Q4byDgAAAAC67OHIp1wGAAAAAGjeShpfpjCMzGR+XxdqvK+bPr77TEN5x4KPEQAAgAYflCdd3qHMAwAA+vWQobwDAAAAgK76aOT1yN9EftXlAAAAAIBmPZ7qFSrMZX5fgxrv6eq0fiij9Muzo/TJ9f1mPZ0ctSGz6eGDFndcMiUBAABo9hk7e3mHMg8AAJjuhwzlHQAAAAB00WzkWrr7u+1byT+6CAAAAACNOhrZTONLFZ7O/L7eqvGeXp3WD2WUFudG6ZOjrmYuPXLQ8o45UxIAAIBmn7GLl3co8wAAgOl6yFDeAQAAAEDX/JNI9T3Svb/d/j+Rf+TyAAAAAEBz3k7jSxWey/yebtd4T+en9QPpaXnHRVMRAACA5p+xW1feocwDAAC6/ZChvAOALnkmcjoy41IAAEBvPR55N+3+G+7/FfmHLhMAAAAANKMqTRhXrHAp4/tZSPXKHpam9QPpaXnHKVMRAACA5p+xW1/eocwDAAC69ZChvAOALllPW7/JuBW5krb+oRxlHgAA0B//IvLXafzvuP9H8nfTAAAAANCIL6TxX8hdz/h+vljj/dxIU/xDgh6Wd7xqGgIAADCZZ+zOlXco8wAAgHY/ZCjvAKBL7pR33Js7ZR7n0tY/sqPMAwAAps9vRn6a6v+e+79GHnLZAAAAAOBw5lO9L+TmM72ftRrvZW2aP5CelXcM09YPQQAAAGACz9idL+9Q5gEAAO16yFDeAUCX7Fbe8aB/RKf6Lc7ZpMwDAACmwWra3z/EeCf/waUDAAAAgMOrftQ17su48xneR3Xg5FaN93Jumj+MnpV3vGr6AQAAMLln7Kkr71DmAQAAZR8ylHcA0CV1yzt2K/NYjTwdOeZSAgBAJ3w4bf02e3SI/FuXEQAAAAAO5+U0/ou4NzO8jzOp3peCx6f5w+hReccwbf2LLQAAADChZ+ypL+9Q5gEAAHkfMpR3ANAlBy3veNDvO96KvJiUeQAAQFt9JHKloWeAf+VyAgAAAMDBPZnqfRE3P+H3UedHA29M+4fRo/KOgakHAADAZJ+xe1feocwDAAAm+5ChvAOALmmqvGO3Mo8XIsvJd04AAFBa9Q9jvtnwnv+fu6wAAAAAcDAzkeupbNnCcqr3ZeAXpv3D6El5R/Wl7rypBwAAwGSfsXtf3qHMAwAAmn3IUN4BQJdMqrzj3mxuv9ZqUuYBAAC5fSLyZxPY59+OfNLlBQAAAICDeTHV+yLu8Qm8dlUe8laN174ZOTbtH0RPyjsGphwAAACTf8ZW3qHMAwAAGn3IUN4BQJfkKu9Q5gEAAGX8s8iNCe7t/1/kH7vMAAAAALB/JyLDNP5LuGup+b9UP5/qfQH4fB8+iB6Ud1T32bwpBwAAwOSfsZV3KPMAAIBGHzKUdwDQJaXKO5R5AADA5D0Z+csM+/l3Io+53AAAAACwfxdTvS/hrkZmGnrNxcjtGq95M3KsDx9CD8o7BqYaAAAAeZ6xlXco8wAAgEYfMpR3ANAlbSnvUOYBAADN+njkbzLu4f9n5B+47AAAAACwP6ciw1TvS7jL6fB/eV4Vd9ys+Xov9OVDmPLyjur+mjfVAAAAyPOMrbxDmQcAADT6kKG8A4AuaWt5hzIPAAA4vN/KvG//o9TcP/4JAAAAAL3xSqr/JdyVyOwBX+fZyO2ar3M9crQvH8CUl3cMTDEAAADyPWMr71DmAQAAjT5kKO8AoEu6Ut6hzAMAAA7mdzPv1b/ukgMAAADA/hyPVD/yqvslXFXAcWYf//tV2cfLkeE+XuPpPn0AU1zeUX3m86YYAAAA+Z6xlXco8wAAgEYfMpR3ANAlXS3vUOYBAAD1fChyMfP+/N+77AAAAACwP0+m/ZVrVHk7bf0l+ePp/r8kP5G2Cj4upa2yj/387z7ft4s/xeUdA1MLAACAvM/YyjtaUObxeuTFyFPKPAAAmIKHDOUdAHTJtJR3KPMAAIDdPRz5VuY9+b9x2QEAAABgf1bT4b6Uux6pfix2+xD/G6+nHv4F+5SWd1RlMPOmFQAAAHmfsZV3tCy3I1ciLyjzAACgow8ZyjsA6JJpLe9Q5gEAADt9NPInGffgfxd5xmUHAAAAgP15MZX7i/U3I7N9vOhTWt4xmMCFmo2siOwzi5b2RufhkntKDpCjJk+j8/CMe0r2mTMmTqNz8Kh7Sg6QJZOn0Xk4v9f1vn4iva0wo735ycPpb96ZT99bX07/7cIL6avHb6bfzDQPFYx6NpTSoel56J6S/eYpE8ffV8iBc1N5BwAd0pfyDmUeAACw9bv7P8+8737CZQcAAACA/bkQGab8xR3H+3rBp7C8o7p/5idwoZZb9uNIoxtj1bLe6DwcuKeMA4w5k6fRebjhnjIc6Cg6B+fcU8YBxsDkaXQerux1tdeXFWR0KbePptHlZ9Jo9StptLyeRkc2JzYPV0wez4ZG4UHT89Aw9jvWTRx/X2H4rgeAXuhreYcyDwAA+upk5GbGvfaPIr/gsgMAAADA/jwbuZ3yfIm3lnpc3JHSVJZ3DCZ0ofwY1lDeUX7BckDLUN5Rfh4q7zAc6Cg7B5V3GMo7ys9D5R09KPN47vk0WnojjWaGyjs8GxrKO9hlHhqG8o6yc9DfVxi+6wGgrZR3KPMAAKB/fiXyVxn31/878jGXHQAAAAD2Zy5yNU3ui7uqHOQLkZm+X+gpK+8YRuYndKH8GNZQ3lF+wXJAy1DeUX4eKu8wHOgoOweVdxjKO8rPQ+UdPcqtY42VeayYPJ4NDeUdUzYPDUN5R9k56O8rDN/1ANBWyjuUeQAA0E9PR36acU/9/cjPuuwAAAAAsH9PRX6Qmv0L8Bcjsy7tlikr7xhM8EL5MayhvKP8guWAlqG8o/w8VN5hONBRdg4q7zCUd5Sfh8o7el7mcenZNLrwwr7LPFZMHs+GhvKOKZuHhqG8o+wc9PcVhu96AGgr5R3KPAAA6K/fyLyP/uPIIy47AAAAABzMYtoq3bieDvaX3K9HzkWOuZQ7db28Yyk9MpqL/4zIT/9dSr8aH/hcg5n9wIXK/mPY2Rvx37XRzRy7Vfano225Dp/6dvr9A9x3R8qtB+lIw3Oo0SxeS2t7Xe+So7rnuzpfq7Wm5Jj0WvfV305LE7wvj5X9Mzz/PJx/J11v4nM5xL9af+hx9HZ35+uJ62Xn6/Gb+3/P1T3Tkj9Hjheeryea+O+o1rTc9101Z0qNaq3o6nxt01pX7aHavMd7QE4Unq/H93p/n/lmOr/X5/7GkoKLvpV5XH4mjVa/kkZPXU2jI5vKOzJNVOUdhvKO8vPQMJR3lJ2DyjsM5R0AtJXyDmUeAAD02+9k3jv/YeRDLjsAAAAAHE51kOeZyHORlyNraesvre/kYuSltFXW8VTyl9h76np5xyg9MsmDOOsfuFDZfwzb5X+xuTq4VHJ0/ADYcrn1IC13+dqVHNU939Xrtl74p/4d/9fpV8v+Gd7da1eycGdl0N3rtjFXdr4OVjo9XweF5+tGV6/dSsHj0dVaYa3r31pXzZfC83Vw2LVaqUV/s3lka39bPR8sr+8o81jxDVSjE1V5h6G8o/w8NAzlHWXnoPIOQ3kHAG2lvEOZBwAA/EHm/fLvueQAAAAAQGso71DeobxDecfd21x5h/IO5R3KOxxoV96hvGNC81V5h/IOa53yDulxmcc3P5Ne237ecrCimYmqvMNQ3lF+HhqG8o6yc1B5h6G8A4C2Ut6hzAMAAD4c+UbmPfKXXXYAAAAAoBWUdyjvUN6hvOPuba68Q3mH8g7lHQ60K+9Q3jGh+aq8Q3mHtU55h0iVzeq7hmofqczjUBNVeYehvKP8PDQM5R1l56DyDkN5BwBtpbyjfJnHUvKdEwAA5T0a+XbGPfF7kc+57AAAAABAcco7lHco71Decfc2V96hvEN5h/IOB9qVdyjvmNB8Vd6hvMNap7xDRJlHcxNVeYehvKP8PDQM5R1l56DyDkN5BwBtpbyjHbkdeT1yPvJM5KhbEwCAAn4u8qcZ98F/G/k1lx0AAAAAKEp5h/IO5R3KO+7e5so7lHco71De4UC78g7lHROar8o7lHdY65R3iCjzaG6iKu8wlHeUn4eGobyj7BxU3mEo7wCgrZR3tDPDyFuRF9LW7xF85wQAQC5zkf+bce/748iiyw4AAAAAFKO8Q3mH8g7lHXdvc+UdyjuUdyjvcKBdeYfyjgnNV+Udyjusdco7RJR5NDdRlXcYyjvKz0PDUN5Rdg4q7zCUdwDQVso7upHNyOuR5yKnIzNuXQAAJqgq0/hxxv1uVRYy57IDAAAAAEUo71DeobxDecfd21x5h/IO5R3KOxxoV96hvGNC81V5h/IOa53yDhFlHs1NVOUdhvKO8vPQMJR3lJ2DyjsM5R0AtJXyjm7m1vZn92LkqaRAFgCA5v1a5G8z7nH/NPJzLjsAAAAAkJ3yDuUdyjuUd9y9zZV3KO9Q3qG8w4F25R3KOyY0X5V3KO+w1invEFHm0dxEVd5hKO8oPw8NQ3lH2TmovMNQ3gFAWynvmI5sbn+Wz0WWIjNubQAAGvAvI+9l3Nd+O/Koyw4AAAAAZKW8Q3mH8g7lHXdvc+UdyjuUdyjvcKBdeYfyjgnNV+Udyjusdco7RJR5NDdRlXcYyjvKz0PDUN5Rdg4q7zCUdwDQVso7pjO3Ilci59LW7xmOudUBADigL2fey34j8mGXHQAAAADIRnmH8g7lHco77t7myjuUdyjvUN7hQLvyDuUdE5qvyjuUd1jrlHeIKPNobqIq7zCUd5Sfh4ahvKPsHFTeYSjvAKCtlHf0I8Ptz7r6u9KlNK0FsgAATMpLmfevf+CSAwAAAADZKO/YPT9I6UbaOug5SJ9IV9NKXK6MWZ/tcHnHYt5rdW+6fLjqcynutTv3XeZUr93p8o6C91x1z3e2vGO27LXr8lr39ZSulZqv6ZAHi4sfaD9T7p5bWepwecfRsvN1MN/da/fNlN4pOV//IqXbnS3vWCp3z1VrhbWuf2tdNV9KztdqvTjsWq0wQtqan6T00+q7jmofWz3/fTSl/1Jyvh04n4k/11fK7oukg+nivd7muKdkv/n1D3zXLodPgb+vEHk/z5Z9ZhMRkdbnRlJs0cdU+4MraavMYzkp8wAAYG8fivxh5j3r77jsAAAAAEAWyjv2ONBe+AcO6x0+ELRa+Np1+TDVcsHrttzxa1fynlvt8HWz1lnrihxoL3jdVjp83TYK33ODDl+7QeFrt9Hha7dS8LrNWeusdR1c6zaSggjpTja39+Or28+DRxw0ERERERERERGRw2czsp6UeQAAsLtHIn+ceZ/6Gy47AAAAADBxyjscaHegXXlHUt6hvMNaZ61zoN2BduUdyjuUd1jrrHXKO0SZhzIPERERERERERFR5gEAQB4/G/l+xn3pTyNPT+I/ZNWmX0RERERERERERNL7B+IeGSnvcKDdgXblHUl5h/IOa521zoF2B9qVdyjvUN5hrbPWKe8QUeYhIiIiIiIiIiIiIiIiItOZv4r8ivIOERERERERERERmeCBOOUdDrQ70N6mKO9Q3pE71jprnQPtDrQr71DesVeUd1jrrHXKO0TuRJmHiIiIiIiIiIiIiIiIiHQ8NyMnlXeIiIiIiIiIiIjIhA7EKe9woN2B9jZFeYfyjtyx1lnrHGh3oF15h/KOvaK8w1pnrVPeIbJblHmIiIiIiIiIiIiIiIiISAfz55FZ5R0iIiIiIiIiIiIygQNxyjscaHegvU1R3qG8I3esddY6B9odaFfeobxjryjvsNZZ65R3iNRNVebxeuT5yFNJmYeIiIiIiIiIiIiIiIiItDZ/Evmo8g4RERERERERERFp+ECc8g4H2h1ob1OUdyjvyB1rnbXOgXYH2pV3KO/YK8o7rHXWOuUdIgfNnTKP89vPm8d8DyciIiIiIiIiIiIiIiIi7cm3Ig8r7xAREREREREREZEGD8Qp73Cg3YH2NkV5h/KO3LHWWescaHegXXmH8o69orzDWmetU94h0lTulHk8FzkdOep7OREREREREREREREREREpm4uRDynvEBERERERERERkYYOxCnvcKDdgfY2RXmH8o7csdZZ6xxod6BdeYfyjr2ivMNaZ61T3iEyqQy3nwfulHn4nk5ERERERERERERERERECuR3lXeIiIiIiIiIiIhIQwfilHc40O5Ae5uivEN5R+5Y66x1DrQ70K68Q3nHXlHeYa2z1invEMmVm5E30laZx1Jkxvd2IiIiIiIiIiIiIiIiIpInv6W8Q0RERERERERERBo4EKe8w4F2B9rbFOUdyjtyx1pnrXOg3YF25R3KO/aK8g5rnbVOeYdIqVRlHpe3993KPERERERERERERERERERkgtmMfFx5h4iIiIiIiIiIiBzyQJzyDgfaHWhvU5R3KO/IHWudtc6BdgfalXco79gryjusddY65R0ibcmtyKXIhaTMQ0REREREREREREREREQay19HnkwHpLxDRERERERERERE3s+x9OHRavrYxPLfI6OJ5sMOtDvQPlUH2pV3KO/IHWudtc6BdgfalXco79gryjusddY65R0ibcqNtFXg8VzklO/1REREREREREREREREROTwGUZWlHeIiIiIiIiIiIhI6+NAuwPtDrQr78gVa521zlrnQLsD7co7dsug8LXr8mF+5R3WOmud8g6RkvlgWcfpyIzv2kRERERERERERERERESk+fxd5BeUd4iIiIiIiIiIiEir40C7A+0OtCvvyBVrnbXOWudAuwPtyjt2y6DwtevyYX7lHdY6a53yDpGcuZ7ulnUsJmUdIiIiIiIiIiIiIiIiIpIlX0oHpLxDREREREREREREHGh3oN2B9qS8Q3mHtc5aZ61zoN2BduUdyjvGRXmHtc5ap7xDZNJz/krkQmQhKesQERERERERERERERERkez5WjoE5R0iIiIiIiIiIiLiQLsD7Q60J+UdyjusddY6a50D7Q60K+9Q3jEuyjusddY65R0iTeadtFXWcS5tlXX47kxERERERERERERERERECua1yEPKO0RERERERERERKQTcaDdgXYH2pV35Iq1zlpnrXOg3YF25R27ZVD42nX5ML/yDmudtU55h8hhUpV1XE5bZR2nfE8mIiIiIiIiIiIiIiIiIu3JdyKPpkNS3iEiIiIiIiIiIiIOtDvQ7kB7Ut6hvMNaZ62z1jnQ7kC78g7lHeOivMNaZ61T3iGyn9wp6zhbeB0UEREREREREREREREREdkjP4w8lhqgvENEREREREREREQcaHeg3YH2pLxDeYe1zlpnrXOg3YF25R3KO8ZFeYe1zlqnvENkr9yKXImcS8o6RERERERERERERERERKQTeTdyMjVEeYeIiIiIiIiIiIg40O5AuwPtSXmH8g5rnbXOWudAuwPtyjuUd4yL8g5rnbVOeYfIvff4pciFyGJkxndfIiIiIiIiIiIiIiIiItKdbEaeSA1S3iEiIiIiIiIiIiIOtDvQ7kB7Ut6hvMNaZ62z1jnQ7kC78g7lHeOivMNaZ61T3iH9zo3I1ci5yILvuURERERERERERERERESku3kvciY17CsurIiIiIiIiIiIiDjQ7kC7A+3KO5R3WOusddY6B9odaFfeobxjXJR3WOusdco7pF+5FbkcOVt4HRMRERERERERERERERERaThfStCQSdygAAD2TvZOAIB9kwPtDrQ70K68Q3mHtc5aZ61zoN2BduUdyjuUd1jrrHXKO6SjuRlZ2143TvixnoiIiIiIiIiINJONyCCyEpnz+3AAAB7gs5H3Mu5Rv+aS4wEDAMDeCQCg8/umVQfaHWh3oF15h/IOa521zlrnQLsD7co7lHco77DWKe8QaUWub9/nn48sRmYcJBERERERERERkcPnRmpfWYffhwMAtNcTkc2M+9XXIg+57HjAAACwdwIA6Py+abXDB1p+cPfHBYP0iXQ1rcR/U8asz3b4QPti3mt1b7p8kOpzKe61O/dd5lSv3enyjoL3XHXPd7a8Y7bstevyWvf1lK6Vmq9VOn2g/Uy5e25lqcMH2o+Wna+D+e5eu2+m9E7J+foXKd3ubHnHUrl7rlorrHX9W+uq+VJyvlbrxWHXagUR0rY59Ucp/dnvpfTdT6f0jUdS+s8l51jN7P1901LZPZF0NO2/77sV95TsN7/+ge/a5fAp8PcVMgVZ3NfvnMwzERE5aG5M6De40r5sRC5GvhhZiMz4fTgAADWdjPwo4971O5FHXXY8YAAA2DsBAEzFvmm124dc1j/wX7scyTrWlztc3vGV3Fdr5+j44arlgpN6udPlHQVHdc93trxjuey16/JaF1kt/Adxdw+0b5S751YGHS7vmCs7XwfdLsgaFJ6vG50t7xiUu+eqtcJa17+1brT1o++S83Vw2LVaYYQUTlVAcylyNnJqKr9zGpTdExkdHTQ9Sw1jv2PdxGl0Di67p4x9j1W/cwIgi/Wk1GJaUxWzrEXORuan+XdOye/DAQAm6ecjP8y4j61e6zGXHQ8YAAD2TgAAU7NvWlXeobxDeYfyDuUdyjuUd0xqzjrQrrxDeYfyDuUd1jrlHc3PV+Ud0rk5s33frkTmevGdk/IOQ3lHG2apYSjvKDsHlXcYyjsAaCvlHdOTm2nr71a+kLYKYmf68jun5PfhAACT8pHIdzPuad+NnHTZ8YABAGDvBAAwVfumVeUdyjuUdyjvUN6hvEN5x6TmrAPtyjuUdyjvUN5hrVPe0fx8Vd4hyjra/p2T8g5DeUcbZqlhKO8oOweVdxjKOwBoK+Ud3c2NyFrkbGQhTUdZx4F+55T8PhwAYBIeiryWcX+7GXnCZccDBgCAvRMAwNTtm1aVdyjvUN6hvEN5h/IO5R2TmrMOtCvvUN6hvEN5h7VOeUfz81V5hyjraPt3Tso7DOUdbZilhqG8o+wcVN5hKO8AoK2Ud3QnNyNXIucj875z8vtwAIAJeznjXve9yBmXHA8YAAD2TgAAU7lvWlXeobxDeYfyDuUdyjuUd0xqzjrQrrxDeYfyDuUd1jrlHc3PV+Udoqyj7d85Ke8wlHe0YZYahvKOsnNQeYehvAOAtlLe0d5U37teipyNLPjOye/DAQAy+nLmve+XXHI8YAAA2DsBAEztvmlVeYfyDuUdyjuUdyjvUN4xqTnrQLvyDuUdyjuUd1jrlHc0P1+Vd4iyjrZ/56S8w1De0YZZahjKO8rOQeUdhvIOANpKeUd7ciNt/d3I+chiZMbt6ffhAAAFfDbyXsZ98NdccjxgAADYOwEATPW+aVV5h/IO5R3KO5R3KO9Q3jGpOetAu/IO5R3KO5R3WOuUdzQ/X5V3iLKOtn/npLzDUN7RhllqGMo7ys5B5R2G8g4A2kp5R7lU36tWfxfyxaSs41C/c0p+Hw4A0JQnIpsZ98SvRR5y2fGAAQBg7wQAMNX7plXlHco7lHco71DeobxDecek5qwD7co7lHco71DeYa1T3tH8fFXeIY3/+f29X0pvKOto8Dsn5R2G8o42zFLDUN5Rdg4q7zCUdwDQVso78pd1rCTfOTX6O6fk9+EAAE04GflRxv3xdyKPuux4wAAAsHcCAJj6fdOq8g7lHco7lHco71DeobxjUnPWgXblHco7lHco77DWKe9ofr4q75BD/3ld/ZlZzcMPrAMrvkZq8Dsn5R2G8o42zFLDUN5Rdg4q7zCUdwDQVso7lHV0/ndOye/DAQAO6+cjP8y4V65e6zGXHQ8YAAD2TgAAvdg3rSrvUN6hvEN5h/IO5R3KOyY1Zx1oV96hvEN5h/IOa53yjubnq/IOaaKs496x4mukBr9zUt5hKO9owyw1DOUdZeeg8g5DeQcAbaW8Q1lH53/nlPw+HADgMD4S+W7GffO7kZMuOx4wAADsnQAAerNvOlYdWquZ+H+Ya1lmP/Bfm/3HsLM3tg7+dDHHbpX9EWpbrsOnvp1+/wD33ZGCk/pIC+fh+1m8ltb2ut4lR3XPd3W+VmtNyTHpte6rv52WJnhfHiv8B3H2eTj/TrrexOcyMyx3zx293d35euJ62fl6/Ob+33N1z7Tkz5HjhefriSb+O6o1Lfd9V82ZUqNaK7o6X9u01lV7qDbv8R6QE4Xn6/G93t9nvpnO7/W5v7GkzEJZh/KOiX/npLzDUN7RhllqGMo7ys5B5R2G8g4A2kp5h7KOzv/OKfl9OADAQT0UeS3jHnoz8oTLjgcMAAB7JwAA+6Yu7pv8GNY46M9haXIeOqJlHGTMmTyNzsMN95Sxz7Fh4jQ6B+fcU8YBxsDkaXQerux1tdeXlVso61DeMfHvnDwZGso72jBLDUN5h7+vMJR3AMCDKO9Q1tHd75z8PhwA4LBezriffi9yxiXHAwYAgL0TAIB9k/IOQ3kHB5+HjmgZyjvKz0PlHYbyjrJzUHmHobyj/DxU3qGsQ3lH6e+cPBkayjvaMEsNQ3mHv68wlHcAwIMo71DW0d3vnPw+HADgML6ceX/9JZccDxgAAPZOAAD2Tco7DOUdHG4eOqJlKO8oPw+VdxjKO8rOQeUdhvKO8vNQeYeyDuUdpb9z8mRoKO9owyw1DOUd/r7CUN4BAA+ivENZR3e/c/L7cACAg/ps5L2Me+2vueR4wAAAsHcCALBvUt5hKO/g8PPQES1DeUf5eai8w1DeUXYOKu8wlHeUn4fKO5R1KO8o/Z2TJ0NDeUcbZqlhKO/w9xWG8g4AeJA+l3co6+j6d05+Hw4AcBBPRDYz7rtfizzksuMBAwDA3gkAwL6p++Uds9uHtET2k0VLRaPzcMk9JQfIUZOn0Xl4xj11wEzif7Ub/+1nTJxG5+BR80kOkCWTp9F5OL/X9b5+Ir2tIKNd+cuPppvf+6X0xn/61+k/fuab6XyheThv8jT4ndPS1O6bZJKh6VnqnpL95ikTx99XSOHvnBb9zgmALPpU3qGsY9q+c/L7cACA/ToZ+VHGPfh3Io+67HjAAACwd7J3AgDsm+ybAADsnQD6sdivK8wono3IILIycnDCvsm+CQCwd7J3AiCnaS7vUNZh32TfBABw189HfphxP1691mMuOx4wAADsneydAAD7JvsmAAB7J4D+LPbKO5R1YN8EAGDvBEBfTVN5h7IO+yb7JgCAB/tI5LsZ9+bvRk667HjAAACwd7J3AgDsm+ybAADsnQD6tdgr71DWgX0TAIC9EwB91eXyDmUd9k32TQAA4z0UeS3jPn0z8oTLjgcMAAB7J3snAMC+yb4JAMDeCaB/i73yDmUd2DcBANg7AdBXXSrvUNZh32TfBACwfy9n3LO/FznjkuMBAwDA3sneCQCwb7JvAgCwdwLo52KvvENZB/ZNAAD2TgD0VZvLO5R1YN8EAHA4X868h/+SS44HDAAAeyd7JwDAvsm+CQDA3gmgv4u98g5lHdg3AQDYOwHQV20q71DWgX0TAEBzfiHydxn3819zyfGAAQBg72TvBADYN9k3AQDYOwH0e7FX3qGsA/smAAB7JwD6qmR5h7IO7JsAACar2mv/JMPe/rXIQy43HjAAAOyd7J0AAPsm+yYAAHsngH4v9so7lHVg3wQAYO8EQF/lLO9Q1oF9EwBAfp+O/HiC+/zvRB51mfGAAQBg72TvBADYN9k3AQDYOwFY7JV3KOvAvgkAwN4JgL6aZHnHjcilpKwD+yYAgNJ+MXJ9AnurH0Yec3nxgAEAYO9k7wQA2DfZNwEA2DsB0NfyjluRK5FzyjqwbwIAsHcCoNeaLO+oyjrWImcjC5EZlxf7JgCA1vh45PsN7qvejZx0WfGAAQBg72TvBADYN9k3AQDYOwFwZ7HvQ3nHRuRS5EJkceTgBPZNAAD2TgCw5TDlHco6sG8CAOiWn4l8q4E91WbkCZcTDxgAAPZO9k4AgH2TfRMAgL0TAB9c7KexvONG5Grk3Gjr4ATYNwEA2DsBwIPsp7xDWQf2TQAA3fdwZHCI/dR7kTMuI130lQkEAMDeyd4JAOg3f6kNAFCf75wA+vGgPA3lHbcilyNnI3M+VeybAADsnQCgpr3KO25FLidlHdg3AQBM617rIL8b/5JLBwAAAACwRXkHAAAA7HxQ7mJ5x83IWmQlcsKnCAAAAMABfbC8oyrruBI5HzmdlHUAAMC0W4n8JNX/zfjXXDIAAAAAgLuUdwAAAMDOB+UulHdcjwwin48sjhycAAAAAKAZq0lZBwAA9NmnIz9O438v/lrkIZcLAAAAAOAu5R0AAACw80G5jeUdG5FXI+eUdQAAAAAAAAAwQb8YuZ52/634dyKPukwAAAAAADsp7wAAAICdD8ptKO94J3IpcjZyyqcCAAAAAAAAQEYfj3w/3f878R9GHnN5AAAAAADup7wDAAAAdj4olyjv2IgMIiuROZ8CAAAAAAAAAIX9TORb6e5vxN+NnHRZAAAAAAAeTHkHAAAA7HxQXlfWAQAAAAAAAADp4cggshl5wuUAAAAAANid8g4AAADY+aA8ifKOG5G1yNnIKVcZAAAAAAAAgA75py4BAAAAAMDelHcAAADAzgfl9YbLOhYiM64sAAAAAAAAAAAAAAAATCflHQAAALDzQXldWQcAAAAAAAAAAAAAAABQl/IOAAAA2PmgvK6sAwAAAAAAAAAAAAAAAKhLeQcAAADsfFB+UHnHrciVyPnIorIOAAAAAAAAAAAAAAAA4A7lHQAAALDzQXn9nrKO08o6AAAAAAAAAAAA+P/s3S1wFEv/P+yviIiIiEAgEBEREQgEAoFYgUAgEAgEYgUCgUAgEIitikAgEAgE4oiICAQCgUAgEAgEAoGIOAIRgUAgIiLOf/rZTf1y58lLz+zsvOxcV1WL+9xhp6d3tqanp/vTAAAAcBbhHQAAAPC/D8obwjoAAAAAAAAAAAAAAACAXMI7AAAAAAAAAAAAAAAAAAAAAKAi4R0AAAAAAAAAAAAAAAAAAAAAUJHwDgAAAAAAAAAAAAAAAAAAAACoSHgHAAAAAAAAAAAAAAAAAAAAAFQkvAMAAAAAAAAAAAAAAAAAAAAAKhLeAQAAAAAAAAAAAAAAAAAAAAAVCe8AAAAAAAAAAAAAAAAAAAAAgIqEdwAAAAAAAAAAAAAAAAAAAABARcI7AAAAAAAAAAAAAAAAAAAAAKAi4R0AAAAAAAAAAAAAAAAAAAAAUJHwDgAAAAAAAAAAAAAAAAAAAACoSHgHAAAAAAAAAAAAAAAAAAAAAFQkvAMAAAAAAAAAAAAAAKAlr+P0xRn/aBoAoIJLRblflDdF+ViUn0X5c6Kf8asoP4qyW5RnRbkz+3cAAFQnvKMZl4syPtbf3Tujv/u9KDtFeVqUW0VZ03QADNBGUR4W5W1RPs/um3/PuW8+cd8EABiMe3H6eNS/mgYAWLCnZ/RDPmsaAIBWpXeEo5jOLU/vF9O8nDTf/Pcpfbf9mL5jTH/zIqZjTZc1IQAA0LatohyE8A4AYD6rMV1c8aUoh1FtYejBrP9xY6BteG12/l0rQlUAoD+EdyzOekwnBnydo7+bFiqnEN2rmhOAJZcmxU1iOpGuah9k6PfNFIzbtTGily5tAKBGKzHdAEB4BwDQtDQPZj+EdxzZiG7OV9pyqQLAYKQ56OOivI/qc3KOl/SOMs3x2dS0AABAGz6f88AivAMAuEhKON6Os19qVy1pUeStgbXl41jMgtt5y4bLHAB6Q3jH4vq7v2tu109Fua55AVgyKbQjBW78dd+c27vo3hiRRbQAQJ229TsAgJbsnNMPGWJ4x93o5nylkUsVAJZeClVL4fF/Ftin+BDm5wAAAA16esFDivAOAOA8o6L8isW+iN2N6eDsEOyG8A4AYD7CO+p1u4H+blrgvObSBWAJPIj6w66GfN/cC+EdAMDyuhHn76Kq3wEALMq9OH/8Y4jhHS9DeAcA0KyVojyPxYZ2nCzvY7oRAQAAwMLcLMpBCO8AAKp5EedPqquz7McwUo+7uChDeAcA9Ivwjn72d3/qcwHQY2ly3dsGxymGcN9cbbAfIrwDAGjapVm/Qr8DAGjaVly8QHSI4R0fQ3gHANCcjaJ8b6l/kTYiuOsrAAAAFiGlBe5nPJgI7wAATtPkgoyj8jeW+6Vs2jW2i4syhHcAQL8I76jHbgt9rqEE1gGwXFJwRxuT+9N9c2uJ2/VqdHOMyCJaAGBeKaTss34HANCCNC/nZ0Y/ZIjhHb9CeAcA0IxbMZ0P3nY/Y9tXAQAA1Gm9KN8yH0iEdwAAJ72J9gZL0+4Xy7ow41p080W48A4A6BfhHfNJC5DftdjvSguRN13GAPREWnj5ocX7ZlpUcHlJ2/ZRCO8AAJbTe/0OAKAFZQJohxbecTm6O19p5NIFgKWSgjsOOtTXEOABAADUokxwh/AOAOCk51E9dCP1QXZm/Yv0QvzfsDDjuPshvAMAmJ/wjvlsd6C/+6Mol1zKAPTA24r3ut9F+XLivll1d8/vMd01ddm0GZ5rES0A0IX+o34HAFCXFECbG9wxxPCOWyG8AwBYvHRfnye4I71LTO8X04Y8/8xKCon9WZTDOT73qa8GAACYR9ngDuEdAMBxt6PcAGdawDgpylZMd7A4TQrhSDuJfi/ZR/l4zmf21T8hvAMAmJ/wjuoeRPmJAc+KsnlO3/RKTF/06+8CsGwelry3pYlzT2b3xrNszO6beyU/++0Stu/nEN4BACyPtGB2V78DAGipH/KhZD9kaOEdz0J4BwCwWGmueJUg/xTOMY6LN3xMfb40xz3Nw/5T8hgpUOSmrwgAAKj6sPO1wsOO8A4AIEkhYL9L9iEulzxGCvH4W+IYD5esjcuGrAnvAABOI7yjmksl+rsp0O7lrI9cxmTg/V0AlkcKrsrdGSv9XVoAsFri81dm980yIbKjJWvjMuNwwjsAgC5bi3I73et3AABt90OGFt7xLoR3AACLVbZPlkI7rlc8VprL8yrKvWfcn/UdAQAAsl2N6Y5mVQY+hXcAAMnbzL5DWox4d47jbMV0Ml7OsVI68uUlauOchZypX7fRQrHrOwD0h/COat5ntkVaSHt9juMMub8LwPL4lHkvSztoXZvjODciP8RiL5ZnUt1Wxvn+iHbGiK64/AGAElLfoWp4vfAOAKCtfsjQwjty5pennew3WiirLmUA6L07JfphE+uT1AAAcm1JREFUaVOABzUdN71n/LfEsV/4qgAAgDIPOmV29BTeAQCclAIjchKI09/crOF4aYHij8y+ytslaeONyFuEAgBwEeEd5d3M7O+mMbatGo6XJozmThB465IGoGNyJ9jVdd8sE3z1fEna+J4+AgCwBNICif2oPh4lvAMAaKsfMqTwjhSOcdE7ssMQogEAVJcbqJY2uLle87HT/Jy9yA8O2fB1AQAAF0mTFHMWHgjvAADOk7sL+aMaj5kCPHIWZqS+ztYStPGjjHN951IEADII7ygvd6LAnRqPmQLyfmf2dzdd1gC4b2bdN9OkvktL0MbPM871sUsRAOiw+zFd8DDPeJTwDgCgioc19EOGFN4xymiP7y4rAKCi3E0BUrm5oDrkvme0fg4AADhXWuz6JepZnOHhAwCGbSuzz/BhAce+Fnkv1HeWoJ1fZZznM5cjAJBBeEc5tzPb4PWCjn3Y0rEBYFnvm9tL0M4fM87zhssRAOigtZi+t5t3oyHhHQBAWesx3RSnjvdiQwrveJzRHm9cXgBARbn9s8mC63E3sx5/Yzq+BQAA8D/uzR4Y6lqcIbwDAIbtn4z+QgrYuLKg429H3m7kGz1v5w8Z53nL5QgAZBDeUc7njPPfj8W9nN+JvMkB6y5tANw3s+6bf6L/k+p+xcVjYasuRwCgY64XZS/qG48S3gEA5BrFdEyqrn7IkMI73mS0x9glBgBUkOaV5wS8pjGgJt7t5YTnp/LAVwcAABy5WpRPUf/iDOEdADBcaTA0JxRskf2FtEjxT0YdnvW8rXMmEVx2SQIAGYR35NuMvIkCkw7U4alLGwD3zew63O9xO69lnONPlyMA0CGXYrroM6efJrwDAKjTRkx3c6+7HzKk8I5vGe1x1aUGAFTwILPv9bCh+tzOrM9bXx0AAJB21kqLVQ+i/ABzzkJY4R0AMFzjzD7F9QXX40VGHb71uJ2vZpzfL5cjAJBJeEe+Seb5X1pwPXaXvL8LwHDum4cduW++63E750wc3HE5AgAdcS+m77AWMV9JeAcAcJaVojwqyu8F9UM+D6gdc9pj3SUHAFTwLqOfkTaYXG2wTj8z6rTnqwMAgOFKg6bjmL6srrLoIg1c/xPCOwCAs72PvIlzKwuuRwq3yNklY7On7Xwv49w+uBwBgEzCO/J9zzj3Lw3UI3d3j02XNwAdv282ESqRc99MgfdrPW3nZxnn99TlCAC0bBR5u7Sf1Wd8FMI7AIBq7kTeosvTSto8aDuEdxy5FhavAgCLkxP4+r7hOr3O7Deu+voAAGBY0uLYx0XZj2qDzymZ8P7ss4R3AABnSQOPB5H3YrsJXzPq8qynbf0849yeuyQBgEzCO/JsRH4AbhNyxvqeubwB6Ph980GH7pv3e9rWbzPO7aZLEgBoSVosmxPqdlZ5Gf+3WZHwDgCgjHFU3+wwbRj0ZPY5kxDecbxNL2qLXZceAFDBlcx+WtOB9Q/D5joAAMApNqL6S/CUNr117LOEdwAAZ7mR2b8YNVSfnF1Hv/W0rXczzu2OSxIAyCS8I8/9zHPfaKg+bzLq8tHlDUDH75uXOnTffNfTts5ZDLvmkgQAWlJ1wWzaaOjusc8Zh/AOAKCcqu+4Ugjs8SDUSQjvOPIyuregFgBYDjcz+2q3G67XKLo1Nx4AAOiIjaiWGv06/v+T+YR3AABneZzRTzgoympD9bmd2e+50sO23s9o50suSQAgk/COPDkTEptcJPIo8ha6rLrEAejoffOr++bc0nu8w7g4qB8AoC1VwjtSGOnJ3UrHIbwDACinyvuttJnO5ROfMwnhHUe+ZLTFTZceAFDBg8z+2mbD9RqF8A4AAOAUG1E+NfrGGZ8lvAMAOMtudGvn77TY4iCjTg961s6XM87pi8sRAChBeEeerxnn/abB+mxkfhcmSQLQ1fvmyw7eN6/1rJ2vZ5zTjssRAGhRmfCOFEr28IzPGYfwDgCgnDLvtVKo690zPmcSwjuO/MnozwmVBwCqGMd0bOei0Pqm+xp3QngHAABwio3Mh4W0uHW7KOvnfJbwDgDgLHvRrUUZyY+MOr3qWTvfyjin1y5HAKAE4R0XW4m8YLjHDdfrb0adnrjEAejoffNOB++bj3vW1jm7kD11SQIALcoN70ibBJy3c+o4hHcAAOXkhoelYPYr53zOJIR3JBsZ7fDDZQcA1CBtcpgC7NO7xEez/tjbaHYDySPjsLEOAABwio3I23VrI+OzhHcAAKdJ4V8XpR2nMm64Xu8z6vSlZ239OOOcHrgkAYAShHdc7Gp0cyeN75E37gcAXbxvXu3gfbNvgahvwmRBAKDbLgrv+JLZXxmH8A4AoJyL+g5p8ee1jM+ZhPCO5G5GO7xx2QEAS+ZF5L333NRUAAAwLBvnPCCkiYo3SnyW8A4A4DS3Im9w8nrD9coZNP3bs7beje4tfgEA+k14x8UeZp73pQ72De1yBkBX75urHbxvfu1ZW3/JOKc1lyQA0KKzwjvSf09h9CuZnzMO4R0AQDnn9RnulPicSQjvyG2Hhy47AGDJ5GwO8Cfyx7gAAIAlsXHKw8FeTF+Cl50YKbwDADjNOPIWZax3tF6XetTWexecy0HkDQKnc04hbndm7XRU0v++FgaSAWBIhHdcbBJ5L+O7WK+/LnEAOnh/+qVetdi/4Hz2Mj/nckzHidIOquNj5XZMQ2KNEwEAVZ0M70jjJ4+jfMDYOIR3AADlnOwr7Ffsh0xCeEfyMaMdbmV8Tpo7ljZ/uh3/Ow6VxqXS+NSqSxcA6IiNyJsjZVMdAAAY+APDp5gOeFadZCe8AwA4zXZGH+F3C/UaRd7A6bWetHOaQHB4wbl8O+Pfppfb45juMvtvxuekEJCfRXkV00APizQAYHkJ77jYTsY5f2uhXvejmyF6AAxbzn2zjQUN48z7Zl/GQDYzzuXdGf82jTE9KsqHuDgA5CgMLE08TGOAN13iAEAJR+EdaZfStBN71UD9nL6c8A4A4Ljj72/S+5SqoRCTEN6R/Mpoh8tn/Ns0bz3NLU/zkA4ib45ZGrdKm1SuuZQBgJY8j7x3i280FQAADE8aDE2T6bZq+CzhHQBA1T7C1xbqtRV5A6d3e9LOoyg/CJx2pUiBHQcx3wLc37M+5abLHQCWjvCOi33OOOePHe0f9imsDoDh3DfbeJd0O/O+2Zexj3sZ5/LslDZIfZZ5x4l+zT77issdALjAJObbZOjIOIR3AADlvIzpnJk6+jNDD+9Yr9AX24jphkE5wbEXbT70T03fJQBArtUS/ZhbmgsAAJiH8A4A4DRfMvoIuy3U60rkDZw+7Ek7j0ucS9oFNU0OOIz6F+Om7/KSyx4AlobwjovtRTfHxDbDRAEAuidnF84XLdTrZuZ9c9STds7Z7euoD3AnprvM1t3nS+NOr8MOqADA4o1DeAcA0I5JCO8YZbTBu9nfbhRlpyh/o/6xqBRKa9MhAKAJjzP7J3/CezIAAGBOwjsAgNPkLGZsY1HGSuQNnj7vSTu/iLxFGW9jMaEdJwec77n0AWApCO+42J+e93cfuMwBaFDOmMSjFuqVG3rVl/vmu4xzuVaU97HYMaJUUmDLyKUPACzQOIR3AADtmITwjqcZbfBsVhYR2nEyTPZJTN+RAQAsQgrjyNmswPo5AACgFsI7AIDT5Lx4nbRUt5wFI9s9aefPGeeyH4tfkHG8pKAQqdEA0G/CO+ppo6cd7u8+c5kD0JBLmffNcQt1u5JZt4c9aeuLxoAOivI7mh0nmoSFEwDAYoxDeAcA0I5JCO/Yie7NV/oS07FIAIC67Zbok2xpLgAAYF7COwCA0+QMUD5qqW456cd96L+khQ8H0eyL7tySJiGs+xkAwFL35YYc3rEa3V2EnNvf3XaZA9CQjcz75u0W6rYS+QEUXZcbRNJGeRcCPACA+o1DeAcA0I5JCO/Yi26OQ6X+36ZLFACo0b0SfZH3mgsAAKiD8A4A4KT16PZixn+XpP9yLbq7KCOVr2FHCwDoK+Ed58tdHHu7pfrl9HffuswB6Nj4xajD/Z5JD9r5bnR7nChNVlzzcwAAajQO4R0AQDsmIbzjMLo7DpVC7gV4AAB1SPOD9jP7IKl/tKXJAACAOgjvAABO2ohuh3f8yKjbTg/auc5FGb+L8i2mkwc+z9rodw2f+z0EeABAHwnvqKe/O+pwf9d4HQBNGXX8vvk3o27bPWjnJ1HvOFEKZT0aJ/pZlD81fO6noqz6SQAANRmH8A4AoB2TGHZ4x9WobxwqjTn9iP8bh0pzl35FPQEeGy5VAGAOa7O+SW7/Y6LJAACAugjvAABO2opu70T+OZbjJfqLmG8RRvr3ozh/0UQK3rgT053Zq4Z5fCjKip8FAPSK8I7z3cw85xsd7u++c5kD0JDbmffNtnai+jeW4z3Xbsy3mGEy6+OcN06Udiy9F9PQ278Vj/XaTwIAqMk4hHcAAO2YxLDDOx5F9XGoNKaUxpbSGNN5mwGlxbKjmIbq7lU8VlpsK0gWAKgizXn+oN8BAAC0RXgHAHBS7mLGUUv1W5bwjs9R/sV0eqH9IKYvuctK/+ZxUfYrHPexnwUA9IrwjvONMs95Q38XAP6/cYgu3zeXJbzj3yjfP/telLtRLXT1ckyDYauEeNzxswAAajAO4R0AQDsmMez3MFU2G0obBj0pynrFY96PaiEeL12uAEAFb0v0Nw6Kck2TAQAAdRLeAQCcNArhHYuWFlUcRPmdTetIdk6LM96XPHaq6xU/DQDoDeEd9fR3N/R3ASBrUaXwjvlcKdkvO4zpIpOVGo69WZSvJY+fgmHX/DQAgAb6mcI7AIBFmMSw38N8inJjQe+iemjHcWksK4VxHJY8/nWXLABQwquSfY2xJgMAAOomvAMAOGkUwjsWrcyijD+xmB1Nn0e5AepdPw0A6A3hHfX0dzf0dwFAeEcDbpbok/0qyo2aj58WTuyW7Bu+8NMAABroZwrvAAAWYRLDfg/zJ/LHgLajngDZ4+5GuQCPLwuoAwCwnN5G+U0VAQAAaie8AwA4aRTCOxbtTuQHd9xYYD22w24WALCMhHfU09/d0N8FAOEdDXic2cY/i7K5wHrslOgbHsQ0nBYAYJH9TOEdAMAiTGK472FyNxtK4Rr3F1iPW1EuwOOeyxYAuEDZ4I73ISAMAABYEOEdAMBJoxDesWjPI+9FeBNtXGZhxq6fBwD0gvCOevq7G/q7ACC8owFvMs7hdyw2uCNZzeyHHJUXfh4AwIL7mcI7AIBFmMRw38OMIi8042EDdXkU+eNQX122AMAZUgBH2eCOjzF9LwYAALAQwjsAgJNGIbyjCZeKshXT3SGexXTBQ0pyTruo7s/+WxPSwPWPyN9Z45KfCAB0nvCOevq7G/q7ACC8oyFrRbke0x1N0+KI7aK8i+k40UFRbjZUjzTu8yfzO0+BInYkAwAW2c8U3gEALMIkvIe5EtPxptQnS/OV0sY/X4qyV5TXDdajzIZD11y6AMApdqPc/KdPMX0vBwAAsDDCOwCAk26G8I6huRX5A9ePNRcAdJ7wjvONQngHAOR6EMI7huZJiT7iHc0FAFQ0DuEdAEA7JuE9TFdcLsrfyBuHeqm5AIBj1ovyMcrNffo++3cAAAALJbwDADhpI/IGMe+2VL/vGXXb8TWW9iXze3+nqQCg84R3nO9adHsHL/1dALpk1PH75p+Mum37GktZLcp+WDQBACzWOIR3AADtmITwji55HXnjUN80FQAwc3nWNygz7ynNkb6k6QAAoFlrMX0x3GRZ68B5C+8AgPZd7lg/ZCPyBjLHLbWXHVUX427m9552vFjRXADQacI7zpfb3x3p7wJAdnhHW/fNnLpNfI2lvcps25+aCgCoaBzCOwCAdkxCeEeX5Ibup3JZcwHA4G1F3rya4+VjTMPrAQCAhm3EYhY2nFc2OnDewjsAoH2jjvVDroTwjiFKA9N/otu76QIAeYR3nC+3vzvS3wWAuBnCO4boRol+4rrmAgAqGIfwDgCgHZMQ3tE1PyNvHOqupgKAQRtF/jzno/IhBHcAAEBrNkJ4h8UAANCOUQf7ITmf8bil9vqdUbdtl1UlHzK/+9uaCgA6TXhHPW10R38XALLfn7Vx31zLrNtDX2NpK5l9klS2NBcAUME4hHcAAO2YhPCOrnkVeeNQjzQVAAxWet93EOXmOr2P6TsvAACgJRshvEN4BwC0Y9TBfkjOAGdbCwbtqLo425nt+1RTAUCnCe+4WE5/92GHv78nLnMAGnI5uhuQsRF25Fykj5nte09TAQAVjEN4BwDQjkkI7+ia+5E3DvVaUwHA4KTwjbdRfp7TqxDcAQAArdsI4R3COwCgHaMO9kP2Mj7jbQttlbuj6mOXVSX3Mtv3paYCgE4T3nGxnP7u8w73d8cucwAadNjR++bVzPvmyFdYyeswDgcALM44hHcAAO2YhPCOrrkeeeNQ7zQVAAxK2mTgS5Sf42RDHAAA6IiNEN4hvAMA2jHqYD/kU8ZnvO9wn82On9XczGxf/UMA6DbhHRf7HHm7cHS1v3vLZQ5Ag3JCr9q4b44y75ubvsJKnme270RTAQAVjEN4BwDQjkkI7+iaK5E3DuV7AYDhuFaU/Sg3tyltSPBQ0wEAQHdshPAOizMBoB2jDvZDcvoIX1toq9xwiasuq4X2ifUPAaDbhHdc7EPGOe92+NlAfxeAJuWEXrVx33yQed9c8xVWMg7hHQBAu30N4R0AwCJMQkhEFwnvAACO3CnK3yg3ryn9/V1NBwAA3bIRwjsszgSAdow62A/ZzviMXy201b3M87vsslpon1j/EAC6TXjHxd5knPOXFuqVuwhZfxeAJu109L75NKNeB76+ysYhvAMAaLevIbwDAFiESQiJ6CLhHQBA8qwoh1FuTtPvolzXdAAA0D0bIbzD4kwAaMeog/2QccZnpMHRlYbb6lnkDcKy2D6x/iEAdJvwjos9im4uENHfBaCLJh29b+aEcX3z9VU2DuEdAEC7fQ3hHQDAIkxCSEQXCe8AAHLe/Z0s34uyqekAAKCbrsT0pW+T5UoHzlt4BwC070YH+yE3Im/Qc6vhtnqbUacfLqnKrmZ+7y80FQB0mvCOi93KPO/VhuuVM1b30SUOQMPud/S++SmjTm98fZU9yfzeH2kqAKCCcQjvAADaMQkhEV2zHnnjULuaCgCWUnrH+D7Kz2XaKcqa5gMAALpGeAcAcJo0mHmQ0U+413C9PkbeYCzVjCJvwPuJpgKAThPecbHLmed9veF6fcuo01uXOAAN2+zoffNnRp2e+/oqm2R+73c1FQBQwTiEdwAA7ZiE8I6u2Yi8cahXmgoAlk4K7vgQ5ecxpXeAK5oPAADoIuEdAMBZchZAbDdcpz8ZdXrqq6vsQeQNet/XVADQacI78vzOOO+HDdfpr/4uAB2VE/La5H3zUlEOo3vBs8vkbWY/8YamAgAqGIfwDgCgHZMQ3tE1NyNvHOqZpgKApbJelC9Rbv5Sej/4UNMBAABdJrwDADjLTkY/4V2D9dmIvIHZmx1u07Wi3InphMT0QvnNrK/1MaYv/lNgyp/Zf2/Dq8w23vTzAIBOE96RJ2cCQJP9sqtL0N8FYHnl3DdfNlifUeZ980qH2zQFkKRwkXFMdwdLYRlprO1ojOgoMKWtRQnfIm+C5KqfBwBQwTiEdwAA7ZjEMMM70vultFnPo1kbpHdgu7NzTeNA+zGdv9SGx5E31vfA5QsASyMFd3yNcnOX0iY9tzUdAADQdcI7AICzPIy8gdCVhurzIPq/YOBK5A0wf2qpfj8y6vanwe8cAKhGeEee7Yzz3muwPo8y6rOvLwZAh++b3xusz/OM+nzreJvm7ij6toW6pfG1vxl1++GnAQBUNA7hHQBAOyYxzPCOvejWPLDj3kbeONl1ly8ALIUqwR1pnMjGgwAAQC8I7wAAzrIZeQOiVxuqT86L2q4vykgvuA8yziP9zVpHv++PfhoA0HnCO/Lcyjz3Sw3V511GXd65vAHo+H2zqfGMTxl1ednxNs0Nef0VzS+ayP2+3/hpAAAVjUN4BwDQjkkMM7wjZzwtla0W6vYro14paFbAPQD0XwqQLxvckeaGX9J0AABAXwjvAADO829GX+FpQ3X5nVGXVz1o09xB5zsN1+tJZr2e+lkAQOcJ78iTJgTkBKuNG6rLn4y6PHF5A9Dx++a9BuqSduM6zKjL3R606350Kzz3yKvMet3z0wAAKhqH8A4AoB2TGGZ4R86mSak8a7he1zLr9cGlCwBLIWdjm5Ob3KxqNgAAoE+EdwAA53md0Vf40UA9RpE3SHu9B236MvNcmt4d9ltGndLCmCt+FgDQecI78n3IOPcvDdTjXub3YCcRALp+32xiEv04ox4pFKsPO3HmTlB83GCdckPF/oTJkgDAYvt0wjsAgEWYxDDDOx5H/s72TXqTWa/7Ll0A6L3tKDdXKfUTVjQbAADQN8I7AIDzXI+8AdLRguuxE3kT+PowSHsns03TAoj1jtXpi58EAPSC8I58uaEZmwuux2d9MQCW5L552MB980tGPXZ60qa5iyb2orlxr6eZddrxkwAA5jAO4R0AQDsmMczwjhQQfxh54z5XG6pT2kDoIKM+6W/WXLoA0Gt3S/RFUnkVgjsAAICeEt4BAFzk32j3pXVa8JEzYLvdk/ZML8P/Rt7g8/MG6pMGt79n1ueenwMA9ILwjnxpt/icSYGLHB8bZX4HD13aALhvZt83b/WkTdNCiNyJig8aqE9aMJE7bnXdTwKgc4MBV4tyvygvivKuKJ+L8rMo/87Kj9l/e1uUJ0UZ/WcBHO0Zh/AOAKAdkxhmeEfyI/LGfd41VJ/3mfV57bIFgF67XJTfkT9H6aUmAwAA+kx4BwBwkWeRN1h6Z0HHz3lRmxaObPSoTXcz2/RPLH7ibO4Orz9DijUA9IXwjnLeZJx/WlR7bQHHTv2rbxnHT5MY1l3aALhvZt03+zaG8TW6MzbzNrMun/wUADrx8L8yC+DYKcqvovxXofwtyvui3P0v4z5T/M3loowzym3fEBcYh/AOAKAdkxhueEfuHLBUbiy4LqPIC7VNf7PhsgWAXvtQog+yE+YqAwAAPSe8AwC4yKWYhkhc1GfYn/1tnR5F/mBtn9yO/IHo3QXWYxR5O+amMvZTAIDeEN5RzlbkTQ78XpTVmo+dO0ly22UNgPtmvMi8bz7pWZvmjn/9N2uDRSmzeGPkpwDQ6kP/elGeFGWvYmDHWeVnUR5ccOxR5md99k1xgXEI7wAA2jGJ4YZ3XIm8sb2j8b1FLZy9GtPg+px6mMMOAP2Wu8HgUR9McAcAANB7wjsAgBzbkTdwmnY/rWthRtqh9W/k7bCw2cM2/Rb5A9KLWHSS2vd3ie/VgDgA9IfwjvJ2MtvhY439ovuRN0Ey9dnWXdYA9PC++aHG++a4xH1ztWftmer7q0S/7O4C6pDbvqm89xMAaO1hf2UW2rFfc2jHyfLpvzN2thbeQc39D+EdAEAbJjHc8I7kXeSPQy1i/nh61tjLPH6aN7bpkgWA3srdPDKV9K7ssiYDAACWgfAOACBHWiyYO4CaJvDPu0iiTLDEbs3nmvuCejLncUZRbsHsoxrP8UbkBaMchaNc9xMAgF4R3lHeVpRbsDpvf/dWUQ4yj/fCJQ1Aj++br2P+AI9xieM9rvE8RyX6SuMazjH3WKkt6gzweFCifS2YAGjvQf9mUb4vOLTjePn73/QecbIewjuoS07/R3gHALAIk+hmeMe/0UygRhrbyR0LOnpPVVdA75US57mozY4AgOa8LnHfv625AACAZSG8AwDI9SzyB1HTS+wrFY+TdiDPDZZIgSJ1Jy03Fd6RvI9yi2bnfSGe/u3TEu2byrZLHwB6R3hHNW9KtMeHOfqhafFTbnBHmsC45pIGoOf3zRS8ul7xOA8jfzHBl6hvIUEyiubCO1K9v5fsnz2Z83zTd/Iyyi3WeOTSB2jlIf95UQ4bDO44Xl78d+x+I7yDGo1DeAcA0I5JDDu8I3kV5cahdqL6+N6R9H5sP8rNPVtxuQJAb6U55LlzY9I7snHHijB7AACgMuEdAECu9EL0W+S/RE0BEfcj/0VqesmbUpbbXjDQZHjHpaLsRbkX4unv70X5F9T3KhzrQ3gRDgB9JLyjet+szG5ff2d9rFxpYsK7ku1+x+UMwJLcN9PE/FGJz98sed9M40nXaj7HUTQX3pFcjXKBq6mksbpbJY+TxnrSmNrvksd647IHaPzhfqUob1oK7The/jkK8BDeQY3GIbwDAGjHJIR3pP791yg3NpQ2WHoc5UPnb1Y41q+ovmkUANANZcPCulbGvkIAAKAq4R0AQBlpEUFuEvLxsIlJUW4UZfXE56WFHndm/Y2yixPeLugcmwzvSG5WaNOjCYuTWfudtuv76uyz0wD4rwqfn763dZc8APSS8I7q0uLXw5Jt8/Oc/m6aWJgCPt5X6PM9dykDsIT3zbRz1rOYBm2cvG+mwI4HFe+bzxZwfqNofgLfo4p9tR+zNkjfyWnjOWlRxe2YBnDsV/j8LyHgFaCNh/t3HQjuOCqvZnUS3kFdxiG8AwBoxySEdyRbUT7c9b/Zv0mbM6UNnU7bkX5l9tnpPdfPCp+fxgWvuUwBoNcuRbV50cI7AACApSC8AwAoaxzzDWimIIn0wvnPHJ+RFiSsLej8mg7vSNLClMM523V/1q6pzDvonT5jw6UOAL0lvGM+k5r6u3/n+IyPYYEsAO6buWVnQec2inYm8D2roe921K6pzDvmlAJXLrnUARp/sN+pMXhjvyj/zsrfOT5nLLyDGo1DeAcA0I5JCO84kjZxqhLgcbz8if8bh/o752el+U63XaIA0HtVw+qFdwAAAEtBeAcAUMWTaG9AdNELBtoI70jGMf9iijqK4A4A6D/hHfN72WJ/LAV3rLmMAXDfzCrvYnGBV6NobwLf8+jGxETBHQDtPNRvzxnW8aMok6Lc+O+U58viv20W5V5R3pQM8zgsykPhHdRkHMI7AIB2TEJ4x3HXYv4AjzqK4A4AWB7vQ3gHAAAwYMI7AICqUoBH02ETTSwYaCu8I7kf8+9CMU/5EhZkAMAyEN5Rj2ct9Hc/heAOAPrpRQvjGDsLvm+Oot0JfG2MvR0v7/VLAFp5oL85C8moEtrxKf37ksdbn4WF5IZ4/BXeQU3GIbwDAGjHJIR3nHS1KHvR3jhUOvY1lyYALI3cfo3wDgAAYCkJ7wAA5pF2PGhq94U30cyCgTbDO5L0QvxbNL97xdNY3E61AECzhHfUp8lwtZdFWXX5AtBj49kYw6LvmYcNjWOMov0JfNej+YUTf8KERIC2HuYvFWWvQmjH76Lcm/PYG7Pwj/9qKsI7yOk7Cu8AANowCeEdp1mLvDnldZd3RVl3WQLA0kh9ijbD6YV3AAAArRPeAQDMa6MoH2NxA6ApHOR+g+fTdnhHkhafpN1V92PxA8xfYxoYAgAsD+Ed/ervpsmYt1y2ACyJq7OxhkXdN79Hc7twjqIbE/jSJMdJTEM1Fj1O9GHW9wGgnYf51xVCMn4UZavGOkyEd9CQcQjvAADaMQnhHee5E81sOrQ3OxYAsFyuRf+DO4R3AAAAcxHeAQDU5XZMF1DUlZicQjteFOVyw+fRhfCOI+uz4/yK+geWvxTlQdjdHQCWkfCOxfV3f9TYpvuzvt6apgVgCaUg1r0a75tpbORJw+MYo+jWBL40TvSs5nY9KimoLC2WWHHpArT2IH+1KIclAzK+F+XSAuryXHgHDRiH8A4AoB2TEN6RI40VvY/65oEdlZ9FeRTGoQBgWY1CeAcAADBwd2M6EH1euauZAIAS0g6rL6Na4MRBUT7FdDHGekv1n2SWUYN1Wpn1yV5H/sv6kyW9TE87327PviMAYHkJ71isazX0dx+GEDUAhuFmTMczfle4b/6N6QKBtsJHNyJ/nOhag/VK40SjWbumxQ5VFlCkPklahPJsdp4AtP8g/75kOMavRQR3HKvPc+EdLNi1jD7WE80EACzAKKMfMm6hXk8ibxyq6Tndm7O6pT7+QVQP7EhjWTdcfgCw9DYi//1al8s1XyUAAAAA0EVXYvrS+HlMX8K+i+nL3KOyU5RXRXkc05fjFjDm2Yrpzu9PZ+23e6JdP87aNi0qfTj7DtY1GwAMhvAO/V0A6KI00f/e7L75JqbBHEf3zE/xv2MZN9w3s6UxnzRO9OyM/siHmO7Iuj1r27Rr6ppmA+jUQ/xWyWCMv/81ENJdHOON8A4AAOCYFCp7vSiPivIipmNOaVzvrHdjxqEAAAAAAAAAAADoNeEdAAAA0J+H+LIhGU8aqtdqUb4L7wAAAAAAAAAAAAAAAGCIhHcAAABAPx7g14vyp6uhGMXxrhflQHgHAAAAAAAAAAAAAAAAQyO8AwAAAPrxAP+oZCjG/Rbq+FJ4BwAAAAAAAAAAAAAAAEMjvAMAAAD68QD/uUQgxl5RVlqo4+WiHAjvAAAAAAAAAAAAAAAAYEiEdwAAAED3H95TKMZhiUCM5y3W9a3wDgAAAAAAAAAAAAAAAIZEeAcAAAB0/+H9XslAjKst1nUkvAMAAAAAAAAAAAAAAIAhEd4BAAAA3X94f1kiDONny3VdKcpv4R0AAAAAAAAAAAAAAAAMhfAOAAAA6P7D+9cSYRg7HajvjvAOAAAAAAAAAAAAAAAAhkJ4BwAAAHT7wX2tKAclwjCedqDOY+EdAAAAAAAAAAAAAAAADIXwDgAAAOj2g/uNEkEYqdzsQJ2vCO8AAAAAAAAAAAAAAABgKIR3AAAAQLcf3O+XDO9Y60i9fwvvAAAAAAAAAAAAAAAAYAiEdwAAAEC3H9yflwju+NWhen8S3gEAAAAAAAAAAAAAAMAQCO8AAACAbj+4vy0R3vG9Q/X+R3gHAAAAAAAAAAAAAAAAQyC8AwAAALr94P6xRHjHbofq/UJ4BwAAAAAAAAAAAAAAAEMgvAMAAAC6/eD+uUR4xz8dqvdT4R0AAAAAAAAAAAAAAAAMgfAOAAAA6PaD+16J8I6XHar3A+EdAAAAAAAAAAAAAAAADIHwDgAAAOj2g/u/JcI7Jh2q923hHQAAAAAAAAAAAAAAAAyB8A4AAADo9oN7X8M7RsI7AAAAAAAAAAAAAAAAGALhHQAAANDtB3fhHQAAAAAAAAAAAAAAANBhwjsAAACg2w/uwjsAAAAAAAAAAAAAAACgw4R3AAAAQLcf3L+VCO942aF6C+8AAAAAAAAAAAAAAABgEIR3AAAAQLcf3D+XCO/Y6VC9bwvvAAAAAAAAAAAAAAAAYAiEdwAAAEC3H9x3S4R3fOxQvR8I7wAAAAAAAAAAAAAAAGAIhHcAAABAtx/c35QI7/jWoXo/FN4BAAAAAAAAAAAAAADAEAjvAAAAgG4/uD8tEd7xq0P1fim8AwAAAAAAAAAAAAAAgCEQ3gEAAADdfnC/WyK8I5W1jtR7R3gHAAAAAAAAAAAAAAAAQyC8AwAAALr94L5ZMrzjRkfq/U14BwAAAAAAAAAAAAAAAEMgvAMAAAC6//B+UCK843EH6rtalEPhHQAAAAAAAAAAAAAAAAyB8A4AAADo/sP75xLhHbsdqO/1EvX93JPv4N4Z9f/XFQoAAAAAAAAAAAAAADBswjsAAACg+w/v2yXCMP4WZaXl+j5apvCO1J5F+Sm8AwAAAAAAAAAAAAAAgNMI7wAAAIDuP7zfKBGGkcrdluv7ecnCO84LTxHeAQAAAAAAAAAAAAAAMHDCOwAAAKD7D+8rRfldIhDjXYt1XS/KwbKEd8yCUw6FdwAAAAAAAAAAAAAAAHAW4R0AAADQjwf4NyUCMVJ4xnpL9XxWop6dDu8o6nYphXNcUH/hHQAAAAAAAAAAAAAAAAMnvAMAAAD68QB/p2QoxqSFOq4UZW8ZwjuKeq2mumXUX3gHAAAAAAAAAAAAAADAwAnvAAAAgH48wJcNxvhblK2G6/iwZHBHl8M73mfWX3gHAAAAAAAAAAAAAADAwAnvAAAAgP48xE9KBmN8arBua0X5tQzhHUWd3paov/AOAAAAAAAAAAAAAACAgRPeAQAAAP15iE8BGfslwzGeNlS33QrBHZ0K7yjqslrhPIR3AAAAAAAAAAAAAAAADJzwDgAAAOjXg/zTCgEZ9xZcp2cVgzs6E94xC0b5WKH+wjsAAAAAAAAAAAAAAAAGTngHAAAA9OtBfrUoeyUDJg6LcmdB9RnPPr+34R1FHa4U5VvF+gvvAAAAAAAAAAAAAAAAGDjhHQAAANC/h/lbFQIz0t/fq7keT+YM7mg9vKM4/o2i7M9Rf+EdAAAAAAAAAAAAAAAAAye8AwAAAPr5QL9TMWziZVFW5zz2elF25wztaD28ozj2/aIczFl/4R0AAAAAAAAAAAAAAAADJ7wDAAAA+vlAv1aUHxUDJ/aKcrvice/O/v1/fQ3vmLVdCj85rKH+wjsAAAAAAAAAAAAAAAAGTngHAAAA9PehfqMo+3MET6TwjydF2brgOJtFeTZHWEhnwjuK412vOXxEeAcAAAAAAAAAAAAAAMDACe8AAACAfj/Y3yjKQQ0hFCkE5EtR/jlWPhXl1wICOxoP7yiOc6kob4pyWHP9hXcAAAAAAAAAAAAAAAAMnPAOAAAA6P/D/agovxccslGm7HQpvKM4xr2KISR/hHcAAAAAAAAAAAAAAABwEeEdAAAAsBwP+FcrBlTUXSZFGXchvGMWavJtjgCSR8I7AAAAAAAAAAAAAAAAuIjwDgAAAFieh/wrc4RV1FGez+rRanhH8Zl3ivJ9jvN4WZSVzPMQ3gEAAAAAAAAAAAAAADBwwjsAAABguR70U+jEm4ZDO/4W5dGxOrQd3vHvHOdxt+R5CO8AAAAAAAAAAAAAAAAYOOEdAAAAsJwP/LeKstdAcMePomydOHYfwzs+FmWzwnkI7wAAAAAAAAAAAAAAABg44R0AAACwvA/9K0V5VpT9BYR2/C3KpChrpxy3T+Edh0V5eMbnCO8AAAAAAAAAAAAAAADgQsI7AAAAYPkf/leL8rgo32sI7fhZlEdFWT/neH0J79gtyuac5yG8AwAAAAAAAAAAAAAAYOCEdwAAAMCwBgK2ZkEeKbjiR1EOLwinOCjKt6K8LcqtoqxkHKPr4R1finKzpvMQ3gEAAAAAAAAAAAAAADBwwjsAAABg2AMDq0W5PgvmGB8rd4pyLf3/FT6zq+EdP2d1W6nxPIR3AAAAAAAAAAAAAAAADJzwDgAAAKBWHQzv2CvKk9zQjpLnIbwDAAAAAAAAAAAAAABg4IR3AAAAALXqUHjHj1ldVhZ4HsI7AAAAAAAAAAAAAAAABk54BwAAAFCrDoR3TIpyu2poR8nzEN4BAAAAAAAAAAAAAAAwcMI7AAAAgFq1Hd7R8HkI7wAAAAAAAAAAAAAAABg44R0AAABArYR3AAAAAAAAAAAAAAAAMCTCOwAAAIBaCe8AAAAAAAAAAAAAAABgSIR3AAAAALUS3gEAAAAAAAAAAAAAAMCQCO8AAAAAaiW8AwAAAAAAAAAAAAAAgCER3gEAAADUSngHAAAAAAAAAAAAAAAAQyK8AwAAAKiV8A4AAAAAAAAAAAAAAACGRHgHAAAAUCvhHQAAAAAAAAAAAAAAAAyJ8A4AAACgVsI7AAAAAAAAAAAAAAAAGBLhHQAAAECthHcAAAAAAAAAAAAAAAAwJMI7AAAAgFoJ7wAAAAAAAAAAAAAAAGBIhHcAAAAAtRLeAQAAAAAAAAAAAAAAwJAI7wAAAABqJbwDAAAAAAAAAAAAAACAIRHeAQAAANRKeAcAAAAAAAAAAAAAAABDIrwDAAAAqJXwDgAAAAAAAAAAAAAAAIZEeAcAAABQK+EdAAAAAAAAAAAAAAAADInwDgAAAKBWwjsAAAAAAAAAAAAAAAAYEuEdAAAAQK2EdwAAAAAAAAAAAAAAADAkwjsAAACAWgnvAAAAAAAAAAAAAAAAYEiEdwAAAAC1Et4BAAAAAAAAAAAAAADAkAjvAAAAADiF8A4AAAAAAAAAAAAAAAByCO8AAAAAOIXwDgAAAAAAAAAAAAAAAHII7wAAAAA4hfAOAAAAAAAAAAAAAAAAcgjvAAAAADiF8A4AAAAAAAAAAAAAAAByCO8AAAAAOIXwDgAAAAAAAAAAAAAAAHII7wAAAAA4hfAOAAAAAAAAAAAAAAAAcgjvAAAAADiF8A4AAAAAAAAAAAAAAAByCO8AAAAAOIXwDgAAAAAAAAAAAAAAAHII7wAAAAA4hfAOAAAAAAAAAOD/sXNHNQoAUAwEkYQ0JJxzQECTe9lfZpIaqIAFAAAAgAvxDgAAAIBBvAMAAAAAAAAAAAAAAIAL8Q4AAACAQbwDAAAAAAAAAAAAAACAC/EOAAAAgEG8AwAAAAAAAAAAAAAAgAvxDgAAAIBBvAMAAAAAAAAAAAAAAIAL8Q4AAACAQbwDAAAAAAAAAAAAAACAC/EOAAAAgEG8AwAAAAAAAAAAAAAAgAvxDgAAAIBBvAMAAAAAAAAAAAAAAIAL8Q4AAACAQbwDAAAAAAAAAAAAAACAC/EOAAAAgEG8AwAAAAAAAAAAAAAAgAvxDgAAAIBBvAMAAAAAAAAAAAAAAIAL8Q4AAACAQbwDAAAAAAAAAAAAAACAC/EOAAAAgEG8AwAAAAAAAAAAAAAAgAvxDgAAAIBBvAMAAAAAAAAAAAAAAIAL8Q4AAACAQbwDAAAAAAAAAAAAAACAC/EOAAAAgEG8AwAAAAAAAAAAAAAAgAvxDgAAAIBBvAMAAAAAAAAAAAAAAIAL8Q4AAACAQbwDAAAAAAAAAAAAAACAC/EOAAAAgEG8AwAAAAAAAAAAAAAAgAvxDgAAAIDh/Xg8v/v7Zy9PAQAAAAAAAAAAAAAA/DbxDgAAAAAAAAAAAAAAAAAAAACIxDsAAAAAAAAAAAAAAAAAAAAAIBLvAAAAAAAAAAAAAAAAAAAAAIBIvAMAAAAAAAAAAAAAAAAAAAAAIvEOAAAAAAAAAAAAAAAAAAAAAIjEOwAAAAAAAAAAAAAAAAAAAAAgEu8AAAAAAAAAAAAAAAAAAAAAgEi8AwAAAAAAAAAAAAAAAAAAAAAi8Q4AAAAAAAAAAAAAAAAAAAAAiMQ7AAAAAAAAAAAAAAAAAAAAACAS7wAAAAAAAAAAAAAAAAAAAACASLwDAAAAAAAAAAAAAAAAAAAAACLxDgAAAAAAAAAAAAAAAAAAAACIxDsAAAAAAAAAAAAAAAAAAAAAIBLvAAAAAAAAAAAAAAAAAAAAAIBIvAMAAAAAAAAAAAAAAAAAAAAAIvEOAAAAAAAAAAAAAAAAAAAAAIjEOwAAAAAAAAAAAAAAAAAAAAAgEu8AAAAAAAAAAAAAAAAAAAAAgEi8AwAAAAAAAAAAAAAAAAAAAAAi8Q4AAAAAAAAAAAAAAAAAAAAAiMQ7AAAAAAAAAAAAAAAAAAAAACAS7wAAAAAAAAAAAAAAAAAAAACASLwDAAAAAAAAAAAAAAAAAAAAACLxDgAAAAAAAAAAAAAAAAAAAACIxDsAAAAAAAAAAAAAAAAAAAAAIBLvAAAAAAAAAAAAAAAAAAAAAIBIvAMAAAAAAAAAAAAAAAAAAAAAIvEOAAAAAAAAAAAAAAAAAAAAAIjEOwAAAAAAAAAAAAAAAAAAAAAgEu8AAAAAAAAAAAAAAAAAAAAAgEi8AwAAAAAAAAAAAAAAAAAAAAAi8Q4AAAAAAAAAAAAAAAAAAAAAiMQ7AAAAAAAAAAAAAAAAAAAAACAS7wAAAAAAAAAAAAAAAAAAAACASLwDAAAAAAAAAAAAAAAAAAAAACLxDgAAAAAAAAAAAAAAAAAAAACIxDsAAAAAAAAAAAAAAAAAAAAAIBLvAAAAAAAAAAAAAAAAAAAAAIBIvAMAAAAAAAAAAAAAAAAAAAAAIvEOAAAAAAAAAAAAAAAAAAAAAIjEOwAAAAAAAAAAAAAAAAAAAAAgEu8AAAAAAAAAAAAAAAAAAAAAgEi8AwAAAAAAAAAAAAAAAAAAAAAi8Q4AAAAAAAAAAAAAAAAAAAAAiMQ7AAAAAAAAAAAAAAAAAAAAACAS7wAAAAAAAAAAAAAAAAAAAACASLwDAAAAAAAAAAAAAAAAAAAAACLxDgAAAAAAAAAAAAAAAAAAAACIxDsAAAAAAAAAAAAAAAAAAAAAIBLvAAAAAAAAAAAAAAAAAAAAAIBIvAMAAAAAAAAAAAAAAAAAAAAAIvEOAAAAAAAAAAAAAAAAAAAAAIjEOwAAAAAAAAAAAAAAAAAAAAAgEu8AAAAAAAAAAAAAAAAAAAAAgEi8AwAAAAAAAAAAAAAAAAAAAAAi8Q4AAAAAAAAAAAAAAAAAAAAAiMQ7AAAAAAAAAAAAAAAAAAAAACAS7wAAAAAAAAAAAAAAAAAAAACASLwDAAAAAAAAAAAAAAAAAAAAACLxDgAAAAAAAAAAAAAAAAAAAACIxDsAAAAAAAAAAAAAAAAAAAAAIBLvAAAAAAAAAAAAAAAAAAAAAIBIvAMAAAAAAAAAAAAAAAAAAAAAIvEOAAAAAAAAAAAAAAAAAAAAAIjEOwAAAAAAAAAAAAAAAAAAAAAgEu8AAAAAAAAAAAAAAAAAAAAAgEi8AwAAAAAAAAAAAAAAAAAAAAAi8Q4AAAAAAAAAAAAAAAAAAAAAiMQ7AAAAAAAAAAAAAAAAAAAAACAS7wAAAAAAAAAAAAAAAAAAAACASLwDAAAAAAAAAAAAAAAAAAAAACLxDgAAAAAAAAAAAAAAAAAAAACIxDsAAAAAAAAAAAAAAAAAAAAAIBLvAAAAAAAAAAAAAAAAAAAAAIBIvAMAAAAAAAAAAAAAAAAAAAAAIvEOAAAAAAAAAAAAAAAAAAAAAIjEOwAAAAAAAAAAAAAAAAAAAAAgEu8AAAAAAAAAAAAAAAAAAAAAgEi8AwAAAAAAAAAAAAAAAAAAAAAi8Q4AAAAAAAAAAAAAAAAAAAAAiMQ7AAAAAAAAAAAAAAAAAAAAACAS7wAAAAAAAAAAAAAAAAAAAACASLwDAAAAAAAAAAAAAAAAAAAAACLxDgAAAAAAAAAAAAAAAAAAAACIxDsAAAAAAAAAAAAAAAAAAAAAIBLvAAAAAAAAAAAAAAAAAAAAAIBIvAMAAAAAAAAAAAAAAAAAAAAAIvEOAAAAAAAAAAAAAAAAAAAAAIjEOwAAAAAAAAAAAAAAAAAAAAAgEu8AAAAAAAAAAAAAAAAAAAAAgEi8AwAAAAAAAAAAAAAAAAAAAAAi8Q4AAAAAAAAAAAAAAAAAAAAAiMQ7AAAAAAAAAAAAAAAAAAAAACAS7wAAAAAAAAAAAAAAAAAAAACASLwDAAAAAAAAAAAAAAAAAAAAACLxDgAAAAAAAAAAAAAAAAAAAACIxDsAAAAAAAAAAAAAAAAAAAAAIBLvAAAAAAAAAAAAAAAAAAAAAIBIvAMAAAAAAAAAAAAAAAAAAAAAIvEOAAAAAAAAAAAAAAAAAAAAAIjEOwAAAAAAAAAAAAAAAAAAAAAgEu8AAAAAAAAAAAAAAAAAAAAAgEi8AwAAAAAAAAAAAAAAAAAAAAAi8Q4AAAAAAAAAAAAAAAAAAAAAiMQ7AAAAAAAAAAAAAAAAAAAAACAS7wAAAAAAAAAAAAAAAAAAAACASLwDAAAAAAAAAAAAAAAAAAAAACLxDgAAAAAAAAAAAAAAAAAAAACIxDsAAAAAAAAAAAAAAAAAAAAAIBLvAAAAAAAAAAAAAAAAAAAAAIBIvAMAAAAAAAAAAAAAAAAAAAAAIvEOAAAAAAAAAAAAAAAAAAAAAIjEOwAAAAAAAAAAAAAAAAAAAAAgEu8AAAAAAAAAAAAAAAAAAAAAgEi8AwAAAAAAAAAAAAAAAAAAAAAi8Q4AAAAAAAAAAAAAAAAAAAAAiMQ7AAAAAAAAAAAAAAAAAAAAACAS7wAAAAAAAAAAAAAAAAAAAACASLwDAAAAAAAAAAAAAAAAAAAAACLxDgAAAAAAAAAAAAAAAAAAAACIxDsAAAAAAAAAAAAAAAAAAAAAIBLvAAAAAAAAAAAAAAAAAAAAAIBIvAMAAAAAAAAAAAAAAAAAAAAAIvEOAAAAAAAAAAAAAAAAAAAAAIjEOwAAAAAAAAAAAAAAAAAAAAAgEu8AAAAAAAAAAAAAAAAAAAAAgEi8AwAAAAAAAAAAAAAAAAAAAAAi8Q4AAAAAAAAAAAAAAAAAAAAAiMQ7AAAAAAAAAAAAAAAAAAAAACAS7wAAAAAAAAAAAAAAAAAAAACASLwDAAAAAAAAAAAAAAAAAAAAACLxDgAAAAAAAAAAAAAAAAAAAACIxDsAAAAAAAAAAAAAAAAAAAAAIBLvAAAAAAAAAAAAAAAAAAAAAIBIvAMAAAAAAAAAAAAAAAAAAAAAIvEOAAAAAAAAAAAAAAAAAAAAAIjEOwAAAAAAAAAAAAAAAAAAAAAgEu8AAAAAAAAAAAAAAAAAAAAAgEi8AwAAAAAAAAAAAAAAAAAAAAAi8Q4AAAAAAAAAAAAAAAAAAAAAiMQ7AAAAAAAAAAAAAAAAAAAAACAS7wAAAAAAAAAAAAAAAAAAAACASLwDAAAAAAAAAAAAAAAAAAAAACLxDgAAAAAAAAAAAAAAAAAAAACIxDsAAAAAAAAAAAAAAAAAAAAAIBLvAAAAAAAAAAAAAAAAAAAAAIBIvAMAAAAAAAAAAAAAAAAAAAAAIvEOAAAAAAAAAAAAAAAAAAAAAIjEOwAAAAAAAAAAAAAAAAAAAAAgEu8AAAAAAAAAAAAAAAAAAAAAgEi8AwAAAAAAAAAAAAAAAAAAAAAi8Q4AAAAAAAAAAAAAAAAAAAAAiMQ7AAAAAAAAAAAAAAAAAAAAACAS7wAAAAAAAAAAAAAAAAAAAACASLwDAAAAAAAAAAAAAAAAAAAAACLxDgAAAAAAAAAAAAAAAAAAAACIxDsAAAAAAAAAAAAAAAAAAAAAIBLvAAAAAAAAAAAAAAAAAAAAAIBIvAMAAAAAAAAAAAAAAAAAAAAAIvEOAAAAAAAAAAAAAAAAAAAAAIjEOwAAAAAAAAAAAAAAAAAAAAAgEu8AAAAAAAAAAAAAAAAAAAAAgEi8AwAAAAAAAAAAAAAAAAAAAAAi8Q4AAAAAAAAAAAAAAAAAAAAAiMQ7AAAAAAAAAAAAAAAAAAAAACAS7wAAAAAAAAAAAAAAAAAAAACASLwDAAAAAAAAAAAAAAAAAAAAACLxDgAAAAAAAAAAAAAAAAAAAACIxDsAAAAAAAAAAAAAAAAAAAAAIBLvAAAAAAAAAAAAAAAAAAAAAIBIvAMAAAAAAAAAAAAAAAAAAAAAIvEOAAAAAAAAAAAAAAAAAAAAAIjEOwAAAAAAAAAAAAAAAAAAAAAgEu8AAAAAAAAAAAAAAAAAAAAAgEi8AwAAAAAAAAAAAAAAAAAAAAAi8Q4AAAAAAAAAAAAAAAAAAAAAiMQ7AAAAAAAAAAAAAAAAAAAAACAS7wAAAAAAAAAAAAAAAAAAAACASLwDAAAAAAAAAAAAAAAAAAAAACLxDgAAAAAAAAAAAAAAAAAAAACIxDsAAAAAAAAAAAAAAAAAAAAAIBLvAAAAAAAAAAAAAAAAAAAAAIBIvAMAAAAAAAAAAAAAAAAAAAAAIvEOAAAAAAAAAAAAAAAAAAAAAIjEOwAAAAAAAAAAAAAAAAAAAAAgEu8AAAAAAAAAAAAAAAAAAAAAgEi8AwAAAAAAAAAAAAAAAAAAAAAi8Q4AAAAAAAAAAAAAAAAAAAAAiMQ7AAAAAAAAAAAAAAAAAAAAACAS7wAAAAAAAAAAAAAAAAAAAACASLwDAAAAAAAAAAAAAAAAAAAAACLxDgAAAAAAAAAAAAAAAAAAAACIxDsAAAAAAAAAAAAAAAAAAAAAIBLvAAAAAAAAAAAAAAAAAAAAAIBIvAMAAAAAAAAAAAAAAAAAAAAAIvEOAAAAAAAAAAAAAAAAAAAAAIjEOwAAAAAAAAAAAAAAAAAAAAAgEu8AAAAAAAAAAAAAAAAAAAAAgEi8AwAAAAAAAAAAAAAAAAAAAAAi8Q4AAAAAAAAAAAAAAAAAAAAAiMQ7AAAAAAAAAAAAAAAAAAAAACAS7wAAAAAAAAAAAAAAAAAAAACASLwDAAAAAAAAAAAAAAAAAAAAACLxDgAAAAAAAAAAAAAAAAAAAACIxDsAAAAAAAAAAAAAAAAAAAAAIBLvAAAAAAAAAAAAAAAAAAAAAIBIvAMAAAAAAAAAAAAAAAAAAAAAIvEOAAAAAAAAAAAAAAAAAAAAAIjEOwAAAAAAAAAAAAAAAAAAAAAgEu8AAAAAAAAAAAAAAAAAAAAAgEi8AwAAAAAAAAAAAAAAAAAAAAAi8Q4AAAAAAAAAAAAAAAAAAAAAiMQ7AAAAAAAAAAAAAAAAAAAAACAS7wAAAAAAAAAAAAAAAAAAAACASLwDAAAAAAAAAAAAAAAAAAAAACLxDgAAAAAAAAAAAAAAAAAAAACIxDsAAAAAAAAAAAAAAAAAAAAAIBLvAAAAAAAAAAAAAAAAAAAAAIBIvAMAAAAAAAAAAAAAAAAAAAAAIvEOAAAAAAAAAAAAAAAAAAAAAIjEOwAAAAD4sHO/wFFl2wKHl4hAICIiEIiICAQCgUAgIhAIBAIRgUAgEAgEAkHV6yrECAQCgUAgIhAIBAKBQCBGIBAIREQEAhGBiIiIefu8bt6de+8wvc9K9/mT/r6qVVPFJH32WdltfwAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAABAkngHAAAAAAAAAAAAAAAAAAAAACSJdwAAAAAAAAAAAAAAAAAAAACDcL7M5mw2rIOREO8AAAAAAAAAAAAAAAAAAAAAOtWEOXbKvCjzqczP+H3EYK/MmzKPy1wts2Z9DIx4BwAAAAAAAAAAAAAAAAAAANCJm2U+ljmOfNTgoMyzMpsrusN3sx0Oae6s+L0W7wAAAAAAAAAAAAAAAAAAAACW6nqZr7HYuMFRTCMeGyu0x41YTijipDNZ8fst3gEAAAAAAAAAAAAAAAAAAAAsxdkyL8scx/LCET/KXFuRfV4L8Y4hEu8AAAAAAAAAAAAAAAAAAAAAFu5imS/RbUBi7ZTv9GGIdwyReAcAAAAAAAAAAAAAAAAAAACwUE244yC6j0i8LnPmFO91N8Q7hki8AwAAAAAAAAAAAAAAAAAAAFiYS9FPuOPX7J7i3X4O8Y4hEu8AAAAAAAAAAAAAAAAAAAAAFmKjzI/IxQr2yrwr8yqmAY4/yxwmP+vJKdztWpmjEO8YIvEOAAAAAAAAAAAAAAAAAAAA4MSauMTHaBcoeFvmRpmz//C518q8jPYhj5unbL8XY5jhDvEO8Q4AAAAAAAAAAAAAAAAAAABgAR5HfZjgW5ntlp9/rsy7Fs84iH+OgozN7RDvGCrxDgAAAAAAAAAAAAAAAAAAAOBEtsocRl2U4HWcLKoxifoAwstTtOM/oi6isdnDrK/4/RfvAAAAAAAAAAAAAAAAAAAAAE7kTdQFCd6VWVvA8+6UOa585oVTsuN3Fe961VXshXgHAAAAAAAAAAAAAAAAAAAAkHY56kIa38qsL/C5j6IugvDqFOy4CZ4cVLzrWdexF+IdAAAAAAAAAAAAAAAAAAAAQNrrmB8iaOIel5fw7HeVz94c+Y4vR10chX6IdwAAAAAAAAAAAAAAAAAAAAApmzGNY8wLETxf4vMPK57/dOR7vlvxjruuY2/EOwAAAAAAAAAAAAAAAAAAAICUScyPEDRxj80lnuFpxRmOyqyPeM/PK97xoevYG/EOAAAAAAAAAAAAAAAAAAAAIGU/5kcIdpd8hnNlDivOsTPiPX+qeL+rrmNvxDsAAAAAAAAAAAAAAAAAAACA1i5FXYRgu4Oz7Fac4+2Id31Q8X5nXcneiHcAAAAAAAAAAAAAAAAAAAAArU1ifoCgiU6sdXCWnYqzHJVZH+Gez1e82zfXsVfiHQAAAAAAAAAAAAAAAAAAAEBrn2J+gOBNR2fZiLogwtUR7vlGxXvtuo69Eu8AAAAAAAAAAAAAAAAAAAAAWmliGccxP0Bwr8Mzfak4zx8j3PXjivd65Er2SrwDAAAAAAAAAAAAAAAAAAAAaOVG1AUILnZ4pucV5/k8wl2/rniva65kr8Q7AAAAAAAAAAAAAAAAAAAAgFaexPz4wEHHZ7pfcaafZdZGtuuvFe+14Ur2SrwDAAAAAAAAAAAAAAAAAAAAaOVdzI8PfOj4TFeiLopweUR7Xi9zPOd99lzH3ol3AAAAAAAAAAAAAAAAAAAAAK00wYh58YHnHZ9pI+qiCLdHtOdLFe/zxnXsnXgHAAAAAAAAAAAAAAAAAAAA0MphzI8PPOjhXD8rzvXHiPZ8v+J9HlV8zpkyF8tsxzRecmc2t2f/tjX7GXLEOwAAAAAAAAAAAAAAAAAAAIBqF6IuPnCjh7N9rjjX6xHt+kXF+1z7m99bm/17Eyr5EnWxlaMyn8o8KXN59hnUEe8AAAAAAAAAAAAAAAAAAAAAqm1HXXzgcg9ne19xrk8j2vWXivfZ+MvPn49pfGMvTh6PaD7jToh41BDvAAAAAAAAAAAAAAAAAAAAAKrdjrr4wGYPZ3tZca7vI9lzE804jPmBjca5Mk8rfj4zzb7uxLAjHpNYTkCjzwEAAAAAAAAAAAAAAAAAAABOqYdRFx/oI/bwpOJcxyPZ86WKd3kT07DGz1h+TOJTma2B7moS4h0AAAAAAAAAAAAAAAAAAADASExiuPGBx5VnOzOCPd+peI+j6DYocVhmZ8R3UrwDAAAAAAAAAAAAAAAAAAAA6N3TmB8e+N7T2e5GXRhhcwR7fhnDDUvcHdiuJiHeAQAAAAAAAAAAAAAAAAAAAIzEq5gfHtjv6Wx34vTEOz7EsOMSQwp4TEK8AwAAAAAAAAAAAAAAAAAAABiJ3RhuvONW1IURtkaw54NYTATiqMxemU9lPs7+2/x9jhfw2bcGsqtJiHcAAAAAAAAAAAAAAAAAAAAAI/Eh5ocH/uzpbNtRF0bYHviOL0Q++tBEOd6XuVNm8x+esVbmSpkHMQ16ZJ91aQD7moR4BwAAAAAAAAAAAAAAAAAAADASH2N+eOBjT2fbjtMR77geuZDGszLnk8+8HHVhlv+cr2XO9ryvSYh3AAAAAAAAAAAAAAAAAAAAACMh3rF8j6Nd6OFbmYsLevbNMj9bPn/S874mId4BAAAAAAAAAAAAAAAAAAAAjIR4x/K9jfrIw26Zswt+/laZvRZnOCqz2eO+JiHeAQAAAAAAAAAAAAAAAAAAAIyEeMfy1YYznpVZW9IZ1st8jfrYxIse9zUJ8Q4AAAAAAAAAAAAAAAAAAABgJMQ7lutMmcOKd9iN5YU7ftkqc1C506My53ra2STEOwAAAAAAAAAAAAAAAAAAAICREO/oxvkyF8vcKvO4zLPZXvfL/BnTyEcXdqI+OPGwp11NQrwDAAAAAAAAAAAAAAAAAAAAGIkPId6xar5U7vVLT+ebhHgHAAAAAAAAAAAAAAAAAAAAMBKvYrgRh5tRF0bY8mds5VrlXo/LbPRwvkmIdwAAAAAAAAAAAAAAAAAAAAC/cSemcYKuZnvOeWriHfs97qomjLDpWrV2ULnb2z2cbRLiHQAAAAAAAAAAAAAAAAAAAMBvfIxuowGTOed5GeIdq+hF5W6f9XC2SYh3AAAAAAAAAAAAAAAAAAAAAL8xtHjHpOIzDnra1f3Kd1xzrVq7UbnbNz2cbRLiHQAAAAAAAAAAAAAAAAAAAMBvDC3e8TCGGx+YVJzrpyuVcq7y7/5toH938Q4AAAAAAAAAAAAAAAAAAABYUUOLd+xUfs56D7t6VnGuPVcq7TCGGUeZhHgHAAAAAAAAAAAAAAAAAAAA8BtDi3dcrfycrR52tVtxrk+uVNpeDDM88T8h3gEAAAAAAAAAAAAAAAAAAAD8xtDiHecrP2e7h119qjjXG1dq6Xdx1Yh3AAAAAAAAAAAAAAAAAAAAwIANLd6xVua44nN2etjVfsW5nrtSS7+Lq0a8AwAAAAAAAAAAAAAAAAAAAAZsaPGOxt6CPmfRaqIid12ppd/FVSPeAQAAAAAAAAAAAAAAAAAAAAP2usx+h/Og4kzvY3584FXHe9qKuijCFVcq7UvFfr+v4F7EOwAAAAAAAAAAAAAAAAAAAIBWJjE/PvC54zPdjLoowjl/vrT9Af7dh0C8AwAAAAAAAAAAAAAAAAAAAGhlJ+bHB47KrHV4pocVZzo4BbvvMz5yXLHjdyv4fRDvAAAAAAAAAAAAAAAAAAAAAFrZjLoAwYUOz/S24jzvB77XS2VuxTRE8rTM6zIfy3wr82P2Dk1AY62ns9X8zV+s4PdBvAMAAAAAAAAAAAAAAAAAAABobT/mBwjudnienwM7T0ZNgKSZyz2c7Xbl2e6t4HdBvAMAAAAAAAAAAAAAAAAAAABo7UXMDxDsdnSWK1EXRNgc+E6fVL7H/R7OthvDDYv0TbwDAAAAAAAAAAAAAAAAAAAAaO1WzA8Q/Cyz1sFZaqIX30ew07tRF3b40PG51md/y5odr63gd0G8AwAAAAAAAAAAAAAAAAAAAGitCTocx/wIwfUOzrJfcY6nI9jphagLOzR73+jwXLVRkWcr+l0Q7wAAAAAAAAAAAAAAAAAAAABS3sb8CMHuks9wI+piCFdGstODyvd50NF5zpTZO2U7XjTxDgAAAAAAAAAAAAAAAAAAACBlJ+ZHCI7LbC3xDJ8rzvC1zNpIdvoy6uIOPzp6p8eV5/m8wt8D8Q4AAAAAAAAAAAAAAAAAAAAg5UxMIxLzQgTvl/T8u1EXQrg3op1uR33g4cGSz3IhpvGVmrPcWuHvgXgHAAAAAAAAAAAAAAAAAAAAkPYk6mIEOwt+7rkyBxXPbX7mzMh2ule508OYBjaWYaPFOb6UWVvh74B4BwAAAAAAAAAAAAAAAAAAAJB2vsxRzI8RND9zbUHPbGIcn6MugvBgge/aBC02K+b8CZ9zO+ojD19n51qksy3228z2in8HxDsAAAAAAAAAAAAAAAAAAACAE3kWdUGCwzh5wKMJS7ytfN6PMusLfM9Xlc/dX8Cz2sQzvsTiAh7Nvj60ePYr11+8AwAAAAAAAAAAAAAAAAAAADiZJvhwEPUBj53kczZjGqqoDSDcXvB7dhnvuBrtYg97Za6c8Jnbs8+pfeb3Muddf/EOAAAAAAAAAAAAAAAAAAAA4OSaIEebOMHbMhuVn71W5n7UB0KaeTf7vUXqMt7ReBztow/NGc+1fM5Wmd0yxy2e00RYLrr2/0e8AwAAAAAAAAAAAAAAAAAAAFiIN9EuUHA0+50m/LEZ/x7bOFvmcplHZb61/Nz92e8vWtfxjmYf76J9+KGJcLwvc6/Mpfj7iEkT3miCKB+jXbTj1+y47v9PvAMAAAAAAAAAAAAAAAAAAABYiCaY0Ta08dc5jGn44nvkghK/PuPykt6v63hH40zkAh7/GUnZn81BnDwscddV/zfiHQAAAAAAAAAAAAAAAAAAAMDCrMfJAh4njVRsL/Hd+oh3NNbi5AGPRY1wx38T7wAAAAAAAAAAAAAAAAAAAAAWqgl4fIxuoxKHZa4t+b36inc0zpR5Gf1FO36WueFq/y3xDgAAAAAAAAAAAAAAAAAAAGDhmthEbezipLNX5lIH79RnvOOX22UOottwx4cym670b4l3AAAAAAAAAAAAAAAAAAAAAEtzPaZxjWWFJV6UOdvRuwwh3tHYKPOszHEsN9rxvcy9Mmuu8T8S7wAAAAAAAAAAAAAAAAAAAACWqok/PIrFRTyaaMWbMpc6fo+hxDt+2YppvORnLDYc8bnM3TLrrm4V8Q4AAAAAAAAAAAAAAAAAAACgM9diGpxoAhdtYgZHZT7ENAKy1dPZr5a5UzG3Oj7X2dkzn5c5iFwM5c8yk+g+iHIaiHcAAAAAAAAAAAAAAAAAAAAAvdgoc73M3ZiGI16WeTWbZ7N/a/7fdpl166p2Pv4VGnkc01jKq7/M05hGUG7NdnvOyk5EvAMAAAAAAAAAAAAAAAAAAAAAksQ7AAAAAAAAAAAAAAAAAAAAACBJvAMAAAAAAAAAAAAAAAAAAAAAksQ7AAAAAAAAAAAAAAAAAAAAACBJvAMAAAAAAAAAAAAAAAAAAAAAksQ7AAAAAAAAAAAAAAAAAAAAACBJvAMAAAAAAAAAAAAAAAAAAAAAksQ7AAAAAAAAAAAAAAAAAAAAACBJvAMAAAAAAAAAAAAAAAAAAAAAksQ7AAAAAAAAAAAAAAAAAAAAACBJvAMAAAAAAAAAAAAAAAAAAAAAksQ7AAAAAAAAAAAAAAAAAAAAACBJvAMAAAAAAAAAAAAAAAAAAAAAksQ7AAAAAAAAAAAAAAAAAAAAACBJvAMAAAAAAAAAAAAAAAAAAAAAksQ7AAAAAAAAAAAAAAAAAAAAACBJvAMAAAAAAAAAAAAAAAAAAAAAksQ7AAAAAAAAAAAAAAAAAAAAACBJvAMAAAAAAAAAAAAAAAAAAAAAksQ7AAAAAAAAAAAAAAAAAAAAACBJvAMAAAAAAAAAAAAAAAAAAAAAksQ7AAAAAAAAAAAAAAAAAAAAACBJvAMAAAAAAAAAAAAAAAAAAAAAksQ7AAAAAAAAAAAAAAAAAAAAACBJvAMAAAAAAAAAAAAAAAAAAAAAksQ7AAAAAAAAAAAAAAAAAAAAACBJvAMAAAAAAAAAAAAAAAAAAAAAksQ7AAAAAAAAAAAAAAAAAAAAACBJvAMAAAAAAAAAAAAAAAAAAAAAksQ7AAAAAAAAAAAAAAAAAAAAACBJvAMAAAAAAAAAAAAAAAAAAAAAksQ7AAAAAAAAAAAAAAAAAAAAACBJvAMAAAAAAAAAAAAAAAAAAAAAksQ7AAAAAAAAAAAAAAAAAAAAACBJvAMAAAAAAAAAAAAAAAAAAAAAksQ7AAAAAAAAAAAAAAAAAAAAACBJvAMAAAAAAAAAAAAAAAAAAAAAksQ7AAAAAAAAAAAAAAAAAAAAACBJvAMAAAAAAAAAAAAAAAAAAAAAksQ7AAAAAAAAAAAAAAAAAAAAACBJvAMAAAAAAAAAAAAAAAAAAAAAksQ7AAAAAAAAAAAAAAAAAAAAACBJvAMAAAAAAAAAAAAAAAAAAAAAksQ7AAAAAAAAAAAAAAAAAAAAACBJvAMAAAAAAAAAAAAAAAAAAAAAksQ7AAAAAAAAAAAAAAAAAAAAACBJvAMAAAAAAAAAAAAAAAAAAAAAksQ7AAAAAAAAAAAAAAAAAAAAACBJvAMAAAAAAAAAAAAAAAAAAAAAksQ7AAAAAAAAAAAAAAAAAAAAACBJvAMAAAAAAAAAAAAAAAAAAAAAksQ7AAAAAAAAAAAAAAAAAAAAACBJvAMAAAAAAAAAAAAAAAAAAAAAksQ7AAAAAAAAAAAAAAAAAAAAACBJvAMAAAAAAAAAAAAAAAAAAAAAksQ7AAAAAAAAAAAAAAAAAAAAACBJvAMAAAAAAAAAAAAAAAAAAAAAksQ7AAAAAAAAAAAAAAAAAAAAACBJvAMAAAAAAAAAAAAAAAAAAAAAksQ7AAAAAAAAAAAAAAAAAAAAACBJvAMAAAAAAAAAAAAAAAAAAAAAksQ7AAAAAAAAAAAAAAAAAAAAACBJvAMAAAAAAAAAAAAAAAAAAAAAksQ7AAAAAAAAAAAAAAAAAAAAACBJvAMAAAAAAAAAAAAAAAAAAAAAksQ7AAAAAACA/2XnjgUAAAAABvlbz2F3gQQAAAAAAAAAAAAATPIOAAAAAAAAAAAAAAAAAAAAAJjkHQAAAAAAAAAAAAAAAAAAAAAwyTsAAAAAAAAAAAAAAAAAAAAAYJJ3AAAAAAAAAAAAAAAAAAAAAMAk7wAAAAAAAAAAAAAAAAAAAACASd4BAAAAAAAAAAAAAAAAAAAAAJO8AwAAAAAAAAAAAAAAAAAAAAAmeQcAAAAAAAAAAAAAAAAAAAAATPIOAAAAAAAAAAAAAAAAAAAAAJjkHQAAAAAAAAAAAAAAAAAAAAAwyTsAAAAAAAAAAAAAAAAAAAAAYJJ3AAAAAAAAAAAAAAAAAAAAAMAk7wAAAAAAAAAAAAAAAAAAAACASd4BAAAAAAAAAAAAAAAAAAAAAJO8AwAAAAAAAAAAAAAAAAAAAAAmeQcAAAAAAAAAAAAAAAAAAAAATPIOAAAAAAAAAAAAAAAAAAAAAJjkHQAAAAAAAAAAAAAAAAAAAAAwyTsAAAAAAAAAAAAAAAAAAAAAYJJ3AAAAAAAAAAAAAAAAAAAAAMAk7wAAAAAAAAAAAAAAAAAAAACASd4BAAAAAAAAAAAAAAAAAAAAAJO8AwAAAAAAAAAAAAAAAAAAAAAmeQcAAAAAAAAAAAAAAAAAAAAATPIOAAAAAAAAAAAAAAAAAAAAAJjkHQAAAAAAAAAAAAAAAAAAAAAwyTsAAAAAAAAAAAAAAAAAAAAAYJJ3AAAAAAAAAAAAAAAAAAAAAMAk7wAAAAAAAAAAAAAAAAAAAACASd4BAAAAAAAAAAAAAAAAAAAAAJO8AwAAAAAAAAAAAAAAAAAAAAAmeQcAAAAAAAAAAAAAAAAAAAAATPIOAAAAAAAAAAAAAAAAAAAAAJjkHQAAAAAAAAAAAAAAAAAAAAAwyTsAAAAAAAAAAAAAAAAAAAAAYJJ3AAAAAAAAAAAAAAAAAAAAAMAk7wAAAAAAAAAAAAAAAAAAAACASd4BAAAAAAAAAAAAAAAAAAAAAJO8AwAAAAAAAAAAAAAAAAAAAAAmeQcAAAAAAAAAAAAAAAAAAAAATPIOAAAAAAAAAAAAAAAAAAAAAJjkHQAAAAAAAAAAAAAAAAAAAAAwyTsAAAAAAAAAAAAAAAAAAAAAYJJ3AAAAAAAAAAAAAAAAAAAAAMAk7wAAAAAAAAAAAAAAAAAAAACASd4BAAAAAAAAAAAAAAAAAAAAAJO8AwAAAAAAAAAAAAAAAAAAAAAmeQcAAAAAAAAAAAAAAAAAAAAATPIOAAAAAAAAAAAAAAAAAAAAAJjkHQAAAAAAAAAAAAAAAAAAAAAwyTsAAAAAAAAAAAAAAAAAAAAAYJJ3AAAAAAAAAAAAAAAAAAAAAMAk7wAAAAAAAAAAAAAAAAAAAACASd4BAAAAAAAAAAAAAAAAAAAAAJO8AwAAAAAAAAAAAAAAAAAAAAAmeQcAAAAAAAAAAAAAAAAAAAAATPIOAAAAAAAAAAAAAAAAAAAAAJjkHQAAAAAAAAAAAAAAAAAAAAAwyTsAAAAAAAAAAAAAAAAAAAAAYJJ3AAAAAAAAAAAAAAAAAAAAAMAk7wAAAAAAAAAAAAAAAAAAAACASd4BAAAAAAAAAAAAAAAAAAAAAJO8AwAAAAAAAAAAAAAAAAAAAAAmeQcAAAAAAAAAAAAAAAAAAAAATPIOAAAAAAAAAAAAAAAAAAAAAJjkHQAAAAAAAAAAAAAAAAAAAAAwyTsAAAAAAAAAAAAAAAAAAAAAYJJ3AAAAAAAAAAAAAAAAAAAAAMAk7wAAAAAAAAAAAAAAAAAAAACASd4BAAAAAAAAAAAAAAAAAAAAAJO8AwAAAAAAAAAAAAAAAAAAAAAmeQcAAAAAAAAAAAAAAAAAAAAATPIOAAAAAAAAAAAAAAAAAAAAAJjkHQAAAAAAAAAAAAAAAAAAAAAwyTsAAAAAAAAAAAAAAAAAAAAAYJJ3AAAAAAAAAAAAAAAAAAAAAMAk7wAAAAAAAAAAAAAAAAAAAACASd4BAAAAAAAAAAAAAAAAAAAAAJO8AwAAAAAAAAAAAAAAAAAAAAAmeQcAAAAAAAAAAAAAAAAAAAAATPIOAAAAAAAAAAAAAAAAAAAAAJjkHQAAAAAAAAAAAAAAAAAAAAAwyTsAAAAAAAAAAAAAAAAAAAAAYJJ3AAAAAAAAAAAAAAAAAAAAAMAk7wAAAAAAAAAAAAAAAAAAAACASd4BAAAAAAAAAAAAAAAAAAAAAJO8AwAAAAAAAAAAAAAAAAAAAAAmeQcAAAAAAAAAAAAAAAAAAAAATPIOAAAAAAAAAAAAAAAAAAAAAJjkHQAAAAAAAAAAAAAAAAAAAAAwyTsAAAAAAAAAAAAAAAAAAAAAYJJ3AAAAAAAAAAAAAAAAAAAAAMAk7wAAAAAAAAAAAAAAAAAAAACASd4BAAAAAAAAAAAAAAAAAAAAAJO8AwAAAAAAAAAAAAAAAAAAAAAmeQcAAAAAAAAAAAAAAAAAAAAATPIOAAAAAAAAAAAAAAAAAAAAAJjkHQAAAAAAAAAAAAAAAAAAAAAwyTsAAAAAAAAAAAAAAAAAAAAAYJJ3AAAAAAAAAAAAAAAAAAAAAMAk7wAAAAAAAAAAAAAAAAAAAACASd4BAAAAAAAAAAAAAAAAAAAAAJO8AwAAAAAAAAAAAAAAAAAAAAAmeQcAAAAAAAAAAAAAAAAAAAAATPIOAAAAAAAAAAAAAAAAAAAAAJjkHQAAAAAAAAAAAAAAAAAAAAAwyTsAAAAAAAAAAAAAAAAAAAAAYJJ3AAAAAAAAAAAAAAAAAAAAAMAk7wAAAAAAAAAAAAAAAAAAAACASd4BAAAAAAAAAAAAAAAAAAAAAJO8AwAAAAAAAAAAAAAAAAAAAAAmeQcAAAAAAAAAAAAAAAAAAAAATPIOAAAAAAAAAAAAAAAAAAAAAJjkHQAAAAAAAAAAAAAAAAAAAAAwyTsAAAAAAAAAAAAAAAAAAAAAYJJ3AAAAAAAAAAAAAAAAAAAAAMAk7wAAAAAAAAAAAAAAAAAAAACASd4BAAAAAAAAAAAAAAAAAAAAAJO8AwAAAAAAAAAAAAAAAAAAAAAmeQcAAAAAAAAAAAAAAAAAAAAATPIOAAAAAAAAAAAAAAAAAAAAAJjkHQAAAAAAAAAAAAAAAAAAAAAwyTsAAAAAAAAAAAAAAAAAAAAAYJJ3AAAAAAAAAAAAAAAAAAAAAMAk7wAAAAAAAAAAAAAAAAAAAACASd4BAAAAAAAAAAAAAAAAAAAAAJO8AwAAAAAAAAAAAAAAAAAAAAAmeQcAAAAAAAAAAAAAAAAAAAAATPIOAAAAAAAAAAAAAAAAAAAAAJjkHQAAAAAAAAAAAAAAAAAAAAAwyTsAAAAAAAAAAAAAAAAAAAAAYJJ3AAAAAAAAAAAAAAAAAAAAAMAk7wAAAAAAAAAAAAAAAAAAAACASd4BAAAAAAAAAAAAAAAAAAAAAJO8AwAAAAAAAAAAAAAAAAAAAAAmeQcAAAAAAAAAAAAAAAAAAAAATPIOAAAAAAAAAAAAAAAAAAAAAJjkHQAAAAAAAAAAAAAAAAAAAAAwyTsAAAAAAAAAAAAAAAAAAAAAYJJ3AAAAAAAAAAAAAAAAAAAAAMAk7wAAAAAAAAAAAAAAAAAAAACASd4BAAAAAAAAAAAAAAAAAAAAAJO8AwAAAAAAAAAAAAAAAAAAAAAmeQcAAAAAAAAAAAAAAAAAAAAATPIOAAAAAAAAAAAAAAAAAAAAAJjkHQAAAAAAAAAAAAAAAAAAAAAwyTsAAAAAAAAAAAAAAAAAAAAAYJJ3AAAAAAAAAAAAAAAAAAAAAMAk7wAAAAAAAAAAAAAAAAAAAACASd4BAAAAAAAAAAAAAAAAAAAAAJO8AwAAAAAAAAAAAAAAAAAAAAAmeQcAAAAAAAAAAAAAAAAAAAAATPIOAAAAAAAAAAAAAAAAAAAAAJjkHQAAAAAAAAAAAAAAAAAAAAAwyTsAAAAAAAAAAAAAAAAAAAAAYJJ3AAAAAAAAAAAAAAAAAAAAAMAk7wAAAAAAAAAAAAAAAAAAAACASd4BAAAAAAAAAAAAAAAAAAAAAJO8AwAAAAAAAAAAAAAAAAAAAAAmeQcAAAAAAAAAAAAAAAAAAAAATPIOAAAAAAAAAAAAAAAAAAAAAJjkHQAAAAAAAAAAAAAAAAAAAAAwyTsAAAAAAAAAAAAAAAAAAAAAYJJ3AAAAAAAAAAAAAAAAAAAAAMAk7wAAAAAAAAAAAAAAAAAAAACASd4BAAAAAAAAAAAAAAAAAAAAAJO8AwAAAAAAAAAAAAAAAAAAAAAmeQcAAAAAAAAAAAAAAAAAAAAATPIOAAAAAAAAAAAAAAAAAAAAAJjkHQAAAAAAAAAAAAAAAAAAAAAwyTsAAAAAAAAAAAAAAAAAAAAAYJJ3AAAAAAAAAAAAAAAAAAAAAMAk7wAAAAAAAAAAAAAAAAAAAACASd4BAAAAAAAAAAAAAAAAAAAAAJO8AwAAAAAAAAAAAAAAAAAAAAAmeQcAAAAAAAAAAAAAAAAAAAAATPIOAAAAAAAAAAAAAAAAAAAAAJjkHQAAAAAAAAAAAAAAAAAAAAAwyTsAAAAAAAAAAAAAAAAAAAAAYJJ3AAAAAAAAAAAAAAAAAAAAAMAk7wAAAAAAAAAAAAAAAAAAAACASd4BAAAAAAAAAAAAAAAAAAAAAJO8AwAAAAAAAAAAAAAAAAAAAAAmeQcAAAAAAAAAAAAAAAAAAAAATPIOAAAAAAAAAAAAAAAAAAAAAJjkHQAAAAAAAAAAAAAAAAAAAAAwyTsAAAAAAAAAAAAAAAAAAAAAYJJ3AAAAAAAAAAAAAAAAAAAAAMAk7wAAAAAAAAAAAAAAAAAAAACASd4BAAAAAAAAAAAAAAAAAAAAAJO8AwAAAAAAAAAAAAAAAAAAAAAmeQcAAAAAAAAAAAAAAAAAAAAATPIOAAAAAAAAAAAAAAAAAAAAAJjkHQAAAAAAAAAAAAAAAAAAAAAwyTsAAAAAAAAAAAAAAAAAAAAAYJJ3AAAAAAAAAAAAAAAAAAAAAMAk7wAAAAAAAAAAAAAAAAAAAACASd4BAAAAAAAAAAAAAAAAAAAAAJO8AwAAAAAAAAAAAAAAAAAAAAAmeQcAAAAAAAAAAAAAAAAAAAAATPIOAAAAAAAAAAAAAAAAAAAAAJjkHQAAAAAAAAAAAAAAAAAAAAAwyTsAAAAAAAAAAAAAAAAAAAAAYJJ3AAAAAAAAAAAAAAAAAAAAAMAk7wAAAAAAAAAAAAAAAAAAAACASd4BAAAAAAAAAAAAAAAAAAAAAJO8AwAAAAAAAAAAAAAAAAAAAAAmeQcAAAAAAAAAAAAAAAAAAAAATPIOAAAAAAAAAAAAAAAAAAAAAJjkHQAAAAAAAAAAAAAAAAAAAAAwyTsAAAAAAAAAAAAAAAAAAAAAYJJ3AAAAAAAAAAAAAAAAAAAAAMAk7wAAAAAAAAAAAAAAAAAAAACASd4BAAAAAAAAAAAAAAAAAAAAAJO8AwAAAAAAAAAAAAAAAAAAAAAmeQcAAAAAAAAAAAAAAAAAAAAATPIOAAAAAAAAAAAAAAAAAAAAAJjkHQAAAAAAAAAAAAAAAAAAAAAwyTsAAAAAAAAAAAAAAAAAAAAAYJJ3AAAAAAAAAAAAAAAAAAAAAMAk7wAAAAAAAAAAAAAAAAAAAACASd4BAAAAAAAAAAAAAAAAAAAAAJO8AwAAAAAAAAAAAAAAAAAAAAAmeQcAAAAAAAAAAAAAAAAAAAAATPIOAAAAAAAAAAAAAAAAAAAAAJjkHQAAAAAAAAAAAAAAAAAAAAAwyTsAAAAAAAAAAAAAAAAAAAAAYJJ3AAAAAAAAAAAAAAAAAAAAAMAk7wAAAAAAAAAAAAAAAAAAAACASd4BAAAAAAAAAAAAAAAAAAAAAJO8AwAAAAAAAAAAAAAAAAAAAAAmeQcAAAAAAAAAAAAAAAAAAAAATPIOAAAAAAAAAAAAAAAAAAAAAJjkHQAAAAAAAAAAAAAAAAAAAAAwyTsAAAAAAAAAAAAAAAAAAAAAYJJ3AAAAAAAAAAAAAAAAAAAAAMAk7wAAAAAAAAAAAAAAAAAAAACASd4BAAAAAAAAAAAAAAAAAAAAAJO8AwAAAAAAAAAAAAAAAAAAAAAmeQcAAAAAAAAAAAAAAAAAAAAATPIOAAAAAKidOyYAAABAGNS/tR32CkEAAAAAAAAAAAAAAACI5B0AAAAAAAAAAAAAAAAAAAAAEMk7AAAAAAAAAAAAAAAAAAAAACCSdwAAAAAAAAAAAAAAAAAAAABAJO8AAAAAAAAAAAAAAAAAAAAAgEjeAQAAAAAAAAAAAAAAAAAAAACRvAMAAAAAAAAAAAAAAAAAAAAAInkHAAAAAAAAAAAAAAAAAAAAAETyDgAAAAAAAAAAAAAAAAAAAACI5B0AAAAAAAAAAAAAAAAAAAAAEMk7AAAAAAAAAAAAAAAAAAAAACCSdwAAAAAAAAAAAAAAAAAAAABAJO8AAAAAAAAAAAAAAAAAAAAAgEjeAQAAAAAAAAAAAAAAAAAAAACRvAMAAAAAAAAAAAAAAAAAAAAAInkHAAAAAAAAAAAAAAAAAAAAAETyDgAAAAAAAAAAAAAAAAAAAACI5B0AAAAAAAAAAAAAAAAAAAAAEMk7AAAAAAAAAAAAAAAAAAAAACCSdwAAAAAAAAAAAAAAAAAAAABAJO8AAAAAAAAAAAAAAAAAAAAAgEjeAQAAAAAAAAAAAAAAAAAAAACRvAMAAAAAAAAAAAAAAAAAAAAAInkHAAAAAAAAAAAAAAAAAAAAAETyDgAAAAAAAAAAAAAAAAAAAACI5B0AAAAAAAAAAAAAAAAAAAAAEMk7AAAAAAAAAAAAAAAAAAAAACCSdwAAAAAAAAAAAAAAAAAAAABAJO8AAAAAAAAAAAAAAAAAAAAAgEjeAQAAAAAAAAAAAAAAAAAAAACRvAMAAAAAAAAAAAAAAAAAAAAAInkHAAAAAAAAAAAAAAAAAAAAAETyDgAAAAAAAAAAAAAAAAAAAACI5B0AAAAAAAAAAAAAAAAAAAAAEMk7AAAAAAAAAAAAAAAAAAAAACCSdwAAAAAAAAAAAAAAAAAAAABAJO8AAAAAAAAAAAAAAAAAAAAAgEjeAQAAAAAAAAAAAAAAAAAAAACRvAMAAAAAAAAAAAAAAAAAAAAAInkHAAAAAAAAAAAAAAAAAAAAAETyDgAAAAAAAAAAAAAAAAAAAACI5B0AAAAAAAAAAAAAAAAAAAAAEMk7AAAAAAAAAAAAAAAAAAAAACCSdwAAAAAAAAAAAAAAAAAAAABAJO8AAAAAAAAAAAAAAAAAAAAAgEjeAQAAAAAAAAAAAAAAAAAAAACRvAMAAAAAAAAAAAAAAAAAAAAAInkHAAAAAAAAAAAAAAAAAAAAAETyDgAAAAAAAAAAAAAAAAAAAACI5B0AAAAAAAAAAAAAANwZ+8zMTWJkpmUAAAAASUVORK5CYII=
iVBORw0KGgoAAAANSUhEUgAAAegAAAHcCAIAAACS2a7gAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAENkSURBVHhe7Z19cFbVufb94/3nPcO044x/vHam7TnjeMYZnTKWQfsebZHTYlUstqOUo/VFazlgOXioWlFOC1o1YkXkw9IIGDCAFsQYUD4SJAYJ3zwYvqIEMIEEgoDhK0CAhOS9YOdZWXk+936etfdea+0r43Rosvda9/rd67ly5d5rrX1VJ79IgARIgASMInCVUdEyWBIgARIggU4KNycBCZAACRhGgMJtWMIYLgmQAAlQuDkHSIAESMAwAhRuwxLGcEmABEiAws05QAIkQAKGEaBwG5YwhksCJEACFG7OARIgARIwjACF27CEMVwSIAESoHBzDpAACZCAYQQo3IYljOGSAAmQAIWbc4AESIAEDCNA4TYsYQw3K4ETJ06MHj0662W8gATMJUDhNjd3jDwFgerq6u9///v/9m//1tjYSEAkYCsBCretmY3iuKDa//RP/3TVla++fftGEQHHHA0CFO5o5DkCoywtLf32t7/tqLbzRdMdgbRHdIgU7ogm3rJhz5kzR5bsH/7wh8XFxc3NzZYNk8MhAYcAhZszwXgCjzzyiKza+Pfzzz9v/Kg4ABJIT4DCzdlhMAEsIOnXr1+CauP/Tp482eBRMXQSyEaAwp2NEH+uKwFnAUmyauM7lZWVukbNuEhAAQEKtwKIbCJ4AihqJzyKlBWcwh18RthjkAQo3EHSZl8KCKA8klzUTvDdFG4FoNmExgQo3Bonh6ElEUB5pHfv3inLI3TcnC/RIUDhjk6ujR8pHjlmlWznAuG4z135Mn7kHAAJ9CRA4eaMMIBAfX19ytUj6XR8yZIlWMc9bNgwXLB27VoDRsgQScALAQq3F1q8NgwCMNoZnkOm1O6ysjLx/TfffDOMqNknCfhIgMLtI1w2nScBlxXtZO1GqcSx2/i677778gyDt5OAbgQo3LplhPFcJuAczeqyop1yAw5KJeL73PvOWWUZAQq3ZQk1fjiQbGxY91obSd7yDrcuvskyt/HTggPgw0nOAW0JYFtNus2Qntw3pB8um2VubRPNwPIkQMedJ0DeroZA/i5bVnbnkClUt1nmVpMetqIZAQq3ZgmJcDgobuChIo7VhuziC+v/8JWbAcfWSoDEehKh5lzNHeGZZeHQKdwWJtXKIUHT8YVayp/+9KfvfOc7mSsnUHxAqK2tLSkpwf9aCYSDijIBCneUs2/k2KHFWevdjnDziwRsJUDhtjWzdo4LFQ+8TNIRbvzj4YcfTiniWJRi5/g5KhK4QoDCzYlgEgHZbjtbItOdFGjSqBgrCXgkQOH2CIyXh0dAttsw2mJbTUrtxvEm4UXKnknAXwIUbn/5snWFBJLttmg8Wbt5JLdC8mxKNwIUbt0ywnjSEhDrsmW7nU67+dpJziSLCVC4LU6uVUPDtvWsOyFl342jTsT4UVTB7aiJ89ASq+ZEhAdD4Y5w8o0aema7ney7xYpAWfF5aIlROWewaQlQuDk5DCDgxm4na7fzHR5aYkCCGaJHAhRuj8B4eRgEZLvtZiekUzPBHnonWB5aEkbS2KePBCjcPsJl00oIyHb7mWeecdkmtFs8n5QPLWGZ2yVAXqYzAQq3ztlhbD38Mky0G7vtUMO53kK4WebmTLKMAIXbsoTaNhz5fQju7XYCBZa5bZsWkR8PhTvyU0BvABBrsQrQvd1OHhPL3HrnmdF5I0Dh9saLVwdJAEotVDtnu+0EjDI3tLugoKC8vDzIIbAvEvCDAIXbD6psUw0B2W6LJSJqmmYrJGAyAQq3ydmzOnbZbsMsWz1WDo4EvBGgcHvjxasDIyDbbe54DAw7OzKCAIXbiDRFLkja7cilnAP2QoDC7YUWrw2KgLxlhnY7KOrsxxgCFG5jUhWdQOVl16xuRyfvHKl7AvYJd0dbS+OuqmXzC18ZM+I3A/tce2U92bV9Bv5mxJiJRUu3NrVeck+HV4ZCIAC73djYGMrQ2CkJKCFgk3B3tB2tLpn4+/7X9crwFvBefYdNrahv7VBCj42oJ+Cr3UbpHEu5ndcN40Vo6qNniyQQCAGbhLu1tmhwBsmWftTn8ZK6tkD4shOvBGS7jXeVeb098/XyoSVcGK6WLVsLkoBNwt15qbboTshzr76Dx0yZv6JqW+2BJueroTZW9s64wb27tfvq387ddzZI0OzLDQHZbsMXKzfFcvvFxcVuQuI1JKAhAauEu/NSffms0ljT2dSFkLbGVePvjpdRet0w7rNTGiYk2iH5arcdtE6dBF/Dhg2LNmyO3mACdgl3tkR0NK969oa4dF/9dFlze7Y7+PPgCMBfC1X1w247I0GNW/zhpdzRBweLPUWbQLSEG6c0b3j5jvjn9vaXN5yMdvb1Gj0q2kJSlVe3xVBxyJTohWVuvWYAo3FNIGrC3dZUMiL+ub1uaEmDa1C80F8CwdhtjAELAYVws8ztb1LZum8EoizcvW6euq1nreRSa9P2igVTnx0x+I4rawp79fnlEy8XV9Q2cwmKbzOwq2HZbvutp6Igg7KJ3+Ni+yTgBwGLhbutpak2VvHxgqJpr40b/ejQhwffcX3CYsHrJsYkRT7fUPbCwJRrwHsNePKjfRf9wM82rxCQ7TZy5PdrIbEoEEUSv3thbknAPwI2Cndbc21F0Z8H9820D+eKhPcU7o6zG165Kd068F4PFdVy+aBf81C221hY4lc3bJcEbCFgmXC3t9SWjh90g7ttOAnC3dl5oXrqXQ8XlGw+0HLZiHe0Htzw1rC4S7/69sKdXIPi07QXtYsA7LZPQ2CzJBAkAZuEu+3oZwX9ZZt93aA/TH13xZpYTd2hY1e0GF9tsYnXiaeTPUoll7W6ra2nOF/cWTjAOe3kql4jPj4aZGYi05e8m5F2OzJp50DzImCNcHe0HSh5/Hoh272HTFxeeyJFXTqjcCejbCgZ2qXzV48ua84LNW9OTUC8xpd2m1OEBFwSsEa4v1kz7va4k/7nQdNiLWmOkfIk3B3NZX/oMtzX3ln0Jc8VdDmr3F9Gu+2eFa8kAUHAFuE+VTGmS2FxhuszGbZEehDujhPbpg3u8vBX/77kENeVqP/gyHabR62q58sWLSVgiXC31xQKv33VkAUNaU9t7Tiz5vnvpq1xy0k+37TqpXjF/LsDpm7lmhLlHwHZbuMNk8rbz9ogTnnFghYW1rOC4gW6EbBEuGUffdXQkqa0mE/GJt4l1pz0XA4o39PesuudR7sq5r2uf3R+LQ/w9mHmynYbGupDD5ma5KElAQNndwoJWCLcHXVz7xN6fO3YilMpy9HtLTtnDbm6e61gGuFOUO13drVwHaDCKdfVVOh2m4eWqE8qWwyKgCXC3Xl+y8TeYklJyoeTF49ve+8Pd4gySfIGHAe5XCGB16Zq+zUTURsRv0KDt9sYFQ8t8Su1bNd/ArYId+fZ2qKHpDXcNwwa/96aXXVXXqNwAK9RKH7p0Ss7KXtd/9DD98cfYyY67o4zB8peFHXt/uM+/ope258pCKUWqh1KddsZFs/m9ie9bNV3AtYId2dn666iIYmnkfTcQtnr+qGFWw5vnnpzl8JfO6ZCepdCS+3cERnvH1HSxMOm1MzI0O22MwyWudWkk60ETsAi4ca+x+OfFz9+e5ojSrAlp+yKg+7eU9PzMab0/dRb5incaqanbLfDfQ0Ny9xqMspWAidgk3Bfgdd2/Kv1pYXjnxjinAXYq8/A/3x2YtGy2IFTcbf8ddno+Msnby+s6X7uSOEOaPbJdhuPKAPqNVU3LHOHCJ9d50PAOuHOBwbv9Z+AbLexHND/DrP0gDI3fpFgNXcoD0hDHz4DMJQAhdvQxJkatlxWDtdum0qQcZNAZyeFm7MgOAJ4d4F4fKCD3Q5u5OyJBJQSoHArxcnGMhLA5nIh3LTbnCwkkDMBCnfO6HijNwK029548WoSSE+Aws3ZERAB2W5jHV5AvbIbErCRAIXbxqzqNybZbmMhB94OrF+MjIgEjCFA4TYmVUYHKtttrL3Tcyz4dcJXv+uZGkaVQIDCzSnhOwEIongmqafdLi4uxh5OBBniwSm+p4EdWESAwm1RMnUdCiy2EG497ba8mVNXioyLBLoJULg5G/wlALstDuHT025j/PKvFm6h9HdCsHUVBCjcKiiyjfQE9LfbiF3eiK/n3wScYiQgE6Bwcz74SEC226iW6PzoT4fzwX3MBJu2iwCF2658ajYa2W5r/k5elrk1mzsMJxMBCjfnh18EDLLbLHP7NQnYrj8EKNz+cGWrnZ3yawo0t9sJZW6eo8L5qzkBCrfmCTI4PJz/JwrHOle3BWL8psGrFQwmztAjQ4DCHZlUBztQmFah2vrb7WDZsDcSyJcAhTtfgrw/JQHj7DbzSAIGEaBwG5QsY0KV7TY3kRuTNgZqDgEKtzm5MidS2W5zI6I5eWOkxhCgcBuTKlMCpd02JVOM01wCFG5zc6dp5M4xe84X7bamSWJYhhOgcBueQM3Clw/9MLS6jZWL+KMBK2G4mluzycVwuglQuDkbVBKQN44bard5aInKCcG2/CFA4faHayRbtcBuI288tCSSk9ewQVO4DUuYzuHKkmdunYFnc+s8xxibQ4DCzZmghoBst7EcUE2jYbTCs7nDoM4+vRGgcHvjxavTEbDDbnfZmXid29Dnq5yl1hOgcFuf4iAGiJUY4pme0XbbgcUydxCThn3kQYDCnQc83hongMVzQrjNrW6LfMplbp4XyGmuIQEKt4ZJMSwky+w26KPMjb8bnKXceB2EYflguBEgQOGOQJJ9HqJldttnWmyeBBQQoHArgBjlJmS73bdvX/rTKE8Gjj0wAhTuwFDb2ZFst1EatnOQHBUJaEaAwq1ZQowKh3bbqHQxWHsIULjtyWXwI5FXX9BuB8+fPUaWAIU7sqnPd+AoZ6Oo7awCZHU7X5q8nwS8EKBwe6HFayUC0bHbWMrNh66c+1oRoHBrlQ5jgpHtNhy3lbqGCn5BQYHzV0V5ebkxuWGgESBA4Y5Akn0Yomy3sbDEhx7CbxK/jcR2UCh4+AExAhKIE6Bwcy54JpBgt+FMPTdhyA3iNWzw3YaEzDAjQYDCHYk0qx1kFOy2Q6y4uFiYbh5aonYWsbV8CFC486EX0XtxjoeQM4vtNrJbXV0tRsoyd0Snu5bDpnBrmRaNg8K5S0LLbK1uC/wsc2s8EyMdGoU70unPYfDRsdsOHJa5c5gkvMVvAhRuvwlb1X6k7HZCmRsKbnddyKqZavtgKNy2Z1jp+GS7jUOrlbataWN4JolKt5UL1TUlzrBcEKBwu4DES64QkO02X8bISUECIRKgcIcI37CuI2i3DcsQw40MAQp3ZFKd30BRGBGLSWi382PJu0kgXwIU7nwJRuR++cXnEaluRySzHKaJBCjcJmYt6Jhpt4Mmzv5IICMBCjcnSHYCst3GEovsN/AKEiABPwlQuP2ka0Xbst3G80krxpTLIMABh7TgdxgPLckFH+9RSoDCrRSnjY3JdhsrAm0cYvYx8dCS7Ix4RYAEKNwBwjawK7hLsZgkynabh5YYOHltDpnCbXN28x8bjpESwh1Zu+1g5KEl+U8ntqCKAIVbFUkL28HRHLTbIq/y2dw8tMTC6W7UkCjcRqUr2GBpt2Xecpk74n98BDsN2VsKAhRuTovUBGS7zRd3gZFc5rb+IHJ+KjQnQOHWPEGhhSfbbSyDCy0OnToWZe4oP6fVKSHRjYXCHd3cZxh5gt3moaYOK5S5sTgSv8a46Z8fm3AJULjD5a9p7/KDONptTZPEsCJMgMId4eSnGTr8NYraznoS/IN2m1OEBHQjQOHWLSPhxwOLLVYB0m6Hnw9GQAJJBCjcnBQ9CNBuc0KQgP4EKNz65yjQCGW7zUVvgaJnZyTgmgCF2zWqCFwo221US7g/MAI55xCNJEDhNjJtPgVNu+0eLH7JcVGge1y8Ui0BCrdanma3JhaT0G5nSCT2voudOPyjxOwZb2z0FG5jU6c6cJy/IRaTsLqdga4MioeWqJ6GbM8VAQq3K0xRuAjbuIVw00hmyDjg3PSTa/53r/8FXPwNF4WPhoZjpHBrmJQQQqLd9gT9mZkDnprbB8LNQ0s8cePFqghQuFWRNLsd2W7znYpZc/lG+QOvr+/3H3++gQ8DsrLiBX4QoHD7QdWwNmW7jUOUDIs+jHD/vv4/INyOdrPMHUYGot4nhTvqMwDjl+02l7i5mRCOajv/TXnvaTe38BoSUEiAwq0QppFNyS92od12k8JT5w/Lwo1/7zq6ws2NvIYEVBGgcKsiaWo7EGuxmIR2200WG05VJwg3tdsNN16jkACFWyFM85qCUgvVpt12mb9Y06Jk4aZ2u6THy5QQoHArwWhqI7TbOWRuxd4JKYWb2p0DTN6SGwEKd27cbLhLtttcj+w+owt2/Xc64aZ2u8fIK/MhQOHOh57Z98p2m2va3Ocyg2o7P/q0/k33rfFKEsiBAIU7B2g23EK7nVsWUz6ZTJZylFNya593kYAbAhRuN5QsvAaHbIjHkrTb7hOc7slksnYXb3/sfFuL+5Z5JQm4J0Dhds/KnitxTJJQbVa3PeV18e7/yVoqERfM3PrrI2f2emqfF5OAGwIUbjeUbLuGdjvnjL656R73wu1cCZOec3e8kQRSEqBwR25i0G7nnHLYZ6+q7VwPn86ySc7YeWMyAQp35GaFbLfxrrLIjT+PAa9rmJObcOMuWHXujM+DPW/tQYDCHa0JIdttvKgML06M1vjzGy2eNyYL90vL+4tv7jxcKXrAkSZYgiL+Q8EEus+Sd34Z4N1dBCjc0ZoKtNs55zv5bCmYaMjxtJkThXB/9MWknNvnjSTgngCF2z0r46+EvxaLSWi3vaYzYSEg9k9CytEIFlO+WHabo91TN/zCa7O8ngRyIEDhzgGaqbegoi2Em9Vtr1nE2j7hrOWFIqg+jZpxs/hR89lDXlvm9STglQCF2ysxU6+H3YbLdoSbdttrFsWGSZS5k+vUz/598OtVd85aP+qzPQtbzh/32jivJwGvBCjcXomZer1st4uLi00dRkhxOycC4uliSP2zWxLoQYDCHYkJIdttvt/Wa8pRy05ptL22w+tJQBUBCrcqklq3I9ttLCzROlb9gvO6d+ZCe6t+g2BEVhGgcFuVzpSDod0OIMcobVd8Nfu97WNQUZFXcwfQNbuIIAEKt/1Jx3o1sZiEdtunfGMxiVhYsrx2mk+9sFkScAhQuO2fCTj/Twg31q7ZP+CQRjh98wOOds/+fHhIIbDbqBCgcFueadrtwBIMoy1MNxcFBoY9mh1RuC3PO+12YAmesuiPQrj3HNsUWL/sKIIEKNw2J12223jDpM1D1WBsr7zZ/Y6F8toZGkTEEKwlQOG2NrUYmGy38ZJJm4eqwdjKy8uF456+4SENImII1hKgcFubWtrtgFPb2Nj43MJboN0TKn88teKRgHtnd5EiQOG2Nt2ojYjFJLTbwaR5wP233NTvGmAfNmxYMD2yl2gSoHDbmXcotVBtVrcDy3FBQYHAzpdUBIY9gh1RuO1MOu12KHlFmVsId3V1dSgxsNMoEKBwW5hl2W7zb/YgE4wyN0olD4674S8l9+L5JFdzBwk/Un1RuC1Mt2y38YjSwhFqPKTFW/4u1pbsP75T40gZmsEEKNwGJy9l6LLdxnJA24an/XgOn94nhHvd/ve1j5cBGkmAwm1k2jIELT8fo90OJbtCuHFYYCgBsFPrCVC4rUoxzpASD8dot8NK7Yc1BUK7eTZ3WFmwu18Kt1X5xamtQrhpt8NKbezgMpa5w4IfkX4p3PYkmnZbk1zimSTL3JrkwtYwKNz2ZFa221hQbM/ATBsJyiN8qYJpSTMsXgq3YQlLF65st/v27ctte+HmdeX2d+ctm/bcX0bjbZ/hRsLerSRA4bYkrbLdpliEnlT87nQeNvC8gdBzYWUAFG4b0kq7rVsW5UWZ+cV28WxLrLq+sHTHyLc29n99/YC/bX1y0ZfvbDpSc6L9ktNye3PhlCuvTMN/U/Zsa8+vP95tBAEKtxFpyhIkLLZYTEK7rUNG8Yzhezd+q//D331kwo3Lt72dU0gd7a3VG74YLkRZ1M2df0zaPK6q+ShkmsKdE16zb6Jwm50/RI9ytvjDnNVtTdKJQ0vGLfmRkFrvUbW3nlw4/7LF7rLSaf7x2EdfH7rQ7bjvKm5o8N4X7zCPAIXbvJwlREy7rWcKh0/5gVBb7IP3EmSyag+Yvm3ymsaK3c3b6pq31Bx8d9m2IZO6NP3p1fUFcVd+97yDB710xGtNJUDhNjVzTtyy3Ua1hItJ9EnnuGkjhHBjS46HwC5uLY/dKe6dtOWl9VdKIj2/zn5zdM68REtO4faA2ehLKdxGp69TtttYWGL2YOyKflHpAiG+c7e4f1Pzmca6UXE33e/1za/tOHc+DZhkY07htmsOpR8NhdvgTCfYbawtMXgw1oWOMvdfP/255zL3harSbh89pPTI0Yxgzh9rGNut8usp3NZNozQDonAbnGn5fSu02xomsuKr2R7L3JfOHXn1jfgDyUnVi7/JOqq2Lcs2iWeYFO6svCy5gMJtcCJx/p9YBUi7rWEi9xzb5LHMfWL3l7+O33J3ccP+juyjOrpj1y/FLUkPJy9dOFdT0/B2fBl4v0mbRrxf+37N6RNc7p0drcZXULg1Tk7G0HD4n1Bt2m09s4hXl+GIVzyZxKoSV+e7duytig2Iq/DIqtPpqtvycM/U7flNGuG+8M3hN95OvaZw6AeH6qndek4bN1FRuN1Q0vEa2m0ds5JnTO2xZRviC7c3vFpzsWtvZMZWMwh3x/lv3pyWdiX4f1edPpdnvLw9LAIU7rDI59WvbLexuzqvtnizPgTOLZsndHZjYZ2LQklnZwbh7uy8tHNV7A/LD1Z/c7Ht8ijbm/bWjZna1cW/F9Z96eY3gz54GIkgQOE2cjLIdhsvmTRyDFEKGnUSVEuyb8NRLtydHe0dPSsil76sjFdjJu1YeSpKWbBprBRu87Ip220ePqd5/iDZsz8f7tSgS3f+NUu0rSv/IRz3hkm729xY7oyOO0V/B2Pb7u467WRXZYvm+BheGgIUbvOmxrBhw8RjSdptzfOH1dyvrvqZI5RvrLs7S7Qd28o3isNJRq9vueBidB6F+3zlB11l9AEz6/e6+c3gIgZeEjQBCnfQxPPsD0otVJt2O0+Ywdw+asbNYlFg89lDGTtt2FR9V/zi+0uPuNlRdTC2fWD65YAJvZ08sG9kfMPOn2LnLgZDgL0oJ0DhVo7U3wYh1rTb/iJW3foLRY8K4d55uDJj8+cP14/sPqXETQ26deWC7nUjmTfgnD/+9ZQZXRffOXPfdjd+XjUMtqeGAIVbDcdgWqHdDoaz2l7+8VGR0OJ/xF7I2HhH+8m5M7uFeFTlyTMZr+95sEmmLe/ywSb9p24vaWpnmURtngNtjcIdKO48O5PtNh5R5tkabw+GAH7dTqj8sdsyd2djbPu93aY7NrPuYrqNMu3nmmdKKo/ieDrHnaDaCxvTthkMEvaSLwEKd74EA7tftttYDhhYv+wofwJPFfdxXebuuHByXlG36e4/tbpwR8vppBhOH2maVuTqWFe5QgKvTdXOP5/ht0DhDj8HLiOg3XYJSsPLUOZ+sew2yDfeZOZi7/uZpgNj49tknEUmD7xTM2v9oaq9l1+ksHHHgZkfbHVcOYS4eN3uh9I/nDz7zeHJoq4948uVR9q40V3DCeI5JAq3Z2Sh3IBVZeKZJO12KCnIp1Pn2HS8WA7bXN0dB3aqsf7Zntqd/A6z/lO2Tq8515z+rJLkXwAJjYyNnbuyo5JfphGgcJuRMRwjJYSb1W0zciZFiZPT8avXY9injxyeNX+zOHMqQXPvLfpyRdPlUnWGddzde23SvLKSwu0xJ9pcTuHWJhXpA4FHo902IE/uQkSpxEW1JN5W+9cHjixe9cXYd7ZcXqw9adPv5u14pbx+5d4WcS4rhdsdd7uuonAbkE/abQOSlC1EbL1ZXjvN2f6Oc7qzXe7+5x53TrpvmFdqTIDCrXFyroQm220USfk6YN0TliY+CLeoV+DNOOpGQeFWx9KclijcuudKttt4xqV7uIwvPQEh3PDd6jhRuNWxNKclCrfWuaLd1jo9HoPD23CEduPlOB7vTnc5hVsRSKOaoXBrna7i4mLxWJJ2W+tUuQgO7zATwq2uzE3hdoHeukso3PqmFOVsFLUd4WZ1W988uY5s98GtQrgXb5/s+r7MF1K4FYE0qhkKt77pcnZtOF+02/rmyXVkOLRACPe0tYNd30fhVoTKomYo3Jomk3Zb08TkF9ZzC2+BdmP7+2tLH8yvJXE3HbcikEY1Q+HWNF2y3cbCEk2jZFgeCYz846Pfu/FbTu3L463pLqdwKwJpVDMUbh3TJdttfMjdnW6h40AYUwIB+Wmz903wxEkCXQQo3DpOBdptHbOiIqbq6mrx3KK8vFxFk2wjigQo3DpmHef/iY837baOGco1Jvwtdeuga3G46+Vid9UAD4eW5Noj77OSAIVbu7Ti8D+h2qxua5eevAMa+/b9Ym3J/uM7826PDUSRAIVbu6zTbmuXEqUBfVAxSwj3uv3vK22bjUWFAIVbr0zTbuuVDx+iQXlECPd728f40AObtJ8AhVuvHMt2G/s19AqO0SgiAL0W2s0ytyKo0WqGwq1RvmW7jTdMahQZQ1FKABUSlrmVEo1cYxRujVJOu61RMvwMBc8kWeb2E7D9bVO4dckxCiNiMQntti5Z8ScOucyt9KUK/oTLVvUjQOHWJScQayHcrG7rkhXf4th5uPLw6X0scPsG2PKGKdxaJJh2W4s0BB4Edr1z/2Tg1G3okMKtRRZlu41d0VrExCD8JIAH0eKwdR5a4idpO9umcIefV9lu4/lk+AExAv8J4NfzTf2uuefxf8H29+LVL/jfIXuwigCFO/x0ynYbRiz8gBiB/wRwaAlO5RZrS/zvkD1YRYDCHXI6abdDTkB43Y//xyAh3HhQGV4g7Nk8AhTukHOGY6TEYhLa7ZCTEWz3Mxa/JIT7k5p5wXbO3swmQOEOM384slWoNqvbYWYijL43fr5GCPdbVY+HEQL7NJUAhTvMzNFuh0k/7L5Z5g47Awb3T+EOLXm026Gh16Zjlrm1SYVhgVC4Q0uYbLfxrrLQ4mDH4RFYv3upqJZgL2V4gbBnwwhQuMNJmGy3sREDfzWHEwd7DZVAy/njOKvE2f4eaiDs3DACFO5wEka7HQ539koCVhCgcIeQRvhrsd2ZdjuEBLBLEjCcAIU7hASioi1WAbK6HUIC9OsSNRMc0s2CiX6Z0TQiCnfQiaHdDpq43v1BsqdvfsB5RLm8dprewTI6XQhQuIPOhGy3i4uLg+6e/elHQAg3/qFfdIxIRwIU7kCzItttVEuwtiTQ7tmZlgQWVb8sFgU2nz2kZYwMSi8CFO5A8yHbbSwsCbRvdqYrgSmL/iiEe8NXH+saJuPSiACFO9BkiMUktNuBcte7s0/WLhHCPW/deL2DZXRaEKBwB5cGHP4nFpPQbgfHXfueUDGbUPljR7snrf6F9vEywPAJULiDywHO/xPCzep2cNxN6OnPC38mTDfWmZgQMmMMkwCFOyD6tNsBgTazG5S5xy350agZNz847oavj/H5pJlZDDBqCndAsGW7zZfDBgTdnG7k3+t8n4Y5eQstUgp3EOjljyXeMBlEl+zDKALyoWN8/mFU6sIJlsIdBHfZbuMlk0F0yT5MI1BQUIDVopgeWMp9ob3VtPAZb6AEKNy+46bd9h2xFR3goJIPawqcXZR7jm2yYkwchF8EKNx+kRXtojYiFpPQbvuO29gOINxiYQkO6TZ2HAw8CAIUbn8pQ6mFarO67S9r81sXwj378+Hmj4Yj8JEAhdtHuGiadttfvna1jlKJ0G6Wue3KreLRULgVA5Wbk+02nk/62BObtoJA7OAyIdw4ntuKMXEQvhCgcPuC1WlUtttcnOsjaFualsvc6/a/b8uwOA71BCjc6pk6LdJu+0XW6naF435r/e+sHigHlxcBCnde+DLcjGW54rEk7bZflK1r97WywdBubH9/bu4A6wbHASkjQOFWhlJuSN4Ix+q2L4gtbXTazIk8iczS3KocFoVbJU3RFnYt0277Qtb2Rnloie0ZVjM+CrcajrTb6jlGskUeWhLJtHseNIXbM7KsN8h2u7y8POv1vIAEZAK/HTNw+JQfPLfwFhS7uZqbcyMlAQq34okhOya8qAxvB1bcAZuzncDkJSPF2pLar2O2D5fjy4UAhTsXahnuke02DntT3DqbiwCBpevmC+FevOXvERgxh+iZAIXbM7IMN8Bfi2eStNsqyUapLbwBRwj33C08vT1KuXc9Vgq3a1QuLoTFFsJNu+0CGC9JTWBO7Amh3WREAskEKNzKZgXsNly2I9y028qwRrIh7HcXwo198JFkwEFnIkDhVjY/aLeVoYx8QzhhSgg3Tp6KPA8CSCRA4VYzJ2S7DceNtSVq2mUrkSSAVYBCuHnaVCSnQJZBU7jVzArZbvNlr2qYRruVnYcrWSSJ9hRgqcTn/NNu+wyYzZMACfQgQMetYELI50vQbisAyiZIgAQyEqBwK5ggOP+PJ7op4MgmehL4ZO2SKQvGPvP2ndNXPEU2JCAToHDnOx9ot/MlyPvTEHh55U+4mpuzIyUBCne+E4N2O1+CvD8Ngb8uHiqE+9DxOnIiAUGAwp3XZJDtNt4wmVdbvJkEehJY+Ol0IdxLt8wmHhKgcKuZA7Ldxksm1TTKVkjgCoE9+3cJ4X7zk+GkQgIUbgVzgHZbAUQ2kZGAKHO/9tm/ExUJULgVzIFhw4aJxSS02wqAsokkAq8tfZBlbs6LZAKscec4K6DUQrVZ3c4RIm/LRuC9yjeEcK/c/m62y/nzqBCgcOeYaYg17XaO7HibawI1dVvxQpwl64q+avrC9U280H4CFO5ccky7nQs13kMCJKCIAIU7F5Cy3cYjylya4D0kQAIkkCsBCrdncrLdxnJAz/fzBhLwTqD57KE9xzbxvEDv5Oy8g8LtOa+0256R8YY8CLScPy6eT1Z8xW04eaC06FYKt7dk4g0J4pkk7bY3drw6VwLTNz/gaPfsz7kNJ1eIdt1H4faWT5zaKoSb1W1v7Hh1rgSW104TphsGPNdmeJ89BCjcHnJJu+0BFi9VRwBvwxHCvX73UnUNsyVTCVC4PWSOdtsDLF6qjsDug1uFcP+tfJS6htmSqQQo3G4zJ9vtvn374nVlbu/kdSSQNwEh3K+u+lnejbEB4wlQuN2mULbbeDWw29t4HQmoIPBa2WCh3cdONqlokm0YTIDC7Sp5tNuuMPEi3wjMXz3huYW3DJ/yg189fX3N7h2+9cOGzSBA4XaVJ1hssZiEdtsVMl6klEBjYyNnoFKiZjdG4c6eP5SzUdR2PjasbmfnxSv8ISAmIU+j9AewSa1SuLNni3Y7OyNe4T+BgoICxz30f/i7F9pb/e+QPehLgMKdJTey3cZnhotJ9J3Ltkf2QcUslLmdR5Q7D6yzfbgcXyYCFO4s80O221hYwtlEAmERqD9WIxaWrNv/flhhsF8dCFC4M2UhwW5jbYkOOWMMkSUghPu97WMiC4EDBwEKd6ZpUF5eLh7l027zAxM6gQ9rCoR2s8wdejpCDIDCnQk+zv8Twk27HeI0ZdcOAVRIhHDvP76TWCJLgMKdNvU4/I92O7IfDD0HDrFmmVvP1AQcFYU7LXDa7YDnIrvLSgDlEZa5s1KKwgUU7tRZlu021s9GYSpwjEYQwGNJaDeK3VxYYkS+fAqSwp0arGy38ZJJn+izWRLwSgAnTGGJqvP+PM5Mr/SsuZ7CnSKVst3m9mJr5rodA5HfVc1jc+zIaQ6joHCngEa7ncNM4i2BERDPzOkqAmOuW0cU7sSMyI6GHwzd5ivjAYHxbw0bNePmcUt+hGI3gUSTAIU7Me9O9dD5Yg0xmp8KzUc965OxYm3Jxl2rNI+W4flBgMLdgyrtth+TjG2qJbB25zIh3EUrX1DbOFszggCFu0eaZLtdXV1tRAoZZNQItJw/LoR7wrL7ojZ8jhcEKNzd00C223g+yflBAtoS+OunPxfarW2QDMw/AhTubray3caKQP+gs2USyJPAvHXjhXAfPr0vz9Z4u3EEKNxdKZPf6Ue7bdw8jlrAe45tEsIdO7gsasPneCncXXMAp7aKxSS02/xgaE5AlLmnb36Ae981T5Yf4VG4L1PFka1CtWm3/ZhnbFM5AZhuyLfyZtmgEQQo3JfTRLttxGRlkCRAAg4BCncPu923b1/ODBIggSgT6Nev35w5czQnQOHuYbd5ao/m85XhyQSwnmTn4cqKr2azzK1wYlRWVqJw+v3vf3/y5MknTpxQ2LLCpqIu3HJ1G3YbbwdWCJdNkYCvBGZ/PtxZWzJp7V2+dhS1xkePHi0eej3yyCOlpaW6EYi6cBcXF4sM0W7rNjsZT2YCs9Y82b0o8AvuPFA2X2C04biFMjgGHGquz27qSAs3/DVctpMe2m1ls54NBUVg5fZ3u99kVvlGUN1Goh+nYJL8BQXXwYNHWrhhsWm3I/EptHSQzWcPCeF+bemDlo4ytGHJBZOUIo7HmM8//zwkPvgQoyvctNvBzzb2qJzAxDU/dbT71dU/Ud54xBtMLpiklG/nm46IoxoezPPM6Aq3bLexjjvic5TDN5RAYeV/CdNdU7fV0FFoG3a6gkkGBXcK4kLHffLjERVu2W4DNNaWaDt1GBgJZCDAMrff0yNrwSSziDs/daQcxXFVjzcjKty0235Pd7YfDAHsen9kwo33PP4vN/W7pqCgIJhOI9ULSh+9e/d2o85Zr0EtRRW6iAq3WExCu61qJrGdsAjgOGLMZ6g2D0fzKQWwyVlFOWvxRJXXdsYYReHG/BaUWd32aa6z2cAIsNAXAGqY5Zy1GxUS5U8soyjcOP9P5ICTPoBJzy4CIOBsf+dLFXxCjadi//qv/5qDdvt07EnkhJt226eZzWbDIgCxFgtLcG5JWGHY1y/EGvUNbK4eNmxYDpL97W9/W215RCYcOeGW7TZeMmnfbOOIIkhACDdOL4ng8BUOOU+xFvqO55nKyyPRFW7ZbuORjsJ8sykSCJHAhzUFQrv5dgWviVAl1kK1UdT2GoPX66PluGm3vc4PXm8EAbx2Ugg33oxjRMzhBulJrJ1FO+Xl5W4KJjgMNoChRUi45TU9tNsBzC12ERgBucxdXjsjsH7N6ig3scZrxJ1hovSRWbhR1PbpUWQy5wgJN8RacGd126yPHKPNSkA47pdX8tCSblpYNub+AaNw1kKsZeyZt7/7+igyusINpRaqTbudVQV4gXEEplY8IrS77sA+4+JXGDDEGk+zsEVDLo2mM8uZxdqlcAes2ogqKo6bdlvhB4NNaUigLPbucwtvcba/L1/5sYYR+hqSJ7GGoDs165TOOl2cKF6nVH+cQ+Lfsr90wURCuGW7jZz5OoHYOAmEQgAFXCErETm0xKtYw4PDiee85y7l5km/l/1FWrhlu83zHEKRFXYaAAGxTwR//gfQXShdBCzW8hixyC/BcYel2pEoldBuh/IBY6fBE3BeoPq9G7/V/+Hv2lTmDlGs5STiXFZZuFEh8XWLTeb5Y3+pBH8fCdy028GrCXsMjADK3C+W3eY8ovygYlZg/frRkSZinU64g38amQDZcuFG+oVqs7rtxweMbepDoPbrmFhYMnnJSH0CcxkJHhW6Xw2Cj3OeNWuXUYnLhJKErtr2l0pot73OTl5vLoEL7a3dL33fPsaIgUCssboDT1PlI/LTLd0LXqxlhiIqn95G5ilfNjtu2m1PU4EXW0Dgve1jhHZDx/UckSexxhPXgJ11Smj19fWOcAe2NzK6NW7ZbuNdZXpOYkZFAgoJrNv/vhDu/cd3Kmw5z6a8ijUetGJxNNY45tmvqtudbZMBnB7lMmBrHbdst/FXmD4zwGVieBkJ5EAAYi2EGydP5dCCwltMF2sZRWlpKRb/KYSTZ1PWCjftdp4zg7ebSEAuc+Os1+CHYJNYy/SwbRLVkuB5puvRTuGGvxbPOmi39ZltjCQAAihzT9/8wPLaaYE5blvFOoBk5dyFncKNirZ4BMzqds6TgzeSQDoC2NfmfjUIHjDqVrM2PbMWCjfttumTkvHnT8BxwfjKvynRAsQaNkg+QCLD+dQUa4Xkk5uyULhlu43f877iY+MkoCEBoa35bzrzJNbol846mPlgm3DLdht2IOeTwIKhz15IwA8CMxa/9FRxH2f7ew4fAa9iDavEN5P4kccMbdom3LLdxsKSgGmyOxLQgcA/Nr0sFgWuWLfITUgUazeU9LnGKuGm3dZnYjGSEAnsPFQlhHvKh6MzPGB0X7NGGYTOOsScJnRtlXDjhBrxtIR2W59JxkgCJtBy/rgQ7udLfyr3TmcdcC586s4q4ZZfMZdDac8nxGyWBIInMGn1L4R2b9q0ic46+BT42qM9wk277etEYeMGEUDN8M2y/xLCfeugazOs28OPWAYxKLlOqPYIN+22cZOPASskALHGqUxYjee8wOxXT18vhPvBcTckCzfFWiH84JuyRLhlu40ZGTxH9kgCwRNIEGtZnW/qd40j3FgUiFe/40c4+yGHV5sHPyj26IaAJcIt220uKXWTeF5jKIEMYp1gq/HmyR8PuIVibWiiM4dtg3DTbls5NTkoQcC9WNNZR2Ta2CDc8uEJtNsRmbjWD5NibX2K8xmg8cINpRZ/IbK6nc9U4L2hE6BYh54CUwIwXrhpt02ZaowzJQFsOHD/anM+YOQscgiYLdyy3cYqKCaVBIwgQLE2Ik06B2m2cMt2G7ZFZ9CMLeIEPIk1Vknp8GrziKdM5+EbLNyy3c7/3GGdk8TYDCVAsfY/cR1tLY27qpbNL3xlzIjfDOzj7BG9ts/A34wYM7Fo6dam1kv+xxBCDwYLNxaoiseStNshzB12mYoAxTqoedHRdrS6ZOLv+1/XK8OG/l59h02tqG/tCCqooPoxVbjx8RDZot0Oarbo1c+p84cbTlXrEBPFOowstNYWDc58Bkv8p30eL6lrCyNE//o0VbhRAaTd9m9amNLygl3/jf9CkW+KdeiT5FJt0Z1QgV59B4+ZMn9F1bbaA03OV0NtrOydcYN7d8v61b+du+9s6AErDMBI4abdVjgDjG4Kpts5kWPm1l/Hmhadb2vxdTjOG3hRo8OyvKxejw8Yfc3F5cYv1ZfPKo01nU1dCGlrXDX+7ngZpdcN4z475XtAwXVgpHDLdlvte6yDA8+eFBFY1zBHHIOHf6zYO2Fvc5Witi83Q7FWCDPgpjqaVz17Q1y6r366rLk94AD868484ZbtNowPNpv5R4ct608ALht2W9Zu/PvNTfcs3v0/u46uyM2DexJrbCDgq811nScnNrx8R/xvo9tf3nBS1zg9x2WecMt2G+/18Dxi3mAdAdS4E4Rb/r/F2x/7tP5N2PDMIk6xtm5eYEBtTSUj4sJ93dCSBmvGaJhw025bM/PUDgT+OoN2ix/Bm6OWguoKtB46TrFWmwX9WpOFu9fNU7elqpVcam2KlUx8rG9XTWVESZMBK1AME25YbPFQiHZbv89JaBFBhVEecaPdCdf8fnrvm35yTbonjSyDhJZRzx23tTTVxio+XlA07bVxox8d+vDgO65PSOt1E2M9JfniidpPi196NC7ZzuUUbs/os9yAcrZ4ms/qtmq6xreHVSVehfvllbf1Hfh/Ej7eFGvDpkJbc21F0Z8H95TfVL+KE4W740DJo4niTuFWn33abfVM7WoRa7rda/efPrz1O9d3/XlMsTZzIrS31JaOH5TijZop/4RKctxnawrvwzrw6wY+O2PisO923UPHrXQuyHYbhFHsVto8GzObwOHT+2IHl83e3P1q88wKjgrJiJGPcTWIyVlvO/pZQX95u/t1g/4w9d0Va2I1dYeOtXQVRdpiE68TTycTSyUdZ7ev+GDLgZa2DukyCrfSSSHbbSwsUdo2GzOYQOWOEvcu27ly4dbnDB4wQ79MoKPtQMnj8T+Yrrqq95CJy2tPXExmk1G4uy+ncPsyrWi3fcFqYKOOs5675Rn8IncO9b3n8X/xJNwohRs4boacQOCbNeNujzvpfx40LdaS5hgpCneYUwfbI0XRinY7zEyE0bcQa1mg8QpzZ0rc1O8a+ft43phBx7ElJ4wRsE/VBE5VjHEOcMXXtc9k2BJJ4VaN3kt7OPZBCDer217ImX0tjlyfvvp3KYX4kQk3iinxVHGf4VN+MG7aiEWlCz6qfj2dcFO1zZ4NUvTtNYXCb181ZEFD2lNbO86seT7+1PGqpIeTLJX4OSNw1jbttp+AdWlbOOspVfeLdxtBoFMK8agZN2NW4DLUTKDvYgzYJJl8PZZ4HzmzV5dxMo68Ccg++qqhJU1pGzwZm3iXUA8Kd97gvTRAu+2FlmHXNp89tLWhfM7GJxPU9ns3fsv5vKEkIn70Ytlt0Ovxbw1buHieLNbymJNXBFK1DZsTLsLtqJvb/Tf4tWMrTqV8zU17y85ZQ67uXhlI4XaBVtElst3GcZqKWmUzYRK40N6Kp83V1dVYjffqqp+lNNSihA0FzyrWmYU7lNO6w+Qbhb7Pb5nYW6wETPlw8uLxbe/94Q5RJrks3xTu4KaGbLfTmazgomFPuRJwnPW8TX+atPauv5TcK5enk4UbznrouP+L39N4KI3jRDz1mbDxnXVtT/TMufhsbdFD0hruGwaNf2/Nrrorr1E4gNcoxDey97r+oYfvjz/GpHAHlF/ZbqOaGVCv7EYRAThrIdayOkOXhXCLEja++VTRba++M3rpJx96FWs5XrkjqraiTGrZTOuuoiHJG9blLZO9rh9auOXw5qk3dyn8tWMq0r1Lgeu4VeYYG5FFHmi3VZL1rS0465Mtx50yyIhRj6Vb4IE1fE5mB9x/S/5inVK48ZTSt1GyYR0IdLQd/7z48dvTvCoYW3LKvmrBaYANJUPjeyfTP8akcCvLKJRaqDbttjKsPjQkl0Gg1PJCPfjoBO12nPUrb4zPoQySNXZxMDdOec16MS+wgUDb8a/WlxaOf2KIcxZgrz4D//PZiUXLYgdOxQ8C/LpsdPzlk7cX1qR5Bw6FW9lkEAvCkA7abWVY1TVUf6zGqVknSPNzC28Rv3HxXBE/nVD542ffvV2ts045Dke48eaE3F58o44NWyIBfwloeh437ba/ac+p9Zbzx7fWr/p0bRk2r6KKJS/Uk7UbMu0IN47ehbNesmpBPjVrT5GiqM3Ff56I8WJDCWgq3LLdxiNKQ+FaELYj1vPWjZ+0+heOOuNsEGGoE7x2l7Oe/19+lEHcwMSrbXgUiRtQvMZ0AjoKt2y3sRzQdMQmxo9zBZasKxJiLQu0XMIet+RHEOs/L/zZlEV//GTtksCcdTqk3B5p4mRjzDkQ0FG4abdzSGSetwhnjTKIs3b+wXE3pFwT4pSwcQ2uRNmER8fkSZ63k0AOBLQTbvl1wLTbOWTU/S3JZRAotViol1DClp01xdo9ZF5JAn4Q0E644eNECZXVbT9SDtkF2DdWPJLSUP/q6e5NDRRrP/izTRLIn4Bewk27nX9Gk1sQznrykpHiCAFnoV7yfyhhO2UQiDudtR/pYJskkD8BvYSbdjv/jDotYLv5lj0VxatfmFh5j6zO4q8ZOGv5+8+X/nTKh6NXrFtEsVaVArZDAv4R0Ei4ZbuNJcA4QM6/YdvaMtZ1YCkejmdKt9f81kFdJ+7gHxRrW6cBx2U9AY2EW7bbOB3fevRKBtjtrD/55RN/7z68CWs/Umr36Bcfdl5tTmethD8bIYFQCOgi3LTb7tMvi7WszvJec7zKS/zopY/uKVz63OqtS/lHjHvIvJIEdCagi3DDBoryK+128oyBWNcd2OeUQe4demu6Skj3Odd/fYhirfMHj7GRQD4EtBBuOEEUtcUBFzSGiQ8YP/kllFpeqJdSuOGsZ7/3FsogBJjPR4L3koD+BLQQblhs2m0xV2rqtl5eDXJFrOX/nNfjOl+ihF2w4ufTVzy1KlZCsdb/w8YISUAVgfCFm3Ybudy4axV+e2GvP/7ySFioJ7QbB4M4qo2T+d5e9AbEGq8sUDUP2A4JkIBBBMIXbtluY2GJQezyDBViXbTyhQnL7nOkWbweF5vOkyshjrP2oQxy8WxLrLq+sHTHyLc29n99/YC/bX1y0ZfvbDpSc6K9683Z7c2FU+Lef8qebWlOos8TBm8nARLwQCBk4ZbtNryk9WvUcPBh8YrXhVjLAo1DnUQlBHvN8aNXywfO+mTs2p3L/HHWHe2t1Ru+GC5EOeG3xaTN46qaj0KmKdwePk+8lAQCIRCycEfBbsNZzyl7RRx5KF6Pm7KEjcvAJPbFWiwj8XMCtLeeXDj/ssVOsetd+uZjH3196EK3476ruKHBz6jYNgmQgCsCIQu3ODrDMrudUAaBFAo3jRcRJMil46xxi6uMKbgoWbUHTN82eU1jxe7mbXXNW2oOvrts25BJXZr+9Or6grgrv3vewYMK+mcTJEAC+REIU7hxjJGQMwuq2yiDwCwXLL4/pY1NKGGLMojPzjrV7Li4tTx2pwhy0paX1l8pifT8OvvN0TnzEi05hTu/TxvvJgFFBMIUbgvsNmoaeMD4l7n/L3mhXoJ8o0LilEGg7ziuT1H6cmjmTGPdqLib7vf65td2nDufppVkY07hzgE4byEB9QRCE25D7Taepq7d+slbH42Hs3YeIeK/F8u6DwlJKGH/9dOfz6h4qnJHSahiLc2bC1Wl3T56SOmRoxnn1PljDWO7VX49hVv9J5AtkkAOBEITbtluw4TmEHpgt0CssQ4Pm/JHjHpMiHWCof7ejd9yTDdKItqJdTepS+eOvPpG/IHkpOrF32SF2LZl2SbxDJPCnZUXLyCBIAiEI9yy3UYBIYiBeuxDOOu/lNyb8FKYlCXsCYXP4iARzX8DdXae2P3lr+Px313csL8jO5ajO3aJPZzphPvShXPbYnuemd71K2Fs7Fxb9oZ5BQmQQK4EwhFuPe22LNays36quE/34U3FfYRw4x0Fsz8bu373Ul3KIFknQcfeqtiAePwjq06nq27LDZ2p2/MbofVJq0ounj29dt3up+OS7SwupHBnzQQvIIG8CIQg3LClQgdDt9uiDIJ95AmvxxUCLUrY2I/+6jujDRNreXq0x5ZtiC/c3vBqzcWuvZEZZ1Bm4T4Y2z4w6U8QCnden0neTAJZCYQg3GIrCuQ7lNpCgrMWC/VQp069IaVqAMogeLlMVpq6X3Bu2Tyx42ZjYZ2LQklnZ2bhPnewbvjr6/tP2frKZ3vGTGapRPcZwPgsIRC0cIdltyHWGz9fM2PxS6hZJzxgxDoQ8RcAzHWXdlcNmLXmyc++/KD57CFLUo1hqBfujvMnKrY0N7Z2dEg74+m47ZkyHImeBIIWbtluY6mGr1Bw8smna8uwGgRlEEhzur3mzotjUAbBOwrmr55gm1jLiFtX/kM47g2Tdre5sdyZHXd36xRuXyczGycBmUCgwi3bbTyf9CMTjlhPWTD2ubkDHPuMw/bEQr0UlZCqAahZ21AGcUOzY1v5RnE4yej1LRdc3EThdgGJl5BAsAQCFW7ZbmNFoKqRQqzR2tT544VYywKNs0Ec4e4uYVfdaWEZxBXNhk3Vd8Xh3F96pNnFTfLjx0zruOm4XcDkJSSghkBwwg1XK0rJ+dttx1lPmz1BrCzEor2UjxZRIcE1OAsF4r61fpVVNWvPc+D84fqR3aeU7Fh5KmsLrSsXdJ8gSOHOyosXkEAQBIITbkinEO7c7HZyGQSPGUWbOM86Ubir7pyzbgzEOgiQZvTR0X5y7sxuIR5VefJMxsB7HmySccs7HbcZU4BRWkEgIOGG5uZmt50yCEQ/ZRkkZQl71vpRG776ONrOOsPcbIxtv7fbdMdm1l1M906b9nPNMyWVR3GcjtuKDz0HYT6BgITbk92GWH+29lPUrH87ZqCQe7xxMWUl5Pev3O2UQXDX4dP7zM+I3yPouHByXlG36e4/tbpwR8vppF5PH2maVuTlWFc6br8zx/ZJQBAIQrhlu41VdynpowK+fOXHEOtn3r5TaLSzUM/5wjvOE4QbzvqzPQuN2W6u0aQ703Rg7NQe77554J2aWesPVe29/CKFjTsOzPxgq+PK+0/dXrxu90Ppt7x3j4rCrVGGGYrtBIIQbtlu40BqgRRijR2JWD1979Bb0xlqIdxPvHF5OYQj1nTWeU/LU431z/bU7uR3mGE/5PSac80ZzyqhcOedCjZAAt4J+C7cCXZ77969cNYT3n76ib/fJhbqQZ1T7zVf369oQVcZJIQ3xXinadQdp48cnjV/szhzKkG47y36ckXT5fI313EblVUGGw0Cvgu3Y7exhhoyPfLNvrKzHj7lB+lK2HM2PrmhvpTO2vdJ2P71gSOLV30x9p0tl8+KmrTpd/N2vFJev3Jvy4n4I0sKt+9JYAck4JWAv8KNE0JQ1MZ51ikNtShhY0v69BVPUay9Ji+Q690KdyDBsBMSIIHLBPwVblS04alvHXRtukoIjiuBuDMVGhOgcGucHIYWVQL+Cjd02dnZKAv3zI3DV++bv//4TpatTZh1FG4TssQYI0bAX+F2YC5fvnzKR6Mo1mZOLQq3mXlj1FYTCEK4rQZo/eAo3NanmAM0jwCF27ycBRsxhTtY3uyNBFwQoHC7gBTpSyjckU4/B68nAQq3nnnRJyoKtz65YCQk0EWAws2pkJkAhZszhAS0I0Dh1i4lDIgESIAEMhOgcHOGkAAJkIBhBCjchiWM4ZIACZAAhZtzgARIgAQMI0DhNixhDJcESIAEKNycAyRAAiRgGAEKt2EJY7gkQAIkQOHmHCABEiABwwhQuA1LGMMlARIgAQo35wAJkAAJGEaAwm1YwhguCZAACVC4OQdIgARIwDACFG7DEsZwSYAESIDCzTlAAiRAAoYRoHAbljCGSwIkQAIUbs4BEiABEjCMAIXbsIQxXBIgARKgcHMOkAAJkIBhBCjchiWM4ZIACZAAhZtzgARIgAQMI0DhNixhDJcESIAE/j/z/17Un9MD1wAAAABJRU5ErkJggg==
iVBORw0KGgoAAAANSUhEUgAAAt8AAAHWCAIAAAAgj3LGAAAKr2lDQ1BJQ0MgUHJvZmlsZQAASA2tlndUU8kex+fe9EZLiHRC70iv0mvo0sFGSAIJJYZAELEhsrgCK4qICNjQFRAF1wLIWhALoiwCil0XZBFQ18WCDZV3A4+477y3/705Z+Z+8rvf/Gbub2bO+QJArmQJhWmwHADpgixRuJ8nIzYunoF7DCCgCsjABAAWO1PoERYWBP6xvb+DqJF2y0yS6x9l//uFPIebyQYACkNeJ3Iy2ekIn0J6HlsoygIAZYPEdVdlCSUcizBNhCwQYck8tOQ5zpNw4hyXz2oiw70QTT0AeDKLJUoGgHQKiTOy2clIHtJthC0EHL4AADIaYVc2j8VB2Bth0/T0lRIWImyY+Lc8yX9jFitRmpPFSpby3Lcg/0Qm9uZnCtNYq2d//D+H9DQxUq/ZpoGM5MzUiEDkiUdqlsNm+UTMM4/LlOzZbFyY5Rk+z/wsZuQ888T+UfMsTo3ymOfUlYFSvSAxJHQ+zs70Qmo/lzOXFxkzzxyut888i1aGS/WZ2RHSeC7PK2Rek8IKkOz37NpYIoT+zdw0P+m8wqww6ToFaSHSb0kS+Uo13Mzv35vFi/Sfz5MlipRqkvi+zPk4T+QvjQvTZs/07BpE4nBpHbiCKGkNOSxvaW0BHwQDFmBncXOQMwSA10rhahE/mZfF8EBOPdeUwRSwzU0ZVhaW1kByhyQaAN7SZ+8GRL/+PZbRAYBjEbJfkuPLkKiQW6YDwJlnAFDff4/pvEG2dxsA5/rYYlH2nE5yXAEGEIEsoAFloAF0gCEwA1bADjgDd+ADAkAoiARxYDlgAx5IByKwCqwFG0EhKAbbwE5QBfaBg6AeHAMnQCs4Cy6Cq+AG6AOD4CEYAqPgBZgE78E0BEE4iAJRIWVIE9KDTCAryAFyhXygICgcioMSoGRIAImhtdAmqBgqg6qgA1AD9At0BroIdUP90H1oGJqA3kCfYRRMhmmwOqwPL4QdYA84EI6El8HJcAacCxfAW+FKuBY+CrfAF+Eb8CA8BL+Ap1AARULRUVooM5QDygsViopHJaFEqPWoIlQFqhbVhGpHdaFuoYZQL1Gf0Fg0Fc1Am6Gd0f7oKDQbnYFejy5BV6Hr0S3oy+hb6GH0JPobhoJRw5hgnDBMTCwmGbMKU4ipwBzGnMZcwQxiRjHvsVgsHWuAtcf6Y+OwKdg12BLsHmwztgPbjx3BTuFwOGWcCc4FF4pj4bJwhbjduKO4C7gB3CjuI56E18Rb4X3x8XgBPh9fgT+CP48fwI/hpwlyBD2CEyGUwCGsJpQSDhHaCTcJo4RpojzRgOhCjCSmEDcSK4lNxCvER8S3JBJJm+RIWkzik/JIlaTjpGukYdInsgLZmOxFXkoWk7eS68gd5PvktxQKRZ/iTomnZFG2UhoolyhPKB9lqDLmMkwZjswGmWqZFpkBmVeyBFk9WQ/Z5bK5shWyJ2Vvyr6UI8jpy3nJseTWy1XLnZG7KzclT5W3lA+VT5cvkT8i3y0/roBT0FfwUeAoFCgcVLikMEJFUXWoXlQ2dRP1EPUKdZSGpRnQmLQUWjHtGK2XNqmooGijGK2Yo1iteE5xiI6i69OZ9DR6Kf0E/Q798wL1BR4LuAu2LGhaMLDgg5KqkrsSV6lIqVlpUOmzMkPZRzlVebtyq/JjFbSKscpilVUqe1WuqLxUpak6q7JVi1RPqD5Qg9WM1cLV1qgdVOtRm1LXUPdTF6rvVr+k/lKDruGukaJRrnFeY0KTqumqydcs17yg+ZyhyPBgpDEqGZcZk1pqWv5aYq0DWr1a09oG2lHa+drN2o91iDoOOkk65TqdOpO6mrrBumt1G3Uf6BH0HPR4erv0uvQ+6Bvox+hv1m/VHzdQMmAa5Bo0GjwypBi6GWYY1hreNsIaORilGu0x6jOGjW2NecbVxjdNYBM7E77JHpN+U4ypo6nAtNb0rhnZzMMs26zRbNicbh5knm/eav5qoe7C+IXbF3Yt/GZha5FmccjioaWCZYBlvmW75RsrYyu2VbXVbWuKta/1Bus269c2JjZcm70292yptsG2m207bb/a2duJ7JrsJux17RPsa+zvOtAcwhxKHK45Yhw9HTc4nnX85GTnlOV0wukvZzPnVOcjzuOLDBZxFx1aNOKi7cJyOeAy5MpwTXDd7zrkpuXGcqt1e+qu485xP+w+5mHkkeJx1OOVp4WnyPO05wcvJ691Xh3eKG8/7yLvXh8FnyifKp8nvtq+yb6NvpN+tn5r/Dr8Mf6B/tv97zLVmWxmA3MywD5gXcDlQHJgRGBV4NMg4yBRUHswHBwQvCP4UYheiCCkNRSEMkN3hD4OMwjLCPt1MXZx2OLqxc/CLcPXhndFUCNWRByJeB/pGVka+TDKMEoc1RktG700uiH6Q4x3TFnMUOzC2HWxN+JU4vhxbfG4+Oj4w/FTS3yW7FwyutR2aeHSO8sMluUs616usjxt+bkVsitYK04mYBJiEo4kfGGFsmpZU4nMxJrESbYXexf7BcedU86Z4Lpwy7hjSS5JZUnjyS7JO5IneG68Ct5Lvhe/iv86xT9lX8qH1NDUutSZtJi05nR8ekL6GYGCIFVweaXGypyV/UITYaFwKMMpY2fGpChQdDgTylyW2ZZFQ8xKj9hQ/IN4ONs1uzr746roVSdz5HMEOT2rjVdvWT2W65v78xr0GvaazrVaazeuHV7nse7Aemh94vrODTobCjaM5vnl1W8kbkzd+Fu+RX5Z/rtNMZvaC9QL8gpGfvD7obFQplBUeHez8+Z9P6J/5P/Yu8V6y+4t34o4RdeLLYorir+UsEuu/2T5U+VPM1uTtvaW2pXu3YbdJth2Z7vb9voy+bLcspEdwTtayhnlReXvdq7Y2V1hU7FvF3GXeNdQZVBl227d3dt2f6niVQ1We1Y316jVbKn5sIezZ2Cv+96mfer7ivd93s/ff++A34GWWv3aioPYg9kHnx2KPtT1s8PPDYdVDhcf/lonqBuqD6+/3GDf0HBE7UhpI9wobpw4uvRo3zHvY21NZk0HmunNxcfBcfHx578k/HLnROCJzpMOJ5tO6Z2qOU09XdQCtaxumWzltQ61xbX1nwk409nu3H76V/Nf685qna0+p3iu9DzxfMH5mQu5F6Y6hB0vLyZfHOlc0fnwUuyl25cXX+69Enjl2lXfq5e6PLouXHO5drbbqfvMdYfrrTfsbrT02Pac/s32t9O9dr0tN+1vtvU59rX3L+o/P+A2cPGW962rt5m3bwyGDPbfibpz7+7Su0P3OPfG76fdf/0g+8H0w7xHmEdFj+UeVzxRe1L7u9HvzUN2Q+eGvYd7nkY8fTjCHnnxR+YfX0YLnlGeVYxpjjWMW42fnfCd6Hu+5PnoC+GL6ZeFf8r/WfPK8NWpv9z/6pmMnRx9LXo986bkrfLbunc27zqnwqaevE9/P/2h6KPyx/pPDp+6Psd8Hpte9QX3pfKr0df2b4HfHs2kz8wIWSLWrBdAISOclATAmzoAKHGId+gDgCgz53FnFdCcL0dY4s9nPfp/85wPntXbAVDnDkBUHgBBHQDsRboewmTkKbFrke4AtraWdiQiaZlJ1lazAJFFiDX5ODPzVh0AXDsAX0UzM9N7Zma+HkK8+H0AOjLmvLVEjZUDYD9OQt0GEhv7n+1fwwPwi8dWbUgAAEAASURBVHgB7J0HXFRH14d36R2UIoqKCCoiKmLvisZesPeGPfYSo6ZoijFvNJZo1NhQsRdQsYAdFVGkCKiAihWlCEjvLN/Ba/YjLiDl7u69u/99/fHeO3fmzDnP3MDZmTNnhIWFhQJ8QAAEQAAEQAAEQIAzBFQ4owkUAQEQAAEQAAEQAIEiAvBO8B6AAAiAAAiAAAhwiwC8E26NB7QBARAAARAAARCAd4J3AARAAARAAARAgFsE4J1wazygDQiAAAiAAAiAALwTvAMgAAIgAAIgAALcIgDvhFvjAW1AAARAAARAAATgneAdAAEQAAEQAAEQ4BYBeCfcGg9oAwIgAAIgAAIgAO8E7wAIgAAIgAAIgAC3CMA74dZ4QBsQAAEQAAEQAAF4J3gHQAAEQAAEQAAEuEUA3gm3xgPagAAIgAAIgAAIwDvBOwACIAACIAACIMAtAvBOuDUe0AYEQAAEQAAEQADeCd4BEACBEgi8e/euoKCghAcoAgEQAAHpE4B3In3G6AEEeEhg165d3t7ePFQcKoMACCgCAWFhYaEi2AEbQAAEWCVgY2PTqlWro0ePsioVwkAABECgXATUylULlUAABJSJwMWLF6OioqKjo+Pi4mrUqKFMpsNWEAABThDAyg4nhgFKgACnCKxfv570ycnJ2bZtG6cUgzIgAAJKQgArO0oy0DATBMpLIDs729jYODMzkxo4OjoGBgaWtyXqgQAIgABLBDB3whJIiAEBRSFw9uxZxjUhg4KDg1+8eKEolsEOEAAB3hCAd8KboYKiICAbAgcOHBB3RFHzbm5u4ltcgAAIgIBsCGBlRzac0QsI8IMAhcHWrl07Pz9frK61tfWzZ8/Et7gAARAAARkQwNyJDCCjCxDgDYHDhw8Xd01Ib9q8c+fOHd4YAEVBAAQUggC8E4UYRhgBAiwRKL6sIxa5f/9+8TUuQAAEQEAGBLCyIwPI6AIE+EEgLCysWbNmkroaGRnFxsZqampKPkIJCIAACEiDAOZOpEEVMkGAlwRKnDghS5KTk2kjDy9NgtIgAAL8JADvhJ/jBq1BgG0CdObfoUOHSpNamuNSWn2UgwAIgEBVCMA7qQo9tAUBxSFw+fLlmJiY0uzx8vJ6//59aU9RDgIgAALsEoB3wi5PSAMBvhKg2RE1NTVnZ+cdO3asWbOGMYPiYTdu3NitWzfayEPbefhqG/QGARDgGwGcAsi3EYO+ICAFAmlpaQYGBi9fvrSwsCDxR44cYTqhIFkHB4eFCxdSwKyrq6sUeoZIEAABECiBALyTEqCgCASUjYC+vj5NmZRhddOmTTds2FBGBTwCARAAARYJYGWHRZgQBQIgAAIgAAIgwAIBeCcsQIQIEAABEAABEAABFgnAO2ERJkSBAAiAAAiAAAiwQADeCQsQIQIEQAAEQAAEQIBFAvBOWIQJUSAAAiAAAiAAAiwQgHfCAkSIAAEQAAEQAAEQYJEAvBMWYUIUCIAACIAACIAACwTgnbAAESJAAARAAARAAARYJADvhEWYEAUCIAACIAACIMACAXgnLECECBAAARAAARAAARYJwDthESZEgQAIgAAIgAAIsEAA3gkLECECBEAABEAABECARQLwTliECVEgAAIgAAIgAAIsEIB3wgJEiAABEAABEAABEGCRALwTFmFCFAiAAAiAAAiAAAsE4J2wABEiQAAEQAAEQAAEWCQA74RFmBAFAiAAAiAAAiDAAgF4JyxAhAgQAAEQAAEQAAEWCcA7YREmRIEACIAACIAACLBAAN4JCxAhAgRAAARAAARAgEUC8E5YhAlRIAACIAACIAACLBCAd8ICRIgAARAAARAAARBgkQC8ExZhQhQIgAAIgAAIgAALBOCdsAARIkAABEAABEAABFgkAO+ERZgQBQIgAAIgAAIgwAIBeCcsQIQIEAABEAABEAABFgnAO2ERJkSBAAiAAAiAAAiwQADeCQsQIQIEQAAEQAAEQIBFAvBOWIQJUSAAAiAAAiAAAiwQgHfCAkSIAAEQAAEQAAEQYJEAvBMWYUIUCIAACIAACIAACwTgnbAAESJAAAQqRCA2Nr1//0O3b79mWr16lUy3AQHvyiPkl198li69JK753XdX6Z/4lsWLggLR6tU3IiISWJQJUSAAAuUkAO+knKBQDQRAgDUCmZl5Fy48Ix+FkZiWlku3799nlKeDwMAYP7834pr+/m/pn/iWxYvvvrv2008+UVFJLMqEKBAAgXISUCtnPVQDARAAASUhkJ8vWr78yp9/+imJvTATBDhIAHMnHBwUqAQCnCZQWFj49Gni27epn2kZHZ367BnvZxru3HnTvv1uck0aNTL+zEDcggAIyIwA5k5khhodgYCCEBAKhcOGHY+JSYuJWaqm9ukbTm5uQfPm2+3tzXx8plTFzq1b/c+ff7JjxwBLSyOxHDe3kMOHw/76q2+DBhXwGBITM48ceSgWUvyienXtsWObFi8RX69adf3du7SjR4fR8pOLy1lxOS5AAARkSQDeiSxpoy8QUBACLi4tFi3y9vZ+1r9/Q8YkcimSkrKnTGlRRQsbNzaZN+/ioUNhK1d2Fotat+5OWlqOjU11cUl5Lt6+TSNRJdakXkrzTlas6NyuXW0dHXVX1+AS26IQBEBABgTgncgAMroAAUUjMG5c02XLLpMPIfZO3NxC9fTUR4ywq6KpTk5WlpaGBw+Gir2TkJDYsLD41au70pxNhYTb2po8eTK3xCYaGqolllMhKVDaI5SDAAjIjAC8E5mhRkcgwC8CtQSCzNI0NjXVHTCg4ZkzEenpuXp6GklJWTR3Mm5cM11djdKalLOcXJDJkx1os0xQUIyjY01qRX4PuSWTJjmUU4K4GrkgFVoJEjfEBQiAgNwJwDuR+xBAARDgJgFngaCsBCS0uOPhEeHhET5hQvNjxx7m5oqmTKmwA1Gi5ZMmNf/5Z59Dh0LJO6GkIxRx0r17vXr1/j8MpcRWkoXkOVGIq2Q5lZBH1aFDnRIfoRAEQIALBOCdcGEUoAMIcIvAq1c5AoGWQFA3PT2vNM369LExN9elJRjyTmh6w8amWufOlqVVrlC5lVW1bt3qUUDrunW9rlx5HhOT/r//9ayQBKbyixcfevc+WGJDijt5/HhOiY9QCAIgwAUC8E64MArQAQS4RcDPL00g0BcICu7de9+pU8m60W4d8ks2bvSjHK9+ftG//tq95HqVKqVpmIkTT/v4vCS/x8BAY9iwyoSz0HTLhQtjS+yf5k5KLEchCIAARwjAO+HIQEANEOAKgZyc/IAAyuJKIahqZ868XrKkVMXIh6DdNNOmnVVREU6c2LzUehV/QO7I3LkXaE3n9OmIMWPsaQdNxWUI9PU1+/ZtUImGaAICICB3AsjGJvchgAIgwC0CN2++Sk8XMTpFRaXRITil6de4sWm7dhYhIXE9eljVqWNYWrVKlJM7MmqUvavrg4yMvKrvUq6EAmgCAiAgXwLwTuTLH72DAOcI0GJKamo+o1ZCQran55MyVFy8uH23bpYLFrQto07lHlHUbUFBYcOG1RG+WjmAaAUCvCaAlR1eDx+UBwGWCSQkZPr6/v8+F9qJQ87KnDmtS8s1MmJEE/rHshIfxVFKtIcPZxsZUXCufD5DhjRu3dqCkq/Ip3v0CgLKTQDeiXKPP6wHgf8SoPSv8fGfjg5mntB5OpR6pGVLSn8i60+TJmay7rJYf+QYydE3KqYILkFAGQlgZUcZRx02g0BpBCjU47NdxLSh9+TJ8NLqoxwEQAAEpEEA3ok0qEImCPCSQGRkAh0+/JnqIlEhbZzJzv4UifLZU9yCAAiAgDQICOkwdGnIhUwQAAHeEfjjD9/vv7+WlyfS1BTm5NBvBhElg8/NLTQ21j58eFivXtZsWUQHGj9+/J7ykTBLJ+T6REQk1K9fzcBA84tdUI61/HyROEV9VFQSNbG2rtgBgV/sBRVAAATkSwDeiXz5o3cQ4AoByhlvYrJOU1N18OBG2toxmzfHCARpa9d2CwrKom07XbpYenuP54qu0AMEQEDRCWBlR9FHGPaBQPkI0Kk0lF0tOHjmP/8MdHTU+9gov0+f2sePjwgMnNG2rUX5xKAWCIAACLBAAHt2WIAIESCgAAQMDbU2bOhdoiF2dqY//8xmovoSe0EhCIAACIgJYO5EjAIXIAACIAACIAACnCAA74QTwwAlQAAEQAAEQAAExATgnYhR4AIEQAAEQAAEQIATBOCdcGIYoAQIgAAIgAAIgICYALwTMQpcgAAIgAAIgAAIcIIAvBNODAOUAAEQAAEQAAEQEBOAdyJGgQsQAAEQAAEQAAFOEIB3wolhgBIgAAIgAAIgAAJiAvBOxChwITg7bdqWhg0jz54Vs7j+449U8uj4cXEJLkAABEAABEBA2gTgnUibMJ/kd/nhh/S4uHOzZmUnJ5Pez69evfnrr9VtbOxGjOCTGdAVBEAABECA5wTgnfB8AFlV38jSst/WrekxMd5LlmQlJXlMnKhnbu68f79QKGS1HwgDARAAARAAgbII4Jydsugo4bPmEyY8OXfugatr/MOHGbGxEy5f1jU1VUIOMBkEQAAEQECOBDB3Ikf4HO16wI4dejVrvvP3b7d4sZWTE0e1hFogAAIgAAKKSwDeieKObWUty0pMzElJodbRfn6igoLKikE7EAABEAABEKgkAXgnlQSnqM1E+fnu48cXFha2X7Lkja/v7d9/V1RLYZdcCOQV5D1+/zgrL0suvaNTEAABvhCAd8KXkZKRnrRJ5+29ez3Xrv1q3bq6nTvfWL36XUCAjPpGN0pAICkrqcm2Jk8SnyiBrTARBECg8gTgnVSeneK1jL57l7wTckrazJtH+3QG792rqq5+aty4vMxMxTMWFsmYQERCxPIry1NzUlWEKqJC0S8+v9x8dVPGOqA7EAABvhCAd8KXkZK6nrnp6bSmo6qpSU4Js4WYMp04rVmT9OQJbTCWevfoQNEJvE55fSnqUtPtTWndsO3utruDdr9MfqnoRsM+EACBShIQ0m+KSjZFM8UiUCgS5efkCFVU1DQ1xZbR65GfnU236tra4kJcKDyBAwcOT5r0VCD4EBw82cHBgUV7x7uP93rm1cK8xYVxF9RV1VmUDFEgAAKKRABzJ4o0mlWyhfwSckGKuyYkjiZRqBCuSZXIKlzjUSdG2f1tl51f5LaKP+R2NNve7G703fqb6/9++z/B1A/jH1LhBr8Nf/j+cTby7J2pdx69fzT3wtzo1GiS02pnq7ScNEZOSnZK652tHf9xpPAUsWRcgAAIKCEBeCdKOOgwGQSqRKC7VffwhHDPSE+xlLj0uKMPj7aq1aqtRVuhQLgzcKf4EV0cCDnwIvlFvwb9RtuPPjj0YEPjhoeHHZ7TZk5tg9qzWs0KjAn85vI3TP3Z52cHxAR81/m76trVi0vANQiAgLIRQK5YZRvxStp74emFYx6HjN6bWFlYLVy4kKQcOHAgLCysWrVqK1eupNtTp07du3dPU1Pzl19+oVsvL6/r16/TxZo1a9TU1G7dunX+/Hm6pcoGBgbBwcHHP54sOH/+/Jo1az558mTfvn30dOrUqdbW1tHR0du2baNpm9GjRzdt2jQ5OXndunV0O3DgwLZt2+bk5FAXdOvk5NS9e3dq9dNPP+Xn57dv375fv350S5XT0tKaNWs2fPhwuiVRcXFxNjY2EyZMoNv9+/e/ePGCOp05cybdnjhx4vHjx4aGhoxRFy5cCAgIUFdXX7FiBT29ceMGaU4XdEtW3L9/39vbm25JbbLi0aNHp0+fpttp06bVqFGDxB45coRux44dW69evdjYWFdXV7odPHiwnZ1damoqaUK3X331VcuWLfPy8jZs2EC3nTp16tixI13QLVnh6OjYs2dPut2xYwdZYWtrS1bTLdGOj4+3tLQc8fHMo5MnT7569crMzIwxithGRkbq6+tPnz6dKhP5Bw8ekMLz5s2j27t37/r5+RGxuXPnUmFISAhVoFsXFxdqQvAvXrxI1caMGUMC37x5o6qqSrdlfMbYj1nktehg6MERTT4dwHQ47HBBYcEUhykkdkqLKT9c/8H3tW/HukV2UQAsPW1n0c7WxJZu6xrWpZ/d6nWjn/SZ12beuSfnyJshmTSVcuThkVktZw2zG8Y8xU8QAAGlJQDvRGmHvmKGbz7+Q9sfg2Lq1nrt2K5gzhzay0N/xkJDQ+mvMiPo3bt39BdR+9/wFHIIgoKC6BET2JSQkEB/9ek2NzeXfiYlJfn7+9NFVlZR3gv6y01/QemC+dObmZlJf03plv6Q009yR3x9femiVatW9FMkEt2+fZvEksNBt/ShWxJrYmLC3FJb6o7+DDO35FI8e/aM/tIzf8hJq8DAwIYNGzLeCTlYV69eJSsY74Q8FfKrtLS0GO/k6dOn5K+QnGXLlpHAly9fnjt3jm5nzJhB3snbt2/PfjzPmdQmCeQ9MM4KuRfknZBT5e7uTpXJFyHvhCwll4Ju69evTyXkiDD+Gbl3jHdCT7Ozs8kuxjvx8PAggb1792a8E8b/aNeuHYPo8uXLRIx8F8YoHx8fUtvc3JzxTu7cuXPs2DHyFBnvhHzBvXv3kmQymawgp2r37t10O3LkSPJOCM7OnUVTHUSb8U40NDToVjDEXfDYsuhC4mOoZTi08dCTj0/S+gszyeEW6mZTzaazZWeqO6n5pFU3Vh0KO8R4J9deXHub9vbHrj9KiCkqIG9mn/O+ptuaTjs77X3me3tT+419NpZYE4UgAAJKRQBRsUo13JU3tqtr15p/3LR7oqKhr69rZtZs3LhGzs7mzZtXXiJacpjA9n07vw5bKnhtHvzd8RKjYq88v/KV21fb+2+npRkKK6GdOL92//W7Lt8xNvVy6xUUExSzJIbiXid6TCQ/hq7JpynN4uOPjo86OYp2GofOCm1i1qS0aigHARBQHgKIO1Gesa6Spaoqqpe/EmiaGFOS+6SnT2/8/PORgQP3tG/v//ffya9eVUk0GnOPQGjmA4FmtqB2bGJOYona9bDqYWloeSj0ED11C3Ejx2Ji84nimi4tXBKzEmlvTkZuhke4B020lOGaUKvIhEj6SWtAPq98xEJwAQIgoMwE4J0o8+hXwHZVoWqSscBq/DAVZsVEJEp984ayt11aunRf166H+vV7ePRoVhL2WVQAKZerXk+7JtDMExik+cYVralJfmhFhlZwfN/4UhYTCishZ6WOYR1xNWdbZyNNo2OPjp2OOJ2elz7ZYbL4keTF/bf3f/b5uX+D/hSb8s2lbxhPRbIaSkAABJSKALwTpRruyhtLcyfUuP6McdUbNiwupSA7O+XVq2cXL3rOmLGhdu2DffsWf4prPhKgNPPxefFFmqsIzrw+U5oJjM+x7PKy6LRoioctXk1LTWtM0zEU7krxKHUN6pLvUvxp8evMvMxx7uP0NPR2Dty5d/BeCq2lWzqLp3gdXIMACCghAXgnSjjolTFZTaUoyFTFQKfT8uVa1apJilDX0anXrZvdMOy2kGTDs5IzEWdSC1IZpd9lvqND+0o0wKqaFW29oQkSmiYZ0njIZ3VocSclJ8U7ynuSwySaaPnsqfh2sffip0lPN/XZVEu/VmPTxqu6rqINxqtvrBZXwAUIgIByEoB3opzjXmGraWWH2hSICprSvlN7e8n2Xb7/ftyFC47Tpkk+QgmPCNAQF20PFhQwOifkJJx6fKo0/ZkpE8piQpMln9Wh3Ce0AYdyn5SxrEOTK/8E/tPPph95MEzzZR2XtazZ8nff32+/vv2ZQNyCAAgoFQHs2VGq4a68sUOPDfWI8PCb6teudrvXt2+fHDUq7d07sTgNA4NR7u71e5Q6gS+uiQuOE/B74zfs+LCY9Bixnk3NmgbOCCwt6zytwtCqH0XFiuuLL8jRoUDX0hpSNaYCTcsVn1yhJlROApnFRLE0XIAACCgVgRJ+pyiV/TC2nASYuZN8UT7Vr9upk1WPHsKPObu0jY0b9O+fm5p6sE+fwI9pM8opENW4SYBSvhZ3TUjJ9xnv77y5U5q25HyU6JpQfXIvynBNxBWKuyZUSNKoFVyT0oCjHASUhAC8EyUZ6Kqayfy1oC+1jKBuP/1kWLco6adxw4ZjPD0H/PMP/Y05N3PmxfnzRQWf6lS1S7SXOYH03HSvKK/Puo3NiKW1ns8KcQsCIAACUiUA70SqeBVHOBMVS1sqGJOqWVk5TJmioq7edOxY8ktazpgx3ttbq3p1/y1bDvfvn52SojiWK5Ml119cp5kSSYuvvrhK5/NJlqMEBEAABKREAN6JlMAqmlhxVKzYsPaLFony8vTMzZkSq+7dp9+7Z9yoUZS3N2VpS4qKEtfEBV8I7Huw70P2BzMdM2M14yKd81Vqadcy0DCISYuh5LB8sQJ6ggAIKAABeCcKMIiyMOHTys6/cyfUpYae3qrCQruPJ+0xGlS3sZl2965Vz54J4eG727Z96YO8n7IYGrb6oHOG3SPcxzcdf3r06RXmH3PSx5sc6HrAdbCrsY7xujvr2OoIckAABEDgiwTgnXwRESoUESgeFVsGES0jo/EXL7acOTMrMdHtq6+C9uwpozIecYpADb0awTOD3Ya6ta/TXk2ozuhmrGk81G5o1PyoPYMwlJwaLigDAgpOAN6Jgg8wW+Z9FhVbhlhKdT9gx46+W7YUikSe06ZdXraMLsqoj0fcIeBg7lCiMrSJBofzlUgGhSAAAlIiAO9ESmAVTexnUbFfNK/N3LmUnE3T0PDOunVHBg/OSUv7YhNUAAEQAAEQAAGGALwTvAnlIiAZFfvFZta9elEYSjVr66fnzu3t2BFHGX+RGCqAAAiAAAgwBOCd4E0oFwHJqNjyNDOxtZ3u72/ZrVt8WNiuNm3e3Ck1qVd5pKEOCIAACICAkhCAd6IkA11VM8sZFSvZjXb16hMuXWoxbVpmfPx+J6cQNzfJOigBARAAARAAgeIE4J0Up4HrUgmUPypWUoSquvqgXbu+WreO8qOcnjjx2vffFxYWSlZDCQiAAK8JJCcnX7p06eTJk7y2AspzhIAaR/SAGhwn8CnupFi+k4oq3GHpUpPGjU+NGXNrzZr3jx8PcXPT0NWtqBDUBwEQ4A6BvLy8sLCwu3fvnj9//t69e0lJSTo6Ov7+/tzREJrwlwC8E/6OnUw1/7Rn599zdirXd8P+/afeuXN44MAIDw/Xzp3HnD1rULt25UShFQiAgFwIvHr1ihwR5hMYGJidnV1cjZ07d9rZ2RUvwTUIVI4AvJPKcVO6VpWLipXEZGZvT3Gyx4YMeePru7N16zFnzli0aSNZDSUgAAIcIZCamnr//v1/HZJ7cXFxpSnWqVOnsWPHlvYU5SBQIQLwTiqES3krV2JHcWmwdE1NJ127dnb69NADB1y7dnXet89+1KjSKqMcBEBAjgTS0tK+++47mhHJzc0tWw17e/urV6+WXQdPQaD8BBAVW35WSl2TmTvJF+WzQkFVQ2PI/v1Oa9YU5OScGj3a5+efESfLClgIAQF2Cejr62/ZsoUmTmxtbcuQXL169XPnzmloaJRRB49AoEIE4J1UCJfyVq56VKwku84rV45yd1fX1b2xatXJ0aPzsrIk66AEBEBA7gQcHBx8fX1btmxZoiZCodDNzc3S0rLEpygEgcoRgHdSOW5K14qVqFhJarbOzi63bxvUqfP4+PF9XbumxcRI1kEJCICA3Ano6uoOGDCAHBFJTVauXNmvXz/JcpSAQFUIwDupCj0lastWVKwkMnMHB4qTtWjb9t39+7tat44JCpKsgxIQAAE5Erh+/TqFlfz000+SK7BOTk5ULkfd0LWiEoB3oqgjy7JdLEbFSmqmZ24++cYN+zFj0t6+3du5c7i7u2QdlIAACMieAKUwWbRoEbkgz549o95pt3CzZs3EatSqVevIkSOqqqriElyAAFsE4J2wRVLB5bAbFSsJS01La9jhw11XrcrPyjo+fPjt33+XrIMSEAABWRKgQFcKht20aRN1qqmpuXTp0gcPHixYsIDRQU1N7dixY2ZmZrJUCX0pDwF4J8oz1lWyVBpRsZIKdVu9evixY+SpXF2xwn3ChPycHMk6KAEBEJA2gZcvX/bu3XvgwIHv37+nvrp160Y5YdetW6eurt6/f3+m999//50SnEhbE8hXWgLwTpR26CtmuJSiYiWVaDJixJSbN/Vq1Qo7eHB/9+4Z8fGSdVACAiAgJQIFBQVMvlc6MYe6qFat2oYNGyjupEGDBkyPNWrUMDU1HTJkyJIlS6SkA8SCABGAd4LXoFwEpBcVK9l9rVatKE7W3NEx2s9vV5s2caGhknVQAgIgwDoBykzfqlWrmTNnZn3c3k87cSIjIynu5LOOWrdu7erq+lkhbkGAXQLwTtjlqbDSpBoVK0nNwMLC5datxsOGpbx6tadjx0hPT8k6KAEBEGCLQEZGxurVq9u0aUORJSSzXr16Xl5edLYfTZNIdrF3715DQ0PJcpSAAIsE4J2wCFORRUk7KlaSnbqOzogTJzqtWJGXnn7M2dlvwwbJOigBARCoOoHbt2/TZhzaGCwSiWgDzvTp0x89ekRxJ6VJpsWd0h6hHATYIgDvhC2SCi5HNlGxn0Gk1E89fvtt6KFDKurql5YsOePiUvClwz4+k4BbEACBMgjQkX6jRo3q3Lnz69evqZqjoyMd+EdxJzo6OmW0wiMQkAEBeCcygKwIXXyKOxEVyN6YpmPHUjYU3Ro1Hri6Hvjqq8yEBNnrgB5BQPEIHD9+nDYM008yjdyRVatWkWvSokULxbMUFvGRALwTPo6aHHT+tGenUA7eCVlbu107ipM1a9bs9c2bu9q2ff/4sRwQoEsQUBQCFOvapUsXmjVJTk4mmzp27BgeHk5xJyoq+IugKGPMfzvwLvJ/DGVigYyjYiVtMqxbd6qvb8NBg5KfP9/dvv0zLy/JOigBARAom0BeXh5lV6N8r7du3aKalEvt6NGjFHdSt27dshviKQjImAC8ExkD52t3stxRXBojDT290R4e7ZcuzU1NPTxggP/WraXVRDkIgIAkAfJCyC+hHcK5H+O3RowYQZMoNIMiWRMlICB3AvBO5D4E/FCAmTvJF+XLV12hikqvdesGu7oKVVUvzpt3btYsUb6cVZIvEPQOAuUhkJKS8s0331D0a0REBNVv2LChj48PRZwYGRmVpznqgIDsCcA7kT1zXvYox6hYSV4OkydPvHJF28Qk8J9/3Hr3zvrwQbIOSkAABBgC3t7eFP26fv16uqVU9HRQDqWlp7gT8AEBLhOAd8Ll0eGQbvKNipUEYdm5M8XJmjZp8vLatd1t2yY+eSJZByUgoOQE3rx5M2DAgD59+sTGxhIKin4NCQmhuBMNDQ0lJwPzuU8A3gn3x4gTGso9KlaSQjUrq6l37tj07Zv09Onudu2eX70qWQclIKCcBCivGiWbb9y4MeV7JQKU2vWPP/6guBMqUU4gsJp3BOCd8G7I5KMwF6JiJS3XNDAY4+nZZv787A8fDvbpE7Bjh2QdlICAshGgCZK2bdu6uLhQfnqyvVevXhRuQnEnysYB9vKaALwTXg+f7JTnSFSspMEqqqp9N28e8M8/lFj2/OzZXgsXigrkk5RFUjeUgICMCdDpfWvWrGnZsmVAQAB1Xbt2bU9PT4o7MTc3l7Em6A4EqkgA3kkVASpLc05FxUpCbzljxnhvb63q1e9t3ny4f//slBTJOigBAcUmcO/evSZNmnz//fcFBQWUV23y5MmUY43iThTbalinqATgnSjqyLJsF9eiYiXNs+refdrdu8aNGkV5e+9p3z4pKkqyDkpAQCEJJCQkTJgwoV27di9evCADKanJ3bt3Ke5ET09PIe2FUcpAAN6JMowyCzZyMCpW0irjBg3IQbHq2TMhPJw28ry6eVOyDkpAQMEIeHh4NGrU6ODBg2SXlpbWypUrg4KCWrdurWBmwhxlIwDvRNlGvJL2cjMqVtIYLSOj8Rcvtpw1Kysx8UDPnsF790rWQQkIKAaBqKioHj16DB06NCkpiSxq06bNo0ePKO5EVVVVMQyEFcpMAN6JMo9+BWznbFSspA0qamoDtm/vu2VLoUh0durUy8uW0YVkNZSAAH8J5Ofnb9261d7e/tq1a2SFsbHxgQMHKO6kfv36/DUKmoNAcQLwTorTwHWpBDgeFSupd5u5c8dduKBpaHhn3bojgwfnpKVJ1kEJCPCRAHkhLVq0mDdvXnZ2Nunv7OxMx+VQ3AkfbYHOIFAaAXgnpZFB+X8IfIo7KeTTZl3rXr0oDKWatfXTc+f2duyY/OrVf0zCDQjwjUBaWhqFlbRv3/7hw4eku7W19ZUrVyjuhOZO+GYK9AWBLxCAd/IFQIr6OD4j/s87f6Zkl3fn7ac9OyI+eSc0dia2ttPu3bPs2jU+LGxXmzZv7txR1AGFXQpPgBZxKNPr2rVrCwsL1dTU5syZQz4KxZ0ovOEwUDkJwDtRznEXJGcnL728NLcgt5z28yUqVtIcHWPjCZcvt5g2LTM+fr+TU4ibm2QdlIAAlwm8e/eOQl/JEXn79i3pSdGvtCuH4k5ohw6X1YZuIFAVAvBOqkKPl22PPTzWdlfbK8+vqAnV3MPdW/7T8mzk2S9awosdxaVZoaquPmjXrq/Wrxfl5Z2eOPHa99/Tt8/SKqMcBLhDgF5U2ipMUya0fENaUf4S2pJDuUyaNm3KHSWhCQhIgwC8E2lQ5bRMm+o2Xet1/dv/7/zC/K3+W9vXaV/HoM4XNWbmTvJF+V+sydkKHZYsGX32rIa+/q01a44PG5b78QgSzmoLxUCAtgfTqcIU7pqamko0unfvTsflUNwJHdoAOCCg8ATgnfB7iN+mvo1MiCz4bzgIRZNQYVJWEv2MTS86Ob34p5p2tRF2I7LyszrX7VxQWPBz959b1GyRV5BHlZ8kPileMyEzgQoTMxOpkI9RscVtYa4b9u9Pxxob1qsX4eHh2rlzanS0ZB2UgIDcCeTk5NCRwrQxx8/Pj5SpWbPmqVOnKO7EwsJC7rpBARCQDQF4J7LhLK1eDoUdsv3b1jvKu3gH31z+xm6bHfkoXfd17XmgZ/FH7zPeN9rSaJz7OFMd08sTLgsFwlXXV1EFCnqdf3F+o62NTjw6wdRPzUltvbN1u93t0nPTmQr08zM3iKnJr59m9vbT/f3rdOwYGxxMcbJv/f35pT+0VXgCN27coIWbb7/9Ni8vj6ZJxo0bR1MmFHei8IbDQBAoTgDeSXEa/Lue0GwCzWocDC1KYs18cvJzyMPoadXTqpoVPX30/tGD2Af/PhQcfXiUFnS29N3iPspdU03Ta7zXxj4b6Sn9EtznvM9Y23juhbnMZMnX579+mfJy96DdlkaWVIG/UbFi28UXuqamk65dazZxYnpMjGvXrg+PHRM/wgUIyJHAhw8fFi5cSCs4T58+JTXs7Oxu375NcScGBgZy1Apdg4BcCMA7kQt21jqtqV+zj02fMxFnmBkOkkshrsk5yVNaTKFr5ueh0EPi/txC3eoa1O1l3cvCoGiKuI5hHWarMF2TqJ0Dd8Znxi/yXnQk7AjNysxqOWuY3TCmLa+jYsXmiy9UNTSG7N/v9NtvBTk5p0aPvvHTT4iTFcPBhVwIeHp60nE5mzdvpt41NTW/+eabBw8edOjQQS7KoFMQkDsBeCdyH4IKKJCdn51BwZz//qNgEWrs0sIlMz/TI7wopJ8+5H8YaRo52zrTtZ2pXVuLtofDDosKi1K5RyRE3H93f5LDpNKi6oY2HjrFYQpJmO453d7UnplWKRL679wJr6NiGUOK/+y8YsUod3d1XV2f1atPjh6dl5VV/CmuQUA2BF6+fNmnT59Bgwa9f/+eeuzatWtoaCjFnairq8tGAfQCAhwkAO+Eg4NSqkrOR5311uqJ/20P2E5VBzQcYKJtwizuUByr1zOv0fajtdQ+JUIgb+Nd+rvrL65TTbcQNwo0mewwudQOBIINvTdoqWpl5GX81uM3sRCqryIselUoiraMtnx8ZOvs7HL7tkGdOo+PH9/XtWtaTAwfrYDOPCVQUFDwzz//NGnSxNu7KHSsWrVqGzdupLiThg0b8tQiqA0CbBGAd8IWSVnIcbJyGtd0nPifrYkt9aqhqjGu2birL67GpcdRWEmeKI9Z0GEUIk9FW02blmmKEieEHuxi2aV+tfpl6Eo7jbMLsikVyk8+PzFzM+LKVKgAUbFic8QX5g4OFCdr0bbtu/v3KU42JjhY/AgXICA9AoGBga1bt541a1ZmZib1MmDAAIp+pbgT6fUIySDAIwLwTng0WIJlHZcdHHpQ/I/CRxjtaYKEZjU8IjzI/7AzsWtj0UZslaGW4RDbIacjTl97ce116muqKX4keRHwLoCckt7Wvf/u/3dgTOCqG0XbecQfCoxVvLkTxjo9c/PJN27YjxmTFh29t1OncHd3sdW4AAHWCWRkZKxatYpSvgZ/dIUtLS0vXrxIcSdmZmas9wWBIMBTAvBOeDpw/1G7uXlzR3PHbfe33Xt7r/jECVOJAlM+ZH9Y7L1YT11vuN3w/7QsdpOZlznefTxNtOwauGtGyxk9rHr8z/d/t1/fFlehwFiFnDthDFTT0hp2+HDX1avzs7KODx9+a+1aseG4AAEWCdy6dYs24/z8888ikUhVVXXGjBmPHz+muBMWu4AoEFAAAvBOFGAQi0wgpyQsPowWX8Y3G/+ZSbQeZGloGRofOrLJSF0N3c+eim+XXloamRi5vtd62shDhbSXWEdNZ4L7BEp8wtShuRMFi4oV2y6+6LZq1fBjx8hTubZypfuECfk5OeJHuACBKhKIi4sbPXp0ly5dXr9+TaIcHR3v379PcSc6OjpVlIzmIKB4BOCdKMiYjm06lmY75redb65n/plJtENneafl9HRmq5mfPRLfPk18SoliZzjOmN5yOlNYz6je1n5bratb07k8TEnR3InCRcWKCYgvmowYMeXmTb1atcIOHtzfvXtGfLz4ES5AoNIEjh07ZmtrSz9JArkjq1ev9vf3p2ywlRaIhiCg2ASESPOg2APMonUmf5hQ/tm8H4u2MSv8J/Xt2yODBsUGBRlaWo7x9HyWmrpy5eqUlE/TSApvfmJuUvSoZ4J3Zg1v1NDW1lZ4e6VqIKWlj46OTk8vyrlMHzrJr06dOhoaGswtfoKAghHQ0VFbtGjhiBEjqmgXvJMqAlSi5ubrzeMz4kWrilKnKMMnLzPTY+LE8FOnROrqV41q2A/daWZWtElKGT73I254NXERvDOfIfCoUaOGMpgsDRspsoTWbuh8nPz8ouMzyS/p1asX7R+WRl+QCQLyJZCcHH3u3GIjIxVX153NmzevujJqVRcBCUpCgFZ2CgU011ZYWjI3BeOgrqOjMnp08KUrLdJSeiW+04x9rGnbV8FsLM0cXd3Ij4+EhoZ1q1evVVo1lJdB4MWLF8eOnaBYE4GgKNiLFnHo2yQmosoghkc8JVBYWHDv3s4bN9YuX75kwYL5bP2BgHfC0/dBDmqLj9qh2Fs5dC/bLp88eTJ9+tfJyaoD5wdov7qXdXRq9pmlothH2iN2CFQxJy/bweBbb9nZ2ZcuXaKkasy6Oe0THjlypLW1Nd/sgL4g8GUCr1/fO3NmdvPmNqGhAexuiVf8PzNfposa5SPAHLVD23bER/OUrx3PatGflj/++HPHjt1OTj8NGTKxSHsTG1UT64w9zrn3XAsSonSnnBLqmvDMKqgrKwKUUe3IkSOpqUUhSrRhuFOnTgMHDqQLWfWPfkBARgSys5OvXl398uWl3bv/pqMrWe8V3gnrSBVW4Ke5E5GiJbMvPmD0lXfWrHl16nRbsCBEU/P/D4ZVtWynv9g/fdfAgqib6Zva6k7zVKlhV7whrkEgJSXlxIkTjx49YlBYWVmNGjUKUTt4MRSSQGjoiQsXvpk6dcL58w+kFOIN70Qh3xypGMVMmSjqpuKYmJjFi78NCAgfOvRw7dotJQkKjerqL/DNcBuX//Bs2qb2upOOqdkig5YkJ2UsoRUcin51d3en7Tlkv5aWFkW/SuPbpDLChc0cI/D+fSQt5dSooeHre1Wq65XId8KxkeewOszKjuKli6WNFTt2/NOiRdvcXIevv75XomvyaVg09HRdPDSdlgqyUzN2Dci5tYXDwwXVZESA/NpNmzbRag7jmlBSkxUrVsA1kRF9dCNDAvn52dev/7pvX5/ly12uXvWSqmtCZmHuRIZjy/OuxFGxPLfjP+oHBAS4uMzS1LScM8dfX//zRHb/qcrcCFW0Bq5TNW+SeXxmtvv8ojjZYVsFKvjvqARUCl+Ul5dHoa90vDAdNUzGGhkZDR8+HBuGFX7cWTEwLS09KyvbzIw3EWyRkd6envP79nWKiAjV19dnBULZQvBbtWw+ePr/BMRRsf9fxOcrihL44YefTp++MGDA1oYNe1bIFPXWk3WNrTNdh+be+UeU8FRn8kmhdrUKSUBlvhOgXV0UZZKQkECGqKio0GnDQ4cOldICPN9ZQX9JAv7+D0JDwxct+pSbW7ICd0pSU995e3+bmRnp6XlUltmNsbLDnXeA65ooUlQshQjY2TV/+lSLol8r6pow46RWv7PeIn8Vc7v8J9fSN7YVvX/C9fGDfiwRoBOGT548uX37dsY1qVWr1oIFC+gAHbgmLAGGGK4Q+JjIZMe2be2GD28ZGHhXlq4JIcDcCVfeA+7roRhRsU+fPqVEJklJwilTLpuYNKgKdpXqVvoL/TL2j84Pv5i+qZ3O5BNqDXpURSDacp9AWFgYnZVDDgqpqq6u3q1bNzpemOZOuK85NASBChF48+b+mTOzmjatHxJyXy5bz+CdVGi8lLoy36NiKWiREpls377LyWm1s/MkdsZS00B3umfW6cW5N//K+KeP9tAtGh1msSMZUjhGIDEx8fjx47Sgw+jVsGFDyrFmbGzMMTWhDghUlUB2dgolMnn+3Gvnzq09esjtGxe8k6oOpPK053VU7OXLlymRiYVFl/nzH2hpGbI5akJV7SGbKU4269TcrBOzC+LCtZ03CITIvsUmY/nKol1dvr6+np6eFAZLmujq6vbt27djx47y1Qq9g4A0CISGnrxwYamLy/hz5x5oampKo4tyyoR3Uk5QqCbgaVRsbGwsJTLx93/k7HywTp1WUhpIjfYzVEwbZO4bTpMoovhInUnHhOz6QFLSG2K/ROD169e0lPPu3TumYrNmzSjHmo6Ozpfa4TkI8IzA+/dPzp792tRU9fbtKzY2NnLXHt6J3IeANwrwLiqWvvLu3r3nxx9/6dBhwZw5rkKhdIMD1Gy66y28m7FrYH6Edzqla5t+TsW4Pm9GF4pKEKClwCtXrtAJw/Qi0UMTExM6xo8WdCQqokB5CSQkJL16FU2BRy1a2EtSeP781YcPKSYm1S0ta9NTeqNSUtKYahkZmfn5BfHxRXu+6KOlpWlgIIttukx3n/2kRCa3bv0ZELD7999/njBhwmdP5XUL70Re5PnX76e4k0J+ZLIPDAycOnWWmlodSrBmYFBTNrhVTBroL7qbsW9EfuSV9I1tdF3cVet3kU3X6IVdAhQ9ffjw4eTkZBJLp+R06NBh0KBBamr4hckuZkWQdvCgB5lhbFytbl2L4vZQBuH9+0+mpqaPHTuY8U7CwiIOHTpdvM7atX8zty1aNJk4cXjxRzK7joy85Ok5r0+f7uHhIQYG/398h8wUKK0j/MdWGhmUf07g054dzp+zQwewUSITD4/z/fv/1ahRr8/NkPa9lpHujItZ7vNzfbenb+upM3KHehsXafcJ+SwSoPfn1KlToaGhjExLS0tayqlZU0YOLouGQJQMCNC8iLW1ZVTUq8DAsM+8k8jIKHJNNDU1mjf/dCYXXdjY1CtRK7lsR09Njbl06dv09PAzZw63bFnC8R0lqiqzQngnMkPN+454ERXr4eExb95ie/vRlMhEVVVOIV0qatrDt6nUaJx9elHmkamaceFaA/4nkPK6Eu9fL24YQLmDyTWhc6pJHQoJ/Oqrr5ycnIRCITe0gxZcJNCmjQN5J8HBDwcP7lV8b3lAQJGD6+BgJ/Y8aAu6kRGrIfmV5VFYKPL333X9+pplyxYtXLivuNqVFcl+O3gn7DNVVIkc31H87NmzGTPmvH9fMGmSt6mp/IMDNDvPUzVrlLl/ZM619QVxEToTDgs15baurKjvJIt2xcXFUfTrixcvGJkUXzJ27FhDQ078LWHRTIhinQD5H+7uF9PSMp48eW5ra8PIz83NpXUcuibfhfUeqyjwzZsASmTSpInlgwf+5ublOL6jiv1Vtjm8k8qSU752zNxJviifa6ZTrNn69Ru3bt1BiUwGDZrMHfXUGvX6GCc7IP/RuYy/OupM81SpZskd9aAJQ4BOyfHx8blw4QJzXA55JJSTnvbmgA8IlIcATY00b97Y3z+EFnfE3gllqc/NzTMxqVa/Pof+k6dEJteu/fTs2QVKZNKzZ8/yWCfHOvBO5AifZ11zMyr26tWrM2fOrVWrEy3lsJzIhI3xUTGz1Vt0L9N1WP4zn49xsh6q9TqwIRgy2CEQFRVFOdbi4+NJHK3g0Or7sGHDtLS02JEOKcpBoG3bFuSd0GQJTZkw6zjMsk7r1s25AyAs7BQlMpk8eaynZ4h8E5mUkwm8k3KCQjUB16JiaSqeEpncuxc2ePCBOnVac3aEhDrGurMvZ538Otdvd/rfTtqjdmm04sqePc5Ck4FiWVlZXl5eN2/eZPqiXN0U/WplZSWDrtGFghGgCRKaJklI+PDwYaSjY9PU1LSnT19QtBJHvJOEhKeUyMTYWHjz5qUGDap0fIcsB066GSBkaQn6kjYB7kTFUv6JXbt2Ozi0zsqynzPHn8uuyadBUVHXHrlLa/B6oSgv69DE7AvfCQSF0h4vyC+DwKNHj9auXcu4JrRPmNJ1L1u2DK5JGcTwqGwCjCMSFPSQqtESj0hU2KCBVbVqRmW3kvbTgoKcGzd+c3XttXTphOvX+eSaEBnMnUj79VAc+RyJig0KCqJEJqqqFrNn3zUwqMUjvprdltBCT5bbmJzLv4ko4f04N6GGLo/0VwxVP3z4cOLEifDwcMYca2trmjIxNTVVDOtghbwIUPSrt7cP7SKmMLjAwKLdOnKfOHny5DIlMunVq8vjxw/4GN8N70ReLzP/+pV7VCwloli16peTJ88OGECJTHrzjyCdamvXX3XBnfRdA/NCPURJnXWnnRUaFiWRxEcGBCg7lp+f35kzZyg4gLqjbPS9e/fu0gXp8mTAXvG7oK3CNFkSGfncx+fu27dxlPtVnOZE9sanpcV6e3+bmvrIw+Ngq1bSOr5D2nZhZUfahBVHvnyjYk+fPm1n1zw8XJWiX3nqmjCvgoq5vf5if7X6HQuigylOtuC1v+K8Ihy2JDo6esOGDTRrwrgm9vb2K1asgGvC4RHjn2rM5uHLl2+R6rSLh7KbyN6Gj4lMdv79d5shQ5rThmH+uiaEDnMnsn9/+NqjvKJiaVcFJTKJj8+bNMnL1LQRX/EV01uoa6r79dXMYzPy7h9I39pVZ+w+dYdRxZ7jkk0CdLAwbeyiQ6qZ43KqV69Ox+XY2tqy2QdkgYBA0LSprba2VlZWUSo/uaQ5iY4OpEQmtrZ1goPvKUB2Y3gn+K+qvARkHxVLX3P//HPjX39td3JaNXDglPIqyot6qpo6Y/fn1LDNPv9d5v7RmnERWr1/pD2tvNCdR0o+f/780KFDSUlJpDMlxGzXrt3gwYPFuTt5ZAhU5T4BmixxdLS/ezeIztyRcZqTnJzUq1cpkcn5HTv+6tVL5sd3SGds4J1Ih6siSpVxVCydDUuJTGrW7LBgwQMtLTmHvktpPDV7rFCt0Tjz4Pgcr9WiuMfaY/YJ1bWl1JeyiU1PT6djDSiGmjG8du3aFP1KP5WNA+yVJYHhw/vTP1n2SH09fOhx/vziiRNH8yWRSTn5wDspJyhUE8gsKpYSmSxduuLOnQeDB++rW7eNYqNXs3fWm387Y/egvODjosQXOlPPqMjqRGUFBhscHHzy5MnMzEyykWZKaMMwnZiD43IUeMSV07SEhGeennMMDSnZsTedvaBgEBAVq2ADKkVzZBAVS5EBu3fvoUQm6emN5869r/CuCTNaKrUc9Bb5q1pShOz9ojjZt8FSHEVFF/3+/fu///77wIEDjGtCG4aXL19Oc91wTRR95JXLvo+JTNbu3dtz8eKxN29eUTzXhIYTcyfK9U5XxdpPcSeigqoIKaMtfd+lRCZCYc1Zs/wMDS3KqKl4j4T65npzfTKPTMkLOpr+Vyfd8W5qTYcqnplStYhcW8qudv78+fz8oqOg9PX1hwwZ0qJFC6l2CuEgIHsCT59e9fSc27Nnp/DwED4mMiknMXgn5QSFav9msi9k3ztJS0ujRCYnTpzu33+zrW1fJWWtpqUz4Ui2mW2O908ZrsO1+q+hqBQlRVFxs1++fEknDMfGxjJNySmhjTna2gjiqThKtOAwgfT0OEpkkpwcdurUgdatuXt8BysI4Z2wglEphEgpKpayY82du8jObsSCBaFqasp++ppW71Wq5nZZhydln1tZEPtYZ/RugaqmUrxelTUyOzvbm5J0+vhQsjWSQVlfKfqVFnQqKw/tQICLBCiRyf37e69d+3nJkvmLF+9RVVXlopas6gTvhFWcCi2M9R3FtNuTEpnExmZPmHDBzAz5Jz69PerNR6hUt8rYMzgv4GB6QpTu1NNCPTOFfrMqb1xERMTRo0dTUlJIBP2+7ty584ABA5ThF3flkaElDwlERwdRIpNGjSyCgu7WqsWn4zuqAhveSVXoKVdbZu4kX1S0qF/FDyUy2bBh0+bN25ycfhwwwKWK0hSvuWqdVhQnm7lnUMFLP4qT1ZnmqVqzqeKZWRWLyCOhXTkPHxYdukYfOsCPpkzonGHmFj9BQDEI5OSkXbv205MnnpTIhA5eUAyjymkFvJNygkK1TzuKC6ocFXv9+nVKZFKjRrv584O1tauBbIkEVAwt9Obdyjw0MS/kVPrmDjoTDqs3GVhiTWUrpBUcf39/ymVCx62R7VpaWvRbu1u3bsrGAfYqPIGHD0+fP79o/PhRZ86E0Huu8PZ+ZiC8k8+A4LZUAp8y2VchKjY+Pp4Smfj6Bg0atMfSsl2pPeEBQ0BdR2fyiewLP+RcXpO111k08A865VjJ2cTExFD066tXrxgOjRs3Hj16tIGBgZJjgfkKRiAxMersWUpkknfjhlejRopwfEclBgjeSSWgKWmTqkTF0vfdvXtdv/9+ddu2c+fO3SkUKn5IF0tviVCr368qNRpnHZ2afWZpUZzsiO0CVQ2WhPNJDO0TpvTBly5dKigo2jVmZGQ0bNgwOsyPTzZAVxD4EoGCgtzbtzfeu7d9zZpVU6Yo1vEdX7L9s+fwTj4DgttSCVQ6KjYkJGTKlJlCYQ0lTGRSKs2KPNBoOU7VxDpjj3Pevb3pCc90p5wS6ppURADv6z558oSOF05ISCBL6Lgc2ktJuUw0NbGbifcjCwOKE3j69BolMnFy6vD48QPyv4s/UsJreCdKOOiVNLkSUbF01gklMjl+3KNfv02NG/erZMdoRhtSLNvpL/ZP3zWwIOpm+qa2utM8VWrYKQMYSvl64cIFX19fxljasEDRr3Xr1lUG22Gj8hD4mMhkeXJyyMmT+9q0UfDjO8o5rMhkX05QqFbhqNizZ882btzs4cPC+fND4JpU/QUSGtXVX+CrZj9IlPA8bVP7/AivqsvkuASadfvtt98Y14QOgKWE9EuWLIFrwvFRg3oVIvAxkcmerVtbDxxo9+DBfbgmYnqYOxGjwMUXCJQ/KvbFixe0K+ft24wJE86bmTX+glw8Lj8BDT1dF4/sc8tzrq3L2DVAy3mjZud55W/No5qJiYm0lBMHFv75AABAAElEQVQZGcnoTMeIjBw50tjYmEcmQFUQ+CKBt2+DKZFJgwY1AwP9LCyU6/iOL8KBd/JFRKjwiUB5omLz8vIokcmmTVu7d/+xX7+pYMc+AaGK1sA/KJ9s5vGZ2e7zRbGPtIdtFagozn/IdFwOTZacO3eOkuIQPV1d3X79+nXo0IF9kpAIAvIjQIlMrl//JSLi9Pbtm/v2VdbjO8rkrzi/1Mo0Ew9ZIPDFqFjKJj59+tc1arSdP/8BEpmwQLx0EeqtJ+saW2e6Ds29848o4anO5JNChcgc8/r1a9ow/O7dO8b0Zs2a0ZQJOSilk8ATEOAfgUePzlAik7FjR5w+HaqEiUzKOWDwTsoJCtUEZUTF0rH1lMjk1q2AwYN3W1q2BywZEFCr35nyydL6Tv6Ta+mb2hXFyZo2lEG/UuqCZkpotzBl6qO5E+rCxMSEjvFTyHPhpQQQYnlBIDHxuafnHF3d7GvXLtja4viOsgYNUbFl0cGz4gQ+zZ38N1csk8ikefNWKSkN5s4NgGtSnJi0r+k4Hv2FfmqN+4rin5CDkv/0qrR7lJJ82jC8du3aq1evkmtCp+R06dJl2bJlcE2kRBti5UKAEpncvPnHnj1O8+eP8PW9Dtfki6OAuZMvIkKFTwQ+xZ0UyxUbGhrq4jJLJDKeOdPX0LA2SMmBgKaB7nTP7DNLcnw2Z/zTR3voFo0Os+SgRmW7TE1NdXd3p705jADaj0MbhpXnnLPKYkM7nhGIirpBuV+7dWv36FFwtWo4vqNcwwfvpFyYUIkIfNqz83HuhBKZ/PTTr0eOnKJEJnZ2/cFHngSEqlrOmyj9SdapuVknZhfEhWs7bxDwIRtvQEAAuSZZWVlEj1KrffXVV05OTkKhUJ4w0TcIsEogPT3+0qUViYlBx47tadcOx3dUAC68kwrAUvKq4qhYT1o4nbPQ1nboggUh6uo6So6FI+ZrtJ+hYtogc9/w3Jt/ieIjdSYdE2oZckQ3STXi4uKOHz/+/Plz5hEt4owZMwbJMSVBoYTPBArv33e9enX1okVzly7dSUuWfLZFDrrDO5EDdJ52yazsXLh40dcnctw4zxrKkauUR4OlZtNdb+HdjF0D8yO80ze1151+TsW4Ptf0p1Nybty4cfHiRea4HDrAb+jQoc2bN+eantAHBKpC4N27EEpkYm1thkQmlcYI76TS6JSrISUycT/lQTZraNWZPt1HuYznj7UqJg30F93N2DciP/JK+sY2ui7uqvW7cEf9qKgomjKho6pJJVrBadWqFbkm2FHJnQGCJlUnkJubfu0aJTLx2LZtE6XqqbpApZWAPTtKO/QVMPzmzZv29i3u3ik6tt7YlHNfxytgiTJU1TLSnXFRo+PswozE9G098/z3csFoCi6hEJOtW7cyrkmNGjXmzZs3duxYuCZcGB3owBaBR4/ObtrUrEmTwvDwELgmVaSKuZMqAlTw5nQqLCUy8fHxHzx4Z0HtvIcZl0TF9uwouPH8NU9FTXv4Nsonm+WxMPPIVM24cK0B/xMI5fZV5OHDhzRlkpaWRkTV1NS6du1KyTGxDM/f9wuaSxJISnpBxwvr6GRcvXq+cWMc3yFJqMIl8E4qjExJGlAik3379n/33ao2bWbPm7ddRUXtRcFtsl0kKFASAnw3U6PTXMrPlrl/ZM619QVxEToTDgs19WVs1IcPH+i4nPDwcKZfa2tr2jBsamoqYzXQHQhIj4BIlHf79iY/v62//vrj1Kk4voM10vBOWEOpSILCwsKmTp2Vl1dtxozbRkZ1GNNUBEUx55g74dFAqzXq9TFOdkD+o3MZf3XUoXyy1Sxloz95t35+fnROdU5ODvWora1N8yWdO3eWTe/oBQRkQyAqyufs2a+7dm37+PEDJDJhlzm8E3Z58l5aRkYGJTI5dOhE//4b7ewGFrdHyHgngvzihbjmOAEVM1u9RfcyXYflP/P5GCfroVpP6ifqvX37lo7LefPmDQPH3t6epkz09PQ4zgrqgUD5CWRkvKdEJgkJAUeP7m7fHsd3lJ9ceWvKbSm6vAqingwJ0MGwjRs3Cw7OXbgw9DPXhLRg5k4KhVjZkeGQsNGVUMdYd/ZljXZTC9Pi0/92yg1wY0NqyTJobxftFt6wYQPjmtC3yRkzZtB0N1yTknmhlJcECgMCXLdsadW3b4OQkAC4JlIaQ8ydSAksz8S+evVq1qx5L19+GDv2rLl5E7H2yYWvD2SOGa61rZZqcxVB0dvCrOxkFiZdzVmbXBg9QfuIuDIuuEtARV171G6Kk80++03WoYkiipPtv4Z29bKrMG0YPnz4cFJSEolVUVGh39qDBg3S0NBgtxdIAwE5EoiJCaVEJlZWJgEBvrVr4/gOKQ4FvBMpwuWFaPqyu2nTXxs2/NWt2/czZ0777C+WvtA8tuDRjsxeZiqN6B9ZlCB65po59F1ByAfR68Haf/LCRijJENDoulho2ijLbUzOlbWi+AjtcW5CDV1W4NDJBh4eHkFBQYw0+q1NSzn43c0KWwjhCAFKZHL9+q+PH5+iRCb9++P4DqkPC7wTqSPmcge3bt2aPv1rY2PHefOCdHSMJVVVFWh011zqnf1TlOhWlOAWVXgvekb/6KK6imUTtf8Epkg2RwnXCKjb9VddcCd918C8UA9RUmfdaWeFVT6+MTg4+OTJk5mZmWQszZT06NGDTszBcTlcG3roUxUCjx97nju3cPTooadOhejo4PiOqrAsb1t4J+UlpWD1KJHJN9+svHHj7qBBO6ysOpZhnYP6CL/cnR9EnyIcxTXNVBtVV7ES3+KCLwRUzO31F/tn7h2S/9yX4mR1pp5RrdO6csq/f/+eEpk8e1bkrdKHDoUfOXIkdi4wNPBTMQh8+PCSEploaqZdueJpZ2enGEbxwgpExfJimNhUkrZ67t+/v1mzlklJ9WjKpGzXhDo2/XdNp7gSmgLdVmoTipfgmkcEhLqmul9fVW89UZQSk7G1a96DYxVVXiQSXb9+/Y8//mBcEwp6HT169MyZM+GaVJQk6nOWACUyuXlz/c6dXb/+2tnPzweuiYxHCnMnMgYu5+4oa6eLCyUyMZwx45aRUd1yatNOY9qr/HvZgqJcn8xHT8WskXqvf+/w/zwkoKqpM3Z/To3G2edXZu4frRUXrtl71WdRR6VZ9fLlS9owHBsby1RwdHQcNmwYprtLw4VyPhJ4/vzmmTNfd+nS+tGj4OrVq/PRBL7rDO+E7yNYXv0pkcnPP685ePB4v34bmjQZVN5mH+vZqvUhdyRb9P/eSR3VVnpCswoJQWUOEtDssVy1hm3mwfHZXj9RPlntMa5Cde0y9KTUal5eXj4+PjQDR9Uo6yst5djY2JTRBI9AgF8EMjISKJHJ+/f+R47s7NBB6smBxHA2b95M0VpjxoxBMmWGCVZ2xO+GIl+cP3/ezq55UFD2ggUhFXVNiIuW0NBWvbcYkI6wWit1LOuIefD7Qs3eWW/+bZVqdfKCj9Eqjyg1pjR7KCH92rVrb9y4Qa4JnZLTvXv3b7/9Fq5JabhQzkMChYGB+7Zsadm7t3VoaKAsXRNiRWujy5cvt7CwGDx48KlTp5gkyzxkyJrKmDthDSU3Bb1+/ZoSmbx4kThmzGlzc/tKK9lKfXxo3qlUURxJ0BUa26h1q7QoNOQaAZVaDnqL/DP2DC545V+UT3ba2c80TElJoV05tCzIlNerV482DJubm39WDbcgwF8CMTFhlMikXr3q9+/frlOnjuwNoYO76T+rffv20fkP9KEQLrqdNGlSu3btZK8MF3rE3AkXRkEqOuTn569fv6Ft286Ghv1mzrxVFdeE9Kur2oZynzCKNlBz0hTK+jw5qTCC0H8JCPXN9eb6qDuOLkyOTv+rk+ErX+YJTZPcvXv3999/Z1wTLS0tZ2fnBQsWwDX5lxz+n/cEcnMzvL1XHDkyZN265V5ennJxTRiIFL8lpkknaO7YsYNSGjZs2PDXX3+lhJniR0pyIWTWj5XE2gqZmZWVlZ2dXaEm3Kl87969+fOXVKvWvFevP0pMZFIJVX0LNnsV/KAu1B6vdry+sGslJKAJ9wkUXPut4CqlkRVc7V54y8bc/OxCcfRro0aNhg4dqq8Px5T7wwgNy0sgMvKCt/c3Q4b0//77FXRWZXmbSaceeSR0jneJsikkhVaaaPVn7NixShKlC++kxDehqHDFihX0lbHUx5x+QAt29J9ZH4HAgk01DVMFLscFueqCHeMFBapsSoYsLhGwEzwZIvBWFxSE2GieeTZD9PH0Ry4pCF1AgBUCqQKBt0AQLxDksSJONkIo4eHw4cMnTpzYs2dPCv+STady6QVxJ3LBLtVO1QUCR4GgjYD1PyopBgJhoeCDIVwTqY6f3IU/FjRMVtceLTyrkmQI10TuwwEFpECAjjINFAgCBIJcKQiXrsjc3NwzZ86QX0JxKg4ODtLtTK7SMXdSKn7aNunn51fqY449iI+PP3XqbF6ekZ3dYm3tGtLQLic/53LUZSNto051O0lDPmTKnQAduhQREcGscOsL0vMEWvZ1rGo0bCiU94y33MlAAYUhkJQUFh6+0dLSbODAvlxL0kNJDr/77rvSUNPJmvXr158yZQoFfunqsnNCVml9caEc3gkXRqFKOtD5JpTIxM3taN++f9rbO1dJVpmN03PTf7j2g4WBxdIOS8usiIe8JBASEkIbc+g8P9KevpnVKiho/DE7m4aeXgsXl2pWOLWAl8MKpcUEMjMTKZFJbOzdPXu2d+xY1vEd4iYyvggICGjduoRjJRo3bkxLOePHj1eqkzWxsiPj14/l7i5evEgbhhs0GLhgQagGS+fNlqaiUCCkR+Tdl1YB5TwlkJiYeOLEicjISEb/enXqWMbHaxUUJAgEDZo2/RAWdn/bNsdp00waFR1SjQ8I8JBAYUDAgStXfpw3b9a3325TU+PoH77Lly8XZ2tiYkLJ2cgvadWqVfFyJbnm6CApCf2qmPnmzZvZs+c/exY/erRHzZpNqyKqnG1VhEX7z0X0P3wUhQD5mrdv36ZkfbSYTTbRdHFHe3vVwEBRfn60QPBIIHDq06eGtXW0n59h3fKee6AobGCHghCIjX1IiUzq1jXy979Vl8OvMf3HuGvXLoKuqak5YMAAckr69u2rrk5xhEr6gXfCv4GnRCabN29Zv35T164rZs2aWc6zUapuJ+OdYAt61UlyRAI5uHRcztu3bxl9KMKupalpNH17U1HRa9360f37THm9rl3rduqkoqr68ubNlJcv7ceMUVXi35gcGTuoUR4ClMjkxo01Dx8e37p1w6BBFTu+ozzy2a3zzz//UBqhZcuWURI2nKZJbOGdsPuCSV3anTt3pk2bXa1as7lzA3V1TaTeX7EOPs2dFGLupBgUfl7STMmlS5fokGFmnc7Y2HjY0KG5QUHkmqhpajafODE6J0fwr3dCJpJrUpCX98rHJyspif61mDpVE1lP+Dn0yqN1ePj5c+cWjBgx+MSJEF7EkFIyodmzZyvPAH3RUngnX0TElQpJSUnLlq28cuX2oEHb6tfvInu14J3Inrk0enzy5MnRo0cp7xMJp+hXCg/s7eQUduDAh+fPtYyMWk6frl+rVnRw8Gdd03xJu4ULg/fsSX716tHx445Tp35WAbcgwBECycmvPT3nqaomenuftrev/PEdMjaHdgjLuEeOdwfvhOMD9Em9gwcPLlv2XatW0+fPD1ZRkc9KJCUrJG1EmDvhxytTgpZpaWnu7u4PHjxgntEaPM0hG6qrB2zdmpmQYFC7NoW+ahkaltDyYxHNl7SeMyfyzJn6X31FBdREx0Sms3elKYZyEGAIiET5vr5/3bmzefXq72bMmM78ygIcnhKAd8L1gXv8+PHUqbOzsnSmT/epVq2eHNX9FHciKJSjDui60gTu37/v4eFB5zOQBAq769WrFx0ynBQVddfVNS8z08zevtmECWoaGmXLpxkUu+HDqU7sgwchbm6NBg2iqJSym+ApCMiGwIsXvmfPzu7QoUVYWCDtdpFNp+hFegTgnUiPbVUlUyKTX3757cCBI337rre3H1JVcWy0p3RAmDthA6RMZVCmPop+ff78OdMrHZdDp3UYGRlF+/s/Pn5cVFBQt2PHxsOGVeiLJrUSqqhEnD6dER9vR21VcJ6oTMcUnRUn8DGRycrY2DsHDmzr3Llz8Ue45i8BeCccHTsvLy9KZGJj03/BghANDT2OaEkpT+CdcGQsyqNGQUHBjRs36F2ifV5U38DAgCLvmjdvTtfPvL2feXmRV0FzIeSdlEda8Tq1WrbUrl49eO/ehIiI/OxsdR2d4k9xDQKyIlAYGOh2+fIPc+fO/Pbbrcq8/1ZWwGXXD7wT2bEuZ0/R0dGUyOTp09hRo07VrNmsnK1kU01FoIJsbLJBXfVeaLKEpkxo4oRE0bwIJXQi10RLS4tymYQeOkRLM2paWg6TJpnY2lauL8oeS3GyhQUF5JqQNIM6dXSMjSsnCq1AoBIEYmMf0VKOhYXevXs3LS0tKyEBTbhMAN4Jh0aHvuBu3fr3//63oUuX5bNmzZJZIpPyI8DKTvlZybFmdnb2hQsXKM0ak5yG9gJQ9KvVx1T0uenpQbt3074b7WrVHGl7Ts2aVdGTcUdS3rwJPXiwyNdxcalev35VBKItCJSHQF5e5vXra8LCjm7Z8qezsxSP7yiPMqgjJQLwTqQEtsJi6cRBSmRiaGg/d26Arq5phdvLpEHRyg5yxcoEdaU7eUjJp44fp+05JIEydnfr1q1Pnz7MSevpcXGBO3dSwhJK/Erbc9jKWWJgYVG7XbvXvr4B27dTrpQaTWWRubjSfNCQ7wTCwy9QIpPhwweeOBHKi0QmfAcuL/3hnciL/P/3S5knKJHJpUs3KZGJtTWnd0DQtp18UVEEAz4cJEAvEh3jR5u8GN2sra1HjhxpZmbG3CY+efJg3768rKwazZo1Gz+exXyvTPCKbo0azy9fplwpHCQDlRSDQHLym3Pn5guF8V5e7k3hBCvGoJZuBbyT0tnI5MmhQ4cokYmj41RKZKKq+oX9nDLRqKxOyDtBVGxZgOT0jFZwKImwp6dnDuV4FQi0tbX79evXqVMnsTrRd+8+PnmSNtpYdunSeIhU9n9Zdu5s0aYNpZqNf/QoJjAQCe/F8HFRdQKUyOTOnS2+vptWrVo5c+aMCu0vq3rvkCAXAvBO5IK9qNPw8HBaysnM1J069Xr16vw4nh7eidxel9I7poNyKPqVDs1hqtB3yhEjRugXyzT/9MKFqMuXKRu9/ahRtARTuqSqPiHXhPykJ+fOpcfGZiYmUsJ7LQODqgpFe6Un8PLlnTNnZrdt2wyJTJTqXYB3IofhpoxYv/661tX1YO/evzdvPlIOGlS2y08J2QoL8d2lsgjZbJeXl0dHrl+9epXZSEUnhw0fPtzOzk7cBx2OQ/GqcaGh6traDpMnGzdsKH4kpQt6MdrMmcME3j7Yu5c29UipI4hVBgKZmUmXL6989+72/v3bunSRw/EdygCZszbCO5H10NBmijlzFtav33fhwlDuJDIpJwWKiqWatLijKlQtZxNUkxKByMhIin6l05dIPu2lat++PZ3CqlEs2WtOWhp5CSmvX1NikpYzZujJ6hQPDT29NnPnPjpxgtZ6SDdSg63wWymRhFhuEggKcrt06fs5c2YsXx6MRCbcHCOpagXvRKp4/yOcZuDnzl30+PHrESOO16rl8J9nPLmhv4KkaZF3IoB3Ircxy8jIoBCTe/fuMRpYWFjQhuE6deoUVygtJiZo166sDx+M6tWjE/vIYyj+VNrXKmpqTceMoV6SX768v327Td++Vt26SbtTyFcYAnFxjymRSe3a+nfv+tSrV09h7IIhFSIA76RCuCpZmVJ2UiKTtWvXd+26/OMZ2UUzEHz8fFrZwVE78hu8oKAgOsmPHBRSgWZKen78fLbQRvlbH+zfTylczR0cmo0bR76CvPTNTkkpFIno4MBMSng/fDgS3strIPjS78dEJr+FhR3ZuPF/tEzJF7WhpzQIyO3XljSM4aZM+o7r4jLLwMCOEpno6X3a3slNVb+oFeOdFEU5YOrki7DYrpCQkEDRr8+ePWME29raUvRr9erVP+uHtufQqgr5BFZOTo0GDvzsqYxvzZs3p0OPg/bsoWSyVj16IJmsjPnzq7vHj8+fP79w6ND+x4+H6Ml2to9foJREW3gnUhxoyj+xfPn3Xl43Bg7camPTXYo9yUr0J+8ECdlkBZzph9xBHx8filhijsuhX9wDBw5s06bNZ1rQfhmapXjp40Pbc5qMGVNbosJn9WVzS0tL7RcvpjUmck3oSGRyVnRwfqxs0POnl5SU6AsXFhUUvL148RSl4+GP4tBUigTgnUgL7uHDh7/5ZqWjowsvEpmUk4I4Krac9VGt6gRevXpFUyYxMTGMKEdHx2HDhulInLqXn5sb6uYW//AhnXrjMGWKsY1N1btmSwJlzad/tMc4eM8eWtwh9apbW7MlHHJ4TeBjIpOtvr4bf/xxxaxZMz9bo+S1aVC+igTgnVQRYAnNIyIipk37Oj1d08XlmrGxQh078v8rOyXYjSKWCVBqtYsXL968eZM5LsfU1JRyv9qU5HZQeAdtz0mNjqZpCdqeo2vKxZMQaOtQrVatXt26FbBjB8XM1nR0ZJkXxPGNwKtXfpTIpE0b+9DQAHq9+aY+9JUuAXgnbPKlRCZr1vy+d69br15rHRxGsSmaG7IQFSuzcaCE9LRhOCUlhXqkU3K6du3at29fOjdHUoG0d+8Cd+3KTk6uVr9+CxcXDV1dyTpcKKGvxY2HDtU1M6N0bdo4zZgLQyI/HbKyPly6tDI6+qar6zZ6t+WnCHrmLoESftlxV1lua+bl5TV79vz69fssWBCiqanPbWUrqd2nuZNCUSXbo1k5CJBHcurUqbCwMKYu7aikDcPm5uYlNqW08bSgk5+TU7NlS5qQoIiTEqtxp7Bup060k4h2ONNMD4XINBk5ksUTf7hjJjQpg0Bw8KFLl76bNWvqihXBxTP0lNEEj5SQALwTFgadEpnMn78kLOzF8OHHLCxasCCRqyLgnUh1ZGgFh3Z4nTlzJjs7mzrS0tKi44XL+GZJxwJHuLtTzGz9nj0b9u8vVd1YFM4kXwn38Pjw/HlGXFzRaclIeM8iXw6Lio8Pp6UcCwvdO3euW1lZcVhTqCZ/AkXJtfCpNAFKZPLXX1tatmyvqtp59mw/frkmUUlRCZkJFbIdUbEVwlWhyhT3+tdff1EALOOaUEL65cuXl+aakB/z+NQpOtiP0sTSgcM8ck3ETFpMmULbeVLevPH/+28msEb8CBeKRyAvL+vy5R/c3PqvXj3n0qXzcE0Ub4hZtwhzJ5VH6u/vP3XqLD0927lz7+vp1ai8IDm19IjwaF2rddd6FVj0ZXLFFiIbG6tDRvuE6awcOjGHnF0SbGRkNHTo0DIOiKd1nJD9+9+Hh1OIiYOLS/X6vIy8ZhLePzx6lBZ6KCQlLztbXUuLVa4QxhUC4eEXKJGJs3PfY8dCkciEK6PCeT3gnVRmiJKTkymRycWL1wYM2NqggVNlRMivDeWh3xO0p0XNFtpq2vSd9cLTCyoClT4N+pRHI6zslIdSheo8ffr0xIkT79+/p1b0R7pdu3aDBw/W1NQsTUhWcjKlqKdIWAovbTl9Oq9zh1CUDKWyJUtps/G9zZvrde9u1V0R0gKVNnZKWJ6S8pYSmeTlvT537riDAy+P71DCUeOIyfBOKjwQR44cWbp0RYsWU+bPf6CqqlHh9vJukJmXqa+hf+X5lbj0uJfJL831zJvVKG/6o0/eCeWKxafKBDIzM8+dO+fn58dIqlmzJkW/WlpaliGY1kFo53BOamp1GxtaGaHUJmVU5tGj9NhYmjuJPHs2Iz6+yYgRSHjPo7ErTdXCwoI7d/6+ffvP77//9uuvZyORSWmgUF4aAXgnpZEpoZxOhZ0+/euUFHUXl6vGxnxNJ6WnoTe66eirz6/ejb6blZ81xn5MLYNaJVhbUtEn7wS5YkuCU6GyBw8e0Mac9PR0akXnrzo5OfXq1YtZOCtNTlxYWOjBgwW5ubVat7YfNYr723NKM0Sy3KxJkzZz5lCutnf379dp396wbl3JOijhEYHXrym4e1arVnYhIffNzPh9fAePsCuYqvBOyjWgFKhIiUx2797fuzclMhldrjYyqRSbFvs/3/91rNtxuN3/n5j1NvXt+jvrv7L+Kjk7OeBdwA9dfqBUnWJ1DoQcCI0NLRQWzm099/67+7uDdq/ovEJdVZ1mU84/OV9cFHkw556cIzn9GvRjmiMqVoyx0heJiYknT56klH2MhAYNGlCONZMvJXd/efPmkzP/1955wOd0tn8c2SILiZBExEqIyLBj7y1Wa4tRm9LSQbXat9pSfVtFa9feW6zYW4RIgiDEDEEiCRmy4/+L4/+8T7PHs855fj75+JznnHt+7yOu576v63ftw0lcjc6da3Up1DFcsUeolorm9vZNP/vszZMnME0SXr6E7SXqQyu1MNSETt8LmXzz9OmZVauWtOU5nSYsiWjHQOuk4KXz9fWFkImDQ6dp0yBkYlpwBRWWsDaxtje3D3oR1LdOX2FjA53DIsHfjW0av056feXZlYDnAR2qdxAGlZyWfPPlTZdKLp52ng4WDlVMqjSxaQLTBE/bO7S/HXX7YvhFd2v3GuVrPI17ejjscDXzal1q/u//QqELRlgIMIv6N0J/z58/j0RnqampqGtsbNy9e/dmzZrl3w7y+SE8J/zixTJ6evUhseou2ZB1QfA+7e3bgBUrMlJSKHif/4uhgU8DAzdDY23cuFGzZlHIRAPXR2RDonWS34JFRERAyCQ4+H7fvltsbTVUeBtWyI6QHTAsnK2cMRmYDjBHYF5UxHfPshUrlK0AY0VmnQS/DE7LTEOVWhVqobCBrgGMGwEBDoaHuAxZcHHBtpBt05pO2xC8Qb+M/nDX4TKjB8U+nOxQjU1AVpS/w8PDES0MaRyhEjwEkSAeBkr+bcAbI3jt2lehoYhwgS4INhjyLy+Bp7pGRlb16j0+e/bq0qXOAwbYNGokgUlJfgqRkXf2759obW1w4cLJ6uIMIpP8GolugtQ7yX3JENu5ePESD4+mZco0nzjRT2NNE4zeo7KHXhk9Yb8EH0OjQ+NT4htX+ZDAFoYIvF+xESLME1spZoZmThWdcp12+bLlsQcTlRj124XfIhMjB9YbKH8khCq0TnLllv9N7JT4+PgsXLhQME0qVKgwfvx4b2/vAk0T5PVFJAtMk3KVKuHUQxtME5CElVynT5+6/bNOKikjm/+rpQlP09OTjx+fs2FDt2+/HXf8+GGaJpqwKNIYA/dOclnHK1euQMikbNnakyb5m5jkriCeSzXl34K/CERKZP3YmNh80uATQ11DBN1cf3k9JT0FeyGwP/C3W+UPwXtQNDkSdiQgIsDW1DY2KfbB6wftHNrl4z/fyKZR4ItA7MS4WrvWt84ey0PrRAa/kBfwpMaWSWxsLMrD6bVly5Y4zYEbbIHV4YGRFZ4TH1+hdm2E5+hqmRZI1ebNLevWxVkPIqgfHD3q2Lu3rr744uMKXGWxF7hz58iBA596eXXZsiXYxESa6TvEvkbiHT+tk3+tHVKcQMjk4MHjPXtCyKT9v55pwAc4iJjKOb4Y6384F2hs2xinOcEvgmFS3Iy86Wbtpv//oc7Y/KhVvhYMjl6OvVAG5z7YTclnKnHJceFvwlEg9FUorJlseyf0is0HXbZH8fHxu3fvRmyOcL9q1aoIGK5SpVDhUS+Cg69v2pSZlmbbtKnWRtjCNAE6SPUjWAmh1DjYMjQzywaZH9VFAEImhw9/npr6yMdnm7t0faHUhZf9ggCtk/+9Blu3boWQiZub99SpEDLJUw7rfxVUflXHsg5+cnYL+8PC0CLoZRA2RVIzUpvYNpEvg49wInkQ+wCnP/BytTLOL8Bva8hWhBnDAQXeJ5tubJrUaJL8Rgu1YuXB5nON7bc9e/YgZzXKQFoN0cKIX5AnmU/dh6dO3fXxQYFa3brV6Ngxn5La8AiuJ6mJicjIg0OuFjNn8qxH7YsOIZNLl/4+e3bBeyGTLfmHwat9tByAeAnQOslau7t370LI5PVrnREjjlWsWFN0y4n/9rB9ggBgHO7AE7a6xb+kzV2sXIz0jI7ePwoHlI+dP85nduefnMeZTqcanRraNIxNjoWM7MmHJ9tX/98eEk928qEnPIqMjMRRzoMHD4SPzs7O8H6FOH2BFVEA4Tkh27c/vXxZR1/fZcgQ6/rZT9YK04jEykCtv9HEiRC8N7Wzg2mSmZ5eRpe/tdS2yE+e+EPIxMPDCUImlSqJL32H2sCx46IT0PZ/5xAy+fnn+StXru3U6Wd390FFB6gpNeAGC/sDGyRda3bNNiacByFIGKHCOO7BRbanso9wg/UJ9alcrjKsE9yEUQJfFgQVO1Z0hM+KUOyDdUKtWBk1uQt4Up86dQrx58ibg9s4hocmfYMGDeSK5HeZlpQUtGZN9L17BiYmOMWgIpkMlkzwHoiwg2LTuLFDO5Glj5DNRbwXycmvjx2b/fjxyZUrl0A8ULwT4cjFQkCrY3aOHj3q7Ox2/nwUhExEbZrgbUO4TT3LeuaG5thEyfnyNbVtikfweDXUM8z5VLgD0wSOLIPrD9Ypo4M7MEQgIws3FwiyITWPUEawTpgFMCdDbJYsWLAAWiYwTbK2sho3njVrVuFNEySa8Vu4EKZJucqVEZ5D0yQnYdyJe/r0bUxMqI/PjS1bMt9nTMy1GG8qnEBQ0JY//3Rr0cLy1q0gmiYKx8sGcyWgpXsnyFYPIZOgoHt9+myytS3st9tcCWrOzVEeo/IajJ2Z3Zw2c/J6Ktwf7TE6WwEo3H/X+jv5m/SKlachXGP7DUbJhQsXBJE6bHdD+7VIcZWxDx8G/vNPakJCRScntxEjdPNOAZizd626U6FWrSaTJyOU6Zm/v7WrK4J6tGr6aplsVBTSH020stI7f/5EjRo11DIGdqqdBLTOOoFe599/L507d36rVl9MnLixdGmt3j0q6ktPv5NsxG7cuAFZ+ri4ONzX1dVt06ZNly5ddHSyNp8K+ed5YOCNzZvhToEY2jp9+zIBXv7csKvU7PPPI2/ehGkCew5nPcaWlvlX4dPiEYCQyZkz8wID1/322y8DB2pQ+o7iTYe1REdAu6yTq1evjho13siohqYJmYjlvaF1Ilup169fwy4JCQkR7mCzBAHDRU149uDEibsHDiDqwbFnT/pSyNjmf2Fobl61RQvYc9hESYyKwm4T9lTyr8KnRSUQGuoLIZMePTpt2hRsaqpZ6TuKOheWFykBbbFOIGQyc+a3Pj5He/ZcXLu2tkdpFvtlFWJiZW4oxW5H1BVxgoNznAMHDqSkpGAiRkZG3bp1a9GiRZEmBbcJxKFEXL2K8Jz6w4ZVqlevSNVZuLSOjlm1aq8fPw5YvhzCshCGIROFEIiLizh8eHpS0v19+7Z4eGho+g6FzJSNaDgBrbBOEOE5ffrXbm7D4f2qmUImGv6WyIZHr1ikXsLr9OTJE4GJi4vLRx99VFSVTCS6g6NJzP37kBdDeI6p7YeQKBlnXhRIAIZynd69y1lZ3d69G4IoBZZngQIJvBcyWXr27K/ffPPlpEmbKGRSIDEWUCoBiVsn9+7dGzt2UnT0uxEjjlasyO3fkr5LZUpluelo595JWlrasWPHTpw4AdclQLCwsICQSd2iO2a+ffUKOXhxJGFqY+MxZgz1T0vyUtp5epo7OJhUrpyekhJ25EjNrl0peF88nuHhVyBk4uZWOyjI39pag9J3FG86rCUBApK1TrDr/l7IZE3Hjj95eQ2WwFJpwhSEr1NaaJ0gXc6OHTuio6OxCoDg6enZs2dP/aJnfsF+CURN8F0fTp1u3t441tGEZRX1GGCaYPwILAm/eBEh2Q1o8BVxOZOT37wXMjm+fPmS9u3bF7E2i5OAsghI0zo5fvz4+PFT7OzafvppkKEhc3Mo7O3RQq/YxMTE/fv3+/v7CxBtbGzg/WpnZ1cMpvAyublt24fwnH79BCeeYrTDKjkJQPU/4cULCN77/fGH5xdfQGE2ZxneyUkgKGirr+/MMWO8Dx0KQsqFnAV4hwTURUBq1smLFy8gZHLtWqiX1wY7u4bqwirVfj/onWiNVmxAQADS5cBAwYJip6Rjx46Qoireefz9o0fvHT6MgGGEDdu3bCnVN0Rd8xIE70O2bdM1MsI1PJdp/OW/FlFRdyFkUrGizrlzx2rWrJl/YT4lAdUTkI51Am+ApUuX/fjjvJYtZ0yatL506SJoTqieu0h71B6v2FevXm3fvh1+S8JKOTo6wvu1QoUKxVg4hOdA0eT5tWs6Bgauw4dbFd1VpRidamEVCN67DB4MuwTAry5bVtHRsXqHDlrIocApvxcymR8YuHbBgp8HDRJx+o4CZ8oCoiYgEesE33FHj55gYFBt4sTLpqZZ59D8owwC2nCyAzP39OnTR44cgRssGJYrVw4uJlCmLx5PuJhcW7369cOHUOmAD6xplSrFa4e1CkkAWyZxz569efIkJiwsITKy3oABsFoKWVcbioWGHoWQSffuHShkog3LLeo5it46gUwnhEz27/ft0WORo2NW+jr+UR4ByVsnjx8/RsAwEh0IDJEop2/fvmXLli0e0sTIyICVKxGkY2Znh8hhA6paFY9jEWtBT7bxe8H7iCtXLBwc7Jo1K2ID0iweF/f8vZDJvb17NxU+A5Q0WXBWYiAgbusEe++ff/5V/fpDp04N0tXNM7+dGBZCHGOUcJ4dBHkdPnz43LlzQsCwpaUljnJqlUCEFPEjgWvWpCclVYIoytChjHRV5SsOcxDJFJ9evAjTJCMtLeXNm7IVK6pyABrVFw67/PyWnjkzf9asLyZP3lg8xymNmhEHow0ExGqdhIWFQcgkKirD29vX0rK2NiyVJsxR+L0mvYjiW7duIWAY4vSAjCw5rVu37grlDN3i/+t4evkyWoQDhH2rVk69e9NDU/Vvr5G5OQJ50O+NTZte3b3rDsH72tr4iyI8/CqETFxda1LIRPUvIXssCYHi//4tSa8lqYvvuL/88uvy5as7dfqpV68hJWmKdYtKQHpesUhxsGvXLiTzE1BUq1YNGYYrv5fQKCocWfl7hw7dP3YM4TnOH30EuTDZfV6ongCcZA0tLLCDBQW8Ov36adUpz3shk28fPTq6bNlihJupHj57JIGSEBCZdQKlznHjJtvZtcFRjqGheUlmzrrFICAlrVj8v+Xn5wctk+TkZKAwNDTEfknLli1Lss+BQwSE57wICtI1NER2OoSNFAMyqyiQAFbTycvLGIL3u3YhKY/2WCdBQdt8fb/+5JPhhw4FU8hEgW8Um1IZAdFYJy9fvoSQSUDA7V691sHpTWWA2JE8Acmc7EAXB96vjx49Embn7Ixtjo/MzEok3JeakICsufgvEF/WG44dW45y4PKvjlqvYZQgbwDyGcEkxbaWQ5s2ElbpffXq3v79k8qXf3f27NGSOE6pdcXYOQmUEoF1Ai/FZcuW/+c/v7Ro8fmkSesoZKLG11YCXrHp6enYgUPGnIyMDJCERdKvXz/4rZaQavyLF9dWrkyKiUHACMTU9cuVK2GDrK5YAlgXNBjm64t0PC+DgxHdDccUxXah9tYyMlJOn55/7dqaBQt+GjyY6TvUviAcQIkIaLp1EhgYOHr0eD29qhMn+pmaUiuiRItd8sofIopFqxULZ2rEeUVFRQEF9vybNm3q5eVV8n3vV6GhQWvXpicnW7u6ugwZoqOnV3LUbEEZBKDSi1iq2Pv3IXjfZOrUsuXLK6MXtbR59+7xAwemdO3abuPGoBLuAqpl/OyUBLIR0FzrJD4+HkIm+/Yd7t79TyenLtnGzY9qISBer9i3b98eOHDg0qVLAjf4vSJdjr29fckxhl+6BJ8GhOc4tG3r2KtXyRtkC8ojoFe2bKMJE0K2b09LTDSysFBeR6psOT7+BYRMEhJCd+/e0LAh03eokj37UiIBDbVOEN4JIRMXl8FTpwZTyESJ61/EpkWqxhYUFITAnISEBEwXccIdOnRACEPJVR/gxHDv4MEHJ05AjRSapLZNmxYRJ4urgUCW4P2gQbAmsXl2ffNmY0vLGqKNZ3kvZLLszJl5M2fOmDx5PYLh1QCUXZKAcghonHVy//59ROW8eJEyfPhhS0uGPChn2Yvbquisk5iYGFi6d+7cEWaMbGfYMqmoCGEuhOdc37Dh5Y0bSDvnPnJkhRLothV3NViv+ARgo0DJFw4oGampuKg3cCDuFL85ddR8+jRg374JLi4OgYGXSxgDr47hs08SKICABlknqamp8+b9unTpqo4df+zRY1gBA+djdRAQkVcsnKkh/Hro0CG8V0BlbGzco0cPOJooBFtyXFzgqlVvwsPLVqjQYOxYBKwqpFk2okoCWLUmU6YErFoVcfVqWUvLmp1EkwcjJSXu2LFvHz70Xbp0USfxDFuVi8u+JEBAU6yTU6dOQfvVxqYVhUw0+a0SS0RxeHg4AoafPXsmwHR3d0e6HOTzUwjbuIgIhOckv35tXq0asufoGxsrpFk2onoCiDFu9tln9319q7drh3M6rKnmO6MEB28/cuSr0aOHHTgAzSem71D9W8MeVURA/dZJZGQkhEyuXAnx8lpTtWoTFc2b3RSLgOZ7xWKnxNfXF0mGhXQ55cuXh5CJk5NTsaabS6Wo27eD1q3LSEmp7O7uMnhwmRKo3efSOm+pnIChmZnzxx+j21Afn6eXLrl6e2usht6rV2E+PpPMzDLOnPGtrZWq/Cp/O9ihOgmo0zrB/x/Ll6/44Yefmzf/bPLktRQyUeeLULi+P2jFampEMdLl7Ny5MzY2FrPBNg+EX7t3766nuPje8IsXb+3a9S4zs3qHDrW7dy8cM5YSDYG0pCTsitXp21fT8g9AyOTMmV8DAlb/+utPQ4YwfYdo3igOtCQE1GadIIxi1Kjxurq2EyZcMjOzKckcWFdlBD6c7JTKVFmPhewI8ef79u0LCAgQytvZ2cH71cZGYe8Vtv3v7N37+OxZbJbAg9KmUaNCDozFxELAsWdPeKIgd+OL4GDbZs0Q0aMhI79374SPz+QuXdqGhASZS05BTkMgcxgaSEAN1gn+I/nmm+927z7YoweETLpqIBQOKS8CmukV6+/vv3fv3qSkJAwb0mqdO3du06aNAv93QVhH8Pr1kSEhcDFxGzmyfI0aefHhfVETsG3SBO6xplWq4OXBPlnlBg10DQzUOKOEhJeHDk2Pj7+9c+e6xo2ZvkONS8Gu1UBA1dYJZCemTfvCxWUQhEz09IzUMGN2WQICHyKKNeZkB05L0H5FFLowp7p16/bv399CoSpbyW/eYLc/7tkzCGNA/hx/l4Afq2o6gfLVq2OIT/38QnbseHLhArye1eIn+17IZPmZM798/fX0KVPWUchE098bjk8JBFRnnTx48ABCJs+fJw0bdsjKSmFeikpgwibzJKA5XrHIknPy5MmjR48ibw6Ga2JiAk36Bg0a5Dn0Yj2Ig6bEqlUpb95gv8R91CgojRarGVYSGYFK9etHBATEhIVB8L7hxIkmqk3o+OxZ4L59452d7a9d86tShek7RPbycLiKIqAK6wRhFPPnL/j775UdOvyne/fhiho621E9AQ1RY3v48CEChpG2GgSwCd+oUaPevXsbGSl4Kw5HOdBbS09JqdKwoRjVulT/ekimR0Hw/ub27TBPjVSYiyclJf748W/v3z/8999/dunC9B2SeaE4keIQULp1gthOCJlUqdLi008DjYwkktiiOKQlUUft1klycjLS5Vy8eBFuqiBqZWUF79fq73fjFQv48blzoXv3IqysZufONfn/hGLhiqG10mXKuAwcCNtUV1///tGjGHINJeueBQfv8PX9asSIIT4+wRQyEcM7wjEql4ASrRP4BEydOsPf/0avXqvt7RWj0alcGGy9IAKCV+y7UlmWger/3LhxAwHDcXFx6Brpctq2bQsHWIUfycPuQVY/+BwgPMd1yJDKHh6qnyl71BAC8IqFLvDDkydhpiRERiJBjzIE76Oj7yMqx8Qk5dSpw46OTN+hIYvPYaiZgFKsE/x+X7Fi5fff/+TpOXXy5DUUMlHzIiuueyGiOCMzQ3FNFqql169fwy4JCQkRSmOzBFsm2DgpVOWiFMJ/QkFr1766c0e/XDk4mlg4OBSlNstKkIChqWnjyZOvrV79PCAAQVt1+vRR4CQzMlLfC5msmj9/7tChQxXYMpsiAbETULx1EhwcPHr0+DJlqowff8HMzFbsgDh+eQKq94qFpXvhwgWc5qSkpGAkcC6BwFrz5s3lR6WoawiZX12xIuH5c+heIHsOcugoqmW2I2oCguA9hPiEw53UhAQYryWfUVjYqf37J3Xu3JpCJiWHyRakR0CR1gky1EPIZNcun27dFtatSyVN6b0tpT7onagqojgiIgLer0+ePBFQ1q9fv1+/fqampsogi5R+1xCeExdXvmbNrPAcRfvYKmPMbFNlBAxMTZGJGt2FX7oUun+/24gRJRG8T0iIPHx4+ps3CFte06QJ03eobBnZkZgIKMw62b17N4RMnJ0HTJ16nUImYnoFijJWnTJZWeYzla8Vm5aWhmhh5IZE5DB6hIQJ7BJnZ+eiDLYIZV/euHF940aortk0blxvwAB4RBahMotqE4Hk2Nj05OSAFSuc+vSxb9GiqFOHkMnlyysgZPLll599+ulahXtNFXU8LE8CGktAAdYJwjshZPLsWeLQoQesrOpo7FQ5sJIT+OAV+z5epuSt5dVCaGgovExevXqFAvB0wTlOjx499PX18ypfwvsPT5++u38/GqnZtWtNJcdllHCorK52ArW6dTOqWPHW9u3h58/bNW1apDSQERFBEDJxcrK9evWiAtMsqJ0JB0ACyiBQIusEX3B//fW3xYuXQcikWzdvZYyPbWoUAcHvRHlesYmJifv374cyvTBr/AaH9yuS5igJAvL5IW0g9urL6OnVHzzY2s1NSR2xWSkRsG3cGD5JhhYWME1eXL+OI54CBe/fC5l8FxZ2EEImXbt2lRINzoUElESg+NbJmTNnIGRibe0JIZOyZcsraXxsVqMIKNUr9urVq0iXAwMFU8ZOSceOHdu1aydECSkDQlpyctCaNdF37xqYmLiPHm1ub6+MXtimJAkIuZYQ23V93TrjSpWQ4iAfwfvr13ceOfKlt/fg/fuDFa4ZKEm8nBQJgEBpQdWqSCyioqJmzPhi/fp1NjZ1HByYrLVI8MRdOD0j3e+pX1m9sh5VFKkCAo21sLAwhA0LdOBlUqNGDaUKUsE0ibp1K+3tW6iCWjk7F/jdV9zLVvTR41jtzp07qOfu7m5sbFz0BrSiRmZGxqvbt5Nev9bR17esW9cgt0CemJhH5uZlVq9e6uTE9B1a8VZwkooiUBzr5PLlyzExMYoaAdsREYGktKR+2/vZmtqu6LlCIcOG0+uePXs2btyIdAdo0MzMbPTo0R06dFBI43k1EnXnzpkffkD2HGt395bffKPP7Dk5SGFndP78+bi9ZMkSZUjx5uhQrDdgoPj/9dfzq1e7LFyYq+Y9bLtWrVqJdXocNwmoj0BxTnYYAqe+9VJzz4mpiaUCSxlaGCrk7NzPz2/s2LFQgBVmBTWqhQsXVlCyysjNbdsCZs2qmpyM3fjuf/9dJK9GNdNXYfeyfSy4JLvRHSdf8t179Eh4+bJcpUoI+0LiwDbff59vcT4kARIoFIHiWCeFapiFpEhAiChOz8xKC1ySP/Hx8bNnz8b3ciSyQTs4x1m+fHn79u1L0mZh6p6fN+/ErFko2f6XX1p8/XVhqrAMCRRIAKZJSnz84alTk2NiXoWG9l6zRtfQsMBaLEACJJAPAeo65AOHj7IT0CmdpXeS8a5ESvY+Pj516tRZtGgRTBOky/nyyy+xfaJs0yQjLW3viBEnZs7UNTL6eOdOmibZl5afS0YAvtXeJ06Y2NqGbN26b9SokjXG2iRAAqW4d8KXoAgEhL2TYkcUQ/t18uTJcDQRusQR4cqVK11cXIowgmIVTYqN3da37+PTp42trQft32/TiK7cxeLISvkSQET6GH//PcOHt/7uOxSE7jAUZvOtwYckQAJ5EuDeSZ5o+CAngQ96J0XfO0FoGM5usGUimCYmJiZwMbl48aIKTBO4Aqxq2hSmiZWLy5jLl2ma5FxW3lEUAZPKlYcfO1bRyen+0aMLq1W7d/iwolpmOySgbQRonWjbipd0vrqldYu6d4LcwnCuHD9+fFxcHLqH8OutW7emTp2qPC0T2SSfnD8P0yTm7t0aXbqMunDBrGpV2SNekIDyCDzz94fm/ZaePS8vWqS8XtgyCUiYAK0TCS+uUqaGw53C+51AyGTOnDnQzLh06RJGU6VKlV3IEunjY2uriuTV1zdtWt+hQ1J0dMOJEwcfOADPAKUQYaMkkINAq9mzvdauLa2jc/ann95GR+d4zhskQAIFEKDfSQGA+DgbATjGFjJmBzn8xo0bd+/ePbRQunTpMWPG/Prrr1A0ydagkj6e+fHH0999h3x+HX/7zXP6dCX1wmZJIC8Cbt7eFg4OEGqD7P2jM2fglWKoqpc/ryHxPgmIiACtExEtlkYMNWvvJLOAmB2I9SESZ/Xq1cKIkVt4xYoVnp6eqplAekrK/tGjb2zapGds3G/zZsdevVTTL3shgWwE7N/rsD0PDNzUrZt5tWrYwIO9kq0MP5IACeRKgCc7uWLhzTwJYO8k/5OdrVu3wvtVME0MDAy+//77wMBAlZkm2EXHaQ5Mk3JVqow8d46mSZ4LyQeqIgCLxK5Zs1e3bq1q0gQpJ1XVLfshAXEToHUi7vVT/eh1y+TpFfvo0aMuXboMGjQoMjISA2vTps3169fhd6Knp6eacUIIK+s/gPPnK72P7azs7q6aftkLCeRDwNDcfOiRIx5jx6YlJSGvUz4l+YgESEBGgNaJDAUvCkUgV69YpMv5/fffcYLj6+uLVpDGD0Im8DupXbt2oRpVRKFHp0+vbtYs9v79Wj16jDp3ztTGRhGtsg0SUAABJEzouXz5hOBga1fXx2fPnpozpxjpVxUwDjZBAuIhQL8T8ayVZowUJzvvSr3LfJcpaJ9gUAEBAfB4xfGNMMABAwZAB9bKykqV4w1au9Zn7NjMtLRGkyd3/fNPOMOqsnf2RQKFIWBRvTo0i/d4e7959Ag5oPusW0fB+8JwYxntJMBf4tq57sWftbxcbGJi4owZMyD5Kpgm1apVO3z4MPxOVGma4DvoyW+/3Tdy5LvMzK5LlnRbvJimSfFXlzWVTEBHT2/g3r2mdna3tm/f2qePkntj8yQgYgLcOxHx4qll6LJUO8cOHZs4ceLjx48xDB0dnU8//XTu3LllVXusnp6cjG+i+EWvb2LSf9u2Wl27qoUJOyWBwhPA4Q4E77f379/8yy9RCyFmugYGha/OkiSgJQRonWjJQitsmvCKLZVQynuo9/Zt24VGPTw84GWCvxXWR+EaSoyM3OLl9czPD99EEatZqX79wtVjKRJQM4Fy1tajzp/HICJv3tzQuXPPFStqd++u5jGxexLQMAI82dGwBdHs4eAYJdE/sdSSUoJpYmxsvGDBAn9/f9WbJlG3b0OiHqZJ5QYNPrl8maaJZr84HF3uBO4fO5YQEbG1Vy+/hQtzL8G7JKCtBGidaOvKF33eoaGhCBJ+vul5qeSsyl27dkUCHfid4Fin6I2VqMaD48cRnvP64UPH3r1Hnj2L1Gslao6VSUBNBJp99lnv9etL6+qemDUr9uFDNY2C3ZKAJhLgyY4mroqmjSk1NXX+/Pk//fRTSkpK1tiMSy1bvGzcyHFqMxnvTgAAIMpJREFUGee1VasOTJjwLj296eefd1qwgD6walkFdqooAq7DhkGuLTEqCn+/vHHDzM4O+iiKapztkIB4CdA6Ee/aqWjk58+fHzt27O3bt9Ef0uWUb1Y+umW010deKuperhucK52YOfPC/Pn4rtlj+fIGY8fKPeQlCYiVQNUWLTD0N+HhGzp1gmky5OBBxB6LdTIcNwkoiABPdhQEUorNvHnzZsKECa1atRJME0dHRwisOXg7lDIqVWCqHYXzgM4mwhxgmuibmg45dIimicIJs0H1EjAwNa3k4hJ9587KJk2evPeZVe942DsJqJcArRP18tfc3nft2oV0OcuWLcOOhb6+/uzZs4ODg1u3bv1B7+RdAYkAFTuxhBcv1rZufWf3bjN7+9EXL9bo2FGx7bM1ElA7AWQwzjK7x49Pjo1NiY9X+3g4ABJQLwFaJ+rlr4m9h4eH9+rVq3///s+fP8f4mjdvDrG1H3/8ESn98PGD3klBaYoVODEcxuPbZMSVKzZNmiA8x8rZWYGNsykS0BwCELzvsXTp2IAAKPdE37t35scf8d1Ac4bHkZCAKgnQOlElbU3vKzMzc/HixXXr1vXx8cFYzczM/v7773PnzuGObOjC3kl6ZrrsjlIvwo4c+ad587gnT+r07+996lS5SpWU2h0bJwG1E4BcG8awc+DA0999t+Pjj3GmqfYhcQAkoHoCtE5Uz1xDe8TBTdOmTSH5mpCQgCH27dsX7ibwO4EnrPyIZVqx8jeVdH1l6dLNPXqkxsc3/+qrj7Zv1zMyUlJHbJYENI1A77VrTatWvb1z54aOHbmDommrw/GogACtExVA1vQukpKSZs6c2bBhwytXrmCstra2+/btg99J5dx0ROTz7ChvYkia4zt9+qGJExEw3Gv16g7z5mUzkpTXNVsmAU0gAA9ZCN7jNNNjzBi8/JkZKvX00gQCHIOWE2BEsZa/AKWOHTs2fvz4Bw8eAESZMmWQOufnn382MTHJi0uWkn2pUhnK9IpNTUzcNXjw3f37DczNB+za5dCuXV6D4X0SkDABnGOOunChjI4OvMLXtWvXYf58x549JTxfTo0E5Alw70SehnZdv3r1avjw4Z06dRJMk/r161+6dAl+J/mYJgCkbK/Y+IiINa1awTQxr179k0uXaJpo10vJ2f6bAEwT3Lh74MCr27e39e596fff//2cn0hAsgRonUh2afOf2Pr1652cnDZs2IBiRkZG2C8JCAho3Lhx/rXwVKlesS+CglY2bvzi2jVbT88xly9XdHIqcDwsQAKSJ+DxySd9Nm4so6d3dMaM59euSX6+nCAJgABPdrTuNQgLC8NRzokTJ4SZd+jQAaImNWrUKCQI5XnF4gvizkGD0hIS6g0a5LVmDdPKF3JFWEwbCNQfMgRS9zBNKnt4QFXWwMSEgvfasO7aPEfunWjR6qenp8+bN8/FxUUwTSpWrLh27Vr4nRTeNAEsJXnFXl68eKuXF0yTlrNn9920iaaJFr2XnGrhCNh5ejaePBlCbZu6dUOC7piwsMLVYykSECUBWieiXLZiDPry5cseHh6IzUlOzkoxPGzYMAQMe3t7F7UphXvFIhjh0JQpRz79FNlzkK+13Y8/MjynqIvC8lpE4N07Uxub6NBQGCiPz57VoolzqlpGgNaJ9Bc8Pj4eKiaenp43btzAbLFTgv0S+J1g76QYk1esVyy+CG7p1evKkiWG5csPP3YM+VqLMSRWIQHtIYB0PIMPHmw4cWJSdHRkSIj2TJwz1TYCtE4kvuJQLoHSKyJxoAOrq6v71VdfwUaBr0mxp61Ar1gcn//TokXYoUPla9X6xM/PvlWrYo+KFUlAewggkKf7X3+NOHOm0YQJb6OjL/z6K+XatGf1tWem9IqV7FpHRERgywSiasIMEY+zcuVKhA2XcMKK8oqNCAjY0rNnwvPnVVu1Grhnj1H58iUcGKuTgFYREKz5vd7e9w4efHr5ct8NG/TKltUqApystAlw70SC64svUgjDQYZhwTSBfsmff/4JLZOSmyaApRCv2Dt790LUBKZJ/WHDcKBD00SCbyGnpBICkFFG4m6k717TunV6SopK+mQnJKAKArROVEFZlX2EhIS0aNEC+XHi4uLQL7IN37p1C5so0IFVyDBK7hULRant/fqlJyW1+eGHPuvX6+jrK2RgbIQEtJCAVb16WYL3TZvW7NKFkW5a+AJIeMo82ZHO4qakpMydO3f+/PlpaWmYFbLkLFq0qH///oqdYUm8YjPT0w9NnhywfLmOgQEUTVwGDVLs2NgaCWghAWMrqxGnT8PKT3v7dmPXrs0+/9zJy0sLOXDKEiNA60QiC3r69Olx48bdvXsX80FE7tixY2GmmJmZKXx6H052ip5nJyUubvtHHz04etSoYsVB+/ZBvEHhY2ODJKCdBIRdk7sHDz45ezb8/Hlk5PGcMUM7UXDWkiGgmN1+yeAQ40RiYmJGjx7dtm1bwTRBhM65c+fgd6IM0wR8hL2T9Mz0IrF6/fjxak9PmCYVnJwgUU/TpEj0WJgECkPA+aOP+m7eXEZf/9gXX4QdOVKYKixDAhpLgHsnGrs0hRrYli1bpk2bFhkZidIGBgazZs36+uuv9ZXpyVEMr9hn/v4QNUl8+bJau3bIOUwF7kItLQuRQNEJ4LTUvFq1O3v2wA0l+c2bd5mZRhYWRW+GNUhA/QRonah/DYo3gkePHsH19cj/f0Nq3br18uXLHR0di9da4WsVNaL41s6de4YPhw+s26hRPZYt09HTK3xfLEkCJFBUAnbNmuEHPl47Pv749aNHgw8cqFCrVlEbYXkSUDsBnuyofQmKM4A9e/Y4OzsLpomFhcWqVatOnTqlPNPk/JPzm65vEhSfPsTsZGZg3ImpiXNOzbnxMkuCNtc/5+fPx6/I9OTkdj//7LV6NU2TXCnxJgkonACiiyHaFnP3LgTvH50+rfD22SAJKJsArRNlE1ZK+25ubkK7AwcORLoc+J0oNTdNTFLM0D1Dm61u9qffn+Fx4ej6euT12SdnN1rZaNW1VakZqbizb9Som1u3ymabkZa2b/ToE19/rWto+NH27S1nzpQ94gUJkICyCegbGw/y8Wk8ZUpyTAy8ZZXdHdsnAYUT4MmOwpGqokEHBweI0yNmuGvXriror2P1jk4VnS4/u3zl2RVDXUP0uPzq8qT0JFx4WHu4V3Z/6ucXvG6dZd26wmCSX7/e1q/fo5MnjStVGrhvn22TJioYJLsgARKQJ4C9k66LFlXv2LF29+7YSglcvbrh+PGl/1/3KOLq1aB167otXixfhdckoDkEuHeiOWtRtJGMGjVKNaYJhmWkZ9TbqXeZ0mUyS2W+TX+LO4JpoldGb5DLoNLvSp369lv430EBFo9iHzxY1awZTBNLZ+dPLl+maVK0dWVpElAoAceePWGRHJk69dCkSfjOkJqYKDSf8OIFsm+G+foqtDc2RgIKI0DrRGEopd3QAOcBVcpVyTbHyuUq96zd886+fS+CgvAoJizMf/FinHNH37lTvVOn0RcvmtvbZ6vCjyRAAqon0OTTT80dHELfZ5BALA8GcHvPHvx96rvv4Bam+vGwRxIokACtkwIRsUAWATdrt2rm1bKxwB0HI9uzP/749tUrPELM8JFp095GRTUYN27IwYNI9Z6tPD+SAAmohQBOXbM2Mj09Kzo6GpqZxT58iN1NjOTVnTs431HLkNgpCeRPgNZJ/nz49H8ERnuMNtYzln020jUa5jrs2qpV0ffuyW4KcT1uI0eW0aVLk4wKL0hA/QSMLS29T55EBgkEG69t1epNeJZ7e2pcnN8ffyRGRal/fBwBCfybAK2Tf/Pgp7wJdK/V3crYSva8UrlKrU0bXvnrr7SEBNnNUu/e4XrXwIGn5sx5eSPPSOP/lecVCZCAqghA8D4jNXWhvX3cs2fvMrJEAfAHmiiX/vtf4Zp/k4DmEKB1ojlroekjsTS2bGXfSjZKZ0vnB0s3vHn8WHZHdoHfdxfmzVtWv77sDi9IgATUSwD+JQgtXlyzZtLr18K3CGE8GSkp0ALAEY96h8feSSAbAVon2YDwY34EvF29TQ2yvEkMdAwGlmsfsnUrvorJV0DyYTN7+1rdu/fdtGmm/J6KfCFekwAJqJzAAkvLrV5eiZGR6W+zwu7k/7x58uTkt9/K3+E1CaidAJ0D1L4EYhpAi6otKhhViEuJMzc0T//7cPzz5x9GX7q0SZUq5ayt6w8bhuztyPQhpllxrCSgBQSmhIXd9fEJXLMmLjw8PiJCdrKTNfV37x6fOfPw5EmHdu20gASnKA4CtE7EsU4aMko9Hb0xHmO+O/Vdz7cu0cE38EsNUrBmVavW6tGj3oABVRo2lGk9aciAOQwSIAGBQLlKlTw++QQ/cAhDmsCQHTsQXoc4O+Eprn0/+2zMlSs6yswhyrUggcIToHVSeFYsmUWgf93+yy7/7bjuMaJy6vbv7zpihEPbtnply5IOCZCAKAhUcnHBT4uZM8MvXoTHycPjxxG/A++T148fX9+40X3UKFHMgoOUPAFaJ5JfYgVPsGb5mqt7r6nq8a6ykzNOcxTSevilS9DVbjJlikJaYyMkQAIFEkBKzmqtW+MnJS4OZzqQBnh5/fr+0aOdevc2Kl++wOosQALKJkDrRNmEpdY+0g12qNmhVE3FzAv69zgMehkcjF+OsE6Ej4ppmq2QAAkUggBUE2GR4Adhxo/PnoVjeyEqsQgJKJ0ArROlI5ZSB5kZGfcOHnx87lxqfLypnV3dfv0qOjmVZII+48YhXsCyTh18k/OdPv3G5s2TQkL41a0kSFmXBIpHwNTGxmXQoJx1IbGYLQW6ILqY7WbOirxDAiUhwIjiktDTrrrYAV7bujWCEoPXr8dZDATs/65X7/KiRSWhUKdvX2hs4/D7eUBAdGho06lThV98JWmTdUmABBRFICIgYK6BwaJatdKSsnKS48/zwMC5hoYrGzXKpiYgPOXfJKAoArROFEVS+u2cmDUr/MKFdj//POPFiwnBwVMfPKjk6orEOkIKwOLNv1bXrvhJe/vWrkULbCk3//LLshUqFK8p1iIBElA4gSoNGrT54YfYsDDkIUfjsFF2DxkCzdn+W7cyukfhtNmgPAFaJ/I0eJ0nAWxpwJ/fysWl5cyZwo4uXGI7zp+PoOJbu3blWa2gBzgqOvLZZ02nTeuzbt19X99QH5+CavA5CZCASgm0+Oqrqi1b+i1c+OzKlaPTp7+6fbv70qXlayrI9UylU2FnYiJA60RMq6XAsUbdurWiUaOtffrAPhCafRsdvaZVq41dumAnI2dHyBzW6bff2nz/vfwjQ3NzfExLTMxIS0PdPd7e8k9h0Kzv2BE34U2yvEGDh6dOyT+9s3cvbsILb+TZs61mz7aoXn1yaCiU3FAM933GjpUVjgkLW9m48c5Bg+AzK7vJCxIgAdUQgN96n/Xr9YyNt/frd3XpUldv7/pDhqima/aizQRonWjp6sPbw87TM3Tv3ou//SYg8Bkz5sm5c42nTMlVvAReq9BxgpuIPK+b27bho03jxnhq7uBwfcMGIfGpUCZLffL4cWtXV/tWrV4GBQWuXi1f9+qyZTA7bJs2xVGOsEUMpzwUgHoK5N2urVwJZxR8hFW0a8iQF8HBzb/4glJv8gB5TQIKJ4DvEv+1sZH9BKxYIXQB9ecO8+ZBZNbQwqLbX38pvF82SAI5CdA6yclEW+7gXMbS2fn0999H372LgF7IRzaZNq129+6FnP+TCxfgEosWoMmGKu4jR+KUB9sksurBGzaU0dOrP3Soqa1t9Y4dsVmSmpgoPE148eLB8eP1Bg7UMzKSlZdd9Fq50tja+tCUKW9fvTr9ww8R/v4YamUPD1kBXpAACSiDAL4q4EuC7Ee/XDlZL6H79+M6OTb21s6dspu8IAHlEWBEsfLYanrLEKHvu3HjyiZNdg8dGnX7trWHR5YfSeH+IGZnc/fu+OX18c6dEI1FJfvWrc2rV4dvCk6p8RHec/gtVqtbN2MrK3x0GzkSbiUwUIQ9YRgxSPORZdDk9qdsxYpe//yzuVu3bf36wQ8XMvlwTMmtIO+RAAkokkDn33/PtTn/JUvuHznS+vvvb+/efXjKFOyGWjg45FqSN0lAUQS4d6IokqJsx9rNrd2PP0ZcuQJbQd4J/8Q332zx8pL93D96VH56MDLWd+iga2Q04tQpmd4JXGXdRoyIunkTpzAoHLpvX2pcHIwSoSK0nrAnDNtF+IiY5ApOTjjWkW9W/hqBPI0mTXpy9iwsld5r1sg/4jUJkIAqCeCry7Evv6zcoEGrb77BP0Z88dgzfLjMX02VI2FfWkWA1olWLXcuk01+/Rp305OSYu/flz1GAg6kM5X9IAGH7NGlP/6Ac5y5vf3oixcr1a8vu48LN29vuIbc2LQJ1zjWKWtlhb0ToQBCEF0GD35w7BgSuCMJGcRhYcoIj/L6Oyk2Fo/wNyQs8yrD+yRAAkolAId37K3CFum9di12SXHAirD/8PPnLxR6n1Wpw2PjEiZA60TCi1vw1KD6it8yjl5eZvb2e0eOhJ+HUAebInMyM2U/DcaMEe5jT+Xo55/bt2kD0yTn1i68Wau1awdXWZgg2G6Bxwm8ZWWDwD4Kdmhw3APn2dI6Oq7Dh8se5by4sWXLzc2bER0AxxToK6QnJ+cswzskQALKJoAgHfxzxg6rVb16Ql9t5syxa9782urV0ffuKbt3tq/NBEpTmlNrlx/ar0tdXREPPDEkBIpqGzt1curTZ8Du3XkBCVi58sDYsfACGbBrV15CTLAqdg8e7DZqVNA//4y/fh2pUOVbQ3fGlpYI1YEv7ZCDB+UfyV8j8Gdp/fpI+D4+KAgeKshM1mTq1C4LF8qX4bVSCWzZsmXw4MHoIjAw0M3NTal9sXESIAESyEmAXrE5mWjLHQTFvHn0qP+2bbAYanTs6P7JJ4GrVgX+80+uKdRxAHR0xoxSpUsjthBxNPKMqjRsWKdPH+EOLgzMzYPWrMEpdTbTBAXgBuv72We4gHSKfAvy1zCX93p7w2fF6+BB+O1iMNiMQXBQre7dMUj5krwmARIgARKQKgFaJ1Jd2QLmFbJjx/X16+v06+f88cdC0c7//W/YkSOHp05F9E35GjWy1ccjWAy4eWXJkmyPsFMis05gTyBOOGDZMpk/rHxhnPXAvU7fxMSxVy/5+/LXl37//dGpU00//xxyLMJ9BBgjoc/eESMm3rjBBIHyrHhNAiRAAlIlwJMdqa5sAfPCXkh6SgrEXuGvKiuaEh8PoVjECesbG8tuChdw1MdJULabwke4hiAJu+yRUBJmhLzTiewpXFvgdGJkYSG7k+0CkrVQYIPughCoLDz9MFozM1g/2crzozII8GRHGVTZJgmQQOEJcO+k8KwkVVIQoc82JQMTE/xkuyl8hAmSq3JazsL5l0SEcM4q8ndyzQKY62jla/GaBEiABEhASgQYsyOl1eRcSIAESIAESEAKBLh3IoVVFNccUhMSIm/etHZ3lz9UEtcUJD9aV1fXuXPnYpqVK1eW/GQ5QRIgAQ0kQL8TDVwUiQ/p5fXry1xdZ7x8KYjcS3y2nB4JkAAJkEDRCfBkp+jMxFkD3qZHpk0TlGETo6IQpvs8MLDAqURcvQrV1+ubNkXdulVg4QILPD571nf6dPjeltbVjY+IODR58pPz5zGq+OfPC6zLAiRAAiRAAtpDgCc72rLWB8aPh8y84F766s6dXQMHQuKssrt7XvN//ejR9v79nwcEyArU7Nq176ZN+YTbyErmdZEUE/PUzw/qkxCNRfZBqE/W7tEj+c0b6K0NOXQor1q8TwIkQAIkoG0EuHeiFSt+79AhpO5r//PPhZwt0mps6dULCXF6LF/+VWwsTmFafvNN2OHD+/4/q18h28lWDLkAoZGP5H/lrK0de/Yc4+9fs0uXtv/5z4MTJ5iWPRsrfiQBEiABbSZA60T6qw/11ROzZkEwLafGWl6TxxFM5I0bTadObTB2LLZb4CDSbu7cGp07I/NwCU9hfD//POb+/U/8/B6eOnVy9mwMwMzOzmXQIGTwYdbTvJaD90mABEhA2wjwZEfcKx778GF0aGiuc4DkfEUnJzx6eOIEcgK3/+WXXIvlerOMjk69QYOw1SH/1LJu3fu+vgnPn+PQB4mIIfyKXRBZgei7d6E3jypPLlxA0r4O/+7O/6+/kF4HAvaeM2YgWTHyBX68Y0cFR0ehOrL9Ba9bd/fAAScvL1S/uWVLJVdXWepBHP2c+vZbCL5hlwWHU7IeeUECJEACJCBVArROxL2yIdu3n/j661znADF4iNPjETLz6RoZObRtm2uxXG/at2qFH/lH2IB5dPo0vFktatRA4sCry5ZB9bX/1q2yMsgReOWvvxpPnpzy5o3fH39AIF/m1IIQYgjYI0sOjB7YTPhBLYd27WR17Vu2NDAzg1EC68SmUaNDkyahfWtXV5vGjVHm4MSJyFfcf/t2miYyYrwgARIgAWkToHUi7vV1/ugj/C+e6xwEIwCPsHeCrYgSasAHLF/+IjDQffRoQzMz/GSd8uzfj+gbQVv2XWYmkgnbNG2K3Rrk7YN1gs0VmXUCn5L0t2/dRozIdZy4CdF6ZA3EWQ+ukf2478aNKxo23Ddq1Lhr15APCKaJx9ixmGle1XmfBEiABEhAYgRonYh7QS2qV8dPPnPADsebx48d2rfPp0yBj27t2oWExhWcnDr//rtQGCZI2KFDt3ftEmwOuLUmRES0mTMHTxGJU7lhQ2zYdPz1V2G3AzHJZS0tkWQ4n46snJ0fnTz5JjwcbihoocO8echmjGBjGD2Wzs5dFi7Mpy4fkQAJkAAJSIwArRNxLyj0SyBkkusc4M2KnDWJkZF4mk92G3h1IMRXvgXPL77AEYzsztXly3HUUr5WreHHj8uy/SHixqhCBeigCNZJ8Pr1ODxyHjBAqOU+ciSqPDx5snqHDnFPnz4+fRrRy7kmBZT1AvMF14kvX8I6wQXKI84IA0Oz/bdtK2SKH1lrvCABEiABEhA1AVonol6+UjAd8vc7ERIL53OsA/vmxMyZ8hSafvaZYJ3A1+TYF19c+u9/bT09B+3fL5+fD+cvLkOGXFmyBCE8MFnu7Nnj1KcPTnyEduD3CtU12C6wTvA3zn3cCgpFFkYoS4NcunRpmyZNHhw7pmdsbPzecJEfIa9JgARIgASkTYDWibjXF//96y1alOscBLcP/O+Op8mxsbmWwU2TypVH+/nJP4XlgY+I7909ZEjItm3OAwf2XrMmp32DDRL/RYtQAJso8JPFR1kj2LZB8M7t3bt7LFt2fcMG+JRUcnGRPc31AkJtuK9frpzw9Jm///l582CgQKwWDiiDDxzItRZvkgAJkAAJSJIArRNxL2uVBg3wk88cLBwc8DTh5cu8ysAWsW3SJOdTHM3A8sAJS+c//sBORs4C1m5uyOQHEwQmhWnVqvIxOCgMYyVk69ZLv/8eFRLSdcmSnNWz3cGZDu4IPjSpiYm7hw6Fv+2APXsu//nnhfnzEcLTcPz4bFX4kQRIgARIQKoEaJ1IdWU/zAumQ8W6dbEDIT/PXK0N+QLwckWQjrmDA2yOewcPyj+y8/Q0Kl9euIPzGt9p0xBm3OKrr7KF+2JTx9TO7sx//qNjYACxNfkWcr3GCM2rVxf8Y45Onx5z716fDRuwr9Pmhx8QHIRzompt21b8f32UXFvgTRIgARIgAckQoLaVZJYyz4kgl83rBw+KpPEq+Mm+fvhwq5fXlp495X8ib96U9VR/yBCYJplpaTmjhWGsQGMtIznZ0ctLZs3IKma7gO8LtlgwTtwP9fGBYVS7Z0+oveGjroGB1z//oB3spmSkpWWryI8kQAIkQAKSJFAano+SnBgnJSMAFde/6tTBAU2TTz8VbiLMB8mBcYySlzvI43PnBEcQWSOyi6otWsi7xz46cyYjJaVGp06yArILZEIOv3ixUv36wumS7H7Oi2urV/uMGTM+OBjjwcAwvKrNm8vHGUFZPyk21q5ZM2jq56zOOyRAAiRAAhIjQOtEYgua+3R2DBiAvMQTgoNzf6zuu6uaNStXqdLAvXvVPRD2TwIkQAIkoBEEeLKjEcug7EG0/u67V7dv3z96VNkdFaN9JNaB00mb778vRl1WIQESIAESkCQB7p1IcllzmdTZuXMh+Qpt+AJdYnOprMxbqz09q7Vp0/7nn5XZCdsmARIgARIQEwFaJ2JarZKMFQ5GSC8Mvw0ktSlJO4qtC1UVxBKXs7bOFvKj2F7YGgmQAAmQgLgI0DoR13pxtCRAAiRAAiQgfQL0O5H+GnOGJEACJEACJCAuArROxLVeHC0JkAAJkAAJSJ8ArRPprzFnSAIkQAIkQALiIkDrRFzrxdGSAAmQAAmQgPQJ0DqR/hpzhiRAAiRAAiQgLgK0TsS1XhwtCZAACZAACUifAK0T6a8xZ0gCJEACJEAC4iJA60Rc68XRkgAJkAAJkID0CdA6kf4ac4YkQAIkQAIkIC4CtE7EtV4cLQmQAAmQAAlInwCtE+mvMWdIAiRAAiRAAuIiQOtEXOvF0ZIACZAACZCA9AnQOpH+GnOGJEACJEACJCAuArROxLVeHC0JkAAJkAAJSJ8ArRPprzFnSAIkQAIkQALiIkDrRFzrxdGSAAmQAAmQgPQJ0DqR/hpzhiRAAiRAAiQgLgK0TsS1XhwtCZAACZAACUifAK0T6a8xZ0gCJEACJEAC4iJA60Rc68XRkgAJkAAJkID0CdA6kf4ac4YkQAIkQAIkIC4CtE7EtV4cLQmQAAmQAAlInwCtE+mvMWdIAiRAAiRAAuIiQOtEXOvF0ZIACZAACZCA9AnQOpH+GnOGJEACJEACJCAuArROxLVeHC0JkAAJkAAJSJ8ArRPprzFnSAIkQAIkQALiIkDrRFzrxdGSAAmQAAmQgPQJ0DqR/hpzhiRAAiRAAiQgLgK0TsS1XhwtCZAACZAACUifAK0T6a8xZ0gCJEACJEAC4iJA60Rc68XRkgAJkAAJkID0CdA6kf4ac4YkQAIkQAIkIC4CtE7EtV4cLQmQAAmQAAlInwCtE+mvMWdIAiRAAiRAAuIiQOtEXOvF0ZIACZAACZCA9AnQOpH+GnOGJEACJEACJCAuArROxLVeHC0JkAAJkAAJSJ8ArRPprzFnSAIkQAIkQALiIkDrRFzrxdGSAAmQAAmQgPQJ/B8Tzbb2AAOSmAAAAABJRU5ErkJggg==
/9j/4AAQSkZJRgABAQEAYABgAAD/4QA2RXhpZgAASUkqAAgAAAACAAEDBQABAAAAJgAAAAMDAQABAAAAALEAAAAAAACghgEAj7EAAP/bAEMAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAf/bAEMBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAf/AABEIALABMwMBIgACEQEDEQH/xAAfAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgv/xAC1EAACAQMDAgQDBQUEBAAAAX0BAgMABBEFEiExQQYTUWEHInEUMoGRoQgjQrHBFVLR8CQzYnKCCQoWFxgZGiUmJygpKjQ1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4eLj5OXm5+jp6vHy8/T19vf4+fr/xAAfAQADAQEBAQEBAQEBAAAAAAAAAQIDBAUGBwgJCgv/xAC1EQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/AP7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACvn/wDay/5NY/aX/wCzf/jL/wCq68R19AV8/wD7WX/JrH7S/wD2b/8AGX/1XXiOgD4B/wCCBH/KG3/gnt/2b/o//p816v1+r8gf+CBH/KG3/gnt/wBm/wCj/wDp816v1+oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+f/ANrL/k1j9pf/ALN/+Mv/AKrrxHX0BXz/APtZf8msftL/APZv/wAZf/VdeI6APgH/AIIEf8obf+Ce3/Zv+j/+nzXq/X6vyB/4IEf8obf+Ce3/AGb/AKP/AOnzXq/X6gAooooAKKKKACiivkz9rr9uf9lP9hHwZ4d8e/tV/F7TfhZoHi/X28L+EbceHfGnjnxX4s1yK0e/u7Lwv4B+G/hvxh478Qrptkn2vWLvR/Dd7Y6Lby20urXNkl3amZNpJttJLdt2S9WzOtWpYenOtXq06NGnFyqVa0406dOK3lOpNxjGK6uTS8zS+Nf7RWq/CDx94B+HsHw1vvF2q/GOEaH8ILux1uezsPEXxNsdXtpPEfgvxTNF4b1QeDNL0H4dT6l8Wm8VL/wkDX3gvwF8UPJ8Px6v4X0TT/F/1DXwj4Vtf2XP+CiHhH4e/tR/Cf4tat8Q/CMOjm3+DnjfwVeQ6O3wx8W6P430nxDrnirRdB8T+FI9e8MfFVdY8J6F4V8X6L8RtHupLLw1pOpeBdT8IWOjeL/H+meK/u6ojz803Jpwbj7O1tra3st73s7tOPLs+a/n4H+0JYrMamJqwqYCpPDzyrklRlbDui/be0dOnGUpzr806c3VqQlhJYWKjCvDEyqFFFFaHqBRRRQAUUUUAFFFFABRRRQAUVxHxF+Jfw8+EXhHVvH/AMU/HHhT4d+CNCh8/WPFfjTXtN8OaDp6EHYtxqeq3NrarNOw8u2thI1xdTFYLaKWZ1RvxE8Y/wDBX34rftOeJdX+En/BJj9mrxH+0lrtjdvpOu/tKfErTdT8Cfs3+BrhgN959p1eTQdS8R3EMDPdQafqmo+Eb+8EIn0PRvFtuwgl8fNM+yzKHTp4vEOWLr/7rl+Fp1MXmWLeqSw2Bw8amIqq+jqcio03rVqQjdr1ctyTMc1VSeFoJYajb6zjsTUhhcBhVpriMZXlChTdndU+d1Z7U6c5WR++VFfz0f8ADr3/AIKqfEH/AIrT4nf8Fk/ib4I8e+Iv+Jh4m8I/CPwLrVv8NvDt+/7tdK8IR6b8Q/hxZtpVrbR26LNH4I8PyXM/n3FzaS3Ms13cFeR/rBn8vep8EZw6ctYOpmfDtKo4PWLnSlmrlTm4u8qcm3CXut3Tt6n9h5JHSfGGVKa0moZdn1SCktJKFSOWKNSKd+WaSUlaS0Z/QvRRRX158sFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfP/7WX/JrH7S//Zv/AMZf/VdeI6+gK+f/ANrL/k1j9pf/ALN/+Mv/AKrrxHQB8A/8ECP+UNv/AAT2/wCzf9H/APT5r1fr9X5A/wDBAj/lDb/wT2/7N/0f/wBPmvV+v1ABRRVS/v7DSrG81TVL2003TNOtbi+1DUb+5hs7GwsrSJ57q8vLu4eO3tbW2gjea4uJ5EhhiR5JHVFJFRjKcowhGU5zkowhFOUpSk7RjGKTcpSbSSSbbdkrhtuW6palqWnaNp99q2r39lpWlaZaXF/qWp6ldQWOn6fYWkTz3d7fXt1JFbWlpawRvNcXNxLHDBEjySuqKWH85X7dn/By3+xr+zdqd38K/wBl+x1D9tz4/XN4NB0rQ/hVeOfhTY+IbmUWdpZX3xJs7HVx4wvHupYTaaT8MNH8XxanKJNLuNe0K9YOn5t237Af/Bcj/gtjc2Xir/goJ8YZf2Iv2UdTvYNV039nzRdGvND1jUNKa4S8tov+FKWOrQancXVuY5IbbW/2iPGFz4r8P3UiXuleGb3TpPszf2XwV9DDi5ZBgPEP6QHFeQ/Rn8LcYlXwmeeJFLFPjjifDRUZ1IcB+FuDX+t/EuJdKdOtSnXwuU5fVw1T61Qx1enCSfzuI4iw7rSwmVUKuc42OkqeDcfq1BvRPFY6X+z0Y3unaVSSkuVxTP0f/bs/4OW/2Pv2c9aufhJ+yvpOo/tvfH66u20HS9J+Fl5I/wAKdP8AEdyWtbCxufiFYWOryeOL576S18nR/hjpPie31H9/p0viTRNRVVH4z/Fj/gnh/wAF9/8Agrncw/tbftPaX8JPhFafDPwj48l+AP7MnxJa/wDhtfNpvjaPw3quu+HfB3hnw94e8c+KvA+seIbjwR4etJNe+N+qy+K7m8sbDTLy1tfD1wupaV/Vb+wV/wAEjP2HP+CdGlwTfAP4VQX/AMSpLEWOt/HL4izW/jD4ua0rx+VdJD4hns7XT/CVhephbzRPAej+FtFvRHE9/YXdzH9ob9Mq5/EXxX+jZw3wbnvhZ4C+C1PiHCZ7h8LgOJPGzxqqTzPxFzing8fhMxcuCsgyTF4PI/DfCVMbgoKnisHVx2c4/KarwWayhOVaMuHFcOYniHC4jDcU4mNbAYujVo1skwDnRwUqVaDhKGJxKccViJpSupQnSVKtGNShJOMWv5PP+DSr4y+F/En7JX7Tnwa1OSbSfjj4O/af1n4m/EfwhcvLFFp2iePPAHgLwN4UudEsruOC+trS0b4R6romvW08HnxeI7C71W7+zN4ht7OH+sOv4hv2mFb/AIIkf8HA3w//AGnLHPhr9j3/AIKCtqtv8TfKVoPD2h3XjjWtJsfi9JdYRYYm+H/xTn8HfHSdrW2lmt/C/iS68OaWMT3Mdf28KyuqujBlYBlZSGVlYZDKRkEEEEEEgg5Feb9LLwp4N4Kzvw88R/CbAVsF4L+OPh9k3G/AmEqYmpj5cP5tgcPQyTj/AIIxeYVNcVmvCvFOGxCxqgvZ0KGZ4GjCUuRs6uFp+wy95LOnTo1uH5QytUaUeSnHB0KcY5dOlC7caM8HGnCndttU22LRRRX8mH0wUUUUAFFFFABRXN+MPGXhD4e+GtY8Z+PfFPh3wT4Q8PWj6hr3irxZrWm+HfDui2MbKr3mq61q9zZ6dp9srOiGe7uYo97qm7cyg/iH8Qv+CyevfHDxjq3wS/4JWfs9eKP2xviRZv8A2frHxj1my1PwX+zZ8O7mYuiajr3iXVxod5r8Fu8UpFvcaj4I0zWYhHP4W8R+IWZLSbyM0z3K8nVKONxKWIxGmFwNCFTFZhjJbcuEwOHjUxNd30coU3ThvUnCN2vUy3JsxzV1Hg8O5UKNnicZWnDD4HCx097FY2vKnhqCs7qM6inPanGcrJ/tr438d+Cfhp4X1bxt8RfF/hnwJ4O0G2a71vxV4v1zTfDnh7SbZeDNqGsavc2lhaIWIVTNOm9yqJudlU/iF49/4LEeOf2g/FesfBr/AIJQ/s5+JP2sfG2n3R0rXfjx4usNR8Ffs1eALiREK31/reqS6DeeImhVpZI7C+1TwSNTjh+1eGp/FMTR289fwD/wSE+KH7SnijRvjJ/wVo/aJ1/9pfxPYXX9reH/ANm7wDqWoeDP2bfAM0hd47M2Gjx6FfeJ7m1SRIJrvT7Hws96kH2PxBqHjOzJnl/b34ffDnwB8J/CWkeAvhh4K8LfD3wToEAttG8KeDNB0zw34f02HjcLTStJtrSzieVh5k8qw+bcSlpp3kldnPj34mzyzSfCuWT7qhi+IsRTf9399l2Uc8X1eY4qDW2GqLT1bcO5M3driXMI9F7bC5DQqL+8nRx+acsl0+oYaSe+Ig9fxR+HX/BHzxp8fPF2k/Gv/grB+0Drf7XPj7TphqPhv4GeGbzU/B37NXw2uJsNLaaZ4f0pPD9x4ndPLtopbuLSfCFpqsMBtfFOn+LVIu2/bvwd4L8H/Dvw1pHgvwB4V8OeCPCHh+0Sx0Lwt4S0TTfDvh3RrJCSlrpejaRbWmnWNuGZm8q2t4kLMzEFmJPTUV7GV5HlmTqpLB4f/aK9nisfiKk8VmOMlp7+Lx2IlUxNd3SajOo6dPalCEUorysxznMc1dOOLr/uKN1hsFQhDDYDCRf2cNg6EYYeiraOUafPP4qk5ybkyiiivXPLCiiigAooooAKKKKACiivzl/b8/aLttD/AGVv+CiHgnwBdfHHwX8YPhH+w7+0p8SNJ+ImnfCD4/eAfBeh6tpPwO1XXfD2s/Df9pm48CaH8Htc8c6HqOuaHqFjp3w6+KGreNND1bTdadbGz1HwX4nGh/UcG8JZrxtxFlXD2U0MROpmGYZZhMVjKODxOMoZRhMxzTA5T/auYrDQnKhl+FxWYYWNevUdOmp1aVL2iqVqaljiK8MPSnVm0lCE5Ri5KLqShCVTkhd6zlGErJXdk3ayZ+jVFfi58RP2xPi1+zb8QP20fFwGlfEjwRaft+eBv2ePDXg7xv4vu9Hm8H+JPir/AME7f2HfEHwXt/CGua54ih8PeEPhR/wvbxLrt98ZdJsdBuToujfEzxl8cIprNfBfjGz8Wu0H4lfGaH9rnRfB/ij4n+I9RSL/AIK7ad8LPEWl6DrXirRfAl/4Sj/4N7ofjJq/gnRfB+oeJtfGk/DG6+OAuPi9p3gC+1TWtMsPH0kPjC5m1HxdE/iCb9OoeAnEdTK8TnVXNcpo5ZHwzxviTgq0Z1K9bG0MryHhjP8AM8jlhqV6mBzDA0OLMohOpi3To14YrD4jCqtSnVWH4pZpRU401Co5vGQwclolF1KtalTqXekoSlRqNKN2uWSdmlzftDRX5Yfti/t2fEX4F/GfXPhX8LvA3jLxtrXw0+CXw/8Aj5r3gnwf+x9+1L+09rfxr034ieLfjX4V0j4T+EvHn7PMdx4R/Zr8ZTXHwN1hNG8c/HDSPE/hPxHe+KdOjtNGtNL8J+L9Zs/1Pr844h4H4h4XyfhjPM4wv1bBcW4Stjco5oYiFSph6WGyzHRqc1bD0qGIpVsBnOV4uliMvr43Cx+tTwNevRzXAZnl+C66OJpV6lelTlzSw8lGptZSbnG2jbTUqc4tTUZe6pJOnKE5FFeVaT8ZPCOtfFnxP8FrPSPirD4w8I6Hb+IdV1nVvgT8b9A+E13YXMPh64jt/DHx8134ead8C/G2uKnifTVuPDHgz4ja/wCJbSa28Q211pMNx4R8VxaL8w/Dn9pj4o+MP2yvih+ylqWlfDi1h+Ctnc/Erxh4ssZp3vfEvwn+JFhph+A2g+GvDjeMLnUtI+IOm6y/jWz+Mesapb6nounaV4G8Fa3p3hrRbX9oXwknghZdwNxHmNDOcQsDLAQyLhinxljlmyqZZOXDNeeEoYPNsGsXTprG4bH4zMcqwWXvDOpLHV81wUsNGphnXxFAniaMHTXNzOrWeHjyWmvbJScqcuVvllGMJyne3KoSTtKyf3nXz/8AtZf8msftL/8AZv8A8Zf/AFXXiOvoCvnz9raSOH9lT9pqaaRIoov2fPjPJLLI6pHHGnw48SM8kjsQqIigs7sQqqCSQATXySTk1GKcpSaUYpNttuySS1bb0SWrZ0HwJ/wQI/5Q2/8ABPb/ALN/0f8A9PmvV+u91dW1jbXF7e3EFnZ2cE11d3d1NHb21rbW8bSz3FxPKyRQQQRI8s00rrHHGrO7Kqkj+JT9jD/g4M/ZU/YI/wCCUX7DX7P/AIO8N+Lf2lP2stD+Bvh/w/efB/wVbXei6D4T8UahqupTabo3jnxze6beImqTrf2pXw94J0Xxnrq3TDTNVt9CuZVkTUsf2K/+C5f/AAW9uIPEn7c/xTuv2C/2O9YuIb6z+Aug6NqnhzXfEOitItxBBJ8Hk1eDxLq8ropj/tf9oLxbHd6TePHq3hzwdeafILSv7G4I+hrxlW4dwfiL47cTZF9GvwpxS9rheJfEuji48W8TUIqM6lPgHwxwijxhxZi/ZVKWIov6rlmW4jC1PrNDMqtOEkfPYniHDqtLB5XRq5xjo6So4Nx+r0G3ZPF42X+z0I3unrUmmrOCP02/bw/4OTP2Jv2WtQvfhj+z79t/bU/aAku/7E03wl8H9QSX4baf4hnl+yWmn658U7Wz1iw1m7e8dIY9I+G+leOb6a7VtLv5dEuXEqfmBpX7Bf8AwW8/4Lc3lr4x/wCCgnxf1D9h/wDZI1O8g1PS/wBnzQ9F1Dw/rOraV5iXlpHF8FotVg1KaaMrJDD4k/aE8U3fifQ7qRb/AEXwpqGlyLa1/RN+wV/wR7/YU/4J22FhffA/4T2uufFSGz+y6l8ePiabPxl8W9ReWHyLxtO1yextdM8E2l9GTFd6V8P9G8LabexLGNRtr6dTcP8AqDX1z+kn4N+AUZ5d9Ebw1dfi6jH2VT6RfjXgMp4m8QI4iOksZ4fcEypYng/gCnGqqjwWYVqGcZ5XwFeNDMfZ4ikprBZPmOaWnn+MtQeqyjLZVKGEtpaOKxN1iMW7fFBSp0lNXho7H5kfsGf8Ehv2GP8AgnZp1ndfAf4TWmpfE9bE2WrfHX4jvbeMvi7qomh8i9Fr4hubO2sPB9jfxgR3ui+AdI8K6NeokbX9jd3Cm4f9N6KK/jbjbjvjTxI4ixvFvH3FOfcY8S5jJPGZ3xFmeLzXMKsYuTp0I18XVqSo4SgpOGFwdD2eFwtK1LDUaVKMYL6HDYXD4OjGhhaFLD0YK0adGEYQXd2ileTt70neUnrJt6hRRRXyZufi/wD8F6f2Ef8Ahu7/AIJ5fFDw74Z0dtT+MvwTST46fBoWsBm1LUPEHgzTr1/E3g60SPbPdP458D3HiDQtO05ZFhn8Uv4Yvp0lOmxIeO/4N6P27T+21/wTw8AWfirWBqXxj/Ztaz+A/wATvtE5l1PU7Pw1pdsfhv4yu948+f8A4SfwN/Z1pfapO0j6n4r8P+K5mkaSOTH7o1/El8MkP/BEj/g4Y174XureHv2N/wDgpElnJ4XUgWnhrwzq3xD8TX83gqKEIEsbZ/hh8an134eW0FzdoPD/AMLfiBDr2orm6s2f+9/At/8AEe/o0eLf0b8T/tXHPhe8f9IbwNjJc+LxdLKsJDCeLnAmAk71qn9r8PKhxNlOT4RN4vOssxmKlTbjKR8tmf8Awl5zgM4jphsbyZRmdtIxdSXNgMVPovZ1r0KlSXw0pxjfY/ttooor+CD6kKKx/EPiLw/4S0TVPE3ivXdH8M+G9Ds5tR1rxB4h1Oy0XRNI0+3XfcX2qarqU9tYafZwJ8011d3EMES/M7qOa/Er4s/8FodI8e+NNS+BX/BND4HeL/27PjZbt9kvfFPh22u9B/Z78CyzO9vDqvin4iXwsINT0uG5XAu7e78PeEdUQhLD4gpOyxt5WaZ3lmTxpvH4qNOpWfLhsLTjPEY7Fz/594TBYeNTFYmd7JqjSmo3vNxjdr08tyfMc2lNYLDSqU6K5sRiakoUMHhYaXqYrGV5U8Nh4K971akb7RTeh+13inxX4X8D+HtW8W+NfEmg+EPCug2cmoa54m8Uavp+geH9GsIcebe6rrOq3Fpp2n2kWR5lxd3EMKZG5xkV+I/xO/4LNv8AFfxpqnwM/wCCXnwD8V/tt/F21LWepfEWO1vvCn7OXw/nlYwQ6t4j8Z6n/ZL65p8FyrISdQ8HeHdWjMb6F431CR0t5Od8Lf8ABKH9oH9sHxDpPxT/AOCuf7Q9/wDFuCwvI9Z8L/sjfBPUtS8D/ADwVO/zrba7f6V/Zmr+KdQht5BYz3Wm/YtaieB45/iH4q06YIf25+GHwo+GXwV8G6V8PPhF4B8JfDXwPosezTPC3grQdO8PaLbMyostybLTbe3invroosl9qFyJr6/n3XF5cTzu8jeLz8TZ5/Ci+Fssl/y8rQo4viHEQe/JQbrZflKnFvllXeYYqNryoYae3r8nDuTfxJLiXMY/8u6Uq2GyKhNWdp1l7LHZm4yVpRorA4aX2a9eGr/EXwV/wSK+M37VHibRvi//AMFbv2jtd+P2rWN3FrHh/wDZd+F2p6h4K/Z28DSuilbC8XSE0a+8RXUMXk2t5c6LZ+Hb25ktDHq/irxlaTNNL+3/AMNvhd8N/g54R0zwB8J/AfhH4b+CdGQppfhXwT4f0zw1oVmWC+bLHpuk21rbG5uGUSXV3JG91dy5muZpZWZz3dFetleQ5ZlDqVMLQc8ZX/3rMsXUni8yxctLvE46u516ibV1SU40Kb0pUoRsl5eZZ3mOaqFPE1lDC0f92wGGpwwuX4VdFh8HQUKEHbR1HCVae9SpOWoUUUV7J5IUUUUAFFFFABRRRQAUUUUAFFFFABXh/wC058GR+0d+zZ+0J+zyfEZ8HD48fA/4sfBk+LhpH/CQHwqPih4C1/wQfEY0E6nog1s6GNc/tMaQdZ0j+0vsv2L+07DzvtcXuFFehlOaY/I81yzO8rr/AFXM8nzDBZpl2K9lRr/Vsfl+Jp4vB1/Y4inWw9b2OIo06nsq9KrRqcvJVpzg5RcVIRqQnTmuaFSEoTjdq8Zpxkrppq6bV0010aZ8dWH7FXwp1H4h/tC+PPifYaf8U4fjj8V9d+JGneF9f0/UYPD3gnT/ABh+yH8BP2QfG3hyfR/+EgvfD/jDUPEfgr4L6wV8Y6joWna1onhv4neLfAujR2mmal4l1DxZxugfsL6f4Z+LmifEvS/iTqT6b4f/AGytN/ax07w3q+k6v4i1VrLSv+CZsP8AwTltPh1qfjnxD411TxBrt+1rbx/F29+I+uLqOs6ndmXwhqej3d5PP46k+96K+vo+KXiBQo4vDQ4nx8sJjOEFwFVwVaOFxOBp8JrAYPLHlWEwOIw9XCZfzYPAYeFTHYCjhsyqVlXxdTGSxeLxdevg8FhW4t0Ic0cR9aUlzKTr88p+0lJNSnaUm1GTcErRUeWMUvn74xfsufBL4+alpeqfFPwxrWuSadb2en3+naT8RPiV4J8O+N9C0+/n1Ww8JfFjwp4F8X+GvDHxm8D2Oo3mo3ln4E+LOkeNPB1rcavrckGhxnW9W+2eF658JNW03/gpd8HPjLp1t8StY0HXv2Ov2wPCni/WtQ1fxdrPwx8F6yvxY/4J8S/Dvwho+myzyeBfAmteK7Hw78TvFFvb2dpYeKfHsukeLdQvbzW9L8HWlv4c+9ajmmit4pZ55Y4III3mmmmdY4oYo1LySyyOVSOONFLu7sFRQWYgAmuXJOPeJcoisLLM8zzLLY8OcWcL4TJ8ZmWNrZdgsDxfk+IyrHLA4SdWpRwqjXngszdHD06cMTjcswTr83souLq4WjU97khCftqFeVSMIqcpYeoqkOaVk5aKULttqM5W3JK8P0z9nz4LeFvGafFPTvCkWleOLHxR8R/Hd341fxH4nGsXmr/FDStB0nx83iPU7rXHbXvDeo6N4O8E2Nr4S8QvqHg7w1ZfDz4cx+G9E0aP4deCv7B/F79vj/g4/wD2F/2QbnU/h78IdRn/AGw/j3FO+lWngX4Nara3HgPStdeT7PBYeK/i1FbatoInN3us5dK8C2HjzX7a/j/s/U9L0qSQTJ+Va/stf8F3P+C5NxDrP7WHjqT/AIJ5/sWa8IJYvg/puma/4b1jxV4fdvMQT/CX+2bbx141uLuFopJrz43+KPDfh1ZvJ1nwp4aktwtkf6f8OPokeJdHhuPiF4u8aYD6L3hFnOFrUa3FXiFisxy3iHi/LauHlTxWB4N8M8vqUuMOOKmIwGMqSp4ZYHB5Vj8BiK0qWY1aMqkZeLjM/wAG6zwmX4eed4+m01QwkYTpYeakuWWJxk08PhlGcVeTlKcJRV4p2P1M/b5/4ORP2Gv2RptQ+H/wY1B/2xvj0ly+k2ngn4P6rDL8P9I1pnNtb2vij4sQ2eraHPMbz/RTpHgOy8ca0l4hsdRtNIeSOcfjv8Wv2b/+C6//AAVw+FnxQ+NP7Znj3/hhv9jzw74A8W/EfSv2c9O0/VPDWreMtI8I+HNQ8T6dpF78LbXUIvF+sf2jJpccV1rPx78U2j6TezR674Y8E3VisGnL/SP+wP8A8EYf2DP+CeNtpmsfCH4VweMvi9aQIt38efiz9h8Z/FCS5MYSebw9eS2FroXgCCUF4mt/AeieHpLm1KQ6tdarIhuH+2v2sv8Ak1j9pf8A7N/+Mv8A6rrxHX0M/pG+CXgEvqH0S/DR5nxlhk6dT6RXjfl2VcSca08TBxax3h3wFKGJ4P4EVKtCc8vzTG4fOc+q4GusPmEKNem5mKyjMs197PsZyYd6rKMsnUo4Zxf2cZirrEYptNKdOLp0lKPNBtM/E3/g3R/YV/ZN+H3/AAT4/ZR/a18PfBPwfJ+0f8a/hfH408afF/XrR/EvjODUNV1bWbSXT/CGpa7Jf/8ACC6JHp9vbWD6b4Qj0aPUobdJtbfVL5pbuT+jKvyB/wCCBH/KG3/gnt/2b/o//p816v1+r+N+N+PeNfEriHG8WeIHFWfcZcSZhK+KzriLM8XmuPnBOTp0IVsXVqOhhKCk4YbB4dUsJhaVqWGo0qUYwX0OGwuGwdGNDCUKWHow+GnRhGEU+raileT3lJ3lJ6tthRRRXyR0BRRRQAUUUUAFfzu/8HK37DNz+1Z+wPqXxl8DabLP8Z/2NL3VPjT4WvLB5ItWuPhsLS1Hxk0SzmiG9Db6BpGlfEGPyit3JefDy0s7KRZb145v6FtQ1HT9IsL3VdVvrPTNL021uL7UdS1C5hsrCwsbSJ57q8vby5eK3tbW2gR5ri4nkjhhiR5JHVFJH4lfH/8A4LMfCfXPFOufs4fsM/B3xX/wUI+Omo2l9ouo6F8N9Ne6+CGgw3gfSrq48d/EWe1uNI1Hwyj3KLqF5pENz4NurRrm01LxtojkuPu/Crxsxf0e/FHgHxZyzGQo5twdxHgs1wuXqdR1s9wkZSw+cZBHD4eNTF4jD57k+Ix2T42nhqNSp9Ux1ayV7rT/AFbxnE+FxuW4bCzrUqlCUa9d8lPDYNb08TiMTWlTw2HjSqKNSM69WEeeKSbdk/Z/+CQP7fejftx/8E7PhP8AtDeNPEelWPjfwVol58OP2hNS1TULWws9I+I/w0srS18R+JNavbl7ew0y18X+H5dC+JZ3zLaaZYeLYrSSYPZz7PFvjL/wWm8H+IfHOp/AT/gnT8GvGX7enx8t3ezub3wHBcab8CfBczSyWi6t4r+J1xGljf6PBcqHXUtMksvBmpIr26fELTpypr+Sj9jD9iu9+A3/AAVW0v8A4Jmf8FF38e/C/wCDf7Qj2HxP8N/B34XfFXVdK+DnjD4g61pFzrvwr0jWL61u9RGvaNB9k8V/CGLVNH1KPxNF480qz0jSvF8lss9/e/31+GdE/Z0/Yqt/2e/gN8KfhLpXw48P/HP4p6n8IPBGlfDnw5otjpdt4s0H4GfGL47XeveP9QuNQsdY1GO68GfA3xVpsniSY+KvE2o+KdQ8PwajC1he6prmlfqf0v8AwbzHhrxuxtbwop0sD4NeK/CmF8cvCnNaGHVfNKvh5xTk2K4qxuV4fLsRTjg8kqcD1cLnuQ4yjj55hj8NRyOFTEYKnWqxTOF8xyTD5TGecQrZtn+X4qrlWNwPtFh8ppYzCYhYWnWr43D1ZYnMYY2PssRTjhPqdGSrpLFTV4r8r/D3/BLL9pz9tXW9M+JH/BXH9oS68aaDaXsOteGv2NPgDqd/4K+B/hWbd5qW3i7XdNe31bxTf20TtavPp91Pr9lIsi23xP1jTpfs9ftr8Jvg38KPgP4L034dfBn4d+EPhj4H0lf9C8NeC9CsNB0wTFESa+uorGGJ9Q1S7EaPf6tqD3Wp6hMDcX13cTs0h8/+Cn7VHwV+Ovwd+Fvxp8M+MdG0DQPiv4T+C/ifS/DvjLxD4T0rxl4a1D4/eCfCXj/4Y+AvGek6f4i1ey0b4i+IdA8b+GWsPC1vquoz6tPqtk3h+41myvtPvbvA/Zy/a9+Gv7Tv/CPf8IFofjnSP+El/ZV/ZZ/a9sf+Ev03QLDyvhr+11/wt7/hW+h3f9jeJtf8vxzon/ClvFP/AAm+mw+foGm/b9A/sHxN4l+1aj/ZX4HhfCfPeHKPE+ZVOGM2p1eF8ThcFxbnWaQqV8dgsVjMV9RwlHH47EydVxr4q1KhRwr+qR56cqVOnRqU3LrzDiXE5ssNh6uLowwjUp4HLcFGGGy+lGMeaUqGEoqNLnUXedaop4ipq6tWcrs+qaK830z4yfCHWviV4g+DOj/FX4b6t8YPCej2niLxT8KNM8c+GL/4leGvD9/9l+wa74g8C2uqS+KNG0e9+3WX2TU9R0u2srn7Za+TO/2iLf6RXPi8DjcBKjDHYPFYKeIwuHxuHhi8PWw0q+CxlKNbCYujGtCDq4XFUZRq4fEQUqVelKNSlOUGmedGUZXcZRklKUXytO0ou0ouzdpRekk9U9GrhRWXrmuaJ4Y0TWPEviXWNL8PeHPD2l6hrmv6/rmoWmk6JoeiaTaTX+q6xrGq381vY6ZpemWNvPe6hqF7PBaWVpBNc3M0cMbutLS/FvhTXNU1LQ9F8T+HtY1vRtN0LWdX0fS9a03UNU0rSPFKahJ4Z1XUtPtLma7sdN8RR6TqkmhX11DFa6umm6g2ny3C2dyY5jhcVOhUxUMNiJ4alf2uIjRqSoU+WdCnL2lZRdOHLUxWGg+aStPE0Iv3q1NSfNFNRckpPZXV3o3ot3pGT9IvszoaKKK5xhRRRQAUUUUAFFFFABRRRQAUUUUAFFFMkkSJHlldI4o0aSSSRgiRogLO7uxCqiqCzMxAUAkkAUJNuyV29Elu32AfTXZUVndlREUs7uQqqqglmZiQFVQCSSQAASTivwH/AG+P+DjH9gj9jF9W8EeAvEUn7Wfx0tDPY23w7+Ceq6fqHhLStbVnhhsPG/xZRdR8L6ORdxyWV9p3hW38deK9MvFWDUPDFqJBKv5HJ8CP+C9P/BdJYdS+P/jBf+Cd/wCw/wCJ5Q6/Dmx03xB4V1jxb4UuULo8nw5XULL4lfFBb21NlK7/ABa8UeDfh/qDsuu+FNGRALRv7D4B+hnx5mnDuE8RvGXP8g+jh4R4i1Sjxr4qLE4LOeIKKgqs6XAfh5QiuL+M8fKhKGIwtLCYLBYDGUJOph80nytHz+K4hwsK0sHl1KrnGPWjw2B5ZU6T2visW/8AZ8NC+knKUpxejgj9dP2+v+Diz9g/9jGfVfAXw/12X9rX4920smm2/wANfgpqtlfeFtJ1zeYIdP8AGvxXjh1PwxpMou1ksbvSvClt468WadfoLTUvDNkZBKv5AL+zH/wXl/4LnSW+sftReOT/AME/v2KfEkxuIPhVaaZrfhXUfEXhqR0aFZPhNFqdp8QviHLdwNBMl38bfFHhvwtLIh13wro8du8NlL/QR+wL/wAETf2CP+Ce9to+ufDX4W23xF+M2nRwyz/Hr4vQ6f4w+IkeoqmJbvwks1lD4e+HUW55Y4B4J0fR9SeydbbV9X1mRGuZP1ur7SP0ifA36Pt8H9FHw1/1i44w16cvpE+OeWZZn/E+HxVO6WP8N/DrlxHCvBKp11Ktl2a5rDOc9ng6v1XMqCqRuub+yMzzb3s9xnscM9VlGWTnSouL+zjMXpXxN1pOnTdOkpLmg7Ox+T/7BP8AwRa/YJ/4J62+ja38J/hTbeNvjHpkA+0fHv4sCz8Y/Exr54ljubrw5PNZ2+geAIpAJIUh8DaJoNw9nIbfUr3VJGmuZv1goor+OuO/EPjrxP4ixfFviJxbn/GfEmObWIzjiLM8VmeM9lzznDC0JYmpOOEwNBzksLgMJChgsJB+yw1ClTSgvocLhMNgqMcPhKFLD0YbU6MIwjeyTk7Jc0nZc05XlJ6ybeoV8/8A7WX/ACax+0v/ANm//GX/ANV14jr6Ar5//ay/5NY/aX/7N/8AjL/6rrxHXxp0HwD/AMECP+UNv/BPb/s3/R//AE+a9X6/V+QP/BAj/lDb/wAE9v8As3/R/wD0+a9X6/UAFFFFABRUNzc29nbz3d3PDa2lrDLc3NzcypBb21vAjSzTzzSsscMMMatJLLIypGis7sFBI/Gn9oX/AILS/A3wp40l+BX7Hngjxf8At5/tJ3LT2tl4D+A8M2reBdEuonEM134u+J1jZaro8el6fI6vqV14XtPElnpwjlh17UvDwVrmPzczzjLMnpRrZljKWGjUlyUacuaeIxNTS1LC4WlGeIxVZ3VqWHpVKj35bHoZdlWYZrVlSwGFqYh0489aa5YUMPT1vVxOIqOFDDUlZ3qV6lOC/mP2Tvb2z02zu9R1G7tbDT7C2nvL6+vbiK1s7K0to2mubq7up3jgt7a3hR5Z55nSKKNGkkZVUkfjB8ef+C0vwg0/xrdfAj9h74d+MP29/wBo6XzrW28N/Be3nvPhd4buQWgOpeLvijBa3mkS6LYTtDNfX/hqPVtBihWeDVfFHh+RHmj8Zsv+Cd37dP8AwUHvbTxZ/wAFTfjs/wANfhA1xDqekfsQ/syax/YnhlVWVZ4bT4q+OLefVl1+6tniRJYINV8b3KCea48O+L/CkryWY/aD4C/s2/Af9l/wTb/Dv9n/AOFfg/4V+EofJafT/C2lx213q9zBGYo9R8Sa5cNca94p1fyyY31nxHqeqarImEkvGUADwvrPEueaYGh/q1lsv+Y3MaMMRnleHV4XLG5YXL1KzUauY1MRXSacsuhLb2fq/D2T64yt/rDj4/8AMHgKs6GTUZK2mIzFKOIx1r+9Ty+FGi2moY+aZ+Lel/8ABNr9t39vjUdM8bf8FWf2hZvDHwzF1Fqdh+w/+zTqVx4Z+H1sqOJraz+IfjCw1G/fXbq3mVxJ5eo+NtZt4Z5BoXxE0dXa1j/av4F/s7fA39mfwTafDv4CfC3wd8LPCFokIbTPCekQWU2pzwRmNNR8Qas4l1nxNrDoSJ9a8Q6hqerXOSbi9lJzXs9FenlfD2WZVUniaVOpisxqx5cRmuYVZY3M666xni615UqXbDYZUMLD/l3QgedmOe5hmVOGHq1KeHwFJ3oZZgaccJl9F/zRw1K0alXviK7rYme860mfy1/8HQv7HviTxt+zr8LP2/fgyt3pPxw/Yg8ZaRr2oeIdFcw63D8LdW8Q6Zdxa5aMiSSXGofDP4jW3hnxVpjbRFpOi6n421WVtkbCvtv4N/tf6D+3h8K/+CJ/7UGiLZ21/wDEH9rDxsvjrRbFy8Xhj4l+Hf8Agm//AMFD/DfxE8PhH/fw2lh4u03U/wCx3ukilvdCuNJ1JU8m/gZ/2M8f+BfCnxQ8C+M/hr470a08ReCfiD4V8QeCvF+gX8Ylsta8M+KdKu9E13SrqM8Nb3+mX1zayjrslJBBANfx2f8ABBnx54t/4Jvf8FIf2w/+CM3xl1e8fw9rvi7XfiP+ztq2sBbRfEGtaBolvq0GoafAuIPO+LnwJj8PeM7mKB3ttM1D4eXekx5v7q4U/wCmXhfnr8Yvoi8Y8KzwqzfxL+ifl3HfGHBtB13Sx2Z+BnitkOZcKeJOX0J+yryq0fDziTOMv48qKtyw/sytWyvB/V3iKmIp/nOOpLL8+w9fmdPB57PC4fEO14QzPAVaeIwc3qkni6NOeF0u+eKnK9rP9Nf2CPgP8WNY8Nf8Etv2mdM+GWnah8Nfh3+wL+xD8LNX0qfxNplrr3jbUvEH7NtyE/aO07SX8W2egpcfs123xB1f4Z+HtM8T2Nt441/wf8Y/2jr7QtKv7nw58JrTxp6T/wAEiFZf+FT7lZf+NHn/AARFXkEfMv8Aw31uXn+JcjcOoyM9RX7hUV/OXGH0hcy4zyfxFyjMeGsFh48bU+HMHluIwuZ4yVTIMr4d4uzbi2jhMWsXSxP9t18Ris4xlJ4qnLJqeH9o44fCQy+jgMswPr4fKYYapg6kK05fVvbOalCNqs61CnQco8rj7JKNKL5bVL296Tm5Tl+O3wa/Za/aH8J/tb+G9Q8ca9+0p4p+GPw9/aN/a9/aK8P61qnjH9jfQf2Z9L0/9onV/jzd+EfBvg/R/DXwv1v9uHx7r+g6B8bLLRvE3hT4p+O/BHwv0rxN4YXxh4b8SeItF8HfD3wFJ90fs0ftIX/7Q19+0JYan8JvF3wfvfgR8cbL4PNofjrVNAvPFGv2eqfAT4F/HnSPF+qaV4bu9V07wi+q6L8b9Os4fCk2u61rOm2+mRXHiN9D8QXup+EvDv1DXlXw8+EHhr4a+Lvjt4z0K+1y71T9oP4q6R8X/Gdvq1zYT2GmeJdF+CHwb+AdrY+GIrPTLC4stDk8H/BDwpqVxbarda1fv4l1DxDeR6nFpd3pujaT8hxJ4iYPj6hneM4uyHI8Ln+G4Uy3K+Fcbw9gsblNFZvR4zhnOb4/H4DDY95ZVxeeZdnXE1fMsTUwaoTxsMJUwuGw2Kq1q9Xpo4SWFdONCrVlSdec68aso1H7N4f2dOMZOHOo0506KhFSuouScnFJLC8E+BvG/wAJ/hp4w07xN8Ufi/8AtbeIQPEHiDTH+KGnfs7eHPGesQ/2BaQWXwz0VfhR8K/2evhZHpuoX2nXB06+8Y6Ql2mq+JNQHiHxivh2DTrbRPmX/gnP+z/8Tv2Yvhh4u+FPxQ8L6HBqreJNE8baf4+8M+IJ9d0fxDpniPwZoGm2HwvQ67rupeMIIv2ZNL8Nab+z/wCC7zU9O0/RvEHwY8D/AAm8QWE0nijUvHGh+G/0Mor5tceZwsg4s4deFyeOC4yx+TZnm0sHl1PKHTxeQVK9TLHl+CyWeW5Pg8PSjjMfTqYGGWSwNf668TWw88dgcpxWX6/VaftaFXmqc2HhUhT5pupeNVJT55VFOpJvlg1Jz5ly2T5ZTjMooor4k6QooooAKKKKACiiigAooqOaaK3ilnnljgggjeaaaZ1jihijUvJLLI5VI440Uu7uwVFBZiACaaTbSSbbaSSV229Eklq23sgJKZJIkSPLK6RxRo0kkkjBEjRAWd3diFVFUFmZiAoBJIAr+Hn/AILh/wDByCGHjP8AZB/4J1+MQVP23wz8WP2rPDV/nOGubHW/B3wLv4EKsrAfZb/4vWF0yurXC/D1h/oHjOvkT9j6D/gsD/wcGeAofg3rH7YHh34Q/sm/AXQPAHwu+Ldxp2pJY+JfGstv4bgtbTVvGngXwpf2vjr4ueIvFlrpMmsXsvxA8ReGPhbfavZarNocsOuabqVmP9GOGP2bnibT8J8o8cfGjjjg3wB8N8RXji88xHHdHOcRxTkvDWJWEpZTmsOFsswdTE47OM+xuLjhMn4Vq4rL82rNU54n6pPEYehU+RrcYYJ4+plmXYbEZrjIrlprCunGhUrRcnUpuvOSjGnSjHmqV1GdNaqPMk2v6Rv2+P8Ag42/YH/Yxl1vwP4B8QTftY/HOw8+yg+H/wAF9TsLzwbpOto4hj0/xr8XNmoeGNJKzrNbXtj4StfHniXTb2H7Jqfh2yaQSL+QK/BH/gvV/wAF23hvPjz4lP8AwT1/Yb8SSpKPAsOla94SvPFfhe4JKEfDk6jZfFH4sSXVp9iuhL8VfEXgz4a6mzJrXhOzg/486/fP9gD/AIIZ/sDf8E+U0jxN4I+HC/Fr43acIZ3+Ovxmh07xZ4ysNRjxJ9p8D6SbKDwp8OlgmaZbK78K6Na+J/sUostX8T60IxKf2JrwpfSG8Avo+N4P6Kfhk+LOOcJ7n/ExPjtluX57n+FxkFb+0PDjw15avC/CHsq6lXyvN86p5rnn1Wr9WzLCuceZa/2Tmube9nmM9hhZa/2Rlk50qUo6e5jMZpXxF1pOnTcKXMuaElsfkJ/wT/8A+CIX7Bf/AAT1h0jxF8PfhunxO+NlhChufjx8X47DxX45gvmijW4m8HWDWkPhj4eW/mCdbVvCej2WvfYbh7HV/EWtKGmf9e6KK/jjj/xI498VOI8Xxd4j8XZ/xpxJjdK2bcQ5liMxxMKSlKcMJhVWm6OBwFBzksNl+Bp4fA4WD9nhsPSppRX0GFweFwNGOHweHpYajHanRgoRvazlKyvKTt705Nyk9ZNsKKKK+KOkKKKKACvn/wDay/5NY/aX/wCzf/jL/wCq68R19AV8/wD7WX/JrH7S/wD2b/8AGX/1XXiOgD4B/wCCBH/KG3/gnt/2b/o//p816v1h8L+JdE8Z+GfDvjDw1e/2l4c8V6FpHiXQNR+zXdn9v0TXdPt9U0q9+yX8FrfWv2qxuoJ/s17a213B5nlXMEMyvGv4of8ABEj4jzfDz/gj3/wTZlvvBni/xB4Y1T9nK4/tLXfBnh/XvGOoaDren63cTaBpl54X8NaRquqnTvEltPrwfxLIbbSNAvdHsbbV5I7fW0vrCr4k/wCCu/wF/Zw+H/wa/Zk+DfhzxV+2b+1tofwx8BeCZfgl+ztH/wAJfZaT4s8PeEdH0nU7HxX8QtFttb8P2EGnana3Fnqy+GYfGGraNLC51jSdPtwblerNHluRcNrPs6xtLA/XMwweGyiE8RQnLMKLjm9PMo0MHS9rja+MwmKwmXw+rUoqvCljaNWeHnSxuEqvqy/L8wzbFvCZdhKuKlTpyqV3CDVPDxTpuFTEV5uFDD0XGU3KtWnCmnBpzTjJH7qO6Ro8kjrHHGrPJI7BEREBZndmIVVVQSzEgAAkkAV+On7SX/BZ/wDZ++G/jNvgb+y/4W8W/tz/ALTF409npnwt/Z8hfxF4d0zUIJDBMfGHxG0uz1nR9Os9PmDLrH/COWXiq70Ro2XxBb6LDuuo/muD9hv/AIKR/wDBR6SPXf8Ago18cpP2Xv2fdRk86L9jL9mfU4LfWtd0lpGlhsPip49S81zTZ3kWOylu7K8vviBDMRObLSfAepfJD+yf7Nf7Iv7N/wCyF4NXwL+zp8JPCfwz0aSK3TVr3SLJrnxR4nmtQ/k3ni/xhqcl74o8V3sRll8i417Vr9rSOQ29kLa1WOBPhljeJM70y7CvhzLpf8zHNaEa2b1ofzYPJ3L2WDvZqNXNKkqsU05Zaz3/AKpkGT64/Ef2/j4/8wGWVpUsroz093F5ql7TF2v71LLaaptpqOYLU/Hy2/YG/b//AOCilxB4j/4KcfG5/gZ8DZ5or/TP2Jf2Y9Yj023vrcuJorT4vePop9at9ZnjEUC3Vgmp+OY2aSe60DUfA16Xtx+y37Pf7Lv7Pv7KfguL4f8A7PXwn8IfC3wyqwG9i8O6cBq+u3FujRw3/inxLfPeeJPFeqJGzRrqfiPVdUv1jIiW4ESqi+90V6WWcO5bllaWLjGrjczqR5a2bZjUeMzKrH+T6xNJYejbRYbCQw+GiklGijz8xz3MMxpRwspUsJl1OXNRyvAU1hcvpPdTdCDbr1r6vEYqdfEybfNWdwooor3TxgooooAK/he/4OmvHvh39nf9tr9gz9pn4PW3jHwf+1f8N9MHij/hLpvBV7B8OPFnhjwJ40tfEPw/gHjF7iz0/wAR+IPC3iGTxRpfi/wnbQ6nLP4P8YaTa+ILrTNPk0iz1b+6GvgH/gpP/wAE9PhB/wAFKv2ZfE3wA+KCJo2txu/iT4T/ABKtbKO81z4X/EaztJ4NJ8SWERkga/0m6jnl0nxX4ee5gg1/w/eXdslxYapDpWr6Z/U30MfGLhLwM+kJwZxzx/hMxx3AtSjnnC3GGFy+cZ058O8XZPi+H8xrZplc8Lio59lGCpY76/jskjCFfFxwsKmDqLG0MNCp4nEWX18zynE4XCyhHFJ0q+HlNNNVsPUjWgoTUo+yqScOSNTVR5mpLlba/L//AIN+P+Ct3xw/4Kgj9r5f2g4/AmkeKvhf4t+G2veBvDHgLQZdB0TQvh94+0vxRp50eyOoahq+ua3/AGVrngm4u7/Vtb1jUr/7R4ghiElrYtYWVv8A0fV/n5f8G63gL4wfsA/8FnPjh+xX+0Do9z4P8aeK/gb8Q/BraPIs/wDZPivW/BXiDwp8RPCXjPwtezx2o1rw1rXgPQ/GWseG9Whgxd6RqjvJDbXEdzBb/wCgbX3n7Q7wz4F8MvpKZtQ8LcDkuX+GXGfBXAPHfAWG4bVJ5C8gzfhvCZdPF5TWoynSxWEzHN8mzXMI4uFSo8RUxVSpOrUqOc5cvCWNxWNyem8dKpPG4bE4rC4qVa/tfa060pqNRPVShTqQg4tK3LZJKwUUUV/Dp9KFFFFABRRRQAUUUUAFFFFAH4A/8Pgf27f+kC37f3/hW/B3/wCW9H/D4H9u3/pAt+39/wCFb8Hf/lvX7/UUAfy//tV/8Fvf+Cgnwx/Z5+KnjnQf+CNH7WHwP1XQvDYa2+M3xo1DwN4n+FPwoXUNRsdKuviL498P+DNSk8Q6t4c8GWl9P4hv7O1a1s5E08f2zqOl6KNR1K1/nS1b9vj/AILT/wDBR3wT4u/Y+0jx18dP2mPAGuaJL40+MOp/s6/AP4Nab8V7PwddXenaDY/D/wAU6z4M1L4DeCrX4W+NJbnVZrTTZVl8V6/Po+r6fqt34s8Kx6lY6b/pSXtlZ6lZ3enajaWuoafqFrcWV/YXtvFdWd7Z3UTwXVpd2s6SQXNrcwSPDcW8yPFNE7xyIyMQfKfg9+z58A/2edJ1jQPgD8EPhB8DdC8Q6s+va/ovwe+Gvgz4Z6TrmuSJ5Ums6xpvgvRdEs9T1Z4/3b6jewz3jJ8jTFeK+m4I4y4k8OuMuHuO+E8XgcJxDwvjHmOT1szyLI+I8HhsxjSqU8Lj5ZTxHl+a5RiMTgJ1Fi8BUxeAxDwePo4bHYb2WLw1GtD5vNMjx2Z5vluL/tzF4XJsNhcfh8zyCjShGhnEsVCMaFWtjYVKeKw31SUefkpc3tlanzUqc68a/wDnt/Aj/glz4Q+HKW938Y/+CH3/AAVy/aJ1ZZFa6tNb+LvwV+Gvg6ZFCfu4NH+HN1pPiy2DsJDI0nj+6Yo6rEYmQu/7sfsv/tOeMv2LtK1TSf2XP+DZX9rj4NJr1pptj4h1bwvqvwfk8V+JbPRzO2l23ifxprGvan4v8SQ6fJdXU1pHrmuagsFxd3dygE9zPJJ/VXRX6b4mfSa+kD4x0cRg/Ezxg494syvFzhUxGQY7P8Zh+GalSnVhWpz/ANV8ung+HoSp1adOpTlDLIunOnCUHFwi16ODybKcvcZYPL8LQnFWVWNKLrJNNP8AfzUqrum07z1Tdz8Af+HwP7dv/SBb9v7/AMK34O//AC3o/wCHwP7dv/SBb9v7/wAK34O//Lev3+or8MPTPwB/4fA/t2/9IFv2/v8Awrfg7/8ALej/AIfA/t2/9IFv2/v/AArfg7/8t6/f6igD8Af+HwP7dv8A0gW/b+/8K34O/wDy3o/4fA/t2/8ASBb9v7/wrfg7/wDLev3+ooA/AH/h8D+3b/0gW/b+/wDCt+Dv/wAt6P8Ah8D+3b/0gW/b+/8ACt+Dv/y3r9/q/J/9qz/gsP8Asrfs5+Jv+FReAJPEf7Vv7Sl/dyaRoXwC/Z2sm8deIn19Q6ppXiXX9Ii1HRvDs8UyNHqGl239veMLBQZj4SniUsODMc0y7KKH1nMsZQwdFyUISrTSlVqNpRpUKSvVr1pNpQo0YVKs20owbO7AZbj80r/V8vwtbF1bc0o0oXjTgt6lao7U6FKP2qtacKcFrKaR8wn/AILBft2AEn/ggt+38AOST4t+DuAPU/8AE3r8wv2pf+Dijx18bdD1j9j/AMO/sv8Aif8AZB8bfF3Vbj4S+O/i18WPiH8HfihY/Djwp4h0bX7DxVptj4d8F61rFhZfEjxHLDafD/ws/jLOj6D4k8VWN9qejavPa2+kXf6SD9lb/gpz/wAFMCNQ/bf+J837DP7L+pfvYP2U/wBnvWI5/iv410S5wfsHxY+ILS31nax3Fm0P2jT77+2bKWdZor34ZeF9RiW5H2z4r/YI/ZC/Za/YY/ai+G3wa+A/gHQvD+s/s6fFyz8VXer6LbeLPEnjdLX4f69dRHxr4m8TpquteJI0voEv7bT9RvJNI026+bSNO0+JY4k5+Hs+zGtnuT5lLhujU4awWZYPGZhheIJ4jCYvP8BQr06uIy+hgcM4YnLqOOpQnh5Y3G1aWJowqe0p4CUlFno43LMpy/CYijiM0ljc3nRnCjRyh06uBwNaStGpisxqKVLFypN3eHwFOpRlJcrx0dUfxueCbj9u/VdA0T9g74c6R+2p+1t+wB+zH4U8H+FrnwL+yrong/wZ4hhPiOfxNq9x8HvjL8WND8InS/EWvaVYQaZ4gFrqfhbWkTwt4n8OHUPD1hrCx+ItX/a/9mD9sL4r/sb+EV8G/s6/8G5H7XPw9s5oIodZ1y01az1Hxn4peIIftHivxpqvgC88S6+5lQTRQahqUtjZOxTTbOygCwr+jn/Bvh4e0Dw9/wAEbP2CV0DQ9H0Nda+C9v4i1hdH0yy0wat4g1bxBrk2q65qYsoIBf6xqcqrLqGp3Xm3t7IqvczyMAR+y1fscOKPCulm+Y5zD6P/AANisfjsdjsTTx2Z8VeKVfH4XCYrF1q+Gy6hPAcb5Vl2FwuBw9SngqdLK8ryzD1adCNWphvbTqTl4dTG55Vy/D5XLPcXTwGHhBLCYbDZdh8PVqRSvXxEIYTmxVeUk5e2xdSvVV1FVOWKR/PZ/wAPj/28P+kEf7cP/hQWP/zvaP8Ah8f+3h/0gj/bh/8ACgsf/ne1/QnRXqf8RD8P/wDownh//wCJT4v/AP0x/wCrvyt5n1TFf9DTF/8AgjL/AP5j9f6Wv89n/D4/9vD/AKQR/tw/+FBY/wDzvaP+Hx/7eH/SCP8Abh/8KCx/+d7X9CdFH/EQ/D//AKMJ4f8A/iU+L/8A9Mf+rvysfVMV/wBDTF/+CMv/APmP1/pa/wA9n/D4/wDbw/6QR/tw/wDhQWP/AM72j/h8f+3h/wBII/24f/Cgsf8A53tf0J0Uf8RD8P8A/ownh/8A+JT4v/8A0x/6u/Kx9UxX/Q0xf/gjL/8A5j9f6Wv89n/D4/8Abw/6QR/tw/8AhQWP/wA72j/h8f8At4f9II/24f8AwoLH/wCd7X9CdFH/ABEPw/8A+jCeH/8A4lPi/wD/AEx/6u/Kx9UxX/Q0xf8A4Iy//wCY/X+lr/PZ/wAPj/28P+kEf7cP/hQWP/zvaP8Ah8f+3h/0gj/bh/8ACgsf/ne1/QnRR/xEPw//AOjCeH//AIlPi/8A/TH/AKu/Kx9UxX/Q0xf/AIIy/wD+Y/X+lr/nx/8ABV//AIKK/tYeOP2uf2V/jvZ/scfE3/gmT+0B+z34F8a618O/jJ8StC8OeKvil8RdE8YDXPBuv+GLBfG3gWf4c6z8NvBun6vqh1fR9b8K+JtVsNV+I/2jT77wrFqsza/+vn7I/wDwXJ/4KG/Er9nL4V+NPEn/AASA/aU+P2savod5Fc/HD4NB/Cvwv+LkOka5quiWHxF8F+H9U8Ja5caXpHi/TtNtNcWC31a+0lri9nm0Kc6JLp6r/SH8Yf2ffgL+0PommeGvj/8ABH4Q/HPw5oupprejaB8Yfhr4M+JuiaTrMabI9X0zSvGui63YWGpxp8iX9rBFdInyrKBxXqVhYWOlWNlpel2Vppum6baW9hp2nWFtDZ2NhY2cKW9pZWVpbpHb2tpa28ccFvbQRxwwQxpFEioqqPHfiDRxvEFPMOI+FsBxVw1leRS4e4R4FzziXj6rkHBWWSzWtnKwnDmLw3FuG4gw+ChmOOznFwy/E5xicD9azzM8XUw9TFVKNaj4uEyDNMNnebZnLiXGVMDmNHAxo5VHAZfSp4PE4aiqOKxft1Rl9YqY1Qpyk50IVKXIoKrOlGnTp/z7/wDD4/8Abw/6QR/tw/8AhQWP/wA72j/h8f8At4f9II/24f8AwoLH/wCd7X9CdFex/wARD8P/APownh//AOJT4v8A/wBMf+rvyt7X1TFf9DTF/wDgjL//AJj9f6Wv89n/AA+P/bw/6QR/tw/+FBY//O9o/wCHx/7eH/SCP9uH/wAKCx/+d7X9CdFH/EQ/D/8A6MJ4f/8AiU+L/wD9Mf8Aq78rH1TFf9DTF/8AgjL/AP5j9f6Wv8iH/BRn/gtZ/wAFFfDP7G/xe17wf/wTR/a3/Yh8SaXcfDW50v8Aag8b3PhvXvCvwykHxb8BpOus6Nrvw8fR9St/G1q8/wAO4rXUY5bWW58WwCSGYfun/PX9hr/g45/4LH/EfUotEg/Y3tf29dM08xJrNz8Kvg38Q/D3jqNokt0me98TfCjS/EXgLRI5FPnTy3vw1EUE9ysivDaiO1r+4b9prWfhD4V/Z8+Mfjv4+eD9C8efB34X/D7xJ8XviB4X8SeF9G8Z6ZfaD8IdPl+Jsl2PDWvwXOk6nqmi3PhS31zQBdRhrTXtN02+tZra7tYLmL53/Yh/bO+Gv7Tl38UPhz4Jvv2br3VvgnYfD7V7/wD4ZO/aD8O/tLfBy38HfFC58fWXga3Xx74c8C/De20HxzHc/DLxcniv4d3HhVH8N2i+H9Vstb1/R/Eum6g39b+GfjT4U5T9HjjalmX0EvDvj6jlvGOKzHH8f4ziXiHBYThjC51gOD8iwGXrNMbjc48RcS/7VVGVfBZJxfkuUYGecYGvDD4fG5hi8Ri/BxuXY+pm2GcOJ8XhXPDxhDCRo0ZyrSpzr1Zz9nGNPCL3L2lUw9SpJU5RblGEVH86dG/4LDf8FA7nTLe71r/ggn+27b3k6hjaeH/H3gfUYoQRz5snizw34C1CNgwICPpKuRhiFzgaf/D4H9u3/pAt+39/4Vvwd/8AlvX7/UV/AXEWZ5fnOc4/Msq4cynhLL8VWdTC8PZJic+xmWZZSsoxoYXFcTZzxBnlaOnNKePzbF1JTlJxlCny04fVUYTp04wnWqV5xVpVakaUZzfeUaNOlTXpGnFeu5+AP/D4H9u3/pAt+39/4Vvwd/8AlvRX7/UV4poFeQ/tB/Fb/hRHwD+N/wAcP7B/4Sr/AIU18IPiV8Vv+EY/tT+w/wDhI/8AhXngzWvF39g/21/Z2sf2P/bH9j/2f/an9k6p/Z/2j7X/AGde+T9ml9er4T/bS+BUGs/s5ftx+LPBVv8AF7xX8Ufid+yH8e/AWmeBrL4o/Gnxl4S1fUtT+EOpaPoeleA/gBceMtX+FujeL9YvtI0exs7/AMDfD3TPFer6lf6sovbq98V+ITrGdVyjTm4W5lGTXdWi2mlZ8zvbR2T79H5edV8bhsrx1fAQhLE0sJi6kJSk1OlKnha86dSjS+r4iOJrRrRpKOHqKnTqKUnKp7qp1PR7D9rH4c2fjv43+CviBd2Xw7T4Q/EjWfAun+INYvb+fRfF2n+Ff2Y/gr+074v1+fVP7DtNE8LX2g+Ffi1qar4VvtZv9V1fQPh/4l8ZaVJc6fY+ILHwzyujftg2ev8AxP0n4f6f4BvVsNa/arsf2arHX9S1TU9D1FbPUf8Agn9F+3ZbeO9Q8H634R0/WdIvRDMnwwuvAervY6np8/meKr/Vra6hl8GJ83+O/wBlr4l/Hrxl+1f4ZUaX4D8LXP7ang744+HPFnjDwvc6tJ4l1r4dfsM/si6B8MZPC+jator6L4m+G9z8XNC1zR/i1qVrrMB1jw94I8Z/B+GKdvF/iTUPCz9F8AfFeX9prSfFPiL4e63YLL/wU3sPiPruoaLpniLV/Btl4Zf/AIIjRfCnU/Fmk+Kb7QNE/tP4fW3xfM/wxsPGl5pmkWN74ySLw1cQWHiWV9FiwdStzJWtH6woJ8usoc80090kko+9ZN30d4yb+RrZvxLHE0KbpTp4WXFtHAQxMcHFzxOWTzHMaOIo1G/awp0sPQo4RRxkaWHqVo1fcqOdCvXr/ffxF+PXwu+FOtaPoPjjW9X0++1hbS4kn0rwR478V6N4X0zULyfTtP8AEHxG8R+EfDWu+HvhZ4U1C/tL6ysPF3xK1Twp4YvbrTdVgtdWll0vUFtvYa/Nv9rP9i3xD8dPiXr/AI00CK013Tfif8IPBXwJ8faL4i/aW/ag+BvhLQvB3hLxN8Wdbu9X1T4dfs4ax4atP2jY/Emn/GPX9G1DwB8RvGPgPTbCz0mODSPF1lb+KvEkT/Q118XviZZftf8AhH4GX/hDwlp3wr8W/An40/ErRPFq67qOp+Odd8S/Cnxh+zL4fmjfRorKy0Twv4Wii+OurWIW4vvEOu+INV0Vb1Y/C2l2MA8VaqpNSn7SKUeeEYNKTb5m0uZtctvhd02lzcr95Wf0FHNcfRxePjmuFp4fArH4DA5XVw1PGVatWeNxNbDwli5yorDRhO+DqRrUKsqVKWJeFrSjiqfs5fT1FFFbH0QUUV+Xn7Xn/BXL9kf9k3WT8N01/Vvj3+0HfXLaToP7PvwFs08fePrrxC5aG00fX5NLkm0nwndSXRhSbTNUun8VG2lN3pfhfVwgifhzDM8vyrDyxWZYyhg8OmoqpXqKHPN/DTpR+OtVm9IUqUZ1ZytGEJNpHbgcux2Z11hsvwtfF12r8lGDnyxW86kvgpU47yqVJQpwWspJan6h1+Wf7XH/AAV4/ZS/Za8RN8KdGv8AxD+0d+0heXjaNon7PPwA05vHfjibxCy/uNI8RXmmLc6T4XuhI0ZutKuJr7xdHbObqx8J6kiMlfGI+Cf/AAVk/wCCmCi8/aO8ev8A8E3P2U9cULJ8BfhFejVv2jfG3h+fc0lr448byw28vhn+0bOd7G7tryTS7do1a28QfCCVgLib9S/2Rv8Agn5+yb+w/oDaT+z38KNH8Oa3e2kdp4g+ImslvEnxM8UhTvkOueNNVEuqfZJp91ydD0k6V4atrh2ew0WzB2j57+0uIM793JsF/YuXy/5nGd4ef1yrDT38vyNyp1Y8yd4V81qYXl+L6lWjo/d+oZHk+ubYv+18bH/mVZPXj9UpzX2MdnKU6btqp0ssp4m/w/XKMk7flv8A8M6f8FSf+Cmv+mftd/EG5/4J8fsraniSL9m34Gaut98dfHmhXX3tP+J3j5nkg0eK4s5AlxZX0ElpM++11r4S6ddxJej9X/2Uv2Ff2Vv2KvDP/COfs7fCLw54Kubm0jtdd8ZTQtrfxD8VBCju3iTxxq7XfiHUYHuEN1HpCXlvoFhPJJ/ZOk6fCRCv1xRXoZdw3l+ArrHVXWzTNnFxnm+ZzWJxtn8UMP7sKGAov/oHwFHDUbJc0JSvJ8OPz/HY2j9SpKjl2WJpwyvLoPD4O6taddc0q2NraJuvjauIq3vyyjG0UV8//tZf8msftL/9m/8Axl/9V14jr6Ar5/8A2sv+TWP2l/8As3/4y/8AquvEde+eGfAP/BAj/lDb/wAE9v8As3/R/wD0+a9X6/V+QP8AwQI/5Q2/8E9v+zf9H/8AT5r1fr9QAUUUUAFFFFABRRRQAUUUUAFflp+0r8QvH2g/H/4qaNofjjxfo2j6d/w5X/s/StK8S61p2m2P/C1P+CmXxk8BfE/7HY2d7Da2v/Cx/A2l6Z4M8e+REn/CYeE9OsfDviH+0dHtLezj/UuvkP4q/sqL8TfiR4w+IR8dnRD4s/4YO/4lA8MDURYf8MSftXeOf2nl/wBP/wCEgsPtX/CzG8ZnwQ3+h2//AAho03/hJB/wlJvP7Btca0ZyilC9/f2aW9KpFbtfacfR67K6+f4jwmOxmDhTy+M5VV/aPMoVoUX++yLN8Lh/enUpp3xuIwsY6+5Nxqy5YU5Th8leLP2oPjH8QNC8ZeHXuvDngu/+An7YH7EnwK+JOt+AdY1Ox1Pxt428Wft3/ArRvEEnhhLHxfqF94e+Enij4H61p+m+J/DviI69d61r/j7x38KdS1d0+F3in/hLfefhh8cNV+HH7HP7R/x58ZXGv+PZPgz8Uv8AgpP4ue01HWLy/wBX1Dwt8E/2q/2mf+Ec8H2Go6i97LaafpHhHwfpPhDwxYqr2Og6Jp+laTp1rDp2n2tpH6B40/Y2+Fes6B4b0vwPaH4far4e8bfAbxLNr8Nx4i8RXPiHRvgp+1P4M/arn0TxTBqXieA+Ktb8V+M/D3ihV8feKrnXfFPh7VviN4z8SwXOpS+IfE2l+IvS/hN8FNL+HHw48WfDXWr6z8c6N4x+J37R/wAQNXi1LQ4bTT7vTf2h/jl8TvjJqHhK+0me+1aC/stCtviTN4QubuaZYvEUGmPqsumaUupNpFnnCnWVRuUr/uZRU73Sm53j7rtdxjZN8qUrXdnJo8bBZVxHSzWdbE4pTvw3isFTx/t44ihDMqmZTrYTmws40J1J4XCulCdb6rCniPZSqSlGrXnTj5N+yt8dviJ8W9X+Jnh7x1ofiK5tvBtv4L1nQPiPffssftF/sm+HvEsXjS48aW974J03wN+0kbzxRr3iL4er4Qsb3xN4q8PaxeeG9RsPHPhYpp2g6iL7TE+xq+eND/Zd+E/hfw7478PeHD8RtLf4mT6G3jfxbP8AGX4ueIviZrOm+Hroz6Z4cg+Kni7xr4g+I2heGLK1uNV0rTNB8OeJ9I0/w7puv6+nheLQ7vVbm7bD/Yc0HxF4W/Yq/Y/8MeL9G1rw54s8Ofsufs/6D4o8PeJNOvtI8RaD4i0f4T+EtP1rRte0nU4bfUtL1rS9St7mx1TTtQt4L6yvoJ7a7hiuIpEXWm5x5YTSbcZyclKTV1NWj7y5n7slZuV3Z77ntZVPM8K8FlmZwpV688JmGKqY3D4jE1qMZUMfShRwq+tUvbySwuNoclavXnWm6FWM/auLrz+o6KKK1PfOS8f+BfCnxR8CeNfhn470e38Q+B/iJ4S8SeBfGWgXbSra654U8XaNe+H/ABFo9y0LxTLb6npGoXllM0UkcojnYxuj4YeF+Hf2d/G3hnwt8RtMh/au/aL8UeNviLc+HoV+KPjy6+E2sa58PvDuhXjEaJ8M/Avhz4VeD/gp4cvZtJvdbsn8Wah8Ltd8VaxqF9pmseOtV8bnwv4esbH6hor3cu4kzjK8FUy3CYmi8BVxmGx88Ji8Bl2Y4d4nDV8JiVy08xwmKjChiq2X5fLM8JBRwmbxy7L6Wa0MZSwOEhRynRpzkpyi+dRlBSjKcHyyUo7wlG7ipT5JP3qfPNwcXOTfx5/wTw8VeJvHf7AH7DXjfxr4h1rxb4y8ZfsefszeKvFvivxJqd5rXiLxN4m8Q/BXwTq+veIde1jUJrjUNW1rWtVvLvUtU1O+uJ7y/vrme6uZpZpXdvsOiip4mzejxBxJxBn2HwFPKqGd53mub0MrozjVo5bRzLH4jGU8BSqQoYWFSng4Vo4eE4YbDxnGmpRoUk1TiUKbo0aNJzdR0qVOm5tWc3CCi5tNyacmrtOTtfd7hRRRXiGoUUUUAFFFFABXIXvgLwnqPj7w18T7zSvO8c+D/CHjjwF4d1z7dqUf9neE/iPrXw98Q+M9K/syK8TR7v8AtnWPhX4CvPt19p91qWnf2D9n0q8sbXVNZg1Hr6/OL9sP/gql+yB+xhct4T8ceOLj4g/Gi6listD+AXwgtIvHfxW1PVrsrHp+nX+kWFzHp/hSW9lkhFsPFup6Nc30cm7SLTVJgtu/Fj8wwGWYaWLzLF4fB4aDV6uJqQpwc73hCHM051ZNfu6cFKpOVlCLlZHRhcsxObVoYPC4Kpj60p06saFOj7dxlQqQq06zjyyjTVCrCFWNaXLGjOEanPBxUl+jtfmn+2B/wVg/ZD/Y9v5PA2veLr74t/He5uY9L0P9nz4J2kfjz4n3+u3RMVjpWr2enTf2X4SnnuGgU2viPULLW57edZ9H0PWH227/AAn/AMIj/wAFav8Agp0d/wAQdUv/APglx+yRqeXHgvwtc3Gq/tW/EfQ7ng2viDV2fRdR8C291bCe1ube6g8ETWy3flan4M8a2Plzj9Lv2P8A/gm7+yH+w/py/wDCjvhbYR+Nri3eDXPi94zdPF3xa8QvOpW9kvfGOoQLNpVvqBO++0Xwpa+HfDs8oEzaOJsyH53+1M+zr3cjwKyvAS/5nWd0Ksa1WDt+8y7JHKjiZpxfNTrZlUwNPRSWHxEHZ/Q/2bkuUa5zjHmWNjr/AGRk9enKlTkteTH5wlVw8GmnGdHL6eMqfZlXoT2/M2L4Vf8ABWf/AIKbRte/HPxlcf8ABM79k/WncxfBz4az3V9+09448OT8Gy8a+KZxp1z4VW/tZJ7O8hvF8NrsY2+tfCnVICt1N+of7If/AATw/ZI/Yf0UWHwB+E+kaN4kubX7LrnxO8Q48T/FLxKHA+0f2t411ON9Rt7O6kUTTaFoK6L4ZSfMtroluxJP2zRXdl/DWAwWIjmGJlXzbN0mnmuaTjiMVDms5RwdNRhhsuot7UcBQw8LaT53eT48dxBjcXQeBoRo5Xld01lmWweHw07aRlip80sRj6qSV6uNrV5p3cORPlRRRRX0J4QUUUUAFfP/AO1l/wAmsftL/wDZv/xl/wDVdeI6+gK+f/2sv+TWP2l/+zf/AIy/+q68R0AfAP8AwQI/5Q2/8E9v+zf9H/8AT5r1fr9X5A/8ECP+UNv/AAT2/wCzf9H/APT5r1fr9QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXwD+2D/wU2/Y8/Ykgl074wfE621P4kSxw/2N8FPh3FF40+Lmt3V2FOn2qeFdPuY00BdS3AWGo+MdQ8N6ReN+6ttQmuGjhfkx2PwWW4eeLzDF4fBYan8dfE1YUaabvaKlNrmnK1owjec3pGLeh1YPBYzMK8MLgcLXxeIn8NHD0p1ajXWTjBNxhG95TlaMFrJpJs+/q/PP9sT/AIKh/sf/ALE+7Qvif8Qv+Eo+K9z5MOh/Ar4XW8Xjj4t6zf3m0abZSeHbG6itfDP9pO6LYXXjHUvD1rqBJj02W9udtu/53Qat/wAFgf8AgplG66ZZJ/wSz/ZR1hgv9qX8V5rn7V/j3w7dHJNhbyLompeCRdWgSVZ1i+G99YPdKLTU/GunCUH9Dv2OP+CXX7IH7Eirrnwy+H58V/Fi6ae41z46/FKeDxt8WtYv73J1G6g8Q3lpDa+GI9QZmN7Z+D9O0C2v8+bqa6hdmS6k+b/tfO8693IMB9QwMv8Ame55QrUlOD058tya9HG4q8WpU62Pnl+HdlKMcRB2fv8A9l5RlHvZ3jfr2Ljr/Y2TVqVRwkteTH5tarhMPZpxnSwUMdWWsZSoSV1+e32D/grb/wAFO/8AkLTX/wDwSx/ZH1L5hp9i9zq37WnxK0O4yPKu7jdoOp/D+2u7dGSSOSPwFeWH20rPp/xA0za1fo7+x5/wTN/ZA/Yhtlvvg78NLfUfiPcRSjXPjV8QpovGfxc164uww1C4l8V39tGugxakXLajpng6w8N6NeuFmu9OnuN0zffdFduA4awOFxEMwxtSvnObx2zPNJQrVaLdm44DDxhDB5ZTutIYGhRk07ValWV5PkxvEOMxFCWAwcKOU5XLfLsuUqVOsls8bXlKeLzCpazc8ZXqxT/hwpxtFFFFFfRHghRRRQAUUUUAFFFFABXz/wDtZf8AJrH7S/8A2b/8Zf8A1XXiOvoCvn/9rL/k1j9pf/s3/wCMv/quvEdAHwD/AMECP+UNv/BPb/s3/R//AE+a9X6/V+QP/BAj/lDb/wAE9v8As3/R/wD0+a9X6/UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9k=
/9j/4AAQSkZJRgABAQEAYABgAAD/4QA2RXhpZgAASUkqAAgAAAACAAEDBQABAAAAJgAAAAMDAQABAAAAALEAAAAAAACghgEAj7EAAP/bAEMAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAf/bAEMBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAf/AABEIAMEBegMBIgACEQEDEQH/xAAfAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgv/xAC1EAACAQMDAgQDBQUEBAAAAX0BAgMABBEFEiExQQYTUWEHInEUMoGRoQgjQrHBFVLR8CQzYnKCCQoWFxgZGiUmJygpKjQ1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4eLj5OXm5+jp6vHy8/T19vf4+fr/xAAfAQADAQEBAQEBAQEBAAAAAAAAAQIDBAUGBwgJCgv/xAC1EQACAQIEBAMEBwUEBAABAncAAQIDEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/AP7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA+f8A9rL/AJNY/aX/AOzf/jL/AOq68R18A/8ABAj/AJQ2/wDBPb/s3/R//T5r1ff37WX/ACax+0v/ANm//GX/ANV14jr4B/4IEf8AKG3/AIJ7f9m/6P8A+nzXqAP1+ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/Kn4w/8FO/AP7Mn/BSr4TfsI/tDQ2fgjwn+1Z8I9F8Zfsw/Gm/uI9P8N6r8YtP8W+I/B/jX4A+KZ7l1trLWdQtrTwP4i+H+umVIdY1vxnL4HvI4dUuPCg1f9Vq/jF/4PT/ANnu48YfsT/sxftO6PGw1r9nn9oC+8G6jdW6rFdWHhH43+GGe41QXiKLiNbPxp8MvA1jDHHMgE+tCdVLxBl+5P8Ag2L/AOChP7YX7eH7El3/AMNZfDbxpqE/wb1aDwD4C/au1o6XBpH7QWiaUsunXOnarbz38XiHVviR8Pp7IaR4u8ZW2j3Gh+J1ls59W1f/AITi28RHUQD+laiiigAooooAKKKKAPn/APay/wCTWP2l/wDs3/4y/wDquvEdfAP/AAQI/wCUNv8AwT2/7N/0f/0+a9X39+1l/wAmsftL/wDZv/xl/wDVdeI6+Af+CBH/ACht/wCCe3/Zv+j/APp816gD9fqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOI+IXwz+HPxb8Nnwd8VPAPg34leEW1fw/4gbwv488M6N4u8PPrvhPW7DxL4Y1h9G16yv9OfUvD3iHS9N1vRr1rc3Gm6rYWl9aSRXMEci/kh4edf2Av+CpOq+BxaDRv2VP+CrMt/458HTpItv4c+HH/BQ74beGZH+IvhxIFit9P0WH9qn4M6DpfjWwM1zNeeIfip8LfFkdlbG88RPv/aavif8A4KFfsozftkfsrfED4S+HNZi8H/F/SJtD+K37OHxKz5V58Kv2kvhRqsHjb4KfEGxvUguLmxj0jxrpWnWevvaRme/8I6n4i0Zlkt9TnikAPVvjH+0t8OPgP4l8JaD8SF1zR9O8X+BfjT47tPGa2umv4Q0yD4F+F9K8c+KvDmsXs2rW+qweJ9W8D3Hibxf4Ys7PR77TbzQ/h345n1XVtGuLDSLXW/Kv2ZP28fhB+1hH8Iz8M/DvxJ0+5+K/wD1f9oGfT/GGhaBpGo/C7RtI+Ilr8Kn8BfFW00/xVrL6F8TLzxzbeOtDs9D0I+JtDFz8J/iOl74ls5NM0WPxB8Z+HdM0L/gtd/wT7+Cur+LtVu/gX8T/AA18SY9G/aG8HQ6BFrusfDX4seA7bxj+zz+2r+znrGgX+s6dc6Vb/EX4XeNvjj8HLHV9QvJbzSfB3xM0Tx4dH8Q24h0TVfsH9lT9iXRP2Xfi/wDtc/FnT/HV94vk/ad+KI8a6H4fu9Bj0e3+Eng2bxJ8Q/irqfw30u9XWdVPiGx1L9oD45/tDfGKXVxZ+HUTUfi3e6SdFln0ufXdaAPuKiiigAooooA+f/2sv+TWP2l/+zf/AIy/+q68R18A/wDBAj/lDb/wT2/7N/0f/wBPmvV9/ftZf8msftL/APZv/wAZf/VdeI6+Af8AggR/yht/4J7f9m/6P/6fNeoA/X6iiigAooooAKKKKACiiigAryfSfjj8Ldd8WQ+BNJ8UfbPGU3ibx14Rfw0uieIo9XsdZ+G1lo2peMW1ezm0iOXRNF03T/E3hK9tfE+sCx8M67a+NfAs/h/V9Uj8ceE21n1ivjLwN+z/APETwt+1Z8Q/2kbvUPAM9t8WbObwF4p8MWcM6XugfDzwJp+nL8IfEOga8fDEF9qvjvVtUh8SN8VtL1GXTdIv9G8ReBtHsNe1SL4F+HpPGsTc04cqunJKel+WPWW662VtXrzWai0/NzCvj6NTL44LDxr062Np0sdJ05TeGwck3PEQtWopyVRU6Li+eUI15YpQqQwlSjV+zaKKKs9IKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD8TNXmn/4J/f8ABVjTdaIXSv2Tf+Cs09n4c1nyojb6B8Nv+CjPw38MLB4Z1S4ZUh0/Sl/ax+DOgf8ACOuIhNfeI/in8KtOnu2F5rrS3P7Z18d/t8fsm6Z+2x+yj8WP2fZdafwf4t8Q6VZeJPhD8R7UyQ6t8Kfjj4D1Oz8ZfBz4n6NfWqNqNhe+DPiDoug6rcy6W8F/eaRHqekxzpFqMwbjf+CbH7WmtftifsqeE/HnxD0RfBv7QXw81vxL8B/2qvhu4iivPhx+0t8H9QPhP4qeHbiziLLZWOqapbW/jbwrDvk83wV4s8NXXmyfaN1AH3tRRRQAUUUUAfP/AO1l/wAmsftL/wDZv/xl/wDVdeI6+Af+CBH/ACht/wCCe3/Zv+j/APp816vv79rL/k1j9pf/ALN/+Mv/AKrrxHXwD/wQI/5Q2/8ABPb/ALN/0f8A9PmvUAfr9RRRQAUUUUAFFFfkf+31/wAFtf2CP+Ce0Oq6D8S/ifH8R/jJYFoE+A/wck0vxj8Rba9McjJF4tI1Kz8OfD6FGWJrhfGWt6Tq72s6XOk6Lq/ELfacBeHXHnilxFhOEvDrhHP+M+JMa06GUcPZbicyxUaXNGE8VifYQlTwWBoucXicfjKmHwWFg/aYivSppyXPisXhcFRlXxeIpYajHepWnGEb9Iq7vKT6RinKT0SbP1wr8kv29/8Agtj+wV/wT6XU/DfxJ+J8fxG+NNpFPHafAX4Omy8afENNSVWW3svFjwXsPhz4eeZOYA8fjTWtI1eW0mN5pGi6wE8lv5uPip+3J/wWj/4Ku/D3xh8UfAosv+CXX/BODw/pl5rfi7476rq3ifwxdar4L3w2++L4k2mlQ/Fb4s6jqDXDaPpWjfAvwl4Y8L+INWvYfCuuXVzez20jfza6/wCBvg74Y8QS6T8IofFPjKOC7uLV/id4/tLe28ZeO76adI21fTvB1hc6pp3w+0zUGjWaw8Oxax4t8Uwte38Os+O9at7uDTNM/obj/wAMPAD6JeVVsx+lP4kYfjPxVhh51Mn+jB4I51gM14i/tKCmqeE8UvE+lRzLhjgHL8PioQo5xgcmo8Q8QzwdZ1cnc8RBwj3cJZLxJ4gYz2XDmCeByanOMcdxRm1GcMJRpu0msvwLdOvmGJlTfNRhKVCinyuvOnTkpv7V/bD+Of7Vf/BS348/F7/god4o/Zm/aUsvhB4Bu/Dtp8Ptc+GWjePfi54P/ZL8E/DnwV4f1fXhZ/EvQdK8PaD8JvFWl3ltrPxq8a+M9Xuvh1Y2lx4ptrqfxBZW2n2i2v8Apc/sx6d8UtH/AGbP2e9I+OPiTT/Gfxr0v4H/AAn074weMNIu4L/SvFfxSsfAWgW3xA8SaZfWscVreafrviyLV9Usru2ijguLa6imhjSN1UfLv/BNX9jbRf2UP2C/hL+zt4r0HTdQ1nW/Bt54g+Nml6nYwXllrnjb4mWral440LWbS6hMGp2Ok2t/F4DVLu3CXuhaBZx3UHzyIee/YA8Qa38GfEHxc/4J0/ELUJ7zXf2TovDmt/s665qc9zPqXxF/Yd8fzara/AnVLi+vpWm1vxH8GNR8O+Kv2dPHN7GrXEs3w38KeLdXKT/ECye5/kN4+WcYjGZ7PJMv4ZlnuLxGbf6s5PWzSvk/DdLH16mKoZDldXOsfmub1cFlFGtDL6FbM8yx+Prww0auLxmIrSlVl5FPhjKcgz/ibFZRmWdZjQzfH0ZuebY6OJpL6hQ+qKvgcPRo4fD4KGOkp4utTpU9ZVIQTVKhRp0/0zoooqj0QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvw/+Kd3J/wAE9/8Agqn4C+NiIul/so/8FUpPCf7PvxoeJGi0b4d/t6eBNLu7b9nb4j3uHMGnw/tE/DqDUPgprL2VlENS8beDvAWpa/qQkmtxL+4FfLH7bH7Kfgr9tr9lz4xfsy+Ory70XT/iZ4XktNA8X6Z5i678O/H+i3dt4i+HHxL8NzQz2s8HiL4eeOtJ8P8Ai/SGhurfzrvSEtZpPstxOjgH1PRX50f8Eu/2rvFf7VX7LmnN8Yre30X9qf8AZ98X+J/2ZP2vPCMYWKXw/wDtDfBy5i8PeLtVht1VUXQPiPp40X4p+EZ7YzWM3hjxrpkdrcztbzFf0XoAKKKKAPn/APay/wCTWP2l/wDs3/4y/wDquvEdfAP/AAQI/wCUNv8AwT2/7N/0f/0+a9X39+1l/wAmsftL/wDZv/xl/wDVdeI6+Af+CBH/ACht/wCCe3/Zv+j/APp816gD9fqKK/MD9vT/AILB/sKf8E7LG9sPjn8WLbWvinFZi6034EfDNLTxn8W9QM0Ins/7Q0KC+tdM8F2d9EfNs9W8f6z4W02+iWT+zbm+nUW7/W8EcBca+JXEWC4S4A4Vz7jHiXMJWwmS8O5Zis1x9SClGNTETo4SnUdDCUOeMsVjcQ6WEwlNuria9KlGU1z4nFYbB0ZV8XXpYejD4qlacYRT6JOTV5PaMVeUnok2fp/X5S/t8f8ABZ79gz/gnjbano/xe+KkHjL4vWkDtafAb4TfYfGfxQkuTGXgh8Q2cV/a6F4AglBSVbjx5rfh6S5tS82k2uqyILd/559V/a9/4Lnf8FzLubw/+xR8OL/9gv8AYx1eWfT734y6vr+p+FtQ8T6QztFPcTfGJdEtvGniV5od0baD8BPDFvZ2U80ukeK/EV/ZsL9f1L/YE/4Nsv2IP2SbvTPiN8creb9sr49Rzf2pd+Kvi5pFs3wy0jXJZDcT3vhr4S3FzrGlX90LhvOGsfEPU/HGpLfRpq2lf2DdMIov7Nh9G/wP8Aqccx+lr4nPM+NMOlVj9HLwQx+V8R8bUsTFc0cB4h8exqYjhHgZQqqEMxyzB182zupgMR9ZyyvHEU3TXz39sZlmvuZDguTDPT+18zjOjhnF/awmFssRirpvknJU6SnHlmnF3Pyi1T9p/wD4Ls/8F2bl9G/ZM8BX37A/7EuuSPZXXxPvde1jwjL4r0KaZop7i5+Lw0ex+IHxBM1qbm1l0T4H+GtK8K7zJonjDUbhCuoV+tP/AAT7/wCDbr9hz9jmfSfiD8XrBv2v/jzbPDqMvjD4t6LZP8OdB1oFZpbzwd8JZptW0Xz47oLc2+seOr/xvrltexJqOkXmiTMYU/oWt7eC1ghtbWGK2traKO3t7e3jSGCCCFFjhhhhjVY4ooo1VI40VURFVVUKAK8G/ah/aS+GP7I/wL+IPx/+LmrDTPB3gDRZb97aJ4hqviPWpyLbQPCPh63meNbzxB4m1aS10nS4GZIEnuftd9Na6da3l3b/ABXiJ9NnjKrwnmPh94M5Dw99GbwaVKo8dwt4a1MRhuIM+wdGnJPE+IHiVinHi3i3GfVnVoYutUxWXYHGYWX1fF5dXhCLOzLuFqdfGUKmLliM+zatUhSoTxMVOEa1SSjCngsDH9xR5puPJFRnKMtYzVz8/P8AgsV/wUR8DfsHfs06j4c07TvDPjD44fGvRdY8DfCn4X6zptlrejHSryzOkeIvGXi7w3cwXNjfeC/DtlfLaRaHf2slp4t1u6sPDv2abSzr11pn46f8E9P+DeTxnoXiP9jz9qr49eN9IsNR03xZD8X/AIqfs96l4Zmt7nRrGysn8TfCvQIr+FvskuvQ+JYNAm+I3hfVNK0/TdNsJ9R0Ozubq50uSLU+3/4Jg/s4fFH/AIKi/ta+I/8AgrN+2boMZ+HGha9/Z/7MPwwvvNvPDcl94S1C5ttEn0u0vURbnwP8KbqO4Npdm1iTxj8VJtX8RXQiuNG1e01L+tWv86MBk9Lj3MFxVnuGqPKaFSEeFMvqupRm8PSxNOvUznGRTjOc8yqUIKlh6t6X1Ne9CfPTqv8AZcdmtXgrBPhrJsRD+1K8Jy4mx1NQqxWIq4epQhlWFk1KMY4CFabq16dqjxbvGcOSVJFfnl+3f4J1nwUfhl+3V8NdG1LVvih+x1N4j1jxh4e0CKaXV/it+yh40XSY/wBpb4VrY2oa41/VtN8O6Bo3xu+GehRxTXeqfFz4P+C/D1k1tb+JtWaf9DaCAQQQCCMEHkEHqCO4NfqR+bmL4a8SaB4y8OaB4v8ACms6d4i8LeKtF0rxJ4a8QaPdw3+ka7oGuWMGp6PrOl31u8lve6dqenXVte2N3A7w3NtPFNE7I6k7Vfm5+x9PP+zd8Zfiv+wBrbPB4N8K6ddfH39jG4ljEdtc/sw+K9eh07xb8HdOkC7Jrj9lf4r6s3gyysVY/wBi/BP4hfs+2LGa6+3TD9I6ACiiigAooooAKKKKACvkP48ft/8A7Dv7L5v4f2hf2uf2dfhBqWm+YLrw745+LvgfRfFxeL/WQWng2bWT4r1C6Q8NaWGj3NyDx5Wa4Xxp/wAFAfhxc+LNc+FP7MPg3xp+2d8aPD+oS6L4g8LfAmPTbj4a/DzWocLd2Xxk/aM8Q3Wl/A/4Z3ukl0m1jwbc+MNa+L32USP4f+F3iO6QWT/yL/tb/wDBrZ+1V+3V/wAFR9R/aJ+KeufAv4B/AH9oVF+Mv7RTfArVde8VyfDvxxFfxaNr/wAMPh9J44sNC1j4j+P/AIjWdjaeOtc+Lmq+CPAHgi08SeI/GWpN4IaTSNF8OeLwD+o39lz/AILI/sSftxfGe/8Agp+xnr3xO/aV1Dw1Al58RPiJ4B+E3jHQ/g78MNPm81LS98Y/Ej4m2XgDQ5n1KeF7fRtJ8IN4r8Qa60d1PomkahZaZq11YfqjXzH+yH+x1+zr+wp8DvC37PP7MPw30f4a/DXwtGZfslghudb8Ta7cRQx6n4v8beIbgNqvizxdrJghOpa9rFxcXTwwWmn2v2XStP06wtPpygAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/EP9odh/wT7/AOCl/wAJv2v7N00v9mb/AIKKXngT9kD9raEO0Ok+C/2nNGtr62/Y/wDj/fJiSK2h8Z2I1b9nTx1q80mm6XZRXXwz1LVLi4ltUK/t5Xzb+2D+y78Ov20v2ZvjN+y98VYJG8GfGLwVqPhi41O1jjk1TwrritDqfhDx1oBkKpF4m8BeLrDRPGXhq4chINc0OwlkDRq6N8xf8Eq/2mPHvx8/Zsu/h/8AH25iX9rj9kTx74i/ZQ/avst0ol1P4q/CkWtjYfE+yW5WK4vPDfxv8C3Hhb4taBrMdtFpl+viu+tNNaRNLm2AH6X0UV+av7dn/BW39hn/AIJ4aVfJ8ffi/ptx8R47H7ZpPwN+H32bxl8YdbaWB7ixR/C1ldwweFbPUURjZa9491Pwp4duCpjh1aSYpC/1XBnA3GXiLxDguFOAuF894w4kzGXLg8k4dyzF5tmNZKUYzrPD4OlVnSw1HmUsTi6yp4bC071cRWpUoymsMTicPhKUq+Kr0sPRh8VWtONOC7K8mk5O3uxV5SekU3ofVX7WX/JrH7S//Zv/AMZf/VdeI6/nN/4J9f8ABXb9hn/gnZ/wRb/YDt/jx8WbPUfibH+zlol3pfwK+HItPGHxf1Xz9U165sTc+G7e+tbPwjY6hFiSz1rx3qvhfRbtM/Y766m2Qv8AAfxp/wCCkP8AwWP/AOCyHw5+L8H7EvwNuP2Tf2HNC8G+O5/iL8X9b1FbXWfFvgvQ9B1q48UaLdfFfVtOtxf3mp6Nbm2u/BPwQ8NXmu6Rd3J07xD4uu9Dupbyvqb/AIIH/wDBDb9hHxb+yH+zZ+3R8b/BFz+0B8UPjH4LtfiDpPg/4mLZ3vwj+Hkb6rqNnpmnab8PLaFdL8W3ltaWMS3l749m8S6VNPtuNL8PaLJCjH+zofRn8HPARRzD6Xnid/xlmHUasfo6eC2MyrinxF9slGcMFx5xjGtX4O4AipOn9cwKxWa5zXwFd18udPE0/Zr53+2cxzT3MgwX7iWn9r5jGdDCW/mwuHssRi+vLLlhTUklO8Xc8iuf23v+C4H/AAXEvr/w1+wZ8N5v2Ff2Or68udI1P4863rd94f1zW9MMkttdM3xeGlDxJqV8ItryaD8APDC32iXrHTvEXi+4sZVva/T39gz/AINs/wBib9la/wBP+Jvx++2/tofH8XSazfeLPi7p6P8ADXS9feQXU99oHwruLzV9P1a6+1Eytq3xH1XxxevdImp6fFodyxiT+h2wsLDSrGz0vS7K003TNOtbex0/TrC2hs7GwsrSJILWzs7S3SO3tbW2gjSG3t4I0hhiRI40VFAFuvkOOPpmcY1eHsb4c+A3DOR/Rr8KMVH2GK4c8N6uIXGPE9CEZU4VeP8AxPxKhxfxVi5Up1aNZRxWV5dXwtT6rXy6vThFvow3DuHVWOMzStVzjHx1jWxiTw9BuzawmCV8PQimk0+Wc1JcymmyC1tbaxtreysreCzs7OCG1tLS1hjt7a1treNYoLe3giVIoIIIkSKGGJFjjjVURVVQBPRRX8btuTcpNylJtyk22227ttvVtvVt6tn0JXu7u1sLW5vr65t7Oysrea7vLy7mjt7W0tbeNpri5ubiZkigt4IkeWaaV0jijRndlVSR/HH8ZvFHj/8A4OBf2/NM+A/wu1HWdB/4J7/ssa8uqeOfG9i720HjCT7Xd6dqHjC0Lp5Mnij4hRWV/wCFfhJZ3sd1N4d8JDXPG1zYRveeIdEb6n/4LS/twfEz4zfE3wp/wSV/YivLnXfjR8YdUtPDvx41vQbmSBPD/h/WLEXx+Gs+s2yynTbG40CS48VfF3VIgItC8E2a6Ldy3Car4l06x/aT/gn/APsQ/Dj9gP8AZv8ACfwK8CC31XWIh/wkHxM8d/Yls9R+IfxD1G3gj1vxHdx75ZbewhWC30fw3pbzzf2R4d07TbKSe6vEvL67/Nc0lPjbOanD2HlJcM5LXhLiXE05WhmePpuFWhkNGpF60qMlGtmbg7xlGNBulUUXP9Ay6MeEMphnuIjH/WDN6M4cP4epG8suwVROFbO6sJLSpVi3Sy5SVpJyrpVIcyh9X+BvA/hH4Z+DPC3w88A+H9N8KeCfBOgaV4X8KeG9Ht1ttM0TQNEs4dP0vTbKEElYLW0giiVnZ5ZCpkmkkld3bqqKK/R4QhTjGEIxhCEYwhCEVGMIRSUYxiklGMUkoxSSSSSVj4GUpTlKc5SnOcnKc5NylKUm3KUpNtylJtttttttt3CiiiqJPhb9u/4aeONT8CeDf2i/gnoMviH9of8AZB8U3Hxo+GvhyxGzU/il4QTSrjRvjn+z7DLwkrfG/wCFFxr3hzwtDfl9I0r4uWHws8b30Ek3guyeH6r+FXxP8D/Gz4ZfD74w/DPXbbxP8O/il4M8NfEDwR4htFkjg1nwr4u0e013Q9QWGdI7i2e506+t5JbS5iiurSYyW11DFcRSRr31fmf+zhPH+yn+1Z8UP2KdQK6f8KfjLD42/a0/Y43Rpa6ZpNrq/ii2uP2rP2ftJ2wwWsZ+G3xT8YaX8ZvB2k25Jh+H/wAdLjw1ollDoPwouniAP0wooqpqGoWGk2F9quq31npml6ZZ3OoalqWoXMNlYafYWUL3N5fX15cvHb2lnaW8ck9zczyRwwQxvLK6IjMAC3Uc00NtDLcXEsUFvBFJNPPNIsUMMMSl5ZZZXKpHFGis8kjsqoqlmIAJr88r39vKb4wXt34W/YL+FGpftZapHNPY3Pxum1mf4bfsZeF7uKSW2mmvv2jLzQ9fi+KjWF0qpd6N+zZ4Q+Nd/b3Aax16fwuRNeW1aH9hXxN8cZota/b++NV9+0xaNLHeRfs4eD9CufhD+xro8u8TCy1v4SWWu6/4r+PcVsx+zSj9o74g/EnwdePbW2saP8N/CGolkQA0dd/4KA+HfHes6n4G/Yk+Gmv/ALbfjjSr2fStb8UfDvXtK8K/sweAtUtnMN1Z/EP9qfW7e/8Ah/JqWm3CPaa34K+Dlj8afivoN0EXWfhzY2zm7TJ/4Yy+Ln7Q3/E0/by+O+o+NvDt58z/ALKX7Od94p+Dv7MdpaPy2i/ELXLPUrb42ftHBgsUOsp8QPFnhf4TeKIonE3wD0aC6u7Sb9CtC0HQ/C+jaZ4d8M6NpXh3w/otnBp2j6FoWnWekaNpOn2qCK2sNM0zT4beysLO3jVY4LW1gighQBI0VQBWrQBy/grwP4L+GvhTQvAnw68IeGPAPgjwvYRaV4a8HeC9A0rwv4W8PaXBnyNO0Pw/odpY6TpVjDubyrSwtIIELErGCTnqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+DfFPxI+Lb/8FEfh38ItL8Q/EC5+D1r8AE+IviHwp8NNF+Dlz4Y0bxBqWsfFrw3L4i/ak8QfEXS5PiVo3grxLNo/gzTP2ctJ/Z41q18W+IviT4U+J918SdNvfhh4b1a5svvKvjj4yfs7/ETV/jv8N/2hfgL8TNQ+Gvjh9R+FHw7+Pmn391oF/wCA/ip+zb8PvGXjTxxP4W1fwnrHw48YavqHjjS7jx5490b4c614P8bfB2+8M3vxJ1rxV4g8U+L9H8Nw/DXxX994e4jJKOYZ/hs6eR0v7V4Q4hynKsZxHgp4zKMuzbG4aEKOY1p0MNjcbgcbhMLHGVMmx2AwWKxVLO/7OpOFLDVsRiaHLi1UcKTp+1fJiKNScaMlGpOnGV3BXlGMoyfKqkZSjF0ud3ckovxH9s3/AIKb/CH9jb4iT+AvGviL4FaVdeEfhb4e+OXxE0v4t/tEaH8FviHrHwu8S698RvD1l/wzX8P9W8G+JX/aM+JdpefCjxkdT+HFv4g+HskLzeDtOsvEOoaz4y0vTV/TWvmP4t/swaV8UvGp8d6T8W/jP8GNb1rw54U8D/Euf4K674O8K6j8Wvh94G17xZ4l8H+B/FPi7WfAnifx/wCEtM8O6v8AEDx/caXr/wAGPF/wr8d248aa9GPFxV7D7B5Nrk/xG0P/AIKXfBzTLn4t+NtV+GnxF/Y6/bA8RW/wcY6Rpnw78Na38MPix/wT40PRPEyWOmadb6t4n8Yzt8SfiBnxF4s1fVxoejeIG0Dwlp3h23uPEtz4o+mr5PwBxVknDGXcH03kfE+U8IcZcQcX4zNMwzrMJ8QYrh3h3CZ39Qw2AWUQyzJ8Xz5XxRWwMsLmWJy/EZJPLJ5hisLnkamWVcFUxVCpWniGqtCpiMNRw8acKcPZRrVnS5pSdRzqR/eUVPmhGSqKahGVO019QaT8dvghr/xZ8T/APQvjJ8Kta+OngnQ7fxP4z+C2k/EPwjqPxZ8I+GruHw9c2viHxP8ADmz1ebxhoGh3Nv4u8KXFvq2q6NaWE0Pifw9LHcMmtaa1z4p4I/al1nxl+0p4z/ZkHwm1HS/Fnwxn1jxF8SPEM3iC5m8K6L8I9asrOf4E+PtD1E+FLdfEmsfGvUp/EOgW3gzOlJ4S1j4R/HGC88TavD4K8Kz/ABD+wK/GP9rT9o7/AIJy/wDBMr4n6z+018fv2hdc0P8AaA8WXfjbWdY8D6Hqug+Mfi78YfCXi3SPDek+HPhnffDbR9CjuLb4ZfDqHwR4RPwm1a/Pgmy8K6vpOsX2qfEK9v8A4kfFmfx9HhpwvlnHma5rwrkXBPFnFXFmbcKPB8G5JktHNOKM0xHHMY0VWzF4Ph/C5ROjw/OisfOjhsTSzCeUZjUyStmOLzTJ8LnSxLxleeFhCvVxNChQp1+bEVajp0YLDXdoc1WVROrflTknBVIKqoRhUlS5f2cr+ZT/AIKU/tsfs7/8Eh/+Cj3wy/bI1Hx9ot54Z/an+G8/wI/bk/Z38Aar4c1j4v32o/DzQNW8S/spftNWnw+l1nSbmTUtFuP7e+BGu+IPEmpaJplz4N8XeGEt5r0+HFay+A/Ff/BTv/gsv/wWa1u/+Hn/AAS0+BHiP9lT9me5v5dA139pDxRf2+i67NaNO9re3mo/GO8s30jwnPZR+RPe+EfgTpvjD4n6JLukh8SanaXCQp9ffs3f8Gqf7JejeCfHWpftu/Ebx5+1n8d/if4b8S6frvi59c1/wr4S8F+IfFelX1lceLPC9ouqXHinxj4z0S91CTUtP8W/EHW9QsbzVLLT9YXwTo97EwP9BZv9FzgDwOyDH5r9J3xYyrI/EKOXV6+Q/R98NpYLjfxAnmvsXUwGF8Rs6wGPhw14e5fUrOg8dQnmOYZ1Vy6tVq5fThj6H1V+VTzvFZlVhDJcBUq4RzSq5rjObC4RU7rnlhKc4Ovi5pX5WoQpqaSk3F8x8X+Jf+CkP/Baf/gtdreo/D//AIJn/BfXv2Qf2Xbme50jWv2gdc1Z9A1a9shcS2d1cap8dLjS1TRbuFkgkn8H/ADR9c+IOhTPMl34i1nS3eWP9G/2E/8Ag2T/AGQf2fdSsvit+1xrGofttfHq6uxr2rz/ABDguI/g5YeI7mX7Ze3UXgO8u7+++IN211NcR3uq/FDVvEGm63+71I+DtFviyp+hv/BJH4zeOvE/7O2t/sv/AB5GmWf7VP7A/jFv2Vfj3Z6ZZW2k2fimPwlpGn6j8HfjdoekwJAIfCvx5+DuoeEPiFpt3HZ2dnJrt74p0u1t4To08MX6o1w8Z/TT4qw/DuL8Ofo7cJZJ9GbwuxMPYY3LPD7EYmv4g8V0YqUIVuO/FTFqnxXn+JlCdSnKng62U4N4arLBVsPiaEIFYfhyg60cXm+Iq51jYu8J4tJYSg3ZtYXAxbw9JXSd5KpLmXMpJnzf+05pOlaD+yJ+0Nomh6Zp+i6NpP7Ofxc07StI0myttO0zTNPs/hp4hgtLDT7CzjhtLKztYI0htrW2iiggiRI4kVFCj4R/4IEf8obf+Ce3/Zv+j/8Ap816vv79rL/k1j9pf/s3/wCMv/quvEdfAP8AwQI/5Q2/8E9v+zf9H/8AT5r1fxZOc6k51Kk5VKlSUp1Kk5Oc5zm3KU5yk3KUpSbcpNttttttn0aSSslZLRJbJdj9fqKKKkAr8m/+Cu3/AAUk0L/gnp+zzPfeHLiw1T9or4qQ6l4b+B/hWeKG+W01COOKLVviHr2nu+ZPDngyO8t5oraSKVNd8R3Oi6EYvsV1ql7p33l+0l+0R8Mf2Uvgn4/+Pfxf1pdF8DfD7RJtUvvLML6nrWoOVt9F8MeH7WaWBL/xF4l1WW00bRbIzQxzX13E1zPbWiXF1D/Mb/wTM/Z5+KX/AAVY/bH8R/8ABV79r7R3j+EngzxRLpv7NHwv1NXu9CudQ8JahcHwvb6Wlza20GoeBvhHcSy3U+pw2lunjT4tNf6pdFZNI8S6XefFcV5zjIVMLw1kMk+Ic6jJU63xRyfLYvkxecYi3wqjFuGEi2nWxLShzyp+zn9dwzlOEnDE8QZ1F/2FlEoudLRSzXMGlLDZVQv8Tqu08VJKSpYe7nyxnzx+9f8AgiH/AME39e/Zr8Aa7+1n+0laX+s/tgftKR3XiTXr/wAUvPe+Jvh/4J8UXcPiI6Bqkt8hvIPHXjHU2TxN8RZp3+1wXA0fw1NFbXWiatJqX730UV7+SZNg8gyzC5XgYtUcND3qk7OriK83zV8VXnvOvXqOVSpJ9XyxShGMV4mcZti87zHEZljJJ1q8lywgrUqFGCUaOHoQ2hRo01GEIrouaTc5SkyiiivWPMCvB/2m/jY37OHwL+IHx1m8L/8ACW6H8LrLSfFvjiw/tseH/wCyPhjp/iLR/wDhavjgag2k6ykrfDb4bSeKviGukS2tvD4hbwuPD82s+HYtTfX9M94r88v+Ch37fn7Av7Fvwf8AFNl+3D8a/BHgvw18Q/B3iTw63wvnuZvEPxK+JPh3XdMu9D1rS/Cvw38PJf8Ai/WrO/tr2XS7vV4tMh8P6ZJdxnWdY0yBjOoB9H/B7472XxV0n4w+LLvR7Lwh4E+Gvxr+J3wj8P8Ai3UfEkE9p4xs/g7qNv4H+IPi6+S403SrbwnDovxh0f4l/DwaVJqGuRy2/gSLxHJq9u+vvoOifjB/wVj/AOCn/wDwTX8F/CSy8W6L+3l+zPaftX/stePtL+Pv7PeieE/iDB8UNcuvih4J0/VdM1r4S+LNH+D8XjfxFoXhf47/AA48Q+Nvgf4xuNS06KLRtE+IFx4m8hr7w/YyQ/xef8FVfCvx/wD+CgP7LP7P/wAb/wBkf/gn9+2D8Pv2C/2IPhp4b+D/AIf/AGiP2ifFI1T4rftWxfErx5omleF/ipq3wx0+20+y8WeMfEPxL8TeJtW8TePfhTYeNdM1jxF8QNauPEOu6LEdC8N6X+z3/BB3/g1f0vwfH4O/a/8A+Cofgmx1zxbIlvr/AMMP2OfElpaan4f8MpIsVxpXif8AaCsna4ste8QspF1ZfCKZJtF0NfI/4WD/AGrrEt94P8PAH9IHwB/4KieO/wBvL4c6B40/YL/Y8+M+s6B4tsra5sPjp+1jYRfs6/s56RBcafbT3Oo6VqCTeMPi38ZH02+nu9KtbP4W/DO88Ka1rOjahpuqfEvwZZTWmvP7ppv7BSfFa7sPFH7eXxW1H9sTXrW5i1G0+E194cT4c/sc+FtQguYbyyfQf2Y7LW/EumeOrnSbmCO40nxF+0X4w+OvirSb4zXvhvV/DkU0dhbfoTBBDbQw21tDFb29vFHBb28EaRQwQxII4oYYowscUUSKqRxoqoiKFUAACpaAKlhYWOlWNnpml2Vppum6da29jp+nWFtDZ2NjZWkSQWtnZ2lukdva2ttBGkNvbwRpFDEiRxoqKALdFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUV8Mfto/8ABST9jL9gHww+v/tNfGvw14Q1i4tBd6D8NdKmXxL8WPFiSGSOB/Dvw80d7jxDPYTTxNbP4h1C203wtYzlV1TXbEMrH6HhbhLijjjPcBwxwZw7nfFXEeaVVQy7I+Hssxmb5rjajteOHwOAo18RUUU+apONPkpwTnUlGCcllXr0MNSnXxFanQowV51as404RXnKTSXlrdvRan3PXwZ+2x/wUx/Yu/4J9+G21r9pj40aB4Z8QXNn9s8P/C7QWXxT8W/FcbmRbd9C8AaTJLrC6fcTRvbjxHra6N4UtpwI9Q16zJBP8z3ij/grb/wV5/4K++INV+F3/BJb9nLXf2dfgS2oSaNr37TnjlrCDXre1WR47mXUfiVqlvc/D/wDdfZZY5rzwj8N7L4hfFCzaFbzQvELo7wD7g/Yd/4NnP2dfhX4gHxw/b58bar+3X+0XrGoJ4g1seN7vXbn4RWWuOI5JptQ0nXb668S/Fy/WYSx3Gr/ABJvW0LV7Yw+d8PrC4g86T+0YfRa8M/A+hSzj6YPifT4dzyFOniMP9HzwkxOUcYeMOOc4qpTw/FWbRr1+DvDehVjKFSUs1xeZ5jVwzqwoYGljKapHzjzvG5m3T4fwTrUruLzbHxqYfL462cqFOyxGMa1VqcYQUkm5uLufEfiD/gqZ/wWN/4LGazqfw5/4JV/s+6t+y3+zrcX0mj61+1B46nisNeFtHNLb3ss/wAVL+zuPCvhSdYnge+8JfB/Q/HnxQ0aZFubHxO9rK6L9u/sTf8ABsh+zF8JfEcHxq/bi8b6/wDtz/H/AFG/TxFryePJtSHwgXxHMxnubrU/D2rXupeJfirdCd2iu9R+JWtXmh69Ekc954EsZmaMf0u6FoOh+FtG0vw54Z0bSfDvh7RLG30zRdB0LTrPSNG0jTbONYbTT9L0vT4bexsLG1hVYre0tIIoII1VIo1UADWr5/iv6Z3EmW5Dj/D/AOjhwfkf0Z/DjHUvquYUeBcRiMb4l8V4aK5Yz428WMfGPFWa1JJzf1bKquSZfSpVqmEeHr0Er60OHaM6sMXnGIq5zjIvmg8UlHBUH1WGwEP3EFtrUVWbaUuZMxvD3h3w/wCEdC0nwv4T0LRvDHhrQLC20rQvDvh7S7LRdC0XS7ONYbPTdJ0jTYLbT9OsLWFVitrOzt4beCNVjijRQANmiiv4xq1aterUrVqlStWrVJ1atWrOVSrVq1JOdSpUqTbnOpObcpzk3KUm5SbbbPokkkkkkkkkkrJJaJJLRJLZH4r/ALcMVx+w7+2l8BP+Cl2h3H9l/BH4oHwV+xT/AMFBrGNBDpVp4F8X+KLi0/Zc/aU1qRfKtbWX4IfGDxS/w/8AF/iG9+03i/DT4rywxtDY+HBs/aivLPjh8Gfh5+0V8HPif8B/izoUXiX4afF/wL4m+HfjfRJSsbXvhzxXpN1o+pC0uCkjWOpW8F0brStTgUXWl6nBaajaPHdWsMi/An/BKz4wfEW8+GXxL/Y1/aH8Q3HiL9qL/gn/AOOofgB8RfEmplE1b4s/CibTF139mX9od4gXeSD4w/Bx9HfWr2aaa5m+I/hb4hW92Y7q0ljXMZ9nftZf8msftL/9m/8Axl/9V14jr4B/4IEf8obf+Ce3/Zv+j/8Ap816vv79rL/k1j9pf/s3/wCMv/quvEdfAP8AwQI/5Q2/8E9v+zf9H/8AT5r1AH6/VFPPBawTXNzNFb21vFJPcXE8iQwQQQoZJZppZCscUUUas8kjsqIilmIUE1LX8yH/AAWy/bp+IvxG8b+HP+CT/wCxUbjxT8efjldWPhr403/h+4eG48L+G9dt4dRg+HK6tFIkOly67oHn+Ififqs8iWPhv4bpJaahI8Ovav8A2R4fEOe4Xh3LKuYYiM60+aGHwWDpa4jH4+u+TC4LDwSlKVWtU0fLGThTU6ri4waPYyLJcRn2Y0sDQlGlDllXxeLq6UMDgqK5sTi68m4xjTow196UVObhTUk5pnyX+0B4+8e/8F9v2/dG/Zb+Det6zon7A/7M2tv4g+JHj3SZpl07xi1peXGl6j47iEkMdnNrvi4R3/gv4K2F9Ffz6bo0/iPx3Jamyu/Eel2P9ePw7+H3g34T+BPB/wAMvh5oFj4W8C+AvDmkeE/Cfh3TUZLLR9B0Oyh0/TbKEyNJNKYraBPOubmWa6u5zJdXc81zNLK/yN/wTs/YX+H/APwT9/Zr8KfBPwkLPVvFU6x+JPiz48itfIu/H3xFv7WBNX1UmRRcRaHpqxR6L4U0yU507QLG0+0edqlzqd7efddeZwpkWKwEMVnGdSjX4kzuUMRmdWOsMJSSX1bKcLrJQw2Bp2pvlb9rWUqkp1Iqm4+lxNnOGxs8NlWURlRyDJ4yoZfTek8VUb/2jM8SrR5sTjJpzXNFeypOMIxg3UTKKK/M39vr/gr7+wB/wTX0l2/af+O2h6X49ns0vNE+CXgdB47+NniCOaPzbOS28A6LM13oOnX6bvsPiPxtdeFfClxIjwLrwnxEfrz5U/TKvzy/bt/4Kp/sJf8ABN/wvLrn7Vnx78LeD/Ec2nNqPh34TaHMPFvxm8YoVkFqPDnw20R7jxAbG9uIjZx+Jdbh0XwdZ3LKureI9Oi3Sr+E8v7TP/Bev/gsvjTv2OPhMP8AgkR+xB4jEQP7Tnx8tbi9/al+IfhC+ltlfVfhn4NS2i1TQptS0W8XWtAuPDumeG9InaFv7E/aODNGrfoZ+wl/wb0/sE/saeJ4vjV480XxH+2j+1pfaiviPxF+01+1be/8LK8US+L5J7W+uPEfhPwlrUmpeFvC2qRaraLqGkeJ7y38S/EvTHklhf4iX0cj7gD8+V/bZ/4Ln/8ABYl00z/gnv8AABP+CYH7GHiN9n/DZv7UVhFd/HPxt4SumtZo9a+E3w8ns7s27a5oV5LcaNe+GPD3iHw7JfwGKw+P3hm9jEyfdP7Ef/But+w5+y74zj+Pnx5l8Zf8FAP2vtSurPXvE37RX7W963xCkPi6GKDz9e8H/DvW7nWvDuizR3trb6hoereMbv4jePvDVxBF/ZPj2FECj99qKAGtGjKFZEZVZGVWUFQ0bK8bAEEBo3VXQgZRlVlwQCHUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRWZret6L4a0bVvEfiPV9L8P+HtA0y+1rXde1u/tNK0bRdH0u1lvdT1bVtUv5YLHTdM06ygmu76/vJ4bW0tYZbi4ljijdx+G3hb/AIOOP+CW2v8A/DR+o6n8bj4X8MfADxFoGg6LreraLqk1/wDHlNd07UJBq3wV8I2Fpc+KvE2nWeuaPqmiXU9xpdlHZwDS/EeqSaZ4e1qy1A/o3AvhD4peJ2FzrG+HXh9xfxvhuHZZTTzqrwxkOYZysvrZ7mVDKcnw1WOBoVpzxmZY/EQpYTB0o1MVVpwxOKjR+q4PF16HJicfgsFKnHF4vD4aVb2jpqvVhT51Sg6lRrna92EVeUnaKbir80op/u5XxV+2T/wUO/Y+/YI8Hy+Lf2nfjV4X8C3M1o91oHgS2uP7f+J/jFgJlhh8KfD3RzdeJdThnuITaPrUtlaeGtMnkjbW9b0u2LXC/wAynjb/AILRf8FQv+Cq/jHWvgx/wRu/Zn8SfCv4Y293JpHiT9p74kWOhya5plncROrXV/4i1kX/AMKfhTO9pJNPDoVhd/Eb4i3iW0WoeF7myvkeyT6p/Yz/AODZP4P+HfF7ftA/8FJfiv4j/bj/AGhNd1CDxHr+j63rfiZvhVHrxWOWV/Emo63eHx58X7iC5jUJd+Kbzw94a1CyH9n6p4DvLfk/1Vh/oqeH3gth6GefTE8TqfBOYuhRxuF8BPDGrlfGPjdmtOrGNWjQz+pCvV4T8NqGKoShWpYniHG4zGTh7aj/AGbQxlP2Z4bzzF5i3T4fwTxMLuMs0xqqYfLYNaN0lZYjGOLumqMIxTs+dxdz5M8Y/wDBX7/grF/wVz13V/hJ/wAEhv2avE3wG+DRvrjRvEn7UXj9tKh121sw4WZ7nx5qkM/w3+Gl99gnEt34X8Ft8SfihGFjv/C+s28qmOvsr9i//g2W+AXgbxOPjx/wUM+I/iT9ur9orXL5PEPiW38X6v4gl+EyeIXKu9xrEes3k3jb4t3kLIkMmo+PdUtvD+q2wEV94BQIpr+l7wj4P8JeAPDWjeDPAnhfw74K8IeHLGHTPD/hXwnoum+HfDmhabbjEGn6PomkW1npmmWUIJEVrZW0MEYJ2oMmuirxeKfpmZ1kuRY/gD6MvBWT/Rp8PcbTlhcxxPCGKxGZeLHF2Gv8XGfixjlHiTExqSXtoZdkc8ly/CKrUwcI4jCqKNKHDtKpVjis5xNTOcXHWCxEYwwOHl/1D4CN6MbbOdRVJyspaMw/DPhjw14L8P6R4T8HeHtD8J+FvD9jBpmg+GvDOk2Gg+H9E022XZbadpGjaXb2unabY26fJBaWdtDbxL8scajityiiv4trVquIq1a9erUr169SdatWrTlUq1qtSTnUq1ak3KdSpUnJznOcnKcm5SbbbPokkkkkkkkkkrJJaJJLRJLZBRRRWYwooooAK/F//gobC37GX7TH7PP/AAVS8PxNafD/AEBNI/ZH/b9jgEgtJv2Vfid4tik+HHxt1aJDIgm/Zg+Nmq6dr+p6nFZz6jH8LfHvxIgeeKxs0MP7QVw/xN+G/gr4xfDnx78JfiRoFl4q+H3xN8HeJPAPjfw1qKeZY694T8XaPeaD4g0m6UEN5N/pd/dWzshWSMSb42WRVYAHmn7VssU/7Kf7SU0Mkc0M37PfxililidZIpYpPhx4ieOSORCUeN0IZHUlWUhlJBBr4E/4IEf8obf+Ce3/AGb/AKP/AOnzXq8R/ZV+IvjPwb+xZ+3j/wAE6/jj4kv/ABJ8ev8Agnj8IfiR8LbPxXrY2av8Yv2VvE/wp8V6x+yb8b2kCLBf3utfDayb4deOp7ae+ltviZ8NPF66ncC6vIvNk/4JI/H/AOGn7Ln/AAQE/Y3+PPxd1oaH4C+HP7MOm61q08apLf6jcHX9atNI8P6JavJEL7X/ABHq9xZaJodiZYkudTv7aOWa3gMs8WVatSw1GriK9SFGhQpzrVqtSSjTpUqUXOpUnJ2UYQhFylJ6JJtmlGlVr1aVCjTnVrVqkKVKlCLlOpUqSUIQhFaylOTUYpattJH0t/wVn/4KPeGP+Cef7O19relXNhq37QHxLg1Hwz8DfBkhguZTrRgEd/4+1uwfe7eFPA6XMF7co0Mia1rk+ieGwYY9Vur/AE/5V/4Ij/8ABNrxH+zz4T179sf9p2K+8QftfftIw3PibUZ/FSSXXiX4b+EvFd22vXenalPeA3UXj/x1d3EOvePZplju9NVdN8LeVa3Fjr51L4Q/4Jl/s+fE/wD4Kt/th+Lv+CpX7Ydpq+o/B3wF4wvbP9lv4c+IodOl0B5tE8S6tqnhbQNOSz0zSLLVvBHwO+0x2k2pjSEl8d/EfztT17UdQ1PR/FtrqP7Bf8FAP+C2f/BP3/gnMZfC/wAYviyvjv45zywWOhfs0fBGC0+JPxz1jV75V/srTL7wtpt/BYeCn1WWSCPTrjx/rHheHUjMiaSdRuClu/wmVYLEcR57U4nzSm45dldbFYLhXAVFJJqnUlRxOf1qc1FutjZU+XAKcY+ywsY1VBzlTrP7TM8XQyDJYcO5dNSx+ZUsNi+JcbBxck504VsPklGcG0qOEU+bGuMn7XEuVNy5IzpL9aa/Lf8Ab+/4LK/8E+/+CbNo9h+0b8bdPuPijNBFNovwB+GEEXxC+OOuNdIstgp8EaVdxJ4VtdSjYtpmt/EHVPB/h7UXR4LLV57rbA349W3iH/g4Q/4LCmb/AIRzTbH/AIIlfsQ+Iwot/EGt2194n/bh8feFbvz7eaTT7CVvDviLwDd3MSR31vMtp8CtU0pLq3fSfEvjzThJNcfqR+wH/wAEMP8Agn1/wT31OL4heAPhnd/GL9oq4vJNY1r9qD9oe9tvil8abzxFdfan1HW9A1fU7CDQ/AF9fyX9+t5e+BND0DWdVtbnyPEesa9JGLhv0A+HPy2ufi1/wX6/4LGh7L4BeB4v+CLv7Eev7UPxk+LVrf63+2f8RfC14ZIm1LwX4Rjh0bWvBcl1bCy1bThZxfCspbXRm8P/ABr8VWuIpf0b/YD/AOCBP/BP/wDYO1y2+K8XgrVf2mf2pJ9Qj8Ra5+1F+01d2/xN+JT+MHmW/u/Eng6y1S3k8NfD/U/7Ta5uLLX9B0xvHy2twbLW/HPiAq1zJ+2dFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFfgD/xDffsJf8ARYP2/v8AxNr4xf8Aywo/4hvv2Ev+iwft/f8AibXxi/8AlhQB+/1fl/8AG/8A4LP/APBMf9nH4xeK/gJ8Zf2rvCvg/wCJ3gVJR410xfBvxS8R+G/CWoxaO2uf8I34l+IvhTwLrnw30PxlLYiJLXwRqfi218X3ep3mnaJbaJLrWp6dYXXyD/xDffsJf9Fg/b+/8Ta+MX/ywr8oviR/wal+PtQ+O+v+Fvh1+0L4UP7GHj3xDqms+Idc+IniHxrrv7VXhPSfFmoPqnjPQbEN4K1Twj8TtenuLzWI/DXxH8U+PvCuqaab/S77xB4e8VXeg3P/AAkbp1IU8RhZ1sPVxeFWKofXaFDE08HiKmD9pF4mOHxVXD4ulh68qSlGlWqYTFRpTlGpLDV1F0p+BxBiuIcJRwEuHcqwua162aYPD4+ni8ZHBQwmV1ZSWLx8JSa9tUwyUWsPC9SpGUnTjUlBU5/An/BS/wD4KP8A/BQj/gtf4ivPgP8AsK/s3ftFH9jK01eRLbTvBfw98UXmq/GefTJY5rPxN8Y/FWk2lx4Z0Dw5aXNuL3w/4Ck19NDsbqS11HxJe67r8GiDQKn/AATf/wCDbT9veb9on4M/FD9rP9nb4M6P8A/DHjbRdY+JHwv+N3xYgm1Lxx4JdpIdXttN0P4MT+N70a7p9vN/a2jaH4w1Hw1pGpazYWOmeJw2g3WpQSf0xL/wbefsIqoVfi/+36qqAqqv7bPxhCqoGAABf4AA4AHAHApf+Ib79hL/AKLB+39/4m18Yv8A5YV/pzD9pnxTwH4XVfBj6O/gx4f+C3AdfKsfldbEvM+IuKuOqtbNMJLB5hn9Xi7DYrhONXifF0pKc89rZPWxuGq08P8A2fPB08JgqeH8r/UyhiscsxzfMcXmOKVSFRR5KNDCpU5c0KSw8o12qEX/AMulUUZJvnUnKTl+6vgnwN4K+GvhXRPAvw68I+GfAXgnwzYx6Z4c8IeDdC0vwz4Y0HToixjsdH0LRbWy0vTbRGZmW3s7WGIMzNt3MxPU1+AP/EN9+wl/0WD9v7/xNr4xf/LCj/iG+/YS/wCiwft/f+JtfGL/AOWFf5l4jEYjF16+KxVeticVia1TEYnE4irOtXxFetOVStXr1qkpVKtarUlKdSpUlKc5ylKUnJtn2aSilGKSikkkkkkkrJJLRJLRJaJH7/UV+AP/ABDffsJf9Fg/b+/8Ta+MX/ywo/4hvv2Ev+iwft/f+JtfGL/5YViM/f6ivwB/4hvv2Ev+iwft/f8AibXxi/8AlhR/xDffsJf9Fg/b+/8AE2vjF/8ALCgD9/qK/AH/AIhvv2Ev+iwft/f+JtfGL/5YUf8AEN9+wl/0WD9v7/xNr4xf/LCgD9/qK/AH/iG+/YS/6LB+39/4m18Yv/lhR/xDffsJf9Fg/b+/8Ta+MX/ywoA/f6ivwB/4hvv2Ev8AosH7f3/ibXxi/wDlhR/xDffsJf8ARYP2/v8AxNr4xf8AywoAyv8Agujptz+zF4f8Kf8ABS3wRJZW174O8BeMP2LP2ofDv2uG0v8A4r/su/tRGXwl4aXTbNi954n8ZfAb486x4Q+J/gzw9pFu+r3vh7VPijZ2zPHfy28v8U+of8FL/CvxK/Zp/wCCeP7CHxRuvifpXwT/AGZvAXhLRvEvwm+EvhG+1744/Fn4v3SXL6zB4f8ADWs21lpFj4ttrXxRceAPh5N4kk/snS7bUfEHi2GPxN/b1p4Yuf6rf26/+Db79nLSP2afiH8RfgN8bP2mIPir8GdF134u+GLL4/ftBfET4xfDDXx4M8K+Ip9Z8O634b12W9/si81jQLrVLbRPGGlWt1qnhrWTZXv2DVtMOpaRf/H/APwR4/4N/v2eP2vP2Wfhl+3n+0z49+Lmn/EH4++FLDXvhhoH7P3xX8VfClPhh8NYrvW7OLSdd8VaJaaXrPi/xd4kvJLm/wBfuvI0/RtLsYNI0PSre8+y3+r6p5OcZRTznD0cJXxWKoYWOKpV8VQw0qUI5hQpczeAxbqUqkpYKvLl+s0oODrU4ujOXJOSPTyrNJ5TXq4qjhsNWxMsPVo4atiI1JSwNapypY3CqFSmo4ujFS+r1JqapVJKrGPPCLPT/wBnH9lz/gt7+278EfAfwF8ITzf8EPP+Ccfh3TL2y0TwtBeN42/b2+KHhvxJr+qeKtcv/EWq2Vr4N1H4Z6v4j1fVtautYt7ez+AsuhXWsNbW/gDxb4aWGzH7kf8ABP3/AIImf8E9/wDgnFHa+Ifgn8HLfxh8bGUza5+0l8Z57f4kfHDWdUnVxqOp2PibVLOLTfAraq0sjanZfDfRPB9hqZKyarb6hdKbl/mj/iG+/YS/6LB+39/4m18Yv/lhR/xDffsJf9Fg/b+/8Ta+MX/ywr1IxjCMYQjGEIRUYQilGMYxVoxjFJKMYpJJJJJKyVjzZSlOUpzk5Sk3KUpNylKUndyk3dtttttttt3Z+/1FfgD/AMQ337CX/RYP2/v/ABNr4xf/ACwo/wCIb79hL/osH7f3/ibXxi/+WFUI/f6ivwB/4hvv2Ev+iwft/f8AibXxi/8AlhR/xDffsJf9Fg/b+/8AE2vjF/8ALCgD9/qK/AH/AIhvv2Ev+iwft/f+JtfGL/5YUf8AEN9+wl/0WD9v7/xNr4xf/LCgD9/qK/AH/iG+/YS/6LB+39/4m18Yv/lhR/xDffsJf9Fg/b+/8Ta+MX/ywoA/f6ivwB/4hvv2Ev8AosH7f3/ibXxi/wDlhR/xDffsJf8ARYP2/v8AxNr4xf8AywoA/f6ivwB/4hvv2Ev+iwft/f8AibXxi/8AlhR/xDffsJf9Fg/b+/8AE2vjF/8ALCgD9/qK/AH/AIhvv2Ev+iwft/f+JtfGL/5YUf8AEN9+wl/0WD9v7/xNr4xf/LCgD9/qK/AH/iG+/YS/6LB+39/4m18Yv/lhR/xDffsJf9Fg/b+/8Ta+MX/ywoA/f6ivwB/4hvv2Ev8AosH7f3/ibXxi/wDlhR/xDffsJf8ARYP2/v8AxNr4xf8AywoA/f6ivwB/4hvv2Ev+iwft/f8AibXxi/8AlhR/xDffsJf9Fg/b+/8AE2vjF/8ALCgD9/q/LDwd/wAFtf8AglZ4w+LXxD+BL/trfBzwF8XPhX8QfGXwt8beC/jHqmofBWew8c+BPE+p+EfEGiaVrvxV07wj4U8VyprWk3UFhN4S17XLfUkML2UkrSbF+UP+Ib79hL/osH7f3/ibXxi/+WFfjZ4b/wCDKf4R+JfjL8TvHnxw/bW+J118OPE/xN8aeIfCHgH4a+FNPPj+w8E6x4o1TU9As/F3xo+Jeo+M/wDhI/GEeiXVla6/rcvw2b7drMV5qjz3pu9igH9vmh67onibSbDXvDes6V4g0LVLdLvTNa0PUbTVtJ1G0lGY7mw1GwmuLO8t5Byk1vNJG45VjWrX80fwu/4NSv8AgmN8IbNoPBnjL9tLTL6Vi11rmlftO654P1W9JUJ/pY+Hvh7wdpkmFGAU02NsEqWK7QPXv+Ib79hL/osH7f3/AIm18Yv/AJYUAfv9RX4A/wDEN9+wl/0WD9v7/wATa+MX/wAsKP8AiG+/YS/6LB+39/4m18Yv/lhQB+/1FFfGH/BQSK1u/wBlLx3pV01ru8Q+Lvgd4U06HWJVj8HXuu+Lfj18MvDPhzTPiejYF58GdV1/VtN0342aWJIH1f4SXXjTS47m1e8W4imcuSE5WvyxlK17X5U3a9na9t7O3Y4syxf9n5dj8f7NVfqWCxWL9k5+zVX6tQqVvZupyVPZqfJyufJPkvzckrWf2fRXyB8bvEXjX9nH9k/QYvh/4WsNX8X+Gn/Z2+EGn+Hvgb4P8JeBdNsYPGvxM+GXwa1q8+DngP4g+JtQ+H/gi08LaJ4m1LW/h14Y+IPjG/8AAfhWLSdG03xr4jvPDGn6rqUlD9mD4veMZvhh8XdZ/aD1TU/CVj8G/iL4g8Oz+LvjV4x/ZnTx5a+CNG8A+BfGWo698cJ/2avF+vfA/wABeIND1fxL4k0yewtLnwxMPBeieGvF2teHdFbxCDNPtUpqm1JScOZu14L4tHLa/uy8rLzV+N51Qp5jQyvEYfF0cTVwEMfVrexc8vw0ZLEfuK+OVqUa3+yYlpNKLhS5pSi6lKM/s6iiitD2QooooAKKKKACiiigAooooAKKKKACiiigD5//AGsv+TWP2l/+zf8A4y/+q68R18A/8ECP+UNv/BPb/s3/AEf/ANPmvV9/ftZf8msftL/9m/8Axl/9V14jr4B/4IEf8obf+Ce3/Zv+j/8Ap816gD9fqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPnr9rnQPi74r/ZR/ad8Lfs/alLo3x58S/s9fGnQPglrEGoJpM+lfF3WPhv4l074balDqsjJHpktj4yudFuo9QkdEsniW5ZlWMkfmJ/wT1iP7OGn/tbfFHxPo114T+CYHwT03Qfh58Ev+CW37QP7BngG++KsGsfEew8feJvhl+zf8Q/jL8e/jz8W/ir8Sr7xr8LfCPjbxv4f+HnhDwT4vn8JeBn8F6p8SdZfx1rWifuBRQB5F+z98aPCn7SPwG+CX7RHgO013T/A3x7+EXw2+NHgyw8UWllp/iay8KfFLwbovjnw7aeIrDTNS1nTrLXbbSNds4dXtNP1fVbK21BLiG01K+gSO6l9drwD9k74F/8ADL/7LH7NP7NH/CU/8Jx/wzv+z/8ABv4F/wDCa/2J/wAIz/wmH/CpPh14c8Af8JT/AMI5/a/iD/hH/wDhIP8AhH/7W/sT+3tb/sr7X9g/tfUvs/2yb3+gAooooAKKKKACsfxD4d8P+LdD1Xwx4r0LR/E/hrXbG40vXPD3iHTLLWtD1nTLuMxXenarpOpQXNhqNjdRM0dxaXlvNbzRsUkjZSRWxRRvuTKMZxlCcYzhKLjKMkpRlGStKMou6cWm000007PQ8S+Ev7P3w4+D/wAFdK+AOi6WviH4b6dY+J9Nn0Xxbp/h6+0/VtP8Y67rfiHxBpV54d0rQ9F8GWXhy5vPEGpWen+DfD/hjRPBXh7w+1n4X8OeHdI8N6dp+lW3hP7WH7J3gLxt+xB8df2evhF8E/h5FJL8GPjHbfBT4X+HPD3hDwX4PsPivr3w48a6T4Ku9G0kroPgrQ9UXxT4hS907WdS+wWOi69Nb+JnvdPv9Og1W0+46KzdKm4OHKlHkdNWSuoWtZNp6KystVdJ2PMxGS5biMvnlksLRhhpZbPKYclKk6lDAzpRo+wozqwqcsIRhTlCMlOHPTpylCTigooorQ9UKKKKACiiigAooooAKKKKACiiigAooooA+f8A9rL/AJNY/aX/AOzf/jL/AOq68R18A/8ABAj/AJQ2/wDBPb/s3/R//T5r1ff37WX/ACax+0v/ANm//GX/ANV14jr4B/4IEf8AKG3/AIJ7f9m/6P8A+nzXqAP1+ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPn/8Aay/5NY/aX/7N/wDjL/6rrxHXwD/wQI/5Q2/8E9v+zf8AR/8A0+a9RRQB+v1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//Z
iVBORw0KGgoAAAANSUhEUgAAAmYAAAH5CAIAAACklmXWAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAIYpSURBVHhe7b1r1B1VlS58/nzf+eNd+4wGVPrYfdS+IGAjNuEidocjFwdBEpHwiXpAUFsThAAGMS0m9OEaBQTeCArItYEIInRa5NIJCqIgIGIUb7QCbdtoSxhh4HAwht8TZvK8k6ratWvvXbXm2ns/79gj4029q9aa61lr11Nzrnn5b3/QjxAQAkJACAgBIdAAgf/WoI2aCAEhIASEgBAQAn8QZWoTCAEhIASEgBBohIAosxFMaiQEhIAQEAJCQJSpPSAEhIAQEAJCoBECosxGMKmREBACQkAICAFRpvaAEBACQkAICIFGCIgyG8GkRkJACAgBISAERJnaA0JACAgBISAEGiEgymwEkxoJASEgBISAEBBlag8IASEgBISAEGiEgCizEUxqJASEgBAQAkJAlKk9IASCEfjtb3+7fPkKfPBLsCgaXggIgVoERJnaIEIgDIE/+1+v/X/+3//Oz+GHvz9MFA0sBIRAAwREmQ1AUhMh0BIC//Zv/wZtcv78BZ4p/e/r1q1raSh1IwSEQPsIiDLbx1Q9CgFDYO26dWvXrjtmyRKoj6/4o//Riyb9n1avXi30hIAQyBYBUWa2SyPBxhWBdevuWL5ixd/N3asXR9p1NEAzfKB60kK7/Q47juu0JbcQmAIERJlTsMiaYscI3HDDDea/s8ucOW/YfodeTAletGZr1qz5/ve/v3HjRsqFi7yrY2HVvRAQAsMjIMocHjvdObUIGEfC4lqvR+KvOLZES+iR9VihQ3aF36cWWE1cCGSOgCgz8wWSeBkhgCPJvhxpDZYuPWEguXHqyZ5BsQPdq8ZCQAgkQ0CUmQxqDTT2CIgyx34JNQEhMBoCoszR8NPdE43AAw88YKePNWEhph0edvj7R0lHgCQGdBdCVxMNqiYnBMYYAVHmGC+eRG8XgQ0bNsAr58yVK0F+NQrl1tu88uCFC/H54hcvxactGeA6Kw+gtsBUP0KgIwREmR0Bq27HD4G+dte+XjwjzpmhJiP2o9uFgBDoCAFRZkfAqtsxQ8D7rFLbM3/Xs885J032V9pmMeKYwSdxhcB0ICDKnI511iz7IeAjI6NyvZIy5TTbb7n0dyEQg4AoMwZ3jZobAp4yEfIRIh4DPaHdhgigQYWAEKhHQJSpHSIENiHgKTMqmQAcdOUBpO0oBHJGQJSZ8+pItnQI5GCYxWyRY9ZYM93MNZIQEAKNERBlNoZKDScaAXjDUsPDmWLUXA9eeIiJEXWeGjVxjSsExgIBUeZYLJOE7BwBr2WCsb54aWsBlwOJTsqEDGncdAcST42FwJQjIMqc8g2g6W9GoECZSCwQBY2SzUYhr3GFQF8ERJl9IVKDqUDgEWeYBWmJMqdi1TVJITAgAqLMAQFT8wlFAFbQQpUSkGjIXBVqEgK7BhUCTRAQZTZBSW0mHwFffivWZ1Xlpid/t2mGY4uAKHNsl06Ct4oAEqwXtMyorHUYl5L853/+Z6uzVGdCQAiMhIAocyT4dPPEIODTCBhjLVq0OGp2pMy1a2PyEEVNXOMKgcwREGVmvkASLx0CBS3zDdvvkG7s5480S5lBqfuiJq5xhUDmCIgyM18giZcOgXwoc6ed3mTCKD97uuXXSEKgAQKizAYgqcl0IECWMsZ68UteGuU0Sw8gUeZ0bD3NcmwQEGWOzVJJ0K4RIGWyCFdUSRNm71PavK4XXf0LgYEQEGUOBJcaTzICpMwzV67c7AG0ON4DaJIR19yEwLghIMoctxWTvJ0hQMpkjGZgfnYGvUjR7GzB1bEQGBgBUebAkOmGSUWgTJl/9r9eGzhZ1c4MBF9DC4FKBESZ2hhCYDMC3kmVx5lRJU0g0yv+6H+YSNA4tUhCQAjkgIAoM4dVkAxZIOApE0y5+b9xJU3kN5vFtpAQQsAhIMrUdhACFVomLlHRhP9qCEY8zlSoSQj+GlQIlBEQZWpXCIE+lBkVasJ6ZIgT1SIJASGQAwKizBxWQTJkgUAh4Q5cVe1KoM+qPICy2BkSQghsQUCUqb0gBKq1zGtXrzbGCgw1IWVG5SHS5hACQsAjIMrUfhAC1ZR5zz33hFPmOw48UMlmtUGFQD4IiDLzWQtJEoxAmZyo5EV5AC1avFiUGbwtNLwQcAiIMrUdphqB3/72t/DuwYcnl3RPRXnn8CJcdJpFjOZUr5MmLwTyQECUmcc6SIpUCKxZswakeMySJcjsg0NK/Fuo+eXdUw/b4gF09jnnpBLweePQaRZChgigQYWAENBZpvbAdCGwevXqmZmZ7XfYscCOvf5LdBiaGegBRLHxy3Qtm2YrBPJDQFpmfmsiiUZGwGytp5xyaqUeSabEX/GBKgm9Ex9qnA888ICJwPw7L3zhi2CnHVmuYTp41au3NYH3nzdvmPt1jxAQAu0hIMpsD0v1FIQAzyNRtKueI3EiaDQJ8yx5saxT8jiTJU3AWFBVQ+YH/dgoE4yuUJOQJdCgQoAIiDK1GcYYAVDa8hUraD6tsbuiGT71eXwqE9TNnbuXdRtFmRg33AtpjLeIRBcCrSIgymwVTnXWPQLQDm+44QZTFlnro0CW1CZhdAVNNlTOqFN691QQrXW+9Tav7H5y1SPQYhyVui9q4hpXCOSGgCgztxWRPJsRgLkVv+FfO2gE+b1h+x3wKauS8HEFfaIN8vUg/8DQCOK0spyK/fvf/z6J2URK/0Opjj76mPSja0QhIARkmNUeyBoB1N7qa26F7gUVsF17KXVKH9RBSaIqilCAgxcuzHrZJJwQmHQEpGVO+gqP2/ygTZZjJQs+rjDMNje3DgQAy2RmRZmYLz2ABpqOGgsBIdAuAqLMdvFUbyMhABNr5akktCtwZNnHdaTBetxM2y+Iypogj4FJFVWESwkNulho9SkEhkBAlDkEaLqlKwTgYkPKvOiii2B0xVFiV4P1o8zKUJPEwnA42mbTAxI1ZY0rBDJEQJSZ4aJMr0hMHRClzwH6/fefZ7Q9f/4CrgTV3zSabnkHhJ+nTu+m1MyFgENAlKntkBECpEw4qW7cuDFEMsqAI9WykofYzRCpeJzpiTxEEg0qBKYZAVHmNK9+dnMnXUHJi4pBRJ2vsq9Nuc5JYux8HqLEQ2s4ISAEiIAoU5shIwQ8ZY4SYTnilGaz7axdZ12RsaLys8MDiI7EUcU7R0RVtwuBCUBAlDkBizg5U/CUedppp0dNjAeH58/MmAxgLHNNevFLXtpuJGjzOTJmdJc5uza/Sy2FgBBoEQFRZotgqqtREfCUCVvoqN0Nez/F8LkLDl54iGmfoK5hOx7pvnXr7jABkPZ2pI50sxAQAsMiIMocFjnd1wECnjJ9MoEOhqrrMk/KhMRUf6McdxMvhIYTArkhIMrMbUWmWp5MKLPSA2j9+vU844w6TSRlRvlGTfXu1OSFwB/+IMrULsgIgQJlRlV1BiJkR49OeBEuFM02GY5ZsiSjZZMoQmBqEBBlTs1Sj8NEC5TpIyMTi8/amf5IlSVNQF2J5bHhUKolNnVfyKw1qBDIBwFRZj5rIUn+UKDMwOPMSkWT4kVVFIHaHW4c1jYVAtOMgChzmlc/u7mXKRMp0aOkLNtmwynTE7mOM6M2hsadZgREmdO8+tnNnZy01dbbGGMh42uUlEhNZzKwpAn8VO0KojOjpNplzhyTAXXKomTQuEJgahEQZU7t0uc4cR/dUemAk1LoylATpuBJKYkfi1JF5SGKmrjGFQI5ICDKzGEVJMNmBMgHsDpCkzPW/O1vfxsCEMYt+9qEMxb9kkDegR7FISuiQYVAOAKizPAlkACzCHjKhIvN5mw7y2Oy7UCsmuPMQNckShWVuk9bVghMLQKizKld+hwnnhtlsuQ1cxfkUFFElJnj3pVM04GAKHM61nlMZknKRDTkBRdeaNwQGJ35jgMPLGu6ZKwzV64MwXVmZpXJsO9+bw8RQIMKgalFQJQ5tUuf48RJmYgtyUGfY7Ydn5+dp4mBKXjCfaNy3D2SSQh0j4Aos3uMNUJjBLxhloleA08NSdsFTTecsZhsNirbbeMlVUMhMFEIiDInajnHfTJkgmXLlmEuZKxACyTZEcW/CC9dk6IyLWBcE+ywuBJp477ZJL8QGAIBUeYQoOmWrhAgZdIQSsaKSnZDAbbfYUdOuyxnV4j07jdc000/ZY0oBMIREGWGL4EEmEWAVETlaaed3mTcEEWZPLn0MvCMMzCfAHPEawMJASGQDAFRZjKoNVB/BEiZpCKebs5fsKD//d20IDmRttesWROu5BErkHo381avQkAIFBEQZWpPZIRADWUG6nPlzHm+okgUfDkYh6PmrnGFQBQCoswo5DXuJgSQlA6EZB/4+DBJHgly48aN4dGZlUnyqGVGcTlCXEyGffbZV5tJCAiBNAiIMtPgrFE2IwAKNILkE5/c43/xPFS2iyZG85F/+zfSNhPe+jNONEgsEobLIW41/aw1ohCIRUCUGYv/dI3OMiCVNNmLMpEJyP4UeGhX6bjLiz7RQcoVpQBz5+6VclyNJQSmFgFR5tQufYqJk+3qORJUaqonHGWtJTRLlukILx4CpEj2PhCTF6MoE6Gi4V5IKbaRxhAC2SAgysxmKSZIECZB7cWUSHeOxz0+3//+9/28vVvNhg0b7E85UGalDLwYlWnhuOOOF2VO0PdGUxkDBESZY7BIYyHi+TMzjKEsMyW0Rmic4Ji77roLOd5qSmDSEZRJz1m3cpNt9tKYgApm28EcuRw33HCDzfQN2+8QtUaEOioPUdTENa4QCEFAlBkC+3gPCscT83QFC9I3p0yTYBfwH9qgfXMHGboFeWsneXTdujuisOMEPW3z4gMPPBAiGPFftGhxiAAaVAhMFQKizKla7pEmu3zFCnyauPBYy+EGoyOod5pFLeVwC+Sss4+bWqVb0HATH+4uGocDNd3hJNddQmAcERBljuOqJZIZHqp4Iu+//zw8jmuYEtqkOe/cc889OJscsbZGZfGQdevWkZyaK6ztwkQBoDezZ16Ekbbd4Rr2JspsCJSaCYFWEBBltgLjRHUCpqwxt4Ik7FQSnxHZsRdqixYvxihIawDlkm1A28ZPUe6pXtMlbX9s6VKTKsouypjRF7zwRQVfqonalJqMEMgDAVFmHuuQkxQ1ASFwhU0gKYy6m9nRmUDD88OtX7+eqjZBYEKDqBxAkCTcOJxgS2gIIZAJAqLMTBYiIzE8ZcIqawpljY9r66JDeTVyAg9xXPqs7jJnTusjNuyQtO3NsOGMRYepKONwQ/TUTAhMAAKizAlYxJanQA4AQzA4suUx+nVHcmLxEJ5xBvq5oJqKgQN7LGdA1TOqPFkOxV76raf+LgQmBAFR5oQsZIvT8Fpm1PEYKZOmYGQ5QAIEyPY/X/OaFic7UFek7d1338PfGOvNKw+ggRZRjYXAKAiIMkdBbzLvzYEymSXAnxGWVc/EC+Dzs1dSZohpNIdUD4kXQsMJgSgERJlRyOc7rqdMpuBJLC7IyQqB+Ww7ORRVnvVCcq5JlekXUiLGXL6wEqccV2MJgWlDQJQ5bSvef76eMqMiOiAlo0p4RkhiCHRPraTMcg3q/ii33SLWONz2bNSfEMgUAVFmpgsTKJanTK/kJRZpt933MEnKHkBwmmWdk8RS0WIMwZgk7/IrrjBRD164MLE8HI5vGEgoESWDxhUCE4+AKHPil3jgCRbiMge+v6UbmCUAfqrskorm0An5RpTOF3Yml8NJKlzJy0HTHRFb3S4E8kdAlJn/GqWWsECZHaX46Tur6npbVVkO+nbVYgOgUQ7E9DXLwuHy+fxanLi6EgJCAAiIMrUNiggUKDPqOLPSaRaKnSXz81kOEi8hkxN59ZeFz6KKcK1dO5uGNzEgGk4ITA8CoszpWeumM82EMiEuJUFadkofHmqC4l8mGNxTmZwoPJ9fDsbhpjtM7YTA2CIgyhzbpetM8AJlIoFAZ0P16Xj7HXY0Yc46+2w2taTt+EQdZ0KSMm1fu6U8WSHLQTLokKepbDFONroGEgJTgoAoc0oWuuk0/VlduEuLF4YTIDnlEGqSVT6/cE236SZTOyEwtgiIMsd26boR3Nv3SJmB5EQZaAJds2aNXQyUigVMkMSA62DevMjAEJVs9rDnBMDHp8DtZpuoVyEwpQiIMqd04XtNm5SJg7p16+4IVzQrNSdKFeWeWqnpVtYsS7m9cshcn3K+GksIpEdAlJke86xHJGXCMRV+LlttvY3xE4sqJ5Ye1cc2n1wuX2FD/+QnPwk/tKN7KhIIMKkCa1CD5jdu3JgYKAyHJAaGTGCxl/Sz1ohCICUCosyUaI/BWN4wC7WJOWWiQk2oOflww/BkswWUuK7h3rzUdMdgq0lEITCGCIgyx3DRuhTZkwEMszweC6dMKE9lZoo6zuxFmeG1M+fO3SvcnbjL7am+hUAwAqLM4AXIbfgCGTAFT1SJDNbbAhMwpyvSBRgxBKbA9cVD6JoUXu0Zh7tG24GpHnLb0pJHCLSIgCizRTAnoatelOmVvMTzLHsA+USvOEFMLI8NRxMokCmHmkSpvxAsXNMNWQ4NKgTSICDKTIPz2IxSoEyv5EU5lbAaJSM6IBWJIYoysaIoqFJwTcJFuiZFVRQRZY7Nl02CjiECoswxXLQuRfaUaSEcPhlQlyP37Js6JZx42YhK3sELDwmRCoMix6yB42t+WQpcr3omFo/GYZxDJx5awwmBiUdAlDnxSzzYBAvuP7iZh3ZRNODNsGXKDLQYM6GBl4Fw4a+DQd9Sa0oVaBxuaSrqRghkh4AoM7sliRWo7AtKrQXEgBD+9OLBDIs8t6a6eR5i8RC6BSWWrZrLl68wUX2dk5SCwRcp3Dcq5Xw1lhBIiYAoMyXaYzBWmTL5CMaDOCrU5MgPfJD2YYI4W256S5aDxPgCGR4ccujLr7jCRMVJZ2J5OBwTUESl7ouauMYVAl0jIMrsGuEx67+yhhTpKqp88fr168sZf6jkRRE5lracVKFXyGbKfUDDQNR6pZysxhICKREQZaZEO/exkAdu0aLNpbX8+Rx1KZ+FPPFkSJkkSFJmVMwoECinevDVV6LKk5EydZyZeJdquIlHQJQ58UtcN0EcDeLxig/9PL1/LHLM8ma77n1WEwPHk8uZmRkbGnZRis1kAomlIm37pAr05gWXMwNtSsGYAhcCRGWuTzlfjSUEkiEgykwGdUYD4TnuqbHX717i8qFd4vlUak7hFSL7evPCTpsYKAyXg3E4/aw1ohBIgIAoMwHIkUOgpAYeoDMzq0yb9BEjnilR5RHBhSgb8t73vY/uqf4kjIyFZHUh87nhhhtM4N1234MC0C4aFYPokyrQmxdvJExnj+qe6eHasGEDX3F0nJkef404wQiIMidtcfEQx7MbBAMNDJ9Ki6txD/6Ks0lwYcF4CM2Jd7GIVWVR5cTYlZ1mczjO9Jnzylx+/hYzcmKsvFQhmm7i+Wo4IZAGAVFmGpxTjOIrQtfbXfueb9Hg6QMxy4yVYlZuDApA+UmZsX4uVOnKgkV58/rNIMpMvFE13AQjIMoc48U15x36xfSiSTRAMxhUm/vIMK1rVpTJmZKHMCMzgUItDoxBLIea5MDlhCsqD9EYf7UkuhDogYAoczy2Bmyn0BXo4MpndIEmcSQJCsEHZ3vglb7aZK/J84m/aPFitmH4RNTxGM9TveqWQwwi0xfwoBcJiWxpkFWg+ZtKu3uRKXA/e+657fas3oTA1CIgysx66cFSOJTy51K9VEmQKJq1pWn1UpJibbPk7EIgZtlgm3hRoYuXkeFrTVuLMuikctB0B5VZ7YVA5giIMnNcIDjdmPMOD8nKTAmzGxogdBJPRnxaV2Vo1oM/ETFiuauotK6VnF1ODJR4UeEWazJ4LqeSB1esxPLYcDn4RoVMXIMKge4QEGV2h+3wPfMR7JkS5lAcMcI2axw5fO/N7qxUkhCIYiJFebVURmfyxYJZDppNsbVWeMUp0zYZKzA/u733xB70toayOhICGSAgysxgEUoieEMfHnkJCLKMAiM4/eg42oylTMhZVjTJo75uZeJ1raHMQG/e2VQPK1YkBkTDCYGJRECUmeOykjL//C/+Mkq+SiWJ+QQC07oyZpTIwOnGGCuQMuljvGzZMhMMpnJjrEAlj1JBktZN91E7U+MKgUAERJmB4Pcc2muZUam9K51HKvPDJUaQOqVXf40ykbcosTAcrlLTpd9W+CJG2SqilkPjCoGOEBBldgTsSN3mQJlUkvC0ZX52XyHSuwWNNNsBb64MNYl15cUMmB3J69+kzKiwHP+KE2LeH3Bt1VwI5I6AKDPHFSqcZQ4dXjni3CqVpPBM6Pfcc48R5Pz5CzhBShWVAheSlGkbC0fXpKg3DJ5JByIz4j7U7UIgHwREmfmsxawkBcoMTHhmKdrnzt2rTE4+y0FKECuLYFeqniml8pS5evVqDs387FFKHt97Ar2QEi+EhhMC3SEgyuwO2+F7LnrMru08pKSXrH/yP19jyhOf+PS1ARkMP8MR7vSVy6i60S8psAi2Ly7N+bFkd1SoCYzqjBmVB9AI+063CoFNCIgyc9wH1JnCIzoYiEmzXuWhXWIQy8bhSrpKLBWGK3vzVgaSJhYsXNNNPF8NJwS6Q0CU2R22w/dcoMwo5xFMgIGY3qzHQzuUyxh+kiPcWXmeSgvkCB2PeisPDpkJnUuJQ82oM2lSpvKzj7rAun/qERBl5rgFCpQJioqSknZFT5nhAfJXXnmV0Tay2xAZeocGvmGUj1RhCw3P51e5iFE7SuMKgbFGQJSZ4/KVKTPqFMrnKfVKktFAVID82rXryu6pPLTDn6Lgqkz1QGttVLJZ2tL9G0aO+14yCYHsERBl5rhEZcqMyunqA/t8PH645kQBvFSM6IiCq/JINat8flFJFXL8mkkmITA4AqLMwTHr/o58KBNzZUkT6JTIP26zZya2KA9VUubBCw/hgqBKaKzDFLRb6pTUdOljvP/+87rfO9UjEK5Aq3XU3DWuEGgRAVFmi2C21hUtaXzSBQbV+XLWjBANdwSlPofIUYaaELdAcioXe8khyyD9krCjAsN8W/uGqCMhEISAKDMI+NphfbR+PqngfHQmGSuQy8vG4cpSz4kXmDLQOJwDZQIEwiXKTLwlNNwkISDKzHE1SZmwNJbjFhJL/LzjzOWzNaTsEQw7ZJSvDRLmFdIs+FeNqGw7pEwmm/XZegMrwNBagIyDibeQhhMCE4OAKDPHpfzsuefSJTXcERTZdvi09SeXMH4WGCsxlDQOe6moS0VF5vjy4ATEL2JilDgcF/HMlSujZNC4QmDcERBl5riChcJb4aHozBLgeSg8rStPLr1xmE6zEBVkH7K6ld68ZKyohAaEK8qdOGQtNKgQaBcBUWa7eLbTGw2MRgakzLDAvi15Sj1lQlmhKtzOtAfvhcZhegB5Z2PYSAfvsoU7KjXd8AowfA+DLb2FSaoLITCVCIgyc1x2UqaZHOmEGUWZkIFPfMrAIlx4BEcdHDIAhgKAO8lYUZTpozPL3ry+ZlnKzffAAw8QmcCNlHLKGksItI6AKLN1SFvokJRpNrTwiA5PmeQh72uzfv36FqY9eBf15aZnZlYN3mU7d5RpOwe/2XBNtx1w1YsQiENAlBmHfe+RC5TJWPjAhGfMXcBYeKQ14CM4KkC+8mUih2BWynDKKafaOnv1N2rPoQBZbKqHqIlrXCHQFgKizLaQbLMfel3SUyM8QZ1PNsupVroFtQlEv77IQ/D6obMP7di4yHRF/Xpq+e98w6hMZ3/LLbe2PF6z7riIe7xlz2Z3qJUQEALPQ0CUmeOGKGiZEDGcMiHD3Ll7QYxCZGF4gHyle2o4XJXevOF20Uyqiub4lZNMQqAZAqLMZjilbVWmTIbt09CXVqJNo1Gn9Km9SQNRvjas6AkuZ1IFugUFBlQYbfs3DPIoMlSkXz4bkYsYmLYpau4aVwiMjoAoc3QM2++hTJk5VMNYvXq10YDPhB5OmZQKgjHkkXBFHbJWGgZyyOcXbktv/9uiHoVAQgREmQnBbjxUmTJZiDEw4TjEZ6IABnXQNSlKc/KUyYgOwhUlFbCiYYARHT4xUFhCg6oQ28YbUw2FwLQjIMrMcQeUKdNrLYESl5MqFBIVpZft0Ucfo1TgJArA48z0Im02gS5fYTJ42qZUXlNPLCHhOn9mJvHQGk4IjDsCoswcV7CeMtetuyNKaB4clnPUBZ6NVbrVhFNmZbEXc6GyT9QikjIDD3qj5q5xhcCICIgyRwSwk9tJmT4QMwd3x8o4SDIW8st0Ake/TmkcRngJ29LXJrB4SCU7hvsYf2zpUpMhKg9Rv/XU34VAvgiIMnNcm17siHC6WAWFSfK22nobHhwuW7bMpAJ1haBJ4zD0Jy9AuD7Hwm3+5JJSRRXh4ntP4MtEyD7RoEJgdAREmaNj2EkPtOB5MywfdlE5XTHVcshj+HEm3zAKlLn1Nq80aaN8bTxc3CV0oYqyi/oXMpWb7uTbq04nFwFRZqZrm2e9LYDFJz4sn4ZdOGVChsr6yUwDFFghsqzphhdN80Qepelm+q2TWEKgHwKizH4IBf0dqgDJiSZQFqMIPIUqR4gigQAZK0r95XGmNw7TYhyYm5eFuCkYA2ACi3AxACbwZSLoi6VhhcBICIgyR4Kv05srswSEn89VJlWoTAzUKTiFzis13RyKh1DT9WbYfBYxyjiccm9oLCHQIgKizBbBbLkrKkk+SR5TwTE5XMuj9uuOmdDhAcS2SImO/4IJcJoYcjxG/dvHuvgKkdTU+82v5b9zEb1hgPaDKB/jHMwVLQOt7oRAEgREmUlgHmqQSs0JcfGmowTqB5VKEqP9omyzFjP64pe8FPmAiHd4JvRKTTer48yh9qZuEgJTioAoM+uFN3LywQCMWwikTDjxmmBw6yV8pMyotK71WeOj4PLuqXTc5cXAMA++9/gk+1l/GSScEMgAAVFmBovQWwSaYam6VdatTD+HsqLJAPmoNEB0mAIPlZPN7jJnTnqUbMTMkxMF5iGKWhGNKwSGRkCUOTR0KW6k8wgpE6eGpCuGeaQQ5flj0BGUaV1ZpsMX4UosWNlxt1eWg5SCzV+wwJbMJyficWZgzGj4uXjKVdBYQqAVBESZrcDYVSeVRaxImYH6Qdk+7A/too4zzzrr7AI5+TcMf8bZ1YJV9VufnGj7HXZMKYwfK4cj1ai5a1whMBwCoszhcEt0FxOlemsndSnQw8aNGxOJ8vxh+LQ9ZskS+ws8eMnlLHeVWLZKuPIJgIFTcWXmvMQocTgGs3IRoyTRuEJgXBAQZea+UrNm2Es3Z9uBxLzoy12lnEmlIyi5PMoDiFIhS4A//cV/zYsqKtRkVilfsYLLRON21BsG33ICkyqk3LQaSwiMjoAoc3QMu+2h0rORF3GC2O3wvXsvewCRMv2hXUrxvBnWO4KWK2OnlMq/4nipcijCFZ5UIfFCaDghMCICoswRAez89pmZVfZc86ob3YICPYBIkEy6hl9M1Ne9/s87x6VqAJipZ5OeO32Ookbpc1B5TdP1BvbKLAeJcSNtR1WhSTxfDScERkRAlDkigCluR3i+URGNjZV1K1OI4sagIyhDHn22ncTCcDiyI8qYPProo3Y9B7gsO5JfRL5hBLpxvW3vvU2qqLjVqH2icYXAcAiIMofDLeldlTqlPekCY+EZVeLVX/ra+JplKcEiOwIcpu7LIZi1fNCbbc3wlOulsYTAeCEgyhyD9SJlerMeT6Gi8pTC86h8ElZZsywlxN4vyZfpCIerUtPN040r5XppLCEwXgiIMsdgveopMyoI0vvaEETm0gMZhATpe8qsLB4SBVclZVYWq0m5IxmWE2gcTjlfjSUERkRAlDkigCluv+KKK0wdwXkYC5gwQR1+SSFE1RhUkrz6i9R0gcdjMMbSpQVRHJSa6exnZmZC4GJEB2zpeNswGcKTCfjjZxjYo9yjQlZEgwqBIRAQZQ4BWupb/HONShLj0APLTXuVjiGPiIsPpEyszRcvvbRsMT5/ZsYuRqXAhWDmNIsPmYmLGFgE22fGkBNQ6u+2xhs3BESZ47Fi5eypkJvEEFiMgjIwQrSyZllilAkXx4X2SVGjXJOY0KDyTDqHRRRlJt6oGm7sEBBljseSkQMWLVpMibNK7c08RKxBHXg8RrgYbugpM4qc6j2AoqTCdpoNZl0+m5xoPL4YklIIpEVAlJkW72FHowXPJ9ZhlALSHYQnm/XuqWQshnkMO+8h7+NBL98wcHzIM06It2HDhiG7HuE2+hhDEh5n0gHn4IWHhC/icccfP8L8dKsQmHwERJnjsca0diJC30tMY2OIe+qmg8Mvbj44rEwcH2Xoq0yB6wNgQri8l6bLRQz35l2y5Njx+D5ISiEQhIAoMwj4AYeFtdOsZ3Ca9bfSpEZP2gE7HrU5HUG9A8uixYtjfW0q8xB5t6AQygTW/jiTOiXrVkalP4Q7kq0XkgGNuiF0vxCYaAREmWOzvFSS5s7di0IzZDOqeAgkKbunMjFQoCMo4apUf6PIqVLTzSGfX3kRx+aLIUGFQEIERJkJwR5tqMq6j6TMKBMo5kRNlzxEygzM51eZh6hcGXu0NRn4bp/qgZpupXF74K5Hu4HIjNaN7hYCE46AKHOcFrhMkP54bHVQIbC1a9cVdJTf/e53PtdryBEd/Gte+apXm2DkclogA715d3rTm8pxq+EBMDlouuP0VZSs04qAKHOcVp4ul16n5ElYVF4bIIih7aHv2RE5FmJzGpTzEOFImOWmoxaezs/I+UAZqKlHxYzyvSfQlh61IhpXCDRHQJTZHKv4ltQpvcGT+sH2O+wYJSIU3PJhWLjiQgE8XAyAifIxriyrQvsBYIwSLIfMGFEbWOMKgYYIiDIbApVFM2+GpUDUWgKNjbCClrPB5UOZXnOqzKOUcnXpzeul8pQZ5fxMTTfQlSzlQmgsITAEAqLMIUALuwVhCXyuMU8pwzxAmUx2k15EUlE+Fad9eTKmwOVxps+9kBguYsXCbf7oNzA3OhXNqCCcxAuh4YTAoAiIMgdFLLh9mZkg0KxJLS7hWb1gUaiVswRklQKXR7+9apYlxk2hJokB13Bjh4Aoc8yWjOoIqllRdEYp+IuJJ0YZfGUVVjVJLAyHowsSfaNoF4W+HnVqSFs61wumAr5zBDrgoFxawcc4auE0rhDIEwFRZp7r0lOqylRwXtGMmk+lYOTRKKn4huFz81ZGuKaUsFLTraxZllIqjFVZayWxDBpOCOSMgCgz59WpkI2p2KENrF+/ni1yqGpCGcr2xpDQTIDjkp4vJFbMJ+DzKKXcB34R/bgEMKUwfqxeL2RR8mhcIZAbAqLM3FakvzzM4IraF2xNdSowDVDNcWagVGZpfMELX+SRZVWTKC6v1HQJ4FduvLH/PuighSizA1DV5UQhIMocv+WEjmLqiM+eSkdQf5SYeG48ufSCmZ4XKFVlsRdmOfD5BFLCBXJ68UteWlhEAnjKKaemFIZj4UiVmm6g93XI3DWoEGiCgCizCUrZtakMLgx3d6SOAh3OQ2aCRYFIM6yv4RxeawVolDXdrLx5Aw0DUVtF4wqBvgiIMvtClGOD8qkhpAynTFYoK1CmZTkIxLEmM1Ggeyopk4GYOVAmNV14zwYumYYWAnkiIMrMc136SMWTS5+ohcdjUXlKIbTJUKiDbX6YUb42kKrsG0W3IAgWFbZPU4G3YwMliBRYAaaXqWAsvycSWgi0jYAos21Ek/QnyhwIZlFmc7hEmc2xUsspRECUOZaLzlh4r6CsW7e5CFdByUs5QwYX+oNDEnxKSfxYH1u6tKbeVpSWWbmI4TGjTPWw1dbbRK2XxhUC2SIgysx2afoIZhyAY0JmT/XHmVGpvSGDFSODYkfBSJlR2VNJA95xl6onUtGGbAKfHJh5iPALE9wzA21i8WYLca9YkXhoDScEMkdAlJn5AvUUr5w91VNmoLtjWbDwmNHK1AGzxBCXmLcyDXp4rZVwTXdcv5OSewoQEGWO6yIze6pX3Vhu2htsE8+QVETB6GsTFQTJytLecZdEHiUV1oUKpdd0uYjzFyxIvHY2nNd0vQ0jRBgNKgSyQkCUmdVyDCAMecizo68hNUBfrTZFUS1TnigYctmEB8CwICVrflUWH20Vif6dIS17+ZCVWSkC33uo6WKb9Z+GWgiBqUFAlDnGS21PWx+Q4GMnoiZGKyif+ChATcqMegSXzbA+OVxUAEylcZiLGBhqUvlCFrWjNK4QyAcBUWY+azGwJOQh757Ki1G+NpgGZaADy6yoQQeH58/MmAw+dwEZKyrTAl8vCuwIn2eTNioFbg5JFQb+PugGIdA9AqLM7jHubAQ+WD1l8owz0AOIMjBPKc/noqTCYWHZOAxi4GliiI+xz+nqi3eWEwN1tomqO6aWWXDJTiyGhhMCuSEgysxtRQaQZ/Xq1UYDlSVN9t3v7QP01WpTHqnSNssru+++R6tDNe1sw4YNpEzgxtt4aDczs6ppX622o3uq13R58hp4nFnpkt3q1NWZEBg/BESZ47dmlJiUiacbTaAkp0Ki15TzLHsA5SAVOcCTE7xS7XqU36ynTGq6OVBmZR7jlLtIYwmBDBEQZWa4KAOIRIMnTaA+QB65eAboq72mdEaFWY+nccZMqHgVfj4HMe655x6bbg4VIsuLSKdZiIqkTu2tzAA98S0nKtZlAFnVVAikQkCUmQrpbsahXdHnZ690C+pm/OpeffwGz1nDpYKslOHaLbbZHCizXJrbS+XNyCkXsWxdTzm6xhICeSIgysxzXZpKxeypXhXgAxdVIZt21Gq7jRs30oEF9j0EmaB7XvEnr60O278zGhuJDNj9BS98kVFpVNg+fW1YbwuS0Lfroosu6j+xDlqsXbs5ZbE3FXQwjroUAuOEgChznFarLGsvJansHZp4nv6Ijr6g4R4llZoTuTzKm7dyESvdglIuYqWpIKUAGksIZIiAKDPDRRlApMrsqd4C6UMXBuh35Kao2VkmyHCPkjGiTA/gyKsxTAc+AUVUqodh5NY9QqBLBESZXaKbpG+ehHkzLPw/jbGiNCdMnYLRaBye1pW+USBvuqfSuA0LZJIVqxiELxM+qqTsFpRYPK/pRjltJZ6yhhMC9QiIMsd+h5CZ/NOWtRh9uavEUy3LwCvIrZpYGA5X1n19Yt4oYthlzhwKRi4Pf+/xlBmYTCpqq2hcIVBGQJQ59rvCP9d8teTw48zKI7pwqfiGgdhHW3tvgYzKnOdpm0kVCCBFTbxZ169fTy+kwKQKiWet4YRADQKizLHfHp6ZvJIUmwoOsNZTZkiCOkhFcvJhObSLRlEm9W9vS2dl7CipABdrrQAiOEKP/bdFExACoyEgyhwNvzzuLgf2eW4IPM7kaRxxorHRM1ZKFMlDeKXwvlFUf72mnlIwCuCt1gQwyi7q33uikEm5ChpLCNQjIMqchB1C22xl7cxAyiSXE2UqeYFSkZzglUrBwgNgKICvalL5MpRyy4oyU6KtsfJHQJSZ/xr1lxDPta223gbPXIQY0nrG2h2+3FX/vlptQWdUpsBFpjrjhkCpKlOx0wEHBbFbxaBpZyu3lOb2+fwqC2o27bGldrRa/9M/Xd1Sl+pGCIwrAqLMcV25gtykAR5n+lD0qElSR8lKKqBR9kLKSv0t5/MLLDcdrulG7V6NKwTKCIgyJ2RXsCIHD71yoEweHDJrvM+9gERxUeiXIzpImTkEwMBCYMgQwEDK5PFzoGEgap9oXCFQQECUOSFbgvqcTzZLs17gA9fOWf0hK6UKdASlGZZHqkjrGh4AQ3Lyi4iUvJuzUqxYEbJZubVEmSH4a9CsEBBlZrUcwwvD59rzPICeoyv7DN/1aHeWKTM8eyomxIKU3gspHqvlm9fLSxVOmbRjKzRztK+C7p4EBESZk7CKNofddt8DD334AfnoTKpT58/MRE3VZJjZIgBSBzAT+n333R8i1RVXXGEE6bMjMQYxymIM1y2TylsFvva1r5HLWeYzMWh8y+EiJhZAwwmBTBAQZWayEC2IUamO0HcDzqstjDFUFyYDC2eiD0pFP5ehOh7+puriIVuUvMDjzMrM9cxKEZXPD7XKjbajommHX2ndKQRaRUCU2SqcoZ1RFfB1J3hwCMUuSjrzrPFSsUJk1CO4MmVSr7IwKXGrLGBC16SoAqhAILwKTcpV0FhCoBcCosyJ2hvleHxyQzhlQjYqSZUnr4lXgol1vKYbfpwJEGoCYKKSzXrDQFQeosTbQ8MJgUoERJkTtTEsoQE+sKTZxJDK1fQD/AmHiCGzxTGqSQWPUApgUsHkGGVsZJoF755KRTNK/QU+OF41uHhyyVCTN+385pAVxKDMgisnoKgl0Lg5ICDKzGEVWpOhshBYOctBa+M16whqnHGAf9rOBshHx04UOCBc0axMqhAuVQ6GgWbbTa2EQIcIiDI7BDd911QFfAgdH8FRJrW1a9fREbSiGGQQZVJ1K4QbUlOPqrWCZSor5eGUic1syPjq3Ol3uEYUArEIiDJj8W95dO/VwrSupMwok5ovSEkzLD2A8BSmqC3D0a87Okx5b979959n/BSVOB5UXSZIZjlgHqV+k2v/7wwNirKltz8l9SgEBkRAlDkgYHk3r3QEDadMYFb2t+xV5jMlwHRP9ZRZmeUgpVQYq8YDKIrIIRVt6VFxq4lXQcMJgTICosxJ2xVUBY4++hibG1PBwbDmK0SmnHl9tp3AmFEjJ4DGYpAXXHihXXzxS16aEiI/VpmcuIiBuQ8XLVpcPpOOgkjjCoEQBESZIbB3OCgteD4gYbaGVNDBIQ9ZYfbk5ClVYPJSqr/UnHjGCXpgJbUOF6yq68riIVQ9o5Q8nkl7l+zEyGg4IRCLgCgzFv/2R+/l2cgHboiiWZltx1sgo47HKq3WxCoqORFSFtBhilukMstB+xuotkci403ZiWXQcEIgEAFRZiD4nQydJzl51c1PG8ZPewpHUSbVX58kjwnqoiiTTrNAhnD1WtlOtlFVpz47kigzGewaKCsERJlZLUcLwsA9tTIQk5H73jTawniNu6Dm5B1333HggUaZUceZzISOg15GlVD1fO/73td4fi033GXOrobMkR/4ILumN29UAAxDbLfe5pU8/W155upOCGSMgCgz48UZVrTK6lozM6tifTcqpaJbUFQATKVxOAcfY5pAkW2fG6HyjHPYbTLkfRQsyjAwpNy6TQi0gYAosw0UM+sDBjR6tVAdQfa18vFYYsEpFfw/bWgUkzKpYAuN0looFUMeGRmJP4Uc/QKZStpGbr/YmFEIRriWLVuWeP9oOCEQjoAoM3wJOhGgrI6AkML1g7JU/nxu9erVnWDRr9NKTTcHP5dyzS+f/6HftLr6OxcxMEd8V3NTv0KgHwKizH4IjeffGb/hrWfh9ZvKmpP3KImiTPKQNw5XJgZKvBfKi8ijRO8WFCWVKDMx8houBwREmTmsQvsyrFmzpmyGpX4QVaajurDzik3VNPGJKgZJqeC+698wqGiyokj761TbI98w6LH1k5/8JDwAhuaKl7/iFYkB0XBCIBwBUWb4EnQiQGV0ZuaUuf0OO3aCRb9OPZH72IlwO3Z9zGhg5jyaK/pBq78LgUlDQJQ5aSvK+bAgJX1tGO2XQ7Yd+iWBsezQDnELIfnZWVIUMnjbLOtW+jKfKbcLg1mBDxcxXCogwHevwBzxKRdCYwkBIiDKnNjNUM5T6tUp1qBOPP/Kp2147IQPgKHjbg5FlcuaLlXPwOPM8PVKvGk1nBAQZU7+HqAjqD8jRJDf5iiFoGSzF110UfnkkowV5VGyfv166LgmGDP+sGYZ/hS1XUhOlCoHDyCf0CAKGY0rBEIQkJYZAnuKQflc87UvKvMJpJBmyxiVUlH9hQUypTB+rPpM6FFh+9QpEZFJaal6hjtMBWq6UftE4045AqLMid0ALBdVOLnEf+2ZG5I6gK68nh15mhh4yMqDXu9Ws8ucOYZV1KEdA2A8Mgw+8YmBUu5jrFdlUsaUMmgsIRCCgCgzBPZEg1bG45dtfYmk2TJMvVRR2Xao6XqlPKt8fqhkUlY0o+AKN1ck3rQaTggYAqLMSd4JPJ/zFjymR//CRReFTN6ljznkd7/7ncnAi1BDQ6TyvlEsk0nKBI9u2LAhRLCXv+KP7CXDe2yFB8Ag7wRlwKFvCDIaVAikR0CUmR7zpCPyuQbDow3cq6BmSrEoFY3DtIsG5menyZonl55Ho4jBkxODcLIKNQmMEE25aTWWEJCWOfl7YNYKunxFhpRZJqdAyqwPy4FXbch2wbhcRApAt6BAulq69AQTLCqZVMhyaNApR0Ba5oRvAKojfK7R18YHyCdGgfrcmStXcug3bL8Dnr+QKiv3VPraRLmneqs1vZB8loPEa8fhKp2fo4TRuEIgDQKizDQ4h41CdcSHPIa7O1YqSeExo5Uma/q55KD+ep2yrHom3mR0flaoSWLkNVwgAqLMQPBTDE0agA43a9bbkgk9KnUAswR4HnrssceMBpBsNurgEEObDL6siqm/+ISpv1vWyy8i33uisMJ2qnR+TrGtNYYQCEJAlBkEfMJhy+pIVh5AHolwR9DKml/lM86Eq7dpqMoAmByOM7leOs5MvCU0XBQCoswo5NONW3aaRZYDFqOISjbL+sk+DpJS+WQ36ZD6wx+ABuGie2p4slmsl8HlsaJUhx3+/pQQ+bF4Jh2ogkfNXeNOJwKizMlfdzqw+JOw8BLKlenFK8tdJV6hshk2B6W88vg5/DjTL2KU1Trx9tBwU46AKHPyNwC8Uu3Z6ikTZ3UveOGLcBFON4zcT4kFU8FBBtZw5iMYmepSCuPHIjktW7bMrkPJQ/VpU/KiDg6ZgCKrhAbeA8g7P0etncYVAl0jIMrsGuEs+jfKLCQ9D/dqKceMIgCmnOUgMYKVmm64j3GlpjszMxOuaFKAQI/ixDtEw00zAqLMqVj9uXP3skebny0pM8p3o0yZEC8fyvQHh/l4AHlm8omBovYxtxYWLkoFj5q7xp1CBESZU7Ho9GrxNLBo0WLjpyj9ACnFTQBfpoO5F2C5DVkbr+ky6Xl4Pj9fPIS2WaQbpBdVVK2VHN5yQvaJBp1OBESZU7Hu99xzL7U3nlzmcHD48le8wgTDeaGtBKX62NKlIWvz+OOP28klPvfdd5/JgNNWu4J3jpCiaZCBOqXPQ1RZ5jMxbrPe10FvOYnnq+GmGQFR5rSsfvnZ6nOOR7k70jhM1yQvVdTaVPoYhycnAhrlI1VXFmZhFFw5RIhGzV3jThsCosxpWXFEOhb8ZnOgzEolKdylBZGOZR/jWXZfsTnBffqtU6ZMRmf6xECJBaPV+pglSxIPreGEQGIERJmJAQ8bjkm0qc/xKLEQf5JSRCoo/pCVMaMpJfFjMQDGO0b5iiJRhZ1raq2gNmoUXBg3/C0ncO4aeqoQEGVOy3KTMn2oSbhZrzqhwZaUqp5HU64TDlbLHIAjTF6MsmOfcsqpBY8t1qXB9SipRJkpN6fGikVAlBmLf7rR6cCCZytTwdGTNip1APOz+xAFXKRHCUVNh9Qf/gAB+DLhfW32eMuexlhHH31MSnk41tq16+iFBLK067QYs4p4etlmZlbFel+nn7JGnE4ERJlTtO7lOMgcfG0oFfxruBjhjqA0DvtgVroFRVWA8focdUqakaOChSDVunV3yDY7RY+SKZ6qKHOKFp+qm8+cR3KKAoJSZUWZPj87kaGvzf77zwuByyvlZcr04a2JxYMwjBANMQwknq+Gm1oERJlTtPQ8OES6AE6b6lTUwaH3QiIN0AkzkAb4MkGDZw5KOaWie6qvS4PVjNrQlW7GUcJoXCHQEQKizI6AzbFbT05lyvQWyMTSl91qsiKnrGJGSZneDMusdYGUSfuwt2Ek3kgaTgh0jYAos2uE8+qf5LRy5UpKBt8fu37XXXeFiItEPyYAM/7AArnV1tvYRZTLCJGqnGUQiZPoaxN1cEjPZ+DDPER8w4hKF4wFokcxcieFrJcGFQIJEBBlJgC56RBPPfXUuw899I+32nrf/fa78aabnnnmmbVr1+LK3nvvg89hhx/+i1/84umnn16y5Fi7gs/pp5/etPfn2vmgDmbOC/e1qazhTCKP0loqQ01gDo31c/H6N1LocfXDA2DgwctEg4G+uwN9HdRYCAyKgChzUMQ6bL98+XI++PDLIYccYv/dc8+3brvtn+CXv9puO/xuF/G7/fLwww8PJFONFTSKnCA/Yyc4F1aIDNScqFMyR7xnrKjE8TTDesqkN29gdGY5/eFAO1ONhUD+CIgyc1mjZ5999i177gkivPrqq8lq73jHgXfeeeevf/3ro476KC9CucRj8eabb7YraDDQHNgPCzuTBqI8gEiZkI1P/MosBwPNdPTGZQ6AO2g5Vmf0gQbqgR5bPuPPrG/XglnfroG6Hb1xuGFg9CmoByFQj4AoM5cdAubDs/iMM86APdYeyq993ethhjX5+EA86aSTfv/73+MKjo5M0RyUMunZePkVV3Dy9rCDYS3q4BCesTZrFrHyuReiFunYY48zqXz2VKq/UW8YvuYXK8B85cYby5p6YtxOPPETJoN3yU4sg4YTAp0iIMrsFN4BOgfzgQKhUJIdP/ihD/H+pSecUDDDPvHEEwuey7Q+KGWyf+/AUs73PYDobTStlGpWnwuKnahPgQvx2pj6MH2Uj59zyOeXg2FgGDR1jxBojIAoszFUHTeEYdZSoPG588gjj3DM//22t+EB/apXbwtOtYumlQ5BmUy65jUnJi+NctxgICaUYM46nDIpFSSBE68JlkPYPuvScBErw1s73rPF7j1cgUeqiWet4aYKAVFmdsu9zz774gENR1k40JpwsMTuvPObcXHevAMo7tLnAjNAojDkDjoHUhHNegxdwLN40N7aak+p2GFlIGlbwzXsh1JlVdi5Mm6VqueyZcsazq71ZoQrUAVvfVLqUAgQAVFmdpvBHjr33nsvJatUKMGpaHbQQe8aYgJlcvrm3XfbxcCyi8cdd7zJgDJbZUWTSt4Q8x3llu132NGkgnjs56KLLrKLeNUYpfOh762nzMAUuD43b9SSDY2qbhQCfREQZfaFKGkDRIzgQfyyl73c00aZMplrFFbchx56CD605553XnNBGVxIXxvcG24FRciEyeDdauBIYhe9qM1nOnpLr+mWlfLAfH50mIKl3abJZY2qS2NizG6k5WHZ+0Zfd/UgBCoREGXmtTHMCXahq+kB+RYfdRQughd5kLlq1eZaS1ddddUB73gH/nrRxRc3nwnPnPxxJp90UXGQ69ZtrmwFSVjZilkOAmNGmXCcUsGvmOweXm66nM8PiYGab4bWW5LLA5es9UmpQyFgCIgyM9oJTz75pD2IYXT1YoEscRHxJ7wIZ1pryVuGTmjAPn39pijfDZ7G+SwBNtMoIgc+zBLgOYBvGPglZA9VSsUsByEi2aCVzs+B8mhoIdAiAqLMFsEctasLL7zQHsTXX389+3r88ccRoIkset6X9bLLLrOWC955EKy4PsKyoRB84vv2vBhOmWVygqrXcGqtN6Om6715WbMMNE/ts/WhazqsTEDBo8SoFLgQmPnZA8/FUy6ExpoqBESZGS037K7IH3vaaad5J1jokSeffPLMzIwXFA3OPPPMxYuPwudHP/rREHPgA9frc+X06EP0PMotNHj60zgUpzQuj0qzgBmZAD7heGXpylHmPui9EMCSE4G8aRxmAAz+FELkNgu+e/3oRz8edF5qLwRyRkCUmfPqdCtbWdEMN6lVOoJSqsCzsTyVchTlNsF8za/wrBSeMrvdwepdCCRHQJSZHPJsBmTdCUrEBKpQXFjnJKW8PoMrBSBlemellFJhLLq0eNWNF6PiIEmZ/qCXlBnlYwy4KAMWNPFKaTgh0CkCosxO4c26c0TvmY5S9rXBRdZiTDwHnhEy5JFnY1GONkCgUtPlxag4SEQilY+fCVfgcWYOhoHE+1bDTQkCoswpWeiKab73fe/bbNZz8XNkLEb7JQaICorPElBpF00pGHnIewDx4pt2fnNKYfxYRIYHvTRuB1JmJVxREGlcIdAiAqLMFsEcs674bPXx+OH6AaXyqfvg/WTcEFU8BEtbf5wZtfZM9eA1XVqMmXshvXjhbznpp6wRpwEBUeY0rHL1HPP0talUkpgYKNA2mydlVhqHs/IAQrzv9H7HNPOJQ0CUOXFL2nhC8GRhXhu6aeCicYO3QDbusoWGUIzMOAzZGDvhK1tF1VohD3lfGyp5UXZsxowiFIfos85JFFaQhIkGAw0DLWxHdSEEno+AKHOqd0Q5t5kPN4yChvH4lbETUaEmlZrumStX2hsGQlqj4Cqrv6xLE3icCTR4Lh7ifR21HBp3shEQZU72+vaZHd00PA8x6Rp+CUHHV8OgAOWiyullIzn5vLLhh3Zlp9lMKDP8XDz9DtGIE4+AKHPil7hugqRMn22n8owzJUwgpFnH3XWby3TQAhlYpqOStsMpk8Zhvvd4U8EXL7005dr5saiCRxkGoiaucScYgQ4p88s33ICvCsojTzB86ad22WWX33jTTW2Ny5ImPh2oZ6yoUPTyaRyJPDBzKaVatGgxl4CvHVGJ4yuVORJ5lFTA55577jExAvMDt/VNUT9CwBDoijJ/8IMf2Lfl6aefFtYtImBVTVpkTT5bvWdjuBW07Dfr61ZG1dvqRduxiiaR8SeXvi5NVFYK77TV4ldAXQmBQAQ6oUzol/YQOevss6dNy0RCFrz149NRUmwUOQGwr3r1tnfc0Y7vPnMAeV+bRYsXx3q1nL8lENObYS0LOT5RhVaolL/u9X/uv7QULIqctt7mlYaMl4pEHiXVo48+yqSM0DgDH3MaWgi0hUAnlLndG7bH1/WII49sS8qO+vne9743Z86ub9t7bxTYGn2In//85yjRxedUR+c3eAVBqS+MgrHa0uBNZhwfMvI9/DgTy1H2aqEFMioAxkvlzwghj0nb0aL33Zx0mPJmWLpD+4SIfbtqt0G4uaLd6ag3IdA+ZYKH7PFx+eWXZ47viSeeaKLil1ZEheZ32GGHJXh62hC+6PQo8pfJyVtBR+l5lHvLUuWQPXWWA1as4OzCK8B4Li9LFUXkkESUOcpXQPdmiED7lHnEEUfiYfdX222H6o8ZTtiLdO6555q6du2117Yl6p133pmAMs8++2wDebhimYXJokKIyexLhdBnNSocHiZZk4oCMM1CYLihZ0fa3hnUUTCNtrWpmvRTzkpBH+NAyuRbjk/K2GQ6aiME8kSgZcpEPeSdd35ziwpQ16jde++9P/zhD1scJQ1lUqv4+7//8OjC8+DQU9G++709AffXCH/00ceYAF4quwJ6iDrOJGVCDMrwzW/eTZ04KmyfhbhJkCjvTLhG3yTD9UCnWQ/XcF3pLiGQAwItU+bnPvc5fDfg1ZnD3EJkSEaZ2277Jy1CXSan8Dj0ymSzZCbvrJRyob3JuszlEC9KpZuZWVV4xfGiBiZ6rUxMkXLJNJYQaBGBNinzkUce2fnNf1PzHL/gwgvxQLnqqqtuv/12/HLNNRXmUIvm7PXXFmduXcHxBz8j+tE8++yzDz74IMjS/u2lnD388MOLFx9lf4X5+pZbbzUZnnnmmauvvhpT/pd/+Rfcjh+YW6Gv2+/2U3Z6/PiWg9hW/CFJRQzEJGVGmdS8C9K6LQkNPA1ExYwSK0+ZtItGUSaNwz4IkkeJgRbjHGRo/bmhDqcWgTYpk2xx6qmnFgC9+OKL+aAp/AJuQOMf//jHeNa85k//rPBXHNpZV/hlhx3fiNM7NPjrnXZasuTYY47ZfAJnt+BIEl3tuedb2QMiMUBmvZb2M5/5zAc/9CFrDOXYmsFOCzHM8fW1r3s9ft9tt92tDX75zne+U+jtoYcegkptLwr22X6HzYEQhUcnx5p3wAH8Hb+AL+++e9asZ53s+MY3XnHFFS972cvZLZBB+IofnZQG2EffvrPpxbeQEwiJo4/e/xA9eMpEflf2QEfQKNts5fkcz4OjvHlRL5PrxUNW5l4IpEwsHJcMx6tD7ATdIgTyQaATyiw/xJHZAGzErzQ4xky4+JiX0EEHvcv+e8EFF6Al/HHYGC64voFdh49rgYbPOussNCMboQ34tQZojoiWN23JpwMNuMDZ6OSoozarhrCFFjo0CscHMuNPhx1+OG/3lIk52vUFCxZYoOq7Dz3UrmB20HGBBtxfee8111zj24CVrf9KyrzttttG308kYB+QMDsX5x06+ljNe2C2W0+ZlaI277OVlkSGSRUoVVRyIp8kj3vPv3aE5H/wAgC0KBW8lUVXJ0IACCSiTMOaSiT8TfBfOKyaevfLX/4SKh2+UbvM2dVspNAO/3XtWnsw7bPPvrjym9/85rTTTrMrb9lzTzRDm7Vr10KVtItogGa4vmDBO/Hf66677qc//WnfNbZ7v/SlL1lL3A47LR+I0FlBaTCTUo80ndh+fvWrX1nL4447nhdXrvy0XeTTAXokSZcW4Ju/9jVr9olPfIL3fuQji+zihz/8EVw88MD5+B3UjoHKE0ECIGu8bNk/9J1m3waV8RsI8iMUfXvoogFiH02Al7/ij9g/M5f6clddjF7TJ31t6M1LP5fAWldcLJZVQaDt7HvP8tmomC7gglkCBInPsmXLkB8D9ljmMUgmQxfzUp9CwCOQlDJBfvblKaQOOOPMM+06lDwKB23ssssus+srV67EdXCPaXWgyVtuucVaWgI5fHBQiv+iZ9Db3L2aluAoUKb1yW84DbZUAX0o5IknfsJa+nCa8lnmjTfeaM3mzTvAn02aazGMwJwyqJG6r/1y8skn1+zXFimTuc18lUoPBbMcJP7+8CSM5ORF7SjFUt85VgZizhJDkFJO47BPmUTvG9je+85roAbYEsaRMP/6A0viUP5FWuZACKtxhggkpUx+hQqUSWtqGSAyov0JGXasE9zyxBNPeMpcesIJ+K+Zf2EgbYi19UbDrKdMUC+5sJIyC7LZvWXKZLNejxIvKnPzWuN6v6QuKBN9eu9Kyhx1cMhnMS3GPnNplFSVlEkzcpQ3b6VxuAuHVfSJDyN3e21s2KgLLUWZDZ9LapYtAkkpE/479u0qUGYl9xhk5T/x+wlywpEnc9Thl6eeegpHoWgAs2dDxGsoE1ZZdkLKpGEWUzBjMtLX+bHKlElTLZRj9IkPyBj/7rrbbvj32OOOK4hqaQrK+mt5Ri1SJjqnGdYfelFxiXLcoAB82uLQLjzNAn1tChGitiI+9WDDfdhKs44oE6q8aZMwR+MNhr48Zabce5990QAfSIL2tEyUK5m3Ml91IgTSI5CUMunzMgRlIoLF0IGvrH1XwY7eZQZXzjvvPPsTwjkaQjkoZULNtZ45dGGgMmVSh25YfoQ9QLb6t/J2KdOrI2WvlqgaUvQf8WeEVD2jpPKartcpy2U+G+7DVpr1CsRk0vaBlHLM0XTEJkZXa9lrFiRXaZmtLLQ6CUQgKWXSVadAmfu9fXOimTIQ1DKhQdpfUTDSvoHoDS6scCkieyHBOq7vt9/ba2JLCkNYV3T/sb/axUotk2eZzSkTnVuHTZ4XeA/wkTZzdt21ZnO0S5l4RPKJf9ddd9m49GqBQ0fINiVl+vM5xk7QzyWxbF7T9VQBeWxRopRyrqCXiqkHa3YgcAbjnn76GShiA46ETXWrrbcp65G4ApURgTQIA8UHOAB5+7fmh7A0+QokXkoNJwQGQiApZSIk0b6EBcpk/Slz4eEPYhOtfSFcxH+Tly49AXHu/krhYLIejqEpE95JcNzF7QUPnbKWiYR85rV04Pz5XhgclELtXnjIIbyIuE80g4UZmQ3gK2SyoU2vKViDL3/5ywMteU3jyiTaNkpUQgNIa2Y9mEDLhVYik82uWMFdV1bKAwUzqcCd9I2iwdbnEDZbK9R0iFp/KokGaGbth4tUKVvX29qx6kcIJEagE8rs9S7JKMYCZV5yySX2PTcXHvsBJ7HSCM2h9ifLFedVN0+ZA1Xyshsr3X/qtUyIcd1zpSvx8Xbgyuw/nIj3reXtNil4+ti8yJHUsGFwLm8LeD/Z6OWQzaH3UA1lYqChux3xRkpFu2IOtcnq7diB6hS/C4SLlAlqNAuqDx/y3x3/+6YjyRUrfI2zoddR9UyGhk435oZAm5SJ8EpLvlPOMQv+8/GOqAsGauFbMOyoFnGBfDcgAJAHzLCfWr68l5rFtHNoYD6lJCrEpSAWpQnK999/P++CSvfdBx/EXeAhLyfMpP/xH/8BOVdsUSlO+PjHScm/+MUvzPno7+bOtUEhvNUKxQcp8SgGhLQsQsDnnHPOQQ9IrWfeQ6tWrcIVn4Hhr3d6k1mhvastrNAIVvEGZz4HB3pFqEeGtS+8ksTEQFFlF2mGpZLkMxMNdD7XZGM0b0PljEeqrLUSGJ1JXxsmFGRl7F7syOsQG6tsCmWLATzSMptvKrXMHIE2KRNTNVMqnu8WAcIfZG8pf10/evTRbHDDDV8hbcCh9C/+4i+tPfij7Mtz33332V+/9a1vsYdBVS4eoFKws84+u+BPZH/yhaPtCmcHUyqIzZ8+UpO2lids0ZvBqYe/fzYzAP4E/2HkSQALzqxatclCu/AQfBCOiX8tLQNMvryCX9DGvw1Y3gMMbY1b+anU3sjNGK7Fx2hzgSmVNw5TyQs0gZLLfZK8Pd6yyVyPT1QK3Mr3nkqyxMsQ8kIAXhxj4wdHkh2VYeEWClS+m+83tRQCNQi0TJkwPFqinHL1Y2hahR9LHed/oG/57zZItNwG7XERSQ++9vxIEihhsK+OmGAd8v/kuR/ER+JfGITxL559GA5ePPjBEPi3IBWUS8wXP8jhh8Me+x0/yIQwojw1K2dAAaJ29zc1J/p0eD/MqEced4WPGaWo7SLQvLf6N4worCA/4Sq8UNp11DxpPsdWWooyW4FRneSAQMuUiSmZjw+ULfq45jDPCZMBRWDs8feFiy5qd2o8doI/ZPmBG0UDBy88xObrHUHLZ5ztQtG3N1Kmzytb6WvTt6t2G5Ay6TDFKyFpFkSZ7a6vegtEoH3K/NJ119n3E4eFgROb7KHf9a6DgTCsuK2/l/DY6ZRTZsvR0Fskym+WxSBBkzQOh1MmJGHNL5phfZaDqE1IqYiVKDNqLTTuhCHQPmUCIPNbgYXWJzGfMOACp8NyKwOF0zQUmJpT4YywbOtr2GFbzSgA/X1YITIqZhRTK9O2z3LQ1twH7aes1cVSpjxmB11Btc8WgU4oE4Hw9hVtMf4hWwQTC4YsSOaW3LpJ1iZCZ9QCZfLgMMqrhZpTOdQk0AOoskwmlfIowXKjTBlmEz8lNFx3CHRCmRAXvqAIvYA/Z6X/TnfzmfieDz54Ifjy7z/84e5mSmdUH5PHdBNRx5kkJx/REU7klUp5F5nQB1ruciWyWC2TlBkYETQQgGosBHoh0BVlYjxYZfHVFfTtIgAlz0JX2+3W98YnvncVCadMPna9GTb8OLOSMuHWS4rqm0yui3UsG4dFmV3grD6nEIEOKXMK0ZyYKfMJSzMsGQsG0pBp0q3Gu6ciIepmT9qO6yfXTNlqfgEWr5Tv9KZNSf7w8V5UyXADT2+9zeYMsWYV4IIiODiZGBwIcasmwFdvvjn96BpRCLSIgCizRTAnp6uys08Ox1FlqXo5K6VciUqlnOov0h2kFIZjFYzDsVom0Yg6CA9ZAg06kQiIMidyWUedFDQ5e8gyDTfyqNmVqHpbmBKfvJSqsjTYqJMf/H4eqZbhivIA8sZhr2WGxGWG288HX1LdIQSqERBlamdUIJBnfvaypou4Q7J7CBkYdjWJ46Mo00tFbyC88YSgRHyiaqLpSy4E2kJAlNkWkhPVDw+fvH8sH3xRiiY1XSRHJdzb77BjuPpbeaRqqifOOKOskUyBywDWcMqMcreeqC+nJhOKgCgzFP5cB/ep2Hsdj4XIXj7OfOyxx8pZDhLLRk7yOmW4NZJWa3o7izITbwwNN3kIiDInb01bmBFyk1aGScTGQXqpWIkMARXlLActQDBIF7R8+jrYrCjiCzsP0uuobamUEx9R5qiY6v6pR0CUOfVboAcApEyfnz0881lllgBm24myGCOoo6zpkrECjzNZOzMTj1kZZvW4GXcERJnjvoJdyU+F0lMmySnq2VdJmSTyqGSzlZTJommBlElkRJldfU/U75QhIMqcsgVvPF0mqPORhTy0iyppAvGpOTG31A033GCU8Kad39x4fi03pFTLli1j1yQqn+Wg5YFru6OmK8pMCbvGmmAERJkTvLgjTa3SpcX7Xo7U+wg3l43DlaWeRxhhmFsrNd1YosI0wilz3bp13jAQZZwYZkV1jxCoQkCUqX3REwF74nu7ordARsVOLFv2DyYY3Wp83UpWiEy8rnT28fn8PGOx2nNKwah/pyFvgI/XFwwKywS2TYVZOC6vYUrYNdYEIyDKnODFHXVqlXbF2Ydv0OOvUtMN90vqpem++CUvNcRAJKOux1D3c73sl9ZTGWDieF0wgvSuuYVxN48etGeGQk43CYEKBESZ2hZ9tMzCczbcA6iSnMIpk84+gAvJ6ogpYyKjnIA6okxQLz7cDJUEiYvQuS1tvShTD5rJQECUORnr2MksSAPwnqXBk1kOdpkzp5NRG3TKRzBVN5pA999/XoMOOmlS6c179NHHlO3bnQzfo1PP5aNomTAsQ7/HB0ZXLH0lR5pKve9+b1+0aDHebPAxc/RWWz+vrEr99FFh98D5863/ww4/HDXVL774ElTetSv45cabbkoJoMYSAh4BUab2Qx0C5SwBzCfwxr/eKQq7PD2AgAb9ZteuXWfg+MTxUeesTMM7EGXirBqvR/gwe2IlTeJ1Cpo0mjG5RHlXNNcyn3rqqaOOOgrt5x1wgB9u5zf/zQc/9CFevPXWW6P2nsadcgREmVO+AfpMnzqlfyDyWeYtkClxpD0Qz2sbF7oUDYApJSmMVc/loM8Q2YZImMeo3F4WV6DdPHKmOWXeeeedaAyCBFC8a++994HqiSu33XabDLwhW0iDEgFRpjZDHQKkTKgabMfnaRRl1qfAjcoBBHwYzMpoCp/kb2ZmJmS31VCm+biaQgncapgSf8ILAdqYxXWgiQxKmeDIa665lnd9+9vftuFImWDWgQRQYyHQFgKizLaQnMx+8DC1JxcstP5BaRf9GWfK+VMqyPDNu++2oVevXk33VCSeTSkPx6IZ1h+phicnAlWTflB05b777ofNwHxcecpY1iZhzkUDvAQYRyK+aGhIm1Pmvffei8Zf//rXjzlmid111llnPf300zb0V7/6Vbsoyhx6LXTjiAiIMkcEcPJv5/POT5U0MMqTdBTsKNXBCw9hP+F+s5XevDQjR+Xz81L1MrTyOjDEywd+NmzYMMoC+XubUybv4i0gUV486KB3iTLbWhT1MxwCoszhcJuiu2is83OmaXRQG11bwFWyIx1VooqHwM5JuOjNS8ZKHGeCcEnz36Hy3YsvARea0cG1rTUq81/z7D8m6r777ffkk09aP9A17bga/kGtS6gOhUBDBESZDYGa3mY8CfNnhKTM5g/B1hEkAcD3xzpnlgOYkVsfrmGHUd68GzduNILkeWqNQoka3WgJTm04qRGbDaplPvPMM3YLvGQ59BlnnIErr3r1tg8//DBeTb4clBpiRCh0+7gjIMoc9xXsXH7vPMLBSJmBvjY1lIk/dY5LjwEqUz3Qm7cjhymfLqDe9IqW6ZEZlDKXnnCC3bJy5UqqmCeeeCKuwDMIV2z7/frXv04/F4045QiIMqd8A/Sfvs9TSmMjXvPLjNW/r1ZbMKCemi5T4MI6GnXISk3XV4BhlgNGxQyHxKOPPgrPJlhQz1y5Etrk1tu8spIgX/DCF5l3zymnnApPn1tuCY5iHJQy4aNkt9x///0GlAWf4POlL30Jptpd5uz6F3/xl7TZDgem7hICQyAgyhwCtOm6xTuP+FAThu1H5WevNA7PPp1XrAhZJ9K29zGG6bicFKKJeHhHsSwBQLuc5dzzJV4gzDAbkv+9fi4DUSaIcM6cXe0W2GCt509+8pN25corr0TUJn65/PLLmwCoNkKgXQREme3iOZm98ZHny3SEH2cySZ43DnsWiVI0K2mbhNfEYaqQ5a7G1jqi2ppmvw5EmRZnUjjIvOaaawogPP7442mE1yhCwCMgytR+6I8A7YpZUSbk5mOUc/DOL1HRmWRH7yLLM85eJU3wBmBqYt96IOgKzaLS7/XfLqUWA1EmXhf+eKutYXf1wZc4toQrEK5vOeP89BBi6BYhMDoCoszRMZz8HvAUs9gJRL7zSX3PPffY8yvQPZURHRDGlsGXqMSBX9TakCRI27Rvw4IK9XfTkeTadcaRNTl38I6y++57WLOaJK5R02w4LtGIqoDWUE41EwJ9ERBl9oVIDTYhULYr4qFfVvISg9XnODOuOmOZMr1O3DeDK/IzQLNvnsQ1MeyDDkc0mhilB+1c7YVASgREmSnRHuOx4P9pD76PLV1q00B2GPIoXBxD5obIQpMK3jEUgCbQqIQGkIRJFeBAS8Fq/HcK2ekQZBmCZ0eDijI7AlbdpkdAlJke87EcsTKFTWWFyMTTq9R081R/PWVC0QStWs4dfCaMIwt7QJSZ+Euh4bpDQJTZHbYT1bOv+8iJITA/nJzypExfnbusZY7vqeRwe1qUORxuuitDBESZGS5KjiLB62c2FZwLeeTFqOhMlunwoSZICGePaboFpce0zOUDxZmkF7i7EUWZ3WGrnhMjIMpMDPgYD0czLH4pa05RyWZRc6NMTuExo8BHlMlNIsoc46+9RH8+AqJM7YimCMA2ayGD0OcYasI4yHccOL9pR622W7duHZ/I1HTpFhRF5JgiNV1GVkjLlMdsq3tfnQUgIMoMAH18h2R0BJ99POP0WQ4ST7CyEFh4zGiZtkWZoszEXw0N1zoCoszWIZ3kDvnQpwML/VzypEwQZ+B6FGyzU0uZUzvxwL2noTtCQJTZEbCT2e35MzNGAz4VXNkumnjyn//8F0wGbxxes+Zf7CLKfSSWp3yGZ1emljkYpTqclnn77bfffPPNUYuocYWAR0CUqf0wAAL/9E9XlymTD8RkJYsLEuMI06TyOcqROodcHpWOlUkVTCmfTsoETbLozaCU+fvf/x4VS7COZ5199gDbVE0zRgBfxmefffbGm26CnwFqibcuKfL1v/Wtf4vOf/GLX7TeOToUZXaB6sT26ZPkwSRr86R7qlc9E0NQyUYsJxnoBORts9NGmfCsRuY/IoBfBqVMlJi221kFLPG+0nA///nPUW3tkUceaQsKvx+6+GJC1G23/ROMsmTJsW3JLC2zCySnok/kEy/XfcyBMivDGCrdghKv01RRJtR9kCKyJ/ZKDTgQZT7xxBNWuuSjRx8NvSTxwnU63FVXXfXa173e9gZcvjsda5TO7777bhPyr3d6U1vV1jhxdNsFZWK+1157rYmNQnKjTL/yXmmZrUM64R3yaXjKKafaVGFpITFEZRJnRIcvgv3udx9qgvmLiZdnt933MBkQajJ5WqZx5MELF2JqtL56NaLwe3PKRLWvv9puO9y+555vTVD3FHsYj+9f/epXabbHihUno7qZgXPbbbelGXSIUVB/zYTEu8u3vvWtIXoo3wKo3/ve91m3HVGmlYpD/7vvsQds+62IzU5Eme3iOfm98bmPByVnyyejz3KQEotKTZcXIV5KYfxYcCTm02FiKHNmZhUsrgWja5kpYRhHogmfa6I5ZXLtzjjjjARrd9jhh0N+2IETjGVDcII5UyY0ywXP1WN496GHtoiM8Vl3lGmi2hBQ6FuUHF2JMtvFc/J7QxFK24v77z+Ps8Uz1C76rHUpsWCZTH+eioKUfI6nFMaPtWjRYpMBevD4UqaVv+6rR8L9ykp7FrInlsN5+y7HggXvNOXGF5rue9fQDfbeex8Mh0f50D0MeuNYUCYmBfP4T37yk3b9dNJQ5sdPPBFrClsFjmMHXZ2a9qLMFsGciq6YuwDlpv2ESU7NNYl28aoUgBejiht7TZfW4yiImgMOuCA5XoB4dF1WIvEnK8YCT2n6glUOMei7Agxrr3r1thjx0Pe8p7nMQ7d8+umnbThR5tAYDnTjvHkHJNAy4TFroxx73HEDiVffWJTZIphT0RVzFxSsnUNoEu3iVWkcnr0YVG7awxX+VlEPOOrS+MicMkd6hNG4+fINSpk8QkMoQq9R4BhJeUY0vsE0al3VUObVV28Or1q27B+aT7ymZb2WuXbtWs7ue9/7Xv2IEBtaMoi/FcGG6ARqHKSttzDjJeyQQw6BqCeeeCLMvDWUaaZgfEafkfUDcIaYVK9bRJktgjktXTE/u9eW+AiI8rWhADg+fGRLAAztonAFilqesqKWg5YJLod2CNDMeWeXOXMKHPnil7wUf8IHDzsr6jk0gINS5oknfsKEKVtl4TqLR/P/+T+HFaTd4y17PvTQQyYh/CT9Xw8+eCEciPwV2Hut5Te/+U08vk3FxAcuOXim33jjjVBzOdn7778fLkj+doxl7qNoBgBJAEce+QFr9pGPLOrr2FJJmfBVufjiS17zp39WmN3ZVWGp333wwUJLyI+TY5McOtamxT14oXW13Ru2R6wIu4XMhKvXsv7whz9k/4Dou9/9rnV70EHvYj8ve9nLd9jxjfZftAE5FbqFRfe4447v9fpVQAlQF2YEqJ966imM+/nPf96Wyf6FDNdffz22hx0E8FNw6z3gHe+woVu0zYoyh34OTO+N+FrieWp7kSgwMRAevlHQ1ATABObzY+Z6PjhGoZ9RsLUjSdqHyw8ycFsXtTwHpUySUJkyQXIm9oHz5+P5iJ9zzz3XyACs8OSTTwIf+GRecskl+K+1BAuCiqCrvec977ErVDvIzeQVNMbnlltvLbDvgncehLFAxoyRwFMYpILGnor+9u/mElV71vf6KVMmhPzc5z5nt198ySUY7sEHH0T/JAl/oPiNb3zDInDQ4Nvf/vZPf/pTtjz55JMx9GOPPYYr++63H+WZu9deuHLaaafbFHA7WKdGQnQCGO2UFx8L2MDFa665BpZVGx0f9IaXjJUrP23/3XW33Xyft9xyi13f861vBSNiUljTOXN2tYukTMz9sssus4uXX3EFmp1++un23/cfcQQ6vPLKK+14m58LLrgQnfN1B1yLiRcUU4K8fv36Ub44/l5RZltITlc/5YdgZZaDxKAw2w45KYcUuP44077wiSmTvlH+iVP5e1/daLgFHZQy+Zg2CvQ/ZFO4pfA61cpddtmFFwk7za209xYsdbxeNsxSo+Jw111/vUEHvcfG8uuLZz1cfPHXvrbiMmUiXYP1vHjxUX7KdJbhiIAFM7XGlS25juwTXjDUwLzVt4n65SmTw1HzBl/iIrjKgoLwb+V6+WQIXF/KiReawtxBojZx5CVghzDqct9ah+yqkhQJcotOZKLM4R4C035XOUtAZZaDxDDxG+Idd/kdi4oZZUkTStI1ZaKwNqAoa7dlmvzY0qVlB9fWV204yjzh4x8vSAL10bQKWCD9n/C8pgpy1113FZiMRMjjz4aUCWZ6y557FpiJ0f3zDjjABsLD2trACor/4lkPcup7Dse9+s9r1lg/Z5x5pvVToFu+EOyzz77WEiGS1hJOoR6Hckv81VoiioYtYdz+wAc225ChmfVNE1FJmdAmcR265i9/+UvreeGWTE/kJ6QUMGUUiriXs0yZN/3zP9so/qXtnHPOsYsXXHABb+c707HHHosjA/T/tr337rVjeUq9dOkJbe1qUWZbSE5XP9isW76K7+fMy3VOEoPCqBKEQ0DrtdFxGmeiIitNYnlsOJ/qwSRpkTLxpoKZ4seMrnTCKrMj/gTrNNYIzRL7Dw9HmeWITFoyytowNUX+qaxl/uY3v7GjsoaUafqifXCLfebO3YsXbX0/85nP2JWBHG4p3qWXbso/vGmjbjl3LO9Scoz9iXrneeefX2jMTphhtVI2vA1wFvUGZPRfQ5keyTJlEsCCtYCHOFwsThBmXkLtj5A5TbyOFM478a3v9b3Gipvwxx1/fFvffVFmW0hOVz8MNfFxkOEJ6rxx2Lt08unQIlcNtN4FAmtFDNic4YdVw5EcFM2iUkwYSm1RZpkXuQpNKBNPW/KfX75ehllPmeVXEFogy9zcZG+UDbMFXvSd9KLM8kDlkMdedM4Zla3fhW4rKdP4zFNm+QSaABY6LC8WJ1jGGVfgQ+t7gOF6dm/XesLDnG4tl54gLbPJrlSbzhDYuHGjPayhz3EQPgWi8rP7iA5PS2W3oM6Aqe64EGoyNGXiRku8h08NWSLLBNYCeifa10dMpsEhJWUeceSRNqkyk8FbpwllgkIsyxqf+DjR/OpXvworH4Je8K/9/rOf/cwG4nnhcFomYzOaUKaZncmL5eWzNEb48JCyL2XWa5mcXSFfq1EmlELe3kvLhFdtQc5PfWq5SQUF3f7EuZ/8j/8IQAiyQV24Hb67pMzddtudC1FGg5QpLTPNN12j1CHA5yBTvVD1DHRP9QnBmZuUp3pRATDA0YeaNKdMRMtcu3o1TkPrtUkzt9ZYqGK38nCUWQ6noxWhnL/ts+eea4/RGsNsE/cfkCI6QWyDp8x655ELLrywFy3VwE5GP+I5j1D88AShULYFhn266VrLAw+cbyOWk/KQt2izHZEy+d5w1llncTj8svPOb7aeKW2ZMu0wEseNhUIodKoisKTMJhW7jjlmiVdGjzrqo71w/vGPf2wtRZmxTwCNvgmB8nMwN8rkcSYfTx15hDbZEN6vsi9lEslKO5W/mIMS2Xf6g1rse+lbPuCyMChvQc4B+9NwHrN2l7E1hjMv0Po8t8xyMJyWScecXjlxyPQ0BfdqSY0QMtPFt54y4Xlbn7jcW6fpc0sTt6dMbkv/hmHrAk9Xv17QHa0xW4KPC1dqNpW1tKXBB/pur8bcAzLM9v2SqkHnCKCSiW3Z+e6kYbao8hanhs7leP4AMzMz/Op+5Tn3d/xAV7OLgTGjvSgTnGfmVssbAHZhzGuBL6Fo4q9wYoLeuWaLm2VieIcbbmjKLKh3mwIPPrg5ozcCE00YXETUhLmEwDOTmtBll22qTY0Pmez222+3KzXuP7ZMzDp0/PGbwvDxdOZwGBG/+05I5MNRJg2P3/nOd4wG9nv72+lwi19OOukkE/uznz3Xpvyv//qvdqXgCHrz175m12Gu5ErZFfgY04KKXyzGv0kK3xEpEzVbTADWOIPmx+wHvAg11OaOIife2dig5isL/vTRj34UVxDECUdlaqsojVlZRp5fuhbrrcr9Z7iHgO76Ax7c9mXwJ5dMDBTlb+L1M0hYeHBA2qiVK1Om+e8UeLHyv3gRicKzFbiGM8wCirJFlGED0C3AVXiGsjhieXE9QaKlzzmAe6kzefcfWyb+yQ9n2hj+Nc2JFYy5sgOV++Bd5513HkFm3CF+QTJ0RnnaRNgMc7HjzELOcVKI9+jhjrIASvzQT6dvJjn0w3NT9GPvDch5dPPNN7NbvK9Yt7ziV42KL8YyLix7+th1P3eDGtetMc5lIQmWzKJRsY6kVfaGuZdDMwly36SDzfe5KLM5Vmr5PAR8RAf/AFuonbrhOLPyva9rEKFQ8tjPJ7JhFY7E8RWcrw81gTD1/jvm4AP1HW8ANC93DV13/ZMycSjbZBQeTOKYsNAeSiS4iuTns+2Uzaef3KKfIYay/KTGAaGppDg/s+qVc3bd1VLx3XfffTYuGkBjMzL4/979bvAHozjAHI8++qjP/gOlDaPA0Nq3RqMvMY0sRXiyQwPGcCAGWBFsOESgsqYmKjwX0u0iBY81w6sDfILAFsz+Qy4vMBkUcbRhrUp0Xp/HABmFmEGJdPjJT37Sv3nYdUz5Ax/4YOFtD+mHTIArr7rK8y6aYTl8Y2NizL0AtS2ZHVV+aEu9MFwBzmB9fKEY92m9wc8IxOnPd62YCdo3OSJtsjPRRpTZECg1q0CA5ORTB9DXpovUa02Wgarb89Tf57QHfBIfZyKrAEga+Hi/pMLDBf+FxXizC8+6dYXKWU2mnHmbQQ2zeFhbCDyStVZODZwEZ0ssJT/rf/CDcks8PaFewPUDR1kgEmTPQbo4hCjY56abbmIUP/jPks2CnHxeIWNNjILrXDU8iM2fBU9tZGkvf/pGOsJcCeurBSDiFzzokQiQ8iNbgp8a3hsqsw2g2bvedbDfS6CcciJ7awA8aQ7FuwKm37eeNjQ5DA3cMF/DEHZgcDN+wX/xOoKJb7q+9ATo4nixw3+B9kUXX/zpT38aymXhvQH0bJ38+7//OyBFEiXcaCkPvVdRwbUHQ9ub93XXXedxxjSBCVahAD5OST1WNve+yvRAXx9R5kBwqXERAX5j6dJSGbKZErgcKBOZhiwassyO/sqmApPRQZMJlmZQwyxEshiGQva1BKJO3hC23wY6Z50MEJjsCW8kLc5IlNkimNPYVYaUiWWAWRiCwY+GJU1oRkZS8tbXCVGqphYg/xyGttHLHzO3ohnKdOPF4r/+678YBtO6SFl1OARlHnHEkQZgi6dQWWGSTJippUweZLaYYBarJspMtnUncyCeESIJls0Q/GGcgRrUZKzEky8/o31ioBGFMR9XmJ0xCqdfw5E4wEP7KChGnGwrtw9qmMWgfMU57LDDytGHrUg1DZ386Ec/sp2JMiZ9095OEiCwDCMlLyZeHyA0xJRFmUOApltmEeCrnM/gOoRW0S6mjHXxh6zMDjpQeWQvGMyt7LnG4oqBYG7tG3zZ7pRz7m0IysR0WAmrXS0hZ6BalA0nsqzV7Pdqi0Pk3JX51sK83/qLgigz53UfA9lImYgppLh8REa5p1aep/qTxYbIwnkHXcGhyWyqvWgS+rQ1MIWyYefT02w4ygQ+KK0MzOG34ms+Tw9uo8wUxSnh9gInUmY5t19G6XNc7oVDsn1Vy2nrR5+CKHN0DKe6B8ZOwJOFQLBAo/dZTQkTnE7tOwMyI4cxAAbXYT2ulMfqgSBHa82RJG6Hg6sdSVoVkSk5khx6BYemTIyIwk8A/MMf/sjQo+vGaUMATsjYM//3/57SxcRFmV2gOl19UvfitCuzHCQGpTKpAp/dPssBBPMVnep9XMciQV1iqPsONwplonOEJfStttFXBjWYHgTuuOOOQhL5FucuymwRzCntarZOyJbCdUxQB/qJKuxcSZlIDmCMCNdWGFGhKdb776Cl+bhOXqxkys06ImWmFFVjCYF6BESZ2iGjIlCZ9Jy6WmCmN2ZaoLcqK2NXqpKWlGfvffZFM1hoQ7IXjboYmd0PAziQ5EtV4jwSmYEhcSYBAVHmJKxi7Bx4cukfiN7XZmgP1RHnxfjIcpoFT5lTkk9gRDAHut3S55YrYIsyB4JRjTNEQJSZ4aKMmUg0w0KZoOg+PXqUovnudx9q1MhQE0q1iSaXr5iZWSXnnbZ2GyIpLVa1Jn2uKLMttNVPFAKizCjkJ2rcgxceYuRE7xhQEY8JoypO02JMx93wZH4Ts+qb9MjnEh7V175GAiYfnCPKnJgNMLUTEWVO7dK3OfHKkEcf9d/mYI37ImXisU4uN2qPin5pLHu+DWmHr3ctxl9pD5f7T77LKckGRECUOSBgal6FANxiy6EmcEktX0yJnzcO8/Etyhx0CeAGhZcP5Obty5GHoa7n8hXl1ICizEExV/tsERBlZrs0YyZYuSClZ6yQySDDwGwAzHNJeZAIV5RZsxZwcLXkDMjSAPLrlR3wBS98EZI9IZ8DYnXQ7JZbbq1fX1FmyP7XoF0gIMrsAtVp7LP8WAynTCwDpbJ8fjrLbMhtNQrlEMkcRJnT+ESY0DmLMid0YZNPC3qJPWe9iwcUEbuYXJzNAxYok869Oss0gO666y6cTeKDJA+9kugixW4TVbJmiUWZUftf47aOgCizdUintEMmyfOhJsy2g3PNEFyYu4ApcGWYXbNmjRldabX2OiUumissUtK3tWSizLaQVD/hCIgyw5dgQgSoLEhJQ2hUdEHZODzNlEkX4l52146WSZQ5IV9yTUMlprUHWkSAD2LqlOFnh/AA4vPaDuGmgTLhxQPk8YEqiUPcmrJlCJnFX+HpCiMBPnjvaXE/sKvZ7InLV3TRv/oUAskQkJaZDOrJH6j8ZMzBA6gQMzrZlInchJgvM0v00iaZIzBN2TJR5uR/+admhqLMqVnq7ie6aNFiezgiU52NBnVn0eLNF7sfv3qEQszohFEmHJpMobQ62DWerpZ0HnonzjITZ5wXZUZtfo3bOgKizNYhnd4OywnqgAWVPF+DOjFG5BJ6A42vx2yBIytdeIyiADimCW9Y49TEmPvhRJmB4GvodhEQZbaL51T3hsNCezhuvc0rK5+YacyA5TXw7idjqmUCOrO4AtteqiQOJtEAav3dd9+9evXqfPaiKDOftZAkIyIgyhwRQN3+PAT4cPQFv8hY0HhC8CqXycxcy4ThFHohvKggJyiwV+pz0Kc574TrkfXLKsoM2fYatAsERJldoDq9ffLh7nPEME1dRzEMfeH2Xkh5aplwVaWPK1hwq623qVQlrTAIza1RWntfwAsNRJmDIqb22SIgysx2acZVMD4fOQFmOYiiTEhSUNTy0TKtFHONuZUcj2ZZmVubb1BRZnOs1DJzBESZmS/Q+InH5yMrWpAyA4mq4E0K/9IoZOm/s//+85jLvqxTmvMOPkAPCmhiH9d2wRFltounegtEQJQZCP5kDs0qUWvXbvbShP3QHpqwN5YrQ6VB4QsXXeRpKaW+a8WzUPQD7jn4wLhaaXQFO1qmOtixO0opkAbq8iiizCjkNW7rCIgyW4d02jtkqImnJT40o6IdqOmaJAkok/7DNbGS9qcor6hkO1WUmQxqDdQ1AqLMrhGeuv6ZbBaenJw8DKH23ISyFYII4ve70zKhOpuCWJNMAAGUsMSiDdx3qX+HQJF+UFFmesw1YkcIiDI7Anaquy17ALE0mNWtDPlphTItfSt0VpAf3glqDiNR+AyTxWcTR65bF2WRDoG6MKgoM4dVkAytICDKbAVGdfI8BMqUiT/bxUKWg5TAjUiZ69ev7xUfWTC9zp27V8p55T+WKDP/NZKEDREQZTYESs0GQIBmWChYvK2SRwfodOSm/nCxyVnmAw880NfcapOCx5O1HGu/1pEB7tlB+El2d1NTz9OGgChz2lY8xXxPO+30spcNEoLbRfySQoiqMZiRtZIyzbUVnxpzq+fIiXfbaWuZeMQb5fzV1kTUjxAQZWoPtI8APYAK7BiuaJK2PWU2d20NzCzf/iIl7FGUmRBsDdUtAqLMbvGdzt5JmdDqPAI8C4yChQEw0CNNoWQUaTkUBDGU5uOKzzQ774y+WKLM0TFUD5kgIMrMZCEmSgyvt3nrJRkrpUkTwsAeCO9WPLhrSmWBMi2ZwJVXXYVTTJ8jd6LWJu1kNmzY4BP8yjCbFn6N1j4Cosz2MVWPQIBlMkFFBKQyy0FHcKGUCiph0RJbk09g6dITOpJharvFCwfchu0txCMvypzaLTExExdlTsxS5jWRmZlVVOkoGbQ3e4DCLtq6uHgc08G1RpvEn6wZSmtJlWxxFczBuCYOB3+SfbtFwNVVCAKizBDYp2JQahjea6YVDyBQHY5L77nnHmRIQDnJGg3S0roiqwCyDokg2912iCACR/bV483c7cON2hVDvQmBlAiIMlOiPV1jeaMcZ86Lw2EBc6s3+fYiy02P6RUrvnhpTEXr4aY2Lnc1dzBuEvw6LrOWnELAEBBlaid0hQB8fMo6Jdxw7CLsok0GtlJZSFA3f8GCvqWyoPFYoeYmPatNXwRQggbaPH5gZgf/1Zi7kdSJDsYNV7bv6GogBDJEQJSZ4aJMiEh09hnOA8hqL/fNUQcfHzST0bXdTbPpYHjFihqLt/0Jq2PL1O7o6k0IZIuAKDPbpRl7waAg8pkL3xCbT025aTymceJldZVrFEpoM2gAFVYKZYtbBAsEPJct+wfDv0ahRCTrBz/4IQvdUYLAFpdAXY0FAqLMsVimcRWynFyU5abxJ5j7UPkZ//biSDP3mf+ImftkdB19K6AYC2ytQBLOUyd96lPQFOtVeWQMBv5wthp9aPUgBMYdAVHmuK9g1vLTndJTXV9zn+WhlfNO60tr5taaop5+aQJTAbc+cXUoBNpCQJTZFpLqpwIBHmdCU+GfKykTllg8yqFKytza4k4yMBGH09fcigbgyF3m7IrGLQqgroTAhCEgypywBc1rOnSaxRO5kjKhSooj21oznCwamLC41p8H46gSDfAeY+150tyWJOpHCEwqAqLMSV3ZXOZFnZJ+lV7LzEXK8ZcDzNfQ4oqF0JHw+C+4ZhCDgCgzBvfpGVWU2dFaw4gNuzeyGlmGoxe/5KVlize0SZhb0Qw+VvDfgdcP3K86kkfdCoFpQECUOQ2rHDlHJouhbVZa5nDrASt3fbUyECR8X3EqfMopp24KwlmrlA7DIa27hEBPBESZ2hydI1AINRFlDop43zyuKBuifA6Doqr2QmAIBESZQ4CmWwZDAOGVRpN2hOajAAfraApaW4oAuK2CJpEjsFdADjC0PLpynpqCTaEpZoSAKDOjxZhUURhqsmjRpgAGUSYXGgmSkA4Jn48efbTFgfTiSBRjOXjhQnyQIElpdyb1m6J55Y+AKDP/NRp7CfGINyaw6HgZZgECSrI0Seng66aN/T7QBITA+CMgyhz/Ncx+BnDUNHqAfwpiB6lL+WDN7CcxqoBWgRmfmvS5hhIaoBn8d0YdUvcLASHQNgKizLYRVX8lBHxeWVAmtavJpkzM1DiyJsX5bD0QcaS+OEJgHBAQZY7DKo2/jNQs4d7CqlKTWjSqodFVSVzHf19rBlOHgChz6pY8ZMJ0/jz22OMYMjEBlGkVsE8++R/NN2errbfpdUKJ2tqnnXa6OfvgrpBV0KBCQAiMiIAoc0QAdXsjBOgBhDw15XxAjbrIoxFz7sAxp97iajWz4OCah+CSQggIgRYQEGW2AKK66IvAuFMmcxj1dXOV207fzaAGQmB8ERBlju/ajZPk8IUp1zHO3DALhRKaYpNc52hmFbD1IwSEwGQjIMqc7PXNaHb0+snNMAuHXoTBrFmzxhxc58+vy7kDw/KmtDvPtVTNrIy2l0QRAkkQEGUmgVmDPIdAQdEM1zIhAD7M51eTnc5aahmFgBCYcgREmVO+AZJOv2DkTE9CVoQZLrv1FZgtgys+UD2VnS7pFtFgQiBvBESZea/PZElXqMiRkjK/eOmlGK7vwSTaoOVkoa7ZCAEh0BoCoszWoFRHfRFAxIU3fnZHmdAm4bkKHRHRkKYy9jK6IlDEDiZxC376TkENhIAQmGYERJnTvPqp585QEyOwtigTbjhWMAvJBHzcZ4EmaW6dmVmlfAKp117jCYGJQECUORHLOD6TaFHLBE2aV07fWEkrLTk+II0k6ZIlxwKQp59+eqRedLMQEAJVCIgytS+SIuBtpIPSmGWng7m1vrQkCMMa4FTSKjBPicX197///TnnnIPpHzh/fheUefPNN8OC/cwzzyTdMVM/2Lx5B3z4wx+eehhyAUCUmctKTIkcMJ8OFJcJoyuyBBgF1iSoswboHASJTD1TAmZhmh8/8URg+6pXb4sw0xYR+OlPf7rnnm/lqqEa9viy5sMPP/zBD30Ic7n8iivwhjEiSmvW/AveIRYecoiB8+VukiPCA+BlL3v5X2233XcffHBEgXX76AiIMkfHUD0MgAAOEZtQZkOjK44noaqi8QASTGjTJ554woC95ppr2p0iaKZg+n788cfbHSJZb9DYOJc777xzxHEvueSS5x00LO/K+G+vLPh3RIF1++gIiDJHx1A9DIDABRdeyKeMr34FB1e8sC9atBj+O71ceFB7GRyJ7HRnrlwJRQo/GzduHGDsiW56zDFLDNh777239Yk++eST58/McOHGlzL/99ve1iJlQk8F2p/97Gc3u7N1Rpkzq1bZEHfccUfri6sOB0JAlDkQXGo8KgI4j/Qv5vvvP68m/MPMreBI6JHKTlcPvcE4MzMz6gr1uB862QRQ5s9+9jPT2FoxzBpURAbvfB2Bj24Jvr4I3YHcpGdRZhOU1KY1BJDQta+DKxrI3DoQ4mvXrjVUf/7znw90Y/PGk0GZzefbvGUayvzBD35gS4yz2OayqWXrCIgyW4dUHdYhAFNquaQJ/HosDsQcXKfWf2forXP0McfY87Smh2effdaSNuAzhOeLKLMXtmkoE6PDCQhLvM+++46v+9XQOzyfG0WZ+azFFEnCUJOLLrpo9erV7Xp4jhGODz30EDwh/3qnN33961+H2E899dTnP//57d6wPZ6M7z700Pvvv7/JXHCcZny5okfsKTwtvcurNb7llltAouz/4osvOezww2kA+MhHFhVolcTwmj/9s9/85je4EQ9unHHedtttTJ9kvcFdyK7ACmpX0BJzsYvXXHOtXcSIduW888+3K7/+9a9J6gXv0G9/+9v2px12fOPee++DX971roMxKfy+aNGiJiihDXRxoIpb8MEvdiILtykIgA5x5bWve72NsvPOb7Zmd999d7nzW2+99brrr3/nOw9CA4D2mc98ptdZ5vXXX++R3+Mte95y663o8Ec/+tEfb7U17pozZ1cb6PjjP/bJT37SfrfPwQcvxH7wo0MwG+iHP/xhwymrWesIiDJbh1QdCoFGCICT+DwFceKB7knLHo6gn759kcwqXUBhqkXn1tsFF1wAfsXj2HeOCM4yoaIB7vJDcxTcbtfBMd7GDuFBQv7Kzm/+G2tpcR01n6uvvvqmm27adts/8W28kfmgg95Vc/suu+zSJA610InBddVVV9X0DJEKPUPUXu0LZ5mPPPKItQRin/vc53gXBuVbDi8C7U984hO+ZywK3kgqKXN0X9++m0oNeiEgytTeEAIxCNz8ta/hEYkH5RFHHMlnJYgHD0QqLk0ejlB67PZyY6h3hx12mP2VZ2AkZmhXoG0+zS++5BJw3oMPPoiWCO7ELeAY2gDLlIm0CSBFSg5i+NWvfsV77bohe+mll+67334FpgHjXnfddeRv/BWDnnTSp6C2QpW0xtDCrQfoVRDGNDP7HHnkkRDprW/9W/svYlL7riI68WIYXGDEU087zfcM9vrKV77Sq2driWkCK6TIAE2aVQCfAmWaaxuYDy2BM95+oMXiyllnnQX1EforBOC9Z555JoN5cBF/Krsl09scrxd9J6sGHSEgyuwIWHUrBPogALaYO3cvNLIUBPiccsqpdg9ooxcLljs11sFBF8x9hb/i2UqOoZn0vPPOw3McxLn+Bz/4xje+YQ2WLj3B3/vpT3+6IFKZMtEe+YDYP6JQrAdSOCkTF/1R6FHP/ZjV0etbMNVaD7RAFkiIQMGeabd7na/JhsMbAAX2bxi+Z+Oqcs+wY59y6qm4HYzux6o8y7z22muxIngJ8KOcdfbZNvr69eutB5ip7QpePlau3IQ5aBVvHpVzAbtb42XL/qHJZNWmCwREmV2gqj6FQH8EQHWIhUc7PsSpWNy4heqaaJlGmbSX+oGpwy1YsKBSIJpMC9GcNLHCMmk3VlKmF56ienbkoLAx2jShw2EsDucpk417USavw8JckMrTcz30lZTZpOdebj7l69AXAXh5UU4++WQb3dvbC+Zi2Odr5Bdl9v9eddxClNkxwOpeCPRAAIbNH//4x2Qd/6yExXJQLbOSM0iZvRYBPiY2ULlB4d4RKZPTLFD7cJRZT8+jUGZNz0QABlI/RJky/UsD5mv2WP+hlol+vvCFL/g/1TszizLDHyeizPAlkABTjQAUJjwHYcT77ne/SyAsrxsetU3CCagp9qW9gRqQMi2pfV/KpGG2UsvMkDK9Nyy1zBrK5OtFYVFqKJMuuPQEtl8KrrDeOehL110nLTPnJ4IoM+fVkWyTj4DpDT4+HTZM83GttLWWESFlFhws0bKvllnTgH8yc3FfyqS0bFnwubWZ5qNlev+aJpTZC6syZX7ve9+rnGzlbqZFwW6BnVaUmfPXXpSZ8+pItglHAB6h9qD0Dp/Qfuzil7/8ZfyOJzWiEmuAoKNK+eCTT3nGexT6QVHu8uka2kCzpDnRbulLmQceOL/Qcsc3Ps9NppJFwFuFgdBJ37PMVgyzg1LmiSduDgJB/KiHsUyZ8NOBfxPm+5Y99ywADmALrrDmgotIUMMH9oZC/74HGWbDnwiizPAlkADTiwC5wR9unX766Xgywu8GGR6OOuqj+P288zYH+1cixUd2mTIRSs9zMm+HNEdZPKw/9rGllU/h22+/3a7PO+CAhpQJR9kmLcuqc1l7O+644230gscs4frsuecWxkLjhtuIgPgEGk16RpylBdUUUkZUugXdd999Fqhzwsc/zuNJUClIFBdtufHfQw99D/4LtyD8buuOD7I0IMFC5XREmQ1XubtmoszusFXPQqAPAnxSexdKo5AzzjiDXqb1lUP4yEZoSmE8PIhptl2y5Fj7K57gNgSu4Hfz7QRDU7nBL6Qx+O42IUL0QMJGfGdZoeRcEN8CqXx+gDJlLl68SUUzCTkjZDbgXKwTr/s2pExG76A9q6RBNt+z4VB5IotFMcG8gzFdXgsEz0Jjl112mbEmIjLtdlhufXoH8/zyI6IN6LmQRYENFGQS+GQRZQaCr6GnHQHWovKUecQRR9gTc7fddoeZDhWG670o4UtyyHNVjivPPnmuhkR38NEF+yL60x7cjz32GBaAZ2ngodNOOx3uSAVzLvovJPqB/sQYULCa9fb3f/9hdI48fBjIrqAZ4jsxRCHpAQbCB6WqYY72BSzBIggPXXrCCT5DAugT4KDMtb9o+Fj+PGqN+AVxojVb6sorr/TOqxDv3Oe01RNOOMF3gt+h5hZ6fu9732c9v//977c3DAiPDzMr4aI5+3ApGSmEP8F1CIGwZoP96le/ut/b314YEdAVKBMNVq1a5afDFyyosNP+zYmbvygzDnuNPPUIWKY6PHa9545/dMJY1wSkE59LhtDrwBKMVXhA478+pgV2wnIDPOJt6EIaPGvpby/f669AO/S8WN+48q+gijKdADTTj/2nPi1OgfjtRkzQZyCyi+WecS8XAoZZP6hvDKlQcoQty9DhhQB/ReGBL33pS5AW/+IHSfugUKKxv4LrTH5kHfLtZHzrlTbZzJm3EWVmvkASb5IRwFkjnqGFFOR4euKsDs/H888/v0mQCQBiOtMazrDk4/Ypa2M46fSBEAg99EnbwejQNfED2ewXr/jecMNXaGYEtUByaJDQDvHvKaecAvHQHsQJ9QvcjB888fGD3O6//OUveRHasP21cAX/hcsMhsPxnv8xYQoXm2SahTwFVDG7Qj9oULhS8EaGYRYsjh8Tz37HT7kID/q57LLLDVu4cQ1RQ4ZfAONpKKyjdDLJX6ckcxNlJoFZgwiBjhGAFRfPU6itFkapnwlDgCry5ZdfPmFTG6/piDLHa70krRCoRoCmS1ntJnKL0BSs9Y1dX1FmLP4aXQi0hoApmieddJIMd61hmkdHM6tWGWXCgykPiaZXClHm9K69Zj5hCHznO9+xkpP1qb0nbNYTPx0cA5urbSG37cRPPM8JijLzXBdJJQSGQQAxhTWus8P0qHuiETCHXr0GRa/D5vFFmZkshMQQAu0gALdM5q5rp0f1EooA8gd98YtfDBVBg88iIMrUbhACQkAICAEh0AgBUWYjmNRICAgBISAEhIAoU3tACAgBISAEhEAjBESZjWBSIyEgBISAEBACokztASEgBISAEBACjRAQZTaCSY2EgBAQAkJACIgytQeEgBAQAkJACDRCQJTZCCY1EgJCQAgIASEgytQeEAJCQAgIASHQCAFRZiOY1EgICAEhIASEgChTe0AICAEhIASEQCMERJmNYFIjISAEhIAQEAL/P44HjmAhnz91AAAAAElFTkSuQmCC
iVBORw0KGgoAAAANSUhEUgAAApoAAAKoCAIAAABY3MgOAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAHBuSURBVHhe7b0NlFbVmefL6tWTXnMXkx6n78ws+44dc227nYk07dh0bhhXopNEk/amS2/G22PitaMhAVsjUQc/OhGxFRIto4FCPiIFVqmgSIUgUSCCqJSggpSKgIUB5ENQsSiQjwIKqu5Tdd73rVPnvB/n++yPXy1WloFz9n7273ne+r97P3s/e0gvPxCAAAQgAAEIaE5giOb2Yz4EIAABCEAAAr3IOUEAAQhAAAIQ0J4Acq69CxkABCAAAQhAADknBiAAAQhAAALaE0DOtXchA4AABCAAAQgg58QABCAAAQhAQHsCyLn2LmQAEIAABCAAAeScGIAABCAAAQhoTwA5196FDAACEIAABCCAnBMDEIAABCAAAe0JIOfau5ABQAACEIAABJBzYgACEIAABCCgPQHkXHsXMgAIQAACEIAAck4MQAACEIAABLQngJxr70IGAIGaBIYM4ZNeExIPQEBvAnzI9fYf1kMgCAHkPAglnoGA1gSQc63dh/EQCEQAOQ+EiYcgoDMB5Fxn72E7BIIRQM6DceIpCGhMADnX2HmYDoGABJDzgKB4DAL6EkDO9fUdlkMgKAHkPCgpnoOAtgSQc21dh+EQCEwAOQ+MigchoCsB5FxXz2E3BIITQM6Ds+JJCGhKADnX1HGYDYEQBJDzELB4FAJ6EkDO9fQbVkMgDAHkPAwtnoWAlgSQcy3dhtEQCEUAOQ+Fi4choCMB5FxHr2EzBMIRQM7D8eJpCGhIADnX0GmYDIGQBJDzkMB4HAL6EUDO9fMZFkMgLAHkPCwxnoeAdgSQc+1chsEQCE0AOQ+NjBcgoBsB5Fw3j2EvBMITQM7DM+MNCGhGADnXzGGYC4EIBJDzCNB4BQJ6EUDO9fIX1kIgCgHkPAo13oGAVgSQc63chbEQiEQAOY+EjZcgoBMB5Fwnb2ErBKIRQM6jceMtCGhEADnXyFmYCoGIBJDziOB4DQL6EEDO9fEVlkIgKgHkPCo53oOANgSQc21chaEQiEwAOY+MjhchoAsB5FwXT2EnBKITQM6js+NNCGhCADnXxFGYCYEYBJDzGPB4FQJ6EEDOs/ZTe3t7U1NT1r3Sn90EkHO7/c/orSCAnGfq5paWFvnFKj/Lli3LtGM6s5sAcm63/xm9FQSQ84zcfPTo0XHjxjla7vzIND2jvunGegLIufUhAADzCSDnGflY5HzUqFFuOR8xYoT8ZUbd043dBJBzu/3P6K0ggJxn5+Zdu3aJhLsVXebr2XVPTxYTQM4tdj5Dt4UAcp6pp1tbW91yLv8t2fRMLaAzKwkg51a6nUHbRQA5z9rfDQ0NHkUniZ61D+zrDzm3z+eM2DoCyHnWLieJnjVx+uvtRc6JAggYTwA5z8HFJNFzgG53l8i53f5n9FYQQM7zcTNJ9Hy429orcm6r5xm3RQSQ89ycTRI9N/T2dYyc2+dzRmwdAeQ8N5eTRM8NvX0dI+f2+ZwRW0cAOc/T5STR86RvU9/IuU3eZqyWEkDOc3Y8SfScHWBH98i5HX5mlFYTQM7zdz9J9Px9YLoFyLnpHmZ8EOhFzvMPApLo+fvAdAuQc9M9zPgggJyrEQMk0dXwg7FWIOfGupaBQaBIgNm5KrFAEl0VT5hoB3JuolcZEwQGEUDOFQoIkugKOcMsU5Bzs/zJaCBQhgByrlBYkERXyBlmmYKcm+VPRgMB5Fz5GCCJrryLtDQQOdfSbRgNgTAEmJ2HoZXJsyTRM8FsVyfIuV3+ZrRWEkDOVXQ7SXQVvaKzTci5zt7DdggEIoCcB8KU8UMk0TMGbnx3yLnxLmaAEEDOFY0BkuiKOkZPs5BzPf2G1RAIQQA5DwEr40dJomcM3ODukHODncvQIOAQQM6VjgSS6Eq7Rx/jkHN9fIWlEIhIADmPCC6z10aNGiW/i0s/I0aMkMx6Zr3TkRkEkHMz/MgoIFCFAHKuenh0dHSIhLsVfdy4caobjX2KEUDOFXMI5kAgeQLIefJME2+xra3NLefy3y0tLYn3QoMGE0DODXYuQ4OAQwA51yMSmpqaPIre3t6uh+lYqQAB5FwBJ2ACBNIlgJynyzfB1kmiJwjTtqaQc9s8zngtJICca+N0kujauEo9Q5Fz9XyCRRBImABynjDQVJsjiZ4qXoMbR84Ndi5Dg4BDADnXLBJIomvmMDXMRc7V8ANWQCBFAsh5inBTapokekpgDW4WOTfYuQwNAszOdY0Bkui6ei4/u5Hz/NjTMwQyIsDsPCPQyXbjT6LLInyyXdCaSQSQc5O8yVggUJYAcq5rYPiT6KLxug4Gu1MmgJynDJjmIZA/AeQ8fx9EtsCfRJd1+Mit8aLBBJBzg53L0CDgEEDONY4EfxJdBF7j8WB6agSQ89TQ0jAEVCGAnKviiWh2kESPxs22t5Bz2zzOeC0kgJxr73SS6Nq7MP0BIOfpM6YHCORMADnP2QGJdE8SPRGMBjeCnBvsXIYGAYcAcm5CJJBEN8GLaY4BOU+TLm1DQAkCyLkSbohvBEn0+AwNbgE5N9i5DA0CzM5NiwGS6KZ5NLnxmC7nPd1vTnlgyJAJfX9O/2Xj5lPV0HUfWDz27sLDlz735qHkMNMSBPIkwOw8T/qJ900SPXGkZjRoupz39h5ve27kaf1yPmTCxY0fVNHznt1rx5xbePLrM3ae6DHDxYwCAsi5UTFAEt0odyY3GPPlvLfrg8YrCiI95IoV7V0V4X20+NHTnHn8mQ83b6k6j0/OAbQEgfQJIOfpM862B5Lo2fLWozcL5Lz31Nbmh4fWXG93rbQPvbZ1x3E9/IeVEAhAADkPAEm3R0ii6+ax1O21Qc57e7a1XnlWjfV210r73WMWH2ChPfXQo4PsCCDn2bHOsieS6FnSVr8vK+S890RHy3XFPW4V1tsHVtrPe3zpXvUdh4UQCE4AOQ/OSqcnSaLr5K30bbVDznt7B9S67P5210r7ORM2HiRvnn7k0UOGBJDzDGFn2xVJ9Gx5K92bLXLes7ftx+dVXG8fWGkf+rN7Vx9T2mMYB4HQBJDz0Mg0eoEkukbOStVUW+S899SRFXfcUzhT7ltvH5i7c9w81XCj8XwIIOf5cM+sV5LomaFWuSNr5Ly398jqhecO7Z+gnzXjyW2uvW6ulXaOm6scrNgWlQByHpWcJu+RRNfEUemaaZGc93a+e++Fznr73Vc++XFJzwdW2jlunm6w0XpeBJDzvMhn1y9J9OxYq9qTTXLuKvjqPlleWmnnuLmqUYpdMQkg5zEB6vE6SXQ9/JSalTbJubvga2m9fWClnePmqUUZDedMADnP2QGZdU8SPTPUCnZkl5y7Cr4W19v3vX3r+f0r8Bw3VzA8MSkZAsh5MhzVb4Ukuvo+Ss9Cy+TcVfDVWVo/uGLe6f31X8+d9O4RSsGlF2i0nCcB5DxP+hn3TRI9Y+DqdGebnLsKvg5/bOmerpfv6j+9dlp9/escN1cnLLEkWQLIebI8VW+tpaVFfrO7f0TjVTca+2ITsE7OXQVf77l1wZv1X+9faee4eexIogGFCSDnCjsnHdPGjRvnlvMRI0bIOnw6XdGqKgTsk3NXwdezL3jwvP6r0Kvfg66Kr7ADAhEJIOcRwen72tGjR0XC3Youu+T0HQ6WByFgo5y7C76WqSoTBBvPQEAnAsi5Tt5Kytb29nbPkrucZEuqcdpRkICNcj6o4OuQCadd9+oHJxR0DSZBICkCyHlSJDVrhyS6Zg6LZ66Vcu4u+DqE4+bxIoi3NSCAnGvgpJRMJImeElgFm7VUzhX0BCZBIDUCyHlqaJVvmCS68i5KzEDkPDGUNAQBVQkg56p6JhO7SKJngjn/TpDz/H2ABaYQkJ1Gsn1YpkOqDQg5V80jWdtDEj1r4nn0h5znQZ0+TSMgZ3pL1bIbGhpUGx5yrppHcrCHJHoO0LPtEjnPlje9GUhAKm55jvi2trYqNU7kXCl35GNM2SS6gktJ+dAxolfk3Ag3MojcCPgvpZTPVF1dXW4GlesYOVfKHbkZ40+iK7iUlBsd/TtGzvX3ISPIh4B7gd1TfUu1eprIeT4homCv/iS6aktJCkLTxSTkXBdPYadSBGSe41lgdxRdzbpbyLlSwZOzMf4k+q5du3K2ie6TIGCnnO/btevVlpalDQ3zxo2T/9jU2npcvd3ISbiXNtIi4Ndy+Rtlr61CztOKAx3bJYmuo9eC2GybnIuQi4T336I26M/9I0aIrgchxjMQEAKeS6VlW7tqC+xuNyHnBO0gAiTRjQwIq+RcZuF+IXf/jSg903Qj4zyNQZU2wam5wI6cp+F0c9okiW6OL4sjsUfOZV5eXcudf104caJ5XmZEKRGQLKSyC+zIeUpON6dZkujm+LJ/JPbI+dS6uiByLs9sa2szzMsMx3ICLLZbHgDlh08S3bCwsETORaEDark8NnvUKMO8zHAsJ4CcWx4AFYdPEt2kyLBEzmUTe3A5lyfJoJsU5JHHsmzZMjOqZiHnkWPA/BdJohvjY0vkvOxu9ioC/0F7uzEuZiARCIiKO4lFM6pmIecRYsCiV0iim+Fs5LysqCPnZoR3tFF4SsQYUDULOY8WCba8RRLdDE8j58i5GZGc1Cj8S49SH0b3qlnIeVLhYWw7JNENcK0lcv5iU1Oo3LkBnmUIYQmUFtj7q7UO/CheIibIMJHzIJRsf4Ykuu4RYImcBzx0ztFz3eM5sv161WAPO0zkPCwxS58nia614y2R8x3v7b3z8xcHnKCTONc6pCMYLzvYPTNy+b8q12APO0bkPCwxS58nia61422Q85WL1v9w2OR/+i8/u+tf/1lNRadyu9bxHM14TwF2+VDIArvu+XI3CuQ8WmDY+BZJdH29bracHzt6fMb4RaLlzp/rz7n7zs8Oq6LokmLX15VYHodAqQC7czjNjOPmJSDIeZzYsO5dkuiautxgOZcF9lsumVnScuc/xnzhganfu+O+8//GI+pyMJ01dk1jOCmzZUYuC+wGHEvzA0HOkwoSW9ohia6jp02V8zfXvOcRcvm/ou7y946bRLzbli2TpXWp//ppR4eOvsPmZAnIDacmLbCz2J5seNjVGkl0Hf1tqpx/tHu/Z2r+wI3z5S919BE2QyAmAWbnMQHa+DpJdO28bqqciyN+3fhyaYL+3Nw12rkGgyGQFAHkPCmSdrVDEl0vfxsp5wf2H3p1+TuyD27BzBdljt7+1g69nIK1iRNwSsSYUYA9AhzkPAI0XukjQBJdozgwT85lB1xJv0XRRdo1cgempkHAXSLGyJ1uNaEh5zUR8UB5AiTRNYoMw+RcdrqRINco/DIw1bNeaEAB9gjQkPMI0HilQEA2iHqqLFm7zKV4TOgu5zL/dgiXFtgVB455mRGoVIPdwt9FyHlmUWdmR/66iXYucynuXX3lXPRbNqvLHyHsXmBXHDjmZUOgUg1280rEBOGJnAehxDPVCEycONE9R7dzmUvxENFUziU7XjqH9sg9v2WBXfEwy9g8/4Zcpwa7tTMK5DzjCDSwO1nsqqur81w1aFj1RN3dpqOcy6kzT4kY9q7rHocJ2u/P9JlXgz0sLuQ8LDGeL0OAJLriYaGXnDsL7P5yb1KYXXHOmJclAXcBdiNrsIeFiZyHJcbz5QmQRFc5MjSSc/cCu1vRKRGjcoDlZZsUYLd8gd1NHjnPKw4N7JckurJO1UXO/QvsTg12ltmVDa18DZMC7FIAw9Qa7GHZIudhifF8RQIk0ZUNDi3kXNbY/Xejyao7JWKUjSsMU4oAcq6UO7Q3hiS6mi7UQs4F3doXN7PArmYIYZX6BJBz9X2kmYUk0RV0mBZyLufQpNybFGBngV3BEMrFJFnwk98nuXStY6fIuY5eU91mkuiqeUh9OZfsuFSJEW7OlSossKsWQtnbI0t9zglYFD0gfOQ8ICgeC0HAn0SXjyUn0UMQTPpRleVc9FsuRkO/k/a53u15FvnY7BbEnch5EEo8E5qAP4kuU/bQrfBCQgSUlXNngT2hUdKMCQTke79neU+il/lAENci50Eo8UwUAv4kOotmUTgm8Y46ci6zcFlLd8ZUWmBPYoi0YQKB0gK7/24nlvdqOhg5r4mIB6IT8H/LZtEsOs0Ybyoi56USMc882soCewx/mvmqfwJAiZhQnkbOQ+Hi4XAESKKH45Xa0yrIuadEDJVhUvO2lg37v/pTgz2sI5HzsMR4PhwBkujheKXzdL5yXrYGu1SMYftbOt7WslX/9Wh2XnIax3nIeRx6vBuIAEn0QJjSfChHOa9Ug33lovVpjpi29SMg5VpLKXNrLzmN4zbkPA493g1KgCR6UFLpPJeLnDsnyP0Xo8m83Dlizg8E3AQkNye3lcsmdnbYRAsM5DwaN94KR4AkejheST+di5zLfaZlLzkVmU96fLRnCAG5UoUd7JF9iZxHRseL4QiQRA/HK9Gnc5FzOVDukXMW2BP1Ko1BYBAB5JyAyI4ASfTsWA/uKRc5lxIxD//zQkfRWWDPy/X0aw8B5NweXysxUpLoubghezl3SsTIurrccCqr7iyw5+J3pTp1SsRQSyo9pyDn6bGl5TIESKLnEhZZyrmnBjun0XLxuGqdulfm2OmWkneQ85TA0mxFAiTRsw+OzOScGuzZO1fxHv012CnAnpLLkPOUwNJsNQIk0TOOj/Tk3D35lr1vnEDL2LOKd1epBjtL7mk4DjlPgypt1iZAEr02o+SeSEnORb9lj5tUb3UW2EmQJ+cxE1oqW4Od+8vTcy1ynh5bWq5GgCR6lvGRuJx7SsT89vHVWQ6HvhQnUPaSU+eeUxLn6fkOOU+PLS3XIEASPbMQSVbOJUEu+9XdZ8opwJ6ZK7XoqOy8XBbkKBGTqvuQ81Tx0ngNAiTRswmRBOXcWWD3l3vjhrRsXKlLL+4C7CywZ+M15DwbzvRSkQBJ9AyCIxE5N6QGe/f2uSP7KtvInxsmbz+ZAX0ru3AKsIdYYMcvseMEOY+NkAbiESCJHo9foLfjy7l/gd1RRP1KxCAbgUImgYfa29tDXHKKX2IjR85jI6SB2ARIosdGWKOB+HIua+n+BXYta7AjG2lHW7T28Us0bq63kPPYCGkgCQIk0ZOgWLGN+HIuTT/18AslRZ9wVbPM11O1Oa3GkY20yMZrF7/E4ydvI+exEdJAQgRIoicEskwz8eVcdsC9985OZ0N78wPL1D1i3nOi872tqx5bteq9CtewIhsJxZksqrW1tSXUWG8vfomNEjmPjZAGEiIgSfRRo0aJ8JR+KAaZENreOHLuLhEjM3IpF5OUVcm388nGGRc39C8hzJq7vqt8+8hGEtxbW1udnW6JnSPHL7H9gpzHRkgDyRGQXw3O74jSj0zZk2ve3pYiy7lmNdj3rr+vf4Mecp5erMvXbtnglvx3buQ8ts+Q89gIaSBRAvKt3y3nnFhNhG40OdevBjtynki4VG5EvnB7ltAktJL5zo2cx/Ydch4bIQ0kTcD93d+R9sQW9JI2VZf2Asq5LKRLAXYZlK412JHzNCOytMCeyhdu5Dy275Dz2AhpIGkCJNGTJlo7dy76LRvcnI3rLy5uk3l5ojb0HNu7a+2Cl2bfPm+8k9seOeuem56Z+9hbG7YfrlbIpSTPI5/f1N1vUc/R3S+tabq1+ebh0kjhL0+uf/6Gwhp7oT6M70zdw/ct6iiMqJxsnDzw0YYlrzQ55jm2zdu840DwGjNRB1ii3HN8X9vbi+sX3nflzNEyluEzx49dPH9Be9GGzlU3TesflGsg5T0UyZIS5+Etq/adckAf2/t+62PPzxjb1Id6+Iwbvjnl8s9fOfzf/EfP7pYyX7W7Pt3x+oals5bNuGmu4+7RFz/685tkOJu37K2wP1E6DCjnDqjJzzx4zax+pzfcfOX8mdPXrt3Qeawn0ZjVsDHkXEOnWWAySfRknVx9di4Jcjl4VpLAH180PclDaIf2rHpg7o8qyu20CZPWte9ztNr3c2RL4xf7Ffq836zZf6q3e//aSXP61M75k4ycn9jXuvL+S5wNdIP/XDB3Xuv+Cpa5TI0zQEc4d7UvvOmRgXG5zRj5WPOLYkPHyuse7jfvkabXj1aMjciWHNva9CVn7E+v3CucD2xqbrlFVNzP5Nx7L/8/vvTH/ZJepgZ7z8FNjz8zfuSUMi86TQ2fM3PRniNldbe2nAuozfOvrwBqmARS2/uHnO8ilv4g55Y6Xv1hk0RP0EdV5FwW2P2/fOVAWiK9d+/dOPvyqa72H779mnn3XTfv584ctPhn9OVL1+49UabHgV/xIjOdbz/w6CDNK8n55ld/cV1fs/cVZmzOpG1u398U/sxvevFAof1BsrFl74tL7yirWwX5ebT5tU+roIg7wN5TRzatuf8Ct/4VEN1zmaPffRI4u3XrCwU5r7hjP5Ylbs679g36zlTme9jPv/2nf13+wvKe/atunl78stW3yNE0+fm5v3y24fvOTNr5M/OhRR+X+ZJUQ84Hgxo+857xS+dK4/WL7iuBGjblR9e/9n6XvZN05DyR31o0kgoBkuhJYS0r5+4FdreiJ1YipvO95pKWD3/kwVkbt31S0mxZy92+0jVrH3358293+qZWA7/i5//uxZcn9Ovu6EvmNc569YVF61f+dnthYbiEKWTu/PrR8yadJ3r5yIPT39y0/dBxEYKuwx9t3vTM7bMHvjf83fJNRysoROwB9uzb9KtLilo+fHZDk3uF/+Sn7236tTNr//Ls8d+qegAvpiUDnH/1i9v7l1L6/LVhy66jffmG7q5dbW9eMbx+IEi+/psKTLr3Lnh63E0rX379o08HKfbJI9s3zvv+jEILFyxctdeXyKgq59173pr6ZQfU1DsmvLG10/V69+H3lyybUFgSmPqT6e9XOKGY1IdJ3XaQc3V9g2Uk0ZOKAb+cexbYS7+pEysR03Nw7YRHBuaXfSvGvp+eI1sfm19ch59yy6R3D3p00yUz468UMZh6x8S3dh+uvKAaUs77l/GfmPdqp9e27o41E2YVmUx/aEm5+nfxBxikhe5PVt3xK9eXrXKz8yDtVEftktL+9YDmZl+WoX3jGxf9xf01mEjm4HBXpS8/3TvX3S9fnvol+e55H3q9WEXOezpW3eJc4jflxjveKje1P7n/xWdvcWb/5y1YuSf4poekPmFKtIOcK+EGjKhEgCR6IrHhkfMD+w+VzW4mWCKme8srzmRafndPmLXzWKVh9HSu+eeiXA1/6vldg4V1sMyMGfXarnJL8gNth5bzafcv+Khsdrxnz/r6gvZMHnP7Owd99scfYNAW9m+aWZiYlj9PH7SdKqgHca7IZOcbK6ozqRWrh9smFnw9+vr1+yp+dfPcdNfTtX75OEeqv/zMmo8rSHXPJytvcHYLNvy0eY+dKXTkvFYE8u95EyCJHt8D/tm5HEhLZYG9YGvXlumPFtofsahvF1vln+7NL/+kkFX1/SIeJDNz5q6vvAvMaT+snFdZSHengb+2cotXROIPMHgLRzdNnlN0ln92Hryd3oqo3ZwvWrah/F41mXq7UuNlmNSM01P7Fj1dzKwXjyqUXqo4Oz+yod5ZKZkybvK2ygvpJ6XxQorkild2WKnnyHnNEOSB/An4k+hy92L+ZuljgV/O5SjapFFPOL9bE1tgLwE5uXvhtwop4X+6a/Ph6qBO7Vl8RXFj+ffXfuietLll5lsvb625hhpSzq+fuKXyF4TjW2cVd/s7++rdP/EHGKKFnqOvPHd94RuPT85DtNPbWwm1i3NVf1VlUvvj4B5I/xZ6908lOT/y+6aLnFiaXf373KnNL99WWG/3+au2bSY8gZyb4EXjx+BPokstWPlL4wee1ADdcl4qESNL7rdcMjPBBfYBa/e99WBxpX3ign21RnF0Q30xy146X+68E1Rmij2ElPMbJm+v/A3BNZV0jm+5f+IPMEwLroP1PjkP005vbwXU3dvrRxR2nkdn4nFz99EPN723+qmX50789f3XFQ6guxaEgsr5qfde+WlAkR7w/twl22sfMKwVlvr9O3Kun8/stNifRB83blyCKORuqDlz5tx1111f6f/x1L0q/d8//uM/ln+Vu2HkyYULF27fvj1BG9JrqiTnO97bm3SJmDJWn3x75c2VZpNlHq8snLXPIg9uLis5jz/AAZWqfpS8f3xV5Dy+JX012CdPufzcopw/0B7xK07RFScP7F3b/Ow9hbtwyh1e74uNoHJ+/PVlxZWJSk35/77yBTzpfcYUaBk5V8AJmBCMgD+J3tLSEuzV8k+JhDv6LWr3uc99riTSK1eurKTT8or8a0n4Rd3lR1586KGHVJZ2R85FyJOsD1MZfbXZpBlyPlCHLohylPm+EgpRNTmPZ0mhBvtn6kpyPvrb98WQczkd/tpD7po8feXtnmma8vISOVi4aP2KyfP+qfA9L6Ccu9Eh5zV+2yHnceSAd7MmkEgSXSR57Nixot/y84//+I8yye7s7Iw8ElFxUXdRdNH14cOHK6Xr7W/tcMb1H/63z8miemaXlIfSKpl8frjgqeKRtlKR0X67lZ2dhxPRMgMMhSg5OR9kyexnVxUuMHTJ+ag/r3t/164KH4eqCYg+d62tL5bEGX3Zwmde3L1vcA1f10DCy/l5jzY89Hxf6Zjaf1a3+c+1R/6E6/Micq6Pr7BUUn++O9FDJdFFd0VxRXdFxUXUEycq3wxE12UqLP8rk/jE2w/eYKlEjHMr2n/70/8R/N0EnhxY9J6aVO68ak63aHJWi+2uLfRRB7hr7cTCPHXag0tqfJuspv2RUf/XKV/8TDGJ5JLzf7pzVcTZ+cBRscmVyvxFkPODy38zxgH1pWUbKp53TCBmDWgCOTfAiXYNIVoSXYRc5uKi5fIfafOSub6s4WfWnX847hIxN3552sZ12wPeqJYYmePb53418M724zvmX1p42HvCW9XZeW/8AZbK0Q+bXHWDvfjk1ICkDfOt7Ue15Id/edWZpS0hLjmPvBXOtRtgxtTlxZK6g0MqvJz3DuxXH2bpBrfgn0rkPDgrnlSFQKgkuiPkkiDPfrqcS9f+GuxSgF0W27N13qdr73LKeEmVrl+v+rjKKWBXkZBhvvprysp5b+wBus9wVznq3ee20sHrsmVkolnyi+/82f/1r1xyfvffxNzZ7v7O4VtILwRftINqxWt4hj08acHH9hZkD/ABRs4DQOIR9QgESaLLcrqouGi5rIHnOALJpjvb5eJk6IPYLwvsM8Yv8pd7Ezk/87N/FaSF5J5xi/SUcQ/8/nClX8Mn9i4ZVbxr5MvPrvUc7w4r5wOntmY0VJggBs7HV88Txx/gqY4lvy4sI4tQzdtb6WSVuz7dD/2z895Ilgy78yuf/XeOmku6qn3Tqrkj48r5QImYYVLdr9yCfc+hDQ/MLsZnwNz54G8zlyxt8xf2Ty5qdW8JOdfdg5baXzOJLsvd8qtK/lcFQCLkkq0XUU9vqV8S5HKI3K/lC2a+KDKf9WK7QB+os91/J1jZmu3dnesfaCpedlJO0sLK+cmd87/mrNtPuXHCJm8FeCcUgrZZY9tXAgM8um3u3xXvXzlv3sKNR8rE6qGdi68v3lzSN66yNdtLJc2Dov7pL1/7t/1aLqc9++o3JMHkxPrlNxV3A9Qv+sT3/e3U4Tde+MnA5XXB5by3e9trfTfl9Lv1R9e/0u6+f0WFj7cyNiDnyrgCQ0ISqJREl63mkiOXnzQ2u4W0cdDjstqf0jRdjgD5hVzUvXTEPAc5F93ctf6hgas/Z9w33X2jmlwXttl1cdmUH92wdre/HntQmSlxPrDm9qL4DZ/T+Nzuzr7rMnuOd3766bGivgRts5acJzDAUwdfe37gela5C3zBtr2HivPanuP71r/R3HcL2dTbLvtVcR5f/lxcBNSSsRo455kIk0/bG0u15S+Yv/jt0kjknroDWxb9dvBFtCHkvLf3+O4FC4pX9ciVek/NXbRtd6cnXMTLn2x95Y2FSz+sWTwwzqdY5XeRc5W9g201CPiT6LfddptIppxDU5OdTNNl1V3W/5P9quEpwC7SLgvs7iPmuci57OGqfZl3Ycq1Zuuhcvn1oDJT8nbP4Veeu7EwR3QfU3Yt/wZts7acJzDAQRedOQY7950PlFEb/d2XNr24rHhfeKVj7vFQJ8PkxN5Fvy6Jbt9Arlsk95033TXvduf2Ulmk+d26psKqfig5l69k7sv3HFDuK+1dVeeuenW3rQl25FzNX/tYFZSAP4n+8MMPB305p+ecbHqyGf27vtNUmqA7C+zuweUk5/1r23vfW+hc2l32z8jmmU9tL3d5aqiFcddYew6s/9kcX3cuFUxGugZ6jDVAaabn6O7lyycOLGO4QU29/Y7Xt3SeDHhIPbolSTEpI7qF4Yy+ZMHC1zq7ByrM+76X1LSh59iHq19puGxq+UAqRdcFv11ra34dOc/pNzrdJkSgZhI9oX4Sbka0PKlUulOD/eMP9svqunuBXRE57zND1o03bH5+1nMN1z16c1/2dMoNlz3+4F3PL16ydfeBqiujNX/Fl3WLCORLr829a/74vjqjMtl9qmHSK22lrWZB2wwyOy92H3mAxQZOHvjo7UUvz779if6JrNj89IzJq1vb9jspgmrnuzwEipbcc+XMHwdHnSSTvjTKksnP/OLKmaNLjl76/r6+rIf8dKy8ztn5+KvGVwZfzRPQhu7Du19/a/G0Z4uxVJim33/7s3Nnvb769b396RVLf5BzSx1v0rCjnUTPnYCst8dXdHcNdvnvSjVcc5yd585ZfwN6Dr+4uFAbdcTiteU3+A0aZVNTk7NlnWuK9Pd+iBEg5yFg8aiyBEKdRFdnFDEVPXgNduRcHaeHt8R17rxWYrijo2PUqFGl8+TJXlMU3nLeyJQAcp4pbjpLj0CQk+jp9R655WiKLnebhqrBjpxHdlDuL/Z8vOHhwo7xqXfP+7BKRR6JpUINdteFgDGvKcp9+BgQnAByHpwVTypNIKUkuuxFl33ysiru/Ib8oz/6o0suuSTZy9McRa++M84pEeMcPJNF9dLdKgFdgpwHBJX5Yz0nu6sIdG+v+9z5BQtXVb5ZxFlg9/z0lYhpb898UHSYDwHkPB/u9JoGgcST6CK0f/Inf+L/LfmZz3wm2ZKxUl5GFL3S6bVSiRjZ6fbi4rYIl5wi52nEWwJtSr36K5qnTl+79u19Bz17uLoObmt9tfG704obuWfUL/iwbOU4zwK7e6Wd3HkCPtKnCeRcH19haQACySbRzzjjDL+WO38jip7sHN1RdH+bnhIx91//ZIR7TpHzALGTwyMn3l5568D5PddB6mtmFQ+aOwe9Ztz/2M4j5bZsy+Tbv8Au7maNPQd35t0lcp63B+g/aQJJJdHl/Pof/uEfVpJz+XtZdU/WdikEK8XsSqXdK9VgF4EP2y9yHpZYJs+fOvjGqvsvkdN0FQ7l99fYueHKxUvXH6hU0V3m386dvKUfFtgz8Z2KnSDnKnoFm+IQSCqJ/pd/+ZdVtNzJo8exs+y7zrWq8k/Va7CH7Rc5D0ssu+e7j3749rsrm5+fcdO8ey4r3EYz+uJHf37TM3Ob1697u+NIJSUvmig5JhbYs/OXwj0h5wo7B9OiEkgkiV7a/lZF1KMaWP49mZc7nV7y379VvQZ72H6R87DE9Hp+2bJlLLDr5bI0rEXO06BKm/kTiJ9Ez17OhZrsbx869N/Ir+bz/8M33IouNdjlcFpkrMh5ZHS6vChfYXUxFTtTIoCcpwSWZvMnEDOJ/rd/+7fZL7Y71P7mP39Fur7wP33HUXS5YSUmTeQ8JkBeh4D6BJBz9X2EhdEJuCtkiaSFKnspW82rb4X79re/Hd2yym/KLPyF37zxX//sq2d+dpicTAt7xLxsw8h5Gp7Ksk2OnGVJW9O+kHNNHYfZgQjIkVzPMZ5QZS+/8IUvVJqgyz640hb0QKYEe6hUIkZUPOYCu7tD5DwYfkWfkhIxob6JKjoMzEqZAHKeMmCaz5uA1GbxSHLwI7ki2KLof/AHf+BuQabsVUq+xBlu8BrsYXtBzsMSU+R5d4mYUN9EFbEfM7IkgJxnSZu+8iHgr38ZqvKlrLpLHl2m4yKKcnpt0qRJic/Lw9ZgD8sROQ9LTIXn/TXYg38TVcF+bMiYAHKeMXC6y4dAnCR6GhaLfpeS4hFqsIc1CTkPSyz35yvVYM/dMAxQlgByrqxrMCxJAjGT6Ema0tsrQi573OSPVF9Pb4HdbTNynqwHU22tUg12+Uoq/5Rq1zSuNQHkXGv3YXwIAnGS6CG6qfWonDorHSi/8/+dc3D/4VpvJPDvyHkCEDNpouwlp+I+maxn0j+daEwAOdfYeZgelkDMJHql7nZu/viTDw7WNEYW2GWzuqfc24KZL9Z8Mf4DyHl8htm04CnA7pyurHTVXjYm0YsuBJBzXTyFnckQSCOJ/sy0V5c/1lbdPmeB3V+6NX6JmCBckPMglNJ6pnv73JGFS1ZumLz9ZNVu3AXYxWsssKflFBPbRc5N9CpjqkwgjST6A9cskD9VqLsX2EuKnlSJmCDezkPOj+5Yvmb+5N813v7UfdfNHX+x696w4TPHj3mqYeILixe9u2XX0eryFmR0iTzTvffdp2+efcPIOQ1ztnaWu4o0ei9h5Fx6cQqwh1xgP7Gv9aWHLp92w+ULf/PGwWTNjz5w3syWAHKeLW96U4CAP4keJzF55NNjjkLLf/gHJ5ec+hfY5eEES8QEIZqHnHesvK5wP1jVC0CnjZ/w2qZ9tW4NCzLIOM/0fLLyhmlFO2c1vX4kTmPed0PKubwuARlqgb1nz/r684q3rF60bEPZq9GTHBJtqUgAOVfRK9iUNgF/Ej3Ub0+3ea/8ZpMjA/IfZc2eMX6RR8+yWWB3G5O/nI+cdc918+5z/lwz6wbPDd8XzF+8KVEFDRtAJ3fO/9qUopumPbikM2wD1Z4PL+dhez/59sqbS0iHt6zadypsCzxvAAHk3AAnGjOEgx8sffS5+p89PfbaR67+zpTzT58wZEjhz9Dzp1x17WN3PrSiZeX2nQcTWZ71J9GjnQJ6+MbFjgzM+cnvynpi1+8/uvHLhZlflgvsCsn5dev3edB0fbrjtTeavz9j4IvOJUvbOnMUoaPt05tHO4p4wcJVexMJseKYY8p5z4nO97auemzVqveOV/yoH31//ren9sOc8qNb3tzHarsxvxTDDAQ5D0OLZ9MlsPPVq88akPCSlnv/45wptz3x3sdlVrZDWedPoovAh2pBHpYN7SVBGvul6f7XZQecVImRP9kvsCst545x3fvXTppTENFhU26dvuNEWAck+Hz34R2vvL1yybtb9lZWzWjd+eRcirsFvVLlk40zCtsOZs1d31Wl/5MH9rYtaVv10q59XYh5ND9p/xZyrr0LDRrAYDk/68JpV1/9iPPnigsnekT97B+88M6BmGOPn0SXPe3uhfS2Fb8vmSRZ81eXv1O6pDyRi9EijzfnxXb/7Lw0kq6dC7/rTCsn/9DUpK9bzh9ol9Lr4o6gBdj3rr+vsIpeQ84jxwYvGkMAOTfGlQYMxCXnV7fs9wyo6+MPVj+98B+GD0zfR9yzcX/cRdGYSfQ7LpntlvOnfv6SY7VT7k0dl6gr572nOpb8ekxBsZoXbk56ZqyCD1xy/oO/vuqzxft8AhVgR85V8KAmNiDnmjjKCjOrynlheXbXW+O/eXdhpn7aA5Pb4m+JjpxEL22CKym6qLuY6SywK+UxheW899R7r/y0IOczZ7z4qVLckjHGJeej/ryuJOfilNpXASHnyfjAilaQcyvcrMkgA8i5jKTrrd/9/ZmFOfq5k96NfSYnchLdMzV3RH3hjFWlBXZ1sKss570DivXwfYtcNclLfz/y+U3Ot7aeo7tfWtN0a/PNwyf/sPSXgyj3HNu7a+2Cl2bfPq9w0l121N/0zNzH3tqw/XDVlZxT+xY9Xfxa9vTKvZU35fUc39f29uLJzzxY2J/fcPOV82dOX7t2Q+exCjnro5+2X//XhVNkbjkfKBHz6dZ5hY1sk384/NGm1s7j65/3bv73nAUYNphViN12URGV3DGwc16aer/1sednjG3q84iUExj7zNx5m3cciLtmps4HRy9LkHO9/GW2tcHkvLf7wOKxxQl63e82JnDAKUISvf31XWWPU8uGuJoV4rL3oiZyPqNhuWs/xJEtjV/sV8HzfrNm/6nB++bKyfmhPasemPsjr+wVT2MPmzZh0rr2igfcg8h5z7Fdm+df/0hx716pZec/pP229w95vwfI/HvEiKsuP9cr5wOlDro/WXXHrwqxNHzO7Bf3y1eXkynJeRxEx7Y2fckZRf/Xne4Dm5pbbhEV9wO/YO681r5R8JMxAeQ8Y+B0V4VAQDnvPdXe+MvCevv581Z4z0BFQxw2iS5l4KpUR5F/DVLFPZqpEd5SWc6Pv77s+oIkzJn/tuvAwsCMU/Sj8+0HHh2ko4Nn5917N86+vLilrq+1h2+/pu+M+8+vnOl+a/TlS9fuLbt9vqacnzqyac39FxTPpg+fec/4pXMnPz+3ftF9l5Wq5Uz50fWvve/aWF6o7/aZOrecf9Fdg73nSPuMx4sWzrj/sZ3OYtPJza/+wntGX5YB5hYO7vf90/ymF11ffQLMzuMicrtj1z7XkYRyij780ebXTMybRPjsZfgKcp4hbLqqQSConPfuaXmkIOdnPdKyUxZhu9+c8kDhb07/ZePmqueX3ZP7S59781DJqLJJ9H27drUtW/ZqS4v8kf/4tP+GykpTc7fAyzRd9r0r4nOF5fzopslzCtycWXjpZ0A/5v/uxZcn9E8ER18yr3HWqy8sWr/yt9sHaqV0vtdc0vLhjzw4a+O2T0qaLQvC21e6Zu2jL3/+7TIH3GvIefeet6Z+2dHyqXdMeGNrp2s9ufvw+0uWTRhZ+NefTH+/dJ6sUIDdJec//Oq4jwcuOT2xb/mztxS+ykydMOP9MomjgLnzmnIeH9FAF7/6xe39qyB9qDcUyvR2d+3bvOmZ22cPfHn6u+WbjnJkLtNfAMh5prjprCqBCHI+/LGlH/a1ebztuZGnFRLqFzd+UEXPe3avHXNu4cmvz9h5YuA3jieJ/t+GDPnnv/or/zn4eePG/fNXflG1cOnAfOVf/scTct9a7n5XVs67d667v1iddMzNb3W4f/+79GP8lVJwZuodE9/afdjn2p6Dayc84lms9gLvObL1sfnFdfgpt0x611fWvKqc93SsusW5PmfKjXe89XGZdeST+18sCvN5C1buGRD7vgm6S85dV7CcOrKxdWJh7FPvmLSxfB4gETlPBJHrG0MfiuHNzf4V9e6ONRNmFT8a0x9a4j2ekvsHwWwDkHOz/avX6ALKec+JNRPvLczFv/Hcm8594V0fNF5RlN4rVrRXLrjx0eJHT3OKzZ35cPMWjziUkuh/V7GITaFQ3Y/P+nFARZfHcp+mKynnkore4FohnzN3/dFB8TpYP8aMem1XuWXy7i2vOBN30fsJs3ZWrC7U07nmn0sp6qee3+XR5Cpy3tO1fvk4Zw795WfWfFxhn9dA1feGnzbvccfVxHvu+5/FBHNJzrv3bph5iTOh9y7RD4KQhJwng2iQO6bdv+Cjstlxd/X4Mbe/U/vaYL1+RaltLXKutn/ssi6gnB94r/4bBeU+7Za2jsKv11Nbmx8e6mhtlfV210r70Gtbd5Q55SxJ9Jpa7vQ+9uxbgyt6vtP0nOX8mtd2u3/395w4+P6OV5ufGV9YoO5fwX7gPe+MeZB++MS+8NHo2jL90YIXRiwatFbv++x0b375JwVZ9Spub28VOT+yod6ZcU4ZN3lb5e+JJ2VvfGGp+YpXdrj0XHa2zy5sIptckPNDOxdfXyhwO+b7rb/3baAbsD0BOU8IkdsdVQr+9OxfdfP0gke+tnILm9wz/B2OnGcIm65qEAgi5z0ndzw1qzC9HnL3mMUHSsuzPdtaryzWiK203u5aaR/0rsuw40ePjv/3/z5Ardkhd/3rPxvzhQec31yy901qtsssXArDSWZdqX1wMric5bwPUXEnl//+lWEzJk55t8xSs1s/vvXy1rLCcHL3wm8Vtqf9012bnYWaij+n9iy+onhP6/fXfjgosVtZzo/8vukip4vZ3vWDwT2d2vzybc7XhYqbAPrlvOfT0ra+ylvzik3Hl/OkELncURX18a2zmstvhuAXYMoEkPOUAdN8CAI15fzU8R1LFlx0RlFrv/HMOned1xMdLdcVD7BVWG8fWGk/7/Gl5Su9yJa3IFruPPOb+x5VTbnL8lZAzsvtfx7WcMv1z698+2D5Q01B9GPfWw8WV9onLqh5xuHohvpilt17bL2inA9UufGItAt0oQD7gPTOXbLdNaZB+9S27F2y6MbCIsETi6vcquK0H1/Ok0JUc7ddAUjNMwIhfiPwaCgCyHkoXDycKgGXnF/x+IfdrtlTT9eh7W1tjbdNOWtoUWvPeHDiqkOenbMDal12vd210n7OhI0Hy++Xmz1qVHA5l4dTJZJU4znL+dceve/6eff0H+gaffGjP7/uqYaJLyxetHlT9dIuAfTDdTFokJLmVZSm4j+5ztGV/UZS9i8HG+MayPVj5teXTrsNm/qTKVsPV9/9HVvOE0MUwB394YqcJ/WpDd0Och4aGS+kRsBzo9rp9136nfL3rwwZPqN+ZYdb7x2beva2/fi8ivvbB1bah/7s3tWV9kwF13LnydRoJNlwznJe5QqWKqMMoB+ucispyblbnBKQc99mi8bZr1Q9nx1fzgcq0sRDFMAdyHmSH9rwbenxyyj8uHhDRwJBLkg9/f7v1b/65kcVdticOrLijnsKm9J96+0Dc/dBx809pJDzhEKnY+V1xfoqqsj5yQ8XPFU80tayauDcepU5pUvOz3u04aHn+0rH9P+5e/Qjl//5/3L/mXrnguK/rm5z35g+eIu+HHx/s/2thwun2Kvulhe7spbzyoiQ84Q+GOk1g5ynx5aWwxJwyfl5lz7yvaumXXi2iOvd51/6q6uvfezOh1a0rHhvW6071I6sXniusyB/1ownt7kWMl0r7YOPmyPnYf0U7Pks5NyldlPTyZ2fOrj8N4UL3760bEP/ko5kyp1LTj0/Fe88dcv5Bb9e2XfeznVOXQ6q3bx+b6WaqLHlPDFEyHmwuM/xKeQ8R/h07SFQcytcEGKd7957oTPDvvvKJz8e2Pdeqh5T5ri5u11y50EoB3gmEzk/vn3uVwPvbD++Y/6lhYd9R6Irb4Ur7Vcf1rfBrb8G+wi/ljc0NBQ2xPnRlBXCnk/bJjUW195n1C/4sLygx5fzpBAh5wGCPt9HkPN8+dO7m0Aicu4q+Oo+WV5aaa9w3Lxkx4tNTcHX26XsqxYuNDV33tv76dq7nHptcjzs16s+rlYOcKAazDB/wbIqB9WKN8EMe/iW2+f9kU/JRd1bW1urhUElIex8d3ahkowYP2/xlnJn2uPLeVKIkHPlP+rIufIussjAROTcXfC1tN4+sNJe6bh5CbNUZb9/xIggii6PySF1Lfxjrpy7SrZJmZcHfl9xo/iJvUtGFXP5X352rbs4fJ8Lg5SRmfzDc2+74LP/zi3oUudfCrPXiIGKQnjq8Bsv/KR4Kdno777U7q8nM3DMbPB1c54uq2ltQoiQc+U/6si58i6yyMCE5NxV8LW43r7v7VvP71foisfN3Zg3tbYGkXN5TBfnmCvncpyhVFBdCokXLhj1+qW7c/0DTcXbQR6eNM+fqq52vKp722uTioXlR/3n60d89j86il5tgd1tQRUh7Dm8aUpz0bBy59ZO7pz/tUIt2BsnbPKVmi92U11rE0GEnCv/aUfOlXeRRQYmJee9AwVfnaX1gyvmnd5f//XcSe+WubWqDOKaii6FYAeurFbeRybLeW9v9671Dw0c5p5x33T3jWonP31vs+umryk/umHt7jK136uflj6+e8GCgZvUz/2X/3ne1YuXvjTY7T3HOz/Z+sobC5d+6D12UV0IP90679ulq13959YOrLm9UA5Wvqw0Pre7s+8CVunr00+PuTd6bp87snCOznXLy4CBCSBCztX/mCtvIQbaQyAxOe8dKPgqV67t6Xr5rv7Ta6fV179e8YoOH+YP2tun1tX5p+k/GjJELltzfuTKFi3cY7acy1L5oMvIXfedO7Vrin/kspM1W8sXSK9V/GTQnWxOg+4LyOeOv7hYPvaqV3d7KsPUEMKeY5tWFW+RkXNri1btcX/d6Dn8ynPFKnLug+9yi4z7ktYacp4AIuRc+Y86s3PlXWSRgcnJee9Awdd7bl3wZv3X+1W52nHzSpg9953fNmaMO3Uq26DkWlX1XWS6nPd5oHvvewtvemTgvu0BFe9XwZHNM5/avr/SebAgtcx6jn24+pWGy0oz6QpVZS747VrPfeq1hbBr66wnipb7zq31HFj/szm+cVUsPFd2du6EaCxEtUfhdFLri5H6nxZtLUTOtXWdgYYnKOe9vaWt7Gdf8OB5/VehV78HPRhPOYzkOackm6GCvZrnUzbIeR/fnuP7Nmx+ftZzDdc9enPfFrMpN1z2+IN3Pb94ydbdB6rf7eUqnzLs6ZV7K++Q7z68+/W3Fk97tthFYZp+/+3Pzp31+urX9/Yvhg/+CSKEXTsXfrf0RcGX3e85uvul1+beNb9/DeDh2695qmHSK23uDQBBunCMiowoaBfIeW6fdOQ8N/R07COQqJy7C76WqSoTHb+cPPYcVlI/iZ6HnEcnnMebXZsmO7egTv7h+dM2VZzE52EafUIgGAHkPBgnnsqCQKJyLvnUgYKvQyacdt2rH5TZARVtWC0tLR5FVzyJjpzXcrTr/PoXbmyY01Tref4dAsoRQM6Vc4nFBiUr5729AwVfB9+MngRiT5lPxZPoyHkNnx/fcd9XCrnwH/zFlf9Jn02OScQybRhCADk3xJEMI2MCeiXRkfMq4XH06JF7bvzFtYWtcw/9f2d+RUq/Kf79LONopzstCCDnWrgJI1UkoFESHTmvFEBS0+2yvxt7xRceKh5mG//Vf/u/hygRo2JgYpOlBJBzSx3PsBMhoEsSHTkv4+7uroWP/fqCz/2vq879ZVHLH/rHz1/yxZo12BMJHRqBQNIEkPOkidKeZQS0SKIj576o7Bh/sefg+EPX/MXVo74foAa7ZRHOcHUhgJzr4insVJRA2SR6xbsycxoEcu4D3/XULdMGCsad+y+Xf+7//sXkypec5uQ4uoVAcALIeXBWPAmB8gT8SXS5nEMpWMi5zx0n9y1f9uPLp1z+f47+73/61S+P+GKNS06VcifGQKAcAeScuIBAAgT8SXSl5AE5L+tjWUSRon6BLjlNIEZoAgLpEkDO0+VL6/YQ8CfRa9+EnRUd5LwSaSm5r1pmJKugoB/TCCDnpnmU8eRFQOUkOnKeV1TQLwQyI4CcZ4aajswnoGwS3Vo5Z+Zt/qeOERYJIOfEAgSSJKBmEt1OOZdkR11dnfoX5CQZf7RlMQHk3GLnM/R0CCiYRLdQzpctW1a6JkfxC3LSCUNatY4Acm6dyxlw2gQUTKJbJefCf+LEie4r7yjAnnbM074KBJBzFbyADaYRUC2Jbo+cOwvsnutr5f9KEsS0IGM8EBhMADknIiCQCgGlkuiWyLl7gd2t6PL3qfiYRiGgEgHkXCVvYItZBNRJohsv5/4FdkfOZaauzul/s6Kb0ShHADlXziUYZAwBdZLoxsu5bHbzL7BLBp2DasZ8mhhITQLIeU1EPACB6AQUSaIbL+fiIamTzwJ79EjlTf0JIOf6+5ARqE1AhSS6DXLuFGBngV3tTwPWpUgAOU8RLk1DwCGQexLdBjkXzpImlzk6C+x87uwkgJzb6XdGnSmB3JPolsh5pk6lMwgoRgA5V8whmGMogXyT6Mi5oWHFsCAwQAA5JxogkBGBHJPoZsi5rKVTDSajYKUbDQkg5xo6DZO1JZBXEt0AOW9tbXU2rlOAXdvwx/B0CSDn6fKldQi4CeSVRNdazgWa+xAaBdj5TEGgLAHknMCAQKYEckmi6yvnssDuHD9z/8jfZOozOoOADgSQcx28hI1mEcg+ia6pnMsCu8zF/eXeqMFu1geC0SRDADlPhiOtQCAUgYyT6NrJuWeBvaTo1GAPFWY8bBUB5NwqdzNYVQhknETXTs79C+wyBGqwqxK+2KEkAeRcSbdglAUEJCvsWUaWDV8pjVs7OfcUYBf7WWBPKTZo1hgCyLkxrmQg+hHw388t2eI0hqGdnJcKsFODPY14oE0jCSDnRrqVQWlDQBaQ3XN02fmVxv3c2sm5+E84CA0W2LUJZQzNmwBynrcH6N9uAjINle1dnlNYiV8ioqOcO4pud3QwegiEIICch4DFoxBIg0AGSXRN5TwN2rQJAVMJIOemepZx6UQg7SS6mnKe+CKETi7HVggkTQA5T5oo7UEgEoFUk+gKyrlTIoYC7JGChZcgUIYAck5YQEAJAqkm0ZWSc3eJGAqwKxF8GGEEAeTcCDcyCCMIpJdEV0fO/TXYKcBuRPAyiPwJIOf5+wALIFAikFISXRE5r1SDXa6lIQYgAIGYBJDzmAB5HQIJE0gjiZ67nFeqwS6L7Wh5wgFEc7YSQM5t9TzjVpWAP4kuB9NjbgLPV87LXnIqJsk9NDHHpaoPsQsCORBAznOATpcQqE7An0SXKXscaPnKeVNTk/+SU7klNs6IeBcCEPAQQM4JCQioSMCfRI9zB0m+ci583TekscCuYsBhk/4EkHP9fcgIDCXgSaKLJEcuepq7nHd0dIiKs8BuaKgyLCUIIOdKuAEjIOAnkGASPXc5l9FJxRgW2IlzCKRHADlPjy0tQyAugaSS6CrIeVwWvA8BCFQlgJwTIBBQmkAiSXTkXGkfYxwEkiCAnCdBkTYgkCaB+En0DORcSsTIT5oYaBsCEKhGADknPiCgOoH4SfRU5bxUIkY2u0XerKe6D7APAsoTQM6VdxEGQqC3N2YSPT0595SIkQNpVIYhYCGQCwHkPBfsdAqB0ATiJNFTknPZrO4cP3P/SNGY0GPjBQhAIDYB5Dw2QhqAQFYEIifR05DzsrXeKBGTVSzQDwS8BJBzYgIC2hCInERPVs6lJoy7yltpak4Ndm0iCUNNJICcm+hVxmQugWhJ9ATlvFTfzbPGTokYc4OOkelBADnXw09YCYESgQhJ9ATlXMzwTM1ZYCc4IaACAeRcBS9gAwTCEQibRE9Wzt0TdBbYw3mOpyGQGgHkPDW0NAyB1AiETaInK+cyLNnTLm2ywJ6ah2kYAqEJIOehkfECBFQgECqJnricCwGZo6vAARsgAAGHAHJOJEBAVwLBk+hpyLmu1LAbAoYSQM4NdSzDsoNAwCR6BDln8m1HBDFKcwgg5+b4kpFYSCBgEj2snEuJGAqwWxhODFlrAsi51u7DeAgEKuceXM7dJWIowE54QUAjAsi5Rs7CVAiUJ1AziR5Qzv012BsaGoAOAQhoQQA518JNGAmBGgSqJ9GDyHmlGuzckEbwQUALAsi5Fm7CSAjUICCi6ynWVldXV1Li6nJeqQa7NMiGOCIPAroQQM518RR2QqAGATmJ7rmuVKbszjtV5LzsJafyPPecEnAQ0IsAcq6Xv7AWAtUItLa2em5GkbR6dTn3340m3wlE4wENAQjoRQA518tfWAuBGgRk85pH0Z36cZVe89yQxgI7EQYBTQkg55o6DrMhUJ5A2SR69dy5U4CdBXZCCgJaE0DOtXYfxkOgDAF/Er3mzna5TIUFdoIJAloTQM61dh/GQ6A8gUpJdHhBAAKmEkDOTfUs47KdQNkkuu1QGD8EzCWAnJvrW0ZmN4HqJ9HtZsPoIWAgAeTcQKcyJAg4BCSJft5557k3updOooMIAhAwjEBEOfechOH/QgACEIAABCAQk0CcbxgR5TxOl7wLAQhkQKBsDXbnd017e3sGBtAFBCCQJQHkPEva9AWBLAj4s+aeGYPUfeNilSw8QR8QyJAAcp4hbLqCQPoEZObtqdzuaPnnP/95t6iPGzcufVvoAQIQyI4Acp4da3qCQNoESvXd3MrtqLv/JLqUjknbHtqHAAQyI4CcZ4aajiCQOgFPAXZRcacGu1MVzn8SnSR66i6hAwhkRQA5z4o0/UAgEwLuCXrpklNHzv05dZLomfiETiCQBQHkPAvK9AGBLAmIinsuOS3VbPeXcyeJnqVr6AsC6RFAztNjS8sQyI2ALLC7+3ZfwUISPTev0DEE0iSAnKdJl7YhoAYBz41qJNHVcAtWQCBJAsh5kjRpCwLZEPBMvmt26pFzkug1ifEABLQjgJxr5zIMtpqAKLFku2W/eqg6MP77zkmiWx1GDN5EAsi5iV5lTIYScJeIkQXz4KP0y7m8SxI9OECehID6BJBz9X2EhRDoIyBVXzy1WkWPA6IpK+fyLkn0gAB5DALqE0DO1fcRFtpOwFlg99/UFPyMWSU5J4lue2wxfoMIIOcGOZOhmEigUg32UomYIIOuJOfyLkn0IAB5BgLqE0DO1fcRFtpLwL/ALsIsJWKCL7M77KrIufwrSXR7I4yRG0QAOTfImQzFLAKyEu6/G032tMt8OuxAq8u5tEYSPSxSnoeAagSQc9U8gj0QGCAgK+3ulLmIbqjzaaWGaso5SXTCDgK6E0DOdfcg9htOwFlvj7DA7uZSU87lYZLohkcSwzOdAHJuuocZn/4EZNdbhAX2sHIuz5NE1z9YGIG9BJBze33PyO0hEGR27tAgiW5PVDBSwwgg54Y5lOFAoAyB4HJOEp0AgoCmBJBzTR2H2YYQEPmMvMEtOILgci5tkkQPDpYnIaAOAeRcHV9giXUESiViJk6cmOrgQ8m5WEISPVV30DgE0iCAnKdBlTYhUJuAp0TMsmXLar8T9Ymwci79kESPCpv3IJAPAeQ8H+70ajOBSjXYw95iHpxhBDmXxqVkjfvUuxyWi3bqPbidPAkBCEQmgJxHRseLEIhCoFIN9lQz6NHkXL5eeMrSBb/0JQoa3oEABGIQQM5jwONVCIQkkFQN9pDd1qjZXqW1trY2z01uMoSwvfM8BCCQAQHkPAPIdAGBPgJSDcZ/yWm0GuxhgUabnTu9+M2WBYawBvA8BCCQNgHkPG3CtA+BAgFPAXaR2FQX2N3c48i5tEMSnSCGgPoEkHP1fYSF5hAoLbbHrMEelkhMOSeJHhY4z0MgewLIefbM6dFqArKbLJsF9gRn59IUSXSro5bB60AAOdfBS9hoEAE565X9ca+Ys3MHP0l0g8KQoRhIADk30KkMCQIeAonIubRJEp3QgoCyBJBzZV2DYVoSyGXyXZNUUnJOEr0mah6AQF4EkPO8yNOvgQTk8pK6urq0C7BHAJeUnEvX/iS6LMJHMIlXIACBZAkg58nypDV7CUjR9dKx8lQLsEdAnKCcS+/+JLpofASreAUCEEiQAHKeIEyaspSALLDLjNxTIkZm6urgSFbOZVz+JHp6BefVwYglEFCZAHKusnewTQMCzgK7v9ybUkvQicu5P4kuAq+BtzARAuYSQM7N9S0jS5+Ae4G9pOgZl4gJMsrE5Vw6JYkehDzPQCAzAsh5ZqjpyCgCZRfYRTWzLxETBGsaci79kkQPAp9nIJANAeQ8G870YhoBfwH2LGuwh6WZkpyLGSTRw/qC5yGQEgHkPCWwNGs+Ac9tp6rtZnc7ID05J4lufqAzQk0IIOeaOAozlSQgBdhFKWUrnFL72P2o0pNz6YskupKxiVHWEUDOrXM5A06QgGTQM7vkNI7Zqcq5GEYSPY53eBcCiRBAzhPBSCMQUJpA2nIugyeJrnQEYJwFBJBzC5zMEK0nkIGck0S3PsoAkDMB5DxnB9C9ygQkI65UNZjIrDKQc5Lokb3DixBIhABynghGGjGQQKlEjMpb1gNyz0bOSaIHdAePQSANAsh5GlRpU28C/hIxim9cr4k7MzkniV7TFzwAgZQIIOcpgaVZXQmUrcEuR9F0HU+/3VnKOUl0rUMF4/UlgJzr6zssT55A2RrsooW6r7dnKefiFU6iJx+atAiBWgSQ81qE+Hc7CFSqwa5+iZgg/slYzsUkTqIH8QvPQCBBAsh5gjBpSmMCZS85lVvMReY1HlXR9OzlXHrmJLoBkcMQNCKAnGvkLExNkYCnALsBC+xuWLnIOUn0FOOVpiHgI4CcExQQKBBwCrBrUYM9rM9ykXMxkiR6WE/xPAQiE0DOI6PjRdMIyLr6iBEjjFlgz3127hhAEt20zwnjUZUAcq6qZ7ArDwKyPpxHt6n3mdfs3BkYSfTUHUwHEJDzqECAAASMJ5CvnJNENz7AGKAKBJBzFbyADRkRMHXyXRNfvnIu5pFEr+kjHoBATALIeUyAvK4NgdbWVkmN614QJhru3OVczPafHRCNjzYc3oIABPwEkHOiwnwCssetoaHB2bUuP7oXYI/gMBXkXMwunR1wHCHfrqxdL4ngRF6BQHUCyDkRYjgBEW//ViwzisME95wicu6cHSh9r5L/ENcEHwVPQgACVQgg54SHyQScBXa3fjj/bdsyryJyLqHW3t7ucYcZN8qb/ClibJoQQM41cRRmhiTgWWAvSYgZNdhDwsj0RrWatpFEr4mIByAQgQByHgEar6hOwL/A7si5kSVigjhDndm5Yy1J9CBe4xkIhCKAnIfCxcN6ECh7z6mde9odh6km5yTR9fggYaVWBJBzrdyFsYEJyETc8gV2NyrV5FxsI4keOJZ5EAKBCCDngTDxkHYEZP7n3Hkq67q27WP3O0tBORcjSaJr97HCYJUJIOcqewfbYhGQDLoIRqwmTHlZTTkXuiTRTQkxxpE/AeQ8fx9gAQTSJqCsnJdNorOaknY80L6RBJBzI93KoCAwiICyci5W+pPoUsIP/0EAAmEJIOdhifG8KgSkRIzNm9VDuUFlOZeB+JPo4txQA+RhCEAAOScG9CPgLhEjczv9BpC5xYrLufDwJ9EtLK2feVzQoVEEkHOj3GnDYDwlYqSGK6nWmn5XX85Jotd0Ig9AoDoB5JwI0YlA2RrsMrHTaQx52Kq+nAsVkuh5hAZ9mkMAOTfHl2aPpFINdpmds95e0/VayDlJ9Jp+5AEIVCGAnBMeGhCoVIOdEjEBnaeLnJNED+hQHoOAnwByTlSoTkC0vOwlp5SICe45jeScJHpwt/IkBNwEkHPiQQMC7gLsokwssIf1mUZyThI9rHN5HgIOAeScSNCAQKkAOzXYo3lLLzmXMXISPZqjectmAsi5zd7Xaeyy5C6axAJ7NJ9pJ+cyTE6iR/M1b1lLADm31vX6Dbyjo0M/o9WwWEc5J4muRuxghTYEkHNtXIWhEIhMQEc5l8FyEj2yx3nRQgLIuYVOV3TITL7Tc4ymck4SPb2QoGXzCCDn5vlUyxE1NTWJ5FAQJiXn6SvnJNFTCgmaNY8Acm6eTzUbkUzKR40aJXrjnECjAHsa/tNazkmipxEStGkeAeTcPJ/qNKK2tjZPiRgKsKfhP63lnCR6GiFBm+YRQM7N86k2I3IW2D0/ou4k0RN3oe5yThI98ZCgQfMIIOfm+VSDEbkX2N1yTg32lJxngJyTRE8pNmjWGALIuTGu1GYg/gV2R9EpEZOeC82Qc5Lo6UUILRtAADk3wImaDcFTgJ0a7Bn4zww5J4meQajQhb4EkHN9faer5e4C7NRgz8aLxsg5SfRsAoZedCSAnOvoNe1tdgqws8CemSNNknOS6JmFDR3pRQA518tf5ljb2tpK0ZjM3GmYnJNEzyxy6EgjAsi5Rs7CVAhEJGCYnAuF0gJP6WREQ0NDRDq8BgEjCCDnRriRQUCgKgHz5FyGu2zZMk/RAlnyIRAgYC0B5Nxa16c7cCkRw1p6uojDtG6knAsAzykJqUEks/YwYHgWAuYQQM7N8aUiIymViKEAuyIeETNMlXPPKQkZptT/p+y/OoGHJVkSQM6zpG1+X54SMRRgV8Tlpso5SXRFAgwzVCCAnKvgBUNsKFuDnVpvKnjXYDknia5CgGGDCgSQcxW8oL0NlWqwy8on96mo4F2z5Zwkugoxhg25E0DOc3eB9gZUqsEuk3Xtx2bKAIyXc5LopoQq44hOADmPzo43hYAcDfLdcTpENsGJxsNHHQLGyzlJdHWCDUvyIoCc50XekH7LzopYYFfNuzbIOUl01aIOezImgJxnDNzA7tz1uVhgV9PBlsg5SXQ1ww+rsiGAnGfD2fBepD4XC+wq+9geOfcvF9XV1XESXeXgxLakCCDnSZG0vR0W2FWOAHvkvGwSXYrHqewdbINAIgSQ80Qw0ggElCZglZyXTaLLApLSHsI4CMQmgJzHRmhHA0y+tfazbXLuT6ILAcq5ax3DGF+TAHJeE5HtD0jeUWq1pliAvXv/1jXPPT5twtirLz1/aP+pt7MuvOJ7Y8dPe2Lput1dPbbzT2T8Fso5SfREIodGNCKAnGvkrBxMlVvRRMidk+VS4i1pC459vO6J2y49x39yvfg3p48YPXP1nmNJ92tdexbKufjYfyc6SXTrQt+mASPnNnk75Fil3LpHaBM9h3aofd7YEc50vNrPN+rXHQhpOI97Cdgp5yTR+SRYRQA5t8rdQQfrLLD7RTa5CfrJ/avvv6ik5Wd/Z+KC1e279jtL6z1dnXu2bVi1pLl+zMVnX9a89VRQs3muEgFr5VyAeO5EJ4nOx8RUAsi5qZ6NPi73Artb0ZOcmh9/a/rFZziND73onuUVl9OPH+g8QvY8ui+Lb9os5yTR48cPLWhBADnXwk3ZGelfYBclSLpETM+xdfXDC98URt624iMEO20H2yznJNHTji7aV4QAcq6II1QxQ5bTPWvsKVxyemxb83cLvZxx18uHUfPUvW+5nJNETz3C6EABAsi5Ak5QyQTZDFzayi4akOQC+8AwD62rv7Ag52fVr+tWafyG2oKck0Q3NLQZ1gAB5Jxo8BJw7jxNeoHd3cuRjdPrCnI+9NondxzHB2kTQM6FMEn0tMOM9vMlgJzny1/R3iWDnmYZuFMHV9xxekHPz/z7KesOsdyeciAg5w5gTqKnHGg0nycB5DxP+vb2ffClO88pHVMbOebxDSh6qsGAnJfwSvF2z+4QyrmnGns0nhkB5Dwz1HTkJnBiz+Kbzh74tSrV36Ytb+8gjZ5SlCDnbrCcRE8pzGg2XwLIeb78c+hdMojy6yzNtfRgg+o58E7jD1yKLopz9kVj6ue9tHlfF4VjgjEM/BRy7kZFEj1w4PCgTgSQc528Fd/WUomY5Oq7xTCq50D7wgl/f5a30OvQEdfWt6zbg6jHQOt5FTn3ACGJnlxw0ZIqBJBzVTyRgR2eEjHpHEILO45TXXvWtdRf6y/ePvTCW5rXfcjye1igZZ9Hzv1YSKInElo0og4B5FwdX6RoSaUa7G1tbSn2GqLpU137Nr80r37MRYNX34d+c/zyXYMV/URn+wvN9bdefaE8efaFV98+ZWHbx93sjK/BGjkvC4gkeojPKI8qTwA5V95FsQ2sVIO9oaFBZD5284k20N3RvqLxVveVqUPr6td2FOW658jaB0YOPX3E1XdOa3665clf3XP1yKFDzrjorpUfI+hV/YCcl8VDEj3RTy+N5UwAOc/ZAWl3X6kGu9SKSbvryO33dG1fOv6bpYz60LrG9hNFue76/apV7zsXr/X9dG9rGXP+kKHfnv7O4cjd2fAicl7JyyTRbYh/S8aInJvsaMmOe47Yyv+VTXDyK0z1YXfvWPzjLxWN/3r9uoMVDO7+aPHY04acdeWT25ifV/Epcl4FDkl01X8bYF8wAsh5ME56PuUpwC6/01VcYC/PtufExhlfL1aO+4cnt1dQa6fAHHJeI0CR8+qASKLr+RsOqwcRQM4NDwinALtTg13lBfYybji25t4za17UcujNyZcOGXLp5DcPGe7IeMNDzqvzkyS65y7Buro65XaWxIsB3jaeAHJuvIt7ZUauxwK7xxXd6+rPqiHnPR3Lbztn6KDkuvn+jDJC5LwmNf9SlkzZa77FAxBQhwByro4v0rJEJhk6zjN6djx5ZWE73DmjF39Qhk7PvtUTLx069NKJq/eROK8ePch5kE9XaSmrtOOEcu5BuPGMIgSQc0UcgRkeAkfaG79T3Nx+RWN7lw/QsQ8WjztnyHnfa3yL61tqRg9yXhOR84AsZXl2j2qwbzTg2HjMdALIufYe1nDyfergugVzVrR3Vir/0nN4x9J/uago5qdd0/KBd/Z9bM/yey4aesZF43+3hxoyAUIYOQ8Aqe8RkugBQfGYggSQcwWdEsIkmTrInh0lCrCHsLpzzb0XDhky9KyLRt/b+MzLb7bv3Heov/Tbqa7O3e3rljTeWldMmkvlt+ue3HpkcNtoeQjWzqPIeXBkJNGDs+JJpQgg50q5I5wx7vOyahRgD2b/kdX3nuu9dsV/Pr7vb87+QeM7BwbPzNHyYJAHP4Wch6JGEj0ULh5WhAByrogjwpnhXHLqkUBlCrDXGkvXjpcbf3rF+aeXl/DC355z6a1zVu08XE7Lhww56/+5s3G+FLwb+Fm2sZPtcJXBI+e1gtL773ok0bv3b13z3OPTJoy9+tLznW/IZ114xffGjp/2xNJ1uweKJ4YdPM/rSQA5189vzgK7Xwt1mqD39vZ0fbxl3YqWxofuHHvtVYXfRWdfeMXVo2+dNP3JFW/uPFjmLrVTmxsvrvAl4OLGdi5JR86T+zQrn0Q/9vG6J25z327g/Y1w+ojRM1fvOZYcElpSnQByrrqHPPb5C1JqWSJGM+ram8vsPIILFU6iH2qfN9Z/p7DvK/436tcdiDBwXtGUAHKujePKLrDLB1jLEjHaUDfEUOQ8miOVTKKf3L/6/tK5jyFnf2figtXtu/Y7S+s9XZ17tm1YtaS5fszFZ1/WvJUlq2iO1/Mt5Fwbv3V0dEihVs8XcH1qsGvD2UhDkfPIblUuiX78rekXn+H8Hhh60T3LKy6nHz/QeYT9JJH9ruOLyLlOXnPPFfSrwa4TadNsRc4je9SfRJePXn5lFnuOrasfXvhSP/K2FR8h2JE9a96LyLlmPnXmCiywa+a2vM1FzuN4wJ9EHzduXJwGY7x7bFvzdwtqfsZdL3tOfsRol1cNIICca+ZEmRbI6az8Jgea4cJchwByHjMS/El0+RjGbDPS64fW1UsJJudMWv26Msc/IrXKS0YQQM6NcCODgEBVAsh5/ADxJ9Hb29vjNxuyhSMbpxcPqQ699skdx0O+zuMmE0DOTfYuY4MAs/OkYkCNJPqpgyvuKNZeOPPvp6zj/qGk/GtAO8i5Wk6ULB23LKvlEiOsYXaeiBuVSKIffOnOc0o1kkeOeXwDip6Icw1oBDlXyImlEjF61XdTiCCmVCCAnCcVGgok0U/sWXzT2QMnVqX627Tl7R2k0ZNysb7tIOdK+M5fIkabAuxK8MOIGgSQ8wRDJP8kes+Bdxp/4FJ0ce/ZF42pn/fS5n1dFI5J0NWaNYWc5++wsjXY5Wyr1I3J3zgsMIIAcp6gG5VIovccaF844e/P8t5MOHTEtfUt6/Yg6gn6W5+mkPOcfVW2Brv88pW/z9kyujeIAHKerDOVSKL3nuras66l/lp/8fahF97SvO5Dlt+Tdbr6rSHnufmoUg12uS1NflnkZhYdm0gAOU/cqwok0Z0xnerat/mlefVjLhq8+j70m+OX7/Ip+sA3gNNvXXEwcSg0mCsB5Dw3/FLZzXcD0hDZ1k6JmNxcYm7HyHkavs0/ie4eVXdH+4rGW91Xpg6tq1/bMVAFtueTtdN/MGLo6edfOPKsIUOQ8zRCIt82kfPc+Ct5WVNuNOg4VQLIeRp4lUiiDx5YT9f2peO/WcqoD61rbD9REvRPVk2+d9aK9o6Nsy5GztMIiLzbRM7z9EDp2z0L7Hm6wYK+kfOUnKxGEn3w4Lp3LP7xl4orf1+vX+ddUz/V3oicpxQP+TaLnOfJ3/l2zwJ7nj6wo2/kPD0/K5NELw2x58TGGV8v6PmZ//Dkds+ta8h5esGQb8vIeb78ezmNlrMD7OgeOU/Vz2ol0WWox9bce2bFi1qQ81SDIcfGkfMc4dM1BDIigJynClq5JHr3unrZ7Vbh3jXkPNVgyLFx5Dxd+DL5Zqd6uohpPQAB5DwApFiPKJVE79nx5JWF7XDnjF78gWdgyHksTyv8MnKeonMkqSbF3WQhLsU+aBoCAQgg5wEgxX1EmST6kfbG7xQ3t1/R2N6FnMd1rSbvI+epOEpm5O50mnzOU+mGRiEQjAByHoxT3KfST6KfOrhuwZwV7Z3dnv1tRct7Du9Y+i8XFcX8tGtaPvA9yOw8rptVfR85T94zsuzmKREjc3QKvSUPmhYDE0DOA6OK9WD6SfTONfdeOGTI0LMuGn1v4zMvv9m+c9+h/tJvp7o6d7evW9J4a10xaS7Xslz35NYj/vEg57F8rPDLyHnCznEW2P3l3rghLWHQNBeGAHIehlasZ9NNoh9Zfe+53mtX/L9t+v7m7B80vnOg7BQeOY/lYIVfRs4Tc45ngb30GaNETGKIaSgqAeQ8Krko76WYRO/a8XLjT684//TyEl7423MuvXXOqp2HKyzH9yLnUZyqwzvIeTJe8i+wO58sSsQkw5dW4hFAzuPxC/12qkn0nq6Pt6xb0dL40J1jr73q0vP7Z+tnX3jF1aNvnTT9yRVv7jxY/S415Dy0OzV5ATlPxlGylu7/vswlp8nApZXYBJDz2AhDN+DfQMOZ1dAQeSEMAeQ8DK2qzzY1NbHAnhhNGkqUAHKeKM5AjUnNCc82mnHjxgV6k4cgEIkAch4JW4WXnO/jLLAnyZS2kiCAnCdBMXQb/kW7lpaW0K3wAgSCEUDOg3EK9pR8H2eBPRgqnsqUAHKeKW5XZ+5FO2f1rr29PS9j6NdsAsi52f5ldBDoI4Cc5xgHJNFzhG9V18i5Ve5msJYSQM5zdDxJ9BzhW9U1ch7C3XKcVJbOQrzAoxBQgwBynq8fSKLny9+S3pHzQI52l4ihAHsgZDykEgHkPHdvkETP3QXGG4Cc13axp0QMBdhrI+MJxQgg5yo4hCS6Cl4w2AbkvIZzy9Zgl4+lwTHB0MwjgJyr4FOS6Cp4wWAbkPOKzq1Ug11m5xw1MfgjYeTQkHNF3EoSXRFHGGkGcl7erZVqsEtdJyo1GvlJMHtQyLk6/vUn0bluUR3vaG0Jcl7Gff41Maf+AxWdtI51m41HzpXyvj+JLr9zlLIQY3QkgJyX95rnGzQL7DoGNzaXCCDnSgWDf8LAdhylHKSpMch5RceVvkGzwK5pcGM2cq5sDPiT6NS0UNZZuhiGnFf0lPMNmgV2XUIZO6sQYHauYHiQRFfQKVqbhJxr7T6Mh0AgAsh5IEyZP0QSPXPkJneInJvsXcYGAYcAcq5mJJBEV9MvmlpltZzLaTRN3YbZEAhFADkPhSvLh0miZ0nb7L4slfNSiRgKsJsd34yO2bn6MUASXX0faWGhjXIuC1yllBUF2LUIU4yMSYDZeUyAab9OEj1twja0b52cy9KWSLhTFsb5kQ8Shd5siHWbx4icK+59kuiKO0gL8+ySc/+ilvyaE3WnJJMWwYqRkQkg55HRZfYiSfTMUJvakS1y7l5gd0/NKRFjamQzLjcB5FyLeCCJroWblDXSCjn3L7BTg13ZiMSwNAgg52lQTaNNkuhpULWkTSvk3P+dlxrslsQ3w3QIIOe6RAJJdF08paCdVsi5cHd/52WBXcFAxKRUCSDnqeJNtnGS6MnytKc1W+S89J2XGuz2BDcjLRFAzvUKBpLoevlLEWttkXPB3d7/owh3zIBAlgSQ8yxpJ9IXSfREMFrViEVybpVfGSwE3ASQc+3igSS6di7L3WDkPHcXYAAEUieAnKeOOIUOSKKnANXkJs2Rc8k2UYDd5FBlbDEIIOcx4OX5Kkn0POnr1rcJcl4qEUMBdt3CD3szIoCcZwQ6hW5IoqcA1cwmtZdzT4kYCrCbGaeMKh4B5DwevzzfJomeJ32t+tZbzsvWYJe/1MoFGAuB1Akg56kjTrMDkuhp0jWnbV3lvFINdpmdc5+KOeHJSBIigJwnBDK3ZqRghvuyCflv0fjcrKFjJQloKeeVarAzL1cyxjAqfwLIef4+iG2BlLN0KzpXQcYmaloD+sm5f93JueSU76qmxSbjSY4Acp4cy9xaOnr0qPyicyu6LEbmZg0dq0dAPzkXhp6tniywqxdXWKQWAeRcLX9EtUbqWnqW3FmSjMrSwPe0lHP3Vk+i2cCoZEhJE0DOkyaaW3sk0XNDr3zHWsq5UHXS5yywKx9gGKgEAeRcCTckZARJ9IRAmtaMrnJumh8YDwTSJICcp0k367ZJomdNXJP+kHNNHIWZEIhBADmPAU/FV0miq+iVvG1SV8537dqVNxz6h4AhBJBzQxzpGgZJdPN8GnNEKsp5qUQMih7Tu7wOAYcAcm5kJJBEN9KtkQelnJy7S8TU1dVJlijy2HgRAhBAzg2OAZLoBjs3wtDUknN/DfaJEydGGBWvQAACbgLMzk2NB38SvaGhwdTBMq7qBFSRc/ma6Vk4cqolUPaICIZAfALIeXyGyrbgT6K3trYqay2GpUdACTmXL5ie4oWOllMiJj3H07JVBJBzs93tT6Kz8chsj5cdXf5y7v9qSQ12CwORIadKADlPFW/ujZdNorPxKHe/ZGxA/nLuX2OnBnvGQUB3xhNAzo13MUl0411cc4D5y7nneyUL7DV9xgMQCEsAOQ9LTMfnSaLr6LUEbc5fzmUwzvdKarAn6FeagoCbAHJuSTyQRLfE0Yrmzh2z5Li5VI+x2ROMHQLpEUDO02OrVMsk0ZVyR8bGKDE7z3jMdAcB2wgg5/Z4nCS6Pb72jBQ5t9b1DNwiAsi5Rc7u7SWJbpW7S4NFzu30O6O2iwBybpe/e3tJotvmcRkvcm6h0xmydQSQc9tcThLdNo8j5xZ6nCHbSAA5t9DrJNFtczqzc9s8znhtJICc2+h1kuiWeR05t8zhDNdKAsi5lW7vGzRJdHtcj5zb42tGai8B5Nxa35NEt8f1yLk9vmak9hJAzu31fbHspnNNpfPDnehGxgNybqRbGRQEBhFAzi0PCE6i2xAAyLkNXmaMthNAzm2PAJLoFkQAcm6Bkxmi9QSQc+tDoJckuvExgJwb72IGCIFe5JwgEAKcRDc7DJBzs/3L6CDQRwA5Jw4cAiTRDY4E5Nxg5zI0CBQIIOeEQokAJ9FNDQbk3FTPMi4IDBBAzomGEgGS6KYGA3JuqmcZFwSQc2KgPIFdu3a5j6FzEt2MQEHOzfAjo4BANQLMzokPD4Fly5Z5FL21tRVKWhNAzrV2H8ZDIBAB5DwQJssemjhxolvRR4wYIbN2yxgYNVzk3Ch3MhgIlCWAnBMYfgKSRK+rq3Mr+qhRo+QvYaUpAeRcU8dhNgRCEEDOQ8Cy6VGS6CZ5Gzk3yZuMBQLlCSDnREYlAiTRjYkN5NwYVzIQCFQkgJwTHFUIkEQ3IzyQczP8yCggUI0Ack58VCFAEt2M8EDOzfAjo4AAck4MRCdAEj06O2XeRM6VcQWGQCA1AszOU0NrTsMk0XX3JXKuuwexHwK1CSDntRnxRG8vSXStowA519p9GA+BQASQ80CYrH+IJLrWIYCca+0+jIdAIALIeSBMPNTb60+iy5QdMFoQQM61cBNGQiAWAeQ8Fj7LXvYn0eVvLGOg5XCRcy3dhtEQCEUAOQ+Fi4c9SXSJH8q5qx8VyLn6PsJCCMQlgJzHJWjZ+/4kulR3p5y74lGAnCvuIMyDQAIEkPMEIFrWBEl07RyOnGvnMgyGQGgCyHloZLzQ20sSXa8oQM718hfWQiAKAeQ8CjXe8Z1EJ4muclAg5yp7B9sgkAwB5DwZjva1QhJdI58j5xo5C1MhEJEAch4RHK9xEl2fGEDO9fEVlkIgKgHkPCo53usjQBJdizhAzrVwE0ZCIBYB5DwWPl4mia5DDCDnOngJGyEQjwByHo8fb/eSRFc/CJBz9X2EhRCISwA5j0uQ90miKx8DyLnyLsJACMQmgJzHRkgDJNFVjwHkXHUPYR8E4hNAzuMzpAWHAOXclY0E5FxZ12AYBBIjgJwnhtL6hkiiKxsCyLmyrsEwCCRGADlPDCUNkURXNQaQc1U9g10QSI4Acp4cS1rqI8BJdAXjADlX0CmYBIGECSDnCQOlOZLo6sUAcq6eT7AIAkkTQM6TJkp7nERXLgaQc+VcgkEQSJwAcp44UhoUAtyJrlQYIOdKuQNjIJAKAeQ8Faw0ShJdpRhAzlXyBrZAIB0CyHk6XGm1jwAn0RWJA+RcEUdgBgRSJICcpwjX+qblJPqoUaMkxko/dXV18pfWg8kaAHKeNXH6g0D2BJDz7Jlb1aMk0UeMGOFWdJmyW0VAhcEi5yp4ARsgkC4B5DxdvrTe29va2uqWc/lvOZsOmCwJIOdZ0qYvCORDADnPh7tlvTY0NHgUXWbtljHIc7jIeZ706RsC2RBAzrPhbHkvJNHzDQDkPF/+9A6BLAgg51lQpo/+k+gk0fMKBOQ8L/L0C4HsCCDn2bG2vieS6HmFAHKeF3n6hUB2BJDz7FjTU28vSfRcogA5zwU7nUIgUwLIeaa4re+MJHouIYCc54KdTiGQKQHkPFPcdEYSPY8YQM7zoE6fEMiWAHKeLW966yNAEj3jOEDOMwZOdxDIgQByngN0uiSJnm0MIOfZ8qY3CORBADnPgzp99t2J7innLsfYKOeeUmQg5ymBpVkIKEQAOVfIGZaZ4j+JPm7cOMsYZDRc5Dwj0HQDgRwJIOc5wqdrfxK9paUFLIkTQM4TR0qDEFCOAHKunEssM8h/Er29vd0yBqkPFzlPHTEdQCB3Ash57i6w3ACS6BkEAHKeAWS6gEDOBJDznB1A9+VOopNETzYukPNkedIaBFQkgJyr6BX7bCKJnqrPkfNU8dI4BJQggJwr4QaMKHcSnSR6UnGBnCdFknYgoC4B5Fxd31hmGUn09ByOnKfHlpYhoAoB5FwVT2AHSfTUYgA5Tw0tDUNAGQLIuTKuwJA+AiTR04gD5DwNqrQJAbUIIOdq+QNrSKKnEAPIeQpQaRICihFAzhVzCOZ4y7lLLXf2xMUMC+Q8JkBeh4AGBJBzDZxkn4mlcu5yTUtHR4d9ABIeMXKeMFCag4CCBJBzBZ2CSU4SvampCRSJEEDOE8FIIxBQmgByrrR7MA4CSRBAzpOgSBsQUJsAcq62f7AOAgkQQM4TgEgTEFCcAHKuuIMwDwLxCSDn8RnSAgRUJ4Ccq+4h7INAbALIeWyENAAB5Qkg58q7CAMhEJcAch6XIO9DQH0CyLn6PsJCCMQkgJzHBMjrENCAAHKugZMwEQLxCCDn8fjxNgR0IICc6+AlbIRALALIeSx8vAwBLQgg51q4CSMhEIcAch6HHu9CQA8CyLkefsJKCMQggJzHgMerENCEAHKuiaMwEwLRCSDn0dnxJgR0IYCc6+Ip7IRAZALIeWR0vAgBbQgg59q4CkMhEJUAch6VHO9BQB8CyLk+vsJSCEQkgJxHBMdrENCIAHKukbMwFQLRCCDn0bjxFgR0IoCc6+QtbIVAJALIeSRsvAQBrQgg51q5C2MhEIUAch6FGu9AQC8CyLle/sJaCEQggJxHgMYrENCMAHKumcMwFwLhCSDn4ZnxBgR0I4Cc6+Yx7IVAaALIeWhkvAAB7Qgg59q5DIMhEJYAch6WGM9DQD8CyLl+PsNiCIQkgJyHBMbjENCQAHKuodMwGQLhCCDn4XjxNAR0JICc6+g1bIZAKALIeShcPAwBLQkg51q6DaMhEIYAch6GFs9CQE8CyLmefsNqCIQggJyHgMWjENCUAHKuqeMwGwLBCSDnwVnxJAR0JYCc6+o57IZAYALIeWBUPAgBbQkg59q6DsMhEJQAch6UFM9BQF8CyLm+vsNyCAQkgJwHBMVjENCYAHKusfMwHQLBCCDnwTjxFAR0JoCc6+w9bIdAIALIeSBMPAQBrQkg51q7D+MhEIQAch6EEs9AQG8CyLne/sN6CAQggJwHgMQjENCcAHKuuQMxHwK1CSDntRnxBAR0J4Cc6+5B7IdATQLIeU1EPAAB7Qkg59q7kAFAoBYB5LwWIf4dAvoTQM719yEjgEANAsg5IQIB8wkg5+b7mBFaTwA5tz4EAGABAeTcAiczRNsJIOe2RwDjt4EAcm6Dlxmj5QSQc8sDgOFbQQA5t8LNDNJuAsi53f5n9HYQQM7t8DOjtJoAcm61+xm8JQSQc0sczTBtJoCc2+x9xm4LAeTcFk8zTosJIOcWO5+hQwACEICAKQSQc1M8yTggAAEIQMBiAsi5xc5n6BCAAAQgYAoB5NwUTzIOCEAAAhCwmABybrHzGToEIAABCJhCADk3xZOMAwIQgAAELCaAnFvsfIYOAQhAAAKmEEDOTfEk44AABCAAAYsJIOcWO5+hQwACEICAKQSQc1M8yTggAAEIQMBiAsi5xc5n6BCAAAQgYAoB5NwUTzIOCEAAAhCwmABybrHzGToEIAABCJhC4P8H6mqPj0VCjQ4AAAAASUVORK5CYII=
iVBORw0KGgoAAAANSUhEUgAAAiQAAAIOCAIAAAAHpoF3AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAADqASURBVHhe7Z3tr11Xmdj5A/jUfpgPVdFQGGn4QJkpjWhJqJBGvEypuApVVUYE1IJLgJlmBogHaDWppdS0IRF5B2dIILYYB5tYxBgnuDG1B0hscCY3iePATSZjTGIc417HcRK/5L71cU58fe45a7+ss9da+3nW+lkWCvfuvdbz/J51/NPeZ69nv26JPxCAAAQgAIHIBF4XeXyGhwAEIAABCCwhGxYBBCAAAQhEJ4BsoiNmAghAAAIQQDasAQhAAAIQiE4A2URHzAQQgAAEIIBsWAMQgAAEIBCdALKJjpgJIAABCEAA2bAGIAABCEAgOgFkEx0xE0AAAhCAALJhDUAAAhCAQHQCyCY6YiaAAAQgAAFkwxqAAAQgAIHoBJBNdMRMAAEIQAACyIY1AAEIQAAC0Qkgm+iImQACEIAABJANawACEIAABKITQDbRETOBOQKvex2fC3NFI2DtBPhQaa8Q8aUngGzSM2fG7Akgm+xLTILeBJCNNzJOgEATAWTTRIjfl0cA2ZRXczKOTgDZREfMBOYIIBtzJSNg/QSQjf4aEWFqAsgmNXHmK4AAsimgyKToSQDZeALjcAg0E0A2zYw4ojQCyKa0ipNvAgLIJgFkpjBGANkYKxjhWiCAbCxUiRjTEkA2aXkzWxEEkE0RZSZJLwLIxgsXB0OgDQFk04YSx5RFANmUVW+yTUIA2STBzCSmCCAbU+UiWBsEkI2NOhFlSgLIJiVt5iqEALIppNCk6UEA2XjA4lAItCOAbNpx4qiSCCCbkqpNrokIIJtEoJnGEAFkY6hYhGqFALKxUiniTEcA2aRjzUzFEEA2xZSaRFsTQDatUXEgBNoSQDZtSXFcOQSQTTm1JtNkBJBNMtRMZIYAsjFTKgK1QwDZ2KkVkaYigGxSkWaeggggm4KKTaotCSCblqA4DALtCSCb9qw4shQCyKaUSpNnQgLIJiFspjJCANkYKRRhWiKAbCxVi1jTEEA2aTgzS1EEkE1R5SbZVgSQTStMHAQBHwLIxocWx5ZBANmUUWeyTEoA2STFzWQmCCAbE2UiSFsEkI2tehFtCgLIJgVl5iiMALIprOCk24IAsmkBiUMg4EcA2fjx4ugSCCCbEqpMjokJIJvEwJnOAAFkY6BIhGiNALKxVjHijU8A2cRnzAzFEUA2xZWchBsJIJtGRBwAAV8CyMaXGMfnTwDZ5F9jMkxOANkkR86E6gkgG/UlIkB7BJCNvZoRcWwCyCY2YcYvkACyKbDopNxAANmwRCAQnACyCY6UAc0TQDbmS0gC+gggG301IaK+CSCbvivA/BkSQDYZFpWUOhJANh0BcjoExgkgG1YFBEYJIBvWBASCE0A2wZEyoHkCyMZ8CUlAHwFko68mRNQ3AWTTdwWYP0MCyCbDopJSRwLIpiNATocA39mwBiDQTADZNDPiCAh4EuDKxhMYhxdAANkUUGRSTE0A2aQmznz6CSAb/TUiQnMEkI25khFwdALIJjpiJiiPALIpr+Zk3EQA2TQR4vcQ8CaAbLyRcUL2BJBN9iUmwfQEkE165syonQCy0V4h4jNIANkYLBohRyaAbCIDZvgSCSCbEqtOzvUEkA0rBALBCSCb4EgZ0DwBZGO+hCSgjwCy0VcTIuqbALLpuwLMnyEBZJNhUUmpIwFk0xEgp0NgnACyYVVAYJQAsmFNQCA4AWQTHCkDmieAbMyXkAT0EUA2+mpCRH0TQDZ9V4D5MySAbDIsKil1JIBsOgLkdAjwnQ1rAALNBJBNMyOOgIAnAa5sPIFxeAEEkE0BRSbF1ASQTWrizKefALLRXyMiNEcA2ZgrGQFHJ4BsoiNmgvIIIJvyak7GTQSQTRMhfg8BbwLIxhsZJ2RPANlkX2ISTE8A2aRnzozaCSAb7RUiPoMEkI3BohFyZALIJjJghi+RALIpserkXE8A2bBCIBCcALIJjpQBzRNANuZLSAL6CCAbfTUhor4JIJu+K8D8GRJANhkWlZQ6EkA2HQFyOgTGCSAbVgUERgkgG9YEBIITQDbBkTKgeQLIxnwJSUAfAWSjryZE1DcBZNN3BZg/QwLIJsOiklJHAsimI0BOhwDf2bAGINBMANk0M+IICHgS4MrGExiHF0AA2RRQZFJMTQDZpCbOfPoJIBv9NSJCcwSQjbmSEXB0AsgmOmImKI8Asimv5mTcRADZNBHi9xDwJoBsvJFxQvYEkE32JSbB9ASQTXrmzKidALLRXiHiM0gA2RgsGiFHJoBsIgNm+BIJIJsSq07O9QSQDSsEAsEJIJvgSBnQPAFkY76EJKCPALLRV5OlpdnZ2bVr1546dUpjcAXEhGwKKDIppiaAbFITb5xPHLNq1Sr5907+F9804opxALKJQZUxCyeAbHQtALHLR/7ko/KP3eDP1NTUM888oyvEAqJBNgUUmRRTE0A2qYnXz3f1Zz6wbJrBf1x00UX4JnGRkE1i4ExXAgFko6jKN99884hpln0zPT2tKNDcQ0E2uVeY/HoggGx6gF415U9/+lOnbAY/lN8qijXrUJBN1uUluX4IIJt+uFfN+pPvfKXGNzt27NAVbqbRIJtMC0tafRJANn3SH5974ckfPPG1f/Ev3/z6KuXIrTZdEecYDbLJsark1DMBZNNzAUamF9nM3XPxr+64CN/0WBhk0yN8ps6VALLRVdmBbAa++fh7fqfq+mb16tVswYlXOWQTjy0jF0sA2egq/bJsxDcnN//rGt+w5TNe5ZBNPLaMXCwBZKOr9MOyGfjm85f+k6rrG/ENW3Bi1A/ZxKDKmIUTQDa6FsCIbAa31G785D+r8g1bPmPUD9nEoMqYhRNANroWgFM2jb6ZmZnRlYbxaJCN8QISvkYCyEZXVapkI7752//1VrZ8pqkWsknDmVmKIoBsdJW7Rjb4JlmpkE0y1ExUDgFko6vW9bIR3zx0/R+wBSd2zZBNbMKMXyABZKOr6POP3DF4KKDmL1s+Y9cM2cQmzPgFEkA2uoo+/+DVjbIZbPn84Dv+UdVXOLzls2NRkU1HgJwOgXECyEbXqmgpG7Z8Ri0bsomKl8HLJIBsdNW9vWza+GZ2dlZXekaiQTZGCkWYlgggG13VanMP7cIx968SOd30uX/Hls+wVUQ2YXkyGgSEALLRtQxayeYHUyNBV73iU/7RpMXABAVGNhNA4xQI1BNANopWyOLJw61kc8/FC8/+bCRuea8aWz5D1RLZhCLJOBBYJoBsFC2Gxdm/d8hm2x87fnj/qvG4eat0qFoim1AkGQcCyEbjGlg4uGvUK9svPXe5c/+qcd+MX9xIStPT03LfrOoSZ/369RrT1hcTstFXEyIyT4ArG0UlXDiwaYVUXjWNxCdeGZeNPBrgDF1eOlDjG94q3abeyKYNJY6BgBcBZOOFK+7BK557Pm+awZRz2y8d943cdpvAN2z5bKwismlExAEQ8CWAbHyJRTz+glFWmubcxc3510UPK2d+3w1V0chLo+XVajVvXeOt0jWFRDYRVzlDl0oA2Wip/OKp46+JZMw0r17anHZf3Jw6jm+ClxDZBEfKgBBANlrWwGtfzDhN82qMzh6d8sOaBOTyhS04ExQY2UwAjVMgUE8A2WhZIedcUm0aifLCpc/KntDy8/oc8I1vjZGNLzGOh0AjAWTTiCjRAfO7rxw8e1bzx3lxI1/nNIa4ZcuWmpY2skGncYSiDkA2RZWbZNMQQDZpODfP0miacxc3zhYD2y+Vb3QaJ2DLZyOi5QOQTXtWHAmBlgSQTUtQWg5ztoVuc3EjCYhvarbgyNWPliT7jgPZ9F0B5s+QALIxVlR3SxtX9xpnYmz5bFNvZNOGEsdAwIsAsvHCpeJg+XanZfeayXzDFhxko2KhE0ReBJCNvXo6u9dI/7T2mchL1djyWYML2bRfSxwJgZYEkE1LULoOc7bmXDy6v32UtBhANu1XC0dCoDsBZNOdYQ8jeLXmrIpPfCN90qoeiZ6ampIveHrITcGUXNkoKAIh5EYA2disaFX3morWnDVJsuVzHA6ysfmpIGrVBJCN6vLUBOduzVnbvaZqNHnPTc2WT3lHjlVGk8aNbCYlx3kQqCSAbMwuDrm4Wdm3ZvB/G7vXOBNmy+cwFmRj9lNB4HoJIBu9tWmMbILWnDVj1vtmx44djfFkcwCyyaaUJKKHALLRUwvvSKpac7bpXuOcjC2fAyzIxnstcgIEmgggmyZCun8/cWvOqrTwDbLRveSJzioBZGO1coO43d1r2rXmrMqcLZ9c2dj+VBC9SgLIRmVZfIJyt+Y8uMtnjNFjC9/yiWy6LB7OhYCTALIxvzA6tuasyl98s3r16jK3fCIb858KEtBHANnoq4l/RM7uNdJlwH+k0TPK3PKJbLqvHEaAwAgBZJPDknB3r9l9ZZDc6n0zMzMTZBZVgyAbVeUgmDwIIJs86rjkbs3p373GiaO0LZ/IJpNPBWloIoBsNFWjQyzu7jUPXt1hyBWnFuUbZBNq2TAOBJYJIJtcFkNVa86Th0NlKHfMat4qLXfbQk3U+zjIpvcSEEB+BJBNPjUN2JqzCkohWz6RTT6fCjJRQwDZqClF50CqutdM1pqzxjc1b/mUp6UzeKs0sum8GBkAAqMEkE1WayJsa84qNNlv+UQ2WX0qSEYHAWSjow6BonBf3HTrXuMMrdE3pt/yiWwCrUeGgcAFAsgmt9Uwv++G8ffcyNc5MfLMdcsnsomxWhizcALIJrcFEKM1Zw2jLH2DbHL7VJCPAgLIRkERQofgbs0ZonuNM1J5r1pVCzX5uWzQCZ1f9PGQTXTETFAeAWSTYc0Xj+53vDH6/lXxUs1syyeyibdUGLlYAsgmz9LHa81ZxWt6erpmy+f69esNgUY2hopFqFYIIBsrlfKL092aM1z3Gmc02Wz5RDZ+q42jIdCCALJpAcnmIXPbLx2/mSaPD0TNRnwzNTVV9RXO2rVrTWz5RDZRFwmDl0kA2WRb99itOavANW7B0e8bZJPtp4LE+iOAbPpjH3vmqtacp47HnrnRN7Ozs7Fj6DI+sulCj3Mh4CSAbHJeGAsHNo3fSZOWNglyFt/Y3YKDbBKsEKYojQCyybniaVpz1hA06htkk/Ongtx6IoBsegKfalpna0654kk1/9KWLVvMbflENsmWBxOVQwDZZF7rZK05azia2/KJbDL/VJBeHwSQTR/U087p7l4TpzVnVWbim5otn3L1kxZJw2zIRlU5CCYPAsgmjzrWZeFuzRmze40zGkNbPpFN/p8KMkxOANkkR97HhPO7r3S8dyBaa86qFBt9o2QLDrLpY5EyZ+YEkE3mBR6k5+xeI/3T0iffuAVHg2+QTfqFwYzZE0A22Zf4tQSdrTmlP3T6/PX7BtmkXxXMmD0BZJN9iV9LsJfWnFVwlW/5RDalfCrIMyEBZJMQdr9TVXWvidyasyZptVs+m2Tz6y0fe9Py5qE3XfvQ3IUkF+een/nRhmv/8r988O2vl0Pe/uc//E2/ZWd2CCghgGyUFCJFGO7WnPtuSDF3xRzynpuqLZ/yqHRfb/mcUDaLJ2a+t+aDbzonmfN/3vSxLb/uES9TQ0APAWSjpxbxI+mvNWdNbgq3fE4im8XZR9Z9/PdGzYls4q9qZjBCANkYKVSgMJ3da9K05pzYNzt27AiUfdthmmTz4kPXvntZK//0r3780tLLT3/n02OmkUOQTVvmHJc9AWSTfYlXJNh7a84q3I1bcFLWyUs2r/vYlsO/+f6nf2/47hm30VKWi7lsEEA2NuoUMEp3a8603Wuc6ejxjadsbtty7fvP6+X3P/CXt+945ODx0wsBS8ZQEMiAALLJoIh+KSyePDzeTUDeIb00d9pvoAhHy0vVVq1aVfXIgPwqzZZPP9n84b959+Cy5vV/fNUPD55ejMCFISFgnwCysV9D/wzcrTkP7vIfKfwZGrZ8+snmNTe++ws//PXQM9DhyTAiBEwTQDamyzdh8Epac1ZFL75Zu3Zt1fXN1NSU3HCbMPN2p/nL5vW//4Wds1zTtMPLUWUSQDZl1n3J2b1GugzowdHjlk9/2Xzo6wde0oOOSCCgkACyUViUFCHpac1Zk229b6anpyOR8pbNe++Y4YGASMVg2FwIIJtcKumfh7s1Z3/da5wZ9LLl01c2v/s/95zx588ZECiKALIpqtwrkl04uGv8sTR5dkAbkXrfxNjy6Smb3/2P3znI9zXalg3xaCOAbLRVJGE8+lpzViU/MzNT81ZpudsWlpqnbGgTEBa/ltHOnDo78+ghLdHYjwPZ2K9hhwzcrTkfuaPDkLFOTbnlE9nEqqKRcU8cf3HX1oc//77b9u583EjIBsJENgaKFDFEubi55+Lxv9LVJuKkkw4tvqnZ8rl69epQWz6RzaQlMn+eaObu23Z/8q03Dv7KxY35lNQkgGzUlKKnQHS25qyCkWbLJ7LpaTH2Oe2hp45suG7HsmbkP+T/9hlQdnMjm+xK6pmQuzWnju41zlTEN3IRU9PSpvuWT2TjuYgMHy7XLo/seeq6KzYPa2bw3/Jzw4npCx3Z6KtJ8ojm990wfidNvs5JHojHhFG3fCIbj0qYPfTos8fljpl8MTOuGfmJ/NxsZkoDRzZKC5MyLHf3GsUXNwM49b6RB9gmZohsJkan/8TBl/9rLtvgdMzyD8VD+nOxFSGysVWvWNG6W3Nq6l7jzDzSlk9kE2ud9TeuXMeIY5y3y5zW4aHn4LVCNsGRmhxw8eh+x2Np96/Sn0wM3yAb/XVvE+Fgo4xcozRex4z7hufQ2hD2OgbZeOHK+WD9rTmr6EuTtLBbPpGN3YUuD5XJF/simPYXMeOm4Tm0GAsA2cSganJMZ2vO+d1Xmkgm7JZPZGOi6MNByoXIyIPL9V/J1P+W59BiLABkE4Oq1TFNtOasgiu+kVfdVD0SLS/Iab/lE9kYXcHy5f+9G/dUPWDWXj8yjlECmsNGNpqrkzo2d/cafa05q7iE2vKJbFKvvNDzyaXJuqu2trfL8JHyBU/ocBjvHAFkwzoYIlDVmvPkYSuYGn0zOzvbmAuyaURk4oBB7xnfCx25NjKRnbkgkY25ksUN2FBrzhoQHbd8Ipu4iyzt6DU9AnjoOWUpkE1K2gbmcnevuedina05I/kG2RhYqZ4hyjPQLe+q8dCzJ9q2hyObtqTKOc7ZmnPhwCZzBOS9alXPC8jPZYNOVUZNsjFHovSAZUdny5tp8sB06bCi5Y9soqE1O7C51pw1pCfb8olszC5eR+DtTSOXPnSpiVd6ZBOPreGR3d1rdLfmrMItvqnZ8rl+/frxE5GN4bW7MnS5J9bymoZOz7GLjmxiEzY5fmVrTpPZLPlu+UQ2Nus8GrWYpqqPwFf+dNPn3+vo9ywNCPLIXWEWyEZhUVSEZLQ1ZxW7Rt8Mb/lENiqWYLcgakwj1zqD3s/jjwx0m5Oz6wggG9aHm4Cze420GLDLq3ELzrJvkI3dKi9HPvx252GpiGnkWxw5bPwOG08HRK07somK1/bgdltzVnFv6RtkY3vhLi1VmUasMzDN4I80GuA90MlqjWySobY3kbs1p53uNU7i4pvGLZ/Ixt5iHYpYWgBUbakZ77A5/PYBubFmOnHlwSMb5QXqOby57ZeOv+dGHh/oOazO09f7Btl0BtzbACMXK8PWcfZyHj6eZs9Ry4ZsouI1P7i7e82+G8wntrS0ZcuWybZ8ZpB7rinUmKbmqmX5iTUeRYu6MJBNVLz2B69qzXnqwo1vu0lOtuXTbr55Ry5fxlTdPavfqimOGZw4/HVO3qx6yQ7Z9ILd0qTO7jXyQ0s5VMdav+VTrn7ySDP7LGraBLRpCjB4H0H2lPpNENn0y9/A7Nm05qxi3bgFx0CRyg6xxjRyi6xNY83BxU3ZFKNnj2yiI85gAndrTpvda5zlaPRN+7d8ZlBuWynUbN5saZpBvnJxYytxc9EiG3Ml6yHgxZOHx59JkwfVluZO9xBNnCnlpWqrVq2qemRAfoVv4oDvNGp9m4A21zTL03sd3CnoUk9GNqVW3jPvnFpzVqXecsunJzkOj0ig6t3Py20CIs7N0J4EkI0nsFIPd7fmtNy9xllJ8c3atWurrm+mpqbkhlupS0Bd3o0NadRFXHZAyKbs+vtkP7/7yvGbadJlwGcMG8fW7L+RtxXgGw1VrGlIIy/l1BAhMYwQQDYsibYE8mvNWZW5yEbec1OlHPHN9PR0W2ocF4GAb5uACCEwpDcBZOONrOQTnK05F4/uz4zJoF0NWz51lrXGNHt3Pq4zZqISAsiGZeBBIMvWnOP5L/dGq/fNjh07PNhxaAgCcotssjYBISZnjE4EkE0nfMWdXNW9xn5rzuFSDjfibNyCU9wa6C/hjm0C+gucmc8RQDasAz8C7tacuXSvGbAY6fqMb/yWSJyja0zDfsw4yAOPimwCA81/OLm4uedix3sHsmjN6ZSN/FB8w5bPHte27LgcfvHM8J00rzYBPabA1MiGNeBNIO/WnONXNgNAbPn0XiiBTgjVkCZQOAwzIQFkMyG4kk+ras2ZTfeaqpeniW9Wr15d09KGLTjBPxf1DWl4KUBw4PEGRDbx2OY8ct6tOevf1Nn4VumcC588N9oEJEcea0JkE4ts3uO6u9fk0pqz8bXQ9b6ZmZnJu/rJsqtpE8A1TbIqhJoI2YQiWdw47tacB3dlAKJRNpIjWz5jF1pe5Fy1pUb2dcaenfGDE0A2wZGWMmDGrTnbyAbfRF3oNKSJireXwZFNL9gzmdTZvSaD1pwtZSNVlDtm0iqt6pEBuduWSaXTplFjmns37kkbC7MFI4BsgqEscCB395rdV1pH0V42kilbPsOWW76MoSFNWKRKRkM2SgphNQx3a07j3Wu8ZDPwTc2WT3lamrd8tlzfNW0CNlxHJ7qWFJUehmyUFsZKWO7uNQ9ebSV+Z5y+spFB2PLZveInjr8ob9h0XtbQJqA73t5HQDa9l8B4AFWtOU8etpvYBLJp4xu2fNYsCdoE2P28tIwc2bQExWGVBPJrzTmZbAaA2PI5wUelvk2A/HaCMTlFGwFko60i9uKp6l4jP7eXzKsRd5ENvpmg6PJ9jPPumdxVY/PmBDx1noJsdNbFWFSZtebsKBspnrxXrep5aPm5bAg1VuCY4dKQJiZdRWMjG0XFsBuK++LGbPea7rKRUtJioM16rmlIQ5uANgANHYNsDBVLdajz+24Yf8mNfJ2jOuiK4ILIRsaenp6u2fK5fv16i3ACxkybgIAw9Q+FbPTXyEaEObXmDCUbqRxbPquWb41p9u583MaiJ0ofAsjGhxbH1hJwt+Z89mfmsAWUzcA3U1NTVV/hrF27tsAtn4eeOkKbAHOfi44BI5uOADn9AoHFo/sdb4y+f5U5RmFlI+mz5XN4DdS0CZCvcMytFgJuSQDZtATFYa0I5NGaM7hs2vhmdna2FWLjB9WYRtoEGE+O8OsIIBvWR0gC7tac1rrXxJDNwDeFb/mU7ZlrLttAQ5qQHzk7YyEbO7UyEunc9kvHb6bJ4wNGwj8XZiTZDAgU6xsa0hj6CMQIFdnEoFr0mBm05owqG1kcW7ZsqXpeQB6VznXLp9wlo01Ayf80IJuSqx8n96rWnHa618SWjXAvbcsnbQLifNgsjYpsLFXLSqwLBzaN30mTljZW4k8gm4FvarZ8ytWPFVyNcda0CZBnoBtP54A8CCCbPOqoKwvrrTnTyEZqVsKWT9mhWbWlhoY0uj63kaNBNpEBlzq8szWnXPGY4JFMNm18Y3rLJw1pTCz4NEEimzSci5vFdGvOlLKRlZHrls8a07B5s7h/EeQhzwJzJuU0BNzdayy05kwsmyx9Q5uANJ8yQ7MgG0PFMhZqZWtO9Xmkl83AN9lswakxjbwnTX39CTAKAWQTBSuDDggYbc3Zi2wGxDLwjWzelDds0iaAfwRGCCCbEEvihe1nb3nD6ZuX/77j7GOHfcZ9fn7H+4dOf8PpLdsXfc5Xe6yze430T1Mb8CCwHmUjs8t7bgJu+ZQHrFN2XaNNgPK13WN4yCYI/GPz2y6Z3BZn95697Y1Dp7/n7JP59GR0tuaU/tBBuEcapF/ZSFIBt3yuWrVqZmYmEqiRYWtMI9c6J46/mCYMZtFJANkEqcvi4tPXrJDNLZ+fe2Gu3dBj595+/fzZPC5szgGw2Jqzd9k0+mbHjlbffMg+Hskl2f5Q+T6GhjTtPvUlHoVsAlV97pFX7njzkG/eduahf2g39Mg9tLec+Uleryms6l6juDWnBtnI4um+5XPwDZD8b7ul2OkoGtJ0wlfAycgmVJFfWvjJh1dc3Ny1eaHN9cnpn5xdN3QP7ZaPz/32TKiYlIzjbs257wYl4Y2HoUQ2HX0jj7cN2uHInbTYqO/duIc2AbEhWx8f2YSr4G//5szwYwK3fGpu9mzT6AuLv/irFYra/L3FNopqGlfX76215tQjG6mjfL0vtqh6ZEB+VdViYPiLn6htCGgToOvjpjUaZBOuMov/MHfX2zzvpI08WXDx2QPPhQtI0UjO7jVqW3Oqko1UcbIWA1NTU8uKmp6ejrQaakyza+vDkSZlWIsEkE3Aqs0tPvb5FZcp3/6bhjtpp3advXXomenbrsnp0YBhsrZac2qTzcA3a9eurbq+Ea/IFzzDwOUJtOGD5XHqgAt9eSjp2Vx194yGNDGAmx4T2QQt30v/Z4U8bv7IK8+drp5g5B7am8/8aF9+t9CW03e35lTZvUahbAYY22/5HDkyxtc2NKQJ+m9H/oMhm7A1Hnu07MFfVk9weG7LO4auhD78yuGXwkajarTFk4fHX3Ij75BemqvxcT8ZqJVNo28Gt8vkMmj8Gijs1s4a08gbOWXDTT+VY1bFBJBN2OIsLv7q+jMXWgm84fSd36q8kzbSd6Dl02th4007mrt7zcFdaaNonk2zbCT6xi2fsgtnXDYB3zZNm4DmNcQRYwSQTehFMbrh5kOv/Nq5cXrkC563n5k+FDoUdeO5W3Pq616jXDaNvnnXu941Lhv5yifIgqgxzZrLNnBNEwRyloMgm+BlPb3w4EeGbo69+czuR1xzrLyHduuX5l6aDx6KwgGd3Wuky4CqUPXLRnDJIwA1b5V2PkoQ5AHodVdtpU2AquVqJRhkE6FSs5tXbLi549aFubEv/lfcQ3vj6R17M340YBixidacJmQjVOtbDMS4k0abgAj/XpQyJLKJUOnFQ3Ob3z50cTN+J+3swkOfqj0gQlRqhnS35tTUvcaKbAa+qdnyOeKbjnfSqkwjFzozj+Z/E1jNB8hqIMgmRuVGvo8Zu3AZ2f55518vzBdyYXOO9sLBXeOPpcmzAzEqMdmYhmQjCdZv+RzxzcTPpO3d+TgNaSZbTpw1IIBs4qyEkY5nI7s1V9xna9+yM06o6UdV35rTlmzEH2vWrKna7zny85btokcWBQ1p0n9K8psR2USq6ciGm/efffr58zOtvIfm8TKCSKH2MKy7Necjd/QQimtKK7IRzdRs83TqR3oN+EKWW2S0CfCFxvHjBJBNpFWxuPTrW4c23AzdSRu5h7ZtV0F30JZhy8XNPReP/5WuNpHq4TWsftnIrTN5S03Lq5mRw7zepUabAK+Vw8E1BJBNtOUx//grd77lwlMAy3fSVtxDG77iiRaJyoE1t+bULJuBZnwfeh72TfvX29SYRh6AVrmsCEovAWQTrzZnFn728aFHzgZeWXkPzflUdLyINI1c1ZpTQ/catbKRLgBdNLOsnDYbbmR7przL2XkDjYY0mj5JZmJBNjFLteIi5tXdnSvuob3lTF3ntJiB6RhbbWtOhbIRzQy/MmCyG2jLZzW+KJqGNDo+IllFgWyilnNlmwDpk3b8exf2e7Z6u1rU8Hoe3N29RkFrToWykf008l3L4I88USa2kE0zq1evnsw69Y8J1JhGrnVOHHe2X+p5LTG9fgLIJmqNVr5E4Jb/9MrOob2cW7aX+GjASt7u1px9d69RKJuaZSrPpEmzZ9GPuKf9Tbaavpy0CYj6j0KxgyObyKU/u/fsbW9c8Ua113pCv+fsk7OR5zYw/OLR/Y7H0vpuzWlLNiNllmsgufSR65568VS94aamTYA8L2BgSRGiVgLIJnZlXpj/0ZRDNvm+lNMXqMLWnKZlM8xfxCNXPFX9bMafgb534x7aBPguYI5vSQDZtAQ18WEjG24GL4GuagU98SyGT3S25pzffWWPKWUjm2WG8viZ3DcbebG03HYbhkybgB6XXAlTI5v4VV785YoNNyKbWz4+99sz8Sc2M4O21pz5yWbEOstPFixf3NSYRi53zKwkAlVMANkkKM5Ij+c3nN78vUWeDRgC7+5e019rzoxls0xdHiuQO2zr16+Xn8iXMTSkSfAPQeFTIJvCF4CO9Ktac5483Et8JchmGSwNaXpZYwVOimwKLLrGlFW15ixHNrJphjYBGj8POcaEbHKsqsGcqrrX9NKasxDZ0CbA4AfFcMjIxnDxMgvd3b3mwKb0aZYgm/o2AfLb9NiZMW8CyCbv+lrKzn1x00f3mhJkI22bnQ8FyF01Nm9a+tjYiRXZ2KlVAZG6u9c8+YPEqWcvGxrSJF5RTCcEkA3LQBGBytacaWPMWzY1DWnkpZxpSTNbQQSQTUHFNpGqhtacGcuGNgEmPgVZBolssiyr4aSc3WukxUDKlHKVTY1p9u58PCVh5iqQALIpsOjaU+69NWeWspFbZLQJ0L70s44P2WRdXpvJuVtzJuxek59saBNg86OQVdTIJqtyZpPM3PZLx99zI48PpEkwM9nUmEYegE6DlFkggGxYAxoJ9NuaMyfZyPbMNZdtcN5Au+6KzaVu3lx4+cnp9Z+47fJ3fvP6db88NqfxI5BfTMgmv5pmkVFVa85TKV4WmY1saEjj/jCcPbT5AzedF/DXr78vxaLK4mPZKQlk0wkfJ8cjsHBg0/idNGlpE2/G5ZHzkE19Qxp7bQJOnzz080e33fj9r37qzs+97UZRxeXvvfOaL27ffNeBJ585NX9hWSwc2/rdoSu52zc+fHp0zRx5+Jq3nhth8PfPbjw4dHqC9VXoFMim0MLrT7vH1px5yCafNgGnj+/ftP3q995c9TTdJ9/6tavW/OyJ126HzT9396YG2Sw8d99Hbzl/zDfueOBF/R+HDCJENhkUMdsU3K0543evyUA2NW0CDj11xM6KOfflyjc/8rVqzVy4QPnkJZu3PfHy0tLpJ268vUE2S0tzR/5+29q7r/nstu/+8Dcv8ybDJAsC2STBzCQTEVg8eXj8Tpo8qLY0N3ZjZKLxq06yLptdWx+u+tdZ9nUGRRV1sPnn/+7H11yy/OXKkFeGboKtyPSS79735PMrZbPp/me4SRa1TG0HRzZtSXFcLwR6ac1pWja5NKRZePmJPV8ZM83l7/vO+g2PTD98+Nkjzx878vxzTx2avu+B9Z/+xuXn9XP5R+7bfNVfDxnou7uOLPSydJl0hACyYUmoJuBuzRm5e41d2dSY5t6Ne1RXeiS4k0/f9e+Xv1Z59Zrmbd+85a6nj5123fNaPPPcA7srroGQjZayIxstlSCOKgLzu68cv5kmXQbiETMqm4zaBJya+fqG5YuVV03zrW/uPl6/H2buyP7b3jd+zw3ZxPug+I2MbPx4cXR6Aulbc1qUTY1pNly3I33Vusy4+JuHr/3D4W9o1l1793Mtdl4uvPR3//e/v/pUdNNttNldn771/DHYqEutPM5FNh6wOLQvAs7WnItH90eKx5xsThx/Ud6wmUubgFeeveuu4cuayy974FevtCv14gv71nwD2bSDlfooZJOaOPNNQCBxa05bssmtTcDCb7b9h+EtNetu2Xmi9ZpZPP3zHX/BlU1rXikPRDYpaTPXpASqutfEac1pSDb1bQJMtj479uhXh2+FXbRt3ws+G2GOP37ziltwzrtk3Eab9JPY4Txk0wEepyYk4G7NGad7jSHZyPcxzrtnclfNXkOaV5fT2Z/v+NOhS5PLP/uoX+eyuYMb38l3Ngk/ma2nQjatUXFgvwTk4uaeix3vHYjQmtOKbPJpSHNhaY10NvNvXIZs+v2cVs+ObLRWhrjGCDi718RozWlCNjUNaUy1CRgp85knv/6toWu1W6/ZOuv3UUA2frzSHY1s0rFmpo4EqlpzBu9eo182ubQJGF8RI53NkE3HD42i05GNomIQSiOBNK05lcumxjTSFa2Roe4DkI3u+nSIDtl0gMepyQm4u9eEbs2pWTbSs7mqyabcWEtekOATnn369uH3it70hduf9Wttxm204DUJNCCyCQSSYVIRcLfmPLgr4PxqZZNRQ5qqco0+IPCZ//GLl7xKi2y8cCU8GNkkhM1UIQgkaM2pUzY1prnuis0h0KoYY/6xXZ8b3pX5RzufOOsT2DP71rKp0wdYsmORTTLUTBSMgLN7TcDWnAplk1ubgJq18MIv1l00vFHmWxsfPtV66Syc2Ln1M8imNa+UByKblLSZKwyB2K05tcmmxjRrLttgsk1A3UI4seeL64a+l7rpiv+2f7ZlD4G5I/d9YrnD5sBYdBAI86HrPgqy6c6QEXog4G7NGah7jTbZyF2yzNoE1K6YxZceuPeKFVcnd3zzgZMtFtkrv71v68oTkU0LbKkOQTapSDNPUAILB3eNdxOQZweCTKJKNjm2CWiq0iuHt1228s1pl2ze9sTLtactvHzgp2tXdEXjyqaJc9rfI5u0vJktFIGq1pwnD3efQY9satoEyDPQ3TPVOoLrzTSXbNy48+jLzvtpcy8+vfUHXxp9kw2y0VVeZKOrHkTTnkC81pxKZLN35+NVW2osN6RpV+HFl2fWfXvFyzrP3Vi7+XP/+fub7z6w/xe/PXbk+WNHjj/7xFMP3nX/9Zcuf09z65c3/PROGnG2Y5z4KGSTGDjTBSNQ1b1Gft5xDg2yybchTevizB3f9+Vvjflm5EWcw//3li99+cCx03R9bk047YHIJi1vZgtKIFJrzt5lU2OaLNoEtF4Ec88/tm7Tf13xsECVbL625ronjsm7o9nU2Zpu4gORTWLgTBeSgPvipnP3mn5lU0CbAK81MHf8sYc3fGL4YegR39z0Z3/y/W0P/r8zg69zkI0X3YQHI5uEsJkqAoH5fTeMP5YmX+d0mapH2dSYRt6T1iUp2+cunj22/5e7Nty/7rPf/uI7bzr3VdY7b7/6s9/fcPtD+x6bfVkuaJb/IButlUY2WitDXO0IxGjN2ZdsZHumvGHT+VCAbLXJbvNmuwL7HtVKNr6DcnwAAsgmAESG6JeAuzXnsz+bOKpeZFNQQ5qJC9PmRGTThlIfxyCbPqgzZ1ACi0f3O94Yff+qiSdJL5sa08i1zonjL06cS3EnIhutJUc2WitDXD4EwrbmTC8b+T6mpIY0PqX1PRbZ+BJLdTyySUWaeWIScLbmnLh7TWLZ1LQJkOcFYmLLcWxko7WqyEZrZYjLk8Dc9kvHb6bJ4wOew5w7PKVs7t24p9w2ARPUpvEUZNOIqKcDkE1P4Jk2NAF395qJWnMmkw1tAkKvgpb7bMJPy4iNBJBNIyIOMEKgqjWnf/eaNLKpMc2urQ8bga4vTK5s9NVkEBGy0VoZ4vInsHBgk+O9A4/c4TtSAtnIlzFVd8/KakjjW5vG45FNI6KeDkA2PYFn2ggEQrXmjC0bGtJEKP75IZFNRLidhkY2nfBxsjYCztaccsXjFWdU2dSYhjYBXmVyH4xsAkCMMgSyiYKVQfsiEKQ1ZzzZ0CYg+sJANtERTzgBspkQHKepJeDuXuPTmjOSbGpMs+ayDbQ+U7uiCCwIAWQTBCODKCJQ2ZqzdYyRZLPuqq20CWhdBA7MjQCyya2i5CMEOrbmjCGbqjYB0vqMNgEs2hIIIJsSqlxcjs7uNdI/rSWI4LKpaUgz8+ihllFxGARME0A2pstH8JUEnK05pT90G2RhZbN35+M0pGmDnWPyJoBs8q5vudl1ac0ZUDY0pCl3CZL5SgLIhhWRKYGq7jUtWnOGko3cIqNNQKbLi7S8CSAbb2ScYIWAuzXnvhsa4w8iG9oENHLmgKIIIJuiyl1YspO25uwumxrTyAPQhZWBdCFwjgCyYR3kTMDZvUZ+WJ9zR9nI9kx5oNl5A42GNDmvNnKrJYBsWCA5E5isNWcX2dCQJuf1RG4dCCCbDvA41QIBd2vO2u41E8umxjRs3rSwWIgxIgFkExEuQ2sgsHjy8PhLbuQd0ktzp6vCm1g2tAnQUHFi0EkA2eisC1GFJODuXnNwV1jZ1LQJoCFNyHIylk0CyMZm3Yjah4C7NWd195oJrmzkRc60CfCpCccWRwDZFFfyMhN2dq+RLgNOGr6yoU1AmYuKrL0IIBsvXBxslYBXa04v2dSY5t6Ne6zyIm4IhCaAbEITZTytBNytOV3da9rLRr6MoSGN1oITly4CyEZXPYgmHoGFg7vGH0uTZwfGZ2wpGxrSxCsWI+dHANnkV1MyqiDQujVnG9mcOP4ibQJYahBoTwDZtGfFkeYJuFtzjnWvaZQNbQLMLwUSSE4A2SRHzoQ9EpCLm3suHv8rXW2Gg6qXTX2bAPltj/kxNQTUEkA2aktDYFEItGnNWS8badvsfCiAhjRRCsaguRBANrlUkjzaEahqzTncvaZGNjSkaYeZoyAwSgDZsCaKI9DYmrNKNjUNaeSlnMVxJGEI+BBANj60ODYLAu7uNUOtOZ2yoU1AFsUnid4IIJve0DNxjwTcrTnPd68Zl02NafbufLzHRJgaAlYIIBsrlSLOkAQWj+53PJZ2vjXniGwOPXWENgEh6TNWkQSQTZFlJ+mlpZrWnMOyoU0AiwUCQQggmyAYGcQeAWdrzvndV0omy7KpMc11V2y2lzMRQ6A/AsimP/bM3DeBqtacA9nI9sw1l21w3kAT07B5s+/qMb8xAsjGWMEINyABd/eaB68W2dCQJiBnhoLAuRsGUIBAuQQqWnN+4r2/I9cutAkod2GQeQQCyCYCVIa0Q8B5cfPVD6/GNHZqSKQ2CCAbG3UiykgExrvXvLT5j6790FqnbOQZ6EhhMCwEsieAbLIvMQk2EBjvXnPONx+9ecQ3sq8TlBCAwMQEkM3E6DgxEwLjFzcPXf8Hpw//8vrP3b3sG0yTSbFJoz8CzbKRJ3P4A4G8CYhdBg0Ffvy///nUv/rHy8lOvekvxDf/9o2fyTt9soOAL4EJnNUsmwkG5RQI2CIgrTnlSYHltwwMdxDgmsZWKYlWLQFko7Y0BNYbgcbXQvcWGRNDwCwBZGO2dAQejQCyiYaWgcslgGzKrT2ZVxFANqwNCAQngGyCI2VA8wSQjfkSkoA+AshGX02IqG8CyKbvCjB/hgSQTYZFJaWOBJBNR4CcDoFxAsiGVQGBUQLIhjUBgeAEkE1wpAxongCyMV9CEtBHANnoqwkR9U0A2fRdAebPkACyybCopNSRALLpCJDTIcB3NqwBCDQTQDbNjDgCAp4EuLLxBMbhBRBANgUUmRRTE0A2qYkzn34CyEZ/jYjQHAFkY65kBBydALKJjpgJyiOAbMqrORk3EUA2TYT4PQS8CSAbb2SckD0BZJN9iUkwPQFkk545M2ongGy0V4j4DBJANgaLRsiRCSCbyIAZvkQCyKbEqpNzPQFkwwqBQHACyCY4UgY0TwDZmC8hCegjgGz01YSI+iaAbPquAPNnSADZZFhUUupIANl0BMjpEBgngGxYFRAYJYBsWBMQCE4A2QRHyoDmCSAb8yUkAX0EkI2+mhBR3wSQTd8VYP4MCSCbDItKSh0JIJuOADkdAnxnwxqAQDMBZNPMiCMg4EmAKxtPYBxeAAFkU0CRSTE1AWSTmjjz6SeAbPTXiAjNEUA25kpGwNEJIJvoiJmgPALIpryak3ETAWTTRIjfQ8CbALLxRsYJ2RNANtmXmATTE0A26Zkzo3YCyEZ7hYjPIAFkY7BohByZALKJDJjhSySAbEqsOjnXE0A2rBAIBCeAbIIjZUDzBJCN+RKSgD4CyEZfTYiobwLIpu8KMH+GBJBNhkUlpY4EkE1HgJwOgXECyIZVAYFRAsiGNQGB4ASQTXCkDGieALIxX0IS0EcA2eirCRH1TQDZ9F0B5s+QALLJsKik1JEAsukIkNMhwHc2rAEINBNANs2MOAICngS4svEExuEFEEA2BRSZFFMTQDapiTOffgLIRn+NiNAcAWRjrmQEHJ0AsomOmAnKI4Bsyqs5GTcRQDZNhPg9BLwJIBtvZJyQPQFkk32JSTA9AWSTnjkzaieAbLRXiPgMEkA2BotGyJEJIJvIgBm+RALIpsSqk3M9AWTDCoFAcALIJjhSBjRPANmYLyEJ6COAbPTVhIj6JoBs+q4A82dIANlkWFRS6kgA2XQEyOkQGCeAbFgVEBglgGxYExAITgDZBEfKgOYJIBvzJSQBfQSQjb6aEFHfBJBN3xVg/gwJIJsMi0pKHQkgm44AOR0CfGfDGoBAMwFk08yIIyDgSYArG09gHF4AAWRTQJFJMTUBZJOaOPPpJ4Bs9NeICM0RQDbmSkbA0Qkgm+iImaA8AsimvJqTcRMBZNNEiN9DwJsAsvFGxgnZE0A22ZeYBNMTQDbpmTOjdgLIRnuFiM8gAWRjsGiEHJkAsokMmOFLJIBsSqw6OdcTQDasEAgEJ4BsgiNlQPMEkI35EpKAPgLIRl9NiKhvAsim7wowf4YEkE2GRSWljgSQTUeAnA6BcQLIhlUBgVECyIY1AYHgBJBNcKQMaJ4AsjFfQhLQRwDZ6KsJEfVNANn0XQHmz5AAssmwqKTUkQCy6QiQ0yHAdzasAQg0E0A2zYw4AgKeBLiy8QTG4QUQQDYFFJkUUxNANqmJM59+AshGf42I0BwBZGOuZAQcnQCyiY6YCcojgGzKqzkZNxFANk2E+D0EvAkgG29knJA9AWSTfYlJMD0BZJOeOTNqJ4BstFeI+AwSQDYGi0bIkQkgm8iAGb5EAsimxKqTcz0BZMMKgUBwAsgmOFIGNE8A2ZgvIQnoI4Bs9NWEiPomgGz6rgDzZ0gA2WRYVFLqSADZdATI6RAYJ4BsWBUQGCWAbFgTEAhOANkER8qA5gkgG/MlJAF9BJCNvpoQUd8EkE3fFWD+DAkgmwyLSkodCSCbjgA5HQJ8Z8MagEAzAWTTzIgjIOBJgCsbT2AcXgABZFNAkUkxNQFkk5o48+kngGz014gIzRFANuZKRsDRCSCb6IiZoDwCyKa8mpNxEwFk00SI30PAmwCy8UbGCdkTQDbZl5gE0xNANumZM6N2AshGe4WIzyABZGOwaIQcmQCyiQyY4UskgGxKrDo51xNANqwQCAQngGyCI2VA8wSQjfkSkoA+AshGX02IqG8CyKbvCjB/hgSQTYZFJaWOBJBNR4CcDoFxAsiGVQGBUQLIhjUBgeAEkE1wpAxongCyMV9CEtBHANnoqwkR9U0A2fRdAebPkACyybCopNSRALLpCJDTIcB3NqwBCDQTQDbNjDgCAp4EuLLxBMbhBRBANgUUmRRTE0A2qYkzn34CyEZ/jYjQHAFkY65kBBydALKJjpgJyiOAbMqrORk3EUA2TYT4PQS8CSAbb2SckD0BZJN9iUkwPQFkk545M2ongGy0V4j4DBJANgaLRsiRCSCbyIAZvkQCyKbEqpNzPQFkwwqBQHACyCY4UgY0TwDZmC8hCegjgGz01YSI+iaAbPquAPNnSADZZFhUUupIANl0BMjpEBgngGxYFRAYJYBsWBMQCE4A2QRHyoDmCSAb8yUkAX0EkI2+mhBR3wSQTd8VYP4MCSCbDItKSh0JIJuOADkdAnxnwxqAAAQgAIEeCHBl0wN0poQABCBQGgFkU1rFyRcCEIBADwSQTQ/QmRICEIBAaQSQTWkVJ18IQAACPRBANj1AZ0oIQAACpRFANqVVnHwhAAEI9EAA2fQAnSkhAAEIlEYA2ZRWcfKFAAQg0AMBZNMDdKaEAAQgUBoBZFNaxckXAhCAQA8EkE0P0JkSAhCAQGkEkE1pFSdfCEAAAj0QQDY9QGdKCEAAAqURQDalVZx8IQABCPRA4P8DfWsL2FyRNIwAAAAASUVORK5CYII=
iVBORw0KGgoAAAANSUhEUgAAAo8AAAKZCAIAAABWfVaqAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAFFzSURBVHhe7Z1bcF3VmaBV8zijh3bN9IN7ih5SjqvcNXTRlOtUF7Qf7AfSyXjGSidDeSAZt6FE2UxfSDotHLpiEspW0h1RBGyIHRJ1kEOCSXKaBIfEIijE4DYmFkgEHBDXyLIFmMiXCFuyjnTOLOkcSVvnuvc+674+lati4r3X+v/vX+Zj7X9fWgr8QAACEIAABCBgN4EWu8MjOghAAAIQgAAECtiaRQABCEAAAhCwnQC2tr1CxAcBCEAAAhDA1qwBCEAAAhCAgO0EsLXtFSI+CEAAAhCAALZmDUAAAhCAAARsJ4Ctba8Q8UEAAhCAAASwNWsAAhCAAAQgYDsBbG17hYgPAhCAAAQggK1ZAxCAAAQgAAHbCWBr2ytEfBCAAAQgAAFszRqAAAQgAAEI2E4AW9teIeKDAAQgAAEIYGvWAAQgAAEIQMB2Atja9goRHwQSEWhp4S91ImAcDAE3CPAX2406ESUEYhLA1jFBcRgE3CKArd2qF9FCoAEBbM0SgYCXBLC1l2UlqXAJYOtwa0/mXhPA1l6Xl+TCI4Ctw6s5GQdBAFsHUWaSDIcAtg6n1mQaFAFsHVS5SdZ/Atja/xqTYZAEsHWQZSdpfwlga39rS2ZBE8DWQZef5P0jgK39qykZQUAQwNYsAwh4RQBbe1VOkoHAPAFszVqAgFcEsLVX5SQZCGBr1gAEvCSArb0sK0lBgL01awACXhHA1l6Vk2QgwN6aNQABLwlgay/LSlIQYG/NGoCAVwSwtVflJBkIsLdmDUDASwLY2suykhQE2FuzBiDgFQFs7VU5SQYC7K1ZAxDwkgC29rKsJAUB9tasAQh4RQBbe1VOkoEAe2vWAAS8JICtvSwrSUGAvTVrAAJeEcDWXpWTZCDA3po1AAEvCWBrL8tKUhBgb80agIBXBLC1V+UkGQiwt2YNQMBLAtjay7KSFATYW+teAwMDAxcvXtQ9K/MFQwBbB1NqEg2LALbWWu+enh7xL9OOjg6tszJZSASwdUjVJteACGBrTcUeGxtrb28X/yYt/mSzWU0TM01gBLB1YAUn3VAIYGtNlT58+PCCqou/GRoa0jQ304REAFuHVG1yDYgAttZX7M7OzqiwM5kMDWx99IOZCVsHU2oSDYsAttZXb+Hmtra2qLBpYOujH8xM2DqYUpNoWASwtdZ6j4yMlF0Pp4GttQABTIatAygyKYZIAFvrrnpvby8NbN3QQ5oPW4dUbXINiAC2NlDs3bt308A2wD2MKbF1GHUmy+AIYGsDJRcN7OjTXDyBbaAG/k6Jrf2tLZkFTQBbmym/aGCLe8KjO2wa2GYq4d2s2Nq7kpIQBGYJYGtj66DyCWzxUlJj0TCxLwSwtS+VJA8ILCGArU0uiMoGtnjlmcmAmNt9Atja/RqSAQSqEMDWJpdFZQNb9LNNBsTc7hPA1u7XkAwggK3tWwOVDWzx5Q/7wiQiZwhga2dKRaAQSEKAvXUSWmqOpYGthmugo2LrQAtP2r4TwNZWVJgGthVl8CIIbO1FGUkCAuUEsLUVa4IGthVl8CIIbO1FGUkCAtja1jVAA9vWyjgWF7Z2rGCEC4F4BNhbx+Ok5Sga2Fowez4Jtva8wKQXKgFsbVflaWDbVQ8Ho8HWDhaNkCHQmAC2bsxI5xE0sHXS9nIubO1lWUkKAtjaujVAA9u6kjgVELZ2qlwEC4G4BLB1XFI6j6OBrZO2Z3Nha88KSjoQKBLA1pauBBrYlhbG+rCwtfUlIkAIpCGArdNQ03AODWwNkL2cAlt7WVaSggC2tncN0MC2tzYWR4atLS4OoUEgPQFsnZ6dhjNpYGuA7NkU2NqzgpIOBOhbu7EGaGC7USdrosTW1pSCQCAgkwB7a5k0VYxFA1sFVY/HxNYeF5fUQiaArR2oPg1sB4pkTYjY2ppSEAgEZBLA1jJpqhuLBrY6tp6NjK09KyjpQIC+tWNrgAa2YwUzFC62NgSeaSGglgB7a7V8JY5OA1siTI+HwtYeF5fUQiaArV2qPg1sl6plKFZsbQg800JALQFsrZav9NFpYEtH6tmA2NqzgpIOBOhbu7oGaGC7WjktcWNrLZiZBAK6CbC31k28+floYDfP0OMRsLXHxSW1kAlgayerTwPbybJpCRpba8HMJBDQTQBb6yYuaz4a2LJIejYOtvasoKQDAfrWzq8BGtjOl1BBAthaAVSGhIB5AuytzdcgdQQ0sFOj8/hEbO1xcUktZALY2u3q08B2u34KosfWCqAyJATME8DW5mvQZAQ0sJsE6Nnp2NqzgpIOBOhb+7MGenp6xL+jF34ymczY2Jg/6ZFJEgLYOgktjoWAMwTYWztTqvqBtre3R4Ut/tGTxEgjIQFsnRAYh0PADQLY2o06NYxSbKbFljoqbHHHeMOzOMA/Atjav5qSEQQEAWztzzIYGBiI2lr8XrS0/UmPTOIRwNbxOHEUBBwjgK0dK1j9cCsb2OKmca8yJJlGBPy1dT43uOuulpYvzf664sEDJ+uRmHml7yPL545suXPrgXP5RtT4cwhYTwBbW1+ihAFWNrDFY9kJx+Bwhwn4a+tCIbaDZ4a67yl5fc0Pnv6dw+UkdAjME8DWvq0FGti+VTRhPj7bunDp9P6b7ixqeNmtx97L1WAzcar7uuLG+ktXfPnVC+ysE64hDreSALa2sizNBUUDuzl+bp/tta0L+eH9e1sbXQxf3IIvu+vegVpKd7vMRB8eAWztZ81pYPtZ1xhZ+W3rQv7ksa1XlBrS1+8/XW3bHLkMfl3f0EQMZhwCAQcIYGsHipQuRBrY6bi5fpbnti5M//5gx47iVe7Wmw4PX6qo1+Jl8Dtr6Nz1EhN/mASwtbd1p4HtbWnrJua7rQuF84d+sKp1bnu9Yu/+t8p314uXwVd9KztMyzrMvwVeZo2tvSxrKSka2EqqO3U2f+7UzKmB6d8+H/n1m5lzZ5VMl3BQ/21dOPvqzrW1LoYvXgZf3jEwNp0QHodDwF4C2Nre2kiJjAa2FIylQcZ/celfr5rY/cc1f+35X5d6vzM9Mipz0oRjBWDr/GT/XV3VL4YvXAZv/fL2QxcSouNwCNhMAFvbXB05sdHAlsNRjHLu0ck6ql78o9WTP/vxzISZjV0Ati4ULg389JplVS6GT730xLXFl6J89LH+c9LqzkAQsIAAtragCIpDoIEtDfCira+c/NF9uRcezR0/PP3b/ulXfpp77huXfvS/I3vuD018/3szUwbapkHYulD1VrLIy86u2fX2JQPwpa00BoJABQFsHcSioIEtp8yThy99vXgZ/MrJgcpXus4Uzj6X+9H/nHf2n04e+Y2ceZOMEoatIw9eL94ZPv72vevnNtaX37/vtZkk0DgWAvYTwNb210hOhDSwJXCceX5qTx1bz80w/VYuu6Yk7L07pyd0WyMQWwtdH71x1ZKL4dMvPbFm7vJ49Se7JNSfISBgkAC2Nghf99Q0sJslHsfWhXzh1APz7e01l155v9lJE54fiq0LuXMHbi2+hbT4XPXC3eB8xiPhkuFwNwhgazfqJCVKGtjNYoxla/HxiRenHvjQ3Pb6TyaPvNrspAnPD8bWhcLYwYeWF1+TsvXo6Pj8u8GveujgOwmZcTgEHCCArR0oksQQaWA3BTOmrQsjuUeuLF0M73u+eH08f+oXuYFH5379fGa87rur86dnXvpx7oXvTvXdPTXwm3j3Si2Ov7/9PysYvylsyk7+3fHta+Yuhq9++OfPHGq7jM94KEPNwOYJYGvzNdAcAQ3s9MBj2jr/Ru47/33O1h+efObl0nRj35+8b77n3f9WvRje/XaaC+mL4//xpIrx01NTd2Z+8tkvf2XuYviOj62/Z/ZrH8u6un41qW5CRoaAOQLY2hx7czPTwE7JPqatLz516f6imK++dPzd0lz54dz3V5c23A9+e6bmlnli5sinSod941+m4z+GpHr8lMgUn7b44HXxw1yfeOL4B4qnZHgImCGArc1wNzsrDeyU/GPZeio/8Pcl3d63NTe28NmJ6fzx2+cf7vrU1Ls1vg2Vf3XqwT8p7ct/OZgkTtXjJ4lF37ELT23N3W728X3v6L4HX1+qzBQ4AWwd6AKggZ2m8I1tPZ1/Z/+lPcVbzP544vuP5qN76IlnLu0t/tGHJ2uZePEy+P+ZOpVwm6h6/DTIlJ8T+T4mn/FQTpsJDBLA1gbhG56aBnbiAtS39dTozK/vnlxQ9Z6/z52+uHSK89N9bSWRd98/k6u8Gh65DP7w92tfLa8VuOrxEwPjBAhAQBYBbC2LpJPj0MBOVrZFW3944pEvTR15ZO4e73/LHbnv0oFbJh8oXsGe+7Xn+kuvnKwYPPoodtvUb8+XH7B4GXz15MBwsthmj54d/3QpBhXjJ4+IMyAAAUkEsLUkkG4OQwM7Wd0WbV37M1y7/2Ti+7tzp39ffeT867mH/nTO6B+a6D1avrleuAx+/+25DxY+CpLLj7+bP/dOjV9nl0yUf/2xfy7GFn/8ZAw4GgIQMEIAWxvBbtGkNLATFKO+rR/YeKn327nfDufrXcKO3INWfsv3wmXwD0389JmIyCNPb1d+AWzP3dNL7qua2tT+RzVuKa81fgIAHAoBCJgigK1NkbdoXhrYcYuxaGvxxY7nZ9799fRvn5/9deqt/Lmle9w6I55//FLpweul7yXNDU51f3hOtGUXsevaevff5s4tedfKf1r9XxKOHzd7joMABAwSwNYG4Vs0NQ3sWMVofE94nGHGpn96bWn7e+Cp+T10vnDi/tJLUR58YGY6eo38Yv7UC6X/LCj+x8GSX6/ml36Xs6XlPyYcP07MHAMBCBgmgK0NF8CS6WlgxyqEHFvn87/9WknM930ud764Mx6f+eUn5hT+p5PPvR4rmBoHtbT8B6XjNxMb50IAAqkJYOvU6Hw7kQZ244rKsXWhsHjR+88v/frU7LwL/899f587O9U4ktpHzH7VQ+X4zcSm4tzfj4395vDho9ls8df7I5XfHVcxLWNCQDcBbK2buM3z0cBuUB1Zti5Mzjx3U+liePbxvHjyauEy+Ow/NvUz9w0uheM3FZzUk4WnD+7ePffC0SW/7mtrOzU0JHUqBoOAeQLY2nwNrIqABna9ckiztfja4/xHPu7blvvg/Pxl8GsvvTbW5HoofTFT2fhNhifrdLGH/momU6nqhf9HbLhlzcU4ELCBALa2oQoWxUADW5OtC6dy2T+f216vufSbQ6V3gyf6jEeNQOe/b61qfBsWq9hV11d10dkI24ZiEYMsAthaFkl/xhkaGhL/xo/+HGabUiyvxL11YSb/2s7SxfAH1qT6jEf1JTdva1Xj27DQH+7oqLOrXvgjYfRLF8te/mpD+MQAgTQEsHUaat6fk81mo7bOZDIj3Lwj2daFwqWjl74x//2P2U127Q9zJVlw87ZWNX6SWJQcK66Bx1F18ZiB3l4lQTAoBLQTwNbakTsyYUdHR1TYop99kW2KzL21WAcLT23NvSs0zWc8qiymRVurGd/4+hUCjm9rsQs3HjABQEAKAWwtBaOHgwg3iy11VNidnZ0e5pkoJcm2LhQWv485/yhXoniqHRyxtZLxmw4wwQD5sTdmjj8yfWRH8Vfu8b/K/egvfnHryvi2FkcmmI9DIWAxAZayxcUxHVplA7uX64qmi9Jw/iW2bni0+gPyF88I6RZ/zbz2k+Kv6cHuooCFjOuEII4Uei779W+f/m/YWn3dmME6AtjaupLUC2hm9PXv7jnQtePhLZu/uemGXauXz/9ra/m/rL/hW7duf2zPd194duj8xJLvPDSTYVkDW5iABnYzPDWcq8fW+d+fKjn4vZfEb+rkJcRcadyF/0cIO6mt/33bqvi2Fs9ea2DOFBDQQABba4Asb4pc/2Mryt8FUflvrjszNz322EvjuSZfs1EKu6yB3dbWRgNbXkXlj6TC1qXL0b/8x6reFT5Oaty4tj75XOWMr3/tz+LbWrw+RT5iRoSACQLY2gT11HNGbH3n6vUPbLnt0a6ux2Z/7Xj45g3/0hoV+WV33/HEmAxh08BOXS4jJ9aytdgNz5x8bvFa9EIz+Oftwoji/6+3PxY944or0nGNW+1q9uJoP2+vM6/YtU//8h9Lfetj9xSDn/j1v331z66IKWxeamZkETKpCgLYWgVVZWMu2nrFN7MnyqeZeO9E3ze/s/ay+X+Rrdy7b2jJxxTTxqWugZ0/99rMr+9JG1fA5+UmFpvBbz9V1FjxinQtW8/epVXbuPVtXbV/3IytF24cq78vr1XgmLeFc0N4wH9DPEwdWztV1Pq2LqZy/uiBa+eFveoLvx6blpKhiga2UHXu8b+cGX5cSoQ+DJKbKIhftX/iGDedrVP0j2PaWmRU+g+Li2ck1qjqG8KjG+5/bW/n1SgSgTOUcQLY2ngJkgQQx9aFfG6o+77SVfErv3Pw3SQT1DtWbgNbSLr4r/vC1LisCJ0Yp+ym6DIBz7z9lCJbi95z+qvZJ58r3r9dupD+9lMLO3txy7cp7L/s6al1PVzsqlG1qbowryIC2FoRWDXDxrJ1oZB//VBbaXu9c+ezTX1/MZKHtAb21Pj08zuL5ph+6q/VkFI+avSm6LIHk8Qf1Zm++NBwrV9N9Y+PzfYUau2tl1zN/nn7wrXokoNPPqccmYIJip/hEjd+L2j70c5OXg+ugDRDmieArc3XIEEEMW1dOPfqzjWlf39tykrc+zTfwBZXv4WhF1w180q924kTkJF06IKD61+RrqNb8Uf5915qcn9c6/TpY/fU2x/XtbXBTbCk4jAMBIImgK2dKn9cW4+/3rV2qa3zucFdd5U+A3zFgwdO1kt75pW+j5Se5L5z64FzSx8EizawV7W0/N+Wlu6tW8WFx+IvcftPnSuQws1lssm//4KpAize6FTtwaT6zxDXt3Uz++P6bwtZfMHIyecWrkWXAVTxBJepGjEvBCCwQABbO7UY4tr63YFbryzaesf2p0u3LdV1cJTCzFD3PSWvr/nB07+rBFRsYAtPV+0aig8fVV6KFFaObqlLtnv8L5uiP3/7Uq0Hkxpcka59OXp2f1z/jR81njwu5hXH1pUPJs3e1C3eNFL3KnocXNg6DiWOgYBzBLC1UyWLaesLRx69onVOpZfdt+/1+b3xpdP7b7qzqNhltx57r9azXROnuq8rafiKL796ocorVkQDu+MP/7D+A6+Lb6WIdKnLtqTTRz9fTr/iwaQ65RFia3BFuq5xG+yPU93tVXqbptEeMLZ26q80wUIgLgFsHZeUFcfFsvWFd/bdWLJyy3V9Q4tPBOWH9+8t3Ste+2L44hZ82V33DlRVep17caMKf+vYv89e+n78L2veUTX8uDDuwtcaqh7WVP+4vq2buNtL7OZtuCm66prE1lb8VSUICMgmgK1lE1U6XmNbT449uePukpJbO295bCy6N86fPLa19BKoO6/ff7ram0kjl8GXmH4hLXEXbszXSO2+5o8a7H0vjArnqdsf17/ba+HjTlUfTKr/XwlKi9zk4Ni6SYCcDgE7CWBrO+tSI6pFW1++d//bSw7KnX9/8Ilfbt/YudBOXnnr0eGyV21M//5gx47iAa03HR6+VDHN4mXwWjqPubEuGl280rmOjGeftM5NyLR19MGk+Xd7OVVgCcFiawkQGQIC9hHA1vbVpE5ES77q0dq59pPf3LRp9ten1y99SXjLnZm/O/TyuSojnT/0g1XFlvaKvfvfKt9dL14GX/Wt7HDVr4KIG79j7q3FYeJTxPWeLX5j9muJzdi6eDnaqRIqDxZbK0fMBBAwQQBbm6Cees443+BqveZbXY8Nn6n1TpSzr+4sPdxVuXtevAy+vGOgxitLxS3f8W393b/6r/Vk/MQnBQnxDPHC20Vmb4oufgu56VujUzN2/URs7XoFiR8CVQlga6cWxqKtxcb6E19fu7IkztbVuz699eHOPYef7H/3bP13l+Un++/qqn4xfOEyeOuXtx+6UANMIlt/77P/T3y0I/fEJ+vcaOZUARwIFls7UCRChEByAtg6OTODZzS+yyxGcJcGfnrNsioXw6deeuLa4ktRPvpYf7Wr6HNjJ7oSfjSbLQYk3go+ffhvKp0t/s8YEXNIAgLYOgEsDoWAOwSwtTu1EpFKsXWh6q1kkZedXbPr7UtVe9azrGJ+rLC46X9rYCDKd/YdKRXONvg6M6dqHzdYbB2XFMdBwCkC2NqpcsmxdWHxwevFO8PH3753/ZxiL79/32sztanEf4Lrn6++uuowZc4WX/hwqga2B4utba8Q8UEgFQFsnQqbqZMk2Vro+uiNq5ZcDJ9+6Yk1c5fHqz/ZtSRhcX07zo1mf9HSMjIyUgtV9F2k+Qujpoj6Ny+29q+mZAQBQQBbO7UMZNm6kDt34Nbi+86Kd4Yv3A1e+RmPqoDEi0XrC/t/CGm0tLS1tYnXlNZBPPPGI+JlZ+JONKfKYHWw2Nrq8hAcBNISwNZpyRk5T5qtC4Wxgw8tL74mZevR0fH5d4Nf9dDBd2JmJhrYVe8Pv/0P/kDsqhd+Ojs76w8oNtaz95qJN6XwI4MAtpZBkTEgYB0BbG1dSeoFJNHWhd8d3178Bvbqh3/+zKG2y2Z/X+MzHrVCEh/HFJ/bEvvs4ucyxWvOxG1lzX8D26mSWBcstrauJAQEARkEsLUMitrGkGnr/OSzX/5K8auaH1t/z+yrxZd1df1qUkYu0W9gFzfZdRrYMiZkjEUC2JrVAAEvCWBrp8oq09aFwuKD18UvVX/iieMfyMJR/Ab2wk/DBraseRkHW7MGIOAlAWztVFnl2rqw8NTW3O1mH9/3Tp0ntxJyEjeXZTKZqLAbNrATzsDh1Qlga1YGBLwkgK2dKqtkWy/eCv6llpqf8UgNiAZ2anTNnIitm6HHuRCwlgC2trY0PgRGA1t/FbG1fubMCAENBLC1BshBT0EDW3P5sbVm4EwHAT0EsLUezuHOIhrY4hYzGtjaVgC21oaaiSCgkwC21kk70LnE41tRW4vf9/b2BspCfdrYWj1jZoCAAQLY2gD0AKcUei4TNk9gK1oG2FoRWIaFgFkC2Nos/4BmF09wRYUtnu+q/wrxgNBITRVbS8XJYBCwhQC2tqUS3sdR2cAWN6B5n7X+BLG1fubMCAENBLC1BshMUSJQ2cAWj3hBRy4BbC2XJ6NBwBIC2NqSQoQSRmUDW7xEJZTkteSJrbVgZhII6CaArXUTZz4a2ErXALZWipfBIWCKALY2RT7ceWlgK609tlaKl8EhYIoAtjZFPuh5aWCrKz+2VseWkSFgkAC2Ngg/6KlpYCsqP7ZWBJZhIWCWALY2yz/o2Wlgqyg/tlZBlTEhYJwAtjZegnADoIGtovbYWgVVxoSAcQLY2ngJgg6ABrb08mNr6UgZEAI2EMDWNlQh6BhoYMstP7aWy5PRIGAJAWxtSSGCDoMGtsTyY2uJMBkKAvYQwNb21CLcSGhgS6w9tpYIk6EgYA8BbG1PLYKOhAa2rPJja1kkGQcCVhHA1laVI+hgaGBLKT+2loKRQSBgGwFsbVtFgo6HBnbz5cfWzTNkBAhYSABbW1iUcEOigd187bF18wwZAQIWEsDWFhYl6JBoYDdZfmzdJEBOh4CdBLC1nXUJOioa2M2UH1s3Q49zIWAtAWxtbWmCDowGduryY+vU6DgRAjYTwNY2Vyfc2Ghgp649tk6NjhMhYDMBbG1zdYKOjQZ2uvJj63TcOAsClhPA1pYXKOjwaGCnKD+2TgGNUyBgPwFsbX+Ngo6QBnbS8mPrpMQ4HgJOEMDWTpQp3CBpYCetPbZOSozjIeAEAWztRJmCDpIGdqLyY+tEuDgYAq4QwNauVCroOGlgxy8/to7PiiMh4BABbO1QsYIOlQZ2zPJj65igOAwCbhHA1m7VK9xoaWDHrD22jgmKwyDgFgFs7Va9go6WBnac8mPrOJQ4BgLOEcDWzpUs6IBpYDcsP7ZuiIgDIOAiAWztYtWCjnn37t1CSAs/mUxGXCQPmsjS5LE1iwECXhLA1l6W1eekhJvb29ujwu7o6PA54YS5YeuEwDgcAm4QwNZu1IkoowREA1tsqaPCzmazICoSwNasBAh4SQBbe1lW/5M6fPhw1Nbi9wMDA/6nHSNDbB0DEodAwD0C2Nq9mhFxkUBlA3tsbAw42Jo1AAEvCWBrL8saRFKVDWzRzw4i87pJYmvWAAS8JICtvSxrKElVNrB7enpCSb5Gntg68AVA+r4SwNa+VjaUvGhgl1UaW4ey9MkzMALYOrCC+5guDexoVbG1j2ucnCBQwNYsAucJ0MDG1s4vYhKAQCMC2LoRIf7cBQI0sBeqxN7ahQVLjBBITABbJ0bGCXYSoIFdrAu2tnN9EhUEmiSArZsEyOkWEaCBja0tWo6EAgGpBLC1VJwMZpQADWxsbXQBMjkEFBLA1grhMrR+AjSwuRKuf9UxIwQ0EMDWGiAzhVYCgTewsbXW1cZkENBFAFvrIs08GgmE3MDG1hoXGlNBQB8BbK2PNTNpIxByAxtba1tmTAQBnQSwtU7azKWPQLANbGytb5ExEwQ0EsDWGmEzlV4CYTawsbXeVcZsENBEAFtrAs00RggE2MDG1kZWGpNCQDUBbK2aMOObJBBgAxtbm1xwzA0BZQSwtTK0DGwHgdAa2NjajnVHFBCQTABbSwbKcBYSCKqBja0tXIGEBIHmCWDr5hkyggMEwmlgY2sHliMhQiA5AWydnBlnOEggnAY2tnZweRIyBBoTwNaNGXGEHwQCaWBjaz+WK1lAoIwAtmZJBEQghAY2tg5oQZNqSASwdUjVJtdCwfsGNrZmmUPASwLY2suyklRNAt43sLE1qx8CXhLA1l6WlaTqEfC7gY2tWf0Q8JIAtvayrCTVgIDHDWxszeqHgJcEsLWXZSWpxgR8bWBj68a15wgIOEgAWztYNEKWQcDXBja2lrE6GAMC1hHA1taVhIC0EfCygY2tta0fJoKATgLYWidt5rKOgH8NbGxt3SIjIAjIIICtZVBkDJcJ9PT0CMMt/GQymbGxMXcTwtbu1o7IIVCHALZmeUCg0N7eHhW2+Ed3oWBrd2tH5BDA1qwBCNQjIDbTYksdFba4Y9xRZNja0cIRNgTqE2BvzQqBwCyBgYGBqK3F70VL20U02NrFqhEzBBoSwNYNEXFAKAQqG9jipnHnksfWzpWMgCEQhwC2jkOJY0IhUNnAFo9lu5U8tnarXkQLgZgEsHVMUBwWBAEPGtjYOoiVSpLhEcDW4dWcjOsScL2Bja1Z4BDwkgC29rKsJNUUAacb2Ni6qdpzMgRsJYCtba0McRkl4G4DG1sbXThMDgFVBLC1KrKM6zQBdxvY2NrphUfwEKhFAFuzNiBQnYCjDWxszYKGgJcEsLWXZSUpOQRcbGBjazm1ZxQIWEYAW1tWEMKxjIBzDWxsbdkKIhwIyCGAreVwZBRfCTjXwMbWvi5F8gqcALYOfAGQfmMCbjWwsXXjinIEBBwkgK0dLBohayfgUAMbW2tfHUwIAR0EsLUOyszhAQFXGtjY2oPFRgoQqCSArVkVEIhFwJUGNraOVU4OgoBrBLC1axUjXnMEnGhgY2tzC4SZIaCQALZWCJeh/SNgfwMbW/u36sgIAoIAtmYZQCAZAcsb2Ng6WTk5GgKOEMDWjhSKMK0hYHkDG1tbs1IIBAIyCWBrmTQZKxACNjewsXUgi5A0QyOArUOrOPnKIWBtAxtbyykwo0DAMgLY2rKCEI47BOxsYGNrd1YQkUIgAQFsnQAWh0IgSsDOBja2ZpVCwEsC2NrLspKUJgIWNrCxtabaMw0E9BLA1np5M5t3BGxrYGNr75YYCUFglgC2Zh1AoFkCVjWwsXWz5eR8CFhJAFtbWRaCcoqAVQ1sbO3U2iFYCMQlgK3jkuI4CNQhYE8DG1uzUCHgJQFs7WVZScoAAUsa2NjaQO2ZEgLqCWBr9YyZIRgCNjSwsXUwy41EwyKArcOqN9kqJWBDAxtbKy0xg0PAFAFsbYo88/pJYGhoSPgy+nP48GGdqWJrnbSZCwLaCGBrbaiZKBQC2Ww2autMJjMyMqIteWytDTUTQUAnAWytkzZzhUKgo6MjKmzRz7548aKe5LG1Hs7MAgHNBLC1ZuBMFwQB4WaxpY4Ku7OzU0/m2FoPZ2aBgGYC2FozcKYLhUBlA7u3t1dD8thaA2SmgIB+AthaP3NmDIVAWQNbeFRDAxtbh7K8yDMwAtg6sIKTrl4CZQ3strY21Q1sbK23wswGAU0EsLUm0EwTJgH9DWxsHeZKI2vvCWBr70tMgoYJaG5gY2vD9WZ6CKghgK3VcGVUCEQI6GxgY2uWHgS8JICtvSwrSVlHQFsDG1tbV3sCgoAMAthaBkXGgEAjAtoa2Ni6USn4cwg4SQBbO1k2gnaRgJ4GNrZ2cW0QMwQaEsDWDRFxAASkEdDQwMbW0qrFQBCwiQC2tqkaxBIAAdUNbGwdwCIixRAJYOsQq07OBgmobmBja4PFZWoIqCOArdWxZWQIVCegtIGNrVl2EPCSALb2sqwkZTsBdQ1sbG177YkPAqkIYOtU2DgJAk0TUNTAxtZNV4YBIGAjAWxtY1WIKQQCihrY2DqExUOOARLA1gEWnZRtIaCigY2tbakucUBAKgFsLRUng0EgIQHpDWxsnbACHA4BNwhgazfqRJQeE5DbwMbWHi8VUguZALYOufrkbgUBuQ1sbG1FUQkCArIJYGvZRBkPAskJSGxgY+vk+DkDAg4QwNYOFIkQQyAgq4GNrUNYLeQYIAFsHWDRSdlSAlIa2Nja0uoSFgSaI4Ctm+PH2RCQR0BKAxtbyysII0HAIgLY2qJiEAoEmm9gY2tWEQS8JICtvSwrSTlMoMkGNrZ2uPaEDoHaBLA1qwMC1hFopoGNra0rJwFBQAYBbC2DImNAQCqBZhrY2FpqKRgMArYQwNa2VII4IBAlkLqBja1ZSBDwkgC29rKsJOUDgXQNbGztQ+3JAQIVBLA1iwIC9hJI0cDG1vaWk8gg0AQBbN0EPE6FgGICKRrY2FpxTRgeAmYIYGsz3JkVAjEJjIyMCAFHf3p7e+uci61jguUwCLhFAFu7VS+iDZGA0HOZsIXCa4HA1iEuEXIOgAC2DqDIpOg+gc7OzqiwM5mMuEheNS1s7X61yQACVQhga5YFBBwgINzc1tYWFba4AQ1bO1A5QoSAJALYWhJIhoGAYgKVDWzxiFflnOytFdeB4SFghgC2NsOdWSGQgkBlA1u8RKVsHGydAiynQMB+Atja/hoRIQQWCTRsYGNrlgsEvCSArb0sK0l5S6BhAxtbe1t7EgubALYOu/5k7yCB+g1sbO1gSQkZAo0JYOvGjDgCArYRqNPAxta2FYt4ICCFALaWgpFBIKCbQK0GNrbWXQnmg4AWAthaC2YmgYBsArUa2NhaNmnGg4AVBLC1FWUgCAikIFC1gY2tU5DkFAjYTwBb218jIoRATQKVDWxszXKBgJcEsLWXZSWpgAiUNbCFrWu9QjwgKKQKAe8IYGvvSkpCgRFo+AR2YDxIFwJ+EsDWftaVrIIiEPMV4kExIVkIeEYAW3tWUNIJlECcV4gHioa0IeAFgWZtHf2EH7+HAAQgAAEIQKBIQO5/JEgeTm5wjAYBCMQnQAM7PiuOhIBzBLC1cyUjYAjUJEADm8UBAV8JYGtfK0tegRKovAhZ+Q3sQNGQNgRcJoCtXa4esUOggoCwdcNvYIMNAhBwjgC2dq5kBAyBegSKb0dpa2uLbrI7OjqgBgEIOE0AWztdPoKHQDmB4p2oNLBZGRDwjAC29qygpBM6gYXnRngCO/SlQP5+EcDWftWTbIInEH3KkwZ28MsBAP4QwNb+1JJMICAIRG1NA5slAQFvCGBrb0pJIhCYJVD2BiUa2CwLCPhBAFv7UUeygECJQOX7Dmlgszgg4AEBbO1BEUkBAosEqr6dmAY2SwQCrhPA1q5XkPghsIRAVVvTwGaVQMB1Atja9QoSPwQa21ocQQObhQIBpwlga6fLR/AQKCdQ5zt9NLBZLhBwlwC2drd2RA6BKgTqf1WXBjaLBgKOEsDWjhaOsCFQnUB9W4sGdnt7O68QZ/VAwDkC2Nq5khEwBOoRqG/rYgM7k8lEhZ3NZmEKAQhYTgBbW14gwoNAMgINbS2GO3z4cNlnsAcGBpJNw9EQgIBeAthaL29mg4BiAnFsLULYvXt3VNhitz02NqY4NIaHAATSE8DW6dlxJgQsJBDT1pUNbNHPtjAdQoIABIoEsDUrAQJeEYhpa5FzZQO7p6fHKxYkAwGPCGBrj4pJKhCo+KpHfSQ0sFkyEHCFALZ2pVLECYFYBOLvrYvD0cCOhZWDIGCaALY2XQHmh4BUAkltTQNbKn4Gg4AqAthaFVnGhYARAkltLYKkgW2kUkwKgUQEsHUiXBwMAdsJpLC1SIkGtu11Jb7gCWDr4JcAAPwikM7WggENbL8WAtn4RgBb+1ZR8gmcQGpb08AOfOWQvuUEsLXlBSI8CCQjkNrWNLCTgeZoCOglgK318mY2CCgm0IytaWArLg7DQyA9AWydnh1nQsBCAk3amga2hTUlJAgIAtiaZQABrwg0b2sa2F4tCJLxhQC29qWS5AGBOQLN21oMwhPYrCYI2EYAW9tWEeKBQFMEpNhaRMAT2E2VgZMhIJsAtpZNlPEgYJSALFuLJHgC22glmRwCSwhgaxYEBLwiINHWNLC9Whkk4zgBbO14AQkfAksJSLQ1DWwWFwTsIYCt7akFkUBAAgG5tqaBLaEkDAEBGQSwtQyKjAEBawhItzUNbGtqSyBBE8DWQZef5P0joMLWNLD9Wydk5BwBbO1cyQgYAvUIqLA1DWzWHASME8DWxktAABCQSUCRrWlgyywSY0EgOQFsnZwZZ0DAYgLqbE0D2+KyE5r/BLC1/zUmw6AIKLU1Deyg1hLJWkUAW1tVDoKBQLMElNqaBnaz5eF8CKQlgK3TkuM8CFhJQLWtaWBbWXaC8p8Atva/xmQYFAENtqaBHdSKIllLCGBrSwpBGBCQQ0CPrWlgy6kWo0AgNgFsHRsVB0LABQJ6bE0D24W1QIxeEcDWXpWTZCCgzdY0sFlsENBJAFvrpM1cEFBOQKetaWArLycTQGCeALZmLUDAKwKabS3Ytbe3i0kXfsQ/egWUZCBgBwFsbUcdiAICkgjot/XY2Fgmk4kKe/fu3ZKyYRgIQKBEAFuzFCDgFQH9thb4BgYGorYWvz98+LBXWEkGAqYJYGvTFWB+CEglYMTWIoOenp6osMVue2RkRGpmDAaBoAlg66DLT/L+ETBla0GysoEtHsv2jzAZQcAIAWxtBDuTQkAVAYO2poGtqqiMC4FCAVuzCiDgFQGDtqaB7dVKIhnLCGBrywpCOBBojoBZW9PAbq56nA2BmgSwNYsDAl4RMG5rGtherSeSsYYAtramFAQCARkEbLA1DWwZlWQMCCwhgK1ZEBDwioANtqaB7dWSIhk7CGBrO+pAFBCQRMASW9PAllRPhoFAiQC2ZilAwCsC9tiaBrZXC4tkTBPA1qYrwPwQkErAKlvTwJZaWwYLmgC2Drr8JO8fAatsTQPbvwVGRqYIYGtT5JkXAkoI2GZrGthKysyg4RHA1uHVnIy9JmChrWlge73iSE4TAWytCTTTQEAPATttTQNbT/WZxWMC2Nrj4pJaiATstDUN7BDXIjlLJYCtpeJkMAiYJmCtrWlgm14azO82AWztdv2IHgJlBGy2NQ1slisEUhPA1qnRcSIEbCRgua1pYNu4aIjJBQLY2oUqESMEYhOw3NY0sGNXkgMhsIQAtmZBQMArAvbbmga2VwuOZHQRwNa6SDMPBLQQcMLWNLC1rAUm8YoAtvaqnCQDAVdsTQObtQqBRASwdSJcHAwB2wm4Ymsa2LavJOKzjAC2tqwghAOB5gg4ZGsa2M2VmrPDIoCtw6o32XpPwC1b08D2fkGSoCwC2FoWScaBgBUEnLM1DWwr1g1BWE8AW1tfIgKEQBICztmaBnaS8nJsuASwdbi1J3MvCbhoaxrYXi5FkpJLAFvL5cloEDBMwFFb08A2vG6Y3noC2Nr6EhEgBJIQcNfWNLCT1JljgyOArYMrOQn7TcBdW9PA9ntlkl2TBLB1kwA5HQJ2EXDa1gJlNpsVKSz8ZDKZkZERuxATDQRMEMDWJqgzJwSUEXDd1gJMR0dHVNjt7e0XL15UBoyBIeAGAWztRp2IEgIxCXhga+FmsaWOCruzszNm+hwGAV8JYGtfK0tegRLwwNaickNDQ1Fbi9/39vYGWlHShsAcAWzNQoCAVwT8sLUoSVkDW+RFA9urlUoyCQlg64TAOBwCdhPwxtYCc1kDu62tjQa23auP6BQSwNYK4TI0BPQT8MnWNLD1rx9mtJYAtra2NAQGgTQEfLK1yJ8GdppFwDk+EsDWPlaVnAIm4JmtaWAHvJZJfQkBbM2CgIBXBPyzNQ1srxYoyaQlgK3TkuM8CFhJwEtb08C2cq0RlFYC2ForbiaDgGoCXtqaBrbqZcP49hPA1vbXiAghkICAr7amgZ1gEXCojwSwtY9VJaeACXhsaxrYAa9rUuddZqwBCPhFwG9b08D2a7WSTQIC7K0TwOJQCNhPwG9b08C2fwUSoSIC2FoRWIaFgBkC3tuaBraZhcWspglga9MVYH4ISCUQgq1pYEtdMgzmBgFs7UadiBICMQkEYmsa2DHXA4d5QwBbe1NKEoHALIFAbE0Dm+UeGgFsHVrFyddzAuHYmga250uZ9JYSwNasCAh4RSAoW9PA9mrtkkxdAtiaBQIBrwiEZmsa2F4tX5KpTQBbszog4BWB0GxNA9ur5Usy2Jo1AIFACARoaxrYgaztwNNkbx34AiB93wiEaWsa2L6tY/KpIICtWRQQ8IpAsLamge3VOiYZbM0agIDfBIK1NQ1svxc22bG3Zg1AwCsCIduaBrZXS5lklhLA1qwICHhFIHBb08D2ajWTTIQAtmY5QMArAtiaBrZXC5pk5glga9YCBLwigK1pYHu1oEkGW7MGIOAlAWxdLGs2mxUooj8jIyNeVpykAiHA3jqQQpNmKASw9UKlOzo6orZua2sTF8lDWQfk6R0BbO1dSUkobALYeqH+NLDD/qvgW/bY2reKkk/gBLB1dAGIq99l18N7e3sDXyGk7ygBbO1o4QgbAtUJYOsyLkLPNLD52+IBAWztQRFJAQKLBLB15Wro7OyMCjuTydDA5u+McwSwtXMlI2AI1COArSvpCDeLW8yiwhY3oLGMIOAWAWztVr2IFgINCGDrqoAqG9jiES8WEwQcIoCtHSoWoUKgMQFsXYtRZQN7aGioMVCOgIAdBLC1HXUgCghIIoCt64CkgS1plTGMAQLY2gB0poSAOgLYug5bGtjqFh4jqyaArVUTZnwIaCWArevjpoGtdTkymTwC2FoeS0aCgAUEsHXDItDAboiIAywkgK0tLAohQSA9AWwdhx0N7DiUOMYqAtjaqnIQDASaJYCt4xCkgR2HEsdYRQBbW1UOgoFAswSwdUyCNLBjguIwSwhga0sKQRgQkEMAW8fnSAM7PiuONE4AWxsvAQFAQCYBbJ2IJg3sRLg42CABbG0QPlNDQD4BbJ2IKQ3sRLg42CABbG0QPlNDQD4BbJ2UKQ3spMQ43ggBbG0EO5NCQBUBbJ2CLA3sFNA4RTMBbK0ZONNBQC0BbJ2OLw3sdNw4SxsBbK0NNRNBQAcBbJ2OMg3sdNw4SxsBbK0NNRNBQAcBbJ2aMg3s1Og4UQMBbK0BMlNAQB8BbN0MaxrYzdDjXKUEsLVSvAwOAd0EsHWTxGlgNwmQ0xURwNaKwDIsBMwQwNZNcqeB3SRATldEAFsrAsuwEDBDAFs3z50GdvMMGUE6AWwtHSkDQsAkAWwthT4NbCkYGUQiAWwtESZDQcA8AWwtqwY0sGWRZBwpBLC1FIwMAgFbCGBrWZWggS2LJONIIYCtpWBkEAjYQgBbS6wEDWyJMBmqSQLYukmAnA4Buwhga7n1oIEtlyejpSaArVOj40QI2EgAW0uvCg1s6UgZMAUBbJ0CGqdAwF4C2Fp6bWhgS0fKgCkIYOsU0DgFAvYSwNYqakMDWwVVxkxEAFsnwsXBELCdALZWVCEa2IrAMmxMAtg6JigOg4AbBLC1ujrRwFbHlpEbEsDWDRFxAARcIoCt1VVLNLDb29sF4YWfjo4OddMxMgSiBLA16wECXhHA1krLKRrYmUwmKuxsNqt0RgaHQJEAtmYlQMArAthadTkPHz4ctbX4/dDQkOpJGR8C2Jo1AAGvCGBrDeXcvXt3VNhitz02NqZhXqYImQC2Drn65O4hAWytoaiVDWzRz9Ywb70pcu8e+8bnP7vvxfG84UCYXhEBbK0ILMNCwAwBbK2He2UDu6enR8/UFbPkc2de6Nm6pnV2v3/V5m6EbagOiqfF1ooBMzwE9BLA1tp4VzawBwYGtM0+P9H0+PH9n1l7WeTK/FU37n9tSnscTKiaALZWTZjxIaCVALbWidtwAzt/bij7T+vm9tRLflo/9sVD73BFXOdK0DAXttYAmSkgoI8AttbHulAw2MDOj7/2k52fXLFo6eWZrd0///GXSvJeuWXf0LhOFMylmgC2Vk2Y8SGglQC21oq7UDDRwJ6ZGH6ya+OV0avfm/cePZ0T2+nJ0YNfKD4P3rrh/sHxac00mE4dAWytji0jQ8AAAWytH7reBvbk6KGvbVwZufy98sZdR07lFtLOnx3cdd3cH1927b3PX9CPgxnVEMDWargyKgQMEcDWRsBramDnTh3ZdePKxT1168qNd/cNf1Deop54cc+Gy+f21zd0D+FrIytC/qTYWj5TRoSAQQLY2gh89Q3sfO70c92lx7SKul61Yefjb1a/1j091veFVXO6XrX90HkjRJhUNgFsLZso40HAKAFsbQq/ygb21JnB7y19TOuya7uOnq9z2/fksa4r5y6HL7+97/yMKSbMK5EAtpYIk6EgYJ4AtjZYAyUN7BqPabWu6zx0erFbXZH1ieym4g3jbXuOczHc4KKQNjW2loaSgSBgAwFsbbYKchvY4jGtA9s/FrmjbPYxrSce/ofiVe6VW7PDs/eBV/vJv76vrfjKlLVd/TzKZXZRyJkdW8vhyCgQsIQAtjZbCHkNbPGYVm/nhjkvl36uKj2mlX//SOf6OYVfvmFXf7UXg+enhrrbSpLH1mZXhLTZsbU0lAwEARsIYGvjVZDRwG70mNbCXd8tV23a9czokh12Pjf6xB3r5t9FuuxzB8d46tr4opAQALaWAJEhIGAPAWxtQy2aamDHekwrP/XGQ9cvK266W1es39Z98Ojxt06OvvXS0z/s2pxZPr8dX5a545dneAepDWui6RiwddMIGQACNhHA1pZUI1UDO9FjWuf6uz4auU5e5bet67565Awba0tWRLNhYOtmCXI+BKwigK0tKUeaBnZ+OHtjpFHd+tFt2VfqfK96Zqj7I7OOXrb6uhvWryj7uMfyzJZvHBmdtIQGYTRPAFs3z5ARIGARAWxtTzGSN7Cnzzy9o/iW75aWj3Q+O9bgGvb04L1XCUm3XrHzyPmzbzz7s+/u6Zr72fPdg/3D45W3i4uHwX5y37Ytf7O9+8jSVrc9zIikJgFszeKAgFcEsLVV5UzcwF683ztOy3n+oeo1e443vuA9c/7pL83v3C9v6z7ON7CtWioNg8HWDRFxAARcIoCtbatW0gZ2/vzRrmtLj0pvO3iizgtQCsleWPbB4L2Lfe7WLQdO20aKeOoSwNYsEAh4RQBb21bO5A3s/MSr395YvN975c3dL5+r9QKUC/13XV28an7ZF5+u+LRHBYf8xMvf2FDqbq++5cAJbhW3banUjwdbu1UvooVAAwLY2sIlkryBPXnqQEfpqnUNYUe24KLH3T1U/V3g4tnr/qeOn50X89SZ408+1N3z6NHhCVxt4UJhb+1aUYgXAukJYOv07FSembyBfe7l7ptLH8dc8Yk7Hjk2OrEg5KkzL/9w28L7T1ou//i+16rJevL0se6tmeWN3iiuMm3GlkeAvbU8lowEAQsIYGsLilA9hKQN7EI+Imxx5/fqj//d9q90de3ouC4TfVqr+kPVud8NPtyxtnRc3TeKl4LNTUzUa5FbSzWcwLB1OLUm0yAIYGtry5y8gV0Qwj6+f0G61V6FUu06eX78ley2jy79FsiDg2dqy3hulmuv//arXB+3dvUUCtja4uIQGgSSE8DWyZnpOyN5A1vEJq57Z+9Y8nmPorbF+0/2Pn2i7O6y6fE3D2xfvEguDqt8kfiSfCNqv2xd5zO8plTfakg4E7ZOCIzDIWA3AWxtd30KiRvYxXxy54f7Dz60p2v7re1bbtvRteeRvhdHy3fC+Q+Ge7+yIfpSs5U37jpyqvaeWqj98Z1L/jtg/b2DfF7T0hWErS0tDGFBIB0BbJ2Om86zEjew4wSXO3mo61Olu9Jmd96tKzfe3Tdc+7muKmr/VNehk/Su48A2cgy2NoKdSSGgigC2VkVW3rhpGtj1ZhePaT2za9NVkbb2qg07H39zvPbrzSrUvmLDV3rrqF1e7oyUmgC2To2OEyFgIwFsbWNVKmJK1cCumlnpMa1FVTf4Fkil2i9bt/1APbU7ATSAILF1AEUmxZAIYGtXqp2ygR1Nb8ljWnOXv9d27D9e691n4sykaneFZRBxYusgykyS4RDA1g7VupkGdrXHtHoGz9T+VEc1tT88+Dsa1a4sGGztSqWIEwKxCGDrWJisOai9vT36GLX4xxihVXlMa/Peo6crP5E5P1Y1tXcfO83Xr2PAtuYQbG1NKQgEAjIIYGsZFPWNMTY2lsnMf9J6zts9PT0Npp94cc+Gyxcd3/gxrWRPYOtLnpmSEMDWSWhxLASsJ4CtrS9ReYADAwNlbykTLe26WUyPD94/9zWtFI9p1X8C2zl4AQWMrQMqNqmGQABbu1hlsZ+OClvstsVN43UTmRjOfv76hI9pNXgC20VwIcWMrUOqNrkGQABbO1rkyga2eCy7Xi7TuTp96sRPYDtKLaSwsXVI1SbXAAhga0eLXNnAFneMp8qFx7RSYbP+JGxtfYkIEAJJCGDrJLTsOjZ5A7si/iRPYOcnzr4z+tbxF4dOjP5uvPY+3S5GAUeDrQMuPqn7SABbO13V5A3sxXTjPoGdGxvq69n5dx9fHf1K9oqPbNnZ84u3zuedxud18Nja6/KSXHgEsLXrNU/cwJ5NON4T2PkPTjzz7dvWryq7BT3y1tI1W/e9OI6xrVxD2NrKshAUBNISwNZpydlyXpoGdpwnsMu/5FFL2Zdv2NVfR9j58def+MkAn8HWv1ywtX7mzAgBhQSwtUK4uoZO3sBu9AR2buTJOz4WvfLdmtm8o/vAs0PDo++fOfv+qbcG+x7eecP8BzfX3fH06Wob7JmJ4Se7Nl7Z0nL1Zw4M88pSXcuhNA+21gyc6SCglgC2VstX1+jJG9i1n8DOv3PoixFVt67ZsufQiYmZilQmR5/csa6o9Kvv6r9Q5uvJ0SP3b1o5b/xlm7pfHdcFg3lmCWBr1gEEvCKArb0pZ+IGdvUnsHPvHdy22Kle2b732Lu1t8UX3th347JZXa/d+ezZRZK5d4/tbZ/fec++Q43vYetfZthaP3NmhIBCAthaIVy9Q6dpYFdGeOFXXVfP+Vf8LPv03pfqfE9z7uQLR3ZeITbQy9bseWl69p/zuTMv9GxdE7mKzvew9a6D+dmwtRnuzAoBRQSwtSKwRoZN3sAuC3PmfN/ty0uuXrV5/xsxms3v9922Wpyxoqs/J241P77/M2svi9w0/tFt2Ve4adzIYsDWRrAzKQRUEcDWqsgaGjd5Azsa6NjT268uufaaXYOX4jybNd7ftbal5fKND7/wavafSm3suSFa13bwPWxDq2B2WmxtED5TQ0A+AWwtn6npERM3sBcCzr+9f+Plc6pd/pHuVyrvK6uSWX44u1l0qC9fu37disU99fLMVr6HbXgdYGvDBWB6CMglgK3l8rRhtPQN7OmX9qwpNq1X39b3fpxc8qeyxdvMIj9Xbdr1zCivJo2DT+Ux2FolXcaGgHYC2Fo7ch0Tpm1gn8huKu6QV205cKpxoPnTT9+xbompV/I97MbY9ByBrfVwZhYIaCKArTWB1j5Nqgb2xFD3dcWm8xU7j1yoH3Pu1JFdN0Yf0+J72NqLXG9CbG1VOQgGAs0SwNbNErT4/BQN7Jk39328+PTVsi37hydqJFf5mNaqDTsff3N87hkufuwggK3tqANRQEASAWwtCaSNw6RpYOfHjnW1zfm6deXmB1+uIuCpM4PfS/GYVn5i7O3jR/see2hP11e233rTpk2fvm7DP+x/s8EG3kasjsSErR0pFGFCIB4BbB2Pk6tHpWhg58df7N58VbEb3br2s9/qO/5+6bWjufETg73f+uzayKtPxGNa+4/Xe4NKfuK944ceuXfbprUrou8dLzW7W6/92rHz7MiVrC5srQQrg0LAFAFsbYq8tnlTNLDz4y/t/8y1EbuuXHvd9etXz783paRa8ZhWz+CZqZpXy88O9XV/4bqKs1avb7+t8+v7fviTvmeP9fe/+NbZWiNoI+TnRNjaz7qSVbAEsHUIpU/RwC7kx4efze66bePqKltisWqu2rz36Okaj2nlJ04efej29Us206vWf+ae/X2Db5+ZiPPKlRCKojpHbK2aMONDQCsBbK0Vt6HJ0jSwo6HmRvo6P7n48pN6j2lNnu7/7rb1i58FaVnRdtven/SPln+iyxCJgKbF1gEVm1RDIICtQ6iyyDFFA7tIRrSx9y1+paO1zmNa+Ynhp6PPdLVes7nrsZdrXioPBLyxNLG1MfRMDAEVBLC1Cqp2jpmigV0o5E4fvG3+oerL1m3LDlV/TCufO3107/y9abP3k2/s+tnQWIyPgogZxOc1/+GW7hf5+IfcZYOt5fJkNAgYJoCtDRdA7/SpGtjvHPrix1pFo7r7+TPVG9XT428e2L5u/tNbrWu2dj9Xq6W9NN3oc9tifIQtczVga5k0GQsCxglga+Ml0BlAugZ2fvyVp46erLFRnh5/+cHNK+dvRVvZvvfYu7G21JWf1xT/QbDveK0Xsuik5Mdc2NqPOpIFBEoEsHVoSyF1A7saqHxuOLt1XtWt63Y8OToZi2f+3NDSz2vOP3/9sS8eeoebxmMxbHQQtm5EiD+HgFMEsLVT5ZITbKoGdpWp82ee6SxdAK/14rNqZ42/9pOdkTvMW8Rz21//4dfbS93xlVv2DY3LyTPsUbB12PUne+8IYGvvShoroTQN7LKBc29lt64uvvGsxjtKKyOZmRh+smvjlaWd9Oz/zD+3nT/3cvfNRWG3brh/kFeOxypjvYOwddMIGQACNhHA1jZVQ18s6RrYkfguvLGv9GHr2BfAJ0cPfW3jQodbrLyy57bzo32fXzvn68uu7Tp6ngvizS0HbN0cP86GgGUEsLVlBdEXThMNbNGufmTzsjmxxrxwHe/zmvnzRzqvnhu39YbuIT740dRiwNZN4eNkCNhGAFvbVhGd8WSz2chF6ZZMJjMyMtI4gPx7fduumTtx9dbsW43uABePYj/Xvfh+FXFWnc9rTo8d7Jh7HXnrqu2HzjcOhSNqEsDWLA4IeEUAW3tVzuTJdHR0RIUt+tkXL16sO0x+aqh77puarStveWy0wfXq5J/X/ODp7cUnt5ff3nd+JnlCnFEigK1ZChDwigC29qqcyZMRbhZb6qiwd+/eXW+YhY31shv3vVH3YnXlY1orb+5+ud7nNefmPZHdVHwl+dqufm4OT17R+TOwdXp2nAkBCwlgawuLojmkoaGhqK3F73t7e2vFkH/vwNbZzvKyq7t+VcfV+fHXDmwXb0Bb+hOrG71g6xWbsic0o/BpOmztUzXJBQIFbM0iEATKGthiVdRoYF8a3n/TrIOX3ZI9Veu71OIxrd7ODZHPcLVc9aktG4v/vOz6h96Yqnv1/NLAvdcUb2BbteXAKaqTmgC2To2OEyFgIwFsbWNVTMRU1sBua2ur0sDOD2c3i4eiW6/YeaTGxrrGY1qLD2dfvmFXf+0PeOTeO7ht3vNte45zW3j6pYCt07PjTAhYSABbW1gUIyFVNrA7OzvLI8mfOvjZq1ta1t87WK2jXO8xrXzu1IHPrCpeGq/1AY+lrxy/ZtfgpegufPrc+3x9M8HSwNYJYHEoBOwngK3tr5G2COM0sPPnj3bd3DNUfrN2nMe0ps8f+9q1pVa2+Pjmw/2jFxZsnJ842f/IFzesWOh0X/3Zg6eWXDHPnzxwy6e7jo3x0pSY6wFbxwTFYRBwgwC2dqNOuqKM0cDOT05Mlisz98b+zZFGdetHt2VfqXa5e3L0yR3rFu89W7luyxe+2tX11e1/s2H13FPWpZ/L1nU+c2bpHKW72zJfeXacx7pirQZsHQsTB0HAFQLY2pVKaYszVgO7PJrp8cH7N8xpuHXdP2WH6jymJZ7A7tmaibq57MbxKzd2PTVa/iHtyTf3fXp2+PLL49qouDcRtnavZkQMgToEsDXLo4xArAZ2FWoTw9nPbfjM9wYbN5fzubOv/Oye9kzFA14r1t/+0NGTE5UXuy/8qmv2jaQNHhujlFEC2Jr1AAGvCGBrr8opKZk4DewqU+Wnc9Px28r53PiJwV8c2N+9q6vr7j37fvyLwRPj5Vvq4iRTp7K3zD3UVePuNklZezYMtvasoKQTOgFsHfoKqJF/jAa2JnL5sSe3zd1M3vrxfW/Ss45NHVvHRsWBEHCBALZ2oUpmYkzVwJYdan7s2c6PzHW2r9nW9178nbvsONwbD1u7VzMihkAdAtia5VGLQNoGtkSi02ee3lF8iXnjl6BJnNaLobC1F2UkCQjME8DWrIU6BFI2sOUwjbxQpXXjnpf5wkcyrNg6GS+OhoDlBLC15QUyHp6pBnZ+vH/Xhsvn9tX1X1ZqnJClAWBrSwtDWBBIRwBbp+MW1Fn6G9j58Re7N19VfBB72cZvv1rloa6gKpAmWWydhhrnQMBaAtja2tLYE5jmBnZU1S2ZLxwcnbQHhUORYGuHikWoEGhMAFs3ZsQRhYKuBnY+N/rk4tc2V97c/XKd16JRmHoEsDXrAwJeEcDWXpVTZTLqG9iTp489sHnl/BvOUHVz1cTWzfHjbAhYRgBbW1YQq8NR2MDOvXus+28X3kXa6GXjVlOyJDhsbUkhCAMCcghgazkcwxhFTQN76szLP+7ceOX8xz1aV266/wi96qZXFLZuGiEDQMAmAtjapmo4EIvUBvbMxGh/tvOGlfOibmm5atOuZyo+wOUAFgtDxNYWFoWQIJCeALZOzy7UMyU0sPMT7x/v69mxOfIZrtbZD3D1v5sLlar0vLG1dKQMCAGTBLC1SfrOzp2ugZ2fODMy9OyB7p1b1kW202IJrryhM9s/OsEnO2QuCGwtkyZjQcA4AWxtvAQuBhCzgZ0ff/OZA49mf7hvT9eO227esLryg9brbunC02pWALZWw5VRIWCIALY2BN75aWM1sPNjx7rayh0tvn25euNt9+7vq/lBa+fh2JAAtrahCsQAAWkEsLU0lOENFKuBPfHK/s9/bvtXu7q6dnXvP9D37ODQyBleJKphsWBrDZCZAgL6CGBrfax9nCldA9tHEtblhK2tKwkBQaAZAti6GXqcG7OBDSj9BLC1fubMCAGFBLC1QrhhDB2rgR0GCquyxNZWlYNgINAsAWzdLEHOLxRiNbABpZcAttbLm9kgoJgAtlYMOJThaWDbVmlsbVtFiAcCTRHA1k3h4+R5AjSwbVsL2Nq2ihAPBJoigK2bwsfJEQIjIyOLL/ye+11vby+ETBHA1qbIMy8ElBDA1kqwhjqo0HOZsIXCQ4VhOG9sbbgATA8BuQSwtVyejNbZ2RkVdltbm7hIDhb9BLC1fubMCAGFBLC1QrhBDi3cLAwdFba4AS1IEoaTxtaGC8D0EJBLAFvL5clogkBlA1s84gUZzQSwtWbgTAcBtQSwtVq+oY5e2cAWL1EJFYaZvLG1Ge7MCgFFBLC1IrAMW9bAzmQyNLB1rgpsrZM2c0FAOQFsrRxxqBPQwDZbeWxtlj+zQ0AyAWwtGSjDRQjQwDa4HLC1QfhMDQH5BLC1fKaMGCFAA9vUcsDWpsgzLwSUEMDWSrAyaIQADWwjywFbG8HOpBBQRQBbqyLLuPMEaGAbWQvY2gh2JoWAKgLYWhVZxqWBbXQNYGuj+JkcArIJYGvZRBmvOgEa2JpXBrbWDJzpIKCWALZWy5fRaWAbWgPY2hB4poWAGgLYWg1XRq1CgAa2zmWBrXXSZi4IKCeArZUjZgIa2CbWALY2QZ05IaCMALZWhpaBaWCbXAPY2iR95oaAdALYWjpSBmxIgCewGyJq/gBs3TxDRoCARQSwtUXFCCYUGtgaSo2tNUBmCgjoI4Ct9bFmJhrYGtcAttYIm6kgoJ4AtlbPmBloYBtYA9jaAHSmhIA6AthaHVtGbkiABnZDRKkPwNap0XEiBGwkgK1trEowMZU1sIW8xf8TTPZqE8XWavkyOgQ0E8DWmoEzXRmBhW9gi1eTAkciAWwtESZDQcA8AWxtvgbBR3D48GHh7OAxSAaArSUDZTgImCWArc3yZ3YIKCKArRWBZVgImCGArc1wZ1YIKCaArRUDZngI6CWArfXyZjYIaCKArTWBZhoI6CGArfVwZhYIaCaArTUDZzoIqCWArdXyZXQIGCKArQ2BZ1oIqCGArdVwZVQIGCaArQ0XgOkhIJcAtpbLk9EgYAkBbG1JIQgDAnIIYGs5HBkFApYRwNaWFYRwINAcAWzdHD/OhoClBLC1pYUhLAikI4Ct03HjLAhYTgBbW14gwoNAMgLYOhkvjoaAIwSwtSOFIkwIxCOAreNx4igIOEYAWztWMMKFQH0C2JoVAgEvCWBrL8tKUuESwNbh1p7MvSaArb0uL8mFRwBbh1dzMg6CALYOoswkGQ4BbB1Orck0KALYOqhyk6z/BLC1/zUmwyAJYOsgy07S/hLA1v7WlsyCJoCtgy4/yftHAFv7V1MygoAggK1ZBhDwigC29qqcJAOBeQLYmrUAAa8IYGuvykkyEMDWrAEIeEkAW3tZVpKCAHtr1gAEvCKArb0qJ8lAgL01awACXhLA1l6WlaQgwN6aNQABrwhga6/KSTIQYG/NGoCAlwSwtZdlJSkIsLdmDUDAKwLY2qtykgwE2FuzBiDgJQFs7WVZSQoC7K1ZAxDwigC29qqcJAMB9tasAQh4SQBbe1lWkoIAe2vWAAS8IoCtvSonyUCAvTVrAAJeEsDWXpaVpCDA3po1AAGvCGBrr8pJMhBgb80agICXBLC1l2UlKQiwt2YNQMArAtjaq3KSDATYW7MGIOAlAWztZVlJCgLsrVkDEPCKALb2qpwkAwH21qwBCHhJAFt7WVaSggB7a9YABLwigK29KifJQIC9NWsAAl4SwNZelpWkIMDemjUAAa8IYGuvykkyEGBvzRqAgJcEsLWXZSUpCLC3Zg1AwCsC2NqrcpIMBNhbswYgAAEIQAACrhBgb+1KpYgTAhCAAATCJYCtw609mUMAAhCAgCsEsLUrlSJOCEAAAhAIlwC2Drf2ZA4BCEAAAq4QwNauVIo4IQABCEAgXALYOtzakzkEIAABCLhCAFu7UinihAAEIACBcAlg63BrT+YQgAAEIOAKAWztSqWIEwIQgAAEwiWArcOtPZlDAAIQgIArBLC1K5UiTghAAAIQCJcAtg639mQOAQhAAAKuEMDWrlSKOCEAAQhAIFwC2Drc2pM5BCAAAQi4QgBbu1Ip4oQABCAAgXAJYOtwa0/mEIAABCDgCgFs7UqliBMCEIAABMIlgK3DrT2ZQwACEICAKwT+Px3hQ3/a9g6vAAAAAElFTkSuQmCC
iVBORw0KGgoAAAANSUhEUgAAA10AAAGjCAIAAABYHuhIAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAF39SURBVHhe7Z1/dFXVmfeDy0pdXmVlXJ21aOugk8ZRX2YYTVnvguoyTF+oyKpxWjOMYhEKDmCnjY4VaRVTrMjYOFIQBqYaKdEOyJihElthJEXRATqEIWCQRpHwu4KE3xBMyM27k5N7c+7NvbnnPGefs5/znO/9o0XYZ+/n+Xyffe737nP2OXkd+IAACIAACIAACIAACIBAR0ceIIAACIAACIAACIAACICAIgBfiDIAARAAARAAARAAARDoJABfiDoAARAAARAAARAAARCAL0QNgAAIgAAIgAAIgAAIJAhgvRC1AAIgAAIgAAIgAAIggPVC1AAIgAAIgAAIgAAIgADWC1EDIAACIAACIAACIAACdgK4jox6AAEQAAEQAAEQAAEQwHVk1AAIgAAIgAAIgAAIgACuI6MGQAAEQAAEQAAEQAAEcB0ZNQACIAACIAACIAACIJBOAPcXoiZAAARAAARAAARAAAQ6CcAXog5AAARAAARAAARAAATgC1EDIAACIAACIAACIAACCQJYL0QtgIA5Am0rKgryuj4FN6zYl4jj3PGGF16affvEMX9+6zX9+t10+/V3TCtdULNq/5m4uUgxMgiAAAiAQBQIwBdGQWXkyJVAfNOyuy7p8oX5Vy5oaO2Itx399a9+MKjbK1qOMfkp+NZty3YchjfkKibiAgEQAAEBBOALBYiIFMJLYMtr4/pbxq//M5vPHZg385bPpbnB1P+8cfDieljD8OqNyEEABECAOQH4QuYCITzZBGy+cFbl0nsv73SBseGDf7J0wdsNW3bv3vfBb2qXT/7hyEt73GFs7KTtp2RDQXYgAAIgAAKmCMAXmiKPcUFAEejxhd3Or/D+B+o+PZ/KJn5q1Yvjuixj1+eiKTWNuJqM8gEBEAABEPCBAHyhD1DRJQg4JZDqC2Ol39lyPKPli+8vn5ifMIb5ZXM+aXM6AtqBAAiAAAiAgGMC8IWOUaEhCOgnYPeFscue3NCcdYhdtQ9fkTCGRcVrPtUfC3oEARAAARCIPAH4wsiXAACYJGD3hSNLN53MHsv5Q6/elPCFVxe+0oQrySZ1w9ggAAIgIJQAfKFQYZFWOAjYfeGU8oN9XR1u21SafH6N2rycdg9iONJFlCAAAiAAArwJwBfy1gfRCScAXyhcYKQHAiAAAuEiAF8YLr0QrTAC8IXCBEU6IAACIBBuAvCF4dYP0YecAHxhyAVE+CAAAiAgiwB8oSw9kU3ICMAXhkwwhAsCIAACsgnAF8rWF9kxJwBfyFwghAcCIAAC0SIAXxgtvZEtMwLwhcwEQTggAAIgEG0C8IXR1h/ZGyYAX2hYAAwPAiAAAiBgJwBfiHoAAYME4AsNwsfQIAACIAAC6QTgC1ETIGCQAHyhQfgYGgRAAARAAL4QNQACjAjAFzISA6GAAAiAAAhgvRA1AAIGCcAXGoSPoUEABEAABLBeiBoAAUYE4AsZiYFQQAAEQAAEsF6IGgABgwTgCw3Cx9AgAAIgAAJYL0QNgAAIgAAIgAAIgAAIZCKA9ULUBQiAAAiAAAiAAAiAQCcB+ELUAQiAAAiAAAiAAAiAAHwhagAEQAAEQAAEQAAEQCBBAOuFjmuhbUVFQV7Xp+CGFfsSh5073vDCS7Nvnzjmz2+9pl+/m26//o5ppQtqVu0/E3fcMRqCAAiAAAiAAAiAAAcC8IWOVYhvWnbXJV2+MP/KBQ2tHfG2o7/+1Q8GdXtFyzEmPwXfum3ZjsPwho7poiEIgAAIgAAIgIBxAvCFziXoeaRI/2c2nzswb+Ytn0tzg6n/eePgxfWwhs75omWSwMqVKwcMGNDU1AQmIAACIAACIBAkAfhC57RtvnBW5dJ7L+90gbHhg3+ydMHbDVt27973wW9ql0/+4chLe9xhbOyk7aecD4CWIGARKC8vV1W0bt06AAEBEAABEACBIAnAFzqnbX8EcZf3K7z/gbpPz6d2ED+16sVxXZax63PRlJpGXE12zhgt4QtRAyAAAiAAAuYIwBc6Z5/qC2Ol39lyPKPli+8vn5ifMIb5ZXM+aXM+BlqCANYLUQMgAAIgAAKmCMAXOidv94Wxy57c0Jz10F21D1+RMIZFxWs+dT4GWoIAfCFqAARAAARAwBQB+ELn5O2+cGTpppPZjzx/6NWbEr7w6sJXmnAl2TlltFQEbr31VlU/6i5D0AABEAABEACBIAnAFzqnbfeFU8oP9nV1uG1TafL5NWrzcto9iM6HRMtoEoAvjKbuyBoEQAAEjBOAL3QuAXyhc1Zo6YkAfKEnfDgYBEAABECASgC+0Dk5+ELnrNDSEwHrJgTlDj31goNBAARAAARAwCUB+ELnwOALnbNCS08E4As94cPBIAACIAACVALwhc7JwRc6Z4WWdALqcdbJ51/Se8GRIAACIAACIOCeAHyhc2bwhc5ZoSWdwNy5c5UvVO/BU/+7detWekc4EgRAAARAAARcEoAvdA4MvtA5K7SkE7jvvvuUI7T+d8mSJfSOcCQIgAAIgAAIuCQAX+gcGHyhc1ZoSSegVgrVR60UKl9YUlJC7whHggAIgAAIgIBLAvCFzoHBFzpnpaelutMuah/1LGtrsVARHDRokPrzypUrowYBV8/1zB/0AgIgAALuCcAXOmcGX+icldeWTU1NliuK5scyRtaNhtH84Bk9XqcQjgcBEAABEgH4QufY4Auds/LaUl0/ta6iqvWzqH3U6mASn7q/MGrpq3yHDBmi1Fe22GsZ4XgQAAEQAAGXBOALnQODL3TOylPL48ePK1ug1gs99YKDQ0tArRarAlDuMLQZIHAQAAEQCCsB+ELnysEXOmflqaW6o07ZgrKyMk+94OAwE7CWDNUvhDAngdhBAARAIHwE4AudawZf6JyVp5bKESpPYL+c6qk7HBxCAtb+G/ULIYSxI2QQAAEQCDEB+MIQiyc1dLXnQHkCqdkhLycErDVj5Q6dNEYbEAABEAABXQTw7auLJPrRRkA9vQ83F2qjGc6OrFsM8fjGcKqHqEEABEJMAL4wxOJJDV0ZAjymRKq4zvNCGThnhZYgAAIgoIsAfKEukuhHDwF1W2Hywc56ekQv4SSg1ozVynE4Y0fUIAACIBBWAvCFYVVOatyWL8SNZVL1dZ4XbjN1zgotQQAEQEAXAfhCXSTRjx4C8IV6OIa/F/jC8GuIDEAABMJHAL4wfJrJjth6QIl6z4fsNJFdTgLqJdGqEvCu5Jyg0AAEQAAENBKAL9QIE11pIGD5Qjy8UAPKkHeBSgi5gAgfBKJCwLq4Yf+o26PVX1of9URedTZTix1h+V6DL4xK4YYlT7iBsCjld5yoBL8Jo38QAIE0Ahntnbp2oU5HytVlewOTcn5JF2j9Qe2ZS+vK+k/19/xf5QVfiHnBiwDcAC89zEWDSjDHHiODQEQJ5LR36hWdc+fOdfWKTmUo1Ued0JS/tPwi89tj4AsjWv1s01aL7WpmMp82bOlJCgyVIElN5AIC4SWgvo/U6Uit81nvbbeW/WgPzQjFz134wvDWKiIHARAAARAAARAIjoB6FZPydtayH2F/JHyhJ6kyXpvHXwZAwJNs/hwcQNYYIhQEetdXtrAzViKHxn1wdp6d6sSnxhHk5uWklXPWeOkcx2okoFcptYKoOiS8lwu+0JOmOVVEA58IeJLNn4N9yhTdho6AczMUQX+jxXFGkJuXk1bOGeSlcxyrkYB2peALNarjtCtLRaet0U4HAbbM2Qamgzr66CEAoVENQRLwXm/eewgyX4zVx88et3DgC90S09Ae800DRJddsGXONjCXgNE8BwEIjRIJkoD3evPeQ5D5Yiz4Qic1wHdBDvPNiX5627BlzjYwvfzRG4RGDQRJwHu9ee8hyHwxFnyhkxqAL3RCKSpt2J7j2AYWlcoIKk8IHRRpjNNJwHu9ee8BShgnQBMR15ENCEeTykCggoZky5xtYILEZ5EKhGYhQ2SC8F5v3nuIDGy+idJEhC80oChNKgOBChqSLXO2gQkSn0UqkoQWk4uYRHqXuPfU0npobm4+d+4ci7mEIBwToJUBfKFjwPoa0qTSN34Ue2LLnG1gUawSP3OWJLSYXMQk4rcvVI5waNfnvffe83OWoG/NBGgVDl+oWQYn3dGkctIz2mQjwJY528BQS3oJSBJaTC5iEgnAFz7//PMWrpKSksbGRr2zA735RIBW4fCFPsnRV7c0qQwEKmhItszZBiZIfBapSBJaTC5iEvGjxHvDUZeSH3nkEevv1R/279/vx7joUyMBWoXDF2qUwGlXNKmc9o52mQiwZc42MNSRXgKShBaTi5hE9Naq1Vs2OGqxcPLkyda/qkVEZRb9GB19aiFAq3D4Qi3w3XVCk8rdGGidSoAtc7aBoYL0EpAktJhcxCSit1b79oXWv6obDdUFZQVQ3XRYXV2NLSl+SOC9T1qFwxd6J++6B5pUrofBATYCbJmzDQzlo5eAJKHF5CImEb216sQXqjbKCypHqHyh5Q6xJcUPFTz2Satw+EKP2CmH06SijIRjEgTYMmcbGGpHLwFJQovJRUwiemvVoS+0mil3mNySoq4vY0uKH1qQ+6RVOHwhGTj9QJpU9PFwpI6n//tEEcXgE1hu3UoSWkwuYhLxo9pdwUnbkhKxmw7bPq1f81rVooqKn06fMmH8+HvGFA206HV+CopLx3+3bGbFold+u7HxSEvcD62y9ulKxGQv8IWBiuTqd5iByOQOSZseAfBgG1gAuUdqCElCi8lFTCK9p5L31Ag9pG1JicxNh6frKop7jGBffxpYVPrEK5sOBOYOCSKqWoIvNPDdRJPKQKCChmTLnG1ggsRnkYokocXkIiYRJr7QCkPdaJi86TAaW1Kc+0Kr4m6cULntdCALh7QKhy808J1Bk8pAoIKGZMucbWCCxGeRiiShxeQiJhFWvlAFY9+SorYtS9+SYveFQ6fXNP7xeM+CYLzl2P7GurXLnpkw1HZxOa9oavXuNv/PTLQKhy/0X5leI9CkMhCooCHZMmcbmCDxWaQiSWgxuYhJhJsvtOJRdxlGY0uK3RcWV9SdznjGiZ/+sGbm6FjyKvN1j9c2X/D73ESrcPhCv3XJ0D9NKgOBChqSLXO2gQkSn0UqkoQWk4uYRHj6Qisq9VoU+1tSJG5JceQLO1m0NlbdXZhwhoOn1hzw+2IyrcLhCw18Z9CkMhCooCHZMmcbmCDxWaQiSWgxuYhJhLMvtGJTW1Ks52Crj1pElLUlxbEv7Iif3fj04IQxHDi99qTPJydahcMX+ixLpu5pUhkIVNCQbJmzDUyQ+CxSkSS0mFzEJMLfF1oRpm1JYTEzNQTh3Beqi+ury/ITxnBUZWO7huH76IJW4fCF/qqSsXeaVAYCFTQkW+ZsAxMkPotUJAktJhcxiYTFF6o4JW5JceML2+oqChK+sKCizue9J7QKhy808J1Bk8pAoIKGZMucbWCCxGeRiiShxeQiJpEQ+UIrVPuWFHX3YcjfkkL1hVgvDPzcnBf4iE4HFHwycoog8HZsmbMNLHCJhA8oSWgxuYhJxI/JEwAc+5aU2bNnh3ZLigtfGD9UPSGxJxn3F/pRt333CV8YPHO+IwZwjqMlzzYwWjo4KhsBSUKLyUVMIn7Mu8DgbN26NbklZenSpSHckuLcF7YerJ6WuL0Q+5H9KNscfcIXGoDOdsjAznFuCbANzG0iaJ/jd2qX0jIoiSlaMYn4UVcBw1mzZo39LSl+ZORbn059YfzIWzOGJmzhsGfrzvr9mJrON9oRTju4v9C3UsneMU0qA4EKGpItc7aBCRKfRSqShBaTi5hE/Cjx4OFYW1KscUP1lhQnvrC9Zd/b88ffaGWXlzfsodUHfXeFXW86hi+0zw6+P81pUvkx86PTJ1vmbAOLTm0Ek6kkocXkIiYRP2rYFJwQbknpyxd2vQdvQ/X8h8YUJN91gvcj+1GwjvqEL3SEKSKNTJ3jcuJlG1jOyNHAFQFJQovJRUwirkrRYWOzcNQO5eRbUthvSbH7wsSCYJb/jw2dtmjDQZ+fTtOjME1EddStt97qsE6SzcrLy9WB69atc3tgd/u2FYkn+BTcsGJfopNzxxteeGn27RPH/Pmt1/Trd9Pt198xrXRBzar9Z2irrfCFRHVEHkabHgGgYBtYALlHaghJQovJRUwivaeS99S89+B9gtu3pKhLzFy3pDj0hVeNeOLNvS0+P8k6FTpNRDO+ML5p2V2XdAWcf+WChtaOeNvRX//qB4OST3tMcdoF37pt2Y7D7r0hfKH3WSmnB9r0CCB/toEFkHukhpAktJhcxCQi1Rdaedm3pKg/8ztvOPSFqtyGjK1YG6Q1pFW4GV/YseW1cf2tgPs/s/ncgXkzb/lcn6uvNw5eXO/WGsIX8ps+5iKiTY8A4mUbWAC5R2oISUKLyUVMIrJ9ocoubUuKWkfkdPbIfn9h2+kju99f/1rFhKEDExYndt2DNQfb3K90kRKmVbh5Xzircum9l3cGHxs++CdLF7zdsGX37n0f/KZ2+eQfjry0xyzGxk7afsoVGPhCV7iEN6ZNjwCgsA0sgNwjNYQkocXkIiYR8b7QSlBtSVH3GlqqcXpLSs79yPG2Y3WLxhYmDE3RtJp9wRhDWoUb94XdoArvf6Du0/OpxR0/terFcV2Wsetz0ZSaRjco4Qsj9bWbI1na9AiAINvAAsg9UkNIElpMLmISiYgvtNK0b0l5/vnnGbwlJacvVFHH2/a+OiHx7MK84fPrP3NjZ6jnSlqFs/CFsdLvbDmekVF8f/nEJMn8sjmfuNjGA19ILSWJx9GmRwAk2AYWQO6RGkKS0GJyEZNIpHyhlex7772XfEuK6S0pTnyhCvn4xqeKE+tcxU9tPB7ACZBW4Qx8YeyyJzc0ZwW0q/bhK5KLr8VrPnVOEr7QOSv5LWnTIwAubAMLIPdIDSFJaDG5iEkkgr7QSlk5wuRbUsxtSXHoC+NnNz49uNvO5N+86P0L/p8BaRXOwBeOLN10Mjue84devSnhC68ufKXJ+dIrfKH/RReeEWjTI4D82AYWQO6RGkKS0GJyEZNIZH2hSlxtSVFvVbakVCuIJrakOPSFHR0na6cn95+UVO12bmeo50pahTPwhVPK+3zIY9um0uTza9Tm5bR7EPugBV9ILSWJx9GmRwAk2AYWQO6RGkKS0GJyEZNIlH2hlXvalpT9+/cHeHpx7AvjTcvHXp1YMXx4dbPvK4a0CocvDLB4EkPRpDIQqKAh2TJnG5gg8VmkIkloMbmIScSPEg8jHENbUhz7wo6zOxaVJC6ADpu5PvsddJoUpYkIX6gJv5tuaFK5GQFt0wmwZc42MNSQXgKShBaTi5hE9Naq1Vt44SS3pKhbDwPZkuLcF8bPrC+/KrFgGMAthjQR4Qv9mFA5+qRJZSBQQUOyZc42MEHis0hFktBichGTiB8lHnY49i0pyin6gSjRp3Nf2BE/VD0hllgx9P8WQ5qIXnzhkCFDysrK5s6dq16U7PJdyT3vO8nLw/2FfhYs+mb+25c2byFr6AhIElpMLmIS8WM6CICjtqSoBxxaiagtKeoqsx+gOjpc+MKO+EdVJckVw7Kawy6evUcIniYizReqHT/KFCY8b4b/V/96q+2j7GNqRvCFeXy3xRCKj/8htOkRQF5sAwsg90gNIUloMbmIScSPqSQGjtqSol6OYqWj/uDDlhQ3vrCjpbGyNGGaBk+tOeDrpmSaiDRfePz4cWX1Bg0a1Ic1tP+TsonwhT0EaFL5MfOj0ydb5mwDi05tBJOpJKHF5CImET9qWBgctVg4efJkKyndb0lx5Qs72j+uujNxKTl/YvVBP40hTUSaLywvL7eGU2uCyiCq/1y5cqV1NdnZw4OwXoj1Qj/OZNn7pE2PAGJkG1gAuUdqCElCi8lFTCK9p5L31Lz3wHCCB74lxTADmohefKHLewrtfOAL4QuDnS+06RFAjGwDCyD3SA0hSWgxuYhJBL7Q+clE3XSY3JKibjr0eUuK87h8aUmrcPhCX8Tou1OaVAYCFTQkW+ZsAxMkPotUJAktJhcxicAXup3k9i0p6vqyb1tS3MaluT2twuELNcvgpDuaVE56RptsBNgyZxsYakkvAUlCi8lFTCLwhbTZmrYlRf0nrR+2R9EqHL7QgKA0qQwEKmhItszZBiZIfBapSBJaTC5iEoEv9DLJ1WKhuqBsFYPakqKWEr30xupYWoXDFxoQkSaVgUAFDcmWOdvABInPIhVJQovJRUwi8IXeJ7m60VC9H0WVRFBvSfEecu4eaBUOX5ibrPYWNKm0hxGpDtkyZxtYpMojgGQlCS0mFzGJwBdqmcLytqTQKtyQL9SiYY5O+D44miZVEMzkjsGWOdvA5NaCmcwkCS0mFzGJwBdqnNXqLsPkW1LCviWFVuHwhRrLyWlXNKmc9o52mQiwZc42MNSRXgKShBaTi5hE4Av1zlbVm3otiv0tKSHdkkKrcPhC7eWUu0OaVLn7RYvsBNgyZxsYqkkvAUlCi8lFTCJ6a9XqDXAUBPuWlKVLl4ZuSwpNRPhCPyZUrivcXVoZGDjCQ9KmRwDA2AYWQO6RGkKS0GJyEZOIH1MJcJJU07ak+EHbpz5pIsIX+iRHX93SpDIQqKAh2TJnG5gg8VmkIkloMbmIScSPEgccO9WQbkmhiQhf6MeEwnqhAap9D0mbHgGkwTawAHKP1BCShBaTi5hE/JhKgNObqn1Lirr7kP9bUmgiwhf6MaHgCw1QhS9kBx0B2QjQTtA8EYrJRUwiftQJ4GSjquxgckvK7NmzOW9JoYkIX+jHhIIvNEAVvpAddAQEX8i7Bmjfmrxz0hYd4PSNcuvWrcm3pLDdkkITEb5Q2yxy3hFNKuf9o2VvAmyZsw0MVaSXgCShxeQiJhE/zniC4Wic2mvWrLG/JUVjz1q6ookIX6gFvrtOaFK5GwOtUwmwZc42MFSQXgKShBaTi5hE4Av1zlZXvVlbUqxaUiuIavOyq8N9bUyrcPhCX0XJ3DlNKgOBChqSLXO2gQkSn0UqkoQWk4uYROALjU9ynltSaBUOX2ignGhSGQhU0JBsmbMNTJD4LFKRJLSYXMQkAl/IYpJ3PQc7uSVFvUzP+JYUWoXDFxooJ5pUBgIVNCRb5mwDEyQ+i1QkCS0mFzGJwBeymOSJIOxbUtQlZoNvSaFVOHyhgXKiSWUgUEFDsmXONjBB4rNIRZLQYnIRkwh8IYtJnhqEfUuK+rORCGkVDl9oQCyaVAYCFTQkW+ZsAxMkPotUJAktJhcxicAXspjkvYJQK4XqETZWmaktKWodMeA4aRUOXxiwTJ3D0aQyEKigIdkyZxuYIPFZpCJJaDG5iEkEvpDFJM8ShLrLUD3+2iq2gN+SQqtw+EID5USTykCggoZky5xtYILEZ5GKJKHF5CImET9KHHD0UjWyJYUmInyhXukd9UaTylHXaJSFAFvmbANDKeklIEloMbmISURvrVq9AY4fVNXTDZNvSQlgSwpNRPhCP6TP0SdNKgOBChqSLXO2gQkSn0UqkoQWk4uYRPwoccDxg6rVp3KEybek+LolhSYifKF/0mftmSaVgUAFDcmWOdvABInPIhVJQovJRUwifpQ44PhBNdln2pYUdZXZ+XBqL4vDxjQR4Qsd4tXZjCaVzgii1xdb5mwDi16N+JuxJKHF5CImET9qF3D8oJrWZ9qWlP379zsZVG1ecfi2PZqI8IVOVNDchiaV5iAi1h1b5mwDi1iB+J6uJKHF5CImET/KF3D8oJqxT7dbUpQ0yho6CY8mInyhE7aa29Ck0hxExLpjy5xtYLoKRCWoq6tQ9yNJaDG5iEnEj6kBOH5Q7aPP5JYUdethH1tS1AVoSxonl55pIsIXBix953A0qQwEKmhItszZBiZIfBapSBJaTC5iEuld4t5T894Di4kXqiCU57NvScl4sVjZQUsaJ0uGNBHhCw1UDU0qA4EKGpItc7aBCRKfRSqShBaTi5hE4AtZTHJNQSh3+Pzzz1vFqR5qk7YuqPYvW/+kPjnvMqRVOHyhJiXddEOTys0IaJtOgC1ztoGhhvQSkCS0mFzEJAJfqHe2cuhNbUlRK4LJpcHklpTki/Us16hMZB/R0iocvtBAAdCkMhCooCHZMmcbmCDxWaQiSWgxuYhJBL6QxST3IQi1WDh58mSrUNUiot0sWn+prjvDFzoHz/dud8EnI+fyBNySLXO2gfknkPrhq0521qfvH7v+xRB8z5KEFpOLmETgC4Of0UGOaN+S8pWvfMWq2+Snj6fb0Coc64VBits9Fk0qA4EKGpItc7aB+SS++r1rPejf+ji5ddqnSALuVpLQYnIRkwh8YcDTOfjhrC0p119/fZopVP+pFhSzxUOrcPjC4PXFfmQw7yFAm7cGCGoaMnlNJHl28/U1UJqi1tCNJKHF5CImEfhCDVOUfRf2OwvT3GG2q8m0CocvNFALNKkMBCpoSLbM2Qbmh/jq5NX7x65aPlSLiH4Mx6pPSUKLyUVMIvCFrCa7H8Ekdyj3PoVaf5PxcYa0Cocv9EPBHH3SpDIQqKAh2TJnG5h28dVNMPYzmtpJl/zPKFxNliS0mFzEJKJ9tqoOAccPqoQ+1RXk3pdZMv7A7n27Nk1E+EKCTF4PoUnlddRoH8+WOdvAtNeL/dSmjKBaI7Sf2sRfTZYktJhcxCSifbbCF/qBlNCnOk86MYVWJff+gU2rcPhCglJeD6FJ5XXUaB/PljnbwPTWi/0KcvLCcdpfOnxnvN7AAutNktBichGTiB9lDDh+UHXVpzol2nfpWYqov0k+17D3qqG6B9E+BE1E+EJXMulpTJNKz9hR7YUtc7aBaayUtCvI9luk7T+F+9hVpzEYU11JElpMLmIS8aOqAccPqq76VFdRtm7d6uR5XtZjv1T7tBcr00SMmi/c8tq4/l2kYpfPrf/Mkqht74e1s/5l6rDSUV8oyBt4RfH44hkvLGw4ej5NwPiJI1sXLn78tqmjVbO8fjfdfsM9jz1YvW1Xa9yV0lifd4tLS3va9NAydN+dsA1MY+5286duK7T3nHzXp8Wh72e0agwp+K4kCS0mFzGJ+FHPgOMH1YD7pIkYNV+4vWbypRap/s9sPt8Rbz2wZMF9V8Z6r8bm3Th43sYPE54vfuqt1x65RtnBXp9Y/9vnLDyQ7iFhBQKu/pzD0aZHzm69N2AbmPfUrB7Snq3Qe9NcWgOpV5MlCS0mFzGJ6Jqt9n4Axw+qAfdJEzFqvvDI5jlfSPrC1sOLnrjlcxnMXvdfFRYufv9ER0f81KoXx12evVlevxHPVDVfcK43TSrn/aNlbwK5mR9bsaDU82fBpv0u6ecOzGWHrJqnLQeqRy30Dk/tobPvTZZ6NVmS0GJyEZOIH7MecPygGnCfNBFd+cKmpqZ169bNnTt30KBB6kB14TvgHF0Nl/E9eD2+8JLHXqiadEUntYKS4vmrVmz7eE/Thq1vPvmcffkwds8DO3asmtzVLDZ88KxlL9Y1Nn60rbHupeqni4b2LDPmD3js7b2OryfTpHKVPBqnEcjN/GD5+D68v8N/Gl/d4BJ97sBcdsineZrhU7dLZ3vrnTqV2AGLvJosSWgxuYhJhPJLONeZQjCcXKnL+XeaiHZfuGTJkvLEp6ys7FbbZ8CAAWlfjOofmbPL4QutfPqNmPVc05kUR9e69a1Hv5SwfLH+11/befm48P4H6j5NvVp8rnn92JFJaxj77ow93fcr5uRCkypnt2jQB4HczOELdRdQ2gVi9YrPPkaYPXu2/RST8RmtugMMtL/cFRhoOJ4GE5OLmETgCz0VtNyDaRVu94XK6mVbFVELhJZLVL5R2Ue1cMgfpANfGBs7afupDJk0L3j02n42FsO+9saB9gztDm5++ouJZgXXvvJxpjYZDqNJxZ845wjZMmcbmEc1064g53xytVpKtD+RQV1Zzra46DEwU4dLElpMLmISgS80Na+Zj0urcLsvVBdz1GXi5Id5vjnDy+kLY5c9uSHL67f2byjvvg2xc03xzqX/ncXxtW+fdHPCGF78SO2hnEF1NaBJ5axvtMpMgC1ztoHprqR42/FdG9/81aLZ06fcO6bIWmiPFY25d+r0isrq39XvO92me0Re/UkSWkwuYhKBL+Q129lEQ6twuy9kk4qeQHL6wpGlm05mGaq1+Y1b8rsNX/6VCxpas4XU8vJTVyeM4djlW5zdYkiTSg+VqPbCljnbwPRVSnvLobrqiu/a7sfNdF2iYNTUilUNx7JONX3xmOlJktBichGTCHyhmVnNflRahUfZF04pP5h1iaJtU2niqTQFN6zYl1X9+KZld13S/S1XULHC2ZIHTSr2Fcg6QLbM2QamR874iR2v/nhMQaYnQWUyh7Ghk+e9c8DZNNITYGC9SBJaTC5iEgmzL2xvObZnR11d3Y79p9ucrawENmnDPxCtwuELMyvv1Bd2JB+UrfY1wxfynUa06RFAPmwD05B72/61T4y2W8LY0PEz//XVtZsadh/q+uxu2LR2+bzpY7svK1ssYjdPrdp2WtwXhCShxeQiJpGw+sKWptVPfTv5YODY0H+srD8qbuprOJWSu6BVOHwhfCG55MJ0IG16BJAh28C85h7/dMPsMT2mMDayrPLdfS0Zb9Rtb9n39vzxN9oWEIc9WLNX2Kphn0LH25rXvbVo4j/dc8Ntf3mxatnvpm/+9eR/nrH6g/3dKyiU359eFcx+vJii9ZYIa9W8pdapvfceclXgyfp5d6ZfSih8qOaQ2JtJcgHR/+80EeEL4Qv11yLDHnNPDzynRqdsLXurywqTRi82+om1+3P4vLTFxfyJVbvO6ozIdF9ZK7B15/+88PXbr7E/AKEHXP/by2ftOBG3X5cYVbnO4YMPfEs592zybWi9HdMTCaFqbtHR4Tgc6fzGnrvze34UXlVS9RGWDB0izNmMJiJ8IXxhztKS0CD39IAv1Kdz/NCqaYXJhYDiR1fvc7T41/rh8ok9q4b5E6sPCvp+yFiBOd+l1HlU4bQZH+5IvNg9L8/9s9P1CdvdU+7ZpH1IfzqkJRJS1dwipMFxMcqRmimZbjwuqKhzdLpwMVJ0m9JEhC+EL4zEnMk9PfAePG2FcKKu4rbE7//YdY+ubXZq7+Jte1+dkHgQQF7ebRV16j2UQj4ZKrB1Q7X1yiXro96o9JOlC95u2LJ790edL1V68dVZf2Vt4r7o7x78p5GJN3bCF+qriNynhd5jhVY1t9gocFyN0b6zctTAnvrv/tPgqTUHnJ4wXA0XycY0ETX5wuTdL7HL59Z3v/ajbe+HtbP+Zeqw0lFfKMgbeEXx+OIZLyxsOJr60hD19uETR7YuXPz4bVNHq2bqvprbb7jnsQert+1q9VoaOZ9To2M/MvadhGSy0aZHAMmxDYyce/xwzdSkt8ufVn3Q1d1Cdk+Zlz+15rDX8wA5D80H9hL62K6X/rLHA2d4o5IKoPX0h3MeT3uHO3yhPmXcz74Qq+YWm3s4bke4cGzDz0akLhnGRs6vPytlzrvl4UN7moiafOH2msmXWgH0f2bz+Y5464ElC+zvGe75TXDj4HkbP0x4vvipt1575JrkbiTbL4dY/9vnLDyQ7iFdYYMvdIVLeGPa9AgACtvAqLm3HaqemnyN5HUz38n2jNBs/cf3Lr87+VWRX1ZzWMg1pXSh7S9VipV+Z8vxLF+G7ec++P7YHv+I68jUwsx0nOvZF2bV3IJzDcftAJ3tzx+pX1lRdqd6IkGsaOz0+W8IfoIpBY/nY2giavKFRzbP6X4/iPKFrYcXPZH2EzdlrbiwcPH76vJQzps0+o14pqr5AhkMfCEZncADadMjABBsA6Pm/snqsiGJ+V40vfZT1/3Edy+/O/lbkdSD6yGDOCBV6DN7X/6rhPvNz//n/znWVwj2923CF+oUy+XsC7dqbsG5hOO2e7QPggBNRO2+8JLHXqiy7pkpKCmev2rFto/3NG3Y+uaTz9mXD2P3PLBjx6rJXc3UTTWzlr1Y19jYeUfNS9VPF9lei5A/4LG391LXlOELgyi7sIxBmx4BZMc2MGLuZ9bPvCphC/MfXk35YdfSWFma7OLmRe/TfxsSc/DlsBSh43XV934+kWPpAztb+hwyfv73f5f02v7vOzl3rGHhv31/kLr7Z+AvdmZcrRVTtO4SYa2a/qJ1B0f/+OhRAwGaiNp9oRVGvxGznms6k+LoWre+9eiXkteX+l9/beeSQIabas41rx87MnkdKfbdGXu671d0ywi+0C0xye1p0yMAImwDo+Ue311Vkrw6MKqykfJElfiZ9eVJbxmbUnOEFgqzo1KEPvNij3t28twZ+2Z5P+8vjB9dWfUD5Qhjl/zJJTH4wrQS4qpaxkr3fmLx3gOzKRjFcGgi+uILY2MnbT+VQQP7vRmd4Q772hsHMn1v2C+bFFz7yseU7xb1VM5MVdBzwTsvD/tOIjRPaNMjAEBsA6Pl3lZXkbwGnF+2upnUS3tj5aikuSyp2k29ZEAa3K+D7ELH984Ym0jw4kdqD+UcMyhf2PHJnEl/Mm7cyveb3vibgfCFqbrwVS1T/Xg/sXjvIWddo4HfBGgi+uALY5c9uSHL18H+DeXdtyF2rineufS/szi+9u2TbnZ12sw4L+AL/a65EPVPmx4BJMg2MFLuF5pXP5zcI0F/Dtmh6vFJX0jvhZSBbwfZhba9ZtPaqZfro88Xxo+tXlb+4stN5zIPGT9z8ow6K7ed/K+vwxemITKoWq76yPDv3k8s3nsghI1D9BKgiaiOGjJkiOdI7MtwI0s3ZduC2Nr8xi2Jb438Kxc0ZH2ARcvLPQ9CH7t8C2m9AOuFnmUV1AFtegQAgG1gpNzVZuQpGhwdfGEa/ay+cFftw1fkDfzRwhPHd/3mez/62z9Vl4D7f21ySeXvkw99SOupfecDo/KKitf0vR/Ib18Yb/3jqv98dsrkuSv/Y3/q/UbqYRaUfyJVq8tXvenzhRZepcInp3b88+zvXn1Tv349qrXu/H3lt6f+vytieYV/et/P5nS+7Yby8X5i8d6Ds7jbW47t2VFXV7dj/+nutz46Ow6tHBCgiTho0CB1YFlZmYMR+mii+/JsfNOyuy7p/n4pqFhBelJFRl/oLU1NR9Ok0jR4RLthy5xtYKRC8cEX3jivXsTGE7vQ9gsin3t8/dGcrPv2hbE77n/w+kuvu++u53/5y0UTfzhSPTPsqj/9ybsZt+xx8IXxT5596NrEe/8KH5pzoGeBgPZPOflla+Bq9ulTzfKFBX/+8MN3DxhVXPHSLxeP/8HX1HPLr/6zeTW/+dGXLy15bNr8RS/OHlqsbrQvnPLQB6cJCbpKLWP/3nvIHXZL0+qnvp288yQ29B8r64/SfHDusSLZgibiypUrBwwYoI5V/6vcofrP48ePu+en2xeSHhedFjZ8oXsd5R5Bmx4B8GAbGCn3lC0jA6fXun14oTXohR2LkveRqO23uW+/I8Ua8EEpQh+e0/MGME/7TrrWCzs3+j254EBiU7N1H7d66MPOM71zZOALTzYutj+z1r7rmfZPdCXdzT5tqlm+UD2MY0zJu0e6bFC8tal86lc6vXK/by749Snrl1DzHxb/hXqu36WPrN3jPkV3qWXq33sPuaI+WT/vzvQ34RU+VHPI1ZPwcw0S7X8ni9jU1HTfffdZ7tD6qEXEW2+9tbzrsy71k4UxfKGb4iNL5WYQtE0hwJY528BoBXShfl7PG46JW0baT9b+KPl6rKtmrs/gbmjBGT0qRegLv130tYu6T7exqeW2BbNMMbafWTc6uUE79Tk1li9M251n3cc9uOjXGd4nxsAXHt367BeTXzbKHPW8I6uD9k90Xd3NPm2qdfvCfn+/rC65OBbftur+y9JUi++Z0fmM9+HzX//M9SKau9SM+MLzG3tuF+spiKtKqj5ynS29BIQf6b0M1GKhsoO2CZvhj8opZuIIX+imurxL5WY0tO0kwJY528CIdXOkpmclbOCPak8SHiZwdsei5LNu5HxJpAp9pP7ZLyfOr1cP+rcdWbaBdIkQ/8Pah/+k52Sc8pwayxem3S9orbp1r8PFT215Z0XPZ+O/f2NY3nU3/Py/bH+3dt0naVtffL2/sP3se3cO7snnttJNybdg0/6JWKruTwu6VOv2halb0TNJeWLhdPULqfP+UdfzyPuJxXsPOYSxnytsZkPKTjN6WWo80ouIW7duVReRrXsN7R+1JUU5RfVRC4rW8qFqCV/oVTUvUnkdO6rHs2XONjBipbTvrByVXOwrfmrjcdf9pLzvpGTRjrOue2B5QKrQ8dYPvleSvIRWWFbelO3R1q0nN97T80BX1YtLX9i1QNj3p/c2FF99oXK6B95fOvpbf3lxv5v+/htLt6e8Apv2T1TFXc4+XaoF4QupSHqOcwnH/YAp54pkiQ6eWpNhndt97ziCviCi7iYsKen+ca4uJas/W9eOXd5liPVCN0Xo+3xzE0xE2rJlzjYwamGcrp83JnGOjw1+aoNbW9f+cVXPPUeDn954Vsg1pXShU1cBM7wJoFOAc8fqvjeh67Yz8nphmo4MriNTK8uH41zPPj2qwRdaWl44tuFnI1JvMIyNnF8vZcr7ULCuu3Rd4V0jWBeO1UrhkiVLXA/ZcwB8oRt4NKncjIC26QTYMmcbGLWG4p/Vzx+edDH506oPurqL/ERdxW2Jo/OHz9tKfNsRNXr/justdPyT+TOKEncZqn9Wbw599rXKusb3Gxt3767bsf65lx4uLOw87Oo/mzxudBKpy/VC+MI+NCXMPh2qwRcmNTl/pH5lRdmdRWp/TdHY6fPfaDjm6nTh33wV0jOhwlXmlil0uTrYmxh8oZsqoknlZgS0hS80VwPxvdUTr0t6u6FPvH3M6ZJfvHXXK3cnn4vt2lOaS9nByJlmfeupbT9IXw5Mv+Q7cMD3fr1nzxM9D/qGL3RA22ET0qnYu2rwhQ71QTOvBEgV3ukL1ZKh17E74AvdIKRJ5WYEtIUvNFgD8bN1zw5L+pvY6PJ3/ujIGbY0VI7tWiDrWiS7Y9G2bPfcGcyNPHSWWR9vPbBkwX1Xpj+tw2odu/mm595taI139P38wj73nWC9UO96YVdvHlWDLyRPIxzojgDNbMAXuqOspTVNKi1DR7YTtszZBuapVOLNmyt6tlXkFd6vHlfb99Pp4+oJt0+MTtqj/LFL/tDiyEx6ijPAg/sSOt584L1nnn90xH3F6i0Xyg4Wffmb/3DHv/xnz7tA4Av9UcrT7KOrBl/oj5zotRcBWoXDFxooJZpUBgIVNCRb5mwD8yh+/PS2ygk9jzLMi418sGrToZaMj9toPd7424qxQ3pWGEf8dO2h3C8N9hhhwId7Elrf+5G1ZO0pFy0RaOrE30SMquY9Ne89aFIJ3dAJ0ESEL6QTJx9Jk4o8HA5UBNgyZxuY97JJt4ZqIWzohJ9Wrlpft2P3oc7Pvsb6jWuXz3vwDtvrL2KFY+e+I84Ueq1Aow6jdyWIKVp/EzGqmvfUvPfg/RyCHjwSoIkIX+gRO+VwmlSUkXBMggBb5mwD01I76upwbcW45D2DyRXBzH8oKJle+e6+zGuKWsIx2YknoY06DPhCYt0YVc1TvXUl7L0HZ9zaW47t2VFXV7dj/+k2UbeOOEvf31Y0EeEL/VUlY+80qQwEKmhItszZBqZP/NZjO1Yvnl5ifyduL19YMGb6r+o+dfFQGtWDvgiD6MmT0EYdBnwhsT6Mquap3gLzhequ4qe+nTwzxIb+o7oRGd6QWG+ZDqOVgSZfqDEPbV3x/dqgSaUNTCQ7YsucbWC6y6Tt9L7631VX/nxm2YTS4swesWDE+OkVla+++W5D05HTfW9T0R2d//15Etqow4AvJFaHUdU81VtAvvBk/byeZ9h3/1YsfKjmEB5hSKw4XVMVvlCbAM478j5jnY+FlhYBtszZBuZz5cQ7fWLt8nnTx6pH2mb6FBaP/f7Mn1cur9m0T8TGZE9CG3UYur5sfK4oSveeRMk5oFHVvKfmvYcchM5vfOrq3lNfzivRcxZIAA1oIsIXBiBN+hA0qQwEKmhItszZBhaU+JZBfPVfn7h/REEmhziqsjHjJuag4tM1jiehjToM+EJiDRhVzVO9BfNb+kjNlEwzvqCiTtrFAmIBaTiMVgbwhRrQu+2CJpXbUdDeToAtc7aBBV8/8ZYjH9a9tXzejPHFyZ0qA0dV7hRhC72tWBt1GPCFxLlgVDXvJxbvPeTg1r6zctTAXguGg6fWHMAthsSS63UYTUT4Ql38XfRDk8rFAGiqaXoEABLFkAFyvOVY0/vv1iypmP5MzT4Xm1EC0Is8hCehjToM+EKi6EZV81RvwawXdlw4tuFnI1KXDGMj59efhS0kVpyuqQpfqE0A5x15n7HOx0JLiwBb5mwDQ+XoJSBJaDG5iElEb60GeM48f6R+ZUXZneom41jR2Onz32g4hk0nOsWkVTh8oU4NHPZFk8ph52iWkQBb5mwDQyHpJSBJaDG5iElEb60G6Av9CBx99hCgVTh8oYEaokllIFBBQ7JlzjYwQeKzSEWS0GJyEZOIHyUOOH5QDbhPmojwhQHLxPqapgEWQQ1Jmx4BRMc2sAByj9QQkoQWk4uYRPyYSoDjB9WA+6SJCF8YsEzwhQaAqyFp0yOAWNkGFkDukRpCktBichGTiB9TCXD8oBpwnzQR4QsDlgm+0ABw+EIz0DGqjQDtBM0ToZhcxCTiR50Ajh9UA+6TJiJ8YcAywRcaAA5faAY6RoUv5F0DtG9N3jl1R+c9Ne89hAKU7CBpIsIXGqgKmlQGAhU0JFvmbAMTJD6LVCQJLSYXMYn0LnHvqXnvgcXEi3YQNBHhCw1UDU0qA4EKGpItc7aBCRKfRSqShBaTi5hE4AtZTHJ+QdAqHL7QgJI0qQwEKmhItszZBiZIfBapSBJaTC5iEoEvZDHJ+QVBq3D4QgNK0qQyEKigIdkyZxuYIPFZpCJJaDG5iEkEvpDFJOcXBK3C4QsNKEmTykCggoZky5xtYILEZ5GKJKHF5CImEfhCFpOcXxC0CocvNKAkTSoDgQoaki1ztoEJEp9FKpKEFpOLmETgC1lMcn5B0CocvtCAkjSpDAQqaEi2zNkGJkh8FqlIElpMLmISgS9kMcn5BUGrcPhCA0rSpDIQqKAh2TJnG5gg8VmkIkloMbmISQS+kMUk5xcErcLhCw0oSZPKQKCChmTLnG1ggsRnkYokocXkIiYRP0occPygGnCfNBHhCwOWqXM4mlQGAhU0JFvmbAMTJD6LVCQJLSYXMYn4UeKA4wfVgPukiQhfGLBM8IUGgHP24rR5awYiRvVAQJLQYnIRk4iHwsx6KOD4QTXgPmkiwhcGLBN8oQHg8IVmoGNUGwHaCZonQjG5iEnEjzoBHD+oBtwnTUT4woBlgi80ABy+0Ax0jApfyLsGaN+avHPSFh3gaENpriOaiPCFBhSjSWUgUEFDsmXONjBB4rNIRZLQYnIRk4gfJQ44flANuE+aiPCFAcuE9UIDwLFeaAY6RsV6Ie8aoH1r8s6pOzrvqXnvIRSgZAdJExG+0EBV0KQyEKigIdkyZxuYIPFZpCJJaDG5iEmkd4l7T817DywmXrSDoIkIX2igamhSGQhU0JBsmbMNTJD4LFKRJLSYXMQkAl/IYpLzC4JW4fCFBpSkSWUgUEFDsmXONjBB4rNIRZLQYnIRk0gIfWG87fS++tpXF82ePqW0uKBLiVjRmPFlP/nXV3678eNjbSxmbeiDoFU4fKEB4WlSGQhU0JBsmbMNTJD4LFKRJLSYXMQkEi5fGG/Z+27lo2MKYhb/TJ/rxkxf8u6+M3EWczfEQdAqHL7QgOQ0qQwEKmhItszZBiZIfBapSBJaTC5iEgmPL7xw+uOamSOuyu4Ibf8SG/3E6qYWeEMPJzBahcMXekBOPZQmFXU0HNdJgC1ztoGhbvQSkCS0mFzEJBISX3jhdMMvJxT2sUzY2y4WTa3ejWvK5HMRrcLhC8nA6QfSpKKPhyPhC1EDpglImvVichGTSBh8Ybxtb/XUNFMYGz7hZ/++tq5x3yH12d3w7uuLp5dY9xr2fGIlFZubsWhIO4HRKhy+kEbb01E0qTwNGfmD2TJnG1jkS0YzAElCi8lFTCKai7WrO81wWrYtuuPqFMNXeH9l/dFea4Hnj2z+Rfqa4tCfrj92wY8cxfdJExG+0EBh0KQyEKigIdkyZxuYIPFZpCJJaDG5iEnEjxLXCufsrqqJ+XZXmH/v4vdPZFkFvHD6/RfGprS+auS8LWf9SFJ6nzQR4QsN1AVNKgOBChqSLXO2gQkSn0UqkoQWk4uYRPwocY1w4s1rH73Oflth4d1Vja19BX22sfKelPsQBz6yuhlLhq51pokIX+gatPcDaFJ5HzfKPbBlzjawKFeLH7lLElpMLmIS4V2x5z+uujfF5A17tu5sjjsG4yc3zB5mXzO8+s6qD9v9yFN0n7QKhy80UBQ0qQwEKmhItszZBiZIfBapSBJaTC5iEvGjxLXB+WzrvOF2h3fdxOq9DvaRnNmx6Fv2K895oyobYQxdKk0TEb7QJWYdzWlS6Rg5un2wZc42sOjWij+ZSxJaTC5iEvGjZjXBiX9WP3+43d/ll9UcdvTkmfbGylEpxnBc1e7zfmQquE+aiPCFBkqCJpWBQAUNyZY528AEic8iFUlCi8lFTCJ+lLgmOGd3LCpJsYVTaw47WC3szOjC+4tuti80Fk5wtNDoB4yw9kkTEb7QgN40qQwEKmhItszZBiZIfBapSBJaTC5iEuld4t5T895DZ1Txj6pK7G83uaqk6iOHtrCjo3n9zGF2T3nVzPVnWMzm0ARBExG+0IDANKkMBCpoSLbM2QYmSHwWqUgSWkwuYhLh6wtP1k4faLd2IyvqTjqekOd3V41LuZKMWwwds7Ma0iocvtAlZh3NaVLpGDm6fbBlzjaw6NaKP5lLElpMLmISYesLL+xYdLPd2cW+X3PE+eNm4uc3zr46ZcGwfP0Zx6uN/kzkcPVKq3D4QgMq06QyEKigIdkyZxuYIPFZpCJJaDG5iEmEqy+80Lz64ZQHVBdU1Dnac9KdUK+tJ1OqD7k5nsXUNxkErcLhCw1oRpPKQKCChmTLnG1ggsRnkYokocXkIiYRrr6wdd/yiSkXgscu3+dqve9Q9fiU44sr6k6zmM8hCYJW4fCFBuSlSWUgUEFDsmXONjBB4rNIRZLQYnIRkwhXX3i6rqI4xdeNrz7kajqeWT/TvmslD77QFT7cX5iOK88dvwBbCz4ZBUjR3VBsmbMNzB1ftM5FQJLQYnIRk0hYfKHLy8gdHW11FQV2Y3ndlJqDuaYa/r2HAK3CsV5ooIZoUhkIVNCQbJmzDUyQ+CxSkSS0mFzEJMLVF+6rHp9i6zz7woLx1ftYzOeQBEGrcPhCA/LSpDIQqKAh2TJnG5gg8VmkIkloMbmIScSPEtcBh7svjLfs3fjqwifKppTN/HnV73adznLvo95mfoiVrU+aiPCFQWrUPRZNKgOBChqSLXO2gQkSn0UqkoQWk4uYRPwocR1wePvClh1VE260XaUePHbx/2awhnqb+SFV9j5pIsIXBqtS12g0qQwEKmhItszZBiZIfBapSBJaTC5iEvGjxHXAOVgz5Tqb8crjdB259WD1tJRn6KhAY99dvvezVJh6m/khVF990kSELwxaJ/hCA8QZe3HavDXCEIN6ISBJaDG5iEnES2XqvQSZ2lv6fmTPvlDjfuRPVpcNsXvWrj8PKVv9SWoKepv5IRR8oQuq2I/sApb4pmy/ANgGJr4kAk5QktBichGTiB/FrANOui/ML1vd7CrWIzVTYnbzptEXpl/j7hqm974Wvc1cJa+hMU1ErBdqQO+2C5pUbkdBezsBtszZBob60UtAktBichGTiN5atXrTAafXc63dPr8w/bnW46p2n9eUbEtjZWmv9cLSysaW1P71NtMUu+NuaCLCFzoGrK8hTSp940exJ7bM2QYWxSrxM2dJQovJRUwiflSuDji93oN347x6569H7ui4UD/PvjEkL//h1c1uju+TS/zwmw9dZ1+NzB86460jvbYk623mh1J99EkTEb4wYJl0/Q4zEHaoh6RNjwBSZhtYALlHaghJQovJRUwivaeS99S896Ci8mbs2k/W/migfU3Ppa3MdYa5cHr3usrH7y6KxQqKJ8ys3HCoLeODavQ2yxWU1n+niQhfqFUEZ53RpHLWN1plJsCWOdvAUEl6CUgSWkwuYhJh6ws7mleXpWz6LVm046zjmZV+Ddf17YmOR5LakFbh8IUG6oEmlYFABQ3JljnbwASJzyIVSUKLyUVMInx9YfvOylH2JT9XL7JL2ws8cFTlznYWszk0QdAqHL7QgMA0qQwEKmhItszZBiZIfBapSBJaTC5iEuHrCztO1lWMtF8KHji99qTDGXlm/cyr7IeOrKhzeqjDEcQ3o1U4fKGBwqBJZSBQQUOyZc42MEHis0hFktBichGTCGNfGD+zvjzF3Q1+euPZLO+bS0kjfnbj04NTHOWPak9iudDd2YxW4fCF7ihraU2TSsvQke2ELXO2gUW2VHxKXJLQYnIRkwhjX9jRcXbDU4Pt235vfHD1Hx0Yw+MbnyomLjT6NIdD2C2twuELDUhNk8pAoIKGZMucbWCCxGeRiiShxeQiJhHWvrDjRF3FbXaHFyupbGzN4QzjB6snpmxYKX5q43EWMzlUQdAqHL7QgMg0qQwEKmhItszZBiZIfBapSBJaTC5iEuHtC+OtjZUlKa8tGfbQ6oN9GcN488bZo9xaSRbznFkQtAqHLzQgI00qA4EKGpItc7aBCRKfRSqShBaTi5hE/ChxnXDiR9Y/McLu8/IKy6r3pr1ZJJlE25F3Zo9I8ZHDH6097ODSsx8Ywt0nTUT4QgOq06QyEKigIdkyZxuYIPFZpCJJaDG5iEnEjxLXC6fXW0PyYiN+XN14It3txc/sXTPnjgK7K4wVTlt1CK6QpDFNRPhCEmxvB9Gk8jZm1I9my5xtYFGvGN35SxJaTC5iEtFdrZ396YbTdqT2iaEpa4Z5ebHhE37272vrGvcdUp/dDe++vnh6SUFqm9iI2e8cafMjwSj0SRMRvtBAbdCkMhCooCHZMmcbmCDxWaQiSWgxuYhJxI8S1w8nfqKh8v7CNGvY938W3l/Z0GtN0Y9shfZJExG+0EA50KQyEKigIdkyZxuYIPFZpCJJaDG5iEnEjxL3BU78RGP1j1PvHcxmDGMFd8xZs/cMLiB7EZcmInyhF+bEY2lSEQfDYV0E2DJnGxgKRy8BSUKLyUVMInpr1erNNzgXTn+85ucThqdsLEkzhwUlj76y6VALnmLtVViaiPCFXrkTjqdJRRgIhyQJsGXONjAUj14CkoQWk4uYRPTWqs++sKv7eMunjRtrKiumTykttnaZxIrG3Dt1ekVl9e+2wRHqEpRW4fCFuvi76IcmlYsB0LQXAbbM2QaGItJLQJLQYnIRk0jvWvWemvce9M4g9EYgQBMRvpCA2ushNKm8jhrt49kyZxtYtOtFf/aShBaTi5hE4Av1z1gRPdIqHL7QgPg0qQwEKmhItszZBiZIfBapSBJaTC5iEoEvZDHJ+QVBq3D4QgNK0qQyEKigIdkyZxuYIPFZpCJJaDG5iEkEvpDFJOcXBK3C4QsNKEmTykCggoZky5xtYILEZ5GKJKHF5CImEfhCFpOcXxC0CocvNKAkTSoDgQoaki1ztoEJEp9FKpKEFpOLmETgC1lMcn5B0CocvtCAkjSpDAQqaEi2zNkGJkh8FqlIElpMLmISgS9kMcn5BUGrcPhCA0rSpDIQqKAh2TJnG5gg8VmkIkloMbmISQS+kMUk5xcErcLhCw0oSZPKQKCChmTLnG1ggsRnkYokocXkIiYRP0occPygGnCfNBHhCwOWqXM4mlQGAhU0JFvmbAMTJD6LVCQJLSYXMYn4UeKA4wfVgPukiQhfGLBM8IUGgHP24rR5awYiRvVAQJLQYnIRk4iHwsx6KOD4QTXgPmkiwhcGLBN8oQHg8IVmoGNUGwHaCZonQjG5iEnEjzoBHD+oBtwnTUT4woBlgi80ABy+0Ax0jApfyLsGaN+avHPSFh3gaENpriOaiPCFBhSjSWUgUEFDsmXONjBB4rNIRZLQYnIRk4gfJQ44flANuE+aiPCFAcuE9UIDwLFeaAY6RsV6Ie8aoH1r8s6pOzrvqXnvIRSgZAdJExG+0EBV0KQyEKigIdkyZxuYIPFZpCJJaDG5iEmkd4l7T817DywmXrSDoIkIX2igamhSGQhU0JBsmbMNTJD4LFKRJLSYXMQkAl/IYpLzC4JW4fCFBpSkSWUgUEFDsmXONjBB4rNIRZLQYnIRkwh8IYtJzi8IWoXDFxpQkiaVgUAFDcmWOdvABInPIhVJQovJRUwi8IUsJjm/IGgVDl9oQEmaVAYCFTQkW+ZsAxMkPotUJAktJhcxicAXspjk/IKgVTh8oQElaVIZCFTQkGyZsw1MkPgsUpEktJhcxCQCX8hikvMLglbh8IUGlKRJZSBQQUOyZc42MEHis0gFQrOQITJBeK837z1EBjbfRGkiwhcaUJQmlYFABQ3JljnbwASJzyIVCM1ChsgE4b3evPcQGdh8E6WJCF9oQFGaVAYCFTQkW+ZsAxMkPotUIDQLGRCEYwKoWMeo+DakiQhfaEBRmlQGAhU0JFvmbAMTJD6LVCA0CxkQhGMCqFjHqPg2pIkIX2hAUUsqfIInYEDsXEMGDwEjGiTQuxz6CManxhlLMlsYHhsHn50a0Tk3j9mpw0PHLdcJqeffc04T512hpd8E+hbL7ejwhW6JaWifc76hgU8ENIinuwufMkW3PAk4tyyu/I2rxkGaIfhCO23nJtI/bs5PYDlnkPOu0NJvAvCFDgln+NXo8Eg0AwEQAAEQAAEQAIEIEsB6YQRFR8omCTQ1Na1bt+748eMmg8DYIAACkSGgzjbqnKPOPJHJGIl6IgBf6AkfDgYBtwTKy8vVrFOnabcHoj0IgAAIEAios40656gzD+FYHBI1AupXBHxh1ERHvoYJzJ07V826lStXGo4Dw4MACESDgDrbqHOOOvNEI11kSSegFpWHDBmiquW+++6j98L4SNxfyFicCIeG3+4RFh+pg4ABArhGYQB6qIbcunXrkiVLSkpKrP0ryhpKvdMJvjBUhRmZYOELIyM1EgUBFgTgC1nIYDoI9dWT/KiSUB+1KHjrrbfa9zIPGjRIrStLNYVKAfhC02WI8TMRUAv1ah6qX2bAAwIgAAIBELDWgbDvJADUnIfI9iwb5QVVhSg7qFYNOcevJTb4Qi0Y0Yl+AtZCvf5+0SMIgAAI9CJg3TEGMBEnYK0RWh91y6laO4yCEUwTHdMg4rOAb/o4TfPVBpGBgDgC+CEqTlIkRCQAX0gEh8P8JqDu6sCjavyGjP5BAAQUAeuGZqnbSyExCLgiAF/oChcaB0dA7fxSZ+qysrLghsRIIAACkSSgzjPqbKPOOZHMHkmDQAoB+EIUBFMC1oND1d2+TONDWCAAAlIIqPOMOtsI3mEqRSjkEQQB+MIgKGMMGgFrhyB+xNPo4SgQAAEnBKwnWuPpB05YoU0UCMAXRkHlsOZo3fSDJcOw6oe4QSAMBKwtbnjrZhi0QoxBEIAvDIIyxiATsB4oirsMyQBxIAiAQB8ErDsL1XkGlEAABCwC8IWoBNYE1GNmBwwYYFlD3P3DWioEBwKhIqDOJ5YpVGcYPM46VNIhWH8JwBf6yxe9eyegHitqWUN8QCAjAXUdMNtFQPX31lVCfEAgIwF1bongg4u9n5bRg2AC8IWCxZWTmvplr15ApK714AMCvQlY3/e99ydZjzqyrhLiAwK9Cch+y62cLwBkEiwB+MJgeWM0EAAB3QTUoqC1omxfNbQ2Lam/x34C3bzRHwiAgGQC8IWS1UVuIBARAtajRuxb160n0qm/jwgBpAkCIAACWgjAF2rBiE5AAAQME7A/7dK6goxNpoYlwfAgAAIhJABfGELREDIIgEAvAmr3gPKCapeJ+hc8kQ4FAgIgAAI0AvCFNG44CgRAgB2BpB1MGkR2ISIgEAABEOBNAL6Qtz6IDgRAwDGB8vJy6/Kx+l/1Z8fHoSEIgAAIgEA3AfhClAIIgIAQAtalZOuDh9IJERVpgAAIBEsAvjBY3hgNBEDATwJJX+jnIOgbBEAABMQSgC8UKy0SA4EIErAuImMncgSlR8ogAAJaCMAXasGITkAABFgQsJ5Wo/6XRTQIAgRAAATCRgC+MGyKIV4QAIHsBKytJ9h0ghoBARAAARoB+EIaNxwFAiDAkQB8IUdVEBMIgEB4CMAXhkcrRAoCIJCLAHxhLkL4dxAAARDoiwB8IeoDBEBADgHrRclz586VkxIyAQEQAIEACcAXBggbQ4EACPhM4Pjx42rJUP2vz+OgexAAARCQSQC+UKauyAoEQAAEQAAEQAAE3BKAL3RLDO1BAARAAARAAARAQCYB+EKZuiIrEAABEAABEAABEHBLAL7QLTG0BwEQCJjAltfG9e96wV3s8rn1n1mDt+39sHbWv0wdVjrqCwV5A68oHl8844WFDUfPp4UWP3Fk68LFj982dbRqltfvpttvuOexB6u37WqNB5wDhgMBEACBUBCALwyFTAgSBKJMYHvN5EutFx/3f2bz+Y5464ElC+67MpZ8F3LPH24cPG/jhwnPFz/11muPXKPsYK9PrP/tcxYeSPeQUUaM3EEABEDAIgBfiEoAARBgTuDI5jlfSPrC1sOLnrjlcxnMXvdfFRYufv9ER0f81KoXx12evVlevxHPVDVfYJ45wgMBEACBgAnAFwYMHMOBAAi4JdDjCy957IWqSVd0ur2CkuL5q1Zs+3hP04atbz75nH35MHbPAzt2rJrc1Sw2fPCsZS/WNTZ+tK2x7qXqp4uG9iwz5g947O29uJ7sVg20BwEQEE0AvlC0vEgOBCQQ6PGF1vpfvxGznms6k+LoWre+9eiXEpYv1v/6azsvHxfe/0Ddp6lXi881rx87MmkNY9+dsaf7fkUJnJADCIAACHgmAF/oGSE6AAEQ8JdAqi+MjZ20/VSGAZsXPHptP9uF42Ffe+NAe4Z2Bzc//cVEs4JrX/k4Uxt/80HvIAACIMCWAHwhW2kQGAiAgEXA7gtjlz25oTkzmP0byrtvQ+xcU7xz6X9ncXzt2yfdnDCGFz9SewiYQQAEQAAEEgTgC1ELIAACzAnYfeHI0k0ns4Tb2vzGLfndhi//ygUNrdnSann5qasTxnDs8i24xZC5/ggPBEAgQALwhQHCxlAgAAIUAnZfOKX8YFu2Pto2lSaeSlNww4p9WYeKb1p21yXdxrCgYkXW/iix4hgQAAEQCDUB+MJQy4fgQSAKBHT7wo7kg7LVvmb4wiiUEHIEARBwSgC+0CkptAMBEDBEAL7QEHgMCwIgED0C8IXR0xwZg0DICMAXhkwwhAsCIBBeAvCF4dUOkYNARAjAF0ZEaKQJAiBgngB8oXkNEAEIgECfBOALUSAgAAIgEBAB+MKAQGMYEAABKgH4Qio5HAcCIAACLgnAF7oEhuYgAAJBE4AvDJo4xgMBEIgsAfjCyEqPxEEgLATgC8OiFOIEARAIPQH4wtBLiARAQDoB+ELpCiM/EAABNgTgC9lIgUBAAAQyE4AvRGWAAAiAQEAE4AsDAo1hQAAEqATgC6nkcBwIgAAIuCQAX+gSGJqDAAgETQC+MGjiGA8EQCCyBOALIys9EgeBsBCALwyLUogTBEAg9ATgC0MvIRIAARAAARAAARAAAS0E4Au1YEQnIAACIAACIAACIBB6AvCFoZcQCYAACIAACIAACICAFgLwhVowohMQAAEQAAEQAAEQCD0B+MLQS4gEQAAEQAAEQAAEQEALAfhCLRjRCQiAAAiAAAiAAAiEngB8YeglRAIgAAIgAAIgAAIgoIUAfKEWjOgEBEAABEAABEAABEJPAL4w9BIiARAAARAAARAAARDQQgC+UAtGdAICIAACIAACkgi0HPn93JeenVT2j9+8f/Tgm2/+i9v+8uK85KeguODr3xz2D49Pmvvay+9/cjIuKfGo5wJfGPUKQP4gAAIgAAIg0IuA/f2TPYYw058GXjHmsYff2XcC7lBEGcEXipARSYAACIAACICATgLOfaHlFW8cvLj+MKyhTgnM9AVfaIY7RgUBEAABEAABxgTsvnBo8X/u/ODouaTri5/bu2fbijdf+PZ9Q2wXl/OKil79uIVxSgjNCQH4QieU0AYEQAAEQAAEIkXA7guLSzedzpz8qbdXTf9SLHl1+brHFx69EClM8pKFL5SnKTICARAAARAAAY8EnPlCNUjr75aWfj7hDAcX/foALiZ7RG/2cPhCs/wxOgiAAAiAAAgwJODYF3a0n33vzsEJY3jxI7WHGGaDkBwTgC90jAoNQQAEQAAEQCAqBJz7wo6Oo8+V5SeM4ajKde1RYSQyT/hCkbIiKRAAARAAARDwQsCNL2xbUVGQ8IUFFSvavIyLYw0TgC80LACGBwEQAAEQAAF+BKi+EOuF/LR0FRF8oStc2Rrvqn34CtvTPksf2Imt+lrAohMQAAEQAAEjBFz4wviB8gmJPcm4v9CIWhoHhS/UAfPEwukD7Q+BHzjwFzuxjq6DLPoAAScE4m3N7729/JGKHxTfM+bLRdb3U6zoy2PuLZ4xv/zXm7ecbHXSC9qAAAjYCDj3hecOLv9q4vZC7EcOfRHBF3qXsO3kf309xRaq7yQspHvnih5AIDeBtnP7V6yY9VdDe56fluk1XQWjin5S/eZRuMPcQNECBBIEnPrC+CfzZxRd1D3xhj274iweUxPuIoIv9K7f/g3lX+iaEgOvHH7jddbkiH13xp7PvHeNHkAABLISiB94v+r/3X5Nv75f3Zr8135fnXRv7X7c4YGKAgFnBJz4wrZzTf/287+/PDHLhn3tjQPYi+wML99W8IWetTlT9dP/Y30zjSx9Y2nignLBta98jOnhGS46AIEsBFq3vvWo7S0LeXn9vvqdbzy9dMGaLRua9jQ0NOzb8eY7r8/42bTC7svK3T/Ybi56cRte4YqqAgEHBPryhZ3vwdu+dNnsr9l+mOH9yA6ghqEJfKFHlWzP8xz4o4Un/rDsrkusL6B+f7+sDqvpHunicBDISCC+a0P5l3suHcdGDlvwzpZzGX+Ipa1nqKk5bPjKPVg1RGWBQC4Cdl+YY1G+31enTXrnAKZVLqTh+Hf4Qo86JS8i5+WVVG2In22YP6h7AuFSske0OBwEMhM4uXf5sMLk91Rs9G1r9uX4QkpbXMyf+NCHZ0EXBECgTwIOfeFVf/rj39Zl/lUGwKEkAF/oTbaei8j5Vy5oaO2In//93w3p/sbCpWRvbHE0CGQiED8we9pXkvcUFo94Y6+jVYrWt5fdm7wLKu+iCdXbsZyPAgOBvgg49IXqC29I4VNvwRqKqSb4Qi9S2l8KWXzHu8c7+7I9swaXkr3AxbEgkInAwc1PfzGxVhi79JG1e5xiirc1/XhC8lVdebeVbjrh9FC0A4EoEsh+f2HbkT9+8JvfVZXeN+Tinsn4/ZrtrfixJaFQ4Au9qGi7iNx5c6F1e5PtGde4lOyFLo4Fgd4EPpkzNent8qeV73f16Bm7p8y7aEpNI77FUGMgkJVAzv3I6rmhKxbe9fmENSz66sp92G0poKDgCz2I2HMROe+iH6xOrFuc/2TlsMQ3Fy4le8CLQ0EgnUDLwVeT24tjlz72zh9dIorvmXF3crtKftmcT/D4eZcE0TxCBHL6QsUidRl++PzXP8OPrdCXCHwhWUL7ReTUJ7zbljRwKZnMFweCQC8CO1d/L2nriorXfOoaUXzDstL+yeUNSg+uh8QBIBBSAk58oUrNdt0sL3E/VUgzRthdBOALyYVgmwxpCw/xuup7E0vruJRMBowDQSCNwJkXZ16VMHX5Dz939IJ7QicbFxcku+jaK4YPCIBARgIOfaF9icTaf4lPuAnAF1L1s11E7rUoeGbvy3+VWNbApWQqYRwHAqkE4rseKkk+nob4qsn2M+tGJ71lvyk1HwIyCIBAZgIOfWHKbsuu57UBaLgJwBfS9LP/Qsrg/Oy3MeFSMg0xjgKBNAJtm0qTa322O3rdcWrf+cCopLnEd5g7eGgdKQKOfWF8U/KFDnnEhfxIgeWeLHwhTSH7HRXjHtp1Pr2X9rWVX09s4MelZBpjHAUCKQRam9+4JbkXuf8zm3vNOme8DpaPT/rCgooV2HniDBtaRY+AY1/YcaznhQ55w76xrjl6rERlDF9IktN2ETkv8/Us+21MuJRMgoyDQCCFwPlDr96UdHTwhagOEPCZgHNfaL89A7cY+iyL/93DFxIY2y8iDxz4i50ZVxzsl6twKZlAGYeAQCoBH3zhjfNeJ+xdgTAgEAkCzn1hR/xA+YTkowJwe0bIywO+kCCg/SJyyaTtWV60+tnKecMuwruSCXxxCAhkIpCyZeTiR2oPkTC1b590c3LVcXx1A6kTHAQCESDgwhd2xNdXffNz3RMLTwYNeXHAF7oX0H4ROfkFk+MPuJTsnjOOAIFUAhf+994bvW4ZaTv5X18fmOjkc4+vPwrIIAACmQm48YUd9lunUh/oC7xhIwBf6FYx+0Vkp65QtcOlZLeg0R4E0gkcnjMlea2q582TrjjZb5C/atCSj/DaLlf40DhKBFz5wo72jx66MzE9L5pQvR1PqwltrcAXupXOfhHZhS/Mw65kt6TRHgTSCNi3+dPerJDyvpPsN4GAPAiAAAhElQB8oUvl7ReRc95FkfIlhEvJLlGjOQikEzhS/+yXE7/GYpc9ucHt8zDsSxp5g59++SzWNFBkIAACIJBCAL7QVUGkXES+aEpNY46vlXMHl381+cQ1XEp2xRqNQaAXgfhnW74zPLlMnz+tfL+rd24d3Pz0F5MvwfuTuVvPADEIgAAIgEAqAfhCVxVhX65wdmvtJ3OmJo1hzvVFV7GgMQhEkEB882vfuTTp7QY89vZep0t+8dYPH767ZzK69ZQRZI2UQQAEokgAvtCN6vZHzzi87T2+bdX9lyW+xpxZSTcRoS0IRIxA+9lNY4cllwxjo0f/7o+O9o6ce/OFuz6fOO7qP5tffyJi4JAuCIAACDghAF/ohJLVJuUaluPHp6U8F8PBpWfn8aAlCESTwJ7/eXpQcl9yXuH9D9R92vc78eLnNr356JeSh1z0d0tqzzldZowmYmQNAiAQWQLwhc6lt19ELipe86nTI08snJ58YBouJTulhnYgkJVA/NSqF8dd3vM4gNjI4S9seP9cxnXDc8caKp752x4b2W/EkwsOtAAuCIAACIBARgLwhY4Lw34R+bqfvHjS0cWrrt7tj7bBpWTHwNEQBLITSLeG6hGhX53wzbn/8WLtlg1Nexob3/946+vrXp9Rcf+fFdj84+fvmvvCgb7XFgEdBEAABCJNAL7Qofz2i8huH5Dhdhezw5DQDAQiTSB+7vdrn7qu0OFTRAtKip9/e0vmNcVIY0TyIAACIGAnAF/osB7sF5GL73j3uMPDupu5euqhu67RGgSiTOBc89bnFnx/kG1RsLdPLPjy919ecfizKGNC7iAAAiDgkAB8oUNQaAYCIMCWQMupj1//zQvfe+ofhpWO+kJmj1gw4oZ/mPXAwv+orPvow5OunnrINmsEBgIgAAL6CcAX6meKHkEABIwSiLed3FK3asbPphUW9Ww4sa8jFn5h9P3fmDlvxi/Xb2nBxmSjWmFwEAABZgTgC5kJgnBAAAS0Eeg0iJtf//FzZX894pp+GW5EHFW5zvn+MW1RoSMQAAEQ4EsAvpCvNogMBEBAF4H4uQ8/eGf+L2f9zT3/N/l064EDf7GzTdcA6AcEQAAERBCALxQhI5IAARBwSCB+8ugffrP2V9+fUfzDOXuwGcUhNTQDARCICgH4wqgojTxBAARAAARAAARAoG8C8IWoEBAAARAAARAAARAAgU4C8IWoAxAAARAAARAAARAAAfhC1AAIgAAIgAAIgAAIgECCANYLUQsgAAIgAAIgAAIgAAJYL0QNgAAIgAAIgAAIgAAIYL0QNQACIAACIAACIAACIGAngOvIqAcQAAEQAAEQAAEQAAFcR0YNgAAIgAAIgAAIgAAIJAj8f3kgcJFRobR0AAAAAElFTkSuQmCC
Jede Matrix $$A \in \mathbb{C}^{m \times n}$$, $$m \geq n$$, besitzt eine QR-Faktorisierung.
<$details summary="Genauer" tiddler="Genauer">
Jede Matrix $$A$$ besitzt eine \emph{vollständige} $$QR$$-Faktorisierung.
Diese ist aufgrund der erweiterten Spalten von $$Q$$ nicht eindeutig.
Eine reduzierte $$QR$$-Faktorisierung hingegen ist eindeutig, wenn $$r_{ii} > 0$$ gilt.
(Für einen Beweis sei hier auf Kapitel 7 verwiesen.)
Eine mögliche Anwendung der QR-Zerlegung ist das Lösen von Gleichungssystemen:
</$details>
<$details summary="Bemerkung" tiddler="Bemerkung">
{{Bemerkung: QR-Faktorisierung}}
</$details>
<<list-links "[tag[QR-Verfahren]sort[scriptorder]]">>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/771_xo46ybI?rel=0&start=5028" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
<<list-links "[tag[QR-Zerlegung]sort[scriptorder]]">>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/YsuPBWx7-A8?rel=0&start=0" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/BbMytuPERdw?rel=0&start=0" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
#Die QR-Zerlegung ist anwendbar auf das Ausgleichsproblem <$latex text="
\|b-Ax\|_2 = \|Q^*(b-Ax)\|_2 = \|Q^{*}b-Q^{*}QR\|_2 = \|c-Rx\|_{2}
" displayMode="true"></$latex> mit $$c=Q^*b$$. Zerlegen wir $$R$$ und $$c$$ in <$latex text="
R = \begin{pmatrix} R_1 \\ 0 \end{pmatrix},
c = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}, \;
R_1 \in \mathbb{C}^{n \times n}, c \in \mathbb{C}^n,
" displayMode="true"></$latex> dann ist nach Pythagoras <$latex text="
\| b - Ax \|_2^2 = \| c - Rx \|_2^2 = \| c_1 - R_1 x \|_2^2 +\|c_2\|_2^2
\geq \|c_2 \|_2^2,
" displayMode="true"></$latex> mit Gleichheit genau dann, wenn $$c_1 = R_1 x \: \Leftrightarrow \: x = R_1^{-1}c$$.
#Die QR-Zerlegung (mit der Householder-Transformation) gehört zu den numerisch stabilsten Algorithmen der Numerischen Linearen Algebra. Der Grund liegt darin, dass unitäre Transformationen keinerlei Fehlerverstärkung hervorrufen.
Ist $$f:U \longrightarrow \R$$ eine $$\mathcal{C}^{p}$$-Funktion, so gilt an jeder Stelle $$a \in U$$
für $$x \rightarrow a$$
<$latex text="
f(x) = T_pf(x;a) + o(\|x-a\|^p),
" displayMode="true"></$latex>
d.h. es gilt
<$latex text="
\lim\limits_{x \rightarrow a} \frac{f(x) - T_pf(x;a)}{\|x-a\|^p} = 0.
" displayMode="true"></$latex>
<$details summary="Bemerkung" tiddler="Bemerkung">
{{Bemerkung: Qualitative Taylorformel}}
</$details>
<$details summary="Beweis" tiddler="Beweis">
{{Beweis: Qualitative Taylorformel}}
</$details>
<$details summary="Beispiele für Taylorpolynome" tiddler="Beispiele für Taylorpolynome">
{{Beispiele für Taylorpolynome}}
</$details>
<$details summary="Beispiel: Qualitative Taylorformel" tiddler="Beispiel: Qualitative Taylorformel">
{{Beispiel: Qualitative Taylorformel}}
</$details>
! Qualitätskontrolle
Eine große Lieferung aus $$N$$ Orangen, enthalte $$f$$ faule und $$g=N-f$$ gute. $$N$$ ist bekannt, aber nicht $$f$$ und $$g$$.
''Frage'': Wie soll der Empfänger durch $$n$$ Stichproben (ohne Zurücklegen) $$f$$ (und damit auch $$g$$) schätzen?
''Modellierung'': ''Hypergeometrische Verteilungen'' zu den bekannten Parametern $$(N,n)$$ und den unbekannten Parametern $$(f,g)$$, wobei $$f+g=N$$.
! Werfen einer Reißzwecke
Entweder landet sie mit der Spitze nach oben ($$o$$) oder mit der Spitze schräg nach unten ($$u$$).
''Frage'': Wie kann man durch $$n$$-maliges Werfen die Wahrscheinlichkeit $$p$$ von $$o$$ schätzen?
''Modellierung'': ''Bernoulli-Verteilungen'' auf $$\{o,u\}^n$$ mit unbekannter Erfolgswahrscheinlichkeit $$p$$.
In beiden Problemen geht es um die Schätzung der unbekannten Parameter $$f$$ bzw. $$p$$, durch die dann ein sinnvolles W-Maß aus einer Familie möglicher W-Maße festgelegt ist.
! Qualitätskontrolle (2)
Wieder geht es um die Orangenlieferung.
''Frage'': Wenn vertraglich vereinbart wurde, dass der Empfänger nur dann den vollen Preis zu bezahlen hat, wenn höchstens fünf Prozent der Orangen faul sind, wie soll sich der Empfänger entscheiden, wenn er unter den $$n$$ Stichproben $$a$$ faule findet?
Gut wäre eine ''Entscheidungsregel'' der Form:
<$latex text="\begin{aligned}
\text{höchstens } c \text{ Orangen faul} &\Rightarrow&\text{Lieferung akzeptieren}\\
\text{mehr als }c\text{ Orangen faul} &\Rightarrow&\text{Preisnachlass fordern}
\end{aligned}" displayMode="true"></$latex>
* $$C_{\theta}$$ manuell aufzuzählen ist mühselig und für unendliches $$\mathcal{X}$$ oft unmöglich.
* Einen systematischeren Weg zum Ziel bieten Quantile.
!! Definition
Sei $$(\R,\mathcal{B}^{1},P)$$ ein Wahrscheinlichkeitsraum und $$0<\alpha<1$$.
* Eine Zahl $$q\in\R$$ heißt \textbf{$$\alpha$$-Quantil} von $$P$$, wenn <$latex text="\begin{aligned}P((-\infty,q]) & \ge\alpha & \text{und}\hspace{4em}P([q,\infty)) & \ge1-\alpha\text{.}\end{aligned}" displayMode="true"></$latex>
* Wenn $$X:\,\R\rightarrow\R$$ eine ZV ist, heißt $$q\in\R$$ ''$$\alpha$$-Quantil'' von $$X$$, wenn <$latex text=" \begin{aligned}
P(X\le q) & \ge\alpha & \text{und}\hspace{4em}P(X\ge q) & \ge1-\alpha\text{.}
\end{aligned}" displayMode="true"></$latex>
* Für Standardmodelle kann man Quantile aus Tabellen entnehmen.
* Für $$P(A):=\int_{A}\rho(x)dx$$ ist $$\alpha$$ die Fläche unter dem Graphen von $$\rho$$ bis $$q$$:
[img[quantile.png]]
iVBORw0KGgoAAAANSUhEUgAAAZIAAADGCAYAAAD46gavAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAABtxSURBVHhe7d0JVJZ1vgfwHzbXccozg2YKKMaoUZaWylKWJJWJZR0XnNt1xSMxR9MSTcDcZirRhCZzLFtcUjBzLzU3xBm8WoMoVy2ahHHf0Ny9yozdEe/7/fM8+oooy7s9y/dzDud9eV6aM4A83/f3//0Xv6sOQkREVEO1tEciIqIaYZAQEZFLGCREROQSBgkREbmEQUJERC5hkBARkUsYJERE5BIGCRERuYRBQkRELmGQEBGRSxgkRETkEgYJERG5hEFCREQuYZAQEZFLGCREROQSBgkREbmEQUJERC5hkBARkUsYJERE5BKe2W4DZ86cke+//17+8pe/SG5urly4cEE93s7LL78s9erVk6ZNm0pQUJC0atVKgoOD5Ve/+pX2FUREZRgkFoTgyM7OlgULFsg333wjp06d0l4RadSokbRu3Vq9vmzZMu3qzfSgSU9PV4+6bt26SadOnaRt27bSsmVLqV+/vvYKEdkVg8Qi/vnPf8qqVatkxowZsmnTJnUNofHEE0/I448/rsIjJCREXYf7779fqvqrx//24cOHpaCgQAVMTk6ObNu2Tb2GyiUqKkqefvppadKkibpGRPbCIDE53NwnTpwoixYtUp8jILp06SI9e/aUgIAAda0i1QmSihw5ckTy8vJk7dq1MmvWLHUNofK73/1OBQuHwIjsg0FiUqgIXn31Vdm6dav6fODAgfL888/LI488oj6vjKtB4gxDaahSMjIyZMWKFRIRESHDhg2TF154gUNfRDbAIDEZ5wBp0KCBvPLKK9K1a1fx9/fXvqJq3BkkzoqKilSFovdWpk+fLt27d+ewF5GFcfqvSeBdf3R0tERGRsrevXtlwoQJsnHjRunbt2+1Q8STQkNDJS0tTU6fPq1CBKGH2V7JyckqZMzrghRtmCpxQX7i56d/xEjKnK8lv/hn7WuI7IkViQnghjx+/Hg5f/68CpDY2FipU6eO9mrNeKoiKU8f9nrnnXdUNZWUlCSjR48215DXxQKZM7S3xGcUaBfKif6jZH/+hjwTVFu7QGQvrEgMDJVHu3bt5LXXXpMHH3xQzcZCBeJqiHgTAgONf/x/x3RjDHlhMsDy5cu1rzC40oOyfLgWItHJMnf7MbniCOCrVy/Lse0ZkhwdKJLzR+nU9wPJv1iq/UdE9sIgMSj0GR5++GHZsWOHTJ48WebOnXvbWVhGh1lcCBRMI8YQHaqqhIQEgw93lcrFHctl+hxHiAQOlWXz35a4sEDtj6a2BIb1l8nzP5BBjiyRnAWyOO+MeoXIbhgkBoM1G3jHjptsWFiYeiePG7BVoOmOHsr69etl165daogNs73wfRtPiRT+dZXkOJ4F9u8pnRrfPHRVq/GT0rd/mPhJvmSu/04uaNeJ7IRBYiAIjcDAQHWTHTNmjHzwwQemrkJup3Pnzur7TU1Nlbi4OOndu7fs3LlTe9UozsrBgsOOx+by7KP3ya/LLpbjLy0fDRdHkkjx8XNySbtKZCcMEoPAUBaGfBAcK1euVDdXM/VCagLDXQhMDN8Btl2ZNGmSatCbxy/knntbOKLG4Zt9cuzf6iKRrTBIDOCtt95SQ1lPPfWUWqGO4R47adOmjXzxxRcyb948GTt2rBray8rK0l41un/LyYN7ZC+ePtFMgn6hLhLZCoPEx7C+4g9/+IM8++yz8v7779t2axF83wMGDFDNeKzOj4mJUeGKrVh8b69s2PqPW/Q/zsmPW7eLXBUJDPCXu7SrRHbCIPEhbGmC6bBYmf7uu+9afiirKtCMnzlzppoqjGY8FjMaYapwceZyyT5688LD0qP/LZ9n5jtyJEz6xzx8iz4KkbUxSHzkueeeUxseYlt29AUYIjfCTLV169apBYyYKoymvE9ndhV/KLH9xsu8/GIpWy3ysxTnZ8ob/YbJnGLHp9F95D8jua8Y2RODxAfQC8FNEjdL9EcYIhXDYkZMFUbvBCv7sTDTN0NdzWXA7M8lXTJlYHiQ3KG2R/mlBIUPkLQcR4oEDpWlmUMlrC7/nMie+C/fyx599FG1ZQhCBNudMEQqh97J5s2b1cw2/Nx8sojRP0pGrcqRjbOTJdpPuyadJXn2Ktme/57ENvmldo3IfhgkXoIprTi2Fmd4vPHGG6rBzjM7qg4HdKERD5jVhpMfva5uqDw9aIr8tRRbpOBjvUwZ9IKEBXKPLbI3BomXYI0EboQIEZwdwkqk+tCIxyJGHKDVoUMHtZklEfkeg8QLMJx16NChayFCNYcq7s9//rMKkeHDh6spwsbcXoXIPhgkHoYQ0YezGCLugTDBCYyYsIC+CbZXMcZ6EyJ7YpB4EPaTYoh4Dn6+2F7l2LFjqglvvL26iOyBQeIheJe8YcMGSUxMZIh4ELZXwYLFoKAg1YfCQkb3CZaec/8hV6/ukXk9g7VrRFQeg8QDMOyycOFCFSJDhgzRrpKnoAmPvbqweLFXr15q12T2TYi8h0HiZp9//rnMmDFD+vXrxxDxIvRNsHhRPyceixcZJkTewTPb3QhH4+JUwxYtWkhmZqahp/h668x2X8AaE0wPjoiIUMNeqFiIyHNYkbhRx44dpaSkRE1P5ToR38HixcLCQvUcTXh9ISMReQaDxE0wg+jo0aPy8ccfq1MOybdCQ0Ov7RqMTR85PZjIcxgkboCNFzFDCz0RbMhIxoAhLYSJn5+fqkwYJkSewR6Ji7Zs2aIOpcI+WkuWLDHNkJaVeyTlIUAQJPDpp5+qKcNE5D6sSFyAjRgx3fRf//qXmi3Evogx6ZUJYK2JTzZ8JLIwBokLMPZ+4sQJFSIhISHaVTIihAm2VNE3fEQlSUTuwSCpIfRFcK4IVq2j0U7Gh4OyMKMOYRIVFcXKhMhN2COpAee+yOLFi015roideiTlYaEidg7G2fD4XWK6MBHVHCuSakJfBPto6X0RHk5lPvidTZs27dowFysTItcwSKqpf//+ahYQ+yLmhjDRh7kYJkSuYZBUw2effSZr1qxR+2ixL2J+5cMEbw6IqPrYI6kinHmB1dJYtY6tys0+1dfOPZLy0DOZOnWqjB07VoUJdm8moqpjRVJF2Efr0qVL8uGHH3K9iMWgMhkzZowKEewcjG3oiajqGCRV8Prrr8uePXvkT3/6E/siFoZKhGFCVH0Mkkps27ZN3nvvPenRo4d07dpVu0pWxTAhqj72SG4DY+eNGzeW2rVrS1ZWlqWGtNgjub1JkyapnglWw8fExGhXiagirEhuA+9Oz549qxausS9iLyNGjFCzubp06cKpwUSVYJDcQkFBgcyZM0dN9cW7d7IXfWpwQkIC15kQVYJDW7fQunVrOXnypKxcuVL8/f21q9bBoa2qwfAmzn+fNWsWt1MhugVWJBXAmgJUJCkpKZYMEao6roAnqhwrknLwDrRBgwbqHfvChQu1q9bDiqR6nCuTzZs3q1AhojKsSMp56aWXpKSkRCZPnqxdIbpemXTr1k1tQc9je4muY5A4Wb16taxatUo1WH/7299qV4nKIEywtiQyMpJnwBM54dCWk2bNmsmVK1fU2etW741waKvmnM+AxxG+OH2RyM5YkWiSk5Nl//79kpiYyAY73ZbzGfCsTIhYkSjY2RfVSJs2bSQjI0O7am2sSFznXJlgR+jg4GD1nMhuWJE4xMXFyeXLl9U57ERV5VyZxMbGsjIh27J9kGBdwMaNG2XIkCHc2ZeqTQ+T7du3y5tvvqmmCRPZje2HthAe+BHYocHujENb7oU3JFhbgoWLmCaMGV5EdmHrigRDWQcPHpThw4ezwU4uwdYp2EIFCxaxcJGVCdmJbSsSNNjvu+8+efDBB2X+/Pni5+envWIPrEg8Q69MkpKSZMqUKbb7d0X2ZNuKZPDgwWoFe2pqKv/YyW1QmWAGV3p6Og/GItuwZZDgXaO+gp0NdnI3TAnGKYsYMmWYkB3YcmirVatW6sCqL7/80ra9EQ5teR5CBEf2IlRwSBqRVdmuIkEz9IcfflANUTbYyZOcz3/HUc1EVmWrigQzaYKCgqRp06Zquq+dsSLxHgyh8mAssjJbVSSjRo2Sc+fOycSJE7UrRJ7nfDAWwoTIamwTJGfOnJEZM2ao80bwbpzIW5xPWcRZJjxlkazGNkNb0dHRsmnTJsnNzZV69eppV+2LQ1veh6HVPn36yNGjR7n9PFmKLSqSbdu2qRDBIjGGCPkKKhM034Hbz5OV2KIiad++vezdu1eys7OlTp062lV7Y0XiOzwYi6zG8hUJwgPDWZjuyxAhIyh/MNbp06fVcyKzsnxF8tBDD6mZWmvXrmWQOGFF4ntFRUXq98Adg8nsLF2RYBuUv//976xGyJBCQ0PVdODZs2dzx2AyNUtXJNhH68qVK7J69WoGSTmsSIyDZ5mQ2Vm2Ipk6dao6a2TcuHEMETI0nmVCZmfZiqRRo0YSEBBg+61QboUVifHwLBMyK0tWJKhGfvrpJxk5cqR2xVf+T04W/FWWvhuvbtxlH/Hy7tJcOVBSKnIxV96NwrUoiV+6TxxXyMZQmcybN49nmZDpWLIiQSUSHBzs45MPL8q+pZMlbuxS+Um7coPIZJnT/6yMfnWm4/Uukro+TXqF/FJ70fNYkRgXQgRDXOiXcPt5MgPLVSSvv/66nDhxQj36LkRKHcXGp1qIdJCE6WtlR2GhFBbmy9rUXtIQX5KXJoNUiDh0iJLwpt4LETI2hAdCBNvPszIhM7BUkKBJ+dFHH0l4eLi0a9dOu+oDpQdk3cwvVUg0TEiQwZ2byZ3qhbrSrGe8DO+gokTTUDo8106aWnoiNlWX81kmDBMyOkvdvkaMGKHCBOew+1TJT3KgCDHykHTrcL8jPpzUaizhjuC4rp08F97YutPnqMZ4MBaZhWXuXwiQzMxMefHFF31+DnvpqSPyoxqzai0PN/+1unbdf0iDJveWDW85NOzVVaI4rEW3EB8fr9aXxMTE8CwTMizLBAlmaJWUlBiiOXn14nk5qD2/WS25M6CphKrnjorlxQhpxHKEboFnmZAZWOIWplcjPXr08Hk1An51fyP3as9vViolxw9JkfYZUWX0MMGRvVhnwjAho7FEkAwaNEguXbokgwcP1q74Vq0GTaSlGrvaJ4dPXFbXrjsvBVu2aFOCf5B1PxyVK+o50a0hTKZNm6YqE4YJGY3pgwTnjCxcuFAGDhxoiGpEubOhhIQiSQ5IztY9UlJ2tczFQtmy4gftE5HD3+6Ww1yJSFWgVybdunVTE0sYJmQUpg+SIUOGqEejVCNKrWCJeulZaeioO/LSpsmMrH1lYVKyT7I+nikzy8qRMlvWyvK8E1zVTlWCMNGnA6MyYQOejMDUK9tRjbRo0UKGDh2qVgIbSukJyX1/jMR9UvEfesMXuktk3lfy9bVQ+S+ZvmWCdL7nDu1zz+LKdnPTT1nEMdIIE2yvQuQrpq5I9GpkwIAB6tFQajWSxxLfkWUz3paESOcFiB0k4Z0lsjx9ooz+aLokdy+bv0VUHfopi5GRkeyZkM+ZtiLBOzH8ERmyGjEBViTWcObMGUlJSVFb0LMyIV8xbUWC1b5gyGqEyEvq169/bZ0JKxPyFVMGCaqRrVu3yoQJE8Tf31+7SmRPzosW2YAnXzDl0Fb79u1lz549snHjRp5+WEMc2rIeLMzFMC+HucjbTFeR6NXIK6+8whAhcsIV8OQrpqtIUI1g2m92djaDxAWsSKyLlQl5m6kqElQjubm5atovQ4SoYuV7JqxMyNNMVZHo1ciGDRvUHwvVHCsS63OuTDZv3qxChcgTTFOROFcjDBGiyjlXJtyCnjzJNBUJeyPuxYrEPlCZDB8+XGbOnMmeCXmEKSoS9kaIag6VifMW9NhahcidTBEkGOe95557JDY2VrtCRNWhD3MlJSWpvyN9B2EidzB8kKxdu5bVCJEbIEzS0tJk+vTpaouh1NRUNexF5CrD90geeOABtTEdeyPuxR6JvaEiQaUfHx+vKhVOYCFXGLoiQTVSVFTEaoTIzYYNG6amBGNqMAIFb9aIasrQFQneNZ89e5bViAewIiHAlGA04CMiIlQTHuecEFWXYSsSvRpJTExkiBB5CKYCHz58WD3HiYuFhYXqOVF1GDZIECD33nsvZ2oReZh+2iKgJ8mFi1RdhgwSvRrBIio/Pz/tKhF5CsJk06ZN3DmYasSQPRKM31++fFmysrK0K+Ru7JFQRZz358I0YTTliSpjuIrEuRohIu/SFy7qa024cJGqwnAVCasR72BFQpVBiCBMsLUK15rQ7RiqImE1QmQcGNZav369zJ49Wzp27ChHjhzRXiG6kaGCZMSIEWqmVteuXbUrRORLnTt3lt27d6vnwcHBHCmgChkmSFiNEBlTaGiorFu3Tg1xxcTEyKRJk7hHF93AMD0SjNlfuXJF1qxZo10hT2KPhGoiIyND4uLipFu3bqqHwpXwBIaoSPRqJCUlRbtCREY0YMAA2bFjhxQXF6uhLq43ITBEkAwdOlS9Q37yySe1K0RkVG3atFFv/vSDslCZcKjL3nweJIsXL5b9+/fLqFGjuIqdyCTq169/w3oTLGLU9+wi+/F5jwTl8V133SUrV67UrpA3sEdC7oLhLcy4hKlTp/JMeBvyaUWCagRz01GNEJE5ITiw6eMjjzzCoS6b8mlFgjUjWC3LasT7WJGQuyE8sHhRXw0/ZcoUNQRG1uezimTevHly6NAhViNEFoE3hVgNv2XLFrXp49133y3Lli1jdWIDPgkSHOuJhYft27fnTC0ii8FQ1+nTpyUpKUl69eolvXv3lp07d2qvkhX5JEj69u0r58+flzfffFO7QkRWgiGttLQ0teYE2rZtK8nJyTwb3qK8HiRoymG7hZEjR6oeCRFZF9acfPHFF2qIKz09ncNdFuXVZjtmaGG6Lz42bNjAdSM+xGY7eRv+/rH2BIGCLVZQsWAfLzI/r1YkGMq68847ZcKECQwRIpvBvlwIDzTjjx07pt7MYANIDneZn9cqEgxpxcbGqt1D8a6EfIsVCfkShraWLFmiNoCMiIiQ0aNHS8+ePbVXCeGak5OjfVY1jRo1Uu0CX2yk6ZUgwYaMuHH5+/vLokWLJCQkRHuFfIVBQkbA4a6KYZbbggUL1L1zxYoVal1OvXr11GsImG3btl27pn+uw88RM+a8ucOAx4ME7zz69Okjf/vb39Q7jsTERO0V8iUGCRmJvs0Kboipqalq2jADpez+iXZAYWHhtZ9Hjx49pH///jdUcDhwDKM9CJCmTZuqRaF4jnaCN45I9niPBOUrEhXfzMCBA7WrRETX4d3zpk2b1ELlsWPHqjc6mC6Md+R2podAQUGBegTcT1u1aqV9VgYnWWIDTfy8sCgU067x88ROA97g0SDBN4UxUAxljR8/Xg1tERFVBDdNnHeCxYyYIowhGz1QeO5J5bDPGUIGVQymXb/99tuqMvHGZAaPBQm+GfwDCAwMvLaZGxFRZbCYEcM2eEetBwruH927d1czvnBvoZthCAz07fyjoqLU448//qgePcljQYKSCumIk9TYFyGi6kKFogfK+vXr1TXcHDt27Kh2GEajnq7Tg0SnD4udOHFCPXqSR4IEMw5QUrVs2VKN26EqISKqCdwQ0QP46quv1Ng/KhPcX7CwOSEhQTWaWaWIlJSUaM/K6ENazZo1U4+e5PYgwS/097//vRrOatCgATdlJCK3wdj/mDFjrvVRTp48qWYr4d04Fjeil2LXUNGDRJ/d9fXXX6tH9Jk8ze1BghPSMIUPaThu3DipU6eO9goRkXvofRRUKZgai5EPPEcvBaGC/iwqFTutmse6E6wtwfeMUMVEJ4StPsTlSW5dR4IhrXbt2knz5s3V1tH9+vXTXiGj4ToSsiLcg7777ju1kwZ6tICbK3oruC9huN1sh21hOykEgr5upFatWmrjW8yGRRWyb98+ycjIUN8vdgnAG3k8YtYWqjVvcFuQoJxEE+z48eMSFhamTkcj42KQkNWhGZ+Xlye5ublq5bwOK78jIyMlPDxc3YyNvvCxoiC51d8uFnPiPow39N6oRHRuCxKUkvhlIfXxboBDWsbGICG7wbo2LOzbvXu3GgYrv60IAuWxxx6TunXrqoBBj9cI1UtFQYLvAd8L9i9EvwihgQDBRAT0kLzNLUGiL8/HZmHz58/nLC0TYJCQ3aFiOXXqlBoaQtWi72tVEWw3AlhU/cADD6jnOsyKKj/1tiI1DaZbBQlmraGFgADECNC3336rekSY2YZJCV6FIHEV/mf4wQ9+8IMft/+oCfx3jiDRPrt61REsVwsLC9VzPOL1devWqc8dgXc1IiLiaklJifrcW9xSkSDZfbF1MdUc3uW44VdPZHtV3Q/M3RWJ3ttBox0LNNGAhy5dunh9iMuts7bIPBgkROZQWZBgolN0dLTqkWAbfqylwRDX5s2b1aM3eGyLFCIi8jw02j/55BM12QnTn7GTMtbVjBw50mvbyDBIiIhMDs11TP3FriKoUOLj49U1nEfijZX+DBIiIoNzPn8Eiw2xNUx5OBgMsLsIqpQJEybIrl275LXXXvN4mLBHYlPskRAZF4ak0ETfv3+/zJo166ajdgF9kU6dOqkNLXV6f0SfrqxPaUb4IGA8dfwug8SmGCRExoUAWLp0qZw7d067UjEsoNSb8Dqs68vOztY+K4P1L548vphBQkRELmGPhIiIXMIgISIilzBIiIjIJQwSIiJyCYOEiIhcwiAhIiKXMEiIiMglDBK7KS2W/BUzJeWpILUo8drHUykyZ0W+FJdqX0dEVEUMEhspLd4gY54JkxeXX5bYBQfUynb1cX6jpBSlS/yMXfK/2tcSEVUVg8QuLubJe33iZG6zDyRvzjCJDKytvXBdYJsQCeC/CCKqJt42bOGc5H/8liTldJCJKc9Lkzu0y0qpXNieLZnFAdL6/iCpq10lIqoqBokdXPgfWfzeapHOXaRDizraRd3PcvzAHimWDvJShxD+gyCiauN9w/L0iiNQOr/0uLS46Td+UY4U7hMJaCEhATcPdxERVYZBYnl6xXELpafkwM5jIq2bS5O6/OdARNXHO4fdXTwmhd8XSwAb7URUQ7x1WF5tCQhpIYHaZ+WVHj8gO4sDpXUoG+1EVDMMEsurJb+O7C4jo0WyxqXL3N0XtOs/S3H+1zJ39iLJkiBpE9KA/xiIqEZ477CDuuEy+JPPJP3ZPIlv+Rvx84uRlDlZciyorYTIaccXNJPQJqxHiKhmeNSunZXuljnPPS3xMlF2rxkk99+wvoSIqGpYkdiZ1mjninYicgVvHzZ2rdGOFe1+2kUiompikNhWqVw8ske+Z6OdiFzE+4dt6QsV8yXtmafk5WUHHNFCRFR9bLYTEZFLWJEQEZFLGCREROQSBgkREbmEQUJERC5hkBARkQtE/h9KsF5ta7rkkAAAAABJRU5ErkJggg==
Sei $$(a_n)\in\mathbb{C}^\N$$ mit $$a_n\neq 0$$ für alle $$n\geq n_0$$. Es gebe eine relle Zahl $$0<\theta<1$$ s.d. für alle $$n\geq n_0$$:
<$latex text="\left\vert\frac{a_{n+1}}{a_n}\right\vert\leq \theta" displayMode="true"></$latex>
gilt. Dann konvergiert die Reihe absolut.
!! Beweis
Es gilt induktiv:
<$latex text="|a_{n+1}|\leq \theta|a_n|\leq\dots\leq\theta^n|a_1|." displayMode="true"></$latex>
Dann ist die [[Geometrische Reihe]] eine [[konvergente Majorante|Majoranten- und Minorantenkriterium]].
!! Bemerkung
Für $$\theta>1$$ divergiert die Reihe und für $$\theta=1$$ ist keine Aussage möglich.
! Motivation
* Zufall wirkt oft effizienzsteigernd
* Zufall führt oft zu einfachen Lösungen
! Monte-Carlo-Algorithmen
Monte-Carlo-Algorithmen geben ''immer'' eine Antwort,
aber ''nicht jede'' Antwort ist ''richtig''!
!!Beispiele
! Las-Vegas-Algorithmen
Las-Vegas-Algorithmen geben ''stets richtige'' Antworten,
aber die Antworten lassen manchmal ''lange auf sich warten''!
!!Beispiele
* Es sei $$(\Omega,{\mathcal{A}},P)$$ W-Raum und $$X_1,\ldots,X_n$$ seien ZVs, $$X_i:(\Omega,{\mathcal{A}})\to(\Omega_i,{\mathcal{A}}_i)$$.
* $$X:=X_1\otimes\ldots\otimes X_n$$ bezeichne das Produkt der ZVs $$X_1,\ldots,X_n$$.
* Sind $$1\le i_1<\ldots<i_k\le n$$,so heißt die gemeinsame Verteilung des Teilprodukts
<$latex text="\textcolor{blue}{X_{i_1}\otimes\ldots\otimes X_{i_k}:\Omega\to \Omega_{i_1}\times\ldots\times\Omega_{i_k}}" displayMode="true"></$latex>
eine $$\textbf{k-dimensionale Rand- oder Marginalverteilung}$$ von $$X_1,\ldots,X_n$$.
Der Spaltenrang einer Matrix ist die Dimension des Spaltenraums.
Der Zeilenrang einer Matrix ist die Dimension des Zeilenraums.
Eine $$(m \times n)$$-Matrix ist von //vollem Rang//, falls sie maximal möglichen Rang besitzt,
d.h. eine $$(m \times n)$$-Matrix mit $$m \geq n$$ hat $$n$$ linear unabhängige Spalten.
Sei $$\dim_K(V)<\infty$$ und $$T\in\text{Hom}_K(V,W)$$. Für den Rang $$\text{rg}(T)\coloneqq\dim_K(T(V))$$ und den Defekt $$\text{def}(T)\coloneqq \dim_K(\text{ker}(T))$$ gilt:
<$latex text="\text{rg}(T)+\text{def}(T)=\dim_K(V)." displayMode="true"></$latex>
!! Beweis
Sei $$\{b_1,\dots,b_r\}$$ eine Basis von $$\text{ker}(T)$$. Dann kann diese nach dem [[Basisergänzungsatz]] zu einer Basis $$\{b_1,\dots,b_r,c_1,\dots,c_s\}$$ von $$V$$ ergänzt werden. Es nun zu zeigen, dass $$B_T\coloneqq\{T(c_1),\dots,T(c_s)\}$$ eine Basis von $$T(V)$$ ist.
''1.:'' $$B_T$$ ist ein [[Erzeugendensystem |Erzeugendensysteme und Basen]] für $$T(V)$$.
Da $$\{b_1,\dots,b_r,c_1,\dots,c_s\}$$ eine Basi von $$V$$ ist, lässt sich jedes $$x\in V$$ linear kombinieren:
<$latex text="x=\sum_{i=1}^r\lambda_i b_i+\sum_{j=1}^s\mu_jc_j." displayMode="true"></$latex>
Da alle $$b_i\in\ker(T)$$ folgt:
<$latex text="\begin{aligned}T(x)&=T\left(\sum_{i=1}^r\lambda_i b_i+\sum_{j=1}^s\mu_jc_j\right)\\ &=\sum_{i=1}^r\lambda_i T(b_i)+\sum_{j=1}^s \mu_jT(c_j)\\
&=\sum_{j=1}^s \mu_jT(c_j).\end{aligned}" displayMode="true"></$latex>
''2.:'' Die $$T(c_j)$$ sind linear unabhängig
Sei $$0=\sum_{j=1}^s\mu_j T(c_j)$$. Dann folgt schon
<$latex text="T\left(\sum_{j=1}^s\mu_j c_j\right)=0." displayMode="true"></$latex>
Das heißt $$\sum_{j=1}^s\mu_j c_j\in \ker(T)$$ und es gibt $$\lambda_i$$ s.d.
<$latex text="\sum_{j=1}^s\mu_j c_j=\sum_{i=1}^r\lambda_i b_i" displayMode="true"></$latex>
Dann folgt aber schon
<$latex text="\sum_{j=1}^s\mu_j c_j+\sum_{i=1}^r(-\lambda_i) b_i=0" displayMode="true"></$latex>
da $$\{b_1,\dots,b_r,c_1,\dots,c_s\}$$ eine Basis ist, folgt direkt
<$latex text="\lambda_1=\dots=\lambda_s=-\mu_1=\dots=-\mu_r=0" displayMode="true"></$latex>
und somit ist $$\{T(c_1),\dots,T(c_s)\}$$ linear unabhängig.
* ''Spieler A'' erinnert sich an das schwache Gesetz der großen Zahl. Wegen $$\textbf{E}_\theta({\mathrm{id}}_{[0,\theta]})=\theta/2$$ gilt für den doppelten Mittelwert $$\textcolor{blue}{T_n:=2M=\frac{2}{n}\sum_{k=1}^n X_k}$$ <$latex text="\begin{aligned} P_\theta(|T_n-\theta|\ge\epsilon)&=&P_\theta(|\frac{1}{n}\sum_{k=1}^n(X_k-\textbf{E}_\theta(X_k))|\ge\epsilon/2)\\
&\le&\frac{\theta^2/12}{n(\epsilon/2)^2}=\frac{\theta^2}{3\epsilon^2}\cdot\frac{1}{n}\xrightarrow{n\to\infty} 0\quad
\text{für alle }\epsilon>0.
\end{aligned}" displayMode="true"></$latex> Spieler A wählt $$T_n$$ als Schätzer und hofft, dass dies bereits für $$n=10$$ vernünftig ist.
* ''Spieler B'' nimmt das Beobachtungsmaximum $$\textcolor{blue}{\tilde{T}_n:=\max(X_1,\ldots,X_n)}$$ als Schätzer mit der Begründung, dass wegen der Unabhängigkeit von $$X_1,\ldots,X_n$$ und wegen $$P_\theta(X_i\le\theta-\epsilon)=(\theta-\epsilon)/\theta$$ für alle $$\theta>0$$ und alle $$\epsilon\in(0,\theta]$$ gilt:<$latex text="P_\theta(\tilde{T}_n\le\theta-\epsilon)= P_\theta(X_1\le\theta-\epsilon,\ldots,X_n\le\theta-\epsilon) = \left(\frac{\theta-\epsilon}{\theta}\right)^n\xrightarrow{n\to\infty} 0." displayMode="true"></$latex>
Jede rationale Funktion ist in ihrem Definitionsbereich stetig differenzierbar.
<<list-links "[tag[Rayleigh-Quotient]sort[scriptorder]]">>
<<list-links "[tag[Rayleigh-Quotient-Iteration]sort[scriptorder]]">>
iVBORw0KGgoAAAANSUhEUgAABVkAAAGwCAYAAACzYGUTAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAAAhdEVYdENyZWF0aW9uIFRpbWUAMjAyMToxMTowNSAxNDoxNDozMiID4CYAAGrESURBVHhe7d0HfBRF+8DxJ/RepfcqVaQjTfGPBREVAUERRWmvBVDk9bWBig1sKKioqCgKKiKKgthAkCpIUaSL9I703vafZzJ7XMIluWTvkkvy+34+AzOzM3u5u01u57ndmSgnmgAAAAAAAAAAkiWT/R8AAAAAAAAAkAwEWQEAAAAAAADAA4KsAAAAAAAAAOABQVYAAAAAAAAA8IAgKwAAAAAAAAB4QJAVAAAAAAAAADwgyAoAAAAAAAAAHhBkBQAAAAAAAAAPCLICAAAAAAAAgAcEWQEAAAAAAADAA4KsAAAAAAAAAOABQVYAAAAAAAAA8IAgKwAAAAAAAAB4QJAVAAAAAAAAADwgyAoAAAAAAAAAHkQ50Ww+bHbt2iWnT5+2JQAAAAAAAABIHaVLl7a50EmRIOvFF18sa9eutSUAAAAAAAAASB1PP/20zYnce++9ctFFF9lS8qVIkDVPnjxy9OhRKVGihGTNmtXWAgAAAAAAAEDK2rx5s82JzJ07V5o2bWpLyZciQdZatWrJihUrZOXKlVK9enVbCwAAAAAAAAAp66mnnpK33npL9uzZE7IgKwtfAQAAAAAAAMgwNMhatGhRky9YsKD53yuCrAAAAAAAAADgAUFWAAAAAAAAAPCAICsAAAAAAAAAeECQFQAAAAAAAAA8IMgKAAAAAAAAAB4QZAUAAAAAAAAADwiyAgAAAAAAAIAHBFkBAAAAAAAAwAOCrAAAAAAAAADgAUFWAAAAAAAAAPCAICsAAAAAAAAAeECQFQAAAAAAAAA8IMgKAAAAAAAAAB4QZAUAAAAAAAAADwiyAgAAAAAAAIAHBFkBAAAAAAAAwAOCrAAAAAAAAADgAUFWAAAAAAAAAPCAICsAALhAVFRU0AlIjr1798obb7whnTp1Cnhcab1u13ZI2z788EPf+6p5AACA9IggKwAAuMDixYt96bbbbrO1MbTsvx1IirVr18qzzz4rDRo0kP79+8vhw4dlzpw5pt5NWtZ63a7ttL3WI+2ZO3eu9OvXz5bE5LUOAAAgvSHICgAALlCvXj1fevLJJ21tDC37bweCcfz4cROUv+6662TQoEFSvHhx+fbbb+X777+XZs2aSZUqVXxJy1qv27Wdttd+2l/3g9RTtWpV894ES4PlmlxxywAAAOkFQVYAAACE3b333muuSl2/fr00bNhQvv76axM4TYhu13baXvtpf90P0o5KlSqZ5IpbBgAASC8IsgIAACBsTp06JR07dpSPPvrIlC+77DKZNWuWuUI1GNpO22s/pfvR/el+kbKmT58uu3fvtqXg6JXJU6ZMkRtuuMEkzWsdAABAekOQFQAAAGGzbNky+fLLL8VxHClTpoyZAiBnzpx2a3C0vfbT/rof3Z/uFylr5cqVcvDgQVsKXrVq1WTy5MkmaR4AACA9IsgKAACAsFi9erW56tR13333SeHChW0pabSf9nfpfnX/SBn//POPvPDCC7YEAACAuAiyAgAAICzef/992bJli8nXqFFDbrnlFpNPLu2v+1G6X90/wk+vHn755Zdlx44dtgYAAABxEWQFAABAyOlVpp999pktiVSuXFkqVKhgS8mj/XU/Lt0/V7OG18aNG+Wxxx6TUaNG2RoAAAAEQpAVAACE3OjRo00aMWKEREVFmVSuXDm7Vcz8mq1atfJt06Qryf/www+2RWD+7QOluXPn2pbnDRs2LGBbTYHovJOvv/66WcnebVe2bFlTF2j//tzn/dRTT/n6ugsFzZgxQ9q2beurv//++2XFihVmW1z//vuvvPTSS762bmrXrp1ZfOjJJ58MeoV2L8/Hi19++UW2bt1qSzFB1lDw34/uXx8nkPfee8+kkSNH+p63ewyuX7/ebEvOMZiQ5L7WoTpuXMeOHTOPeccdd/j6ualPnz6yZMkS2zJhVatWlebNm8vQoUNtTYyePXuabf7p448/tlvPO336tEnbt2+XXr16maR/E5JC3yc91v2fg5a1Phjuaxvqv0UAAAAXcFJAzZo1HX2o6BNPWwMAANKKNWvWmM9xN2k5MfXr1zepUKFCvn5ly5Z1tm3b5owaNcopUqSI8+qrrzqLFy82ac6cOU7p0qWd/PnzO1dddZWzc+dOu6fY3PZ9+vSJ9TP17dvX1B85csS2PE/39frrr/va6s/0+eefm/b+jh075vTo0cO56KKLnMKFCzuTJk1yNm7caJL+fOXKlTM/35gxY5zdu3fbXrG5zztfvny+x9u1a5fTvXt3p0GDBs6zzz7rDBo0yLetTJkytud5w4cPd0qVKuU0adLE9/huevPNN52CBQs62bJlcypWrGh7BBaK5+PFiy++6HuemrZu3Wq3eKP78d+vPk4gl156qUn6erlt9Rjcvn27U6tWLadKlSrOSy+95CxcuNCkX3/91SlZsqRToEAB59prrzXvW7C8vtahOG5ce/bsca6//nqnRo0azjPPPOP7OTR99913TvHixc3vQJcuXZwDBw7YXoF98cUXvnTdddf5Hv/xxx+PtU3TunXrbK/z3Pb+qU2bNnZrwhYtWuSUL1/evGf6++3/PLSs9bpd2yXEfW1D/bcIAACkfaGOVxJkBQAACUpOkNU1depUX788efKYoFfjxo2diRMn2hbnDR061NdW8wk5ePCgr20w7Tdv3uxccsklpq3+THEdPnzY6dWrl9muQbJvv/3Wbjnvzz//9D3ehx9+aGsDe/fdd31t9fGKFSvmfPrpp2bbe++959umyd+IESOcnDlzOi1atHB27Nhha2PTwKC2SSjIGurnkxzuvt0UriCrpoR88803vnZ58+Y1AbeGDRsGfH2XLFniC8ZddtllQb0uoXytk3vc+LvxxhvN9goVKpjgbFwzZ850ihYtatp06tTJ2b9/v92SsH79+vkee9q0abY2Yfq3QlPPnj19fYMJss6dO9cEvPX5z58/39bGpvW6Xdtp+8SE628RAABIuwiyAgCAFOUlyBo3GKpJ6+KjV5gF004lJRDiBlnja+cfiNOr5AI5c+aM07lzZ9NGr3KbPn263XKh5cuX+/anVwzqVakuvVLODeQ1bdrU1sZw+yS0b9WoUaMEg6yhfj7J4T6+m1IryBr3GNQgqwZG46OBVr2SUdtmzpzZmTdvnt0SWChf6+QeN/70ClZ3H127drW1sQ0cONDXRoO3wUhOkNWlV7m6fRMLsmrwVAOnUVFRzlNPPWVrA9Pt2k7bxxeMdYXzbxEAAEibQh2vZE5WAACQYvr27St58uSxJW+6d+8uJUqUMPk33nhDjh49avKBLF++XPbs2WP6xLVo0SK5++67bUnMHK6BZM6cWfr16yf58+eXgwcPyqpVq+yWhOniTAMHDrQlkWbNmsmcOXNk8eLF8vXXX9vapHnhhRds7kLhfj5pWfHixWXy5MkJHoN169aVa6+91uTPnj0rzzzzjBw4cMCU4wrna53c40bnE3X55/1dffXVkjVrVpP/73//a/6PFF27djVzuObIkcPMPZwQ3a7ttL32S4pQ/i0CAABQBFkBAECKKFy4sPTo0UMyZQrN6UexYsV8QdOtW7cGXHjHNX78eNNW+8S1cOFC2bt3r8nrgkVZsmQx+UCaNm1qAmXq4YcfNv8Ho3Tp0jYXo3r16lKvXj0pUqSIrYntnnvukXXr1tlS0qTE80mrsmXLJqVKlbKl+A0ePNjmRKZNm2YCnoGE+7VO6nGjNACvQWFNt956q62N7aqrrkrwZ00t77zzjmzatMnkh8ZZbCs+bjvtp/2DEeq/RQAAAIozCwAAkCJy584tderUsaXQ0JXPXbNnz7a5C+k2/7b+/IM5t9xyi+8Kv8ToCu7B0EBX48aNbSlhVapUMf+vXbtWWrdubYJxs2bNkqVLl5p6V6NGjWTKlCm2FFu4n09GoMdqjRo1bEnk999/t7nYwvlaJ+W48afBUw3matKV8tOSFStWmKuHVc6cOc3/iXHbaT/tH4xw/C0CAAAgyAoAANIsDZy2aNHC5L///nv5448/TN7fRx99ZIKX8QVZ9SpY1/79+80VcQklNwgUDvoc3ODe5s2b5aWXXpIrrrjCBFzbt29vkgZgs2fPbq5qDCRSno9e2elPb3MPhbj7ifs4oVCoUCG54YYbbEnk/ffft7nYIunYic/OnTvNY3/44Ye+Y0jTqVOnbIvIMXLkSJtLHq/9AQAAvCDICgAA0qx8+fKZW+vVvn375N133zV514kTJ2TUqFHm1mBtmxi91bp8+fIJpm3bttnWoVexYkVzhWrVqlVtTQx9bjoPp6aLL77YPJ9grtpLzefjP1epii9QmVRx9xP3cVJLah87gTz++ONSv35989h33XWXmYJCg/aadJ5YAAAAhA5BVgAAkKb5X6H6zTffxFpUaMaMGfLbb7/FexVrXC+++KIuVR90CocKFSrImjVr5OTJk/LAAw+Y5C7w5dL5ZzVQtmzZMlsTWGo+n1atWsWaU1Sv4vR6JWfcfej+9XEiQSQcO0qvrtXFunSqgOeff17OnDljFrfSx/zrr7+kf//+JhFkBQAACC2CrAAAIE3TFeP1Kj2lASadw9Q1btw4s03bpAW68r07X6cu0jR8+HCTlixZIhs3bpQ333zTrH6vdMElLUeqatWqSZcuXWxJZOrUqfLTTz/ZUvJof92PS/evj4MYGzZskHbt2vkW7ipTpoy5+lkDwOGkq/vrlBYAAAAZGUFWAACQpuliQzplQK5cuUx5/Pjx5v/169fL8uXLzbaEFiTyv9pyx44dYb3KMDE33XST7Nq1y5bO0yBxuXLl5N5775XvvvvOTCug3nvvPfO/v0h6PjqtgQb6XIHmzE0K//66X91/OBw6dCjBhdRckfRaKz0e/K9u/vLLL+Wyyy6zpcTp1dPJeY/0i4Hp06fbUvL5v57J4bU/AACAFwRZAQBAmtewYUNfIFWDY3PnzpWJEyeaxaN0W0KefPJJ363TetWozuOamHPnzsnBgwdtKbTcIHF8NODaq1cvW7pQJD0fvcpUV913Pf300zJhwgRbShrtp/1dut9wXcWqr4UeQ65hw4bZXGyRduzo9ACuDh06JHkF/X/++UcuvfRSW0p5TzzxhO/1PH78uPk/MW477af9AQAAUgtBVgAAkC48+uijNhczTYAm/7r49OzZU6pUqWJLItOmTbO5+OkCQgUKFLCl0NL5VvW274Q0atTI5i4Uac9HA38a8NM5QjUg9tprrwUdQHP599P96P78A4qhpouluXTRqM6dO9tSbJH2WvvTaSV0yom0pE+fPuaKbfXII4+Y/xPjttN+2h8AACC1EGQFAADpQseOHX0BL52XVacP0LpgfPLJJ1K2bFmTf/31181q/vHZsmWLdOvWTZo0aWJrQksXvfr8889tKbCFCxea/xs3bmz+jyuSno8G+vSq4jvvvNOU58+fL5dffrns3LnTlBOj7bS99lO6H91fcgKIOg3AvHnzbCmwv//+WyZNmmRLYgKsbuAvkEh6rf0tXbpUTp06ZUux6ZytwVx1GyydliBUhg4dav7Xn8//yuVAdLv7PNx+AAAAqYUgKwAASBcqVaokxYoVM/mVK1ea6QO0Lhj169c3wS8Nlv3666/StWtX2b17t916ngbJ9EpTXXTq22+/tbWhN3r06HiDkFqv23PmzCkPP/ywrY0t0p6Peuutt8zPq+/JokWLzPyzOr9sQnS7ttP22k/7636S68CBA9K2bVs5cuSIrbmQLhSlgW712GOPyZAhQ0w+PpH0WuvP69LAZ6D5VfULiHfeecf3hcSZM2fMompKr7KtWrWqycf16quv2pzIgAEDbE5k27ZtZooLnS4hFK655hq5/fbbzfy2ekXxggUL7JbYtF63azttr/0AAABSVfSJSdjVrFlTVwFwogc8tgYAAESyxYsX+9Jtt91mPsfdpGX/7YG42/r06ePrly1bNue5554z9f7nBJrXOt2mbdz22tfdT7CmTp3q66/5pFqxYoVTtWpVJ3v27M4VV1zhbNy40ZeGDh3q1KpVy2nTpo3z888/2x6xuT9vhw4dfD9HoUKFnIkTJ/q2nT171ra+kLbPlSuXU758eadly5bOm2++Getn0HLdunWdUqVKOcOHD7e94uf1+YTDmjVrnGeeecYpV66ckylTJueaa65x5syZ46xdu9aXtKz1ul3baXvtlxwHDx70vReZM2c278dNN910wXF15MgRZ/z48eb113a9evVyTp8+bbcmzstr7fW4cf3zzz/OSy+95OTOndvso0yZMs7MmTN9P0ePHj2cOnXqOP379zdtGzZsaNpdfPHF5jUpWbKk8/HHH9u9XUifR6VKlZwcOXI4r776qrN06VJzTJYtW9bZuXOnbXXe8uXLTerevXus5/X555+b+vgcOnTI+eKLL8zvge67b9++sV5PLWu9btd22j4+7uuX0n+LAABA5At1vJIgKwAAuIAbXAgmBRKonX+qXbu2bemYfKA2/ilY+/btMwEuTZpPLg221a9fP9bPcOuttzqvvfaac/jwYdvqQv7t40sazIuPbh8zZozJazDu+uuvv6D/iy++6Ozdu9e0CVZyn0847dmzxxk5cqTTsWPHWD+Xm7Ret2s7L/yDrBqYU7fccotTokQJZ9iwYb6kwWtto0HEF154wbRLjuS81v5t40sJHTdxTZkyxTyeBoz99zF48GBnw4YNtpXj7Nixw2nQoIHZpsHXsWPH2i3x27x5swl6u/vU4PGnn35qt8bmtokvBWP06NFOxYoVY/XTstYHw79foBSuv0UAACDyhTpeGaX/RO8wrKJPvmTFihXm1r3q1avbWgAAACC8dB7W/Pnzm7ze0r9p0yYzXcCSJUtizfmp0y/onKo6l2+JEiVsLQAAANKrUMcrmZMVAAAAGUqePHmkZcuWMn36dF+aMmWKmfeVACsAAACSgyArAAAAAAAAAHhAkBUAAAAAAAAAPCDICgAAAAAAAAAeEGQFAAAAAAAAAA8IsgIAACDdWbRokUkPPfSQrRHZuXOnPPPMM6ZeV5IFAAAAQiXKiWbzYVOrVi1zIrty5UqpXr26rQUAAADCIyoqyuYCq127tvz555+2BAAAgIwm1PFKrmQFAABAuqPXESSUCLACAAAglAiyAgAAAAAAAIAHBFkBAAAAAAAAwAOCrAAAAADgwd133y2lS5eWt99+29YAAICMhiArAAAAAHhQt25d2bZtm9xzzz3y2GOPmXl/AQBAxkKQFQAAAAA86Nu3r3Ts2NHkX3jhBWnfvr0cOnTIlAEAQMZAkBUAAAAAPPrggw+kWrVqJj958mRp2LChrFixwpQBAED6R5AVAAAAADzKmzevfPXVV5I/f35TXrt2rTRu3FhGjx7N9AEAAGQABFkBAAAAIAT0StaJEydKlixZTPno0aPSu3dvad68uSxfvtzUAQCA9IkgKwAAAACESOvWrc3UAVFRUbZGZN68eVKvXj159NFH5fjx47YWAACkJ1FOCty7UqtWLTMf0cqVK6V69eq2FgAApKQ///xThg4dGmvgnxwnT56UJUuWyLlz52xN8hQuXNg3f2Ew9PGWLl0qJ06csDUxsmfPLg0aNLCl8Fi3bp3s3r3blmLo66iPmy1bNlsTert27ZK///7bls7T101fv3A5duyYLFu27IJbnEuUKCEVK1a0pdA7e/asObZOnTpla2Lkzp1bLr30UlsKj1WrVsm+fftsKUamTJmkUaNGkjlzZlsTetu3b5cNGzbY0nk1a9aUAgUK2FLoHTlyxPxNiPselylTRsqWLWtLoXfmzBlZvHix+d9fvnz5pHbt2rYUHL0y1OviUvre6i39Xv8uBjJ9+nTzOxxXqVKl5PHHH5eePXtK1qxZbS0AAEhpoY5XEmQFACCDePnll+W///2vLQEAUtMPP/wgV199tS0BAICURpAVAAAki16Nqbew6tWCXuiVrIsWLbrgSrSkKlasWJLPCxYuXGiusvSnVznqKt7htGbNGtmxY4ctxXCvgAv3layrV6+OdbWhXnGnV/wVKlTI1oSevsZ6tWHcY0WvcAznlax6tbK+x3GvVtarHPVW63DSc9U9e/bYUgy9yrBJkyZhvZJ127Zt5mrluO+xXrnrLqAUDocPHzZXhse9Il3f33BfyarvcdyrlfV4vuSSS2wpOHol7v79+z0tKpUjRw5ztbJetRxqH3/8sezcudOWzqtRo4Y8++yzctNNN4XlCloAABAcgqwAAAAAEMGGDRsmjzzyiC3F0C8LnnnmGbnvvvvCGrgHAADBCXW8koWvAAAAACBEPv300wsCrJ06dTLz/vbr148AKwAA6RRBVgAAAAAIAZ0K4a677rIlkaJFi8rUqVNlwoQJUrJkSVsLAADSI4KsAAAAAODR7t275eabbzbzVqvLLrtMlixZItddd50pAwCA9I0gKwAAAAB4oIvEde7c2Sxkpu655x6ZOXOmlCpVypQBAED6R5AVAAAAADzQBa00qKrzrb711lsmZcuWzW4FAAAZAUFWAAAAAPDgxIkT0rhxY5k0aZK5ihUAAGQ8BFkBAAAAwIOhQ4fKggUL5IYbbrA1AAAgoyHICgAAAAAAAAAeEGQFAAAAAAAAAA8IsgIAAAAAAACABwRZAQAAAAAAAMADgqwAAAAAAAAA4AFBVgAAAAAAAADwgCArAAAAAAAAAHhAkBUAAAAAAAAAPCDICgAAAAAAAAAeEGQFAAAAAAAAAA8IsgIAAAAAAACABwRZAQAAAAAAAMADgqwAAAAAAAAA4AFBVgAAAAAAAADwgCArAAAAAAAAAHhAkBUAAAAAAAAAPCDICgAAAAAAAAAeEGQFAAAAAAAAAA8IsgIAAAAAAACABwRZAQAAAAAAAMADgqwAAAAAAAAA4AFBVgAAAAAAAADwgCArAAAAAAAAAHhAkBUAAAAAAAAAPCDICgAAAAAAAAAeEGQFAAAAAAAAAA8IsgIAAAAAAACABwRZAQAAAAAAAMADgqwAAAAAAAAA4AFBVgAAAAAAAADwgCArAAAAAAAAAHhAkBUAAAAAAAAAPCDICgAAAAAAAAAeEGQFAAAAAAAAAA8IsgIAAAAAAACABwRZAQAAAAAAAMADgqwAAAAAAAAA4AFBVgAAAAAAAADwgCArAAAAAAAAAHhAkBUAAAAAAAAAPCDICgAAAAAAAAAeEGQFAAAAAAAAAA8IsgIAAAAAAACABwRZAQAAAAAAAMADgqwAAAAAAAAA4AFBVgAAAAAAAADwgCArAAAAAAAAAHhAkBUAAAAAAAAAPCDICgAAAAAAAAAeEGQFAAAAAAAAAA8IsgIAAAAAAACABwRZAQAAAAAAAMADgqwAAAAAAAAA4AFBVgAAAAAAAADwgCBrGlSuXDmTAAAAACAjY2wEAIgUBFnTmJ07d8rp06dN0jwAAAAAZESMjQAAkYQgaxozZswY2bFjh0maB1LasWPH5L333pNcuXJJxYoVZezYsXYLIhHvFwAASK8YGyEScL6dtvB+IZyinGg2Hza1atWSFStWyMqVK6V69eq2Fkl14MABKViwoC3F2L9/vxQoUMCWgPAbMGCADB8+3JZEMmfOLCNHjpR77rnH1iCS8H4BAID0iLERIgXn22kL7xf8hTpeyZWsacjmzZtt7rxAdUA4bdy40eZinD17VrZs2WJLiDS8XwAAID1ibIRIwfl22sL7hXAiyJqGvPDCCzZ3XqA6AOnD888/L+3atbMlAAAAuBgbARkP4yNEOoKsaYRO5L5+/XpbOk/rmOQdKWngwIFStWpVc1tFjhw5pE6dOtK7d2+7FZGG9wsAAKQ3jI0QSTjfTlt4vxBOBFnTiLVr18qaNWvk/vvvtzUxFi1aZLYBKaVp06bmWHz11Vdl9OjRsmzZMilfvrzdikjD+wUAANIbxkaIJJxvpy28XwgngqxpxPjx4+WOO+6QkiVL2przdBuQ0vr16ye33367LSHUTp48Kb/99pstecf7BQAA0gvGRohEnG+HF+MjpAUEWdOI2bNnS/PmzeXRRx+VsmXL2toYug1A+nL06FH55ptvbAkAAAAuxkZAxsP4CGkBQdY0YMKECVKwYEG5+uqrTTnuicSGDRtMGwDpx+nTp20OAAAALsZGQMbE+AhpAUHWNGD37t2SJUsWczKhHnnkEfO/6/jx46YNgPSjb9++NgcAAAAXYyMgY2J8hLSAIGuEO3PmjPljMmrUKFsj0rZtW7n++uttKYa20bYA0j6da+iHH36wJQAAACjGRkDGxPgIaQVB1gi3ZcsWKVq0qOTMmdPWxIh7W4zStgDSNr0N5vXXX5dDhw7ZGgAAACjGRkDGw/gIaQlB1gj3wgsvSOfOnaV8+fK2Jkbc22KUtgVSyqxZs2TGjBkmrV+/3tbCC73iomPHjvLpp5/amtDh/QIAAGkdYyNEMs63Q4/xEdIagqwRbMmSJfL+++9Ls2bNbM15efLkkbp169pSjNGjR5s+Xug+/FOxYsUkKirKpA4dOthWMXRlv1atWvm2u0lPaMaNG2dbBScSHvfyyy/37atBgwa2RYyvvvpKGjZs6Nteo0YN+eyzz+zW4Om3cCNHjpRevXr59uUmrdNtwU7o/eabb16wj0BJn1sgderUCdjeTdWrV7ctY/z4449y6623+tJVV10l//d//2eSHqcJ8X+dNekcWu7j9OzZ07aKsXXrVhk2bFisn0VT69atTV9dzCA+v/zyizle4vZ97LHH5IMPPrCtkm/FihXmPdLfvbiPobeq6WuUHNOnT5f33ntPqlWrdsGKmfqcqlSpEm+K7zj08n4lJJTHsCvu8aFXp7j7HDx4sG0VY/ny5dK/f/9Yj6vpP//5j+l76tQp2xIAAKQnjI1S9nEZG8VOccdGivER4yMV6vFR3GODsVEa46SAmjVrOvpQK1eutDUIxtdff+1kzZrVli4U/YfRvK7+Sft4EXd//unmm292Tp486SxdutRp3ry5U69ePefll192Fi1a5EvPPfecU7lyZfNzR3/wOrNmzXIOHTpk9x6/QI/nptR43Pr165vt27dvd1q2bOlEn1g47777rjN58mSnW7dupk327Nmdl156ybQLRvQfe6dSpUqm75VXXulMnTrVWbdunUma1zrdpm20bWKiT5qc6A8dkwoXLuz72f1T2bJlnQkTJtgesUV/qATso/vSfV533XW2ZYw33ngjYHtNjz76qG0VWKA+burRo4dps3HjRif6ZNC81vqzLV682JcefPBB81y0/aWXXmreF3/a5qabbjJ9n3jiiVh9mzZt6uTOndvJlCmT87///c85ceKE7RU83U+fPn3M/tu0aeNMnDjR995pGjRokBP9ge7kzZvXvI/RH+C2Z3AKFSoUK2XOnNn3+mTLlu2C7f7pww8/tHuJzcv7FZ9QH8Mu/58tbtLXVq1Zs8YcB/oedO/ePdZ7fOONNzrRJ6amvb5PR44cMX0AAED6wdgoJjE2Ciylx0aK8RHjo3CMj/x/rriJsVHohTpeSZA1gjVu3Nj8wsRn4cKF5o+j+wunSft48dZbb/lShw4dYu1bP9D1A1vzr732mrNz507bK7YtW7Y4devW9fW7++677Zb4pdbj6smBpqeeesrXT5N7IqH1l112mbN3715T1g8h/3aaEqN927dv7xQoUMApX768M23atIAfZFqn27SNttU+7uMmRk+cbrnllgt+Nq2Pj75el1xySaz2uo/4+uzbt8/8Ds+bN88pXbp0rH6JfSi5r/Pw4cNj9dOkJxEbNmxwqlat6lxzzTXmNQhkxIgRvj76YXL48GFTrx9WeoKgHzj6YRaI/l64fYcMGWJrg7NkyRKnWLFi5v2YMWOGrb2QPraezOpjZMmSxTzXM2fO2K1Jo6+F+/Nef/31tjZpvLxfcYX7GHaPj2HDhsX6OTXp+6onCyVLljQn8fPnz7e9YuvUqZOvT//+/W0tAABILxgbhf9x3XMyxkYxKaGxkWJ8xPgoHMexe2wwNkoZBFkzCP1molGjRs7s2bNtTWDuNxRuqlixoukbCufOnfN9K6NJ/1Dnz5/f+e6772yL+O3fv9/3oR4VFeXceuutzunTp+3WhKXW4+o3Xu5j6omEPp7m3377bdsi6ScSBw8eNB942q5cuXLO6tWr7Zb4aRttq320r+4jGPoH3P0m2U0JnRQo949vmTJlnN9++y3gB0Mg+oc9Z86cvsdJyoeSvq7+J8B6EqGvt55AJKZ69eq+fh07dnRWrVpl8mPHjrUtAtOf1+2n6auvvrJbEte7d29fv1q1al3wLbE//d3T30G3/ciRI+2WpAnFSYQ/L+9XSh7DatKkSeaqC/dn1RMJPYm75557bIvAdu3a5eujacyYMXYLAABI6xgbMTbSPpE6NlKMjwJjfBQjuccxY6PwI8iaQegvgfuNYUJefPHFWL88mkL5C+T/ga7pnXfesVsSp9+8+v9B0G9Qjh07ZrcmLDUe9/jx474++trfcccd5vJ6/2/b9ENBT2zcdvoBnJDx48f72j788MO2NnHa1u2n+wjW77//bm7Vcft26dIl3pMDPcHSWwn0Az2xE9ZA8uXL53ucpH7zp9+8uX0vuugip2jRos6UKVPs1vh99NFHvn56Eq1/W/Q2mbNnz9oWgen7r7fLuH2bNGlityTu4osv9vXTdMUVV9gtgcU9YZk5c6bdErxQn0So5L5fKX0Mqzx58vj6lihRwhwf+o15QvR47tWrl69fjRo17BYAAJDWMTZibOT2i9SxkWJ8FBjjoxjJPY4ZG4VXqOOVLHwVoaJ/6aRr1662FL/oP6A2d572DQedDLxNmza2lLh77rnHJNfrr78uy5Yts6Xgpcbjbt68WRYsWCDRf8Qkc+bMtlbk/vvvNxNIR38Imvy0adPslgvNnz9fevfubfKlSpW6YALzhGhb7aN0H7qvYESfAEn0SZctiZn0e+zYsbYU2zPPPCM///yzmUi8efPmtjbl7d27VypUqGAmRk9M9ImbzYns37/fTLQ+cOBAiT65s7WB6WThhQsXtqWY9zdc8ufPL6VLl7Ylkeg/1jaX9qTGMRzXjh07zMILdeMsZhFXlixZpHjx4rYU3vcYAACkLMZG5zE2St9jI8X4KHKl9viIsVHkI8gaoebMmRNw5cy4OnfubH7J/GnfcKhUqVKsP+LBuOKKK2wuRv/+/W0ueKnxuHv27DHpySeftDXn3X333bJt2zazSmDNmjVt7YVeffVVOXLkiMnrioW60mGwtK32UboP3VewunXrFuv5DhkyRDZu3GhLMXbt2iVTpkwRXUXxyiuvtLWp56233rK5pNFVPvv27WtL4fHQQw9J7ty5TV5PEB544AGTj48er7rSp2vUqFE2l/ak1jEc1xtvvGFzAAAgI2JsdB5jo/Q/NlKMjyJTJIyPGBtFNoKsEWj48OFyzTXXSK1atWxNwh599FGbi3Hy5Emzj0jQsmVLadSokS2JrFq1ynw7GG6p9biu2bNny4wZM2xJpFOnTjYXPP8+ui/dZzD0W8u77rrLfOCprVu3Srt27cw3oi49Ac2bN6/5P7XddNNN5mQgOR555BGbC59evXqZb71HjBghX331ldx44412S/qWmsewP339CxUqZEsAACCjYWzkHWOjtDM2UoyPIlMkjI8YG0U+gqwRaMuWLVKwYEHJlSuXrUlY3Ntizp07Z/YRCfQWhAIFCthSzDc227dvt6XwCcXjdunSxeaS7s8//5R9+/bZklzwjXow/PvovnSfwdLbiKZPn25u6VF//fWX/PTTT+Z1uPbaa823tePGjTPbUpu+V3q7SnIk9Vv85Lr++uvNN8KtWrWyNelfah/DLr3NRW93AQAAGRNjI+8YG6WdsZFifBSZImF8xNgo8hFkjTDr1q0z37Q2aNDAzG8TTNJbYOLe1qD70H1FgoYNG9pcjAcffNDmwsvr41522WU2l3ThmGcmqfvUOYhatGhhSzFzJr333nuydOlSmTx5sm8+GHh3+vRp+f77731Jb5lK6yLhGAYAABkbY6PQYWzE2CglMT4KDuOjdMgugBVWoV6tKz27++67fSvAeU26L68q+a1kefPNN9vapFm/fn2sn0tTYlLjcf1X0NQ0duxYuyXp/Pej6dChQ3ZL8LRP3P0k1Z49e5zGjRvH2serr75qt3oTqtUze/ToYWsTN2PGDF8/TVoOlj6O208f34sdO3Y40SfqTvv27Z02bdo4rVu3NvutWLGiU6VKlVivTe3atW2v4EXC6pluWzel5DHsv4LmoEGDbG3itK3bT/cBAADSNsZGMRgbRf7YSDE+YnyUmOQcx4yNwivU8UquZI0wmzZtkltuuUXefffdJKe4l43rvpCxXXTRRfLjjz/GmsNKV5yM/t23JSTVsGHDzLfgOnG5zkG0Zs0aueGGG8ycRPrarl27VqJPfm1rAAAAJBdjI4QSY6PwYHwEnEeQNYJ8+eWXsnjxYundu7eZ0Dipyf/2B6Xzzug+kbHly5cv1hxKumpmclerzKgOHz5sVkzNmjWrmUx+586d0q9fP7OQwvr16818RJpy5MhhewAAAMALxkYIB8ZGocH4CAiMIGsE2bx5s5kr5//+7/9sTdLcdtttNnee7hMZ27Rp0+SJJ56Qq666ytaIfPzxx7FW1ET89HXS3y09aThz5oyZiP6TTz6R119/XbJly2ZbpY5Tp06ZkxgAAID0hrERwoGxkXeMj4D4EWSNIC+88IL5Fii59NvacuXK2VIM3SdSXtGiRW0udJKzT51k/Pbbb5chQ4bIhAkTfKsZ/vbbb9KtWzf5999/TRmBHTx4UO666y6ZMmWKrRHzTfeNN95oS6lr1apVUrlyZVsKrUg5hgEAQMbE2Cj9YGyUfjA+Ci3GR+kPQdYIobfClCxZ0tOqhhdffLGZZ8bfiRMnzL5T0//+9z+bi/Hiiy/aXHil1uOqwYMH21zoJGefQ4cOlZtuukkGDRokBQoUkD59+tgtMScZPXv2tCUEot9q+59ANGvWTFq3bm1L6VukHMMAACDjYWwUeoyNGBuFAuOj0GJ8lP4QZI0Q33zzjZkoWk8GvHj00UdtLobOlaL7Tk2HDh2yuRh58+a1ufBKrccNZNasWTYXvOT08Tdw4EDZv3+/mWfIdeutt8rnn38umTNnNuVffvlF/vjjD5PHheK+B/fdd58UKlTIlpJHJ36PioqypbQjNY5hAACQMTE2Cj3GRoyNQoHx0XmMjxAIQdYIoJfcT506Vbp27Wprkq9ly5bm2yR/um99jNSwevXqWHOiFC9eXBo0aGBL4ZNaj+vS21D8b1P44osvbC54/n10X7rPYJw7d05eeeUV+fDDD+Xxxx+3tefpCq16ZYDS40Jv7WDemsAmTpxoczE6dOhgc+lfah7DAAAg42JsFHqMjRgbhQrjI8ZHSBhB1gjw008/mdtWmjdvbmuSr0iRIlK1alVbiqH7PnbsmC2lLP0j7P8hpbcSpMQHemo9rit//vxmDqk8efKYsq5mum7dOpMPhrbVPkr3ofvSfQZDv6XWb2pHjBhhThoC0Vs8SpQoYfKbNm2SJ5980uThnR53P//8sy2lXal5DAMAgIyLsVHoMTZibJSaGB/FYHyUMRBkTWX6R18nig6luLfFKJ1/xqsFCxbInDlzbClxevIycuRIWxJp1aqV+XBLqtR6XK969OjhW7Vy27Zt8t5775l8MLSt9lG6D91XMPQWGP02TG+tatu2ra290CWXXBLrVhk98RozZowtwYsPPvhAtm7dakvJ89///tfmRObNmyfz58+3pdhefvllT3OVJSY1jmEAAJBxMTZKHGMjxkZpDeOjGIyPMgaCrKmsb9++Zu6XUCpTpozNnadzD61cudKWkmf79u3SvXt3W0rY0aNH5YYbbpDdu3fbGpFevXpJwYIFbSl4qfW4oaC3pbjfEut8P2vWrDH5hGgbbau0r+4jGN9++62ZyF1vgdJvaRP7VqxRo0a+26dOnjwpAwYMMPvAef4npEp/XxOi8wl99tlnF/RLqooVK9qcyL59+0wKRL8V1on7wyklj2EAAJCxMTZKHGMjxkapifER4yMkwkkBNWvWdPShoj/IbA1mzJjhdOjQwbwubqpfv74T/YtnWyRP9Aeo8+abb8bar5v69+/v/PHHH7ZlcCpVquTrX6xYMad48eLOwIEDnTNnztgWF9q7d68T/WHu65crVy5n9OjRzrlz52yLxKXG4+p74vbVdM8999gt3ujP1bhxY7PP8uXLO9OmTXNOnDhht56ndbpN22hb7aN9E/PVV185L774opM9e3bfz966dWsn+qTKtghsy5YtziWXXOLro0n3MWvWLNsifvPmzXNy5szp63f11Vc7R44csVsTtmTJEqdAgQK+vs2bNw/qeapnnnnG10+TloOh+9fHcfvp4+vPkZgDBw44119/va9f9MmZ8/XXX9utsa1bt86pXLmyE30SZ/o99NBDpo++pk8++aRpo7+f1157ra8cHz1mhw8f7nvcIkWKOMuWLbNbY+jxedFFFzkzZ860NfHz8n6pcB/D/n777TcnR44cvp9VX//jx4/brfHTNv7vle5D9wUAACIfY6OEMTaK7LGRYnx0IcZH3sdHjI3CL9TxSoKsKUxPFjQVLlzYd8D7Jz34dfvTTz9teyRuw4YNvv1Wr1494H7dVLp0aV9bTYnx/0C/+eabnUmTJpk/RsOGDXP27dt3wR8SrXNPkLSdfqDpH5WkSqnH9X8t9A+1+5iasmTJEmu7/vFPrm3btjlvv/2273ldeeWVztSpU80HjybNa51u0zbaVvskpFq1aiblzZs31s/tJv1AW7RokW0d24QJE5yyZcsG7KfHprtvTS496XBT0aJFL+hXo0YN3/a4/F/HUqVKXdBXj1t3e79+/Wwvx7yH/n39Pwg1adl/u/97rvtx6wP9XujP4d83Pnv27HHat2/vFCxY0PTT16dLly6+907ToEGDzAem1u/fv9/0W79+vXn9tE/mzJmdNm3aOA0aNHDq1q3rbNq0ybRJiJ40698B95jR3905c+aYk5/HHnvMHK/ffvutbX0hL+9XIOE4hl3+74MOGvx/Tk116tTxbdeTK5fm3XptE7ef7svdrgkAAEQW9zOasVHCUupx/V8LxkYxKb6xkfJyvu3/WjI+Ynzkz/89YGwUfgRZ0zj/gzyhdNddd9keidPXNdA+gkmJcf9gaNIPdKV/LNxvRfSPq364a/L/Fk3rf/75Z9M+OVLqcd1+waSSJUvaXsl36tQpZ8SIEU7Pnj0v2L/W6TZtE4y4/QOl+L55fffddwO2D5RcgbbFl+IK1Ca+pB+2rk8++SRgm/iStnfpfgK1iS8lZvbs2eb90ZOTuH3vvPPOgN8M/v33306VKlV87Z566qmgTiD8afuhQ4fGerxOnTo5v/zyi20RmH/7xFJShPIYdsXdT0JpwIABtpdj8oHaxJcAAEBkCfR5HSgxNmJslJi4/QOlUI6NVKDt8aW4ArWJLzE+ii29j4/i7iOhxNjIu1DHK6P0n+gdhlWtWrVkxYoVZt6b6tWr21qkBZUrV/atRBn9gS5ffvmlyR85ckR27dol48ePl5kzZ5o6dfXVV0vHjh2lePHikjt3blubdKn1uAAAAAAQCGMjAEhfQh2vJMiKBMX3gR5uqfW4AAAAABAIYyMASF9CHa/MZP8HAAAAAAAAACQDQVYAAAAAAAAA8IAgKwAAAAAAAAB4QJAVAAAAAAAAADwgyAoAAAAAAAAAHhBkBQAAAAAAAAAPCLIiXn/88YccOnTIlkQ2bNggW7dutaXwSa3HBQAAAIBAGBsBABIT5USz+bCpVauWrFixQlauXCnVq1e3tYhE9erVszmR3bt3y7Zt22wpRuXKlSVv3rwmX7VqVfnss89M3qvUelwAAAAACISxEQCkb6GOVxJkRSxRUVE2l7g6derIsmXLbMmb1HpcAAAAAAiEsREApG+hjlcyXQBi0Zh7sCmUH+aB9h9f4iQCAAAAQLgFGovElxgbAQAIsgIAAAAAAACABwRZAQAAAAAAAMADgqwAAAAAAAAA4AFBVgAAAAAAAADwgCArAAAAAAAAAHhAkBUAAAAAAAAAPCDICgAAAAAAAAAeEGQFAAAAAAAAAA8IsgIAAAAAAACABwRZAQAAAAAAAMADgqwAAAAAAAAA4AFBVgAAAAAAAADwgCArAAAAAAAAAHhAkBUAAAAAAAAAPCDICgAAAAAAAAAeEGQFAAAAAAAAAA8IsgIAAAAAAACABwRZAQAAAAAAAMADgqwAAAAAAAAA4AFBVgAAAAAAAADwgCArAAAAAAAAAHhAkBUAAAAAAAAAPCDICgAAAAAAAAAeEGQFAAAAAAAAAA8IsgIAAAAAAACABwRZAQAAAAAAAMADgqwAAAAAAAAA4AFBVgAAAAAAAADwgCArAAAAAAAAAHhAkBUAAAAAAAAAPCDICgAAAAAAAAAeEGQFAAAAAAAAAA8IsgIAAAAAAACABwRZAQAAAAAAAMADgqwAAAAAAAAA4AFBVgAAAAAAAADwgCArAAAAAAAAAHhAkBUAAAAAAAAAPCDICiDirV69Wnr06CG9e/eWV155RebMmWO3AAAAAAAApD6CrAAiXs6cOSVbtmzy5ZdfysCBA6VFixbSsGFDmTdvnm0BAAAAAACQegiyAoh45cqVk1GjRsnKlSulWLFipu7333+Xa665RhYuXGjKAAAAAAAAqYUgK4A0QwOs7777ri2JHDlyRDp06CCnT5+2NQAAAAAAACmPICuANKVdu3ZSvnx5WxLZunWrTJ482ZYAAAAAAABSHkFWAGlKVFSUdO/e3ZZifPLJJzYHAAAAAACQ8giyAkhzbr/9dpuLMW3aNNm3b58tAQAAAAAApCyCrADSnEqVKkmTJk1sSeTUqVMyYcIEWwIAAAAAAEhZBFkBpEldu3a1uRhMGQAAAAAAAFILQVYAaVLnzp0lS5YstiQyb9482bhxoy0BAAAAAACkHIKsANKkIkWKyNVXX21LIo7jyLhx42wJAAAAAAAg5RBkBZBmxZ0ygCArAAAAAABIDQRZAaRZN910k+TJk8eWRFatWiWLFy+2JQAAAAAAgJRBkBVIBWfOnJExY8ZIv379JCoqKlbSOt2mbZCwXLlymUCrP65mBQAAANIuxkoA0iqCrEAKmz17tlx++eVy9913y5QpU+Sdd94xdZo0r3W6TdtoXTBGjx4dK+XMmdN3IjJ48GDbKsby5culf//+sU5WNP3nP/8xfU+dOmVbpg1xpwz47LPP5OzZs7YEAAAAIK1grJR8Ogb6+eef5YEHHpC6detKhQoVpHHjxjJkyBA5cuSIbXXexIkT5bbbbrMlACHhpICaNWs6+lArV660NUDq0OMwmDRs2DDbI7a///47YHv/lJCnn37aKVmypJMjRw7n+eefdw4fPmy3nKd1uk3baFvtk5hAP4ebBg0aZNqsWbPGefDBB50GDRo43bt3dxYvXuxLN954o1OwYEHTvk+fPk70h7DpkxacOXPGKVq0aKzn/MMPP9itAAAAAILhfz6dUGKsFHljpenTpzu1a9c2P2ORIkWcwYMHO59//rkzcuRIp1y5ciatW7fOtnac8ePHO5kzZ3auu+46WwNkTKGOVxJkRYZSv359k+rUqWOOybipVq1aZvtHH31ke8S2ZcsWsz1TpkwX9K1atarZFsiJEyecnj17mn4FChRwvvrqK7slftpG22of7av7iM+7775rkp7wxP259MRBTw70JKRbt27O/Pnzba/YOnXq5OvTv39/W5s29O3bN9Zz1ucJAAAAIHiMldLeWOnUqVPO3Xff7fvZ/vOf/zjHjx+3W2Ps37/fadOmjYnLaIB40qRJJsCq7eMLmAMZBUFWIASOHTvmXH/99b4PI02tW7d2Dh06ZFsk7L333nPKlCnj6/vyyy8727dvt1sv9M8///jatmzZ0tYmTtu6/XQfwdAPzaxZs/r66YlDsWLFnHvuuce2CGzXrl2+PprGjBljt0S+3377LdbPnidPHufo0aN2KwAAAIBgMVa6UCSOlTR4euWVV/p+piFDhtgtF9q2bZuTPXt25/7773fy58/v66PjKCAjC3W8kjlZkSHpPDy9evWSHDly2BqR2rVrS968eW0pYT169JDChQub/pMnT5aHHnpISpQoYbfGtnXrVmnfvr0tiUSfZNhc4vzb6j50X4nRdtEfoLYkEn2So1+mmOebkEKFCsVq89JLL9lc5GvUqJFUrlzZlsTMOaTvCwAAAICkYax0oUgbK508eVLatGkjM2bMMOXOnTvLoEGDTD6QkiVLyl133SVvvPGGHDx40NTp+1mvXj2TBxAaBFmRYd1www1SrVo1WxIZP358UB/M/rS/7ich+sH3xx9/mHy7du2kZs2aJh8Mbat9lO7D/RBNih07dpiJ4XXy84RkyZJFihcvbksimzdvtrm0Ie4CWJ988onNhcM5Objhd5k7d74s/H2Z/LXqb9m0bYfs3LnTph2yfctm2bh+jfy1dJH8te2E7QcAAABEPsZKsUXaWEkDvgsWLDB5DaCOGjXK5BPSp08fm4vRrFkz87yS5dxB2fD7XJk7f6H8vuwvWfX3Jtm2wx0LRacd22XL5o2yfs1fsnTRX8JwCBkFQVZkaP/73/9sTmTXrl3mG8Gk8O8fn6FDh9qcSMGCBSVXrly2lDhtq31c/vtKCv3GMr27/vrrbS7Gjz/+KHv27LGlEDu1SJ5ve5k0b95UGjesK7VrVJHypUuab+hjUkkpVbacVKhcTWrXayItHvrWdgQAAADSBsZKkendd9+Vjz/+2JZEXnzxxVivQ3z0il1/GlxOrlOLnpe2lzWX5k0bS8O6taVGlfJSuqQ7FopOJUtJ2XIVpHK12lKvSQt56NujtieQvhFkRYbWpUsXad68uS2J3H///TaXML2tJE+ePKZ/QkaPHi1r1qyxJZFXXnnF5oLn30f3pftMCv2WU29vSc/27dsnvXv3tqUYZ86ckc8++8yWQixbY3lm/mbZ+M/fsmblclkyf4Z8Mbi1FPH9Rc0kF105SCbNXy6r/9kqGz/pZOsBAACAtIGxUuT5999/5dFHH7UlkTJlypipAoIxe/Zsm4txxRVX2FzSZWv8jMzfvFH++XuNrFy+RObP+EIGty5yPsCU6SK5ctAkmb98tfyzdaN80im33QCkbwRZkeGVLVvW5kTmz59/wYdPIMOGDYvVLz6nTp2Sc+fO2ZLEmv8nWP59dF+6z6TQ21qSfRtIGqAB1tatW5tbhNq2bWtrY4wbN87mQi9b/hJSrkIlqVq9ltRt0kquq1dSouw2yVxOOj/xuLRvUksurlBC8qfflx8AAADpGGOlyKLzrur4x9WtW7egf37/9y537tzSoEEDW0qObJK/RDmpUKmqVK9VV5q0uk7qlfSNhqKHQ53licfbS5NaF0uFEvmF4RAyCoKsyPAefvhhmxMzCfiBAwdsKX46B49/v/joLeuhFo59plX6Te7//d//ydKlS83E93rrTKZM5/+s/fbbb/L333/bUjidkmWzF8g+e46YqWBTadUw6SeJAAAAQCRhrBQ59u7dK++//74txYi7LkVC/IOsnuZjDeTUMpm9YJ/EDIcyScGmrYThEDIigqzI8OrUqRNrpcjEboMZMGCA3HnnnaZfYr755hubC51w7DMt0pOMK6+8UpYtW2YmcX/wwQfNpO9xb3sJ7wJY1tmN8uvcDXLGFKIkR/0W0iz46aQAAACAiMRYKXKMHTs21pW6OlVAjRo1bClh69atM/PqurzMxxrI2Y2/ytwNMaMhicoh9Vs0E4ZDyIgIsgLR/G9n0dUQ9QMsEF1RU1fWDOb2F4SPBlj1CtY///xTrrrqqliT1d9+++02FyOcUwb47Jsjc/+yJxWSRWo2b+E3PysAAACQdjFWigxjxoyxuRgtW7a0ucSFcj7WQPbNmSvnh0M1pXkLv/lZgQyE4x6I5r/ypX47qCcPgeiKmvoNYDArZSI89uzZY65g1QBr9erV5Ysvvoh1q0uHDh0kZ86ctiRmuoAFCxbYUngcm/+rLDpmV+vMUk6atqwsmWNKAAAAQJrGWCn16Tysf/31ly3FSEqQ9ddff7U5kVy5cknDhg1tKRSOyfxfF8n54VBTaVmZ0RAyJoKsQLSsWbPK8OHDbSnmROLo0aO2dJ7eHqPttD1S3u7du6VVq1ayfPlyKVKkiEydOlXy589vt8bIly+ftGvXzpZihPdq1pj5WP9152Mt0Fha1MsWUwAAAADSOMZKqW/JkiU2d15Sgqw//fSTzYk0bdo0tO+RmY/1X998rAUatxCGQ8ioCLICVrFixSRHjhy2FLMqpj+9xUI/3LQdUp4GWPUK1hUrVphVRL/++mupUKGC3Rpb3AngP//8czlzxr1/JcTObpY58/6Rs6bAfKwAAABIfxgrpS5dh8Jf0aJFpVq1araUsJUrV8r27dttKQzzsW6eI/P+iRkNMR8rMjqCrIB16623SunSpW0pZlVMf7qSpl4lqe2C9fzzz9tc6IRjn5FObzvSK1g1wKo++OAD8w1sfNq0aSOFCxe2pZgpBn744QdbCrF9s2XOn2ck5u6YLFKD+VgBAACQzjBWSl06XYC/Fi1a2Fzi/K9iVSGfj3X2HPnzjDtXQA3mY0WGxrEP+PFfQOmjjz6SRYsW2VLM7S/+24OhJxr+dJ6ipIrbJ+4+0zud80kDrPoNrBo8eLDcdtttJh8fvf3llltusaUYn3zyic2F1rEF/vOxlmU+VgAAAKRLjJVST1RUlM3FuOSSS2wucf5BVl27olGjRrYUCsdkgf98rGWZjxUZG0FWwI/O71mgQAFbEnnxxRfN/7qC5okTJy6Y/zMx+uFXqFAhWxJ56KGHbC54/n10X0n5QE3r3ADrqlWrTLlLly7y9NNPm3xibr/9dpuL8c0338iRI0dsKVROyR+zF8hedz7W/I2lJRMQAQAAIB1irJR68ubNa3MxdH2KYJw+fVpmzZplSyKXXXaZZMsWwvHKqT9k9oK9vvlY8zduyXysyNAIsgJ+mjRpEmsCcfc2GA326TZNSaG3cdSvX9+WRPbv3y/Hjh2zpcRpW+3j0n0l5daQtGzHjh3mVpbVq1ebsp4QjBkzxuSDodMJVKlSxZZiXstJkybZUoic3SJz5q33zceavQHzsQIAACB9YqyUei699FKbi+EfnE7IzJkzY11oEvL5WLfMkXnr3flYs0sD5mNFBkeQFYjD/zaXhQsXyltvvWVW0Ezq7S8unT+0Tp06Jv/tt9/65hUNhrbVPkr3ofvKCHRidg2wrlmzxpTLly9vFrryn2w/GL1797a5GCGfMuBA7PlYazZjPlYAAACkX4yVUkfr1q1jrTlx/Phxm4ufXsU6YMAAW4oR6vlYD8Saj7WmNGM+VmRwHP9AHHr7RPHixW0pZuVMLSf3tgqdIL5jx462JDJw4ECbS5x/W92H/2Tz6dW2bdvMh//atWtNWedVmjJlillBM6m6d+8e632bMWOGuUI2VE7Mny2LjvrPx1qF+VgBAACQbjFWSh1ZsmSRDh062JIkuqivTt/QqVMn+euvv2yNmAtWGjdubEuhcELmz14k54dDTaVlFUZDyNgIsgJxFCtWTO68805birkNRstan1z//e9/pWfPnpIpUyb5888/zVWZidE22lb7aF/dRzD0G+UzZ87YksjSpUvNh2xitI22dek+dF8pyQ2wrlu3zpQzZ84sEyZMkJo1a5pyUl100UVy880325LI2bNn5dNPP7Ulr3Q+1vmyx28+1hb1mYAIAAAA6RdjpRipMVZ64IEHfAt76UUo8V3NevDgQbnmmmtk7ty55vVx6XQO2bNnt6UQ0PlY5+/xm4+1hTAcQobnpICaNWvqdxvOypUrbQ0Q+fLkyWOOW/0/VDp16mT2mSNHDuf55593Dh8+bLecp3W6TdtoW+2TmPr16/tS8eLFTT//VKdOHd/24cOH216Oybv12iZuP92Xu11TOJ09e9apV69erMd/88037dbk++WXX2Lt85JLLnHOnTtnt3pwZr3zUrNsTpTZb5ST8+pRzvazdhsAAACQjjFWStmxkuuHH35wsmTJYh7/oYceumBc8+uvv5rxTunSpZ1JkybF+nmffPJJ2yo0zqx/yWmWLSpm/1E5natHbXcYDiGtCXW8kiArEI8aNWqY41b/D5VDhw45P/74o9O0aVOz7woVKjjvvPOOM3v2bJM0r3W6TdtoW+2TGG0fbBowYIDt5Zh8oDbxpXDS5+n/WP369bNbvIt7UjRixAi7xYN/P3RuzGtPKiSr02DIX84ZuwkAAABIzxgrXZhSyqeffuqUKlXKPGbbtm3N2Oall15yWrRo4WTNmtV58MEHnQMHDjijRo2K9fPpxSeh9O+HNzp5o+z+szZwhvzFaAhpT6jjlVH6T/QOw6pWrVpmUuroH1qqV69ua4HINnbsWHPry0cffSR33HGHrQ0Nvb3k448/NrecjBw50tbG6Nu3r9StW1e6detm5t7JSF5++WWJPkmQ9u3by6uvvmqmCwiFjRs3ytChQ80tPfonT/8m6evvxYmpPaTiDR/IDr0/JnNF6Tt9lYy4nPtjAAAAkP4xVkpdp06dknHjxpmp1f7991/JkyePtGzZUm677TapWrWqadOlSxf5/PPPTV6nCThw4ECSFxKO3wmZ2qOi3PDBDjNdQOaKfWX6qhHCcAhpTajjlQRZASDJTslvj9SV5sNWis7olKnwrfL5xvHSMU/MVgAAAABITSVKlJCdO3eavAZgZ82aZfIhceo3eaRucxm20oyGpPCtn8vG8R2F4RDSmlDHK1n4CgBc5/bIb2OekN539pTHxy6Vg7b6Ame3ypy5f8tZU4iS7PVbSrNcpgAAAAAAqWrNmjW+AKu6/PLLbS5h5/b8JmOe6C139nxcxi6NdzQUPRyaI3P/jhkNSVR2qd+ymTAcAgiyAoB1VBY82Uau7PGcjB77vrzQs5sMXXjKbovt3J7pMn3ZaTMBkURlk7pXtpKi/DUFAAAAEAFmzpxpczGuuOIKm0vA0QXyZJsrpcdzo2Xs+y9Iz25DJfBw6JzsmT5dlp2OuSk6KltdubJVUYJLQDR+DwBAHZ4qr725VI7ZCVScc4dk/8FAs6mclU1ffC6zj9qTilzNpPMtlSU0s8cCAAAAgDe//PKLzYlky5ZNLrvsMluK3+Gpr8mbS4/FXEgS/e+5Q/sl8HBok3zx+WyJGQ5FSa5mneWWyoyGAEWQFQCindu/XXYe1WnbVSbJ36i39GyZ3Zb97PtBXnh9VsxJRVQ2qXnv09KjAicVAAAAACKD/5WsjRo1kpw5c9pSfM7J/u075fxwKL806t1TAg+HXpDXZx01wdiobDXl3qd7CMMhIAZBVgCIlumiilKhYBYp2PAOGfzmN7LghyekQdyTirOb5LO+98uH/5yJPqnIJIWveEbGPNlcctvNAAAAAJCadAGfXbt22VKw87FmkosqVpCCWQpKwzsGy5vfLJAfnmggFw6HPpO+938o/5xxorsUliueGSNPNmc0BLgIsgKAytVaet1VQ05s2S15GzSVqnltvXV25yx56ZarpMenG+R09OlGhRtfkilfDpQGnFMAAAAAiBA//fSTzcVo0aKFzSUsV+tecleNE7Jld15p0LSqxB4OnZWds16SW67qIZ9uOC2SvYLc+NIU+XJgAy44AfxEOdFsPmxq1aolK1asMN+oVK9e3dYCQIQ5uVo+6tNB+n12QGp06Co3t6on5bLulhULf5XvJn0ji3eekeylW8hdg16Up3s2liJ8TQUAAAAgApw7d06mT58u3bt3l+3bt9takU8++US6du1qSwk7ufoj6dOhn3x2oIZ06HqztKpXTrLuXiELf/1OJn2zWHaeyS6lW9wlg158Wno2LsJVe0jzQh2vJMgKALEckw0zPpH3x0+Tecs3yO7jWaVohapS9eJqUrtxG+nQroEUz2abAgAAAEAqmTRpkvTv31+OHz8ux44dM/8Hkj9/fsmRI4cULFhQvv/+eylXrpzdEsCxDTLjk/dl/LR5snzDbjmetahUqFpVLq5WWxq36SDtGhQXhkNILwiyAgAAAAAAZHCffvqpjBgxQrJnz24Wt9JAqiYtnz59Wk6cOBEraZB1/Pjxki9fPrsHIGMjyAoAAAAAAAAAHoQ6XskUGgAAAAAAAADgAUFWAAAAAAAAAPCAICsAAAAAAAAAeECQFQAAAAAAAAA8IMgKAAAAAAAAAB4QZAUAAAAAAAAADwiyAgAAAAAAAIAHBFkBAAAAAAAAwAOCrAAAAAAAAADgAUFWAAAAAAAAAPCAICsAAAAAAAAAeECQFQAAAAAAAAA8IMgKAAAAAAAAAB4QZAUAAAAAAAAADwiyAgAAAAAAAIAHBFkBAAAAAAAAwAOCrAAAAAAAAADgAUFWAAAAAAAAAPCAICsAAAAAAAAAeECQFQAAAAAAAAA8IMgKAAAAAAAAAB4QZAUAACEVFRWV7PTMM8/I+++/L0uXLrV7S59GjRplUu/evX3PfeLEiXZr+H344Ye+x9V8SnKf+/Dhw30/Q7ly5ezWyPbvv//KO++8I126dPH97P5J63W7tkvPUvP4AQAAiFRRTjSbD5tatWrJihUrZOXKlVK9enVbCwAA0qPffvvN5kS+/fZbGTZsmJw5c8aUO3bsKAMHDjT5uGbOnCnjxo2TzZs3S968eeWmm26S/v37S+XKlW2L9KNly5bm/99//12OHz9u8l988YV5fcJt7ty50qZNGzl8+LAp62s9bdo0adasmSmHm/vc16xZI7t37zb5smXLyqZNm0w+Eukx+dVXX5ng8Lp166Rx48by1FNPSbFixWwLkV27dpk6Pf6rVKki99xzj7Rv3948t/QktY8fAACAUAl1vJIrWQEAQEhpAMpNzz77rBQqVMhuEROU8t/un/73v//Jn3/+KaNHj5atW7fKG2+8IU2aNDFBnfTm119/Nemhhx6yNSlHg2NugEzFLYeb+9w//fRTWxO5zp07Z47Ftm3bygMPPGDKH330kcybN0+uvvpqqVOnji9pWet1u7bT9tpP+2s5ElWtWlW+//57WwpOah8/4Zac1wQAAEARZAUAABGlU6dOJgCXI0cOc9v1//3f/8nixYvt1vRFg3MprVKlSia54pZTSoMGDWwucmkQvEyZMvLXX39JjRo15Oeff5bbb7/dbg1Mt2s7ba/9tH9qBNPDJVKOHwAAgEhDkBUAAEQcnduyYsWKJn/y5EkzdUAk306eluit7FOmTJEbbrjBJM1rHc7T6S0eeeQRefPNN01Zp6zQW+KDvfVf22l7d6oL3Y/uz502IxLMnz8/WXPHpufjJ7mvCQAAgCLICgAAItLTTz9tc2Juuf7ss89sCV5Vq1ZNJk+ebJLmEZvOFatzCZ8+fdpMcaGBxKTOrarttZ/21/3o/tw5aCOBzge8b98+W0qa9Hr8eHlNAAAACLICAIA0gXkSkRI0oH/dddfZksjNN98sF198sS0ljfbT/i7dr+4/tZ06dUrGjBljS1C8JgAAwCuCrAAAAIA1depU+eOPP2xJzC3xXvj31/3q/lPbf//7X1m6dKktQfGaAAAArwiyAgCANOHaa6+1ucQdP37crPJ+zz33SFRUVKykixCtWLHCtkyb/v77b/P8LrvsMt/zqlChgqlLr4uEpYRjx47J66+/bksijRs3lvr169tS8mh/3Y9L96+PkxoOHz4sP/74o1lYLqVF6jGbmq8JAABIXwiyAgCAiPTkk0/anEjp0qXNYljBOHHihFlk6MEHH5SDBw/KzJkzfUkDXG+//bbceOONZv96i3BacvbsWXnppZekXbt28p///Efat2/ve246h23fvn3N7elLliwxr0NcOjeopu3bt0uvXr1MGjFihN2auPXr18ugQYN8QTJN/fr1k+XLl5vtOueovsbutlKlSsno0aPNtmDp4lAff/yx7+fTNHHiRPPcw00DfqtWrbIlMfOpFilSxJaSR/vrfly6f32cQD744AOTdKEs9zUsV66c3RrbV1995Wt/0UUX+dofOnTItoitf//+0q1bN7nmmmtkz549tlbM74Nu80+//vqr3Rpbco4fr8es0mNIkz5WoNfl22+/lVatWvm2adKpGX744QfbIrBQvCYAAAAugqwAACDi6CJX//zzj8lnz55dvv7663iDTXFpEFCDMXXr1pWOHTvK5Zdf7ksaENSAjwYLhwwZYvLx8Q/YBEpz5861Lc/TxY0CtdUUCu+//748/PDDsnr1avM8Ne8+tzvuuEM+/PBD2bx5s7l6cs6cObbXedmyZTNJg5/vvfeeScHMdauBTw1KX3XVVSbgqa+vXn2oj6fBMg1oNWjQQNq2bSuTJk0y2/S11WBc79697V4St3btWjOPqe43d+7cJmXNmlU6deokderUSfE5M/UYCoVg9/PKK6+Y9Pjjj9ua+GmgVts++uijQa2Iv2PHDvPe62tZpUoVWytmoSfd5p/iu9I2OceP12NWvfPOOyb5L4an9PjSgGiPHj3MtAx63GnS/Wjgv3PnznL11VfLrl27bI/YQvGaAAAA+DgpoGbNmo4+1MqVK20NAADIKIoWLWrOAzTdd999tjZ+EyZM8LUvXLiwM2fOHLslODVq1PD179q1q6097/Tp007v3r3N9hw5cjiTJ0+2W2LT8xZNAwYM8O1Pk5a1/tixY7bleXv37nXefvttX9vixYs7U6ZMifcc6IsvvvC11XxC9HXIlSuXadu5c2fn5MmTdst5WlepUiXTpm7dus62bdvslhhr1qwxqWfPnr7HbdOmjd0av+HDh/vaz5s3z9bG2LBhg29b06ZNbW1MfbVq1ZzbbrvN1sR28OBBX79ixYo5/fr1Mz9zt27dnAMHDthWjnP27Fln4MCBpl3WrFmd0aNH2y2hV716dd/PpGnr1q12ize6H//96uMk5Msvv/S1LVu2rK0NbOHChU7BggV97fV1TYy+1m77adOm2drEJfX4CcUx62/q1Km+x82TJ49z6aWXOo0bN3YmTpxoW5w3dOhQX1vNJya5rwkAAEi7Qh2v5EpWAACQYvSKst9++y1g0qtAL7nkEnMLsk4PcP/998uCBQukWbNmtndoZMmSRfLly2fyenuyXgkXSPXq1U3Sq+fy5s1ra0WKFi1q6nPmzGlrzitcuLCZikCvytM+EyZMMFd3anuv9KpB92o6ve1ar8CLS+v69Olj8rqIj95S7q9q1aom/e9//7M1ifvll1/M1Auqa9euZk5Nf+XLl5eBAwea/Lx582T8+PEmr/V6a/y4ceNMOSF6XOjVscOHD5exY8dK/vz57RaRTJkymWNCb7vXW9W1nc65Gw7+UwWEU2KP07p1a5tLXMOGDWMdn+GU1OMnFMesv+bNm9ucyJEjR2TZsmVmPtUOHTrY2vP0ZyxbtqzJ6/Qh8U2jAAAAECoEWQEAQIrRW82bNGkSMGkgRG/xve222+Sbb76RkSNHSuXKlW3P4H355ZfSvXt3k959911bG5veyu4GSTWQm5A8efLEun37p59+kpMnT9rShXQhHQ3oaJ8WLVrYWm90jk69rdrlv5BSXLpKuhtc0uC1Vy+++KLNxQSuAnnggQckR44cJu/fPik0sKjHQSAa2HPfLz1GNNiKyJYSx6zO56q/nwAAAJGAICsAAEgx9913n05VFDD17NlTChYsKKNGjZKnnnoq3kVwElOtWjUzd6emXLly2VpvdOEbvbpWTZ8+PcEg67p168yVltonVHSOSJdeEajz1AZDF5DySufLdJUpU8bmYtM5Ot15Z/3bB0vfJz02gn1eiHzhPmb1qnGdi1WvdAYAAIgEnJUAAICIoKuH65Wnequ4Xsmqtwbr7cORQK/S1AV7XLrgUHx0m7Z1r+wMhcGDB9ucSMWKFdNdYElXx7/ppptsCelBuI9ZXRRNF0MDAACIFARZAQBAxOjYsaNZDVzpKuEffPCByXuhgdpZs2aZVdgrVKjgSwldjRqIrj7uBop03tH169ebvL8ffvhBfv/991grlYfaP//8Y55PQimpzw0IJ45ZAACQERBkBQAAEUUXP3K99dZb5grX5NLFs6699lq54oorZOjQoeYqWZ2KQJMugJUUup82bdqY/N9//+1b4Ml16tQpeeONN8w8rNo2XHShLn0+CSVdSCpUbr31VpsT+eyzz2wuNp0H150n1b99atBpC4JJgei8wP6SM/VBIHH3E/dx0ruUPmYBAABSA0FWAAAQUfxXID937lySFznauXOnWYFeA2m6+M7Zs2eld+/eZt5XXY38zjvvNClz5sy2R/CGDBlicyJffPGFzcXQOWSnTJkSq0046MJSceezTSh51alTJ3O7t9KFjHbv3m3yLl3lXad5OHPmjBQvXty8tmlV+fLlYwVgNTAfCv770f3r42QkKX3MAgAApAaCrAAAIN3Qlf11MRx30SldeVyvhn3nnXdM2asaNWqYKQ3Upk2b5Pvvvzd5pQt26TZtk55cfPHFJkimdOX37777Tv79919TPnTokMycOVN+/PFHM6+qLlrUqFEjsy21BAraBUqB9OnTR2rVqmVL4aH718eJVPraaOAc5/GaAACAYBBkBQAAES0pt1ZrkE+DgC4Nrt5yyy225J0uZlW5cmWT1wDja6+9ZvIacB07dqzZFsoFryLFp59+aham6tmzp9x1113SoUMHEyjs0qWLtGvXzlztqlMGtG7d2vZIuwYNGmRzYgLIc+fOtaXk0f66H5f//iORzjWcN29eW4LiNQEAAMEgyAoAACKaXp0aLP8VzXVxqxtuuMGWgqPBFO2XkKefftrM7ap0oSu1detW2bZtm9kWDv5TEOit5ym5SNAvv/xiAqgNGjQw8+Pq/KJ6dasqU6aMLF++XCZMmCAtW7Y0dWmdzg/atGlTk9dAus6zG8ixY8fk1Vdfldtvv938r+VAtL/uR+l+df8ZQWoeswAAAKmBICsAAEg33NvYlU4boNMFJIUuXrVx40ZbCkznjPW/ulZvpR82bJip859PNpT0StESJUqY/L59+8xctYnRuWn1qtNQ08CqXiHspnDfXp/SihQpYq7Ydf3000+yaNEiW4qxZMkSE4z/9ddfpWTJkuZ/LWu9P+2n/V26X91/KM2ePVsOHjxoS5Ejko5ZAACAlECQFQAARLy1a9fa3Hm6wn+lSpVsKWl+//13syBWcnXu3FmqVq1q8mPGjDGLQWlduFSrVk2uueYaWxLp27evzcVP50nVhapCZfLkyXL8+HFbSt908S5dNE2nftDAfZs2bWTp0qVmmy7wpe+FTpMwbtw4E2TX/8ePH2/q//rrL9NO22s/7a/70f2FY1GwefPmRWSQNRKOWQAAgJREkBUAAESUfPny+RaXco0YMcLmztOFaP755x9bilG4cGGbE3n//fcDLlajQTK97V2vWk0uvWqxaNGiJr969WrJmjVrotMMeKW3pDdv3tzkdd5ZXYQqPhp4e/jhh0My/6deqVmxYkVzVWarVq3Maxdf8r+SOC3LlCmT3HvvvWb6h+zZs5vn1b59e3Olqi6CtHfvXvP65s6d27TX/xs3bixNmjQxVzUvXLjQtNd+2l/3o/vT/QYjKipKcubMafL6ePHdaq/7/+STT2wpePo75oo7Hcfbb78da7sXqXXMJkdKvSYAACAdiz5xC7uaNWvqEq7OypUrbQ0AAMgIFixY4OTNm9ecB2hq0aKF8++//9qt8fv++++dXLlyxdtv3bp1TpUqVZxWrVrZmhhvvvmmr4+mcePG2S3nuW3atm1r/s+ZM6czY8YMs+3ll1829cH49ddffY+j+aRYvny5Sfq83H1o3q2Pz6effuo0a9bMtC9btmzAtnPnznVuvfVWp1q1arbmPHf/3bt39z1uoUKFnM8//zzBx33wwQd97RNKNWrUcFq2bOksXrzYOX36tO0dm/sz9O/f39cvR44cziuvvGLq9b11aV7rdJu2cdtrX3c/4fbxxx87TZs2NY9bsmRJ56mnnjL51157zbY4z/85adJ+2j85hg4d6tuP5uPatm2bU69ePadx48ZOvnz5fG2//PJL2yJhbnv9PXKtX7/eufjii50RI0bYmtjc1zwpx4/XY1bp8aSpT58+vsfNli2b89xzz5l6/zGG5rVOt2kbt732dfcTH7dtUl4TAACQdoU6XkmQFQAAhFTt2rV9qVixYr7AhZuqVq3q2/7QQw/ZXhf65JNPnDp16vj6tWvXzgRtNdWqVctp3br1BQHbQ4cOOdOmTXOKFCli+uTJk8d57733nJkzZ5rUsGFDE5R6++23Tdv27dubdgUKFHDKly/vFC5c2Pn666/t3hJ2+PBh5/rrrzdJ80nhPqf4UkL27dvnXH311SZ4XbFiRd9z03THHXeYoNe9995rgnBxBXos/xSf4cOHB2yfUOrWrZuzevVqu4fzArX1T3pcuDQfqI1/SgkHDx50Jk2a5Fx++eW+x82ePbsJuH7zzTcmjR492hxvuk3fA22v/eLS407bJ2bv3r3m2CpYsKBTtGhR56677nLmzZvnS82bNze/H7t37zbBS/fnyp8/vwl2a0qI/g7o75EGIp988kln9uzZ5ksG/T04cOCAbRWb+xjxpfh4OWZVoMfyT6E6ZpLzmgAAgLQr1PHKKP0neodhpQsirFixQqJ/aKlevbqtBQAA6ZHeph8svcX+yiuvtKULHThwwKxsryvc67yXruHDh0uXLl2kePHitia2mTNnyqZNm+S+++6To0eP2lqRl19+2fQrVaqUKe/Zs0duvPFGmT9/vlk9/4knnjDlYOgiPddee625JTqh5xAuU6ZMkeeee04WLFhga2IW+2rRooVZdChXrly21ptnn33W3MLdsGFDmTVrlu829kD059G5ct15NWvUqGHOAdOLQ4cOydy5c83xOGHCBFt73i233CKvvfaa1K5d2yyG5U4n4E/nbNXtwZ6C68JZuk+93d6frt7ftWtXM5VDuXLlZPPmzab+jTfe8L1Hd999t/k/Ptu2bTPTDbgLuV1yySUyePBg6dChgymHWkods16k9GsCAABST6jjlQRZAQAAkkFX1v/Pf/4TdLAsLdIAsgae8+TJI3/++We8QW1/uqBYv3795K233jLBvrFjx14wx256pnOw6ny/H330kdxxxx229rznn39eHn/88XR93AAAAKQFoY5XsvAVAABAAHqlql61GN9iPXq1mwbL0rOHHnpIjh8/Lt26dQsqwKoyZ84sPXv2lAIFCpi+u3fvtlsyBr1aWg0YMMAEpv1t2bIlWQtVAQAAIPIRZAUAAAjghhtuMCujt2zZUj7//HNbG0OnF9AAYvfu3W1N+tasWTObC07dunUTnFYgPXNvedeV/9u1a2dWzV+7dq1Jesv5qlWr5IEHHjBtAAAAkH4QZAUAAAhg0aJF5n+99XvZsmUm7xo1apS0bt1aKleubGvSN70CMyn0KuAzZ87YUsbSpEkTKV26tMnrPKkaoL744otNco+pqlWrmv8BAACQfhBkBQAACKBevXrm/6xZs5r5mpRevXrnnXeaRY3uuusuU5ee3Xbbbeb/xx57TKZNm2byidHXSK8C1kXFSpYsKVdccYXdkjHUrFlTihYtaksX0mOpd+/etgQAAID0giArAABAAA8//LDkyJHDTAmgAVf3Nu8ffvhBJk2aZK5MTO/GjRtnAoLHjh2T6667TqZOnWq3BKbzr7Zq1cpcsamr3s+YMUNq1Khht2YcTz31lBQqVMiWzitYsKAMGTLEzFsLAACA9IUgKwAAQACdO3eWDz/80EwVoIFCTVmyZDFXdLpXuWYEr7zyigmW1q9fX+6++25p0KCBjBw5UpYsWRIrNW3aVC6//HITaB08eLD89NNPGSIQHYjOxTpx4kQzB6vrpptuki+++ELat29vawAAAJCeRDnRbD5s9LaoFStWyMqVK6V69eq2FgAAAGnJRx99JH///bc8++yztuY8XSTsjjvukCuvvFIqVapkawEAAIDIFOp4JUFWAAAAAAAAABlKqOOVTBcAAACS5Msvv5S2bdvK6NGjbQ0AAAAAZGwEWQEAQNBGjBght9xyi3z33XdmMSQAAAAAAEFWAAAQhFOnTplV5vv37y/nzp2TG264Qfr162e3AgAAAEDGRpAVAAAkaOvWrdKiRQvf9AC6qJEugBQVFWXKAAAAAJDREWQFAADxmjZtmtSrV08WLlxoyrlz55avvvpKChQoYMoAAAAAAIKsAAAggB07dkjnzp3luuuukz179pi6TJkyyfjx46V27dqmDAAAAACIQZAVAAD4nD17Vt544w2pXr26TJgwwdbG0EWvdC5WAAAAAEBsUU40mw+bWrVqyYoVK2TlypVm0AYAACLP5MmTZfDgwfLnn3/amvOqVasmd999ty2lrCVLlsihQ4dsKbBSpUpJlSpVbCk01q1bJ9u2bbOlGDoP7WWXXSbZsmWzNaGnVw7reZM/PV279NJLpWDBgrYm9E6ePCkLFiwwj+XSfPny5aVChQq2Jjx0Oopjx47ZUoz8+fNL3bp1bSk8Vq1aJbt27bKlGHrFdtOmTSVLliy2JvT0SvHVq1dfMK9x/fr1JW/evLYUevoau1N/uPQ9rly5spQpU8bWhJ4+hh5beoz5K1y4cMivjN+wYYNs2rTJlgLLnDmzNG/ePOzzSusige3bt5eqVavaGgAAEElCHa8kyAoAAOSDDz6QHj162BIAIBQee+wxee6552wJAABEEoKsAAAg5P7991955pln5O23377gajOlV7np1ayp4a+//gr4M/nTKzwrVqxoS6Hxzz//yP79+20phl7lqOcyOXLksDWht3v3btmyZYstnVepUqWwLjh29OhRWbt2rbn6zl/RokXDepWjPp6+x6dPn7Y1MXLlyhX280a9WjnuVdJ6lWONGjXCerWyXsm6fft2WzpPr8bOly+fLYXe4cOHzXOOe/pfokQJKVmypC2Fnk5Dou/xmTNnbE0MvWo31Fd56lWse/futaXA9CrlmjVrhvVqZddDDz0k11xzjS0BAIBIQpAVAACEzcaNG+WBBx4wUwf4y507t/z888/SpEkTWwMAAAAAaVeo45UsfAUAAHx0/s2vv/5avvnmGylbtqytjbnKsW3btuYqOAAAAABAbARZAQDABdq1a2e+0R0wYIBvcZh9+/bJ9ddfLwcOHDBlAAAAAEAMgqwAACAgnSLglVdeMVMH6ErvSufsvP322y+Y0xEAAAAAMjKCrAAAIEF6Vevvv/8utWvXNuWpU6fKkCFDTB4AAAAAQJAVAAAEoXLlyjJv3jy58cYbTVmDrLoQFgAAAACAICsAAAhSnjx5ZNKkSXL//fdLlixZZMqUKXYLAAAAAGRsBFkBAEDQMmXKJCNHjpSTJ0/Ka6+9ZmsBAAAAIGMjyAoAAAAAAAAAHhBkBQAAAAAAAAAPCLICAAAAAAAAgAcEWQEAAAAAAADAA4KsAAAAAAAAAOABQVYAAAAAAAAA8IAgKwAAAAAAAAB4QJAVAAAAAAAAADwgyAoAAAAAAAAAHhBkBQAAAAAAAAAPCLICAAAAAAAAgAcEWQEAAAAAAADAA4KsAAAAAAAAAOABQVYAAAAAAAAA8IAgKwAAAAAAAAB4QJAVAAAAAAAAADwgyAoAAAAAAAAAHhBkBQAAAAAAAAAPCLICAAAAAAAAgAcEWQEAAAAAAADAA4KsAAAAAAAAAOABQVYAAAAAAAAA8IAgKwAAAAAAAAB4QJAVAAAAAAAAADwgyAoAAAAAAAAAHhBkBQAAAAAAAAAPCLICAAAAAAAAgAcEWQEAAAAAAADAA4KsAAAAAAAAAOABQVYAAAAAAAAA8IAgKwAAAAAAAAB4QJAVAAAAAAAAADwgyAoAAAAAAAAAHhBkBQAAAAAAAAAPCLICAAAAAAAAgAcEWQEAAAAAAADAA4KsAAAAAAAAAOABQVYAAAAAAAAA8IAgKwAAAAAAAAB4QJAVAAAAAAAAADwgyAoAAAAAAAAAHhBkBQAAAAAAAAAPCLICAAAAAAAAgAcEWQEAAAAAAADAA4KsAAAAAAAAAOBBlBPN5sOmfPnysmnTJnn11VeldOnSthYAAAAAAAAAUt6AAQNk69atsmjRImnQoIGtTb4UCbIWLlxY9u3bZ0sAAAAAAAAAkPp++eUXueKKK2wp+VIkyDpw4EDZsmWLLQEAAAAAAABA6tM770uVKmVLyZciQVYAAAAAAAAASK9Y+AoAAAAAAAAAPCDICgAAAAAAAAAeEGQFAAAAAAAAAA8IsgIAAAAAAACABwRZAQAAAAAAAMADgqwAAAAAAAAA4AFBVgAAAAAAAADwgCArAAAAAAAAAHhAkBUAAAAAAAAAPCDICgAAAAAAAAAeEGQFAAAAAAAAAA8IsgIAAAAAAACABwRZAQAAAAAAAMADgqwAAAAAAAAA4AFBVgAAAAAAAADwgCArAAAAAAAAAHhAkBUAAAAAAAAAPCDICgAAAAAAAAAeEGQFAAAAAAAAgGQT+X8wre0Tu26J6gAAAABJRU5ErkJggg==
Es gelten folgende algebraische Regeln:
Seien $$f,g: U \longrightarrow \mathbb{C}$$ differenzierbar in $$a \in U$$.
Dann sind auch $$f+g$$ und $$f\cdot g$$ in $$a$$ differenzierbar und es gilt
<$latex text="
\begin{aligned}
d(f+g)(a) =& df(a) + dg(a) \\
d(f \cdot g)(a) =& df(a) \cdot g(a) + f(a) \cdot dg(a)
\end{aligned}
" displayMode="true"></$latex>
Ist zusätzlich $$f(a) \neq 0$$, so ist auch $$\dfrac{1}{f}$$ in $$a$$ differenzierbar mit
<$latex text="
d \left( \frac{1}{f} \right) (a) = - \frac{df(a)}{f^2(a)} \qquad \text{(Qutotientenregel)}.
" displayMode="true"></$latex>
<$details summary="Bemerkung" tiddler="Bemerkung">
{{Bemerkung: Rechenregeln für differenzierbare Funktionen}}
</$details>
Sind $$f$$ und $$g$$ in $$U$$ stetig differenzierbar, dann sind auch $$f+g$$, $$f \cdot g$$ und $$f/g$$ in
$$\{x \in U \: | \: g(x) \neq 0 \}$$ differenzierbar.
<$details summary="Beweis" tiddler="Bemerkung">
{{Beweis: Rechenregeln für Differenzierbarkeit auf U}}
</$details>
Für diskrete ZVs $$X,Y,X_n,Y_n:\Omega\to\R$$ in $${\mathscr{L}}^1(P)$$ gilt:
# ''Monotonie'': Aus $$X\le Y$$, d.h. $$X(\omega)\le Y(\omega)$$ für alle $$\omega\in\Omega$$, folgt $$\textbf{E}_P(X)\le \textbf{E}_P(Y)$$.
# ''Linearität'': $${\mathscr{L}}^1(P)$$ ist ein reeller Vektorraum und $$\textbf{E}_P:{\mathscr{L}}^1(P)\to\R$$ ist linear: $$\textcolor{blue}{\textbf{E}_P(c_1X_1+c_2X_2) =c_1\textbf{E}_P(X_1)+c_2\textbf{E}_P(X_2)}$$ für $$c_1,c_2\in\R$$.
# ''$$\sigma$$-Additivität'': Sind alle $$X_n\ge 0$$ und ist $$X=\sum_{n\ge 1} X_n$$, so gilt $$\textbf{E}_P(X)=\sum_{n\ge 1}\textbf{E}_P(X_n)$$.
# ''Monotone Konvergenz'': Wenn $$Y_n\uparrow Y$$ für $$n\uparrow \infty$$, so folgt $$\textbf{E}_P(Y)= \lim_{n\to\infty}\textbf{E}_P(Y_n)$$.
# ''Produktregel'': Sind $$X$$ und $$Y$$ unabhängig, so ist $$X\cdot Y\in {\mathscr{L}}^1(P)$$\ und es gilt: $$\textcolor{blue}{\textbf{E}_P(X\cdot Y)=\textbf{E}_P(X)\textbf{E}_P(Y)}$$.
!! [[Beweis|Rechenregeln für Erwartungswerte: Beweise]]
! [[Monotonie des Erwartungswerts: Beweis]]
! [[Beweis der Linearität |Linearität des Erwartungswertes: Beweis]]
! [[Beweis der Produktregel|Produktregel des Erwartungswerts: Beweis]]
Seien $$(a_n),(b_n)\in\R^\N$$ konvergent mit Grenzwerten $$a,b$$. Dann gilt:
# Die Folge $$(a_n+ b_n)$$ konvergiert gegen $$a+ b$$
# Die Folge $$(a_nb_n)$$ konvergiert gegen $$ab$$. Insbesondere konvergiert $$(\lambda a_n)$$ gegen $$\lambda a$$ und $$(a_n- b_n)$$ gegen $$$$a-b$$
# Ist $$a\neq 0$$ so existiert ein $$n_0\in \N$$, so dass $$a_n\neq 0$$ für alle $$n\geq n_0$$ ist. Die Folge $$\left(\frac{1}{a_n}_{n\geq n_0}\right)$$ ist konvergent mit Grenzwert $$\frac{1}{a}$$
# Die Folge $$(|a_n|)$$ ist konvergent mit Grenzwert $$|a|$$.
!! Beweis
''1.:''
Es sei $$\epsilon>0$$ beliebig, aber fest. Dann existieren wieder $$n_1,n_2$$, s.d.:
<$latex text="\begin{aligned}\forall n\geq n_1:|a_n-a|<\epsilon\\\forall n\geq n_2:|b_n-b|<\epsilon.
\end{aligned}" displayMode="true"></$latex>
Dann gilt für $$n\geq n_0\coloneqq \max(\{n_1,n_2\})$$:
<$latex text="|a_n+b_n-(a+b)|\leq |a_n-a|+|b_n-b|<2\epsilon." displayMode="true"></$latex>
''2.:''
Es sei $$\epsilon>0$$ beliebig, aber fest. Dann existieren wieder $$n_1,n_2$$, s.d.:
<$latex text="\begin{aligned}\forall n\geq n_1:|a_n-a|<\epsilon\\\forall n\geq n_2:|b_n-b|<\epsilon.
\end{aligned}" displayMode="true"></$latex>
Es gilt nun
<$latex text="a_nb_n-ab=(a_n-a)b+a(b_n-b)." displayMode="true"></$latex>
Da [[jede konvergente Folge beschränkt ist|Jeder konvergente Folge ist beschränkt]] gibt es $$B>0$$ so, dass $$|b_n|\leq B$$ für alle $$n\in\N$$. Also gilt für $$n\geq \max(\{n_1,n_2\})$$:
<$latex text="\begin{aligned}
|a_nb_n-ab|&\leq |a_n-a||b_n|+|a||b_n-b|\\
&\leq\epsilon B+|a|\epsilon\\
&=(B+|a|)\epsilon.
\end{aligned}" displayMode="true"></$latex>
Teil 3 und 4 sind häufig Übungsaufgaben in der Analysisvorlesung und werden daher hier nicht angegeben. Diese sind aber fast identisch zu den obigen Beweisen.
!! Partielle Integration
Es seien $$u,v:I\to\R$$ stetig differenzierbar, dann ist auch $$uv$$ stetig differenzierbar und es gilt
<$latex text="\int_a^bu(x)v'(x)dx=u(x)v(x)|_a^b-\int_a^bu'(x)v(x)dx." displayMode="true"></$latex>
!! Substitution
Es seien $$f:I\to\R$$ eine [[Regelfunktion|Regelfunktionen]] und $$g:[a,b]\to I$$ eine stetig differenzierbare Funktion. Dann gilt
<$latex text="\int_a^b f(g(x))g'(x)dx=\int_{g(a)}^{g(b)}f(t)dt." displayMode="true"></$latex>
Beide Aussagen folgen aus [[Analogons zu Rechenregeln der Differentialrechnung]] und dem [[Hauptsatz der Differential- und Integralrechnung]].
Sei $$R$$ ein Ring und $$x,y,x_i,y_i\in R$$. Dann gilt:
# $$0x=x0=0$$
# $$(-x)y=x(-y)=-(xy)$$
# $$(-x)(-y)=xy$$
# <$latex text="\left(\sum_{i=1}^nx_i\right)\left(\sum_{j=1}^my_j\right)=\sum_{i=1}^n\sum_{j=1}^mx_iy_j." displayMode="true"></$latex>
iVBORw0KGgoAAAANSUhEUgAAAMgAAAClCAAAAAA8We3GAAAm2ElEQVR4nL297Y7sOrIltlYEVfuc7msbGMDwM/j9H8owbBiYmTt9qlKMWP4R/FJW7b49HsDC3llKSiIpMj5WfJDJ/535X/Lvf+P9j/xb+/f7anb1V7aWNyXILsuvZv3X/QLAX5b846P9Z/7P/7j//C/X3/p/JaP7Ryj458edvz7t/vu/vwT+knmQf+X/ZHFd9vH/3Gh/vFr83d3xy73x+rf//Nk+evsv+fc/1P7v/N9u+/z8X1//19d/+/fgfbds1im2myTudnno9ctev+wVf3r7X+z/+NtnS/76Py+HMg2QAAGAIECQMAqgWVqF9bduk1TnmqWPy+tjPD1rrkckKaVUKiUpM6tEmZJGb0ad81jVjRpmI/W/pQmzgtR5oP6vlkdl0nhEUEqcF9fjuR/afdY8SyaVZCIj0zIzlanMzGR9m+2Ka6Rw9CpXK6OFBKR29PrtDyRxF83pkZQ6KuZodReN99JRfAxRWiLJ6vV8C6UUiSo5B1GUKBC7VpwtYRY0guA66hQgQQIAQdT3+jNuWR91S53ucqiqBd6fqfrNjOT8TDPVVzPaulGzzWq92pqNjd4Ko7tsZrCkWVRNNJpZ0kQCFM2y2qp6DDTz0ap5GinSJNKM5tUbkCYjSUsjza2+mMncDe7e2FrrrcGdrak5m6z7JXc3VUctZ6fB0QiNZjKbLdFIg8jnjGCfigTE48BxlcbnAZJWNRkJPeZ5FM4TUw2Zm9HMaTSZwcYxp/ogkfFHZ7uGKhn32hIQUyy9C4wttaYwmaWLRIfUOjnnkINbao0730n8WaTd9uL01TNot/OUqG3Q8qK3yQ0AAKq4ZDHJuFaMwM0m1JoBkIRIFX9pEvV4fM+UHTOLQTScXcCsYDQ42HX2dU7EuCCgOUWa0wxmZBF+mskoiWaWY8oFwgx0b0b38MkjZialmRmePDI4Tu7mZjI3l1szNPfGdrXWmi63dqm1vGStfag1p9GK5wAjDQaamdKsKjTzZuZuotNsvAgM7nSD+2Bhg3saJWEytocJMDeYuzubu5sfL+I0T5i5u5lAkzlolu5yt2YGd3e5N0Nr3vjx6yPaB68rrw+1Kz7k0S81dweNlmaCBteYmYlRXC5zb25uLjYzA4A2ePRg3nU6hOfit8XtNv8dxIQaRBvMTsJMOG6fzG40mJlPEecGNzlrDNwWfU3RPsl4yyLMDljWzSJaPWRTVJ+SZkit9TgeV0evjpfZg6GzG/PaqUdYNFIHltQaNR5qR4tHOGXU+3hXD9tbOY4bIBNpOS5OYWxHFfvet6/nS4zhG1XbkLSclGxwlxvczM33lOjb+BxvYeM22lCXxvm6s92l0qdQWGU8SOvs8Va+GAr9iRBGe7N0DTyn3hh0YjVRPHT5apnr2yLyc+xAm5K2Ds4/3MX8dvk8my/+rOf94PpcspyPDp+4A2P0Hh16Vkc+i4hm1B6g8Tl4KAGYDdKyg9fH6E20RHKAJU3VjGJ2molzqPccyNzNirXdDTZIy0sobZblwgpkEfmihuKxIleAbG/Ydarrb6pagKg3xTyh5wDKT908AOwCq9inA7grhymS2zpJHSbPRLursh/RrwCpJVOZYVk2SVkGw76RkIlZCsiktMxQRt0VSZOUibIocloUSIFJlJURiFQ9FDCog6T3HuzdQr2LEXfPHnePyEwb70tJabL58nsQApkZYoy3aXqHP8t24OMCxoxISqXlvHUaVuecbltsDd9pkBBlRUXkHBDF7FtmPulDEncr6zN5zIikxokGtmijZXFGAtxXThaZIOLkkRI9p/Qz7Co3rQ8YzmKUdJN5FrYf6PwhFHfPLHcXi+mmQpyacMqpBQi3+OUSNQdonKjxTeBN8XsqkUOJbmS/ZYuNt5+WhdFsisxTAWCfD7k3NOdSDIYtArdUe4i32aN9+k1hrDc+2nvIXq6unHO7lc8UUFtnLSC+zUyMux/f5mOG7Yg4jBLh5+Pn8m0a/HjLYd4cZs5uQ8sNcxhGu+TRI337Mo4271+8uUQmT8fPYPb1bTLvdvIsX9Bk9t3HbT5BaUmU/6Ik73DfpDI5hcK0n07n1JbKwOmiGcLKVgtrQGbHdy/nCK4G3hxMu8MPh9bq0RJlWErhIZXejz0twKoUODswuojVvj2J4GFnnqWr4iVT397xoA+917lq1FndMpSXSftm3B5Ds1/qB7KXALXlWMrMkLazaQzNUogCgIRKDY67Mq2k+lKIkSklcihEKZnhiKHGIkAgCNLu3tE7e/ZbOBRiZNp290lAMrdXElVR6VeLoXbaeCmeDohzAPY3lQBZtLTJ6OGseIzZHvKzusVU2FN9EsrxCABxMclJ1I+uCs0MJnO6yXxaO2kGlqlrhqn5AE7ARz/9WkYbNvs072WmAo2YNnu5t8zdHd7ahXZdvV1obq3patnS73bl8GsNHZqleUGjKwdeTXMvawbmRgNOT+NWEFM5jJeeGPTp5Xo7tqIky0mIqbpONTXE/gG2h6dxKsTt1xqGFc6OHe2ZLSuFEGk4pNaiDG3+ngRxSq09oYfUOiji5M+Ddx/8up78QYC9q50tCbbYnH6tSaRPqfWvHD/oxJ/V5H98/AsW2b/cQjNqzugAPh6G8mslNXiENIOW7TQdzmaLR1gWU5Vn+UVFK4+UT4t2Gene2Jq7e2uerWVztPDmLdxt+n5pb6BxOC3SrIz78msRMNkclGWVP83Yc/BOA3Vhrfcbn4M961w0/uakWMbfk+HW4wdo3BARGKw30SU5IMpW9AfJLhiAyUYAv1P0EMmHun7aJqULJqKZymFGdcoeiTPQs2NWW9CKD2aClj0yleay2Y0m82UKG42TtHKUlrvNJlWdNru9kxbKUbjMeN/uWDNXOStb89bUXK2lO1q4/0Raa9YqRLFJy4ebl6DKLbRsDzy9F+sKjvk9nCCTHCfZHZdPqtj3Ygvz+eed1s5KN0U/SHT7n5ZsBmyDJ02ANyZ1AzKtSX4nrXnnps9DUG9ktVwKDymbh89h0V2e8ndhslXROk/tEgmwDWeP/s/uTwjxUBW7+B0yvEO6ScKz7gNjfINA6+UXql0dOjs4z/Xep/bURTg+qTeNtc6PYOjZgXzWdUiA5PYo5HA+KDIL+OVwQiQLuK5hHzUQ4juvr6+z0XY0+NaRpblXFcuLIkxX1O4sZxW5aXBOy3vVy4sSGZGZUYAWQ4rt5x9v9ayi2rP5Zu1gsu9xwYezd3HtdBicT4CFKLmct7va5EJQy5FizoqwVGxU7vAqePjI3328R63DL7Od2EvoTGo7vSjfDz7u5vMC3r/yuwBab/78s9Tlm2vmWcFv2mQxO945+Yf+4+2GJ5z7V44lHpaswab3bdY8LI3fnn8v2jOyj5+G+Qk5+DYj36fup5Ll58HxPPfkTYXx8zQ/PWmHahsvcj5yopwfDj7u4O9a/OnB9/a5X+hwZp0esEfFP43nrEpDIS5Tc9oJD9VxiG8s+YtT6s7H3/q+1cDCS3iTO0+J+Pj20D1alu5hD+nUJhJgnBO+pMQCD3PkuMdviq13nuXp9DuQw/nUuGvg/wHwtifZ1oU589wz92bF/nA0p4ZRDfMZiX6z2auFaY+4u1mzEaXhijOaOYYXOiu+WdF7V1kPmvK2bHZeH9fVLl1XXldeLT+y3e0jW3OTscAqxktiYkUzc0uzEZ6uIkgVo16ztynjG53/Xj7pN1/33PO4wuPGBwia2OGnav5ZJ8bzdhDBYqBJMphyYVPaUAWT7Tcdbmpad+BNVHGx7njokb9RitRs37lI67DjJqEtgD1ZozWjo10WLdrl3lq75GxNnaLgzdKbZ+sOwJqFXdfV+HHF1dolNyK8SbJ2RVyt+dU8YU3upDlb43X51ULt6k1X+3D8utoH//jbH3H9ab9+5a8/8+NX/EnP/id+3ZfDujndknQ3o9G9uay35s1drV2/vF3tSrvMGxTY8ZEfRCiP4sOc2OXvUnKJz2/HnuwxkKverdifKmo/+V2lc3VulVbE6ohLTZsvScAOO2gJN7N9u40ntk03SISWI8JUt1gJrDpfEatys8FH3KoSBn7MBeMKWM1KbDjuxvC1GUCePpFh6hpshqc1OwKs7DVWlMzLZTLygYa0GaBxCFetVA1Vnpm7wVtrbFfz1uJyelNzXL211pq7WT5yoAoZjs5N8V19gBnNIKXhQQ2/gyr4gWb0vMpvt35HP+8li/d/29aPhMp9j2adbURamHoYnBVhVrniZ/iFUiZSeUR1Mf4mRk2Z25GOMhmUHNfK6Y8MC0ZEWESPjFDP7IFhnsxcWAlJTbfMsISTWm7/Eccue8QSpeAPcpxaeqv80zo5aReLRXlwioiV18PJgitfx8RFybajs9M7sw2aiTC2xF4fR7CZhB6gUWsa/0Vw/vtpP+r63a1zAGbXvomhf6GteQhAm7cJXP3/jQj9uQHiITF1wNjvsvS9+d9eOEDvnBWcxU8GBbEgyoPh9NaBb+j5W/kuOpo4YOzWQwv//4a/uTv6A0yZKuzbWP/3euN1YKfdyL9Ai9uk1I/365/UoffTH6poh6tjWgLLUbcRXKF/zpsP84HLRhg+Oqz6cDr/pkNkWyaPJQVv6wt2v6uNw/CZHq2jVUhoT9k0QeGUPSdMPI2TZ2YmSWFfxGFLcNe36t2hiek8rqDVcCtPEQkQM41x8uEhPg3cVMbfkJZONP2Yx9MyO+zG57SvJ99pYrpWl633vGM9MhH++fAihtWts1e/eZHvRva68uAyHv+/1/GTUT9x/U/mxj/ntKnOfxAUINHM3DTTgocFRrrBCOWJbg4L0SfW8nmxIJhG4ig0I1akeQ4LcTziTa1dF6/ramUbXk1XK6z10dvI5jYdCnNAwBnVcDNv5jN5GElr2/jfbkksz9PmUQnQEejBBiEPNtX22W7n1em5TSWmo3dmGeg4z+1NRpHy8PwuITTEw24agOxNIC8z7p0mvs3lNkneMCIPFf20JU60scDG+Z9Lx/xEwCe9b6Q52jr9Wu9dPh/+kTa/PfCdJ95v+w5rv3Hjb8HAP8UbTQclPShiepOkQ0a8kdHSE89rS3+caZGPOxZpHRmhk7JmV5YY1EqwWrLum9JR69Yj4rY7oluP6PDeM3p2KkV1UwR6jwCg7qF+o9ur9979vruxh0VHqPcevTPuiAS6pEiL7Ohm+Youv7v3OxH4ikziH5+fYV/6yk/PeMVfn/759Y/Pr6+7hyIiQ8FEhChmBCMjWL2kvaL3zrQ7OqCI1hmRvd6BEd3gPbIzg0rBuym6ovd6EYXVi9z97n73SEZGD0X2u8fd2e8ekkJC536RHuq9W381OPyKIP7x+ZX2pU99muIz/vpsn19/fX7dPaIyaxVM9JSJEYGu6OjdIjrs5f3uTLYMIjNMTzTJ/0icb+30DtW/wa4fvVBb1RWxvT+/0chygx3mxWDVSdVHr9syVDBSTjf60AAnE2LoQCd2JMNOt9VMmh1JNXwc8/sIhM/VCl46SCvPfMeECLJWNmE5Sifu4VhkllN8sh3xpbemtyB8duU0z5YUnfUPO1DPSkcWLKeX5bl+JM001sLMLNjzXaZD7ujWDpbZdF5PL4rXAqmVhW8wWPl+ZSsdt749MvSNmqkCEyIYhz7X8E1XRA1m5jk0e2t2Xa1dLa+W7VJrvHq7rqu3ZnMNI8mc+Qs2vNDz8DYSBsr3W7koBS61bLMHYvsNjvrOHceV759F4UUF06hcyner159r/669zv/VdusWGXFbj+wWGUaLyGBBACiUEYiIhKhQZu/svHu/I3oPMYKRCkXv2TuiR6bUBQSV0dXddPdQ3N36nXC0jDT89fmV9tIrPz3zKz8//evrr8/X644YKZYJIUIkM8rHwuiK6OSd/Q6KPTKgiBaKVIQiyxWTEZEZllFx9igXUL0IE2HRGazQcu8pRkWWEVEtRWQlZyKoVCAj1CMVESVFdUsgv+5b/sKd9yvV4+vlr/v1unsMn1MimQglTZnJqAUPyMywOyOCYigIZbbIeoUeGT0zDBGhsFwzogxlRApkKNQ7gnePHtEjaONF1HtED0aPEBgSgooMdDO7IxQ9etyJxCtTxOfXK+3WS1+mfOXXl79eX19372NGEgkhwyhkBkIZyFBkB++M3plzRtJOO2mKaDyCq0PeLySzpbgWYlgx2neewY6WHTAHD4Tx9v1EJ4ey2RjnwZoTz7SLNLTL0tkuz3b5hcjWNDR7s3R3XRmaYYWP6+Kvr7ha+0AjqXZRYPtQfNytXa1L5jOscDmvD/togeuKCx9+OX61dtmvv/9D1x/t45f+/FPXH/E3a4q/2a/4bGTrFVaoqBgZ3hzpzVvzwBlW8OYQo3YYGOt2coK5HJnqQlHYWNGD4U6NZMRYV0QbVGAaKSUxgeFMYNZc0ZNjRQ+CtPS7oFNkdDGiByL6WNGT5RxFUsUj2j7TzFQGMocD16BUG/lrJSZSE5XGnMVEFn9JgCUSEUxWpyPKC5yJkR8zjKTH0qSYmdiRMZcmAbT77ri7dd1Xoud9593vWps0R4/KTBOorDVUVCKVYV0ZYdV7SNnK1zKtsh111uFB3U6Yjd4XgU98zcOifBDxtOv2rcts0LnZxF6tgNWRemqB+NkBrDs4G7CH1+NdE/0PHN88KP/hA/8jjQF2DjieAmyP7w8YdZxrlx0umi3j1uUlCNeVN3vrIRbfBN23jms1NttoZ0+0On+K4OUDALgcESdpLYF9TD53k1M6P03I5IzHLCdjBTvy9F0RgFhLEM5WTwVQvWg8keaBMTXB74a4AH6AyAeMP/Dp6ZVcdx0r6xY+5YbxCxBzx100kdno07eqjGVgbNI6iWLhxmOu/yPS2rM9p0nPOg91efL8QVp7xr6T1oOFl5j5HWnNy0uAHb1apHWInJO0liDR8BYsyprad1IQoSKtGaobcmvnJJ+kpUVaOFrdTDVG0FZXf2Kq94nYs6VVtlG/frp/z9APNa45W0P7kB7/rE9vQkiV5L/TdWa+DkeWyrQIjSZMw8qMbjSjx/CtJ430mDmNwIgnGmfi9Ha3+8jE9tq8wl0Vnm45M7F3LLoMzrItLTHj6yxvLT1Z4WlT24yKzaQ6bJ4Zazg8iQ9OrlK9M/s29TmTOx/S4cg5wMguGiM2Kz2Y/enA3jXNsBx3OPe9nRWyPbv3JoeeBx7n774H27JneqJtbpVQHvFlxp4VjocejodBJfa4rdazLxmyGH3pkUNXnXpuc/wS6cd6dh1+53FvHtWpmH2uZx9odbB8aRWuSiEIXHLoEDRTKhQ72SSeZUkPgjqcs6c3ZRHb/JiUsJ/dJ7uCSSzH/b+ZyhlAWXb8nN433TS7NGx32hrWU7ToIYOWONkzMD+mgD0k/nGyBcyhXpaoWtrrMb2rOS0i0JJRx4xsqVan7aQb7bnPRXIjEIEJGGZlgwa5enhMtx63TT2xzio+EsttPeMjHKbEQTIoMuXUZJhgbSidnPquTWW3urF4gkvLjUuP3o5e7bKTR4S5/v8JsPbbrOU7R4TnsXVbPcrFCL85mKOHrbZVSK5FQ5aPJa47ywaoJa7aTaZqzwclNHZgG4GBtQpaSSlRVkfNBBDM8lIwooeyi9MTHpGpuefDHMHzRUZ2/2gRc2eFU8JvFsSDlbcox4NPJ9dtPuQqWaermiX/1/YKAzRyYsi1A8LCjIvJMdUFlmTfYrr0yEGL+AFoPKHGe4kWzv/25ANs6oQbmnx8Ut8DMB51PuSGHjVoiyStFT2r0a1PDq7BkmNrnifzbcmh3SNMjp83b0x58OB6agugAxY+H9YxEE95Oi+c60ceun0ikn3oQT9vT71BAByEd94IDgNkklF5449Exanbx1pdHL75BUjOlmzomzYcQdzbFswFXCUxEoNXhztox5ZHLLnWGSktp6dGkmytZ1cONwyUUgYCCID0yezZQ4yMrh49ImIImyxnkJKGgfsnp48qU4yhH1q3iIzbeqgjwiD2SGL4fmXKTkWPFIhumbep89X7HXbf3ZAZEQp1v9Mr3CgoVGvy1S0Isx7i3RF3KECPQLbPr64eX/qE2iv+etnn11/l/GVmqBw9DIOQYapoXLfIAF7W7440i0DtZfqmpxddLhZcbDm18qbbh+6btHxq16mTt2Y4NeTevFSLFGae5OapA/EdrLvhRH1rYbW3QZzqVcnJtkVaU48op4MuRoYkOaQ6plKLtaOBhJoWQ6RUrkBQCADsd+/yzsh+Qz17V4/7jsidULHknbSWp2XWVGckB2lBahVK6IzMYGQGGJmEghq79gQVkQGAwVQ3dfYePePuSWTAAsHOrh6IyFBtnRrMUChJsofowX6bTHQLpn+9HD1f2aD2ys/bvl6f912h4qBCQVkESWaYKvzRLSOA26J3iVaUly2YqQhGKJgZACMUKPQBSynDMiLrRaToCo4QQgSZyUglw0IWyGKn4pGidcB6BjIC2U0GS0umv16uyDtvKu786vZ6fd137yGmUlRSYJJEMpTKqA2T6kUiIPaakGyV8VsQZaX8bqofKb6pqfuSqZx0lI+llXNDj0HhiWTBE6vAT2ZaJggkADIi4cFQhJAZocr7XYhwchUOzhh5xExUfvBMlWilIaaAnqIaAGr50grvVT7t1DIbg0zXE7Y1UXDzXTed5ste4zK1FskydeeDyybhRCw76ri0yNA1ENofzFf++tNemX+0bq3Z1U3e9FpbSaNZ/3UTWFtJd/6d95/9+tvdx1bS6Pz1ceuDbn8L7q2kU39Ytss+vgztD2/xN282t5Jun+2jX5b/9kst8z/d9vn5n17xyZ4kxlbSViob7fIQP5y/zOIPb/9m//4nW9rHf62tpFtlCqz8Qhu61nJuATo3OCCA2vpgelEK62GG+M0jZyQbtQUojFi72srMLN3M4d6c7fLmTV5J/i2arHnLkWFWqQUTINbyqLTtYCkjfyb5A5NHVoYOx8r/odkxUHhMGB+WKz4SUVlkLPE7gokRQ7MjgYrIRK0wzrAMEXJJtFeJ365+Sz3u23q/74jIYVtYefGArFhUwQNIGexWMaVUVjD0tojsN++uWxGEEF2QhmYnFbCIXrLfMm9m5+uOHrx7Jw/xm9YVd4SgjvRgRkYmQPYO3oG4LQ007wz7/PLs8SWX/Cs/b/v6+uv+ei3xm0v8IsMUiu7RrWcXXhb3EL8CMtuhb5finMhewpFztXBvLVnO7e/QqX6XbkcKENKltEfSIJJpylj5gAHWdkCKOKobi785DM4Nnhc2GMvAcdjsG4jv7hxGw4bZWKmMD8T+6Ogqe5YrTYktPkdcUZlgTuLJVQOGuT2CYUdVWCmNq5k28OTD4h47iU+YNDs/wE3pEQ3AC1S+ZSnz6Z0q/hjqZJq6ha0QKj0SEQHLSGVg6JGo9SPCHqWcr3J4MIor1zoTQGrGnDk2G+bb2Nwbw99pyblzptHoa+XUkFdj58ycT0MwlUoYG2jakEM090q5hY/FlaZaIueyKKl16Ii5mqTk2PxYq01qw06IbJ0Z6gXjFRkQIiazA2QqmCODjp2iITtfPXrH3QPMAFOJzi52H5kPHWlJZnZLyNA7cHflHW6CmTP4eVuEf8lS/pV/dXu9/tFfr7uLMxFwMzszEd2zM7KbXtbvLoFBA1LtLpuB0eXZU2Jml0wBQaBMASYjaoJEKjped2eXRWeZHkp2dKlnv3vURtiWRORtmcnsAaFnqYk0M3r+dXsP/xJu2Kf+EbzvK75edwiREJhQKggiAEoZ2cmeZvlit54iggkom5OW5oSpEq7MYTIbnGpOmXFuzmOWdHdHC7m5w8iUeQo0c3laupGA154r3dzozuaCu5yNbmhuxvZxw5v5reuSN310Iz56y7ASjTSBI1NMZpYqRW0YOWPhgpuZMGKINGNWnKMIDzQlyh9jIk2WpdmXrT2T+iZniWbKcWVsagOMHWHXGqta4Ac3N3rzdEcbGz6ogWlN5mbJZO3CNTaGZy7gVsnmpdk5EhcFDhjfGZNHiEyVPYL6UYOkwiIhosJCGegRPdAjiExEIhnsYqjwKw1UgqFQQmSk0APZKQIWjuTr9ox4ySS78zN435/9HqYuBSZAJkFMA04ZjOyum9FDIjMEZO1lKhqTmKJF2ymOtXbdUhOnHiJo5C5a7YY2thY9vSi1/3XNiNnIDkTl9zVPc7inuczoYEbTipAczv/poptuuQn/qnoCROMKNm2IPYgKZ2wYOIH4Phmeo43wp+QcCFuzgRVUsLWD6+oUYcTAhKsLIMsemJ3QCeE5AlrTwBiBnkJpw8Gdw1It7VoGfB6GVe1xOMxnQIVZMJSyJmhQVnZQLagclpcSLIUIRpQDQGFPwwqHQlzLoZZGtVSCWTQ/d6rJ1piefhGuVnvVOyX3AbfMTemGVraS03g1f/Ejeb3aZS+SMCfAdjFbmq47IbrMkuxsFs3tcqE1eFzmhsvNcf0ZL7/Cu359yL/0RzfDH/0T4aRkcAKgiwTT3Si5ZWNmM/9ga+nC5W6Q2P7BfCWC8ULaV3Yzy5CZsrpuVDeqZwfAgHg3+0S+4v6ynl+gwnoima/QfVvkV0BMGQXeItON7a+U32EZZkSjGfzX520t/FMfDfbfFMF+3/Hf+uslRLiMCdACBCOcUiR7MDLNkn/1buLrFQSU7Qu4cSezI+1OM1IpmrJi/gaEMT2z7BEgbntRPfNlmR2QGEIyPdXDQncKTJACQqCM9Fei97RMknCStL9eYSbe+nLwS5mM6PkV/RYzE2RSS2oFpUxGMlNk8hVhgt9BQGoOmayBCbeAGS2hUkIAaICMc52JUXSno4nubJmgkiYQ7oCB8IAAFylCKo3qHbAWxgYj3EjaB4KeBl0Opj7Cuv0qPxAhk5XYwFCIFGqTP9CMjeawUogQ1C4qdH0gpMsyzcxjk1Y970yPAMBG4Wom/mJc6R+RoMI8kbxayDvjQ11gQ/2egC7KnC1M3szyg040o8N/ebcWbvhoMOrfut3976FOJQNzRb1H6WWnxEY0Rl5mf/D1cZvYvhoBpR1OkeX5Hr6UFbEZonA6V3bEBYfo3d+X+MT6MyX6lsMH1p7N2dDm248y/TcrQHzK+Pm3ylunYmh2UySUPnyoAAQCCk3QyCi93Nl79kDPIJQGIdmVQih6JMQAU2AqUjIqAmJUCEGiGVxfwZ7+AkL20mcw7s8oB135CEr+D09YgcYgQzS7rbObWJclm15mLCt3Wl4rPAMckaHpD55G2yw+vdlnKGb7sp9GnoYzd+9BN9cobe/0ETCaamx3NbcZO4TSv3Doecbf3vj+kL4X87x+lrznGfzw7D85RlR3JvhqbE5w2M3AUPkAUKm4cyNhScM5kTgeHBu6cWZmSQPymVSb5ychICIBIWWUUj059qI73AHLXSBhE0LahCFro7xlsw8Pb9oILhWMgEClIZlCbfetgUNzpPJLQgrlguIMTyOBlFg4AkT9agEULGOIFCPS0wIBWagLEb1AClVkv2z2tIGikhwuhcyECGXxyBZGh2gApuSZsHNP+hZjfN73I6HMG9ZNy5974NT9bQcvHwTM3YHVGyx5WJD8fIRP6ifwO3b4sZjn+x4dx+NN/mk1p9jGY1AmJv/WrfG1kTKZcfyMjQ2nhInAXKplwEh0NpQXFuPn2aaVIAFGk5WFOgw7zTEeW0uN7TcIp5HWumrnKnfQ1ZJQC58mrgwAYctGkAb0h9UPVmWZNwSAtgho6DwCFSmYv3M2R2iEFaaafLj2sYILdUmcG1HvZWMAyAk5agyG/wgklsl82ESgFkQ55ou7B3MGRZzMXokmVrEZJYZCRBqSSpRx8GT2ZD0ypBYrSo2RSQRMZmdt3Q8lTACVVO8hpAIGWaoXaIy5ucwQnamRGz/0XDJlaUFlmqgZQzw4d4GDMQ618BALDIyX57l122G8HWw7aEo8SzVmpH6YzzBX15loMsJB2VsiHIRjpp8y4pAPqP1+TTSKY5s21k5oEkWIBiSZpkUb7kZ6FO40MGkGZGV7jqV3QNmzMBllDh+b/5bvxY0Gv4Js4R2tgU2NRlzRkB2sl0sQNBQQs6RoaVSu+EgxHfSTZv8muH74/oOE/PmZn26cFsJPD/4OCXxv6E3CwnBktAA4UdVESEfpjDeML/PygUa0I/lYSGi3oOH5X99mW0ubv/VgN79Q3KPqWfswrJyI6WncpAWBDhQBl/gt0upwh7s5HUyYJwB3yNPgJpEuWpIhs3Sjm2Aup5tNe+QjaJ7edTVZ02VGfoTLTZSsNHv5C4enUWYyejq90T1dqF/fk9pNhTqRIWaXjKZhWEEABURSiIIsFJV283UnujE7qIoT485UhgV7qqSCiLKTjNlThsjyGHajwftX0NNeSod9yZPRGV9xhwr8UBAVJJDyELJbgCFYkjd6ihkVwdg8okmRP9Hj97N/cmzV9M+un99ORf3bJvhj3+bRGuRqjZHyCssaIbMRLDKjZJZedTmTrVngUrSwlgEK5kSyeajB0EIAvLK8Jbd0Y7spb7RsZiyB57/QrYVLHw0W+iOs2x/RqUwCJbUArzExZwJmciKb2Qe/Gkx0dwLKVoLXIdMIIfvBI6Sx9ifR4BHUhoPuKG88mGYGgOaQOdNNGrCG5TGpH9OgmQxeNrsZ/eqwZtZ0NXnTZQZd1uQGSoTBoPop11ILqHHW/D3FNNFJg2DDHoml2WvN0MhCBebeaRUOY1LI0Eg848gEW+lgYppKsye4YTwZ0rAPCBtZsN5DDA91QKGeGdFH7G3ADVRIFRiGRmUNK4GwjISq3xvGT5zFE2oP1PlA0PvmBygfmnc+Pwn6DbJu0H1AtYmeDq/H1lcbMz+g9VTvE30BaMa0LPS7SCtpJhUQtBnokQAO8TtIy7w6UWtNzEtIeqngCvRU/qJzxNvq51HVzAzt6rAW3tUu+Ss/ugFX/dYYlUOzT/HLoRZsxUcGaZ0L8///Ov6ZzPuNhf92x++PNjOaIxXlP6+16FOPEEgwMxNlvbPCkhEWqBS1Ye8GQ6hsDwFRDJtlNJOZgIUU6YkRir1vU2aXQdH1Cvb77j0iRwycCRDlMgVZMYBkKlTr74ViW0gtqKyYaa2CBWvLRmRp9vEikYl6ikEGe4wfEyQqDaByAFl72qNwb+3sWNA/E4hElmdsvEg3pXcZZB13sPe7skyLsyd4obAiH7V+F+gMS4gxEjHsNzP+bpk+bMvF0j+pvbP4Z6zHzf5THX4TLD92ib/tUZm62x7hkkgYVsYw98pi3GJoWXzTUJjhuvqY5smWUlMkadgp5NxXpIyRFdckzw4fFuK0erDMkmmPAPzv3xXwHPSfy/976/n//PTz+H8BDMM0Ne8Oku8AAAAASUVORK5CYII=
iVBORw0KGgoAAAANSUhEUgAAAMgAAAClCAAAAAA8We3GAAAtfklEQVR4nKW9y44s2ZIdtpbZ9ojMU1V9+3FBXgoEBIGDFiANBJAaSJppwg/iiF+jr+BQAw3ECYeSwIkgSAC7Wy3gdt9b55zMDPdttjSwvbd7ZFVDIBR1KjPSw30/7bHssS34l8xv+eXVjo94ub0drfn9eGBrOpgpsHk+NvaXfSfAFyRf7vbH9uNX3b/eftx/JrO3W1e31+3Itvv+w88dwIvME3jXb+zYmrU/7Nru3ePFmvHm3tB+/EM35vZdt1fYH/Tbh/r+m/73+/c3sR9NjUHRD5Lct5v3OO72uNueL97+xP72y6Ol3f52MyizJQVkQoBEACBJI40iAKIuggRoCQIggfmLRpoFWRcFCRQ5bqw2ofE/lAkGGWCEAmIqAkpFz4zeMwWIo1dgjWmNpHqBNP4AALS6JNXPeqvRrwBIGm9FSBh3SOPzcW28GzfzeolQUpKUktISzCSRGUkhUhFUKjIye2RK4nicQLUozUUaY0xCkDgvNP3aC8ox5eskASjrM6WQUq3eeKWUdragscvKHHMYt1maaiIpQSYpSaVS88cY3Vr4+nO0gfU+rdYGgppBoBkJkgDHwgrJseS1MBAF1moTIutzgZct4qDP+Rw4HgYx2jea0cwc7i3IbCZvMIM3dW8wMwqTBKohzglNWpuEfL6aMUkzS9KNpJkZQU6uqBlyPEmKYyQyDm6aLyOsnqfA8ShIo5nTZGYmpxube8O2NdJyc2wbrOWWYt6shdOYJGwM4Poa3Zm50YwwAw1Ktuf7Zu+o5V+zwVwZnPfNTbx8cvkfkz3XJMdnVutgMPc0p5nc4DQ3pHnatVFq8PMUMdcp2bnP4GL2kirXrVsNzj0BaBpvoDnUNbOaPSiNZRhdEOSQHhxSK02JiFBKlCIIZYQie6QEjVXgWsox4As9CUs0QkQrActPczbCKFKgZQnj0dDaYdSqlKi2JM3OiWFRxrmGWpty+eDkwYtYnyzwTNtmwmXdrpQhsjWmyRsFcwdoBJBpCqZqYyWWDCGSEGiUWedg8ByCSQCMhNmQyxDrQRT/mQe5WXPcvDVsr++7t9i6Xl/V3vLVuPPH41275WBzEYKshEhqUa4Z3c2WWqHYNgatNaahOcZSn4LIhhqqJiEDjUbRYIRIYslmmqyk0lCtJQRBM2s0mJur+Wa4tdZ4e33Fdj9uH/ryou0er+7v+vFxy81RdDo2ZxAXJo+RNG8+xjr2rZkBNKeNzRh6IZWYungpSw6FRIicehSlTpRT/tY2LKSgwXxD27u7q7XWuG23o915a3m75a1xQ+vbC7bDCV76noNKTfaYNDUbB6BW1LtYabG1xpKchL0Qy5PUWvKJRImC8ZfAxa2TqVDCWEYazY3mZqQZjPRwN5+MNiautSGfOGMy7RSNU/zaYOq5dVZjAWk5pbeKrMxomu/43Pa8ABDzfSkQI0rycr5zGy+YwUxWczobvchafL4whHia0cZEpoSd0xyyiMbBvZwrWn/V+GseZvN2zBWoT2WmIasv4zqZtdqEDdl0DveqhS66FjSanrSjnbcAZBscycVc1YaBdenSGJbYJYjrApl07sSVii8PjyEPHQBMEFWPTHw6BAdP7XuqhkHaXC3VBEEIbKTN1ZybNmecgNbVQZGDqAqm8DMZjE3hdZpmaZwEU8/KbAhQMzOTGdxkbk47aUuXlZ+kZaub6j+tdB7U1hpNDJ+ZmcEMCglTSklFJkQG0zIzkcrMjExaZmYqmVnqpHRKCkxSGVAWqhVSS/KMhbZSZ7VMTlqJzomUmUwBCSmpnPB69pOJzCSQ2UIhZTClsILGJ+qdNkapPmjJZmSOAc8+601e8PqYjqBMhCSFMjsM6gDIfT/w2NFz99SR+yP24/E4InKaA8sSWZotlVAqM3DaB5DUUiFlMqGcFiLMjA4lS2sWYwKgoaS3lWo0gDQzl9JOUr+gMKBUao4VQQaFDoB2HAE70LW7FLnvfT8+Hr2HMPl62YCkWV6AlrLg3kI1V/Q7hdEk8TTBaIP7h1krTjouYXnyiNniNoCWZuKQp6f4NaMZ1kUfPCI3DZa5cAaHAYNhX4BTSpoVP2W1J6gZVXY3TpA6ZMq00U4Vy2klaZnOnAJIGKbptMIkgacYms+W4nBna27e1DxbSzd48+5bug82wTTKZh9TrKL0wrLfAAhtijViSeBp355/DAu8Bsz57LJFNaznk40vL53Xlm23ZNjc06ELaTbWdHoCToQy8Fz9WHh+3dJwTmyOUE8W/xqMiud4Nn8uyXRQrD+XhXNdt6fX1AsAONAQLyOcY7zIubl2uCwsp6ekXVwMJzqc/+YHp+k1vADrgSGtqsnzYvlRnq5dX5mpzBwidIifTI6rel4hzpEsRXrpaIrTpusmaXorMjMpXVwL0x4RlKURygwp9JtDGJ5zS/HiVFkzPkdYQo5l39XLpvG8hlq/J9Jejqunla+7G0lpIOKpJUopDpdRCetaJ5YvR9LwBqWATMssdTE7TJQaTUpBKblcXlg62xaPWGloc6M7SXzaSgDK5POl6pCptFOPRDB0WdM5cV338XRT5eXnZAitz/LcyblxiUwpIzODlDoE2n507gd7Hp48cj+0930/epzj4IWoL6/MjBouUkpAap9YcLHphZ0m1Z0EuBxnUwNOXl8sfhpWmPx5FRCLizCJ7gIkVzuLBXhiqDW+i0AAhOYE6T5wzoDwFzfAUo+lZIaKK9NoWQkLJA8ROoBpjqZs+LWcZs2bq7W28Xa77bcX3La83fO22Y23Y3/BdrilnSqhbG8QMBVWtKSZe2nHOVwb47ETIC+wDUxTeQGFYfLNTtZnV/F+Iu/lDVoGHbD8WjWW4WkrNOxeFuMzfMfVNOe8YOdASRB2itWT3zFZc0maudPrrlMyn7dokc2S/89MtsTNKeUvhDk1wjkI6GzixBmLiK/yGPaJQy5vLir56bNffT19yl95d3k/bf9PEOBXHhlX+Guf8PmP1gyEO40wP+U4lOTAV3OgKrw0TBzYOUfNHklero8pkqSbyYzG1lpja22z2/3Wtpe8t7zf4r7xbq+Px6tac7PVhq4DPh0dRi+mWOvRVPr3tGvNk+6OVnidhVU9DYR5cVs1Q28o+d+CgnlMbjBNM5DWTGY2OYqLssqm6BlApELIOEJHL6nE6hcDZctonoMzLBdeF2vStDb0AQTkUIzTnNRchGlaXPgLVwcoLeedtT+T7TFEzmQwAhnGDNKy9x6xH4w8PBlxHDh6qZFFOTx/kycsRUU9lotKRHMDzd2McJsEKSlz4eQrCw8KShI8uXWZPIO0pjaYthZPKd7a5rm1ttn9fn9sr7i3vN/z3ni3ez9ecTvc8okzr+bFkl4T7c9XK7dQhTQWOlOp4ItuTyWSliM+JHHAq4G1WFimdhH1cRFR4YUTxps53NzN3enb0Rxbi+ZqujW/dSuf7ik9VS7OxNOL0LqnNPuyK7Cod8G7J1R7EZ0YIOIaeYMKT55/rHdjWE+49exn4Y7n65jwYCGv1RdUpu54ChBgvy5Vp8q+CFJON95Y2/nxlZgvqpTPP+awLssl5XUm0OJWXRu5MMmvjPO02aWsMIJmBHQtCTWNmKl9fgGIdWqkJxvlipYkpeVc0DI9LBMRmRkZqcic70eEdK4+FxibeH31Mu5bXpQxnjwh2TkcXh9fk3yO0o6V5lMPz6T1/Kb8ZhbKiIiIzMjzV8TTVMYicf2xWqrdLIsHkJq7QK+wgkkgBCQzklwbgMHsGh42JVj8DSGTT8xOYixlEhiifQJJ+FSIfrvf2+017433e39pvPvr++M1t+ZDck5yqGnkFTCQZidoGh0ssHu12ef+jCvLJACuQOYqJa6kq8tDv0LVM2RnpC+POGluFVm+tjLefe4B040zfzRMqT/SFQYJZSbtRGslpqZEvdJqrda8tgyRT3df0N5QTxM/cW7VcnrPtVu9YDg8pt/jmSPHnw1nROcCzjnC6NMUQemo1dfFVMAADaeH/AK6z0gCrzJt7fWFlZ9ExcVXyYmoFrI/L5SeBUXYL9Hmk/1xXjovLJgy318+PYXwVTg/tXFBM8+AcJHJRW5fzZo1j8/NldW1JM8CFldI8/z76a+JXM4RrQ+mNrs+efKblNPmn1J8OWUmuX4ewfxjffbUvIBGrEjEpJozMmQ6kfNJWraMvkVS875BcSfSvL5bzc6ElGGs6in8dGGUC3HiJKdF/vMRgGRrDtIbnXRHheW5kMXTvutEgDBbTLUWqeIuLKy0DGeAKxeFZm27tX7zbfOXl5ft/iVeNnu99dcbX+OHt48fdN/bNDUWiKBma8N5ZN6MNq4TIAdoJCGynDaZmUDvNCSWBstQEj0lhRSJUKojgQwBSkXmRIoJJsRkZoZZVsIWIFX0six2b7Rba5bNs5k5b81vzWgYsSEkRzpTZpR+yguaU7kmS6iuKO8Tc11w22fmOGX15IYpAOdNvCizC8ctshsxgnI5jPC0eTnohkGxdMJT71q0MYjhek+7NRnbjZv5Vo3N2AwIwEwYpCgAMMFbc3qzZqgkiBqgzJHN3b0Nx0x5gWjubjeHWrPWb/f7Zq9tu7Uffzpev/xJf33tP237T6/tR/3pt8dv8LrfWrgtZrQKnZMwo7m5m3lrd3pzg3npeNhSHqfwnIJ6As5Tqp5891n2XoTtlJiXf5ztXdQVVgt46ni+LhJ4svdsYHV+8RI1d8OImDu0DEQNzX4y+YQsqo2niAVpJyVquMcq962eLoPIZrfm3sJba9u2bd7u263ptunWctN9a/d7K/fvBX1gwCPN6APGbkFnkl1zd9LcfDrp7LMZMv8N0TTjZqdkPGXlyJo4l3swhpkP0mBrrfXN27bd7re23W/3OZGb7rftftvaSOMAMRNYTtlvMz3DaSMsOBZIV/h13chJXieZnFp7SPiTKudfV5E51+P56YW5FlBbbxewO8HBXI+FdK7UuwgeAFtGzGBzYjZcTEbwWWxxER6VOF1OI2ulzBxIqyeMt2nLfonoFh1mOI4jjsex99h1HD0OPY7+2Hsl0Z2cMsQfF/7EiP3nkKIiKjvoggW18ODZ0iKttT6cAuGqyE8Ixcu+TaGxtm2qkZK85sPra0aDVzrEQhEYA5oy5koAZ3pQ9WWXqc8RnAt9eX9RMxeauuzWSXOa4ziJ4hRuvyTPp48u/f3i3ec/L+tdSTXPaGzKV9qVQc4FPqUgTpilc6ueJn8dwcUeezK+h7kyDGGdZHUR03O6zwPi5aM212h+PAykzCzItYTvaTUuowdp9dHpDhnqf3id1jNLDY+E4Iv4ISZ85LQQOedbBtqcPCaKWABYK6kP7dQVl/1Yu36u6pMqWiqJa2MuG66TCpcIPl9zQBccPi3Iy/+4CED82u91y7hgZ0OakvEqqD4ZBrPzKTl/aTesq/OBE3edhvQgo1ROFDjRauaa4D9gk1xtpJMM1eaqLcF12gVTG+M0NmY4aaX9XcTWen5R64BcQ8xcrZ5JVit7sPILJ8Gtli/q7OxjKNnLfSBtze9EH7+2ib/yOvfjl0j1iRufb5qbv3hobu+pJq4M/9zjE2Y5yRcX8fvEEJhq+qKn8enOuSCYPHIh6blNeFLQ1wWYNsJ15AuznfdftuNZ3n8WXYW1MJQTwMoOx+xpbfFlfk8WYklVoXLhZ8bm7GJqNjO3LIjW2rbl1m637X5/2W6v95cNLxtfNt315X778nHb2gwML4hlsd6NLAPz6RsbS24Lu64UkyU1JkD4xfaekuUzeelJAiyZtAT2SD0Zr1j+3ozMiJ7ZM8s1eWl0eudOaXTqnkmnaGsTuUQln6jmSU+vn1du5NShaxWB6zGrxZJLFC+Y/gzWr4Qz9/QkBCwccN3xSS/tnDRk89klli7kvkTGGvNCQfyM0K6YiOs6z55OlsjFIzNXaA6d5Mi+X/zKT5qd5yI2ZQJKAzBOFV0l5FyO2hpecLRmQ+BwG2EtMzhuH71NihSAcmQwgj165hE9slv0yMijx3FEps6EoRMdXeXNSdvrlvbuR+rxwR3xcEtJLrTWDCQThrKLm9yTdjMRTDRFS2tbkmzyLSk0ggExOr2yxN1gtrmQtisUHZHv/WjhbbvZod9/i+3ry7f4f177+7fj9/377//wV99+/vYeAZThxKz9MFqzwS0pZfhumZWyXKvaPhiZjw/blY+NyDQjvTUTNQxUM5qHw2ANJJByhYneDiM9260jzSAGhOxwmMnoFKx5ILlnKA6F3o+jiW3buOvv3o78uH/P33/Jt2/x94/t27e/+fj6/aMrptodAJA09xBQnqXM2F2xyBy6JDCfrLcEzwVTnF7nucHTw36S+BJiS8fN5k4SODHFVDKLXi7IaaYVXQXgOaqT1dYvoFUWqlWgZ/LEigQMRTFi5ZjKqkBs6Y9LjuNCJ3NcSz2CoGgE3d3T3Zu1rVnbYnNuLTfXlret3bovAPwLaDGBK4mRvT8mr5H3qxUH/4VN8aSdT5U+TzGstteCPnPlunZmS828X3N3t+ZucqebuU8H3UWoqHo8tf0UMDZbHBdbc9C8mYNupbUBKDM5AydDGc1dJI1ZPFYZAZXACIDjjNVT5qxE0Lwgp3Fr2xa3tt3s5eXl/f5FL7d4fe2vN3ux133/Efe92VoK4Vx0gWeWv7mvXSME2MV9cqGJNfGxjFPrXTTg+QCv9/0CHJ16cQroZzNhQUest7PxRV986m3t9qm7yPawyDwedmQegDLpUvn9l02GtdwV44xkdoQ40lXMEiCU6pkZoYFtKk8VysQRoegZ+Yh02XYcDP/5Pfhxf8+fe+5v8fPj7du3v3v//vHodcwXZ2okAFoIygykwuLICA3jFMpsh4XUu4WyG0ayPs3oLHfL4jAQrJhDyjKZgxnqwCvJso+QoXVCq6SBkl2pDKWOlMOjBXV7e0QexyO/S/sj3j7s/eOPj49HL7S1eHUe28MwwCRlHFKc0UWgPZjK/WEHcjejJCNb2wD2AESDGa0dDoJbysCEIxxs7Sjn4YZwd4MlxAx4TQ+AYbNO6ZgT+bDDLVtr+OAfkl+1vaHv5Hf98XvGw/v3j49QjpjvOIkD0nwLzMPHmTokWbnRS2qdjlusg/krL2rS4skF668FwhacIbisbRVE0cQWXO1X3EMpRaQUMCmCJkUeyt4rC7Zk6UKNSxpOVln0Pq+2O/Pdb3fj7rfbB929iETJhDDofz1sKujRWjjH0cWB/GCG1t1ay8mLVlrImt/c1TY1vNjmfNnahttvHod53KjXH9Ae+Zub9vff7of1h3gs+cA6dlHGkZm5m7y1u7d2WI7T01KrszxRCGZq6YnWT708RAlz3JKnOJ5aZloeORKStLCfpCiDJxWirEMA9j3YE137xui5P7IfH0fvoRw7OLz6c6cX1lIqOJNhiqRah6ToFsi+jYerjgNX6tkUxxy8l+LoC0OvkDh9vylDHQTSYvZQlof5MIUzMxEfH1Cg7wgnd328H9q/9cfRC8pzdlcCh4aJ+KXMjlqwaXGdNR+K/ZePbezI1fKZaKAujXPe6xOuLTkVxLlrp2NhpBYlMoIKhoQgUxGBnDk1AM743pnxsHTOgndjqmoLgnGJOQ5PjZGY8efJzlO1Fp+tA0ozXxITJXFkm5b2mUw7OMqUJkWmKSyFSJOQ0U2lHKbAGKQwh3RacKO5CsnVMfApALQWfl24KmFNnXJFoIOAn1111zbWu+kBAkSt6Pdp4l9w9KeGzhYvH+jTb4wTPVe/LqY4/uRvujoSFjWesltDW134D893zMbnqDSh2iiLcWHoiQxGttSizOdOzz8gqV02bxHHoJ5pKi/SwlIZp0/QeNn9nFeWxUOcJwfsvH36rocQMeI8pDyYk7qO5skJ+alDgmQ7t/hqGi3kfn2dsBLjxkH4V6y6RMUTiaw9lTB5JDNNiRQyCSEzOU4mze5wbYVPzX2ms7ZUxZQrS9KsPR3ob0g/nMRS5LF4RBfymeQ0SGQR5uSpSzphUmkQchZswcj9w0TEk6YXsU75qvOu6478x72uDzzt3S8Mu0/PDS03iXuO9cKl/7FDAYDmZdmbeJ6FfgL9F6uPJxCz0+k1oTFI2SmBSY58hEHfVYzE4eateYNvG01sKW6Ea9sA3KOF21ko5LSHJqdMhhlJNZOV22lDzbsXd9rTZQ5+vXC7XSuIrLjTssG4qqcslrwMS+d9M4y1WLOAwhzXtYULUj3nBZHNIIJ24f9pDda/q1SqbmaaiM0OF8Rdt87+MSWd1cgrBjIO7Lo7ZVY+dJjMfWRaLd/A+vVpRpzkcy5Oy8k5U3ItCp0AAYvj6m/hQtenZsBFBKz6STqfWUgoYalMMcIzEEKGkMjoFhFS6pnP5unZs+NTVXHy2sWJPblhrPi1IgMmQjnpqrDJWJyZAIe1b+ukmGzulK6S+pPIxtXRgQtJj6GdNHHSzdrrQktLa2KChSnfLhhjvZ3I7IQ1141YAl4LbOiyKZeRrxsmCnxS1XMon3DOdZf16RfauqEenTZx5V0DFc+AUkmyDvdneYsyNY8+zrO3ack8U4Qr/Y2ZlpyX7Cx+Nq2aWVFMUwtdnq6J2hyXZn8jtTOR49xCGwsycz0va3PBWryoslWI7R98QU/HjTFS2E/cVseNLRMa/wxnkLciC6OZQl6f0NW5FNUgJLUQpQzLabAOK2ZlzY2iTiO9fRATpUqdGwwxvBz1X55ur7IMMCcgIYpTUsp9b/nRMtBvrgP7/t7iXUdUNb3PmnWYR4P2Vhx7EthidhCjnMvMMoQZmDOntVRG5bZinqGfxVzma1WBAyzNlCOj2yynaF68LBA2jlMNpXoRmCVaNFndlhCaGRN1GTWutOWNX8w8QolZnq8FcsbBmUW36/TFIOdcCfInXVzPMC+zZE4FRPm1l9YauZQEztPT6xwXcIY4cQV0Y4d0VhhYMmaMrCqSnFR/RZZnvsI5j9WxpnyfEztnsiqCTRJYxLnWfq7ogmPz2MUc8bXVPFevmVA1GDC9VcATeS5eWLT6TCWYtgcxM04XDhewbiZoSYwMSjOZu8HdBbnJ5N7MWtZYnm2Gc1BLk9dLq99i9gjLOrKyTpet1bloFF72M69ofeJ15JCpi1AvohTltgWz5ELu+5Z7y0TfTR37/mjdskeO0l6X4gdTQZwiqyTwpDKp7WJm302KvUFhWY6pMZGKldYeE2QmMzLR+xZaNXSqxwxkIqPPkmmog/uZQs8AO6FQY9hmLWnfXvof7258h+cD29dvL3rj0R+9YhbVbZ5CODOVochA3zMiUxZjYi1V7nIMEtbcjonmLxUGqSf6nsLlvHcxGz+zQe0fgTKkAhmMUPamxh7sieg9JMYsnQaUSP/1l2puy45tIVIRIlPpEzRy5gxOOFLEvxx0UCIHra2pDOGm9OkalDBOypWDjkLPpFV44PHY9g+4+HhEDz4+3o2HKbpWOb4Lip16qnYgY6TF5aDgdqR75mHmqW5FONNuLofiZInp1o8eoR6KgisX0zXQoewxUAhY58wyiB6J6Ezs6QCCrcvftsc3Ufa9tQOmt6+092Y6ZvWKKSTX6JXMUCpku7LDxVT5MFtPMdHNmRmZYDkAqj6eKRmoU4IJVt0LZM/ETCIZWrqc7AgyY5Q5ARhVNyqBIwMwS/RMmJIRuT32x4ez2fGI3Sz3x96O46buQJ1VAJCYXVR3SmWGrCOCIYsq6BptQTtdyoHoCkpPXEBJOWc6Ei7Oe5PJNGmey8QEXZmw4RROFuQkEdkjogdTUu8NHbQIuUZ60qzVOC38oQ7r6GFB1NkZhOaVPkAKVqSdqexQZ0TJjkxlZEgsuJtSEKGMSFUtz8iwLAAmcJxVLaA7anqq5IaclRPh1LZ5e7mZmVkDeXs4zJuPMErFWJQ2UG3EqVdVTK4UbBzabX8CfOD+anHctped3jzFbsmDvWJbyoRCkQR2SGa3j/56z+0RB5TIzscegdZM98Nyu2cXa8YGHaS5//jzhvaSW/yGbt6aNflPP5n+wtqBP/+B+K4/e9utv8b34/0xJD5zZl9I2SGjWTQLbL796N9vBwUTSEHNWV4UdLpNQzHTkKcXc9QlwXSLV8HJUd4TOeu8jHKlq2IYltAhKsk/ycZmtjVraPc74Nggv5N73rPJXuNQOzSN6wVqVG9Pg73C0xyGNTgqMBdPRmYme4QFEYxAWQuJkgNAZCqCGT0RET2iMkMiA2Eh1lliAFEWUyoYRlWBuESlExucwhFCgh3oZGSPzKLSqqRTEl6RJLM6yUSGMgPsisgQo7Kbsj2AjN2Zit2gjFF21aaFaEvJEaDE6qK3OPVI5Q9moicUoRXZru1TqGegu5QfcLbDzWX5c8sP90Qcpg/9/LZ7PPTR985nPTIgs6ZRmAnunpEpS0hIZeOsPZegIsnsEWKyIzsgdgQZPYIAj0x1R/SeHdGPHpSCx5GhrgBryUIs6KDAwaCLdXKZ2cDltXNwoye8UmqbqC2NdeiZCiaFynQK68jlLa6qhBEcYlCZIzdeXN7Ysr/JiiXVaXfOlI6qZ8RplkYmUb8TaZIlsmRiapo3VJnVw+SdGHwiOFSMaVmFUw+mbIhvYJaOWtb60NQp5gCDrZepm6KiyMgIdzeAHUiazDV9bK5KEDTKMU5OQN4EuXGEAkQXTGZSkg4SyOkv6RBdaQG2j5Yf7kKn6cDH++4Z2qML4iggOnxIJN1PCwxSEhg5z9PTiLJFc7kbSxxo4bYTRC5H5OnFOuEhZ7XRS/mFZe5PbxQMTnc3l7XNbHMPsBkObF0em2LG7FbfmL7PiwvYRtnY4VwVWkCR0S0jeERI2o8uJDsjgFSqE3H0TgJHF0F08sjsx2PvMHRYj9Duh9gtrEtil1FQx4GucPQQuigiGe5mMH94HmEJOXHo49EjpKP3EBXQiNt2gopu6hGd3djTUu79KDqCScr2ISIEEpGwcTypsksUnOBXU31IzMy4RfcuUNPnAhJKRCp7H2kEZKZIpYUiOjtM6DI0mpn0+HqPb5s5P14tg/H+fkdS2dNkU3EVBjGgcl2YwcwQdssuKxGPlFoDgt6IpLtYmWnTptNwd5S1O/mRbpilpJdpUArRQLlfbJHhETIeBnNQmxxubia+9pZyA/lKHXiFNxE9ECCHGwrL1Jnpr6MIkDvLNQMSlmpNSJpTaW4xTJmhI5eBeTofZhlsmuYJ8uneq9Gz1gHziKBOtwItLatEvJvJ7g8TzAN+J4Sb3OKWD0aRRdV1mbZZud2mz6WqhQ8DhQDYDiGzG6EQq3zp6BvTrirkuSBHplIRVlh5RnnKKs6sKvCnOxfAOBwCdEgdRqfTRb1t+d5IHmE6YB+Phg/2OPKCSgburg5KbWSGcHh9m8Q4TJRtuuCFCuSu88CiDCPNCaooUqXzVijDaNa60ZBuLpmZQWCdY67HMk0GMzqs8gTHWYCqXF0ePZK0rGpwWoYzy8W+TlSauamq04+cSNJm9WGltRv0YNsYBxv3cOXeI8LRoRE7OcR4HL2EchrI+HjBY+sP9oNUVTPp8JCFRTIPkTJC7PpgyOUJgEltdLKZG/w1dXuVP/ByB7/ry5Y6vsTbgYcYMdAvFQTVod4zzHK4yQnpSABdhim1tIP02O0G0l92bDe3zqMD3ZqwyV+t0aAvD5nfo32x91fdXn58P8wQ260f0W4EspEm34SbjMzY8KM+nH4YILn4kGF7uFni8fNL//nOjW9fPJL59v6CvyfyANHMYBSRBhCN2317C1RJWZBMmt2a2DYnlGw/MN/t5c542L19hEOP3vs+dwRNOoTk0YE6br+ZxdurfdwOoR+k+r6H4sgWarv15vEAILMEu74z4HF7mLx1jx/Mic3N0V6/hP2jaG/6i5vsq/7ssH3/zfHz/vhIRnc5E6CCxNGhPTLMBmPyZkJXGo6xI9+BQ+rMyGg9urNHpxujSCuoHoyMGMzPfvDD84P9Eeg7qUiFkrIQk5Ef87AAhAMPdqfxo+M4RO0oaGPi/Z359d6I/WXLBz/evv+Yf3OPOA4wM5FMABYgGJnWFclIdqVZ2EekiXtPAqn2TWyxO82Px22TZPdEa+aJ3omu4ilPo0HbA0z1vMfx0uEtSDr91jvckDwIHIc3yEQyA2xSQrs6GC58tC9vTJBh27dX/y/+w9tX/K7/Xzc/fvjtv/h3+V/+r39guslLyA9nCo10j9DIMu20sDhNe0mNoitJ85BtCfM7ddvcE4cBYENvmffK4r9LxlvHPR/3w+6vCppFu5mlt5Fnzt03aZORYYZ7ymSpIG1LPrYfMksPNdjtP3/8/Vf+429/3bbj/rv/5t/zn/+ffyDN0Cr2CJQnorHdWiBd0RjpNPNs7qLt5ePmb4WebaMyvEU3s3s/rBkDmUC6qTvydgQB3kJsG9637d3ssb0c7yTCWyhs8wNIxvYuF7bCWge+8HAzfBzwJooX0nqz/HnbHI/Xljvvb99+Ut8yjgCUplGCPwAyfLMe0dg39tzM7vb1Fi76V6vQ28Y82Db2A84jATyy6zAFAMEERTAzOwB2EyWLgB63IzOPOqkhJLNltm7dGVH6QrCud5M8W0BCeLyYE83M6Hfb2591/6afWrav+dMP/+Rj/9Pj5wMhRJiMCdCCICLDhKBlsLxpqBm3wys58wNA7Ekh9uYChqGBRGZhETnQeiOALUWa0Jgub7fDaEprmclmaUmYAg54OTdMNwTFA4nsSHzUQXAaeHs3dZrw/UYdyCOYbzryCIBVLxUzq0/erOc6NZE8TKpv6qjD0a2LRH2dVrgnYA3ZmlkgAghzycWtMNbtEM3TNkODbTc5DelbD3pjIkmjrAkOEinDJhmZAzOxi2gwmqSPW7w1Nj7SQnx8PG58JxQyGarA+/CRuLx5apT3yBGdrIqGBghoqlLidbRyJQeYGaAcOY2mHMkrNgpzW31HR2UKaGCNYfzUDxNJZN0Hi0LEA7iVvztT6kYhAon6gq5uJs2gBlHBFAxbKrnSVSrAM78yCEBLmYRkVfE/Q20zFLdiYGUdFEKTJJStPDNANa2W5WVdkHMEHMc7EVkIMPoWEXT2hm7svTd2cyULOnNG+84Az/Jra0Tu1wAbiBSr1H450o8ekPVERrmnuqSjJwlYRxoyDsahTjsiyRQiMoWOBNMVhCgDU4FD3WCZOQdVxoAAMeWk5AQFmJNuAJSI5fplEEBGzyoXyvKNNQSRIGNMZOzgMuyncc+V/7xcTNNIwLOxMdE6wFU8vsI668mnyCRX9HkEuGGsqqRu8CogPl6XYvTLkMAw2OYd401TfafOjA+P9quCz3BSypSeIAFPGa3WLulVBhnuAMyQjDJ7TTKxzBuXGcYB4DKQYFWEM6LlQRq6IajoB+0wU/KMqlKswqSlsWfiz7CuDBjflZCN8+sTKu8Tq0IGKCPSXGnCOJtlNiZSlknrZqTMJZixDtlaXasFMniawSwJMxNMRDUiN5/fMWIa9V84pU2OQjNpQqUfOEmDjDJj1bet73ACJGuok60VISSAmVuteaQeNvObKqRvJhow6veWFW3JWQpXBGzkxKUlVprToq1hNi0P+aqksyzRig0OL9tZnT3HRszKYqfUEhrKm4k0KUNQ9shOY6LcQVDURZLqAYkZB7Mreu8pMtF7JMCYhxlCCJHMTBwKQVGBqmU3kxWDgjgCHOR0wNd5oywOSKsSvhmI+vIRpsIwCkBylqVpmPRGjLy/UcprBFuMTEsbX9ozSWtugpUCrK+vqdoKOT1n5XSEK+ySIL/KWI1Op0vw3DJi8sjw7QFnrWKcxFc8svTI+dVG62s+ikcEGShzmWF8Z6DMZOasqlZm7lVhy8yjvKeVRmGii1U63GQGcxnMTRg9GaWtNbRGpzcn6K21gRTHtCv+ZZXhaW4SmUal0ZuZw0cyixKrVvEZJ59xmnXh/8frV9sYqnb8MbTe+v35sX9gGJ/j75Xkz9X0VMBDl2M6x+fD0tKmmJp98ehKOJiOonXzdehPIxsu8SpF6KSvjoiJFM6ju2sRziO3czFaEyVrBGg+v+IEGF/QA6wEXZTDtL4sE9f6WkMvggYTc1Xyx8kK1tLgRqqJbAWc7rHZ22aNfdsiuPWPm+JFySSmEtFwNS5fepKrKuB0FVGJ9iHz6EFrkdwUAlAFxqGFKqa7iX4McJd9Wwcq6yCMMROdVO/eRiaIJFoqoT0DypZ8v/30/Q1GZt7fXuy/+/f7V/3T/A/m+dPv/qv/yf7lv3mzNIMv6pYwfL8jSsLMSKVnUMDMlmzK0uxTeM8zOj5P89jQJbRidtKSnsPDVil0nqXUOKIOlTtVGd822HXo5PDXt6RkmRmI++NAb+3YqN7/NF7+3PKSF/KEfn22vrBxOeim1AI94fQW7lvK/Qbdbu45JN8mbJk3JY15Txnvpnt+3C3ur3mYWWwvZtG2uXTeNukmGqMT90yXZwbMt7DG9qXTaIzNW/vL/+P4v9uf7+Ytfvzdf/bDyz9zc7iriTSKI3tg43bbDkQTGyFnM4+bNdA+DBVDpE3Elt663Lfs3lrrVBJhjmzB1mkG23Y5N8QW3oR225uZobVMeFNnGEVzl1q5XYQtD4M7Deatah4YHSY4XUe8tSM3o8O/70K2+uIok8FRaEOEp7fWEi45lU635u5NVY+RYisYBykS2QPA0aN7ZuDoVCQVPbP3NIOOLvHofVf0Hsfj6GYWhx89QARSFDNC6WlkRuDI7hWaRvQU+t99H4k9gvRv/y7Q/sY3JL+1//mx/5tvplHqmQCoZACwjI4eQWQwFBaICAExCiio+Ui8p2BMQeqRnR6J3oGwjqCyRyaBPQWLVCcORT96KC2wHz1BJiTKqC51iRgQpWRQMf8WX7nJadlu97b/u5/4yr/+8kMn8Vf/25/rf/zhJlDItHGuzBJghh0zf3HaDVKGiAAgZdvEpG+EzFyyivIkFIhcqqMysTFqghPppvGlPMhgpJJpkCXTlp0JQAoAhPfS8NoqikgTX3Lz3znJP31hBl7aD4Y/ychjxkewtFANYchCykh3zvqoBLQKF3MprTM/Sst2mtaT1mIs+3YmEUFLW007d6rJZ1WsIRxLAlVoqTgaO3Q8K26dOlD6ZVuXt22XmTpolmEbIXjQWxkkrPC0Jd1Bg1rIyIQjPaqciBFtA+BGIgAqmkuWRsuAuQ4IXUJGS+zYIuS0VHz9chwffMFu70GL3R7mPxt6uTiGPUICMJq3A1zLp4AmvC+IcOwHsh9HQL2+zpaku7dtc7MzA5rmXkerQcGRhvquJpp5czMfljfKyKrTQ5gxskAdFsDD/uJlPx4fH+9v39/eb//qv/3Ln9/+6//k92jf7v/9//BP//G/fn3bj9TlWzWnBjKfVjggqffp8xo7wuXAmTFHjLAhPr+0zrecXoTL/uqJfHCxpxfxCqjYxlSd7cf3h/HFuIu+C9uPs27B/+drjHbePL8tmNOPNG2F07V0Qp2xOFjjWEbFbGXcOj/HskIGVFpPkzRj++P/8td/det/65bp/X//t9/1wOrp0v00O058x3lyd/5/lm57WsJl+qyhgLi0fsGEq9+rp2Suzjm3yzKe25Y//Kc//bbbF4FQ+yf/bHv+zqBr35/x/DSPZ9v/L9yBFsDxVSMkAAAAAElFTkSuQmCC
iVBORw0KGgoAAAANSUhEUgAAAMgAAAClCAAAAAA8We3GAAAyxUlEQVR4nH29O48tzZIdtlZEVu3uPt/j3vvdueSMRiAI0BAICRoaGpkCKUCQoR8gyKRHS79CgGTKlSFbljwCBH8BDQ0IOoIoCXoQnNHcmXu/x3l0712VEUtGZFZVfwTYwNmnu/beVZWZ8VixIiKLf99vf/n9t79eHz98/Obbn36/tNYzaHCDkZ0SPLIJBiK2ZD635h+f15+e8flv/OqvXk0Wux5qjqVzu336G9tfxEvs7WnxbVk+84OW7379+tufeFsErrksWGmw+PLtwp13z89vju/407M/2ee44cv3zO/3JZ4fxH7DWwvPBrvlHc+brb23VS9f//j5nl3+eE6uZmqBSGVESJmCAAI0GEkAoiACBADAEgQoq4NUfd6SIAGAoBIE6weCEVSmRElAZibCRKXCtXtHphIJhbr3DISQJAgSpECSoFndBwmAUB0yq+ugpQlSSpIEQQIAjRsHBGCOb/6VXp+FNA6NrwpSnQB1dLyp863MTChJRkQqkKkIKBmhZFfWWedtHL9DgCBK0HHLGLdBtIxIKSNTijEeSappSDCZSlIAkXUKizpPZkQSTM2zQ4JyjFBCXS6jR6ZlApIyEUZSyIAySxCSUCagRKZljZs6Z/KcaI2L4JxsqZkR5FihmgahTgGqJEtjUeqsACiwJntOPWr2S7zmQkGs47X8JSbmBqfB6G5obIbWjQZ3d2tpME5JFi/re7k8BbJuYUpPAyGUNrBE28Zy1FfqleNcJGHuMqdZvjtMo9UPDKSTpA1BpjgkHQZ3uBlMWpxkggtIx23xBbcw1TdJmsb/ljQjPWkwGWnmzVpALjrdmI3njXIq6aHbxxzP0Y/B1r+hdzq+WwPnnJGhreMNkhaAiXUrlJsRcMGTtSIGB5PzwuPe5rnq/ON3M7OsuTISbDR3gu5OlpjVx42wsWxUWp03h2QaRMJgzZ0iIYDUkE0qgTSAgNfnl04QMHCKejK3xdWtG/rD8YKN6dxjIW2KKFhaZae6c1gYRfZMqS9l4xqG/TkXgCQN5FyMmm3N9SrxMpCy4xN2GNxhKnPaRdJyyvS5tCwbPwXeSuiGYcVhvsf0W0nYuRyl1gbJo+QQrbVG89Y66I6hHEoOh0FMIysIWQptEm3MDaBhbmqpDGaY1hkUSuMaSXoQTeui1YwGezbe5JEvblz1vC5NFsiNNcayvKxloQSKhCVJmjstz4lGW5bFbFmXMG+NpFmQKQiiDQOhqSIQKdIkc1gKtSbTYhudpDk1jBxoEEhvMqO7TAvWRTczOvgs9/Q9Gumr+HQz3faIxTEXh4eySMKh/wZrXlM+FbQZh9URWDNe7itFAmkc9rgmKE0AmSJAITOFhFKq6ec0D/MaKQlQHmLlcM9Gp1NLtLUr0YTmstuTYrUHjLUWh+UtW6RpdwiC5jQStLki5s1p7m40t0PMh/Gx0n3Nuxs3akCdwEpZhugPGbZ3+oZaJCONNBHmsBJ7h7vMRBCuMBfMXDbc7zD9FxN6nHUukpReStUOWzl+SkkNJtJElnwNA5Ykc6iymdWHx8XscKs0vFNRmg2JMMLqHaOZD5cgOtwkM8nMjFR9s9Then9WXoaoqydsmJmyWgVippsw5MV2c2oTVNbJbGA1o9mw7pbDZdFs2m7jdIiHK5mAD3O8c+FJYuhbzbouJrD0wsxoqpOXYawb8RILtIvPO22t0ahpU6FzdXmIS92Plf7xIpOn3xqmmJjOk+TF0gsYCGbinxyGkLqeYuLgEmYdjnecdqCVFtYDyoxCkQRNKbPhYMtgUVYw0CiaGcxpBrdMYdhFmpe/JcyJ5m40JtxAhC6aO6TNaElLJx1oxNJaas1dklArDkzMAzOTyQST0Uhb3NJlba9PNPdmoJsTZOHKVHJ4hTQlJFkWaAsywxIRXvCb5aYzlSeWzUglwhgN6sGEFSTQDC4IALGAZgSQyIZYaIY6pMzMDCESmWnJRCDrcFpSioweskzJwCzRGnFDAYhhS6dtmOh34iopEwrLRIrTuEhKWqaUiUwpLAWlKQeYHpg+5ZHd0owPU0c8Ivob/VmdYMYWmSVtI4gZ9w4lM5XKTEoZe+zR5buHHFTLcCizYgeOOx7LyhEHUpwRosodECi1NzIpgTADKpwceISoCGEYcEEiEIquSE/TtlBdW8S+0VZtpqa9K4cecc7SMMM2gLwmmHiH8FsJq53/0TSsnhFZKnbAwfKHJivw6WW9lCSGMa7/BjAtYwAzr7NnmSCxIIrRIJPMaDbNoVD+y8TDvpVa6bCkBitTf4KvJmUOd07lJaoUSCRnjCoBA2uROeZlePY8gp7pgjVDgyzpjDl9YrkhM+PiMo+W1lY4sS6L5cqeFbsChegnMB0LrWm1jR6m0m1SxhPCDiM7wtQLRJi3OeO+acxOW6prrD7M3Tgyj/Pw/Fffa9MjGWlu9El64N+8geufmMI+b6mZFTixIwaaoBMHeDommyP4P46Yza/g8lrYoex1WQ4/5vZwMEAWAB+IASnQUhUVTWUYSp82SYcJuZXlM3pLSkQrbTwGOEiDYcfGikqTVimrJRXXkRoOapIktTBU4uBlkGPYk0nQuDOp5zCSGYQUmdQM3a5khoZXGEHZwKGhyBC6FSXSlFmEyPVeEkzQJCWFPAQnk+eHlMoIIZlKiXWhwaIc2F5IqpgSZfIkRUDDoMVoMMloAK3r4Et0kg9HSDS/Piz/iFyopqkTedJbUpJgAElLMOe0Zlq9nVIqFZHJYIbOdaqXGpCQQlpmKCfzdcqXWdJlgBsdMHOhxTFVMzw79HYK22GD6y1CENqIQMZrzZsETQgngThPmMyMgCKVqpil3pcSXodVfj6lTL/eVI01IiKF5P2WRGw99EBrurtT+zZ9WmbNLTPDkmJaKoMZaYmMPXvv0m4pJ9WUOed4XnAKqekY4WmW32tSudmpgVO4OVDf+MY4PQ9nXWC7YuURwlOyoeLnLcy49KrEI6q/BD/1ThtQERANOkwKOZZs4kwmABVl5UE3s07m9C4U6KSXSyXhVi51Auhyj5bO1qKZ040L2s0QcGFpak9PuS92V9ER8z7sZHhLFFWodfElISfoZswWpi5lRGKYDNMY9kl9MqmEigQyMmkCRfUQUlkDsWHAkwZ6hZsJI5k7Tx2pwZn5zQBjI9tNa2ptbceS95SynLjlQME0sOIRS5oBRltsCUv3bu4Glh+hmU2Uj5SmoxgMwsBWOOw6Z4xe7ucS0GuYawwzWIDU/IhIcJxJvXG4rUA3RApUVuBU9q50r644DY2GkEZmhBBKZkXfOOXyHQw7hX6av5/9aI7s52/8Gz/SuxMOUedxyis4PFRhIo0LXXAN33n9DNAIJazEeMCZmqfkSH+MGC4nMqHZoNSgyMHwD/2ZSA71gdIsAulFWBBuzdXM3dvServB3/Dkue58vj0/8oX3eDeooRwgAEuYbAhmc3PKbC9pamatkebuNC9iC2lGGN0VZlCheApQmGSkG83p3tYlQGVIMi8e1miDwjMUuWDmK5wwOg2aYU10M0QG2TcQ7L4ntw7SUFxFTq0bTExUQFHHhOG1asQtlSgUOwOBEUSIxgN+1oIhWQuEEakMq6SRsWLpzozKjggfQE4vnYzIlEzWLbjtPQI74Cl7ZN+2iEqc/czoHmI1PfhE6uNwA5Qgy/rnBMBpSHKMLcEs8q5yHWU2xIppkRqRuwGnaHGSkAXjbQ7O2Vpv5m5tdS1P1jY8NS2dz8vLjg+2p81xjKUoaDkiEVkRT76YdaZrMzNCTYkYUXelgSq+BILyMhVJyBQCkK7BAUtIZY9k6HSpHDauFC4n05h9SVFI5Mx4DDlewsjVyvzekmucOGK63fKXSr8gaNBLV+eat6H4nDbxiKN0WUcgjxMXWkxTBe8HQJ0QOMdvnOAk7cIdT3pAkiY1g6IswocJnLdyAfEJ6vxBQpka0b2UBrVMpi4LMpm6OSXgmOeJC3AwbThDRcyJKTUcZCvn8XIxOuzfcAc5oHfxHwWS6+W0wYPZOvMS8/KE0TS4N7FlAfUjrXsZ97tQca6NLhhZqRNpX7590CbnB88oIVOZJJlEZsTgki4/mih+Lt0Y1XHgIHswrwK1y0rPdTsg4SE1PEKtHCM5A5P5feh0vfOSqRnNTLkrsmhECYyMzMzoiszOyOyRUzivQxkCdpwpa/THbUBtGtqhUsNoEQo06sDEOGagfCSZ0JSFEYLgTM+PFM95H5P3hHtrau7eVmJbnoWGp55PPZ6Wl4wXLGGc2eAD/475xCTbSHM6YYMyBZqmeqYqRThi3HHv6dJJpeC4zxGyRQo50kInopioSqf5HeKCKeI0ssUI+q2lA82daH6E5aeaTHcyGBJq8NODSSIptLFIVTaQl5UMJnOsKdKUxStWyDvNb5So4AxER6hbOIdDsLLPU+cRg4CelViTEQ0ykjI7Xd2QgHd0yfG3CMKSI7tV5EMZ9qwU50HWcPBssOIMi2WkUECKFSsYbMQtE/mNcKZmcND0Pl2ajZmFcFHGzADThoJy4pJiiqcDny5E01m+i3kbTQX2DjQxxYMzfUCML6PIUZyfKut3+IkpASrpnl8bOY0JAuerpsCXEpVVqWzGGZHP/87qmMNdppAHhDbloQBXLbiA9n8bTJ+u891lj8HqIhAjwj1scMX8w5HovU3HnIDLfxfQhUlCXD/S3o9hcKygIc5T8DyhJcwMtKJ7dcQErOT8iE+LRkYpJUfuHPPNklzzHCJsxkZWcGzHZa+ZHp55vZkRdLqj6EUSbFLvmlIaNRigTPCgdRMmZJdgTsLMRE9aUntPRq+kO011WriBrVQ3YQRyv4miifLWmpovrT2/fPnSnmNpePH+8hHf4Kvt/jUbUQ6BI851gxdG8zDrRktz86f2tFna7WNrZKoNK1PkWaiccCR6p2GkOpCBDCVVVUjKkEKRHSH0gMEqdTGtXlbuGpkZYcquySoORsvMfHHY4o1cjSvZeHO7bTw5QJxxrpQqqDP8Ey/qA0htQPVD3UqeefjpgT0GNhjyN+qJZoXVCVhrMS8hXkFP5XnZISpm3ox0c9IbGtngxuY8FXRejocfmR6KI4QDHZVdbEakmZEwh8xGJMbi4gCyglikgqSLrS20pVuDMZJQOEDKlt0Wd3dzly0yD3fBzZxpNFmj23pbFz75uravftXXp2/6y82/uT2+vtkv4xefX39lt7vzzGiT7k5TN4dbt2Vr3tWWdvP2/NaSL74sAtACezATkUqkYdJBBDTYFB2hwRCMooMgR6RBaTi1uOigHKlkFvzJCbhxsSxsE/7TW4NclEhFKm3A24pWbaSkD80HATf3JbiamUS2WZOZCUYROoXxg2JYYpbzZcZ0TlawJ6EeVASbhtE93aHljGMkqCvL28jM3Ny9tfVpMV/bzfP2bM9mT9vTYs935+G+xwnH7Re7gUpu0Zst7uQCMyXRkj2WqeyJga/JqQGoxAARShhGxQIdtCQiXBlVmlVMY1WU0VrIaCyxVR/mkDB3c29taeuHxXxdbp5PH/yD24s9NXu5G0uTSrRAs8pKWdavg4fzm69tTTyZt2RaO+KI08dMFmb8dXVFEwDMKEcndzdQwKTgJvsxyrCm+xqlkBrfPJDXoIKHtTq+PuEKLy7qcG6cegQQLWeiZpy6hKRg0UzLEQQsyVG3k9O0FQ9hQ3CP4A+n7RtokqPsV8oIRFh37Pc9+rY/Ih6P7d7z8Xj0eDwiL1ChBp1n1WgVyaYye0ZmchS8aiwkDmN5MjmX002wqDP25JzQc9V4LNgMPq4aes7ryB1aM1qZX3c3jpdTFnCqCOfaXPiUUf4z3m+6QMgpWu9wzYlydD12Kc8+JPJgKaeIHV+/RqtTi3F+YtQgjTNXEH/5zMUv8fiDJyoCAJu0xjmEaUlnneIZ0PxsZqZruhzA8eFznS4jmcs4KZfpjS8Bf15GN9fxsO7jJi+R1hSfUfc7ffCFq8nJwFwucv56CcBwZIlOizHPA6CIPp1l0FNarIqgJmIhrKTsWDtpRMzvrMBBxtT0HCFYq89j1H+cwsDL2v/sZ9qN90cu0nQKxNS/n8UHx61cpGHO4LgPHvJ0tV3n2c+j9Ya9PxeuKn69/LsA5TIX1zen437/Vo3mctsz6qhscnEFl/hE4/TX653Hzl+OCKeWvrk3N3O40cwvJWRG+qyDq+hBB1KwPGo9qyxklgSyQoqR35khpFnzcaJRQTiCCPM6mSA3VELI3FhRCfVu4XnqIMlqskjOAL8lM99xnteZnPHWOSm1sANEU1ebPxVQoxqm7FqxKHl8fV4I8/fpv8QhcqOWjWeUjvdCOyE2LwQ32rHC87ZnUc7FZs5hnerDIlR4HccxecXWVIpHRgKXspvLpPFQChaldtqS80KHg7ecdnIMr2oZJ//fpAgCUpKaDg+gksykMFOEmclE1UJVTaQMEYIia+qNdDOvjK4rjTYrDgMqxAdvzdvSltVvX91au63PDc8f/KsWH/Sy+oe72+ziGYkjhzHBWXRj7jRnYa3gk3nrCLYSBp3qdX39+a+HlB16/d4nYsjnIULj2FXPZ0EBMzIzMjIjol4ze1zkWaI4E6rHKYdBKb4aOTS+hSoxPVNWw/DaxTXXUg9sh1F8W+FGps51nB6iSjyrgqwyGHnqyGHcABsTWAWvspltSp2nHCbWzivM5L3R3cGl2De0YwoPdZqfO9DvMOLC9YanDvLdJedYrxjpZ4Z62o0aROq0I6PmUdOkTBCBgUHm+c43J3FDsOVko6FM1KQM+6sDFBy3NgsmjmrHAxWeejjOMBF3oc88HH0GMiISEZG59x7Ze/TM6HuPvVej10Qkh1hc3O2ckMMpAkDbEaa9pUy7FggwclkWPTPl7mZqzbz5qmRbSAphLeXZfL1tjWvcbuFNBqBLUnIU6Dnh1iRyCabUmbijebR12wzf/P4V/9/H/JK/jf3L5/23P/34+4//6tPnty1xaHsZb5BmVEKhjFQGH2+xZQS36v5TS/qiTFjLsGUkFnzx9YmhNCdtcTZvKwR3AFKYBSybLU9bM2hddzOaaiCJkDESMKgZSfgNFlJYcsvF4Pu2MZ5+eOiv3/qb/mrP9bX/9qP/+Prnr69bn22OSQAZCBKA90x1ZQ/F7o8v/XV/JL4oGJmaxN7PYJV+DhSmIg1YeEFugwmdAOpEdrp8/GLXLlc6nUVZ+av4zBvAcdVptC73eLG2rbSiJLtKysdtJ6W0cxAJjaIUcmQNoIkKdHDkJKs8ojL547IFzinCzFzu3risbr7szbCscTNb1+Z262ZDt3REJZew91BXc3MzsKE43pacbZTTdx8WaADpI/KSqmeCLDZD1T2mSgVgtohgcB2quNJEZh6x/YhzzOirk26NbGtfyNWbsTUO0DJNy4h8DtA30L85m7fkYm4S0QzVlwDRMr0WXFIGQ0mbFlOJrPIsmkkOUFCUY9Mg0GctyhiZjmReFWMYCF8Wy2Vdb3z68NTWl3hZ8uWr/WXBh339uHyNpR0NlWV2TXaEi/QZKftizZxsRaizFb172PMjkJxhOgZU1LSCl3hzsuxDbI7S88IW0yVhhq841AeSeEmdkxyJeQxuYzgMHveC056XvBjNHPCB11sgTT2UzD7grESjtXLw0sjmlFhJyuxAJIKoUnF3M8AQqZ7VVQxkyqoOW0oxoEpFbwjDW48Ef/j00I+vdtdPS7y99R9+ss9vv3t9e/RLCzSQiYAJYhUJRI+Mbvs9Hn0PPhTMzGwBVXkPMqrxrryROYWsBkEDSYfoNqaMKSZBN9K9Mh2QNMpNWaUrJ0VhoaL1sSMNninYp9dNnx6+6fMtt61/+sQvj5/etj1yMI0XBACMcuJqCwnsW/Tswl51E2pdSfUOmXprKcGMbVla0HeZjOZO99YIWBMNSPPMRe7L2tws1kVymw0vkqqYmk65eRL0qq+gsIXTtbRd+/NP+/aa+xt+D9hrfv/j/nj9y/31sWu0E02vcM5sBZbI5P7IPVPoo6L5aE26VklUdWXZpXf4yqhrRDLYZTuamEbYBfL8YoG+GY8xWcueighJCiE6TIromXs/y5fewxJe+5qmRxGnX2oLsNmygGGLq9A+y2qlNNOkwzlRlnQ3ojkaMbFeVjxiartlq6g1y0qXlcvFXL6k51NrtKdlWfH8y+/ffOkfdvzil2q/j18gv9gfPD5q7/DT6oxOOQJ0erPmZt7a7cnX3cmF5kCqpSpDldIogi4PebrGqycelKmgUeox31CZplGzMX2zJtCdcagUAL0TJn9sPTOWjm1T9Ni2vu33be85PfH08JfC/FngUcXdOlRITYJBozTOYoDoUu5UBawTAZKjBqKaYK2U3dyHjQUO3zralkZzJGy4IqFLJkNC+nIPJNDx5Qbb88uXfd8+9T3iRD9zPgwAkZewrG+5RyT36kxFGx79HSVQU3+I1DWiGC6gPj805epyhiu4BI4DF3BitLRkVnl4JFKZyKAqWFREnj5nAi1x/j0C+xn5n1ZNLRVitblpulLWtgAc3cojziJIU872q+o6Kvc4K4dnaGI5ujqjskLnLNUvOWrfpc4UYgyxR0Rotg3hiHPIwVmfTrIiVcPkstkie3hG5Wrzgjpr0NXDULaTEyuPvEJCEc5RYHWkSpXTZlWPUgLZfQLYslhpArxypEk6mLKKPDIyNattq/N7hoWH6g7PToO1avxCuwjNycdAcyBnxH/SBzoXdILf49PzI9QoZ5XOAYw/eRFCzLD9MCvHJGIC2esczIPnVcedt8xIU3WI5OyFHS5kcBEHuCeq302iFw2gyaVU8XoJIcw7XbI0gS5So/fnApgsfSHGNxsJLGaQj3sbLb+kaGmyUb9jsx2LdGt9SaxmjqS1nrs8IwXLGCZpBloHTzAkACNOHkxjEiMEqE7waR2SBD1AEKMUt0eOzFKSk+tlBgJKysDqS4rqN0ji2F6B5Yl58A7D9ljl6ItFAVpkpzJSZHIW85WpSYl5SgZGAFY6Uk1WcdRXHgYdI/aY2JYScuLAqSRVyZCJrFqRGkgdjzzcyHXDnDmEw7SOxB8m+RAPX0IJNxUXZoMMpbISf7WLQExjS3J0LBF7TypG/FcUiyGs6lGAaruAYrtFMe9leMultEGxkYss04kMs4hQJkdgYKRp7D9CDP4HINC47EviZu5JjlB3eo9jHxYe6ojJV9fgOIyuDaNUC3YEcSMuHJU3gzLl9cTmJndvjettSSBX53qTO29r3+1mNvqBOHhdS7OcXP6oJTKDN2veggvNw8g2bPK7uJhHcu49/cbZnXqU3V2pLZsI8fqdwwNNGqwi9xJ8XC5+6MFxG7i88v05p+86qiLGNh/zvSvUxbzKRLo4ResgnXgeO694HdxYqksFhhkHEe7uBtJrew6TuZm1NOPsQTv833GNy3nnxcc9tgGg6ksnLphDwHnGySNOUlrQEcye8OVCGB1YZSTw6ztZUWYqqq8phN5lUu+R6nFiAMyOzsl9HCAF4iSx44hHdClTnPNq53y/nwDT9cixWcX4b8KHQ5zLGYxI/3AiOGkBXS88LX15nMsSl+DZufKDZCFPervlxZNP73pi92mLhym8TtbpXt8fPW3kdEIYk3YQeRd3n7pc8yivvAQPJ70x/zyWCodKoTJWtXMaB86fNZOJ0WQ4S9ZR20Fo1K+nqu6XmZnJ2Y84bxGoL1faMzIxDO/AcJJGHuNgAUcCbPqlGdHM1zywklRtp8f0S1Ub/w5vn80EE9UccOqCmuaNHChrZgiEcyzXqZ/fzpk8yNn6qcwEsjZdG2XdV5z1M/Q3z30keuqnAbSqj4HMhhiViLtp7ChQGTcMuk5JZPGfzWmo+hGyTgsxi4OsiEgA2DDrBTIko3OP7XXL7LyH3d+AyPv9beuvEYnZ5FGjmK0UMwSVpETs2aMn97IeahedHvo79k1wmMnSbDSAFfjP0ak5Ms0DyrnrYiBK2afLmS+YFQ6ndcXEaONVo0L6nT0fJuOMd6aTP/8gyVY5Hl0Xbcg/qrPhTPue+GmuZ0YMHTnazMETeGn2RJ7b9OVpC2qnp1F8zdkmp0OgjijzCCAuBui94RPQHM0rMTOKh48e75GvH7eGMWkacK8EqRpKMYcPQcVZV5u9VACZbgfnergwBMdGHUiQTKDKv6yIDDEljlnVENXZBwKFInpiL7pHbVQYcRJHF2t/ROKnnzk06IzUzp/T9+L94TNwLRBmXn3DLjmmZ4dZC3eYmd75YB6SOG+BGO5pnL4wJM1RSfMZhUiXXYgwdqAqzyNByqjyBApz5zoIVJYkGSohOTy7JMDBBEQxAXk3eNjbrtxsSz5eidD9ce9xj9DcFZGT+Sk5N01zJyVjz63vya2Kq9UkM2UW4vbR5ARU4AJLjezPAEyRGT2Ye6Ys0Zxkc1ZgnoyAhEhp76AiDSElPJFiR2SnC5bec/v956V/XnK3+83yoe9/+mTb7/XoUfxVXVwRCcRsw9oj9shOf7zu970lv2TPiMiWmQ6VndRFSDC3Epsreq5QQagpWVPkD4EczvhY+qmy06RmpVqCER7dIpGhDETsLXZmzn06cV7h5IFxQr53Yt8iolXVe20eNgFCpYbOWzttxOximiDtAMsa7GMOqMgBMA47l5Q6TQ4kejwe3N+SsP3hveNxf1v7G/cefmKdaa6OEw0jyojBwQyT2x64dUTKLTqbFJyOFEpYxsAj0zlPIq2rdqXNwyaraj5tMIVjvFJm9F0R0u7IXZZAWu/+9orH55D5/c37HW+vn28R/rbvC+1A0Qc7M0FAZmZQe88JlMdA/u5/9t9/Uw1W3TLFGHBLKj4gZ58gQCozGREZkT0VPZOcChhhnYmIVC1ZIuq7vSsDCNRAXDJ1uz/atpPNHw/fN9y3ByXb9vA5mUI1+x3Y5mhZLNCvZA601+z3/9KBkqMyP1WWMqO04pwokFaAqnbhQIqpqicriUzW0EXVxlgoPyIlvfPwkpnKREQ+Qgl1z/3RtuRDAPss8xp+xGp/jKiFyKIRleG5545NfIw8e3v58Z98q6XBRkYV6KkIKpAoiUdKIUBUzwyE2J0p9LBClj1qkxFAClpEYI+is7RHGh29mgbpMrk3ayDWtvptabaQttBgDnMLmiETsAwqmQqEojMzFYeYZ+4w0YLMVLYPimhtlbQ8edCaC+ib9jv2HbW3WFhGdBC2ATA3xtMaLWPv4ciNy6ZALobbzmyLZxghhllmJM3z5csif4o1vjVHa80Xrb9piV/z+RV/8zvwz/W3frzn/dfx1/e3SKseOAGwpIFS7nCzZW8tc1ns6w8fXx5NvMktQ2pPio3LDdmzLVuQVrhgGFGr6oBRYMMyE7CUg8OP2NwGLAGCsqaQIikIhhDpthjpLtdiTl+aL1r9llh167gZeUtfreMWN+SDNi1OEWxMKU6zD8JMiOjJTYHUaAMX614Ko/cICyJGmBMaeQmA6pmKTkVXN0UAUiIjMtQthVAkQqk9q/ghd0QNdWJRWmbAtN8zIfXA/iBDj95DvZ+axAhCFiA1+nkDGRrbK8S2Q7RuUka2TUptBmXuhDKI6ndxioUSRvhGomKOVCL6EtMljRAdmehKRXdO15MiK36JQHcpk8a2NXe5fTQ9bOl4TeIVH7/crYde90egTiBiVCTXrqoppQKpDGyInkrGCLHaYKdLMSOp7D07hZ09AAUUgeg9CKJHyjpyb9kZfe8BKXrvGeoMWFgksguRlkkldwQJT0EKy8a5BbrRwEbvaEZQZqtyyZIOjs40iEEy4liRHL6/uq7ZK8ubDZMpKBSRVnxuMKvQRJVWTkkUK0bHaMKOyEp8x2jv1qQZakfwEcxl2rtgfsY9iVmnXZpwYJlje4JCHCKP7bUO51wdxmIONNkkepdIizL3tLGrc3UQ0lRFyk4CXrmeYo/d2tJoQGvo8trEqFxPEb9MWCUcTAZABgZEV2aKfm95b7vQYdnx+rZ5flIf5QK84isMdzVprbTsCqWsjz15GzA30zu530F8T4wzAywApKrjc3C/1RyosbkIyKzAtPrFalNdcCRbSVEGo7m7y2/NuFjrWG9E1y3Afss+I52TxbLBXtnBL5tZY1MTF5rJku2OGIBlNu33vWfpSK8t4Tewb/sOgnuGYNravim35fF2b6Zdvquno8s6c9uXDGamBXOzyF0pf4TEtDAG3Zq5Wt+gTm3wIB7q+6696bFtIbOk5MFKX4DhgcgwRPfoDjUbadOipdSQrsg0MpIWFekaK2VVquNVR0QCDGX0pLZEmGzdaEQz66R6YhOT6oR2EMx0pJRsnQF2C2wyNDpNun+6xefFnPdXy8Rf3d9u+EJlFCEKhSBFRwLKtOwZGZY9e/p976/q4B61Ci3VRSiAUefGCnkzEVGGoPSsV6SaNLdkAyyZW3eoj406nGhBEm7BJUgZwixJbbXjkpgOQzM3l32zu73YEvzwNfUJ33qz/oTXHchKT1iSaQ7CO43mMqvtjd2W29tTLOL6sVGZaDeoZ7sxs7cl0mofwSSGWF+4VmLWPVvCBUu0yhkPQ1KbGzdXSF00QYYAaI094abicN3cHOY3k7F1wIhVvhraTeHss7NMk4aNCmYm20XQhOgQoTAIaCEio5uk7mPLXaFUF7VhFgc5QgBKy5QU6XP7IdpwX1mRdSatOilne03SQwkGpR1W+6IJ+brkWzNwD8uOz2/bogciepVPDoiSxQUOiztqtoQ9Y0+KHEFheyiNsYGUdgKAB82dCakooQRVewnRRfOWai2N6dx7E7qbQeatA4Qjb0vnU4DZIn0NMnfLSXoS6QIs7eWzUrKEP1t+xNPeFU/aewewwEAnmA4ZWvrinTIPN8HN7NZeYhFvn5tlBtoTYueyIAPNd5m09Yhw7KjtKqRO9q13ALxXY27eya31B3qA6kBHdGTIu8ViPZOPuXXSKzoAFwiGaaWTzdzRnr4Kfsj1TbcXcMtnfOjbtwHnLkZ3WZX5BJLZAesKY0aR66boW4raZVKIfwvL9tpemuKLf4VPbH7b92UxByKYnWRacN1BQ/oD9DVl2A3iL/hTNxN93+RNqS7fn18fzZNczHdg/+C73z58eftC95bc0qzRQIX09f7jrX/AD2z9W77F/Zv2o73Y3i17upYAw7hRZvJ1eTy0hBZ1NqzLfhcBi1RtPf5HiAfXlbFr9Ue6223f0Vw7MkE002Nhv+07AD4jbVn5aXn5hPXz7en+atS+rKHg07Kp7YzbZzD5JDCJN3zN7tT6OeBr97iZE4tbQ/v6h92Wvn7W87Ps+/zNg4/Hd9sPj/uWRHeZdwIeILktzUL74o/V9ri5fVh+97I18fbbxaTM9ooMZodS3SPNLGNnODojQYVpTwZ6JwCT2HfcI9+sP6D7ZlQAoST7LgtmPObjFARtfKC78HikbE/LDTAv7vvzJ+Xn2wJ8/7zoC+Lzlw/7X73c994BRsB6ErIEYbvSuiJtT+uZzmhv6k3ct8HGv4otNqd5z2WpjSHRmllDdKALdE/zbCS1bGCqy/v+3M1a6zRaW3uHM5MbgX1vtfsjLNPoUop37bD0jtf2/Db2Vrh9ua3/4b96fM9fb3/uzPsf/Af/y/rv/bPN0gxug+OUNNqpvEcyMzLUw8L7gyHOPVQbYQ4YvaV8Ecxv1Lq4B3cDyIbeQjekkbpJxtVwy8fa7fasMGO21SxaGxvAcPMmrWlkmOGW6UWjmi3J+/LNTw9Y9cTb7e9+/vgDfvP4S3fd/vg/+d/bn/7ZTrqhaXR4JAPAwra2QLrgxnSaeTRz0VrtIsa/CW693Sx7b0tsZrb0YKNFUa9GpUlLFwi1FL1xs2WT7/aiVxFplpG2MICwfrt3IwxOCJHPDPcl3zZ4E0UZvXob2u7x45MteFubRLu/fpuPp8x9pzJcLlGwTpDhzXtkQzSEFvpNXzwJ8s0IQO1G7lxu7DuaPwLMuzL3ajiSzKAkNciwncKSng/psfZE6zm3AWU4soX6arE5WOmO7HIks2r+07TSTQtpNLv1p1+G7noRbNftq2Xvv9nv3UKs7akEmXWCUnZDJpGBQJLIyA4Qe2VX2p2m3GhCbvAusYUWhw06cqDyFiIoC4AmLowG95VOusgMmTMZADPQakdGBs0XS4I7Egwk7jLjo6rds+VuMu00OV8VC34Q1aNKVk1AjkI+mXtc2sZsj2rf0nhSQLvDlDsM0F4dYg1qzSgEgKBDRrWK0xaA1jJW7g25LF00pLdgekNHGh3hDXIYSYXdsJuiS0iaEGloMFJa7rf4smDhfbEMcttu3MzQq25aDsFFp2jpi29VV1jpObk5TeQbCUhty2o8Nk/tDo1H/5gFkIRIpTOJJAHPdDrSLE1y7t2TaZYGGgMkXLm01Fq7mqW1JCNmfg8j/WGWaBG904NqljuftugAeoYJTSRMHM/68d2bd9WDipQ0ovkNTWybQ0q0JmNnIy3gHjjS9mXOkoIzOZ4UoFQy0hRUWmLZRwZiZM0TTGcY1GVkyhCQ3LexJd8sNk2lXhOIthv2N+8L3va9+d0WG4194KgJo4reySqVQkoJbvFgBx/j4S9tZevhqyHgDUnlFkHBR74+kojkXhz+thGWwAPYxUczD4C55V576wesm23pudPNOqzfLWRLRLW0HmkWQQ/SmndSD4+VD7k3wC2C6CK84FrnaHboO8amzEJD7w8CjBFrNIcHaYZklWuONGkRAOKRXq2/53GV556VbkceZ+RThLQzfMBlK6Yz/yiYqbKJWW3W5mbmrFiCmnteUJzFB9eautoAMsdNtw6lshuljGpRg8zpYoxEUXGmIAGL6vl0dRe86gkAg8mtHrtnUD3rxWkS2Fi1j2NMteEoQSUiY2ckg0QYcu/q3pmSTDY7Fmo7C3MPE+tJOsR4zBjoKuvVDE6aG1jd5TRTmtVDsSoFJgNrZ9w0A80lq0frNFZPgyFlJkCwdKtWZ5pLlFm6L702BKriLatMd9bmVmUrqwTBK0luEkrXUaFqVbcS8/kjMKt9UI46q8ZZ2oWjLi5HJ4VEZc2AmVAV2EU21abOYwOseqjVmUEf6ejaWSkPImcUhgyJrVR4bfDWOIpRZz6feJ/nnuUUOErIDgEdmWy1XjyDgLBuSSAio3j3YAYJWSSKj/UEK6AOCNzRq7si4qx4qWdEjpL8jFCAj96DQIwy2UpbM3sgFdytZe0QnkRYldYCIbG2vEpTVWjn2MZ60JiTmATUjvzsJOc4HopUjKFgqGfeiSPcNVMaaJKNvitammhKJmzu+ASaZT2bZnbMHIwbDbVD0bimnVnh8Zsl53Mv33/o0BGOUocYovXMdevtqaH39oQHfTyGqB58FATYEOawUWoBI9bUCnksS+y0ivOdMhEWLfd09fqK7zDz21fATrcWpjBzkNC+rzdf120FO2K1N7N1/cybRbfcOR7PZmW1iImt62EJ5jt2T9i+JJxgC/aQMpDI5EimlLGtLTM5K7dwWmIRteZxbOE3uVUUPsMoex21uH1uqzbEgYI4tlQTaWaSCUoycVTVnavBqtk4dgEFYGF0sFUNh6ozdIr0TGvooMVnZ6hUfYY1jjSI1a0gZOns2XaTIA4PU3xQnDyVppei1/b9gsMa5GpA81lnNNV8TN0sKZo7NRW8Lt6cBNqCltaaS9Zang8UGd+cVmHc1VCkrOcwnQ+tm9esLjlWbobj2zRzN6vNt5qNB6YpxNVs8ZVa29Y8t36znl8Zd2PO1rXDQI09puqRZzDPPiqOyo62Vy2IkJG9symhBaqmS2TtWizO/fHke7HGLfc1aIwUKXoSBBKdQN/h8+pJGJJ9u/dA2hL2Zf3udVMS6b339u//vx97/y/++f/97+D3H/7kP/6fnv6rv/7Hd8g1myVYiRsT3WaRVSW9I6vJZJCAZuZOmle3FEd3Tu2u5u5mNje/aD4eM0DMamxfmru3Vs/iOrY4xfhn82ELvlTRttHk67DU25bQ7x5Q/3t/iL/z0tfv/vSr53/wn666lMgdGzZUJcCx84RqD8lMRckvm5Q29oaTtQb3pw3rykXooARHOnkjzJBLwLj2fOp562zP3WmevmxS8+yQ0ZatrZaGZs4EniBv7nKaN7iTrRvJfGuypz/9s59el0+f3v7lS9PzM5efvgdhBoPBkyViYst2WyPVTA2dhsV8o5sse2lNe8aTdj43wwPP6xu8mbfWuBDNLFARmDc5HTGAxOK5Ni26PffdHHR0NVOTme9tvaN2RWmBttFbe/o6Hg9zW9kav9LT9maIP/7h7bb+H4++Pv72f/6bv/8/fv2H6y+elj/05Wa5RIhyFVqpQL+KKmtzA5Pbzh0dtreEg2jOpcPMGXIqqdz36AQMWbUk8Az2JInou8EY69a1h/ftCQkyo3eRHQqhJzrZw5jc4flY4thZKjPh/RVBCLto/f+xz9/2/JO3P3nY61/82e2nj/+61jEkxe4Iy25p6Qn2TuvGnkCGNjwUsPtLII1qPrbbk0D0egZQdAAGRT1GWQhK4hgXQtmTXbFv3nsVR3SQYYU/oIgMBHowo7Pq0VDZpabfvt2wQO3H+9ft/sNXaF/9d7/6F/80/H/7P//pH7Z/9OO3a1AV3CQYkAoxxJ6z3Ljimqx6l0xYEvXoTXdL0a0PY5rl95MhAaN/h6PPDqBkDI60riiFkAZptI/M9k2UQgppo34Ca88PRhJqt6fFvlvXZfndv/7q//oj+86irb+9LYYOHvFHuYxRJXaAGqMvmxtELwsvqwSNzvqoWSGlaza53FpegdqobNH5c/qv05UdFVWYWeizjM04itf07DdBcVdmjO8c7hXnLxPtjrxsge0CFmgPZOa+pZTbjVCaWXrjAgYIyQAmXYXROgFLtUxPNgdJB8iQW4pJMYPNx5MMRWseyNgzSVj63Zf7IgJ69M32z4+N/Y9++OGbeDy++dVn+zs/PhDBIOuBNjP8oHkLHqhDGSk4UdoDwN5e3/bY3t62iH0ThNr3srXa26vyXJw75rfqxxwEg3vW43ebWz1gRoBlZzNb3M1IcTEi+paZGcp89D/+g5u93h8f/92Xj1/Wf/j3/uDzp//6P/rFf7m+/dE/+B9++ev/9r/h50dEVrdkbV1WzwhpbYYghfJE93VZ1kINtNEFcD63Y9ZBXJJ4YxJyVjFeQFRKI4N8SEG9Ncoqh7DGATuBx4MA4T/srsYvd9jv/vrTn9n+utqOt2fOqsp/y08R3KUrA0S2VJSe8MBMU/YkYGxHUaBwwB1aVCRss1egdNBGOK4qqxsIyTBwxBALv2+f6GD7XTO+fvqLu+VbfPxfvwP7FzH/5x0jTjyjTZt7xeVIWNSTO0q0BJkKpHKqDs5xHOh5wLI5vEtpxQxsz8+dCjmJl3nW8wBk+LDkiOmW5182wWi/aAIbwL99Ggrw8vrur/NsmLD7/wdYWJ0zOyNpGgAAAABJRU5ErkJggg==
iVBORw0KGgoAAAANSUhEUgAAAMgAAAClCAAAAAA8We3GAAA050lEQVR4nGW9TY9t2ZYdNMaca58T997M91XlotwwCJAbICE+hBA9aAACCSH33eFf0AYk+tDhF0DLNGi4Q5uOZSRkCZUso5IMyK5yvffqZb77EXHOXnMMGnOtcyLLkZmRceNG7LP3WnPNOcaYH4f/0Rh//uPPf3F5++Hrzz/97scjx50iPQIRuA0UsnyYAaBupF7GJX7/4fLDJ/z+D3754zc46+47MjHecF6+/LX55/Oq+3EdMY98nR84fvZL/vpLHEeRLzoOvyBE/fiHyNQ3qT4jfo7ff/fCOCvw+oPrd+fQ9STOK95G5RzGwdPXGaMqBz58/Pzt9Im4XRUjw6NAW1WyJQAwCYRJECBAAzABoP8Mwutf2gCMEMH1I7BJMoIkAQQBi7ZtA1IFBBt20VZZZUhwzdCsoASD3K9GEAQZ/drrZUwSgcfLjKIkWbZlWGHIsG0YgC3YtikQtmmpqAoVbKhoSJJB04QB94Kse4lAjGP2JQHJYpFmuYZPFDGLBKx58DQhr1UzAawbIen+Vi8uAdvw+lmMYkhVWVI/UdgiYQGEAEOWesFlhSRx/axqCugHCe0VELy2xrAJ2/3Tstm/jjANiUX3jQuwBLdl6LmQgOFlE+4X6L/zthEYxsgIRgYJBkGyl9JtTHttwPU7QZIBBhmmHcsCSD52nVzPYFioomr2j4gMRDpBkzHIi4c4EkFEHsFLEdFXWo/SawJbz/t5/5VhmB4MI4IgIuEgGQRCBMg2DxDBvkMGOcZwHhGjkmDajFQiBvJcTxlgBNcBM1znAUaEiGSmB2jiclRe5nHiWgjiOF4KL3OaIcRaGJIRCPfRAwNg30zGITocCgYxlglwnWiShJd14qfPT+8N9bIcwm0NbUQmGYz16L0mjGDmIAnsvSRJB0YgGFlgIhJHBs1I7QMeAkj2dpPBEImAGIjRp5yBiCAxiJFGRKYdaYPrrkkSCQAhc3uMoqWC5oCsGABI2wK1Hjoo0zaZYt7jwHj5dKZJBGHZEAm5Knl6Bm73wAfMcR+8VQZBwttSbYsAY8gIgQDDEcb0dJ6HlQCHKEsGYJkGEOXl0h6niaZNwNR2aLYEQhVox0Zv28Nap4yI4HHoOC5atvn0ndRAegYCjkBihIIGbQf2fnL9XjBHhfpoMpBjRCgc0a7eg0yUxyjIQQmkJIfNMFEEaBk2wtYJHADOA/Osu3C/J1yuu9NhZgRGtJOLGJXJ40XXn/3id0kwQEcch0fGCF/H1a+DR80c+MSR/g6uQzcy4Ha47jgWiDxADuGIyguun+5Bqc9NJDQiLxTHRSFmCAxL9oBoMNrULMiU4ZMuk/dLzKgTMadZ/SBIjnEGj5CAICMzDx4v9eFnv3obZCSoweOiMcaRpj+pLnHRmy/+jiPqe5x1rVcm6GXXhGESmYcCozyYefHl02vSciiJCGCQsBHk9tqAIbhEOKAA0A/S1zTccViWpCqiJkqmQngX4JfHNsmIaA9AIpjJzDEGsjKOA0MHLzjwwrr4OkcfSHiBiuel2pH2YsfI9tLLz3KQGWBkBJiBFUl28GgL9b5k+62ODzAU4e3AOnCTRHB5QQYZjIG8vIw2+DAjwgxmOj3MiCGSGFB4mEwHY11qoSSAJjO4XV44RwC2Qu0WOCI2LurPDDEQJCIcjCDQ8ASEEXRGIjMjnYzMtMNOReS+wvaZy5kDFlcgZTAYGbFWMiOIWOEhiPQ+5ASel8FGfu/2nAwjvBzCeIQKPgP3CpHrxQGEgYYVCUeGM5mp7LCgAAqREb1iCHT8IDsgQeUF//bjxUYLJBDtb0l7I4tH7CAj/IQPT3gajDA6jIQ5tgmuixIIggx6eb8FTp5o+N0NRewFWx/vl3KFogh1mOeGOk+EQdtGY002rvLzVrh3AqAZsR9938t6yb6lUZyyVTIkE0QEHdHnjQYhUtGnPNvIJ9OkScmGHB2m2P8iTIy2H3BEBP1gADtqZ/DlG4PMcI4LAhc59EAaDDMcERHhCEVGpCMRGQxEXuKY4YQyIuAxxoiIzCAzAAAlWwUxALWJtwcEUIYtUzpEWgjS0XjXdrsyuARFRVTC97PmLHdAtUlGBdmuHCNkU0WjmGuZg3aDcSwkXK7znGWVqqSC6tSckkW4AI/eHT/BpNvRLmPvbfGKZs2jbLKBtRkk3WcZRqN12HZBkhSuUlWp8ass11QRsO8MnLin7p58wT198W0OtVe0LVtrbfpqqrJKKszzXlMlzqMsQkPSAkCWN47oExYO+J1lRxv0ClP9U/0gaF8DGn6c1mXoQQDRpIuAMMOzjwcP3Xy76i578p515Wt9KLX75nsXtS/0OGISNsw32msFjYgImIkO5t7+JqrDyYMaLJKz4knE4h1oBMyIYIYRNjPHmclxmZeXD6P9z6IEJDMVGnLEECJ18GSNIBPReMpJNHIDicgxyQxHMNLjGOvB2uVg2P1sNri5S6NyhQWYEO0N4duZeBOzPux9RFYA25xseaGGr7WQ/9rsiIiMnIwjB3nwcOAgE5d6EojGsFwruTba22clM1KRy3WNCGKFsKDJdUcPHsnn/9tJYt0JUyvghM3YxwQL18OGbLlKNU+b4AbIikXljBEBpxEGmHQ+zOnJaAkIVunB0gVpM3sTdnut7JjcV++73YQQQSCMcAC0i3Tbf5AJRGY4rd7faHpKrMNuG5jTVfU4aOvcEMBMLJAn0ai10x1I95OYbc5SNYOzZMGqdgMVgggviILN2WFoG0Fz3QdtB6nHqqJ3EEnSoXW629EsMiSVZM/pOae2aW3gKfp8KRJCocjCyWyH15zfe/1t2+GtWKn3eU6VJM1hiPQ6I5a2xa9zLAixd3IpGngeoqUHlLas0Zvh1j+2+KDlQeepZo3afsatUSBAm8EwyICDD+a8LrhQqUJaMsqWalptWls23t0592JaS1SiaIF6+KolyC1JxiqLWlu+n0D7gdfaFVSzlSKFl9rWEMJMRzkVTbep0QFnb8Q+8b3ULbI9Tgq38gXDY/PPpXXZrq178eFAvG5gPYNowabdoULLS6F3uwMiHwGRVbVuTRCqqmzZt2AKp+p8i7j6DYZvJ7Xuw5Ih0ZIqhbKkYk2pPM97nTWNMxGFbVrLCagp7QPYbabZEonfk51WXZapPY/R+rVH2GqSrJptF8oW7LAQA0y3xBo2QZvs7XgEugWQ3/3asuy1r7Fea3Q84w4SIEP7LvzQMryPQAcCMcCYaM+0DY5gMiJAEpkR7coSmVzqUCibIWYOjsMZwp0MjoG8XqIyzwcuiNBG8mBEeIl7MxJ5XPIoOBmMTGhIZwFVJaKqnVOIXFYEGgJBCB1inJmKBAOJ2QeQCDFz6U5OgdmBt0BB59vUsvTGcIxgRkyk0z7IYR85pIvvemBUEg+fihUHqv9gJ49K5ZjZIJuRAXQMidiRaEdnu7f/gVAMNyhNy0IsVyHZUrT5UQLUNtgmk8eSg7ZW1RdqEExWkQOyGKoOrBud9lkJP1B4W5BBuaqMQseRWKH8Hfzax/wRvx6Gin7izTpikZBN5bjvcnOkdjPaWve7629f4+ASkG0gYMZTn8b7n25t3A/3LYPP1wRG80vSjoA2vzPdXKq3gfuEgUDEErFBl9HQeT1MLKWkn9CgYIXrbDUFRMYYGDEyB0Lj5Z43XIcvUy/Hh1Of4h4byy1C2JyWAEIMNfVnjGBQGefib0CmHDlSjgNoMTaCZPZdOZasv8K+LUCBsseFbpoucbEmZogBMzOYGdcPfvnuF98GQY7og6e2Vh1x00zcxPOwdMt8u0cSYZKRFb0cRjjzohkpJhjJcQmWy2w5FRiyO3a958sPJUNbPnhQinZu0QpceyICCiyAg8czY3sHN23k4pBVKhCWA4Zm1awQTTvL56zmRe/YB7GTHBs0wFV44icDA1v59dOG3RENbK4r2lQ9L0Wp+aCrKRv6Tht6LQ/DhyDjCMaSCxAxRo0cR+aoGtQwExz0NQ6eI60Hg+JeVkan89w+mMkclxhJZp6REfawVcCik/UAMkQ/SAQsQmyYtNyCTMtCzRKqvHjV80i1ttNAS7DOXi2lO7ZERo7LXTHKbzzA48QlLjWvfmu/tJe1mYM3rH56oUQyEDz7vI/tdnoHd5zu7euUZ4PWHRife02uQ05o+6GfAMhtSaxZ243hCX8918kyhLTmWL/+oCMPd2vbVVgc3laoYY7IlWgd/f8H7sWDG20Ixgcngtkole7gGztv2bRqowAv1efhi+FaMB5+9wE1EJQJNAavhagfgi3xlK7Mx8lpOBJenhLEAOUMqxxhBWHH+juGtVwh2cHOaUdm5lZLh2jKJJkZp3aYhKmCqnTPwFdc2t1VPwqtQgh3hn3OayluuhzX8yRmtazQzGKZmQUj7AmVXZPnbSraYkQBHgQQi8+0meu9mskNhGmt1PoORBG0I82VcQzSkjq2GOxo73kmbyP6QVYa3CJMHTMtzelZMetOz1OqeoBsPQxLlpGtmVmcUecU25GLBDRiASOCSZH7KV0kLRCwc9uq6BZmgghAAjr7v+2x/w+RHW/KKlbdP2z7zBwDI5J51YjxsRDxIeaHm68vH2/3Txhzey1vM+8vKwAHsLIDwQgh9hkYRVeVQlKl5U6FMyQW7Ip2O/Rpgy5bVXMWNGe57hPNNcSSOsC34tniT+C4xOXyEp19etwiI+NwpskERozBa3IMRtBN1LfkYaD1ihSTDExmjgsiHng7zGGXAJWELRI2GRQZrR+Ia3/ZxLFVX8Ptr9VBcpEBW2o3aYsuq1DzdmlismJWk4YoOUAr4VQx0spOmG33a2yk2TR5+1RLcJB+4NwAgu70C7izDVtJf8hjj/i0veLyVvHOL7cnecpeZJDJzMjjmk2wI9qp9T06WHBEyYqEi1F6J7c/zYqIRkz7I1rB9T7BHAyv5PcT4mJHVOwcwSJYbZ3eftAMcgfJ/ajv/7z8OPf1twtplW9HHz7oPhaC5YOMPiXOJ+/2eim1Y1prCq9ykQeZ3Gb8/oPvv36u1/6Fppbguxfal+lSltIzGHp5pOfn53e2jLE567aHBxJcml3rE0+9ARiAljTITS8iIpYUvcsPEA4bYNo5RuRQZGYgAk0hwBz7GTNJBrbcKs/7C4guqeBGmgwbSdqjnHIwrZE7nv40g/RMrWwEQo4Bc7RVYEhzApaKCxgSsOki0ABLAVEloyF6hJBiiLpPocS+yVQkI4gI8EBERchBUqdNIEDkGMMjx8gPH17z+HA/Bj7h/Pg7fh/ffXv7noOAsYFTV/yEHUHG5JgRVTlijHG9h+Ly4xigYhiuzSddkiWrlPNkQpppzYyCpkS6hCrVVM2amjiNWQxHYZa2XCfSfNqJueT6TcHIiBiXe8TIIyITl/SFx4jLEYT7l7t2zCIeBoeH7baE22IbDS8VZZ+052HwO3ywPi9tiyv1EQZ27H2gq33cN4rsH6gnFlyP0QgYzEhgpAaRHMGRf+WA9ub09955z+UD3XQRxsi0xwgAOUoZEQm1D7XtDm/R6ikcgzgu18ir8giiEIIZSHtcZh0RGRxZzC7UE2GjTiIdA8HL5XLwJY8jv/uFj+sv7h8v8fPj7WeHf45f/nD5g7y+ZldJBXMiIzOCKoaYweOeORUjxjFeXof4KcdhwEOadaBQCkiDzYlWurY3YaUmDZADyDE4BnMwOREmI5BWDnUqwxFidqiocGHqPhWPXW3oBhJTRFSNjKyiUzOjSm4JszMurZQ1fFtpEsuuC8c4xAsjZGC4izUsIVxrC93yrSRv+tDgf/FgoHO36ozwcsaNvwgHO+jJUEDheetKKQMRmZGZYxwvB+PluJDXiz8QL3oZ/PgaAJ/aPcFgmADU/mIFTAweOcSjpQkOu6qVKaJvNWIFtQYLhAzTckWsWhnHaHtrqd999dyeO5IcUjAoBAhPm51Qj9HPceT10w+Rl+Ml/fIBnzI+nh9GfPyWBHblQuuNDIhBRkZk1y0m85KX4yJ8iByQOPDuQHud03bbC1RtvMKVN1v/tQDq7eW73mNzsXXst1buqofH2Qjq4dE6obLxeiNqP870u0DbAWQVmMLgrqBt9Lt+YBtv72eQTESEg0YrkUk/aHEX3wQRTKRGMMJBLsLR27ncrUzOs7ZrlIoSJnR/Pc9znvdznnF7O8+3ut/ut/us9SQ7iC8Xil2pWnIJ59mwYGXGHHzQ0r0P28U+EMkG1I+92WU68VyqDc3WRZ6k9AkvNnJjp/kiMxiZSWZmtj/myI1asSP7gzZjJ1bWbbW57R3ZseKJz/i8h3UnD3y7d7wFiae5PMyykeW7h8bztX+K3vC8v20kfL72zgLw+d/jOuuwx2PtGv2+A+V+f30+n+eBfPFXH/FR2vXQgfiT3W0ezX16sBHtthii5Gdqz/A6IT+Jq/s51i3/FLbumxrrAuiLL//kdqrSE5muAuxVbrLq59bn6nqNB4hYp/hZABc7HbOFKSKCuQDq+khFdOnru63+yRK//wi+w/ho03qoRw/beniuhw7x2IJ3uHR/+3k6Hjv1/Mv1YM+v9x2+c11rO1bGwI87f+7IT2lEX2KfmP5n4AH93//s+vwgM9jP9u7D/Oe/ue+rd+ThZ1d2/3Hz/c16JFEt2dX7bD8W+rkji4TgwWie7nv9MzJHRCQzIjI7XuwwEWF22Vjv/INIphCMAIc6Tvm5LYxQlw+Bq/AkcmTw3WX7Sl2NxSDkrhCLIDIynqb4WDDguazLWgx3egAAhrjTgM3Pnj+/1hbPJXis1GOBJMDyTzbUyybYh5F7p57sbl0p1lY09urs1OOv3ymNO0w/IPbDXkjEeqwh1jq364YcD7L68AIrwC23C4hLzVpktW91u+dm6VpWF37i8G18ik56oDVXr41ei6ZH2FknjeaukdzbjjaTpxcecGcrrEXBV1E4RHFhLXSzS3GVeoeZ3dFQJanW3QQ5MqL5b9KdakpFdB1X38AYQ2Mcl3z57jrG9fJy4MN3+O6Y3719vI5Pr12+9B5rIejl3jIjx2QmxiUv4xBeIochj8dy4nnEHm4TDzC8ndcOO49z+JOTvlthvHfzXdfDztJoOXN03YBKrllTrpqlR2kBtoE/bm/b9MPLtui2bHGUp1Sp8o4Esc5p07sOeh0wIPZlFZZdLeytYpauF2xhNMiEOs+YjMxYQXBlvZWL26AE0plJjt3Z1MWIeBYAh4KRW/EPMrpgN5I42idx9AlfO/KEBcvAn2ADT8TVIJQ7AAMPeLo9yjoj0QCzC6j64D+bfbpLpdb2gmyhSo+T/oju63YWYn2ek/fwjqNCcKU2PPAuZGoSt8/vfqjHXXhRtvc2tl3eVhgYQJeOhretSaIqqlA1Veec8jk1pZpn6ZxLA9ug8eGiYndB/VWg1N8YNxbnjXKcb7pYdpZzjOvJaiAfIxHBNDlGiVU38X7yDlyuJ2KMMcqgq9jp6mIGkXEJXvLquqQRqpwhftMRNY7LPfj9b+9f/r8f601/dt5f3+6//fHz7779489fb7fZnKYr22HIjDyG3fU7Bk3ddZtTuC+VcBTiqPOCGHXPyxJTIhNXlpQBciQjmAAyS6wJ+F446ePDG2McI2XTZ2HaBiaSZXCQVx68H9dL5LQqwJuOwJfL/WR9/N18/fPbvPvP77re6te/5+e3//f1bZYDRpdiAar2pBmnzLJLsFJv9e0e4lcUJW/QuBgVNtjpA73j10OhtLt1b/ue1V8leRdyPwxxI3GDjMgHDHp+ZjuGbbjvicf+mVVk+xMX+YR5fpxuAoMrHrljR4ehJ5bp4/kM96v2cVc+CA/WtFwWCHSGZOdRDWs+UFlEBDIzOY7BuOgIXa91CR1HfotrZTzPxQrmsZZnx3iAq8oUTO7IjloBlS2zPwLqA5iu1YF2W1uYCdKBVRvfYGF7SwfJ7KxP55Nc3niWq3wnmJfEupkjLuQxMnCM9grta5oHYtcKb7QGkpExutQ2wiRHEGKX1qSVa4PtrvFjEGyTEUQ5ghFJZlQCro4xq1Qk1FW4oXZ4XSRkWycQ3bQ1jhG+XC5Xfvj4Mo5P/njo03fnx+GP9+PL8TMemQ86C7TwtAA6Vx0KGeSIkUkc6KK1YT+rCPU0wvfg7K+4OpKPfW9J40lQHrFku/id5fZ7H91G+0SJCzTicR4foeTB35cB7ftrZB0B5IJUo+BwlUXVTgKZZIzeKnvXgCOYNCwVOIUKtMY0srVA2VNwaffdLlu1xIKkQvmOCo8qgX/5+c0/vMabfjzq7e383Q/x+dtvv73e54bKQgPsWh5I3Wtdqpm3t7rNU7y5WJJGwXDXblTElqSDkXSXcy3BIjZltQtUpzoyGa3OImi7GpizVb21YRsXqSyfUOAmGfH5291xy5u/XHW7zc9f/O32w9vtLC1StojUgmlcJSElV2Hea1aJ52LZ43SFzgGHzmNUb0COkcU4EWJgDEbEIBCjGkVE1VHkcUTEGOOwImizeg2bR8UIjThcmemYcoVxm4Opy5g+P/04zy8+b/gNEG/64Xe38/XPz9fbKbpFs/Y5EMEYY2rJ/4Rdd90lcbbrxKNcdlUC9JerfikQ72AN+Ui/tMEGI4LdHN85KPw0FLxDExuYcR8DuWbZhSnUpOQ5pzSnHg7ucbEN8voC+yhtZ9oXH4d54zgwZ4xV7A7KULE2+m3E+gglQTrSIXQipjq37SCPMzWS7WVD/eA5WNdI5aGh6zgY18txxcsf/PbOqO/s736J/KF+hfOWf3D/4vupBFbLdtdmRkvAkRljZI5jvHwYx31UHMwk5VFddojVONM+4ymWbNrH5/K29Su8o3UDTMDmGlSAxUe8fZG7JB9ykcwZCMTtftK+nbjfkadu9/v9vN3PKVuxadFe9O3svNWqapf34CMACIkghFh9Hp0hl7obotekWxPFRh2d+o6REciMWLFodxR09cIjsD9GFRhl04QofXkTJnji2xfy1JevN90/z7NqEzcDgLQrB3f9l6zivNepaZ5u0DQ2DAHelUhzpccfRRdcsejBpNdhWR2m5OquW1ANT5DGxmd8MMTlwsqaZXc7WJGlqqqqZ2PIe4D1V0Qgq4uhliHYXUFndqnQOlxN6715zKrFWgR6lfXlo7R4dXp2Q97mC6sclFv03LrWDo1LwVKX0MMGyuqGNukdhuSOz++p3nbNsV+fJMdUVbTm2UmvZ8CVnI10KasIRidnW9lX2fMMu0otQXTqreukYoVipiI2TF5LKisApFeds5MgRrPOLliJTay8EjO7D3fJH4xkMMBBBhqirBq2bg5orYnaLQm7QkGqAKEqqlxVUosHBVdVWSgpVtX+QxkClv7xkLZELzEAAVqBBqsL8OjhXVuZ2Rj8HVZqvxz9yLvrGUOqvvvtYxY83bbwVIBNI0LRpaPoYN6MbQHS/gdoORHd6JMCXbEp+zaZcIwHbBhBekQYuZ4hVp0fu4uwG5XN3ThAckQnQyMDDo1ZE9Q0upoQy/ficYq4UmOK9gPo2m0BIqq7U7ac1hFLJJDlB4nAoz+q6xLWRJkQVLDoCJQJqdwqEZ9QsWMvHs5m+59ARJKDvehjqsDl8WqXZnVplGq13y9CSHamQeoKz7JqFtuli7YSBvqMPChaeJObVYpJd/OVKbporCLV2L71Xa/kOwHt4TkeKk/v2sLI46wzyCnEqt/bqag1R6DPaVm15XwAZRRc8DmLntWlqqtH0GKQY5oghWHSMx6pln4Ww7jYqoCCR8AeXe1WNbXD8WKigWR0E0p3k0SQR4w8gtfINMnxXpzGCobt/jtqYjvr7hTGQ9cyBLrWljWZYQTw1FUjgkjl2ITLRPeOZh66fBjQkcfB4xo89OF68e1SIx644oH01hkBI5kZERnHESMDPNqZcMiGHhTM77cOnZ9/RICtmGPJaza56oWXq2Jw5fRjdW5HDIyBms32llDXZC+RVq6esWTSK5X4OCK9/g0icuRSGRmZHBlckxciK2L0rBHiadc7aO9PfGLbjd56fxce9jqIjxaSFbi2t3tAA0ZxJVsiGgFGrp4GsI0nHV2y8c57vLvKFlA2ZeSDmQ5g6yDeOZNmRDtMb8G2/7CrlVb+sueX7D1BHxTscUXbFBnZfXdcba+S5JpFzyxjTtioqvCpFTeemcBNk59HdH1XXqWwMDC2MT2flxs+NbTqbFR0odoec9GzD3oUEBqrPHzlvgaiguzes811uEk4njXrj8P5+Jp/xTreW8l2XP2y3giC0W3sLaavQ7ypFvAum873z/kQKPz4XnSw7Ztur9kxRiXNc01T8wIqPTBsFcRrtTAaVQtL4Lkly4WumNAQWnbZ2/wBw6PDvOy2rd55roz0LpuAJIGIhwO1BT1QVkPtlbzaLX0NeBZ7wE5qE1hZCT8qDb36rVtC98IZWybcD7XdysbQO8r0X+xhEeYzg6Jn98J2Uv2rtDZu7d5ePz6wK0S3Vfud+mqvds8mJ/0SjZQ6KdP1SQ9s18f2CTKf8P35ait6Yt/DICPb027y4a71SuZopJzBjByxhsWAyESER3AcmXGMTGcGCC2At3oNZKBpxl5hSHC65l3x5T7midsZ9Zq+++vrG89Xzf3Mq7S89/ZRn7BUFO+ZD02s3MMrluG7O4C6/R/JCDTzfnrMeHzNcERGZDhyDQ2Ih09cX6ziW67WogUZd/tMh1YsPLHlkcVotoNZtXydpnp6XO4Iuz9WG7g6GbeGJrQ9czWPW4rOr3GnstcxtqoqdlZup7ffEzs/f2FdelcRAMztzFov65q194b5E8K5+evDtb0PVMZIOxlphHsQS7uFd6KMd2Ah9kmkRANydqjus9CjDEAuA6BW2cz65R0ZF8xDkavaRt2yyKUCdje6o4+AljRS20O0qyvNmsK5lnss6PRA3A/lpIPZfhzvNdpH8TGKY0uJu9YB8QgFHfsj0kc9SGuP2IhkjkxH5iAzPZQZmYHV8ounRPYAFe8D3YiHgtamRWb/QAiMelpG12gEjECDvS6ahbVUkQDXhBuy+7chw8GuLEEYJmQL8RiuoYLTxVPx9UTdeS/Wt+Hp19vtqDdXY4WWSJtOkmueVzdhyRLmXWed4t2F0sNrrYREFKxpZCAGcnTgTiIjL1ssMTzCQRzEuB6J6zVH5QizNDuN4LpPSpj2re6YVS3i2FVpEEO6/cWXl/u3guL+l6mv+PXvfrycwOu9lmdHS+syODVPzFkTdfecd+VX3l/Pu/itztKc1WVOUp+yFZe3b3iIQZvRvNNDTW10uKElH4Ng+O4H+TiiPQ6R7NsrVklzTKCKJVTNrIkenYP3H4+7+OeO/iZbwKiphFbF7HYXT8C1EMI72kksurKRKLffRQcOaT/qvn+VylaIdkFOU6x6u+X9jRFxu9W88+3t1eU4z2rRf62Fn47qna7FOdcAiKVQjNvxh7+5lJFR8xyrigqrybYRizf1XA1HlqGCDM3+i34kW2VH1aItkmtGzRO3s6pc09AdIVqpGd++8fbVznh9Hecrvn39UnXk6/081Lqy3kl6awASNaNqQrdrLfDVsXLMf/8/+G8vM2xppoQ1bdaLvap6JIgkgHJJnHOqeizJlNhTKtRZCxpVKxJQC0CoaqqMonWCTjk94+123OrGI2+3Ou+83W9DFffzjPAD4TSse0SjJaAJc0qSKfWc2IE//X6A72gRZGCXj/cJcCtBwQ3Soj1/t7xExrZfiYagMmat0FKzdon4cuGd9Cm9lWTN5LzVveLVFKob7qGOI47W1kuqnmvbY6noea8Tp3lzqSSPj7/+u7/QOJDBcRAAqqRJzfXya6JJqxlnFVHCmSzhnNF50zmrOFtDL6amPCdbkDhlZJxzjWZKhzNGDIKXQ3E9jjjIuDARA8oKRsAFQEWJ5dXOqCVyGDAonQ4zqgd3jE8fq8a4GhrXUYiRBs+EbzhPp2BXhabuAcQJOOJAXY8aVec8w+eNx93l6wi+3Knj6MkNgJhiOWLMj1+Gx4ty/jwSI4+8+PjjhP+AH1/xR39I/Jn/pV++6far+u3bt+lVGm0AEc6eEo2ceZzHkI4jvv/0+eNtiFdnCMB4cd15uUJTl3F3RKyxxe2WIuhdrgSyy+JymAdiGOPIHvS4BlADNAekmMVQmJiWESPSmY44IpnHyMMXXoXD1xPXQAzzEic+zIuqlVtzy6GirPnE870jrpriXQXZHqtOnpsfi7PEItZcuRbjdvamLNQkqiyhag1pqS4kk1AuoSyf6n5Mna65jotUFhiSOHG+qUBNuW4I6TZL6iL6jgWsIlAF0qqpaRVUKBVwct5PmFFTdmncLXveYel88J4MMns85ma6rVhGrdNelT2xlkREygxanpbnTC5mhKbR1d4HKchIjHNEOvF7avK4862Ar/7x6x3T+nre5gIpiw0uxt2zAFStrN5Q0zZqUeqBrrnqCbJVIGcVKExUGSbVrfWTIE4pY7LO4RM1z1mgJ89T5YlSVFRCVazWQ+XTRTgbs0KxNSuQ4TicxGhZNy+lo4JEy6lAsREEUDFVVmHXhFvSpBmqsNVzEVfUXNFHssRVPdT5LqrkHsctpKAqoRMzpBdrr83ou5VHSyXSDgmbpu4/wM8Gk3c8Aws52OLixi3+7EFx3NrriiN9y4NgGqtPN/f83LHaCeUMj8QxGlkNKSIxjsjM4xjHlXQcl6iII9Kr531DG7ifE8gl91Awk47S6TdaOCfKwN2fb+X64vvUA9hxJ6hawvXSoVHA3SoIrlW4u4fp7VVC94K2gWszNQidjnos6Zr6pZl0xar+7Wma0bPp3fIQM5Rdk0/237OHM+eHN6AwzLiCd794mhflc1IC2ViJyMrs/N6MkDPzuOSYwzwiwxLHm6sJn10lU5r3UzDunBOUhm/mHLeTAIcUDr8F3y51y3h9G/Qpnq6IcXdM6jwPFi1I1Az18byXBUd1W96I9Ki7Mek7s4i7Ne8+L7qd93KzRBQoygFWCLW8lqqAOUpa00Cs0uDe9RCYRavITOQFEVAEeARGHkHCAQTgI50Rl4yLCR7jYDETMe8tvoV1BynIuOmk4BY7hNPkiBMUv7ymJmn6K33HeZ/0K89dpr4YaRVsuc6YKtd0lG6R5+3+jTLngqijLK+hvl14zShXpibmBIzwDFTNkwQuTRbOS87E/dD9bdDziKnySHEU1dLGoTXI/iKntGImFQxkZKTy+9/SEcdJfgf83r/6esf86K9T3jxCYE97S+VICZk6gvPIuL7cX+piXH88KEvjBTU5BqUYeSqCYg8bIdNaCY9giqC79z0OxIXjIMaFNBKdvW6mzISEaaJo+m5BGNM9MDeRjBFBJ16KV6dxCTCNY8z4oDPYnZGOp7ZYrlkFhbCVnpJ0AnT1jpwApkl76tLZ9tIaHGBQa46iqtPzp8PhmfdzuOYFxViaRpRn54LVZIYOm0xXZNgFB4zTwZwRIerr0C0DeHsJTby+3Yd+wKypNUJveXwQaTB7pssWOKfuttecDHnc1AMcSPWcM4wimCy6EAqiBkXPDuJihCqyDswXnvdh3HkBbeYavazLKL4UKRT4Uh0Nm4FJtEOBQH73hSgORX4I/x4f64QT9zlNJgKRRSjhwNBxTdEjlIk5Mo7r68d5MV++jOYjV+jEcYEKI2eleDvnVOJEqYcj1z3m7ZwA4tUVJuoNuI35xlmgT2O6gprMYkWUxZtI0aVXzBasAFb66IxTJsaH74UXHDeMj+DdH/BB9+/FO0+zZiJUhF0QPYmcqoBWQAxr3m34BCGJfwPX+5fxXaI+j+/4e45xvZ/HEcPQpE8kHJOX0xHQ+EbmYQXPFPir+G0lFXneNYbFiTg/fn0bh8gj8gTv34/7+PDpx69fOPIo3itjOBmerJ/ff/Nxfo9f5+X8RXyb335x/Ca/i/s5dCp9mYTIWyjD43J9vek6fXjywOV6+2bCIQEJeEzfb85z1mm83SsLOc9zDJ8sITzSbwfnvN8J8oMU4fhyfDzn+PLy4+1z0ue4TtT95Zg87qZm4h4vkifw5tJpfeUbVHmLukSSI3Nw/Pw3un7nyyv+lU+IH/Q3XjXvf33+eHPNQNFnFOBMJuNu3ZXy5cbhiuT14/xwO8SXf3YEXB43l2J+g0yckypKrc7AwgyXG2wTsM9m3ZX3SUBvb0RXDxjQWXUTfL9lJ8Qg4i1/lKj6cBqsok9wvd9J/PBtoiKnxwvxe7y+3kb9bnydVSIlnCnQPX94zhNCzTzPqDqD3y5fVWXUvUK2xzdj1AlG1n2M5XHGwVgVei0xd/cGfExSnsg5rxU5BgjmGFWMsHyGOSdHT7oIi0wUCm8sUGF+xlXIAirG68g//mH+yF/85bdwvX76m/9w/uqfvBJJJNHZ3WZYQQY7OQPJZ/A85y0KONmjHoY9Ymowx01xuSHzetc4MgsniHsMYEijzIAvZTLEsMeJ+ODJiBmjx3zzAGmeHPZFQWomvtdbOl91Q8Qhvl3/+Mvr9ZsD48Pb5fv/5P+s/4v/7v/zJz8bX3/2r/2t/6H+0//1n2QxMRwtIosF4JjH9fh6Ks3B0mBGICPBGJ3k4h+D93lcQnOOo+4RcdSMDK633AmiwhglAh4yx+A9xh15xge9mlBkSTGixIp5fSvSiQgYpRdWjOG3O3J495InCeTM+nzFwNtLyIz72yefAzonrIoevcSYBKEcMaWEBsqDefW3fsuV1x6OOF7CMy9XzjMucROtN+jcBTQ1bAikuij1TAAevjHeXnQiLRt1hw0lZs6cR9yLPBlhRGkmQroseuQPyNSFBNMv9+sf3vHVf600br5+d32b353fZpQxq4e4O2KGKcw7CZkCCiSk6QmTZ7OGcaeNCQruYZpIYKQDfZmlI+73iqEZg5lRRxzj4CGYhGSOHtXHqtW31nMvCOterU5auCmCJ2Gg0vwsT3yTaXyOEL6ougQ6SHYJdVdddVG4bQGe9CutAOhoojPeYPheNH12ABz2GAhD1ek4BzBKJJw2Y3gecQ7iOKYJIsYsx8DMSiQUKWeXZisunmwNJEzzFJlFQOA9e16EAjbiXtGQudvNWiNfRWeKjGmSip4dioiD0Yk8GB43K9NlDkNBm+liMNbgsc4DOVrl7ck48qAu8OBZASgioEhUCKDrOqYvNkVpjAnMugJQGF3Q6gDE424VU+SAX/GxJF9wGmkME0iDCq5ZEZTNdPdCAMe8YgB5i+7ouaz3SkEaPT1D3LUxwASBDCeH2dkxAhzEQB7gMQAgI4Gk46zOD5d856q6vtfENPhU19kNmr4Rgk+TEy5+ts2TJhfGXT++CStW/pqQI07XLQsdnAyPK10Khq2MEuBbFuUkvNrhWODsNon7SkDegdO4j0AZ4VMTljwLVMY0dI8gROjVhjPV46eyAb9h+O0TIjwB3I2BGakAMoFQmWbRYIl2zw/vlK8BK1SYaaLcU5pGAjYjrF0ushKwePfhptFAY3mzh+rZud8eYrP5lRbhEgB6Rowjm8iz+2Gih+cigFz5QgR6hH977U5W+5GJbVryeAGsNggR1TO/MOaqIjChvtnMxjdYDT0w2bwKTAJMVFIZzjRWqaERQXXpoYIKJuke8FJR3f+0zkjvTb/RW78ygOK3qxFgTwEOrNavlablKvNA93cQCOcw2NlJYiTl6LqH7Hxy9IOEYVf23ox+C6AyAQ5EAD7sIEtIQnRG6QyEmS0ArHIg5YcvUS3IrSl+mbZJhTn6HZYM6F/8dQgBMFkr1RfrYHY9AfhuBKjX9Et1tTBGrJojAAyvtvxIZLPN1RO+3l6mK3ISCMQqf0PjIiEeJecAVzYaBhHHJb4+MsurEuxdYUHbZuKD7VVfuoHWmhnXFQ+7fOlRuMWtGRHEuHdJpMzWVgjOgntevXvmNSELBGudFAVPdDa6jAhoIkLqxlD1W6s08VaeN9TRk4daFAxO2MYQPXuEaxrxf1+wG5wfB641NbRmhiWydetUeL9/C01j7HUh4D2Ahl1K5lYXqcdzrz7eTjgseLsyiGtwFtjvB9Ttqf0Vn8e73/oS7WOFcEsrXFO0usptFS74XZEGwaC6moGg2N0pXbYCAhifyPOMTGmOUXeQ623XuowsbAz7SEfvFc3EIVw14hyHTjFZMvodvhjKuJvqalEkJseMy7Uas2Sw3yCPPn9BgLgRvF1m4l//x+A4YyRtnegVXJ2hClfLIOE1Qn3yhIh7FkhiqOvNduZwOYtY716zHGFvGI1VEu3gZCAavzVl6bGtMO097tGrymRCxyNBu/OchlkcQh8v+e5QBYWgdluguUbcryO9XTqtVZ811mT2scacQnAPs+VOocJeDbvoNgCidRqzM0qt/qprqL2LBWBhgaUdVcauSXv/GfH7ny3Fh0ME/wykEw/N/vnxGOLjXc1I9DvHgFldNDAOlp1BVQ6KS2vu9SfQNPbRCaYEoovxK9U69S6mZ4DpcPAxhGqva2VWBNLrfU4OI4WvV/FlnidaHnvLT2958SR3kSAX9F7nPoB2yK2Er97C9UrjK0yfIMIVtsCAGc6wDLbXskYPz02D8qxRZ5TJzjyTQlPRGeWpiOUfLCP5cvujv3gLCYKyTkamPX37N//0hs+YwO1+4FZ/+//405fP3ZGs7l9am2C0hS0MD7iIOahkR2vDGLlr7sLd50JGZGKELc9s0xq5xznQSHMoM+mILGGEy+hppdjTmb2AB+fHP/pr1z9HF5Q3qCZtT/6X//XXhIv16eMvf/b36j8bf/rxh0MJxrvRnuTGPHgcQdicGG7BvkPlCCtSE30jaeN6Oa+XeaElzdEXOF5q2SXgjzqv/nocJs5DxRyo05l13mcCxiVOMkHNn/nHT99/Ov7mf/E//8WFDseQiByS8faPgkjBMX97/zPi17+Z//KXbwNGv82rnZ0mNiQqbHom6BQjeOTLlcB8ayAwPsAoH0FWDEyZGTkGxrDkyp6XchmRJM8CDcYl65IZdbzEWTxCURihnkSYCYcrIgJvfrl/nt/+ka/fzXSiDlXEkZLq47/9v1wC/HTW9W99+nf+K3342b/w7ff/6j8d12NkFalErG6DFX/E6Pc+DWYqzyHyDW3Gg4y6c6RdoE8gTld4uuBONCNV2WWc5ykCQt7L93HcPlzvd4VR9caBE7MQ84I7WaeHQ0p7/ih/DGszQew3Mbji4D14wP9G/lujrm+6X3/5T8eIlQaFjEpPCqJaQS10mGZWThb4ej1JBgcYZw2GpOz37TAqVCjDmA02dBZEcJ6d/ZDEsu8Z580sl+4sniHaAgrZVTgmymSOlzxXhjMyMtKBPP+780URX15i/I/f/d389L///d+8/fJPjuugOk1O0aJFdWZ614IB4TjQSWjJDsJjBByZYUd2LZkBUdNm99Wv93ESm6ciGHBiRk/76/wqbAYdDfVWgVIZ5Uli3gcWFzh6iLTTxz/66+ZRKeD27Z/8gf+nD3+s+BUigH4vuBU82Q6rQdl29YiBEQZzwewOBM2DuPtxucnUmi28IwKw3v6VZL8FlR6ldVy53C5IfdxF9/LOux6tob2q7ATvetuOiKu6/SofXWo7x/OA7cuTrZCqVbcX61bHjZDPCtud70GmR/JIQ8hQgOEYDoI4yJ7GjTnIY4BhJkNGBkzTlINAxoL+Kbt42va0435GDMl33/7DP3mLN9/gSx3HZ/3t/+2fjVGZmexCfHTJcgB7BiRXU5NY1W2IGD0HCOMV6PfBzVKG3UMWkiM6cwa27y6DwBAJSpeahxjRQDoSRDAmlQhVpBzJpilHTVTe+51/pPs9eJz2qW//3j94ZfF+zA9/9Ok//2/wH3/5B9/9vZ99vo4xusWuAxdWKM8OclxDyGowhwlU0iDGg6DvPPtjZzfK26z8aXVP8rzeVwrGczAZFiJaFgE7Pn1r7v0oLgbo639fR5GB8fmHD3/nOv/h3//8JSr8NCnS9AquG9wDu7dpQa5GxRhuAtTdHx07ueFWFxA8bnsJEAhUS2Pc452iGx93Ed6D0DR6RH76/Xtzx6rG+f13q6S15g+//si/86eF69ully8eC9OEZc2L2f2uBLLH9rdiBYwWjAC2bW/osp+7Hw1tmDD3+8pLltnNYgrvWvpeuH7ioKFgGv7dJ0ZtqgtAMIgL0jMcLI6I+MeX7/Tt+88H+2X7trG3mMm5M94MpmObRu/V/w+4tUMckyt4bQAAAABJRU5ErkJggg==
iVBORw0KGgoAAAANSUhEUgAAAMgAAAClCAAAAAA8We3GAAA28ElEQVR4nF29TY9lW5IltJbZPve6x4t4Lyszuz5EV1MIJGaoYdAzBiAx6l8AI6bwB/gTSEwQA0YMQEIMUE9rxrglxAAVDYISDU19KCsz30dEuN97zra1GNg+1/116EWE+wu/956zt22zZcuW2eG/Ny6/+f7TH1z3n3789uNPP1wu26G70klkal5QiHLSJkJT9DU3fn3afvyAz9/9+uvNFbM0HQPjlrfrj7+Kvz6eNS+XEfe4vuDJ23ef+PvPuFyKfFY+6RukqN/+KgePH7ap32r8kn/zy+/APYZefvT8fWVdZ3i/eh8VNczExFaRpRz+8OHH28RE7sMcQY/ilFUlWwIMhEmSRP8iDIA2ABJE/2fChAzQIGmGARC0QDLIIGFGCBYNGDAlShWy5WK5KjSlKs55kDOpsk0CZIggSQZBgj4/HDARDkQQQYBDNVwlGZJhG7RsGLCM/sKCRMqWoUKoqHLZkgVZEmWui+177s9GJHJsE7YNWKIsABBqYGpuntMAVDPzcK7b7l+G+4VgyCAMijRp2PD5gx6FklWSrJLd1xb9I7ZgwwIkArZhkZZKslVVfRuyBFmW1zr0BfQnrfuV3YshAzYk9kcSUBAK2ZK8fmEtaC9n31ffG2w+vgUAjEySESQYvW29sCYAmDD4ztZIRCQYwRABhnrze+vPn+mrsGmrVDVhgjQZjnBEAOIgL3OQW2oQkRfElgGuDbF/tjF99/a6FQDoH7RpDBKOAMwIOiMTCIfZNkL2n+sABIjMoRwRYwYcSZiBVCbjiAiCKfbF9lGy6xgMR4hMxNAWaeM6YgQHebnURmZeJ57SjnUwECESEaAAiDQi2miB4CYhKUQQHn2/53r35fYfbeugwT486NUATrsDYb2Zwdq56F3pXSIjkTmiTy9BxLm/IxkRmYpkJrcRaYRjeRWG2nss1xEOhRE2A5nZnxDqNwsg02JkSpEAM9cGkkQAYPDcTKIk1ZRmabqQy631yRIIgiEHQMYIDI5t256/GQmQGevwgaSrMvbaI/bb/Ya47bvjtjPWWoAggT40IDMEmHTbt1FVsyZggBy9nn0sANta7hPgcr0G+237aK2TR5gZVcsDiGonybDbS/dK5vAYl8LaTdt2oUgnAoWM9IbY4nlzJA1gnck+fqf/zVHhMZlADOc2wutkMgiMyGHlZVM50jMPaBeUMCFiEqAFC0ZZExhMHxdUqba839Iu1+5UJAHw6UUyCkPBLe3Ytg+/MNR+A0iEyGR8ygtyfDdUI/ELbAPfELrUMAMaERDJUJpAjOsxdQGu855XXD8er6VpzASY0BjjQsd2KZgjJFvTUMhBkxV9iGQgZB30tYKzUqUjxnHf4CntTidGMGKjBFhAxEjkRU+ffnlLIAJ0cBuOzG04/azjOoZvcfG3+Mb7d5jHtV6ZoMnsrTFMImNzYCtvnHnB5ZvXca8yKoEIcgBoW1remSGWItC/bcLoLYnl2WWXJU1VlYWaKJmGEeTynhGMMyBGRiw/VMkcGtu4JMbcfNmY2mJDguDmS2wLPLRFPxzw8kE0AwzHGAyGAmCQwCAzgMgM9MGIeLzWD1/G02F1nKcF20I0bjg913IkfQ0R0baN7fo0gmCQDkYyI3MgvZmBIdpI3oMJMB3t7M/Dvq6f8QhXDGee543t48a5cpFkREQmUuZ5XCMB0GL7MQQQEYiMiAggMqywU5EZkY19GF4/0LEWYgQiEI6IxBjblmAERoIImcDcEgikzksGg+1+z03qAL3cPyPMJCMIYJxbaPD0NBGKgGO5nfbENnobEZnOZPSKt3uHGJEZp08nlpX1BagaBbYH6rftf41zwdxOMpY1rVjDIIKxMCPJjlX9/hFQm2yYw8tgyI6LEYjT66330wOfNNDE+Xt90ttnPj6fIDvKM1MR0ZeAE+f0JZmw1VDMrKBR698fa3D+Qa57boT9WPV1LjGKs+wqGZYJMPsuakFZAqADhs0gGBEzAqSD6pfFChp9KhzubyICzIhgxx6+C/kZ3CbByHCOEcFLmh7rxAUZ6yojHNGW62joHojccjugwSMj6RhbjogxxoEYCUNVZViEyeiIbtMMBFBtnyEEGHb0tRm2JTaKhkueOQNF6b7P46gGMepTbNgFgGJG2mGAiEAoqze5QbIoo/F0zUMLZUtyzVmzJAuIDGgYCEhmWO7YHycEZ8f05atoEmYnYBUWXB4zEGoADdq2Jh+oVTX6FksdD5YZtefbvcX0y4e53zMu8f3zNviKy0K5WrttSyJUVaWaqJKm67jXLCkqBMEaRcNVclgKkMnA45CctrwsrIGLRdoQ2nUgggqfpwUGGFqWFTGGMsOnqRu9a5APW3vervP+MvhtfvFl40uOKpwreOYcy3f1cnYoU9mn6wCAQQbNjAAQ/cI+9H2UhccR69QV8FucGqNzMEK2oj9vHCv2tGPLzHF53hpGQgu0GfSoYW05gG3DJT5cuAUZGWB78NP3gUTkNhkZTEQMjW0EO470TQ7SYhAqEmXVlDpWAoAVCyUyQKjdU4IZTEVYFTbkE+bbpMA2CJnSLNUsl2FXyKQhScSAnPnEuIwLBr8NDTzLDTU6KKx40mCBUdGpEgOxRQTwMJ8RwY7BZtKkXee+NopfW9zerwNiOiIj8vS7j02GYPRZEaQS5HnUPHa7s090oggrbNojhp2RIDIVHnMZxpkN9qcLVi3+ogG4FpQW+zyPMUZk304mAau8omoufx1GOAFaRZrRRykR7RPT6sMena8DtmZWhQwfh2fpLeyui1RBKZxw5DyB0ZwMz9StsR7cTsLrgDSzUCrXDEGER+QCKR0SG7byfOsmfXpL3IHIj6gUnR9jsTY4PwOwXJRKFo7peUy5k97O5WEVXU9FwC5UQC5CsGLRCras6NRfDtVcDEczSXO27c7NFolhS/3DfQ/9WVC7CAF2yD7TLpzuGIbxc8LjDTxi3Y1FuaB5rA9pIuhhr2KA5QhSJmlH9HI/3mqRIF7kw1oGrBTWj0x8tDeFVaDL0jy0LtmEHf2dgmsdDbAxJwCpgHOzea4HLBSlKUhzcs4pKeWCFk1GCqQY3AoZg8QTkXWZDzIJJxGDhbjfk0Kd1DZRZC9I0OxNLK5osWw6ycQFNte/mZCKLq8cJdgcB1cUcxV6QaVUJSSqSo/VhCRboI9kmMeh/cgYvm0J3w+ctE//nDuWUyiXqjBncaKOe02VMTdDRY+1ZTqzuj6uZ0B/kEjrjtbRwYmr1/Kdh6q/63i58KClZd9NCPRfAPo3TZuZtDPWOj3c1QnPsKzjQeP2jpzYEgA9SAgRzdgudxAAo1/WMLMxPhaYixQzIioSJZ4+cYHaHDjxL5g6+Rw/PEYyGlFethkDT2XG4KaP1jYv3hFnOrHAOiPNiHQ4UwMzBnK75pjpGGREIoY1i3TNGVQBpQoGohnWZQ1chDIwjBzbkVvEmCMshQNEmJGEYbJSJ0BnuSbm/TY7IHL9S5SDI8oXXIztKTnxcZ/h59trySc/AgYzolMjRIppRrNYW26Tik5ugGAkwYikEWt1bekdW8l33KsWBC3bEFYe1JZcp51Jff77tWTklmci8siY4cJiFjSbIhejVph6UEfvKUAtOgoEKFfNmkej0M4Q23uTbk43zjT8zBvbSt849odpShELg5ux8kORzQj0RdO2ps5TRZKOYHQSHbYdrlAdorTuwScMeIN2FgH5hM6SGUTE8jODRO+WGtK9nSbFOuMP6t52mBE52egNOhlzkJ2WkoFgny2DK0Ydi9khkiNrMGKMy9jzqa7p64hxw3Oh6pt5Uywy/ERKKyv3yZB26WWLEcONNAgMa4yaiHF5qbgwthHTCsI0kW1ufUUAR0GqvTSpo6aDEX6Qw84RgxjCAOOyRfF6v3zk07e/eLm+MvLSWAiRI0dQT3HgZeh+z8z4iZH8eowFGciI7INpB2JsBqNIIoJje4FsB4IRAY2KAlSJsEQycnT2dpIFyw3abQgI2AiLJuWIlB1KZTDUAK9PZkTIYIQB6TRRQ6tm4iPA6aqaFXnx3EaWD1X5dLPLHlYiYaDrUV6hqRErAcODRCECmiRKKhyNGk2I7fFXGYKSCDOynIEwEse0OgU8L5Ap0CsyRUmrjNIMnpsTgMG8aHIgf4oxMqVfyLlvXyti+UnSDLa1NgugtJMZg7k9jSbmRTKAgSbRF0SBRTXWUpO+YYiAO3tWLogCGIJnFbpMZfksO3iVRRZdLHZA7MTusdURWx3cdCHHNfOO5wOO6/Fy4o8Vj3mCC2O9su8zGAwHCitDXJzR43D5fJvHGX8HgBfn2Fu/TNnvX/twK5WrEFcza87TnNY7wpLKFmEZAlXlRWCeF941utMFV3VGKBmCqqQz/bfhYZ3vi35PFxEIOOJdUsuwqC75NukTfdA7VzoPVYeFEwYs3xuqUvU1yCW4bJDWdCkEZKZxucump/wooeCdtz+z8zNND0acnw1ggEZSFCLkxQD6LFMoQzQQJoiA0owIZgQzUsoRjUsdmXnI9kSciQ1r+tjll+1isAvHa4dl73Egqw5fqsZ9vlTud6Om2ElE+ZElyjRTKnlaODJuh1YG1hWLRZlaHVYWAbkC0IMOenPpRJy+jIFSJk0uUrexWuGEm6YEFbnf04+g2pkE7P1SCR1T2nXZ62s8HUfpLIp3SqiFPFEk5AmVhOnYj+KZJFnwGGM6RhI1RggWDp6xAx3w7ISDnffBzAwMMvtybD6uzysrh1goKCHtCRzHKq1bwWx0xhhXxLOfgs+pyw3f6WnOT7OZ1pP2f/DXdo3+Juh27zz9gAGMydKcolEzIJNpFcJFht25gwsryyxZcx41WXOfNY/JAgoS5yq5EAaDERlk8HId29M1eJYlF2ERY7tipIEhBDOdQDNB1uOQnMqBUHDEqo0QmbmBwRBjj+xKjqrQgQCqZUZd3WzH0gBn+YvlAtt5GZorJ8U67bCXtKAPicsuad7PzEoPIwUDdpDqWFpgWpmPbHklQziRnVq8sJyYgFUM6JQuwC7xdP220zyQwcjo6siD0V+rfWJakDlOePbI6IloyYgX/mJE5PWBfleJSLIMooyIApGZrEjV6Z4ede4Ty2U8nFhEJBd5thzaOF/VTBdWcXitcRMpDxd3XvD5l886zkooYwHcldJ39GGQGQ8HykCoA7Z75UiUC5jqzOABrtepwxts/fllPDJ6ABhnAANXSIjkykcX9dOeuPf7ZKX6blw6wVgI5wXo4fZPoASX3i3Gol8X8JmSSzl1xyi94QOsfX0QDg8q52QHQMQqyRsDkJOwlAGTlgNJGsxwPSrmJC17WLmNHJtyDOXaSkBgDs62hYjeDyUFFWPfnn5e2uzVhJQcdg5t9LWS3lI6JRRYYS8cvShxGglgR2Tay4LoQdRkUnWM8LTtyVhlvWbDrHXXlhxijg0cMwYydUwWUg/gQkYqQqAtjSyr0nW4VibJyLae2D7t4PX4LvObj7r+gD9+Gfv9u4OkVwYbYHAEI0vBSEfmHJjILbfruN4pbF8yMoxhu2LRaSgJllCwJkUUUyiHEVWedklVS8RxaOKYMd0oaRbUGi9LjAZBj5y5qS+3BKA9wKUYY4zwuOgSeTnGyMsWXHScbcVKcn1SgL2i7NRwsVrojAVNZspo0L6i28JuiyXzGXnOOLC2/v3740zrTtpmkWyy6gSNywd2YMsAkoMc29iIbWyBTu7fEQZvIOvkoM5T2fg31okcmVBuWVCO0ggDLdJZ7xOWGYrous5Gb5enMZ5ueU3k3p4ADGpsmiMjkyOLadIRBcuedyIiEoHtcsW8RozLh+84Lt/WLzZ898v6cNWvxuXLl1/ft8wAs+0qIsaIiGDXxWNERioGx/N4fg35OcdgCEM6RFeVSamdNIno2LgwQrjrmeyjOZCDmQxPZicXJMcoEqSQgb4RWIEqap9KLDKjjzARQTmBwsiKOeWomamSZQawhFtdEwa08pzWKhY4trCuS+EwpNLpzOSuGDRupVIFgjKUmjV9hh2BFiqOvSt24RQ5xAx2KOAQgrQiSKiEIBNEjgxfIsf2/PwS2/OWoetWm+14Cl+fxyNsNYGxMKnZNaIHrRnYcpOfGEN9I7NglQCokXGW2OxLtdzQMDxrojcrQkyTQh0KuDIQdGRwtNohGZtak4cNDB3uWnMwxwhdYhvj+ZufxuW6jeTTVU9kjqeMp+fsPJtcyC2S2dAawaV0YDi2vGxX+UNso2wPvxG+a+Mj6sxhzqN5LtIShPARpN21kZZntAVwvUtnyP1C1cmQnX+eGWVDIktdTSmckOHMod7O9wqSZ1Bv3U6TkAYGF9BaEg5YGgwysklerHIbBtnVOwabi81AZCBGBhkI0HUiPtdZJJ8IH0etlN01M2rKGvfXY9+POQ8dx7HPOY/9mPt+1CO0LykpuyCihVsbhh+zha7TlbI9HtWpE5EFmtXBCWn5YLDPBDJOF2i8ZaEPzTL6JbHUBHAD+14ERkZERmZmRsQIEtlIgwlkPlIQvtvDc2MevCfaxu1klxzHozbHEygGVyHhET9WUBBWfeeEjcAC5zipwcclINTSnhZ2g81cnHbVGX+zVScI0+Mt8O5q3wIU/qWvSbYCgwQwzpLZGww/3+qkxhaK9eNt3qcLeINQy6w7h2iBL0GmunT+c74PC3TLAlvlUCVjlW7fX/M6LRHn9yfV0dvCBl9jnbkFVdfiCyEhTn69s6wq0hJXMiE1ISNLQpP0eFuDE18v8rO/xKm7bGnYChFnrsPoaH16gvP3u5P+2IxHGnfe71j28wY01q6981VvdfeT+Dkt9e33W1bycwNY1eWTHX9AntMQ3j77/MpnrfBf/pC3L3DaAt/o7nH+gx9QH+9O8HlVfHx3/j8ufRveLP/hxvkOoS3k+Pb+q0reekh5ccE+dSBnMe/t19k78LjpkyU6fbcBY2SOJGOMZGQumnVtSqjL6Of+M0571dqEbPkUz+gSJJjyQvRo2XXkaLFVtGIiM7Kdd0Y4jCoxptu5Z4sMH8HmsZjrC/e/rNs50fUozG4fCZXQJI+LVlEsYQkyXIfnqlOoJlVu1VEIWu6sYR4KYMTwjAgzNmfKDrqrP8Fg5jZipGPAB4RjP2Z9tasK0a6wXfZyiO0t/SjGNGCPSGJjpACM6bKrbFoiEBGnGVNaS0BD5YJbQCKFyyrXTBASteiI6BoPybQjaWITh9q1rEDde8RMBO1JSFXyAcn1JmhFi5PWoVyGzHViG8EkuEVEiBinWqXdIAhGC0dEq/iGC+RC/3uEkQBFlPsiGjKQ2ZqUIEdFMCgmeOo+mnjJzDHGFk8fL7k9bc/Dz0/6tOmjPlzHN0cGsTiQWDgo0FrQ7FAaEYPjmtvYEldmViqiQ6G6z4jLJfnhOn7ma/rLs1jeORWXEZze53FUuQ7qe1IEJ/mBRjFwaVp1HIe0H7N0LCnlWzhZXNb5yuUs1t+Pn/GYUaVKn600QJwGZSltopmognTKbmtYUBlCNwL1nizOwCQjsc7soDOj7/EMngZIbia7FN2kpM4o1uj14UEcDkaOdcK6Sp8ZGUmOyIjoboV2iScgerim5TgeWe1jmX+GQ9/Q6RnXlmNr6B1MtFz2DTSc+WsbrIAOppLsU5T1djbe0Tjv0PCJ59rDkBxqZImzqiLaYCx5Gh9QqKUQfHyIu5htPyCU3aIiesUXvEeQ56+aiJrMiEOluc+Sp2E45i7NozvXHut3et/WA7yFND4oyL6g8coZx4sDl/21rkBcPnwRIsZgRWzBiBxESGTmpYp14Lje7r5JTAe3jGGAVMu2ysVtDDKfxnEdn3R7ukwMS9qY94jLfBXpz7//Xd3/6nc/3Pe/vr58/jL/b++/+/KX87bvCjvAwCh3/TMjt+hujj5ao15rLylqRZixA9vxOrZ8/ul1ey5ev/l0czWbCYwR6ZEwNdMcl3vF4fus1xte587kRZXMChJWkKFj3LzFFjlQt6f4ZH6A4+kweI1R0znnZuj++x/o3/70xfe/OW4ff+L/+uH2uy//13PpQGtAyOE9Jg0FmbzNjmbTtef8vN+Oo7ajKSCtHquHvAAnjbSQwslSPkxDtkJdpGvEsVTF9EP2cTqTN8tK/py/PXmhU493iuTDb1fyQCXv0SLOtyTfgTYAoxFpwOLKTk850eNO3oFaL5DKXIXG86rfHWYqzpLo+lqeDya3w2YwHNu2c+TliEv6KfB0vY54vrxHeAuZtGzg8Rnt0jMiotkSEhyGBFpehIPlBf7fJ8pneOkkuAXryVj9lmulTpW/Gd3w6kdzST1SmAdkQmxhZGyTY/gp8LyN4DbaaZ0uKhhvvjhWmYIMxuDIwdwW1BsBK4O0VytQ9KZJrkWrLMIQJbtLUWDSYagS7TaX+jT7o2pJRQmFbdQBR/cbjM0XXC6Xq54/PB2Xj7dxzG/Ab4aet0+/H9/mlnEmJH3PXalbLP/ZDcMYseVgbouIG2/m/3ZUFtB9pIrvMuiTVFlC7TOx5xlM+gI6vQXP1s3z1DxCv22Jzae5e2sQq1fg3OP3MfHtu0dWtTpHFo3AUc1SlOEKWjWnnBE5wKX3DzoYW8SWrfZRsEwlcwDMMSK6IOFDJUqAaqoa+JRKLMk6VLqDrq+lKW+fX2N+rtv+Q95899f4/Zfb9/lyn1pJzYmFGnOwtb6uclXtt9rnUXp1sSQP2XQVQRVieQEGY3gJiM69TGZEAXaBcphEesln2OxCKdyoQzbYUjjbKEgS5CNM7SSKl5cjj5dj37/EXTd8jsvX2w+X/egFwAPOnPvWsGi1Rx97HSpxrpbnsdtx7IOR2q9jgnkJRCY2A9iC4VyWzzG23VDZnDMnkUOJGmOrYNDd4is7ggHm5fDIq143PyFsK8Hdhm8gD/HHy+3l/vXp+K2Pp9f4221/uf31N7d9F9xJWUS1vTEi826vwoXKddchVdQqaw7g52cBJweSrgdVsPQaS0DYBaUuc7ZS4ME/Gmf3/FvO/DMqAk2wVVXNWdIsSdXSwprSnGc0Og/HeWknY3AGgkds6A8YF2uPy3VQcdkKtErkgy9obNUd0pALq9VvDCY54qg+BDrbaCKyfKbtTFiO4Ljeu2eiLhsvuFyv1/H0B9/yMm4ffHza5tOBT/7m69c/vNxuF4ssskXO2bwgu/F65BhVl3F5vm7bns3T5pBHt9K3pEbLl/aKgw+KYyHfXpJHsD/vlDxRI1ey8Fiy88y6KX9JkwwcGVlx3xP3fWLuLk4cGvtx99GSqHMj3vQowOODe7iDHvIhtTooSnLXA9A5NbrjyY8WPpIRyAysZFKGA4iR0MiWdPblWycJBFpLjbgwA02VgzXHMfHldvXrfL3Ol5iXO3+g7vtPz0cV3hbpbLHyOh/V6U/VAU2pOC3K8jiz+TPHf2QLxDurPM/AyXi9c/E4g277J59lurUp3ZNVZx92y9EWH6Sim4avqjCravUt4cxS/bYVJw+knrxwDqZYuz9aVbGUbW/0ZCAdq11xnevWQToiixmIYJ6k9tlfCSw5GtAuYb3lMhbDUECUVBWSapZlJWClq+RmALAgRrxxre/I7RX246xlEMQoCWKnrQWpqnSmow/bZm9v5UMiZ0ECdWyokgoFrekZrFy9EOCjAW4pnykJFTMz5ZRQCgNbbOTzDoLoElqABls736bR5NKCWsnue1npYae63Ui18LtcXjk4FqfrxeyytTdVJVW5oIJrhlQlFKoqV+Dq5rRlZYzg9jCVbjyQLBGEDEZrMEc5VmG5bZPvUgp0SsgHCxrsTq1Tbze6tbGdrQ2oJa6JONEzzr0FgFBErjCPzG5XWAeq/wq6a17ogQYErGqG6jzDDbKStjnAuDqDz7I4FrjofFwBJBzdW3CWn4IRzC1HjsoRESI5qopUKdKn7vC8YwLdzPEWK0l29hMmEew1OcltoGuOiyKwQcVqGuxaE1UMoGZUFYsobGUnArq8yILn1ClFXV7mzM74xtSRztWlsNzOqCqmxXYo64y0z1z88+pHQfMc72glgZ7VLh2CpTBM1qOd6DHhBC5JUkiCOTNmDUo+YjOcDPCaBwxXlc52O4MPdufEfX0zeMDeFf7HrCPCEoIooQ7vExHZJXu0P/QSxrYb6KkHQcTm+zZcNqrn1JTNOBgKlK2MSpU1i0dJszjtHhJBRfqoY1z34MfA0K9f7oFRx6zCILpSHEqh/eUYFTmYo5vtrjkim6tmkGcjjFWDFF2YQvuDAFfLzgJgdquqEV32i401V7ebuheXjm210MDmwImm37jDmN2niKdRiPHhNbePm57mr77/iv3DjYx6I9iic9lAZCaix6dwbLhcR0Y0GoyMGDRgRiuvl3khIpZ/85nHMpYaoje6PfqWNZOPVKkPU9pcFUMmwcg05im1azstCgrQhRGJy6U2frxgjL5hrlywJ0d07p1bmms3cnhsqxS37nnEKEVm0WzliA5FRji7zXJFSOZo8S8ZGYNjJDO3QXeuthykgMgW6WgJ0mdJQnRHiM2O9TUpRIlxZeT1Ogc+XcfIyw2nlo8Bt220UOtNOM0IRcbqQG0fN06+EycuYEswTwzyAGztK063rnNqRC8/FvHaWKfdeCy2FwBTK8B2SKpCcVbDeGP2oCrPxJwnYlwNmDg5bKyuw/NXg1DXKSnn+XFe0MqdIKLvf6XmC5w0lxpuQBKRbcB8lLTAE5s8CBwsp/xYqweOWmEPzQ9hBNBBEO/Z3nPq0QPaPVL4eP9/FtaCtFIiPwjsd2xWPADkCRXZ40h+lnmR5oMdepQiJGmeoH41umLtoERDil5eQ8K7isIbyQw85OgdTruow1UMNYwhOToUWloDXVSSC6XFagirt+DcT3UCrjlloRaMWhOwtAwMK4Db7pbQcxtOW+2DLSlkl0rd/71YTD9YzwV79QD0b7QPlnbUHnA8PVp07bcPP1fuxGB953qEwwUf3731KtGe32C1anodPPqxQyqIVed0s9Uh9/MC8ImzHn++5VXLOOU+I7btgThevrE78p8ub4mcG2P6ZBdTWLWFJq6CiG0b3Eam28cZkNilTJDdBmxLPlmxswJdOF72quN4mZxfjuM+v/96q/3lVlruwl1Fe9xqlVThmVJNHfeaahaRkj3O3Kh19wsvN9JvrB9af4OxJtA4WqPw9isVyw3gLYdZeqs+Vt1C9FbgCD84vT421Gl6KzKcLz1P+ulRzqSEZM97aqyls+vZrWo/22YgqIK9gdGheImNVisS1SoOnFKOhyE8zul7+/yXSP6O3N3NFcGAs8Pg+bLVPPTwtg+a8o1C4Du/ONKjZVhC88XBpTaB8OiZfnAJi6noyYGajykiy6jZrfVa5dV1TzwH+HT2mYHMRIoxMkTiQBmvkz0p5e0tsbQuIbu7gvT4+Nn4trqu4dEceqxheSbOOSGLnXosyLkuK1PmIlP1II/lTm6TZ5H/jALMRjd8L7cFs6WBmRgbB69bjJFrUM/JFbzzcXEuRDACI8+JBW2sA0gB6PbmrAWkVubRwI0nPRarTHB2SdmR2al7J3B9Q+ixJzROIE/WirlYbeoszNdJHcdrxfxynbN+er1jvt7dgOGkGqyVQiyu1DVLKsx7HTWFY5ERw8aGmealrHSMvNa9ujpKcEQouTYrmAepWeaUFbr5+TpQY0x4JMMQ5munN0GqiiSqqmoli5QOiyRq/93X67zzN3Xf/2rM7/3P/vb7yzF9zCJVKJj0rGOJXA/c57zXvNUxX2d+9v1eUzxU1pw1JK1MeVE46NwDa6TFA2a9FRrWMWuX/T7Y46Sd31Lkx8ouxAiRlgtVrKqaVUJVSLBmqlzS49V8FK2WM3s7+yeQOf/HqOkhTGS6uqkkGruftrDwl5t/BHh2KXXMWL52ycVsYIEHsuNIdNIO2Eq7CA0Uavp2H/MeEXF/2eadn7++uhTzqOAjwzf0Rm69JayFnodx/n97HBVzFJxUHWlPz3pMwqLOJqu++xPw+Rzl0hzGgmESpxGaZnd0C5oxj8P3WXNipq0dIXjGUfH1BfcvRuTrruOG/fWLaouX49gUsigZJxx4g0YVqkndn+psYQ1JGrd/+O/+l9+W5U0zJePkakyLWdmHcyGHxuBTmuVabGF0wcLFwmwdkRf+W3iEVbMKnrCmo7IUmnG7j9txy8z77v3AMfdNwn1WxIo/7cnXdEWfIE9WxZwqVztoSRr5L/7pAJmn03tw0FjKou6oMuLx9l4gN4BWBzc4tmARMiW7ZzIJnj9jQdHxV6jSraR0kfNWe/F1yjjZwV62pW0Gys2manEd5bnX9BTvmpTk8fzln36n3JCpHDEZaXlO1MHZ9YXmkVtdVlXMWT6Ss7TvDaVqThWr845i6hCmergDZHDk4XBE2MORI7cYA3G5+MslR24WBssjoG3MIwNSqy2kKgNl1aFaowVgg6UDu5ltEh6fXPvlumke2/PYzaqvBVToCImuLFcRk2FOv5LObfuqD0+4vnJw1+CRt32WtqCzGM/fh444ZkDj8pO/WmV++IGZQ1nfcKuLRwxu/yCOD99tv/rt+KM/Hfp/69/+q9/x9dcvv9n33YMaoGcmt2IE7cpEXcbxNOynDd9+/Pp0J0wBQXA8YTq3q8LjMuY5MVKdG9C55h8syLa02AkOZFjjEolcw6cRImiMBjII20TZZow0c8zExk0bBwcv8URHXLa4EhzUeJaedI0zTbZhQabdO6Kl/kH3Z0nTONacoLGafFro0xSJVQQn68HE0WvWjFyuIzQPOX3s3SjdaUWFFEJNarpxUfWliI8QZcB0z9m4lwHd5fk1sOvHl6rau28FpWpKB1GkQjU9q6ZratZEHLe5HzCiwrBq3C3rJjpqNwnmhl0dL/wIQqaLJLIAVRXmsU15zhYfZRdAO6/a7TOhxgSHsFLYKssHCmMo5fnTZ/rg64HXSXz2X309MEu3416Yq/EGcOGs5HXr9JHSoXHzPCc6wJIGSJvNIloCOWc5hIOzAMd0FWvOIsDDlTFRszRZ86hyaPKYmjFRplBpVbHEECwfLsKploVp9WaACIa5OQ9kEEAMlrbWGUEFt/SeAoGKGdUcExeHK80Qs8K2NPDGE5x6QVnVvXsARLvnFrJF7MiiOk2t7q2QejZrLL+/GvxXc61Om1rpyDsl0vLJxNlvc2KcLkaKzU2wgzresnYxWtR+Vi3lQTB9TuvprvOIsUWQsyBneCS20dXADEUMbFtk5mXbahKI7cJijAj3yPUgoZOhlFVmrrQG5WRCM5S+w8LcOU3vfrlPV3ifq/32xFqLUT8PvyWItUMFtWzYBoYsq7KzaZA5LnfUsApzFQwECLWTJJuEmxuKOrZ5VNLFrV07mI5WF+EiRqHIqzygiJ5ZqUREbhlD+XwnJrA5s2sVQx7cfZy233OnCSJnZDzUQY7IkTFqM68xQhLH7qrk0eY3zZ2lOeZAUROuLb2DtZdN424FEnMek5iF4yUD0zGrgrXbovO+jcm7SAX2uOkoQa/FskKB9GAykeMmOT68hj6GrV/88ILy/jKPiYgCNIuhnrDdFTOfvT0o0Zo0orrtfti8qBCx7YqtmOPpmKYizLQzwuOsOQa2I8Ilsmyld34T8BgXZsXGmDbqNWwaAYZmBFwoOW0gELKihlk6/vZ1844fhv0DMPl7E/g8ZlVYQIFgN93a4Rlzd1WUQlUx9pdbAOCukiWPsojotG5doizThSrTg65gqSZBXi2CnBqC55XznvRUTs8YKRKIuDMUKVKRBwYro6JWCOFq6Ezlx98GzGeBH4DP+HQ7MD/gxSWAjjUqJotEaoyQnektD2wZ1+txrYt5zRFSaTxbkzloceRsoXmsR0KEvUiuZIqt5CCZG2PDGMBQwE409RNF00yWPYEoGL67IGcFIiuciIgtgk48iRdx9yUcaW7bjGdPstSMgLomD6Bck4t+FCxSZWmarK4/jWlgImiXyanQqBrNfIiss+u5x1apFE6rjjkOKaJ6Ep+qcmpaplEabn26lwBnBFTwRHk6MfYImvPrqD1T/PIUKtT9nv4Rh6aa8GU7ZIEIg1lq59W9bOXdNk8Vx3gR0nNGZBUGObaPL3uNcOGYHma6ksfTcQ9kbIUgdL9iH3W/HK/HBdp9QQgxjtgmS8hN+FgO6WB8EocORBQCVLutkUPx6euIu+cAA1Gc06rLqOMgvS2G3eJwePN2jUlzFIcRmePy8qGu5vPXC1WF8dF1H9dN8z62fDUP3OwxgUkg5tREHfSdF7PqM1UX59jzUiOU4/OREF+qFB4HIOL5MzxZCjjHgd9SyYyvRc9KpTe5PCfH+Obwp/j2h8hfh3+rf/33X3D/7nVeeFfWsQH7jHAeUOyTGJA2OwlHYAwc+wHf9uoO8L+P6/wpP27Uj/Epf8zL9vT6OrYYYhVYDCimr7sY4ctXRA5p4D4Efpc/KVjYjkM5ULTy/nR/GRclR+a9xv4Heduen356/YzctuIujoyM0NT8g+M3T6+/xN8p61f5W87vLr+5fotbZU2HNxEzfIRiOK/b691bITG5+elye0UA4YMkIP4J/IqnK2r3tt1nZlyPiTF8UAVqC9w2zutxgOYTxMslfto+fMH25enD7acIH9tlWrxuB8dBXX8CzacKmnzxd5wjyZ+mx6WiLjHAzBzYfvHbIv30FeNb8Hv9yddZ+7fHD/vtFcQxEDEJjINk7Ns2Du3XuF9jr6fMj+M3z/dhXv5uI1AaB+bc6qY5L1W3KPs1MdTPXsCUiQIxMYDyPuyZgg5BgXm4xAxBpo45bVC3wcnDhDNf4ncGK55u4NwrfAc1EAzED7fb1NM3nyPuQ9/r6YcfR33Zv0BT2VxMRVgFwlV72FNxiLNm4vX6WhXwbT8IwOPFjnlQjHlkupUVOZBGgZwtxGBWgKk0KMk5j+tkd3AERhacYeEIxDFzZfGBYmxVtm+uKMbky/juRd5xcX7z+cc/+Df/8vMP/NX3XzE1tz/9F1+eb19nJNykYNf2u6cp45BLRUizeByHA8Bs/+wxveWhwXF5neP5FmN8vN8Q2dNnN3DgGNKYM4Lx/BWk53zSfJrlngIzsXlUJDSCFDaO4auCnEfil35J8NV3MC/Fef0Yx0hk5cvt20//KG9f8Q//8q++e/6Cf+sf/xff/eN/8jUqUgNAogVrALa5XcfXyQCStQSvWwwzZ8/o4R+Scx+XhG7joj3G2I67R7Cakwu6wt6OGQhcDjCHjxx3xhFX7ISLoyxuUYoZxzYPhrdWIUDf8MgM77tzM5zyiBxJG/t1/vA0n3yLAFnYrylG7RMu00m4gkUgFINTSjhYSI6LXofDEV972sX4SP+0PV+x38ZTfK6sm5I8QCOAg9H5794q+n2zqaE9L69PUY4qOHBApgIzZtRVVeArk+C26zUjxvWyFzVneuSg0xOReX0dfzbHD/guHK/6TnHsn25fkiXWTNsVcMxwHMAe4QpUSD2wTUcJwCQZ8LgR8CGKPjJBxAhlYM3CbteG9eQIOYBI8Bq1xciBLZs8n4hAa7DKQTiaK2UG4bkoLYi7gnEQvSB4MXe8EJBfDeFLTUgWM0yMPihAD0E3BJTtyXiFIgKLIyHG3TaOguHZ7PMGjIEwq5g94sAcBRBImzGMLY5BbFuL3jIER6LSJFGRhTXHk9xUtKabv8ahwBoZEkeoIkSNUCH2IxBq5dlicxaDTSgyigxWQGKER2xvFDY87q5M2YyYPSk2IAZPiXPPjXE0kEsrmHKGtvDgMQNwpkNMFgmEaxvGZsChGmMWpq6dT9MtCiYojleVYpvBjdr9AZKuOIAwh3sfqABoIkYPOBDX4JVtXphAHp3tjUsPVwZWmzzoTv8DCTuJSDq7mtNkGDiIJDd4SxgckWaGc4ow02XPTm2JfRbnIrrpiDIQcAkHaXiX+BUq/FgyD4DMt+GAi4FpbhGFUBcBwq49Cv2UBMDjCswe14WMKgP3obAGYaN74AqcfZv3NaZ9J4+BfSTKCJUmXMKcCA1O2/cIGnQdcGFkreFiXUU2BN0+OgIysMMDk+mgun1kmmatYpeh3om+bNoMF2YamOgWtRF0FNdU1sKptDonHz0aQFaRxTxriAIeM5Htx8ADmFxPQOvB20EZuZ6A1IlLhJ0Gw0g7TiqlH2XBoPshOvRZKOrKZVfx3gk8uvepOwnHhO0Sm0WiwcyK5FgV+yU4yTbsJMCEgkc/Z7CrWUkjoh9UEnZQXfUynHtBYJ1lIwvnsyxQi4fspRbk9nQUomdTdUbjPi6OVXkySAdiwGvxiTGoip5xNjhpwcGRbVpWjzrElv1srkqaG4skBjSgEActINkPmYh0i3y6IlHfXefl80/rqRwP9RRgi8IQhUibGKCYMhPwKW4jEWtcvZde9tTagHT4nNs5Yj1swA9VATuORLvoFq1EIAEHgs1RUUgwe5YuxeoRwnyIc0/FgvNpPvPHVRz2qje+Z+hwEtYPrTDJNiyexBDWyVpfGWfd+Swycuxt4DSs1cBexVzPapgBwzSGCJ4DUFHBg2VMSEYRms44JTJynK08cH7/W0hX2YVoVXuPZ2dspss6K5tNN4IuvvNaj0JtD8k8i1DgOUxOawD++nF0y37XqZqD7uo+uPQeD0K7W+yx2vSWVqYLvwxSSyjQ7jp4kaLi/XPTSAIBqztAg6IR2AdOqUq4gwfPvt8Au0LaEnNzTdsB+2khwPhA7jMzVLX1k0MQyKzsUYdhY9hbIkDM2U/F2Iyn2uLYtnmYyZKRrSsikofgORJ0pCvHPS6XQpBwCj08bsbxacDhA+BBJf74e0aWx6DVbOM5hN+odPsEBVqp4BkHBO5Z4ONpWKvhsTvzI4Q1UPLc82Y0eiCYW5MzSVBzdb/3SMvew1Zi5hLUhSuqtDWrZT/MujtWaBsBo/Sv/oAywxW0cXIwQI9AXGOH1+LSYo/n2db07eFu3ZO0huj3sxNBtkJmWWVva7v3s25vhjUNRquybYhCHO1fQSN0fHiaNe3q7hlZMUfJ0/78rRweO3m1I/4iKA7poWsEDJK1yt/R8i+eWld3u9cSRo1kAy25eiuC4yh2E6G6EREEVfR6dk0fFFGakVgtkS0B2hTT2zSZyZCNsR+2mRSZhYjBiAtcpder43rcL76+VIT/7P+57HHpnpkuLZ/Oq/1bRRubT1/WAHshrHGDzDJFOsqWN3vLGGFXzDpXJmINtzAIBBTm2OYsBcOYgFV1T8H3jAkhBH2ol6ePF378Z69UYto5J7FRdfE3/8H//H0EeMSrofD/OV/Gwev0dj6aslsyGlYwsmMTAZs1L+j+GXbX4siWugDI4GqQipE10g4cMEB4JAZozoQ5EOHBjRqhw7GFVOvBOKdfsihCI3/6xR/M5z/9P7yELeyx2i7G9p/+J8do92oUcIdneBYZq+MBZxih+AAmNgBF9VgtFEUAHIAyZTCTICVfr3XZ5iWs0siWjl2u/UykLQE8+7jqdWwmj8tWMYYrkTmP/Rgg8hrUSNDz4stxH/rD/+y//c2FDjvtwBYeh374H28jhgXkzfuT/7W/Of7+Xx+HN47ZjbtB0ExDQYVBVdrooX+ZlyfQ13tQIMYzbXkL0zE0GcjEGB7DLlc/lVeX4UEiJmmEr4ktMuflyUfxEorCiBoZERq00xVJ8EUfPu8f/N/j6eNMBGpzBUeKVZ/+/T+/kpibP/7623/nv8n/+M//9w/3P/6McR3hAt2TuSE01goUw2ExxRzKWRW+U3R3K2TtHGkfPYyUddS9pgeWpJepSlkkjkN0X6dxbHdd590Eqm4cODAtzOBOapJBKY39Lj2nLZ4jhQjE0OWX3GKPKw/+R+Mf/Xf6B//GX2j7kzsjTBXgUELhSUEQwgUILgfMrNg5ydfrRDg4TKoSZFW3kQQ1b0M+APvILvbu6UlEzQoTSAkadQc0hULpQHFSYcg93fQ0aVJxfcrVL4scMWKz8/ryX+GZiX0j/pdf/njV3/zzn+LT/5YfBwTIFGzV2aRz4mSjAX7KPbSwy6seW8CxjSzlFofp8rYEVgDUFcSz5q3qZ1hSA3uyZZyI1ocsgIkwJVeUoSjfl18GiYIHImPY9sc//5Pgk9IR/xPqV/jP6+95XBGB1bbY+p4l9bHdbW9Lj5vnExdXyBkMOfqRBMGCy+7523E2ITRMjmEYSioyHYkYyKQlLsUiABeBOEh12EHo/utv/u6njKepsIqkWKjShMCdG64vjF8YYX4I4XIUQisra/hdJ7o4xZ2dY8Vq4XA7uLHT8iyWcQh0jzIMXtKQk+5njSYDgLbueOtcJMYAk0zCxQw09K7iKGT25I2Un/b7cbRcrVhHYszSzfPPfi/t0BE4UFfUbXLTkU8JdUNfy/ICwJpAwAWSRVaQCTpXk8t4hYEJgFDaErYQk5mP5yCYdnsvZOc5NTTTyijZ4UgFIvqZk6GZCWytMPf2Nf/orxE7VCDlfQ9c4Hnd//g//K9/z5e04zCnWfc/+Xt/8fSvfP7hw8oCVnIsrEem+sxHDLiCkZ2Edj7yAGN8PMr8xDlYmunz1L7LhM4kR6f+Gu/ypDOTB0DX01Pwj75X/EzuADOO/+GAiah+8Apy+7xF3Xcolj7itKZzLHcr7jtzX5pzd7MkMQpLZTqa9Q6MWE+SKvU1iTBVJBwrOi9IXdPnvGQwUj2Dk0tmDNje7r89rrE/gw/pvRnmi77+82+3amM2IJR+/HyZ/19cjV7WnncOgl7Nv2v6wlIRjATBvXHjEEwJjOgyfcRGSN10jcX0YT2Q2s0kVUmVhmMJHaO1UGau/qFwtDQ9+XT8ZvvdU4YBEi3EJXmtBAf3mBuPgolv9l/fXj9+2Tolxqn5XMcC+YYg+RgE3y14APD/A9/tp5H0E+fDAAAAAElFTkSuQmCC
iVBORw0KGgoAAAANSUhEUgAAB4AAAAY4CAAAAABaJ4+2AAEAAElEQVR4nHz9y7IkW5YtCI0xl9re7ici81Zd4V4R6CB8AF0+gQafwb/R5i/oFA1a9EAQELlQBZWVkBFxjm/VOQeN+VjL3E+WxQnfe5upqa7HfIz5XPxfm5FGmAiQAmBLAYMxHjP/Pf7lXxkKD0GExfWNfn1ctOtaa5G2SGAtSHruWzIPcxD+fP24He4ycF0KkheNpF3GtSLWgnR9/Ph/hUKSAP7g6/KARKOZAWZc10W7LlCyyyAYeH1eIsnn+QC4/of/5rkuUqIe2UtBhGAIwWECzCjBECQgJ7QEBAQso5kAQQLBRYoiSHiIAswghKgwIkICZKAIQoogAAKGABQLEnO14KAxREF8AbxhRpIKgIAkEBAgECBoCgNpITMzgLZMwWUEkF+jwt3lt5yO5bz8pt/XN+DbenjRyR/37fbgg9S1LqNCtCV/1hURocduwV6vh9e373zur7gus4/A8+OGXfA7AH9g/PgDHx+vz+A//n+8LrteH9+0vukyfv/X/4uJX2HCdS2YrStopMGujw9eeJnD9Qr/MPv7N+paLn/9W/zlj7jNaPFc9yKvgIPhF2QPadDtXMIV8RE0/uvr//uPIHUH3fDHt++/Px/rK5Z9Lbzur3Vdjo9vdumH0f7rj//r/U+/B//2+/f//PHtn//+3337x4+//8f/+T/93//Lf/7v7//8v1j33/9vzz/95T/+9b/9n/3+f/of/uMnvl0f3/66/qv/8H/4f3zwRYn2ednnt3XZt+vTnv/4L//76+Lvl9bXD1+MoAAKEuLb/+q/Mdh6GWARoBsJQggQoqhLRjfES7zttXR9+9SXnPgRn+uBryeAeCislz+69frxx8c/m0OgIPzx/eUet/0v/88CDfH4H9+uwFJY+Md3jz/MPkPX9z/+/tcfP3hff+H1+ogHv13ff7NP/G/Xv/xv/o//u/8n/vH3v/+Hb8/i77//3V/L47HPv358fX35etk3+/qHXvb6/Pz+G5zrvnjToeUegN2xsK4fTq0HFuICAvbx93/gfl1f+CBvXr//Rbc9cL3Wbdfz13ju+8cH/3Bf//THj8/1+fH69v0Hr9f9m/n6gd9+vxb1fNoXr+9/wxdtBXjjih9rLdjf+Hz+2/XXv3/7WF+PP68/PvFcRsT9Effrhy+nOYF1X3+s198/rxf4BYb5j6+v69u/vpY9n6ZwETSPhdA3OO3i7dL9uu3xbxbrCrx0gTdevv7N9cKPl4Lgx+U/jEvO14tffyyDIFp8Pv6y8G/+t3/Sl11aS9cD9+v6++3rM/xluvGPMEhfjy1hvV6PGWxd1P1xwRCXFI883Bauv74okj9+J0QIIGUmiHJjeBDy/8+/rCWF66Evfy75x/ev+5Zrvf6iG0/48033Xwz/uP6nPyK+EBJCCsj1+Z9+fH2FTP/4/j+5f7x+++NvcT3/NX/8/oddf7n++fsPPe5ShEuCQkIg7vWfVtxf5jddzmXfLvHj9W+3B8OdF8FlEcL1YV8pbtePO0jAyLDfrtv45RfAG4BEIYAQqJSWtvDiPy7QcvtILPvO++vG9f0zpPsPfP+4f+hDCvcQYKSwuMzij/vjO6+//f79+jKTJPcIiYuirc8lacG/r/VdS//d3x/Babg+Tcv+7v/h+uHSl1wULlxxP/769vH8Ea8P/N0oEYEn7OPTY70+Iz7Wlwces+cRQPBFWfCi4E+I5n6ZGRd0xRNryQOUmYK8KBhpIESQEYCEiyBJgiBBAKi/QNJowXqHqJfqZ7/D+ZcCGPUnRQBKxQYoFVJ+O+9Jkgyxb6kSO4BSGdVoSAI9qBR/pbtSibFuL/QDpfw7mL9BzKfnoAnm6GrMYD1T6EEKqvn0N7HX5ucXf/qN/RtFnZfpWD/Nh+c1byvbT+ytIUDVG/klUv0oqnR4zxG9mvOqPyUBkYtW75O5aOdKzoxqAwopFFTg+zKoFikHAYBG1l3rmaxNqcfE0NusX00u33sbH/Zvdf2mwlqgfmPo4v3W82fRcs2pbmH2tvwzu3MpZwXVNFQfm459T/5CUysJik3vRsIUyVsmIy1qc3OutHWOxGaG+cwFMxRSRBJ25KoqJABhgMHsutbFS4tKSbFWYsVih7elyj2TBFGM6IkKKkDR+7AZOkIGs02XkbMVAiQiFGIYErfmOoq2bAFGS+qoVZPBklqsuF8JT0UzAlDIZLPROKghQoBqK5O0AopwKG7mElnJnCYBApYrn1xAGGQiZXLCLHJXWi6CZssMQBilojXpIVWCIinKggYZubBgCcMkmaQggrFwshZpMkPxlrXEpHpVSwhvTvtV8uCdw2eOv17487s6fmv6bTldMnMkqvr/+31JFGRFQk1KQMrjN6G5n1eaQBy18L4gPQZItXlqDTLiqaV0DqOH9/OsdCiaWjkSApncUoJAtcwtlYrbKIKqj0kLJoEy96y3xHqHUiCPVDk2bIiOhygpshIhXKm+WHzZmmgW5CfdMLPOr8ykUw+oJCdJCsOcpctqo5Pbm+3/jCRKTr/rruPFrclRK9jStEjjp3uq0NcvT2IrZRZk6FFDpTxHweVqanRrry5FaoSumotm2G+/kQQNxuOjEr5q9SxJ1loKPKczuKQ1SJGsehf6c6hkx4kd8PNuDoe9fVBLkqvZWjViYMWwPLlvgU3CnLtvYNU6IqJ1QGnyfIr2XYtEcrdohLSpfOTAnnI/LMKUS6V5JY0V9TfYmZ0nm3frZgd9nNweEZRks0rnYwVC0WJkIOexwj2bZGwShFG0oR40sEGr6FzYZqmkwvp2QFGCCwqXgAgpXBGBkFPhghQzoVBYhKIFUm8334iCqSpnoZITUm41LNooXAisWOQSh+pLsgUBh0QCEukYuWO2zAgaZEZi5UWGxRJ0RW0UpGBAAUkugihTwEiaBQsT0cAFCmbR3OxwuAdkAngpghCCAQSiLD0AClwwEwCL/IcATaQUJcaMAFfLCHkkXyTgQbDVhMyMJsvJGsgAwqCICDJq88TULUWNEr3g5qEEfxW7oyBGGeFkHWHofXh084qaXTZyOxi3KOoXM+B9EPWEN9sAJ2OxZcmb9FWj13QqihBHQR+zbnHGQzDmV0pXqVXY0O0m3SawX0beVkqDj3nYXuZ0Y4Lgm2Qqq65V/F5oSWGhoCjT2HGNCho56BQqW8LV6s+KAtce9BvQyvXUT3ZOXig28JPed42//FUSPGfHEek1z1NgtwL/ZTj7zm9mSFFbv95ssk2NdSuxFfqBkd5GOQPbK6oNhX4ZBss07o8PwgHeLF+yGYyoEW9iab/A1oKHOtJPu/sGj1gad9ZMb9S45/czX+mnW2uk8IEcmoVFxUlOhYElBAwQt0Ic1VqWFlG8tkH8r0PRMaF+7Mz/WFEJlIIKShFqww+Rmjc/mDWMQETMoNR+/iaSTTT7j8ZhJeNpZqkpSRJWyvFYosOGPjZ01m54U8PI506nyXrCd7H56gCYvWMHJ54ULCAUUdgmgFBIDocHHZAZI+jP4xGt6Ittt21VAAHEOxvNRH9VCTTsFRXAVEUCGVEmDniKMIBmJpoXRq9bj7Iv5JFUREs7s/wkhnWHlYggYByBTwpQmNoAWBAV8Xjgkkgyggg+poAhTeSoCbHMAUICzSxgYYTCeodr+tZiDKLMuEiDiRZASIleUGRkauVEEEgaJZqa6sktzwUL05sK3O6x0jqH0EBTYcnQlFS1k02CaBNurqaQ+PbtRrlPRcqNuVCYjzjpggNmtwtpT7K+/iZGe+tbe/Vul8AU2e4h1D3ysf2k+qQlaHJxc3Bf8QsP/ky+b3+pQMLPCqw9WrUAPGXkn91ICI68+tOH9j78j+pIXIf0Gcjbkmhk068DqXWZVSK2gXhO5E8fWhflFr/jll9mvXc1n2JNEcCbllbLs3fJ1fuP8/2eQNsaKG063zuVQVPu/nZS99vGH5TO4Y2+uP9fN4/k6WDvzZ/t4c/QZibwMyP+jP7+hAqTSVTmxIYnYwFTrW0PimkPxxjaP2GWE+808qt/34fbY8jod/CNvpr5ki0GqqJVHcd03I8bAdYoZAy0t2Edd8pLyqh7I7i9LVsfbsWd75/YTP1b47n+bFDaG/gqZauwVrh7bXJg6ssKdFhLvx7a8NFY0CXXIgKAFIoEJSUQRqX09oEKj1+YsGfImWcsQFF2fFtTTYubStlumUadFBiyMmM10oyjgsnCMuNYaLo5yKRUaT6KXKRlwoRxzIeBaOxlH1UhKRARDr9h/jA9FzRGMJWyStmbWQsvJvGX/cPMO8lwPmbzhlQTjMHAtWjRcC/aRso1MxjETDepQYKwRXIltqs4HUuBAaTZasdPOzdbBhflblr7E+GwiSVvnHRQ0qLl9Cb42b7RaEAz1KaQTTNtGhapnERZN9wSb0v+U0T0L8NMb5Ke52fvYzh+b3H1s1bjL5fuT1p8jcZ4VxLb1K0ozk9DykkeL0UHZnOyZUFzR+Z6Fsk1yU3gSI0xIwG0BfzuWMh31Jp1/1WDGaE8cKjkaAEilpe7woAbSB2v3v7TjXGQyiF3sDVGreDstTIkw2Oj0Tz2Rj7ozeWeHuqRWwfs26bRgWjdVix64om3h44yeH9tXbCFbT+lvUSg0ILhz75aX0nKH0LbLiccSzPaOe2lLaewBdi+ZZtmh8YpHaMwzXO3Uh1rZpwg9c16E21YCYCCjJ83YIigwxRv4ng02oErdYobIcCIUOZCSVur5ZCHevrdc5Fim+9vrxxFRNh+Ypump3b4ZXt7R851bbbkprGGwunNBGkgWeHdHPXmc1srl5DzxZYgtYCjekqQRECKiBAkx4pAKB4PhRxSCAwVfG2uRf8o4IwWKAeKsVIMw4vzHwCtzCehRAsw7RsDTcU/GzURgpll9MwIwljrHFG0UGsU2uZ+Dk+t5jM10dIZgRaNBrPS0+WJd3fcRDiDEmg0hQl8zBGOiAovboAmAgZJrNufIg0JRYwQCePK1E7Qcjs6qkJLyZyDlUGWilYKSJAvMlr/yTKqQSlqvmY+1JZL/658hgc5OHFLhubvkx63ZJi9OFQRUChNapviIOHzl18UZYPaISIjxtpni8LGYKP7QVRua5NajoA/YfEeJMt1Pc89hSzff57qYjRJ/cFRZs1JNtJerQNgPqZaEe2WALNeBwLAyKlZT47oiETFKXGCIURQoo3VU/KpFLDwtsqojT5xxrvU6nuUXhiHA3DA2q3RKgT8Dq903pXEjvrOQr9bWRzhCMgixksDFmsnmpcNNM+PDYAVvRQh9OcExJM60TIUm88PikV/Njuvtw91zgMjfDchqRi31+zIDhs4tddkpGRDq3eePFePk4xSa1IrH2kOmUDrIOVBZyUpbZK70g7ZNmCkdVDfbKWbCSk6HRZnDKM8dSXnyHJLhzbRKH2GIyVquTnyJEexww6t7I+nDVUVkjkWo3FvS4za4E73scy72lx/CBNLmZ7BRrOVv5BM5KsiIGPq0iRAION/BID8he2XQ93JGr1q9a7KRJJaC4zRhUN3EmaKvU7FbzRSoMb9sC9WOMLlCoGIkMfecnVczQ411+/UVIoD0HK1JGn9JUDRejH18EEclOTyoFsonBEKS+VgZjDKjFhGRCW/2fGkho6sAE/pmUbB/cx2FOSgK9krwhUecg/IHcIFpQIGQGNAzGKGRHAAZEhqhiROpAjbpcHhOtavO0qSg4samo1nPekhytBWhMERbkyHc3keCrb3vJofe59wvjb2/lkGtB8D5cDawYpMOmoK3czRHDFwdQRS+QTr/1tRtuBsFbtx6aGSf1KJaPmWJMc2/k5l30/chuM2RDietze9q7eHaH6wl1WdTfM+mr4ynzJbtcHWm/FaiyBBrRu2cwyRdJ4fJJk2zZSW6ieqmPVwM9R82jtypZI2hNjLrzZyFMj8jWj2FhUMC9tGE5KW07qICgApQGRoKjMVyVCAdLaYOryi7QEIQBnjblnSuVD4iewy96QwwqTe5PIPTY5jqfHFSTJ/hqXaEJ0LfnaQY6zjkZSqVQZPFXSOVc3RNZSJYhzPr1vpXXkfDotjEIf3bS6cP1iCVdZXjRbYkBT9v1EQGHZs0GrRTNhyqJ2K6NEfE5hP2nxQz7CmXuZOoArOhDhxjPa0+nEVgT/GdjqTymE7GHRW/lA0vTYzxtbytRdNNjqvH16s68JXDv4dL6o4nhsAbMmFtzvKYDEzQFPWfo0ObDvwJ2nR+5KKBElBG/3kjpqVOiIKU4JcMrMkWI9xwMx/TYutACMr5A6XA8eXsodTudHmJlqmUUGeajJxfiYxs4OjvZSkZcb43EdiSGxbc3xEgmxb3lKsqB3TrxtkuTsWiscUEVsBEyAqcc18BRjtK0FTfoVG86qm50CwPZ178g3fFVWjUuldmXHWLulCKtyLnGISm7l3VGPUeakCbQNyB1iKwhMs/+QqO8ioUVv/A7U8bF0yi6YZHJqXtndfg3VHCqtfADTJFfPtYuk0ATO2RslKoE/O0ImiSxW3T0pWYnyG3G4ovD9enXdC7dfcs9ab+nmSfbMGtsOdW/LilMkcArGWPyTJDu5vxd7yVcPIJ3BRidOmcfY2prklXkPXPTKOqBw3R+tkjNbtTamZ8X2Z1Dq5hYTOKZ/U90ZALcSaVAYvHOrBLAu0Mhl80SRaWjSFskDtxeVxgx5GLksDRZYFXN8cPIfWN6MfS82yoOKmdItmD5q4fR8g0vCME8WlDh0m4rDVZJjkzf8dn3SRaRN/je7gbDZl81AvhxJio92R9uc+ZMCtmTQQDDERX9P0lAhUDqh+2seeZhZEo3d+U87wdm113+DIq9+yAaeWVpBR9MnEe+E2xkgC1lL8RYkR4TGE2nAAjShK7m1zuSxVs3aZ1DBG5PewhyOi9YaIt2T7N1IyAlaOiKf0cDvn0jGX34x17GzFY1GWUjx7YTyWymkeHgJgQem56HB/4r7hcsJ6uRv059Z1itoQVNJfAUtaHDSzM2oOC1gRRARCFohwoHIbUAggEBKISFhQnuZon09JuFC4tVVephyBqkyyBQjpuBsvJmkwA9guFgFy0f3ri3ge/z1kukVLl1IgdasrUCVBALLcnsp8qzQ39CJ5WeWkWRUrZGGWQQS5LEDJZctiMnMN5EovpuINMwfH5GV2G+ipbwC8dXCLny5ca/XQvLf/bRz5hik3822mzxuaNWiZpR8DsCehAoctfNTDO8TxcEVS7nyXJHcWGkGDyWwpt3JmSwndcmJcKFUSMBrrePVDRnYdWrNXcTMmGrMURx37MI61ZvQKsAziA9rxZbAFZs4dBeNa8LUW7eJCNqjQoaTYkvvfAUa/vBp/gqKurQm2tsL4Wo4JEFlqava+QG/GiVlDB6XUSSddjtKqhiC/9ssD0JZ5rt1GGaXdA4CY2bdohNZ3OFa7s1V72YfSh+9/dmTUU9hsMPCvnUVt7dZUTkdx+Y23dm1Y1+KsHzTenr2+fXnsGXX5SDneWI7cnSM22LZvi0k1Hl3V+RqcqfKnnAd0ELc8F6UQS+YOROpCR42ky+9CnXX8M4oq+EAIwWjO5sH4eYt0nkalfyGQiT2trLfaHvV8BEMP2ijyr30ystP00ss8ducwbtHtFldE5THN0tQIAgEKXTEEBWwsRgykK8GS1F5FaVlX+k7k6caWqFQgKWmy4jSLYyMN2YEFOZiBH2xSbrxecKvWZiguNyxCjgfySjDgCjavJgdvjNGStx5cT9raooRqYtyaTWgGxQSZJfykLPVJeKAR36QZBJMAS+KhhdLEKBVrnqQMA5cZrbfIQgvMLwMWiTAlyLPnjQMRoaC7g4IsVzxWi5YwCe6MTFg2VEUUBISCoHnZ01X/NvBKg6Ny9VUDU3BXjMZOnCMMAk1XNAM3fk3vYCskS8M46ffwkAzgaZKcfegOQU3OmwH5y4/04g/QrID51rjtLGsWxear8l43h21yrOelXG0mxUgzbDn3NrqB2PWt5tuWCNvaIX6Z0ruJMK8iwPJztIJ9++q5WDjEPk1pNfVGyDIIZyRNxi7xVeEBMzMEjWQYjTYqlzRjgINlUryMyGthjoK69XNGerVEKo1Z+QYjqeaWZd3BYFaZD2xjgZatTwCzNPlMNCgxX47FTNrBtL23W4D96SrXLurc6NmVAm2lfPbsOEmq+y7nPhC9PnODGko7QHv3etsOomp93m+0OubsSGvr2v3igNJGrZU3HXe7gz9/9dzw7ywQDvU/S7rvOfPRmDp73OWqGHH+bnnOv9YStL44SzjStdesyFCdf2fvKloo5xC6h8F2/3ZmCY63MavNmf72I7FRbyKmBBMbtAF7mxMUtwZ/X8cGVz39UdVAeyoOb7XmC2945pc/DyKRENt6KTufyQ2bWQmItPVapEFcCCBLXbIdRQrs8jQP4C1BkLRV7mYgLVwpEt2Rdr3W6FE1ofaDx24pKB+5h3FQMCsmW1MK68wPS+VbXp6i/Jl+SYHS7L2V+ZkEhqyiaZHAKoEncxSIMIRCDaK224oJ2qAIyhWSQu6+PNwZ8KCsBiohIISCdAtICF/SBJmzT0bXSpbzwZJmhsYIpkCupOdMqSuKJpQdN2qVjIIs2A59NYcJipLtTSiSsNRhb/QKthZ+L0bET/xRy1GEO/qTO3utYRUtuDe70PC2t1r4EVtJNp/VbjU1bz9Pcc4oZ/SKbKkw3NLgvm6YTDATIFBO2beZ/TtScUZ3aAa88e+b9G+i0/iqwCwMmUnm0DLu0SsEQpaOksYgzFoOO+O/Q9g0aXTprO0xZv1iB1UWtOr9zoJnyue9d4f12KR42sFGZFGcgrRsW1M83Vy5x9LRs4awo4lmFVNWRfrUGCSTjSIJQZWTEb21rc2B7BihGKNo1DZbcpcDquXoXg/b+KhIjpvdj++0U/d9IUdDq5NcastnPXswiYn58x146uD2M/PQSXxn5NGZ1e5LQva5wP6pLnbSDJEELciADRnuiIJ07NroG0nhM5TxdUlSCNGIbig6F6vs4wpfUBncr/v1h4ogj8fPA3s1pjADFRiB++P+LGc2XAj3RSHcnO1WVQQjIsOB7p6/9xOijLcDq3NiE62tEyqCWzYxFf1AmiHd9nck+4uAAjE0c5BIofyygg7SKexAWWQqYY4iK3eqDQ9GTBC0KCcwqLRyc9RByFmzlLCMErnWMqjyh4UhiRGK6hrnE82pheloi4zwCiCXq1J5C0kFJwCtBF5k1tNkZU8pg/RBi5XrB2TQmNiV0QYF47n1uJVfNFJFA0i32mFspvvChYjnfl4hfyjEQ8IiHNZk+FiQnnHJ8HjWFXHBQhGipesppWui1cQ9JiCYyVpUZJp3REw/ifJr0oDs4UFmOIAl39SCRAhfBqghbW9oUMq2X23P4Y0a6/cB+MPOJaDHOfJu8B3Sv3salprVJPIe1iWHvHC8NcNR47S2mrfn7dDrybP1haTYthBGJp5D218bW4wDHDQfjZLcqum4RUqfdD+1b7cI+50DG5Sg+qiUwCmWboRSU+KI7zFBuaW0JKYjK2E1MbxVzsWSZ+coOlZ7GIhXgr6SCOXYblOorYqtKjr+1Y6u5NISvmp3Zj9vQ+aWRhNPardqrQN++sJBiDOsTEkqGb1veVyTBKGmiZRtRcbH/qVI4cyo/91BpjGgChGfIBQNAIaCpXEqlAwenYlWKCmn0qPI7XpB197mpAfBDkGe7pey+QbFHWp/6/M3zHhgkLFxKDRpN4DqPksNr/Z2oIHK3KyZf+9tD6HRVo0bqZ8Prn2/NPsNzXsgiJJqraiKh96ooH7T1oVSc02+UQh1i4pih64YObZyhNibUHhH1WwOSj6h3pekTBTtmPrsLJKkzFpO7RWoNZz0vCxVOGybnXZ+bmbUd6uGaRRoO8r6y5AUCDjDq0jYQ1Xwi9K5x4ZoQ4ui5DZy9j9gDCoC2y3EKts95fYod0GyCqkmziC2DURWQW5UPB2Z3ZETlNYh7mM1zimK1qCCAJzZ/ksF8ADTSoM1V0IQxQjGdO5E4LHqyB7NuKjU+HJUaMzBxpOZF5N+/sgmmyJoGSwCTTJr8QHSWH1HmbAjYhz7BskEg1lgrUx6zBvu1I5ZfLCjC3tDDkJ+IxMNmWvE9IG7tm1S+qHxsPAWNNucfsjlg2iaec6dx3HZQe5vZPw+Wr7/oZ/f+1nO9EyO75N/8vlmhXprlFm2GfQN99G0uEXiWMCkbL/XALP0a8db80m1tGBrqH9nyvVGxfsutGtatckA0ndVUYteQdaebSVUCkU94975+nfbBvVtJF93LVhpmbLDRjkPEuoq4q7zS+awZaVq0wWeIJstEdjycmyS1ipsmYf3/W0p3PSG+VmbV2DgIIvjzy1rD/25V32Wfq8T1Zs4F9aA480bkAJgMODWEmUEsR9MmGgVYTeLDSgtxk+xGRnl0NAh7kcVH9EgY2brW9DM1lprZYaS2cp/l9GU3fcsz2B4W76SWYO9xp+Q4oegrbWMsDg4/wjEH+tHANYssqO76P9X+LcnmG4Zss6w6AERb8uxTbsRWho9n8Yys8JWCCrSTps41iCwFk6q/29HUwptm99nw5OwojkrYY+Gx/fN9yuATFM+90tAVhXnrBrdKusOicyCTgdAC9UD9CSRsRXokV6Xc1CjxfeN3b4ASqUxmujKMgKA6AKlrL9qf+7SvlcrtryFmEe7kIH18bILr1oJNlVLCJOnOayAw4WnFHB5Omx5N++gtZctZCzRREGZZRpaa1wOQPXhjlDlJJQmbLu/ILDJYK2fc9MpZEyhuautw6QxZX8y0j3T8dLRMToOyGaqe7cbl59Sop7XChSnoh0pHPvdQ95AB5pT79s7gY2y7Vuitcq7Ci3iPfxgBc2r4Gar35Y6TUKFYFvtsaV0WYRNvMdTDp2StJrGTj5r1Ew7vto4q7vuz2eJkglo1QuliJsgzWDVcBS1aymmsi4/BWsKvMS6XV/S0LpZo3xXY/AAR9CntdtWJlfSY1Jrq4UTIc1OHshE2nNsCROcvPBeGRzLMpo7wWjvi0bWjmU7MK+Np5pXjtuqhYGsavBRLd62Gt9rvoVvurxOaNUKlzgbcr27hTVghmWwt2beoOstzv+uxXsWxxLOWz+DNqmyfixLuEqKcsinYE8Pet9zkMeACWB2/ByNDnXT/Brcm1WU0vQyaKwH3f2A9oB7RK2QlJKNbdtmB4KUGdG4LMrW0myNSmyUL70r06adYS54bffOI2ExRkb58l7bdt1KqsWimboYt5GrjpVs06b1RM0gO/vnbuxzElIWtBHQqr/N//Zy1PIlh+VSpBMXJ/2V3VSOSqvhnASiFNgAsrFDoSf3JgUBIkPBBXnuTzDgKf4RzxPDXy1gczwtuyCFX6WV976fAoATOGEeukBDWCW1bioYKa4oR8uqdU9fhcGWhRmg1WULQDLYCc0FIzqDqegEqrSloCIYcjjo9JCEjjUQClnIYDMLtUDLStygIuCudBebwHREJ9mie0s3YxTQsydJYXtqypneDDUar7Y/GUZBV+R0tketpF2Y4FZSeJTXEQcegt6UjfcXz20aa7XgOecbgz4LJ22Hm2bw+0ZdzTOBwla087CMpR2itu52KKU9JeWf3AMWtI3eFgco+c2tRJtAm3TrlcPpqjltsv0JWHDce+pQqpmWpx61FC7V5rShzTyMrNOF9rwbWaX4aJ8hYTtnCyN03tJhz87O44IuuQCoUuaBxj0DLtDQHl1geJIDRvQ3lmeLoi2bzv3Z89kIReeHvcJsJ25M6689dnOQpmO1pd7nGdf+dIio+b0f0Us7Ke7v1L19awdm5Pl5YYq99T+Fh9G33Z7nXpM3DSpujp8B1l5QsoPLdNyz/8sxVIPSQ8qq5jzcl4+kpQztiofWiQ3/CmKV3mhUXVrJKgqvQ9zUiIwTOk2B2YRR0YtejnHkAGet6Ma0eTuN3G2u7M5/CASzD3KSSGSuU8d6B72r75y+WLT6LQJEWX38eedTXSawO8msp0uoU67bc3pQBU7iy7mUyZoXcDN0xowjSFSmY/Z9AroGMeUlLDo7M1tWctwqJWXbhrJa+yAe95BgirCca6o8bQI81onsXcj9YFdCtZTUYMJkcGtBNJglhEpqF6NsHwK20psVEG3JSJnxMS0GbYUgGRxtWkU8lOehDSWBIrJNmBqgKmuOLfCEIPjzrFA8DPM0liJW+1uSXOt8tHA4XA5SlwdfBnddsDbms2tBUmqpTgLwkBDxIKJVG6wy3m2lwicla1HcZSASuy+NVCYSkCnXHMtnahLR+9h0log401sZNGZum0lM7GbB6eI1ehUAywl+vDqtH62ZNlFnpCAPp+VI8JbnA2aLnpNeNvwc0XbEimoJhy9OR+L+/X0gBxcNUumvzN9qImj3HssLKmuCPW+lWZEUkLFpHm/pHkXYxPGofZOt62cQB2ZS2aUbObxruCOC1cL80iH0y+XJcqrMimgvZS8Ez10t57kFptJ+22PvjtlfZNyxPGpU1e6CHrg67FwyEYCUB/tGtIboJTgC3CMmf9nanENHXUh0P58N0HotxuzZ8ci3GaG5CdiQUo39zg1qQtGfrQff3z8+qSMNdASqewu2Z7ulsYaKfrKAj79q61JrdwoUWmWS5iXky6pO4TUc0qkXbxBs37bdNNUxXwPCijJDUMh7uyr3VJMFPSqYqrPsesW3ci5Kn3lurNzHLA6Q7HH1kh3k3nsywnIWds+9EZ46CwGlwAoWpedIsUXOMVWJYUVaPA130LKtFnOdIFpYmEyRGr2YsHQPZ0E2Kys90hBV5yIBDI9d7ysGLZ3PoJmIOmK7vl/XgcxTgMpISbovDoDJKFirlKqHBYx1/oFgAhwWpHkhqhIAi1xa13UtQ2AtExFmHqkEMvAtYxb2pMechFFavCxm4oFysMWzEnQxNzvosR49gaApG3KirBpVX2oQDBMYbUgFBOkxLTmCkZ9cUGpLw4VKlMQWQlFlmE67HEvWslWcJQc4nvd2rVkefqc8nUk4lVhuo+u0YQ46UulDtE3WorGKi6W3dIR22LEropqf2ox6k1tC2+fzW0OzUTDn5SVd2tQsmTOcct59JsPWrUVfRx0wRkSW5pyGI+cdMOq//SzETtGplSxfxKGVWkTV7tfpGK3gbLQSc1ISqMic+0OSEC2d+iS3CERYHeaRSYhIWyBbtyhMFqg0vUj1RChoUU6T9OBMTu1Vi5O1ABv0DCbJuTQgwra/f9ZqOxmv5ouqOZLFTxq70HvpeaQOK1IykAYG2aUsM6IJEyZ/vaGtak63R6OJaDc7tPbbsnLXYXMn+7PJXx2uLYg/JZkTBTzo7e3nr6+yKvfyvmOehkNsoMGGZ/2kefhPZtUeija1NH4ZZHMYW5gryOHPvKY5dUCRlEpGAVv1zXQWB8U+XLDGhwDrmE2Z9Yh6SfK6CKtzwiXKkmrrRL0RZwd+TFCATFrU261KObF+kZ2JxUh+TnptQs51b73DU7QeahM1x0q3IVN1NQ2OSbdjfBj50NRzJBQcLpnSrCU95syCRhfVwLIFSommPS4ITM9DGFQn61nusffC+KUQDVIE3O54PQ/A4pZiP20Y0uqjPQdNxBn9QMn0tt2ILFyLrpziVAtnP2iRUJUHARl4nS4QyeCm2IxJQgYB5srqYEsYGWlth0iFJHNjQ7m0lSUypFgIKDyQViYDvFaiCs8q39x8CaI/BFwIOZ4ww2NmH3T4EgOmEsGoyZcQyF7SRNV1Vd5JGSlkJXF3CkS52iGhT6CSGPJh+8pqJ1BBBWQ7kuFR9ON3auUUBhQie1d356tBbMkHbF3VWvI0NvmLsVjMMc7Tg3r76xxbo1UC6r/2eJFvz5nvIvlj3hlV2Rh5PFSt1Fs2jpzcQvR97mfjjVRYb6bXOfeRHf2ZgZQHwiIiFJjD1brGJFLrBjwEV8wK9P6wZCi2ICvLAoqsRGwcVXImFfDWT7062CMts2wW9s2r1sBnlrYWrzR63WF/JVl5bPD59qDBcxwndW37ZGwIYGj4jUzaA3DSZOILAqYWRENHnCEIYxDjfA019J16h49LuiRhU0KvyZ+p5BMPzC1bB27XZIlDHbbXvodQafcdm56Va+1Nztr/pLO3YN8atyyDLRb3xa2ZB1GjhHH+TZzJIejWgNldaMhXVTWjmOMNBylkDHijAR0ioSMETSUTqGnYkMykypnpbWJLhV7J1i3Nfgf+P/d5L2/SEVmTLvr+iZ9bmb674X9JsMt5sD8cEu/4Zx3I0Fq4IDn6zbq41DwL7iAUAYBBqfKTp7ytjApkobDl+bnq5SoUNns7UERFEyjgqbdZsKUMCDI7GZQUkdqmYA2DUPYMIGytZUeFZZCV6VuGWim6MafKObMHR7Q33pJanA6FxxPPdce6/Q5irep/T/MI0h8awk3BsHS8uBYQppuh8HtBtGV0SUGU73iTd6++oVN20JZWdj6gSZZNSZo9Gmc3UjNaQKI8yAyLo1eXcxZH4HS1tc6p22F2R9rbcRLum6jRccVPAmCkzIa4m+u2/tgfzjbMdmhf1khhdP7A/p8jMj9FY2osBTC2aQ3MJLV11CbN+vVUKcPbb/M8HlJEn0BYgxd6wdqEnhU4V3Jfu/9U4fC+J/Dr1YMv36XK26X9yz4PeEzJFAXcb51T4yHd3ox9tirhm4jU2+aXxObbey2Pe7kUmRDYgXhAwfTjgAWhASn7kQSDYIyvUmgrYvvn07SoQPm7AiayqqxV5tyFG4So4UXv/YiahFHtHMEb3sjvzPslf4g3Wkr9Ea1N9mKlPkr5n4ePBzeVDrckRCIAq5JJCwZKWM1UThIBDo/NwLYiCm0iyjYCLXqxbccRun1y3Nx5O1BSa8oIJ+u8PLhBjKgkK1NlFsvyB6TI1sCR9mdkYLRPyNHQSXNKfY/cagPj/mSaICNAarOmqYXGLOCeQEnXbDOTyorVWAQnRYtgH2h0rm49pPXc21MaEhQuFQajE6QtPCSNSQ0s9pDG0wMoOztY+rFI6+gaLdKJuzIRAO7PQ9fX63o8Au7ZJmoLzqSqkXaVfBQLFCNLFbob5eb+ogYgnXgUkAfrlg5O2eRFKKJdIMxWZrubrRUob7aSBKs4tUhZAM0AQ2jZmmVCiGLn9w9RH2xehByR4sNzy1NahmVlPKDO1y4aT6j00EEGEB9XVVWxpWe75dRvNmaQDRFN393I82FSpy7ZMsXCskTLOdKqe2fjipK2aousKEKH7B3yPHJ4NOtQ1LzpuJg/+wbOHUbGtfwYhKGWQy1NChqNATzmD2q51bfusePIGNP8nOuPXXv7iUNbSzpttQGzf6K590Ubkmhfy/FsvqGokvQ1HQt2bkn7PmkmW5xoeu/4ikkANTMTllUdt50+t9Edf/b6pf3GvNutKMe7D0BH2LbBUT6iNTTBchD38V19y73jFbmYb26PYG3qbM3hMcHWfb3xbDUBRWYtJDCjZF6lBYSnBDlaHDT2O+euQ5++zamRXX8FhSMPXVtkPLTRMz0Ufc5ofDUdx2P2EbA0Cw7c2Lc5wWQNo5zfObm2kFS3fZteJgA12NIEns1C26u1p8/j6y22MvJzWN9g+jutHCfswwjaxg0KEd6O4zGNrbcujz1+Vu5IZLA+UgEzonR3KoUV7kI6dlwBRDg8zJ7Fx2Tu+wD13lxN0QY3Homg/Ik84C3tjQbt0aqjevzGT45n4D2EAaW5Ej4rvRdxL9LY5tqEcVyBvDGRp8Faa2hamzsTjEqUCJNTbRomuVesGQBklvYusrT0IEUhE+C4CK5LywTT1+vrDsE97mcO0AMARB4BH2eVlIdAKmSYRHYAFtGXFMikwVaYDA3RWiLnmU6Z62RYBLmua9kymAmIy9eyRU8hEgXraA5l8LZ1HyvMaYA9gL8ghUfYI3e69CieiHDIFWC2aQEkeBjXEgnjanYKiyIbapmT6XcPwsLuoLLzGESXwGVAJYlnJbdqQ2BQm6zWERqCCK9EDREGhF3mL7pZwvDVyRxo4HM4AqXIdNstB34yrwq8qQ2gEk7lUCx01+jSZAhkndtWR2yUvDHzVv/9NA5s3wiAW3AcoqPFXot/vqmHwTlN302o6DkTXetWU2pbomGfGl7Ud/b8U80XT2wjJ4XsOQJwN2LLfbPWQP2Q/jVUyYu/rPsvW4GOKQ+YHQeAoG6NhHYjJLzIS1NQtKcB0oUTSmhvPgfYjgOiR87Tiq+ftW2zJgVJyl014GbrJ6DNPFU2beu/XN3BfaMyWi+1bo+2iYA67BXp+0Q1zRmLvBKEBWTyQua16kQmW8xydrVh6JbMhbm3+tWsQ/8gs2lnCfz0vBnmPkzaPjVwsUTNsHlBkmjBbuxV5rRQbVxmc94QwVh6HJCj2oeZR8v8alyoZvyivmpP0BsrSSG/+optAUek+7PfQFgask1qCFpHd0PhlJZXd3oAWZ0BSE9Upq4eKbv6rlA82ec3RlUSo3DR1jBZ2jxPe71ZZ+MmZhP22s72caylnnN1MW+d01zIFsHolvBvyKmZvKlsCPWNl2hdeYWS0KUpAJRrNRtCZ0VvnQ+b17eDbRJ4R+zUqbS55VGhiH4MADkibvj95SE5Ia0MxyYxSNV6QGXjs86nMk/StWIB0iwypNZh2JJAFgaYxEh8WGJR1YE0LhoprnWt/G7UwQwdEz44LxOBzbQsO/kjskWVCsJqxSO6i0/4A4VuxZOoLiKY3aCTlhO11OmKKuyewQ8vLciMlCtIdy3GpUfrRQBw1Zk3yUojkmsRxm9BM1GRR71CisQM2cuDtGWXaSWrR6d6hRWXIGBFxQlD1jhXx/l1CB4eftwBXsXIW0wKbevQBFg1KT6olgf/oN2V8xowq/kFb++iSgkGPGwPUzmimnMyEvHGuVl0huPtw/LqKGoZIYVsSo9xc3zzVl84X6kZ1bMPkII2T9BqvDW0xkW5J6ZUqA10YYpQMMIVeRg5pz3qBPszC7OU3taY+YpSzKOAB19JusZ4O9J5Wpbv3NQTGBQpnHAG5zr3nszKnsJ/gEd5DUq/j8iWEKbMGExXamm8bFJvZNSpxszm02kJ6Rz4oTGPVZ/3R2O103RLLf78jYGpM2OiW/IfUxtEgVPVcZvzo85qOr1NO7ZelFDzqGBb21vtO8TBMqUpmmcnmSI1MAcOpVzUsS5sqmz92i2PCZxurlzY0cH1Vm9dEd6Ah8P5ztbUho3gUlFXNhVFBeEWAhnhyqyuJPtQdJHSedthMkxKWu1ipnXVgw44VP91gh5HdjV2KYJtrswbNnrp/xpe400Do1G9zofO3g2/bP9Q7oEpOV8dSIKB1YIppSV7HzgsjWx6HKZszZ18H7FmnToDL9J+vQld8YfFk+7Y7BifUudt/KWBywnIph2U5TTiqtclhzTDFLPxpJXHWmTVOitohAUtTwHKgpzITjEkBcVidpwOA5QVSv0khSr3OcMrUwHd0ksVQzVano2VZGe9laRly/1sgUolGM221SBhJlBWDTYd0vOYG+FMVcpzjZAQOBtVFmBpRVormsmmw2C2bGXPkBq2AvKl9kOMvEsFw1Ky1Jki9GfR01MzN32dQuYwcgbqb4sUPEgSQD8df/q8MhCPt5sBi+2bITGK+BgaSFVl+yDVn+5fDHhgy1MXSPtna9p6HN50kxr5p1D8+QGHOBdqrUuE9jC3WYnjG7+IH9WOHUk/4wXa6PdYkCq4PBQw+8FCx4C1XatoRyczibk29Kd9KZnE6cyK6dhPwKLOft+Xa5sI2GL+TF0WZlwSMimxjvJGdi42UYo8vyRZsyycVqwlunrdeHBs6k30IeQtZL1ooiAA9/6z7as2Ziu22NEO9XzVH2/feW9DgmWrxsBkZgoduwFkKXPhJFSxrMqYyNFs0m3esqjeDdpoclR2T3ocR4OFUqNnImubiE2xBGJt5NvNBQCEFrNMo9GKRKAa/xPz2HKuFV3sNWy+qVLm3B7mylXCkWaxCxOZGfLQuRxk8UhBV2NTG7K/A6aUr9AabHn27MpQLYmM7I7d0UIqR8tVRwNtamyiwG4ikss6TJumv3W51ds29QnAQ371nIBFVhpld976hhRhChIXnOk6FLSiaZCWBa2XM49qNivL1+shITdg2eJa1/X6eMVvr+9h0Pp4fQQXWl+qDOxGOBk0i1AGul0mjG9QIqIhWy8DIGmRi0LAYfLAFdnSLJidmQWBBq612CkKqf7WdWWSNekiFKtczwM2gHgEAAaIaxFXrBfjJYckf1yKR/GI/qz1wIkong69Xm7X64NazyuoJ2lPxsDKJjdmXC3ByUXpAYVwPRfhMGNPZEWQ5smINJinUzLonhUeSfhmxmyWlL52Ogx1YiEtrYaSl8z+XCEQEbSKJuwjp1XY6wD6ari4MX2jx8LDm93R+ndUTF5U0i3BiqqCJh3xB3pvlm24uzFg8n5rqxnAPA5ENUqqOdoCjKoadLRc7ilt19kJU5v7Zin2V8oO4RsyH3eEyol9pOifaDIt3tRpcWCrfmQXWibfWjXr22glN9IgLLogOwJ8h4Oow/3F/g3beeCknggA4NomRU2XlSeVSLSt2e00GLj/DhdKNB9/YgxcqGAoWhTVgWgEQxkBLFdlyeZRNQZjtletByi8tkx0GbAYxvhypY4umglk2kx73NjmS7/RAx1iY1YHVvaMKhLH7Oxa2tfQuK9E8wCrjseTy5MBs8ImVbVq6gKEkKn1egXQ462hyMi7bYMlWaUgKzd0hYkrrFzYQM6VU6AFV/YLaACVlSaM5liYgGVZ/SEhcOdZ6qxslWVShNYiIdVSFLldhqP4tU45r7FaqotllUfZpacelDMsPB57AURULNg7JagxbSiAW3Fj4TYPl5WEyv4Dk2lmi14njgIh//Hc8iz0WCkqiXB/PEK6v+J5gLjvK6O7nqfjGWBXndyjpDHaMifvW2Euf14A21eczRdspfpgNqokM8gtAz3P3sxTZK8le8EuXC/a4y8nPbAWZFrV2wpyxfVF8Xq8PIcC1iMK6yJhC2YXP75i4RHium6/SCjMSF6P0V6uf7aP1/Xt8/X1seL767/629fvN42fy+5nAbR16UGeCwislUfyXSKdAYVLnjU+YFUI5QkELWNKlEv2m+gg5HHFxR/r2xNSMO7PFR5BWPha8cL1aWmrkpdf14/LPq5nMcQVt1a2bQ4KWBAWs8oN/opljx4thSwPHJaHPMLvBxGuJ2JFdDZMRIRJul68ZNf1eMDWLYq07GyyLucC7bqAF1y4gyYjvyToeekPjyuj/qa4+GRu3OJSnvu2nvshgYuOH8+SKyk3Y76L4oqsEtMToiy4RDOE8VFGhMwoF+GwQISBC4Ihz1F8l7Ewt6ACtrJpdqphI8K4fEW6LxaSk9cy2DIjwtowFwS/n4zRkcnd1iYXjYrHM19i90Ur+y2iIh8xfphEl3l0Td5yiSQjW0GFyShbrLDbYmdr6M0UaA2a6bZg4uQ0DIKZTOcebU2MhVSuniDICHVbCKaIU9kkHWZptUnSllESjYbwGx6oBA6zsKV4gsvMFqXXSy9mSL+WiGaWjGaRJoNCadzvRMF+9ZTaCEJLg7x6e1eBPg2p9rxPMUm7My9rcd0at60QjsU7db2q/eV21XGycMcGqK+mySMgyqx8B3dbi0OZ/UkKSvGYpKRwaXEgW0nu1nMarN+BaDSce4M+qa+FsujSRO2sJFjsEqOfdWQtSbun39yTg8xK9WLTngez+QJSDM4n+5/CXNoL3bbH3o02Ytv8Hj91+vMktbgsDNUWTByFmkpfaM4w3SVgda4tkopc/V7YmV6mu/b6WRT4mUVJjslcn95FYeVpNAVRqyGN3IN5Uo0nrzvcIadcQh5/JIvIrYuiAZFyBB2g4IIb/IlH7nXiPFR5FRGhcMZDIRs5INy1gZFmyzirTSCtIRporFSccViBylSf7Kd/0AZrZXOWYSGzCIYb3EOxIsB4axqVNJ2nvWMwsbHgVnG+yYxmCpmt8Cv54iJf4Ybrtew7Pz7X57fLXis+li1FhId9WnlqctVTxYPGEIlyNNiVjuiVyVjjm2ABsKSWSNV8GSHh8qDcsgtUrqezylov1TEUhgjYWh6WyWNGWgQvhIHV8kARyRQmZ7oX7P5SwACjKDngeQpUSPG4HjgiFOZucIfCnksGDyAiXHjs9mKYANKczQ2srmmE08wcUHgoPDOY0ouH7CrDcmADgBxM9/VacX0+CpmXkywIF13GqKbl3uaTGZYiSFY2YJoLBGyln8eiHNhW40KFBMpYMkN7sxhpZ9mKzCqylc+wlUhUrc0UVpXbXo7u4kXaTrgEFMY2pZEZ9ilhD7/X9sXTPOFYuQdVq3vI7jwaS30YSxy2vQ752464SYSa91FtBlr0bblXLkJJ1v1roRIMHTOpkepUW2hD2SobqwbQUdZ414v9XMoi0xE8lIdJlzAzbHXV4hfFI70qiTMqd6OdEu29z6+cZUgtglTKY4CQthPiZ8v9WMqyDCWEMuNQLdlGFaUxrRJPZTeeO/cWbNDcAEibLzo5k6queG1d0hikZWEemm4sFbeNLVn/JU44YMRhzQ5SGydwrova2d86/VSxvcXa30B9rx3XPUudlnOnxB07WCM8X2zaOpYo/WeY+GW7XjrLpOmxYyvsretR5l1i1OZ+GPY83vszNHWrHSO9e3zfxaM6ZT9pSDIXMrEsAuJOoWOBqLCGk/2s/f15DtsrXPetBZ1pbNrowe9lKG3UhxugQTQ7qGJmdVa80YKXtYudRUTWMdX26fRK1FuZMlcB1v5/LyWzeUOTT3qtPGVJUR7TIoHE+lnEQqvQ547fkApDOKjwgDtuhK+4nysBB21tb9TQ4HjFqigqk2itWnSxIKCGZwCmLQzkEaEEaEtkXE0LfUE6oRjx6i1i6o6LzD5ClC9boJFuBBjO4tosJJ7RroRQDlW3Zy8XyRgJkNxNbkbEneRjr4J3k3XR8i87Qa8FIhjMx0rxrHhgLltrPbHS/iKBPFAJALiq65mw2DAftcHIOHeuzwqZZZmIcjeF9DQQ1gliANR56G3qtQUAHPEZDdQ/2LCZb9s145ysleSO71bsZNiopdHJo81XWwqXrfPu9e6A+l5RNLu3onzn/PmttW8rA9YXtc0QHs8pUap55v/4qwyINj45VWc9rVLCNMSKWSSkI02MLk44V+SX8CsKexiimaJsvLFO0Ys2XuiU4S2mR+a8KeA95dTXP22NdogUWyK2w6JUcL/mYJ8WJ/P7/HnovGNpBzwc031bjvq3XOQpe+czbsqbpW1zpb9WwYKtUvJH784pqPdD2fyxB1MamKdC4Hxw3rqmO8HDFmjYuoEjpYapflqYd77Ir6rUNcDhskLRpShsEquGUTFKaIi117MXqS+bo9N6dWuLhif6/5uUa669/SkVjh2asf8JM3HSWWoaJ+rrA386iGa1vatCcKxe2R2qW75VqwaLtRKZUQx82Ic0HFClb6mjH+k7/7QA6XeL+8W909lc0ZZSpdcuqKXuccM0MPdf22hA+Xiy+sGcg7KayYlOcsu+eC5/cN/m1aAMkAa+zw4i42EDnJPEZyFnVG/TBwVGl78CsJpN+79QvewKuoAJYyS0k7+kMJeh7W9Uj2NQkTYe0DnZcnNnAB4RLveAl2qSkJXiEYGArqiDLczI27gqSD4puePURCZVJcFH4R1JEXb7RYFwVR7+QzgArUHCmTTfqS3EiLOK9mQvQFsGLS5lPbcUKrfA1BaW5CEza5inMOJs10+cAgydDUtvVhmeLlWE1gyb32cpmqc3oh7zDe/L1XRTbZTHEkVzQcu/fla1AhWoKTjCvndPqzWvkjC20aVRB5XgUgClv6fzx57/KXxnTcC5k5BxgNShBlkwM/bcCIM1AaXiMGVXUwtko1SYTJZnAddkC0RTNJZjQ7IjLJ15IiNmD6VxodFLp8w0Ob2hkPwk4ftPpkbvNjHmCI4oc7sZGsZnT41eTWrgT//Wn5ZQaBkIKCgLWO0LZeVIGjO47pNPzVufChOq9uYDCfaPNKwS2x4Jef/+a3i4/6xQbE5s32BAC1QHa7wb/GzgkldlswTbJKe5xzsntlW1VdbsSmtzYlBUk38rpcZOzUX99lj9fNv+vWYYr4i2KwVoN8vsQ4qZN2dTEVI6kM+63gJsHAy3gVx6h7TH+Cd6O2/BppjJKKnrW00Uk2DyYA6ktk2Isn5HipW64fmQovOxfg1dzmDo7AlCpIwE16IW7Yp1hWUonUgWdRKEhUEQwkzLMgG3QcMgrB5euznyFMiBc0S9E7awLq4Fs3UAnlBFNIaeiMYmJUH6/M9avM4LyeME3jYyhdeGUUT0d7ezohks83EgGFaRM8WMj3dqXS8aiyazIFlgdrgMeEQmhEUEIjITNeChgClu4ElLVMIrVxCRdels06QFHYLZrtfxKLQYHu7aDbEFFowRPJoiUdEu2MrM9Wa9ocHsE4x2WEAETWsN+1k2LmtVbQRgZmz1J3SK0cGNKQrq+Wr92KPKZRmplx/0jw4i9X/FaunDV52N3LFz9XHKUnqmxiOVnIVIBuijUFDcjOxx1xCurqZFBvOjzbNTWqT4GPFzerjG+KsnF3yapXjj+m1w1178IrdPi3oYaEuj/nIKbo7kmbHioJv9Ro0jWPv1NorZDxyMc7ze3msLeGP/t/m18j3exLFsCiprIxAjww9VsZV5kdNPqAcJA/9d50IbFWPL1xe3MShkx9Ud9D7nzA1kepY9xQFKM/N81Ci8n18bTzQK1n5fTf37SuLtivoCUUlubPnU7J1XUuNXHirJ+Oq82SQ18q8jkj0mzaeloTe4rS8CzC4bxahZn15uL4Lj3K0vxrRAVEuI1sEH4GznlgKKsqTY+jU8m+G6go/rsSfAbMjBOtJI4cg2HwhGQNltUQpFrDqZt5pRWy91mcKDtaKHZJAy9CUpz9NCjZKFRoxV3UbjurBkpX5Ps3KU8/gYmj6qwL9wRpmgYwgUTYQtgwxmXP00lDB58wMcFgoLsfd2EpLcZxNVRlhGweSQy40Q/Mbz4HF8OZzxj7/b7z8evx9bZ1sWiZlX0RmhgrKK1mrHhyc4GEWHvU3aGrxaKqv8AECdRWxY11qya62L2ctiveQmipEK2LXMM9yXWZNRRUySgJe7WYhSOCIe3dDjrqg4quVELGCZPpmBeCPxSgbDMpCrjpjKI34EAW7MNmvKJpUMZPV4VnRkKngVhhvBjNkT7JwfadkjPWGNC5WnZ7MoIAHlIlZkRjwiD1CKPLm1NzKy4lKZCzCAqZnqBMLHJ4c+MTPjmxDTmL5gQyyrkiy2FjrtALWa2r4uqPOJO50/M7wTMTWKGsFcFbVstF+WXhZmlQHwbtUcbqR3nbmzh+YdHiNrEd6s16i0JiT0o5mRmkPyz2RRKem9jKZ1gZY4Ik8t7UxgsFs5sIKWx9D4zsH/jp48sCsquQjYWOLaG1L35jaD2ioGCbG6+B2noqa0rczj6t5TO8kwycyWpJVST6xk/XbFZUEjLQ9jyWw/GJZlnUvSVp20zhFN/YCspXy46OJyS+M/TFaygEAaFKkypUlibl1VltK54wJYIThAQOR9BptkdgLjLTKQpZ95T/YXUis0UcBQ1UiGZs8aSj+2t6Sleo6QeUohlKmx0WdtpRMrUEftSLRsrVEbJhhkdTZHvdl0ojLcMvmlbEY2AG0m2K4kSZBne9Bs7JcH4/kbahOmoaQoZ4b4A3xA6Vl6RNNjDg/J3SWvw2tdEcDjjyrh8pG74jF5thacIGh3N6ZBosEMfNrHbhbIBpqgLZPcYORaFpF5ABFQFplALlaGlUDxknnZQEP1IuJaFg/tFStzSbKzoAlctmikLWEdSRxqHAcCIX4oKENYkHJBMJMslHdCwxaSpH3qd2bT8qiUJ0EeztuJlSZfhLj40IgQwrL3iK7X4zfWF5bpD3rcr//yt//0X/7fv//hP9ZKMwcwLxrwrDqKAEQF/f5at1bmtisYtKbfQxiq6iyS/Z5QEXUm19GA1TPh6+NlXN+QfSjJoBZhHtANhhvjWvboS85wyi9p4clS5ohP/vFaj5D9D/zLb8HxCHA3yFax262Vubm5OWuFXqt2FhUoJ0gYsss+zIJPGCCjKRwvkEQAr9QdjxZjGYDQMkSWaUBURt9Bv+hEgBYQTHR/VTsVZSYOyKUFxXMR6wlzVwAXHlhSUammZ6nEeQO4oiKRiDJDgcjTnMrc6j5weCtyRywljC2J2g5UXhjdSE0Os9iGZouGLYNKyG6LJUcVnbrYxI52ayfOHbds/r8PJ9v6790GU9lgo3lVmdHbljhl86CU1gK1AHks2Gl3WteHjzSe8imJ5ipYYaLxtSAL7+PRp+dGLYUDWP7oxnO7CHd46qw2oSK6moECAsieK7W4HcpP4RUDwKE8DWnW5FDvbK+bskBKRFVUoua7l1GtPpSaQS25SUtNnDfMVnmlocbhmMUPB5MfLunIvm+tMBlS9YA2MMTA4iVf1DO9zMlsw5ZbQrNudCvkCd3BMTDrl86kTtJu8NIV9LPhJXbaTFED1Jz52M5mK8AgEZYNi0hgUZAFm/hRjQs2LVcR8OxHDsEg5gkzhYSSVk1LYKdHVA951MFyybsVL9yencNuVeVhi9UueWwpM41xWTvFiMhzFSK9dxFOGfUk+GqfGIJJ9MxmAxQkhx5Q8gePaPbYo4cKPR569Ahc4QqDPBWwFHz0+PJn6WFEeISyP5YoZPa1wcHq6aiQ080pKftOMLskhsuEtVLbknCnk6ZwhaOd1k/IYZ4UkOY6gpFZ1UWZY5TOdqGPby8XXPEUSuSo99CyXfmCXUnWtoKdVNNwDI9Amq7PDLSkqFGkC/aJ8HAjGe7mEaIh/Cm4g7jhcdkHfw9/BRTuepzxr//y8d/+919uimUOT/SoZKkoGuimjAyHl38joO7ymh7FPo87+dOCoCEc1WulE7cA0J48kHVpLRqWcaUvXGIsC3kibY+sh8mqYc+ivXXFXark4fIElHJEhHu4nI8YHmJkGQrSjJRn6MaiXAthiKAl46SfGs5whUQzMBR5ArOALHzhtfihWCnhH6gOdct2ICUOW/K7rdTvmaonhK/0t3IzIMxsMRaAyE4JGadPOQhbhMsft8Wwy1xCFXqMR6wkJFpWnXI63RLWplnapiX28prUTyK5qm7m8PClK4jQCW/LYCjzV9vkaWmlfeIkRn8yYuVgo84tJ8vwV/UtlyFThzvqwbK8M6E7oy6o/MwyZ0sibzv2eG2/u9qG4iii5tkZ5DYwmTbHNNdLDGEGyiNAL4/dLIiycV3A5SvcRT4PPSoJK8Vf1Gkydb8clwKTCxXWfVKVIajygaobcZQ3aWvUmtBGO5xkge1F07kQe5VKL7XnjqhDoefNQUETGdiPad1/eP2K3rj/y0D3WKmpfwJMZxH30XSq8Uhp5FXjROQldazDcFavIBuxJJGUZ6XWpCxidWY52agVag/JIIpix333zUWDe4nsu8O+/wEXOy0hOYOqnWJVN3YmTi9dO7Nri8ZxnD0bel/bSVTUU1n86U+W9heb+dqqzu++ZQ5vTw5mdm/JYlUPhbIh8iiGRsyOECyizkhqfzE2SQ237odOFCAdcEMyuY/TV3N4vMhgyCkBE5TVMKho5lrt68okWVVpVR8XV1swM1b+k5U5QUTVnR8LVTu6QIMxjTGaRbp+LCwFoprRSCBKhDfFtHumlnlkA4IRHleDORFZn4PwCuhF+A9//rgVj2jricOXt02Ljj4o3KvzTXUUPoVeKe0cA0I0XyvTkOnIkwSzYk3h42cneK3McxbIgL9IKS51FDBIi4gr8+GrminVggyCu+Sx4OF0dz325Hke9Cx+FfQQzwMqAiBi5cCNJluaBGYFiXAEpQtZjiZelFdaArgYzNZsyXiR8a3IwTGArJLLbI7UzUth2eA2o8hsP1yKOlthXBBo9pVe7JYlI3EzMY29y61I62ddXhe3ED5CI+OnYgskYBK7YKq02xKb6ryB09XbAmwMsS3PTh/qvFNvFkAb/hdOdTGym51EoRGaaa7uC9hjGMFyxFFLLp46Qm+aiIX2Syx23YGlmkvLj9YLCzCLzIxW9baWfX8uOniBemV/1S6e4gJsrdBaa0k0MwbNiAWs8rsZaJKqxF7MYgWLc46nAsgtE64tjQcZ1fTbFTKCuyW0KuRWMrVhxkbIdfFYXDrVOoag+La1W1li9EFTUye6o8tWZ3SBCgwCAGyKQ9DqqXdoVHiDgUxDJIDtU+cM4/xruKBm0zW8agFZC1EqrQ3ClvNtUNfNBrmcsx55V9yEySo9l+c9noDGoSNMCzKUCm7vURnH7VffK41KXm1IsXXpaFAWZKz7YC7of5oRxuVhtN2yA1CYoqpuPWjmeuSQ4vEwVrFs5+zXHu1Rvp/x22MajG2FncnZ9V4YIEORIKfhmsCJhNKGH9S1RnkTMxrTacqdEzCetRE0QvNKxICS0lMjp1Tnj6OEOlXFpQOqevvzDqpOzEnQaeOFQvIIylZ02mE+skenprtshhERigh/3N3DEeYx4rLgpgqUoNRqGTaJ6Ubt17TyYF1qNSY8eoWiIg45j8ySBG3BeBkXlvV5BGbGgIV5KhCEWSgsu0lXCjgh+SoPUXUn9XKDuDNkEVD3LTOCxliylT1UaLxlq3M+N/A1ZBCNQ3DFdHVMiMM/yocHBRi4pDyAidXxQQqTGdC19IWzuURxWWQvimopIKOqppZooiimyuzpSAIvPjptnaIJjJDUiN/3bEiAfRyi3h/RVySybWHUj6h5bqh8qO5asDakR9bMtw8xeZgLzREYnEe+KZYi12Y7dlog913fBrQvYMumDciHQIHGe6UnDm6FHTCloAtImuzgZ4Ktzpqq2x5Isq+jPpQVcKQ7PbL4mrUy2UG31jrtusgK4lyso5Kg1yrncL3Xtswm6FyWWoq9xIcImjX/6bWlqAo+b3rY2AtoV8corn3bfdOGfZjNKMfL9mPXsLfHmEAV5XHr8j26Ej1jqe7hjPLLZRriydhYAjWx6jXbTm7PIzGxiIEdKrms7IJYAi9VT7FBSsLWaANQm2KaGUvLVXyo7jD5hGClhaMc1q3/I4ZOf9ltDleWZyT/sO1tA8qwHB79s/0u2qhIVfNIt7JRVE6knvXAK+90Vre+z7Ede8pTfWR9GBiZxVWkyYxrUabO0y0t0tKok0FodSZ8p11lz7jobNCE6GzSLDmHrKnOFNHwcshtMFYdvpj+1yEstLehDQWryqK6KfKQpm2No/0Nlo0aMu3BzGRmCA7rNeOEFHgsMhaexj/zIMNwRPmRQ6k/uNb15N0tzqPLmlwRs8kphJrcsDHWZoRha2LhsYJI8pV01P1aCK4IcK14XWshmPFYPkVfQVtyZgdWuys6FCAFD7nfEYIRUgge2bCkUU9FkxJmWRtE1VYsTNmnYlksQk6YVsACF2DBFG8hwZkHOjzLA5J7HgoCRqe3Bt3WwOhM+HTiCTzZUkaEXYJWyXITODHWkKoHrrKBRblFlSb+9h8Fi0zKmE0iO7n18MkNqaHhbyJStF4ZDmi1ubX47Oyb+fMG9bW1ezOVWo7vCzZI19xVGMRarIwSXynexgzcE2hbACXM54ljvqH1cjWPOLCKSq5iiqVGAByTKckyEb4TQLRoVvC5/aGRLlo85u71UHOCjkdXhLss3Cv9sZ0w+dj2GPeQ9iJqx7W1MY0EqcqQtgt6D7x3pCTFkdyJXtfZxUmH3WvTs2xtW1gh2Gvf3uCpINmqZNPM2xg21ZSvRqojX9MwgFJcdqRF2+2qn/7hXozKSq58GI4ibG0wg4iSzXxfJ5SKL8E8wy3jDmofCVtwvwcTkR6oCV6Q3UZTBfrOPXsHNoE+Q/wgKDQX2olfiYnrdHCka4fGSB6netuT6rTQVIbqhZlUiDejXGqbYcDFcIMAICwiA7URhTIEVekqI3OemyOQhxCqmao2v8BftZ7b4FbK7uEMRrblquOatGFM1w/bDKxZpu+hY88JVAofJVnmHdXGJN0QyHOUzlLZrrDquPCKFqd5bBCogKxZrBEPskmUMr6awbJKx7RyYKVJnmMIdoJ/52SkRzyPCIDC5VmTBFUcTuzUXqF6lAG9YQXUgGl+NyY8Mfwp1Vm7WCQRtDuUAYROWoEKzhCw9bKgrRWWfVz1KE83rCbXEY5dAFu7GwpPv3x4NhCT377Mw295WMAXHFGH0sSTYUSFYC7ZIhavFxecH/LIVQQBxKKkhWxCmnLCjabn06pgRsys5+weZY8/Lzylugz2pJyNEFdgLYXIJSKQ1JvWJgsCKgw0wWTL8PQyBgw0U/phqjt7cpO23uWWAUQr5sMySkxp1mdYjCeIrQlRW7tF1ZFkkqx+2MU/2ykjKuuBh3cqFQLftMIJ0ZRne4+XZDjtkBYzPJ3D/fnx5+3VkpRlemADE9SkjxuNeYZWLwMUSEjpJ0JA2cMmENnNLHNEooNDJOh94Esxd7J/+qljtP6AFUw8LRkom3a0iZiCjIJ0naFb7FXpCWimoEHCY87PS3vz2AtzKoWUNGO+1juFFg7sxfl/kVe7CNjkRjL9+QxjnZcaBDoRNu+iQ5FYk3A+zpoM24PUQnUPIR95YrjRrLlGVufJvaPIopFRmuP1Hh166qt2MLGUyfZ2lpXbzu3Cf6lvok3bdCgr1iiE7UfIcVYxeam4t/l1wX9iZS+pP8hpajzbSdNEUCuSz9mJ4KytGX/S3P1UdZACAVfosbgRJWuBLAmRxVNDCQTC4e4Rpu48idSEQBts6fNuuCYEXQ6k91JAOJcineBx9vWjMvJ3pE1yXarkwfQ/d3/JNN3ReSocvqj2XWwgWKt3sH+B95dMtrIrEpskWqjmqYLcxbblWcmh1anqVs/QUw3VQRB2rSCxjMrOXSTo5f5UuHx9PfEVCjca15N2JxNDhq8gGcy+vpla5+0iyYP10m9qlr91w6aCmF4SNTu5Px+WYsixFLZikeT1+qS/rpfFYzJkAtaFTkAUwt2l0EMgARQBlecQmXUXsfzr+fqwW/7gjkvVX5iWPTWZxxoAjJBdiE/7xuuyT/5xf3z8cYdJsIeMpQVkLnYe5vsp55gq9iAepxYeUK4VDMAFeBgi86yvDyLskfHy6K23PDEiLbzILmdCkMthS6KwFpfSRZW58FGARxntVrZeZDsrC/qotRaFg1xbaBJmZtFYvwSXqU6TbIE5bWg6KExUd8ACdWxd+4anG+z2M4usJ7NopEIrnS1pWJZACZs0UNrBe347kZ9NaE5Scnn2CtDGgZrRbGwx//R6vZtPNY8pIk7hQVK2Orqlwujgwpzw2ZJy9HUuxySGAS15hCqpLmsjVdqWxS3x+06aG6Y4OuqAJxpUU2zLDcdrjLS3V+uSUc7cliDn6SPWMeIdmCdsB8QMZz+uH1oLNf3L8wyLJgMmO1YGbhd5sjSyLIsVemDZ3H/0X7b2bPcz0B1ytwqecOCgr2Nx1SvWq9cM0msJdKFWLfLoqKb7TVs8pn9uH7bKyD/la3yeGcjIQ8d7VsrDo8oFXQiWhUIO338cPNEXjl8L6OYWLLxZsGD4rpehiaXLa4HSYkfznED2ZUad9Kt09XlWYvJQYVI4xxHOMFZGp8Hr4ATQjGFgdDtm9ZCBrg0maURmn7TX78Cn2fofJIvT0xuQRvjKPrCh+zF/SnTkZnbn+owwN07lcYE6Y4ebC1LCgJ2eUXzAym1jptmxzIv25kJ5kgVrMcPp5cimGRBYVkcZQQ6YUQ4xHkTYWgS5wnK9yhPYeaCVp5Izykyegm6V32bLQaIS7JvXw5LM9PhF+fNad4CIm1ckPULBdcHX67KnTkN0XwEDlgiu0PMkacSqXQlDH0UsRfB6ngSJz2u50uOBy2HLaB60J2NtK4IG8HoZX3/BX9bn6/Ud//a8vv7xexAP7At4eHFl4YnxIYjrAbgu6OtFo+N5oAeMZaDy7N7H7aLIIAG7ggjhcWXzSwO01gtYejKIrawNpmcBaUiQgWtVqUwXH2e5HkqvqsJKRZ6b97Y0abIu5ngTldvPVybYIU/VaIfdP7WQdBkaQNvek2JTmrHa1DZCyez4iiVReepAFO2gpQ9AsJrEkGQmHRbkzFpTbUN1xlhAdmTK/Cjpm1bWfGGLRaJP4wAaS7ClEfu3cfNk4riyUx5hCpBmeQD1Tl1JWV/W5IiNnJSZGXRdcAsuVSVIGYlWrsaOEra9fgjtQ6MKVyk3tTjYYgGjIMtOszFH7S24zVZFWyEfBpGhHSlCD2UMiVL3lZOBnvXIYB67k4ut2uGKSqu1Bldk/k/uNkXaQldESbKYfB11TbPMspNMDfT0wWw0WNl7zQz9s6aVoKAt1n3d1sClA5x1GrrqC2geY+Oen+irtX8l9GXKyUY2A3UOF07TaOPhGimQvqqKh+fX8rugqht78Woqt1THCV4iffy1McmfQfA9B4yzs+ptTh+cEt9HRACuCEe4HiA8FGI14mBEJKzcHH+o43zGsFSRivXZ6Y0uC0Snb5251WaTF59dC6lwDync4U55+Pji02RmyFdokp7CQ1mN09hdFdQurhJl6tDfvLK7Q97ZMu6Sw+oRThoByBWiPBrJNDGXGANhi0XyKv1Eo9fqQ76AavNgiEDAgx7kQiplQxJhBzLShVRxZIxGHr5rZGDZ96kq2vpNEZZt1ivxtGYaqYDNlOUdtuZYqvw4JTdpGRFWNOiApSWeRlZ4uMftdttTh6VHMAAs6kKd0RWVvi0s4jJ7Xa+P7/zr6+Pj+uZ3vJYUxJ0R/qpthmVKmiXKexn0xGvFo8eJCHrBcQHxqCRz0diNG/DnoYO2VgrkBb8TXibZprgP+PNkqYWt6xVVDKdC6e1ayrZcSbCjLXsbhr5UOuwNhLNNlW2+FJBq32WRIcJjn5dSALG+EKFTcOEtOasfMjrksMjKJOpYrg7mALtl1qjzkXA/ObrHzmnbBRtJlHw/kMfbd1v0nL+3GFa3JdAwTI0LdUWeuZQZIG3bVtV1nx3Ftqyg1oAc3VcGSQHvUsDbtJyFGo1wqLWWyrhOua+ZrhCG2KcpABihijchU0sUrQiONcWpxfYnjQd6l5PNB+91qfBW72QbO+fW5fxTrIe8bB/ijXpqmYh0o1kBmVFYM77UdIFN3ke7Gpb3AUYoZOl/Le3UNJdMoE5Cask8xJFrmkKZwVVqstZAWwQ2DG6sOwVmgFqRbBhVKrEUUrbpq2caLQ8F62sLF6UFHDwmm9hI9au1NZeLpTLCMD5ICVNpUZCsyyKakFLnlDiFFB5+i3pMBsUXbmNENLJOhnGAYciq1JSsAUdVAkd7oyMTCJq9wcluS2O99GJ4eBbIhz+BcIVreZUM+5NQo0jYrsqfP2rcJSLPH+q2UeUQTh5h2cpz1mmrUjR9CRJXJPLKdpBGU1ng+TEUkhPM4n041MHEOkzSrDz5lrLiCsgug11Kvskm8oK02tpOXfV43PIHC7nSFiOsJF8ySlF2WYu5kdAYOyBTNorMc9dXu/4VCQ2zSy6Wgaa4shHWtcyUh8GJEMz9UoQYTiQHhIWFU7Gy3y4is8jsMsZzf32J9/oRX4//ePT1rC+C6bK0dcO5cGNRBlskl10f316vj++fr9fr4+vFS4/cdFEmXI9e9+O6DPaIyONds2vqIpV+dQd+MKuOymGgh5LL3O6XS49BihWAL7VVJTNzSnjCEGZKIREV9l9XkU9IlrVfWaVs3CcAqPySbHTfXtstxAeTt8g0K1/yiNC0Rls2pIDw7CvRFi0wmjGF2HYN530GoaF82tAKy0Odm+VFGtLE0QiqtgUqK7hDSKUbPBmYLJ9YQXNGybxo0VIMwAbUpb+b7Uq6jgWXQqCsHsZIxjLkMxUkGG1aI4Nf2V2gD/+7GFGG4GFIZg5dAsQK89gkPub4t+E+5kYP782tu13wZbtR1FUD74ekBG41wKaMEkaHJG9kXhZrtd/IDtQ7lqBZH4xhllNhnW27tdjQTasE/Px6t94zVdydDwk/4QD7CNoGMccNStGoEyazyk8tgBLvaBvDbGBaK9piatzM74j0p7I5AFvbq5pq9Omxv1w6+roVNpO705EsIJNz6vhyIp2EdTk7OUSSDLA2a5O/bKy1A5IByAa2iTDH/zr00PsjKDY8l5rZ9hyKIowrm5i1qaqwgCT3eB4wHmMI8cDzZOIsm4GHEP6ADGfOPFvWLmQ5ex9PVng0xZCxuukLinC6/GleXopwRwGzCqhYFNwDhwsA2FrXK2RBmi0zs7WCK7iuA2Q0OQxaJ/Pch7TeJi7XDJQjWd9w+TKZ1e3JhfSJmBvMYpUgzAOEjbTKamgK7IqpEg4wkRejXFyNuUkLywOWiXRu3OE/Hu8IBFLcl1TzlR1i5LHKj1Lyk+lz6eRwo2DKFlqNFxH0kBymwMVuAANEJjbTDGtd6+MTfl0vyiEtmJcDAHlUe5qBXAyuiqmVsaV4Iu77635Ej+f257ZHj+tekbn1SalGmAlYsPUycn379vHx/ePj2/X6/LweXxHyhS8AAdFfALn0cN2QuCBV/nGs6yv0LLkowh++IAERLjfShXA8lMIYOegI754pdsEQi+UsHNdCsiyQp1GRbWJV7xZWJXi3quz/BoHnb2rXxwiyzXYbYjORPPuEi1HYam+kKZ0pb4ZM8fvY3XP3tirQ/J6oMKQU+FB1GSp12p/se7c79FRDdWcBlanVpjMLjBMRMgXUzVZ0yN6y9YCW93Oe2+CNnFYp0FOf9jq8eQ4IZPXInmmp7B5pWFRRUYQzsnH4dDzLkQR3MoHaiE0lxcHk6jXlAIirFio3bzDWAKoeL6awJUwIWkwCVAKI0fUqKXWsNvJw+o7iN9GYjclXaq0XbzLFxg421PETqHMsJLNGTlU03y6GLLCz7o3Q9mHVc2xteg7wz372QBOxqCzcSKd/H4em9NdunFpuMsxiRxBSzNKauj9Ga08Nksq/GPNBIZGtqxPwCIsg1mVK2z5vnANtvrVyxxedlRDPf2u5yvnQdk7XjVejR4FLlo30szpWZml8mMxWBhfH8K2fGWWxxeW0lT1/skcB0C4uiVzVkcgWlswCtGVmWnlIqnEtMyeIPE8HJCmrqIrJzJathViAnEA2cWCIJihWkXE1IE1vcHkyynYcD5Ota62ntayU539WtRKF6qGUZ10mxzFTpBN3zsF3w/oo+Sv7eK7nYlzrEtdaRtGQzkvOF0RggdIjw/JSf+q69jQkK6MNVNDzmVR2hjJJehCxIlbxEMDXZRdpD5+nTdZOjaeELNgufhDLu1AmjCRUXI9yU3lxvVkplrtN271C9gG4U7Zgay3w5ZE9TkK67HoWsgr8CtBCBhkvhyvbfBnl4Qx74PF4PPcN8y/HszwSyWYEjxeXkYwrwuyBZB+vFy5+//btr98uf63F+4u2sD6fSyYup/3x+kZ7aD9kfN1huiX7+P4FXuAy/iHCpaDd/FrhhMv9gtPpsK/AhQhdvB5bChP8wbIVaS5PXl8ynZNfYVgwhvEGYVigrTRVYASXSXjS6bFF3pBR2QFsZLRl7MjN0XfN9qjjjSt5sLTimLwjV7bZVgrsVJNjxr230q/EBQ046Ijh2Grk2Kkp1dJtooERW9pgLDVtsQxgC623V65K8huZ8Zl353gLYeXjtxYima38BCkPo67BFQoCs4atdF5j6465JYIB19pevg4BDl45hsu9oKdNyZnGzh662mc1oGtbfn1L2h5V979EI5iU/bF18KYi7jHWbll2HrJOm58njN9cZsZxdDWI2V5BopBQIYvMgoRA2rLVjdDa1K51mQFUa+3qopXtTMqQY1tXJw1OVlA0oZTG721JyhkLP3bMFTlSZo5feZZAMjXatqoqkzLG0YKh+a4BbZDLDUzQoPG49+ZG7V4KB5oe2qAFMhcGWfOS4eVyeR1+azOYi0vDNk2jGTk3VdbBaGIjYd3UvpEICpp3S/c5kw2oM3kH573NcU7SYHUiYtayGq0NzqzNMIIm2mCuBr5gzS8LDiLcI13fXt1bI0QVkIeAiGAZN0L44DC1vEEHUdtCNBqtEKA1b0Q5kiWPJx5zLn/IB1fEBXe6r+wLFszgIF6UwMjzEdj4rgiQBHk9SJcCuXAXfQUQ8vCILigHjHnSrqdyvOPbbYuNEXPXAZohZB1ZSDpKBRkjVlgHYqSDPATS0qMrr+Q6wTLFKO0gUUQY10UGphNt76/Kmt5vQssBwKTqnwHTimA894N1x2MGC0mMPnwDBQ1gay0Fl71en7zW929/+efX68frunDfuMzsxRWUYAzH9ZBkxKWQL/sRMDPALsLjup5s+oHnayWMNFuF/myZgHiCAF4BiFc2OIMeLjm4UuirVgFKg4oMhQfzlEwAEplnjkArFzXDK5mwo1WiNI5zMFtQioQqA0bgFhpoWwxV2t7GDarkPaaMdsTEdooRmABf5YnU9nSruWG4drloS/bxEgE4LYyIMFWhT4+udG3KIbVwL/fb20hKsRcndzo1OAlDZda396Vfmqfb2LQAqimawsAicCL1hmEBMoWZWcCAStkFJvbOkSnd1yelWU24l9okkNn5nyWCDO2V4AhqlXK6TuEMlHrDZNe0SmgnfGsqtcsq2rBmBCPGWS+0jTVvjEKuQ1GtaLHh89b8SU9ULcAYxyKgEIyhkDP8eRZv17rjyTj6xN4OxzMbzrFnVrNnmh5HQHUvxQFXUGWb1aybmnYDg7b6+7+8aiXr3KhcyuhTVQZxzfOYEmrjwdT+xW7lnDQBFZTIK2qJJCEIt5iKXTZlZ0eqBLUwWTXOrwYbDfQEAWYD75ay032DiYZYTOazTXjlD55IfSuqqAPPlUV29fUMa+qEbGjDMj0NTWJh/TzvBZr5Iv346VsrLdUzSs+Y192cIQ/E/azH8XABz1PlH0mfdq3ykESQtFC4cs9I2Koj6EouWfJfCRIJgldgF1UZVgoYvDKf1uPxpey5VFoqBYIzwgHohsQLD6JzWOq8KmTD/8ZqpGgrGs+HFFoEXldYa7XktQd/4Mctf3TLAw8bEonoQLlaZSjgHhGOjAFE8ZHcLYINEdMQCIXjJjzSu7WM66VL8RLt+vhcjtf3z9dr6fO1FjLZMftmPxYeEuSuJZJcX6KBirQwjJA9/sfX8/vvX4/J+VwL8My4uqTn5WQ4H+ahFp0zc9Gub99e67q8WlKZ7ApaRNBoEddSfDDiMVwuWzeXXgb70PKg2SMxQha3QJPR1lIdoALJ/eMJ8TLJRSxXgZOss8lDw4qiiEIS2YvSzNayMIfkMtwQGUR1Bg5EBEMmVloCO6jaYeH9qpS1QxW1qEieyAZEhUkl5YEkAGie3cDKvBImKKfIE+3qaEwcyQDEqAVVjKtM8hT8hzpXS53iWdtx6+2IZmnVMl4K2GKcgVC7xMes2AJ6NE9JN7SS3gNuCL81Scr6LrYSsqFV65uyqIzSpSvjI7A295VmY8bae0C9EVbAYAZRYrctLKD8d7lXwTIY+hbsMqS8erzgvbHTviND5RlgponRLcPTRS4NvChVXYspzFUIWGcutSCuotx9Tvi+qVqNqmy4Bki15kkWEeG8PewrnGBk4oqVHNrBsPJO17Zj37+6uJU3Bi3cW+HDSMdOgpw8132WQmUKjPauXysRr7ProBo6x0rpzU81koI1pTeKnEb9F41UEiMBZIJsWNiKLh20UDJQHjNAgN0CXLnMjTybLSp9P1V3UaLKNUShst0zJ9p3lv7gjMbAB50HEWI2vDdhZb0KAQZgmTSKSB3c7GUFD0nUqbaLZtCyOgzNlIYIaLasoYqtZdcyXSZ78qSiNOSn1RwCeShMesEyJ01miUe5VjbYgr2ulz93nprXEyTtWlcy37oWbSWGHT18LQsQa5mNw6HcTqSgzFlZn7/nzuepJnWGoNcpb02dAMIhr6hBkZZmRybj2KpcWT4971J1wqSAMwzhdc6VX0+4LZMEN/dEMREyQO4JdzocGQGPaqeRyCmzLCyeKzVLKKpRFwnApbSXiQyDBsDlWvbxub748e2bfXzer9cyrHhESOZcuu60GPTYx2220mdK6pEtuCA4vv74fL7W465FXs51F/qOkHPhIkIwXHi98HFdwG8fv10f/Ovr9ZeXvvJMkRUZbQa51jIJCwE+v5vBFL5SaVq2gX5RJsGo67quPPoFcDezCPqSw3+EnNeCh3drBSoe+Qrct7LlhnFphWTEMr8YCSxpUYdmkXqoOvp9VYZoRCcpDyE1Lb651TB8gx27rYwNEtlErWzSZJSg2VrF6CkOKgu/Rd6B91t+J6AtKJC4mH10S0slSABpntkoqgz+bNCW5TrpXkP3eS33Tk1tfNBE5x/jNLhGyhw6uJQ7zMRujmct21UtCLL1esHQefSsW3tYVRNI24AWMDNhhdHy5LQsbiBla8mWLTNbayG7Q7M69aAiZMJKb2KqLlMW3kxhLAZstLtgXNCpokf75Hit21jsvR+NWq95f6zAFA88V7DETPWJ1b62H9om6y8O81myul+jsTLHQkqvop7KOQwG1ptRn8R2LL6aECGOwYz9tK3swVXdPhpeqvw+PSOk3t0GZMG6jXDUHJdO00rMwC5X27k7lcyGQYzNYJQy3qgdQE/FZDLZUPHWHc2QZmVyDy6vmY5LQKjn5jLvSbHxQeLR8Gi/07bYTzDYcDNPvyp9bvbuYM6Gy1KEcbxrpEELmSKUwc7F5YBZh7EL0JJmYQNiaFwXsQy8IutTVvak8ErL3ltKo9latmxdyy5hLcugxVpar4+Xni/DZHODtIW1lhltPWa2DIhSm8lVa1nA7OPzCkaFjBp7l/uJAX4sdtoCM+wdUCXHAmJY5d9k74Fu+pkRaC/GaKxjiFAo4naByiCf38tdix7xXCGL6ikWz0suEo8ePouRvTQUCFMwjxKUog8mrF41SFumnBEjm6n0EJeEU+JwlweoiMreJmLJDOB6ffB1yV5rYYUtUlha4TQvS9F7s/L05ywJUwQefT167ri/4iXAAuvmlRjFO7xfuNndcH2Y/Xb99voen/bxbf3AazkNpkpgFw12+Y21LkSsjw/ZjzDainABDx9eQsAe58X1ui+FBxXxiBYRrqAz/L6CHhYP4xUCl5PZ2i38WQYuu4zMmkcYjcvkChoU7msJJmavGOv8tvSoqf24bfT1bxORSxivkoejlKT2dibv2qHASrhku7YxbdKSSp3Xwf661SkN22gYmyXbqGZQTaqDndHf15g1rHuFUCe9DFIAdcj5kbRQ008JQxQflW9tO2+ZwtRWthdTO1VTf9QaGswog7JhfEY9I0sSCVoorVcAlpkQJVEWjQboSrMjkDZBHm9py2xd63qEMDOYsMp2KTHZ2TNqgVX2BcY3hQxdldjXZYmtlQkjGXPLk3jTCSM7s58zCyqhR4KBdDoq6wBQsLTwWcY70r/WNue2X9IKKUFcVmJ7OtCi4LAzs3B9lId6gwimGwiw8u5yb15RW2xFGajTh4Su/FFpnaKPIg2QWJQsb9ltCes+DbnKOkkaYjaMaD1KMVIR1T6qjjhj28zFSmBlvRKtZjfJUsqqhj7+uydO5MEQlKBKLAckmZUuzdLf1IuJIXo3Jak9EAWwOWnpzDrrPHIe7dTIZxsOIZBvVVPDYw37EZ7Z/5lmLUSE48meExJgXkZvEqGtdPRYFWeYWbdEljGskrM2/qCtZVqkLIurEoMQACPr61cowOu1wmy9PvX5sV4XL+FlZnYtrOvC6/P7Nz5/WPosF69rvfz1gtlihPeBiJxCuKStBYHozIydWzeCxUjaxa6D8DyLOA1LpK+phCES4gTcs/Crb6WAP/IoZ4rrCfN4mOUuQVNEIA8wNZnCufzOxKiwF9YFxz8cr7gqP7DPTsspSXkCX6TsteWpOfoUz4GjNoXChBDmVWRidcROesyzwYQBXI2eqMAj2MrDF2C0Jw/ptOeOWAZ+BFYe5RfrUtxA3PHHzfsf9wfAMJm0VhhFf1y8VyzE/fIVTxg/Pv+yXq/rr6/vfgn2+Q/ZetaHjBbPk2TPa9nL8Gl48F2fiPt1mS3/ykSo214Lt9Hjddnr9fXyx1Vp+0u3IiCAz/Oy52u97t+/TLenVSNGXLoflzHzEkMKXinw15JCNFMoMyXDFJDrIqmS791+LUusgzDJqDwAnJ44tqy3gfhJSO1ibFC9lg31JIQKQH00HksxVlVhpbVlTVTvbok30LxNrARfkqSpHsxwjQAVYbmTBINCRr5TvwOo5mAlWncwukw/tGY6rmG7DKsvGtr5mdlcLDXUpUMo3/04WI1K/7uZrdVZMQVmzGA0BIy28ggvo5A9WixgBk5PslIGWdiZyl6V7loycDQSxrgV39cSDY9mggDAq0HOMcVyIwRsyVQ+s4haqazjY+fslieEYNZZ9N8j5dNhK8phCIVlM4J2SmCt8j6UFMqmriot2onjFbngolG17iZke4f0jqV/kaz+C42eNCq8LGC0xdhEoDYZD6TZFuHK85PbJB1yHKjWJKttDXbqVA+CVUlUwwItNzvMcma9z7VFpbs3PmhuYxnZaRxZFXIR6CxKCuFlx9SuCgr0YQG0mitnlNYUSa5yLdiCVVuqHKdKUiPC2pomqiB2w6JgGNtDxUWtsKt8adkwAQq38FzizljKuVzUFZ4Ws3FxLWqtFctky4mLXrr5EgGYLXt98PPDdBnkAT5KOjFbuMp8BQjYen1+PNdar099vtZavKiPy9a6XlqvFz7/+k9/WfrxIk3rtWxd9hHfPnldf3mRK4zrtYyW58omVAZe37LYamVZJ5goPFv/CLBlFD7/6W8f62PZ68Px+Yn18fX85vDLFuMhRJj5wxAy98Yko2cJchaSRZ/iI5p7G6b2gErFp4hFN+j5MECEM6jIjsNg8P5h38zEZSuVeopR0YwBIXOTo0LMK/1U6Gw8cbANzUHFw+eSHn9MbqDIPrtIjz9Gg2jXesFWOAG5Pxmfft3mzOOBsxqPIdMizSli8aUwhMJ/fPeAPDxLQPRFxNePCNGDpuzVDPD6/PjAb9+uz4/r+/WXH1dcH+taC+Fp9kbLtCt9hwuID/uN/uNeXJfHuj5u0QX4bXriyp418gwLRZa0AsEwxf2KJ4+huE3P5enzCZOWMx5ScsIDz4u6hFcsS1+Dvb7I1U5DwQlewViRiXyZ8ggzLJFYaSe5SjSU3/jwOlLCqN9QcAUg8nr9mLyNDLLVuerILNH2KVcbjZ1d38ZHhaoompSSPuVP20pk9MFVNvqxpGzmbyGT9VZkxwS267XAUOkN9CdA+1DZlHbgbOurVa5LgrAlZgYdzVTB5lZ4dfonJSVMX0ncQbIPmiE5KTD3zT7QrIQsO5Vlg5z8BquTUJ0AnAqoTXuSeaaKxtOeNbeFJ9LUBaya9AIX29lRE46O8IPE0nHQS+5oljTXcWS55mVMqvXH9mEUYEK6ygDm0SV5dYZFEthnNmjCtHRuqG2J2otU6ma0qR4Lf57nMT4IPY6V9bxzAA8BVXMDhBCtdUZXvvtq2hBB0/dWqFFpexvwdOi98M4+8Gb7gtIRXz5bm4SCNuBZK0dYtnNLPmiX/0GtBQy3W6CtTJrZU7o6YGEgFM6rwG9qxWrGxGxRK7gMlvmJVVlTIQUAigh6BvjDLY/Dy1aNFpHFOAHwMXDlCUcIK7qujNyqyS4SCn9w0wR/4glG+BW+liinWEftFdo6wOF4pjqQX9a4Gi9mXZTZuogrHXnlSRfaFQYolom2ruu6RFtr2SKMqGamSWSUvV7rWlZxGPRykK+XdazHjL7q8B9moHoZzXRdZqbpYiok0CGz//P6sJJuMLN1vfy6tGxZ0ILmJC3qWHvZutwJy9zjSUC1QnPfviKbGrlxqUowBbOHUPhCMGSLSj8VFB4PQI/7pWukmgbLmUVAsEwnzKQ0jj+wiN3FhLWgVdQ5HrP1mESttODqWPcAPFa4Ia51xboc3W5LpBEuQKuaFqLPY/24LY8tIAn5cz9f9+9feh5/VkhOQQbqMYY8fJrj076tz7/Yb9+uzxdfr09d/rpEWgRBv7KH3HhBSaPF9XF9l/5ym/z1+YiXBxTP89IjpwAnAbkcpgfXR5ZEm11x/cB1Pzf9RsDd3J4vfDzPtUhZ+IJiLRnIdTnDq42hveLFC26eqd4OuYHrIqVYWWRZkodjD/Xhsg1YyvBEl72lDRoquRloB+Y2yEptpwbP801SMnTCbKrXslXnCJQyejMQrubSSsQLMasZxqAc988p2JidbjDj2EqijY3Sxuxbbf7mZv/2tLdGYamY7XYv9NvwgbWG411kasHyBcZjpebH+fTcZgxkh59OYYdUEpBHtTFHDpFsf36NYfRvCviUQj16deiSOLKKrh2K34qndmacilt3YFvbquUQUBBL2LWs/bxj6XrnS9Z2vGBIZZ4yugZNbv09crGOtU5kovaM7LIJnDb9Xp82+3rHK7trbPXGaKSBMehlL6HefqBd3zjHPlPgfmJmoasznjhLSsI6Pg+G0SzAoq7BhaV9h/4ysTGscU5+EtksFSDCIqz3EbOH2/JN/AgYtML2qgFJPY14uoSvWFTRHmsoQpYdyM8tVrWIVZQ/VXqe58ZNCs9X3KH1eECXCXoQWjFN36adayEWsiPIZmbpLTifp/qEWQiyJjGUs1FSudVIdKtlQHXqzV6ivVsNvRsQ5d3SRceV9XHMdK7DA59iY6PQIQsyM8WyLic8IKYTXRFGyoZPrVx1vlQEZ4rMZSv/RABcFj0bMLO6KqSW50w5L3nEHesOd38cnv0q9QQC6cOycqGkzmfhfQq+UhaQmXedXMbqJluJe2dMAmDY9aRnwovSjFkCtV7remAkgtXpy3RlNxrWsmvRFIARoQDlxPN8/bjd76+v27XWtZYegZCb3EvgZunX6+LH6/Xx8Zfr28f17Qoj1+L1RNDucrjleb8yEbC1YGaXeH04vr/s8Q/gXkvf6EH3SGvJ9KQVJZILDLW4FMDF8C+n3Y/7csYNeiDygMSp4Svj2aV7ZcvzhYsLWNEiPNzDLZiNS4xnhWdRUTF/ibEJBW6pmVQeJSnH+NhsuaVq3WW0boeDW8qhna37NYbt+2skoE4ViFELyQ1ToCOkF62SrAofK6kL23Q9uvpsXmxbsBX2nhxb5W0WPt4urplb4EhMKs09JhPyHMxLAayM2Laxn7X85Jy71sPpu6aIbKcYjenEiLTJ9gBY+qgrvBpXXCR3+k/rqNYt3GuqPXZgP3+jk73pGXtP66uPzjjv0P+0OC9aaPrI4JRgQSrSUAAsa+IESA5YSPQkYWVYrdceZhZAt65u2kjzJv/rg4JJIkVAb017TOfjHmQL9eERsnIgZ2F6bifmGwi2AUE2JhoESJALRCVv56HBuRujN3Gs+SDENpphFY/IS7K59cR1c03ZpLnVTl2vykQjR6eoPkDSi9XBvQPMpe6WOHt5jJBdIS+kpa2AU+Hu6pPiSfNHgdXugDSumsKLe8LyXmamZdbHABsCBGzZurgWYQvV2u9gRNUm0cLWZWst2srs6ubHqsZvybZRd87FRl51I+lEbLX9bdU+acGP68LYR0vVfKrNdj6NZrTltvaKG2Fr9QkG0etJkNozEgHjelSm0SZCk5mLVBiWPQCyD01aWkXcnqc9lh9yDt+gAZHnyKchFFH2FjsdAGmaBpDVXoLk8XAhQh60awkCIvMhRYUirLW2u8RwpIeK9MV0ICC9L3YDgBvBLMBWhMfj/vV7lFKBIV6PLA8NIdBoyAzXuq7r2+e3tT6vcMoMeiKM7rbWD3kl7oaZx4NMAly8Xss/X3Zfix62frxAGr98CctsPbhuWQREuB5HhCFolC6DHnu0aHrcaXyyY7gtY7ZDQlUQGCixUseXf/hFn2w6+SN7HmjB04+rzsycpFG184tj8ZzKd6i8KURNc8lLP3N9cymSRw9NVQdKjfQaLYGt9JPvD3k45bB/IuFLAVoSQbfeItCJZqli0nKeqG2J0C1V3rJt6s03i6FUNUvgDRrgNK8wq3PIjBZ9HhCMV39VIBUORnm4a01ZMpiNguqVAspkK03B0quWRk2e4G0gkM0OkEm3afFkENLaUQrkaUic2/aU9vNqSBvz1nCGEvbiq5ya8aZOZ/tQbsNBNyAr20jAKLLj8qaW2rreghIBAtw9JA/LuouSdlyVBj2AR63N9oa2uO2J95hZym8mNa0+uf0GPIY0k+0Mgq42Q/kuEOOM6DBvqs+CgshuQz3SZr4BOCobR9Edew8vv5HV03lMewLI+pUcaw4/1zl/ZC8/KSVq5ZF1QpiyE0Xm61rigizVUFOb6iBNNdxtDdbA01r76zLLk/2wTAvXFa+XsEy21uXLJMKyaGiw6gb86vNYyGWrUgywitdWRs7ILHHs8FoTXp3yifK3sjzmFf8SEI88PNyd7s/9PI+TFUN3OP0x83D5JZRzpwg+mimKOtPjnrWgzV91pB4Nln1qmH2fEHhB9sLIthQceWatEViigU/b63MJWJ1/bclILl6598gyKJLGRyAi5CvC3W8nJN0uf7E8S43IkYI450KrYxBqehXblwB3Yam7lSTZR0jufi95JvggHgAIJ+UywqhrBRRQMAQYbIGWhR6mpQBoeZYvSAvGzSV51hLquWNl7jDc/IrK+jZciMvycKGLH9f3b/zrxyf4eulL4OUWXyCeZ1HK4y0yLdfpZgKXMa4P53fZ13Mtw/XxBO9nOdYKW0Yzr4MnZKQ/vqKZkgr6A6zsUO4yf/yKCNnKPinoo7+Y9Se5rACWvWhxs/ah2U7xVKZK8meQTV8FcqXq6tAe0xY7AHp12YZTZvxOJXDSoBnXcrViJIDOzN96qG7M/lF6Z+LC5XVTTFESR763lm/jpo3jun8bISk7rS2QRsJj1OST24U1wAGjdtv70hyZsq6F4uibdFOf0GFMJYmT1bPVV+mUYJYCOOiMCIfL06aJcIZ7teIEmEeLT87LttD6iSUiCl9o+6TfHnztrdzDrcZPbAOBv2jHPbF8dIB1qmtW4oqac4p7iwx9iNI0INdoodaV7fhrWhoAw0Z36LC0hkzRnXta8UMy5dkKfapkkUOjKLWKQMcOZsHecOXGoqm927Yb7d4vsuiDQ0n193FhlLx+/66Gn1Ib6pxKZrfkAQUItlc9Eymz0U6qwEZto8HQ4ZPR9rOX+VccG3BgpfBKd1LbkKosEbM5+j05caMcqTOFSkgr6iS/iICXpW5mrMY1k26owpClxYqOc0Bh5bkigD5Ko+RWMjhKLFp18kJniaUOgWcDrDx1VpK8Fq+scQ88bs/Xj68fX4+TCssWS4YFE+/ncfdAPJn2m7V0lcT8JOB0D7LRVQFhKbXlEiq/PTvskLCVlmeeaO0NXQglnlo1S9FCJLGWrSXCZLgkS5Mi6wfMSRlXdsSJLDQKRjYitcX1WusCIFtVG519RLP5FFd1LV6rRG8Mz25RH7QpNi/SCblnmnQeyCuP6kzOBVu2VsIwyF10VY2FsrmTsdZJEc+1IMt6Qn6FPc+P+77lvP0zFpchHjIcEu26zBawbC2a4bKP9e03fL9e4CJNXAQNfO6AP3peiSdLc2Wj0wWt10UuZwRffwm7HnrcvEPEugy8lIelZB9QOdBZL+GP0RiI+4/LPYzP4x+B5zJwrWC2+c+limpULjnkXK8Vzx8dFs3jZVB540AUpEvtVQi6ttWi2rapW4WVHlJ+WKcMpPlQuagjlzh24WGTnBoQe7tHv3GLUmDbaCks2m5uiphUUaQFVHfaMj3Fgc3tUlyxZHaJ335oqqox4UKhqXsa8R71fq9Do0JlNn6AlQ6Ur2wHvCmbsOpEx5l1Bx3QyMUgma4FMFjdGzOzfwFci1aSqXDAIIYxWAtPDKAZ82nrlyvYp2D3l1PAeYL6NkFSUKIxzlpma2WaSXssDmu4QEqbwwRBE1eWNGkCZWuCQWjrYjDV3EoIOzQbuESyDgcoWwOAIqrQPZzV/Sz3tPGadXCehKp0hpOe3wTTb+cJ5AJjTteo8L6kbmnZiQPYtqpYSURd6tkB2VrKeLwaJzZ1ohuVDSxKCAckamJlp6HSWuskaFM8j8LDgHCTPBbRLZjYQTmaYOyzbNIzn6EZERFgkqsCQbK6CpmJyf3j0UqL2JaFSNUJAoOdkjg5fg33BxG8ed98ImsoQ/487qGH7o5MsMxhRffiS0KcVUkvDgnKE4WEMtyJyC5bFktENjzMRgApt+AKGB7TkyoSBaIUj1MeT5nJ9LDn9/X7jx93wCQ3mAQhHoTdj8fzBJ97uWc4MU/6I/TcEU8onui1yP0udsjjLYnnUZVuwGEvZWov0vuPtkos+USPreKEpXTjUte1LonkFaEw01qwWEasxTDZK+6AhQMrBT+FhdfHb//88W3929e3v97++bquZVyBtVakN0qxuC5B4HpR67oua09+pvaZBGYLB0YqA5SJ94j4tvxFM7gkB2HrIS9ctGuRz00hnlvwpzLAHBELIh+BdLtv97Xk5B0hX/cfxNcfd/yAPv/hr8euS6R9fcBfZvZpL8Syy/hB2mWXfej67tfHShOMz+W3f9rtWSDkn27hAvzl8OzN4QBelv1rwdB6vez67ffPy9e9ZJ8fAsxeEBLEu/yRM24BAV+wi+t38tH9POsiv/jElacnZzkOoqqRstCXCjykwtYyRenJyadQAkhKl8TKiSxXn4BgyOHVtngcQ8hSYrSPLhtZgmCmp43+Td9UusFTXKWDPLOELbJjBTLiAkO2+xk3XhIgmfRGZqErOv0CrIQHtuYYl1NSMfMhpeqUAbatdhtLWF2riv6plXRpW2xGKYie6xB5+pkFiGwuMGX0GBs5EalI2BK4zLjAcHjkyQ+EOw1LpumRmskLCJo8/YAXltl6rWuBWPFa9nWD9IQOZR6cuoudEY5O/R2gkvqYAi7lOWOlBaPQBDMBARnHRcOf1g/7RzV5yMSKDPmOJZbyaHttu4NOq1pUzk4fsypMoJynCt4DZ4GjWn939xAeex7vz5HnjyqLmoVKt8b4Nd5MUiG6ahqbPCtdrve/oJhVfWZjsxnbxh2H7aDc+AGWBYuY0QjSBCnbVKgNniMlrCeLnnF5TfJU9uS0UHUWVOSJ9qoddFKVYJpYWLPwZTUngCW4EAAz269ds7nhVi6t1T3YxsSTQjLF+OVmAWZdiQhGpWTVMQjl0mDG8qqbcz7EDnw+zjRVdX2CpvximeP53PSo5Ai4VvK3qXtXAvFg5VwVtrio0POQgtKclUKm8Of+48fX1xMSZR4LhMEt9PIbvUUGFalU71f5Svde7ZzGTsh1Z+dlC8FwBEIr5FJ4sM9bSUlCDy2AvFiN79TkDLIae63Xky2XSa6sdgIX8fr8IZchFMzzePL0ZvgdcduFb9dz2bWIjBhXsbXcXwZSIawHbVEkwMrudgUS0sTq3pgABHOJ6vBWVmASMvLi9XG9Fj8WkSfwPk7j6/F8mEV2zjazWzCDi3zcQxb3F/D145brwSKuDzNl740UE7bML3wYrrXWZdf6Tb/99nz7zEOHntwNv71smsz1L35lIXUg3XXZWgHmtr4B1/31LJg+XqLFTUe4PLt9fV1uSB2iWNcLpkDcH5JCj/Ohwp2ujA2Ulyo8XPEEQJpka70sYsGzcG9Zlu5njYGZZJ7fAwCZoETGrXBr6OkUTiozsctZ2t1MwKNpB+l4wDK7rhTWqgVgt6TkEXRGu1LHrbWlPdF9sKaio2R9j0sqIcXyRqHLQEryolLEssyi5fuemPpJP7+4o5Yk+P7+7n5TBVHT+4dt5CtYZwxEpgUWWCkZyxIX8AhHSA48zN5w9DrZcz18nseDgcgnRmxNsOXrtkRrqVuST0sb7URk4ApaKcOyRUKAKsDeYKO80WkXSsHsV5/NLfdzkf5x4XAZt6af8W0rB6Xno23IjjKylXY+vz5EaoUyVauIxgPplweqHszsesFVWE3H0mirilr60p/puVERJFiSx8p1VUnRIH0otJbvSPUWNwVqLqj7t5cC4GJYHRlQDWyUATebzsoFdisHtfLhKOtOGZv6GAWTspFrbl+4hXQhi4LU7u0aTTffJAEuqc3N2e7awwLbqXs7VTUsAuFaOuvFaknH667s6EKJHXVYi7pwXXFd0EUsrhW55WYQuVQcZKjfVca6kaxWlConasatuVZG7LhgdT47TKBF9dDKhFNblFLkVAYYABgmVicgvKCgwi0LzzLFAstWJDpingmRnu4gzNZaC2stLGSoqCVj8oCVB4QEEIhqviFCcdmk6CnC4Y+WQLuqZMeiy0/+/3T9S5MkS84siKkC5h5ZVf34vvsaoQhl1hT+///CNXcjXFDm3u4+lRFugHIBwCNOjzD7dFVmVmaEu7kZHgqFomo87XcrI7B0r4Sjzi4CZm64XnjUrC4qM67f/1zfCQRaqLMOGZtwq6wO4yzKwMahTESYqFDNFak7/oT+bFIT5QpYVA7XFpWAzHgupy2zDblRKfO03EZzBeDV7GNI0hnfdsSVkcBrI/frelH5hCvOB0vkYR8MWR3KJR7iOg6zdX7hXL4cBleudLeFiDL2MIsUWWgDSINlQsbEDggK0f2RflCGzQMnloPM3BJQExey/qaJkld3d0bi+YBCxxVaDhqwww5bnv1cwvKVEYpF+g7S3LgPq/rePZGgQgPzknFsa9Qh3ugcDhzapuXDtXCOeFk4AVT0Ke+o1mhuS1sI9S6a1HUiew7yPMD2v7243v90R+qF+c41fzjNOvA3p5IQJ8mroCITPdd8Epi7WUwQZn3G9o83021xugd0khmU8e6xH/dFjNPoX7yDihQZ3OK9ED1oLbULXlDU2c1A4GlIBmJvXq/r2oLvpDJC8XHb/FPc8CeY+c5F5zh3+glBWLen7FhlCqV8uz10DfQz9pio4f0lbu/Bjvk6HpmaRD2XjmGKsNJL86eP9sC9cANljBOpLLJ+pi5AdzA4vrvDOkziiYFzq7+rua8dd6TdVXyUfbxDsDeQXx82A6uaoSDe++S9EveD5vsX314zOTyU+x3x5mC9w82PzzoDvmOhz5+g1Pggq4uTN+INWMxD+7yfMpKzs6dMr/uk9zJxSOQsZdl2pFb9Qsb2lnfY2QA1G1wvB8wSde7fBLFWHqugPXO6+g0+IqM5+ewI7G6M6immfVHvgL9OUZW+PBKmdmwEkKVLZIRo0wpY7MwJuQtojeva1840phMzIrnA8fuy7mLXwCLlaOfcVC7SGfDboBU4gRDDslX3Czh77xsBPaCLhqBZDn2lSTASVMx/VpcimuXfT63rIrxyETtl9B1m1/dXJo9cOh6HO1ETXNoMl+e9qc9dXeR96IdXSvZ371grx3xGTQAWI5tJ2kckwRirHi3TsQ3HcPb7cFEH8PK1d+7Efl3I63VdSxF46HUe3LEjtA/01BqT5Vrpx3Ga++PU+djucEKy5YZurbJVj6H0+KDZEZIilqIEf5avY8chSx4WiYdWyZha2lWIMKpDLDNhYkpc4EvFaSqtlaDFJbxOJ7lK2rNayJaFLtL8lRbI0HYZjcj0Gp2WlRCyBuj07hrIsvlwKmhrxmsNnjYxfB/s3ic5LnKymroUM1feh2uAyY9cYZ76bSt610F4v/q8P4sVmlWUqDd8J+q345k4Ycx8oW/KohyTKSKRaKFd1q1bIU1FKe9GmsZKBeDtOPqIdfSBj+/dh7aTpHHA44amQ6lNLMzcqUzURKFirVRJuoWHMhIRO2eQDlEBw5Bk/31u1X1YPr+hz+WptV1vB93Upz5895+fOen7CZXR+8i7J4PGhzt6u683OtdUjftlxo3r3nn/ft1zEe2+xwMLnf3d6ET9UUnyZKTZPTkEb8ASRE8QnySkbXqViMXSiyxyWdGWCOJWRAMbFARI5kcwWq9+38Udksxn097qxapg7wcraOiziP8+HbjDuftxtH/qSJmtJV5Tjmzwh/pFWZoNktUJrbXnwPR1vL1faeKkzFqMsCCspsKZy9ws3Ezu5jVm3rogRHO3blHtG/N+NhpKvjVPH12bFqxlA8ju7rwFV6rX/4aVzCAZqwdXFfzacqvn4khaBOECLK0X9g4bYD3GoV7ULG80QaRyX3uXbmZaNyfnGLzuNM+SJeoYtk3B7HoBNRhttgXvjSXBo7stGtZoXqFoLGuTNgGP6wKgHGStAh7hDb9J8zZ3JdEWCDsg0jmJ/VAe3LGUx3L3OzGBrFyu3TU99mQfwRJIpHfRHFXKHBfW9caMAqANlAqhzQ7Uje5Fqi4SWe0Gs1Q2tek2ySlIV6x9xRYjNmLH6H4aJOR17ZetGg9NPEyuxxnrcZ6+7HzoOKwCFsGMjOTyjQT3izX3pmaZFSRTpSuipRayyhrmZnbGF1ZVCO1YaVFD/wwBiLU4tmNfKaytvVOb2CltILdlXLeyz+SMdEvQoxpTDHBHCcpO05aX42HBNTVna6zRJAAdCtptUdWNDx+eERhlncwcIuJ7ocsXqhq8G5qprV3Gaqpd/bkmRno74vt9xkFIOZo9gooIy/KceKfk0rxRxbQcB1xVy0Z3shvP79+7B8dJqUx26RjA+zrVudSdcA7W2InRpzPpHKZTBnPzZifVvi4zAWsVqj7CEoBSm25wtOyHiSrV3w8/xTFh6k5SAKXSSptwp73HvYiaYQx82/Xx0eSg4+2a+e/v9uGReSct/Y2JnurGy8nMgHi+fYhXX541m1XdDVo9v3Qzh8GKWV88R4Okqvjw7vToVTOSnmSnNq0lUO5yLoKN8E2J9P1MNcFaP0PdD7M3HFEBZ8c+mp/Q/bgLX5x4lBN+8GMxPlLlIRF2twRGFON9WZo/OCHLBDKczU0U1GB9gNg0jtuG476Am09XD2fkvfq8fASSkQNNoW65bfZsy27J/YijKiZ+Awk9/Bo1urY0kHhvESJzvn8L0tYiv2+0rtGENDFloeIyFphVLP1iOd4sadbBT2az4lPMsMTe27N52ZP+s0m69X7KHfFR0imjZ1YGoCLQqkvcqUCnJ/ce+NgpdxrcFsVd5tlBU4zLTs6YaZPZAi2lfHUkK0EK6x+usCZf0YVWYJdcu6VYssNaR/pxHYwyMU5zP/ywF41e8YfdwIEGg6xCSx9pSZC1Ue0e/vy43P654u3ATbQSpWqXALrBLX0ZRhzQSCcX7Ujfucu/GzOdCTAJ5rW3Anh9b1eApPPEz5dOxt5X5EIw6GYwh9ta7uf55W6Pk+cBrxubkR5upFcqc+UOSFm20UWPknpEulSEYRAmBw7+WssFwK6HZe9GmmhRM5ITQuSVaea2vMhFycyAwQtsruaB1qLJRjnUYwtMZuk+xJmJCtzd/Ur/sA73YWzoD+St637bLDRzpDrkO8For9qh4ttFc8KC+lVrIavaB6PlRxtc5i0LUWlNM8K7y66i2Q4KUd7Iuk7TSXmdoj5vZbM0rcn4tw/h5m6N/5kbvG92fNj98fGD8+PtCD5tTVcF+2tTRVglhtqGcFpYOWEJgDd1qD6vxzUsm34w/RCLH/cuLGgCgvv6+xH+6WL764UcXtqEbR+GXxiFB41LatfLjw901eJzbeulKiATRwNKyhngbiRqakppud/Eo+ktAd3N4VXEKNZ+9S9ouMB0rxLhSILSblJC3yZHGIzV+kQG2Y1M8/QEfnyVHYTe37mffEqyPlGV8c/q6t4344DH+75/BB30deyh8Vb6c/Xg46P7Ssf+31uuTy6ywkoOdX6eVBnWnM2kjjyHTIg5+zPKefaWZjJFyccCKM28xiZ7oPdskkRmoETB6/kmWPWvBIF0CKrOOQarkYB7b5XZih4iNkah3Kdu5VklwyAqwFDVb5VMBCeoz2QyFcwJGXq124ElkIFU7G2RatpYx2Q1jpoAZEhGUSI7UOs8vg5oRCLSIiwlJJoHN21WsSP/RHHsqHW2M7kcTBJO1u41vw8oaRA1muxKSyoKS8d1sh9DacNfRa03M9bYdprgCX9k8nxEHjiA6vgzrHU+1mNFYQYzCM/M+cENtBqaCNLcIHmaRdeIa9vLUMo2nt2GljRFVivEayhpXoVLs4fx+GHbVou+g6QbbQmWl3TUFDcSQOgi19VdYleGAJi78csOpF1XKrPCd5Lu7sZjLeNxHL78OOjGzEIALU0gfF1GozEDNWoZYAjCdCYISoSIVIaQMgftOA4/rnQJJzILmUkjkOlZzS0p7gKM7YdTScGBRIqRMXxkSyYQJXa9DJnacmiBgK0MmtPkBGHA4WaGdH4agjuorCNP3tTQMTh3kaPD7D5AOUU2TVytD0PATlmb+VhCxUJ1BxYqUC0TeG/gKYgUgKLaXhXF9biNdx2Gk5tLFcunZd7I6vuE4I65b1vLD4fLd+L3kQI18PX2l/eLqRAl2CfXrl+IH29L0B0Vi44tK4KEmcFvQnKZVJNpdU0LmOSlTWMUvpozVOxmNU2yzlm/YXqNjwNwhyJrsPePLOidZfUp/eBv4Y1nvDNZNtg1DoddYVbvx9lRtWPevKV5o/sZ/Nl3drbeaW63jt9bU3z/k9sk2LUEXWP+iBiF6RH4LN1qYpbaD3fphZNvfsLS7Nxpru99F+/POPdV/81zwHw1ERrJEY9Et2nN687qcIK0+XweAIQq1CpvDeQuOhJVo5XE6uhPqcvdPfCiPq8tM7FxUZo7cEArkal60Iqlk1YZNditd7RtpQBfdaBhtM11Zh9HdmY136/HXRjj2w28NbmlrE7byl3Vo9Azd41SQqIENSAyg6HkNkQXRjUBSCKDm0YgejzfHWUDpKlaszqSTVyxuyCuG7829rSP1PyvVNarHJehCMXFLZllD8UCleRUiwWlepOLNb3MIVoOZgGg4PQO2hI1BiDv9KdjEkLbU6as9N2wHYI5/NxX2vFIvcJNtoMLNPppdhgtbWd0SxPGSFRD+CBkRZMFuXYHKEVKtDpME8TW6kU2Hdyr9RWjjAYQPFauA6reuOIhS+pIbk8fcy9O8d72VkTW5IWqJHI5pJ2hzOGAu5sfbjxPd38cpz9snTiOXSUS5ZB5IlYB6hHC3hBhmy8Ale1kMl7WqG5uGIyLK3UcB2Mpwy3SK3fuyLtSn5mvDYjnuqoLM2WQ7BV2mGgjZlbQcnX1IVqCjbZCiRlegbR5GtB95G/jWAf7jZxN9JsVPKeUlpapbHn+lJQx3X2621r0/u1UJQNvF/hhZNqdzlYp39rfJsprF35U6XalvKMB8Gc3+3b7H9+6Ld7nD5bJvdtT2O/BKUAVZtOeonWtZnT3R8pb0Yrl/FZbg3tRK6dvomc3FqtbEnot5qLfgOjMTG+wojcNVeG3OhZ/p1rjUuYpdsD3/+dDWGx+6H0jxZG4S5yfUcnHK3UaPL/YQUN/G5OKAZhZfVO5vt0mbsAAgxLcKUP75ffCdl7SbkxUIqmUpge9rUW9ZXGB2IRr/tv196vOJmijwuohpSbvfO+FewES/VDf6S/6gm5fW8v3rqZ0tDdlC0xeWmvRQWxdO3vnwdADEKe4/qdHVmFQJ7hmmxb1e1P5bPWROwwgeZfd6tXK0YqAhTrTG+wFquInQCAF7/CqScN9imuiyB1c9e4xg3krKAkkF+cSTLSkmRuobHimI0WS6vCpgR0NmswOFls5AxVTpNRHKLGtAgca4IJDan5SkXxthHLrflJz0fyIR5E78/PYlO+pazdCNWtTQqa951pklor/n4xnrVI/2pIR9s0u4dUENBqvPtdNPCGNCRHOTCyJHTBVnFnPKmU9v2AhzeoIEKDTRD+wHXCzzNVxcsmQpDAKk3g/RGCkVKoWXFbIWukII7RnRWNixVS01qUAk0ExN1yJXaxLkO4rjfCkwU2iFLKeiFIlSIVnJqu9KBkKIWqtMpUAkr7WddmSTPB0YsFX0EH3tfxcxzpO8yPP45tubkj2TJzrj23KLduvS/H9pCy927ySFMIZLzMAp4jLFplO1+ax0pZ02SroLCcKR9liGtySzHDJMujUFXFA27g9HBHshRCUFhdYXfReOaJXcpAV9qUZqJnxcZ/wgsrQye37obW1UMKrTFop792HPkuIt3mryG9A4zGvbws+dqpNbU88HSZJAd8ogmf3ARe300CL20PamOxJH9uAcMzQG4z+9LNv61sud5hSQinQdjtDo+z88AXjH+z+qt///kneZ7vfeOx41Q/fYybIaLGy6t18RwztVz4Wss8sAWUUizHvlG4cYLU1d8zz8VjHvP/pY3UgyoGeOy4X8u4s/jf/3bbsM0nGv/+cJr7VFDgHCH0vfd2UPl38nR3Pfau/qX9/ZSJsR5TAsDLfI+ffjvttEwnCrPgOShuhbQk9URd3Lt+Ib5NlojPksVrtWN6GFo0e9OVjHNl9G5pQRO/bqfh19mGBJqJIlscZFJw32553xTlLI7v2cpPLc6JYkhadIzMJ+xMcMykKZTdXuuKjfpQErIYEzhqCLPpwRTOkuUfxo2yYhHVOvRlW7pA1K6xGZwwuZupWZYo9FtpEq4GdMpdljZGpPmlXddqYkd7qEJ9HozAJSYJ59X1zsRlCOdePMQhA3htJNBerOElrYWEVKCezujcfMdm6xTfJ8S6slyKWlFUBtw64ZidhRkWQDpvYzpA0D+yJPNPS4JbGIImFytSKhUnKkjUG2cASSOGMPi42myS6J3hUHBeKC35IkhZpGdolFqKODovxrGkjmbisAp0qM0slRAOUk6dKe6XS3YxEoBuP+gRE7XQuM/MF5VEdx8W1GUIfXpCYRiUyX0fmLgpOKiQpNlOMsMNeV4a03MA4nK510M9cfhyHP2z5WmYremRUdTtZ4xYR1xN4Pv/Ixx8v0HLFLpkasxIhvVY1fISFRZXaDFxHxmG6Hv6CeR2Zj451RbqhQi8w40Vnxg5CISmyVtFIZsccFciJzJ561i5BqeYpTCYyZhVoSQChNs1wXW4gTkK7I5RYykfo2Daqc9k6MzRzeNq8CfUn99vOC42fcab0zdmetGoMc20XDioyrmVS7Xa16pYltQXPu/NjIonbMt3YLPFOOv7Nu6KTuPtbo2o8GdudMc2xJ27suC94/t8FUN2ykshUFVG20QUZnXSFvBMVuifd3bP0y/Tm3nIUlziqBbjX9k4xJxDpf2An/NRKTfLeUjed9XUSgyYfFKNRApSZlqaqv80jmWWtoL2GAGZkFoklYZGzvqq5OonC2lRSrULpIbVuQ/mcDgdYM1ayJw2EUtTm3rmji5DJSqyKvF7r0ZviHlL8jmVM9Q4CVJy2eqZ1fZO0CURzzt99GOOBeW+cd5jE8Q71wx171cHROw0uOHjcMVDxZJ2394acRHqq9fN6hZuNi5/H2k+sZYHbUHLAz7m88ZYTaRJVzhqXQXr36v8pZqit1bu/XwkTSX++LklzaDoqaA7SPGA3RmUserVZtbKauqok+whxYZY2ClxphpaBqLl9NazYGgXu0XugpSO9MrgC46rVo55uS5+JiuRwtfuCyNxjBou/RCteAYpY0AO6O8doNw5BXyw8EGjsowLPzKY2aLQGtX0zRz0vLbWQJtnA+FBW33PjkWiCfW/FKkjSZeZhntvrrApQwjzSVrEkEvGymrCnJbdM7HiuxxjNQgcmEWnlbjezqJiqrPvtltu7tWnn7Lb16lJq5tph6al0QKp53cUA9DbmyAjZAbMC1sOrlhy58eJK7SUomXtfTK241tJ+fhtMTgK2zLYvrENrPR6nf9FsPVCjc6ua75bG42nudBk24vv5h+L7gllErlgGS3cxkLoMNPyMzGsVHrP4LZLmzsdliLMY8fCU0SpzTTGQmZGbBfWmIlJMKWOHMrywH6vgvQy1kYb1wWdE29bwph5VultxeFU6BWZ1WLNj1HIekw+037y9iMa63/53jP3Ub8dVcTKG+mlUuDBRBmwoWR2ASqUe29HWxLOF5bYwQ1O82sFiEpGBcMYXfyZs84XeDun2Xd0FfTdBvO3TnQEL9790ORp3IjGGcYzcOwVuR1n8j1vLoC1K2R3UA7M+A+jRvm5eecG8u9LLoPUI2Xc48ZGIft7w503fF4Y1YFm5TEqwMecT18xH25w7ghlI4U7zOn0nah/NLrmh+Hd40mHavAjLzd52fdjgN6QxH911bUINVJlUqKSAWUWlG5D58yMRKmHBZLLtzgpwHcWcf0u3P6+anEOACcpanrjxkztx7IQWlN3QxHgvjvH+8wObgmy/L+6VRrIzXgHdUXHzuHMq/2/AoXc+P1h8HHf9+b7DggQUJmWyJSp0M7Ik1XTfFNXFx2y1FUPVR9njngkZNBJ/UobdxHkTzaLdG8wjgeVmmYlAsiZYp9WXNg9KQiKERA0v7oeboSgQe4VCkXsj8k3dLqMz6AsimLEtJCiHL9WrNPEOiiyLO2aejYVG3tj1bAEfh01sUBvjrSbg6X1n8xJuNYkAHeGOHvLsM3WJibBhwnVM3R6w2YfVQ6USJ0sMHcV8hdbDDrp365fmdUXHgvmq41NGBOqYsNiwZc3wRqNE2bubzqYiMZtSGNFlL8yTE4J0AkxQKolUFyHU5Ku00pPzakB3zyR0XaYdijDtlgiDIjNT7oBT5+GLOA7zE358fa110myZw3P5mFilMzOXtlR6nFE4PqUMCt4qb2mpbUYxMy3jgHI5cx6EmXvaUiYzzS8YrZRQLGvkL01p7g/DQwfxOIIHsSyBYApmdWimWYKUm27BekiwhKjYDqRllI532wAOu/5e8rcN/wipx/SMGWEVdUbOELcB7tnZ985tY9H5aPZXfSjeCsp4//EGwHnbVpTBaw/WxOvmYLFvpe8hx+ZyXmYOWRvcCkDfKbI+L/SGIXUfOzT69eH5b3M3hwrjYqCu6eGmdSlHphIdoLOlne/jS9aMdRmFNwpxhzGsxKwebwUy95Lff374n7l2vbMbCGvy3/cld9rWVuC+676yD2BiwuGOi/C5tPPsK5zI0haw0i4yM7fKOzEhfqlSgjJv4Q42pIlORyogKtkM61akj9zOUakV2+ZxLrjZz5hQgfd/Tdiry833c86xYL33ibFoRUoZHzvnoa8A4wzfK/55bto/oGzDnxZcMzEJ8zUmcqkFHpoc0DOREtXGPx7jPYG7dxc79QYteEdHZQ6kCXY0MIHGkdQlZsnyMD+Apfxw8ilT2OiezRlNMsmRqM0kc+Sec7h4s31R0pJlN9VOt9te6qKiKzP1YndcNLEGstgTCMZuppMNlbNDx+TAHHHV+KwrdtNfKlar6FxxvV5T0a77yzSlUaGS4rz7q98PBYTxqy/sHb3bO/mo/yq2LrKzItuSW9djBFQjAIrw5DdyJt2weZMHM1SvNAiNsWBi+Aoc5zrM3Tn2Wbkv2yaacU1GTwNp2ec5u6c+3VroDCVE0IWWMdLxSXOozMsAIh3V72stWMu1lh+HJUt2udTLCbgVUmUk0gtMoCtKgIjY2rGQqtF8NCq0trqAetpyP86wB/18/LB1gHBzGY/Tj2LmNBPMGE6FlPsVZAQsN0K0RSgVTMu8dMLstem5JaWZ0s6KxEWu9BMZltsJmRdpjob9sgyBGyCXZyO3MhKOC6GQYrmqFthkh+rk6PZmJVpZVVIGqMxtO/ah8Ro2SAupLA2Ot025A/bxoPMvE7HfShwApnQk8yZO3Z49h7kwnZDdwTGBPN7euN1iqbcO5DU+9u3KGukdDZ9OqNSbrRHaScvfv/LpowRNIXJq7/fwzLHHH/f+EZtovP9tWu+0JbtVVaUBcIciNCi7D3w8OtqUyVCaE71aEobe1sX0GTfSb4U7mngXdO+QFXfTUvuA+jFoTV6PWa3279ai8vy/evbPOODOWft17rLQ/Vl9e7LYm9bWruozPJjX6wT4/br8/An1b43/ZysPot+9k7mJyAeu6Nuox029w44bkSHnhfV2ue93Zu+IepBoLSWQc8YA3ib1Xqzba9xW+Q7K7uiGuGPF0jr6/BjL3vGBJn4oqNCUHdSpFc2LM5s+gTZrP4z9nBigr7j3JwAlla23mNVGW6SjCjbbgd+rYey36pg4CaZlCSI0o7NigT5EqbREvC+jT2QHvPPt+43G7xfBumCNVFOiM5OWqHQJTUdOR1fOUNrWWV1vJcsYGSparESa683NNtZUin7ON1JBK7UR1kDF3hNNmIeAEhrJ8Zh/PgwFjpVGHo2+0qoNySxAt5rKVhTIErBeqgoc3QwykTO7GDBC2DvN6DJSYa4WW8x9uZO+FkXDTrDWL7PkU9aiPQ5r1X2asdS4BakChkJHIWVMfYwSS9ZStHIdghTIHTu0SPS+itemEAxkYbWsTUdCRpkzlEaY0rz4YSKRYWmJCGyZtuLSrk457TC9rl2pEMnzxJd0HG4P9/M87XRIJQ6wzLxZcRIik4u29/XC9a/X0/cOgRnZAWmIlELPkGz9DjsyQxcE82XZpLbHoTygyODS5TgQnggp4yIyDZvaMmYkp4RjKNq+JCjNUthti8mMhajODE+TF78/RYjpylt0v86LJsqrPTo6lWMiNZuNAj8GzE5q9qdUsDaiN+9CQLVM5PjPFmG4s6fbCTdLr0GE8XWsZOIGeO809521l2EsJ/SRoYBobPdPTGG8D1B9/n/9+Agoym6wcXzxA7TUn17131+IRjDlvuge92EXObHJbYcEFebRBrpdbN4zWNVbcxZjrrDOHSaCKSiguJIlVdgZzzsfXOP2/hSGoN+Q7Nzlzsna948b5az3PPVJAKk7Kng/OtyuuyOoiWrwsWV4l0IbYijxPJbWbgdA9cPel1ONwJVBV2id7z7G9+MYFzKR0fhLYWRmMDlp/6ImDGuWVGUprdYEkIlqKp4A5k9enBP/zkX0rlHONwSUJtF82aPfObh951xv732v78AQfQwaCcJAER3/aNJCvFfjfoX5poon033B5TVdqiytGyUwipDWTuIdPt2f3RuoIVKimLVSlnphShYAdhKxb49XXnaCkRyk4uMhDKzSO6LOQSIrMVYgM5QlNznhfWW5HAPWmXhEjXBobiXR47yUVImFFAdrMN9RRc++Mo4gxQDCkGqwTFu/uv+6+qKj7gBNdIFSImvkiu54FUQLt85joUrXaPZiVjM1c2eJ6kjKy9HmMTKO0vJDRGpv9UCb2Olh9ONUnN7+0t4VXmUmvZKYNh8ZgDFBwXbTO8dys0bZZM9GoJlHOlA9X0JN1rGTBwgsS8nML5oxZCz+2XiBau26LuZm4kLkrhZWZpJBz+juMXM/lz9wfD1wPtz9cfIwBny5zEAnoAILIne8bOlpr60riCCKYtBseCIgXBuv1xX20Ivni7/jRzzDnMokkcbzuLAgw4ZpJZbMZAnl6aC5ibRIIGBqMsMSNt8hsFkJh08+mMHIVYiAhptl2fpjFzPH69Z++7BWydkKmhRirH4zfrOQLXbMXRCmJj97G12b1GUgvMYLb+/d5rfPTU47wts3TDZjnPChfe7wSlv2iZ3isGs4ZSbnff4UH8wr853AFBh83/REG5h0cdIzfVwV5m0+kjzMfQJ0Nwg6/GBNNjI6TDDztWI5WaoRREcQIE301grqJKnNpvqO+9x3CNBrj6zQZcKZroqOqm2nF+Xf122VK7BoC9ov+uZTYzxj398bYpsH9/bR4z7fWTjmsVcNq6cYQm/XhDG4RTmfXGJ+XVMfAfTuUDOzYpnK3YdsxTHTd5yIPz1wlk8TAFrrVbCDqblu3BEEP7wpywvb7W3rcdhskHsj6/OW7hBQPYIBEtA18o535+BJEj+1OutFNK+pWe0/3UutWGA8cS9s5WDVjaOZJ8oaTUgAo35C3NgTWFPvBVNPPMDIqzX3udoCVLNcJl98Bxh3BlitiZVaVdd63eltSzCHdNqM7oi1W2TfG+CNqPVC9RbufZ1bWZMIzVRUPTSZu5eoonqUAkhdcRHE+02UUW1dd4zTHEAFhkllUPcAzdYs7UNkR4Eai6bep51K7Jhkvgxt99BmxcS1AqgFFtr1KkurKUkpM1rsb29PAAxP7Yh9AMjciH66GYSuwP2lAIjLtzHttqVjnKEIa4kTtGyrmiclYZirYrej1bNI9TY0OPPEeAtKcPN1lsB86/uQNE9yMZ2V+lMW7V52MLcps2hab7+SypBih8HW8nM9LM4v+zrc8ThxkIAtTxdteWV1gCIyd3C/7PmK64WMCpFU02ETpAUQF3bujdjf+JKeW3yZ+17RfMm1jIchYDBF4Iw0Shl2upnMuOkglFxZSCQd3b6dKSHNwmwojjX0s/JYZ7pU9oAKglKAt0pMb/FKTicC/fC/w4S7v1sHS/MB1WTWNzzVz7tMtsZwzIG6DffYvRse1uif1bmQNMP+mt0wOe+c3LaWxmLHjN/syFJ9qPUn1zlewIqVjneb0vSAjBttY4cJJT5i3jY75WDUarNMwGA9Hsl8GSUc6zBbcE/zpEBfx3GmuzXDbG6ms5mJJNQPts2wOo/vTPmdIsxTuhdRJSCAWy16wEUA0roTjb6dt7eceGty6n4S7xT2zr+6PDI+ie/37xhMGgfMzjyM7CEEn07/HWjdvw0BsrRkT7d++/sqpJiLcjeI99Ti9tMdI5T/nFfn+D9+pKjvTBB39tU7SrMnWD3Z94YCKAMYE4gAb//4rnHMLuvk8obnG8uoz9r0tEsZVvmARGX53r1Ld+Fa8zzrWahKelX77Lc09SG+CUTjPeokszfDPAwr3PEmj00w1p/WTve0O9Aauzx7iqJZAkoiAqLdZ6Q7RmAOrlVll2re0Z+uTL0DrdtkQN7yzn1cNeElBCVDSczL3yGpCNIoFh+5N6uBXbS7CyMVlN4WY9Stzdtp16u1cHKtNyXVhNS66+nm4kcbeO2HHlBQAFTpTFDLKnsgWQaLbgJTE8GKqDq/FNEtyrEjEkalEIoICdV4Vfr/TJhl3HY5Yf4AeeTLVvnMOcD94CT6HWDWEk3mTdwLDEhy629mphQKTCzFGEsjkFyXOQG7VkqR2+YRVuUXrHAGmdzXxb0P5TYKubdoqyyormsvAGa2/LTzgB/H8dMP17nk8EzQ7BB4WpBAwAJBXM79zeczt5AJVzgzxZTBEg5oJ03IvPbLbF3XXl9P2Mp8bfJY7hSzBjvCwg93JqEU0g94whbJoMdmlsgbbXVFJSMJljyozFiqZ5nLQE/KuseoWvkzalOYmlA5WByr4ZrKknKdzkSN53mbyHdGUPGy/Rni5aheYcw2ZuNPlE6r1pS3i35vkMGf+gFD40Mnv+pNojlh9UNzFoX7Eid3w2ch8f1H7/s3rYzj1kpqa9DefpP77uZDH7d8v257/U7/YHB3d492RSCaN6FEYMhilYCbAGYkJYSlgIz2vRXm3N6rhRfGYeJOiSUpWVyW/PA1GAO+rIxSic9ZMTbSPnzx+8cHeXwHNeNW8fncdMfXmuCq8hxWU2c1flj5mF78D8/bKVEb0n//uCOB6sDMkv1l9erVeMTOJ/70evez/rj5e8uUve8hj5J6BE71KqnjHQAzAru9UsOH1ap3b4beif1r3VWATho+A1ZObJPjn+uSJlz8iFHbL43mSLHgJ1vrxWJd1I1nU1DV3brrSIO898Msp2pR3rz1iip8au9FFoWqnc4bgeFte9uL34nvbA6lyuVUUJ6wic6hLM0RKR3oMhcLz2Wf5EqeM0M2cX3uVtzq1Lfj84xUAhtpJF1SGEXzKGQbLVnSGyDb/2li6GIGo8FY9Lhcc6/RBdIQAL2A6ykSgPe1V/MA2RoGbwKDilYVotMgo1d+aTQ+/hVjCAEHU4eFOnytzEM1EbF7KVNg7m6wTrOiVte+KENX5VchkBcyS9PSO4akLZQCax1CsCSbSjVaYtGk0TVhA7y7ZlDVzDaurizwsZG2gMS07OqmuZ8PnUswBuSKhBKRSMssKXZPbGRGXHztba+9MqIHhHjF00yYk/TzsRbOdZyHO4+vdR5m8JV0ssrzmKeoSKWu10b88fs3vr8Tka8UFLEuwqKaGIsZj8ChuCyRkeTlWx7B52G2j7O6iwDAnHbgRadJCwZbzhCl6zhCmdoIHN0kZvXsMkpGVXkoFwXAwlCBt5m7E4IsMwPhaT7Hg0JTPdqy6M6Dunfy3nyzB6vS0u6yGjhnUdjZEMychhkNWvuuu/7aQrt0V2KJuwqITjjur8eS8o6CKy0us3dbhc4f0QyO+5ob65vU488WfuLv+y3Gs7STuaPrSf0+f10TI3zY9/vtmo9prIYMG9WfXqH2AGUVu1SZc8E2dcNUVfyrLQWZYyoFZc1PGgHxyY74vjp9PriPj3UDA+8crvov/21leip7r8Y8t1lN3OtaN6OZstA2Zmqm6MbxtCL+2L2in95+iGeTPDcIKYEsobo3XNlP113wVS1z4kxl7xW2KYi+12DoDf3X7OD3XXzAOxg84E87Ux1ovJ34nfl8MPsKPSZ1vxGJCmp7z2Sn3azD1FD426H1jZisBNHxPjj3BqL5oORVq5rHT+uA+xZ7vFGCe6NwMFqpC9Lt57uuXrd9h1W9CnfJYfbEHAtJpbxFqii1mYnQiO+pCDEZCXg/ggnG309G83jGheeo7cky1eTgYCpTgV1kpwXBLsgzvUMRVR2l+Ys7d4/j616urp3HjhrNeeMw7GWhj6mSFNUmeF8a/z2IHDE2gGwxyYyEOYjLV4/laex6QrBC17qvd/VTacvauxzIpKEqhjB6ruByu3MCKuluWSSpsBDSGb/tZTzsjK/jyPLnNzpS9gNkNaGxYy+7U6n7wPTcSN4JNGQqDCSJGZcL0I+1jgOnJWUQErupSRLj+8iqBCNT167ufQDXztw1nqOi1LRsLGAdZiB9HafzOPx0o2wFnUfa8lJ+jAQs80rE65nC83n5K3YtNeEFgxgRonakIiIRVyTz2MhlNWQ98xvOyPTlV0I0ZroF5bDFBLRJALkyXlwSzCinL+zYmWR1PxE7DMA+uE000Z6Wqc0EST+KJSkSodBaTDNmkrLSFCK6YILMTIYycGOJY6gmGYH6QOAdME8BpI942Q/UtEKUJueco6oelIkaftM7+axW/S69YXxDEZraTM9Jm61biQU0IXCZRs5VNp5URR52uP9pcP/N2UNlR1FO5c7eMaDbJ874YXrLPYZJm13xRmeBnRYMFmx+HGYFJtUqS2Mlb6PPsZWTfypKj7Elbf+d9UWAlGzqynemMkcWFLBmRuT4onmvcrpWsfd7VQnLkJw1rVEQmP3AlJF9DxVXKNVsi0Le0PyPAkgMbm4JZry3ShHd/xznEe+ApS6x/YKUidwI7mwMxSu6l0PsYQ93TljcXnRiVxklZsUxmxqF2NjY5npsriSr7VZFbdMYsmkRaKrgx3DfChtKiYCMuvk+InfEmP2EG+upHdLQUBG/hGwX2sFoL4YA0FywMCiNSk9aUlQpJqLwjaY5WwaAVXZzlriErYzv25Vy7wAM5kHA/NiWzEQGw5iZTnMtQykGT5RQFjwTdLrMLd0VBVNMIj8HwQjAlslsZfZzajKn+oWso2hFhBcPt44jJ54Oy8howRFzd8oyYG6ErbpCQNrIZCLjiSMJq+JBiWGVyFS8iOWY4K+OuBuch5YZ5YptW0tNmzHp/8GzoJfD4UUlbQddBDzBzOBLhz0C/tvOlx0vmtIJexAOAVaDXrfjiuU//sdzwWRHCuBKAoalcuOJtVDNt3zsZT9/2IvnmfbjtPD/8r//+Nf/5zqOvxzyXMCi8o9Mw8POcMIIpeS0tbYQVGZGGZ7MZb60qb0PwAAla1JKQpsrABhr6gVhBrjR98bz+0wp43QeXz9/uZ1fx/JA+pE7kWe6SplaLyivC3hlhl3pyPQkYyO+zbdh78uB6l2KfV46f34FYXR7rOPLzuMHl3Kdkh+X8KVcV5Yule3vK7h/7+uK+OOZz/29nF8yXOZnVBi2F+QvbjdBGReeJvNYgFtGnJQZMnJd3hUKEZKdgtEl5wvhlrA0Bem0A1pxHpmXIsMy3Z8BpRjH2mIC6wDtZUjbEQ+xFLMsfeXDIu043IC88Gi6D4uFxzUlKaQhO3xlvvkz07WF7MHgJGh01zshFMB1fCGvq2LSQjhtOCB0lcCaDdX6TiYIcws0wauAhgy1UVWOdkaDe0KhOzJLmAo1MjEdMo1U+iSklRyzWqZuF35bZNylrxtHQ09uaxdZ2h5vcksRJ8LqM5ZUZMKQJus+ubJuYl7XDu0AuU3bpYBlZCS7hH+DjFHubYZo2qRgAbwSgqIft1gys5xIgEJba/ITJ8WAGhC6BnwnnQ1NJIx2h0GqUKZTclQaV9IEhVv3WBtrpP5Dir7XMpEzDOBmAYBw1dSykbsu9K09XMcqBpJe42jN2DCwUhfztffmNoRduQBVojPZmcZYf/hDCQlrQXIwp0vghk/U6Vjz4AzMGSrQSR4IwBqw7uiI4xWmBt0BzcAp1ZIBVqp6f6fX84Y+arXShs5Y/6Xy3gDV/1PlvvfmZz2E8l9Lm1B6v6bJvEKxEWy6cQGTu8UWCWXnqnaPTXaHe7XA1laJpGeGZUiStsdOBTKbNjkhd6M6EkxZHUAZVlOE6tRFlItb2UqObS4yEwhCxlQ1GjvCElJkd+7WYiEThenl3rIVLKE1U9KRCDc2XHxdJJE1fiGs0pQtxN1bSUJ73+KcHC1xkFK0r67GhZGSJiz5/wy0DL0aO69UJCmkQYJXmmheSeK6uL5DBHzVOOSqbNcsXqRgX//xvyw25VnhYdCqK1QGdzrpOxmgy+x4pGDmxxeOh//tv//1//3r+fj6+YDsoA5gXeI6jgRj80hZt9UamXADlKCvK8Kcge3LjxUX0gSP3tZcCgnkXqAhHYhz77XXZmhfZCQzHX4c6/DzTHryoFn63ifEkI/NfIX4CiSutNS+vs999cZlmgVK88mxaMSlFwBfWCfOHzzO044tPzPWgrR0OapSnhm5r3w9c79+5yt1Xddi0HwHmBtBQ4SJZuCXxdaZL/5znSv3Vz4fV/L3Kianq5NEpkIyOpK+ZMtN+zhyX6fLlm/AVlyp2HmlSo8SKmWuUn5USJt00mvPOwWFkAqVhlux2pjEDQUJgBlEsxIIKmHUcc+3SWsCEJvICNAEw3Jsm+lXALnWAdi3W7fbpICWYS3CBiyGMvP2B2VAKuModlnZgcbz1DqIDcKOs8w7b5WaDQxoRs+MY8Db3r6t5FhpTK1MbRz705IqaUpMI2Pjn/OdXOMzrxaYsmrw6GEC6bGvyFBmGdKLr1c6EG3C3iDoqBnxNujjU5XSBaQpUkgw2rWNufxwp5Zjqz+cUZfpl4i6/GZz1IVPfvTJf+9V0HsnDDJb3qkn+WJKEO9frV9OvsvKlSZ31lMRwv0MNBfXsYNBLPpI52fl0pGREUHPO7jQZC+4s+Wymg1kqEOYcnvsG6wH1bjuXUqvvsG+jInMipGuNFZF5l7O96Yi3iyCD7SWxSPIpAKpkb6vCx2xTDTcQ5KtpWUzM5ZTl5+3pcHWcBaphq0a7S9ssY5zNw7VAvG9NVhSd+/NJUpdG6qnUjEyi597V52t5+TURWJKRBywi/dzNB/UoeId1KAjYWEZFC3vH0SNPCuEoLkghBmib440bqlmb8zTVBijiF6leVRIrjFlbhKQd1hfdV8FohjDc+E3cp5WfPZhCbK6FMxXuBNctGXp1gl0MVaM5iYV0XJWoA1I7cMEIhPBDKkyyBa6qJ2mIW+N/MVjZcpypthU0iIABl/OtEykQI/enxmZ1Yzsa5lFQfMgu0EgXFhnDQlP9rToKmBlRIo111IsmiZt4MxmY4ldUvizJchHGRxbjOSqaWQGP88C+Ohuh1JaQCTgxbYz8Mo4dkZkeOzYhiBdltCiCUuUXIa91n7m4jp+fn39wI9feRynHR4GkxQK57bQdUG8qIzX/n4Z8rVB/d7XwVdixe/lsRU0RgDghUIxTh7QOrHBgCkceZjSFXvzkVppCSWwU8UeIFO02K/nw/fx0yWLzUi+krQHdxaZF6ClGanLMjxzkQbPSMgsyKZn1CZOrUQ63+UNtemYpKfP7dQG6py2lVDb4onGb5rUHHMQdF+AVumL327qxv3azkmSTfrBgURvS4a2MQODM7uqfOevpG7vyBtrpjpsTaFw73cZD7dD4Z0W4uNt2zDhJpW13x0veSfMrWpT6CsKozRUCJDMrolZKRMiM3clNPMMuqEiKmYQqwhsQmaUE6/bq2xDyKyegxrOdpPN59ROPI7WGPq8o7nb8lDr/qfyxJO1TvF85jQNjn2vWuX/pYMAtLjmvPoUKtsvflyBPh+qxu02/qyZ5/bhihMtAV3Z26w76dLMH5SKSXg/jvZ7H064PZVVHIQJFzWZbtcUyObvjTfT6KxqBFpECEPGmdz5Jjar2gD5sWNsIj004oKU5YQeE4QQLJEk3HVVE5BUSVtUJIIboerlzDuazCQzSzNBQngfzcqZxxv3C4BCt6W0JNOcgnlkb39LWw4DfVRk3Axuy9xXBmBWipzN7QFQIwcIrHlc1e0/OWzLHFaPbTWQ0dCqThXEV0svPQjLInERJt57qW3RbIeOjyhLr7GeBOiVwDcVQVk9QdmconeUmSV4Xpy5PgWJYkVZ2gQiIOkFLtVOoBm8y6b3c6zdMPVh5Q7LhCJiR25J12V7z8JnCkFd2xUd9FiJ4NRw1ZkNQQJ+tBYrhCZ8dLRV4Lc8yMy0Q4C5wMPo7v61nsvu+Ze0j0KYaIKQzJqnHmHVDxXe+xe5fCfTzJChGjNfepglqh0dINPsWF6i2WZ2XIoaYUk3ukNGMfF8aV2IgBU6CNC0TaJLVAZ3ehhgdPfD12H2MF9u5gcMSQODdEC5M+LStb+J1+/X649t6/WH8dpXXE+JMpxrHacuo8W3L60tQwb0YvAFEh4Fm8AzWWxs+yYWaQyRzDyitMhjI5zupFOyNOQ6BD9kNL+UqAnZsLANSgdS1ocQRclQOwIBNJOwijjdmcZtZKuqNk1ht99iWbOxa3QfEc3CKwZKykH1xNsz99GmSGV3vand/Z09jr28vWERIO5+2lZUq4C3RaHKfXvbzAnVxuzz85y2LbztDTtwKANckUUpyb/pSRXoW7dm3FXgzz5I9h68wdnbA80vmJkr095aizRjzZP34m5kW6vyaeXWx3W1Y30nbTlLexuS/sEOPqz+SolZrBy7/VBTcCGsWYY7pqJRNQL77hLqBSQ6LeunXTHSjSs3DlFe834KrKxuxA9KiLKXlb3O2YaVNxzxXjeb4gPaW6rZgcrMiGDp2MglCaGpuU5S3GsHkJljsssSZW9PaRhmkxOaZmBBZzIVO76v7fbrf/r7Jl9xHDLut6+1qnv2enB1bdkCcXzfNe5MHA3ksBqV7gBUbRrZcwExdaFpgH5fSN2bUOfSJFjNV7clwujR8UWGyOpHh2Runmux9KAi4SCkDABmdI8eoqYiXY0KW1+ZuZkb7XHAl7kt27bCcPjmYpJ+yDzfyHW1eYytYYhZhZOekjPwxgwXVMGy1ak6+44A4DJfWqARWUyTUNgRNb4mRWXEurKxDQHQrtSUQPkaWXfEVKWPsmKBoXNXSKg2wrKcCIqZ6NDiHcmqyl9IA93RY/cgcziyZox0SJ06+PVfvnvAmdLhVyINzooPknDe2VgYgLCMzW/z9PPX3x+RoHFZFM7z+v14PpxQjJGFgbTlkTAglSmaYsNSey/nzrxWWmZMXiMGM4oNmlSqatS2mz5eESXWOo7z8XUcS4DMpDPM0x65pAVLW8L18tx5IRXBjIy9yFQgLKBXwhm0hWMd7ozH4e5+fD0evo6ywDXTEErAUrkzcsf394t7X/v5xz7O5+/Ts6RklvB4rdMPJUFfuY5YR+bileZVWRW3sZqOy6uEEtprWMI0WIK0lASPTNKWnRWMmYFISrGPFeVKOqSHgNaFCbvCrqCxA/YaJdmQ3gaUy9mtE+P9Jn8B0eNh7+yCt9mn3+rfHAtdPsWkGrAA2nF8MXks82owNE9wCL5lMxpQnk1bp6kqLLexo9pJCbTbY6PDwxYoIlD9PublnzWyI2WKLPhx/UBh/BRHgadP2DvjGzte0FInQWN2C4C951UV6fR2wCo/Wu6rE5DcjOva81Y1LcOJ2sZj3mf3A66kTXre2R2mGDaumaqMm8waTtfEnQIDJoUTaoYaeM8HXeWOk1mxs+YJT5wBSglFL9v7/u8Ul/UM2kU3bK25uxYB1sdj5TuFM6Q5srECmgKB3dsGTNj922id30orBMXrej1f5pYvAFvXCm1FqemWt5ZaxYcYACEBIqxWtAOH0riagOsGZUHAsnxbyyzYZMDqqK/25dsn3z5UTSKtx3TXpWvnVT/EVDoq1Xlv9HJpn5hLLXsWHFi9s6UL0UA2m8WFmmpMk5gN4zdRSkKIZqo/BbpvgKULXPsSGbncIyG403wtyWhu72AgHW7OZb4sodI7rE1xR7wAzcyWH4YFNxeX05YZz3XZUmIdZ2BNiCtRNzo2xBMSNXy088IoOFwpGKsubNg17xBKl7BSoor5IaY3Y6KclkAlo9KEzISjmn19+Rp1EihR04mESDenp4vE+YxkVCtYR/0HkDRT2j2dStVvKglJmjOTplQ6UsmFTNMGgGVEqtvXlZYZl9N//e9PpSurT9hqh3hVrmUnV1YYyWNfiH2EIjefC+TXf/63HyqVZzCJkO9vv/QI7RQQdwJly7BtGXOHaGSGzKBgKoN7WM8VZxBRXTZgirlFyO2VmWEAPUO5DtCPx3kcX18gF5N7HcglnHtlCVUuKMLzG1cwr4ht9p3J3DRjYscytwjylOPw52HM9WMdf/n7+qsfpxuPBSI9SeSu/qbr9Yr9rz++GYb4/Q/ijP3lkQnS12991bgD7dDBV6QMYrodPCxM7pGOoK5YR9jDKXNsi8uJRMblnqDpOLYR4Yt/cO/r5I/zW5mkp3JfKAbWcoIHYcsrs6fV0CfFXqFwhrbtDV6wTJrJM4qVcrTf7PCOxlbqF2CL78qWUjk6F53/TLIAUkpnNb618aGdP34x1/NYOQwXAmm0LjYYq+8Pc1zY5rPiw7cFFjNaO2QoLuoAv7PHsvrdwSagxVzuvsqBGst5CKDo60YS2yMTpQlkH47wjaNO4nuncDcMTnRtrJNz3FmsSn8dCsH29douZBZSnakwBHY6AFiqa42TRHaKlJNJqUXdwVsIu4DJhqS60Heb7g4dyorzdsYCtKb3soGOnLEAvPGAdqn9iKcHs9fk/vt+y/neO4LRbCxOpQJgCcE0ctkQSRU+GxUebOIDKbxhi56brNiJHojccXF3mZrFPOCu9U6kUCiv2vFVNHEHMvi8F5C029U2NH2/TN4etw7JlM3fbDbMR0u1ejOxKvKZ2Qflb6tMPZWE6irFncoO4FCZe583DShax2xOSkE4jR8bh55RNY3w2QddxeiXDlNKS+qHpGzBcZR+pPG+GExD95th/rHLctSDq50WjSubGemWZmulrTO4jnPDipvUdIH7eNUaUfc/VKd0YXZzl0UJyYrHk0XrchO2ZPL0mGCqV6CINczmUlfPi6HEEVmzioWSkaMywbqbqmjCulKafazVTQLmyhK0KkSuV9BIBovmlLOqIGMfuoxmXkMUu3QFo2UqcfztSzcaVOSPalqWw7isaihGc4QyEdrceGUEcDw8G68nScp6aIdFwBlKWKJHG0uJyMjS+sgaq60IHYeEKhkP7QJI1eTEYGzUnZEweAi6KqkzWxXLcFmSKaynQ6InlTu2qRByt03Ejovc2EjRoFS8ZMl4mYwvGr7DcP7lrz/PX3+1n/nDuOCd6cB2RkZC1/7+p17/+n5RBt/hIvbWS5Gw5a9FlWKoZcoR1S6VtvNhlnGezLyc63HCdSWkIMx1LTjDMsWltMf286UraTxCTAV5XMu4D1hiRYL7Coe0TOByt1ec2xxcUDIuMJB0egBGlRJaZbWhjJp3CIFVmyj4z8ofybxS7QJ7LAtJvEFZc4FmTRSEmeoVEjKBdpwPCz6W34eWLU8zMda43fc5b6fCSRzbttWerLemm82B4lhsaoaRogp6UB2LsYpDWplwoq+owtqYvK/YchMH9kkmrCBR82rNt4FuRVjaXWtrqHpEsuu8u1GRljaJJO4YxQwKRYvNZlWME4Rs8oLGtOqFk0R3l0xWxcm++Kc17Fv805cNC0gglpnkTuZb39lqWkeh6p40IDUzhd5FXN6mcxzC2xiPzysvxtL5scGgnTKXW3ER+lTdjsuK42S01vYlpwjWoZ45E2mmzEBGbAIN23dAiPblE0DVllNHa4RicsZO0O8cj0kUxI0/7atKLScG6Pf5t3UmPqOEzkjvLddSaxgmlRpUL7FuYTYN55/mV6u1Z8S831tHTC2vlsnmRkGwKLDKDK3HRrafzX5ChFq8AVNU1dQ12G9Pg9V8NXvz+or7n1QtSxV21XH2+6ROqFWCuBE+O74YTmaC+7oJGxMWFfbUbejlW1NMIVATs98eX1PqSL03YuNiSGekJZEsQeGELq56vVXS1rVHWxJkLEUtbJ+1Ko1QhNOqmZOYwdWUgBrWXcXQ2fMsriUFF+kk+bDDThLwQ6WmBVtrgWlKD3Z07tSV/PrLlwE1kwfmnpDZ0XNXgPMMbmcPmrIeFpmXMumPn2dcpkz3wo+5fz9SPCwu5sGs8iRYoGVSWTNFegaItmciyyN2SwVJIgG6xeCnJM3cYbap175kUrivdTwej+NwnQjjBddpcvej52nkli6FOcOhkZwW6ZYUkM+VltsIkwUX4/zrf3z97fj1U4/rOMxwpIeYRCAV+YRdz9dvff9+yq7kD5mQ+VxHpju+vsK/frz2Ouwyh9wX3NwNdsRepozlnngeX1h/ee4n0xO5CX3//k+kJWJf4AuWidB1CXpxpTxSz8Psi/H4p5l+5Ovaz9d51jwwupf+9ffXfhYmmnFe+6FAadNZtLaVkavYhbPBy9FV0bNKh6LoNvaPkgtOMzMZanKHC1y2Mh0yO1ZpRTIq+rfHj18Wx/e5QlhhpAdJH7lW+PiNbD4NOtA2t03zktUpVf5qaza3NHfz93wFdu1f6Mqqu8sL6c6xxV1SbFPeqKDx5ifMxxsFvo34JJKYBO92Mm3kcbvVMUP1o0lTJ5OCMsNiR07E3ZB6QbD3r90vS1qm2WCwMjOJPbe7eDaNfdU0wxrqmxgZ58mi3y5iCg0iBK2OLzgl7felY7SC5uYLd+iXnVedwmiDqwBt+GPGIsrfd4TimJpRZjIzOOEtiFuaTYTdpCSQJaIxoj8VKZUcBXqOL6HYgOXeqQxULGkdh5SLRWcSCmPeEhJlYrMCGHBKLLUK5ZWKTGSqLNlYELSysP07QhSawFZwr+7tVe9uk6KiRrgaQnvwlqaKtewr6y2EiasAQBFJQwjyzPbmhVdFVirb/ihWlrJVAYVSGc/mt5NMZDe0jR0tkmsqibRsWRBFoELkHLQp2Pj3oYxVrjiYqYhuOxNYKhlAjf2it3g/TUCmi+5rm5ng5iU1xNYXYZ8v0nrEXj2GtkuART1D7frhzDQZjP2YpMIEksrw9C0oYsdrh6WF5RZSevkCtC9PmVUY78utByiQvWwdl5tVZyNkhuqCq4cuEJ4G80PwKmEDarpljRykGaHg3heQ+QoJ2liB18E8ygluXghIvxXfSj7+y69jC34+xYYIBQeKZGe+SkY43Qkeh4VsB69U+vH1y17XCgXZokz5/bwyLHHuCisokxm9ZuJVvONEJheXRSZBbLmB5EICsppjS9uNn5gZ3BOR+dTF63WdYZDZ8Xgc6zgE88ss9YjfBjvCQZCFa1vG91fstL1jQwleCHeGlGGx9VzLLQ15XGudP3/+5e/nz3P/vB7OFUfQMhXUC6+9v3G+XteVcX1f1OGxnwfdzX+9rhfs6+fr68ev79exWNO9SDNfFlo/j/zryddr/Tywly/8AK+N47FxwTOv11M//LK4LlPmAbnRQzjgvJg4sfwZIt03DwZdiIeRrNa9chueZG6CYbEB0NfynUFB7lpHQIyKt+0oVaKeVFn+j9mpwIcDrty4HbBuHlTlhQ4Y11IjjKBBZl+//uL79f04UmlDJWJJHZDm7tEg70hR3BBkpVaZWYEaakZyAVPqSltNomta2eCaSaN5gFQreXSt7u0Oxn2yJPHutqabbMNO4OxWK+pE9HYn9w/hDp3b/+qjrTXZI8skRYKv13WZTU5mNTdNUjY3sbmD6CKmmd8TMWoKRfvdD5C3371ugFLJyfB9sZ/usgFc6YMFrTf0eqdYtJxc7/1CGsi3l3Lu+CMzu7Hct+PXHTyPS9dkypM+aPgrGXY/ra7NaS4R7xSocps2mICKVMOaVdI6kmIb5l7MsA5kOFnX+xLnlgjed9GhWUHhpatcOWEBrS3o35m0WJI/Agi1bpUgsjINQIFltBKZqES1H0hX30lYgerNwrpVyW6Ok1rMqPddtYuiG4zqaswjezrU1BFaw8gGligho/IRbCweNMCndlIgUMJ6bxW6kKae61o9QcKtn1qawDkN6+Y0Vz/O3J4ZldWRZjgcEAyQG3qgW4AUbM7q299ZNc3WUyjYzlSKxE03UjhRwJEnA14a0wnmDkCw3gsWWKCUKRhhCTM6oQiV8Stoq1Q9umKQ0e3R957pE99dlU6DzcHvpSOZVtNyIy6XdBWEkaHcmUnCIKQl0sCMCCePXz+8TWzIJKgZR8poWeB+9GCIDCDCrxCC9Hxe69e1UnGYSaeujFcyqgcoAyapGmWqJlbUdiplPFaRXbnT4b4HUasCyx1zQskIxgrFE68DAhEOyo6FCItIB9eR7heU0L4sN+KSuelfSmHbKtUeC/vXCVArZBSYF2SGvYz/+jp//Od//fXrx1deq2ZWoePuVOT38/VCvH5TLyF+y07bihPhP4+//IZsreN3Cvl9LHxjX6/v4+VaYZTh9PU3v16//vLj+P61tsev6/r9//3627/8+VpbgSev/Vrxetm6ckU6RZOf3KfE6wDyO84zN6/1INfjjPj13B6BJEoffq+dvFamm3OfpBEvXbHtkK3Tta6IHVceDtiZ4hSZqCnZaWouHZGSUEbcQFtP0S5hGxqNbu5paMkIg5yPH19r++NcEYU2Fn5XNEWT93zcVHupsYkV63eeyIyUlBZJZDR/ZiBEdgyKu6W0oN05tZosecBkjm0qMhhpaffIpM5YqqzaEtKT0Az81W8yHXKyzBBrQqnhdqldfCvnnBlK8Lqi/XyNQytaSSajLEvPsWrT3A4Bo0Lb7z15R/kmm0z19lZdXfpIxztL/ahWsjLgFmjm+JH2dBpg2wiPt9Pl2xzdTKEGAPpp1NvZB4BvJhUA3QhE54i9llOInn8Yr905rsqGts+3AjWwbCruGD87IVs5q3nlj/p0kJJceruZ+ac/xRlZo2TdBAVs7kksBbbMm93V3psTh3zeTIl6CWja1Q6GQIUyb9i7sYg5aN4bo+6k9IUTLFSxCGGTo2fsYxBk3ecH5Eh5uVsafMGzpVRqwcw3DLIAzQ3edddWIRzpTsLM4WZrHTsWc5TF3Mw9ncuVcr/D0N4KJKwlYaosDDQ1ExUJO7DMvc4JDVbj6K1csTVWVMun3nQYgmVZiooqslcDAybpxrohGZIUPgZNKhk6U5lgyornYa0fOXmBudFp5t5lGk7jjsdd16ilrgalrHJuB8itRKBSYa42nXBF6fQU2S8zS2qtrikBKkIFHAxcU+5WfQKlgicIO8xIrZeQDCoScV1bERl7l8iJfJlpVUJu6fDD2QTWMm50pERDVcdbqjM390mAXU+sTIfVdwSxyWzx1DKfaH45DMvXcSwqRJkb5Zm2Qgi9LseVvLadB759hWmbQCq51z5Ow7VI91SNDklC5NePx3/+9//mX7+8fDQi93bu3MqMiOf3RXu9PHLLViL38fh1LJ1/4+OF4zDt55XPuMIQNYTdj7VE0HYsi7zyePz6G34uHP/rkf98Hvor3QEs4KDBzBSHkw4hsC8c+/t1Ln+Z9L23HWfGM235KebvMI/YwdAZAi5zZe6FRRqwSL9SYiSMjq/HJYGMiL2XACF4QzpqJKVnao4Raz/wpuqoUKIyGKAyfQwT2xzNB/tlMGGUxl2okyBOO162La/YugYmklWA7rNWbY5je+rbVvlkpZQalPTtLDs3VDvGupt2ptL0h6r1iXFXx/T2bfUTCY0SljCAYSFQmDwlu+KnD3pov3dESuliT8g08wUG/B1D10hb9DmfqGEA2jrpRZQgQSa8KSu8AwiMg6hHY8mWSDYAM2QXS+31KtFHG8mx5FWGhZVsXudavbQEatBSwshEMkPFHx1Ob3m/mldWye1gmlkR+B3RY9a2N8k8OTV6j3tXUc2Ps+0l7VLGuZohDa1gPGFSw8ll09riN918Ng4E9kJ27MXGubN+o/BJgsMdT3tjjh0edQpc27tB/vsusiOyfJ+Ed5xJKiutxfv5ziqa0lTScTJUh6u7Wn+MDlHhbN3/rNpJSQOBGSfQ8wX0rgVwQlV0TcMgq3pQ6iPVHi2dQbvKWaRQAnjFhogKfzinipC5b5eSuyIQhWcTlUrQUgvU3gEHlhu8HDYMFOmFlZcMQanKQf0cVYIeSmfrbALNvMCc0crsfaU8OzDIVAX5xh1TRHEHa5a5ICpLzHNm0UDJDvDM7YCZm60ErOq+hBmXmVnaItC4BCpc4gBIllCoO4dglC0mYqvm65QXTxdLSkk4lkhF1KyR2ZAQOniEabu2MSMyF5QR+5XPICDsoiV60B2gZwB2rHWlLot7D1h1fii2JOUOz2jBAEUKVL5eZpGkwiJA1sjDVMrdTymMWCblcp4vutv5da7lxwo+nQ66tEfc5+TzQpq+99P3ekGA+fUbK7Ac3M8w8fyXzpX0c2nZ4/i//Vj/23859+uR+7jg+wCAbRH7G/ptQeQ+tmEpbBl5LDrBJ07L/P3y5+/v7+cffu28aII9lufjR4oeLwT3vzLXN/nz16/gj/gi/3743/6lf/7+/qfyj5+wAJC02MTelrm/HebxXHS56wqPyM3zsZ4XZVq6YOtgtA4iNi/zMiTktx3nI0SsxLIUkit9bd/GlhorZDMLMwMMN9ak3LtCpbBMRSozGRll3ZUaUWJlxs5MBLATUW5cytw7MnvIBKe3AyW4MllZB6q3ZSLbedWs7UbRqjM9E+jJBijSkGUL06S5mbu1fDNqHuqklPg0+UIrFQCDwerjEu6Ud/oVq/LYHZUqWQFVfKDuFxLRTSClNh4AojofMgNb2ju3LUmpLDWLCeytI44CFatw2EkVJ2JINGNxH0gwQgVmCb2Q6nKP3p7s7eLwbpARpKW+TNEq4VBTddSeqbyzbFpriQ/KOMChpMxqvv1ne71kleAhKQSLsHERwAcgLSGlDEZ2Dx6FNGSRzro6SyqYmUTrl5QvqbZwNad6htwPetthUXkAB1CYITAhT3m4xkYqhascsu9HQzdKA9CC60K3DXdgkmjiDlFVHLHeesZISjTQHNQWrMnKlU8NgGwEh4DVSAzSSK9eKaBCBZhVwTxXwzOlMlKPjYKiRCN7IsBAEd11PdACui6geQQtBa8MKa2osgnBUpnhVv1rtUgTITfgUbS36W4sBcuItAjLbIp6xs4r3LGuuMIrbCJRfKUKow0gLMv5RTHyIBkia6jr4OgTPwE1WEECabuevBu0mp5W4UTWRryR/LqBIjebv8Gbt2nIbaqhunekPlIwZk0vKJTlfVTqFfpxZqtMtVWlu9wJqscUTZBrYklj0g6HGTNlrh4R12GxpROqqaSKBTDlhlQeT99RyDUSDjlEE+CEOzaujZILthAGfC/yWLMxI4y2kFA0S3E7Ml1Kj/SSpKgWCGMrPaSFMf24zESnL6cZ7aWdXCBfvGjaBpBeUNXm1XwEiUSmXaTJlYxU0pfW+rL94OOwv/7869JR7I9rvYCXFLb39Qf02/d+vq7zEhKhFNc6t4h4bT3+eP3+VsKup//Iqk1k5XFlumIn8Buuvb9/r3zm6Rv59fef/+P363/y+/+81v86N59cARDuK3NlYi3XIxzP5z4PswsXxcMfR7wSBz23y5jp1Y2Rsfbj2Mu0w/z18FjGPQDHK0wwVuSsjAyOnGKWFje7mpPIzOpnrxAIja9GA8GtwoNoJvsVkbrELYRIWe6d+7oiI3PnZJadQkqZwHCvgAH72oBqDHsVpe8kBej/l8niLYOciKwOa4UiEtGDDjFJIW9wFN24i2YLdY5F9ejCYgDxBn0b3R4w+86MEy3YSvEmStbaVT3ATRmWsUMhRURkRu6tgLuXBvRORTNwCokbbDLvmWTl8pmZkRlBSBZRk95vZzuPaEZcof+EZmoCBnBFOeD6oXkwdQOW0h3/ALiRffOqk9VkwSoSlsPhu1et8YV+kCbzu79NJempDOu/U418fLwPG/drMLKEuw0usdaDUO7IBm8Ve0dE8YVraBxx29rKDVv4sGGECUm6Yl/wrD6UXTpHvkOXNJHRrxiA5kWm5j8s/tlpvWnqcU70YsoIBkKYXm52cdnRAiXd9VPiH8nSvq/06XbADcPoRFKganiMgFQA8AJf+5tkKVY0do2SSQJXeI/rNUWhUlHqulZ8NfNiStbkTHYklxDSOePebXAOsKKQNEgbJsOlrPqu1Sg+xY4wS+xMKbeIIAJkWt9RdzK968uw6tPqJ0ozRs3iNLlZwcQGALkpXhUH2Mpc2LFWIbjmOT3U2umKfeUgEVmTNZCw6rWx0LYFS7+eoazD4Oa2c2aOMd1S0K5sJKcqp86fCUFBwALKEDa0M82PNEPqaJtWALxKoF8ZryvfUuM9oXxI0Hacgh0BKOzHHzxgbsDjx8MsmIL9hfz1n24/Dv+5lKYjSW5ByKvq+2YkbHmwBIYVMF8LV7kDWJ1ORK6ybJSomrZVW766YQ4c8Cdy+7IlroPH0l5gxla8ZMrrKlcbIULheu4rA8yE7cgM6Nu1mOk7FQnT+jrXeebxcy//739dv1YIm8bf1+tCXK+n46nnP6XnEpQRAJed6/gF8/MPPp6/f7/y2hYuW4qNHbnhMOFw47FSlNsRqe9cP37+6/f+pz2N+2SkH385vnnsX99fT//jH7+D245DPL4uOyK0HkvHQlzrus7MpQzjdVDLEnq9fl/JI17Ba4MZh2KZnbmojLX2fgmG7EaHi0dmguaHOaHc3t07ylSx+FE4h3buVHXKBVuK1/c9FkyZAU9FKoKxrx0bIVzVjU771/95+v7+X//6vl5CRlpmSJ4KQanrtaO0fYUIIG89uNSueE/TERhpUAYsbhkeiTXmU2KmdWMboEwQsByeSicxXfnl+HCAJfmAt/dgm2/e9nfcmyqfl4TRyq2EBOYJg3txWszdkE4AcndvzNDQFagq8tYtYUdllgWFmmhJdwzKXujd7Y0AKTMvjphYX4nAcp8DIZbJagw2Z5BBlSXb4a4klVGjhxMsATQIYWUXBbCaZOo/kbASx7vd5IRCbPnEXqwG8LL6jCqQ6vWDMsJSrvDsHFqfyO1Umu2uZQgUrBV7AWoDMDdf+wBy74xAMhEGw58fJslyu9bAQg0OtgEXSLiV3rQVQUlkQUC8S3XduNEps8x6h1Ui0828BT5q6gRsH2yaYb7BTYY11FvXpepaJtnNVDbpFAomqs6Uesmu5bRA5/ZcStsJMcm0yp5XhhkJmWAwc8Iszd1dyy2N4QTDALcg4YTMXAauiDSIloR7VCHTnGDSrCFiwfsETZFCVpVFkmbkDtH5QqCLxASVCtb8wAoUX1VJyapJdMAY6Li+uMQdNDkMk8dbQmle5FDVMKekkFksDpqlrYxjfev8egVP4nQJ7lipiwiL1wWATBG5S3OrGqPbpGWYZMo02sHNdZgXkQsVehlNxkhBKcQdMnZBJKB4pYkbl2fw98Y3LjcHLLfiWow0mAwmQeF00/X9CtGjnr41HbbIXOlmCD8vgcKJVPIwEcsthev1vb++XuvLgt62wG2ZXhbXC7vURirEr6q/URGbpCO3Z6AmHJoSeUXXSsyMV/Ma1VmHIb+eblxJGQ7qx0EZgoLH89u+/1jLsAPbs6Yu+fVNPG1faS+PFVckRXuZuXae2Iw8fj7tC/w6Nv/2pP3fH//6y/mvl8mg7yfl2Nfvr+vbf39L12ELzCflSFvXUuZ+ml3fv2Nf11cs24ordV1xmRkt11p5npHQ4ceW55UP/eu6/vi1V1x/PbQpmv9c4b8f1D/P3zv3fvn19PN4rc1cy20ptX7seMT3gtuhl+kCEPs7n9d2zy0kzYAFrQx8/zCL67Dna7lhyXi4NhSpMPopPgsfWlGxf6OPhbdEcGvnde2MOkAhxnanWcQmIjP3DvkrPWEXr+fzFRub2FXZMv7zfx68vv/nv37vJxEZvrcIV+yAy+LaISnrD2AE36TMaN0HTvUNyFRg1WYwCLEsRvI4Q8EK0tgx28IusLJVNQf2vKm8d46NscbtT95e98MBJ01CfAx3aDa/SKOzdRbhaxkVIE1rHasy7dLossf+Y/IsZGy7XrCToHfixGZE3Y6NrJ6dhm7aI913Y917OCHGAJ+F/RaYLJaSSQPVfXerpo69s7eKC6iKY4jZELNAs0jAALbjI62G0fSFNNgwsL/eU/pmSXsy5V0a6CJf1Y9vaZRCSZW8a6s3fA5bi1zrNLVq/5QE0Y3euq+z7rDHgjam0ayukQTplH0inc6JCvxu7yl1YfRejj4mnCvNnGlG6DupQl+mJTKQmRcZpBlS3ZqkSJQL1hCa7nhvlv5e0z4aJiQpt6TSkQ0v1PQBTcumbhhb4sDzZtaKDKake0HrVPV2uhuNKTKjqlDm5ksUw8yr7ONubul1rVY9jUSxl2Bubpk1y4Wl4iuTCqGUGWs/NCJRWUED+R0+VpjBRuFRg5WAqktXtFn/VNz3+TkS5jnYLh2eXBFVwUfQHBYqqZ1qLKoOXDNTqANKd/dlh7tRZusqiNy2thQj9Y2U5B16VbMlunzBDhBVk49xKbYSV+CyXWUJpHK77YLts5gTpTBUKmVWM0YKhKIsQ3uHZSzasi3Ph5szSZiMZIZH7ItEWu4dl4tbX1g/FK/zeu2ouIBR2toVgOe+Vu3qsrOlcT6cNL7xICsKCEuaBkz663BkRF40AD5oW+5Me4XtAxFIiwuZSMS1KgwzAz2ykgzmkVGTIGDGqxAKuK/FH+ufx7kDCe5E4Bn7uvi6qnRlRi6XAYu5pHwiv3FdW/ufp/zS+TLS09Zx2MOldfipr8fe0DosdO2dW9/Xaa58LGZoX9dLnju5jvgZj4jYm9+/8aWnX5fxkH3pCTfyWP/QgqRl2DRlcKWQcYWCVgSDIKSX2Yrr8siGF1Uz3rYFBNLXVZS8aUyope+5X+oZqKnMntFRGbKSGcU0Kiigib4qjt84toJ49sXn6wqV6m4doSp2pZublfKwZZel2vx0lmWio9qKmoAzkpNWSiGNQOkj46hfNormyQ/CFAfo0psZJEFlbMbb6n4x3XelrjqJo48NjMZ8/+S4l3Y+bd/Z3O7MLCti3aA8brRWyrtejbtiq0qHG6MsQrdRRoSZajAvSqqWsHveIgecb7eGz4rtOMx2U7mI7lckaTRkz96FqMg5gJ/+d55tWkk7dDGsWzGFrJ4yVN2iFosVQt0V/NK1vhUo3oBw+1G2ioRZ8SJL3qoea4twmpn7ItzNBIVkDnPN4Iby/zeOQRrMi2BpjDHZBkNVZquD9y4tWBLijoFtpRCZkoFIGQNopAVdcQMUSGYlno2ZVmwSr/StCGDrIsO4UDMZavxgKso7in92wRjnO8tcaCyUKlHVFEKrWERCuqKDwtzeeTe60FvKizW1xgjzjExUT6jJsvFQd0tkVhm2lsGLFEvUYVzH4WZm3TFk7tWa7uWK7SNSKg0BFEmxwM36R4Wq76fEkquFty684ahMYObTS6pkuEsgtQvzvberlOQAHaCtDEPQ11VjeBBaEYIIbfgR0BUaCNohlYVDV3tRKN+wsbsUhCwpJwKlTp3I3FGqdNnRXHoFP5mKV0AqHX/swF41+L2qKrDy0soKCZgAoms385YThmZ872v7y7AOXjqudRw1Znchcn+BSOQ3V0G82Jd5JMIO6fIrs0o4SZG24ZREN4TA5axdk9VwRYGKyGNwpw6HCDjTPMGkX0blfqWbUnnmZaS50RYXzOi5wPD0TOeFFGlg8sDVkvLF1X4l4juYaUpby3W4rcMf8bB1fuW1IaZv6XVdr41n5q6pJUk3wPwwWGZ8G56xtN2f+nms9XiZGc6fFj/sPITw9WXH4/lirgdxwcNdV8b17QYz7Cfi99OP5xWl1/KoQZr/PHPJsZxY6cfvEOhcCPOIw5YBfu79WscOIa8nnA4tg8xz7R3S3q8jiiPv0yhEZSATruNqSkwzImyOz6SMDVdCRdO5PZOEbkzthAu33v1NRxCgyI29d2axF+GJUl3MyIPmpMVt4/vly/SzmUis+SjMto/dOcDOrPrNKkGpqU5T5QUrFRx8aWQLbpZyMUkyUqW+M+nj2zmriETR/hMmpiXz/Ro1lqiIV71rhZrsi6bgKIO5dzbvmXfhDKi0x3zv1dazUkIFrAuX3f9f6980X/odbXzEDm2Q7sXsI3SD2FXzt141W8npO+o4I/u3W7BuiDb6hPHZUVh202on5W1Mxpf26yUQMk6X753RmTU95q4OTwpayLPRzOk9TKSB0GWtiVyO+o5/LAVzuWM3OwpW0xcqt0LTn7KkoRwuEZYTc6i1TXRXHQpL1P0ZmZVXsk/GDL5s/ZNK4krsfAD7djdKNatVUHsuc9Rw1hvReD/MhqOrsb2i1jbuA9JTUCTMFK2kVVl6evGMFCpnEWIJ8OMjM5t9YU64u6pnue+koHnVNFizwiq9HrkJEN247LiNw3uzoTvavA6oNebJ1k5snIZGUTR0y1GdaXNFmXaMzSfSWCUVVfqgIoTLsicaQJk1R4lupS2fCZnXxCZzF8CUASnkLpbjBlVV+fq/FXusQkFN4KY8SstRAL1K6Q35kEqipnZn7q3K16tPx0CUbFlRWC+pVjETxoC0doUmWV2KIqBMITO3FEkFLBO5s2FAoEY/ZEA00vzxMGtY0EwJp5vl+rV+Pq7Xr/398+FX/sf/sR5axNdX+ut0iuYgYIc5YW6Q6MtdEH25MuHphLLHWGCwq5jOVI5h2CvL+LvM5f44lpGK9YOGI3lcqnnRhehnCthC+uU714YyFbpyr0yDw2khWzo87NTXXjotrys2tSztGfEK7UQikntFnZwFme+LEUh7GXmAXJkZ3+m/TJGH044Q1/Gw4whamntggeS/ttlK6PoLYus/1nMLmToMrh9nbqXOxynxtbV/n+tFOMF8QJb4el2x4K+N2NfrOEHYwS0DkIl0gQYFv2PniVM8kLawKtlNWmSKdtTM6QxlydgVn6Rsrroowlu5lPARaMaUQ9sys4gOQtjtvJiI15P7umqQd5cmMbgkDTUAs5/rnW71S6pqg9N66iZzLqsXL4NHQ9KZZotGn5SGhHnIqo+rMk5O6ZKtPNSsK/OyhmPWVclazVgzWKv6pbN06boSyvL3RNGy3WgzELLeBDSlmTnoBnOWkGLCDN5EbvX0T7R+RGUEkhJZakJlb3JDRJrl3jszvB0XCai8w3yUyon13CWI8gJfrfC+EjkjcgVARmkfVIdHz4cwsNDRwu+zGQI3Wa6XzuA074xNo5FJG1y228hav/DGg0FbizUY6ib79T9Xi9RMTmr5gt4e9WKKlK4dO6voiknyzLFB9KyJkDc23BRZgo4tkvDC99AtNDMdciZHFotuh62Bcgp76KFhCc5CcLZqBzzjfskJWJjUBqMUp3TR0wxARjcd4Qrb5tVVZgTc0j/csfHOKY2MCgJq7KAhFWlJ+kpFUCbrWiuQsVk6EamMkOQLYWsrLsTpqUCVHBjaLOoHFKF8/vA0M2LD/EghEoow7K1IuGe8gslUXuVVVz0/4zqdS2lmT4SbrYPkufKx7YDl+WBKfgh2CdW7ltreYe9u8i8yFTrCkDLukOcLJsGdCOVVChUpicchNwWuzNcl6iGWyMSxAbcrPbZnIniYVu4d52NH2sw5IUjm9DqGW8pEuF97x/V6Wuzr9cqD0Z4WgImvIFtBWpph4fJ3knKlcj8TeTD8lHM9//hLxinDw64zXycgWip17VRq48v23raRF7RRtIaaey2tkwzZsSX+7YfheIGhffy80sPW428//tt//8f/9vVH/md+P068+Jf/lywjNu3nP79/tOJYgo71otJ8X8njce7U9xfOdWX6fp4hoBkoSdthPVqNHX5RvnXqEO3xj/TDz0d+/fXXz4PES7/8xcjI9fpt/q8zxK1gRCDXH+Lvn4eOp3kqkP/A47wWM3nA6a+wEz/WXn/P4/n3XD/33mkKxtZrP7cUsTyuiCdkiRfOfPoZz992fTtwnX6Y/f3rh/njhz3313osi4etr5ewlp0/uA8j0047rot2Xb6Xpy5jps61r8B17Z8PrDypb9A9ti9ce+fX83jq0vNy24iF+Fr/2Lm/XlfuZCsA1RmHsBGPbeBWFJ4Bs+W2o0eoGNwDuRJrXWkgnxcJlOxhNVHAKE9SZkd6JpIUXUQNFjIpYxs8ALOEV/IY3UteCJGA1z+X6ftVnW6xk7SomJsg9FKyhFFaXD3BtGJJlueZ3h9GhwLGDBmgyBKpLH7OcjhdWVkUIK7uUIIUzSmtCLYdUFFhDEXYnqRfXcHJ280wq6WJg8gmhJr55dUnKyHNjC4W9bQLFSZb61hLbttKeErPnZoxBO7G0yPDpJigAB32k+omXKFY1uXnUlCsVQhqDbOoWXrqGhXH/1ePEmGtGNaeoRv8sZQ1EM3IvAe3d0aa26N6fYrlhrskdGeJJKzE0yZxvwMpTYA2Wk6fP9B55p1WVyTROGO9bCtHa8aBA2xWZioj83q9rm3v+q/V8BGzBSj6Pa0EMSkQBZCVQkK6slIfIkUxqpiIe3JjQb4984KQelJ5tW8UxvyOGSdirC+7m7ROwD3MGGRX8avAHrXeNUoRhXG2xiRuWAIVTirEsvIVRtbsaLMVMAPclrBNhFm4SyQjFxJu2SFPAT3ODAqGjUMqxLwvI5mWOxYA5RZJM2Mo5CtGhgOFkhNUqARglHkjVr0rOiwPiLRVqVe4V1JoCiTMaK8wxeVKRAuzQpFKOIS8tFNpCrhdG1ad3m6OXGE03mbBiMPdSabCJNL94F7HkXYwEl6nG7FMFgGa+04rIpIUsass6h3+pyWYwVdGnXYidsLCBFk3GWFXSpHRPVBvuGRiyrDIDSh9x8pgXr8jniuwjr2P/SoNTE+n25VIyHRdyzY8EBeQ2sTFiBrfHq9rKWPTHj8oXDAlf/x86hSPv/z9x//43/w/fn3l3+23HXzag0jsP+LlX1d0UZ1bgLcvxd7w47z2vi6ttSWk7NpMGoLIdAQLsKuqpHVon0jIcbiWcT2Orx8/SrKiQM5rY1+vL/1GJgL5er1ObtuvY8/UaiX4MnNwC2Zr4ZG2Dnz56Q/8ePzY257PKyk6XoorckeGxCVqySA8M37jjOv3sUMb9APr+I/jePz6efofv7+OL9t5cvnaoJHhoInLgeWHOVd+/+Onx7+OA4x8XoI21jrNaVSY03/ihPRbeT7P1/5D/wgYLtr5ePg3FUAcnvm6eFW4SFCsxlzTBs3TTn/Y6YSugDNgurYxYbSEPImtK3oYHXgDmpzmhaXMKpyVHJoR9Ezkjp4w4TX3JzKiOvSrBUKUrt+n8fsVVeDIOtpRkJQB2jhqQmkFpLduFSS4Kg4r5d+cdvfuOtZOh8DcmmzZkNktkRElyO6Vr6hck6bMN9SjKm5V2gVZf1qZd2WyRrCaZpwwFmG/ZyXR+3Jd9J4ekMNfcNBM5u7I1qFPrvWkV8W9AQeQyEjm6GGi0VtmCxEru/m101DC/PQkyKQ3qapUlucW0HSVSvLaAVtNqiQ6p1rjU/mRnN6ustjJNwJdAUo1WKEaRqbUPED4/MdqXlN25b2zhKLWJ2+SUCPIN/YxPcVvUlgXfwGYT7qLuXygx9DfV+1sLJjj5kkzVJg1bpqitV8sjjNQLWB8u1OA7F78ovSp57Hdci61asjBz0VCsiwlfY3G5nAIslSHarp8dXOXZFoFTQlmSy86gdZpAFACFROE9JOqmFq9F0AafKTCSgaxwKd7izf61DVFCsE0Vbl1mu2l6gksxkIFnkSmqr/+fhwf8if9cNgt+UDd427IqrkTEGXdmCNFbiWwjJmsLjtGtc4LyiiBJ2XklUdHm/vi0S3WBXQYSl4LkLDhVtK3VTagyYUw54oyVRas/oiqHW+PyNodKNzBPdq03HhGCDfuA0UkLFAWjQJTuaM09BPInJyx9FETwUDw2lcNdA5jjw55gTDLQETIWnjWmK+MjIjY8AwG9qZJ2xS72g4tdkQk94WDxnVQhJmvHSTgy3/9sOPx0uOQlsVxmEBdkHuTHDJNASMUAo17B5cTe0vuCp/UBMxuqEBb6VpfM8AJhW0pdkYcScjPc5FmFmYIacfl0VQVoboUcq/49szYzB3MHY7cyaxGzcOOsK8v/jD4Az+On9+XKXInHlDu5OIOC2ApBZhbhjKuHVUrX5WD2vrxWH89vvx8/uM4fup3HvKv64rHA8uOyyy5jmXr4WvF68o/jqV/2eP066LItZcll18SCSfXX/7yR1hY+PnjiuX/SC1o+eOnh58JruOhBQuEk5awFREJU6RyV5p1+AnTtT2CjNDS3osbNC9vndQO5AyQbZtYO7TMgKMrxOxQlxyZiBrw3XRR3b9TYT2JfV1me8fYbKKkmBr9qci2vBGRMHXQzjsEGACaVjBxlUGrQFFycF0WLGCOUxKjVW9I28wefl4vNUngXfSzTof5/sDtk2TW9HJadbIXMn6zZjAoud4XX9TeugtAEi3N3GCLc9CVMitVvR76UqQlDBVEd/eRlXm20s7ZbrfepNAFAqJTX2sHPBC1pRl0+9qJO5bGg75Zc1ndD1PCvR1w/Zw1opxV8e9uU9WEks58s6ZtvTHxZna123hj2Lp9SKH/RX+d/YWPj7rTNPlU4mlrwaZuuVy+4G7LjgQEI5e8No0hwOHaqt1cL3A/oAI2ukzRwEHJQw1FqG+u9pkUmljw/U+Eis7SrShpDSWUnk0BUc4jRlXmJv1OCm3jTtn27i0bxj5jvXze7lURNWGrJpO2Cn8Syp0ejuoa752tFtqA1bSbLn1mwgJZneJmxF0AzMwdJmQk1fLPCVKRIRVsTKuRQeYokh2N5LIy25mJZDJbj6WCidzg1I/b8xf0lmpV764b1r9FcmcUM8o7yUYouYSeDJld4qrO+fKFq5iEyrgWA9hryxMRtBWlCp4RYaXINaGXKsKueN1AZE1VKv7wREGZqepO8Br71uw4T1AJhUUG9g5lMDONabZfV147saEdkZEWEiOVdnM0mQZjIrUdCCgQgcgL36dZPrG3LRfP5aT5RUbIK0p/facuJxHyOOL7vES7uH4eL3TjQcBEahtoiBScyqSlUTXfOIsv1RacjI7gKMlpcHd9x/P5fF7x2m7O18EDKk4CGSIZEPaPg9YaqLhSel7aF19ZnKvX6Vn8ZRwrF9PO4/QvuB/0eF64QkbwjKsmIsMkI0uMBEUfuOK8YuMZTsb3r8dX2N+Pvz8e6z/5R+YX/3ittON5vc5HLD8voyFoB45j+T4tlmJvXXns58Mu15Yuyv54WCnQ8Dgv+g/E+vp6rl//+EeEffv58z+CSvhJLr/88WOflx1YVYUNMbImkxjSaA5l7HxAyp1yKYtSa0lPKMEIhlkdE7T11Ef7yI0/yrxpHV0JvQPxRhE1OUvnWuzkw5LNg62ZGrW/7fZgd0bSDq3srv7ETb1td6ZBmepWUX16zZ6HdGdO5Y9RcjS6PTA4WUwVgiciLtcwVT2iOhHHbbWXm8yxkklJwpAmMTlSJMgNz8xe4ZKXy9JWoFV3DZ0BDhp7k92k4tIWsNxAvFtBm8UMHqngzFLi/Mjp+9rRAOwdUKC6VPoHV95exKpvGmLWTe8AMrLM8k1N533/n+QbjfgPijH2+a/jtD7c6VSIqbp2Tao8vnZMaX/Nt+5Rp6jMonGVtS4YvTlXNkj27JX2753ZvUMd3Gz9nJ12X1/tvhK9smytsWiS4dyLOLFSu0ZCGVVBrnJ60cyAevDIaQfOoi2rA5J6BNn+KPu1ATYZDu2HEqzpg/VElYKil9IswqrPU0qW9FoBqlXEr11KlFmpz2v+GNTXwK55aJ50hQh0GUiTG31VVddUBPKK9GDW3e40X84VIuTPa3ts4CrlMmwBCljWiIeiZFtpuylRfTD3tXh18VmiZXaMlJSLTddIsdRoMjq3KywiEcWVL56Gp9X7FSgTEiKuvBH94hQMmYUoBr4cVbPKO6yarV68xpBYLdauoHXQXM6sw9ZM5euS7fj9x0N2ru/nS8/YueLaufeu9qfI3H7lKlV8A6ubsWamY2osQF629j6RaQeNRjqWHecBHkkjDxOtIxsa9TAppPPr/Pqedi8W8wQkjFH60kqa/CjwoJr1bPdsZICu1mag0qL4C9fe3/uVGde5Tx9Lk2JmtxknzL64acSV7iKvYMSlDBgyVLKIIbP0I5eJh/m5dPgh8PfW8/lCbu7rctp62eMr8jC6NqwIOa7X9eO1n/nK52Mhef74/vXf4nx8LdHz9VDA0tfLzAit4hjugNFp+YLpsTZgkUjmfh72dB07j+/lYvK47PCV6wxzP/N4rP9i0pL/0v96VFkq9/MJJQ1+wra77/IEvaUSXjoxAflSbkUWsHQQy54yMZiRGVYiz53FgDnsFN4GlVCWvgZYnKE7pZo+7btaOJZaQ9Qcrw2atzikwQ1WMXzZ/bucqNsRQRKr1b6wQDRnJ7P10jTD/NB+rC+ovcXtADrEvZ1Tm2WoLrf7jdlBuT6s8e1zeR/D8rbZnbbVzMcapSAFuxz7zgVJc/mxaFjVU+MQoWgaZjLHAlc1XYiUsWD16BnzhogEWPP+OCb3zmuhRmDHS1Yk9XHTnEcJLPbk33oyt9ISS53xxgruLLGf0I0dcOKQevJ2w7f9uzMCWiNx1XG1kKEpTd7eesycegEagqncfsCNzj9mm9VkLlpN7GobXd6U41PVyS26duGzIu8yRIORE0iQ7xS+3D5L7vdPl1S/R9wiKt0l+nEvg6DMLrJqpxvMt/+oys7Y2ZjQqr72G5S6t3jLSSpbFT1n+iQFWNLmsoXsoSIEgBRUw2IVYchEKXN20aS8P1klz/FLQRXKpZLKyYxKVStoZOMI98OrCzHCz+3uMli1jw6EVvECKGSmMgOBTwV4AJTePTu6E/861kDJgfSOzSQjo1sMS53GEu7mx+Vw8/XYDjd37z5pgyrtaACi2vfrAZQIHgVfsrXb8+MNm1HCYEydu3+kIKgIX2aFMtQ7bCcO+blWPh7SkrmtdKfoQsLdbD3MMx0o6Y2aTFVz/AjTcZzHrqiOx8/jTF802Tp/7g0pXkE/YcdymtfoEz8elwTlC47qHfHQlG/scGOGuwHCWmYpuE1trajslZBUCUcuCpm4NmvYskQ4cazCISOlvSMtrh53sYOx8rr2ZZY7g6aouDSubSaHL8HOI0+P4/F1Hkvn8nTEM/33b/1zm0UwSBprNOd+XbiSrr0JKRCAJbh+Pc7DHv/1v/4BO87rFeb+vSMl7YjI5GZUx80yfAWUZuvrDF0vPx86+McT/DZfpHR54ZFcq3ySu50L9vjbgb9d+6H80te6KNrrZUyz5bAC6TOkRaxV00yRpgww4Yi7F8B81TnkFRlbGSjp6KFvonsqrbMRtT9PBTznsCj902zC1srbf1bFK64N3zuydFzbMUyIz4FOOc02/z+6/mVZkmRXFsRUAfOIlVX7nNvdFKGQM34yJ/w7TjlrEZJ9dlXmCjdAOQBgEVnnMveufMbD3dwMD4VCcRyEGhk9b0L792nAV0fybf7qP5UHzOYPHyv8D7P4NmZAkUM+s7TjF5SHRgOcvavuB2YxakptHT39qE4lqiUCRzWau2KIEGHKbtppmALSkDfKqzcCRAURSCh7KGJk1a+IYDeuH+PHgS4n1vkI3H+z4HOrq41ngqmKYkqXAkXeoh0H3qk4A0LGOzUpT1LO+oQpZYGqdaIibDScB3DiJxHeHWUGJElGsc7BY9Dfb1qDq7DVgzIiVFaDbAWJqgWaZEag+Qqn77mLgMePdjd6IQ1j+KXqearJA1ata6Ag80Q2QqBJk9EFkCyVk/5DBySn1xSnSLC4ak9V/7WAk5t2TJFwqySmm7f6+iuQwfFFpG2hIoVkxXNSi1iHcakjIlN1FvU7axozFREBeYLmjRGYxLU2te8olCDCYlXzSyeL3DVNs/gEKFSs91yVh0uSilgPXZeth7BAF81pujxCWquWbFdoWc86ewWLM2damekpUVlQNkxEyrk9Aa8mAygWAcIfqZRJ17VzpT3X9QwPhD3gVQbWeMgeO8/B8ta13RcKj1MyHYRbXPvxWIj1cLoFvEKoMMovhBDK2AGJDiEd6VimsG22tGnX9bW+1vXzxzO+8sfP61+v5//2X/Af4o+/+XR7cWkL5u7u8OeV91KEE0mHwRzLltPux9f/sL/2hrmvP/7P1/MFmgH2/Nf+t1tyfT1//G/X4/nDr+cmbT10P+JFI/crHTBoDb9H1Yqh3HG5M17fy82qAu8ZTDfARaJHdocbEiVrr1vytWPvB0jBHs+1rAjx8ffO278Ty2zvCH8F4v71emndtPWFn2a+lXEH7eGXGeBfhrUeF9Z/PLH0cDPj4+dfX9/3fu0rct1uuRDB6h+6BHeH616PXz/t+xURP2R/fK319cf/+vXHX+vr8fr79R/m+7YOKWXrjkcw04MP8IoEnW4uxN8/no/I+Otb+5c9V+S+8UiacumyvYyPmwY+Xtv/9Z8ef72u0A/9a/2yjfW3e+ZjPVc19OWdShD5dJArUnSjttYK5CZJiasTtB3YsRW8sxtiKrHSkEe7IJhCcWkrXeTkQzgFLMtKBl3HNIFiYt8FNEIo2EqK3Fdh0FIiVpwokrSa/lIquDRPZHOHunHTzAXW7Bs6zZRiapUUeWY1/qE1gqzImMqMDGQcFLOD3/KrGdnij8fRi2JIqWA1OHde1d4SEtLKzXc2XB2y5cqC3b0YSmXmBl774t5AbIWZMiJLyNlkBPMuAH8iFBJEWqgGraJQTQZ3EUiYiWo1suxwZjqGTV4MVXZm9X5g6gy23rDcfML7+qkACKMRIdLhNimNgYnu3/o9I5tHh7MpjCoOeLkEG1YVS1y/3LSIzrw078cb/udvX8HqYbbKQcyZGd0eXOGGmVVJviBfFGFguO2l+CVV8NKjAFsgpFxPIyemuZbKMEsvV6SiWuhU1js7HSOaR90OOMNS1eJURMFq7Xu3qwzcrt/yusG8J9PvJeq0CrMshYucgr2yBRgTTVNkyDNV8GFDuxkRmVlerLocavYfxiVPkAZIrIwowlWlEkV2eldj9PpltAaq+qHXBVvFU4ZqyrBMREAlRSF3QOmeeVHVRHW60+xgB/3gLYsxZw2/NPZREzHq5SJhQXNEPR2y7xoSjTK3Qj+RSDC25w7I0U13KCWR6/G4bqfnOSZm5LWMTkGMNMIRchTwR87YiAg1c3IKChVOiebBFddzmdGTlisf1/WF68dLdl16POiXzLyQ8PDr4dfjotH3NDsu+CphpYe4nhm5AZL+WIgNwmDr8h0P5UrFOQABAABJREFUYC23B/DOmFKEQm7ffyHz+/LZvWXCAgYqQmbK2IzIbVFzZAYJSSiSK1KSi1QVT+KO9IgQtEwyX94cGuPmkofSeZGPSNIitpg7giuUwg5m3FvbH/QaybxA6fnj6+KVRiDv/8/f+6//4y8PQgqu5M5IGhG3IGVuC6G6DNxEyeX2/OPpJuqm0u07stwJbaECQKc9fiG4YBn3crsQ6/G44jsiYt8I7dffWPdVMW4EgtRywEH4j//Ef0rr+4v/38sYEG8xSbtgPgW1mqvDO7WgkiWmKwNuUGnQqPodS4Uno4Z+lOVxpqPq3SmkzHyVhOFYTRS2yMJ5zEbOUADNV8+5sSFyqhJmqNgNVYc8OVtlusAHGKixR822KuMzyVaZCrq5NVWz0W2klShIKcMauqG8jWlZo88vbgj1I/Ot5G8y8HcC2dTXkhI70OMglp2Vs6nZltX7UWWtavLNGp2dua2k20fiAhUqtPRE3avNPUhNDSEIIwJTseJxYQ2G0YVKAkFaaUexBzsDILzWSWhZDgANQY/N6/uyIYoTAK0a02rIAZi+mA3SAUMP62DmmPHZSp1s0pyJlrYyI7OQ81YmP8/9bLAPpH8GV5YzNylUPqQgKRy378tRJ7kiACPRAj6lIdjIjlqVpC+dlmIBbIAaBaGZEUkozCvwqqpCg+ZZsE/np53kN5LQi1Dgeqtenk1rpHNBEDpcLXp29UkLlM2zdfZM7cr5hSrunYQaCWMXQadOn0loF8caEdQefbIidjXibYQvOFe66KiG2K70k/7Y+1ZsSmZGIIJJD0Vwg5tSeBZk0xvYWqbZrKoqNVNX8B5mUwA2jAsyXp65sKv4nEnIeiw2iJkQWPft8N4nnWFXtZ20MilGpBuNKjS94bvCPJaZXxBvVXkCPTYBBeQRo5BH2OWtITtgjxl8GZctM8m8ZFxKEoAyFvXeGRGVLyjRZZEyZm5r88rHY5mtpcvjyq9r/cjHv16BdeV18fFI2bWL4W922Vre5T0PGM3hLsCJa/P68b3jeyWM9mW4I8oBf13RZYZ8EJWLt1ETlIvxb/MtF6jSMahKDWiGCCyjIVbFrdbjpopgVuSTwiKtICRRqXilRy744/Ln4/H1vFaNlPTE5XTFr3AosVk96EDm696QjDudRsAWn7pMa19fDiK//vV0X7oI2/t/f62//vf76xfzfl1Lzu+eJr8jt+8MWyFP+vWSPbQjH9dlX0/Sv/XrCciNSecywSwy1uWx3PDI2LaU8frrx4PX6/v6ejzunwmL2NwZ9iv/HCQ4ciclo6VtJK4v+zPs8fdjmTvu9e3xvZiPa/HxvP1uEq8ZaXsRng5fG4+dKxlM9wQCyCwOlpDKPZhuP7oicXoJxJF+WMdv03q80Ds2l4DSdq3PaW89KLZIsDXsjEKLUJor+h/PkJo+b9WyXAZo6m7FUOxpBwTNHZWWeQF/J5MuxymW7AGOHayTTIqUq6Xq3yzgTjzKBzTgpza2+A3tHWPemdQgm731DzqsqfXtyIxtFhHWpJ02KGIxs9ifOiYcMIv5xEmkcgdQg0kxY5sgM8HNKkb36kaqoGhKW541S4wqMwfAVj90CSiOeikDomsCvz/0cYSdc35c6yyTyledmnMz541vrzjwby2LTa8N3yIp5wmcpFrvt9U+qais5Lh673SyaO3Sqls1jZ3l/gOCV6fJtUekqh+yJR0FwLJ1yKtgzSb8AS0g805gC1j4iD2qc3iuvLZI4Udn5xCylqWiSTP7sK4nwVI3n487vyotIYGNYh/GIFCxRD2qarGB715UlFrrJNk0uc+8Wk61vB+7e7hZk9XMSokpRFbnVKYUm5bKpJWgq6RkyPKQHHu8MJpUUNTsqg6hA0QSUkSmMtiktR753WASqkELqmWvucTtfztmr546idlhRq2vAZI5ubpvlCQdHWt2RW0KwBGdSBzIpY0VaOG23GR2mVfPvJmbRU1iMBLIVghD90dYQ/Fuvujuy8192VqxYpGX8fkIXC+6w922XyT94d/9aCKB3M6SGhDJNDMst+sZed+lSevcvwCQlf+3vh+/iCjB7uJTGUVbeYNUNPv/fZMQoKSxBGRFFmk3jTQ0mRxWQzat9e8EhLQvhy2ur4vXelxPX54E3VMXtwEBR2ZsT+19v+ymvkMVcS8GoPQlC6cWvh40g309nQYatkf81/7x198WWOvShbXSpHCFJQPY+fKXvUIZ9x22iIQ9nnmt64+K0YzjPTySQtzGLYOlWVYi30KyFVopX/j+ZfoWIzDDRl73vr2HZaKGc/jihZc/bpr9ckQytr72pWt9I7K0iYygxfTv1wmrdjskWGe3VOuoVGzUuJxU/7MRRaUcs6LGB3mSn04RM4ma38mutpZaL2FZvMW2yu0az3OvMLMKWBElwXH6do5V+/hDGcNJj2hmCFZf7pvP/NH9oirBNVDYn9KRemGZpa0xLTIHQBUHaJWOQXjb7/qXgczGLZ987yO/LCPUGGIlsvWKwt1QYoia9JyZqJnxaBpWBQq1LvMZ1QtBuO92jVZafILTZegGmiLsY/TqzpBd8CAM0KpbV5Uiu1HmgPSVW3UEgS7EVRAwRXYcum4v+QeUDLBluyUFarxaRyRAi3H3irJacE5khwkL2HJe1qUGkU6JaTWYI7sNGJpyqOhArmoYm1gO3Z1bDy13gwm19AUQR3f0TtdF1j5mZ2qyyhsC9RTegKmap934fgdtaPDUspjhoiUjuw2HEIzFJ4w6GdWo2QT6vrZuvwIOe3/cBuh0wEvavUQW7MgFluCppxmN7tNePocEML+jAiAQhszBt7Lyy72r7CvVUF6zzhYzIvZLjzLYdWVNH8isRlkzWNJh5osaKOJUrk2RWQIYaCkrEwkrEQBADpnMk0U7Z2mtEaSXACQtTbBgzR1Vbejy6wKuxwYpN6QhYe7miymv+CIkoLuiSGRGzf6Z3acMRTpqCyijOG7VeQEALSAWGTd+3TucKxF64y5W4neL7ma2/HnhQXv8G19r0R/LgevFlfQgIZqlIe/N/Yq4r8goRVX3EJF7eSx/PJ9AaNm1bP0Il5xy+p//y/eP53Pb+rp+/Kdf1+XiBZGXLiCuZa5wi70rNAEzpNYyNaU5mXvTfWXIQUoGL/PPUoylsx5PKkMv3fvCzprW7OvxvK7lm5K5xQXkrmPwer2er5uvv//iy+IvfiX46yLipb3lTrtWbv+6zJf5j+cyIi3sZa/X6/7+ez92fC270g3r8u+bCk8zuKy02VN6aT0vcz7Xfzx/uR4/foGOyLQtphJZDJ0MwUyvzVuG22PH15MMfnn+evhj//39Xy/ub/pOT8uXZJFbkDHpmQrT/uZ6YuWT179u/+Pvx+P7635+5SK+l26/czEgIbhA5V7lq7Tsfm1bX26XLRbMKCC5IBiQuJekZFbZkCKMUVQrqmS81Ru0LBQ5NhqVGXUKsyzfOFnB9TW4rf1QZmSVR2FFsQnm4V4NuXWMBQwJihypooIeRXcrYV2Lyl9KQZI5rcMwk0uW79AffdFV0ET7InHqjk3x6m8uAg2HqVue/NA+Oz3+dMyadlqh8xOoTSqUUwbPSAUsMrOlqeElWrJjkrUqc2V1/laV09ASS7XeZlJykjK+L7uQOisyFVSPtxNCzUOYS279wImn0ImbCuKkNNPkP/ERfIDLAxJoqgr99SeMEqQSWh5/N81FTWMqveLjwNtSN+Df0t79BiXFGrmcUay+NG4PL5rXXJAR5qUj3pFOBbCj8d1g8VxTi8eVOjAmvdU8UomlP4Myyh1G9gZ4L+bHthkcAJVmk6Jk6nvurVaXq2Is8E0mrpGa2XhQZ+lTAq0a8Lk6AOlAJtX1C3YbbQWJlJP0qKcwyb7Acv5kEc4k9BwlKbyU5gp4Z1XXbBsKT8mM7TU3tzx5V/S7h7ksApNI4UKEKW6L3IYIxvbYlEm39p7H3jy7dqTvMLx2VhkBZjHmyvhY6a0k2UrroMKya9UFlwQdpMm44OvxgNLduhta1YcsAErF/QqL/KAsFnqxq3lZgCPYKGEhMCQRvXc6zJogIjsMDVIVbezc338g4vs2muAAb0HYXYkCLXPff6S72SJpa6XTSng3kSaYP/78H3+TRvi1fvyvr6+vcNNy/i//V/t/fj1vX8+vrx9azxdU47acCIgWfyhgO7dVHC7J3AixpG3KcLtf76mDRu/GlBwIBYQVwBTYcdvjV0IyX8/n8/lwN69W+1LxTLMwxa9tr79tv24Ffn77U68IBvcLAfPl9jDxkcvXtdbX11WTFLl962fg71/Ea6UH/tjLkLBUKBbTBN++zMR17efXYwUfX/+x+CCvfHVdDReXbXNJsotMg0v5UnB9+2tnqvici+n2/N6vzB2495187m9SwL0gC0mZlrYV5sbHy+OCzLjXX/jGtamtBTf6w26rvFpW2k1yYwKpV0l2LzODjXCzeaUSGZaIUg0SqiJUEj1WEEt2FDpILnlsT4vusEaDumtIm0xjNdMIrGF1TppZ60I5vPoRrM12GcqkrHTXW8LiNNt0upUx51OdjiAVp3VDGKeANjJtSgtcUnezzLGfbPNt6utc1mdMXRBmPWm2bQwg9Nz7XgRJiWSqB4grrarQMVNzSGVE0pQzpAFZQ8yJzKheup5xALKYXxO9fNoHswhRp0pIq/lvXsKYdlxmr0KaAZqZT4NbVg242dSiQzLzms5yMFOMHxPm645Hbt89i8eGB+rlU7ZQSc5/lC7qU2e6Vv9avatsdLj4VVBXBSGTsgEG5I47InaICkRNkFXj+nWfGGfOfqRZMPMgI7BJRdspKe2MUy4pKWWlaU0+QXIIaT1mqD6rn035y4TOeD3os8sJU8xu+HousLthms1smYHE7nWaaUGZUUDrBA+VSwpM66cwGMvEkK0WN3lv+zXVc+GAAT2GZcIeTOKvLq9btljH3GXxyEInH8TBnM6DVaMquW/6hm8mtZMwBaBL0o5tozxWi5pzQFEIdOs5dhOVBQ4SJIDT74qWEMlEhhV0o0xHNzER5lX5NK7l3VpXj6+xuJqkog7BJqBtJikJ0K/CqboMP2R66zjKDubTMOCxL0aYSju1RnJUell7YGhlsJmZbOu63Au3lnnUiSlzRa5nlJi7wa6sYrE5nz++3I3w9X83BJDIzdpXm7m/HO4sCNnGbh9lfaCCczO6FyG0iugtpjfHh2ZtCJmQcq/7Tujbzddydy8UgzRtAyCTsW48IFXSIdrNYFKAuTsfGFEa98uJalvJDOx9J+CuyP0LjpELIFC10dMdcV30y5f74/HFvGhL1zel+0U30VsZ2ZKZLkHaDKciS06WYDrC4U3LIBjC0m0mWUZ4TUFDSpF7IWvKhy05fj3Ata+X8obng8EH5CmXexiAMCLDo+DKjKlZVBDXynxVPWtrOIaV52SdrKGdzEGTJmUdY3PqhFMmxCRK/TVvn82xRPOKf3J4VI1PDT1LSGaOSVE3BHczVGZ2dWwutj1xGaaPFO4k1uOq9f7ST99wkrHDuDrM7nddl8eE9humaHjM8ft+a+7aNN0OAv12kp0kA2I2kRoEkNmQRNmkZIsQm9nWgbtlRZs0k4Gj4dSe5ySBJ8R4ByrLqm+nvsAMkpkJNghB37wA9M6Qpu20+5V1PvBtinX+PHbuPIK+GJhNtW8W8KCv81EHtcRUOstLsHdi79pJSTVX0F2y1o4fvXdLwbkivP4luyQ4ifeHd+poY/rLKwgoBZ761lnMt5fl+L7xyRO/1N+RTC63yvpP0qdeoPMXSIYzP5Z+nBI+z09t7beZHACAnbeOiz07zdoRN20/SfMaaYmzbVuiBJB66h+pTDfOo2y33Rl+efbGEdJqUJwsHOzRFu8SdTunYk50AIqCeAiAJnb7wjj7+tt+d0HGs7g8+xrsqDqj90PmMBgHKzAjLdcqTUavicjvmLC4jzrr07uB0U/cBtHhe2+f/VjxLPDepizAqvrMChen34BwDcsPVn6oGjlLQUwgtnxdtpwu9zQLAYKVpMP17HMugAY3Jcz8WuZOCIiUMqmwIDMc8rUIESM81rmRLc9lXNcCaG7mvq5recBVRfsxz2edq57TErPEVuj2cF9uC7bQ7S2I74sJMAx570BsKuKGAnZxPyR7wQXawheuv9aiF6UW+2FK5c7v9dp3+nX94OMLuSzxc8Xed++0MqKQw2B2BYj1fD7cNoCdFPN1S6Ct9LOBoES2ikIRjOFwggptC7x+yZS8Hpe2peCLkXQ6BlWihx4LudPyZbCLfybs6/n6dftPrf2lzCuyx+tsBhwybunuo7OlreVVATGjuOSQxTttPEexaEqjjjd7s0/yuLqydx+ua4iAPfr99+SyjW3nFkKFNG/r3RPf9GEPAHQ3hXXyBlQzEVqfZbDdMhmT3Y7jqXgOBQ/1LN8KN2d0XCs9mxktDW5ZRZzqgRjgxUQZDTArqpmJ0+xT/VQn+ehw2MqimLmbzeBTEMVntQI7q/HaiEw2E11JZlvJMsOzbFBnzABYo8Vq1EQHN523Wt8YP02YncIsxOlFwppH2//a6LPeMgh1xR2kcb7p84G3UxxbV47+RG6TBTaSNZaqqnUl72+W/cY8RJj2m/PU++I66zseulQKShCqiH5KeVVYhPGXRHU5ty1ux03QhsbN1m0+0RZqkMJxpe032o1/hBwfJfDCgAcmLegEQ1jr2DRrrptm8B7Bmgp8PsOGVyV2uPiBfvB847iitCArK2GXKisiEFDcWKes+ImAUGKSBGpkWJ2FiLbNSlO09k7WHIsr092dtfFRGVm1M5k1e3Him0IJREuCO7TuV6YUruI4VNVLluJ+Kdwx5REICrV77xzNmSw8BnIi3vfenf8RamUzJZTauyOW3AFllDoc6TJzz5poRkVmhqKEuMlApr2CkVUKQ8ACEQC+k1EYk0nFmVL3fVQ0bEaHPy5YGSgCmXuVJmNG7Hu//uvnN3P9l3H/v//6r/39/fd//f3zJvHr9fP+ttc3c/vOX/bz9efLdlE4bF3pzmVqPc9AQo9/xXKTNhMrYLQMe8T14+sy2L6//x/gndCtpXQAduVaQF66mcmQS0uSyOVBiAi6UkZf0lorLbUNWaL3KRlrOBuQwShj7xftykxA4ddjXQsPSyfJJG/LnSkS3Pev+/n6tXFHADeJvP2FEO6ePNd7tU9m7p2CK29Ebn/cXI4fuUnPgOLeaQkEtMkIUwJy4+X0rz8vo9yUG1hL4ZcLQU9LmZU4ldUYiE3Dr0xebpnb+HpY7LxuPPyZWJ5mkWsXeGrBFWERSgQvxusnXtXHIvN16dr2eOznvx0/r3C7ahqBXev2m0tGKNfC0suEnWFm1TiaeZlWizayVP3CkowhirAhgeIbWZ6cqM7C269WiF4KqvvOSYUm6a0xjpXQoZth2GkLz3AijAjd5KnHt9cJL23YUovNA62iCzHZSOFY68nPICmE03Pwm2s/7vK3/Pcj2eIJB4kW72nMsW6/uxgn1+1UZzJm9o0KsOqOJpW2mzztqEPb3VbaW3WhDWMRQKhbsSZfMBLR/SHVcmSUtWgODOWQT+6lj+f1u8cQ0CSsopKWs0D36UoEXfRspvb7c2ph3n2gKQNnSHpdIxoufmdsHQ8lLSfTScFoLq2KEACauZVW3gB6ZAlLmOOggmnKjL1r6ocZlNxBVat3ctXCi4pUNn8TiILgrARUrFlPHTASpVhtWe8VRcKxAGWJNpHd4KGjU4WTd9YdVsTaq0uzoTTCCfmkEFAPzKyhjXlbIXbBesXMtbcFSqU1IaTkxWE31cajMlRKmeF96QnK5vAC2m6Wthg1GR4K+DRn9cH3Hm3YvXL3gjGNEQTljy26k25yZFJ7bYpYKNGUVNOXs+mYEMFMxqYRbnS4IHfqMluJRCnlDn8fFCxGy64aspmg+4ZEbxmUro5lVKURQkQqiyNNxSZesKVIv5GIiJKmJB323L5d/lAwFZkRiUu5X07LvXkHdshMkCMtA7xwf1/r3iQl3XE97gdBuC+6Ac6NteyZ+biyppH1+VCT2pWZuv/9k4jHf12ev379BBRx//rFhyIiMu/bdJvvv+3vCOG64rH0wH/i78f1eAbs+fQv+P248Mf/5f/2//ofeCDD8PhzrcdlSPt6ff2fXpdvvP6Pvxj5nU8POK6n3T/+9SP/TJhf9y8aBYWYRibXupKAu5IKrcfjctpDazFevlgl4EoVN0Axb2BDJBcA/sfPWFzu67oef15OQTDaVryoXymlbbz2r42/fgHfmYj9eDJ57+evL70u2vIHMq5r/REPXo/1fD7j+5Z46d8PPX5dP+7nWtfXtr9+RCIkRXYQsMFQYBufDz6eD9iPPxlfecVttlPrte2Bl0vuSyHcJSl6+S3HFuIbMLcdj/uHQsnY9hO+Hknn1g8pXorUvb/+4JfSI120y75/0PXzAsxeWljPn89nPL6g/13MG67lpQO1HNxySoHbHy9z99vupe27GCoSoZ163fdrr3VFQumEYFVXkpdmXlUEZchJLTrfsgq/m1Vbw9MdwwKuKgOE3Ju70ijJV8p8i6CbBWlyuzvfrNIcD6nZq4eEAi3KqLX4AM3c05ZZQaZRBRE71jslOSIp26VLkplMpKaxfzovZZTP5MGKRBpKt3YClXkVhleHv3rO07LTgsr5dASQZpJQi83GiVa0X/bzduc7XlC6gjtqplNp77eHJ9Wj7dq3uxm1b5l12lB1hFxVi0L1d1T80NldPUIU65idTWc79FXlH2gSXKhJdONdOIgHgQPIfwYan7FHf35HtY3i52dm09iAj7Mq9dsEc+hwHQ7xNNSZHS8n9SihvHdm90OzSf+l8si+xZJHUItkN7RzkM1aD76DxxjwpZRaorEOFSdO9XeFLGSxsQUUwjPTsYd3pfmChpanjdW6oRKYMT5deMxKgjNQdDWdGjGKbt8ZO0rqeRrQJMGDZptO86xONMB808hsEXTQ8x1ASUhLUhmGOJfGig0EKKMAVPSADLIUxmqkFCFYqd+prUBOVFafT6C0qQiuQhmaiYiUmAhRfP269DCYoTRvUbymznCzOGjZQwrEDAYohJpGPgCHCCrFzGREUj2NLbI0G4ESaUOkIDJoRak2Eoqo7qoG42rDeelSIpPmygVA2KncJUCnBtWU0y9PsPU0aICvNK8aTlmLpbX84Xj+7fBrXWs9bL3YLZnmsZa7XzDrMFOwlKmYvraKeSk+/vjhkyz45etSTXddi7jv++evfe/YdR9y2PWQP56/7nzd8fOH7YLo2qZMcaO0UDSiK5mMHIrA7OSkSoREYlIZe8tugnaZnr6uDGemqEij8m/Qka+M/Ur8upORaWlff6479TSuAM2XWextjz+v74dhreXXz1/7sRX7r/jjuu0i7YIn7v+8o7BnQDLbrsiEmIYv3H9+Xdu+/sy/GJZpus1sb1fef95KkikDQ8r7wQyCadjL1vUCXaaEGLHvZ8pMzNwr3b/NTK/bHr7dAbvotmhPEfGgkbpFPvy59lIuu/J+MW54MnjDoMffuXhl5v1VLs7s12Nd2DQzN9yVFu6IKXBT8ERW5avs4EBMXUJoN6KCfjPDzAudI21jLHmjmBW5I5NF2HhTkM3dstr6xGFQm8CevNs/TBQtTT3allbW622e2cqJAooMUaXEMmqZqcVsUYtjCHSMYyNvUmWS3Sr1LvN8VJMbhR9fi4/qZoUL2fZ8LHDyXS5+VzZLY8azvRNoNL8oic4Y15kFXxYtqqF/FDrFrAY/89fcrKFl5euK1RXM8QIDn3bRgMBUBrTGgDSO/uYMFfPF4728h/ArjQfIqZaicbpx2yab5t+6+cln2T3q4AyJqMppHhcx0lQn+JnqB1Gk0axUk+VFNGMRBZrDjO5vMOOseYVd9SlDLEj8NjKwPXdixjxBuZMYF+6lIxoF9qqydvVwZEEyhr03QEOHrAgPKIw8W9KtQOF6NtmjIvgBobyDhXZ1IksZx3A6BjoProingknwBFwaGvUETpXnsmTBiDCZexVnfGMCt06vW3khaQ6hGgahEgeZSGq4HgRNcyCrX5cwMU+zQcutFB+pRnuG5N0sb6mEkqlc1d2d6TVSsJajhD7qjIMwk5hYSyuRppXua9HNvBU1SzTGqlgaQjbVCgF6Cj0vJjMLAKwxCCSnZ6IOtZgZkiIiY5HpPcSgg89MC2XuMT4gudxZ42pW+Ar/ej719fj6Af74+YXn1/P5xw/n5Xk91vW4w1YuNySuZrHDoEgjbFfwYFg1NHg9qn+1ZjxVmWQnlDu4U3n/CodoXI6n7PJ4fcmI+xX74exhNux4KpO2QoCZ4349U7E3Ag5msVyTAGJb4Y2kpUBpv75fcWXy15+WSfdlrx8OUqlti2DAV2Ln6/UM4KZgjxcW8eOnLJ/Pn5e7X18KGLXwteTmfilkxry/XXGv59deawXi7w1FegqgO1XDLizTbcHM/3iS9nXprljx718L9973q6ZYFH8xzXPDC/u74rq+aBf3j3XJRTz2voOKSzJP/QrTus2FUGWP6RSd8dpX9Yjp+weVtux6PGLFtn9l/ju+/WXCTcRejIwowHzvO+BVa2dxTRWQQjshusyxN/AuRKEbdcgJ8LMVCqZwV8Otkt1EOYY+K4jOyJoLk8U0sx5I15sUUyqsTAAf9kHzSfXyHHffBNUi6Jb3yih9JvXMds03tB2r/CTtAxqazOyfP6bZaCbzHP8615YgWmQrOxd7f09/eY0XaJXjbugsWm9RmSM29g7mXeh1S/+QZgw1F7mUe93nM9/a8LNEESlKW16yxCRqmkObqHdKyqJJt7Vm+SnVd1SJcR1n3V6uOnyTrEDnvVhTZdc7i+R57J8/uhZdKPmbs8fJbAf1tc68Dkx9HK/O+lYQV/tQ48tVpge99h1NpbKn/9UXV9bXuXez4+qDazJvZaIoQodQYTLebWaJyoGt+o5AugQRli2OiIlRAchEkeVXJRV336CT06NAYocXuCKjwSRKRoPTm7QLGY0u67y0Hr2hcGqhZlqCJtNe3rusw5DMS1lpOxE5RY4KumrlmCVEplh0WM/Um+Nr2tHLVO1hZsUGqF79YIHooZYuKQvXG6xcMMyc6j5xN1pMymm1UQnA3FVStyaaNbopGpGZtHCDQ5I5swQlgBJWL7EtAGNSOFsuskc/RY0QOrYJ5lBlF7VnkkMBxPsxdim7y+VizXphqXmKdG4bdXEQJX9BTFdFA2ON/7BRCykyY+8N7prgBuUGS4NEGeJO82/8XPfrGa89bDOz2a8CkyTXqt5ku6KrcREB8FoZjP39Hd8/t6yYJ1fCl/3KgilTpbuW1aIJulHh5kXW8VUtRaTV5uAIYqHmdwuMmgpsmVBs3PdepY92Xctf8ShzEQHEqg63iLyfGfnicl4GZC7dy9xsufv19WvjWga/LB9u5nnvOqaL38sWVfKhv75/8pZHgCK5jd9yGWiPH5vL14MP/+NCrriUrzs3lMGFqPCrpk4vhj9gazEctEe4J4x0bmHt+HaTLYSZmL8er9xuQW0P2YsW6zZh3+uxd0TmfQkmLLhxWbqvK//Uzytw3wsK0T0tYyUE3K4wEP4s9n6GEoW9GJ24XOloxaju9ZkAvWuZPM6x/O9sDqnqxEdfIAVkRuAULvFu1WgL3QwSzO4/LnJaD/BhL9WdKjgJbA0myIw86aqKKt/JQe/+YoOY5ZRC26pr3NOYjTR9pKvgGPYiaIlm7ek0Fb+x/sV7IkR4vG+xbInJZHArJLVxgdAdSjOwFUuIMqEKLaHyGrET2Cg8rPKPg01K4i6NU3d2F3Hn5+0c+zd9de92mFnp+vNKsrFGjdlIRJJEymoQKjCsV02UdHIr4Egbd+atGcYXOdOEay3ZoUon3WZnMd+Jd0do82qeN0HNq5rdouK4OJhXwFj8gnH5mGbcQbQ1wqisDdgf1XtCQExSH1SPWqLT3WoYnEaNe8CQOhscKkAtsk/XMkG0yma/B/CMUXBqHJFADTU1LqwCnjQXrEEz5uN6pXQAAA47t2VKvIxklc2tcFAzN+s+LnWS1+sanY5nj04qpehyV26UzLLklRshChKsKSFKZcRiN5Gindc8NUmy5F4TTvcQ7dp4sZNbiYxIItIbJ7NMqEWtSmM9YluUhkCNoFZtZTURsZ+vqAwzi0jsSIY7aZmMXu6UKaxBboMyXCzFGRaL0yYlGOBYkaIoW+66lpk7YfBc5ssdjh6VEIUWcEXpr2FdZl5q2Eb6dT3yuq4L/lju67HW10NaMrpdj0f6gtEvPGr7aScVNwDpNk9UMYQL1/PrUoQjJVpKsR/EDXAhPGK/QiVdYly+9loAtO402RW+Ega6d8WGig0HkAnQ9u4aQJvrsgPV49ba0WV4MjMiXp4vyK/Hy9f1WHUOzHwpLDJLEzgCe+fW5qKlruX/dt1YtwqYeMXfrv9hjwsmczflbi6GhfvzuXSnIW/ee7/MQrTcJVW0Tf4Ix+WXP67l5DJ70mEL8H0j81IgdnplFEqsCFxml0UEuAReSyn6X/v7itvXZTdruu7Xze9EpJbutf02VxiE1LUAc5iuBxgv3wtAiNcP4PUH1uO1fTEYaYJDwnXf+/upX9I2W2EGIlIJWvWbEhAprhgfWDStlqHIFqvpRphyADyayup85qSBLU1TmFKlCorqFzqOm92WVMnsqdbh7SShwYzHj6h8u07yTAiylioWINWQy9+SZ6it32B2p8RYV633V/JULAUd6HQw69M5e7J1HCx30rihTTdGZS45oojK7ksrlq+l9FVONd+n3QAzeX/SqYSarcHa27uXtguysUe1p1IzWxuutt8uWIOKn5/Pai8exAAfJdjyG017E98tP2X6TzR1eO5AabtlIvslEREZGMo2aUfs76QbMbhGpWbVdfUpbjI3PT+dYmamcu/7tpokXoU6AbSCakzDLOIEZYUQlL8tX8CTe7cUlKrYVua9OIFF3KWoQKmcF884P6+vTValsCM71Zuq4YV6HpZA5Xzv3Li64au4AuZgHSrLV1WKBs2bHYDGZpK24dmoKL2n4xI1bdur7MSSM2XnVTT21CIlzCOjM+N6jjSar8dLqOFF5rkj5cuj6Yhu7WP7TirsxXFeqrJ4KZ2cJ472y61IkwlkREIhmRjjnIls5R5hl2LPoX1Do4UBwJhu3jgpMhOMSO1QWJbLL4tlIOAy62CBUgZIQ1qGR0a1ps5kUZWqlzavRAik5UXVGEkOBG29QyoNWFRVPkiY02hLcDPaWtcD63EtW49rreuxnj+epMLdua5nrsuNjz/Bl5O6M+WI13JA98MKgXPHhWutFfeysKuM1Q4ZY8FMuaTcaasURmDeWIRd3yKw1vOx04XlXcaiRZXdEjSaUrmoEoVJh0oeqZGA1huoUkJmxN62Deta/Hpey7Fa8tCW7Z2smb2ZwkYTHUCz/GVKQ26aGfdLYRuPL2yD+bKNK2zZXgAf1/P5sB0X9g3mz3AAGdgdgAi2Xr4Wvuy61sPxoMM8RckiKnyyuHNb5Zv5ABkE3BiAVsLXYwWkjZenzOjuRvrlKbtvLgQzdl63URnFxlkJcRnxWC+FFZXRtR6x8UW7fv5y34vuJhlpWDvu79jfWGnuAdQMy5umYMYGopQQyu5mgBkoQL9lMVIoJeF3dH9SGSNpniqO4vwtfzOhpRU/PRo1hNv6rXUo3xNxjknDp1NurzelvjbFZV5L+6BP6Mnt2tPk5MmctFQ4hkhTdlNKOSGEKm8qfb0qsmFyuwNen2TvzFyvzog2qobRB+L8OJQih6cPPwNtPdqZDsGz4VMWEaj0M+b7s/orQH+9e7M6rMHcUaPQTbeGfkuAP+5jncU+qzy4XK9+b4xZ1E74e7HR14UTMZ0Xvn+wBKtnDMdpO1CmHbUT6f22+iVNVlLPc2vACU0wbLKOps59ZXf7lnpEnutpRkLleeg70rnQLpl3YlqtH924NRFbf4kJRh34Ux3dsWYfAqwGvM6Agepdq6jIi97bkBKr2FraKdOHcM6AVJMuZ03fj/lEoANM1R4BCSuFTVoJ16U3V+w8eah26knRMQOSOpqqDiOSUkbFgEhlqyXVpSQR2yYcntCgljcJpaWlAG5Ec6CcgJvUwxxVf5ORpfxZQy5VGMZ0K5xtWmv7wTw/yfxBEorBfZtzb8Fi112W2q8JtpCkFyEbrAHlmVAqHRk7lckAGAC8hhw5K4is/imrahes62nsDo6OmKWpueehRghQ9cDa/fL83jehSMTu+LRNCKhiJCjvDaPR3GDmpUUkq2/1q7l7RIuAiL5sPX9cNM+9u2qRXf7aRph5mCseLq/uSRMNvpYnzTwgma21DLLlTtdQNCDrvdI5WhN8JMD5An2Z8bkuN3OEIylR8Z3+0o3vzAylVcsobWW+NmmKlLGU/N3Xss0Sw2vqHUiz3C8zABFx33f8jB1AAzKQsvqfL39iXc91PRxXmIsANj1krCluKSYjI4IAfHXbJyXS3dwARp9hUVZqwBViKUi5O5RhTG4PpLnqgInkIlgcrjIGF7XMbrtfcjcwPYBItuZPcXuUYbktjaoxYRRGLL3TmerRrRwFQgv+HyiNaATMVFqQyZkMyprm0gaa1l0JCstGl0maT0UYANiTg/qkHW2nshfvPKPD9Nrw0tsidksxprUJLCiQpJdO8PiBsplqH3X+UNn1sf0cb98Z8SebqX8ZrLocx0B4aJM8mQCNNBk62jA1ZQxwnzCifZogmkWbfr0vENXQ18Yzh98MmBWvyKwEusBW6qp4/wyvmoyW5+rfzlHEarbmhDjnm2nIU/DK8eANex44eVJJvCGL+phPyJ+gu6Girm7xF8xKgY2qg1oKMNnJeX9AgZ/56XJ6R2htM/MSOWjfu0vqMA3Fm2pqUq9dgELKPKOGagpVvmO1JhX9SmD3pWL0Hbo9K1n9+DYQeW2gogWXZSo0lN2FLYCObk4HULL2JazaPlUFdJcHmcUbJKYasSUy2KjVcUnNR0YAGQUjmSnE7ENWEYcnitWkqGoALa1RHjMCCWRYCUFRyEwLCbDSHmJrB2cf7toZsnVabsbtNlUcKhFKUlLc+9fLV+SW1eQqECb5owrlYYoilAcCxS+oJZI2U4pOewtpnhhN5a6bb1JsC4QUhMjXC5mKh66srudMAAZ3yF0uZW34nNCjAq16MI4O+DLQRAz0TCtay3WSZh6iXH6ZLSPZ5Sehq9CIPh4k8oZsv1Z+Z+5Q7IzvfCgyYo6OhEg3dzfadV2+FrXsKrUrlK5s4KKbSltP1L4g+MK6ltOfZuZ0sig8SGCX+B25zK4MB32bWcjAZUtOUkS653oswJe7eU8Na2gs2zvIuSFEYif8ysDydXk+/3Aj+Nh3GWbT/Qv/Qe37l8edl0Q8BPryfcftNOSO5WuZyOcXH/597TRt0027qsDu+dJOKxm22Po2xQpXuNP29twXSOPjMqyvBJd4wzbT8Iv/+jfputxIl8sClgaj8WEpOoGbCkb8/aAer9vw2K9f+S9zl5Sh+/4i0T1/cXNzKW9syJZnaUhC60lYWAZDK/fOtXRbgt9r+0X5LRLfufaV2zJYXbR3GphuMJHLbnMVtXOkVNtivYG04TCWha5kgVPuKfWlYKNYZaXmbVaMdkDIpiFWhtFYaVapv6yXkM3s6HJiTw/MHAaY+iyiucrCwUkxCYUImDvMjN5zZkCZjuDBh4us6LVmD8/fkeCH9uMg2ph85zO5nzhlnC/Gw3RwAvZQlOVLWrl8edSkele3/zK6hQbHuLZ1hizDCJYM2DB2x4fKoB40VK2yZmpRvO4bmoKlCgF9X/bxS6snIAyESKqamcyh4TIfVzrwH0+HVi3KZAHHLfHk/jiSQGj4uNI2VPaLDvrKlOKdDJfZrQ03Bef65h4RMogp0bdrUGbsKIVea/iT49G4SSnTU5ElDwsWg5hoTZS+in4I0xcwgUwzwzl3945XJj+fS5xPJct5srUjbaA8fDCOIVUG2LWYzGJ7l0YG2gEX00Kfuw0Ad3cmS+EGdEGXYE1ITGVYv1mqZSnNRhOQ5QTgJW4kIcOQ0VQlZdaMxh400A+hyr8Vj2QmT0vbPDUN5eP94Ar2diBl1LW6XSgyMmFsuNKlwtxTCloiU13HnSJkkmpBUFbZ/gQrSJot3jdKxd6y2DchFfwgmWuF2Uo385hpV8U77ly0ImKriapHepYtZBrJsUMzi2qwNVTy8I6u5t5tTsfAft7rMwxyzbYyoxvMQLtWsNrIjPQFVNZqq9pE3a+aJC8a7Ho45Qa7rOjdBYyH5ZZ21aUM4WUzM4yyMQiK6AeETNLcow4lSdiUWgRoBGwA0FfQ5QZwUUj6dwlQBuP7NkXi1/cPRFKLMhG2LO4AL9biu1Nu68u+7NeSIZnIZS4auORbqdgR97439HpC1aubgMJUbEi7lvGxbjNPlIKrKfJ7LwG2mPmeYdtlpVL8ZtwES1kpv3ORbrH3wyEqsV85RldQpG+aQh4AmLF3pmAOh1VmmcqInTRPrZB5XkheeZGW8IvGS2IKLo7hKZm+Gu7Se+Ad0s6S66CPXRvttJhjkEm2XJoqZKdQjKVWuRmvomNaMYTjzOwEs+dVdOJ9coD53OMID3w5CfDbYg9yN0aQLPoU+AbhGisu2zBJbLu15GH4HmPSxvt4g/MRmAChfp1xh8cfcS6hPXxTtcgmxh5IFYJorJP5EfJMItlAa/dJVo9zE8Iq2fkgoLa+6yks48M79vrp3EAtFZfK2rNDmkEiGsQYh9oL+Bl79HK8kQwU7ll25dz+vEhiTxno9fPzER8/fwR+//27zi7AwWJMRmg5usRKTKpWzlJNHcuP30hnc9XWMSBn8Bf6Y85uOqgPiiB6/PPnCqh7p96KJVOugd6hj1D2sasR/SpOM9GcoXLAeNfCswJe78DWDnhdt1vr1ZpfHdF0oKMMH4S5z0uz3AuLP0FOEdbbyarbsxVeWFN1BVWKWxPZMjPX7H39fmzaTVeqqsGTbO62cB4yM2RZ7MezpJyAthpK3HbFwy1I15uqQBnCi/io88A0tZzaj9UGHN3VLKUvyHzJnTRGR+61ITvCT6Hr0ESVAOO++e1fe1uBhEkqHUJlCJmfloPn5ylcs2qxdcTd6VzLXQe0Mi+VhVC1l88ZoEjfk86KZv54ugNIOPnIDheM1/PrIVtMWEnLauilFjVMQvG6kqwx0aZ57MkEKykyRUSlvaIyeAr7OIDjRFUZkfpFDzO3dTndrRZDmXptxH2nIl/3r9zy2JEwhyLTH0bx+TB3lz+Br/XM1OVhEi8CQhaTOqW7kIGM1uhO9Zxzd/m63P26LH2VWDOhLQn5uuNCImVW/x0jDoSQCXMZ/VpxPcrPLpPSY9ehyvvWKzxh2A4pmJFUYqgUUKklCICHktJ+yWjroif42KRvrW1epXZHkilTLFVShslky1MtAvIW3UDhjqbqvKoNlUgUtHjqiToU14PH9vnV+0wKdd5zODEnvcPb4KG5n8doN979mVjghJs21dYDhZZ3e7uLSkPNTC5MK1N9fafePAekretH6vb+PhyPcMDVj5bKt7XBZJidC87nTiZcp6jvvEKxOaoflWMiraOFssgsbBLMNtl18f1UlK3jV5pYc9f1GzZ4X4a6RkM0IHuIZ0STsFjR7iSyJ59tr2s9d6LM+CAftQPQTHoIzGyyHYGy8idbb29RvmrCfaDsKIrMa6wSlRUcUfmCFaOoYxSAZIF9NC9m+dTK3d3M1xJgGFGFauqcGbRUzaSQzNkTBio36akfLNpTlb7UPCV43XfStqubIfvZkFnbsDHoJjGnIOssoqSdKrp1Cy46zYqEhISJiHKciFJ0s5r4ZWnVENL91KawwOijd+iGXKo3KEF6qSr0fI2Go/vyc8HiREwmh/xKRrpD5i1ACQi0mgBeIYNVWyq6E1ECMmPFGVg8cEBNNFNXjN3DGQkyFUyCmUSAsS+DIfaWV6WelbUVVkMmpJlNyDRvj+xATec0mqNJQausYvoamihAsuZyVu5PR6MJYR6CKwiIyuw8HhlbrcDe1DuL6sRrB5aQVg20l8PdF9KyAheg4+qKZZURms7HspKF1uQu6cyIVGyY8kSBAJG59o6MnVL0yFHfIqCwLP2ni8jAy7U3oO2ACuhz+MVM3U6q+udoInLf5oivpbw9snrqjtmvpuJIkGbKXZ2pypRJqxw2AmlICqvMnyICtl4P0+PrS3/8CXervLv4uv74pis37v2dG5ciJCpzr6BimSzWcqObvv5MLGaBRkxbeEmZO0K2d8LgaxM0esAB+sJNyEVfi/awtWHSblMlJhUo8cZ0T1tytfwivIapbpNteC6PoKnEFxIZpD0y3BC3lrDNedPdcAfvRUbSy5gZLRMVp5RsVdwBrYeWKD6/KbNQ8jLmZZvaQnq3KJCEbjd6NSItwNN0prVC0zSWHRyWvdbASpNTcjLRieGrtqImL9ULpq2iP7rzQYzDK4izG+h6044XmoxXxxmWw+oMr87FOLOTVACsGnBFAvHhdMZzDgxIS6KUtPSONY4L/C2Nq8ul5s6O62fTSgtLMiZLDzKJKnBPh754LntNYyJGgi8SjHGaGPUlsErA1YPRCtgCaCXpcDhA6ICjnXBHwdXPBKn8sRohBNhPm28HzIkeSkOBRazlxwP5iKkm8CiEWFlZilqEvPKdHI3uzj9UjxmfaXMjxPVYTqNbfZsm1z2PToPbqmxUY4iDJHaCn0xkImuM+8AKAwBMLEwNR7ce9Hhj9ChHQUY6AoVZwaK2lSmlRtZ10O9JRqf+iuFpMKr3FaDgTgpOdpAhKx4xGwkF2POqzJJ9TKxyJai7i1GjjUmoH5Gp0G32ZdE7GR7sZnbq6bWrCQPqZ19HQQIS78CpAuf2yQ1HpVRg+QGAyiLUV2WdqBQkd4P7mQJWLdqEVNPDlDuq8izTkckBa+UlZZT25nQjmHUnokkzqLwpdgRQbGXZ5t40C0bVs86eYk8nZyfXPYm8/q05+t0QMliS+ZKbr3X59XQuz25FK4dlpPtiZJpz7TNTSnmabuc/rFCKkeGpzPver3jkzvrBXSMdS/0ie/RlQLjuMKkGqNXkL1vM4k0AdGWGqm63kTs9X7cozpixiLz9Qa7LPRQJ5XUUM4F62Bkb6G5zSdnl7KBXGYOZBOuu6nwTdDPTelgsFwzR9HHOo9V+iRJtw+hYSxsUEGbETnO/DOF/PG6YWYaDZi88wC1lvqBAvHJBUh07mzgmkaKbs5RcrTFFKQHbJzEiYL5BGCxp3qcjAEMybmQyEYACVvPhW6AuYm92HSuTSinoRmyaUXdRdivGtwZeVK9fScatH6+UvfZDAGXul6WUXDUwEwCVyTB40WzQ+EJXXdlTsDViEnoD0+8MePCJSR/Ly1JQdvj1CVu2VdLv+HElSCMC2Ab3wNCYpPOsKdtBEJgsoFqiJoU9DaVvQBGFMn360XYdB0zuu/jNy5wUHYeQ/DbU4xA67+/cUZg2BZ5FxXl5YY9mVGb5a0xO3d5GPU5cYzrR5YLjOmdADiuwrphH0rSF4uN7T4RUXm6+biDcfvPKjkXUhYkmwk7EVPoWWRi46nCzqMk65bD2Hu0Ks/PCzMgMClm9bKyWVw0GPjytN8oPKTNtaFazA6S0LD3MfOOFQ3Cn5qnrvXCqgjmL3FTAc5OfysO1EyqTK54raj8+MWe5vhNilpKEemI2Og17s/o6EOwSWrW+NkOumrthUA2Jn/ewdnTTE7rmVm5FmNNWG78GXaMy+r7pVu4eVCEmn+xSgj5c1Cwqe6Wg7qZVddhgMG8dU9d0rfN6nYdFTB2p/6pjq7IB1ZtkHDLkhLGzudVeuuxba3Jr9qfOwahuYHUxt43HDNgeYdg+lzUEIpFSk5saVSff5YWiQrLas45RkZn1tBJ0t1xLeC33XG7TQVdHABqnfczAx8OkrJss61Ta8ksX19J1rWW23K91tfbu8rUW3G2ZLVOKZAQU9xKqB7Duo9s4ixikEt/cd/5A3qt7OARrGo+1rLkxlRQdMOVCq8G9Y1WmyMyqvHcJQ0UKxEHa2nA1llI5TWQY6Mt90cwZ2aK7kGi8I2JDuU15d+h2h9EyPd22u5Z7Tasi3HOYoFIR4xNkjTaKFBxMeR2EhOla0lruJhSzoBCe2mA0gyFbva4ND0B0/i+AxTpMyHoOvWGt20kDXBGhmg8rKPRKAWASQRVibylbZE2lnkNi7k5z+MrHDzmEa6OALgEWSlo16E0jPkEzLbOKfEyWLcQ26SnfVKQ+fUl1r0xHyEOhnCPaist9kPX2rG/H9q7lVM56omjguInff5yiaqdoKmxyWAwHMC0+49Cwp6zFcet9AROwY7Kt3y9vLqnMtaYSy4kENMl8pQFTyxyGzrGGc+jf9CfiaFVU4CQqS7iEKco7L8OH9zS3YmKkvVtE5xKHOPtbmj5xhM63/v6Pv93xKhNcwpdUN1NlwpL6mF8xpvNNidLHJ8/3T7DFD2T9c11/u5KT53e6dgCVwR5+v/SarQq1IhUa7SyKVzVM5QSL4w2bAfjfttWJy3guhqcKjuEQVXJUcUk9PfdOka2oNR14YJyx0KUIVedY+bUK0UXJC3JXe3SpKLg6B0Ej8dUXXXMDpx6h2eiWs0dYAHeHClSNT6csKzng8ALACV+Lkl8DWdQbdcLXMQulUHcia3QaTavoemyD9PGEG1lCxRkVR0moFqL3MRANUcVhZo4Y9acDRq8Iqx1maAn97mNOuuZyDkBhxXW17bpRE2RoI29fHMUJ3RtNmkgC6NnLFZuwJ2wZu4YxkSzxEdZJGWAVeT4SjjmlmRMIZA1IEiUy0ytKEMFSVag++r3jtaW4jVLGZ2QC0aFNz6Ks5f7Wl7S7dFwBr/m0SlCosgVSvpxit1GN88V0K2WSDOysrICGTKp6+AjQ1lxAdoxc2APtevC5KGI1ylX+rRh2FtXCHYViqzaWE1rPKn0vJm0BskeIwhMbe7eKmV+PNBBOCB7ELvCFcDwY/nhe1OKCNdTFumh/3GELABWxo26yhfBzu6R0FwIkeZHYxbglpVhETWSvrlRVcefGUpqUSN413TFFublZFYo8lSKdDl5X+COSr5vSDnyLd/VyCpbkJFfGrLl77jUxaSaJC5o04b2RPhL74z8mkMp+bVVA9r0HnMLkblFwZKdRlU59tmhOYH2SNbwJACQxDXflkpqAa+8w9ESfwDlX7eoLFZ9v0Sd95vO49AsPsowxMmNh6p9NM9cPB1muHyM6Yk0Q75Y7E+AFSRuqbOnxdpjjMdoflAUeNBJAAZrH6HSUgwI7TV1a58cHHluod++vkEdjYGoK/XjXCC2eZz1hxvhHVYSv9yrgJNpGESNuR0ON6VGZ76wxGZ2l42TmmPT3IzJ7J6Dvf56MA8omCYkzkj6l2BENCXSgqBSUCffa6C3RgCEej0ueDrBhuM4jVtc3Jkw5MWF78cIi6v2lJXx26TgqlgjYO/Irt5UOihXnA0J7h17TluRoHtnvIVLbyrcPeh+OwrDtvKX5A22NYHM3xwF/7H0CraWT44447n0iZJ2JvSx5GfOUCgKomI2kbMLTYhSZG5VYnkmmk+7OdF+WzeClOSJZQ2cm7upYtzaiqCE1VBDA7lnrf+qho0XyBAiunsaIlcySfHV17dhIS9ERAN3XpCDtLwg2vIODh/WSmcKVXfiuMY5zOCqkkiAz7zDt9zC71jcjldq8fb8eeMUudKYmImaMC9/ckWFe7PdSC5CZCvWollyS66rZJbIOkQoRNr+I4L03sAUyoKieAEGsKRVZLZHqWKEk0KqUnrlKALQkRLFA0mFK9VqVOkcFDCSZwWcERVsmW6aFgt6V8Yp7X6mgMsGaXgQS9Eel4TRbtq7lxohcHuTD5Wbmrxv3DpBM8fKXIDAjXtnIuxsuYD0Sj+vhxst808nW8N1yW6V1U4chIyHQVONji+phZIZrh3bjsvFwZXrGpQgDjRl0FwE3Q6w6mczELoZnACipVDF315CwnrcZdzxB5rcvkokIK4Z+WcmaJ5JgpkZEBuYKlNLcWKEBZccrWRNFWO6tI5pjrN57LzMPRaLj19KGzvfLphjThg9EY9ZvnPVgybCpQ5XJJrqE9U7GisisuZ5zlPrRo7zRZHLzkk5pxw18iBy37TsiBpz1AFpG4G0iO3dA0a3wXrBp0CKqJ0pvNK4UCw++MK4fZ9HBj1AVE2KMsRp6WtIIupujpyBN7jjr2h/VNvrtgOd/xMJBzIWiktnJhw5I3Ak/8e6iOW9jVSuHXNX/OoGAPrKCeVNb9LM7GtXsZ/HfiwXvNS6Tf0S3BpVsbaWwbPHegimZmEHqfCerOBg2B1V7p2dsT9SpM6eLXBK7Zlqe7PRVCeqR2bUFe1Z272AShI9Sd8V1CVKqIm5JC7FkoZHEcOjbylcmM6BLdowADgacww5WcX5pbgMoR3NvSdrA+lUFsf4bztJOeMKOZczMvAsl7DqVmRmV1UrjWSS68e4d/9LMSQE92qAmmJ2n2Peg3MloGA3NT88Mdg1WveJJyDp6a6UyaHACkU3XmrhBlHZQCbYSrqqiWlcvgra8mcOdPLzPt9B57ukmAGVNfKlhmABLqKxj0rIf1iOuODFyxxHqEjQAtO5HZPgcwymg9ymvr+hUrG11iwagWNwpzOMdfNtDElgC/2WeA2D3ypOgtx7qWgve3A4KrAbDpMtEgaXNZ26WdBfMrjI8Bnh77iybW1dpjxuL7u7AKkhGKB6mduVWqVzyrCZLKLGqDLNgict9ERtg4uGOZb6ICGQEzCqqeK2rJBakbRkyUZvUcthavoxeUzdQ4VDN3iDAgEVbuD5DZaoaB3B3eBC4IOnKh3Nd21DQuXHtF08VirAMSzAygO800kOIavizYGXpFPl42na7E0bEdzyfhi0vzVMkq4E7syZtZIBhoKORPZZ/+fCoDcxp7GZZKJ0UreGcSoAGNapzeFi1cwBthBengbTsdXsgOxluv2X+68Vti4TzrScVJN57+dN0t9xPG5ex402a1Tl/H6l3oyefueTJkN4L0LxbjKf4hOGo47uGDGUgvIrtdiTAYPaJ3amcxaCX51gKKEM/Oag+mqH6aLfx4WeLqKqm8Hm83x74hCa1P1df71ketqCmWTEmK8+FzkM5cUwlyF2esvN3J6VvEhZoE5D2RUwp6TSC9TWV0TqzEPVh2DmS2wUnHls3z67JLpGJTBhT2bjch0M/4E81yZ6/bXfGcp9W8xzFg6/MzpOag3O2EA7Wcv6ghsC7HbZDkNlunO004WS5eQ4ecMCghJhADWyqtLCVi+eRQpQsMFFcmfu5r8IlI7Jlkd7BXztdFZwDFHvlt5itI483QpERi+1xsinxaUV7HaVIVVtLkEpuEelFAK7xSPUFFpV81YqlFAxXS4B0ItN3p8xBdqhK0dE7pZjnQzUmakQBLE3t1rtY45GEoqOLhMEWIJiPEyyrOPfZMRAocpMXje346ukzapxzrQGs+WpQtS+dB9TpYn2te4lAwGh0P9M120CYwRzrqh6+4n63A7ZrJ83MVzcNuF8uJ52FPKu8dMKjmnJJFty4G4q7HsvSM/aifrc5NE+q9g1lLiCL+ycIlS7Vy/tE1szyjNgpX2a+ljvsopT5wO0ZygBev+5nxP1KanN9s/hNez9cYvpKx/5yc9Odfz4m8nRI+7VW/OpwOZbux0IAbhm59l4WKZW6jHyty2KFJ1KBLSVyj9S6yp94CjWJQaVlkhYy2KbJDOBjZ+4AXrjl2Luk85ZfXCyFl/Qkg+GMuDO+mC8PS9jawal4QEgodtoy0yPJlH69rsVr735FBoM1nwk0RaK2gJ/ym9nMW+GcUh6zVcdgcsaeczsxs+yQjzCJ0EFkJowYazufK7B6+I9D/ugIbM9XxnE+ramHpQ1TkmpmTaqfAELKj0yzhGs08FpNP5zkpjKSMk1qYLeQ1HbsaE+v7sDqMtGBmlo0ZPxjWd72Z2cB6hM5zqbliBr5gJQKtbZP6kj1vxePZsmksZSO2mTP+s2LTnL5ToE/fMzxDceXtMMA1kQpxz/8/hwnBeQAuf/4ul4pnqwfnVpN5+A8u49MqAzA/IEfZgGz5c7Xv3+0C64J92Wgs6NbDf0r80zoeWOK/an6CNA6guunhTcEUfdjc2UnKNTUersESDtveIeiE+6Ny8X5wkp2K9OaaOrcZh3EKQK8Yfm3D++nXYmaemJK/Zc0IEsnXud65jgecIETYZ/4i2hUt4H1d+JZO7+qUu9jhaq5nHDpyHn+thFxyvqz3d7HF0DpXCYh1MyL1CibtUZPLWDdtfB5Q28qRdLLmaiZbX2AWXJqaq0vyEiZrKs/Sbo5kFbDk99heW2ICgt0HkPFvyjdPiNZnPXJTelGM7dFk5kPjfptCHFuWkhmFG2wkba+O6OZzyKDtHWZJc3W2ub+9bqtZORlpD/+uL6uIGTEujptMfPrujIWxUWfz6rdU23RrNnXnEXUBN21GVKEGXLnG/CBZH0q3lHoCa9JN/fruhavBVBGBWNLqbz3ft37taEMeNWLs/DoFMigLQhQwrIZElZ2sWa2N4Vngcy4ueWGbb5JFH5E93RfVwWK86yQLTwKkYYKASVZzcwQzTJtuMsiSL8i92tbyELGzCL9QYV4EEAyGNsVVEbc9rh/eV6RdwH0SBBKI4IOOtz0gDkdf3/HhfDoCpNZdYz36URKCq/as07b7PG6PAarO4w6uOsMuK3KCaqPZRtmhmZLoY/vWBaO6MRBjsaAHYs4ejJoVJnH1k1uJJ1v5ztsR2eJqCJdxaCdHs1JBj6dQT+58zmf4PLHb9oufLigykDOq2iYmUtkh6WCmcEBmqsyYJeV+qh3n6eYVUV9qy6fb23v1s0oPP68SDdQ0XOL0NmvG344jVkDB/tT5tGd+2f/zPWPuyXmUan9MebBvNHn8WlAhU0nsapVrJOuuehjcOo5v9VC2s9/7J76kPev7/vuxZiS8myZec0pys6t/L6Ss/9m5d4fqfeHD1ZwrkWNMfJD5lnFMC6j1KNGKsYCwcT0HI0H5rkjWLAd8dns4+QrJwcwPVXvTHc+BqXXVhWs3+8PY4HO0zour9PqE6AenL/cptIOmtWH/f1pUuTkmNCAO/WFNfiMnazi49d6ZDXNZXLs/uBkjzC1D9rzQFDjzPuBHdPzW8D2jtExfv2jYCCVUe+RIAlaug1ue2Ly6YOcII3z8PFeB+D9oZR6IsSxfOjneKzcuKi50DFUvSxs91JSRZgWsd79dUoyjAS8Y1kjyMWsP5fcsD9tUdWcYhdaAFB0Y3HqTDTzAp4JEpGxLSc//8D3+iDWHoGpwi2gBkcRKAizDLCdjnLWVuhOIKP5MguQ1Uydmfq+I++9d3JXF3BKzC6cVXJ/eWGktouKJLOEwmgokqIsq9IhiFSahRmkrBET7iuXt2E00T/wLJkbnAIj6USVyMyqg6OEC+i7szsaqspdjUh95gAkfJyHWoUDmbFf3687ZSyaWtUARQKZq+Stae7OEJ6PfGRcaU6TsiCM98aCEswIawmdoufXKRnrWI60q05jB9p8/9PWVRlkMEWcA4oTZ80HvGOqMdD/zSK+2TifP47f79+dYLXMzPvv63eTcObwvSSVhZlP6/raSdZ4zv8k+u8DNZjvseX9V8dEdeTy2xX3me8crm9qrBrJgtHkzX0lQb7XaW7xfxIUQB1HWTdSwww9NLWtuk5S1g/jYwnfi7wgoUcSndsex56z2rMGYMfAFROxSTL1IIcX/PHAdFZRqcySYyg+w4ep/u0NUm+IRtk/PrCvjuMRYM70JSyLoJl5UV5pZ8POT+eRY9w8CoKtbudTkmCvzsE/BleoiC95TkUXWDgGvD7/HbdOHNshzYlHrSZZFeCiZr2TralUqH1mzTTgcVOztWiIYrgV3EzHHM/ueu72cpoRqQx767T12qoHVGf2LKqe/HrE6pSlcDoOyspYsB9BJLtgUi/O6rwmSjgvpym6zClpUVF524VuD2tspIXczlP/eEizGTuiLnj5HVzUE6hQd5yHFEQGI5GZpmMJ2GfBnII7HTJTlHREpoFCa26cY04id+zv7/yJ7195MwPbwk2KHYnIjB3akXBBucNzmpgJVQ8BUDkYbZmt7QZgWTWw6FgIngNUmZtQeTxV14TS4ShxcBaLKHLvIWGaLIuwVcWVHgFNj2of2j9f3oYvYCmw+htKwKXIeMHYpSPiY1gHnpI68p2ZACmLy9fy5aQlkN+JjIjIe4u5M8PyzkTma7GjEANsbT79Kb/cCYSBktE3jVSGJSwKLM+UDKQcsm2EU7boq8holzMeoCHdRGb7NVrrwaQkz+y+88waZqktoVyeAAXMw+X0FcC6y4QylZmElAxwK0YhQ9oZ7Vbc067U6K2VCUkBRl6xEms9r/3YsZwAEp5KbB8ySE1AyDCFSsIbHaKc7BKW1bpZZuSNkbVZLWAhdVwhIH1AXQ0TTpvSpwrgeEqCvU87F5iwsxPtBhjro9Aj4qcAjaENTbzQVKCTHeEjxDy/8sOhvb0RGsqeoPATv/00DB1xo0P344E7rH3nCO09zhGbe6/moy7p9iUasyZ9NJUBH9fvmGbGUgxBI74qwm378U+keMKcA71/hEn//KGlyR2OA/5IAzWmcJBMnaTn466J43orXxhPrnK6TcAextRwuT6gS2GiqPG+87zaOpUwwjCZOuttre2qXJ0ul+aG5gRlbcazhPsm0iBQWUVfk518Dmf1hbb5KGFp0WDn6fez+1zXgxJgColn5TXpUXV9zEPmO49q96cmJekcqMmVeIL23qNKAFmCKpSUnHYuq8yI6NGIHzHMe4OCzDROFHXChgrnWGAXgS4H9y9C5pJQSzGDW5JlKpJhnQhXt20NnBkC6Nkz7TU0iNqJ2nWOmKSiAGsu+H2sdf6GXfGwjQoqOKWJnNhVH0Hz4CVeLGZ0sdhOdIyJptRgRu6IHXt7MALbAy5mZulaKLR3GmAZEZVgjYb2yBOYGRb9YX7J3LzG3qO6wXpvW1svoQopbVmtwzlGomisNXLYWNM4WRqr2QEhESqIswlEjkoC9b1vNzY7EUqLTKUQBkVNb0rE98rM8KwneswZo9RR2CFTNcysta51rUXfJbEcEXvr3nJsScJWCzlVhcAszen2xKXVg54gCSsxCu9TSid906wu2ORKekmxkrDFBbfyBLIFc5Bb2lAyyUBl5YSX6GcNBKiCSkr0sDpXhWo4F6/EuqtNbNveUiuTpDJzJWjY2LHXFQuwjEXCPcPM3UyW9KVbSKUMK3Ute5rt253dEYPmIxB9inNbGFJWkduZkN6GvWV1Gul5u5wxmUWx4ezuvptJvxrMkg4UjLa5GjdTRugkPWwvds5COa7xi52p1kfbOYzHbvDjt5V2vPPUPrOVpPPYw7b6Y/vxW4ggAUqXGgobMfxxvNXb9Baz/USf6lNKNrBWKyMiIkqvMQxpHWVh9KqJyl5G+gEAZauI80aDy7N810Sl2Z4NfVh+r/vi7YL+YX/ff1jVr9nFRUFEUhmCLWno5f0o2ZHwxETtjJPVtpZz15WE9fidwUomzhmBJwyBAWTxBK2jveObeMCDkSo6YU7VFnsjs4dPNFWlzH9zH2dFRksYMvZpr4+zTh/Zd1pZamdnRFbba4sGmPWtlLjoSfg7HKQ+fTLx2x6dI0/rrWwTuxQnoICMOS31Ik38BtLkzImQSmKg5hRZjO0yICF2UwjFDJRuMWhlJuYRGFvZwNWTCpqLVeXO2NW5EFRk7+WMiCzBs20AlQxm5Jwc8GzCs1zLnU6yVDDZMmOgfCHZIyLqoVnd3dwuJq0giPEbfRJrLgBVDDJZtSSyLYPRVjHALQeEkyIjo3pzmj9Wn3QCQVqOynrFI0lbfq3ndrP1cJkSma4pQBeTIyOcVslGgQ0VVGniRFTBCUa6JVbR4g3wiuhaZVWUIsPsDuX+dsUoVVahM/d9Z1AwTzfJsV80Q6T2q8/Ljiq+BaNMHWx6jHFyE4GsMnurGU8cWBsxVKPBcJKWOnLdhzX7OUto3w0Glug3oJAC4lbgJjJw3wiUr0liKS8zN15wT/KZRNJyG6NCi5BKXdNZrkwyEo+N61U7Tu7LlonpojKu570slVsKguD1lV/X5sqIETMJRShfur5pUZCXbiSNuzSn/H5kmh6WtLg9zfcyOai0fceXpNDWndz/jsdyz0TCsga4V3Pq8h9+NxfIL+DHr/iPX6/cLwumnAlz27dJS06kJ6CMywCuFWT1bJTHKPNS1qvhB02i8xlHH+dbPrTsblat21Ss97QZRoAewTvFyqYtmJVy0ckxZ1Ow07vGFbOOcie1HGNxMt/2/G/zV9fatflqIcX7Oyava7ORopQ54mOYk4ukavrGWBqkFLCWNS+eHaUIayizgpIMRtNEJMu993fK7l/foRIj3ptASKyKlaVzZ5uSwdHtorJeTotxZaresdQoaHb2xzmwJ/Y5KcCnB36fI66a+JPDKGsCdWkVqYOrgyTPfx1WvR3LxCt9GcfJExN5/ZZ71W/Y8X1xBs5r3z/0fjVOuHR+G11b6KS7ogRKgFVX9nw+OsEUqvfXiEZ2JnOYCLGL5ThVZnvz/MpGzzUOXPPhgM+/9J3rfHfDEL3ZOiSrw3Ri3Ykv2WSgWQrhWMM6Q0NzGq/fS4nx8P09U7M8cU+fmEG3JukVSeg3vjeB6mEtSeJMVI9n74sCnYVu+FI7JJ4vggglw0oSs8OHmDVmTpiWEb1Nu6kLb2RgOh1VEVaNkEDWAinVsgulk2jQaXws4aYKM2wE6Kc+ddIFNPHlLAY+MtFaKUmimy+4+WXvZUMntkVwqo/EWYFZy8oeMt+PsShRpTmWB5rrB5dSIFJEBTxz0gAYvTZ5OTxaWDX+KYWMzNKYRsToLSRLgLpHYiFnDmrhJXOmpGwIstCMajTrfaVps64L1YiC1EmvzppqErPuFerIODO2MsIhlZhHmjFTrnVjSU4nvZERF9PNkS1JTEnmItcVG0YpaZvdQuUUWCnnwnIVG8MU0u78ASQc6aaotwNNrbMJ9Pr4pZlLrMKsbC0PS/eELWOpkkAwRE8hJpTOvM2RKd1mCKSlVNHDSvPSvaSb4/mIL2CvS9nQQeX0mT1HoxQgS46gFCMaqp1kF3gnfPnO/BoVe//LYMwFLB6EuYFlHXfXqTTFt5bOnNrPZOF9lCtPYBXqrJv/W2nAiKFTNBGorN6c4mlerEaE+qaOIH4rNM+RGztfh++3S5rrOgmmjtGbT5334v2DY6n53u81Ye29ksdnibZihuT1FhEgc1NKfoGwsGOjxpJP0+A/XBf+ke3OBWByZXT6tljCdTXQEDTCTQDdvGTTRvfk3JGxJx80bd7L5mWPvoBAK0vDEkq05oTMtKZel3c09I+Lrjq9Bs5GTUITEqfTundm+xE7+3YUifj7chxeVH/+2PpZTQCjaEEfgRUU4F9e0fQBTGC8Nc73YoINfX7ThGPjrs+VndyXH3ffCyOeDfrbo5zXt7v+dPfHWX/4QauDMfjOuI/KuVidsXx//vm0SsStpC8qaq6w/jhxDTKBOeR1mEd/EsbqTOWpGs6p7e/5cPMNUk301XfeBm+QEBUh6FgMvY+uyeAfOgCfyQGbMH/2CxrwPQlBh2WVEfD9BHv5yodG1dEQGVFIgTq0aYVIfESHs4O7TtYcSav+aZi5mRe0aC3Y2R3xnCKrqfu0zZabubyHqxLgtbZ7uldY1Ps6awZz7NyvGvagECt0gswuqMfBnOjwrFNHc0YgwzHLit49GN8D+9iPFXj0laN4BB0JZHSwUSDV9UqnETS6lwtyv7iK2GWRBlXNGpKiYLP0glt2OBRhxjTSs2mm6t2fDhAJr9GC6ry+4kIQZk4Yovq7JIrFOJ/sSx1pIok0eN4RZMSigeZVkGcKxZ1KZsQXbuPD7vuRSivRx5oIJopu8AR8wfN6xJX5Xfp91Y+dUEHvNU+7YzcVogMrsUrmO1ge//h2bfUA/v9Z+zbQ81zOIzPaWJWPY4bPszRPe8pCJ2f6+KUi9kFGMbZlItqPZG8+DeM7TgLSn6U5lTgw+XjFtGYoTC2u8sKKOOZ/hQK+QxJ+XLP4P8kC+4DWV/NcfKdakECredCoxvtO5hZFpTsBjxX1lma1TATPIw/Wz4u9BB0QDodiyjqcKjK4VLrExawV0FMO585nn1Z0OYD2RyTW6zHIyHuZPp7dObeikHaG+p0grn9UQPemzv623TQpHj/einPTtQL94reXx3Fcs+06QhtHBhLMI6UxEZM4ZOPJVUEMnv77Dq4P0/s6x8uen9rYg6whRMMR/+fdfGyws3Pev1YVYNbk/csct/I/deljZzo0LrDZTI1KFW2+jB9QptJselXKBbN7e6aDYNxWR2G9bbvXYBaSJ000a0IvStoFczjV4YPJbAYqvfGTs3Ooj3/p1eVpAzsbuGOS99xxTnp90JKRhTjBLc2roNghXqkFz944ATNnETpIq/w/Ox2Zv5zXz0/lRT/jNDPR5KsmNLFKD+XfbXAf2lpIVH1Y5u7FgjbQRHNUkT+0vKvrIcKyyiNZQ7UA5l2qNLhFYnurNG49OiTisFPUfeCNmdYQwxMHdRYMqiq4nF1Z956ErbUcXMqMvRVb9957576b7lRpnlnSyZRdZua2Fh/XJTM3gl4JbFb7d4mzm6xaxfeWiiYQ1tUa0ozLr+UXvKdAuhfySNW4bRBRrHGCXFXWkyGRmSFksxsBIW6BpajmzKRlzbgi0rxJDiWMP0c7fl2x8f2I1xV19SJtreo2bt9EW2l5PfWivh+XLGQBKbftVMYSBLLImKV+nZE5LmGOepp6kOoHhnks4Rx/jaetx/NhNsay9BH9iLbb0vRvI49tPWdw0uwOmN+ffZJvDkw4L+V5e7caplLjSscu8m2njhkb/3v4pB83+nYkkxy8XzE++0C0bURmp+oNC2B0ikcUoaNGVK5tpf8wchWf9tvM9vnbCoKLRWuyj+ucQ/N7Dbg+5R03Ta7xDkWw6jVjwssYlPJnuez+0HdkM+FxW56Tc53wQpME9CqcFe2UKXv2XIppmVaMk16tzDr3E6Nz7qv4ONVPn5m5I7IGClaTg3p9fksp64nUX1nCqiZWs2faEPb4TWKELsZ+Gs4EqY/Qvy3U3GMv8dve/nP5f48kxh0hhtv4zmU/907HKmdbdcDWC4qEUpEILCBNaSkqSAeRylZbzIlRqo2qBj2WFYOR9OwmjHInmm1GoOpCs6g1iamh1SbmnmseP9lnoUTsc3j1R4GP3Tb3scswMkeC5YROwtsLKMlS8Kkrn9hNnaWV9zN4lHLvPAWyR3nNPm3lT5k5OBJTJwmuCm4zscfwAMpFsDekI3meRH/7edYkeEpo59ijC/aRsrJxec7ESTt6I9LMe4pjcbPcN80eDlCsyWmZcF6VmRpbXbnTHVmXBtCBS6rxTZfDvDgL5Ak/KyJLjjU3ShECswYiKkCvgCYnS6mO3rpPf7qvdTmNdIWgwgli7xG/SKBYYSWqacvDAPOHc5qwTcC+LMIswIhimZpbOop+4VQiHz2B1hqSmRHZlpCtcEaJm5iYdxLJpGUoKtIaywxDOpiya6crDSGSXGIUQL3LYnnCV0eepIxpYUik7TuC2A/k92aKRjr8emQg5b0J6aTheuaPZfG6M76jMCcA2zI3XCjzss10F/2q5Opm71Wvw4c/HaaQPpvJqg2mOKhtjMyyG7TGMjV/q5OIc8bb4te2tbG6eCcXnO+YXZPn1Lzd/fn/+6s+7N37deUqJuvpdZoXdzbCwYIa95q0gjg6H0ANf/uw8w20NVWZGu/UO7xOO98/epn6wymjl6A4D0zEyVUJ+mBvU0gnQJMs3166P7D9esWPANW6AbUYfF/2R/q2jrefa6487bdI5Ng1GEijrH8QsPJshetZfvjlScT7ybY5HCzt7ZY/oLvfv26efgdLHOdUQVdTAJvK9LHEJ2RsSITvnVB2v7aUD+LHgtdmow2AM15P2bqhnJaD4wIm8EHDDYeExX+Q4TSPYDKn2hL5uQkrnssW6RLeDgXne+p/5ZczEEwqMchECmbRLPkOXXpiIWs67tktQsUeglVj+Ti2OQvuXjIPlLlZqD+AgyI0TDMPCk0Y6Kc5ws00d4MLZl7NMaWLBAEIb/tP5IguApCsI7B6hgJYpGunAd49UR2fVkk8aTituix1KXOas5gjruzO/LRVh9KsHgS7Y+udM78fPTKkYsKyZoT1NmtAnfxA5z9OEGaUJ9g6uUV87iCYhNeLzdPMvcjoBqNfXvdlAHmhimfFghbMVgmxMLk0ST/M3OkhInw+uOZd3g8ISIZHSUBYgjXbEhz6aFkwKLdIIAoIPkZMsFvInsFVgZYZ1vVYa3m19AI5bXQJdXU/E3k3PCtbF+nkxQUuDyi51jczoc0rA9jk9LuRIOzpxEyHlnmx+qqs1ex7UHRzuwGQwYwXCeUiHYqXUbFta4ciXuavjeDmn+x50RWHeGLDk0cTBVjhpaLXUBXDBNgKvbCxlS9sujnTErbWFeJFxPA3Aa3n/rF4f38rMpatLCo2siciOQzQNmymBDrZBrTxxnfyUEf5zDg6MGOq4esUakBHDiLbeWonRBOBtBVq5nNZ33dX0ts4vIP97jacuLGtWMdkOW05ADHDUtkCWfP3KPsyh6dMWPnXcflmMjVdvQD4UZE4nN3+2/rISqY6sep6gTzlcAgFhVTgR3c3utwMSq8Q18zcYV47ysyfiI32v5xMty31KO6CJ3AZg1rxfxNODgTNyWHUZ2tSi8Nhnn8EoFXbOClD1v1nx0vdzFNPYWKcN5TRYdo8Os4/njBjfn+AhhyMaxwyW3a6CHtVhfVWsjDzqp+17lkFuBgXAavRX7guwpnblpfwCXVY/Wy66jumE5pINWEkz8VPI5d9XP0JF3sUk40AnL333fzUTr4WSB9/FtQTL1Dc2bJqbCGPU+roqEITrczC9u/MWvy7A4VaXn1eBxrb7YNgOeeYZJdoy58IEmwoa5bv+nx9X6oqfI0gEIicWI7oLhuUw0WHihX29CG1YplowZywGkVTz7WduCSaZzMWDwzQyYo6c6VUXMCitReaK6sEtDsQlQy1TskMV6r/m6zYSLXMnpCVtrWbGyGNn+wRbrOZDwBe9dTI+3X1wygcwYys8IIE3by1ss5+QgfDQt5JUG4EpX3vwI6USRnHYCIihmNACnQI4srIQSkzlXF3v1Lx3lxETcNay1YhbGRRZaqZ4Ubei9vEneYJV4uzpmAm5MSsZkCG6MsVREKjPWpZtdWhlBOkL4vH43GZu4EJBUJ779dL93Zk5B21et2gAF6Xy5bWj3RcDhhyLQfp2nspFYqLKa40pDOSurDLw7hd8EfK1mM9l7tZRWaHCISofDaVMKS7Ea4oTcgdih0Z3+TrliLtO4NxATX2SYjCM+zBpBkjrEhnIOin9QMgHDvv/PWIhH7SU/kocTfjeiCiuKAhpdyZ1B+/nhkbebvvSNtdPTSzBWcqNypzBuNoddeGfUNj6ph3mAU5oRe63nJsbMXjb5SlLdAnX+lAvp0OZI5JaKz4eGpMlbUBpBqF2NjtNN93rtO9lBBqDNFHlj1STe+0/HzBSchJm8aWNxI/6FrbiPdbG9M+1qcOvOWHcxrjSbNJTq2Yk4R5NbA6SHP6+rK8kTWt+VxFX+Ipd2dNb6tbrhipBosbjhvUPxf7/SzRsGbb6bnS1eamfK5QU7dmxQsVPvWCuXtJtetKVPCY3npU6vbZqQBw3lORWbnzt8X9dO2/rWADmnVhlVf1HWRmRk6/U/2vMnJ3EdXpIln3i/SnS8by8tSAkt1U2+DAb74MnIlgHdagX9AQysdjLi/YOfcpuZ8XdXGtoyerBOX3988T+n37fOIuvZ3O42tQJDBYL6RqCIXCO/RpcOG9y8sBlzz0ZPkd2k3WLqBbleuVKQDJ7EJdCXggM85++rzEvsgMCayBOBXf9/EmaEX8fDclvDfpbJGyruUBKiSpS+9rnTB86k9HfxZQdcf/FvP3SlgrOlvnrJih15nZ1KGz8QSgGOCaBwzS0k01ysKs+6zMnW4lKHluh5gMJTO26rOERO59B0NCKiKGXF6PWi1XgylowxTCiK6Slh3yikbRXEOJNyMRSUOwJ9UAnbOnKaO40SqN8Ck6sGPoqnJKghkRFV/NNQAS0lUkyIKdfBmqTp1pkrQtlVl3ZDt27mA4EtsuAHAsAe5hTrqJ7rIBbYO5SSGjQGYjiNwCdirSDKYrbUF+rXy6m7cFRsEFLO3qypHVw9jggqotN0ukK3dk3KTyG2mxUAMmXJmp2FmdeYLS3BhlyljjhScZoXkk91Zc3Nfem2aBQMCN4PLqaG59FM/r8fza+4ndxB20bIcCEbAIk2DKkBRjET8swjsOL+HEZk1U4WyokJV9HclE+8zEdOJ0WL7PO353D0cmZ1weJoR8B9WnonVOyjjK7FoZpl43IKA+T+Hbqc6XnCOvMVTzffNWCR1T10V2Cfp89PtyTqavWbX+9z4ic09lg8urVwGB5oseRGlD90ee3CMUUDIzoB1BGEpLKn2gL0jMtErhjw3vJTkeCp//2NFVtYz+Zvg/C579ISdYmnGpYzPeqPCs6Hk91aBUOePSes0aks3xt8cFzGrNVuDgHND7gqY+l4qIiAwpy4xrGvjr2UvZKlKfbrJMt1X4WHDGaDtU+239oRe+8/QO/jXO92P9xjfz7TpHS2389bhzqeIi4qRc7yr3ZHtzif9wwmffTMD6+eOjeDqZ8PQFGecq/vvHaRzX+8PfZx/SEImOZy6OaYNAOXc4KfNJv+cHoDjj7m2y47O5CpgwpVnRiPpf7L+RO9/nEW/D0BjZkUI5C9aiAR9HYG72/T5UvZR0OxYBB01/3xgAtnNJNadoDo3ez7XMav72qD9CyPLGdDcVEtAFD5jP4pOkpZHeTfdCd5ZQXYCtXLrwgAHtCYBWM1575jBTAFUT96q/xt3dpWTs8FKsQZExJ1pG51DWRodoTrC63K5pQWuhsFp5CkQxqZQQIqqlGzkRYcEv1OxuAm6XQNpSLieo2MDeaym5CDDMswCrkLBTtzr3burgdVm410jGlhiowV+q6EEgE2aIzFCGGLp3ZO6dGRF7b1pQL0tkpK296fQo+Jzw5iWY02aQsERmgNEO2GheYz/u+1vL3NIT4mUO0VsdutbyAp5f//HrJW3c5pDF3ZREZTexxjyOIT/UYR/QEwcNtcmA67Dz47gOvbTfcBS9z0P+7ZzrM9xvnKYOyqn81CVIqMLDh6E/WOh8wiQwGCN+EpRP33osPPvTOgUb3/Jx5gFNMel9Lf8zq/hhEtD2j+cgYmqbH0fxzULG+63HZM1q8n03x1KmpbLk46gWs0+e2S+sWK4fypSmfrt8fT6N+lUQtLq1qWaPCiTTmsfWEXnbfZ0Cuz6WhB///WN5TvqVQKDmBJaIwjGoRJu1hlYI/v5hH8aVnyav2EGGotLShmjLfyan58m/U6f+4smRhqJns0XbP5JVo2g31BPDToDVHzN4Uf81Z5tTxzVIoyqJovwc13sybhbH7GMz/QOD7nsbrkHnxgXsnNjqIybECEL+Yy0+jng/ThuWa39aX7R1DFv9ZMf5HHh+CLznKyptPR6wPIZYynq1Nn0mrfSKQDMPw6mx1PNsZ0ID5DZVgOkc+1hrtSxA8RsrzH8f9g7WyMxEWIvxVHDCGstywlVOC8a4aJaFs2qy3fe+7+8rGVkZZEvsxM7MwL7TTJ6ZCVSpOGsOYb6FNEy+VM1Ulfunpu5cPnBn1K+vO8pXJGecmM4R3HdkdIFv9wkWMlBNTplRdTTRM2m+Hu5LysvtFrbVV1KJ1uDsvv9spZVuUhUS4QgrmkK/oiDJzMwoX2/m11rBpKoTWRm55djwlJX0ilfLFVzu69JyudkLzpYrqCbkzPY5lfCkBG4JWRMPR7HcH8mFZXQ6SPdC6pW6MwFFWiKXFZUshYjMmnkzQURy076N66agatrN7SsDizA3rQ2ZYhOFydWQ5FI9SqyI9Vh0LkTcSv9Sekpm10qi9OAmKLviwRfW38pAXJFFiafVSES5jVM3SyCn+nV2OjpB4Elb+xiPHZ54T29Q8wM4qrs+tl/H6dWBaWs6+V5Xbg4Ta8xZZxoqI2VZWK+xwsIyrD3TqJuC57LbYbPkP8ZOvPO1czPSZM3/vNFJkTjetUt4aGxzVqpshr3T+okzPvyMuphV9kzezmTSDNLyPV8ex+LlSUPLyrWmYoRMVpT/0qJBgwbj0U+E8ltaPw64s4WF/5YznJhp1olArXtD7dLp6OVkWbQsHH+eKrPFCIu+2AMvT6lxEqzZX8W8trL2LazSK/sRrUnv+BLHYXY60K6hQBj11Pa336ippla9fUVAqV2njp0+synh42t/Czt0BoGN/TuR2Ce2cgo5Oeh0/7n2n/4BQb9PVX04z1W/F4rjhj+250k+P54rhPSuegxW/fHqeWizKQvcrdiiCjmziWZ3wt2kGguEoUDZqCiyog2d/Lczp5Lk1dwzpjo1OlazO9uY8LTyt0wYABn1jvtml36gGye3rRs0qCOmOj11aiuBr32TGdlhT9sgAspEHGhmHomASItO+0bY8mh1DCRyYKh3yNS/mx38HlSY0lY3D3NKd/XgMktTosOGvik/PcvmNLrJKVuvYXHnnAmzaj8S8aE80RQukHSf/Tw5VfFei/88QS2aBZU6nyGbfFtolaUUBfd1uZtbFOUIPZ67d3jC23KwKksu87Xy8gTMi45HbS/efEbJXoVG3q8YRxLNDaToMqxH5JI7+v6NzHOUynyE7IJtAdi7BjQFGsXQjgyIvo16KSjewOV39VQvmzBOFtP7JAEpSzAMEaYUfRkA7djK/UcpeoLmvZP74ZlxLeB65h175ytqQs4kfuMoa1BFnq0wJCgleymgt8HjcVjvjd/+kccQtNLEeFZVh9cxQeW2T2acvfU/oLjqmgYnnSMJNO33kGjGuHTyMp8+yXnnb/W3v2Ww4oE1P8xmjdHromGDyGMbBmGapOh9RHGOLH8HD9vGfJhd4MNKoUR0a83crUiiqEEMtQifjfNj0MeYjjPV+9j3F0wm/QZGj/1rMZXP9RDX2TKnJlhm6LjRPsHD3J1DdYztiWY+4pbOWY6Jem+WCqfLGLL0+yM1XZof/o8t4tCxF9CUoAQto4Tfo3tHkhFFAcypq81Oqwc3seRBcAaLmDFHZfF9nKcI2ijnQm2uS7BpUBT8Bnd+lOHnNzVc8iRVegPUHxgHgG43TQwlpsUiBJDeWg0ftrrj2wwktPpAS0Seke5orRtAISU1WtrsGlJdgG/1Pb1TY0lKgW5WuLyqSRQ0X9sa+crJOjvkKaEVnjy1D6fPnC4BtGNmlExvSOFzv+K8f9i2fdoNkJzwMx7kHUcYYZ6txTJBtFqDqo8oi7+vJOmgG1bM8SjzlWHD3J4jUoFetlJr0ggfaUs2n8PMfOViaTu/O63mcBiJTCUikYnYtIDfO5ldQuooLmiCP9aD+Qhb1w/+snX96wFbWJeDZnZd1+OP5zIYiaD7M0gut3VdD6w7cpUaY/3fUlpOD7BULytOPgFK/yjVLVtE7lqCYMmXpqMelirzFSRFFNH5eT2+Huu6qNR+6Y790t47NndvUWQ6zNPdaHC6G5YbL3moD1/AxGsb/QZgrlBhb1j+Kz2jxFXdbi4aH5cHyZW2QqBqWGBGTUOOdGLvxfx+7UdEvKC8pZu6ldqb+E5AuVZyZ2zSApvLlva1jJa3THBfi0/bFYTdgkVa7Q/L7w0Cli8tREJ6GcMtka+7OSsGpEO4zJ7KR2Ro7/zCnTc6xZSs1G6Q0n5RCyM1V7s2CdLSJoWdUTcox9bnvFOYidBry5nTKdNb0Qet+1vHwyw+Qn1ktuD9R/w5wMzbcQoq0rMqXOTU/ATVhmiGLQosE4SISJ34qM7VSRg6ai/XRhKs7dZGsF/Voe7UuMc9F3YxEUKdR1WjQfOoWrjH4NV2YzQxlwzuLFTDaDA3mZmzj/xxbmeB6BCzU42ah6xSTpatpNMnpeNMiv1490du9RkdfPjKNR51sqL+djYt7ZxVE+0UJniuku1b0CnkSTqa+Hus+yAhadkc4i4IlJhwlZiOBOgnHvu5BypAl1IZkZnWdbOMBDPI2JYRqRj/K7CrfSYDjZ9qGr8lK01CfcOYw1/oRK7RmY+K62xqEfnPhT1/ZIeWmNCmiR4d6EKlN19Umxg94bNN2fs8aQmFzxeeqA7jFIWCTcv/0iytxwZ+pt/seyixhEAW/bW6EgvaTUTaWu6BJNO43FL0ta5g5vDIQDMwJ6PCafntkAACVZBp105K7tVY4oiAWcsOl4wRa/vMOa2gqRwU0TOF6kbTDiWMJWjQzpddao+Z8QNB6T1GXPTud7IoBbdSqjJiKPqTFE8gW9/uhpio7XxZi7L5Sq8ogazUwVqET4IVEa2iTaIGrvAOUTLVjIO6RprIy5diwXw9Uubrj4t0+Vqwy/16XtePrxKWYsj8uUtvAnatpELTpGR1NYarOrf8agmpSa+QY7YFRAo0og6RlKnwkRMuU5uoCDdz71BS/PH4+vp6LJf2fb9i7+9bsZXpG0KNpdKCW/gFEg/31f/ftjaVoN/lJUBmUHRGqoZcgEu7qsSpWM97PeT29cxwXdf2xXRzTxJ3ZKSTTLuQca/Hff8KxK9//73Mf6W/yChh3X3LmXeR4+8X96t6LlbcT1qs+74Ua61rxYM3ASLTFoMMUpLdf2O5+fXar0d5qfth6RYR+SxrYKLgISzDQ/czzVigft7igmposxm5cgvSdhZLURP3scWKZMDUWNCJQykCvqEedeBK6iRt/MCeoRoIiEpJ0zVDAlNK5t6W6g6Tk1T2xcQ7hVHnlBg65DBjdFLo3lFl1RqSAWAY2ogNQjOv7Xowuv8KsAxVGGESmN6iQZJXNzwhJFNhKBVlmgnmgFGGlanTw7QMXL7aAbd6kP/xlcuXsvoUDbauB1asEmio/hpDkRVBvyjB3QGaLneaoqak+BWy2oTkyDHi4PIos90Fvg8CND7ATiwrk2F1I+15S6tAH672+Onjr8ZrqxfzlFnH2fAf3nOyjTaU3cE7OddHM5rGYQNpSIhKWMnxZw18raIFaaJ7aCI2UInYO4sof5LG7E/kO0kSz40gK42bEHAwwImJdF4/6eNv0cy5zQazTxV/fvSlgDz3UGb3wBRCBRTxzt77Duf3BSP14r2hIqh6hjowzoa1EkdosvNh6Vz8HCgjqSiltTq6B4VI0b2KAZ6y5QbBl1uFwLDi91hHNNbgFUcVtTb79GrWJfkBXkhS5YDH5zYhue6jnO44XiSVNiBL1XZTgAmlidzvGr5ysDUYUhhek9RnVw2Ww22zHXA1EtCnQPQR/Q47q7l4/XdzKMzMnOl+UR06NLu8khw1a6Cksy2AYixpl0qFRFTrTFq1eTnc4CL9cUtmPzxnhkPXCb4eZstBRApLKTEjJAaVWVKS8CusGYGktBwStjlm5CKP2RaqnYSGtKhJG1le+Oxt1fJ2AryTXNf68ePHH4+rEKy9I/Le2KGEIiO4NxM0Onxd9v9j62+XJEl2Y0FQFTCPrG5yOTKyD7Lz/i+0IjuzIlfmkqcqww3Q+QHAPLJ5i80+XZnx4W5uBigUgILi5e7rol2o8R8BItINBlkklcG7JBaYKcQbCQWzZlm8Xhfdf70iSsxtbA6s1VqYEOnfzFzr3ink+8/XC0HUPAwZDZfMZUwiEH/wkhm+mF5i2KupJS3A26N5jWypWlgwMimjm7RTUGSgi+VrZyKLIQLNV4I7043U5m8gtZfola0smJZKZlA2agMsfZFZekxs9PzzsDAkjW4ePVGHAOjqYBENg4srbe7pNLxHZTMZEUjZ+cYT+zYX1najcwtswqi02TAFZNlEWnnykVIQSH0kbRtFnHs7lzZ9vzxovoxvWd5RzSCPDk+HMce/FPuUZMnCgwZTrbKZs/kpBYlruS23NPM0W6RdX7/wlUECuVK+YIYJFGvmXrqDZLFdsmSZT9ey5WMVnogM40ieiIz6uKfjLIg1UTdY4J/DZ5x1Q1XfjWE5n9iP/MPfchyEZoX1saY//IcdB8yxrNbBzCwocFiR/h7N+zlAobpCMHxoY8G588lsqN9U0gtDWkA09DA/avZ4PdWKkwXQ2m3Ud46bn1uqt8zempDivztoNOsEVAGMHk6inAxqDsh548fGqoWscFYHQRVD0Tryg3bSrOLNch55Ynw+oKDTKf00aqV0QFVfanJa6avd1aAWteqy6zr7I/TCudr+Kjav1WGwMGNDCMptqPYPHkVokDjECObaG4J/CHMDJyoegq6+3h4iQkAF3QRHem2C8w5Tzjf8Lx4VdeoHDIN42DME+xpQLljAqsr6+pK6JE78UYmwGjEbVV2Vd+wmdSdxWqMOjBKSTJjvFLl6riA6tx3hbtW/qAA9A9UU7FX2bt5lwVMTwME5OsqAdYMT7VcbUghWDX8+AmrFYE22UOjasUyBXK/1utZlVFVX5p5WZZCKCIYyXGaQmxlhi2ZrCQtpLU4VdyVfgjtMkdyccgwhpMydsWG+HNd1ua2vaxtH8AH9VK0nZZpVRFcKj2GKDCG8VdkqyVTTsmIZtlLMbTsztCO2QUQQuXlhxZ5gMEFlKoQg6RnJMjuRxSFp3cpllAKGAKq/mL4S9gp9S3HfYSQzLackSZVyrBb3wtt1bquonpi8bttAcWrR5sgdJEhOq+1x4WMuW/6hfjO7aVDVCZPbMkxm80QBjy1qcK75wVjbH7XGYwZsPIqZoGdeIDHotD9YQ1TOdR3rN2HIuYr+DT/gxEd4N/6HOuHnOK+5FsKcVdDiTsmKoAbNV3en5EE653o/7u9UegmY3q+xRz/MiD4qRjHR1FnmqXKrF6zzwvMWPb8/q1NP+6S/NUtzgqxP6zvgFGchOoqbwn60yUebrdlMBVqOkWzLdxZR59vnT2MHzP9qPghKtkEfx9gWVKBBVd5pNnzy841jq4Ha8/xYXJ4VnZCy/NjZlb27eNzJ/OrH86nj9FDdEKblWP2c+2W9ls8W7GfXGMAqwVdkeffyld+rHpAOIc/+x+yGmqTZUpvo0h/0A5Wm/RXSdNtXcN4fkCnrnCCGmSpVexOSIqMgkZ5u49l/nIPe1p0W7eAa+z15+so9S1MU9vOkCxCyvrd2gplMMI4q+I/+dKE9dpdsnid9bnNyWEULZyp9eKhGKMf6qQrS6zoN9pzSfrcqHQhIwX2xaoyVmfHefu/6z6iGusjMHShkHQGlUA1IbOqj5vEYM0tHLFKxBS8kl9lF6zBv5lIsU8UuH7MdYQlV6eYwHaXKQSkDRPcDI0OpCBtHnDUqbQ4eBJobl7fj0N47lDuZCToDmazZu1LSaJCbg+4ueexXDbsHkgZZ13UTVSA59iUzkfdOE5e7v9a11tfFJdmWk3AYJM8ME26KyGREpCJTN9/vbzreyyu1zQhEAiuSYQ6ZpwWhvbfet/NVIF9OpBiRYcqISp+manCpsWrfKTNFKhPBfIdhAdp0Hu9K0sOuWxHr+vX9/bqidNg8rXKVtGnrzAM1x5RoDgkHYnLM6zEGbfx1TAUnBJrPUgPPcUe9Q/Mp9fqHA+WEKzhR0M8/tUgNQ6d0chgJdmmBneP6EbxUUPDpEw6p1LnbCa/IievwnNaPeyNVg846ZByAMXnlYyk/PFN7z5qawHNhQy4AQCLiMLVl1ghFnsBAZbHGmo8+wbjYYwGAf8CMBi/t/JpMrU9ZveHZXbadXuzLHy3tNs0k8VGLVTc6/nL+t6/pASiaiCTt7KTzu2FG+8kWXDuu67nw6kBXZkC2947U895CJAcXnq3SHrl8TVh1UqLx8NlSvctxXK3GK/GBWwZ+SKLUnQg6mgmVjFMVjR5Ep/YStQLlXfMoSoAokZg26B+Onjqb+eNofF71QIbxrmNTxxk+C4yTggFQk5sBoMchH+HS86jY5MAnrCqXfF7Y9Q+HKJgN8VzswT0VR0kyBcsJZjOzE64KOsfrAwgQNEZt5q6+mBtlH5EakpJdbF2h08edD/CqaygXo9ZqkBGYZBFHbG2s2Im11RVyRTkk2cyzGwGYOZPFd3WmBz1U4IHpoXM/QGRK0b51lC0kpNBpbTSb3vSyoBrEDADaGTsyIkMR9VWK2L2ZZPTeKrVTMnNvLfMENp15hVChbJVXptzKIKvGtLECO2WKyRr7KyqZJTJXWMfccl1LJsA0fT6oYhx67E70JdK9dvIywWm8gjUcWsHFXLkqYCeU14qkoUc1f6e//9OWfcHNr+v1Mr+uhHZZ0JpghDl6IDJ23pH7+/2OfHOHMhhmNYNxznKNdK5GOIq67/vOjf0m3Ms0xJ2II8qQZ0aUEzCL3Azt12W5EalgRjrlnsmwMCKDauRxfVnKMr6+vxYhGKdwpYmWgJZqDtI56f3NDag/fl6H7Z8d859/KRc1G+t588H1eAx8n2893qPPECc4+l/+Gef5wTxN/dIYePZZbPSMcQr/vFB+uJX8BBgE2yiXeWkb8yADji+u/7KOq4YpHeN13gEa5Qa4lQZpCzdZ0H3B3SscmRB4opcpKVdNTFZ6Y5ieHcaP5dc8rTKNn3jque1ydue3o4T1EdNO619bA2gUSA49e76wP+wj3v2R/2ybel4tfBiH2uvlZYpsmSqvD+fDWc4S+su05va6CP58DT5ip4Orftx5/6UBxlmBAWrPRX28eKzzgBpyjuU/NufgGqArDXr/jqN62HBg9lX/Doakd+dQ3/N0AfFjCXunzpVVqQKAAX59tR9+t8Ji48TWH6iJLDIZBQs5XVyl6s0DF+rexHZnQM/dOj1lvV1nDCFp3hvI0JXYJ7IUBiYZ4ai4dnbOJ9YAUPXaVjmJQdd9sNRCoJoIoJqOYdUYX0i74YorpoKx1c/mOFfhckleG3y5vNbCSDOUyqSxqnhB7+GxRwb9fEuv7gmJP7EcBINzpRtWysrolnzsIWgeRJ2MUlWOqCqZkKROWRDU3vcdiigxn0f5t4aEGvwygzFZTwOujLzzF2jJNGV2M/Lh/g4lVbiINfZANbd4kkYWs8kLs8FYXTqiWTwMYqEEd0ArK7R2p0pHeUfCuCr6S2UQgMuYBt9Cwl87tBCFb9/S97/W3272gns1wbEiJZAhEJZGE0rfBoAi0/T95w4F4I5AmFcOICOYu8U4M0u22aCM/aao7T1WEFB0w7aANLpyFR4E6Jekfet2It5MxOYOYNXjyAw5dlRFAcz1sghGfL1Wia5LmZRFVSVGJtzcYVZ6ZHPa2yoeLq4PSf2jj+GQD19cPA4eTrlsw9ldZao/zPdYu6HA2wkIY9TreFF6bFD9oD7vVF6Nqaht9BEM9vbUYWFPpPBRlTQn/qejaueszwX4APgdGnS4Pn5Y09F/HHCFdc+PgBPfV/1HVU8TsI7LfkTgEwNiALXSoBpf9Snfo1mVB918eiN0qPVY77ogYc0rJpT/XJAPuabn1v+xShOKtWfHB4NwbFA9t2ch0Xf5BKIfi3/MWJXNTHUgzjNMRoSqIcIi6i+pWhplpeAT00N6nuZ4DGsJaqKzMZqLrUP8XAlbfrquAweYzH2d//oBQfXjLw80+RkjfiwrieLfpre2XBqejVBUkfqZYcI29ss76NZQyM3O16HtffOcii690bjsxrL1jlnlc6WDNts+YwBq3w3b2Uxu1KxZqeJ8sistJSSyp3pmXWXmALIeB9HcyuOOD9z9+NfzPy3X1X6ep22NB1U1Z/Tp3AukFnE1azZYt57zKXPHENc0ngHmU018oKGln0LEn38eVJtKKrl3IFURMDOk6pzLyPDScw1rdlDDqz2nmWZezQ5tN2VdfthPNmseXncqW5W5RSFo3yU5WQU3LRCSKSgNmdl/q2utv8SYS0ULUZSFHzNdNYF9kwqFrBD8YR7EIl8IlB5ap8xhKQsaEA3+HDWlpU+gMtIR2gHaZW4ivcIcDmi3UYqPdBSwU2kmxL9+39+C3nesqL3O0u6kHGZefXElxg1FxPa4dlouvauBhwyphlubmfMumQMoGaRCd968NiGtbXwnYxv3G27upZUlLw9qrnVxL19rXRdj9ehTZSiRmYcrmu3CCX9U6g7oXfppmdqAlGE9gdL50Yd1am/XW+aDMkwOCVPhg0ovdYZftX8+1ne0TECUvGdFheclSaK6pjoXVUXQ6lxdIs9t9alA01Ufpgnj58ZNj/k8MOL4lI/QvszVjxM+XDTHVHakUaPp60w85lhS7J3oyaUfQYyI0o3NRnGZXY5bwjvz4R3DzsNo3PAjC/nf/1AA1lzc6c7hLMCEQTjop9mNswRsxzCPth9VN81OgDwumcdOP1gO+FCRxAEn6FpVHmt6HsBzTwDQ+b7zZH/e6gcNMHcgVArhh+rCs5EfSMc+FM8v2ghhLDt64c9m4VxFSvaxi6bJvlBlKKM1Fwydun3yPA9+KajQ7X8fG/VAntokx0cJw5ZJz1wBflzs7NB+VGT30rVIyrljISLPxoXoZiy32c9jWn7HdhwcNXfa0jABjQ3pYTp9CT/wOAlI88jPs+5tMZC+w9gjW4xOvjT67eh1lDj6LUg3pkORCUQqinAF2a2tkJg9AnwOTyZLzbQ4w7bE5GDkExm6m7m4nsJ3nf+pWBdQhkfNK4jE1s793pus/GLuFr4K78xFEqA7BdL7PioOzvsOX+5waH/fwtp1JLeXranJ9dbSmkTcNZJv5VHsPxaNg8i9LQ2nu/sAzU5v5SAl9Wkl3Xm9XpeQmXfmDiGjIKKBCcQGYVoyg7nM/fI4OXTVEA6BiJK5qLk6uXexsgnsTYmG/f5KOC9/vbCuJdaBaiKmHJaZGSP3Ju/c9n7vjZrc/FTqk8xcK7ki/XVZtbJuCLlLeSTT8tuW3TsRXKllYRS3bHVRkwEZYSFlxLsqymPDk56bqRAjBa8zvK5NSwOdGa9f1/XywIqquC5nRRq6CzW2xrZi9oEkzWyVD6dzsOmHK54jAHoNHX0Q/qe1xeCzqoQcLFkMgn26Qn4c64GBUyOHEYjp3ptC0RMSqDq/S7mHI7/LE3Rh0P6naR4+sCMEPv7n09NWNnZY4aERx2kXfPgo05q3T1XUgfc4McaJL0pIYlLXk0asJGPFq2WhzWp4kxngMO99yAEVOn6jgMekxXRYhuPhAWCdyagP+XH43+N7NfEiC408v3xgxPAdB6Q+8fzxwOe/0DfVq3AY1PkGDLPQsevZd3ocQ3/YqaRqu6GxFueD5xL17J9+Dh2/NSPwjyjmJ3wpL/zxillE/eMn89OH3fusexNKmqdr6T6+8NA/dRRYx+QDp9VHcPb5ybP2uvSrbG71I1qdCxknMTfFAzryv10MWTu7njxn7wFj9zDzMT8e9VlYgykwelmYEujB6hxs9hmcDmLsk6Y2A/OsPxoVPhDIfEy9pmQmyl1FJ+0rc9Ynd9IlHUpinhPPRz17s/wPxyPhudKJgi2NNNgSgudS9LkTMEU2vTcTCUSlxho3VzX03GEVB/n1FsyukoarkWigAb68tEx3qoZz1bi/quGwFlzoD47GtpZ7u+969o8xantYq+lUxvSMVLQwW/Ac8Km0NTO/lnunkZVSZBKZhc8sW9ESAKagvh4QMcipLjR7bdDxVJoyd2YwMkN02lrLStS69N1MDm+NnNLOrIg89m3cmbjfsbmtBknVwFzRKlmPKvVEVsFW4SL1c7rjTa0IWZroZmmiMvu6IWQ74L2376IAwhEwKPPeGcJtmtqCkkGnLym+4tev/Uo5a7AiAbX8aMBc8ByA/bG19bGZxqmOK63/OJzrbMyHk5zP+TBt5PP/5yv0cRAGher5bs2rJsLCUN14ftP/dRoPD3XZH5yFRvEcteOjJH1SiB8cwAkwPn6J8w3Aj3PWT0gPiTW/GKPZppUUGQ1YehRcXduA+brOMhQnjq7qNDNfkJTwNHPUIDT7GO+ex81rUOvPCy2D8qMIa57S88x53vvDJ32uUmEWERXtD7htm8+THp9Hr8fYFlLg5+560N3DCQ6KabDCwtc8hLFVLc1BVwCUOS2vXbmJMflJQiaJhgmhcnBlAdy64UNBVkH2aAW02X3u4cPB14Ieir9e3CyI2n2gb2IQay8YB5F9INwxis97+ojUD0qFwoGPjmOetk3ibBl0jXbFvD/Ag+aVEsgmwobIJkoBICGYRX872a2KGMbvORy1zOfwqgpQukgCrGrXfqmE5AfE7vq/GjH/CV7Vq4qBD8cZD0xuGKgeJVDVQAIi9gZjtXHvqx5opgbqrbRcdX81VWyWnSLoJS3bdeCcsGEMmmTmRq+pRGcTD9JNHiOSPYYkVU1iEZGeyuy0YYbHSAFHuOS+HDTzDh5snmjPPZYUKa4lwFNALBhSpRfS3XW9W0nzDLkHjjetKWBGt+6QZ7chDe80E13bZeUAl7FSsMtrZLGU2kRWBzBQ1cJNOwJrJc2r+NGU9BBrTBlAJIKdETVQCoEFHBJvKLhe61qOC2Bm2mAqND6s1TWlU4it8BB1575XZNp1ca3LtVxww05BcIc3A5ZbRjFJrq2U9h/mBTE3St6FsOQzmgTMpBukVGzQtLmXwpSKtTebzyPwsfcXk7G+/vorfieuqNq2YJH4kUQ606wSFWJNAIFYk71OYHhO7+zBca3H+PZvP1rZ55GhfeN48DlWH0XQxx/WWZp01PjX/vcHDB0LdTzwx6/UOPjx0/P6j7+NIdJnmvmxKHqin3Ps++FjDOjYnfqNHv97kMOc+vPh/1i89gXdozBMPKCCk0CIiAyLVBUhnh7Uk8nKz1LyH2TY4+KeddaYIkjQ0vgDHsb2gOR/uN+6OfSyntoanoc2YR901uks3fnGEl2wHBOu6grUs5DzyvMRYzXUhfuPk7HWKW7PX/Pz+qEOGqjLrqurBhGee/nY110SwyZiiqGrQHOmFpb4bj/PDyqYnQft2sAutfp00B8FB8qYfvJkVzFXNqgKjau8p7yGj9BEeeFCkaTJUB0/ddVTDVD98SVy0FVfmABhnovYwp81Xr4SGX18yLoSVt8LegwA3OxpBO6oSUdI4ynagyCGSWBrfFYobiZLHzBppa9ngtJTVYytwRenKk6TBH32euPKc5rUATxP9roTUBmZMQkpZYqGaY+eJzJIESBHOuABUMAo05wTY9F1ayfqYM/1vpIj9TfXRanq5pUZeFeYG5nCnfnn/eaVuUOx733ve+M7kG4Ecy9tW7/+JGkvVxEQBxz5axkcQIjXvwE1FLia5TLdN3j9MWOwlL/M3UizNAfK2Az4gdEsq/mYMre2vpVqnSZ9DdenLpaGYMb191orArwj9qZS25BJJNKzDauRbrVL3F1uLLYVo8yUNVZICFgQuuUUFIAUL9nLL7+ua339AQM9LqJKxr329DQfA4qIeL0thLxjJbn80mtd1HJoOS1A5CVeuWA0ybQsDW4yIDPuu56iv92y+hUsZd7QVyssLVeNgSzMwdvSPG0x703S0+rJq3L2C0mT7xd+/bWvt61KQqqKKpq/bOCbQHHxAiojiwk/VDbzI6CZuKzRpMy6Sd1ly9HzEY5lA84JLehaqrQqvF2ndQRAjl0kBvvONzY1RjzB4gHKIkCj7OM0PZc5YYgOW3ei4SfAqhuqixg43NW29ghOl/X8cBCagAcTApS/wPOHQH2Gcb5vYt1ZHSlzzdsPcggZH/TCEkUIwlyluPt4+HN5wpTafFzPWdaP+FxYH5EFMIZ7FuDTqjzoBk/t5rmHD37ioJfjVodvKrhawWd9VmHhk6uVDm6Y65pnxKGKbWBPPW43G8hS7089D0UfxDEBtMhXu8+Z1PNs0U/S5mMP1uuzlX4xTuDZRW2vWt6hi8bPB029NhOUIrbgWiqNh/PA+xlbklbFnjY54P6Q/kjVUTy0CIw6hU8kWjq6Gaq+wO4R7kBGgqLSaaXIlZ+QqWJJI1SCovK1HF24b511hnUZ4XxPBY5ntze+ygNPWyj5SSKQMM8eVzHB92T828PVbZ9Ed4WvRwojwUfTQ/0wCogp4ZnZVSIlYit9PP1moEjCCD+b5HzeTJLnkYV79uXcrtHML1/C9jEsPB9U8DcjRHluZUi337n/vG/wViY3d+y9N7eQWgCZHoJfLlClRlddEzCa8vW64AYyN/xagEyZoIJAuofkyhptKNCWr973KDCQq2QblKzgm6xyRgch+LTJoXFxVe0CJbihFM3XdV1X7SpE6FYGMmCgp1VljhlMRi93bu5rkXZZEmb3YogmLSleBtsDhlNgShRt0V+by6+v15ctb9+dBjnA7CLi8oOAIvZ97/19Rey4hTS7BOe1aJdB7hLhjCVfeaVoV3rVbTrMLfZtqAbTfH+/lpYgISOiAJAZTHBkUH8qmJcyFXnnUq7cG0gE2NOphZIFMQGvL/z6K/6609WSa7KurshSD7XudmqfOtt5tpt5hQFdDkZWqEtT1eQXaqoCUx0Eb1L13D1hc++MsgaYuFbP/j52/gmofvwU1WfXQWsXYj21ixP0Hap4PESfwJnINQRGxXIdeJaVanrjI1fyHCs89mTO67E4k3jLPqH8fLcZWziepFHGVqItUegqhY76BaYaSASjstpldPH1+mXxjgwQy+DmZrDOBVcoUuRhlfeQsyb120nx1A8krLF2P2NePQs593ng0OElTvcSWOV0VciShpp1dvRIn2VLJgnrSrL5MbveGec6DmPLfzz/jvk7tGnPkuWurDO/h2583svPu2sn2T/v1c4DVXTewvP6evQTfNfeOqv25DU+v7LuYpLb/SEkNLoDz0YSpEhFifI+uLBYR/AQ8QOLDKJJVtNPmyqsllVj6c80Vj0+F30hmm3c71Rayy5VWrRqApR0Y/diyNw9le5uZvJiXgquGHK2dydUZqvLDMjIYMwwmnroCbHG+sEVXpuiIuBWe4dGK7vHl2evZP+rhrYSAQaNUsP9HjheWy9jR5SqorIEdFXYt6DKKFfPU2sc0V5V3vSvib5sXaXH3uenjB+MWut6+UrslY3kWBlb9m2oFKicSaXlrXfqe29cW76xsWPvyJSZRYnbum3BbRfoGr6QdJqC1wovvQy7vr6BpGIvZJLkWrtGAdcJLg37BJWR1b2+laiIuRzwJqgdGeaAMq/yqZXWZc0GRHFvljt3pNv6ev36KnCViMQ7tEsXwVYqwxNcxXEbbJnT17oWRVNSi3HZJpH09JsE01NipqdomYK4rvSvb9n1da3LvpavamCnbbOwKHseRGlURez7fr/9duZv3ReDMEtff11WlaZOpty2G5zXdy5fpj/w1JsL6/7+/v1vXzWzY+d/7b/0SmYyMqPmHpvRGTLLe6clHEbClPG+qG2ZCcROq47SIqpNZpBsXfHr3+w7/ctyU5kRjmlMYdML2f6t2rsJwvyhr8aK8Nm3xcmd+Ga2f5wAplwIbGLlrCGY1fDUEVM54C4FxRMFjRXSMWrHhpW/0oBdfIDmgkYQSqYkh+FEYiQ7005oXx5iMsfHTR0XcL5UXT5AoeUSyaYoP/48bOEx+Y+tpoFOuTmcWhyLR6DV3LvJ7blhELToi6wf2Lo8eSsiywx1JmsIunLAOjFGFx6Nq8xSXnjcxCI+nyd0Jk90oAA16HrcyLidh6n+CB6fFetAwD6Sv7Pi6qL7wuKgqbT9sypN8eA8worLmY8oy7qViNjVJJTZ02VZQvg+uttAM2kGZlO7efCU8OR7D8HJ8bwd/HSae3b4bNfaIZrAeXq48TDxvYk+HHKHcDUrcRaSApDqOawqnqaaG6tJFYNCBmCyFpekqfmZ0lDKenqH/6niE5ZSpWd1sOps+5SZOwT6dYPmCesRcEBs1dzMFCDztd6Z/eGUkoysviQK7Xz7kPd2aGg1YhucWkJ70tIgzZsCq+l84wMHPhdSYMJCM8J+HguUsgFyNMuBHppUp6RkqPR6m5NBtfxXRwIrzVoyvFVP1ayyyaroR7xcr3Vd25c22j/DbMkNC9f69Zd55vfKLh4pv8OeZlZItQWnlEm9hd934A5UUfS+9067QUUKZnndCfvlAdqXCzS7Cl+uBXv9/ddvv3x9vV5//b/+3zLi+ja/XpItrq8vcP3yg76YEKFttncqkcEMTCUUzaikMZXpr5WUzMO6xnTk0jpSCWZmhuDrer2+frlBEXjf/N7al8JUVU5ZA6SMuMzkvww0v9ZLm+ZB35FZTcCZjpsWk4okglEHiFjBtejXa12rurKrNDyl2L6VaL3eCFfsFDI29gbu7HnIpK8wh8mYthjbllw0u5B20WO/yopLGfv7V20RYv/hK1Z4GBPmVkVHJiO3mSrvHIhvJnInzRC7KvBLUTZJ92qtWisik1/av/TrKy7ezVbNqNIkK46uH5sHUyxiPQEmM6OOUhHGw+CywwKNDMYwTO2W2gKrcz9WIWbOlARW/1kePzx2qvzxsbgmK6Kl/Hnja7N6xmihIeHUb1TsfxxwjYXjGP2Ohsd56PxFkwmDmrEBKogvxGtAsj8uUYT8oIx2P53kaqvQpk4t+IlS3/Ep7UHFXdNOD+sxnEP6DxxJlmxdL6v5UvfgAUrLvQFYTQmq5/HD6j+QgoVSNCEARGBVTKofhWgVIdbsmodalobDqCA0x4vgsAXgifma4oPNQI/z2Xn0EiTawJ8Jf0ujrtaavVPrcQShGgiemUo08gI/yhQqp2E97RSzI3Sg5bABvXzDktQWQt9iF/uyI6JJ/LrBdB7yWak6EI8rf9Lw6JU+8IGgObKbKAazSE9QXyz6oEtgHKbOBREEO6n5vIyYrd24peX7rRcGBfjOhem8s4Nwtjdt7qDkkExxeI1Gr5AUaRk5h+lsjPOpagFlca1cLoNMTithDbMIpDvY2dn2zV20ommtgpE2w6F0Bk5J0wHf2SxMVI8OSQ7l8KxvH9PWtTt3PFMEgeIAG0KQ1hFB6bm3WpiAs+eb7AK4lnv4ROgYzqezH+rYP09aIqUdkZ4MIRHK3Il7c0fVQzsBc1O5erWdq2OVdDsn0l+LEJCZQZVp+i5zpwzLIN+rqpAR8nzazAErAsRr1qWaQCrh+lr6NFStgjkH89TDNhqvlzbjftt+GwJN9UNQbOUO0Su77L24ueXLQMSfl3Jn8/+5EtKSAC6PcN25YxGyX/t+Lb5e16Kh826M7MEdJfooMQPc91s7kPV/fgmiZV7X18vMaHDFhdzftuAQbJG3a/u1tCgP7e+0X/pOIoQ0y7f2zrSIBh+QGFvETjNzfq0tpmVcCW0kg0jxZYK2Ky3ou8btUBKv93rlX/+mSx7mJiERq4xPAEyvkOYUkSYMyuZ7c2qK22s9hT6HkStsWb7qxH/HCk1vSxFcmP4FlGfuxEw5bJjKn1jLurI0+qvxutuYOLwqOkAg/2kZ2yB0APiEt6du9USrE2y3bf4IazvFNrczl1zI/Bh+NFSvIGQoAQESq9YFYLShiQxRCmTnyGCxeYZUFJKoKIDsEOLxT20cWM67eGkVgkMxkc9jKtM9YKBzjIJkQxoIWFI7j8EjBVAOnpk3TWqoWeWPJC8euqDP4ASCbeCnWPcJY8eKNRKcB3HowQlzMJiObTLVSRCcp9bZgtlS54HMIzs1zGWC7bnajzR5b+pzzTw/LQTZHpaMCaw5m6Ej7HM15MSp6CKzcb3NBHjNCqo48LA+5/GcVewd+RA1akfTTKoBorKGGnHWLr2C+Ll82fNpBx/VV0XFlJksGmhwddXa1HeVJlOXMuWDKaVsAZTikivZlUhmpxundeOD0eFAIpzmHnaJ7blcnEfTKzFrgrOMbTse7DGMwyl/7I2ZXWOM4qnbDbeLPRNW8AAUdJu6tVUrXKkGYB87uvd0Wa2WBuuJ5QU7S5+pSHkzp2O93muJjuhtaBUAgaU9tqppEpGr319sUK2XiTBDqOSeJWbQfNFoRCbMbNUGNQMt2FuY5jDnuugCe7ZbeXaatcAUAbivrvDrhbExDCwy9RSb9NbPzdjbS2E5JqeXkgKkLVeJQApeXAqudXXBe9RXQVJuOX2LIHKLzBZgp5ldX3y9/v7LTGDIVS2sNSM7LaFiWCzjrYD7DRC8VmwpBbvWElxTuwHFkggElpFhMhcJxs57iwEkNsFl2nltJPd2hScBJSLlFqQp1/J9u7jdoZWBcAYCbtgwyICVscK+tHaG4Olf+Xcgzd3TQRLrukoyvKzeqR6dZKkVlKtfNL102LBjI+Zg93lSG6fHB7MIQVMDS0EVpk6spt7l+viD51/H6GOYY7SYRf/Jcyg6aDnuZY5L8dYVHYpnPMpj9Mf5H+b0WIyhaB+GVWktW6lBwZjoAx9/xkS08a9oSlWrNsNnP1x7S9Gwztdc9MPdnu+v5S6arYFIge5j+PvlU232CYeeRGv9x3pCrMObCh2FzW9w9sRZUXwkCvoFOKP0jsvoPHGbmY/lKZK0RtbPHLnZCefqJjl9PLTadEtdNe71WLKH69bmOtayjHCd2vMoquh2Fgaap9z5w/+WdP6BO59VfOqaz17Bx2ueEBbHfUPF580VnMcjnvDufNDD2w9dX4BtqmGn6aM6zxOF/rINnDKMGSl2o4ugJow1jyeKYEgApsySwa1vS8sofJmJGmPPThwNihrkNb5+jn/rjPX1W4stSSdh0bt2vFdbeqYm8sUYfgzVPotvQy9pYEgK1CQt2se2l5eKl4ziUjti5QDceU5sFdmMajNoKEPUWpUfJCaomHptAFDmAv26zFClgLNdG9C0nEdsMbi/770t3/jz5u+4YUEL7dyB2MotZVRjlZtgqyJg5vi1cm1pvlqyGbYuh1Q9rVUnpnwLmHGdreSyFV9f3qJuKF3IfmRCyaBK8GU1CyYRUfrPHUP0wUpkdKW+ub/8DUamcmMHNqNGOWSmZDS/htR3gt4JCktlWpWogJ4Q8oZn0ksqKffeiLQ0f91J/1p//fq6FK8biKZDSqc8FYAyd9zC95+30nHfWdoZC4ue1+Vr2W0wgVKKjNLNNCfdXLFeVIoJ89w5wyATG1NqsunI7ROtecBhcRsiNpKZIYZRyghjVotFnW7FRVTCPUCuL9wZv32MXq8wq+yStMeUtxktwYl+WjbBX8co7QcwHux4MmVOd7hPKY+be40A/QhsxngVinvybG2+js18CM729XWcJmZoTXdN4+kxnI8R5fncNohj+8hqoO/STimJJLqYhAU7Cy66oY1IuqjWfq2so7w2hmQdt6rqWdjjBEtbFqoxhHW0zOSmsKbr+nhDauUkTTBVJRApdEbN4CU2Ioxr1yM3gh+3/YmDHjzwgJSnD/i8Y7gmVDl9H+XzjJ+HgXYP8x8fcXPHd/MlY+pOnrAieArWHZKDs+bMzxbpasAPVr1ir+iR65rySSFFDIubrP+vsK1UgB8PP99xHHujLAh6BD6LWcgUMSuSQ3o8TvlAP6ke1oEAgySq43A8oz42/0GNA1gbdbCAGIcmUu+H2oA1cDChDEgZzMcBQzNKJ7PnxDKTOZIUfZzqe2AegzCH/Jmz0rXkaiWX8WpsIru23FTKjeclSbMaXQ1bMKzIdkZCWKfK1X6v34eanVYr1vGyhKzSLFotXg4c6dfNtgirIzKoax6PUhahSWE+6D6llHXNZW9Ww1DsZ1OgsYoAVg10IcyaDFQNTpGq6SrsmhTMHClVlXEmmBEJ0HLHNldgp+3cpjLXiuCOvqyCL8u7v8loSBE0opqHJZo327V8La+4IresHvq+kchIRalaFjAOW86uDVGiB7djZExNBHxZbSSc6RbsjV5GPZjD5hnMEbKtKAJc4akwShFIXEnzKO7XSbpJKJvqAc9mMMwE4+0rsOJGyhYjU5EhX7/+lWbr17/9cn/nry1uC3MJkJt7l7bXhI/8vjMv3O/3X3Fx29+26LEufy1qiQm7tWGMQCD5dSV80b6/l+O9aRfXjm+3qCBth2rIVaHj2IsizQHb+Yqs4DcsSWTSloMprkglNg2GdBaBjJ25N5Ir8SvjvazhqeXEKW0AOLL/h9U5lVEPWJ/Q57EwbY3U2Zrqoy72dHjm8u/ZPZyFp/vIZRU4HdmMx6CPD2V+GPlPnrFM7TgIHGPdqO1Rpq6ePPa9Pu6DHCaJx62DRM3Fqmtv95lWk6MowNKSMktSNoOZyixM89Wkk3kuuE0NxmZVXqWkXylaWeppi9EJMegVfCpcYNpESuzCleMs5qezehp79vjIeoH4OGVw8dz1kAAd7zdparSk1fH5yG0OFYVBRYM68PmSsszqOONxKQCqRrPZdh4fxOcmBuKdgKR+clBUD2DusMzcs4q5nsFC/LhOCTJZtyj2z5rfP38m8joX8InjKuztr69oqxZZgzOBD/9bOdg6w7VFxdNeeUr0xqVMF9JkY56n0CvbGxYsNRKo5qKazU+bDKhmn8Qgk/EE7T8bZBedTJAKb+SCQTodcpGARia4jjWy5CVSym0DgPXZtt9I2NxV/WE5V9/uTNnPW+O9e7HPZq79myWR2R+aeFDUQUGj+9QsS/2rGq4UyNiFzJgM7ZCSNfIH0GRrclrrZ7E5/209gfjE2u2fD6XTsyxaSGegJ57T2H9cBqOvWGbwzK5ft5rnM+jTzRbNLLUMNOeJ5qlSUwTiVjWlSnlv0i9CROx7vwCnQd+HaIAE3QHSDNF1BfYpeUbSPLuZhG6WGWoCjtMcPneNJqSaAaZcQgR2IKRtoNIJhFHw6NPva2EtX72QKexgMRtmJllkMMUAE9oYr2DGBK+vv3/9+nLuNcxDaE48pJoUxVLOyrQaHUcD7Gvda/39V6yXpQmUufWk4H7Gopvetl6ALua6NrNMfDLxBy/LSDEiumq3cn2Wstj322lbMAO3uMxE5F7KSIYJ2MAG79AmYObA6/I78v3StdwjqyFSgDLERAARQ9AKU3tOWmmJo6QSDw05DHC2qKUaN0snNK0afNQGZzH+auG12fqA6q/5VPycT9bQOc8vxqWcUATSUJUs6pbVOdit3kBpuo41+wja1byo5tSzTdJxB20FK+tseUqtxkbqmEkeuHJwSWEpSWMlxmaqajl4AiZ1PWKeWEcna40m3tHHiiBRtSOoqtVq2MAhOnEimQ+SAZhXd/yljmyWmWiwqSlrTzcvUpeWdpqdxGNnwHOXOPGgzqewB8cAqDa1iX87KJyIrP1rloe2FjsoiasCMwNkTm64dCGMwQ7T1HbBwwxYqzQQjAiykL6mAwuoTJhV3HQuuPATHwq6KolqlpDGXWiWWk/PekeuOoEYznLU45xH0DBvTGClxpNdYCRV4DgKk05z49h5tWDzPL9yLUjzXnxL63asaTLzJKweSRPa1k9y4kTCLFKsMpw6o/Xm7mTo3J8AKCOLW8gwOtQ6hz/cf+0HkKAymVkKEaQsCXKalvrQdlSPrv/XBNkTBFc5S+3/jBl6djZfo0lUTkeEpWWFWnXtHbEBOt5SUw3V7pUglE6YRyM5gxlhtpQV3a4r/Yp1yROgu7uhhhIu8+vry2xf7kxTqQXX461eUEA1rMHGm+1SIC45sFQqMpkyrz7QiGWqjll6/8zrw4xBu151gu40+/UFwJDKXZT3snediZIqw/7z72nXIvZtr4zeWeWDGjsUb1zF+Tn+vc6bJfiMpZz8jvv1ui6/mIbv1PebghAHJ8PuZEamvnAtGtcyuqvi9PsOQ5amDiNWktqGOwFD3nsxCNCZ+9/D/v6Py9bCspDobtimYIR2QBVbJr8jb5mYkrsv2QKuly/7+/WblzwIKFndB9ZymwgAwloLkX99/eFfjD/Oq+oE8zbXO4GIvI1LNyko/LIIM5nu1/39wstz/dcIEb7/tZjBCwlHcnPx295cdCzLAGy9//gvvN9X5gaFzvBkz4FPFcv2HM/y/Z9B76CHeShGlFyI1RAJ6FNViudRt3r7xAnHXKtD1e7CbKj+yUkeZzZlAEALHMumGvKJIoCOtHACkR8H9vlRH36Nm8ehnIDypcLxJo2PH6v6fN7QpB8Y/kn/9c20BW5nc6wOrIeVlPNUImyCq/Ndkc93AiU8nia5gx6OTmfbGCNNzFde+ABeJkxPAdr4mdUYgg3JGxh8rh4fGzu45FMEeCiSgZaDhmw+FdWVj+OEyz+3DOSUQrWLH9Q/lVcjMYQPDF6/6fyIpMzo5pa27BMpc2j88atVL2C1tXW85jzvdmych8iODnovTgj2HAY1jBveVGgzhTlCswEmcK6GYyvU0mUEvQchnOjdVCae/Dx7HxsBpMAQfGNqZWpFp2bQLEa8u9bMYNVB2jCrcgICWP1bJbLBKtFOuLGeBFVt5pocwoBkdBuPu9nCorsnbTltVbFHJ4+JLqPEoSO6Pq2p8V56lKDUxP04X3/Wrg+hxaxw/bT9yAlfz5aRGj6D5imYz5QsmmjL3d1Xlf+udJObrVWCy+7Yfi2/Xoz99dp6MZJpy3ItrOC1rsteX3//m2F/XwvVGEuLrMoekdYyCUIJW3T6a1DbjPdhRUmqWTqvy9a6Ltjya9E81pUVQy/z9foiIRp94a8vOh3Tzig53xtFeBBS3ju1REhhK5lNRJnDSg23MK8EW4uEmS+vAcdL5qrCsgankZkQzX29lq0MxX7j+xYkBtKQlKi8Lw9EJuSrEm40SsldslkeTILI2LxFBS2ThCmzoMa6CPzH9l9/t+jbRl40ZzCSW7pvAxChDNzYIVcEfMHcuF5O+1r2um7z3VV7BregWYqEZYZn7rQM88Xl6df1RVs3mRQdtjckEyJreuxmKlxwc9OfZL6XQth/1uI3QHHfl9kwopYphO9vEOm23d7m1/X6la915Z4Qkp7VDqQ2hmVq2PV5WTWNEw/h7O7TgPjhooYOwwfUpQE1hqo683PGaZZCWYtr2bTg1L79sDhFkLfnPAmitovDVwwFlu1JO46ZMLBjucl8fZqxDrAxEaF07OcJsHkC6LbNPB/w1JBRH6WzfADKQ7IVNTJFWFZtwaYzuZSkyU1VSTM3DMAqSdPBj5kvSwPWlXA4xq6NY7JJKo5LnEi1HdIsW4dzC+eOcJ70E+dO/v0Ty4y3eNahzOOBH/3gMNDmBMmFoOYZdBDeO69t+sPKHt9ZLpXnkZUZzswZEYfW9JWq6RuZPF0ztZExe6DyCPLzRapItB+87Fw/anweGSI6I+pzPs6dPmBVsw96zXhupH+kYmb0XFcjsaw8miLFLjOpsjKAfPajqmJyVqCkKK1bfmxoMoPBQ6SB3ks8XIJx6BxwrrNob4BVWdplRxDXqnIREo7yUr7MrCSwbLOrG0izapr15WHmC74sjWYhmycqaaRiaiMWVn6Y49oxNpRnecmD1JOiz1o3oJQQpEZabg5M39uc7ASUcgiE0RxmgkuGtdzrH3dzc7rJ3PySr0WzlbTly90WLvMc6Zzy8oby3q9fv4zv17pQDKgEczTMoKXMzGWEuSUTkCGsW92qFtiMMF9L1/LrZdcibVmSpahivoLVE5JYrxcI0MHFr2V9FkiYm7vdKnk3MxEeMlFCCEV6EjwBUodENKYEv5YSvJZvlehZg9DhrZXKzDTYWl9fq8b5bb2/pYxdFYB12zsVRKSSyyxg5ua1HN87w7GvemSpvSU5Q0mRUmwmkiT969ftr8V0yL8vZTkR9oSpFGi5Uzcjcd+2d/k9gn99vXj5xcus4ASntj80yBqoruxtZi+jxaW1/Jf5F8WgwXdYNzs6QCKKzLu2GVwAMvKm8RbtdopVcm/RfRoS0pGQQR62BFuv1+vbqygcJjNbdAFBHO7pGPJjZzrvNVazLNHjwPI0MJS5LDRfw5oHi47i24mE2dXuP+1+c8D1FY+pm8irfzi+Rq2oewxUm73DhaFDrM8iYJy7mGPfRrhKbYjTIaFZgY4Y7DniOCnsPvCPa2B32s46tnMp/wq6pZvZJe8uhnbu5p4wUIkHJHf3YT4QyOS+rpfjAq6t7LOk82Dw5GknCgSeK5rnO+uFqoLuR/r8cqRGntfieQQnI9Chb/md8Z3PE8X4twqFkpmVtX32GNHNEQW17egZzQYx8zTBTw0n5JYxaNB88bKpBycglRRpP6L2gZpsrVjl0klNIKK+t8kFpNdj7D1wnC0AycopVKnWLACgbhDvRFFtHXJ8K4CEKWWlW5TjNYbdZmbuUJa2yjO2r9xlr2o3Qz9HwATCPx19XQQJi8yo7hggExkqzp5ARnMYu+qjdsIWKwtiRlHKRAasamqSCcPlzOCMIJtZKCbQOycwT7RYXGcV/HudD7ZcTsPokJTbyJKMCOYwC9L0rNXnFFOCTC/isDt9DCJTmTWZQpUlnaUTBEbYyu2mblWpkN08aU6XvIfQVj+S9QA/I93ly2lGT7iv5ba2Gc0s6BsEm6TmevnXr3/7D/L9/vUCsxQSEzBZEAxBCm3sBBAevr/xB7gv6NcGgW4zNdyKSIP5xcuD/uVJ4zKZ0SxDhJkj11+/ynAZruuvX2ZwSVpMM8n4e8P2ftDzCkYwLLYASEEZwgiFKzNuGHLvCH+BGWkuNlWdSzJKriAARURmGn29vr48GRnvb3u/cft9BxMhVp/uhkhbNPnL0pa5L4rLLIkgsLYIQRYRKylYSOnS921hib2wltbLEkijYy1cAHilAX7DwgTe70AgtkXcOy7unW5u/OtLV5iZuYkut2DppgtGYkmSJR1WliA3HKm1/p325Yp3JN9vRyYUmSvcwwIQYvt+b9235+uVmeTGTe178fKLd9BTrirhSuC9r828rwTTl329fn3fa1m12VsCoFcZQqTFAHmJREhm1pIPT7QwW7nNwPClVVdtJBKKDv6yZNAgd3dPNgHmAM2wSrZOpNwPad2cW59BqblgnB7NchY0ZlaRtR7nWdk9t4nvxi5NLNbUGedAdnyR4z/xJKGz45WxbONXTg5P85cHAJwprPrh4stwi9XsXgVpXkM2rJg5mJHKzqZHEaXFmwAhClmNw3CYXx5GrktbpB31jfFrDyIAnnCzIFbXWvN5gEuP7QOgMpYqJaYpgek7n0XCMAEn0mvd+cMlA2jNz4diON77WW02msXwE0/4OfuqnpcqJOoXZFYhNAV6tUXWx9QjPSLmNfZAEEyUEp2Cr2EG88HQsAHQkA0Ek9NDjQ7aRNQkpQQqZTO/LtfwA+gd1uHkfPvylVlKIUnrO7NKvijUJfeFT8zdnFUg9eDQQw/UcNrMkW/XwW9gRUXoYJtV79GgV300Eg4PiHTz95GcoG0AeWfh9BARZutiRqXlfUXQDQZ44LTT2klCFDENmtFxo6oIA92MhCKeq2jbZ/EsgWpB0AAgkIRbCR4mYZl99QBAq0YsGenR1EJmVJ1KpiF2ZFgNlCk8JKI1oXkgf/cpAN1MQZjLfXX46XZdl+d9vd78Knxf5BWZJr/W1+uvv42v31+XwuYJi4lEdVFnxm1vk4v+/rX/5f+y/HMpX99m4B8Zpdv0zfxGIbTlabY8YPCu4cuQ9tp733x99UmzZb8uQqYIWG7kvl/4E1q5o3h/ui+ZwK+/X1euGfeqLncwg4JG7ZSuXwsXiweRDGQV6aZKclGp3MEU1/X11+u63lLEbSltbFlmcSueWfP7ij14IUh3GqKGSicU4btxz85EWkW1grBZQqfLvn59+dffrwBNtGvTj+hwRuC2JL7fG3JF1RAZ4Vjul//9utd7aTOwJRjELDXSOnCprcwkPZoLX7Bl11//Lrxsv6FSuVFSUEAIWjAztLFtM8zoLlPhCf3G15f78sjsVmsXFtM3EMTN4Evm/uvX/td1rWWo0lbSFmWoWVC2S32opzKEd4Pe9NeNBVambGLDdnNlGsxAKe/mDFmq8Sab+hl0ApczlEACLcw5bmHIb55vbFs9xtBqVLUdwrxql9rgcT6hCMmSPqqTPwbw9LSoTf1H5Hb+axxxh78YAZmPF9aTROvZl62zuuw2MO2AkyXeQyttwOabO9dmUO4WOqhuhFv15AtKYMsERqyAw6q4aKJWQchH3wlzzdWTmN1KQXx6N86/BQDruF50sK7Plz2R5HPzhZAqxzqZ1vnNvGWWWs8nlZvLSj7m1L1TU2UzFH6hH3aUmVkqaM0edxlurVbJtXGCxOZWnipooeDbx2PFgx+eTdAhKz7+FDfRE8nqnoq3fW64c66dzHlIpOe7+r8m2Gcz7mUFRnlFkjJi38piogbRjjvDQCbOkyMJmaVl185ZdsVMMQeoWLcEEWNopIc5r2aZarDKjyIssL6+5tHXwqZA0a5l0WKWNIvefMSo0c2NovBMB64Ck9MgZ2b6KMLqmytV6+q/a0m2joNnHxKTXFIv/KRsim2b5FNzEKpdJstpf7auBVBRCrNXB2ynulkogkpYnUIAKnijLGuFvruG1HXoipcnVuXQyh4mMxEwRDY/+m3ytPW22Ppe+SeUf76Xg5IztV17ZQjKVDgDXJYEqkISUPc0Cvb6YskJ+GVfl1FOM18IKbRemf5iNHy2Ti17N0y04asUce8jkUhl8rLK87NKAmsYZWXE6gAoI0y0db0u9+uNTIWixJ8tMWgycl/GNNDNr13zkCzTLTIGJtc03yIfIoUqQI0wys2ul71e/2H4++s708ClUTCttQ3cC1LGBqS4K5qxdL1e8H//C3St3JBGULOwNXukTtXxE4KyRodJvvj1RTm/dPG96KjRahnA2rTNHctvi51ml63XK5dTt8nym7ggrTvrbt1tGl0Q1maQdsXr+rW/vr6+LwnRZLF15VVaMYUo45BZw3ZSlpm0Dwv7REXFz+pQimVjg/zgawEoo1UhNcqDZWty/FyTtDq0bBuN5uG6TLLIMwxqpVUd4UfoYR0Nl2Rha4uklDhK7+2MOi7LNvISML0G5UTTxs2qbTahNsHn9CppajVJzruPa0/rytW0Ho3degE2J3nfDnBFZFWjpxS7nPas50YKjGA01WvuhNHqFhmjlfXhZtSGtvnh+fvhntvlAVpsNnPePDW0Y2704Zo6gGkrLWWvULMG3ZIyX/NsEp4Fr1VjzWsgUM/p44X1zMuD8+y59g31MUWFKQl0IqO3VEMvnK34OFR1auT5QUe1Xfw1iaH+RT2+Kqcfx9c2fN6vp3+5ToBmmwDAZyYAgx/rBzURq3+pXuM8t2DVXFSJVTOq1S+N5exhKFXUlom2Q2t09saqmO6UTjw1kfqJo8YXdp8mZxulAETUD9r8mil3NByr551T0NX7BdMRhhaKdd/mo/bo/VQMSSoEEBX50CSvAuNCdSAsBw3OGmblJuzjoVY41VPg625rHIQkWeaOjEAYMyN2REDaGZu1dwsr5yht1p08EKQxgVIxhXU2/6FubdjhEU1rRERERgjRg0myHHDemxFCrNg7FX9+6VuI963UClnV9nzLbkbE/fvbuAWiCn0zlaEW0I93yK9QhOL7pq8rI017K7gj96Z9i4uZ3VAAxS5chgxkCFlzkOvImTklN4XEZVAmvMYLCUyOkrc6ASyBvq7X61rurtzvm9/fuas2ipIsLUr3BE5fVcxWRVjl8tpeqxqwolMe7CJ1JSxhdF/r+gtvN4QlxE6XK4IhRDNhyhCpe4kGvpBf9rXy9UWuK6DoGqauntGBcDWqpgv+crspg1xy9y/hwvvbjJ41EkECq8FAAHVvl3DJYJfDYZkeUr4t5SGqu8SpygAHvArfLpi7rV/3r1/fXy8JASjRAs3sNzJP2UeFdMfGNIb/gPMkLWuiMycgrr6bJ6Jqx5CnJzdrhlOmKUtPoERo2kK0Qef4x48oVWNBVJILkWO5xkzPyyBlZmQiPiJgjNM5sY+mMqYB7/mic+3l/iun2Nw4H/vaKPIzNqy3Jqk2GScCzhxBoUTI+1IyqPMrkEtV3ltNJ26CWsgFTjnXWmtduyofsao+oPG9DjN8AAxL3Qb64QQqK1d/W+xU89wMDwQCOJCE8yHzwk6ZzXJYa+xiUsV29gh+/pmIbgJLCJPoPxcw1c4fy9pbTB0vRtQUUHeSpfZUMVzquFFqdtQHfd6fMwDjOAxNxfvHN7Y9xiDBuczJuwsPS9MfXW4FXb/SHuqHL657ND1bqRxc+TLawNCRCaxewE/2pQBr/3cHy3NcIINZTaYjho3B4WXwfCsh0GyEh2MQc1VQszJKAGB+w4o+ZOd7uwjePCakJN3g7uDyy9Zagpu9vOJjTZrgQMTm1M0EOOBaCU2ZBYFD3BPmaaVZkODQXV2z10oWH2650ZPEwL5vU9RIthLMVGi7VW/ndDqrEQpnD0wU0KFhhFXvJOpUZ7ltZOR7+44I2N67pi/dIWwowQ0xUrfiLd0J3MhvV+rb7aZ0v6GEwhkp0zf97cq837fzTgC7/HrbMiiFfMcWN/deTJjTI4LagXtlxo7Ed8KU+wWjmbvXGOJ/dypqCSyz1VsKtkW8TJGEm5SiI6I2fWqCx3RlxA4JXNd1vZaBee8/9xv3d4Db31ySEBEhM/q6zJdf64yHVbW2MeMCIpkyIgrLEPRqxaLSaL7W9frbYPG+xVS8XwAL0mQiqkdWkeVDUpmgu64vfF15XfRcCxWFaTZ1gdw7AaVnhrY3AemhUqLwyzNy8aqpw2gUyAm3qNw7i8TKNLfqTkcqY28pEgFuJ53sKoXKK1IwmPn1tb+v17XWdgSlbeuk+fiR9CoCCzmj0drR/HDAn/Yac7g69XnYsmM19OOAlMHsquUxePpflUthDtT4X5uZRlFqhHl8NKSq21Yys+Cm5SjwV98dfnpidvx0/LLGSvbVdjMrROuK/LnlytEeNcqxam0iJ2U49pGfkSJS9ApbUJJGIUAUHd0rHBh/88iQHANMSoyYcme0y68YoBzOLIp+PAX89+Vd9Qw7zDRYRVqdA65RTBPRn0KvZiVYxZyCzJouq2hkKivrroZS6HbwdttMVI1HK1DMY+m/tLCLelDtgbAnzG40W42prZNHpTIRke2TI9XUhDoF0TGbZPPcn5rQsx3raZbnVtPOVfZjB+r1U/54+qiHPmi0OkEneNcg2hLBL/YSqGwbzaqPjB8Offjofq/YVdA92KuCrJQiCQQ63a1IpKYwvFU6Oxvcu2FObuGPin6V6c/SC8aEmYfVDJra8lmdS77CyYtq+vnYAnOTL19mNMkXuW61jGIIFiHWaBGgktSNaWpHzbjx5ykUoKzV4exCQTYWpYL0RCR6Dk2WkQgSmblf2lY7kZ1yzyjSJcotm1R7ofZP/bGSZMiUtC24Q/WuHeo+VNre+/vN9/vPb9n+/b73jh07E5uiLASEtBGbgrDylfllvjMcAd6ddiKi9PczkBH3O5Yio3Zu1OGojAGYW3dIIZi5rwukuNzc3JdZPax1XW/35bZ+/WV/AQbf/9vr/6+3R1I9hh3pFVdWcywEmMOQwWnP6zHbvbHrINF9LSOUdt/7fsdOKjyl++VNnAQut9f1hZdfiy65WPMQN2uAllbkhQxTrtUpiJpfe32F++Wv1/X165cBiqBCsVGxiqQdUM5Y8SnpzxBlklfGo2oTI5JIBCrkVxDYDHJva3fBVdXeopKLTluQ85VXVeFYAm7OoHYmuZM7UiWuAuaNiy4PM8RNS7W6y16AZe6rEwgB3clAcNm6rtfrl7BTVCgM9BOwjNlOws521ATBHfk1nB1L6+h8fQUbbb+HyVTHoxpsW8YsgzMidL738Rht7cdf5eOAKz4S0JU4mk7Csi4Df+dfRqsRm2cKyqG12oU25m2HeYxna3FwCPDylaWZN1ECzv8S7MZ+Q46F66z39H18ABZjWNc5k0oE73tHpKBOQBEohYYY7M5ID4Bx3/ft71u8b6SSRKTEKMHxzoZV8PXTn/zjz2CQ1djnBHUf1HETDRJHmOU8UhyfxqfKqKQP5tf5uXfas3YgXWotSYOihsUeBqNBB7KaGTt+1OON0Hq0tGpjTcs84ehY5Gc3TJT9zxBpAscHcP0IM+eNM8qhkx9doMyq0UJtIMNATuKzkGEIk0ddioJgdDKzKm/bN5SfthbCB8otldOdvVY3KA40l/gU/mUVdaDlgVBT3SoFnjkFY03F1V6sQTt0SGksaRzMnjHuKGQSCeyVkmLvmJUVrOeuxZHdaW7DTnRNro0jN5YVPH6w9BKIrvczp7zhAThDkXV8Z5JKdIpMvcFMsiJXE4ePUXE6NCkztLlyy6Nox9C2S7lHFDOhzNN8X4A5kBkAMkVlxK29EcqtjEgQESna3vH+1lr/02T7P39/7+937IgpiisesoUvzXTZoi/++i1cBud2diFAhhcEstjv3/95Xzvu+/utCP/eZeduIpX681/7+w0m5UwRWwDoisyS2d/FUABYy9brtV4prdf731//cZdQYSXwoR425msHllMIXyByt/2SOAgJc4gNXPZ1LUMIcd9/3vcdiNulvK8VfXjthXWtS5cvo2lVidu9I4n0qQ9WBjLdeFOx2nPYV5q/rtfX16/lVyRoFa4HEOGpO3lb3siEerC2ubmlwAVepXCUrKRALglS7FCEkpElev42qwCA7rRSvKBfgzTt0lcYb4I1dMkg1VBM5H3fJFeyW5QoLF3urS4FKrb0NjNYsqP8lLYIptl1vX69t2jvjJDiXnyGRfSeZydIkJ3qy5HnGMfLU6wz8hsnvmPXZeinFR4KvbQ2MoLeIlkASi/rwyz2Z/WJapV/wxCUZqW8nn2If6D6mVNIg5kzkoXtaZrGwk74oMZcycqkqKOeMiNV3VJtCp/s5Ie9bg87vzzuqdnPMhWd/2SVWZbJjvBSxkRmguL3zlQXaMnFqp6qB2+yJAx0kdC+b49I7mAZnhydXIKVPSv3/zyruromTocTbae0cE6YkF071vEokiMne/zyvLcOcfXp1Jd9PDaxsw4Fn9rtCePlyGb0W1v2scpjm58w8vGac5nNneHBTqCkKFnuo9hTzqY39cxyAtTVtnmWg/Y0b7XfxSFjH1Q2vgFA98dSP3dFu85xxJxMRdcOFNudKEZl3vtE9EX61tXX4IPaOp1lkTBK1eqLBGTcduj7qjDhFFTRVLxBzXxE9le0h0+RcArCET4cGTS3ClaMKeOOkFVnZ0FeZWpfBvU40QpHbVCRecPv6nwQCe9wykDaRQDu1qLnrKxx9YrOSeqe7rI1o8OuJglYh5f9nGsXFKVtRJV29RHs6B0KoYo1Qplp2p0MYylE1VApAWHMAMiMVOxbjHvrO/Zd9bdCECnfl+7vXOt/Qhb/+ft9f++IyEATUql+XKuaaRa5eP26w3+98mUwm30+NakZmfv3RkbEfUck/9yKKDXplLj/6H0nRTkyc/+ODAmRuBe2UkEThP1tmYiUdhBx5//8v/9Pbt+H7BGSSJpjcWstCZGubRnWYF4GmKt4mqyUj3Gt67UMiTe/7/d7ZwjyUndISAmj2VqXr+RVgvVVl/veQGor0smbTAVK3RRu0koiZV+5/PX6ev36dRmE0J7wrCZu3dBed/CuysVMZqnPuq1l628s5PV607RuQrEdW4q8pdzc0l3jL0Ex0ywJCgHGGvyWZpf9/b4MBkHOGm3AYpzwZ79oVmlzcze7nbaYpp1/lbYVlsxWT8HtA5llaGD79atmM3PDMrTpyqiCT5uYTWQpPNgo7Y71/qB+GuRhQtTy1CmYo6Oacb+hnqTR7QBdWtD26gm7PnqNyGA36VVw0GVaRoluZHK5NZKfonpAauWb4vjqFAo1vghjEqc/hDb9kQ/p3L8wq+QguzuSXYXXtXPjSyaAb6vZzmq8Vt9YBbQBWqbl3q5KgigQG6Dv9+4xI6qHXWkHoqN0A2EOEYaMvfdORtgHXiHUAb9QBTtCK+U2iCniqeuO1D6VWE/G7UeSeIybHYv9BP4/nM4swQcVXyHupCHqgtii2e3FGmZTRtVjfH7KzsUNb6Bx+zrm+cPxdW2rgJJuRMlzNyTr+BfHRQBK2CnLJ0sL5YmX+fHZfXfqX1iHDdLM6qgF/qgVet7XhAoGH6o0xEvEcBBPocgq3+EEth+wDZgKtTJBVVJy0tVFqMDgWXqfgtcdH6bfiupqJ18TuMnMM5Y7Ak+uGE8NUjaGi4B2KZbHOZ7FihYIboKqQ99S2SFVcffRsTKoBrbLKTeADmIC1xakKcYfHRrjoLc5yeWBz82bkI9IC52A93TGVgccvSAc4kynM2BqLsv2kLW+QgbpZJ2ljEjmHXlnbGtmWAVHAnHrvb8vIf/ce0cTAq3WogGypFqoy+Avl3+99rVumpCtIkK4dZ1gtYw3sVD/TqFuQ8EMEoS7O1XsaqkEx51ZRIhw//aXCTvs/cuYW//j//y//lrv4Qb61AgknVkDExLWQht19NQpJhPPoDDK1+u6FhXgd947MnfZSycgpWhu8OuiQWu5rzcN0EaEad9kkvRwIpH7/gKqMKwytn5p+dfX19fXLzMDtWPVndsUxqcQYbdlRjR77gBftsy/fnEp3BkKApn4XojwyLcYYZF611AdKNeWQobIvdEwN4AIs+v60ovvK5V+MZMWIJEewtslZiZCEmOvG/l9K9ey+PpysCoHtCBhv6iiZ/ZeiWULX3fsO/L93szUTkGRedQL2DGtlwlpy9is0uEiym1CiUwZsmEwMlYKcJvs7kREmhlZw/WqYPwnG0xYQfwOa0wwdzi8ZGOEntBFg5nJ1jJTnsPbFeY0i6a3Kq2HjzJeArLhvRtatAOe3/MYfyvM0tHlkIqfDqBeXmFWTnZOkmSfxFy9KzqJuDdAJQMK3Rs0xg4NBd4OpTJ5YyHQ1yWoWgsTkehgVa01UJxkxfG9+FMBpIr7u2B8enMEYdn0Eh8WgZ3dS1T0X37n5EqrvcDpZmZl8OFSaehOvvXjw4BKNZHn0wcSTAj64biK7pj0R0OFBKxm0GTX7PWPmwExY0szj6tUl03+9NQY4KHBNz9crQ6YqHTseePBHvq4Vp7y8k9gQpU01RR+HXjzRMdDJJXFyic4xyzXsygTXApHn+b8A9RhVceA6GEo42pQHSQqwl9n/579UI9JmSIzls7KSGQVOZcOTDGvNRq4P7zcQlZRZf/w4xgdDFr16qSkPL/zDltTKfvkruu45D/WGSa5mrwYMNXn0uZiepjbHOp6OmNfGmDX/1fT3hitGQHULcRJBisHDJUM/satfSO2Z0QnWZKMyNi63388qfeOHT2gK5lRwsrtgGdV6cFlxPLbWiFh+BJYlS5DLZiRSQh388VReyhv3bsE0EAAu8kDo9VAN7mnhP1+b7fm3ICiRlSyYRNG9SG1rn2C6DQizStQqTeqDkO1vhvky5dTkuId91ZuLDMTL29OyHGbXwtO2CItjZm6EcF9vy/JUhlLmUIkjeSuOdsC7JW+vn59fa0rM+DKRKZZvv9SQMpEKuNe25URlJlkF9wuXtcy51KGPJySL8s7PO8d+Z2+Ewl+LwD7m4gMsnqNIiCFcwmX3C9DXCAdtXQ02c5eB30RNc0YSyFlIJm55Yr9LlECSYHLVBG+Oj1oVXnv63q9fuX31nfqzvBWA6W1OI96m3Z2HhM9qZ1Lo3a1iaxmsfrPbkLhA+QHz+eUsdc/3TqNAs8PifspQ9kmbIKMPpMkekKa2lppPEdfKH9Y4oJxsI7I+sOydYRYOjljNwSw6oOnCejHAJ8uq+1XYkJHHuv84ejHXg/mqLUjcxrQelmitMHvXRwhBCVk58t6gbsXRVAFwFGVIFZGJGHjWdKaZp8K7/b+6quphTw4CjrjCEco8VjpD+ffP2zD13qyvbqa8i/OGtYLD/1xZljo2MNezgcgfLjCiekfA3wwX/PNbX05FqJcnnqsC6u1qd8xnz0ijlnnAIDQHFO7ihOrTUEanisoVpfjIGeviPzcrzhO/ONnB4W0/8xxkSSHl36+5vj0+o6cSrHGSyWOCfEkQvudloPfrKxDz3alxbQ9EeWeWjq+hcYqdIFNZ65ZTcHwRZq7owRTJcyQjFJThao0v948ERI+V4gEp1Gt3a2gGlZgaK6mKYIHnFWGoH+jwWgmnxNfOZb+v5Ygyc7jdnrCYMxmgZRTxlfij/3mORDz2B5h8TIhgzMyAsibNz2DT/kfzXbkDt3v30zD9469x6d3H3E1ehUuMdA2bPNlwJrSbh4HzGYuct/FFsaGMncSUmbUhosbO2BwW+YwBCjaotlVjyrsIoXYLRi2lrmBMnbVL0a3J9oIkCnzTCUcyozlDFYjRsuigtOyBthablCm/rz3DiEXD0sqSDRdX6/XS6/EWoSZ25ZuhBT3vQRzOJnKoJhCWsEqZHJdb3+ty50GfJP7FmQmU3ETEVBg572RcYdLTLrzsouva8lhQWXkooKOHYncjHgrdkCOG0alURky11Lme1VLpa17V9k0YZdsoYaLQVHXJyRDFje5TPpCsIC+X9BaSlOU4mqk+WKEJYhEhiK8KElzv16Rv3a89k3lNoPnRC1i+xTMfLwPHzdJrSEb9eBUTXhcWoDdNfz8+iDjPp+NyLvetjOeTzRxnCg7/CA+uh3Vgbk9wcThUduytcMu/wA+PpL6uJYxrp8tEqpXnYDlmIFHq2lCiR+uaWKq/9WfA0Wa7DKwTWj5T8ZdIm+sPvOJYuqZVKHGuLaM2DsimJICUg9m71AnJ+SeUqnmKubedAjdDiTW3NWsz3lkc0M/XMKJIyZYO0TvjNGbL3u2hn5gk/oVxx324+n/mxfwHy+fJ1N/aw9ZoWqZ3ImieKbzGU/C4QCmWfp/0MyPG5hrm9QicYKxj5BM/dP5+LmyRjcf39k2jj3J+Z8r8fhvHqf48YPaOeem67pVDW6yYpFnYyerrKqmBBcKaeigxEdBa12D9KFeIdFKJReTgyZ2VIl5hClCQBe3DbL2B1+hmJ4H1an5bbIkP0AWqwFBTF0dAfc27yDNWsHu7KsC5E+mqv636InsnHV0YMDahi0a4KoUMU1sxWobb3LyUrV12j0ehM3zKKoItlQqqki8V/AQNEpk3O807KlO40lLVRctVcrvYmXClptfy9YSPQ0ngeYzZfgOJaK6lhH1fKtQhAYwAs5la31djuINzJcvK0/NF2mmSrMY3ejXLVEBluzFVBeoC+QpoYI1gsjwaq6nYB2mNB0kGuHLzRDY2H90F1vnJG3NPDXaer3WlSu7JsGR0qbIzC2VHDcghRHBkmCrS/LrCn+ttRZN9nbGfUyBqqZOSkUiLCLSLI0smWVbZiWLXwOmquIT5dlV2jNmPTR8DLdQjRNqQxJRyspcGb6Qki1T1BGWlNxdNI22093m1Na5rxKU37AIF2FBpGIvJN25fa1X5tf9vpxAIhYMCWVNApjWGXQ5xhzR9grjqcYN6SyO5g9pj4PtX0dUGn+sUp/jMVDzIc2fnn8eszf2tv5iH+7xw1yPR6z46znGc7Xzrx8BVn9OaU9WPdE/HcEHkfyYRE1UzM8PGhQxSLvd02EU2+zSH0+HJGJnfvT5n2UqfM+KgCEgI3Y54GpeaL24UiPOmRdcqGUueAzOzz/9JesYuLNes+ADhXSu/DjvWc3PFXzY21lJTBwDPNTECTSAqhedi/m5xTiWHqqGiJpqm8wTXwBQsVkc7t2m5BxFTjZcGw958MPHffRfHvf+LNCPtfrpbJ9b/0Asc6tstpsN3Pi8XyeUrtdIlUjI87ndIvv44u7Znk30sf7lvXS69dU/bEkpoCSxWveleRhAKJPUX9oHZZ7nRHAZxfoOYQWpyzgqvWt95J8P+bGaypySsf49Py97rMqQIkX1Vabjx2cBw7+3vWirwG5UqBrW6lYjnhpvDRSbEQrtgCdW60QI23E3Sf0DX86vntNT2J7HfgPKjF1F5J/b4Z8sSNsBAy83u5a5yxohYNqqS8ShBz3VssaoF1XCQMldFDXpPgaRdCMQitKxIM9yqHsYKoStkpkz8gxiVU+YJZHV4VEjIOaSi0hRZ3M4bUhSIPd0RdCT7l6ti+ZwK4qkIVQJaUJEZKQOt5dVo281Fy0tjU5/vS5fy81ClwVMVey+Ww9FKlgSljC5cYm8gv7F63KuyoEzWxlXycjMUKirLitrEkwwCQViKxM7BbPSPBHAK+Amk9tljC6PqoUZPrnaUKqqQhUNBU3uhLTl8Nz2Qut9lQ6JJHe/Xsqv9+taK6qgRALOTB0cDNpFihjP3iD34wQlmz0oeknZT36KPjSDfzPLAyurK6JXMse6T03pD2c2/u/xvH0cHrPef6kX9+EcQnqcdnnA4Sf5YGnOWT2n5OPInANYp5nn2H9Yhzm4P3JMzRKoCcvxvzzqR5Xm1TmsOscN2W7qWeIau9qGGqIyduwdm5mskqrjsku6axZFx1/O758VGyQEYIGkyVBNzWflT3R2/M6TOW40Mi6JGnsqjRDzj7i5uNZPj40yq8SHQx9ghg/o1i+r8GhiFbK0SXrRa9dpdupIwVRAomFM8Bhwnm9KPhZfmBfW5TQZ9OHDp6ys1/gTen1cbW2TrpM6L8WABlXOQgcXfKDRj+1+amXah/cH9VZGR25gR3TP/h1/Up6nK+unyu1ZtPYKsNYf7HN0brCkuNpH1OAeGxrynK4DMQ++rAgc5wWCGcw/JigQ1hOn2O1benZZP4azaTMnkUuwSubrUoutY5V0VjDL2YZjBY4VGuGxdi/jgZ/b5fFRExtM0DE2BWe+R99lM9ssrYyBi7Wnpd48jyLRrFS1k1BncNDspHpKBJ7BxWz0My2eEVWDbaVkXjKs6lC/LVBkTCpbic770bhsdd9Z7WcceA+0GKBQPfVqQe6ueG+vlZjqnY7KkFJaZDgEGwNGEnCD10QmiqAFUGm/iGblBQrmFP2mlIgd5ALBdVUpJRl/MV+WFpBsR95U7DewHVktaVazhhzy6+J1WboLz/lXdIY2lCWEmNCGZ24Iud0tYqeW4Q5YBcBtOS64JQxaljXxUVUVg4hbBvhb/64uk1ru8WVbVLXzAdLCvbcFgSgeFqUzIpmtuF6v1+v1viueJoUstc1jX+qof9oYPp6LeU76cHocx0dL0FCdMG1OxqX1a2E4p474ZAT17El0/NOx0/lxgf3z74/Qpf8xejGQVDdZ10Gq2PZ06Xye+nPsy+b9MKz6/NeP0PnE/88PiB8r1g7ygQ+f0fCJ1YpvQCaj61S9fZnUigrnvLT2iNQ2ul1i4VnoYc+fxfxvxDgBjU3XI8Rxnk89a2qCDD43qc9PeW5WpxpM7VCOk/7v3/8jz3+e3acb/CQhMHBq7H5fpiVJuI+27/PL+hL7+PH5TVleO4htQNJza+THN/cmPSlugUPCt7nVfMuzMM8p+lyEuitIQkKcArsT8WfB0oMVjdNcVG6AYE51xniMwxHx806bHH9c7TxRCjOr9Phg8qNx+XkaQNWKt9AG2lvOPbG98gMpG4V2/x3IbJd1MEWtDJ87OMFvX9tZRTW4UdHW8wx0OIaT4Bpc0vdwVqSCHVadVXatc6p6iIfBm/tHU+BzpQ/2rp5+AGRpkg2UGt8mAqkIoPp9f5gpVFSCxoG9UCJaz6uOZlYXCSq5TijuU6wiVXap6Iq4r/32THgxxJH96I2qHmcqN3ZIsVdEpO2IqEfm69XNb2hWqSvdJNXUiMxCE+2SiRmm0jdCNKzw5WZkZub2fb+pyKqTH3cNoPaHVeRYM6xSFjIkaAwxRUPQ35KSe6eBkMzWui5f8sgLUagPrszYVLy/DYFqPirXkOISrvWSL3sTpHJniEozq8mCrM0TkkFboYCg77D10u8tXQvrDyL5zTsDYRBWrpo0thCiWc14NpjveKdv+8q7ZiIYPLniWgqF7ZSZ0zK67LgXHBTMiv828+t6XddaNBPNvVzlE/EcpmUON0a0As+RrgP12McP6yycQLO3eyPK85rzF6nN/BMBnZ2r+bQJjepvE12fqotxjV1mfYqCaKR68OaYrMIFnz7hMJ0nMfTjFD1Gqb4lmXMxz6JhbnDequMaP4g/4NRndLHXCfnYlK+GoHmQhT6cYgtQGc2cJ2em8eE4Hu8fmctHfuRY2U6vLx7b0zb0+NqahtluNefG+HhbjL/t/JPaVlRrSglGosFasSVM6wml82QHakBSsubifnjzg7UykWXqWsoo8lTIFUzJkyXti/vIftcaoILpnJXQeGDgWI4fu/hE1edqx1zX6e+v+IQYExj/JFK7+KpMVKLHFpXpHUXVAaQACWMzjEPs9N6Yg3e2ZD9GQ8Psfoh2dsNcf6Gi+tWR3LIed3g+8OwRiS2FOsH5iCGB0zJ0Vo0c1zWxXGs4THlmmRCrXZ1KE2NUTtH18aXjXJ80Jz0mKuC4CCR7ijDQUr+z2kaKeUAVOwhSMoyMGAn2lh0h3bzgiJn5cjfRnDNb0ZjGM89EfcTPsR4Xn3ux5jJlGaezKpJ0hmthiW6sAXkHRDy5eJAWkOKds4UTuqOyd5GMe9+/894wgIF8f6unLyHeyMid2oGdWSSZwfeOqM2e8JDz2cyEBHOv5mlCoC+HQLcDrw5TUDaaQfN1XddyvyVFKu4/hq3U3ZIA9V4rxLaMizCvsk2ZOZHLHLG/MiXdXmXEvjcgKpLjgFfeSwsKSuZvWcgDCDBs3/Y2IMgwipfWy1/y5XdCyDft/csiZM6FxaqDcJFhM9PTGSSk95+901/STvv6Cv8dNwVkvlAWpOdXFgV3OZb5+62SxMtIVU+fl4XMbYHY9mLgQpbfobJGeoWMSMjcfV3Lzd3Mk2YrJFZTMqQaXwLrzU0dq9BmqJ1Fe0wO/mtbOmHgQ+SUAVePY8gMJYpYjdGHPHb2xxZXf2yVkRxzXGx6JJPIiB6yIJtvaBA9CiGozI+q5lQHKOOxHsf9Npv1mdkDC7hiwOC8bazV5DuVckw68fDpn36vOv1Ys7XH+g9Rbi3KYgJ8BjwIrEYfCgsgXmuttXKBXsyiBLRLwcQ+ZSX70tvXsqa3jl8u00dhYbBk12eRVWVOobu3e3nQAQAGcjXN+nDtcxXnafZLnzDzIzqf8K/0IHqVKojqe5gPfWITQ/f4mgFpJq9aGV+UV+s2cKTLjj8ThCn3mqAS498O5tDHy6XOLeI4A37AmCcsnwwtPn7OWZf5ydy4zhir7Br+im8bbpHGGqdlT4Sp4erxscI6kZnRzM3SRFPN2jK37K4GE9BTRvtmrYWSqlQHNfS3SnGK6zeoet/VEXAKCEEtBk1vPpaZ1fBayZVe3SqPb2Ub2i4vS8GymtDLVRrgrdudjQ0srZJeOmBRoNKaFyjWrLtTOVxGld4iq1lkkOtYko5VW3Cqyu5P9eNDdgxlg54MfDYtq9UWycSSZq+wt25mMLYRhnuPBhwaeZzYGvCAfMVyJxcTl9GvUgkt2FqJBKdTv//HH2X+H3lvZOafDWUwwhwk733/2a+6l/ctRHlGBQmX9ptuxmS+Q8kUuOgmpPlrk2xlmu5j74OZ8BLlIkjJrwrTtBAlFyoys6dt2lrLiMz9rYji6xStixrVjU6zNdM8G5VElORuwsw9zI1Uit1btBvUrrX8db0uX1gbMNeu58PM2Ii87xHJrWNatAFpa8UimEy4RwRdYa58R/Idd/6O+22Ki7/1Mglh+6ZhE8w3iD8KMuJa+71u2Y61s4S2OKGn19Rp0RBZvcw1S1KKku9MVQzCBBiManLxZNINy9yNsiWmVBGwUVK6kSb3HJfRc96OM+wmwk9QL42elJLRCDsjw5SokqsaqSQhc+/7vXeKET2kZGcwsGuEGrZnBLKmAWmEbJXKCKUQVcSmNAiV5cioMpAIS4GJnnGyoUxDZmTpUHaW+kGlT7AzLqE99zlBU/D84TB6YU5I+/FutA1VB6PAP76gOaXBnvSaoDAuEZDicIPdHw9M38eA0MMP9zehrGSZzcNOYnyegXnyg+U6nrEZmuwmtSRlDQrJ7vzOCiTGFU2i/hgrjndt1z2jnaBx0UMpjg/Vx0JWOFu+pfuSZxjEBFCjpNExXUkrgGaimDSTKohgs5al2GNj88rVGGu0SC1Ki2g0YiysAR7C/jAGnAddlqqxF4XsofKSqvN7/ERbfM4qnAx7f9SHe9as0WFo+/XoCe+VrK0Goc89xuPJ5/Vi3VTLUSjT0nhmqRcl4g+NcGAQreTNaj6NDCmNmiZR80NgbtXnW2O8dpgqC9ZHPrBsR3dx9XX1xZpNXzl4Hu3zmqcqjuRTjjrIaALmeYWUJEz01DBeArrMyMhsul1BqFp8M2IXl4LckNJh4EyAJhJTW1xjeEJ75YjoDA9Xt09JASUDMaB9GFwgMy1iE+AdBwSTpjSaalAIzVZKoNu6yGvRfy1/vT7ONM3Mjcblyv/8tvKEgBAys0VgXev19fevm5EyW3atBWNQxhKBogn391dJmuXetf7+er3WdwKqZt/h2YIGKkpoo4PkZIpIswIZLFxfEDFDVXxPcyMy7/veO4h1+TLImE1euVFr+aLLSjPsjtyx86ZlqrpbYaIz6v4vrYvbF5FYy90gUckMvjNUqOz+xr43vrcRMPeviwK8clBMLIdlmsBl+d554/vbmPmfaV+xqyZ/zwAis9/BO+m0FZnIvfh6b+n+19d+L6dtfL+tBrVbSu9laQFox7JLMEZWfI33+lb1x1/c95dBQQUXzeK3woUrTYuUzFuuJGi891//dt+vP47mloqwbU8ldkkij3EiDZKjw94qlDsdYJ6CeVXILNlMGjn/GpX0zkINLVuR9tm5A0rbdHUV6WOC6sw15qa5UzkCIi1nNdGClMkn0TTG/8PUtg/kvFjP99Zr+dDBJ6puezsx9kNCVipljHl964xJHDaw20YHeQsjBWvaNpF+CSCU0Gi3eDRHoLnUaCUKNg/xfHGxbucy2l7/QBxsKDUh2lILm3MQxCfm+IhYj79tA0Sp/pFQkLkf67h5dnTZK9fGs7q4NWDPumxVD7x7QuBaKuPHaKUJL1HsRmaGN8OiLnQjaBolsw+/fwLRmb0HDKY5f8WEnRPsD51TZGoDzUI9T20Uzik5/+59ezjsyX+eNeUJoQtqznL9SJD/wHE1dwyqqucqYGxDncgM68rP9OnBbt3KaRHunZp5nFgmKrfLaQ3vyhsjsmYbUAIyoMKpNSZm3xT39qzBdioslTlC/zUlsKcpz3rlITjOISyStknwPmzPEWKTU3XxpqhwGaeMl7J+3uWpk+ew1VdJMXO46daVbSJVOs9kH++cbC0qNsxkIjw6ZOyXzYezd7m7UBWwpU3aE1NZjcgOeBoIW+4p0c0v+uta69fXWpfZ8kVfkFtNDkzAtEpcn84hws2Lt7iu199BJikzv/7tZVZCxb7+WmClOWAhY9dUiXx3OdJ+61fv+JjRrlWg1XWTlSMyAFQ4oLJDx0ICkrXoB6EI7Z00X1yLL3lpgdRIh+U08zTa7ZF5571TQqQsZbGZ2O0Oknptu1CO11/mp/3BSKTSVgK33rnvzfcmPZDLc3Fhwari67oWVnXSmfveEXzfFzIiXFZgwNIoOoxuSlRR9X0jc3/nesV3Wvp33unOm7zNIdbIpbuHWROx6EZDXHTCU5GJiABAd7o7rATEaLqBPyCQKQu9lxkdacIlfd1/ff/5fr1uSIiQZFeBfR3T1O51tuaTEnsMw2cgNMafsvmYSS8VDVRJ/8cifsZFJ8zqeGMw9FPRZYfbHhNmxqxSz7H2LX/9mDoe+D349TFoJFsIvm/12L3+HFYHXwWmUwBYAVEdM3ZNOlhjTrOJ5bnAxigPtVoGIINWdQ0Ylj6LTB7NbQ0MP0Z0kMwUkDfVdlZxUnL4cbcfFUE/FuDD1q22fcOEn7j1sKMDDSbUOwBDHx97uFfMRT3PlmdzzAMuVJHlCXMaWfqmO90wX/WD4Z5UHFCUScRmRkxAX0thnwvQMPIwV3PdzSOeLTeh8XjYDuUbDEg6lfDAce3EU5P88dh//JAn0D67Fki4NZFZTYvPBXeUfJa7/SzU1GyF0UlKpuMfGumwOUDm2M42xP2yugzVaayZApNd/WiEKmmsSsgqEoitAMsPK2uka+yITIWlqaS1UzH6Ghn9RFrIVX1MhpTNPt9KZOsstclphGdKJktFS6cMrm9mdhyMsqpVzEzvU6o+9iwqFRkuVSayWBWMuvtn9fyULPdTVscZqRpciCN6XRov2WNcxdiSuGvCcT936+bfKj0xuzaxrt/XX+Z/Lfpfl//6m2vBwZUw9wsCl3xtvtPA/09F9Iyo6VYBpuS57d4Xa8YDCBgoGUqEzua0UfedQWbmrhXAsu2rxH1jVHvMTFwestLBrNmRXF4b5exaAVkyN+brWobU/d4RO1rit7QLarIT0hRrWg+oGnQeufeSge4kEgKZkiXJ4FK5Li331VaV5sh0pvZbe+c73zeouNDJewe4YOa2tJyZ8hCUMvNvU8Z+R7x3BPTW/h2+ZVR+R1hYcpGXQ3+Zff+Xf5l22pduRYYot8y3GWWpEOmRCsLMrxUBI65F7YyElWYKqW30MVZKbSzlVcQitkvxctAV6JqD6/X19evPtyJ0iTTzOF39zbNNqFY2oKwfBfXuqy3IfEC7hGoZ4WP2x8zZRJGZ1VuTmoQpJJtBro/h7FPR7fuZqmY7zTAzoeuhZkiKDkes7ouaa68SMoFiGinrGGZs5HgKHhNRQfbDCj/OpD6G43vae9VFPvEWn1DzMz1akQeeqLjRdQBsJdqJATRIsJeoI6vM2HepD/BkD9E9FINeztUeL4Gff56/r4kanpXguOLxyhOLfDiS47k+lrwvuoMXnI86W+AszSyIhtWcRz431OTDs25oVmY+8cNfPd6e40KnIIGP1tZxa4Ur8Ayq7Vqtmtdls2vruZAoZUlNDe6EPzL83LENEDR5hXbxJ36wD+AitbVs+09gJEQwa6fpkcYE6cTzbNmEK/sa+w4eCAYp7WQaONj3YXN66RrdfHTsNvGSkXPDdXmsCoahXk6CoVC7hLEFLSlMVko5y0p0l39doPd1WunQVeF38pND6iqE3myHPzEATJR50tRwE1B6b5ysl5W3XIQmv9NcElNTRd83NuTfgUhd7Eiae7iH2bLBywfXNIgPJfxhPjB1YSTNsmZWW6X1naQv86v0sq2KQTpah2heoqtERlLRSlhoK5gi7oja8G7SRkrRuiSiOarQGxlKU0YqIpO7xA4/jIuhbSg/AC2I3DsLy+WQlhn1qpkWWSLOsTOTRq51maCnbsFsXX7JwpoXiag+5txm7uJ6gwL9yuBrR9hiLqMZ1vVanhm06Ab2hTRG3trMt+x7Zw0vvFhZc5ivBXNzWVU5CabN+/2v71v4139tC3vrvkMRXJERb5O/b7v9MijuFyzlry8hQ7mR2N/3vuN+tVW0RBAULZWZm7KVAvNbnsh95y1folbNB6MjLLEtkDIZ6VWrQFvLdHcv1lpfX6/lq1yRMd05RvEAd5xz9mkJfwY4QhM+Yy7YxSvsdM9DtbVxaOfWKgGF2tsQdMqhMH1/9wei5ScpwocQIke95bDYbToe59WW8ATy40PmA/vaJg6qd4w9OFb2JP76LA/M6CCqzdsYquNFockrZ0phJat/Qi2od2+T5lJ2CXJ+fFk9G3WrX7OHiR7fcK543NCP4qBug2YB5PEWFJYO7XfqS4BOf+VYmrPQQ/F/PFGMA/5kZE/cP+b0eG2oanE+fEU/r/7B0/7Ej6+oleXzyi6GPfxl1trmkKmze+cCq0GfJVKBSj9bockPfJTE59IJrbD8mc2oZ1tP66xvLYiO/8QHfmhA0uubksRHpGLu1ToCLArTnnWu62BXRZ5lneMymzTPSp1QsWHnPIchoNgUv6Tn4H4SUkO11Lc8IWfXDswOH4D6rBWGCjOv/+Ec5mNHOras17OV8AhTmiFpShveo0W1OfuiCZAOnyfgK6IJXRHdA7Cyrac63FXL3BCP2qpOuV7XV31C5XreOSRGP1nrq8LQZqyvZCWjJ9MwXr1KghvyG2is4Xnz7cbqkpWkjO21qckzgq1SgzlBhIM9hC+z6rsb7Toi1UoAAaViG5A7MlICNY1PYyDrjBfEOmINc8bq8SeByjFlG00v2y4oIxgC6FepaDoq6+i8yOVWJLyCQNTsHzMzIKXtkaxxH6Yt/QqzGktu1yJooGAQbb1x31gRlkhDD7tRS7yZwylzd3C93P1bCmzj+7/+yPL3H6NlBukLVJon15aHY113NghURkbethZDcvRkvOgmMwGpHXtZhwd55xguuxY2IwXGRhKe98bGwXIJ3A5zs8rXzbBqNbLzta6v2xSmhIFcs2vnOE4E/LEjJzJ7rHCVbo7Va2Gxym4+TqHeOJf+IOHmOtsizCt5QuPx0P0559xitOdKZ8COLeC0Ih67RHw4ovokdThXp7zPXs2S1zia+bhx46cvCxwPcCJH9Ie0esLH/T3B3vNNxCmVZldlVlu90HOMWHbpYIH6JrOy0lPOezwCG+38iCvPPxjeFofV7fMnCFqPh/1sp+lshHJ68HsLfARxktKorp8+W0XnCjqYzUIfQiIzmY0bCHUZrSbgrePVUB/Qx+ppmAmi2+xZk03L6BZ47MkAkFQCs2zcgjOYntn68/06G9N64hr288+ybc151n/2w5DOs/uAamx8QjTlS4zFlo5cwkBO84MEAdFgXqYaVW3GHtoym00V/x9GHnM+q8ehanetTpOZSv+97Tt4yr+qR6/iLSjTzRUpsymMa1rFPEBzTwpmipp/Un6qhCCO1P9sxkaUErtsk2DLQcyeq5x4sGK2bKKonViNBpJOTX9JN2nsBDxJZD6zLsRq/yjjIQDZKzjMg6oph0FYAeLWYpQwzIE0XrhrKNKkBFNiELGBxB1Vs1YiF30WMhLYsTK9FafmwZM0yLfBZMtMjtev9fp7XX9/2frL/fWytbCMnuWaki1O/vuuislNCncwk6kwS6Mp+M6VO3fs959EXoKSrdtsJtA8U9KOBFT9tsygZ2x1IR0xVFWSZnf9ONMApGxNJh81jbz0kzJRopcmad873plQ0Ome6HBblLvRRHHl2pn3UlVLy168SbNE3oYMw7Z1x5WO1HWZQbi84dK+QON6xff3Vw0XCu6yGwYh01NacJOvl+X1ukQ33G+//etf/9cfe+k///X6hXunbr2xb+ykFRwJs5fZ9y9/4X39vX5/xxXfcf+x/ZebA+ulf/3RHSEQnkjs+8q8EnZp3X+Jv5PrWvv6sx1kBCyZQTf1UJCbllqUffOFoORkEPuCdSu0u/nrur7e2CHQnO7aVM5IEqCbESbo+CR4x9YWIXM8duYgyYpHkJEQM8fAWw/s2jsBKWXd+F0h4uMAPlnt8fsDdvMY5KHvjosqmDDSMX2ZbTbbcbNNJLpZDZA3pK0x3kCCBpjqZNAMnMxuxTFl3zRjLE4Qro++OYz/5pF2G2BsgxzGxGenh8s20KoIlWJJywGsgjyvaXNdmzVwCKPXrS6l4PHAR7Bh3HEH5uOAAawJzkEN/qurryrS2JHVuArjQzvw8cJ4vMHE7zqOdWpu5rkeKQhIMiFg7328JJ4g7GywKUEDOLLDxfTZYly+ltPsFcEqhLFRIi8pSkP52vngzKKCq4k80rx+9XAZ8zh7PFwmLwwc6PkBhxOeTMO4UfAjkBSrM60YPqHnztbEVvbkImV1jhrl5HJmGn3BHGAqKSsZ6Sov6K8/1yvRgjY5QYnZVQfKZGSwGhB7CUgZ3GuACpUwTy+qr8I7d9VQstDeAoiMnYi7QqvbZTTLtdKsRX9OpZeyqw5lzV+5ITRh7+QoksFwMSMmtK76HRlllXJNlXKxAEMJVFRH7eySrsOqcyXJ8iGSTY4OWosQv3c6PZOZlJM1/E1uqMkAbu606r2mL+e63MzXcsutr/CqBHE0zB+TlbeJAdxVlP+RUS4/3i4VpN9rrwt04OIt7oCFaacigjtjSaQ5M/71/V8hD31/Y0f+z2/df+z9r39l/k785//3X3//j+VIvv+8/3+611Zaht7/9w54ut7cf9Z+33fgW/T3v/6snUnm63/73//LHYO/ynj6coJX0JYpU+vrOzNwfd1Jgl4peGQUjbEW1vV6LVPE/c6dEREMf297k1HVaKk0BxdFS+z1jZUMJ0G3JV3r21e83lUI/Uq3V4DvK9yqQd0c8tRiplHX643v906/7b4JUWZiumnRIfdw0GSMCH1//77t2+4/v//1dcd7yxEwRHwj36p8hd5CpC9b/vr1pd+vdb22/oPg629/vzgyEanUVrNS8r0RKyS++Of+Wh6/lu2tO80QEYRwf6/wuNNKWRP+/vsr3VXVFTRdyyMsagI8uNa6fv163w7qwssn9dnpzY7AU1BkKlqVIbNlMJjIXnO1BmJ2FwCPSmxpgZgky6B6eHIkc3eShpzp5nOMz/+XT6gG92q5K/5TklGqcQSJncxK6nampM57SjR3sLvCOeFbFl3UvslIeb/NewgRO3g4w5ANUF+uiGb1xqF0yFvRYkV6muQVj71EMwCS0i7AyievXCsCUJjbamFyE70lCcqm2rH4QEIktDcTCW9FAWXH4RIpO959nIPKGnEGwjyRB1ZoCK4xh0mgOq2hjIhIWQk1pQRWrq397HHHDQIeX/SB1NpTdxP8OOR56xDis1g8Hqy1IuuneUwfDYgKMloU3NychhSNap0INtQEq0IaXbnUTiz7QI7qj1kmHKg6WIkjCej0w3KMHkk32hSJiOPcWOI/mp9gMpxTCTYwSHM7hSlThMFbw6BwmxV6qWdIEZxn3OpzxbjEhRhQUMCqaGwC7mZmnpa0j3xyIwCAeQdahr5KFwnWmLwUTSEBygg0p9Z6lVCIJXBbN2k1LfV0JdMc0l6h5WYuk6IC5+47ou5+zIOMarN7kIa0LFraQOzysIRNwYOUPU/Z6AKhwGz2+UADGQ2Y0pQVGrRSK73wh1WXCZbPslYDtHMtN3d3DVLtvEYNs6ktkJ1STSuJclxTa2ZZpuMIw9LWem2/zJbSSbrZ8iCr/3eyDWTc9/3O9/vO9/3nOyP2n60I5L6rqTB/v97aFTvkW9hK5QZkTCtJ1siiGpbDFrHKOvnLrmWRCbkSUDqVd7jRPCJDed8QiZ2Ja1ft9SiEIEW6y325mWXu/UfxHSHA9Y5XcP2+PGQMKv7tBVCwuGMxlqAKEUnuDAX8uuEEjIx8WdjlAbdFjxQR5KIyXvb7Lyn2ncx//R3wMPoqX7ZtOeIyrHhf+NbKHX/eGbrX/r2x3zsEGDITsYmIpVWNsxAi7le+DbH/DcLrl5ut9bX+2puC9g1c1aSF9CUCuE1/tlY1s68vA/3GjmBahBQgjAwYzKzUWO9vyqDvZQo3EzYUdiOqEJPLiCyxMgpk7jiFPjyNrVnUddoJKstooapWUpVTlE61UfUwPgzouCqZwarVESDdZEgavEzdkV75GCdQcESchHAdsO4S7U9t7hlgSkaTe32Zyd1dNXCjTvvEL2UEfwBzQA+Wn5ix+2zm94cQbJZbh5D9cHEfTumJgtHhEUDSV8pqM7CkeDukcyScEopMYk3Z3egpYtYaFSOuRwQAYIp+28hXbr1Eh8ok1LWdAO+4RQDAet7ZQV2hlSc7AJZ+74kNyxeVYhCe0iRgZFNU7uhJYahURz7GVxUMIMph2Ig0qGNhDtP6wJiKnLuBBJS2JTK3uZKZorWjtEey5YSulfzrnWiWWTwZmu4FgIy6wW6B72fM9jv1nLtjUprBgEjrHEftkrPz609XgdXj0lRMVTKGz05K9eK27tKIvE15eK/DvKlvSwKjUE12TT2oGnY/PtUg0OjVHYBRYa+nkBFahqp0rI6jjILRU5WkWOwxBuYlFpipiHtfsV8fZNhsefb+yLIdMo9TatdlZgkq+nUVZFPWguclHVnJTQrUJnrQgXowQcq65UaV+ldR11ETssthtgRixiTz6lBkbwpVIplExv/D1t80SbbsSIKYKmDHIzLve9PVTbaMcEQowh3//2/hhhSZDTlcUNgj1dXV796M8GOAcgHA3PM1s17lzczwj3PsmOFDoVAwt23jHblrjnjOLO/civAIk0SLDTGyTJ4V9LdX4SgTFwm9y2Uwyrr3Ctd9LV7r8WG2fPnH43p8upkv+kq/tS5BWElbn9u9PgBV/aBfuczo/vj8+/PTCmj09elELIow//FDTlv++DQGDW62HO7XtVfJCXw/9+N65sEslaaUyV2ZGSEqPDccyn1nlY0nxNbOTIZ82D2Q4s5IuwiDLaWlVqgmDV4PYcFC9w3drq3kQ7GV5t+Z8YfVkEEHXYpljyAvXw9by0lAvoSHLyIiM+69dn6nK42OXFwfzocvhVsQGXxKzPx+iknFTtz3dyCfuO/nspoCRZXuByJd+89fWr8uwWPt4P2x1tp0mlsNFcQdXpnw3sItEEEotRVMeiRFu7awIxn5CF5CwJSg0p3ELc8V238il4gMX8u4o9r9i1FOIrcU8aC5yoQOrZ8jjzPu8CQupxWgjh2P7GtFdCBP2w5bHKc5f/A0d1ouWxm0pRLzZlcn2DNxNZ0KZmnQ5DXvnbQN6/asMRXw5jWOsUS9xjcWx7PB13PZE3pr4m8YSgSLHQqcxK5v1pKAidPDqrG8Y2BGgPi3XBAvYKqtVCZTNWsa7cVpzky6ujWn00cTfMihpBtVwList147Ow4vBOOoeJa/EafXAxvXUNe0WnivQXD2aJR6ljaecF4hwM1gVulVESsmOupYQ32b6OXttjjA3N0dg8Jn0S0VOXIZZ6WoMzeQ6BShb+DVDJJTbC/5pPb9laJl1IhTZMcR57H0hwLnUuex1LbVLCSABAJwcgSsYhrfj08+H8J2113YrjV+BTtVmE5xhtJiwj9lVh+dNWeJVrN7JFPzEqyvHW8sOQnEVub2/v6UeRclqsSuMzSNZy+chwmAK0C3immBOXrDujHrbmqf6KvKhGRB0DwRKBsBmxMnVauFX5WLdw+itdoFMihzoCR8TmzbVzkYWArKi1LSVGzfDjFr/C+7bjloTyZbY0wAOhjKmiYY28XMzNVPriKJjGSaqNhP20EwjFBWz3XU99UKEUrEZgQFBTMzU8iMO41sjKhimwkmp+mdyZQlXCot6Brki1by6hzDYWv7DcDbmdcYHRAp3dt++dcfpLmIvL/+MBAVP8Zti+a+sLeDorckbAR3mNnnv/xP/31dniZ4llSZ0BUxgF1ccol7o3vBSkpJhXQW68bMiFRk9rhDJvxOaneTaGv/EhU+xqquZdLTaItSmK2UMc1IPhSetp4yC0c3sCYg2qd+hD30/f3rr/sC414gkZYJOO0hT3NAWtd2bsa971ix0/K63bDW9zPuVcE5JGgbFRuIyA+3LQO5tzFxLX75DxNEuySuHZ4f0VYnwZ12GzPzyq8/fzj8IxafUPojCZdd3N9wZqSYrU1llHnm/loGXvCnBL+/5O4JuK/Hx+N64Jm7covGTyXJkJEocKWAZ5dSDUGnEqW6qH6Kx4r1Aers9RwlQvQcJ9HuAWKLPbVJw2BIk3LOZn5ZynaVxcAoLCVfnQhv+dK4VYvzE9hwbqp5sj2t5sKbDXKyjjZr51oPLF5XJx1KbfuyfDnguYXxK1Da8EKAop+0JciRm5VEL9IiMT2KSWfCmn5cnxTR2axl1UibFzjhKRtLL7/bEiOdTXFAjMn01zy2fjDtzCdWkTpu0Wt1yfHZhbRZmbsORtBPS63sXnuBRAVh7HCsFoOtGXC4OG3DOYb50P1eOfYgGV4ZniKz2pMyIituGrSmR2+AKtLsCTXK5Knlw+cJN3Df7vnAOL0ww4B6ba7ZODZ7uArczL6HeaEd7KjumaMZgu44t+JAwoY6xU6l1ZBFEfRma80eBWkpAl4+UJIhFgQiM226sDoymSBjhlGYAYDbzEPNFrJgKmEqDkRzmgbvKcg0Vtj13fhR4VE8SwIpI53mdj2eaNymiwl1kCKJkIBdUoIDcoFm1V7UXrIpA+yiST+TkxWIJpaLQpl+ST0GQIwgiTCPtodGKZMLUm4TspjTArT3bRGeNTcgw0yJcEgwR4tmJ3eXyIqRtSMRse900LvYRjRJayJCRZJ0GkKKUOyIu5DjnFMIUjKLeO7nV3zfeN6/nlTq3shI7VvaFvvXP/54PlIJBPc3GNuMST0fl11mjhBMIazbTbacnxG6rvWf//O//u/x+LXRlXUgGqToYkcmRFuREb5c2f1DmayZxKJQ+xSKvSPt1x174daPW6mMxpLo9Otxm4dVPdf4+fV0+CYs7RYeAlzrNgNyCY9vj7uZ3lkTI+gtbR4h7V+/8rIwOj48balP/qbT04RU3MiIe8fXdX/H2oHlZn6bf9h2oEQ3wgDdlWF60tMWrz++rpBMeV+PH/5Ly4lt5o/rSSQXBCOur/B9lfLmI3894EtmlveXrrzCRfoduHZ1Y2UFox75oDECjAQ8pXzsJEDzPOQYczzCrzz/okSSGVIEFMiISB+tmAl5+7CVSMuE9EXD7APSdhe0NKeZAt1yb030qXHGPau8ORy1vTVV1Qz0+JhkEVM1eGsqQURJFM1wkoOIkjQ3A9Xd0WK08WJOBqgOOCLECDdJWcrxdUGWYCaR6VRpwg7Dq5iBtFJ4VFBqobWXE+5BrUWrJCbkvLDRuQXYAx0zmNUL3blSqiuHxxECDBVHDBFKGBokqtSqIhVD0nr2eXvVYo+jK44nYSsjvgAVb6uzZcIKAKPkLcYyoVX53yLcmrlZa1rrCI6YmDCVsGLHNRi8ofzbJLqVvJtPuCJVwz+6KD1BwgF1W5MgMqEIxk7bvM0irBtElSfr7Gd9avG1CppSodnLmU5JfHpMDnDAxkh7Jws49XhDI8+NuB4Vt14mccCD6R06jacntZ+qzkQ/mG9rd/J6ZeXgrWCgfnzjxuuNpT8lhaWjFxKo/vASazoQQhbQWxcAIDNBRDIrHNKcpTrMWVtLfSxLkzP72FRyilcVak6fy8zsChYMC3o226OWAuU7a/+2ilUHbhPztR/unnd6de+OCRoEqiOeGhSNF3jVMxWAF43diqy85vbmJANS3h6hSqMziAQyTfSOUwApavp2tSF7SSG5y0rLqnS1WaMWDJ50Iz3JdCxgwT+6FRhy47rsMr/utWiXMgjYyp/2cHPyMjOzh9N94SLMfV2fj4/H5QY38sOc9MtJ8+UP4/Wxf7hRvnj9wMPT12VixLWuH9ff/nGvGmdbPjezBGhXzWZKlRvOCC/Tp+h2g6hxftUInBkZe0foiWajmjazzJLVfAu/SYOWsI0kL5PbMhpxL783wg0Ekus7c3nSKg+oapvZMqNww/avr+9f3/pB0hfNi/q8vHvRMlIK7O/MHbf25vcO3Pagqs/I77Rp6EoQ9y4rfj99RdiyjBpB57ov/0hz33DY8/JqyoYikrISRncQ134C64HwDwCZt4OMDRHXLvjLIEdSW/HMeFoUxVIUWKR3M5evx8ePr8S9U4kd9M7X+qxVYaNDd2ByVPBE381Wqk1FJlWapjQPQqyCLo0G9+UKSBYvuLLb4QdrAVRvmty3Mru6nJc2Uo7Z6vRYJ/DuxvfJacsBSGq6c72vsiW9OQdMH9ObW+Jxel0HrrZNvkzMWD00hsRmGM74lsFHzytJc/Pl7hWiGMbb9qpHaVoPLN0kIBv8VOM8yniZaDte7q1KqRp8dSz9CY0qYTjaEae6viQlsyEBG+Shlq6zpvaYDRCQYHNHzMxaecLJLAS0CpBoaJuWBV2diO/kyGQ3vPZuOO3ko6AxmKZqgZWJ1I7I4gdHeOsvWgU+08Lk3XVYeg1Wt1B5UW+Wgs5tIJWua0xr8VkidOJez7x8YG1Q68hgIsnGOcoxH0yk44gG5yoMrG1c2Xfm6Qo+ufls3Q4ZXruyc/Dzi3QaQZ+2LRAqBYxUAGDxibsy39ukbuYUocGhKDViUycrh3UBxe4f9A/Zeg5Ch4nWJ7fCDTODeeV0pThAc7rWNKuzWwfco9hgAkbwDWfz1pp1+EtVcSknraz2JmmwI4DJLE1SnI0GdMNAWm3xqtx2XWXSBoGKPmYVRyh7cEMvWwX4PAz6+o4z+wONHppZ4bTCKG/QYOKKxeXrqm5Voy9yLdLgRjN31AgM+nJbIGGwqsIUq4sE17oeayWddF+3AXel+6Xs7YDcbF0Vlq22sjCYUh4fbt2pq2qBTxbWa8QZ42Qk6TNjCT2NuAOyihHVARoijGQBm9GzYwCJjqITCKCnC7QrAa1qo7O19yqu3o6FAD70NGdRlhMuo7m74v5Y/P7zH/dOPvDtrN55wdzSEJYsvuhtuY25E8Dzllk+xWTG5Yivb5ROV3CbEIl0+tq7Khv2cyNCW7rylsH/EC2N++H/nZfS0yzCgs7Lw1yhx+O/3hkgl0vMezPv0LeJzO0rTaKFwYGw+5sbS7xWMjK2gFUlJk8zX4+PW/etMyAFgAxqGh/ovMeDGNFIIt9OSHM5x4geOPpE1//0qxNsRDJrSstE0/2sX2cHk6K2u0iUE51TWKhyJZZtfibT6g8rG2QYG2uJCgnaQ5PHJHWKV34hpw/rnxxYUXN0yn8D2w4mabBiNhbyWaEmzVTRMd3pZt40URBDOurcJtsy1rPIToj6FRqc781D9B9NLWT0njIKoroWrn9yaZNvEj2O8GTIx0fz5KzzZScBnrU+2fnLrraUl0AySzf2MIbm4ibX46zrW1fVmwl+fXk/GPVQm/4oQJnM6Z9WaWRHZIY1JP2W+aN5VUTLC1TQ1B74hISd/7/VIXrvDPAN9OgpNndwrrVjFR0YqblZhd7pbLXauAlkiyPMbkbnfTlFl7L97cnQCs45TgLdxl60o8YWOltEDbTqbOeFWv2+3WtLo2GWurJ5DYY0R7KmVTWggiojgHw/qhPXcXw82WITNuVDlRptVMPEiWdxkn0QpW7V8INAy9fkX1r3WMBKsljkTJcyBFmrbHS5mVfrB80JGqtQ1stgXnV2NgTTJxUD142jmatqzFZHeKSDhvHg6vRBo0pbdpEcTnvddySyGFwJFG3LBYKpUHaeaet2wN19LXNzv/p51Ko66Mvo6/oaZY9JFaxps0XlQVMRlCsJJGINCEAbGkLjJ26k9xgtguSyTo6cZACELAR4sdyrtzp1JZeiXPfePw2RlFKmOwhk2FokzAVnRlSr1+NzrZ2XBZU7H5mkBfm44AY8vBp9q7b4lz+f//gr7s1fn84H4SRMTTtRWFIb2KF82r1JkJ6J68eTW7pT4Xc+wWBFG9XYQSjd1nVda1ku3GYrwgMPf+SXb5ivjw8tJ3PRbdEgs7wMHspftpW88tu4aqQYYQpErsLsC+WvvYOkcsu4Ink9761r1fkzXDuvH193Pr6z0NVBdAYrG89WQF3XYdhnnQeW7Lh4zHMFwc3aeNlA8cg1sFibUXFSh5ts36JyS2/Aa1FeJZXBqhktfAX9QFZMXqQ1oHrXTqZcaUsDsk0LVvnGMTdVfdJ4acsKNtqmkJZHxr1QapLdYfLyRhQHzxxTXavhMsLNqtnabS3TqhW1LMQAo4jbYevBimsh+lKmBHmm3zZzzd5cK/T6/5amqsgBp+78DtIWCxovn/Nyfxiq3VSpKk1F7f8O/oHhqlm1XzTBlwaGGS0thyIznoLj67OK8h06v5xZXwZn+cvpIAtkbV2AwC6k3Uh6O4V21KwebR0qIHD6aEkgMTBJm2DrZ1vfOKVrle9Nm1XwF1n/LONrD7ARb53bQIOhrDyxUz9zDGgLKTslYQ1Orhl1jc9bvgW8A5dwVDM7rOqNpskmQdKiBxDXnKQUigupCqw7GhJMLOZCe8bQHwgAAQAASURBVCmx1DaK61H8odJdK0zsFb8hI2sIDFtASePBjWYyrz8goq47GUxFLEMiq3Mxu/VzjhJNVqDYBLXNNiYL2ympdWVJHjI7e5/bgWheoz7rKrtdLE+bLtCye135AIlCF5nls6umVjMHiqQ2h29yZEhI1MRmWootHM956if7JEyemVu37ofvwIZjgxGwUK3+zg1LhTJo13NBDyevh8HKhYFEFIVBYb7c/EEjuHitbjlMWs/FSIezuPw1sRMCPFeP5T6BKAB4xTlmbiHzx8MAYfncg9pYx5GrKXKgFDeYliHCYvt9GzWzOBRwCHKn+fZ1ywwZ69pGXT/puNf6yxBhHykzpcfjxzY3PtbX9sdmpkn8d4/n11MZ+Q//MAdDy+jOdAKI2PRv6mZi5y23AGWBpe177/za+dnBEav0kplhNMWP+Pzk57X07Ra3VoYidXv843HrYb5wp7nJjKVc5hYP6QG//3Iy4yP/3S76ZZeWMwXt5yVDpPIKhJgqXR3lU1cQNz9zm9gDFGnXjuvH19e91jMTkWZ2eHwQityUTf9seKEsS4XiYwPUWXDHkzQ3P2oeg6RZEWBG9e8MZJkwlNat9R0W5zFtFdmqjMkrHysnCkiJaFkjnjdlZqj9eyeHHW03VGmyagNCsrsjTDVPFMrxL1UnNOvu6DQRiYRKkHQ88Au6r+HqbJFeO75zgpPR4ZjoeVKSrHZFshRxzydXuICxwmMhUGBD4+1kI/GqdIuTkp1vP79mhZjTGqL1BgWg6T/F59bLz0o6Y2vKbXRvZLZg1Kug2MtRAGUeMc1EcqQUG86aME8actws4xQhGupzA1PVjiKBajZLJjezqsJ7M7YylArEICW9VV8tq+kVa7AcJYk3zlmbWLwWjdY7cZpeakcSb/NGemsdp83Zmr3ik85m/3S85WTznX6qy52CgJxevF7RXozjcnW2lH/30QNRCCmiMtZOFE8yjUl9eyOkSiexxgdaN31KxRJTJ3lGasaO9k9zsK5sTXjVT5UJluOmkquV9TEbsfdOL1bvll6PYbqlmZfocOf4Fr3AzS9pnKV2p1Rj17rIC9ZENqsJjTDzVTxHpSvSxOzh6CwLByAr0DSay6jKlFsZqAcfV65omoNQ61lpRu0SCqqcuXMIkl19K71nOO0il/lijTAyrotOWCrPnJmEzCv+qKER0/jTxgPua9Gvizh5Sqbi/i6hLgSXm/vj42M9hLwej28nufRwiRk+0zs6dO9UzW2LsCVJuwk1iqgycfVy9QGQtmJHVLy6RbgQu8Q6qv/UYtt2CX5htzqTIp6Wn/6wS/aEdpqU2rmgJ6/0C1ysmCDRisp/8t4gbMGuP+7H814daHEbElub9q2Vis/n/QvXT48UYI6vj1/xjD9vfJgZLgIXzfJS0vlA2vrx9x/6dM/tji+s7+f1daXy+x8fAvzj8qQtp6XM0pwP3T/CFr6v7/1cAZl4m0JMp3yDkLttQFtOKQPU/rjX42bsSLv//OkB971qxnamxHVd7pdH2asI1g7FWC6wY77shK0DPHuJArRRJEiq0O3lZhY9PY06J59jyyFBERKK81RFndnCZ48fY05pptOXyercuB3xGJWTlY2vmuS9LYBlYSuQp6woNI2Yleki81gqHOTnlYC+Z47tQ06pt61Iffn7K/syxt3UGuRe5y6MSmHbTnozYo2Wpxzp5ZhlNazzOGPRp4ujV6oT8FmFzh3HWJ+bwjhpgJUBD5TYeVZn2pPkVWT95kzUmhbSCzR/+zYB5S6LqJbVWJ417HlykypoSNMcLEEl4YIJp46PqqQwFMnU3ll6asG0G7voI0CdW3XfTX0I+doPaptVW+gFUszPc+KBllGtx28mOAaWbznG9zx5lrfvvDcce3dZAQmdchSJdMK2KsaotzTnX8Ts8SZnucZL1SeOBa2PqZF3aBk2k6yStO4d6jvsEnzxoDIhhWVEhgmiQjQFqlxcXnUxOnHeSeVG0oqiGBmtOt8zuquPWIoEE5EEoSDScreaDWDwCunqd/XB09xmFSuKxVEbosleCYpwlfBcrwUOJGyqAqRZWAf4hTfUhAQXnBDNmmwvXthZ65eZKauK93Lv4LU2tCTLpKiQ7pXIyPThLUufRrbVygLpBxAhaLIip9J887of/vPj8fePz5/Xx4df1/V4/Pz5eFy8bD38Wk7nTq7c0sOgwE7tGmice3fnv9vytRDfpOU27WfepoxnOHB7BuDX+uHu1x9/e/58SLg+zB6eYX/+13/7h9tzuyWRVsteLRxEwEjt7x4DUa7WoMYEOysz2lrLlLHv72dQDkLmhLs9nGsVxAdz4mYsfd1QPtcN28qwDbMFKOHMri9ISNoP+1zkYg0LfGxRNxb+lH19h60PPh4r/bJLrkwDXDKFNnxn3iH73lu8IzNrSNH9LWARlxt5sQi5eWVu2ieDH4+//dBFhi/Ew/35JcG4n98gXLg+8vO6vOovtpwL+xFuVFyoWZMZFtnLtWB+iaUZuCWLm5kE78ilEmpgJva+PUArKluEiuEXe0fC77IzRpMlmmLpsBoa1WVegjUpuNNXST3nsw4/za5rrV22rKiYY3Q7qAYqaJStYilMHfcNxMFY6LZ2r2Le1FxajSi6X7QPtNptajx/ZWc2DqX+wXI8YoXypQ3pMljaTErj+7W8Zzv1T+13Mf53Tu589THw4+Nfn6ZklpHNpFnVrza3WNiLTeqj6b7QBAF1/YHmSOvEpRoPWfkwXnFKHaECuMd7nBhHWC8hnvGdcwBVGgOFZrwez+tOVONh0USO0XRPQGFlkkOZynSv7ZCDmJqBdEo1ORN42WSAgnupI3vR+qRm3ZzoqHhCNSAtmtgmoDsvS56Eq7Z0dtpIRl3FW8Uz524kkNmWtPPZ1iQZyHpcbN9txyvolWb/04AxJUXfeSHrmtTRWZ2IrgGnBNpM5CTPs6ttNduvmKpgW0YU87fuvPTTAoRdVXk0X9Vf39N25pASUBoyYwk0XwZzq8aPtQtPdRK+jC0EKSo2VYLByMhEhp7Pj674ZG2bzAQjYWaU9spbuAtbosPSEH10ywIbzFbDZ/1QYUkzy65zp/Xo4/Sa4BgqahJbt5YFG8ORRS0qEa4qFBShJ7yYgRZRsPH12CvS/UyfKo+9Ppc5zaz6wlg1UCh1G4JbK0G7Gl4Af7jTlgGWXhux4kr08pvDae5X2OPL+VjrD79+rMdj2XXBHo/rWnKDiz3dCet50x41zM8eihRNGdlsPZbOKkOwuPkrvmJ/3Lcy7x2/cO/93CuQ9/PW3tsznhmbP/hL1//zv/zf/vX/eP0VWBlcfbZpYhpVj40J/OLjupa+bRWRkVYTj+IJqvhhkQJh13bPR+Zn7uXrdluWpMHXWpf5jgz72lpxf/y6cpcKK0J2x+0W4iBj+v7hfzw+1gOuDWfYpYRuBP6N/+HXFz4ey9a15G6Ax1Yqbd8rv++N9cu/b9l3LuJCmpYQ9/7+dTO2PZDrAkhnupn8/oQeH0z+jX9/0Jjf+5J9LIvn+lg7FLcRl/YCfi43Bqkb7p/AR/FOn3p4Zn5f3/i74RM1yW6BD9evkMAtLIQh9rInkItuvhYuYrFaSEthP0V7PNwM99ed9rDqOJcnPdJsuW1JrswFN7Ru8ysa7/BvKefwQJRdH/2ED3GFVW0QsuLCDNGTtugJi9brKWX/N78FullK3bg4415CBJQ0L7GCUWkyNt5ZLqVsG5pMkTYH3ZjV+kYTTKbSP5FTNtlyuYmXDgVANJmkldhR1qwD+hNm5NjkSuCOq6qft7r3nY9O5AmuK5uqmcEr6OkGVqZCgFb6DJiMvFxLYRFcbc/HXgPdQdQupMmIaJfQFn4KvgCKlFfp2dvNClRPYS58oNrzpsQISskWfRDatVtO+jr+q6Fd9Gq6uzdwYGaUuU1psvNJGryEAteq52hej6HyskJ32eCca11XrOXFBO1yIRIb7FSYJJu9VGXb5lNF5/leAUuTYHU6VsqBEiCs4hGBFRrNcjYEM7eqwkQxfN7aJR0MJVnDAVUNadYJ+4RvigYcVCwgKRsilyjW5U+/ezlwI0DL7iHpKA2JCFV0MmGGakppRquX1P0pM51EeTQ0xgEV3MiOJ0BzN5mnMQokVEUkXvLkaJihyYlkBWVhsFVU5QikahwFukdAWVAAsrhagtjdELBFpBhC6/5CFDIqyK77LWhGBMKaN5GkovjvjNDVymqetewZm5HVL74zlBFpEVXQjJrVsJa6X1RbMioVFXYmAb93n22X9swQNLekr9oLPdUbMlpWDRnpVT/ZrrxEo4vmcUc8C/AG7gzeN57M7/2MNORaBntQEp0EfIRP4Q+ZPXU9KLOv7avWVZlPu2Pf3x8ZcTP8j3+nk5trfS/7Xg8Fl5S5tXEBpK2A0koWpHqMxAXRkkx3o3axxjO1U8weYvEMQPAlz1qdWCY6FuTLeX08JLNcD5DksxZb4OOxdrptR8THLwsvxNyUP+36wAoq9f0h2coAQmF/+n/8+uZaZpTZtalc6ylk7H3Tn7EFcYU+13anba6NMHx94f4LhC3/4wfNnWZfsE3/3s61mLnsx4ffmfp1gX/H93r8x/+Gp/4W/xUeeOLidvsw29AG3ReUMEtmmkcq9hWw9Ihw/+C6Q5fTblgibwjppqBl+HV9pCXJ+9tzCvCdl9kjv399PR6mO3zFpaj6KDNzLxZI0/lSRHOARTpb+q6OaJniKVb442El8daxfaNo8c61qfZZMbPrOEMIzekzKs8GMrJmqZp3wt4yEN12Yyo2v7dQ1jpjVcuZiJAd/1X/67yC7anYFUGckV399665HW/VGOUg5G+oOsZFo9mhYyLqxTYcy/ouSLlLPMHMXCXza0mZO92TSJhezh39vpnbmG3xRrBOKNpF40V8aZ5UGRXzdNQoqXKEi9YwVapdriU8Dqx9XOjLZ9dydSnh/E4bto+EGsbTEYFa76C90mQdGJB3EJLx3gObZxYZM1HjAXYWJJhFCoKZnKwa/VCaxPo+hEoFq6bBpwJGdSbNABMl3w8Nttu5v+Fsjg4cir52tgTefnRoEbMuHX3ocIT7tkoF2UKWKZUas2JDCFORktToCQ9mrIZ2VFxUNpu3NtfZ00KEscDaBIRNzyRDoGAWIrpl/DS+SjW8JoFQZ8ZqMnBGEQIVWSLaEn2bRXo1xnRAISPoBYBhmgdRNeLCtKRYUs3pRXWr9TnrCJnwPnbFcSrFAOySZagAA6pQ3+VZ+X+HOKc6ZIQlMnNVHKWtVXC+GXa9TqCFWnW36+49I6Y4JubLk1N5F3CK9kSzYdC0ERvlbGNJX9AzwanWVvm28GfAlpGhmxlXwFN++VqZyLBLTlgo/A5s5nOHYcV2d64PAl3OdlMCaaAvg4Vdnwa/BH+s8vfXI+9738+v/wDd29I+Ck/aMHsQsB3P1nx++iIgupCZDpD3dulWyBkZt6pXKnbPtcv47iR9+WX7JrT3Mz7+XKTEgIHOS7dXA1FUS1M60kNUxk3A/Mqu9GU+VyiJ3MsSD3t8PKkrnDc9Hh+4gxlbf135/cTDDNBNE7Nmp0Tu+9bHjk2B62k/xAehoGfej/z19eP7H1i+sD5/yj/czZ8ymf+6P8wI3WkfP42xFwzX3yPx81++g9fHr9gr45l/MxgvLiPvJz4+7NYVbiTz+giC68N0bSKf14fR4raHGzKZuFms28gE4yJq0gf289r2tax6L5YUAvDzH4uW+7kfGVeVq9AkCdC6XFaWkjTI0tJgFl4e0akHH2GelLTC18fPT358N67LUhfLqpmRlma+trNYYsW/NC7vkLvZSDUlQVatdUaTwTytwJ5KCM1NTJoI77+RsOWoY910TBjMi/jahbkBj8elFN9j/JjGAZ8UPtM03cbA4c40extIoOYTNAhaVqbh4xcb9RxsItaQjrqb0BKiJ1GgXyU/PZZttA3b4PLMTufRCkYjzp18o2uzxwEDEwdpypNdeUQN4iS6F+NEKUXJmzLDOBjMS+yUI4pTpU6cx3W3C2ubrGYUdI48jqY3WkaCPStzyF1VYE6itdKYEZE7Kd73fSd0Z0LeaoBShiEj2qq8KgXtHNAPvkKsohTU32uPKl5etCEQAi3FiNfTR8c6nG1Q1IApiKtLv2ev8Nx/hYLIN2ToxWbACx6mmZkvt6xGSwyw3lQCvFa2nAxKwUpJRGrEXKjh0gsDt5uVLC5mPWRyOmHg6s6tA48TWaEuRG/Fl97XGZBioYem93HqWFuZpmRLGVmviBKwonExg7AopwgMZE8QRoPUGPTsUanDN53qUGH6UFrC5BAtmJGVuAvV/tHChkrUgBq0zA1JbIjoydANs3jpsBhpbjRaull1iiED0XEE+yTCvEpxhYmhfzikEJqpnuSiw/Vw/2HrJ+zz4npI7rkuLJMnU5Gsmo3zEblI2QVIdhGSkdFS91p00R+AtM0fFyC6Xw9zgVlxm9vjx1qXYsFsb8KxPq4bGUGPrOCCwZEgDxmlDGN18ZmA6tmsZ5AtyUnaKujm+fwWr3Wtb1MGLYXdybgi18rqEbq5blkuSBCvZwqPx9MM3tCciVq062L4Y9PtYfv62HdmPLe+YkcNAxPvj+Tn0x5cuDOR2zJjmxKxTekPIBGWefP++l6/vheJ69MvwyWam5aW/bKLhkwsf1z4yOf2D/Kxf963mS2L7z9DwUc+n7dnkMVauz61/a7ZPn/GA/vmZflMbAEZz+WkGRKhDIQluM3uZCbimxvuIFz3/fzKv5FLpdriS74/l41VLJSIVo7QzBfh8IQZfbnBC5FpXMsWVsh08RF3uZFH+uPHHz/08VxFUCB6cJ9WGTvB1/bduKZ57Rm6nKHqQMi0gtzO8NuJAAqAKxMahWpXfnky60PmQNNmwGqcGWnYsZA6CRr63WzB3cK3oMR42DaS8/Y61FBEkT5a6wDtZQaqlQgrJnZd6fgmKrYZYDKIbjPJqVmexfQneiaMRZOnKYDeIKtZCol6qZqGdNwf2hhM+ZYTclSXcgED1SGjZScTfQMHKsBvGIHFRTLrIbMnTTvfqZkigPOL/VtjLfW9p4T7Im3X4o4Ne4cb5k98JaSVzZ5vItTy/fOAZpE1MUm5wOMWa78UNlMRBlDtR/U0Kr+axTwxwuueOtqBMGyl9yDjRFnjlo6LnesripapFUJVe23SuSmDu9n0RHUqfTZisQAwQVQBON0Fc5adLVHZ0cdJ3Q8focgeVQ0YlGRQlgq7CmXy1lvBOSHAHC9KNaKXhA2tbcx1pcAggGQSJU6Nzi9nsdKnFvh62DzQlWq+WJpK/ZbGHPUMtu8H6c1CeXtOpm72AKQEM7I3iXr0FHWeEVr3c7gQ5xxVl2dhVw2UNdZ1ijP9uFAui7Tqu5t4x9yW22XLruUPrstsrWprIdfi8vRG0AFawny5EY6aLGJuzmJSW6mbmTnMVytSPBwDhlTshuoOgEuZmfu597ebyR6XW6hK6n3Gm71IpGhIpEyK2DUT7OyvHvLWgJW0hbzvbbTl65tSF95MWbwhM8IbafBYy52AiZeF67GeXkh/cfE8XV1nGVK24v6+v58bt2487CKZjMxsZvgzI3coqsVC3cdYhYrQxt733gmSj8fyR1pPAoeXTlMqc7nDHpm0D7cP2v7yy67MHZG5V+6/vj91t10zX3ehI1z4eK4VX7jcs0oXpgQv+MosRQYnqU27PSNdqaiuKUvs+2kPykqExlzStSpshJTJnp06VobTrT6WufMWED0AXDQ5SIcZSmVrrSU3kwXS6mQnqQuhYiyPxT+fWWya3hjAKVKeozDmvk9dW+sTePavegrNc25f15+GMeFtOZXqca/N9tCkkG0N3qw4lIdMNgZWkwj3Nm1xEI4DrhfXs27UMsZCFEpqPfFmDKZIOzZl/nOChPljL09zdOe5VRWWL/J1Wd3WOtBJRydRHR8LAFgDBXfud9b9LCCGGDpLAhWkYShtARAiUOLt9Tu6JRDnuf2TfyAJ2gQE52kRg8BazVKdRg55Ghwkl6KaM7iKa9q+pxLy7F6Izk9rz1qngGzdxKJ3ctKusz34uuP5XXNxJwiY4OQVhJQL6pkZOp81lzXevD2tLE5E1NvhteDtgdAuSXx7GBOo9MOc6ObEOO/7/e19bwHYb491vDhe+/AVUfVFzV2O4+7rIHE0OU+00sFETf/jKWr3bJeaRXq+/vfQsHL8qXD1Zwkoq6fpJO8705ii9vInqjvLNI+sIjImWh6mTnsmzkyPCrXbzcy/1fauMlvf4isq01lbAaV0RQwv9Swix8aBLYg1NNbhQcJ8Ni5qx8u8+5Zo5MscdmeGkhGdKjRlIc++yiySRQ8msdKaVO5duvPmTtgkJdZUg46INVaTABQ9yKZGnP5mbMvoSP1lx2KJpVdPM4e8yx0VAppUffaKMLqhevnTQWPgB7hd2tsyiX2b5fO+7/u5M7G3P7hI3qnw/YzcCKS6d500MdeqqQWZEdjcluZYRJEYzMVqXXOQZlwCuounRnAtfiL8Wp/wpLs5mJk7IbR+klVDHMyS/HiaL6Nfn3dYa7RmPTILCzUiolQqAs3zEMFYoCG2swWOq1/em+XSofDxv3hZ0A6HxghoSqQvn4DfzsCAaq/Q+4TMPPIYfca6vVQ5Gmd1DqbvuI9D0WfPFcz3nP+O/TjfdRK3nMziXHT714MDvm73t4+dlOWsyVsuOymYDqMVr4/67ddJnd//5bdXtSeqcU54mYD2603w4rFL7Digb/LlJPQ6/f98Ef/8D3i7hMqA6zR21b2O1HEgNZx1jqDw5o1ZfWSVWWdkVvdvpXon66DBXDMKofxXS0ESKBiXzWvpLUXrlrDfvQfbC9W9O3zkLtkjhMy9Bq3XEJwBX3sTnvgEGEFyvRg9Sb6BHm9mNs/z7xbUTt84u0gsE1jZwOu09B9ZVr8qsCQqvZ0kTlI3n7FgWTtd9Oir5svF2sDjqGzTG7eaWXjl8tpw5yDj/azeNnafwli9r5tQeDanBlTo9uCGU9ApJaxlPTtrt1KhL2jNJISdvVjUt9qgVtMAzAlAiDVaMacK39u6Ng4SDqhk86TqbcvR21Gd6/5D3VjmWf2JuFPJiF04XzK6CnAsFFtsWgR54h6SiNpRZjLWrLiYdOSkJbTep67Begylzts+zq71eHxcj2s9rusy82VrXWs5i37uy+3ig/jxpRQCkRaxA5naDUzCkMrYO2czEqqcB0nF7hgcUCLTFtntznTC5B8/vhwkMir3rHx+gBXW33yBENxr9MRRtmUuy2pyUdFH6H4DSdcGgOU36AWZwBa06fjO7ZC+hTTYwr0tuEOAP78fpK38vj4t4PC/nh87kH9+fDqeEdCdFPPWZW6ylRlbdcLuUO6tldKykj1Tpkfev/a69W3xfF6k/OPjxx8f1zLQzQxXwi/QM2AQtZcp7cPMrjseH/aZZF5/+I8bytuS8Vyw23N7xPfTa/xGPv72kP1YZn/EI2pUQdYhscikIZhMRC7ubbgyUhlLYvxFbty3e8iAyuBFN1/X5WX/KxatM5sDq1ZwmJlVbGOBngkmJwY7PiJNGVmdKBOAnqd8ULspTZb/6hkLw78aqUkcUzCWyBoWNTPJbKJ0tjTTCTr7e7sRr15TWUe78Zf76RoeIGQDxsfmNSWW6IiOr9T3RSU6zqjOBY99P6IjwtCaugxbBtOPPxBAh2gpBwcaOEZkQtXxP+rar4bTMIb+LW1/u7bJFd58GcdpE+AqSk2xaN4ovCeRa+H6liVpD9ZiQe5erR+lPu8DsApWU8/ENFC2XIR7O3vOfikGbvnk6l+xDjf5WlhJVpNZMtHQEwRHE71SNHPzFnKH6N2FhFGSOumEOmtCF7iK3CKK3jFajmt8rUKt20RdaBT4hGOdwhVxma0Bd/JDVFzByTYADoGKjVV6e12DRD8a2r3/dKqKzhoC8YqyaDX1AKL39MIIn1Xr2C1f/rYC7ZKZ7TTqYAWKaBZdpVQJdWdBygDkHV6eBjLBXRHVDCbhCLsMOtB6gZb0zphbyx6UIe/u9t2sZWulsLpCD3T3wiGnR4PBGalsqm7UB2PIf+fcNFpESZFKVs5jkCWCe4N13LsBgNUHGNZsTeNEdU66rc+oFoGV43StAeakibbMRdWsQbMCuAefNoB0K9nDteAeWd7lCUQB7PVg20nF953fN+L+uqGMm0YlUFpbG9/PnQCCEfe3IcM8nr5+lfy3Z8S9CPPHuhYzzZfu9fEj/9P/8n/W9iuNXq0HAEBtS6xlNWbBtT6/CNIfJqWYcRcN18kule3YUQP+CEujw3wbjdofy1nthdcVhjBUZ5gv84TDQQpB39vpbOT4uc3yl8ettU33nxL86zti38BHPDvNce21OXZUgGUaF6uCpkhEZJxYcT32x/rx+eOPH8schcyiFbaBdjOUAP90luMJ0Jn8gx+WYMJyO8IZeWN/PaNHfcg+rqRl4PH5+A62kmELKoMGPJJUyVYmFPd61sxubVnYyAhoLKlfj88fkduuOkkZ3au/SSJyE7r3jh1Fd6nCp9KhbZlBbTwVNZkrc++vP0P53ME7YqdgzDRhU7k3Ijeeumcqw9qAQs/HU3lToRyFXCCljR0hpRdls+xt22xkpmWgi6DKUo6t1oddZjp3m9LsIS5SyWQFDm0zA4rApNpKjh6RBE3figQeG9Nwp1W6aA2ht2fVmIHq8X05NLO11oKvj8Vsu5yIju1LWoZDkiFYHzmamGVX3pLnTJmzUrFKFlSqnCd3e8UJ/D0Jfs/3V1nAbrpv3bB5GxrFresr72JG2Kj1mbGn2Ban+EQox4mgiesqmZaJlcoD2RBSiyA3Uw47sMLceUEjxWObGYcwW+nVYW9rlfhanjDI+qZfn1IHrX1wg6V1mKuv1KGebXXCEM083nqPVJmrMjt9rps9MsWvtX+HHdQoXV1alzYxipPqgIZGQ4uw28EKWni6QAGMgAqZ7ZTZIdoQc4lMLzDjKAPOZHWd1Pmsqpo2Pknx6UZCB8uGKbFrUusCFSBTqCVgD7/6fGwNgGa3DPVEaLFpxbUJBChmU79an+eZdSGqNnhGn4m5ZkCqwKBlKgAIhfppoLwJhqXcpTjTpOr60UTwNQGvSZvl1TtoApzLIWPui8rM6GR+cJODEw7yTw5ttcMd2OWXLV+2li8H3ERjWL/D3EaszynFHc/N2F8bivgqal0mkMqnns/7Dkm47f5+7O8N2zf1XN1KnDp3U8VvInOR6+Onf49tyZq/RgtEjm2JrfBlEuGrcHlEJLJKm2xCXkQGc5O8HwSdfplldeu7WZWoG4jJDBiSpNJJOUXpQi74RZgjL7pfK0tMOMwAKGbCxwNeI5T8Y0fApNzF3m/M3FCq03F77Lx3YksAbfmP9ePn3//+h2jgpplVigdB2lp3dLvHh5V8HpPA+ubPfDCk+4PKDIiWT916JiwBRvrHemLlX/rQz5B6SmBDtq1gZ23dazzq9X1hkbSCpXP7rr65IsV/fn59/th7c8Z6o3tUwiIMUkA1gWq/HLCktNy2d0A3b8YOw44dur9/Ifl9J3bEnQWeUHjyvu9QSLz1BLwaBAJE5N43smTLyjpBQgLByADLBvT8rBIPekuXOd4Gp/RX4ZCk9DKA2TnLONP2sC8b2UkOTup9+n8whkHHpw2S2p6kGywMNirxgASb1x2OTad+TuCUcRuyBUck9CRQzRRs51gJI8fA1WPyycaNeWDoQdigwRje3PY/1RyJpfHHnVeRDQFImGXEgISDQirRkkXFtRNBO4Zw0EJMoNfXWyHS+ApJCggtb1SOSKVLYi1k3xlVO6GinnRKaMa5kuIgqqKvpnKws/bjErOS2ylmvPWcoyUf1P22lRQPflFCpwFmlF1IZB7nB/Uk+rr1bKkqvPgUWSzl+mWlowkMoFJ22kq1sX2LxmvnO1OwC43l/0wUmCaTLHungW5ZgB9hKcFsY6Z6FGO9k+HOhCuysGZETrxoXG41w16sGXUloYuZDq6MHEd68vEaPV2OOkxpYQp4Vu5RPuoVMoAtU6pDKXsdaxV3IjGzwBqOQo1fkayahN3MC79xKoWiQ6iensGAgDGY11oEBUOat46Nonj2JJLmH26Oqs9DSppgEQ6jI5GiOVxEa0eXtnfSmnqOMTUHqSdKqt/X5cYluNEd9nD7vJcuwzClrTZmsUIid0CxAxm5t5RQdMHMHnja1947bjc880/tUMSCIqE7JP/J3MKdwWfe+edX3LnBf/38f/9r2p3ecGZUNmqS4g6aIe79rJa0gfrj0cxPwCm1zmdlMO4MOeie8bDv6+Oy67mWmbl5jZ5SSDUyVopCrh2ygPbCcq3lxOPT9NP8IWAtXf7zZ96ptLAFLIJhcK5HWBoipbx3bAiXSjY8CD3XnbZzx5Zkfv385mP5x8fH8ijVndpySaNoSl5Z3Yji5ciNXC4PKeXkQsYzkDLLHnJxP1fV+XJfy90efK4f/nhaVAxJgJ7cBQGrcbS4uSMelxG5+DDddDByg0yyyIVcl3sLK6n6vqyQETMzrwnJRmfPCJ2TUqF8H+dSdeqoOzO0o1P8dm8pRt47UzLQgiKVJcvQkm6YuTZV8K5032uva2C5k5lV5pIGE+gm6ySrjd1xZKzc+EXAPEBcfw4FB7zjdZOpNHrQipDjRaFx0AeKLGCDQlV7KhNBl5xLWv+VK1sJRMigvcORgwobQViCNE+2jn09wPF7JitoFcaQoKgaJ5ZLghezs2ujFayqu0pwvOBArx31qwFQrQpKDLNw9chqIxW/cCISvOfjs54NyU/zVf29mjfGo0sD5dZqTOjSDL/X9I9G7eoeKpXtrPk9939DFXrqbedTtLJoXjT/mohoMpt5zK/Ufnh+0zr1IuQ1GV4dkOVEZb2TOdWTCVQOnlBWt9ACAJMVv/n59lfnXuf9R6pqlr/wn+N6OTB0IVeviLP67JtUBtKqYWdERxqT6Q3bgaOKb1GhAdQ9VfNUzsNGZvY00GyMt/Lcag6OSHnxm/uB1+f1qVeB2Iy4imIOMKvM39lBS63hLT7UqX7NQgpAjyxUDi3fmKjfyJmEip4x2Ch2R8kOuGEBr9a9WvhmL0rTZNl59YEFoBMGRTZ3hVBrvZ0nM9Ql9ZcXNagjb87h5nIbI0KTzHBdpkWR1XU2IQwg0DkVbgDR69Ot/nBDgoCD12NHaRLB3CwhmRt60m7k3nHn9595I7/8H//2b/99XaoobhoOK8CHBJopEbVZ8tA5bST6qwDVdheEROb2lPm6/bGvRywPP5zIsoc1Z8SLxQolGeY7ariuzNxt2SNoBjRbmMq9n7cyZQYk4OtBY3KD3ynm3rmN8NxtmpOI4M7MTJCXr8/Ecnx+fFxLaSbBS3kCtGr+tuVlMLa7TAIfe2ErdKVjhXJjddtMCHlvr27SSAmXPei+7LotzHc+ll011tE9SvIHdKsNHZH3FVEkaiOtcAHBi9qUdPfRFe80TVUnArv1thQmD2598pqXyeWYF0m5NzPQRSyKTLSGEM7OLPNlNIMx38rEtU0bmbQShauGpdGgQPWodtms9FnAJuO3qxkfiSRMmYy2iXo78PWFU4grQ/wyl4P29T+3mX1RpdtdAGr+0Pj1V0LwlkK3RQ6mtCPGeTW+R3QgYk1FeRn8d9RwLnDe0aUcyzJHE1q0IZ0UbSz27x+EcYrrtVizA3pZUFpgr+eN87z1tgBDZuXba46tPyuq1/d2ygMC9j7IicIA6nPRfeHFj6lkvjihr0p85Y0E2vFYkYFyLB4AmCRHmTFnVTTJk1++7vfcPo4/zApsyv/8diNjG9/vrbdLfdjbPquNk41WAGxtq1MK4jkab4WL88ResMgb0NMJV3ezolO3Tm8L9il4pfbYAWHao73uPl/E/cpw1C/AzPCr859NrEK179cg2nGXbytJA0RzM67mSfUyafwzhWxygX7bmpyA6mVsekfNSlV6yyatjVURzVjCPnP0qAkQgGKqnjNRTphzrBOSwlLT7zxPuBLaJlpLwUgW0TWFqnyLVgodbZ94TErvB5U+Vk56nzWkJN+wS8DgmZbTeelgQzzGt2VQiuaXwVbSuKIUt3wZL7qv5WDArLr7q+gVZrb44z/9x3/TdXjY5wACXSwASPNlKWjZLi3PE6KkW1lwnSfGsJvFH4EcQXejGbsu4M7kTbUXoEmRbhcIuCuNXJfLHhdK78sSUOzYz/u5kTvXktIeH4+PJAKb2kzi3kiKg6lYOhQZuBUwMN1sPS4Q11praZslZDATEsidiLDYMGSY4KQX9giaiw89bpE1giKSzDsyMjRVKLolzYSFBZN5Ll0LWjWfp7OLBZlFCOHadsfajIgwZzwdiGL7mVFrPT4+Ph7b5hzn8B6Lw/oKCs+WbCL/OM3xncPHyr2Zr+M+R28SstqB1SrUVbjeiQl2Q0AX14ooJiQyKhBNl0Z9L1Mq4b2e8fjCArsXZrKH2WvNvXnzz536/JaqTD2pQIHfuwsGcuPxzW9Gor1QWbMJi+v8loey09QsFWeolnTUMiOpqGKFEkGFBJqypuPMFhibyDON5bffTxBwEIPX2Fvrjj6ITBNBLbwCjUlBu+JbOcc7Ujsup/1TB+/G47rmw6qBrTZSCbqMrMhEV7XQLB0OjJeeHWednXVoxnmIvfdqhWqjsvSmZ5uep6KxfYlG8yvWp9Zb1/XrGaKBa0zQM4lSjhK5pPSBrjvrh1BKqL0u8wzyxHAdH/ZKJkZ5TCyRLZFWQTAkDVxSHzMBX51NEtUck5hyd3omWtVMWYM4nWLZ+4ByN12sCYkHgzDD1Jur/D+lhvoqRfOxang7iuoy252EGTI9mTahUJ8btiGxBdNHoe0QknAUl9GqVJcza6i3No+355QOqlBjaHpKb+h245kWRgxYwEG7WrgVUDKTgaSyNzN7PDugXC9WPglty5YarYJ8Pbll6/LAvj4XPY45qDBHINMlOgVvIdseQ4KS+Kv5IMoM2xF37H3f+/u579iBSE2HMgUamIU7QQp1eodMKIAMu32n6CXBnrJU1mw1bYe5u6W2uZtf68IS/ePjS7o+9n/+v/xv//qPz3/cfeR6s6q6f02iYGbX5V1nSiVwx16ZmbAAwWr1EQSZuX/bzfRbtlcyt64LRqe2e525dAKWhQR67J1uVwCEgQ7zte7rE4gLSlkQVNz3X9/PvfLLeVk8/bqgBJ4exu8roR1IJ92Dskxs0G5kfCsvbguTLtolXA9TYpXYdsEJyf18YN/2nSS+PyTzkN1u4jZ30/WZHx60LU9Lpee+I3cElAAzsa4njMv4sCSxiCsel2wRYVJaiAQ9SCig2F+CGZdu5QLjuaAabVzM0/X4/PHjO9ZTVcOrOSdIy4hg5Wf1b6/kT6qxXXyBLWUxzEjsmwEvJZw2nqTkaTZK+RASI4/7CnGV4+Mxrj+zim49PHjiAEgKiJHJBqmqUXtidnRK4KD4O3VUx86+2V6YDpVycsAB9kauarSii4zTOkEDG1i7mlN5Rc0ZOJRKurn7Eny5xOUVmgGdgpTxUNPAo2qPHbcAaAGbtpE0mLxHyHV9WAMA9BU1uD8eMgvYL39GFEUYXC/vfdxcfYAqIdf5yPnwgi7Kepd0EcDi0TOpIvN2a5GloazTYaW/5cokuvGQr/r3FCI43OXpsmrIYDpXCkGzMeMHxBE92F5M5JkcWOJl1SuTk+DiIHwvDOb8mnRxMriTY4Lvme8pq5cbOoXbIfu8bbM6DJav7FiDhRznw8mA+frQBg5qFXotOFuXRJUe6pNscGd0VFmX0eCg93AVGquaydO0d5DG+paCnQR116eyL0xmLlrBi5UinpNjMBZmRtLSI89ldghhMql0Mgk1S6tP5liLV+xYgc4JnzAxcEfMPVFwHlaF8f0uqIqPSGLPM6kneR7ssQkR2/PtscwXSXSThzlRwWKWmlkCCE2kWztt/jzYT23SyEAoPDMj9t7PfX/fd0RoR+ree++dNVXGgNzZbE5wYjwWTRn7+ZX05e6+kbp4hRloLl00uhG2zRa5apu7P76VtuKP//w///y1ahTh8BhrFZpYJ8F4req1Q7GzdsRWloi4AChy74jqFWER/QRui0Bk1GCNiAgPlAYETiJmlQsblklcaaStC+tK24joPI553897745hEmutVGZsZDA8UWy8Gg7XTHraNihER3gs02Plp7iux2Vpbv52cCNC+/YnaNhLQiGnV2TJLLqbJ0RLHwTvtUkAmC2FY1It+OW6fF3AFXHTg9MEeHLOjNiejChhdHKj8203KXF9fH59fu6tzXbyNYIkgV38x6pDFyCCtLPfSXeHw4qjTkq+aho03UVLK/pQGpR0ZXR1tyL9xhU5AGb9rwCmsWLDX5pTaVAnku/JdZvu7gat/n1CA+ZYt5j08LeZJdMrS3TBpZyLFSuIJ+N9OdEWC0Eemi5wvET/aR6Xxgi8jCdoZib4MhSdp92IEuQMFDDJpNL1rWIQcw5kJ4O9BUefYEzs+YNsin7nLtXXp7dPql81SkNWfrN3lqkmpve2/c0rdVdMW6gTqpxrBAh4VWMleXQqyXmSXbNghxqZaW+Gb5TO2ipwekjbR2kemlomzayddA/9KujBcuhXNoOdKoYFiELF+q4mfxPGF7yWc65kbqxkxqvQfoztSErZ7ENUiXKy4SaYl97WoY91U8PY/wH7ekO+LcZ4+uPtUSngiYU7sCw/qEpXi+N1fjIBWfHX04bEjuk9nJsmedrveqU7I0P3lZLF+rfOpNrNz5VVdsoCblxSpqu12IttV+H4BszMFSdSOFarApRpM56PBSHZCXHqW7OI1TmRZwccZwGblaXJ66txuFq/lXYsifU2ONu61gHmpQgoM66qZ70ArQqFmTKQHLFQztodREiNO0NFf8rIe8cdEcpQ7szICERR+7TvVLNJCEUdE8Ask3Hf0b1Q0i7KfY0W3KhyROZtBS70/nAk1rp//k//8mM9ruWEW9H9T7xZ9FvBaItEh4eiYYgAY4FVnaiFcSwklbDcu668tpiYNeejwAvqkYSZI/3ZzcoEH6CZX35B5sxdmTJczyhS6nL4p+nxsZ6KvTc3EDuZyQRMStApQul4dSz7csl8L/G6DJnXRRWLRjComBm5veyB8pvu4BLExfwg3be5VqS7UmkpVgtcQUGu7+9PbTnzDnM+lPZ4XAbTjvQEZKaw4p8J1AaNdw08sFQqKPMMd3Mh5cvXWkseZlHtBDmWt3Qx2pWQbIHIOohWWE0xpKwH1JsKqnjhkW3YMNIODc9I70mofiv5aZKxPpD9Saht3/lpHbrSmdJUtJoy+8qVx+6XzT5+91V9m8s5ZmSM1ptLQIf36G0Jvf940pKyFm9Y3FjIMqEnPCa9/WjVBRshpMFa+edY4+Pmj5Wsb7GqdrB7pA6sfBAKvP/qyPz/T2ESABY6MztfoLf4puOf1+e+fcP43P4KnUc+drMfDfSbqOeJVDjT5HpbFMSRYoM9E3uSnJJDBdUzlHdWqm1v2ukzUykv1dTvVxHijTEEvPIu4tSlX4tWeVylhCJa06PfW9dvs49UZguFkertAXRuZJA1SUAoUmvk9PfMy8oFnIKpSt0P02Z3kt+GcGotahXZ2T/RuqvwvkjzE23MmRiQpxyTTpwIjM5H/eE8/75bOyEHSWY2TDtlirpm5gBbVVEJDUOpJ2pVJEqB5tZS3LWjsrrSJpHsLVbNWQXItFcbr8yJMIobnUTQZ5tJRsiPbzCrVnO5SyP2UR/H0v18fe7caDV1K9WZgVpCpb4jh6lSDNvO0OfrMTUK1EzBaiQpJDGh3KfABxA4JbOaqtJhXNkbVmnYanAk++lnnnJhzdKtg+tUJiMCqYxc18cH5c9//OtfkXzlEn3q0youeIu/MBWh7u2W6rGJJfIRUa1u65kOAnAzo69LZmaLWLi3mwWyFO0mBMxllvG0SIYZzNe1vXvbqi3TIwRNnyFXaLkRbFBQgAlGWdGZmyO/A1GD5mj0pbBPGfxaq5sZ1GrBBOjebD4YA6qJocWvY8pKQ0A9+Kecn5SZW0jTNguEaOK67qT7SrO1FmHCl5GkuSeZiQh1V9hl25bgdiG9RnoyzTCaJt6NtB3EFyuVbAxzwuV/clpldn9Hcif8O/hLvxxVnTlAW0W5x7XyJEcEjiOZhIbvJ60i3AkyWfIhOYXctlKTQR0guyjWHUvmq9w1phSaZknN6Xpd+gEIG+E7hgzteusfc3yvMCZ0jiLqyjEpnAQrKkQqM6JSi5qO9KKW98l8DVJCmwsBjegMIl/lhHGGwwc5NzcRAc+ntoMXgZUmqHlkpJBTAK5CK62D2WZvjBeDVCzYCrGSJ1FjJycdO/Aweo/1RiPRlRmZ2aQMgzLMo2mQmBMnAeYypNJqPjvNll1Ya7QtWvZmNo7VFHm87KukJGHzL/OzU20lJx6SnaG/RJUyMuxEMTO8svHtrqRUKK/ePcBpQuqrP12snRWlyBKuyfqwat/swGocMJGl09ELhfb/7VprUqyBKj/ThVAqYY2JzbMg366ORqmcqNHMTf56raEqfjhBTNkyISVmXha1ctmz3auPftLqO8AMA+BeS2tUyWDZegJ+Ld8h9eiM84T7IVirlKE7ftjiaZywoTLXCp5Y1Do7mljVxEx4hnne1rA0bMW6ngl3O6qpOHSFNiLVS6YULUK5be/Ubd4hscpxZwmUWEFyFkoNaURDJa6rMWTs7c/7+Z3aobyh/YSi4FwQGbHx3C5VMFu1vFEbq4ZnA1IsdwdGRMbXHdXILSC6cmCGvfN5P/VUGL5kjJv/3//1//6/5ZVk3QQt0RMuWEtDQjs3bHnrKCmxMGOpBMg9FREB0K6L118kYNiw5VgPvxdRWiu/YqWediMM3WMp81wrt24hIDdb6/pwI4idyiA2H/ol389kyH0/H7GvlamM505E2i1DPJSE5TZrPfVnInnfWiHCP/B9/WCaXWuVkphtAsoAM+1hcltG95VS5jd9Ebkl4Mmlx5XmDE/aKohnpe6n77TbsamNO0FyPSL0+Fjb7XO5uvIr0B9rx4IoE4KwvGPJ4rLFj7XtEpQBiBmgNtb1cAkI2hJQJW5TVdplnovuXnFunkQFXc3X8CzH1qfkWaqEx4+IoGKnUg3uVFHArZCPOvQlTNiOuJxnqcDB3DqUKitrJpqZW48/rQBbQ7gyyFzQIfgnM2cYw8u3qpFY9qAGNlqFsZfkK/2QkJNgdZfiYWTUqcxuUdFYXnVa168q1TIk844HsMFJ68rIpxGZy05F65S6/MQnnHRXJJmj5EeJ875CwmYRD5JIFhj3KiSi8N01dqf/2zdOMpMZcUQOKhQ+WZAAFe+4PixlKo5N50JHXLc/d5DQ4tfbwHwn4AXQNHCOHOEUadVEFk2aMHMjZztwKNTthCdWeQ9A2ne1fU809QhnwsQAFZAsrdGFvvjJgMtel999fTy6asfjegEikR30NfxQX9yefuQxzsOuT2n3MnOnOyasDVkh6cuPjksVQMtWvPYatEXvMY8mmmF8FV6hITqFFl8lnd5idakVMgx61V/KSh5KS3ceqQbW7SVk2Ya0qEbGV6DdD81K17ACiXaBnAubL+olOzViTnjUPcXFoB+kSERPyS6Uo1qBV+7lEWakMqOosMq0tLOhJGXsUPFSinYSMMt7xRYjEalUGgDzjXr4FYvMXNDyuqgomCrKClUp430/7+8nft3ff+3713fcX5nPG7fiubljZ2TsjZ2WEfeOLUBbFHJnZu68E4nkdoUipZ37fu7769d3pOKOG7kV3/Gk3LQTkS36IJrl8/Hnf/u3f9iNF/bELsnONjAKKdJZpPAOZWqytGZfJiZmcXE7kkizC0b/4Pbu8t9PGBC8H4ncnnAoTNvXliIZUsXJ9EKEqRSoYlPukKuwaluWKXMH1smmOmyHEpGBUsjOXX1DCx+Kx08F7TK7424N0xKYqk5XkgZz991xhjFuRmT60nWFP5hw+VJP12CmV9AfwMa9I41ubvDLxUV3gZDT48CcVj1Pe3lqu0HLLmoZpbQMJFYkTZG23BtwqmdiMmsGFevwNuFmQC+OxRpHplf1BEpFxgtA7LpLJmLYiv3AZVODqfwKJxbDpBziaPtxnEBbcrzyqGO+36xLm6yaV4ZqQ5rQv3OzrktiLoHvb22j0/a4rdwL8G7/xXczr7Sm8rRzOw6i01GVok/NZVTaHISSl2rV3VHka1NWjKPJfDUJN0vE0bxTx0FVcUhtAKZ3EOOAW8i4LPuY+mXvienbd2Xl9XNoKzr6nVf0KtSfnYBziTE9MF2GAEevmYTb+a6hjWuWCexxqqUv/IZ0A6WpHJlKmCkzmKpR82U4BoTJKHSrk+vW41JXTwu57RinvarCOKhJmLL3uzpHKc2IsrSsTONcVO8qjCcpg/wqeXRgWTr72db6DUhpuCnHNr4S83a6mph0FmI8tsjkQtBICKvqreaW5hTXDtfmG3JCuly9vOTr2Q7WaSKC3QHjchlVWp+kedXTF0k8164OTsLkJOg123AtR80t8teDKyedLDgxUYWCPscTVnQMM/RNqAgvQjZ/LqsAJIFJ1WDnjoZME93NsT0IHQXlNiIwM5HqjptFWVGcu2rye2lTmbGwfV8GSz1kOWIEJ1ZBgSVkO9/+wet1YkbNNLKF5XJGAiEz8yIUZwFi5gspRd533qm4v+5MxleoMF9Tpt38vvfORGTm807FV2h/4eu/r33f38/8yti6v+61lcpMz7Xt+g77wlXKMMrwHFyvw+oC3tTTD6EWCkIm4kgwUiGlWkmblndq7avmDqbHMaNcqZUGg5ye5Cqt1QAdvMWagedupfx26/ERt9lmxiYjEum6+fj4tX1/Qy66Pv80vxczsIvhYlvgDqRBt+8QYcaFx/34eNxX2gWzGxCCYMqoAG2vmWebSJqXlMBGhlJp7gu+KNt7dQlq07DiMhBWjfD7dr9v20ncmaz+LaQteYLOgElMWqSlAEfc4RlrJcx/McVM8V6AawO2rmtpWknr4bBC9M5YAQBm06JJDN5ZL2N6sX8JSZEr9+8NHh1oa7pVgQnkJXWd62W/25BVMqW20GwLXYBZH1kNvKiO2bJIaIoIUZm5mxKvnoWIt+9odBGAlGy5vt8uu151UspzYY0B9hmrE/6WW49Fbrf0+rpeNPdVBm8CChT+a+neigKaEEcaI4F3ghAkyRbO3SNGNYHJKrnaNEG+vfW3+yPAUuirH7LTrapPK6fkMC/up/bPS3RIqgddHT98sAC2Z+E5pjZ3PR/9+2Vx7PFENxNS9VWPqZYMUyLInkfwQt95kkq0h+Qpb/xTMbw22xTDmto02WzXANFY9CSqnK00UZfOlw1lmceVdpRTsErrWZyfHU9gZrRjF3+7yn96crMNWqG7uYPn6ocEeF47JZC5OXS8XOSZmZTRsS0Hkq+NL57iMABOo0739Uy1Fq+Atuhqqp5BSs2Dm2ObtIoUKjpvJ/y+U6rk1UtmZzsBhTwIII02TbQGxAnLcXZ61c+8Wl0FNTPvbSP02gAc0YlhtfURN7iZA1ialTmrgJG95gtsGigb5xGCRCoy7tz36EAzgyPbhbPSqUC6hcDcopRboMJ6yMldcxVTgdg74v7+EjIi79zP3Ju5987Ygb03dqZqLCH4/X3HawJU9T8oTTIlUB2g2kVOi9VL2H3RjXwBUCqj7XNGN0N3EuHqOBJkCbhm1CHJ6W0SpNiEl3JtlXeLUFTnNHdOw6kgZfq+uT0iNgCrolhS0T3KzBSidCSXOekPfBjWEtlhxHue1fvY1oJbo0w7hJUJp5vyWrQiKADmu+rOGTscQHpm8s57P10ZkfS1zJzuGjPhojuTvjJzw8OYLB3l7IF4wSprw3JRBH2ttVY60l8VpheyMgwfHURxWOmFomVGgbOVrEmJKKWJOQbjcDWmDBip4BN/vieyOv95gxP7IY2JrXTJAtPMyfND4EDREw2PWT3uizxX8jJR40bff1XOOeb3uNmTB54E5eTFOlb5sDU5DlCnybl0318BRL/1tQ6vSvQszm/l9iFeza1PUDCMpN/ugK8b/x9DjKWjiiigBBk7d9BcYX/ygMuzbJwv6E+uZLfkGYrNl+gDNmz39/VGJ3vZA9ffb+63qEVU7KhieQR7/Eh/RSnUSSitYfPgaF2Wj0dJQhq7HGrdW6qj3NI3PzlBjnHCQcF71Xiu6LWOk50SJxg7T2qexiwU3zbPrIRls5tIgGa+qstjnjsP7evst3rmvQffCftDoSylB5w76vhlEP7jzCruO0/i7QlUh/7sa5C0ms4y0TjMTLEwimqv8oK7l2ZjMWfu2ufItwcvlKisopCYE9wCoGhZTO3TOl6Xm2c+Xsem/Wig5q4ATVOY5WijT0Aph0iVTe2bmoAqo5fMGh/pt0uk/EFSdmWa07wU6WnV+eE9+KhJWN1bLZ4BMbXcpQAeGcq9M3dIkSV63NELjfTIjQjtVObuA4TCc656LLdUbRlAJoGgIUSFl0MSU2Zmlz+gTPPrrwhfjz/+5f/w919uyAxJveV6WpZh2uj9MigFL2sWUIQUkFiaLMqIkmZFPMEkYi9uGDO6pw1V0AsWElot2BDNkRG408krfbn7MtFkhu219PncCHXSd38XtSB2whFLl1mukDsIRibSYnuhAzAa08zF9R2ikHDY2gRtl/JOFosZoAdUkQzjSaeSZouCXcYSIqQ5i+rGjDuvInVKyprUDAEGLqbRSo7XTeZgXoKctNiGTQR1wxmb3/EZWR8LZSpoLtKvj4+PS8ZWvegmPW1GWGZkMLPFOdqcDIndrIse403NEkKmGuEiWf0ZKLWzl5s86DGPD9MU8oR2ojpzy6UTI7fyVDuwU0arizOb7mOwp33V5IbTUTew3jH1r0Tt+Jf+tywgYRIHvt5RGNox2zaq9L9lKeOJ0UGnuZu5gNVz5dCg47mPccPKksXpaHrWJkHB1XUvg14aw+erpVnEMa0VYZ5AhQNCtM9exRypOucbDFGsKkKZ9lvsgoGaiFd94A0n5sQGb8+mU5zXG9FrUx4737K98cUnbDme/iws+VKvlKSekgpVQjgfc3zc1Cj9VSbX29f9Fne9qIZ4XSbP/zWyU+yg/oL2UIWYd9X0XCjTRbMhWL0S8AnKq5tqxlDUsThrcDYmNfy8knpqSKezDQyNSCqKNaDQKwnWuRqexSuZV2N1Gb505DBBsQCOFBb1erpo9180JI6MFkbdtMjR5fB97SxyOpKSFSSHkcJkV/YPFnVuoi+47EDbD39dHQat6z3Qy5VS9BW1JkFHJIDSy7ZCIkedpb8WzIhxhy+cSd3ZYZm0tVWf2swqgpxyDntDTTjUKcyoeRCtbtN1zHpbtpUCSHNmaf61G5VCTjCr1IQ005GsclvL1+O6HPDlvh4P6PG4Li6u5cuXP+xCSGaf/57yy/7D/+l//pe8mn1xUnPVxUtNvzU3pIxEmmAjI9JJyOHQVDPVd2Ajdzza5hT5TmmpkvINMyuucptnRUJcq/BnN4CLRVbqXEw9TMqDzLg387ZN7choI9kGpHs2QZOBLAEFc1Z9z8WsEZNuvVOkzEgAicgIgCuqKkS3krahN6/6gO6116oNtx8eUdvZL1v2pJN+mSMTsAcuEN5+jjRhBaWi0txY+nb5bbvgZLDoSvDr4+Mhn4A5mQJbwaXZL6M5m7Bj2ww0D6PczQMmMs3TPEFz94RghdgmCHpSUVF3xUmljlk2pHODsf6veqw6wtXkd21sx20dCLps+BGbIkk388s6FehreUscxkXVj5nvTr7Oczb/tPFxNqw8VrHypbRz3S/j/HujUuXxZmbuCS6fOkSPAa6tBRM7eR+r84Z5qVwzasx0Ob+2XY2ItuAEx0XaKDQVc7+ULazPXo5LKQhaTe+ClBgI4WVxS7W+OtKSaZlZf8t2rNW8LCCtdmtNfp7zy/qXeH9WfZ8nxex0680XdrftpFelcjIrMk+/Fp7KiGqvzSK3pqUSdl462ztEwBEqEHQUzgub1MuVlN18oYjlh5nNBXxLiWtv+NuObfXBghHOWMr25FVtGQpWcW7r0bYcy+TLALoZvHbUeUYDsc+VW7BnrVtNKjdwGQzmMERdAV8CUeOVcqKUGnprLsMomNEAj1qXEntweym7IBF55vaVrgkx6ie1DEXCM9K8jppGbpr0rOGTlYcSE4vOqpZOmZQttlDrx0lLy1wUQWXsQSMRB9Xv1gIrQ1OHL+lL1yPNlmq8Hklz55KZde84Z3lhDrBbYTUskndj3NPt+DqsGBkVr6s1uNm1Ll/uBjPx4/L18FgL/hK0aTfdszycYA0o9atEy9xJN7vWx+fnA9e6ruv6+Px4fD6QvB4ff9ivD19uD3t8/LoepY/CEhC4rtz+j3//L//+/O4HPk3WAGDwrRb3rYCH8DahBnimnQb3MmLJEvy0uIwy5vKgpetWwgJgBhdCyOw2iTCldixFUmmZ3hioy7yHD8gyYZu2wrx6Lx7AcvoSdAHMNn4CBFNacZkRovGSrWtda13hbgRXjencK3YU66kpSFINsoxiYzNvrESGBOTzoQgzl3H1ZiJp2oq1lTv1yKydZ1GNeMsuq8kTFAxYKwWLWiqR1QBFpStj19b2iuMSW1jm7kZqP/lRkhAJM6dgviTL4s74sU+YOLRn84xHHm1iliJ4Pc46K5NRQqBZTbWudnP11qs3lwDIK+MhDSb22cfktoYASaeqLw+DtKlQMrMa2DZhcnUYdW7Yvgy/gV989zlz4l/XMZCoBh5VOw2qndcrX5uoulfplfRJUhqgiOWstpIWhlWKWE7CKog2laJUY5EAYEW5nDoahGSbLTSs0bE1OH3ZKIOP879ZXHGEElcTszTG5PzeEPekF3WrBGYYoXUNoSysyVonRR3d4UQ0/eAaKGm+TIO3kHRm6B7bV3/9Hx8JcHAVMwseW0xACYXXkqJg7bdJfCypsHH+HU9PBiSOa3/tPRwAsR9m/6cDLEzWX1cAosVV+m88x+K4LQBFz51kr35q5mY2bux1p5qcSaCUDQJKhGzIdVXnQ09MkISY/oMTmiLPoGt0kk1ODIgi7TpUcnfs1smiGs8F6YSnrEFEqBk+ExbiVWwC+8ABMH9m24gewGgpTrsCpBBKZrdT/GMt3tCSXqi3raiolqxuPOiiTpcorVLLPq+ocvuZXH4O/IS0/VVdV9OJdOZ15KTKTf+AqtwmqWKb4WucMLytxQuUqIvOjF2HPbO7D/tO+5CTTN136U3cSXTzanXGC8h9h7LFSiUqdgUBocudyA2Zafemg9H/9t/WStrP//Qf/3639kotzVEaBV+WzisddpaOVTcylKGAYZ7k3pGMEOiIh7FkgyQxgta6GwkzB1c4zRXREyntum5z89WZuHmPlU9FcaUAmEHAvYl7SaIty1pos9osLMiz2u+V2mhRL8h8ATdXutEza8ZtIHLDENIOIEBGQHRkWAYU+/KVUQG8wcNrtF2KvjNNUQ/wZj6vhyujuq0V/mZajVRVch0WYZ5eSl4Mc6PBZUcmqe0AfT0+HuEDJbavAE5pAM2FfcPG2gG9pScVshKt5T6Gp1OCchLHuJVqQlqOG9R79jPnDCfaPKnx/LCzh0jMPBbknILuW6xPpVWrzJjQl1F/OZzXWNPXJ7/Ssgkf6nv59ua+t/7fGJ+3e59EdEasVwsfr2XVEoljYZJEtQ6+zux7Wi2xJ3tVUbb4RuWhJ2fuhSnH3eOUOKFJwcxTzX7zbGuWvCoAB6UtqjUxvRoz6IYvo4HyuNWOMmUJjCetuNnSjKB71aba6Csnp0Tmbv0KTqCjSiKnFgpZRkQHKyFLATT3Fp0ogY6aNwurlu+aRcUgJo2tKrRgL5t4rP3xsr3BsuvFhHoaQ0UodrjOrEbu9r3HWQ8QM623JAqDq7+qRhCYhVBoEtR9pG1dKoksu4sXSDMHZ/D1EtmBAQiHoPBucs+iDCsUOXTxc4Y4gRBo5rSZmV6Md42AOskaZV9GIDMIskqWNFSKlH799bvgehshr7soUvHjez9K7GCSWfKsjVrm+I3dMOksjeYWPCGmSJau8wldBrCDIBWpBkhmFvUdTFnM2OWalIgM7TuESMB7aX+3Mo2VdMi6iEtM7qXY5b96shbBkjfTTPPlOYHvbLxM7dyKQCi38rlzf0fed0YolLtVt+vRh75u3knmUw7lDRdCkTUoSN/f96Pa5piC5W3LUrj1SEi4oRuk41rLNsj1Nyc+Lv9f/q//9V//H3/Tl7vcQ7B0ItNgsqumRtHt+vnxlHx9XEm6URFV1pGbm70ABmRIi0ndckQmM+AEFLTc6Eq+s1Uny55oB/jx+ZkPJ8yoDF9uYd/LMlK6v/OTRndX2PMJ5uPxkEP8FE3btVNBZnhGEkitcPrOvWTmay2CTshDN0qcswckp4sgolrrA/RUJi/HdfW2XY+vtFDucFOqlkdwA83S1tFVKYCvQu508462KHopeyVWGLeT6VGdVvvLadRDV+tZ5cA/MH/8/KWPR1imFMkMg5SIe2VG0KqjxKRWagISNNBXSvBlK4u6UgVqpcyjveYEWnJnyRu3rLS6hpmO4ryrWIHjJ+qbsiPb7JoZJu1i1yLG7nNOfxVQUPi+LY/W/bWp90Kv3FZzSkChh/od9mXPYDsRQa34wSXx5qHf/20u5oTg/RMzN3PJH54cAcWyjukkFIHSg1SmLIQQmKwG5+IrCp7ZsSRn4F3P3q0vr+bcHqz4nriNR5hL61BkDUBbrsfe2pbKHOU0oEoap4W2VdKsAXsPdvY1v7oe3D077xFYL5SQmWeoxFt40zWHKT5InTmcz65mcM6ULBqE0q8ZQA+VO55kxpquE+0MRb2iRXFQAAzm8LoLVHpaeWcjeOUjh2jX1326VqveQarAtlkiAjQ3piZJ7mRl6vqG+pbK6qtk2bvof8AE5jKOSwMARa9ujg7YcawV8LUONlEev++2pa+OE0nWtFxUKzhQ48VNU/8wVAlk0Kd2rvMVJwzr9i0YTqrYm5FV75rJEyf+r3ppItNk5/AlQjWBtLdYdo9qRXoV6GY19DfSQpKlOR+54eSMIeoNVX1ILHzPKn95PfsOMGEr69NDNcmBkyYQQhWTqyU5J1Z+Mxj9bBqq6agyUnl38lHZcCgUUmw9t3Yq464RTWB3yhPJvb82zGzZMoRIlpqAnvkxKdlNlBBrCYd5RnxeePz9Xz6r9xNoFKZvVUVcBkT4IiLFRaiLSI0Wtjpml/wKiEmE7Y2NjLTc3plEZiKpGsKQpJXCkJVdc/fL/CNnjqRx/cpnIhCxcYd5bq4UGWnaXA4IwVi1ISUIGdROMupZu5hB0nwtLuwCEk3Z1fmpuVCA3RJ6roiShUN0aQyzdc1XkvZ0WJg97DtXxRBSdf1Uf2WGKFu+Ur6RKZhMeoQEaOGiDLbjCQI7H7Ll5ldBWhAyFyTj0uePz301qqXJf8fGttd8JQ5jns9Reo9/AU3n2G82TJUqd346XuqEnO+vHKOO8yF9Os3cLGhtejXm8wA4QE2WKm9dlRMXWRysiqa7wMwp3fStEr+7jsPEOa7r3OQ7jNUfOLzYclrE24d3Qq1xIuoiYL0343gUW5fVkGkgs0bSSyRqukhjX2XIevfK2ymyk6/3s9/GTABaNLGqbW0QG6DGkrIzbw6a11/GHidxUvVydTYzt6okyBZyGDdYZsigmVVRcMQLAOErNuna3AtF7HgNg86hj3tO30796unRZXzP0qajsrHjPidMaCG0uff5bPW11bIZCzc5OWdhBdEzOPrpEiDPQ5v4AOh8uDLN2cjqSsf836G0NDOoDwLPJx2YiZODvV3QCygSe6A0Ed6ElMpiWaNygJob0G9IqjT1OSOUoR4IFarYBWhpLqLOcO9KkpKbtUShylcbzC7nRJ/vqEhdv7M0stVyag09KAlItmTGFP3AAxVenNigRlrLqORrFtjr3BLgqGPU3qsB3lXjKBzUlrl7DaAQMms4UQZYtWOrgd50W1o+Rqm+xnpaVDdUIbKG3letsC3dYJSDjxce9QbGzxPdGZlbEcatC9uY22gXzVrJEhnfOx20//AdApWWRch3iLAMJW4tmASmEesB5W0lqxRQpi7//la1N3WxSrnvh6TQxR08LBOzaKmc2pCkMncg9r6fP+rQ9S5OJer5swYiUZlxKwKy5LJSsrFBayS6rWwxHTo8BSQXPZRaxkvmlKSH89flqTuWtPcTydzbjZBT/o2feMISedNX2oUwy2WRyNiSYQNLWrYpW3Zdy7XSINfansVq8K59RijcEZQynGEQXV+RXBF4LOT2ZfD0VTmeXwSZWvBchMMBeKb0jW/o1iMz0kRDGGVp15VMORx1n5433fa3WerbXHkbfasmWTGKaBUZaX7NdLxjSAMoRmeb3+kJOyghVN3L4aaM6KAgM2NHVzYrcq8nXoOix65L4hs++lvKUelCnVS+LFKdzP7QMrZtx+rMpA8M9CbM1fa6S/dto6AZSVYGsr1L2yWgf/qW1bYt/x+Lku1QptAKzEF8s9AVRKIpOWUKKgXr0pqBXmM9E3SydE6NKEKnlapB08ScVLEr0f6nwdXTu1PmaASOAKqp4a/LPNYMWO949KRAOilYZ3v9rrfXTN3hgO1oi1721FDCuScumy9otH88TNN+BZUVUKRlpaMVO2QpXrd8Qxdbp75aa5g1f7pi2MpsegK7zj4AmlL4cgNsRjvrgpoJlezKawoVcldsVZDzecyv8qxmy2rmNPEg1b0/JoysnRjpGRGn6MGSwq3VEN4B3fK/h79+AgBN3tqnNTVQGwGDnf7qKv20jF0y7bgGm5Auxa42ZT+FwlxYAjEkBXc3dOG7CR7SY3XcNVtmvLdE85W5KLNxl8JUl8eQNLNzvNccm5FGY7WocEJGnidHohqfKx6oMqiqFbq2QRVKYSYugW5BQUFJpgAdEOheGnNO2LVGaIjmNDdzlCU20JW2cHfoNtuAXMshLpcTGThD1w6VgkDKpMAGtlGLtxw3GdulBTMYSCeYSjrp/9M/AnDIDFmjF1JmSqTumsEciMxI25k3kfdz39/fz+edbnF/M4ASRRSIe3/5301r/cc/rlVUKys4s9r8lVmMXCUikZnNrisqVuErNPpKji6PuSOED4dveJ0uS66eAJFyQNASLGyVubIWOODDsMxWT87M5/7I3HZlZALIW3XHS64f5h+PlUHwcZNkZDBKsii3t1JF+2CriNBohgCgjSxyl4clvDg3PS68klhMOBseeBSqw0ShkWr6Hw0h+5S7GXMZYIiv67rhpf5aaVQoswRRa+ITS3VNgjLYM4stnuDVsJ5HeSpF7g0zX86aNPVK895tszqcbsN2flQJyaQa3YX4bnMrBSvhyKZYgoWsoiwmhu56rE7bzJc/GOdSdiUnRa/UgwdmHKwnRbUqjuYwc+xiJ1vHNY6McT+P+rcqT/9Tfn7w0IMrqyOKNsMq1QD1pRJSWo6VKUOkrIKYIGRGMdLMC9FrK1iTvisMne7EWuruMAQJRpBCVlBc1ij7a15JUydSZ3U5K1wHVKvqmxNevDkUgoVljL8uzDYrFGj5X7zvA7GGjg+4O12Zqrvu6K3TRYq0VuKsZ92YS87BeD3TcvImKGFmJhFmNdWiL7sbZo4/qFYu9X4egIREq12+PFyvzMw5LAC425x0tlTvo74fHN+rcnPC2VWToL3ODiYAm/y1+goO123SqJZ6OptuEso+Hv3JVXgfp1zS1+kMSCtBc63cZLd6iPkKfoEunreGRHtyQiUBYtW4UUpNy2G2zDfgay2nuXGBl8PoVzyu1dN1ylO2YnwnsEarcZlKg6CkypNMJp+QuFrleEiBnf9KcniYrKdIARK894O1P54HazVq06lS5AJ01KhsZp8xQ9191EfESvYGoGB+uasEAM1KJ5FGc8iR5rF6rOWcxHr8XvN9OHsP85htdggzCcppnpdp2U7oKQhXBqLWpZrUHUL4E/bcyP0VGXl/JxA7BCkD39pfz4cndkb+GX4//wrcf11f/+3Xx1/PXzvvX/v52M+Uil9AXoVtpf2xuohVMW5Dy6kdRqUpdgaYkRkwCpJFxi4P3S1myoxUOgiFPlzlfRjb8n6wjR/MMjJjQXS/eC96ejHefa20yy/fBhgyEfuuOgnopYaZSm2D5Yfw8agzYC4LClHITuEqip3fVVqusyDZotlj3Q4K+/l0t61gg/iUUEp0RqYzkQkasAzmrlyIUhlmahEGyMyzJk3ItN32TlcmQ/yusELK7I6Qoj/AHQxIyR1oEkYNnkFEWjllhLiKv0Jb13UZfjN6s8vmLzkp4ctYo0G1jEmUARSR7DgMSVmdFqwE8FCkiosyX8PjIjTJaNkmI7qznXRa9cOF+ek0hhlIKx7OdCb3yZRg0Yk838uBbXzH/HdxkfytCjxBPXFiWhzHVg+8i3R1MqUk8wU/l0HPA791vg93je/fO+pQoOPLIrkmBvETmtU2wO2ECijySWWGlcSUTDVR8xilJErw8kQyc4eY+wDXmykr14i5+bdbHpeDLi2r/a3aWWKKv+rCIAZveKmEvzngLnkSGAHezt+T1Xbc/U3tHRVRfQQ6SoKlpkGoK/Wo7YBRGO4VOrFTOwaiOwanhAsDWKXh444nIaOgF7P5t486Ad/bWr7qMgc7KVCfs56s59LsUkxo0AvdRoLvT2BasZg1DaUEDwfsY2M+hScRIosSpMqq+nKNrdQMAejG464ISRW7vNp9KkMgSKWddjnDvI1mWFy0y70B1BPrvUCRtgfdwtjh+bAGdUS7ToiMDp5O5Egb2ZAKm1qmqrhnLdrZnra7MQoJKrjEem0ES9IhQ/O3qq5abBMrgYxEViPWOdsn9rEu7JAeoLEH+U2oygl6G0xpXCcLwqcU3KHQxpZuKEx3WgZZjOHoqXW1fJZKPBPPIOI7FbmfKSkioczAnXnfd6buHfzG8/7+2hnP7++//vzz19evX+vPr3vbfaeywS+zjp/18WE2Vid64qAc0F7KMGjvvQHF3lnWf2YtFUWFeKfSK4Nua8TQqvBT+UYkQlsZ1VKD7qauIVmki1eVhcHMmuJH5BZgseNy43Kly+IKPh4CaLaCNUwwRWOmRTCxQ0rvqMnpvuxB7FaMREZYVDIAyAiFuTasHxmVEoye7rmWUdX6XIovFaQKbmHrEaTMVdzpZCrkonmNRwRYFJ/lmWt7FznCevIpCIuEVcrb5iPB3AHRdwg0XzpRKABYGcYeulKBt9LScPr+Xr/stC9OxtEx9yB1mrbQhvt4HK2SyEa5x/Sp+Sxj1iYQIGCyniT88oSNgOIcHvWrKbRqbBnDgbM7CH8zrBqP9P5rWMPHZfd7JrfTC3DS6+L7+n//QA7QJr31LBWiI6GB2FcSWq4q0V2iA9jPK6AzHGdu6OUJxt1NZg6dwtT8y+vXUrccVONJ9+9UT77n3rE3KTSTVURLk6Rp5lkN9yoSPa4cQURGYVrEdO9Vkm7A2WmAmFlNOLXzKllrnZbjDSfd7J3QoGyNGiDg3pNjajJNyU0LIGxVREQ7FdSGTXUWrZ6yspS4sxKYfkLmhRZQ5dwLaGy1vfqok96OszhbazJnThxbOzKlbkIZzLaLA3Tzqj9ld6zXNdrod6GK67V6SgMM7iVLU3XWEm5QQXHu5WTf3FodjzqNO7KBA3NniRoUFV7NNwKqcVqiF7vN2NNzU8ocktmkIBN2mCmU8ERssmgYI54yMRtnSdSnoy/xVfUqBy4pswoSxeVHDxUnrWiTpRTTFr2CihpEV2PsX8UZCaB5i2NCQy/LVNT6dqnmHHY9I2M/a/YfCruudUmVbnEwwJR1TsxzGOvimYpoZ5aK5w3dgYjU897f98a997YIipYb3/7X//7vn6mdsRGK762IiHz+AGAe33uHmzlNkT/dGeWfPj9g2t9/xSdlblsyN3NbP67PnwzbsRMRG3bzyswsf18BmVTbnzWTviRPaN7HjjopFkgz8yC08xYAc9ArPAGUSRKGuADYTimeOwPFXV6ScovuzSkOANLKdEv3G6lYWrZW2EpLOuM7n6Js/fsDNyKo6LC9yH10882V6zKa+wcu2dbOZzLDP4RbWskEwmQ1iNec97ak7TQt6XaRgW1hua94wkCs5K6YqkLVnQzf2/CNa0Ppmf6RWHeCvknBF032uG1BMJgl4SRpl0iuXUlVzXGohiVlbBK2dC9fuBvlSiXTj+vMDvPMkYQsu7AE9CAjAbQsZSYD2Bf0hl9L8bz33nXuJuWFFRfUOgPumHZShspZC7Cus318e/V4TnLCBizHB9tUorr4ineXXG6fo2pQyYRaYbwtdL1LOcXbtsAvKk5Z7XOs2Ss1JMMx3mhCZvfmt9WAG41eKzCCA2GVeaSPUBdPkvPbvHp1u1sZPhsC9Ljs6nz/Jy87ruzc7zCGSGH99uIGVFFx0XiIA5bWYyJ+TwMxd3t+V+dWb6WB8xzZ7x8cf2C9t+iHryCObyHhBBCFq2SRymxyfJUmyttHnT7alFohJFOGTFLl4pphOrMxVcMrJo8D0eptxCt2e93364rOGkrvSz9AdW0q4YXm/3bHs6I491qPgWctfl+ft69PQLCS1mzYnOiG/NeXz9d0JaZjVjOPiVeq2tv5eIEPI5HZCzKf0yw8n4ouMU3RZ3EImCfMkIVKHyD4bSUndtQLmzrtCSd+5yl6Nz+sMv33xS4BspN2v8KeInfM4UxQ7MSvLqKeXLNIGt9hsxHfLoM1f7oj2aYC5gRO/eDKdNaVHRnPc5kFBKUyiUgpduaGEir5wRr83lXbXqsJn+sZMzO3Pb/vDTNQUNwUEHV+7md/273vS5mxI/aOTvAl7J4wNFdFS9VYXfWUHavYrw6oWOzltqjeyFJVdBoGqQEAqvRyGJKoOd6sxmDIMJT45u65py2uTBMbesmsNBa1SEsZGS1PQBs2knXvOwmystNs0sZKLqtZIazaXSwDrYZ0jomHtPfKnQKjMvq6p4xcqm7DNIgGdONVJy2tqsXWGc2sKRURGTtQCGUHqdVwQCNlXLYeoV1jySqESWQ0I9w2WxyEtLW8CaE4kNixZZPbdQ5TTL+T0VRd4ORavUnfIOWKaQ82xZJwRssxEDwiPZpX1390jA7fLPhsaeDFnZ0UQnO8joXS+GG9vQ1jGY+vnRccty29f4GktKoRZo97F6dY2XzWzIrzWOkkTygcQBf4yNo0kcrKMLIF8DQB+vGebcfqrb+505d/0TGxc947tkGyms/engqPu2juW/9aL7j09dHHtk1mX8hh85V0dkIv6xgnvRZwiFWZaar6ak/MOwlOxzNveifnttsVgajjYOYBUnCl2xGAYet7EsCh/FZJplmAGZHMTMGLiXfWuM3dBHs4kUcvgiYH10RuPEUPjmkCXu/jgNpz8cKLOj/IvN4Yh+zgAmTpxlS8+b7/0H/H+4E7f05CxmxspBNqG2vBflDHsb/s5FzywMtWxqVuhxRmgiHAEsU1FDzQaIEBsOqn4qtq8cJXpIze/zbYxAkER7FNJrDEZUC+sSpwth0SVJdzcyyTNcEX0AS/AKwKsiq/yCkjuQXqM2ru5IyAmMWsXW9EU0LFaRaSpIzMKArzsKhH1AeRoYxUjYI1KEr7R04pTERmBnqc4I64Fc/qOApqJzJLNCWVCmXuSKTSWYSJ2uFdd2FuQCEvaa4QxFWXd1IJKnVvJ0RUAzxtmS3Gve+vr7++7qHe1yo3mVPJYooTKZqbInpF6QagWrSoQhN6cjQzDIQLnvQ6H5JSm0VxAwJsRkhCYVKCtgzmk13VgblBBSwg2LJikeQm1zM/7uLh6TbUvJkEBkStuRBkJ+G05XRet69lV8hvZilYZoYUodx76Ttl3E5lIJm56RsJhjKkFVMDNENNHDbWPCxWY5dHIDNu3A7sZw39AY1C2NqjXiCITlvMtYx27IV0FycWSmpjE77qlFUWO65xppqbh5mZ99CVsTyvCDuz1IekqYOopyi1eRp2T+c5JKONw3HJR6mgrFDHlXXa3gLeybxPGVN4M+bq3loAtDPGnnjvy5u3nei7rYKRlrWPNaTTCf8rcnvPP/pr+5U9qbj4t+/pEXA+pkx414W4lXqbkWqyGm7Xtgam1zy2quISHDJKPYEKPCfzeL+nRszfwhcA/3RReHvLqnZPTElyvLOUxsy23K+10yvB6GfafvS3b3nLUZQJhue4jHrLsHBJ9+ORekWqwkurruvz8DtYq/FvKHyeNFtOd+uAtuNzvcV7ZVc1OiIn0CBwKFmn1/kkiL+tbj/Jl4vmUOcBjE7NeTrtkUbiwmapR1iqePAT31XmqnaP9aYOYXhinFex+TzkCgCxIECn1FYcTpXEa7u7AyFAxRwNy2pnrKufivAcpOYkgIqZh8D5VTBjShFuxxIIU1KYeAYhwSMBmItVnJ4Se8FJclEqzRRMoUmqrrCOpKqjsG7hdREDRvGEmKy6WHvQDlQa0wcSMmWa6MvXddIMoY63WuQJ0/U/6QJi77hzZwDZmp5vQVIHEl3DfTsl/WmlTaZQxI69Y+8dmV185mn6qr2cEdtJWzQmbVkQsOoEFjdc4urCCuj6uAwsAYz1yeU0ibTLzJDPDO6E1pPXur/Xf/l//dv/58+fkRAyXrF2PzySZgAyZObKTDafaBVy4F0XEA1cHumA7+Xm5vRHruVX58OqCgmViJ2eNzZDuNdC90Cnxxwjj2dSMqUsCsHavipEtLXlsV1E5jMR0t5kCeJn8d2XYWXCYFwsSsJVGtoOTyNvhyyVikjkHcIm0qrskGBgg/KNC8inPIke3cWVD+ImFpaXNQJMyjRF4Nu/sSSEDFIsSyJbwovluCCZTHDSAdI7pk0weyx4cINXlFi0UjQgyZS5KwF3ociUk2aMda3jUk1H3JmR2WMY1Kf6zWBImam9dy0si+NhsNEsZc0V6caCPp4VU5lBdLjsRfCdzeCK/x9bf7BjS7IriWJmpMfKXXVuC3izN9FI0/cJ+kHNNdE3vN8QIEjQJzxAEAQBAgQ1XnefW5W5wknTgKTH2ud2njpVe2euXCvCw500GkmjQcdVjo0hzWwOc1M8mLNzBs71wa1y3G74q/C+TLBYxRsfPa9F4Nox4WUMytt3Qe6JjiZ+s64HHXpMDWS9LT2NCdGNogF1OI68g9I4LNwHZ950QBlWY2HM9rkk5mLHNnQk1IHHA15ECOtgMz7/fhaSD4FZFt6OEyz2sqMKdmeqdTzCGjOAqr5bqxZqlIbbX7mzOmDmQ/XREFwaR/iscUObPxIyXworQWEDzKtsjQUa2oC2kh413gMwg2dtmbMPVHXkwxTw2eYSWjKJ+hQ2GV0+AKBJ9tgzllvXbNPqCaJIKSK7qbXNvMgzzm50gU1oxUb2R/VIZRs92yL+ynpvNwNKCUsSYtcBzB3KyDxNXHVt6p3T1WqqsXc15TUjrdqwis+R0EUpPfEFqmZ8GMl1oSe3n+MkoMg4CSt1meHft3KXxGzkyGoUWZESWRVTrYw46K6XBTpCG03yiZKVczVBCrlQqWFURiv7AVbpiiWsph9VdhgZHu9qvJGTs5iStHdcLANb2vrINJr5KyKzFIbmAZwSPkK5dPBBIYlmEjGg+x2hHbqhQL5Tce+4fyLFKprAedIu3bJbRm06s8oFRcCIxJ3c7BwAQC7G9Vo0V7ycJONWXDC3y81XLn/96Yp/mP63/9Pf/7f/5d/w2n1iaMqKqRLugVKMWn8sZnK9ViBVLcYamBuawFmpTMXL5Xv7SlWiuiV9mOEbAnGBe3lO8bpz57KLvxYW7oSScMeK+MGL9x1RBc5llyGZ0Wy9txL+LkSGqeRWGujmy4x/bHzByMWA9r2LYoQSvA4DVKHwHZEifpZthYPBoN33lYhthnAkHWJo9ZmpwheatJgA7pWRm4gktO+ETCXJKDpUdRIVQnmsX5m7ZkvFfctiM35dkavq0bgcWGa2kPHr6+uueiiLSLOM0L2Re/PaEdFq020ny832gPX2UVnEEDN2joM61jyLQVIimCUXwNw1t5YSlaoxEA1+qQoAEomeY9ERKaztorYiJExoWHF7FQ209yB9qZuaJ5/3FEg9zF02G/3YkeMCNMQdJtYb94QzjLYeNvAYkeEfq4Uox6OXIV3c1c5bUU/2Y+vfzlmycbs9HqMvpLZn+e6ay1d5qyoyyqcjC+2Lz8s12KW9cb1wTXqLzSwUwYaHh+tvfgCXEyX3fT7J3Lb1wtjh3786wugFLnIi1eMuxhbi+UPHgAVqmhTHyUaiMjtFMqcf3hYdjJ0831wsxkk+IKT+M2+tj9WD/uMLq06t/OzHvRGfv1cAah7EOQQ6kwULM07cx54Eg2eHPw/qiTDnMj4oiN6OgyXYhagahl7znHDW9OOSS7piFrQ94tletYRF3xzSEjrIz+oc4uNZQJKqxxI4NGNn0DI4kIpzZtur9i/zeXoaYD4nRk8cPKvNzvyawWz65bu10aLThCaY5ciod8l4qionBHxkZvommuJvKq+jA6u5E/PJJ6HUwknz2OapnrdrJNwtnAnJEDIEUQMJ6o1qCHQ0Dn1dKVJZdk7zdpIytISMYqzFiNis6Zy75iOw6qXnYUihuEHP9fKvygVULNeZWfYzqIuWSM11DOKBOiKpzZZjFZRekzTdrYjp4YxY5eJVZwSfHD8LW02uWeciU8Fh07rzPCVkwGoGSOeZyrqb1TNMzob2C7xoxAW59zOmSgEVEqWo5tgoITR2yyGlRBisxju111YtzzRSAwDcm703LISN64Ayrfraqz/di6iGiyLN7cp8XSs9q95M0t4GwCMYc5alGobCutjO8+H4QTwuqTbpb8bmWOjnLD4H/ZM4eiqRHsMybzBW5sO8fwDr32zHpzGdh/ZcEfuOiJnV0pdh4m8VjmVJHqPcgSuON+o/Hl9x/vk8r8danO/3VR+j2/5Zzz1rDB6Ksz8uUTErUK7wWfCO+7I21pNze6DC4H5+goS+nk8eFceTsb3NQvMJH48EApDsQRfozvHHln86sfOm0EnJ1eZ+/F6zyufVhYKOBcBc8rmxPslqiqKeYfd/WlEOZpY9gLR2apmrJ3rFgIDxZASYJfY4SYHPCieeJ9Qre9zq2Y0USo8D//L1e+KB7anm3T4OVHZ39LNxj/Ue5ZRDYf9L6n/cwkFDvb4aJc/+cJ0j229iHejNRioHOwA522s3AzB7YfxMGZQRNSNpNuLm68zxab5h/g3gNKP1hAiotHXHgXJu4GPPTbao6e+TAtDEmsMyzKV/LBBBllxFP7q+qnoXy+Gb2NXddXDq7sYs6WCbgdvZKTlXiTQMN3a87Kc1mU1wsgb1oFJIJEPayI28Q7mBTFQHy9S6ELSNVJhtEbmrqVC1llVeGeJeoeYLqClRR2a1F+ZtGP2Huhsr+uX6hV9WxRMfO14EWpa9gFbpkY4HFpAtn1F3N2e1dK+sWAq27TrVoMRsaIpW/dN15hI1L3pMnPKqnWGB8o5TCchxTtXoZA3D5wDWNGUYaca1xFU+n6SKmK3DWsauVD6LC2VmGjJKwFqpt1+RW8yMSEhBRDpkNdCzMpBs2E9ykbeZQcpQ3OFuFoEcStBhmoyx7IW9v75iCWZMWCIjgWKZqg0qJVtY13J/QEytcx+QfpT8wPStatF27JivCW6EwwLqgRF8TNJBs+ev7QAfIz8g/8Ozf/iIsT0f7vzTXLFXrpFqH9Fjtk6cNUevvUZ7//lTlxLhw4eemPkBCgeAFD/zWAT86xf7/qazq5C0Pv6OE8CwzfQkVjrDPqIcE5A/MebH7WvKcvgvzuJZ3YNgsMbdj7+p+LUup0EFO3ab5CwP8WEmQ43/gEjrnqn8+FSinkXnKOcS5tbmvOPTr1dZSx1jQdx7b6YQAWFVX4ek9HKOA+9oPWnUxa4s4BhgMxBw4kJbZeboK04gyKpBPcs18WFNnKzVzmIV0CaPs454wmc97kXFgJ+3LEq4Bjadm/50eA8Q+NhB45CqZKlhaYEyVyKqx6XOA5VWhxzHk/S7/uYo3cgHhg0UBypyKfPeAqho71z71SrYTPc2FTPwmx2R0p2WmQrKIgGoVfJaBUHpVp6pNZg6ssR41QqfEn7wAomGn3honE/MpFK+rOXpwLgurnxz9yJK6ovpuxo7d7b8/NGMVK1BsXM4e7WfqHpS6+7JKD29tIoTukAzGKmN0JZu5a28S7hYQgQiPbvBrS5G8XPlvS33O03ad7GFARFpkbxxX4WqCGHfIiMzQql9//z1/YdnRo0XomC2fDmhdV2vs6dLc7TT7j3QidiZcjMg05q4KPqp7rjG1SJr3whCOuSM0i1Rq3corTRtQhBMzHyplU2LpFjLZVl6RWkSUsGdL2VpRpk7jS5TfShBLu2vkle0DDAzb1nKSt/KlhYBuG3IjILRRHM6csvu3Jm3Ene+eIeMsVfoRia4BeVb1yaSP18WpkzA/O7xhQtulXqWTLAXvwXcEHCv970ujy0KNF5VvaiaKykSDq3l1aWXIQT2NmO2/HbuQPpa5r7c191QE00BoWXy27o8vrmDDn0gQZ1vZsk7HU8lpXLve+/I2qQ9nsTUogvCo9bQBkcdOIwtagoXaAoF404n0mj3eOobB9Y2Dp6rfpypPl+piWs/HDqf9OfvHuJ5kXDMQ/NT/VmPKN1wjXW86tdt4oDHwVmNqsp51RiDDuyySnJQRrbHdjPzsESzHh0v5MgF9D/8uOpZi37W6/lWXRbbpdU91fL9hoKGfqPBzDRCCJUN7x73s4jnvflArnqMakBmXX7Lc9fn4eFzu/HwhbWpxhHhtNAchoO9IX9DJToR1PF4nz+e+O/j1w4t8AFIC0b1INizrzBHgW2xxqV/fvGsylA3A0NGO2buewBiP9DTpDO7tn83O8c/dztLft5cmC76OpdImxqIOcHPv3qVH4Ybz+0BD5PTQOEDokml8/d5m48LMK/OQJNKvMwAt4KYn8zBkJQfxMl8uiaz3AxLL0ez1r9/sgZI1C8XzNCBLQebj28mSRlKlfLhBjruqeVUKsmMKBHyxFHfzmoQJgosPMI8XSkJZEXPMOMyehflJI06FHT3ltdeMO7WOs6ISOEM01Aqw/dW6yakckO5iz6NSGg3YA+FRdoCzC2w7x+L2BMD9gQIgDX0ShKQMTVjnZBTicTzLPP5fpWXpQlm9UCHhlUqbTy2SJlkNTOGZgZ3rnXRwhLZnSNhVICp2NEF1LAk7XZtvXwZcRcfkFN0n6IUpPlKd2Qltp0QzHJvvYC8rv39jopt90bozcSuyF7KSEAOZOwbXkv25ytQ0tX9QdV3XvBXNNAu/k3idvB6x95w7Q0m3KEeiE2yqlJwweLXL1apedVRRYhgZCYjEWBEgF5ke924mVpx30zVS9V79V/Z58fNlr3oP38as3nh+G52SHd8zJwfTTTQvHWdludE6CRizvmc13waty42+ryksSeSMiex+/vVYb7X/++YH3MwAIz9x5iGzwBl/lTEwDHUz7tXLhfKkl0qy4uMyIMwOAOVy8nNEk40O/c3/jRNipo7fsznx71i+Lx5UANoPsAHoHbA/8LPFz44VLqe7xpP06jVZVY3IUhZV5NKWaFQFXD3k+3HdMjDdljAEIzP4+TgrY91Hm8+HuNfHh+AKqApSbPjy1Vt1EVd1bqwiYTMLGSbRJZ6YOkR1OOpKHmuq/aE7AAnfGzaCob1JC7Ofjkva9Dx8Zt8Hmvd4KGK9fk2tdP18ZdP+ZWPsu3sbp3fPCTnLwNb9ICx9mhnx0tzDx0dNtnBxlyjtDeiH6M7Sevc9kd8DWNWo1JlHi3NchS6caq7ef43D38ujqKV5EtvkE8KReP9Tx4DQF0YZ6uBoJXr73PcNPZDkz+fynMyzmLU855p3VX+kw8+aDiYU1ei39Mf7F1NoEbG5JzHiapPruDs3apy+41F07GNDSpaDTK6e3lOZvMZZVbn4soNQESG/PLDCI3NLPDf5XhEwZVTb1p9sChJKM3D6RP92Gyf+XCpVrkXTJTME2CCFgqkbJHVK0RV+coN1w8dgFYtgi9Ea7Jl2m24t1RTn5GV/KAdBEbSzUHS3AwqOZnIDG1na6uounJSGUSmgkhFgTCabCGVkRbbDRk7GTCXETX5lCk4q3eXCwCXUyL2Nu73bQPu1MIUhJlBBpnJwHW9UkmDb+3bJGXAIpWm4hokmpmfUO2JfQqJPAUR9ew+XnU23DnTH2j8WJb53vmN2fmfLzqP98nEorArj2E63j6TKtBHTcFz/wRD8GUmk+FZE0M/8AEqCP/wWR9x8eOzGyicA/fEyfOvp3wXnxf8W0T6nOzfvvEZtPRSEqNZik8boYeUfjD8Eyrg8zPO1T55xufnHz8cZCBVG0vV2TaTjInNbVbjuMlBJPWOHZPXH/HAiK4uqdkMdtjrec6DaMYpor3RwwPz8db9jd5wst9uqnM69WVHNulfXnPIRuAp9vh4LLUanaJge7j+2US6LcXUxhZjtMVZrHpqagv4+TGdzionyPP8OECquJPj6w7t93kLaMf8m7DneSsDYQGdsY/tifrv8kGRtfvrYFuX7dWtDDvQZxwo3+nm7jnSyOY0d1+Um9KcZi7YpEcbktVnFdjQqaNAf26fbqGc+BAFvaU527C2m3XQW39pu1hJG5opYaxZPLCyYUgT1V63IgZzo5ng2TVYvcvUQXoFNh8jG6Eka5iPhzJDdTIPP9HrJIDpQnrRHuqmOfUD6HqiRpvJYbPYN7OqFa8OvzIjspS9WdFTl7Bw4hGStMuQUdGb+T3imebLzcnVGZYavgEgb22Y9rv6tayKVE9DCzEdqiQ7B1pBviphQEFJuW916lzK4I7qz3CmLSNyX26I1qpkzZoBnUCat7w9vzaNfjnjfdk7M7Z95X2JyrxcQtqXvwEoM1ckAWPsZYGU7S6Pcg+w6ujXul7XZQ4uh7cZVcCRzIXYfkcgUjsk7Fhg7DAgZGA6ze6byM3MH6SvjXfcAV/M2Ll3IXJzV5jfLixgpb1eQZPihu69Y3PjBeTbKgQWjQHb7hIMdDpuWprr3i5pC7yvQhOQMVN9xHqzfIKkMX2THTc9r2qehuOV6zRP0nXs7kGXmLP2oNRjm6dPhCKzRRbPOw9oPU5ac1rx7GANqqRGF0Q1OkvTG/0RK43BPe9H0KaEmKhToo+PHM9TWb2q6iBP+WnbL+C3wIcfdz0GoeIqIg7H3vdAFaI+byKUkLSqV7NVfNrnVZ5pOq8xDlYTzrfhO+hIdgLg5rNQyHLp95iuX3IcywEdfaUTow1T2NBkTNt5HcmPh3fWoX/loIGDJJ6Lne0iPlTiWcWzymhOoXizlsv+HXb0gmnC6QMun80GUycMnmc8cKMvWGdpHzKinEItBH9buhNmPzttYqbGc78v1fnDs0wfsO63ZzJwZ+5Rx6n3ZZ0lfB4/uvbw3GF/1BybA+d+e8of63wCy89nCpxQ8/PtP+6poeuBzOzhHG0P9Pu6nWKFWYDzvM9VEHYOGT8WrZ7VmAJ97KtGrwc1ltapoJJrKjQzm7iLCvoBQ6W5W3/hZGS6yBqtqqmDDgF2jAQciNaWoYFxKgNZ1ct1ZhqhH9ZBvdZF3E9Vwwl2WPEjkcM3tE51UROHzvcE7PQxJhUSZGvZ8zaFkMqKP6C+rGRtnmwR7ynKxcc+kzJZI1EPSC6/ayBTyG4JGWJhbFDCzL06qqN2cs8oQoXKXKAzESFGELnhTgv1IOfG1qToSbovd6OjuGcCqLYaieEZN++I3MIurX+xWi6U2GSmkptRuf70ZCTefrslEHbv3bMuTczdwI+5zK9XUHLbyYwdgduiF480Rp8oCdEqyzX50mQV8VYjfpPAhFommyWfVHFPK66Nfjc+baGOlTuHpj3IYNcPcqWM9WQadGzD5xs/r/78RUwE8vtbfcbYxNlqj8Wsk8izf59M3se7TSjyiRUKCOK413NjY7LYzhk6Ydy45Y6APkzdsVns36zI4wS3GHyDlsuDEKnqdUnUTs7ep62ceEqT8S/85bmHZyUnc3hWRU+h1ccqLw6gb2RUmg4dxZybPvbx+czTnzBA6NzqILIKiyYzgnnZES6ZtxS7UCobBmIIR55fKss72YlPZ/ERVZ8d1g9lSI2yNMcBj8jVvGruZ1j72qqE6OeHbUdYpwKPAftcTlZE+2z088mzM+o0RMRQ0Cfw6ts6ye65y1PY8Ptzw0TVn89EZZ1+84fMQWGnVqvWKltTr/MG5/PGyn78G2Zd4lDFSQCmdBBn8fuUVAxXIw7gEwirWsaIlp7FgBENeH8gzrknzoq1J8+qQx/yZqoC8lmWpxVfT5Vo5Ue62hescHcYKrIpCnz4+4N0ONZTVS7dKXT1Qg6gaifSj6CLvEu5MROJVAktRUZINWlk3qHurGY4owa7noaw2ZboYg97KhNtLfPenmbLy3xzrduOVBwq8ZoRvOhDAPRK9hFvrFv3v9wJwY0z7qKOop2oqrYcKxfVfdoEOryvPRRpe+9XVpdbUgmBmYKty9d6N0YhhOu6/p4TbFgyIhXSDpD5k5eZJ/zvwsu+NaM3TVzX5UYu2zXweSmVkbS9v4DMqIEMaVHcWIAZEjOrExZILBE1lWon4l5f78sDvE0lM9mwJIoEJ7QW1wX86OtF6I5M7NBuHZjUVF/Xw1oM9xW54uUXwmhIJa2kMRSEvDoL3AcenphqegkOiD2Ht3X+6hj1fqlp3kJR7mPn2wJmRIGQnGPXn1S9cWM8hCd+PNk3HvM75u7jP4OJAVVFa8Pe50C2dW57d+yi/uV1j/Uqs/pQAXhifJxoYV5+AnWcS1Jf6nnLvg60gxbYs8oHh1gZHTPR4jE/c72Wrb72JP8aVp/WWBwjhQ/UUuC1Q//G4oNi5nBzPWvBz+XXuYA2gTxH8nkmE98+NMVZs7qAQR4fQLve/bd8aAdSA0bGJH8+HLTnPDeLKsmwPBsPj/M8sKGdPOmoNh/rt2l54g6y69Do+bRZVn1+KtoqSyccGqak/twrczyqaUZM9EbpXZGZcRxALfv88AGomIan84Dro+tTmsy2At2kKQ0yRLHF6Hm4ni6MDkxbEzOpJHt6P5wd2k9qnibIk/MdPRmvEffECLHIfNQvyXllJYCkp5AJOC6+xFIwiGn+VA12EqYmrXeLZt2fp3KANs7G5efrpQKRz54r1Kd50CkB0aEk2nodOM9znBKMEVUDwNTYB0GswmcMfME4s0nhACg3SzCpMIQUmtFTm4isFuG++htSdNo5ynuf4g8azNeaNl+aO5r7ptnlqOf96yt9rd6bNF5Gy73RDUZjdE77yDMHSxLcaP1cqoy7VAmMHDZpGgLql/IinQaBXi8VaJldmkIQpQYpKrbcl4PMVBS2i0L5LtTI3pWWSAaZaSvjZqb7Nv5tiVJVVooX5Jm4Xq+KgGu265xF87IumTsU+84ruqPLrDU6LWQQBV4pbQ8Im66fl2/b9J7PCLDUWCJWQ3LZol9mkf61IqLkMuxtMEPUjVVbhtwTC478lVv+EmC5zFKVGI1I7XPQzN3O/injzn4Ks9VrlKfVWJJ6ldnhHybv0qh1rOmk+0L/Y3yEbBqP1GnHx42xWA8dChgVQlWhe5/wU0pBdgf4sZZorkvsIr4ywonu4zkI+zOWqGP/ebJZ9z8/n0PQVnSYqMd6fKwT0Vuvnd7nVwVCLfKdRGZV7GcRXfiothmfUr4GLbrXyLwtdQUoaYccPcHBqbXRGPpDl/5myLr8YbwqqobsI0jvlKoeHYzjFE78PmUCBVSewPCDCZFOmDJ9qxWJWpvkc7MDSwqVt6lrP2Wlh0arZp4KHCIzI3ee/qGJZIETv8mcSScoOLJOknqIcLbpzPGBmKvAaV86drnB6AeWwEEmhduGEgCslNP48ZoUkbH3vbtpRugZKRN2f4CjwqOanfaQe7PCNRC8D4I7kqAvq/KltcLMZbJcbqWDkUgYHIKvjAopaSg5sln8CnPNy8H6ktm6rkoJ2/LL4EbaWjRfUkuJSof6JMit2XB95oq1pxJ0hJgGnwyuqoRnQJQOwcQ+yeeEt2vt3cxQT07sjvrHwJQtyBjnL9h0XdZ0XUBZYKGKI7sqBJ+QMaruOFM0axad/fBTTISxh3PGQcXdWAtZZgsJKbSRm4rcIeWWAtqmzLCcsiNTAJVVSWVCmXsPDq6eA2fOkLtVVT6TGE0ZuNx/vb7dl3OZAWv5i7wAXdf1f/BLAVVLYJtK0JBkY5E6wspo6PzgvaJxNL1zdEu7GB6/CKYsBXmam3GbB0S/1iWj851Qim65za8vy4jIn5+byswNMe+1MrbABcQG5eGMfL34k4sZSDASGe8LQG5UAblxrRcNbjXetw6FCeBafK/3O/f33vtdVa+onLVbMIW3zAxKkHC/LOVpNMR9GwjLvN/vWnXIHEyHwJ4DuC6/gxfJzH1nhH4W7FLeMkwXGATB0+T/CGD/yh+DGfWGgG3bMsksbcCUbPlab0xNer9FJGlRW84czc6igwz2DG/SvMZu1+E1M2vxmfYmPVFicOW/diBI6rNYrvhkVkXhSHjYk20sO36Me30/U0LV4nTBfKr0uNuIP4SkTrpHUmUXcspf5z2nYJoHhD5+6uEpJ6p++grrbTheT8OX9e9T3XeTCeap3Ye6Y/Gp69HE3dn2BoXkGxr0HUuBxOSrBoJXANVhZ3PRT33lMe0sCtpIqrW0edDu5xPqRWbzV1KyNHEOZzIeQ+cyOob8nSifGJmGNK8MECed2sEMG8PghKO9dFa1hUbWGEIvXI/qhc1glEX6vIb63/GWJsIcGl/+JHslmSBmbcNxwKg0zkwdLrSUnarRQ5Ki1NDUtWuURgYNmejURkaa4r7fO8xBlIhzH5saqTiXk63Y+oGlhu8EOA85OcRUG+qkVOrzqGxTvTqViGgxy6YHZjADoPI/OQiulrQT62aFGScmAkCjcfkzQOnE6g0GSqUqjRSLOO6M64PAn7q96hUaRWiec1agY+gTzTFXmg0Gak6A5gmAJvaoeVWTDRQ1MKy8cW6zgMIXT6Ks97JZlbx/XCCUgNsuIp0w2OSaAGR6Mcmd209Ldi2jqaB0pNJVJ3hn3IpUbqGabqgS4shMKlE9hWBsBUiGmNKdyNAmkDs9hZvYTt3v+G/5kz9vKWPf3/h+I4MZuRW7tSiowCrEohJtFBGLgFK0aQTjFBJEkqRSZtWw3Txg1zZ3mM7KUeey22vWRFCpKNYlSct0oFBgDT3w4HVJWNeLqUjuQFVYmUvI5TvdV0sCziD0NIUh37Z9bQJmdMHIy9Md4HotFXfr9Ciqu/qQN/eO3HlHKmqiBxblsquE5G9zmtVDoBnX25byzrxvtxClO2vSlHHXhmjjWQbESPNNN0n3vZ10zigopduC0WmariN/ubR53ancTICbFmaCX9dy0Ne1imuiVXMn2ipPoDlai8WM5JT/TOTSa8Z+QfueVmIe0jmPBFyd1oKiT3WiZjx7yh7b3uJ2AZO6prxIjsHWvUD9+sfSN3QDxqVPfN7x9qSTD9PMcSPPi54I4/EwXeRFnd86ThPH901p1/OFiU9Jtcodq2qujIEyZ1BGvWkbWWe1EUJtqyZKkpuUKFXL1soot0PxCfbH2P3+NUHcsmmLfFZM4ylTwCk9Ob/5uV4TEx+u43f/q/Ow0ffb0sdmMiw+gAgYBnIAzNN5ftbbaCqvC6k6NUelpj8opw3zgUcVXiKzmvsa5DWtxpouS2BG0GjcAqAZbF5mGlJOdYGmaUSz+1DynTU9Ts3lFBOTsLkmGhWROeFSc4g892pn6Wa153n1Z7HD7Zpc7F13WIMGQaDyd+FCyjJYnVNKRTLxeN2eHeQGSCXEp2ktJgQvVW1bM/8W495bbGO0Uqr5BJaZUVohLMVt82rxatPVx0CAMLWbLUo/e+6jpKOuNGHeK5qw80b1DB1F+JnTpDxDGHNnmkEuE2CWxarFndstLe6kUbKUghmxLaqLpy42WbPxyJjTRpTCjIYWq/tuCeVmgNI6tOijq45cSLVfTDojoSClhaO33cdvlH1h9HJ0uSUoNyfTd92guev+5n/FP3V9X8h9vz3/+Z1KB6JC6hJYSlHhAq/9d0h2vKdIbwnYmlQvmKCMopZYkZ/6ydRswRwdrYI8yev22ygz8zqr5qYMGpOUG5Lhiv0tS3PLWL/cM98pve9FUBGwQGDhlid971tQ1KRxU+bLqPBkwHIISLdrhTtZhXAEi9iGbuUGCL039s/3LW4gaXSSadwmrxxJ0r+orx0pW7xI8hXv9ze49/bgzfh774sSXHfkcpqRbpbYrgrpXxDxBjPvgHLpS6kAQ7mWGd1keW9FZhXnL1IbO6k7tFK8XObXRW0X3P1qN8XSkmcbwUK0xfx0APTUD2RLa/SfDe0j+2Vz3MsMNEJHwcS2UWO/JKGFOtCEWBJpymSEahZXl+dlMjARmB4SEIWa9eSgM6KNWXmXylep01bnu8AzS+mzePl4F3QoyolozwsGsU8c1Id0gMBc2omLk5JCV7k9q4kZUqaai5p0SyfqW9/2QzbiABrUJE9galFVc+2nt7iu/5TX4L/jh7GyYILOresjLVQflshyPXYA2KCvo6ZIWCH/ASb94aWhB9XgPNa5QSWXWvDKxmu3uL9Vr0YlI9EY/EETdbWV6mxyYTKWPLhiIrl5OmjzWYd2Clufr64RQIkcZIPBhKkTIc1G9HYYWNdb6ETS6IG7xdkdkv5sFuCpoDjuu7mKssXZD+vp2xYOlBRoFcWrYhTO4hVYUzWcTrT4ZBykYCRpCsfAvYwNbilTzCxxxFMuhZONzDmXjb95wuAJzKv3mhEOOMlpiGRP6zjHSX2DKWTNG27u4TymJ63zLNrcYH/amWkJkJgJHznpm0YRKOGsCtJ7j6PHabAKmuxJp5QYL05qq0fBFe8cO7cSGTcq00ElIixSFWBVS0MKZ35IbfFqwKizUSJtJftM02Q2DjqHFEpqR9zbNywQoQAUti1CwWzpqxe0N+73jZ9Yih1x895ZE2dpoPm1zMQzB89chQFrQ6pmYWUUiVhPeN9XZGZEaLW0DoqvhmqEYAl8mwCEgqCb+ZclIXIvbyYr7EK6uApm1nW4E9cXVwiysILEqrR3Fi0sSHlzQRItHStgeR8yQ9b5BtG9cpLrtKNXQBY30qgdyNwRDpqvkgVPujO9xv7k1/rl+rojeDEdFkmlAZuxPXlT75836YL5zigrIAncNJB2ib+I9BVdC8BAsuBHF6qnqQYLLifoQRfNk6pEO0taROHci+C13E0GK4TQHXQVsEwNR21wDLFXoS7N+vYngmg7XcrXqewiNFW1jKYvSFAWD9djidtmTQTapgc4H/gcyTGpz7dQBFLHU3reoq8Y5wd6/tvvPFHb2C61f9D0pk5U9ZjDttofdtUqo3AAbV/lnLCHQK8jgAcknJgb3dpQ7mFKkMXf7n1uTMioGv62s+cmUPHilEJ2j4ceCvpYdkArVax2y6mLVdlIMMoIh6QcEURADA8zQHWqC0YVu6lW+QOBiIikMpkwKsWoqRSdQQOZME1ic54cHltLTBNoLzaHIW0Mt9tU01QDsKZZs+/81Jr0Pikzf8LtFLOfiro3RWKWjamtwI+nfa7yOQIfX/0R51GeZ9EJAGgEB0maTpzfDgMPXfO85Yfmhs4RJGaLiKRZ9BAlYMjPKrVXzbuBlFll9Vkgo4ZSe8Tem56j2nySH4mgpNgR4dH1k6g0aZ8zpCUzNAcmW1whyCCBmtzHnmNQEEVD+0a1Xjp1SkgK/4IFfRpyCiarPSVkhFFCMrOkGESxVJ6n8nQiYKUsa6CR1B1AlexoAqOeg1vvnnJaVvaueZraTG6bjAikvFJS2Z/YFjQZoGGDzmFv6h0LErf4hfta67XcWeVSSfMwhSqgoASZhQL4zp/YazPerwileSYyAwYj497pUQmO+0dGVW9TXIzccX/LsUpZwwx0XL/W64/3ligauwoWUKTXo67NCDIzQGdGyi+vLVsXlhEgU9lzUlPJHSVaQP/D6BGCkJbIDYjenEGXHiuUEPx1gR6k3R6waviQya7Xj7ecj4LMmvtDKhE/tzMg45sRNTcSMmDBRXPfdGdCBjKE9Mhl2th+/+SqIucFwoElE+G2IOXrD/Ov2G8s/tz52reDZoyMW6Qjv99vaolkkLbFfQU38x3/CEmvDL7ybV7FORtENTkZ6Q4KaYQZF8HXBq/E0ttgMq7s2ti0MpqE2WJ0DNBfHVseGrjEjwiKll38MUaDRp4RvLa2jZXr98t2wdXjXaxOGymi00t9RlhhHYipoayjTJLmSXNz3KcDv4MQyy5tLWGaFCzSWB87NRv4/aszzRRbWm4MdAeT+rCJEweTAqzrnojj0zon9Zv5HQvNJi3HRpuT9P61si8FZDwRXq/3llWGZKj6NhMMaePyiPHy9a6JzwWdqPRg7AkFn0C313ilTsUoQcjQoz2Y7FAtK+M+IMCC1vx9TbIyyToOOirHD9ZB1XQya6h6MioC7uANA5s+2JDHdRUKN/ME4XKGe3oKcLMR+TirPt4mx0m3GzuoS0lFVTMpJVm7ngPQbJw4xqeeBzXcDTSsiz487UFTHNRXTmI8TL38Yw402qPbWS3MgZsXn6vggbzPRVWgVqd8nq+VBvR4orM/DqxsqYR5j+iyY6tauyEFykOdDxNGJn8+ucHe0B1zyjN71gFrojn7GkDA0jB1HQ0HzbyUmg52+f2IkiaPwztbd+Dl7BoCpj6lz9HjpN8HABf4sU4+WOu21c02YgY7BP44KOOcmTljh485mBr+zkFLRdscc1C4zRJmgLnT6WZeX0Y6TF5Dq4+3ZN9GTXLrnGtOMFRmA4bAzmAKGfl0mFmkmRVRqoQiwkAXrnW93jvvn/f/kYB5C74869c1rEPloDXPQPIY+cpGHpYJROVSCK0v8xVF+Ve9jNlGXkvLUc1V0XuMtqIWNhkoXKTkJr2UQM9WgGQCA6b7+5dLQd68b1NVflvC02RmS1hLogxyBbZtJ/dm5M/fBHgzs48GaZBcC8C+Lr1eGdQv8t/DIy8I8QJN8TLLvPf7ItMqtRBE1inTJqkwy8UM6SYoavuU2pStpiUNtITnWr7p1CorXl0Q23HVmiKx6/es93AftQ+OjhP6lWE8zUQdhI71eLA8pnUaeUQSDnGNGsaFY5nwGBbiI+hBw37Nth+asQ9PS4GwQWcHjCeilIqCZh+ZPkBUpf0EgkkVWB08XcdRpD40OEVMZypqYKtA9Qz48YeHBB/31img/vwq2KgX2InUhjvsQ32ytezPO+Q8pir8sHRCMw8VWR3DPIT0h6H9V+wxH05gdfwDVHigEr0nCWPq0d97SurUFBa6uW8K9yaS6qUgaaVPKbMpMR6PkHme0BTenNB/CMa+8NocRa85agSKwMvoEJSVQTTTES7vURGf1dycJWz7Wo9yLGYbP+oAja5f5VRUPSxJl6+NiRy7dTL3z9Vz0rv1UFTljMC5yUYXSRTxNA+8OJd5RfMvXQfzPNnHlLKrKYpb6WeRcy5BaASM/0UlLLgjrdoEn8OsCo5yx4gRo13bQaEFrgbl/Yf9pTmH3TJBK9kI4Aj1cODgRP/zx0GGMrkZqmJCQJ+ZNCU7MyCr3pcmRguSHE9cD64fDnq6QmZGsBs62ppl7q5WaWQoUmmMINPU5eyd+gBrUjFqW1CqtFamfYCA2iZ1ohUK1DQkQLsuLBNdnAYVkZ2MSBbTzK72aCSNqi8j4RnYG4rwjDBVBjeF2FBom4RirbZVVKtIWl7X6//0x2stP8/MXCJolQKCAcp0pwFcy0DKuyiItHIvPf4KMORyuUhchRmt9K/ImtKOoi8QAO2G4G5XdYJZ7CC2VHDXZJ7wtQXBraaKCpbpvoIAbYtAlGRf5diMLuOydSH9umsNc99x872Wvv9W3DsN5nSXw/PKcFvYcXFRfL2u+PWlnfyH2T/vi9/rFU6T1aD23D9x36hJ4Sv39oF9TFuAmOa2TCQjggGX7fZ/NMislWMkmpvr2teSu+SVutiu7T0nmwsm82rrLqNobWY1WSCdCzhRaf2tijdPxFumvQC18FBnnJCmIs0yrBrkj+Gyxid/GGDNeeeJ0zTcL9E9iWUVSu1aU7V3PHEj9gntD104HGd5hXZE1GNCn4v5NOR9Ux3/lzl5vNMDK44xmh9pXpHVttlgsoybeVDoAWh1SsxmRTmWqWGY5Qz6HV9SyjiNMsYGjPUZY3HKtyY+E9Zj5jkOr8osBuNUvbBBsokPdb4SSitbUiFBHVCjfEUmKFrInfIa6ll1Z/0qM+XgvhpctoqMqroQM4cAqyZD8kVk2KJc6f8w8I68lq/LsI7nzNkrhzgZzNagRx25nUVSV9tLqMRUl3tnp30mpj3+XI9AyYnbKvE5njnnkQnn0alDtQmg++mU0/hAoG2V5/oACJnEiB5wNkLt90qzTknrEAGANATVKcwoUpCc5HUEqnrUSoaw8KVmQlRmRjamHGhB0kwlhlASvGYPaOzLVRoZimDcsVEB1XnQXahkhOTS4OmKlolyoUmwRp1ToEXR6j2eSTxgZAwB09jafq3Ub2LDM3UMPDUsWdP7zgYQolFOBWHJIDItT4saK83nVFG7RAnjWJJyt1uzJyqurD5cKyoVAHqUaFIBIEilV0uTspimULWzRibM3HranxnNYMvERZhn2i7ne6/tKppQqXuTmRsZvu9UZoRZ7u1CUyRfX768q5uBNFcgl40MC6GIIt/T3ATAG2QyaT0BkUhkjdoxuVnK7tyhXMoIQ4qI+0qEJTwzIYukRLeXdm567H0b76L431xx5dayTQmW4VTm1hV/xxfCnDAqqKTM3OiwRbpvty+YJ70K20Hcb6RuSvd7be5QEri2O5ZeGa9r6cd/vRfAvcy+rhR1rfxP3/71/edPEq+3UIXd79vfXyNyn7ktIjLgke+8HMFb2rSV3XGnwI5ti6TPoOwUdirJ9crXH/HryitTr4p2YjOVhdyZKcDwKGLMf5TI7gbu0s0xAOOa+GQ3BVRgC2Rh5/MFVhll0Uc8RiYtu/olK4huflon8JOqGrxxcjFoH5C72BpMIaXQajVjIEFWjHbQ9gH5J7LuD3gEFNo8PwC9b/ajVOd8cwpoBJHV84ZKLmLoyn7bcfuwskckzTzLMpFWdavT/koa0qTMkXwoM1MYg2bGoEPKCtPzmKL5p7zMGMW++ulfOUZ6Dbx4+A6wmuZKE8tqtEKVRB8088CZynbMAmn+0P/tp1oia5gJw/Vyc0BTcDl3PSigtmBzBupH+hHS4gj2reVOq9QaTe72UADm5rRzFURFiniiY1Z7ceN4PfXytVHNjc0j0/CIRNSG6T+yqrXmuh7fOQdxhhCYluVUHPGp3C8986Q9kZugp7lnzgxsRIk6XSN663L1HDQTLZGiy4JSTUXokm98bNb6hzXjfDT3pqDNrFJ4mSMsfJxVZDctR5j36W94m5kohRFKNTnuPSyQUd4bMI4F6fbF7u3PZ+Piwcu07LD+ZBxYPA2BocnJcl/V65iyRHjVe8KqONCAmrRhTgDu9ObjCwv6WihnR6c74HbJ/QZiixnF4RhGoo1QHoqsK7PazFQapBIvCfRL6NXP9cGJ5JjI7puszH6AEqzEQZCZDCgrW8IaHZ+5eV+3BW5lRji+7/AELxqQociINL5fP0nc7/hf/5//j//5v/nP7dieKe0q7EgJGZmRyNx7v0NkRKTScjfw0gwlJpoYImi8Yl1vu/yGr9tN/q5nIyJSwr5+7vT9/SugWCN54/m3mBFxiW4WF4X00FuepEKgUne+Iu9XyphJt/eVxXARWDSDu19mVeSQoUxQrnA5HYh4MyPyvbirkYEGvS7LZZeuJNZyc7CKttda/Pr16/uO9TaLNMt8688OD0n08AiFLuU7Xok0B7Wule/rvRwrCdO9PIPVfrCDSN0bZnZ9yX7d+4/cfG+mmLE3+XbSPLSJZESTtRX0sEoQCLrMg9bh4RwLVOaydNNy5uIpQz0ANCIjYiekCIWQEXuzCK+Rjjh4vcsodexb+7YaxNF2uRTcWBkKiTRPjXRL2dxpY358+fbQJJ6RIyvxBKMYg4vD/40ReOLLQ3338Z8fPZFVBax83DZP//C5y0RYnaukslr0OqxttgIZbP84JzNKuKxdUGfPe5ZzsIeI0FAasR/8waCUg12OP2w32v7jGUc41UJj5YAZEzkuR8OZKzOtKqwg1sRtpBLKyKwQvNQEMtM+2TlVPN2QQs1tWzwfrY5YsuimRCHEFLNUwvtasg2bmS+Dh4Y2cHueUNVIDrgrX5+DNWoWErqa6eCxrnuukMY6Z6iOXvdqZJcEJo6aAFYgWr51sFd3Fdfd0dIM2aDmVGelxskV0z5rdYgPS6IJEzMrJFCyd1lx3YkhBXMThOJJK03QCZd5pmjbm6EsEd3W2DGVeqCyW5NiM7LOeg/9KYG/hezKpnK2A0SqkSxNUAnM6IYZHPRl4cwiB0Av/tpoDibqKHeapz6o2duUWbXXSvDi4GoHFoJKIdNQ9VnqR5eJRNxi0URGVB1wFR35Uoq2dDSdpNI0mVkSRnfQbcntDcuERA9xUqaNE1RRqhX5sbJMDqptKoVonaxS1kBm4lRwQYHYV4pplc4xYySI2E37FOfYxqtBnCINkSlh70zZmwkl7L2lCC0GM+79837LPH9+pf36+i8b/+X//cd/y3tv4vaoQ2DZJdosA26V2TVUPUpVUdOO3lb1LBRicTO73iLcCVtrG82zzwOxqzjkO8W4DSsFY9xfFpn33/6F+IbJVoQug+yl++0rGO97zrAqNC+VRprv4oadRl9Ly18vMt09LZPveElx7wWjYQduZ6TJkEmjGw32WoyvdXHJ9GMqs+prrT9l69/+8fOj19fb+JPGNOxiigQT0nkzN5We37sMCB1Li9tMxlTejv2Ty5BEaiHJTOxk0tcFe63rlb8I1DTo3AQdybU9pKAytsZIm4wq5r/yN3YSwBP+jXFvDnkcF9CZgrHc9fPars1ylc6Op1hl7Wa0kj4vLe1OmkOA94Csqq2agNusy4w61ddXZEPfTWwhpWKHIHusLiYePVnBKVaxU0LBen+bEd/AE/cfz3VKV0+JTGkzVAwzIfcsUJpSTDgUEZVGPj6y41Xm5OGPAx6rjLH2x86jg2N1lM/nMk2qepJzjfOjehaauyHApXEET02ZJsAz5t5nhCw6Nqa32EpRkDUu03QsMQAzbVYyRHRbnvRlFXxUGERVCjPuN4famBYatGpZjVKRWWm8WWjHNu0dSDczOgKKyB2F3NKKqB3H3qqoFFhBLkF4yf88FVxlVIrVr0Bkvi/LSGuIByV6EHpFBk0wVLhsEnquq3XdjwNpbk3wWSJ3BqrPCiS5KK4Sk1/LLgNhKD2Bjv7Kkjdnn4UBWqSjrHPeQTPs7RmekbnDc2dmJnNXZyCPakglJyrNB68RNmahGukeuR3lQ6SAovcY4O7lXapW2Fxr6dXdQ5SZrHpDaGuZl8KUXS/8I+/UpqVMYdXzXPIaYuWK0IJ/vTMbkiYhk5eIco2Cw7Sq1Nhpq+KYUFp2FUJNDhyOC4rUj1/3vQ3Rge/+/srv27wm/RiUJYcY9/s75QbAPBlGtUMz/2V5bf+lKdSuZA9BbJrfYMupcMiPIEqyuNqm9deb+/22nw1F5HvhTdv7Rmgnd5RUi1jZ55BtWzfSaxFcQVdeASEQsQ07UkBsLOV6XW6Wt/l1+Quu94vm6x+v6+XXsj/cQn/88ff/9L//H/7n/+uvv/625HLC3ByZ900CrwsiHZe//u3LTG4vJ1ljjGgKSFeF5lBmDwy09Nj0O77wDm2BDlq6EHFp2bK4frhhdNLWy/2Lb1ybL9FrEK6Uy80XboXinfb+BmIDti6zXN9p7zREVCZhBcyWY12OZW7Eor3C7OuWUtrv2/P7b+LnO6C96dfXlfby1yJeQbcqzA5TxE/ubyII+EtvvP7xx7/9KP+ktH4uUgMxA5bA/qBQLya4Vyq+dosBrBtQSy9kejKjpUHXZfC1ckqs3++IzKwnaO7X9Xox/PX6M+KPP94KU0hbO03cGQHFvv3eUtJkLfgkA+nihRtOf71eMk9Btrhw55Y5wiS3FDaE4P9wlRY0UmZMiohNVCc+qVaKrlbQiXE2nDLeOwR51z4YQwCQ8d7brbmRKrw0uBQ7KmCBsK4MuCEJINMquVQ/niqIqpoez9zOlVCGlzFq7jO72GMITgzxLkPVm1gyxdOQdFBK0tKWLaMpr2tt2TKjefNMMPPlb7GV7aa1GmQCqUSGiJp9VmiDopUQQUEIejFyBXVsOh5pbF9cthJPkVuhhHWyj8LpctZ8xvAJ+Px6WODhEVKscjsUMzpAYRiOpvoOBGjCuVIT520HqrV/O1AgR3OXg94E+lru9ewPUKrL7qKdhjX6IFz7oidHPiBsrqlW8hNtqLVvzwL1GlYSE9OifeAZG/9N0KtP3DNuNeJDCZqoGNHMH1rlITI4CetZd6L3VT35RHdZBzNKbSojIyVFlRSq1e66BLKbXvoZJyNJJLtk8sktAMhANGHeiGz+UAL7z1evceboxwEAglYlsEK3WnU6ttH6Q7icD/1Ig/ResLSaMeh58iqNsk8uvx9Z3eQcunx2XQ0LMq/IIIseL4a9a34UsSPqfQ0EnFLWcyr4RCVIU80JLNmKTJ88BrumsHl6jOBJAsq9bd8bCOVWpMW9FDsx3a/d4aWI4jXSu+j4LNRAClpmICJzr4zcd40+Eok0ywzfGfu9s9TGFWGl7HExXpe517EuBRtRzU1lisPHUtnCMDKroRUtV1p9XlXHZ4AF4JctWpV5UzSZpwcpoyOVk/KoOMsUsfeWxxsIE4EVDE8hVGgZCqtPU3ZnW+xQMDO4kr6sYjJIdtI83JlA3Dsh5d52yWL5dTmWyypvL5pMZg6QzF1diJnJ16/9wvXHP7b+4RtvugLutgxIIsIlhhUk4kb1/VnKQJilfOUG1gJnvGZPL1Wp5tGN9OsyXNeN5lJ1bEax7gJteXW5fVSONJwEMUoIOAa67YtZlaBrLHkrO3ZvUVev97s0W0tny8fMV/MyHx/SwUgpEJ1P/uzP7RNWhcQP06cT4U2wO8xpD9kijozRfF6z0eU3HtEblfMj0PNKUIOGh3Q/vOzwSm2QHtPUNuuz+kkdv1cO2CqnMnF0M7xjMIFOrM+n9I0fspJD0E/iAGPkyi4pe8piu7vTlNV+nuukiT9y+xCQptORU9UxZYm67FznPQqk4HxEVfCeGt32fmNP8GljGxno43ucbxzevwNUkdWh3n7JzDwF667N47keu9UFgBLR4pF1cvvixyX25/fFTk86u/ahumrmAuf3MLfagGOeNJ9Hf968t4hpSr875zAZDPCxih8H71mfWukmP3urT1mzqowtS1YhE2FZucfI7OspDrS48cyAesh8mf6aqFOFlq1cl5mIjERGzPFTZqQYCFiSWe3iBZjzHAWMu7Vuw6jMS4sV1HasZWKC8Nm7tDyLd7qfVbu6Ujt5zjdy5ob2QWH5/KZ7DDwrhErGAt3yWmnqMR0YZAZAWc3CkKY+Euqgm8BIiB2Q2pJ8nX3pjroUz8GsboIEFfdtsTcYUkhpCJhuWMUjASm35PiJnnBsVZXMmRwlIfYKRDW771sZuxyhBLdiIVautSIuMEdHVJH3+wazZp5VFl3s/NjwlJVQoc3zj0LHLXnCjjA0BYYmM6/wpT4ppWScQpDkCrqDK2NJTpQexou7sMMr0iNB2aXqiE2wJr+5wh0kl3ht509E7lsbdF5223oBbrzcVhV2Vlt0aCczIrRz874zXdXAcC3neokLYZ5JlgDaFZsU3X56exjMwF/8dsaKHblLFo2B7S4LJS0hi/t2aC9m0AG74H5tY8Z9S6naymmCaog2HH6JZpfFcpdPudPxmRKUXdWARuHjMNu9NONZHSnjf1E5wgoOMzO7r3PajfC8rqeptK2xErq0wKP0UWUmp6a0jmGZn+4ef0KcMqlPCQOOZeJkcTs1iwm/zuH+eJvjMyrZd0zdb87g8wsVaPVf+uddkXkCl0ESQ+NW3VayvCgqGAhz1r7M0uRCT3njWf/JLNd30c0bGkcxxUI1b4fS1MdyfjYXiH+9p3YPXcCyxs/VvXSdDqsNotSB2qXm2Rq/L0u5ZdaohKrprbKUsaIA0RCklwUVRAVnt/TRh1RNl1mtp+ZKJS3Tagx3ZqT2jqrQF1gjG7ubvW6r+uzq28gIa8/Tgtu1rzs3PEaDLE5n0EDxjAJ7avukh6vKh5BkD6o6a/o0rpedm0fJwXf97MwAnFQ1UfRt48DZQBpMhrPHa0Mc4K+KzGJVSYAV71mOXlJ7V/uAiXUmS8kC7LJ4pdWYvHio3MJqSqnifE3cia4EK4w1PpE1n64Pc920Ge0qlIDUKiRdAnk0IZOy9eCXU/5Wx67Pa01ucgKq9vtqJQee+sZO7qOnxdYZ7RsBWhgeKv+jx5UCyrplEMxwMa0y5P3r1VJcaCUzIxDbrMW8cmubKRg3QpEYAb/yXlWkQTAyMhWJyBKkUCaRNQ9ckFKtYnkYCEgqy1Jal+hCxKjMTLyrGGvyZ5W8pcPX66d6ppZXyG9SpJv927+9vtxKq7k28pk7XpAcdSYPmFZur0hGqcSqsRfsYJ+gZ/Ev+6WEQlMuP9AHkAOUuUHX67qwsKsVXFEDloySLljGe6saoGHVOAG7tOAyRcY7g18GW4AbjW626GtRawUSFok7GMr33jfy501dKU/VHF73MK8SRzKljE3Ccn/5oiH2zo0M0Rb55XiF/U2mKTSVHLo93MRkIhLatOUuhV+C+ZZtRbjCC2jnhuh+7zRkJASau8wdXgwDEDvItYOtMtfleZ9Y/8S68+f+2zTV1glZl3ctu9BF8W0h6n3mtHPemCeDNqxN2ZXxLpxcLqa593EdPK0l7BEumGCidWfUgXF9z7qq4NzUmAw01G4rzAlLQZX34Bg8O1LJnDqRxxuPCQUtW52oBlEQzwvHa9oMr5Ewg9oyk93z44L366pyBt32pm6NOgYbgEU5qw6vydbr0HOB57IrhPuMzs4adBtSeV4Ws1o0eNrogAF41CkKizGRScvuhA6NakcFjh9zpMc/fT7HWpHjvkznamdf8YCJ+h0zYFlxzkZn4rouuyVklPLGOfyg4sg7cXbDwXVANW6yndnEzV1m8CwMSFVllqa47jRt68m5azz2wY7P7u2N3WAKkow1mqG3R+HuYkKsxzTNk5LQgQdSKkoLJ0gWipOwPjTFdZGoRpbDSdTyf6BtdI0ZAEOqZtCqHHBftypIb96GLAFY0Cr31OERZN7JWZg+zyXad0lw1QBUeCJtxmoKIiUyp/mpuYR+Qh871YKcSWv9rDTMDCkfwq7y6kWtWqk+sXxnjWkokCNjUsiwGYGUSkSNMaipGVWsTS9dIBClZdtwP1rmkpl7KSGFhaHapamHwCsXjKCyQ30F0VVYKCkjzmoCJckamZ6s2Sp5cBtLdFsijFIgoCsV2/IWYEREGt2Dssi9/37f996Q5/2mQkCa7fUy9xYO66S7MmE1Qc+AjFsEFCpSKUiWgEXCN5BmVJ8SM4/wXBCMlCN721QlBQRjLjJhttJ8XSuZ6czI3CWGDWfQr22+pR55YF0/oRRo9o7ibywYHRMwnWbu8MtJX2m+q9W6cqsblm++3OV2+YJdsZx0wujMuKLkjiP37Ze/jAgATNpKd/sFXJH7ut0gsRXUtyqtCRczkNpplsj3y+TmXxbvuFojiZICSA+pVCxNgL+2uV+Xv6VtZkxFZPq9LVgKoKCHqdBxb2s9bjjyWLUxoWU9l7vVXq5Tn3Hq6x9r3zJvHWv4sYyDWQuwtwjtUx8KEukdwj5EpeY+i82rbqpKw/TGL59GE6sn7yG48fy3DGjVwR46+iN6BMjuj6JOpgnPKvRSaArBPt4V/73ws+k5r7LbwkXMmpNXYf0h3z4i+17ricEM49PMn498hqg+n4ZeSg05Wq565iYnJHGN1UUW9JgAighalrJk+TU97lTnq652tEYnXVBl2v2KpuvPdfFJJxbdKfYMclX40XxtFeooaClPyFw7AhaRXV8F5TM4tcK7j8d3mAoMP4oTBbZtO0CvvwMRNdiLZ5+PL5sf148+C5bnA5ug5Nzm81Oe2GjQyHk6mOj2w2/P4elLfg7LnIEyzAlkFUH07ut7jMwSeGuwN+JRQ9LwXNOz7B/AdMB2T1zR78ung3VUUXhHwBwfbEY6qQwgUlJa961jNuHM9Ko7Un/gPIn5V98UjVNv/iCysRu/bXYAMxW13qV1dNgypQVFTjx/EEmGzQC1c8hJdCPFx7pUJrM/+Wlb1AexNuvbhAOALLYaEHMqzNUtaLN1qlWtOB1MIDSSqOy+eHVxQ7K1lDJ7hFzxlxIsMxShFkLab88M0vMH/2frAACYXraTATl1oEZL5MQvj0k5O6YRWrULpxA7Y3sOx1Mtk1uKZG6FFch0LzFpxJ2xtzJdIK1kk5VACKLCALrM6LEjq/tYAJSu9ZV4XZAtmG2vx5eICOxIcO+6i/2jSwq/cF2+cHkphLm5kkukQVbDmJi5uW39wJPEWuC61oK/ft2XwYAkM5SMRHQrugAyha0UEkRNo3CXSu41Iw0su2UAayjodaWt6woPUmAm9zav85UROzKmAvcc/ccSAKqxeJiDrHN+cCD2+GtI0xEkAN0iNEzeZ/Q4h23c329eux51MzIdfDwmgh8OD12D9iQ4G1uOGX6imgIWIzj08VKQUwB7/vWcvs8U82M3ztnsmPGEGvNNDNX7myv+aEIdLI/n3jgAHyDNYkD+71/sWUXNJ8yFlHnBmOMyOGMQqPPtCoUkPA74Me/UQyQAY2Wn6JUcqakjRFYkfvJ3zPE46fTPJzfqBiAcypAsmwpMq2kE7OForlDAU5Z04773hkWm5HdyV6wLoFu1smqxlTWBJLOCoA5NJJHMFjWuJS1+kqPhVhsxHRVgzulvk8jqnE+ImcWLwEYgvt7SFGnn4U8flKH7u60fD6eUSOcZVhGTYfTintwyQD4luGeBCUBy1m+lBEW1AIUKqSWMUtYCtLV9/GlmErnXJ2zpp5aB7pWL8OyDPwe2YqEcENH7qfzv6CEu8u4y+sI5QvX5CELKD7aZ0z9N5nMsalYLAIOS5Dj7PsrZhH6CUHXRKIORnGRxpgE40jE0ws2qHCfB0kgqH23m0woN0MzpvrggLIF+Tuh05TXmENI7LjdAFg9i612exR5nKq6kRdc4loJz6aOAU2EwlYERIEVLGGJ5FFZvExE2I0+gbkYoE+ceBthl9HX59cfrdV0vu65rrcXr69e1/y9LvmK5GUtHsu0GyKwZ67YuJ5S4DDD21FglN5eN260SttyL97Uv3Dv3NqlnrAjKnbcUmzve+2Xu8nxd3dz1vrWToF1yc4fuXeHfTSQVYMLSQVczRcY7Uld8/fgfN35dATgdNzMgi83vZH4Li/uNtDD9fL/+7W+zr1+xlr/yihJNQSIDvC2U76+MK34kvX/2fTnTb/laX7pf8X755o4//J1GwLZS60cZnh4rVsLSV/iWElqbdi0ljLeBopnuBIFcnuZMCMbkem0Sea/tBstM3vfKzKzut9xx+8BdAsjMkidrnGjT+nDsVGNAVi5IQM0e0eyoiQr7sGcLtBf31uxL02E8++rTrU5a88ProLqjJobAYPj6eBI2MUWXfFXlX8fzs8k/PuCJiOqzmy0896i5gHYwnZt5fj6YvmPYsdSPkRxcX8ywCdVevXKsezJpKvFWxMe9doxVGt01aEoT1hGCdiXH2rweOn3KUdqVP5r+j5vGIVPXIVgx7GrfmwYWz7s9SPjzIjG1T3PFz2v4/DOxyMdva5znJz+M39/6ATmVUyx7Y5Dcy4qXNzUJ1hRIYz99vuGhKIopTyg/dmeFGeMROjh6kGE/f/HoIdYPirL4WJLP69f51S53KZzQ5FpHGFUXQfhydbfT2Tnl0j8g4Il+pwKR0PEJmRlFrVU5S57JPKmMGveCwpGqlzfdGDXnbgaHYoJRJZKpyEiq8pgDugH0MCv1XNBmkU8VieTl2Ja11GY/mgxLRLVCVzFEzTltcdvBAmc11eoUEEqnu1e+ez5oLCs1DEJDAZEt0Na4xYTqKSVmfo65zQasrJg63dU/NgZB92IagAmJ6/S0YCukMySta1YAUSebJ4jmvpbTZBKtFoYhTxoMy5Pp1Dqqr13zWgMdrOc9sYbElm1uK4OE02jIeK0wQwlCRhlJcxrXMnP3rxf//PPHF7cXUfroAldZYpVOAIpIrs7kt7ag0RZpCJ+DG7l1b4QTvmrb3L9KZT2wuarjzTLTf1334uuyLMHMoGT2Ms+aaKROllfpQi4LKyMrJPIduVY4+HKZ00VDmPGydbmZZNCW9JP4sp+bi9XW5gas5etrMU00d7D2+Dvsxn3zr39m/vt7M+/7Tt5QCOsPbIBGf/HPn2upe2PKeEuZCPxYbMvM2yKhMBK2+OJPBxUDnglkJBxS/YsuMl62XtwFEbFFf/0o4J77vu9KqXb5bQUF0lizkXnBsVXjhfkZIEGqsTJ4vJAauxvRGS8bc93ezvhbCI2nyBYd3J6AsbVnRoHn8Q/zXuey6srqKJzYjueS6pUfrqmCPZ67PHb2twBh4pDPI/+88/EkPNHtgfnn181o5o0SlAk3SWFSVzgAPUSVIqxnSIGiMgwl4wDQ7CEO65EfdznX1p+vxh/ngXS8AXGkKGdFzs87+d1D4vn5y/WBnxZTpxS9F1Njx0GxbQk7CKRgaHXzkpaAVcfw2EBMtFiVzBR67hzHRU5CQz2Tp8xs2md/76FETVY9Q7UZ2FPyhJIFEUw1+gL6EPSFiYiBFPMQsxeymI0T8ICHArHftkvtrFoy9gS/inYfGMdP4ELVPMnBKqpyxI8aPUy9giFpU8zFQ/V0hNYHgF38z/nWnLtKKXLEVurBACgkMzSNlK3Cq6bQOWjMZ4KnCca13J3m3qpP1h3+g7CUrPpcFB3M4dDQzDQwiRQOui+MVtXomZKPaqeQNsVVh5ASaQzAQqVSnlUnQZHaWspM3F3fXmommM45J32I12GliJKD6B3YaS8Wd1TcfTI9AVUtYMGSho5qf52i2zJnmu22MXSuBI1sswPS4MZs7hunNKrrI4JItFqzAFs2wrtQ7rRfxUATsXGXBmyE6e3YOxU/75Bn4fGZWjbgrvq71JpYoX3O6tgq9RSkCkBQFQIbSOyIHTuFvcuUNWlc4zBotl4rX/n18ipEU7oAR3CZWUaQin1H/BiZ+23mM3vXw2tVbfG13C4DmYGgC241bzhTGTd/toE/2yBw2U78+oVfL1/LvzUEnu1bO+/kG7H3f/v3/f4vX/vyO372+rGdDDK0jE678uu66C8YYDRVlUMm9BOpd6TizYyyINt4mb9xpcKuJEPl6CbZLKWXpIUAu1QNCmUEtL5KcnW/9x1P0ECcGQfHuR2wCLaS4nOm54UqnfDjMPtsyzAabOzqg1QBPY7UexdvDX/bl8EhNyeiar0jOrLeqkBuh4tjmo4xQ/M3mlt4/DVbwPh3/1iH5zjVswhjTk+MOCt1+GTgZJAfTDAHDN0GUiDDOGx5dTRV1XBNGerkTJkgoeZot+0l1Xk9KgmfgEysiK7kPqEu5Hw87W8R8AmyQJQUJU6oW2Fz19Zg2pQxl/tBU/+He27+ZJ5liZGW7m7d/OejHUuXewf4NHmoW34bjD2O/BCzByNoiusbobBK8UH0+ODxfPM7bTq6irebLKxnULBviaPtSa8kaZtUfviJSrvZs105yIUf0K3rs6oXMMG6NXbBHNRMvoy21tLMfZjnfw7PB/6bML1OvrLm1JY0EpU1eAYIU4+niblasOaICdUdZDRbaynXa20U3Gk47RWcn0EPBJR3bCmrZbh522pcwum9hUo/ufZEHctMt4JbH3uEp5FYedLXfdN1ZFGFgMjs7k2vYvTieuv3pZMV6VNay6PufG9YlOl1EIoqKSs1iDIFpY+NflJw9bCriNY6X9CQp26jb8aqc7dLf6uiLAFKjGTXDfepqiEFkAKZrgD1WRwh8gpIeZc+W1gX5SOZjVze9/71S4C071v5b8b3IjLfsf9BM+Z+/wTzexsAhQQsF/2Vq2ZFSuyyP2SKbuoIRXIQ2FyrJ1RqRrKCdKWg05wlwr8uXnb5xdsR652xK2wlEgtIS+wagCa5r2XMmy7XBuCBZbyuvN0SmUTsF0RGLKtqaAHpEUnuHSK54rrE5dJ1pbtfoICduXdg3wB/gmEybL1e4f76AqUVbJk9Q8ZmzVgJAxmb7vp7b1uK/X6ZFzvgFBb/uCwtzUCFnBDCItOVf78vGmPn39W+DJiZuxhUUIwsqnTCyYyJRLISdu5wpVhq+Fxcy0HR7aIDRM2IN5kBjh4GV1FKbWBr9q1rczmUEc8gNExo0D/wctw6sxPUqf6yxOMdhOe5F7BNaxE3dkMBTlIrM1ShM6tOBWWVUPZhmKRxLDhQHGlZ/neS0kLpWz7BYVnQLmycEF88JMNjGp/QUifunfLhDkusBgxoHLBXySbgyOVNgAW1r0mk5ixcy0zWYJjGn8msK6JX4/x4tnZ+j5Fuf/uBME44x1qAGcZwvGJfdraD7KWbGKvDx54tXp0noAYW9TWPqR2HydYv4wmeipZoJI5xrrOMn+V2/Z0xeS0ojSfZP4+kXyeolHCRFanMEABO3fVnhoAdWgInMcbjeAaLfpIhnDV6dvfH+p6dfHBsb4LZVBWoaX5IsudEladuhvNssaYY2BliTbNHr0RG93VOaNurCxI0Zul/1bOpW4PJjZSZVeFsScZMkRaIKjKytcRlhLlX14Rgbmbubg5fxY3yUD1GM3c/kXivQI2CFYSSck5lOddek0qsEMootb0WGy2enBnFbdfCgdZ880Tk3XbZ0KGObE1jLJcsln4poZAX4isb1motteipjJ1Zdi2zghdDgqydlEJkRsauyCG7L6nLqIufzAG9YyKUtJnAW/tGM0O4md8OGECT3OyuVWtednJ5PBSetKNYCVKxFUrCgLwnGyyZ6d5XXwPhHrS1vEAuHr3AkvZXJhOkgqzWJtC0I9JK/CeV6YSiqJ3YiRTg15VmZi/bTkkZ5XGqWR9Gq7ETZpdfl16XJcliYugIX5WaXzcEZN6pZESaR8XXacZtumXaErAsX1+CW6aZHLCAmBl578R7azGCeRlD9vXr/dKfvzJl5AoZmE5lJiMssPeVe+c7fSH3Ns/Uz6IZrZrBafxa195poe4zrWcazHybzC3uHSbBA3Rzc3F7KsRQ2kSVRV07KNBR49MNDkdrvGZmOgHFzuKWOQIjx6wNm8ne0g86H+fJD6PWtHW99iPimRiuPdZHOFRplMGVn/JEfbJ0rMvxa6PZSPSbPX6mzeRjP4uHe65EeFB3e6hOv9QtnRspUzhps/8QJ/dv1mfWW7KLco6HGVzQy2Uk6OtaZiXJyjEshHSS6QcuwFhFiQNfyBpyDlanR83Ly4k6PuLvdt8flwrOz3T+Ly7wI63dT1OD+h/bRhqakWl91vLAxgome6UnkOwHMVuH3fgHFqXTpVuf7ut4joZ4Bwp2i/MgqoEElXOvWbZQTzUHUANbMtHCD2fxW21yGlUB9HUcz0Wccql2EZ+cLYBHKhQ9t4ozXma89u87n2SX/FYwgUq0pkrMrfFZOcjeJ0Pkn4fVLrfKyfrBdIiSjcU6lSyqGimPdzeA3vM2GzuUkJMZTO52YFYHhpUtEM2Ty5gOTy/K4EN+1A3086Y1sc9adKkHeGIkZbJRkQAgw/Wx3Dg8Qgz9NsX2pdwexGRqC8hNooMf50rKyZTUopssSy6/VCCSzCRhXuJPlDI5k54AUHvnaJOoZsaoUsiZrWI6G/Q5ZmILI9AejPicumKjnhC4np/kRSdVgVaF1TXwo0Sll+561OksIcCxcgRpTspE1/Wyk5oxu67t7pf4y0wkfSXNF1CW3uyOkmsdZjNbIz841whkpADEzsiMEgkrt40YpZbCU7asMs0IMvHwdOaGS+4Ew42V/MYywajIfccvQbG4LTNibW2PvX8y0iQsM7joKdLf4B2XdpL7D4/XK0jPrOy0ogrvFJGMQNUROCn6H3/whX98xX3Dqz3DgrhTwX3brf3G+wf4y+lv7oT9jfXXi/H+xbfvzNx5rddyCBd3OA02AjJmqYBDcd9LGbVAjgXSaxtGSXankB14kRAtt9dq0opNMGVGpJkz896hoV46VkP3BXXsd4zBsCbDtulAPmk0FR4/0LZYh8hrpNq/YOcdD+mIEzEcL9386/HSmBFBPHHF4zA+rQ3tEYWYUunzSf254zDGys6NTfNR0WH99uPFxPMGj7GkIa2x8wl/JhAqjyWYL7cexzlhpYFVMNaq982g9lkZxDDPoC+5eikn7LPG1PPAnsXH5IDntzFcqaClXhlkXbK6IqbY1xJ1PJH0+eNhhM9eGAcyxkfzAAc91p/5MPrlNQthNpY7UhhjxTERKwFOZX1RitxBVQ44y9kITveseQVtCkxGq2nBXgMV4Vb91oKVMDH6yTOLrmI/LqIdQ8MxYbiNviv2N8S+6HPbeFDlJx1kmVINH5fBWvPerKzmeVnd9YS/aohb/kfjgAsgBKsOqkZfFPrNqqc5EEwQzOHuht3niWZca5uV+KL6A42kmIVuujTGMrR31BARSxPCNV22RZwXFdInriFYjdI1Wr0GASiDkBBGVJrkgGb1f3sTo9ajJOFL+KOnPmU7w9mhFVXXczFCvoxpChqyS8/lDIXMUpm+KvytdWpzkLFT58A+ITYImFkCdPdVlX+dyACq6/8c8AO7BPYYESUzdsP6RJKK6BNfNqIFDRHNBsLDUHV65mWlYQzSkk6zBd+SLX1dl+m1ci2CWq936Vwt2jx+JfddIweY7/87QYcvJ80so0g4CaI7EuaRIcIs9lQxVjRoNFbg2wEYzc0jlRGxIUVpaCBTKDlKUTSzMLPFZZcX82FKrdjGxV6JwMa+7/AMKM0pmHzdcOfb8XOLCa78k/xaDnpoLS64IZE7tnYEdYfxLWTeC9da/ueXLccmV1h6TTuOrcD35q371s9ecSvyJ/ct/fX3+58yi9f6C6FA6rrAa9X8NNvA5VmDloAteTqj5SLMX9fXwpf09ettidwbJl8h3Lq2oRXkGELypUWhJ0RHGP5a68vJ+Pd//v1ete4tx6wkcmVDUTvptDqpp1q3DE/BR2CYmZk6NCej3VMPvBe6V7FOHITqHPnNm7WnmwoW4uHoBNCiIt15SZ0klshkRxw27jaz3NDBpmWFPiDCWIGHYf7EDwVBO2V8+GeO4vL42YGpnUI90V0jicPNubNzfTYqH1LQWtquydnyhnMZCWabfBZrJLNdgTF11E8OKpr71LjzB2n0atYKrMdhjJ+p26nmj37qSdmJMBtbTFjy4IxSTJj44LCaGlKNBwAkiXJtkSWJ0Gr8ReMRQiZTrpJMKhApi4hWJdxbd7BHQNW7SoGd907XVthCSD27xIUIU4RXyNzcX5Wj9OJUhg5neiEmxAUGk04s/OCR2r+zDSp8Ip5l+HwepRxbPuo8V6GKcZKM7El08/wlKMiUYeoV+p9OUVQ9XkSFmlGE5+RHK942ltyCDS80bBLM3Fp1WEL0rFBQVtEYqpJJyoid752ZVc5ZEWiRy8ou8MJAuropa9PNkQp1ZhdfD4RC9QqJrLrNQivFffTPWXMPSmRVSqZJiSAVjF3rVYVWoS1TNdkWO38hvURZ0gFGQECNrn6q2ZVSldcvN++M2AB4dzdYkbfZAfgQO9YFWcfzZhvOpEyMVFSVbkt9FGh0i6o5R809Q2fTgiGllRYma963aLZ2Vc9aTYajpZWYl0VJLyilfL8jELF/fvAOv79vvDO2bUba9WPQle93YoP0Tvkig/BKu9GItOU14IqrvC3dRZIp92URCSIj2fVVa9+pELavW++1TIkQHUDCRaXRv8g/Vq7ry763k5abL2dyGR3YSW0o4r7NYZZaqzqRASn1z9f6+Vkvoy//xetllF03L6NrgSHciMz3XvHebttoihevuP5ILoZgr729BNuk3JLu2zbeO7+/137j/v7Rzzfw18r3vX7x3/VfdwjLYLjXhYKLNZMoLjPcN1Lv4OuVu/qadlytA5S+3rIgiBaviOT7Qtyu0KIcYcavDHGXdt3tsu9foHz/9ffdbWpPXV63JQz/xsf2WrLBae2rOT1tcqem+dglDNWaHe1M8i874i13e+zW5B5P+ECOm6jA6HElLfNQBRAjK99xa2ZGRtQ4Wk7FByc1+vlVbq+D9H7dB/9YN9FGga3YbgEMWv6wqDz/HkZrcsj962b+5AIH+QesyCxMxq4A57H5x/33UpWORnNxtV6/Ue1oh9fWuK//eM0BIavxe7ubed5UZ9ELRkwMrzapVckx9pwVgZak1YyVtm4uLN5riGk7QSMgRaMDHUf1uLKcx1oQqqhKSd1B9LGeIKowvF8KTnVQ6aNmlLGXhKgW0jY89ebZxwzHb9Wz0+Q+ZvkmvYCTFHmeNc5fayX1PLazS1h0RrEMp2KrrENpRwEz0q5OBOd3G/AIk3GZmF1dzzHdChxwgHnSeFYODcg6wu3SK5tPKxdaWKe6b5PKNGW3Vle2gwIrews1X9JbvbGWtdQnnx2OmgXa803qtrJCWDMoObJf3Sb+7NYmrOrB1kDDxoap5MCMyLON1CSa+oH0A6jG4JbPRZdnd0XDcltrcbH3Mc3cGNflK937URh9MhaFmespJ7tkrCLyWhI+5BBL4BJtWeaJJleveElR7OAmDduz66eqLbw5eTWQrdEtgKWvrltXZgaYET83gqScaQ46JWemGQ3eZI61Gisr8LZGYllqc4C46k9cRWUIxGUJVbx8KknpywilMdauyrNIOixJE7YkuvvlsYzaN5CI218vpS4HkDuBDcX93rU+5ovXWkEBueOmIit9u/i1/ZLMS49LEbEVwUzt9xLoBmJ9/XrlS//pP/3ctrgzkfENU/oNvN9Kvb8t9Pe2f/697nda/Lf1fn99v/P71pfff//9//tL1LXW13uvNGABdMsQayZfdZ27PL7z333v+LnD9B14852ZF1xwgEnJLeFGS3eAuhDazpW48ArUWCJl3L6vqp3a7UTHsv1GMZ5YR8c9EqASjJ670L87mZpxLRM1nmKh38oUPgxvJ3iOU+u4c/JM5RC78uO0laqvqx01UPXW+jSGDR9+S/3O0WzqtJUw8aR4Po3q1Er0Enz+XOO8ZgHq1nggySfNNl6vfc/EWX0qa1AHOsnbl4OTn53HgOolTcQ4AJ0w8CNk5gAIHLfGMQDPcnHN0zrU8Dj0iSvPSnz8sB3XjHpoJducuK3s5QeTUHBBH+ar4dREyiwcoGd1+zudDunmtVr/Kok9hV/dvDI7hOcZAFCpZbYWRWU/f8NM41Qfkt6A5ymWUuizGaxvsfJQvbpzm/M96pOOrKtod9XlEXDJpj5qKo4BojTuf3toTa60N+HxwBWVnT6pOglofkjDlqDd2uyNOnYmddpO6IS7ZjtKnyeZ47s1hxk2dSmfJ6F3BYrqCFrVptQZxfin+aRiNefKmkQpKuDs0L7petgVElTnFRPmNXTBHAiD0mgrjSZnSbpuuWBuW8YsohimVOxi8xJj3wQQo/eGkuAHAYQLXaxdClb2m1SRwNSUlKWEGf8rn1Cknv1eeY4ph2fgaftSbTpJiJrjHsrAZLu7jL6KhcdypUSfPY7MDVK5Q3sZuYzXa9tFAshcl15fL68SEzceHXRbMgK2fN39sFv+QlIS6DOHmjHtZmbejBHTF4xIX0yRRgtAMpqv162EzFnqJ2DubaaIcC680xeFDJkJ2NrvZSEl7YJXc1UaGLFqBxuvX4vXhQRNyIiIeG/Z2+64MzaUQVmBOa6Xr4TzvTPNFJ4Rt+l9S/p5W+bfegHg5Y5t0P5RfH/T9jf++i9Ji68v/753ptIomTPDJWcVkL2DpmvH/vmV4Si5N0Dv0sjts5iJRdBKFXUz86rnVc2jgUxuJeJ9X1lAWKM6VRB5YhDJpkGfnQI8gUGBPn/O6DOx4Zif8Un911JcbZI6sg7PM4XwGIHJNh7j8RhBsJ11tp05IVznjsY5Vzwm8ugccTzjMZP1Ok6rwfkUjGucWKJuYFhh4vnx+UcnqOXErE0njKOfFKzK0LT9rSsbXVx2NkgVq4vPVTWmQVHx9Dx6+PO64b85y1AVVeN0OyfYF0UAq400cKrCO3bg1FiNISh0T2SmJY/1amxG0n57TG16x69Biaoz7ZWuT/FqZ35Ci/pxSjVT9fkEzLJrsqoZ+66YsqT4usyLVl2WLRtY1g4mg6cxy8p343SXwZ29ClQ2vLABByn0I2RVnJydOVKFz9Y47zXxz1xs8dLtuz/OhlQlwDkp7/pZFvb4Hethdk+vR+n0kkT6R602OsblPLQZQFC6eiYFlApkpKo5prvEKs1LKMMCsep3o9jj6IJgpViy39mQQuiBTMkqq+LUbKvkSQkpU7tnh8JWGw323aDJ386MkoBVVXIkK380iRlLM5gdhmGWkkafzmg5V6W7bMQo+0FImdbXfJZbglXzUiEOQkpZbdZ65Ons1qizdyFTw6XBe8fM9M4qgTYja3Q9WP0kcueQrYWaq1BFGY4r3qXO/Ki5psFq3IIcIytoR7RdgBII+MJ6wf2irYu2agJMgEpltKRD4eTemjCbZquoMFLTBjRmlqYWe3tAMZIZXy7s0G6NAjOxBipLwA6vBFvgou3MCIbA9aq3k5QJbnJHpmhRuhrdN76Vd/yVX7B12ev69fpy+rIMWZ3Oml//9jvu+8dS2jI3SnR7scCHXwl57ojAtrzfUt63SSlc+lp8/dKvf+RfL78yNt9733/9ZfQk+c+/w+uifsCaX70ErPSNhcD3/VbkptOUwZULqwcW1tLWLLIq4YbAFf6VaQaiCiojFUFERKZqhvZtbdwKnZlk7inayR8ZaCX3139nz/yahoQnah1rMXvRPVmaCcqq6JyJfgmqYgSxtM6fkO+ENFA1DU6k1+Z2nNi4uGP+2lwd6vPTzLYxRRPeh0odwq981/m+TZ1FBx9NENS3Snt26k+Qx2E8mOHDY5cJUUTKXZDYIspAKiLFLNU5ncApw1VjOR5bj/KW46/meoTDF3844F6Ds2gDD/oWlk2VeLnnvloa3Jz7OMaPwpRy9M/b9t8nDO11HSKklv8jVtcsD60lJ5qAOMYUQxccyoBFEBCVzylTWk3UWdJS6nD5gT+DJEiA1ppRSqEaQ089WgcZXZHQHw4GxCTMVV2rdbOhAxDQiO+j+Px4VhwPjsfT1jxVskn0xmyi0qroIoeYKZR4CoLZz/mkRgG4Kgskwy69kWUeQZpXQ6ujModmwS7VGxKmYjBExXpZJYDqpEidbTPjKBAYuySt6wjLPptQpek2V9VLDQCo4Q2MzABlEoOZHJUfx1Lao0zygIdP6kAlzJRQiZNI6d1nIEB1nyViPjinkUHr0msTMycAglm390Bi6+l1gRdQMkE2Rfqk18iB0k3Ax1yiMm8HFquqCayL+ThwkSwRAjc3mtyIAJ0QnY40oKdTwMy1rixfbe3/1S1OBRCwwNxhKQpsPtwsBdBfNL90ff0Zf/L+Wg67/tj8MukFQdiEGbXvULIrmwfzoGroUXxMJbcBmF9VjvEICdcBYWEV3f+26k8LgFMOc1CSm9sXw2wKGVdKiO17I2xtc1gYYYqd1rWKb/ryMF6XXSTszvy5L4HmfLm9tq+oEh/vqloicxOp++f6vpf7Zbxe//C81te65dpQvv+5txCB2/D9VuT3m9Ct/c839N4pOfxly0D98QeltbborfiR2SWv1irdqAa11N4/770FY+QWlQq3+y+8TDIKTCT3jrcrffkXrz9+vpB5bwElZJ+BMid5X+IyKt/LoIxkNvbvbVRBRVXA17CcOqM0s1QiQXdP7xjMTe4g0YOrpgLLu1YU0pSetjZL9S19OFAeQz2I88TmY0Wyw8UTJvv4om5NnbOBbu8ZU97RFj/c/PzecVZ8aF/O71X1gpkedwY87LfGoH6YYJUx/+jjL4jfw440VrujGZSuGnFuHKIUFcRU8PQcfP7mQrrFJ60chXnBJRKsqdvtgDEObIz5Gnfc78muHePYwEbDnB/P7QEfFr2ZCmaL8mliJU19lKDsOXgUOQKFSlh/0BCNz6PCsMNqMI6OQfvD620fGEJUS/JwuMXEVikqU7InZupFNLE7nh44gY961t5DwrB9FB4Udjrm5uE3b3JARC8iZxNwACkMc8QIdBdLTtsa0M2l/SFNQA35XG5KqCL4z1riMt8ftQoY2cvGQ4OT+iFUOYL1tirVx1oSdoV2ZS1KEoNzAMEaMdwL9JyiJDM8SSGBYO6ECpZGfUMSE3BZtoRFbeMD2X7/miFVnjRmxakCaTUmmA0ygGqlbe1puat48kINeTRMVZnfJnwwJ7RiYA2ihVCl5ZK6pjT2RXhxppU9t5SrH3lviv7l0/HfN9SPHEzSE2z9FetODrD7EI1BwERlW7CWJy0uhCTdLGr4V2ZVMaaUd1YcuePe685NvDPTUsg7FSn+9Z//v//5nz9dt4pneB3AjJ5yBOx3yMh4R2b3pTbDmIE0O+3iMKeWmYRdD6joPsiq7S1iX4CbF/Gj2Dk2XgiIHcIGsO8uiswsgTQJ2pmpzJoq7a9l17XXF6GN643cin3fUaMdQL1E2lqk+wquiwaT9h0pZegObdfPrVRso5L+5b/SX1/xt8iAbn3Dv9Nz76rQDwrJABkM2KTXaJ64IkG3lRkmlb5qSDBz3LQAGKnkhVxJozKiqqb8sqj8iAApkoj7Xnvv/d7RJeYd2ZbXmuhXx+DNM6jNWcF0DT1RdtFMzWn+zV2is771nJpbGdjLExWVrR4TgYcC5qljqrJNq4xRKUrblDa0LZyAdmLJKuERHxt6PqFkEHpKYJO3+OCHH5jY3q4GBR2TzY5p8FgS/Pe+mqcqAY1sRDGBg7WFi7YIfXXjiU883I7jPIZ2fb3sVUGtdgOHvK1vqn/z8ey10MIym6G3RrQ37JgeAunSNH//RjiMw0Stl8AqIytT0w4RTwJiAtpOfNrAGHMSgsnQmpTC1Bugj+xBK2UrVYmMUCamolXZK2nVjddDENr596xqmldA54RgoCoJkW2S2aFopQTNYKQ308oKwvJZvHbO/RdDRbbEkDoq7q8G8hIwr9EAp86oHgWRSJtpXvXIe/rfePDePmh4IpvfFy2liFSFlyxmhaJfAGTm1soCDQ+J6b1JU4JeCu0iW7GEKMHyhQwBhBHJvNPqoUmb3EhIU5ih2mLjkkljBNPM0OKgJHcXvoGEO6rChwMqh6vRJ7g15KAF9xxaoLdgHW9UaaBbkcooeWGlSuSjosv0hXyDFK7bCdtod1a7LAVbr0sedYt9iqm4lfveEfEGYQsvZkozcskyNWrBA03z/JloS06mbSvpI8LceC0zVUJ3eKoGVIKCCKopm5q2aVb88DIiFLwNUtxE/OwdedH/+fff+/s/L/u5/v7Ghb/4lt70/LHX9UP7//wv//X/9b/GzzstECkEIUSkzPZ2KWC58+cn/XK9v0NSJsp/GsUdrGYFVOmCX7qIlf7asdZrLesEdZoMP9f75+0MN7ebr8TPvaVMXy9nZq7eh6E3rzv5tehudlc7gCTEhmzH0r7t68+vXyVJRRIKaQd+4q+fzB+XIjNt2fLXxS9fX+JrBUhtKr9/4h34gX4u3O/aYq6X43r9yn298s+vzOvapOH+0cLLxOVMKb/pGfQtAcGNnbCM6+KvW7rpvqJBGl935NcfGQuiZRQsRsbtb/uC6c7MlUZ+rQyt9KbhE4J90/5ifG+u17JDbHK5kFovi+bADS4ma3QkTzBRroCVMyxjYRjrX7FZtc9ENZqMtDlS1mi7bN+B4UcWr4SjyxK2Dzy1EgDMFwG6U34OpUZmp49hRIRVb0alFI9uzjjRQqBlQAfMW7LqBQl+qmlpmoIxJ58ERnxgZua0j7eyuXSz5dbIg2Du9MLxAs0vzTxHCTCV/mwZtUx0ERFJfQwx6SGJdXhjWjsmptY8lFJmKFKkoySeUp1yastZIl2NuIq3IGuUcpSpt860sx+0eykflbwhulKhKOACM6nwcIYLANxRAg7uMy1DBeoTcXq5DkxoNIfCzIO9xgUXsexuK7zyl/WbKQVKLMj6u7GdypIuEGgKGKYvvAFGB+dn+SpFkhk0W85ubIFljwtR76Gh546pHSgy9MtkAE5YS2jv/TE3st1Mi3q3xkgF/Q8pWJrUInUYpLMDqzdHqW3eHrVmqCjQc+uzxUaVXUrOlscCEdUFncygIgQwBi2wpxnWmRyvRLO1jFjQ15ZaqBFVhWeDs8qx2LLryoR2lLhk7zmdcg9UYvdZrRpvVJlJosYx1c/cwagSkxSSRE2BEuiR7PyUKaE9bSGyfEshICoId2by/v4lRITDlpmUdNQZPoVlHSYgcVUZP+kLMIODlIp0936NCsAZHh1xfsQHYJgQpEwwBJnZRe/VKh2FRki6Rb6dsZx6v1zJG8sEpF9wN4Vyb8JSpp8rVr5fpp134vt9f7//uV75vn/8BbfLnGutr9fr6+sf+T/+7/Lv/839bmMlgbSVSfh6uwsmS9Bei0ozc4K+2LSHBMloM1cxYXdSr0K8yxNAxDaREcpLBve1Xpe/0j1BvoOCKXmtP2/ket2yhCLfy1J+Wbc9T3oY2rEjYcv++LW+LjPduO2yvaGtnXjvn2/p+1rB5U58XfYP5x9/Xtyw131/e/74z33/FX/T34gbjDDFTymRfX+bcUdC9F+/1g8y9/rD9u6j6JZ7w2WW74brrWYjuHmm9s43tzygZevOwBUyXPLAo+ltILEA7U35fkfqruV382VkyDICr3jFrz+00zJqpBdVYGPOCeQ2kQEkI022rPS1bVmklaSHLfekG6LsvA1htkqpE9kytXVsiRx5+7ZqE+Ehs6Z5QxlQ0tjNeEpJkbm3pRUQL9/ShFkmfDi9kf6vWixUOXW269WEipFzm5goo+KZvqwySOWph7zmCc1zQPxvxOSY4zbQLFLPBb8swotr4mSH6NpRvDCfSxi3VJUjtQkqISOV0P0Yxk5cF2M8YS6A4hTZzUHdOtFyFwLVRVhUWhH1E3qKqKTlsfcd5tR49irNGCEoBYKVLmNKZAoZGZlxvOY0qHZ0m8rj3NRqCkBVqKpnf1Q5yOOwcK6koB0x2UAVL6cuIkrmts29942yyuCOWxlg0nMnqcYbxeNU9bGmm0dSWiJgswEKAXXz3cgKz5U193zSLRWf5XGldY7a2VcE6p3Irq3EAzGazCGaVWAHRh+EjMlKyboBG6dFCyQTqoIz5UnD9BUk5VHtTpklFa+SR+r7RnXqxiC4etfa+dZsEgAYKDt6Ypijm8oiKwnIFxfXWjMcQyTMAKOXbkr23dZswz6PH3mAoogrfO7bKO2v2k7sZGttgoLVOYRX6WyQGWtmFWGmTkT0gLfJfrFmFdekJlNrlyNMEEpJmDj12R9HAQPfho6YOZca01u61UF4pmXCIHOAuQnvJMFpsWvo9NB+E+PX0iSAFJO2lZa5s/m0zJ3a+95x3/629x3BVA3/dTe39dpfv/LXVd5tGKiqaDYfzW9bqvFEXO5eOvNsAdmTHraRREuDU0RmJTGi0BRQDV4wMxgs7frpat6IZCoTNIS4JUWKO2IBQaYJd6JkPfJ2SDS3xVBPJQKopDZi57Z7B27wzvW10v9Y9uXCxVDECuzcd/y8433/mG/FNovoUjQL7NtuCLkMvK4FIfzrH+vvhVeaXZ72JeytJYQoTxR+FeTvXXpgGYokkyHcKu3mXZ3pZD3NRFKRhEKWWTkHo25TXrdVL0zsHVXI2PYnqySzyeOJRpTM0kBIDBOoEYl7uOa2i2MkJ9awdMuJbo5bKn9VkdC8JQTWUI1SE6wym9+cSgGC/qo3fQhrDh86uxcSW0h8cqaP0cBcpYpcPPcyP35UdtpI8YxOs0xZc3nCGLOpIVQHm8buFua8lyJ2WH9wzY6rcDlJVq8y+9Y+HH2vFw+9ysllVd15k+fj89tATNoQJ3bCYKr+zzrP6PkPJ0Ju56Z5UhPBKG36QNv5VWnHNKM+jkYq5f38FJcex5B2/Get7bOWZRkn5oOquhZtqfr5V0U9ACRCSSSSmVCPAs7MjN5xtiMswkqXKa30xXriZuUooPGCvUzZ+WEeX3S8w5NuOBHvxE8nYVFs6fklzuaqwqTBWBx+GCcV//FAPpFYZUfOx8zvzHV3ocg879rVD6QrH1xj1JW1mq1Pg+dBsgQT+y6LNP7YGhqwM2E9p6x97ESJC88BmoAGAzTsvE0r5uncay31XH3XWtoHhMXsxrHGE5XMDRfW7xN9dllH7j65qrYeZ00Gzx0rJoohGqAwRc7q0JpJ6SdF2zyJrU/zNEh+3HXiGBXQKjvdRYOT0ZGiO/ur72Ay3MMMQDDy5VkV6fAqlmp5fq9qzhTTs8ct+JIbMlM0X4iIw01MplGz6Xpnd4uchhhqe2rntg6e723oy8OW26pMJZIlE1/G2EfFppK8TakjExvaipJsSPZsaclJlCHJhHBdzcDYwpPEQ2bcmbkD1WNglxu/3F8WABT7/X3//WP327533t+3owEZQMFqfyQCkYb4EfV6p+2NH90wp63F4CKZSstMMxZGggBeWX2KDkLhJf4SYsJYAwjPjswoNW1DIlcSdJc78Epp2eT5qsleZs7aWuVI2ZD0VBdMcHr22Vh5PIGM5gyp/+mXZ3vxg/nPn/Af7MxvX090MRaJ5zCDBU0tT0slJpfUB5NdvHhOw++f0x/Lk9gs7/fENg8grys4PGAHJycdimaqUUTtvNX5epp6gN4M540FlLewASQfARYHWPIciMfm5HkKQ12ed2ywMdVoz02MhesCzJoHrM91qd8uq96rUlVDnFFCnWGtBeZHJssaYQky9yGwgK4lfzj6eYLm88BAklkYXJJlBXKPTS6y9fiXyXq4HHCxyXOkzM2RMzJCbBIbB8ZI3ZVONGhAisyPRw1opjic+pqDGauw5MRD8wuEIDul5KdsoS0aZ9hD5R/AUw1dhUmDINtGzv47z+ds1kq+VqJErGkEFfHV0okpsTRNx8f0mZ77TzXwo1LtFM8yY3jHgiUlvlTaIXWbmdljFga+jvs7p8UQVQRdOXMbjktKlKhlCQvPQUZXIAQP3VSHes/f/MPPthPvrrNaU9Yit4PPZloS57xKAt3M6llUpUCSONKPn6edFCzvlZmxMzeuUcFIPSYGVJfgC9ZF6WgdAiOzqr5A1YQctakAlC5o8l4SwnYYKIS5qxVKibYrBSFoz4BEMJsFqXhWkXF/v/KOUGboNgqU16yx+94RMc+5oQ36vnV2F8/T6EciVCFbpQhnU1IK0w1l0sEFekhhFS0lDKD7rxeYoqWYQimd+Pr1I9gV8A26/+wvMxq+SubUerxI1izhl1/yP/zPa0nAdmSwplMrM9Nl5nTmV9i1/BdkNKPdf/Gvv+3+foW4d3qJssEWmAYyzVMJ3kkpNsz+2n/4P+/LQ6+vjV9/yF83q/QjUmJU6w+gbb/+tPvGTuelvJF0KnLjXqyKtAKdJEtt51puibztfXFb1fEZStCaS/FhzzlxpNBkmlkbmdGKbzM2VvH86PnlD6gKdJttHdEaC8hDsnGC1vrb0VmpH2SJ2NNAs6LEq3JWE2QchDA1Y/1GH7FD0QEfPpQnNK5wrI8HaaDXmaV45nhXJse65oWqfrwqamGXGatJOuooMfIUERWFc1xWG1ZVOc5cUvV8GUmkcRRp2rp1TVhjI44LY2kSAFX69OHOx0ydRfgX3NHOXahwYXUA0F4XE92dN3nYgD758/R6EYu5nWhwVvkRQhnY0F6d3TYIRSUVVOPjix5Q4hE0RkfAAgJVo6UaWVqdJpGooUftyzLLvDdTz3PbKheriu6k1MgMPcSNxsKQSTvpwAPBeHbP/Aiftoqd0T4PatapunU+4NpppdPxqAcekGMFbZ7ex7J+7uJCOdXkicetYh4uu5qjrqVWw2bbgx8fhQkK8YDCChvRNZPoZ9LHusPE7P6eCgiO9pOSiUoegfHwSbMJO1ivhiHlJ09fV3Si20Hxs5KzK1X1lLWKJMyywreiiJ4T0u/Wt+ZZiM28DcbsTPYEps8Frp9aO6a2Gmb0sMcN1UfLSFA9w3n2y2PYaiXLphjkJEwyROXPK4Jqv9ilHmikS7p3sDEHecHkWUPQAHN01YwUoSymFJBiXwqqst1uNgC40nGzqStGaPG1MRWD/jSFmIVTZoqDpOSO9WVrLfOU5CUkMm1LSGHfV9OwRWYWINpBwJCWKmymDE8IPjmDoidCiK2vlS//43JfXpE9WQLQd9YoCRCgzA3X18tftxKW95t/458/V9xMhAjtmnsDK3lNmbAuui0gL6v0KIPuFvcrkglPx9duvVex5o2oKj7lC8m8cf98bQAIRQCKG98SYNNVn7mYptBeIjMtlXmLgIxuXmOWJSj3ziyRkUbsyZ4tLbUcLCaE1eElx8QfJ90Wy0xWCA3F5wj44CeHq5rn3aFz2YT/EAh/FrQQT3fQ1EI2p9QTPVgNg+cVBaMnAv7AGr9/HZKuTsyxi78Z4DGGhSjOie2dW1ejjn3nmueYz5HtFplRJm+jVXKJMQ0lv0WjGJJ2Ek1z/CVFZW27W+0jEpGYEykXSNFUC3WYwxMULfYd8diOswr6kHCq5cWBAYOB5k6fR9e7KLO07tWGriL7PtsNxSHtovgyi0GWjv5LYoK6WjA7XGDvochKU3RFYTBDoYhWnTyvRBf6zUJmZrVWEx8x3Eeb9cPHtEeufcrHI3xUAfRTGV/2+xYueFLty3MmMjKQfnYlAVh18BvG3j7++ZyQTPTM2naGFFsDIayzwlVkC0srPGmi6gi0r5EvqlN/aS7zLrGqodvmJWOoSgOaZ+UxWZV35r7WouA1o91kafQUjO7erZ+loNRJkVO2ODiwDj3H6+BEhQe9Ha+nKvck4KoMar242rZG+5SkEyV+14ic/UQLqFQVpwmgwVbN1+JoUvI8h+ZxODqaRpTkPEirjhhyitUH62QrZDYe+AT77bq9eqn6B07BooJkDYAz0d0rLNqX0YwVf+gJGSTVbMWCc7yjtBQAVqO6MiMMyFD84F6WDF8wI0wJWp+72lwE6dFldKipGVU0urrszDuaoF0moKcHW+9JGMWkbhKeABWVkgaVHkoyF138/9P1N12SLLmSICYCqHnkvfWqXw9XnMNzuOGG//8XDJez4/AHcDM8hwsuZpr9qm6EmwLCBQA1z+pmvFeZNyLD3c3UVPEhEAjyXlBuAWGZRhmBfRVkvi8xjLRuI+6UT4xQKN9YX5evtVTMAuZesRWAnBTNTFy28PXrl30p0xJSfuuvt+IHgPbO0KZFLogqTr7ZFSRNwi9Gpoz1SL5/CKzAwnXtldQCtd2ZED1rrIsvGe5tcX9lOCwztnsQ+QYhZ9ROEox0VN2btNW9EZU1FfJwOmhYEqiwkzzQjUWInai5w/gP+zQYnaY0JRBmXjtdOF5TzVvB+LWT2AGlX9RR2SmNdU7Htt8fhq3NYH4WWlQMnxK27IlZ4w7rJM9Rb1/z5J+aoLwyax2vgrJxH5HGbL22I8ebjWnP55879W+zN5FCn/Ae4/fE99JmRMkMDL7dbpyFovcjqOnZzUV+UjyN5eLBPjuL0b/ENCelYseP7YDRnPNykqKNSM/sj86jSnnB3J1FbPZWm+r+aG+dZiaMJnSXhjlaYdeL/FQXk5zM6lx+r0fXNWc9y/9Mi1TV4gZkqQXVuJgU6vuekFrp1emGnYdQr7XBVbKjCIJV6hNPAXMyoL7/WhfvXKvMYXP9Zhj78SVjyB3MHJs7WebHu7LOoGpR+OzUg/qioeTmUD3gJaBpIag40KwoD6xz2d9M9lu9+27eQ3jAg3uwHGdPaDr5eu1w4HmLZqbPg/p0Oud++oc2/1b+aux/h2Foi8kmPtQ55W+AzqTo2d0dBZKJ1cOdBGEWJV1QT9Chh7ePxtAgyzZLfb85DIMyHxmqWRN6DulAFOgrOtB3HZIJ4bIPU9mqPnyELCszSEQEo2Rj+slWzfDZ+BW4OLpTzizNJwHorwQiKNVAUpKZkatjtShIfwdz77h/8G3MjLWApNsyvq7bDFxmI+ReQUWtSdKskxU3Ekbz0wTiLhiX1dUlgYzLM3Mjd0lxcJ3HRtS8L5fZasJtRsKFTDcVG6gAKSrW2yEW2Q2AUrtmi1Jx2x//9gvXKqMXUIRlID3FKh0DicuxSIYUhQAwkVtMrDARITHDFHAgLU1ajkuvhH1B9Gvtl15fv/6MO7AQ+2XmZi/mBYrXkotYaTT6ouelTUdEAkjuTSDjVlgGzYa5Yg5fUZ4v+AJh6VXxsuXrmjQh994QbEXvIUwW1knr5GBqk5BKjZ7blJhQakKdd6K7PbqT/8N7/pZpgI/HGwhq6I3tSKQn6+UkeFnSvoDUvRIn2dG5eIyTqjh8XO6/mItJHLNaAgZz0bMEndXw+cnJpiY1LPQlNQki/vWr22OBYUGwwf3OayevKzpnViW9C1lHbLJvo885zKg4XmuAI04+1mZAjwkdo3lCfgE1DxizMuoHUSGDtcOvfyNx0AUcV6Z5/joPRJ9RQad0/fKe6TvXZ7OKU038iEnmYvAR6HSOmHNJU0ytYDIH50dmZGAGmoLWDGyYW/Ub0xwzbAKm9JZV6i2Z04mjUVkqkPQR6MhemjbJvTfak/eP2WSbih8EKRoFSvhMge0YS/Oqh3c0bU/Pjq0Uw5QUQrAsKhNiF99MNEFhYhaInykWteUx5uwgmR3L1/rS8tAGWN90/CeInqPKICidRoM30fecC4yfQpepIWhHZBVioaor0RzrovPej3/pXHDCTgFTzO6VLCSltll1HpxFrSuueAkCerAWRPQ83n4ESkTENiU9ktFTd0qQK7cpkwGOMl8aAEvQXBYs6YxiVJIiovgl2bh3/lbGGeY1ajFP1YNpLlpILmPwbBYkuIzbf/m7n5bAaoCkrV30NqMFzQO+7fVXTaOQpLwF0D3vPxbN16KZm2MplDBel2HTTTPDuyShLavHtBXRq306PFMZO7INSfHsDvKUCTOz1+WXXwvmNEpmhIOWIsOr1DqmvFUBFO400FOVHlpoGWK7foJRo4UtInJHTftZ/ve/O14W4VLe23/enmBBY5XF2fqDyy4i9Y74jp3w/UMGbEepeiKqfyZxMTcBvzxC7lu2+fq1jLzsT7Mffxn8ivvOv77Il6ebr3DetsCVouGL4cIWkf9xkdp2d30hDC98E0giy2UwFcIPFpjh4qUr+4n6egkWNW+D5KX8JRMtxnbPkPg+vpr8qsp4Gm9Ux02zzkX+HyM8B7N+sWipBUsjEoGjODMRUUpZ3f6FOwJARUrVZDRGsrctOUgoja243va+/nI3e7SToBamO1Z8kCR++OWpSHXL0ThhzJt89CI/nr5NmPEjxG/wYMq/I7mfqeA272DA4Egr0gaeaCOZzJ3Y6W12Ktiu4a+ZQJhXoCCMTtcJDzr9PelwXyTHO0/eQ6wiBU1CV2tfKUNnPCc5e+KoNrLPN59P+3nsHRLxI1kfhjp4Yo/+XxLZxOOPWKo98EC+bEgTJyqcACaLQF0VE2UEovcbilQ/o5GQyJx+JYwPfG5BhipoDcagzzxEw2T6yOQ+orunGt5h0UliE9WtWk4JaPl1ScqTJ2IQezt1lF6FgTJEFvBUwHwKSssz0KhBEhplDepMOHX2QYMq9S/OMsENEFR6W8wHdryD4lGciREAzZA2vPYPyKgD0aJvWe+RAid6m5yNlFk1lwcCqWWr85aVOGn3cMjZwoXaNaO2NlPtr9n1VeOfsGIMVnmZSVUzrWY8DbRj/tvdTd4LmlcP5GeAOXbvUNCi60p1oNRArKa40VmA9U5erKnTHHJK2UOVXa2dVn+XtE63qEObsrggwVR11pQxEFKCd3SvSI0mOxH4vncoVT2BGcWtwLTs1yVpVjZ3ZE6aNWoxgIAgwFID6SCH7nZVTEUHpotdSDAjY++Vgu9M0x2RupcgGfYXbm0mWQNxfadHxrKaZeCxFTsBjz++7O///mduKLg9JOrne+Vt21KFgMBkdFsvQMr7dr3fwb/+ucGqYFX4IxBugbVsQyuvZbn8FYn/bP6V+qPHhJdiREbsXOGAYIsxRA5Lv3S1ywjXP/4tktAd4GXU/ZIKjaOzZq0qFfv9V2UfK8Fdc3xZpRpXyJSKyOVXrsWu55Pqbi8OoPRhItpyzyZF++n2PLRFuBHechFz7NnmZmJxDbLM47Vm63+cyDHB84HzT/rNK54iaJNJG7etbOLBoj8SZI15K+oGPqC0Cr/nZj8+ITXZMjKtuKDzwRh/82FMzp0Pytj4WlYb/gHkemHogCE/V1uJkr+trj7mgI2EhDB7PB5ndTj6HPWge7nZru9Az7Ocq45r1Q8bhBCdLDfU3ubEHGWKrcX0vLQBGXJXdJ9QJ7NmA0HLnc0k66RvsqUpvpsoDn24MZaqrlV1v3UMvQ2ayUarYawbvdRiPEFf7qpJPLQaY1L2VeptdwK1oxBZi23HMLEv0sZ1dC5b8wbKivfajO3tc6GzYs+/dDGtOpB27kB2MY0Aa+Zvb79p8mADVBhooNKsiRXLj8qClpHVsM/Kyw1NczNskSN3c3LMwh1pJoo++1+dsqt63Q1AM3f9hNMD/mR79Tyh3r+c26r9FpvdshBPZPoq5X8pmDtSuU2lfMk5CDPZr3fycRPmXbwvKZe0gnDV4gRIEmlNsqtblXLXPkkI5gEBVlDE3vbRT5PeRkJAjVOzEpvpgECpmv+LKmISSp7JxaouQiGBKWFa9ov2ghgSEQ4g05sNIcpmQmINSldGaqdvIjMuKEpSpLMWSBnIvapahNjIKAFe832XWKIrZEyNdbojk75/rfU/vxLFfC92FqhS/2E52wyF6lEtGuA1pZC2bFmY66KMdDC1Ar5KwA0Gey0nzFdpFedlISleIWb+7Jfu9w3lRkAzxTjDSW3Y+4/FLb0vM1Lvu4LKpcD+P/zaf/zt11/h7va//X1H5PXXt+ftAUpLxIWXDGvpIva+75/UDv3888bF7cv/+Odfuvz70kp70XV96d62/MW9L72Y9j/e5vf9dxjT4bhft13fe/9cel+udLu+3spcG0bILPnFvSN/vl8XSzEGuXe4AeReTl+e5kwXxNR+59vttdyv1GbcztL+jp2REUaFZfJy3jJZlUrKdPlHoqkKg0/cNgCVUXB8AMktv1oN7T3rbc4uOkbGb3FzybujlB1KWVCoTg90qbiyUps8WB8G7gN51eQt0zdPd3d3dF5yoKi5Gs1X9xyrUAN84KoVcU7DSh/G0po/2djk0YYAUZ1yGq9H2qninhi7Tg1GxqLdiqtaR7q1sgsAGX4iHc4vgxDz/dX2nhWFnsf1kZTw/ASTBvWjq0O4crzNBCjjuq3DOEy22h0xmHy24Qd1fPVkfse/dQpe/zJKhu3P+9Kg8+7PJml/WEgjgZw5zyd26s04wVa5FVP1e9aGBZ5NVnuTtKpOZYneW2lKIOV1oUaNlBqznemkUmQRfGk4kcLs7ROp8bd6ywR7k+KUvEjNHPo9zKy36QfzEdz2tQtFJ3wWF92ziwzFXWtVE3GULNXtFDLLwdXuf7aCwYrY2sSPDkwPYOEqnjpUPSh2BgmqezRHgnngd+HgNEPxlqDIfu5OkMuLmEITBc/mQUmaRv0Ty55V6QC3LjDCULT/rLGEU7zomkCB9JEgSwisJXdmGhQiIqRMs8goTzophQZU6Q0GCXSgC6WrwuDusUWpdNKRslIB1kDQvUyD64nZ70+kRZghDQmDHOrwZKgfFLza38WSUpk9QbOEWSCDXhs5S70mleD7jlIIc8L9eq21Xun2FbYuOl7+x1c3ctU8V6s+mIyUPdt0Aj8Cypk78gACQMXGNGj9oi78+rquy90NvtZaKOfiVc8EmNhBSVqq6Rx7M8UdDtByCxlu6TtiyRQRxgTpIuzrRbe8IyFG+ntH3nmD9FxMQ8Kx4hewfsJw7593pG2zSCCVlyKYwesinPjlt14vu7/t+rr+YspIGODX6y+/1vXWXv92f9laFndS5K/Y1/rDX/vGRSzXbbZh9m583PIlvOPWfv+VZvGF/bJCjs3MgBtvi41IJbB3h/oyE+HmFmlptlMZAVvX1UWeArdQj+c5YaNp0+aik1DWzwc6kchMoamoalXoiMiIyNYQqUOWrCrPUZB5TFHbg5PWlfVsk3pc2xQVzWb2hmYOQxnhdlWT3g3aiUOA0qe1xFRq0cydKaAOo6oMC/kUyPqDgJk4apq2wIH0av5mEc9bHscAhRMVKZSMfNJM0dhj26ImErcJInqOq4Ayr7wKPbbmvOGhzo4z6At9UuJBHnqluc4Sn3PW0RS7JaKTvEb5CgAv2qWElrS3Arf1xCM64HKpu7AZMy1cpnmSIFiDGzCMOPYUDxicQx1kuwCyxrgV6243yJIRkeO4OtgZv56F2JLmrsuYknk9IFqLs7kyS/ergkABlvPMK3lu6o1YqqXd1fGx2h0ggcPJmYjnbDEpYbCk1SyeniCbaKn3gzOkhBJ9GHNeCSVOTKKe72a5ExnVC1QT+Cp+Y0l8VZNrMy+aMVHEsdQq50uUszrkBaszgyzOLirhb0A/s6bAIqqVV5YoflQQaTM/OUySxX7viKIV17a1Ps01exNQjx6orNk+YajUBM4SFQFXFA2LaunnUoLkKg6PVTuwsUTFgwaGSESNgU65QG9doeR0J8vI5af9L8t1JxVev26HFGJoZLZ8WabRnn2PukO2hnXFaaJXLA0mHT2Tk7RwwVAqEUqTuLfBXSjFvijJGDC3lZySakJxegob+749w/Ytx/XP995A0vzSIs2rA8wjafnmf/zH1//8D+u9NSe0pIwjW28wkHfAUSOoYt/Zmy+VgcxcG8VENyf8145ft11+JzJuXwXhkb4y897IpNPiZ+edO+lpiyK2MuKdd0A7UmHhtpB/XAYlcfu9KWg5/v0P90vfP3h78iuSOyN2BlAD6Gm+AHMiHBsZ+we353XZz/evBVs/ufOPtbAMtvi3FfbrYnzvr3R7f/Nvf3Dvf+cv+7n+/vq2a//Hf/3jWz1K/n6XnTajXUp7GS+zZf71hgXhpauBLdyKd759f+/3+pK3M5CBXJHhef9cYsIpc/u6p3Biaf71MjMt7Msu17p0GYXcBM3XWttWlnwWWtOgEj90itTJ1igWlt9hC5dN2jsoWmZGhKBU1BQ5gZULHEbgMWZtgVsj6LfZMScHeLJKUnPKmZGZVqmyZ+4dCrEkwj5C6w45y1sXD7vOH8cBHg9qx9tqekX7X9SZdsUEBll1G6LsQKVca5HGVTHnQN4j4SQYLDuWFdxMbUiLupJFQ7GKWyvIoCBKodckDWXfPjP78YMz7u+4I/UCT1y7zq1h6lLVYNLzUc3OoqlNT9uLcUrghOhSmkrHVDBztWKiQTkmGB8P2gSVIJ5oxekhVQtbjuEMvyPNrSe0ZuKJlMxgA7tb5/E0z9MO0+HaQAH2QVN+tg9wqF46PJpKQ9gTTufKKz84KX8T5jhWDWfO1eeqTcA3hYBTj0HV3giVrkYKacwQOZXEfp5TZzkpYeFGu5zz2dYgCq/qqAVzcE60MPzgrD0+yFZtB00/YJAJmhLKKrqU++0x6saYRK/0ypGZKME9zo+lNC92hjNnoiPA3FDuTOVJmTvKwVAD5gE1XlvtLTWebwJ4NbhLU8vTd9thEGphj4pz6iwpqS4Klj6RTczV+Mx8NZlEJ4zH4ckJmkS7Nni157T5UuNXvZaEqGRLsAoTB+div30f2nmGSvG1DQnO5Ols+k097+uNrjvRvXN7dJk1rKP9xcJDlOJbpn37X/+8/xkG2eFl8llfemShFyk6oIb36Cb2BKpJhaqT7drwa2/7eYfuIFKlC4+EGXbsd2Q63O94IxU7k1u+amd9p+sOaGcTeT18kSR838gsjqSvv+P7j7WTQq5Llj+Gfb+jSyzVNruTrvulO+4gIyiZeb4sI753XGYuN9gL6yv9yyldv4Lr+rI/fnHHv+GL+7qUTK11rSX3C5eZhZNOI1bSncJCmt+IzHBc1/r6L75ybfsK2E3+/Ii6e1RCpRZK2/trx/1t8QV8IdYVu/b32RIgtH+Ma5qKCD7DqXtDYig7zzmvvdjG7Ld3A5q7d6xCYxcq+4NjjCoenoxhjORMpyx6Ik1phw/AAeSqfEs+thUYGAlSWqlElshXqk/guYGPnO/Yyc4xHjP8OHpUbvkBn86NHVJRpUeS5sZnkxd+QFSXK4VECFuvbBrO4bRJKpSBM6yvM8UaytqpPMmudc9Zrx+Nof645iY64/PrOXz1/ktKn5WdInyvK5QdADSQXPJBDTygNA1sslk0MtA9MDUstIjcFhjcq2xsw1xCjdD5TCXx2/Wqr+dIb4HmlszlMNeSFzJCj2NN66PQPvLskN45pJ2NUJ53AOr2i3WHVX9UtqD+qSkMo4hPQNIurhexvFuFMx2eaIDJnuFHNCpCsyaGzy486PHEA5jOPM4U+tm+LUcxkEQtlonndlkOabmlHeSjJGe46DATZmOlae7djC6ob9z6PAo2PaD1Np69DpUd1u2hpN1LxwZmxmuVLjCxdEmeSEP+VGelepYdxO6vqjWoWnfzBlgF7dmBg3Q35tJ/lKPiYcFVn4G6nSz7RtkNKcXSwwpWM0JmRObwE/r8BtlebIRDMiJL6Wo0DRqVKuR2nlkS524yTVFDW0uU/OaKcG1eGStPACgJcmPAo2ioLJhrzDXq9G+GosD7uHdErUjmXZxB7aWdAVqW8tWtSFv8t19//PIXQZ3KYgNpKVARCSrjnUBNSWJHBTCAVxXRO1xIwcjr9ROG1/JX9TSnlplcprBFXSlHKlDRB5yZX5Rn4A6Fds1StHhfFVym23LX9vhxxou4rn/Pv77+/PlnKsJj+/5x23rnAs0sfYVemTIJt37uvfXOTEX4r3iluPD2L3/DbcG/8vWV9pVYdwDY733d1DaFXXZZLIbb17ctuCE2qPciYIvdeulJWqbk9/Yv5/2HGdYmN81xu+W9dV+yjUtxWVLcsjSFGYtCRJopYVgQvpBmGSSUe8eysQV1dKvaGr0bC5drLpjwmfY4uU56Otif1M6JHPvRufGMROoTVUccgMg0pSVFi8Yi57y3FzIVTNgKfhn5hL5gD2portMTZpSURJnfzg8b7ONUegtwmoS9eReVflYQOv4N7R3B2cDKB5AGbYTlG2D7zZWUXRCrO7stqXXu/JEa1s4vIns1U6NZzsfRVQsfS1O4vQ4Edu48Tpbn98dD/O7fRGA11D++vM0Xgd9jJT6hRl8sJ6OZGTZdd9WnVxqnV58sqPQPZy2HjN7v+iR681GfldLGtHt+gKZJDkLNpDFT9YyUHm1/iXS5p8nM4Itt7QFg5hgQVBGL8rPO8pQSBjjofG1Crt7XjZRyqrhd++7Eur4nZ46WqfhrpxZQwOzc8Nz2vLixbRWxofU6nnjgaVoqFcRWFa+8sDrJLM2gbBjp/K+iSaJLLOeeC6OOpkL3sS0dpDMgDJOnHmShNzPPm1fUYi0wQBrgKRNgUDDR1bI5PB/oFNDsOD1xLz56wEZYbA6ETd2eJLOH62JpqGcjh9LBAi2kSKNlIxGZGeGVDibBZJbqni3sjqwzK9fXtAqg+NRnb85BHJpfR3BnXnNPkOui0vSOfNxK3RsHY8RYAaB7+1pzTlF62x2cACATmU6QITjg1Sjv+g6FIF+v/xvWeVL1nplZmXexA2ljATM6WMw2tUfioMEoswQQEMmMmsUOr4Q5aVIWkiu4SFG87A4SHoEoFpjQe9fGdtAc+4pdce61/v62yxW5mRk/635ftqPw56TIBUeCmSnuvYNKiRkyw6K9LgPdnb7kK0l3zyoSdiUcVuOVSSTkztevP4yvvV/bDSxGdOvYOOhJ6BWJ9br2etm1fMOTskgo9m2RjQTWaKdUKncowyIVQSvsnA5pZYKRQGxAMqPnZyw+NrGMgup0TZIzNsKe9h/LYlyxNcImnerK2UfGqeNS22whdZJZa+r4mLHOfiCKlUfhYxdVgsdxMycRmzgYEyxjAmk9FvK5R43XOF8H4sR56fEo0Ccifj6elMysBwxgspBxPjz6NkZStCZeVPtgqa5WlnTY1nWIH3fEp1dJLjS1B/j90s9Tm7Rv1uq/ExAIPYzhWY5KE8gTrPw3L5uMi5aGmWKgjzkMH7FH8wey8otkFN2XZ2OVEGcnDzmEp46YyNG9MJJuzu78NHzswkHxyI+4pwEF9lZrErTK5xNVzJrcHwVG8tjB8jYlLKkym4XpHoB6IjCeZ30AiJOEdaB6VBMltZqTbHXZplrKsnZ4xyfZ0GRjmP0x6jrk8dr1NNgsRlOOa+1Ohr4XzUEah1YnxDqeYSWu3XzeQTGoOdhnA1srYkEDDjxb48EYZqUyG7Zoor6A6TZFp1cAqy+VkwZjzm7nwijKxfjfBn/siTnzxIKzIQwT2DzhTTUr9NM1bKox5vOU2sfWdikDlQbIU5ZhXoTLLPG1GdhVW1akdQNQl377FPX7I0cHsmJCLxTFlo84TD0963DKXuEVPLHJn9MeUOFOSJExaYZNYgNyXb9+fQmQdmrn+x2p+63M/db3+/t/2gDsdDUpo/5WqsbBgcgQKd4l2BYVmqdVz1MMXYQ0c5NCGWAEYjQghlCWcEQdMVEJs4sO0taO2JHpEU0E8zAzaEWRNHLid3v9WvvC/X3jRtrrB7G9Ih4ttWKX30ljbIt9B0yRMK3YoRqeuJO+tFb6khmW30U9lIl2GWEyQ0C5Tan79W9/fMVi+LfgpW4S25yWtDAinFe6G2Rr+dfXevOquHR5aF8Rngorzy3t7RGZBoR1n2QgSmgyM2W2BERIEZGPWHHlVygxLHumyXJOvqYmUJugRLs7e5wMTGN8JYhmHxSu+p3TxUGMq0Jrb02EDbLxaM3vduDYjCA+W31yj27fqJBaUoTGXbJs0+fZG3tLYropHw5SNf90HXIuEJhmp26ERLdV1s+qws7Oxj9d+jiMbru0PuyTZhkihKauPf2jfUH9YpvspT93/NXxxR3T4Pev45OOp1XTVIE1l4VOz5+nrJP1A2PA2q1g3qY+93BRj++fF3Ui12Z57osDbLR5bNf98OeesKnTSCPMzeqDKNBdYAIGuuLsx5oTwArhy0LWjJ4IZQqR1axCAqU73V7qAfuO45TInjZcHuAkAbXH6/o7RMA8sd9CuY5i+nZ74hM6ce0Etr13bemKRftz5lT14+CI3eh8eI2GjDrc1cEz6nTsX5iYWk8lmvM8K1WRlPH4HgBmMm8f7m4d9fCJyygwZTkuvpeuroLIOj7jWgUkAZNKl5+xWezsXvQqcQ7cPpHBCZwrASj/XZ6fc1D7saMbwSshSst0KKBoW1WpeBKfl1u512zA2dgdQyJBZiyV3Y/7JIFtbIoGUSBFZUv9UJJEV37rSSazNP2rKV0pZNg80/oDKWkbrBZzAAEAAElEQVRVI6BTBniQ5sjWIwBA+AKQG0FWFGyQuWDYC0YFgqW7XBujB65QSydXsLahJ0ppnN2o/Q6RjKE2TuHFVL/Vm67slzc5qMaT6vZVav8B1uQ9WzsFt036iFdDjJ1JbKGksSTJSoog17gEALD1SrqTAJLaV3VjpQI9RInFB5nkBSR9ScJajMzYdx2wa8lfWi9d11vuxzBvwVfiCoudnsa1/HoFL7MrAESmacuQGav2hCTa6/Xr4v03+3pdbghD4i1FKnPLKFNk2aJ2kAZKiuh8hu2Eqi9BqQhbti/zD9tadiB7S1ZcMynpp5GlOauU0XDjycc+ckxIUwNGu7vZyqglVzvXx3UMHokDNQozbbz/PP2JJ+dsrH0i9YKADjsWwJP69nmfEpsOoPr7Zc8rPyBcexD3yiye+IRPMq6TF5wfV2QH1kSyCn5bppaGYi99rljbcvHgT2fhOT78uSNWtMz/P/5X+Jfba0O+1FmsCfMGzTnOiIj9qEWePOfk9XiI4539trep+EjnKWp8SWdAkIgMMHfEhwd+niX0+/VqtskHrNhSip45cEpTWQpcm9xPFeLXDjrp1wRxmCJmb5B5quUb+oDPFYy7Lo8CPWs7e7G5yvNY2mhVpJWZYisnlWK6GUtXqqMASS3fqY/TIMxgNzxU/mqXi8yg9WEQCHW3tGCl19d6X6W9RvOiTnrLoSYHv605I6LR6Ka0Gns/sQJg3uOlJij+oCDa76QR0IZhXH5P5Yz69i2DJQH0sRWBHNj5pPn1ZiIAE9LM2t+V6UJRhHJC82Q74H5DzMPpgzvPayDlR+VDIXvWu4M+miLLbkbcRV3uGwXBksMdsa4JTDpfn7QdhMLV11R4t5CZkU39KEOhSiAN8f1mS5riQWHGmpTKSe2AFvE0tWgJ83v/bS9myvpBuS+TAVgG3Smo5zoLM+VVTa4zJdsB73sHIopxhzBAe2dK0V3w6sCbXTJWCO+1qpPg1ssVEMwyCfdeeQNMmaQsLttAGlw7EzWIT1nAbaVBZn65EzVfImSxhSSseKlvhsGx9jvfV4fHCaOvFOxPrJAvE3iFwQxeMyjMMXN2zKEtvTORHjdSwvLlVtOdzNxJNvqQrVEPQWbrzz9evv+mr+VmXrMgk6JdYmRo5XblFpWXUFyLvD2CBjfCuFKwEtwoyxR7b2szUS6v9JaiTvuITOKgwh20k3BvpGq0g/ps/Gb+M/feKRStcgJwYfqLywzyI5GdyB+DmRzLWHJ/bJOjY6wPQQlzRI5/Fn9zSlOVw5PKlO7cv7r/PDHuf+frcSmSpvIzFuOYbJx7OsCZzC0rtDOTJ709eKkbiv0fxMjLoN6z61htI0z5aWbUruukrv/di/5v7gErgejX1Sery5otb9hugXje88EYKpc9adqHA07liZuUk550wG+o4vnnos/W+YB1Ob6pb1sNFD6IXKGvcEBmBstClYoOYlqxDPRjNGdHNljbJvJJa4hiw1tSyNGVPC+qZf2sjZfl5dkMNoyrk23qHKvZjzq+qi/r80nN/gcGMcUkL33NnLC0pnN/en+hUXVgipNt+NmjHWfOOmudlNZo50z4MuMRoCALep3Q/3gQWGZy6xQRZ1ecQGCi2aK091PlxNLNiuy6Fj/TsV6FswNmVcobcZ7BLK1N9ownOGOpt9bOZAF+YFhj/XyKDewActCjrkO4mQOW5i16l8gIUq1GfqL9zijBEtCZPcyzACJlNFu8DF8GN7cSQy+TWctuxhpP3fpjlqjm7bobWiJVMPguDrYns4IYb5TQXLbcjVWcZca+U6akKYL7bd/3vWf1lRliRMa9kZEZe0nS+x1Qxn0HMqImGIaF37e6KVVSJdkRyg6htTPiDiR7AhYVopvFDkJ7zRn2NCjDigAE0RAZktHErGLMVhM8l4kLkYTJjRAcMslNXpsqZRnayxJECOKWUGOhiAj6oq3F5XQHLaMEtLLU7GEmgzK368epAPX6usD1VsYytzQqhcDNYhbTwUu23Pj1a/1n8y+z95eF/Zg7X0txI4zYTiktaTcsTZvxijsVGRkwZEQCMndLuWXGvm+OuZzTlDpHYg74gRk/zj1rw3PSwrYc59/Ldc+RIguzKJdNU2NmlbWeNEQfbuzJTsoLn3QMbBLjWKxjZY/THGR0TNpcYTX9NLJ9MuTKis8aTF7bt36MwUHIy5t8eLvzCWfN6jmQmWAxPbuMXmnOM2sIkuRV1QIK/YHNNTUtvQLY8jlFXO0JQeigZ1Zd/xJznK/ffkxAC21/suknXbSnMmu+dM7u+zSTwmDKXazLaps97jeyU9KE5KdxpFeUNZgECbssM+MTP2gOgJHmRchrnwuBVNak0x0sNHJ589GcaArKckhuWO41Y5h1uQSERDG1NRm9UQpaTAcOmuZDE2oIaz03TyE6NgpORFhXNcdkBCCP+Uc+q25LtECrrWKal7YcEzCquM3EBFQdIlhvlgoeWf17QOK1Nsi1TMag0X5hM+nXsoCRtkCv9PA886KLKWD0mhKRIdJ9kT0VB2bFHSZhkQIXaIQy8HYHpDdNE21zunjKGbhzK3P5u4cOzNYVmIpqlDH3Sg+S5Eftin0Gg6Tgs2FSRk9Vc1lB67AGj53JTDdhsRy9AkliQddCOnxJkGxpUQlbl1e3OWouuvlahXM7zJcDntd635v3txv3D5bXo81qEwchS4iLhjSUalRxLJUDGhALXtMwchFm/DLCse0yOr2toCWNCdml15/3ur8dX/F2yHWbKX0BbrLLSnHS6Lwuy7XuTJe/vv5LhtN/fW3d1Nv+A28p+Fr/e1zrH/Hn/+P/ef0v/x//53bGe4lUugppJrYBhULFX2+Y7f1905yJtWg0JxU8tG+YLyPDvgO5r/VXrmXXWh5dqjT8CCDWT7yvvdc//8bkdgU9A/u/7P+U+Q4DzPXXtpv4lfZzGVCJ5AJhbr6klwu/fO9/BpiaXoqUM0lluOKKt5DCJaZ95eUidn5/icHr2ovGNOtWsPSFZcKynbj+gt6iKL7ztfL97dT12vpaN7/z1yrTaJuKK2VhgrDt68/XsrDL/oAx8YUL+bVknj8iAnYrM6pp7r6xCaYzBXP7dYHbse9728/b8FZm5v3GfdteTqN5jROC+6X9tbziTM9VcjJ5vLSAyNSWl/hzAoaN7Cxq0qHG+YwbkSogAKKtkpUp7jJBN5Hifiy7BfxaJFaiEHF23mKkYP6qftFRgDYmQqkiOAkKBN7xTuaqwoxGMv3QWnustTvE6gQfkAqgq/G14/gOtFgRnZXsapEuE4LCpKjpqR2JqAEbSbECJt/59sjcLoiRDVtJqJmlNfV7wgDRN7toPFbMoCCqSvUkUDkYcINVnaiJA37XM9NcVdM5l9qh1qf1sJieEUrkjh5uXs63Gi2tMK7S0AUgmA9OoWLRykphhADcI72k/SZrVopaRuSOzqHa0z4xU6+LgJQBYTHVSFf6ZYCqpwRSUV8BIHuyGpYX/xfuaYbSiwfNTfN55QdbK94ntDtxX0opunW8lAC8ltMmEhliXHvPQ1TG9NiV1kJ1dUZp9MCqe9lAN5ai9xQ0KqFOAuaYqRD1fJrsXzUWZcV+eWcYFK2pToVfTGBbwCIZaZ0PlgqMeSnF1mw5IK3PNYCEE/TlXFVxslMEzM6Jzdy5aLSL0eNLaGnTUmXma9Hd3W4uX18KKQQyfduU3EuRBRm10U5WOVhXg0Ul407AJSxTWBJJBQi2IDID7bATCGc6SDeJnjd54xUyQhtOCSGPHwMCSKc7gLAM+L5vpHkyS/6iri9kZtcF+LoWg5TBW2YPpGRQrnpuB+E6FgKqsVqbGbGL05zvi0jErSvC0pTMEVUFHbjD0pxIW5YILlKGdIcUwN3hnUFhHri0AUM43dwj9FPjF+4dKTP7pX3/7T+t/8v/6T/t/+nv//hxcHkl4AWvKWGGzFx04/VO4vWmpOR1595uGVeFHtY1v9rpuS33jp+b+b7jjvd6tWvY/EXj5f7rvQSjAzTCl973ivXnNxb9vRkAXuGXcdtSbOo2T/AFsz9/gW6vZXj90HWRlLsSYE6WIFBYhl+OrytdAefCht0/b+6/uLS+vr7iF/lyd2JFeNSZT1MitKvtUztq3viKdVULXokL1B7djJ81KaSlG0lbefnfd8A8TcvCkqQs77RliP3iRVx0wMXYVPK2l+WvfStEmK/aw7GVkn291utaSCkAxd77ytj3HbG1FZuZbX7RICBNWHbra9kyU5iCoNPsR5B5FkmhmVeWWFCIKo5n1vysq+RpJERIWWYEDEEhpapCGrtdQ1VAGNtTUNy0XOWuAoos/qNyxxmzRi8RZTiBkmMaX9JWFpK0zb1LlpwaCxR7SbRGnpoVokfQo5A0yw1HZL8a4lTJhaIQVvshzGyBMl8rUsdLqlTVWWY3TEJaNq5nJ7VVOpko2eQGZ3eUaEYlbRVzQFIUJl5mvWDtuen+3JOqYk2h49gPHHyt88GPmkJnqFVA7MEqw477yMHRgGS5ILo1hWdm4FZQVsMR8omtC+/rcRdIgMUjqSZLlu1VNQxZcSkeZp/VT3rwaWMzJA3uR2Shemuq/fRh26GQ1sISywXW1QznCc9XKWaPZ9K877mKytI/kJgOfMrXt68pDIWT9j/gSv/FQ0XRefXJiQeBLmw5B2gqEjU/gAZ+IEACCavW3BoF5Q12MLKpSv3kq21oCNBNCusJQyhRgN4a6loEGxPiLPmzjyoKbGkOG8S/fppEYyO126oSpI7RDu7Wy1gljGbbEc/1WNMDaqJ5frwqmYpiiBbqUMRDgchUOiUwW+g0U+k6LDBSSE6TF6xBiyEMKClLUYldBg0H3KrNT/WY4LoYmamExQQPkTHvhgYOkm6UfgKiWGLhWdlFDcaWdkhu1SN1U9pmsqR2RYuRoZuxb9O+91vpW8iwL//b3//97y/vI179yQxV/UARyn0pC/QyosSvImpId2RGTAmloj6lFKFI7beUaDfS69a2S2kmM7hxsVTjkUpbC+C6DUZdYZcK3Uma3mmG5LLrgqVBcu5ESDfSKDG7my+s6iKA7Ovb3AMZClNa5r5dQYLuKxcmPszabmLVGpKAWxDaAGRG28tgxRNcXFbjmZh7M2XJTLmYIcHXtb4Ic74tGW62zcRIaih36BmTqdyW2HGbx941FZP0QuY6fcxMDDEXqR5b1No3imaUYk72WAoj17LVGZrYPPQ2+5UiqtBUHYcz9nksUdm4fsLn36beVBI7fLIhcXyoupJYz/1BAvvLJDM3P/Bp2pjPg++1MxjEXRjK03gQmWZOoTrnmJIeUklTq0U+ToQYr/lhT1EHrVIwpxVW1sUoPf7i1KP6pUbLgeDHLaCgMubuVaxXq0Y8/caRwzGOY7CeUn59lRLWwKYDxB9kXs9vnhef3/uXBT9Z+/NpBIlqzupMEV0knmc8fKmKXeZ9jgObB1VIv/pndrbYQ52hWcN+7eqN5izpcxhlsGbAWXXMljUmelJBXWuWDtn41GiHxtlvLACSGiUzYQjHTTpoGz/7fKz+KDlV5dqd3WvSC6sKB1Te5UzX6+Uc6wcoOXXUOrWem5YKIHMLluEZqYyyp9VjpCpbnF6YXiJ7RCJxKquzNHVFfQojIi0tmRFVG9m2g5HBeS6SMonMsGTWJEGLri10Im2l+G4KS7hZT5SHfZ4XTHRoaVOgqjNbc6DRIcuEemjImnOOYCajuaE5mFaRsiUn7Eq0sPjsrIwSI5mOydqq1f9gMtoCSHpwOsapBoxOlIuG6CqGYy2hUV3/9kxkEmnMRGlZV2A/sB5AIHKJdBc/lGsEIqXYTpLyIqFzLRbXyWBzvyalWWaEsCNlsGVf61rLeE5vWx0NApSl+LpTEnJHqxYW6Spy75DUUm0NGF0SpIy9bzRXqk5mIqfoISK8nry7mQK1fYJMigZfaWFZg46hvc0oX7YckiVwXQrFrXfk6rQiDcpcNQfBqBp5V+2QtI1tEXHF5Y7FL//SfcGt9DhMqmFUqza87vsS0gyxCgUtYIO2fv1KgwGeFmsVQz/tRcrcfeFKGN3xK9Pil0VQuYg+LTfsbQa+0huwkEJURmihejHJwQ2Re90BNHFaUmZkVhg0ScoY2bEYnSqYu+ekQCDgBcx+GOLakx/Y7RimseUny2uzdXJMCOnKtm1thOtahIFcB64dz99RcVFKHKVBAKImfZY0cCVA7XD52+nH6W+Y74+vad4YT5333M44G2MLB3VuNYuC9hjlPSrVquTVg50Mjw9v19T2nmOQju5RvYNV4Z3DwbSPjOOp1laz1xOadOaFyQA7A64cY9YP1bHc14yOoDoLwzzqc9fHRxwnpHITOTfyEVRoPAkEdT/jcXfDaHvupO/Gaqr8rAXYLeigkH15/Q4CFDBpNHg6YcxDtjmL2L9XZQnOnugtSQNq9nnfdGU+/TEtpDqe+fCzPrbSB2egrosVaKZq0k4XDHvV8+yoCW/qrYoKMTXSvsPx85FBRLLNeWcEJT42iZymV/ZjS34EhJRzzsasroDD68DETZ/4RUv7dFz7GYdJGe0OxZEvsHabZqPU3jCaFTHi3DdBNiKrWcPqhi2bz8FZusGHlZdLyMmC6yJbOQ4AEXNz9HrOpDFmd9c2d2ikbvr01UUZ0EPQyJrwYGUxSEznUcFuOnobTyA6RfxsZmUlVBZCpEZ4a4IrWlJhwnuvucca9sCJQ3vno2e2JI1eMyhgThBbKSKVHYW6ff35df15Lb1e5jaVrrooy+aPqNrAjRYpQFbJuZqm3VhkluEcgXo4BXqLixT0BnWZx5JmxbJOaSkIiOYZjLjM70wkU5lmSr7WXUEvwpZx+TKXcUX47be2CgCALXnQIj1uAMi1pRCpBJdWgG7abyN3wmDu/vIrsOB0mmNpl4YqvFqELDIjDIikCHq6pZnJ/bq+t0GKNIfCdyjTfJffWGQse8Ned5GLd1oZcwFQ/MDudeXiMlhS2yPeDlPs2R+d4UVIzNyR0XzuBz080CXqIFqyR8cpmnWBtdwVZtktDGYri2tZZuPwKT8AqoKi2vagJaY56CjAsWkc1hI6sxk9kDbcZcvH9fRn6mFFnr/4pLwf2V9928FEpj0/O6Qx4Zjtdlt8bAUwc8friDxu7tMMSxOwzKUQWu3lH/xSVUweXOqYyKF0TihzAhl1zzOSh+et32/wmFs++eWJPcrWFgTddKC+8vP4+6L5kdJxdKn7GWCy1so2KJVpKmBAYzntKB6ZRHTjZ5UaMGXYsV4Dt0gNQUftxSbPNXhSycDIiPPD8iWjXXlvPEiZDBNjM5AhmKyEc9qoi9O+U/FNLUtCneY0uMtxOrObOpQse9nB41w9ju/ru8neiINKNABUZgwtBMFnB+mEogXzNFYkaVa3Op6dgKJ2aaZSVb1FtgNWM8M4bXCoYn5N3tNvn0kjLc0tKk1mdzmNSwPN6HXdvRg055zuPp0zgmSivfIZFUskuEwiMtNqvNRsvo7MwMcAEM1I6MeZyOz114QtUlWUrXMNlHJkBVlVozkuGhK8tmj5shM7npVuxsjBk7OmFSitNfiMkKJ00hUwIoVQiSZUPJDMrloVOCchyoy1NYhRl+4ZM+gQsyBKlKporTF66JHuXcI1RiLDsV9MM8Ycy6pZ/nxrf/+1xCv+uWv+DYCX72dXPggOGCUbUbluFikgm9yu6lfazW4nAGVGhOn9k3vvfXdnkCGImgsTmcXvIZUOs1ymBG3n985lEXm7pGDSeaVHxl7IwM/XaxHrsl9uiKDpfe9vE9btCd8FtQohiVK6HAl/1YjJMG2+TW9ZMiX3X6+ly+CFhAMtRQUIyShtSERu2xeV6Vov4MC2VQtcyIj9dkuG9P5ZuLeRa9H+KkaEkJnmLCkwICODumofumVWvJXhUXJqTFiJtvZcECni3rvsgpolUyYih6GBR/hPnzmhX7akdnwiGug7tr5+za0kwKyLcM0RqtObU0h8XMBnTtrmQ+PJdM6fKro8gGY1ChcO1fkSBahggOeLn2aO3S5frmIc7ocDaoWDQq26xnFSjQL62AMNe/nGjABilmBUKYxU5aLz8faQg3nT3Nh6uz7iUN1zPLQPzQzzyXcmOu4KMal/DTBmrerYsf76+MelUeOqqhVrd0KyQkE03nIe+hEt5cl9njDt9xihv20XXHxT6SAk7UnavXfq2TXupystMaT1MyOw4x86ezhOR2x1lyCm470vp9PxJGNbIqOzKqVEee+8kzQWCiCrss8EhR9sIR2R6MEFNHdR+0gcue7zU0zrrswafh6nePK/WcmB4MeZPO+khBS1bMzMIEJOJBFUMoNLgaKnZR6txYa8YGddjGRxyvrp1360av0amAkJqzA9rXWqDTUtKKvpqIZctbc19u5wjyQjo/sE+iT2ehkJeqKTyEkeJR1tx7oaTI6dNRxz8lxk8/GUbMlY5TFBtQOexqmUanbtoC/8CEqOzPpvfQ5mDrrJylwBaZasOQAn+hY5mJMJFnPZFY/1wR5rQEWNp+g9ki1X1hdLCzrBzJFn4RSIey9k5r69FLNIshWSSubBaA7kvrft9xvvn58XLOOnI9tKjc1bI2W6RzRRRrFtBJC+yu3TzBpnN0rdtzEJjTF/qko8yX+pY5TJ8lJnolTCoEbxSlO873qcFTxzXd90404Cip0JpbmZ+4V33gt3BKBkxHqb/YiLpNL0TmYyaf6Wvb6VQrwvZKbxzi9QtvD60y597XQtVf3T8d1ZQHgdyQCYkSa/Q2ZWqAYIsxXy5JJwK8lt23cEzFjTJK/vimJdtm56EfaUTigcAAxYRnuXBrjFjRC86yWlxSyB9DIORZSx0tU9qWjbgKMyVKayz8vZIMOkKcfEqRNg2gu6v63Updp6znYv5u1UdcZjnK0711sh9Bi4D1cyScIxjjhXPyay/iEnjXtQ0PNVb1rUrZklNqa1tYfHjp4W+OftJtfTeNO5IP72kVWmEMnmQ9RytHc1L9nRCvyPC2u/J1QYX/P5qjSU59/PXYy4TFkiHalajmGYux3gfakB7k6KVeTOWR/p8df8eBJtrucadXKfWvTpvCXxoYBWL9FJyycp7+zpWIamd/8eNQFPlk/QXFXAnAsxO1D0efiVkZil1XysByI+71x+WQ+L4MlCi+CcB6vRUY5+HtABZh8ImfV2ZwsPZWhsKnnwUTYb9bdoRp8lkNrcomaS3yBXFSdXRFLxyUSL5VoyW4P5AWxore3G4zDTZ2rX80tgjfKb06PzocdBJZQ+knOTp3Hy+voK1W9YLVvpQQsUrIbbG6bA+aHmUp9YWJiRo2aotiMolnxlYujCQTIrNK8QGWc3qVHpynyLhiNYSff1biTN3AixBi5PPxUtzTx7c/WhNDgIVoKHWbKmVQwA0Jc/+tkAUe3+KB2YtLITzX1UlU1RclOZNyVk9zy1VVTW/ObiehWnyGFWU05IlKSqap0lOltGwpBAhi00TAwo06UQpEhEoUyZ0egyMAwsJYIIZWRuSkjLwE7bOyjdmQpV3txWsBpOwDyy0tK6ApBgl0VG0iJzKiTL0rEY6QwoRWbpdtJy+6Z++L23JW27kkXnQJBSWALV8BIZERDU/WGkp79e1/r64oXFvXIlSF/uMlVDgwoyKmijepinsgCSlznpMtcC9n1ON0akwZUvo7stXBnmt4m0vDPdtzaJGwvWpbOqs2REmBXYbbZWd+ubA4HMVEs0neNUhqIyWuOMYQCAhAxwc/oy1zYvypsbzfq0iZiRmzW+wErjbqCs+ZjDwT3xYhO3HlT1+Wq2f3vVLt61fThO9cNwkzxMs363k6XUmQU6g66fPM5z3nSgl483HTf08a6zXJ8I9fmOfdLpgsPdZFWoMro1SQh0H3Dh45MOFlHDgKGncbo+VJ/3q7HD5+WPq6yfPN60vtYxfOK5/15NZSFiUunaU6yJxGXyJmdtiaOaLldoWQOuVUhiaTeMPVf3RSMpQ/1WZlXlYNWPT1KhEiiI8kjZFNYOO7wSiHzvy+ItQmDWSBxFH5MS2K1EJtIc5YENJJzWxGcvMSW6Ekmwhva2ktMUkq0Xr/GHecqYgn6XAmEaikHB1kbv3cPOy7OM/CQSIGBmZTcn2rVO6T+iOR2TVgW5DoyUptwXQtxeXdeBEC2q5mqU+S7opkcYmy0HmT0SxLzkx0lk8Y3MTXBEOgDjSgQy6atQjDq1QbOV7Kqf09D/WMG2sup/+WxoNsTcPEd6GbuCe5HswjWAblYgGzI0QG5MydXjOjF2woxJijVqrPkKTqSMKaUu1bxKu6TNDAJpCnaLDwWYiUkvgg8AqEhFApKR08khsw4WuLaUqBx+dxN8llRTU+Ss+G+I2nOJzERGruk6azn4j7zjwPxcQbJmVuexHbUxFHGlEg4Bsq1FGFcYHUuvv/ze3+8X835jKf4BbUW818pfv940QOWrQw5pw5A3d2YGIn9WSNg3MkP7LSnJVLwXMnHXXtyRsMjwH0khJPYOJLmBMAj59vyzYhwDbb3e+aLJFhM7sLXfuC0UHgi4yIx8M6WE1pe/1rJr1Trv/c+4Gba2666gEcaEm/kyp11auDN+buSOROCuWgDX4vW1zL4cl5s7DAsXqg9fbwbjJ1wybjB9u+R2mdkOe5kyHFHTkUm3+y27LdJ2BkXyuq54fa3LV+JPfMVf75/YlF03kHFr29qt3lD4nNfILbwyNrYhewiGpMjYERTXcheCyHT3Bf348pWIpUv5usIzAyW8u/ECXkv8tz/N3/Y2Cpnrer2+fmRfr5+aWYEgKIXnusSQBeh+CZsA3CyrnkQ6ZcVEkGiqaYKoyUjjbNQwYKFPFXhbl1daBTgsI57QkQQtpov4YChPNN/fz3T5yao/XHCTKDpLb6TzcdvszLr893i88XqTyI7Xq3i4Wp4B2qrYtWXaG8Q62Q85FeQKRVjQYFI+qOLHnDlCZmqQ6V/c7GRu6JsURuy+25DGTp7clmpV+47qZ0HavtAmEWtUsMG+RhQTmZmwHIJTdW7UlTfCWstVOhWNnQAahdHfV3Ese+X0dMDL6Slj1ZS4tJFjjC3RC16jALosxVL8RE1gLlRfNYW43WlV25kGq4lV7JKD1VzlhJCyUHUSq+KSQytvjEK9NSunQUd7KWgX6aTX6QSMAlRlRH1uTDXEyzqqKeu/s2RnQSiTobq4qfZWFph2dvzMqq0MtIZFrUp6bYNcVs+ozHzWKCnBtLFKOcor2XSvFnDQaEyDeeeKBeM0+Nxm2uq6Uq00iqRhV18dZg4BOFujfdds1dpq1sAhCRjdCyOsrSx8VFsq2yt0l2yhAFJZjOCoRpdCVxZV6pFZLruOgiIz2cEiAlHlmLootmyOEkpLpilTIXoNDAJyogcNQJZDDBCvtGgeWo1zg2Ce5ts6hJVVNcCXd8O/A1boQcJgMr9TWaRyCyOLs2LUot2wy/kLf7xfF+78fu+83xZfad8vS0XstHuQxDppkcVezMxNISNdijtgnajFvUvMJBHcikRcKQViyxbdtkjuuG/t9x3vL9wVWdh1vwXAdi4ABqdVDVg7kZH4ucOvrB379RK5M3YV3Xh9cX1Z9QhkcO/7/Wa8QlsppxUBHIZll18h3265I3bEO/e+8QYpXV/26/X1y2HLVYPHqmksuCMD23C/7zrIESa740WL18tNafSbtmz46SneG54KIZY2bhpWbWT3pUWXv23/kylAEXe+jZm0JcFCkOgNFaRlIEQItpRe7eGRCMHWWiIDFivc5cvdnUTASjaj4jQRNJhp+eL1soWfpYCh8uGZBwcANdgzzdOXhCik1bKzNINkRPdj9JlS24uGExpz1PiRVn/CSTCb4JQVTCAivYq8euZLoFPF4wpxfFrdVFY6dJDwkwon1R64nEO7agFUJkhkVLNUDbnTJKEoWIxVLoQmgwVQBqyx7WSqiaONARGGEKKa//KYaXQFnECR/G2iCTQKPx/St/YwvCl+jtkTDt91dbL+scgCsrHSecUJXgYXmP/MKqGnlbvACC7NBzVM0f5pEI+KHOiffLMDDk+NrTAEK9afNcBQJUeihn6xrGLs9IomWY+F1WjSqAZ6BX4DVIr7o7MJdBZ5oqkTAExpomOvJgMgn5eqKVj1eUeWfx6cMGQFSNlktdLy6Ba3JvryrMEHhFGXhNEcq39m52OdNFX8UOL7LOy1WtVmGZ+HOeEZC+QtVqN9aP6j4uCSUDDSU+GeGq2NqlSVLjSqamIOo7vbgjfD2639VkLlX5HIHvvbHzMkuX42pwo1lyjUNL/2HB1SD5RfQUQ/O47nr14BnLbG8racZsEE0pQliqHnxEgztwlQ/3D4wWfMlM0VP2coIciFLtTPBQxE15WPJnXw2Vicrrk+JJRUnHzas2sGiHeVYrybd7hjKC59gS6EnAa7SPJa63r90i//5f5auVMUHeR8fAeN/Sk95ah3JsIiOgaOsSsFMne7UvdaxU0JO/be7wT0/pqZUbvuq6ymLU9zZyK074jNXXzHkiLfUGILSDM5t+i+vNZ4O0UzoUgPBqDCIw91AXdrRW7FEM2W7PoCYy3P5YZ0ofTgKO/uRVUsvPP9j3jpJz0Mweo4M23fKYFMJ1Z68opdGs4ySMG3IwntfSPNAGbpkW+7uS8ypBqFTgmxMipPVEeSdDq8quupvDOzGBO53z/ZE7V7H57NgVMwMRWL1ZGHc9EISRWP2sAWrYoNkrKj71JTd/ar7OgJYY6UPvtFyu4cW/aYn0GrOMcxp4GEpJnMax68GcsymFmHp59I8kSs6JSM57bba5y8bMqkaBLquLuGCY+1LVfYb/v4cX0kl/W/mZ/eH14WmidRrTrXhNRjrng+on0Fa5U7CR3sWBPBfOTfnHScnXVwKo2rezwm8ShcMDqImEN6TMU0pfWnVWtCpXO/r1Zlx5lihlkibWpD/RCBHmsxlfwxQ8cpN/xfizo+hI+dBlBtxDmmREYpFQI3g033eoZ5ANrWdZ8TbaRVA3UJDPSVl1oWSbNsXIKnPUbHG0wgw6myf1xbF3xPpia1lqNQDNrhAE6/Z/N+MQDEICYQTs9oaaSRJSonyXo8NUujRfOQCzKdcKcxhnnAdSe9WVhhMPuCO6W3qF1Taa97GJ00o9FI9/Tl5kjAW2Wreu4rJ3aaJ2AN6lKQXKnm2NZaCTUlrYGdJ0yYyPrYhNlvv0E6qgvkhG5ZMZegjppFWHXEGCzrWShrNUBvxbq2IWeCtH3+Z3EgoZadM0FVRe9SHmgJHrnM3sRTieJ4K8oU3RNIJwwG81KCzppn3JCkUEO9s8Syaz27qShxyYGUPUx6ASm6l26nufPb/fXH3/62vvyX89fLo9oOoj4CNc2hgpOsiQwlkxtRDBZGem09JlTSY6ppRQSFCNlt+95m62V+GSS472JhA5L7nRlI3nAsT4ML6QwxwgMAK7gD4kZ+BZnJxSW423VdgZT03m75fu9tsgUn//jhSwRc2R2Ioch8E7dAIErZAlxf4HJ/vUAxnDKaHKTgVe279877Hbhvxf41HAVf2LmRkHxbjej1q/qfzIqZJ64qT2UC5shIwunrj532LVNE2CpztKstqWTvgkEFXhdIagMKxr0VkoFM3PbOgcYmsZr9Pv91jOcckzbOlas0KdDAIuM/FOVE1tDM8pmwVgVE9a925fNfXeMY+Y/ERE1B6MNa8kofzJrKlKyUEGu7W43/5KRx7TuHHiVMVXmkbceJPMnecYFzcZ2yjENuw/l5/fNVGfhcrTmw0jnubzJ0Qpl2kafC3QzITz/aFSM+ZOiKRbJvrZ/H7x8PYGi8p6pe71Z+gStBNA1mcsp+rCftzXE5qjpW0o6Rm0czTqnOeEoZAcQGo6qtkoq52QGPAMKiPV+VdvPRMtLjdyd0YSEMyNjgNiUU0bhHAlBWEpFV212stlASIdUs+OHvzL5uJ6cT6c2DnofKB88fijmzqXand3e2Eide6jDnQRDKs9fqKjf9g3mvjm7PIp+VP+9UN14umSg5vr4418iLOGsBC2uvhky1Ua09WGLf9anIJmIbaUHzeY6ZDpVwvku+RHMPn9y3qiXuvvycw9lhkx5XPG6yuk2elK7CBpS5A1VUoeJ89BmZ80VMm22ma9TRgMnUu0cHHYOWJyzASF2Voanq/hTJ2FIqg6yIjMhIVif6fPCR1EGqMh5FxDblzpU9HyigygiBTWRuXZXyGnsIYZOoJkQ3MF0wutOutJqEJTcyWscU7D4p0BRggpsErGWlCl4nbUXPLUsuJrL6rgHWFHjzr++vP+xvf/v7ry/7cv9DldqG9j+/7x3GiTp6zwNIp8GrcqqU9VRUMLOndKntBfsoSkDEF15X7QLSqXXVg0mudWdu5UpctiAnlUEkSHPA040GFSgSEYTgFx0qCB4ZS8yd0N73dinNyLXNwAH+EIytd98LM+mQ6E7DZb/sel0WIgIhk8kSKZpCIRpdXHbVWAd7XXdPNd0eXiGKBY3w69rwKxY93exita1E4tadZGH4F21JyzMQBlveJggRN0AWKuSQtIGW20tV7xxIM0/k/RMdEmF6sCf9yqQyi85fZLXMFAKR99v8jswoObciLXSelEAEQgrejNyRGcGArMfslBpaJhLZHU9KsXKamt2Ghpypx8i3l7K2clXqLgkMFjrTlESMiWEn2ydrGaPaue/pnZr5PJXvjI8/wXllQTw5IYDmXrG1P5rI9PHPHVSXweyOzyEkRjNpAMV5EZ+bQ9uvtlKsE9mlqiyUeRDSJ1OYz0Vb74nHJyMe804A64m4HhfUaZSFeoVYEmL2eJYDxI3pnHycs8I8qER7zw7mu3tjcoshBvfsZTQeYXLUBxogOFEzy1h5HCNrfJ0tS1tgDhX4+NDsOVrcma5EFRTTuCOK9VpbypjsbK3EUsviPTjyg4iiNcGT41Yavuyek37Jb3B35vxWCVxZx4PlujrOYo9U7k98Tt5hfJ00UbXZZu/VnLcaGlEXasWxR6aSqW59PJEelAGro1XZ4KojP3BLL4AmZq2WYwAJIbqcCajkZIkcQKfjspSRTpdQTGBalaLw1I3IJzipm5uh2zr7U3MRkKR9+iC72qtmyPU4347PahcnesImh74k5Y3qiSLZsmmZzKSYaappFXaCfXZWpEuOHknJKhwDSJkqXrdimBpP7eUEw7REAc2GtWlmbosiZUG5qYS9zi3St2CekiuZJT+Djo3L4/scl9w0RUaLtd21nBbpl9vydCxf6/q6SQH28/3+x7eKlVHXWAlKAuZL4O2wy9Ym12tVjeHa6qyBr5uUX3twN9jl8Qqju7+ua/nr0lqVl9u6rqB2gom4w27gjp8tvpUyp8C1mv/nWXNR1q/lMPqLcVtsbdiO/3Dcuzft12V0J8xcZsQyIBDYEoQgImTAsq8XF6+vP7hejpRlsqliGQmzHTuiHtGll9PcXpdftAWD5VZaZqYreFmW3L2MFOFhBtMbb+G63z3SOeM2zwBlK3e66XKlJLfllSUsApBrQpkaGzWHnEbzIEJ/3QHkDmrvve/3fcfet5h7k+8f/8msIdfge6ebvv0b/7Gx7vf3+wd3/uDnx+0naNfPvqUUIxBC4MZbdyR3EEjmjiLyAEIkK66McsAmlbSeGPH4lTEEoql94ESPOi0o5U0raoQ0s7mRQ2d6MqrH01BFHyn3PMdZ5jxFMrG43M2OLQm6yp8ascKH0vFkM58/6GNWehUJOqRsqkYhFo+M7fP7yHbLHesDLa9Xze8TkRBVm9RxQZNWzXcPwsBz6AlgFYLAz8yt0YCBDNgOvmOAR1j5+FZMaxmYLBf7+HijcSQES4SFJxcfjbV2MsapTTdBveDJ8tk16ByZyQ1s46ZHtDReP/wG+0cHBpj59EOTGmyF87sNG/DxPZ3K1j/a/Ky946yoze57ChDtf6lGSM4PT0IMMlng43kI+Pj7ADPZ3lzqkmblUpgtVI7IAOgGx+EX5QowsLuXhZFtxaCqNpveSKBgUA7houLaYoU/i6UzWpKdhUooNaeTv4/IJXpCR7+nZo9YL4SZVd26EtEApWrN6e2OqWB08NZIeE7ruypjLe+sjF6tCvhrE3chQGdhZXzQjrnNB+/oj0aFxxVPW9fHjC9cynu5F9KQZx0bbo8ROADrz+dzyUYgMBxFIEMaaWedwAd94Aq+OK/u/dVabda0PgmErToOXWR3QAoXEcqM+1Zg06LEnEsjPlu+NE+1IwtahyBaGpbD1qqCeTU9z2MPE5mMqLzYlu+43z/7/RechHCxcWHzeCsMUn4hM4KJiH2TO6iE6YfbQCoTpaV5G9xK97GaG4pR8s/Lv7/vHQ6TvQg4zEk3Dy+DlHVYqNC+QRq0Lne//nzJ1xXO7tMSlLFFKSJBZMhgvF4bnsszTZnmAkKKVC5uQ0mfkhAtasZpuN9vJ7eH+a1guZcImq21uTLDqaLlUcxkBHrslaoHrtgHibKTo4ORD59k0NfTUarHrkPCVA0lQBGN3DTNAVlx5afdH1NXYW8ZLGUNIO7G2QK/MPIrxzKObRUwmstFuqKGsKwsain0ce11yU3Z1biqNh8fx+8p7BXgqbFkE/IeBwR+opTPETk4JMcOU78d8DGtHESZ1e7VyUDnfJVsWA4Y2Qb/5NqDmXe9E513fSIBvcKdup+c5zyG05CKk+MCqz5hvIvw1BHrYZcH6MXLU1XoLYApgs5PcLzVpONpzQxrip0+XN9j5svBT0IDVU5IdjGguu/GAROMwAZ2ZFpmjl9FZ/gDmei0zhEAm0Rfci3229PUuewyeh0H8MxbrByU41Hr0eijbn/a5mZT/LYFBlGBwVvZf1K3ZGks5cTE0+1dUi+dCtYfOihOTxkMMMxgZg6LhGXpobZUCj/ao2uRznZXb/4pJ35c6yAWKC0GfDgk63biZzB948Bm7u4oYV5rd1YTeKtjd4JJQvT2Lh2WTKSos80nGJrwgyjB4RPXqoSi2jTNX314nkaxo32N7L7hCl6AStsPpFpdws/OAaC0GtFZL8xEDTB43uMYxanzlHl89lQHTv0fnCmk6GipUvlGZ9rAeb8NICn6cFW9AJa9B2gthzKqBZVjEMamF1cYQQHKyPeu9AZWuNBsjromQSTd/XqD7p5WI0zaiNTYM7El58zM3LkzI6Cgkba4lpPgMl7ZcgYyCzPVRAAJEasU6BxhDpgyjAnINsyNSlvVDxOC8jv+eP9EIpEhs51CWhDStiCzmrvsna93MLabvbb8a+n1xy+DrYuyGnsDlWhgonoK8v2jK24vxXS3FD2CtABUE/UqQTS5rYtUyOX0uGX+fhsuu51vRuZ+CcoscM9+MVkgLr03a2/6DGU0S+FIsLYLsBVWzv9snGOqx4rMdqvUiRjLmxsjiweMZZ5DNO92krHjVWqjtk7ebwnauLWT1QwM/JuBqF/8yGEqKS4O6Pj4wWX7ncZb8OOb393kZ+z6XPtxrPiX0JlnVdpqT+akcTPHyp7z2KtbK9Q4MlAaAL9fRUFqZTL522K2b+v6Gjiurj2QjlE811xhLv/1blEQdO0YHBdZjKleOnV+mnNZNn4djzmfoGeWr4x2xQiUKvwwPvumvjLr2esEJ/Mt+BEGTMhRC5s5rHN5RkzhDu04SmmKRrOej9XQpobGOlvnxEOfj7+2fBXIOGMhs8o27ZQfpYwPZ92vqio08hwYMZ+CrlEs7fiTnB13/jz5udtn13VoNCvQHmne9SxU38kQ9cvDNskN4yyhroH324+00zzn8RBn/HyewABzcRIyShfmeZj/4kQVwkbmoLedszChZi+3PNe5uidk/PiPs6GqlRC0R6qsN4wVg/E8zdmUBtHoVfCr6kVlHcWqr6iv0fMTSgLHg0oqLsnUiIcmQrIV3etKjU8M03+3plHhSDqMkn6MzeDqGz+fB9IsAVZX+LknqAIs2bJseI4GaFqgAJZe1A5kbMUOOhhxg7C8+Y9/7J+HW9EfPNF1LUlCZhBCUDYNPAUGSu0KCWQGIxnbN/2dqTQvT+2Xx2p3HVkTxyYw6pjagUoxIBq8Fjc9WeRuF2WXgwsyKLf++etv+06S8X4x6wWuRljS1RW8HVdsp7nZl8O+HL/+dGm570QysrGSHUxhRzDj/pbyZzn+v69LrF6+BP+W94qEZJ6lBVABp0mLdBAKZEYq4psWFyJik/DQwna/XJErs1TmlVGa2aYsNjbNq8+FTAPorh4ekBnYZUImqj+g3AdmewzoOXhZE+KeX6ll/wRDxwsdDJMgm5Y4HmIyt04VMKEyppzL42rYto923PSYwXHvWV0mCt+eUd/w90x+tv6xpR/p7aefmjRtfOB/z4nVE2Y31xZ6moCMVAlQEKghYgSVIWRN20MnIDrGCXMrx9QKKG2qJlRUZyhU1NWPx6Pjp/omTtA0AcCH759LX+e5Pr/ItjRGHstbwMeJT3AeSlkY8nkbAjzDXdqKPs6i/Vin3ZpKrTju/7eHNPfGlm/EVJmBQkahzCg1bDW9M0p1sFkIc1k6f3zmgLWTaoO2D5rFx7n4uv0PEJi1H7LX57Pi/wSTUwlmPeizjp06FqUYfCIanorneUpZOWrlZFUmHs05sKEgYFKolnCzWl/2fdg4inEcrEjECLpbSWDnFL07JzKY17k0zdy6fJ6jBBb822uD2putmGxZ1soyWmDKIMpVY/2IIOmmzFFtqbivhqpqmmqHL9aRVR13nigCkuvUC0iO7NVB7dMyUQCMQLrCrNqjM7O7xMvgzSSLxtceOAeqwoFLBlhCrR124ll+7K/ZIF2lVkvQJEIKKBQKVBrqqcroq5e4+uEL/IV6l0sDN7b3B1ByWm1js4PC4vxk7hbIUY3sXksQ3fX1csq6Vq9MQ9acG2aIykxjKjZgbvGOiBQikKU6gL0pYOO+q+Jty5KRMqaVvNmhJCrhuFyRbhTT7fAjwgg5zLCSBNOtBLyFVWX5BSqYRBrcILilKyMRK9+CMkwfJaaynBLk5gu2cPmiG+lej7lBO+aOsAzsO6n9vgP397L8jtBfqwY6Md/3m7tUpETzcjHmSsDkC3S3zEDiy97puJrXIX+VMpyvLb9iOyKg1OZGwhBAwjrya4NTdiJZxQULu4596bhcMy0MIkj3rBd9UJxG2LRzrHLNwXyC949If1JOnYaPmUaPUq/MPnJlhCs/LKAmkyllQFJGSZlFNR/JpNIhreecJw9swO2TMHXSG43Z7MS576Pzrjn144+mdjyEJAz61vCZtWb9Rxm4Ew5ycr+CbgysQLOYYs0PKyvqJSM1zvSAzbOChyPdU4JtUvDCnkiBVgaM9ukiT3j+kVON51nSWYtz6fMU0Bip9NTVMZW4lu0tG4Fi783O6YMBqYt8yLmYJxgQU4o4EVqxaj4iPzxkuWYKAvVG1dIBsghppYih3FXG2Q6WPOpoPbPn0UEwKjNYnKxaPArsWS/HQ3fk+VGfyPrkSiBZUVFfqTg3fkKeD9DiRKBIy4ySBa/uHqPAZXJLdCSu3l36ePydz05YpvNj1PDExkMoViGUTwTxUWA46eSUOYXKrRLqKYvdo21wZBS5GNjloOjt/oqVYhVE963UE+EcZrlg1eM/z1ZgZgX+CJJUZkQBvHNHn7EhaUD1DzZfu9qT0W6pf8dG2sMs0KHqBJCHtU0DZCaZ86zDsxyjGNB5BwfNoeRG+tmDJ3zCTGKqR0Kp5tWWK+o0oEL+QkDB5mg0D0qxgJqZObgFywGD24xd66kJiqU4bxJdinCxBdJv80KcEyBy+/vnz9w/l3YtOLmY8WJ+/XGvsugAVWKUKHJt88atgLDiJ0N4iGdc7keWVbMXfV/h1+vir6u1zzo+F/yVUipeouQVDgLCvR3mV5J23TLQ6JQbc/kVcPP1a2Erfta9147Nf35vCypXeG2/MfAVy8GrPCuU+sQOSuGWMSeXUqSNOwNzAylF7q33GzexiZ/CrGi437enB7Avh5W2Y9JWxAqJTnHhJg3akT9XjdLenu70bYtci5I74Le2CCKUNfLVkRl6XxMOG1pCBzS4h7mNTHMFwjypCUBUd/YTrT75WQ+sOjMLpVK2O67jA97sA1uG4eQH5ISenzH2GOKGNifF5sdxPcWMzxROgFVggpr75vzwLzp4LdvMt9Erv3F+kbUIg2yf336++Ns37erOq3tkbfMwy15ZsZHMh7llNHd2sDM+D+doHAPx+VF1NcXSRPsJFM4xNYNjamu5Ph0fquXjQVHX88aT6wEFY1Z2Mrf1qOQfz1JXWv66hpThd/xkflsTjE1W3IlOglZ8CjmHrv6BSY4LFOlGT6Ea6ov3Dk1zZ/v8UjtSLe6zvz4SFQFilVZzUMj6vEQcnQShycfO0lCYLly2sxLscylKeqHOQz2T7O3OQTDQba89MBvHJz+bsn1mx8ZlGDXbc8LIft4GobjQZs0bMJcrZWbuAmoiAmReySF54hm1+nWDgQJpOWHBROekwXDoTLXOs6+UqYz2NM9xIKRkEAQDkqJazwYFMgxym7MKGjBlQq5yVzp5ZQUZdesETFmBbjaRvnYICU8zYz95WtIs4Qqe6mwabBlsKTpWalOQrNRWtTbdBA6syQMktI/rb7MSah04fbKRyUMqHCneoMPqkBBQF/pIOwI/8/yp3ZI9marwLjrISwH09JZRBpIMUwYL74EDqcg7lRm+3zVkt9Ocjf/6X3/+9++veye2xbTFKzOqNtpFxJLfJKNmD6aUCAHMOyCyqr4Gyhzfrx1lmF1e2tMAzXFhBdj6YlAyfO+deW8AihW54EEag0wlSbOvH1/2ulyKnTdyK5kRIXMLvMxBq4IxkNZj3YHM8Pu9NknR5cxffLlfjpfllTcVxa8w7QjqNsuEEBGMyAjthCuAK6+L3/fu+Iaunr+XKXctCm4UzfGTaW9EtSEjkQyzIjTaegWoABLQRhbwcaeIsMrRDPIyqmW03ao1OOOzGGG/RXsTmjY8M3YiIcWd5SzmdGbWbh1rP+MGa4dWf6JIE9zzcZ98XDMpFGokgjKrCGyMd+Xf8xcLmmzteFqWUoCsDrkA0MZlF3AxSGb3L7JnhI01PblL57MHeewzxHGt4xrrcgYsePKgSn3GBtcxK9DZW3UvH+OaNcm8jJI6uBB6BGTbd3auAxNd7l3PmgDvWMI2THyu/uQV/VjOnS1+5Pz9EY1UShlyiDFhWTvYVJZd1TwCKDZQdWOCyh1VV0nUcA8r9ru8H7LBQO3IGg03Hprn4ogaOktD9bUYCRiz04w79YYnjR4pSmkOILhynG3CFGIKFqJEC1FkvoPIpNMa0xnLO6Sg/tMXvHBDqnyaoucxZWfJbcabS1ePdya9STRmpBMhSTAnUnRZJanVNmqMTI/qkyCQCWMjIHPWACFHt7O9Py2RfIEUF+RMU+i1vmyn3C5KFrwuwkBNAR6oT02GwRweaWSALrpbiWMZvIp09UjyjkhaAsptTgl8//wFC8kqd8AE7Fm5a97ITf6VRiwCjmoEtUyCtf2Lk70CtJIDOOlvDcEDFT6l0HwCgUpsandvWIdDFF1wIyu+QtLyxdvcgkb/Dhcuu/2yzIV1zn4RwdeXRzaj2czcDbZ4h+JnW0aFT/KqkEKkDI5btgw881rGy9Zh98L6O4OGUVwW9Ti0IsLL76ogaEr0V3z/Crl8xwtaO40QV9CN9iu2iNJWgiJt3bebtK5NU9JAS9z4/t/sy+k3ft32x/UX//y//6//+F/+X//DX/fF3NlMusQluafc35svuu83fn398aVv98uva32tjaWvXy8XyOtLStDX16/Xv/3n91+Ol/il264/rq+vL3s7zZdjxS3P/XP98ys8tm/zyEBEuoF74166dcnccCvu3H5J1x8Lf3iOdE4wqVsK+esO3L6MCybFMoW406TUDsY/vtfbeOnXy/8E/13E19++7U9+rxvvjQhtopRN7vtXpKVLXL7+ccX3P5Nh6yf0uq9L/+kObFwrfN2XSAaMgpeHNFnQcb0i8+13IH9xw1KRCCzP+/76QhBI7PAU9DYLF+grbbkM9/VKUQptS2ztIJH3+6/vb0P4EhOGNPB6pXT7RTeBF94oGmIOoJ+ubXH/5ekVG1HMjaBgioyMNkkpiYabyYDMVypFT661E2Yqhe2+x+yeVihhWKunLVchmzIy1cXfq7pGrVrHYcwQMkR31UO0+OF3glIZNX50+mQb+B73Kmd74Q7NYd6zyq08tVqFs70sUYSJjgZyywZ8qnJaZ6PFKKriWFFV329nxFrQlMILWE8lvXt4LGFqV25sav5M42lagUrvr9wvMoCscPiZd9EtPycbrUT+s469ytu1YFKPlrOmaRuH3jm9HWX6n06kUveZFor276Q8bGKA5j5NQCAQ7DbNRHfoq2keVHLqthWAWfnFgdMnW3jABrR8J5SRIHdGsZyT0A6zIGBVlFenYplgWgJUceI/07sCgCeKOvlzJzb9vUFqlSdwQrUqBSRRlcbSn+6WLIKSLJPmKHbHQNDOcNZEhxOKzip0ZHLgiw7NDgKUNQI8K/kEmgBrNZIw07P0izoGLpdTzUduYJJuwHTtO574zat+S3PA4vRF08xday36U588MUIxhpl0MzOtFa7cFoTSpEQkSYRkkGWkdd3+g2CAqd6gonfAOkIkp6EnSCrBqALkKHH0U2yOUrm0jMo1CRgSFm3IKdrUwSrb68xwOoQqHLWaUkZEb+MOAQqDOWkMlD5nrBsk65YEbUuGUDymECNNsf+oT2gNGQmQGyFfSUPCaJKXTJJqYFyRoZUpJ3cCVEHw2i+jAZnvjYiXmZuZX9frMuGPv1//x/9x/7//+HO7mftymq9w8spwM79Is4tmcq1lrxom6K9OU7C+6GZwR68MSK7165/X67X46wLL2KKlonil050XLeEr2lIshBa+EKg+oxpeJAYylu8E/boTmRG677yvUNqvhSsy3UXQmfJVPTzq4X3iWrbWdfnX14+5eMNhuqXYEoyJmmIaaYof8c7E/XOn3/s2/NNceyNvvO3K+/392gAz70xsiIwIOpIMXyDja+fCDcT9nX+7FYvIyxaxdkVuBWEApL/ictJzXVslfrrf9iVplTqOCTXT3V6x4/VVKVomVM1iETuaJ4HWPQY+LPup0GUROZCJEgMcpf+pqJCEQ2AiYMmSFc/INAVO9JjoPuBqyTjq6GEKo0+g2b1Ksc2rbqK68LJMytKdk1p7LUHomd46ADrGhknIxyUdLhCAnCk3bcLa1M4PJll96DtTCCxkq3kaLTZLVoGFdMs7240/iwhtSxDReS7G2xegiWgos71/VUt7+EGn4yoAbjxGJ5t8VG4xuO7jgdfxmmKNJqiOTqWB5uN9a+ka87MafGOOU8qwHjtoFcLaaVsRZc4aMGRya6YQWDIsNiTOY7zQEUVhc8+W4ySmnaV5WucdURZPBa3G4xSgSGZ6O28ziU56T+B7XMd8zkdgIkA1gSkbFoXS6L11ivNElgAkqspBUQYribqWZhFkStSmlCLs0JJbMpadKPWsdgDw4pTN7msePFFnuytDk3EaagBHKUxnJmDKam3kAaNqlY2s4dwAa3KHkYV5Zktx2MewLeviywl+aOa+ltzcV62OE11NfxJYpdEovcigolghnRdyQih5NbRXOE9MfDhYVm/JCt6SEz1KUnbXfnZQUT6vYAkSrEkYqdypcpxSjZAAAwtQijhkdFKZd3XLdAWHKFDL18oXYxvvHkg0B5+0kj6tEmPCGmhTkGS7TojYjs7IpV1UBaL6Y4heXqPcQCHcbnoqRtnMklai/RVLgAAMJplFuigiww0J3fv+iV3tVDRb12st+h//hv/z/zX/1//hP/385TQ/ajpmSgeWpUww+bpCuXktq7AiuD0LeyfBHKwuct8MxBYjX1Qgtnf/gURb28iLv4xhF129bBJc7kHDqkQuPcAwJK+eM4Hc3O8r3wtXMO3Pr/CNZVeI4SXOnbAaO2OkbVxJX0YksXm/f5x7d9OPecZQFXMTueO1b+jet3CbGS9cRi0gkws/9/2GbnK/8+1IueUdC8jluYzE9Vo/LV4GKbaWLC5glQJJyYIhbMG5FJeJqdg/ILmMO+NnKc1pBdo7d5AXMuL1lQogIpA7dsTe950Z27AjlCyOxWMnIas4t4etAoXfICHaDLRsqSbYVT6xBSQkQlHNyA2tZuYwd9QOuF1pRnHIxk5WsKmoFCO77SJlTYzLSnQI2qLTTYSepMIajuaYXKVVlnySoC75Tt5XeTANMitsTEPI0vhQkipKqQnsGSqnwEXaulbNmXmF6LZm+ChqsEkFRdVZj1OcNHUrTI5TAGvAtdJWTk2w3WyOZeo0ahKJwypSr2GXuAGu079aodJ8gyJ3dLDzMSj9lC41MDtxvp3Q5am0P6XlJg/0k+F51Uk8T5Cg8be9fh9EeLLUPICMUKgh4C7fFY2vCGkcQgB6KzStoUeV5jPUrvz9hE+cAAiSatj5kNM5LoQ0Hj3LqUN8em8NZnAwgQ7hirAkdG9n77Pkbyz88yaqTy2SDzn8t5OlWul6ADRxtcTwcmPS3HfTjnun1pXUgNKurQPmNSuME3nVSCMzwGGSdWnp/IK1jhcHh6gqEFvpo0YD0GwKMGy4ROi9JxY/bsjatTlqJ8zOOgozJ5iyAfYbFtdUClRRTvUf1DtW1+lQZDugs5Bk5jUgkZ26pg3ARLPR+uxL7ntswAUH0YLaf5MlrVCRR7fJ6jnzaA/rRRzIBUx9G6xhkG37WHFRQfE0lOA+5vMHRzvlbdS1VfNQJwFIITbuvXbcfy2km983kLlv/vNbPzHNRZWU1B6d+E5lP2T0aiWmj8K12ZUh0JAhnpGU0Na9tUv5sPi66ZlZclICZXCuvY2V0sXymnJHRl4gIxKBSLrbWpct25IitkPp9HhzLVyOK5XK2xnIW2mqmkXxV5WtJl67dl2X29rVAWw7s6IeRcj2pkcdpEI29BVmUmLzvjPfP/c3E1xSIi5rASdSlKn6kvh65+JOX0hlbss0rgpnxaUA6MqdqVjOkLB/AvQwdP/K/H+bbTGb13IyvR5ROm6Mz54qfzXuoELyyOnZ7gSSBWfoJERV+rU87dyF7lg10lSnQuvY5sizFZhUc7Krn3Ps/qj2cTDPNsGVbo9DahulAqc0thCPl23TWAlXU5c4iOOHPT1e7PfXf7zLGN0p2fFcRB3naWRui0/z5AGzqaMxcibYPVZ4rhOFTbNhTdBmWWB6rvaDbnbQ9N+ut9cW4ziXzqUU8FYShVmjQAttOJXcWeYOBT7W9Lf3n030rOFhl032N8DC4Cich9Zu91xmAzVFX5r7NvYjgwHRC14KA4JANy+tv/Ib5RjgJSFRK9duR8d5Vpm32cA4B+STIMDyCe2yB3o499yb48OPck4JIBXCLjyARF2cWa8NZ9/pw/O0G+oFTGU2ZlAhUYKZ4CidVLBfASxaQ+Q8pyeagUFG6Oh1oAAbTK2AeLgM3flUtqixJpNYM2+79cA4uM84xpRQw4ySSSaqXJyEIbeMlxquPXFS5ba9dCaix05z8k7M/8rpgMiWtJa6bkKWA36O24BJtXusyZ7tf8pANYRVaWF9eQcB44zbAlr/N4CRNbciInaC8Lv9KJ4JgSzyrVVjjLdOarb/6/RelOSc102cofPsiIdPU5u0owWnWUq4vYCSXY+GbDE/WwCK+mNstmOWhad5SlhGbsPy6UT2VZvZ3K8f0bAQkvoAWhp3CWyVsuO2JZDIsOqtc3qlvUFECpn7srUNIW9iGzMYttPcQdLcciMUUaMotH9iLbwWbVcvMc2iPEfCavcWebMyz+syXVh2vTJKLLmQqkSNm8yMkuLUTiMQwr3XWtjx5s91x/f3G1emXoRUAVO5DrNiHRBGXRDDjPnO3LwUe90uoLR0RSPccG1f/MKW6LCUNt2E3JLoRLpYYzUcotVU8rElZbYbECxL+XgGnQy1DmcwZ7qM+lfzFNROenTsGdgkQj5GS5hd3b+N374m6Ro/262DZQLbSEhFiq037HM4UAvi00bO0eTvH3PaEOZO2y61nTy/JuCwiCfv6Zj79/f77a82Ha2p9fxK279nYs9nMUwNhj3r+Nt7atwHn0Xr3zipbq2snsDi+WwB4Ors51+vuMsRNXiEx+l8NDjVe5wn0IqQ9RjQkKaeTyMLHzn5rFCB8fQ9aFL8fhpnfWaRzt3XNzWpjtWiCvYankVgOQCrVjqaYDTKvAOM2tuzrE0fe+KXSYlP4y0GRAUJdA+2zu3Niran5PhUfXjg+qMzparbDOFhvBfO1p4dDZzm1O4TnYGUEhXFeipHUpRHsMD2yXEsx3qzwhmzYhF3ojVnsPb6KGihvXVfEuaY8ljx6bKe7a0KzVXTd+USIrYjjdGVhxSCnohQBZKNkKje7COMq4Vr3G3ulpbNxqwyTF+ZGbgPysAiRRFEiQtiZl8rS6NLKTAjV6urSRYKZdo84Q7zowtb6lmFenZ7v+NZnNketXUqlLKaSzyIXvXUClIYe4NUcaEejS3W1NpOj51KWSsYGAroLbFMQVVdwSJFVA6Yie8vcb/3/QbluXfQ/HLzlCXcaOY0d/MimS13TzN60py8CDO6JwEzn6eKapIzRwocWRarhrpdLAGungZBW4qrAmeLdSt3NUG3AEtre6iFOnJ7+lc3clJQhnZk3u5XvH/Z9cVlccf6DvUg0qygU5mmRGxBbqKbuV+6dl5//IqU2c63VkRCiUCEMiJdYbhp64ok8lu8YIqtd+aO93/o1y3apQACSFNkDbDaIAHn/RbN3PRTTdQA3fyiRVa/DUl6GuArrsICcN9cVavTj59uVvrKTLhUmNPoNfIcqMNOBfChR3XC8zqGPfqhfQVprNQX6Ba+7BgSFax0Sjnd1DRL1kWoZG7arlfCZ83Q+nDQZJXhK8IaZQIJpW5+DJiUiWBy1E9Bnsa8A2IR6qbbTsqeFqqT7j2H7nG69eOUlK7MDA5LKltK8FyNlJgxF8e2CWNbSmIhSbM4tro+ykBX49xJVsURIOiyBqMmG6yXfPi840r6en/LUzsRWCf20SSf/Zh7oTigGZ7M8PNtmhDUPbcfcHAbqIoRfsMQ6if2QKl4/pGTCVa2r+Lu17QMr/EsMiMMdJrceuQ7QVjp0qpVO/D7R6Izmt9CmeM6P37zYyxWP35TsjORhnA7BOGcl055Js4Z2KgfSX1u4zbzIfy8lFZDBjpEq/ypSWINTllNee/35cRlhfnCbNMkuptb5lF9NuC3ta/jf05TRT+988mqjMKsxBCKiE/UiIduEjZjySY3mfnj/zCHCh1fzy1Wwt4FT5GsiTDd+DjzHfQctZbhmsvv4YzVzCU17a1mBNad1qjEMeP1JilMrbDI0TSznSIx5K9EZsCywAUVy7SisZbnyKw53UomVFKG0BR80dYDdVg0T6Zcu3WRoU+wGROoR2OaDY6mAixT1mDmxreKKdoHT2ImpWJjfhzRKnEXCH37vbE3/wLT/dr5NgfNMlZgQtmZBeteQ50NNNpK7KLYLdKWr2W+3Jxrfe1KaEmu5XataxngIt3pvsxNJFPoOXRrN3cN5u/wMciAy9JerLjKMlG1W5bzgaTYdt8X0oyS/NcfvC7phiLjTXkgg2iNVCPNLq3LsYKGzC26RcAYgl939iNLRYTtYGbICOQOJ9PCFwM0c8b7r3fc63qTbwFcVd/PiEzSk0b5KgHtMFu7HeC+7QpP1QDuAunleymuCI5dTEqkUizBdF5gGgq5gC1fr20VSTeuYfztrGsy0ZOsdRqcURXCzk2VNeyhga0+5qdwfUL8k6H+ltfU4e2soVHOD6fwiDONGy+r92jEPY2FJPqYj3/5vKLfPYlOTHECWQ1GPJnmhMY66cpDkyoLmq5KpuqNzm1ocMFzuaQ1r0TjhnxIk/1hlbXmp7ZH3y5rpqUcz9eJfn5PI3776pNcfrXTPU4fsJ6/1MSx9usfpUxobMn50Xic+un4+qf8epKmj0zquC/zjsOm2aTc7qeTsWJi07w8RJXziR5C61ZM2Oy0CELRbTRxCYkTFUBNKswhxcwQm8ZXP1a7ANS5qPZQH377rAqe4uXzSf3sG1SZbAfn2MgnlSCgIQMDw8r512eu2UnnZ7QKbbOgVdFcpiTMveWgbWDbStwmvWt7iGZAaeIjHGU1kqh29Q7JOXJamFPB31cCH4HerAw/FgAKtAB95fLsntM59OXOSqYPFeh0jvsZ/D57qkOedpWd/A48kNFzjXrUQD1iSaAbp4EROohui1tjhlY0TS/HYEExN3oajdg4QkeKx7ock9mgdy/ER/TXlmqayR87ayCLX0X+Dqp9nDiPblGwiTKNXpRHZomlaEeNwpKgjI2f99p7x0CJqeocm8IjAdKrgFebp8nRNKPZoqxnbJnLl7tZxEVTosqHphrjnogGbU57lwLK0oUiYOue9UdkhitFmcHVU6sAKFla31w0swW8ExCChbdmJ16ZScGMfjm53AlgrcWE2Tvc/H3vDWxqZ8aNva1mIkEELip/7dclVZlTeofthHLDL+UXE+a5+Sr9z47xvkoDjl9uNCXzhv34l3OV/yUXjHun0u97O1NZaAgywi4AUjjFAq1B0VyLs9knL2H5O0xEPtGpCgjr/w7sk7FV7IjBKEV8tMCMgeKYuuojfaLxz+Ndn9jJ1xO+s17dm75VcDhZ05BLNQI4va2B50PG1Ou86QDVrHnm/4JL/3bt3Suh9i+d+p1lOS6mwt3HSnFeX99+8n4PWM+xhm2HqbFe55OABwr+NEInBnjM9vODudFZBTyLAgBYU7nSnM5qoM7HPEulL8GPtx4XOmCKoRqvLT8/qsOXB+kFWlu0n21NAmkX0MP++vp6EInXDqziSueEeEAI8TB3hFR5jCduwwAE/djqFo/uwNT5oJqD0Y00GkJgE195Sti9SYuHNSWbXpA5BKOYOYsuPguiBJKt55tNtZmLOAkjZ0t3XNVaWmwgs+nALehc1L1PH6XxZxWCTBiI2bQjfnTA00qwVZgIz1YVWIowLYj5wEGjZTKhaLv1M1ikjikMRLikQyeqeeM5YXjjsHqcd4HHrcojVkufYcbC1LM5HjWBqL6vM6eyW81U0lIz7LoIumB+oGksuY5ilslL3YFmvsycdMJFM1tLJB1uBuZdupoor2Ng9W7JVPAq2n+X3LFBsA2d6nAHUUOt6xNplSpXH1WqyVLqVL4JkPW2tYnDDEZryXbCrBEGN9AdCXNz97XMLDbS3XCQws9E6GGe9ibtydCwZbVTiG48wanIE9gyQglPFQl7XwIy1AMgOqrLSETue2O5EZnpAcDfKe0I/XXzxWX+qlYX152vXAsX/dL6in8oEHJfbyw5k4uCEJYZ9FuBoKWtF+y1AuZS6WlXELa3IrEtb+zYjMgQjPbiL9gv13vH69oXE3Jbds1KJ5j7LQVf949u3RezeraUrNLAm39wmvh0v93M16s2vVPGFddXGPam3WFphHTfeQmJ3LpWGjUyLt3A1U9hUkygH/kxuO0iB5kjp1A81mISsVaHIYgW6mHPdsLnk6wYcIxQfexxgGzHdg65Hhug822br847zsZKVoTUHGlNy+JBdz+/nvByTM9EuZ3HfICF5+NnvQ4U9d+8a6/bsdC1hAd4PTm98FH/4lzQEIqfd+tP7d/gVBOfD+uUqskd+M07//71uOr1vL6ziefdptxT6/dxiR+BfMXtw+YpDHOebkMXn7MHfrvcc5dlDsXC3R7PYwRHq4lPU+h584qlNQ5srs/crTPk2VscpPxJJvG5wGcfzc8kCTkNdkBjFWcN+OFyjxPuP+YXT0LfL6jhE9P8PYtmB2+Gkcxxys97VjLUdcMHqulQ7JQlGy4urDA/chtOn31FbzwgEaolqxamz58V+NWPLptsNLiV+gYzEWH4uBgJSloirYSayOmYql2Zzw1lJtOzeha7Xy2HafURbhvjQUQ6sKld2mrRGulZAmaVyZTCdvW3dfdSFTWTJjrTCWUkP6L2knGbA/OErP3e1ZZjjpI+rsx3bFwT4ntcw3niBaxKRCot2NMA0bLQJSLas656+QuhUUPrta4qFlGx0SkFmmAXaaR3pW4VklPTjaF437ef6N5Mfl1zwdY897QCoOUOSmsxDVivX18u0m1dbk7AzF9LJC8AcKevda21rstcTdYFrOb+WZivIA1Y7hfsu0Q5IqpF1gjXTbDmOxNbZg74605KK/b9vqK6WC76qkGKMJB5mQMyZNKkjKxqEC7p+noFX687pYhAfoOMLeOGMTIzb74rY04azf74+jP3f7ryr9DL/uu6+E/ZWlDzdfU23m/bgsf+ZsR9W4YJdl0/tpxwE18KmBPh2vevBOSRAm1h0wi/yDBaVoesUREpIOWoslrNeCtk5rLLD67W2JiGR3tOxIF9Gp8k0DyFMeGftgiNGvas0JECl6LsXE6OmJLOxx4byAoKH0fcymrR8urtjieUk7JnrCuJ9r/VwpRP2InfvnhCeqnjbkwOdeiZ/Lif+vmnKzqx+3+zVp9/NzDQdllP6tsZGryymjl1HQQAylMg6wurKKd7oaRBots0cvLv4Uc9vvbD7T6xzuLJt06DYDtOHls4cdUDj/L4tvqFJuh8fBi69eSEHnO32QVaNJvk5KzPtR6nxfGh5EGu+IEa0Eohq9PDg9opi3pbQnRRrjtNpZhZCnyBuUWeURcc3lsZx+qt+Ngt0rHZ+ARLTv1c7UJ4IJazTIJS6dUXNJFZN/q2ooaGt1ubnZ2rZLWRqibizjP+6Bib4GfinQ6HZm3PGNl5MPXVsk/srT5P3yqmcqZoGK4su8hNNq/2t+jwhL99yyd/DlGV95fwIlC9O4VcpPPzPX47nDrwAHoHVOlWv31sHqI0yD7pnTgnrDTmoQS99CVp6IkNaRO+kTX7csKLflqoJRwpyoN58HDrT5RCcmbP1ZvowDZWRbP+edFBUfDFIFx9WFMGIw1F8W0MvvdIsb7DKwqtIUhoMW4RyAABRVVNtHN6LkO5VtJde559tZkx/XK3paoDrasmG691lbKg1VAD0uxykVxIwRw0X77cX1wJBIoPAEiN3COtkeFwUEIU+d9Iuv//yPqbJUmaJEkQYxZRM/fIzKququmdHTwALriA8LRY2iOeBriACIQTDjgvEUDT21X1ZUa4mYrwHkTUzLM2vu7KzAgPdzM1VflhYWGRR171gWy+Es0MypxzznPGBApkeHxsMlOkrEvwJBQl9KSKLjabHx9+wM0jIyVFDuQ5XxaTUMxkTkwhxQGYOzZ+j/jbCD/8mzMf+BR2JsxSyJhncL5cBb7kjDhdyiSHg48Zc+yvBtKQJ3bwAyS3yijdgmlO0qZvMSOY8np9QqnpaV7CZWahJMw2jLgqMQ0PrXRwOb+U9FtaCUlxCYqqjUFb2ttugWal+dsLX20BuE9+R+9vAf761ZUC3Ifxrhx1nIA3C9SAaO0cmfcEIr5d0m298X7CWQH/cpiXMyK4tLDw5nLWP263pn81Ie21lmHsyy7qGAjACopcBKLkIou0R1h8mbUIZYOSWCqzZVjfqrT12gv0RJsI8ookADamWQa8HTCBZrdQ/P0meCUFbJGO7lG7K0jWk0U7H8VKHZpLZ91hyj7S9Yiqco/ynlpPEdVW9RYD2NojnaHZlXk6CxpcSEWFb+wb7MZmoJpV/sXU99KtfEWL9Iz1HoWkNTdk7Z8VmdYmvHbUvTV4oY3qi0D70UxrDp4urOayzCsQ6ZoMrriS1/VKutsN+rlX2mmrKt5T+bTSyD5LVWTpvKyvdW2IRcOwvI5Sv9juQ3IJfdX1pl352brNzujSlg0goJrUrLIbUU7ROihoIW5eT+I69+sA9iI0qr12V/843+Nd46LwoDSAlo6t2ayoqccOpWoWhzXHawXEqwx1M/StN72tM4sVU1o3C6OjkHJRrcfCPiZE9zcZVKKrUMmfIc0qYS6zCBQlp0pqZN2MFjJ54UjtgUkrmXnlEsgsibFICSpbXyJKWdJwMMoYiVW8eDeO3fItAmaATayQsK1f7xEFVK1ut76RubmkTNBRfgGoTqvDAnAGYEKcW9YEbm4DtFnhqSGEEBLTt8HqYzvnCqOLIcHx8FD1sE06wGT13GVmJhSDGMOeuydYrDKCz2k6gvOcsVE5k5p1iTYMGoO7f8v5Zxwnxrcn5sDr2D72jxfjdMOs6HB6wpxxvBSnkJjTIMVjS9e+C+EQxMk8dNDNfZbBoAND7nrkgTOMRMmoAHkihZT5Rg63ESHJQC+YQ6tIezVfLEtVaWZCGdFDvoo62OPWr+Nej7UTO6wzfZ0drhNl1s1+JNaEpctEvgNtWvZmZQfs08u37/Pto5pIUUOSl6e/fW2D5sSqz1152hsA/nYhby7lwi7vhFzq0lZpeK1XFiig28St4EIXDtrLVZyq6s1j1QpAlvEv6K3FnivSXI+kFDT7gF4LXUjkcvIXcHzf1l2WLks8qrNRTQ9fkf1CLLUeXNkj8caa2Yni7eyX4ezFWRdlhnbc5YxxT/dG1xdXprtgQVL1S7Dqti+k3qpcVqNgqh/Y8Z6M3THJesxqkrsRVGRkZrQ5qqS+vQWWv8tm4pMtRHKXGpA9g1btmpcn7z2y+LOqR7DqHmVR+oquEffF9OnNAV2bQutt1mahKnFHKRyjsqu+x7Q29jU/0kRz0qOA/45cr+1GgMzFFgbZw+AqX21QrDJgc84wS3bEUxDwUtuAmHntu3bTv4U46MTy3n5XJT/X9kFFi9d+7BBoeeTaf/18dH96B4RXe3+FhKhhSf1fLkZ+u9/iCInGYaLJu2SMdYKhZeW68NLwUbfC9z/61WoaCAUZ655W5gEutTxUdQY1JxedeDYjogLoGyQyjl0imOYMrirAdXQlChleg2YpnGOrS7ZO0+uOJjLmmRuH2es1vTLu8+sZGWtfVU9XkWis0p70LVNB8zEsBYq+IDFuCAM8s3E8c9s2Dlq1exQNI6K1lJgtLhyEpUIZalgysQk+ZNdD3+zxGsPd+UKp8cacmSY0l39AZfZq4FmMjExPeM3xM+PuGptt7iR8AKn5tc3jnBqSapggUIyxYXTtbt/Hx7l9S744nh+/tH+88uNphrGfw42uI1E6IeSJU8FacvOYsJGWY0+gtBiUc9ohH/nMaax6BAeYycfXTAKGTI/Sr64oMTKuKXqQSlPtLfXR/Wdbs9Xtk7fHaV/U8r0dttSrW8Uj+sSYrYCq/PtlDbQcyLvnu5z+G4mk04kOZPvkIA2LmQKiGNjF4O2hJZoTUUzvhfldn7E+VhCy9VxwvXUDAWvRQGXCShcy7/yjKGloRl59xDq+y4T2wc6e5XGTsCqa0LJQJXi/Krd9ofYvZJ+yOVc9/c3+d/52lR1vJHdlCys+X/4CNwR9Pe/Oj98zvP7wWp4SIOxAAUosMmemEqVzlqg++Fy9lb+9W7tuFu/pyvKxMAJW2I7qv6saafXep2i0SJS0oYEcWleyyHnFAEkSqGHcEN4z4NpE6nxTKyDs9M6uzYnCha+zUPddW2fVQLAwnW7ik3LVZdtJqlYGNUBorl9Z8cY6Y1L2c7Zqq2ozi2sbLYTpCkdRbKa8E/Ard+njgHYf7TmSQL6vAzsXvd71iiRwRbFW7aPWTUckQTd0FoV3BOg91CviulfhN3CF8oSZaMYBWNK6yPRuea6wWrbOYXnCVf4C1mxilYw1FgoKRZIIRqQFRka1jEYyXBmZwZxyUyrqEWZEQApmC1tSJgclt5mmzJiLpLg+HkAP3pLAZIaUCBVG0S/WmxJayYWi1Y/rmVK5+GlqEbIq8Nbdx1CqSGSQigzR/Y0EjQjvF1tNsTQHTnhxUEFz87E9d39stk3fPnZUgW7l+KCblbgZILpbFDJlFAsGL9NNeG2i8ngy97Ftpm2l0EwhuhqtAsSc3FU9KGf4ktNTTZ8ww5QJirCdoJlHODIjKuA1N2FwyN2RhMEhUwoIT5ChJYK/cTx5DNsiDBgcMDdNz/MMnTmBGUnmaiUcg9i2GJsfY5+nazyeH/LnI39sgceDxzDL1DwtSqueGQeSGol5WvIYIcrcHGkDyWTGqUObzcbn6LLYXPMRNkYYQIuZ6T41mvxeyEWx/g2G0ZRP4jIbvFxHnZAWX7nscUXNlzldQSze6L9oY7R+rCvOvACkfjYrSC4L1sFrvcMKZNVBocr/aBlOAqDdqRkW2tsvF9Qd/MtO6UJp3y9Ty6dyGQItA7gC5Y5HpCsgWFeaCz7X7dbXUVuf0ctZOhW2kqJetOp7a0v/9iss0O4u+HUDYzKtw/i8KE2SylHcmUUtyYU/Xr6uVruGMVyhe110Bcjgb79bD7X8QoNiHaNXHtVYXa0Rta61xz+tlW9Ekwv/sOmukh4kVtRmkC3Rq67TLRhu7Rt1ZlqeM9GRU/vyChHJjOg8lVDed1TgRz9joIzj5eauPn8JNby5JvUZo66EgnIJKnGBEhfHqN+9o55atjBkynLxf0leqm24K/uloPx7x+wF0KsXSjWykQxATUa6KFqFzpbOga4zZyzufTqnaZqBoZRRjenRVHwJzNPNOIhyDzCRLh9Rm6pDcIBufbLrAazoqZPSSqKdplZndbgD5jJaDbGiJx1wLtCb1Vl3vRMgxSh50UsGGNRVcGVhPHf8gFRIGF7VOY/W+0pmuiRFWGQL4LPqcQ0y1L2xnHvz01ED31LIahAmS6mLBsDIIHG3oPWj7YJMoW8wT4l0qmRoLEwsFe66xvZqTEUVSyNzembU0EQJMonw4TCDW5ZM9jZomIDEMcKTLo79Y5/2l29z//Fvf4H9+W//Lt+e4Rr7thERmF05daKXkY5kjbgyKiNmeg9g7v0Z51nZzTIzgDLSfGzbeJi5++bBwd1yusJZw+cVGZhnSnMqa5rFQQ8bKfMkzrmdM2n7PudwMr5YiLZbykXb85NT58YRNPadW3JOU8xZdjzMUts0gznNXHpEnphpR0TErzNMmRw0YuwOe24Tgjklc6N9CNztscWfbWh3d2HDtoJe5ozBpII5TTHtC5JbjvEym4eYmL/s8X1zK1KjfAAaUY9kmx+fGiVMI4IGdzEyplRFa5Au8zy8qrvMzFRkT1hvn2FLUHGBk42eSVkKsaYasEJPDp/rMBaQNOfo8AvLhBhrG4vsIVTtO3Q74FtkY8X/WXWQBZUKIIuAR7M0AzzdL8E4XYTOy7EV0HyResthwFdr+41erjGL1dX/3panHox0J8sXNlZw+uXBCx0jUH+2g8iYFUYUWb+GhUZUdNh6G+Ux2rgIaubWOgJKZsNdl7VCJ3OXIyC7lQ/vPuF+lbgy4CvrQ5PgtRzVysPur8vvVj59ZcvLAS9jJClTViOoLjdy/T5Y83YrmsC/fAjeoqsLDADQlrJGFBK0JTeEcmdklrMNvy4GEhXGXN0s7STqifYuuhOvCyhYLAjdDIQVAegi7QhiDVuo0a16u9qu/tbA9JID6AAMJbXAjkbKfXaUtFaweW0LrVuaHO2rbxRa0iJ/1SXqLTtX6H397oSegJlJcGsI+41sViLmFuyDpS5c3kDFFXVfu34tWpN8zKu2qXWIetgVVEiSC0JPHK5fLRGvtfz9rNf1anES3yGcFaGvHEEovJmr3+wqkCyRNCWVDi6acSfY5dJwX0xH9ZWDZz/Be+dWDIB7z19h2LIf6EDeejC4lfKjsahQAGixFtSs5PF9Le+162zBQ8VwumwZC7BUQ9uU0VzKbdvpz82fz49vsI+Pb0XHzWHb//UsJLhUP7roZ7EaNit9ySbll5IQ12LrirZLw8N9ILYx1gRmGqY5i2yRdCZh2drlFVpVpCg54FB1xaYAatBMCcU8XjsSQ2Z0WKY/Pr+UObtdjEdvtIxI5jxllgbfY2yPSIPSLZmhDM2ZzHkao6NnYwJjF8cYdK9Si09lmiU3/4DG9w+bH8YvmjYNo4UEzBOW8MxIMOYI5Bwuf3z5kKWP9FSI5o6Uh6K0+cwh32LCfUQU5b3cV0pAwBRWRt+SxKXF07t6WaH7XPa+bDHbPjYsfbfGRjvLWcLknQvqlgm884RG4ZbZ+e2j+v2uvFm4Mtv6RJiiT4pZwnzSXD3lxbpDGLj6gXXbtguoQ6VQ7cWvV/K2otct/Yvnuv+iZfdoXdtCs05XS0PZzsb0lp3S8lndM1iCj1YkyJaIWJVpvH8srnSoQLB1A9fdrZdhGevrGfK9HLhu/RLiuOGIFZTQ+visp3qZjhs4WDBKS7AYCvxf2ADaql0MZrSEAGisGR5lJbk4XFWAhFGuIqcsR08BDHhNVwl5yQDVTOSygYuzJAKlXVU9LiVixESmMqMvmaUBcDuUNtO2RMpU0sVr11fAtQx3y7b1VsqOSBc+sB5Cr/Ra4czWj+faU3WC4nYli7GFGhZtUI/Kyxv/xNrAIKXqzyFAs+qnaUfcbPMlOVYZbO9pAYX/XrWSKxArHFFcTdlGoizECjDb2duiEPfNXAf4QoqyVKYS0qwbN6YyzIrAb+tYAUpkA0nFEC6wgLWtrhJtB+dX6aDbl7UKNSkFpSWFpSgKACK2Hv5wn+e2zJ1HrJ2vVV1jtSAXe6pd1Fr1yh07DDFkSf+1mYItrmKWdZQZaUHSqnJeDI+SCeyVRwcOKLfaRq9R/77a7IcIoUAnrXSIJo7ELCQ+sxpeMuaciswpElPLs693K0ZtYxpszIf96HrQST8EiAuaBMgxOBcd3DwgMNKQIgfTJZhPR86oy4aNASUZGJDSZ2YWTq7dgeQ8eUb2QFfKYONp+5FTiuD0mide4x4y0jPhgzTfntu5D685a0JGxnkgzxPCPKunydLN4MXrthIuSWQkQrNkmv0xD337M+NJL9J28cBCEWfYoJ0AzbOyRdrYhq9KmKbOY6oMjiSkWbrS0sY2c4QbqXOwew9LwrCiF0lmFp6EVTP6dbp/+1oQ7O9GAGDlnbgwvCttWFa/NumKl3l7Hl056huL6OISrvhf7b8WxlzJJLxK6+uribnX+xMrqrvvYBmhN+u4TFmdP64MGFdsrNp/fAek0eHp9dJ1v8vlrht/M0hcn9Smbc2+uC7fOehXC+3KCfjbyJ7LlK83qxzdlvBUB84LB17XietfhXtetTRBGOiYHitjWAfuSvirXxzATZa6LqF+/v4vsMBk67iT1mRRa92XdsBGeE3DW53iYDUesrigywE3V6lGycGtiFCqjNNqyt9bXlsBfC91bQfLtdsNbpal4dk7uU0e3vzbHX8VaHORZNezfHvh+javwG79JnTZeaxn0zt2VVMulCG1Iq6KVlvjAsgSzi2Sqxb3AOvCktEPxMRulL73RxVerHQTgVLW6/VfO1xLWq5DxWXgr3PUXqrrvYvV2NvjbTesXVvnI5QwjZgJRUqaozRei26RYoqpNQe0KU19ODturRZGoKKSagcHC8AnAJh4wQm5kF+0hXNPdhUtKYR5M/Gv53jVODK7k0NE6dBUiJEUGBBIz5XY1vRBqaKULLJboXtc5Zn269eOKBWpVSi5yZvL1lYQUKKHquCk66ZXwCyaVTdw4X/V5Z5188Cg1/14lt5Fq2DprEm9o4c1LphjVbTU8V4PuLnKDMqZDb+rSQwsJc6aEe1WCGlhQQSosmtjWBB0d6MzM0Up4Zv1XhOmgBiZJOgjNqcZIyyBDKkqKwn/Lg1OIZRzj1FaBJoROWUpG5tgNtxo6PGS3km3zuO014x05Cw7QbPN6EYfI+huA3Nm6ExYOCjAHo/Htz3zFRTBCCingakE7JTSXXIN3zbbRoqRoI1A5PF6PW2mmY800uDMtG0ngns4iZgqjboKlaXwtLU3wuN6JksCteZHZCaz5FA7XFpSlNXVhMtRLdZJJurZvMGh5d8uh1Q80+4c5L/4xJXz6O7JbK9rRcg0M4NHmQu7+x6BqxB8NeXX3HPVltOSV3ozUnXY3/Ctxcq5YnusfJIXBrTQ0TeTexuh0h5Z791ZdV9Vn51bmkLL43OxJ5YphFj6CSsFu8qKXJ+kXHQ4rpJkfy2H+nZxWuSqKzqSIIy16O9853UF/TButituDvS9NCvqsbzyhI65shzDyiBxxWDrsshOj0WsbGRF9Cu7uh+WVtG27o3Mwg/05nfqs6yEjFdUVnvuDq2aMdq52psHWdSAy/u09e/fK9kIXZZr+cOOyoopdF1iwa6486veE0YVALbw77cthn/50opp8RYi4do6XZTg78TpvNbp/R3ZSdsVLvEtdrovAXeYp/Vr+G3LQFh18fsysYK2hmErpwLdDUxTwaw9sKg6EVcqTZCURLvELK6uNlwhH9eh5H39XB1Ytf8WrsRiF1VsXx5y7WSa9bz56MzgTUHm2tL9f4Zr7+u2TTcItijk7yHaMiRY8VZjze3HFl52Le4V86zoOdFtX3VWfourczFRV+IP9UA5XFJgLOBhTmEep9KpyPP1+p8i7ugGNZazr6QaFrLVGPqhX1PS7jO7TiNB2CaiJgCak17Yj9qak6Srhn6U/rWXmKW1aSEhGIxGd4NBqSjPk8scj0zlXGJskUoxGTMjc21mM/pwMxumVGyIGcoZ88w85yz1dNDoMA6nG4cD5u6MGTDEGQoSoO1jPM8xfYb5hiNZ43DNoGAES0wlRaPbMBvKpViCUptuWfGIriD6gE5t06vqX9TVq7FhOpsWmXVPK4JdpxvXPqqwvNuvdH3l1Wf59t0snde33uCKlJS5IMI3KKz9ENZZu5IKdZaMVWZ8c9W/2SniPqe35Vkvqot/szpq6vXKrCHesQE75FwmGOuPdVbah8DS2tGy6RYXB+zy1EtvlSuI6Dst6mnl93VsrdTJV9NIHxNeR/8qgF1rjmzyR6cy7Qquo3o9xnxTjX8zltcJHpcvxP/+q5HjN1CiF/qCQW6C0P/+a/no+9euBVgRRHvg5fGxcPJrQe/3usHz+lXDDby0nVjHfyVtFbWlVc5U2rkNqL6/5x0StA/sVJq2YqXlJK8bfy9p4HZFett01PteLMdZpFP/LQZZgZJ6v+D+djc0rTxlwRn3Z0C/7az6YfZcqlpNohrv8UahQcfZYCKtt9Ja3YrAQXSHIXpK973NJMjyzXev7fl2uUEAiDXaACuO43vet1aLy3mVp7U3K90bYoHkV9xW12o9GsOsEsCr0rHsc+mKlT80AjQOF0kumaf+mDqky0P1nlBFdz1g+toXd7xnC9NYULEc6GGPxpUIb4C7rNhmBkGX268eJtaVuKphukB+GdHUD3X+0RBJW6hcdX+qX1YQgwKR5zFT5+vY6GNK53FgGdCF9CGrkRgZKSqjujQU/bLAMv0RKKZDKatkRqRwpEh64Sqi5lbRAzJFd4egpTBmPrwaN1IgMYVCr2xMG1U6QeiogMxoyCkiA+FOAnFuszZOy8iKHJu4bZvTlXDX6e5+IOPMz8+zpiCkE2ZGG6DvQ+7mWzVS2/k6MHEcxOkyZGLzxzSMbzEG7PUiRdXAiGQGEY4wo1lKFo5Syxkpz0ydYDjEzEhATFE2crePUgINCjSsOaKgxahv1aFJVD5RjfbWgWTbuzcDfSU/vQe9cJ03g8Ib3tPtGm7QpVOSDpuvH9ynvO3Pezi+3rHBw+U/sP5VGUcqM0iElKSUGUs2pM0V3n73siylhs8KMlZipBXJr9SiPdm9EG+ZQhVUO0d5Sz6umHp9WGfiWFoM67OWukHHxPqXXLHfv9eh1+VSvegT1YlSLyLXyq9FfHfAWHc41o9Ve9BuTwHFrMkhaPMtQCZliGWqWQI+rmiVtZoRpjzPSCGi+ouzeUbXtJpGLSLFYVdisAxsL1wBHpfCH6RFBRSQwij+3xhCCQITBAe6UwOAb25e15pUUqAyMqq0uLZzEbkgwaRiZzc3ShzDODtPdyDPUaIsmfc2zqrtkpllAyFaq7tl+xwpBfrYN+sDVRkyAinGlGU2bzZmFiGvnleoBaVWcqRyAqW1yC1A2JYuR3raplGVtmE0Td8GWCMYsWjXtaWZMJgb4G6hALgNoeZFVpooCS4aZ4bMq+npxIQlZx7ugWuW5Iq1MsNE5DTB8+94wLeIzYJ05dgzzd0BgxtySJ4yc6RnIfPd1aZu3SW6VoWaAOsAPIWoKXrljobDCLPzHlCglNMeM4djgjYIk3yzj+9frsFMIGnkcJJmvqcQ5iWdawBgNJ45v07zxNRwylMZHQclzM40K0CQCHZQfBtUgxHcOX1TepnKV5pvgWFuqg7i8rRWk3V31wbBNgZMphARsNBwBxU0WZoJTgXHOZ9mOR4vmGnTfH78AnJ+xuNX7Mi/IB77P/4D/6//9U//9//l3369huKcpROImMU5n4MMUJnzp5uPOF++kTm12SbSwZxKaFRNxdxtPLftM5h6+Iv77ttmCFKwMZxf9jAmfn2f4/x1aJ9AKl7P7Qx9nvtm52sY6FDQEhqW5+4JxSEHfZhrMHwq43iObYhBHhRcAZPBSecwgw8/DGe8SIaNGDvz9cqvlB2ITPOVuNO34f5Mf+w+j4efj1dMnRR3fFKP8+uP/H7aNs9vj/OJ4/l47jzBGt1+GMKEqJHOmfHhILdxxI7tyKcEi9l2PUxTlhE8g2Pzj7SYHh/btw/sW9ISCliekSfkrvn1ivnJ3UdVWkD5GPsj5xhCeOaWAx1bN/ikBOYZkRny6QVjZCAS5oioqcrdEwGnDpwRkFlpCTrhgysYFB3AaNimHFogxxBdTmShTWYkk24E6W5hw3vOtMxZ/dIyt2YxKI/j5ExHDTNh9xauWlPF3oYRFKuiAqKAQ3KMjkMWMUtLPxaLCAYT5U46+m25DOcVpnR+rplplEHJ4XFyWPe6JC2loBkwPGEpx5UgEg4kzZWW0X5ZqkjD0f16xCoa1coQy853Ta/8bBU7cZd3LxZ0pfIXm1YsNeWFUiw4tsN1XvEWeRURbyffyN6VxON6+fql60+tAlSlDnVRa1R4ZSEXGZYSspQIBLOB5BjTR8JqUAEJRDVkyuA2q70zQpL74JSoyIwIgZALMMsS5KfElKzy494/hLOMqgrTMOvlFxyrzkIqYelrUQmSS4SCykyLsCb1sN291YMj1ugmVEkzcuWwWghDL6DVlBySVddMBCzZsWcIIOZcv1FxZqwos6K9DOuqBRxgyDZUiyogBWQTTCm9ggsSHQnVXu9md6PL3RVNnyh3I9RyC+6bgTbMDNYSizayMuxLC26d0o5OV4C4wtXsXLPq4aEhAdaQDgGlSjOzJwpIyrQ8GYwIIeGehORo/ltF9WZI95GsEy1LkmYS0pIZAANi2hBMERZAnHVjUS0RkLK1NyYdqMRxzS+pxUwV8bsIsVHzluyEVUhl3hlB7Z6IGdsvSyhLq0VKw2bV74jIEQj56YhWuvKoGRwkGTR5wCz9oQe2b+P797k/H48zMseWz/1Pz4UPrfaxDmVrexsRkS2r4EZlrqKXgJo5oJqlXLG28fHYP56v7XEa03XIEce08cUYiEzM+Pzcjp1nCTRmYh6EDQ5sJ6m01rU0BSdfcTDgTqtBcTkfggchIIeCIBSZMSNDtAUj9KDExx4HbXx7fZ2vga9f8T3nGR8+5vY0o290H24jh+NMxfFz/Od/fNmB/P7n8U/Sc4a5MJLueIDf55db8eUdOSQiw3TYCcFcOASCw+PB17A4fjlzN0tGaX5bihpj5vFEnkw7Y9A4RGPPmi4pFoO2SbDkRC/s8oarVsR+pSFArAyAThRIUL+W3RKyznw2iXPqxMxuWaVbVojbWe3qeKqCfQ/q7owzC27ldSEN8yKVpfzeydMq9tyXXJ3qUqX5v7ce3dBpS6lf0NWVIXb7Ua/FjUO+YYdavSOgO+6K4/XCxhJu2cbySbWFQTCN8o20VNZRRik08i4RLuGHoupkGR8k5G3SGti7l20xYd/AUVy8qsLzSlYD4+q9WO6zIkap8qPUwtfKsfYfDawb08wEmDwtCxqi6IpJ9LLb0G8FZqBGimDQqBBCtkoZrCCFlWkvBIQXNK2UIpilhhvImJ8/ZxyThpnkyFMCHRClGS7JHIKjKB7KJJlZk2pEJL1ofcZ6waq801LMuap/uTCZGtCz+nOTbOocVqTSUZ1dm6ZScgZSQNKK3lovLn2kkYb27EBr47S3ql1W3uItklIHYkk6XOg2Ip2HAMuJaZlCnEEkpVQWBU/1WAkbtJkwS0xVuc0pS0GKRIDuLpjEcbpi9iBeG+7wjZsie1zmW62mCrsyHzTb/+yKCjJjI/L0OrWiWUwzyRhFcinEs6uubJdOFjkaWTLAtRZBQfB23mkTWcpWKSKLjGP0/ZQrChHNEx8GSF9jToUnU7GOmRiG84VwZM2kKTMWRvcc3zdQvmkoY85A97aLBvjMmqi9IKxrJGKdwsryjUOUPIVUWh4uJa1GAtf0X0Bu5nL/pl++EzksAbokFI0uMdV8SPqEDY6Mp/Z9p/TN/+3j+Mv5v3x/7PxT8E/5/Xl+e+x4/Iz4+NOv/+P/5b/9f//9r/i5jbkNa5Ptg8bYNk/zU+a2KzJO+nMAoCs0K7TUqFAKKWFGRKQfu0/Xlx5/n8dx7Cfc6TCznD+kjePrwYwc43TuBp8ZmBtsMJDJ40yY+WO3wYPS1xfT4A6DUSYgnvEPN588yC2PwkvSlM6HfQz6Y4Q2+h6pebofU/E8f/7j65X6+hl+fAb+7NzyMWj7JtBtzpFnvFJx/hP/8d9fu+L4+vz4aRBzePWIJR870p/DbFME6SM9uZkCSL1Ozm07oPmIOXafm8dDef50P/ZpD9dGdw1L25LjFXpyHh8ThhkWZEkUpLSJ26b9qTk3/rI45gSmNOOcMc/jmOec55E6wxQj7jynzgqG07bkwGgZILqZZcJM5gJ7bogIcpcmLZXWbiUjCCVc3SCYU3UWL07eJEBmItJ8QNWc0PPrZzAHQGOHZVOUTDk5yvYT8M2Ge/euFMCWan7Xwg+Fyocau1p+GRnWyaNYA9kvulclkepR3WTCuRq5COZitAEqViVl3nUQjZxnsTqljOD5moHSLLUZIlKGBaVBli0YkMwgIysHyiQiITBbDriB5zcmBc17LKy0UMIr/ajHOWI5mEInWyopAVhWkqUOcFiDIS5rS6E6CRNVilPP2as3VCe38swSUlg+6gozyGEjYrW4NDIhEQaTu7Pmvq3eakGgLetsgaFUHqE4uSnTG6L1URFP2OY0RwibzIOcpU96pmpnQiDMVvG9qr7Nq8yrF55mqYSYwSwFo/KGixRz1VyhQhOrj6buJ7NiiwmgPIo80VBMtRvRrAYUFBrvVB2CJdmlQrJXyi0u3bqqVLurg4S6IQkxd3RuLMHSDZQbGxKRGeU+gG3A3OKMQdKEinBMYcPJJDhy+mYdPSkDckSOUESrmZvJaeYwB+r2JUTum8V0MiNiKDM5gwqGmc8YTq1o83rwTRWsuN0aRJGwVSrCQJZEEeAezAykw+iFkAfMhm8e4CbYOEWL3KC0xxSNtn98ggOGkD0EdycQx/nT9ShZrvakJBTKOXyKtCweEDQRbkWZyXGGIUljtjwYQiKLnpXuw4OYHvtX8kj+sscrMCTzY7hcsPQqHWfmixzfvp1y6AnEgxgIgMwg3X2YPxyP49z2X9gN4snXj//23J+uv//5x6//gz1+8J/f/vz3+f3nw/gcAM4xpa/9R2IsZo4NOUmZmTG3IY6T3DgVaTJWd+1wurk4zPzE5jYAt+F0B2j+9es88jxBbXDjAMhi9Mrku4+fNr/2z8/j2KZtcZxf2zxpL4zT5ufznDTD42PftkzqQPVMmGwMy23CZuCMTGH6pi9FUAJC7raPb7vbbgjDTt9BxXkEDx2/vl7//Pn8mpgndnuYPfgYHMNRzblAxowZ5/n3//jH+f359c+fX3/+pccztH188Ylaoy1t/whfGSUjFKGTx+vbeWp7RDzoGTLy26bj+zgOl34ewBwW2g27E2PigTBim/NlHxMzw2mko5Kk5M7v33B8ip/HL0UCVx00UnRGRNbsxWqiB2p4OQjRCV6FGQKwMWwfc/h+eI8/qYJdhgH0dGkMHVU5DhsSfLelLEah2vFNoJKppb4NAsiZyMzTpFl+RkQyFZNxRs7TjZLoA40P+0jftiXO2iAMS/+uc/yyg1YjPDr1X3Jc2Z2tWnX/zj5aeFJKCxI9gjRvx7fIEwDNqt7nNDOXFQO0WL6gaebrnJGkGZSTMmYam6RoQtTNV5hNq6GjNY+0eEcmSbROks1Id4JGmY9uA1LqYp+pirdl8YaKhSat6uACxgCWokmX+C7+7J3n0VkDUpyXpygcQmN6KcEnzVZC/sZaKmjTX0OQmQtkNQtaVZlI+Sg540J9i9uSoAflIScNm1lsztxEh8ltM03ZttMcYObDgIEpDJhP0R+ukbPQ4ILAWQI6fUvWczBgKi9QTs4gqFUbs/DqiiLQP8QqPFM9Cg9kaVZnPz8V9gGWkrUbfMDl7D1ILmJd9Q0tUIPo8IosubS3CKt8V2JWpJDKEDMyZ7v3KAUJR9ZKJqrNkVYdJtHBVfc9QhEGKKdMNXKQqTIYBihLLxFpGwQqXVWyKTdqLO0wUyY8aT34TFLPclkwCwTIbNHd8QYYtHUBaMhZVDuy2lhIxzBkCIADlp2Hm5vCqAAAuvvQLB2uLDFFjv2EqpslAiHU4AbrJo/mAr/RW7ogIAU5E5UZFE+m+RuVORT/mKpEQ0qCMiulfCemmWykSQpmUPAkYWkqVENFTQkiMCMVs6OY7hQxC9PwwYFp2sh9POzPeIEuffx4fvvhL/z4k/0Yf/p3x9/+NuZfv/3b8/Vf3P79c+zmI//6Xx7/s5duBlGJhNXMhxpb5AMhji3dR4TLAJi5uWwbBoxtkMEh9+H7NrbN5EODGjmBsel8fNt8Avk6Nc45zXMcJ+KfQJ6nCal85feUA2OazjDRtzFie80tzqXizrEPj83CNTRSSBs+XhPnLFfy0rJIXY6hhZkrUzjTXzFn5GGkPXaOx4axu/mwQFSpAScQA3l8vY5nvr6A7Uv6MY+T2IeomNMGwYEtR01xcGooKeP28JnSFx/uSd+Hj6E9hdxnBH7qGO6vx2aeJ0H4eIiJTMsNpZw67PKLc06X70OB4YzLIaHLM0vmV1X28TLO3l4YTnMnhg91atW62W+7GIJ0ntO+GH0Ma0IgLC+V7MiZzAwVTLfSChHMoqi37+cySliKQlkl4As9FazGZBaZYmhsAy3pV3Xq/I2fLShrconYChJd1qppsKs5HkANTajcfPVpFixLo7mZjYUxdx+SrgZos5q8WlTGPDdWKa0optWz72C0XEoNMoWInlNXJTigijiVq1gNBFjQdkPxDcc3VFVlbEh2TT1QFqpVygElxKFL0k8Q5d31Vb2RrMECy/nixtnLi9J6JLBJ1Rd56X6yL6+iElz/qWKBepNmARBcMcW1de4/G7K9iOjlA5MZWc/AkXAboIk2SCdldAMGCbhsaNDG0JZ2FARcOpOl5NZSp9Y1h/tGm1RYBUhpxcS6svklVqL2lDdSxMXwLnwWpEPlhA1Ntb9utJxsrqpt77FSn27iOJdY1PUcSJRgtoGikD2CQfTeDLXvysvVCCozUsPU0lOrSlMQOwVzJ8pTiERmBqoky+o56YfQt03eIcH1uEKEkHFGypWMnFDNkLMoJoSKRZGlBNlAglhF006Lu9+2q9HZw4NMrqjkOarrlSuI7nnS1WkujhRTYYaQGcQIN2UGhejZhaouYFqxBTtUlxnTkCcgaWQhOlFQWh2ZJCKjkP2rYkd2KFQk40w5N5h2xX4cRuVAbpI7whKKoWI8BocU+Bo4PCgNpiQHIyG5zIeoULgNmvuWQqb55mPfNn59bOPD9789f35/fju258PHZu5bCQ4O+lo7UKiBUETX9n0MRyj5iGHOypWrzBqgWeUw3EryyEnCR3KYDbN93yHP515pmHuG+Wz0KE5sJkiZMzQFN7MDVeQQiO35aTgxZxiAYWPs2/DDTHoJOeeZm/kIkyUMs2an27Zvmz9oERiM1SgiHdsptz/yxIb0gs1tVHiGKqeImZhbzHmc52ucn6/Pee6/nl+/np8YP1zHMw0PUAMjEcUBVDpCZmlCnmLYg2ks+YapLYMRr68NidwSBg+XFEobiNBTOb99TrMOrMkMnJmPE7TdIjSciatjtcyi1J337UrM5W1r6nWlaMDL/CcQyvBYExOKXR7nV+BlidAk5wwGQwyFUq6MOUey2PDQNRKwDnMXfruCKBS8U+YsO5GDykYokLNIAuW0Oqfv9C3FbjW7HXB5Wmaix4TpMvl1PIWLDlLJIhK4jOAdrNzg6wKyV6wP3j+qtNGYiHI4NVwqlfAqVwWizWHdWUyHluIApCgB74xcAGj7Ti4aS6u9lGocl5En1h8dG5RDH1jerRDzBaYCuCP+lSR1E88KyyqCqTDgsj/Lp5AGuCh6t2VUsliff7WvoSi33U7CNUukUMB+YTkQELASnUc1lorDKHdX7UU4hxyiu9EBbtqIanX27h+vYLLwWzND9qzEVbo1sFhsgqLql70YklqeXbZq2lxh4iK8JZDpPbGDZIrM7FupzgsCSbm1ZmYmEJG1pfNSjOus8ebW4W3RrydmrJKyyxCwBKwoQba4Ak3QEEmDm4zuZpSZlQBbXsongLuZu5sxk0mEACgiI95qKvXHVCt4CWQrq1RVhYlIZ8K+jkDmWJWRCEhUlPPOUPPpcJGor8WGiu7teTNQLjS+ha7NJhv8aSgf7unbIEnkoDgOGCdoAUkhI91TPqizkGJzq8NmNK89WHoDbs7NYjx8JJ1Q5NWcAABIcaNVYo5S7ajYt21Dpwzw8Pf+y2pPsmZ6rnlR5MgxR3oeG2wwg55AuHcUawqG4RzisGFhFC0AujkTDkNinpnxZX/8Or++7JAZB4156o//9R//N0+aGVML64DVuRNJxVhmyoYjWEWOOoTWrFdbxFJBtK+IOTNhAxH4rsMpDt/58zSjBU6a5pCyxvuBoAY1Po9D00XzGPsYppNnnA8NkbbtVkYijpgnPSMZE6JHuqZLwzc9nv4cu8Y8tQM7lJznzDjzgNu5WU2KphvoA+YDRqBGikTkp46v4/N1fMbPry/+kYp8feVkfA6bf6R/+85BczfLYQoJqBrp5Pn1c38Adto0gM0F2KbLvALrZj6aqRqf5dvcgr5NhGYI6TXMcbQpYk0V7LFN5VF7/2TboMyoeO4S4SggVkU+DWard6QSLKJcv1CdRYUEZY4FBgOQUim2QJhKMIMEJRkouMsGEaSpLQPMzJVN9XVPokuI1SH2RtAFgVxZbfcyrER5waHLiC6rUD6kCtcXp+r2LipcqnnDXbSqT8hMxVq7YrcJsKCXdCwL6jLIuD1iZpBVBA4QNNvXVO1SE8y73XAlVeyWFjRGUF4+l6BuERZ7CZe9bh9WkSPur8Kosxwwb/eMKryt2yjKre63q9Xqqj2zdJCZV+WisttyXFfyhwVqlyW+wP/MUKd17XIb3dD1aGrZS0ILjdoDJaNtthkwalI4FXSOHIRt7u4pbtggulHwCkySi95NtYpH2dyRJepmLB9VnZjK1HK3FFiVB64mpdsnrRQuwUgiui5BpVntwYZSspXoFpaCmMLMhEjvoVy8np2WA84qrtTjXz6rgHm2A6742bYqYa8HZyytIpLkoBxWAWA9GLOUQEvRTT6s4H+ABjOpBshn5C16Uds+z9kotmBGeI/RkUQoJyyoOWlpY2rllQSspdvLirul9bMXF7RQT70xDytjZF7VjWycpFynpEryJcBEGzH2jV7zjUvYHimYlYGj+xiCe/WjLppvrndazfxGDJrMJl2ZLkqRM04nAwFGVG8YcjV31cyfZVqW1kKvYFrSEsw0Tvo54EGkLBQeMSx9yA8zzzl2F7dgmjBlIKuP+xWJgPkw2zWYpw/nKe5bLSSZcZ7zk8d//Pz5+S2OMLdvdMQ8//Ef5x8WkkodEpnKgHsYKBljamjmK0HzEUmTge6eZqQjBVSU5e5ubjbsPOf5dbxeUxFn/im+QO5UWr4eAGHHXhOMFPSAnBr+GNipODcmzdM+zKdizgnTyKi4kCRsxtcxx2PAiZQGouig7r7h8bAPd+1geMCkmDxD56c+d49fG30k7Pl87JuPQVmpeMVJRr7ifHnkAfc85Ixf2zFfv34dlnMfW0jj4w9/bGPCKtuB5gJhLY+pnHgcBnIkaILvg2fUyNPMZFU0aDbCaTIPG+AYkWecCAuO7g6AFPM8jlNnNPTc+6/+mlG0kOYBpdZ8G1WJtBU4sjRCEIEiWS7kqO2I7TPcYgV7hCTzsmgC3WmirYEyixCTdEs6m9tEoZlLK+6uc7xiByGjXU4RN5JAzESmFXbe8uLXZbWVF2qMGZcrKoS+Stu4oVKt0drtZvtKuhw0EZxoFZtUlRAL0xLJFNxHSaGbb1oGGmiO9tijyWCNjC0vVLC2kTQoQBhoHJCLZT6xEOImj6w2/2Ik35Bue2neRV7WsNK3/LgU/So7XvVrqClLXSK+XDsabNaVWTcgsUppa0/pzR+vJxB196nMnkbQ6iAdAi2m2NLsqWdVnaa5MHOgeRLsRL0rjkkqma1E1VFWpmXQ+pAQuQYoUFianfU3rhwdUmLBCATdSgmlEfVV6dCCjYilMtoLYs6S8mANwFlPozhL1qvvlUUKXW3P5sqhAI66wbxWtQNY1qOXrYWrSovBpCgcdE2zZcsORe8nwAyW7IEYLByno7eO9FADd/uRrRVoTgb9Up8DreAFq3H1LhX9j4+ni2vPNFhjZoKZdx7bkUJd5FW76qjm3rnC6qe+HmjpdUqICEPZEkV4YRwAlDmFzNkZthsViiAKd7jPBA1SlqTrkk8zsyxFvRFGWlaYvhTzhcwiQ/bOrNah/rqAfSWRo9BD8wwQBf2XKBSQZTyv4EOrON8sly4vM0MQqpdNotG32CNnO0Vs2zaGe9lf8+GyYWNjnsfHmH/5H3/823N3XmGBpDXuF42WwTQMgsEkgtc0k3IIVVqksfpPOB0z53Eyp5RnDSxApJhQTrczMxUBx8zUnJxfH/TNvapwNJj5rv2XJgOAuXyM6iDNJPKcsT8UlQx6diMQ6ebb2HyYbEAcJJinDsvPz/NnPvJr/7GN12bfvm27b7SOOM7MCcz5FTNTOsaH79sYu+KHwx/T8yswgVeO+XrO52NiK8vaVTv6sI2JDNEm54bYnJwYT43zBXxU1AtlYE5ZTS8rGHFXRiCjcI0ddFrUwNyw8cixbZWjdna7Ert+Yit15PJTl7FHS2ihXZMRqkHFvS37EftdPQGF8PblbccrvWZ2zlqyqYUW12jZcnh27etMIcLSsvYw1iTOPlYERbPhDZAtT/F2RhrS0nt/R/9u3Q+JyyawPWGj0rgd8PVV37x1LYG7PFTYE4ucFVN9yjt8tuKulEMt8L56M6skXp91daV0BsHGH+ozSbTbWl+29GNb2mBhz2W/mTQRo9+zrf1lPGpcWma+rWcf1/UvrOW7d0olzStHr/RCywNedrUdp0KKWAJpv39dORPu6lqThiupUY016HzpTknfDOF6n9ZnQkYwStsoyqklUJGFsbV+s8c/dgJONg+r/Q+9O4U6rOlPvOMXCo3slcJN+wJgQcY0o2cBOvAalXO1Zq51+m1PrZMH0moECbBCDi3f2U+kpJ94wbXoI6Y2tN0L27laCzy3W2V/WN1viW6qJAszdAn2l1OfnrPGvDXChT5ZELL6iul9fVUG0hW/Zz+fLP1lAapF6pi0QqseC19BuTIQsbrtlnVqMkdvUrVcbnir9VQ3dURaqrT/C1Lg6upeeQIqqe9Aq4fcFmGp+skbLeu25WUBO6hXVuJ8bVRIMhFc10nSJRciicya/Vi9VT1ctAIzF6iZ1VjYBPzsgL5uJxSmyMXGuQIj2PDhNKIUmQVvzn1GADHWXPrr8Utia//UuDaDyYxWRFZVSb2sgRXBsy6Ubc1PKmBYJJIkJeumZxegmfNkhFkHnaYZkCBPuaXRN+wWEOoaXbR91MNROHgmI4xQIpYCUx2EYeaNxiAMPchRETWcmWabh3zbOOgApcCZx8SRp45fmi87P/+YOTVfxws5NY7ScAIpaYpbKCeJiOqQVpEISQZCBh4pU4Yr00SjcQqaNbRykucJhogaQyk+TYHXwW63gXENEBHMHQSq5VFrCt99fFccjoVVvk0aqLNEXGYSdeAus9ERvABqaYhf9BOamZUwETvj4/qk32PgWm5bAoXrx0U5fDd/Fca3OS1YHMu89PXWXxdx6/oAvn135SnroGllvXyrAl3G8rr9hUtCKpG/zCRQ2gvdnwFRxVG5onqWELStsThcV9S8mRUf4PoDfZcdRVxxx5s9LZO9WoobvF3V5QvoG1gKUcCqcy/PmhlrlvaVtnUnFnAte93tZaIuW1zB2vrFzqNWEtePIhNqUimuBwShxka0omatYDef5XW/2d3RWBKEmTXhxAqfVNJLHXHlznVEw4vYtPhSqs6cax/037SCjTv4ubaGzJaDv3AjASruAdqp9Pat52wFfVfFu6h4K0+i2je2z+yLyuz5ZSsd7DO5lrr0GtwMTripeLVyM5jClgSyYdVMsU4jC8GHMskePVoCeXUgia5NVaez0FNLFzxYhu+Nq0Feu7YungYqGUmvx6P3Fnl1KA9ezgAXoQHVZ7Ui/JLNlmypkEiV1dvbO5UOiwhYmpsXLEaBljWJw4vbaG5ulJETF1qyFr3jxbXbBZ0VInTHQ8zIVKo3JKVRHsGu4IoVQRRUxjUnjkRly+ZWAYWpiKsGubl5MRknxkCanFHCarWBrFSEIBFRo+LzJL+cR4CInHBrkPwrX57//Hod+fn67o+PPzk0T/zxd3sV8NARYxUpL/+NnmpCc3cmaBjW8g70YVARctMUCIsCdBEinR6QmCdpQNLzNZQCpktwzBJGMvGxDxpiWsYgCBpPzUhyq4zEjJpMJmdO/MRE+ANK/zIl6eJO+rY/9n1fU1lyhp04j5wbMr5SSPsY5iOfP76FwVXMmnl+Tb1i5/FCHpZFkhhxCh7n4/X59fAv80gJCMWLOCLza345QkrLJCU+oWn88tL5ecE4ByD4rugRsc4xbIykPEQzBZP7HNuLrslQcpg0jLYNt5w5IwJutha6NdNXFNii4w1Aqku75Tyqm3d5w1LSQLSOqNpOl2R3ImHWz3oN7DLoVvgHCVmaarwXwJpUSiC7hw1ltZMN5KwzvI6+lNGHMQFFqVzXldBWE2TpKtQ/rUBZ897mne5U5th5L3jFIZXyV1xaeWZbnpUJXkv1llOjIK6qUoNjRE070wUZyzEDSHYFqfyoMWsh2nmVaI9ohHOEqgqo27tx2cFO+spfEUJ06qv2EyzCzwD+ZQXRFqeO6XJNndH+5j9xSYAkGuys0KPs2XqixpXrwZrwA1EZKJIcOkRpG9ijLhbYgg58sS6OCxRAD9aRUJF/v9Tcez71NaivI1s0vl82cMUid9xEXJ8CsCUges9JxTHO9pfL9fQHrEVCBycrmKscA+28agirXWCrutPJasA9skY8MQ1ygr3Pq47QTJ51hVpInnupiiBhFdl5LPA+oYwgjdfN9qBGMVJBlmRdRRkdIV2oRstI1wxHuyIusboyVzS0AisKlqAp1+wiG5V5g+kyl5GbATbMN9YU3HptB364agFstdxiUIJlL/tTgF6WQo/5Ro4vq9ILVFSUcLJUWNAcN7q6EaD63nO1ldURUDIpdmMhzYVcXYrJtBXwrlnHIIzeRtPkplL/LLup4axih+mgGWwPs4fPnklrzJRoHAYfOUFU2ABUyzvINCkInWPRb3BOF5CKOTN9y4n5wvw8vhBfX/7iz9cfI//OePE8vl5B7i2fE2Jn35LobKJHTdzKrAeNEvVkHw5JRV8giZzzdUwAyZBnRioyZ6QNzZDn8R3z3GI+6e7mcEGyAYFjmDtdnm7AsCSTatGxHM6czAQjpz4ZxMMZ5/jCnIIQ50Mw7sOHkJawnH5GIGOeyON42dw3fH3/to38t/+6/2cOP04Bh7++fgbPr+f4+oSZEPjwtL++jj8++SeQf9rGnJsHLGlfcBx+TmketvGVW7JkqT/oD0FffGHX4Sn9Oh/ciIkj95rlZMUvEQSeE4kJYnzkWWoImkjBtodPuJnOl4Kgb8dKn0TibZAAKvdcXgwqaYE2P02kqh+lqstl1cSSlmS6kWNTLnso1eBSkFJkhftRWOQFDC9Iq4PkhYxnMjsGvdDZ0ssytZx4NicIdb7Sr9hhJfMQFoRYTgwrUy+zii5ILa92J9mrJaQOa1MaYdevQihk9PZUXLmEClHILvStqqW5g9wqgkZLcpX8paSa4LdC/VI0L7rwGBNC0vuHzZWSVnmtveJKStvOUu0jRYmj3EZ72QtJuB7CMm5cy8JbbwwLA+cybTdEqJVLdmFzEexrTk0nTcoU18ig5fgumKV0fdnJ8Vpg1YSz0vQM1rA76U6xSOVUCa5U7prVfKA5bYZAzVnRkLKntFFhXUpnJ2G/3eHaLiBMt8fpHbGujBcU0Q5Bl8+s4c206jg29pAHQXFNuq+ndZVl0PWga1LcFdZduxRKXw+FvWsrHujpgUSDzj3FqaLkQrnqkFsL5q9MtB5gTY1s8SkwZxUvM5HhCRdScw1cz65Ir80D1JgEMU43tThKYRL1qQUEFKs80WNvxSy9QSyOQPVqmwzIsLvhp0RdVBo4FFWz38tgRJQbyVIdrcBCqq4BVUTjHldSUUH/PcehDzxZlOea1kpFB4iNYRVRlKhGqo6xeu9fJ7sh7W1INRPKZGY29jm4jeKt2aiWORLYtG3gVrzSCjyypI8jUxO9OXIOKN1rY2VM6iSKS/MZGa9zznO+Pj9dOH5lfvt6/f3/b//5mqVi1l60JxOSc/RSaB5zbmDGQm9WOE/V8q+dnkDhsrWmtc1adIe+pTEz42QMGw9obF68MsScY3KmmczN3A6feR7YUjSJVrV2ppHmXvjxPPJQnmBkyuDD3M2CHGnEhJg6Yk4pYm4ws7F/uOXzMSDlnEF9+evnr7D5GePzCxtnfH1um/jHOY+J18bzofOwYQkKcfL0CGSUi5pRPQsQTTIpMyNjpI5tHvKa9oBhCJeTzOQ8kxMe5zg3ysLt2J7PGQNBI2A+XIKQhzGRM5Tm6uX0NFr1A9bZtqks8cpcqKQUkRmRgWiFOc1k5HTM1XXfeJkNePeHmpFrlmAhw9mIsS5ze8FuWlZ8oUNYUGCZrysnbwMp6GqurK0iRcDaeq066irk6o7gUQ2gxZfXDWS3byi6I1cHErBQ945ZOuO/UrY3C64L6eqEJ0r9dzkd0gfJQS+VMLN1SeXtvbFSsl0yVG3C6d0DUXa1+UR9JYJqq7DSo9VoSakKT1VBxqh2YLusehmN7Nz3qmiTfST7BWsqAJcwtJmsFMMaMr+teleqsRxNW1gloFzD1qt2W74gIaoxxlYqXjlmogZkqqS/l4VgaVBg1c4jTbCpZIn9gZGa006CVMxkBpTlgCnShvXo8Df6Gxb1sD6nLhLKMC3BJohXoXXtgXIndfnlZTMzV2teb0Q2bo3ydTCmUhHV1iRmJDIVsOVyl3dqr7H2WmWLy3d0Wsi6bqyHVMDCW3xZfzHAOw0jrlit3r5ISGlJM0utVjHS6CWY1LXnPg0k2FO+kmZWoJIjCSTg9WZdhDIY0ROdgcuys7ecenH6GJbxq6o0ACGpjNXDHBZGAqmMeXJOLgo0rHrJpkpXq3y7z8LTayPSSfMGYLji3JI8DxTDJZnhUkTPlyfA6ouuYq1fOfEyDp2E9K1iGCG3HKbq20aPCahR8WaQlCMIENMsSti/K1JWAmPVTZHhOT1L9ytAzbRM8zG2MYDHx8iHI36kffdvH99HboSG4zxQLWi2NnllT1X+MANqmHBhKVIgI6UME82UVfLkkBkmvGrMw7BXoJEsO6UMRxKZ54xj5BJDVAlahpAUfT+3bWxji1QkZo2h982hzAhTOp0OAn7E1GGYA0Dxr4cTLF2chELM/JrHfPCIY4vQ88fH0yw3pDA5zwkd/vX1FZ6n4vVZsf8rRT9fc8oxnynT7vtuDzuUdBeRRQ5K5jlEJD3h9rmys+PUpE2EbdOTNnye5QoYZzEm94rmidSej8zveU6lcs7TbbMqAsGGwEEFriPaHvbWf6+j0Tkpr7RUeQlFFAJNqOaM3EksKuSujNQK1jWsjlDzKkgt0LWjrnYrbWmWs14Qk1pGsA1MNqHPbjNQLcorGgUvcPaK8u9bRRfGVhh//c71a2owkVeysvIyCGteABuBW6ny5X9xeezLyERnZzeGBdGReWW/rR5dJI/28nVt/QvKYEiQLfB3fczKRK6MZKWvb9HN9TV0XQrAZJokRw1oa8NfiB6t9BMvE113XcoXEJpSTMK6+wzNvWFYkUkK8Ucb+mqUW9nt9UCqar9ooUuqsD/TGxGOlGWg9E3oipRFLG50KqexuCvdSF+GrHfuhVN2CLTsdbd0AujJTWnWg1ZRwwhKkiIXCl5Po/dMB3D3k673LiXKarkyE1G1M4hKLGZH3feKSwzVoVfcp3p6lUO3J13xCH0YuPS4ANGix2QaJcRqKeDb7ivnICU4oOG0gNdcaBp6wqy1age75fbtprSQoQuTiBqmW1WNIsSlhNyOGE5naRgUoD3MTTRuRvlcqtp1bc4mpDWi06BCYbE0wjiEIc0y9GRSkQGjI6gzYtoMF4CUuSNPM8yK0EoCbGyv+lWbKvkVjrxsztr0QpA0O0/FecxtTq9qRHKpnKXkS/UZ6DARwLojiW6+yd0sRs3PModAOQUbKzi0EoxTbkloHtORCA1ILZYFA2z4rF5vH0RGIifSzMCNj4d/G+f3/fmXHxs/P2bmn8fzb/bx/cdj++7Brz/w3/84kjaGlXUMWrGvjG4+3Kur3oYrEZqILE6F+UylKTgyg6E0BPbDzDb3sRWjYWx2bPQK0ufre5xxvvL4iNc0QREybN8GMQ2Z8B37PrZtfDJSDJM5wZGick0Rdj5Sp8/URDByiC7sPnbnXXbDDEBxvJAjX0lL7hu3HYchDvh5ni/k6Z/HnGkDMrNNu50/x4c4UpBt5+kz1WqnT6T2bz52STT35IgCbcy5J8HMcMMBMA4oiRlnC4+Qlsl8ufRAWriTZkG39AcDXz9fETE1zyMe1CZ/6rGn/KF5lFaCq2gsJM1dbjZlcB+y20mt04ycsyxw9WpHkui5w7kssDLmPHSi2hkzU8OrSUa0moIXWjG6lsdMLjASKl6nFcnTZxv+rOFxgjHdLE0sIkEUOFxskNUZ3z0jJfRHrEYTS3QPfmGllyDO8uXoOjNT7YavbFHosL9PMK2TpCtvZOtE9RjFPuBRbSKK1tehYHsBZKpQtz4ZWJhkueSFs5JkxiWeWVX2C25wK5F/0UzWMPLyw+01K+8SxrKsl5devn71Z3YE8ptX6W/XJqngQ1b1hgLsvVlXluhseZntd6C/cY0GtcuBL4ShoO33OKnjD10BWjtpYtXBdV9nyqGV4nb8MkTnGC45RvVvWv+oH3GhNGt6IqSa0t648pUWL2yZ19perqniDHbkg/6VFSquDK6XllCXFbQ+pF5933aZdNR9r6ePzjXrYpirVLsurkgQ72/BdX3ggkgyq/FGTZ3LhlFqqBO1CPhV2MmrN7EixGoPXIUOMECyi6IE0hIypDhOM0AOS0tVB/+cBJ2wuWLhYhvVRGQSoF0gg9awqBX3W08OXUWNwuhp2R0skao9W7XgBIK+QuhqDo4mRWPB0KKtjjVdp6omBxU9kUX44IUJsjWv6re68f2OItuXV4qmq6pX6LhJopJkcyCk6g/P+fq0GJg4YJnZ/eQJmsEzlRlzKGbEQZNOZ7x2YXjOOH4dnxMG2x38keO7f/vx4zk+bGwfHx+D21GWogjFqNbRFsQjYlagU1JsgcyMiMiMnMiwRH1LllJm+rBR3cfzCXDCZVRFYzNznlMAPeHpSpOZjW1LG/KBx6Z9bEZmKmWE0d23/YiBYE/qGYC5Yp6nJpFM68SgpgWrJnfmnNUPa4T5vhv3P3/sNra0OY+BeZwv5oxjJnpWFxXpZoOwmdyw71Km8xwWVf/34XUgSHNim3TCnO7bK83IbSC+fOQ8oNQ4PEGTZTrJUZwbR+zFIlVAEMf+eISZF/9AkiciJhKElfL9VXZNAalYvBsK5jJT89GtB7x0nkqjwRNdisICH+80eEZe5/nao9cYtjWatXdwnUgJqOa8lVQQulAwLDh6WVBWEnA1CXTS5MaaIFCO6D3vXTZJF2Ss+zKuM9iXVmf68gP1veXZtZyv5eWdr9/kSqXrIlFzE1eetPjkyqVOuzzQdYX9ugq1eYXcnTyvmvQFgUn/cgW42lTe2L7Ln471r/aP1zXTZG8uhO1B1ltWVPRbhr0exHqDC9Do5Vo/7LurZL4aTuNfrljlBQWUKEou/nzMbFl8ZvfG04yy1uxiwxwQaBnpq9THTEMnaqDJYQBlJGRUMetqO2clgCAyks7luVTzEtYD631xrwmu3ce16vfrCNK9IO0MSatm0FuNuqYQvq0xF1htSHgFTcxiAZoRSKvKpl3wTj/EijwXhMMrcsjV+RKZ0blJBWZS8arCreCsHkWRKXqG1EE2BNHKfsmWLnZWnJsrkTYTjBpjpw1NGGx6SmE2HBO5bZeENt5OXgU0rGnEJZ9aAnlVvC7nnO21GihCJqM4c8qYJR+dQQD0sOEirfxgFZ0zRY8mZAAAzL0mCaztSWVNWDJr8iIrPkDNPzeZRfXqgEYvr01VebjWmigRzE0Jq17fGmzjirNwAyK5RKZhSJ2vTbDQ5CwIuEJbqRTbphSiMsKYiRM+v0bKXJ/49fftFSX/ZP4n+Xf7/jG24fR94+aoJjKy50DVyGolmUlLTQ0jNGcORe+UqprNbqVlSYtXV+q+DR8PK22kEUXrllJz1zznwTjDtBPG3eCJsG14cpsa2jZt22CMfLkEUxjpm6WMh9VnzGfO4R5hzjjGEFDjAcWJEW5iHJr5OvcjM6cL3D4ebtvHn2xsgW2eOvVCBLPV6JIWGaafrwd+HiMf9hkyVxpz+PafUgQjMr2GPdLgTMCtTHtCG07s+FnjRBBfh2eMf+wyETMLKZMlkOfEgIdhBGCe9G3ffJybi8NLETZiTkRA1R9Z8Vn1/a5yL5ed8YIDaTXBtgPCRifN4KU7m+C0y8DXwcqYMa3x1hRMnbGVcH2LQrd/E3gV2JamMpa/F80LqLIOSBfF1GhyMN3cuqtHBPvVywHq9mwrXq3wuRK323NXvgo1InabiuVELmS0cutieq+RcldW3LBxpcYVI7Bvz1gj6MzcraECrEC9Xb3YQxvbrZQnr6r8UjuqVg1biWFjw33NV527zcPb7ddnjOt+2/9et2Vq/eoVAuAqm6+7rgWlQJNspUxcuXEbzUQwqgeq3d96nFmT/xSAklFvfz8W3ujzirHU+sUp1uQscE4DZlhGoESDpFn+OzIWntJeOXuo9XJHi1pQmgpFUy5zq7UW1hFjTQnsBBLLVV5A/fUarA74mlNbi57JyN7C6g6ei1++QpMq8bTSzYXiXxuBlZx3Blqbn66C9S2tR4FaInW32JfYVIXTqgi6HH9rdHiHpcqwHl8LqYhikEh3RAbvwBQ0Dh/u0BKqWhuowXAz+FDWoKFAXLORpXp0ZnBnl6LqUvPGlgSpG4BgdeeN71dAV6ciW3grg9fGW7e1Hs3a21kN95nTLJnhqUr8VOVogzJzxZgN/KhwfKbCoXY8hAqykZrzgJK061TS+ogpUTrpcHHAHNNAuuUgNsA3mFNmbl6zLlKEcff9F6TI1UWMhlXMTdhLy0USNjuSKriJg9sH8r98+9PjT8d40Tn+Np5/47fNzngO5zaoNIMZfZiZe6zmP1YTlNUTzsyYK4oUFp7neTHgVQiDziaNOsJgzAdVus/24PagHKYJ0nPIqSxFylOvwzIjjDTmeZ6aRwa0EWbMCislAEGiNJ0yk76Fj83Mn9v2oO3a6NXzfn6N8/h8fQ3fyxVh+xYZwnnMU/ryPKlUZARoMZXSDFi+zgidsh8bzTdz+rcmCYX7BGxAA0ZpZM0wSmRmwoc2Z375D03RzWbMHDORNQ4MJJI4wZeJMBtl7CPidQwaA5kzQqRgDncTHXGWMS5Yp5waTFZ6VK3JejUzYNmMbBr7tedbSGqZ7Hq9aXT138plVPlBoHUBttR/Kqlbtr4GwipRchvVHaDy0et1nQqm90eRTR8xJMBiiTaz6fYjnXxUCgaCNFtmmbgoU7oNZYNTlyFZlmIlqDej5t0ir9yjEiC6GWDU5JIl7l2tJmn2pq8/ly1aPil7kkRqmseJnh9c19o810WHaftsMhXBcH0WL8sPABh1npcqbH0uEa0CJnSDaK9WXWUTBJD91PpLi3x+lQ7W44PVnGeC9SxYpq8W8JpQiSYvveWR9yKyYg67v8eL+N1Gk+Ad2F/p5U2vsWYTrFAJV9hxp6Lt/FHmqARhVhSlC2JQY8ZlkpOQrz3TDDOKRX5WJjMTEVUbdzncvSYQr5SVC/tZ63jBGLyjvN5p/bmq1SqhsLqsNbBMEbGqPyvF7Ef2jpEILGVyXNjESpmvCIOrHeICyXspx43p4PcwyZykmcy3erxkMmHofgnSfGg4oRE0JtIoq35DrmCXDbHc57wj0NWhWOc2u7qOJnYVlISaEKaozkoVBQ6aaZzVTW798MpiFMH0gtJAUubyZhBplRxr35akt/pUdSVsHUWgeYNX1kBzGmnRibhcWW2shZ53hSEKjjFJmadn5lJRDjjpljPOGXXkzJwVaWWkxdy2HPtj+PZ0+dD+Y/IHn0OhTEzfd88S5l0gIBfLbQXtHShGBqSsvgFJyjkFhb0dc6jmfbdWiAI24aIxM4btY0O4OUEk1biJJTbZHrnlznwMN3qQyOkouTmgkDwpnMDZZh75SbP9Bcl2e+xjo2+5iSlLA0L5+vp6bTWVcvP9ueNM4fiMl/i547REhmYa7CxFbKUPQpjbeP5t4GPfyWk6JxyeGvoa4KA2+LBz+gDpJiG/jn17nB9PIjjsnJh7bl8x9y+YjRoWIAsFPW2yeA10JAa37bEPh0KKilczgRQNOZBx6QFdhujyrbxyyAIf26msg83Vy1Pu6zYdb7Gx3c0cKKYn1NWtltdZlr3TGPVUwMjFfWWiExJmJiOzRqDmqtL2zgLebFQfWy5gu265lT+qF0edVtyes7Ow+07KC96G6vayi0FydzMBWO91x9NNDDXIyGhBi0EOZCn4Vc9+DfZWO/9s5AdIwpQRilnTCiM6Y2CNcvuN5VXDNZuaXIEOb5eBBhMoYWAFI1yXfflAZU/muW3/HX8IxQSFdGPX7/BCP0MAmQgzLia07jihm5fuQEfX2yhLUGpB9fU863FHlOSdwXJV4hbcbbJufFl25nYNZd9VPPdG1FdqpxXLYWmFFVPsviKD5pVood4ECxZgQu0Ls8uJTf/OzBorVQiusZg/q/iB1WYZUd1zmawGJK2tC16PuvBztoiCAeO0ZE2OD0CwYepUC237ewTXeqx9SAqlJ0hHK9eV3Gm3gPZeMrQYE5bWRTnBpUTSb9wXWxlry0+kMch6v6Yyp5Rwi6A4vXwfLAlTwVZvTHtbEnuVIF+k+HqQHeZpPUGJdPMxbVW2SvIxS91AyHPMVfnRFZy9xyLFBnZYTQ6CTJZzKDKzxco6turw+EpI7q3f8RskcXFmtAhklRtcT1VJpbUgp1qLTlKVB4oP7MoEg1YasZkhwUKpqUiEFOd5Aj7mjMjsliaZjWE0D9AU/uuf9nnmnEX56+PQ/+Ottg1ai4qxz7RWOlRVwOYGEOjJFBZBAG7BkZ5WjGfzin32k24CpyApwn3f6fxnKnfTMBKceeKYz89x2sZtuDKqt7lVcAdTQR0/OMYLpI/0YQPm8sAJzWnnTCpnbMNdtm/+/PGhU3O+/pEGHG4JmeQjYEOweLjr8fwGTcvn+PjY8Gs8X2Ns+me4RPOPxyEOWe7aNtnjAKO4cvN40VOPTQx3MLVTeClwPsYETBqZG5SyhIU8BzThEd/8fDx3NyAyy5gXnjAnEIpzeo3JuIxkebDyrnUuCpcTV8orZcS0XGycbqOp2PnKZd9M9soT6c3bLI1IeundKNmnfPnsUia+lbdKJK5rQVdSu1wHluvolqk5IzKAhufqHe44YOXBC7jqDisuaLLTP63Y4DpsK1+pBAkCEW/gnlo8U0ZkjVZIKKqbGgIUl5USpBSy9MBaHHglAjeYfOeDVcZLJWKAyxN03LIuctnZjniv6ujtjECQidGTh3mVcmvuAY2pCJgzK19tr9J4W3mxBJBu1TifoZgaBDlfx0wpZqVkQUuuVlSagUaYKzLgNZZypf9Adxp3qyxtmXk1Za9YXBmgBShzX2V8B8ShmumIVOMfSiAtQhHUpB2QFM3UR0mACJqkowj2ZZuMohtyJkiBjkA4PWGMNSIGrStcqq+O1qJhN0yJiOjcAr750Cgm4OpRjpS0pSwiEqGsKUElfVd6NmSyeqS6Lm+EV/9p8rsIcBtDYmni7V+EDY6kaNgf5hhZ4W6gZKKZojRHsZ4dw83kdDNfErJGQ0ZnhCnJNyUUpJg7XccxpB5ot4AcQMVSZwbznPkf4Umn0aFRRiUJ7vDchgP7iZHlKG+aNaC0lCLz5BO0kKCJ0bJY1bouG2NEwfDDszRJOAatuvkUw3Pg2JCgRnVG+7B9exnMMQ/VeauQ2EZ4Ea1KL8okG7IIHjpP775cZs0lIECku9KZBvcxUINqq5bRbr66vByAQ640udtw29OfIwiKg25GcJCIA/4N2jyloVOQ5alkmJ8YBH0bVnMiU8Lx2uKlMY6x8594xRHDJyZfHp/59fX1ma/nH68/8Y84/p//7z/9P/5//+f4fM6XX12+UcFezC2ngJT+qR/GmK8wN0tuY5ObS5pIg6M6Hnwb2wafcGxPTHv82D8GHr82I6D5/Pj7MOHMf/z1NfJ1fO2nOZjHjon8+u/bj9eMp9v29DMwdcb3+TkfG/cRchgTQjiY5wCZTs65b/mkxuN5boNwTNKOw+Nlx68XPl9zwF98uv/JT4zxx5Hk8U/kB84tIxEhM+nx53/uHE/GHOPjKyd+GewvPj++efo//K+KXdMT38bx4/k9/dh9N31xfBnPPTP59cfrw4fg5x+/fEcAr5Gv4Z/MX2aDTGOmn0LMxKfPX8PNNZRj4C8HPzcjPDV1Mn0mnkMIIP749fN4lkAMwID5tvtJ94DnaRYl2RkR2ZQI03nM83gdgdcjMpXMM2e6GyPzwnpJwDELQaa7PBzbBscjg+6SD9pgokNkESXHYmbpHtbEl5L3QcIsKdhmttV40rLrCMwh0EdxjqHMww4O7H4YBSqWjsNKLCUANlJJY/WYtMNN85ofopKQTGhWcp090bBixBIoQ85K6ap4lcW0LoaDlQIszlCGUa99WGQ409J8wAFmKVdWAtJSUsureOU8TVpr+K3cfhUHYSFFe1IUca+D70QsyKEDqg4dOnLRsK5aXajGBVQCWm+zEtpOdZSVU6kzzfbelRFUzluNiks4kp2lVEzS/1Wm7nl3e15oZhNcV220vp2tQl3LLhCntDFVOvy68iLKa0PgDmcaG3WOAr9rQn2ztcW0KswKzaelDEyYIBOUap4NmnFNd67AZiWpnaEBwlJWKo6+JV0YXr0MCathTSjgJ9CCXhf0kLc6+Rsut2DPdlJKpowtcNkEsaq1QOlW01V65HQVrwgCAQQBREYAqIpeSlFNYSR6BExGeoeyecP6VUUPRTaZDEIYk5lN3ih8xnJazIjuOmeAKp14t0HLfTBpq+RQ6Z9xwS1LYm2dMkruC2MyuBcSHFBLsIg0G45hZuY0ADZmFfVVrbSiGc3TvFbGItURsaznX2DVpABjkEmkQMEFkZ7VFFgAdiUQoTRWEy1UXCqi9DOq783VlP607jKn2dN1VfLpoMMypmyzk5pFgoJCoTQ4BRkxQ3MiEHly4jxdgWO4YXzaEWemO8KkPCLAlDg1bB7zv29fPyMiIyNiiRn0YHSyObdEUu5cg+Gx7EtkpeBqzps5mCIZCbwqYHIlBwT3BwKagZzug8dLkccY8jEGM2ZmC3znizonpsa+nfwYwClotrK22/Pn/B6HDDLnvp0P1+O5cRiJjO2I1+FITulcbMFSF1T8PBAO2+LEtkUkJARheuzb2PChP3Pb/mvk8frjr88f/y0n7NzNzm9mHodv+w99PUzEpDigAY7AlpYb/rnvhqSd+W2TQzy+Qvh6IZLfIZqbuzkFd7oJ5rMaKw3cHx/7HpEK5QFMGIl4VRrgWxkjL+DZzORmxW9q6JULZrkyx5xndEdlnWNi9aU0/moAnYB7cfqtnBbrQ5ah7w6UZXiE1S+zgCJlVDExU31IOiteZqoNNVIZQUWWCkciWKAgl0lcwHCng53zXa/ozJHo3yJXQnl/SHmUOmyNynRq1la67Yqb1bBFrwpVA72W3tKx5kiFQkpESSJgrXR2+/uFHS9WXNfHuo7clYA1GY1rMYgLmNfbpb9/BzWMQW+/SNQ7ZWHXGZ0Upgp0KBhxqfcVTgFjtZF3Zo03rUZVitELmCYoKJpcQCEEQvdQr2WECZK8cRUs7lMNq8gOPhQSJ87TLJPegATMDSMB92Il9qoTdCWHk0K6L37B6sQEW5Sjr4FRbSxVoWE3tRSDIc2hhVR3S9C6xMWgrt1hnrUDmHSULKIbfYyTtBBKFZUq+wax6pddCK1zUA64epW6uhgAzbxbDxC+/PesmT4zIpQRnJGZUbojHYctD05MGhETAc6YMjLVLJiaVEyEYjIiyiVsgAFeXMwzQzEHCpy1TCJbZUMwM+7PXWkZAuTIhInqAJOKmqgy1U6VrCnGMCDNAU/b0tTzon1UMRaWslEKkmpQJQVxGIdjo43hcBsnzU4vX5BBg0xK0ymPqUgaISqj9mwgY6vYI6z2YGwAzdJccE7Qqp3QAJOjZCCGjwllWtPR2mwVhOIIIBCezqA4TDGr4ikJNRC5lEhlUkxgt2mZOc0i87VvUFFZuNGO88S0wyamn2cg40HN8xTPV57QkTiiQENuj2H7ty9mPj70X//LX/4/f/0//RwGdHxlpFEiMJyAPMywK+mbuybTnCr5TvQQzXq2dDfPyC+br9fXK1NxxEwk6ZjhgzFEcN8+nt8TxE6csPTNjZnjidNNmpbJMc8w81MfcIMO04F0GOEj7OUjXvkxye05RgZbnjoVMWOL4/BhgO8a2/kZ+/bQFx+PPP9BR76UH9i28eOQK5lKI5y+fezPtMfH89j9/OPzf9jt8ct+pst/nPZNMcf2PL+99vPchOP07WPKYJs9zIARn+Oh1+eD+Z0zlByIc/sKDewc9GHDw8wi44n4dowH/DxeY0g/cICPj9eXDEIc4NzdoIkxHI/n+bVUITUjlZlnUBHwOV3h4EWAQOG99KUV3aZz8QYbN2TLLcuSeHhTV2cgLJNCrOJHsiZl5Grcg6AacGiZ0apFUCZMishSTJlhfg0xTtHMLaGcqdXf6UaYuXnJMbiAFvcjaoZ2BQsktHZbpzNcbTdFZ1oulYXbCaKWQEFFExX6VoJa4z/BErUHQOcw+fCEu0QbNR5KJOaJIqAzFjm84H6SLXRSRzviSnHNHYpKrSE0BSWlQm47PCmmj3Wdu5LRdzcMjOWdUNMAGoDtwGTh+hcTfIHcy6utEOgtUVPfdmt5duWCK46ycsLtUKsLo57LqgQsCGK1c7RTRvVPSpfYWeVNkRX4oVOmVWquN+rr72KIqj+6llFXgaQI2yxV8L5YdmfOYs4rLw1wpBgoCc1VvV8pWwHMvW06dr1a76oFFKR7QzcCyeCaNlpvqHXjvZkA5Robj+aRsRnI5U6rZwIVL1DSpHTHD8vlrufOjkALm1DD5RnGTO+NYV0wX9HqXYShQNRoO2VHgLywgPr/NJPRmYIC0QyHog2347MF4yzo5Lq6dQBRisod7a4QJ7tPoLZLbZVEtclbNtGCQ61IEKE1f5JIIaZZzRFwt4ZlKn5Z4w2zOmWR4WB1J9G3GZVXOFDtH7QKUj3TZW3q6uorImnwSEEZaKV9Fals7CLX0as0nUaFMJr6ZA3HXWe1m0CBycmwyKlSXciM84wqNOsMN/PH42l8+uPbPzPO8SP/9l///a/bx4tQGmtLEKzWN3NFZFFu4WOMFvgket9aoThGAZlOH9u22XwYaHEqXnDq8McYwLa5/OkQEEaFJQwW2J0erzEObge2c7OkTOkh7phe+huGMoCkDJHD7bQ8TyTnBmybj2GikMrDmEIgLGCQjfrhAPOFpx/8EmYwDfRzBMWkWVTvjgeYETOPnJ+5eSIl0LgNzdzGwQfOAQtjwiMC+7m53GCP4xGeIUUWhuoj0ylAFozFGwZBTVdQhxd0Bb1MijR381FVCvoYrB440Lel69AdMSpyVI1hQryxT1HZymVgl8lUW+Era+XaOkjWyCUuZVutPvb+JAlNAShjteRccypRpfluyVGb24rw1ahjwaUlHwXworoNh49hbl1Ma4IiF1paiat0k7Q6klCxThYN6CJA4+1MLLL3xcrgckkrE6wjCIFmw+TulLuiTDPIVnoqnt7INC0JQQAwWKyAp1wWZUZ3GkaqYGu9gQDrEjujL0CskL2+8sV3qhgEBUG3y1YVPktavtod0fKSHVi9IcO8q8swEjVa3azaOtqL3ctV/qcyTF4Fv/55Lv98Xd99rZVXXtskSoi1ALPaSPXWVEhRxJdUykkpEZV8esRAYaZS050kZcPN66MvLKefa91f+b/F36Ey7K3e3jx1pBJm0hWOloJF1ujY1IW7LEDp8kBZ5ZdkKhFRJZ7lk3VHCu2flvAzfsMy1qbEQg+Jm5yPdU19e1UGxopach3ba+Fptj5QlAqE7E21jsy1TBd9kSpt/XoEGWde1qCBLVUrZ4BREs64UWesaG1VI3BZl7Vd74fU/AsSVbGqL1/Bdd8DC7GoT69WQHPPsFwBSLWBtxxKX2iNiKkaQc2i0xnCvZi6Im2DDbDqWWwhtjtorLHgjdjUzFECCq8otAeFVmRa+E6Jk1d7JjHYAVBVoI0wKXAyEDkxkJZxvox5HpOvR87qj6dxDCv4EQZ//Xz+8Tl1dzqszVKRKIoUrjDbhqsqD1jGjCzM3hscg9nYhj33x+aORCJhkQlkyNwMivOFrHB3uI0Ah4/pxfRL2W6E0nzOlEfmKGBszApKMkZObr4d52s/hZA5t28cD3BTZsRRh1tz5FSANvAcwwaHJok5aILmRImygoA2l7n55rTnx765GQMMWDLPhEM7j/205/z8sNwmF9ulxjmBRh9B90xRZ05OnEpFTjt5wMfphDs5lMoZlhOgnXAgzTQJ2McrFQUeb6Vup6KeoepVIovNUcbW4ChTrPuxNflwtZXWtq0kqXDJjiffyoZA1tze27wtA15HkLd5WkfvklbQxZi/gdLrj77Qy9/lvbeql7kSj1R3Htzn480B9Aeu4/X7T/l26Nd5KWtzWTa1zdP9Fly/2/nB27tVb4oDap0qAspIdJdG820IXCNoymUZAJd3RhJXUgp1v4lW6LSuNLlUQS/rUk+l+W4ab+j6m8e736hbKJezWSXwSmDajViuRmZlZnFEKqvCBTdAsmAJa2DhDHcIdF/Bm6HtpyhIlzZVKjOyJRoyowM2AVAiu29Gl7vpj5cyqZClfOVOauJSTdEty/umu4Rb/HEluJWLXQFmryhXOFMh6PKNrPrswhcMFdRoBa64G9ytH3jXvgEIq8HL0P05K8ArFlvVe2kquVhLVEXHSLNs/CnXEvcW7f9Joji4YVTkUr7s4HPtloqm120BaAZkL291OVfYxlUHf8+y6VZwR6/QlYhXfkml482uQOpgsj+ywPcOPxLpveptLdTOo5gjuJZHUIKrZe+qQJQ7afSkh6R3/swVAK4dWBE41W1odbBM7MlsrXFiNVzGuULsq/CP8ntVXzUQFubTPQiiNKlp64R1KcecDgEzllDA9QQqznXHACVFnpbMzGZrY/XEEftuNPcxxmaxsUcvAOY2hoHVo9f2bp3BAnFIygn3JYPI1oenNS3yeq71jeHmBQmFoPCyt3XnivlEC7moYRuoKBUJKOrE+RnMQcElIdI7IC00gm6UxkOwh4t0H0xjQKhOFiahZJ6BIewkckSc+InzG+LkY845IIo9cc8QNJLuw9Phad8/FC8QUxbI3L7nl3/nY2fun1NQYp4yh5cK9fbA87F9/ZyQ88PIgf0k6QFZxL7Z6casIXwn42VVqzB3w0iBY3+c4Q7oVNyxdg/wxtqGFxRp4qL+G0pKXXV8CmDrdhq/z+Baw2Vcy/7npStweYjs4DstFsmjM+BOaVQ2AsqMHqBVEznqr7lGFC6aSLbibkQWRT5izhEIdgdTRf7IJlqVyYX6fW4EtQKGhXfWcmAlyG9szfb50uUl8Q7xrixFnZKYy9yrysaFtdWtEhkRZHRWh+XtpayxoM3LJsWVYmIlKViOvq3Qv3zxjnlXznJ/DS/CrnVHtlsSDq3ifwfeC1dom3uPHnp7qwXfq4/ifdLNiupp63fb3Vzx0L++1b04ddc1fIJpLdCUC6rWbYaJTuUanrwSobq4VDITPVJnuRkt0ZdOf/IOs1ZPUn2K4eqyvZ/pbbRvrGPB2lp8fnX78zpFSslKUjh0NWnjRgXe1LWIGrTQq93uox1v+271JNoGlXsn2IJfoB7wjXXwBBKm6k9GhBqVAlTa1FmuSm/3eVUlVlx5Bbp3sspKmxsdqa5vA2QdfbJbfPt+q0erT1Rh2W+cfgnIyFhKZlK6LnREaEmBBXzrKlkAqtxrwdtuLaOpqh8b6oFQxQ2/GySuBSot0gogayPeYDBUcfMCxi17L/M+eb21iSpJrKmOfa3G1vDuhIKlUuluZE1kMbKQbqvt3LfNZqsIGVZzMdcp7C2/jRoUV4kVYpa4jUWELdEA3I+rXG3FDgD6vLtTxbbqw1rgIkoDbD1L0QCW0k3JWQMp0FzTY86IMwWO0tSGctYE1EBsOXeRyjPNS48oNwCaWSz8lqjspAT2NEHmPpA1nlpFlGArziRswETRar8H6DHMZ8+qA2wryluZNa8bhn8bZ8pBTjPbko+Zvpd4Sqrmqc10ATX6ivQPWewJPlTUPre21px5wK1IGBItM9JTYxJutnVcaT6Gm2f5PPo2Vv3jagS4YtV3/IrXCX7zQNfJ7KBvnY+Gpt9wz5UR379RIduNrWEZzUIcf6s49rnCZR21dm6fm/X1Jr+wfuuOytdhWtl2pyu6LqlN3+9v+3a7b2lOv93b8vRLO9d9wxqvjU7CKoAxx3Be/rctTJSI6NsT0NuBWUtX9o00l1dH6VWHw7Ly99L0+6tpPdfFX3c1Kga+4KYLPGhr/LZ6t7HtNXrzQpX9oiCH4twGqn/ycrrAQhuvZepcFFruru+w/+d+iKtrth5WtePAmxjWec9VMkhmZks93o+yPXUnHEVjb7/4+5qoAUZ0193y0GsD9Lbt5A/L+bMNMS4i13LkrRNZd5Q56earJwtEOSvx2p0rv3t/rO3ZuTYBKkbldo+nrjCk4kdacyHt3pK1dOiS/DoD1wlYAQK6g9wWJszbT5iVgk6DToZsvRdbcdntErOm8dbjVaqExHQ9jMUEyJJwbw9dQXwd2mSm8y22MrC7yQmAZvISyKxPvOOYBc6x+E6dP7BlfFQfVoICQLEXr3iwDg2rjbjdONvJ2AoYKmJbWMfvp2S9DZfx6p9l1jjYqv0vIdV1ts03Cjlntgp3Alfm2Zh/nPVhDOXJTWAOFDF9ztRx5GVYSxEeTqP5Rh3FvUKzGgsuq1td0SwK1qrDXfUTrJ0n3dTVuupt7Ns2qMzJnkpYiprmpOLMmJn72IzGYXSKiNRZBejS/qo8juixlEixpl+TUD4xYcyAOYPav+kZ4QybmsdD1WvBCabMNmxfYWOXTjJeT9sMUtBnTIKip3vu2xzDac+nvRyI8IgAub/mty3qZBvg7o9nvkyGilsUzmyz7g/3PcGXNnnQU5pMhY7zMeQRguecNm3D3PJ4THJ3msc5lDnGnhORgcyYUVILoZwxr7NxFch61mqqyDPv3nIZU7tmBi+LeZn/2xdmfalVlVQwax8msSQFC9r6zb2v8uYtWlRx4Uq9sUo/4NLz4VuiZe7uDm/FTHZxaeFhJKAL7hEsYZcJuG6z1PWvhOzt6zdfVqbHVDBgkYStmllbNLOwj5rWPehF5Kg1kBApNnnt/vi3atjliNell7YOAKjGE76ldgtvLAn57OCmH8nKrcuhjZ5VsSzJghFvv3QFLSUscNnxt8fUpqsQ1Xr2nWuVu4RxpeidVndo/4ZuEmbWPNqLRkaujI7XW/d9ENX3XxoS9dFam6iBSusDvsxxe322U23zWVa2E9EVR6LZBJc1hcQlFtN5NFBFF64cBKlce7yVFUrBGFrATmkYZMnxtgO0yhhrfy7/Woywdc29CNcJW4mgsqOT9e/uUFsn4Aotq1HJui5IWvdLLA9rcK29an4h4exJdZdjvaNetV4eQTrpbnQ3wZ2l5hS5MPvCCvPaWnXqqwZcAC474F67Ab05hBV73TmkcKOjam089/WgLuiDEJiiGco/VJQLCk32XFonXd65eyFUtQBbSbZJ6c4S316ARi34hQ4thkAf30SyZoD1NtZyuLWIK5pcCFuyBtXEUQ0faueUKyADUNK8Zko2K7kD4EQN4D2XeiyaESplTITm8fN1HFkgTiqj8rMS0gpAZZ7n6MAkI2e1r+sGT4ArBrZh5pvVWItAZ1qK2b0B83zNCNI5OLwYeBJy1vhyd28OkHPgaNm97JVpXk+OPM7zyKD7lHPbwjOHEqEIBSFlWBrSzEWglG3d7cXhQ0sguPq8mT6wP+YYw+3x4EEXfCBzjgGGUdNByQmExjY40n3sOJnK6QmNDNAGMSJ9HI9zBN2YyGSCNWJNCZWcmBSIzIN4WtLnpJTbPmOEE8h5+maRMGTkPI8agyLce2NZ0fLJBYZKV2p756EL2boMFFayWpBOZJxLu7erbd1IgFXp1nWCsM7PZQE7vm3bT6PVkAU4Vm5JrjPMBmi5gnIjlNTKVhb2vSIE3Snc9dd1lK/VWKimCGYPXGyRLaCBS17psxYi8O6zr1vkkr1sMKEuKuio0V53DHBB3vcLWwsKyEjhvo9Sw68MlFnVv2XR7re5TBxX1+NYTvl29Hr7J6+Qq03/285oD9HLVaBbJ1jXB7SzXf4BlzfDv3xOxVCV2V4mHmnrmtUg9Bqsi172i/N8p8zLI3KRCN5jQayimzrgUd8nV6rVXuLKalhCFJ05FV+pynUrHlVfHvqC6xts6CGvV1U0kRe9u7OftS+VSJWkZSvD4f2OeplWrFRqJlB1K68TVNpwNfKBDYbh8klYB7JvLhtVZ49c7h+SdTF1EbmAn9v5BpKpbARhLTZ7zQ2glcBzhcoLLUAJORS39oLo63lfh39dJkh35Lr3ZgKJSLXs8vp9LSW9Rf0rr62uKhUI0MXsjFAhO62hZx0jgasPriRSakBgEVvW2lv1PSyGpUk0o/dR7qiUKwlvundvIag8d4eXhlyQRzlvFYaerE0OS5VSntFoMI6H63wcroC5sI3TsZIfs1BKc47hSadvPrANmJubicNtuveuKDNgaBGY0kfPXCdJEgySuj0Lt3AgbQH2BOvXIgU08d+MoG+ZhlnPfks63UohPGRjCh6vx7J5gNuwxAMdF5q7xFJdD+E8Xi/l5rti7MPg2ikDSsO5OtkzQphj0s+NEcWKsDkjmBoI2aBX0XrE/oj9sW0G0QklhyTykDyOHKUKR8kG5mz1RkJRUpHM+cJwDfNA5JGgSfspHi+3fRdSQCZjZpryzDzE3Gv41kzJtt32qTOHQ4gZkRHBmUd+nWdmFj+7MtYKkJRCZnJ1iNyHrf5q7qumKZpl8Y9X6toh8CoMrxy2ig6Xq8OVMV3uYYWURPYRuJKu8qtGVjXl8r8XMrYceNlkuwzcDVAvW7xsM8oYRf99XUw75bwubX37+qXlSN7S4/uO1n0tt96ut3Sflli+1PYjrbggv+fZZUaKJ5/I26VCQM68/MRvIYV+R5z7O++Xq/WLQ4uklQZUWWzZDJIWK68sC8S3W72+vf4uYinuuVnCaPT0PlzFle6FZDHrVFwWsxsduz5BiZ7g0NdbwmTKlYErNeVd0K8tUZZLXCnxuvtimrQc54oMSWM3CquTSC1TzdKRMjenpipbW8mLAn6t7x0fNU9raZwC1RhSJVtEFfmEGUbLpn2VLc4EclbBi81eXJ3rahBEi820zgLNnBn0UCcwi8kPZWytL2OFA9SdpTX1qICflME5hYzSriIiuVrdKnZYkpNZUW9lXWdCZ0QBs2zXETBTqiZQomEv69C5GSRF5IUSGpbW2EzxJGV0LQ06AuQY1Z4IyGjeTVEqRWlA2SOyJDFBDBFetLwlThsinVRNLGUogmBmDciBcpojEOeFonKpTlLSiICi9p7MIcggX2BV1DBmADV4S0z4KnKYDTNa49tWlGU3HwObuRNOpw0zczNLmowOHy9TMgeymqncLV2bf/s3t29//KfFi0bwg78ojNId2x6/8kB+Pd02wcdmz33zHePb4/l45L6NSX+YAHZ3AwBrgHNBAcmIASQy/H9j62+aJFl2JFFMFTCPyKpze/rNkNxyQYpwRf7/30KKUCjCzaNQ+Divu++pynA3QLkA4BHVw+w+dasyMyLc3czwoVAo2h5MXxYRWYFjQlbU8GWL5utph8v8uIJuEPz5yhoLfBz+lb7MdKCmivkOccVFfSGgvQ++kP+y9WSehLh0CZSJuXdcjvP3ZfDjYaf9fKw8PMIVaye+HXZdjAghjU+zxeX+12WX/Zd/xsUIf0HCK40LZrBjpdnX8Twe1fGPCEgh89w6wu2rzrEnD0aVIEwXt51fCxZw5b7Mw10Lpz1PGr7TPe37tY7j2MyMELG3COWp/OV+fWVeWhEyrEfiGdhVWYnIPL/xgsdrX99XIAOMCO2dERF7K1OK6MmzpesPw0C/ZjRv3Erd+dh2RuMDTQRCCljSLOp8EUpHqTRoS/mmmryTlvqPlmU9WwrBDOaWyxe0KgbNdr5m1pQPTSWwUKxsNLfRrPfX7Wszh0vZyYeUUWEpqnt4ErNJLTmZRB1v8J28QVARcksgiAxzAjTzNv8ZhtalUH2+zBiTGQ/sChWYYdl02rJx9TbaI8RVsxQAodQr7milLlsT2qhHz1TADUFrUrB3GlLO1ZrpWRC8Nbz8hiH5Lg/CjKqh0FYlHrOSPK7vjSoum72lwc7QPeO0jt9AtewZPhHn+9J045AT40n0hAlecXc/uy5sYlCZO56qKl7DGj3co58Tc2KiSnuZMFI2lTihhTg+0qL7b52vfhK65xb6ekeQI0OW4R/JEZVARNHgkVnzfW8o4b2Q9zvVs3QnE4Ond4hqNBJZssYuzJyA+xaq+EmQNYg7ISlt2BKayY8DagBdh6nQmh2mTUnxI2JkbXHS6AqjGdfKAra94HZ6pcedMN+xaXmAqctm+6wiFlddqEQ60jqY/EzklakMR9SGCGxLMvbBHjFUhC8CKj2G+zxkAGEh/xORGtipeGJhydJ+o9Adsl3yAFnHpNPCCkETbQw7qgVGlYU1bN3dS5ignoJNzx9JOoi0lrz3lLnRRXt8mdvXIlijdf3MDg0iic2TuLZX9xJ9+ToM65ARiZWnm/dA2NY1S+ROFVmjOax7r7wb9DAms2L9VMbkE6SiukIFJ5miI0nlhhByhTKN8kQP3UlUaw6WSVwrAe1r8TJflFteUKYhZS6o+F1L169cRnNL96P0FSs2s62M7+uxGZmRxelPB+BPWMm86DI/FUY/YKQtM3es9TgsIjcRCQul5d7LCKyNwkpBKnBIO+RQXD+P8KRR1++HI6FD/uW/zT3yOAI7mMVnjW0LkQ736/ILy+3r0glc6RBsWQSuy92I3PuVhhcQryvPK1kO+C09Vylw99FpLAqHrFQeYcxyu6Q758IsYdnNLgiVjSMa/SlcSC2xMVCZJkwvBzccVfQpAjBc2hwLwAZ6AFRfQQ1rKHH7boWuK/rISbvHuf63lHs/IsJMJVnVmJ543iNcNQlxndQeZPSuHDeubTfjYw48zWroipoT0Tbk9ic35luxRxm1+wPrLXp4Im3nKCbZZ/TSC/JhvG/49e3KxnmsT9LtjVQ209be1/H+mpsnBkIofz+KFe1WeHOvOWlOUt1pAECdmJXd+/wIAdVRWZx3CIKYSCYjy2E01aZMPgRX4fcf7zF4e11WZiYzp16qO0TEpwvRYCRk9UtVE9ZgL7i3/Qd48/GY73cEPsCBNs43E60jlzoZ7wpOr3JvyMnC3nCQCV1RMZZH6srMhIxoZY/ynF2oLPR8/sWb1a0bmq8JOc0ouuGPG+jR3Awm87491O2g7x+SMHNUgJjLSxf+nhQkoPpcAfRshy5n3Zvlz73W5I1GyzQBcz2ZflJzYG1kOaSQyIywGgE55fxxsUbJenZSvaTGUN7LyTYxCZtPWB2nDjwzTwp64/DQOzyXoKAhitp0Axk1tRgoARlkGCI0m0SZmazMOoXS/WvQRu3TKzypxbdIWaYi7DKcl2kLToO7L9M6CtXkwUe3CSlVA4/mIOeEP839GrYtPixFBUv1T6O7AaTPs1G1xTozA3ldXLgioqv4rIk7mYpI+MMc7usyE821bDlpq9IRzuYsaoSfpMGPZXC6SRE7mssGSTsyGGCs3rPdJ5enoJ263CR4O+BV+Y+7GV0KQ2yi8j8ZoQzJfJsxGZEgZR4gM+kyByHElpvoYYdLh1+pnTjkFfn3fO1SeUwPMf06izTHQILrceZxPNbK6gPcO1GVkcnoesDAR97UG27s+lsAkQNpTMVvDvfbMPXq4j3sqLZ8RtdiMzOqe1Sz0YZN1O5pvl+b/Y9S35h8vT+vXtIEiL6PdiOd34xxvt+gveD7l+bYf5iWt6zTBLr4wF0rIal2+behutnPzX43qyGJRdu02TQNJuSNjfa+LpywywB6XyQbYf00VHhb4z+/+oGJ4LB6xtIRAtfcYd//JIETgAm408Q7DS0KDboSfs95nilWZM/CmAin14X3hZaZShZPNqn3J3Qkdbuv+yMhEVF+dNb19noqIB8qBcXsJra6lTJl4SxbWNIYkWHlZmzCPAHRlka9eTImokT/VhniCsR1X13fm0YJp08MhFsEq5HklGzCSPyxzeZqR4RjeBZoYHkeEdt4mmQR9rEqjaaDIG7PiznFleF/nMJOhm//igktpI++m3emfv8Kb4LvhCY3n64/sYNic5ZWaZ9fjoP6cJ/3Kn/cHiAgP0Zh6lYTI1VKH33SWKvUITtI1gwmUGJLP/C+DWT6HJYJBYmSyuqdXOJsRKarC92fD7AeYR3wdCmtlXP61XcEMSYsUpmIcG0Py3n6pdJS824BJsLUXYj9fmjNPUGZ3FsM1kBOE+Frd0dsPbRr5bW1pbAZfKnMKzOZNYskZx932DwPHOAMRpQi3myRgdJkteWawicpA559WEGC7iKVRd5zlNY+KsBUAFEoxV6CScsvKROeMIdBXAxswbQdUVqZyxCqQbzgw/yoNYvYQoIhZWpbHJlQlpLIcgs4g0jTfq1lFYzAXA4cBrgx/NAlKmqMUgBgLJLo8W90GZ+b2LqwIihjEsngFesLxq8zyWMv/tyZjK8C/NzP4ogkCNTeU56bpzF978MImPtxPI6jngh3EsrYNeBRwxzRO+DUfWD62HTOMOExZ7M1lSBHk7j55LdxqXQZ5PSst519W1re6cEQHss51Q3drsqjGksnsL/1meo37M5U3rZFYxFvO9Z5yhzBebO+0K57jifFx+fXj8f9ooGpuYYi/I0DptUUwo8vEKAHbUQXVJ4aYE2TGqPeZrefkgB18iCWBeSMQtBdWoW6IDeWC2VAhKlxYoLbXtg1SR0HXcP4wDv96W995HxlgypWue0/2lXoj9/8+Lrv/949+cHD+R9eMxusCDVFh83MsL6d0QGt2lbxdT/vDZ3mNQ/83oVtLu9tMPeHfrgqZydATH7ypZsveyt08r2JdD+09yPqP7vefTdPm7lXTjjJlCRFppAlGaOWfKuyZP3KEH/J2dzznGUfaWNnwSMGyyHFzi3dK1sbKjVA06cPfB99vld6nsIdrnFy9NuW/7mKvA/UpLJIambl4mOT9FN8H7he+9lbHYDN579tUB95zRYxFXb7BuXrueMd0QvvV6L4ykOaui/045eKNAcVGNKy3XeknCXrFQihWoAqS6j/KgJMqdSeY2xVUZj7qyeqgqAimZH3Sb1z7c7CR5ulh2IRjRJFRGArr8sjEIa0jFRqK0QDLXcBReoN+V6iCduzoaEIVcQE9AhFFJcBgpm3dc5913KKr19vlM2xNQFy0EyFQTtQFC5zrJpjXnSBGpUMVu25npB8ZKDa/JsO9+X0CgdKHAUduSeb4EWDr+OUkIE4LV/fxw8abPmiLS3gsIW1Vmpl0HYkLpWqXnWomXbJyR86uYxcmbkOmJXoR4R9a60Ej42w4zz8awfsfFqggv7qvpR3H1e1JloGz4ObsVAliOVGxY5LdDD2+cK+HM3OZ2cvH/mqjTso0Mw6xASqTWEOaB3aipJmo2qiRk1ePagZxri+D2k55LvY0inn7UxrPW5v93GEP2yfVBxU4m41uC+G+JCZ+eNLZdbvd/0fcsm+sipT3iaPXVp+f/ZYOt3fmtSlPUNdbXuRCkBrYoM5q69fTNpAProxzCYXdYQyb38nSm8H+yeO1/ka2sFIN1omaZGsQQCd54876nRt3mJu5X0n3RfHybs6b5JaWXjW+76K8cvNnUbvgnatbe7uz7jzvdpWKHpYqZWje1UBc6MgZpqlIwQvjYg2IQYfS65W17udeqUBLHPw9sKYFWILehWCWQ4nTS1RXDa6hu3cbNceaMtqjOKdBgMNIBIyLHebPqaefNXaInchohe5H0QHSA2pOEFNs1NtQTN3pXUjsnEajIodoPp4A71FgOudh5/YbqH1PArR6ibZ0g3Jnt1YxoDG6jX6HzK+JFn5XIKebjJzGl0TRSYQYibHk73z81oFcZYGKSAapUqNpxjvY92B7EwqovjRo/zpBL10sJ0yWCqa4+ie5jF3W4E8bbUibDOdsyAtPH5XjzzMmzdah6EUE+UkcmPABGNL97bAESwqrMhk0qIkRyMZVilw9QAxVFxnU+L1vVMEMxHGa+euTeHf/7TXP//X7zZDeRVumDLL61snvl2v3/712oZ88Hrly/Lh/3adXPu68ksRbdR7NIXoHoQyl5nOOr77CrkPcMI7yTCDzMzo7kZDckVmRuyawZG2zDLStJOJrdgr4Faw7yJz75WhBS2D79F5eJpdqRf3pczzoGyBJtFzH57Hwwhjru+9fuVer79hkcGT2NqvvC5mqliIAHYN9LzOwxYSZgvL7PDF5XhkrsUkEQgq93VtKq7XtZ6sedR5PTOUZoRzHTAZ9cO//VHSvwJt733BkUat9SBCD1957pNAdbl5JHeuEEhzYAMR2CW3FQyR/nieiUQGM99H6T5Nn/6kHVnvvHKwxBwL0LyPtACUSGAORQEoHDNKokqqZyVD8UxUKI/utx8zr47V+Zafh2AG95sLolt0oP20MSXRfNy1AYClqsFMtO6unINkpUv7cdtsf1i0L5sIrEhOTaxoRFeooaECpaZRWIvO9zsW7OykmTvHAdLsWAFfrYons2VHHLt9WdmeQqKIIh8ODl+IJr3THB9HnB9uUndbKCYQUNuI26Jj3I2WkyPEQdXgKniN0Lutoz6i8Xt/aHx/X10Op1JARMZWbpVgfS3wJBqdGY2Hzw9COEZUFxpPnLMPKdXsHGVSpNsCuTj9OipRqRp4q8iIFsSv6n7E5s7qC4RSidxTttb9qNTzODk9PNkxPuql5qK6yFgPcFCMdscqYzVQwh3txJvX8+l20Nedd3SKOTqcEKGjUoNKonvwV6VIBcJBmkVtXQgwX051Z0k786qG1smskMaWILhJhgT9RoHQ5Ht04XmgnwHEHPS1PE35EazVT2khAmlLONZaJnN4ID64HEpAW+wABmArvRE03hqcSqGEq6Co+aSQAGNW27QNTKrYpiyqbrGIAKHoj9PaJyFbEaWlw+yuabkbPe+My1k974bl5kJW10pPTirfKooygzIqcEfIusgeu/M0N0sR3NsyFYkoYsm26yzPwS3ndlpJ/l2wU5lKi8gQuLvPB7R/t/Xvf590AVS+jsjcV40x/d7ElfH7y7/8AmIf16XTE3EFEsbH/rLIjIgICZkGycxvRE3ZaVUmlpGsjqWBeGrCi5nLK+6BUxGB/dt5uPmF5cyaoLiEF2OvLSkYrpPM3K+fDl+BRxiCSRq2/djrkuVra6fi+yCUGSEdLmccPzzhy9wXtEOvF22ncB4euLZlAsfj+pGPy/OBbVBEKg9c4r7cHjr8qCHMz/M6nsJiC2a+8jqfOM995SN+XEauX55Jz23XXteXpy+mHvlyq571S5R9+3Ij3a+H8vHY/3hx7RXwZz73lZBFriskAw5bFgnbRl4KhF2CzPz5vJJpaXUC4SuWm8mm83vcmr37WcpzldJ32+PMcj1zMtshojCw6VOlQOm/TWwPFGG92fAw857l9WfuSdDecEkJJLNJ+2XCJVYwOlgJOiWvNKQ6y1hGtbHfTy3yqVSN3/+IAe7rKLNoEKfbF9OXdKcr6PxE+rj0d1Y8VqcYley39IJnWIq6taaCt8OsMYSdTrdBxBSLKqqOrF5CqKplHSblGzEvJunb1nfBYDDVupdlJNPxxuvmittZ6o8Enx2/6I5icOOVN1yCdwY8PmSeCjnF78Q0ljafSP1ftd9VMNLDNcRqTkWOVhnNnI6bsNvtMpxdWY/7TbMtoO89aym7qeh28ZONqSi/1ebd1W20r9VN0K4g8QNnUKfIuAX2cQMcHaLcf+lGEOJdjbvd2MeGLA8/Hpy8v9m/V5UyVee0MNcpdfdTQ03/4+YmhmI1ke8f0Pks6MeJ7A+e5Lzm4LLVq/+8qgo/M2nQ8mU1TAQA84OMTUBZk0LEkgqbzdl8ZzX3qmM9ZPSQys/wpRqKVZ2qvevJ+1UJoqUnqnc8ex80qNACPfqsZ2DsQoXBRqrNUDUp1Wxw9fitRDMPqvJXBrWsJqkWHDeaWU7g1H3AN8bRSCpI197cl0nVgh3wQacF7W28pqecrPRekgkBLQRin35duX1HDnXbbC2DeDwON0oRU1LgHPGO5qwfiGoIrXgHXnUImaqOtsan0QXTGs+wS168cAv3dDpoRR5XGKTICLmHLZjtLvFg0eRLNCWU8bCooD58LSjMjvTj4f4ULYkM31uq+dowkOJzcW362hDdEMD1+is3sAVfeeBYznXYEXg8XuswA8yYyh2iUnE3I5ZEdQHpXoJdDLp7WkXjaYo6Z2KmKeCmlL7yfLmzpFR2FncXgJs7HMR27gjuhXDQfC2nMxG+g4bgBN8AakplH6UBZPXhT7q1CJOljkEoHySBb+HUPiAk/+s0lFaQfZMBAQzn8sNjvwuJb7AXsGr2vksBGKvb19DJWKqL2dWgMLTLD+My5SXdVhc9E/39a5/GYu7sP7npT3et94+oLrl29tk2n2RmNMHszTXBuKBS6xdKwZ5jlFyUmM05nGuSxKW4/xU2bXt5g/qD6N0PcXyh3ozlNdfPeUo3gl4OtRYDNbKZkMwzx3NQtLTWxqibLAGH8cCkMic+K0k1olLKMfO8I4Z+XG1G66re2HBnmySImhHibR+rs5qEdRQ4Lq+HUuI/f91r9bbYFrXZu+xajq/MJVunCfXt3gY3PP8Ow6CPU/T5w9tdVyTRI3drCSgRBQ5+1kZ47w1V1YTvM3hvnQ8yMgYHv9Gj2w/p9lu8H3FFScrsbf/e0Tdgf3/GR9kW996trfEZhqjvM01kYtX9Fu3DoLRB5jF4Ollr93HPmBJPHbkMeJ/S5ERTw5+aeOI2XpMPA+993vvKpB6FODJ5tGZjETRbTDCqXa7VvcwAr1ELnCpL32lvkWo4ElpQ6N62XStoKSnSaI619lLQnTSwxcbqNQJIXx5l02fZ0P6tH0YgY4+6CpHJCmObx56IfSH3JYsdEbgkQuvLM+KlKw09c6stXNvliTd0x1LVW1rtjDbjN2jdATqk225vZgJJhliSDc3YgpW5GHCIRM1vTudauA5I0AYRuUwpgsyr5iv5wgZqVBHX43GsFaEIR27kBrTDA7t5lzsjjrIEFYnuSBnzeTwfi488lsuXmdP7+pHOAv3cDYJWpsRd3eFOwrAI0MIAXwdbIsh8YbkyXrtFbugvX48fwS93wFeBTMgy8DTSH1kQamTG7gC9JbqSGc3Cio90Dp1lNMo2mW1nPn0Wq3GnpyNImWKWhjaqsNVNTKhv6b8qlUmrqZuRQVPmvEb1EqjrK1IqW1J8/hjYsuHZydPe8Oz8oKxMGlsDk/7/v+z7/nrboDnVwp003w7izh05NsRabH0e1Z3D9//1M+xW0vkUmrnd6F7ncy1q0xXS97VU/lOlxjKgdWoAenZIwNvl/Bkc6KNYfX/3z0ex+oCgi3T9rzYLmOiBQMl/iS25PC7+tn7q0Gf47lmKCZIa9CnLWXq4bzxBTSiedWR9h+ppu1NKBZXIyLlX6N1EXYsFtn5j2k0hnrjuLrcbOApH4817x9eJvONCzbO2wX/RqVrlRZ2uFQesEsYK+dkQtMAecGr9QxueihlpVj6lZrzX5u9srDd0ow1qSgT+CHfvLVq9cvVEm4KtwvWh2TU0aTSR35vV2kSM5vf7Qda2y4nEAGXYqFwqvVel49267BI9JQOijaygzelClvZB7ZgkM9Oz+HO1L2/XVdMW69hMg22naveSCkBSkR1kRowrpE2feNuTmNCDleWGynkURUgqxDoth78+h7uefMGxoFcXrHGUSerh3ULm6MrWnUI3zg+JCVjawi0MmoJkN2rQt2w9d6V3wjsOZUcgDdr00Qsrp5kIoSSJt72O3YondPJ4uC9bf339a/zr1/F09B4qHXob+iikQpnNjZMfF7DQp+L9B6Yn1YpklZU5X3H0QAnArR46wERlyQ1YuhFu4Umm0SS3RCwyJIGMsLBQpq7F2KR//bj8OGyJC/7A80EHKfeqD4qydRxf+9g0Z5S+l/lxtajRVz5yPUy+uDbYYg2RsuMieCB47OMRUAVFmWYKpSwWBBiydHfKJJq5rvMInSHEazvJJ/3IXHk8rp9/i5IyPDNI5iNhYVLCeaaZubbTbGEdD7sCzriCVGb68Y6Mxo/lUGCEwaQrK3gPPa9wEgM8gybZNHB2nEoa+N8cyc51ifaX7/36qZqn+8dzSRgM7kYw0bWiSZCKuzE2VW8GXQ/16c1vOQyqNxTd93EnHPOed4o6n/zehu8g+6YBj+x9HfWKfwpjamDeaigQ2gO0VdHgqfW0JoMMTIRa6OtcWtPqSEGWEexFatL4ONnboH0Y7D++JifVqkSsvfi45/KgsZsDMwlFO4im2fdjE6Zuk52Al8bLJHkZCHPdrJvKOdRhVifWE1uUnayhxBgI+l0qqL2XNFCdmzZgHuVhILeLk680nbPr0/VkiRxRc2GidEw0UHH9x9PjBCUYf8KyrbPWnBjlvWkrjihF/UyAw7k2WbLHvQ3ZVSFmRpYcVs0DizJyCdYUvOGI8d5gsx7Wz+0G8c1YrKzmbbjfPrXDpB4L1YAua5gkgS4tzWFWdUyhdG53RUaJQJpTiGs3c6TmwomoCU+EWaYQ2Ff+yoo1yZQRallKB0zF9qrCKT8P2qyMqjOV7IadoW80u6TJGxWBZR9hS+sSn0BiZfZYH2ZUJmwzuY1Vj7IWDPboZZ6QVQJzb78oiVeWGkCNSC8LaSUOnrCOR7q+dAMmUJrkdQGVoxGk1SS/2mK1PZKMyJ0Gr1sqzr92CgZZqxRaE6mANMRmRCzXXtwIYOf1+ksbeZ3rtNNTr39Pt9ff9v/67//2//yP3yGhReeBJkyOnpiUiNMBRO7KzuDexPRWRasHU8EC8X1marnssdbhvkiQ7rBDBBBr5859qa5cHc/HuTwr2jWa7a3Yx44EUmmKFmEsBPwwuD2+jkjf0mZu5fJwvdE6QyyDru2i6Vyg4UwekTA6HEcsZ491ZQl60+jbkDSd15W5r3haxsu3G5SLEduAxz62HfGM3zRbad6d44jIbyWvC0iYHcEfaZc/no/rIJ1SQpsuMXkggJBb+nr+/Lr+BgeFUUKJFca9IzLhBbXQ10r3tY7DHSLD/a7YohM4gsyQQslWz0Ppg5ZRuUEtQjAVOmg0pgxuJve1UuaEu6wHb7ESBICyNCfhNv6r4k83+pLPUHrB3M3czd2UtDRfhdmYta1NDq74Z/pHdo20EKdyDiLZI3Dp6qYBoiSH+oba7pf6kwBkiYb+US4F8ceXqtCQhOjG7OyVBnccj6POpHs1nMy0Pllfo3zS/EES2SpSKPbru/mnI4U2Irrn7mCS/DZvHw643c7geurwq4aN3e68zl+Z+DvZnpX/I5yRbt0VZSo64OYkJ4VqSRJLu6c+hJj0hYOkdpeuJMvEPWT6Jik4Wo9fkCEhzxIdI4qhb0hIUWpT5cE3mOIbAwT6KWVylMI6V1F8MMMBzLJkVgwkSAEgwSBARWU47EwhYxPKYNSDb0kp2qS3YqZlREarYHWSMTFCAQbipIFlyNFpa0v7DpCSGK23CmhUuUxjFHUXaZlkdBUUqLbkLu7x7TvuuLacTNciMrGqwz5ydcBydwUIaE6GnIAU36C7p3cgk1a1fycS74JL9e5VH09HYprw7R0Jd0bYJWO+r5LFsiuHCimzRhwDtLXd5AEqraJeW9uWW0+pq9VAEbVLhq3ytd6tsRlIIL0Cxt5OVeGtrqcSdfZ3CNGgWK2uKWvX+2GSr0Llzej3SEMSSqu1ZEHgGMQsBCVU8we0I1loLbLZ/XfZKamMvBKKiMyIK4LX32GM14//z//s/8vf/8eQkJHqdt63bbZOjCKquNvXWLqCht5wLblU0D3iSkHu4MPsUZMTI4HMtWsQU+bO62IyhaAfiwJNeJi7iUp/YtdoWSS181zJeByxXnLT/v76ukLPx/NIk2nnK87IRSVzK/I6KaxM+3LksUS3fYF2/fv5/ZDSjh9r4ZkPp2xtM+GIbUyQiIzXtb/z969TzHiu6/frITem0baUbk8+qCOfl9vBJXcsmngcecKPtMoAzdbJn1c+1vE4lkmpHRRklGVyka7NTVRPPApzqU7ceujLahytnqShOAPF4F3uCJnXbqXSpDTzRQMqz5GSniPznRmFaCPukmodp4ySNLA3vD0zzDD28h6i0KidUbA5JhRoKKX3nnFXpMbpSzLf7SGmBk1mRGZwFJL4+T+cZKYGeo5PHCdN0mIwozcu1//brsRgkqWZzU+nXnT/5nwOlC0eG491j1giCT/4eL6WlR3nDcZ14BHWb6dOYOrDpab0kjNQXvnBMLtdrt6NSp2F6p3eaw1UWJZvnM3U6rqg1mlR2f8ifJeNGZmD+wXlfm+KaRvNhiLcpxm2UQ405NG+ujHP25frRhxVnQYlmRfAlBarfFqBioBmqyGhhDNDllXrrEekcAJK5j2Htxeia5nqtKqgt2J94Q3/0wBTVQvueYdldNWhWW/uWUYOnFnPKQXaqoZ8NL5qltbJdkMBszXR3+rvD8Kij0BA2Q6yqjKln1olHDV1sPkQUxHVhDtW7UKdQ6rmA6ejSwAVjtarNNgIaWaLzbO+z8Mg+X20BbqTDx3RHa/VLjCankkWyVbCrP297ftB3v/u8Kr2sWa0lxFKpNM8qHK5UTRESe+Z4oh5HClS0LVhq0sFGvWY3jklgpLWsRMtaaWGMZjKnBMAqiEFKkbFXSCaPr9iWCqzBulktRhyRPbSNbbhNjoVtZjou7elpiKljMvzijAqxLSwlCkJpXboh12A3PT41sqZYUIJsY7H+mv/7//vP/4P8jvm5PyhDz4IiIzdumVCK46OvlhXNVKZsa/ceYVUmh/Ii2TsFPISnY1zMOw4XO5MOAFnruUHzbr2z4j6oOoDiDJOLY2f8L0ej6aaCWKFUJIitCMkmWE9ngc3PP1wSyVi+4Jgdjx+fn0/8ukSVwFrO0I649Dv1/f52oi/f4fA/f18/Q7P3GRGMfZiD4pnJvNtDjc3S2krbBuvEI6H8bC03P6Vfn4FoCIcQIoHzALSuc11/fDzgXDAaOvwYwGpuC43o9K8KDLVSKeZIFhHPEc1AiDNfawMuz+sf8imI2vMRx9KJ32tFN1Jmi0CNxSkGjNapu8u1na2V07jdga07gIkgUhCtzB1Z+Ytu/POF6zgH7sLdvxIBz7y1dvNflZN3/4HExV8+hvcgfj9/bZTmr/pTixHNIzeSTBRbR5uth7Ldc+Kv21iNkIlSTHVKhQeB9D20IJUZNiqgPJmQtOmkogxYfdfW+RuEeM2bhZQ579VBSpvNBlO0YWAVnxSTfyL2iRq/EPzKZ0aDeeTY2vLmrWNfD/oST7HR0hW3IBJgksjlTLj4oJ5o8tJs5Xq3Ih3GMJxcLUVqkjhszk6zdWEFrPoari8u0oKFbKUul+PJD3UNYKqOnb6gt5sAmVCDY5rN+qkoEhfj6dD27Kn8tToIN0PgZ16zk5kUd97Q9+QhIEwXgKkuHuZt1chIARDoa68E2AzJqbIam47ZyvczW490YRkIwrlxkdWwNyXOWjL76utnKiQdQzF252+ZJmkAlIyhjyhjAVmtGx7Z19o5bL2PDQKRkXXpOjYtTgUYGldtKWJiJ1phOwGcoobmFvIgqcCoCMS1/UwS10sW5qJyMYpshueS/GCSQtVQ1J0UK9KFpFW4rY00WFW795NVd2kzoyQIjYfMNLplOHcEeaQHKKaNdgtyQdTOx+iB5KeRMorUW2nmAFTKgRn2LpgbtLG9YCE85fj763LtAp4d4Bhjx/H//bn/+n/9l/+kYeTTsGtBNvbnhesYMBy1P1WUK7SfW3jWdJ3sIb8T+xLsS/oovCCW5WhdgcGgNNOHMexzZmAn3h4Ho9Fd1ZFPUEk8jsPnXtr8yrTqsiNF2Ph8fXwxxEOWVxHioARGbn3TsQ2uJuvnYpcboFrH/sljxTXz7/+5Su/4icj3WG2XBd3Yu9/Pn/9/j5/J/g6xZ3x6/j9Nz1T6QikEPkdpRzvWItH8th2mj3X9p3xUhpeGdAPt1zYiPUTOP+6lJdFgMAO/0oYidyn8TpojzBb4kpd1wMHbO84t9wOw3qeZYXenuUd2hrNlh0yQuvrceznWgfWkbFgzueBRCLdHA7QXA4raj4leEY8n4p0wtLXgaj6HN0+mA6pt/u7Qbg0BdGHFSymvxmo3YlboUYSh7EnkJWW1rCm5R8jgTGVzEpMVPUNSgrUQGq1k6kpUlGYeKkCTzJ5e4jOO4snqtuP3O5EQMIK/jKrLnYeLHSUDlNyuT+ehyvr2Gaa9pZJkUakoOj+xoqsmgFk79biAfynIPuRsb+jCQ3oNDGBIGHxo7Co+xdpLlONXLuJGB8bo7/I+f+PTyOY5e/av2G4k70hgDRlzZez8XEfX3VP/YArj4HAmmHNtOy0qEfv1aYxpFc/gS1KMwqPtLRiq5EF78iaOSIr0tanKujsOyVbc7svieV/K16wQEE+7LqfuoQ8UVw/qXqvO3kmDawh1dnl7V6wfm5Dt+o8+APOeHvgO1OsASiyVuZkUYJAIDQJfXvy3h2VP6D9cSWSt3jmDXp3ZbB3cr+c3e/XaIFpIIxyouAUpqzQXaUBuSO8fslGBC9ZykjeWoUfiMcb+nhvhTCO7kVHfSDdN5Q96KDMhsZ2VTiRVOt81QL0CWlZFSKa4JkTHhfOVEOUoiljirwuy+qQKbZCFwNIqgYyirgdWXMlYTmbqgoFZlb82BPMfuzmCC9ldCVrbBQlFmGTRM0iLuqK0bl88fB0qy1ufnLZCprHoh3Lk1jHw9PJ9XgcuZiLOxNEAIvd+1wpHWEakoUZbRkgLmerdxfWUZDz7Y9rBYpSY1D1bQiUeQIWKSF3sQZSisjQLvTMBL9OXzWMwwMu0nkdS8oL6zwzdPmr2I4CFa+n2VrPH8+fK/xMvE7ua2c6KYdIJ9YDQFpmUkz475W0/e+P13Fk/Piffv7AOuxI9EwIAsUPu/z1vV8ReJInz8S2+M7g+ldsrEPa1/Mqc2/LlpEGN1umdfzAb8TfYeYbK8L2M/HzvNx1wb8gaUMC/dqPb+5Auvkjs9luh1c/bW3+DEg8+Dzy0HY4IYf5wrG0/FiLaYy1KD7KAWM9H4c/jnXg8UhbkPPxKPaQccklWy6HrOYYlIU09xyWlnkWLonbEIzHuDG9sXzjHd65cQe5dzKFopWwxiaWCDEtM5yVHmXaTMFs0F1iiEowoMgmV3SnqNoiKrNHRLSs9Lsw1zmnhomtEg2kJv/VfLfSx7ZUE1uksieyS0oXbS0jyNADk9EWvYMSLBMZuAdHsNGp7LHCb6s8XJrBI6aFT5ow5X7IrRmAhbfVGyjqrjg2kF21wV4Rze/WCnCeRuepdwQ1veKd3DW4qs7O27W+2b3zDWK4NvclZU8oKd3oepVJ3TnWgC3Q49OT5ixIoOwGafLy0iUCqJLIs2mLG99LlLbDTUdr4YrbPQjMLOW9spsVZGbbcgLTEd/rVChGk17tfyTGNVxenuOjNuMgsybtWeMYxdoZNcuJI4sX24grwLzz9rrzxAcJvHPnwhbbFfPzZ/dC1ra9EZHZGvcG7j6mP/zl4Nu9dSVRii7qg6pRV03PrKHKMIBZGHm58c+3lJSMnM0wLbCzOWe73kEJ31fanBT1qCjjXalo2KIZnJLiZu2jMlsKavVJISKatFZWgjPN40bncDfS4R19DYQuSaPx2OJlYyJg03TZj/3GEOuvFdl1cFysGNSogApoZUY3iz7lPQpeiiwcouZV5QWYZca2W4mtP/8zRqc5akB7y2S9/W4rUtodqZGACr5YT388zRw1I694WtusCj/ULpZ6Pxu3rG180EVLo1n21GntCvh2GsGqGMls4Xg8fz7p63v7efE6Q1lDScIMRj8EbQTMzZi8TLL8hdfxCP3416/HyxyOrv9QCkJ5ReDXf+BXxsnr/IXXD/8d529tsy9u+tJ1Xo+o0cRmfBh8xVo8PA7/ub/3dcWDzyAysB/Cl+3ToFw/MhUrIwHbgXPFSRlheVEZ5/fRB6y4YFImI2XuZncaAGuE4i7Dm9Hp5uZKua8FL00er9Zcc3fZ9F1CxfEE+dnN3/a/q2QYu9eShaVqYznCChUGsfCZKXtOvjU2fXw1cPeZ1MGzrB6niOgW1UoOkUJVzbLgn0lecB8YfJyLZjYNJnnv2D/y3Dt/tDZK7Lf7sMToAz5S3TURoHuPKykigB5Lcb+yK5UdONxnnnPLnkJaTP/rGNJ+WHeMA3yEL582E9DKPvT3XffZLKCAczN4P+0BNNFY8Riw/pzbA7cHH5szC1VC5QCAztVvKmuJJFSjR7OJeuf0/cCF9CJAZ+0ZVAxf9Rrqw000rokYtYk2PZq/k2qpF3ZsWDGUSZBVkaRVV+eV464mILxfPBN3qMnTPm4caEXI2g0Z4hS09R7yjHvr8a561EeYaNONPJGqqq65mPd3s4vv5LTY5H/2sLXhWWENdDtS6m6ASuVIRnWaW02nxZpORhX4c2ojmi2ABg5ytTVeZ4CUVRjjaVKJ1ZVepVn5mAS6w63NRz/sLPy4W4AzvZrAICDqTimQcjfXjUWYt1AyHXTurD6wY4OUW5gx4WlovGi2ZrHgKijp1TSJ3kFlxEqB2YPo2SFo3TymfnM74zKFlfqxhTXSbMt9uTsJ+nI3Ll/OMWl2HOtyg6dTlO4hoAYoQKy0agrPcMvw3luOLqfv33+FzPfJ89zI6zqNhPz1z3/7jwTNzUn/aO+iMVWsmkbWKpir/r+O4G16pztSzp2RS1hrHYvgccDoSpkdhK1LlK7Y10kDXrWESjmpmp0IAPRl2BFKpERP/mB5X51BgB6x/vprWerUjsgqxzvNuEqZzA3UZQxFUQszgODz51rO4+ux4ER9BrfFloIZcWZWCSmDrw1fh+nKdYV+/8eSETuiGhESvgQ30AWHLxd4HA+cwnXyGVjnyzfhfqRono86VVtJMyTj9O0GgMtsMa/NgjJt5Wp7lTtnDq0mIkNm1uDl6pLg5uZ5xb6gV+79unRt+BnEZUae1xa2IURs21fsEqfu1t6M2FemaEhlZM2C7nGUd0xmTSOuW5ey4ud36D5fqtypO6DaP3QUya5HzZzZyRpqW/Ux18SAJpPoAo0rYT0TtlJJT6s4pLrQcZcKmzj9Vp2acWa3w+vUvbuhrKlKktKUCbOJFLqomm+n3V77ndsWmOUziqG+az0asx3ItL3jrtXPc7oDk4Ie216i/4X1TnLx5hajSVf2mef01siPCQqdzXbG8fZSY5j6e3e0rZrdWM3j0Y30IpFSKmzwgtJzL37pbdsx4UUjgO+KdUUJRUzurwwaQ6QssvqhB+ku/KeNXgMEnGCxFlOYvYRuGiXHtareYfL69tySgXjTsiri5pSlRXvDBHWmOj0CVDSP2ZWozND40XxU5MPx6Y06ZFZ1tcCSdoUk2ArVugW5eee3ZbD739WjX840Z3tolJ8/2g8NfDfA1v3TfP7VwDtv76MhxevYmksr6EZBLx6DMO6uemDqzfjZY1T9k90ZlkErD0mmSnezslfMpUiZoNGGxH4n2yi1dYpAJmrycHXxV4hP7l19RZwtQiSwnhmWWTK3qdoshWvcsWUBZPf+6rRhnnpFw0hlSTms5U22cluczAdGujzd5eCKXnWaQCcNyJ2UeVFTa5FbY7NnHghS5rmXMy5bZxASl9MP+6l/fD2eL5/RzLCseYLsPr9Ktx7LKLmbWu6jUmCvAlKvc9bgaqdgC0HFc2Uc1JavA2m8kKn43teGI8JlACIvwfNyReReAV/+ysfFi+AVhDt3muuVCgX9eOD6+p/+y2WR+nVdqWxzT4O7pcPTjhK2UHiG68pzKfD114/jWPjxfKRtaucGmLFTOpfO3CnbEYRoWssfP/3IrzzzjJ0Lv644ZWcIcEpBYbuQImF/MXX84/xfsc6/nQn+/hW0l9MyAD9+bKQMV6RJ5NKlvZenPTzTsbGrL9zW0/MS15lutPWlx9rDMatcLaXY7YCJbRt7Mzb0iivODb+w96a20f26QrjMAoGIjE/GakIKlfC4YSM8MwIKRkbPlmt8GJOsKpEIwLLdlERGmXClkiFIJrSZAYoA1LlBe7+id7nf7L/b+3y4h3ElaH/e7TECDP5WajJDzZeflAJz2vCugk6jaN5iAmSztG+sTFCUzs7QliSJ6wh2Ytjt4nVJBiY5mrgCkjSnR1P0KuEB1Bo5gy+0TexUlZ8XLHbyKmBNFlDu9a473rnnR3JW8KUGsCtLSbGb5zOZWQNvojV5p2yHMqoVP4yPZd3Px8V1sv1HiZ1zIZMc8Y5vJpDQpLVEtX3M1WtaiO5cHLgNY18UUFb6diRzCY1Nv7EP3UOV7mrGcAJa4muwa3z+InVHO2qJmvjYQR/wSkcAnwm0es0qF7897L3pOKa+8cXZzfZ+r3cG/MctE6jWvLaLvAABAABJREFUuhuSuoOnfgKfK4I3Gq9ZkRsDYNd+x/8WdmzoZ2Kc2RH9VvVQM4sKe5dhpUTP7JlHqIZX0EEGp5wzifwdAmOAmE5rK0DuPd8wBu+61ScgVJHR7EINGET1SMeRZXzvqM/jREzMNcFZnzjMZ2GwxFa+qCFDtZM1s7Wq2bE0/DKRGDD/HdZLVYwgSYeOrb4rmqMsHGUML95sbDL3qQjLmDBIMUJFN3lTWY1jqiGPlSX1vnzvrCGz12METZGCOWFr43ANAYC0GuoTGamQRbWcYSMylGlI5F6AGbbWSvLyfbnT/Eo72KaB8eS5vp4y8alfmfuyvBLXEd5krKX0cMkCzAxmXE5zpvnjYfzx83F9q1G52jAp7h2pV/z6FYmLHiFd0YDSSwiznXHZ89wOkDIIuVcNTmD+eO5v0a74l6WdoevKgJf8jl08ZLpC2rD1CtN2YkclUcrkTqSJrAkBiLoTN182HYCDKuGOiBtsEQYN/bDYmFxqTisS8QGV9W/e79SHn7g/4X3M9XE67y92AmVvg9P/Hjb0RwmmDlShXoWfN5OgzfcNlrbWXV8hB3d+w54Eb2c9VrR+o/993+/7g+tVbRv5+Q6oLdCOXR+31/6jag13OfCPj5g3nN9/P75+Wpx2kfrOaMfhbZ8xmUW/l95vuJLCBP53fnWvz+0p+GF551tvg39/940tfP7m3GnNuGh7Mhmo7qfdwV87+EqTyyxR91tMAojuEZpVT2bFN3QXcnZKB2ISYKrdUN2nNamDM+tDqKQiMful/2g/P76+AsByF10f0P3nQInie4aEOiRsI5rM2Ga0O1dXZ8F6OxfOE73X3mhakHTzwtjyWoUBWTUkFMqItoRCNPOGxGT9nf/XC2F3Dj8EJ+tf75lF2SUmM5rc2NmQTf+DNaupDlyzDWhgt5EDtB6A3X1HfYJiqGP/uTrSNX3LuoqPsElND7id0liqWuabujAhCQRS3cd0h1H1/tIM2SsnWgTQfufbyNwak0K63rgU7nSXwyfmm1vxvpEeIweIiEbuJ8WpTiR1fAWRKmnsmPS6hxFP+AhZkVHZh9gtBKQR7lCaQqYIcIdqtl9ciNZoaMRlukOTqcyI8AqqswjO9QvIRk8ye6j2O7Lqgy0Y3SrlqO3e87xIwxWxUSNLJIOyL9tY9Yd0dL97XECch7aW6GtfD0tF0GB4mg7GBSHjQgmaWNLDtTwWzJWm9RJyORJUXGFGcq0fX8Gv5xHKUGTIIiFtCHtf1JnndbqTEFKXNvOKVMSW7LTvPGB7MeA1PiWjVOtcdiiuHdvDGcHcZ15EmJvZj7SFyIegQLEHQxlxZBpF5I4zv0owm+Za+0opdyZhbv/J7915zjvZGX/apcvxq71fJhlgouUKR08LPb6g1r2TqNqNqoUTSGvBY5Ul6eSCsHKptRHvhHQE69qvsFMJoLfsZ4xKoAWuu/paF0cB1dp8u5rPzOT+S11H+Yr6+TROdGh179E5lJPBdRI3j7AcYXnbcerV3bF8rSOxJ1/kIJs9weltgFB4EQsTmV+uRmbmbVqHg3w7YBDTf3VnTaCw3jEB79AYopIZqbFc7+fy56Mpqk5nHfcP2hxV+pVJZi+t1JpGd2qDKnT3FNycCLC2XVZCNIqb44CJ0t54G+cJUehUGm+v1ha6zamYBjNZknB0xbQfRccNd/QwCVEy2INhbjItge4t551Y8g6MOjfkncPVg6qDksb3u9cHYKKS9r/3Jdzbt+t2bIU/COxOQVgyJ4DvenJFb7XH/Y4n+2jgvcvV27bu5k4la2Mz3l6rkZyKl+pRTgkVH9Eh30sBIKqj8lqWyqBcSmQUItYIM2yGxOed0bN95r26Y2juc3Vfk+YW7pFao2tdN91FKBFgUedrgOzn1gBId1abOQZRAklWfag2sTIMn1S9KkujqVx9+/cno1EIAUQ0yFXy2yiMre+glkVA5t7LV+lx1OmheqnqH4n+1ZJw4IoamwiY091SmWl0ALbMzWjWUUWsr0X54ebLrfhYn6hc2yNaeVFOqFHPPsKIRL4h6IhT6mmDkKAgGi/InYytDGVeJ3OoqvQV2yBT8nTPRYBHnIHMPI8ABD9OCaZAPI3L/cfXknbEa+/cQchtP460lQSxDOFmigcR2ojUtvDk88fX85l+MMOPTFyXPDaVgc3X+W0IpuiL8TvdFkoj5dpfPKnz5O/ctPPLjYR5uiIQTphjZa5j6Wl5vix1rVc+WaVMfu2nM+LatnecGYV683x6UvtQBCAF4RLWw0FoI0H3I7bHCnkjLtZJWfnFauiw6twYa1ZNt4LMaUabkgGbXfpnXJsf5mWm+jWDhmSx45o3lG/vKZREUR/t+8SPG4WhZ8/OWLs+feVX2bptWUBCn7p6ZV+Q3lnpjTKNabrPcl/57Yn6dSwWKsbH3hYBw6yc4PfDZ90mWoCBzqS5u6/ljqAZi1SkdzX3/ce8um4ozXrCjLVpuFnR7wyYtz3AndGx8ycAWOPyKie7E94xT+2Cy6IjmczN3W2nXX+sBiFIypoypBE2RlUUmXBRzfjtKLqqlIKEwHSPgBBvifsk2ErSxXjJTNSs5AnFZSmhhX2s+sJL9PROOVUOpgSR3SxdABzKioRQVvc/5WO1bKWzmIkpT3dtDCSQQ0NqPahkd3K3eMy9hZoL3eCfmxVLFXeQOm802BMnomVHbB+xZ2MH/cn3ftV4zvc+0fsMvEGHjmfu/Z1/QNDj1zgcXQ0scu/hORR/AD13dKmqFwNIh0AlLE24twjIGgxaKeZoxE6coHuzjvtBsxo/KvgEzT07SrU36GNAsDNGkkVjBU3uN80lk/fAwypczWnHHVbfN0ug9V5Yomy31o1mgeZssddgDum0RQgYjdFmq9BL/rLr3Xe4brbM0u8IrFx0v6x6sXhfK5b6M9OgTIahKK1oyncSedYc3h37jFa3GsCwQglX0W4hNCQg3B9BU2ml+eyqu58w7XCnhEAzLIjiQlCRipoWfigpE2UeJpovAyGzWDBbVz6O3Kr31XL+pheXm+bHU3p+kXbFa9dSgvRlblp052JJ8iCslDtky49j/fWvz79+PmLZxgmLzfPSim2piI3XvpZIw3oY87InHV9+4qHX9XSapNxx6nF+P0lyqSYOSxSNj52Pn3j9pYeC60hTBFaE4nL3ZSLcPKvXqPoTrtPl6G7Jd0nOGce+yviBvoxLSsoszb3L8tW10SBW506UMocgX1ngnWm1tfFe4F7KjiqrWajhlzvLuWu4s2/7NfUPsmcrCXM00Fbww9AUSjk5FbLNXX1lt7EI1cSSSolFv6Tuj5xo+sN84bPnQRUJd3jYF3+fw4/ErXdvdfNPKImbLEMisq+XavUtVu/MGLwyndWypxK7m1Af85/eWRhu83pn4fj4wfvv+vifyti12sK9j+WE79ZYXsVJ9SY2Og1gyXA219oqh5J7M/4dre1HwyKs1fcMuAtqFatNkHWDxfywM++gpy8ZUoeAZT6SopVKfcXnCZibDG8fPNbyY3UrVJzson/jzhIxKxFSqmr1f5hC4Ca3dkHs3iFvg9pGdOjw9VgzRS/iTWVHkxpFplgBSLu/Wbd2bLh93Y2DanZmF1Nr79RtN7cJtwuvdWwMpBNZ9SS8G/3u/duf2dy2zs47QB5/z/dRmfjs3oJgRdYmmibUyHngZNwHq7fmOx39Y/faDfQCJUhMEzIopRuUjNHZyp2TzAOshhgxY5mipw3Uuth5FdVLKhECgJne+pLt9zoDRgrWwi33fZOkleJomcAqexZtcJ4HuhQksUNLpdOXvVuRGm8gSyELkuyQm1amWeXYZVXNbmdvgNp88DY2lKcWk7G1f5+HtK+1d0iIF2Jr4eBfD19WJWh2eu63cYdkqGKC0aVieE0cY17Fjbry3syyBZT+e1RoDIGmTOTeURGyteB462XC1+WZV4a2EBYRuUt9GDKZ1xTGrIFQy8THUx7EXctY67KV1cff1DZXZmqfez3Ig8fh63/3X/83h+WTJkPuYivuSOm6tva+qB2x8iCR+uv5+H7qcfDBL2HJXNcrYP/xWoEQjiOvvBYAUQF6uH3ZM1byzJ37N83xLQdsPcwWtI7EoW3uPCxNJTiwBHRNByLgnmYMXmdcp1L0Y53jr7LIusrJa2i3Q0NuIXc2yVmK8S2TCObt6Jo5KCPNrQR/Em/ypezOEvDe0bfjlqay2QFw9qDTDor1QSgx9mTU0a68LXiXWDl+sVIh1nbuKF61zcdGvbUra382+cFaXw7o48w6y2N22rq1JWm7NJf5x9dwk0iCDl/H82udvOOMhvswSOuUmCaNraOZfXP3p3b59h3A1yUMWvtOjyaIF1bdTcEOiZlmq2T3b+X7vSrd7yeuu0uUlR/8cfuWlo2HjG+/FQXbFGujpoNPwvjhuMYd3J9dzLFK3+YSQRrFNJk5u65E1Ki33gb1Nv3xUsIUyro0CVGBHu/iO3SLNHemmT2FVgDS2WFRay63v5rsE1Mro3BvptrKJIjqd2y5tncm23JjE3f2w3hnfCPefjvEQReEFrDKNnKg2BzW2jeUMn32xvxZ/rKa3iL9rq60n78Rnw6PazMOEE0Iik7638SAO34VofQae+zIRcEqUzFmeeW9g1GnmN2HdO/MO34RQY8PSKJ/XDz6EhOW3nxpoKCNchzGkgKzBFy5PGgm0U6ZpVnloTDxHkeFbn4tsM+gtZU1VyV6pBtSvQ8FIsN8VlmsmVR3bbh6e5QIhFLhDlrB0MwQIroCp2k6ropLTYkryeAevM4UpdRSZpAKSyBlXqPlzITMvPK3efyd8czXt60r9yMVJinS1mMdJTmkVCZiDlOZxexu7IxB1WGGnJPA7GJGe2vFmaAUO107MjeuS3tbvHRdob21WS0xrOz/ETVm25xkur1UbIHrfMokf8BgziNPxRUCsX64TlPiPM9vpIJmab6RQU9AyCQzd+Zrm/YmUy5mfj2+fi7GFzwoKuK6FHsbdL52XvuCHI74h+fp/tcXzh/X63ocP69/7pUGD2z5r/PvhMRYjDzN46GibsRy4q9vs8fKNM91EadbppbM4Hoq4cfJdfBYO6SImracV4pfDBjky5LaBm2tVRRvSyk7FFdPpUiFkDPtrHZ7DnRYZ/9jLG+dG3ZXx7jVcmjmSarGrkKAuUB36yjdMN62ulI4Ym/VzjcigzYDEnAbBJANetGTjukkvoPWW6sSAyOhUhi0A66rLqXCbtVlSS4YjKwiNAx1JTVhS5hwuMJUTR4oAJNtvF2j7mCgPnPxlmAkQPPH8wj6NWFxww28g/qBCOtVDgdKxGCeOxtCnNxi+kYn45msqK37WPo1WTfeJac3K5dTiht1h8lQqzcVEE3m7myAdTLgHKHuNDi60lDEHxu2wWQKlXEguzIxwPl9633llbXc6Vs7NvX4hP5OkrAlRVay3rdhFbdPaPe+s/mgQlkqSxaQSKDEWso4a6OJbgNOVAhSI2W62Y51jer0ywr20J0/qnReS8agLbrUqlO0oRgMrYHvQsCwcnoL1SlsUPPuFb8jQtQoWo4aE9CzPAYJqG2fORz85pX1USI/qP59iPiRABaK+BlT6r1wNMJJtyTND0tHcd+8K4+Wxh3JCp8mqDTxvtT7SqoJovPvelgmZU4INmElYH0NDgAZd32i+Ez9nLJXpmb+6ROiYBEgB1mpv7V8dXVA13yzpEJe/H4DSkxA2t0Dh4EYOpiiEj1ZBkHXLKi5LUbdBhsuoFE16SyTtTCZKZ+ouifZbDOlangarhAizQhddkFpedp2nL+P69K2DCDiuvJy+sEutTTZgqkoYLw1hxlCxmyk6olvaEyk1UErRndsQXufW6YtKNcugfaoYTM0s3Ws40gzdY+buBy2tsgjjEQGufcXuPIwmbv58b1z73B3Ph+H/qkLETsghrxofZvgEh6AiQ4kdEqxwzJImR0/pGMpgYg889p5bXFvAyKuUoB/hAnPBf+H/Xyc9vNcv74ex/XS8zKsfMTWtVNQwja1d5lIg/ZWwvw4/eunLdJCm6c5vl/epBw/Tn3twHWZMS/ozEd1Bkq0au2sXKHacfO63GDTm9qWkXdmVVHt22YrCsWdLGWqqeVYWXh540XlZkgDfGXATMMOGrkV44zwLF1CgDXlvRzbsDjZBnmuqH1SZbL3aE0CxASQd9B825H7he9869OM3AjYUHM/fDxQ9p/vEPdOPzsd5Oc74TZf7xShvAW9iiZlmoNAz/1DG5C5xDZtn3d2G57xSG2Cm8Z843iaelYFtLOw/WqNhxax+g4xELShI6jBoG9bN3d7L5qRosvMnZUicOUkICUaWgYbnVh0m1flW6XYk0RhjYasD8doWuC+LE6pEKTMnGWWcEcbdxGDJOGZYCneYpy6SvzD3IHqCQUEmaucpSnbI8wZYEdMdpcGkmk5W1pEscR650CYQnplz5XXZPOh2mtGx6wq5RB8HLiJOG5gof5teIdB/asf0h1siHP2dw1eLjVS8u1x72vsYM4Gsqh+6/Ls3cZWItPWAtR3OHnjKqLe43r6FuZyKmKtQQeTUta69h1xNEKK3Kt7p/9xlRP8Tdh873XNYhQKg0wDzVSNweXGzWY7KOfNAKiEnRHB1pYkUJqJED74zrPTlZn0OumcMGp2JfoMT0tRL9dbhWXiuUpyRcBSpW0tQuixRqWf24VVd2J5qTfSgsgOR6uj3KCEChqnAnG1EFsIyczc0mnLcJ3XDm2H5G5Jhx3uq8RQrUNP4r0MmR6E0hs3J3sSKEAzVxaFgqgqsLttIbDr9swEJWk9bVKSubmvZStS5pcA7vx6HGfadVkPw9xX7HND7pa26FY5H7Bs6ZCLijzPK+ySaClw7Xi6cYnD3ysJMMQmzELH4+u5/K+MPBDBuHZkSHkJYXunEnZkbjrc8PyR60k3mJn789/5CCcicfh1JjODuKDIkr1FxsPxjUUAX89vKF/XzwvHpZ8BPxJLJhxP9y3xtSyh8HMTnqfJ6BX5CYTJ1zJzEyJE8+Mxs7MGivoAHxvsTQmqvLiUOoo8+LYAKor051Gak1dJwABJvc9xc0LGPtwcRdW4RAwYxuorVUYplUlzJuvVSkMVzwZCTOJ9MfP1waXskhruYXrS25TVP2/ia19TNu1v7kCY8LxTH+GdP1beM4FDxysfr7lNryAyo09y3XO2z73zYHRujZFqrNCY3ZswFyPMfL77o8po4n1pc/sUVl119qxLa057V2qHIDLPWSWXXfFG/SJmId+89c5kMM5owo9kRXJ1EzXbqnzoBDVq0zZ53gDblaFLw8dq9nUNr1STDIwm1QDCqOdmgn1GMKS5iZb0pmL3QKnPmO4DuflQNSlRyLrst25HrwnvI1IRQ+dS9VQwy11RTTFROZJD762fk6HMrqhjStA4vag1m5EYGlEJ6Vdk3Rk9SXT7lqSZmX1/lHgfGLAnJpMEs4HtO+rivW4NUvawgoQnxUxW07eSQUJMmFBZdxdctY2N5/ZFsLCTYgd4NW3fh+G9ErzNA26TQeYHctO5QaqrHxORqPQHssoKCbPszCJbEPwPsH2gqTsKnZ8CaLI3xpRgUmwUqaFxGTNZh3dta8rG3tz9NiomgVaalrU20domtEo3aQSdUmiGQrCGTVA0otphMkMB2xtxEYxNk/TIvTJt0iLAIqu5TJH+Or9//967+k3mWNZDIVT9YoICTkME82YeaWqJqhEUAmhmftHhVUavIysruWgjFHU8zWhnAC6RlD+WS0XI5KoBLhEXVFPvpNxxSSkzOpbAA6/z93eUbhpJ+OJacgFpicuD1cUiKm3BkM+vx/Nf8ivOMLyuK+JCRCa2VmYkJdeRWm75wxFux8H6fBN/5qL0Fe6wEonadCvCTuNJ5ZZwfOHrH/HwK0UTvmFboAuk1Yi5I4918GUeFhmG1IFcKIpybtBSZm60UAbMUDNtWZHGO1kcaOkdSVcvGdrJRdwgSW22UptrcCvbYdS2SFlmKmMOXmWP5fSmSPWO7ttydWguvucFtQH5jJ6rv/Ft0Cr/iIyMHLyME/rVnVUP0Z19t+nTfQWTDs8HNb5U/uKdXvD9ex+W7jNJ+UxC+rHNxaojTVKbpUGNj/MhwwhYjA/smDoz+McDaOeFScb6hf3dSV7wRzQCrLnWnMQEHXXMc8ZnKjqOucyUOvBvX9SX1gvfx3aKmf0r5S4EoEftqDoC76jpXnT8GbYgUfJsHecNCkC9Ib/OqN66euikEONUzUs+l8N+7iSP3XN6L5j1IZ8IqQsTI7Zan1yBv3gT4Hp1P6Kre9OVWrkah73B5fvx0trdj9dsucAJTaZiXGUGRSIkMAfjQAdYk24rRwmnaL/QZ4o3HyxkYVitGM2WwuhAkjlhHIcwSNK9CTq1vHq/XQHLRoOlaFyZgaASYeqhjVXrRL5PMO8ghgNKd/xPG1RC6jCzgAiraiR6gondhRdCZqWxxnYfdzxePK2MBZqm9b1F3LpHJLMxG02BenKRNlgJ1BiGwnFrDNWYm6b+WZ3QgQgVsZOZdgUUGYgw23FFFfPupSvYtyZTd7dy+qTVzLSdZ8Ti3kzk6zryWg4JeeLYSGlT318X8/fX06582e7pdMblzJG9Kvo+ZnCZqMwAvOTmiXJqWRQBqerfLatfMaRb+ydIoHZesl0CeXYcMvPjAVvurgdp5jSueBzM3Ac95ItUJl1e04iXB9LSdCXTncsfB/mM/XqdW3l+RX6pZkiyNFSjytkKs2844UZxhZN+XDgus4h9RmJH5EZEBGK3SsUjgeO5eIpusRm6vrTzOIxXfu3jvJjYOxjMDWUcTtm2sCgS0Rfj53/N53LoIeY+XxfOqN1rvmh+Qc+lEJlbF3Za1WLMuvkeoK1j4wF3Mzf3pwOpnpMwxuiPw1rnPJmZ7+9PxtPk0cxdQ+zmbLWb9dtIl2n+NLSYLcgPiPk+1B9+gJ0i9PXpjUbZyAqjhoMy04RURNYML0O2oPvU2PBO9TvQvf1MY35vGOzTWFLssK/TG7aPaCoP78z/TgCLKtP3RoL0jlSDRO6o/hvPG/ZR3yv9bYX74zHzSTrPuHlaVcwiPhOFew2g/5ELBmBZ9gdUHtBDetyQUmY6G1aozn/Jzd/6C1K5ExuIyok2rrWYVoHRkKrLYKcJcqSwazJIyzcMbMs2zdNP3ZdaPn1cbUfd5Y/KZKvgFNqSieluKgFZ03Sr0y00WowVdtXDKi3y2k6GYurKLJWgT+wzm0b30ncgUBc0XkVTS5m2VNCcbqK5u/lysuhn84WGOAGhSX73PyGYRnq5Upgq9GR7WhjgZjWiyFeh/cdMXbTsZep8V+aEy51EmllJP0eVQN18LYJe0h/t2GPvKjv13jUi89rL9qwGaTNNKGEBgKG9r4RVll4BVpl06opgAF6D7nv17/DU3mG4EZ4lEpEFdWQDF6RnCqLB5Zks8wYlHYpMOirvAlGasgDXw74umh94CXSDnCIyQBqbhdCtgCS8k5q1q1NH5Oh2lgENybnSEaxzaSCyBGd2Mrt7d6/THvHYlzK5EdtD+VLGqlYqM5qvh5b7lnwlIbfbDUdaLFyueEU64+SC9vkPbAeNtrc/NmLnC7y43fL3r+fO18/n1799peK1/i3/l/84L5l74xMbLEprMpOxL3nGvhaPx2HXuovBShOPouCaFA6j+VrH4eeVZyrElfuVz/x9XrZ8fX3FCZjjwWP7RZjoRvN4/nDYPmxHUmfsIC1M7tjLsSmnI3OZHzz8+dN54vv3tS8srp2EBYTclxm4krZsCzDIPA98fSkdKzNCryd1RYaQfpVNiQQUp6C89CRhYQuhf/7Hv8n+Tb//46cjfj7WxjP3ZY9r6QrLvI5lOs9D4EpiL6Zy0fyLp8kf8bMOxDd+/XXFQUT18S48nsawFCJ2Log6zRBlbMSdCrnn2try5eRjVUJa4bd9+MJeqIxel8gojlYnrxmRAWVAubdwbcschgoqaK/BIqEQtTMq7emWJoklT1rQnKmorqIS1TXZKhMgVT71ToOVIQRV9bW9RZ1FUdymLX9d17maR1VefpJYoiZ4Ep2tjX8qmJQe3WTTwUF9fruJKnuU7uwkHhVr3zU8EzudpICAgVnqxOsrrFlLWQ8hSMQM0ylfUA2M9FacBsCZDw/WUd+NDaTdeEHndAMYlR+fqKMzjDteV2fAUofg9dA7dOgnfFe3G1Mt538XZavqV67wjpQ6krpDnbliDZpSkQOX5Q2o3JAB3kFFf3DeueWdFE4ZwFDjW9ERzlzh9JeyHHAV00RfKwHCmwVFcjS91eBr5/XzGXPv6gkjoJWfrb4TGUjU4GaIxR0cGHfw6gpB63qrGD6kHU7WW9geSywCRA3EvUUL2T10DTJYTjdd8aGa5KU6BZW2lMAR7y35Aev0w6Dlm/g4WZzE1kodNQzJzFJz2iufN4NixKbfeEltDvO0GiAcsgwyI00gmlJdsU/vj4o/9AdSzt553eisN/rUD4xTF+4PNaOhxryLZiKcsugYRokEUq3S0shLB61t4GJ2/IdlYSXUXabNd5jQH1p7pVU6VQHzjeMBpbdWjzaFjJLieOt210eXTjVQR94Zc3A6Kq1kxwhlwLsnN2FMajHMPLDoeBjN4rmWHl/Hw0OPhx+JPNZ6+L88sMzMfbkRXmo0VllZ7XejV8dYd750uKSM3CKy+95rjS3KcIb2vlYEescAzCxdUpjLPSk/rnSuyxcVNJlobuXgg9lt9AEJkaLZ44EvrmPhYXld52VIIt2U7stZ+XmJqogBt2V0P8zS15GZB2Of0vn79+XMHdqpCFARedmCkm5yBq5vLP4mfsdvs6UfX3DLdTz/OtfeALWTTLfxRu65Q4Q9kLYWLZfRkVvrG48zt7yZsbZyPY0KMUNUoM+hgiiFjm3wtfIJPZzLBjKpE3DnqXXgyaZtTDpYYHVR+IdCQJJZaVgpgzb6WcbnVqcVoHbwpXlcUNNU/d6A1u38G1Q1oHYj74xNXXAhqv2AZtkulmRVTqqb2aYu1WBuNxp10j0q0Dd3eIKPebMBuIpkcBePJ9ftdKgPVB9HvZ/mbfXqSBUyX9mgpIzYlhnwATdhVZ600hr5cExjcapEOJ/eUFInhh+ffNOU7mv6ozpcNeBicqj60xqmKrhg1qt/+Q8Lxc4GedubvhagmldmgGJStKr+VlT9zhk1ri6JnDce+zYZcWn3lwdrhKKgayW8Qw6FwOIlYDDLfl5EWdtKknUXTbKZzABx0+t6uUvhfUKOfn5k1VbJUkXgwNzvz0LT39JwD7xrZLmzJhvQ590JjxYe6Ry8t/U8iPp5JlRqul0Mj8wtUU8kJWoHhjNRnrKavYRQZKF7szOyWsy7CzA0SI8ZNdyqyu+yWdyV+tapoxCG3LufcvZZKkzGaG7L3JgRO2IkqjhVIBOBg8FlVnOaG1uY7ZujdZHJaaGqBbCOeki2oEE1EJncsi8cDSzUTiiyc5mbAmDdHzI6eETPLyHdvILdOvcdwpnJCLMIhVWIV2zrivZaEgAgPQa/6VjLMA36BoOWEVJ6huTL4AdpfnOwOlg1Q8JpkcfexoNBz4cJJi0G3c1g7utYbouW9jjXAcAND1+FxbunYe2IvZHKfZDH2q+v/y/+53/7/r0BMEOtk3B5ZCj3ZkbR0l72o0bdMzIiahVi72sjsa9AMMOkiLh4Ukj669pxXYp8nRcQZ17nZUYyM/cPLmyDK9xs2XWFJQ64mQcEj/2AccEdWzsMTFu2lj3IpeD5+5JfZV2Wn3RfJGURVdKn1otmoP9cR/Jp65kyxG+enpK2gAxJW0pLLcVa7vppcX555uv3EgJJYul1fin33uT6If514hlMMyCTsbQ9V9orHwdg7rGPB47Tj404tX+f+PX3YV1thfEReRznc38fJ81x6Rn5AH2VH6hRyYhIWCoAA9OCNJWsqJHmqzrlzMyWdWYwNrD4ISh6fHs7CaRxlF6su/yJmpTKivYq6iPNW5icWQhWo2tMglZyg7SJbpNziqvfh67h0NSFWYt0TdzeDqg86m1H/sBn714pywIy+/7GB+CGoBuv7gi8G5bebrg/kW1d57On86LfpE9lqpTjPrD42NwCPWVZnQ93yu0C5sFgqmwtjX3fYocV77Lv0G6FJCYJxxvzv/9cBZ4nmhWNGp8KkMgIWQ8aUHllKGHVjjipE2lAZhVAyipnXDtYdBhjChUXGSBLWDXsEplXyii20AXbhE4BsvO2QieErM6bCocyg6mOUAaOoEoExsoG0msTqSiuQlGaI5xIZI+8MJQ3V1nYnljcltgdd5AISmFwgdl3MDIQ2RiyqjM3a5YOoczAJMBkzTvJqNJI04UyNoTklJMzq/Jf9x/1wKxu/10xrKSqSIEpn9FfPB71jcdyN8rXuiaYQWMETS2sehVTLW7kWmVvaCVMV1y2yoGic/tMMd3E8/s6OjIbrKRWLkvzNc/zsl///McT9gBDLV3hDJllCv4w0wnMA0cHCHdMWywvmwTgRhmq3V8FEVSU5lk8wqLKSiClXOTyvcy2H25nEFwPutHC+Tg7/CsamvORCnoUIOykWzO9LwvL1lPzCRQkQYaNjgdxj36Y4vR0l8EOb8gtAS5fax3rOIpGfQvemK91boHYK68HTJuEo+hRnjAz8jAn/aCbBXUlL6Yke0YIdj3MjtC1v2GB+N5/4/d/+ev47/qX/8f/W//Xf/+/7IupgmIl6apUfF9LO5WR8evLfCmutWiUuR+ynrQroP+sCU72c9PhT7/MD/fj+A5Igq/F/SBC+ht8fF8byojz2K/H+n3q1xfAjMrid8Y2YBnysTKVornZ8ocRwn7hdQFrHdKSr8sXUDSQMCkAbN8ZEeBzufB0+8Hr8YydPOBmG555EQiANLmfzy94Pta1FzPPUMSlUF7B1/ePyP1r+35l4kgsCnykCR7BSzLh96ZsuRnTDv71y46wHdIG998/vtIEKo22RDu+DZsk3ELHieNo5ppHSDug3792Zlyp4yDMfISyNteBI5cbQzym7WB8jkCW2VZkpEdlS7YDIbr7nYTVf0nqYkTCaErVnK1ug+vE0j6znBrQAc/0Ba+Wll1dKq1eR3OHHBkjFEdWul8KTcqUSZdFxDZkK7A1Uodu9+3EkFAEVRyo2zexFQ+y8EKWNCKZI5xwO7IUFJFvYkO1mBQoWL+TmYK5Ldc2OxiXlMhu6dunXVkFTdQVDdZw92DVfSN7IFOTS3izWovf8u6QrDRXuNH7Ng+9gr04rYTVsUV9NjAuv4BKvb/9hgLrD4qlw583ZjAvLLy5ArIJeT56v4ozV1PqqzciBwI2m1ADnTRq9l0lDeYsSKXGKKcS5SatZs9aCbaYVept6i5tETRfUcp7AxrXXTWYeaOdmMDODPjQZLohoLxprn3rmtuflWu0gQXsAWJGZvnknqc3db6B9t6PoflezQKaR95Ded8hWTPQujxbwIC1V6PJYuY0zKa+69jsj+7rrx83OMo5iOMN6VITZi3TEj0ot296itETGqBvxt1do1ky8a6A2JlaGKmuG2rID6tB0oa+WddbweoAYwJuQiZR4EOl6LVFqiW4GqSFmTIg5naV3pLMKvILIlZjObO1ZwPTzJKyEizI2ZaSTCyhzxwaILqFovNlZYWWFTeOAn0Wxvuhz3fjHTu3gczcqwKShJVaXOuFGyE3Ot1zhXmIpJvZkYW0hO1cLtKc8nU8nZA9j3/8/q8/j//zFRHpvA14PWorxnaHAhWWmaevYuCbu6fM3WuZ1lprLYMsQ5QYSXdtPU6TkYj1w7Ee4QdNnuGlFbG/v3aacgWPS4pIRZL7APjYIu2I3SkEl4B0/bLQpfRVxj9T3IHtqaK4SxlKMHlwgbSDthL06zpp1yVyh9EhSxdDTXKN33Z+6/G6fp1hxc96/dP3/vfvfZ0R5+XhL3mkkrpM9oAYpq3r5N5HTX5ymjmwwvI05uGINAUX4E7jjseDMDzObWTuV16vjIXloMFlgUy1QgmJEVXObKXIAtozTVno5FRDK1WFBpaqGBVASZ43FgVWK03/yt0v0iferIxEeRi9jeFUo8aTDPrFAWs6C1Lji9VKUcbT0uRg91OZSrVjzdgO3FFEeyckpgiRqPLb9DUnlWnZ9Bc2D3YUIqtYUuPUrZxtZ3/AtDJ1+3mA1fAarLel8tpl0ZRKsovp6tBak560SW5stB56IRB1hGL46hoYr+mr6BXitPTeg2rHfdT6CVzlAKGel1O/1MADTTcy0A61ZMEbO6usnB84gRVS6CsWE2AXmqwXukG/5k9bdfMNyjvW9c9SSJsuApmKTLMaDn+7wiyxpyndZXYCzxvSrg/Q3YLHyQPxxuffsMh8SZVl1YNrdHOm4rLaRpu+wM6vQUy00bWCKlmAw6ioxUpkjFw42pH0StWbzuXUMtWl3FMEisRaHAN+mPYifVVXcGvNARjcSEhNFZtNfUB7cox4uSIKRFCYutpjAZOPIJrQcbB7p4+zZnPJjWc7STihj4mUYy9Igzmb/zclHk6I1Q+SJvodiJEhwAYoqHGeWcJflswohYYOgCOLEbYLmaqjGo5EbEVKRMrXHsqXze6fyhH7Vj0PyJY5b/G6Owa4+f3vwrJYInLl3zqsVeyLaYcuiw1qZ16vNc1I8gyBtHPTwEPmayXNxYTBrIBAI2ErScLhVqhWulj8sISqhwjmSu3NyIyLuYllXz//9b94DSkBCVm3w1ThTc3DtEVWY1cHRH1PqbLmxXz2CqxX5N6IpF800LfoOJbTrjyOx49zHccTPbLO1yIAGIwIPyULEXG47CBXuUYGTAaaLyA2usG9pDJXxhXuO5byUsqBDAC2tV4Jc8GOB3xl4vHr9SvX998ReQFcyLUpgvKqpP7K185//t6vV7g9r996rn2dnnvHPvP7/MrTrHhMEUp8aR/bAxG/HsfWkSmj83BPmtOJpFM7XOGAzOEyc4Mv+QMHrLxr8JJooW6pWIfStCulhHoKVadxah+SHwZx8Jdm05CG98i/xrr02erTBq9FvPs9CrZJQQ3lV9112m7v3PKTVMSSEKmjU0XUe9QX70YjkHeC126oM7Jy2XdAQHaBiJOm1bnTnev0zyoKJmFdTW53QcByuN4Tw/dfbwb43EdfQzHbmDtjcsqsS6etVSannZu1jFHj27DbDXY3AQaaa1sloygb1yIN6fp9KZgnW+4aArDe7q++pSaVdCY3WV0vr+6QiXNBrerQCQQFE1Q86eoYmXEe875l3SaCuT1fBQqmCdjQ3qp3Y+2CEjetZ91jwssZ3568wqte8KYYCZNG9hPozGoWbezuVEnHjCe8JsrgduYTbJY+79jkcfF3QXPAFXWtwtra4U6XqvzZzXqpGhCfHOZ06TTMKapbmH39XtbibN24VG9uolVHNPSMiT4ni24KRmlNzPDp+046Pho8o2jgZqAb3bzKR7bqVA8x5OPxVHgIUkxmF79rf6K2kInuNJkm6qtzrPtAFRLifZjVULHAohaidukEVZVZyqiS1ijj5ZbVFz6ojpBW5RSQlSsUDfmNVN0JbgNXqh1pPlT7sjBZKJWJQZRiV9mPORmWHOsVGZ4zsS+ADCVSob+SmWFBVyXpZsoQzA0w27NBKViFOhZAmquacVA4Xl1TateWCa9EQanUcnca1vNf/vHgEEiAznys27n6GNhyg6wEbNz93nDek6CA7m6LjYctN3Nfx0bIHldUtchwBsyQBlvIFGNnBn1xBw8uo8jLM5SFSMEIZhYXvdIBCJFXd6qZ7cNwIDLD+xx6AshcgjkA2VoCjqfRbP08jyuk/N7J2LX3jaAYsEIc48yMK7bWOv666I948LV+7ouK3EFGHRWXLd9pggjtje8LMqXr5Q/Rj1fikU6CyppASCpSRnNfS7bCH1w8tlEXQruFWX3pynSv8gZp5m12yjp06JNUtrxipTAtAVC7zGM6YrzbKNMq4G4Lfp/hHBgum/tSOpdjhEdSsYCqd/rTnl7v0mx71m7jEzt471bGolQXxJxgiinFR6/IOMkb6QLu2x5LzMG3Ohebg9ktN/OvT6LMvLRS1bnGNp6dIFprnacXhsoi5Lg51nF4Ppaz2eD3k7vTprbsbZELdru9oJklSyL37s0d5HJA344vOsEaawytwYfftW9AdiPf9/Oa1KQ/8/1VG6DB0QIdkLQea/X523dcUpFXvW3b3Dsz7cxxvteYy2yHFCyD1fL1MdqPdwCEm1OE9yOY6AAf5ka3U67bKOR7vHs/kqEqcR7iRGnofYbJhPsVb3yooYh7bzVGAPNVT+C+qeZFEcYGn/CJ+2v6rP6I6VCpV04QCckUaJIQ2WOp2pm0heXs8L6gyn7u1dQbkVeqDPZ0PinTQdLo72gX/+nr7lZuOLeaozjOtbh92XI5HQk25ddw0zTmyJjccoBr2kySkdTd69GoUw7HzggVENoN4R348K6JgUYDtC400WrCYlQgft8/06qIkSwZ3SYCTB9ks+KzKh4cVBAD89U5TGlnKmiCwiEESpchIblCN18xacwwVW+F0UxmMAYAsMbFYfmykjt3yyhoj+AXTgLJtaqRROGpjHR3d9AeXw+jL3N/O11fWgazZe6kwYsYt2pEGGwibXB5stVH69Vm5jRDJOm2r5ArMtIgw7lTEtz9yIAt0ZGx/DDT4jOTtERemU/Fk45I2LW1t0HiOh7LDhjteF7fm7ZMD99PYGWf4iDVSEiaSU7I3O1xeMUvDO39+9frgdhmoZQClnlmwEOndGK/fuv6fXzjO/+GHTR/fO3L9utwHggpA+ooKFi6IVvf9CuYP/P8KgzXnl/2cCFgnrtotTW78Ij12P7XySsTeSH2r+PnUY/UREEVjRmtTgXmkE+S8iFRX3lg64EYMpubT4PBu5hCklRJoo9PQhvZO6/ts9dYt6m65uxjIHYj2W2B7W3CJ+du7zE+83a6k1cFUNMJM2EZGdZtt6ikMsBSme2IsPMycfLXMYDtQYiOlDnSehNG6m2VcXcyVhbAsZ+3bZqufpKOFotRpg2agO6HsYHwQRA5yRSlD++OwSzfYcRkd2Oj3x/98fg/4E0BwPr0u508DsT9dk4fLve9HHfOg6lZoMFSoEG9qkCqJ/CNj2TfQI1Q6creO/NtT8O5xP6U+6dFaxPce8O17Syum9qn95axGlNzxyNVWSjKdbv5XkLr1TTARClhoTdOq8oY6/MTJfVMVJeTtVu7/x+VGKqTyrl5kkWRqAk9aNH1dsD24eYHxyDYUE+yVCNuel0/fIsqwkhAN8OrIy2OrFm3/AE1KlHv+m+f1Q+/IQlh947S533ca8E7qFB7/8YqErBWqgOUURPZCKioZCSBdUDHI2uL5KAP92btq6hcoFtpTaVOSxqkhLPR70KvlKr0dnrFs4ZLh9eto2+/WB4mWg9cJIuMcut1QDXL1EDakowKA6nyQJx92d3LUBRPol79wXdACXpaDaaRmETK2D3nSf6ACiPIjpjskIm+1kqZBcxrOQUaMz0SpJzmhjCje5ZW6T2vo+RS83rJ4vTfKyIMjJQ/jhG76d2Onk6IHJ4HlLkvkN35X+uSeycyrI4sMve19doWToYgR5xbjte1tXEtXFc+3GrgQ1CJLUQux/XSl2vtxN6qsQPuJgQVUuSGO4+1DoI6qzRtAvX614u+IyJFrwEY8IygHbDQkfLlrnR7/AZAxXkaruuysPOQMnOD2JkZe2dcgRd/ZOr1ei78y3ccOmjwx+u01++4oDgXRNGW2UL4ZhoiN869sPcL+Zs/91opnM+UX1Kc30etlVIhF/zgWitweNrej4pXgrA0sFVxjZmogEzKHFlYjUJLIhPjmsv4auzwnYFVKFmy9XAz+OhItC8nC1Zpu0HeBTC9ZbDuvK8S3PkbboBNH38oQaNUg0CyxWZR89zKybAviFLB5Kg4ewxkGRJ82JXJEHD7gvbzZTrFabeaHEdtxaf0m2McdcOYH15qQvAidKGDfCPXclvHYYa0if9v+1o3jCFP1UTS/qlzLD0Mo5+ESbnr8d8LV0/+9sCsA7amqnDzysZbt+VVQqo+DFhnRO1lhyg2L+jrfc9P0jsIUZb+RU3uVQBRYzylqMGQzfJR3+2NBbLqFFRNuLZUyiDB5ZJBkdUSwypTdb9Jx49vL1ONRw1Olsh/ZXyV9342e0F1IISip3SxHh2XGroaUpLq1bjVDuhuZulAqM4j2p5JDnq1oNw7vCU17sR8wM5avmJOiK3yMc+ns0wJCQRaprUb3KAy1dJWKrp7nBMCp1GclkEAuEWm3ue+E/mGcaDMGUeHRDcNTnp/Ixciad24f8Tj8XiuALNodGExfr/q5ujUb5gBQJ0Lgc1ihMZ9W01guGdj1MWVQAcIZoasdLfv/q4UwxzJlTb3ElASHjB2yNW2pJvCracMVzoeToJmVrkqUOFy7W8zXD22A8j0sZwTQ9S5S0DFHzPjChkhh3g0WoVkxoS4C0HXI5e7aKSviEWBUuSmCavassTUEs1SMJkj18sM6+ClZUBGKDIyTtprxzd+/te/DmZA4RlKg2TmudysVqOUSiYqBMydMyZUNd0ishFA6TrPeDKv7zP2Dl47f5+P1wmc/7HXr7//+razcJx9GYlQBnlS63m4b89rZ8Sphwy23eswxGUHtx3Ll0nYL8sIgofCMywC2shcftHT7dwbAnQoHni4H4Qfbinqm3ExztjrsnBJeYVHXLF3aGGfECkj1z/+xfE0+rZljwW6aFj+uEy5Q4yLtrfBEi6AyNdvk8WvX/+0K84NgbLnC9gyWVw7zCUsPqT1My7/AYbSjsMNr0h/VS3Hje6EO5V5PV1wv0INPpfTeYOQKplSg6wD8LIN7/5fa3SgVIjcV8yMr4TJCF9rJ4GYtE6ZcuPOPtqqGB+aOrRKyJmSQlKIEQ5lIDJrmleOXc0a6Q6F4SOIuH2gLVpNf7grnZ2tdVAh82p5mIx2HBZpZtUhOd3L4xs7SWyHzfKLdabvlJO3Je2vVAqxd/lGk5FeUuDYWrfXYD/2ccIsy1wZcPb6ONorNkL56ezrAvpzOyUDbrh3vrhMBhkkTqHHjWZ3ba69AuZR3bjUiGkMAlDvd6dD76HPE7GhqWwcPw1O+jOuv83hALDDIpcSROzcV3IpwgBx5XqAVFb9aMYK5CLuqfB13VbpeSRKyK7Ty3K+nACQ9n4yGn+iZMnySpL16N+Jt1qpnKgAQyLCku9ZIOoibQFI0RBKhTNVuRy4dhw52f1Ed3JOsKQWKdg9D56UE24pV9UIBYNvQIA1LwhIU2YyuSoRL19fl0cAqP5/znOuFzVGQUsow6tbrltxCsYXoinAN5TP4eDXovvyZe4BAmImUgGkSTskYKduDfZ6+BV7dFyOCnttG1XKJ7VZmMkSnjHDSKnY7DNaj9TIhLFGISbolsjMAEBnjUMBiy+FzEDM0ndEmWAiVQR6c09YVQp0T+It/cveJTket6JltbB6qmsKxfkoWciaymARhZHUs1vu5uZhoLkvl7iiDl4LeWSy5MpMe5l2yv2CBwRt/dgBzxSvFK/kd/g+9cvOx2Zc2uthhUU0+49S0juoqvUzlydotjrvUPobODP2xOOqRhvO3Dv2tenPTWzjzoQIO/bOnfLlC99wgK6C5hfXOtb6XmdWfTl9HaALntiQtCh/HGtRcpzPx/ntC7R1IJCburQzMoNA7IDC5MtP5088fjzhBrvy+uev187fL0C8wnJVaBrXta8X/cA+Q+Sv8/eBdf1+/Xf73vxx2X/7ea3/kvSf5kd+/U3AXCEanU488plb/i9//fref/3brzh+fO+/Tf7XYfkisPxHfv+4EK/lAOkhPU77sWlXnJsv8URaUFCa8coU3L2w2LisA/XZy1LRfd5GdA4GBku8Tau1TQXa4AwP6fYl7dQACO85K7CyBU0xGE9imvFenw2vYtN9VGE/MR6u3WJjwOV4x3H1tOIu9Ng44BEg7jxI2VxdQTUCrXEfa687TqdjQtDqoFVEbG/ct+59zPT9XG4fVL/SgwszIp3djhDnspZhz/cb9ErgjareDtQU0+JR87vvBJbtspBAWgccZSN4J6y1fmvcLCdHG3RxHGqpNrGzFGswgXfZq/fM+zaHk8Zio7u1EmPjD/MKNLWIZsVFnVJc7a5qUBonOcmY0dbyw8vnuBc9RLKlYpWUkxC9hLXplbMmPkGZO0VpXv+Emb2fMMgHVAhfqzTAIa+KO3mZnLV3Z3q0xKRFw0J3mIrCf9y6Jaiy0RKy7b7eDMubKtWnrSKF2TIoPZLGOwq+INwEzyrZA4YgmLIOcgmYl89WVpFe93HM6n+OaLQ4rD9JApJWg++lyqSyrwztua1GFnbiW93WZArcTs8lq25wJELNLCymavYjgUX3naN66SYRrpOmonc2SZl0U1RbWYVtZnAPwc1X7ysL0ByKOqky80V6V6FR5XwWm5psMp8phQjQWjVME2VkphvgNanEW66NHUgCJI/WvOxVK72i2tOeBGVwbpYat5cbaz51Vn/TjWwZK/tPLfHwDB4vcWNRUFgph0ZiG82WSRkRVx4mMRXHFcm87JkZ2ml2ebzwzwV7iOvr93X8+CqiqWpGmDtYElwG0BRMrLWpzcNdJSzWrflJgEa3NCgsY+sMuxAE3Z4ZdPuXv4NG9+N5pPx5PF9esq8dfQjmCHPnIqOGUUm2DLY2XQE4I596ruMBC33nP+MfeTzcf+T+uuTnyy/iZAAXuFfGpfRY4CP9sOfD+FiP07CDr3/+5ulBp9lj2aYFzenI9TzI/KYeiK2LjPwKMzxOJPcZfH27Pb7MlvvBB7Hd8fWPnXpkvgygInGe1/V9JdxOg6c5cy28yAgRmTVl3Uj44/Cf1y+Z0paH4pXueNT+4dr7myUEVjCTMtRjQrO+EFFmgpNWfrS0datSRqPJqUyYRwYiMa5QAhWBSCEyCKprX5aI3fDjPbnzQ+LynUn05gf6LQtp7EBh2lsqSalrfNvacQdGwFkFMUIVv3ZFr7zx5Ky4TfWHsNEdSujOTPpfLSCgbIZry4+o3pRpk9mDSRhMcCgI5rsORbNUbB/iS7lD3uBmuUmbHJZyt83bzffDqIdwX9x9hW/guUN0jllf+PhNvf+Wyoyd3Xdzg368G5Nv/9t4Xyqzc6uqazb80E+zPVu77S7yZyh0P7j6oO72fLvqxjqREWU0wXJgoIJ1w82nZssg9eygul7NumYV+AlZgcW6M2CbSQw3YiFQOSA2m0JUJYuy9y5UM9KEo1VgvsFU4b51wPx+4Mhgxt7RlcFaolYfmV7UxmUahmWFiiOt1ZfUUyyYIpehfGA9VlSPklB9nFZVcGqo9L6CXs3b3VR9J9/myxwBmBnopX7RwQxGwoMGpIiQUvSud/RNDKB15vE6SzbLLKLmine4hNmqd7oLqTjhFEQmMtH6CYVcJbjuI5olxIFilbtZRb4olooC5oakWSWstfOKZWuMym8jjgEA1LULVCXD0Bx+mC0uapErD1V2ONCYYFi1ZQxNhGbVeiZALZsjKJRAoKarGDNV7QTeXGSA5AJ90Q7zYyXoI6oukNJ+wc58kLboCV3wACxZtdIibcUWLsW+TvO44t/4/ZcCdux4XcJafrj7caxlTtkBI93NCfljk/DH43i6SKe7u5Uc08NlxuOBymPM3I71BbioK4GDsh/2oq3n4+uvdcSjiFeP62FBpgxYB510XIdJvw+cIRDHTlPm2t0sX6QfA6kLcSGPIyVwc21/wMkFre3cEOSEFo6fqfW1DgO2n+f+zr9///7+dWQqvx9h3AeYQkhpBxw0fFkefjjtG5R2Kk/qBdfv3PpG/uBDBx50k4Oh1TbV1jMCGfuM89c/vz0ERIi+BNvwOK+0l2MvIO15cK91iOaJpQsLNR/YVunM2/oRrwvYAgRfBsA7e20ehyalCYtIRSBrpHhYOejYwYwdGRtZFRZYveH96jIHdUDFHqvShy+LRjCetlHENvhij8zp4Fuld5GDlZX1asVpjTBtWS9UXoWePNeRLcd7Tim7fUJ3/3a8oHbb/cZ1tTmjQxXNOsKdrEBCcLcJ1ThiDKw3VPL6CMLv8N+MBuW2aiiop5CD/PSzgxqhLBdSruVOeZFlnLM/V20q38kcRt6vAARArDKqarRlF83rU7tfrO73g9JFVgfoXQm/w5Xx81Pw7bsc4ETqaTV9OSTkqgl7b6TkDpYa6f64V4yfv1eiBiDPwiqrgfseJAwNl+yOmcZstjbpXAxhnQtlk6huz0/cmPQ4mPTWLwTe2w8DD9VJeeeY91cnjlXQlMKGxN8JXw+ErR5FK62Vxl36onR/pDSPST2jVLy/MxHs7EsQbGGzyjN77xutwAFl1Vcw0WWVXCbI635hdBrEOaSNQ2OiugKK6pENYNQHiZJSFluJ3GxlXIOUoU4X+1062GAZgVLMeXMhWtRyIPSsWaOFXhR6U1h00+S6fnZvogxlJGuYA6pS/rFQ7OJCByFmtLLYSsNaaTUpt9ir0PjXjGriKtWXWew2K9BUF+Z/ZMiJDQ20HHDtrheRR/X6FgEjZVngN2wDV9pRJXJrKQoyk9cVzwim5XluSBmWoYh9vvZ1SYEdNtqk6oCmG+JCldUQQGab6VKfmUiwNG7Y4QXd3dwBFbZfwlASSPfjudyfzx+0hx3H2mvFYVxmsKfozy+D8emlc7+yxDXSj7M6+7E8/eEsqbkI7r1EwS5D+qU0MpTJCMtK8RaOL8kez0PboZ0R3//r+c9//vMJ5bZjP2iLVBrCRcHNRezM/evfiX+nMa7f9B/njv2PB+zA0vE89mPhYYbjkvL5tRKl+bDWunbs79jnFfwu6rLoYQ+zEo39PmyXWA18rfWVl/wU9zbX8kkD2giZJFoJhIqoAZLgmIYbErpNgAqVy8AEZxxHhdmZUPf5l7ohG6OlifQuIdGsFApJuD4+Y0CuuobJSwf9acdd+NkkfU2ieXcGcbbPDYyOT8BAemUaOvSeD2n7jhpn0m57/oSyZYlL+K6/D6AZylkqsZ2YD3Au9WxWAEAymyB9k9lqPlXV00ahuiKAmoNZxrM+OvtQ6z3Pse4tRY0kT2J6mSbemNkW7ZXQyTkgrOxE633/qDaOMgh1l+92FfLmM9/JWglzZOUqdVQ9EyBbourGFt41VqkKdpW4WZMy4Zzm5veqDe+r/11DTysVtalZmNGwFqjEcoMfUlIqyc+oDtNiY9PNiuRiXoK/dSH9wNQa/BQta1+1ByaGtQOb+Gtup58dx5H1LizZ3QQwYsUC3SQzMU23068WtyLQWUGZxsKS2+eZgu+JFyqHinQoFV6Td7Imx2lH3m3ELaUJwWTF6KpPMZQZMPPsgVS4j53Umk1vHGYCUrSqZIuY3UHO7OfaHNnk4kJQQ6nE9tZPKvEliT0+wWCssUSsvUv0IGchi5pg1vyyG4KA6DM4inUoCaDYtSAhYCcpeDRgF1IqhBIxbTsnQNa7sSYUuJtzASIipdgWeVS3UPHJ1AZOtKgquGAWaUOu0zuBoUWVMJZlLUNFXBgfXexNZZ5RFrSZglAgCieI6uoGETu1FnEkIovECND1/2Prb5YkWXIlYUwVMI+sOn3v3PmEP0IR7rnmgu//FuSOPxtSKBQZkt/c7q7KcAOUCwDmUT3M7nNOVWZkhLu5GaBQAIqtfmKQrFQDjATy3sj7N/h1Ie637pt7JzdcijtKJ3lHamsnM/b7+70lhSmVCEUo3jtM0NZUQt73P3/lTmXaQpJpeBdI2u9/fKUDnvp6BWJ/v7ZteCI9ttvra2vxtb//phT5BpD7h61vszRlEusCgrHv/ffcQfPXz/0L7+Tvf+avy29BgiEXcn/5ukB8vWuLYonwpd/3+9ffbxqA982fpDHhdoeMWm7L/x7xld/fyP21rv/6K/yv/81/+7v/uAJAmLbhO/XzWs71Evb6+Z1Kxk5t92tDO/d7f5vy17KvEJDmDPm6JW35xq7yfX+FpaVuJe2OCBFuHi9bkTRFvm/thbQShp4xvj0B4ERtzb3NAYENT2alHdFJTQoLHhWctekAakj2MVdqKi2P3W/GGefvZcyK8Cpucxxi2eKsvoPWpSKqri8b2lZYgFPQOfFJt0giIMWU3KJUELKObPnRqsLg4VGbDaSO+xKeOPzgDsu0Kuyg0kbQSJK6zNcKa6Ziz3AKM/MqwXCz3KaBDbVoTu3hBpiWEx0rJdvpZ41x6ueKRyghw0Ey7TwxUQFOsLeKae+Mq4DGZvUU5oWG7o5qEqGroKunhcEiJrJp22LQhbMF+BEtMitOyXjkoJIUampth5wnvdy7oujUlr+QsrQgKpruKK8+pNxGiNqTBchURAUGstsVkblhJSsrEYHOtnaM2PwvUJFTc7mF9kYhWJM5BtAsBbu5iLATAj0aWEQpw1XfptmQIxDQTXFNW5+SVB5HPlz4RFcfzDWLgYZQo/kA0Nw/0gDtENS7pkAV0kFWX84JZfuUFIKeD6witdoUJ2KHBnENed3wOKkSoYK5gcrcEQbFnAZAghM7UvIaHzlggVPGUWxB+2G1ufjgJ2oSfEoztE1e7b09sqGTNRUZRx3QumwILNqn+XhW6Wu2JM6BVQRLzrIeYS9jj//o1qzqxOCcCtZj64dWzZQ24a33qtHMIck9LIs772xfku5pnnDTogiu0lw3SrmTm2UWKEmu9SP7ErxAm/KuMWuZaci4d9w3F2/j5YB5UfkNn2zJvDqO3Uu8v9z5RzRUoMudZWvZ+SAF5RcvkmaZUhpuwQvWmC9JW3tncEXeC6D/2/c/rlwr1tc/0/COlC9PRvo7hNwC/LWCFvGNiG/8cuf6Wo79+yXdYakIM2X6Dg9wret6xY+fy/znz5WZb8Pv79//+Hv+/c6A/TD5WgAiN3dGZO58Jfa36X4ve+n3P69r4b5el11r//dlu3in3zterk0swmt19mWbXH+/vy7+2pHf8Xe8afD9rfiy6nXuJUO8k7Ze0OXxtb+u5Pt13bTIfSluXynCFnwtyxtw2+bd1zg2oezn2Y/6qGltWorT95Cq+C1TPWv1OFd0gSlLOy0PNEQpb6Fx6FOdq7HC9a3DsKFsbvcbMSc4m+2OygAREyQcpvC5Ymi6eEZ19o8vclA0i4pqJ/nBCIxKxphoPr9d0l7SFLOgbQnIbok6MfF4LvWpNV/LruXrrvcsyzGZzMo9prF5MomQeSvGjBoiHy5UzVzYcP91kDo8G9dRtz9CHOOmNXfalD6GCFSvcpdKFdBpP5mdRuxoqN/xk9M9/9RDa7IroyuMSyaIrDJ7kj2ETdnGWKVDGVFjFksmszSd+1FPwenjS5oqQMOs7jquuuPBORPI9obGWaXeichUWpMYw0dAYPXUqEPb8YdFvLOfC2ZyTplxHcZAPXUoG0lK5+MLE9i0BJ/HZwN6u/apWQLNEOoH3WY7oD6uicwPaTYlkeEFMCllTAesICEztoM14bPSEAlkBpQ2kFVJxC5V/IHLs90TlULte7Vd8X7SILNqO0MksHdqZWbNwRqavBby9PXPEFINNKnN2HIpZezd2DHiUDiFXVvu0ghLW9H1lEaXu8VobgClDsCqmsLA/oqkz4aKO1OqwpEGgx2OdJU0krSmSI7NSFkod5a+laFKKlBYDtOxBkgZnmkG8jZneg2oMc7SJDNqMAIUsG13GhY3CWM6HOm5w8vAVRNexn2/lUTUqBWa+7BLBhTXXnG82UlCdcGaMjjhUBBQxKRDMjZ2SaFHQGJGhHJnphmXf//+/d53xL7f913bL6uowAlzxB2uuDNJfa9U5v7iVsKWm6/LYGkB2PW17rhy74S27kI9JlUJVxqXNau61lrYuTP39/dvrDuM4S+a43KDYMggc3/jZry/Q7QajLt/JX5tuP+//vnj9Vq/Lu71Wry8RkRhb67rAnwvvNz95+vHXbKSkn5v88rxxqJw5b0SGc54iyTuBb5cV1BcKX7nJIREKmF2ORHJ7uDvQK5OfYHGOUiVOKv+vXYNTdpZV5rW9mdnzuoYDHeYO/fmruIXfhKtfaQLKDa6b/roWPLP8y0ASCRDKP2CRJoKeKtLx2qrZKj7CSJnpi6PK/4IBbu2cjD88anlctQx3/HDhdPbeU4qryUGHrzS7zE5xCaMQZI5SR6yVATobiSOJIdoXWLmhopxemXLxhel6U0yVdyK7k7uxsPzeHDMjJr2fiIRAFr28ejGVfSdnQCv/Rn5ZBTL9Nad1Ijy87COy2lENBXOnSZsL6eEQdHVtpydoHk4JxSuBEPrDwGVmMN4wvrAokiyRq11H3x1ReTJv5Yjyjm9SlFYVeI0cX2Jec5jA2d8a9oJIssKmSzmbhvrnaWdlaiUKbu1Fk2709xFWTT1ePQ4y+rbzPFoOFzQSfPAGsfVmcnqaOncwvCuJYBewd6QIp/AYhL1gxqAJ+Dtq6DSIZlQuqKQqiqrf/+Bn0Xenwb+LjVTGszMMTksk9FLSqObiHGq7trs2+w+zc6CSMcAt8l6oDfblM1VSitRrUhQF4cKAN3V0rFdCXJSSETtFGK4tlbKZe0mwnKHg5Z099U4aJCPwWAGwkxmbgmUrnltAmvHINk5GDSzSCvPDbpXxzHx9Df44q2NJTJtJ83t3Z2S3Wy3ACUTb956JVfWMqjLuHMBSMkMSUW83zsTGTvWdb1aFavSDoZcF2JVpOHskgxQzi6Yb2tREC3YLaixbzoTdDLf7x3KfO+kviHu23b847//85tv/f6dsd+KO+HQ3hSNMvL7/fYbGRkpM8kyy6O4+ct/finyxgad63UDG9+/xeCmG1H0NkiWbhfXZeaVfiMT+31r+eufokn5dZnZJZOTsldELoCC8XqZibl+fOVPvvW9039cPyk5wOvFrdyr8iNcP2jGJeJlP35JoF1b+5+ut7+M7iYBuybLWQZXbtLpuuTrDotl1+uuTEWmtiIiSPcvf38tBdOEZnDKR8yumdhgNhEeTb8+z3PAssAqzZbFmLMTY2qktsQq0a8omcys2NBZSPiJSwaJVQBUWkFPDBUhy1RWQUudv4QilqrRvEy8Upaq8kcO/acyoB3yTYhRTNoYubn7Rgn9nzJ9/e1nPnohg6wxSZUzbNLwIyJTshSYkIUYKhiy1qMxWEbxjo+LK1q9HazGUyplklTyXhjb/BnQHyTxwS3Wmh5ivAINFHvZVkDHzZrJasgq2xvyCQ0/v6o9s1J6CeDpvT6Iw7pymlYV91WXygZiAjQNoKfmpm+rMxk8kM+rlcQq/mnQJSjK0J2VjjRsSWxo3yGJpg+q+3ArWNEEPUV2zuyAQoHGmrfLh+yHqupmejhJUmewwPMaMA/06PWXaFQg2q9nVowOSSXu0RFRt8jVVTKTVdtbsT6spLTQTlBwsxKCGHnf2lKkuSGdJ9AqHOeDB/FwFmzf3tufXvF+mofVKFrrjviiQcyhacuz6ry2PAxBhGdE9PBYRGaZfaOAcFeFIP1kmj/p6F1Jqedd1vkvLbDqRRBAZqrz0yh+6LkfDCdsNkIv0VM/271mTJlnYema8pRlYWbiBQHtVajx8nR/1y9XzVXxSTDLknE0kWpJC/aKeKWWayyFp5mtqk93kkavqYdd0Whm/vqGOXkR3savT5jVHIUsPJswAr6L5qgZHQyaubkT0WspSbkjWmlQtHVj2BOjqxviTqrEjJ6+yrjXOLHB/ShTVYcrE7xeumug8zuU66KWw/j14y97vdYWUvr+hmzd6ZLZF90y7MJOCN8vipd5vP6WJnLdRvrLf3MtTwWwI+zK2/7LSkTkL+YN2AUDZJZIx8LlcKNfSwnkfutmRrzfLmTwkpAeULCqSbmM16K4boHalAzhf/2Xdfuvr/96v+z1+mE/nBlIrr2BGnzhl1Wewv3r31fwL9sLX9//+PJtdMTLIBjvJG21suhtuTPSFTLZjzv++rXt55uRMK0rYl+wZev15SAkY7UjTBaxK5VL5RGNOnvbNm2GoSbVc1OAojWqzOAjggINaa2XXzOuVAnFgtYDLBs/17F7IECh5bb+VQWJU6l9OM8p8y1uEkY4gZCJ7qVr+hk1nY+ZvydPvNpxIicq6fxfrUC2yGW1arV4SNWGb5wg/SHugS5TGPswt5RWVVN1zfS1zFacQrTxXhrV+FooAapOpqFp/zXmfgq8cO7oxHT1yg/HvfRxu/MOwwZ8MuzttpUk02TnTifo0OCAUpioTPrcBqApxU7OyJUmEhsuTFil4mO6YB4SHqwzn9dXkyMPDBST0Yx+jw8cLh8dirPHVLvQMc1sxKE6jkf9XIn2S7VZaz+As8ifLIEa03XgXr2sZmk00ueNSgUsOwgcl2GoHCGLg3eg038YwPvUO7EYEpiEgLoyYwrT8ODiZ78DmCc8d4lBS5lHq+sDxfH0cDXnU22zNtXPnSHqT2IvPZsyjY2wTCCtJCQqb1mMabHmORz2kOVjes6W7guq86JykyE7IGV+RVOS8nG7BJAZ0ZVpfUSUDeejG3yE6ruY3O0E5GXdcidzXlOrUUWss6eF1kGrJ9c/6ouYyzGT5Vo0L30Qes6KPQgXqB2CTvbh4AAyvXTkYeVICjYl3C2KSDBKIrWW3f0YOqOAzMywy+aulJ00HHay7kkFV1ukQao59o2QShHh2UQVrF7LnchUEHci5TQDF/N9R6wUzFZiyQD35cb1tcxdjIrGcPtXJvL9agCNSM8b933vXez2ZVx4QVs7HBZ7oTOZAtficntdWLywxfyV+Y/3fcvuC8CP/6iy1qhUVyAzZUrxel8L+yd0/y/+9h/Lnfbm2rr/+ePf9teV9N/5F+6AbBPiK2LTmH79eP1P//7+Tvt+48f1he+97OL3/QPbS53GBYUjYO4RqqmbqeuVyrBtUXR+RtbYpJqQTdiydXkbjj6lk0nks6fb9VXkcLKFPF8t5njqWCVJU/kASAoLYEYulUiMnelGx5M0wPwM6mq78oNK9lDXcVbj2Fwg8GEOIBPdnrPMPFo78wFVED3mCVWQMw5r+PhjxdqBPf7uuUDD2bA4hvvzHmpAQS1wHQaQlg6C8MUSMqqQr9+lgu/a9eZNwZd4FeNYIBt/WbaqQtoJdjtk63v9tLGqIqzPsPPj0X1+ExNTmNm0yzDH5s2nzH2j2VBOkFjJ+1qro7fRu408rmE83afjF6YtfZCNGOyCJ8UHLzJPGIDQJXJNdkuZ2gnDZuk6iZmqgY7Z9T5qg/rgCrEx0jHUHTB0aMBzRXUeaqNzuKEyv72LrGVQqWRmjDkEUBUxNGeabFxdHgRUJHR7YfXzIAzdAvE0AcGiDpuNb3/YlBmbZIcGOFmfYR56oknDkYLLg3EPKHnO4fG+Z5McYuwEpVIione75pTYgmIXOj01v/MAKsFU80QL3LYaZ50YlUtsA8EHQrduQUaWgalHBhabXbIEjFBkSh0F52itzzJJkHUTRG28LrDIIaG62a0ZkVrp+i+GHus3anPkWZFHknSIbnRC3lvI+mFlRHnktcmQQKQiRzkIqslMmxmWSjmHiyNABEmnwbowJ1MZ8fv7/q0r3plglihZP8nuumoI1VNNVrDPqoF0jgJRq6539z4BmiUMdPcXA9daPxZsXddL12vZdQELqMKFtSWYrZePkc3og0IzD3cx3YKCXRerTVVK3JcruSRbO7XT3u/oBjagB2r7wnLKjJl3vO/9vbF/v9KQdv3kP0vDuhxwR40hc9NWvi7o9frhr1+8/vphOyLsx7db5P5O898GuTnA+G1Bl+Dk9br87/f7duNrI+A7t+gbL/Nt7iGrWZSilFtJT9Cv+/X15vKEFOn3SsmW0dbXEsyvtJqj8elPBiyjsHpOAXKOGoYOeFWLL1SZS2S2L9KYkFK6+sS5h7+d09NSPxUEcaqguwjrOLKed9TK6FU8epizyTlPwFoBY3/XHudZZOABFnWvGA600UVfSYfjbS3ryJZI5vgoHtzO+eXyheyPGt3+soNVLsS2KecKzLsIc+4ZUhQHkYRN4AhMqfdz4NuOHpc1TG5yPveMbpyl6YsR1jFg58lzzGIzdy00wuElihee1TEVgVc/6rK9as3t3+7lO5XNj0EvAI586AaOH8f/n6/Gev05iWRaA/3KbxSBCGXAEL3NmD0koq6Lyq6MT3G6zfisQdMqpKUmhG6gCWnIdMkiqzz26ehD66f1ZEjKzgysDpOAUcJ6aIZCMzZs+QkDm5rgbMFyRmdPnid9zH+tbffSTD0Na3QuBuASqHzndCJ2y+fs9zbPFbU3oVQYnD31VkOpfzyY4a87UlfxpW1wVfp7dagIW8Xj2lwXgOmq66eIgMK6quHEo83LnpGNnexV7cyKbNXgr5a8dkDHeL1iFZdUBrJeDZoiojJDOfm3NlD9pCqtVt+2AxGr8P1zJep32h6UFSvrVOJfOVWO6D4rtohZT4Mwo69duRX1mStEU/KzzLTIsmb1DBpmJcx9ObJq9GYAROzYCCVZ6resZobiMZr6KYrZveC1m/fOGdMq89nX/awAX8so4jJ5hBm4jLR1vfJ6vdzMZJGlROJMwpabaKYNZby/qhO2cLrEeJHmzGXMiDszUq+8772k3Hf+88Uw0PC6lOYuGYzXRXMamFuI+1e+9/edCV/YsJeJWhshZgax2fsEten9y2IL19fX7/sL9nr9Cr/+mdD9ztDrupdlkpQ7SgSURnfq9YP6XnnnrR287Dtp++uVoi9/Rcq9xlAr1LOJzOgOrVV9pCZItpYvXleV2pvZcnZR0ecJP2a2s1blpJrXUSqjB3rUiagzlZ/cKBpjdZDR/wKPTWg3WcZvYpm2QQdUjmPDY9UH/OpJj36YhMGpat/abp9ZdUoa4zUuTOP55pbnHQdjFH96XtHwoV5SfcBPrelj0MtBnIN0zmnfaJ9lCTQHPU9AqHGkFhwitBFCikiKaLXY+gjMBZ0o9yCDXvkTEutYC6wfA0Q6iK7Zx857r+/3D6UhzQr5/+1y+vJVahYoU1Mxkt5QCsZIIkKxd91lOsy4lln9ipCg4p2GMLgzRcpJF30wCFktEZxn1DCK9R8nxJp0VxVjEJ2uXaqCMBpMLqu6pGokbfSTVVhFZTbFjcxwpA3nXRFPWfkpLpJV11ynFwXCVgg2tXS0Ma4D6NAmjCB9LWuFbb9sgrXMyEp80GDm3p9XSKfmDFb+M4I1j6CH6hYUNIGR6w4vTRKL7SaYooNqpWE5ndkDISS6w+UrgeV3F/IphMzE9KGYgfQNmPf0UXWTmQDAwJUQM6JMeMbpYhj+xFbeud5K94SZw1eKL0LgSiYSvhH/xA2vfjCUmzFIwaCsXfZhAiqYoRDS9iq23K4UFApkSUwDNLobzcXlb5GKjPsEXxHckbn3+9W+z6hAVTlXOAyj0zKRQvJiqEYhikpjRebWsTVBiAZG5wCs/Wamce26H0F8h1LQXo57MaNSRSXKD0UiVW7Kw18ZMHoY3URbkkOX5Fdi7xek4Mp78/1yvSt3aEpP6XVvrFUYGfmdt3x9/fSvv/7ta2H5uq7X3r7ccVul7teyVRUf5lpuX2YeSNpFIjMJviTw9QJCgmxt+Y/vgO5X3l+b/7H83//ri6+fP3781H/8vPT1M+/g+5Uvpv147wz6Wq+L74sv/Pr9pv92kP5j82/76+9pV4h8+dfCvpV45f1+Xa930uy937r1t/23Rebr2soNfX/psmU039/r67e/v/T+xVi/7f7+/tu//afy3/7NuF7Xb9e9Aknmi1cgr83USr1uZXJhv9ZL9nPji/9+Je3KN6/lf+EHjKRbXK9EEIIWzH5s/PXzxz+2/Sc93vxx+/v6tuTXlu8wyeHKhMcLv//6a4ff7sn8gX8mL9gdKWVVpvvl+v3lUdSUXyhStNrIMiN2tQxkmsK0AzW9Uooc7TZBCs4EMNKYkTtPVUufonIxqOzVaE909tet4fAgrygnYSEC5kqZQd50z8QiHDhWzXgourMacXVKBwq4CWPb2Jxn/6RjBBGcBEv/v4A/ObN95lZwwur6LzvC61rqtrrt057IWc/gCqHWH9X8VxOu8yxIz0QQpTSLnOxkI3CoCpGUirrjM7tdHUTUhOcC3xq30JxYzs30cJtV2l3gc+0jv11gsRmGzgDiTArGQRhzWcNICmhp0UJPJQPWrwBqlGAXkKClLps2GF6aTddngR5DWlVOOQQgxQBR0qmOVOK2VCpQ7FRWj+90yoFN0JiiG73Lodaz69Cp87qVStEIPENIMGWCIqvHlTGUw0CfLiGrTV+KiglFioEoeYyRVUxmVAVWZDt5k5mPiFqlfv6Aa2VNB68OosqcA2NeBALJqsiEezJp4DJBB9GpFJSU6uHp/CgcenggUW6lee3w7o9thazq2tbeyYraJ+0wmI5MyG6lduTLLa4SfHI0i0tnMmkLNQa80pqaH6PFZkUmbJHZxFSdryiQVDl9d3dj1KSVp1GhSqqNXAu+Fs08ZWY0l1+i3N0Zu+EGvQXMmqFjWiJChgiJlpn374uELDEF+BWUthDW4MRB5VQq4WVxvOaEZBAhm6fLqiQo2WUpkCmZXTsoAZ4Jmn8nYGFRujbrFSYpFbRF5Cq9JdnaGw5bul/fTNV4LO37fv9vw9//4K/8P/7f//PLogWR2BRASlSULcImfiNL+zsDcbMbHTNRGKt2UUYmnVf65ddr+ZKR14+rSm/t+nEJviqT9uXLriUnQFw/PF5vrPjOvFj8TSyJK8uiuS9XKm/6Hf7lzPztfym66GUZw1eZg3Xd5suBVPzK30tUpPJy/cbr3//6tfBvP8wymO/Y+617YbuVPkLkImUGR369qFi34/d14TJ/2Wv/dN7rK/PO0rmB69dtbsDG9UXzH/7Ce90v3GnY2BmpHbuWCSKp296M/X1HEHJzXz/9r3t/GUXCTZk7Mm4lDKm37fV+B83ggGNZBc3eY41k7sRhfabN9/QGd8aFEJGmUmVv+9wpYJsosCV+DEk7BJ7aGx6idrRprGXcraPiGVMAgP60YI4TiAzLZuQywxhpoe2xS3umrKnOSWmfapPU6x5ZHaaog5lmpSZWRIdB09oJqzQPCJ4j1gahpfns2FYll3vJg1RhME1Zgg/l3YY3BjRiw8MUTkyOVMoFsotS1C4WOBlsTcROPQ5YZfM6OyAt4nT6NjVcIQcxnS2cGGTgiXrAgzAPvRHIYJlDrpdrP+QdDjwxmKzVC7M5e5LWodQYUs6tFGjozUJUN7AyTaJJJqmHSbY+B1nTZos+NQbJGvohGWVLQOnNOxNmMkwNF2pVQYphQVAjjZaZVZEtWKfOEskcHkMSmFW7nl3UeIJqwLxq546KuvqdC9gceohnQ6PJm3k6GHKHAxSKV+wmEsiK+nUv/iBpu9cPk0GujyiKs6P57hV7RtlDykTUnxQdQA9rEyHdefbFcN0gDQ2wI99Y7/sFwdAN9QOBZ3QzkEpXI4T+hBao0xBgw+CoWdou1cwu3KWyC7AFB6cuQZGyxCL9cthKCswkda13bNBqMNBk/40wb/w4G5Z8KKRqHTwiVfV4TOm0I/RDqhvXa/XkhSXc1cIzKP7eFmriHtoi1sJWaqAqF9mnuaWGGkOBRKgKuWEIqyHRRr9r4hzsx9/diNv3Tun3+5+h/U9b/6/v//P/8x9/+wGyGvPyaVbISIBU7DJ6FlFd9xvoOumm6+Y+JXHdlmCmtEUX1lVyYyIt/vl+//6d71/azL2jq/xvLRc2rl/33q/ig9KW78iMMDO4kV771d34wxIRHjvsbYpMUoGkiYuXruu1Ni21LXcw3jdu3KAtC194XaQCitiK3GDulS0WvkzmfEXwx1rcSMV75dYLF7gS2L6ieR5PIrfCK311rcv25f/UteXLAWS+L0uLWwblYgmkClDGfb89b3e7rh/2g/bD1WMt47Z7AUy/PLsmkD5ZgXS4pxeTk0Ta6AZVkJwxsZ0ipGTnC5UFocrAtNAGUwnbd946k86Kz2UVRzRLyj7IUIlIlcWn00zWPQu9ZWvfLpWCXn3HKu1d2mzHWVUtd8b2Ksvues/zxS7ptZPzO4Hj0OYn41O4HMOJnsihK6s07uaEv53iq8YQKAMglGH0SnG1zARUHQ/ZGH48pSTu9DJFnUWr0CWoDL1G/6a8bXa3annEjqY0zlOfVVnQrNFqi8fJ0U6moBGVVNP1KofbmlP1RI5NYNWHGUimTxqYNd3YR+qY5hj7WXdNWs2jmCKsh7lt/NCJuApY1cUNxbG7ZzUst/QxGVthuRErm0xM2OPNsjVGFbRwaucSXUzd2TckZKBAqnpJI7p4nvkw/FnzY3tPHMaZKJHGcmHlZAqa1Q1F+HQuHb/aWTnQzGQzBOrkMDrmPCpQx1GB7ibu22aXypTI+/ba56VxouMRdB6vVUVGVdbAWLlQtbxqx8GZpQ2quhVLRJqchnXJFnHFfcLx2gI2Fpu0db0vvL5+9HGoEWgEKlcfYGRGRLKGCZ0Y/VQEVo7BV1H+EjyCCUUywoo8qhmkiQiVDqclIgIodiiSEZmxN+43hGTGVoaydc5B0ESfJe0zMdswTbY2X5bJ617aGiVnsegSsnMwZQ9626o6p5ODWOtxRjVKZnI78P1ztPykynpjG6S9PX3dCjiJW150ACkg9/e3d/4PKS7GawXNcntcrh9Mbffl/pUuwBnXd/z424v/66//3f/l//TzdV1uaxUBJbrRkPQm+o3+CknuX+vNgEEZoYwm/rz5rq5e27i/f3//uhn3tePayZL1sthId1v+crv142WLF5cbudada/H39pr+RNLXX7A3FneBGZlv0palxb97vHjj/Q7n+yc2MrdldNy81tdr4bXMuTxu5fftkb/wxv3rwv19Sdf1832brZA5PK4rdleq71imHVuLufH9z3D+An8Qf/16Jcziy793eFL7clCplCWYd7y+fq2Lf/3+Wr/1TgGvb+q98c/vv67v/HIn3WzJzQg3fxVhF7Ej3gG6Ik3KvXbCnPnzh+mvn8GS1856cWbs3Du0ed8WIQSPFNawLCLJNTIGqCDEEJENjoe6VDE81q0XjZVbpqO62UbHmYP7IbTAsqWSKan7lg4DtDdVff1jCa3r+QplO2hXGnN5S11QskplPZpxbevb5j3umTkGgTq+YdoMykRgFgLFYHEGoozjLp/Vh9p8lZiXA4CMLJl1xfYeD5TLagQkZjosEJ0MLpI0JCgqQ5m7mMfSwZ6la9q3FvSAibGUbeF0ApKlYc+O5zvB5+MF58kcvqEimhMyEwUDyEI0ruAJZlnWqLa+pu5p3lfJTAqndWKC58rR9v8mC18sDI9SaAebrcaixPSctMpajx9ulkZJKsWSDK3vMru2oamO8Sio3EJm8XAV4xf+SvCUyTxHYjLGHeifnTQeZbr4RJT4dC2d1cRNmyY5ncojzs4sb+Hnyf35kFqnpQ4Rlatr/tUHb4oC53dgNEuTmcmySqsOBqpHS8uS2LAmcIyl8EUjzHOSLYd+ZsPUw52b0Wi+rEhqqLQ+mwbayZCiyhMHVNTdTtq9rtS9+tWgfhxAAc1Grih4ojL+6IfzbNMpqI1q5Tvouaoou0nbYFMr0mcOxd2sGGtXsF6lO9BRf4HkQ5N1AD+xIrN1/2RdvZiVxc7kvqB3tMaaZVqh0PuiJCuxczV9xLkkeiSZXnlZgQPKSCaNtvSFEK61zBUu0Z0WvxeoH3+9VmUaeRrI56hxyBCdXNRs6o697RAsWTjdzJcbASMvEIKXmpDRSV7gtfz1w1e6vV4XLrxebotrXxSVy+mgXVy2Xr+pfFGC7MWw+43bCPj6i79/RKKAGpjBqAAPoJvWy68kTNoR9423tFd4ku4Oh3biyn1VskJYy81M9MoFVTLmBUMA8Vq3rb/29W+XxdfGbdxAJLRDZG5sZ2bm3qRdr/UX/rZ4/4YtvZYjdvz+/sLOMHK1pgsyoR7zJAFuRTIBkCIiIjLF5a6q0fuz/A+awo0Om8aizHGdNAw+D6MVFEVzOU2adeVkb6XaCBNUHkNPPO4Kp+qQQ53N6zEmcmixc9ra3cwBfhxFfUIzzw3j5laf2uxj9OqDhv76sEuV5y2S6JzUBzcXBSrOYPWzLmNRSiShN/5JuVlTC+aUmcqUHDTQ8c3nm9HSiJACPs+iAyursa+cchhaQYiTYe1FGreJqoI+DnieRC11ZRrOkuCgi0848kQMH1n2pjfAD4dRV9SfJbFqkR7v0HH7LP+zFR+xxvr9+gBJmRmnm7xC99p6cPFj/q/JS9e3ypaBarNAD0NoLeLnXkvtcO6gTkCWicq59mdHPovXzIg0g86bTUWvWPnbOZ1zvKCuSu6368P2x94D8Ief7GNEqBMcTdeD5tYPpWCcPe9LPJdNdpNNN+Xi2RWT1S27UYQITcbnKtmGvxoA5/H/sVMqSUVz0GAyh3cxhowIS9BN0TvkA1s8d152qwWmWnBVXrXEIM2c2Y0yDVqbjSoGg6xZe8urx7ov36xKD9glDmwErR5rRHGyRpbM9oal9ldeuBbytE/1vM7nwiWJVfgwJhXCDsT2SAkBwjJyqlYBoLvQRta1DkYOW1TkkxuVEc3OEzlTncwDhJwOuXEEMZVhpGnnG/9I77cBoQdJ9iqXipykjFCVo2BSYYkmfBrMJpSx1gZlfjnMhddacLdeUFuvBcuW+SFrUqJRwdwvJkOVxBFErReI1hExICF4wF+e31dkKuP2LCXqklC3l+Mrvy73F6XY8Y94X4xIe/2FN17//tev4GvFbSvUCpo0c4cHV1y3IQRXyVHDr/v6+Q/+eP3XfwoLb9r6aeaXDGZGW9fl21LIuPn96x32Qt4L6+v1susWuEPv/OX4tTYBZ46pSzJol+W6lr5ir4wye7H3bTeNSCHCIzx3FeKP6UORNh+mt30s1UHGYzMaLjciPUf52KSDqDjAv+vgcc60jYBAma8kWwfWzEzsiKEOdfOqpTo9yNc0qoNV3wRmAiGmwssx/fHFj7/r+J3hl8bl8TEqJNCzAUf8oF3GGKU/X3/Wre+x7VklfUuBZ9C1oq3MnOxZOVQNbw+UaEwwfuJfPqvXtrLQnVM/F8V/uftjL1fdPQ/YeDoneE5yf/pnbNFcgDAhT573RUMNVRxZkkwfjnruoj+oD0ivYjPhfYd6qqIAWQnwipbT2aNT/90RDhveWs3mrflCcosauWWeKfcwV8BTJrg+l8rmMmhP4xQOCNWBAI1mOnHMA/X+eChNgbAvbhb24UXa/7B2ueGgqVmSwlIfWO947eSwQYfWH1EVtlLOqRn4Y/M/G7I8XO+2P8BUF2KqHWM75HNLvY/7mnRCPwls6Mqu38VzVbWGVU9XrvMg+49ThNlSA+84N8cqiqzVMc1ULtDSEsNbGEuYhDxLX0/W5hBVQheD2gCoxrs92x2zG2hOKPzLMUvWmaBKStSv9/943lEDkBrAZSqyJMGUBdKykorWrddm1UMkhaPauCo5W8wNSMtq8ewYYjwo6CDphotCLL+q3Azm7te/iUb8+Pnzr9fi2cX1Hq0nVoWKUc3Ke4cMkamIqDLH2Flwt0iHyFBsZ316JSfDjDVZFUTSfK3iulrsAVRU2qyHvauJUDejecBSNRy59BBt0y+LOzP3vrfEbS0flyDd7Su+rrWQCd34HRu+I+ArwevLLUTLb31FEbQkTeYwWEvcgA5JdjldP19f3/7X60eoIBcdqbVZIyjdqq8KVGr//h0v+o/l4Ovry18JMlI7frt9/9wGc6ZbLtRyZFbpH/1aVRE5QUU5Qr2u76Shi3EO9dBMv85IlYHYXStY7shqJMrB4N1s9BkljVs5e3W+/4en/mRJOQhvbFYZ1hN28TmoczT/sCw6ROcJmB+TNpHrp2d94rW+wfM3dk0w6ywaxgEnD8E8Ts5aDeH5EE4BcxsGmpkZEEK1K5Txighmp8yzuj3YZPIxt2ml89ihOob46iXtj6iorq+nvjURMFvAqUzVY2lXv8fjH/pfQ+c/vvvQBO2POmL5w+NIH7f/aVkx9zLB6zNUaG6Dz2d0CnuAYH2bqDlulW1k1Y84W6S27qkEE9AzKPohgS5/UhWD+mio1bBOone8+1jUsn0GHTYoSaSl8YlUqx+ojS6aJp87xVNH15tOqdiYLOQwPxOIHAzX6nKzBkPZnCPVZ6LGKk44WimZlq0CJhFxtlGfw+Y369M7FfmRyWaljequi6w/z7ZxZLJp03o2JRehcdd9F2ViI0GTHYAGgErkoTi6/aCXe7Lj85e55/aLc6AbBiGT4eOnai/VlOiMiIwO8qohoglVKrZnEShSAolwy7CaJNpQuamU8+leYj/FgUBSuqApWSObYp9n3GVLTQolEjWsoJtHAFOGul06AbSiNKe+Oz1qHCY710xzLLNKnlki1FKeRpoH3fly+G/3kiPTPEyBhrxxWZuNthk2O5JDTzaaLos3MpnTtm6txgUzX0cRbba2rwphbS0H6GlJ9FSAwsa5L0Yy7yiVkerLW+beR9QXTYF9s7QzVYphOyF5wBChTabbWi/7yq9ltEjsHd8K2B3iewtmeut6AQDz3i+iYgCveRQm6rIQnFfGzx8WWz9ery/8eC3IkUZ33NrXargSOw6Dgnzv3FtKful6/5frL/oymiEV95ZSZrSL8YKJ79/v7bddgvP6K/P71tKe466MoHtpw3GGq0Joeamx6tbNb2ZQafWows+qLiJgVpUkVY2ULftzuF3SLM3sAzKz8eVkSTWGnjoGf85au/CuKu0jrJ5oOtIPbSL6n0GhID6Kns+OOwf5w7vofBomMDnHr/dgtynhELzH/U6JUu3k/uBBxINMzCbyl6EPGtQAUiUMTECo3oITWbR1RetGQEvLEgGYVT39VCORsiq11FyberUlVgNQKdoVaydoYfxIxfVs4gESkCGh6+koRGbpiTLBGi6UUKdvU33lVrYtTf1jFCzQhMQT2Bg5wsvt1g+2xzyGrnmt/w1wKNfdBSzj5jJ3Rmgjsm14dsZbqEHZkWRk7MwrE3nbyr2rDUBiIlRK9uXdplQ5qeoIBYkMMyCt/adO/1KpcyNq56TI0gZXIqJ75E99cSe2dEQg2zc26VvbqSK9hDXuYnWbnaoykjCGecKC1edjEuhtWSkCPTSsqyGP2GyCQpT3y+YQPijkMd5DDKTE6nY7RwTRVbE8XE1DcRqIy8OrtzRoTpZEEEDL7jOeJsADrlt2lIMyE5J1Cdys3CSpip21CmerGaDatJCJqkK5K7RMVDGgMiJDkDsabdQ0TKJ6NgieQqpGmBZQeHQbf1ciVAWkIg3VpDwx/uz2DiCqE1gAVgZQTYeCKUvprpripWTmyGshK+JqDpy8q0yEgIxe3r8FwTO0S5qTJAQ3vVbitzuQt0sB3jtD2O/4n6//z6+8vQaZf5g0K8vtRIkHA3Azhzlfr+XuNHNbAYJrogh3pzFi7/td7Lz86oGGpWPpSw6XG2S4aea503zphn2HsJILl7mDtgjHxcXlUq42DmbaSxtpdgl+/eKVm9hcsZz+xa+82rDd73VnwnbgSvnrpe0AtUVb7/sqq5tOibbgBBeZ8jDkX1+xleD6scmVv/+rdrhfr0zx4r2Ilcw0g1kK8R2O4PvKwLryx99svXCZVmZG3ndXO3H5fpGB9/W+eS+BcX8td09VL5viNn8DwFqXkxaI9z4+xczdZJVWZzfazTnQ4Cj2tkIkOUC7NZHqOH4McS8P1h0IAJlqDNag8djeTzvcjGtVUrCq/3AqYCbaSKSCJbEZw/qoDw2VkZYfvT18jjEer4s+SzpMwGDm+rmkaNbthPMHUJYHqt8Zi9Q2cOYtzEUJgNt4ZlhWfW4137nJzrSoMco9cbnMTAUZBWvpXlnAxBNpW2FxtgufqP4Y1Gl+ruhQq57oiV0Oi9rw4LFI01WjJA1pVfwOtnrCBOejJFfesUnGJCjWv/9Y9wJFQ3tz7k0fWfCyFyLAGdBYubWhcwapnCejDiPLnpKYCXkTrtR8pip9piE4keBEjI17PuHAyTVMjN4L+5A7DZs63mxQ8yf5QxKZOzADAXplUZzvqdJqjlMYL6d+/45WumWI9JPHsS496BIs646u2aD6CK55HlUfak6QzkGPU/c2dMfTDo86jD4sWB2bdqBUGpHGNEP2E7Dq0p2Ne6gFfS7nR9GFJoWpJmWJwb4EDR5lN4xD8PahY1cSFcUipaorCsOLiZA7UYN6y3XWtjG02FxLq0iokzuElnWDYJ2DctF9TkS0lLEGepcUxwkXzn0q1SqB7EHkwe7NJz+C/943KlbsqUTo8yzlBmMfzrIaOGwJXtcMZFog9DdF7Py+//uvDISUEZlpNnMwE4UCIzNrasVOtTRBJ3eiIOSkrHuLwkyInZFWrSeJKmzP+33jfue+m3dPAYjga4GmnVE0lVWoiDRkRuv5VG25MmlhkBERJK+77d99AbbWWl/7Skn7jdQ7pW1JBYzEde1lSWnfu2rt6lzUQMmOy4whwZaFbi5oyy5PqCJ8N9qlNFKZ+56ZWpGI963XEgOGa329VuLFLyCwCNy/V+Ji+riFvVOZgL2+Xsz9NVNWA7FjG2zJrFSuMk9FRFGlWRGbuWmi3RJotWrBp06cbDXwxrOfPsdOPgC5N+IENfwouRrL+RiqEz0+tu2YApxoYax5tcrVeMLqDNW8qAKlTGVRK+dCzhGvkzSx9UGz42wqJmnHk1lVA3kM5LGXQEeKpmRNOhoL3m8CZOd0kD6NeFBXXZQ4krWh/1yyMotmqK7/OoJeaUs3MlntyAYr/QhBZUt0prY0YOJHVFMyAMj1S4fvA81Qqs10vO/3r18gkFg1yTTeC+5FezglmLLFoTN3uxxjSnl/b6qakJcDcFr1vbT00i2j7N7blBlBuIG+ba63nX8jrRw8NbBISBljy+QGi1upd2TRe1spMJWAa1BSZmYQPZE2YUqWEAMEmRgD/Y5YNUiat7FOVrOsm2oQAoqts1YTpEH0ivcr6W2UCZ6ymvepBOTamnJuNA1SMCXYAtFQz/9r9qBpGPbeQJOH1e68gAWHGd1ka8NMWGElCsDCoHN+mGkhIxAphiE2vaqyKdK9arakkFRD6BRd2u8+fifDEUSneRqRqxgqMI0mt01bYW6mLRek2MYMG0eekpwvWcX4FZ0niBKXrea3ZCa9uSFMFwXNu0Vg3ZVpIqOrwWhVFEprnFD9vWYLu3SAaMtA4/JVzB+YMDOLtiekOagwQMtL5If0C27q9HUiIOWJSsAK7ccpq1uTbhhSvDa4aEwg0hXgLdMmskW/2jJxb8vFVNw7I/cduY1BvI1M406ksFJJJDcR7tpyZdI2zH7+3KDcApTXXfLfr5Vb3/Hf/vv3l0Ix26+YmawW+gjs0sZRalvxwxkAvcbUXQC2PPwiuHxdVUP1g+uV4D/EO+lO+ut1va4van29tTJRvOfri3vfmdvx673dfymMdlnaa/8jYPZ+SWK+M1cmqPe9HLqRsbdo9kL++GVOF5b5D/O/lr/upPb3ZfhWuuD2Dl2bWBaE3/n9zpWLXJ5Y6b4J2JdbmuGlKuO5TXHbZRvL9Y/L6YCZMvx6bSx6BBVktey9Rf1jI3X95Fu6fvzHj7QNWebOLwvGrbSXa4EgwuN3bnkG7IpvyF2lLePsc7bCeL0Wodz3PuJE5mmkL1/uLk9XOeOeWFspOLYbK4iImtCpFAxuTyCZkLA83ZjKUm8bg9p9SUkU3AIhRFRQW1ZIiXj6TdqxwXK68LyrmSqNV4U2fVTppzCIh5kenHpKtjS+OLpMtM1jdsF4u+Vx6BhcMCzAhxMeSzmxRhWiDspgp0sIM3oNW2XjITJ31Y5VKSJQs24g+olgj0Mug+mkV0SCYgfVny4SNvhH4886WOEJi+vm1sHZRQOOkkE/1Y6ZCkdkTRc5a9lIvlteO4qeYjxwJBWyUhM1JPLJmRVzbtMherDYR2iGf8FmRHe11LMWUO+pLmoAEl182laRmDRwFw3VmO2KsaxjD/S9TLA6IMCSNm2ejQdy9gDEaibqkiM2Dqrw59AItfBWQSDdl1lkJCKiiO2qtiFQI8+zri0nWpdGsAGZOdrVHAq/CO8JXkGoCr1Tg19PrqRcZEpKJtOosNEXZyVH+ccuVyFKgKexS92vlSDee1WErmSlPE9Fr5kblPeOezG1yEeMg6oepbLxTfd8fPBhyomSvciPQcF89kg1FiGpTROpZHiko/my3NsiWX2up2SPlF8WWZ4lNPu0ds2Dd9ubd+RZidQHadSvQSameyGuweQc4kSQaGGylSXdkqGE72pFtPb9U0hOIMLpX9dvN9GuhEE9rcsJXOZyKt1oBr9eeYuLMue1fv5nvl78t/9yr9+/f9pbMDdfIEH3fet//s//6397vz1nIAgFtDzpGIIqOjTzkt+pHHDrp6KrMRv/FUv9OzISnuZu9npdXO5rXdeCsOIKEyFFbji7TRux71+/f+veCZoZapq71YwKE5MpVO0xYif27xDcacbXb6UZ4K/Xy35+2XXppgm633nvS+aZLvhrOT3JvHNjv2NdoGsg/eUOsbqO34uZud/CxmshYBbmSndeV8BeO91kyFsmMaW4d7XfagkL15e9vl2vcEhcuXMFcqV0AWSkbiH1JcFM9lKm+J0tuwR/p6+1zCzve1vwxphGa9q0JFU7f9mnSyd04/Bm1q6WKA6PrPzc+QWo9I7KRTBStMii1Xns6TgZPMEt2SUhgFKmTOT5eOuReAKU5f2TmR+uv4aJZWRpsFlOQD7xFI85ez582LITvVc5X/cqDz34XOqzLh9B/Klp+pfEM8lMODNaqgiZuTa0tDMZVb+RH5wTsqUMzoeMB+pKo1qsDxcNGManFZd7CmTmyk63pVY7aakg1NydRskTxdskanbziH3gqRUDOJLBGrWMlIQMVN2qrISrfE48DXQw3Wwm0NfFlS6LhiY/BEo/5/OgJMESsGBJv0DqQK53WamU9QDoqtYsSecsxrARUdtSnF1VJTEdhvX7lJy0FWxjh81GgyzaMNHQCReBNSqkDbJG7U0l+Jz3TmxlJrOnwRU/nlFgtA8Yiw9RfQulc4cJusZZLAouM7g3MdiskFl8Xkyn55i9B9UtQESWknSvap2butHe0CwlwDozKWwSwTgKUOjyp6I3jM7l3jEo8s1L2ZV3RcFGpTkbIJXZYCVigCSyC8MgpmjIVmCvk1TuDlJJFiM3l0HVVqxW3kGJvMqYNMKNCZZg7lpsidWM4YKBEoQZfQiDrLdOVJ0pyIyIqqHysgawTcCjMgO+awdXl0YBE1l62tpMs61IJNcN0m29YIDdAxT9Msd22k9TSOS1ZaC1lB0kOrGYt0G26OsrM8355hd+/vXX23/8sP/V//KfX7//+4t/jxfszivB+98z3hb/+d/+H//zfl8hZCRIk5pdUtt8NU0k7JBAc6IHQGfeoKhSGu4c8P5+x73fkTsuFA3m7m6tb4W1kLk9496XgRF3Rt7f37/++79tvH//W1qjwkAY43sR2ClPXn7xwivv5NI7sdYuxeyLpGDX17r+ui74vklYfIfeMiYjPchlsff9pUy4K7VeuiBiYYfs4iJc9r2N2xxm8R0owlkLrLS0X7798ncYjVthf8s0MRi66al98Y714yt/LOa37XvFtvX7HWZIvogvwOyW3eGbV2pdnv4j7/i+b0kZRf0k7cJ1LWSGdu5xFjRzA32tQkGizPV4F7V9hrpF/bjQ8hXe+7idADGjP0CylFfMKDPvmObx7qCU4h/uuCgThZQVRJuQCZmlVBFAZqRlRFJnNl8dh47KnyzhCQjPt5q+/dDmKBdyYAGfGAmaBdDQgifzN7EwmvzFWIz6jI4oWQJ/1gqMUCqMuhUZ63z8CQZPKIoS3OpelTpCtEIGiEpFoTPtZTuO1xovzc5v1XOo+1rn2lEi0k/8A3TEgkloPox859oOtvjDVz47oppiB7Mpe0ZNITpNVfgx5M/6o5fO0qBKMlDmCOt7SqF43Urzp1XUxw49wCqFJlg59DADKmg1M8hkNJnZbNMDoM4DLRQ0mt9nKTkEwMMQDLtR3n8wwlOX1zsFEpT7vlOBoqTR3EI7d6j2DvBxdtTHqroEG22ach5hba2DIatfZ7IKHQJr/OQ81ufix882lAJ7wpRQEybqgIzKSMPjqqJt4Feh9bw/ZV3hnqC0LUTUgKNIQlG/R4HmOhzNFDprlJWTaV0uLVXL1eCOg4KkzPAcOFnJMJjXxX+ufY201F6CMpWGLOG5zn8jyv1WOw2q4tE4NIrMTVC2bkwWOBDTFO1yE6eqrLG1+pr6DB8YDdK89x4mKoEUIO3Hr6PlVwX2KkolM0X3TYO7KF7fySpuuNZauK71H/+T3n/7IX5zIcxWwJgRjAz9H3YB0rZJOq1IEs2ICNCYEYrH0vdF19gwHdqFgLZAYYdFICW6mftaa12LXAYuc4MjrEB5VhUhM0K6DW9kuFtGZii2JZX75UotX4CttPCftusM2VfQl6j9Mrhfa10iFNoRsO1wwZT3RZrW/csWfqUQv+luQSZMyKHfDdfLmL5eQbN88wsRDn2bhcl6qtQXo9ivzMurnR0L+xsruK79vtbXvX6YGAEL/+fv2Ct/IeDut2cKZnajD9OK9bXdhHvfuTPXjJOkr+XpG7ljGN5pKqrcVrVUNk3yRFp4jrxNVcdYGU5Y+/FaezoRUmNX+gSMzX0KmDAk7hOltHUcIgTVTDsOoE34UHHnDQrPPrRSfW77sv48zue0QFH/rxnGqr943vfDQxzj+/ndvo5hUPuiH9q3bGnZx66ByGRGEVyJCjfnHThmriULZV3DMXZVWfMMTpnLXM1T4P3xzP68RACrU9BKUqbmKarOUx8xUaXYuwE0e+RLN7xUPru5gWSN4lWiWzYSKZr39WRLGEwiHROa47CQbY/Hp49zIUkbNYfps9DYOanZ7basjzetTWDmQin3Lydc7nS56CJM2DKMqFsvYD3z4aXVhUCaTdiurIOYimSyN+Hs4XF0beuy2mOyvefsHqFo4D8eFnFOBqcuCeUni98wCZaVYE5Nd6Ua6yhbbEFzL32oHyvaMHL+8DTN8SCmnEzNgZ/TdfDQBvPkSrChRkLWaL+qzutFq6bXggJJdRkcVEUb/eFIwmr2ULtCshSv1Rt+ygvnqlQTpc5Sm2dnsgvizAC4Hj4MQaVl0afHFCSkjIINNTGmbsh6UgyS1hO6NWwNiozLgh1JDXICi57uFaqGsjEW3VfUxq/pmuZJ6kepKotT1dmZaHTNXGk3dmGsYGBx2ZLMnQ6kzDdIMuEO+/nXT/2ldX19/e/hL1+vkYOCyoIae/Q4KyvgPht71G9YLzzIbc7j9QYtxcwMRZRgnxnBUhE3LK/TkU2z0y85DEBe1RLkzrwzHflFgLawFcnElrhSTs8gsffPf2TVRNHNr8svD9KkiLzw/SNxA5feGSb8zPixIMUOrxEnKAgYCl6JJC77ytvX8gis37b2e/8U3l+vt/VI+8o9pWUgZeki4Nvs9c/3X8y8GfH9l+TmLv6kCE/4rzfi/b3W3rpBpGeamBvri2Ffr/21j7pVidZDYhfE2xnHe2x1+qQ0pD/cT5NKEzkVFD3gv/joTPWEb/V/mqi2jJpdocFhgJREhQQ5e3zMcz4mlx8lwjjw8lxZAck+nrN9mur4RAMNJSaMGe2RaeNF9widJuCDFjAv/vC+B9Ye4/kw49Bjv3GKb5gqqRBUQ34YETXqK1MV3rN9C6fAso09G5gkxR4MfExhWyROcD/ZQw0u74sYSwRUFXSvE44hOz68ar3mEVd743O/T4jfhlufqGN8Rnf+tq85oWCf6NNkOg+pbqDKkQ1TXfqECmU5Obuj+5/w4b6VR56o77dcd+l4GKwkjs1Msk4TAygd5nnGHZc8a4Hz6SgPdW67Nko161k+q9Eg0ey587ZuJ9WISqQYJ7XdG2meWTu8/l/v4hwo2CWpqGOk7tjvelVUe+6n0hW7GZ0145ed21TjwakYnZf3CvbKfmaUOYRH8yHnmdfl24xuL44qrZXBypT8sQ8HZzwxVykeQd0xIZRXBqghyqyf8gd0b88wu6w8YwYUwRyi9Rzm00RBCUiXSgHKdHYwAYW5VVbDqr4OYw5ri+RHVTeeT+gaAH7clDVEPLffhQmdkjUzd19eiWLRwIS5WFkzM6B5varvE8jNcXlEZhVHSllm0mGuRQMWf8Tr62/73/754weWu9eZrfdTZw4q6BJr8u+xHk/bWoN09SDtLOmOkCIQAeXe3XGYEQpQNQFKGskVQAnz0GDPaieGIuRQlaGUTLc1Pb6N+NL7tSyxKiljZu7X9brWosxTpGzZ2oFMMygoZAXlkiUWlsmB6m7rstlid6AUouqkFZFiRE1FMH8tcU2DFxKkl6Mg8w7u/H3FG7voA6e7Ydvv9zJKymCUYEhDZSnuQGJdrx/RO6HvNCMan2h0F+bcDWU4J61F38eYdGRRgjcHTlfEcAIbHLhYUPsQo2NMxqagKrFAQhEAsmaY2lTEV/F8VrNfp86CQCYyZSmObmvVkkqHkgSP+XocZFv7RtLd7cmOIcYVPBjgcRKPe9Xs1blbnR9WFHSsdR9D6152GSbSauogk8WmMLOYrg4VCJ452CeqGhTteT56QEgH/ZgcehPiY+qesPhY+xJgqdivtYWOkW2neriE/mycSUCNifq1g+p5LBVRSPv0YpVYCaoTeS75w8N9PJ8nhu350hJKfqdekTWjp/SflUfidqKseWJ8kNIJW8cwzmPlfCp7GwvdsEDas2uecJjtq/i8ey+cCTb3Xw4YLQjJ6eWX1Grpg4Y6hGbxLUlGrXt74UqAKodqbWq5K+PP3ViWk+u7nKHrn8s74U4ZXFQmAHgA72lN0Nl7h9853g3HKMzCAqQVH+pm7t6daXlOuNkQY3YIp3N2BiUOyHrIm+wmHMtPVA6VRryyVOI5Vuscw7ZwGTtYvrgVhbr9IKmPrTdnhx83SIt2PiQKWbFmbw1UbRSkk2tSP/MSuD6nvLaeEY/MGx/zcKKDYYdpqNKrjv9ZHQtGhtGsqjLNKmTuTf7goEhU5RwIIpWVXKOZ94GtrTIhCOdE2mzh8cdEy5ugaRRla4jV1t17R8S9c7PBBVtLImSCIa3fxQ4NpFDUTMxapuwGJ8QikLsnqZJQ3CrW91ouaARjIDrEYFZnvyHhJEvlKklq/95bkLxrjJoHmZHWMpNSir2SppppCkMiAm50W1esNINDMBerE7QQIP3yuOOfX8stGi7Qvuz9w//uvhRa81jTcodKOkzpRKOsQeITI/QNa47VRyBksyc1nby0NBeco81Ru/OD3upD1o+xMDJZpzJa7KUQEcdG9vXgxHB9FMcN9inujaoP2N0HOKWZtP6cwXrfOWTCH//5CLue/7bT5Z8Bx1wgjit+AMYHN9gO/pPvxSSCa9PzCPP2iX9iHnYDN0xmkMHQmNsIOmroYK11dSpWda6d9zkSinXT+vNzKuCd2P3DC7P7gGeuq314Ko21QMsm9yMHjGY9hJnjasc9E+OJ5wdskG+rRoDnA84EqKqDnjU7xnfKuh7TO5HU3FpX6I1K8WOhE6YTmZXFTaWQiCAiZpBmZmpErc6D4uPEejEn8KklMn68boBHm+5nRYABqXyCr76lj4dAmqrNUGzCsT6sIQqJ6o3ErOXnZlZUjVJN6I5QZTSEyTAD1V5QdQM2+mO9WTvHVQElD2cwZ+RZ/+iR31MeCEVm1Gjx4xIta9Yxsu6o8KmjiVTJfNx8mnqEcR3yfM4kB6iDR7qlL3WmYlRHRNG/tRMhSRGxQ2g2oHRUanJHH9vztIx9WHuPQ13ZNSijsr/dZlmLnvR0FkGMMsai+XRjH1vTm7NEgorNTm0PMsyiiv9ze7A62CYqSa8aJ+wwmMA0lzst2Y2gEgC3rsqIcsM0AJmRDPIfP37/4x/vyDtRDAjTnMuur9f1er0cXtW1Db6OcTjaeILq0eE5UFJ1XqmOpERlxN7M7IEQqj7vkUxMU8WcBGnX621uAC9fyzJgWMnXtd3NzN/fCYJe3Y11cgmIed/59SU3gZIFtlwws0Ultrby930jcnNdukx7AYDS4g6mQK51f1+5Lpms97iz+sgUZgkagikKaVkrtu8SYOWcEzIjkwGmwcxjbS/hhn2p9RfMvmxz/9JKblylRZbbmWQKmdr3+wW4l7QJLUti2eFE7Hsj7ipTLYxYrZKlCzCjiGZ7Hn95zNUYJ6KaSsx4KmXHUBraYUNtB56UFLqx8fG/o6DXPjcHI9aPHtM9GZn2c/UJHzigzpuRTwwy5pR96R/3UX/TMcgT9n7GTIPV5x8VQ4GuSDoOHE86u+3TmJba5+ikPnsObWH6IQOgk+XiHx+tj6v1ypSN5yD5BEgq3DPLNW2ls3APQIEWCZYpA+g9bxAQlFlyiJ5d6zU935/DA3DCDWZOJJJZv4tzuWbmZt4hNUiYlBl1iB+3T1ZumfZRiHc4k9BIa/UgSuFarisQa0y1WUXFOSW+JY4SbVrNy6UVtDEaS5tIJj7RpJ7lPmZIqiw9jCVy1BEjynm1cH4Vh1VuM2k1X6xWhkBFbCcoKNc6YWhV61gV2uXZvRCtc4oD4MqPJ5T0TNpeO3rCOrVjKpjLAava/dCtDX2H+cCK4WHOXuq9OnO/lRnb/qTckakYqDohcrJGI3tSYmTELoGl4brq3wFRY2n7aGiwC8g0IZlOWBq9mDcBJKJK08u6o1oF13LGiYsBRWSkIqK4+LZOCoFyVrWDUjTbyNIDyuAamztYJBOWKWyTJfZb5tXVbeys9LZS/ug4djIXxQIDhLaE/d47BPcAlcEEN/a2UJAVljEZF8wy9ev3uy+k6+BBsNrFEEqmJYSd+v3yDEvlrfj+/gU3+7/9v+///P/+43fevDN3vmW2vl7//s/11WJfPL2XByn4sTuJiKpuC4OGScxkbsXmUAeyzCwCguYWZQx2xN687+CbjLjvXcxtt3Jl0pfZMtDXj3tdl0oxM2Jzve7wlYC2I2FI7PDQL/z72xfMfYva6pqdvJNbHvmfevNb9+va5Ma+EntpFYRIwXwlrl0fH5RIW2a2yep0cjPcSr9W2eQIeaa5SWYrLarYlSSrY4GC27KV1MbO/H6D+w66u79Mv3BtGJ1g3tD+0l6EA8hbF/L3T/gr6K8i0pfTpP379+/vrd/fenGQpFIRJin3quBSyPQaqyUU/4GCmpjw7bgIurUW0nOsgYiNY5KrVZEdlRVnh8NE6Xi2se2a6AOgpzB5YI2JBOlEtyd/oDe2Nxpf/niEJ2yz+ZxPR8thQCdMwfjQEwH3+9iBAI2mB6RgjuLBlr2UIG2ton8MYuJa7lUpBrqxCrvHVVnlpifqGwKDLrIKmurth7PslHAHNFPaM56EBxl8OOA+5PVg2DFfl/GIoHUEfH788AH9VhVenmM9WcVau7Hc3QwLYmY3dCPEKFyZWWu56cO/84OZATjDfqoaB9dlWFaaJBVCkkAynz2JGjlYp460D97z2KFyxlXGwH+hJmcb1Jad5Xy+Tnny4I9al6Y8K1qbhOV05zUEbLLP5j2rG/cDdfH8w6nFeyJ1sCU1hFG17PRZpYfx5Mrb6MjsZFI5mmvkqA1PEVaPmH4ccCZ1Ft5KY37kEwfP1vWP0RYzdgRcKJJDMRyWNgBksquROjptYGzlg9OMdHphMYiyPcUEtbzF/bLJhE5edoqq7YbY4AiiIlOyiiwyESlIUQJ7EXRwoHAVCEYirCdSJO4turyi4q6MSGutKA1dM1noecQJqW+8YFlxXKmM6a7KpFQzVw3S93/mTxYjQRrhKGnIrDg1O1/okeFGyAjdQcWG/ts/7b3v35G2FamE/OvHz7/ddrEHKraZAFjdvFU13qUKMoMb3YcUaFNgdMimj6PMylSBYdOb+83+AjPue7vRHFgkwEyYwb9++7VeZtfy5W4muEeCXifTu4wvcOc793sJr+W6vhKwyOwajcB7Axm/sRWgvWKJG1w1XZyEXURW198e61SOywvTpNy13LGTK0zbEHvrnbZJZAQ8N0mD4xIK4KWTef0VL74jfXn8urcikPuVtJf9h9k/tpmLCID5iveVugKBe3+9vu+vtOumC9LymsqVN7/vkPbWSi8GIZW1SWOHZeUnM8OPOB0JSpV+G5rqwybRsrRr8oSTSu27Rwm0YaxIQYJkHBDdgWQzd91S2tQRLYu0kVGqzPPUSoFDkJ8EU7F+Vf9i0qhlnU34WLeC+jZs2GNfy3KpazY7DBqyTG3czi1NWf8JoGvuS8mtV39np3J6+44ZPRPdnKRkYE7ZzkMUtetsZ6BTGPV4gbIDmvqtEzWio51zYx/lPphhDB0UPtxBv3rC0gp0Svt7pKfbFU49Tzm/Kr6Y+nGOq5mnMm6jQUl9hB5ygHjcT0cUVU4zhGj9M43PVj27VjznrItUfKgeoiYxSefarGyXPsEtm3Xq1Od5OnY0QiY8R1/xod/nXQck9bqfbaQnD/svuYEhlw0tkKfBi7M25z00Dwji8+0CVb0y2cVo6iSgngafOVrnYTwP/HFoE/D3p7StxSy85nZZvjw+0UCdNbYVr0RDlAphRiW0mdHDfpByBxSAUZNoIAYGNcark14zrIrOxRQxfswB1oT6jTQOHcROSVYO81n0PsBjs45N6H+elSXANlBKaYf6fXlIcqmphjqWJ1IfwMg5O8/mFymrQ/QnXTc6ezjoobAZzN3MaOlI89LCE7oqCGDzk0rE7b6BDFRg4aA5SdLJkHIG1c5CNSlRW0FqPRgI1VvfWznxGM8mtyIjdrBOVtERTf0DgBG5N4RIVVU2lLZehEWRwH6x1Zw6C1vF11Z5CiqTiAwZlMyIuH+uXA6XfX25AYrJNxoE9+7gQ9xf0N6NeGVcN7u9OWuIWnkkM/PF5fl2B7VD2vdbCyX8llmdagC4FFlbz+huuK4f9pu+DIjUN+Kg/esHX9udQauRjdyhBMOQ3LuE522l0pyYyqOIqJHmmX4s3wkYdXpola3M/3GqT9j4UWzRP8ne4WXdxk4Q7TKNXRN5ChjI44Y//UNvlw4W2x9Yzribg7/7wD3Ykx0OW9fQz5kbvqj2XochdXH6+MCxoLMW47eOvZo/VI0CG3hXmYXa4hXsneSaOHFqHfm0NotVlgM4CesJc9bqCDaB+vG/BxhIkR3JaZBAcQo4YLxezk+ecKxMxRxY87CFLjHqt8/MZqT6wTwrPX9qazOP5cSTY5OBEcY4nr33DdAlkp++pB/n6Z8dKqSzS4kqp8gSmERNcJ03ty69retph3Fgh5QN6lRO54AMdToQz2yAIREObgCaVlRPhNFTtPxE6kDTkWcjzwu6lHGyJ11uIxSMrHycxq5PUJcPSfP5p76jnvoUaWUzMqocsQJQiFmJEVaYNb/+cXIL63wgzkaVxOk0UrkDQMpz4EAmoagTI348AFbTTjV3752RhUErUyaBfVLqFEdvjjYbg2hK49nErilHV1okDKSyQUh344KVfhwETwpd7YgajnfOMs0k7XLLpR3Hkn/tCh+ezQAzQxASu5kLQZQIJsCaNj3J076DAdJsyd7KHggKVboD6o5gr4RYqZagNEkmg6rpHeky8ArbSoi65EsESaZu4+KgvVR88/W9M5Ig5eakLdLN3KrHaHWlbeVPMsv2l7evercCSMdilG0JU7pqR0qAIvd7h8EFi60fAPfNaoVDuBsyPBX3C6UoItjXX5G6LSnH+jJCqaVfkVSKi5mZtt5hr0zaYjC0/h5rxff79rR4Xbczfv6Qh+Vvy9jYJo+EA1jwG1AG7v2b7xUG/9q/18uZmQgrY4m9pIwfDhnc8/uFpAJK147/uH73XjRcpqkrrQcZpsuub10/YXDfcSF4L24QbnTay35EUZmRFvfXyvQIyzTle+v9zpStzDBKUgR9K379/g7db123jy2fSS8fmZs2hHVOzGwqDycyOLFj2ax+FmPojoXuMKtUGEhMGQIe69dA9fiO1IBL9jDQY4qe+A/jTDle8lQB1xGVsvqVxwFnto35l6+U2HPKcm4+yc7rdeNPm7BKVbeNQkfAVeJbDy+Haq+AQep3KbVf8aO5Sy2tBFIFDkuCu5Odf3LfdXNZXqUcbylUqUzoAKX60dMoouOwoR4ltZLlngSqNSMhEBHd3Dfm6/E1der5oLRZxsfDzl8exhQdO9WzS+uC+AoQTng1kcwcddQEh8fXsaMPTGXSvPr85mB7nnBuaBd2m+UMXp2Fn+0zrmpiqjaXdfkWjwfH2FvTgToULXr76sFhx7sNIDlLo88NXMjhAQZsbdA5XR2b9B8mEgeik+ZAihMDC3IkjSb67K8HE/QWsJnY+nFOOMcDz+PA0AXnq7LZsyu6eKwsFdmFSbH3vSMmDnwOf4db/XF/7MzP+H4WT62px7OQE4s1oifaEWKC5HOg5sWNolG1Wd5HUchnRXOkbB+s3C+vxH9NLDOveormb2qIUS9SgX2JKJn1LmOQBFSR6oz8Nu9kz4dGhyK8tmlxhw2GSojbvNeuhhHShJKzXH6zG6EztL/Jd2Rsz3GfES5Gxu/vf76V+OAJ0cbusfF5sgS9gJ2cI5+jPg9AmR4iQY/SFZpfJXARyJqLYH697nAD/ev1vdQoai26E7D9Rq4UzVAuIdOIVLKSNplJghZC0Ghul4FgbpYCC7x4FxAKYt9BqpATfaGK4AJIZdgUULIXn22vsSUxd9RADhF084Qz5Z6BDBFRCqoLP/QD5ghFaF92E18JuP0w+xm35Q3ehr33jmSmSztzR947QF9h5rssX1pEvu8diVtvuzRs08fDqcRlI+vDr3IQ8jySpjXK9XBiRD3xgJ0z3T0sHFWWYZ/qffvps7Ftb27MIcdsYpmV+jQ7SCTQBFaN2KrYQwU1u/DCpm2j9kqHjBi/Xx64x/lUpYiNOx+qeRQ1j+sZezUur/50hDTa3OWfI9H9FOkWoUcIcHUIcFxdX+C51L4gALKyH1OPoyisnx3nZNMmEDQlzHVxrMKRslfMpqA1weNZ4+HT5umcV+C5xhGOfsz1AUbnHKMITfZB6e9VDWJ7SDw0dm+XDz4Ck5Bvn8Mqzi/05qp4q2s3gTJRwmlMYgdy2VVvE8b1ju1Oap2P+UACoCrfkexPbc9e/+IgTCir+AgNdg5spVSjCRuafQacB28eCAZgtvjEc5gjNKtU/o+Na3qhw3qrCMOqT+XDOOrxv+wYuxCC+q/lZBp3VO2xjZusjZ7646GagWeS5OzUORQtQxoRESR73m8rsAGgNANzG4H1k7VheqZIzkbN7HHHJQkvZFTm6sEX5wZm25bOeDJzR6YiqWRGz5JMQdmzeKDdl5KZsCyfGzCU9i0zI1eqe7ZQG1ThU8+VU0t+dj36WVCQipUvzUrWbOQkme0IbPZSSvmNbZ4Zu0yP6TQvtltCaZBXZxAsU7kTici38DZlGEZ8236uv/564efix2jh9sKF04lTYEEerAUozmiQfq6tAJqZGZKQMHMvvZSx7qCZvTznMauHlgTMYC+x+u+so/rM7PF2osFMO4mq30zJKXOaEkSUMuML1yW4MsQETEYHF4gMJRGRrs0Xq6EXbkiEQClhgK0EzZSwZTQgt9Nz74U7kpRiQbteUz1AKzZCIZbmo32ZvX4CP8LyHVHyLfFtuOzlur7Wdd9aW8pQbopOU0bsuO+AM8wuMQOA0qFkpAr6jDJe7aPUgM+PMPGjtmXszKBLfMQxoFJZRdq9sZUjVjdIu1TjRYNRNV0JXWfSkcyp6Snar3rwTHBTusyk6c6jvN/nZCmnylpP7egHtB5cPHXDE7G3s9XcNlTWFZWOzqLfIJTcUiZQ4j9sdcyeJT1miUwGACKqYIIopFvyxUhnAgGhcNr4hWPZRifsxMmdarbqN58cu4Ao89RGrvLWHQFn9xBpbljqRYaWDn3x5xcnwnm+VQA9bYztE42MIEEPQ0Bm9+eCIz/SuI5QttXlWN5/xR2PT5pItBednJxz59CKbixl/664dH96oNucC1Pm3WEXj/drFPWhg0GiwB5m/Spysc5W1n5BQbpZiWL9DuugZ3+1T4JVVkoA2WoIB/ccoCaiVFrqqk+TWx0WG1G2iezb7+XoLkM1pUl50KRXDNM3JqIfR1/lwCliqJS5RkrJaDZ66mTDamRKOKMG6WWpgBd4OBcUUBEo4eWAyZ4YDnWpQD+jsRxd+41GTYbCUhp3UXVRn7huLBEUSNbbGisiN1c7A69BsMCQ5JBQg5rFTMt0BpVZmc6a/Wxpfc9MIQqExcj0nE2qzmCmPJk6Oq4TRFeIQu2qjCVA2Moin2cSNtu5EqA2oV1dZeqmbpPTaEy7ZB6NkOm8RKMHPanr620uZcK+fGk5rKrev17rv/ztC1++f43sdK2KYO7dB2BusOVuaVy+qjeDqE/1eWEl+En5WraWb5r55aSbr8V5mTuvlwBlZkTE3lLEjoVI5c1vZBVkUMxbSIJJBS2rVYGgwU2QE2m5vxFkvsy/bP1Mf2UAGekFFuEJy6oGKdOvzZXHxlQMaa1tRKeMlkkWa6xMWUZsMWVkmoIbbnZANC2dERaeacIK0Z1XzREPp6ew4XEZwi53e4f7bo/5wTbE3lrklUbTLSgS6Te/d0KRyt2q/x+hbdtNAKesdaheaUpdpZqRMA7OyLHAIpPNt4bPvC6dKEPCETqYAKqdb5vhQew1Z89EV9IrvCNgNTNy2vxtetiq9ajeo3ro5svG6mZb0wMuYiingyzamiZDjf4mvKvzadl6IVmEMzQdKd2sZxPRM0EZS6U5vGbHF3ElqFYoMH2uExi21/z0gOoUTVK5Axw7DNSn67i0pg4w7zZmdhjB/uGyJvbVAW61cMPCnWaWpUUPYLqPur2+hWxr9WsgpVhpugr2ePbO4K1CBsAQHDFXaDo7AAdttH/vR6GPb43Lrz8dx1kciNlgkvr8bEw/ihMywfuqq/kIZLUXVUhwKvtASN5DDKrmrI/ksJ29STU8xVjnPwL4UTpXZ1vocFZXAyvsNtr0gT/GvfFP/dtogncdGfrSEqNVtM7tsqZBgp93w9kR7Z/mI4YGrlA4+3lVMObT7YwjCD2oGV2Ghz8Yk7PFACkjMpRSmBFK2KN83iokkpoXOo/3WcDBfU9X9FNFNnFvLaA9YfBTblX3a5xsuwC08jfaMkvpKjybYu5gGBPIRMhAMhMz/YVEhs8m42zVwAEwvYY8W/KTtarnmCfGUVGLvZdoJkPpMkraBfrLFa2WLieNl3gV7AHMbIW7GwxG9xd+mykI+zKjLZJwM//xw/76ty98/fzhfrOqpttKtihBVyiYOWlOd7LELaO7WChWo7Mqa5SREtdLsuv6+c1XwJxyb05qXZcljXUTxHYBohNuQt5wSPtlALTBFXAiwkxpG2CVGpU+lgJ5IVDxu13rBTmDEZmELdvLFsIjNiTRSSrz+vmGXVisOUzdogxzGMqcBVT9K6GAsOOGcl8EWIaUFWKllFjMfV8Z2wOyS2Y/kC/cvDPeTAeCFVGFfSn8vem3qjAD5jWpRnm/v21B5EqFgtVTlhS5MknaMk6RUh/obCsLTA8H8C8HjjUkAG2hPk1lx5nl3aKGrVmHSL3/YrIQA9LLEnckcYzv+VhhmEqgy5ikI5lWID6jHG4EQTArsMTJlBVgz5Po6TnCXSn3Edq3mO2wunMlYyIr+2t1AXbKOAlY/hE4Hg9RAhbVE32iO52BwMQk8f74R9DJ1pXJoEBmRILo1BL6pR9XyMeM/Q/X8nyts97AuOVeF82DIj7YCKjLz6c+67E5OqH1R+Vy2rHUfeIbJDS4qPvvjPAfMTH+5arK9M5uQz+8gj9ZfcUlnhbIEhhEIy6MpUkOAdORF4eFnXhfpzSpQF4RtvWc+0Oerrt/eX1Z+3qaQCs2S7BGthXeZaBbszsyK8ioQUDPIqEL78SyI5piptp9M6x+4tZqO6iAvxDSmUz9UNDDQPcuR9MVGMzZsawtN5eJlkdtpwp5epen1MX6TUUMMivPrIzckQoDPrrCNKxa0zNR1T+1tI+g3tmTWYkEECY6KdlBtyiRz3bStFD1NvW56odcNWg0rUhfTtJ7iloHxiCEmiNe1fKyBCq09dLTtdZnh7muKpeg2Nr2/Q7qlEpX1YmgWTbEsiBqdAhNQQuYR78Ibp4O8+siALz73SpYFVWr61qw620hWtUAJGEO0mh+pRlxS37RYOZ0Os3Xl+y1cl2vLjRuZF57psUnuhSy8tCZKGOkM3gugxF5HIGi5KsS7stB23V+EjPLtpy6BJgvsHp/KBB3fpfpJwnEZkDdhmdww/S2OEEsg5CpwIqU6Pa6uh4nI0ErZxlvv7eo3MHSY4KHmWMtmBARUjUYmpu5zM1lxpVmdtVKWBTYiyAzzLigd9k9AwwZyfBM0vxFf+m2ZQK0l27Yrm5npjuSV+X2EawZyMza/Zkk7Mpu6tTHV+5QRNnMzEREMDMjSvKrtDUnNn4C4j4tk7Xrv7T9ULtfSiW5mepcx4QuzfBVUIf+BZ1CCAmZGTk/lFBzFMvKfYQLJwxiw0N4yeIVUCdc4/tglQEtUwYgKUtLM8BgNcq+hg1rQsY6VvhIIQ6VPgyZ0XQ0do0957jyLPRlRq7lfi0zvyyMP378sjTSHKUEIE2eFqzcURmRzkEPDuJzPeU9mllGgZeyEg1mpnrmKV/FUI6aXwYXeZj4Zz1xDNh48WPpaxpVx0kTahKHNhk7Ww5hjH7Dp9kg4Hj0fp7jaeeLH7DgX2BElSEPz6zjXSY6xtlWnzc2YcvTJfbhNGe96rGqL+9Y94/3LvE5FPboe3g+GNNUk0R32GCICB2+Y47ev0K6s/KzowWgK7A6l33ebf7Fj0/o12o8de+mdtNnE/zxOQ1jugnt43pP3qZOX0683Pf9UUo+rOgf6izKjB2ZvVoqU6pnNeaDi81RTQCvLoJ/WY2BnpxrAYB+N35snXn4B2AVbFbpNRU/VtRNFyUcxFe/RUNHrVXKgl4FCjQJRrjVoIiTRysKD8Ob/5nCx/zFbN6vOvQsaRYTtTQ973aZIO2zYKhpVCTBSkkaa0KDWvRgChGrOz4D6Kl1mgyc43LSUu8Ongrl6SDc8cr9Nq0X28a8Yp0mu9rmAIAqXl5WHaFNpNR+dWdE7ttjg7TVfWlEmCEVbokqwWVumu1qLIWJplhrNpRycRdK8Aui2dLr2iSoyMzqF6eoiJ4l2VaZRoMTa6WJEZFQyoSWH6Nh+6K7w1/hAcJuOVhSMso0GNEUCQkwYntuT+JlhnUpba3iKqwabg1g9VDBZW6lBJvIAHdt/H1rM9e2lFuGAiQ6VZhSRj2Yh/B7rMDZ+WNn+gd/RlsnauFRlZ70ENp7jy/pZ9+tZw3MjkE5ycGJCObNu2/OanNW6YjseCWi2MGSIW0fzE6ltcc6lFnJqjw8ILpKhPNGPAH5H6ar/nwyin18P1ehHU6rSZDTnTxGQGbugxZqNUtX6Czv57+fxzH5zAqI9VxSvUQnBp4wdKLK8g+T9fy4VlSj/OdjJK0Zn65pZYc0fzyLc29lha1acocgaWg1vrZQei2BCCpZ1BnYYqfVn3GUOvttpmTrAIqqzdHIGX80gk9P5bxapfPw2Nd+5NAQHzllReiF6jUUz94ei3XMvIaSeda0372lhYs1eoLJJ3V99nifozoKOk+D7ZKLy2H+8cyefFa/+OMIVTzbaQFw+O7jUP/Ueh6Q3BZeqq6XsyMmnusN/FED2VKnJSs8LeGch8VyDjROM+CQwf2hJmhGfynTAWVUge3HsdKHIz1Yvq8+BZ4RPbWAB/9kjyjo7T1nRrWNxhH35i6HBjMdnPlYhbZqZT1aP682m4HdByKVtFg9IUe2A3rcLs+KVzqAXjRXxZpMmh3axGg0p/laUEhEVBY9a5Bfpcc1CQ6WOK3bSmcNJSOE0nCYx6bO+tT8EcIyY7EwcacNaw07Bq6IpD1BtlrF2Wrl0uwA4eI6Kmte5rbcmkHdYWuaBAhfoleEEYTuElhZMJhB26sSykqoO3Z6gAyTYNtwF9vsK7mu5fLuCTmWlwAyM3ayxO8EXm+0gYVfPZANVcLobsaar1uOD6vKBVGWKbuQRuEl82KiWQ0kQGak6H8xHHTaxVsBM5dCyB1G+EXoItdidDG8EjsRsbe/EZZ0mhmR+77X7dvvUo7NnTuLxckqUojIzLCRVM2ouPjD0GSoqG5kB7HJbpE+nqlL2DvkGntj7ZZUVoJkQUtCRc+VoENhP8LgZFoDu7WS1nbCJLMkPYy0tJZONZtxsAaZPjOpx53WuTzpZh1/+bjQ8VL1a+2Lyi7yj6CivdiAWpu3fzBFQ4c6E2u5Z0DM0ayHBEtaTtPQEzdVhILK8taQmwoZKtCyPLYO0Id/nVs+mIYf1zqoA+vDu/8Rjj34Z4D8iarOmzYuItEVQwdKl0WaIPM4i4+P6ND9MX2YcLRXUh2UPmuYRjA7jNGUWj6X1qHp88n/8tW0xccl6IOCHuv7LNVEm/3vcmFlXp9Y7wO9/ImIzp9rLQbADPeMRn6f++zs0hPXkeNH8LyiX37u8bmUNtLnho7ywkdW4aNgWClE4ZGPR8+PT27iY/Djcyx6S7d7ms3fJruPh9Gaxe9L6MzO5Fv+AJoYnF4FBMfYd6bjj69Gg4KNVMrhes6tt7HpgKhS2XPFfXoPidM38S8HqO9XH49gMi4fwGFChwFj/UTmVFXbG2vUj3V3DQkoRs+GA1ElAd5sQCU+snFwMdzuAUhWZcREOg6wishgTaBQymaXeeXelD7FECAetZ5Gg/WXkJQpWs88LLNsBRAM9CRHB56Ama91XWlgC9GhstNfy5bTFt3W1ybW8jBP89JTXnstA6EQVCrBU3LgCKvOTTgSuWP7fTuN9MtKKAulz6fBh4q4dxoyNoHR5waAFGM3eaNGkaQZzfZOETXwUpHFfvfjyaxRDzZhRmGusrnvWBHCotxvmUFSvkld6/KgU7aIdTHT00WEEImMO2PbtjCHV3CQ2IrIXV9F+Gu2zGHKMid41SBMPYfmoR17++lA0z8M62yz/pcZkzSLPtj19Bpjlf5Jb26wBOrrePXAye6XzZJOqe8V4WxWwrePueio9COO/Jez/GHBjoM9N3VANY6ROefu877HWNiUtT7GiHOQOetgNHeP4ERjfbLZxkt/XKrlMGWVOBik3WHRh//kibb+uK7h7s53n+ohAEudjkaHZKfSbLzrn08YetbkD/pUUCll4PGmp2AGrE9JqMckHE71WHrp4w1FNGI779dFjtbVsrJhnh8DfHbpRzAMAfL+aU6M+rEms/6HeOnNhnEz9nincc7l5WdPPA5Qx/wPqYJ5m/No5jD1PoG1q8LwAX0N5fZYUl8c2vfc1vMs6gZSf97Vx2c9fx0eqq/9RPEHGs8S1PPqLrOqY+EEdOqe93Zhp+KsHmiNVZ4nMP7IPmr5ZjXqalOy5z70BxQowFSIBzrjEnR2xPxvgM34336kBK2iN0dJO/Jg8QEXHeVPHfyTTKCZ0xCz0jS4z24kCWsJP36Uf81bnGyIQCE9K7rqi+1eQhZf0IxODbAzS7EIzdryHzS4rasogIB0OvkAmLVyM1EKLHnVY632WkD3BtXSRAe7DZmA3gWR3oaUjQzMKgYcZDNrCCXXWmtdl60bhNeVKGnEIlu7WjXtOSJ2hsX3N6J1qZAZ98a9ovnK6l2pC6YzyEUp9x076Jmkd515TlV+VY7k3m+4K7Wv8uVuUSG5cEfumONxrINRmW41HwQQrw1bcJcQCZpeHLyKrGC5rKGk9aa5QVhX5kVt7QRiefrbQPpleG0qTR7It2PLjemKuBkupa53eLT0ewuiFKWvKSiuDi8aaepJ8LP1mv08juWBgnN4n4P8GCHO6eenccQY6BpfVd9/MO+nATvB1QR8lbHIsXmFcZ5VhqTqz+hSLXU343Q8jlvr0zqgY+wIB2oM/DCMOMKDR4pYG/qwz9txmE+OFE3AkamQRdYcrvYKRE0PyCyB2mdNMf3YddnlmjWmqgclH3uEs08eY/D57z/RRb1+nQ/qppfDpBUj/DiX+Yv68bcZ4hQPHcPU3wcmTpi//+EdOg80brof8ec+Oq+0xg1VM1qzgz7A0ghbHPGU4xLmBU9at0CloIxa6zM36aHdNH6jd1l/fD3JpkFPoy0Gn3Igxezzud8xcIc7KmniP8rlnj/xj+c02IKFP3sVMBEWDYL1ROVmDXAGLtR8wnoMf77nszoN8fnH3uCJ//7kK3D8xuO+8ccv9k1/4j09bMF4TyhzBrbwOFScDqmPt+x983FI6yYfP1kfx3k+p+h8rudEAgTLIzXcmqPfl3D8Ms71V8q19QfYSub1qpOR6XmE6pYHoX368479G4X9quKL01UinfXr3yyQXYIxY/z6aUJuREe0pfpRl+nuTpK23Je5V5eRyd1Hadam1lQoKc8u/KxZWfr4qtvrJ1OlPlQLSVeNW91Z0+ksm9ut+VJr+PUNSAyYMva+v6n9XhHxbqI392ZWD12lz91THNlY6EIg9r1DhsCqNrYKFFnUAKDUlr9Lxj0rtrkupzllEu/YmkY59sat/tfaWJciKSAJLucWMpE9qKAxqaysHKQMS6TopF3rClyWBDLhsQ33l5nl5XgFJcmLTN6sEXcZwXBkwifdRvP1QjQdPKfkD0MtPaC9XMPxOPXyzBjjNVHIY7H6XJzUQ5GnrXk2OHFioVPUclyG8NijP3b0hCH1CzyfxfN7mnRe/UtTE/NH2PC00Z5POBffx15D5nxcynnb+elgguM4+K+v76utIa2ovv2K+xTVpiZkVEkonrCvAo8RBOnl720YE7jqmNB2xh9rNJHC+cHwb/3TdRzl/+Cfq5ZvzOr80od9LTWtJ5Z4LqVjln6baUGa9z0I6g9Lq88/f8CICUzFrJKVTkexA7Asm9Z7cuzW+UQOC8qBXod+a4D04Z0O9dlbceKrBnYc5HZQCg4WHyD5Lx5IOtHvhJ1ntttskrb/9dA5Gwv9vrW9coJZfSwfhTCphBoIGyBjoYODDgt09mg9ofZThvHvOCwNntB+/ly6igOGD4x9gFlXq30ws+1e0w741ZFORRmBlKmRRSubnDqySenqY8ccOKnOPz2LiUrJgKC5xXjpagnM3v49qlkKAAoN5ZbVf3jwdxWw94ywal/CioqAeudk8TN14AQcgYRzzVWG30ueVTWcNSY5iKYWTyMZ2BmUHkw50Gui4znhBvOJ1YuDrTYxwsyva3nNsIq9KKRCiC06LTEFJHNQa0sn06thho1/2Ki/pIpVQWCBVeXMQjFExt77vkOxM1vNvJjiBMCa8iRGSSvH/cv2+71+r/0LeW8Bsd9mgOVeqRQJJKloQK4Vd0rvXQoZRgAZUVPhiwjPYODe9k3zGxlVa7uWuzmqkLum39SILctyptXRsErVttvlaHTvcfOVN2azPztaokGKuC3i242Uma+X/UDU5BIqQ7erTsKVUu6wGzuNu8VEBUiLKV6Xwh0wx+W/uav38w+mtsFse9pPXIjpbBua6RisInhGDIKPCcajhlHU22D2gpKnirN8wWNx+0NG+ujwIPVKE836WnhsLeaS+sWY8oG+qipjxNnjOI564OiJrsbKPiD1M5s82aE24jjr9BnAAp8+nsdcqaIvMJWbLDOVYYoTWJS708CJuYC29+pSHX4ilvOvdgbjHTtgGyTz6WlXEp1mqFooyVrT8NOjnHtNZlbqmhN9QLNPdKSXPvxRg5kmIJINntmNwu0Eqy/n2TQPwDt46UCoWhyLSgdVcxAIKJvh4qkY+cAFEDSd2ZoqrKEVOK+Y0L0fHgDS4vAPTYs86PiBDZ0rfIZ+feycj3cFoHySiDzcTXGTn3r57eZ6h80J7oD8mOHBFXmYHkBdLzR/aIvb6INDhfaVdWveQaZ9TRp1/vn1mUta/ea1ha1MEz4WAlBH4YW2u175nACSEtkNfH3a6/Wc/VOGoEvLMJt//EfDGYDZDT+Iel5swvRYhP5IdTVaYylUH+Js0apCqjtLjnUTIKs8LCVShqqHaWqMBmVnbKToFHIv4RPe9hDAQAlPs3Zt6Cx56SjE3plpsPqAfor2iN6bJgLuLElurobcpWHhbtXgXpMYAZCKoDsgbZ6zNBhvIqEHg3Zc+RFVaJgUsgX9SA4J5e6lvOuOEj5Zl3At97XllaVvrdvcGd93bsW9KscqATC93mm+AIgeSe06CwnP9x03EYksYbtERngqSNHdsrRU1vdKN2nTl691G7LYz8ydAOlOuZZjL1tcl3a8tTYQUoYiABq0EWImM3ao97AykjcMRlPGve6MoFG09cIVQQE7RMfmrxcAf0lfppX/jNdv5PdSLpnC816ZuizS8sqlgNbFK3/atzmw1uUGykyY+b19RotvmlykpPw8b2p+fbxF5GGCB7h2u2y1iqVlpFXTpuqXqWd87MdBfsKpcp1PxDRFLc2Xd9tFn9vHIc0xREkhffzgCY+Ek0cq68SOLtpenJdi2iorYOjLOi61YwDafFMkp1zkIcIAlDJpkwBZfctddNH49OCMuu+ESlakrZGVASi1lwYpfxjAzyX8Yxme789drXY/hRUGpaDLZ+pqOex0hxX5YCsM8Pq8zyGXn1IVKcmYAKM9cusBloxTAtXZysZeE9EK0QOXkcyxYoTuNyyrw0/CDEeG1J2SzZLm/KCus4hEG6tf2b9O+xbQqL1rzz6rSKHWnceHTShaYdvz6/29WfsnCmKHQsCQnueKE4oWLqgu41GJ6bk/tCc1ykYGIliia4nTFAhVDgnVVqPJZZ8kwHy1m1cldwm11vXZJh3tl1Ynq5O59W1YhORhuuuCOltYCStns99DHSgVDdcGiXexUG/N2b6zrQp0e0FvkTNTfT6TBA9qa/tgdFfrFZxcSJUUlaD3zB+q+58GdWshmv7gA7s+DEYT/XVsGxEB7ITRoOV5nA2ECnpQUNhGyjOoUJO3FQdDhRqRTX1iiUiR1R6DGXgoE0A3hwg5bXnFpAhIGbnve3v3i/UgOpBv3t9pIpmxioYs2tmbQIJGgR4Sreai9g4p5SAzYw/yI4rkXQTdiZpGnFUU7fVUQ5F43++AYMYAgBSYmUF//VwX3FbVcl9ca7nEayVIXntDgZpjAY+3YYWZKezSZWN8dgHVDvYDCYQpCTmW0VnTDr6/syR6bSA4xACIXO41W9TMHXRbIoXYsEgwdVsKJbToqPFFpKjc77cEs6TuNDmhMInckBfU9IAzGSvSfOeOInxQ6oemhNm1bflOJbqnk/TltetrqMzY0CGxGnN/tN8KE1ZMAEhKSGSJjRPUmeZ2AqoDnT8HPjxRW3kBPXlgns394dAxiO141Nmjh145ZsaK9pE6cMMnlj5//Jevf7FVA6mLjBye4LngZhn5EVgXMi94XjXfYxk6HDghSKmy1qCIEuf5wwFPtNIueFClAFUHvDGfSfIYZyhLm8voItw2LHPhtair1/lJpIqqe5yj/6d9AaYktP7CeUjzpvxzjzy/ya4rqR5sk9Esh/5oY4jBM3a4uWl11HmbQ6jW0y4FgKoG7/YRUDBnsbIswxti0tK5zT2Jrrz/9DogTJOSnov6wzUk8rjCWjZ0DMGTz0gWv5isPg81C/GEXCWK1E+imNgTB7LNIcCPD8eHVz9eoYM/S9YcwCmNwsOZnEd1sPTD50jTvFSjWHmKTUaJabQbDWanNaou9FgEfj7gfsS0RA81ZTiOlchBC9BU+xd6+ygWYBqpHhiNw81LMtU03Q6ba5St1DdlHz1+8txmXiKLXups7HgPhonINZ+uHtl+sgJnCZXs7tEW0eJcU5+Cp96Sz/o+TJxM8mAxLgSloPY1am16ajwkRVYREubhMtrLNpaMTQOTpSDWetxmMC738K8vX+7uE7ZAUSPTbCMis5kLsPWg+voJEinAs/SfRkKwD3vF8lOJ0VZEiuqU2QW/3Olu7utKA522ja2JuOo57mSm8o59TU2C0pohLH2H3HshaRCBdCb97kj+kKAC0F3QgDL5lt9yqiYou5ubk7SahvmUW5CshsnuqDNlJHPfrhLHIRhkBhO2ZOYrWEDHVg3TyYi49x3eLsq5ImFxA0QGQ0aDCyuTZlXhlZkuaWdfUJn8NkvG5dt/vXegIteZul4abjbn6g+biyZ7xi+q/WX7EkEfpnTuvSc/V02epiGvtykfhF5Wp61istLtHzZRaGDydKZqXLIke9rF+z35mCD+8TeNk+dT84r2KBOe6DgE/PF1gHePCsbgivFrH0YJ+LDv47EwPFZR9kUAKIfOYzkyPO4YY1KbupIomJ3Qf9yBMNmpP753rkbtI1G+HesTQhlQkrZ6TNDzyD/vn//j9xpJzeVVlm8Cxv74h6hvjm3sN6ep4LnUChVr6/Wt13/PtpM1de8SGmWYlRAeZFYNYTLSa0SDlYI4zYUq8TSxUVkjTSuB8QqP/kf3NxMIEjl3kwM/m8HIajtRVvYz57ILnbUieqqKafBB9g98M7GkbQvBIVHTxz76+Oaz24NUa0XzJZM4HM2wiWjm4D+39AzQYw/T6+hwvCHqeM3Jnp32uaf76X1sgV6r1qci6Op2/HpozIpjgKMjMUgRAHO2p0Rli4jhsDM0a5V80hsTm9n8tiXMzknvlmWQLTc3zEixqpp1LEf4VF48FmMKnOnRO74OaIuFc17OZqnrd86WYduOmlTVHQadmJ6iDYIyc18+S6lDoltFpyw+lFLJP7ltosJAK1O6DKS5rcbzRx7QaITt7XBFaoYp9xGFRCbR8lSJ2BFWJGLxnKpYiad9b8InqMJhyhMFA8owGEAsp1M0c4jmjogbpkAGvDoZLJVeco0oxbS8byQ7SeIbypUUzNx/V6ezMsIEwsyoVEbYrfutVw/NW+b05UajjLAso8Cen8ySzWUqlYHMy2ouNQA3Y7hUmVnFWuakE0LPXkZkvO/798VlKTNw7beA7bW/MzILka5Ms3VfjaeqkRfIqM7rsoCZCjPRW7k5d2QrG9e9HvUrKPXJYakzZcedTeZFz9ll86TnQHdJJfX8tRzk2Ae2z+1fGCDJpztjTntt9A+SvC3BYOpyoHNYiAcgHFuhf4nqTgg4P33ivLIpH2fyePdxeG0RH4M0S1xuWoAmmSewWlln02cXRRJT3VZkOZsdH1W3z2ttTDDdAQ86OYB2/OsfcTrnf/N/8FOK8jHvxOhmzPvqY3lmTVuh6Vnxues+tx8LwfnemDvrk52fL5sQj8dADDnymDSxesqpyJKP6a6YbjUvs4LHUx2SsJ23Kz+onRqPNX0GR1e4n/jUDLEZ505K9j7SRKHP+hFnFWa79I5j9TsKFGxC3M99o4FW/BdSqPZ697D2iRiQCFjPv+yVa/hqXflQbLROx9Rc0jiGitAJPFTVvKbtc2+qnjx0fHwNFjm75dn3HcylYGstv8hwc6EEiJ47rTTGQc4NYvtITT9V24neP+eAVQbZrPKRBhtZtOLBO4AbZUgzd6djqlRKK2QeIzqCsA9w8kjxqWNrIx1g1VJ9/LAsDAsq/3k++n0VUPao3WINDsyMkSsqssy9aPJSjAQZAHwmJvXeWNvqF4hyDXXaMqR7xw4oi3iouQ6X8mpAsFbLSxOt4XueM4De60C1aLcVL+n6wlFVD4oT/9rl1VFp8qwiLFXCH1uo4VJ2WSczqwLY6Jety4ygSk/SDPIFLqWpJn0LoInVSJUQzGxB7knEvTe3lJ6AkMh7WdzFLi1hXS57LTlNiL1fAORuZstBWmwnmRXTQaQ78nbmTouF2InYJgO6zoW6oypTKgmd+/v375ddX0rYK7AUpjWQOfZ7OROgW9j15oX0bYm9VwYzNrDb/VHIpGkz9r13YLGn+Dzn7ojkjDmYQ9ceYOx5MU+svdWPmQPijpma7dls/BiNrNrFOVzsx9+2B2cwDZ+vAjsfTCfP61VFbFmZF6hlLg/fPVf1WL4D29M+7NOnieRjDE+k3jH+v1itJ77+dMhzrnt5C3R3QWVJmJS/zKw5Lc2QdQ0Vq/TlrCDBUtqHmYan6+s7pMB8dB3wfs1U/ujzqld70XmYY0/bXI2RHSf/SVs82XPiuIjOKFXsNu/0ESfNwokoZk+YfMP5MJsSHZ34vV91aNj+p6cJ1mbtMoUiec7od82HErQ8Olr9nu3thwmZB41hrjpIOC/v4BI09NBVPLc3Ued5k8kYPzunbg0FEStmODEjSfbsCD2PtHbO0YxrXmS0RgiZZ7ta1NCwrkaovtKzv//YE4OLjhbVyfzVTq1BVmV4m8Nof0zYKGFx3HM9qBTVOV2176MdorlwfIV/mswBdA57L9jZVv2DY5OeukDr8iljtQY2skH5SjbZVmjEu1sXSmW0InDdA4FRR7FeqeOBIWTVTpH/P7r+bMmSZEkSxJhF1Oy4e2TerbZepnu6CUAPETBE84b//wAQ3oAHgNBD6Oqtqm7dupkZ4e7HTEUYDyJq50RWI+pWZITHWczUVGVhYWGho8QHIFlJEpX0eBuGylAvcGbt9N5xgGDJ7K3pNeooNi1AIBeKU/kOBDZVsBdydZBkIM+ECQ6xZ1sEkSnM80ZJhlyN/RkGWdRjmch9RwMiT2BmlfZXtiSU2he9xRRWULzCt+tHmVnlRiXM0iNS3vdDYzX2wIcXTlT0QcmGj30fAyqprKQTm2ietp3VAS5kkD3HjzDBdm02hgZOxIwMT4ojSSJNCTtoedbgGJFyxxwJ5Hk/h8AcZnQYaJzTQSRojv0gIGQcG+wDvJn8MDt9k8kiASMcQYNihJzMOP3z5ThGtOA8YOY8XeSce5XgJTINxP5p2/RdQc3TY3gco8jpIM3oibHZdkPebjZrsKqgpV7GldeqEN/qB+cS77k8cJuXy7bWAVvo1ePcc51trRa0OrZFuV2u+ztToWXtHna3crwrUsCK1FdJBULRGmpkOItChPVtfDJBj29qS/z47kfjZMeCy0n/OhFdVqMciK6kcFFLlsu6RBYl1Gik6evi1eDlIq4Ciw0qCOrBWLWF68YTUfHxg43eMQQuq5KmXD2r7esv0swFtlXY2BYesmRaMq+E4rpJrbV/PIeVRJZFzv7LqjjUny+M9elDrrCt/mSZ9thEy3p3vKdGpJ741uzRBlWGZA0idFFCLH+5WDjPIcCV+fWTWKKGDeWuvdQxhfr3lVA/pY3r/9dNPTZN/bawDl47Uxeg3+FC2aruP+4nlw1JL4+7fCG1WlUWhtC7JiX2VIGn1LIOGKHHgEJdPaUL+FB/slnNwSAJxgWLEKpWBtAopWQkr1mZvDQTsD73utEFF+kK37TKO0/RVH1LjxvsevLluPp36wKtHqex35bXM+1okrjYVY+4sVL1xuULNc3M/pE7as4MLY1uZnSst17hfL3Zok5ojdWJyAwryULUnMJ1bas3uCFUgICJqZW0dtxBZGSG2h5kQ7prKEKztTu0JrOKGEKicGcMys4yCTXOlBHDBLoF4CTEGqeQ3r3L6Tum+dpbbW/BOi3VmAN4oUp+iZ1jPeI+UxcupT5KooF+FGjXm4BJp7mN4Vk62KzRsW702833MW67uUjbnUME4X4mglAAQQtzEREyI2+4+YbpCmjOyIgiQ9aUo5oqxj4GpNPGDAKKOWcUGZHsecr1jAUbgc7qiewZsso5NzX9mbThQzWKASW8x1TiPGOeM6JO3pC7uzmokKgoJJ5O2r7rBstMMmPOaTnDaqZD6W4ExsbtxrjdrIJDglkTNkry+5oEGY+j+TCPWEZrmShex4JsbnK9/JnEUFnq6kroaPnZV6sXiQ2pXXzcCzkigMc092VWl4vjaspbePhldh8J7Lr+YrleruY7t7myvTbk6yVEVcMq1WtX0kbsArafTMplDzo+6XSidvcl2tlJ3cU8sSdL2Xb0kbzw6fdyqP0orlVsl46Fhz0lQX17C09aQhyPX0+pQK3ThR7XlVymXNd91RO7kr++mfalF6T6CJUujA7fGee1K/K6GX13YVpGEhcAfGUSSIQXndr0/JZGv9sXrRvp+Ver6r724jPO0D9Zyaio767lGfhfi349EawqPNZiPrnQ9cfvvPfyZVgSH+trighwNQxUUweVJiR4iSOvr1/HT+shPIEn1/Vep49AjdPilQP2ri/x3BWudGTUprciH0NI6lIPKCnX1O4rfngsxHdPcmlkrtc80j1et95V7gtQWIfYTJaPJo1rA1p3PtUfm/O4Rgtcwoo+Rk1OWZGx0cw8LXhdTW0yM3iN5+sf9CzBfDyNtcwrrulad1Z+Wk0fwJJN7c5fFHs3n+9qhZ4SsJ2XaVzoSPno0OQFwBR5WRpaPyBsjDa5qjmpl20GqhuA62QTrT562QX14Jpl2Gi2+srNVYFLwwq2pMfXJiJpbmZYTFNzN6d5uJHeaRsMAQdt0MxFwDjUjJUOT1ZG3rdkNkCnW/HNEnFmcJpNJIiMmDlFwM28VKSsotO6RpPZONUlVYV1mS/HmIW7UplhAwwzqSb/CITMhz+O1AJ25MhZYZgFXDYo2nAXQkoiKtWy0i3TyJilo50VkkmBCHuy1LAxtiHNNJoJNVKeLZnYvMLLbS0TegGDl0lZ1l7VwbE8Xt0OngBjdpWrb60JWyvD4ZOpBrCwnYfprgamJxT3aknkY8Tg2mRcLWV91ddXd1KplQBBLPNfnk7LY+nByXpE+cs5tB/spL4+6mqDaut21Y6X/VoiK/3zdmmt+KluzupDfS1pvax8xVLcYGnG1FPpn38HLmOZved46TsvAjyTsMRKginBpKuf9ZF0rXtfS3Cd3qvG22bkcrUCkLKkkGxYa4Xe6EmHz1dVpvo7K/zd7axwosxS+5pylC1iogQctLQLmVhboUfR2AMnv4zZgvsfC9VZwlUO653LZbQeBwhYgOEjJGyP9HgFl0Vt/1/dy9dXaX1CfSUfaurXtinMSCuAVZG/15tWt+9lFZcfqfev2OjZAmPVXPGInxqpUV/H5ZOss88KM9VzBB/+HN/9F+VtcIk/CICSPcwWZHc75mKk6rrXq/zY19h3aMqqSLIJVx3usi+vjNQTZLGCjNqKREf0pWusZdSWiaMZvUaZsdeC9NKrrhinDEBmQe01vPA5IUSTtbAC0ZYhQzGpCgbvthDWxwJghYCsKc5zjQ/TYgkYowJiqY6PUZSlj5QbLZIiTeZW9HIqAYVCFGYMgIrz84jJGXaOGfOMEAnLiDZINSMjM6P0fTK7qbyI4ZVmEplL7yYzr2yj4pJQRgIxz8PPgASjwQ2p0hnIAGb6y45tt71iAadxT9mg01XQcKOAU4bjCNk2vtjbbSSRUzpPTc2qx7OC6BDSi1EJuHvSzjMNSI5qH64gUywB8trzpCKAGMONPraX+3DXce6AaC7aGG5GU5Crk16KYCSV+XnHsTNHcRDcGQFMaTZTBHTzgU02t5kOr2rOhI5xTMtMgN0j0VHiU7xEPMjQ1yZvO8LL+giPA3wdQK3aVGuvPF6z3iNkZEiTHUkiDRlZQQKzujgkK6qksvY9UmlSBoHIWfzAQm/CFBFtk8uHJYWs81/HJ5mV+Rf/8spG2hHUX5YKyEpBLu+/zNyK068ARMCSC/ln9dUV39qlDQBAacpc5q/CPBFJ0KyoDFTCrCC+1Q0O0AtU6HcIMEY2OdZMSxcHK89fmUNn6dU5x+UKrj8MXY+m00nyOzR+RVm5INPeKVeetmKjK4PD9d+OCdQb4wql0Iv34AH353wfQDzCqSvQuDxfJ2d8BFpa2AoX2aS35NMncqV6y8VcoBQWPR1XZKHle3l9TD+4KyBdl/y02nz+89PXXvBkRw+14767X17Eg18HUusmVjr7+PfHomqtpp4ufcWRaxN3SHGF9lrvf45G8Xiw/Y/okO/5q68S8Hr8eoputaK+vvFO8zoivpLtXwEBrCAHV67GpyX+9ZLU5Teb4OnSHyd32bPrwWFlBgvWWvBEVdw6VqubXm3Aj4VYq93WYHV0qNexNvpTMLJS/441gYoPS/TgSggyaS04tUyfAOaj7LVizf6HipsyoorabfKkiJihVWPPNCkvPrUN4MJ9WtFqRQ9FCM+e+9qiVysbKVQjIfRI2hrMk1rt1gAra8isQb2cmRkZqCA0eppQJiC6w+Edi6apGevFT8vuI+2yt8UMAD62bT/oU4CyRAFLTrIyZisylTmiOp9MswQ2gEWwKaoeerN0aClIblCkVON4j/vLOUeUNW5QE0D1RrClVrqCKprJIYeZOWSWoVSuZoySm6ytL9bQpmTg5RqkuQAc9FCObryohJTLmmBt4gV0dPB5QZALheWV7j2BS+tIPBR92k52I8IywyvTfFjch1W+rMF3J++7z3/E6r2y7fnbxC5L3b/KTl3J6fojl31us3HZ2ZXNC0tmY/FKr9tvNXF1z0NnVyLRYNilcL5+gYYmKq0et4c3b/BPj1WtzyevSRMJsvWomhq0TMNa/ud6+vfLdf0Yv4agn6z5MqR8eEA9DHld7K/gicf+1GXOl9nvffB0ZXXdfNpk5eiI5hqo7bGe4puKaGRMIBzAcEeNmFKFGfUUa5Tb6mm/dpNWJNmNX49wEnxw7b7bSSDUlIgCt/uxP/7Yb3kG4bGcbrmvyxnUX0laPD+aVea7jHauaGohMFjPlE8+qfes1uWu2tDC0a5171z/+Ry1Rb+ORl3LFVbg4kE/TH97tnYMq3pz1UKWA16HRVhcLmApkFzXvG6jFkN1qPAwJSgi0Bo1mlaKvmsdvntkQEXbvOzYAja4zryteM1WYPSwB0AWWqzrgayYI5FpmUCRdNnBV69B+6vsznDlorKtO60tFplIr1aHFfZjue31jIWVPVwbrEubqJ/2yEsArMHkVj6mqmG1mpmRCiVy4UGWHOSqFqzIaC2KEbj0HgpVbtzoYbSM5jVq1DqbqJWs0ZJVAqe5YmU7UQSEIgRGRgTmiHP4cc4UkIoN0y0RmbIskv6sIfQHs3vohbAI+Gb79rJ5sfrVNZeaX5iBECAu4JuD7rSkR0YJU3K16MnWozcQQVDq+VHmKI1Qz6h4J8xsxdkVGEEmKWK21liK5IQBZr7tTHPk2SazsIoSpLFhNTBakxNe1GoDY2KyRjEsdjyXmbu27RXO9676LqBf4NKVnDx87j8LVsn1fn73w0cagxWerBC9TuTlMNfJrbDB1kFFQ/3LYYGi1fRq67l12SOKaoKplY2GLWwLC8iruKOdnR5Xt05wRyt1Geo6MB9n/JEZ1AI+XPSVea6z+chCLdEDPm2V85bFu256pcqPo11g96MA9fSIlp1fr30C5Ze4xvMThcZlF8XvPgwPcEMrqfgVCW21krFv+LFG9YH9Keo4GniEEyayqB2mywPwuzrrA498+qQrEgRU0lR82GVaxcPuZoII9sTScsmQyQB5XtIo176rm1ym7PkOypDXMDvLxyO9wh1eNr1CsV4PrOhjPXmuRa09vRIs1tLmqi2g/NYKfPBAGlZ8sLAqVLyDlcdCuuqUywn8am/WdZXBXyXr56z7ilN0ERal9d/2ycr1bFfGiySYkElMVl9TpwkdrOi6pEKaGv14Phxro1/WYIWltby+SCqW9sCK195DW4J1YjvsxeM1tesqsbHLkz2O8NpCFWgtlWj01M/SRm7L1L7z6S/1ZuGxMFoa248IhkGpJ49KzwvP8t+F0blfz7cfrbK7ejO9qijJIjZJpXNNiJmQZnh2kFwh8NwqBEpFLMhzPeQue7HT2pLERsxokaRKwllZOptl1fs5hYhidpNmltmN34rqR3XfNkNLVwo0JM13d8GHs4+rKRButJJJi2kXUEaQ3G4v8/bysrl5TyVKII2JoGJ6piTn2AzgMIc5ITozI2tsoANGR9ZD7SA/nUNzZszjCClO6Tx8P2dzGkrSDSYLkoIHF3DqAoAJc0wmgM23DYo5omYSOwiXICNvp/PUEUjpdMJHzjbe3bqeihIA1spNLlPyMDXLD7VtLX/wsPZYRc3lBJcDwiqIiKCRaXZxBp/81tPv37no1Sn8tEuXhcKyCGvXX68CqxlfNC1tSJSc2vWFa+M/EoS6aj15rusi+ruXKXiKQnBd8eVm6846r3j22W0F2/b0P/TaVkcEpI5yF/TUt31hh7U32EtjhsxrCkZf85Un4ld3oucK8ZWzEBptd6+He4UIT3a+/9LY7VoSrIf2MILreV0Oo6P7/sH1Qlv29dnj14o9Huvz41748mrdWRXWKzKRrnYurLikd5WtAIZkcbaXIOFjV6F1FJ7rz72SevYMa7F0UR3qia8/P4LK63DUe/NhjVGu8rtbzHU3XIZZ1+J13qJuF7hKJo9kqmMjCSra8vVYVrsuuVQirijyun2tE9jbRqtyo0c8witpY9vkRdRd268s9rqtjIzVeqD18Jr/IK1lXQvcK9XBzlMcqOcI4XrgT9v3OpNcu1TZG9K4vry+a/ng519mJaCcNHcv4cWe52Mra+4vaIm0XkisZ7GeKS/xzacHW1/mbSP6xpe/XQHOA7hekqz1TGs5tCSAFcwY7LKgycxoCVnVgOuhLsSJCSciM0v5SxnzHAuF6DKbegOswI+8IEgub/CMtTyZAxB+ZcDdW72cBxACOZwOZ2qzqorCS2ykBhkLgiVoyuHMUOlMlXZgXZm5j+Hc9tsGY0ZSyggE0yygCET5uW0YzXwYSC5eeURqkkVgL4xEa0XDXcpI5TznzCOY5ydxzIyMjPBk2CnJZohz6ryPOPM4zhGz5EycSqaRPrabkjsjB6J0qB2C6No3bgdwZBojkiSOhMx6NlWmKLr7kgO6ts5KK3jxIVaA/OQdrr13ObVlxLkO89Prl/d+0mV+/qorVFxA9vrER05V/w49OYfvoOoVZfP6uMrLluwdlsLvI3bQBTxqqYj0vzzFp5e1Bh87crnPR6iyrEj9TCUuyaf3Xx+6PPT1NoKiN1mmwoF2y4+oB+wToUZ5rxUGu5XpAWqtMP3yfnWnT968AeR/BkFroYyrmiRd64dH3v9YqOuduOq+C08VwOuquG4axNUmfLlrrId+vep6kLwe+bMl7r1h6zGUMW/s82HTawtXnfDa0+su/9m9L0znye230tXlmNrhdxDK7z7iaTm+c5FXPU9refshLbkYLVT3OgSrh2v9VU3b6Rbg1XvL68A8+fPvvgXPHo290/sNK4q6HsV3T/fhBjuywOU+rhiBTy9bUWURkjtzUygjiIhcAggJd9QUFV/xynP5X9c6rSVSf2Udh++uL02PJ75CAVyGYV32Y98sh9+n057KN0TrZtXE6Xo2lypV358tzZJ69fo4s7Ucvcer/7iE3CXhaQ420OJLXXfD9X8ty7xwoQ6prjvqHnenbLWN1mpbTRVGmpc1TkpEgvDCqvnANMAViNgihxOkmXvjhgBpS/7pObdoei6NS0+1Euw29/384aUATFDRPVYyr6Yf0hdqI1KsflsilTNJYJjXNIHP06dtNoajE9AmKYdHpmJGsb3dhts2HMWtRs6IyZx59XWWC+j1L6shQBlxP2dQAdLi3ol1xtyVRhOCljDl4DL+SjiR0+K8lRmFmQHmJjoVWQCrJWByJ/aMYKsSiMwgkoS5Ww9ecF9MH6ytedmT65nxaSMve9fW4Wl/t2TWlWN25Hc51vXX9YYr3r3STzwMh67T0t/2dLD6BHznf8s5sQ8Ont54pfQdZrfX1CNiKJ+5zvYV6/YKrORmZbRYlcnrB//DX8vFrsyoNzpRJQ0s6W2U/k2Vfx4wbOfKTVYtFjTaIUnrFtih0WJN9E0/QZjfLdpauVquJwe8KCgrnVlKaNdgAD3O4zrGeDbvj4LcM7527XxcR7kBfuTzs7uwRizhlf6hOixot8Rkz2RQz+G7yvwgYGtFql9UT+hIGwe7bP5l1+ubHsv+cMC1p/vnDWHVVeZ60XWf10Orn7XfTgCrEbdWgjBZPq4aLfq3DO66BD7qvw+X0iz7ZE91RQtgXF+mpu3m2vdPj5wkO0BCOxctc9x19zq8V0Sw8JArgV4rt+DIazfV56ssOVcId0XVtSNrvSWybGXlchWurm3BtbWawAeV8DG5RpXnQ3hzffOingK4mob7WNQG4PpJNYVcUxlKP6YJRn3A29aVAs61G2r34bIbvOxXe+AVPoMwS2tCZe0sodrw67mxA9O1RLXabLGO3J7Oj1IpZOBqtQXMkA64DxckM+MYHlDQJdBSq2xnlDtygl66cQXMPs7TtS0vWEKl8rxK0ilFRHXs5fU8MxPnnBHZk50z6kIzzup8phuhjCMV54gQnAE3T9vcK9S0jsMHBIUyZMiqIyRkn5ORHNvmGcZULsXomumYM410+Wbb0NiMo6qtccx5JGeE2FPtrXmvluHF6RUUZ877eQYw6cSUzTxBRQQUtf+NMLc+aYIQEVTGHPPu0yaTtOHmSk8bUGIyYXK4iLEZT0LzREEzroMtx4Nh6ZQC1e6rFZb3gf/OZKtR6wofLu343vGPY44CR+IKtC73WvTdy3Zf4dLjzSvaf9iLh3X77lLW69QSmpdp68T6sac66ngYtYfJ/M6xr3hBz4H49aIHrNipKpav+rVd4vU5T3ELn/7E5YXMlQY9yb7ikoD79a2yvO9zYLI2R9uDksG5ghQ8cv6OFC6vfiXU6ywNPX9rv49A1aS0PELiitEe5g3rM9f/L4/aqTPEwkvTEjSsZ30Zl2p36ElYFdVVpHh5o0ciKRQFvsbxMCIjzVaDZymfLnSww6l+Tuo2fRVkz9VHoysh7f8RKGWyR8BSnV9gDaN5MOnad6+EbK3uYpWtR10PqreSmuhTigAsaiXXfl3IalqNDSiv0UHYOku9MCghoSRBZTIf+78wq0eWD5iMTjcq7WLCL8erYjs51wzRtW/XkIDn2ElSshg5IeWvDsvar9eer3zRnIuDaM80r+uDS4XaIcEolprYChVIWPXoqiz9ivNrd1WObcpYOwWw6E8FWPXeBbuAS/sDYImFF63SupS6WlzNWxKSWPMhC1rUihCu2FGZgcJCesDG2jlUOkCihP7hJHUJYzNXqLoMb5OU22UvJY7KgYWM9IR7kVzgsr1AMtCcg8Z21qClJKYD3KThgBA5Y3Qv2wpwVpC7mvLcqrzcnOyLdFeqb1oEbRTZGfM4johQuMMyEzVU8UCGjnNaznnXpz5TQ/Gxxcf9mMWgzkmHSDPMM8/NQ0LWRIQJl4qAJ4C+7ds2TjkDyYAUUFqIa7xF+m43n9sG3wXZjIhQiHMmeQtzVT9Rn3cqYzroZ8zMOI9JRXqeFI77Z2y6+/1NiK3Qj6zpXxWZRGYcdI/JKT/9HOC26TTBXPs5QyJTjiBpsQ+auzEnLYKQ2Skn3Izp1pg6Lyr/IzJ68lJXAnN5tVXIKU47skGGOqKLACAtpcCKVyKvDPPysct/Lbvyq1982iRaTehc378i9fa06cXWX+43q2SYSva8tuKWLmeMp4SiL0e/vogrBb7+iusvV/x/JYZa2VavHSuSVdHivOaAVbceH+Wex4KAWJyKMoVUA0xaNER1gK/qH4z++hXIJiDZwxU+reRTMvT4Rq0M+BlNfXrY62719AnfhxsPCKMcj1022PTdw+ofg0tJvxihT1yaVSEuANBKM3l50zL7Dz4eWZ1Vz6X9Nvu1fatkpwWHXOvR8GvvAlv+bwURDfgtm7gyuV6FpVOEZYifDG4DtWuHXUHD+hsItnqPyuE+run7I/bYbATzYqJd0WiZ53a/5RirkXwZChCtyGlr9z5jNVqEAC21xX4I373mV97kikLRYGAH3mvh1po+8lIB8DGLD7XiievD6trUcVnvv+W210f03lZTrtdZbPgHF8SoazuvDVkUrPquIl7lFRMZZGmtdSAzM69OYCtQ1lnMHWTPMAvWC5OkzIpaX0diNQaiZ3h0EG0yGBK8bq0dsNDgLgmTrfADqK3yUL1nDbKNijhrF5PuNJoLTkturjoc7mapnPR4TNsmAaNvGzIeiN4CGXpPXlGd1o5TBy5mdj1hNvFinWgotdWQ4EE87xyBQEltuJsl5OOQlLDNQTduvsG2lCD6eM+gb9AegDSGwFFBkm2hLc6gOYX9DuvdlWlIYc7QOcJzI93MB0BaQMWElisnjMw0GtUzzoNQzsmZOs9D+f5xP0eeCilxIt9vSufnuWeEkTAHyAwwIxWR825bKGkzbtXpDt82MuhKv0/lNMUJJYy2DfqueUeaMlyChQss/vMWRsUZknJmW4Xvfj0Fe+sMYrmG6xW87H0FZDXM8SLVsqxgYbCXuVwclYcB71NWu3EdxrZCrTR8ebxfXyafftrbqy1Zdjfx8ssX/6DN1Aqb8ZQTf//pDy9LexSsv3vHoo7UUnD92+W//ge/amVJs+r4a4jqOdK5bH9HGFcfQhlA62HXWJyQelkiDdmevPJP5IoziC4t1q2DwGibwUf0sKKmZ7t23Wn9ag7UBZqs612RwIqLtADz9er1PEve7MnYtsVYm4xrFR+P/Kmr5OnXdYVEKRqXDN8aNtXvaIdJg/DobQexxt7xf/Co1hbXhdW0tynbJjJhrlWwQO9ruw7Dk3DRVe7oleo8hBfxCxfmXCGE/f/fO70ulcmWj1rH6XpoC2tZN98x7BKAuhL16zK+i5me9vFa/qVOca3c5bb7vTUAwklzZyNq6q78TGQmM1E06dareaTD13+ffiQBaavGu3bXOgO6jMT6gLXJ8jlHeApt1v7t3c+OaaummeZmK/8lyZqDwCWnhXWP6Mpr7wyu/f9YGpCl8LFMgIHu9fmkwTytxjTl9ZaHG2xHiEf0uwbo1e0bzYcw0kPDp67Ql0DWTCMA1Y5HQkpkRm+s5WKfyzJYcz4A2DILz1t9JUkV9vRu0iW6kAg1qpsGKBxC1NjjAhWWeYwJZC9dtVNSZokQYoE4oFuHsVWXMRDIKUktVmkXMb0uyc2XMoerhdg2k3mYMGDm5u4OB9y9HJMyI+IUjmPKmG4aMyY0bei0+xkBwV2uzTeD0PjEVExPKYL5QeY0T8DMhjEn8+RkZoQlUIpGa+eQSUMPEDF3cliJm1SEqI6crwfTFmPFmNcWJkCUzGT7SJKdZazH3B51vbwPQRtfrsfZ/u86RCvhuH7Axx4krwy4zMfT337tjm0ZMhqp6hm9vgMLiMZluPpILkbEdVbbuD/7XK6VuO72u1/r89ABxXX9/+wSH6YPZOXKPrSmyLb0ahMG8orl2V/7WNDrk1fj/vU/rG4TXBns99l9/W08f9AjqurHtf50RRVSSXKUN621tAsB7XDmOfLg0wapqGexSpZhfVqflRbWtaiXEax+La1+M5pRBd9flun5pnRhGY+H19uld0VZ4OUUL8gCfOBA64Jaf2SBgRCWElv2jDsIacnLhtQNXgzg/m/WvJfucvwu1r1ilbUxH1v68Th/vY9UujJE1cNrstbyPQnh6ra5vGWv0Mrdazd1dPKISvCrncIrKetLreLJA9ddDn2ZikzLzCge9HMYeQWqyO/QqmvrcW2Z6+7zit6QvTzrAS26fDOTVhjfZ6r2Ruaa/bCeO3QRrVcAgXXmH2n+ut/yxu5Gi07jKwNeC7MQlSuDL+9BPkn6gKtTtdiA4FWMe9p+1Tibj5NSbPYVThWe12ZPJaNGY4lnkdm836KeXz2WbM01MyOsRyUhywFWZCQhI4RMRQio9qTMrvvW3o9cMfV6CmkjzAEFAoBmrTSyaFdzYkYG44BCZwKR8z4vq5qUGRPdd6xM0YdJ7qiuReTLqfGyFdAaIYGmVIotZeH9VAHCxwilmSuD89NOmOYZduqYKSLKY2VapnIScczzSOIIAHajNqag6YHTjjnTFCaVBqeV/40QMecmEsFDL1uSDJFjiwnAxgYyqdorRo6ZAH1sTEuMOKcAmpvTp3cxu7zhBSK0OeAyOstIPB3Jy808Rct8eO1lTmsrPSWKfQafmuSuD18pwnLAzwZqhd+4UM1r4y7j/njr9e/9HjTldsUTegqXH4nj0zWCz/bnYRUv8/7Qx9TDwa2r1vOVc63cr7y1hMDjQ5+O7jItl3Oq62kq+ne8nLJAF5S5UPnLaD9K1cuecOVcfPjj8exv21wUDGxpfGg3XSGHcmktX7RxPr6h1h39sKqKV8ObOoGBgIdQ8XqMzy64/1PevOzLKpCu5WyThHZ0PZ4UwBOysqq33638Ms1lOdsEPol8WHvgpzig9lfn/d+5Vqwsa/1Na088fl91dC11v5ZB09q9qH/TQliF5S9+dQauuK4vj5IJSNc1ayTRrqFkDq+gg63fe5WA1qZYZU+syOOxQwG0yst1LuvuEmKVxPE43FqVFhKGQEbWkzGG+QjvaLheYKVkSZY0xfUourX2gWY9wqA6Hat3+DnNX4sIcilE0+DudWPWSgwmsxIsLqbzkttV0+ifUvruJobRvCQqnT4wXSbRw4gF4OjRxV6x5cObX1aygoL2k0kYFh2VzcRb34tMwjKzBhMqYbn2XrGd3KQm/pufTbEQjK2LkYnoFa0lDClpcBiNisjH81px39quqQxQoZRdkXHHXYlq61oFvAwMb8Y15LyC2YoBFTlrgFUFY2dm4H5GgACzMCoQOTjL1EWA5gySYRkMcN7i48u+nZHASFjIfKqYZuWNhSIUy0h30TkYkA0wkHl+5ghFimYZVkR1A1C9uJFnbCWjtW8ANu7nSdsVmAlrNRG5m496DjlTirttMk/Fx5btbYw2stsYaVUurS1kzCqemZCa531GmME84VUDnjM4I7JM1iP7q1B6BWPXP6yHV06vjk3jJsseVwv8OkDL0j/C2nVkUBahvcQ1g3xZ4CqpPuLyjtiXuf+uGvg4sX3QDVnd+vWK5IK/q+Tyna25PvL6W13v5Vyeo/NnE/Xkd6qrtQtC14Fex2ylXuudZawemQlRKEFOKhMZtbiSliLdBcP1pVf1PXG16OAqtTYDcq3Pc61A398JhYsFveD9FYt0oP2ru16GRdcB1mWan1eTy6BdMch13C8Ht/AOAHkFNcL1r5c3u3IeLJ9bL+NSUqhdIRQ/dIkwfefWn1P0NmjXH+v7vttoaydlJyIdhfC66xrigMfnZZpWbpsUKtIu/5v9vCQlqm/SlmhWu3CloXWS0vqirm32MOTkFWhdtW32CS0STF9NtT6iAx5dD4W4QIGiVQogLrGaRzX2CuKeFuQp3lhbgeAjzOmNWAu9DgeW0tIKHta5YkVmfVo6yGQuryRcQRLX751z9yZd4SIecQDXS62qq4th0Ie0Vo8VdCw43szdfLbO9dWaA6PG2OwhvlJDCymPS3SmxKIJs1xRwuLndcDMGp4MAl5bCKuV3asW0uhAMmddc9WdVQoXsaJJoFQOaTS3MAzk2MYJupnb0uJL9Gyp/uxMafX8iayZFVbTAi65EvNVmtD1ZFhYe0+EssRSOllmZdB6YiMIWJWJ0cGwEbJSyHVnkgI2huRbOnNjOiQ4CINyStFK/oUOJhRkiWek4tNlanFxXyGDFK2kMhwyc5oPJkQfBgBxZhXyUdMNvFOBnBOEIiL4OYVhXubbN8yItHmuIS02MLYxBlAcb2WesUVOw/mpt0qVHJsP91nEWgCKyC15A+BKn74dhpCQc87iwZFwNzKVM0xAJjt2ehhUrUizfnt4gCvpugzFcgMoVjzx/L5V5lo+aX3AdZh5edVnS/8IyZ+cR//1Mg643lRh+gPVvV7N67xfzvSf/bpcBR+fthI6XAf/iQey/nt9fDn63pxP1/34iqefEKjpm4ADxt6iWFbwwlDVejUQtGZmQzXQLFeqiWUvn7+rl7kvetXXFxOVYJdmRgGAup7jhVvo4X+fMczLID8SvyLh2fLIvaJ6XnA+PypJQj4mUj520dOlPH71jzuTANbgZiPp1jHoZYOfA/vlpaIcfyg1HRnTI4CcocyouswFaJa3ujaYFCsq0Lp2aeHwa8Ha7XbcwEdWkauXerEAs9UeogqL9eDqRYvkq+ctXSuiawPldZVJpEWWn4pcKgtR/i8XqWNBSsv/rqfGin9b22ShyX2jDy8NNPLKq8JMpVUT1BVntVPrT1BdACVF4YctikEAsJCV0PIiMxmsuOpcFGFUpcKEB4xVp2sdrlVhLS59T2qQqtOYq/xeY0Wq+0+VstWkHNVHtgu2UqN8kkHrVL03fguRwiR4mAHqHMdWgrPmGz4+4dr+UVT1SCpG2dTVDNSYAjIT51nPxTxhsEySTjZzvPAF9wCVoGHz2LbtI234uO00GlIKFMWzWGXwmBHktBqL0DiF2Boh62FCIFZri+WS7IK0Ci6RTGVmB2pIzETojBk+R70igpGRMwQqFJqn7uZ5nkPHCY+vn++nMvMcOrOqNgkzHDMZiZC5zAifGHG4bDOSmvmxAyWULzJ1jDghKKrZxzYHb/sMuJMZPE5GbjkjXEomp00VrVonZxx3i5gRETjPpAubkozYxjRKynnGrXVM6O5ADX0ALE86c255fGNkNK19G25KOqbgOZmY4jZCHmBw+JjpM33OdKswiMOdhHJGhzzSknOo1kJAKPZEFZhq3sFlRLmsSjmJ5s/nAjOqLaxwiE44shKFMo718yxiMhcSglQj4o9QexnUZ4NcbeU1+mO94MqeHi+servjabMTLI9Wrenf5/bfu7E6hw/4GpYLg4Gw8LlOQfoLLvdRpSZKTXJYb6QUCEP2oMeOGKy//YkzXIjb1ebJ60JVGVUiBKG00b5zv1e2000X6wcXU4QPNzfabHQO0vqptMdE1u8BjIqO+0PqG0oJQOZpdYiZ7u3FF5icFdKrb7ITMdKermZB7fWvVyCAlb3WmiRShF16xw3dYHFHVhbyFE+tzbUsTIve9lIt59Y5TVdD1hZsmfyF++CxISWsoENPnb54EO3XPajHz63zcoUSVwy51PaLI/+47MVRANqLlE/S4zFL7InuUq92bTN0Q6i4Hh8vEKk9YTvix2U8HR0CKqDVZGYpXRzK0rG2mpq2YsBHnCV07bXOH1lBeEfoC0BhSrikSNcmvC6hoj+aooM8mj8wJC4/XwvZGmEN/6YaLFDNd3mUeCpWKZ4P3Vbxm/ao616RTn/9Kjhk9ozMdQKgnoENLIVptMXJrnErGRZQWNburJgDFZbgYgVYIiySM/uxQqsh25RAjS/MZNYfVa4A9OE9SHg1eDEr4bFlyOeIyLi7D8YSX6IgPgE4D6td5JPaukJriyxvjatYQXfH2LlvPoYXBWo9faIlR+jDPTG31/dJ7rfbuM399fXL/bbnuH0zmG+vZ7yYhoEuCrydUzZkChJm2xiaEHJ6x8Qp2RLzpCc9nNsYGyfpjJg4jxPv316A85wxGUiaMsUe9aPMOWdmxnGKXBLWHIqcvufLxrEhDpnzHJJkZoqIcyFhiTzvjPO0PI+NBtgYY5u+2dm1w4C2sBeAdNvvxpE8zCNjJnJqFuLuhDLnweZF96/m/HRw+JT7rLLe93lhncOVsa2UcKVCVwm1tueVM/QOLC+sbhO6oK0ng9CJwxNkmEwGkshrtNEydVVCEVoGASZk64ZLSYTssuJJXEgqL/LVZXOXxX54t5VWqdOjZVHW3iMtGyB4/PCRPC4T0IlSstU5UU2sIYGpobV0iRRgCphKci2X6RQyMyyL3ZzrOtdlS5ZM6wvUqlxft9Her94zeD28vnsvnQPYypQfxvkhKXYhlWv9r2eAFeusyChVGoRpVT4WH4hCr5IewV+rjaStbuKnBmi2M2O/hQCSqcgMqSucZGYqnMtz4pGwr1wQ3TGLtv8FOlhjfdcDBaBUiBValqJ9MgLLHKpHw6TCiqOpQDDlrBa9SGSWgc3MCGTSmJErZkPGcp7JC0MGvlvL9Wx6kbJ3JSVmWtaUAERv5SvX5AqX1MhAH0XakrdDRSuNI5dv7EnblY/TPPOq39jVKFuU4W5VIXype3Z/hDJ639sEpERkshisSEtBUcPjlxDV4xbR279i2DIglHANX0SVWa4dXY+4g4nH07OF+2MFJQ1VXCjFU/6+UDNeq7asoLoQVrfFFb0Iio3L3FFXYy9SkJWyMqQl9HTRNxpoWUerjhQXAkHbqudjZeMdP0kKZmZe8bTJhj8wZ5rZGG4UMtIqx445Fco8gVxdvMual7RD6wEJMguhcLnuT4ehhJ5Nvrq2aLQxtv3GUbL6QTMZZU6Dj234cKONMbaxR2xzvGzHxtvN3WPbt5ryGBJgltwHQOIsa61WSKaSmzmrJz6hAJTTYmrOJKLIJUYSXvNvYoqYVIQUaSMARQxkDZTzmk6kli4LRtyPWWplWdeiMNvztpk7YzLSUiDNjXZGROWZYJ5bzBAtM4/bSKO5jeHunKlU5AzlyS0jRsLglNm2pckopcFVHtcQkejZWOl9YOq51CkrC9VpEHtzrrSjCgUu8RpajWt3FJC/NjKN9NI9WW5ej20AEssOYjkrdMTep/r6UW3aFWpf0X3v1qzkQhU/8mqXWujQI1XWKnU9khRrz/J0ih+Y8/XrOUrQ+uR1Ettl8bEU6xCt1IxoaKs0EWogiVefWnBd0rK8zNa/UjOXLmBURZF8/PWpss3n//BXPyuWZhuNX0tRtmkR17TNrjHjQQNrAwh0GA30uDFmMlNU5+eLFNxPgo8nATzDBlhhTb+c6wHaakZdxFK7kvJaYDhbWuJRewcBZcIZ6G1wpdE1JqYbY0yZ0bDqw8Utgl3fZYHrxfpf0YEkrowXWFGZ+t2Z/P6OqDVlrtYzr2y1L+tC4HGphvUxWF5SV3K4MrBaQlWGV72slY6TrC7X2ljZrLJ+ir96zmTLnVXKWN+qR7qMqgFa1UlJK/am0eiVRTpZE3NgRri1EtkK34HVvISaZ9E7oN6FrsJcp+qKai90iuy1plqbaN0/K59v8Cirn4xYkfqyDqWz8TgCD4EwW5dRNrY6454ObX+H+lOasvIIHMWVHy5DsL6GQCPpvZ8NhDmq5tBnqPuUH/uZRndHzhy1vSVVXbQ2SwRwnKPab5KS2RglqaRFl1PZa7AIR9IMJXIeM+k9ma0+vASlu+WnRS0B1lSp1rdptXZUhqVcMdi6aqNVWNR87a4prXJOhJIc7oQDsGHKGRO0KIAk5iguyzzvmpSy8kKYpSE5JMuJSYTPOGciI5TTIkKc3tdhgkCzyMjEDIlmwx0vug+3c9kaAWAyM2aiGm87zhM2YSAxRj01zTRHeBIu4/BIZYcs7u5mXly1iMxzIitGAs2SGVLMswqSDgwzbtKGkjTro1t7LwQgqh31ESFjxWXLdq3dKKBs/q9zvKuEtvKSZ9u6DFRH7uRVfHn6FFpgNRHwAgEvzMfUJ4aL6lh1QF0un1haHWYoxgSevsFWM9911VxWbTlnkiv8X+fk+ojGi5VFZ7u+9dkfPHvfdsAtHcYnfMGc7s7Ni/+QJrkNkydBl+VamisMeaw0nqODOnkPA9bnuR/W9TZd7/7u465/GWovzkosngE79YTOtpBquvCyHPUooUIp0QpG/TxxJSZtQ+z5XtqoWfE42PPZO9haMdd3v5aPRFr5QnXY754kgPRumPTmtvYQrBraaEaK9LSSCGiS7FX7ZiUB5IXd9GUalEuEUkBAzPT2lHlNVc0aNdDxUPb05EQkFfnoXDJAgZj9LpNSgRRak6lIyUsus4DCdADGdRcCeE2+K8qKqtiQUMlOSKRlCS2aSLmtz7v2hpAyeBphQUOAq8q6gJ+VUVr79XY2KRlLexGkaFTVc7uFTgAyquXFzfZdaRZ01vQ4meuEBLNBWKvMrLmR6xpXi630GL+UTIIBUtVJ01wZFW2n4p9A5MWX6GHis/BXzenX9r6mJdWR7/G2Vi2aTriYZHfQVtE7+zAXSmsQYdkkBJqIlsrq86R1F3B3t234ijALIc+0FVIBaQ1A3IFgWM4MADMFIcoLZx7DY8IymWcmLUM5XekVeUR5ZPqmxY3w2y3nrMl9OT3miqglZSiTrsgUYuaomldlJhUpRk1ij7VqF7qFjblzbDfLm2glp1xU+w1HQPCIc+j9N1JObtvmNzoGXO4pc/nmsDhBu8X7xBCSR3bYabnpLebgyYMG3XGekTJOOm8O5O6eduO2Db9t9CJy3O0eoTPPiXmkMqfuW4hCllrzZqFzjGMDI5M+TiU9p14y8+Zjdxc5A5zVo2wmwXWWypinXoy+bWZ6CyVOm7cMnSbujjjMygHOxMwJD+f4ct7d/LjDEpExdzvvGpvgY5q3mIrvzGuRV7xdoVRB0lZjIR9WdOWfEE0sxhuMpPmV3Wa2QmLlR1J3pIDmKrEjlbRpS4U9U6FbMmLxpHW1YLQgRvNueDnIK3+imNfp7cyxM87lwPTICSoTWwhc7zAu3AqPvPNhmuttduGgK0zIR4BcAUsDSFg5SIvDrvyvlfd8sAgSAE2rxeOKhiqGL21zriuWUj3qphKkVkLqrMvS2qvUJ3W8jgYnH8yr8fimPltJIB9HDatPc8Vij8ipg6tuBFImkXVvmSvNu9CGzn5ImLU0C9j8o64Em0wsQiUXVF8TzCVlVer6YZVvdTOz7mSegpsh6VBMuGWCZvRcQoV5cot7aEZ1JlpMMKPS20qFWfSTtUYRffkDxfNS1gRPxPReOEGpsGSRwzK9wlSBQGYOKEwKq+4LMakZ6iTsWlFbJ68EBmUP7KVniEqgEVklR1Nl5fZY3m4kqJwFgIqzYGDpKvYubB+yoMuByl+cbpWt0WgtwFe5tbICltW0CZLmaDU9Y0U8RlYG7BUlm7nBsiBusoQnYEqYG0s13jsvrjhhlbH7qK0LbogqAwiSNTrPLUhl8uTJlBSKs2bvHgeROT2V5wllIGeUO5kW5whapLHCiEJWDQXjOc3MSSeHzM0gv2BxFrfXEbQZBASjZoRzgJYIDyNAKRv+g9yUZrYFfBjCZOZIL/u1kD0VN4SkFCYihciZa1Jq9dqA0nkeSLrTtgOYGaF0un+eIIxua8CpmbnRPQ33+NQpm8d58ryringDYKYSRIw1gtfaDrDjEy0a/QL8F7G6ozONaUND4zbh1vorMCfdnXMG5zwiPt4sw2x+biHNNOR9OkhN24dkfovzRjEPbTJKYgDnyUjQOGj57Q0xI4ubphRNiNht27fhN2B3xpGqUEkgzkzjwD0/R5pR8J0wH5iyGz6PPD7mTL1iH389xl//MPjLTz8C5zaOvJ/n4aYNMBu2CUeewdAMCS/29uPvB3lT7jfblZHGadNHnGOMnKk8eR4+JiwSgiPf9pw603JOyDMywYF9IDiOU5KZX/u8NE2uihqgygOwQui1b2pT9lwt1s4TzC/M60qzyp4V2NXZHStQNMFZbKqVnHakxfXwqyoAypoSWazJ+iD13M9CzhPFCuqt3VY8O7vQArmsVVaeLk4CLK5k/7r0R0Gt77nBwyw0vzfnAzpdRpPICtGbmll0rItKlYlmRBnoPgxC5LnPQfRw8OVuKRpkMLXOU8XCCVg6L3ta6c/DRdbDWlRkuwgUtrL+Hg43rNUV18iBFf9evhNXXPYAJeppdlGNmTMyEYFqaFVELJIz1tPuYMJ6okqjrxm1GNaDfXorsVnP1yOot7pEK3Eign6NFcUzcYo55yxJWY5KjlPMyjjihM2K/KEM2oqgHmZ/oVUglKgRLJVwKx719HSwKyeUKtWh5SI99TaSlnRCp7uFG6tS4QouJQ5g9Cuh/pRS6AV6M9S3JNc1Vi0zyo1asYWyLi0EOFVhVFFekY1q4rHAhmLnrvtdeA5W7i0IovVcG1+4JKuDwoCRbixRR3VnT7XedhZDOpURkWJMMlYqa85SACcVEgSrUP0R8Wb3lFrHlVFZszq8Y6+fLzoRVXV5pWY4lJHReuZLisNSOeeM0KaEKVcg55tTBq7hQr0QA3CvDkawIIjMKnmCkgUlIkPODsZrDv06KBXwm5cuY1aK7W7uaT7gzhqH04w5uts449wGAEUqaMvWFmzL4xwZs55ouAGM9t+RLMttpoATbjRHulKpwzz3URD04o/TCNrYmCn37vxlziluY1rjMOaEkmOmBJMbAxmZ04bfin+lGCkr5pUyEwYbM3GemS/+MnzDxgQcpz6Y0/b5EjAZkXrb9CnmXTeJiO0ltwwh0yjMYxjzPPDp5y04RGlT+DGE7WAANGqTUu7Ij3nb98zcXu/D5858V4Yfd82RuVlOc0fmjDN9xmcYIjVeXv5A/U+3z9//Yrsf38bIe1gc26Z5E7iNkRvPI3PqnrlZ2A9/+Gv6ef8FL/t4ke5B0gMZp98OBxQT92F6I46X88zJ8ZLn3T5yTJ1bnzLQnTpdMWeFNHNt/nqmLBCy3Ql78tSyiRf2arKwNLZSKmBDBQC2PlAZEGuQHBWXVTK9+LUFq13MoOVHFkWqDuqy4xWvWqezV9RWVqNBIqxpM5ccXF13Xglw/R8fGXJn9MKCYR9LkX2mlrftnLk96sqbWYjSSjWfPuBy8ap1MysGHGlWMzGdIAfvtwH2tI90dWpQzXDVlMoOVTMh0EcSxeSDimZ/+eP2mFx4cU8ZKxWo2gEGFAv6wRq+MlwVXTAhJowmo9ySY7iZD4rrVrGc+lUHbT+d0ee8eysF0MZQusmYqiHhU8WHK4dVTuDqxymAdik6DdWo8AIOibFVmEYLuCZyRlVOJmbYoLTgwqwcW6n5Kc5wO+8OOdMxa3inL5ezknWQmTWEPbpKwZMw5fShOSraq01TGouVIiUFZTLDwGr7LeguExmKKeYZuQ8YnQXcp5tDJqVSJhJpq9LD3l4tY2eeTCUsmUmEm+ivPxzjPuhKfAF4jvnbMf1OavuBDpmVVIkN0LdqLtVtxi7mK2dM2UzbyDF2mTuEPYMEXPfI8x7aBo3w4XDOmxmhtDBjOQIZObxiDgrp+hzY55Z2jo15utk2bAKDCXMnLIy2OVrDsPHYlEsmyoAsvSQxkLzp4DYmzJgI+Rgb7Haaoob3GsPMvaqIG5O2wTbfwscYTh9IL5wIXrbk9OEYY/ORt2+HBiWYmY9hMtIxto88378IymEJFxTaKCbiVIAxhykiSiSrtCcLhe3tLEg23h2OcT8NMWMfpkmFNIHIUbPwEolB0nTc7TRTnIhZh5o1Dy8THhHnBLdK57hJpwDf9rdD20wHb2/7L4TSSN8MfLkfeR5/Hq+2Rc6TZ0qaOOmZVSdgpFLznFOGmMemVB7HmNShed8wJ0fGNGLmdE5I23m+GJ1TcdjdtwMbLJDIM0UiQ5/DznPeppnHn3/H+xj7/Lr/4ribfnqLT2Dk8Jj++nXgfuQbyX1wHNSpuyNf+Zfnf/pi1Hnwfvv44eSYdqbH5zj9HJbG2G6fhGe474MfuuvN5wde3r7eThi/3k879Q3Td8nE4cNN/jk/8RI4P4bkvw/78vv9y7/78t/+p8/X13/6Ju4+pYOW/Nx2H/uL6/jp8x0n8j5IUT/8i3/r/qfz6y8/zhj24fEqvPh5txtTIMwiv5H54xbY54G52Yu2sJ8/4j2PH922AXHc9MKP91fEFDnIz3tEAJkRiKjhMacFYmJ1+4CsgFSVH7vLawRC4VM+CdrIJN0LYyogNiMZ5R3cSzQWPoyCyTYQaYYAkplmVEbIJSohmg9DJqWJoA0bG3xIhXlnhwkJrPIGayxkCRazhq4lUxTD4MJQUYzLi5TMmtnLtqQAOnFmZgQT88KgiiMIQMkQkCHIkXPVpVb2ViGMqfRaAAouAj5sc5K6eShtBUOgu439/ud7BFE4XWmwX5omRCVQhJAoMchAsNOuhSBcjVDd69hoQtEtKueiAxcAAQAASURBVANe6WTlmyMvTHrlQvWnnpySloVELCfNK7BhmQd0b3/XXbt30x6+v73pU4JVqV6ymDb5lDWu72lwu5rZHiSCzJS5ICVlgxfPQP1yYNWoUAzprnb1SlyvRfJiWbMyvc59G/pVS2x2eNFZIdnXjC6NVPnwiXj0qEBceTBXqaN1G2rB81FBzq4eSxlSJTWmovo2BrRQmNVIdAWHRHbgBdY8S+uYiAbTGHKk+2xWBxd3BoJCqhR9tYv3Vq3v0XULXV6yhadcZZSmNiyQdq2IQOSMjLTeKx17QkiGobqXbaEw/dDqGqoc3Hse6lS4qGyV+Weoi6JVNc0MizJQXZ0wwmndRSsomPJOH6qtD2BUJGxuNEQ9d7Kkr1i0k2yhjRQzHVm3bB1nEGFUKJHZTYeNy610oe5AMnnAExTNbfGhLSlaECYoVXT6jEwiIrqRo7ALNeZbZW9ChTgIgiLLykRmGTuXGyuQcAouhW9F1wAMlkv+BGqhRQpKmdO8rRyKbVXIoHmzYY0sbCGnbpCl0RjayLF0w0haZijkULqCzJgEUjB3CjlPaCbmAPOwl+TuJoEc+8zMDKUj+frjB24WmMjTFadxAJDCEhkZaPnXPB15wGaC++Yx8dv316+5Oz7vO3keJttSKdsMolGT0Hj5MGjsyR9++9t/+PHNXm733+IfZS/anLe3wby/REjpPnyedqbOtM1w2stvd3w4zjOOY7vv6binJLjVpF9knCEm5rYfjuHTTtsjE619TTP4rn3f3BNARo1K1pXHZM1bzSyaSMKqibe7JKorhqlUoooC3e+7YLzuz8gemRTJaNwN/anrvEgsjZfs5KMxanQStPJersO/PE2helggMPM6hFrde0S7KiWrXxLrGvVEG1smmw/Dxgf0+fjVGft1ZUBVTCF1VVPLWy6otv5x9XM2dAABGYm0zl0B0MfIQrzK+hanzNY4NS4fVY0oUUY6SGMTP5khKIsyY0tDEm3WCnXmKjU31gqNp3aOq7QgoEQj1i1AzIV9F9wJFLWhE8BlYR8EnuZtl2Jyu9xyqWwD4KCZlzPsJ/pYt0ZJi5reHJwWXJxehiYmk4IHYpKKCj9qStmCUmq0N6gay2dj28aYZj5cVFkEohBGWKMIBRMjwZH0DDOJjLSaqtrE2W6UaQIOqWa0myerdcNdA2bmBKoNwKj0mvbE0iwnAfUwvNUa0Ltc3VXa0HMGmBUaIVFST4WQhrLPSYEjUKYRFLPokRWilShSM6UQU5kyJvoQYxomgzX0I7EYBlIq0yBffaFcKFUarzNSTSFdWtWpnBkTeWjO80iTwoRuCxyj8lsjYNVhW6471e3ojRWtqlERnMrbZtfCE4qiRqPqSu5Gp1cTjdFGGYMCZgs+oEXB2hFZUBo6yreNWcFyhmSmTB136+nTzsjMqm81JQZGL2yluK/mzirAyMoLpmV1RQ5D2u7ifVjtE/dtNwMHWV1/FdGlADcnCE/a4vphJEFz9+FG5IxjMyIHHQQyIgQkQvdQspQZ3c3MQdsseaSd88u2bx4AzMLNsjQLhW076JsPM/Nxuw3FsK7tA82VFqqK7jAfw7edxzwzQ3HXOaH7PBFhtruZiZgcYQOnT5o2gLvfyP3lnltM+9SM5KA+wn/RnOCWRJjIbStByvP0+/nl5Pnlh8TL/YYoxQOBzPt56NNePScGdd72yMHNt9vn/Qj7+vU9v4YhX2m73ziK2Py53TLASBEniNtduv+9+GG//Cezf5pf/+EVf//TePv68cmb31+/fbydeHflDpN7TnD4uMXrfvzEz5/u//jTP+Lrtx+kl804J02W/paOD/l9Zla5I8cuRJ7Kj49j8204iiSSM+f0HTkTY5NgmxXP11NVCSG6ASGrGmDdBmyyzGiIJWsymTIhZCl4WLb7bSrOldSwqoaVxQEZimQYRWcGIEYU1sPm71xZyxP8fTm9LFi2NHAEqmPCInO2G8x0M7VkgF3BNbGUJwAJacNKEIRCNw5UDxwcVhKyLE3UWoM6iz1r0syXx0BXrGFYY1MKMbXu3QDASvoae7caXT1hM9rbgk5b9S57hAwNtFdHTI0sXaFI1HTCkj9YVGIBWIPAKzdfyQhWcfsaxoDibFIGotoYRhmzIoWYuqTpUlBVUqgypmCxOkK6kw9aAVndqslUpKgLm6djDAKI1AUF1HwBFj2vI7EmXZDFnIaiMuu4O5GwVExS2T2l9YdKNbt+YrIq6MIMNkRwMzltM436cffhWK4skCAtEy74IEBkNpQrJBDJ1W+Rj1bsHuTLFUhaxfaQ6Aa4H4jMebRgq9bzzFiQBGpnWkNOPe76qSZCphkcIphJDop0bIldp+ws2SmYnIgVsFWMSWNxxSRTbqCNYEyxVHYAZbpX4dgMMNhRmypT0zeHQDogczQbRll2oWYOLqpO0AnYnQQ8aLZBUTvWAmKVgzzhDRrV+D8l2BNxC2LwEy1/OPZ7VLZvI12pMJ2LxYRhQAtdoTYJhIN7HHMqnHmKmShCuJGS3UyyTCGZfMHG8Ami2r3TUnG4u+VQKVkjmYFARCpAJHYgOWKzTVaTyaoMrIQCPBUcU2PfNHLbZtcrc2CawhGIPc8hxLYC+0O5bUDQZDK2ulG4BShLO8fQmyE4klObzIOm4/1zH9peXuk7MVLnNpQHud9N56nk/Tzez9/AhjMVgiF4bubKgMZGwHyPpHB7NYbMMyGvSvIwkBs1KMnH7XV/++1f4M6YPOeZw+7UvZ6j3V6/3MbAyH23t98BN335y7//3Y+cP/gXu32R8OWm13ib7tvm/upjvuqnj4/Xzx28j5SbbyfnvvFdL7/XLx+xc7zlvm9HSPfkabYd5AGZKY0v2G47qGlv4/wHfMPL/Fv76y/+7bDffU3d9/0Vxo0ZmTHdP2dYfg1++/Nn7n7/Ov/L37/88cPe/vEfft5++36PTIz59fZyP25uSgmf7/dkCCL9w3H+f//hP3Ja/vL1J/vpHm+m+/7qI+n+9e6Tuk+bmWk65qdOOyOOY245b5AbDWOzNJvv+e2Xnw5D5Hj5VEZauABEGHz4MDP6NnyaocntbVycyJndSyTAPIFMBkSLOBkq4mqZoLLtGCY3iGnLWDEjJEsMGnKmco1NvhA/LxArQSKKItEeZATLCmgE4CPhOEVItpkGMtI4qJoILrgb6FHTQBmd9ZlAmQQYFZfoY+VERSSkleBP40aZlanTQcvaohruoo9mVJb9JEbr9bWL7mZKQsNOxXA3aFa4b6ZJ6IzyZ6pCqBLCOazgPhCGzHILNSCYXs7xMe6p3H238V+oIFZL6ZMsaCfHgxdUjO6FJ6pp86pmtzuhJWusWpU+H4DB+lOl2k+gApeCU4UnNRjbDE0WXYA5L/y20/0rD+yE+toVuuhSXDIQxpSR6SwIbHoWur1Qb3XY1X1qkploHk9A53URaEr24uKWTGD/ewUeDbKsOjtKvq1hAVzak9X9G3lhLclKTPsFtVqSJBt0N12CwuWSaiJsXaTRCMeq5FchooNUUrDgAmVKk85Mak1/1P1wgd8XXF4C/cXegGFl/+VBczWnXcTCCvzUYNk1T7FBHEkJMlmquRGiiDEi940xt54TUUFJZpGlWcy7Vr9jt5H3c89Eyku0UhHKMJYGS4b3nuA1mIsZmQ51bzdRPVi1hMpMEIoofqBVWWwh5ua8lDWvjQDR3QnzSnLRQ3GrK7agAcIAhdxo1V7ezPZU9dcpWbxkIlYIZaZBRABkjkoLerfXhPYkS+xF62LqwSqTQRWUi3FlKKQ52ij5Pug5RoWgOd1AZY7zROnI0L3aQet/EJAJKhRpUM4z6KbMeaqAwIykUdVlCCgjBI6XNHL/8H3u7vSX3TaY0cdwJocBQXO3vA053Bm3lwE7dmcoB82dsW3DYwzdxy1JF3zgYMjkN/sh/7QZ8mMAOFPI6jdEGLThHDZsQGaAghGfMe9CSttv8y00bN6nI05LIarDdKBIZcikTihskNsYw1/t9uV8u4V8ZBw5Jycywgh3mO73EntV8Jb84a9HgLfxY3683LAZ9TE85nDDqQxo5jxVlVz3Mj82zAy0eZbqYVmQmLtRQsRFNH+guFp/brveJ7ly0KuPnQx4byJjrmqSmcAUs4pAuTxBmU13GGpGiXx0adAWL9jBapAVkmZtJ0AvTTQzZ+EcIqs3rzrHYQqSLUnLhyR1ripiFg2zx17iYd8BZIzGxLFaIeplTdbHqkH13q18AZa+YNNKAjvX7lF1RUbt9uyaColut1TPHiuqMrG/YDNVpIXKCaUWO4C4zG1dBtsPXFmi9TGtomWX5jqfxgPBvwAAggkCIxfwvKqlNCrlGRmianzrcmHL11aWxgbpiVSxUHnBz8snX2O9WV27VhQ9ZhsWFZkInUz3GK8Go1VrX6U/seXrvaQhMDZLJTYlanxuEzvHjGCNvy6X+1RLiJNzyiRlOnMaS/0k4Ch958btCTDmTAM0OZRmI/LEBiDBjDJ6tSKZvFqPyg53T01OgQqDUhMlAdBiHSmyxSlBH941A4NbCkm5qQQdCoe1kNAyf13GTs7ckWjqBmcGslwRIkxJEjkYJFIJZDSsDMJszj3ybGCjhO+9BpCTcmUNHfVkOjiMw2BuMuVmhCHNq+OoIqzqTjAAKeyfopG7IZkRp5/n5iHQkZslPH2QcOtKe2aUEyuwp7lcQiys2xBrE0ci4APiSAsRCTLnNEOcADI4IzhPy/s0IIkZ5SpPi/NshnxEJow5GM5QzavJNPeanBSbf5aYbko4ba8pDKCMODKp0zeDx0l3YJRUb9fyRGkcptiHeYwY+flywgLQqKrKBGnJAeOokSvB8ao9AFpEIIOUUUaP3JSbGSakz7TbJ3cHciqR4Ta298MF2jbPMxjmuZkNM+6i3XHuE1/GHjFTgwTDBpn3yDTijnPGGadGxrz7ITdwjAQyYYqYNOSw02DMFHke77ffYRt8+bj5ka8+tnQfPnZTYrttL3a8vVjwxy/7jpvt4I2bOWPf7vnGV+AL/IUHX3b76r+xLd92Dk/bM84zMU5/vcX9p9/tejmcnx/zSxg/xqsFJmB3GzkiX2gun3GcN8QvH7p9sTvG2x++/vjnb/uWf1Ic+ZUfdrNp205tvmvODZbfUnh5D/y43f7i327/8X/9mz/+i3/63/8Qf76f27df/u7zy8gt0m2M7c3Tz/h0P5CMgTf86//lP+D9zv/4+qrt1T7PmflNvA3Ol5x2crtPIBUTwKbDbjFfTtmNup15CltmznPc+PbDW+zjzHn/OFLzQIQYEcHQZE/RzuK2mHJ1vSsQYnplimZIkD5CxiRsDDVBt7INIUBfPzEbZYudhBUqJ1LhDqDCrCdvWX0qrGoboMxogkNJDVgVuQQ4q1/JS8ykiN0w0QLdpKHMWTKlKA5V+ayG52Y3NJSWDhOJiJhDmqa08vYVM0r1AaYJOfI8J+EZQ83oRJnWRbCmTGZUZkUdEGzL7JJZ6Sts47bnfj+rXab0XoxSq9SW6nAyWDPHJgBMiLKVlVUMoFIoqL7s9iUPHeOLEYQqqgHjao2+kFesBLlQxSq5GUoK3Dtjqa8rdUxdon+6yuqdaleoZyuEW8lff13n6mKnvUvFAau40Wll3YfBA1pKPO3rSt81YACHO6g0C1Vhs1tNCoVQJYbFCrIx5qC51y4wXmoPVEeZi5rd2lWdWFHMLOLtSlAuuVaVEBQ7qTZKhK90qshsha+2wlfPOi3aUTJUc1JULTjVM7yuRJAeUVdnaRxMK0/eFeRuxa7iRaf3KwYh1vYG1OryGc3HKESIJWphFeqheXAs6Kk03JrdWB00/VgXoLJiwjyOTMUEj7xvx/30c1YDtcyJMQxTSN+w5L9bBL4YIZCqzaemz5auhq1Pd0yIlKHkTSp/dpkUUTNje+ThNDCiojPBzA3MYBUPHLV7EICY02CpCOsVoiOK2gIP0DNCGcyVpSgZhpZio7uVRGrFzSDosgjG9CIvcOZIzthUDYxeOUYwEZWrS4T72E92mjNNILLoAgqFdxeAjO4jMSDl5MioY29UHtMympvnlBlyfgSYFbTnnCGsYDOFyAGZS6Zhn6JlKzp0tRBQ3AbMsn6UNPpwTgc2UBqu3eZtSL7fbsaN50QiT3HQT3+1EN39x/Pby2Y+uY35NrFtL9D4sh1gxLcfS4hlICeRPOI28U/60S1I3r993WImps4hmGGSEQmbAdA2D/OY3I+UbrK31/Mv377dbz/En38e2DdzTPpx5xAH5nHWuZtftv2vxpc//M3/7ON/+avt//RP56v/xZ9P+7h9Rp4vwwjINttmI4FO5/ZmXz/+8e+Orzj+9h9/u39N3rfNfrPdxo/b1Fvsp1HQPM5zm5zHx+d00GzYOL74/vmOwGGpMeT7yz7IkUfS98SW65gLgpVY+qqj9QFlWY0rExQUkXPrfMVKFT1np0bL6ssA+jhLPBdd15CQKuYD0bQpPgnzPYDByo8aRe2LKMYtrbXuTEXnMNLdCi2xAjsTrILtyqpsfeT6/ZEritbjxk31psc8tcoBc11aebDVZfO44JUdaxnORq+X3FhDcX7dJ31sw3cfwzGPGYo05aSiFCsrVbJ2/KbGKUFHJBc63blYCRqj3tGoQ0FV1n73sbaCoLH+oa+zhr5cuoENcxFksqUNL/D1wrcvs76+YqEnqxpayDwWwNnJ+PWqKzoohsvFCnvGY4pkjs671U7VYMZ0OVDauIQPjwInnh4zFj1w/ce9E5b1TcU4Xru9fVYRkDKL9CZN742KYg2WA6gen0fSXhk7wLUmVlLwzQpEChjF5ymXWy3N9fLFCq6LfnCtF5/wibJUJPs6dBXm9VFdpWlGgzVaLIrlbOvEoPA4WXQO327dFtxV7r+K9IVrWO0wUzJLe4Pd8Wdmhc4yEsioIxtQRpx7hrlqVqmnbSYFFGA40JUdFr5d4V1eBkfAkmVCGoVUDVDs2W9U5hpIkuGpaLlppEJFrityF1GBRwt4r6ij/Fsn3TVgr58aUlHNkPM+rNJbgY5y8CmYzZkyN3Mpl4SmVG1pLfWJ0uLyPGH36ZYDCkbuGer6iNJCg+PsR1XZhGJxkcmSRo5gnqdC/nrpp4nmjAEpkkMEi38imOYtM+Z9Z5z3t6qFFdxUFXuSkVXgIJObs6bUqtSxar/QxijYL6OxqrFvCsS0PMwN7nNspWQCjKEwwJE2bIPtmzls+JgwGGUKTQwnTbG/4Vve5wwoYxgd53nMoahQHyO+bPL7Z+pMnaLDIZ7TNZO2c9v3HebSeSSMmeb765f548vt63772bXJzVNpecYZu5Qzzq0G+e42xh6vX/YM7cPjw8b2h3fgh7evh17np8cckTbsplPag3zT/td/+e3f/Jv/w7f/ulnutEHQ45jH5y32fe77bczPzTmP+/F65ueHH/DAHJZO9w0panibBtLMtjFt20w5NC5lVls662Ze1Q/nKlWQ19FYw3bWXyEBec7TW9Bq2TMFbM4sgWFk1anQWByoZCHO60SAF5ipNtoXTbu+uKXisRpMVCEeG0mtU1u5nEApLZlSQAkZk0+OfvnL5RwK1V3WuHPArrZ0CKAeEloJ7XIoRqwcwdhtA12IrBW9xHTTh4q7VaOufduGjc3ae5VNKtY2EmQLY2j1qupRmlvX3CtS87q5eND9aKz9H816Fg+75jeucnEvZCnWWm+BSuKKjl1tVRfEv1aHpHkxbJe+rZU6Uj9MlCqSWUf56AabLJHfZ5Qcy+NglSSxMtOFpq82OJey9Bq6Tbu2rLH1gFb4Ll8uv4oWVYKwGsdJXksIW+jniscAmhRLK6Qz/07kK11fOf4qT3SqvNLCCsKqKmNpgBdaL3C4fNVoCxCqUNL6mqjHFqqCMG1lmrhqNIIAX2tniNKH60y4Lq3qlViU6zbv15InJGv+Ltvt6ir/q8UcRaWKdMsqwAZVPVydklvr9Qv0WkYagbSqNY8WKrWOFLuk0SqdFSOrYA0ApZsC4NJ+m1pDK4AOEVStymlSD6Dt7acqIK8VkFjETVagWAc4DWEWtHL9ClOiLJSgAjO8+OWGrhFPILjY/8mMGFpBbbECVuAnWV1FBOFCOE7vmQJEEGIwgUhLRmYaSZeYac3p0GqAWNiCKcNFz1OV+FYdnUBoMxGAO/aPYpuBhJeMQGQaM23s21YsQZPIct/QcHc3jqQbbHevB7+yDknuoMIqmBn7vm37gJEOGzSG0oZqx/k2aByRCjidtr+NMeT++hsiZ2r4BnulD4O9Ahv3cX4cG6cFXsY8T4CMsY+b/IePXz45j/n+fjvPUle5sRGzyOEc5hwZMB/biBDgyS0/8ZubYf/xU0W5zGnb/OQxcJ/38wRv837CX9/e0vf4STM/PyLjp7/+8XPcU3+4/ylt30M5Z8yU8kycNG3a/Z76+Kevdx3v9nL6GMOceNl3ziS3TT7Mh4ApSZ8vR+hjEJZwpzL9BjNmZs6Rc84pCmNYOGnmxf8hzRroKwmF/oPRVBIBTWEvBfOq3qKoIch5HrcHbsgV+jdnuvssH2H+hfdV8bOSzlzHFKu6WyQS614zu9wLGvoDjCVv1B11AWOIRCKDymSl3xUmXA56eeDiLi4H3/QSrk4gNjK5DgNIK50HayW7ipgXx+n6jiuXe+THy/RVYTOKecvlTdG9oqw/ogChTovQLCqQlDQymhL+cFvX1XcUU3B9BxJcmc31WoxySq1YL5S/gJsPDS+2DQEoOp7pSKPapAhSPtxMhfcnWFJXYmUxNMh9lEap+XCpaMyaGcfcwEKViUYHVjUVaBtcAhTFJagk0MzdhAhJchNmrBKskgmUpCC15PHNNiJU4ohbyjglmrs5UK2WFsmO8QoBZJYMqydXBCQOdvW2acm0pbtPQmo8puzxGssF9KGiG3QCeR7TfEsXBWVO0acX5wrJYvywkKJKBEuvq6KhhiqkM5FF645KbjGh6j4pgbU0l3U/fopewSGb6hHOzoFMPSq2XKJZSrbiB0Y9yuACdgIaWV0MAmpqXbZHKj8tHXflRCjGcO4ufwsOImEcGNRhgJt0CJpgGgATZSmuPZ4TAbp1i67SR+uUzlOsaEY0l42JtOp+NdAzuPk8TRbmkSDkfoJmbkl66TyRCqPmprQMRAwTksWbc8At01w0mok+5glUncIy54wpKFPncUa6DcuIKVXTLFVBaUKRCQHDRmrbPk9npp2+bZMoXTRG0ODby21OxZymdBGIWfU9wzBJcXfk2LYcb29TI+9WY2zDIcD2jDz3kCzN4rzZ6QKZBF6P4XrR729MJUIIgjEJtqq9DzcUIpEzbDhFjjHAQdgQPOTmO23YwKB03Md2s9sX8xcqN5y2IwNqUoX757v+8j3E+cvvxjw+ML4q9fHLZx5fbjfidd596LBb/pQYH+93xhiOwXMClknY1Osk/PbtPc/7FyNMHJ+f4tz8TcNuLzZi5LT3Q8cL93nGL2P4MeHHn8/f3WDz/Sv27ebTUxGY5DECOnWcL67I229+/MH5hxc//+2/yeP2N//6T/f//N858Xf/8PNP2++OYST2L/se/vZ23z6Nx33g/b/8/A+//VeH3f/0t+d/4H3wuCf23/1h277+srlypm379rrfwvyF2r/9+WX+8MN83e+//0j/8z/FF59085fXt7dPHnf4t/j0SZpHGTRIyLCUgIiJGabU5fV4DbesvEER51bYLWhM2I7cXMagKUHKwly2dVUYBhmQqSpTlvcxk9Ryx9WXbh1bDnLIWlevsnYilmKwPaW7JT1Nd8AjKyei04Dsfhok5DJn6KqrYYXIeUHHaA/IBu2g1Q1fhm7lojVTpym+wupEWIXQrlw1DwiQMkwl+qMZVLeuZjZPLOfMmBELxgeSpiq+tCpdspq9w4O0rWD7CnTQaH6pXV2q81gZONs5N9O2HfZinrXXq9bqSsRkRkYneUSCSlNGEZ4eqSsgtaKXaVV2+wtkLtDdOvNSSrP6SE/NWfmiLcWuJh9DrSfVQWBeGItbOyoapZiCWcpGyTYqMwOhwWorK90UqdnPoJeSbBrRgHbW6NFW/7xkI6Ui/tAxk0RGeJESTqRyikhlkYVLgJACFN0ImmSNURKYURqOhCUtsvyetUziOaGEK2nwYr0Urlvb8kLoUyYZGugvXBgU0w2I4/O8T8Rp5/g47/f4xEd+KIad9nI/2WKd9HQgDJlwYgTTxvzgVKbNtJsxh8NcJD0lA3i8m+5HxIun+baNAVgO2R9/fjmFAdKGZHJ3L2cOMj++vn+7y88Zk8c5Z6TlgTW51OZJmqFmx8mqUglRiBzNsVBKzJkMF02RwcwZcCkCTA1ncGpqRI5Ii1GiQiSRzCk/Y7t/0M/7qOl0VUH2zJxT8nkUUisCu85r4nB1TQtbyGg1UfIYSRg5IVjOs/oRFTEjlQcTRLbe54q4zBxB5o0Q6Xukk69j2su77fu3jahZoJnkaWLOw0J3Gyc5kJ4a1fI9zQZjc0vuR1vPmBBfxuron9DULBvOjefk9MA5HIbNNnjgyyEzM4UBYV5jgcd+p+TDkdMyOWOmOx1wuYEOGwhMmA/Rho+kzvvPYx9S4FPbTMtIpI5jIM/j/hKZt5/Dxu43oyltnNL9hbab/fgjHf4FHsZpNil/387zN7fbvtnc7hNzxplG0H/R7eW35vd5/KwP6h3p8f66n/Iip0RstkmGub1s90nj/U+btM3/8r//1duXb+cPf3n+Xd7eznkwQ+DOG4MzDeP28pvx9h/+esdf7H+Vf5p/ePl5fp3z5z/eFRjv48dv52DsSEUE9tfX188v4zZffn/78jf25X/ycf+zROSnIV5+/unc/gKOxE+/4cy0bbg5EKlZynvzzB3Y/rCd3+7Hze+aI+P4tI8TljHPn1/mEH1jTCh6joiZFaMJnZqsxK7+Y129yxkqYXqqWjGH+zYMZNJ6Fj3hMbx4MBlIzJTmNAWUYYa0UKYolhuMR1UtJKYylKo5rGEEU7QNyRq5Sa7pJ5VHFb5M2jC4bYKqIcHgNSmsr757WLPIXA6TKpVWjz9IDE/fqhHYkKClJYEcFhAIGzTzzQcpG13CE41w0SA4bDz1MimDEeZIednvhM379G1s23HcvXQnYaMQM6jKNbLOg6oIZWEO+lAWA86MKcvKn3xVgNlwG3oKWSdKLWhUHrKrO0C0ZldTLTwOzVj0KUMFVOX6WBwVrszpGBEpzYJGJEUokZGo0Z8GbDRDULO0dIu5Om63rTSt1DPRLt2vUu2RcrKLqsHZDWxFitpLvdG3Ya7EDHOnOMLcWsnBxOHpUCpSMZMJxiHD5DaqsWWCzIttnI3EACZDtExitZNEzjUaODMjgkxRM+eENC1g81xxXFa9UCBLUBow5qnNc8oGx7aZ15h7jIEaonom3dyxmG4qeJGMJBwCnJHVUgTCoDDSBpw0T9shRMVRJzOlmPM4YyOEmuQVRdfiqQ1JnWZATGxnqEFV+oh0SznndOlsQdTNJhmDVDVyGESTrERoN3GrfgUTLM8COpSID437+XEO4jTKOGin7NVxvwfsFVMpwLwkNSrEtExI5nLGaTQgIFgcOiGDhmwS0gib58S5OfY85kak3ONITkk2g+dnKo+MfM/XjDMFMAKcMbS7G+ApzTPBPDx3ItTgq8g8j6nDzfwetAHmQLImKdAn5Ztz+Jz75rtLrlkCKQDCbCjCzTzpTLPTxbf3c/PN3TXt9MFNGO6BbXOeaYPbi27YLSPNcMbxMjCK2LcNP4by8Pwayt3xfhuHBiDlJL/6sB/w29txt23G/jktgfcvfjq+fk2j6RdO6fwWd7oQYzsZxz0ykZ/vx0RSOejbS2RwQ9zfT+SR0hzzm9x4v1OJHH7bXr58yT9/bAf22Hh7fX99/TxP7S/79sPbl7fxA3H7/V+9fTkPnjo/Jzn+8Fc//jj3tzh1vPPlvBvNd0vcfv+Pf+Ufv/8H8gjJBoHNkHTf/fZ2++nnz3/55Z1/+f85Pj6Rn8cdOnDn+8dLfLtttxG3zX+Mb+ftBaE/j18+HPj84//tH375v+pvj3/1+uf/9v5y2ot8OmbOGDT6Pl/fvs5f/u7zP36+vm6fP89fvv6n+Rd/bf/5//X1L/7Dv//8Cfjlv/4/f/p3f/X35Mt2vm8Hjl9O5o+g/bjtt//th99M/cPH73//77fx336x7Tfb5jz+tO0/WJzYD8P90B2wt/k1Pr7y5Tevlrvu+vuvh91ebsMBz/Pgnz4+p71svzl+fn09oEjdNgE8CYm0FLEN384A4H5GZlRLjhHCLK6B7YnthioWpUTL+/3O3U80Yc+ZxhN5zhBFS7qCvvkGDKGG4XIOQYlS5KWVhADB5H3YFIMIeI6mdzmcyDTSx5y03FKOSYiYg3MWjCtxOsJWUoNIGr3EgTqDF0ulzt2zi2OSlbz4QmUFVu8issYoFDD60LjPRsG1nEela2qHQWrQfSutHpg5N5obkDJIsDG2TXC3gYAbEcqMLLEjAK6eK1WUQlAJm8pQSXwgn5lLAKvNsJNg5WLtdqSy6oJQS1GWyjSvlqRiH2lxchqSbyh8VRkblcwoIYdASSIXbak0RNrNl6ZJZxuXBykMAqswiaoOL6j+upLWkWgSvi3ta6O5lcB8Egbbbq70nGeeGcjVC9UM63UXJAdj+F7e1FowKhuvbxAarDQo9SDFzkytCbZNPS/a2kUkE1h61esG1VqiSjWFn2aQwb3ikEZbjIuI5C0upVWcjgL1k7DmH3e7PKkUwsrpVtCQ1JyKMCgmgZL2cwWLn20JqFXBq8UtM4sNRr/q2KQh4CWfla6ZYoefqYRb0hRZw1SrnEozN5nRq9cBzIk4MAoSiKimLXenM8bmClXTsNesi2I7BSC4sqcqo8q1JsXMOVljASv0t8ycbkIp9FVkEclTiQlCxjN8teJmzMpONZkKxaFIB4IJmdUZFZQoNQSYQTJa2qDTbN4K+gsrIW5DkBL38PSx2WBU6EpKkQifACa2NAKaFsfOc7ePzZGO+IDmpjC5DyaVinQ3YNikWD1nStDZRMzU3XCmj4g0+gvd4KOIU9xAN9MsXSMYmNOwnfMPJeF14v39bdzGfoajpmFMSyriOG9MKGBByzDOmAjNj/upCGmeN8kz84yYdzPK3F7fOD91D877tDN2xOYbaeNt28au08fgMQl82fYvLy9fcPvyZRvD8pef3qb0/mWbY+z2vptNzF/409urkjvoW6QNx/aG/fX2+i2B82Pe/oR43206nFseNuM8zuS+pw/n9jIVcWCaO173H/Svfvuv/m0g/tV4+9tX+/QtLJnzOGdgP94/vo74Zf789etvf5zz89tf2/FP9389/vzbf/ov77/54RYbcn776esZp3nYzM1C9+Pctjv95re//Nf7a7j96W/+6os+Xj+LUZRH8u1m03Kn4d0tz/M4A3fWHBgA5x6Tr+M8md4jzGRjuO+7v3z5SB2yJj+mQG8lehUqWElYGyRUsmosFX0Kls2hUjJjfty3sxrooM5XTjDOGZZMCDKKw8qurpKZVnETtITlM9uislNo1khps8ERoFmrc9BoafAkiklQvYlelVBbaTsUUeVJSW3htFxKVWuaalMl2uV/uw+lFKhqhkobyYfPE5lpSJgtV9jIcrgZxSADgGWRRbxohhFGT5mPMfYcJuXVVKpmuaVo2a5arZRbdxURAJhLw7BKr7Vw/RufSr6LWFOerjKOUTh7rz3B4SGaW7B6khsI5UorF5Ld9CIauHtB1djK66Tua1HK+botVitKmLGsaKbYI1dJLH0PAJd8orKAiBTkVpAFoaQQmlMGI6utltSUKJp7nlXh7bEOMPdEQlsjn4ZLokGAmtgLVFimGkpKmLXT9byoESo4f3vdW7/L01zp7pATMLdVPCFrYpONYdxGjDmY6V6FvZi0gqlTYh1KCKFs/sFZXraDB8Xw1sZuFW2jO8Z7DqTbmAlayk0yt3GbJvNM3+aZVNArCqobLoowPbcdU2GZSkZxp3ooBIN0mjANZySm7sQG0GwojMfhAfNqnM8ssTWlRcKkiJgihhlfbm/3xLh9qpDk4cTnCcyptKxkdVHZKiTLpoNYwnAuqobdFGampJLDldTMjYPJPHhyE5xw5LAyVD5Obm/fIJu0YcYBc84x9qTpQIaZLEFuG4w+4C6auatqExMjMkVNxP3wDTD5BUvRkdM2g90mEwEzn0wFErCEgibozBwWmpaHWdxj5OE4bcMpnoNF2BYwbcsYGcf7th9OImGO+6RIs2MgpnnIY5hmxrBb3l7t1d1Hgtv2YhGH4suXbZpB20gC29xeNcYZ22+/at82+PY6dyXTNWNsvNmHu9/i/k4zjuHJ29tttzswdqMP5Gb0F4I5Xum2j90zMrkpTrz/9O2cnvf3D9w8827j5809fh5fvv3j7S/wOl79tv1+33i+//zGt9+9/jHny/7HP/8oxZw/memPPI79l88Y8aqpt3nPc2xziy87X8bL6/jjH3/77eu2/fC55/zhd9s895fj3E2ccb75Rstxz29m8aeffvzt7Zcjb/nyJd//1//Lj/+Pr//Ht//yTz9v//SNXzNtfvpvh/Ku0zjx9uXf/Zu/+9/+w49+e3/74//7dzb/83+/f/3LI75+++lnJ9/m2x++/nEb4yW+vNt4+/398+V9P15/uPlf/UXc73a+vMwf7Jc//dP2O/7wjfv940feX18+f+Zt4931X8/4+Nj4y18DXzDv8+vt9nb+eP8zY9/iE9CpPH2egQjm/QejthNd9xtITDcTxb2nZUk+rFkwykJpCqUuMwrVP5nhJMc2PMp6dp9mplmIQE7DRCDnmLYmOGruzuxImkBlITUPAG/VxqqYU3GCTMEmFK5pOMPPkz6RIhTIDLkiIxOouQczcyodxVldxL6iLRa9MZOJGRMtAYzmQlLhLRahTMPU5blZXqKTNy5+Blci1FFF00Nrqqok0eku23Y1cSehjNNK2erMoYFiN/V4AN0xivFTdKhQdTNV4FHtV4VyLoqYedvtUhXq0nlDq1pksoo/iNGZQQPW0HQAcs+S7qk4oZT4TNFkT8DWqLQallRpdqvpCmau9NokyoxmyJovzRQBVrxjgVlCK020QhU/kciSK2qZZ5lXg6IlzWwrtuk23ExZWXBNPKcyKshCmssyzxSYIdf5ue+T3SRqmuzRuZlkCKqLquWGZlGaM4YDZf29NqACQxCsqFXorLl4eHax+TUBYg4iFYnIBGeeR4SPlJnIUjMLAKypTa4MZA0seBAR4AqkUvH4sZAnpDNmzjmRisw0S2XMc1KUIzHG0mpd2wb0Iq8agr5wATPRzd0Ac01HsKasyJkwE4aZSQwl4duA3KteDaBk7ExmMMhunxswJlLHuH8eZ96PgBw2kNK20c57JF8VSGTA6tipj07RMd2RBhpouOEshRhKmTMcEF05T7iZc2bYp3uOcZ6UXDM853tQMY2RsKmwJO955kgZQm5wFbkPzPCKpvYddB8bN96H2Y1KTbsRpCuH4EieECDfbzZ5nPvuwyNOpWhuqSL85RjnuA1IMk7PGEDcbsOHpKS5d7wKaSA/4mbneBvyMi7zZGCY0aZtkvvuGXPcX37M4+2HtyOPvIcCkuGnz5eZofm+f34y4g6D2fB9523MoaG3l2/n+eG3eyaFsM02zhlp5nGcsyXIpPPzS5Lm+5eXDyhbyBDIsZ1Ko87hlp8/33Ypp+37y7a9+KYAsL/seX/fdfvh9sPv3358yaFU/HR8/ZLj/T3evw3tv/+Yb9sLP7aNANJPRfxu/olvL5k4OY45PiL4Pvf85Q/AD/777UvE9r79cNzft/EKvuT+Rfu07UN4g9H8h4/cDff74Xvuv/vt62G/uX/7B379+vX9J/vJRU9i/2JpL69zfvvxD1/u397vp8d9/Lj/y3//f/6793//L//zv/lv/3c///Dll5d8/+9/+x7/hV//xW3cfvzNb1707Zf9zi0sPj/9v27nzrefic+0X/Yv/su3Y+J9+tvry5eP1/MDnwfz015fjpdtvngqjiG+vThtOOcZn3kKYI4ff/j2wy+fxMf7+/i20QgcBxAzp2JW3WyeUzGRSca5dYubIqaMsGlSpHIettEKkJq+D5SqvVdnA1nCs3abaSFzWtSwEpiTaW4a7YAgSoZMZQ95SBUOmoQxM5VWIx0CJrc0seYieQvLjW1zNQ8i3YjqZBesfFii+g0X0JmUMpGFzF3mvyggkWk1gLPTsuIqiRmU0nM6DZrTDODqFq0SeWYRy3pCrsyUxby0xDzLYRpJ+jZ87K/bHnvzmwnNqOYWG6dKFAymBEwZ6ZEm+ZHV4Og00Eq45EpOO45pXpuNpSRaN35pMo/CopcE4MrpF3yNxzKlLSq5qUS6KtaAQOsKXqGDUqEnzVcT6j5tkdwBwFq5Gt1hhepJqzSZItPqPwmkZX9quY/WUU4F4ND0amvrlp1VblgEJpqZOZyJsW1j2xMD8LHRfbTsBlajSpHt1jsp0gNNrWHpj5I2gja6hXfInTJ3wCzZ8qWmmonhpJFuBtIwJtQd4E13rPuqCKqya7OscORq2iqgP6r6HFHdOtBEaa1Mb00NhDKq0TUCJMJK/grIp3bigrIkyYaRdYTI1iypzRvKGilcs4eUSk3Qsmc1ZGZkZPdJCddYMkmEuYt55zjCZoRoPvwozSwjnG7gvp2z5OCLbVcgfYdzDZ8QEXYmgZw54ao4qx+aKWqb+sJvWi2o1VwGwhTZA6+iJzx2FwUKwa8KtJF9JNYRoEDMYQNmNqTAsHRjnOiSBK7z4bHoiNUN4qv20IG6G2Z1lQFSQJDMTdW/3GQabuPmIvKUS6NjQmNI2EwgpuaBl31s+3Ya8tMtvJQTcp60zJw4UtudBpqLoNHGtg9un8OOtO0ce55E0VCXdGoTdYAauEAqMpSJUCLC8pwZM8+JiGkthMDY6dsOjk/M8/zcODVnRMIiPznmeXx9t/PN7zawb1PYX3Y/4/7+g7/u+GLcGLnvx/kJYB6bCXlu25k2PLf8cjs3zC//eM7345gzX5X7OHbPbdOrvxwiknZ/SZympPD2OT7n7WYvr/tvjm+3N/yVfqevx+uXe0wi0+fHy7jv8XmfzPlyi/vb636bf3/7PT9+Sf/T3//N8fMf/8X7f/zjJ3/54z++z69/GDk80oH8nIRH4Dz9lv8Jv4mv//3b1z8fXw7+mBzvt9QP4/XNPu6/zRluAunbRh/iy/3z7WPyPubczmBPSgEwgxSMkRzbNozMUlg3KxHVhaHRnKeBYx/ugCEl9ZhqM1oEVLhw+UihqkxLmKdrgOA1cJWlUpX0Kp+GmDJk0WyhnmizDGnrDjO7ARTEZcMrAa1ZTSCnrPqAqjDURTSUlAUWVr16Yp9+sfjUdnXarN6g3pureqhF1wWeu0WXnlMdwceHotbPzToRXn1BTxxrtEBHzFKhx5Nh7hzuKmWCK9MC6bJbBrPErQu4Qzue5nhLatsr9TCZ1U5VIQqgwYVKPy2HaNXU3ph1vaaauHOKRI1sq74hy+xqoFBDJ23EeqcbSEbSXayxheWpM3sMXIVYmUVJI6pLXMVkylRzmbM1qI2QW3OK9VjoasHOC99IyzXiiM1DXsvaS8m1Kwr4LOEqqJozIAEx3TPFpBTm+5k5SJQUag3pW4FjT12gGcQaT976Bl0wEKpNwCql8c58KgQ5qzPU4aAyiWIapGhQCauR0WGA9XagCTzo1eLUkja0DaDVLIQCsdEs+hVa1e+selKh7aZ2HjWDBVDftfU0SJDI8MwUvAvQIAS72B+qKaTdHuQ0Do/hIH1kT+eqBXYdpJmNrO9dIiDdLwUTszuJEYVpMGlMZYlcS2nerdLFskBUybbwjJprWtpPpRnSwAZkrBKEZx1FA2q0RbUjm3s3gQVx8/RwJMx82JYe1ZVOEhmqXs1sY5UzszSuIucUAxZmfQATOqt2ZMk5bEbFsqdjysgMO/PwMQ6ZGzRaVBdW8xNRI0qn+zRDUjPk+NyVkcjU/T0Y3MeN2rdtupnLQeW8v39L80zNHBTH+P9R9Wc7si1JliC2lojq3mY+nHPuvRGRETl1FtgNNsDhhQ984Wfwd/lGoME3EiBAVldXdWVWVmZk3OkM7m5mW1Vk8UHU/BYTGYGIuH78mO1BRWTJGrBU2g46G2eAIDKjAZkZs5j9uTSALH4Hoqir9fCZjn7eTMdLjqNBRzzTbWtkSvF2u4FxdWtqQhuwbh23MWE6P181jk/921NXt9N83h5eBw9H7Ln7w2U0O2BjPLWIT/327PPtLa4/m+L0OiM4p0Uzdh524oy4Hvseb9uBbzffD358tN1+eHr5ZOMS//jTf/0vp/zJefDmIx4V49KOS44jBoycb4rX32mfez/B+/P3448f3z59jqfjdv2ZeKR129mfb74/HI6NmN7mj3l+eHj+3Xf9ZX7/YfNveX08/oD2mMfG/ZZI2y/qGxVm7im9HdmPE6+nnWr9sAlXMqYJrdctGQOKWLFktfCDSPoR4j2FoR6CCgaQlrOESK94LQ+QCun+uvJuGrU2sHZf/dU4x0SlEa3/ReVZVVtH3Q2xVDgwIpgRilRZ11Gp5UBe6pBlNq1l/n8Xr66ZNr3qnozFCLb8/6s5eof1ipdzP6frs7+XTP3WU5B5VxuxHlaDNCmvw9yrA1iDWDFia8QrIvg8pqsOEGWGwwwz5mKAVJhFipLnveYL5RKxUh1pUKt51ysGZiWeLtPA4jrdAWN3uhbs/b5aFMCG1btnjfj3zDWaw2sYLNmu4BLdFi3bXKI7RHjzdwVNgOQy+yJBuFPwRtXOwle2k5DSnHEf8xZGrvvUsDIKdW9lqh6nrGZLB5GWySoVjhQQAxmhRPPN0KsuFfXKaruqeUTmTPih7doMUcoYxqSQWULZutoZrO/qFHqOlEiL9+ZmLjClXBmKcI7yb7B4X6wvR27vQ2bpilTcjjlKSpKrwhqmE26+bC0bxCjNehASEbKItVUAVBQAkod3oJk1i6YhELalzAzNZaUUW5mishryrbokUoA5kGkruMwYWUczQMASXoKBKYbFYkDUuA6zgaj+U1n+p2CmCxGaMGvhffanvZ+nt3MbCDNZt2l+XC1PZ9i4ah5wLZcv1BuuXL47UB5lRmlwDltPp+Ag0k2dcLBbbdONohK+FPpEmiObj4SbGZVw2tlv5mC1NzA5mEMt9g1+pzDXJd4M3QDldLDXrT7qqLlFJElHjjlnjiZyxjSYkcoIEpFTbZo5/SA8JVlmp0BZa3N5yBBIT/h+OucR83bUoI9WTFIXQqzUTEcIQtuHNx2uRGRD475tLPXU3AW3HVf3DEtsWyj6/nAbT+f59XbziIAGc7NIIyySNg1K5cxDmTHAFiD3/QICtOYnXGl+wgzS6VS88ONW4ZTWkj5MMyIOdz4djO28m9RmEsnjIsVMbE/w17fd+mnfH28+Dhsx0V+34zT5HN7YX/PWz/ZmnA+6XV/+ev7jx6fWOuPp9P9pLXhr+brZYecImPdDbB7jJsX2HJ3fIm+n1xa//Kf/pf/D9o/XH9qHD5+39Nt0y9iapSxh2SYuxm+vL/sv199f/nL8+B//xsaP/PpPP/4Hffz1tr1lfn2ZA5vZZnaSnZ6/vz1YG+r7Fva0Nfb5sjk+fD732X+aty+fmo6hH6eut6t67x9i287nfto+4NI8Gx5yPvqMt5eXD5kmd9c1P3/9/GqvN10rHCQut4MqxGmUCVBoco6WudQ7VZlo6UUIMtFCGt3M2mTIAr4lewcVNISYJJa9TM1WJdRxlGawlrcQjPA7eSmLngMCybTlK1dE4ISy8rPBQnSSioRZFGko13BM82rIJUClj2+C0Z157wsK2RSluTz93uHL1Usok4lkuevVubeWskWbhC8f4bW5LHoTWalwd3ynCvDylEghw6WJKVNGHH6cT7rdbhbFoq0TUloeruswx9qdOhJscXRnGfItYDPvTX0lJdRkvwTRC6C9j4z3Sb2tlWfNEfWHiss5y1m3RrEa45ju1ncS8KbyYADczBNr/qrxYM4JRKBsCWHes2Il7vCFQDCXU7PhHYlbk36JxiRlpJRTqSKzrIlrEl7VwMhyrataDCXqrE36u7eIFGCGMiMyZjZU35MritoyCxUp040aMWWw5nf4w5rmmI4yH13X9r1dKHcrq8evYJT3lStYBo30BGh2O44ZXv5m60HpPczY0mCEhzcjxlyiXy4AXk5FjSUlQ1ZCY8M0oMQDde+WnD9ZK4kMRsYK6KuHNKsZpLkX1dnKKV3GyhtQtXC52ohUFJO+Vuz8De0lcmVQmjll5p4wS3q5/UREvcdsXWoeXMpQy+YhRUZkEfOD0EAiqioZw5IavvKCE5MEEbkkeUlqWiNp9/dUKdARLF+Wexe4ADdKkNGN7gtkyUylZBR8GWBOS8no1gzh77dv3rol6G1Wn+8wMGiNTBrdG7SynUg5AJNZpJGehFbgpTOazJIGpIFObm7h8LbvG8DiJZSZs5AZKwlzIsBAjNlzxgwkU81h3Yxk31OWYxqQyepWQ8xk204cdtyeDRPdsHJxDDFbxrzdiDKSNuW02enNoLL/yZQiIhEhZizoQUDC+fZ2YnuIrTvTkD1ick623Z/O++7ux+02z8Y0ODPxeObp8vrLTz/o1I7tfJFu19PDT1tvPjltQx5XNVl/pvJxQ+63/ePLt/g+pv9wnXbZ91ezfbc2UrcY6OPs/WRTbX/ZzsbLy639eosH/uV/efmXP7auv/qr2694+iHfwuOwFqQ/9bHTtwfjRdvpwxi4vvzy43+6nsfb/uf/8Bc/xb/F8xfg5wM9emcOb0cYkL3J8ak/nJ7+2OY8Lhz6qzmuX1/Pn+3bAT9+8K7bwwljRD8ZuzbSR/M8XUM+b9PeYo4hRzBTiWuOETRjqE+DIWtasCxqkKRg3YRVRmpHI4G+joR67GXMyCLlpr2PvQXxwJCWER5jaglJxQY284TdLeysHt0VA8vfSMiRMqhSu5aTh6A0Y2V3xbJUgGhgtfpKsHxZEwlVx15gVFhxtsvE5zfpTn3ke3/Pu0G9iom7QuVV//2+3Hxfz+lew8xULuaFmv72+9/ZWHQ3c+vbCWaW9WJCqdE6ZG05GbA8kETIY0HK9xO9psS8L6SxgOe7JB81MlXANXBX8/yWn8D1y2qcanO5bBMVh+FeXntzxG1W4jDLWrM4Q623+5yttaXIlKKwv7UWWA64lDSVXGcNoLhLw5OAeXdAUpGVdZd4rX0y6unSAsNyWqTEmrvQoGzmvTZ9QlAyuM+E4hhmBCU6kGOkwXJitpqyM+lmCJYGhgnPohOxtoGFyGoTuflVztZOkTBuZk7QmlmakDVl1+6ASPoiLuFdL22Eps+USkjMPtn2096je30Tt1L55gSsUSm5IWcWwkvWioZ+D+SqEF2IysbInFTIBC52dWZnFMeeRYgzEPDaL08UTc2aEXP4AnvlULrCiwtG9lgQTRqlJM0BKo3KjTT0G+qloLUiHa24L4ERSs3bzY4HzuN2+EiFSzrgR5qRxxgJws6RlfFZ71RLqXj9jWB2oxNCmnwQKMSWU5aQDmcm6+sDEDMNykYY4VsL25BDnpKcps7NpY3dTbK9e1mmmkHUMEqFndF7a3GNlgPh1AxeZ9f0jWiS2NEika17S0T01rp8KpEJEXe6XgxD2CGpimz28WaOOJSTRrIZNutBeR6p6PLzA+ZK3LZMj9nM99CFmH5zXXfLcbvEwMNFO2Mzho7btbntM3R8w9s4praSgRhv1jxihPzt1XsiJ5jebI82e0eO2Jszsp1Omr1v5+3BkbZ1F9gSZrRTo/sWxcQcDm/t0yf/PEzt/DZbcz33Yybh5jvSWr58vgGD15vN2BlT2D9+fLzZp+++3Owy7eVJJLfM7Ze4nDP4dn3bw3g7xcEHjN0t/ck//OE/f3n59O3m+rdLvuzs2j6628Hr6/XW2Mjb6eSXp6cLb9fLpZ/e9O359uvn9g9PW5wfv3sY/bujIyOxRQzreTTlmH18ydm//Ni30+XlNh7/dnz9Lu30/Lunv9n/VfvXX3/1T/8jbidvIFNTHkN6w468PfwD//XVf/3xT7cx//Hb67ftfLb58G8Ynx63v768tf74bYQdr34x5Ovv2vP51I+bj/n0+uo6jW0esTYsaqdHYmP6acpH87aJyggE3TBTy8FHAjAtYmYBb7neysNsjFAirv2WoZkJZuY4mimi0hkcpFtiuqynmrGze8TJpJZga419a4iA7m03yRBAmVkCFZluLjSuOZOes2g8NK8wplW/aSZrWrZG9xLkK7VpNQ7iPRNzoXIloyvJoYAVnpkKxpIW5FqN3XPdMoUMm8ZMCUEMS+AegFcBN2vHR5jMLTkFZdAFNxFUo8N969xO+5bbBpq3CnEqr1bTzejL2bfs14s+kpFj1Boys9LvdE8Hqi1nTdKlI02vtcK9ImelA6ko1u8zsUT3RNHokmZVKYsPFq5E2KxubNblrdziXObfvHO5ANVCjHVHJtJUHolrm72A0NX+LJLWf9MWqbjoNCJdgrBV21FsliyPlsawSSvGWJL0JdZRmgIlHhXpJDqa995bS4e5dxobUStfnwWSrOCc6gbZAPqo7oM0ekdSMFPf+gEBMEdrKVrx0QH3lQ9C81zWzgqRSrNMYOOcw1pB46mS7xCQJlR2npAxIqvwoCbcZAXf39feBlC2jUmrFUjOZPn40ehh09xuZh5Arc4rVWc1cpnWLANZSVD3H2OaFGleEneZyqAlx0KdgDBEIBRIK5VhmYdl+deFRMy3tyEK5t7d21zCP4nD3HkEphtCM4oRXEoK1IT+m0dsJqZNX8KoNMG8fOHSsLRYXPPtLofnRFhv4R3q25jWZ9Ay6YJ137ER2ED3MK8FF326EUqnU3IAUhCaOU8OExsni1+veGdZlINrzAaHLDNE97x37B4E5QqMWCIzl+2XDKWmDbhoa2IumKw0VhHpSHBmIgNseZMnLSd5a0Fp98Y550G5fCOkmbfL29NDTB4+g6kpcDtNwB/m7DOQV/vYbjq1YWii6LQbYC5zEs3o7q50a96dFHOJowiZu7vXPqKGikxsJz/OaBa327SUbhlSzjZvt6MdX/rTy2e95SZrYR+aA6bjdvDxo+HcvwUs3cBMuXSxeXnTpQGb59zGpY8+ob5te3s8Xm+vt3aa50DcPm7WAfTzC/dJe3jelJczb8ljfv7Jv7f4iE/uf/d/xJ9+f/43/Y1+6s/jZeCIgRhx2Y7PL/p802xf+zN/fXh4fuaPnzDOl+/w0+Pv/w/n4086zD10+Zu//Yu+njq327c9uX+9XWNOfNtvf4h/+U+358vX/jX+9Z/Hz7eP/W+y9bfeLcbH8ep2ek3vcT29uvLl75T7YMwR+/kbeYX1A4BZOnybTsQMwSzNvImtYtBo5YcEFItTEtbJD1T43N2RQTGVlXfKhMk4TSrYrNDiFACDGR20yPIdjNFr0UlNGuRZKapcVbMw3ao4a9TUihapbYcSOdegHKAygQAznVpjfA1XdcRyQZt+R4RXGkPFcgn1XFELpVsVrZbQa1H77uZxt7F4B+TM7ijzO7bL97XgncilFBIMk9hy2UZBSIN5kzOBIYUiCKEEOFAxq6m1nS8hjmaYAdssVagALlQ9rKLksDipwBqhsMBkS5SzDouX1XzlTCyCFowOwdkIX565WMDDOhXfp3pQtWX8DUj4LatnXQqaluUIRdAMiyejhGIalqoVC+BcMPniRaekd1vLNavV42GUQYpYrCvWlJcAFbMy6NIUuUay2u57OTevAbVsTZkSzfL+VViM3MJe6eUvGTmx/K3qo9GL/HrH1EkTyhL7/vELEa4PDSJlyESaYgakuIdbRkm6Fjxc3yeXK2fdyOqNUipy+R12sbKeKC9T5AwTijgns7V6+C2+6v6omCDz++n//n4jV6jDWqAyAhKsuSyJ9FYmmsplbcmsIJLK2CiFv4mJpOasTYpZA8ybNz/MWdjBljkB64w5kTMWz2sxAdY9KHJFFr5c5Eq3EMzq+xYi9tsFL7dZq9thtCwYL1RW4kYLGjRJj2TP5YFZWRCGnLFo0QWFBSCYb1aRg+UyYjRZEcorvz4TmmOOorhppWat9h1FjlwDDIOShZqDrYfvVzNaGpOBYto0Y585LbItB3vTClusk9nTmuYw9wMcNg/HsAxN4TJzjAS0tSOaJ80IZ0H0zm6j7WQaW7omMgUnYK0XnChlaAKaBwDLsEzLyrqa0xEz4KB7Qxzab9eH5xN2d8IsbEbvnjU3mWvCdNzmsP6ACCoi4naJzBm7oev2gKgQ09jlF9su4e7WrR1ty4ExIGvW5ls7n+Yx9GJNvbHtyt2jt20j4tScDePUdUNyhsY4vCv13e9/ejTSLt/+8qvs2y2vebiyzbRySQzu/RznHz6ez/j+j/31jX/48m9/+LTPt/H1i7Wffrpefv3yNtXp1nyzwyPy5piHnfnTv43Tp9Pp4Xh52fz5YdeRitgtXnMzPzwn8ohxu7TDx81ebR63TLPsCR8xK3jMyH4aDTPjdnn99mJdoGetglLKqClnvkPKtQhTidyjCLL0rDNH7q417lnP5qQtMSTvyz1aZuQ9wUYxvJI3k9L9uV1HqaRIKpFZQlwshDjjHqqnyJVmgwxZUamBWNj3YiY6BaRyulDuwguxrVJ6b7qBqnheJ0AFhPG3oqI6ln87Ugt8LyORtQteOrrfStWCpWuyq3q86jVK4GoiyTKBUO1psYyPIESscTdX2lKVURKIuwO2uValWytj5OLdLhIW7sbP99jShRnXGSsAaAuR/m04rmpCl1L3kCrcoe1VDVfRKZZGgROovRgoooALvhOQq1jXZ8XaktbatLKBUrQFr6+fua8gartQnltxD4RgcQPogLs5K2B9WYsYDV6QKH0ZZYkQzWlSq2UHKi53JTCUqSYWBaySBNe6nL9N5L4dma6q4poVWaD7NS38xVtR0Gi5vj0qXAwJwhvYvW05a9giLW2tn2v1TShSNeZXm7m2yylEMd1rNVGxQZqgamsqWGQi4TOiA6Ci7I/XxoL1/N67JjOFu9GyPKiCyUw5ASfhuUzakcpjRqcYWGRvuMZQRsKQDIRrJZZUHEclAEKE+7535LBtODew1sW6YdqJXr4+lWhW1xomK3IJSdDTKUszWYkWiz7Z0igTmhuYlomkyojD5EUz8dbYN9waM7k0vyajdUCxxOkrAZmYKuQChQwRUHjvHjEnmQW2yDy9nO0oD0gZSEmBuRgbFKQwpDRJtmwGpAOpPQbUXBC22TwM2RKNZq5irLqYefG2Qi6cGDRIY8I8dsMhDhvHZR7XHlNphDnQer9FqZmtn2b3na050tkaWu/98XYb1+kya4ZeGeOcUU6iSFlOxWQekSEbE5ERkcUTnIEYeZQEDFLA4xjRL5xvR+aUHiYf0raTK+EW7Nh3bw80NSOn9R5mPvvzvGaMY8Y26TqCLaa1ZLcP3pvoNtMw0d071B9uLzNu55x+8IC09/08fHu9JWYOJMMIjKAwI5rbQ+4nheb5+aK4TX27dWunDMNmwe3p3Lsf+ynd9fEH5Ycdx8zr8fIa+fXnf7p88fEW1Nv24fn08fF4usgabrCznh/bDp/nh/Onh4c//eHT7255/vNfrr98+W48xPcTn14s39o2oGxq2xEat+Pluh+y3YgxjhxzBAd7YroTcUMbrzezmL5ljDx0nQ+rEyWIcFuUXzMz0Re0WgvBNd+QZs0UDWYmQmEyyvodTLxXopjTGVquEDKk3GocopsxBBoWaVNrCOICRUv8AmWkwpoCgllOIsGYrHf4HgpExbRcKYXKqINgUa7W6PPfYN1AORGv+n8f7NfUuWbYOygmAfSqa6rfwbVyFQB4iT9/m+PuOUS8D3E0dwecrWhipaSII2TIbUQ2F1pNUzPNCKul150bJSBUJdJj0lAop+7VkNX62HLGpLSOlfcf+q2xAAC0rDlrNUu/BR6POcbsgVzx7HeO1CIe4b6XLjiiAvmyvENW1mo9AjXd3tNHze7yn6w07XkH9+uqvacyiZTsXd4rZVGtfosVFh1pzU1SlQLAYJkz5oz1qHmorGIMBriTvjhSqsV4TXU1GK9d/fK8LmizerK6hZVXVIY1sP/2NbhriH2pp+9QjpafipSIYM7s7Mic1FiDqalEUut5kwyaZZWPIncVVFGCWdWUX3sIQPCcXSjD7ACAWLKRRMjI2gOAub6RA4DDlQKaZbLNzMqS5P3lgCCYVLv7gSaVNG1pDZoZmxcBC7kIfrJ6w2RMMipOZVrmGMfonFLEtIT1ChN2ot6FsAUrseCRxMqYAqf6khAqQy1LWVWieJReSgKsyXu6MwGUQkMys3Cnai+7QIOqk2CD0uitqbm1vdXdw8IM3M2NUhhW5Ea5zpcAo75pAszSbEsJkVF9Odx8MR2MviTHTHlO1adLaJZGruxqiRSnj8kG9mLEQICphSBYuWOnpmVXsifN2KaWDg85Zd6Cdtywv5U7uKF1swdZVx4HFceZJBzm3qJNujla84rl9NYFD5nFjEIsbb1C1ZkqUULQORFJcBdN7tQBj8QRmY3UuCLT2PeTdYtu3hPp3Zo3c+69STs3xQOSjRnIy3z8SvfKx8kjE+oS/fH2dQvZvt/0jT1nS1NvYCpYuVGZSEsT/HUcmc3305avYd/rdFXj9fOvb99tGDUiJuFtU3ZAOD084sOe8m8bnh+PX7/bHj59n83tp1P7xoYfntrT+dp36w19n5uSMxQ3xjG/Pm6PLTd9efl6+3pAF3pOuxx5PZ/ateQukhGnx68/fDq1Mb69vbyxjenWNn6+WKkpHjDSjWJvvQ2PHHe3QNYvKevndTLeUS8plaEgLFE8R0QgLJcQFVYKlXVMVxnCOqWM4a3cf2RGtimaOQxlIVuzGO6Q4ToVaiii+3THvZwA4spcr9+Pcj6A3WfOpedMLUdClua2lmeLH6b7622wMkmsE6vO5ayXSHCjiTRRVoeiZQX/4D5/yiLqgJbukse7tvIubkhTWCt10GpnzAi3xoT1HecC+8DEXKORtUyDmcQ65d95XwEvGrCwxg1BdxI2VM4o+G2reh/172vA6jNqAq6rU/CsZTmBzDkLrq6RtJbBRaiWeEeS7zJt0lb10b2fWXpsCdGxIPm0+6QJAcvlUapdQOruIbW6IVjZM4BSgAgVpKGkXBaUsjJlS+2ccBSyW2TBBCJbHZe00p56CkinUWEmuMq7uJ4V3Zs/kClz5DiCjHSKpsCCSVLv0QzLnlUiU7hrWi10h0xQxCqzmcbedqNCt+kO1NFuooFtffAVmFAmNNX3lQNxoja2C0mpDYkpyfK6qvAdLewkM8KHNAs1V7muL8FtEDNbTucMBhWWyAQjiv4OlGnNeo0NNES5WZJdtjnZZGVSBYCwgqi9CQ3DqJDT/YiHdrzdbm4ZjBwAPKBdjlsmG3P5ujnWsYBcycBWO6MoAfAEJFIjKHn5dqaQuTYYzeVN2ardYKkoWg8px1xNdk6ZW/1qyZx0mIN9a010iXSrZCqS1NjiULXtc9pANJsl0ZCLnDmCG2WuQetrbg5uzZBJ0QWbyYTawZZ2i1ObkNI7m8mgBmUwmGDO40bLIM0lkWZtRpLIWWJiBojUvF0uQxDt9OBKmZjWYO22hwO7GeR5NHoejZcn16sfz6lI62YRRxpMbAc93a0afjcwtd0qU8VqTVIq5DmOaJ7HLddyUsKc+fbl4Xp9nXmo396OeYxxUCNizuuYkD/0jjnfhoPwzU9Pvxvf3Owx4Ud749O4hJ8ulz9OkbdtY84DZ5js3KPPB8XDn/Xxp88//s3Dr3bhc5vTWrpRntdjvPV5e3LfTxtm7O3rl5h+7fpL9teP//nFnt3nNefh3j5+3a6T1o5o577fDuy88uMfvsP+6am9/te/bi+vX/71D1+//od//Dn/d/u3efv546Pm23/pP3+zdO4Pz4+n0+2alwfwfOp5+/Tp4fblfBaert8+vzx+ODvs400XPex+8j1w9VPMuDU/+fnJn+Nb89fB17e0OD+1bzwyEdv1xtsbLtd9zNl3I3VoNa8mGiuIElqyC64EIQow40yUjQJpZj2hCURk2RXWci515y2VJctajDLhBqMbQplsKDJJzdbvh8s6B1WaXZXW/26mVD8SBwzhFU0aXELgkWDOiDSsFG8PsRK6ocCafauwLKAPWiG2thTBLgPgQXeZDS/YkYCs8EsaoHplcd8B551SseY5Elgh6u/wL1Dy4PXn7jMlKfmGzkrlZFrMI96bduiOGtc+C9AUsNHXziwVtr4/cd+jke9QwvvAqzXav4c3tMIukPcI5pVj620dVvXHalNQe1kaZMl7bBYAWpIqa2ACKrSwZse7rXetIrRmSAhm0QYgWv3dMBdX5tPqDmoWjiq6mBmiGyKKZTblWGpZpfaE31cJvUclF1ZaT53xortZI0OdhCoiu8QhULppSeUyqmNciYW624h68xL/OsWca8+XilQiU46MrMq1MAeze8/iIevhrn07d8eYupjBShbTAGlaysXiMQJGU0a5hCXNMhiFDlFBWTOaATN7bYEAo8WcOaQx2oAFkTnEidJGWWnHLOszCTQ2+lSaz1k+4nVPHVBkRzKblHmzEOOWpy7RvGVk93oaqrgbaL3RDH0ntjwwr85ti6tnljOo+1tDprdhJjqyeSpmRkFM5jJhpRGi7DItKz3OLAQ4rlH4ear1EWGptqUsmdbpoLXoyRF9Tp/ZTBMc45xttoioT4tonKYs4n2zbMqmaJvYhlWIZTIDloLB2gib7hQ61UyLvFCv9H4Ms06PEehNQtnUNAA5pDwTSuzbfusvnbfz9e2x37AxPuiWHLHPVPj07AOmGQ1zXk4GG/0yzqY2p1njJbGl7dOvbtmiRx5tP5/aW15vJBHQzQeOY8840c40BdhFMXW7XG/XD1+w3b49RTmBxkxLOiO5coBFenDEJsjGjYnQ1FGvH6igpDxGHtystc3N9fZl/vLTl/hy2WYMxy3MYgTPt/x6TW59O+/PmdvDhtPz47hhvMr94Afrx8N3/7p/93IJ4mX/7vbzCD1E2Dgis7uptd5O+fLC+Pzy+Ws8nE8x1J5ff2WeN5u08VIt43Q7be0Wj6df+saH9kc74/z6u9u+7dccP2G8Pny1q84vDRu23fzUYsSpUa+vu+LPG97+LX++XT//f//U9O+vl8e/enq4vcyP5+Zv33iO786d3J8fJk+P9vh4bH38isffPzz0ef74N0z6odNffdo/e14ZW5uHf2TcNnN/3D983GGI/vzm83q5vG4vW4/9kW8aeU2bl+t4HQ+f3565nc75NsbtdqteloBZt55Ec+9TTTALL4+4Gh3HTHdng8tYISfFvFLG1RybTxB+L8DjiGkqfLlacCHSlTM9EMxEBJR+t32hlb0b6RZgyMCZLNSwtmVKMoPpJZJIdgyZwpGKjIDWrgeZYjpaOfagMvPW7LrGe0HQEDNtKTlVNarAxkpYuDMqCFitZgGZyWOVuvL1gZaVIIuVYkb3uwVUCgLdYqD8cdwdQMjGlLJZ4VjwDJ8ZgYx2p8pK7zu9WZpk+l0mnAEwl1Fj0lcvtYbTtVytwd6qQq8v37z+2W/RTzTIzFzZ3Ev+ueKkivlZHs8OqVa/ZJkWRhLlZlwz2jqlnAbvLjNrbuYLzSaVMWaL2nEva5R733LfORcVU4RBZgHQuRJ1GdZUcg4xg0jAyxSFeLczvG9wWb2Ecjoyo43okx5JS7mUiYhaQpf0qbBp0RebCRl39FEJYc5UinbvLRbdcKE3WHRYVER1sVwo8xnDM6UxQ6iaRypbhSij1bgJCo47+Y3LO2Pm2iJUiSrA/9jKzDszGyJBmg+QFBtkW3OzWI9tIVhkBVWD04ks16/CG1hR200149d1M7LsVawstaQIU2SRvHDH8+9vUgIjxzGjTDm9NZl59IbWZHQXO/LG3DfLy0QkF/IsMZYeCWCxIEZuUmYamVf1TLPGDJdJTmuNAfcJl5NtpcJAtD1AMaK2yqWCc/USUFKwJCJSBmMRt72JAS0aIem0tNPKfEE/Ia2CU+thmKUOxGBo3MBIhVRu2JXLSiV9ytveD99aOs0je7rRsm3f1jqISnj6dtof/m34PHJ3TJsz1xJBSAiOVLqCM7Ntu20bHGAePdy9t0MYxxsz50idcT03A61xu4KnJz/Zafuuzdt2SGBoErKMRO+HRqNZRTgxjwN9A5ufTw00a96tN7FhM6KZ0yEc16f9fLLT+eadce5bs+akMWLY9vjhySzmge3pDLU+x4jL50f7Ei89/fTx9JhN1pXXfI7z3Od+yd0eTjfyfNL1qjx9wdu345fb9sEfj33v529Bk3q87te3a3Npn1so3XPkmC/58AiM4+Nf7bOdH56uxv1hYjyMubsN0Kbt3d23sUkdyXi78rvjePvw4SkP/g///fiX79s3e/23/TJ+vD5+//R6e+qZsfm+2b6d9mDM8fYWz9frg/rpxF8//0eO4SfnL/1yPO7k/PnL0+/Dbtg3nDbfXb7N55fPc7THj9b4dMU5Xo9bprjh0Gav8fp1mOztMgUirsegkBgZgw1IDU6bk8XNWmMcVBmlKg2rUmFubKXQFJq7e/PdZ4oppjFhcN+yPBlSbAGIplS5NFIBS7rVSSBl5CK41B+579fuq8LyxLE1U9UeiJkgzNxVO0NDY3qkE5gss8xaK/8WbJ5iluXU0e4mTYt0s2yitURXqxuswWiRr6qI1olZp1BJcA13iW4W56W2pZEVppIBelQOipKkAvRUKCJqVvfMOWq2qkUALVcoE7J8tK3UE7Cov6OQtbIedohUwe0GGu9rXnkR36zC7YCG9wG9OCR8x6RV6YK8pwJYuRqbVW2vTPL3+ZpYs4EWj696FS5iCnCvrVh/ma0iq+XFgvs94brA9211QQ9re0Y3zeqBrFFWaU7p1k00WiH4gpL5nuyQyqzMhCKAKiAlg6DDSGTAoajGCeVaLMRk8JiFQsKgnGx0o0IRtaHNKm2816DUSJTFW/V+ApRMiZlzpnSUIdYivwEsk7hyP6eUWlHTxTlY7LWCQESS5VTBXLvhHNbobQJMtEIkGstmWQiVMUsK0uSq3ahbMjMGRERdqkSE1aom3Es6blbmciZvvh5782atl0k211Yj7l0qFXmMZIO33BtbMxIx0wrLZibE5XZ5F/4g6yqwoPf6QRmEfSw9g3vCSau8FC8fSFW6dEY6Isp9uf6om7OZ91PPcC6+iZDUnRAAd4JOUMbpRcirvrzcatmaCT0VlJshwjRXYESKmaSbU5nmMEZW28iclqFMpht7s4GQGIZozqtM6ZySwRNuzt66rJlJNPjZD2WECjiQO5gxEkSk+pW43UKa86zDYpoR5q3dAu6n1HSKcstpcrEFNHk6fcgNnGNisKSJcs0m5TimBSKOsc9px+F6PSI9QuMoNkEeLaYwY63r8qjimjRhn/4w/C67I2jNrT/t3PbuvI4x+nHkgEDOx4e35Oxoc4rX222kLA+/yaj0GW7H5okhY5/WOOJqTL4FN+e5PWzNH0EeR+MQwHlVHoCgkePFjqvNN94GxrDXa/D1Mh6Ia8Qtp0MyHKfSkITo2Mem23F97Bi/fPnLabzYz4/X1/bGX+KXr89fdfrl8mXAv12+bddDRwg014M/PX786x9eTvg+9ZOGfzpvR+j11tkf+hnXU2jb+uN51+np+fmHj6c2npq/Hg9Ioff+erklAwjNEUprUNzGLNewGAYkQpFTETGHT4vJCGOMFvFOtC/XnIJ4IVU2QUYq0wutLhYNVkmj0201n8X47TuZ5nT3BrOyI+AyyFiZ2FxzVA2hmAaTk9YYbZit5ltGo8Mtm1EwWzooMy3rcBLmxmIC1UxRS6GapnE3AzaUJn/BtXcaTZXJe+WgkXmXOeUCPXMJSbAIRyyZk2REwuUlBiq6jZGyvWZ03g0tzC3RY96nEbxvqRVYhawmDltJK+ZDTqFswtxZG777Ys4WE2jRnwtYgOq7WlmKAmxZe9fK4GM5FYHIOcdcbvsEABeVlpkKIbFCBWFgyiOmSRpIZsYcY857z1YTe4M3zWZo1SEIqZQ3C1hKIdTIiNJUrRlY70wmMBH1GzEDArsRBrPlfMIpUnSLnCPmgMkoIhIAM0M9CO9puXObrbeM9CZzGtBaGHG3OQKdTgYNGTOi+6S3zAAsHaBCtZXEguwpZTUj4uIgVG/oVXZyTrOcg80z3C0yurWQGRzmJNI8FMG7pXcylTW7SuGW8LULuptUgki0yDAYwtoUYMQcKRiRU6HIcdxhdNKMQsDd5+iBk+Wcs8itoJtSlmmWKJE2whRTRq+1uy2RsFeuGPryExDd4YuKBQlI3Y5BO4SpE5UxbqajM4EZdks6dZ1DINlsxXDTwERBIpW6GWydoogM0YfMNAOinDNkHCZpInO2fZQrujMbvaf6xuj7gSSmQXPrPgnSe+8CaX235dNXEAKnicw+ZYIUwfkhk0cpn2bdfxGVF0rFJBWNZctaKvu0zGgQa1SOGzWarLnbnnR59RiHK2igbS5DM5jl1Ja3Of2kGzDhYGuyGUZjs6sk3GDtFC1fL+d57SmzrcsaMPHQ7Smfp2HbOod/4jRZyF4YI+d0+zY/n31jct6ChGafTh3XQ7NrzjVpoJsf49gRx69Pt2p8Q+NwY7zKKITJvD1+eriq8eRSxHa0fDsGCNnTw07p7ee84RXXr/rq3/lUd/vj0/P+9eljXh7jiFdvY0bbFU+/uz1vr+P64fU6jdoOiua4nLbxdGoP8/Lz18s3y1+f8HbeT5MJxNHeLsd2e35+3OJo6J6Nn3Mbuv745YrL9y/Hh/7xktdf7XH7cHv66RSyvl1tO50aKbsd+PCpX4+Xhv2f4+frr//884/Pl8vlx+3/9DebxtMfiXjtp4frcZrj2+dPb6+vX25vFxt2OPYH5/j8cv74+MPla3w9nr//eLuFvdls+/e6pWm+vBzfXuLNQ8O0Px/sFpfZXm728LCdAIhpirfL5dogNHv+8OWikdjOaSx5ohumzJqXzEPAzDFmIiPpbjEGhTiIZsxtjrwhlUhyhm30NqYUYkBRLIm58KEQU85QK6lRX2ySuEOdoMkLeSOp5PpHMLCr0ZvT3YbmhKM1BegNsAZAZX1Iy0XWFsyrqkkq91VUzaVoctT8tcjfXC9SeT9BZZWTv02JNTqzzHgtEzSYmzV5EK3EcIYigxVp1SoCQmbNGwlFYTuyFeMidYeJm5oX6ZhkFgdYkhQkkybNSMro7hlIYoJVXu4G0ahg3GKdFdC7ttLV/HBN/yUaloDi7+Dec9AqYsoYYV7fosp3q2WDufuKzyUgeGv3tAkkVVz2cM8FQRds4E5fpCMr8FuZKkiZ8NoiLont+xBeFCfkckaxYvwZZhYjTtGaosbVmtBFWdK2GIFW/FNWMtFiZU+hkt/vXZaCLK14GRzWOI7VBJkV0mgQUPkAuoPLEbXVL7PMCrLMyMWdx6IDkCrWt7XmZDM375tFNLdiIt8ZwWb3/KnVLa2d+d21vCJEFvd3LfqTBpeDMDGIVEXqLeYtMwGUnLRRNDfZMpu5G06Y5jS3RCw5gXtOOVFSIM3RWfzqnMtl3KBUDFnWbraem+YGlxu0SAW1MJoqZqRz1KqCHOkOzjiKpp/rVVwGoKV+KtRIbnEHvOp5UUyLspUNFAFkCjmthFswmrW160JAzFkzsxodZEfve89MoPdZRC7mnIq0oJXZSK6wzdTt0LRGUzgmZpJgZAorkS0Zm6kyaKx4e6VhY8XeJKfMGgn5MJ9M5K3xumdqoKUiNyhQPZ/mdKPcyyGPZW5GA5EAHC3NeMq34wHS0Tb2chOE713mjnM7pnh7e6xnZ4vXh8imFO5Yf84jjR7Fq5whohGCOQ625vvzvimMZeRrpHnvjbYl3TDAftr30+nx4ZfIbNbMsWNzdDRPoJ9P6JsK3cocM3hyk/X9dN6m5giAzfpubLb7tEd+9/zr4Z6R03bPAe+t86lfHnH+/PnlYFNuRgTd50hERiah5LY3d49r1+24WRg5r6+n19Ovv/7V9kef8enRQ/m4tf1m7nGTIi8X2+KmZ13eruO7k757yF/+5eeXb+3ydsi27/7Uftn/YTv+ctvaxWOM4Mv1iDHGOE4xiBx+Hr+M68MrL+dtjDg/PvbT63PPb3h9vrYT+3nfd/fmW4z49tYwP79crsel50yernzyaxqMdoVF+ZO3rbWAt9a3lUJHbwTI5naP6C2BCUHS3bTUIAU9LJYKhHQdh8eWpYW4/18dheWpMbPcnu81UTkhJZlYwnpYDWqWoAleqdkoGdOqFzJWdtn6WEUQS1Nki6w6b4aUsmq78m7vorWIXv/PKk3gnYKyUM8ado1YR0ONkcY0K1YUUF5V8HRWbTKDihxTwDoFrRHU0lor/Bb0SmUClEmjq9lirmmtUWuUElEjXFWEJY5szcJWK6BCaG3hQ2tQrj+6/tPCHfhehbEOeoBQu4uw9I6+IUlffzQ9V/HJuytEFo2nOpFCpxd6bZaAyXMpM9bSspbgzCwCTZ3PiqwUvfrY9+Eb77emrvE7Kk2z0q+VfwvKhKkyqUFDkWVDlnCffSRLhFt7z5K4W44ZPIZz0pFpGQmY5FkuVpBQeQwJINKreSNisnypkUQm4W7Isn/MisyUkDkl6F7izbL6OGOqNXNYE731Rlqr4b6sH9iM6tBybL7bk96fxcI86y1bgA6SZhTtaq2n0zMIVxpoXpGIIhQJTavxVWWurUzLBCzSIhtnDrectETa+/OvO6iYKc2cigym0Qxl+DQPWSgXQlVP4QJLiIgcczNXw+xOOtkPlBjAnRGJFf1SXuYUc3GbchYib6DJHFkcy6TIAJXTRzMz4u5jIk1ASbJodDQhQ0pLSy5jZbrVywmnkcw5LSfCFoe9tAOUKhnagAb3GEPhNOQNT4RlWtyXxGbMDIM1IqVovu4owheQbkkN9U5pdoytbuuBlgAtVHtjIplM0b2FWZnrVhISq/dMF4zWe8s8OA+N8+mM4d22onzYvtPNG06PLZHU8JwS+7CumBfsD2/iVK3hUJ6l8ja9tYSzhXuj8zRsfzrvbmbqm97cQGvbeW9G790EFvvPTw928ibR3NpFVPOIVE7ZpnHRuADpe28ne9g7hPTeWvKhbdt18qAxR+u38znpb7fu3uzKs5MXMOhT8uuc4zj2cz99+HbEOLKLucHQwb3f2E9PfFREvAHtMh/O27xcWrRTt8c/7j/n3/wpf/7lkcbblPSWb88jv93sdMTJH3vvP/x9//rf75d//8vz/tiG2qfTpf+7gfzr5+sv/ul6efPAmG+XPPdLZH/6+vg7//TX//C3ocvLeHz0j68xYa1/PjLeTjBPaeveHj6wG+XII0Z4xu2Ctj1Zvxy3i51wZIgxrhNiw7lfw9o5cbN9uDGSKXm3LZvZae83emaj3FsQlqs9dHPHtvpdb9YSwGTrt6DMWtyfaEuRBrcS8EgCpkUioajFavFe3ldetDrKVckKC5Asbw2KySj0c20Ga7INpKDImZgVy5tZIWOqBhqQyrSLvw2FWMxfSLL38rUqWP7GX65/S96BYNbhW8HHLFmD2O66XMAAK3yryritsFdvRjdn4Ylrd8xUccnmXG8uy41JyjiQUdogrItEW66E5rYOnPUJSdlisdf8aeuTr3Uq12GJxfBBuS3W4Fn2QiCyRgl4a7bqkd+V0GmZWVYJAqBShVOZjGB96Mh3JZLurYyX4QhrdHaIyTu/ngmDyc0SkpVAq1KK5IaCQ0xmmTPossMA9uZDZr5ERjR3RtxFX8pklNtnobg1SjInxgSHNRPugWvroyojat6oBkgppMakhCide6ZV6xNym0qWKKoy4RRQTNZiIitEMAQpXEFN5HTAaj51l1mOVbyKxyDJKiNequ90v2eVxlzSoLq3ieVbGaUHUyKb3ZuhjJEBlIVEGsJSct4dzROVdbSGc6uMK5mbm5ngPWmeDgFmBjQ0Rq1fUKxks2JS0wIsideyVYYRIfl+3nKkxtQxhmLONkjrdI7eYbdpqc1GCQqMRRsAyo8T1Q0thkBmrpVOmWBUxoEgIXIiC8ZtYEUCFZV8MEcMZE4iQE2DZrYxwlAxFalk5loUBLNg+LVsYuve4QmDWxaqnbNSehV1hxM0T2QUQBHKiCSXZsxdc6a5M12WEwFXzCZ6aY0ssv4MxWaebGz5cARGn8IEhsSVX8xm3iwHWsxmbT8/9GhkcPaUcUxH25pbhog5HwxG2xzMvN6OT+cWmn9HbDGABIypOSMjxwibMRNMzYNbhAZmC2HMnFLOEakZOSNiWMuyN9Nta1UozG6ljEi6xVTjw/58+vDUTztbf2y7h8DE+Xjj3B7Yn/qpoedxA/D8fKW3nvtDQLIn6VpK8lM//zlbZj+dTx1m9thjxMzmp9Pj9dT3sQM8PQ62y8TtMf3UdHryD+2vf9j5V3/k5fHjQ36+bDklHvTI6+0JMKI/PJ6bbv7DX3Xy9/15/CP+/unPfvlp/Onv//h6OR4bjp/YDjZv2LfzSZJ3nI79jNOWdpK/nc70p6fnD6BfXt/cXhW95dP5oUnn49jOp9vTuZ1JpOjb/uT+oBYn0jfTTEh2Yrchi8t5omkjY85SASqXlHWVJmAlq5ZRU5lZFS8HmhJWCgqLXJLJcm5PQIILjbb7fsxyBURZI66ms3q9laj+PpvhXh+J+4bIpHUo2ZpNXQ65LOHwdTA53OsEXFUnw+4cX0QEUTb6taJbsxaVVBYZ1SpnTMn7vCpwGTrBCpkDLe3OBwNYsny7F53S7M6qR3gfQlE4sZxS0gp/hJNGtG3fe/q4K2eRc0akYgqjCjCoCFEwawkoW49cXkImlaWPzJaMrAowYfdMoML1yr+BpWUS0O6ZO2WhsIZkLaasFVPTQFGVhkFzKs3sPXSw0hJ095PE+m136tYagnmPEEgWsFo9hFCikHtAVc3Sv3U+C5A1imZpCeZyMMJ6NLV8rpywNNJladR7ZcVvo5lVeHc5iLtQ27zVckFFWLN7MjTNWnhjyeAqBRdpVC7QGsuKQuuardQIVMtH2oiEhXKR85WBJJWEtR5eELstqXXtjY1IuoRY+4WCmtFoXq0Ry6dCy9mx0I66+iUbkN/KApxldVTNY/l2rSY4TVrmr8u6qhjj1RCupKSgIFvABMwX2GVU9ciAC6Q53VlujYv4ocyihI8YmjrGEWXHTANMsW2wGBlslqSXH2ttomiprJw+0klDEjD2nirozK1vLUqh6I7ZKrjaWjcc6cjZBHNm8zhkOWZTujvJTDDSwJyRrfCH6j4JRBJSuYLQW6tk32q+ZugABaeXPsozPdLY24Z0hVkzmzDMe4NlG3cVVdCyty2tb+ppzdvmtNZbeDZDj4Ye3jpFZ5c389LvYUaiV/Ar3TZPm0fKp8eE+xGbOQwZUzzU0DJGzCPMGNbczNwz6dAATjzxrxc6wxIKWiVBGZQwgxjSXMQUK5H3XbFfQ9RayRGKMV8l79aM3WjIqRlbM8TxsO/csbm1oSBNyAMP9IfbONnYY25ATJh73i63y3WMKUxtIJs1C/dB97BUe7hmfH90km8xwo/M7ji1zZAD5v20P02/+MeX7XSEjqHP1z7x8suntytv2Z/sy0DGPK434GaJANsc3vvxiqP1c/P++HT5+7f8w1O/vVzzoe9vbUPcbnPgm5RSfzht7bFzR99Ozzidvv/d7TJeXob/Ov7jP//H1/lt+/Pr/t0vz/3x0q7+0XFk5u1tfvnw1X/55clmmwlzM7ZznhpgiIzwnM0aIb39lC8DNPcck1RURlikFJjTMxCZDF8hDFpGiFJSGSGJFQenOVNspzRj1HQEYCW4chEwSbF5GPtiWph50kt1Uf9Yd4BzEbyUMFVRrQVcAIxEBmY5NZi9I5UEa59U9CHpzo2Brd+QekfHdYdxtQZXvR/qevd+LttIaLlE1DQlZQqZtnygTEWOiSjZCgkkl3UvXLbiFIrVzLvDBWje4MYaNGKSFWygeC/AGbOscKiyOKYxASkyLQP3NuIuQH6nTa3Z6h3kBZclYV2pqhxtFSiTQ4WMl/+R+1EFsQbd930y1rh8JwKtBcDdEmQRsa1KKQCmmJOLMZ0UaGIixMyQ3llMKrbbQkEVJJEZZWqgRQBKUSO8pnG4W80ebNVS0Ey1NrwblWJpd0ATlHS2bostJdaEX/+QnvfKfofrDYCFQHoj0Xp64R10S92hV3feFer3X8GFi9ScWBokgLCM9L5TGrY2K0hoUjMtRq5syQLAVfG360Zas7oFqyxjWUqIEQTNAyURMxhb9yQ50czTXCVK8mZZlIVKjVCuCnt3kKzDV7URD1lRtWGRkJyUJEQiHSpTLXt/kDIKaVDGHHNmJjRh3prcrPJFy+Qrcw7wdhvZ6rAvG5m1ovKK6qOZhzUPGWBp5j6z1iOQkj0MQso8EuPIrSPhjq50l3kjGeaYM7OFN6c1C5qJvWMCzLbhbtGqWSrI9TTxvvPXdKkY6kHLyAavtYvWG6cxM3jXCJKWiklLUJyhlA42pok7u2S1OklIhT2xQD3kYROpZBPR0JxN6RZQEhnKKT+6dxBMU6oVE1FuZm7wOpWuiOEDnSkzT7485Nwebh93XNA9ZS7TWiF6n+5m1rwFROu17u1l8g22FhXd1jY3mm3N7hYoBt/KgntQbK0N75vTtvPuZhrX2+3ynJFxvJ4thwhL5Tj3RuJ6u+q4jqsa3AKRx83HG4S+a/Yi4zvyMFM/ed7mMQ+Zpm1H63OLMY6DdkyMka+jv44c4+Wz8MRrHteXn75ha0Lq+mK3Z869dXo32dZ0G+NoIy7b73u7vr7249s5vr6N/OX662servESeYy8HBEjjkBahvV23psJ3nI7PWwXDfrDA3AL8Pzx6QfF+enhQ+4ffhgG0psib/n2MvvcvT9oOx1M57HNaZKOROtoY8dM2lUJgwLDdnenZdmmEqS3pNk9v+B+tNdMlSRr0QWorbKFtTn1QvOQYpQ5Ae+j0T0aeCpasYeTWYuXNcsA9zlK7wvagpkXQYtIgzIw5vv0FUpNWqK2S2uOKvWmxEXmrZKgZfYLoPJgBWSuUNH1TbJ2jVlJv6UoWTZCun+WFDMhu1tCA6sy230vtv4HsbYu678hocg5perxQWt73zqBeXQUz7wuk4G8JUtpSwrLI7eQaI2oYVXK92nvvfTit3l99Ro1AVfDf/8SbOUVsXRJtsq3L24u7n+bZPC6WBL531R4M/f7vMqSxq5G+Y5Dl5aFuNOlFn6SFpHFJCjWzLrzeodB7lsJVJKjZiAzNUK0nIbJLI98WPhW20KlpVnforEZ7+tjMUsJWjWIjrD1uN45Tir33ZoHQyDSt54WQFmKh5l3zupdaDFnGYpgWaNUBVtOxOsf0ZmiAW5ya3tP2v545sxb9S8khFg0P7eAoHTKoFm8LvAuIc87MauG3ZCjkm3m6hcKhmHR1mrY9DaXZ2WBxrx3TQmkwZrX8rokSowmRWaK26K4I2bEGHlTWG4RQWRm2BGhREmirEpQsOD4NkbcjjmnMNg2ty1Pp4chM1ekIjkv4iEarpYwF2lec+gCH0Q6DaZYFC2DRLcsByuDZYog4Jw0aXKP3gh1qZkaSbNben5NWSZNad5zkuzbFoe7zKe1at1Wx+aklxWXFKSu+5YOCObWmCyFgZAhUm0i500tgbyJ3kuCwEyZy4tH2a5zNrA5++amkft1orl7l+dMhAIRLsm3fbzoFC9Q2dZXtLEip3oCSXdFB+gZY47XC9jrliujn9oRUwM0DqbgMKNwYjs97QwZH7mgfaIlEkS/2XZr1rwf1glPutE6BSS9uYS14YhARcwFQOQcQc5I3iIOiCNFBCZ9mlNT2/U4NPYj4+V3HT593o6kInI++qAF8hg4tri+jdl1/a7FBlhLbyc/zZ5NlxGz3UaCIn942/d5/uPtPKxb75tPd57OaD50ufQAn+x3Hx/z9vF8mWHtdv3u45ft0+X8uF+3Xs6cY3vQeL2F+Pr6EbthjJahr//1H3/ef/3Pn3/5/kFf/mnv//ZfP/7h+z/Zw/z1LzIDBh7Of/uhnb85md7jR95efvxpu73+r3/99ecv9Kf9yR/+9HS66Hq7erN23vrmg3GdHdtjOykG/jwsCd3i3AwpNWFc4/Ztu70eA0GP2/WYb/Fbmaw3ut5NQxGNzQST2I0x5zp0Jcmc0rLKJdA2q8jhKn1ViiqW1O51oKi9Fc1glFqumlCl4r6qrAm6SmBmYEksExmTEYBnKAOMIedMy8iYkiEzDYzJTF/cMZLmTR2HGZbfXe3bYMvM6u7QTIOsGm8Zmy3orcpMkbtQqh2ZHGEuCBapXDrdRaWugXD12UsWZABtBOsILvIOcszTcRsdpHuJsjIF2bWhXGopUFmhLAiQ6M0yklrUZ9bmchkmLxBVNeuti3qf6RfPNoG2ptr6kaKYgPcMhix7RQnK4vWgDsvVa9HMrBksVN5pRWG1mnbWr1b5jtoS51QVsbpxMgILMr4rXpctg5XU2Ai604CIxMzICBiEloctF0e49waJTNek2RbR4SDEymaOYuKmdR4Ms7WjXQ0Z0hg0GHgf4wCmWcvcZhhUnB9nhoG0ZNPynQRYOw+VecV9uV8FuNqXlBnMGhzG/eEBYzrXikTJZC2RS4ssLMidrMDh1UestkqLDAmIMLhbG3erkjW7FUGManT3NlY8vRnpSVVLnEWPrrBGsRCHStgkApaz1aw/EWNmRg5jV4YxlZGZwqBbgq4MWvlMCTM0IgPum2U2625b+ulsENqAAsGYYtJhR5hyWV0i00r+BFutcgoDXF1R1lssJ4xG89rquzUoodYaDfJQM23Ffk/PxuhUWk2XgLNt5+PqLVgqDweZcrGZgy57HwLm9bkJ9CCN5zkIeIuF/9A2zQM5hrtlaEYjafJI0Dui8/AyuHBITLe+3QTXUPPNWxVySci0ZOu7xcw+sygemUBGhCYOoxJIWBzpAlJzHrdJcoKCcl4fmmYMcBPIlvROwJqztb0HXtrv5+Msppwn2DVhbNsBdN/a7eIO3+ggt1M3mveHp1nLHTe3ZAtrlgTb1popY2gmhp+S1EhvInPikqYjrXVLsw1X3GCBkddvjxNxOd5um9ClnLfrvH6Kn84X7C3adsjiem6I7fkxeuQ8ztE+/fnffvz6esH2A0Y/5h6KMd5m5DE0r2O+bOPA6+vDZW6P/Y/fnfoGvJz53R+O/rF/+eMf/uWhn6M/XL+p7x7bdouXNG86jpFdt+Ox2+nrl7fThi+ff/3d3++PZ+wtT9/369/nl28v89xtO8JOv//u8cOPW+9i/vIl/vkvf379U/8v//h//vzrr/761rG5a2r8aK/5HR5G0J3b5tv5/HjeTvNhKI8tg/GV8UkU6NmaIHi3kAnOCOU1wHvhs0K77O4sLO/bmKZkFlFjUdSZM+HuSbiqWWdvZu90n+K+I5OCeVn9FLckYSYzRaPQ8lYjNiwXyoaiYLkXf+8ODoM5TZhjwdJBSMpJcaqYWEory8Sc0zS1WTeyR3pmy01axndrmiC0gunWPFTrMNZGLWm+kopIeKGWeVeZ1CnYQGYJl3TfKrMm1rsglySgoJdvR5k+IKJEJSlqXOYY7+Qyrk3Qu6t2/asoL1AGjT2rvVFxvXBviFZJBRZOvAAIYcHiiXtpLCMOLYR6iUuLTuMCyiukvjBJFnqZLFN7kBHFb49MZiIkmlaOTnHJ4PQCp+90rbo0xSfLMNSCSevJW34Ewj1nWEbvXn+SyimDNdY+0qxJraQuVmkMm3JmzWYBo4rHLtwh25aQU6zECxmdpMxFOoPy+9RJy4YJll9la942XW62W3ZvtM23CEJ095aZbqLBslEwpzVha5nyXqXboaTDt/MPf/WIuMZnmQKWkDcPcDDTZwHxB3h3hXFg2W4Xt4yLEgEvY/0jFkeygqWWyVMzj5ADlDeZMd3d5AbKymu/mIjHoBvkMHXK3JFymhUINNTkMas/cy+D6aE2ZdIwEWZiiGk5jB5hisjjcoxhbdclu7cWQOqY7gFrCZ1wuyq9EUdB80hEOWlLdY6AmSYK1pOSTWVQpHMfGCFlOynorXfkATEJSzafZf4tY+/wzDiN2WweW2veu1n6CAC2j+Po3enFqNYtO2DBZIWrZo5IRGc2UwK7D3jWsVBerMKuZuxopG9h640zVrqxpbltmNsU5z7b4Sd30z7kDJ94Gy3E295gPNFNedjpRm1gZ7sKswWsxRSsBWBdsPTbpphzw4V9xktOmqUy3xAij4ZbCtTJrDMnOQfz8KfLY2u47Rbi5vuhTvB82do+uWfp/q1H36x1nwUHcR4HAjANGZoGirh9JPq5N25P3R2P18NbNkdru22ZwDHGt1ddNns7jgl1zsHc/bS9/ZxKM414HfF2+uGaj23kHz72/9IftrwOWvug4/n57XO0Zq/Qh7/65S+Pfxp2HPy5vXyz27fWHk5fEFOXi830znbbvn6vS77+Ok/PD9+ffve3D59/ij/8X/f/MOzvRvuf/8uH3r9en5Rq3rb93D5PSnFc4vP+YV7+88/HcT7+9HD+S/v0/3z+v/yPf8f83ad/iv/Nx72Pn+2H/3dM68eFe+vzuB7X4/bnr3x8+HH83X+ff3z5/jIup+b49ant/o//Yok5xI+Plp4Xjcvtlnl9eHh8/PrY9+++yd5wxOMDb1eaP+rGx+in7162OdqW8zqTm0fFIaWgYZETc8S7YEciLAhqgpXdW5HbFODW4Twgq6IqLwXinXwUiomsISrRWqiZIls5GanwFldDuSeTNBFWslHBBPNGZAnZ3aipyFrBLlTFCE9YL26maJRSCUVNjd44zdSGywrD+i2MQQIQraYIsBLlMte2JiMzqXSKaEGD7kh6ZnoJA4HlTkeJqIGgghfNEsWBjHJdSO1z5CzTJkrWWt/PLcHmi1pdc2Mz0nbEqsFZdydTLSaMrgnJKmgYRVYpX4lClPluRkwQd4GrTd255ZLYQMUdRJVkkc3JgCoEIVOUW4hCJsuJa5G3a+QjXCEpGVLSaqFAC1toaVrZs5ijsE+JVUcyFMgk0xU03ffL6y9QgQBzdUbjlpwTab7cPChZ0pm/OXTf9wXwGqJX8Zppbi4hWAiFDs9UBQa1WoL72lIsXx+Yui8AX7Z1w6lhDnPb3IonTjKbIMtMc9ATksy6obWUe0sUB1YuGdAM2/bhh4/Mt6+7INkhN6crXZJ5VaKYKaNX8rbBaBA9Zy2E8847YwJIT01iIEbMnJrimCOU0+bIpIJMM9V63IvBDEJsGZtk2ziQ7Jkys2ZmGVRanymkgp7ex4FgIzJzgjOYHDG70tcNTSjTPRf7kdY9UnMc2K8xX488bsMtMJVhtE1ib6HoDIOxAqFgLpksaeKo2mw9iIDLW+yVc5sRlqQ38IStI2VsR7OkKeFtAm6IJphszERKkWy9dzWBVXbnMWuZAhmII83CAnLkikcTGpkeI2mb5i0i3ehMBS2QoQEGaBzIDGQ00jFJM5jLqGYHr/kcZ3v8bN99ja7tcch3wC0e8HaC9fC06cM55eMh+tv2gTg2qNGM8yo5ob25ZFOnPaLFqSfejva2uZLW4H44MMz818d2vTr80jylG/n64B9+983jGsE+0eDWcMqb7xuR3J4ORs05w2yCcVXGzETMUEAamDMyrmTKqHnNHnna3/r1Aw1Ncx6nmX6Z86DIecFxe3iMs9u8Hbylfc5o3Rrb7Tbe/PT52uIhrqdmj5/0L4+fNrYP508kDsTteDTO68NNMf/yev3sn/6+/fX4Mv/zn5xuD4/xvQxfnvT4cNl1PpvZfhJje3l9/auGl/N3zx+x/zqe9vjly0f/8m+/+OMfvz5up72dz8/bp+f58unl6Sn75ePvnj7+/qfj69ef/9R//9+17ePzPz/+w+P2+3+5tv/110vX9//1n/btgmPg6tNfv45vL19+GePb6enbtw//7o+Px1//9OOPNvY/8Ifv9fuP87vb13z7lX/YxXHarl9jaLxezeLhYTvr0+nD0y+XuB7b/syQyU646nyN/XteL6RDMWfOvRWYSQDTg+xjZAUHwjIrKV5VH+twg9hM4SgbQJODW2zb0N3UtaBNc/W9jSGztKojDMaKdEvq3f9oKUMi1rRLU05XIlHu/5KaOyILNlMRwayMMgVzKY1ZlaFou1hUfpkRLduiYhsMZakowsybO5lulaypglNpKATZ4G5JbwYrf2TLrNJW8+ZKDIMCLKbrnYpltLI3JN1Ej8xEzg10mE/SXcrUlEIGc2QNPG5k8zsdrSZ9KdU3hBEpFyCEPMvPx4jy3LZyyFxD/p01V2pVZSZlq7g2K3rySmeis3S7WpV78Xv1/teXlV+hBPddgcD7g1NK00LGJWnNmdCdbV1ccaMiY/melex7NXq4by0WkZkrF02cd1jCltOuTUF2Z+8uvNpAK9vS4o3lysYyb0Xb6oZlHKKSc5ZTCu6P4CKasQCdRNZ9FK2Ziy4381n6S2NbP2BGOpmW5kl46aIdbmY9MymaNSatbZvFbCXoMbJUmYsw904CXFtwSSzuvN3zMxYBIBYVS9PvVP2UuRO6RxaP2qVUU2FWEcW4+4JLdCuqxPriNGu0ekrWtpCldE7eIRQAkFMzlFEVt4gBQI2HxdyIMaemEBFWnM5ID1bCksjChBNSVL5jnSasJ7CAsASEvph0ObJ3S5iyybX1JOlhVn4B6XuqWXqHb80aszcqOy2MMu/NbdtSmdZ7u0cMYumHG5HTMu8wDAmxKc2WclGzpcS0ZcGSlZUbyvRkaoYVVRjvZAAs+lRErpSWOSPTMhkw70udIFVgFWC7rg2NyGCKStCISMGFDAy0K04+aQplzs2yL65jc3hEwGK6A1QaZbBuNxGNmnj5Wgi05VTp/aQiewS9uddxVR4vEZkJW+oHooJ0WJx3EqkptNbMI8bN4kwIZkojcpx9IN6+Ph1XxQdNOOa02zTHYTpR24nnbSOBzVvv22vysK3JgS6NI+b0OZWn+frUPo3vvzwOs+eHHx+++50/vz3Ruj3168ObsbXGdtvO8fhhnB8ePzy0x/Oj59Pj7dFPfzdPe2t/8w+3/9SbWXhOKZuGkTH/+n/4dOq/s/av+78721v7dw9fv/3u0/Pt9abLP+dsD+3Wnp5qFk0/R3TffWN/eP4b+1/wh++6nza8PD/EdvqrP+X2xGd9/vLzr/r+2Rr3a+8uzcOe+v5BaW/ImFOnebhSqXH4tBEZB8a4XUG5Wsuorp9Lj2IOg9Hd3b2ehTqTlz2glsVxmROlKls1TRkywmMd0EVLomg+UQlrmZ45upf+Yh0q9Ytr04M7CQtYFrH3c0dr82zxm+ilCMsBK/JcUYzXipa05OJXeWZpPCEk7d1ruA4k4K5yLIyucl4K6XT3shKx3yS4qqx1yEB5kv/tAV7vMJd0aRVgrqFTgNQa15dmWfwFc1upBgshvrN4LWoJSLsbYHoDK3R01mLY7zYa9W/mZqpFLEXJvEwLllLF1gUlADYrgm5dA9ItS3215tT74bgOJt5L+Z0VVwD6fXO/6GkZUcwegXm/5pVqtLhkRXozVNIq75uA/6bZKED6jqngfRdCKphWVhwwuJX9lkQhvWZes7p59XFqnViEA69VeaHh7w9a7YLLuFR3mlWCtZRcLsWZCc+FrtfzmfUlF4lMQjmD4v1ulE8I7vw9ymqF6W5g9XjGgpdXFOPyW1n30szuN+yeZqLF7Tcw6QmsZCRPCydJo1egbDDmKA5/Pbwgit1b/7JFYqaVgqtaI8Oi9WWKisy8S92YqQJimMxUMqjSxb8/4iQtUdkVJDRTGZFjpiKcpG0z5GKMyIPr4asui0RtNrA6MFNtEZKs5p8Zsw4hCkBkGOLOeofTzBHuZmQzU6cZVUmLRIowDxYhPljZVrWKhSlyBZvc31JGhtk9/NBSVDCX5KsAE8BaY5PLzMMIC6xbz8WGqHhsyEhr1gIiopz0yol6vbGwDYjWUBEZtk7bZccSAip4yzLGaDY9NxgddR1aytzNNsoakAiHwP2wPkXm1sdNQkYIWu5s1g9moizqetuazdgeHvZ2j36mpdHRmuRd3tag0rft/LTdHpuBcYtEGoYmRKNb66TeXq8P1xlz5rzOMYc1d2X6Ztpc20SPzMjkaRtu0W2PG0F05oBKF2C329Pldr0dN5yvj23ujw/X7dZTmWOMOMZxtjmV7fHYHy+ttb1fb7hcX77+fP1q83qbradzY0gZGRrzmEoY+vb8w/eOp+6Rz7u+gGNcxjHHw6eHD//6h9//8Dj+/ffnkwc0xrjd3Nq2PTxcHz99/GG/bd+dZYPt8aOOi8Hb9WavL7dbROb1NHpM7N68b/3U95beeAwK23Uefd7KRCegOI4wf3gAgjvbLlmDEXCm7u9TWeoQFPJu+4w7B7/YPzGRbrEihEQfKBrQ+xL4vZSsA7pQYVRqMPFeEBYfBr89wTAt29s1mNBr+Qgutsz6YXol4JjdT7FSNaC8yv1uUFAfxgjj0oCsY7JoxGtXy2ILk+8/cSdll4MxfvurFxpYQ1y9zvcPK655Lk0r1F6UFJaOVDMBWZnpAUZYRqlhwGXLRDMyHUZbdk1ZzcG2Fc9YVeJ4L62/vfnrg7M0MGarO+faldlv3h2tTuXqp3jXFAn0STKE3xqV91V53a13unK5kdy/+KKbvd8ag9tyhawLVcxtC6msWEq9sQau+xK92OIsAQgyQCFCnJNttTfeXPTK8jW4gxUyx2qlEaBzMWghKImYkRiTgGq2yBSNxqmSRiG9DLbAlCbIecyMzJiyVB6whISZMyKjLhAYtR1UEBm3TFZ6zYxCG8o7bxEsiDIgKdtrrd6llAA1y1eYRQUGrGe2HsDF7EI93A46iCZ6g7VprQkM1lBY+jzFVISsVO3SChsTYG2Zt48jKSAkVckFvAp1liN1RMxolSG2Xm0xqQipqHyqlnc9UyTAvmnfmK25vc9WSLs7btxdvmSaZu/Uiby3YkskVoo+mFW22Sw2VUSCdI+6LiupOmSqfqfyILumu+D1cyu6nGmmubNcCArgyRZT8NbDYLQ73w1mbA54RDisGUTNdQuEdJKF93iFb+d9ApaiuO2yNrzJlUwmG61tB4jszQiVTkQAad66e2sOTatlmnsC2TZlKrh5p2xEHswZMDBny0sYzZu1pmFC43Yug4XUJMJTvTG4n284Pb3GrJTiVCp3NzffprnXAsqcDiNa896mt3336hlk3dzpzR2kOVvfjES3GJA1F9G7WWuCgo1za1vufadt5o+I3nqnMM3HW3M5vKVRMYZp66fTju3MNlIzGmfkJBoY19fLr0Of315n8+1qG7Zq9nP0mSJ1vO49xqF5i1vz/eTNP55fHs/9yYJ5XCI3zcmO3ht9ax1mjn7KbTOmu5hzf+I1YoS3mDhNnjZE3x8z5qG4HTFe+7e37eiK1twa29w+/fAdLn/65X/+3/7v337+/uO/++u8fD+R84DdZmaGPzycPnxCe3x6/u7hbHnTmz0+Xce+cV4vvrs3kJnjNprYms9KtlOs2oL3w7mqQa0li6Vj9/GEtKpjniLo2crZqDClGiaZa9OIXJqUIphKkeksm9y1tQvSqcXuWQc4UU6F9+q9RDgCi7VsnmtMIBaWCJCpMjpVWkaUvdF9JC3ZsctoTKKM8O5OXPd5r2aWNZzrvbotiWttVyWzXDpJFsxbRem3GThhgjKtvLDLrplm7nRjI5SWClABZ+tTbDAnDHIDM82M7GF19b0sZ9OwdSbM80KvgmNEoUTNzV3WmtVV9FJteXCpbc2RpFwAkSFrxSa/z2lgyitDolS5ZRdUUXuSchlJLiONOkdX+EbRoAnKihlQKBcUZZWU9j7clDy7KPb3hkPCioK891tLY/WOh1S5ryO5KtL7R7G2bBQXSFDlLcv5GCoh03vfVADhcs1YPUxa2alVewmIAZhFGWKU3BuFarNKtBYrfvWMIFajo/vQD2VmTZQOSYEYc4yb6TgmuPzfUiyiATA5o/wffF0fOBB4R0TKulJY0myXpFCypulaEFlrdZ0tvHxlQBQAUAFlKi8vYTQvPn99FjHDLEhCqYAFayRcFMX1bvhCxvhueQkUs17rYxK+hZm3Xn833UxAllFUpGUQymA5V6+h8h0CSaiW8XAoqAyl6gEvSCOaWxlyVSjVZBwTKV+zcMFKMsmcKJtHFlTGMEpQQHSZm8u8ThMZHS4z89Zag9gb7aQQ6M6MRD3/SxANAWbwFUXB1XWXlM+EIkzU7aOjCMiIsExa5SJCi3OTEm63EORAxjRTZkVfJxRqHg1mNtMj3AXfI1uZEwngRAsRSHhQRMXQGIOThPa2PzxsdkcVJSFKDRFx8uaMKYHSnNPdXWa99aLBp+iO2QCjewdSNm/QoXkb6B04bsfZ0CysW3f5+WxtY9uSMWSYmcrRPZopHXO+hV1ux7jdHvD1w5A62tNNyX5qjPJ82NBPB8HbLebMNz5vp7R5/bC90oV9P6w3m0e/Xsa3H/346fOXy8uXTx+CP/6C+VPD7fg6Pt+O0+6727416977RrPW3J276fTAk3687vu38+cbv+rLT2mf/mz/9//pf2r/t2f9P/7T819+lj2223XEvB2hy0TG8Xb55+tffmqfLb5eb1dX3L7Z9XKx6+3yS55s8838tFs/c3iXY7S4hvJt+JtOm7eddMmQvjVd4YQixphCczMFmbVxyplQhoaifFrX6AdIUb6+BTbOULoyM8kon3L3osUuWYkgb/CtTSuDrXxH5GJZ9tNsPdELDV7uuqua1wHC1Hvs/KIjSZkmlQNchK1xLQlZypQxPeYMz0L4Ekxlppakssi4tRhdWpIavmrAh3T3I14AGczyvpy8/yhyDQ6G4mWhzsdVpKB1JhEA3clyQDKYO+V3V8eaXNyxjjOkcKdV/yZAluiqLmf1zkmDT6UV5G0L665By+4Q1/3qymBgrsWpyVquxCi9f9qioRxHzlmUHypqCZG2kiXyPusQXrWzRhjzqEt8V2sAaxQF1vy10EOaUql+t73CHT34bUIEmJnGivgNoAnYWNpX0JzktuTL1tIwIT+wDJqR5msyAjLT3FK0ZOtyWRWbtdNCSzesO2aFfRbFEJE0QzOabhpqhaVnqifMab7caQhauZDDeF/NVFEi1aaozOjzuv05nonx8w0+ZsC8MeXAviuzdtEO0QVArnerLaJcMO8lPxMwhXLSolnMwJgQOAUTNGFZc70zzXLCLHKlSCaQ6gVieVikyZKSokOEZcgmMy1JD+/dKGteqWKe8DQ/sRRo6c3MADMUP0IAzMftJaZf25GaoT4mjkmFDMfsnjbnMb2bqVrxtRKBQZqoXo0L54FAb+m9p46RZVU3QcQ94ZvGmRsmjI2CJy0T02zK2nVqa61ZHGFMcFiMPCKnKol0tkwzV4U9V+l3GjDz1npzyhBvomSo3h4yWoQMDggNZR5WT6IvQUJS02ndRs/MzoxsObKPvaUZkT29m8kozLTW4m1k04xxHGH7DAB+mMi5KTNc2DDSo+2bNvjAd1un2+a2ffdZ7tLR/EPLFj5xpbe8nTffG7Qx3ypdeGCaawzxOOZxHfNtPobPOY+49ZnTERE0cI6jwYKlwAtoZpLuZtW8Jbmdzo+3UxOH5sHjesGpPTyc2sfvn/M1/eYv4+mat8vLcZn7d6c9+2hx+Q48Pm/488uFT2Y/P89+vW14zEnfH85Du49j9jnG68tx/mZpWz//A/fH+f0fkrQ9bORWxoz7aY/TIXuwH/Kpv3x9PM9vr//x/K9/+bt/+tP25eXbH//wbde5z3buue+9N3v8hI97nL774ROP/vHDy9u//dPDv/+P//O2//t//fPIX//u19vvb/+vH3/3eP3Pl7/9lcDB0/n6+vgtT/tTw+n7x+fT9W//sOXxX1//fbO8fhs/tvnjh2+/+3LM68M25svJNN+OW27GCPt21Xx4HUd7sNZ+vZ7DDm+EU1tT5O3W9uMIItJ9xukmB818uSUzyt4WSGjYnIFE1JyjtCAqXRXIWx4ij5Gp1ntjHpFgLiZOckrXfkxVnzUBBzwykOHeYC3BWnWqOvmqOCDnNKa1TDZP3he/AWs2yrgWaKTDKnlYWdBV2SUSpO2dUyQYBvVEzvcs+aodZQqpWh6nUumZ5YSbpqy9ctX1kapIgJxTyKimehZeABYxqzDadS5Dwmoc6LbilWhroWsuKQJ5e9ibvJndN91YCiOCRveEo8TGBnPmBLJGp5q4q+svfnMRnphW3zkrblsiy/Cx/A5rGmwNlkWXxnLmMdZqiSYvGZIJdAPNW3OzZjVdLDtAKxSyxmCDVlSHFiawNpwFKC7wxOiK6C17hmspUQGVWXwtTu/biKr1C5IlyuMiV2cDzQphuBlwk28KJrpChCr3A05lYqxNegTNM2NOVcJ8glMWC15hibQEIGRGP9ttQkJmHFMBaEATGUkgI94XEjItnroCsNRRHarbDPccmFQA4/ItpPHl1fyWZe5sBvPpIjPdSmFflczA2pQDUSsOK6ChcGuuEx8MRSbFdI055hFGywa1PjsnPDNTM9y81ttEINJTh/xu8wRBmhrLPdQVkNo2pvWdJrYGNy9NV9oGgc2A1u49QVEJQ7cb56HxFlPgBDk1LnI44WO6NGdGhjzYsFFmhGWxE8qQgy6YzNOMBmtBMlOKdEuYjisHuDHLzuvBsVugiWaIpHDwZKT72/StPCbdld4tW5s50R+Pq5G9bw6n0pwEl2aXyMAMO15Em3SZ9RnN08iOpGCEGoURgArCnb3yhVuk2EQZG9g5HIo8Zr7muLXXsclnjws0vclaD3pPWMY4ZyWpzu7Igx6WrYcgTBe2zXi6vfac7lLM25vv/jmck0idNfPos/l+aHhG9lNzu83fjcdH6fTtsLxgHMeNaGWt3S3GuM4Qxng5gDxE4+7jMkiGj+vMGBHuvCHUoFvOeaV2jJu3YJg//PCTdlLnnQ0v1nI27hvgPJ23fjLqNK7XsAzf5y/ucYrXD/PYX2+nmDjjyxHztrXTx/zydvH2cR7d5mSy/Xi9Xb+fQ2Pe0PY/jOsbOezRel6ut/z2qghszw/6/1H1J82ybVl2HjbGnGvt7e7nnFu9MiIjkQWSIAgSoijJZKQ6aqqlhky/QP9LMjXU029QW6LRCEo0sQCIBLKIjEC8+hbneLHXmnOoMbffgMIi0tKevXuuH/fta81ijG+Qp8inDw9Pf/IVr494in/3/tP1m2/+60+Ph5+e3y/+4fjT36zbh9WOmSFdb4vN23X+67d0+/B//r/++Mu8vAz89OrlNubTnxxeP/zq2v/TN0+6XE+/48vbL9o85va09AV92/r7yz/gzenj6/Xd+X3fPj6f/7D+IZ8mbz+8f56HF3+5fJHLZX58uV1pbXt5uY3m/fXpwxe/xNv3H66LIc/h6/qQY1ynTOvDXGQnnXPGRFuc04ikWethxtZ9pqXvVkkJieKiQ2lW5KO7hFIlCkjE6A5WChhNaTGybYsSkNMWwluXaH0k0gwN2ZUgGHt7ZJ8n4SErFSFMxFBjDgoziWIaK8qQUZhToraE4B6do+ZmEfBUtH1FVEOkPWSu7gglGKak5BmZSkqZGQwq4JAKEgwIShVjC7uaCIDtve/ndrcRBbww3v/rDjanuA6Vq8cSQmOkWg+0pVS/MjOmzM3nvM1mpFC8IZZ0IwGPGCZ32824xW4goHL7krnrZpSKkpgwjSN3BTBSyqb79S0WLrP2B/vOFtJ+Be72032jp31gvcvORnmS6ucIbp7YHwyXrHlVCeIfpeOEkNGge3KvecEwahlQar0M3afNbg1T2mReHAaDiDljscw0OjXBIHJmQmDTqAJGhDUqM0N5jUHWAM6MbHvfW+gkK6xyIFJguoFwm4nIcGy8Tac2tT4RLadYfLRIwS1TypjwOVNpUzRpisgBOFzDMDJwXq8jtl/O9IRGcquaxn0fx1DsIPfqzQBHk1ikRllVbQRFuSDWNwekrKU1g3nzdRuZJ+S6TElso0wCSCfM5CZyCkMzmmeBf1nVcTbQrW3KhnBr6sABzX1t5otTdDPaCoHNIXOVoNtMUM7I62Zja80wj4f+JLPneVznoU0EhuGI2wXq7ejXDUYpcueGCcrqNGvvEzMQFkHQIzbMaW7IzLTFIj1SFqiAReSg20zBOKC4rbAhGdg5aAhzgJoZGMPSW8y19buhjWKzNumObGZIYjbfMKMvjPQOsWeKSXbLHBgrECFttk1kyBZLiSI127zrr7ZI0SIC24fH9eMcWNZtPMQgkp63llTlPt9s4NRzzPV6OMX1sq5jpugSLBtos5kfL9pi7U6z1ojryyDDWrd1sbEtGfTny/XVdj21qaR9/PqQePl0O3RvDzm3EFtTKH1rZqI1R3RYX2ObXE8XC5t+WJs/HNfav/txsfX4qbvlEgpHycD52GmH4/L4djJfnfrTa+uOhsAhLx0H3Mhl7U83f9UzAy98WC9YlqE8j+eRqbaMW+fHDMzb+SGx+tEm4nIBT/7dXG+JF8X2/R8+btQvfvkDHuNj/Hj96cItHvrmxil9Om4ftp8ennh79Ra3P2+nf6k//z+cfpl/8uvf9l++2367/s0PT5eP3flx+WkZf/eHNzk//AP/4funxx8vx+XxVzzH8o//cPrq7x/+i7/6p//i/a++/TT/w9P64U/th0895Y+QsttlvFzO1/Z++Xdvf/XLz199u374w/nl0228nMYPD3par332/jfHGzqY7bSsMhpvV5z72N607entl6ffxbqdX0I5YaG1H2x+1OB6vR2T68y2zvQK6Eya95Yw9VZqBYN5a3VhKXKaEyw+OyLMnA4PksyhbQ7rtWnINEERIYYjLXPnFeQksxZvoxvG1rBboHaRKqCUQqQjVcteZea0rmFTWzR3a55MgSFhTAPk7mUIhELKoN0tSRaAmBm7/ApCFRMqhy2smtxdjnQn+CVwx9XXtV6rRmEXhNseiGQyrwYVVmlE5cHdL8caLIcLsGSzSmIjlfJ+AJ9OR8d6ttxxTEnB3RrapBvMxJluuu9Vnd55hWCMhGR0gcZWi2b6Z1pSbaZqLL0DjOvFgVkgDt5bTYHYUVopJIywBFUxqZZiht9n9J+7WaN5rex2M4/uWXGCYJElI0UqyZQFmE5EMeDx7ykFSutXS9zYpfasqEVniUdVKQOuiju0hGYiZWTOkkjRe2Ge3FTBWDXdp2mAbpYyim1XOFTR5LXQI7lvNcBcDp0Z4QbRPMGlMSrylq1eHD218ztlFK3LWhJGpVtaM0eR7Y1unhvY6KnPOnOCCNszuu5KBCcZm/6oZMzdOoS7rL42M6ZsMMBhcoKJRhjdmskqPp2IqjFIZzMYU6DVBNuMlBI59zcXAunKCvOkuTJjzpyy9OYoYHLSGOkRxrv4YWenKbfrbCOLkxO6zcOraQlHTwuZNJoPzgwiMKXZ8x7CKBlrJgHL4s5VvPc+FLOldSvyQN96vyqlCJgRwuQR1lLNQadZyq0BK36eM2PCOVsBJX2xxmuMejoSHXLDCl/CKvNxlwkYwzTWSIuEtlGEIDk0I0nYzJyCce1xQybSYCWXAGGwRJhtI1cpXItx7WnQNm7PT65lmRNtQj0zKpZkvMTSTIhMd6SRFkPhqgyRXtsXKSbj0/bhiIdexfU2ejPsJpYU2unRw91X92ZYpEuf10xZIuaGubhpbEszWiI7Y3TSvJtxXbvPIHxdgwQC7uZpjW2F8S40XXqclvVwSTunZ+YmItQBBnSx26efXl+uqSUuXxzc08Z8eJtRJk5ZLv15xM1Pdmkaujw/rbfWEAfc5nhAtkG93P5w/uKnyHVZF/RxvJ3efnnbPvkDzXpe/Hq+bmkxbj8/j+2tM9bX89NHu50/Pb6H/+p/9pZ/cvrX//b47ptTXnrLN+/5+PBz6/0QtyW//o++Ov09v33C63e///1Pj395/u77L+J4/XA9Xzf62+WTv9pWn/O69Ns11i9eH17/8uhv37z7qzen5/ndD/7+ww//w6N+/+FpeVr58MXxI9v4/nhsxLLG8thmbmc8+OJhXdak9fX5mj+NW295ie2Q4jDd2mEIhg5dJnLCK/ck1Xoza1rWNVudDl6fQ4Wl7dEJEBDbhKRIeNZJx3LB5IRyz29gC+5uoJyISc2kG2ZCwUBQiqinhyARkdgzdooHgEyOyR24BMUWkfcM0UDmpJWfLlRRDIppivR9rQjQWEICcHdf1NSzbKyk211rVfu/Pfeo8OwF+ttFqSINiQI8G7ibYGkSchc/75z6fVFrReYvKY+kaZ8p+ISRhrnZyrwdWJ0nnQZ3b6YdvCeauilqTbilfLZDpFjKKMddP20wM6hMnxBYSZV3g6fui/k60FsUmKJUUfeRb4mL6U3FJ6rfQSGyjEMAYEzu7HqTZHec0R7oVL9pXbRw0oRgpfTQvFvmDHNY3OU7RTu++25z3zaUsMccTAO9l//DMpzB5u6cViIXl0qKxXK4iZ5JoOjl+3adpEM0t/Keqzw03iZ7A2gsHnMC87AuHtutwxrYkrTNDM3RkGSDjLIaAsEYdFFbsAnm8lws3SpAl9xjFZtWr/fY1SxLditrHqBAN9qcvhbLpdX95p47UBPMUv5UJBmR9GCaewtKFNdlBUzHRneovmnWYRSaWYN10bsyYVLj0lcyepoHK0bYe3iaky1EMiLdJ8UWnkFmQtlYScPJWjSZlzstI2OOkZmYWSz/28xoxahlpFEiBuHynJ1+UENFNrXC3hFgCRBRxbfDFEnMsM6WmCOTOY3KwNzMNKY30XI4tn5kcxSANYyZGJcRMfXQFILUlgnCqTnUmhwhsK29I7RzbKy5L86G1o4XNbuZUjSFlVDELTMamiKmBAfhLeWRbIaYodzQ3KSZbQLKoduSzm32gWMmcOnr7SJGt1BaQG4ObZ+27iduyOvwdYZnGhL0AJPMBLjgKImL25zu68lGeHM/hMJODzRcZvh2gSOXxsPT2p+O5j4vL5fgGTPm9tDnjOTtumZsmDnFuW3T1tXHZkcTX5pI5i0zEbmVcUChGQEKy7KQgkKcS5voNxukOdrD4eHUlvWoZX06tHWYZyhyRKf1FRR9vtweNaxNeFtbY9w2rs5lxcm6r9fz9SEMsod88zK/Ors9HFaftp7YHhgNelrUDw6St5dDu23X57xeGm4Y4/zjEpeXlw9/+/XPf3G63fDmq78+PX37dx+OzWZeW1xfssPVjrd3v357+PT0T9/8nH9yxHl8pcNhteftY5u5TeH83e9/9fKcn9aOdXx6vmAZRqzr4xe/9rCH689zs2FfjcOX33776svLw+ntaojHw5Ld0Zd5fDodXqwfDrhhKHl+/8k+bevh4JdtGc+zr9nXzRwBiXkbtykIbSsfLQDDvswkcbeefBYoZQiUQVlmBABR6koZrcm49PvosjqMxaLbYROSOT2HLK13lqidTjexCaLFrsO5u4Iy3QNNFXTPbtYIUgEzdrlFJopu4Z4yR2ErCUUtQmukVcU9dgXr/abZA3x2TZJbwkzVfhNN4mIOryuSRkN6I3K/tevWrc7SSwVcsq0SzIbVFJ5pqlePZPlTE1H05DCnMedi8EPzk7ELBlpzGL15w5Mgd7qcakw5jdI2N8SYygBCsLaqPJPdSgeiqAQEQXDPCIVMkb7XFneaZHPtJcDdoHLX9Vao0V39hXSTMhXwmgnspJIaUN/LmV2MVXLbVCEmzMx1l2Def76kgmzcm/p96V3PDIuzXO9fhoFARFqqRKmQZEOZMJtgsjtMAKdANwv6fTt3p1ntEZq761v76P1uMy/JMXfp2J51JTjaHt1c/Xhp8z7rxf74bu0T+ZoW3U1tXhBxLxeBFyJsXNu8jXFHhZiVid6MYrXGrSWNlqSpRtGFnSk8tpT3hbmhhtslgCZqmo/MSNFaecGr3KwMEN555lVqJr0sHbu6Glna2L0jzcZAAWhYsnjsevCI0jqW7Yv1VSJNaE29tumxBQHN6XOaDHOgGd0dyU6fEbvpDYB5L94btRuidyXEPrEhSKRlxpgRLaGYaSjxeDRLYkwHq1ITmGQENc63yKj4ec90jaLizth3KQIUc8qFFkxz2U4eMGvj2PoaC01Y3LZmYtouRoS59djVKjnj3//i1BzPJugOs2bobI2wllqzcc1+WC4yM699vntb+mEdccp0KgdEG7hXn3Ia5O5LrDeYWWLtYViWXmSTfvg0LOVcTtxoNuJEtoyZusyYpNIOc5vIsc2wjFDfpatIBeZIChqeABEJMCL/eN7fpoSYs+xfzS1iC2CO2zYuy8gZOa634VJwtRmrbrFoNmi8nGMb51zmnNgstmE27BKvn4VztuPaojsONMK5aW399KA0HHQ9p9mN2yW5vtbt2I8Pq0b01KK0aUY5GlxPyfWrx8f25TLbNj7M/OW//eZ/+vbt+Jvj27w+H7fbxaaNjSmk9eY8Hnk4rOrr2hqo88/M5+/O/vee//Zxm8/f/97wUxy3Ty/X6wWP8fzhfRvXy7zNy8y5DW6ffrrN5dPN1hkZa2w3V5K+xIQiY25KYulcjt4nlnVL74elReYcZU/N1Lwan7d2vd5u7baNmQpkUDOZKlURVQFwyri7Q3V/wIBi/u9X9GfvBuhsrpb7WVqTMtLd28TeHO4Sml0A5SUcrTxYSSX8rKmpIe8Rhfv3pQxCBGiy6jPj/s8+H5HSnifh2FNrS+p8lysZwd30tEuacVfpfpbi7hcL9w3pftUgAKjQ1vXb7VrqulGyfE2f/6MkEsxI/xw2lEDYHJWAbTVUmjbtmDuKvnC8NRFPTUBJ2+mRuMMz59QoKQsyvWVW9gX2WBlmmH02cClzj3Is6pgVGkACWnGX7+95ISZwX4C3+kRyD2LmXSZdnk7pbu+FACSscIxEZtYUo9Bm9fCU6cgMtAKLLiubRAZA1kGPYA3hi8HDGh03p4PoiUxYZjHPLOUWQRYZuwCpSilokeWlqR8SuPM+TDFLr40UaFYXarZ6fpOsqXWkGGO0tLa4Co8ak7D93zP3bGUFqvucsMqIZ/FFq8SrKQdBY5ghRMtb+rxtl62KQ5Js5C53rkk9CJrt+Azst7mkei4g8wJru4VlOtOcZYKVDFOg2DDcgtYcXrepTDI5SxTADMOcPme5r/aqRKVf39XvEFndM40JczdzUxPgYYXLrEe1BiHFG3Wal5oNy1LuLGVkJCIzJlPTI7coqXMpPJQKK+kl6/tFmNXSQBXCwylsOUckiMyAmFZnWQtTzEpjmDAJN3NkWsx0ccgF9/puukIz07wiQEu0wA6sE7IGSzeyzDZbNp9OBxyLdUtgVkS2J91tBry17oMA2UrLCdX8XrJIRHTZtG3J7UE3xnRLNmZgdCt4m6OzIRNoy9yWhKXlhNLKYSaQiearHcZFYmjqIIdaiDTGTProCsXjq1M4DSk2EjGMZuePvOJ8jDB3qDUSaTXp80wBiiRgitW8damvcieaOemt9wL9Rhhg3pe+rI8ngyI2jETrV1hQ0zEscDyMTS+Rh74eiPWYna2ZO8+nR15vz5bv86y5pdoZX8x+9pRvV7JNTkuQLbs8Tu2dr+Pnjz98uD589Ysm85acc2zXbb5/6dv1mmYJrU+x+fFdb0/H4+/W/skWLN2u26efz8+/jJ/n+/cbIgWDfGEe3H1p50+POudP0Z5u3/3uHw5/+/G78/zhN188/Oofv/qYf/Xr+Pn1P/rt960vDcjbeeglropzjNvPp2/xeyz90+HLv/qLH+3lcn5567Affn5cX7+eL+cTjudr5G3I1kU6ZX94+PLnT4udvv5BPtbHEyLE463xau06n0S3boqZKXe5MCmQ1jxN7M42q2Mq3t39Wv18E3gLuAEphSRocCepJUqiAiEmsCkSCK/ZLKlK/TLZbmjKDMf9Atz/KikjiT2JTZWdlGmARe2maYi9oY2kRq3wSmBEFcIhoLjDn3fjE7h7DoE90OBzYyEgbBdhhee9Sr+TRkCgImoB3pOG9iVrobToTkB00RKSmXnRihzem4O+nK0RxnbvHLNumrUZ6CZvDTXML8bmTkWsNtURkTNo/UZa6Yxy7p+IlEgzZui+6+buFoNlRNkOicIhAQ0S8s4nLN2cA3s+T9YFWocrqYIn7n2lC3egU6CEcDvhw4yG5C4YkrVucpVlCiaau+1urHpzuZMfWUXW/U7fbWC79rlEPkIn3WBkA43ZNdLcHeUdahnaRzR7Vh5U+zRiphSRlCmVfkeZWJZ6K2r8cTfdZQyzbs1GagdNggvCYbBumGlKJ0whmCVNYLs7heqTw549YpZhrUcg60KMuUvmMmshj1BkCpE5p0p2RrIiAykKTmmXHRQITMq6gvbKTIp7wWkVSKzmDSb5LDcCEF6msgRG5sR1a6YQlVZ2gJxuU+Yj4QgRgZoZmZeZFkoQquAw26OrqDA4ULJF9KVRwFxWeHprYM4DK80yGjEDbVlMAzsxTaEgYTJ5qGBaspypUj8ToaXiXG4RFvAlb7RpzUyKuW0dwwFllPQizdBlfQ2YjfJI9ebKacYwI2fshYOBGnQjhPTPrkHpQDIMinC70c322YGapKSlSEsq2SNiPzzMZgpg0tKwT+232G5aMyZvLcd2iFmn5bU5TI1AWETjKsVwIKdhsBcPixaSO+TQyJzZPa7ZHNc2YZbolkLO7WxzcmJ681cHd67H5EGwlXnLZW7uwbWfMts0oCLVuJPvZyYQim1Vdhd7761Ctkj2pnSXE8o5rDWNsdja+/HSGm5GnsyXhTG3hBphS57fbKMfn9BtPayM2/q82Msvnz7G7bqR6TlG6OmmwUiNc++RHelkwta2Xv34NrdGj+cRONzQH969iUf8sC3dO5SZsWnOW3y66OW4PurW8u0/Wf/13+UX/6c3/dd/3h/++enHB3v173JmeoxEjnG93nq8fGJ+txwv8YeXx8Uuy5/+J89Pt//qq//kf/FXaI+HafOTta9e/9DO87Y25WWbebucr58unxZ/nXkdb749frr++PDw/vT29frL2zD98NPli+UXbPO6THSmJzjnjDS8cMtcFmvH7flyvtlRi7VXL+av6MHFbmkY221Tzih4k+6nXyikKNS/7QtGhuWMWTcHq45KydLR5KByej00yZ2shCq4awRoMpLu05hGgy2Vyb4zjO5tZ11Kyor2BY1pKNdH3Zf7aNF2A0wNTSrZwIqgVZre0L6xrMupZnF119bZn4BV2Xon+tcpn4FU1kkoUiF5rbv2sWytqWM0VU+G8Bop7rR/qWBCNRtUghYo3n3SmqVVxjkBb+S6OtylrF5nAmBvrYXfy53aRCkZmGPk/SMwzc+juioDSptd/tF6/cpMBaS6Usv0UR9yc+wrOoBKgpWAV0ttYr9QC46W5l7Rk3t3rxCpylO5R7lJQm0sK1ZU8qUBJkOas8RdJOaMwGBFWOx002p9/zg/0H3eoT06A1J6pTLBuIUiE6KTtefekyQdoCGNO7qNBOloKbqlzDNAlOgdFBSVMIUElLFTSJQDQy/XqTA6mpeMLDGVw+dUMpBQWbaTCCkyI0KJ6v+L/hRilmw/ELaYexvn3eOGSZHzPpiPjAKf7GJw7RL/uqgqtTmRFVlsEQelCZEKZSg0QreIRM4cw1PK2NlzuyVcRcCQOLPtE66ZTRlGwJiRlpmaQw0UbYZCVnVwfU1jIcJslq2stHMwNM6ZY8wMTFR8h7K+oVBxn+aY5fWpTLUEiq+3V1jNdvOgcTel587otoQaO0maRVPrzGTj6ZTDpkxcph/UFhcdTVAz91zV3BUpN8IdyClzFCg9Z2VzOKkJxSyDRAY4U0JzWgwKGT7DmWZ1cKQ0FW1mxIwEM8Y2bN2xreV4cJlg7suIhmYEVqCPttBpa1/XEIKwPiBLA6F2vPaIjcZlQOqyTtpMD2DBhPiRbWxzJW/XMw3Xh4QxDXm70eZIm2c+PqsfbFmssXNuM9+eTimOVeMAO5DuszndF3NfeLyKdtgucRtrU96oJzXObUYyBGTm9faonCqQpk0L5S88rMux2WXTCC6bDmiEMm63S5/nV+3506NNxkNgDRcV2+iMcX31Zni/fjPYQjgdzNrhu2mfHk1KtGWiIcLPzHnblpft69fP375w+entopmHh8m5Nvk8uLpZU1jGxbGtPdR6z/b26Q86/+WfXE+H5fWbvF22L775rcW4Lpv2Q2Jkzo/t269/tY7j25Ot38T68Oft5yu//Mu/+PLx0/mA0OH0FXF8HRHWzR6eHvzQDzqk2/r14f3523U9jO+QPz8c3/3Jn22nV1+8enx1WHLgzWVIHSM1budzPtjxzdUPOP3y/rC0t+9ul2neFebLCFtlq/cUbIa1uWuVlVn5eLUxi73PS+4Mf+7D3Eo52E/96fujV75LVmxRXWI2dyRwXWKScjozbO6aoFRiqnJ1EncrUYg7vhcKKRhiJGJaAbFizsaCJmeKCNnertZKN62mWzDe+bIwWSH8AiTtjozex8h0WvW39WNq4korO+yetmr3KtiVdyT0Pp01oEI8IbdKjQNMDJjt5vy6EM0jk4oWJe5SJSUzNsyt2NdKRnWzGVP3UaqUtvuUU+w9e7uWDM13r5DxfgYY8vNeViDpYSKFGsTxPmJgm3svX4vOXZ+GfSgQdfyBgltBpn3vf0uMnfXn6mIoxK0kmlcUYx36lvN+39fjQSpIwHeayn03wftU4vP66z7/B1XT9grcVQomdvfIBczsjU1NNHdFGIU0maG64EKMCyHzCTQU/LzGpNxLoOam+heNLgjTkNuW1wFFKeowfP92dCUQpvJtZbGblIlIab+nMyTIKI+ZPkJTEQb21g7jdpbvKm6aghIjFKJmVOZX3W+1yYcEb5VnxdJjVEKDz7RhyDQbiRkaE55gxLwmBraSQQJWRvlic1cZ2ilE+mcOTCmpvBlZzhgMIDICPpXpymFmgw2zsSlMmk7V/rf2uSBd7oItsIYAWHlnWRDHKvMCDbgHMrt2FGxlmfquvBMNtLZmspihjYQ1AVCiuUcFtGTMGWkEHPRmgDc0SQvZ4X29QjFyFOPTStIsMabK0lzSz4FpwWSQwSK45kWeUJvImDZBDaaRzOS+pzbz1paW3Us/V4M0KZnQtNrd50RDDX987SO2mHOZJqtwEZot0z1yu5qb1jYAbdy/PSNQ0dkNzsi4mnFjy22st7ZdtJLUOD+Ly5Ne8Qh7GD2Xvuws4Y8P9oJlPLarrm2RzM3SrMscS29zTC4LGDdbYD5l69ogAOM2siPNGWgwCrZ4n0bQl9PTm9ffmzA4N4dFboY8rFRrS08ecPVF6omX65akLXx49dDWJywbbV42HNjCbD0+bKflY1PgcMvNaG3LMdga353mN7frWH7YLj+8zIV9bYeOW3t1xfG9yZBsCzwu13E+j/G779vrr3/lv3vjf/fd+5/P/WA/0r//9A/zFKt3uj8s1no/tCPN1yPfvHn15Ti8eYD88OrtcXvpB9pc/6uXx3efXj3OT2fxb38a2+22bMjbRzvfLpct5jg/j4f3+OLQ3nw3//zpR14/vrx/u71c//77B4w/fHN576ettTmmId3n4OYtrtvPnz6tjx9ut3x6EJhq5hMMtsORp8jgHDStxzHrtDIy55iRMUdMIRI2NhvJaQNzZEhskWLOBI25zckcM0yI3LCJMVGp4MK+9wNtx/JRRmted32rBc29g7N7g0tVchIQ+jyQppV5x9qSkYONEwKtMSlbOOkssrBxZzrXuJWwPffyPurU/hcCdEX94F2oVbto230wda5CtUfcwUSSQkDM2EuSNGi3uHIHKwq6ZwLJkKgslwwYYrJVrq2URiy+Lm7g0s3cSjxEM28OI+hmBgYyao64BwVukQDY6jUTLL21QJq8RDlCymjKkkmXiwQVfpICWtqdtali2VFCQH8ELe5winIXZTo/D0lIShmF7C5xXiQUc+yckFKr3YcATAMToKKo3qk/uouLJoSwMoAhVKN+REGZk3CqUuLdDe7Gyl+fPdWXNARaC7NaiGDWhpFU1nQ6MxQzzaAoSRxJ1+4580II1+17d6QmM4YANzgnIrysGcrw2tH6BGLuKZqm3eRWki4l60mGTTBcQ9v0D1cP6KwyvxY8yhQG00g6CF9Aauj+MDFVU4ldhkHivi7FZGxL0pACIkGDB90h+pxeHwqAlMwUNmg1wqGahosOGGjTm9fIVHSbsnYBRZE92qQ5+rI/UiDcqnXskO1K/sJo5D18ogkzRSGnjQzTzG00oy02Y+mbzcjsi1mU7Y4GcJrBkrMWOKJobRauis3IFjlT1gy9h1ohgc2Q0tw2u9kMc9vIRMsgNdOUI9X6QmmGAnPKc+ZlxNa0IRZOW6TWaQmW3k90LuFxmN6PlyQC0yLNhzU4acnwsQWtm4aZvKVn2bNkVESn0iVLWzka1NZbn3746EZfWvNleWlhbReaSjBfOODCNtvQWA63mVg1SbZgNGxLmmnMNpaHlof19KLj8SSzA/qrL3/QOiy0qcU0YfQRXCyW9JY44jTtsH3KHJszLMbNjmMoApoDYzXGpKiIiGgGVwc9rWWrOGRAaQ5fDAOkKTHXg7sbeyodtwbe7HhYu+PV697OwPl28ZhjMK5Dh+xPPpTE6fSg8xf9U285x5HBpnEY67q0wyuezs/r6cbp4Pb93/Dxgxa9jDyM25t8+HKbq/X+0NrxsFnvmy3mh5n94eNrv16+/5jfPb98/0N8///41W8fnq/qX777b351+ubLy3JuW7bOOZd3rQ8c/emRij//Fb777tsvru2//+r5Pc5//eP/7f/+8nHtvzsx/vb4T3759A/fnW9vX5+ef3w7ry8X3TJPj4+H3o+mD+/PV7NQx/PLj3/dj7+8nA7x9bsDrgeEQ2aJFJfLNucDts1fvT1+dX3Jnz5+ejXOivXqHcm5BfT8C68DrTMwtoZISHMipzRj3GKmFNDcPJK597W7TDKQFZYSKYRi9vTj4Whg7IdbyU7d6WwDCNGhNBrbEppuNOtqfV9YptV2MkuLBCKRjL5k0ochrRNoRB+9Bc1CluYSk8hmsgandaTldCIHpbUXW6QsMQXWLE/Uvg/ORAq5t14olVJSKdb2uRB0SWUWiVKZsSURCoqY8EBgIvD5Go+sPi/VumQGRnMtuTVgKhwBpDUJluEaaotRaZrcmUwmU+TYLNWqnzYKZhYwh6hrvXYlkl5ntdHKdGz7QLqyZCoowJhZGpPKoqCAtgDVaLGSUQHJGqbZLsCpCT5q3Vy2o10TpyTN93HhflnXltr3ZRl2NCcBVjFSJRCt1MzmKURF3exaZJSLjKiaTVZeokxmwJrPCNHNexa5GC3UNFKGM9qysUndR1ZTjszCW0U0M4s7JkyBSGPDJEBLeUIGWenklcgYfXGUBirSWbzGq7FNCbntedGhe4liyLlv5FGhxGnNMrGkAdlasnliRNuvrSkk3QWB7sZpmWSwH+mat0hWChRD2MsS0ndNQCnrJVj3VhNfdpohAjFF97SWYKanouJBWQoxatImWqS1nmN0Taaik2HKnIkJhwOd0V1kTo+cYYC1rh4Ak771+sY2CVnbIGWMmcMQGbqpzUs73XpsSFluQMa89edYH6ddb4mHclOrGZxwNsO+Sk2j09ww79b75qaWOYPeejA2epotK0wzPQ9tO5wGei/8zdaafPb2cmu6Jd296lroidF4Vk9YQOmYZqm1NaaQS0WhjlSC23HM+byJzYbk1ryFWQqRDkezmBkW1rbbiFy6wclJ0q3RDB72sMWiznU7uttA0ylv5ujL8XpugUPS4HCzSfpyFceLt6bWWjbRoZbQ1puTB1982geJV760T5dncfEa6qkfkCkbfHh6OrflU1Jr637pr17W3i/+fLm0y0xbekwlRtwnhaBCkXS73ey6RBKYM3RVnn3jmHDfXk7n0HVYpCQ6tZ1vL7dk61dr0dvzRYrtl1u/5hPcB7jcxuHhaRnj5dZuWw+hn97agx8f37W2WF/XgMIex+1xHJTjm+MzIvQEHB+exu3TFZeXH+z45fPH93j6tJ7WT9v4dGu4/DSXbdsu57yOuT4cHexP3do/tbG+erm+nOPTd59++r/86f/rf/eXH7//4j/l3+jpu3/3MX5aeHhexczR0jAajw83/fiAH/9w+uG//i/tP/j9f/PX//LHP8+fH9bjPPzFb/jfxj//8IdP53dPh2U9Lm/62y+/2r69fP2rv/zTDf/k9fkfLkd7uW6vrx8+5NcPJ7Nf//J6HtQuZ72c4uNFz8/65JdxPV/w+EW0GZtyHN5ejrMdx4Bj6PzDXG7+emyZ7Igx5+VIOgDLNFhbIm9tWdImMknvvWWaUX40SdPMzOUy1+JN03xK1s16p9ktNOv2AoSxqfnMVKZHkgFrmSxPeYOSzuoXk0p6SXFMgGYEtTGn5pArnGKQOacjlcUEMCjME5W/2ZfAvkQTMpsJEjNIVzgtCitk+1wXlWRkvSK4QAtS+96TLrM0evHNiXsCg6EJIsyCMLi53IvWbrVMAyt0VN6a2wLY0m1ZvFFJTjQ0KIwM5sjrdd7688ur3QlVIqyA5XW0FFoSuFM2JGOAw3tk0XCr1xfvI+GdhGH35XBlfwmZVgGs2FOt0GbdpYWR1+eUhJmZmZN5l4Gbu8z/CJuWuZKlOp+xT2ZpEmitS0KA9dsgZ/pdkK3PdznMq4vOGnuU4nwfT9DkrFBl8+40mabAbddDeaepm23TEFPdg4AUjYpIS4iRhTYvx1EwFcEc195mGjP2NK7cVWPN2JAIIIhE4RtI85wV7oYsDeAWlcmXiRQTXpOSLBuBKv4MiVQR/xQZjRnZIpB0n0rEUCSZNkejBiwmRip7jsnZqj4k6fesKN3/X8p2eqcc6dNL0m4ytUGgsTA5xBqzWWePxCw4Z5HmSDM2ZGAiyO6d0A4yrfqkVX9rA3R5tNY8USkiAFzA4rk2c2ulqyZLdT7nGNzaYo3uiP7oa/YnC6U/iC2oKfbtfWZy6QdjWxQJ7AaACgyua4FkbWNDDFkEJ24gcwK3a/eYU2MdM66RMebMsYmTguw2p+AyTfXBpV0ygnADyIGFcCxxa0db2n5gTRmngWaG7nTCZh4wgEJ+dedCyCknE5mM1pKLOFzZaVugMZQw36b3Xcw1mcpPxz6vbegtr7epzms+Xm4X3CZuuYRla5K2yelPxw2vFAs5rkBqNjNPa2KipedpvRG+mWnGw4PFy6XIq6vcRV+cY1yVKXh382YZvsX5ymMcMBpC4LpOyXwaEDlv1wzE5TrHhpExc87bdQ6lgSPjNjytFGmYN22bzK23drJJbNkP2+khWzutj+yHR1PrbvTj5u/e6/AwtrHiEEnPUxuflpl8ebn+MsfLnwbprw62/qB2mpyf2se3a/v64fkTm8Ter/3rb/58HbeX/PjjJfTu4/e6fggmnm3meuGD1uOrhXmWbWHj+c16fPXw/O6v1jcf5lf/x68/vH3db+3f/PSH0f71v5vz47K+fDw9289/H19h/MMfDj/+w68e/qV/8+Dfv/n9b3/4D378qTX79X/0Z39Y258+f/cfvXm5Pf2Tf7v+9fr46s1xbeFmi+EKffz4y/mr9y+H9eH1i044fPnhaf3466/+1H5ZWn/z/bs/3JYMuYfbgpyfrvO8nvur0/vF+jInybHlFofD4bw8zHy8XhYcoi1UTmyxlbMuM+WgIjmLVVQh2e6yJIiiGtqe+oFZ01Jvg82YA4qx5meNJi2gcbdvurOzwcdysNlW+aIiDiyIWhUr4AJCSYbY2YhqxfqUiW6QYddytp20wIrfYUtrYd0ly8yIDAjNQKdblCOi5rasOInqe5miW0eqpIEVvViREIU+IFDLYXdmLf1qOh1liVb1JsWPR6lMy9JSkbFGB5WGwkCUNiacCqTa0vhwfLDeFInC8CfB7t11GC29OYEszwINghy9OyC2QMp62+Mimt3pH9iNXLpPqO/emGTu8QyA2ud2Gcj7Bax9J0/u4T/70jYFBtpd9S3tQVSuetMAKAjNOWvfmxBT9O70Qmzs71vl9Qlw1EIz9nt3Z3fdp/9FGZEKil0vC6CbOfsclcSRqrqgeyOAam7KvWqgKVhuryqJaqVgdCGzaQ947vvKuZp4KWOGhdG1+4NBTCJoFLzEWrtCsGYipcUq1RSxz1PS9nwFmKGRA3ISEVBGkxCJvJEWZX+BurAtB28aLZ0Nzju3KlWL8zRWRSlmqkGWSSZMaTRzao9/VEHVAmBGgUJ3bGMkSQ0pGkaCYGYu5TqomCfXDAMtNMyUtB6R6aiHpR54FaystheOO2o8KUqirxpNW2SKJgumeo50TEeLNkNpTb4FM0tZgXTNpAPVpacigpFEEgNrzKkcIcssOuccUYiZHNuBGsYyUswoWcicYI7stwoLTUT0mLY0xJjlWQvJwuGWVuMwgxmdar6qLbGvSUQmnZ+zryPUUlso80ZnjOA+7Kmyvh69VE5F5JgRGeHK8MboyL5cE7usI7ZunTi08FJvQ25k5rQkpUyo58h5OJvd3EhvS9PBT6eFktHXrnk9j1t0//jhfNSnyfQ21Th778htad8s/edkKhSF3EkzeotlJLy3nukt1vO1H3lcvR8eTk8XgzVfGmm2LMlsc6W3xbvfPrY0o1/5MFuXW9IsxHi5bcccWyNsTSwH90mdX/DM1fjx8ili+FOzi2+OD89pL9GMGLcXN8tfzsrL09MYLX26n4/f/iRrWKx/+ddzO8fA5aebv8wtNixx/uXQH5qyH+Z89WfpX9346vHp+HB6esDDb/7i5/GXX/3t7G9effrYnWNixvWFCaa3djocltOX//iL/A+//v3/+Ld/8Y++/x9e3vwv/7Nvra/v7PrwqpkOq8a43bZHjoneBsJC/fRqmzZ//tnmx+9+/J93vfryFa0fHpfnt329rm/PfT2aNTwejg/29Parp5PPGdvH9Jbd4v0//IHvYrQx5tPDhY86b2O8fGxfooVhs6n9bMhspBWeN4sY2dxd2lczueuOaJa5TxLN3WdOwi0PPWqFuEec09Cbh6iQI8UcHaLSnVGSQ95jZ+trEVkNRllNd5YCMs2KlqXYfVF7D1tWBmYYDJGo5V1kyIehda+1Z8lNysuRu0KpRE5IoDAgUqrSmfa/teyYAiqKsDq5MtOhPJrcf5KSu2sT+x8vwmAms0kZ6mGkwsyhQgmbCLPl4dTVfIbdF9MgY7KcWiBcZSkqW5IkmjWHdpkci1WCKvOlz1Nik4sELAFjwLDPMHcvdtMuO6+/s6TQzSS7t75ZMJP7XawMu6NMdp/M/ootd/1WCZqjIJ47SOJOKUEyYaSQMQIkYqSI2O+s3KHESLmprlbtkvIppMT6iFIjQy4qkpoW5FQabA+D2J+YGn/XeLs2EdPNIcIAenlPWbZg2yUIBRer0w+WWY40lcQPpeNGkLsA+s5M28ucif0mTsgKr08QGXCllJp1n9Y6o+QCqbCwIASOYROMmJFWKnCnhFn+Hy/DXCXnCq2Wx6lSqBU1XXDBahyEumz3esxsH8+wRPVeRK2KlKhpxH0Rgz2wU5qRiB3MkFZ42BlUBGAJeSYgEzkyttvG7JigpjKTTJKMFIKgTXdFcGIkMZQVzxe1RDd9Zr/cRYF1DsGY3nJVhqwZR2uprnRfYIqZN2/yAnoarIHuoMOzYi28L5TRG5quhEDNKvIS6Yq0Jt4ju1H0nDR10DCYNCKGxb5iSWWGJeBDIcJTSIxGVcp4Blu5+WWWomLLEKI50cpSjVp4+D5zc5e8wwwWNAHNBJffS88Kc8xAW2kMal7C2/UY3kgyAyZpy5s3t47PYPHF+4r1eOzcRjppzrRam2XK2mSlOVsKom3ZnNIYM8aYY6fDJ3LDHgxRbxJg5EpqXJ5v6IYxd/J+zLldPs1Pzy+HIWd3ZshbSuO6PvJhbX1B81eO7ktfX/8y12HdD6dc16fXbbv21YkZfXE/rv3dr8/9ZpC3Ptk7tzltBurhReL2IvHx0+uvH87mr8Y0Lu3WXvXT6el8Emhfn959eCnXhDcLLB3eO19/+xenX3799bs8r71f4vXfffzDdkX++ODYMIZ1f2uPSyjnxu3T8+nYuruWdnx6ad9xfDhcp/zD8eUaFus2Mdg1B/FLvl1byzAKsx3yiPDtMp4/vb8+xvp0ejzdthjNI+cc2aFF7F1TmYDbbvsQC9JcmPq6kjJVfjxlRqbcKlo7InIfcGYk3IvE660QMSqkYEQlB5YBqEAK6dw5RCZ4DR73TeDeANVRYAVDrFj2fetmiFkqSt2/FLuM1njflcoEV4Z7N3en0egKq3VjtsqU2NW+la9nnibBSrrFz1O//SSoO3a/bffXV41abU4jiqFQrRv2c4w0c3cvv+ZsZlDuKQB79xC3iI4F1Tt/9npa60vH2hzuzUnY6khay8AMX+e5ChcIsMY7CWtv13ZVG1Quzl3sZJbF3S/yhtCKsUEI9auxdGZRBpWymZRyToJVHJmXiGu3K9Vut8xkKQgxtRt8CKK48QCcu1ho1xFttwGIMcCk7rEYu6eKuxK6SgNBzCyfnMydREbuoqTMwjBqyOBImBllVmYTFLOD9/eETnhlINvuLi8QlMDPuT4l4W7MgTYzdotsjWKYSGCio+Cju5qvHoaqkMrDljRXcI8kjkwRmQNZ1Q8lM2dYSemrTt0tYe6SJckMo+QsId9eVlTJmWnA7Bb0LN/UpsSshlIKUnAIOY2CO8tLbbSSXVl667WOp0FoJnNHlGwjs7DI2jEzmeF0KiOQLW4DVBRDBbjbxwRlJkDrHpoAD/1xPmjZxhoP52Wlrt2P7flFs/V1tTMYYQgwzWSjCgJDKc5yMhtZnxmjr0syZ9wnrN6Rp4MNTMv1sBKtBjQNbkE20vpIdp/WLNWae2dNBTwkxUSGSGoW3VlB7TkmQAQ90iSuQ2wYYO5x0yFFRisZBEp0MUbMVguiHYulSWaR9WxaJAZjXidn5kDfZlkMhLLRh9vCORIbVljFGXcuI0mUU3tDH/JXanNoxW2e2i2iORsNYz2Nfp1NcetLn+bdIWZezna+rqee2trhaunWpmXKGJmRigwpZ2SEpjRHG9stsM05FWlBSUhqo2dTpIJlcvfTrbmO/WPata0LF8PSMywzzogOzcs2mMdjno6np1fzdOD1q1dn49bb4+PbP7GH1+txefOXv/z0xctxtfU4uTy948eOQ9CW5Vnt8R/7T7+yh6d2ODy8O/R8eujLCCC5fPnkj+Ptq07MuS1d0zbycsT25unLBz392e3NV++Op+Xx9PRt++L9++XlEKfHfmQ7ROMztliY8cuxXdf23W+//+43q/r3f/Xmy29vWq48znl8e/jTv3vz5ePpdFpWbi83h+k2Xz5+3F7m3x7X+XD48IAf/7Qdnr46r+3kx1eP5/HpMC4fuT4ctPnhcDr74svT5TrgUszDFx/6bzJ+dDQ/rAeBcdX5JTZ/2GxE5rj4zqQpo8vcRswx55gWUXHlmcm8n8ul4tyl96Vi9NZ8ZszR1BhRX2FBmsoMmrM7rU32lm6GHs4GmNwiTYVmut/AAMGo2wVJC+2jH98Hk1nOgvA7qgFKuBm8OyQOMaX01nM3kZjLSqy8n7CqkleElX0AKI/kzoeQMpE0ZHgdS0XeYAETimRfg2fs91s1mKzBNAg6zN1tN2+V3V3N+z1GqvyXOa5s6gevnB+jWbNlWRd/3Gju7qRscaSxMyjYKZ/3jyOgthhgEnupULm/h0AmSxEuVOQp9nVv3RrtXijsKmhxv5Ek0MqYvIu57iCyz4qrai2l+pfKQVR/aUS9r6rBg9UEfa8CTPcBOc3LdkaKFa4l+zwrv8/JS04MurQHTdJkbo5pJhbpsfwvFNmbw0LmFfVQNdVeayFTUS/JxHIRESwKP9zpRXZOKem91XzBbOdpo968oKP8ZyAKP7ML06piLFQ4vYYEAbql+zDJQzanpLZYuNezA/UGeDAJNFuuh1e9jXEeFVhTK/20tApUZr0HYBG/HfAWhrvGrb4H5d2JSMxpXvekOYt/g3085dbYouImUeXUTjNBgUWolLzdv+OZDrJZGlnRiDXmZm2kmhza0SylIPJewYMxQzE3dIm93bC0E9iZ3uFBg7sVGt1RKh8zsxDN5B7a/egeVVsKFXeZaVX9lciK9EjIij6GGW6KjJE7ND6LKtemKzMCLa7mMKOym1csJqrMESi3Y7MNCYQyb9mO6MhMiJRMzJkhGjOi1jVIVkS5gg5KxaYpg1KLbZgTzol+dSg9kpZB08iGyQyQpok1o7lHUB2CyYZPYxKat8NwCUjEsLWtRwCuDDM3jbUvzLJAhYkGTIvbLbAd2qXhslhkjkFlGiOVEekzM8tEqZlxPSgqpLOcHQZJsw6FLDQAkRHIbV2XA8yA2CKut9xudEXMw2nh6aMOZHJtj215XAzE+tgib8sS1tRj9dYy5611G7dPt3k+dFNQXbAYW8bMDz88EOvjF++Op1+9ile+vpuH2/Lw7s124tGObKklH2Y291hPH29rfPzldw/f3zT+YT4/vdn82z97/fdxWv2yXfKGc3uvj8lNl3Oc1sNK//Vfvh7v8NS/O33z6w9f/Mdv7Prj29fTltTlt/bTy8vt+qnZcrhdxsvlfIZmno7Hrx9+eQyzD1s/PvEl53n8/LtvvsTt6FhGW5qZwRriNmLMfF5fbqdrz8cv337x9Pjx/Q/QY7w0xeyaibxtYpxnWo9M5n5kV9u2j6A/+4YyMvfRmrJWdwChTEW7z447SkPEz8nhAqXGubQmaE9PnQhBzMEdP4eYLmmnYBQpUfv/nTtK4jPCqSjM1gqSZABoSCaqhza6l5GQRJE5zEgk+ZmTs+cYgzBQKUuqOymaY3ckgoDBZWYsDXVdyXu7baym2epGEol9hljN/N2dVGNb1DQaZFU3thtMdqFw5Gx0x1xrk0sWMWEyt9HT/ni2ar/ZmHOLPrGXCvQdNSLi812wy5rqKtvzhHl3O98v4M9WW9Ygec9TqLffUkxKvt+zMC+3dxXCRTOjMl3aB6sCIiLEGarg99pb1ivNfRpsLnNzWmmnqk3M+myhrNCH/SNC7YUJii5nRgKqwAw4RS+8R0a9KANy7oPRyNqzziBEjQgMIU3pImeaWMDSJGuH59pH8RRJj5IY7JdU3dxDQlpJlFk7QhImS2MW6qvExlVh0EslsHf+Ofc4C+4NOeFtT3Yim8u8LFb72LxG7igNGPZlzX3mkHsFeIc5V0sPKpOREam5e8R5T6re1zY0b95tmaUiu+9a6DVUL9kHk+ZmDFkNoCEY3WvZvs+dtPuidp4NQFpLesptYkaMEXPkLLkYPQOLcW5TbVVTuprv+w6HVBSv/Uvg7vXjK88DitjhHjMiFDFnRNKAnB5jmhMBi/BUd3mOoaGMNAw2pCv3CZWMqZxmDWxmzIj6PSo7FIa2APQIkxRpBlOLqGPKaBmiwSmaJC8DRO08lNq5JwYR4eEJ27yRbnRX5KRbuE9kjQ1ybh3JxpGOpPl0izuGnqZIKNzW6DaTxIyobKTaDKjCreJyi8iQJcx789Njng5uDdzos1GYI5yE1bEQub/aRKvNT60JypICRSFq6gtXX3CkKZMxMqRNU+b0rjSydV+dfW3oXB6Oq6dpXSasBdp69OV0WE8Tx76sx8PpYMendV2ZeTw9HF4dlrWr9cFljLyFmM/99ebxq18dDq8Pj499PV36YT2+e/VyVCORg22y8/Gr9G8e8vZgwSuC3L7DJef7X962H9Da8dC8mRmYEUvv8nY4Prx6jfXxzauz+elhkeXyeJgf8vLrV+yn11+MwwvX7bAs3aynMtuyPBz48Ortu1+evvzmfOZ4PLx9fVyX4+nt26fHLy2/lp8X++08rgvQCI0Qpq5X0xaXl+eP10uuh8fTEYTm7eZjmwtpKqitRcztsCff4P6VpXtTgNUhChmJ2J0k6Sj7ju57PwgVtV5g+fsNwPqnvbUaQNOKj2FONzMaG3qv5iErP6lmvSpBS4bkxWso7Y9US7eax9UCkmSymckJuJtY1CUi6kr9I/P5TpG4/4BStRjQnJlWy0HkfrOTrAbI9pl6KULuh2Mph+4nX3mXUI3yfXSqe4tIuhuRlrXWZZntCeUENy42c9e5VPetsKJs19UI7hBA/bH1hPLOyK//7fEH+1+L+5dqHy1w79rqUCcANNtVtnU/7AeHydytjfz8e1ZH6l7lSF3Xui/EhZ34zKjTjZa03TqVZt6stMWJWpsyg2Mbk1BGEDWAvndm95F2LVLBSo4CQtKcuovoUrMyXpXYY4QRWdjJXRT9eftLBZKIWtQDRcKqfUFhKYKfJ+FAChmlR9y3DYnYh9DcJ7JVp0T1YcQfUaba66/7F6mKwfRdPLVvdXbHO0RkCfoB7Otucmeq2F6wlFl5r+zc0zILKBHsYe3+kDJNrm2fwJsMNJ/7NW779LC+leUaV2QWoete7OwXet34xVzNLOjKvssQU4oCjf+x0uNekikDigYniRwwBLwJPXrv3noz0DKUMm+czDl7aRYkIYsCrfo5EEcRAqSMcaySV74LMsxSNNLMVKYltraLuesb0myyV1MNeI2jllAa2Bz1Z13UCEvS8u7po9UHBBbOSoN+f6hYgi7KHaVF8SZxVHlVeU9pQCVblKp8NAq5WlKzK+f0cIyhuWQwkQ5n64tlOFhBWd43aR5aFIZhBjODqFFTQnE5bFuRZZUx5pYxV1sWGRsgJi0w2zX9Yq2NT74UCEUiMryGdZWA7Xb/ZGGtdzc3d2vNXW2aN2+LWYe1Mq631delH3L29fFhLE3ezZeVdIO8d2ZvjXndbhPAAAC05hJffjxz0o8Lmm8T7r4stj4cZkrzYhEk2Gim5YIxTofItMuMLXoMGmY8/xKf3p9f+qgzQTY5QuOC4zdxfJ58/fonXC7P19++f9Hctn93Pvcgl7bm4dhO29K9WevIrveX978/vb5+Fb//7e+PY21YT0c6/KjD4Qlv25e/2b54fHp4OPXofX39cOoLmGrn8fL88YelvTz83dMXrb16tQ3ay5s2rvlvsP70S/BtZya5xED/9Crfvx2vjqenBa9/jHb79OkIwnp3k0Jb6RgHMAtauvesyFZfw8garxGA3TdeLQnHzjbGZ3siP0tcM1XC6ZropJQ5gbIYZZ0Fll5Ui2RmZlaEjHSPHSirY1ZVzDSkzHfyUuUc7eMnEGSAZmWxEOr7UU8h0pnaRZblv9iFHtVkVnN1NwSDu2sWloSJpp3rAe7KJjpqPSzz0oNZxXDS3fc53r0rBxT7uNYqg8DIej24L45BiWbmZhE7OZGU5F6dt5WiiDCaG2HsFSzYnW0jQcHgTYJJFfn6+dYHmQBhWb4V3H/lXU5EtVl7BNjn6T//qNqJfUzQWCEDzaxVAjDvt7v29lkwJV0i0BZKlmKqWaBSgJxSUVVqR+5OIopsBvx7LTj217Zv2mu4kMZMaY7NKhCeApfeJCKmesuGJNi7uoP1Q6tvtooHgGvCPKd5sDcCd5AZQCYNMU3EzuXKzC1iAhGVcGlGbN5slwUIGVDi8+EVStGIeVel2X5RYVC9nl3Jl14fZ0Ytu5WcmhImw8hp4zK92YiXbD6zVNC70mBvNI00uSeQ7tk2caiBiZsw0TyM+8bSFC4rnYAQxB6sbYTG0LQ4a1gIKRruWSIk60/Pyvyb9EbcG3NJ4WpMD9/Jq9ilF0C2RRXnBFvmLcGR59imlANjGyO2mFg86m1yVlZiZFJ7IktNpEDICw2cxGRKI7usz4m0Zp2XavRR0t4pU9CgSTKSaECn+sNldjuPtCiDAuO2OtiIOKxo7g7H5IC3qHkVRNDZNH1eN180h8JTQZs7Ya9KZCQCRG9GDjSHlZH8rgkwMjfLqDd02oNlP31aNUe3zOXltswbRaDRQOYVza093ZrGjchpc5iiJ7FhYnFvh9tHSR9hmscHi9uH50SOXOf1OitWMyOo6Vw8lXbU+4fzyyWufDmOMzQjEhnTNBeXZiLnlDMiMy26aG6xTU+RjDL0TTjXbSImciiW1pbleOgfbsHnN5wemU5PPCxG97jm1TgennLqupx9KI3upyPidkm79fEygPm8cJ6OXf7QuvfVbCKyad0u27hEX7eur6mbLpdHzdvv++1m+XLb4u31amMjYyR4ZT7b+bw8f/dfvvP+GB8PX5y+/eqLL/+3/Zdv2q9Pjz9/Wh+8rU+n82IPbelcr+18gmx8/P7lqB+P58svrz8t/+E/7od/9NXrt8df/cev37w5X179cr68/Hd/az+8d0IXvD6/v1wv1xe7fvz97/7uzc9HfXlavlta+7COlw+/+2rGLz/JxX9zOrwEA8ftit686zoilsanN3q+cMblUywPh9zGdHDmYivfPWiyo+JkT757PGXmqDCbmYSZrDyYdADCzEmj7SErGXsmDggEtbHNG6Gkq5BE0J23A5lFphlhzUJGb4xMReXPpsz2xJ4IS1BcrCtsz3gPGkAYm8WcrGWOOUuxCoeKrG4EEJkzgRjNfP/WxL6+rrlvKXh2fhxaNbKFoNzFPdVdKvfYwoZks9Ji3E2k1f8o70MD3Hs3gGUXpcEcCnBEa5mQWQxnRBgoovl66g9rn4dT5+5yJUFv69LbisxW5M/7FJMpeLLHObKg+LwPoq12wMl7QyklapcXKn5e4F6NiEKbe+1776vrD+YcEWPuO2EI2s+vHYFI27d/smL8CVSCUhIxt7GTsLBXOgnWcrQSg1RS0FIx4/M8vGqhfZ1cR9xewIgJc9C8FfwDqj2+wwRTb6OlEU1GZlY+Na2CCqrEgbJRk500OBmAwUrW7mFVrHA3T6MI4Bnas5pES4FW2T+mtq6cJmCW68vhCQhz98pqf32ld7JCHCK3bGMk2bpNhyikYoIZVqQRWmRMqlSPiXRqH7NAlSclyLTvi3LLHMskpxRji2ARDls55WojzeryQSYr19ogyffkDGqUsH0fbvSCxgYYVh8jMoS2ONLKsUsXrFzgXjNXiJ5BofzdYZuEMHa3jgXqm4Ee3hY/YuFIXwyOjKnghJLmlmlpwQ2Ueygz4TNDJfwzs1ZZT0kqslyCMzMm43YY9CDTvBIdIxuikdLUtNaz+D6GnAPzdhmztXRPeCzG2Lm1afVMkJSmHdxWeQ7jNMu0XbduSmEMubrPHPe0zULvmHvpMaykbK4GttUUbbnRxOZuh2Oum5tZR0ODE2gu9sgMzYkVkamWG6AGS8OIKcWwocOaL603Au5qzEz44PFq0JavTx/gx7HkQDfl7Z37DDV+fFi3NaP7zeDOZpckzZhBLeslAtM0oRwU/YLMaIa2gQg0zE3W4GqueUEf4Q9X9pkzcjLH9engmL6u7s5+Pt0+fMoPHzU5t9nHwLz1B/fHc9e29E/Pjy028zlmH5f56WWOT099XU8Lx/nQY86cbZ05LnZ6Ez3kPtbD1nxrzZb1uJ6Oh+FmgcxpQ+fNzufn2Xj5/xh++fvL/P3x4WCXR1u+OHzbX2xsMW7nDZdUP/SYWI5f/Ortwx/+i3+0/vD8zTff+PL68eebb7//7v97DD/6sO2/e7HfHX/ezv3QH9Xn+WWLCvc6fKsr13fWvsi3L5x5/fAzf/vuNZe3/vLVm1eXv39amYpttNvFEJ3XzNtzvMRysmj89NN7aWJu0/xBi4zJcZlbwhoOfpZYN1CN6Hac7V11tQOwcmaAnmSmcsau27JMpafakWgA6brDHmBADVwBNYSRFkohPRPmuJkFExb7/DkiKmIhVSeAR6V3lEbWDVY+g5yprMEcMhYbAJs3qwUhu8JYuX7VlWRwJyfUgAh3cU4FjO5rcO29KcpAlNk0d3T8vkzL1NzCkJko23AyGNqHxeDdVCMC5vs2Osv0UYsh1BheSCeYIV8PtrQKV5UqwJdS3MOE735ey8wyRmNfChozc7+Gi3CVsLL1IpX6fCPsA459rVq3f9/HDbx/TlK6RyijCFy75dWSqFJrb3hRbyuBCKXg4F25Vp90VTFIeEne6wWYBLpZMbBd2FOpd/HP/kfvU/fPc/xQuTsUpbMBczaDiTll2uYceaFbXlDen11AUqkTMce+tmhq2EEPWcakRM0sJIfZvWyBAOvOsLzRaGYTjWxJaz1piLC2R0PvH48zREw1BogAYN4bYC5vGV1gYzhkrkY1GzLSo7lIRwnM9wvUTFBQtAkAMiZGOVK4Zx7RBUmWbqY5EplwYRtjbDMFIBJi1MZZpVOoWZAlFWywZXMoXHLltP0T20yzEUA404hkDC3yTJFCWhg0jTNhUlYCVjr2ilYACqgVaMk5Y2xzAmM4aDl9BLo0pmNtCjfREG50NzPtBn2z9tlUtDvwrC2p8lCdlYNN6q1nyBzboc+23NTodY8Fe+dyuGwNQ97M3IC2Uk1TdrE14CCzcxL1LErJAxDDiKTmxHpDuw2jlXMI7GYeCMGcTGvKmdkMW0rp5r1UnG6tSSD94GPrJDC9xwR4WNI9zejrTBzUJ+kiYt66RQo3LIt8WfBYDAUAYJshMW15zJwuhW/TWyKbLx292WkB5lDcSJOh3xI0fXx4c33bDtfHD8DV0NP6BmNv3vxwsT699TQkvR9dHUs+rOZKNOVtq/wbEbfroG9iyhLqmpc5L9vHo4/z+cOFa7dlzPGydbBHztv5GOdY2rLerrdzPl8Ay8OywJ5e9dPadZQ6U/3xoS3H3mTLU4sNl41b2HKw6/Plev7Q3h6+OC+X02qMF8N2Hd2SbQE3XV4wzw/rcjue5sM/v8b/6hLoI374NqCP/+ZffPUvfvPr69n/avt+3oTF2Ja1+aqmrra0uF642PXfflyf//74/N2/+rL/v//wL9/3L09/82d4deyvXvP1+X/zW/vu7796eDwsfji+effF68sBT4fH47m9fnX9kaP59ze8P78Zb7/99a9fn+yQT+9PfBkv7fxyi59+OH16ec5ns+XV0+14i5/Wt8+f8PFm/dNt423R7dOH22HRep180KsZ45bb4unYtRw0mvvSeijr608kIpHCAiQSALPS61eLnE1b0Ft0bwgociZqFGyYOWgyh8v2mHILIx0KmbG5m6TMmsvZrpAyQDNnMe6DkY5pNIIRW90AUXFoiRQ8BAgDndwvZWVyscli2pu3uc/MVUccUH4rZXrBHFUaJlXIMUnUxHNPZck7tQk0GFPTVVkEjJiMGkkDgPPuW3Jrbk6xu0n0KbRWyyxZUxptaF5nmzeA9AbRFzNr7r3Dm7ntFxiri8lGWSPpWdjiiFmsJqoA/xjYP6IKCtg7YO3G1boeCamFUca7/1Zkkrs9o5bHSXq7LzWD0DSIniCV0wOmMU1IG1Hvadlf6uebCdSYzbx8TlUiIEW2NrO4ytirlv2lYRfWK0C67d5oL1Oq0Vq1rb1ZI4Ac6S3NFhqdqYyAp4Vsn8tHOcMTiAy5pXyXye0a4/qbwCSzjn2kqshyzS0WIt1a3PKgHEloECj3Lb3e05RgyMjy+wpMxS07YjA9NdMVItfFKGqmTBUOrRjJmJYmUjGyNc68pdO5P4SAawJmXs04jI2JMISPUA5RcoTMWoxdxu9BC7bame6OX2c9RXDObOM6Olup2BbUlJYBNgcYHqEwNJodGryVZljJlBbXIRrLslffHAKCtSBBpjWbV65NNnKMPPcsaTjR3WyZYmc7MlqG9sH/XrXWY6ImFyr5wCZJ3TbdAEYA1+dHnynEuN3iCgBxC6WweW5aYqB5y0M+b3bbtFyuB2IuQJhfRkta14i+qrXO1kG/uUU01aLHzdxJrsqiOksPeUZTSBUJipFyA1q4eMOxRQOgDDmAVLaUkX0MN4zZPa86eYby4m3Tcp1zmZvrsmbOQsbMM/34cPVF2TPjJh/B1svp3oBlwNY26BnWHvzYqHi5ZcRAa/MyJfduL798ihGbzcVJZwcYl3Y5rg/jpemSM5olaODxutCIHm7beSvNB4ZzbDPhthg2RqAxieyJpg0ZaUxv6xHhjG12xsp+eDyuoy3HI9e23fpVN/tqLo9HW3IJG7Z5e/0Y13Fup+Pbl9GXnuPt0+Hbt5v9CR/dXr0a71e0/vjhCmzbOSdeYjm88e3taeTtcPnDt99/XD79Pr31Dxu93bior3a267wsSx/PP+WtPRzxxX/afvvDv/r1/7F9d/gF87t/df7rNy+/ff+Hw/dLjvevPubH53fATz8+j3/xw7df/z//p/Xx9R+e7N1//mf/6Paff/rN//7hn/3H/4hv+OHL8/uHH5+WNcOPR7RTu37azu/Pl/Vj9t98/+3fvv3qLxzTv97iq19e49P6xddPf1iu/c16bO10tLbMS1vNljZxssdlvjteP7zv+uW2+GHJlzMarIW/2U6HxdtyDR8zsyJ8J6ciMJWcc3LegkqkyAztEe6aGSXDEQRjQnA3S68Uuhw3NE860ygTky0BX2FMmNis2+yr37jIKRINsAYpivJDJmZWyb6ah/ldEN9gZkSHbUlAbh6ACYbMbPTWHVyYJBoyjDSl1+BQZDGMqre6t2nKSjegs5CDxoy7UFiAYhdg0gFaHbeS9gBNMi3TszHCApa1Ys1doohkJJpFE03ukZrmMxVTjaYgvK+H/rD27eFYW3YaNc3VzLytRdYwEZrJnjkN4gL5lqztJOBtF5bZLtoxyLGjNHbR2K4fC0HA7tRHu0+YdzM1qT0vV7onWtQkYt/5evVpSPJu3RXMoibYksTImGDF8NQYdncy7QJjpYwZsZdoKnpJtZ6okIZ9iwoYm92nuoCxBdPcyouyMZvNLTPhLjQ3oUX1fkTZcMnM0uDQmKa2CwicsU/dKVq9hkzSP6uj5Kg+tDWvSXVbvblBMpm3aSA4uU/JKdUEtJuIoJzw3lt5UQzpTEQSCa9gT80SFIYQiCiNgrm777FW3M1b2BcevCPTheTOWxX2iScllyslN0fsEysycsG0XQBROuiaSjd6z27Yk5MBb+bl5gpWGdy0pWJouGXM3mqknkjNhLalFeSlarfIwdhuNy6I8BDEi63LpW8hWYyLesQwZnSbRE5BEVMoigcUoMJ3dZdmBiFmkQDSrHkPBXtPrMfD5gFY68GOCWuHRkWwcp+8LyFDwMohve9odhGiWc7LpjkSigXsSjc6WZmfpadsblrkJOHCMCs/btYYS8wILwVHX2oglXCUTKlgt9wXZ6vAbt7UekwixUDzJSW0nMnYyrnVfbvNcM6Z3S1mzp6hItcT2wU+Tk1sZFC325N4WgyZGpfrNrlp2jVw+GhAnAijrcuN13YaNtI2ui+xcENti0Oy5t0U3g65lXI2Ri69KxNzXS64r94OCZMfBbam3lsTwNda+jn8vBjH1ly2+ZqDkAXyl59f3+YyDpnrCbHheX16td20AX1d1d59uEovp+NhnE+X7dMvr9/Kcn7KfD9Oh9RluH06v1//0enpPOk2Dq8PA6cLt5/YwvLAGbFdwiXfvnw3v/mz60e9OjyPT8vVDl9vP775Z+uH+Or4/uWf81f/5tPx6uNh7afR370bNrSO//U/+/b0/j9793D5H//kVf+7h/+i/4yvv8Jvvz/+8njQh/nxt3/3p+9PY7uYP0zF9dB8xaH3h6/+1H/6/va778ZrfvxXOnyw4+n19dPHp7fLA7S0P3n3E1v3fnz2hjh+8eqw/CJ+/8gPA3gXy/NLW452jtg2gjbHbd6ul5ujefYxdFe91MCKTFbrS2Utj0oM5EVpBkXDqDxf7CaEzNZkZrRd1qokYKR6DykQ5OYt52hGDYeEzOiaoBARFIGy1tVZbHWz7EwbawajOVo4rRJcTXQmzEi6wc1qj2f18glVUC0du4B6F5WKn+8VATk7oPviTgGAVpbEWvPVaDo+K4zrz1ZaLpDyHTKRqEVd7Bjiz2JRJaIa1OyRCc3KLYjNeFUoxrWDMSsISW0SwG2Q4dHkZrVWo9V8QvSRJZNDhyTXfee685zuHxNh9+F4Tb+rAwZYA1kIUtlzaRLMkWa0gvCVOpVG1TTdjObWUBHODguBIcKtbEhSTN3DnG0PiLDCfaR57ronJN3EVKoAgLX5FbM26uafRegCqIiS1iFqDsCZjaaIqpIykZke6Q0tJmVmUbyovdBiTjbNcopQoJhhInzWgfnvJVLAkqBnllzXCEX2goQzkhwzs4iU9dsIdwvVXaweIg0T1gNgcYQBjdmpImHsOdt0YToNnWwu761Cl+95zGkE0u6WbWOSiQCTLWS9G5yC5PKREs1DzESagEHL6Y0qL3dZyIKCrfDmGVnPXCQtSG8VYsGOaF4rPkfmiL00ac3N6AnNwpVRMMIQqVJVq9CwYrtYX4+nFnMefG2HdaI1g8VIzQnkWa49IgtEwoUonaNRBhn3qE1F9H04TTHbwhmRsS85BHdHuuRCa0QjPDzQOQLcpraAT3c4FzQmOWZvWbxuJNM5S6umYEpMBoBWMWgpbd1VVs2kmOF1Tmhq8eNimJaFS6+DsyE50QjGCEt5tuXaciyXedtGuOc4bAM4zOzerJubtRNu4fZwvUoyV5qX8D7gtqW5hQbXtjyPreU5ueQYayjz9svjIyb6oc2jlqVvufSkQcsSSzvG85ufzWiRXlLvSGPM28y43q7hnqkZ5lvcBtNHw4i4HXJGKJRkz4EuZcxhbNZ7b4+vfpzRAFi3wznzitkWzBzriesKuK1rXz39pIfj0zoz+enLr3/YXn7+BlpWewPq/FH288vD8OvHV6mX9uOC6/vt9gBv3mGvv3739pDt4fUb/fmfbU/rqYfG2a/jjLhB47Zw5LycL/ls2l7U1vXlh/ZyweXv5/vHx+v53W/e//Vx/ur70+lk7dTJXA5c2wmyL37z1frVu9+8O7/15x/+2y/+k//h/A8P/+ztq79983Vr69NyOV/+8sPDo0uXxNwe1ssMtS2pbXvzxfP5b5bnw+nPH96l8eH25UMPjrxRunx8fjwAazu/Ovr1VWvL9PV6jevvfodvz2uL49uv5uyxLlPzx1tbf87rMw+5CmCmWxqy1qfuyBha+pa77N7NWGGnTmRBeQWSomw3AJohLpNz7c5C7CiLccX0xpSQwzTnWtpUIb0aX0xYYo/o2Xu23Qdatb9plgCpqAt2GKWvyXBL0CKaCbSMts50r4AjAXIMl3HfChpYkWpF/ai/AiQiJqNi+EqMee8JQabufN/MUotBDqs/TyOnE82cTnpd/yUStlSJl80N1qygaA3TW3NJM617ZEeO87J4/f4i6M17c7p5L7KHuBuAzFon6PTmU6nMiheiYKoqZO/v7y6cz4aR+/AcrN8HlLXqmffrOfe1ssbMrKDlf09Vhr2BqHnj7olIIBUQU7PisjTnDKmuURJmFeJQWZf7zFJCSIUPvV+8tTUwwVQNNFMGvycwZdmTBJYa3CoEytsUzLOactK01QY395qxYG17vxhZwT17v17vUsC0xx4VqYIkDZy3UQPmXoVIOVhr+d4ravO+e68Si5IkZ5R/wBU0YMoYClAzc9tGb3Q3WXmbIVqyVZQg3bOmzGEw+yzT1j4aKjk8SuBVmxeNkmMMxYiIjDlndM2qmVOVBZqGz+nHKCUjpXm5LQbNEounlD5BKoiIsX801mBOt1b0tgSAYJO6NVRkyb7x2T/wFK3HCGW3tTZNAnqzzlx6a1q7wlMijLmTwkq9v48+9qgeCb5bG4xJI+EKYY5IMxfYnJAwM7epUvsrzGkQYyXlztQU5M2pvJlmEXF9pqOUCxM5C/u1f4y4w0x76z0ahMMSM9gSRfLxiKRAjxjbXA+eqUA62Ky+RCwviTrHSFNneGLZko3DDMbR3JHl+LFKQJrRZrtFlqYjZy1IrMwjYlITDnAx0aXYzkG609eeufJm/tj7BqW3pMF9zsUW4rG9aeufPf8EzTHNQWOaNYvCs2+KoYgMwDhuoeN66YtradO8GXLMNuXITk8qIyK34XzKw9OPfSUPS19W5+IA28NFduhL9/EyMqUrOF3dsGk8f3z55SugbXMZshYvh5OvT69Pb+ZlERZ/f/zq8mbRcvNbjnE8zQG+/PTQTk+3w/Ht17/Y4bXMVzNTi54cUGzB9v6Zq64/YD4dfsbLx4ft+stPo+vDZdu2T3l9aB72qh1mOxzR3jez7ef59P0frm8O23iZX3/x8Ct++U/+6fFP//tvHuLQ5qdND4fjq+bWWl/m5eOq54+3n6ePVz/8/t2PT8d3D6/0eHzz5vXyzev3OLw+vdelL3kd4+W8rMttRMY67fDq4XSEv16u1/abP3n+6KdnbJm9H0++HU+Ormy2JbbImON63CeuyYgshMHctimMAHLG3EHkqd0TaxQXZXYnrIg1CT+AjffT+k5xLpsmCQeppTcH0pqZJ2mOaQKB3MPgqp2mBM1Ws0mabOcz1RAFMiFldZ+2ug9gbuUvBktvawxa218KrRrCkjneLbyQqAhG7r9bljA6lZOC9d1ZBJbpX8wAxiRDQaOFkJZBS6dlGUVldWKD2guKVJXI1VwLAhuAGnt6P7a+LmVUqmBB2rKs69pIt0qioZHKDNIA99J51M66Ovvcddj/nr5M1af9//8XuyVJajVlvtt/9n/jnmThyH07/NlBfL/Sa/RYggHsvtIqawiaARPgnl94vxpBonjZddYWaDZqW88kVP/WDo7E3WjM+x1XNrHWHGCyzf2fMUkLm3AkqSgJc5UNnlmlGA1Z0j8kGfuNtJdgsUuqscflAorEGDIzn/XuwkXvzZdImK2HdIUk7fKAOr85o7eZYKaptdYczjSPGe6R6W3up2rNRA1SeevNbJcnl136vjmAULia0K4W+yxVA4KMLO5zMkWaJVTJKRDdOa05LCFKIYN9XlLE1ZfSSYo+lAYzdwYb6P02wis+gzbmAmOr2lCZzHlrmGm7DF4lTdw/IpFsdr2F1BRj2+aMLW3EnHNOQ2bOIkur7eEGHhBKBHd/0ASYPFsJQykTe5+J4kGaN1AefRlADJ+KiaY0N2YFnokOVM5aU1+7WjeHzZpSEDFb9bwENfoe9L0bCQmKzWVmo1Kpp8FaTlIpZ4hVmmkAhiVrPFP7IDitJZqa5po3pgViPL54P/Owbov7bfHpHT3XZRo7DBmcsMNF7+kCzCbBnnDBckbP0XLRstxyGPySpGEOBpG+PL35uLXrZfblZhyLYcTqxk5fBWu+bvbSwjxpS67ZLOl0xLRlTQyaiZkNJGMuQmEH94lDxrSMLc3IRot5UztP+lh1S0GaB+nJFOm1DzNbmDFpMVcIL5fbdesPsjRuMEWc18MWOTpXjOGmh8fTO05/eNvaC8krbh63l7e3j3jsl+v7h/b+8RpjfXNtpy/y7dpx7FfztuRi19UfHh/9LVeft/nqm+UPp/b4m4+Hy2D76eP8pWO7nI+35TY2d3eu27KE8/9H1Z8t2bYl2WHYGO5zrrV3RJzuNnnzZlUligUWCo0AAuyMNPJB+gDxnR+iT9EP6A/0ogeaTEYzyYwiQRpBASCIalCFqmxve86JZu+15nQfevC1T4I307K5N07EjtVMdx8+mnfv3r7+2c+XBT/cnx+u969fb9HWvPjTL+0N9ZQ/fveb9+39y72Zz2ixx9QME3Dm4/6Tn2znr67byR9e3b29M0XOj44I8f4O3dspdgLjOVzyEUiMzLlrh9AEGJd1Z3/9gtP2dt/S5jZFD627Sp2jzANKmVFiBiIVM5CQcqiqCyGlpCynlDrLbDnBzY46XYyuVEpV3iCvImuFZruTLtKsF/vaaunFm062hlFmwstoqSwDlUm3okWnQUmL6A5W5ljxyMIo0e2wZz5ebhyzIW+DxFGRaD5pSjJq71YfvspAme7dSOICUhFm0AGBhRjlipc8pDqThD6JkwqxNnc3ZeVcHy7MInbNO9NRrQotLgzWvXmFKRwdAA0ImSO7Y8bvOpUbKF7Up6qKwkG6wsHIVt3gGygLSO3Y3R4X/LgqJqVbkVKOqksz1JCS/w6kXeT2cuej4RDyHIc8jm3GbaApd5PKn6odbaHUByp+zOifMPsS/8D84MYdFhm3eb6iOqziHkqWQgkK5OE5Ub9kRtbnoMq+UXV3HaSLyhtZjnA3WJGRi3CCmxMnmKK8t2PNDWZk3J7xwk/xCe4+xiiApjApYBLTCIVHKJnNjzG8ftZUjrJp8RmsjgfHGriuoVgJd2W/ePshRIKYAcAOHT/Li8JTvEU1CxVQyE+CeCBlMNaFgOSqMCzhVs4bCSYspUZmlOrfD9V2rzRO8bbJAZTJmGPqk/N2hpU3NHLYHH3MOcwygxk5TVa6/0OudvyaZMnwUZ5zxW1jCF6OJscVT83MiKz9iehQTzSYwcHSTrJN0jXBsjO2A0yrXXvzLEiMMjdQR+m9TQKGGMwsLGSYg5HTygpSFOBtgvC+Li1GlhNCDcCWEoKZyMgJILxla0FsrpgtRpyHLFrODCaAmeSSgE45yzw2QawzCKFbJPeEu70ShCGNqTlqXye+PHGZCWAPb8188cWa0Xqfa+6Ld2N/eq72aColuQLwpoxAlwoxsJA3zhlT02dpEYTWeqc5iMwJl0D0u5Wfd166ZyK21PMlGILnuEzN+fHDxyXKkJbJxZAY20h7dX936mrtNDIzjXPGuD69vPRrRnvJvl1j5K4n4xbj9Xl+cbe8/8nPGt++W9elndplHBTZpbRo15fcYl76eRBtuU55R6yr+noezX3bZCHMCCFjv16CiKf3P/aPL/dP33/ni7//MP3ffP3xt4+//M03q/2q73Y+pWvi4bQ0M+uW3EO4825qaLxnarv4txe/PJ4+5nXf5phsyz0YMR7fv7F1bvsYPTJjxnY1DIzI0nvE3FOgt9ab1/wSaL5YQr4K7pJbqAVam4C1BZUBIqO5mDCpJW5ecbXByzogQZIxBnaH43h3qjqEEoFIUYHQ9JhkZpCcanNmfjLbSx1L2TpPy/b1Jg6qIynDVGOV6XbC1M9SBm71K/MoSix/qFs7IJkSGaHjLD2Mc/z4c6ztqW415EhjOKjDWUembsod0mApT3NzkH4QjoBjtKxT8zCuZPUUnLbPVmivw9iWxhyaOY8v/J1xF1IHt8rMzM0JM5g1Q6UCQ5+cIeo3vE2LVYYPt2qgcjB+NwIfJa/VmUyUbWWZlLhDyuJaiLevF25S0dJasvBlWER58jsL3k+iSMa1OjdvhzOYhIIdmFDEzLrgnuXwWTNrGWZVvkLyuL0ElaKDn8wioAhMJyOKCA8l01B0GqHMjYpwZDN4DGcl0aLTiSN0sSBOgnasnVHcQnqMApqVx92fs2yWy6mzGoY80hylm6NTDffUYQjtx8sieqr8+1lMXzLqHQxFFkhPo7XGIi3jZsgmZTUGBIxR2TMMuCzT2oyK0cmDjmF1NXNKMVNI3H4xoD4kkPJMTY+JQC0+wcP5PHo1c+WRoZhGRTiJ0nwDNQqaCDveBhjM4vgAwyIzgIDBhbSFa+uLwVu3Y+shxSbXtMay7C6fj4SrMIrIw7mHkoHN6BUOZs0NMjfv60wLkL7sAYRJ3a2BJJy0BhmUbvB+8taRyziCpVru8iMGIxfujtA8SOcyiJRZYu42I0XMOTnTa7lS+VE+xtD0mMoZKANbKWM2TSXdBuaIvktGjrlIc8UMzqQFlA6h3mR3LUvOXTY05bMlqHJ6SYZn5AyNfX/dtWhTjG30s1CthMHdGnle+W613sXFkWkWW9fY1hzWtnM8wwPImMM5M7YRMWfkmDRiDhiEqYbWCSonSCcIRcKWab0BapXn1NfHOM/OUJjosnO3TtGWNamtc87LJrZOe/2wnHi3rssdr8/7U0nOH7yt3e3u9f3r+4fn68OwOiVWP/vSvWnf+Or8bPPy9P3D8o4/jMcrwf2xXy7b2Of1LHdfs1k+Xl/2l7wCfv3w43x5/vjjdx8/vLkf7fWb9//8Fb/6pi3emjmWxU+naH1d+uvP3vS712/v7WfXDx+HPnsXsbx7/fb05h73rzJy87/13duHBk650O+WofSIZT3fLa/m0/vYnl/rbt3Oua4cY+vEPn9zWj5sWxjhmFvMy9w/tOvg5RXTrb2+pvaPL8uYEamcT8+ul4nul2xpCCNdJS2sRExz80O0UxNUHOoG4eYfBdJlZeUKAEkzhKE1mpE1B4Pln3zLo8PNU4JHeTJDzdufMMZjAAArJ7ZAwiy7wzzGTtwm0bJV5sETPUICTWYJycgW9R1lrcYdmDIPnWzF0qQhEzedT4HUdjCDCtWrD80boAyrgcQgKwjULGmWdtsBlzN1JkBvvTkNR767UeK69hrsNCuT0LBIMd2oY39elDjFNMLywDmVoJHuzRbXAWRXrm6Vm+NEOTDmutQ31lmVwRsLqw7BtpcTCYrsZmaSWjnt6rA5g+zmnJgH1ciPXTPMeLgy2nF1KfrhGI8KY8ioy1qJ9jq8PHkED9LFIM3/neHx1iDUZ6xNAli2GQZvNDCDHd6Kw9RIwpNmC6DDUtJaDpGQVTIW0lxp8NRymHwdDieuA844nDlKkIps5RFlxQrqvrXaR1v/FF2UVYFYMDfNZtn8pXmUXQ3pSpqQ7OHt1Jq3bpk8PFHIJEOaBC0QwW1wYOiAlUQz5PFS5I2yTDc4uTl3mEQGGzJmmk9qxAzP3UZEgJlGrwdXCZZYLBwRo8xmlDJHiQ/NiVBQwjBdR4xQZYQrrTR8U2TATCFnqJkZHU4YTnKsa2tOunLONnPfNSKx5xiqmIXTOnOMGNYhGEuCK+Yn3CbkMNAXgRVLrOZIWaaUQaeYEcTc9usWg4fdnqobkgyVHkmLnDORNo2YBilspiCYlbk9U8HkTEsiZAwyC8RhpJZtRlmu79RkHCMYMSN6VOqEOazXzTr0JBGaa0aGx9DB+cyQL/ucIWMSmFZR1VkOuOMiY1s4GJrelOUb4OUR2MwytT3f+RzTjKcWjK3sGOL6svC0LOdTtc1BM4VaGtN16T3GfNaWZtFS+whwtppFMgINyKQb+oCfTjw6rQyCZgoq1+eZIfMdkrisd/fLE5bL5SHn5Jixa8wudzt5juhm7c6fOfNZttDXu+Xu/tWr3C33Np43pV3XpS33D+v5dV/nJWOZyLmjv2yPp+vdmN23/Dev+uB3L9dHvOQm5PVRo0+cGtk1cm77uDyePvzyz37x/p8+vWe/m3/9p3z/pO1jnE8jTnqJRK69L92oHS+XcX14XEd0Ml9e9f7w8PLd3Sv/2Sn45ovX+P759EDPK54+/Oo3/+Off7Vp7p3rwpdvrzkwHbw+7fOS+/wobuwv6xKX/bI98SWv2p+Qy+lk1jBHN9h8GY/9srcxOrqGr+Ph3du3cRn72MZ2gaRzyzXd2wBSXv6xCdJcmCmUuYZAMKZVjGC1z0iz4p0iqSJGHHFCw6bB56xWUqTQmoYvmQhHHBWjYgZTh6A0KmHpNnWaRMhR7k1VRYqkQlr5102aieFl3h5kW6QFMj9qOixhJlMrWtKt7/402h6i3SL71ORqFZMEJh3zCAyAwY6aWBa4EA7+GGuwuLUlhelV/kIlqqmcIYEEEwZFmmeEt6J6VMiT9969RJ9QGqWcZERGxCC7IS1lFX5W02YOjJAyacXmTd4w0BuYd2QA6UY1q3rG39U3Ae1YR1bfX7TbjMrCVXj4AAEAAElEQVTnCxlqeTgkmFPhzNbESldQ6c4K46biWLwCMQaUShPTbsw1lIfCIRVWtt6HQLiYVom6dcGO1POyjhBpFURfEEAXhsJkJQH27mI72INJ2D4aUjOS5jj8lXf6nE1JaAx1ZSa9OGICkGRmwCKRS/ZmKtu01Jw1h9IJx76dCNAdgNh6EAHMzISBpCETQXen1cL26EeMHGn0TGKsHz/S/e7hPB0pN7dYhhFmDpe3htlWZ4stUBxyoVqII4ajpluDO2S4TE6ltS0KPW6+AyE3C5okI90FRrBZwtIOK2X4yut5Lk7jjIOJHOXJ1NIcBYX36bsC0cBmRfRtkHeDBb3dXEwSstzlcQADdNMGSyXUNgCesTUT+7L69PuZ19hH7zmDVDlxG1XnQaAqDr1xRhrg4Lq8CKX/t4RiT02wYhfTNF5256iMl9ajtX2si+cYFnvK6bFfDJPwOafvc5tt85zlBuew1oYPusmtoU6CZn31bA0pDvWWzYcIE5UcCrAtzP2KJeHLFpiz1hxkJmhmLWxZ8mOfFq8yDR3XWBt7aqHTmi1hrF5DZHrv+7OgzJOZIWEzVpcAJ+YSiZYD6q/2l4fdYr9vLZtbsr/Zpo3reLTPXlvYou08RGicHk5vRL/P4BqPApDZrCn8dG1ry2W6LbC+WFsS02HQ0tp6cVg3X8JBAxdKs7WUd5+mObepJdoqc3u9aMvzfm6Xy7J4ZFvOfmpbnO64WOy+YYztZazv7k5vrt+9evvuyycL65u1l485tutlfx49eWrRZ/YV9yt4wTqf/2z7+c+v5+X05vfOb+7//OtXfb10a+uXX728xXpvi67xyvw+v/6HP33+Lz7+2bOmv/zz/WW8fvxvXv3lr/mvP1v+3u/fzecd8zJj41iuT+PtO4S3hwf206rf+zm+MZ5fPv6rv/8vZH/9//rW/5v/xH746vffP33459//3X/91TaHn9Z3c+xPYXrguP/8y7vP3v2d39suT8+/t/yejz2e/ubD6Tenn+/5e6/9v4iv/9lpaeNln9dL28Mj7fn6pmWMHesab/3Dyx1HJq56UVxj6Mf78fz86+VtOjqSc3dEhjR30nzuScEiK0fFWtQw5cxEHKhsHhQp8UCB7x7m1j1uLOKKsM9MTAiBQ6jhFKl9taQ52TBHl0omV3VfSmRGaEhsjITSQkSiMwhbYZgVrFeGzaKPpKx1uAFBuokwIUDLhCkmrTJLjqpzKARVCGZ5+yr4yf0rLEAcsthgzFn8LQEzqKQxj2DUY9y/aUdY/ODqH+pgK6KN1T5FbJ3wTlg4YsP9aQXXU4G21typmGxjLlaJeCjJauXypGUEPSGxJ6x70jMFmiNMLA+DY/lcFp1Q2TIDYBz3rR20Xpa5JEAkDyXKsQX6d0jQ5naovMzBlJmZMHWzmS4VUm1G6xJGMlsWN0UH0QWsAcWaQsXllQ7MQMCNBU0vsyociEnAWovApJPWmCQzDTM9A1PawTZ3c5pEN2qmVN98jighrs2khDlqlamiLgGpSDaj5gG+5EgTzfp8CSMNAbC7hLrDcxgykCkd2miU63gZZdKQaUdRCW97dFiii2bWaZBhBtyMbim09EYH3GelDdECtGI4pQ7mtrl5sQ+N5hJyIU6dBAyZbpY4ckMbrC2tKdGKFWxMGswgMEh5Wax5Lf6pAMI405AaBNxzYZrLLMEUmh/tVSB2GbJsM8yPlUekMGNO2do0USYj5kYPKrqze1oO3+dLz/lyGdOm5Ch9AulmRZ0SAcgphKJ0+2aaSUVAhCOnBuAJs4ZhXWxmvWM22ESCA+yO1i7T5CZmkGlLMyxzX/mE8zAj3LvBFDIzyVJNtRYWp5ga6S/ZvZNwX8xbwCMzaY7zbCvGFL17ArDWWieVhua9sdHMe59OsCGWVEsGl909lObTkC4zel0irpYzIMeSq4FtEl4Z6GAEYWzhq2D7deuXq2dqVwaFnAsuc3e2vG4EZTs6HZcVT68csz2/9NgwMuY1mDR3NAOZieYa18Iipmzt1Jzh6alUjonultsLW2jO0GZubgltoYmlW4InX87jul3IjTETEQzxdN/bHnl9uAyb2c/Yzm1507zx9Dbn4om1a+4xfHmNh5kzB/ZEv1+7XjCfpr76yf3eW3/75u7LZdmUYz1d06/P+z6eXk4a57VrOd1/+Yfr/sf7N3s++v/09/1v/uJxfj/+l396+uW/fWinv/mr9/ObZ3/p44Qw1/44EeMlf/n5Z/3P/5/v3H78/uMP/2r9H/7p+Zfj3n/Wv/zq5YufNl3+3st//T/eXd9+sSwrgNPnT68eYs4+kU9fv0F8yMf20+/W9eP27m+3h8+//mzLpX3+cv3+2+f3vrzsdr2ckMG8O/Uv+1t7jsfZftzeXKOtH4Z7X2Pg+cUYHlPrsmjsQ9tizcvSgjBv6U39xBimNHhfj7nIFyLnTtJN1iV2NoQ3sjnS6JYdJUMRaZTNMZPuZgssaOneFtB8abQooNjrTFZm3ihLBtAiHJopRUZKw2iuxogwWebMNCRSIebVBeMwl5rKiA/iMkMooy3zogqV5pWAkMDNd4tS/fgQovhLkQm0EqiKyYxZcUV5cGyKUgTQLKNlknmEz9IFWQqHkZODvTngjDqtShbrrMuWscwYUlZ4rvXmbu69997NrZEHbY00g1F0dgJgmpAKCaEEaHmIXjMPzuoRL5SUjqHwUPkws00/WNC6OXcfXC5v5ZpkFLxoXUCWnSeOGoNkioe52A3Ypvti0hQpdZO1dnBrbpgIyDRZ0QvoaGmVzFLlvrjUBb8eMiTQi0sks5M3g5mCkBuIGWlUqtHUK9bQAGpQskoe7JVQSU0z4wSYZoD8yJc5oojNKn6RYExpXriSOeFIsZkhnXM7Bh1FtSVWao4iRJPMAiLlpKac2KsLzI45d+t3lTmb9JruIcTk3MK64IrYmnHGCNqEfSIbyFCsKdX6/bhN2TTmGHmEkwF+xF9Ty1x7yM2YdvDZjnzhzqRN5vU63Cg4DS1hrTh5XBYkyluVAGxpZO9uJQZLjokey7AyPpQEk0yRc8whDtsz4Mo4nVvjOgCqrR0iFae1XbhjPSmhCvpmZjnH2JG/h6IFIadAb4JpH2zDFkRmzP3c96DPkgVYEt5zFzbR3XY6wrLtEz6zcYaSbfXWLffdFI6W0zuW5t7cYVeZ6OChGqQZwVMqs9GQtlrKSwVsloZ9buV3pslxPS2FnOfkYqWYY8F3F1UchmmfzTft2+L7dtovXHM7z5cGZtZuYQ535Fj7i3WMl96G4B0mNXRZuwLWN5vuFh53veX29LzbMrRwc2dm9vG8bWNbJ++6BF8sT7LZPp7aqbeVI7Md9NnJjhlpbUzElOfMcDbGuMoELqc+LSW33tdludrqgzlmb2uKDcv9Vep357s75/rq5Dw/nFsgrh9jH1e+etxkWPyUvrYx1cYPJ3z/kY6XK7T49Xw6vXrI/vo3y+ASj1vvnad4Fj7soz/1x2nnL+8//Ozd6x+X0/zNFx9+Pb/90w93zz/Gq/dXwR+o8zr3fR/b0y9/+fF/s78e/bQ//MPXX+lf/qP/y/vP/lP7ww7+cHm8fPs0xtQY+7pt40Oz+cP7bfnT8cXbf8G7+6/Pdv6Tr37///jms1/+x/+V//3l7/3efneOH/XZ3YK+z7ne9VxaPH98ej/20d7rpx/7f/93Hs4n2+cPzz9ZTm/9/RfL28++Pd29fn29vjotqy13z89359NcfU9TPsb5lc73d6dv0NeO8bwLra84fTWjv+wDsJVqRrTJVjwmwc2ptEzatKRZEN7SIDBDEwdPPwhM7r3JPbsaYxjz2q1ZcRvTDvaM2D2pUvs2xuRMMLspp7TxfANHa59b+0+GnO04cZIjBd3OaR2hwJOsTMQQkqbWPok5EqRxzKJUlpA0JDgkRNSU5spKY5tFBaqqBUkKZCYwnVRWV2DtkM3qNhqW9aRQW0wzr/+TFYhwrDKNSRHp7aDUcs5UaSbY+mn1bid/+IgMWJKM6L0tJI/0IflNJySgWWIxX3sk4Ea4ehfAin0iSuCRh3/VwUUud36r9EK0Q3PZPvHNi+19rJUtMuOwnufNv1LFW3e6mR/cKDNYIJUkhkgBmMoshpIOerbzd/TuOOjBGTNKD0ylZ2GgNaWXlqn0ZccyDymluZnkNEPZt6DupR0fz5pkeWhHCa/p1lzQ4Q+Z7h4yIIr8W57h9eX6tP4vlTrMZionvHlXwrqb0dsJwayMIocOa8+i1znnptbcPSMN7s2dPHAYypGtK925tPI5MUIYdEosj+YUEAczPEudTOMnonH1fyj+cSi9XUfR5NH2EBUWE82V1GV3ITP9yNhiq5j22ucLXJoBCCU/ae5BM8bsCliwIVMZGlpy2vFscS7OGOLOnvVcgiSswTC84bQuW9/3nBo4nSJnKhcCsFC4JlZLAzMUQQs4kQlm+ZPUmoSYoUQsJkMSEWnLIlYnaesyKtbDnK5A2MLJSAree3OjszUtjQJmvXqd3jybYZLYdylqdUIzQAFkhoNUuJm3xFyMyNnnvgyyUtANihQjFIE5x0g1KiHmIIukXdusQHYAOX1ynKP7Tpe1yMyAM72Uzao72uBrXHsywxSyRjklzIxwm3OOJ6T6HdlaAjGuD47FOs21OFvvYd535J0ELJaRjZbPGHZ2uygEO/t+0hXGtoiaaU43p/PM3ZxoE0JrZimDNbj1HZSccgtvMrd+o6TGs8V2eXn+iP5mbtDskWJiXvDyOl+e1o8/7ttXsUmatOs4+xofv//h28+mzSV9zv1yXpfnzTZdPjwsNubjd9eIQPNT9D4+nBkdNG4fQ2v27//k3fAFDft8fJXfvRtXIRTnX38csY2nPbaXNi55uTw/fkx+YV+d99cf/8V/tn33r/7Nu1zev35pr8b44u2Pr1639/wn/+DVq7/4D+7vTtvDlcPfvY5fT99/+/Ih55vT9jK2p2dbQvPSMOATfuW+63KyN9v7J7083kf8+Gufl1f2+UfrJ3zeFnz3C33WZmYvjzoOvj33L75L+yH1/PTd+3ge+TLkGtFOuc/5Mk6pjHa/3s2Q5myIo8FOMyRopowoo3oyxkRWiJBlhCdyStW/DkFjMjIyJ4x1zt8Okds+V8ChoWVGK0KNYETCb4u/wjAPmWABOgfBqyqH0srXSmGI0BjeVBiNRKcmDz4oyjoSVm5aOpjbR2Xgje2DY/OqlFKZEKt6HEziEmvgxi/+9OeOTXKyaoUUjHZQk+wY/YnCe8ycBCt60UhwOd021YIKZPCGtlgldcJba83NWzsIbTAzGmqUNHMvanHZ5zHmNMHKRAL/jqKI+p1Fwv/uryN2IttBoAYrGNColNkxNUO3fx1speMeVLE6IO6M495AxWWPGSmVvLdMpQN08lMQD2ihnHkkBGd5WKPg66OmqXRfdpQFoiCVg2AMJmaYEtAIBC1DZbvGlAWq0cfhx6ibg8QhNEnz2qiLpXvzOKzUbgo5skm0iIioX1UZhkYaPSuB0krEWj2OShKbuo1vpbT635lUZBEUWmdzA1OlOu6ZFqCUCSsDGUZx/WGHQRnTcEvlkCAreZ1fZ4nbYTPNCGgAzUDbjbfIkXpkCC8bOHOGwZqHwduc9Svb8X56yc0hAUc+WkrJg+2sdIeycpAOd1GTFc4D0h1mTPRlwrzupJDR54yQMi3ncmbuWw42Vf5HaQVIGq342CgvsqVgdxHuF5DFEZATYMvp9onFduiqDyYZ4eb0FqBwkNuLKgdJysgJQQHMInmV/2oRAY8GP+PeaEDr4UuPUeQuispGVkZ4ChmRg1JUcnHGcQAgDUEkdOj6pzeVv6yjucGdVn81tz5YwV69p7tINoARCRwrq6TYu8EwJpnmyameRkVujXAKbp5iJEIIC7Z9ib2DftcZNFaCncFTxtatJZCH4R9un4bhQI5ZjnUm5RSgafCj+zVzPs19e3l5fFJfjcpWoowMw+PT9cPLZNqq7ToGZ7nRjPCHq1rzjQNW67jzq1err3fd77l7o87Yz6vOffry6s5Py5r79ekq5iszXJljty2BEbSM9JwxeP/5B3t42UPvThnP+3UfL9dFzzEerx+jPzY7nbqv62JszdNpvceyvn13dzq9ffdhBgfmh3V/flnP91+f98/v9sfAw1f/27l7Xyz2ZV7fpCN9NGAMvP91e/+mnfK8z/HjU/Dzh1effewn49vTm7FPbds198zg0uIN+6vHU+6P3635w3bal1dv/iYVOZXjeh02MkMxx5h5Kf+5SM3AnMYZMSNvoYRDbUYqqm0klJkIUxI0Qyoxtl4NtlBr3Hqh66xWZtJgZWduZsqQnAkV6TSGpTLkRfPSp82fFIW0ZkYd8nUIZwozb18GHVKVehFRUOxRg5R+85TMeg2zhlQx4WV5ULSpTzwl0Srrt15q5DHYIir+NQ9Gtw64HBJiUKjE1QORrQ/ySRcq5LRp6uSEH3Vch2AqIgJLkmYGuHtlQLDQZ/Mjcke3sHuotUsNtUhleLlTVa+AG2qOTz/6OFo+KbrqiqHd/mn9/brukIDMpOVxNurfqeA6dsO04hvj0wiYt1amrmctfgmFisdWZ2xNYwGz0vJk8mDFAWlC2rF7Pi7wsWDOTCXcKoKjrrwI2BG7BRgBN92egGqqPJV5S7snTIeKLAIiP33+avxq9lb5YmZsW9inBGO6K+hGN6TVsXj71fMAfSmVKPqm/yq3Sanwas00sq/dGpKs0yzgmXXRMikpsdVkJtxeINMRi1NPHrIsJJLMwMxa3kRGq/WCKSrHy2+Ri0Wvqxfok5dHWSybw92O9hTWylCiRFJKkZ7MUr8dEjdKAaYZDX6IsI4MbvoCLM27EzA3eLoiIjZuilm9MOhW/h1O9CaKATP3WkaJJJMmmnuFlwLgzbs7Iibsxj2PiMiQac9oRtHczCkj0y0nQBuKoCMNAY5JlpufecIM7jJsfrhIVH9r5qQcYpnFygwpWFQkt3nIREujFxQoa3k0qIcMMQF4C3NGOJFjia3LR5DWRA5Alk4JzcyYmJEefaFpTwctHIVZMYZgq4i1LD9JW9dl5AbEMCkxd0Y6fCZouzK8m3tbLiO6ep9t+MVyjEEj3RRujhkRQFds1ysckZPUzJh9hsYISGmpgBB7KNIEYUZJLTPixbU3cwotw7sNWl9nv7vX+e7h9d2STTElSW21Hff7x2WlZZ4sli42qt3fW//8x/6gMOu+aJ+ZLnO8/uqzN4/39z9sr17baF+8/fynbz0e/mB/8+a6nk73d7Eu2QOy02J9f/yhje523r0t6+cf7p7+pv3kzzb79un76/dPpz1GRE+dm6MvWPJ0Wu7fvMp9PA++/elnoXev7tpYXj90LDM/jPnxF7+wH5/PwiUbrv709OEl55rffP9tu5x+9vO3p/bu8u3dOz/3eeq+/aKtOI1z06YZPbcgaZ65crl7OWkbL8/PP1zpD1+9aerL/f28tGWEdUOCOS67SXmKG3UmM02Zh83uAQZn5g1SVByHcIliSgUM81YbQwPc2BRA+QlbGtvJM3mYIJqb+YQbXGSYGcyPwDsQtXMrXQcrPhzOw3IB9EbFcWbVByEdmSXz4cE10o1PHFGaYgs7XATqsNOtctdJmnljM98q1eFlWbm2WdPqrbYmIg2pKlLkwfY5ColQP1IQkhkQHQTLVELIWVOf1W40spyrfR3tdzb8xbguIw6lJZAwB7JlOrHPcSWPASJmOSncyuSB4h/9fB4196CGf6rRktohtOatv68BtEwizHRsYw/d6u3+H6RvpNII2rE3Pfi1vBke3IrGra9hkclVajO7Sbpwu2xHHc3DhcJYH8KO+mw0a8aapiE5iUoGothqIA/oyD9G4ekHdI9qxQLweSu1YoQgoyELzcjjwx/iYzNRUb88QCezOFj1UQvKrQXI4VF1U9vaUZJZBuUFhadzwq2MvPU7xV3QLI4vNlrpco67lGXHfigBypg8JZoMpFXs8YF84qDgH2+FbqiOK2oGtNskfjDwaM0VISrlAo2H/IaHZfqh7ItpDZpoJM3bpDUFEgd6cfhokCQ9Hb1Zd9DRxhxj5shMjzn2+p9zwqM1lntGHIgtb7J5HJ/0SE8kDCVBa+6mhLNsJQl42VIDLYosNg1SZqQIubznCMQEwcy0oMv8QFI8d3mQCZq3cjm4/RZVhdsqSmMbgR2kzARUyrgqXSxK6xSfjCyP9YmOlZUlwHWXidTM1dgQYHHfdGQq2/TyE3PA5rWxABp6PS43FwMX99mLOErjfmro8wp4Ggj6BBQx+iWYe/m5JU6ZtGjbvCycsNYxE8oIl1LJ5kzJmx0jztZcYCJJr+MxGQFlaZJlLkPGdTnt2zL2jyP3ZrywbxG7TV6vL5tkd+/ZenNf+XCvZVlGjPXeiUt/Ne2k1x3nxeUPIff9Oq73jYu4a8a+LDGvc8Hlw28mt7TT3YIno3NoDxt+d1ptPb20xpjhy0r3vqzNnUC77LO/vn//Ifvdds1Xp7t219amgiliTG8RbC1fv31z/uynfoZ/jtOvH8nR5sfLn//y3Xp9bnrO51/+4uPjhHKaLxoinJ3tfD77U/v84cNz6zO49lf3p3dmu15zmTy3V+9e3Z3O3sIaIwVsdt3GEy5P+8v7PJ9lrZ9sy/1lPLenx8t8eby8tJloUuy7R7DARLLYvAYAJkOBPsdBRoqhw7VJQCluDni30Cyj2ZF1HwDYQr2VKMOsQgoIt3k8TUdNPNjIZZCgm+4iszrKnGXpe+wHBbMMSEde4nFMKexQf4hW2lSivGkopQz8FFh7q1XKhG4jx4FPfzoBCaPlTT4DHEi0fTLWuoGveUwY1UXkp1EYt1P5ptexalBujCQitaXRTxkTRzk0AMgYbGNCANNpECpr6eY/0o+p86j8pptMGTUrg0R5zINH1FsZmAFFTBYabp1DpTrUNT8Gd0XlTh6gZzl5HXEYVotVI+32JaEjayozP82hSpCt0UnWWZICGYEcOuy56j23Wr4j8za6U7hZSoMKmVtZj9ZoHQe+WQXS69zDUbePkk4DDKrxGTMNc95GFUZkFHJccjmEHZppmGg3BNZohoPPb9bKEkPlnlyKuttHpBlEc5FJS9IbSysPgqPBsIRaM791bTCSS04haA1sZGMHAmlHP+ByAwg79h7liwkCSHSfsSyjh5rU4MNFgyeAiMji9Cv0u3bqaHVMYSQVMwFF6X/CbnBQlFAgIjPmTFFHEqiZYJAiNT2KX8DC248/iwx6WxTBWVfG4H1Z13UNLW6w3kxVFlFJHFk7HN36TjvYGoceN+tpzpSQiFr8KJN7RGQGcmQlWBsgZdQGIE2ApQwZVuL/8iQzCNmOtk4AskZ+ZLGKQTNHc5uZxoxkZEkMmJkJJd0QgjsoM++SAzCWFUkwxWgpnwRiBnr9AyKgqREANFkhFgoCXEQZOxqcQZkDijAxNUXCmpKbo+VlyjPi6hZw0WlmLnk7L/kgtYp3C1GxNyMRmM+2btcgOAIoJUQUNnXIw8NYtPPmzUVvS2Nm+X6iDOeCEUrCnKLN691u69K7t5TZUphEW3r0h7t3zy8rxnVGo8K8CRPZ5vffP39YrottH89jJK6+v+xX2GXEy92uy9Pl3QI0LXkeED++Pn384brcn/Ptqy0Fj8iAco8cUzGHRLP96Xn74VEPfd9296VRP/xgf/2cHp99ef5fR67nti5OZ8SWnNsrUW1cvx1P397t+8TLd7+1b5/fYmzX2PPddvLzvfyzz7/+6rO7dXWzsdyd2/nBOe7fPrxev/qTr08vPhr1R8vdm/vzfSA/5P7M9Vdq768f8/UpZma6XS7x3evxYY51Wc/EXdDGdS6KAElctxB7zn4JNo3EDfetbtRJozutKK+WrTfVCVkrseZwt0wQ5k6DF/4FCaRocvImVUCtEQv3MirZD2eJOmmLC0oe3lZ1QrKSelEqJ9W3SlNYqPSGSo0pN+Xh/gMhwZQ3IVmvW9v3dmSzq5a6n8DWA0892tdPWPFtkKwspU/zIkAVnUi12Tbmp8ESAunlnV+74hsyXUG0lQFm5l6ZEGtxLxRiiu6k9m55m8eP2YnGduzQ85jeja03b92b08pfH2beWkXfluAHFTQPFtsZKljxdis+fWiw3bDl40w/gN8D7SAiYYcXMVkqJD86igNtA6ib+oi3he2nb9pgtOY3pg5rNmceVOFIKESr+Vaw3z0ut/X/sUSlMk2HJ7OjWAoZMKTsxiIga4/Hw21JFdtTSHdVlDJOQoY33u59UahThZBIloICyrQGMBMs16ci4Uk8Erh0m5kAEnYUY7s9XvUqmeBUyrphCpkxHDcbasEIWBON1kSvmAlAJjhusdTHcsGOsA3UnhOKaLYfsRyHSU1mUEbJmjVnpRPVDHwA5CAp8wxoTorlQnKM9SkHJJv7MByeEjH7hBW6n4qItm2GOdCsEG0xxUxlzJhyh0LIoPXeeGzuj2eVasiBEICY9d7V7Et8+g+RFb+gY7dEN8zq7xOJTLOW8NnXWet95TwerozCyiujs3MCEWbNUPkDtV3yntMsukmKGWFGi6hh4FAmNheAzsUM1pxgSyoVSIaDDmvaU6ms5TXMzC2nQDp8HQ1jsQ0bsilWoIXoHObTMhaXZ+9ya8c6AOCwl9asCaklZUYDHZtOtBa0wNREYybbRO5Thgn3BWPZrznP6NuAu/LUkhaXd9p9XZe14WH7uM85wpqAkMGZaW6tjYA7YsqNzOnt5IO9o6u8YzloydasB5TpLt9e7tyWZzvZcmZfltN67oMeIaxBc2DuCixsDDLG1kbGiLk5zK+awAjwymzDmutUwWCN5Nz5wuvyffzN8+PeHz5r/svXLffvAgk09Bn7NrbL5XLdRixtbyNSmx6s99nbF9hO8j/Y2uWKztG2x/f58nS6LtdLdGTO1bsF8Pz+7tXT2KK/2+Lu6+WnX/zBm8/+YPyT//bugQ9cBtsXX//l3QJadw86FqZHKPaZrzrXz1drC88GW+KqLfqHrb26Pz/mHBFYl30xduunfnfW4sv5us9XP79eziGGta717Ot61nbK+y5car1qKG/GTCmTeewzUrVhUpZsto5nlUbIsw5fJ8zcrHl6b8iDxsHKfq4DsJTBtwnavLZa5pVMMGqjdtTeo7+vV/owvSJBRsxWO9iQm2WGeRFZjBl16hzzcQUAkzA2x+9w01tBZY1tCkiRDEmRKPViyUJTmNOUThMtarSr00tKZsgyA7eBPItNzSMfp6ZOlUcR5KwcXTNH8dqYSvLID8JCCjEQVgY49DTB3BRW7kVKymDJSTKs0WYcMJFuLiO4wXgFw99qYx2RKUDxCd0sblWLA5FM1rr+mOpr8iyPRjMvURgrT49mjJCxbEAsI8rD8Cjh9G661WwYqQiX2YFGVDOi9DbTlGxJM7nzEHClHQSxg2f9aZoVDTC6VyKVGvbiOGUa6ZKY7JaZshwOWgTLC7rBDZruKF1Yi7DfxT7ImKQfwEOB63WzdTSmGYIjZY45ImlomJ+upYoTXeP8kSlblflYRkyIMylNBvwA7eG/A8dbOJS7DEwElVkAUo25ALNcE4+rUDSJum8JRDlSpUg0jd6L4AhfLM2N4ccCXjzKekn3cN0kt0nRnShTQ5jBmC2mJQKd9JM1cOn9iCnORl8Amjc6NY04tgGkHfS2iNqJMzQjZ27zmvM5x7WPmTulfRes3bYTB8kPhQjcGvl0soh9SEMuggEZQ1mBvIy5jzGV7CSjUIvenDBmmvYOTmHkpAfBCY3gMreKQDG4yZvROKkmkWnGm8ubfLtSruWUcs0GFdOzslYjE0EuscJP9zN9iVa9GVvlkPgQ5oigNTYE3Ehc1XQxBlbJDdUCzoKjHWzNY4rDTQNE5yQaAbqE9B7NIwzYOxIjciZ3TDy0JKx1/vDV8jS9wTuMvs5tfbLRX+z0w4+Xkw+qPCqVCeTchzTVMoRgxhKNLbcoiHLEscbxZVmeZ8vwnMCEtXY63z+En8fd/ak9TWA/PeXZm9urZfB8bi9T+6VfYaZTolu/f+V6ieX1Yi8/bo+v+hOl06sV4ri+LDle577q1NoP34jv32h57vFZu75/OHGeYn9/ufsw2sueprmNEevy+vzYbBvbD+fffvk///nHdz88neKu/a//ZPvw26e3n33383ezffE3v1x+O7l9GEOhNrHJX2Ls1+ul9dwvbN75tLz5ot/97L///Ye/9be+jbf9Am3Pv33+zV/99F89//I9rq+1vW7jab8+X5Ivvr7PX//VP1nv1ti6fvGmT+LjDx+uel65/fio5d5PzU+n53a3PmP/8PwhfgT4Zr9Ogzfd+eNJiL3HHHi1Xpf0dso1ck8Hz6dLTRikt1BG2JwwWlqC0yrpU9DUhEnIyJmpULDBpoxMaR8J5qpkmVcqkc007U4DMiWDIQwzCWlgMDXTmTjac4Ps2C+pxq+WyULlzM2bs3XjTJaHjNeoMdGkA3BVmg6RaUYyU6LoN6wQOjwjssSmuikgiqBihX8Xu6taiWM/WoE+dSbzRg6p+ffg9fmxBORBDMIxxUmgGR2SuaaruGFWVfXcemtrX5Z57GBHxpJoMbq1Wnwfe4HKRIKYe/RtHrO3c3rJZ2/8HBx4gG5ULH2acz/N9BTZSDgggxX7uaYlIJ1Bp4mInClnA+RZhRYVleZeOeZ5UKJtovSo5V5Ydo1+bMUrqhF52wE3TxgTYfmJ45VIKCQwP2EUxZlLQFan5bFty0+2X0smGYnmmAlWcixpqEkVKi2FLERvexIIJ4z1LJqJbpJ5szS7DUGwFkpLtMWdoWnu2riw5MJRJObI+CRyFkWHUelUeaJWrcZMdoWk4ddLa7a602bQQY1B7gPwQo6BtgCpLZEHzOJG5tEeGDVQKQ8Agxw5d1mIjJR8pHLPxZxQTvYjffng71kZZyAJOnJ9+EjMYtiGkOHVwIUAM/U+L7t7KKblfrhlgIR3wCLVMx2mQDrJTJMk+OJX7tvGLthpe9Vy7mdbePcwr1v3kblnjgzZns4mFB/NKTobkDx4+EV9aCk3OTdSGpQt2ZzXEuar7sacnW0ZQbA1evGlrrbgSs6NzSTmXkFpErRfdXDjusZCkMea1awyyKXUs7dy0AzfY4mZXXkM95qK0ZAxOMzmlhkRKXqhVAKpfQy3FLCk5Xo2GJhLT67szZRGrCmjyU3wdtKULq2FFluhRa4XMlNoYO6Dmeu5695xybsR5Ku3LxctBl/f2Llv5H796bI6bZguwT66X9b7Nw/+SsudVjtTq13Y+gL3Pa2Hwbw3FpbOwMHuFziCrS2J9MU6r96y2W7Ne/am3Cbvfzns5f3L9eX5Lcb6fsy4yNdQjP54GT98/Pw01+u8PJ912Z/HOLVxfvfy2sb93VOOF/v43Of5/vrb37z98cfvv/fHFi/P3/L68bKo+YVnxLd/+5W/+2nkF1+0z/o3d0/vX55g3/sUG/slT9b621jOT1/8beI//bNf535/f/mfPoxfX//q/9b+5k/iN4+XP3r3L79e7bf3p9NyYW9rx5s121l9Pf/B27ef//wNtu2y/c3/Z/x//x+v/+n+/dOX/9e/8/OXnz08D/zbX/3nv2wzIvbl/uTZw9rK6/rqq9f+9mfnl/fth3fL/fun7/L95eH1Eqc/XB72tO2ru6V1u15yvyiGNd43vpuPz4+//Xa9vviyz+YxAjmwtOv2sr3v1yebXCwtxjyN6ZENoaB7l3bvHuUtgHLVESB09siZN9QYMAbCc/p0hJMuTx1OSMo0RWS0wZmYM+fONWL4wtyXGaJpdsc0lO2NCEUEoISN6QCiaDPBQPFrZtRINzOC05CWmUliAr0R5e9jljDzfUfAU243bOogStxwWInCLdzmmJJvnsm10S6+bFrlR9zkOARbhSMZp4HNQXPSHPm7KROtgn2NrRkIN4T3kKNZ7Z2ToZ1Y58sszsWBNeZwzstopXIpfppkxWMUxjCibBqjoaw8UyhPfrCuZkBJ6qBQUUdkzs1ABK3dupJbAQaaG7K5dfiBtSPhNB3DQc11dQktwTHAkHGmgoacMj924EWFS8EP16nKn/Lqk9yK0Jyf7EsOltcNAjnmQwJyRMIlZZpJNGUAKnvpCPURlgRjprXbFjskSxGZWUF2zRMtkWKaolXN1DSW49LNVdFl9GQaaJkkjVGLApJ0BiemW2YGMlnadAKGUO2AW7KCJlG4zMhlmBlHX7Eu7KBjgmau3jPpU6Ve8ThQmILHGRJEM5q8VJspkxmsZdLSV5z6GGpT3prZzDk8tkTU0r22obU1T5NJaTbL39Es1Egj01Ffm8nhhKYT0+YMQ5Rb9DSXg0pTzlEc5IkWx+qGykDGHEPGdWveIjLcMkZuc9hdymHdJWGGxQyazLR40FH9LyszolEGOILqopkXo3AsWYwt7JpKuNKatwE/JV4xfWU4ITGRwe7DfZ+rz0aN2QjrC+U2FvhJO5egs1s2E4tJn8VXZEuUHXV2pC8nx3qX0ycM2WaBfhltPdsASTZn30Rr7i0DCoMopXlf92ZDDbPJ58sdgm1uLa95D1kaRHnJ3SdXS+OpP51OwmhdHL0F5gBbRBP2tqyn6GPbTnPsfUTffFKW+9M77mx39rJPLleE7zQi9vXhcXl+00/vr3h5uo9ZJkOaLWdHZO6cmv36LLgYoprHdds6d7x/GGPbp03E8zll82WPsc2l2alhXXAdvrUel6TZ4tvYN9r0k5uuS1/uXvU8eT4quIet7f4dx+XjpezB7zd0k799y9NXT+3E63xhftP8NPfnGdvsH9rl9G18/ePTX5/z8uMdX/zph3j65onjh+Xp4/PLj4/X05Cb7Ynli7/1kV8+v11zWX//P9p++PjyIS5/+r+OR37353f/w9//xevfXveXSIvMYc/zuV0fP+jP7tfz//svluXtj7/42P/1u7f/9O88/upX49VP/vEf379aX8X89V/9n3/vj7c/++myXPvD3b4+fPmwBZfLZftxff64/ub8wX7yzcc/Oml5ja//6I8aln3cf/x49+sP39w9jO8vuirjOvetne8m7x8evx3bR/STL31O797t/fb08bKGkSdf312fxhMGvBVTiDQ0iG2gI2BJy1CxbVJcDLHLzSiw1aJUlMKbGbXLsimg8lagkxGalTQCm+zZ3LqYbJLkYFO0AydV2TYUb7Rqv1TMVmvoW3pNocejhCb3OracqeZCZpOsAr5hqIy5Ayksq+fkIS8qsWMW/zLiE/cnbxFCledG/Y5HXCxZqcwvcQSyEyU3uK1QD6BTCgFx5HubNyobZsUnSlNIE8MoRO7P0DHciGatN/fWl9PCQ+hJoQgQ3pu7tV7Rw/m71b2OWCqHKp+IB98NSqZSRByrBVWwU7Y8rgSpNBYnuAYqb2IpcA7aChATwRJQmciitJkrYPXtRdDcJIASE43KdL/RCXCwzHNWZYKTng0VBSjxMKYs2LHGe7MUzc0FNwFu1mCGzEQm1TzM1GCNpTAs3JZKJMwYkTByTEEzuFoKkUivZXQImCi2ThmKVjLHhO17a0AiTQFqMMOg7Zqc06swMaUUWfFJdsDQUCqdUNCK4sMVRuTccLleyX5ep1sqlR5h3rLX++G2gosS5SVe3GYj6HIvuhndDizehGY9vNhzbE63ZbbDGVN97y0yyztZcLKitVIJOYfFdYQGREw1Uz3dnqI3WqRpRqj1iaV3gdY73Jh0ogFmcrYSw9KaDtl/pps166TyCGlPcCn2APqi1VJNfZKBNFZwcSkVbcKsOY7diXLIwwnB9hwvujQ6JrZtWzSDc9t4uVzhM3cPKXKSPRl0bdYmt5GXFq4ItWYthgboETbQzYcZZ3NkN99HdzOB1o0Oa+YLZyruHDnFEwFmWg64z4gYEZwr6THVW2QfESk5W7NMT3fPaNeCQYwLn9mlcVnaGB2RHFufQ9kyhpW/DfvmY2mjJ+bmI7XFa3MmrNMsbW+5g51rPnQLdo7AvkhdbmZpvbFfnraP5+fLaZlNvLPT6Xya7dHz/Kpf5mDEmDF7jEzn2PbWpjlgK6xvdoeMJU/30Lm/++zphd69n07r/auPy+Jj2QBvfW0LQZz6ON89fPaGJ62nK3qTms2Y/e5uefX6yT3m6qfAeRnXsO/Pd9tvf/sy95fRPXafsPHRrs8/vh77++fr6fW1f3Dk04/WtnE5/fDm+v7P/5Dvf/tG/na09hTrvLzvjx/XrZ1fvXrzcI/lmu6L6fr44ft/2PXi/n6w33/21R/+7fd//B/x3+Z/9MX2z37zY+oytD22F/v2l4vO1+X9+71//6f58C/az05v/uFffrB3n/+f7v7Dv/zP/4sPf/wvf/4fyk94/vGX310e3yuu6qte9DJfPf7IecX63a8+fvby6/nt8qt32y/fzfnwdnzwH59etaXdv/tvv8PpnHss52tfVikf8e3j0zfkF7n85MsvXuFh/PDbD2xDMXy9G+fH7ZvfZgy9vuhuT+w1qmgKcF/anLTFgxJMJvMOpphghlD0AIvUkK3V9Bty7DEH1ixRChkEpb5w+Ku4+DAFMzJyWkDDHYpBjHHKw525ymHFEsOSMD8AUzKSdCeS2TrlOY9NGECkZTLTOpWYyOmW2ZqN62TJBj6lz7DYJJ/WwpnMXKFAhw6/jQOdhoTGorjy8INkob6CZH5E1xnce1Nh0PZpgj7KDRLd3Kt6LwxYLwdmTDjb+bQi7+7PcYtkLQKiGJEW5gKQMMnoRl8WY1MBk3VotuXciztUM2PKs1Q1drCxRWVFUxUBuP5LaoezDQ7fUJAoi2c7xngCCSRaKV9oDToguxKMWMAzHYlyKEgoIzMVJJNsB3wOgYXvKxHAHLU4T5W3o+oQRq39PzHiqlcAQrKkE9N6VrDFEVZYwraEgy2dlXVDwKikH7FXB3DuQsUW1J43ysjKLOE3kymHWSWDhSMxZRXZgSQJX9bcZE6zT3TtUsvoICGWeKZ+XzfQenF7PWFuDnnj0hq89hg1hKdCdACK8ASNQ5U5eMhx4M5bT5pWSpqk744xy5G7hDxzCmo0hGeMW58Fln0Ljjc3SHbfl27+7y5jAFR6onkEQDObUs4djkTM49PIGJKPUtMXweIw3InqY7XsAXgCbh2d+7Isxs4hWBT/LSQhWr0TVtuPWm8nmSWlZUs/wsW6qS1BAAbv57bTA97XmFM5M11pgoFmKCFwG35ujc4Mt2i9m3tUV5m5ZyM1nSEnZK2554GLqQy3Bu8WN5MykdEzw+hC2b7RQ0AIsTfmzJxDlg5lJUlnqd3oARXBe7nYyddsxqVZi2hNjXBzb9Z8lVkmZlwb5zgETDYGVVSDzME5Fgtf5pzX7WV4NvamLtEcw4mcdv+w2Jm2WiLJbPtqtvT7EVob2lndoqOsG/a7UiVltHXOSJmG4H7+IE6M6wTkSG17xFREntmjrX5kql4uNvaPj9tViL3ZKzOfI/fl9dPcLvv1ZZtbG9pGrEqLbX/V3zx88/7777/2xxdYf9ltx+vTZWi9y+vDXVtlwbP2h1fx1ZP/5O5v1s9+dhpPV/35XVu/bA+xfpmwdTm55rxecN0mssGEVw/js48XsTfb9g/beH4xvskHf/jZ/Fv/6DfvTl/9NM3evJx+Ovj16cfX2/0H/7t/19/95X/yB5+9avbdj+Njfv+Xf/P1H80P0vexvLJLhp0mcuwy7zHytE4Lt37/9ou92WX74e7tT9bPf/62n86fXb761cP93Jb59D+9vpvX85mhFhtx6a/7K9d5v1zzxx/ut93jKXw9z6OR3a+XUJ/T5sgZI5jLnLSkpc3kTFgKOctvXlJGZCqTokeJRaNAO7eEGJNhAFupC2fxURKgBrm1S0ZkFn25kB4dh76iAenFsLZSMB70FE1mWfuqrD0MqmydmGRE5F6jZqrmNGV4RTbUGZikhhmZJa6vEpMlsTmqUPFuZ5hu2kYe3CbcgmBZiXsZyVK9HrkDkiQ7VsbhyKOG8ROgelSRCoeVtWKaOQ/fDCqxU5LaKaPIvYB5rwG4ewIHpwcEEEVmQtI004RQE+RFkdZhF2jHyq8m2E8f4cYNO345ADjks9Xz1JaYUEbMMYNA1F0pGw1zc7eSWxxGkUUErk2zbkJkOjIjCdJhKMcIox1KVLHUF1G+p3mbv6uvAQ8fCN2qb02UVCoZZTYK+iyyz8H0hiYnbICImhnr7kAZR5Bm3a2C+DHTjcxUCBRCHlCzKTAr8CKkMVxIxOyKCW9lEQgcpCHV5z8ugj6R56vxOow4SAQOFIWZje20uLfCWqszOdAGHNJLZhSEIt4YdMkykqihuPYWaSlk4y5GBCJszjWnPGNRIoxpK4EqSCw/tXpKQCM90hSlnDmskNyMyHTazZldbIShXFbN67lLn9dZamRabesPZRPRCfXW7vqQRdqyugVLadRdgmWaYbPEKtsnD56kGUBLllaArCgQ1fBfkMKezd1ooYDIzsCK7t6aUtkOgmd1bkGA5QNubsEB704nvXpH68soNMDNXNJIP7SUwCHGBlvsBLG0SG+lu8SxV5kQG/N4bCu4OWpfJTMjneawToc5XYhshXkRJocQmeHTTUoPTXhOwMGXpTVDUpNk8/KxD084F/SWmDGhNG82acoJ96XPHPPa23LdXEYmmpesYLvepyJ39hdqQuweBkX3FmOixVDGnDLN9LRmtFksc0OmokUdUlOYUmoq0qWIewJ5fzotz/Pe7E3sZp6E5pbLm3ZajZb76rPtU6m2GBJh3TlOrd1z7X7/7t2DL/cP919fTl/4x7687uepsV0e9vPe4rN1fmu4m7Zv72c+jZMB7dRiG9uXfTu/LCZbXrjbvl+fXs7rNuPt3x2//sX6+T/49i8vL+vy/JfjmzGfnoe8Y21L6801T81Dp7h6/DC/f4tv3/P+8/bZ1+2Ln354/dPzfvKrv1zP7ZHnayow9uz71WdcRz7G6fG3+tWfvD69Wdrby+Vn7169fv3bzc/jur6f119//InvcZkN27Le54Vt9bcY7fQm323e+tN2iocTabae9Li8WTnfPAzrWJkhIr1MYwFB4ZBMowIVcDgrVWOfOOYzHl69hMuSZi4ZE4g4xJhZPpaZFiUSthLSHbZOzRsTECLcaFZR6yJlyQrFKXMtlKMvdMSBQ5npUJbCRBKtvAZpCAgjERYZLYjDMFNMtyNf5wC7jxNe5cTPm6Si0OYjyajIvDxcgg8ZiIU+lZ7bNrmc/m5WgTfS020+OjBwijzUtTqk01Q1FUz1ZVL2afSjGa0fQqEb90uKaajrg0P2akLMw13iU0OhTH0qjTg6GBzs9vIpo9QOSRXJPMq3E5YRESFyHgwqFE7PMtDkJ8/r+pgQS61TLks5ZyoOknfBy9b8kzkn4MXrnTqsofGp9BPHXajLWEuConIpSLCV1QoqIYhOd6ZSrgTNQFlKZlkbBt4ufDPTTKP5lDEq5CGjHh0ADtFvwq36mbUOyQHQzGsBbjBvoelesYAHIa+arjRYGZ2UisysLk89x6QPwbovZq6ooE2CjH4jelfdznkYp8bhw0pn9Xm3R668VjOVDxoRKixgzCZ4RmQAYIzU8abZJ7Z8zeg0IcNcc5LQBJkhGw4zmWWylwFVAPPYmpt71cep1tvRDPDW/JaAn6A5mnVFjMiAxMXkCNKX3tIWH6eGi+WyBF9eEoaot4dE3iRcZtX7zlzr9aS26cUiy5lzBGPuisuGOadyjOE15fPmdC2YqR2Q+5T2xZKhiV4h3ggavAh3TddsIFtpfA8WHjJmjMU0d5svC+b0blG7GNJ8lt64Aa0J7lFjvOhNdNILTIgcTIW7MsxetMS2OmBTUjan9zZBWDs7WrQVIxEZNHa4jYPa5mV4Nc8RtkyqIbnTVucQ97k6ICKnG/elL2gy+sLTq8/eut/9EAsyzIMmt3auGAxSM31tg4D3tAXeXeXH1tyRmcEEmzGDGjlHCGknhNl98nx5dXbO/TxzDyEiZWJbg4a0+LhfbbFtonnM8GlL5v6IhMfjvc3Ak3347ccf318Sl8f7yybY2+ena+w7bLN9/fHko9+/+clPbLTzeXn7+ZA/52dvr/d3Lovr3uYObJf3Tz/+5tJPl31dz35aiJ+//Rdsrzva5bS8zowhXce8PD2d53gcGWPdRFttf1ravp3ffJmtXfrip94XtOsydf784YuFp4Xu++zLAOwcIsIevvzp12/y9dPycPc17c4wdzPiup1O48W6HeuTie60fnoVl/O8fzm3ofjx5XTZc+w4pLLuvD9hc++9XlWPCvBJhNHIBL2nMwKwsa77QbaoLpOsHh1KGun05qZUTtQ28XDS0U134grQylXlwHZJUhGYRlbk+Cd5jG4jL4pifMxZmbWTpZmVK0VmaYczWCh2KeWBVMyMRsyitSRBmMhjzL1B0EdrIXxSWd2YWGUGoEPeX6bV5bfLQyqlShxCoav0UupUTFD5OeTBPE6Ye2tmvbtSrdV3JJNc1rUTBLvPgzBsBGBmzU8trChURVZlzV9C8ZbYKFGKOKbGskM8SDF1QQhBrMv5qfIKBUHXGI7KJDUcKpdboT1AVeTBDFZWYHTysCRFGZkcLpRIlNuG1fxSlCV3BaIMfI9xxo4JVzOZEFxlHfVJn/0poungnZdhgdEa17U5pNSaXsrd4wkRaQHFJOAlf5UkmhcXIdwAa8djo4oirPCg1CfrEhK0RlIyZLpurZC1g3dtrjwU34BQlpsk0l03vnqlCqh6ThCRnKaZqXKQFsQiGiRzYh9RDuZUDLlDqCzH2xSNohXQXJ/G+UxEmVX7PFq0IuPDfPdiE4iNQG25IcjYWEp+Oswt10ymmawowBTMkfSwBljvWXnbBm/VVAfA1psPk+zowwv1h6CMgdbm8PLMDFNAyHI8kTQhIAeD9ciXCfPNLDxN1CQhpYIRWo/uEE3eW5ihYSbhLgWbt+wzJ0XzgpNANtJS3aiWTiZkJncnLXvFpElVBulUJaSV9uITcJXMQO8uRGa2pSMzOE1EJhUxFc1TMYNt3+ccY7bZmMo58/CI1hTNgmkoBV6ku8O60thbQ1EZYOWAw+aZ2QfdEm4HMTFDcGW8RIzzIqnTYMk72hKy5q2dFvWm3dvl3Ls3dzCDjaNpzn1tuZwefNEy0Zw9mWyCbMFJgylvIQNNE4ppIRMhgznK1lNpiLYk3Jc0JTVy6Q7u27Zt/c3Y1oRiRpv75XnbZ+a8bKnpmRxzN1Nc78cUvfV1TMOIpFG4y77vc0eE26s30dY352W/G8v51OIN97t3dy/fvsbLV8/b9nzdiR25ZwjJ9dz8bt3b6XR++OxBy2kErTMU7XRZruPs32Gfr/XRjYmG1k9nQ7OI3Pchs7Rt+vunTftH6bsPH67jx+s3v1k+m/G07I9PO8K63/Fhed18Pd09t7a08+vvP3zzeEe8zfH+L/4wD58a5BLzwxVCGjJm9Nj9wtN6fvOd2rSVwItdAu+/+/WPmyvMxjTIjZaBKOe2nHMiCs4LTgCa+z6KjpkxI1N5LIzqMC90kGQSCYVNk5rLw2GWEio4OEMYNnImIh3TOlO0qO7ZgEBzM7tVX2RErZagpAIUU7XwlOpNHnvQZmYEEykrx4kq6rWtTMqSDYZ5RN76YRnPG4X3NlPWglgVL18jbRkbKDOTeZjw1AsOQsrMGfVpLCFTwTblv8gDlTpQ7MM9emZkmjfKMlvlTZDltaA083JwLwQzb8YoB5kYB1QHQQpjyioXtkaQaUf8UE1fN0gURB7mVKrSjaJIgziO/1ZJO+LN467qn3BA+uUqyYTRUB1+AGY3jnOZgAomwgteCDMvPhPIhmbGrO/hBFoFcJiiLT0mDl9A1lBVLgtlw5U6NvYHtSySFJsvzYra0hN1dNZeRMhZLlWEmwy0LAsoCeYiEeYIkWqcVjQ6GmHWwg6LkGOGN0EBMwSsWcyUaGCjAgo184NIUFzDutuIzGrwDtM1kgr5YWAmtHBfzydvvO52QzasSz5pmVMoGtOo651ZnPYQZa6KIzSUYNtMMkQu7A4aI1tripS3hZm5k0LMqoGHyFZEDkehFcA1N0VkUjfKI1mhKdMV06Ac2vepDMIVKL6dYk+N0SFZBRmVNSgTgjktZ0R2WZcJLWekAi9x5ZzhyJEGj2dh0umeokzFjjC4wcqltFOGrKkX6X2L4uiNPZeiw7Mrxj5jqNNMbjKxe91wgN7CMnPLaZazpYiMZpjJlFsorCDkLB5IL9G6xaSZrM+M5AwgJzthmn6sp0wmR2CyLaArUw3djVKidTiNbXVjzr1z9Z7WiGaw6Uy1tB7ObkC6mK7c54bIaN2d3C2w0LkFhEbRDXea+0JQ15RfzLZTDLeImLw+vJmLt4VnwRU0Fx2kURabZzydPy7TEgzldacp6OYsqNFotU10OLqnwz0jNtnBZoiwnJ5oPgRlyHzt32rfPv54mbv4OAIj2WxaJtvTeP7xGkt7vd5dLk6ys9ni2E9f7Pefx/7b6ztczx7RTvnqZw/uJ3/9k+EeOvcYe98fdLnQ7i9tP12inxZ72T7XOT/6TpsDoctc4nrBjsuHl4+XX/2p/emvPr7iV3e//reXb3+7Lfn+i+X5h9NvLvP69DwfbeRuPvpu53mVej/7q89ff/4nf8LTm8dxef3nX/30/rN3d3fL7/38771u9x/vP8T31Ifvn7frcnmZXyvGI/a5bAvzeTm38+v2qi/9H59O/RLwz79ZT++v2Pqr9a3ZaVmX9aR1GeuyP58+PL+5nOPx/Q+u79sSb9fv/maM4Yr9eV42a32sZ5BZeKNP0ZKEtfRIsfUi+igxfZ+p29BY/46MogoZEAqQaJrDOCdKzV3cFHOj+4ptJ7MiDosnBcXhh5/DnYpjsCwakwFKhhI2KcQUjh0NWsimBJp3GI2UJXohrZz2CXSrebv2fHZbEwnEEfhQY8+UpSzKdJiordPxaNI/DZ3lL81iF9MKpiYBKyxch8Sn7J5x+wiFNCaEoLAJUo79E+ionHRBEbHD3Y4RuID2GOOGIVfGnwE2CYN2Ls8ggSaYhhdu/2mEvM1J1WjgJkM6UGPc/CbbtJKbgofvPSnjnDMOhLFQ5irScSyK8xg5IZgSUaPDrOku5hw3H5cakGk0d6sk4xseDyJFQ8l1cPNf4AHpHxwA6LAAF+mgfHE3d8JdlmCnyExHhpssw0hEIDN5YJbKSMhVm1J2CWkVvXnbaNQtjciCatjMEJACymmw3oNGGb3L01zg0mt2n4W+VsyfDdDMXUiagxBq2zvT02Iwsk/QustIHhkRKHFd0d/gjOLJ2S2LUCV1wS236gBtMmQcxjETREYRuFXS0tinV0CUxNrP024MPCDD6ZyCaDCwyT1JpptAS4VFHP5zdA46equci3JcN/WWVuuPQ5l2QxDAw3UihbnltCtDoZhjRXrL1H0DZ1wHTxlFHQ8KpmkgxMOEpNRWcfSi7XidkdIUzBQTM+aMmTNsVHY34Qw3dY7gEtfgzIEMIGZGTnHra1KxJ4QssMaaU0ivJ8nMimjPbmm5FkM7OiJalNGoZST3gNopdiXZaRmKspx3Z4C0ZqakO2joskV+ggT3hfREN2/1FpVpSV5nLqkznjH2RkXAcoKEp8h9jjHb1kzLIqatyWUFM5NOziQdmE/73EINGoO9t3y+i0jbzgv72Ik5beyplDxSMWfmzBSYmzKgmTHfFGhQwBkZOSZbBuckaAw026+XGLmMbn1d1r5BVzfu8O6cuS5rR7cRl3m5hjxfZnC21/a8DXVbHgK+D4PAZl0ZI17SXNh1d+q5jMzwjv37/ub1l6/6T76O/bQ99N7fXx/gp4f3fW1NmXu4t27I02U8/fC4fX/31//s/fOPvP7pD3n+5vrmfH//L15jvlrWRQQwrqe1P2Ofvq59m/b12ePD2z/4/O7j29/7+R/9+6/+tX792rbPLpdfPH73b57+6tvvPvJkQc7HR398nhzXdUyM0YQP/mbbuQ2b7z+0b3/9+qp2yjfbT3/ycE83Ts25J8K2vFpc7iI794a2zLhc83qZMC7rmXnJ1NNc3qq5z7CYitAUZuRoEYEcY9qcSNP0jAMetuOYz/I5xNEJK5MzFwt45d/cDtpcOt3Pc3gU5mZkuk+lE/QwoyIOs6cbA6dqRDnLm0lwZYqd3rpboijZmRWxQKbQlf1IuDUTjenqpXgBlYekEyYkP0mNqr7cOLrFpbCqwEijURmH97LdNFE66uYN7FW59BfhlMeKMstKoL42gcaAMUDLnJCOKYZq1s8r/XR/3kgnAhRiFhLaYkbascW9rVUJs9jHKMDajTiy1oWbkfVtc3t8HAMsE0BmqX1Yfh3WVpNSMjCyiMBMd5JuXjImS6VE9zTSzQ3Iw12MBqNnQFnHWe1wzfFp/5tMGryC+aA0hEBkJW2BprQQEeVJhcQROSfaQTiABCRSbu4R9OYGJzWTaWJzTmEEkhrhgjegl1M1HARyZijgAa/ZtNjPBkzIaJImkTAiJJDpGqG0ZpHeHKmIJvPYzdsR1OqMVEBZXh9mSrg7y4nJBJg3J62DyzVO2Gg9+hi9FVAxU+YtyzcKTm+FPjUKt2WByo0bnBlWYQksaCCMoHyJ0+oeCWP2TqdSM+ALUIYUWU0QGKIXQ7gSnlJqp4X7FDFzdrpSCoUUzWciuk2mNOYFnVs2NmMry7Zd2AVjFs6QbgcmVhd2Mkdmm9lsrkiz1TvbMmdEXtQBzdhSishpcPKQWFO4NaZGOpHHvpuNWvrMhGw1NA0ulPUekSlLVyx9pLspsueggePUrpc1hqxbO69Eb/C3uHZ/5nJdLAxwjkUjTuyJFBqhlEsSfdwLtl05m9ud786+MhWVh96U7DmuGc0vTI4BWm+WyTKoiRDauanJZt/czUYwXpm8d3e/7Dl8DSKRnVw7HzQxrx/uW9Ni09fheT21mfOKZU07LfMlXw3r+QJqe/SVwGzszZY3bevXFx/L16e+OJ61YTHEhy8/m29e2/zsV49Lc020NicQm81mmAdtdURk+j65Gcj1TE3lGEAoZhq2fXsC9/QBR7N2anhZHq/v23W/JEY/X/dXyzqepH178Lvtauurvjy8Xs7B/TIuV4sg2vru9W+mtfMD3pzbG8Kgk8dp+fKLb958+cV2l3fW75QPD9tXH220H/LtF+/299tnTe3Nly9QGJqe7vK6Xbft+QT00/278/33v/cPNP+zP4q7lx/ufvHTd3/t+Rf/98v/7/n9tlz+zmePv3m8v4bC4M5Xz6dXW79/9zCW+88j73584dOvl8vz//L4V//zT//Z/N++ffs/bO/aJT/74/7D63/0+b//l2++cJd5e3hY/uLL5359ePjZ1/9c/94X/jd429ft55/9dw/nz92f3uZXl5fnfv3+b364fli2x8cx9oHcaduyrGcZnn7Ur1Lvtgxrmms3xPWHy2PTuj+vnu77luOyqDzIhJxkZ+5l8+0Boq9rMiXO1pxx3d3hvWiDTQaxi2xha9LHqbBVwBKS7XvsJ1ck0wLuSjslW8n/nEIzeWPCDhRZXjCnFLyZZEaIisYI85y5JzmGIhgoyr2CTGg0E3qxMoM7GsMJC5q5weEI3AjaqJqUVp6LtIJUiSjENNxJ66a2JChjJm9WTMXnjYN94sSxJK5t6RFtKAHuDm/ubK3R+2qI3s2IhkwmdmyXBf5qu7vsgOiStb66V1ZqucSWiTwNgpl3p69miyp2BQefq5DkomfV8hckigdXv7CKWqbDaKqs26vAIo9v5qQSRvPDbKodRCB66713g9KaFc23flNFAhmlXkW2tMyUk9ZlpJnVCu4TrpwTXlELqvKsZn4Iq+Pm0HfwhupXa7WpDwPpTjqhVTChedqSsNRQNEex/Mr43oogJiAyMwVNS4skj1xJAMKgpjUUqV+ZhBPC3IaWpAKtghA11kW1L66tTczi2xbjXzJlzrAKZZIyBxy5Wxl8FOTM7rzdGEEJ97L1rOjYjLiZYMMEL75GBQATla5UeQwUXMP7S2v1N/qAgd5346DCenZkmwSUQBiCAa9cPzMEMi5XH23CZzZXRFJBCd4yQJsTI2dGtF6tmIFpYNhuOVoZm5hAuB14D40ZNGuLkGH3J+tYZiCsdSPZEB2Mlm6BXZbFWmQlOAOQG+mFgEUjgCBDnrEBGxsUMebwNpTlIztiDstQVIA55JGEt9G1z8XU13EZOdzNFBiRJtoyYSLMQcuZm0EwIY8wbDqJkw2MV2snsnWbPZQ9kk5pMOmw1paBiOUUOWlkYKFpDkZwroC2M3DZ5LvtsNh6fFiWzc57MrfL3RZrdNFNDuS2vM4rl64m7tvdHDmCtoZ48Wln18bro530bL27vd7s+nz3IFMC+8nSyLZYXH3nHHnXBXDLZXtuayzj9f0PEXOG+rLF7DkXMwFjwJhjBKwPWO3vmpu33ndI7KZu7fxipuj7lPlyXs9v7voFvvnnv+6fv5zmeX04+XoXT6Ktffnp29d/IG8LVr2+W8/354fRFt/269PHy0C0FSvOpzxxX5YXPrQrPp7jsc/Oc2DuL8PvvrFl2fzDj7958+OfGWP57e/d9+tL4rTvnB65kG2bp3nRePz49IufTr8H89U/ytcf/vzr/+r9x7uP9+v884ff/PNf3v/qO/uBP/Yf7n77q8/G+LZ9e/lt/+/+7dPn/+1Pbb1/2p9Oz/z+8vtffvHvffZPTv/47TlefvIx7vDH2+9/9vC6nV7ktJdzCwyNx1//4t/8/csvf3I6f918/fL8+f1dfPNZxA/f7B/ty19++Dffvjz64xtcvTWd5sfx0e0jtcabt6eGbZ5yjg6e1lM+320tfQhu+zLnfpkaFzFTsSdDQIx97mPklIIV31sl57A3NB4SnpBcbLWpDW0TAlcBcMs0IlKpGLMEhJPdOq0nJohycLJJN4NbGqW4lTiqXpYyoUhTEOKhf0A6YKmsquTHApJeVCqZFHuYcQwJTCqq2CdLeHNY/TKlnBYIRdbELajsKxVhCqqBs0wBZeRhES8V8I6ysyrbRR4A7UHCkhKczSyzwybN6TC21NJ2RfF30dtyXn21vvrUEeSSYWJb1uVsqkAYpWSVO0fJrZ9tOszUKad3iAfsXWzrUqke1sryGzRdOzt4OeRnqx48rbRZKK8wRsxt30mFrJAIO2JTjolfx2ZaqNn6MIx0QBlzZAl0rLxdKpa+OMrHPtqBGDe9r5USpTKDyHJBq1T2wqSP9TWLBozgUSonG1CMdKepiUnmESVOKwu1mDMFBy0TdB8ADV5Z8AdQULS3BOEH+s8DIVd6UcAtQ1zW9EmQdlpDDnjhIUfb5UOVp4AjZqbQWhKObJ6xq4dmdhcqzoEwwNoSljCKtIZ51OcjaklpjqJ4Z8YBdgtA0jmBCaVyJnI2EmOkm80Zmtn8yKFQ0kvxLSHlLG6CK2mumYZbIDvEclGPMFGWChFQmLmTMqQRc6NGtqW44tItJxxKKXNqhJjZEYy5Z+TINuw8h1rR3hzJEFNhlhBhyUwDyxCGVKRxGlWMTUroi2BIT9jJK72st9mnBcSWrO7dsjEXKq1Ty0nhli29GdykvKIR0DbkIts0C/YMyOywhnGWxWpdhoWnHhr7UjhS+VOHDIHYW8+QgR3W2igw3sxd1lqcXgqWcmre2ezBRSaZQ2xIczbSS8gFZrN9WkKjXt/B6WxhTDYbib3NjLZrpp8asi1Nah2e4e5nS+1XKd50XWbjaEyDnxaerJHpSyQjNKcJbpzkHjEShlCyyYLBbjkx2cUpmdmMYtqjW6bBjDAMuGxfsKxL3xdfmyBEnk0bnIL1E5f98nLeBvp9h+7z5flq/cs7U8Cv51U7l/1xH9f+0F4e7z9i8fE2elcsrx/f+xc/nBHfv7qc/seXn//67qGHGq735/3tFy9xfoxXne010K7Xx74z7bosudyNESOvG19yffhb/+Cv//F/8BU/e+T52//494FfvM14uu+99/Pby/WL7bTf/cM/fPni4395svim+6tfPP2XX//j1/+Hf/LXb8b1L/Rm/+Y38f23//5fvvr+vdu7vPirefGXnJg8LW+/vp9367mt6/dP+fJh2a/v+Zfn8T755u7V/Pf+ZS7k8nACl11vvrj/yeuXuca6n89vfp9Pa78MH30OWOTy8KDgKa5jVySXdbJfpiIipf8/VX+2K8u2ZIlhY5hNd49YzW5Oe7vKZLHIKhbJAgGKFEVBhETwlQ/8Of2EoA8QoBdBECBQEilILJKlYmVWZt723NPsbq0V4T6n2dCDzdgniXtxce4+a6+I8HCfZjZsNDE4Yow+pBGpQd48EorImBoYKF58Rm6LGyMk5XBbhBQ9p9kDBBHWbNFQWFemj5bdxcxiAEFIZNI0IeLaH6qS1EnYiiCPQJD05kbPRp/sY5ooQ6QTRmcISA5AxUpLZJG1fQYnFpk780YYzpASkcT0U57e+p/R5croM875UvXBJl+KgEpMBWMRmEmZapAR0lOSfOqCEpaJZbPBDBlcdGSote0s35MYtWNGXQirTDeVW3z1HgBpcu8DTIYzkAnZFO0UVUxFBS9vac5VZ5HPb6MlhJb8XJpraCdRgXokRM6LWItxk3LUKM7K55ukdJpgVh7eN82VRGaogdMKw3zKkm/cdiuoFSljhUKAgfpiKNWrg6gJfWpofFEI6gAjfHWFW45sI21+Vvf6zXUnxGQp13naQIMhAm5msgywYqQCWKzKG1D3AxE3cxKEXHD1zBGSNEaOLMHPXLVYVveUjGB5sBJlr2GWiUhEqI8I641kpRALCsRIpd22NkW0n19Lzo3CjVAxV+iTr8sFMu1DgkcPZdJLGuiLaKxqVzwBoztAl1npBuBcVqriJWsTg2Q5MpLrIV8GPT2XbjWegyQiWshhUflkoPLGfkBGRsKWkSpjKEDWEgpXWCaPzNCelojEwKDfLNZLRGTmUDmGVKulScZQlr2GKaHSNSxZLBCDhxNskgBfjDKTE1pieMMoAmKGtYbCt6rBYTOYuQaco0CzmUEmBRr2EXEt3mMEcpRHdG1tQTO3DDptMR8VROGNctLMYANFOd86aFzAhRhc3HsAbOE0t+JgGpSxMIS22pFrmtBgSVdG+goAR4baumBZWmLvmbou/aQxmP1Y2xjWkEhzs0ajedL5zGW9s+2j4f2zq9dhNLdpKfWkGTJgGiNbp3O8hPYcyDHAzFhWX3FdNm4xMuGF+0CnM84ARt8flsWPJ5nJqONTz4/P13dPj9uqNFxOHzsv+6YPf3jY7r59PPe++wYQbbm3Hoc/v6y27ilxXX/60OPd8yfl8bLwn/2a/+Evvln/6b/rL/6ssb9EvnzAx+deh+VJ/qAIcsWrr94n7HVTx4pd+9MIUxxmPdIRQ9Z8PbVG2v1qgvvp/KqNZ9t+/dPL9v7+fFyfn8f66ocfvj4ekAeQv/67UwOo3o9PL0d4Mo/xcnrh2vfdt9+2R//r5c/46cP7++sObMhx7B/+9Ofz+unDp30jG+P6Ep8+Lpe+vX/3o8blcJrrpY1Y6eZMLru1tm7m0Rq6b7sDuTDSnM2N7m2NCCSy1qRzDlOkkIOOkCRFI0ALc7TMANMWJMusIqs9DlOdsJEZmyFlpLcy/kufzo1QFrXnRv6huUGM4iGnMsqGvlddFy1IMKHMlFUeCwRT2S7TyekFRTOv52ueXiVtVa2AXUv7OWdVFfgLmplsKY5mnTBWtUWkVYk0vwUOLF5+FXAo4bPMyJ10W9y8ghNHADw6USQQQNDYI8JHZBiyJv7CAVhLbYDNkb6sNC5La809K++UpKGEOVNdXOaUFemavB2OyrJnnM3N5GJNlbHRUGYMlTcEYruMSb+uehoVBT8/YtG9ARorX7FGa5BgFJNHMiOoednLiElVGgHBPCGxCNWTMidE7WeBG/mMycwpOCeZDDoEMQqIrWF3QhJFa2NoNgwlr5JJjhCogANFfr5B0CCmgWVzFqPX3EA1Xc1Q8XZmJP0YBzQSTI3AbNFUfQgyS1JddD3JlOFCwqgIcZQmxuV1N0kBQwaSOTKDJazLqO181L7AADitRPiYtlD43PMEOXZBslrlImUaakbQdKgwDZUPx+KatPKUGRt8cYsUzFUwDtK8yO0yA61ZwEwZRqv7PgDK1gu0xNSy3QS4RcICrVkZwGu4b8c5oo9tOV/P52HpMPqwYR5pe7irhLUOoHRNBYsQQIKheqgcGmPkTPfKo/XelTks+pERI9q0CwIWyEzZTHAfmREjFX1pEiE2pVhKodnQNprlVEWg5JBmiHRYaKAfR0PEEUejQ9OlO3phtyNk7XrTPSNQk8rwOCL2iDHMIJdDLsAxXb5sKa4LyiQdmUMUzVtvp6uFLbBRTTLdjBzZA63FspXUBPAWNla6m9odaWeP1rB08ZyeydG6Hp3Zr2Mc9GgtFx8R6T4SslZgV7PWS9qZtOmMJmSiWXElEZnEzIAClGHrKZ+WPl6uLzvUmsVyMq8dwNh/ePtNjP14ttz7gW3hisZMw8I9ejxnXH3bbL1b17v1ZHx+Or8zQ3O9LG+tnb7Ks04/jm++HV98/QhyjPUp+/c/Pqc9xwVLO7wf3k7w2Oz0fLH96fuPrb9+7D/tR+8v19PjF4yHzfXFaV0f71bjKpN7puvlejlevnt7un/3p9Pdac39034fl2te4vTVw8Ov9teCgds3D+f7u9N6185vX6mtygoGvLb7/GHY5ePDCR91efl44Pz27WlxLHffLef1i9frq8U8j4t6P16y4/QUsAhx+BbuzUaMkHv59Y8BY9sgHfBst2Mr09zbEmjmbCqJ6HSKIUyMymah2aLQ4lY2xLB2lP6znOluxRRMZRisjPDKcSjFiiSc7IvicNitvS/Cp4ksZ6wyLYKy3OBtgpTTPphR87mBRqvyyQq85EBpNuo+Bq0wrVlSTTBE+V/OR7COlM8bwpqTk0LBuiWILWlJHT66DST1a634g3ORaTSWaCVB8xgJMvfCGasitG1p1tZ2kRvhBHyK+oGeJZ6iO4wIhltYWOYYZXfSSE3jkxqafv5kn0HjOfWrJDPCjQzNVp3MrHiJaksYY4RYTmVzNuZnAvPP5bFsiubVUHmCzUmZdakMVIpu7mXtMIfwYhl/5tAShU9XqyTemoQqb+UAWt4BTvPmIFC+ijU1i5Zu5FElQeJtITBRgdo5COHNitY17a3rm8sbXiKbpGSEZiEuxjsBgzeXQ7CoKBIYKpFnwgdOM7q7GA6ju1trNW803NALSZI5DSaWzsjMiEp/ZcVYCIAs6+MXGB7GMi7XJPFLkVvr7qUR96ykRcAYQ45BtxRrNE/MDXxRBkQiPWctR6Sz7l1jkjR51AvbJDWCpBtUQX8hgrd2FoQ5wcr89RoBBQtFj3F4loXe7Fuz2HHl3NKL1VCoA4Rp/HMzykmRaYKROeRGpBU+VFLhoajNPr06UJJIE5zZvdDw6ViXMIekZIMpRee0Os/5SKRJ0wvI3LwxS0nP5gULlCNpPZaKDM/C36bTe9RhRzpTpHuGR0i0NLjDCeRYQgoCbY8lXeE5Mge9MTXo4eYMovlAJixJoNFSgTRYSp3DG4errWOMZoD7IaNZi8vTiGEBR1SqZD9CuuTeKv0SMXokMqgcow8y+mIRRlqMpMxzdJp7a/V1gE5SwuiZEWG+LotTckSzZY3Ls1PxfOUBaxuPY314fefruvO4PnCcmNllbX3Tf3jX++iXBxs+rn2x5ezHceEYGs5u0Zftw7M/XJ9TT/rY/7Q9/nj/yh7ay/M1rs/gnnpZsuex2sCI7tcW7Rp7f+568JeXYx/XY8T++x9/TCxLexXR7raTbxuyaYzRc+w6jtHX/KAPT/R3Hz+MxBVvH89fb9/9qw/Pf85Ef7//8Y//03XvI/ZDx/W+P6/w0S1WP/lPx30+7T88Xv6733wTdD+/exnHF9t1W48PfLWhZ0a3RPaXsI9vLi+n49Xd49u79auX0/YcMhz7cvjg4suI3sfQWfSA3ewxavFkYFkIGNKqGTXC6ohKi1HyfBvlAgvGzRUjkxPeLIkssqwBThLCYC6QlHlKtU6lKdYiQUzK5zziaw02TahkHrOGliAVNJZDQpbzb8D8hoUxsyi9SM1cBJsCpDkB502ZU2aIE/ebok5ODQ3Ll+4GTcludKeauQyVVzgrbe3YGEDOHXDlR5nANsfQMDBzM8Y8jI2gLzSQFsOrYpYkyMYYyqgCDJbwl+Zu5kS5NctkJmQgLVXVdJLUS4mEOdtMN7P5ZzdUt00NSW3ZiM/FpGw5OCFJ3PDr8iC9LcLNwLLVqmJdO94SV0lZP1XUayjTGbLboDvbpduxaz9DE7eaWXg/yNAUppUyMYOkWR5Zug9OJw1E9ijKF/X3t8dkZo4hBBFigkEkqTKDFrNO9hxejYvSlMU1yCIcRCrGHQAoxmBxX5SZOaNshYJ35lSYElJwU5ob0QgXvUVed6cv6wYxZKSlAy1Iq8xlS2tQqotFqufcMM/2p8okyrVTwMlOjR6EllwoDLTGVA25mTGoCCPMLQQQnzvaFkZGRzKjmNGZpCAzQimrqVSjSGaRIL0k4IJY6Hupp5XFHI4YIw+jsNowy6loJ4AcPSKCOkCnjSOUFVgm4hZmcRt+c2YM65j+pWZtr3g1JdIbaRXVXThWARUpg3sZqYc0HJJLtJaiBtygdXI/0MqRPNI98hxoliVBrocD1srVVCHTsS2obivo/GwCHpkZxhjKHuX8AiiDyFaPvZLkaP2kDpBoDROQqChtZGoY3GkRNklwaRRNI49loZBGGlbSaDvWVPo4stdoURKzFpZwrK+2CGCkcjQolod1af1qB3JdXi6J7JezxsWiRR+Ryn70kULsR+TwMZDpqI0BepTTyz4AYaRHlWPoGMfHzN2fc2vnx++HcvND4BhcdTSYr/f3b05L6N6IxTKusrZt/XQ2C8qWHu368gZc9mV1u38cp9Ni58eXZXnl505xix9//fj+z8uXfuebf+/n7EPXj3epWDLvmykYxODpzLsvlo+4t9TTyx4n/90PP+H8+5++eZV3T08nP63b2DZvSCLO6zrOr9vS1nb65q2/+uHd5Q8PT3/6Fj/8/tPLd9e7WO7a28u705fNHtwNOC7PbO3hrt0/f3H3zcP561+fn75rP/nbX/w791t7OL16/Ts/N7ft9S+Pdj0u63W3LZb1OG+Sfnx5wILjsn95d/3m7dNzOzcfC8dQfrTjeHlFs2OE7Aglx8BsKDXFJtvMjK7WznK6W5XDP6e63wo/hjKbld+UFdtVE07KRM51ZI6kBgSNoupW0zgiWMQV3MbPKQrNYrlUrnodqpmWTndjykV3Jj/zacojl4AqnYFVWBgldahJTslbGgNuG0Y3L/arNJWnAsIN1gB3kaJ5FIKXcC8hsmBUymFWtkw1z9vNDYOYLGAz8/ov0s08Z8iBMlPppC3jGOU1bGWPW6B71JACGisPeVlaa/R19SwpNeltrc8L3Kajz56WdtsAlxlEcdWSSbAKMGBp0yUMpHG6Bs82pXCoAi8/ryBxI6KJMLsByGVldtMK118jqQxBFZPKz8U8E5wp0JMGJYhULXA//xjMagYq54sqRpDkS21ozROW+dlHdKisfIubBWWElHkTlA6TMGqFTRRXfHYfdbO5UJDk2BMeUfC2CHWxBQBmlKj29i4nU9ssRo3tKisWDfOK9ktCzEhMmu1U3IHK2sJPCRahLHDg53I7PV8nElES9wQCoCFb1nXPFMyakdastWTasnqwcW54OZc6VBm0QVDInBkTeqaVRSzdZ/cBh7UWtjbSWysdt7OCEOlufvOC1rwHyCoiJe1uWztWRGSzdlpIuPfmebSEmY3u1Rga+DN1YJqsVqAycMOGc5R1TWYcI0koh6oHQky9MHJ+rYlEJ1Utq6KeypIfivRlySy0zOi2WM9WKRxu5mVIDi5MS083y7aZWQStEoMxMmRIQSMYpihvHnltz25LFEjEEQA1Fk/0sCJAJo+usG4M0tIm9GdxjIUKqtohZxJgyJNhpiZZOJu1TGeKPZqTbTEdsZttRUZTONzM/XR3vn/4NHYyEYjBodbCkEo4QZd5GYvTBYpOWxxOM2tGUM2J5s4si/TWCoHi+ubHtuX96Xy/b0tyc1gbgweM2pY4ORtNm4ZaXMvX0J2+5ekstNaN6bCttWV7/OqPOncZuTz8GBxHwMJe/+JpOy79hB9/6sf9crSTTN4sjg7P8525O88fwx63YeHrGnbdfnP93u3Lf6L36MaPf7X/+fkpf9x7jDA6fbVDbrpu2hPPTz/qwV9e5Pfrq9f+5hd3v/mLb5bTmR65rMR27cLShzz09HL51F7Wq3/8s/32Hy6v7r559bicv3x99/bN93cPb9YX1753cx5dV+nAQKrZegdbbNkWBHp/ev/8/unleRs0gy+n5Yg8+mGR/Yhj5DhJyswQIjSWTPWQEFPKP92YhKz9SZ3CVlJgEjB3RU21KJeheVRnBoanEijf4Jvez2g1KER51tZZrIKRJNPcXdGY0/XOm7k5bkj1rRzcwmgmrUUDypLVU3uPVuf9zdqljJYSk/GcKSpH3hBL3hqHSYNJw9yl/WzPWC6HtWRFaR9rAfZ5kLudziClOQgU5+J2IW+XyltbFz+dz7q7LhCKj0qYmdm27eXB62XlWOS0ACsr8jbvR0IZIqeJ8ecyWchznbeY8zEqgafYORKUZYdQX04yLTIiMjVz4OeumfQZlFS+ZbUHr5Q8IaYRWAmTMXsREeneKguq5svPmLhklNI5+aOqWfW2m0XZ/pXBAVl+os6lvo2sWkFzT2TKq58pNo9XWVQprQvztqw4rDCzFGA26etEylkAg/HnL56kucztxq+vwdYcJp+2FHUr17JEU/aEqWGebQBpJcmVQ0s7yeE3cRTEVDS639xW5x1cojbdWq/qdFRoRuFU1d/cMYvFNGBD5ZQPpFgKYJX3dkHu9bs45WM6aFlUxHpKi0IoGDMHy150VAQLlLddBC2iCVFBzDeYH6i/i0WGtS0YEYXUeqFELi7QGIoe1gJsnoZePEjOj/XzyuozPxKYnMIIL2QuY9x6eu9FhCMVKAy+nk+Fas1fYdEFTUNpoHNA1twCoDV3tmqm5n1NGt3AxsVGZs8YR2dcN0Dm5WNLlGA/QihLTaW14V5fuLecoSit4kBNxZuOQcRIS/fleuQwViQWlNncIQ9cxqvSlwQdZDITIbnRdOykksZIH7mJNiqu3Y2wRG4n21alZ80ZQFu2u4/7+vQyVgw4y4jAE5VXYvK2cHYnNIrWjIuAtiwN8yt3I8M5UJz8btlD237XXnzboh/xcr7rIzOGrmOMHHSH+bHHayB2NDIGYjmN5zGOw2N70prXfhkffswMbH5CQ77Yw55DKWt3d01vGo9x7Ke3991OTbZsp1heL+aWzbMhU3Sz49Pvf3j+m8G7ftXKRrnuHuNlP+vuxHOcfWTXHB2XNUc754fz46tx+osvHk94cB1vv+L9imVZTvfdbby8wfbq5ViOC1NHv54XYd/HUL+eXq4vl1dfnr94GMvd9u263lHjY1xfLnppn/72j78eKdFNYFsDWHTO3HyxdY2Oa16vPN21iGWJVEbk6t6WJCR5hptD4FK5Y3UrgjQGAF+bh982mypOusuRFK3Bs9X0Oh/kmpWsOFXTr722ZllItFQPS3WOxQespeLng0LFvqlfd/N813zga6BWBCBEGGa6gk8TSyRthLvpOJbZi7oRxRW5VUh97rpZ3o4Tqp21OebwcaPCsmw+VEcGp/UlIBjEYnHNCv35TKI5b1XXvC2LS2wkYT5nPeXw0ll6IdX0cv4nsoBjAkGTQVaJbUHrNK/FqKfGUBla4fMeuya+n0lYN9C9CE2zQs8UmSqzpTy2WklScUM/6no7YbXI06yicyzLz1ezsM2ICOXcZUpz4KPdvklMQL2G9WK10KZ55szXQDVimlSsz13RzUtUWV+BGVHe3yLhrebDqWivt64bUwosbyUSrmk2VmWJKs/PCWFUf1FWJcU/Np9bCJi3Vnack0JT+ECpmFo46HRV91TUszmxU8oIEml+oz3gthMekTHbF912ynlbIswfVHJO2vNZEIRA50iVXcooWD3TnABHaYM+BxzYvDtplqDcmrtZAKLdbFym6TfqOy6D5WmVzVr0R9SYXGowcG4bAMuchGjjQA5FkQ+dzHAstm3EYcpGKKwZKwzjs0EbkwSQZABIKiGvLw4gdSNDIHuxAsqXnJULafPeruin6ta9fq9gZvUYNgpkRO+xsZzQYkrwsgI9bwNFdqjBBDPSnbXEqna6nvn5c9XTM/Jzp34L8MLI8guUkp70IGBBk4QG1N7fHCCTloJscYnwuYSJeqiVwZ3oXAzmUkZqUa6TveHoCTH8GBCXo1kZEZk9Lwou60J2rUvQkV4ygRSbeRSdVKXWHzQDY1DMiHSLogvkAEtpSqOZ2eK2mqjcr/veTxvhtrjA1Sz48rK8XI7ri+1ue7qSbFuz5XS+jksz874YGpaT3S8vHDIO+NLO90Y7rSfdt7vXj8/nX7y58+WLdrnE7t2fVAFPDgLxfD8ks5Bz+fLN6YuPaWHLGEfXy5XtdB5t5Yb2m494XLZruozryvXh2awtOH9h58ev7x62PGxbuOX1wx79ktuRD348U7n5UryAu41aDcsiX7bHrz+8Tjas7f60XRARSzvZaklf7l71b8++tRUy5Iir3/ubM9AA5d6tj/PJgsdxRBsaydTSlkAmkQO01n42UlJGCtVIoog1klJR6lkU3SEDKZCuYCijpAxOgGZRJMMqBplhOYkvANwDThnckuY1M5F1hEMobghYPJ+oiZI3IlGdRsqkMjNnY14U3Ca3n4c9TyvFcAOU1m5VrSpoLX0LRobNYeOz/KMKoT5Pj/Xit1CCFEewbKhnjUhFq8EPs4iLc2S51fkMMljJALMMFbpqk/1pN/L3hHppt6Ed7s5ZxQrSXiw+b5rzBnjfXoqz9MxLN/3KJuZ+g48JqdUoW/vbW5/glmlm9pnXWpvWOd2nmJX5o0ngGXW3lGuTclKbqzkp9t4wyWrZV84hmjKwrKnNChMXGHNvjolg39hytRjOhFWfYVSjal8mATFLd909BY1yRhpkmf1Kwq2jKdS5PnrNiT+zzUrBa3M0SVgM3OAOaGZyFlyUOa22k0AyMxJhWYyvTCktC/lMluey6ItXaLH+HopUCLKKBW0oMthEMuvt1rw/C3fdqwLHlGvVyl9SxUeSc7kRN4D/Zw5dfY9ioxDphsRt46HJiavDrfrvoGdCdLfCT0haa5Z1FosyqEb6amWmetAkNjcQqei0kWMuIhJmmSPRYaBp3r2TXu+T22Z2m8yq5rW4NWYRGXYjDMwLASVkIOhWLHNTW9bdYRWTNJchCkDELfgKE3zBzSJGrC7fBBrZ0LKtqWX1hBS3cLb6HnymaxpKy1u3bYyZiA1LEBqDKMYHSbANUEi2pXmdlpbm6pWPsy5GtqDYks0JSF68+kCu5grKNCQoQkwMcbycUhKMu0YgvIUIcIwWx6dodnrl6263dFgAhNGd8x2Xtopm5hZQLsjsR2WrVSI2ADQTFcLwNCPOpzAdzyqIhS5z0WntGP2y73sXXGpGty2Wk+GI03Z+XLaLaFhc62b2NV43l7uJtr26O92/Mndi9DG6jRc0XT5+0oVqp3V7CJ7b5q5rZ0aa8rozqGFj3/NYfazi/nScvb184PkD+08vn8an6+VZo4cC8bIfL5fnZ338uNmnDy+X1/H06RyWodH9/PjFL17hcT+vuF7f3D2atWU7lvMiH6s52mptOd1le8Tjum6v0jywtNfnh+XFJbT7JdiaQZZ59J4cTm9JmEl5uTCP56fdRgaooZQtazYTM3skYmQWugXMRPUbdVFUmvXAZzLj5zAGUl67xUy/CRXzM+HnhpXN/nreu0YpLWVZvfWUtt4shnEDcKv8RxXczwSjqitSMGatEsByoShDXYDzD41Gb/b59LLP++VbmSWmAXb99I3EdOPVCEJyjlgTc5z3bJKpuE2IpvCmz+vTVD2UdUi4VMNJufcDIyRIVseDFbKbcWNbVTMCksx5Ln0+iZMxSM56U5EC9XK30v8zMl9ALOYUOP/g878CgFaB4TVtll7IIdGbe5tWo39/LqRVwStmlljrO4K8iZQl88EbH2sCgpbVl034HiqNUuRNyzMrnj43ClCpqMDpCwxIObi0CDfCGrREypsh5ENLqoejcewhRwWCTDieJgciSYbDVNm+ZdRWoE1H8xwAHaXGsBZhzjyGe2aGTMKh8pVJJlRz/iQWm0my6D2i++egrShFdkslKiA7mrXFGsbMWa3ra8thilTQpixd3lwpsLogCE449BmkBZH09Vn+EhCJY7D3MSADNaAOHbl3F5CtBkhCCDelKw3mw44w2gj63LzLzOiKNItYhiT0MEbKTovP+8nRljXYADOT0hxt8v/NtGgljUtk5uKNKwfEzK7d1OnD4M1DGAEv39pMlf8a2w2PqmK1LD2ZkAKt9ZEmU459VwDKEXHk0Uf0w3dleluVTgjZQpkO+NqpUFhe0Qwjjc1y0OldGcPCPFMcgJay2oHKLFcyJfTwZDnkaSP3HCfFUr2dd8XS/KQYaWvXemSmZFAoAhv2LaP1RCC3vsZYhXVs7+Kk7s29G9OHEEtyrBRwoC2jIVLcNx+SrHW5HHuwYetSPj3w2E6nHG35uPSxeabAl5fmrnHaHrQ07WNde3a4NeGcl5ett/try/3o2RG9Z6J7BgGMQw4062PpdnoxMMzYMsmhTDPLjJF3H441ucYu7btw4nr/R5iujn73idf9tFlr5GKLwbS03lp/OUa7hIdt630m3DrOttzRnvrYsbaRSr46Tia1vaE1HP20HZf42M72Q7u+/N9/8+XT+stv//glnp/9/ot7aH/48nl7+/7U7vy06Dkf+K799Nf/7b94Pv70w8P45el//Off9Xf09c1f3P8Qr+PdtvDabFnXsZgv1z2P3I9MR385XvH+4f78/vWrx1xP2zffvlo/Yenf4/LJf3v5/ruv/5uXj8dF2a+B4xPi+WjIeP/Hj/c/fX9+g4eH/atvPtxv9vL+2+Nl+c7l19zcly1zXWSbx8kusV/CLisjly3jFH2MECIutuRo7ejnJe8UHH0csHJEmNui7McYmTEiai+Vw2e/mDUG0yqFDlnUnsgbumlSKLMVNEgBbdXeztlHBV0hvIIY5oqHSB/ttorT5xIhRJGZnKXDAoygtUqHhbwozJaEMbjmUYZGpmylj8mGEbf5dYocZqZQDfYV44AbplTGs5iQYZFrMkyspAbNuWjWsYwKaBBuVehGNBJyVlzUJ9KgS3QHGzC6LQMw9wyZt/O6LMvqtpgZhYLEGtoYR0ZwGjdDFmnMiPAFI8almQFOsR6nG7BbrzobhtpQl7fINBKoXQEAqbXibJlKfwwZAsjR99FlVJIlGPIGsWWYE0q22rLVorNmOFEKaPTjCIWUaCW2bF5iTisADQlDtXgOsdyOpZzbgQm0ipjOqEohSjHkbZ1ouGB5wICwxbOPPIQM7GqAA+kyi6RSipGZS5S+jozuyJ1JuikFg4WEERkAm7ViTI2xd7ikZV1XppLC4mDL4QhWNnxxu4wwwkCDezthp0Uv1pL5Ym4YHQt3ocn6ZWvmIk2Z9IYBELJ1kQLTmm1iskCKqQzAoloUI3MabQMZsNhOdPZhLdrJl2pYTWyZ5l4M9OSghU9xQ9YzQbCdVsUQQ/IOq5EwkiWPimYHYxkjw1cOh5m5I92RPX1PR8rkBchX80ertUYeEVi093VvOzIb9n0r6tmu88I2+rWqaDMZ1XDbQgJCVqvhGkqjwlxMbsueHckldYoOMy2NZDOA64GtRXqrs6JbJq7wy1OLPczBtQUIa0u7OhR9mIrikJRr0UKqAnyLSEZfBiW9HD2JkUa5t4o7KtakLDL3HOR+CRcIa27ioujrsqaR28lxGtQay7KgZxt3tOa2rNs+jHYWKXaXlnW5O55OfRdbDIhOc/RhyQ5DQ7pTywlcTqvsIXPlg6szlqWdv/A+xosdOsux2vUSwxv7y317enWfY/t4jSxIQ3s3C2nZETnky86kzFzSiwaPBc4UulrKU9FMxhdwaOzJdTFsjPfbcz6t+3GFd63ZsY/n56c03xNc17f9I798PG+x7D2O58vH7E2n+5PytJ1eaXtl7XLE/qLLT2Psufrbt2no79s4up9231cbx3XX+Xj7q3/83b/Znvv+GMsWGh/PNsaxaHhmbg/f8P79v/Mf9/a/+LuPdx+O08O77y+f/Hf/+z9/GN+9e3X9R7/e0L52yWwY5X73i+/HF9dX8fqf/vvD//G//wrvtfSn/++P8S/8z//95W9f/R/+0zf7t2z78uf/4Z8dzwLGS1SJ8HuePp3evvrFM//xf3D6uL/8oo2T7adhv/H+3t6wd3v7w+mx0XyEDS7A6f5+W57O9y/j5dOH7d3h54WP9+08xIyM9/b9fuTlk0lfLqL1o6EzAkDEgC0Yac2HRQ0/a3OlaGmNiD4oc5NJniyLQQLItiX92Hyh1wico2xkvQ27kS8BN7Y21Bhwr8zU+g1ZrJE5Ry7RCZe8VhU8QIpWYz0iRtwWVJmugEEDriGbpq6obPaRFvI27XQKfi3aT3k2EpkM6aaStUTpIwjQ3JKtRmUGNSlG5VaVOVmckzySKq6135wUAW8gvDXzZTGzZsrFhsktR1BUH2Ox9ZUnaY1MwdwXtwqos+KTGQwhM2v0ZXOxhZlSYXDkRGiLWaxir5RlwVxez41o3myxstB2tZydCubaHQGWiQemUIxGiOZFd+YUDc2qawmMQISYEVTNu0ubKwdjBjgkN1TAa+0pFEqwqVoFUtIoWL6iGDibHc26DEAhAJY3vl4w4YaAMzNDsuy94IEy2YjMMnE0EziUVJqPg22+aMnOJCUV4V6shIxCPiIiycYsonLSYZmZLAeOMSzHiDF5sQki1VAti0Srt13uXOYxPMFcjWs7NSLkqA0mFkTvGBCMckRMeTXAyv2C2YQTSiXjbRrIsQIjnQo0gCcn2Voyd5jl0oiEz2muTNjcCp8iFcAIUGBjn9CrBmwYmyUawTHSAom2ujG82iQhe3cm3dIKwwGnOWamQvI16YIGLPsIDGnfmjeKee1X+mjZUy4aFolGeSVaAsPp8BJRGb3cVhJIafRdVAQ0rjUVZDBz2JLWdhjNzW3IMtObJz2PVJrnQRK5LMZ1CWtguwudpYUL1LgLRGY54SZJyEIIXmFdWJjnt91OfTQbjQZaGk+WbbnANuK0AOK2NLdCP5qTja2hUTw61334yzoOG8eJI5e9H7j29VgsPOkOJ6O308Js6d45orlwcIVjKBtx7xwPGvB8fvY7Zh8caS0Zxni5H6O1xmafLuaj27Czw+CngMXA/vw6Xk4Kw6CPyCXH2pXZjyPHcnw8hmVTJE7rEteXjcLRn2OP3jIVlwHquo9rz21Z786nh23/lD3Op/PKU8Pma+8648C2rPt+z/M37XT6Io7n5Vg+jfOK118tx36M5VNc3233fc1Ta49vNoO/fHW+fzS9XNf17cN2etXeLl9iu9yffvkf/eXjH/T80/4xdj/+4Pv764Benq89n/b1guX14nEsG23Z8823X7x8WP7d/+zl95e/yb/c/tW/+hN+ePfX9//dL3//zb98d3oX+/4Ux3j57U/7T++Ody//j9+9tP/bf233pw+Xd+23b+7+5ev+wzfLb/7z/+KL13j5yz1/+h//d3/1T3//9pdon67Z7WF58xA4L5f16a//jeNPjz+eXr27//7jw0Me4/r45dc/Ptufx6/+9sM//7vjyS7XvaMt6c8/vfywIW1tJ14+fv/Bvj5bR3TneU3lFTi1exxrwHK/JOJIA6EIZB2R1ofccnIamtehThM9zI1mMkHmbmS2AUvn6FQsY2hMbNiFPGLkpXIM0jaZYZMNa9V0y4Bldd6MHVh2P7SkI0koAIYpPWtAY2KEYYheQ2kxpbEYM8JSTCCjy5JtqJnDkvBGu3XZN4cPVqaLubXPcstCmk2yIiDDzKZPQTn9TRq4UDJlJAmP24aFtwSbul64EYlJCq5ORPZQMDMrxgjeXE+08vol3FtrbsvpdNe2YQTFxelsK+lraw6suTjEVmroGTw+LbrBuPGNAa+9oMpuYpJg575fLSgh0zgjjEnD/yzWEIXaG2mttWJ60tuNggV3zGCpqUeq1NriAnuTgdZavcmiSgkZCfWdJOa0RxYl3ooIA5FKKwzixpQFEj6N/lTWHW01mVkmg5ZKmXN6axUFm1W5KQtSCEaGl5kKqTEJBcgscRndzSU3A5IBz55LhjDgRAbWUatDtDXAko5yEh0EZYEiUmSSOcxcSFeQh6VybycwR6NJtISigmt9ojKEpkyoukewUTJHwJzISJZldIqZtREs/c1QYgQjRfqy9z6yqAGBSTgodS8TURSEMGN0yAO0ZFPxDIp8n5HJQ5kaY9R9UO8wqIRGl5ALQbBUfDdZexnmmKkhhzX6INowV2swOAliG8SqwD7916vzLafZ2t04GLL0nPaqqh2lw0B185U8Um2spkQGiQbOBwokNmdgs1zuNKx1+OIwN5JxKJI6DuwEl6SZOcQ0r0OmsYB487sjmBs8e+cFSWB4HI2NI6m0wbboADIbclikUgaDMl0ZrRn72cBUbnEcPS2Ro6WxOw4IHKuJqUFmcNe6JmIwD5PlkZCX78je4cJAH1c7Ra6bhd3tOQC0hOiWiRjPvgTUF8PhC5G+qp+OS9q+rrauFyG0sDHBSmOnmwWSKxEQPLjj3E5bu5qftiuNrRHwc4PZaVlGtrWU3cPb6e7oq62nK8x1/7gupMf1GNlW83U8n1J3rx7Oy6tzaODp3iyf3xva6v3V/dXW6Htuy/VN+HH4itP5dP/4+l1etg/L6RSy06cP47Alv7+L4/79twe9hyER12whDL00R98vT5/ef3y/P8XTRc9rf3j75T/9L/9F/Ke/9/vvr+ePv8LdA0GNPjKO9OVosHb+6s3y+PV/sG2Z7A9/3f7X//x/83/5z/63f/5H716vx8p33+u7v3v/x19crh/90RqtveAaoylPWh8eDp1+ffc2o7Ueq11+f/wLffxDuyzx3SVth+xVe+a2DFs3R7s+006H32+Pj3m37v2lrUfK0M5v28rLptBlXDtPNrJFaNJXpcwYI3L0IxAJsdsIpBLZIwHWqBURymVrvtR+KIyOaPClCH+SYFGsEEBpaVku0WVs7payzAr+sxLC5I34CGQJCNxrMc1pg0FYsg7+iLJqbJkywirTrTaTWZXT/ObwrJickZl0OjH3nLVpIrdVcyKl6SU9DSkAAZ+98pRRHT8mCyTwedicG9pbqA2hhJER2TBkQfpmpe2Yzj/Yzic7yzQ36HG7BGJGkYJyClxqfHdbs/yiilbWFtxY0CVmnVvI2sV7AbnC9NIvk11B1ubwPotsvVspcoyIIiDPhXhJhpSOKdKk9DOt5/PuOmunnCXugiUAWcJUw4UDACyZ7qU8Kzs0mxYrQr1PTkmQbntsTZ3P5GTd7qhKsM+4OZmVKqzeUZZ/aoyyxeBMd5ru1tLkByttIuFzky5AjBjlgGDz0yVg7Zb6SDeZZXV/s0uZvFj/zDC4sd+LvE0PCXkoLWnUrXEUBJu7D9qkH9dfu1HGs0b+21X4TGLXXBkVAbik0JlR/C5La24y2nQpS5IKQ5bT+XwoQaIWpvX/pNtXSZueykVb9IJCoGT22uvUl1HRWvXXQMLcDUgErFUWF9Mys1g9lf+b84oYwCgKfNEv6jcW752KCc6AsCyDUACgl09QUTdq+VPXbJqLfcaBCDaylXVN4Wr0FERkbXuUJKx8Ykv7YbXzwYj0BnrryGhuDjNVGSdAuCxoNNUfFcr0uWO/hVdViql9fhjK3s/9trKqbyHMOcKDlI2xsEXAzDJUdh5yylGPNbJLBri5JEq+MaEw0j1BIJ1u9KXR3EO4vvSHHqWKMHl9oSkURd+Q5h6A4OvaMs1ba23xFlaDCYrAYW7O1pZ1O3E9maXSY5TGa9Qx4adj4dJ7bOZnnpbOTRzDuG3Ltp3yckLYtdm19/7S29PzHe183+/dLbu28UyfvoHLp+ub9319eBl+r7sTX315ieUDTm1pK8Ho3Qdy0ePb8/J1jNfbJc4PsZyW053f3T/m+U0uy1fHdn+6j+PD3WndtvXu4JuP4/r4i1/28y/+jXWz57Hfnc/nht2BiFO/Ovo+nsaCsR999/7EM57OvefRU9aaJTp7Xy+6z0E6W9hJuTy+fdu+8Oth10sghjtOD+cvFrWl8fm0PHxzvZ4dx703h2MkYYgs7EwRWbJTSXKmGczdzZYWraJeynyKk6T7eUBSpmJVwDOzsUpDseRupwdpYgN9DjimTEuUM5AByqkg4G0GwI1EVdMofiZNzaFI5VkMtzSne9o8BfGzK+CNRjtPXE0l4yQ01QNDgPMBmDQnZe0yf6YLAzTDjZyVhTaX7gIseHgaCcxZ3CASVkC6blV5BgLNM6yecpQqf46EwZt6sCrCDcGeb+I2jFYoDQTSUZgZTByhoqtwSrUmB64+RU2+RXdMTUxBgNQ03yCBGcpqnGB3bQzmyXJjT0LEjIQqS0C35DyvYYJpLvLrxzVL0iQIcP4KA2t1mjSxzNHI6hJ0YxrlvFaYhUGf6WCSAqOEntWpRXBk9KTdspdql06kzF3Tj6lMzQqPcLIypmt7CzjJmYID0bytZna7QBmSG/rAMYqsHCUvmX4aU6Jbe4BEZslkUzQYlakhAHEcw+neWgUP1ZreaJa1NmBmkRJzzpy4lX+7Xb96CMvjFEloCElMVy4RTNI9PW/1DLU9/mzU6koCTprLWbNQkfd0s5ApFnI1G+RMUypcSJUgUIsPsN7JZ8hHGcQQs8uAhUvjGOHutjpLbNUP72a0OJKGqFsDmFsogWk0VKdXNUqWxTKYT93QMdJGbVWyOjeZDFGERoMahE1BV8Ad6RTc4GuPXpQSAUg35QjeXNknwVKmyL4fUrmVWZEfzcpNLaoBssiQkhqRI2+9aJEhpJ5x5BgZJoDWYT2uUc1vzh0YptEsAFukLpAjG5lsKiQH8EYBw8LhK7w1WmaOSOWajcYcD3eh3ZvWMxus5eqaAVJbwwCaYgnKxcyUwbOk/xG49QBp4LItFpgSiuoNbV1Xpq22ACjL0gzbzkRac+3Otiytc4WD5hrU5Xq9XI4RUs/RR1lrPf3wxk+vmogXV2+0U1uDS9oYIe07lu3+Ltt9qsl89Lvx1et41X7x6vWbdv/8PnV8GLw84+OeDX5at/Xu7izsvF4P5fWaT2t7ev9+f7lc3r+MvvRsxNpfiifucAzFfuH+cry079iOv/tqu3/76l9/v/2Lf/DT7/7w59/+oPs///DFWM/+yvf1n/7ui6/evMb9Me4WJ++3nn0hX9avl5/C3v50vo8/5A/6w7cfvjmine51fjz1p/f7dbl+4sgYqf3Th/3y1K5nfLo8vVk/yhOKi41MuSlGjJd9pK1q3tnBAZOELOOAUknOnnM6r+lmXVVHW0WWFF5Z9K2yRMgQadODFQIyovMw1qlRFoVRhlkoPzoWiDV/vgrjrLyzt9RtXDWFR5/uEFOsnCy7gELtylZYmrIGm405Kx69XA1/HllAgrK0mx2PCfm5LM8qUu0BS6SpOS3PJ65w18/FtsJNdHMiIW856iRLxUVSkZzkcRDU2AF1g0LUTQIqpZD0RhjpxoLEb4IgluDRG2ddlGYJQKkobxW4illVtvINnYtgQq3eIkhZtRrlIYthRkP6bShqRZGex6RNDJ+Y6HQxoEuE69PQo0S0dazr1rW0yXerPsIwozIwC+3PUirert+NuF2iJfea+UCB3lpTRcMJqu86aSQrBAFKZIammUrW1rWMni3QVHFGItLnsGpzqDXRmnlmeKkklEYZUpGZljlG5MybAkiWD3EZ6wMqJPqmespS2zPGqZji5Skxkz3CTazFeMmOy8oJKDdkERZa2k3VB5CZVLIx5seyBCm4y92sLQcMMYmAFL06YZCQpdkon25fDCozCKvsES5M0OgeqN4B7j7KUapM0gRn65gDaHkn202KwEwpSnAU0sAiKvrwZocbY3ipIiNzZWR6aRBkhULV8Emjs7xSstqtin2ZLIUSM2n0rt7mLGDrSCgJtvKwiYTENg9DxXAarSHZsCw9av5NgmbOYDSrJOmZ8eQwH72PCGU/AtvQsWOJaF65CakxtbxcV4Z518RTMmSZMcZoEdEVhRcNReQYHMMWplXqV4Qhh2f05aQe5KoRFlurmEMFBTEGEZbntS1QNqxXNS3Jrr64r77en14E6vppYM9+SMfhXE75vF26eff7lx+f7S6yt/2oDVt0MXqKIluYNVcb1lprS9SpPCNe27at5ivXlZYsO9B2vreznw7zwQGtfnQuI+irHbjb8vL08dVd7pa9o+F6jUws8aH7/erbpS9+9MPUNtuWc+w/fmDvx3U8fHH98++vz+/e3z38bn949wd7fP/YR+zB7+OLy6D6sQPjcu2RGiPCFcwel3X99BTH3eWnH/7gn67x7tP2y69+bOMhHr6+vP7j+XzY0mREBCPz+aVtb+jx+NX9+f5N6vp8YlyO4/KHv/0OYz3lh/2fv//P//T106eTLcex0kb0/bDMZdu+fFjucl8/Po6Xp/jUtJwe2Pyr18vY1sf70/nUTndaR8Y+RvRP/Cgdy7v3zx/eXY6X8fT9//RRH3TcudDWpUcKWPyRji64V6EJupsVqa85aSlCMUKpmzOGIDFDygiFpXuUih7RHTkF4hMYS2skFqbCU4jeImPZEKNxDg65eEU+FLxTefaip3kLeYWImdgqrBP0EuGbJd2D5X0pmrLAHSBqNIWV4W/KFKJploksSw/dcLzPg9YEU4v8NAGj2aPys9MOZhEyySuBgGat1WAun5nJc2acE3nZW1XLO99jEWzgp7Y0P60jVHEzrCklI3MEbjmHICvVgOaWMY4s46Qy4tSclmvBS9BuOGVNRVWNrfoS3bqHhs+XIYEaF6fY2G+hvPPkUzLMUnYbiatoqrw002baUl1ZGj6XEGdzq8pWHN0E5SN6nfpVuBQ1xpVuDTKDrMKbNSHlKk0hEnQR0UUq0TIjJScyAvC6utXMcb59KAJKlSs1ogb7/HyNbIYWEjdDzQjSFh2JmYqgslmhEvazXUjdGLcWL9zoaACCNPdGayYjhiGimHMBSXQ6AwAt45b3UC42Aw2yLL8qSmWJZRkTOcZnUjxGNBMalZWOwFrRSGPgNuLd2i9zCvJCelmfVrJMKDHUKIfShAqdMgU8Rwm7M0FEuCSniIiyqppaNGV69anICBky0aRgP056HhhJJ2dUClPnxRDD0W3c3K695OWSFbkRGSyB1BytI+hIJgVT0duhocwMepeFPIZ7RSfLkJ0p9B6jT0PHSQqILHZHeVXAlA7blFZKyfoqzVpbhi/WDPI2/OQHPlMWps+GyBwpZ9kqF+sQqJxJtpZqBJvpcFuzrbnQl43pQvFmYEpXdMi2bfUcbaO5TEbn4NCo2GOzCpcx1NAPX6JHmjGisjJ2WbZ1pfWeg31YarWUn7W0gcR1Q0UojmMwyTAxlfLW4wSwGRy2NFgzS3lb19XKkLeOOjDKT1jWmkVkwuLUTidbATIc0W31U6NxfbXq1d0QlDgMGYNK3eefvzuljvFqux55HZt7o/HaFlmKMtt7O6162E+t9fzw6W/XL5/u7h5+8dVuS47s/Rqf3p1Ht2wuow3tr9YTkMvVHh/Wa47VNzle/vrv/uaZEa9+c2i387mdr0c6R/ZdEeyA8vg4Pvxw9svo6NyXb16//eb84U8fPpz8Y9fo13c/nc5nM2GJAeXdeuo4mbUtfzjyx+/XH9+e/5vTN/va+PDTnvjV693unv/4K7N9Hz2PjEBewt8/Xl7e6MH3r1+f754NfaQwui+EcWkQpGOs6aceftu0JSCYubeRIGvdkrLWYh70acp0q1NwetYTUAbSmiBg5HTpgwhY88PWAQY1IOWARSCVHpXXMJYSv1dhYDknxDSuDTGzqpDBplM4ysXUA3NkMh9JoGJfjJmsFj1DbhTTbvtDmLLYSijR4Y1iSjZ41hBMMczCHGqEzXy36RahhOVQFqDHTBicf9/EeO52y92XQjE0WWUwam3HhKDG6XeRYh+RZRNXemoVPbOOVSfYrLkvzd0GYT7tcb18aKYbiYhpVDj12AXNlwRZ/7MxU2hOYLr5VJ2vjgTuZhP/vLnsztnfgJJb1jBNmiHdZ9dU24r69XMFdouBlFmtozmTGK3gCFp6iYzxebVRCjYJhCFV19YnBd0bSdPOhQhCNS8VLDzNUSuPh+mWMWoiTSHFo3kmw1JuSQ2J9UvmfaSb26AAZPLWHyQzV/UeBbagZ93z+mwvA2kUhIzUNHEt7xYYmAbAFuV+OOjWbqWuWHJUUuUrKKvmJQlWGSZlpH4OJzZOMIfdWlhzmETP2gCjPD1sParpikkdmMTvWrCSyUEKQyo/TJSt8nS0i1ETfyR0FO8tE3Bx7lBVFOzyU1W6UkRERrIlfNHhzbT6csJQrtyu3hRGBgOWQFAjbaDl33Oayyzhd1qlfx3Vosqb9t5KtigRkTAvIwslho/RLdMUtRoeSKRWU3oaa8eBTKRt40plmJkA1RE2tEpcwr2RXsBJGOibgYgB880PY6rd7gwB9KaMGG5YE/2QTXgwAkhkgOVv6fQynTXqtCQX+erDy53A6XTfTq3BmkYcFJ3stiS1L81SEdbkzWQDuy3obajrsvrhZktzmiwb2tZOX95pqbARS+Zlf+vNRj8h9cXyp05jVK7UtAC1EYjDEePYuw1h95SWFtINkGSO/RqZTJh7+tJMue/Xp+e7J75/Vq5rDOPaYsvRn3G6ftxflqVtd+3kR18C3lbxejx/cfbnfQx9lI5V4ni+ws3uzshl782ajnj8gr+4f8Xz918eT29+/er89OP9T7+yVw//Pe5eLof2T/HSE0/H6UDkjkOXSq64f+HKbLF+DD3/9P6Hd/bb/TevOv/0J7uOo3cOMxOkJc2t/XTu/vz9vT189fFP3//d8ae/+Xr86Xv/1en0l3m+v4vx8s2/99MXr05nLn1pnevJwvwFocuHX54+fHp3b9tX/+Sf3X/x6tsvr1//G79qWt2+/MUVL7GvMUCaFi30Uz+d2/1dT9ydLvenn9r5/ny6y9PWRn4an14+veQwRY/+vDct5a4RcyCkiU3KQCZuMtMCnSgKJiN99WBbjOZDUIvJklYUz2rekanBQ7UrlRkBxyhSz3RPHKMpyw8yjXO+EDJiIMOUGlG2XZClogISMRnGn2m+USVSZQlSGbcjzSiFLWYGJ61icvPWwzNExIRndZsIZ1Zdln4DQqKVl+CcknCb8mcInyySqE0u8DldvbZvNnFYm7SwQIMZgJDoUmbzPnqNUzJz93IaypgoXx3C2VWEX3ijUxTcQXoTkZyvSmRCsLztzusPdYPVWatsSu12AaYHgdJkocyae5AAZSBsvp9q7+dyHZJg5VZYnc2c9EFWZrnJ/h6ojBt/BWS2ptIyQZzDEcuKsrgAt1o4mwISmRnl3UuaYS1iCKkpJZ5g+q2DKgPuLFYSjKg4j0q3E5ykGCCAKJNyxJQUEcqMTrNIC65KlWrYEAAEm/ppAKXcqkzKFJCM2oSa1GfPZ1JUVZOfmE5GzfOVU2FGq4ZsemEpyxLqtp1HzrQo6e9tiM2AzDEWJQYyR6aAkKbjmi3lwK6yJJYwjRuhDO8Sjw56hHw6nZlhyMu+Ky0zjYe5aSHYmhtoFjFNPOnN7EbBKjcQ2lwmRgc0zuZyQKkuZxzqmYdZ9ASbGZImWFFGbuvkBkMTmTAafLZYKC6iOaSeEh1HJaB4Cy4GQGaNJKEpS18oOBcko4pdBgOQ0rdoITUjnQsaD3C5bWXKEUvBc+/ZBcUY+XwqCZiVedVQmmUYPVdj28awVvanBKwFTTD3Bho8XYj9Lvt2aAQRzkAmxTAPD+tJLIPSksx0AaWp8FbGRpHlaNq4r4i2rD5W29dOjIiBxVaij4vHdsk1iVZ0qWWRcJyEGHj25/FFZjQ1LZYyNYwBX0dTh5kQsQA2rgOLQ+ZsRjeDg9t2zebRhkldF1l0ffHhblwfHh5WiYFzhwGpiK5lXbQgtiXa3aYFrbbv5OJ8uDPT8WDXMw+nv+y+Ke+25kNxOfvx6f2hn77w1+/QTnz5/WVJLoYXmU7353O++cbPJ+dpuzuv6+brRhrefTi+9+Mu8On81bk9vPqL//RRd/llX37o19Genvo1AbNTW++bcT3tsq2FvXrAcTnOr7Z/8g9++Q//0dt/8A8vv/yFHew/XV/6ux//9Xdf/enT1pbrMxEfnt4/vrQne37+w/ev359e/fLxaA/fu7bTEu+Wl2d93Do//unHFw4mttGZiBx7HEscS1sO2vEU1/z046dPY4RgCp3vrsepWCdjH9k0tiLpEAJzHls5qVA291gAMHIUOsaJxVCgWTNvKAMKJH26WtWhATa0YqF4Tn/LaTQNJTPgzad8EgJRhViJ2+ZxkPJiS7uZWtmeedr0mLeWQUkzmGlQReZmEbsjIaabs6aOtApjKMpFTr86cZaL27Y0bk8ky7tyKoNRO9Rar3K68BkXJ2cw8tSqYHryz5pMd/NmadNyhzXpttaWbT2dTntblgIGCdX/horgA2QIZrTsmekUD9XCmTAiOgIlv5qo+mfXLU2cUMX3nmy3ib4XYJEiU5P1hCQyjj5GMqefo9V3bDNxwm5AvEFmt9pLVLpRmTT+TKYCzAGCCt4EyaJGZ+NnojYmfl6xGlJxbwtBQKVF3tbtNlfRJvNmDqpcR/sEv20STOd1KGEVHaLgNsnZU+tWLYHB3Cp51iedlkDWCWpmM1IqymfYZLJmM7uWn80JUV6ic+NAGmXGGrWs2DpptsDSOR0fqmqbNW+WEzMuel35OKt493MH8vfYxpFQOrT4zslV5Kg0itmrKIORUctxzbtVP0PytYLsBt2cs3PelMjhTSqHtRhR2l+xJM6QmpQOCabPHnKoTLTifSlHcfMzvVi8Biuop/JMkM2KwzjFBnW7ECgzEhmHq24/iRJHX4wNyohJKq4sSEiByGmBS5rBDRBD2+ZYMqY6zd0McJOZV7gaNJ9AAzBmI4+cYTIVtsBMIDOuLTEGmMFg1MyewUwBGaNHWvneTmsXGoyZUMSIkpJPliFFwJaQGegtvYiB1lrCYGUOR0cI8AJRpO4gXDGokeAYTndAWMy9eVvd6eb0BrZ0eYEc5stqsTO2ti380sc8u2DIkJn1UYoDGdUsBGtlqVJEkNrHWX5m5hVrtqhAbRnNlnHdxziW6DkUivJZjOi6Htd4MJ9wC06nxTL6ZbPFEMyR9rKPl9GjMjzEhD3cbfaq353fPNy1bzj8mR/6/qE9XkY8b696bq99g+D98urouaxLW1Pj2K8r7ejH0NifP32S7eGv+9u319dv1mYUOJCXgdDOFEPn1wfefP3V3XK/38sX3/r78Lvl/Oacd3HneG2//NVr31bn0uz86C/LK7R4fPPwm+M3f/lrG48XNH45+vU51Z+vce19WT9cOtgW43I60gPt/u7h9cdPjzxd7hc0Xi7PP/70PMbIPtRzDNh2FwORleEBAiaXaxJHpgWeoFLuzANVkSm78aVqhq1xMkOahnmTYVSnqlIZGJoyhCqy7rU2KxsG8+K6F/o2N8gAkImKd6j9TGlwiwyVGpEj6hEpB2CVJawpjSxCTAXNzoUoP4OLt/n1NmHh523vrAmfvTXm0TUZWbcRU/PZU9keCzEFRbgxj+fHny2IhMycWzoum01CeZX4ErC2Nslh5s2N5t5sKeeKm/tHbamKx+Q1gFESyvNOt/38509WcIamtX0Rs+ZlAiQ01eKzklmdoBlKSFNx5DcFsUgws2hFhfPp5+vJBCzSiOmoxbnQL5f/YxRBirdddR12VrZqdYUKxbhV5EkiL64QOJ0p0shaUmeA5mxOicqklR5EYB0uZDGgCyqlsUFR+mSkvKWxfFSLl1SMsbquVBG6s4IBk9OmxLJshS1hM5IarGaxsHfOMI+bIAnVOSjByqQfw2ls8LlYA0ClYmRXZsZUxQ2n5kw/sX9IHLfLfYNAjQZFspbKwrRy9ZmXbQXeOGRW+th6+ggzGYRwQ9lbkqLXkuZGqpoMeEyCXn1MAuhpla1Yz2k1SMl5SBQrifG5ANhCJpKgNWfrYOP+YrGemnmxIWKmggE3w9pEsmqYJrWRiweNCcDME+6xRAmPKvoKdYAgs0SKZDQLWUYyY/FKUeGqXs9DxFahwsjFbBiKUmYwcxqpPMxXLJUzut5b99s0ArIwwtk6yiJko5reid4UTVKiFRgVsRDLBW3SQj3MYKKFsjWaIoaW9ZIDHoZmwxLMEECFPAfBuDkPBuhrozJqH2F7Qghde3csB6wePnhGMCzPrzrtYUn3ZktaMVFpba3PgwwDm3dIYWMsQvTRIaVx9H707JIFnE1GW2z0Fp8u7z5+enn5dO+xP/ZO0aiIy368KJFoG6jLG+y7sGzecP7iiW1RdFsuonxZztsnRGwWp2hteTi1yxG9hzoXP6/jOPT93/73T23xuPv48f3zcBwxQsreaY3mgeX+i/s39+Nl6VtwJdTXb373tV52/s3f7d9tn8YR6InR27J5LpHe2u7L/fb4xf3d+cdLe/Pm4RxH7HB+8/WndtePj+B4/unbl6sS0c4rt4M+zBeu9/bxd//2G2//wN+dX3wNmR63E348+YjH9ZfndnJvISD7y3rn327c7IS1v7yOT9Ha+X7b287oHDqv673f7Z6Z0Q9ZWkMiUgop1VcJo49QIj8bLUlSRqbSTBV9QtIUlsp0gu5ccbjVIKXb5ql0hpUWJXNLLp5yNxmB4cUTrmXn7YjmrP0z7/R24CeaiRGGjBE3vNIEmcHcUuapudNk0sAkNFmtEwK9UW8x50KmRqw1JeK2n1U5Vs9GhOm3oi1k8Vw0kTdJpPpyGz45A2LmeVkljAgjfSpQqVtdJQG2tbnnMrd8BYLB3Npo9UE4F3hA0ibHo+esP8US/XvtRa21K5BAhSJPh139/NEBqFV9VdkpwGrFjWJgo7IuXCTcUHOO3zjXk8vNkVFy6JkkmBFZZvTlTgHQYUUGrzoFKgkvMS6KAlvMMNUUcmPeSwSjWnYhMgfc0m9Sr1VBM8NAQzg8IXcolA3potU+Ze5UBMEsAEMuNb/W0l5yHzAvTlF5P5BNIw2KxG0rXA0AANW6T7ohDbileShuBPaJQCST4mDFmxCULSsaoqJ1UpqNnxBjJAzKiMJf+ZlScLP8rC54CuggwKKeWRl7KCqqT4aR0TUyIwggAC/HELIyfZQmd0QHWWHQjVJmeq01EoQsIkMj4YmwVp7vAbiZL8SaBB1Kc6uQIaJSLbPl8LrZLG0gEocPDauGBlvzAFX+jpymbTRmVqT2REJA8yErqTfVs0RLMQ4oNHqO6GO/7NLRRmayLURr1sxMcBnXaAcoKAe4UJnXsKYBgVzqa20OMgKS0SSrzYkbUv2A1tFKSIwxhryuv3kiEWpYjUPrgqTSJlZV3hsBaPQRxxFbLukU0JanvmYsjWxDdTO6te7WjEoNu1ufu+kaWxBGyzQ2jpDMhTaOE3DILf30FPtwv9o+ev75Ad6202m7YvDYFwNF95WXLfOQ6fh4HoIiMq8p8xFKKvfrAS2KfhwsLozn3o91jBzXochUzwytHzr3QfZssrZie7j/q8uya8NlXRjN0tfzHeWv7zZtvr20u/XoA9c0LueHR66vN4Sfr7teLoMGe7yP+7en7fzFAr87XZfFlvXsr37x5fNpPb3Z7l5t324Pr77ir/7iH/4F+PHLN199+9ou5+PT/Zfv7rbT2iLH8Wn58eXPf/3N3774T9c3+xfL3/3tb/P9/ul6fly+2968vDdyP6WZhUz9ac/jOS5PL709/8Qvrz9eX/f9uDx+8folvri/82d/+xXaqw+n95fof/jhIxY2y+E+LleFDWh8+OnYUtv9w7ItX50+ni6XfsF2382OZst6d3//WucG47pcV1xeBrDwjh8W2va02uOXn/A/3HPc3/Nwd2OjjE2mHmmWRSBMgp6V6REyuAgxlHHLWynWb+G8uk1aN9uGY4QdVMRMYpXIDTlwUgz5CDp9CUJpLsFC5oEcJXDI8m+6kXrpiUzHZ2tmg5dfco9IeIWBgyDEhryN6rBJXTWNmO9DyAKgS38/q3wxQUmZ01SemJN2WyacObXJtxIIADCVEUmB5phcJd0YM/PMrkGapEHppfFHmnkcaEa2ZkqY7G7dHEbfWkGgoKZpBJrfyGO6vRyjZ0MHR4WalDSGt/nolqdLu6nHMDt38SakTVaVQ8PtOtyWB9NLsS4rWPUdSmsMeobNMUdZEv4bB7sGs7KDSpXRE81gFL2BmIIsscx0ij9WRWn2HHUl/aaoxBwtVd7HXJSre/Utt4Xh4pK7wGww79HpZllftdEIo6Z0JROMoI9QSAxoosgkg6RikDL3GoQCCiGuunNrCmPWneNOR6K1dKrlVLGybBcCNC/Ws9wMpDvU0GXwa1Kxjn5wMXObjCMOyMegNTIoMMsTDrenp6q8zxuOE2MuaDLSokgX4zb2GJ1sgKFDCQWIoGDuKJFhqlKeLX1d6hlWNCuaHwA2KGuoJdNNEe6OBC2d8BkVGCCzUjIyqpspAZhbcgnAmgQEgrAtFG4wWzLlYQ7rQVMfjUWcrLsyiUyYm5c/QGZCMrGluzECbAXcWButENcIN6Q8Q4RkaVq8j8HG7Iqrh5k71WV0yysYfR84LCNckRutFXd+3vcC4WxJLsmMBEY0iD6GFfCVwQ652p4jdT2HIQMJT9LMRsU5w83s5Eq3k2+e5xF3sOUkW8/XVkI8KjsybVnd03W5pI2wZR2RsqO35BDoNjKXPfNlwXa35ra0u+HAi9vJl7vXXS2IuN5j46br8xLBdWDLtaVlNDtvfW/0hZ2NIWwX0rDh6MgtdiPAEex2WpbVucjW4dtY2mJaWhiyeXJd1oHV7PocK5X7c9iIjL317OPJFuzH5YU85YdwydOOAY3Ljr6+Obc8xvnu/LjkQl2El4NpWvvl6QW+br5ccwxfofEp3a/ffXx14psvH+83Dd/x9PHTb4+737eHfRzW6Nv6wtObL+//+O2vfh3/5unDaX+H7/8/f8136/5/+u3l33r+7vr+y2//+cObxwczow64hj0eT+6n86tf/eWxffMffmHvPn550l/9D7+OH3D963/1//o//s3Yf8WXH/Pv/urT3x0/fFpX5Glh/zRGYhXu7958uKxfneL99nrkM/JuGeef/vgv2VfLD+eXh7frcgAxwhKw9U7Lpzh9sOu++n5/MnuPC3h0xyJY07i8XK/HEx5xBgdaHIibkDfZRiJLByfc0mU/T2+fQ1tVXhRSgF2Dp4WGJptZV/UDRhpjZISQBzVSDYhYGCXjVW91cJaKMkagkLvOlLJVybA002iLiQkn1WtcBwDzKeN3BwFL0lkpYAmAKXPFhGY0J9PCaFNSSH3Jksvilqb3eRCfoDOBQXFOiAkkTWm1LgOQM12n5LDTRwK3fAUIYRxoxQSBeTUAyLHDmi3Wk0ZkmfkEOhEcRwcdYC6mEKzNiTwjjMxokxcFlg0V/bbrA2BxwxVK5D0FI6XeJqC21MBukMF9Tlrocw1bhDsCdJ8wBeYoXqeVyazHjZYWs+cwRXU5yuKkOc0wpatzmUu6Ozo/O05o7k9lsyab3aDyKvgB1U97AgZTNo1IJnL0OCz6iBTNnDJLKIJAQhE9WS+/RK8zVZDKYc2AllkOliqTaiMZfYjNpOYuUYNKqo+i6mq/QhERVBEWkoZR4F5ywiJ0axA92XoscJov1nD2oqV0kNbQFOJiXh5RGLXjLsqeFJg0C+U0aYJKdWsyZmuxbu5DNPJ0MkspMjoc8trRE5xJvaQ1QuRICgyIjpEw9PAuZCpoh/li0pbZErBmPRKGgWZGOkDkEMJcMTdIvBGNwQQzHZm0zIGBkTokW7JSQ46xC9kiLUzK4vZPvLxiPqzuO2tsxt7IWq2klBX7DsscRxbJ2ElzW+5fYmHCFpMS2VszS8flShKMA1vLxa1t7di34HIa7RSt0dW36EmvPJNVwXRXWlj2fBE+HgeWbIt5s2P1YEHChJno+2GN8hgtubbVzCSabY3uMPq5DY+hUwdGu7yYvCVAjME9MVYz42KeTsu2XLsE+N3ekO5AYHXzCHNp2wx25OHaL9tpy/7sdhhZ6WXbcXjyOPk1m9l1dLszt2N5vbfzp+vDx0+WH4pfCUtLS209NfqAJ47nnWc27NJ6vmPf26JxHXvGMZj0fLnSdfQxRuSyPmzrtu2fLrwSjm7N2mrPn65m+/HYznvct+3++gZfrM9X0Z72FVxf3SUJPe3jYveI5rtOwvXFr282P612ec8ln54+PsNPm7uuqa+/fvjbD3E63rdt95/6foH1Ay+fnj7++cfT6enF79a2Pb751b/9O/7jX7QvP3zQj//xX/z0w/G7f/37f37/ruflN4//v//373792+fn5wiPvmwtr8NORL5//bz/8f98t/Hl04/7f33/4a/e/f7/+eHTL978s6/O5/6rkX/9L//Lv/onn/7FL2HPRx/toT/eHR4rm77/y798ZX9ufdnyi217Oc6/fPOP/vLdah8u3z5//Jvv8pl5OdCTLY9jXLZV9wgbP8Wfnq4Ppz7Op9ND3C3Il+/tY8frvrd73uupD42tBW0UQumLDzf31QYguAa9eDrJDVTvteQwk7BQSjFBucd18aPlSKEgGUsfPQcvBd50bgH66g1pZfORBJo7ywqxqD3FQTKLEMtlYcDgkYSiUci0jJEtvTzmsjHZgBxmtfIlEuxYygUqM9WcZoa0yama+1oyRVrljdc+LW88HwjNQfMbl2m6PAgMFSxf2ytYTj0K5xQx9R5Vx5s529LgS4PBlm6E8pCRQ1CMHvs9M5V0wGduw7qtXFrN1E4Q1gBbltYSFkYNr3ESIxhl6lFSo/i8hCahApw0d1QwqAY3qU33LJQRCkRbSAjWFtYS+OaEVr6eRYGm2+S0Z5AYkUKO2XkUGEkJ5i6CXBZjcZmUrD2xSTnco6hLk+tWGmURmChC3ojGLFxPRpm7A1DLCjA2DlgrtUoYDQgzDWYy6QaB1hJhpQySPAphpaIWwTlSNERFihBFzSdDZlJ2nTLogHK0zBFglAZsbliymhhQEaGOVMbUnaN5Hs0IdgARWmkawFzyll9nbRYqRje99iOFj8+cD6YMzSZrzGgWqUhjrmCMrfYomT1lJYsqTMQn3sNM0QUlnIpagBzm49gdLeJmXEdU7BSpHGAfo/7AHd6cRikoa8K0uyv3mlLYzg8RifQFzdyEZeuCL32xPLuZzNhP5HPjsqa97J4jTZBFAgiCaSBKHORHbe4FpOnalGmuY8SIgXUHECzKXEYPRZoPGIXMhZFji9A6YNsxgEw3qls/1FVJKKCMdJtNr1kiUI5f7ubraUeLe1udWLdb5kY0d8NIEbm0zMEIW03lsiMzhDIak27GY3NjZjqvHc4jDnn2NTQCIvaTiOSQ+7LAltNIKYyZajGIxc1AG2Z0pudxzTXidLfY6iNiMKQwmg6YlI0xjiMTx7ZR2dqws5JrP/vDvT5ixIC3LK29M6pvTyMxmLDguF6xnNbRTvfbBTJfjbDTecfSuAalYb2lDj/dvdbpqx8fX19gzvP93dKcZkQ7PT7e3+9XXK9+etx8O6uh7ZdxfffHlziCd4KGrzrrJU9PzgX49Cw7nV8tp9cPR1zP62kPen+69vMbXY/r7h/beWUaV6Mvp4e7+8f7V0+1/H73r//83eP6ev3xuwt/+bB9+8d/8l/9y/aXD4/bh1zvDr479hH92JXHfrxcxv5hPPPPl+/w16dt5YrX9+vyn/x7/8v/63/xv/rDt/urEcfzb9/xux/++HQMRLtvud3bc4zsoRfbP3748fd/+vLt6eHlw9/88cvVz5ff/eFvHr+73v3Y8C/fvxXYdd++PzUz25/z+7uXP3x5erx/86tt/eV32N7/+Lt9i6EF291X57vL1bZTv/J5Fzy9H6GM7FJkrZOOfY8+mFJRo0xKy0Nh4LQQzMjMZbElE4BGEY2VLYXKg7OZeNSGEA768MbpOJNL2UKHVqe5RNYYlalKFAfI4tYQmSqxqcBiDAkj5ZJgLRNIM5vZ6KLKPXckrEyHkMM//9savCYxKZEqAVSdoyKyyralYmmTglKevTUTKyORGCV3LnPMGuVCXjZUc8o2o1FNVtCZXMisT2gGie7t9HB/si0nqwLBY1m8WWSYgkCQARbtWSRlgLlHHYEmLF6TQqlo8hYdWzVYrmmxrEQUzaiI0GqaHlosnllxerOswG9+KrME0t3NzSgrETZJWWshsxBSWUHz9auzCrtskscmCm4TPiWUdDOUInTSnifuPP/J9HkLWnowsLKzKrDdhaUhWM4MZQGJCtEwAGyqPx0jR7pIhJYyRqJy1jmYIRFajAppsUbQnMaUFOPgYoRHsZPaglSPNHoDOG4gN4WqapgmpXNsBVGQBCJbGVoI8IVZDthzPwFWCRWUyij/MVQPWcvlDCvGFehKqUsR5uiKBqY0gAhxdPWE5TiU3TOjxOEheK0dhAijYhB0V0wGw1yylFYLAaRY/3L0oUx0qCEN1ajmYMRwSxNBGSDSwIjMZHpj0MiGogNEhG0Dpg5LyTXSjmBPlTP8bWFDkpw2jYDMfEVM/z33dUMic4TbWVDQbUMCPcjWpo8bPd2jmR84teFihCR6IwD6gkxPenRXarQkCrOPuQCe4gVQuTS2NGkcB3TO7AkoOJSRtM9f4OLelANpnJoMmhnTWvO2hXmwM8byabS+XUAv4K0FW/o6mm0hwwAAP6z35ejGZYToFgDFGNYOHzhGAUbs0e9SI31lgsy0AOIYkeudnfY1mq/kutw5jds4dTv80s0PW3KRhdyPUWaUsGBrkUizI8kwJ0b0npkJZMQQBhS2wMws++Gt9+Og8eh7jiPHvhgGEj2fDnUYXvrLtjVoxdlGpPpYjae3yzFisTweXj1F7n3j8vH6Zs+m8xuz2AeW8RSvQ8J58dfC1iL48W5Ra494+5sYW+r1CdjGyOM4lpMNO05f3n39bWx32/2y3u+n0/rm37r+g1/gi1d/iIdf/rPv24dPbzxe3j6ub+Pta7388hjH2//o23f+xX9CvFzaeDjZv/WvHo/l9cvbu7uP8YXl3hIP35lyxLpfX17WkXJ4Lqf19d2d3b8+3X/9/OMvfmEh+P54eXr+Q7u2pxc7X78769LTUo54eHP68iHe3vXrp+f3p7Gkuj/crdvCxcZA9m7b43VvuRvS2jVabUBaJqDMjIAhSg2EjKOHlJExNDU7gxgRCjKNMSalxRoTniVGL4pKCqlRFn1MIR3mVFqrcEA2wWiuqBDDzyvLGyZsquj5lJF0pziSlHKkF7FTkrncpmMEpxVkympwn7xanwe81eRh5b5U4HWFFbP8MYtvqCnsUaISW2zu5nKyoIvuVftPF6d11CQxUZir1smldTIdEH01TSWAkN3CnL62ynYCae7mrS2tgUiSVUNtwv4ys6bsabet1ZCSleVYBfBWYTGZ7CV5llA9TJYLiFo5DcloyZl0BMtxIwTnLH/C1COX3z0+4/NTvlvQm4FS+RLWC0/thSq1wFnyaIFi3qjpBZgXO6s+XZGEMHutGsxRnkwIQKX2MQCtmWjIPkRGRKR7lYJ65YSicu3rfFTtd+u9Wy0xa2f/M2g+x/rsI8tdMxDqLJpNjOwjaumizEz+vW+lri9zkiV42+XPIdFr2xrJUZTihIA2b0xmiNVc/by5nxdLoDQ4ickJZRNaNpPJvaUgWBVZ6xJT1gaMTr85zQhEJUvWkqD0ur4gW2nDgsWqFGiGzEDx1msPkJZTiIZkjsihUYZ5/KxfQrUhpDvDTGSjGVRWbaN7mTQqM5ljiCMl+1lgphkIUSQMd3PUlFYEoRHRy2EWZbVtk6tHd2ai1edLJYOeHYdyDAK05o6QNddgDo5hokaR0RDKNHO6ws2wNC+z0Dyej8gs9/XFWaK52jEQ9OKeSlDfB3VjvMx7nm5u5oC1bTCbl456acTiXM5XejFdkllsC8CJONCqnW+iR3q6qeVCb761lddEsyLShRFp0YlUB48Ob8uSwGpjsWYwgwfasbfrGM05UMJRy6TZ4m4LxkF3b6sJLc90Z+0Y6fS0RHpD1OYqgEq5UfQYjJeXTy+XK7id2GStiy3URzt++uWxj+20PKpxDIl7b9eXy3H6Kh9fZV7UrzlT5zWOp/GwWdvOd209tcVHZu8v7/nw/OP5JF9fffl1w75ATz9ec3xs26ClNUc/1uOIwHpavnyzS9uXsWT3tm79ZQm8uz75fv30/d3z/nwdL5edz9frdlX0pF0v6ynRfPmqv9z7/XINe/4Q6w/vbVhb79en+/v9opGM7P1ghrMtfVta3+6dPfXbd92f7OPLTz89P17j4XQ+33/VPnzpSvYLFJmZzpfHMd6cFr+s/sU/fD7f6+vr5b9ty2cesCKF4kAL1lSMyvkQuhvoLdqkxLTmQljl606mgqViZFqzCjWhtSli8WBFi1ctDcRkJZe/cZqitqaocwo5XFIyJ+WUt8qB4tIGEIEIlBqkR5jJVHkOU7kCSM6c/oJlDZsl/il/QysmrjghaOpGsIZoZprgN5LmCcLM6LbUdhSg1X5PxWAWVV4CpXPMz2fm5EPxJuSg0d1gVjyakI+Y5kT1ztP70epEqOVh1Y+IiCn3KiP8+g9ApSXLD6rswqY1iCZ5fFbfOQEDyKnZztre63ZtW5lgTT2kkUVz9puA+HadSgCWmiKoKcFR1ay/90IElBmpSImMubPNWvpyQgVQItw0+c1WtXcSfPWZOnAjvSUw4wbKnLruUMmRtxxpAEl3wAlokLcVMlVgLkmopdMrx0kC6PBkEZNY3mhWnZvBmN6aIjGWklqr0vKm6WnBG06hjDtQx1NOP6TMhKVllOHzyPlUdg6J8ma3tm3aOApThjSblyIdVnIGSUu00q5jOmtQGWrqZK+d+KSDDQCFlwOg1/v1OZaVzsg8SbbVvbVSCOnGayuVDS1Rj0pP82SKNxkZwGZYRiX5VuOE2TYWO14ODjE1POWCpwXCFS7l8MxwM8UAhiYAUeJY5Nw+zV+W0qqKTcq5W6FQHlbI0l8BSkVkVIKYwIWNy2LRmH1tGdVpj16tZgCuQD/CaKDCXO7IwXnN54Pmln30KCmCzDIDR8J5Yyuoz4+fygVmwUnH5NzTWCr7yAjYqsVXaCGlbADM2Fq4w2TNXfSFdCqIU0awe8SaRIQz3F1Cv3DI0KzZ6kZufZjlFlSO43q32XDycmGMPdMNhxFLf38/aNK6HlctS4A2gubWYoyUjhEjm9GyKwPJ6P1A9BHjOEKpgJedGzNq7FCOw8++Xj5lHzmezBpWuyzbQpmfPJdz79ceI1PqMbSUUODYh7bzsfeI/RBkq21oGePpcjzp5TLCHR3tGAiGLQ+nt199aQ//5q+/+lLKR4vx0gdHRLO1LZt7W89rMnzvhvj+8tOHO3/327+zZ+GlffvL/z9Xf9IsTZZkiWHnqF4zc3/DN0VkREZlVVcXuhvdoLApBAkIgB2Egwi35H/jj+CCwg03FAqF5AoUCkkhATQa6JqzcorpG97k7nav6uFCr78sMlYZ+cX3nrm52VXVo2fgeLf4zYdvPr27vzsGt8VYIZn9JS79dLLjS2+L8XkoMp7Pl/P5tD8+LaPz+XP74fH06Ys384Mf74+0ffaFeT683T/l2l9ulvzt+Pzp93/28ZvEdv8OhzeXdx8Ohxssgezny1PvDz9fTg+33duXn3+67c/rwsPNmxDZWru9i5vLZY8eobYpKffWZhNfp/9VvEHVdIAyFcrJmUkwRsXxSYERMdgyAxG2e2RClZeSM78AU+SppHl0qKIJOM/GEXRMS1mk5tSaYqHDRZaqA2q6AvSMzJBPqGTIEygv2Rqd4DWVZpGjariZ2bWzObiWQKl+3+sgUwNMQdQBlKslMmpaLtB6tgq8FlxN2yv5dA+YVZhzJCs7LMAqW6Gk8wC1+LqQ22IFJBct1LIMrt1b4bGV0jNDd8oPuw5Lr/oy3T7APw7eExUHWA0CbVbA62SrhnlLy8HRavqoydNm5VJRPaoEp14z1TAbnbxWpVLfqGDgP7LcrrVdUR4jVWTLdPMfK5eFUgLnhPNxLcs5oWkWMowZIKNkZqndMilSFkJVZPEqH9cVzZ13xVTy4AI+Spo1YfLy48JsLuhqZT09x0ajYYbyVJMhzCpa11qstRLZGo1ubMVtQIBGyYNsWtiam5mqAFWbcTXwIDXZA5PpV0tcgPG6UuCVeqBgS2O5H9aFhyFTORI2FJpmNHzd1RZhu+Z/A6yg7xkSYoSVhVm1FihjnswoKXkR++ZfmeaYYm1Z6hZElgwHg+jKseqEHGlL9G7llT5yo7WhSFkI10jH+srnFh4QEo68MvPA5DT6gLlUsi5AFf3iK5NFMyvtuSWQyTF6H57KhC/NvajaDoHNJs1SKAJAgor0DDkdbAoTLCL9lbg5db514ICmikVS1hA7cwxt9qKZqRFYRrj5ClKtnriU5JaAKw0amPDbMJNlelg5aEkVn7HUIxIchExdqzNBegkEykrI16X10ROhPjLVLJFx3s7gbhGxwyDT2BnCMGRkdiH2hRFsqgi0dWPsDmQo6o3ElJQmMwONy7au2+YXWqxJneOUntE7wpodFoZ5O+xuJ6GH8rA5uSx3N+/x8al3jLEtWAfMlrs3643akU+7sffIYRZCc9OgP53P+9KBWPref27Lac/e83mLwZ647EPmKdsgcc9clzXHuJwPY3/6+1//aG7tcLd0bLebNSIRl0Qk9jESY11OD/tps34+K+LM+8Ph7Xr+Le/cbyz68NP57nZtDaItS0QzNzX5ethOuZw+tqc37a/a2z2zvbnA9O3by3o4nfPmfsPNOkyEdIE93u55u98dDneNd2rHvvNme+qhMkAYpelta1LdCU8hsk5bJ81DICzBudy5voCUpvH+dWAExwgbyrQRPmaYbBVc1UbSUuUpKSkiHYpCNGAZ4TlLLwhUzm6JNKIG4yyccsbH8JWb7Fmu/WXoaEQ4igE0jQ402/I6uiY+Pa+bej0+wYkfzomKRSae/TDL7drqeuuorlWy17lAYNKzqiYLnJ5a8/8wM/PyCqJnLLiWkKJwOQEzReSoXdh1L5iZOY30rnNW/Sygplk1m7ejai11rVuT3XNVTuHVqXrqbQVIzSb8dQWNDSDdzGhNNRrW3txmSSiHUb3e41dF1zRvroG42rScmTbebCa6lR4SEPYxXKBftb4oz4lE8bQc1zaw2hHOIAJFVowpcZGzuawREYRD0RXm7ga5aHBMUpcie5LFCUcizAQkLQQmYjqXTV9oQGSG6M0U5HXKXwyZiEgmxkhllH60PL6pa9czjdUAazXvYOJBJAo/VPl9ZaH8NPNGQ5H/DCYgRlWepFOJ6VUxLT7cSg0OOrEejEYyYY30gBmCTfL5KlVu0fVJDxJZkRiZsH2HoD7KHspEV9okRnjGyFB0hCMSCyFaQqNnynA1s656PsGcDNBSq6l5BXiA7usCmov1kC+OAneEKNeohhBkxYYq8MMFRfrstjIx2BVlGpsxQggEIkIuIKNl0GFCJLvFYLr1rohmYk7tFZee1pjuq3VTpga6xRZRVgJ1pCXJFfuIwMhk69hc5kFmwjWiumlKw0RqaLZfdbEJgg4FLUK07rJVi3vIlxC7mdvIiBZalKOZrUtblX3DzK1wN0bGwsKDkWwuv6w7rPdYmKdnbMNKmS66IunL8c04Sdj7UQZqz8W3ht7287q1x07ifDly4I/mdZU3xUZ4wxFcb5bNuLbtsDaQRm8LYW01yMnkst20BYbuFhuWgx9uvrQtmw3QZG1tndzMDxexjfIPT1rAeHpKKrHejssyojESvsTtnVpLwvJ0wurr/eV4PCj74+e4O+HE+3enley4nPb48od3h6dLv+xLjv08IoiE63L85bJ9uJwWHmxcfvwv/+77/2Q8P7z/s+E/fHxfhgNE75eX43PToPDy+Jjf/70Wffv959//9buH0wn9GXxqf9Hul+M+0v9F/9X7bZVweTm15tt6aFoPxw2HX+D7X9vPX339/f/wzdB6+Ho93uLt7eP6/q++fHzKR99PRpCrR/CFl32ztqyHm5umWzw9pS1EhlGPurw8vQnlsDS/7M4+uzlBaM3cbVlbThu+1lpjihluCWV3g7tHSvDF2YbDCLci5rDAIlTqdQqUiRbgkGdwxsGWAzGIsMoIhkoUyisgNkCPAuhqVwYiwrqRbrBs4SzcynxU5h6ZbFkl0ARGNpa3jhuNDhjzdcbQNYfdDYTxegGFezpJNpk5KRhcVn+9BMYgA2YK46RgaA7FkxEdmBtim2EMJFHiSQKhmmOJZVg/sb3s7gJLQoockZkjJjm4CJrmbV1bszS4pxLhmJZQnO3qbC+qTGr+O6t6xuzkNdH3VlNcLRonbcg4M1YxC2n9LGNa/eBU0aMKA6gjQFfSV3U81dNMvREUoEg3lltBRcmSurrdTTPD2QpcMe76GTbJZUxIhnk6iZZZqQVTMGXOQXrRVFjyYTemmLJXm5KkceqgZxZ0XX5Mznog5/Urejb1gIcrYIhSQSeQeQ1SxxUwJ6T6w6IGIAnUiBhzEQ6FMPZMNkMBqZSUhpyrn2q0ir82F+lGoITO10aJr+AC6RrLpBukjMhUyAywlJotxWmz67AHTJKBwRHzupl2DYImEIR5M/XAAtVaJr15WRRKCpgiwJRZ0ayRxVAnkKEMWrJtFmY8+NjoA97Mwy1BDHNdFmVzjlHcwqtuq+jkBT9DhswZqw2ZYaQEt/QRJBdQYS3NTEyMnupqoXSGjJkpMQLuXKq3zAHBOcJGSuqlcUhOjpe1TDN6+QwkB62hRQsHrR3hBi/egDlGIswAaO9MO4Cjk6Oc3icBETCmQ/Vq9pu5R2A2H+ZBkpWqSjdrhm6bae/LIlCDlondXSIitwDparEvq9thcSyHHqfVaWa2eVRYq21rsyXNjs2saJNYIrHAj/aSXKxhlUUikzm4JJHdibzsw0KJp9v7NGahkAlBsfcB9TaG0dkMyrw8n/3i53HuS/MVqW1b2sbMc6CfQrx58ePhoARTEVB/eviyrBzRI/qeGAHlHov2hnbvQdAaAGOjrdu63myHu3u288unHw8v5208+8vPD3r4jONpEHazbgt6oj/n0rKppbCOwwec377/p/86jm/i2fY/7OfLy5doyzYO68E3Wxc/LgvcLw/ndjk/3G6psPVms/V4vLc//eCXPI98RqJ/7BFC65mX07ON88t2Pv98/OE3+e/e7P3m23dvvnn/i1+e//yrxzdfvUeaW7u7PeZT4807exoC0ALrJZfTncbTC8b59nhuh+W8Y2lGXw83p109EtS553kkt5E5MjqQOUKSRmYoMpOyQjqLmwzIYDKXNQs0d3P3dEfpEW1K+Thj7yLRbeacsMg4Vg72BpTUJFRT6KxhV3RIVctoYZNUzLnhqjO5cDXMRBpK8LL7ed1OWvbQWnZDtUW9OhlfGUA1DCbiujqdW1PM8/VKZirfCE08cgbSzSqeVxY0r2fy1dh3juFSRJo3WoLJGKkZIFusZi+V0XWdnWFBmjRZ37oOjtN5RE62NsU+bgY6HAV/aZJsJrW1QLyJb4K4TulJUNZqtYDrgIm0MngYIyItQmVORHOaubfmBhPdcx6VbtcCbiWAkVlJs6sMWoK+mJu5k2lQzX/hDHoVRytGePUuZTw7jcSzFFO02gmKDLOkig0uiVOFZlAfkTLjrAuEmDkdbQ1tQUYaI2hWck8oFbVbsKUsLnBlBWNOnAJVgIwvinh1PCm2Sv7jx7SyFlX+y9NFO0vlIQsRzr1x9aaFDNWdQCIXLsvCsBAyqwDPYjuBEEpMs7xacnl5VTl0YGfM+MMoIdOICCKp3sA2VMQOY721lTgsJHYuOcYuXB03UamDYIaMNdSZxrwlmkpwT3hbBkxCGayItELNpESmyVrfTcPXriFFEAwwxrhw9GGr5hYq0hIBm6B6hXKInFM/qFZeW1DsdG+kcnQU8GRbGtxal0OW2eRmbA5hBohsPJmursvezBGtgWmNGAaje+NCR89mBCRTeXCakf7S+2g59j33LweMJODXxAU6IjXEFSFkYMnmhZJzSavYzxI2w5HZs/ftggDU19WbAmC2xZxGZThtXDYw1KSRbsKiVqGROVbDai0wLHciRy7L2VSLMbqvjc59MWZrDLZaCjgvwGieuMTDncbRiAU0t1QLZ0rudKY7geEwZIzE5im6LVdUyhfPYTYf6OSyZkd7uvE8bG6xs+PwiirCV6xcYOi77pbVctvWkLVsN3iMuPTL+f2zHfLsPT5+WteBtW2+NutSNt/3y3a7LpFvlvh5+Pbtr97d5JPH8u7rY3/Dw93t51haNGFZ2Jalf/zLH778d+f7N48nrpbAxnd//jj6L7zd+bf339xLXS5z+PH+xsZ6IA9v75+3f/Hd222sX8f49qs8Lqc9duRv23J5vuuHvf/28Ycfz4/OfjpvfHp8OF90fraHl2h/8u+vcfPE9x+/O2zZNZ5Hf+Ll4/Hl9z8+3Nx/zW9+ofP+eJujtcXeMN9utw93x9R6/hl9O9wfz9qO+TRy3/vi6Qv2RcMZ47YNilgkH1McAZUK1Ahn5HWzUe9GrauEDFR6MJFi7Mvakxa1TZv6CnPQlGS2EItvXFAfQoi05sV2qGr6uhmUQJtb28LlvJkBXiKlzKFqd11RhaWegskRSwMQ4b2MWuVOFd/TdC2fV7jWpufwLJlSGkadW7XWMXFSUeao+EcFB0ElFq8xqPiZ1xw60NzczWjeFm/LErk0WM3wWWKAPhrcfVmbE0hbrLlb87keSyZzGEi4C8hm7tO8y5u5cuwWc4X6SmK6Dq/4Y6OgK8MnZ+/RSkUiK+JmzUGWRETZGPLakGh2Lq8zan19rDl2Vq6qP5G6Gl2V+DiGz6p/3XOmkPAqfpro7D+ae4u5O3f/r4B3XTuyttLVA1ot87ymaIcD0qB5ocjVhxRNgDR6UAa1wuzdKsTFOOMFxD8KYjJTEalKbyCRtK2J7kpYc1SXx0lBQg3lgiWvTsqqhWvhz6opscTHs6oVYB3IARsjMqH6bqbdpE3MuTK5MdtS5vxY8BhYKtsSlSymmPatI9Ov76bmF1soAMryw92YUaP41WOlNuAKjaTVKihDrawmDWWeDFh5oNq8pEnOmlgGDNVTSWYjFAp0XxQeCcEjYnWNy0C2xAqISBKVdXId70HKNNc7SiWHVGqE2UArOzIiR2KAMgeMxuLpmRFoRqdkSlKZwZArxYrtdFo1/IUm9wRs6g/M3Jh7aIEv2yGKk5pJrzQJc1g32KJaSrdsqQLYQDO60YzOIMnzEDJpS/oyOr3Q+gpKKm2ba0GyNa4DhysLICFYdBrNOMSLD/VuJJj7JtuSC5bMGNj3hUmDhjX3bbS1wRrNNmHNfaQdTZelkdfAUgJJZx97mnFE0rxR2VbH6FSOcx+FymRGwhijNv8GMz9siIMz8un5fIkx9pd+Gd0l9cx+GZ8uJ3RhZPZbXYZg23aw9kbe7g/Lsh9jQDAcjH10s3PD5WK028WW25fDjS/r7bvD8dsfU+N0Gfb09Yibm+z97nh7OB4WkJlYaVjXb//5b77580/bG94028zipW+55SkPTzu+HBWDdcRkjzEGx0AMW+6WsBHrx0+fD6c8fX5+7ufL5fZf3uGbfnho7/d/+vGr4+Femy2r2NrtzUsb93f24cMv3C2JI/0yHn764cvnb18u+nJztrvt7e3TT6uZ+8eXn+4eImy/X9bj3drEc6wf48ZWradtH92jS+AyjjxrwBAZV8tBoLiyI652vpKSV65GXtWKBHPUbOAaRPSxehbuEkkJQeZE6AY6OmaBrMPHXVoMdV55JfHkldHKKxUFgq7uh8SrRxCAZERkRm0y5lSHuZKc6+J52ESS11F2Fn5OrPR1ugXzFVQEMlkOCXUscxKEUNqjWT9ibvEkpAIKraZrNdZ1jqJo6dWTm6Ky05Ul1KiiRvnSlkauW9HeZn7SPA0mTRuQzMysuZm70X3v5oAhkXsicB3AXz+croPFP/qsE41GTa0Nr2dnhfzZ9MIqLlVc8/1Y2RkSFBM0MNRclX1klHO8Xg2655MkJcXslSkcxfCq89qu5lyMArdxveyJPCSTOTfZsx5e3TLnF2sFgSCUIWvMlHlGgt6SVvvieLUMZbr5yHTVNJnWzAGNWLwnGvuUnKM6LfNm8utnISoVZkLW1c+U8njuwXWlKBTNLq/kO6VMMU1AcllWa8rwa1zz5OUro6cMiRFIul+NqokK2Mu540iVmh0J2YgcgUocUJQxXBhCkIZr7FddG40V3iugzDqNFl3mnglrzTWxk5w5UWmKTFPAiMDiVFBMbNVDeVECJSv6fOEhFJnWo9Vta2k7AoQPKmCCteHmAVfCGQuiHhOQgvnETuqOyyAHBEUqABNTymFjKKHU6COi/FiVwMICg0Cap7WlW6AE6hEuARophWgYFUAthIFlUgshy3qcCo1zT2cbbb3EupmEmMnQE6CwkUlDwi1f7d+t3FgLv81EhiXTIkyCeeaCcGTQ5S7zOr2UQ0smbbNdqShbHxwjm3kjFA2ptsQhMeiWNGa/2Bop5vkLMo1seBpDMXwrpM+bNR8XqMcpXlxihEKkZVKiIyOTyB7m1uxi25GxnxqEfj7XQio4zpbJnlIErR1WP94uNGV6Pu/nE5fMns1X4s6g3vNFzC9dI3zP5HKgvV3zJQ+p1M52CaxN9/e+flCSN28+Hk5yP/KwLqf9smE8vhmHp9+/+WH98vOj7/qrr7tWLcmjZWS/XFp/OZ0v/acf9o9ffv4Jf/+Huw9ftu3Zw8fj/vb25vTzN/bxN/q99vO5sqikXXnax96pl8t54PQRpzefPp//xA6n7hdajG/+4nz45um24/3Zjve+3eTak57miy/DPSI9v+zHww3vnS/bltna8ebt+Xk1X7MdvG3BNLKZJR3bet6WO2xrDryct7erlvNljDG4X5Dw2xvsQHqe9+4NLhmYohfa7CGaI0KGUZF+Zbgzz/icMCwVnhEJwjwTiLAJgNbbZI3F3THLMvMtPrMjwaT5qLLHqUe4IpiW5QVtOdUI0+sApBBM2ZXxaBZwJo3MrMVj5ZtIM2K7quzriHVlZQFVwez6S+f8SxUd+VoMsmQjOY2WUyxpb8iibJSz184EQA08RL2qMC9TJSsddTewOSJZqcUT2MpMP8xFXA0kNHNfDu36v6lJ5KojaeEIwt0gZoXGkZjyk8Qf6yxmqrGEeXqUsSiIbEHoKp6xBqUjkZpBMVJSZXc0p6+c9V0yU4XsFC94lvY/Yqd1h2cEQJ1bryzcBNga5o662pBqvYqsVLt5m2YZxUGyMvdmZcHTqj9o5oZcllgAilwYvSeQ5k5dLVdoVkyC8vBOcx/1+67bYKvqmU5nzj1FRvQzVi8ed0gjiUKY6YyRMAZUSbWZcsX0ci2UKAucludu1hWBHW3PwFqcqSyWv7OwH42YHy1nw1B9p2qGNVJRSltMRhw9gn0YKswwxobWkubLADh7yikbTSsau7XqjOg2osD9EAsbUrSFCbewdskWRrO2NAtLWzfSjDI0580uUFxJy3CWc/PrEKwBwNDYQtZaLp0KWAbD2nDRjUHI3ChHVKhH8a+huWZRQuaKSImRMEQKkTF6XwXE3nfso49IdT/tAtoAWqOk1UbkEpJdxm7RlbCWl54+fEUyzoIymoU12GIj0GRTk1XMUPoh9xG3i2kM+IrsYyw2VnfGrLDbhlDXetOZ1mtfYSI7UN5zfSCR69gaGtohuctNfTG6d3iUIG54nSM0rIenx4FLs8yktwHCzRIekZSd3bodV+eyvbg25lDSO8M818Nmz8P3iNU8ezTzy/7NA3PpH759aBEcGswgLGG7Fo6R0mKwhuHat1Tf+WZZmqCGhZZmINphRTS3tuzmYzjWwO3t29vxdLy9vf9ol4h9tCXzsCxLtLdHRezn6C/KQVtXGRa2Y/NDv79l09ONLrAcyg75y/Pp8emlGxB6+fLlx/j93ck/3R+fH18+H99+eHu8XS6t3W6tPV/WFTdvP97evnl7c3szwsgeX/7+t3n4m+e7z++X/+Lf/2/e/9VL/4ef3nz1Q7898v7Nejz6GDG0j7bvmdb2S4a1RevhX97f5zvefPfB/gJ//k/+6befHv7wl+f81en5b57/9u/+7m/+R3/9u/Pydh8Z+89fHj49+n5u6Hcrjm/egnfLrw7Pti2XL29+/J7Ph62dP8Sf/MlXv7y8/Za9nY/PvnTr4yUi/GXcvGm3N1uLl8+Z+7nJrd29s4eXIX95xG1vfsB6OOWM5wSye0RGRFYmhits1paoOEJMbJOJhJnbjG+RRYXVlOUxJeBAHvR2XEYipYBD0Syz21VdpNlAcxpoVKGfSURwC9E6JDfZ4sYFFqlKvgFAujoOEUYsrqJQkpCKPjNra8jouCJYAiVOrxABpX6ciQqzTJVKwJQ5cwxed6sqFmfxnEjSFrcmpEMNLPfHKkFOQHB3XxZaW8qE353L4ik0tdvtcNiOm7G5lRxijCUbOx0jKQMCpiyZolJCpA3MOs26KZg6JUi6ZvjVsEqfYRb/f3Auss3/0KVUDTKZgCIjBmYEvSUY5iS8iNuazhg0mBmcJT/RTIiuWwrV9AKgktLpvGo5kjnKDKpmkNqRYo6TgIlwTkcxSZzBqGwWKVnCwlJwIHxz9LAOZehyat4apDVb2+ESyh7ZRHrKTZdhGruNoKvsx5lBhEra6QXuZu57NmZi2RZDotO0oAfXLoYprQUZNcgRMKdg3toC0kXAvKLtzOCJA59BLY5OTwfMIpPe2JUawzaaZ4ZYoXswJJiZU2fMGRxktaW1gIG2t8N+2ODo4VvHRksrwJNrdieXCGDq92UwuZUttIDhyw0vA0llNsmZ1614JtiGt2AYIjobTrk0wh0UUxntxNagJkctRwQTzZRmae0iovWeGggZt9ZjW5SW2keDYe+XNGnkAhlsAQivrgH1YDmapHSPtJY+fGtj7IBvbNvl1CC3zYSWw9oWOjBoTiiQlxXivvFyapGyFe2wDBqX5S57454ZDUkWRblns4UAshE5ZISaaZchX/IyvMmccC5qYrIPgs0wlBfS2V9iEcyaeWnD6W1Jgeud8yAf6/n+4H7ZDTcLlxXrcve0C7EJTB8tgut6wMX0bDCMzVsjTJdYkhczMsXmsLszV29hR1wc98eXWPfD2m4+2Mj9mU/LL8dxvR2fX9pYFurL2/bxw3L/cHfJt3Huq3NTWMshOyLpWFvvDWatHQScKYRtvpLsucnYleZqfHQfjedh6wpsKx7a13yMl6dPFz2fgeem85enJ39Zedv3XcfDx77ZYXvJ53j3+LA/yrfw4+2n3u7u32J957af4/z2l48/3txz9P7Lt2cLffnw9BB3t2+OcXjvzz+/vcdye3z/3YL9mwWnl+Xhsvz44fT08tDjeTce3yy/yvcP//I/utz/y3/HN7/9sv5t5MNl/fX/+nv98Nvx7qd/de97vxEi3dDsvt2//zjuvvL9zZ/+6vn87/1yw++/2Me//d9//E/+5q//3/Hhb/F//jcH/XuuuO0/P6jLGs+xLKvdRLztx+fjV8vXX778+Z/z5/G03z/3N3s85582+/J8b/2pxdMXLmgbwnE43I/Du/fHuzy+f4794fPx788Aubab2+fWjHn59PzjS67PDxHRboZw3u9yWAaYObqxZYQhE0XCaEtrSNHCDkSONLg7XSorh/IGgrjC11jpACq7K2ljIP0SIYagdMgaXXu4Bo3MZqNoM5hJaLVMImI3GIJAEmxdQOlFFKDGZQxapFIjW3bzol2JlmVQESnHQCSiRJ7NrlaHyFonQgFmEpHJFFKl2wjMVVxzkq34igyb67myoGQMWRWaEkQrYRDB8uYkKHPSF3dri9N8cXFpAzTL3o0ccT4vy/FNjDasYrZtcXdHxBgaiqubUgox1S1BH7GEYcBgqYjp5YwanKKGfua82pkoOeMToTFJXW02UnnF/U0wjChko74Fc8IW0VuRXufWz5AKD6gPZIiKDFKZcFeUv3bBGdrZysliXIHuJG3xqA1dWRpxsr01V8Gc9UDTrkVlpJk0liUGnRjJlntmLDCkclWGIDRRPcKMMo8oCjVpGGjlCWEJW4oCm8ZAEg0is1+/WyitHU0XeAoyKQYj95HK7A05egbm3oOQ5EVgTJZjRjKlRBQcM0i1rRsXcxQKYYLUOJINMfpA+tTkVhtCY094cduD1ggy2GQm8zBhSa4URro4beAQY9/pwGFzphlVhpaTzljCZ7dMWd9DchkvxpYUDcmwaEuiCbYPtVwEvwHN29LYitqWzbBZczcQ8iJmWAUqBdxCFsiLefTcucv6nYDIUM8eO5ccgYZV1jAq2xQEQy3ABrpkTk8OQM3KXPNlOQEaA7k/DY1gjoiMC43NQ8PponZ6pM5rixw4BbW2PEeWlRUUASTbvWuVt/Kb2hEKyOeW2xq5SIn9IvZmS2q9xbr0i5s8m6NFsjm5XNwZWBoMau5Q5ZA7Mw1uPZbUSPg4x3PjaekvbxbFMrrxoq2rqcFXD5P6elg8u0GHi86X1Ykdmy1NJsu42Vocdq3gy4V3MLCNh7GmdSJOd7jA3G/t5cFHH0scbhz0uBXweL4Zj7f5dFQ6h/tIWZyXPS+6xFD3y+cUOgfWaIu/PO5m2fbTyxj7sABOLw3E86P2/WU7btthu795ee4xtoNJnsvdYXlJHpfgkWadF7xrG48a481+M7Z3b3n/7W2ezr499MefP9xdzN7d4P03qx+Ol69se3P68ePT3XYPLcd2e398t7Z2d/sv/nR7evj9hx+XXb999xGX5848DPLQXhKddjzE6dJXtuXl5fj+q9vP29//z/6D0/i3h//81//V+cvd+eH//l/95Tf/7Xf/7oWn/vz87M/nz1/+YN//IX44/x/tafy//rf97funH56//f2f/Nef/qO3b77Of/FP/1dv7m5Pv3joP/zVf/zrf/rx778Dni9tj2w+8BDnH+zv//Jf7z/f63jRUVjf/ax4+uZP/+KnZz7Zn/1d/PATT/m0xueXp5cX/fjbn75/eRl+l8e3G/jxYusNVvSD3VtQGsthgK3hxs8v513a0GSKnpLRcqSNZBuZoHPQARY9LmGmctd3k7QsMlgbvgS4v/hpbzkCKNKwDcSFgyeChHdfsCygq/sKUCFa5LIUEAkRRlkEaJm+lRMAaGEWVLrPiPIA5XCZE+V9ALnImBRWKEOmslZjtlR68WannHjy9irkGo5G1qGPVPKVuVQkWkLXTIK54yXFq7lvqJzaJ/0peA1hUAHyXpbN5rCFYqMqikABczZbjtu6JheLLrsy3Gi+bltrPtU8EFCx6YyimmfKFndMaW4RLBQT/Z5OS4WHXyfgnO5VFcGqbHPvSkrMOUSD139UNbiYQaygVAJwWlHTiKJ2QJDJPTUzhQ3F6oKJtqxu7m5qtWHIkPrp1NI4XT/L+7skTSJVoQKYBGRc6W7lGeKlffFJ/5GE5tYK1ZQxUu6FqBhgnOg1BdEzTKDVr3QTYeECh0mQm4wqGy1KEYMNwczmRGQZexuktoz5IatxnLsNlS0jMkmqtGlJyjAQkbHSjMU9LyPCmv2ViMicT1BWKDQlwm0GhZTPvwFlzZvGcp0+t94yQ0COURwymvVMjaaZuJxKVNhQ0Qmc5aLB6D1t0JUqOyykNTMRA2YVIRuRruunFIRsVAgpmyrpAi7KLc5q11PD9xK0rIlYSy2IF3HcNE+Li2IghoBR/iycKZWANTEGTO4F2ohKX9qKTCCdW4uzCbGUwFdjGBkuRcqcstaIlblC4NLN2tLcXX1RJzLidE5fBJeQxeh0QArJqWzleL7YE5uUfdjgRSPDbbekNNJT3C1THDGWkCNKdEgJ0aalaW/KzNCSu9IPnY4099EODyAtvBYN9G1rHn44+44tdmTDzjKnAhmdGDb86WnszcNbFNt5JdeLu6/tEha5O29ccQyGWwKt8XKMnX65vX275L4anNl4TgAjEr71S0a2w66RsSLzwtu1La62rFunNXfX4GIE2+LlFgRwnEU/PEWc43J50s77o7VM6OUu976nxeX5/Dj8zZG4WTpyf1xbO3/8+O2TN7+s0CXj8XDDuNzm4TQuy+3x5rC2d1/dxYe4+fb29Hb7duHS0i6/Wy7L5Yue2/0lrC0Y2Ve8MNAHGnl5enx++vb58PzTz8vuzm39+j+8j399/NVXv97X5X9wd/fwu7fWl+UYBy7Hu/24LS+3/8y/8PLP486fd3zz9/d/8uU//d/8h/+933y333x5+nB++Ll9/P3Pn58ezg90Nplt48SejCM+3Mfz5ebmeHN+/hTjghwfL391/+PTu5+2/a/0i/78ZnSa1Pex59Zwd/rkncMOy/LtT5kP+gyMy3GFHe5WrPumOD1ru3QehPVxYPJnkpGQol+yjxmzGcUGVfbIyZot976SKxqICNIPDb60xFz1qmIXZAhaUXeaI9hSkhcDchRp0SehVCqCkzKVKwUWkjglOuWANGRQjA5fjBorQs6Ug5mV1VCMW4MEJ8U61jQp0qUgLWMbCYErMKfynxmTSaTKdEhDvhLDJaViyJShNBQ5MKamMCqDVmJJHAkqMxQxFsdwT7hvCNDklffAaMetrasLJZ1W1BFMSb24sGXsFPAi+9tCZvqUuCZoWZTpKrHTJxeUpjRpErCY1XnU0Mb2uvkmWBROvIYx0DUdvexKca1z2FgZBPOvTKmUwb0oZCgdDtRYnCR4k9RQAB1oieFeW9pqYsTp4D07hGnnnUW2mRuDrGeuA/AUoPoJyCFhRPbyxai2yhiV8qCyb6vHL2NM8WfAPJVEKMsnMTOzmSggoTEiEeFlxAJBMG+VOCEz85y+GK/b7rk8Z7mVpaNcpSEV6zglaJhN6TQAwmkIVSgPZ5ylrpv0WhQkwcy5/K/urP6c5QFhAmsD6c7IvFrCkM6YK5JJUSz/keIKNrg1l1kT3YriWA1QFWvKLQfTzEGFWrnSTHa9GKjvEkpYBRcCMAmgF3vOVFZfCLWONmJAGf1pMY0RxJpkqYys+gI4kcWJsAYzxzTooS3D25AsWcwUj4R7ttQIb82MRaCDkhnOCjYyRumpHcOBpaFx3d2uX1NyZkYWP8SMFTeSieHqyHCD4uJrK/a4mZmlO7mkLyR8Cx2750zyNObVyGbhsq4DGsUkjpH1qARDZ8mirAPMibwMvzFlyGakZpB1pkAs3iPhdyczuUE7bpVUOkbSg1sOdcfh7Ee5ucyOHr6uLQYd28Dp8ae1pWRoXDrLjBQC2oqEs7WeVNLgXnzAupWRNjk6bZHSc2iMgOVytJsLl8PWbodswQhgjItobnrOk+7v1/Quy32cR96abe+fLzfH1Xu/e3NR7vl29S+3LcYBN2+ec++33v/wa/kPN3n8HB+0w/T0eT97g7999G1be1sX9wDHluOC3izM33939/Vf/HT4MO75b2+Pau3t++XNuvXz47m9LMa0NFs2bgcdb28P77/Cw7s/O+x4+Vfjrn18ufziD+/e/iQMHO4Pd7K7ZRt8Or7/jXKPOPTH5YUvTzkuPhAW+7iEAlu7vD1iP4f2b5tt3zcNfLV9y1N3WDv05easd/fbV2356sj+9PjR40U4HQ431qxZ7lGaiHXYcox1pLc91haUrEUUMVaydR0ZZqXtR5H7MoUUg1JmjkQ5+6TE5lfBUJ3BU/Myzykjyr1wmBtgHvSromI65c1xC+XhMWeAq8hSgoIi/aqX0JzKAAeg6WJvZc6QRY2SKbP88Z1z+J2fBUUlnbvtCuixSoXL4oTntN+bXgeyrOjfIqJNTQhyIrLGklqVhVGVJ2MlGNLcWmtmXqZXUQeTzM2Y2fcGjSglRE5W93UEn1nIMV0UoMwcPpAKWpXqDE3IG1LM6goVmezKmlIdTiKnnhhSA16lV/Mf4fXqcd3Z1oeVpCjxWSnJZKBSivJcdqclSWaUF/SVO1f8H1P5oADX6p28MoUnNnr15cKVy0VayWCRoEylQp9wv9KaG8oXycbIntbK3j9LYjRDqcxSCZsRGqqLMJrb9JummegkKyW9iBBu6wQAcsjFTGPE2HsIZpXoWKDvLEOKqP15JQ5nGpFjtieJ8k+94MLmi9t0Y3GQxrYQWV8h20yLKGB2ohCvrMG6Lwby1fVGZJkjIlHOMIRJ1ijL2uqw9DOlF6LN4TrNwy1GFJG3mHYN0+PMqNZEkKZR6IeZQfJoggfKupKCmQougRKJ6pEizYaBSzV9FsoS3TmkJEyMnKqG2VOUdc7UlFuZ1ZI0glHkfEsPlUgjJWb5wQHptSgHfXG4ikW8jp1kYEGbe6bupr4rwOzZXn3IlzAnxbIkUWYYMvYBFJc4gi3btf3ORCn+RrHl1EfGcu198yrxowZGSD4g9y7LSpMYgvnaaHJlvSwYKocakVFmNQQdQ5nGJSM13OiOjsWjtzTbmyvJGHY+H7a20xzLvWH3ZRyMBve8gbM/HyKffImAIUdlysWo510ZCxpdGfPxyAQzFmOreI5mMEUd48qELrTNW7vZxhopMMe+dlsug9AYWsfD+XL6vGu05nCYLYrz08ul2bJtRjz23jFC/Xw+77Y8n3WxzPWg9X473o71QPbLEi8vp3tvx5s3b3nA28tKu9F534Dt4O24WoL7+fx4evnxp68v+65Hy8efP41THHC+vfsT377V5RAtx3jp+2Xv/Wl/1pfj6Qkvb16wqftyf3j/05fDfny7nb6c9Pbmp5/GuLPuS9z+4obr1rguC/Pm7umwrMvzYVvsF2/t/An7C/jwh+NPP37+8vj8+fn45t3b4zvjESkf55vtKZEiuu8vdzCnr1/96Xp5F+4LmBrWFX1jXEa9z+YZqUuyTHzhZGvdwKUVSIfqDSeP+KpzoUk5lO6NAlXuu0Vo1eRoXcmwr2sosHzUe1hhLKPEoAGkTRoQ8+rzqokmK1MRykwTYmAAZtY001SkmMFm5hLLKTV1nV1U5oCtufnEkOeUUvWmFPbNcXX2SGPpT8wM8oIdp4XTPAZFL+1q+TlXJQFmIllZ55I17tV4w9fSJcVedOppG6v9TFi3kREmpSyDCXZrI0FcI4fMOaNqBLNtkzumdDOnkSNwVfsWRey1khd+m3/8d4hUm7wngijaNct/V7r+yVz71g8sODsr5E6locjrl3yF9VOvF5EUykJDKLdGTKoradN1YSpeaxGsP5LnOaf0Gs6rCUNOBxAajGKr9AQHAGfS21WNqykrm8NOXidKgyHZyoh8Oic4w2RTJFl6WTcYvI9gRQhNNXFkxjXwahpJ1rR+bevyatFavCSVxmgQihGvC436J+uLs/QK2IjrF6ap6J7L++uAdm3L6nUyGTwnLR1WTDukLM0MV6H8RHCtvCVmFfPKMSHMLEPOAWs1rNIBcx9ZyRwl/wWXStGjEWbmLZNNzorjNW+YWqTJ/S/THW97xVOmjKP2NeYprsxLl0pUr2vMgvAKzpTwsdwS6w2mRVDV18EngEVF9AyVsqZujqPsf8igmBkB1R4oKilcGdl7lyCFFyNu2jkr6WVF7mCOGEDWSityROwyDAKhTGbY4BQhmppUevhys8zw6JnREVBpq7ozAeQMZbESF1aot1B0lSTh19WdAZfhV4+fnksYY+SiSPe2cSxhBmveGrw1Xg5mC2S2hykuw3LhebH9fPp8d3wZaU3GzL2E7Yr5TPeDeypkdE/RxZniGXXogKyUV6mUeYu1dVueXuLp+en58dwzGjt8NZotGojL5TLALuYIQ0P66g0Ye1sCoZ4Z8Ga8PRze3RwaewRojtbW7XheN7vRzZu3tze3NzexOEfax72/PK8v4/RAH5nDzOm2BdwaDexf9qene3/88R9uL9Tn0/03Ebfdz+/e/Xx3f7678LgtKTczjoHi23atd8dYj0v0vovWLy95x8v9moPjdDmfZXRwOS5UR5qZH5x3744Lor8cb96vst5tuz8e1rfv4Nvt4Xa9OSw+Qpexn9FPL+d8XhL758en5/Nz7mnJiH5ZLEuBmqnVlvUGLXuUjVrtW50OmjVeTdxVj76u6Fgd+hKtSW5CRoQyHbk3XoNkOVvBClC4sndgxhwl70uZV9nIiTLWsc8p4EmA/0jjMi3iAfFaDOaBNEfU2ezTZEQl5Rp4tfZAZRK+qoBZ7+qVcSNcmbg2ff+mXnWuv1S/phaS9R9f7Q0K6XydH68nKKeKs3aWMSc5CLJyjqjGBL4sbdlWX71OyKIvQcqodaCxBn8l0+Y1zxGKTRNnwBWYLJSyYHBdL+l6TfVpKsEVKNCCfxQQ6bWdcNCz3MZQBgwZ9loi+DowK6WSuiMrxrJgEtSrnCS8FU5d92cmLBXWCUu71vgas+tqC867NhF1MKkBdZdpJiLM3GUm0/TrTCHpqr2n1dYEM14zzVQcOeWAKdLn2hEsJZkkZIVSIjMAlE6zWcoC9LKLoaFn9Z+F2E6LUZLpaq01i3TQ3Rd3gxFDzlowEgEBzaxCf+lZuiOYebVr9SRfuxkIiFqEX+lpQEmcUuGWzYP1rpjT6aOcOlvA6FXFcrqV/fHlEgF6mnvOD6Esv/Pio8sa4ALQrk9kmaWQTK9tfRWRCUjXYD7xmjKCTNvPF1yislPK8c2s7ViPFCPCKkiRrtncFxo2VQZIT4EVbpYZdBMSNB8JRIQiy4iDqZrmKg87hfL3CfVdPUwAEzSW2sucSTMnasynmec0HkhD8TfYEMWpTlrZlHg5nqg0GuEAMTCPqjoajKURI+hlfC4YBtno1d1ZGndjEpHwQVeORfLmi84LBmAMYoogTVJkawh10swTS6R80XkV18tQOCIylEkhLpeIyN4LZ8rNclnWBRwYo6WQ4+z1kkgJhcrjKushJ8wbrRtYX35pJqyWiIqRIXhrxrb4svhNW1mpJ+fIHFxsafJlOd7svj6HAtHpGkNmPODzl1iQ7f3BzAeaHTZfD4RnQhypS89yLBrZ83zucXNz++d/+s/Xk93ffhQZefp0yz12jZF7jLwEbSxba3d3dnDt++nCl9OX//L/8/ZfnXqMD9u5+8GSyktG30dHjLxwH23tn55Oy97zpePh++8OxHH88OPf/uHQ7276WZ9//VNbLDWaR2Jcam7pYzmsT3lz/vjl9/cf/mZ8t/t2/OoC83/y1QWHn77wYCEf+973fXAXnw+Xx/cX29pG3ZzWRRGgRhYdCONy2S99LG2NMWzSYusfm4WFFcZACGZRpbJVSHid2NX1VScPJQII5qxTV2zTWgJLmSNFmdp0M+VAhgmmSJhgxqwmPSNqEUyFVL9DmHPStQUAi2QzKzC9fObLTKvqvdWFFt2FULk7XAMMZ/2tknAduiwNFAvUZsBcXqZV865c4TLNv4F55yyNFlccb5Z2TZ4QabTmlY5qOZpEs/JTpGCtTEiGFLzujpEYnjbbApkZ6ObuzVpzGHy5KMBOm/lAfO1HgOmLjWt9pa4bgYk5FzxRdpa1GZ+z1/zOLFsB8/UhpucFVNNm8b0qJInXXmUyr/9/CVxVLs0nv+oaU6+stohpYtkRa47Dug7e1VNIEGkT2Ksny2oGuoLF5YQFQIp0WAmfKhwQTDCgyMqwMioR11pUFT4NURQFVv0QDJFGXwx2tS4NL7RXCWj4TAfDH1GhaQ332gqh4nAFeNKzMWm1B72S36oJmzC+VLsXK9S7igPAGkmQmElfSRrTDUh6tm2p7MCCf2xSqFxW7u3zdl+/IMuayoGaunIQ0GAaqrA48Frna+aPuVKZbmWpjCigNVnv2StFK1MIGmVrCl4OeBYGW7NbU+UtZJqykn6vHZ/N91AS5iNvMGA0XO2wJsUCE4wQUHm8kqdU+yHSSpcNJLLVA99CUkSB1K2e9DbcQUGZZeYpQzFZrp/drDASgE47ePUPaWC5XtB8saidfyEeYK30E3OxUsq5sFxIZ3OvD5bB4jCkRTYhTW1Zl0aMVpbpPkhxpEh3kh5oWNkGQURGIjL70mMiTl1lHrwc+xlluGZOcr3Jmwa1/eXGYu9EnPcDulrNRcjokhQD19WZLwag+bI2q1AKcwxZk9KAEUs7tMU4XlaLNbGitbQFqsVDwLS3OimYOGVmDxcwIvJyzj0Y223aEtm4D9clb7bnLSGUkRcP70J36YaXk92cXr5+OK+8+wBtBL1fzuqwTIVG7M9v930MY1+/Wdfbcb579y2O3M8vcYrL5eZu8OHh2JaDYtu2XKL3fuM0x8NpfPzdX3+I27unn+Mfbp6fTtbj7ubmw/vxzRvr+Xn779svv3nztrvZOB8PH17uzhY368FP9/7px98sP757/vmfH+GH9Xi8fbNud9Y+/Prl6XF/XOWL2JYDlC337GO1pbXD6m3L/TTg5kRS5/VyOfXRx+Ae/eUE2EikcqgokYWVAa80Ky8kkQy2UbIhs9L7GGiWtewzS9rVWh6o+GokkrXdpA+SzTjNfl6Pd80Xsf5OUThomtEdmGpbI5WWThnlSbmbZAm34LWLwGs/Xjtkk5hozWjOQjvrKL86SdZZ+Vqd6lS4lq2imrxWmomHzrBjTEksUAAZSLwuiCvPlbOKzPmr/EE02UXGorBEfwEv+/w1ky9m7jYn1xqD3Vpbm3kzNC8nR0Fy1HauED2VWeF1qJ03Y46rE3YvAwyhXeFlXo27avyrE26mFkzEgzbXC7yOwJrOubrubcm8FuDrwWpXxKD+/lL1NdXMLebAS0z8sqYfFOd8NlkFHBtRnknwqugzo0DmNmp2R8FmkYQtaQhNx81ZtqfmmywXldlvSDOPA1J5l2bt+HLAEUlkzKc0kz4jGMuGa540E7apXgVSWk7Gm7KwA1JKWkYthg3FVS+HGKukw1ojJDm/JJuNztzWQ5ikfgFpQDGXUiEoMX0DpTopmQK57pyi7TqoywEH6UhTDo5LBqwWfNeFQ5ZQXoOlOxxFzKkIxSsCVpH0za0OirqTPgFpwBpEwQ+wfd0bTUi0WcMbTIBvWdRqm0yHooXzShkrAx1LmLG6tiw0a2TvC+EZZVqjyomOzOkrZwRn6IiZqQGeOZtmDUjqcPeSvZM0OEZ6dcNeSi0hIy3k0WRIWdJB09zTlHcqsxxTExZzeplErKQRbu5yBGXZcr/JxCBlRHPz3UiLMroAkcNGLRGi5eRwuvNqWONuvrYWY2QmGrMtiH5KJpTGEmXuqw2nIl22LA2+tU1tCZjyy6GaQ1+bHMypp3B3K6JqCTcYQ8nW0Rq92gkguUR3DfdOxH7eXJF+5t41xOhIbYI3E0ZAET4KTHH3pgQt++XyZM7e+zjHxccFuXMfcTEG7g6XtYE95bj0xy/tLk8Xbaennz4+Pbycb9X3jcfb9Rh3bw90g1lr2fvL4/ODf3768YfxD0/b7aOHv3/Km+O3//GZx8eblj9+3hUv50ijzFuka0TZBO9YFp5PRxjvv/uL29uv/O7DzbffHiWe+Yiwx893D5fzWOMLbsenp3h4xPN9fv7tD/790/ar23fHNz+9u3nz8OY4lu12eTyeDgFfucfOW+0hMhHDI9VX9OzpMS6wmxvYsq7eT1i3xRoIW22cLy87eLzOA9d6MXv0ecSWt3FSGVC+1irOOiTSfQBZyvmpUYGVI58pWzn5LWDZK6pcCiTQy0Vxgp3X0VtVq6q9lhXoRli9AnO7qsn4tMpen8fW60qSV4Q0K9OuLuq1HgHznZ9F/o9DO2bODq7QbJVaXfehk6p03XVrAqicYO7157xW7mKQGTEzf0hK7roC8+YwWw6tVWSoAfUAe2veUCBYTSDISMGp1gQ63WEVl40rhoHrlZcT1BzL8nUpXBkQAIRSqlSaL5SmMHGSoMtNu9DFWVC9rD+cKmtK1ur0+mPn3SktCeY0IcCbudN9kudYYByK2FzX/Cp/mt/hddpCZkKch5IyZQ7QXGwZBH1BZoLEiGLkXL/8qjm6gvF2fRaMQoBEjuo3weSiefrPT+JEk9WRDDosYYOksTl8mJO0a4dT5ReJVik3oHGqhKoegFKGGdw3c7YJsABAmtywNKroFgXc44rEFk3p1UbFKkzLImVhY9xxH1H2GRgIjcTIMORg7od6qmNawlR39to4DbQYI6Cooe4aAipLNqK4+9cbmZAVjo3MtaCqOSpqvh12DUlMuV9GYgivpDbSK8dBaDy4aWs9y+o2KQwg4YLabB1KRT3MyiSOjAvdGyNQom4o4GnmxUSCSYZJ+mN93TRvVjUKZFuMLsElNnWKSdKdDuMIQnW0zcecEnsgQ9n3jF3Zi66inOuyUFqCfuUjFv0DBc/bdd2foFpSsowRGAFPm5nXhDc0a8jhLkOu2S5Bs0ik3LX0UR1PAMpUdM8RIvuGYis43FpblzXsxR2XAYtsAHJ4jtOd2WJGxX4AVopOQ5trg+LEMZVJ84ssaYgRXmzPuZIRHWQQPVPqmZa6lS3nxfNmMV7OlPI8spsM44ImtmbWT8+P75szfNmGtg1t07g851jUzlqZ66L+cvAhmF1y9Av67mtEZmuL4vbOX/jmq+9+OPYDB/fD2yWXeHu+G+vdynXZtne8efN2yRc8ffzyi+VhP6zbEsiXuz/7w96/22K5+fbDftga28FaE9u6aIfykmGRS7/43j/9/H49PAUee16Yz7bHmU+LH+KQp9hTGRdrOvU9L6eX7TLa+1/++cHu/jv7xd8c9rF/OT376XI6tc9v2w+Pn8GFiyFyHzkuMfLtI98e7Pb9XbYff2y31siBhLGPHIF1YZe49N2oqIAXNqTHJL3MkmNeY5GmzV5hwuWMTMvrSkllHOWeMx9z8pY0502BhAfMLM00226K10HQMNeUwjTCgiIZZlcAOQE3lc2qEjGyWEBJRVaZlmpdJZUfIwVmqPiKE42zqfWY4PYVkU0WysVMRkVyFaxuk5Jd782EUFPElSamYg7aNV4PumLUs2QrK/G+gGdrBbRamWKZV/ExLzB18ofM3emVO1rMrKu2SqQpCqNoTCnG3sbsG6TqHqqszTWwXnuqghZmVkLlAddYqII0qMK7yxNsDrvz0FFmLRULxNQ04i6Yl6gve+4fMJe8BiCG5VT24jrXcTLSr7dlMj5mRZs8GoN8ep3VOWEqBRymAZrXehieokHNPGqgtvl0XalMc7FNIa4tkpwwF0KtxsRr+Z0tluY2sJiBFcFD0LzMVubas7qO4hPY0PyD1w2Nz8VozNaJbov7K3JJUgjoMnyMqIDFLGPkIuhRQCUwDbwadmJOb+bVSRlhBXp4WBuFE028YwZtXlchE8FQgsbmWVRch5tmIoMMyIBfn5QoWADKYXUMTK0iktX0CqmKTiidW2r0TAojaVbKYCQFNpTpKnKMSJiSLcpYk3AT6ssVBXMUjGuiAb5M9xVrcNLDPDAXvoUksQh3MjeBVPq6xFJ+deauRAMbILNIRMKoCjeqvbUm+g9QSlLDrJsFzbi0ZXeTTA6CWWCzGwZQM4EqQbF8dCdMAICITmEZ6WMsANKyIMJrRwmnCRqWo3taI2ZChkRkDoMrYvfX7Vt1Zs6dbUjhmRrnS0Z0ntPIrQ+VvAI3yjbgNqz1zpDGqM/rlqOtFjvY3E1htjQEl9VXjoNTolpO53l1mLWDzNF8XbfD2nw7kn3vp0ug0djMFxfMWiTyfN6Hcbtwj0PuLycZI0eueXuzHdnMMjNciTdtHfIlD0vzbXEGCDE0cozxdB/HPD0j42KL5UBk38fL6fT4MB6fX/Lh5fS89fW2fbjf4W3dghz7Sz//ePr8g46fl8sPGn3vMXqO9IXND+ty5I3d3Pnpq19d3n5o25uvbtutJ0M27BDDk/Sbp9vldtvuou13H94v4ultHPz9Xfs2l+EL7W3b1uHNDzfvvro92t4O5vf8sHLhsrZ1XVvTmw9v/+Rw2t4d9o3B/M0QaBkpim50JJe1XBgVAgwZyCKwpqIVZCqkUG4S0tUeEswMWXhERMroV4tcwZbFCknW5BsBxYHhlcCQzMwsjYhUyXIzPRWofjJTqHG7FlPV/9dpBILISEu8mi9fGdaEvULamMwQWjX+NJrZtfLrOqTO1RNiEjYLsVTpMYPXEbfO2oxXwC2zZr1iMIkaHKwQhytVDJwC1yrezCFAMggRNZGYkwrLzOh9H7NWomymMSJHwaKT3WIstncmJzXH0qC8ypDmBMxrlUPlsqkoxHydM3NOLyi8awqX6lQXNAdPKmGTt+OVQlNH8aw/xTNHSjAQifLMs4oRKBwDrHa8/ppdOV5Ks/JUQTHezGdEtMoP6/r1TL8JZ6aSMc2yCiutOuZIOLoJIfrSohgjDfAIEayQHAEBMMUmuRKC+6wgzdLUeIHMYQWROh0tkaDVaV2VUpGZcDO82mJf8fis1yfi2pLWo8+yK7sGGfq6clHG3JuiADKa5dirF4mQ4M0nulpLAZir5ENVrSofclEyZSgrjUwk4OEmYCBH9GEFfs+MLnK6mYJpHL0LQOZcekgwr6xsMNkyYvhIKUdaoehKFgM+syBlZE6GXaHYxtQoN2jQ90yXyrduVWdY4xi+ANFHeINoqcwQxZxUjOqG3OXuXUZDKNRGlD93v4w1IyNGYt/3c3YU/a+BJnM3ZpHauKTtGZ1JjYrHiGyMDmaKigbVAz6QtEI3WRA7cmRmqiUUiVwR6tkwCvwBJY2UsYWMEKcyvpj+qRywREYO+BpulGDWtMOymbkvvSK83BrMkZnejIvvhHVI5s0CBbcmm3kzi2hUyKyvtnPsaMOhOJ/ebW30w7Zi3Xwf3twURMu81b73ndvnLa0hHZlw00igLdWqrlwctkSzAV+XSUtgkuZWCcmbUrSmvUZkW2+2MzL33gdy7LHfpjUzWjMu2k8vvcdFGT0a2bYD5E1jexOw/fTy9FZjbQlvbAeMnZfhSSYWj8vDw8NhHx3L8eXl3PvHp0eJH1drzbY83K+8uxza4biYGPvTF3z+/V/+u8fz3+rdy5/c/t1f/7c3P7/Y3f1X3zwe7p5eToPSZZzi5XJ6vHzi0/nT5dOTTqeRN4e79/jqfejNN7/7bmtrcOP9h1/g8vbFz/Hy8tM/jC8vT2ovX2728fSRzyftEfG0tNN+c9hub45/+rZ7JC4Ha9vopr5t79b11tbjMR4PK1vL3U/9Zl/Oz6cL/K82z9vD/bpQ2aOfU+TS+oEXlYjWrU2CH1uWSS5JorS9mWPUWjVHIiGnMjMjo+CxCEEw9AuWEcgwVDxaAq1lt7X1yq0HszhCpEpOOOeUJMpbmJkmzdR0i7mjyKzAPDPzhpBkbV6kJSi26RqBiterTOwSs1UFpnGu5GbwbiGHllUc3F4pNonpPoQZuXNNHObrBCy+Yt5U4V/zjk3g1XTFAWiGyVxDGhsENnCSuplsbWm+NFubu4uo1B1vFXzkdmUkzUNbltLYTGCz1ipZYa6qayFwReIrFg7zWJtT6hzdCEotZ5LUXAJXsGMl46W9rtEnDymYUavUiv4lXyduKlPGiIiIMTnlnCwCp6S06iBIaB75qFpQc2+Kkoll5YkanilYJqiQecwlsWAyYIWZe6Ix6OY5fOSgWwyF2Wit+gJk1uZYYEYluZOWBT78UbqV6krl5HuZcqhhDHeaQU1dKZq32j22NkxFv76q1wwcAt1netc8dE3wDgvLrv2C5+fGxZdFc+ltwaBi4RJ7bRrpEDkjZa9aZlbPMbcZpYA1QBpDgmcAStJ8kIADDlRnCAIatZh1wS2DKRW7UkwxZuohlLRULTD73NA2r/7IWxk1QrLmkMnMkc0KsxHslSphwjKiVkQ5MqQwQTggW8NIW4HMHsshe5jVrr5meDFzCE7LACmLmF20zNvInkEPtkz3HgTZEl3ZOzis04hoHOZjaFUkc5wnsBPKga0P0ntcEjkziaLR5K102ml0kxmbsx/zzC2dJTAKMNNgZi7AMg3NpJ5KmtMikxBdqu6yEW6tYW/GdrSbgTdPfVnauuW63e5Ny0Iuw8yo5nZY4GvPEXbZtS7Kji26k5Y5hPOaByh2hR25H7cl4sjonu5++5WJyn2clxEnD50E2rqsawCym/UmgPPOjMhYLWNgOQVTRKb3tUYgxUA/L82soYGtwelmCkHMIOHb2lLKPD+vOnBz+takffSXy2k8LMctNXj39k17kY247DliH+eXU/B2ff8iWlvevdm4L3jc++XhRSctcTa7tOOhMfoSl/Suh3E5P/7hv7u8+8Px9PwF7XDZb8bh/R9GW25197Te3yzrYTnlev/m6/sP3/3Zd/+Ej8fTzw/f/9f/j7uP+PR//Tff3X/88c8+ffjlv3n3+XAME8clNcb5zU2j0LY371vf/oNlvfwDvnlr/+bPH347Hv+bv83/k/39p/9w/f4P4+9+/7/87V/87e/OefB4+Gg/POPclXnT3j3Eet/y8+nuofulL3g8/fR3v7z/CSvjF/nt14fDiOu5aOs9PE7Hy/NpLNv+Owz/iX/7qX15GZbD15vzuWfuzy+2Dltbh592hDSQfcdlk0aOS4/RI8SMAmSl2gtVN1zh49AwIpFjYDmsrY0WE3jFnGKcbRMQTGDIU/CWvS8ecHrYdPafC9oCqYq7iFBqGQEnmW5KM4OnW3YfmSYnYGDAmSgjS6bXMDHMAHQQSKsIsqjRbCYEWVZgeZWaLACt9kFzAs6A195QkKJgbQgjULA7RFM9zFbzKSGWS7CBMoam0nPyiULWKs/HDfIuA5Z1WypbPuYqkuDY3SJMZgIr04FeLFgiRwoZoDKydDk1/VaKzjx5ixhk4PTkSMPEYQEQreTOuq4yYYTJ3awid+yKok/DhVdfiLoJNNHmxCcgClFhy+RkP9UKQKSQqTGW4r2wkpRqNZEzpBHGpGCETYuOQr2FTKgjxyuHDE2eSTNm04jRRfQRqYvczWBNUO9UWZuEuoGZbNlT0ojrPBwzX66FaAEFZCXS2IeRruZGJWMAYvQ+Ekry3DPHyKBKZkx5kXKkTNOkVxmTaYFFuWUusrv9xjczEY0BwEwNITkblq3wF8+Jg9PADillIgMVAlUkK9BgGht5d7hQZrBs60A1ZzudKsbvJCJKOThl14yCupcs2++mzpAsogW10xamrcgmqZkFYcAFq9HcLcL6hJ+SxSQn6LWXr3AlJ0IOpaUg6wS3vbnBbWCPFxnOvTMHZBAazDJp9dL6MlfKbIBY3naZPQb2GGVm0S+XCJB1BVtst0+5etLcgqHR2+rRm7280EyM8IONxd3XTX2N8HjyY+eKhblllxuZDGsIZaPIaIrzznhQx6rhnkvuTlgyexq5wsQ9l40hBcyca4FjlqsADsE3Djqx7o19e/ziqUZ0cr/giS2PGgiXZaJpWfqFQXCDRTSYBze0lmFL6LBu3GIbMV4ecMB4CRp2QDIXPKNeXgABAABJREFUbvORcRPL8sTN+nOe7MaRp8PyuN60l+PD5fDw+RCwcu5MpLZIjR504PLcbZMNeaxrG5ndRr+Mc+RlZ8K878vCcd77ZV+2djg4Xbgo3LclsRIrHl4uyJd+FPLcuN7ibn/jscvsOQ7uy5t2sZZLW6nt7brbTeZ23J7zPt5u2T7Ey6fDmS8/fb6MMzCYp/B/8R1tnPw7LLcHfdTLxx7np/Xly9Pz55OntQ/fnN99+OqbX/3p19/9qt189dPL8sN/dN9/evz469/85dP36988/sn2D//P33z9u8spO1dyXY75dMhlnM/f7+P7v/3fjeN6/v7j+n/58/c//PTr/+Kr5/tx/5/ln8V/FvaXf/0/+d2H33//TY6XPf32dGmHHd3Czt//2V/8wj4v++MHf/vhBrr/83f/4p+cvr57ePjlH57vf6cXrqMrfbnRuOjleFgOdrZ8/O3f//qH9/ftNkhfVxvj6eOnp+f29nJZF3/THmPfx72ZcVQekC1O0H015brTmIv3SEj0BmgMpzXnwpSWBsAWeetm55fDclkMnHthozgCkRemANvVQrCFBnMmRhApWwqOqVXoFJdJ8mADETDKGmwXzetMycw9ryYZUi5IWip3A8EAwAAyl5qBBlJczMyU/wjjLCC1JA/T7rkI2S5RWmTmTqObKLOEF3ibaCFAkZVo5yVLQNJcBtGLf50Uje6Lua2rw725ETaEykx36+JOIOKmhZRwwFtzd5i38gfJycsSjTBnaxptwJhJlKfimMr6Qv4r2Q1z3q00oCuOXgYANTOrTci9UPRkobURWTcVwRpE+UrtKkd/VX1AIkFEJDOiRsnC93ldjhnk62JWOvPKektBkXEZZYbsszOYpSVNWQ6ExestgSWAGCGptaLfwziy/Cqx1PTkIYKZaTMUF5WqS58S8BywUdx7Oh1lCj7dKlJVTsoti2Y5jMbctai84MrbStPxBTTNHCBN7L/gVEXhQRrhC9QxV7gZ+zmFTE9aZ60Spve3xogog7FIgvK6g0v94DldWnVwxeRO5GhN+yWVEUDmWUkoOokQjKBXzmRefU/SoFRzGVLInoPrPtxRGZ5kwk0yizDf90TsCRnTl9UIKVA8OMJgdEwnDs5QXnphMO5BizAP0iRTrk0GucXBjqtpHZeQkIqpCAA1IK8lk4k1p9cMn0BeMJBoGYyhXR4gg0Yq1flyobi0ISaasDFNG+XHrs3VQclb055pHClZ6wPIRrYK8603bGbMlPvVzct20TEPQR6WNd3WaDboRXFzhDWGoo/WzIxpAZpZRMmznDbOi9Rl5rocYdbjvNymjrIKXj0frKgQvvhC+hI0u5jlpa+MNt9g39MI7cve94jOI1s7rv3cT6fFdIrDen7u0U9Ylq6Hcy6G5bAY13XogB4rbk5v3y/P1mOTLzGMBBdGbYoS5jbG7m0Nnf2t3x72dnO7bUzzBjION8+2NNsUwsBu3p+25sfzzdvVb291czjcvH1zOBib0bD5ctDT5+ePF19v3A9HeeJ06pefPr/8qkczc+R2bGs+x9ZX2sUePo/lsNxj/fqr8/3jcr/9ZomXy+kpDvfj4Ti4fWp3x8Pu9mbdD3frusLM9ufzXZ77j795+ndjx/rToy/fXR6+e/7T/8V3v/9TfHf3WbpPfMpLz3F5Qo44txznLzg9/fY3p5e/Xk/Htze8/+5/+qvb/p/+H/7n/+znb9/82Tiv+5dP7bRxWbc3N/Sw+18sp/3kvnM/Pz8+7z99//Z+7ecv//DLQ3tzOH//9OXl8sWe75bnp8vtm7txuF9fGgN5Puvh2D/ymDcfvrs//OJz2Mv5R6X7eoj+dr37+DBkdu7Lc48exn0gQjHKi1ESovc684oLyVbrX0WxXLxlEqlEo2WHGzK5NTrlKcISqEFltsgiWsiWlkSmU04E6B3mQgPqhcZcrmWFYxtb1l4lAWtujoq3L24QAKW1LqfAFaOWchUmuzDhRMiUXgYwc8lY9F+gQo0FY776cSQqMTcGB7JtRQZhzbkzjT1ClQfMLFZGWKhiHCZvdFKA6YTQyOjlIKg5eanibcxt2Y4HbxsyesUedrYiQHf24WIQg4CNMvNqzZ3Zs346i91YrFtVwpMVlwRT00LnFY6u4lhJVVKbbDpCml5JhW+MHsWcZsXBlx1Rbc+LHoWqV82GGaNiEsquI1Il3RGYiybrlij5ygRG1PdVQAYzTXa1FZmMpkkEzqozZSwK9VKuBCAmM4avnkEbfUCIjCDhS4peywZl1rdU1Sts5dhR8pbkHA8nrYqa7vemiVsIGiO9OVm0F1tM9NgltrVspVhWLaJcSTnZhpEMiG5sZd5o6PD0wJp92awhhlN1z5HmAIz02l0iKTPaJD7o6kZTbCxi5nghTInc2boIuWphiYAzlYjzhpTG7LzK6tNs+qumxCVIIKN2S7PXrD4sYOg0BKKH5VCSC9zTMseaHcNGtmUqk6f722yfG8yttj4ZWXAWEW22VFB0IMdIQePqY1FU6er0RDKRcuRaBEZksB3cIrAItJt9h2S+Suk9bF3TzQxWXUHAPdalWYymSIq+MmWov5DifqYGYUE2MYSLkRYEgjRliKNH5rgoY+zalszKrrfwXg9YpjLb4jvKIJqt8D6LKUXSurTBJdDRxX0/tOaKBfUlWzajy2xKnxYT5BwWQzTRHZUr3RRjuMv2MFPLAZ20e+wjbv2cPk577DFCYwBvHld1ML0lfdtzy3XcPPTn/dkWj4OiOWVqSbp5W7C0bPKlteYCfG2NKQwxYc1k1OLDnW0RuDYrWp2cA+cx8nJ6Z2O/1xlp2c8jM3edXp7TzHVjiEvPPi43yOP7J2goW66HLl32N4t/YXvoy769u/TzS3t3/uEfzv7Tzf1I+dcuW42eezufbp4efG27heFyOrWeOJ97p3U/33zTfvGLn5bjIRc2HjC2N3l4c/v2/tnUfuXrv31sKduIhsPbN/nVlzW++c9v9y//9H/8tFr7dP7m//anv/j+/X77CxwP73Z/29Vul/7N6a0jO/sXu/TLwIJlb4f86nPGzcEPdz7WBae9u/LLx5efn57bp19nPP3WkbcG+naO27fL21tb8fD8/dPv7p7Okby9fzkcX3bmOO9nPPXloHbTOxPbuvv9424CLcZ0Xae1lmYyiSUBTJWdbogpz4wYO9Ic9IhSACIWI7cMoNZ5yan2BbPeKwwnjZ7Nyykp7I/qf5tEVAqiRXo5MNSiGVlKRMsi9Y4Icsa6lXKYSgVqa1lsYGJkDKWqvJsj6sfXBngKXbNGpDRNe2jpugA1U9nXl83/tLHQZJ2kbHKtKje+cl1EmFgMIvJVQJtiLdla8zSNpDeoh1/G8BU3k2cD0t2bkeDqSqi8diuRiO5tsbY4Y4DWNDxjlG0uhBIf5+tVovqFImFftUo55k1tlVMoXFk0c8d4pQDjytaSKGXQy0OPOX8ZElVvi603/ck057Y6cWOw7JeJuiFVxGdpKtrwZPcWCZ6oWfgfrfiRV5ZOUZeYHDPqIzMigOnipir3bX6s2pjWltsgJN0h38QQm8GQyKq2lnTz6d5yvUj3KhukQrVHTgl0s0Dqj3T3iRGUIWmZMUjl3yqlMcprEiPDGg1pUz4Oi2Rpr1WpFxV9USyMBFxgcbevLGjW9tpEBqtfZNVYV5bPvg+6l6F6fYF8/Sor6gkkvGUUls2rggwEzEphTblb8zRaXnnlyLTM5AT3OWnD1Iy+pBJQH8qRFHKiKwDCQAOaWJQ6CK24mICuunSgjBApkiavl0HkYjkXErSYbKeAlEpY1rKi+ItmCnrxw0I5opDxpJBkdjEyIywA5aBHtZZzM1X0UYU4epaAq1RmoBstBFqtzCtqgmVW4gooqtuvVCvCM6SyQBgWXcUEcTTPeezMZ5WkRr/E0kTLQFYkSSKjqKMexdaqH4jghNhYgIY7QFoibOmJspnktO2x8/m873k+HUZJWFRuzyFRGaO7YkQ1ubEYs58QMfY+khGWMXofkcUMmTjW0qI7DCFoXXpTrpZ0wtAU+ynkznXbYIFFyFxaW7G8NW8NyfPhzDWx+HGxvth6eF7Xm9v1w/v3d/fLu/N6b8ebN8f17lc/Zt9fjuE7pdGHlFrW9Ya2lgBNwnZ8e/fhayx+3Nyk5bDd3h/w9j7BuDxdnvy8n/N0en7cn/PJdn85DekpWj7tatvLOQjjpZtGxvbtJ90iL+y59j1HdgfzpfWQmFwXWw638QKev7R9jTFenh++HC6XZY/19hc7f9FaMw00ZfYwdX++eLYcfW+Hz4e3x3Vtl8ve97H3SF+J5m3fs6Zcr5P4SnSuGsSZ3Ke5nlWNfpLX+Tb9e+bqK2msHWVOR/JJZU2FRvkglBlCPX14PU3mBlb2ekjUcQaUO0LtE4umPCr5FTTVqrDETCh2pwGUqbyhfDKCzRPTzAFAuTdJRRGuI7rOM835a550pqscZhahOS1Mxus8eidPuujaRf6+TsCiiOk3mQCjyNnmmh4+EGhZJBe7kq0Ic2fVbavVmhcdx5alaFluzWyi4TSau3u+bt01yWK1Cp6fCK93llPqAaKMOCa3ya5e0MqJSdZeeM6lfKWYlZq3NNRF8I4/yoam+Ho6SmN+MfaPiNk1Rv+RkB6VscjXY/A6VOEqQ7cahrMQBkglAS8/FlMkqsPAtQATMlzjcYoXU3SxFNzLJMbyymZVmhnhyDSX1XflbeEWw10JyZg5EsrRL3sCyNFHRM7WpYqHOEZkRGiMYYrhNapK8MyMVI6xc9BtKf4dFQBl7m6VkFgnPa4LkgTIqIxpTXiofp0zmbWtkYSpO5pu3x60bF7FQlXXp0s5SCv9ubOQJJI09yKjJacviAlId7qnGwFvS6v1EGgOwqM1gxEGb5wCOwkKWexiJoFmuTAGy9iKCC+QKccl0iLpKqXulSpQS5Sro7LNByBRk3q9P1BKEZNWqGAmvNjH1d85Cafgyy4YZYZhDlXwlHS1ty08Hwljez0eAKURGeMc9SgIeV4isiykrn8ziRCUQUqJhUgmC6tBpoZGD0VmI32BGqEYADSobC6TIYsepqAoRb3CVs1/GlMN5lAGLk0bugtl19BS6+jICutaj6Od6fR1VxeXxXpw5IUHaD89RkTHCGWPXDORFmOkkKOPvhrEkVFpdBwzaiJqSkFbDITVkTrZi+vdzXC2Q0O4OdblzA1Ks4ax+H563i/j0kd0AIfFzJamQCy37IYLLheGmrdumwPseX4+W+PdYXnz4fn2XgeSG968Odzx7ZvbG//FMTB6GC/RL4kl0cyW5f4C17K/jFPf93y48Zcvn9bL2PfNP1xu39z649++++xv91vx7vbWNizKW1wul/jxcPP8D/9E/eu73718+vRn++lyeunt3WncXW7X503nw/tNzbg4D43H28+Qj0Hz/u4v/s04t/bb4x2eTj//5vc/f/rqjOPtW3/73QkcrTkud4zT+ZL99JIjDss6jrz/+s/O5/vVI2OkYLaul2WLc9CotvTInTboULEm3Gq32syrPuBaMkHRSgcpQCj0riYDCaYs2sysz0xLKQMxelOxPpHu19jDa+p9QbucumNMkWSdp6YyZ66jRzUr1DE8TTmEKVzKijqtTJ6cQ53m8FPcNJYEXtf6d0W/6ui+ot96lVFOL8i6nOmRNEdL1cReNGheKdCG0tL6/G+ujiEVVJOWZSJYzKZqE9rSVm9rmwSe8h685j9lkdhA0mmYaz0q4VYJNVnXiWsndO0IMIfbepunNBi4KrRBUI0AmK8saNJQliU1yU3GdFqWMCkMgEW5NuqqcracrhKv/tw1eCcxw4rzik/Wf8aCFPKP18fX069KcNWc6bA5edK6lnDY1KIrbUptlUShgle6+bUvmkW9rkpmM+aKU66M2eioENLMWZOnGrum4iKUg+XdVREMQm0l6hEuyDxYbZRnENbohNXO21xZNknW6PVL53OVV3NlUEkSmXMCz6kfxmsG1PxE9ZUhk5ZE2WMTsiDbYMtp4l4CtqLQVc/iqG4GUwCwZibMckIrZs4E3QbA8oA0YyLnEzxJBClEQTqcLZUR5sa6vwNpUT6lZczuRotGENasNQYjYIWpALTJ1RcqnUiAEIWeOV0CIocIoHYiZFnTI0ZEaKIiuuIqk9kxfB29RwwSSjOk8xrpUZB+odsEygN6YiX16puVIC3pTncbqDEblcBEkVFPV8IyvV4yCBUeBKj3FpnpDri5SRpaMBZm82VPjYZQNA0XF/NFexoiPCQvU9FgDGcS1AC9Y01nytuykCuWJSKa0SxLl2G6WKH7HE6Dj1GWK76f1WwYoY56oiAIzUNsTrh7I6wt6+pKui0LnY305iuF2fH6srZlWcyXdd/75TL288tJSu1jUZgbB6WW+z4uO8P6+UZ9DEXs0Z8u0zB/piutRzscm5toh5UeO/Pl5enxkSec7/Y8P3x6POriI56+WO/5co6nz+3pZZzZbCUTQ5GXvDy+f/nS9Jh4fvx0e0r7/u++pRvGYrHdbttyUCzrNmhtdVkz1/ubdj7e29uD3yzHeH53jL3F89/+8If9y5v14aP99NPffeJZGbDBFpfeomf2UOTvfu6BcZY+vz2ud28/PG/H4/btd+Hq8tvNZcwIN2Afejo+fN7t8dPl+fHnyzMBXsAYQSOWhX1c9pFL8yocc29DlPe4e4vSQbjmlgeWpLWwuUedyv0pIilkhpKTbpYEVSImWwSuNhKEWSgjuy+s51kEkmIgaJle2qVK2LkKV2uPVJjcFauakfNSTg0MslzjKCvrOUwnTShDAWToOuZWqz7R1oQSVqmxum6kJn9YdZRdS8O1EhdWR83OYNpYXFHZKuqck9z0cp9/ntdF7LUeSUHzGESGFWGMchlgsopgACciqwRZeQIB2eugJMXkQM2d77xGzY9RY2T92pkLORuT5sWbpgSam7nRhFiWNsFgFPhek9JU29TnQtAq5A6W+mOJpCltxjymZbG2aJxZiHVka2Q0oOyza9i5+o8UFJhkRelVTSzxk1RyWgMTezI85csEhQOqpTypnMNvPdAVYmRIJiyZ2QAomZoZ8FcaFV5xXgLmzbqmXK4MyP7oGVYxRKkQpiXi7HhAlFeXKHMHaGA6TcpFLnVZ0m3GdNWI7t7c3VGIzkJAA4Rdu9Brk/Mq9alhFm5clqUPM9Eazcwwa28CGqlIGbOySTStolT3kGATo16bwdm8UWn1CeqbNkOoWXmkwUxMr6NC8/kizeikORUT5bQlTWaXiy6hIbnFgEMQ9su6qe17xtKAUe/JlI5P+h3SlQwX6z2YwjdkjpyrYhQsX8+zRKVJcJbLG11iIGJkRit392rrlwguXeDCAUtC7qE1EiXHd4/qrLzZtstSssbYLIRIi2HGUQuuemwqMQlXb1MJGmnRFMoonCw9yXD3VGuADbfyj6u01ACttcWJXDkgwtMli0yZm9XO3hFLLk/D+kjPXaZlKhzcW1Mml+Ww5YimHiMdFiPXsbulzI9xyRC07w2ZlGUfmT2iX46eRIwMLrFvtJapjBG5eyhj75cFsOx1aNKaoY/+5WC5hrlv6wnIlSPQZMvaePDjxTIwcgxM6zstbx5ezgjIVuttG1iAdV0XvNk+7XKzlvKb1bf3e2/hLZ4+v3n78vjN11+oFXtktNDL41s3ks3busS639zcHtf7u/UXy3q4jyfrY0Q+/pu/evrXh/5gv1zXPt4ct+PFvZlc+7EUkOl4+fnx8asbJsf3fzVunz7m86fPTw+JLbb7VX+5L/dv7t0DzTWOx3vcng52+9X69e9xbz993368W7//Z+9tO959fVibffN1jxvkOQ8yp63OTF16fP/m09n6vp+lF199PJ8+waPvQ5kv2+jnALFLvu5CRiakjDJJAl4t/q8zSGWDyez/S9Wf9Vq2NdtiUGsRvY8x5yqy2NVXnHtK38P1dSEbIVkWICFAPMEjPwXxG3jkT/AL4AmJSrIMmMLYxhjf4tRfvXfuzFy51pxjjB7ReIg+1z6k9t75fVmsNecYY/aIaNEKZKTTvXL20NpkT4g14Zqnyi4Wr44PhpDCOGYhMFpUxL1Eg9GmlWvRp6qWs5ZTtWssw+eqhml0uGbzTQIyQ4lxKyJXgImUQaDz1XdhLjrnYjQFzsQfmlWOsUTmTF/zrNdWbFqz9mpuz2Idc75AU9XYqVL6qYTXUC2ae3OyTU/JShMYNPPMKsDDYjtuW+QytrhZQuZkm6LAQrbuU0idGEya9z4jkeeQOxHwkj6h9r+4bXZrDUuSFbiACfzO+lm/YrPmzYEQVjK0LJxCekWMzZDwWt/SUCGQqeoWqoNBwgAHzV93/LMbwAQMfc5TfMWh5wq+RsNmNXiUYoxA+SMo3f2oHC7LMcKLHQfSKVqQopFVvdIMIXNFFS/rLUOylCsS5lmoTCoL7QTLWF6lzkvAmDMEdjZls1EjIPmEWWoRngmjZBJgLmWLQYwLBqxeTTUlcvO+rMxa5VX5Z7pAS1MpdaZ1RgU9TT8Tg3eot9ofRKRTRKbsCBq4rKU8ASYR49YXzpbZ8xjNSKUXCCyV10iCHOENIUBmh2NwIjqZYh5bQ5jNEs05/DmosJlB1TN9eVz7Fb4eITOaOSAE+z6oQ+bc5RITVgwBGWonU+jEP0IiVMI+yTAQ+5pD8ISXA4jJFMONzcRmSssBarCNIQdoGTQBGmlA7rAe1FSNhUZ4qFUeo5VDfSLHoS6ETn69Lm+5IfuYCDCizOzKDW9kCm6uATkqC7pWck0pNjPvfoC0Y++mRKL1Q54oc1q69d5OPTIMT9ZG5Uo7azFLKEi2fvINEUQyU4HO5yAU7TjSWia9v3lYYEMZ6Gbmrodma6L58fLw8HKoRTZPKDKhsSkU5PA4IuKAqNhHZmtX0ALl0orcd8bwETWRQVLFXR+BsXRQB1YqGzP2dscgtTSDn3a3iMU6advLDzyP4/JB25d4HjiC+vzk8eR+PpZPTPRkGo4Y8vMI3C3evvz+w0n/9Zvlu/tTPN7h3j47di2P94/vvnnzuJ+ffHzejy8/rD8egf1E/+o79vbNP/tXP1uP3fXp1y+fPuSXXU73pRs4Xt40b9TlC4/nj3z42Zvff963N2fHpq9+wb96+2SndYz++Oe/+NWZAphP+ym2Z/vyo395aP2v/+HNf6798rWu1+F3nQ/r/rg+ri+w7MDl44/sxgxr65oteRrIy1trtG9/xutZwce23vmDhpo1jucXHHBcXvZ9p9biWoagCpzHoTLbCFWkXtFqMjRLsgVdY6pSCHN3SAXoFXH2hhrS0kX5jVJDRvabNaSImkI9fS55bjgg5pGGeiVFLVY5VBV38CbQZRQMY5mwaa2I6TkZjDkhO30umnVjWUlKQYGIQBn+I2FZSSOZ5VWQIkI3n7kbRQuTvzRntxp/qsDMP1g2XOVCkcXNNahS8GSGARMYoVBHGDJYjlY2fbta94bZmvB2JuVIwZba5QplHa+6lPnT8FvJn/WXWABxYWR5w4kxWdATR61zQxpj7LtqIUEjZdZhbtVFgI05IeNaPN5cuMyKDpQ3Pz4CSrS5Xq7jra4K3BnhyKh7NCH5GlvLinIuNSv124TMGDFU/haudB8iW/emOMyUCfOGTCUrXK82/YAAFxlienktZHUGKuUtxJ5utwxhijCXextlcpqipeuoro2grN2AX9bUXBXZCM5aVnFBBlXvqZTou2HpjoY21+mFLpyWfTUdXlQq3KZBTZBctQYuzHZelzAOZvTc90OofBhFjDj2GGFjH7kdAc9EwOajCOMMaJQkODLCIKJNfptNy/VEjClyjywXgNpMz9jDNqIpjVbbZRqNak6Zm8fBfhkJ5Zv9MpDHHqDHosggLMI6gBIMVBJj5ZEaQZ+LJWZxOq0V8qMYbuaGwWNUB5Fo1oYBkUgYxoLynYcBATf4CZckRyH/3UE7vPsYUCYsDKB1cMF2kCxzjQniWKYfZWgQR46PJ0tZ7wijuQUIRdDoFmGe5gvZKjrCCRnRWlAeCfVgjGWHDo5mls1rzePZOjpcGtR1WDps0OnXcC2txH5pbSRdZqCDeShd+/k0FkFuIRitW48YR1y/W5A8977SrbcBYvWR7p/fKM9AW+XmOEbaYUqxpTFbb6nD+pLM4+BiGoqjEJPDFX1RQOGhPGTHsq+H+MO9tDY0qHlf2+oOWmf2cyQQ0nF5AU+ebj3Ql6buT9v+5WE8tT3Pnn5at+evtB8cFsr95YFhtl+fsQ/tx33Dvrx5+8cvbP0CbLY0vf3ZO959Sct9bDt9kfV8/v3Lj//w8f7+x9OI7fnuUH71p2/O2zfL3l++/upyamuysRPWHk9d7oq+Am++e3Pu4On88Kd/sb75uj085P3X53585UC781yOw0Wzdv7q/g9fTgMRwW08/uJP/53Od7/lcrwbnl/2lwcw87rb5fD25uG9213b9pfrk56fPnx5CPRkMJ7GeB6n84Pu1lMu3K908/ZwTofZQyojtTBEIZTupSlwkqyknWGIsqibR1YVseJjzDMIBBg729ilvHkJSlAgxyjfYE842i3cVFPAQitzAMxdaqXgltkHZLUMBjNo5jS4ZblkqHg+IQ2Wk9ckSMxjzCRkRvlMslK3b037xIvryL3Rr+uXUiiSBSGliXXuQrxFImBWttu4RsmtBWWQzx7iNZDCWdQp92Z9SSxIc4cvHilZxcqvvfXunVlDcF3jkkjJKj+PhoxhHN2how6K7qA0goXa35i5U1LFW8vyCpCVqvJmodlsLvYB0byM/OTTebaqthVH5lZvpmGgblP0jVs9Qf3CVXlTWXOWqJq+a8022Wn1p5S3K4r5njkXxbNHqJHt1u7M30oABje6e8vUK3EfmBQAlJRsooI3D1ETsrJykJK97g7TpqXbDdZHZuCmWausKSNMk650A1JuyRG3xfVtL2Mzj64sLDlvR0revCyGyBsRDhlRbIjJbbj1nLeN9+tiA6+/QtZqIVVBFKyEAjPSYnIZVbaz9a5Ve+QyMKtvIs2olNc7XeSC+vf1josliZp7lqx1u1vUB79mooKNylwpBkdU/13BTzHKSsaMbIaRoBQAmkifu+0bMlOPkESTpXmBVSgHu7J+NQM96tuitEMJmLmDZkozGWlsHWiRQSTKIBpqClo7NI83c0NZ3TPDbh01bvd20rxwCyxP0czNWYoI66glXQt3E0qTNcEhmx7ReRiVkmeSCBlAFEojGnMyuEdkgkKvD47JCkCRIkdoRA53CyHoJmsr5csQAPiyoLw5t4GUM6FwANEy+uBqd/0bezYOWdQc5Q3Zejhoi1Fga633Hq2zG73AzcY0b+7d0Zr1BjjNaNbc2jpaPxaGe++tFWRq3gC2pUm0ZnRiH4xt19JbH+oPbx4fH69LjVPGoXPzJBajSV4exjG04XK5jv3lGue7U0O3MRbSqeW8njyZI0LGdn++e3j8+pc/+/YX6/qI5VhOHRqX6/H844/j/HK+Dq+xLZFp3hq7uYnKhV2rHeNyyVOPHPTYD3se2xY4Lm3fACnNG5fT/cPl3s9nxP0Dvlp//s13iz1czDvG9nK5DF4v7fN5+EIgQglkxL4dYre7h4fTm/XlxAbtL8H0j08PL5feIkXSlyVj3x1kS8kyikGvDKt9lwBMHXD6ZIy87rpu0+Ocf2qdylY7ZZs59vOQvW1cq/U2CTRNtr3Ns/o1XWUOqMKcx3PC2wCUKC0TAhiTb8/b63mtCqW0eIU4kzeOaFmhT9r17f0UIbno3JqL4az/G9REqvCaXzdR5bzRYDQVOWmVCXfzrNBcyTJfM4NvhSVLaGJmVtKi1tfV67oZTDIWC+5GhapKnlbEK7oZjSPnF519AGtPr9c3XgIWYq4ugduR8lPJa/NEr2IKmtGosHnr6ie8cqLrgQCn5iqLvVzV3Cd/SiULA1SZfcYac+sALoDA5iyXdV+qmk2H0tm2vL6JzPoLmTIvqpWEkIhBgoVvqAzKe93HW9EfgJyGMjNDmpdaq5iFRoMLJneJZmm37yulg3aDCiRlGof77EQ4md4Tq67bWfRV6B/JhYrUO+XmZc7f14VeqYTzWZCG7Wz7fmTlu0c9HMLkItWjmsVH+P/rHI1R7F06yqiTbr6MW7NVGx6RXnxiKz4HZ3h9pt+4g5yKJZMgxcha7QjKnB7UFUdWNhlU5QhOb4/6ZGR9bgVARbsqi+ei9RKBFHwEIMUkTzSkUPZ0ZrCJH9yevlulwxDgZnAo4tbYGZVZFvR0wOlOc6cqnQG2JiUGRWb0QhXoI0FKZtP8nEBGNkwIACDSgvu+q5dJjbe1YikOTcM0CWQMCE1g5uDMaVFWMzt7xhxhKHHUzBQZNthUvBBlFq8zpcwY1vpDIECzhDu5HyGwj1EzgfmKHCGLTI80WgzG5h9PBFs/+z7cXGbNzI3uuzyYeWBPLiXhDRpbJslmDpMWIzLpzUNijjyaImuTc/M7j+GhVKSlSSQatG/b8/VyvWzj4HmAbq1bjnZ5iT0E9kaMaENm5rxcB5ds6/W6HWfsBvS7M9zxPM5jPRNN57vmi6dgB/vdV+/v+i9P/+S773cc/t2vmi53RxzHtpWmdEQbX/hhfPjxN79efvW35/c/fqfnY29fnm3VfVzu4w/54ZOATTmOZMTo2J/WbbftC2x9fPQ0Hu735/dvfuR+9PXucYn+MEynX/5ArDQ3P/a+9js/r+h9CQIffvUMTwvf/uHbvBy9L+e3rq9etnGcOqLsjn3pRO/5uCyn5czzy1UW5zeP67md1mVfuj/DCet9U1syM8ZRjsivXW9NT6HS3IaKrlI/YpbfYEQMYVRkWK3sYrhFGdu8YqHWMuuQY8zfiSCMCjFcQFERBMBpWVLL+VKYwFxP1/jDlCGLun/jYSpVzng1A5e/b30rEZlZFN+id6uovkX8rR0S0gSbAwIUNyaOyYrnj+lcPAePSv+Z5ry0EiDG8ExFsZuKiVsnTxFfmBymChoxRAbrklJYFAd7njibnnmhMft0zPKKGxJdh2+/Ua0IjbC8eWZUo/D6X73W/VsP8Mo1g1oAKMNIwcEMz4z9GCPmRDM1l5VwgLCaB1THSh0yKL5cqrJ8MkKIOUmZVOm1AEBvXjtdprdmNFKeTtzijCfxZ5LQMSF00ISG2LNJMJPRgM5daq01EyO6aCk/YRx7EJZe5X6CykZApgGCSm8MSYIls8pTaz4yK3uHVGsgkGO0VpL4HCOykpFI2TJAg2FIksymmCtvxVhmTqSV0dWx2qEMHWNcc7CD9X1AIYjWfWnhkhHeRMFgpqRgSAiWxd4GdFOqVmKHMsYImWUWE4+i+/CjyP4palK2BVcqy/UjZXTEEc0SAls4KWR0g2rkHeYgKXYL0fppmTWR5n0Z4YA3V5PcrQszebB5jC39SNCX89jhu3EARheZvRuH39WWuTeCxqz53xgkcdOaMcp2JJXIkWAmiCP2cRwLgMwcHuOIyHH06x4azZ3NkhJxGDL3tKGRKCv2GArovIzQ2CQoGsJt0NoGpGW3NJp7mjXz3Zo6PHsYsZ9sD6QAMzojmJmpbmZ7OumtqeTiTuOAWTbLCLO0frff+8v5eXkc60ZbzuP08PC00s9777GqReudnbTmfYQObt7DwD4OAb1FgruNDOQ2Ut2tLQ9X9+M0qs9uwQW9ed9HDIzVrA10b3r5FtzG9nX/oSNcSjHNAOEIjhGK1Fhd40CEMZNN1jp6MzWjezNJ2TAYo1vSlYdlRB6jMWEnz7EhxpEnydfWiYdTyzC/7tfLHqZGNja7O730dn2+WOTmEXDGvmNXuNg/tdPdiYh1bd4YLe7vH9YdNrZt7Ietuy+8bxnrw/3lbZ7vH+/XtYmCM6/ff/lB/1rn33zT/qv/0//lZ7/Kl3/5/S/vcv/2bXv7q68+r/dxghZft4TbulJYH++Nfvcn56/Pl2++ffunHqf+8G78kH/4zW++fOFvfmf/5ecf//a7v/ssLq7tZfzut189bcf1yth6X5e7x+Wh+5/+Mh/u2/Hy/PzpfNns7L9496d/8rNfjGM9HbYsTmy24wUrnz5c1GTaMyLpRka0k73H9ZpslwuPfcDT+ha3hSg0in5zjMgRScvIUm4rjsqwQR20JjiTGcnM0VTRLFGm/eUAjObCcULW85k0y2AR0mAmgkrcNjvlXxTIzEjkGBkF+kmSuQQ3NiKP7LVChYyeQitHaUvHjKuFmo7CiE1AjrTadTrmAHxrEya3VZzKzrkilpQhF1HOWhk1rkMZVe6VlGzCsg7Jirk5xfg1qABKB0B3VJSddW9c1hYRDF/7uiwP1tZurTzxIjIbjFpR27v5empyzEjwPCuWlxr7tvXNG9n5Bj3MujuX1KrxU9MptPVaOlISCiWPtAx3l9O8wLfApADwZmZ1a4/MnCPd5ng2ZyFX1kRbXUEh3pleUVgg6IpIL9MShGWJqIvZ+9p63Rb+N2ekhFuMCqEpryokYqzIEUzsGcIO0EzWQEYiAaMpMuCGQRc0kEdQhxqIUA4OkoMVdFQizAzuRy30vbdhzJFAo2CtHQkdIaAovyx2UbVoxuZuTeFB81YMXydz0Q6sS5SdqVm3KOIwTArJl9OekeLcqKJIdpPQA+UAaaKXZpZA5S+O83kYKGujn+IIA8m0xqR7TdG8mVSgIkcKm2b6eupjwIBR6UwJZR5qBsEbum2NeSjUqE1OEz29nHm4t/LmpIbVThagJSISvgZhd8vp4NEMlHe5ExUitQVyH1Nm4AZXusT6zFpWdoO1MHmr5RSHHbbwEOB0W5b96A19OclaxNjXO9myyNyrbxnuxHHyl2OJA9bg7qOZu/UWXdfWY2nJBrfDTH5X3Y/1GzYWCaTbSZvS1k3LcrTC6zMtVB1juPbGzmNEG+Fl/Q2CRmsj4SdlLFi0HK0veai1B8vltC+tU61hoWUiG6Temyvz8sST6Q6LmXcDGzg2Nwnel+Z2aTmOcNu/8HjsOxr6yfrJY+x7v/rbcV7uYttaLm56ebN8eewPl3fQ2200sQNcjHuYIeRaeA0nRVtptnd1sIN0HuFDbdQdiWuzII+gd09vvl32huu2vwyNYbrc5+X5umtkG3k97t/eaX1499XDMzPs+WqBPY/oDy/r/ePbh+Pu7Mt21dh5XK+NbP7t299nIjw3nNq6X3NcLp8XvLycD6zHsr45DRxDcflw3p++XPbtxOb9cfvmh3ff/uW/+Tf/9s/++Pzu76Tf/PHvlsU+/Z//X7/7zR/W+1/9xfrp4/ffXMlsy7quD+c7a/3uTftgyz0/taenL/j068/6X/3iz3/3y//n//hP4vJ/XT7g5e7F3397vHv67t7vylR2ff/VV1+/nPu7t/71757evu3fny+xXo6fM3L9o7cnPTW//Lhcf/jN9x/vEae2D8CTS2+nc3vn1/by8cPvfvjkW5wUQKN0XD5sP37Ix+1z2mCzoTjGcRSYlxlAi4JZ7KCRopkrQCUWUiMw8ZsKCVKCKZG26LRuje4xGbgkjyFoY6rabZPQraClBNzCbcBRkl7llMkY3LUbiIASLBUmMqlKrskjjqkBQapnmiUyTTE3qEwdOWVEEmnNvDNz7iVVciYkLAWF8Op0dXMG8lIBAq0GtFL9goyyZ+IIEf667spUxQvRS9gDlhFnN6M1J+moaAeAgwelGNdL7/0+myWsfHXLlsOMxlZZULXnc7bWwLWJRutOZjDwil3UZpoFWOEVbb7Jvert3TbFINRSr40IQ+FuQEQk6x3YlDhbR2mD8wZM32hd4hjFZbpFR5Yhv2BskyVr5iQUEsvwEgl67yDULMzCHTDR6KBPp6bqkZjOWgFqHMcxzbjdZS2VAVvabp1pCWW0wkFdaRkZuAG9CAghIGAeMbcK4QiNUJY3BQUaFKHMQSlGOBar6MipSsPYjvIQisyROWOyVJjISOmICnuoMm6IgyoRKEJKNFOO1iLgFBLeh2CIMUa1nyjgmrBK2VQmYeK0+pSbRDemR1qeOqsTgzco6V2eIZDryZGNSlDGIEuagNo+mqBtQ6IBPswncCozmQtm3m0LNZh1X6It3VsD0WBGO2V2N/g0nG6seyIAeRy+cHEa/bRvribgcO8Is0b13N0DzsoVssRNOptF8bJs5XwLcbQUOEbGhhcOgbHnxi+bjiP23K7HsacH8tBQawkFqqnqh3QMP9Iah2RtEZTYw5wt74mF6uruTfKUJKPTaN4EOn15eDkeo1m33szb6mMHZeyWSmZ3nhjm68HVhrO3ZMLMQ2W6ZW4ZmRbJlorrioP5dL/oYuPlUwuumUs43CBTHLHeeffTuKw4LtkQMq5sS191uvr90u2MS49xCN2WNWM8v3hwHG08PTC4nNc1Xj7GMyJzodIsVrbxfHw58/3zh4gjuK06LJUBMmKPXan9eY+QDXo255FA42npG2LI6aeVq/WGq2179JM3t7s7j8f96O8e7h4eepzPPLytMvPMNc9s7721Zed+7gvW85n3a7xsPx70JcMeTPGw8v5uxP3D9ug4f/rwdM08Ew9vhrutNsapf/d+f1jfnN7f+bfv98t7u3QfLXcup2FvW18Wj0s82/j46e/2446L59f/Vtv+6uPP/oN+Wte37avnD5/+s7++/83Z2vN23feP25svf7f8/lf5a/7vL/nr/+I/2d7/8Tf/7x++3r7dH/7yT/+n/7R9ffoftfhzjMvp7s/+/bdv375967qulhZaRh/j+DH/4dNfrtfTV4+X7av17I/n+/xyf/92/zxe7Ou/2f7wxUaMpkO03rbv9x/369G/7v7mseHyfQY+/e7z8x7wMGt3sV/U1nGcaTxegOcKv62jszMDNGs7ATY7YlosWpYjrRH0BJiAmfyA3KC4XnO7duVt0TiFKTloaaCHzfhtpVkaFEkbKmS4ZEekZSGEYo8KoCbhGV5TAQ20kJmTDmfMjbKgGWpWZLGsctNdTCqLP8ysGXDichW2A9Idt72jpkfgnHG8eBKYJXWSYKqSZW2qkyVzqH1dEFHU7CKJmWN3lG2CB2m561BkK1pMPy3r2lvrraK4DQoZMJkQk+ZWF6Gm1Sr/5THtJnqo1skwRN7G09uqUJNcNCuyRJVNCIFWoXQ1a9o8E2U39Z7dqkGGlaFD0U7K5cQg0s3mcFsWg243OZOA6e7Q3ABvZt4MphQNY9sVRkXpCzG3wboZEhGTBsMkzCnJMxM5tbVpHkMDPqDp/AgivbFobQYYEvPNmOTgABkB3RaekWUoQfpM3SSAiuuYRVfZZqgmmTQzdwuDN5GOMMlf3cZMZlNZUnS32no7ki3DZBnlANamKxUhMffaXZp5Miv58UaMUsCSNkMyq7mziiWmYJnOUfalmYwERQbNPRIYogkRaYzCHVU7HRFSBBTDR46dGTkmJamiqcwOeSagMWIcjWKU7k+JXPJIYDQ3ZCMt9ZoHnKXbTg06rB3mB+nQaq2lSXLRuSMJMjbnMNdtKSJSVFYi8ZAEnKZiHzHOJ7Tco2n0dseR4Opn7OaHKDvJrBuM/Ua/ANzWMYyCGXzpzRjTYQbb3o5d9LRMIohwE5OSl/UejfDFxKEcA93HEUjZ8NDIlCd1IKN3aPcRfaZjG1mpxGmUS7VjXZwtfb3gvglNfn58bh0Oa9kSMFv7w33ui/FJdtgBRrK1oQy24BA28Pwy7JqJbMfWL262HOqbNbMlZePYeFqshzNiIQA2UxPvrtbPl8f+tDvE3kojP5BA6/vBXO7YgOgQD9rpfF5eeluXE205WnO0FU5fTz0d3aXI68vXHbJx7HZ9/qLN7roY4fuXdwiNxPXj05cvwpvWtHLbpUG1+DEefqQdlwfgeYstH/PydN6W4xnn1ds4YMfLdYywde065+Xlinj53ct6rz0+t7edL+q6HPsd9kWG1u+7X8f++TnS7IjL4Z4j3v6TN1/9+Xe/OP348Pn07/8R/35/Z/2Hhzfb+7u3d28fv/tdv7z/D6W/+/l/mG/e/Mm//n5t/80/+/IV/vy/fdZ/vH3c3tnH+NnzhcDL5XOjrguXO13tcoqj4xs9P+3bqb397Q+//e7rp/AzPv76+2N73p+v/9LeH5/f0Prp6APY8dD9jT7d4XodaOsvP5pecj/fPe3Wokw5BSLHS78OO2cux9Q9EFPtmhn7GMo8rD6whU6XjLKAzBypsB6QWMior0u6tfJwK0WdgCLwggkNR8bo9HoSWP5w+EekLWnEdHaMPtHIW9Ab5gAXYrliEhQDGpP5rJBVhnAZ/FRhnhOhmRE55SFVgFW/FxrFQX0lwZKTR6vUzeGQdrO1wG3lXBcMUvqN60XCkPPnOnLNpJlw2jJbhwM1ekdiHKMINFR5xZT/Hc0r/+y2fKuBlmRrhtabCynH8IqUqZpY8PMNSJ88ThW7KG/Y7m0bzHajq9ait2gXWZm+xtqlEyQbapr1QuzLWLBqfSRK/JRwZWbotiov+pIim9MkqPzuYECJTVSUP+gWYoHbM1DvWBCynD+KqMJ5KXMGhjvQXCkh6ZQtbfYfFHnLZypggnSw5zaawg2oRs5BlfqteL91pZzukWOMkS4y3QzGA3D3ZRxJo/eRgIpvOJ9es7J+Ij0IUmkgFek5EpkDfax3a+sxRmMaIZN5HhhXbUdkKpMZRmMZvEGRQiXRVoNQH8LMyrCIPCKK413OXhFCIGoVn4oiFlnxvVEdNuefNodoViz9V9OxTEgjnQORaYissS4YnK5MI4yhoIAwKKcHj9UUC1DI4aFtv26xaWTmKUcm0gZ1DYKR5nLHwtsOCCRola5CyUxAWwzlwU0vj7Y0M2/m8oxp3urhrW+N3pjUwYpXI6wb2pAjh3mjYPIlA23ALcybzFwyEEeGUGZW080yx3akYuyIMXnhBZcb6TZo1tNs0Hsmnd5eidq8SQCs0f2wkQ0xjvAN1r6gK1pcL3FUr0z54mmIy9V6F06DOJDVNBpkTIaOaM1h/WiKbcCEfnoZI5ZJlNbYwdyvHaflYYsGro7mpyPuaNZz19OPZ0/Re0vLRvhm9LJFzD2i0aEDq2FsG2Ncv2wvUGTkceQYyuPI/RhGg/dl9TFyaLgprRPBcZUhjjjGsTP2du7nB4x9KF6uQ7K7lf183g/T6PTTZWH0ZbHdA3k2a/Hyef/qOK57pHqzx/vHX/wv1qdrpsaWP/zo+4hDQydC2/by/Px02T1N47w+fvfNz9/s69u3uP/6u6eP95/x7Tf6+PfLw391ffnd5SM+tV1X6ZpmS7bk0hdfmPfv9DHy099/+nni+093tl/281/889/hT67vPr//s+8f7h7MFuF6OLctUocrX7B90JexPry5AI/Y/Hh6/vz1oqdfX5++3P/w7rg8745x3Q4ZcFr727uv1q8W+v7p97//7a/fnh6+kcn7ymNkboff3+1sUt/CIFu3g4mic2RmRhZjdDI8J+25yFZzs5cpED6TgqegI2IkahU5t48xkLmx9mtJ0LJ3phpRXrlspGHqN0Ckm+wGBacEWFm/x6S7I/eREUqFWa2WnOaMispBSSzK6ZBZLzSRXrN31SbMPrmYoozbTFwM52k6LElpmKlL0wnv9UtKUfbOSVi88tRy+nyIVob0ZS6QwQEfAMKssh90q2NmGu5Os0nOdXc3t9aJpEzVFXUL0DlMphz7gDOhLDalCJYL809+YZOwq8nenrPZTf4KTSMOkOUFTbNkGf38tMCeTli1siVprVy0J226yqXq/lHe6hpg2rmA5s3MWnOYezmbUN7S0tLpZgxvVLF/Js3MCkqnyiK4FArwUSGMBiJnkLsqhgHlZHYrIzJjq5U9b1aLggLNDCzPB2sdQtwoWmyAuoyTRtv6ykNNCQQY4whi34/9mmAqYlo3D5QYfRKHkDE8jmExmnlYOoHAFNRu28vRzeleZPeSt3nlVQIqCN5f1wUlR8dtOIeEKN47DFbExThSRznpBBSJDAUtWbK7YqyXRKuyJiaMY60tvUi4RRubUznMvIRSssomyyM6p2s0JvEulWkJ0wyZnC8vNFK5X2S71peXLQagUOS4uJSwFjEcOQ4zs7AKY8hJcKAjJ94AJgN0mOiqabJALUOOY9siByPjiEFleh0/w1qZ0O7OI87YZ2mNbXEJNkSOPa5bagxZsttgHCFF5UCVEwEAaVx4iiCQ08P51qNVNMeR9T9Sip+oEZwWgCQst1AC3cmeA57a9i5omLS6AEe4+S1E2zF6joz0ZFpzciSN3poiIhlN3vd2Ktb+EW4Cm6TI013bPfhyfx7xDKF7wOR5Ws6rtnX48xMqGWKrT8iRI1J7jnEsNLPMqKgai9wtRpeQiNh7b+A4nM6MkR0tju3x3LeWtoCHt9bObWsnBXtfmafz9RjXS+6DSsC694wI2JGnxZABi37Cuix3y8nH2C45ti2W1e7u3Lu7X8d4bvuHj2/u1tPPf/aHR/uj/9J8u0q8PD+oLXdLX6QIxiUzrgM82fbDlwf++Hf/ejmA7z9/+/Pl67t/8/TD/+Nu9YeAI+LYn/VlHHb95Fv+yOXy9z8PP7/5FeI5/BgjtuZ/+5FXvvu08rO+OvPdw514envnzey8PtLPD9b/yS//tn+5/Po/3r/68tv9D7/7ww9fHp/3N/anR7z569MfvX28833AYx9X7M8fL/gDrzi2xOm7l59/+369v0tpHDhobI3X/cjM5TRGXtIP2M1PkJyB4i1vqWhlBquiRQNKCxcUI8vNoeZTy8wDR0QqVcsmFZB7RC+uU1GHR9BYhoUkEYYhmBuMlUYza/1tdJ1T7PydCJrTDUNeWW4jkwpHgA0lKKlIvkTTSFrC3MpKhLwNihVZVIN/c1ahq+mJxtnOz5GREJXDq67Meb2gxNJhGGkyGrN4WMpKRir/p9IP1ngl86xhtXyk3S22vmLsRxrDkXRvkNxsjBm3hOkJBRIVc+dzWqxyVVPiJCSj8Lw5mumVGl290604E2iazKy51b3xrwHMDNz6MnXySJVyMUVZpbyoIliHjiVpVj0T5liphNP+UdRE7SGtRyl3zVgYc06WN17v+E+vlDe3wkIuii49EwxR7gumpJl7zpx4m+Bmjdqt9rsJuiXMmQqYFV9s5tkmDS63qRMz9+azv6FzDOaIyDFUptPV3eGmAasrVMWxzB5zLqCJMKt4sIQCdL/Fj5RjdT1FRFnLAGSZQFMzEvd1ttTMNzGYyaz58JyBXhXHqSEOOBiyjBIVCayORHXPamdNBNvUdE0yYa0nzI2OjGa0SSC4rTMgSpbigFSxxJASpQwSpLQxIuKlG5PXlx2hMRIulZkykWkLhISsJW/2PlWzeLOaYdEo/PZwWZ6ySGlTWVfQWhaxW8qyRitWm0QkLGKB8ggKpkzkmL5imWNkHjVK4FgocFE1fzaFCSYcwhXI/TjikGXcXHjM5EIeGTDoyAjIEJVAVqiNyiUIINGapfdoaH545WzQaD2jIPGUEEYdQ1BezMA0S6NwjAViMltPd1rGtlc4q/ke3lqaw62dzO6yIbzdI4+GVIY15Oin0zn3y2n8ePU0wQa8UDwlTUVZa0u4AGcx2m2UlHOaliqHMIaVnA+ZYYnuuY8cw5zrCrNxf45ofVlbX23blmgrtKyRI+44jgwtj89YwxU59v06tsExksRLcsR1aPWIpFG9ubbtePrwP/ujf/bp8jHRpO2K7UNf8HJ5ocm2ff+yvej5pQHcnjUyPl2+dD3/w1+/37B/f7V37vazb9/9i/vH/njpkOIYGUOtg1pO43R+f/767mdv/E++vv/2fOc66Uu23/94PH9YP335+C/2v/mb9csn5uLbfsSxv1yDaa23d2/v2mW8/PXbFu3ysm1fRo541x/99J75i7dv7t3bEti2SzPLvuPx3f3pfb79+S8/+Xe9tbPGdn3iFpHenS2X62itn8awNoFVTG9HM3gz0kf5AbrXWWJRBxmUoCISbR7YAULenNA4jukmZzk//2XaXAeLZSSY8JhOGZRSw4u8/KqkvdUM1pkxywIISvSS9JpZLfRYqkWC9KqqswDkVD7CZwG8HfMChBQiMcX7N/sB5rS89Kl5mRabNx/FojInWBkS5Vw8TdFLWcFXWtSsHpxHYc6FrsjXIAm23vtyWnBwYgBzpJB07BV9UfA5p+1YXQhrZrxVm9ooVvMyv75ucGwd0K9FrXarIMU2KdOFB8zrXo0OjFMqA9SKu8pzoEzBgRRN0ghqwFIs14C4QckAlEyrM1IJVljldIrSjefMVCYn0U51TNOo8m2a9okQisGmOctDh8wsytEXZZZJRRV9plwzEY9KxfTdn4JwkBnzq9V9TGVGwKpvgwoBktLdbwze5t6iNQFm5qSkMkimIMDgnt68u0Iud/eCEgGzbofY2miVEufmmmJkSCMGYipJOfHYn9qPqow3k6b5R6o/pGHtpBng2d2Nnq1FWZ7Ma2s/ucgAVJIRoBptigUrkKC0VLAxoNzZWEtiKAiScfSsDqY+MVTmsBktlpP2KMFCKhUC8npctR8KQDZp9/PTjhg2k5er8ooKB7Kgl7QEZZVTLWRopFGRI8uSCxIjCmY3FucTMR/6THONFpYjM8MViQYJdE+RLUn2dpRZPB3wHHKrPUj9Nx3wtExYW7byM0FjFKRkRYh0pC9sA2pwh0MwAwWVH1ex6HIwwqMhHKFQDsfOkUu4BkNw0GykU54nQFjCkl6iD4VaPwLHsrm3xXw7Rse4NqqTCkuMXSOTDouXzlUHFHBlLC/y3cmh5RPfesIzZESjM60FaMbF0lprq9PTl9Ub0yuOcv5ozt41qS7eT/18atY8fUVrQwxKuUuS3BRB6MgjbFz3PWy7HgG4Ly+XsYoRd8zTS4i+3jdZthHPg9uXp/3z/vyHD5+++rJ93I/Y83z3+OAt2mX/+MLny+XS9PvfrZcv18s+xhECZel2/359eP/UT+3uJcO5Xa6/+qvl33jhPpbvf/fl6gELsUV5mhZZ5HG1C4d4PD9d8eMPbzH6yV6+9Hfb/eP9+pBvfljenx/W89aIZmP0u9X7qdl63n74cnz8sf3m+env7ZfyttwN19aXuH7+ni/HfmkDx8jWzAR/sQvvn8f2fP38w3Y9FiTcEbphpeZ0997b4jH6skOWVkPMnOzMjO41GFaPC7SE4mapUF5UKB8LppSxW8wZipNzWUvI8pge8zNV5NFp0vdKwsAkEVe5rWG5FjAJWhGK59fM6aVUJ3ORqKya57AJGc+4hgm6zgLz+uVnlU+BkNXXq0DaWbXK2Ggup6qOTnC29q1iqdItq27cyp0AGUpZfNttuXlzEKoNOqZFMouk1oyIypdVCMV6Vq1TUXbDRgLO7t3Zu4O0OrAmfbMyCF43+FOKNP+d7ia4IcuvM2bzYE1OEme6kjJb68289LdQWQKWF6WBpBtdRpZbQ/G4hNdbUbUi6zQyNm+tsSrW3F7U+JJinf1WPiE1O3Bqnm+v/ZbTVMNvycRIChFQcnTLVyfOzJFTOY1khm57XUXIlASTlplyjMSwGMoBhmd4KBOjhtugIsYYkeULohqAZiuJWtCkSmCeYOGSCOV84jTTGlhVqe52UkpGKs3nsyjciPyoy2bFHLgFxhK3GA0vYIFGeRnGQqB7aySs7Mad9GFuIEhvbtN+tGpx4QUSNf0/KxFQVm1SLYhsHDN/OlHyB5o5vZgQhFma5PIZNzZ70lLWK6ERg9bYPK3nOEqvXg5gqkI8BB57b7GrHbNDzXLfYvELZJXqEG4zxDT2NSu8eKpxDZUYM5jTHk+mIg4MsPwzIxIOlzK6wZoZLBsiWxtLO6ordYQ8doOcBL3AZCMXh0u9WTc/2cWlwUqnyrR0p3mKznBLi+KOmrWcVvbTYQNMtMwYrsg95JHIcfCYUoSS3zUzZ+aKNa40H9GgBLuKG6pIBtBtQ98yF0b60Dh6DHdDMF/GfjYfn4/huowueurgHsfi3bov18M0Sj2ZByykPMbmmTnyAMYYw06ZL331DiigVEwSPmW9etpwmlPH9SG65+rWF+9waxCYgwcycbf25XqhDSa6CTGYx/PL/vRyv2rYwrV7ZsVuxXrx52ffLl+2bR8vX56eP37aP/LlLra3b16ar8d+bHE/toY99fHDVy9frpu4nvp5XZZTk3nPrb95vOt9LN8+nZZ214+rdUMeL/HhB+0DCbPWG00HGbheju3lb379d+/s4avxefvD5+X+7fnhZ++e/3N752/ePJ/97eX9m/f3zZe1Rhg37B3XC54/nD7+/tMPj/tv4+PXd/387t1LX9bjdPfyFH+w372Ma/fTMs52vm8I+3j38inH8vKyXz5qf+ahD2q0BUQndXx5iu3IGNVOR6QyctSxr6gzcgyo0jjnghSgikVjhJllWSOR8gZp7G4CHWPm6cpKYNfKVjJpci8McSKUNEazkLmbKiYWE8wxN5ecINNcVWhLPpw/9fQF9ELlNU3lLcZOhCU0D+5KebvRkmb9jdo/Yca46NW9MGm1DIdJ8pq9rTIaqs5GlYdajMosSNNPXCnpdX1e1e1mtp+sYFUkxpx1aVREZg7LcCjlWeYms5jMs1pGmntrXg4hE2A0t96BUqgItWk3ZaW6zo7n1uZMaLgucKuSUnc2Me2OUqL/1JwAkayWgeWwKQHpVIqlFm5VDuBZ7ho3b2dac6chTaAbffKrKcJr794Kei359JSCYPp/gBUkW9l9aYNMM4hUEBpIsWwajEghc8mawMt8IeGwRrhYVg45Od5g1sZdSKkEs1XklRFFRtTYIgHlEYdR5BhbjuNIaeYSmSwBKMzmqiaJiMgxisUfZeKSQhwpjYERnnTFXoCGcsiRpTuOksJhhjuKyiyT5MyKop49sHALBSqWilIKRRyHqFQO86SrNZ9QCURBpV6wanJyyI5BIcdUMJsRVFprBkYFKDpBhhNsXk7dUUcyEs3NWYr6Mgi7bdopIDTMfMFFOPe0tGX1Wpqvft2R/thabOXVFZZFJywswhIK1babAwArkggwdB2KJMIMvizNCSiTe2Q4qTENzRIVWSE6B8jWW0dayjXimSlsKaN7vcPU0m0OJF64TKb81GqN0NqKIZwSLiOb9iOZyg2J0L57GIZhJPzm4Fq9dQjs1gjfG+gHViNbX/r9Fxds7w6iu3lrawPbcTx7k8eI8HS7EsOaMpexWz9zxH6A1g7eiTYGj17c1uexpNLOj2/W7jht6wJj61hO/T4iMX7sd4xoFRdlEUnLod62zNHtOPb96kbLbY/d/EhpFMiH2CJwPPsD4GEN47L0ceDts/Lp8pLX7UkX+1lvfkriilXPP3weFpnX8+mxK9dlOWnJ7XP7Csf2dGx/+PzuuvVGHNugrTy1c7T2+Hj/7uSP367Lg37O7etf/Ozfefz0deDlxy1eThaL4eTvf1ieeOp9XdfT+a5HHp+2L3//64d/8Yfz/R/ePKfd7+vdH/93/uGfffXh4fyb77+39XG/6lCa1uN893Y/3693/cvdSQ/785/Zu6+++rN3b/7df+9P7t7ozR9h/y/wGQ+/+tvnxz1/8w8vf/+J2rXHeLl+7+9/f/+0PJ9++2X81T999813f/rx/Xj46me//+7Nr7Su/vS0Xbb0dcm1s5el+0HoYVlMb2XW3rzZ7+7u2qqzn8ZZisMo5KY0G09PwbHZHTInoVIjDNC+7yNnLz/pv6Yo0T4gerBZiLZENqkqgrV+mHFaRiAjFYFIMZNE36pqxliqVCZTabcNFzDjT+d5mtOtSpMYdqvKtQhUioiERdoxGmJiaczJA57caaXmVtB9CnM1Cb6WlXY25qgwxVNEFj4996kCoOAkYaFeHDg9EMtrcC4nAcDsVuuI+pgjhLBmNAedxyDgi0IDTFhzWzqWBU1mTEoZ7tMVklP7SWTKFdais8Gd5nOPmYNZw+KN760bwl7w6G32LxxwuibytQDfTva6WpnSTf9RKCUDllkzNvLGXBWynBdmaobKu26u7uco+5NjdC3FC3eN2nGCkClv8ZMEKlVpErdn31E9FMSpECINhnIBtMYZmTozK+doSZItWPOlVHLm2WOVPeCrbUndJ1UvU8wFAnR3NHiVQUvRLEcl45VuWrc1tb3CKrwtqjFbMKvFav0wpzW6VYpPwqgEEoiS/2W1QLi9mtc28TVq9tVTzGictg/Jm4NajoiI3GN2W0ckUkGU7WuRAfIG/DCkkaEcpUeGIAVBBFmi/0QeRwRhlf4DmxmRkVO1E3M9MNGKlGUk8kCSuI7UiKP030rShSa026KA1UiUQ1NWS1698sTfZwai4AYnrZwwy0tEdLfmbYz68BmRgI6YJCgzM8AjkW5G8wDFlmOeRCFNnXuisZExqRs1MwSi5FAbhiJvCECjgah0sr4DinqqZv4yqVfGqDFdsOYGa8vamccSi/pi3pe+Bmksej04XQqE5/NJDY1wyJAWoTCYW/OmY4wDAHdH7sfa2t46Gr0JfTAD57uKr3aXDIcv7WSKuCIWG3DDcM4FD+hYaJ6xeLgpupmzt1YuBIDX80XWh9OcNd3HOBKZ7C1TsWHkWA5hO4Q87UPXlwu2PbZrxCFMsyb4kiGgtXb1uAyFIvZrX4/GzbCPTjPp4dvT43I8YNHTD1+kjUE3dHuK45kzmBm4bC/Px5HmOPtdbw9368Pd+dLP52wX5Oen8fnTdt5Pby/vTm+v53T07uv1dO5aV+99OR/rup46YkTqoLZ4GpfPvl+PPAbQT/fx1Xe9rws6786nez2eTo/n4/7h7vGEP/7urvUttcfL88vHH6/Hy+e7fD5gsX25Zng+n66fn3/4jOdtOzrPb+71eH17f27AEbkxFYdF7vsWXM65H0HzzACGQFMlUZLmsu6kWdIsVJZV4EwpnM10GiAzU5pCIVrH4rLiqExVTh5DY1xairUmQYRCYWQAaTbSlYGEDJ7Gmv1SkmIcjLSUFCnFtEQdOqq2FlqXFYWEqIG0WFRZ5NcJLEto5W4B/ITrqci1wg3vm6Qj/QRRa5ZyQMiMWVVumB5K0lTgnXLcwN8aAzgPSzO70Vxqw8uppTYPyaxA9jz2NJhcRdMBAO1HzPpQu+9gwCyjUboNJUohiq/CW6F9Rdvn5vwf/TTBXABQuxXlVzSxXi9vU81UB006WeUTz9XCzZukztBbaB4mHlE4XvGIQNZwe0Msbxvu+fNtRY1Z1WYPVNU6VZxoKTMiYibQ1U5KUFqFL4mWlc06XX6r7E4ri0Jhp9Ux8idO36zVt7d/AwMmd0GVMUsi3WHGWodLGZN6jvnibrtz4RVikcq3TELAqrJy6d1dCJ8dTlKK2LONMXIAFCY1Cbc4iVLu5uyqSuhTywa1iWjYFLNPHluFf5UUOeYWhLfrPp8E2lRflURYwUwTTVkJSj89XNO12ArlMHmhHLd3XLRqTcJXucKC7rLMFBVhggnKyEDGAMhMozWVi+uUUdsN8AEIWHIaD9fr1e2tTNKgImIcGZmKATZOKZhPLAXWevcQiPA4WgiCw1rLvbmxB5u1Bne32jrPJ79yFEwpjYhMJaxrRB6zJ4jXrjxDIGp5XBI7BUxWocYJZmDv5hlmNpIYBwfcRjIT6QqBYRlS7seh5u9bRcaRRvhIIBIch8Y4CPSwrN3hclgTR1jiuDxawhaPy86aeQ5YYvhhC5ixa82Aklbu3w1BsGMo4WuDktadikZJe0OCPqja+BQkmciIMGvuDjgORQwj0TGW+SEyZyLbuZ/u7x7uFs9DKwuz8/OO1s5vzR/62dNSXO59aOw4xbpihHY1pp1278N7ux98POv89bfP1zh9u55s8EifYpJ9jH1cL2/2vu27tH/uJ2tYurXt+vzDl08fPqV9OP/maWzM1gbZKuru8hLh188bEfFBq55/+HD/+enjD/f54cOaDXHqcXf/7o+arff3pwe0wft3d/728W0/H3dtWZ8uT1sc1+dn/g57XHe/719/1/y7Txezpbdm9Ea6r253bx6+Of/i9P4e++eMfUPv7e4xNUYAQo59EMdLpODH2MP2cse9Pe6lw62KlPOQAiCYvIzloyy7y+khM8LnkRQ1hty2WLSWQnOCsvF63tXhm0kQPnfGtymNnGxrM5/MKGEyj+vgmus6hM2z7hVtRZmDSGLMefUfVZYCMKsKcS4YaQnL8ray+bpp4JTwgg4a5Ga3sY45qwc5ucmicu4JYVBFm85tbLwefplUeq0Kxck2MmtrM4VX418l2l61lRVHhAkrz9FKGZUiASVyTq0EczK3c+LfnK3FT3OwMHd1IqR26Ceas5nXN7zVpowmgwuka1ZhK0JQfcUiTs97Nlnfk89FgaUI4a0fEDK9CMP1pBSoAk/dLAAF3uQwBeUDQLJyjqm51S3JcgpwwC3YkT1tyJdTThdqWHmyGM2gtCg2XwiL9t5tPwK9yxHAskhtbUqZoRkFb23s7pHhs9NoiuJNC1P9O2fbabpR+Gogo4wuQFTkgsDIhSNGIlMwM4cwBelZEqkUxnFkkF5BQeU/Oh1hvJ59TnLAT83iOoaHIBp3Wa0smvcAcEAjxmgR5cokc08wNQOGYmmKYRPx8W5T0tUlYwyndGQeHKHmljPzQSlz0DDUqlPInLqp2isYSIyQu8MI+LqXY1Y6sky8ZcbYp9YdFDJSnsgDpEJeAU9KWQswwRwy5hBm6g8Bjhy7Hdv1kqEDkRxplmGLI80Byone95E6AGCpUEWpZRIjvJz9UEzsATcas15/veBBSetoaTLPGMeWbnsnWeTDGOnuq8aqKNrMzREmiwOYuY/R3FxuSLSUb2oM8xaRI02Zq4Ew82Y5KK6nY6Su4RhuYqbDmsUQgeHjSzPblSvtVFe34MnzN2Z3x6mfG2i+22mNYzTvenqT+3WL+75zmq1qoMkjNE7UOC47nMpxkHAozAZqnbGPAglHKLuEXSzD8eanu8e3OygsZs14xXZ0Lo3ufemRuryI++frNV5C467b0u/Pqy/LGtdLHhw76Qub4W5Zr9au+1Z29LF4bvuuhfdfffeL/+XD3d2ny/Xp5fLwpRF27PuO69UOT1iOPLaXLx/x4998+hefv/qr9eHjL/Gf/uXf3P1DvGz8+hfH3TuNZe1YCB+HYtue/di27eVK0hDr+v7uz+7Tvzr/6bdf5bs333yr/PYXz3Z/XD9f//oPX/2rr7+8dC7jZd/z8yd/fun7bpfntKdfL4sdwvvHC7aXy4e3z892tJc9tne9Lfc9z29w397cL4/eVzRPi0w7n9c396fz+mXplhoJ8+XU09rdsZHJrnFax4zDNBozj8hUlCnz7IUq+29kFa8b2ljo5Q3LGwdHVHR2ctaLReljsVHHNQFPtEI5p8/VrZl2tCK73xg4Zp5qlX4Uclp2lzWB+4AZA6ChKSQuIabK5bQGX2BSIwsILJsfcY5fs8qQTNxyiwy1ebwdTGRhVCZPTRkNJmlJKjPcVwSOjUqfstBZTQrhRflkGpWDzpS3GtNDQPr5tHY/tWVtZkyrUm2a8W2kTxcMAObN6eZIw56TLmImd4ig32QqRQqenpSvFKdKPC/HjZqAveKoCKRK6YvKC7KUaoMupDjoNoCMCocySsXKrvF2pv1lxsgRRMb0PdRM1clgSYDrNlhmKoaB2g2AHcWqM5lXTiCnuXQFQUQETYmeQ7MnpPZ0UtnbGKSU5v0QZbQadaOYcZHIjILwYcsRxBjt2NM8NZCJ3C12jj0y3GSCkPsx0jOU1qwnkRIawR6RCtKbFXCjWkC74Dqc3hfRPUjzW2a9B603HIHAy1P3br3DlDIzHgHtO90X5RC8wevqF7+rKF5E+UTdbMGZAYNt5CEMeo7k0WkuJCO9ZUeYORkGAzMpSF4elKmynFzP0JG1h80Cu/JQNgkKpDWamkEHoUFGsjEj2xgY/crWMwHTgYNFmmeWTxeWsal1wnQ4jXRoLC04CDJ3DPlcV5eur9WzgRrAgyQiEbtnMmguT65xxAF0C7rvnVv0tiSUe1K7dSpI6BAzeyb3djxf3YewuC3tiGb0FgftyJAOKBntyDVlrT6PZmZOEeFynB72SLRcB89HJ5uGT9xAxiamX8fudgCWGTIzuBFK710GXziy+QrjovPA+cneLnm+20/3D89Oa71ODxesne4YbVxf2mlnr8C6HvLIOHo6NrIdy5ur+ZvcdcL1Mdp6+bKqddx9lxuPLxsezrnEo7+88BAVTw/j6V17+83Dst2PNbA1ILrFMVq7NqN6e4l+NHNzRN/lfWtfeTPZCGt0EcZBfoGO3o5cfDEw9o/2+M33x7rv4eNA35fI6/MTl2VJ7E139uPz0Ydnu1y++/Th8wfb3rRo52c7tzdvQ9n54cX35Xo8Rdsu8LYuKxfl06exRo4fOJ6//9f/m+Op/eLniy3t7hs/DZyu0Odf9ECsnX53t57ffvtjv/zzP//Dv/WLf9nXv85t/fLyYbdP/9v/44/775bv/vZP9HI+re16j8Y8jXen890ffffV+/vnN3/8nn//5d/l4/XDZ42/+s1/93eXv/nPLp/+9j/5z/8+/903v46f/e3fX3//xx8/tzy3JS68LtbcDe3tN/uv93vfL0P75Xd/qjdv+tv96fftsd8d+3t/PF/3RNsOc66xvP/6of+6nY/9uCYuhuUkfd6ONIMtp72ldsXzyyXud7W++elpx0gpcWzWT00ZYwwdUrk8WaJS7a2Cer1EOVZJpO0ogtMD3J9PaCUJqT3YGApkHii/XrWkyanRbcgM6m2nsRmFsFKz1MiqcUpQLsHFFjBlswYkuo35cmEhkqPYmXTPArrpGaJnoCaV8q5mTpuKYliXMDOlSOXNaAOq5VaFQPE2NZJ5VBlkpkKgIbPVJilNEZEgZahcoDow6ZYGB+hmpGtk43FIHjVw55bXvp45NCQoEipTwMNgR1a5LDcjkzlhrcHasTkUke4tCwBmIqqtEYTAT3zomyqqhrUb1wxAs7xhvTZ/52ZLZowsRwhLWIO1VgIQ3n4AMkFHUANkcdola2UzUmntSFrWQJ85l2NOwhY2v6Ekk7d2i06ehPNCPGQC0DKLSl9vw5oQAFJqoUj11IgxOA54LxawIqw2jVIO0SAikwYrbNeMYsRINYwMcxGEjlCmM0TjyjLecgVhrowRypSOiIxRal1XJflmuUhkDUKlhC9QwzM8rJuve2/N+dromHiy2NCQU2FWdiQ15Bqray2yok25M1ykl/2jYblrLD9zXy3ziIhjvwLItiArPC/NgdrXUFH7+jlYR7pB2aC0AQtYOWqzMX2ELGK4I4fEhvIMy1ATSIRRrBANQmIAgZF0JKTIY9G+HQhjLoNU5BiekWmHYlqpIkC2eggyTTKTS7QmpQUpIzLzsGvsoJCpcbkcQ1Fh2pHu7RRsCApxNAzjsM6kH9Gsy3lAhmKX0Vp4f7z0PnpXMy0Ia96UtWBBGhNKiMd10bZ4H4GGc+TVdlHOYWijrX7sh2FpjRE2uMCnAEBNkqk1tUx3z/U6/HK/f2p6bh2XppePp4i7o1uu6mwHj3a9f7jAjjsfi7Uvl6WRYSct3by3sIc8+3m9LJd+3V7OkWBc+YW0QW6f3vs16dwPHcvhIFcHZeM+R2r0Ly/fPH16DNCill6MnhJGjBx2vMBbcMfCpdt2PZoN28Z1aB9trF0y9DH2fIlYH85L4/3DuHT5+/u7a7vrOJ2xIRvi6GDH2k73OJ3fdR73p8c8ffsGb96fYhw62YnR3vN8erv2h3drtPPT3TFgT99/fFre+Y67WE474wXvv3z1EE8Z+Op6PP6BL/d5fVgCAty+bLxGnO5sF+4e7h8e3/3pd49/tl2+/x88/f75hzc//6vth0v7zYf8/q//73+wv31QPD1fnr582h6e/vbN3W/974//3cp/9df/0cvX717+64+P/4d/78OXu9/+T9L0zT//i/s/uWN7/7ff/w9//fh3L98dfT+tdsLDt/dv1n3d90/Pd1+vuZ1+2H/xxdnHEd3+6Od5//Bxefc31++f2nBtu0aSbf9yeTrJT50fH/t+fPz0rjU5ud7dSS/bZ3veE5FL619fX64vw5JdlV1m3c++wbydBinIUtZHWpkWgBg73M0coQS8Qew7zSyve+OVMRSJ8hIWxoaRl5YULM1pRIdolmKGG2e2NwxKOckWRTRtpqJa0YItUVrt9Ar1hJNwJGlBs1SLGhrK2UgjVDuuWwEtw73COzlDDqZjpE/6TQWjqzyAYEGScJG3v1UKYRo8QMKLES46YzpfIG26G1otfpuLoLVGwSG6xmUopAg3pzd3jB2rbWPqqsxbc5q3ZmaFyiLhRTK18slUX1xspoS14jFRnAKsLMiXt0X2BKAlTIatanPbQrelmwDSJSEjYyQEFh93mhMVV4ZWOEG5XyUIMlT60lnuIqBpfyAHy9OLnIQosgD7yAiziaqazy+J4l+JxeMqy0sYLaiMIU3DCkHW9gCYFa7nkSStLZlIMzjQCZ/fNFulF8W8Rc3LpwdZvFZi9D6UNJghCXNL75FkhqdkrYZoagwzteUIgVbebAA9JUfmHP4rczaTjpL9WIQ0BgcLWoziOkQ4GhqyWWZkFdlachTo3OeCPAtBV4QhCv8n1Ma2HJugRIyIkakjYNb3GDk5iAWUO6xMIECwRTWJYyiNKWsl3XIrNr9guVtLETEEKMXWnWAq5UaMNEYRAlAXG2RaPdSMkd1InnCwWjvtpp0jhtGlBheYDNlQbTKskJisNjBkIUU6PGGuAamo+Ertm6W1IzL2UEaE9u0qXcMtU92NrSOdK3HKY8gDHokO6shDbQRiG5FIZ7iLDkU2I0y05gAF69Giw06+IBNRhR9KNxgHhMhjwDI0RpaUA4TDVMpws+CxjzBXGycLj4WX2iIpF8/T4RaddFq2ZaXboOMEXvN+j6E1sCKR1hcMs32Ps7DndXg/eZzvTueFDvgub+SC3dmb9ecX7zKzQ+zrrrfUdfvh/us75xaMTApoYESULwxjrOewTbGsfezuOC8ddnffhZnFCj9dbTE7jePwg9HyvKf8NJDR6UhPPLxphu4RWvPTh8v25fnL56OdWs/HviW2j8DxvGF5OfTl2V+uAW1Pn7MpL32My+bne+86v+l5Gvn22ta7xx/zvQXzI/ZT2xXqb9rdefHW7k5tWZXbft3i+eXTr/7h7vj8Y//47uVpDFj/i//+9S//4svj6aX9f/9v/+af/Pgvfc3x3BfCE9HtAP20vBlf/lv8J98uf315+9/4D/6ND9d/+j//752v/+v/8EP8xfLjNb/46fj0+fIEXwBfcfl8vdhlUP7N88uP1pdTPh+npy8b44f1iT871u/MPzz+0du7N+vmj61fxubuOmNsnx+1sb35+vPAx6HffLz/+MX9En7/7al96me9XOKyJ2hNQwplQCpDBcHyGJHHsGSOMZmJWznClOWaMmACzXKux9zZzSw4XX6EtAVtrHawRO40xLZmK1P9mwWklBZ1w6cKoSguKFtYeu32atoM0FO0cteRpXDIdQBmKTI5MVazEOCEpDbx5dsWbW4mLWuTal48EwCkR8HskJKeqFX1JNeUcCeiDHYqXL5U0MURAYhgKZxqmc3DqCPMONCCjS5BMCdg3pd+WtrajYmKvEYcS/Ne+TkEZahfTgHBiA6eWrnx1qA7S5dNITMBznlet9ddmLimEksAWBqgCUeTNLdaBnM6VtROV9P6G/b6/l6Ten2OPrWkx1wKvy6Cc6ZVVdHMGVlIsND7nGtpKyMOm+S1WalBg5VnSV0KgTSHiIFksf9IZlogywsUGebkzI/KqirFbk41ah9+e6E0usDMZaHMvYhNZQjXfZgXDaG3bGXzb0azDgWbh8OYshJoS650NC8DLm8wmXsrE2YZ60PD5uidjpDXs1wrbmYwpRyANcSMC9GUyJWdmOUMi+fkH9ZNOEJkwKZSkDbXxLQjpOm1Cqk+KAQIJxAyZRykRWTDVNUDpGVWElpGMd8gRXIp6jJGk0tEgDFXTLengaidvyBkGh2HhrLAazTcJL2siEloh5dmUOWRB5opa/eYkQPWvcgWKbU1lHs9pT3CjO7GCqcoMMM9A+vC3k10yU/HhW3so5kvpyVai+aZkJxJQ3UVkzpGr43VEOWA8riQhnEEQkYdexwJSyLHLX4somI7MiiNQmxStQ4OjZgCMpeLPcG0BaMh2E6f2GS1XDKndV/W47JwiWwauxxD3bmPQB8+tuOI0CYZlUMHlv160ECiNY045Ot16X3td0uXdwvJkP0Ya/R1NdvSF5HZMA3kylmAcLdmR3j3zt37uiygs0FiS796M2spE71zsdZJ+tKXExPcbLxcXr7ktt+Ni80P2zHol31sT9t+iW08X/ZdDhtPHVfxxxiXvb1cry842/UIW176br7yOOLyMkbEyLb6w/3y1Tt/2uMLP27wp868j8e8O7frpT2N48ubAJvjwudP9uEH/vb9w69/3D9+/uH73338zR8+fbj78Jd3f9CH/OZlWXl/PGxv3x7v3n5zent+/93ddv/P3p7enf7ty8/eHm/97tRb//TjFbqs2+/tM364mPkllmGIXc8HwzDi0o5n69uX3/7uD3eP/f0ez3zZt2fE9Xr97c7r9fn/83j/m98+nrNfLgNyZOu8O0P72PfL06fL7+PRTuy92bJYANtlswXX5SGwXUFrdwoAgUQMiTRDRCRAZAXzplS0K0FIU44EHK4YMW6SIfae9EApJetBdaUBkCV9TGKqlZ6Ubh7oOU/lCZcWhciQY6mFa3ntFGsLJJERwSITl+PfJOFqSDTJDSCT5X5S1Fq6e8UUY+5tRbH4qRqZ4i217xakVDaDSlitl+sviTfbPtWbRmG3VUBAJwATKhuY9NbKZKtqlBnZGo10YyBjz5GxOk5nZ7M0pbm7e+ut9cXM6swsDY9up7Ay0uqlxK6DUfSvnFy0Vw5znb+3LXD9mCbKUPvJn2GyTQmVCxR4Y+RxEr5vlGVOm08rD/BIVdyh6rZEVKeDInpXBS5eObMsFwEYbic+CDglCiJZ7tDzh6EMIQoeMUeiAE7I4b0h06gxBdhA2RrUOG45aBMGKNvAyWpDUoiRFkEpM3JwHK4xMqvYIUPHdlgOt+buWanV5h3e5qgdxTMmTUSKKG8Iuk9MtugNVktciZmDwojhnSj8x2bMtEJTiSxpOrthflAmK6GKsrHW6Hlj0Ums0GUCdKN5a23SidlqsqzvX5xsB5QstVlRrY1GTWilnhivl1Y2dSaZtaiciakNUy7GeDVbrDaV5SqGGJPfWE8/BIrZaMW1bBDjp5YPVhDMtHygUjFFgzJaY1Zz4AnXkADrR2stDGatmTmZ5qaGrDTTYQhrRJpFtFrzmK0GEr5gyBgZsTizIlVVa1hN5tdk/5EU2jAZDOYJlyE9zCyVoHcg/CgI6kaSt7LBNdJp7iJbHy1btkQTFxtozu4SQy5zNlYqBI1QYncdmXGoRcAyQKQCEXBztovltOBz3z33zhGGpsszchvW3hyZPfNY5TLjeQ+D9b7y/jI6AsMNyIPdkwqOIw7L2I5DOcaIU8s65XGMDMxTsGETwRyHWDZuGJnLoJ26dXO4dGws9kHs/c1dwMB2HHuO7fKyvbBjbDS5+bk/rO3OA6R25SCynY7zSjs9nBdbNPaxNcSy/Efx/fvTt/7Y/N0PTqyXK0OI4xh5aKSZnRbn8vj1u6++Pd4/fohxHMdL2v79H074jf/yX/Hj8/OPz5+9xbbvQ5nNfWn0fuotLtGOj/vx66M9//rNl2dcP+T3f/Ozvxmn5e8/PX9//csf3hwjMuWIONCXtfduy/pyenjz/v3PPj3dvR1gbE+f+du/O67X/bpd7GVcY0RH2rquclGWkWO77Nvl+fLlcWmnEXRfe3gzU6nc9hiRaxvr8iWQygzMxLYYkVK5vhafM8vrf0bR34jSY2anAZkoiSMccSuiBEMZ+XqG081bN5Dm0gwRMWOzYhtN/tU/Wl16EuR0vQfNWhHBUqU+Lvd6m/vdRJPMlaaBGvhqwq4SlXOlJkE5bYtTiKjkoyquzPI3rEsBWZZFRUwyeCYiSEQtqVJiOR8V1j0/N7W/swxa5RKmVSSUzWqX5qhhoqy06wyogll6Fq+hZf4DN3dna9Z60wgEfSqv6krX/PxaUSdveta/CTXYzc0B5QWNUvvN2zPtfUNIIW9ynjlC4fXHDUqeC+X6nVcRFGYLNetwwkAr0TIqciPNmkddCtYcoZv+wiZ5CTSX3aS5QhbY4rXphnkYZFAEJcSOHJ5jpJUcJxVollXX68mTQDdYsVVpxsqNLHi93LWLdhYo6NVbDstkpgZK+hLTgjhLoaLZqyHBTGNGKCKkMIQghWhKDeZhY9sx/KC36duUQAnRs+TqBRDY6yXUbZeQ81OBxAzgoDR4MI9DIUMe9Wv1EFsL72Yyj5SxdihiK9KtRVrz7k7zaEE2ryarGPgu+qI0tM7DtZilte7VXtLcWqMs0UAz+s0UOlGqKysQy7u3BcAZAlrzPlIjzbkf2P3sNgboOVDZY6/NJactmyIsObsmVvdqSFJjP0Yox4jIzOJTl6toKLwaTLeUI3J+MEe0hMoHMCgy0LIRdDmY5qpC7VZ23HmMEUkTO/uytlgHwTAYswkZNMLhapjWUS6gVlTucrZ030kgaEgpFuzadzmi6zg6ZYOs9nwoEGytJVrIlxEHHc3MBw191WXDpuznOMssdlDRkC0abARzZw9o2H6VtJsvSyjNjafT/aMGgnlYb4fB3QKwfsFNawhTBIwMDnXPse9dM7YmRpPRNFJCHLsyeqOFL+1h35diWap7Kg0OGSMzPl+OETR0ucsMvaE1HevdmzeXsExTa331h1Pr+8vYx127jgPW75bgauN8Xa35/fmPNy1374+3Kx/uzoHY0B2E9ZOzCfLluB5C83bf3cXz+Xwfz+vz+RfffmNtcV6+f7q+fP/lfNV+HOPYju3lOV6e4un+H+4ev/+bu1+9++Pjv7q+fP9vfPz8+dOXfXlc7++3N+vHeHT80eXUl3OcdOoKOyBs17ieL2nPXx7Qh1b7/nNcLtv17v5t+/zz48Dy8N2p9zYuexxbHJnHdgJWnpTHl82eL2Z9XZ4+XY5D1+1I0WI/9sFGDI7gIv4EWdVMV/nSJEnv41WVdJs4jaQLRpcMYeauRI6xkJzxaGC5PEU2sqWhwbwNCPQmolL8DKEaBWTTdEA3ovKUbEIZCJMq9E61kjMQyToSQyYZ2FBeSXV2TUkldUvuUYFmmEYKJVdmUcjqJFDOPSmk4mNrrlEj6DfRyTwaIdTerMwBakKe9sX/qFLdPEGshpB9ANN8yGFl0weZCZY+aWCz12jmRUo2omIXINDN1qXk+XRZ1AspNUzhuJpOB3ydgOfLLVyzrANb9TtFFOfrWJ+RiTL9ru6KqAGFc+yqWl2WpjmpcEJiyrdfZWZVSnATVrkpy1obcweP23QN3OwLON3IxalFLjsLgiZVog9kCT/g0xjEPCGrni6y2j6g1JQVVWSV/jjKDzwlIFlyYAEozhdUJV4wo7dC9YusDMFzouu00swDpqgZmwLo8Bk9+aq0q4yIaZZcpPRJYKPpBgbQ0syRXgvauRLlfAIBSE4m7FalEhPt2BdmBFhGWZlQKiLQtkEo5ZK9rlVYJd9glmU4RtIsZq97AytU1iVjPr3uWXFKc/FfncG4xUoWLHO7g7ftBpVDiX54RkSB6LcPs+hGb510F8uN7FV3Rq8P3RSNTWBshmPVR7lgcQr0GRYBiMxMYAjzDEvLmcpYbm40z2TGkZAUYkYDSbNBY2ha4dOsoDvRHDdbXDJFs8abIVcoxu4CNQ6MCAEKTdDjJtWOlGhoFTHjQUVxKCmF+l6fUmTsES33I6Mp5OZ90lTbMB8iqO7j8F3JCHR2effWel+VjQ2nM6wNI7Wl4mjQiMiOHUukecv1GNbY3GSu6q8qn3NZN9FaNJDGpRkAemve3FpTuQbB2kiS5ggrBWjg/BSBhClz6eneCfpyakALnKMvTAtmLI0HaO53dh2BvJp227cIa+dTW5qgiHEdCMU4AtDIXWN8/vwv9s1Pd8cZx8vLy/HydL2MfRuKPoRj1CHWac7FMHIcFx2Xl+dt3z6+hNP6eX354TG3h77q6L3307Kc75duKnVKwg2737/97vG++Ztv7q9X7Zdx5NPnDy/jty+5HUfC2nLCdVy3YxzX48Aa8fjmsWtZ9iv73ePjO7z5+u6bP7/m2NrPfvbu0V2WGvsxsrd+/58tbx7uvvnx6/fvvvrw9n1bVxdTbN7v77etGQ3sS1+a6NakglPq5PTqeC1QLu0/HZU3mwCBTlXsdB3LKRcKiEwlK4shYci4UTwZ5bRBWlZoDJBDmUwwZdaQN5dUYPq+q07GGgpLTFNnCm6GAJCU5Uo5Z2rQZXMOmzNfMqvEVqn5aVwrgdUNoS34CbgJZG8ZPSRUmSdzc/lKK7pNqIV3zjPJppHzbXp9nQyTM4OnG1OEt+ZtPTtygszJ5EyFHDFf4XyTJJMkwyJuxWXu0AEo89a9YE5PqKtSzcjrRDXPQjSbyDJKGkzm9FumvN7i7evMVRnBaW8xmV63KykAU9z7Cn9XAa/TVQHKUfiAZeVBzb6nvjxvpKGciRO8LQtyeo9RWQAyhMQY5a9UNz9SluBIujU3sOS6WeTkAIo3XS3CUG1lFeXqzMyI6qqCkRrJHC6a+2QCBtC6seTFROTsUauiTq9QebUANDPRvIGEJw3yJJo5UQ1WFd+C5yMjZYWQvBazOifqPuZPJX6WufL+ItiyV912efMpDtMBgw8qJ8lwEsqLrFw3lEbUfIypSHZN6RsK2E4nwjLSDBnjMNfkgUV0pSa6y5xPw3Q3SZknhhJ5Ndv3MeBKGznN2caAwXIHy/w17PUTTUgwJtMISwPDJnRRLm8xnU+QQ1LmGPOmYfot1QdQhUYX0W6O1EqYmTlgvqdgbqnMhIbSrIKIpw4AEBozA0wHnepu6rVhQqpAAM+ZsXYLnLlRDQtHCIAeQqokaiSaSczRCbWMzCYJyAYa4HaoqVuxQGj1kUSlliTM2NpKc4zNYxvXq3LvykM8LsfGGG7iGHNn0+TeVu1xtX4+trvIlomM/MkxFxqRkiFzyhetLe4aAxDbqIWOu+tQn9Mt1rb0Zu14OSl8KA8K5jgOMyhkpgD3L/seEeN6vewvm662B494eb4bROIUa8tEpCugE3a/61IeWxzbgR60aLh+5nrvZjr5uH+zrstqS8stcmDfY7tul+367Ne+5Wrr22+/PT0zzuv92vPl139/tpenH17usF0Pa3B5CSaPJKz1pZ3OS9oYke3Yvv/Vz8+XHy/PH48fn/l4rOevTz//vH2L9nA67dI4Lsr7h/U+j4Xn03Ou/nwcv/mAF6529/Dm2+vbhxMfbMhGDu0rE72fz/e7tfXY/9Nx0vHlsj0/X59fXnoefbmaERrX5+fLnhFqzZtXfKtpJrvSSzHTWpgV1lqLe07j+Ixa8EHKG+e4fI+Kl1pnE2YBtLg93EAmMgxIr/KZGdO3XjGxXLwORvO8yNrtvk6tU13zGlotQEl/LYGFZ9nkG6ByFl6nMFYNqa9WZ1PpQW5NhuY+6Lao8p8KQUk55tgCmixulZWc++nbLrPw3Nf5wOAFjlEKHElQkUZKYZaZ6uuWCiWUhhq6auE8z2SaTG7N0dzMCy0HIJjfpuxZCZmzCt+8DmZ9+EcQce2G2wQ9xRt1ah7QMytikohQF4HgzSWDk+PE8h1x3MJ5wnwqsHFDz3nram55TrTa8QUMt6cONx/t+cVRdmuayqeZjqao2ZFCoB3IIJFoHkxCaL0ANZcXZFAn+WwsrJKvak1veFU6oYw7JkwRk389QdUMi7wlOIHKzPhHlxE37nvJlT0VUdub4QzAWISjEY1gHrtRBpVDiDQmcQARx5Elp05MuoGmdsrnVTBDJfEU7xDWlA0ykHZkWQ+r4IWR5bs9LRJtir3rPxMdiuOAzEqBVsgNWWQaU6Dg3jS6U2VmD0u4ubcGcMidRpjLqjed9mkkG1NunZC3BZ4HOlT7LYkuL6yIzqiUxNtDjlp2s5IhWm0NMuTESJgzdOyWMlCRqTwSY4tjZKA3pbUGNku5zFr3o5X6fyQJjUy2DPNWAV2A3CxrAVGFqdw+CaZbt1yt0XxZDwu9vkrTzcPUAhH0aSqTarSYUJKAUOSB/ZxLhqHjGDHy2HuzQhOHVy/rvWWt9X2JaBxjNwuvS+memEvxTAdTbhEWduRYQgN2bOaEL91bg45oS2sKb02+kJEwP+5cQKSsCNsbpcg9tvJ0G5djZGPsaIPNMxoGNZDKY7+c+h480GMcOQ4yFHFh25vU2uJHYr1b/BRBrQ8phvpxGTEwBtmaL+7D0nJ8isuF4+Jd3tyCq6C70zi22EEzLgtbs3izv1neP7ycMz7jyz+0kefz8tWb443dv+n94f7udPewrmvPl9MXffnN+NX54x+ezn93vz/DmfnwT//0T765fv3zHz794bhcno7OVHM3Mx0H4vD9+nLpX54/fHrsPI321R/97Hp6/8t/btvy73T+sl/9Lh9XLd68raJFcOzXT3b98tx/8+F3//V3P3u3PPz4omV98/arx7F+9V37shw6xiNk1mB9uDeYtrjs1zjeYLscPmRxTagvfT21Y1nG6fSsI9nMxnbNHdFB0SJqg1mGn2OMzAxlKqJoOTf+Tk3Fhlu1JuGGPGhCKWJfO3hrmXSvBS8d5f1GswFaSpa8MTA5C8/EPGfWXm2YatxoLpKepTxizLLCkCNnL10Ds6IspcsuDhM2nRlFN5R3LisJ/FQuC5pmuVKTtKxJvd7v7exNIRRpSTEBMPPmmXAr5HXiFUZW38bdm5WxM2GtQHdburESgxIAGQlaVDYRzR0yy8SNrymKLrrRGp0VW+SYSOsr65k5R996i/rpCJ5tBqA2QbPZYADJRETEZPlUsMvEFmelnhdFJilVFhVViGzC1697DGL2Q7Xbpfk0DgHc87Upmz/TDKVZmp7HvCGemsCF0eW1x8zO685wODBAkwdsCo1vCPjsXZQkrFSmUy6VLP9KFjYL2q2yVvNQKI1XCEC1LdaKlu+OrBxHkFYMPxhYRk+cZqe3xoN2Yw+aEjJ38+Z1DeYKBxBIh0qZ7jXS+QxanpxgYirZUWl5xVGQYcbUjqjpU3mMEdAgRlRvOVOZivI197NSRlaOd6TqalRzFNNUctBYfGwovYIjwLLBFgKWpE9QPImczVkBP43Hlon10GXsyY7NRgtkIj3HnaXJ91TnLP4J0JxBazDMZtoa3SZbg0brVlWU1ntkk61Lb4cbsjejzJ0V5WIKMVMZR4ARgmxpqI08d40ot4/byGsINkgm1YbYioQFQBqHRQ4NJB3hKVXidQajli+Z4wanGYCyXAXdfBkMt9ZBP3ruZF+6LX63tNPhzlbe3gaUeVosiiczRFRcsl9lAWSq97EuK8ltaKEnVzcDe3Z44/IQ+3kEDqYvpOmQm6DDfFPvvWd+eZA1zzRnJzI7gZFmp+uMUEUwXTlUMeBxxNwExQgwN0fCfCV1WGzX3Z7XCClHjhy0jBiVl8be7+8PPTw30wIo/n9U/cmubduyHYa1FtH7GHOutXZ2kpu8RI96j6RpEhZJmLALhgEBdkX+AH+H/8dQ1S64YEBShQXTsC1agCHBliUmJl/+7n03OdneeyVzzjF6RHMh+ljn6hQuLs5Ze+05R9IjorUWrWUksKwnNg73ALf7/abcB+2iB9uxnnlaW3E9jbFpG5Y3i8tzP9/5lyN49Y7T2u3t+y8f71cuqy19PZ3evnlvlw8P7z+cbbmzH7Bslyes8d3nj/zFTx5+/SytelImDd6W0/m9f3F+8+7u8xd/sGj3P7p/y8/r6Wff2K372j99++2v/uLfgvqr734Sn2Pc/eaz7xsuN2wvn5bnG7eXcU29PPz9P/r66+t6///7eH/30ODPLz/k9eHzdn0c44ROy/1y26+3sY24PQhnF73HNW/Xfvf2t6d18daLDsnmMQHcZgOnGPMZYmlNycpshdGg6acL5StnR5FuB2NcP97ofa/6xTqghCmmKZ2Rok3NVp3xzjlF0u3Q+3CegyYpZ2iopVlITFojksdy0KTlpmvEKwejOqwmOpvlu1HZ3VlD20FkAip7eU0c7FWwPGu2jiEOk7XEVJUWR1gu0JiGwKDKUCtfJ9ISKx1j5bEnUv0GEETcorWlu7eeiw1CYDOzIrZqBReVu676E7CMEQJymjJGDInlAjoP/PkFXhsGzOHnd6bhCUHX3UwAdXZgeCuq28rq+bgEx9cB6uVkWUGXXdPUhr8Wc73W+flXJphhZbPLmLvWPKxEdcDz1cDwAE4ngj9toBg4dr6gMafEcj8QUmFTB3goiOv5gRQEEEBkpsIOrbcyIjIMOSn8SQIomTKD3FR+Z1JQGXUgsujFkTln/Np/lpBZno563ZXWnKgImHsbms0IM0qfxh8hiXLkdBbbLRbcXY+1oLT5AWFlVemStxJpe7ZmZqy8BNm8QBJxtEiyfHX8hAR5txghKjFQpvsAqh1upX0UNGQERjVR8wZVTa/9n8R0Vkso6lwfFWw0aiJWAG5ozBQ7IqpPgw45faUgqEzms4JMzNBgZLlXAm5lBZ61vKfy9SQtVBM+vVh1USEjKk+MtZRuzJy5JTIfqWgHc0FKRlbsWWag9OcGISI3bl25Vy9vljlp7G5mZQlHr3m3vVrs0SEC7jQElaNtxCgbEztG2RTTIIeZp0HJvjaU0WffaA3IYZ7GaAa6L+5mAe63q7hrpBvKu47eIsIsx+JJ8wijE5Av1g2BbWtXnkoqUZGtZNY1L9moDO4g5ItjDGjsocihTINywCWLPYe7dYd53jAyR+7DW9LDsJfxUlvN9+7Wl7V1LbQS5Jo3eHNzt7SRHVLGvik3jcumERnpnmmwZSciYxPvb+NiGtn1tG1PrffYsjHsctlfxo52amd7++HnX/3867uvH+wSv3l3/v7ucYz8+LBu346T69P16bq+6Ony/Pnpurw8X7bLft316aFdHx8v6zaetvOfncf49PTLn1xerh/+WH/g75+//P7jP/2I9x/PrWHt/vb09s27L/z5p/mzP7i/f/w7Xy12a3fv2n1s193P328W1xHnBdsTRsuRtl1fnvNy+fyUL0uOcb29PG+Pg/u4DoiWY4/tsd1gazaNbL0hZJO8I0Vjcwe9LxgDLstwbwgAM33caGb0iq4xmjkSMPdaWQRKGFzgYg6NsUHKMk1QyBunsXIhZpKDrKVKEzxwlHnOHZc85rRq1WLO10WP5MThAGWBbVZHX/4IR//OmX7UU8t5UufBW04HyrnUYq8FZ5YuCa8sD2uqUPUJ9WnLZUtHGcFRj0oWxvqf4pizciWgLKnJuC667hgWhkphrfFxZE2i0zDEaI1t8dYKjmAoE/RKnphtAIqTxO8Ouz8O4/ixNKvtszRPqVoaxMiMCgrSsbd74OA8bktdLdUofwTekUJYmacQNK9t3ANsmEyzAbMQCkJ6Ld7Wb6lG5cdeZ3pnHjcsFexmc7PKHUxrSrpFk6RsZl67xQdWPlfLqwMI5S5/VROGKSYEYq21mG7WM87GWex53d3yu4LGOGJcZxbDPHRVknpWVLDquocfHEpFrJrU+9IckSg6P4oIppDFZ+LYKGUx6LP8EpYwHghLcciVWj/mVAyFIs2MZgczVDIZO1o/OCEjBUNQ+05SWeEVKFLeAVhNh1lsOWgEW0O1tKj3BBMhpczk899XaxdSqBPe1ORcYJQvzUICgo2jUm5iK41eIhOAKScWUR0LYBaVP5FGIAK0xIjISGYUPzpiKDKEMRoS7KWdg6cbertFOZAnexC0ZJO1UZ5i3js7myxUUYokzaeEg+stdylDW7kox7CoY4hCAjtCpCthcTy7Vii8CveOEbtaWmUpQZFj77lvLW4mhbKVTyiUiKuMsAZa26JyMK0gQ0HW04hxgWrzoa+2SIceYmdv3BY0RiKHn8yQMA6s0u05789ci+ujxaBRo16YCCpHKvfM6FBmDhDKtdc7qsxSgziGocJmmKlu25JgP/crEmrZWoewb5fbZf8c5wHjzuS599PziWcqHArnrWe82ba7htYbfenbosHrlkghDIN7OtzOb3/Zv1nGOEn7s54ex0fBnuPz5xffr5exbft4efGX/fFXj3823n/75ZtfnfxxF29b/5O/++7d49cfPn3U6RbXYCKpVAi359vtpuv1u+fz9vLD49l+enn62R//k3XsP/8P/idc/j//8A/1e8/Xj+/efPH+JSS1fot+Z9iu10u/3raPH19sXO3tF7y9f7dYp9vW799xV4C7B9fTKfAQy2gNLXHub5q/ibu1N5flZenKse+DGWm+bAnrBJHKCA9xbiwCUEQATJX9wTHKyab6eB7HcAgwl1etrbZesqTVhCNC8CTdA26zDApUuo1awlccgW4msxI217BdsOnr+ImpSTEBGZoE5RTuHFhrVmgtkYdyqWpo1YJJ4NZEkHNQy/lDmoqPgw5NsIDweSKY1/nA6bqhH7duUZrmORUeoG1NjTRDWp109WNmMMCdSsHaui69r8ssawQr+pDTagICakclkQaQOyKpUNlA27ysqNXcupB1bPPoW3BgEgmAmhMWWmEgNoFlQ1oqRmQEggilv16xWlItywUaYVapG5rAQ3l0FcSAaQcqAGmHDJszbKZwlaxztUbICdQekAOO9WRMvj6TLhENZdZbSACNSWd224FMGNww+XgWIjLPdKu7nI4w0cxvBT5LSPZGmTEjYdPrzKqHyS3dPROFFdPMjUZ5OWEJZX9GAjKLrQIimZH0ZlODzRzmsgjEQA5mtwNVETUshShGGEKBRiwNsLJ0RJpPhZKYGcYgKUSMSMGZmCamRQkpxbFHClG+2Qk40xJsqMrlFnXfobTqByQ2gwwxfNBFxdRjVfdZZhVGtj09AUotxRQr7qmYequgTprZNTNzb6Br1GBunrlYtPAtrNXaX4UKFYJEKEJZgH2pJTMz5G4GKiKV8jZCytDYbiNz32MLqxbAvRyZYy/BYMQ+RisgPUgMICP2y2jB4Uq3oM0Hu/xcaWlMa67WE+somEraUzE8DDDZQOyiWsJkMhEuEUzWjXTKlZb1ndPXsQxf0m3cmqf301ZxgxgNoyxmdducQGKzGxdGymO0XTlsgJvo4pbD+2kP76uZL7cNcpJr4LT3JQ2+qsHFMXJBw8v7BC1OfvUeGAjGoJnQhqxUbt7aGgqnOxmSd1qazIxe8U7eTFujq8FNGo6RS1fyuomKeLnazcCNrS+L24LGS3DbMuKC3ffrrW3j/BCtoZm16/N9XF8Gnk/SoG7b2Nv9+by0nR6x4aLLbk345hTL/d3br15uZu/fckHuxuV8n8vDw2lpLRPNM7aPz9unv/rV6W/W9t/984/f/fny+C//23/2lT5/wFer/gO9+W/8XvutmdPWNw+n9XR+++GPv1jef/3Pnt/y80/Wnwy8Hb9t/v2vf/Pnz796+S/++d/+8OY3v/7HW//L3155z8uu6w+fzlss5Pnu4e6X/uH+LuLsDzlwamkvP/zmnFrj5e3p935+/64NnF7astDW5dQtWs9939pde/jq/fs396fe83aLDe38kJfWRtt2E5em6+n+WkG8JhZrllDO5dijveXvYIpFGb7isSFFJppZayYcT3MK6AyPs1e2cAwIuTsUGzMbiSSj/PSPRjpnGm+OBRIt5vRWdKe5hreUo1JuarhLZxJlvFEHgWUwjqhagSn5zCY/hlOCYClaqvoaTMZkkkibnBLLooe0KEuR+cVQCUpl5VEiDljlIwklkAWLm4KZmzcT3SXQzVpbmBmVImTt1DY2OFNUhZW6Z2qvQE2pfD1rawPKUXa8NeLPjz9h3EnqshhpHXx9YQY2D/I6eluvek3VEmpZ4rdhnqLMi1NPWZSnxUHazcg2VhSfYaYUHUPh7M2z8K5yJanUZ86aSNI0KfWyuqx5F2WdRRzLSFWOK9QZFcgyQer9uhsirFE3ah+bMGLLQHM3By1EIcU8gr0kVmjhSB8bGhkRMWjivrNVLHwikUGN3Wvt2j1lY8do3YbMLZLao3SqkmiGBA2iuZu1SHNRstYI0NRa5DoG0Tu3WJq7NWMQzQHZvgVgC00BpbcGr4xZCgFKWVLVcuKqL1Fmp3K20/nFLOW0Zdn7DiFj0AE1lyUtOSGU2kVnJdzR1U6BbcCZwyNpGTUpNEpwqIumxggCeQtzC3ORyAFpa0wgzFRI85goR4gut5HeB6igZYc58gSLERrjJu3qe8kGKTSJCTavqg0mBV/q0TAm3eiCKUYIbgHmXga29BbO9OWKkyWsFbkwGslt8eulIaN30nlTN/Ou0dqGRd3dnLShVLqtkQSaTeVdENhNrouzn8EeBmW/pocKUe2riXtEtK4BxFhgbjCGZKCbxMW2vQVu/dkZ3KHhq5uoDGzCWJVtLLFEjg63HBzD4by/bn2JRnhPz33xTMPa28P6iI59z2UbfrkHSLbGvp7isl3bhg/Gtvhla9mb5cvpze2ru7v16/25X9kizQc6kTDDKBcSM+OeXNl8X7A0bzHCNXakEFm65gs8U/sVasvSukPXhi2YSPnasEi3l0Ck97u93X/4/nF58/7dQ8vc4/nFbvvljbbW2budu+53W5+eW9vG/vjp0zKi3Xncrtxzu+RCxBYvefrlb+iP5643DefrfVsILfGUvGlcrzs1bFnW0/nl73z1m3/69S/f3//Vx9z++OXf3++/+c1/9Yt/9N1fPPzm79z+7E9v1+/P4O2277u2bR+S5W371ttffrN/PC/f/83L+Z//3n+4fff/+t/+4eXX316esS74+ien0z+++L/avt57Lrn7/c9+9tXn1T7EV+++7z9/j1+cf5P9aXzp7Oc//HR7h3dfvbzc5fPnHx6/OUXG9TbSle5pPL9v3vN6uT29uFtr8PXNnW03PPqnz/sX29NobT2NfWx6mMIhSTLvgRu9i7u7TNmX4C4wvRsxbmXxW3Rt6Uwkd2MLc1mqdixdNDG3HHHtIUtGpcB0mJOgBhsM87g1IfXjdqGgQXklzqjGu0KkMxNGpowepCj1CPeEolmmFxpUdrLJlGVS5myuGRJc2BaPrNJpQPx6utcmkxnpdKKSJ3iwcLSSZ4IhoOyaKz6uprtKrKiSWLC4O3on3BoAw54Q4paOVOx7Z7+/LnYJDEsqvTX3EvhXHm215jS21s16k3ewu4TgofIuZFSliZn9RXUn5Q/9ox5skq6AWgAqB8FEToBdEQEeW5BFDbjKiBp6LY4sEXwBU3hFa2nijG322qs0wo9qWnaWfN1WklEOmlWIK82nD2U1d7NFqr8/D0ugyijlImVa4177riZpsV0RYJMjILaWAGjYUwJjJNySMtoyte+QdjIBdiQMnApXc4S8tbHlMdspLeO2T0FEeS8bU69pWplUWUSk1RpLlzaaC2MnwsaOxkT2MjhHJlvDRj/EGDXjsnjt+QRIWdCGm2SaW9GVcRSdkRpSjERkhKAJTKyL56ADrOs3I70FuiUdZmMzWRdaNLN66sMJWAtBDXvCZObNw7zTKYUFEMM7VsIaaQDTmCivUGlP6xa+hMnu2lW4C+duCz1hBp6wb662Lr5LYFQaSoDMENO7me9BgAFtnjAPWe66jp1uued+fd44BnKAlQpNCTua7QFzH+SGUzBuwzJb21LRbTVTKNBTXtXdCeQCJnM3ZAdUC88SJLt/2tdE6w440aHNLOmW5JVDRrRsgW2nW4gWKXZjljbD6X7dQlISHok73nJ7vj+Ncbrd8IZpY1vFkq9E6rY8ePLOHtfzeH65V0jebbF+7hzNblRrL8sg6ItZX/o+rhbc0uPyxZJ0LLhdP+3bOc1OAN2vb0/77WU8Pex3vMbYqVxsgMjNDHvuKY6x34aNPcJJDbwMA7V2pkbIZE22bs1xa4prC9KjG/o9b+uHR77lur7ti931E8O07y5d/N2Lesepv9ebh3e857sFI573u94j7M5O/cO75cNdP39YfGnhT7/5dEvct1zXsY9wXmyx9w/XZX2DOF2xfv95vd1a37ANW954fx/rebXYdHXdnn9DItafbF//z5af/vZv/6P/+PfefPXtT9fPtz+7/FX86gepP11ertvn/c2vf/307S/yt8t/6ee/+vOffff1//jDb57+5I//l2/U//H/7n+K0//zf93i9/L6ePe31//FL/d/8c0bnLeHEzn2eImn56dP/Jvt9PFXP7378MNny+3a+n1+q9OH+8+nfPPF02bpijAPRor75+u27S8ff3L/8PXXH7765mnB/unz5SVhzfv69uvz8jGt51gjtV/QLukpaFcm6YowmPsOpSxZ0mPRpDHXQ2ieRAhswEi0tjG3geveXqW2RC36M2kkiuVoFDBytXTmSOOWfZ71xTcxJ6WFFhOPm35TtRaFAGsSNgUDlGtQAbG39NodLHqvKQmfgXliqAxxf8xkr44AqDxPCFmJDLVLpUR4EdzkUbunqqWQvcqqrcXPQ5V0BBvOUds9BFgGCQuKqX1TlhOl7LwsS2+tnaLSm0wpZUc3c++VSDx3kkkN9hxo5asJc5M3ulrL2k4JYRKFpTurwnyU4slXwmYFblNRU40Npoi81JnHhm4CSJEMMQHWxFeuDiUhOsRQzCgXhNJ6lXyLdLeyI6Kbg8o05BhpRZ8X9j3/trqwMFA00DATMutT5oSoiTRp32heuzJQjHJShVtr3Y0yJuc6cNmBQ2oYFQdUDLsk0uhe+asqGTOkpEBvptzZfMwfdE/SKENrI0jDq7emQFnm1IwRSifYpsCIpvQ0E6yb0zg5CSptRGSG1V0fx60u1VghM1nrbYUomDFmrjDAzJgQziuIL5pZCthjCJlQWL1+NklkY2UE1xudqlm7xndzBPbCKdkdGZEIYQz3Ih+YToY8khzwLAmEykN7l0BmjhQTeGHcgk5pF3dLhbcRdsqVI2/KRETxG5TklJqbEzRkULX6U0Zhdlpbi5Ge6f3Em03ZFxwy2ImQcYG3ZhMpd1vOeyjHMK/J2rI5zNrOsXuwjNRoRI9obZ4MCkGjOeAtMvdd+35tnhcfsYWYMZAJJse276FeEiJEOA0JeXWnosxHoAPR2Di8b75yV17Py9lapLfUZpsbzWT99nSie3K7DVuUAbeIzbl3hW4XnXbJoAUj9zEeaA8vgSAYNFqwQ3enk5oAbjQzXyDuDdvzksmbmJlXI13JfXjLCc3dXV/o9E6lLesZktSWsNZN5mgtrfl6x25qzBi50e2dvcTTFp/27fl57a7YaOMS4uXx8vLN059cL+x3m/ZF16t90hf3uV1OX5zWdz/EPfN22/YvfhY43W/Ly+3+3cOpj8/yvMXJxnK7h5ZfxZ3aev9nbe1ffv31r96evvLn9nb3rpXRY7vtabSr9NTuYmf22+WH9unp1i+//enf+eqLZXv3c/2T93/zkScH3j/sb+/uv/7w5ic/M/7sf/WzN//2r//py9cfvvzrx3f/+T/9B49/bb//J/hmu92eH+xp2ON3l9++PL48xh6fbtnPHNzvP/ubL39/+8U4XS/70+Mvvl33b3a7e/P4dHm49/vxw7ePnk+3BvmJEWmnr949yIgf4tPT5bYt9nST/Xbo8+fT6fP1crleLuFG4y522N68tksWRWadQ32xKjkhIKJ2NpRSmpQOQBECXZmZmKuJ7m3pI49I3UTammZru4USEYnw/dpsLoaLCjmmsFKlWS3ylUx5wZzIV08nQshDaTg3YZQVL0wb5blgrM0jwZiFp9vcb5m6IBafKYIJSUZneR3iIIsVruY0txpEQASPBRNVhQr4KwM65V00Hrxm8bLuZtPMBGGcZn001LSPjAE29xStW0I0b92bW116FCRAI9G8OXsV3wZqNI2eWciZpqn+ZMNNhKnIgDkg88DjZ31trsn6F2rt5XnI6ccA4jAkJkg/NmdrI5WTWK9Rdsqif0fJjhLSmJnRSqc8t4TKNIuvBL4dC0GoJqaOsLL+OvRiSc2kdh1GY3RSx/oumLXcycN+K2TFoEi1IpuyjAR2IWKHNRuhzNmCKUZYs2kBAoVaSt4m58DpENwiojkr5y8PLre+zbEpcFA2JTgTiKhd49bNF3OkqjcwAlRmRCv8XnCEaCjRe8kbkEJj3V7NnAmQNH8RrbVhFNjcCcnMmEQYhEhGMceqiW/uqaUSRCDjVeVUH3vCyAqACpTlpkggo+6LuQS46jmadx7zjTKHbJDsQ85mFkOxyxQWLQkafURrGTlGhoq/mCxO4TJKBueqhTPN6+P63F2GALQ2zD1YBguTZiV82oYbREf6YpXuBWXz8rScKZNuooGiFxhxyAqhKK+dLDDBg7NN70NKlQajQIROETDvWSZYzvmOV9ymYJ7pw1GKDDawn56m3WUxTfWUW0drMncnSDbPaTcwZSRKhGxd1tSgcYwMZzOa2NpeJm1hZi39YVlPC65KLSDSYyjcW9qST3INmXvNLobec9nNl2bmaMtKb9aW0/mpd3PI4S1aa7SluZPeSevNW1/W5bTeFsuN48be9q3J90DuecseW+tRzrNtRN8yEwrl3jy29NNpyEcqxji9XPnmxiXQF+w3XW5oDrqtvuVy9/DwxNvL/mfJpS3L+dxW+GkRYr/uqYS107rgfH+3ntza3bP188mNPcTb5+/a+un5BxvX3E6QWvPW1vutWb/rp/u3X5wffvaFrd5+wdhfPr5cxtNjG623vWXH+f6y/C0TibjeAtBAqkEctwvO1vvbPd98WBdsz5fLfvn++vkcN/357a9/8/HR5XvskC/NjFzPXfs+9pfHp0+n8/rQ7h+e9vN5H7hdLxtb815bES2tW5I0y+KtprTyIM+yzA5fh6lD2nOcNHXKOTUh5MPzUSSVmTmm+UUek4YKpyYhuqbycdrhHRrkOMRFeOVbIdJcUzFKHKtStSpSx4cz3eYAS4UIZlYhBl/LUcGxx7kTI2yqQFQrgcxUqtbvi2et4/1YcIHqIKvIeCNaTnAa07GxPvo8A34clWy6eqmyTrGX7UWgubkHBbbW3N0dmG4+ldtnrMHIwsMzEtMkKlC6W74WX+DQXReUOe/Ya0bDlGu311rxqlMjMjMjZuk4SOUSPskOURxBi7njJYnIuYJd7rxprByoKRugmTvMHbUoa82ntrvEUDbhZnoJ7H9HN1cwuGyC/nNxqfwOjlvBRolM7wyFmmAEMhtqIK9UBxuCZRHYaOlmrWb7iX4cpV7Q3AhC6dXTYFKWaSQAwRUmw/RvmU/sfKhTkpCzOZzHegDIkQoMn6YX8w9ZdZg5ovwlNCbRfkALKFVe6bVtcLIMoKCx7y2yeMvIBCJG+drUA1HGMMDcbC1PbSsVgFtdQul3VO4lnUxazu5PJaQzm+s/1VbX3FydKvWqO7DZowZDNiNEbS5PWe37dzWnrDGQQm04TqF5xaGoXtW0LGXdBHFG9X0sKKP2xg7URFG9WYCARxI7qL2XgpIkItyYigHPXRoZAUbszUY3bZqxjxWMScARI92teTPaAphVDrlVLqkpKWuWi7tENrOjCze3clretloPMB7eZdxHpzWfjkAwNmuLozmW1toyaFntUQbc2y5zXxelS95z2fsAlqG2LOdnmakxZW2EmfIZ9hyRW/Po7kC7a/5w9wA73bZsnVYiRoLIKIsWHEZy1g0IU+4xRkYd6CkpIkPY94zIyjCkpRu529gxdsRujmJz3EzCegNA7rdm/bz03k/n4daIN2/75aowal3PD7s19fH08nxd+83XZbFTmtuIIQ/Zsvwrp04Pp39t5L4udmbz91+8ffpg796cmyH3uN3G2Ee6XT9fr785EdraG3399/7+P3g/vnjfeD6976SE2G779tK3UGxXc47L0nV+svb0C37x+1+u+9lO6w7yu2/e4rvPT998+u6XL1co0rrl9XLdE7dQbtGWa6zv3t7i/rw9WV4ef8iXy/ml+7v2Mv745+++ur9p2d07snPcDVvbIiDsvp2/evf2rfd2WjtyhDdY7Ldt23zfrxlXjAoiGaW4xxiBPVLIVKKcCiZAmBOClXKE5Pk7EuKJ69W7xrmhQypbb7RMBt0bspWJGzGMktcqe72GR00oPa2kCo5IKdOtCElFlqinTog6yOoAoMoCCUmlHwOfjmnr+Evm/9WEZWsG0uvPZQDKTAVsuimmyoCw1ogrfzdq5biOkNaOcmAoiLqGxZnkNM8u0E3N9zrqDJWKhDTjMkVTYUMSXJqq3kOn7aSCpLy1pVecjjDvzI+SJRQnWY5i+LEkg0epOIDpFjU8HsOWQGGMse+TeC8Vb6m8i0wQk+liffs0xdzLoUEx9jHGcVNEKYBq6Oqfik4lawnXYi58R85ShJAdPouzPaqnS4LoljI/iuqcDZEBs4whJRhjhlrU318nRpmGex4PqaaLyKw6dnw3K4sM1UlsTrgjHZxBexGT5Z4IyPxb6ujWq5vSxAI4pcozla66u7rditkMVVOj8h6uZbq0mVP4OvEpiTjqaZYbHIj6LQgxQ1Ioi1NJUfBEddGc68YgUQrv+tzKRku3mFfDDmdlEa8/2LLWXWmtOaeuj7DgFHQd3XIBDCrDUKsNBB/RqvqbczG3ASlhnsrekLbPNfcSKdQ86FM9CKCsQykYnNnXfTBFbxVRaHB3tybQUULtFBnTPYxUVkTl1DxWA2NFLlVzVjAPMTEYJV83CHPEHggERoPXfG5NMQeF2RJWanWOPCxJOQuwszFp3tLNXQZbd3LP3ulG0eEdZnTMT9ocZAdvam0ZAWtozlKamZatfGiaIbvaoA3JFt/ozdhbWAPLeCQA8zIzu/E9+r1LknW/piOz0sUZpCS6jxh1goQr6ENjuvDsGWMMH9w228Zm+z4GMoZSy/Pjm/axJ8LaiB3DYsRtawDHdt23OPVzE8b1HIHLrYLIXBD2cbt67JdbBLpz3K7PWy60SOPScnBtbDuRut7+zWXF3d39/dg/j9vH5x/Yl+t12/eeGltKdLFHY6yesXa/Nt/sdrt9+ublm+ffPuDzuo20lFeEk/WlN2sOR16uyyU+f79dtu9wP65P41GXx8t3129/9fmr+Hh92/2lm3u37st6Ilc/O5vvrd2e0yy3y3b9ze3nMS4v+ZjCm7f7nVnkcupm+76Pbdv267YPmp9O9rYR+4h+XrrfLtvtpn0Pic2WjdXjxBgjIhCSUpmI2vSJufYHa62lWFL9GS1qZp5ENnOEQ6DRVpqHHfDJ3McpFgc0yIx+iIt/XPI0m6ftLL6H7RMyg9NnRyllBbFljFFBpUBGlqs+0mDTyUE8+FdxznVJd3efnf70jSAw1S91oiH1ozfxcfrPT3ngkKz6Dc2RL2dHXswwAaJ2cl9/DV/Ln0ST0g1Zeulahs4B9whFMqeyyfLYM60BVhKqpwhOhtabg0QCZWx8DExHF8Ef56c58PMAh+cAL7Qi4P6HcAbr6hXYXydsQchJE7IQXsoygjRFTGBE0/2+sIx5sQq+PP4NymLQak7WfL7stfHi6xeYw82PBWO2D9MJ5hX2PnySXyf1mXcwMXepDNUEiJmJzETUoKjhGZnBhuoGMgGfSOfMHFGakWYBW4zmYGUaiLXvXDO5RKIMRCufxCsb0Mo2i1a2od7cW1uaY8ybCIKWhxnrvFupnFIrQeVwaSUTM07dOWc6wt5a6yWJYHMzyt04vZWmdV0N/MeTWwj0K2zMV3fRogoqzUhDxTCPsv90o4bcal03RkS9e3bA1rUvhNmXz54LmRFjh8zSR3sFqkFYOSRZ0qeLiUAHYAZTFHLmwgANteY/EQWbbrk0ubOUHrCmMsp0HlAEpMNMbGIgItOmmbmXqoRmhGWp545HTYUwFNFE0jzc9jQP6GgL6zUyKl6XwTN9AvyT4cmZ9CiBqlW8Mm/PiN0tElm9tcN66paxJ1DGKgdcUYsFsz1OUXREeR6UFkNeu6Bm3hmUd29bXT8MbU9vnulh1GZgWaUZQTWX92zWh/VqPLubWhFf5gZYmtHqITbSzAshab337g7kJff9FoLRfa6SN0J7dW8yw7iJOa47Ybu2z5fW1z0jhT0T/f6uf3h7/Yh9dOzbaGgaGrHny/WFj8879rt1tRbx+DgiL/F2f3x62a66bRGmWjQA++q90foK8Ownbbk93vz5xb/t33y8YkydQaWUIqWITYgxrtfWtuG9t1O8vX94UL97c7376touH/x5Odvq3ZaN54dtW1fz1k1ptl3cNXLk82eR693bcXd/5t1FuT1HjLHDck+NMDSweWt+fnv/cFpP9/dv7x/+3Wlt1pbTs3U3s9Z60E+RO7Ni7er0A6li3zgnqAo1wY+g2kQbFUgwI2KMzom8DcvZDNtElypsLZmKZGJkhsA6wSHlHhGiCJnaQVLWaSvpyGyYgxBAaVpFzLG55tyw6SRd8a2cOGs5cszRFjwYsYNbxDEgZ0Vy0/JHnLZewyoGc9ypppw6chh4HNiomHHwx/EFqltvEypDRkm2YuLnE8FrpHFi5LNmW/GtOsp3/WYrCJusyvvasfB3/rey54nZKh1ftRaADyeFOYA1ex03BNZpJ7PmDlLV+EyiD8fFPuxEULKeAkcmzDnR6jmBzC9g7rMivoIRpkxRlf12HGlFDFuy6OuqGYf+bF4XKGWEknl9uY2mIVPKfeS8yPDWvFD+icjbqzyskppryybTe08Gsxh+cnpizI3UFKcXHC0iM2Mxizn9zhEY5RtVh64q6rJA8hKu+9x7pwOsfPbYR620zhbDZq0UphFE9ThSxUuhBt7aTZbp1apOaWIb5r3fKkHevARM3nfRw2Q2wCFWE1F9DBIq8yrrRuNOwfJwyMraRoaGmcSquMX8hGrpv6ZwG44M18ydmuwMqgk1ZDcCLmTsoDUKGlXQLBKWphFjpDKyMINiWGtrTUgoCIFhtVgwU0EhuInWxm6H2tstaDCzITrobjBjiEMNqUJMp6/BtNlERLZMhe8QIqKPLEYkaybWcMMwZ1jr65q+2g6Pcq5AVLfkFVzjHnPv0KcfQJ0/mSGNMHKQZrdckrXAsRvMIgELOJUrvfuyKnfnii0HS3hQGnGh5YjYbI9c1Htgaz4SQvUqybGRe4iuHpJj37uSUMelXS9m7eo9+0gQ2AmwlWamTN7cWzawFWTTbTHQrfe0ls1aN7r5qS4sFj8v7dyXNu7ENRLZLBpyZaMc1vti7Ljdrtdsi5vUyeR+WzNenk65W28tTqebWmxYGNH4ci3lxTVtXIeRCnRut3aPPZ+uuffT2ek59P0vf//x2W5Js4zr/vzwsj3f7q/jdH+3rnh6frJb2vLNX/3BH+jh/sP721+0/vaundJpluN2yVQGDW/v28jzV18ug9S3b/5wv7wo4ze/+u6b27vTD/Hym19dN66OkRa3x21vi6M3+uL67rd/+df73efP938W283W9TRut+3+w3lcrrd9bC9CYll4d+etLc/27eU5/LvvX/btdOq8ff4LLkgll7459+22RQpi0/B+TE8qkHTWm+oh85BYYtJIR0kaAymXZgxP5oC84C7OjR2C5oITysiRDCBHsiFK68matVVzsBKVxntQh0ffrHmUogKWBNiQJUwGC00xZu1jTugRIBCSi1RRi3MaUPkGx/xCB880y6zVNxCNU1txTOsoWpmgF825l1CXYT6l2Tjm5JysppmZu8MMUkZNzW6kYjYDphy7kUqEApkOk4LDzArpqmpMZ/e+uLXWe1+Xw4nMgd4qoq1m+dp1Pib8aXwhTQ6rBkwBUjtg66PIk+S05q7k5zlWWwGTbnidRIuNm6qsOTDSjvJeN4/0NmEHq0upo65qcgxOVMME8HAjqlBpAGKNcZgaBKnYXZLW23CoZOdl/1A4fJCcsD9B1EIYpsuTIHNFzS/1nYsFqIXf1xaG8BIgGZNzQTjGHvU58hCuSXhNJsJB/EamFJbSMFiSUAYjMuGi93LCqucjg83MWrYEg8iJAZTfBjR9YOqbz14vp1BcyMAYLqSw5xg5Qhkjw2z2lRXQ+3prYSX7q2V/KmlU1LNVdzYnLp5BVOE/fLl9ShhK2gHAJ1XP6UJKgPPakpLcWvrNxqktZkBr5aDTjRv2vlrHcymcpw6wHqsaO6U6dSraUZMGMTkyoywv6a018xJwM2rbufB8RLJJtAxrQ0KCzSKQYTY0YGRkOopzB8ZelBWL7JESFRiKMFTClPsUoUpgVNxb5gQPsz6V5ruFJIZirtazJXP33DXCWHA4d1EWJMlmnNaCLfPZwRZI0lrzrEZadJLM2hGTCybrEQZrZLqz1v1O7mt3tNLxR7JLLmFpcWpiQ5jv5axP1lI+tWdmRG4kFu7cwpCB2wuQqO2CXdpsDJhIDeQ+dnvzq54bE9hOtqMl4Bgcie22DSyjtaQaHWz9jqeF1+Xt95m3yH2/v2p1eAOX08O23BlHjuG5XbDoSvPTeXl4+EN8/95i+7N922N7Gfvz1ghdtxEp9rac1rX1q/l+u3336/3+t4hdtl1uY2356Zs37dsf/ma78vn5YYDup/N6esvmM/cik8+/3d7a51hf9u+5XbfA3b2d/KTG+6+e27BBdAbbso/Hp6cne7x7On13ebrxp+cPz9989Zsffvr15f2H54d4vyKvz8+X7ZojB3V72WJPxB6+3t/1hYbYb5enp/v7u5Vqy9IXRY49cgs1Z95e4rbhfmKrAhSBlLJ8Z3LOg/WfNDEV0Ix+TiSayzzdzYyMAhqtwmwoABERESZZmgfNLQxKHORxKaonRlblolwAJ4JE4cfjbg6Ar6rfcpYvRWaVGEBRY04dWjFn5h8tHF6/5xzJBERMY+m0Q3/A+atlKEvUqR6eH2WOSThwZ9E8jYYZ+vN66tkkoATC3I1oddyYJyPLFThhQHeZTSVUhavnZFJnMHkiPKI1pbEVG8lioiLLX7HEWNMEe/ZUnPFRdTy8/odqrg+UWsrqcIQYERNITAKamrEMSeUePyG1yQFPDMKYkQdtcXCDZSBBSlGLV1ntSYzX2f1VOwYc+8XHwF2IHmvqm4UYNMA0e6Q5Pqqkpq91cXaL9btSNZk5ciiEiKxhLVVhdkqvQqf5nBeXCVWISmSYqpZlxtjLiXqqlvn6FNXzcdAP5k7QHJIRR1ECcZzoU6tdXI2bWYhJmGUXCrM+huEgTTuEaZYlEnRXpokuKULFYwoUY2TpcmEhMgucseSBCIEgYzDN9gRNGV6ARlmzmRmRVkE6hiy4s/6YII0QFL32qX6HbFHll4DKIVaMy757sivLjNXlgBu8dWmcsJcxcdmYee1beSEhs5iXNbRVlxqBCBCRh/iyOGcC8EDIOdJtZhtkXBIjLJLeZ75fpICIIhOO/F56trm0ATMISfq6hGCZQUemmvruJXyjkGYH1AHFEOBtzLOl9HWtIqLg5mgysjMJX8Ja9XgzAqrssobbcG9j307NWLvf+7IbAQbY3VvrMFxuYdu+rz7ItvTPTWnpy+1mIyNWxXW3lte+GI1o9+zLuOU5iMgI024QtAfIGIJ17MExyCHLTnizmBB3Ro6cyaBKKjKocJpDcesLu7gyLUTHnvvoJlOauc693/XVzBsaMq529v5wfd69LxrO2K/VVb7ANwcXF1pry6nZkpmZY4t1u6EHsfzyJfbb58fb4+163m4wuUViJLy39YH6uj28e7N+eVqfn794//YvH/ZT267R9LLerZfvv/54WdCu19t1G4otDRq2XC/Lp9ueY5xO7cuvf/LhzfPP/+hrX9/99GH7yTjnl9e+3j2OUMrc2nmD+dr6Gm/e3b///T/5YMtn6ooO8IbPzy9nl92dzz/4em6OgbhuL0/++HJ70gseVju//eLtw/N6WnGL4rWG2Nb7zZZol2s7paW3XqkpUZXK2NKC5oEAPSXzinbFAViWGEXVOBKkIjhjDkZmKZhNGZEjxwhsUiCC3BWD5ZxQFqlRRAcwS7FVNUkp96CSeQD4QEa2lvuomcmBMQFSTFIqTFmaXINiYoR1zAKe1GsQ+gFsplL0SZGRTCsQFR5HannzmrImrznb9XqLasino2aImjwnn1QCF5Q60uZsnMECxKrkOMTWGzhedlQ4WoFD2CXcdkwfX074kwC109NSAUtLWsQoVGCC9Jp5hIcTxxxeNNniYwBGm5iHKBUzWCuw9S2Ltp90MRKZURXUwowFdKciDyFtzvorFVIpm5EBBwZqbiqb5RHi9OBgvh5cpXWBYJr+xdM1i5YpMFNzq0wzjiJTiqIYTAQ9Dd6bg4JVD28GVjphNktYk+TdMax3s2DCu5He4OVlVDvRsrZaTUlT4ePGTJUUNPY9IuJ3oyBSEUDpx6exo1MSs1InYWaSt+bGUrNPLDsipVFZQbViXZL/EjSIiaQhYWaBoz8xb5JfY+likI7NG4yAORhpg4YxCcQ0Pyh5ZVEGjGYSkQljBCXWrE0KinSiXKJGDEMtGHaJVHoGmOUFaaxAj3qTpD2V6bbDzcQRnpFpTIWQJgwiA0gNRsqznLWmtrmWv71T0Uble20mVegZbTaF9TiEMvexVQ8k2EqPshMpkEZgoi1bZhEOuzuLXJjLQu6EKevhW0AXDDZ1Frm7EEgKGoDCQsmsSFlkwoywEXvSl4yRJUREWoiQWVKJCO1bLCyyoLXNHGNwaOnjZJLaULcIksMsFTv87MhhNESR8ZDS5q4FRW9t27bB6/VlmDdmYh/e35rQu1tnUKCf3Qy2rn6ygHRZxvXMXVJsSTMoMZoLiIilGQxongSWE7St5Y9fhJw3wuGWbshh7n1d7972eH+72QAup/1JcR3mhGdzW4XLtm37aN7R0U7L2d3NPDesboyrb0TuHhED8cj98cLcSHHhPnaz4DYs9ezvby9P/i3Y+10/2endukiLtyXSRmwxrk9Pjy+f8dvHJa+5nI2+3q/25sP9hz/82bvt7ZvvltP7N3fnRrrHSF0+P49r3GJsdn+K5cNPHgxq1/YWj49PeW/Ll+f8IrN9+a8fvo5vu5DK623zN3f35/PD5b1/9cHeLOPbS//19eUj95cdvpwuy4f2sIaa2Ua52O+XUdRhPL0sowOy811/c6d4jmUxkwZz3yVMgViLkWw7TAYZLK110awtS2bSa5Kz2YrqkCwC0BiSObLy0sTcE5YZQ1LQSETGawpaSvtwSLEbFDtGIhsiiwEq6YgdvLNqIsKRnV7UKBVjFSGYUS5zmWUSPkfYmjOQNQ1iYtEJuptblYXJJ1lOwTJgMPOqlKKS2USpRWsGm3mqydpKrvHWB73MHhguWU+fpPDRBU/gPP1Ixk2DEsZho8zHo5Bub4aAx226DrBAa/fmdcIXfO5uarYsZu7NrS0t5mXyiXarRJ44Ku7E4g+xeFlwTGQXoNQGphpYykQlQUQU44+YUWUTZq8TvJ4BibSsxqh+61Td1T04NFcHqMwfh2KSx7KXUODbpBYKfZ6QwetghcoSKNvmqAJCk6G1nYIzhe7WIoQ6vQEySRy4CklYosw8B1ySeZb/VroczdoyllaGmzOLjhruqlS++g3OqYuoLqhsW3XwNBPyfWWs6z/UZlsmMUthtGVxx56sdZ8UYY0Br3T6tKLHZ+vzqlcwNBSQYpaAKlsvswRu6ErkiAx5LQQnkJrq/CDBCqNHTqkHAGq7uQwRorVi1t3MkorUoI3M5JiubqsbZ3vk7kn22iiNhMEgk0xyIqr7pcmhrgW+dB/DWo6MtI30lPmy0W9CJEwlxceAZrmRGMxoAWgIOYbjDmwWydxGSfBBIRWZ2jOoLdEQ7CtqSEpHP99uhj0dsZ1aRu4DrWXSkonIRTBPkGNXA8rBfA7FFgZKzXwmZY197LeRDikzRmy+7zlx/MzEKGIj6VCSO/c9ttuIbAuW1gCaGNc0aXWXz5fQEsNTdI4LW2sxErEHwpotY2SSjFDst77LOlI0Txo8YAgRuV2zr7ieTz54csXa7rANh98ez09vE7eHfr2/u5X7y269giAKaldR9JsiLSzGvnNpoDc0s+7NQG8nZhOW0y7XMCfsoef9zU/nZY1tBJv8rsPdFmRbWiqvj8/PL3fhy+n++tDvl+7O/ZK3MbR9YHYn26n7uu7O7WSAYcjblpEg1/Pp7aLHRZQyht31/ibveDp7ImNd3OkYz3cfv//h333zXy93n96fH+8+/vf/6M2/+cvr5bLfPXz6sHxqD2/e/ez7U1ts3dfFad33W4x2u55X+Zt36wf31d/9n9+/P//f8t2Xj7Z8/wPj+sx/9W//9L96+MtvninuzxvHy8d3n7/X43dPv/1h+eu/+eF+Xb/+bTfY+c3b98+jn3g+5/b99ze+XR9Olm/50N5+8nV9u9y9kdnpfH77tn9xSQexLlacYWsc43oLGXJEKkenFd5Acgb6xj7GDJ+OmNlrGTr0SBLN5y4HCpTMPdmRolwCK4y0Nex+5kVkeAr0LGVzitAwBVCZAwdzPOmummqslb8SiVoIN+vOLdJ9wsgAmOmZDVP8WQd+yjQEm0a4OZE9HMBkikoDMcO5ayg5iO+JZ2atRdZ76SKPr5oWJSU6INfSmmp2DZp20EVDhozDyqNOUQXamkekoa+LuZ979iazBBM5pmezTylWfa5MeAxaeYIRxkrQyIgZmpCvVOEEcic5h1f95pz9CQnWGqawCjG8pv5JI2MKcDKZCafL6JqmKOZ56KIksTY6FRGxjyGKKLar8mFq9cFo5kzONsUoMYnIpJsAmcRZZarHKw8wCBoluLOGMQpmoPlU2lovjlCGFrfyfYAFbRxB0pr9PDPhY3BPYrukmysyghmMscW2Kcr+xISIMWSDXJ0CkSmRtCUZAdKbZSoD06eLrrY73blGZAvONGcG1TLUbBtJ8XJdK2oMyTSvZNBN9OaRgsxoWcEMiQowVoQldjg9WZ+kVO6MYbtc3jIrhqHFDoTcSI+DojAxU7RgdZyIBNiJFVDIdPSqCVflywOiGr3ptAnZ3JIcgHnB5zTfnIZMOKfJSQQYBWpx2cdopEG1/2+mcE+meU5vmUiZIlBgbopsyCyUITMAONmMRpn5Kus5YoN82b353n1nM7cubAQ2rpmimTa4YMrc23jZW2yybnZuI8hYHNfmt5Fp4UwQIwXST1Z3cvZ9KVnevdm2aN7WiFPexmrYlbVIB8K6EJdxpUakYeRwK9iN6UZmcLEMh+3L1q3fNifultuyjGVZd5mhDSCoBpDmSo6rdcZ2IqWgjWGZ+3UL2y+bxe28XsIXYKzI5XE9rzKe1B6+8q3ptr7wQ+92tqfnELHE/hCfvrbzQ1+0rLQWRnJtVNh5gzsWOHsaqe60za2NsYIO3zbSexKGobwwb9a27OvCbobr0/P5tufWrgo0u/iO6+WCaMHl0pc3lz1Pd74in/T4+P3He9/fLeqrsdub93teM7979M0fr9eX1DbMW7No223b/OEqXUfTyy+h8FMbgbvV2wN9uS24rmdjgLLTutx9+VO+efNPxt/+J2++v19/+d3pz5/yL1/4i//uP8N3j//t3Xd//+PHeMlxM5NGW899/fDT9w/vzj+8+fKP/P/qv//Jn77F3b/7T//f/5f7/+Iv/sv/4//+Pxv/9q/Hn5y/vfujv/zv15/m5XqKK88+9n1tfT2vy8NXP7nm+5+tL7F+OL2/fX1+9+b00/vb0+kUtl1/Oh6WMXaOl9vIYVrfvr9/cz59uY+47fvny/PQ8Oct1AzW+jaut1vG5Zpd9KXd7HTdGRXytXu0jltmJkaFlBNW6/6qLcZCo0H3IKVAhlJhd5bLzUEvnwQCtNwQGhhhISnNBKd7yrmzGdRtryVQKUCCmQZQFnsPapjK3qPoH/MSDFMhk1KWoFnIJaNa4X8wmkaiZ4hpUzFNFqFcA6rlIfzOjEgycsbXzKpUcVwQWDh13EAv6kiRMEIhwKFyWA966UntwGEBGALuBms00oFsTNGckDORt9i43ltcc46YZSkUO1MZQpgkmoUKAHRgGCpKbjCUY9L00ECRkXOzskBlHCW5RHYHE4yE2quOGvQEKs9FQZ8GDgbQFXSCXozX9Hc0IoN1hCPTXBgDmXOjtUATEskMNJFiFvXgpgRIj+QMAKzeZ+KYhmniUqS9OcCGeZ9mbDPnCvCQa0Ptb0ZsnWPLkg+otqSnLmxMacEYbOkwusNbCxcUw/I2upnJTBlRfuNhwWamwTE8VP4UGSMymPueMSKiuFxVbFECiogpF5yr7Zmwlomwlr2b96WVoIAgkOptF5j7VDtHFAJe4mBEKQqnqNoBN7qUhHnCEKdVjID57stMgkJu9IzWDSXfCXMBSU7/SxBUmMVuEQbiZoKy/mtaa21HE7mN7LvCexOR7rWYa4roKS87DWWUhK4WHVIjvWd4gyUW32x0JLbs3hKmULPxzP20LnYN5SnmrU6wZeRu7smhLNXTAOWeyE3bddvVsKdy3HbmUESKHHTzNgykwzQcG0DrCuYAuHikMAYLdJYRvvaLLV7EsDOKS/YCgkjGCG3e4moajd69nW5d6+btCpGuMLB35W629FywD6nJkG6ZAy7IVTQqYvd+sTHuxiPH57fcb6ftU767XZdbMtfRDcrNeLt7s4buuC397tPW6djtdDuZubWwB5z78j54a0/PN+4h19PHJwVuiu3THS4GtNhvm42F3psRcLvvwL63/Xp6wZt9XyxaJhLaPGJgxxgbbk87NDjSYZbPL5eeN79e99t22/tupz2ahMtLPmecTvfn7vdnoW1xunvaOh2nte1uJ0GLgpvv7cOLLW+86T0etLx/6+/e8OU6eOf99sw7LP3duX35/uwP/baE2fb06dPFHk4x7PYZxMvj3Zf9/ctzXO0a4+X28vKb9vyy8mV72vfsl30dsNXz5emTjNfbev7i3buXX//wv/m9Dy+//nt/90//wzPfvlz/v//qz/6b3/ybv/j9q383Xj4+f8yHv/7zv3f9lX5h/+Jf/2f/RfzLX7398MNn+73/+p/8xZstrutP/0n/T75/+y6X9au/+of/8cP2zy9fx8MTiLac3i0nX9cfnj7dfGz363rb3nrcfbm/vbu+u/ujt/1us5/++8vHH8bLMO63zNzt+bvvfrg85+PDcrdojx+e5a62X21ZmsW277bIze/yvG779Zp6lk0Wjt0WZPrO1baIRMvwtWgBykSisbu1DCkN3hXD94bWuI30OOvYhhMskMP2sZsA087FTNaAbC2tZQiMNKebeeS0QaqdgfRTOLIif83TEo0WMDNUuGFLapgDRs9wkJmuNFLBPXXQkSCRzsMrbk6HOKTCmPZLbjIyDteqmSRAz4paMCycJpdipegcQy+8DTeZQygbIcziTjWqVjc5a3UqEkGPrebgframy4nbTeNHN2aat7aUNx5EZTOj07vRrfUFJWSD0JRmkFE298TEYuwPJOBggFWWTKXmkdD2I+oqFTm53xxRnHxhHqUEq1DJnJx6xawVhUklSaXR7PgDOMR07m5O+YSfa3E0Krcg55grspVmzemllZ4SdpE+IXgQUgxTZ6WomtoowV+ysUGB3diFMHekkRUyWJgrp4BAaRUBme11ldhr+9IFusNQzCC9jBsNmN+whuh9N0u22ONQ3GfFExVSyQxKKasRvzqwgZYQsGc4NRxk0illcoCtsNtEycgnjVKaLrcaFrNVS5KlYBbTkGXRmjkBklDQ0Nz8Vr5p9QDm9L0q8RpEkzxjwYgMKJk0g7mZmdjYyJrlqgcFKZl7axPTMjBEpM2muCbYQkQSUojXZaGZrK3B3nvz59aJNCy64+UF7GeZrsIoo5bMkAm502nBSAWRtkW/KbpGQqacmroEyLEppxCZkTsxdplMRqZ1jJG60Sx25o6e+3JCYCi4RmDfQ3umYTRPWDLDjTNFeS5PL6ct44aMcbvFSGaM3Hc1s1Rmxh4xzK26RbEB0MwVEUE6ldsWOHvHaTXYGjtip2m4lYm5lGmKjS2nptxSu/yWGpBWAErzJl82RWLbNeQnE1bairVntduWzQDRaTnUFt3zJvp98n237Xr5+s7YI5RJ7aIN5Z4+WAIc77AtRjbjPjwXh9DuWklZ5L70Bi5N7oI2h9abTveprbfzue2xNQaWVblwbM/B/XnsL7fL5WZ96f5wukH5fGrYbnkSyLjLtM6IhAuX3Dft3hcMxJ4ffxDy8miJ376Md+3t5if3cblenp5f7Pnp5TqidayK8fz8fDee9k+//ff//h3+dtnaL//iL27fXNvP/+irf/x31bdof/gvfvY/evzqgevni5uNAVf3VHu4e3P/xfU/+uN393fXu5+u/+h//vAv/0//8T/7Af++f5E9X272p3/+D948fr58shUp59OnyxbY1dr61U/++t3De/tb+B1iLHe6fnr+4X3v79f93r/44nRn7A+bCWF5i7E9Xu9xesH54d3Ie748f7rtz49rf9q0vvfLHui3G3v4kmPFyBw5iVQoM9kqVLfQIDengLJ9rslkRlnD28K0lpMAbbW0HSAMCVk38lR4WoWmjN3ltS8yUtjVMslKnefkK7NiOAm4QGMe3hUp0hrkTUlG4ZQUPWWEg5ZiTt8P7Cp5lWiIqbNOFs5cBToFodQtpbIqeeoEbJnThVA8NnBfZbulVvIS9DdrPsyQKiPliWfXUo0kZphTdAt4q7LfEjDrd3fe6evLiJmMSO69dTBh21YJh2aWlpjbwlYnxQQqax4lUVoNHKFMJXeeg7gqX6K2OctYQ2z+uk08UXjTZAhZCavKFBJmTLIozbnHdHCg9dfOMh6ZOuCRhNf57QVUJxksvr9FpIElOK211/pQSRBTr2ZGsgxyD08vU4B0MGEW2eCRIMJCGkzdNAK+tGlWAc4WYRbPmbuoERYjLDMzUqSIDERO/rokzjAYCG+apywb87D8npFJqDZtaptmnpMO3ticU0WWqkQPEKMUZqVOpiFv2DbS3OvxL7n3XBAol5Wxg7nR2ALpSk7pkRIdPWiecg2amTXzCpybG/uFRaQcmuK6KRG2cHq9AFFQet1JUWPQDbReG80EOWM4rcmyInH3Vqd/IRUSzTStywnG1rKPPW4vusoDEQZy5ni0bM7iq0clAmhA1jmy+TR4zhQxCCGDJmo5cUSC3rr3uHlLpwBrBqebNR/VLlcbF6i0No4IN+ueINF6yvteF1m1PTwyu5vVg1BSv9yNvsOHaewBSsp9oaq3GrsSzTyl2x7ebmOMlLLWHehCa9ZS2WODAwlad7IPnvqNtq/9zmSpfsOwwYXOfj5vL6a8uO9b76mt4LDBcQtRe6bdLsugmvLS9fgy/P4xmCvU7xiULHlvi5+Wl31kkoi7u/0e57vI5eHKkTliRJoU6gm4nDSnW2VgQPBlvXsBzdnOF3oY3Nl0NeOyBLov3nvzyPB3GBrAk8btxu32fL2IHLA9+n28XDVG7Lw+v3t6fvnc7bx0Pn+89XZ3nwtj//TJgl+9bLLWc33z5tTdrkFhfZvpfcXnz0+P6/NQLnmmTvcvb958eLjH3b7rAl0Ayfy8Pnw+39998dPl/frpO1/2+OH56Vff/z/O4+700v7DNzh//ZMz1+U8Tvfbmzent2/vP3zZ9rd/9x/Yvz39w8d2Od2d+emv/yl/8f0Pv/jt//3XHz7q5+35w+//9q9++za2EdtLbpd9Ob1dzstpaXcffpLftYf4nD98+/in9/ZEa+9ePv9w/wfj+unz3/y7v318/NT6uKWAFXzzJR76tuyEr3j2p2+2X3/+1Z7XyxV7jP3ychneMio6e4E0ghkipYEwQypjj0xlqf6rLop0MVULi7FnMBWRKY1g600erVjBUlaWAoWIMUBEpiFzRGeg5UiZRnlKlUwLMHCkSaDlQDX6SMtyVhyWmTlq20iWGWXJbAjNaUzHcAXNreRE2UF4eTjUwVzkMA98D2VYRBb6Ny0vai6Ge2lZpwS65rWa54qC1txlarVSPIu3oQbfyiPwUlLV3orBFEmSub/I1kbte32eGcZgADRU3r1G9+6G1np3bzBLNjIDY49a2+SxOQrNJa0SgnEaRYBZ5ejHlTK0mONTMYtzeB5jhAyzxtBFehUaahpRYY66glTYvSfLvSttyq+qjiotUU0SlJBN0Xz1BuX9lZJIzeSGGVSK8gV/TZOAjoYiUeF5rITh2johlDJTKkZFSgStNh4BBIyT261zm6S7Q0BMT1NJymnHWCSl1aRStGZRETR3JVCpdarvChXWryktqw5WKEfAhLmCqYzGMsV+5eMJ+GxxpoyLc8uvdHs+nwcJNh/JQ+mmASQ0Upmh2kyNChGIoZLnRSpnsNdEY7wiNaXoYXHD1uy4+FJapsyZOaJh5G0Py5FWcV7VzNQHN7kddKlNfcGxkg66eaSwh8WeY/iuPXLqD+nwltE6QAda6RArxeLVj7aU0WKzkpxp2Agce4QTKEYt6YvprW00c4oYJJBNJcG344MhE4Wz0wItx3EIFDcCRRyttaWEjD0LqqDRDKLZ1BPSTMaSzLv1NloqUBEMICpBXDD3pInDoX1Hrvtmdl3cwrHf1pE25DK4ecQ+ts2977J0S46wlKknKjp6x7J0X5ZcEIkA4evj2DZYbhJeTrfNd1k770ZvrfU0g/XmRjdftOfYTx1QLzsvs25KKpVk7OXPB5Nh34YRGbdtQCIzYl8bFPtgSgOCWUdYLM3OmzxFZNdeC3jCzvX0eVkz29hzwRp2Otvp7d3ip8VH67hb1nfL/Vnn8+rRsKgvXLDvXNpi9CyTxv5mBJrrktfL86ffj3a3p/rb83NnKoZG0pg7SCy4xRenz9fb6f0X7+62/vXX/PjD7+WvPv+bX3/85m+/5YjLNvYRaZHbPjDG7YftV1//7S95eVo+/Pzl+W9++M8xrt/98OHt991ht8uy7G1t5/O27r1b3rIRu8X2+HR9vOruJNsdz9fTy+On777dP+H2/tPz82+fniQ3UInl1GniaG109t5wec7Pb75+uzyfTw/bm/V2Naf81G8EnfUSd841v5JjjpGxRU5nuVowOTzz6izMyIxUstgfJWpfMrLW13O+K8pEjCsmaUqjhaZqsjb/67meqxJWFRAwDtoxVc9MJBobzHrVgVkNzYE2bZWyxoy50Dnd/pXKwMAsRfO01DH5oY7mqZnG3PjEAVFXjz+/9NxYnXWnytaUb2VW5h2SlpOnhA419Dyc21R7z50qenkOmxvYV2ejBJpXFoP5slsdSITy8DiuZsgkgVYOQ/+DVek6y3RopOpDq/5bHiQwJKnZ/EI1ZtJgycjD90O1z111+3WUBIrgrZ5oToplcXzI2edPCSjlFSgaYI1pZmhe5yWEivY11dl1KKZRFlB83Qc+in6+AhQpRa1/W0jMai+mwG5a+h6L3yViYBlpwwwqx/yp057KbCtwtx7ZLF69lX7fJAtIEVmx9fMqGKH40egMAKky8JjzcTULqFSS6JkRbl5+MKBkIs0pN6TkxVtUES4tXz1AgMr5pZ69WanFHBk7IlM5QgHEGDEmKCwgNZeEOCmA43qWCI8Tx7b5otRgSJIcqFwUi9rmOkCdoGe1vjOuQvU2TJ0bBbr2UHgD2Ry9zA1lUEt6177n2COpUd7aFY6pMoecHFRRE1leAFWOlRHThir2fYwq2WLSXIq5RnUI8wOZGJtljuCUrldAWo6MgCFZGoasZ/NY3T8wOCqyebJkHerRujVj3bZ6H1NsJV1BxS/MXbOC5JypTG/WjIQCZFpTK9cXGr1BDnO6U+qGTA1lLtKMCCkSppsMqECijS1TmXtUCEwO0HPsHEO828fYx8JmbJbeW2vLGqNlu+xGwBM2ShmbyMAwQ9aaSuy1txx7+fzHVjBohbWVKRygzDIeGcs1PSOxZ+ts2lE7BZnk4+Pz43Mymy0tZWwpMxffvLt3QcOaL+tJSyMRGLkuzr50N1wvfn1RtG0ndfe0nx9Oj+jCp8zLGHAbFLyBUIyEhtHu3rb372gD611crwF1Xs8PaLh7cyKp2NTG2FMBtOXUvJ/vz2/aV/dfb668vf+9dz/58u1De/vm7fvx7vf3r/vT+uX391+cPo2M2JJ54/X5esv9MuT25sPTw0Pq+9Obn322DMCW3d6e79vd+z96+oNf3t83yTuBlOLa9hdd2/j2+fHWnrJxxVkJaN+2LbYxtts2IiL2PSV0Cxyw6XwQWxtZoOBcOZ+HfNWA6kHTzGi0CrDyQdGslYdG/Z7ZvtNyZgfQMMjmtLTKOueP2Jg4g1vqhJtd8dzcLcMYM9ChOrZq7MHxIUnjsRNaC5osj/rXmUNFKM5PV2cm9SqALJuOCiE4jlRMfksZc7ibWzegBYjD6Z6V9MPDyMlUk/dM5DPOyu2GmUpcHUBGWmu1GTAn6CAAq1P/UDNXRk1ON6s0VZEQ5j4LZ4Wc0219wB8l0VCFzVBzsyuBdoRKQdV3QMnIrCwKqch8paWIPPRGliVzysO3qQo0f+xZMAPsgWClzeLYTaoLDtGmXJ2IAsKp6tbstciT9Fk/p5sXgCMDoHpDlUcwsvKCqq/40W9zPsk1u2YYTYQlPU00SxNp1pp5a+lqDmdCTtK8TQJ8fi0yRtlXq7jsqvbHozCF5YeG/uh5anNUleGrbFYq+bpLdkR2gAeMT860ACQ1DVYmK1w3NhM5zU+AAUZWXZFBipEGOsk0mxbpUlklOcyBpFFKY2vWYD5SNeJVQ1AOq04zee/lH6cZRVivcyUgGJF+HAl1/7M+W/mMFsXJ2u9zOMHIkZJP43LSZj+c0yiWh6MA53lQmA2NSHgz0lKGPCxN6GaeSHOjQzmSQjrFsqBE85zzPSpWxWkYKdN8EhQOmGiyiuCoji7HwGZ7xh6bb7cdkfIxwqs5rwqVpqHY9xH7NWIM5aFkq64uKvNZfXGQTTCArUetuXkf5fd28CQRZh4KN55a37igt/0Iam5tRO7pZmZdrfxiaWIJI7OtgqhbtKZINMYwIXa2dser7Y7rWY5mZYLAWiS33ZoFfNEG1ciSLPvgeSxOkm5SIgBNin3bU3y5ETe3fVkAqC91FMWet89PgLe+LI70ZvSODNlyuj/7kspwaWnw5WzpQ2rbonQqsKH3pW39ti6Lt9ObD2/u345Pzy+9vdy+uZ308YdPL3vkNrDnACIMHWErr0/Xq638/DzC+8DDfTtf7t6up34+9bs0Nq9BTRbK5NDp7mTLOYavlo7bY1ye96Fhzbg+vL2/7xbe3Fv6adUywCRM3O73/ZLX/O1Lz+fHbbtsaG/uvvrJu/35+vXPvnzzcL/st7ZaULZQa9j9Cujp88v1Ecuw5bxv23bzLTNRsRzN+rIjNpCelZoapjJUnJ664BENU8W3mvvZEE+eq6QeLE1IUVeZomVG1oA8bHrDi2IOoBkyRiYVbBoJ0UeKZXogQaY56dTSalRORCbHKOO3evmTFW2QlQw8JzWUMdDcdaPg5rWUKp8zxTTyJzgjaHAQXpwa1WlVzFe88HUSmz2DzRTvOWCQdqzAEqrEX7fmVTIggfUODM0OHzS6k4L7DoOxTHjdrMxpp7+E0dy91uIcQaN6bzMd5jAxrjuiw7hTE2mfMPnr9KpjpHyFoMvoKkWSiRxj3+leYTtzT7haGU58m6Bl1d6UUMbOGlHK4KqZQBIWRPqEaQWwei5FjNnaHC6W9Ql13NajCdMxn+O4hoZX6wZBSY2cGMmrb+KxtVy/u1DilKCoJ3X+9vm9NAvftNQ6RkS6O4w00UyS6C55gdr1rNSIbjyudjG/ZLCCjw1HqCGnGVZt8amcSWfVpQdn+1LIA1jbZCzKPVVy7rKUrmTFmYxsbu4OknJ3EiLNeABEs6Gs59PmeD97W3cv8zMkaj18vtCAFCFUDkCUizZyQurVqpFFbs5RvFAey3JrIctQQIHIfbYYZQufRBgP92QICnD6xWQgIsJRpiZkYkdPWTJHvcc4qBNS0hiREUoMmZGjJJElzk6Zge4gHVabY5Ue5WYR4gGfQQxYzptaAnEarXm9jX1ZxzCfYVEHnlF68/myu6M87ed7Vc8QMwIRbfTSunQHcgzEkNtOBVMKg6KWtnPEBlu0M5HioI15EBpjH5s5ttbEzCFF2R9ZvYZhJsNq7CU7RFMmxdzb7SViy+3ODTBqFLGiDAnK3DPdmZ4ywSBrQB01LQp2NKc1a7Nvk7Vl6UvnvmTcbbZuirFWXpWI1vtua2PE/rTdrlvKXCmTbMmP3/30/nNsxIvjebPY1bfr85d6fMF+vW52ywVhd2anDQtytzfbp7cvenxKSdHNbbuNsSmokRGhW1zHy/PLy/dfYvWbXq6p3G83Xm73p7cX/9lf9fX+4WHl+RSrJ7SNEdq1bxyPP+yftxM1tsfnrd//H/Tw7rGtH3aczi/nFu3hi188PK3RzZS007o2a+bLycf14/Y5f/n4zZ9F7PLltnmzh4er6eXlOsYVYwhgc0M/jzs9Z5zu7t+9fdM+9eX6dC0CS9bkTZXc1VrDDeSAwYWg0dzjoJqOh2rqo0zAIRYRKysbVRvr9VLQMog8EKI6Y+cwwOTrODuff4karixGFcd+Ux27qTk4A6YsNRYEmILmlBU3I4FWvjyT9uOU71Kq8/o4V1+/0Ty9dSC8PJjbeZTicAuep60ObFT/A6iKnBEQNo5qcZzs82yfozarjxjODJvFJkGk0bvc3V1S1EbsPMrdytzDbGY5yX1ZpkF1sZDlycdZFHjArjjapFmSZ5V9/YTzn1ZYZI2edc+rrjpoFa86xzEcWeSYsYpHQQaMsmq+QlWP5zxshsH67XXAl5ttyYxL6GyvkMtEj+enKWqxEvvmTnj141XIE87MPAzAQRIO0c1DVtwuDyRC9SRV+zOhG4GHwAuYvzoTCpbUzZA5DIz5Q7LZjrk3BZk2h2DBZo9zAP88cA3j1IyXsZWJ7kz4cVVrj1uWqRTLOnwuIqhumebcYVkXixLdh02nrNZ2LO6ebmUv7jSakUkb8HmhZ3eBSfjkNDyGRaoymezHh582Oaiy1q6cXQJQeFVQMTOWCChNXr5tgkIZqVEMBBoS3ggEaa3Z5E0SrFQHWpSnygTyLSjSMMoxZGJiLXdjrVnb4dGaRNLNHOXKHSSSOZxw2uFSISjKE8u4Q6GukBDmkpEt0ywzLYOIiIwxa3BBDBGm0NJRzEDiNAqBOpicBM1gA6U/SUNEcvJlCUsqZS3NgdFgAgZdZomRKbMhjVK6EuZ97W4ZA/CQ9pEBZfVHkDZLsLW+Z/l8NeXYrnF7jkLNUh2ydrblofXeFIja7msQ0093z0L3HMox6syK+rKptI5UDqMNZDBaMUklRzSQOWKAoMzdojVr3oC49A5Eelv77sae7NLY2t2Ibmqmbmz7xS4RkYjbuLrHdYRsJ7sLur3E4u7nczM6NPj0+GHfRb9bezvfmd3fvfzw7W+G7/zy3Vu+Hw/nu1Nb79bTcnq4nlduA+MW2WKoDYNR1pMy21PPscX428enT7cxVshhzSLprZ2Xu+X+ng9v3+hL3ba+uFb5qZ/ffLl+8YLeT83d9PSD9rHd4tPjd2OM69Njuzz98P23L3/+5/9aj83y+XT37u7+J++293bfXj4/fn5+3q8ff7h/kEKtrXd+7vftSjxhe/z0vH++je3xug9f+tJpxn2/bddtDLrGPnbFvh67sqi9+gIc5pBTUIhJWQPAoZUxE8poLN3ZSNDQugFOVNfoJDB8RR9gFYZSihrL4qr0Fu4VfOWvJqukUFNrNbz4sSqZUXKaSqlLT7OZqgKbS7FkFigUaLNgmh+HPl4Hk/LiPXDb10nxAF9rzTg8qYiKTZ1df20IhypYvPaAJ6acpqPDr80RcKJ1kw0eWfhsghi+mzPoo1aVpiLMzLx581r6p890pDli1c0pxMwIWHP9OPtWxUxNo47XXmoGBPOYeIRm+FHPO1njKYlRZArGhCHp0mTjk8K0sswAWNh3ktQYyqw83rkzUl8oX9H8EqTxkFdlqKJ47RiHX0VY1SAkA5w86OtmGyCa+bIMR7rN0HUPADTTjla7chMann7RLEglj3Yi0g7/7LlplanhNk1FIAWcbogMSbSG0TidqODmr/Q6MKeRiY2+kjjIQw+fWV/W3drSmgmoyg6YB23uoiJBKlIqMQBQZ6GSTFCWkGrdNhlBjhwjyUSM1KQFRiSYiZEGoaDKatVmGAPokCrxkJMfmCXPQzKHlT/oSG+7Z5GXbb46U4oodXM0po5QiykWDJmZjTAlkNvIK+G3a/YEaMmmZc1Yl5Rc+4Qiyubk9Q0pmTemyIpZkzvJpuJvYZ7sS2/DU6JZwk2QKQSLqM0ADLYMB+DdPZGxJ6QRIHY3lsc0jLexZKgwqeKsMuUAY9IwO1tbultLB8zGqKxHmnIfoziuetUP8V2IruzogPnATm7BBlpTbyQAi8FGsLmQOWLt59u4wVEWdKJX6CuSZr62BV0xgJHBfrp7iZ1JT2pZItxDsrxbm7d1EztgGbqeQ8YlL/508qTTDZaCNwXY1KtHkzELZxnaEhF52SdntXuax9VOFVcVY7OA2NQs1svWmlpwrcao2j1b2zoWJ9XZLY0Ll7tmcI++qo39LuPUR79fxv3X7xtPazNH+nk9vfPbk0hrZufT06WfTzGiPQ15P4/19O7LL+3h5N67+vn+/u3d/fAv8fa9pZ+vO9589fXD3e380y+Xx89f61d//ecfL9fvP97teRmRFM9PbUixA5k32799yu+W9z+98495aqs+fvqjBYZrPJ95+e7r/XkMYdhyujw/3y5jxHZ72pPnP/lKxG/94/X9V+Nusex5+f75+fPL03O0bJJuLy94eu63/TbuV3uIfv/2IzMvlw9+97y00+lk60saYCc3Q2UTQTEhZknIvYpLSeFRKdZHfvnko2ZFMw0rGFpEGk0yzZ0Gzp/OsDF2RkwXfSMsENlQyFSW27Efp+7kWCcpnKqCUXpQgm7eY5TiN48T1ZEmiQzNjFhMSlPBECK0p5UrwxHmUEzuwZhKxiPH9xXLBpQ63KJwEHus2PO59QggaoFhTpmYSzoV1TtrLkQ50aYwU9KUH5k7aH3pXUubTrY0J8wPMVmBY0oz5sg0a4QYB1kDTRXpnKtfp96anl9n/tc7coiTCqtSJoRUTcAqfZjql+LAjmdOUC0A1+7o8bxkjX/015l/zuQ1nhZdBwmBGSNNs9LnFqX7I/I7YeH5gTWhzflMGKzcqFhVvIw6Km4u6ZaZSpgnS31Os7ojE1up4T5QeQOvmAGrITHSSG82A3IEepsbsQqU0YQgKTTpMamkbjgQ9pxPO1RIzIxqImSImi4JZJYfm17Vw+1wbikJQYMSVs7rnLf3sJzWLPZVNOddJRMWv4MlQFAVI6ly6jHzSo4nmZmQWMbMgcgo9xvIzBJmle8ERcbopRKov00AGFmQQknzapNAYGQwwpJDUHCmTlAwmYNyp3eVY7XLUKiDlYO2BzMiPIKhQ37AKXQ4EIc8nPhyZEYK0GCO2l4rWL/gI5nANqo5MJ9zfppMmfs+PCpiBQLSj4MNDllmhskdwyMzMuK6nzoJWkn8RZ+T8cxQhnKuqkMZRY0YlRFhwyIDGR2CIuQSID9mgAJnIkCaW0MEZhJ0eV8LoYTRna7QntjGZnccoVJjS3JkA83QT6Gks6LRHG1pHDcfuS/c3eYrrACGJCkiQrRUlA+4rBlSygZZFiXj5pMqk1QLL2wOYiEXk8W+UstC0LAsy915UWcoIujnsy8dnlDv1AjuzBHbphixXV8uI27n8bR7wBqX87K03ZCw3QLPT6fNvPu2th9uCvV+XvtyaujaNfYRbDBof3p6tDU2aNyuWyS5nPnw5u31dHr6i/6wNA7lGNu2j7FtGpHZdzbg7ovlxvbujr6uGsluV3sb56blPZcvv/zFurTeee53b/rd/dsvPuxfLX/wh8s//fk/ehj7D2/7B74xpxCPn992qJ+4DTVvgWXP/XaJl6enj/rMLbSxtxNXy9vl2aymCgVa0xqx3wpcmWGf4AwtkhFs7gGZuQ2aWc7tCU05Ji2OA7hMmvV6EhGv44pSqdgHI9KQWUbqZTebKHctHZ7/9Y6/lpJSc9gshT8+l/PoLd9jHiFqh9OTcCyFgKic73miZ/GNE0udAO3xxefRXu+kpgSRh2rolUqb1KLMaJAlK0MO5s3mtmfRbTV2HnB7DXd0NiTcD8S4PkoaIeQWhRXTMubUlCNUupwpEq7fcvDM80NVXJBNEVYe35c/fsGjUkOTs6uV4RbF9ImpzMrA43Hw1xevT2+/yyZjwvTFmNVwSrjNNSiqEpAOwvBgDid6V9OhuR1hitMOq2Sfx22u3mPqbnBYp0iv21CaCxWW9fWVoYSnmbkrzayVnwthQBMdCQuXEWhtdJvV1tG6uTdDQ29FeSSZZotzEq8ALRs1Ze/H+HtIjOtilJqp4sOOqbAW5GjK8v9HX7s3H/uUaWkq5utN4FEJKgX49ZHGwbS+NicEPemelgOTmcm92G0dqumCKRg8+ltaZuX2KezHN052xPkWmZdxvHCpfa9HpEtK1LabbCSUCSYjW/VX8w9QEDJggkX0CjPhVA1blOQ9qllSwiyhLJsU0nwqFpFyT5+RuwLgrWCksnnJiCHliBgZVEalCRrRKrkP6cj1vEnY05yRJlkD+6smFDKnO5xmDgONoicNSHeC0EjGvm17BJcxJglNieamVIDel7FEaKqjX4+Yef1iqKdlg1kQSe6wkWzKVv8iXcjSsu/7UOfFQpssaG6IrG3gLB+UiMVTQkTmJQdrVTR1Se8N3hfr7sJi5xTkJyz3p0V7vvDjwxubAZZy54gy2lGAbj6UJF1k83JtPUIy8sDVaG6emRojZevykuaRhr3vEUG11osNN46XPXIkyu3OV+9q7rD1bJFXf9oZsXjQLLbY9qAasXa1NmmwBjdbf9jvMW4Ljcmld7T75f6ttW7M3C7b5fb0uX33/fVP/+xP/93Z7s95/fbTt99cLtd88/VXb/3DdfB8d/fuYek76YxgRyjl7MbT6fe//MLuXp7u797+/O/85G5R3n35sy/v3+gcy3p++ODxl9VsD/Z256ASRowTx8U0tsjgD9d4ujwnbOWQaTjQT3eR6+iDGTk23HJVM40dlkvDgjfn7gZk7LmHeje30Uyxx+hBL6QrE8YE3NxpNvNXjxO9YtPnmo8iM2fzDsB8HkISJlxb4wYQbp5sNSMYdCgOOfc/jzGNcyg5hC44Dv1yGjpWWotcO9g2qAII0+vwq5+ffTmPw7De7DmCFzhZxVSi1MyOyQJ1EqH2Uo+5osbJY2kFepWFcs6Ws/P+8fAtpNjM20RYq+jbnE9g1rKi2RE7veackncQ9UfLVcdmoz3haSFKaGo+SW9kpmYmrQ7jyd8tvZpyrNlU5NxxYZvrNjax6YSxEE5Z5fqwdlA0q+wrWAxV3jzkcwIudrGeDztqNJR47ddqQsH8iBn0gzetBwKssf13/qlQAWTSXYAjov4uNcE7QTQDlU61EZB5GArzTrNDYyRBMuSgJ5SiMsYxIYLpVCKSYZXzmMdai2yhL6V2EG0GvifcDaQhCoKvZSL5Tm/OSo13k1Q+miPNMMbw1PXmrS1WEdMgjp0yqyX8eXFxXM/5kJvj6Gnru2RWv6tty4BFiDmasQ13WtvkdatFM5kfKVMhn6w7nfIW7mlhDpORyiYJfmQRE0Rr9EnMHggxKMEHbFqk1mhU+3PFF7GNhINGKzfqZoaDSypdpTLNJq0/WfxgpsJu29gUQcp2ShqwRKUi5V4JTDTAal8GsFSMwZa7wsqZp9kYibztgDbJW+sNGRkdKXjEnswmScYoHu0YnRstmo9lWdzXzRqdlAyhIcXUA9SRI+87YmTQWzMFrVbZEWZGiwCttziDtpol/ares5+yL6ch0Cq6VPz/U/VvvbJlWXoY9n1jzLlWxL6cS2ZWVXd1N7vJbkoiJcGgbAqSARuCZcuXf+UHA4af/WILMGDQkAFBMCzbAmzAMATrBlKSKVKkRDUv3V3s6uqqvJ3L3jtirTXH+PwwZuwsJbpRVXkyz4kdsWLOMb6r0trCI40RR8t99dOxK4Wj4L3Icd1yCeYesXbLfsb99c2bIdpJuv9p99ZGyETXqcUR+6C5Lc/95O56ON6cz7Qaz5shuFzohIPsahXMZQkhs7feuHhfWyNaa41rQ4OccHOP7mbHy9vTM1qsYYZ1IROhK04GjO3+4fFDkhiX5+P58mZ7uq7gonUxuvN89hwYT3tse/rL51TQop3W7rAF6T7iEg3YL8eu+1PbE5ajXaDvtpcjk4GHUz/f3y+ntz85+sc3X/72jx+Ok3/783/6i7/z9d/8+fqn//g/+eo9vl6On/74/HZ9e2en9XxhXxfrb97enbv19d2b/L+133jOl6fljMvf+8m3fyM//IP/4t/9rZd/tP/G+mF5//f+y+//pW++/ZSXpZ/IfDl2RSLX04l764jnly2u3A5dPl++2x/4myfk88PD+e26WjaT96W39fR2eXPC3W7e7u5wf+rn5+PzZbteR0R/ON7a533E8fyy+rCzvazny2CWy25wN1rG2I8qhfx1ZEu1tqXN/ITywEjIDLaTHyTUUOGEk+IRDKXqMIvp13Gk+2CvdGeVRyCtzJmTSVMYXWYQbMjVKkpKBFsprTMq9skgeok9AStNn1nctkQSQKbRAixxVhZpIyWY0/2Tt4X4BieqyKBa5o0TYTYKeUTpgAsrqzWxGHIWQnmjsg03tUkBchDMndbMJWZdS77eLXtzGnMiWSBh7HmjAo1T2ioYMrS30KQ/cy7Et1t0bqZ8Vfv46yWcJlImKxy1mQrqlGVM6yqt/N7MysiAZ9oMkQSqIsAAE1Xf2aLbTRgj4giRFIIwMOXKETNGuuYPlyEzs0RkBYxmcdkJyyypOm7DDpycnQ6TqK3JCSOkGuSRsrShY3Dbt7F2kkCmTxdzTNsJwHIRRfLYk8rIMQYO13Y0RpqGEwNIRUTpQeutTFW+mEDLgI6gjSzFt1EpvyE3FZpORMxYSaQvx7C0xEIFDQq5IWricx9jWHilRlSHmE18njXASMjKjRPKitoQcIDD+mpHqeVs6fSRysxhlmwdg6SjaZbh1nCbFWdZfAxFk900X8iB3QlkGFXaYWTCkxEFziSZx27MaWqoLX9iNZkDkd7hnglwtZ3sQA4DWpI6KNs/55F9uER4JpzEMFqr2dnMLNR6R+tBm6HTitQYKGYmIr3H0Zs3DWq0dae74J6BMBxGV3TfxomSmuCWcrO+4vAWvW2kd2dnIEeS3bJwEgCMEfvWDmbzfWmLwFWLn2M9ba2+UGbtjFbFVe4HmGEOr5AiOmmWMPoYbc9YXq5Ltn3EgRY05LHZlhgdYizWwwShLYgtcll4/xze0eEtswNpyr6s6/q4wRr2kMdg6ggza9Did7yex0DzVF/adryowfLpzWmHub/7tHfup2CDfBGONPQAShY+tudIS2r3WHOMfQRGvFx9jH20HLFdNmFs+3G1ozVfO228nHZsjKPDO+Uc2wvyGSM9XlrjSafHy2rXND5dvaGv+TTWZTVfvN1hXZE8L/SOceJ6OunyfDl3jVh7tKDtcff0o09xPB/CJnZc1mPzu2Pbj+uil43D293daWntze88/qV/4aG9u//uH/7M/vpf/uXPL9d4+a/dTtdPP/onf+e/Y//Zz34PeskIUvn8PK5Hfvr2v/67/Hfe/9s//98fP8vz/f/lt77+6f/zH/8vf/Jnv3jn69v35588/uSrn/yP/uD7/5A/enm7L1129+79w3np66fYvnmJZ/scy+jn4yfvnu8f9Xv5u+/Pdy/bw0N/+vbpwzrsdBm0xVtrD+v701em7c+OsX/8/kssPAVOb9/keejlw9PlyHHRcuq+bXltnomsatLhQGRGTN6MCXN5gil2EqE0N5p1Ybib0TXYutXh4VMNIZJG3zfl8dJEI4c7aGI17coSpBvpbE4rPchtY5UQEngL8IClKlKJJWEiDO0QRJqH2JIMzCxoIaUxb08CgNNZkgaw4nFiSnQqoJBlM1DJK+e9x7klTQy8Ft6CB0FVDm/BT1VtQuHVDUMBiGJpADandYhGzuiSYabhyobAcXdEQJUg7I3m3n1dms8NvG7+CtTq0bo7b8oP8VU6PkeESsSa+LEUtWUWtTt5RUFCmwISoHofapurYvTqhRMqYPF2/0IlD5lZ0amEJmVutZ3iBtcDqu2p1jZU/2P98RXxUtFjDrpQkc+sCBcVxGE0t+J86Vbde16J3XCSijDLYQajuVJ9ZbVcgZJTXrOR6ZACiD2OniOykZXOLEgIMqet1GvIyqn3dzeNon2VCnPFZffS8xeOWkQlGameWTlcimFsUCZcCkvBR5YLRJZHxOph3aBMM7NOm6/aqy9rXoxkOd7TwtSEUswZyLCGBhGxUjWVqJK4rbnRDwBry/I3UWig2wQq6t2s+ggCpoYwtubuzRNm3o+NUENAZIs0Z+/GpiCYyIjCSMlmyFYmtij5gTJglrbI3TryQHOZgkqlwbHaJQCi+VE6dKV5IJGGOOQNM2qFqTz6EFxyILZtpBExjmNP30ZF/owjmxDQHonDBdpAy3DpGANbqA8pM7srNBKmgdJAelqoSVDG0VBacKeFzKwtj4eUdKOGILf1AkO6WeShyInfYr8eNVsLA82pEBvQjYh9VyHa2Pd7P/YtxLDc1DoitVmaIkXHGLuf+zGyCQ25m7Sd07y1vjqWJTdvZjqCiXbyE9f7Z1GDknW3DjYsK/cPG07bpZ+S6Sf1NcfL/u3d+ehLHlJkyxRCQ9SwQLMjQ7CQqa0ts8uNtNO50kCcvrR++uS9qVPpIkknYxl5MmvuaOdzbw9rBxPjWE3P7W7Imz2eH+9Oj/cbYNtl//ztZbg925HIPN3Z4yJ77y4e+fRxtLvzmzvvulyOcXc8n7+MyzHM15eDV4xffvZPm999unze1e98eXv0Bfux5XPfP3/7869+9PH5eOz9N/7C7//hh7/2B//ff/n3l/3JdfnDTy9fH1u25/z0tH1/vP3ld5ftl8enp3/8+fwn/3T9ePf4114efvO7f+Ff+cn9v/y/++d/9Ze2/8kH3ffE+bsf/db5E+JAR7f07fnl07W/XF4+fd/effPRnU8vZ2kT78b3W/CLXJa35z9/eFzu147lbvMxruv1+w8fPv/C/cv2Yuc3X+RX7/zy4dNxjDGQ3t/8+F7f7Vou174dZMquh+KIMaBAbbVJIHJEphiqOHTLkUkHIHoSiiNW8zYAB6nUNk4/HP0AIXNkdJ+Bv5Aig6M2QWQmR6yo9F7OlIUKixpmAzfoiqqg2czZftccyRhVUs4o1MwNTaMyHWRl4RdfM/2QwM3uhEkyV4GuWdkXQSoLcKxLK2z+NMQtjeCmyFLxr9Vkb9OHOmXGASJFweW1vcWAK8Cc6pNwYyTgrZ2WdWnnOA55hYqYN+8eiBwpIizBpLIGEdGARikrR6zRWhM5f8BUeZ6KHK1WKk5mETlP3cJ2C4JOAMqo7OdS2UbOSL6iIGc7xSQXLU2Y0Uk3ChSssb/uTwJkmlddIm+O0bloJTVLdADJZt5RElM9YJiRV3pFpGd+F+GC2SSxkywQXkUu00Rr2XqnDKyYL4hGuKq0uOVNU31jLkkza22YlVp99idCRCscFxMuLvmYG43N3CZ0DxlBMHLmrRTpOTWKJhmrwaTgdpDmrToi6pqNnKa7Sv66/cB4nQ9KpCFJjDTLYEYFcZtyJnUIUNqUZBSjUxZvsQoYKiVSyQK/KbrManLIyXi40dDIqswW3UpvMZJRSsTSH0LDLA41Rqm8oIjMhCKKu09kynQg08KRyigCnaas6McpDolZSTnzy8uBVMokMKdQzUhfV3gkzLO1JcIHzM3cK4msiUQ66HTAJ/rSk8rMNrs2zN1K3XkclhjmQYWQjgpBf0X60qEUQnGMYzsu4UseqUrrzNAM2UUx+5KAzHouJ+9UufU2cqGF05bRls0XO2CHtY7e5Q6fpdVGelREyHK0bMsBY8vIwSYkcRwc6SDUEnvEcYDL4m04YN2sguW8eSJgOOojDW/WzJKbn4/ql4KJQe6klZtRtgzCaEyI1joE0l2V7Um6hZG9owFdEUccgpv13ENbazGOQWigKTIzXy7j81PkgHoqmSP0ogdfFqMlbAxA+8CTw/ahqxDLuq7Ma8R27CCp7rKn652fzvbcLGw9PeH+fjn7QiMXDuXYhwA/0HG+920fict3X3/YBmK8+cnd8+P92+2P/uq/9N2fv4/Hy/547493d1+8f9u/iPbVX/3990/xbzyf2cbjm3/4+//i6d/V47tfLR+vLxfLq/HTx/3ydL2+bOe8XHdlHBLTlvt3p3O78xG7hdvx2djcL2OVn9J6f+vX0Ur0kTn6XX8ctrYxni+XYdZ9jKHMY7viemRmwvthZqmEI/s6onqKaic00vuN79RrSWsBVZVCdNNDT9ksRNJdbako9/KaCaAD7kZhSkctw8oGATNlzsOpAtilZGpSswHd1LKzBXUyYPOFzU1OVbGbxE3bDIpehGwKYMLcyoVRUqtE7Wp1sEt4DeIo7PZV4GR8/blLNDPZyR8kSfy1zbJYTM5NGJzH9qsgqSz87pOkNQIIHjBzKKr7cLpGim8qq0yRsKzPhTbzhEvIkrerUJMjnHtqKZnqg6m/U0ooToQdgEoFLc3UBbyup4JZpm6RHlPAO29SMJmAIctJXVeLZURGRFKarfa1HpsBmYlAhNHNEBYRggEqCjUAM5X8s9IInbdMaNVSGqp80KSyLtWUcbYPhRzKIYxQ3XsAy0RFu5GMBlB7Tq9W1ltsZjAz98YiNBvkTEWO4p57qxzp2ZMD7wzr7SiYe3YxQIBRkVDKbkqGIiQStExYCM7mrVUwz3yqgiUc1IzAmPoHA2AwVCg6gqVWykxaENUKwGWX6gcohlqagVj1nYxjVNsf0qisoo9MCoh0C+UeHZB8VlBRQSHGIZKVOjtSbqSiAJcaXEi2adABUAZAc03Z+oBBcgpjHIdtJh37yXfASEP208jVUyFo7F5WhynRzswMV2qQldMYnplyuVmDhSfg7nIP0Mwbaa33QS/1mapCoyObmzXDPr+GSkC+xOEdKw5lQvQqlaoG5CAEJyL2DaN4F0Aic7giRx5j0JAh0HtoAMkem2WxYCQUZuXXDACNMCjA0cQIMZXK0TLjgORCvEpGXDI0CzIFsyOpNTMVMTQGYhyH5Zo7HSbBDA304STtzuIUiy8P66mfsWEckEWuY/cn5ZGnx2U7zMdgiDmGO0VzHwOMyUYkkY3mvVGKUQJHUjIVqkLUbSHQGx/8OTcsl0VPieHHddc+7g/kEy0V22XsmWFbKJtA82X/9NL7m/dHXyMYRyzX7fzjd2/vvoF57tvxdPni1BwZJxzN1+Myho59p3onT3f97tR83WJcL7safTk/Ptw94wTlsIflctnX0xtLjeP63fejad92z3MLT7PldI71fLc62zmf1jc/7vnlm7CX7vH89P3zT54vI47vqH1/2kc3o739oEYih2xZgRyOI4/x8gF7B+5fLp8fMZbtun9/+eXZ2C7bf/yH/8XPv3sfYx1K8nTf1/fH3X34M5Pt6c+2P/lw+u7Dr67Hy8uljbFdL9fdViWj95b0Y64FbimmF0mHGGPUEZxDEwgt1rMITbM0VpGWjEo44AU71opEADlSmQcrjxOJzFQwwmxUiO00u5UShFN6Ypzq99sGaj4TfioGyJREli1BZgxKcqnCqat1QVk+kFcZ2dT5TMXXvD05DZQ+M15/XYnFuSfXcVmvZd7NglIhz3mp3a6vebdiboU+IzPKLUwgOeMKs2hFMw23hWLlawhmlQTNV+Jcc1ss6r16f1c3y/JhzZiJ150JN0lbjQp8vYXnajfDp6pE7SbumS89UWvV623++ru9SrpeRdK//lfmTW4+xyTWolyrcq2iU1kGs6z/wFz67NYgNMeV11DoCWeLN6IdvGnRXuVaFe+i20uu//76Sd7k17fBQzGpfd04/hvHMNF8aB6U8/MjqVrip+j5Zj66vcWam9P84ycLMBXkuKnBjUAaMtNmlAkBmLEdk5DHtCHdctgmFqu8DWNzzJp/ruHGMJSuzQBh/gD6YZW+PQRzktX8Yr7q9F/fxzn90G4ixZvuDqgJcgodeBtCOb1uhrnVigkG6FUtTctMKRJMDUa1ekFoSFNo6PXJ4nwBr48Y7GaymTMtMkOhjMhaP0NClX8UuFM788RrZiBKzqciBaUsFSPSM45RheNCOrLOj9uwPtEAMwv5zXQvc7VmrckJeHrz0gl3n65899ttPYdGOm9PRvniS43qzuYV7SwabGbc3T7ohswRxygNrsodl7RceqcXbgV4h5vN7GuD8tCIoUO51UnRPNmWpVk1Snf1vaJBS9hMQgpGZD0YJa+4VV8VzpNTzWLFy8+A1DrPGMcJQ8oh39G6Cb0BMmuxnBrNmzdr6GfSW03nhzD2JNQarHtobFsYHDgt3nuHwxfPyH1JVMPsiLSG9vBJC07urZ8Xc+Y+9uv1ctmOLYWUIY3IwaZUP2tYUU22rMdlG2NE5JFlEYDgfcldR2RGrDEc8XRV1/aLVLvbWgfB5jzQW8C6V3ryYvTF09/F4z1Hntb3b5vj2A7Fdg2taeeT9/u78+beYKTFtm92jUvu3708f/x8+S7vL/ugtTrYx3EcMcaIEDAidkUGMkOKUXUMacpby3ZE1ME1kyHnEVanGPKmWboVEd1WLfLWffMqbNbt9rs9nsC8K+NV1DwPiizjQ1bnWZ2Pqu4/4rYn3r67gG4dDvMxErz2icDcmm9L5C3Hsr7wmARpVrtBVaoVuzfTbVGUc97CouZpUdnF81WXVMb0emnpZieFzcQooGC2stiUlJo1eUekz9Ik6LUG6HaSA7j5kisWkbJoJX2bEMVNq3Xbg+vOwWtP4Ly7hF87VnHbYzDF0XW3MnkrRa3fgNQrj8uiZ19VOz/MK7cQ/drxUYQ1gWTM2c1mGiJYXUeJ2at4o/1vl7du/bsT2iYI+LRHzoFQnKr4gl9KoVRrKKPmQWPB3CwFl5UJznokex9RXtSYmWpFOPv8yQttrYOf84BKKRAxhtVImRVhUlPNJFQFZvh8rOrrESj0JqSE0pQloAJeYYtbwlcNfMQtR45lkK0PMlS4Tn1gBhnofnBeqcz5o9YHbcUuW1optOc3gpjfyBnZWgYh3JTz84vlllZgkcnNzAm6myvNki1haaS7wX36ITD7WOrpi/QaU1xgo1WxSGXKGnJEBp1pR++TEgBqCp+zGmnuoo9bqxcbb9Nfbczzuq22NQLKUq3Xe1RvaVMoMjMaMhzVyMRMVAoKnKCphd2IBnldjlmXJ0ZmRALuVe52m6gIZUTmLSoPgsiiXvDDVFMf1YwqcwzO7B1MtAIVgEZkEIPuFpmFRYDttY+tGcK2pft6K2TzFmatt5zjhRq8EUzvBmt9NYre+3k9vcVup7iEN8HFIuxQXZU0pgylQq0BII84ukaLoYiICMQQYuhIRe0pAOBtH6lsvcEpFTlsaAxhHG05n9dTdzJPS+td57Wfjvsv3q+ncXjC0RdbHh4WxGWLOwXlzU8nS8+I43gZvS2y02jWe4yn6/trfgy3l+0ljWuzLqPjiLH38bKPl++jjW2/fvy4bfLUAlyeRvzqw9Onj8+x7xceL/s+xvUa16u263ff3F8+ffdx2V4aLLU9b217enq+i900aCO378+fxh5JqXViDx1DHHnY5fO25PYi6fOV27Yd6MujfJH95sev3tzfndKoHHnt2i7twP15Hc8f+PCw/+in6+Xz+vcAauwjYW4a+zjGnCQrwaXESPNqS9GzIo2sdSktJ4pU+8kc1Umv85JuJBXJtJkulPM6mAEKvH2H5lI2D1Rysj0Vd3ibhm/nAm8w8VQ+3c7peg3zLiUn6Dqh6bzN+5wGnduddNsFf/iD6rysbHgQdoNi64eVrASjpln7U79ZXeWGWtQrLnDGVeC28809Yl5MRqNVfrSE6gECAXN3wv11e51MXiYMkiqyf5asvA4ydYhTr2rnWkhuzGzJbW6rKv/bL4u3Fa79+hJ5+7Xpu8U8l2QsrLz2zokRO1H0ss2gK3NWNFqplEEardRoVlnKWVBugsyIiOzSTTiWnCKD5MzeKEVWOaOAmvynC6Z2ZelWNDTfGvMbq1vKZeKGwhRFyspXzFSGlKHRhqJSh27RHPU7z/fHDanmoJOy1ixVu3mJ7yumGzKKoMn8VqQYjrmjV/dvJlsOtCZblu7uSFhJA0AZk1kTxGv8yy0nLauERq+btTDLGEQhKsZogismz6BQooPMiKoU4VzLppd77tq0ai6un0HMXxcY1gdjFa+TYc3KAT17KjBaGZ45vd/16pQRykQaU545djBNMO/LYsggMnZvJpYWMzPDCnF//VxLjRfFjcCsoDDK3GFpTdlonqQIdz8AKL0DkcPmBTlDDbwPCLWO9zUy1ZuSXSwbv5NOWwZRfoKgbrEGJOC2jcExBrPlyBFdqkATMEeEoNnXKiojzWC3HHlyvqF1zMkHNJLOal8eqrzHJJCW0UwDkUyadWsehButhSEFF5Bx6Nwo5x7NaefnqiddyNOyLFrSXWHn1kxWFrZA7Gs7M7ghDX0xR8pgjekBJ8wxvJqVCRCFxB+ZUdxfZiBkUmoggnSJiuPA8em8LUflpEPWqIQO5XHZQ3fdM+O4XJ/629yed15tLP7p28fn6/OpX97k2LagP7TLiMDl6y+3l8+f2sftuikNi7T0Q1jeXrCcj+fL0+l43r/FaXz9q++Pj/zYnj88vWxj7ITHFr5re1jGE51mL+ODPv7yd6OT587l9Pa8Cq4WR4N1XU+hlyfrY9jT3i+Xx3Z8/LjHv31sY3u+38edxd3Duy/O9vjlnbXRgPNju5zYBz3F9fjm6fjw8Tqe4x++PY7U3Tt/9+X9j7hfL0+XsXRwNSqPsW/ZmXfnfo67L/6p9pfWl1Oc7hrziOJ0xsjY9wBPZ+duhCV/qBWqN3YOyRbVy0lCbGmTg5uX0ET5qjPYIyJszPChWpVrCs1kEnlbVKHKUb1hk3rFR3+4Moxj0qe1GEyBljFvDUelFWOCZvHa4JO60bIpItCI2+182xNfF8PXCTaVEHgTFNNAqrjsuVJXRZLVCJCeNCFrZ329F28zerXuqHb3+Y2Wyi+UN3NxyX1nZL+YR4Um4AbsoeIlKFEmVSnR7aDM4gQRmXWxk3P41u0mn6MCJkRe2HO9C/NKardbjbcxZO7zvJmMf/03mhrm+TNJNXzgduzdUF/OfyJZi6EV4F6aIKvLBiSrp61Y7bn/lk2UN75dE/IvimMC6XVBWIwRw5CBYjV1U0h5622OCfX6cLv20aBmDqF5a/ClSxSNXqQA7LXAI2OmVcusfupM88qEnqNTwQ6aC3rtu/NB4EyIsltCtKXMBaTikHmzW+OTDIiIKlwAC+5+BaDnlZhzKRKTNM9qrWxiz1xaO2QGBEijm7thyJJmpXC44cVzfNFrmE5MznRe+YV3mNUQblXGVJ0qVMb8faDMiFIv44YA3YCJGYZimkBlJA8f4THGgcEU3UaCZO6pdHM3g5mLqpTXmTRDkxmmvKmm1JnSAs/bPp8ZmVXhCLMqNieqSDoHgQQTlvX6x+wboBvMrM+FPTkOeeleiJkZa7Rm2WjemruDfU75EKvd3MwcLrr30bPqkefwQNXrocr1fEu58BBCGdw76EikjaguyNbMXTrA0w4NgZlU2OzERJQmNORuaUM6rtcjiiQUr9dEhpl7iyFpHHeEwdaTmYX1JdiTFlFvWK0nrDEYXhVJVkqHvkxIvC8bSaM3J2EL3MxA+nJazuuS1zcWy1WWYEAjR9XBujdrfuwj5GapPTJ5mCWYhzrcwVOcbQi5h43Ls2UwXaSOwOWKRcQhG9uH/vB0WffMbMv9ud3b3dmdfTmty7p4Q+zX43rkYcnz26Wtb1ea9TW77e3+fvPTnW8pa2hOQJnjZUszw9rWbqvfre/Wp/s7O919df9vne4f3t6d3z55W5aWu1awGyO1v3zybVmb0R2O7fM3P3v5+tquTz/7rU+fW27XQ3sexraSuF5e2nC0RXd359Pprh27NnDI7877/b3ZkHc3Kq2Zk0lKiYSbt6bCqhI25az10FPADex83RlRxKhiH4rFMzJnGxe8kmomU0sJsJaJVjzIqGm7jEIOZKiUs6rY+ooOupFB88K8OXZVg3ZMrqrSKknOI34Cn6ib/Ncxo4lRzhxbe00K/mETfl3Pb3zhKx9c9t/bDomZKsxfX3AFADaInL9J8oYDz4UW4JxUACLGnAPmbABCY+86RkGTU6J1Q7Mwt0hzo7dlNTjcbWJcmeLtNb6+5jorbvdpoU6Ywdm3jRklea12osIR5jEN0GQsdq0+zAqarDvQ5mh1Q7Rtwu2cShzMc4MUZGaVEiul0VodkuQ0HNVnPaVxhbXX7FYPYNbqLQKyqT0oV+t8sXDIiEgiKmNeGROVZKUbTTQZmEHKIpVjqO7XG5ozWwLrTSOMGQoQ8IJZind0CbPE7iamV4VuUxVDIikiJI1mt1JOAhkEUnnsrVlrrXaRCfSbzyUeCbsRBa+Kc6GyG1NIm0p81fDq1dPttIxEVbUbCOsH3FE9zKBZM3OzOtdLIefNAmxZv78TdYWouVgPBUFjwhsgmVfuXN5GLFU1U32v8hWgcpnc4IbhzSxiXU/nbtlcViAFPceAhxDbkZGswuk5+AOsjgpQt8HSJXibxnblOFJRUVvKGBCTYwcjwbTucMOQROsM9thn+msqEc2OsQMqm6USHaGMCiipIRapyIhka63S40Fay/nsCsLNMQAgjlqCI6ZHsqaSHBZJ0KTs6Qpdu41YCDawtR2eTXSYga01skka2I5TWFBiReqLxgAYgI9o7oT8qoyNxwWGCkBoNA/zu/Np8eraNFWW2+poD8M+Pq5XgHBLohyABkDsPeEZzZKI7rLel7a7GXqXX1s3c5C03tsJtqoCDXyB9UBma3BwXVo7BxjLvUzajv2woNvQNUDD2Lbv9ND3cUn7fifcHGM7WvP7dVmWZm1pzBgSD1jr5+WNfelXP+IYZ53f9Lt41Lqemu1mtPV8Xjsjx/Zk1+unlyeOFs/fffPN17/6HHG8eFyft9S3+/6yHZtWOtZ066e7u37G6fT40N89vDse1x/JDsEiB5bHr9rApnYZvtE+7+VztLzm8+X66fny+f7jd7+8fP7uF4s9vHt++Ge/+PKL829+df2SD3fD+n5p975f93FQalhOp5amyza+hn719fdPT8fLR2370ZbTw4PuY+nO3PdAPy/jZRyx603ErWJ7aglkSqWQkZq1gpLiJn0lhEa5TzWIuaM4j1Jl3U76ygmC2TDCgSGzrMI20BCcN0cpR+ZRybp2c8ZElDCo1C9WThQzssLPa3lOMAnI+cPUTIkZ1V0984FZY8WEo+fVSt1aXSYOU9HO5TQgJQ/qSGiovAbJHElVgWPcUM4Kt6kpoA7Rij52m4tb8aTekXU5MFk0e4OvEX1C+XNFqXez1yE3b9zMGA4I9JzJY0urbesVZNfrnMS651Xp1/W/q9pOAphshsTt6pt3xVzCUPcO5vpvc8D5AcR8/aljfmI3bGFCAZzhY0UUAFIYk79eMlWEL1/njRuNPF9OSWsKopzjUTEkJMne5IWnWM1aE31HqaDKE7UAAQAASURBVGBqT/1haJQK/musct76fCNGKA4powjtitNPBW7IRU66v7bzzACm+ienAn3ObVkFlHOkwg/PgeZeZK8UwpzcbiOP3XiSuoZq/a8fesZh1R7OUI3HpMPBLC5TKhqAFEr49AM5T3PeRFS3DxM0l0ZO6oF6/THIrAcTaaBCRiJy1pdQojSUAQu9dieWtVglhoYAA4LSQVIxcsDGiPnMkMgIRKoi22c9R9RzQfPWwi1p5pXgXNqgcrgIUIhVjVjqGKQqkI2l8SrWoj6xKfvArFOVTd92JDkHawIZijIi4XVAJa0teUzIXjnc2b1ZFW1F2g9w/dT2WNFLNjeFiRuZzZ8rSYusJ9xnp/EtMzYsdzc0krnlfABIUV5UPNpBd1+bHUFtOACFlEw4DesJmicyRqlMjEY3eirYbR1x7Kh/hIAdaSoLgzGBjLKseF96t7jJ3lShlK1KpQq/GQSQZsFGmcXQyL6sfsBJ+GLi0p0ZUB4bGDhSB84deX3ZYRj7oRGZoX5u0dvSM5YegtnDQzPLDOW47O3S4mlfnX0ZfmEcXNe703qizYC1tp7O3tZclt7v3qJHe7z/6kdvz59yXa7HYmneRmhXTF0SmXuGj/26P3/u329/fv2gdTd+Hi/7v7PnOPLgfS4nW+5O6/27SxELGHKZYaV5W+7Wn+QfnF4Q7d0v1vtlvbu/W3Q6NffdbdtTeWQe23Y8X/Th7vkjnvXWnPfbcrd9GF3HRpENTdastd6XUC7NiseaB2tNoyWYsYqOmgTQvGSmSkWTZyvMtzBJQhk5KtVs2okjMnIch49Qm8FEVFrmNNwrpWXCfCDpwpRUCorZLFTHu7J8rOWAfZUOzZdQypVw1HAw/63K7a2DszC5nCmndWFViwK8yMv5JtT1fLtPbifl7XqjXjcnS9wELMZXPlmvhGlKMsx8atb3VmGlaLO6ZOqdDWlkzQzVPgeamW60Mm6nMG73wph3rMTqPcBcDG8I/+3f03xBt//PeTsLamX71QziYEGWmbWv3u5fo81YDt6u9rQpLauTZppIprmn7puaeDKABhpCiZBIN4MySfosVH61dt0upNvPWB9vzU0kZuRaTQTunMRjuhnhCZEeLvPGLDQVYrIiFspDnbd/uUW+fogVsAm+YstQpkhzr2e4zq0K8K6HIMbQiIrxrPkjk+WiU40c0wQ3oYXbx2a29PIB2y1/VYqwDJvk5a0BAzbNrFbxIz8MN14mNBfU1JwtCk3wNNHDgAzMuWHenEEQVpJCkUgLZgaiGsAzTJEMrwEiEzOCFlKGG1FZuBINFA12Q1b0+gMSyBy3qBAzYT8UR1InG0O5e5Tnp3eyWch9VzsIo8W89l6nMAA2o2wLpZttU3W/0xyZGlGUTAaafBjcb1c6Bg3yFgN+DMvhSWTagLV24HbxT3cdzVxz9Czuot7iI5VHVA154CZJYVmoIaXgrbXgq/BAUW9NzT2lC8sGczZXa3sbjmGZ3bKFVw4fJIkjU4a7gyalEIxRbrUyQriTMSJybNosxjHkVufhft3C0ZZmMYbCzXon0VZ3RAIHj05hmHIYVGt8tV9meLMio0XEQWocC+XukTGK4hMlBZAh+GKtueX2gGO5rOsnjf0sHSDd1J1mJzuvY/GWQvOTL3I7ne7ffbMdqRbb2oShkZ7Yr8enVCSzMsabsy1H0huHfWpf/XJrzX0cJ9JwPq+nU7NmyOPl6XrdXj6/ue7Hx68/f/Nwt2BBLuv9qeVo5+HtdHnz7p44NzchQ/smXV8uV44R++U69vtDdrncNzw+nB/+rdOyfI0vvlAT78++clv+eGzHvo9t13p/185LvzufH98/8/yY22bX668eKAptX/pySp0QO5e79ax+jlM20tZz9/t4f+ptsy/u++N922XdkINbjDHoy7Iz9t6bdgB73PgqluictdGpsgWcKS/wmZVbARgzapc1UplZm54Uqs7wMu+aDCqsVVGKVFjhtcyIyB9uCxU7pcrrRTVu2qvCap7+ZGYUtjhRaQlWF+wtPTjAmPsk/cbVFZxd6/Wv3R6oVILXTaxOunk8FyFFWsjkc10kM5M3H0a9WZCimM/yJJeqhmbuoiUn4GrMvTKTFCkazPrqCwPacm568xgwpyJUkRQlOrOp0yRn4Y5ilOdqboqvHDtvAiTc/CY5r+DZHiGIbeRtp1PkHFA0kejZhgQIaTfsseAI8pawXLNbgW9mN81drXO3iaPed07H2oTxqEinZvEOJ4NNJawUNjKRFlQ1Tb6mWeImeyWykou8KxtCNNpSt+BwwmrnAJ1CJFRGX7P0ZR1Oq7D/9N5aR+dO3h4Wk0nmGInWahUHkJXrYEWQV2z/qyx/LujFSE+fWRaQqsNtZCZypHFah4trVtbXw6kMsqo9JGV6GbMrHTZlJk0vfGIaUOiKPKKUcKFRiuCqsMvMcauVNMvqjJpIhaWUbvtgwjJjWI28CicdFkEOWhTgZa5Eq6EBkDl8GXD5VEvVsgQL0LwpxagtunGY0dvSml6MAxAd5s3IpUMYYLKSbDPIqC/6GDdMic1Qc4K8EfRKGgsjim2OGCMyIrZAxDANb0bSY0iA9W1o7AFodMSew3vntiu2FICu7B4u6kBStwDQ2iZC0hhNOfbjoO+HX4+X/QANQubYRh5unB8QFMnBai7KsBiWgTECxsa2WsA6XcdYFN5W+KS4KQwO0sYIsOHIsKtsQGYYeeuGGJQirx6HdR3q6+1YgHKP6OfluOt3XM9InnzVlQ2xXR8CYx9v29PD/Uv1dofRCAxrxcG5+RJ52EGCmUd4a1eA0c2aUZloJ+wU23Kgj8207nqMrfOg+UruW49lcaCzuVi5RLkfA2NfderH6h3sy91D6y11+Xx32WYVhq19F7bDbOmm5ou22LPvrS3rz9cneH8QY+P9Qmz7c3bw7Kfz/ePltDaSeTl+/vf/6B98fT6av/zhH779o//gv1k//9HH02p5t6w/+sm7tz+6O8e6ZPcmOy1mEn05P9hXX/1+f/zl8VsP2//xzeMX5zuPn30f/+Abmrjaf/z31//Pf/LNE/eHOGy1/ePL5RIjuD+7jsPvkiu/WD7H9vzpu8/27bu3suvH6L62u55rUyqPJZ5eNmx2uI1Nqy9fPOp+28hxvXBHsoeQajG2vsNaW3oU90e4VLO9oqKW9HpywyIF+QxGQsWezioQTRmCQaAbZLAg2RYNP6mBnl7o9qASWf8KgTq4Jyz7a56Ukv/4TZhZlnFBpKuS1xUpIoVgG7sx6gCzlMymfvi2EOYNTa0saNlticdkZ2f+QS36r9kXaYmUv7KOvDE9+m9JjTmt+AXMTaOvaebYlyHZIHNLCEa35hpK0tfOvp5X6zPswagMuHLM0K/b4hlqyigvdEeaI9N7m5RBQRA1POnV/FuWTJZYeN6uRXZmdcdYWs3qidv7nGU9S8S881gcYPmRbxjq5ALn5jKldJkFEQKEIUgpB1m7MdxgTrjLaTSvJCW4CTc17O0R4M0RrIojidpRcjoo3LLKg5INQ5m62uC4xH6sYTSAQ4QSURFqKlqkmaAh7Zu6MjNGMoMxBiIw5jKuwgN8zqAJKSLplC1S1B462ybnvkb4IIzeBJgQc2w0pDOSZA4pXy7NW+8LcTjYgLQYQUPDjFypaXbU+5tQKkMxfxVURkYyQfpxxJEIsxFCpMNGZDDolfIpFmTnFGsmoCMNpHw1P4nEQNBruqmH1mq2c3lvPvoBLwCBKZgni7m0TaIC8KrTC1VtkhLm1uKI1ukMa+VYzalfpGIbA2kHrCbWMkPB2Bk2hRKCu8MLb6RRa2OZimROEdH6oJu1dIXMNiwtCWPFu4GW6O2IxRK+unc7UrJ+st37oGeyKrQrwautnhS8oBBkxBHb6ouGd++x997Ver8u5pVJbr54gPvYFkQkMpTspSQh6M6E+TnSdobtC9t+NGRbtazq7srmaIKhsZsrsgE8YoQF1zyaoTk3A4Oh2Pdd57x37XmO42UZww4g0NINd29OuWlTXlZ3dbvuHCDx9K5tZ++nd6E3vqfSRSzGzKq3UxvBNlrWYXIAd7F7pKR9V8JGJpnaP4PDuYe5s1mO/fJpYfgWSqgvwTxeLtc8tIcd4OnD8+53Tz3iwsuHD7pwvMXRvvjm8bz+6D5Pdl6uWx4vO58/DR7Lw8PdYiJSR7tHG7vs2L9t2C9HCuuy+nr/6XzP5dzOg0pFpMP63cP9l8c/8+Yf/E+/XLd2/bl9e14uyl/9+d/+n7Xz9/vyz/yTP7t8/f3TOVtqWO/kcr/2u93Mzksb28c/+pM/+/fPz//m2//rw9/42//e3/rz//NvP/+RvnzMN2++ffK01u/QeMercHd/Oi9tWR7vnvO0+pNOy/X9+bF37+9+si+N3vfz740vfYzccoOt58f1i5/0v3Dsd7+DTePp6fPzx4HPl48f3+1WWqvt5Ticl8Nba4eY+5ty+xgyh6d7pAjYKPWwsXS3kWaVs1zSJiMbMxNKo4FrP2RVV47J6VoemWMzwQRDiE7Ku6HlkLPi9lFp9K8L6NwQTGCWDgIeRf3cpLfKBIxmMtEzvadBzVgMB0AJjRmzhthoM3QYxpTqOpHsFTKurT0AYJYxZG20UiAytZdip45BUIjXvsScicKThuQNczaviCWU9cIAOEOASenMVF6u2AUNy7LxmLlX/ZFba4ATM+OwHLrG0axepkBk1bNAqQA40XVM6L4CJG64uiZJWWgH2jwzpzxJqkuwJMUYlfrIKopKm4C9Xi9wlce3RM8NR2RKZqYZ4M2aZiqSKpIKpzUrGtBqk084bkxZLcxm5HQskazyxUajIkfWlWhurS/mkWwa1lIGB3KxQI5wFyOqfrxebyiTFmNspx4Rptrws7JUCj5xL7tN4Ob+cTdqZOQ8l4fncR0m5XGMHJGJ6ooAkGhHZMZxtIwwGDLDTCPgTbV7emJdOoxOpWFWykIwRQqGNvXpsxmrsFkl2GchWnjrtJEudMB6ntfdkPRgXwfAhkYlLbUuAwGCjWyF4sfr49kQkRtGkrJGwk3pVSgGutHMMVKUi50qNU4anB5g9zwtlDcDzJUeI2duaUZWVrUBfYByiIcckUEpKz1Gcqczl6BYFVVIxoAv7t2qKoA4LMdiETzieB5xMMc+tuvnDceex3Xbj+NQi1RwRPowE+0QZX50bYMxcDoODNCNkkXQe+R6SWdr1sSOIHUgXTexZoCinzVSaaLZssqXlsmkQfJkmAuWhOUo81kLSFVT6cpsgA6NsOPojC23E7Y4ro17jivz/bGvAwgPs6Qpj2N56BqnEXf99LzT8tiX9Vi9NTXwdDR0ysy2HQ1mvh7XPfcWclwebV/awnt9/H682Ja7Q0E7mul4fomH9j4veaRhbziMGDJQOfbgkftlh8LCGmk+UtmwuB1xHEmhIRdr/dh8ZHTzvvRTj3yD8Zjt7noXOJ/aaLZIgzHsYs/9/QvbcmBfHletcW4PK/Xy9VNiufR+55FvT3p4bHr/1t+t4vb1h5ddFoe7E/SX4Nretfvn79VPcbXHP//F2w/PX9iHy8fcznwaLc06xp7XNZ4//fz43fX0rn3+nb/+3/vzj5+++uf+2l97c9e+fvf03/z8P333t/7sbuDD8vKyfz6+/eM/+Zp/9vn7t//+P2r/3sPfub5f0GnXv7J89c/95X/+95/52//zT+umL1b8wT/513/7T/795y8evnxZT8tdLF1I5KeP332SPq277Dm285v3/as3v3jz8Pu/owz86B8en453vWtdjwWt341nPR94/vz27uHt3o+n7zm+++bzy8ueSTl98RfATxYn9zi2zZ9lCeSAkmY50hK0IUiWSAo0iRYV4mgAzVqG0Vu2wYQJedn3/a6xeKikhEikYiYeMrwdTBE53BKMIxI7zixFH4BSVaZkSvYDhMLAJMNQqi1lRWK5Y+yW04ysBOAR1AAQqSCBoJXxwEvcidsVyuJfK+yYZs0q2heWadM7cxM4y4xo5e6c6GiVgYuGWT7reRNLzwWcgDILXlSFfJXA2YuLq9ldWk6npS1d3XaAFQQAAE5zuoCbaxqomhqEFN5oBFuq8hZMs9dGpSqblgmASoC3IG5Ov03xA5WENW0kFSo8VW23moVb2AedBS2RU1OUOZVFVnuzbvbLzEibChuXz0rADInWvKjUEmMawZSCNxlYQdf1JN30Qqy/V3SFSNKNEKt2mHbM3kkW6Udlc3PB4I3FvoNoE7btiZhiBkxBmbu5e1VSq9jBm3sMSrUWiFrRzJ2tk2FtCREVgsYpAUNLS7NZvCfR67+6jKZwUWNMrEQ5U7Wo0JEKFKg8RCF4G5A4raJSuKTECLkdduyWCljfj20/0isaNkRDpOB2AKzgZIgg0yqwusalosuNxgGGUq2QGjMDGyA2SGDvudeMNPVVBISkcQB5sM30kcxqlGcFaDoimS7zkaLLKIvUcAKNNXw4NSxHbIeHMJRJpBHGmZKawxVDGYoop063ZMBbWDvb3lw0bxFQKqIKLFBdHUX4LGYnDdpA6+zdIcFocKO2PZtjYs4dKj2GFQ8sVDSWLxuQOrbjmn3srUpuFcgIZcQxFHmsOUYENG5NLCU+nMdAwsHo1LL35YkrSc92vlfr7Jy2Nmuk9/3iGxFjW7sYCDMcx+ZijB77y76EmyLuHJHtdFY77YRo/fTYgLG7NTvZaJFCCPLWt3unO7MdaBcw4JCZBbiVko/EWE66lNYUY1/aQo4FrcG9b3KTe5JYVnSxDe1YL9fTCeb7ZVmunYqIxTwOj5eQ8LIdHz6/HM/e73K/rvH0bNfTGzXGhv308LQ/KK778TIuse3+TA2d7k5NT9fYrsud6FzJ9m27H+l26d3u7Iu4e/fu/MX9Yyzdzi2bYju4riesD/39+7vnI810/fhsd199+fjP/tXH73/jix/rw3//X3t5+mo87Hp8s707vf3pb37Zrm/X3/jr/+Kjn/61cX/d3y2Xy1/6Hzz+H/TlTz+fPv/qZ/vqP1tP//Uf/9X8p988rdtpjKR4PB+b9lhObxqvSvfH9qv+oMvd6W49jXEa4/HzuHv32+/sdGfLOfoO6OHLT19ePkvPl2+++/hyHvvHp28+vFy3l+uL70Trx4hxXPfj6iP9lLZsUR6gOnuppGNkZuZQ06jEK+VIiBGjKTMiMi1GhFKWKbSGdka7sWIsny4bG8oIkCPASHcqGiQLpFrdL5lTuDQwFTej6hEm9l2BdyUtnZkOEaWNHhIQqmilIqZmNhIRVgjYjd2UYLOO8JZQpVSbe2FxeiXoyjTkPJknDDz9JsjZM59eZGxlGs/MZKPKEWJGr/qeGasnc9DZrTJuap9VJng6ecvp3cQ8pzGFyaUELfoTpY6atHhWHuZkb6EbwY15/96G+kq7QN2euP04bLdVuJLNimwgSCu3pU0moDABsdCI/DW2HCUshTJYTsPp5xfBnKcpwax8y2YIm62AZv6K/1ceOPSqwsfNBztRPQUz4qZ0Swox0sryJGSijrySSRuZqpJgzSO1sPyeh7likujTvAm6ad5I9b4TFAphEAxyJkpLbmaOQDVATl6ceSMhgKl0n56W+ikCpoob9iDpNyxjvoc+RXrVOXIjHOaboFc5YPnA6sVRygzAVecpYCjrSc1XUXiyNN2BE+mZMAiVlJrPWaDGp1mvK89bOeSE0OdslDFZoTInVELHTBGpeLzMjDGQArO1cktFxYIpZyMEyaDMqag4tRkjnRBnqT0rS3l+Tb0sg7ihIyD91nsy8y7hu7dRwq+ZH45pwc8iHxRaCpDyVvOZyathGWlKWY4DFJiWRIwxjnHspwBG6V7cIsahjBgMRVZYuh0VT1ax6NP2x0naZaqUGiEpWtThBikPH6PCu6d0svzrMY5siw6UMuCmDs1MjFTqyGjstLR2jH2PYxsmAXkcHcfaFhiHhLH1XQazjgii9xVmxy4pZ9wGS3mpYw9CEZGTzAeYlgHEMY5Xzc2QNc86idx6c2+2rcalN7MTh+GwgBnS+xo8tVij95P7yBhI0K1bdAzTsLacaL2OlqWf7HwyinG9yD9/cSTTPJu3db1bHz9ogOR6cvaWim3bchx5hJFkcyP68rj2uzNWw31vS9d4se+/ecbnT7Z+//LyDNni5qu7szV6a71ZW3Lrn4fv+0d8+vndt9/+n8bl+eVy9/he8PO6vHt8++b9fWsHjpf9GntqHBHb88vTdx8+/8I/CNv3Fykk+uJ9xP78bXzz4ZtvPt3hGJdtCL7qwPX5yBe+fP7+m19tT1/fXz593vdIge489v0YUtqy9loSegBpup2/9TxPTXzpjsrsx7ndFAINyxktTxgFlZgPtMoJMlkZ7CsBD5Xprts1Bfxw4UyqsuhXylAs8jzcylV8+ydrdp0i3fKGMmQqGY9qH0pYsLyVP9C0pWk2sL7wnOtipHI6O6f6ynBLWJpio2KGp0IKHtNkOS8Jt7iFKKgSO2p/KxtOnR9UWsIqdIrIKodlSoo42uuae4uaIs3N6vApH2f9js5SDc4g3NulgVcAfH5k9c5S4i17o97IufwJ2Sq76OavKeA8lcpCQ3ij6b2lgZXTWUaz2+FtEiHdupExtV4q2RU48zU1QymrN5epQWtlXS1O2m72sUK87WZABFD2U+YItPLmpEU19whMgCNJ5QiaeW/dbWZZlohc01Yn9THCU6jMpkNHCehHZWbk1K7TSIzIHJQtUzPWmkKWaMwCySVFVLKZIIoZQEZM2YRue6sUxgBDUu/rw8ma9sGZhC2z1hIFcs/7k9K0otT3z9ohdhuaDmezVATQxvQ+webbGLI08wM55UmsVuTyF5a3rtQLGgnlAU6TmtewMKetwGKZkSPHGF0lSpjXPAmZUmBQSCZhs8uI5uIIa5SvNM+hBiA0En2vUHMjjlG9ODG9RSLK2FzpzqpHS0lbl2Uva0UNwW1QSWveAmzevQ0G3CudECToNMIW5drQlwCCw6xalry1QSP7FjAR1sIWEoFICqY4St8MJFYcGGk5xr7zDsiBkYdRM9F0h0Rb+sGWgFmro2ICVbJ6pCxH2JCAjbKNKVHHhmsQcJLmRgihqhCJyLEfV/NhwwQociOTbhhXrBnj0se2mHhcruYxLK+X3K7njGwazZegpKaUtK3Xpkhzbk8wQp2UIuEhJRHlpcZIKC0sQ/KGzDHiqOkgsFQzCqD0ejTJfk0w7oQOprSkes9932OEP/bt/lDrm9rpHUdvi7WWT8vpeAFgDe9gd+1KxpX3b2TE2dt+xPtG5/iMtpy6v/vdp+3p/iGWyOYZx7KYod335/3TS3sZHNbamwVCXp8+nFp4XI7lq598dcq7f+YP7rE/Rnz9eT3269MXw44y2p197L219PUEe7Nen1/OOmgn2WPam/Y7j1+cct++8If/6PnLN59katgG1rvPI4lm8C3j3em3vtDyk5+/3P3um/+tj3y+5jfbx2f+Iv72t//VL79/d9W9i82s57a90K+X4/Lh5dPPn48/7X49rt4XnftJOrYD6zJWP8yp5le2OaFOGWCOQKoCBAApEAqpjAaOV1cLMAywMAMlGwcVcKt+lmJ1UwocJUJVMSfdmsFdZLgC1gxubEkKZsmgqbYPtzSaIchhIQOdjcxkJhkjQbM0czVlWhkMBTdkggErODMyhlnts4U+/wBElvKx/gdfL+EbI4TM2qukqrfVPJEJagbcp9cvztYg3SS983eXFGaKOdAYrTuU5KCXINuNqbbsRhLmcDdzd2OvdGmZQuk2K6Y8szK7s/qDlW3ujvO2melUIGAy3WRtRBlSJj8stjGiqiayyu0JQBEx5D4CcwmvRXruT3MEuS2KJd1B5qwdUsX6YcrlSqGumZ9RIl3QJqmN20o39eQTCLXyT9c/PQcfOitGj44k5zhfcnORVDCVZk3MMkOVD+r1H6RURXKSuZuDP0jJUMwKZzhyGWPpZmgOII3MEaVMCJlxtiEVDjPf+fxBxRblvAZL6BrGw6Q4TOOa1kzM6YBx89Zrcpl2Mrqj5G9mVBqS3kDLUirnVAtWzWE1/SGCiFQMFB4wyldY0EjWylv1A3MfZn1uXr/mN0M8SK+lfIrOaxUNeF1hYFlGSq0OpZPmEOhC4ddJ9TakYbj5srJW5Cq3I+Vz3Kp9MQmODHCYlJFjjFGbt2J6UeE02gBiRJT5YsSsvoTojMxMJoyZTTJGCCOCGaNshwNgWI4Dx35cL/s6GIgjPGqqEUCU7n+a7vO4HYVxRLsnrIeTdDmtN0vSl1zcCbO2LEhTmMHYXOY9XqoZ0hppTHMbDLF7mPticlpD925sDpq1dclecFQmXJlHAGzNZczFO3Mwdyr2ALbQGOhxwDm2w4VLaD9e9i0dZi3UFi7npV2uDlQONMuywHl+cBxhiMgUEVKazBASzRuRCCnd65D1MdNRYwxwe3nYF7kIDS6mLZDWw8aBuy1jqA0ch073GFwxGhce6/36cuglPGR9HcrL8fnz5/3Ce+P54WE8LsuS4bGvrp16GRxsp+H93cux76nd/bxeTm110zG2a+QGx37YOOKi/fPn51/+6WdbMs/nvuLh3d23f+II7ftp5Mt2/ZyXXYwtzm/j0hX32fDFOOOnP15Pb9++O384xWLftq7r5/8gGN+rU6PdxfV0DO9v3e/19vTjf/75N98YXrC+OX/3b46f/aN/9LOXjz/59vKgu3f7eb1/uL+EddCQ1w/b8/HN1vD5mzHGaUfvZBImHVdL2HIepzzGC8ZIgt3r20bkzfBTm6Nm0EF9d6HMgEEKR5EhrQ4gZsKcs+GHE4NzOKS08UP+VMiadXO3lga1G5I5Ey0m9KLKSdDwoCclRcz0e4amGle3BbToWIKlo02aCTBQbqjhto4iuyVGzBu29g0Z/cYBFrmZWcpXz8A0VhZoZtPbExFEKhGQKFrUacMfovURNq+7FCqBhpWHjFY2S7empHJEBgJV61F6H0u6u01bKBSq3jZEWQxBpgBzVcLRlDhDlSMtAPPm1e1iLfixWNH5fw0FBhWJqmIJp2JoosdzjMh6YeWWvkXiVqxU/XLtxJavBLvd9kSN+uoa3f0HaXOVTRY1MOVdtET5La2kY5aedd7LkJHQhBSkKoJS/eg1CNHMIoYNuFCG3HLGsV40IbjZ9FRhCuJBzijieV0WHlvyNo7by0NlcmXCcg5rMy205h3NZhvW/VjP/41LTrpK3V51UBWZWtNJPWqaV2c9jxUIAqcUmL4ygFNemMIUiUPKiDaxRciGALIfldreZq6de5uDTxrMJz1D0umWtObJ1+mDMEMEYd6ULqNorTmqlsyc1rLsD9YqLE/TOlBYcT1fShjozuaEuVkLISi3cQyZOaA6MeqjU8njm3kzT7lRMGXZxuledSM0i8oV5ZQlklAmcgi6DZ5UmieaCXTV/utQ2eojyqrYzUl3trCKsQfozayqCmKPhAr1926oUYBOipZ5REip3Hfbx1Ehj5l1mBX5pkQKmWZMFwiLkdZINIPYRCbKkG2HRW4AMEj6uSWwiD5gGg7Ax7j2a75xBPowP9jWq3JkWNJahiOC4/oCG0eiJ0Yix7HtDo5jsbFj8cboFmY1A5nR11B6W9AVyWbuGuUPLruwAaDSpzvdREsN7sf11D7ZeQ8LpZ9aa8u5N2lZsMfxaRkjdsoU+8ub3PdgjMuuoy+0y3J5fjuukrWHx2awY9h1jS1l7RSDOjL355UjFsbDOBp0/YXOz/wVf7R+8923zy/r1qUBNGaMw+NAz4/XDdaQg0e2fvrytObY47t9NW93bK1378vSCIzj8vLh6eN9Pv3q6S6/TfSN4/KyP12e0i+XwEA049WGZH6K9vDQPak9FNftBR++/h703PLpj97kHq09Pvz0t96N0yd86e/vTktz7dfL/vwBL/q0vTzjRcf4+P0Xl89h6szL8+V6OM3Pd/sipNDW3jKHOV2ypGguI82bwdwcZpT5BJSTXt/ikqqCs8oelR5dwFu7yXJqngMyMieamPD6xlQ/G0gzuc/+l7zxfvWt5DxmJr8GAGb0Wteq03cmtiSqq7bOvMm+VQZXZkXs1Ml/+0Wyzk3OoxKomCaQkLF6/8jST8OsHEslPALKvwrJMQsPyVuJHG6/dcGH1Q9qlS5U3euGKHFx1aO3pS3uvct9Mnw3XZSqpbGQZ5JI5cDML6nYH2vN6wUU/o75I5Vg5hVTrwuXP1y99SuFVM25Y25yE8t2V8BfA8rqUJ1JBZOgrot+flavHCjAWbdHgpmC28wMUloyEm45JPkr1s+idQnBElU2rNr9K6qrfolSzM4gHddtjCLbyZAUphg5EjZvQSK9cJfJ4qeCtMyaF+izJEIAa+Ut6TkzQiFr/fY+kMhEWzOBzJmueYMcbkgAALm7mXmSdDM2ci7+xgC670IcHHaTfGsmfgqvHxHNjVnWqWrRKqsdb/nR9a2QOY2+9O5HOeZgSbLJqAiyuQMGZMHgE7CYD0iWHXsmhyIs0xyAaJzGMKZQ3Y3JADtuX8QKHCGVTDTY/B7l9KFJRrkyicslsHdrjW4YCaSckfRwUwZiZBxNBH0C4+n1oZcJOY7dIwvMSCslPcxNqTEyoyKVQAjNORIOMzdZUwqh6p1JGfOwwq5AozNlzRKuYRKOXEe4A4lMy5qCGg5RVIHzlntYzOSziBvApFCFJqjCwspPZTRYT0biGFZ41umprVcrAGOs8MWE7BmWOBzm1ix3M7bKGTETM+Y73YhSYAR9mHnA4ng5YKnIHLKrlkG3htwirv2IUwEoUIyjmY44PZ8NJEcQ5lYy/TwkYOlmbTEHvLXltGyEtXa6u9DMYH1pDejuTiCdfWlO5+efwB8+uslGIvc8chsOMtN8jW1//nwc+3V/fofAZrjG3fdff/jNzS2954m7mmH16/O1je+f77nDFL0N8i6uSMWnb3/Vv/o0mnrstixON7PLdaDfLQ9vlr72ZUn3hZ+e8umt3Tu2y/j4/T50+Ud/+qG9G/jyq5//PV8eH7taJ3Ud8fnluvnLcVzisn0dn2x9ceDl+el0H2bmH5evPw5bPy/j+5frgz18Xka7bwb0h4eH1k++rNp/+c0fXj5AHy5//Dv8x3c/07f/ZGmnN+z58t3Hb442EiMpEvmC4xf555efbHYczePN9aTPn6Mv47r36KRz7Nt12y+2NB7R10OGMMkSbC6rGVWEzafN04MgA7KoHVfHENyUGVYJV7BMabTSQWHeoTTv5oxpT1VJOmbPYUU1xTwoWS3tmIfGHKhn0BUBKep1FGY5gCSnJ7i2nHnRCBV6OMPsQJ9X2Q06n0tH/eVzMcRtjic1WWzMyLq5Ic1byiozTrCppfRMzDg73fjq16uraN2KyDYMHre4S4F0s4rr20uLQtxcOKaY+ZkTmxWtN/OqXWnGm/ByooqaUtcKOPjhapyZ3hJfYfc6y5urOoImi1z/sslNbl6asro7oYH5iVZOMGdIV70tM1Ear+NM7StMo1FWBUIzsaSSHkmapRX1h6ylNQEqEmbplWc/I/ol1mYy87fkr1oVEFEF7iFlxjCpdlk3GspXJAUtM/MQIgePIzOpkRFpqThUCYkgFCBUAYXOqmtDQnINY3NoGAdb3IKRZz7SNJHPPswsxqGmtqbBlmIPDsglWSIMhBG+HaJGlSIWSoFUTCGDkjPgUgJMdKcFTTD2u5fsU4YQ2dvuhmEcSsdQadJZUjcpYJaCRUnkzRjmRDn+82CrnRwpydqQ5NY0HKIqTi6dBOk3dRoK1crIUA7FobHtdRn2ArNZKWWe8KKPzHiYmTmnFoWwZGtISy2ew1vrWHvCveuMi9FbG621dYVnfTcq9r8dqnB3SzH3QiPMOdJzk4W6Y+ylQgk6jmYSWiYJVqBOBmgLSo+pRGMJO8e+43Cc8KIcmx2RjRLdm5kx4ZGAtcOOHNc2RkBxPR2UHGAKBleiSSua7aNlHhzDyfMaYS5ywNMEDoDelx5xCDY8AqBRagOI1pyM3Rf383KOs20E1VL79ZIvnwYTAn2145B5nu5PHa5og4tFx/1bnM+n+7eXYW3s9GCqMRMjwJKeG4/SRybS0rZhCItx7EfmUFjsL0/nkaHw0lGEYlxesI2m4/lh4WPEsSwnHC3H9eKPzxcd3ru9z/Mxnvt133K3ESPPCy/h6XtEZ8Qxujyhx7vVV0874tPTes27M+/y6T7aix5/8se/GtTbPX57PNyty7nfLW19vDuzn+zcuI3e/O6L02/+7u/95LKcnscvf+Mv/t2312XJ6/XzN99++P4Pv/7+288JJ0/L8vC2LXdfvOePDnv79gv/ybs3/PLeebkchz1vjxHLuzc/7bgub9f1P+KPljerTNov24fn0cb1JcfxtD3/7I8+/8nxi/4HD0/v/uJf+PLHv//l8ZdOP/lpbDb8brRPHxff+mUbxxFJMb6+8uMe3//Z9+/yOOzTdrUUO3NkvDxft22MTYrrJa7Yecepo5l3n5HN4HUmOEmfdCQZszJevjjVessGAG3JbG6xNuQMzsBt12wEhcyoNnp/Jel8OkJ7OUFvZCPmJWplxKBG6pY9ZRVY6zk7mTC1UhQq2T0pMynJIDViua251TVuktXhOc98TDYJ8wSavGBdDKWMySKIpLlFTEiXJRyBiSxrFEsVVPqs22WUNOf0r1JqccRk42ipUWNJj1GrG43u3VvvrZu8qFA3o9mtWS7NMEBAo7KeVgtgBggJM1sb9WLzppmu27PuZQKWaFIlUU5MdopkBSnKiaYiYtmqCxlzRau0jCyWVVV0UOtsUlMJN9fmSg3F6yhD0sElM1W5UUJWEFGtJ9XaWPBI9aXeRICRYO9eSAv7OiB6C0dkTTeiKxBBL4dyrQ4lbDJmhLKMN4OHpBFHRCSPbEJIyTBkjJKnKgeMrLhG0sSRDlm1UHBKeGeT3qQUNJuy8SqSKC7YmGAz0dq5uSOzwB4pG6yj2qSLmM00RZHrnoDkZpDMj4jJM5hkIeRh1D6IRNGfEpiRaDFsSGaMqTIs0WLRSVWbu2mERirSAaUTgEHDJLM2RCdg5aSmtwY2M0NlkxyF1zZHQ02jJkOiQZL5GsOp8CXkxjxyH2cPJTASzGP31ZtFlWdIGooIG7OpB+71FClLS5Jk7OFi810RgFkbye49gdxlKeTeONgPL8StGxHNJwkD89Y7ZBnmDFoqzGkgvaNhSzMJYcxq+TQE7vZ9v176dVzj+el+zeNYSlnvuWdmjCOiPkKPJCsvCLdbOAjTblQbLREvlkdcGEnTSToCgu1nj+Y9mEdwNO/B6yFhjEgZjN4c7pFrVy4r7saVcRwni3VdoF0yop0e36w+Ytjouwlh/RzLorGskWt2o/nxaex2tuRZruBBB2KXvAsH6RaKXMDc90ONgNs8jhPufdnC/HAm8hhoXA7Zh3vXuceSWk/3d3m6W8cB16ZHsD0cPNk1H9795Iy7cT/keuGC53F9Wo/Leo37trcVLxvW7TBvz9I4Fl7GCEnL9nncn0w/f2p+Gg36fNk9zfzxx3dco9pi2ezBW7fLp+37xxZ32ttXv/Pb/4/ffPrJv/q//p3feP/Vr97qy998+6Yv66WfevPT0u6XrmbHrpcn34+P1+14j8/j/sfD34mn8TsjH+lbg/7WOuzy6aXtx2Xsvrx8+Hi/P708X7/7GL/x/q++285vvv30s7/85v3b03os66rPl/bRLvuFy7nh5Hu8PH+27/xl/fx0nA983C/fcHx+GlQg2nr2E9HMfAHMsHSO0oHW9gt4KWTczFs2uLq5e0yYC4ikuZmbORuSbt7gSBxAfaeac3YHz5hhRTZzIoocCxhag3lreygTnUlaK9ODJUZJR0DQs1FmGKwKA7o3ITSZ0dK5AFEXTAGok5lMK1ioWiQQdJv7lNc+XadSxbxWqm1x3UhFmCKjEgdn7qCmeho3/dZtiRYotFcU9habewO7y4MJuFlrLdFwfmIFDxtgzXwxX09rq7zFQnfpvbfeC7gXc4aSEDA0sCmDBvN0q0yuAvVvMOV8cbUQ3+Q0mCuwUPcs2+vAY3nTahXCXcXgr7qpSuQgbmDbr/1VAHax3sVlciqQXueBuRROn5kVvJCvQPa8I25CuCnGmhqs1zcVU9I0fziWK4ozy9I05XX05n4rz0SylH+gwYZuDqFyXE16++bEIcuFDSkjQ/4D0YjCIOIVmMmp4LVXlGO+3fjhZ3iddFTyKhrB3rob4kYxVBb3bf57xRAwhznMOe4HgN9YtJBII9zLFE16FQS4p6ny21HoRX1RJi+LilBNMA7GaBnKNCmDOfv5yjZewHJFMxZcPqvEbl8mVjBLPQACqhGqoptbjHRP5RThlSPHpUI1Q2WJo5luLK4yeGMz5pOEYspTma360+qN9VbsN0nSHawwF59xPVBWlgtvbZoQkbe+QZj5UW1GUoIRilCmJ+iJpDFj33UEr5djv4xLu+I6cA9dbBwHJEWkgBwRI4Gq5ihevRguknQhkcjsU9AHnxRQzbBTvVKQXgkFE+yqE9KLCbNJyILm3nyxNs1bzU3WBwRaX7pZGBOZx4AZlqMZZb0fy5zq2iUsOCwimaWH0QzgKQQtE0hmjoGKBs5XoQ0ySEMJNtKUOUYGEm4NGczWxlYmVIsLrE8pyTYOs9wSkUBE7sNbz2ytjWBkd11JHeNQCwl0HiPjmnFc83i/b9nj7Hey64jr1S+8wz52O2Ic+zgiBZeBcYwjVYxPypD7y3i6gtGWN2dZb83N3UgaYyhzRF6O8XK+7M+Xe+7jug0NXC95efl8MrN+6v8xffXuvjTzdnqMu4eHx8fLm3j3Fj/Jn949L2N0MCKPgxpj90ZxvLzk0hy9uxuAHfvLvu89mNBxHZtlBiIzVZYW996dqP0oaZk5e+QmqlbJvYVw2fy2qMy1N//OpBlJM5+x5pNsqsN73iWFMkKvwuMsz1J9CVJKWnJiefjhwMBUEr8Sm5A4nY23W+TVxFQWV/3wd6b/k42vzGit+NVjOI+kukNvLcC3O+WVgETd4/qB5eTrdvx60s7N99cU1DcA4ObBfL1XhUwLN+UsNyBAd2Pukfu0Zs71NacgshIaNS1N7t6dzWe0YL2ESZMSYFYItFh8c6mybz/Kr12bkIQ2MmZ9ixSwSSPPm0cTUrfJQLPW+1oPy4M7ee8b4836840zugFwrwsS9fpKg3STN6vSV5KouK/bGfv6cd3usfnhId28tXL5qh106xrGBWGhJFu3cucGxaoWmLZaSqOZpVuDltYgtc4wH9G8uXPNcHcXRTqtRVhJ1Y1V+FjlSqmareq7Yqzpw6is5zxjeGElKmUcqMiuUSFrsrV70xb1kWUmmELkiBoFSNBiOIwJMzAAywRdXrgSXp9MW54SYxBwHUKOzKq7rdE0UwGIo8MaBEOySiaqy3AfGSQz0KcXRnT3EaiHbiQidsKVo9dwlym0tJbSWj6VzKm8JE02CaTCeSG5rUtbmG1MUb3D3ZSttcaMSjAJaCgSwylFRFQIn4JNiUwpDnel3NKoYxBCDEQe+9hyHyMP8qiFf2mg83BDy/X+5SIeIc+NJ0QitHgOMqpvtwKJgRHwaahLKkNQ7kpldCIPQ+YY40Xad0LMVMYYcaRbo1wCStil+WxYDlPmPnYt2fcVsHBZex4dFVnZDpkAOKzCzjMzuN592KQLqjWzaUjmpuhmSO6XNghzpJ3E40gXc+zPH98u586VC9e1I+4fD0aCK65f6jhiT/80yklkOcDWc4SaSeMwa95igFC/NlZCYOYMMCrlBfpTQuZ9Sw5wsfXh3SdVHiIyt9zV+nnd6b1b5tgU8TwuR25DOJ/iXtEt1RYcI45PO5HrOvrSz6fTKovtylG0nmm/gt3X9eHtNzxa5jbaZT+d+9rTh51DPZs1V2ZcPtnXv7j/r/7kb5//8O569+btz//oR//Zf/rL0MOXv//TRy7nT7p78/C4LKNbN+hoOLZtHEOHZG8f3uSXz+9Ob+Iv/oUf5xf94Ufxd1/ewK5x/c7+5sd/uv75NY/AOFrPcT226z6Oy8fvxsu3f/KV+9rjAR+ZI55E2r7b/vll8dbuzuPu1PtpbWu/hg3aFRz7ILQa1sS1MVJUeAvrQGvslpERDmM6GGpKQ6n8q6UXUjI0V8zM8quUueB252Rtm3EkPdSkqnMnADQfkWs7SgkskEzLnA4SASp0sY7j2xIL3JYof20MIUFzmJN7ku229wpK8zIgQ7A0r+vHkdCNwQVurGx5R+YFTQSJKv3AvHElToq27BOiV6TITTpdC1vMPvJa860ylAq6FpS6mZhtpjo3wUirOOcqrxNg574i18ZeHauEVEwRb0LP2hNmLGYGXeEM0M2zeSZurinddGigvfYlgNMMPO8yThWw2AgTE0BmzBa6Od4wkryByUyXsoxWZL2LRC2ajrqWy3pdAuXb4g0kOWXsqOI5EpDJPAFHiQoAIaYUuUxoCaOBsywKDLhL1q25VS2rGd3gFq1D2BLwku6QVAX71u2dgFSPSia7AcphETBJmQkwXRoRlYpvThMiIuUhdieHoMJ/4Z4wZTM3yW9ZHEY4EC6z1mE+5t8k6JbMpNsYEfv4+Lm35vS0qnVX5hGKWYCiNNJcgZhDJhKDIWZkva/1BVSkQYc4hrJ7JkxROXEU2mEOJGlJBw05MKPAzWZZdUO2fmC2miBFy5wCXZkH0/ouLEmGrLqbZG4A3UhLgzMrVTNziGV6AszMln0f1nRkjiXSZNSezgRwhLsZdMBaVmk45SlrVkHhI47CL8oMZUprS+9tiTz2I2yBNQvrSZJwi6AiIR0BbzjQh1kOBo5tUPtQ77a0PCK7NTvA2HfV+wFiWMnzKwnF1RCGWNcVJ8SyZ7lvgEz3aGEUYIMa2dIGDkck3ZVB88JK0p3GUOs8yx3Gs9qB89N2Nnqz5e4Mb2ondxngpNF9P5Sbdo1d/RQe4GZnVUKttkCC7XnE3dIvd40Zy5pPjctyevixhgX82N+6R5f2PUL05zc6zst6etjRlhYGQoc7cmB5BhQwqGUNyGH7aMjsw90WWPMew9kcxt2RvaWdGttohsvzQx/DRhgMrYlDx7ju9Nb9eMi7l49YF+Zmz9/5y+f8JN37WWtvzU+nB+2O77489vuhjx82bbn05Xy/9BQPnE5HPG8P4/nnLw/rWOy0Ly1O43HD6aNtL+kc+4Ptw3mMdnf3JR9++vt/8Fv20fObr3/+H/7s//ezd3/3f/M3/uW//vh9Pv7OV7izd3fhvjDdT97e//Q9Ppne//R397fvf9/bH38EP/3s+w1/88Pf/7///H/V/tmXo3W09p//yb/+0+++/zj207EcL9fvMeQgHt6/+xRv3renz30/KEbXtuxXjHNfz/E7ly/fNYfiCLg1+Gnx/oK757HvbNFtRY6X/diPQ8d5leWx341rjvUubT3Zct5G1QekguEdGxQ5M+AFVDtOZo2lyuoopMkQmQpFIHRn8hXZOKVLt43YC2OExQBpsN4RzkQPG2aaO3UxlJUvkbA8WprSqrrP0iyj0XLK+MthWOU+lX6DZMsiGo1Lzltu4pVIucfkfyfAUixw6mZYBCRVuA+huFXuVVKAYqjWTSlG6DW4kb/GnRdjaZlzZS65qRnpXj7g6uRhp5NM5LiOnf2MlNuteIfIcVg2jKzedsyaNnewOcCjWl4KqbMy8RfJlxUrJUy6r15+3b3VJGQ5F83mVURbUXyEHEZm0MMshzemjAZrPsIn9lsaeKt3DnbAkKMWidLSLRLmMJQQcsgBRErZe2tuCmSqyuA0q1tbypiWUVYO81q6NZHYmbaYoJpJKdsPY5b9OI6RQhzjbuyRSw1OR3gv11RmHpZQwGNfDVDFck12hIR2es49JoZJ1c9jFa8pccjMChKlUiNHIiLC6/MtJWEAGTNuTKg1DpFSy+GD1u4wCjGsyY8gsGBck5GyMt7U2FJEhvmYEgUApDXCW88lu4fc27Lg7h4bRRf7imFoIvNS7pEZOOagMzONoinFkQ0KKgM5TAuHy5QJJnwbtmCPxgPbNQkEm3WPg9ZgIqn9aCknRpmkSViPnMNqQs1M5szsOdpYI7U7Goe7S8HYQunLkt7HaZh5U46R1kwYjQ3uKvXwYm05lrYrRxwYR6qyt7Y9KgQzMgYWrHfPXFtk75aZocTSBnq8HPRsys2XDHO6nbFbG2e83Pc0N0Mu2oUMykFPIE0xch/y42qxu/o576z5yV6IyMEKweMJ4iXZ2uh+ONVIp0NSeB5OBGgUd13bE122PcV+OUHR89geP471hRrc+kCY/IjT2Rr7cZyWvke3Frud+gmUFuk+1nbuOqldX07Ncms6nsuAoXF91PN9vxt9eebDuu371ToT17ft5e6Q+sulfbq+jxSHEEoOnIakPcJl28dMxzIG1Ja2b8fgYU8vx7Ef4UEdEh2Xl+NZ8LY89PX+hGsbL3fWNiu97stld7+mA3l918jLeXmX49maf4zTyvWRz3x5/orrtt+/ad7vuz3+6M7ef7G+t6S9fPjzw7/I69F1CSifBfuL/Ws74np/vUTmr368PS3rN58+rs+X/fPRbbl/9/bN6vbwxfr2/Pj2997hz9/kv/Iv3v2/t8ty/c/z8fo1Tv/Nn/7ZH//xf/mX4/Tt49NH/2Rvf/6nf27ffPz+8W/+/Ov/12/9u5e7l7v98/4f/pVv3/2T68/ye/3uX3/z/pv8vRP/u3//X/3Nj5f+xfbFn/dT9/X9jx7uzvf9u6fv//jj27G+LHp+2PavvlrX85v7h/OL8s/+aP17n+xPv8l7e3t892Jp/fOlHzlePJb79fnTk8W7t53Lenpz+sKuyueP+5GCnfOurePYN210eUamYL4MwShfEWzqVSkQDLGZJIV1s4a6i3qn5BT3liNSD4vJqQr66wltR+DqgpybnYfQmhrMi52Tp5qbkYvKbynHlD63aK1MI0cDGtDTQE/bA540Dk+TAVg8UGLPqoVBckSLWTKTyjIO1Z1c8qS6N4t7MmmyTCzVDgkYBsolQ9e0N08geVou6hgNutyGKTHFumZTHQyMoFXgfnPAcbhlRNknBp3RaGaJ72OMzLlsNK9EQ+uEEBbWFIK3FFdvPc2EzKMUs3bbaueFZeWfKMOVCTlLh2FiZo3+NXm0qCSsEg9VyAgnQef2g/6JgKy6Emkw81Z/VlZVoMxVfmSoVqEJJZNurfdGjURVPzkRAYxxyG8Mb8mvRPMq5pl7L27MBUBYYwivZbGgDt5eotGMYxzi4hJXRoJuTopIuoU0FZxbaiR6351lEE8z0Nz7kWEwNxNdrOA+jeyMHDBDZshApsC2HFuYwmolLckfYiCVw4FhMFOgJUDL7LZ5AoFmjnRjRh3WMtAWhUWU5tnAZlnsKcw6U77aITtHjGBqJRxKheUMYzZYZs4Ip6QHLSJGKkPY6Y1TbpACEFWqnLEIiEOqbGyS1drlSRkyTXsoj6GDLiGz/Nvl7Y7DMeMBANCEKsgdPpNB4AuDEZTksFM0Dpe1hrS+Hm1Jsy1GXC9LFcLGoLsOGjiWw3I3lvt+VBFqc2TxLKHej+VAwloL+CHzNA8hh+hSyoWdiw7rkbLIVj3PAY+R41BetlOM1rqsy5jLfiwO6MgpkAs3W9T24cw44jPfRC6IHJdT8wTMgBE7e7RWQje3RFUhW4gBtvWqcUT3kUGP67m10QrqUPVFMgtYSLF5in0ZTXtExDG4HQMcrorHXsy958unYXuNC93Mm9BGwg/poJA4vTlZWht7M2PwrFzHsb98v/l+5tZ60gMcieQgUhaWmW3BU0JpDRdzv7sbu6E3in03KHhadrq1btkaFKaBNtY3a5PfX+6Oy3794l3PEI6Puy05RrPLMl7uHnj3Fd8/hEbEm5Ph6Zfb4ct2bXBfrh/xUzusc/n89OLn03rsPJ1z78DJHvLx/cXP4wnnz9rO528d3b2DazuN07qcT7TIfnf/3I+P3//Zncez/+rPXj6/4OHLv/LVf/6b/8O3Tx/e2d/5zx5+7/JHPjiOfYyt4dSb90f+zl/+rTd/8Ff+6nL/87+4bB/+0u/8j7/4W5f/xV/55Y/X33ufF9rBn//y+btffrp+s/sYx2jb9x9OV45x7/749lHH2tb4aF/un9dPz3/4X7GhXfRt/MPrX4psK++/GN/LbfXwj7x89/Lp7rqtvf9op/ZLvHv3cRu8towFLdPu8e31buv9/vNpeZmOEBV7l+GWY4SlBK/GZsJy01A3ATSPkUw46YNtRNS12WmtVKkgjLrVoeWRmGc9fXiqJS3+/1z925JkR5Iliq2larbdPSLyAqCqu2u6h1chRUjhM/+a38EHvvHwiMwZzhnO9GW6qqsKQGZGhLtvM9XFB7XtiRlUCxpAxsV9+96mqkvXBSlYWh3gXoyJtT0NwUlzK4kjlipIpHl3hnFSSvegIX35/cyK+wMnEoycaUglLaKOb0nlk3VMhxKSK3YAAh1IaS0lUwBzsaAXxAsshkjtjpPM5COjEcUqWazuqtgrAcYSbTbKyp46AIbHtFP3dr6RhpBAKEyZoSvGDsJh8mV5aBXuNJOoH6DStJZZRW1myiVDyGKO0XxtrWuSWnTNLBZ0/ScrhH8xnZBBxXIWWWjyeit80JKO0bS6mdpkLQviKqoPqL5+oeVBuiFgHsFaB689Rq0K6pI9kp/q44KWJZLRrdj6YEjLGkJzTmDGzBWIoVxpybksBhMwh9KWNKnq9uPXkV47djNz2GIk0AlrhiWeK+A3F9Dx4AEc75AsJyysgKlomZapeh0zmBkh5UyZA0Au2hi45NTV89Fo8LoaS8wmMAQp08qj8cGrqzi9NcsGBISpMkRreR8llUNtqBd1Q0ShXUZDVAqClhFlmAiZOwQzhk9zg0Q3wGqnsnRQS3C13vrjD5Jkhg0qQ0RdFhYrQLEKXBSwS3cTS/lq3SRrTsLMmzWYd/dmNO/szTVZqERzyow6bSM2CK23MLYZdBQaYK7e5IQzMsHepQqPtiiDe1RrtJgNLcxz0Q6KeDCn3ffUtGmRMU6ptJbNCy9ma7Vrb20bQyS9VXA5jeYtrfnWsit6QzNzdtKb9w2bG7xZs9bQGrr5bAse9Gn3SZUA0tyL9GCVTdU3mzSmizOFmdYG2pAiGBOa97tHa2hUM57IzbqxXyzbt/6uOFU0ihuGWq2nQKrVAYGApqHCfKGMWQ+mIOWUKrrbkRocW8rmfEq3SLGxcsoWQ29LzonWTwSNOQJzP7ln+/TpWcAcU5VlEffr6/V+G6ft1Lx7nlokOXOiz3tyM5w/zE9xt6eA7jOpdnJgxrjfrmOondi2c+svn148Nafpyy9v9/ba5vvPebu2E/rJPDSTZm7n88cPnz7zdW8/ff6d/8M//D371xfT09Mlbje8fvnyvv/a9ptd1cIt3oo44+TWk62TXRsvP338dH6yNz/Ntz/9/O79v/xpkrz1r0zcbwMe+4g999tt3u9bjNNpsxHXp8s9T/35+bZbc6cUcx/wbSgRGdrcrNeRYqhYz0VBhFTyjGRoZnnFiR7TNeccssCcMZMxp0A6K8IUqEixlDSH8u4ZBdaiggspICm6TV82VMlcvK6Da5KWi5sMCQpSmZbKRDKxZq3v+1EizQCKBrgs5FYS4jzWtwc5apGWyslIB+lnUYxWI7KA3PrOuhxc/2l9/2L41IHMRUbGoqoVTfOxyl1OXfVvRks4Omia6XFyyc3dQHdV8g7WGUwrMTYX/A1gGUGs4RQZCq5t90GpXAt6rF02jkP7GColqEVxHkGtpKNqIRRFIlss5UpRfLDSqsQW5xVVp1MU6m5Zr3MRyyNhRl8782Czx6XWYb0kSlLKElarAT1+c4l4IFg7yG4AwINdLSgkZSUnA1AysWgK4LRKm5Z9r+21A8AqjtDDmqXsMb0mfdC7bLmOmStBM2BZFS+rNODBNltdShmCgTB7LCeyAj1CSrhbsbTL94WLIU5y2XlZld44PjAQIo0uXzJ2HoxbGov6E6GSDFQ8JJdX3Iq0XteyPv7l8L/alEV9rLa0bomM44Y+bjAraeviXZYzixdjZDUvxb6zwpoiMTJhyhiTMWRow3L5wXHKjZZ7Y5QTFR939jJyZp0jxgNIqhUWsfwDKglCEuhmSUDWfJafWUlzzOQesLbPtAl3Q+uKDqWjDYhuYWWQ09xLXYXHFacZYoxBLqbwHIOcKRndw0t/vLoms0nAWxESBbg7rBkQyITMmjWN7XR3osHMhOwtm7HZQ6UdI5Vmp9PVfH3qaanyMRvBlHoDMxQDsNO89j6Qyyen0zjn7ZpjDqC0YnTLTCBe0U7XbG6qBBnCsGLHWIuJViI0t8o8s+WTBiO90c2MRydOSEZ7/5To1tIb2DkmNBOweRVtSIzRds85Gqb2eTJt443n7J5E5MiUO2Nq5Bxz5j3F01nN0+aec+xhYRe77Jd5n/d73E/XeOKNQQQiciROl1PfTi/Ik1V2lHF/z/187c1kbdtObWsAuynNItWw3yOv99vtyy+/vn77tZ9vX23s1iVtEcnu8E5qvyPiVlAwt9PTk6wJ1tLTz3a9XfWXfzv9/PPnf55vL//4p+htm1LOds/T+XInbY79/X5/zydMmPXNQU6lFBpzv1fsbIPDkPfrRkdnP9fddLBqa+R5HNaJVZGr+642PCIiLREx54TmDBqADEbnari1NAqZC95co4gbpJQfjvOL3PwgCtWSllgMCGChlVIRVDKR8kOQCR2mQSpCbTklFpu4UvpW6V0DwMGCXmdUGUQek55w2HwAYGUDArA10q6vq2prKFhuzYQ6fkAF/tV11KobSgChEjYXqdac1pvbqW/bZpVkXBpbM/OCaIuORD68kxfrjb/pIuqwPFqKNZlWA0EdqqyjxTheIoS26gjXxlgVJFFxtGtcKmza4sBAihC3LtNyFgusYQjf3/GDw+2+yKF1nlZmHahZ+chMMJlZoVCF7hcVikYjorTGbrTyDgOIqXy7ortLOmmMhCJDs3rHcplHylNVrCDrUJC9AS7SEta8jJ7MvRIFzEjLCohJeIcZvUVMAEg/lS0Zk81JQ1Foj3mYalTrbkY5YSZ3SzOTweTWJIuKoUHDMeAaYA9brXIWqUM/Fo4DeUzVfmI6OH1OSHPSQMgcYWUlYRQ1a1dtgndP0wrtoh3MuWIVJbt7OYciYMq0TRkJlDVsQoA5bjkjOdic9AxKZaIB5JRnluo1li/7HDsyobu7AX69A0m6nUIeUkhgmE1law2KHWNvpd2XMqjwKaUHlZi6xh5jFAvA2IaJZozdDAnLNKObRQ7JzHImJxxK3yzkis0FkWyd0yRLSzpQUqqUqHAEhR7ZvKTsK0wktV+tpzvN2c/NR0W1pJIR1bUhM2co5x1RQwhE0N2c1iuuItm6uW+8tz6sxHKyfm5OQyEg4eBm4LhvHJ2T8AxEKpVbFE9bSpgZ2x29CZ0Ne2qPjOQc19wk7fEtNkeeUxeR2U4NzS5t4ubNLl2qBzXC/b6bOoEZwd6dUDDgGAMITcFbjlgCUsWeOaEw9KRi3kdeb6exqTPP15icZ2RM1Ozml7n3vLUTX+P2oYdnXvGDZgZvc2Nv2THh85b+9ec/39FmvLR+Cfl2ovXASTDNf/38+69f2jRmfPygPn/V+PLlq+1pzUya+/xyvl/3X//t/v4ttsnbG7593fHx+XXvPFk8fXp+ejo/n55z6944E6kbcvZ7zP02Te2ib6f55duf3/hff/2Xl1/+04dx67fzuT/947f/9uPX0/kUl+bbub88ffjs23nbcf31P5z/+PUr97+8v/27/9Ofh738/K/bdvrDk51fm/vz0/mSfj5ftk/PT0+btkn3dh7Xm8X58qF57K/MGUoz9n3M/fp+H4YGArynEEUlWiK5lEovl+jeTAExDdnh1fUz79OwmtuYKYEeXE6L3zlIxmL61RRKVyaic1oyI0la5k55eRhSGYGavnN1ptU+FCBiMVFuCGkRQoZlsjOINWt8H2OrUJMJg1NoNXcd3VwdeyAXdFd1S0cR4YHbLnQUB7kJhB3TMFnAlynKN2rpsQq9NS8k21jdNEvJM6sHqG1mCjbC9iEEKuJNtAzCWpGjtIjHmtW4TDTZqa3EioJcASCXWne9rVVliWPri8ebW6W44bHmxaFaMgl0mPtkpW7QzCtgsUw5KjwWK6GiLjeRKyOZNSrqaAyUKZgUXOpWMwLOrs2/h/7UXAMhF0ZQV1/f0RAtB65GAmbZtvLrKO5ZwmTZEBWZJITW3YdMSIxUiDOaIRQLRQnFnCIV5RulFDO5zKdSZW/BxuWOSUBUxMhZDOol8617op4VsyiCIKQQFUrORKTQLGXmzcvHxADBfUqVPLVUZfW6UoCq4fBi2Xnv5VDnKqScTnaACtpIUsiRitWHFC2vfsICULLa2kzK3ZlTLQm0YouHMdjmVGsgaQqJbJX/t4CWdHgqzdQXm0K0EqvVMqe8Qr2ZRYYy2+RwXreYGYkUh519c0UpXbbmrIzJw9vWWrZJUhDLQ5kZgOaIBInMOfepTGZIigxMeOSQEGAQ8gxYUDljpAFxw/OZRjIDzqbtbF13ZxJkTMQc2Wp2IFTw0ZRGYzYD2Uko5kgZmIlkzGTrNyhneCt9F9KMgGYvg/cMOOWz+YZlCRJiJo24+FytcdnVanfG6P50e908M8xINWMzb1amc+NidgLy7ucUgvN9tmlwaD+f5tmVeb8Nm9f5PBtFZczW7v58Dtuut5PmLgYnrOU0KvImmrDfPUGfhIwYlZ45ZliZEFnuDucMY45g796envzb5LzIx+mU7YU50U8cdjn34U/Cc8PYlK8jzLqddXo+Kd8H77HzfEHvW2/98vL5h0/nzxdr89uXbyfdv7yk0XTqg4795XcvPzv31iDQLt2Y2UZ3w4TJvHHeZyDa+TbmeePp6fK73/+y3b627Xb7c7vhy3/+8/4vv6advJ3Om7k0Yo5bvP36j9/++X8a/2H7258/3N/nP53/8af+dOr2d3/4P+rjX/lxxP/m7W8+5z/10+jX2/56/bfb9Zevf/ky/nSdf/2jnq7fTvlXe32/++zn7dPfPuVPdh3tv/l9zOv7sLe3oWCLvc2xCf2Fl7viureXJpNaP/vzuTup2MfE+ePTbR/3q6dZmDAzE8p9BHWcWQDlNjKmFl4XUmiGrBHGWI4VyEhEmOeg1d1dvNwmmStJBly0pEprAmKGabSUggsDP4BgwDkFKaskRYVomhHb2CXRWhicZhPeZi6L3TCHaJlwBGrwqhVijU+2KmvNUvLagVV7UCu9A0Nd+PPBb34MjzoGTyyk07wtFdXCDUBPLo71w9vcISgNsYqZkGFoW/OeZaGcKR7Br2beeq+heJVVsdLnyADHyAlmnRo1tDwU0g8rslJI6QCfVQbXKsmL1FzlpFlLwJqAq6qukbbwC5UlGgktH47K7lsgQNJwvEw7fmHZRtPca8UAYUU8HQW1uqTChd2t7DdsxV0spL3G+d9M1muS86PHKzHTBEqFWvEzv7HVUhlwClIyU5nKDM6VYRupY5Wbyli8QCC1wvvc1jcfQH7h7zygZh7w/vHJF7S7hHlQ+baVUaWkMJSl/0InkIiiIhjAwy6CR9MBAshciU5c2HzdgnRPq/AsqEiCa8PtRBoS9JyHHOpYqxBSFgKx2PBAwfdr7b68uEpJN6W1zdAyeqGy2O8qcJwH8PNYXyAjl7UCWKkNzkVy9BZlIR+JsLCZbVniCc6V4LFg9srHLozaFqleFYdhxReX5szMiJRMbHB3wHsvP82ykgm5YevmdZ8+kPRMeS0xMjLRkxWfhSRAt9kV2MzdgG601mi+TPHFShSvZWY9CjoWQguLkzxgGpkkwQjL7Ay2sHaaUrRlvUaYZ+/j7ulve87K7a4Qtihdi2ZDy8QeifL7mGxtuwvevL90NJPp/HIxM86bZEyEOTraqZ8cTw3KSAsnWGzDNlz0zbwB3pywU2un57kxm7XeW+NuvVnrpNl28ZPU4O6N7NY3TOyzuVn0drEkgDx9uLoB9/dNtxfg/fVkYzSEzeTY3222y/seofd73uZdrT2fzhPWW/OM8otjs9Zy3vd5++t7kcle5g/PH+3Fvr09W+vWum3ene20NbYOP51pqf3t9cufv/jr9Z/+fr+/73ja6O2EPZARQHPbtu6XnNvv/k5//4c/vPzu334ar7/8k//4scv72V+/YPzqc+Iv7+98vV11u+0zBGC/7xqT1tcq7XKO8+dP2D5+ul7pYLb9Dplmljt7wr0/e3NMQ8hOH/oFnLcxT5fefNu2Rsb9PjPmnDOEVsL/wpgrDZaZNR7EFKnDXiAJgRlhUmYmpciIjDqj4IAv4sxxzNJM5sWsTNTKDw5V3kE1WoXR1hREPSDMqG2p1iRHEubmIlcCwVK/whAHNIw6F42AAbJFOCgUt1a+4DKZrN9biYUL5RYAmMr+agGeZkZL49rPVUGwhyFJVceVL2dMFIyMovUAQJUWL8MWt1zUsiK+TshAt4SvpvzY85FTpNUrWG8Oq1AWAWvxxh670e9z1PcCvEb1o4AsBwwIyZbKKi0JqKTZ9jhJFzJaq8Df/Ar8tuBUpPo6kkFLHi5OYG2vl8FmDaQHCYsFuJZPdAWekm7m5uYr6Qe1pD0+0hXE+nhxVFJldqZkKiUaQmZeyjSaHTo4pNksowtzVMJl0XTSFuQPX75S5Qhncocf0UV1QaWYM48Dcq0cFVq08whDRuSMoGaDEkm4klSInspks4pvNwe1+inQyouoFjwFGtRNRqpEw179Y53zQLUz5bC11iUZUfdJHpiNykXEl77eltwOEDMyw3JZVxtRTwThpgxfoX8ZO1Th8MthdK166+Fe4RVVDM3h5gKSCDLh5tC2tZP3zmYSYMZmLsgakfNIuipWnXhsfM2Q8LTVPEGZkZGEZ8SIVGQGkXPOOyJnTCmMjWgbZFsf6dZwOr3TsAvQbA1ADu+mIZBRD783Cjnn7OAjr2091SllN0MFh0vIh7odMGbMRBWNYpsJAssxG4seMSdrBTYzM/aIu9lkM9YuojrcrO5jjuFATGGPoVmO2xCZgnnvp+02t0Kn1LZXKgJApmJ6k6f7+XKxDjbfzoL1U+svpx4zZ3vdtpmI2TJgpEImZahOtoipRKMXJAOlNfIAdlQm3DKLIDQQaJuCkkvMiFTrvW0pp/cwZlrsinMDMa3BhNi/0bDPe8xvgT06gXkflTdrBNt5bL2fYwh2lny7jPx2e+9nZ3t+up8/fogf+O3+NM/Xs2+n3oya9/dfT//8n//XX98+97Ptf3qfQ+L5p3/4/eVp258nz1P3fQ5kzJz7JW/vd80c+7fLW8S97/p4u7Wn353Pp6mX89ere2+R2bbzpkT3rTvttJ0BQZHz/dvw8cYPH7a38A/sk7qDlveMfX8/v8p6w+nUWnhrundMuzs1aa27BpHorbXWu5XINRJNDTky7mZRndtqiSMyFblIrVq+kARTyYbDFCKqq66CR2jmwQpdoO3xt2Ie6dgEK8SjBiJ9LWa/n861QQRLEAqC5ZZrq+QSAN2XfXUmo3r3sqlBMqmQPJO1uNGxA6sqpaNlXwLZZfPOx1jF79EOgJRtZfTw6PkXprz21TiAXOLYSgtakT5EGcBVyhTqsC3/JCnNJdWU7CarKWTNi1W4j80pj5lJRDSjVaiYq/YFZQUGQgY7psZVgI/epGjIOqD0FlEJ6Iiq0UELrTVYhkcSzqNqkrA6+wsRyLInLUTfyuOwqjVXfAKDyAhXFWM8aAU0WkZamZWstfKBZ6/Ordy8kCtGunytrDWSKZpvMnMKnZw3zCGnl10VFJW8cawY5ObIxaMCzE0rb4k0dx6sLMFMZmbJWWcj1sUnestsZItYoYqEaKqWicc9vr6jrtTqjFgkwIDSzJ2nnlPHZJ+I4Kx0RaTMA2ulUAUrD6hSdvgcVi+0OGf7NFWsYkxka97qZShGVC+5+ABkQHkI8pWxR0snWSJwANKCHwK1CU8p0VyAdZShJEj6eRRHwGgFFJWDImCe4IQ3lrF0ghqdUgnH0pDTmrMhIs2c3puKYM4lczcpQLjcNp3ZAhLhrXnNBhIqMRrGzIAwct5hs0GktQkTLJMG642IGezNAMzpORsiVbJrHSMxRmqGyigEJrdsJm+5x2WOubsmTWMuzmAT4NQw6zm7OzxmdxxnIIv3Z6TBGyZNjrzs2my7R26Ee8820wMuk0+mTCPUrFMNOayvVp5lS+2NW2umm3R336baaYTYZo0TfsvNpyd3bTCcN6/YNt9h3s4nODfUyFIunbZNMxMlnIwWMxzmUxn3NUEgNoJkjgla3k61abN9j3Pbb9B1bPdnl2vOOxE0wU9bU2ynuPtpaH47vV338TqiEC6dtxn93sY33V+Vk5tue3K/07bml9bOLnqMPWAnJO7X0T+1H3Ln9UN7Om1nzee/2/Lza9sujm3zacw5/vj/+7rvZk/79Y/nX/74T/98+dd8//qveHn+yxiny+mpmVvbaKfT6en00nPDfn562X7693+4PP3lj7/7cfvf4z7m0/uf//Q/P/3Xt8vr1a/+/93/p7+5fvnS5g/vyY4ZU4luDcjhH54v/Yn3t9Pt5OPbr1/i9vqccf/5fYun08dLfjxhS1fGzpwnEmSQrzzx/MzXWbHawtZ8O11GzLj1+/Du1mdE1Dme4z4yMm65T1KKFswyWlNOhpVhRUbG0VHXRCa0nmkZKVqqyqZaOdEbacFMh9XYKoL0pnQ3mLmtxx+LqFxYmbJZCBaAaIA1uHswksiIUceoSSdMt1nHkwEmKy73UdF5+FJwsbm4OEsFBtrjYLPV7K5gYJU9IbWm2tWgZGam0gKpSnaSSWX8gWTlyZFZ42qNng3mDW1USivpwlq9mBlFb1TlSCCsFcG1Bg8ruZE5g3QQnGPQRIOXuS55oMASD2aawAT80QhoOVklgaSh5WL1ora3uQhFABBRujQhVYUAawec8DpRq4CQzDAcUyhgIFhBfFFTXVunUuasJCc4nDTA16IiKt4bQSqtMoDqdaUsEfCG4pZKRETknua0hNUQaOZkpmLVG2PSlnV0+buY03huzXY2s5A1ZUbKmkGZmYvcytK0BsIOBnq1gyrnprJbXJMbqmgDhjSX0YxJr32HiPrdkYYYIGy+m2dlRAEwQoaplBnDVEnFxpLFgcxgpgUUo8ZEz0DCTM16dycCcSxKIJhMERNWZHCycodqnSvKBShkGZbZXB4ishxEcmRTIrvHZBnPOPvQwVdQhjPFCDiRXqCA5UTGdMyIWFsINmg2G+hJKglzUxeCy2InYaIhcyuo2ypcM4lcMkJnp3sf7kBjv5gMmTOSmxqU8PK5M1nQsbv7lExjKJiM5M5+jTYDIN20Y8YJFjMjRmbaMsIJm0y7BKySS6p7wsD+NEWhZPwZjPIVh8kopzVXTiNMojMKW1pEAFYX0wJ+23K7X2Cb0C2N3a0DjGxyo8u5McJxz775bOY2O926TKkGs6QZt6ft9NIgQg24XJ7bVwfh8O7np5CZc0R6205MYSZs3qTpZ/NnvPaZJ0UDrTVO8waQdGU0x5jZjBzz1D3iNhpt3odxHfMaQ1Nz7DuI7v20OdhefzH/5Nhsc3LOPQPcnpv27aNy+/R6011vev/4djsT548ntB9+/6mdTzpv1xkj7HTKvF9f892fm5G8PHezy/7KvJ3HPt8ybm2z8/bN++vziK//zQntzhuGcNu20+n5fP7w4/Pn/4M/3/r569fh//j+b2/8T//vd/3DbJ+/Xk55iduv+9TQPnqEhXEEqH+8/a//9eO/Wvx/vv7k13/88//29/+p/T+2//wf/m/x9fOMdm8/337639nv5AmdG7WfX54/nz8+3y+5n39ozza/2Kc2rtu3f8WXN/z8x9+367x/6G+duo+Tvt03GOPN2nh++swX64Pzy+8//eGH9i9fh7WyL9+HrCH22Wt5dOrva+1VSyDzPWYzL+dotpPtkyTYLZ06NDL+sI9UgLCtzRQqbK72iS7NHXHvYqXcGMzXghVJa5p+qDBrtCyPRooegJhpVRgsAcyWTM9UJqeNWcef0VVEE5mHubJmypwELLTcF1Wz05q5qtgX4wwR4aVWqSZEh+3xMdCrbBEXOyjXxTp2oaJSKLuhQngzWVOiK2z5fAhQeM59ZTHV054T4X5XkKasfaGRygCQSJK5ov+sMjBaEhqDAOW+JrCDZI5F+QZhCRpSdZrXXCkcLiISWuZab9vCnPMIQq5FdNXtFTD/IFgVsXgdNku6xpoXQR4LOzOtsDsVAVrJw4JLy5bSjHjIYVGiHOPBgKNYYk0Z3AD31e/BgKSbMihjRjUJtIhYkjMo0Q31HjRNBCL32Ur/vMRpysyYLWaP1EK6ldVfIURjYrnWhzIzcyaUiRByZq1ErRyaMg9AP2vVGjAik16pBsvaM0RuFbRsANlKZV7i31IXLeyiZmyYQVGPW2UOAd5cfj53Z3ckAyl5pzCnFHUDb23WJ2iLvHgQ05nFZadZrVn8wXSY8IzmxCxOAkkq6a0vijAIi2ms/AtyGXCAVGaEMiOToCtbaLMsQxn2PrdMIuCWQpiRU6L7gRElkVGCBQEo+WuGQAd657D9zuVcuQdBmLfWcqLDKSAUo01MkuFJJG/XpOxyNyUqC1oaIgxOg7XSvyFodrrRF7AmKJGDmgGEEebOnS3UEm5uymmCt5aTOTFDMMhDSIMpjSCcrU26+mjJseV+5g2Z29baluN6TjWpo8FhhHK8bx8vOaPZact79pMyom9OM3T6uZ/ak3eyw7hx+/jxm+Wkmfn21DdP5Ljm2N8lvyVOQObcKXnch+LjfgXksG3zTHM1QOYCIxXWGJAaNDmCBaRNZQoiIghj3LWbWuubJ/br/vXSz2F2erHz88msJZDK633fFU+03PjN7+eXDdXYzDmzn3FxtJNo2+ZPDrO420yN17c5sWHYya5tgvd7fGnbTilTe7T3f/vxy388bzjh6XbX6x1XyMzby9Pffrr9FC/s2+2Hr3j/+3/98z98/of7XwLXGFc+/esfxy/jvb/dXt8ub/b6y9frL3+J+et/vPzXP/51yP/17rTb+9vfvP77X/n6YfOnn675fMXFfvisT1+f41N8eDLAT74Z27j99ZfP7etAvo0f5m3mt+v9tbXRounpdy+QLs4YbQybwXzjy9uHs11evlnM+PrDk5+8vb8HIbqxtVPEnON+sZ4cM65DMWLOjAEjFGUSG4glMEcpkWyt81TYU1aqPRnhkJRz7x6BXAtIguN+x7DFPkZzB1qGeADUzmOJeZy8xeAS6LXhJSE31bp4PaNGAe5doKmyElupP+ktActS2hZm5yuIB2RxPpamDWtYw2NvWigyZuFIqbXAReUKP9BVq3MNZXTAPGS7wIKz1zU6TCkkKUHLVCt1tCSYJby7bd7EnI2xVCOAassZKaTlcXW0UF4zm0ve5DSY+9pNLRC9uCA6Bvz/jkqMVYuhCpNb31MximvzJDjMzVZ7Uok2C+rQWnvXV9d/FUAuI4qFvOLYRFhzNwMgd7q71XF54LNFt1rIwrFsLoLzgXxTlR11IL1SMqGkECoKatSy3JYQFseOYdWNg4JW5BuVua9WH3IkEZWECUtwVy/tIDNQQpmD1Q2ybsvj/xddd8Hvi+xXHSof14OQ4E6WoPchqSJLEQ8UQyEPFB4rPipXylBmyGgZLFOYLCvrRCDKBTX2MQPlBVJYvEJ2PIp1P66lC7wsPZfKvdDTqI/A5tyEsuZQdBNyCoZgKfLDJMjrMy8CHyqTsD4f0OQl6q9qrZyzLvUKPbCgIidiovzjlGkR7vXgl8pxzxlR+sWEqYZPCPQ2HaB5a8HEpG8NUb4rQDY3FkhjkjPMKaeRrbZY1Wqu+wMg3dupLX/WotyRMRtb0BoGUXnXuaJjMixCpoyMBLOcD8pvLh/rOFb9OHUUH94TBjrkUroviBB4WMUgJfeSpkGSlWdRI5FxYww6s8ng4ulDp+21BWhproyRt8wplJNsQpvG+T6AMbntdVC1IEF6UGJrBCa922Z0sK6WG+netqTBzby15tbWaWbmzcyds+Vt7jlmBptls5aROfd97u8tKI3t7H279IsLut+2yOstx3QMh3lCATQXwmJOQ2Lu0Qyw1ryryfa9Tzv1SkTJfd9Pcd+77vM+54j9vl9GgDg9Tb7YuZ3zkvn3W/ubf3f68odnZBfedXu6xo9nvz49P3nvbXPvRvnT5eP7E3CKKfbX+eOPv+DzmZdL3/2cRvfTx3NCGYkxZ86ZETHGHMPnl1+/Or+O+02f4u2cmmFPTyd73lxbJ4wyJ72188v2kn2r5AJd1LqTXcoZRrJ1q0PJt9OFvLcex4Ak0C0A2JG2iyxTgYMI+hgLFUl52RmGajAIlakV1u2MOigB2Voym2JW4EEdjFypMIbfGN8CAk21Ey1Dp3zMYqrdSJ0RuWp0orx6gm41/x4MFz8YUyC4mCMQFtGZsNI9comrKDBZ6THGuqKk4WFUwdLp1PHeUHMLQFtDwWom1v/I8qLMcn4q4WvJoCXJWD22mVmND3os+FD7sfoUWIiBhDTSmkxrWHuUCR5nylFyDugZPED9g7NbHKKGBT4fJ/6qIauNWJ9iHauP+oijLLIm7uVTRhKwYyGh4z7Bsdlfu8zjtiji7aNokYX3rjqMYwg8CplKmlpMPSk9IgAhFk1Fx8xYDROE+jCOCyIxU8ysXUqu8qTMhwna6hlSCzEwKz9OO4Z/92Ljyb6/SupBJdZq3w6mQf3IQoKCQNODiff4Yx2cg3ys+OtmXOTsR3907KYfF0tl4uB2tAJWvWE1C4WkkCi9OEkdvtZpi3V9NFRHD1QtCpXJh5F1RGYUCcqs+EKZIVP2ALBYlQC4mGnrdddVqEA0+vHKFFJqIqlBzQjLRLmBHM8DQVpirT5iEeoz7OCrHx9d5SQhMzMSZKr43ob02kzTfE81AZnhZbuGMrhZH1fKVXzjo5t6tGpYcuy6TdZDVaDYYYFT5dcW5+roPQnVvou1cWFCDJbCG0pghGfWgYm0XK0eYu62eqUyTUN9DCVpA40yD4zZkBGq9wpkZjTfgcTWFEBEeX9bNzlB+Bj3YH6/xFaSTlaRr0PNy+iz2eJclitDHaE1xZKIlLnRG/czA1OKko4aaMg50CymdtdQFM7ZzZAxclrOHTdpp9zrVmgz0nqJ2HPOgEZsya1R24lP9vWqHaF+mVvn0yejmbM1J5iZmmVAMcjeW4Pftt/nl/78D+fnDyb2+Ldoz+35Ijtvp47eaGJrCvbt8rzJP8GuN9w+/ni5z/NPT397OcXHe1ze/enT38WQG6B93wFkzhgxxrhv17/ATvd75DP3cdmulwvt1HQ+7c59jLOSzcoajRvI2WLGrm7GIWyn87ZtvbllxIg5R2F1MeaoR3sBtaZUJSjUnbj4LDxmu0dtPcIahCLAhlIA6zF/UDapZaVzsD6BZVRc3/qoF8dscaSeQ8sOZ0GoWMdhSXm/n3WSeCQPpLLs7yJ5vAItxxgTS62Celr029O+EBcdJKDHaFf0IPwPfy0Yu467micXt6kqzdGp5OHYd9C00CAlqUykIc0oRR06j4O71DutLbdGWBl0gHS3VbIqCCLzGKcfVfJ7FdPjNHm0TmXByXpPLUIqri2QyiMjCAAQmVXkiiwUKkZPTYuPVXHVg6Nc1h8fe3UJKUYeCLqOsTjX+v34UPEYfY/X/xjZi3m+OFpFLzcJ5t7cskZckszS43hTRSgIYPNDfGMHk/W4WwpiiIfCp9zJViNRNf5oQEQrgUyphbXq5ZrveVxaHIf1sZygRHsQywrfhzWv0ePx+UTGSqE+fk5x0mrJbIlcGHgZ4SAzGBUGGVLOWT9dGVMhKGdWnqCWtRjxEHJVKYdQyiXIFCljpuPoHrB8J1mtqVm9hypqYkZgBQfb4xUfA5zW55QTXjeWV79r7olyZ3VlGh1MyM3KxOW4kY67iaSxcW3Z6c2MHoQy6nfkYbumx1xqJVuoPZdETSkmEeEQiYxAkt7CUtl+IyyM4LHVr5avuvfcA9hz7z6GKTMIACubLSOoQwMlHny99SCQdRBSJudGnKU2a9uSIoZZ2mJ+C0jmnIlsEGDjWH/VWJAoerLGpIK+NbQWTrVIN/d2dnOWV3XG1OxjzxRGZLKB6d5aSjlzUTSykJOIbJyZOU6aYGS3kRmmBLL4GxmRYyqcmcbMSRf2+7TbYETfFFCmxmqOqKBPP+GemlQMGqdovp2t92qMZXOgJGARoDfzSGbcb7xVao41g820mDumdH8aZJC6bOOMfs7eeOqb9cvT07n188i4lxh87hE7tqYJd56EF3u5wJ6fLyf/8PT09PKsl/RTOz//+FH+Mfl8x8vpqQPbx/5x43zx9+2O3sbYfSaQ8J7UbY59jH2L25PQ+tbOTT+KWyMvLyRkvrF5NjdvnKEZE2iX7flDvjx1g/b3+z2fT/f77b7vGiZ3c6Nyxpz7XRHBJbcQlDmjAKO16lwmb8c5rzUoAA6oPYj7BJ2NJfo76phgLsvmqhAYqXCgdXAeZWc9e6sUr18HKZV2HGAQoo60FFJhXPaHZcfsjz7+iDXSOmuP5naV3Xyc8IXNriHoOCsXiXmpstbPX+gaKnJQzN8cNwVz2pqpq9KsgkhUl2LrkC9hY9kSrfPee+vd2rYxaTjMDFmi2WOqkyq9EZgGKqXc43HcrYtW2NV/x6T6ftJjTYI4mgbVBKwCP1e7lHxUAa03sb7gWNPi+4ddbK7qo+qXJY/fgqPC5vffu2QXKguKSjuobfPjJR4f0uOvg/QuYzHIzGiPkylUSD29BHETAugej1J7vHIaIGMjaS3qAi9mPln4HLFsvoqSVZaeR+VDKsqdqGyX6ytA4gEqPJ6RcmJ1GrBSMEpaHZFz2DLUXG0Kcpn/2qOZ/G1vsqw5pDk0ZyhllsYwiW3ci3VdXUiEUCwCKGEpOArcXRB38ejqTmXGUcGAQCkPK0sAtqgOBZQvU7FDAMYqxcVrPzr2739ltSW5wqTbWL8jBJUHMF2zNsNtCdiPVvY3fW5J+oofKNCYag43JCwMK6pEq9YZ6Q6iudFJtS6EIeikeRYmvj5oGEpkKbNmai2tvECcoleQtQt0n/aQzYnNWKSvaq1TFVCfZu7TMonldnqADImUTwmGsLHlbGNGREwLW3mhx5NmAthshsjTtQq3Rc0LZRVQd/FxV+ZIzFgiilX/KJ64uxtEzNPxKVhQGXF1KxpJoTWCQlnMeRgVCgkZMCFmUmCzNbSUTcpBnicBc9KfgkiY5m3HtDNAd8Faa80bNp1mon3I7r0vN5zmc55ut9SIMe9XZdv3b1/f3oZnyhNKMW5ghLUZOP2yx7735nOz1hjt3BlC3u53zrv2cfX327fXv9qffw6dTxveXnUhctr2FmaNZ53f/LznXgkXiEhktqbdXj7c4qPah/1k74GnDz2/Pj9xzhHbfm3Tcwww5hwz9mvSTEuB8XRNvvTtNO9+f/Zx+WiDaOZQs3H7yPvY05tvPJ98e+5PH5788vn5w4f757b97oftY7tvza3YhsLB6MwEjPRRel0wad5HOq15Sst9Z3XOKWlxcgo4KqeJ/A7fFC5mBT+BBJ3ZeqvQ5UO7qeU9XAHnj1pV81Vh3Y8HctXUVMIUZQgddf5HUopiPRXFU5FUBFIzwVSrTVYxT1HbYx4C2d/00Fj4bB0FeZRiPja6QM2Kx9TGdfr95qhcX8cDz/q+2FxwLUl3wHyBzKKQE7C2uGYScm0WDzqOjnOYZrTWusFZjhZ8VCvh8dsPxLkG8uP1r2JS7wdYhbdVDS8ZyqMTAkuIdLiIlELXDLTmRdxBCawfI2LWCuDYmpb1vpVP9GNGXnIZVNmNwahbpD59/XefwPcKmizp8vfxMAFF1Kq0DGvBNjMzw9YQGrW0ykKSCdIk5Rqg4WYr/MMT3gzNW3myWQm/yoQSzPR1ecui4zHosLgHPHgEB1i+Juff9j8mGZc3Fc2NzZWr2CaR5pYou0GFld5u9XCimFYgBw4NlxaGVGa+AVM5aEQqzWltOpOIYDJRQjeAR5ICeNzgGZNWI52vH1lyp5lIX6aVATBTpWhXqatbqtyajUc+kgGuBMKyKJgE2yynEPMO65pKZDS1gFkXQ3V/ZkLMZCgdackBWq2GTT6QppBg2bwcGmuhwsVdzyklYlabZw41V9DEvt3MNCuMwhRSsDFmZZkjaWoudyDl5ONxKT8Ag6BOEmihRGiA0w7PtJgZdPZmTRNL9ydBTiURHsE5M7Mxmy2D/Bjacmxg+eKniYlp6ieLEcWtY0y1ashMkJnHWsPEzTGjCekdshYDMGqOYZsmzOibkxs328Mjb2YzYt5p15dtkA7LMIHVUMkUZb+dk6IFQVWjZZ7LviVB65pWfoKaMuuw5/6eczrSxj0GProbrbezS0BLg64Ikd7bhiduJzPrnsg986p9kuynTtv6hCV789P29Pzygn3f82Qye563fbbTs161vzeFzwjr+4j76CgGyH77+uvl2/+8vz7Hh/O433/Y/vztn3/4ojn3+HTR6Je4pJmb06n0zrnH4JjMnVt0v89P3S8YG+73+9cr/m3/3f7z+b69nfHBP809M2XP6CmDnB7ZhdPzp359Pf0y1eK+7fNy/vLBb+31Zu1jOzdeNmveCGVEd/TThw9PLx9a+92nl991nTdPrAUSm/eTDy6Up45ls7KvSAmallmSkgNxA3HwsNaeBkspf9A7lhin+tOq0ObgtGVMUUBszS2RziUa0fSSYBw2MlAisbwNpdIKSjBlmGWGCMsxgiuDCdSkREzJMtOQIQvJ+jKxZtbGOA8rrIUbrln/sXVbNbmqwZKwHBj2cRpXUkVGWpZsZkmm13U8BnMSa3vymymzvoql7QmbbBnGZtZ9qampBSxn5X9XdSRqJV4nd6NoMJlXTi2OcZKW+E1pXry2VedqBSDUicFWTg5Wi0RkORHpMcM/iv/RTdUcpANjX5M3H/+45n5qncwPohNKJMWju4CZHeECjzn92Jp/n/3qo7VINRdpzOWGQGA1eXASqh2gZg2ACWHdams1QVdmcoJSHafygg+OhWPFXRcUvVo7qjw6qvEs+0hb21WDomDt5aBE0mTuTaoa/6DjeIhOJQ2YN7Pcap0r0qniV5ghSi9bAXSV6lyfWWrBsm5sqAB50Xt3WvH/q4cxGuiEYMsyFGQLVi5ELRYKHKWsIcyb5aGJP/qTeuTq6ZXRij9HN+bjHZWBYi2HquUp1OCAa+hQ1Bqx8Fo1pPnKHEs6lUE1suizIGhsCTeyVPzNm23msSJNTgKZuY8IAJFTrH00iv4019rfNYk5mSlh3gIaKcoc4RFWZmdzlrnmmh8DKZs4LF6OcyEtc1nk0NIotLTuzRAuN6N1qvwwscKrD/bdanfYkm02OBoh2yZat9bMvLE0/mZgSSYqfrqo2s7OFqLCwtYKxs1a92TQLBoxx3MxyAk/KYxAaGaJLfacsnh7sWsLWPfbdpZlKmc6LVQ3xQRIL+0GZCE60yfMmDPbYgkqWqjCTVqp7BRjEsV133xrMEXsU/DeG7dLu6ufht7nNd5+ut998Lydn9Sen84fTjMsmKOscAj00LY5jN2bYXPNebV5e//rUKbDrG9ZEeBXneB9MxMt3bufzk8vn57+Nt8u9/P29h7f3r98+fUf/uP/cvn6w94+8OWU86u+vI52Pd32njPDGKHMd359+yX727/uHzXevjx9fPvwT3/60/vnb/NVr+e7v7e2bx9Fg503Knxrp22eLpfT9XLZT7ZfcXoyYtwnEdfbs0Ht97G5Eznu+73vY45hmTg9X069taahvvUNiQKQ6hQ3xPXO85gQUQhHBGcIU3VTJCKzAKtaOaaMalzFRAbKeGymANtsFtZ0NOokLVbVOTBMem3p6pkugnWhmjomSQCWttZcPLL9WPMUCHqRgH0tl41yKwujlm4GumhhgLklv1Novx/z1S5g9cduBxy+1t1VBFTfZ+vBysXVwWLMkih5ibHsFmQHVl11boHZbmbWeqMtnxyYOWGehwcEM2f0x7dWB1VOA0K5hqEGgzCTwsYeErJm/6NUsWi+OKakhFTG9bXhyyPqccGGza2W/csmGEk3IgQZjV5N2XGu1jF9XKa1qdSjShciBhqWe7UdLlSxiO6ry6tq0oo3Lv2mAh9joSrs6tgLFxUFKLUKDUrFnMZYjJcDn1PERCYlqt7E4nFpfZCCLR9vLU+UIsAMFbdKGXOSMWJK3txcijWBQhERs7iuSxVcH3Bt1VdfsIAbHY1LGjxBupXgRAk017K1gJBDpvQDvReFTFRwTWppZXIwDkQWMJe13ruzOVYJAytmQlH1vtWoVoBnHLY2x91NhWhNK1TwgdmvXg5IOGjmQdLXI1pXMKvBK3GAW9bLRR5/lddhmCaRLDl+NeVecHIAzCUvM6SV/tlacZpAh9G8mZXVi5m5STEHRVgixqw00cUpsnVAADV9aliAibiPMvhYhKMKfVAKDaS3Qv2rHYUIuKw2vAmrxhtGQzttb2iuLdDdTa6EeVsRkXXjLZYDIYki6gRiUT1mzOk5c8INcqQsEwEisqHaPdGpSMJhe2VDpJsowJq1tm1nPaesRBhpmpgDbZoZZo4U5oQmcstoVjki2wQTjOnjyH5uUoJpZQ5jSsQMMqQkqRn7sJwekxFz0i3uPmdGxtx9tmZA5ria5px7uz8RjU5h0hNI2H47GZQ9TgTucx+8u/J2j922dp4ZDCXhW8PoEsIdY9C2cx9hEjHv1/fbN4Os4X5GXi1H//bqbWA0NR+0dHNmEqfnD/N8wXmLj+8Yf/NHnp4/zfgW8U2N53mOf/sy/Nf29f18P71/vY73W95e/9vlT6/9m53+PC7hc4RdP1xDvp36512fw3fjh35qlzz37eS5XU5u3nwidmDanrvmdfzU2qatfbB4udjl2a5UB5Rjho1xv9/z/vb8coOYgbhGMwPmPUuMWghIRIiCQhFYIr4C2axGI0fC0mjeUZpOEFiuqp5Vx9mQaGleD8MSJhUDiiQVc+l7jppFy3SaDi8p2PIxr7Oca0UC2hF7x5QyE9VVr+0b6PmdvHQcQqbfLNO49BWsXt2AWkmQq0gU2Ve1WlwvEkBpKMyCWLAkv6tVtVpcPaoKSSJzFbb6IXYUEKCivtwMTgjIESaoaowxnco5Zyz6UxU8qbDIR4YQjb76EJmR7iFLGv2h0azW4juXmEc7w+9UHB2AL4BWCRQgA5AUyWU3IKcHbJXWmmvq+HrQ1x94d03Zj1/zmIFZi0IvIk7xVktSAyYftxOOvXT92Cpex2WtpeTygVJhuAYFctGJhCybMIdFHXpmKhZ7fexWDDiVnx5IrPUvazVoNJj3AM29Pms5lE4k4vjKPGjG9Qu+05St2p8EkMSxOcai+hU9rQ51SOidqKOfYO3cc/H/av9QjWEZcegAInIZe6hqCMIgi9SUFFnfZVR5x9ixVl804UJKsDxGF52KdMsMQUcucWEohiSYctMsoAdgdXR29Bo1kikhK5sPmgy+yGf1VtkhZoYlHDVoRpbh60pshCIQU2VhU4ujcn0nyCmH28wMJBAhl2jKSvImkYhayhdLxZUwTbpR3upugdtIB6QY3dbqC6AhI/xgiUJgDnptsJOAleIf6xJOzkhlhon33qSYtY+PWfMvUb4EGUBJF4OBmBpjisiw0DSLxBwNQdP09cLTKta64EPrT/c6JE1KuGedBSHsjvuYWzTRnL5tnaRPa3RG2+Sw7d0JYiZdQ+ZbXC/3t9DtdHpSyHzSMjNFlb6amQy6J2AOS8A2cyRo3unWzM3bqcwTbRk7mPftcsFp6x1gYu6INNsYkGLGHoOe993kxq2dN9scmcjXb8/ndNvL4UsJa+fLufv79R5zzPstTTmT3rbAdr7TMnTnfr2dLJRTI+fkPUYsnnzm3Mf7l31/wmXTuG7eLqfTj/v14xPQEO++f9qvH4e9Pz2dmhmRkRkxWzNw217uegnc9fHTl/b7T19fP57ihzedpt1h7nTBGKVbnDNzzPuWt/22Nc7b+PZ0D99wF927O96vsVlEiG7m3k5uWyjfc8Ntz/s977/cBv885u16p8i2dU/Au7p74/QtS9pqMoNboh75tbNDhh0TnURb9RFH0w5lmVQOLHjnmCGlNHp5a6x5ttxiUfVZkUp6cdHXBFQEr9q22XeIsty1MmNt3hYDps4ag1Ze3nokVVvUAwjGQZE4xiwda8UCmNeQs6a7okjwAFql2lsuxfAqDYIkW8vvA53l8XIPPlaVAEkZ9TrI37hqKx1ta7311moNuF6ODp3MAX0Tq5BwvaySqa6yt17EsmNeRQE1R5qMh1Xgo2oWHaMtSw0rHlVx4tcaN7Qobkya+bJA1oKgawbSIwloaVHqkh4tSOEEejCFFwa9ZM3mvt4SjpX5WsK6k/T6+C1x9DorVG+tTOwgIRDTC2SlIgEzgwsSvIB1oODjpAcpKMNSXDdJ9QHlcvhgASkz4JUU/+A3FAVl3VCmFaKwOjZbHeDyg8Eav4lyaSmEhKxMgsUiZ9FsZjpIX+3XY9oHVcYlmUIOjhkoS4mqqhUrAVYLXZVfkRm5wrFQ4peFyTOPCTgL28l1CxeVXFKyImIPMXptQ2uMD1+hEpmZ6Z4qMtwqXNMYZWuqlDJ4bKGUSR/BiFgPZCzhxKr6EEo1WLX/caLQzNejh0WcqHy8EodZZRNamYgQZkmk16Mp85BRqZVsYr1NWKC1zK3frXijgiEypLrZVOc6qw/CcILh1VVTOCztqydx9wmFFpu4IJaFL5ibmUjvAY9iWXVmq1THzbxtCae8bGg66c42Q7PNpCYL4zGG0lImy6R1q46NjI0CWg84nL49t0yT9uyWbIi8hwREI06btw121nWMmDI0Wma1hXTBPJgRTjBibpBlbCh3Ui4IaeyQiMRS8TPmzuaegiVMo415u49MXcMQ3qb47HK3Me85fPeT3O1y2rp/iHn25Nh33t8+7zHRLy+X8+kd2t9fHBvm8HNOszH9/S0z7OnyMp+2p08fQUaf7hkBZNp2ef7w/Pv3V3tup9P4+Vnx8Wfn7evrl7OytUvSjFHYn/vW+/l0wke1Dx9/tKc/7Dpd59M+5+72y+e3/f1d93uPN8+Tt1PDvkfe7/v1RmOADNp2/uJP1g19a/n7y18z2Rsy32+vl8v52ud9+BjdSD+fP/50+Yef//an8++3L09vW87bwNZjlodQar/ddiP2+7xf5kgorNAUQVFjZbBOpTgE9tAD7VQGlsZHdUtKktK7NQrjeJDqbDtQxurqE5TLKPixmazxbj2Ox3cW1bhsdEukVqumR0WUvv8OshDtBSJXrWXWTq+gPrKG3EUzWqV7VbDV6R/BOWvjvV7PowHAI0tCh/IvD4VUCkkdEtHSlRgPA/2FK9cAVg9q7WvpVmyxGYKWyMrozd3ci9ZURFl+fynMsi6QUnW0LRv/Yxj7bjhVPZAW1JCHDKmYZ2xa/+EY7A8alIobg4KUF3j8oJUd8/bx1cc7BBfzC8dXcTmQoKZKh1sre48j9uroiEiw7I+suM6PPzjaD+kwQxZYX1vtBo49tWgpHLC9jtdZnF6RkjIPi0us/gZahOcFhysP0H2ZD9e1tVpoF9HhsVGvNfd6iVicgYVdKGtsLMlXGZnAN6JV0bK6gGY0SxTjIcEKTDAclzaNlaxe6IMCySOroaw+awNUTIaITNWLAGU1k+FxD37vMaJx8RtY53rdktWtIHn0D6ttIlccBJ20LCjJjrvg8SDVw+b1THt9SNWDuEJiZnfWCpr7JNwK0S/XmfVQFFzFhV5VsYZS6a2uUmWmsdCKuqEVgIJ1W02SUMVRWWkdk0xwglSYrW6o/rjxANWz1ltUBQdK4SV8GnP1gBCqHywh73oGFmj1HYemRC9mvtGUMYXchyINuSGnA0D9vfJYYrfeZ0aAriQa7WAgUO7NzNqp8ptp8vO5L9GUSHkfSMXYAYUZ2CONHt2x5T49rxxpMnWYp4FBKbLmH4gscCIndA/FHD53mzOmDc2x2dwx9pxZsc7yKXx9Pt0jHmNZq3l+3zNvaKd23wJu28vm3U+gctr54rARY3fpsuV2akrqNvtyl+stzec9JjOyXzaf5+enz/0W77KJ/f0Dt9OtnfsZ7dLRtt6tsVuQV+4D9uT44f3207/76e1Pb9OIPS53m+p7A5mI9Bwx9rjNX/VtXN/28+vE3J4/7HEy9PPz6bV/nPensbUtUiGZQ94Vb2PMOfP+avHE7Ydnu+b511N2hd4/bXaB0E6tbTxdtnTLGHHb8zq162TbiRqDu536p+dBeXM3yZu3qoHNndCcTWull8XCylWrhEJhj/MwS3tyDD41jBS+m0TEYjmTj6NVEYxEeeVEZcxyhX8dz+0iiKxKVQ+iVHPagR+r2Ch2yE61OLffh9RVd5WSTFGvtc5VqcL6pJU8+5t6sX7FwxBLawAorlSJEdYqtEpQlkUHj78vCaljIdqLPbPKLh9so6Vq4FysGVGAu3tv3rqX0dKxnD5oHUdHUBPiRFVjWKOZLGmLvYbfQMtHF7AOr3X+PnqKI41B5QUNWAlbM7UYhhIW/Fh7/6Id1XvJY5kOUotqrYPFdaAKdTJUijPN3B+lOSFRgbk45LZg8mNq+36gVV+VQE32KGwZlsftsHDaurYrxIBmZvGovWDZ0COXuKiShsxE5LqBagOx9sR19TMTxWV0lAtYZK2LMwshPhqwxViGHj1ZTbiEYMeoRZcqZ+b46I+1OmvZ6jSUMMS0SFi2egg7etTjY8UDV5nFdFjTPoFIJAxlKIpqIXIpZO2AD44OdQlQE4f36jK4MVuCRNZPiOog6lP38hQ9IgrrZVX2QNb2k2mt0Sy55KMwPxX2sDawlNEE53qC1/P5WJ5nEYShMqevp9UsjRmqkJIFs6BOqgpgjDz4ZFxm2m4hVWzD4rg4KeUYyVwNpgzo002sjdABNiU1Ywka7/dsKO490/NY36WQlRidFVV9qAsF0jAL6XZIrmE2jUI6ZLReSgGBCCjdcmgRqAmaE54qVp6szoNUxD4GJxORme6H0SpCLdPCnQ4393NLM/OE9phvdh6ttZ2bJQOWojRTLVFK3ZYWY5pMs7d6nMxXCmei9hs63GdoRCrnjJH783neR6QcKvCUOQR6ELtHCri0SuE4fbqO/d7muGkMx31i70/b6/VqebtiIy3n6ZIjT/tEuo/8+YeXP/3lU7TxdkV7//Xt/qq2xeX9dtO83vbrzV7HPd/6ryPPyPDXa9vj19dx/2/j/YOnPl/eb+8/Pn39YP11uzS6s5xb2+nzy9CTnT+0+cO+f7Onp+gXx7ulqNa6fxFOsXVLbA4376fnyzmefnz60Px5jF/i1U+vf2iZ8tOYzX7A9nmbcfbNzOi+xDoYeb9+yLb1pxfPf/e3ejl9fL5Y5NhPhDXSfMsJb6cRrYFEQYpBd7l7az7pMJXsruoeCTgjCbJ4IwQeq5giURYVA2vUkiREph5z9Ko8lYErSKVdWAf7+qIaSfO7YGgd0Qpb/T1Ra6Hy4ChRJVC408IT61TVQiq/j2o18R10WkD076dS/W3hzKsPrT8//o+wJVYgzFYkSdIqIhC/mRqqstflW9M0pTUX1PiwiMIkYyU61OGcGYycc52MBXHT3Ve5t0OjVOtpLdASB394DahHd1LI9qrExyDU1leI5bixvMBRG9SjN3mM+cf1yiyn9scpWKW4dBMHxHn0AiWeJVeHtFqMFWSFhZ7TltXI4trVL1sBx/W/zAIHISPSxqhxpMYhUSjqnyJqTb0MsrSKXcXKrTaEEM2bnGrhrYe3jlm8IhK0ZgzvZlkypjpfk+u31Y5lNW8PAdpvYAr+9u/GwszZjN5ORPM8lOME3VrdQes6hQylJajbIslQesEtSVlZytHMW8ICABIZCIUyGCjBjUJDYXOkHwDFUTUTIJiYKRJhx3pmYTQSEeTcAzEmcwYbit5koV5GXY7f8v5poktG5RhAbma0nk2+OofJmJK5mpuhBI5S2dhJq4VZ9+yhB6uIaHeSximVhfWcihkpJSNiStLydiVVZlhMFX0ZpCYIzWCmFM2USfdAzgijlEtFYaybTJQhWZ2DOpHTDZjMvBsmA5oSochIUTHrbJtRiAZNybCxRZqq4KZl2MwIaLSWYeSEJQWmJaImhHz0M1GNKVhBQpGEbb15Tsd069n6ace4j3LsnePSoBSNjdg7MhUJJJ+fm/bIYcO1U1OeMqRpLol1ugut2NnKvrXWzYqmTbK5k6bodff2LPtNsbV9j/2OHCfLjChZy9qYe8tmeTuzj9Ym3DfmzHlPJqzPbw1Dm2XOiafL1hgd2wab77cX3q7tOqC/ztOX/9fPf/hf/uXvP35+/zLffufnfWT46S0bkEbD/Vu8365vb/lH7cHzqcX9w64xXdYvu6fu88b9NaKwK+i6jTGugnnu92s5XYSQFjvBO6dyvD+Nrye1++mdtj1d4uSwLlkvXs3bfj3ji7aY56/z/E7MMbcc91d960N3nImYINDbdrZoc1fu877P2PV++xJ8ugUi7lLcZ+63Z4lt2wyxjzFAipY0s1W36pasAlUtXk0qXANHAbEEYok5SCOcgZInFO5n0jYRrRmLpGuxeFVL2dNilDphrWuXxPKYodfJX6zR2i7mwZg6zv5V6w5y0BrOiy1krWpBFdQHxAXWIrJe93LRX3ULj/0UoJQpmVnt7apkv2EMHaLlODTuj9WxHnW4zDwpId0MKe+zmDApSonwRKqb165wlVZBdrgzQZksJk2V3hMnDVR3cq7fXV1LlToebOfVBT1W7DWdQhTY3NIqKuF4305J9OrEj/dw1NoVWLXI3I83uX70GmBwwBgHSLt+qzGN7r46BjMqrTaP1bBZHVnLRtwABoTF/HSrVeCjr6hbTKKVEu3QwhoyEnFsYJFBqfxGh/ZpmKGJCW9TQxGZwZg+xpjTCC93UGXAzKVWkRlC7e49F1m8VfxX5Q9qyaUhHft3fTdEMyywkrR5JVsvTW3UjbisFxYMsy7e0ZixBu+jQJkXKc7oS5G2YAWBXJqgKLKEoojUVkNLkctBrWWwg70gA693t9YlAaFw4QRhLSHBWxGNj903HicDWF7cWUo8SXS2DZrQiDGyCxGzVQQtYTnhMMypWZ0ATXIAFUSxnq7iVLiHmjutdQYqKclcEGQt3M1gcjXDLOWTM9IwQpCjzdt0ikZ5R8x6H6M+DQoKlKWYQMaDDXAcPN6QmcjgcgTTJnZ3qzxQWvfYGYmDWA8A5Y5hEpJNvrkrJ2MLINJgvbdtK7y9rmA0ucAc0dQj7+kNbTg7hCGTQzig/rbBvDlpMSwsAIPJt1PuppH3zDA2zslIKd638fop/PQy3i6auclIesspbp5ymDUzZZq5mabVQ24iY9Z6GEQGBim3GeaO5sbYr1LmHLteus7WzHIPZY49xtzPNqkzkDH38fU6z6CH6C39OVqDd2dD690azzZEH7LpiOvERs/BLfOXDz+8/E3+eEbv+7Z3Tr2BOzpPRHc7nzd7fvp4//1nRDB805edX855afd/1dXmG54ubXu79nG/a4+7mqdOP5xHw+l8aobUeH9/t5jXr7Zvf/vz118UY96nMcUbs5+8ifZ8Hve3hjAy4bxuPCGmWlN4O/W7Ndv3u8bNP5jH3H3ceZtxjxBy7jvnt7je9ve8Zven59eSjUqK+z3HjNjv+0hYC5STQSoiVnwNAuIyLVda+cFr+RYKQnlk1eyVUdxIj0MK+xgEc07NvaGQLdIJZitHSLYCIiuusOq71phJVpLLUbyqUTxcLGpltBbRVjqjojCKvs5wiSv2DZStPd1CJw+iUMKiPJbqwFwgbcl1HpILCFpiUFLAXJ4/WJ23pEwiagItcWdNSQSqmVnXbboVk9PW4GBIRCgyZce6lVWny6DogOlV6KIZTe7a66SgE2atPVhOWiPssSOoI62e4cWKXlZcQKuaVwU4Cwr0PI74sq+trqrqeWYccx9stR48IGOWoza4nL8AsfKYHoDC6rxMSGuNOOo5V+tV3V658xbJtpBvmJxaut96LcZE+YUYQz0DNW5o8aBQb6OG7gOjry7L51G+l0OVZYSp2ovMTOSICaS7OSrkBwAZkTHFqjZF2lVlTS/jYkKZ5Wxe53kWfVqErJHIZkAGKuqYkFE507Mg5MOvXKvAscy/FqZan5PBrDVr26lz23u/SxB9suIHCtg0qLXRUDLT9WOtBsS6A8Ig91ia8TycWrS+2GB9Vz0VBdAv+rKwuFIqqR8PjkFmRKVIucIpaUqaThGKllIqIuERlJM0VyHalnb0FjTAmhYTL2Oi6KACIqfRCrTNZYtOEnBVEnbpxBcoDeT0nJQzhEX79VgMCHeC7mthVT5ktmaMOu9oK1wzSHPs7sgectKWR7KnHufBst6u9yDS2Mw9SeW2WOnWEpV8qbA8GdfhkrUJSbQwkR7OOn8D2VqAcDtv3dzb6RLoRjLzngiLVA61uCtjZCjn7TqxpdgTtI3d2I1+Hdsgp+SH+RyMU4D3LEJfTsCJjDkVXprtjFnUg+qGU5EzjS0j59466Ls0Ae8n05mNGQ71fN9ezPg0s51w2tA2omG/78Hz+XJlmkNbs6dLm5ti16lt99m37WW7o9s05rjf5v35cvm7849/85xbfh6zv98+mPYJtb7Dg2Dc3+c1oOm9W3v+fBs//uHnf3752/bl652/Xj/xpm8v1xmDI2YI2t9vnPcc9387vY5fXv3DW6fOp5+itY8/td+dcDv/7vb134F3BNXg6E7CTlu3Zub7mZtnt4nX/XL/dvLTB5vnT/ppw+vvfow/b/eT92juHco5p3C9RbbT1vzEL5fP9+dtU5pbM2Nrp0srmCfBGDNq+R2JlK3p0TxVT1sZqtfpuvZbda4Jmmjh2eVOUyKzjrUgZYdVcXWGqYy0TNBilPlfKIVUq2Fz+UQgtfaQNiEgKg1i6S6zJCA0pjXkY3kUWsSRKFZNzX7JRhLl4lBbmmooeTBR62/NzbKSuNb3Vckw0JzmdQRp9biww2OxeD9cKvoaz47tXdUsHsVnPdwBxL63XKRygrRmObZ5bUjaYvXUaizyUd1oXmnaJMwbrRvFzJXvstp36IGC4+Db4DtU+v3fAAptokJcmBW6s6hDqYcEpZjwNUrXpKSF2IkVeCAdtcSOJR6Xy3tWQqNZLSDxsFtWUunuVn7j5jTTGtoXVIEFtpSRM3yleaw9tIX5wWBnq0xKpx+7kjTAi19bTHoJQsLVkPJuO82sxlbz5ntrpumtsQwCmhn7Zk4Wq5zK5f0X8uJG6eFrfmzZ6xPQcYkFLlB3FmWOGVEOJXVhV5GGW+UM1rakmrqDKgyWt2gtO6AizWUgM4Znlhdc+bBXuKJI24PIqMAohdUCwwv4WLc4nRMTFik0W20mCv/K2kFYKmfQkJlwMxT9wxvikIBBSUOtLuU1ymeOOJnCMJrDZeYNVg18fZxws0yLXDuYTM60SJDLppGSIhhShgERBrDZkMq9W3NyDp8xNDFm94wIerh3ZjtHoIX6c0QQ01qOvlkAmc1KFg0iSfRteDfLUhMHltyetNyBNKenFDM0JANHCymUMW+3nIV6MUsDgnU4LhQvR445bPOO0+aRLQbmAG+5Ga1PGCE0ljmV2+1qvZ/3Ib8HK+BTkWpmyBzkfN6vfc6T0ZMtKwmKIGe0k42JuLEjB9v5ZDd1NOFp63H/ii14usMiMSLpzBmpnlN3JunJPWfrgIhhAOAOKxqhSLVyj2uZMUGQp2dNstFde0zL3beNPOmy0XzcTzR8k2Vg2ocN3W27vISsxVsqc04GaK0/0Wd2jRtojhkXV7aInu3cnr++n+bA0znaKTe/qm3ppkzZhqk5Rr/ebu+/3P8TpofwYZv57Y/68++ff4lPZ/8W//7568+vP8z/8vtLny+fn/rp6XRpWzjVXj6c9fHDD7/7N/txzmsLTn7a3rG7wXHP+aWPLT6Om4b2bGr7LeeYsrb9uM14n7e/KuLz7X69NGvb+fxZb3/7/Ksub3/53LbL03O3bnZ6wsePLy/txw9/ebn/uO0/fLCOFuP964fTFQl3Jdi6Ts/JULTZgJacZrJmQ7TWfMJxnIS1zazKcoBQhMx5bFyryK5lY/GrJKGxSadtWJT7JJdbHWoAreVtHARiorZjhdDCjE6BDHOG6M1pcKXgxrSlVC2tyjLZBGkBU9JToBfMdfBqD3oO15BRbK7a08oESiY4WHqrqi617167xXplR1l1FinI4WXDXLk++o5AW/lBKF3JRsq9RpmyfPSTu/fnS19DOyTB07kgcx27RMswOmv6rESQOpASlX2Bo+xhEbm0jI1WW/8dmVhYcTNZqUuAWmAuEgrCDkH1saddKzIhE5OonX29STy+skb1NXvWT1RETFDpNiePZQYXs48H+akm26NLONYR/8NfVn4B9fZAaFkHStU1zNA01Y5+IefVnPCItjErTbmORoWk1T6lXJqYYioz6PC1A05Jcch8a8udB6HpyEI65ngz1cy63h9AesK8Vv8VE+2L5s16OUAJp1JH+dbavSQCUNI1EXVrrBvXzDvgZm2uLewKphRU/lGwSC32wbqsjz7Q6ArAkLJUHqwHrzg1wEeZuNB48Aq0yIaF+RDt6DjqBy++mBZmJMENNpkJiTkyRDZOFDEZmWxLgIhsQqIZzBYUb97btskMbA73bpNElHKZyPI4jTlDIJuHHDJvDYIzhZzRco+C8Qgreos1D1paR+NhdiCZw0UQrmOxQvO9TXcPmJPbg9oAUrKkFbloRRTCgHQsyglSkGa6hzWamlzChNVWmu4dCaim4fCERGSGR5JMkx3JjiTK5KufWp8eOVsmW8M+bSACDvMTsplte556a7II2IRzf3pKj4CUyH3AkjlkbXKuHq/grZzZzSzdt9PptKeVmMuWB3HBejAY3NlP2+YNcswRFTAypf06wyR6Rzw9edjpzYmR3/Zxb/cTzHve006nLbFFxn5rvlHbub9YnrazZ+Zb+oh53sfI19Bf/suHj//hL7/+/suX931+9NYYAY+M2IcSyIlpajidR3fIX+Z+f8f8+vav/8/54Uf/0+2Pf9h/vb5dvr7t2vcxbexzaNcWQNveb5fbfn0dHF9+3duGP/zx7ev7x77p9vXU728an0n4jH3f57i1De5uzXnfn/r7169vn+/2wX5++pAXvzRtwf2MK/dx9dvpvs+NrcO3hGnbaN59xrzdXnFNROyY8367vn87n+ZMNjNkHWRyyAxGM++Yi0jncqzOTiJaBTnz2G7W0jCs4qgdssG1Ijq+yBDlaFfuhGFeMmAhIBBZa6WasnScz4XtCEoirCA7Kdy+c6lKQZhpgJUjxzJ6qvOkSGN+PBYPhOmYVOwxrOCwtjoY2PVnj1dyeMzpobawtet7VHyux+9AuU2ALRFUTa6LttgCwvfVLhUjZ/OYCa7IRaOX4HD9QBbKToO50ZwZVrDocgD6TdkCl4a5mgzT4zDXGnt5ANRAO6blYwP2KM+r0agfbcdEWp/QSplaVbyO28prOeRPwGF0gsecJz1IYcWJW3LX77/3+6eziNFcimwSNMrMFYKbQea+hrXlDQnGoeTMyHr9R3fwWGFESFi2SVrb6u+ojh5vvHgQmd+pZOCx3hZQzNTHxTrWoY9itGb9ut9VO8UFvkOra1ua0XqBxR58XIH/4bOoZ4P4zaUqCP0BdVRNxfGuJVRybq3Kv2Mix+8rxpsdTXBiuWMciHPSYRW3YgKtouVWh1HPbPNcTQ5ZVCrStAISlsCQUIUZr5eMBsEa6SU/X/1BDb1rjUNCqt9tx1KlGPWZq0M5UILVfpYhqJZKKy1lmVJgH6mgI6M6vUwo1o37GFS5dulprCa0HvmVqwXKjAZP2Syh8mLQJ0C6GVCejeQhfJIYllYNFYFkSEcgoWSmCFe06hqPBzCtu9HNbNYLq50/CRroRXtJek53d+/uajjggpS1loFIQqG2+slQxMzZImemgbXbl8XKNs7MKcwZkikkh+UcMzVHSJlpZZ8SETPmzLBm3nuvBUNEKjRnhhTHvAGR3bdiwFlr3dla632zLO68KZ10b829d7pmjsxII41N7g2xaeuXy9PmyoixcyYUezLg7i6zpbV27+enGw3pPWnW1Huj4Brj/jbeb137HNzH2Ln3OXOMPZT79fW938/b22vjPq9u/bS93t5++tQ+YH/m5C1UfE15Q+wR6+0ZZH7qdnra7OxP5/PocCgzpmjNnVLGHHOOiOljzohIwBGwfjqr9+bNeZwkMTP22tsc4QNZvX3dR2mPc0XfH/TfHDJgOf7WAwEJUKQOTuKqHesnLD0kQSWtWAjr6MpVCh/T2ioadUyWZoY4EPAy/cf3ckqiVP/Hr/rtefidIKTHwHaUkjqbV+2v+vRgbz9MpPT9bRTg+Tgmj1Yfx6lwHJ914K78IjL5AIgfX/54UQJo3twbj+OdR3moD8WwUorqHayqXgcWS8d34NurY1ifD9Z2cgGwRKXOrspGAMW/pdlKga9RDUwcMOmq/gc44WUvWedCZv2cop+upBhWY2MAlJCZistKb6S0YmwkKWdaZimmsxxIrPSasKQSZUTxmAlX48VyLOZSrnBhMglalrQNx8S32qe6/WrMSwFW85Oy1uzfP36pshdKYsmcpWgRoHRZLR3JMole9N9Hp7IubR7FXlkvaLUbJRJV34xuB0u82GFZuxfVh13ybqt+RoTsQF3WbzgQjUdqXHE0waRIOL1FILK+sxarVVNArrL22wSmQmu0JmVByFk4lB03lS3pnlCzwA6rIf8BfEjKCGUI0FpYRW0PvLWwlpaJ2AOGtdhXlKz+0fyuzfxq7RXT1iomC+uFmeDlL0twScYpRbkWU1p6ZsJM6P22vLFZTKkiARdiYmYOeMPWbLn/pdzrUAORxsoiI1vTpALlhg0yjwQbyN2dPORvfvRXMFoR1wGvRbyPumMK0rDHQ0kyaDMdZnAzt8myqYIx0+jeDGPE3cy0wcSIPDn73SBlzPczIYFx2xsI8+YDUI5vl93P7s3cz6TAtqsZGhNQ0/QWaGnNZnmwjTuezAtUq+YpZ6ADEYIiw6cP0m9s15vFfVgmTDI/eQOJHHN+bc/S7gFpYkuwuel6Z7dMf216+6zZW7+8PGGmvX70r3+335WnS7/xvE2X9CGePv1f/8+/+7//+un/8uH6X/7yuw+h99eXuQiAzZ3t9KwGDN1eofnNfcdEWktcftDHl/2H0cZ8ah/bdg7Y1rydL+cOv4/cr3Oqn28jxm72xM3OgL3ct0+7ucds/cN8u59mTDZrLy/5BPkEc++m9/jQL3NvH97/5Qfk9OST6xPyNHE66fTM/kxvprkjr2bcNFu/X/fI08fL3/Tt5N22fmqtt3bqBKwJ1vqsEMg69Ll2mIpSXEiPDPFH/cXqSw1UmcYWPBUx69SzBUFXcFzNjZYQ5F7H5tKQQihPHbBSvVGmfPUazFaTV+WKq/FXhmiyiJiZBUsWJQxQLvfoTDClbHlQT8CDDbxGsSN0T99BukOIWnPTY3hYcCcXNfj7K6xBTimVlLp6hFW56x+OiJ6sB0bCjFbga4iC93pXj6zkh9Ghlh3RqtbJNQSYG6yZgSJ9HnMcHuTxNfoKCZlYZWG9DIBAQeQtpUKYyjU6Jtr3i7Le5HpVJMoK09bi99FOHD94OWbTUIkeWNn1Cw0/uoRa+ysnkqUtql/1aHmO5mXx4Fa7QMGyYgmFZET9Sb0oIBAzZ6Rg9kgbOqZWALRyO4sM5OQEETw8nhPFvtLCOo4OEEKl0gjWHPQJE80r2q6u9FquLjz7GASqhtTdZB7VtgDeN4NbLAKBDohk7X7LSBmH69gaf5GWmZZldbjGWqO3MHOZchlhHsYaq5FIJoDFaCuEwqpDYKZnVvacoUywFzxd3wIkMVPgHFadTsntuGY/OJJLeXVADKuHVcDNG4y+dMaRwUREJjOWC4uwKHrHXXHgPKU2MvfWOt1qS98azOEEF3PcPNWbmzdVyEW1hfgOOMDd2bEDJnMqUKeHRLQ5IRQ5zUvTpeWstuYKAj0FeWgqPDOUimzrbqJ5m5bKlSkS5iDNDUf4Id2cu9AcSlO2jDKOYrmJ0hc1QUhkZA5ZMzOnF5Qo0ulIIgzmm7trNty33gn3HNK98owUE8iYcx+TgeZZeRZjthh3kOiXC6WU17OWZXoNB71nsBHMkqLfYd0nvHuJlMsLk7AmgtAAE7HtmcgA0Ejt8sgxPHR/f32/sdMtjHsPdb0GMgO3cY/Myw804BJ3U4R0Q/Z90J986foQ+/42wm7j+dd/etoxrffhN01scd/3tt2FOQHAMEdCmbe307y+9e2muDSDNZ4cf91fZ962p/22RYbTaI1wIN1sIsa9NZvvv0769vQtttPnf9tOW/z5cr7+5akReL+at2Ynt3Ye2+Vy7qfoHuNtbuxPE7m/Jvvtdd/8A4bhjy+b/vzO9zPmhxx0c1fWlAB357jvsd/fzu+3/Xa9amjPDJ5OWyRj1OE96hERpUoNSWSZrUKyXFws1EO+NCZaPL5DwAlrdEyUyyBIS7OseszKaglYlmtCgcyLkHt00/Wvx/ZwGQJg5ZsiU6bMiiBHSBElCDRTQCqn91gb0brb4I+Z+ABS1/SxmveUFuXqmJXXorNOFZa1f5Ga11p04ZpAqLpcT9V+KnEww7OOmYWULX/ZklJVryMVs8iZ0wwz6saqo4mPraiQq/RAtTXConznyqQhtRyvUQ06HgCv1kK2Wgk+WoKjQWiJ5XSQRXsJTCUSFk2zyixzAcH1LcY4wnasRmqK3+2M1/m9SkemMmVaFzxXx1LjgztBFF9Oy2rZypRiYc7fx3hJLmEDtUxKl3R7lmB5eZowACgLQUoU53S9RiAiZw7tUGiU1YEicgIzMsYY0/1wnFFmwIytrWk+UvAWG0NyB01TRJmoVkUKGihvyjLbLGyBke4Kec5I2gQrXLbOffeic5fTFxS18cAy0qgiBZY1WD10IEl3Iy3LBprUXP1NVoo6lG4rZomkIioptki/tNpNNAkVdVoYtAwJOeD1hRWgWM9NLvyVUGiKme5CykxaRb4WL5LbqQuk2AFkRszpyqTJzbmGxBDa9xynNfGbMuUV/Wy9wVeEYmvVr0TEksM1zaS5NURxh1ym8JizUJ2p7mO4GbY94BsHTeoW2do0I0BPswyGwG2btMWrrtEWRGNHt1qYGpG8CLBuTGrbzmk+0MzbYKK71ULJiRIxt964uTflgObsSJejbd62VIwgQKezoUVQOXk+zdgnOUymnKEMsJED7Oit95ip6WbR2A0+052AbU+8Zozb+2Duudnc87TBjaeneelqz/d4Or1NZ5ja1uaUeRhEn9m2jExtrRlMzbbLaH1u7qckq88v4YUT8JNpO516y9dptOjc+gmN1nibwT1ucUJ7uaD3DcqG1mPufYTsvPXLW7yPv4lxnpc2M77p69Mvv74+mX9q59OuOa4f8+ov2aIhNL7s/R///PN/vuhPcVe3l8/Wn3/6epnN5rhdT9f3wOn0w+fP2u6T7dR+idPHT1/bj+3H9vPXt2+M+dTmlz5GOnPCXOofzv2DnX84m/V2sclvf23nD7cv/act3r49X354fQ3tb7qcPzea9z3o11/fX6n0mTDEl8+XoYinj9f+h5G6fbFPX8btz+Pbv//dxxPv9ztv16ZkP29Pz/3D5eXFXjgdM66/fLlvcRP8vFmyifB+2m7zfo65T1NYKDNCOYdxpmI25MzMSSIrs76kfqBCWaeXgJ5DqYggo3nLEICMcmUgaTlnjrulo+JlQWueDjY6LZGetXc290W1ricASgWUXTDzaQlQ6YSl2A74FoC5G7JBDeW8BLplaTarVjzWoniYVdXRjgPqXeqFIgEDkVDFltOSdRVQu0VACBXJdEEwUXTU0loGICui5aIQs2SUqM2g0Xqs+afLHHtuxpRZHXiEmZcQw3UsViXKy2+bUjRov88pZMuIsnQ6JnVJUpWiY62+rpViYb0FTSQaYRTMsUSAQvNcymayzAJY8qhiklVe5eIKL9Yy18eAx/T4GJC1EMSFOBQZt2aqQ9ayeGvLiOPA+//7pTRryV/lGiKWtGl9eGsKp9EREXMNobUWidTSfImZ8KQWNmyFCpcv/5oA19S/al4tbbX2NXAjlQrFI9FSy8WcByJAikpBFQNQDVp1J5kZ4YbWW1+rVCvqFAu9qWx2Hg5HrIYnRaMbvCWzVpbr1ZmW90hFHZDMmTOXPqYwoPrsijxQJRwE6B3u4RCRtKNFXopgl/Sw+zDU1FxPpKREgIc8bxEmcWyIqLpbFBULDFCKsJxpQIqI6ZZTI2mAZz2tENM83eDp6z4pUxTzVhkvwhJC5PIhS5EoS1XjsUJaBT3WeiflxeJE5T1m0bfrpFmNMNbqh4wSFNSHG55uBrcoC7hkU5R9s8TKXjRGBA6HlyKnKb3+oZZD6TSjEWZRSjcJWgcBXQ4TMCdYBhrrpg0IzIQ5Sc0ZmeaOBMOijchkkInEjGyQcu45OGNalr2pW/d0Jt3zmvcgqjMTpArHGDMsUjNlmczqB+feM+K+MzKVFObMiRxAqSzNsG15NwQ4HcnWrXBIyKxZo67ummYx/S6f3M2tt8zTadx9n/Z+Oe1pAJ9xu7lkN2QEwVPe+1nSfZ+xX+Py9nP/67a9xrcfPbanUzT3rtaGlHNOzDmoy+/0RKh129+6THdo9/Muc45X3w++ZmbGSHNpQAzz13u/fPr63mw37K7e+tPLpz//aC+///puz+c4X9oW3i1u12sgMYZE+NM9xu2bPb1zzvHNlU+tP98up7/7h+cX/ouyzZ2IkTH9pJfWLv58Ol22j9v7x5+uvzvtp/Pz/mzn8/N+OXeQCDVH5Rt0EUQcKxgjzGMtqjLT1igHkLmO1RQE5tCcNopDQiiQc1plsBSIKE0VtIPyiD04EDQSrjL1eDxDxWCiaLlAXVr5LloVarMohJKmVGUJUsYsvRG8yp2VW3wVsPyNcVS9kjUIFj65prYD9gMp8lDXH0vFDKyaUa+WB0OEhx8W+QBs19JMCTD9gbVVmrItpjIP5E+klbR5gdUAzLzsCbkoM0tKhfqiOSeWXK8Ok7VSL4+9tQD+vt4EFtBcqwFBycbj1CIAmEPeckU6W53Exxp1VkMkRLAk+jKufAcvdMsKKdDjs4wIARmz0mrmtMUCoARv7pXkJPO11cMRG/y4P2y5LBpZC8ZK3nBFmKofWfQZAr0CXNuaxkihSPSV5NNshnukWjhgba59uTdaZ0QZXOZC7K05pXQLJTJnisoxUkPIGRpTdQTWpp3KibScikyVv1RBybHwCBqjnZpa6a5LQGoEXUB5QhaT8IBsVoNIiN6EnnmA+CV9O2HSLSR6JM1JZa2LGL62NoDIpvVpLmUXIVrOakHtkQtCGmbd3agI41z2XqVboAA4FYQaEnY8RIVdqxTB4bdx8ga70LwtFH8qi9Ete2vmGYSzPJthaAqkeRLGZlb0W++rMQqMscVeeW2jatUcsU8bc09owvz/T9WfNEmTJUmCGLPIU1Uzd/+2iMjIqKys7qqp7hkaDA3NAQcQAXf8c+AAXGYAEA16lkZ115aRGcu3uLuZ6XsijIM8tS86izIrMiM+dzNdnogwszBXTVt8WQi2uuHeemSLUObS6BIFa+uLG+AtyzVLMClvMjrmJlxqwDK5C+WcG24i+s1HQIfxunbsg+40Rc4lckzpi6BQMHpvXkhPiCNDMULRkIjatLSJH2Z6xiuW096JiDpLZ/NXnRuSbcW+6oaWcm2ty7qEHPm4iG1JWx3KW/eKKD81LETcXv2tbj2nOaQ7M4Ipiz5Gq0DlISRbwHxwhHrvt5ZDQZuUvQ+Zje4uwNrpnBYReyCzXak96Q3KdD/18UlPTbaGRfZxZgaJvCnbtnyRPvfskV3YxOXBsOracXtZ4tSvvz7z2+fk7ZLv3/tq/Sd9fkI2PKVp/+amfb/tO0eclkgjoj/v1v/yhvlp++67l4+G5XL98P7X79+94vquPS9o28spF9seaGxLPIPtOsLPpyXx/g/xx+0Fz9/6r+1m7775fvsuv7/+/PfPv/zlIf7U0AO6/HxN+nPcLg83jJbrw/Nlf+1bO3/zbz/9iHfv9N+et/Wnkd9+vyy3f4Sa+3YyuJaN49x5utj+/PmXvn7ulz+fHpGmyuPeIy9YezSeT1cqRLeEkGlm3toA6ZvncEQK0ynhqFrTNhVWDRYFVZQbbyGFVdiWpq+RGejLMgBkl2WAg1NvLw35CBNULwSnlbtQHpBuNE1qiKaK0YWrVBAIh4JMuU0XYyiViLQalkQr35lM84Nv4oGRFtetyVUXwjZVHKX+vVPf0w4BVfTtaEVQKmxTW0LGFB0yyOrV8YOcYuURkjSf8XAiMo1Ja0tzeCUF485ZzlSCmuVorEbavBkIjdOSEdULHawXJoNN8Ag8mYV3SrtnmT0qNdlMpTurpRpO1AKqDd/J41e6elXw8syXlDhUOEf5hqx0UVOOBZZ+tmLWFYZI1k/I0t2bHxGRdX0BCFlMHr76PE1t6pxqK0nWPHdXSsa7JySUovt2siABGZk2cwZyXqVIQvWMYfpdT9pxKpmKGFGUvVvKiQwVHRMaEYlMuysNp2BLkqEqePBwgvBakDXCBdsBADGU4d5mRLIZ0WM6albT1koDABz6bzIFM2Xpe0yONLPW1sXYlt20SOZFmZqtu69SWrMwz/I3skSWJXZ9VieSPdccGvRIK94/OY01UoJ8HRUVCxpHCcvp7izj30IuatKrfbhQDik0HJ2ANU9jE7dVpmEQYBgME6OT7MP3YbXIXk7rpYLmpDOaRv1gJtwHhiIyUubV/xXzkZpyr6pYM9eoBsmy5QBpVnq7MhyIkShchDQnt85mMNkU88egOdu4MTxgCGsCUVx6kWOEjYxIue8RETmpcsGQHF4XtHdrSPUNt5VSNs9CvnKeeV5b5sjUwCBGxKCQDiT2hhDU5MiQxuAtDMOQfU9bsd/qRjXrFLexfTi5nSKYuzm8X1/byx6vy8O5r+3K5kKmZTKZWcrIDLqB+56gjX0xrotBATbzFMySC5rRGsyWZWnNW8pPr8uilw/LsHXv4eclmzL3dj7vr69PN24nbOt2lR5bdngPPm4jNsfy+vKux77nbvsl2tKW66c/5mgWY+3RzM+Z+dDfn/7df/PD3/4TmrWTvqP0vEe89HG+XfbnGyK1yFuLZvH8tPFn+nZ5eX738qnjp3/52/eP/3Bd3tO/nKzvl/769rZ3GpCtN+P29E0T+cd/89q2P//p/x3vLq/7tb1drvsP78b25mn76Xq65PbR8s3ny77DLi/2+v3I9hixvhujjwe++Td/8/Dz6R31xm07vZ502wwhnPrp4Wl1sq2LvHftl/7lS3drT+vLC/Z1kZRdeb1Fz9Og7/vQsq3XtV0KSiyGyT3pqw4OrjY2515ssV4mg7slzVuM6v9MIwCvmbPQucKMwIzBPnoX1NPIXpLUSjFTlg+Bjs3QWeNVOwDC3c9DZTU050LM9zAqjEhhAiMgVLCxJYWeapgwrh1H/d3bfgKMR/IPD5RaMOSxJGFGK9CtqLaazlzwMnqikb500PLY/TyceUod2bxWU41AaNEtDYRCVqYXJrrvt4dCMs3rIAz2173grPo5RHlkKcz2XD1mOCr1lQO+Awk6vuJdFV5Nhe4jNNGskpbq/3AHBmoZUVP9dATyHhLjY9ti/qHaE9UxBBV4MbH0tAN4r8BUHib7LOuP+anu4vK6GZZ1mZHJ6YfGefWRlapHm3S5GZ1JlEesAa2gSxCsjmvmTJS5w0hXmk/7qlnVq4GJjFZtFWHJjGEKL/rarGAK89ItTDXAvNJfhUQCaDXV3nlsm91Y0lurBeRyHSnFPXEg9iBLqT1BFBhVfHCyxkKZV9ait2VZlpXefAGUZrZ4CS3MrHjlo5AWYDVx5Wo2QdWgXfsfEP2wK1flPiUtI2try8x9Qj7TUYcBtqlaOtRzReErlTA3B8ysS5J1D2V0Jyx9xHpiu/WUrfWdOW/2RB8oBiJSsOJHqr9HcG5r0GsJZc6cIA1RD4MSIcDcI4nRYZRT2UwZod44khmJkj7BhlnGhLANykO2Qbp8irosBUuyQsdkx9tFmDFj5hMfrwRTNCW8Dkwvs6FMppdssjWSmdGgIxsENKU7hZEz9pEKDifJjAMXGONiGVw0MQef4JjHrRmNpzNlS2aXt0R437O97hEIWe9eWKSyM9bKmw1mRkqZQcERqgV1Zoyl+uuMkLP2Hene2rI0Q3RfMjNSi4doC6dYoPlwuLtRcHIBKLdlWRbP6G3D0ghzOuHm7755emhqZCPNuZ2dq3L4QgsZ1cfV2m3cRkq63SAAOboAuKK5t/bwdtvOy3k9M0ei0/T68dPT9Zcvn3iz525977iNHoqeakrJ12ajr2uzyG1d8HLG6enx9mLbw9vHL6eHbvvru50aI/uO7HlRDne3dXE/OTa9vnt//v1ftX98/2EPy12fvqynh/VLv92ul2vvva89EIHX676P20g/N7XFmmu0VtZDxdD4AjxHkTUlulAEU5oCpDyIUShjEqUsReU87e1YGyiVb7JMzO/0XQ1WAxqjD46RkY4czaUErYyfqLgfYDio2knnTDBTPPSSxxzHcmQCVKOpiwyACcXkXwCkIbNW7aolnWvBuMuei/XL/4Jz5G/+ywHi1v/PVGXFSFmgb5oiwGMiUlGUk0skQKZXQl7xSCJQatYUhozisMa2cCJOdaLMYTAzlFZxjVWgqkwmgEhJqpTVMjAquVAJqO8OVbNrP+b8+2FBSGjTU6Uu5LyuFGjhqkwhFhvsyimXw3Fb0iDNLU7cPxvIhHI6A4HTyEHKkb0jRCKmW1rN+zrq2AHI3wMJJ5o36UciGUpZBU7DLDU3JcmZcci7Po6T/qyfUfuld71azVsmwhwHuD+/hLJU/YC7HzOhCgc4Su5sNKqEH/AD7jgE5xeZhhykpcy8tdaiuVoFKeIo4t7Sit3Ou3p7VuZqigXRsna86Gqa2+fG5jRPutNb4SsGQua16FPVBGVvNyMpq0HLHH1Y5ACkODRe89EwS5EZIQgInwXnYFEgJtqxHSUaE6KVtVVFc1V76jYKaTDQR3GmRnUoAKeEjEPdV3bgSSYsreSVgCGEZMbAocGeiI/9F2iRJMDMqUxCYVP/gNpkyuL7M4xHp5lSOhSKkUo6MlEpdFIEgLI/SNAjEsMx4Flza22nzXYAU7H5tY2VlNnGaJHHFnSI0gBDnrmYx8io5zKQZrClAQCvNygEYmTOZjgCLiyrt+dxW/c9V5J6Re4tQZfbaglj88en1vxwswWFZtpDEXE7FXSVgHJwGGZkhykK+yquw9f1xtnZQGZmFQUtJL2J5cvtiwegbGT26KN7DiJHoC3g080W7rnsLalIsKRc8fp5efspdIvXa+/XwHrtIJ/aq3ZkH7fXztsztguVV13GX/7E//H/1r775nxbX55ewx2QjT76PpAOg9mSGi+//qKnd33J11+HMSP3xMvOlaaxjgXWtnbaTtu6nVZ3LA8KO6/Pl20QkXH95Rd/0y+3Hrq8XbrvtyQDozVrLmHscGvGZINLl+f3t+stHtvr9Zt4fPt07Yzx+umTM3993n+5vrRLjFuPEfH5S/vnj5//c1/yuWNcxud/+ZOWuWGkHL3325a0xS33uFmM5ehGjwX/2s+7HzggTfI6g01Wx74l3SSmW0lRapGomsj5lymkMqYetfjHqoj1kzOquS9P8JzZc3OfB1OSdQiZ5ylfp/IcXClYFR9kVDLBEVg+z+6s6akWhuaGTtLuGFUibMaY61Bg16tEfd2HLsdEWmHnvAuDq9iag4Ep60SV4eM4rR7fSieP1rbag7CEwvOgfPzIjyhy3K30Y5OjJSsf3g1MaK68svS+1auXUCrvV/Y+3OuA3evv4BjfGniwwpjX9aiuREng62JXQQXNTfWOAwdATR0DP45rMl16WSoZo3lLNAPaUinQIqmIqCD2yb7z6weYX06UQSUEqr4mpCHzYX3k/PP1pyL6XodoG5blXDk9nkzTWjRjZMysEWteNk/WZrQw5gYeZqfWWrM2IVliTvFVcwHQ0yayb2QJDCp+8KsoySxTzSyrzi7NZ5uimK2dAbUni8MFlFPmZDjuiyLE0TOOzA3BfFnXtXFpXmlN1dENOZSo/dp53la3kwdsc2wAZpRaQ8gYQY4ak6tNSzChjAAilArL0khOW2lXVmsBuz/n1U/UU7n6uiQtB91MbIspK3pCki0rm1ugGeRpHsqY+sZaE0oA5u4gZHBza97MizcAmNhHytwUMZBERg5jwLOWqpU9ydHYF2QK5jFyDGZq2fddaYaMzgRqeyFbNa02mxxDZqgProNooEa55ximFSaYI6MuaGbEvQUTjZQdVwKJShG3ctpXd0bj0mnpSKZLmeJS4LXtfWt7ytF0yr2uA2xbTw8P7fwxDCEiGvfnWwuXEbnfLtkeOGCr02zYhtZoRul9PLxX91t8+e79xcw1IFljgf4wLN5autyWNLQ1GqTmZtvJFhBEGkb66IuCoGJve7m5fX6TW+TYlN4FeJe5W/Tsz+vaNl06EFx8b9vjaoD0FD3bizrxqvNJPLWM7Nfl4XTien6wlnzK2ELERf3yz39+/6rTt7/fnnU6tzVvqXa+Lsvjw+W8LKYRr5d+e/nLPz3vf3n86XRdP71+utyu8flX7b/kl+ehtnWmSHfI2dfa/F98vejV9PryetkMfNc6Tk8Y+aCXNz33tO3beHW+efsUD+fTdtJ2Op0flmVreeltNbP49MH2/UtcP77w2brWJR7fPrzK10bEqOM8bh2Bh/G9fn3r7/nrH/9afzzH//z4eHVx3K632zhJZoweceFo03URh0UPgUJiaAZrC8v0SZC5xjH4CBAdnYTgMoJ54EIl/SvWWXTD4tlzwe6rjfDGlKm0HhqSjFaOccg8eKURGRCGRUeMhDMBjwlIZzIHp20BMVI5mJVWL4+UEmHH2DghOprpHhBw7FnADyTMKtJFc/ngGPp4bIbovmo4y1zJM+u6Z9ZGzDFl1nDmh3cGSa89G0+jUVELnONmjj3N6EYc8HrVgdnOohJSS6wsmC2rLwD6snpJm2fDPGFiAKjNp4OslFi5gl/bH7TA3DapPiVHqkDXkeWzNx8E9MjysEiVx7ABCSqLU5YJQg0CuGvXEtKcDoxYDXLCSEaiQl0Pj5KsU2pOkAIZ1TFNw4sKrjOHT40n4A53kxOEKQPeUHuYsy5mAgimSJZDwvCFDfRCiI1F2Jt5GBKw2sNMIjOKonejYGtSwGkb5m1NmbdA8SasY1tGZi7dWpoTrvIuukfKRyKF0Qe21emm8o6q2S2uNyTnsnyF4FauXkG+dcezKyIMiOSRDpldo3PPERHMEaOWxKP+oWCS6ebFdbqZqRZ8pm3JMjxtSUJenQjnUB6ZtlTVAIWFxySZoCKEpbvbzIkFMYr5j/qWcJiyK+zlmcwYyxjdMtMBhRHbI9rgGLZErAZPhEOgJXwlaGrui7cFYpYZ5dIal9qRykikEUKtWRFgwG3JLEzGmI6ZnjViGBPmGDDaqt2SgnJ0NnOTWZrbSARIyCxNLoqZvWeUpdbmEUjS4YsX5Fbaz4AMbAGxaGgC5kasbq0tbKFMQyCaham1gBsQ6G3rNC89giF83DrhyUdjU9Ci5VLBHWrW1ub9FntrbwE9brk0e7zoBBc0bLyEIfTy+uP6sI9K64Ab1/Owh4end293PA57sAZk2GKrLY0Jj24nLefdvK0rjebkPnIM0GyBW0KirW1IWnLfMxDazdjHiaPptj/bUDO+Xol9aeLzx9fx5w/nbN56sRaXrhjitd/swbb3yeYn9mXR8qb18Xr75983tD2a1tP4lA9pS0rrHnqzffd/+vbN//Xt+uf/9OHpjfds4+GRj3pzWmx/bXvv+xeB/vDdm9dbz8v2/vrSWl8ffvjw3f6yvV+brz9sb28NUvQxIkY6xgUct/PbN9tDU3x+evj3H+Knn795fDK08Xnrr5//Nb7E5dNLXlNJLo/bC5q1E2i7+bv1y5YjP/f14//jn37+yV7Xp8d8O3b98MMTPX55fzYTHdI4P13/+n9/+2+fv82n9XN/uPLD7//uzae8IdIX8zfn69u3D5+u1wws3MQHKhVlxK+ZDhjFj3JKC6SS7jEUmYGMcSPYmkPMCGNoXUpAIiAJWibgGHJvg46hHFaTSW2fpkA4IlFqObM6PGocSFAjCSTNRk4wksXmkUnWXgKUtATdzJBE4zAU9QY6VDJas5q3JsiKyb5xBry6o/SokGlKgkDMlBzCWdwYJgA9LZcFEJnRe5DlD1mBEgA9p4lUUskAyBa06HsHvXrepfmytXJTqI3VCXoTVSom3M9ajqwKakurPaPKpgCjrCdioqPTyKEUUXOPKedwh+O/KtniWLjCBIXzmIOmGc6hCldO5hegoVoK/Ub/NG2oy3jiaEGmbohzeK5MeOHeIaA+dU7emjUb1whq05VwNguaqYQzPwcU2wH6JogYiNmn0IwyHJ5m1QV5NZUNLoc0h5faVGaGMpJm96tfmptUc5vL29bcoz6l2XToKjAbE6aYQV3V6lQTW0MQqeRIKmLehDwMvABmBg6jVYioVVdMaBCOO0k85XU4EBklLTgUo5IeagM4IiGV4pAuWNqMQSJp09ekhuJMlHAaxyMWNSHXq1Xz3Xw0igBicoREn0Zk94cKtJySQDdnpoJ7LhQL12ljsfQcTuimKmN7oNaIIqiAUixWoxSdiuJFaN6aYLX53QjKzIzesEbWbkyt0xX9BDfBFvjSOr0h2dwd5n6KVr8AyOZupRgfAH8jtywwS72XlgsK2D4Aec4kNkRGoyFyDAlKRcxdDYigV1YLAxRr48ng7HVbcjWlGQxwNnO2MoY2KKInzFOjYJImKUmT1AcTaoPNoUhxjAy2BnOX3CNyfxlZtnNLk5k5R5PW0xn7Zn4ylpoSpNfgnvNZFzm6e8iRY59x63O10bwxaGyKzCCU0dvo0TuFfdmvuTbiFo4Yo19fP43Lw2W5JUbkaKHL8ADi9dNVYc/jvN8Al8RlAS+fM/aRvL5atIflFqs3JTy/GP/+r/z7/XwGlLj0a0+aLdlJtZa5nt/uT0tb12xvTtJbbuet57uw7fR38r/kH8Z3S3+7+fr23Jc3T6fH89uHra1bWKpfX0/Yf71cL+ovPh7j9fTrFzt/9/yyZt+/9P301q/hzdHaahnWSF3360v03p9fc6xfPr/59fnP/Vfu/NZ5feljf43r+HLZ2+i4xkjue3Q2RB8IjNs5nm9Jz3FLLb6ar4Q7EVhWN3q6162xSfBDgsJiHuJWJkw1mcIUykRGiT0jIlSeFJkqFkiJwqkzFX3063VJn6SRO01GM8hL2ySAmMTYHC7vql1OsaUdpzEw6WbIJlhGCTGdG2SNXnBiQUXOcBhF90mrzZ+uyRMdVKTEDJZyu8YnqcZ5ZbULlURj5WE4mxUc82oNyzPWDdPWGUCd60lQMFeZhMTUUVf4bGaGpaCoszaNNG/Lst5qM7im98NRC/S2MA4KqloVzRXUg/ya1PXhtIhJEMzSXpw9Wo3pxko0MNFaU6mDdZysB5lrlLlzXhMe/ECdvmQKfq/zR1QkQUQI5syCsScHZwU3IilW4zcnXc3RPQ2V3MOZtwFJITaUFrCnKzPswDIQI9wgRG9Fac2h0lVlUilqDPkQTdMD4mgepv6OJUsCreoSydDoLtWSEWN0KlkxGJFkFqljyMgEckQghmAh91KPAQbloCork7QKma3gKyO41POkAsnGXLCbrQoNmHvL5iDpINu6resKp3c4BevTnCwRAD2yvLjhjEmFQ1lLegVeae+RZYuoOU/OCyYjeocraT75cq8c2gKUfEKt1g7WW/W+yTDt2BtDePSmCVJbsxAyFPRX1TIhITfEzsn2e7gbokADb21ZaN64NLH5qqj14hEMpZmnOC28UDU8p4LTc2Rz4+KtsTV5gu6l8zMyorn2nIyJJGRkCFYe4XWhInZgxEIwmc132p5LSwiFr5kSGVD0HhWEDCm89p+RjCYhzVLdctljJbUPsgTk0emy0RrNFpoy9ls+eNpIb+05Qi0zRRebuhZpWdrquI1L0+OIwSvi2U1NbdlOzRZl2x+3FVLamgaaZzzJed0H19d3ZmkEViKNGttAyqTFRoegjLaunYTJl24Le6t3OHVdmonCuo2UIjItu57PJ39/e/DRTs2eWrPNO5a2ec/XN0/LzVoqjYpMX9i856n1y/X08hN+vQ4NPGSufsttWdcRSXIxXl/55sbt9nqBfv5p+Q//L+94+OnHHz789Lsvz/vO0233XT1CJoTycu2vt9vtpf+6fvOw+u8e4pfL+/8uP/3a2uh//vT3uKy7SF/c1nVjJ9t20/5l//D7jz+eT0+38WU7/eHP++PCb/7m//Jzbr9//of//svz+PY/XXn201ipnr41ZHR59tv19Ounx9PDt3/rb9/y5Z8ft8u/eTg//Er3d+5/fo2RgwZmjj3junRf421fWp7edObL7abba1dkt0Gs28PTu2W0R4zbLdXNBWcm3R0SrNFYSxx1vs3pbISV7TIluKc1m1SxNYoyCVapJbNgZMQYI81c4VgY7mZX2trTG5NIeskAq3S2cqE1HePVfSqZcdw5ECpliFktpTDVCrkM1jxcptalVwWMc8Ap2nQebhRAISa4i1m2cmKrpd8W0pRZYOOhgZwMcaAMeR2Kr/oZTQ59jil1qlVPYO60ZVkjFc0sQ5GW8uagN4jlygkAvqzrdvMkZV+98udqKWzRLpphbWDKZrZ5kXiWk54tFHguDs3mob57zWCtmiaRVbkzYw7+97I9a1ftQGdmLWlUxa/6wlJCFdM5dT/HdtdXOVumUAI9KmNOZV6/qW7KNBll2CSJDxoZc/uoOOUQSLaa1lrNdAStDIjZbN28/DdJaDqHotbElzaSAKwV0SKayVtb3Fsh3waX1dMOGiVjhEt0LEyaL0h66yWIP7aXxINuKM4Bac3M6CjIl2QLwJZ8eGhsulxr/IYpEEMM6G4YllmVr75YWs47Ux6rNXpPZsNAN6crLQqLJ32u/2XKUoMZYGqq3+ctQIoulckZZqEvzkmZI2qglqL3EAUNAFKt0mY4wpVC1N3N2vIaUdOUlGELqT1kFmEAEDmYIi3ztMAQSHdQZUhtbpLZ4QBXF78toEQoPeUWlW2a6VbTADT6CJRwujnCmlEmQ5qr0qMxpD0IhSiTmeTNPGkOmAMwc29RlpKovqtMKYIWo40ctnAgIzjAsLAycgMzM8jmvEdjUTmacxL9Bi+TagO3NeSneNFwDKMlUD5cgDXIgIywbOerWwQslQKzPL2ZdCPHvq/FepQw+2Q9B8JebxrBZemnJbytXRk388zG3QnFuDiyd5hQFnSV+eAZvXlbg6QvWptB7vBC9aeYnkCbm4JZTnO0hb6s69JGB3fY9fV0HdEHNW498PLgI3nya9sYCivdgC32sPtybifaw2Vv6q/beOWjX9ByJdH3j58sIfnS/Kz1zPb0u2/xR3t8it8/vXkEtn3xpZmxR2aMfgs1+mpxjssv27f9lJ8V1+yfo8fLp+syvPXTeVdwjxiR6Y2wU9ObD99//+9evj3/teV3P1v/w59+evfuYWnuy+/fwd6Y7Xm57O3lpOdfPw1F7tdl+JBgDevjZkNtefN2vN5uA4rLcvkLT7+8ecbYk2bW3H19eP8ef/XN7/9+/esvb87b0vJ0svM7bqthWORtf33dycwcl0XWbCwMASzXmNJP+XSPKMDWVGtIvMOHswIJR55dQWYMU8B8ToCEr0atTYAydvdeB2okMmgRoI+cKxC10jIFI0q7OwMCNAYIAzzn1Fo5dJZArclUM5xwarKPdiwsTYdWmSVcoKLMPkTIKQrmSbYpMS4s0iS2lBkK1aydPapARVMlQB2yHKQDvy29U/YyL1laJmBiiz5CdMXcaqCZN7HqiaXMrSYOKEOyyaHiwC2pGGyjRB19UInIJMzyEF3d3SBnJtFhu/3134SAVhYekzOAcprkHhNufQuynEBrr2WC0SoYu25/ygrT1NSTzzzg6pusgndm+1AH/mwZDnmtpgR6bvSw9jPJ2mcpeNdgjSSqF3IGzCdc7BLZGulI5/S3rl2mGVYhA9tgaxW8BgdoaMQ08s+pYqd5Wg2kMcxdVsgDJbZB95AhfVFafS1OppYV1uCkmUdtRFUfAAhMQiN6jIuZ20BOB0ooNIYdkYJCOZFUOYDNJCoKzsg54xmR0bm4ayRCKkupamns9Bpei3FBzyjSO0rcwbnEqhTcrWUYZGMiDbNsGDW8hdGV8kAzuFEomyz3xrWrQW6o56IKTtbqNOmSa6Ty9crmjFXM0UYwh4aFLaf0ZCQ8oQLOQylFDHMoIHqMvptROYAWduuDVis+jaCVFjkyU8aUggalLIuScWMIw1MZVo5ZZWLrIwXl2KOhmVl4y+ZOa2VIXyFNbvAIrdqxaJhti4lp7SzC3X2U/tySLU9nsY/rcK91QZ/ItttSPnLRoPQ16ClGypEyNQXFUKuO1eiEaNp2xS3SuM9Umww2J9S7BmVr4OzhwMOndtpv6tbZd/We3PvrLtOCxhNhtK09P3Zbm1u04CITWhn3LQYzw1De0BZQA67sO4LJHKON6vSUyuFbZg7Z2MszxJrRl4fzU1vOC1bccozFTKhdmwdvPtSXxHCkmZDDgEYOpGBPn/iA4SCyP1+fbzfdunNd1seHsZx9DUN7tz6++6///d/94fHy77WtH394PK/bKRQ3uhkd3APGGL3n/pxiH/npXx5+/ccPeWnLT9wWwwPbI9bFove43G7X24gE/fVC89PJ+tP35w+//vT23G6fcPryHpf/xPXlf318+YeXL88R/+k/jf/ui8dDmo3b7TYwwhKL8eNL7Hy1X5v/+CPy5bX/bx/i3S/Py/7LCdu7n968wWk5nU6bmaPd+vPny8+3y/OI17acv/3w9sd1WWylLQ/tsSzY9wsMC5bLQ15Kp1e7Yii3r+m6CzPnmEbIhVrSZOQgk2hh7k4q4YvCmGa1JWgi5TJfHNW2HgH1ZpgZhImVOSNdCE78dMK6buaHzCbV4OZsjWLCmBZTh0FSbpJhadHNa+OiYsPCq2EtHVPRm7WaMGsMXbTpRVxKTEzQk0eeIGf6+1fkOnMup9SLI5TnwX0IRqHiONw7akWTkJAj9nBzk2BwwzToKG1JSVhT7GZpIzHp3JLGeSvQwDhsjXI/8PCqWTww/DuFLVoWhlsVcWa1zmmnJmAc7QUl0JtVyGndmtlOkNZkQHNSbRKxyGmTLAvAUkzUbwdmQYWrSYVL0tiiJH0AkBEZu3nOeB7xGBadPGwpzcqhEpA1oLU715zDVtoEKsyCigiLjKFmnjLDb+MCiiAcOUoQtY9BKkIZmYFbrzUYqu4S5aY0xtAyxxtldqvA68zYs/gXyTLLxtkEKXpkZoyU7Y0HQO3KyNDw/dbD6O5lYMLaMK941eLMBZQYYTZu1ZPA8q4XVCXnKSNGH+pSUhlS78hUeR9SzQkPoFSNld9WXMaspEvbIunmmWZmbH4sdy2uBBdSnMwUyrasPrKsgc1mBkah9UkibOZUCouDSW/nBWjZDm4pC7W/9RJTq0cdNhHDMzFGsPqg0uf1ZkYT6ST7cJgqNDmhJGFmrQWRpIcy0wboiYQxCLGZqVlaazZIKS3NRpZUNNIC1Twy2KL0FpNKbhncgA0tbNTUaB2ZTfV5MyNlbMq4jRAZmckseqG+aovsycaxzh05lZtpg9cJ1GBEMzdLDDdfl7bHtTPTy4dAJ7h5c7oy+o4EGpwn0yJbyAi6O5emdjL066U/DyLgaAwZMs1jT99wJXxIgKMEkBrRDIjdoycYmUMZ2fYRo1RAyGTS5F7K65ntAiLHOsRmaKvidLPNza7p6ojYX57PT0+R+03Zw9rbh2inBybiNtrSm058c3n89u3rieen09v1ZRkXOX3105vff3t73JbRB/Ll8vCCyz+6Pe4v55e4Un1rt0woc8+NthRR9np7dbo1a7y85Mf+wggN788vl9PH6ynbM/u+L4idvPrr9XZ9+TW5/Pn57eWy893LT/9Rb5L/+r//zv7htG3Pn/Jx/TU+7dtp3B6e3rzVh9cfnpZtPT89nLy1tYnb0Gk95elh/UlrwtKuuMYbP28f+vMGi3209HVpAMmz7dFTTvqDL0+Ol+uD2qrFFy7E1a+Xaypz7LfLkrtyZAQjpBFjxH6zoRwBZgxnlMde1vCkYkEpVOShRDNLawiRbTU6zCzJCuoYaU5CbTFbzLCZU+YNKPtXGtwaaWVpI8gQRMFTSFhGy5iZX0tKoBkT1gQZXWmNcjq00hXFXVOEK8y8aEd+dZEoXJuzkh4JvcXuTi9oRiQSrGQlAQyoJuDIHDGDHFQIYaRloVeiwEwRxnRkKEHGAitME76EVHkUqUCO3bjK17nEFaBl4Z7LGpUDPAexGqdobVkLCfOyf6wZBigc/CtXXp+Od4nTsVQ7NbeN5dJUSL0USK/xYpb0eutsKt5VaLqYBJGqxLW6Y8ba9JHmbwGZ5VEseCZy2Ci9D00m+srmFf5d0XjVfh2f/KA0a+6qb5VjapGMZWGcmWRQlXXjZlnquKIVD2hmyuYIxUDTCCcP288sHeChDc9gSIhUZivZSn2K6CPFGKMnlXumcoz6vpwXOjPvPaSOHaJiAIItM5wImYX70mgo6IgMWBUClObbJuQOQqIzs/TaaDLOSdeX07KtaW6yyIBk7k6MwCjRe6ukq8r3Pp5+QnAknLbO+LAUTbAykBE9RW+DFFuDfEkjMRezDbRaCjWzZpx3rSZ30oRwYUqRJEuZUn0Z0XovxyyGLqtpyHBupIXMocVFmSUpmiVEb7409jBzF9q6jmTXHgoAkRk5fVUjKW8CIpWGnBgRY1B7KOg0jeYUKufZFyXb4jTKoFRwYauaNy1pBRADu5ZbuEEjE9ToHAZDAhkxlJkjd4zRSyHCpFWiptKZ0btGX33hIrexcPdE7b6FGhLySKSHZyqundg1soUzBF90y26as04ffd3ZFg2hk40NdrpKsbp83bZy9DXELWLsaxSMMMZluV5eP67uIyQZygAoAwhSIaBnhpqPBLa+bAsi0IwCzAL0ZVFYW5tkLRLL9rhupxMu2m3ZB6R1fXjIW4VxNMQY2rm83ZoDN7y0LUdf1oeHN7++np4++7rj1N1TbX14++bxcfmwvHrmjnG9wC79dDLl66lfP33J7cd/yO/G+afP+bvnj7/8tNxG/mVZbteXGCMG3dr25s232/X9+0fkX/2t/8p+yvHln9oPbXu9vHnQDc9vz4/RHs4P67o2oDWz2xrX8E9/ennTWnu+fr6+/fO/PK3jl6cb/835DT//8dNfXh7Xn7YTl4Ayr9eXPffc95S/xNaen19vfXzbwOunB3/7w9K+bdZ+97d/c/uXdhbGBePF9j0iw3oubaM3X58Sdr1++dPtdrle4/YAgV1Lz9D5Ibv60vqCKEETvbVo7OtqjEg7Fl0Lyl3kFr3eVmstrXnkCB+SSIQiynBdpIIAM5VDgOlQIaNsJyGUaWIIyCxulkbaKKxVGbQpVKqogjrTYg4GWIpH9ZmWprmW4KpFSieQLdWOUVRHWZlI5vxSMJ/Yd9W3OUZShLnYOF0yEcIxitbasxKW4cSyZI01Pi+NUnPXpc4Q+nTntVKnVmQq3JZt23xZ15UHBj8nP0EYkfN/JH2ydCAQnhkRhmTJnpAzso9zeq0TvUTScyTnTP0VD7FUs6mavtO1SoKmcoosQa8qhSkNsjDLTAZt7tjWrFZnMwyykhOlAE5DR6mkSUnQnW0GrZuZNTOTAGdtJpbGhQSO6ZvG2r8sGIBkpJmsqZOF6YsKaDBGK2lbrXplrSbXT0StJHkxE7UdwjYoCJSXdLV+cwYyB0L05m40jOKzvYZ3U/q6l7WHaaLmUy3GNo4EBzNfiAkhm7i4lka2zWRElGCQANysFflb8kXMRdN7DwVkSe2KVxGRZt6205nMdRjCZAw3A9WL9bA9XVYO1TlDJ0AwsxTQgjySDElIIrJVH1f4j2loawbkUEQ9tFZWaKrN1XTWoIpSdWs6CguSjXxYkM2upDGweEMogIRXsrDngJThtY1g7oZwc7plJaS2ddtOlADzMOOGcMAV0Su4IjMRUiqQWUx3c1j510mwtGXpQEHDKZjcAmXh4AFWz21io9ONFoDVbDEis1a1fTZp5b/ZMKVtpJEZPSVTRkYejVjG8SiQS1eMxxKOWJiSrtTwxZneZJkKSyZdI9U9Bw0BH5HxUCb2Ga7Q4tbWtmqh0nPJsGXH2JOhGL6Pxa2DtmwPERcMg4Pi4m9O501d+8PL1i5YTYGkWd0lsNYebR2Qoy0nGn1Z6ZSv3koSyEa2lJPNIy37DhvWou+w8z5s227BOK9ycAx7eLffmiMfFp5WZ+tPzTKfx+ll+ML16u3Py/iyx+225+cW1m/vnb4Y8fLxFXF9fXcL2y9j2//n353+8X/Z/oflneLxu7ffrfzm5fHUWvNtxMrbly8vH99fPr4+ffy4fn79k779dn18Y0/j7Q8P4+//44d/fPmhvb4b23mcXleap/qK8SLbom358Ie/5fW7/+px6Mf9xz/2/933a/vr//Z/Of9wzvH94/qX7z//f/b9dsv+8uOn95Gv47Xblfvrx8ezvtz66E3ffPjySQ/yv4nt716u777/4199fs1Io22riVzPnu9u/s3Hd7/eXr/g9Nr488vpJKOFyNg1Lg/I8G1tbfReO3QkzeDmy7Dk8igBQaHSz6qtn4363BLJmHhngagKtRb0OLTABOirW5zO4WLO5EvpsklKBgPKHOEY08qBjpw6p0lDJsI0IqvwZiL8OKZrbC0xlSLdQAUcU4tIIG1kFBNqU6ZCiIhDz5Jj7v7WVsnki6v+mtlMlydqxZalBtY09gjWaqu5FXJKx+QFQxWf6+ZuIt3Njd6cxrK8LaV3RgSjN40EicPztyjG0hHr8HmfUU0J43mZDL1BByd+zPYoIdisq4cP5yFmO8ZMAA2H6p31BQEzsBTvBwmcnKiyzQCj8jsU4W3y/JVuDBMykyaVoCBlpMdXtB4VJ5sjZDF/emlrIDHFmQ3pUFmWlWWjpQSDrNKYUoZRix+Y2v2BylxK2LI0qyx5CqDpEMTXpTvE6SAihiJR5ZJ05/ETJ9A9pLm3kmk1LdUNQU6I/7jqRZAX2A+pyI40QrUDJyoyxLmZhXkCQqUrBUpcV4xqCcgLxeCUWHiNqbOxqCe/Jr6yqpNJoKyZwZZMN5RAgzRzm2QHOQM20kuQY9ony1yaM3r9wFJQ6y5E91mXSRdpOekUkcS9f6sVeDO2EvU312oWWE2Lo2XmkMJ3kj0Wm/m6k/2nu6MEhxLNm/si0Jq7uS/L0ou2EHxiPG6zAbD5EeIAPQLTyAakMg3eHBJaa+hTYXhg8W4E1WVm5TmnCuDkEiPQu3e0EXIOo1gsQUWmKXKkajuzbInmVgA1bQwoKdIUYWkgsy2SO8BKlStuzy2hkdYGkaAvA7IV2af2n1bKvBEGmQcY+2Wak1JmvjCTbLa2aLbtaNph0J7dT2Tktu3LOrQ0MWu9W6RbAnQrR72etKyzomB+1Q0mk+jN6AxacxqU+2Vfe9/6ZfjYH1Zp7SlDjGvfL6/t9s3lsr69jcT1qutguJN4wOnWtj5yPzc2l53etJ4nou0PmQa39cuVa0Nie3r98Pa//+/f20/Xh57j+u5y/fTper2sl9uevQuRbTnvp3Vp3p5eH+LLUNp6/bLg15+2j/3D9fnz88/n1w85YlyvMbKHFmdrRjfp8c3vvv/1+e37d1sfX358eEMaT9/88Zf3/812e/iv95//5enXt2mC5Wir2WqxBIV2frL1/ObxGfjmr/7tl/fX7bzp29g+vGtPhu39L6Rtp9XXpTXHelrePpyf3OJ2fbn2G73b9rnVrk0or+kEzUbEQOPwhxuQFJg2pzYrS945JeAQ01Y7HiKE1nypNDUJoIXCajoqFp+MoProfe+ykmZqopSVcQtEpZLrOO9xLM+IGcqRkmdojNoCosDhI+fuXtzq5KWaZYi1yVF7Smkic4+YTag091YTVOHmyArp4mEOhJQyzCLAZAy3FIkYkKOMFFXfYQSgTCGHmyIUcAZJHTnjrH8ZCYmmDFADXBnDZYBSzLQ2yPKLrUJ/eMGRLPvqr16J0lyq4dg1B0mZYLOeHWu5mkjaUXmLldVdIIb6q8Z5RX/7v1cbxiAnmTt3m7KQ0RJh3cv81MvV8H0v//fKRAuUqVJlOxden8GDRy/VQRYRfEx/WW4mWXFcCCvvStCAzMpF0zEtF/ptWPoMeLD7ErfmFRMwde5kYrp63Qv4Aa8fWubZ/kV3Aks5w0xR4JxLdXzT41uWrv4QnE8NHwTclfwl9arF2lLUoaIl6/lTBbXXj8uv22w8UJrj7ZjkMKovrB9vSRuA6q2daoPZd5FHrzrvrWaFN9SqCOammxlrHnWDIWuwt4KtphiiKGlgUuuFP1evFkAEpKnl8kVow0UcSwoSSJ9MkwlOa7SE2zTVSrPZKh1vTiHchLl581GLqvVzXK7CRphZj8ZxhSq/OwosmJSHWxQWUn0OCSQlpAuHugz1oh2XufnAyAU5bAZOIuBJIyNntLVRUUMwM2KyGAqopTLJqIAqGNLDPNggmEqAmJ6hYfBA9fzWhpSWAcdAJWRDSFgjkMgixJcljTSEoUgPs67o1VpTZoi5A98STFuXRRrWU2IOmCKjrKDNyhKYGQCYoW5gRDCmR7UUQ0yFyEyheol9xXZqHkOD5jlm/A4QoysCVGa78rQMjYERI/J1b5C9vz2f2lhUAhLl47Ld0ulY18XcwpC3rvFqt/76/GVZ3ve3t2/04xucHypTLxczN9/WxccllSO9aRubEoYIj3V783pdml+uL3MKiGE9enruoVbwop8eHk+n794u25v9zS/tw+P51Nif//XzuzZ++mb/9V/4+o/bX7+8eO+Z0TsVaG6w5mM/mQ0+vXl727YP30Vur4P0hdj2zfq4DUO6C/DmNgZG7xnuaQ8Pq+HWR2gkaG3xUjrEjQPwtBzKnlGWEYHaGzmmJgozXo/5m4NCmRkVJFK4bZGwRVjWknD1pnCDIiLG6BpsnLaU5TXDjDxMESFyxn3iyDNCZj3pMmjip2W7WOvH93NrfsqidkvXMtne8pDiUXi+1iDOD1g8F11QocRTOVUyENg8pY6D+6A5j5KF+1rpXLOtTdb/8vfRaiTPUPrxz5IFLkbEntJ9r5mMgTGGY36k4zfVR+D07kmBMmv3z1LTZnlh1FLIURPn6KsqnAKEBhxOWTXzRTFZBQYUF1ZHGPIYNqtWZdHINTNyyGooVB47TzpKR7EJUA6MUV5VmTJFfvWEzvvi0nFjaAUK17FZPK1khoh61mhok9BwG2kwtOL6AShwtw1BPRBAguagh7xVOLMZcuLU5pkZDXP8bYqQItVKzQwmEdPpRQrdDaKL8Z7XOCtA+p4VUpeAWYjIZFHpBmfdnflNysOCR+OU8Npvrh/qJbtTTIqfRGaOERaQWsBNZm3+SGvlKh3hI2pqt8PdNVPF/pe9jDIS5qGZdFxJmYtrEGYlxQvAzCeaQtJbc2u9BIrVy1TNTa/rYIB580VG5vAxLBAZGdNBROsD3DphjQXpppIJVYBKtZWKMRqsuUmZ47r3rFGQA3Dr06a+mj4YB4AJ/CoP0xAv138CGTSEd07wv6rnhLTMKl2cUNqx3U9v3Fu2IZIZCwMj3aOxwqkiBLAVvjDAzKONQwhhwyM9OR8OAy3l2/NOj2aIlsOFVFIKDEBqRstlKCJY/bQbnUgvv5QROaxpNJr7uniBMg7LMKWRK7Gc1i2WRXtIRLyul+ckud8ujAWaUJ/JIsyJ7GPAyQExMYZJEaN13K57nd+BEJeMviey0wF6W89ntU22WUDj9U0EsSJp22Jc3jy1ZcE1I9DOy7L6k99Op5VxzQ1N52duiyBs63J+t3leR2+208IfTqF+Zd+jsd1eTv1G21rzl282f/OYI4Mtb5cxIm/jduvX59dP73/9+Mvzn36yn/5x++kj3nXmx8tn7V3P8SYW257NTMERlz7G/uVyfbEd9vLTK18/vr588/HL//aPn//j9uZfbj/99E/f8eH263r76T9/yf/87eV2bfvldtv65870ttpqW+PDe3u52Pc/fI/f58ff9WgcH/fb8/Xh+y8X3PrrLaOnCZ5pXyIufOngEpeG29bYvZFkuYwnSG9j2/a0Q4l0TAEF6JUTjc2wwOM8tqmjOcapKtAiEJEjImMuypWDUE4DxEiMVJZ4oTQnFE2ZM9T66LKtZkaQMlazZ0F5zRzm1ha3PugeSMlKpEIsFK2kA3OIywMjnOIhL11uLXuoMGXNgiMARq+OOKZ7BrO5ZWlI6y2C1aJQbTwDNE1jfw8v4e6hvUlppvyqWLx56ZyZTSgnIlKZ3ty9tdPqLpBojWzNzWiLHd25eyPVlhWk0Mp1v5puS/cJk0+Cr25JIjmhMNTYfxTgPApwYp78s1a0ZAWD91Rg4poTMp27yAdKelT2KIA3q+gpygmU86MkLASW3ZjmhJ9QKIuHP3xEv+K5BbvQqzkJimSZJFGDytpNH2FQJr0cwc0jwzxJZAcr94KAFfGdGrW9E3LGsnACbSQwrS1ppdKq2QZFE8IkBMwDsS9eTlYsl7e7n0u5KyODypKw1bZt1r1GBihFX7D0DHNnUfylNjBvnmTEgc+APrex7j5jpFnQvJKy67ZTSjEIMIChSKag7DEiUyYqx7TWKZSj3gVjZFHZkbLMJNJABimIGfsCVQnUSEwE3Zwyg9IjMqBsM6uqqrASmV5dD6Ih+iC5YGnp9Ib15kgMBoYhfMS9LzlCTOotHSph/UhlJiPF8urSOGTfSfXruEUCHGPPgBsDDtMosS6S7sq8XXd2MgSs5qG+LxCBHAm3UMBF5hhjZNJOyXQlC5caO/ZYrrGsNDbRO7wVTtCsl/KdXFuGesLbWrEPdNKr19KuCNu31gY8XWwjADuFacEQ4IiVG1cizRfz4ZbCMkMebCgGVzdrGbTF2pe+KUf2tWmEb4N0yxxJB07B9tYv4RbZbiKo23XZV7y+vKzrumK3dcnuQ2ZtHyRD+3WsjP01tSDy9QzzFjvkzP26UpFOxa0NIPc96alm67IsltfLos2yac+lBa/PHTaG4F26rsLSe3656oImb9ub0+/ej7G+fuzrpZ3UHh4etZ62J7T24fylDWR4y93S/GEF12/Ht9/+3d+v//r5+Z/H54+fdnw65RjybdN6ftg2W7eHd7a/v4xvvz33p1vbLK/t+kV8+XP/D/1p/POPo5++POhnfH655m3scR0N0OgBR375dfnpdmun/OnnL7++//OrPbyxx++//T/8t9uXX/+Hl3/9/evrrw/vPnxgW58eDejd87oPo67np+fl1k+2nd9u+vTnTUHslyta6vEXPKyb3RgvW0bcrl3rZn7+nJ7B/mXXcn53Wte2XLpdX56vN16uoZfFL3HNvq8t4SwnWmZP1KsRUQ4ThZRJtS8zSSLbVjVaSUDFtCbFKLi6jtCmtByJDHgj0HhSX50MtDWDjZlmxkzcY71mYgklZQ8bRaVULKiQYiSV2d2gikCaMl+fKCcn4EemM2o3FYHatZni0kpNKXerRFogYjCaBuZ6MiHGSA/AOSg5NeSWlJiZcYhYMhMZ05VucuU8qgqhZJhmVTGkrLWW6SyBv2xZWmvr2trDVK+bH/sptqyCl8JJATKG38MyUjLT4gmMUiGiUNxj3J3IceqQMM0JWLxPwLojAAU3T9WbhInRT6nalJeIQvZuU92VaSx9STGTB1DBlACbFpPKgRYE50BS8jvzGiATgh2+RExLzoE5CRisFixTRa4Xmoli3EKCq7CLGmVnVFX9xXTzUFlnAaaoB3mq1DThCcKYd9vrSkXoGJnh1fXIIEN4O1CQdtrLvcQ0deVWXB1bHLB9uRay9t0KBIoU1m1pdsxLEAEftwYxp3weGqWGAgpyLzRGMWbPJkgLSGvu6NReNzqyoj9pkQVGKbxYzbnIXNAxUUmbicxWrRNsyvsnaJ+yTDWiXGGSUzygeo1ieKbGkaAkRCiDGjGXq/IGt3QkzJ1prYkuFQ+6Wg+JZnM4LQBo4kMq+zNJtOZEDPcwwX016E6CBObrXS1F9Jjqa2ICtQAdKWgsTDVvmeaUjYOPGItXD1WoCo1Oo1sSCGWMjra9WBNEW7gTjWuDzOHYyWXZg2XDkyOl+lmgAHcuzduyRL04DhfWcN64eMogX2KBGLK0XNzq0LT2ii7jMmwEIzlKbjqwNRIL3HIMb8sYVuabKY0w6JqtKy57ou9LakQ5prV1e3gyI05jbS8hgZupmaVoi0nbsjajJ8xycQ/keDKY0NriSIVD5bzTzAUaI69paZdN+3J53tUN5bcyBORlh11+OT3EiG0/G8ftFle9jvV2uqid4urGT+qXz8qeXz7j9vzy8vTgRJ63ZdEltuZOv/gwd2zv3o7Wl6X/4cyn/XrG27fX8/bu/c/b2TZfHX7C05vYvnl+ZJ6+f/eH3Hx7/7ff/fx//A/PT/1hPJs93jojaow/tczz87Ktbefv/nbk279++3z+GN989z9//t377374r//PP/1w9vMvCv/w7sd8+XLrTmpdr28oDKZdT4Hrz18++PLuXcTzr7ceXyKN38X+9PjuW1xP28PTy7q6jdH3xfJbWz/4+3/gfjF8HPY6rO176Zzt/KRxPq+X0S/cczibKTMKosq5UTLrh1JszQNZ8X5EMlG+yco0LGmNXaxctKE2gHqvTSDMw1provcoRJmsreKjIjgFZEYYqSCjNBVlwKTKOIuRtZrkUu5dCZkDGUnBKJmPsRQYBior808YHhP7dYOBXrRU0iZ+VYiq6ojShNyhtDKdPNL0dJzZQtGYs7ioaniGujmztNOQps3gFFJgKnNqCs1reLm1QuZOtoWZt15waBXwbFJmT0LIw08CSZl5gpR5VXsyEqHEbwrwob+6n5uTs7wjp/PCt6p7B3hdaC1IyZImOxAEoDaTMgP1zQ+4eM5sNRsX7X7kIWqOs5VdVpcMR1CFivYyWhlqkiSzNMXioUmnt8VQQ/OkBEq/TcSoBdli/ZUdGR4x0ttKmCnmDc2EQYLZIK2yJGIceQe6Q/SF7hqIVIRGkjT35gMV0bssqbnJs/RJbwCc3mgElf6V/j8YBxKwqkVGsS3TKqmQSZHMUbfD9JWu/7pzP5+4ifxTdWHN2rJsDrlZwcqaWoNKb0DKCLh9rfRSyesISmlwmmdiZlFFArLaosvy+qMBGeKC1K62tNo+UwQlBbxNv8sMZUAjqiw6UMHbyhhQOGKg76BCahnREhkuLmmTmTYrFPUowDB3b03KdICOWgGgiR4086CmiKVA8LZY8UTlw04DsZiT5gW2K3zi0a0eC4EwEYbEgmkL7ZSkjJ4RNmiSg2CIpgabaomEmy/bjaG0ZQSpmG9BoXQgiOZyJBvSagtfZgQVgrJ5CDaKtKBy39Miwk57D7AM7MwiM6P6nBTR2gqZM0cXR3oaMztvlxMjPLFzEdluYXBLLi1j3NzXTt8zKoilyB0J1ih3s5ZNZrY0NzNv3qo9XpwuA5dl3WDLsi5FBpG1y/DGl9z7Ppr1YLgLUuzBdeztdnl9WrfHtcUCp3V1f7mYsDwA+fqwMKLfrg+315G69Nu++aCGlpQbHMrc+262fvM7/93lj+/Gv1nevV+3b142LgvdIzxiKDVy+Olk316uT/jd37/59vJEe/r+ffzw43j/5a2uj8K2r+D0j2eOZu5s7e0f/vDJn37/Dr71f/r292tcL++++/5P4zzW81NztccP+9LcFxu09XF7aqc3P53X8/X8ZPHSA7/k9Zeff/rlOykvydvL+wz1/unj08PNF8aIUGu5xTj/38d+vb7u3MlLT1gzY3NHRA85RqISps3HmDsOkmAGJVuNMCllpgmZRW3mHKsyMqPZapnTE6N2iQ6WMCpuvrbtGVT00Ru7ktgXG4iK16mIk7AYXpjwoW/RVwavyh6BWvifJA6mf6EEJfPwaOKkd6shn1QrrMHAsuXAYWkMQC6RwfJeU/lBmLNkCl7aaHIuQNcEZ+DcPSlp7rGzM6Hcgmj/SyEWZzXIzHGlS5GlP8vhTsV2u5WWRFayaqAcjw8CGLRyoZ+11ADNPduKhrB7GcVBUB4U+L0cHzKpOunbJClLF0SUinQOyJjWSTq+d/2r1LgGAOY2tfOFKNaXxER2SZhhcuHzXszqO/OC6+MmDgq1YOhkGNIsazqaHl5Hoa8Z7qh5v73emHS1zWMCdyaf92ZBOVeUgWOarKF4/vlyxBSiZHn3PguQMmZjMVURx2W8V8pqyKrJufdrU0M1XwnEns6DEylbjeLLNSmEYjoPQgHFanCGHtQw/PVqgBLM6uZPNRFqgYVfr8y9AqOMM4EygGze58sB1Z4sDz3WAGm1mVX3eX5FgoBxuqfgIHgOeGUK0OoxQHO0epKbtwETgnTufb6+1VEcrO+UmunAy6vtqT7GaLg/utPUufoxE1l7R9V9zqv9FTq4fyjJBIss0CqmBz3MnDOLoX7kZOGsFTNVr4wza9uNsFrDmijYbqMP5RiZqnMp6zfMlQI3SKmoIry0pHNQQVNluhbZFZloLEFbGVwTM5m1DrSq1Fkb2xRaucMbfNlODomtcV3clg5IlskcmX1IZS5ShjwsUEuBrGY/I8tXzWCdu2dSaRGhhJTIiElFqhyCkTn67pLGvmv0NGVzEwWFKuaRoWatnXL15rU5jZUeDLfscg9lDJluJo09AoT5gpSZA+0UK58ezPP2+svT6yVueeuW4EjOd9bdbVlb8/Xt6enDy5t8evPk2zkW207n9XHfrk3N6LIxPKKHqMBCmARfHh/94eHhkTypjzXj1rmdYR62rjo1f/KVkZZYGXSPBsKW0+N2XrbHHR++e//9x28/Pr5Vf7vnyW1tflrOCJW1KYRop3ZaW6P+txBsWddVsd+yD5WWPyu+U8gM0Ebi4GJ0P07uJ8lXvwop4kidE1B1p3bgdBgslyNinbLItOgRESPvPyRZmqFZH+sol7vZtLyrgxZHDbgfJPdJZepXjmO98OrjH6zuW6CQZioLYf7mtCbBiWLNg/B4tY9jq8QTU/F0Z93uY99xbHydib/Sl18PYxzMVnHrmZgLBSAyCHHIaGK3Bd6WZjXhwd1o3pbmi5mpwofMaZSb0yzljpiDqASaz9OmZJNzT6qAasvjsJwQ2d3ZAmwk5wpvHaDMYgBqtuNR8XB/KuoakDhwSQjAtHO0ub3Eu4p3FoDjp91VtHXwIzFDPFShC3fcnsd5OG/qnCyNJpiUFEqjRdR7Xye1uaSYhkjFAQOYNtKmEj1TZqywNNSE5BPU18HU06c3VT3doMEkiXQHQLkYZrOQoaS/9DmTmWV5SdK8Mnwxi7m3ZfFmqLTDe2tAqwVz3h+dCkwgeTcpzzz2mqriZY7u4jAZMg6nNFSyhQSEsvIJ7GgYNGVaghkhF1BGjSUlcrdCqOBRJ4PRWsVA1hpSSfDmM3N8dpHlAqHiQWxJAzShihA0ah/MRGihGii3Ri/bYWMBbnWDZxObGRE9a/2YBiVrKwPujeW56ZWZ1GTutS4GaNCodIiOEdKMKCwxFRt73puYuqw089r/qr2JnF2PZHRXGlkbOsfDO/WAU4GXdZxOd5+JU81GEHR3p4CI6o/MiQWjzs3qE6d8U/Q1GwJNjjjkEhMGgjIj9j73rVPqbaYl0+g2shFCRjdrzmnLb80HJE+JGQtaY4nGTWxJmrfmAsC2OZwouThghsQgWC5no6xLUxXk6t4qfjaz9+v1paGj7zmYmXu/Rm8E8tp1a40WOUhrbcNY8grGYkFzd1vcmwwh3IKZsKERIdHoTW30895ff/4Tnv/jdnr+1HMkrHkscNvNWtvOp9Pbh/f54zfX5+/1zdPDW7277X767pc3p+Wdr6+vlw85FDM5yFztDPO18c3jaTmdmy8f1/b+hx/633z/5m9++P7tf/W3H0bkuy/xIcd33daV1s5rmURomGgnu77CFz2e9l9/vmbs2r+86OXLy3O+fPQ0o5AjYvRxHc1w9qERbVuk1nsjhFBmRh9GX0/LsnaS5NrS5ZkVAj4fC58RlzR+7XPFUiziAGYhu/v/ZiVxiWaz0TrmnVSG5r6lNTOzVlIrcwSMLvtNPM2cf3nstcxSXAW3Vg+TNk0tlTZnUZq75+zWDKIp3MouCoYDG9TXX3GvITpOuzvgqru2VUft/oomT7+sIlAFpCkjVID0YZldY+osfSyOO5miYMth6USzRtCX5r5s03/DreJizKw1kChSuLqHdNLQDg3Wbw6DYxSrUnyE6VhWquvEBXgfiCmhJUuSjMrvY4x7F3VA1zjyJZVgAJGBCbTmASnr+MWzRGfO/0pDzLEYrBReo5ANjFGni2rbsNw2yjCFc/PFvRUEDRGOpDfXkFSRITBH+YaZQHMjWx57tlUY6xebAU6iYaHDy27C3HMprqEKygSUa6WoLixUwb6VRWeyAGEJMw2Btd42B1PYdJ48DlZSZf2JRCZgyB5H7zN/VZ2yEVnSPxSuBMpxjNlJYPoZZ71tNY6HwAxFZsLShpBTvht1C+lBq7TK6mmPKdKYCW9FM/nBNnh1RmYLR0X8kUAGOBOwDPX/jG5DRwxFCbNnsh2OZtlM5sMaDdmajdB0bOeCTGRrXr46FJExFMrRQ1LlRtQGrQjlYFbeIpzKwFDjqFCCmhRHveeClX0ZaQ5QshXyJWmLRxIga9/AagMQMrFBoGwhaRb1Qk3gypaN2xBllaYGkWFg8Z1C25v5timZ9SNR3Y0wfdE0RnApYFzJkXYb5pcFkmmQQXgxfrBmHBpokXuHlHukWUQOLAoDIjJ0ezC3zTuXh5UzGDVifyUtMPJavtarbaTSHrc8N3NvbhqcmhFIlKEGYwzQ6SOGAz5d54TRKgfAaKCf1paCE1NCAV8e3m5bNiw2DP121mB78PTmBi7tnNC4hTVfVy3Lsih0/bKuARvLkmxMc8a4PpC6DpjWtiyLuy0br80XJNtyveL0YXyjv3p9ff/mzbs37uaGMAG2ION2ffny5efPP338pz/9//7Tf8j137/9/Otg++aH99//2//cP7yR/JsPt9d+3k7r0tYlsZZ8x5rc/PzB2n6xZT3vt/F8/nL603/8Dz8+XJaf/vTr7dX7/8h/d32xPm5h++tr9szol8/Xd6+f8ukRi3l7+WQLbpePn/rPvzw/85er5ZILZY62reupBaLfbtfL5fV19FvmaOtmdHfX2txPr1KMka2ZiZT1MgQtBU8ix4jQXEUqu74aimvHd8KbXWm+LofIMkdRyDBrAqyMVWmOdA8IooZLOSwsh2V58qh00Co3kEOiK0zDe6Ox4Gdzwpo3KkUjLKDaY6QKBmZDlkEPacwGsPJwjqPhN0wuMDE7S69xSCSzwk1mtXb7qp4iUJvRcCHLtovkRKA9zIudnWsZx28wd0fM00Iw94xk9fUiTYUBofeIElcOB9ki0+za67U3uJMmpzIhriq6u/Zok+M+cmoSldUTHYtgE69ECZsLUScmB1xuUygqojTyhClBeN1nUFAZ58AnskYTzViTpskLd5MOj4pq8WWeJq/uJoWo7HkJcTgHW8w6VIc4/d5HFF4AFskpHQ4HZaZBryBekEomI2zEPrT4lA8dsHSte8A0OBKszPuCEDkiB0dlZ9mx6wUzuNxYEIwZmJkJKDOojN7v4NBRqgtWlg7o41htlkSkbGSaMfdsjYeGmjSYt0YGAC9M2jlbBhKa/PVBJpOe9ySvjLnfwqgTv57uWgOr3jQm7GMUYUWuk5KZufmQTEFQ5SCl6mvTkTRJeUQyYmI7B/KTNJlzbtnQJBIxJVkpwISQgc2AxczYTIsMXWZQ9wEzagi1PzrvvuaG9sGEpya5I2UfychK+xhj7z0QCSkyCC5lbFEizCSCTWOzGGX6nMPppW3HAInmZYcxaW4oQIcUrJ+pTGKICDllDsIiygMHI8rU3ohURhBAZNHwEBREWCJGl4R+SheY1NA+HNCIyPNID1M0MIMRQEMMlFofQ0bPXMzYzNqioDQsbaNB0ZpGZG2UQ06emhbT0pByIxcGwLjFmgy4n81dda3ZA9EQisyxXztjxK02HhJw5h4ZiHG7ITNSSdNIusXIiAFzo7xtxoanx4ULzNcWIxNKLZ7DNoeIPq686NhiXnwsA2bd7LyZP36yk7/bHt+eH87LF+Z1fz37QiwPemWG7SOvH948nx7308MWH9qtd409L/12waWPnsSyPpxIwk9LrusbbdLz3vPjn/+B/+vjP/z8p6u/ji/jmZfbGJmCRh/j1m/PL+3xT9v/+vF/OvP33/XXT9v/9Mcf/79/Y3/u3/z1v26/PzX7/cPtoy9/137//K49nR4WNVuXtrF4h3fvLiv8y+c/ep5fgufl4Rbtw+Ob9UGXjy/763Jtft23QV5v42Ic/087nR43W5ahzca1h2C+mPbL9RLYB3zbrj2vfR/HxDlzSWdJkiCboFehxzRhVEWzdYkqj7MEJrIAQeeEfo1UxtgjBdjS2wI4HI3e8uBHYxoO1rFTWKXKHYOWBdy3IIMVJm1so0AeuFfgKNPNRch8ZtuiVo4CmXaYAs8BZeJ9Opro2rbRVE+osHUUawsdXT7uQOzXM+OYzsu8pGwIMfWkeXgzkHMugqyC7lF4wRAtfIF6SZWisNwDhYBZ86wLc+RC0FtZLyPLDEUpHnFUvxntc0qtDjrygM+PTkMCEu34sLzPsWUWkThibg6coFAPOoqEqF3K+udZCW713OT9cxzPTGnpLAOZDAYZ0yj7/qE1h87jjyYrNhmYkYX1G2n2FU+dRmcKEAwkYgZkzIozwYsa+QiUe8R9oOeERMCCOGvcLRRaGQiB1rZ2jLiYC2UqHIczNJKcM9OE2e1er0irfKq66yruftKVkyWXqIxhNq07rVZzQM7MkvKGrg3r2QiREM19KaPMQuEP3Gr6tSRplpUTxmNdSkJt/9VrnlOPxXmbp0qhkI4DGUpA1dEWz8TMGANEcmZ/Tco7eYRIm2FYi0SG4FkCK2SIE4uJ2gmb1BGBgusrTWoeIwKt0mSFMpFzlTUAMM1XRYVi3l0z5hS70wvOcUamOpUB85xIeQiIyCzdPWZ+RLENsJkIpUwpqNEyBCQsQKdN/QMt4e6jXONRjlhHy1unB91QdhschMJpZiNbSzG6eWk1E4MDjcoRo6g+OMCWMwululnSSFvacBASR8u9J1umZJLZSMoy2dRFZrg5xeW02WJgDkJNIzPTyfS5r+nemsMTMjdzCrasDWJry7K4GQlvBgXN3Cu1xVtrzh2n4bmHrjnqYQk4qDTr/ZoRyebeIqToN3NLi3CHKfatq48I9D6w7ySbG9d1WxfL8NMCd0Mi9eB5e325XC4ZiWin2GAtFq9dVkWkZO3Uzm9+9018/4ftzfrt9Yrtw78+nd+c86TP+3nZGVn/ai2Gr21Zt7ad3394+8a//2Fc3p5++Xfv/8O3777/6//m3335r364tYc/fH5d2unbUZhlZuB0cidtaWfb0G8vZuvlp5+fr5dbZI+dW3SuD4D1DELWLDM7mjVlDibct5O3lv31x+orB0FbtvW0jcgYIZi3wIFUsSIP3Fz04KySNqvGHOsM9DiEHeUzZa50cmgJmyB13W5PK1s4Fo0kgvRytaPVD/eCKu+n14FnHlXjAFV16I5Jgo4Zj1CnNevJvhPIxf4Fp/7Za8AAKeTd32bOCDC7O+L85tdPivRevo/hXEdBm6U2IyucIGvGqDGvSCUJBVOTZKnZwue6Eo0K0Q1ETncAMzN6a4svZW1ZpLDRYMviBmBpZWF3sNbHWVaDa53mKLr3iM+49w+UjkTndrDDOFjXQtEw+4ZDIP3b/iNDShS1xq/TdeXy5iF9w7wjIhRp3qYu5ai5E4qocsd5Ncs+LUEyK8voADVVfqDzExVDWrRkAoRVnmRrnN4tMqAEdfXpyyJ4TrPwdqytsCbc4vmKRydJeXVow+FVkJj30b6GcmHSq4Xy/IYNKBTguEYgULEdwYgcclhh5pM40JiRGYF7s6ej6B+hiuVJMimUQ4pglpnH/hCQx/1g6zHpkXmFD7Abd/q/fOFmf2WTHeDUMNGLfZp6trR6/DhjjdyCv1XCHYL3GYVgCWZlgZaeECEpYIgwSb0jRMNSTTYwVwJpCDsaIQL04hJIwBcjvYAvM2/pKZh5MypshhhlEVQ2O1Kyjah7bsCR920gNAQl/Bj+CzmwQ+5Q+5etFeys1FCasiKFlS6lYsTIYg/yiAO+N7n1SpXe+bCyTW+jbF5g7mwdh8cPjNFHeCVv51ho3kG47dXhJWL3fdllijRAOWBeTiiTeylSYqeHEu4JiYx9vW6ZybbfvA6QGjCUkYtUVDtaIAdhOTBMEsJG762wnRh7gzLSrSWdyMjsPQlE3DBuizQcYtb7HYzb9bWdOxBMrEu9tac3Q+cd5sxrvmkJBB8etEN9v+wLDebn9fKymMTPj4j+8np6/eVPj/90u/xTe58vsSgArTfALSNTEdizh+e26Xm85v7xNvRyc8abb32DnPnh5TrMJGrIOLKVcfjTu+++f/PXD3/85p+3c9v4xvp1SC/yX8fWX58//ejv/tKW284hL2oHXdZOb7aHfM6RfPdGqy3eNru8/eRvH7fv2/m79ad3p4fH02k7NbO+t5NvDmq/9ms3aw8b565A9N2xtFa2TCMyUjbP3Vl0ik3SYT4ZUUyMspDD6sxyZBag2RHlGY2y6y3FSb2kEV83VKXCcIhyGuUcICjMvPCpudEh5sWcHVGMWB2XnLhYKR0N4HRWg6wOWAIJOKFKXT1OsFl/ZnH4qhOqE+lg5I5a9dWZSfc/iXsBzslOH/8M51Rz1Jf6OfNIv/+EybLVvi/rLHZ3N1vWaYR/Jwlnpix4n6+rS6CJ3rx+Z53IZqxc8vm/TdRiFoavmz+Y3+oQ8TabPde0+iq735q8ytmWd8i+JtQ5/E9S8Zg05+A8934AlZgCmQWn2gHOzvXPIznIjVH3d/p0QwUBT4Ni8MCRq8tKq2KlQwJUU09B0PNk0WwQDxpagiGRWTIqEytsflb2gpYwd0uVzPnEl+UbaeZkQjnzljGFWfMuH+uf84GZnerEjedRjCIvpBzlw7Eus2LVKFJmrgYdi7pTBY2DOJktL0FTRUDUIAyQFtXgZZkkV1tE0qyNap7L+vDAxusuzis0jTqMNiUevM/A9dcmus8vVp0MikX1ryHPmM7wxwWn5BY0q/9guXlDtdoecBLDv95g1ASsYxn7LsioagygFscKYUYKismDSZkQZo6yVKiYLJnlx00LOo9czZyHiXmt05OG0IEUHJ0MANJ1M4O8KQg4k5h7ziUPnktmKLnE7BKnxhAgUkqGKKOhedJcQ1YxAAEAAElEQVSCMZZKyYRpBhDDyneZS/Y+2qpbmBjIVBoCFJuN0Mh08zWMrraYm6hEuKVSbgMJM2ovC8kUkcLtQSMg9+YYEQpZT9ZPV3Dv4VD0UELDSEfudYXK0xu0tTlgy8IBSNloJJdVK7HScvEV63YdE4vLYWbtcjo7kB6KG5HDFt2eDXm67ctqDy1biNQN67rAuHBkX3rfszkGouEaHk8P/eGb+B5/t3/4sDyen5bVFdhDJLcTTe5JYaO183kDvO39hhG3v/z43PtlP53H2q8iuDS2tY1BDvfRnfvt+vkv58v54Zu/vPjP314vbxN9tB//8MfPW1tbG+3taovTDWO/XV9v2E3X/Xa5nN6fX4L+0y9/dba4vI6GJvOlndqbM+L2+vLwgm0fK5eTJRwyOkez9lgbRTFg5trWRcz96tdryM3EtGkVYRUY50bCmjwwx1IdU5SJhmklzmnXWn/DDvQKbl5bPITLZA56K7KRFrXeDx59uyNSoeBR045/8wiwrRO6pmAKgntBx5DZ8T9KmWHHWzTNK4wCI216T0x17lFApw0FxcT0KsYxNwCz0t7hVNQOaWUFCccloOyw36yrWND5hDjtOJiKLq7jPnUkFIukLzMrze/NgDRLVsXhHmlwhHnz+hJW6iUepWhKjg6M+SvyrBTufhu49wUAwCYAOc/kObZDB5iYsDlG6aiC0H3jQ6YDbzsajXnpjytIlFWKz3pN45EGLAlMxpyxJ+c+0woPGKKuXl2/36qqf0MUkjjsqHEUlnlXjuaujvP61tK9Ls9rUKTBRAwOWKP+uxKcvtdFDc4apd80SaKonBhM2WtkWVTdO7WjKzuuu+51cP6A2UlNyVjx3fjaDt+bjflz5j2drImIeiFrH4+1IVbx1shjr4gGqMQeKCh2Bmvk8abNajr3sI6m9d54HXfkNy1zXaYJUZhYwRnlsFK1UI0mc3dVQLGZuzW3QFprsJCVwU8xiDkDycEsqYkOlywdli7VIpW5mQhlhFJlNS1RgcZ6UzE/c60cFj3PEFDzQ5ZhDAQo5vrlb94+SUc+pktmMlaXgfv5UgZdc5nqNz03j0auTiRNZCQWCKhwcpGMIBJ3/IjmNdvGdBM/nhndeS4c+SiCgCmSrL8xIY62VCbl7P80EjH6PkbKPM1csFEdYXVoEI4EKCQcKCROUIlfABJus7VAkQVmczs+WS1O5uJ1HA24RvfMPiIN3gmnmzGV3hhKs5C7tRYJb2zr4kZbmrfGpXmzaL4+vBmPj+/f/roo9ts+SlALAIFIo7W2uLvTkIlx7Zfr6+3lsvRIwc/kw2k92XqRgRnlX1BSFSlp9NWbLad13drLDaQtjLae17U1AyV3p2otvSyUR6GWyFSPsGU7PT6+f/vm8fHJ4I1IadyS5jZ3qdd1Wxdf3DH6fr3uMQIafczo8IwYyBjqAaIkhiPKOjETeX8XMjMiFJapzMkHZtZWkn19WI9npTIQ5ub414c5MyIy597tpCXnxq6qh837U/zbf+V9iDzIFeBYy6gjQrwDmEeDj+Kq5q/CLCf1J6oKzEdeByLKY/+Ex5mCe02Zf+43H+1oEHDwZ/e/wfto/vXEsjkC3MkhHA/+hBPvpJERM6jd7D7fpWZjxHl0Zx4HEcwIk/n8aToO6N/O7feiItw3kFBnZgJASxC1CQ5BZG3Equy9ZDPY8NjrLUV8DcUlg8/67XfJ+HHZDAVJzJmc8+tKpbHLWdc9a6V0ipl+gxXg+AUZdSXg0vTpqGcD86eXhtDug3qtbteNwP2j1jLt4aCaBSNnIgrVwWGJiDxQZEhQHo7kYPN6HHmAzTpglHvbcSzBf0VGvkL0hHntpbQ5TB4lWPdjtorHMa7VHdFEHiTk17Tn+YJMv05w1jzB52fHdJYrhD9nT0ZV4zTfdWVQqh3/Qn4hzXFVWf1mzgBcnzdFI5MpHsYvwvxBmfd9fUdSOdSOx5akFaqfBHbGamYcKC+Seamq5ZI5pgTe886oQ6SloXJG5+tiRncomyUPIbuh5r95kWwmF7qSMpuomfPeoZXQerAdq5N1ZTLkqczGiGTKvEbtaq1LykZPsC2Ra4hOo8FL7AYjLW0J95IUSq4IMZIcZCZqp6wwpxw9Ix2laLRGhhlF98l90RvcDGw2CDBy9OycCr1UTuHG7bZoCHPJsd8w9lNbNo3o5TUyZ5Y0B8scpjFgZhZykZX2NR/i1N2gKFHO4CEzjL7nGmHhNN06hmwfOcaIjL28DHIwO0PCJRZlGFIWovU9umdHdLD161X7db957Ma43D7+Jbg3b89tX06njz9yCKb4/LDsvfc+FgcRYSYZLWmwGH302+ue2c2xiNJ6isstxni5jCRKfUFYBTFbM6Svvpxd/bXFaM0RxIge/fPr7rf3I2y87suIobjdOnKv0zBGj/2SD2/XbTltSNnWYEntPS/x6bN+jREDS1nGK6RREhUA+zViCAaWc8O+tD6yOeHNpPt4Cc1jWoUW12n1VeJzvCrz8JgodTF1tcteqpL7KDfb+zq6cT+45ms1j9iC647R5Tcl7TiV72U17/UTQImbpvX/HOx4WAVDpZvOWh1PFbtaRzmEO7qlObHM9/boCew+/B7HI4ACDDEx9d/U6xpDihrk/R/+zbcRjtGsXPCrsn39OUKOOJZWqq4U8T7blDRUOkqB6aA5AiTL+UfHlD2XSfX14s9Tc14g1Qk5y6WKA57F9F6tdS9GhwkGcNRt4GuXUXTA/HN1ds8DeBaUujV5ZOxBiSCswoXq2x79Sp3zv2mUftOG4KhhmolQhRRH8qi5s3Jm5Pxl9xIoYDYH81PVTT4uwSTz60d8hROOxosTqiQAVAs6H4jjj83bPw+sWU2PJ3Jej0PsV+MWBFpjgQkEKzZPml7ZKbvHIaLoF7NyJ9f9Y4lQZmYB98fbARTbWH9RD6QO5Or+oeurVgc8IX9khdFNJ4n55+8d79eW6/5cHZfhfq3mgysIMtyrKi3NSaYrWhK1UDo4XPT6ynN6lFTYULVYklIR8+UQchyoTknNs+4l7l99CkZR7QcxlRk8kIcCZFgwgY4FSehYJaxhbm4BV/+tlIVNTaoT8OMtOo6zUsvcm4SjozpeO0HSyLSxZC6KSmNUCjZGWq1N17tpPgrNCCCbama7HyElRFs6YBZQttp9n6MC3SAqIzkTLwsNgVlbTkyqjyTSZjyMxBQyEbUyHsVhDJqAlAIorc08okrREIpEmrmTBCLasmxLc8cRTCmZ0bZzW0+n1hREa0yUUVGYK/stR7Os0I/cx/V60bSINW/FaRm4QMt6Pi0EfKE9rDFSOWoFYhABgWzNjBaBXe1hbBRhkq4Rvz7f+nUzw8tL3sYYETZGZuZQRrheP/+qj8vS1sef/8wfv3n9dLYvz5e+7zTSt1y3xyeel8XbspDrqbW2eGtL63p4/2JgvyncMG643W74ctUrso8vnQBoVoq767j0cR01mqYSbqS3ZV3h3ubJKCmYefgSzednMhqHnQ7qOVOxvORXY0Aezf0kZDUFxlPOgjmmZmTGYdZWsUIlfMQBbBmoKfQ9KtLxAE9LjeMsVR4ENfCbNxJgikBaHf21rAN56TjzEEHVaVH2/BBw32Gex0cxPPqKR6fdK3Fdiq8A3Kw0x1RyTL6aB9L9/Jo/eL6wgalUnQd1MmP48Ci361mB57lUhgd3kJk0lifCJPdwL8lgHeiaK2G/+de9C/gKax5/p80mvOjXeoSJI3p3ClfmiFW8gSmjxpDKkRQE+vGFp+wJtN8e+hmzS5eOzqPsAPi1NBp0sH5zbpPhHhxY5/69IFtawUSFmRfbQFqt7N7PQua9F7HpkURzAOV89PXCGsv88ai/NfrakZlQNYHNjs7T7FDrzd9VRktGc5US/pArYFoUWwlPBW/uk6vQrAMRx/c8yHod1ib1b01ogHcrc7CUA0ijLGo9nzl1xKAUUoSVaAkzmoJ30KbGFNSymUAUdw7UAr+ITLcSSfGwWZlQCgUmmPiKgaUUyJHIkuQnYYrQNdf0wUWjjZtA3Bp2DYPnzUbzNCPMkM4AlrRokDuSdG/LOidfmPnm+RtgbYqJComO2qIgZIZGmdIKzoey7Ixh4jSVNNkBRk1UgJk5zIusQEF2KaVlX+alsopVqWJHy+oRZpW6v21lyVUbx1bWMQjrSzLJsdqQe0QOWGIZ6UgFh4dDfe8tUmQtT+doiBrpqWL1M9NWACYocgTYJjEzmR0zG8wYkVMQ7s2SOJ3bw9vXwRY1ypCNSZc3zIBcMyMbiz9z16Hzk5CQYqUELuXCkpmpKAu/W0QUGe0txUVLa2v28baHrDnzdhHjdjNrOOvyxtrWtd923PY93BY0z9S4SfspMjluNxfQPz/tzy+fr4+nszt9//JNc+926h48XxdP5Z6BMYZEh5+fTsD5AwzIfsnsbQuNhePy4TxuZhnAyOYaNCBz2Pndt2+/efzjD8mNP/x+fPv48Pju3cP7b562dvmwcEkk+2X3GDcY3ZGDdG18GC95e/Zt//jp0+UazfLxafnDD/GH+O5dxLa09bS4ab+9PMrDey6ErZmL5bYBpdqLlBmX7eanZpkwt8FlORrROTHM9/V4InWcPXXU3yvLbEgF5CF/BRmdrgAkRJp5orlFInuXZXTSgiITsJzh1QoYvTaBMguKk6TIanCzOts6II/0Jt6HOswKcZ/u5vFYtJSVvSTuxapCe3WIju4j1ww5sTrQwOnxgOkPyAO2OvqOw7mH89WTpihUszHWpFTA1qaQJhyRwEw6NNKaGcRxfSywzefOioA+jCQtTUqvX1MH84yFHFN1NNUf/C/LL+dwO//jPhwfo26bIxyK2xWUM7iJ00+MB0w/73kef1EHOe+v6jGrzJ6sPiXnkHc8VHPmF1mO8BPO+I0AsPRMd27A7hx6nWrFk4s2nfwtJ+ZwjOl190pjcHx30oSiX6wWY0jC3MsBjF/PYjNTQSWcoIzdxb/W5nIQK67yzjng+Lg2idP54JkZkfRjJC2lnPLoPOc3KvvTtNlhFY5yIAgAcGQwKw+4nrVdvpDmsglZG+7EacS8GGKCAY9ZO/F1PpuPg0SkHR1dPcoAOd3sCmeCMuz+mFWzMu/mMR7jDvnw4FmgnsoFVI7o1zRnpivgMCoF511heUy1x+B8X+v7OgDURjAV7qquwms7Rt7UTF8Rj+pblPXDdMicaXO1DQRcyWQ6JBV7N2d4ZURmgVFeT44gIKEwmNIUhfrVXqC34bjvqs2pGhPmI7EUYKaMBCYMrZiNfPL/T9afNkuyJUlimKrZcY+IezPfUtXVyyw9wxkCoAgopOAL/z0/8hMpQqEAIAACM90zPb3U8rbMvDfC/Rwz5Qc7J/I1+bq6qt6rvHHD3Y/boqamymTUu75GrRE1iJVNhhxlRZ1QLZpIRpPCo45hDtbJOlMizOigJZu5zoft+3a7fhmWCDHLVB2pcKYycq2ay5CRIyAlIjWyRoqInIsmGfKKvcxH82SOY9d5pM6eGJIweqKWiKJx0/bS0EpFWp3RtmvbuG2bm8NMedtaHveqZeZEaCTi/e38/Cd8qwt2a3vuwGWv/UN5syIzKHqOSITorbGQyWyvH17SLxd5a/7huqVfN2/mNFdGGlNyJjPCXY9xHx5vfp46Pv/0j//w3e1xjT+8/fwHbV/8u5lURu/WtLXmznQjx4n755fjy5eOOOJ8x5cjeo48e8xMaa0k+R73+3G8vZ9Z5kamftRbCoQrshmN2365pmUwFtNhvoOLF70mpKtVNVli0YKKC0IYYCwzOJk53F1TN0MmV0ZriZXEq4ngU3Fm/dcZ0oHVCFcOrKC3dCuKNiqoGa3WfouL7Ua600E4ZWmz9sdga6LRfCXgpKycEYrPpKI1GuFVTnDOo2g1cGCpbc08gPoRPjPU179WI4yv2Fz1ICvWGh2AOauCn5k7SI+MqY8JYYXTjOp+Zm2zAqU19wknllKiwTB3p5fy5Lyb1dDW2gmEf9Ygqz2HYXMglfOVX8DlLK6q7Refj4cslHNKkC1lQoKY9n+166SZBiWBRjSnEaympKjTWFtReEZHVMSjLS1maOojFV0+S9zPaDAVOTk1XZGA2gTDr4rFBdyjxkF6Om8RtCWhXXDghJZLzFOLdbI+hTSfa0t1U/BVWlNyd6NnkkVysnotWBTrUmnInKbyyDr6qzzSqmDWF37iLFXIlf4wuVJp1T1ePPOkmQKguaVghrYRlvZ8vvMOf+35i+fOiXetR7qKigUjTJefr8qTUNk8VBWx8ApqUpkNaJvJIsNNTRYbpoR5RV02IpRtM+OEUYUJfReuXDWzoIyuBZdNynZtQmgWS5z1mgIBGWe7ykkpF5A0ltnxunCmErkcQxZTbSVmowlwT0vRijyYKQOtHiGJWQpNbCD7iEhRMZuXsmhSYujrqwuU2K9JbIS3AFFkf3P3NNvqSI18gmpOSSXNLAVCfQA0c3S3OkDztjbRBRgc3NzMaqdMSDG53y7Gdkmmy8ojR8yyn2BrMCsCNZIuuja31lrz1tJb27wRZrYRTu50ozNzy9F6Hvfb3XeQZzYbCSn7BsvRQ8dLbMkcNJcy3v3G6McVMgwCzHHEeOd5BPMAYTruI5tkvrfAecEv35kf70caz03b1Xkdw6yhbdk2XybL+743Mx6PLbMP5EHE++PMg/RLh41U0yiuwBVgeWdvsv72qvc3f3zxL+3y9vZ+/vzH2+fvuH15HA3p2DZne9lGaIMsomdkMLU1x4cPL838uhENyA5lGKERffTHEQqLAP1iGXHcI0fqOCIwkL417EbPHv04H2XBPFS6gPNtWm+o1sHEHPGsDDBhOaAgN2Ca4k4w0ym3tFp0swlcl2pGS1NrmM0FYIbCQGxChBWFnujtihyakk5aPZnm6EZr0pbZgFr2nZo/biA91wJobShpXuH8JWtkV8WHJhV7+qMrp75QVcYUQpMGnKp10KyOMDMjl5jEajy5otmKXaTRZPTSIDGWX1LGqB2UzYwLaq8udMLyNsEtkya8RreyyHWnUmUK9CsgAOvhzQvDwnorLa9U2p6pGnPIazmb2iXWns8BwLxXNT/KGYoKZE2wZmb1a9dXmeWIkrms5BfpWEB1g5PiVP9XYnGV7ldbi4mrz3KgOIK04nbXP8/VpFaZNLth/Ko5nvAiCja0Z8+FCe2sc7d+9ElZyHkdKk59PeDZuK8y5Vf3cH1YCWM8IeWCCQhrbq2ZTWUYm112ZYw121id3PrSJelV+i0qYBAwd3fVgUYN2mvWhPjKsSqO3PO6VoVT7WDCsvwUZwYudGeiR3g+SSKZc2WY8/4DudAfrVpBAA1V6QjWzORZ4s6RGpJK/KFYGLPzoq+XE2H1ftQ9qwKmpi7kbF7ri/HZ2c6RlRvMSlYYRa6r5/JUMQ7VkCMt1ulH7ZkhKFU1NwdNOVvg8kqoskg5hV9lq2kgMYdmAMDVQOM58Of82g43A1oXizJXPECv/aR5UGP0vNSif40QYQF7LnDO/ySoqJa8VqRnKS0VSqNzVLFcsVSBUzaYvO4atSNuJqtNNiPNWjMlaVtLVjSeLDNpUQGn7Mk8+aqnr2SOU/1UEZ2OkSMz4zx6WEYmK6dP2Isk+2VH3NwGLXPzpFPX7ZIjCCGsj9GPBx5m+HTtrf1w/fTxy/vL+1t+3reIcWTA3Vu5aRtpe7tcr99cXr+/b4Df9i29nb5t2wdm7yNiIJZZHZhJMVSsmf3iV/N9+PX1m4/RXl8u+369fvtNfpMfQhfb5gA2ZI4SHpJRarv5DdDLvuXR748udOVdx+jmG1Cb1X2cZ8/sBu5mSmrk0XuP+T/3kbRIOTlnjXMLJzOVUjK/hu0iK6nMMZQ5ibtf/0rLXMoMU2DgCcY8j2GJ3WC+488+F7N5QJqAtOmD+AxCwlfceQUSzZNeNAQu0KtKX7K2JE3Q7Mv4dHJZ0fyJWM6YtE7x/I+VmutPahKU8vmL5zdZARcrEq9KgSu/zY+phL5+hzQ9owroI70IlGt4tK5dqm3qSn1IieFwUbk5rFinEwdORVKUpcClgTU7R3z9QKzOYuWE8gOG5kaRCMRypcWUP1oBG5g+QfMmxVSHpYgAVJpnq7aplEVjGOQtiCpYi0wgmCs1lvQYyZIWXgpW1ZEWYdWt5JBrHOjOCdZFItOtRBxkSI4RMSITLN0jRorFVjDKal2oKUTFCGsOM5V8mkgohJJng1JYK1+NpDJMRjhRWt4w5tMz8DnEmL5OUjX+LFBRVv5e9KYwb5wpokgQZuaNwxaBmsVYcK+TUhpdYg4mo942Zj1T80izYQFKBoVqkOs9q232DpahXamW1LFM+ITo2ZUwDTUvFKUqui0HC64k2ceWWU0k0kpXBpQwhRlzFiXMZ1McaOlN7sIeoTASZ8/DsNFw4XYK+2VXdKpY2BEcyj4EpgbKAXu9gzknro7NgVCtzfpg2w73DUr38kn0TJnDtKGDZltr3pjWmofgMPRsoWEERmyWDlpGAr43a4CoVI7SWLJoe94IJUwOWJ5qo5lhJGgsJUuStd4R4cIiYZhyg22Dhttm2BzbPSnXaBZo7myeDlhYZlcktoGRUmQcl/TCexstRFO6c/PNc0jH7cZul2uO2EZIIYzHla3r6I++MR629wtTMPbXdijd0pM8dSZ3ZQaieSAKl2XaTsG6t+ElotXSbHfLgibNzUba7oSUg2O07brb1kZccDbcYwhmjDTH6OLloxjH5wuvzT4A++ZxpH052t1fuV+H7SOoVL8fr+32uIx9f3293K6Xy+1le/tpmD3e9eX977798n96aaM1a33fX24C4RjjPFKwcX7+5VN++uGHf3z87d/+7f/2H8fr32yf8v6hfftb+/hd2tWjf/Pd9Rx3onnI/XBE75KBqZH+TeZnb6/ffoftpR2P48vv/1//+Bc//Bu+fObb9af/7cNvGK05cb1auz2u131r/bHluFy+yc8Yb58+w/TOn/4h/v6P7Wf78fOPp2FLXG/t9uH24dXpw8f7GPLLh0v7eJWfj88DcT5oGr7ncG8NbGwZSj1GxrQIKGGCVCqLIFfdHlk6VlHwFI0a0Ylbo0FuoNjS7IBv254pumcSaha5bxEw28+UkhjRMEymoCsjEICWrOXqilITqKlC1AM52TKimzmYED00Y2Ftx9NRDMvNZDL391NTuWEppmOWkzMjV0rJBTALLNEHoKrJZzKbQaEIO7naaLJaj5m9CwxOZDIXT0pJC9KTtVnG8oqhGUzRo+2WI2fJGOnFDAmLpJil0mdW1S0qM7qXC7JZcgrrLZStDJEnI0pTQ3F2UzNKzp6lYY47JwQ9LYlSpXM5QfeyHVp5hiqQF1kyJ5IhSNlTiskWl2zuc0Y6AAVIybn6Rp+iLM8xNBay+QR2iYiK91W1aaSVTmG1E1KxaQFUAZ+RY5Sk0MztKvNmEorI7pshmaGMsv0NdRsjEwGUE2xiCguCZXpNuFTCyAIymWdnKmORDRPV9demU9Z9WgJkCkPCO2Tm6tkgeJvNnVtDmTGZUiCTos+jWg0pNaZ0lpcFthHTS7pzN7eBFNJINyTzGKNHEeMQi/wvAQFwEmSNrZ3QyHqAEUV6AICOgMmKcJre5GAZAaN26fvIaExvBVaQZLFka+SQQHPLCJ1xtZ6DI6Qt1di8mQH9sLQWpDOaB51qadXnp1DTPtRiFYAyPD574wgggxzn2UcqAimNNPoW5afoTDFEZYux6T4kOHVyayBzUCJbonEDiLDsGmcwfNjmYoW9qB4/HhcelyYRXjfftFVSkiTz/SFDpqcmk6nGKyJkRIRoDgk7YWqZHufVjWDELdO0MRo2gzACtiHdt7xvrZFunumb2U5rVJCWW7bt5DhA1xjiQQsHfLtcrG+4Wpzvg8NO6yYwH3Z9z4jW7G55GAn0TQlyyCKH+jluiuMt7QL0NN8vEY+RG9HL5NhoLU9Zs35CGrLttu23yzjN9LptO0/fb7s+vWVg8LpZv3x3OWzbxvVx//Lh+L73q7F9+PDx/vnl9f1+O24fjstlpO0vt1fP8dvxxe5vn+4vt2++HD/qHAfxMEW+XI//eNt/OTb7+U/ff3nhNhhmBqd72rZfPxwv9999/PP9n/5s2H+X/9W/zJeb2pef/1P/D//Pv+l//97QrvpTUyeb0YQ4TpzR3/D5h//8P/zt/+2f4vLX8ff9z/7vf6H/+b/5Xf/hHz9c/+s//5f/on336f2Xl3//373+5fuf2+vLFf18XG9xHUzR3/1li5/Hp1/aj/j2l+3y8frxt/jwZ5cP+gvPx4k3vX8Zn99ehsaX077Q3r1dX3/z2Mw/fc77z18iBAsNnffzsW/nCVxoed51PzfDFDelmUSfMz7QkIFkQCluIiJIIMXmgHEgKswIGuDRtmGnAJvqTCmNonF5NPayxGZxZyl4nBXcjTVgYqnBwqAzLKMIjD53BgXJM5R0bird0YATbEkAlasKBDQYmgNSlFjiogLnvNTMaU0rxQgoGVJU0k3FAApcymCy/GhUq0EV4mdiADn3pCpFUqCVoname3V+zQEivXqXidxTtrnTTGjM2dsUwOjbvl8aCBimYufm1nxrNC+lWxMQ+ZU4PGHmfHbAT+x+4vmrp587M22qXM85OrBk9SqYqqZdmkhyCTxm0BLL5cjwhAmftOlC1quEKdUDcUz/nZoSR00nwVpyQI3fsAD+2a8Tsczh5nEIm6NomKKm4OXIZLIUjJ7m5qXAUmORItkIqGFaCqnWlrBJIYpTUo018q+ElSTbtjerwbhFjdKVgNo2JsSNOZVdm+rLQ6pUaIiJ7zakMVjKOICUsdDLYI+GAo5r+4MAGBPHBqqfNqjKGpYc/r5fri9bi0uMNiBIm8mMajxgQtg+5Jq66lGW8KCKLidkxmkIBpXZ9NSWLK5am8oerC1sIEOsPVIhQKGkQsE1OC8SdYiSZWpaRWZhLmGJ7C1jNIH9BLzvRA1TMhe2vbC1Og/u2xkZIxXNbPfRJChiFB9SETmgwpKT0HNPa1LBmwUd6ciAiKRlOsKtKOFZo6oCV6lm8ww/ZxPcc1jj6AOQO6T0hDlkab55lIhyG6PQaCzjKq/aySeYMVxECoYB1ioJMYTBMkEnaBqU7wxXZuRoZYUzQkgLyS/ctt3HefRTVxsSHpOPlyHtTUh32z5epoR/g+QXXnGP3g/fYNE15NZ8ZKHym0SlGeAV85sxuV3cG+mbe209gOlOmu/epsiamUXuvkXfW5iOPrbGBJSnXa/JT37pD7O2eTNdXUM4vtmbrCMdP/2Lt37vj5P8i2/e8f7n482PflzRH6N/yrAwDsvj8Qvs73/WX98ft7ebaYvthpfr+0XtEuKJEUcYsh3x9n7uZ+zfP243s7x997sf/90/tr/8+bvjfrPLcEKyMbDv2X331/uHa7v99nd/+e8uH/7t+Ov328//Kv8fv/nu23/1f/5v//H/8PHzb/Dnm3357nu9Px4PnuM8w69H78errG13ef7x3bXZ7//db//LEfn+4CH+Ud+3ES3uwO6Xl5cWOdJIvI14z/uj8+phj3+4XH5A9jjirSnZrG3bFkdnz/TJeXw2INUfldU7stgvHhXvibksYkh1boWzzexohs1VtaYEZloRUwHl6EOMBI1pKbI6CwH0BMHmTxhSSsWi+EtrHmvJsjOu3qMIjilkGjImbJpUJuE1mxYNS9pwdq5cL3yqsupMHGuzAELKcpqsEcpK6QtL/zUHuJpk1N7BGlBxiWavzq4Guc6NrURuq1m12iva9su+I0ib4r+chsA5HBPflHFK8iKV0lgFQC3LiyqwoEqECaXTVDTZOTD61ZgaAFtRk1g9Nurri9JXUcTFxZ20nzXimmPZBcLXZ8+CpNBzUbInSl6iTOZmtpJ9HbdVwQBCcoH79Q0Ws+ArUgGUGdccjYlIOacZUNGuM79ebw0OOWeZNvfIsdaWK38Q5mEsAjTNBc5RfW06TemNSOfzbNTnltHWuqWTQa/FK5htO0siS8yskFtk/5yYcNZvhs2NqylxGF/v6yxB5netJf2MyAjEiExZrdoZYAiZ2ZYTrPkq8Dph6EJNk5NDXKiKteWLwtKUpKdg3izobEVIKiaTkd5U6tG1TOVzgZtrbCSF5IDMKVrLKemQmQxZRpqYvU+a0BwGkWbO9FLUm6w2zME0Ue1AqmAeWx7fJXKTSSqKSFdKYAoq2doJQHI66XVk3DhXuiuKWVqrjbi6Uyr7jMI2SlwaTPksvhbPYu6cZ5wco2dmrl2RNXCvv88qBWkWjZnNrbQx0dpwm38QRtFiRCo1uqIhKRlDCgrp+QDtUENqcyMSZm6hqGGzGZURyA0DojMllBgnNc4PV8G6kkBXSMHskycQA/LUOU5PaJwcVqLloyWgSI3BcoeimVtml1/2lGg5IgCXMGqvFco0HqdBI0LgGWHqQ+ldkJuf2NCZLPQJTXayavPW3NtlD0oaG1sKrfW8jcs1b5ctk654pEZZy48xMiPHgGLb+Tjfo//8Wdvxof/hD7FfwHbZr68xhlc5Z6C1vllk4PrxN99d/+zjx7/K7U7j6x5npI4ff9ZP+/52f/y8H+/e+3CYN2yXyAxLa7fj26s7M5S2C2fHtr00//7P+a/w/Z9/stf9ct1om8XoYa7dtHH0fhxwNusnzmOcY6TcrTl6ZKbkNos//fN3vij4qx15MnkwiZiVfEpgZEZRGuiGtLlMP99HUFOR8bngGlPnXFxNkSTZIjusdYQaJ9arsdgyc9RoX5Hk4h/V0lI1PSRFazbNriuuPSHaRZHARJgLROSvptRzWZlfQdiFTiembPXzZhFPJi0m48rIVStWnLJ5/ZWM5KxAYSX5WQ2GV56cLX5aRgwbsXDZGZSKCitkJK08Dp/ZZn6r+U9mS7Y64cKdubJR4enFgobKWB4EVYbFWOIZ6+K5ZEymNWV9aC6nnmkhIMM0SS7UV8tSCUpwrY7VM5pqjV9pTCuG/+pX2rNPLm0tklX9aTbXWpc7xXwXaWWdT83Lz/n/WEj95LDM+4EJJc8vOD9BSJlqmVfKTF/FR7Fon5ACnzk9plbVZPU9R+bP3aLUFPQqo726omIxz+upFeVV9NRTqzad6ylDyogYQ4ogCzDPRJk+Lv3OMleeEbqucNEkULM90JlzR2uJnc5GuR4AMEWjVnqqJFyPae0IWSFTRWGw+QBVQa/IJJlCD2Ag0qIPCUMbtml8CUuX4ddy0it/zY5Ay/Ag10U8v2B9BcP6h+tJYjp6UTWvncdwviIFAhWXL1FVXfqKe7VjhHKx8lbiIJMyhamD+RSMnBS3xfLgZKQglalQcQFqLlFx0INPH5Wcr46RzWr9BwqfhTIxV+8V0fsYk9ycMmUzn785CxhQRNV3ObClyBRPH6YYosZc5s9JQZlfnUqjQIo5Wkk5zI+r6ses7GCq2jZ3c3OC2l05UEwNxQhFEiN7gnbIygCtd2mgo9zF5JvTN3krjWyH0RMMuUVmuGeER+TDbNvt2nzEfmnuumI4pFM5egTZdpg1b3R73ds38Xjxy34/LfPe9eN/uRN9PF7iFCwzFaUTJksgM/Thwwvs9vLhpqt0PF4bc2d+eo9MbDQ7vownDoLMcUoBJb21MZr6aA+OO6OzbUxq318P+XbxzIweCjDqlek97vejjyzSrRlbeRw1M8RxnH30YQkzTFG7Jwv6yZAqOYNV/K00U8d45rHFSkpAiAqw61FqFY2zJ6jPz0n3LRon8BUxXS0VFsCFFY9XAJ6trNb30zPzSBlLCv9Jj0ZOr2EqbXZpRXCeP/Oc8FY4X2/Vau6I5wWqMGLOSmR1Ps/s/Pzu+vo3682vAhEMWlrd1PlnZ+lYKG99G00Z0FHkqvmrnl+1IoZTYtXe61qrDX7mXX1lka+YOqsWrQ44OaV4yo+jfi6fXwNff+H6z5VwKof9KnuubDjx7l8/xXl06istFZTKyszk1+eCrx9Yd2VKb1b2kslgLSu6cSpdgizSDo3WCv5eDLh1XNf2cJqZebqR9JLylJ6Yxiy2qpQ0KaP2r6WCAmJqda1btm7KLBvz61cWnnC1kkgogjXG4CRnzVqjbnUyM8esQaaREzWplzOiz9dkddeZmUrEiJWoMrMGR7V8ncqRKyuRZQs/M/Dkik8BuOo/5w2g1VYeFGnlK6+nBplQA5uqC0onu97S0nWaRXWqNoumNWc98KlxCyoSTnGVJak4OTJGV0ZM6CIzR8TzXCuWF5Um8oEiaJUqTwIpU6ZcqO1nEaWGIWKBeLW1MJRReU0lEZk9ixCuWZpP2cyqOAC1qggiqUVhLB43yKnoVkVade7JjLDJoIkGVd2lVAxTFjY9JnWANr0B6XPzRMpY8RWcwnvSZKkJKNWNHKJb0pg57UkRME7+IWsekXLfWptLX97GZKXUU5sFa4JE2StRhNzmx5jBtmJc1Gsh0nyrJcqwGBjdHZ68tABNOZDRN/V+dhgbwtouNB2xGfrIBL3Z9Tq2q2977MwmsG375XXz1iBhv97s5ZXX92+u/Xj7Evf2MsKYcHskibbRW3NanOfx3u+ff/zhT+fvf3w7b+Lebh/+8nd/pw+bH8Nvj9NAOoMUFBh9hHo8jq2Pu7+PT3HZd1oLv+7XWxvn6F9+/HQcb2/XE2lSo8ZQpnpGnBF55IeP2H/L73Z/fb0oSMa7jvv95B/dN7Pm2C7b7oVWPd4eb2/n+bgfb19GxNHPCKkkQdwFulwxVM5Za30BGRGRoyuKilVGrhVZxoRp17rKM8wTmpAunb/iy2JKSxdmV4cWlnMJY5XLletLT2s1L4Ulrq5Iz8AMAnPtggXzCJOwNQvguUC8kjVmC6eVKWqrEsWomZ9V9UHRp0xKWS3mzmoZT/hvxo4IGSPnSR5jgKVLXEJCmsmaxQSafi1IK2g2a48jycwyOYJvs5Wa1RdJa17Q4KqrZ2w3M1eoalLiScRdJcAkjnGxnBa3+KtIYAWwtoD5583T/NL1W+eyM54fPH8OaXNRiF9h3ml0DENFpxnUn81HJjOTgWLTV6PP4nJzrQlNWer6zZlZTKclTGZUicYXa7dq1CrhizAKouQMZ/vJKUEGsHac6xbYqh5Irg3SzJXiSupt3qYs4UzKSsSmapyleKlnUVON9Jpkzk9a+LkyhQRoT9WH55GOyFz1wqzzOJ+zVeVYfx+Wv3oK9WDSFHXaVAVCSmWTJypq3pt6WuWuQldCqneP4TVAzVm3Vs8oEEMZUQ8icg50aUJ43Y5ZN+ezwrM5pqk1mOzCMGMOlEYiILNqp40mKwncYnTPdv/rIV8f+oRA6DZfLhRsZKV839zl8RQCF1DLeSy7VLGoANY2o6sMusTSWsRkU9UMYhEUM3NEVX8XRVk70KmY+llrPKdC8zKYYyirZJk3WFg9Ry0OSwhXlqwAjXPpEtPKi6umI/K+VYlkBGrYjoAccqNGPs6zhUcpMOS0FrhcM8rvwJ1rsUxkqKUGN2zNL0FE+ZYHJfcQ5M5KvrQKQmZssnJPwCTjRG8EBKe5aqObOWKgrB62w5hbWZLRzUc4N7dxv+ZIH5IG4ft+xeMYPgigtJWNsNt5/XDvLsJs37n57hni5nyjtff3+/vLj/Zy3HR/P9GxMXOM+6N/vr/W6dg82haBa9v7wxuk/vkSP/+iRx/HuGeM6BqRIW07eZG8eQDHju73L3/4xa/jF4uHnY9fNss/vv18XH76dN9+7pc+Mnq6mfklFMOS3Mb7IJkfrm9fett3M0bq7cEv77/8lH/S1nzfCWjkOMl7s0OJy+WldTve+vvxSaOPkQpqJLZ920eYm5n5guOeza8ZYwY4y7K1XC0UVVZ5JMzZ5gOvPcfVtUrP7JepVAxJgiEcnN67NVVliQjCl3gUZ9awSTuZSXBiPOAc4Eq5kF+SkpnkUzHA0NKbw0j61sxkJbeIX13jhHkq2ydX04bnGzabuV9FvXrvnv3lbOIK8Hpae9OQFY20IPTVW1ZrArPp9WeAkAE3t/o6FdoKmLQycq+IJHLm/wSK+sZKlasRXADgwhswmxGufrRuuX6VTVu1vUQ94K9X/RwLVAsyKdArjT9b/4UBVovK5yF6crtmt4hSjSyvv7qLVbTpiSMsnP1Xj4Cr56+SrAzmTbXFE1ETARHMajVDipgrS8Cvn95qqyYgmjGCjirypIiolL/Ki7X9W+TWZ4bQTNtFw9Mz0WJ1qPp6X/h1ygEa0kDzhfXr+acmrUAAtMScnlXjSt9Yd0mzF6eZu2/bMG9WJ2NCwprIE2lmOYtiEF/rLmgegSpW6s9QX1H4qTGGElJfU++SLilZkToZ6V9REUwlWKI2Z1CLps5c9hf1Q4Tc46huaj78lYMy58hgLay5z/sMYM4wqpSZQnggACsRklkCIpPleeSTyc9fYUcTfKe5yyKfr3QhAL7OTf1Da0zKnMXnsBZmq6OHmfsoh6GWrkRtpk4La8yn6MYp2SaJGqXHmiRzi5RPNmcmRppaI+Jk0fdAEu4ON0vBtn3f9rPm4+7mlmaYw2P6xUIZvfwsHam5VvYSJK3ZvjMkgWZeaM/sd+AeCfPWgm2z5ra15kZrbUIv1mrz1skJiJFm1gxka+1ihMzKuQcSaHvX5vBmG/dbo++egkHN2LZ9Q3OzZpwL5R7njcjIs2u8s+cb+H63fYz3dz3Gd+/vPh73sDw6Y0sgmXIxM0hjMwC4XLbXl/P2Ony83l4/tLHng6PHl08Ho4+IMbL3ceQ5MIZ9+vnn+Omn69v1y8+4/kT86Punj/fx/nacD3pmtIbadSvQMudy+rif3LvAzJEbQR3MrvuXeD9C52MYJHez5q0h1HuOkZlgjojz8e4PrGo6VfxG8822SCjD9fwLs2avLexfxZP5Zs7JldVtaAC14Is01DBlYcgFQP0qjUkliCFNRbr5ChClTTF/TWWL1b0QIAMrD9RgyvRVPvrXMW/1HwDAKm4XvDnz7YzwsxfQM14/u5eVPFdcnmVB6WxXyHh+05n8vGCvGVC+3jKu7+HNnK25eTFgtdQ7q4+fc8PEDFrzMXC6XSidVgDwBInzGVAruC6xCSwQ+GsntoqJdfGFVgttXsBiXM1WRKUtvFpqPusU2iRBYVnRJ5/CjZN2t549CiVBZgRTqXDA4td8bXxNDRKmnKlmKwiCmZmgCUJicquWaN+T017MpxJeq9M5dcm5IHhidbIzT620sVrCryaFK6d8vbvr0HBSxygKz4mMVk+0GEOY85d1hrFehjUveYIy9VPKCCs2sp4kcOhJg5g/b7VXbM+BLFYKWi8JIC8dTLPJJJiUKvN1YOtmLKY5zCzXdddvK1y2ovuUXzVLztYUv/pKvwJmiuwPAaOqvqBSChFR7LgJlyGhEbI0RbJ5AbAGOYxqifDStiu9i1/Zs4ierGsvlJ6AYv7ejPnnHNYmq7fOQcwSGCzWCAVDXc+kH9ZxV0at1n2tNAmLsAmvec6ZFtewpHBwpUoZHCXWUZVECbVEddTBVtCHsfY8clZYKSmHDciRQQRSVi7tNWYFiSwXZMUYId9mi5IxQjJ7xAbUqpzorSWQjPQJ0PhIsjXn6MdwBRhVqc0AKlr9MISlbQjEszycJ9wm7s1FkRTgm2+SzZlKTSjcWzM3SaMFMyKPz99l14OW6Xz0S2MP9a5+nMN9K3wHoRyKTI5zG0z2+0094C/w89Jv23Hbm+Gyy4XNrCh45sjafE/ubrxcLFJxfDn0+Q5EKMfdLxDdzBy2O2DuUsb+crte9tvtai/cL5dvXpvtuw+jmoGu8eV95HicPsYxMmTKkdCwne9f9t7jerx9+hLpt+Dl1b773fU3n2/kxhgBZqj38xhAjDGyw0UvclSOjBJO89aa10AfSkyDaiutu5kLfQ4BSq39axpc/cAzx+k55FstQOYEnVgIWi1ILIfDCtiZINImhWRCck/LwgqMMyHManv2l6hWBlhY3SqcU2lToKe2cOtny33ja9bVApzXpHCdt1nBq+CUok2sgM1naJ359lmW4Dllq5nWuh18Rtjq/OedUzIVI+YklQBoZbmZPS2VtccxC4ZMnzVIMXRrpUmEYrAGgYma7q0LwXOwPnuTZ2NWdc9KPwLUnhiy1m9c2dhNOYnIM6cUBM/V0nMF4UWMZvHNZ20y75c4rTulHC4vo6kUSpqxfH84iTJfu+zVaqybuNJcEmJCtaU4YwemPlMmMtHaVsHLf5XkJSCjJpq16QmoXnzVQq/AKeY8D5WZz6KwGj4BiIjBNMXQiExkTWmL8mI9VhmV64DVkpTK9XFWA6LoeqpZA1Z21QbJUvQ64ZUp698KtiXW+2nmbWtNbFsbI1E6hIZM84AiSXdWrSSlOYwwfyIY9GY+kVf4mt6QxTCkgS1IMhffUBHFQTMrnwoYvm7OW8KiZkJQ1jWBNo0QIcGiNn3NiRSQZy8T8jQQ7rKY6ASsIGSjOUKcDCvlUIzqhKmMMbKwtUhaq+8/2+L50CMjZpyI4a2Oo63xdxtVv5F5yjO9cCAoIyOSNB+HZRrI7CLAjIFMw9K8o6QpUl2yXDO8pClMQ4nsw83goJ3kYA63HHLkJTvDY0AYCGbATQewtXnMSUWdrhKmhyVDtA1DxtQQVLvrin6ljMitnUViliSG4ogvR49H+kXHpgCUeghRL0tMMDQSTAxvZHOVPU+N0QG0bUPafnFJEfK2b227bfdv/GwnIoFsWxwlX5PRIz2G9ZSnujnplmaW/XG/734B8nKFN2u+OV6arp8/f9vOc0QP9kAiFVLm/bcff77QL3h92exIjKPrU3v78uj9IQp039Cs0WL4ZYvL62ck99Pipx/f99f98zf2dv3ybiWHGIbMGMyh40XH/cvxpz/8Js7fnY/zh1vk5bpvL9/pw79//+b120+/f3z8V39+eb3uzWGWSDZsG+DW/bvfPvqR5++cyMfR42KpaG7C+fbTG0ZCdDbbruOIz29vnz799OlNNhJx3N/G+7YbaM01epzHGQZdeDULNNFVkxBa28LI1uQ5Q9IqKot2XlOUp3J9sWtJEDGAuXxYyoCzCF/SfLUAVH9bBb/ScmA53WJ1ECRpwiQJca3KVG+iYhEaHd5k8NryLX40S5GhzJFJNp/q/Cvv/LPWYnWwHnrmxEqtVkWzPTH1Alq1WrwyIPf6bnDXomOgFIqn/PBK3BXclXRkhFjlc1nXGpUZo2cWFXaGnIzow9asHZxxmSRSkfNq5nJpOcNo9rKry51X9MzHNaEGKnmhTQfEqSrChRPOFjC5Egkni1JfM6S+wsV6ArBafeSzYCmIEKtZW9US1sBTMythMsCfWffZatRnaz09t2pYm09L84l+VAfJWcbNan2Wk5aV3WbtUKNFzsSDdRSn3uD6REgy43IiWSzuJ6t2lm3zU+ftLhjj6/1G8ZIygsrAXKCLUIn5J2JEWPJp2purVX7WIPUfmYjlzDVr2RhpY9YSMmVkDWUEYvoL/qruEmJVWKQyR2YMV30j1Ra2avT+lU6IFCxLsRggkEi4yLk6wfnsQJfqLQ3a4OiFkzOdZnRetLXbhkt74e1Iba8vFTggSDE0JmlCU/kmIyPGLEUAJM0mXFFlC9eC+4JzbIECJbUGepksqWTiDQCqwJWksaRrJtRVZ9KqgiIghbm1qjEboMjMtSZXBdWkoy245PmsqmZDjX+QifBUKyBnHrlaPJd52jRccJe3sx6HUGQCQbJVyIfiGMpwFooEUXAC7pYTaq8YWACvgXS/9CRBa3tT0KyFdUwMSswhARoB5bQDs8QEwWvtQJqwRr3kypSMaqANjHzAhN4UXiioR/ahiPPL5QpuCskaWmswV7y9/0bBoygc2S07Nsee1rb99tL2/dYS4mXPvH1o0eP8/PbDYelxbK+7bXa6bXTrCbNGJcY9+/vntz4+//hpQJ2jf/x+Az7oGn3/qINJusISlrllYmrtmY/jePtluKnj8ctQPJg/fI7z/tMPn7d79EcMHWn9DHCIZwa5bw5eb9y/y7bZtgP9fvf3z+eXx/3z40jZPCfJ0YHc8N7jOIkIfN7vn49fHl/ujwsOUWLbtl2ZzNGj/Leer2xGpqTIEbnQzvBKD1G2jPUvSLR6mEXAEq0awcVWqRYwFRXHJny7RhAoTkwNwwrAXe/E6h1Xg7UAwtXyoirFXwHKNoFwAkaku9Np1lqz8kB4du+oskEreKisU/gEFDGzxRO5xdqC+NrUZmr28YAQlRBBqZRzc8GaszOIMoeoOM0aYHNC8YJ7veer2YVE8+bmJMymavtcaCLpbbrTWDVopQA/UYjCgp9fdCY8zS+PfNK41VYnC59PJlnpzVTN0Irh1WgClCJLFQg1w0+4i05Mf1ozI3P6/dVnxmxfEZ7Fgp4pOteMozhFC5DQuuOpgsIrG68dVkDP6VoQlTodzobIoeg16ZuBlRSswjMUEjT25pYjMgRQsdcOdK5ca5SpjDFKtIBFSIlC6qIWip9VwTqjZMmCGEmYl0NiQJjKWkFrm7m7ubcs7I+oAWZ5ghUvr0zl57tRlYFsGTOaYAHSm9F87MokQohCk8M0hpQYiugx0Diz+nSDlQRlWlpZA8zajNMVSjnYZhkzRiulzqxTlikgTFE1IZfO9Bq4iPA6MNkk00CDBjgi6QLbfsl9v/Z9l/atKXee3tBCmk54oKu0igXQbGuOgocKZq3NXWOW5oubmwflrTJVpKHLFXBRxDg9A8yY9aZE9cK94aNEdxIEExqZTgGZefYhQXoRtgBc2RTpFGppSw5aAlZOGKSVMczEbCceSPPkVph4eR/Yvt/LmifDNs4TShtQhPyD791kvm/mHmakhxVXn6AzYUgMOyHMbXWRSZj1IUKD7wfKKpIGWAKnOncYrL9/50MNbbZGWxpJd6ZF0i8edDffYBEg+v3hkMA8xwFm9l4LF+ak7S2DGMp+nJdunlLvpwOb0Ef0DRxv32IctyRykJePH3/7N4f78Ebj0Wzb8/bhdv2+2QsfeGCMc2fozBEn9OWVv4zLW/+kX/RpvET+79/29+Ph3vw2DnYdh7jtV//Qf/O7j//yr/b2ff724/uHj0mntsa4n+Pnty/t3/THLvQzY6Q16JajqYV0aoyTj//PLx+/e8nu+4fX9iX/7N//uH17e3mXH/e2paDMdun3gUxkM2+XPca25/nx409vPx+Wj+M6Ypz3fL+fYZfrx9frpWX28/3djux3CRy4bnsc5/1sDjFjnOqJHGov1x1H3fgyTqhiLgVkJIihmYgQaRkhRfU4JSIVU089xYCGZThNygwMmWhV/VdwiRLqrfZOZp5hOWvBKTopPdc5Z4QmFbWfV63UbG89UZtEKEUL94Ss+bSuIVh4fysuh00Qa8ZjzVdZK9JXVqq55ITAqzSvsVllZ014adW8YM5KuVZhM4ctJxdjKo05iZWzU8oMiUMQEwhDFputNW/bvpnNturJQSaU8ZyfmwIyhdzTiFQv6Cgzn2LXc7zI+S3nRDWVzw4TWLlalNQwEQHNxT/NlpLJXLnRMrlYyqVBkQxa6QEsyq5Wcc9flzkGUhW9ScEMQPGeyewK4Qnwf71TU1FfdQRsjf4k1Pr07FsyRJXLw+plqjEUqTCTEOCy9TVTp9rWLMxrK9C9pXwSrzHhE3uuds3ispHEmORSQ6HVblmq2ZNiVqr6zPzVflthlNVvQjA2z7HZxsJTi4SUVcJVmk5TSFm3hZxDEoGR7IQyh7dqGsv3tUoPwTmTawllrOTewh3KdKnMXGd1YyiXz8yoXVesrpeUuWNYrYOLjGGNCjhKygIwhyuoctyskYImCzglZXDM2a5thzkavI30HGMTwptFgtuuc1hkY0YOV2SMwVQp3ZJKRYhidIvovSdhG3NEBm0twYvmGqsDbgFsMoMxQGHb0LY8aG7DDSJ6GHLQqQgW1at22W0zo2QVdiMpujXlFUhaKzuwPjA8DdPtEYJh2xXsAczVqDJXMiVT7UjJYTIMQ8RgnNzO/VqVCwIZNtANaZeGngGN8RjmUgRsC6sQ682MxiZ32MuGuFwsBiKYAvp5MXUNdV0u975t2tmDacHrF7kB3sMSA7arVEMRSIc50tiU7+OGdDojuLmHsZll+exwsz0DNUO0Iera8eFDc+87sXM8Hlftm6M3p6lZewnG++3QdWu7zFvT8aaf3+O+f/vG/TxuxyPHsMf7m9Hfzn6GU4a0GP2XX96Nx8/7uz2Onz985/H68vqOb96/uXZCOfo4BnjdifO4b5//8OM/PP6n/+Yffv4f6P/Hf/jJ+44Pf/Hhu9/9h9eP7fPn/WV/iTQ4aeahTfeRQs905fWba76dl9dbe6C950+3X374n/D7/LOL/+nnf7qN//67f/N425GPvJ4cruGW55dH/vDz6+u3/dsN/X3sr68H7m/x47udb//4V+fDssk/sL28Xq83Dzz649OXz49xgg9vZzwebwMZozUOv6BnZPLSgiZLZkRMbzMAVMyRWo3qzMyR8soq9KyN8shOtQZPo5NKpnnCWqtZkkkQnYx960MQNGrxvZk63SFII+eiPVYSqJY2E1YGgzIMWEAGN5SrK9yQHJIiyhFiALQMAoYhKtAQrWUUk19VckoAS8acKPcYSQMLUPpKdlVRfUyJRgqwaSZb5ncLdq3MYV55QLAlpTkFQWYNX9wK372APq0/rmSMiH06r87hNBgxOAr0ylUIiTahwty2wgRJsynYOB0eZhlR078UTLY8jbCAia8d8JwxPBniOYWCnjvApFWjC9Sq5ISkCU0FFJMophJOwNz5hFIqC03EsgCsyuS5iruFsi2USxMTnpDHVCMvIBcaSXcs6hWmWwWVVIRSEcEYC1qcsHqmpQEh9XMzROTIVBWEI5NbTsBCGcjQnGTQoGmSY8jMpI3ZPvaMAkqrM0eu+zJtmoTK8WAhKymGJbzlKOMcXyNXNrZolJBBmOVcS551UGEOYPMEvTZUDdMgMzoMbmG9VNJLKCSKkl9HORvXE9TzDZMEd1BJT8CgErKDRHZ3TWA5S3EJoHnzyf6ihEHKp9eJuRfDTfWIMmqkArnliAHrgZIfMUI4j3DPPBxxMTartyINmuxfL7vIGm0YvbmBjGxQICPIiIikAR6T+9tG1UAFQyshG0kMC8jMMppPiMeI1tPREFK6UtGDYLg7MCY26zKNs1/YfdtMGx5oac24mStZvAXzHEAEQqQvd2mI7rBGKACgGxyyJMSerdlWsh9yuNJK5sJNrhjmdLs2AjbNhMzdRIxMqFkzMu4jGT3Tx1rAoyF8kFt/f488z+3uKYv36zgzADDsMpqAeOzRIYYaoRGRSp6Pwn7OK8wzItOA0QmFIKAz4OwdQKS3vbFhfH5hv8UQ2S4vG8YYaMTuBtv3u9oFPM7368E+LNvrt9sN78Ezx3h9wX6jb999//HjI+Lbny4vu6HLr/76zTfcPyc2bWP7bW7+Mc5ovL7FONvFXdyUlGmY2vVjt/3D5Zvv/+KbY/vf2V99+GA7+fn3/yv+x3/7H7e/u3957x9/+CHaqahuCMqRut+v8fb7D/k/3y7tX/+XHz789n/9mD/9btuy+3f/1V/x+5fLH//w9/t/+4ePr8dv28vtth/m+3aRCPN2fvPh0u49f4zP9/b4/O7X7dVvv/3m5fhNi3Owc3zh4/3S+3g/+9E89+vr68c32/3x4fUlL9Y2u1jKxtH7cR2jd0H9/MJ7L2/YUd6TIwANSqkANMyGDWgYDGbRkWQEnBsaE5GlMGFAZMjDkNXueDCl6CNgZi2NgxSsyVxmNJTtispQraTyjAJM9KjRUIWGuZBTRr5KwOilD2SssKQScixrnYoP5AR+c6KzE6/mog6JDBBrlRBrklThf+r+TGZHWe9Y7VxoVvyVwBDDaqdutr0TU5WeS1tGgeqlKbkStySaI5Fppmcf6Waktba1mq3oyQ9CQdFekjgLVKw94ymYObNJNayaFGvMfqoGlKURoRar6Hga0+aCpws4L2sC5gS014jVnp4866+vVKw15Z3OaJlS8ZAs5VMFsIYN85rmD+LrkFmrFlt0ruqMZ08NijAFobLVTVuiR6RvbZu2mFjQQAkqlIhYRnXgs0bBUimt0bnNKVgqrEqppXFWQwybmtxlKQyjpqB0iVtb7ag+/+vs3g0pByVZa25We0kTa8kIn3VRFToz/T2pblMpI6Ham51TDHNvBrNRd38JaLF1zkHH9ALlRHLmQLyABQQEn2NzKtocZxTPujK1GaJKJaOihsDOegMVnI+kasic2HadohTLHzA17/YTmDW6y5p50idnz9Lm1aKWG2CsAcycSZh7a8/jRnfZ8xVkHXwnEPNhk5ZLrXyASvfCm2gZTigjUixnOkyWlBknE84ss0gb4WS3ER3hSXOXJi2T5JT5IqpxmejC/AI0LrM5RVgw0wqqIDWgqI3qTA6ToOAJoDxN05QJRZ5jvo2bkbQccQ4BTJIwQ2DqteTAQA7bmUkLuJtg22XLtvUR3VoZtKxJAefYHm6ge1JybhtTzcvUou3lyoJJ8qabxNLqwOincug8mw/PMbzAEdMZ4DgfBvr1sm+NJst+DF5eaciES31c4siMt7f+eDuPIYS7XRxBZeR2SaZbv2b7jba89dvl8cHBoyssg6SldEYfZ7jb1oz7NTe9fvf2zXU3ffuby+/+6qfrbz5/c3z55vrtgxsNVAQN5ltrtxe9fv9X/Ov/+vXyF99/+fDN549//ncfbu9/+a/b+f1lvO6v9/fLvuu+9SP6GAlzJeBs2yV333jmQ+NLbJ8fMd7teBAPHALVBDjNmyJHOuXHyT4e72/3sx3GdztFRAzvRrZt3/cWIwbUdM2L1zJBLXSSFmB7jmHdjPSEEXP2W2hhMKZaHYj02mGErRAsrZA6EcKRyEyCCGTZnTw1tiRp+mhrdqrPNgkFG9e7DiQWPbP+TG0FqzijCSBQhnQVxGuwiudSIEDIpg5PBWGaaFHWcUWjJk0u2TRCmM3sDMlWhYAhJRbDqyL1YmIsDPYZ3vHMj3PkV/UACGRYa0ZTv6xXo/I/Mkd3VB+2uFiSUvJf6YhUy6gn2UrA10l2XfIk1GJSKWaEB9oaxcdKc9XLrsxKm6IOX8nTXIHmSf6eiir8msm40miaJjkVAuANLJIArNi+a3GpJiDzrq0rWCPhleKF6vJYI2izKtPIkqXUAsQTX1PDTLOq9jvmfGVKVSsX8aH0QrGCvCYvKbMKJxKZIe/KyeIuy5w6pTAw0yf6rFXIzScsqPZRU5EBQlma53WbpKSDCY5Z+xlm5fE8ToA1yWCaKsirWMynosx6+PRw81F7DUg4C4N/MpppVJDeCMFa5tyLrVmQl0400+CtmZnbZjDzttUGHouFb7n56oCNC6IRkuJAUZh925UwG5HNzN1ba5dt26Rk1ACHpNFkdWlGFUEuaw/J62UwwmiSSZkZMfnSMbKWnHLyzk3lIGEzfkHknCulQGamCQa3qgYxX2FwkhuhUuiJqMPRjUlXxolkoh97rY0rFZJ6RGbHOcZUDOKUpq+tjRwZEQo3esrgPOE0ekwKltORNKRMQ7sQ8q2p3GcXsANSGnY2d3FjHTdio3MQQzTfts07QGsRPaznpSZMZl15dB72uiMGI5M+upQxOLaIHAMxZ4RhU3ET6+1ZexcMmTlkLWRmBsAwDGWjEsDmeZR8dSKTbZyWt8jB3s+wUFcmMU44dfFhAjJ0Btxsu/goeuc4Yf1+50gfJDW8v306tthf/e2uDkrD4+xjjBSzhLMp+hB55oH83I79bX//8sfe9oyLHaZgcWdozIxQpvUQwXyPdvlGuOjLPo6XZLZdr9f7N7fb8cu5XZC10oIcOXp2IdQa2uu1x4ikf/u7/MKdr3/2sf3m++uf//Td99/Y5bbtbm0zc2+EM/N8vP/yy+M42v1T/sPLWz/6mUnuulyupgRFR0Gb7nOkheLWw7ctrNy1iYo2KwKvNhINzg1Zbsd8HhkuZkoRI222beuAIpf0cAUXrUEiSdC4ppWYfN4VjmmaQsVGqnA4c41iObNizEwCUz/e4G12m3pG+Lk9WqRmzZZqBuqy/5nNWcXSKTNRr+caNwKzIaw0BHMh528mTVODHar4sZYaV+liLLUBGujbvjVv/pQDtNUbQyqypKm0o6tiEXJYaSOArcSx57dbV5pPSpPwK1nOZ8s6M0UzwCiiBBy5skJ9hBywVUfNPaA18M1Z29izfMJqR7TQbICkqzWb99Smybqmr+4cwT8HwM9OtzJKtRK2eALrf1nTYiXWcB6Y+pmZJZddVcf8ts9Pex6peWfW71sz9+oO/3nW/9pA5sx8T673kww98U9OPGSd2VXnPNPo+sj5emjWYJU1Zn6cbW/RI77edSxUf7K/CtYIyWIRzMA1FDFLTHk18euvXt+uLrmqtuLgPt0IIIBl6DNvSy0yTOyhhi1CiUxMLeunPAWXTHpO+HTDCHNSF3jb2nbJS7t1F8S2aaRpEhjqGxqWllwVJiUzWZV4Vd/zElUlNyfQRGcW7a6Kbq+zPAdBT8GN6co0z1CBQpDMaClbuwO1qWlpCXcX3dKdwenYXEiEChV44mL6WlBz1uvzQU1BqTmzMXNalpKXyl16Cu/Ri9Jfk4gaZW2DAugilCODbTvZmouGDWg9a8E6M0eWf+xazJ3IiXKkjWzeNhJz5/BrGLDaEy06h8TyuDJKCp8XolwIIIuVwoiw676ZBfM8M4NlBQEbI+M8Rle83A/SgXRFZvSu6CMN20ViIDPHecZ2bsIYvaSjxujR4xjt6PvxwPnpsY8eb76NGIkBi/c4jxxjJCMDCUteLDZvTlp0YfTh/ZPSqNQImUZEZsqIUpuiSfvt9m636+U6vtw24vZNi/32Mvo477f96ES23WQ0b23LvmnOmGh7P4OAqx/vDJntGpBtO8fogpQxLPvoEUMKi+Px9n6c/dz04NvxFujncbThMXKc59l770NjlFJC5nK15Yp0kGYzpQkaoqTbq2cwsvaQrEZ/BjglWrZp3mM0ykCf6nuGLNB5ySs4VmM2w+6KxJrYFGy6ttd7vvZyJ95bpm8Lyqw3kpodrZNeVuK/bks029AK/jOLZuZz0PqrI7oa82dfnuWp8+x0nn9UX1dPhF+f8wrrUnm2IMHcMur3mjSlrEQ3NJsN8Ez/mam5i5q2BrzrRYDbCqvQomz/6rHhawKe328lyHWnATVNtlMV3QWWYi37Tqj2V5e4bkMJZyHxFeZ93uGVKAAaDJ4TQCgcgnM4OaMs5uXakrasbcrkqoKmjcC8rFoOqxbJHZikaEIyuEzu8JnDZr6dAAA5paDnWZ4YLwwyL275s2ut71TPe2mLz1nEylz8VXu+gInn7QGeyK9KnuQpnULf28St19AjMzNYTpDrQ9aj/v+/tbVcPLVdcyBjre9NCMl7zQCQqUj/lSjZ8yVbLfREusnnHePUSoq6p4W2zPOYrL+DlpznPHWc7sUi4MVZcGrOgAwwowtOa1tc2vVxuyb2l0ukGWCluliHemHV61Q/S4dUuarVjTbWmkXlyuqACdHFpdOAynxrHSFDFoq0k+CICI1Z0kghxExcKcTXKCgzVBM+Aa/Mry8V/plUkQglk+VIvu6bMhNRBxpKsD2Gt1nr1JuYLJWx1YWblSIHMlVdj1ahyDy7o4yf990x1duUcZZdu6USVjg6BLYtrU0KHqcy2tqdwJR4AJ05wrxZo3lDq/bAG91LJbGN+bSr3/Ft3y4bqBg5jj7OuvkXR2tuBvo2ZBzDjKacExpk72MMGWWW4S4gs+1ppo3b5s0h3zYLa9e0/byyn2EeDuq0rV2asVnCTWJkRO/dxjgfcf/yx7c/6Q9/+LH3x8at7duLx/aig61tMeqBUCNJ9jBvozXi+nIxnby8fLfztsdtizt0/7In/vinL8fvP0/XLHrDUI0dMRJ92L4dH1/f3HPfCZ3nePsSnz7//Hl09wZAEUhgjDzU3x/vn9/O/hb3T8d979mgTDGDzNJ7QE1Eyjk9JySXWYZ3Y44Aaxkjpw1I1d9Rln9BCpYBKgAoymkzZ7qsCr/oSBVHUsgMS5axuoTavE5lBkBmSaYLUzCp3vmKyJDSZ3QUNCfHfOYerKY51zHXUr5fypWVKvXPAE6V7LCWosWvuoYn8Luy2ky+M3/Mf7GE9HJmi0TGFOebjX79eaOsucaYo7Fq3bLKCsnNUe97/ZWx9PJmS4ogoBgk2HLmA7Kk/inmHKPpa0Uz4+wqqUqEdsU2tokoP+9gFJtootrP2cD0wp14AZ6lTv1wxcWySuY/v2nJXFoMmt07MDV46nDwmcLmn/r6jSYhdRZXEYXXVBIlsQaclSzm4cwiEmrd+FwPTQpojr4zRqz5+UwziUh7Rk4IQqYmDlcx12pzbOb0ub85mzbYBOKnvu+sP1Tn2RbeKmQYOFcBZunxrFnW7y2lJ7EQ+tKRfpaLWAhhtad8anLZqGZFJWZkE7991nPA6txncTOnQ3Mhr5SnycnC/Jqytfi9E/sokzth7e39esl8HiszZ1KZLZL19QXArAhoTXID5koBp7j2ym+zJ/4KgJB0n1PidcRh8OdBlgoLmEwJrjsHkD5Hl0WqsFbgtiVIh7ksMzR1nladJNSTLOYGIEetJFdLOEck1gJz44zL58LAufpQPHOSzAxlaBCZU+8MGdNUcz5LN2NGiG42h4AVTgQo5Kpl6oJiXLQt1O+BpMOazekDDCcUEWkMZkBmsktsIcvEGKwlUmVtjUeEKOQYtalgzdiQxVnhVMt175KZz5tNc2+b9x7dtuxtH7a7NbZN1vZ99+12dl4cBDvUa9OPce/n/TxPIbdIpugM30fcNr5sZqRb2GXf0nx7OSy76+i3ln57uTx4ebltBJsSioASiBF9jHEH3s8g8whvZpftOPz9y+P90EOmg5tfrteLLntz961tvm3qj18en/90t+3z7z+//uL7D9+1919+iM8/vX/aM3748e3l6G3f3J2KcdybZUvF+fbll2/xaI4xzHa7vFzD247R2/0Yj+Pz/TxGz37Cbd/z1Puj3e+P3iNPPL704dEbW9uuoG1O0T38cj2ZORqnZMYM1FzxoI54rmGuAMoW56DiwGom53p42bZzGu4VgJHgUzUSE+csujEJLEX22j+sOWY1kk+wcE0Vp4ML67yjML+JWtW3MZpoTHN3wuTujqzUMxXpJ10Yz78hsaCqFXqe6GIlsPrv866Q+Gr/vYIOV0ysoKoaaEFlR0h390bK3Wl0NpeX2hhmMU9lPu38rNZp5oLsvD0rFJKw1hYEUDQ0OJJrDv3EdKfsxuw3a7H32eNTaNPdSZM1O7slmgE1LZmtsDFKh1Ki1TKQObh2HKVC5IrvPGcNtKq82j4qp6jW0JQR3IDVc1YTMJdf5yZXPUuvBSbNBqGAOW8UMhFqTs3kJiFzvHvvaNteHm31QI00cJRFtFlXgshyoFeUC8lIqeQ7WCu/lgnlMAPKBiDhbYuQkZ5kG7AEM1qJvhT/N+mGZImxTVVVCAZnWKbR3Zp7jVtnfJWCs4WZqYTrAa5BIFwhbUSUCBZaGBWRUmvbflBu4c3aw9Kv2+3dZOnwNqy1UnUxzOszSsUI7UIwMwXjKDFEIYzMUKZvmQlFpMIbiehlgmFOjuYBAglHHZ0FGo+EetD3g2Y6d2a2hqTxdXf31lMDGyDz5o8TqXObZf+I0ZGHAJlMY/QzAl4WGBHnJsEsPK01D5twdMEiTDTJmcjmKoUKg7EIyxoO38zpbNswmbllAzdeTGYttI10Aqnpw2cguFnqYFMVc0TKZBMoI2wfCNFfNuut35NtA+lCOQCHhmgWYxsccQTvjkPZpV0QYnt/NDiGVHO7a61x85Lu3UM+Uic8qSEweGn7Zuf9du3H6Ynz7VA5OjH6/XGLvvk29m/zqu3ezUEpxjgu93j1jXfb2KxRmxvHsFlWxsiwFucYQ9aPbtvuaT7CohatJQm3TKeZxhhy9+1yae21tctLy9z9+rg/tt0Tex8YzZW7vTQbmz9cvtto294udvxy3X98aefj9Hid8g3x/tm9befn/fFmh/n2aN/zT5tfL8jXP/u/HP/Xv77ef7HffLz91eXzSyPQ8/gS9x5ybh9/gxRP/Pj48W9+6cOPP/2o/Pa8j3tsf//zpdnjvW8/PEzn6Z1A7u3KE0qcjP7DG/+w4fz28y/tP79c73b79NGv28+/Ncb20R/b7eOtYbTxOEfAEDih9y/25Z/S3i/7bfvjJd5H8v7e//bHe/9fts9//5v/JX/+H8/zenR7yLjtbz/p737SP/7efno/8LPGI+RbfP/tR/zm1gf7oyMFu5zRe9rul0ua1zvv5s2nkM70ISO4N8uZ6di2bNz2KoHVDNFAc1hkJM2t7Qb3mV2VmYwkSBugSdbgKm4FlbBme2Ntaa5JEKrUbtuWrifblJwYTJSxamQfAYQqlkkKKsyCEs800LWWdKoFWdX8E0xa79tsOWj6Kqtgk9UDmgmEtTCHkcW1zlUGkGltEmEBlmPLsyJwa4C5WUUFGjFKD3ukEQ4Li3hojMkQI8xqf9mY9nU2SJq1bdvc4JvUqhagG7YaQi5jpCeP6omcq3jfInLRnSVmm+XOV+id61dBZtM33iRHglN5qkAqW5UBFuL6HMfSYJg5aCJeNZMOWkYNSozTVn0NjnON1Fbzvsayq84xFL43izQifDJd1wpvlSPNn1RrPKeytTVUIwAkzctoaKKQczIPVtVgy2Mry7T9VzVZeSCuxn3dNVV+02QxVBf4/DFBsKCiFm4DpHva6pSnuDaqd9Oz4qo0Xq+YzHfLUJq5iZgoFSTxeR1GD05fFYnPwdWUkOMqIblGDGywDPPFuJhuBypqSNk0tJwiwTln+/a8zq8v1uxDiwUtSJaQShIka/jf2Nq2ne7G1pRek6tZr9LlWatQcxkJEGD2XI4HPUqjYDIhq6uuXWma4LOllIBkk2QaYRFAWO2CIulj7CQysuZaWSpyRBfMmUXrmpMRk5CeTsVsC1W2AiaVOgYJGmluKoFY1I2gQHiNoMOSAfaLO0CnPELJYvAV4V6pjOasDI5wgTlX2Qk4F9GdgilOYwTTNkARmbAYw7cAMqjLmaKMaW3/BSPdRqPH+WIWE8OfSH+OYKbFjJ7DM+hQjMzzCBb2kgkbYpaYG8xba0bosl/a6bvcZAGGEpzM+2EpwMaI/kiOfG9X2nXrXUFkC11LSXGzbtp5PgJDCb9ywAwufujn678e//rf2g89LYMZPdjZLYtYyeB2vT1wfXl92V9f/PiGHy4Yd47ex+ef3vYGN+9HG5bHift53h+Zmc5E0F9e9rfLxxf7+PLR/bZ995vt1r+/9pfvfnOJF3+cx/sxen9suZ+ZfRxnj5FI36+7aOPew8b90+P+uN/Pn35+90/b22f/3LrEFq100yID78f75/cfPz96q9Klnbjszuaj7dt+ubi7xnGG2ub8cH9MRulz6LP+WoTjNQzNKbExEbMnTFx7KaFdA1lvuE3gEcoxYkQM1jtpVFqd1eAKts9pVDW1z2hGGGgxRXAw54LQFGw2M6XJSlKXs19GTa2lJfIhLYVTrQWhkq36Few2g2diqtlygrZPZGvekZWxrAQQSFp73rev6Uwr1VVbKgiRhEangVJmq/7VW6NhzIuaMtRQKpZmFEtazsxaMwN0DmQqGQmbjlSLvfMMi+SCywvcFZ++dHW1rXw+ViCthFhYKhROqmBZBCfq/vxszV9kC3igz6VnM5Y25nOwOMewNnczUmRaSUeCUxN6sZ5nHl4S0SUtTBABpyQLNzA0OlhywLDaWh8Z2QdjTrtFJDD3aqdPZMoQgYiRz7v0BDIKUJQUMSLSfdusFW6ctTbOjBEQS04ac8jxldtU4xYAKnZRcVcMQRHevATn5rtTeFEJNy+p+7SJYEha2prStGx6OsFzymaxdqizcrvyacBrtS9larYmKjUsn+tvJVdVekp1ZqbG6dRdtVrrMtRK1vx6fJYGDHH95NzKkcgyIprwa8qBht42qu0xbGvb1nbb9wbBty0YkWUbmp5G9ya1hJFyNyMzM400d3fSkWUAhALZV4QikGqok+tbYiOtyyBv5QLZtlZIBoXmo/bqSw+uGJLl7j6jXo2iyIQvmT7zc3wtqKaeeEaPPgb7eWQPZcBsDtUxB8HKrH1l0USOuJhImYvNYUwEYqS50Hgeh+VjCvVijqQVJsCZQjPbFeHeYG6Cofd+JeYScR9paIqTigtIuG0v5G45ej7yhWVVOaZ7BdJSzZhoexqVbm1rtM1AcrtspDkBpwwBetkRAhr9GEQfJw+zyN5I2xsgcxqJcHtIj8ObxT23yMf+7o7j87eHROuZoZFUGi0amuDX/frhtr/c9s0aRDzGp9s/jF/+eBvDoldJPMweZx8DaV6GuUfLcX5+vL31nkh1xYEAv7ylffyg7eXz7bpZb80dNNVOD2QZICne2uXjO0/o9cP9PLW9//C3Px/2Ae/3O0+hbVu7vJ5Xx7dvl+t929q+H/725dMXtpeP5H+6vt+PuMTg5S9vf9V3lzZv5gbFcTzexj1+fo/2E9/7/arYN8v3zyPyPI4NTLrO83iMY0RC42xxzqW92eGUFP1MSVUzWdlfybmYT9VxFpcItarrDrd4vq4zu9W2Akgrb+TBZswCch017ZtDYMMy+613n+RsR2rgq8yhCHBmUShlQ0LIAWR9E6U5aao9/2cHiZV+yKw096uOeP0P1OLim+WienLGmgpoljTNeM05b7NYcPlMg7M8njaorMGmlwOFswIdCeUYdN81Fgu9OJ/KVA7AYXSZwSo8as7yvAWFKjtm5V3GrZMr/syy1NfSYZUR8zHXOsxs5FHDgYLxTekBVM35zN8gp0asPZ+vwYoq96RsFRZvlVVJmpXggM9R3Jqj1v2q1vSf9b9iGQ0yM2IeP0XRkL0VCU5FfJFKMBzrV85B6ayRVvZ/trGVM1dfPUlINp/dPIack86iO/Cr0m812qsHr/u1isSV0Lnm71UKVsmyFFpJ981sCdJKs1aeqXv242lTBWs2dUXDyDocolC6MzWwzpJLKMCKUE6BzQmG1Ndat3depeZoWSqdf+ZUnE2hQmMxE9ZP6ytJ+qnzNa9wqYZMNtfE7+d0QWtvutHdt621ZuZty2ybo0RU5ztTP25cTcAkH2Tda671KzwP9nNQYSgSW9Qax3OAzSJqTbCH80JQcmxQTfZrEKDEpBVOexNIEZeWXne1tTOCKBwrUTSXei/Cs7Z351ydYDnrRl0NKIMHL+nb4bKwltYMhaR5VNG6ZWtdBMPcHeZppKWQxio6SCcbUSpIrZQOCoporUPKIUNEZsKFEooFtq1Z83b7EBNLIOlzclXVMkq1XlZWk61EEQmvOZ1iBJTl2JM1hIqe6BFjeESFVK8HKbhGz0YoT7Mc9zEXxLl5KgeskdFTmo4htl23BtLAfg+z7WJsF1rGmW2cx8kN+VJAHxvTfCPQa2ixba2ZX72jwWRX9658HNkfX86RMdjQ5BdrzTffL22nN7tu3Zpt181bC/e8AQ1GKXfeO8H3k3o/2zGGjwgwyHOcI86zj7f48rmxveD+JQSDNb+16+26NQetoZkjYvRzjAbQWjO3pojj8e4PnhojIlZgciD7GCMiovHJqp+TqCriFho2Va1y8l5MVuJYEkGfFAvS4YAxV2VcAziKe3N3zyKx5uKSFPSmohdMyPuJnGLFDE18b3KygDKDm51tTrgQKwCZ9NyZqjhDA6ZzVrVFi9o93+fKdrna+fm/rKZfKztXv6T6rlUoL2ZZfbtErfZr5uWpNcGZk1bM0sTwOJUe3Ftzlm7CpHzbQiCerPCZWZRa4ouoymbhtL/GLbgSzPyMGS7w9crmrW3/P3SticUKxeUog3a3gJUoSTUNorMUi4D15Gw9AKjUCedEvwD8lmZla2MsaqlZrEHADJGVEOtEVFCWMiM0T8qo1RcMt9oGBybMR8Aya0m1Cvf5CbNI1DQonryuSlcokluoNgTxVEKvO1C3AIGcLKqaYJacSsbApI+Xcsk8LbW0MZNHibjUCnUxZUla23ef6E4dUpopGFjUI9Q2PoFpHqu1LlcJp1Si66DMdbycY5RElhKslIgc6XNBuu6IASWaVl+X7lNsdL3zgIQ0KZNeDs7lJAHOUkeytW2o4dWE56RjIZcwGay+wb0ZYpCm01I7lNm9d27SRkUA8Gm8N1+Qsj+BkeVSbs96Zp4oIWvxoXYoq6utjtMoISMZNtlKVGS6ssu3qQYdy3GDMHfWZhxGOKFVQrL4fRaK4dtQZuQoDyirHwEMFJvM3Jsyw2tfzlNzGYq0NqwJnhTVGAr3A0JkMBsTs8SzgQic8Hq5vHlKMvMa0shIb1vzFHKzS3e2Wvs3GZE5jnurSuy4E0CixLwzzndr3OyC+7i/XbcZTGolu6yLnfQzyaRlU0T0I6NHzz6kGDFOj8CIDMUYY4zA8J5gvJ2nQw9ZM/eiiaVcQ9Zz2xivRiabYws3202tGbi9j4aLuDv21z3T7L2r8/P98UXHl58G8mietseIV/v419+9/8V45fsldhy9Z1o6YhyP+5f7cT7iASLba/O3oPRy3fZt8NCHjPcRI9wZFzdFSgGmbyyR5eM8oU/Z+vjZfdd5v91+HJ8b/S/PtOuX+5f7tm8tRQw15Rl9IMY43o94/ZC7LO23r/Elzrex5yZaHnGxBFJw9qMf9+Ns4w7u33188eOOB4a9jtfxfm3Xfbtkp0aHMRNm+445vcHcM5eUMXL2WppLdTMGLLuVmZRYAOz8X5JDMFc5Is2ieOL2c5KUoKUvKuEzgK1y1AgU8vPERVFZun4lzdxhQroyLRPPke3yp1704GlHGxM51xqmfi3Y9RWwfSa6WciuPzRxNmKaRay9GBZSXMGrUvvCzPn8VAo5M8CkS5HFfs2ZG0jztu9mZs1hLQXQ1Latba21rcGezQc0KZxmtNajAHcAWKscczOy1gCLcaVnFlfBvHyq9kBqi2e3fNlLo70uLaNge1QD4SzOuhUSgoUs+7M3maFnVjcEFn14uSXaE14llZ1eY6mFk+PrY4DlyuaTbwsl0gzlVKxMmaYUMiFYSoqIYMTcA+X6HkZSjjHbH2vMTDP3hkjVhHqmIJqm8jeRPv2gWJOASFjxeROWEixnX7xKrFmXlUKnQAlOmZWDopXs8Vl1ICevVAEvbclCHKvJLemutZ5NaZgQpZMME6Of7udDiAHBMsgcGUkmvNfSlG1BIJGFwU8kAznDs6gYklGattApQ3rzuQufKWCkqdKdOepjvCoe53QTAVYWhBeTy9yTQCN6eBgUR2/3vukgdAKSNU9LaZjlyOw9Qn1IIaWTrtG7n6eEMZg5TqXTzdQZEQRdMNV8QmWxUToVxUOsMsQdm7F72zyVQSHkMQbM2UuecyNhZn7ZDAkRogVB391dNi4eFKasXyTCBUROPxpysvdSGlHzmDqmmRxhCSMdkYyGkYdSuUeaWQwIJZ6q0T19s0OeeVDjRFDnqDY2LVHuF+Wa03G5nWwbM5QB0RxKMnpXtOv+SN9yRyiF3lrPSI3zDhwaYUwhRoTOEGQWXWnbiONlAJlxptAs3LfGMZl19E0jFcUl6IeN89SuzXVFtDjG+/WVxuw0aWS77mOLOPvxcru82Gi2t37n+5lvn/9lJLxbP8cpPs73u+vorbHdfG+2ffy4OU7zy3sf+sf4m2vf8nKxYdt2/ebFIbcxjncndo23z5+vP/74Tz///B/29/d/2PQ//+HTy8m8vrx/sMOvvD9eru3mENoW1qz3q/pDkXfD+ctjjPv46bu+8f7+43ncf9nz/v/+T99mMzzw8/j5777/l3m6LO/NhoAM9PHlcX2/++XV2XDHdrEPX+KnT0d8uv785ZOOEY+j4zd5ctsvG7Q/GL/EsHbdb+d3l8Fj3AMC3XK/3DaSbs28KzPH2UfpBNGmulRWD1StFjgBj1SxbQ1mxkDWutwasRVNxqwZt3rtUXLGFV7Ns0jkNRCvTFSC03SYW6nTqWJUiOaFAzkGXRPvlE1WPiMiyQxQaSiZIShHxdQoJxkokrCs5ng1gLMLF7PmzWbV5+cEt+d8cqIF5jLB1WAFndFy4ouYROOyfJjAXxYMXAnRDMqp+9rMhDmzNRmkjG7NRWzb6kUKCKufyfLkTQOtyv9A0gM+bWEwJZELM1iIW1VOudKDtLLxDMWUydR8NalYzGWu0WgZnJpMNDa65kJdgXBl6QeZSQbSawpobjSjWIM0QanArDyUkFcdRxPmJKMOwXwwz1Kouu2S0y01yFDQpAa5WeSQN46o3k5prSdYawqFFs7NoGJzpph9elmYyqhogeE54XUAxfulYEia+1qMBhUxxq4sP+dzREhINaFsAab+WgRY1K2yJxIZagUci2Tew+m0faK3oJmXRxgGZJjz4DRgWnFHsmzVscnc6w1zInN025EuCUxTILM8LgZEUzIKLuITbKgMjTRLjKEjLA1Zu2k5GAqFR4AcrugSRa8dm+YT0QhZNlhrFLkUdqoQH5HII2nXvRNqyLMjYWE41bcHOrK/P0COh/o5p0umybvEdBerAivGSGteA+o8g4Ay+lCOGFluwRDCIbFnOYNSoYICwgxyWW7cWEIbCjWSJtu0pZTRJB5H8ajnojMANvcdYN+aG6Gg9bBpIspaGzTUOoBCtCxnLhFgGKCgbHQTjN0TZLiBymhGypw5YDRXcyithW95l9oO2Sbk1oaQ+5C3hshjG635NaPriM3Hrrxzuwdhbm3bzXgZho+bultnq184oo1+v16tpX/zeYw4LVx9nH4OBvoRelzR8zyFHOxNZobRtq25yUG2zcgTm7uNcSEGvO2Xtvv54+2Cl8uj36Bt8/Y4AEbbN8vbX56/b+28jx/z/aXrndu+3T7aNd9vb7+0eLzcDmxjeFNugfjdn/gtZQGgf/cNr3/2Jnv5nOf77y9v//1/+HB+eNle7x+Uv/28x/jQE/GeulPZY+S7ffn8Jf4z/PXKf/zHT9Y1Lve/+7Hft7/Fe3/9uH36HofbRr8YdQzcESPj/e9+uf/yT9fYbl9y/OH9j+/fff/j/Ycx9Gkfez7Ot2u/fPzweN1sa29+9quTD5w87//lt+3n/r7dhh23W9y74jH4pzf88JMzfkh7J+9nR9vzco/bz759ss1fLpdvf/7+fODt/fhXrW2XLbzFMc5jM0qmOM777cvhFUVFZY4RoPoYJXeqITsdQpZvWMWTmMJTHqlRLaCBnonhkS6bvndFWOgCuElMGdA3GNOMlNmQN6TL3TnRnWrYmBFWC+fVjdaseTjLI61kAKMEeEqhI+dyIYQEXKC5ZUGPBdAI4rQKn5+MWpJJg2Lau2XtmhXPk9P/SSkhmTWdW6A102hARnXwTzHN2fcHhWlU7046PcWbosCBOcCMUIy2rwQ5OTTefLM1WqsbwJL50WiKATibI2sNu2qGnPQPLIy0ENivu7iViSdo2kr/QkvRcW09FRxokmpGz4ZFf8mS9MJTtmsyQx05HwF9UpWNSSwZ6+n+NL9ZLZGrgPOpZSBM9acnUE4pYz1OoRhLkhI5oh7xdFoieQKiR7XIAgo8rj9RlVJN0d1yW6ublgRkUzfMFkKNauqZNWAcmplw6n+VfXJJ+AlVsAGJkj6ccwuUVPdMgdPu2osUz0kQB2rAa8tKqNCeiaBg3dzqpOqmG6w2eKWMoIXoofkdSl2hPpljarPO8bcWyKC5XNyTQ0zmJH/ldNvOCK+zUApCxDSUmuVl5XCBFkWGtxLUQDGXopUDa1Mye5wpWXrBUTEMOJJCDvWodbVCDsCn0cT8tpmSN4cZoYhyOJFIB83Z0uEVj1gKnY1uVQ8CBjej2SAN9Naab8o1zK/hWI0LTJmZYy2m11TAzYdccAjmZoqKQFOlPgoQzOUvjYL9VulaZ6TcFDDmdJ/mpHmaBa2FFWchHYatDXdvzW0PbFsClrKkB0BPK1s1YzAUxxt7HvfwmooKokXt1e9K0ujOxmSD5Rjp27ab6Bv3oLl8mAEtSBWOkBJLGZX0wqSoqVRARoxmyMhnxWrm6KeZeYs+zkdjtBGAyZsbG8nEOPrjizt80N1vr7w5Ld6v58NG3xppl8tmgjVrRnf69duXD7erkOlX2f7dn/k3ftH56c0/PrZ83P78kuNDXh5Xu/bR7PJyvm22I81lur62TP9wnudnu770PK772133l5b52Ec/EScsuh2jD54XBzeN5A+HeXvZsZ3bh+vxL7775Rts6Q+27cPLee66n+No6ewcJ9XMHuDrbdu/+Twej9d+3O18f2/3ezu+8Lg+bCt1E43+wKEzPR/MbbO235rxZQOu277tm1IabPu+R++991Ft7QKWxVKAiGNNtDSoMQAGUgwpmMgYOZUhU0HK0ouRieSgSmEyIxUjo0Q9JNFTgHsUzZgQac0FztA+4+1KjZOSUtljTqSpjJBrNk4mMHO+QslJfIHm+JO0ujqu0D4B2/UvUAa42WSxFqAKrEhcMab+swaSq6+fKCJUikQq0s503Juz9LlxPzkmJCjbOirdTPjViHD3CVYXEcp926okedJhqsGkOeFjDaYzUTpBE0CvIDMXTnLJLMwr4tfuH5LavMmT0zqviECg9FGULPWaWfVXqCEhqxmwLUav1ajRVjdTyGRkbfFPpYqZdGvBJ+fNLsusNd6YE4f1ZetxTLVtA9i2jTSMspkUqWLuVN5LeGuOCT8XCGFA0lytSgXQrLjtUTwCQ60yz+Di8/pZdP/yfZa8UVE1V4MtHACTDQOBAffnfS4q0Wxyi06WMejutWUtzMVjJJQFm8wZCdfjnlVSjVNSWahkznGHkKejzKKmOROSJoqeckXN4uvgL0qam8B0o0XQvIM5IZyp4ZTzWJJROFTO1EMrPIQJWNDCjSgVTNVnlOIKYHCdo2WYtpxsSZeYw7ssh6bh1HxfMnN41A587StrUdeiYpKZUebTIYm1fpfYPdzhtN0KDQ8pLViDrMkUyEgMaxuZgoMZ54gYabi4uVHubngOeszATa0ZzEcv9Y+MfhyA6JqF6RKkrVCSmVFqgCzHYNCS1rZwJNGIQNGJzbdoXtq7JSOYJndGWsivDHT3JhmtBRlF33T4vlkpM0ElHo0m209ubnRvR5qQ+Uh5tq1DYVLmyTHMJl+h+Z7mNhRu28WD1sSLgWRzZC1CZxSVtaLVgES0LU1oiigfy95Oe71295AxRu5CC88kkfe3I9/DDe3WIq7bbTsIipZot93329Ht+G70ZrBre3+M9undxn7Kub2+dHvRmwbs+r7d/nXf/+1v48s4AvhybPrlAu4xzvOIfpzitn3A5Xbp/XbDSeTJFjQCl48cdKfdLrZrnKf3Qw8XjAaNYT7sSnvNx2GX/fXSv3m82uXi17f3nY3WLhji2Ua30PWy2UXZNvftanz9Tbt+c7HH/vLpP93j8bPp5Uf7/Bb6hG+zX+VuDuXop5SP626XdrnRqaadH/JC9hxSDJna6+vLXePRE23z/Xp0MVGbn8WRqW4Jc6Ed9dan0JNrFbLUFA3pRCTmTsqiiGAW6qPneZ41HcuaszjnijEZQXN/tk/GlQQmsFevnSEApSFhKhWCFJWZQMKQU6uuLIqLQgqVW+/Xfc3qUIpL9qtWS6WWUHhxWeit9PZ1X7HC+WQ0Lc8gYmWUxPzoejXn7VrBWGG0oMGVScPIOVRXNQa22b5ZycWR8NZaa24lN8mvyiaVjs3QetTDwczIs2eao+dniQH9Ki0/uy5M0lZLLs5QuRvlJJAQzw2VeqQ5M4ahvqOet2QKQal2pedgvUZx1cvUmLgyHVvjmnQU3l2eCrXmy2eRNA9X5bFc7b8ZS4KBVloZCziWlOY554OG9AmhsDgCtKRoMWp/KNdtlAxwmsGL7VzWnMBaLZLo9LL+8Rl3pyHmvO76upag2Sh/LzNpKaQwYZ5Zg+ai6ee08gMIOt2iVvusZsZI1XcodUNCUSes/m0xlqy5G9E8B5QJmDOUISJDgFqvdZvqbWumTBdAh5m3y2Y+zY9oZqgNYzNvQAeU5ZairDs+KRRuhnBf2smzuAPXgqDYkM03GTT6OI82vG2Jc2BzjfRx+IcENUa2Of9POjK1OAemxWPi6DSA5ttAZuRcFo4x9TIiAnBvCvlAC5JJ0SQdLUYXMglTDOYghaY+UklT6bcYjfBL7BU2kFS6mvs2bJgFSmnMW5f5Uw2WzGmFncOih6y6e0vAvLQ4Cifibo1ksck2h3tz1bDcSYVSXWHN8kzKct9sG2IaMtltLXL41pxwWNrt49Zer9fbO2IgM5Hx6KJIS3eQnr2Fyq+8p85x//xqGx57CNEzYmwATPWvBK35pIFncJiJtG3zmr9NCKSmjfUKqnt/nJeep7X28TPk2jzSLc/H/Xw7L962cbu12+hmgQx7fIH6o2P/7bDL/orRtmbcZDdAzTawWb4deLlw4CG33d5+un3z7Yf22vT2+XWLlz/8YQ/92acrFB0u9PdPn69kC3vdwj1NaG/022/3v7n/Oc7Pl9wu7cvbN21Xk2Pbs29X20+7bv6n871np41veXm9fX65/e7bpu56fMyxZQbyPsa3eWsfv/Fv8vF4ucTWevZ4y/HZ/mTj8/t3+U+PD+f9fv1l9HOzuPJ1eLNEHufIbb9+OO976/sVaOwbhY/asIc3xAiVs+J4HNFD2CyGMWYGkQS6WcKLgABQBpqZRLg0YSGYhZTI5kQIkiW3BfbRy1c07WmigozZ4phiJFCSwiQRIzXZygsjosom5RnKWaQnEglak1GGYbX1XounIqaocHDiuIhMUoa5O1CdMWrJXWtdImucSlh1nwUbkpWQjHPNnsvNfgZB2OypagEi50LQzNJUTcqXnkBmzHHbcU4LltojIoHS7TLNJR8z5CAYwUp7qusWAGVaGZLXcHPBkqVHgYm0178t8qytdr0y1izf0RoXsM4iW61OHQaPYplN/i4X/FBIcv0yAPTFZatnWRm+lnyl2d0tCpm5l2+xZa1eTxGUeecX/lFcLa5/MG+1UhnsZiXjAkTAmElfy+QA87xMqan6URAilZZVRRI17SNpDaj5gE+18tWVFdvAnbUfK6BWOolMRyZK6WQKXU4l+yI1EouTRi7cnrPlqVMmRdELJoFxaglOmNowu1A8aYyaCXBSwKq+y/Lrrlm/NA1+cpQSLQEaT4DFfJgDhgWDkOaboRYDVKTjdTLcYzpWyRy0mheAC5cimQ7SZ6Pu5vxKlkAQknzbwvxQD0oM4bGdu2U20/1iZPT+OF0KOQSz0gpZ+VzKzOFjkqqLj2K1QI0cCcHg9TKL0zNxuE2I2S2JrPXqZsJFKAwn0kvRpwklnUopZI0bPXvpm2sealnb2EwW8I3h21mqdrN3L/OfcXrvoVTGMMCLbKEkY4zIAKzB3BJURtmzwH0bazKiTMBd8CUIqUSQMdKt9tAy0c/T9iCzB0VztkaMzLhVi2BQwPZ2kUYmzCQHxDiP0x8jcuOhs6eEoRxj1CGTNAJexPdk6dDVhMRMdHe6JXaaBTeNMHc3o/H0HfTgvjXKYUYqGTSPdvsxE13WOEY2hjhO9OPTy4nkBs8Ro+t4jHa9HdfLvoV5Yrwf1xfzl4eSp/L8/Tfvf//HD+NjeySu7eWl7f39GO8WdyX2GI/jbTvOI497BtvFtvQXZbQ938zDrUVIdLti46V9vLZt28P3Lal9jANsaDtwnKnLxlu0cRndwsaI4fDdts33baRCgfNuh76cn8b9LbMJn9783M1e/Hr7qLu9nh4GmIbnmYK1/cbrRbE3Xq7t2K8ZPEY/jzQafRPNcX+Lo3d4UP30s9eijia1qN7YZ3/x7KpmuJrRYc7Ypk5gkuIEaiYKWLM4TxpFyFyACdEbyKya0zom1vkEh+csqJadDKXpPXXda35nsGUQrDSUR/DK1vUiFTiHSYeqGGcAE5QqAa8+p/QoqTVwndKupZcz11/+v2T97ZIkSY4kCDIDomrmHplZXz07c3S3Q7T3/q90dERHdzS0u9PdVZUZ4WaqAvD9AETNota7OiPC3dxMVVQEHwwGoz6+8uLqe4C6Hkyne6xKdJkyA9ZAiqrcoVtjLSmMLDeXL7RSMGVfGJWIadMCYUxzhgjLGBrhNDLYwxwzUxNuWaxJFCX9csBtEcr7qkupaBxaw631kpZ9ZZe6gOoO6zQV7C5brhy3Cmld3QPNUp2x9q5BA5JlaBJQegN97ByTPQWiQOdkxR8NS6DnD3UUnoKnz1moCCkz00wgstiiUGVvJNXOrZHdLjFm+RmzWDJcDbD0Q28vRNBoDLiRrZhFWFCplLlnX3C/fYdyoFCcimovauS2SvoL4idBx+gu6lepl5XBFjJu4Fj9fn3SutZxra4W59tjwt+l2SOeU5Tkmckl+vcSCKlzQYkBIr1mR+eiwYnQnJu3mglEcMKosKrU5JhhcdocyyjUdRkJ04SMTlk8EULxg8OmAVl+yGej6oo5z5kadTZJtJBDx5OZmWFOc59F/i9OA2k0L72BoZOyJMYW9FEDLjk20bT7KJRX8uR2a4FQmZe+hqRybqi/VUN1RsaEU8hwcWudTQGil85CBV1KKmPmqYiJyIiuJqliR7SImhDIjOlJhYarNGonKcLsNJjcUxhfKcU0r25+0AaXbjTOc55xPJiheNi5H4/J6lna4PtdImMaienIOebmAeTJeR7b/Tl0EBhbGIic5ipTS5plGsUNZAq0bQs6DSG4y8yAWUpZmw0Yx7YNv/k5c4h6Pn8c33fPwQlhSv5B12Tkoa/73AawjzBw3257Pv/+n/bfNfWFfZ55fD33PO2+/YjnOeM855eU/vFtz897nnOY/Udsz7Hhpgf/2P+bnbdfpAMPPP/9x/1IM/EOfDN+7H/+TP54/k2/f3/Et+Pc9NebHjv+vH3kOU5N6djGtDExIucnHkPDaDOIeczxxx8/ds8/2x83bXaY33+NP59P43jM73ok//njRzyfR2zHPKdi++08n/tHmP2ybWOcOWecv1uk2cYtds+JU7/Z+Zs/NmKzzbf71z9vz8dz9+12u9mEnkfADKB7Cef6qJQUmDCAblbEooKe5rlTKFpx67F3AQ2YkVo1ZHQGCln1D9ZgD81MKbs1XWauKFNXEJhXPrq8Pq+KZdUHO3drBm3DkkJQV3FXWipC5hXi+3A44ObVR7OyXzYo2/9i5zgZnoRlFGm5uUtqP1efXgNQWibhYtsAqZg1evTKQZfZ7DYkrSBTkg+P8iL13ieYqepPAimju9vYtn00+4aLi9XVcNAjOqqIYNgac/9yfOjabLWR5oLaM8FFEVOOBKLm6VTQIQlmhDFUs+urLt+5WGdPWD6Z3UnUkskkxxI+rBcnE8iq4/cTkDITVhUEAN7PtLwSrpo0UN00jX5mKUaoQ4DKR42uWRBwqaGNxOhJeSLKlFU1eAgQTSBtKyNe+wpIxVYYj/noCKvQczPrSReg2RkSiDRjdaBUG22XJkqTLKI5X+UrUCmkz4RoSfPhGNdtdgAJpuQVBwUkBF/K5KIpal6OOnUv7bRtc5KpIYJ0RyiDrL4nukEWPYt49BRreRY8ZUzRPTIuN98Rmg+yyt8+DRk4ZVSGcTSkkIZpzNJwRIlddE1HWUm/xRynGJUmG2yaxIwpy8rWx0HEDCEwgycikQuEs3KydC/I3Yy+uchBZsjo4RnJ0obIANIyUpEIG1bhrA8zh8JDAUpG05hMIqRIBi1ZO0JhN8cZvQalVZBmlrkhFMozzca27wVTeWJzh0LOsfFs5JzLUhCQfHiSmQDmVMBMMuaE5WlxItJKls7lCCiG53F+1+dZq2C0LN5T5n673e67nXPYiMjziDkNZm7DxJwOCz7w3IYNDxt+254cg/vHOdw3t2OeafvcjTGTboBgGxNK83Fkyt2otH3kjDkoy8yY0xhAzpjGOZ9wywTGpkzlEY/zET9mnE6aS/MI5vP3Q5qxa9s/vv12+/i2f4IYvP26Hz9+wfn9wD62kTOJ709XMfNu7vf7OW6WU/qAPr797Ze/Hv848vsHfTw+z3kzw/27nZrH4/if/vfv//j7+fe5PWJyu83n/nGzX9zH+PV/+z2fZ2yf/5O//OrSefJw/tMfe/5++/04n5m53T4Og9k5AmPg9+fXH3/79svUbnMa4bfx/Z/5jxsf//PHf+r7d/zH14/nuR+Z3Gnb/eOv/pQ8XPjxm+T/+N0ibY+E7Rhj4Jzn17BzE3d6HpHD0jfd3G90N87jOGP6tpnfksaMOM6wHnMmITNinsNi1kSpnoQqEoyWRyzCUs3OTq76VRCJIoWU91bmjDzPo+YuayYz0xlMlEXVzFVPXX2tnUJV7auNlTIzJAZFIsJLr0jV/s81lK0qkwWspjF7ZE4XT7FELJKy0ny72KENzlVED0X6dSmdQpenABfviNn5JZeOA8tKQmvcXsPRNavHbABFtkmloaS/ZhiHUl6qmAa5jTFsu912R3rrpoBulJkbSR/7UQ+lgooKWkqNlgBMq867QOe6i2Une5E4piEiIdREDCuFCk8ZMsvIVYKzJD8uMU82Ipl122C3MF1xWF1eJZgFwZG9OD1xqHcRpZ4Hj17MCiSuVLph5II5zcwKUiFpMnnaKP+KIsmadV8qKswv+N8a7y/wZJtWdVj2xFdXax53r3KXuxpdr3iFSkXWs1VEBYlqKF6ZuarlQDPGKjBUVtGl5GgJs+u6AHUspmY8EJfSihZPX4sFzfWA6wOSSgWLApSZedLNR1Il21khX3jJil/NBdXKj5q7l2B41bIz0uhmFjUUi5mSBqmUD19hA2Ra+XxDRXW2uz0tZN1hMGvwRKngISMDZ1ZvVOmLABBywniKEbJa5N5EzcXIBrNAZsQMQaXGlLNkhKSZcaZcC9IiqtMZMfOUO2oEnHKmR+Q8aTVxygBFs5mtN3LtYuk4NxRCkGcgjjnPe5pg5alnhtP2wU2hGg7KxeSnaltPmdzodONGt8zYcu6gEyhp6UCNjVRKtm1FENymvKZCwckcm5EcntVqjjRO2F5BWs7z5Oana8wDqbzdyXkat/lgIM7H9nHjh5k5kMes8ZA9kb3bNmLLrPRjQgLZOmUQbScYLJ3cnBhjC94HwoEdnDmV84EBbr7p6xkHH89hoS9/3gITTt93Stv9Y2zPH+dhjwdg231EOA7d7GPYfrvfb7/7LZ7ztH3H/u3Xb/xvfzuUNnFsxziO8Uj/yngcmZozlE/8+Nr/4z+Gcn7dtz9/+f8nYH99/J/2bX7J+fH5p7vZ91sadgzDEE5qBi1g2zDHcbtB8zCDxY85fvwYVM7vz9j0/Pjbl+/598cPP7/mtzM4h3J+3r/Z9m3M+DP+47s9xj6/f22HG3EO9zs/79hjbPddA0dsQdq+J+CYI2xMU55fz+M8Qxw+xqbJmAHzcT+qnFWOZSm9Y4karpQHLSlLoPawKDNMQQl6mRwS9FHZR5DDA7lvkmqyiJaYc8eK5aqa/MhldVf4XyXHKtZ6lImmDGGlSF3WWarRnYsiWtF8K+2V/lIjspdDqsxS7Ck4Kpa9pVn35KDYjPVib90pEFwKDGj0rBuJoxFCrqx8pXa0i/6bJCJm6f+ukcjbaFXLddM1UyJiluOoNoZyecvLZTavtfHi5JopuKp9TfJSI2jonJyvmAIYZTcEdbetQSp7WXU5E00CSme4XsEm513DBysv5ipP1oX1023AAVA0FxxsoROiuAGlB8yitqqJbbhMIRai0NSrkq1CTivPBjPXLL8+Z/AMs2vwpNbjWQq7NtK78G6eaRRsaNSmtK7eplIJB0uuH5nMOZOmzCABWNJb/Jxrs3j1BGXznfpLQKncR4LIE6bDfbPGbhiQAONCLSvKWE+sSEqSEtllEl0YB12wYXCbRIrjGE3HNQrVRWYWXd4t+egFqIKM4npXyTiTaQkzlrxskwIyWVi7j9KFTbpTbs4NQF1vHbiupiSQ5ybVuN8uT3jL742xnbbdQ7P4XrMfs8NlIyp0TVQ5ozqFqtXYnUjODAEz4zzTFBnnMU9kKGcUNkczcwdApTHdmOAwr+ubcEQgcwOToI+KGgY0C2GvgDyDw74I45DRtVs86KwKDqoyLVKK+bDz68keL1pWzYoUUnVzm/fccrcsgckh29K323eM4n+B8pr69UUQ4540MM3OxhMkObs5znXGcMPdjWecNWFTzd+/57j9QtPQYcI5eG77vD+e+Tht4/jKQGaeZzEpaC6FgIroUwP7tg83snqvne7G4ZgtB23u8OGjsZ+Kgf12gxQ3PdPd3Pfbifsjxnak2/PrH3/Oh567TXJ+/bLd9tv07XnqcdjxOMZ2/xomHoYj42veP+9TB5WPefz+P/5y/h9f2j4N+2M7md/H8fX4HnE8j9Py8fXH4w8cx2kIB6l8/nH4kX7y/5X/9+3r6/MPffvr/vjl62+0x/fx7/gfx/gPfXs8T/rX9odkN4+d+vr+49vmn3//921i7COH6IeP/f4Ld79/xo3u+6e0Y4clQ49//if49bU9b/H8zA8j/beRx7gpAw/lOM9HiFuYGYbfPvc8to9nuuUx59c4znNipIxxZmpO0PxMjqqYhRWlycXTPbwsfMXNpu5psAsqFmQl/1JlFDPaMsGluWoE2YShdudKi9MhpESjZSgnQizKlaPyqc7jgIRCJqHkDqUA4b3LK3lC95V0LbiLuW5oiail88fln7zCb5rkrJJpC0G2bWYPmVus3vISS7uPq2SsoomzVRMAWPNnjFINdLFqP3IrR0R5lqwG23qVDlnU0O66EkJxlrheN2C2OZcEZtopr9zQPKlC0hbJZqVl2WyRLqkuSUP2g5A0topi1FMA69PrS4ClksXpzX4mVde8Zj118ZwtCriqvljaV5U3W0br2ro7CFOSbIWmYDuELL/TXaHlNHomalrvKS81SFiNE8eqyTN9OJxKmrHqE7Mw9VASkQZaKnLWrGgsDjqUqVnqM1J6Z1CZjMMHZM3+9DFOwYZVaWzzCEgGNzWpuqh3L8ShaWRGmop/Y775YLpbsfZI0hXnHCkO0hr06aILRNSzjQRKDbuba+accyYn6GqpKh8YfIo6s1XMJpyQO7QCNg1IkAOEzOeUjBgGIY02EoqYx91yuAxOuRHOsXPCB4e4Dafg5t1DVnCml14pVJMc9nwwAzPy3KrbnKlt3zU+fhx/+jVwHudzbuPJrElJgjBiSnUM3Qw9DcnMo7I1KemQG+kuBWDdQQRz5xyespRV+GbDIdDkcHADN49pTPi2hU9acTC5aQvEU9UslDljYiTG9LuU9HD6MM285TbMSMlFpG0nU3naEWlULJ4jUbBCjtvDHDYPbQ/xxzdOSPDkPSRTjCBhYdps4AwOzzM/7snYZtxZmtRm0zAgR8aJfRw3adoA/vJ3KCBNcYyBmfJtyjBo3/N22wELxiPnfr/Fw/Q19/O5YdqYacAGGmdYFoS/YWQy47hp5nlwQmcoM3g+nvecOsKe58k7h1tq/vGdn7bN83F+Cpr4zMeJqWd83HTgTz9i6th8wDRwztR9+9i//qn/PrbfPv3228ftBsrSb9r0j3/+8fX1+dgydftNj3sc/s0/xv/6t2f8/euZUvw6/vLt9mvO37ff8Jj3P+6+f/76p/jLN3/+18e/mczzPs6/x8f29+c3979/fJPv//j9+3mbf59P6cdf/P+Xfwn79/1//8ppHtvfj09++fPr8556/PJt8hfE8f/4PMaP3Z/xnN/87m7k+PbLQ9jmPHceie14HKZTfz0f3x9/8m/b8Kedj/Gc8+vrZrfx+YlvXx+DSfNbnJ8W+vu3bxiPv9+fPzadz8/b7X778JhUGuM4jsf0j83kgAMpMBMYwzNfzZh0ITOVMNVkwc6UNTHDi7OQ4OkmyzALJDKt647KpOdUnjMy5Daz5oh2DRZmtpy8Om3qL4eDaUXhAtRKBmQaTDIoo6rHXUL29gfw7l41xazCc+U2ldDhQp0pLv5ljwy2YpvWiOpmmIAySy4SUzE3OtUrrldkz8eRB1rLsDBrpUWXcEUGU8QJI3tJNxPGPugFwgPm7sOKlltzVwuOS4iI6QgzszO81bIA36y7elaIoQ7IUzVPN1fdt/tYqjzLgSoQF/RRSD5TrvRGJjrSsMQ1l6nKwCv1bZOjVPNoFam1yoCSHClPhczkbkizCEAnGynvoAO0VaTH5X9L9MEAhKG4aARJ82GLGMCocoXRPEtFno3AE6WOYtWHk2RW3zQKNI5IWmJNR6CVA0RP2uMwZqqAETJLHxNR+AabjqBcKAgrf+7SSYU05dJldCY4dmY5rQZL2M+LYHUqIkJpC9auH4Krz60ebMUQeVKZ55bZEnRpkTNCFmkQ5MUYAlWKN4InelK3OOiRTNaMquoZAGAyFxzwzd0rcNiGGQuoMXPyFJHmrcZcaaeLMJObDCj55ActmNqVGTUFSgbdvk0eHAtBqbi25hmYs0rxbnSrqSSUrDqT4RY138EMaU4zsyF3AzP6WbKw2zQLmCIGhMwYIm2bZxprZjEExJQr7Aw4FeiaSpbEZjxMcpsR9/hiRtro5Lp2ZsxJ0EaeTRErKMAGMZDDzAGm7lvKBJxbcDw4kE7NtneFgUOGoE5k1apTlu70czcjd3HfNnfavm+HYXf6bb/dtP8AoaSJYefzO+3H/ctgOWzbp7YPjN3+NMwez8cRswY0pLBv7h6Rkm/PWegGqG03KSczpDE8mZEBJ6GAccY8gIBDiYjvzzOmzic0PiDsg7ZNzFP6z8+PsC3OsW37N/N9UkdZmHjGl8Fv0z7vud08YuDwj49bbHdX/PEkZcOMu6clf/XfTmE8nl9zzNNHbgNhY54R/7z/45/ff5/GOON2KBg+/rzZ/jF3+/Pj4/7vY/9//gEY4/vHiXHfPufHh/95/2UcHOPrw/IbMB789rnf/s4/4/tf8/fffvu4Pe9i4sbcf9gxDY95zsd32x/84+GYuH0+PybP0z+f8WPjNOCDv45Hfs5T90//7UPm3z/Gps3s6/Om+5hbWjx8nujhjRnKeWaGGFPYbgPHrNlwKAHEcLLsJVHTdEGrwl21lqDYPIIS2QxiW9xdpNWMQV0lMphgPo0QilEaRb4TIURRgwLEFNyyZwgmks306gaVrNHQpZjDUoFbnSFgqGg5UI97I0ydxFbG1/jmBZoC6KmmVW/SSgGBRMI7PqgCcvUfrDdfiDyWSHWP76nvre6t+iBruZ+s9vhy4US1hJqbmRuxbbbgzHJGC0VNJBxKl1LGAF93ATCrH1GQrVKZFfx8FRAXjQ2LwyWiWdDJHmdBJrqU3gxvxZwJUQEQkaucnJZIx6LpdhRFVJ1AUFIWVRVsLmg1XKES5f4tovnT1brZBIC+hU6FgfaHpV6K4qYmYXQvmShXwrecjsX0zUTpdpsEVq8NTFIwM9t8Euu5NnHdqqk8a4QOSjdN0QLg5QvNzWy+lhXd7d4xX79vV01whSlkikWxikNyqPXyFw4B5QqNRPSYIm/qQ72iunxMbkrLShO7SgfBXMX9OgH5hlnwf8+TrSGRVOmosIY1wx2zRObC3CpIC7jZlgwyaT5IBoaZJB90sqT8jYlRdP+rSpCVe1ZANXzbzED6sBH3z20UOgxzwGyAMcx291GzJMMx4V2UaHCCoFlERmZKdAMtigpSrVwZcZ4zIp5+JmNOH9WiY54CFNxuJ4kAmE/zCJ0nh03lKaZzDRCWoA7mqum/3HCUiVKGcjrmMaf1c6KUs2RRSBvTCGU66ElzCAbaOVOZp8vjYzhz5+k5zSJ9uG8GlygTosK2PB3bbUA+faM53KScO5lmGfNMyJjbGJmJYwpuAWSeX4Pm42YfcBfj89e0IsbFRlfQDdvnE+YWMSd8GCNAQlM0bM987PABABEUSN+wNR6Pmq6T8u2UTjNxYt8F6MTOySOHbLvtzvFxd2LieNz3GTGfdhgxdkuOMfbbbSDjjMw4A+l3nDqSu+03N+qRpOCODLrpj3+7Gfbb+Pb99z/wIx155HlC4TY1H99///v//hsex+P3zzy/Tr/dzL7Ej7/p/zv+O7/0Db/tx+7bf9yCf3xs/3583PZv/DTCb/yF3LHd/sBv94mJ7zzP3/9x/Pj85Sugx2N+6Vf8FQJxRp6H9jkw92n6tHnTPJ/27Zdv2/Bvt8/h2/75FbfHedzjR57B43hORXJqO3z3seeZbvGx2wcYOc/jmFmSOGZJd+X8+tqzg3aaR80TortHlXUJek2uoogBHTSRtkbMFQDsi4YMSC0VDJCDMfN2g4Y4gSQtIsiaoycTErJoIxxchwJiScAlsma1kVm2gq60ikat5f/MlUTCs5stwUyjEki3hQy2gLGaS8XlR4XVA1tZHNkVVZQT6IZ0rTKrAOtu33qHQqC4fAxWPbjNcxSsS5jXxG83G0JMM9nHXiM7sgugYSIScKfWWNmiwFWAXUN/rOW5q2mZWG6BiGpQrUEQqa4Jl95i3dLqOhlmiNatWphxFVsLYeTKclFS2c3rAvBaGzREnuiPf9UnsFJZQGuCbYVXqudqK0wpU8i+1hfbqDPZK96B1DPuKn4pd+01pql+2mHUdaVrZkDB7AsVb4BTVrXXrIGXysYlMjOZzukDHW/m6uXtd+Z1hxXPgC/opmLUymwFdJJNIk8M9Sd37FZr029Ww6dRkiuLyGfZWqbFLaMBihkhgOYb04uJbLThZoa00tQ4wHyh+VGHTUL50owo7gCSlhneOWnxPxxIZoapiIxFsYIASp4gFQXaFN0gE8nsNqfNCWfuTNCHW8cR6eyhU13HVo2ra5IjlGca4MnM6L6CzFTOOQXVVOrqA6ZlhCIjMM/SCrWNGBqlqFElK9qgfExJMuYZow8P0yt8ETKUeTLWAyw2gbkPQwya2ebf7Mc5avBCcdvq/CtrrkEuodsK+JJEWogp6Ng5RInyMxFM97HtR8hKVJ/wMZyurylg98d5Ik9XZFKgKWoNRMElRBCIiTwn1mhi6Qzs291pJuYEJWTgyOePb37fsHM3RaZSyplzUsiYceSWjDinQc9jSxsZ0hxzps2aOzInEBlTRIFzZnHy3G/czhzDOCedUWjW7b6NX397WJ4Rc+aMmOFGZs6ML2QYdrOPLcQ85UhsjEjnrBYnt3OaMPa7328Z3+37HQ9+Mra7HvYjXDT7dPz2+bkP+vN45PxK2LaPeWy0hz3998ce/x5f3/MDN7/984P8I/ev47vd/qnb8wHckf9+/Iqx/3P++faI//Hnv0zEH7//53/LRzx3nfP8MnzcaL5vByX7+CZtMMqOR9xz6q/PzW//JfSnMY5h8eGPPOZMUwbGtn3+6df8CNxOt+/3hOfN/rhn+qnn9nH/9uvnkdyGIyJm5sxzHqfPq0ukC5xkT8gsB1xKXpaCJWVWLZVpSZpp8V+RlvCVVZQRJWg23CxwiTK2xkr3rGcxRlowpuq1pVpVpcVSGgSwRlnCZ3H4G5GrPBWpd+FfFGa+ENay8XzV6MqX5nIB7TQvr1Lkry4T9usXZIZOXXIhAhQtKrG0lXk2g0ZQ0WfMxyCyhnOXV89UBC2TOU/HEjpSMotNzuHGGipQE9bNjTCaubunWK16MK9MTxeCWynYW8DQtBGJLWmVEIZ74Xto6i9WVFIVzIpFOjvo8IrWdXfg1Qj68ri9UljpP1Z3hsuNRYvVrLycWKjDumqup1SPpTNA9PhBmmijOp5slJqlkZund+G4XFZ4++oCjLs9vIjCFISMMCkjq/lTYcUsKIy3byPEJe1N0FzJ7nXuGnehP9feiQKy2WMz34ASSxWWbB2UQtcCdZG8Bjtj1VPMTCAsV3ySyJY/LWJwZmbM7GEoiszImjs1zwkIyExa6y0XpEOuQbGkYTYRtsokrCJMSTLAQyhmhLmnCDOLRKuhmILKTuIrYezgzQggTTqf1c4mADlLU3l49U4Zaz7lCoFpaTK6h6e15aCZD+cwq7mE7H2rjETMiPUkpBrDJm41Tgw0ZMhg1ExRaQrfHdYzKcraFGGZIuHnGQeS402GgDQ3W6kxxW1uuG37BsCsFDlogmmeJezWIL9UMBzNt0hAEduAxDgH4GPwPjDGk26uYSkjx+A0H3OcOF2kZdYgcxvV+jDcb+O22S7CaOED7qeMbjLfv2WHgGlgWD7jY3fYHPvjfh93bDw/jMNJ35PcSNsqEttyU2Roc1nCXGkyZw3rvYLelOQ9Ih1hcx4aAZfHBHSjufJISwjbfjO7OYYFcqPNMxUiTdx9SnClBUszylIjppzP1Ew7Mog5meSc89t43j8VwObPx83G/v3zt4n540y3efv4+Pb46y/58av96hnIW37Pzcf/vGHe5nf7P3j+/fzT2Bw/PjC+jv3H+bhZ2pwpapoi7ccfD43gNk5ssmEf91/257bpELfxlwH3QfvcYxDnHBkpOf9k/7dbHvvjT8/nLw/VsJb5+/OJ8Gnm24Ar4zxwyJM35BbIzSLPx/mLudxu99sNP4Q5gYx5nqfmEYrDlkZ/ZE3j7smpKYCprEHCylCYLpZ0Weo2mQ3X8cpy2rR2+aobVooetYhcZdJhXr/9lnOiEdPVuFqSuWquahGiSEXF9IUYgejG1R7LQ2rRo3qwXlafSGdP2VFw38AF0zYwqITM0qgkquJKA8QomAqiFEYppjKJlQut1Gflfp1VGtMT27YUdgsknAaZGYeb3MDhdKO7D/dhNLmV1o2oWDKRORv0fsUM6wZ45bPlxwRk4b3CZfqFgqBzRkoLNEB2GspFg0daFSdoSDYyvObxdmDDpRtRbrArw43OXgHNCmYaFe966xUPXX95T66XN2SJpmj1Aatb1Am1KH4lgS4b3thyZ6RVDDe7bly4AFyphKK0QOWaLBUo1SIzH0SGXZBGBTJFeljKZ2vlI66dWmWEKhGvvhoZBR+bF6egdgaN3f5atc7V6aTXY+rly8Vzr8fjo6bbk0IAZm4SUl4yLAKjwFKs7iO8PRT01AkWvW3l6wSbDe+t1LUGbWWu+LQAcWXRt4nkCqpL1azBIgE5YZakuW1M+e2++7hn7IT8dr9NY/UW4yp2Fwey5Gt82KpIrK1RXEA3kBmhjNqklIZIayiqgnt3pCESylOKOUiCYcMABRZm1P6l6x1cNRplpobQ1ZhJRYneVtDk1aIG3+5CAKeNUTutGMmU1Qel2GJvNug+DX4YM3fLnnpZ1b2oQVdjs3p9isqwLNlpmtHAOD0jmfk15zODCerUPJ6ZlKXlfE6E+fDbNjU86ZEJnbJHuJt5GKrlt595Ai4lvOgO3AbnnCmQkXNGyMCsCWEzjpTTh3yHxsx5HOePH7+HMp7TRAczQ18/thN+JiLvJOiQ+zaCmx2BxxdPyE1m1Pl1zOMpQO42/Pg69DwJKZ+f88k0gRnz+znC/R63OVN7pOYkzDDdMI+BQ3Nuw7bhf9o3/99+/Hqjf/vb4zb3/cktx2nKCc7jlklsHuOXj89x6nH+9uttG/pTfP8g73/+t+2PIJ4ng7dDysxD55SZb/e57eBtH+efhh5zd8PXxNMiZCMO3W/n/Ij7xxC33SAdxDkitFnKgBtsjA3DM47n4+v716/O7XO7m8LlY7hvZyeSqBwTPR7ei6jMNSiB1NJjJJQ5OVrnh2W/q1khq19DqJwQ5k7CokJzscmmLOfYahXq4bksIkumUWqtmtICrCFE7KbLNvBJNNDqnZyuPieQMneztsRi83mhyti7jXblTlzeo3NIFn2lRI7RBoJcLkaV5Fud5ItPs7wbC1tXmpa7qs+KnnzT9FrzMYZm5syusGe13Zq1kCDaEpE1jMG2MbhqVhCLp/VyV8trXWnWyve7aNiyDtJQ9m2yAE4t51HPGR03wTKsc9IFBaiZcQXqXnB1gcggFn/oyoUro6agTLUq2OtNliurYrB42d0V5dHMXSogvxnzreXrBGO6j0Pmwyvp40JgCppuBj2AmoibyoL2VAUUqftmDZRUW16SYbRJhJXIi9y5RLPbPGotA2miVUK7LsEYcAmimSFaNGolvxWIVYRQ3AXreVPN5att/pIoleUFGhS9QWbV5lOjf5F1TKKa3SAUcUAEhlYg4gVUU1AEWdgwVH3JohCtt2xKDaQp0ytkcVoVirJZa8XOvkIl2HB3IrBhOm/b+AiTffvcOfY4eE4C9JorXJLazVsjWxLvmoNqVt652rRmzKxVW/MfCtdJwutZeAYgsHjgKCBJMFNgThqVUCYHFYzAFEI2Q8kaa98TCRXnVtPUSKXiPL9yIhIdCUKiYS6Fvmp1XxAbsUr5sAQcTmqwNLndfQywOtZR0zJBFgfNS56cg1AGE4Y0xIyMgM2cx6YQZHmOSDpNtn38Ad/odvN0bnTPmck5xzPMDL75L/ntuflggp61i61mL29Ais6ziH0ih/kAVaJxbnSo9OVsS3MCiNxHPJXkbcutSjgI0t0QYzPASc34bt//cnztJ3Yz3+63odwO4TjzTALa4pBjigaDSfMxGaVtbHLL3ERFDhOS5zPdoW/nth8ff/2v//V/uc27/fg8niO+jiczef5HPv/y59//3/6//PZIi9/+nKD/PjS+7vp+/Nufx3/Z//ZjYr/9+OWP+fGp84/j2y+a/9xG3L/+8Y/vZts/fTvP0PftEX8R3U/7Zt8+P3+93eLH3czHR95xzKfbh4R48huP8FvmoX2rpgMoYS6PqYy02qoGjbF50RPneQpplUzkeSDgt9t9ttxPWoWivoAyllGs4a5QMZsaZCOdhozImk1oRlnP+XqP4FtDSqluJHVvrHV02tj+eDkwCeqaZc0LWIleAhmmZvfwBRhW2ScpLEksLvPfahzlyVJF6C061Mu7ZXkcu1DIwirXaypOuHwEAPbI+I67yxKV4a08gKaq/Kk7K4rNzWb9WOGYtW9hZQYBLSA0ldHwbnuilHVHTEcmFWxUz2QBi53trO4ctNrO+uoH18GAMKrbVzLSCiMoQMJIo1este6aXesm4KP9Yht2sShYfOOhrQio9UFgKoYrgCj+y1rLhXRjYSBa8UOl1ejHUZ44Q8LImMwaWWAK5FmOVdFzBrl4JsoEmIX+ZgSzimpX8qqcmpbV6QNAysCcEjvZj5Xvl79tFKdW0pefVGeH64+KGYt3ODyzRiHS2VP+klACRnN2OOuqRugaim0i06v7S2uIJlLN41trYyNhNTFxuDFSipJR4QodvVu55KV2CjhtgMNDJxwa7T3pKIb4sDCINfNZ6e5WLPeSK1lTGUWpPO+bgo6wNEsTI5X0zAx0z5Vt091Bn14TOsqGDLOkW9U6ubjQVaGopgBIkdPMfZYYvEoOLJ3bcEvb4ZTxTJtoykJOH6L7CDDoY9IsA+Y+JrqrkQajFU1wkRfqLoYZouJv2BbjFns1yFfkPfaHheLMZ57WSI5exA/jtj9dsgMTB+y4RUIat9w+j0wLeGqDhWnU49oNR2CEYTyPzZWY7uZpuRuHm9m2SeYjbTP/9cd5nqQmaLbr+Uz3P/5mobx9Pfzz7sHE/n1YBr6+fj0fT0nmuWGmKJdklJuU6T5OIgc0dwiZobCIikczas6Z4pxpHAMxH8+ztqL883O34Xc+w/L48dCIsPst7Zu+2W2/ERnHzP0XZWTuv9zwcbt93PY9NVUa2hlz5vQzSXPupnAlA+OXUAkn7N+3fU552EYOf/ht28bYPj/3j9+2ERbjMP+ej7z9J33+239+bs9n8mviS4HPY//xqf88/5H7P++3H6G7/uOPx3G7Hxn+OG5jH9vnPuwzf/tfb//Q3U7o+Ru/cDp94Dd83D+/2U2xk5pjKs9I/cjnFoFpI479+xe/3f3gzIlpqYgENxxODoSgOCJzHEKkbBvDh/vw3ZE5z/SNx4miWkhSSDY2RI1OKbNT2j3tzsJaxIY5MbENJwvLSsAmRre2epvM+VSez1tkzIAIBkxxOZVOPgu90qpCUlCJCjDdijCtUsJXCoEhyfGWY01a2AZByTBqclDEGueKFLumgyvpWildTZBdFbaFIjbDBAAUrOVJw5Wmv5JGpoRIWA1aWuLE9Z6lHS8pA5aZLGdbRWPDsIgxeqJeFWDN3EtQE8U2aucJ9oR6iqDVcDyg8JxK45tNXFXfBQWvRL8vaHlnaiSUgWx8t0hShKUWFFBFs8pChGVpVsdUOcYyt01rW6nMWgmhbr6cE4tR2WFA0377chZA/Qa+YhXDVdUDiws1YOmlsBeGVZdzDDdVksl231juMSNVPtgEQoqMDJcqHXvNdzWZwzZbGGhN96K6PZo1mhZ4jXASX3hmrS1ZLaq8RkC08qsbTdaBU4nW1F10C6siW2tKSHUHO63WzHqcV7UyI5EzbVY/W5GVIoRUWCpCoVncYXfaCi6XWLk147tjWasYm5aNEKUM9UZQoeXNaiA1DUlPMcPA8vVwzCpju+/7rbxuWlTlSHWijLAhMyCzVbMzIzPCZmQrZ4N1aQ0TVI2LLezBEl5JAGbmKSI5OhwmoRqRSYIbQlUUy+JONESgGYyo+k8UHGOCGFzxDZEKNyJTh+WXns9HPvcIWJ2XnDNToNk2zYLUYsxVQg9QGUpsZrEBQ84cEBgB5hgGD1IGxBK0ETfTSIoDYk1YkZXodjIiatCFMeDwNBtwlzHho6aTzog87WabiXYjd7fh4thit7G7TwDq22ozK27T4eLNmTAbBrpvA0iWngvc6AZzIs/hkAxfcx7n8+nncUxoJrcgFMfzMR8PO+TTwtI+3Zyu45GM84g/HnE+KoLWDI0MJM8kzXA+viK/bBA7fUz9n3c+eB+PMronNyaHuCX3fBLzmDNpkdQR86kN4zbxbRv51//2Z/973L4N/f6FfOC5fd/y+PFv3/zfbn/5POz+sX88aX8Wj7H9stn/NNv+GOeT8y/ja7vNqRwjoyjm8TzOUNJC5on92z/Pr/Prx36O7ftpkadP3udj+7ZNbhOCphAzGMa5nRM5hVseG4ATMDLP53HOSKWKyWMmK/bxqtKKRKkAK+BKy9IG0kqGUulYhVLUFPtm8FZV0jLTKzOStFISW2mRRbzUjRKoWTWFZOiNaoIlY4zGNgEtufwkoDTAGrgma+TJlRIbq2HfzFyiWNlxs3vZaCnWCJX2S+zqUJsgruIwyZZaaBJO80ur5VVAJ94XBnulzVqV4HKLJMA9S5upAYYCDhxZQ91Kca54V0og14idhBfO6cMGo9KhyBfQ/Cq/Ej/5sfXo1N/rKxy6Ao1X1nrlMgsHqN/JRt6AGpemgkpeiIW4xEh0/Xpe/N56cXeWXZe0rlOWb8HUQrNfb1bp/4sg2Ga6gyOtYU/qLHQxpzt3XgEM3WscVV10ZVioSYDokrC6ClMNKUS1hr9WpDz+utEVh1wBWWHn1htota9X03traboxu0S8pnb2ntX1Kb1EqqE7L/T8elqFmC+mGllQZlbxJlxSxFV2YM0UXExdqHhqWghRLMJhMw4LKkpIRY4EFXCo2g6Ft81Us5benhev1BkLCKg7HeYV0WtOlxo7Idb0aACsqARFRIZkVuMZMxMdQTSKQvPGTMy6I6AeW4ksVoGDNehZEBxJVJdiLjwOACJK5QQlF5sRM5iWEccmrM2KjJht5VI1/qriLvfErPDOK9JkP7gmr7SgLVE8i0REtydY2SShdFXjYJIyAebdaVmRT8fAhGoYE1J5BjwNtmU1Dg84bxvH2LTdVdMlR8h9vw2TzGq2eKvsjFEU+i6fkKP4rsM6+qfo5q15YsM67iHpY+w37oV0IM4AUIVlYN+HOAbpPqEZmBnpjtw9zNKe3+MMHM84z+g5Oe4cRuW082s+Ds8EBpA2cJ4jgBk+qaxCZyDSpIT52HcvRDwjyDyGTj6pryfs9jWQw/ND43elf2764/t/+cX+y/7n8zm27fbL73m7hwSF+LARMx4/cvuypzQPUucYDgo5Q4munkuIExkzMzzpYRy7eRyY8YcdP2aER+A4JDmn4zSki6QydNjNqOFOI3Oe+XiGG8dtq3ZAOGsCX003alO2WMOXnQRIR7S5oMFlqMKJyvovguyy4rhs22LX9CjYJqZcpbJlo4vm03nwcoeFjjcf4WrexbLDPTr2xYFuvLTSFLbhIpjte/s9q3u+HItWttv2Xx1Sdz7TvrdHBoCweq8rkiAgrlo5CxtGDwiyVuLodKmluVRZGDzP0+xc+pZamfByIcswVhrgZv5W1uzC+EX5ekska/3bM13W8IVCK4fWV5v0xdhqupHKBaC7S7JXUGzqUu2JXr0FFgOo9p7LHl+vxXVDVT64vk9Ry1H+tHkWIKFe5MWuf71S4EUiWJZVWD1IL9fVBdfXsl4PFivwqi9dnqTSsV4dqGvG11Oqdc4LSKnCPq5PXH8ssZOMlIJFRtCL/PVag/pZx3FvqK4kZc2tUk2WAgAUFXABDE2rQua6setpvNaUK4Tpc9Nl//WO1Nrwb8EY1+Za690Yw09fi0SBQrKUktyVbsPHVvrmA+77bUg59v22rTL4a5uugK7vvtamI67a1JLQJHCsxbdVUa8LqYBHLWxfpSklK5EomPuKi+tUo91m//7aEgUGkD26g873U7n21NpRTU/k23J3vAYR2TLXFcDl+pwKNoovZ41cVTl5mRzQnNbhlRnNRatZHVLX+qPWKWM23XLtGIKFZ1TnhLnFWs0V8lDK1uigodpCluHtrbh6+QsaIAl8mBwkM85Sg9DKPkwq6W+nj23Qhqt7FZzNpaQ3sfPY8pyZUTKm5wmdogah2HlyGxMgMFNxTjGh4qOpexFomUQipQOYFtUGM4NzHn4ePB6I7cQ85zk9lGdw6DmOgJ/zSRvbyPSauu2h0+w83QGCI2Xb2A8vwI3Vhu/cDce2M9I9QmeJOtI2d4/dCXcfPiqC6cGg4yBtjFHDeUkCXiWWdj19EoQFANczWMzIa9fx7ahcR1KNwl3RNdfmu85mvU+/3WWmJSG7JWcZmitFU8d8WNWVsoGXdauEYxkZXkXPImAtU139lstCXB/SWe1ySuuO9LIDK695fS0fjbVk1238y402nftloNbSrMMqlkxYfWYdQfDnT2vfd6l/9gHncp1VHRFf1knoqnRjYXXwFtr79n96+6TRlr0w+DUa0FgIel4vvLyBrkVcjqPXpH6QWEi0sKxR3/LlSNWtoOVNrsev2iI/fXXbcIcq61G3VGZNUQKtUcauCFzY+Dsm8P6Ppn+9ZCTM0tYy9itrO78FJ3WjubwUFv/8zU29WV109KGftp5UiDplLYr++j0KLFHFmuVerCtbMUz7wD5IVY2JiNCFooAJqAvx9Rp0TPm+qFwmlKgu0iZW87K6ZIEda55nH/9uKlRllxWocMUwWGfvFdtmIouvgfKYipgDjBltPatncG2iKzJaS99Tk9ZD6MFW9SBydTevYFvq0aQsP5h9rkXLC7fLTAxkAhWqN6ST1R6Ba5p3m5FiYwNmlkbvbsA3U7ViEL5W730N3vCaDnW4hmqYc8V8KDV913AuZTBb1sPq52ZUMs9qZ7aE4jlzdhOkImZ1ZXkmM03SNMgkK9xNiVEehLmOGReSsWJxdnNIpwzrXtAcQcDSupiUwTFu+x5jg4RMVlDT0SoRrtQJpnSKNJlZVc+mBnpyDq2ESBYmMc8ZYRQyjIrSJ4oqwIVsO6GSzmTL2oUiT06cp1Hx/bF/bT98Pv4x8/79Zmb+I24ZKVdiPW+C4G1gfhgZHMOc/m3irh/HB0reRTi4F+WiRl0oMyJPB+fvuhPJTPme9zz3LzPtQ4jj+c1VMDLcnWH7MfS009yGxZ7ndmhK2dzPtUOgKmakXQZqOblXjrMMka7EaxngldLV/3oqUsnq1gnINeNF1akopGWJ+wLCJc/Qe7bbAeqLK/N42ZDGLbuoVtMMXolre2y7fr1dg668sBhKWgf/Ok2vePPNWv3kWpebXslAvVnlPFhAYlvaPsnX6cRPx+0yUl14xjqvklQzHC2tgvyXd1shQSPuJfVeRuby0OsC+xGgqgoraLie6Ou+x2VNOhoop3a90evml13CdTj1+iHWv1+eZr3Fcv4rcNLr/VgowlpQvt4GF7/6Ffit/NfMuldl+YHmthlLGubaxmiJjGwRa8BaTcZgaWbwhv+M6xfe7vKKL6/Pfjmklaau+Kex6lwXuzB98P09l2Xmta11rXVzJtbJseXAq5De88f0emsIUFEzqteniHM9AcBY/TBlQa9sB6/duU7n62G8bVRcYZo6yrl++1oUvoJzsVvysNCASCWya1MROjMyj0GGPZ/TgYxzpoGJtNdpVHvS+ox824bNoLdcIjSLKLiCz+t8AIVGV2WRrWRr9Wtohmln+QVdW5bsHGsUSSnpVPNxmBRZPL6FyXFdFYE6jWtF3tJfrRMFQGlSWnUpsmOeV7TZ7gkClGmNay1HLyk4gBWO9AXQa254d2zVZ3O7lZJCrioFSU3m8WUzstbviiGq+CbAnAGIVEZW4ffyu4RUmT/73PVVZQewPgSzsbFvocX+5JB5ITqWkRmkkprCZAmXpEKWUxY5MxWRMlgRUGxzGxs0M4E0A6poGpqWxzHnPM/nnMcJShGCZAY6Jb8/xxhGzSylkogwxYUEZgo2YpDu8FanjRKMwWY2kj4G2UxdAFTEzIyk5cwtE240l8xEpwZRSfg8NiRm5AwaIEsOIxShDOHcitFWTGJkhtdxhaSMFy308jZ8N6+6TG7triuxeAV/K+rrH4gLxESNEnxzltCCwcpSNXBrejvXRSI2omBxtJk1s1ahypdd4ArsLnP9isWFhY/VRwnW4MqSmgBLkHrZoboIvdKCFWk0cCdePqITrpcFf//jsm3deFdmWu6XxddrFb2FC7U8SCV2elnDy26qbcgKW/o8r5u/MhK8PqH/wbeXghqvSERcbyUwEaaMa8jjdRuvmsQKurACCrztkL6OK2hY+U1jAyvbvKI44Vp3vP1mrZhU3S7rJU3podqYpGVjZ+Xq1+K/RW2iFma+DFyLCNUIhivSzGtV1/X1la+O6zZs/deKf9SnYy3WK4Zs6akFrZQdc6uBdqS9aAPtygoR4OsC3iIhrujk2t0X6ruw0lfiUn9YwQJXcPNCgdYZLpj12i66guD12Ps/DdlWUtQ3d/mj5ZR67PRFxOhoPVl812kMP87TTsuYM9OWO3lt13c33xtFL0JWR/uvtLJPyLrV3ozqW+ProdWdvIIJ6RWiKRaa9IpFMplh4VohbYMlwhrRXZ/hPi4SVd8zO22vtUqBSaXl9IwMZAC0iEQrdaM6o6QMRucH60bqrWoYUg2EyTVh3VQDRIkqUkICh6m7lSEEZhHCMup71zp0kJHN9CKK9bY2v9riAigC4k9xO9klBpIOQ4o1w5aRESKSpEGRM1kHTTHrQEbkpEIZAPNMZVoaIhhiRiRCaUqOjztuyT1cc4zOM6zE72RGG176d0Fl1uBtd0uJA/O0eISDzZ9xmbkPJoyIkESLIw/6w7YIj6lnEE9PHEoj5zEhJY44M3Wc8zGP0qHBlrAR1Ml4Ms90Rp7pmXHYGd5EGFVwQt/VEoKkjbFMWObkeU6bM3v3Z1ylpIX5VKf4SkBfJ+MylJe5efN46gC7v7cMaNnZ5eEM3ZRBNgOjkRmyJx2y21DLYb3SrpVRLGosXxuj0MorHE0mgyRXTYTLtqkT4Tc7+9ZG8TKeul75MoK9fle1aC0BlwVfLnIdxj6KSesxwQtF60RvxcpKb8jqla60F+nfyfaZ9WjyLQOGUDXgC7Loi3qzCu9/1fqGMKIU6tQyWqxUq6G/5Z0b0yayDldxZH7yFa8PILrQU5FNw88VwcNa61FXGPBzuLC8+/u/VkDWnGdztxaUwtti1WMDe5fpis1YEz5k6M52ZKHW1nwsXq6vb+2VntKWPtXa77qMmK4doeswvO8Nvv1j3Ujlt32ufno2y7kRQAuf9aeJ+imIevut1lxdau0tcdre5RJ7ernJa7cCRKm8NsJyOeY+3H0elMuRLFDsikn693DVcMpFVEWFPT9vjJyb7bvfp2T7vtPHffp58r7fPo687uTabfm+a5Gvw9SxezMzqhyf0UxqJrHGZRZeSlQtPOtsrNhLSkMqI1tvrw+UwtXzsN53MshSKasBYGYr8a32XdBsmLlrQfR4W2hJEVkN5+XQMWOepiDCM3raTVJiXMyBVMLWVoEKIEDF8JF9FwnNpt8pJYQaB5uiyZzuCTPaIBKyQZkTBB11bLMEX6Kw3HIZ6TRjQiS9ErNCGQWwM3PS3N15NxGgx/MhymdubmE+DGPQDAlCvsOcm2kbg/BkPDnzLQKfz1EDY620EB4HU84Ngg99GXAoA/OxccuQQVFqNSFAEToQiTjMqO/+edjckluSY9vMmMCMzKHIGZExLWrwQMScQ5HMRAQ0D6tB9yc9TsdUTpoy1BUd+kmSLrq7fJybiLzptGQAkZHzDDcDi7hmeSbO23F+BHHnmTzlPE9EZsac0YeSZlTMa3++rPdlz1/mQwBfr7oqqWWguMCJEvjF2292gtNmWVemsI70CgQ7gUF/ci6X2r+RmUgpwWRKTcJdxrJc/Dqn605W9qnr40q8r1WuWmSr9nEmE7DM1a6xbnSFpM3Hrg/g65qXN+Y73oh/ST5XeL1cMK+zmgXIsNXFCCZgMEtpzS7S+qAr9u8OlhLNaEO6Rh714i6bg5WevV1zx7pjLVuZaXU8tFwS0DGDqvhSAZWBgElMsfgbtUqLhFV32gQ+ksjFM+0I7DJwy55XWvxKhNbTgxYIsIx07cAkI6KGN6qfYZUslZeMR8cZi0a/tsBKgcs2r4itl+Ul/9Waq+uz1ySSV/QCrdgI7+ThThAbWs5XQIdXJgOhuozruxFkld/7O7lULYRk0bdeTlhCaTXQvERa8voIFN2vIt9O9yo5aN/Ri9zRiblNvDYtQNkbmtLiH/VGSF4V4+6BQN+mls5aY1BNsKNp29K2sW+2WWjbth1j84ljcttsWNYsZ4McJpppTYgmzVtDuiJ2sypT5iqiZWlSzikkkIv2bD23oh58BKXwqkkORDKMRarO6v0qh50R144DhAJEO/igkcMK7n/J2zVxHlg0C60iQZcqVGuc8vKY2YQGsXFrUepnB50VK8gMWlxwrAAJHe/ZsJHFSy8uqNp2lKQqYp4QEEE4U7IZTIEcONNWUaKhvq5euFGZBrWeSPeTqiv0RhJTEhGq1aIBvOEZj0f4PGVAD6J10oAMCdx1C+YUIs+kYuZGbJvzyBK+oTkZt5ySOUjaPr8/88RGzATv4/w25gFwpsHiMXNTAuZzbDZKVwFjw/PbH3HS7i6FxC2OP0V8P0PGTcfDk6edZ0auoWkZ2IHhudHGCPEZOicsOQaH0ff0U0bDoO8HgTFt+JAZOTEEv+32B8wNty3h52buH9uvMd1QEzKRTI2YPCLyPA4d6bGPrF1hxIB5jw8oFoK53rO3dibWm7LcxSJ8rP11+ZCK26HumyRzZR+iASkPH1OuWHtpZbnECmu5ylHLAyy3faVHbX6x8o9XLadfYS2zTJJLjZqsjtSLrXXlmMtPArxqN7pCXF7pXaf2utLbcvyLQa3Xu6yY5JUxrchFy1FUDBGzdLYrEVw0kaAbsAJEVlpsDqiGd2P1sfBKSSiaX5+zMtbLpbxScfz0df1zYN1hI9rvv/z2dWWiWkb8FWegS8f/+jl89chcBv618munXYuma0ddMHp/gy+A4hUT4roMyZSIjDKDDSerZysjK/MGUYa7BmrOrMAnUmFRNv268wr+VqSowrbLkbeHrJekLoq3mn6AFVSkUlnjRsKlFzAppUrieb0Ya2v2VuuRD6y90JWYa9UuF3Bd8oqVen3Zooz0qOEKvB7U9fxViWHVf+zytMuR17JbdvHUzLwmWy8IqHZB/ay3az+7172w66lm5iZXKdI1yAC627WXrETlO4Yt5Fivg7G8OojS54CV/ryZeVbOAaKKrWp6iVDbxqpPGaTV+JYads2FBtZGttp3r5KQ9Dq/6Etp+dy1aiDRCOJrVUQQduHUtajlPqvACqonoKIDeS2zS+Sx0RZ4sSwRAGV4w4bVyJwwA6OyVTNmhDBOi0lFsHufjBzE6rdeNHl1FCjQrPrqX2jm6hH3lympa1Mj28BVja7lK8ilM/wIpcgMNQChOEfYOZUnLbMOq7L65c7jhlezfV0hBcWMKjtROePEmUlOnMwMV8zZ8rkgicGdIib8dufwbcTGmw9FCFe/DmRLiImK43mYvuIc86Tt3A9tw7aNKWYE0swZiTRkhJTnxHlCZpq5DWacj/y6UXZWE4rRFRnLaNVMEipN06PqjzYRR8xQKVaNwc0NpVlVhyKhph5e6V9qTc3pZAqJ0pFSN8QFM0okoH5h4aWdXHQHY8Wr2VUGLI+0HnHnDQDeiFPXpy7uS9u+toRZKam9XV3pIrXZTyaYlpb/6hukF8SpV5WS/QF9JSubwfWWtbSXs8U6eVf/xZt3uZhEep3xKzPSGm3TTB73FZS+28kVh7RNJmuM6/oU1uzbBlFfluInD7f+9n8FMfuuMdbjLgha12q93oWvREdokU+aWXctmIkG0bH+3dDK1Sq7POvLy4CEGWruql1VvTZii3KFn0zgyv+XCSbXtax4pSMUW5OvGsO3tBKDXxxmkD0/pN52mU6ud9IVuvF1RT0Q5BXxXQ99fZiwJC54lRLqn43IL8fVKZSwwJUVmXDJp6wXFX7fvoFvxQP0c6uJobUu9SNbqlZvMZgWu24JYihNV/K/gojrOJazKYrj5Wlep2gt94pFqYXpLEekTsNBh8Y2Nttn5r5tQ27ctidt3PbbLbjKqW+roLdj9hZs1azk64MqxLqSz6o9yy4MIlni7ymTWsRAQs8eN9BYxGkDjaWzvgIkdCjilSwrBicVJysmaG3cQjMuxRcA7JrLtWMpID2RVI2OkuIcmHU40pD+WshUYRrsWL0uh6LUc7hwZkHBkDRXCkSC7j7M4UwzldR5gmYY28aae1RgUo3iMGRm+0yytIGpHtapZomv8dNLm/xKx1GRwkzJhiJCrXOG+kjHvichFKHahoPYfNvPeDzyEBJmFkrYj8dOdEdZHOc8noLRx777mNjmI47EDA8TTNr8cOPIgNhZzHwCP54G2Okfh07HtA8bu48Rx0lzK8c+z3kysrqWIyYoZ4iaWybOnJrhFCY002Pq6ZaBied5HHEGz5xUxobnRDLTPtO2VOSGRHBDIH2Y0d3MjAzwtDyVEH3KpczKaKtDv+NXd+uKGmGtFkhvlQAjZb2Mi8O9YOJVEbtsEhpgLgDtp6PjQAl+5DL8tLJZ5E+u4fJBywEvM1JAdR260mOo7VBuXlQXthaViD3AsK9wndl/+dJVsL4Kvb3RyvcsAam3X7gK0q/vX9ldtc4vy9uWe+UHqwCOmh9lNdyoU2MSl0HsiNfaJuXb1V14VBtzk6Fa8/8lw/n5Hl+xR1mJN8s2rrttMGGtY6WmC19d6HVd7cr6LruzLmmFJe8pl9Qnu/1UL0k7qZ+utExPp4b9JxuANzAvAjTIGtgrAJkyVQW0JJCXcEsFDHq5DANp3gI/67Fcj7Nft3Dx+j3zNcmypKfW2LmVHb82wRWRLTTgp/uTsCb1rWVcu6ZW+HpYlyusgFSB7Gw3mjDcgy+Ma9CRVIFyXoGqEtU0s+TK2w1jAY91rvp2O1B6Jcvv8UX9s5ltdetCNUgt/91XvUogADSbDl2/kMvgK0FyHpP3eN3/iimJtXqsI4KF2Rd7/XpGqJGRHeuJK3rty0BRAAqoFlYvQW1VLdUCNNbdB9SS3bTfOSYQFMKmRXh1dy+Gnro/ISOUijkRRUrqB1eJQUMxBRtUtpxtz97Qng55Ai3CRYlCpusiCL4F47ikUUrJ3IqfFgUUTgEl1+ZegrUF9JhzBiP6gWGVQ+rxpATWHHhlzOhgpr0u2X3leUFLUtJ05gwLzDRQTxA003xOIEWzjZ4+uG4+ZnDnvmWKHllT74JnPg4HQzBzm3NaUu4/vmLm8XVzOI2RE5iRMh0EvQj3VbAhoW0i4LfhPm7OMWL7Qp55HmnHMS09m2JcmBh1DtrUM3OD3D9ObAa73YkxKAz7zLDhdNuc+7ndxkgnPCmzAIkTll/amcfmkXtNqZe1IF1kJGYKQ9i4ZVC08OGbx0RkZhZxWxmxYAWs1rmGVK3dYx1ClbvuM/OyvMv+qvwKIU+reaUXwNOW16ym2NkCoF8TZmp7mdZ7lt19lUlfbucVpfeBekuc0LxY1izihs6MZl40nAr2+J6pvlvQt2Tm/Wd8ZZ3XKWhzoesHYonKvd3OCuPXJb4+k02lwHJ9WArwL2+/zN1bBryc5GX4V7p6haf4KUX6iWfW4czLt/RJHPW2DebUgawqayKjOYfvRQA2aCBVK5nevMfqKYUkRAndYJE2awWy+VtX70ZyFQ/Vn/1aBa2dVv+zC5ws69qOir38RTctJKT+/RZ0cUVgHUPmRe/uZ63oaK15Up3flG6aruCnf0mt972eUwcU9kYrW5tWyzWsuiSZLFDiDfToaEevyGZd3xJS6L7YKxEpy9uSsGCDKjWoAgZboVRx0NZBfkvNe1utymXFVtWagrVy9ZDSclUvr+xXitKl6j3ZcUEIJEVFBpUHMIHc6HFkehzyTV/ja9rAH98P5fUsXkAWsXCul8XPVupWRqgag8r/ZaSYiorJZaycNxWFtFa913iB7NkjuF5PX6ACKAWuGg1Bp7nJbKrLnk5uTvnwRRqy6s8F668rUrkOxAoncBatSSw3m6YwlqyFKRRmNKRxnADmsS+z2CE8Su/v4oeAQCifAafVDAyam0MZTh9KQxjp6Rj7ue2b0bYeq0bKhxvdPIkzzX0MN3czl29jjLENN7Mx9ip1ufvYzI2+WTqHu5sbZJvd/HQOG9Z00MrFxjBmiFsqfQaPiFSGCDjHCIwQozziPOfzmF4BndEwj+HKfJyHNHN4sU2Pj5vIIQ0fPmnjrMSWHsBgfBgmdgpkpCMf4xmnqAc+EIGMFBK00nRXpg3P4cpZoLLHl+Xg3ON5kGxpX8jDXObbh9sIM8eO5zNv55GuQ+etlTp9IG3QOKbSC5/NebqlzeIkxsnMjTkRUQi7kIiYjHnGLJM8u6pV1qf293IvtQ1bb8ZkCLZPgFTbfvnS7tRbRroTgzWSdzkvA93Ea5oqSxrllZH05isF9zbLK2vnW/ss2zJpBcgvl1O2nrZsJxrI6t+7Tkn5JKONpje0QXm5OrIKHXXEuAo0y/11ibBIY1aSmH1tawEhkiVhxYFw71AbaKHkzHRcldRsbmmHKcs/5cutA+tWekR4uc7O9juIufKy5XneI45i941V7lRfZlndquNklDlZmVAvfpudqu02a+SV86180l7w/tLKqNxg5Sla4Oh7GHQFgFy9Xu0ZEgl2StNpTGER5RXsGj5E88ZMbXEEwGUhLo6V1nuo6HdrGzTs179keKtWIGNFOoWvldepvwACMtnk1evcXO51OTb2d4lrel6D6tZNu5RwibaiUEMT6cxXaQMgVFTN3qd0sunrhLgkE/pKizuwtiWaTNARgXUl43LZbl3kLoaPcghrXmX3+sZ1LUUorznV5cRLThHIsNMiDKdNzbRJpUV+7cdpg1/PczIIZKzK/JwWVQux0hmZVw0rzkBrXb+XyVqBqSM7ySt3C1hNZGuwruyZiShJ7Zw1FCpBU8zkaz1oaXQbbh0YsM54K9j2uaZZ4xBOnwTMrWu6dbArBoQKo0pS7mgtPyfAFn9yOCxBg7vCYw4YLURa5oSpZVJRGPGZmlHij/RMGyZzkimljqEjUJSskMwjEFB46vY0tzF88f6LuVnH1WhugszbVcM337aztomN3enuBhOMw8dwQz79SPoYAzbGsJAXShIxNi88+vkIDjuSAKzGfHwd8xi8fEA+ztPWYDRAjOM+MswcNmxwHmdgHvP7HzSzQ/PjkCjEERFJs9w43c60DXZgnAi3Y+IpDOzb8zTb4bH70JhefeCCMeeR93PiYJ4cx8R5Ow/KrR4dpglhBgQ4AwkOTPcxQvfbdgpHiLshIk0+Aydhwun3bUsbY+z3kxE8FceWcW6M9AwvqqmoEFUttT7CzHNM0Ure4oKx2oLU6dZyCe2C3nPFZTkBVeIh71e3ba3DFCJpMiRKOD9ZOk9V/GDFSN1+YcGVY9piVdji6b3yaqz8/Ir1y9w1gJlpnQa902L7NWiTo/KhJfYGqQcArrLRO4Uab171gnN05aBoJHzV7foj0jrjXZCO0bazbX2pI9crr5G1i5fE1kLqBPclq1jvtnJAAS/RkuUuXhneW3KMhk4XuwyjEQ4JVk+5pyUj2aq/JVTRLYO0Nj6LoKo3zUKtuAaL4fvaHHyvNSy0o76VhqsSf+0l4YV649L4K7xMacgZKBJffzwJGt1lr8Rfr+S5/0UzDJnnq8yLhayWu25YgVwLtYRkapqH1hrWYq1gp2//rU3linpWPFn7TNkDFdeN1qzO6mu/WH1k3/RCtrMT2LX3yyuEnFIRiioAMRBiqWmVDENLLfe+JbBYXN1cq9qzvLJ2SH2SBGG1BVpBqawfZwcxK1kr0SiRLWSomBGYOsOn0kjZI+XTw27zx30e/mP+8eMg01ANsJHJfrZJS2ZmxAysCDmmBCkyRYZq0RKsISAgEtRiwRTXtEPj2k6la9Wdt6u7ANd7ltiy0JmGuxuQYYxCjUssK9e4UwmomQI9RXuR5tCYfnMn1GGn1I0zoi2rULusT1UmRgHhDW6s2LMMoHJmRiHFmFmxBZrwb+X8pVAimUhEETDinDEHMFwRhlwwTm+AylGU2ZvdgAr+r5hlZSpFfLuQRWccn4JtSBdvu1tV832z5M1xTLPU44uQDqQ0dlOKmsfjYTGBFMaGEtJ0i8k0DlDPw59wP064G4R5nvHMI8b5mysTkYHc5jNnRnI+9+fpGZbGOfOcEfMI84PBXRHPb6GYPKWIyJyh0ExLV+bJIHOODUO644bJ20fSLc5zkqkJO+Lk43Ec55PzS9zSuNmOmx4xUsqnfNrJkEE2N7BEuny4n4InxnNuAjYj7dQ2LKO6Q+CUucwxi7lvSe/dXml/Rg9BYZY00xpinZlZw8gVseLQevRld7NHXC4WaCNIveMEACaY14DyJra4Qyjg21CefGFl5FJab+tjC3Gun1tRXyrRUvmEq+G4U+a2K5d/w+u/q3LEUgBdzqrv7OW6rotH6/6sPLlTue7DQIOcry+1EP/1Bdq4PbOja1y5ru1DyUWXBWnmPpwXCs51YzXbUDNXCKCfPvCtQP1+B8vLXfiBpNFTwcsWXD/jZQbaMb6FO22G2zP2rxX+aoV9lslPNKqKxT5o27SimfXu1fCK1bqDtcjX+a9Gh3os2el+Zsyt1q8dS2auNh4sQOQtzlrPqwGOil+KFd0P4OWTVU5s+IJLOt5s/rvKgHZn0iu+uZar//OKYhPqMqiaU9zM01Lj7+hNqCy6wpIqh6atToFafLNcoUQ32FWaVww6qmR3vRndVvXe6mKt5EwLLjQIli3K/1r2uuqCFWq1vJv+WF4N6OR9haRkYdKQkFkhRLdb0TeOQYONEcPdJiDM4yyFwSRtsfqySpfe1Rx28Wgpy/oo7fUOjqhLFxTFneXSAFmq8ATNI4GcUKevlapan8d65nBj1sxWvOUUMWdGemYinBGIgxWU9oG5MuKOkviG+DSO1g3IxkHfbYyohx5GYJSUV+3wjKoBk7SEp9VJspRKNDNjBtXXCCkZ2MJWoMht80zGuVlKthVGKNYvzY/7SIz6NHVPWocCZmt+qllacRXLCeB9r6stMhRhluaaT4WYmAAyppAGo85JnZxjwmIex4Oac2qDCPtIOuI8ImcEZGPOZ54zD2BKGLuOOMcht/NImGHnofM8znPE8RjndEwpdgoJbttwwE93xveUOZ//PHdsM3+7Z4ixT79NTIjcJPoWkEkx53C/BYfHISiRP7j/2Gw/mSc048TI88dHDlH0bbuJFoDbCN/Or+M7vmLTH7w99Ol/ncNojtx++TGtekfn8/jxdJ3fZm4gdWiMp7k4YuI8IxJ0Dh9mkU1NNw+sU04ir8xR6LEVl9ks7tBbIU3KqONufElSqDXBK0BW6YkX7mySea4yibJYex0QWp8xrEx7+YRmcba5ztRKqwSuiUYUuXZ2e7ulWaiVsugnF1WJGPt4XmcIFxiwHIZ4QazlS9p1FVK63Px1hl//brPWLgCq+s+VellTTBZlvj3Fleu+PrTdWVcyIpYFWjOLy0mtMGE5TWmFCO9+od9qNF5wucQ3Z/5Kmnp12OvfhkVdT10P/PJGtZFMArOeTKsUVfWtgVxbS18TNJZBXPmiXbkt1pNxd5/ZBc8aDLhwbqy+UTNzX6xjXfknAaFGXZMAzXVt9quVZsV7Wg+Y6/VvK7ogcl0e983v6iqXv91JuaySerVrV+IKhy7/X79pgjmFZkSXddfaxOs5dBBB0idYhR+v/rSFX3fLS1oX2vUi0qmhWTK7Fb53ytpj2VitVNPJgEQjQyi9/4K4G5xZkcbaTajgMod5mHNwt2pDqql2mYD7UHQs8Lr73kzJ6nCN+n9lRDTt6C1GuxJcEoRTS3pT1ZSuNaKtavrUBBOeUPaEIcFiFbeB1ROk5vRWrKOlGWRcD6v3eEMhKyqrMIjOiyeBemuxQIk6BBVNW18jVQoAhQjXcCS5avh62ZfsHEIlXKDihjp88+gjp4wiGKWFSTHSoLQAQJ14PD6DpLvraiEA2EwBK/kNqIiNZAUp7B6ySg6QsKSZb9s2CO1u5uf2UUIntvAbd3JwcyurZhwbnTRu940ppGNjzS7LgM75JOIsccpTOs4ElWlORo7j++95fH1N8Dif2zO4HewecKWQ7s7NYbxLHhNpSdfXH9y3M/wWc0ItRZeruFobJp9uPvIkz2cwn5YH//ivekaOJKPmo5vgNBvDfTwHtnGP+XQc3zPzabj5nmMPhHaakIGNr+MN0ZOanskwnEbmGQQz4zzCQspARJyzoIlcpZULRSMu69YKCmVJKiEu37H2IpfGBlAjd7VcI5b/KoypT+q7MdDKfdoJvkJrcGFcauOVLXNTrDB0z/710raCJpFJZBCwlYe9mD8rS+HLci4/pZfnuvKe68T3vxYIf3ntss7X38r09zc651WG1W4IZjWbFfbD5cgBxWXl658x2cHnK4mr25cyzUPIfJGYhOvkX89CC3ReSdqV1wMARnmncrJr3a/Ag/13lTqcrg3R22PtNVtubvmVtXbLsi0j2XkIaa8fvX4ZlQ6tIvBbOsIrOy5i3YVF9BPMSgTr5roqLeRl1leZgqaGGHLBw7VzuUTUdIU5QNr6OL6WCd3kbskVfb1u+BVFXE+RHTDUz1bXbAG/i7OVaW8rhZdPKhXVenTvvmdFDjIDWVqSK17iFUNdT4PXdOqL7faOjVxLjiU92o3O7YBriA2kzGpWyXVwyvxnrd66W1DMqsj75kaj26BjuLvoFgBh2xaRxawzrBHOIq7m/bqMVU/tTfyG1RQuqlYgrO/a6gjCQtCs+2MgBYkiy4svTKqOruwl24kGmoSOaQgfILCQNkhSzUBUN1FfUUyfiCrTW6L6nbI7Qyuu5/Ku3VHQ8yEic8lp9jYMSDUjoc9MN1qiAI/V+a48Z0aSsJk0adYmSCNdgh1fWw/s1BVymir9daOy5tOVxhUdGrYNd6/vDNFtdAu1jzHGoDZF1KVruLuBXkLOlIZvbo5tjNG3CeYhR4nKbIg6eFEYyH4fNswMMwEkOG4kfPCQjdhmWABmUbwkWEVV68CWr9sADZ8ANnzsNZZ6WQRz0Ea4j20biG0/zFybQrmFbMtz49howzFkgvzmJzeXlSJZ1NBbBY58DkruhxpnTQUwE3BT5DBj6WiOm0QOc9qIGJBD8s07VbOEciYE2rCiEF7Wol5BttnAq0276xoVKK8cOKrii27hlWC6+MzEitpfZvvyYy9jgle6h3f3UEfplWwIWbOGu4Sykim0h19Be2VJFclWENlH7v1z1y9qxQeRlnpTwSqXXRdc+7xaGq7fWVaoflwD+kwLqXzdc11phuA0TBOLFFKVPTCmW4yIN2v+yrteT+aVXOE1lmcZp5oU1k9gxeS47q7SAuiVsFamMtbYGFyLvv6eVzIjgohszlxnzHrVuQnUyVu5XfsoilkOoYSKyscuB8AKKlYB6hWRoSqvL/8ksCohpSm0cqUWQO5PJFLpK95YO0wv17kc4luevcLNtdjLXfe/lrZbvbReJaCmoJWvqWpuGYEWGrpWsj+6d10txWrn6eyNAEqb9kVb4GtCWO9uLgqDFnCNSkusHX1HX5Hv25KquQZ8u7WOHSUlUO2dECR7g9OVMTehOwaVrBnVawcKxZewheGUD3vz+byiQDMfMQY3bJx2293SXEMEOMYYEzQrbhlJc5cPgCYj3d3Ne5CnuTtNzftbj9F6hbNsLYEafWapEo6vBaqelyL6dFpXKBnsgsBrtJgquqqQP5JADR02I5RzNN2+F/liLHboZerZutdFYg38MWGINmUUTTJLHzLSekBD9qRCRhqGLOHpDiExCnTIVAQIOD1quIG9wl13B80kwqIhaEQNmgDHfWy33EYhbYtApn6U5aw0nETOrM2gnterjIks3jmNyHlIB4CvcUTEns8zpzKypq1nnqc+9xMZivOcZ5wzRWWGxsjImF/HPKNCDs4TmRnMCQE4J9A0tYxhueMpZRyWisOrvZxu7pCbOwHp0JbHD0/A9T2c2zF3POUIPznSHQT9tKzZwQIyxLHjTBsB2sCcx3hs+85jnruC8v0851YBdkexpR4SRWonzfIL9zPMd7ZqDrdnSJk65zzO+TA796hhTxOD4YNjFxbl02S+2ZD7wgSXb61VL28WQVcCIrL5FZn1/URmn3gpAkjS8cqymk7FkuKuAUxEt8xrsWlUE8lZJqFTErRSSqLoBm2PI2tqXhZxtdx8t/oBkr9Q1pUiGG3ASKt6MztmJxbqDBC2FI6723lp2KBHr3QOSyL7HDPXbHig2mhWoa7zca7uP1SATnfzgt+GA8OrYTvbsLMCumzX8HLC3bAKXvkp2yGamWCASr0VPyWny40uy7iy+0aIX+GOxjs23YbtLTYCrjN+XRfRSnoLB3n5m9fvdZYiQN12WY+bKBZB7YK24J3X/6QXsjx7R1fIghiI1X1FFmuk2mFd3XO2UMjl3npV8ufpeiUftm6YVlJP7ZuXyB9pyGifWo71ikRfVngx7/C2bMsvrRCyrreUS4RqdlmjBstar+pegQblOH56EDVdhaChq8TteldqmLp8v8COFlnZ6r9EnU3EKFylTzDRQcRbmpnl8+tdr/zc3qAPEas5qX+HWHMzjMlGM0GvkXRmZtnnpFjZRhZHvvKy3k/lx8yHdaUbNcCvq14EJWrJODbbDCoTcxEBcMVgfXCapkEAKBnP1kghS/CnOpaz38FTyEhCEQll0FpUiiWMi4V6XeEyrgeSzEip5QtWal0ndWFShQOhIPEEO64DzZ1Wmr7GJUWUdVAystQIjB5FzjYjHLQBeFrA+9ZGmUgYlAlzJ1cm0wDdCtkKFOrCMImMKE1QCGlGZsJK5mYM99p5lj4mWOJ+riTMmdzqTA7lmRoOuo3949vNx5k1vGFU+XlPGjYc52TmPE/xnHMXYppTJ7bj+z/w/ONr4q454jn3OWkJAUkY3X3AxpBpJhXHf5y37dvv//5vv+yZG0cip3e0VebaISZgdgZyjPMBnziPR3w8vhu3G4bMcR7xzBxJEObGigkwxu1wGxk/Eh7j5kZxDEojmdr2iVH00pRCSkyIlmJSU5sRsAGSWY8xEqmcq+uiOfJ9Ol5l0Tb6ye7PIEwBlCUsMxiZJXEvQClmQrw4uvXIW3zssgXFeZQMK/VZG/nazKXCp4UJL1ZIpVK8gk1a7WQ3T6l9a1vSN1yv7MzK9ppjSrAyqQXX9X8qFKj6R75sapvics7sJKgmVpnTIDVuILve8P2rrqgHpRkb+zP3ArRWstspmpqo2qltp5z1Pq82yVoyQzdf/4w2XI4Y//pVqzBeGRqvlKbtkkxUvrcJvf31dWudDF7PhXp7H4q0/Be/uj78svTXU29Mjq80tPzC4t1Xut/E1Kj8hkRpLRQPKYXqBa37ANpNlUrEqgb13xcc30iKrr22PpuvpKt+2AHM9Rb93ldev5jSFXHourO+a7KGZS5jjE5s1/1p7bQ6aXV4EhU+vHLidXWFsvaeXqvaGU0HVgmXamaOmqasrEISWGW/4kcsd5IpICnmAkoFGqIQuYo1pGZ5pdRHqbclSgmeNKNjDKcZzAZN7sOTI4vQTJavNAPN/OrTWrjKQsfrLKjPglTO/af9WOTvPu2rM7pyjYKmrvVnU8IrTFjBCM2jF7NR94ojDHSQLtDrnRCRyFCp0kvNe1nLLy1ixOJJZFrjUhWGlui3qMgV9qZYOUZwjkRawkTGVXEHVyN9SrBImZnTtiSQXPUJEbSnOGYm0gnBatQ3Ei1ciMzMmKNZ1IXIv7opdI1EzjWyFv2oWwapRzHIMuyJYMyzgJTw2vJMVStLDneac7zC18ySjK4lleSD7p7AcJGCqccUBIU4Hl/ff/D5/YkcFjrPOJ4nHBERlQ8aCRslEVjjLwHT48e+MYMwMHajk2aW5r4NG/AtbkPE2DfsYTq+OKE5PR8+G0WfqK6x92QOdGMa5vMhE902RGLYkRPAlI7n8NZzqNoF0hGlPSm6+xhmg15mK2Iex4jFY3izKsJF70ObGV7fb5SU1wsuW1NHwRI9NIRcI1vxTgEup0OZFQpHUn1m+xAvEhYr0qGZevKGo9RlbYFRAFgsbomlmpCLu1l5DawoWR0Lr3C3M6+r3MmWXhBW+tbG7fqYDkfIRQ2rApD4hjW/5Rr9/tCyomt5oWSKZoFkdMBshuqswEpFL2TvFa3W4yBp3ilSsCL0Uvp587FXnNs543t22mau/zLWXxabaV14RRbr7hauW69cXqViH7IsoGXVcK2Y6D1q6ErBa7nXt7KQUKz/1P/QNDupMcG3i8tg+GoEFlZk0s+PajBkjTsAfl6S5WWL0Vl0k2L8M5VKLGejiyvQ2SirFLF0L65kfj3Sl/fLVkx4izyFl89S6UJgta/0o7bIdn18O3LX8cLlXpdDarC76Ku+8Ockqry58I7lt1YN+VUzqJ2YUVSn/sxaoizYMcMkJRSr3/fNPrzR45tS19eGPlRFuhNhY9vn2LXZzj1u+/CED2Wk4COP6ABp/fJ6g1d9tmx3FRuLsF7YS77JcAMVe1nRwQtBW+CMeKV5lWcnJZhX9Zw9OvcCmS4CAgHCzOkwcIxIpGV1WRZV5j3AxgJXFvHjvRawEKO+GijI5RTZ9yZjzUOLfLMhK8ZamEOmlQaDlDUosZ5b7XvBeKbbW9BHY/O+xzY7tO5hZELNla9vXFJ1kqz6jLVwM0UC1f6d3cokeMbpiZjH0yTGKv+hOrUjBzOjVbQExTNMMQ/MA5GUaAroMEO0FqZhhnSmuxty3vxHZMzH4xz52Ls5Z8bOSESAhCImHvTzfLhCDEiKyZFTgM455jGq+pVWkA4AIs/5HDpPTz31jInTzhN+w4kqBfhAdZxBlhlpEoLTz+P0eEwMYnix6SQhTmqKz6/byISRvvn+DEDUtCHRbJQuFIfcx9iOJkkYxjaOJdmshY2s81Zk6CpMvQnd4WcTs36zDW6bivbcvN7sSkYgXkK8deaa2fQKadsvissbLtuz5Cf484vXqS18S1j1OIMb3K53uSp2lweqbGtZLRRPe32VwbqsxJUevSx0L9aVPJMXdMhlmnGlsMtsrUVMpGAGH5ZNqagP7CdB4yowXdDEpaBXPvsdNNDrmiqMF7RUcnNZ8rcUCuWAtaxzP5v6o0xr4T0g0RKg/Zq3sO0yM7ogkmuZQLBmCqUt0tG6uvIbqpEA6zavC3t5DPL17xSKyCSQ5mCJVdXP+xk3BQAvG9lLUTfa+E5d4LV46z6w3JMkZZjXjy7+mZE9AOGVoV8xWAMubwawIMDqidIiUBSh7dotLKJrXhzzlizst3774uou6dUArlaqyrY6s375w65VWJdVehtXTbTkoVoj7trZ9RtE14iWk6nQT2WOu5p0rVdat9rVWpGtfC/5fTt9x267Ntv34QkOm5nJW/rxxt3UtXU7kV319Nr3DU6zwvZ8yZVpRRQdCq+nVW/dnQvXwRCzhXKZ8Bf3vT0+Orrps1TTHmCij4mS+DVHOqMusAUkzNPywgi5lk1gyy6nFb+yBv+FJ+hrmAcIZQ20Bdu11564GhKbT0ZARBZLPyPO8yLCzFRxYMpAGGviuVN7cvgGs4513WO1P4ls+ZeUSUbZNsxXhSsdZTIrsLEFA4Hu5t8edA6aQW7pDh+WRht9EqV0J8+wrCOcNPicw9Jm1aChnVPuti1DphlxymCpFPKcMx6PyEDSHLBhYinOgMiYOWHXrBIDP3zbsP/1lx2AxfPYPvMQ6JW+AvAqeU+GP+fp4/lADqUNjHHb9+0hZaS2ytyLsRLnSSTC8qmM+fgK3wfpGlvm3be69o3GoQNhtzgyxQR9c6dGhJk7ACpwHrN27ZD3dBJTRLcP4opE+1RWwldAoi9U9aJMtuhkCbko68GvhqAO2l7+86r0rIQBVoo5fPXQLre18orrpX240F5QFeu2636lQhV7r5aNuiEBrwLqZdFXtoHLMr9HFpcTeHMW/QeX7Suvei3Wyu3Z6Os7x3olJVipXjdFl+aIuxePECtA6Lsxa6lu1Eo3M6W+qm2ZVRS8cGJW0MMy/tf9vxvMn76GapC9rkPOyzm2eV39qcqFzJMAsulTen/fChzWw3gtbIf+l7F8JY74yWH9XPcUX6YUaEqyzJxUWok0Nxxhl8W+wOBXLNDb9R0I4IoSFrzUKNmK6d5w8bVnuR5zxzzFabULFerQwGhGE3rABoglmnTlhyx4c+HNneD0e5GF6lwmsj+Ib8tT7keFDvLCq67T2ze8MrOfi8laPrVX5IXuX67vinGxzD6uLA8rgGE1/70e+0LHavAyzZDu7j4wbJ+Dw90HtWGA9FvY3uzOtgvs8KxhaPUbr42yoCjh50usbHQZjv4Bes9ep/nKDtYvWpd/yzItH83XQpgNXrNObF3gOh2rfTyT1+TCFT70QrdY+UoFACs9rSp7vzZi/7kgmSYOv+CK9EZIMluWeeF6FgJWq5DTnXCuWIuEM9xRtWYXzZt/vNCeFWms0Bytow4u0uq146QVCBmptCEI8u3IUF7TKEEm3bZhPdYN5uWPzQuOpUZpAlByrwpXlGhhqXxVeXiQSp3P84x55lBkYipOQeQoKX2kmcFRoxgVmaHpsHj4VrzPWHM9pcwMUSkT4HbKhrlh2FT4IDfT41edCEto4hlX8GmIBRjA9INAzt1C48NN+802xTBNMccocHUhe54D0zIRhti639rWliWVmit6vuzmdVb52hy4Es6yCm8vuhDLNrEEaibJxadZyNnC3KSaa1V84mWgM1ce0wnitS9ecbj6svAyOi+LugzO+siVcePnr5d7Xa67jvzLvLSZ7ez9cmHoHVlsXlvOCAs+JWmtjYvmZ9VnLxrXFY8sycSyIrqSL/Knw6AFtEngSiBLfL1+aWGMrzijFundt+HnW/2XjAqdAWPlvv0O5dL6vqQiJr7bwoVzXqtXidOSyjSyRGrRcUrrRuqCDbXoPrgebX3j9f5c7uSVu/WC9frkIuEkuXKiNx5w+9uV2i3dDWnx1YGF3Vxb4vLDdRGXO68N2XFNQyUvBUpACzlfXuO139YK1BPukvJ1sCofvi4D6yBc4dTrv2s/03Rt/2vbkO22QKtZ6rY0aBZ0cjmmdeO1pnaxad/XuWYGueSp13vYdVkrFFvLpR4jbxJqBCOMhtzuY/odd7tZxG24J2LzP6YCe4y7qwW0amFpy4uqAz8JqMkGNLeEORNaENA6VfV03pdpfbkEGWmjrncVBDshTL+sXB2mxY/KQumqgagiDWN1NC7rpJ44aObWQ2b6mSZqakYmuqE6CzdRJDJiqctmRgvdZYQzWY25XIwzwJsevcRWSkIkqVniS34kIJjJALNt0IZKK9Lr8BLM08+HHpFFUOld3EJcawdJRfMmkfEq76himn+NnRP+ueVm4bfvCQW87N6ahkJkGghTehXnU7SRtlVPVoUaGJjnlBgtsrZhRpBxnpGgMTGPmcq88eSJk/E8fbJ2RCrPnMl4nH7OlJCRpjncQznOg8fDjzzDJlhypznPWzDP2Qlji3Odt3neH5vHzMOTtqEJfzUzjHQYZTQY+TQotTGAG4zjJqU2SwVh6MZSCIqqikkgYiAxhlLVBhcRV2DTUqyLTEHS0ox0yGkOONIIc3rzek1Ql1fNkkKJm6qbHA2kBV69uZfRYekFLJiKxqXghtch5/onurFjOTKt+HVZxFe03sBnbxiQqCpfZsLiGv+wYoX/K932BSLq8uC4cpP1UhUO+Wp+EbWaF5j0SmDevV/v75fpAlgiAzNNC3GUpJycfHxtVJW5FW4pIh/HqKR+1PlPp8nkmsWey0wkpagFWpH1BQ23sdCVwr9n+cIQlJ2wt8e9UndJuipSarbrJWVxpYi8XMR1iyuZejkvvV582f8K08ofdiK2/EoHBA14o/gssAjOyEzy4oisxp+fyFPrY7goPUXBWv53hQAV45QW9xWIvFwbdC0VgaIYmS250/fPe+0nvnkyYJV/10+ANSPkasuqX3/pPP4cc75upx3O229JUpCXUiYhFJ/i2up1ytaTuvYxCdJ7GxuoksF5S3Evf20WMFuAk5RgtuRUxUgVNlltIvXkPbX+nHwbGzcN27TP4e6OdHdJvkUOXvFK32H/TcQbAwBViK+rFblKvcVHXiOGsSouuSCxQtmT7MpeMZbaTKH5kleMUqUni14FAU5FGFOgR6AlHVC9RSA7j1DNiciIClptFR1gYvlBGLCB1VbFpkvW/SSqjSowGxJstEqvqpCkgvYchihMGMozIrNqiYmEYEyOaTZGSQeiFBiJ+WVH5Lb6jGu96v9sgSRpmll9pXqhWLpKZWUXagAGqUFz4+02zEfFN9YULzhtRPcdR2umCxhexBmn1+bA4DyBVi6p6GROcAtV09WczzMDmpiDYrBmgrYst6ZMVBhmppkCtjMNvG/VxDhr9kGW1yBTtKSFpAzqDOMhhYvcNx++bUlTOuRsjYsK7qrBypSB4xjDt/2u4Oa1kl7zHlIEoxFJgiKHjc3dB+Et+W85jzOCkUbSvUpUmXk5ILA718GGmMvsNu+noqKV+71cLGwFsJZvfqfO1ZthrhezEnGa1nASXZlht1gubQBL9jtyhWQdxV/+1HL9iyjedG+etGz2w5Uwd5GyX8NmgnZwwJeHuHKfZRMuj7zaHy/cu2/WjBWIvhnwVyzRm3ll3NnUzDqDPsaaSeI1zZMc7jaGj20zL12+AZDu3sV8lEoB5AX2tM7C8jyvMvWq6b4ijvccYSyTh5Vzor1AXFyb9UbLs3Y+3SFbp4RXviKVvOK6gDp9XP9nMsgELqj7tViv9a8S7wrCV1q/4gitWnl9p0br1U+6b/m6p7fLfwvSyDeSzOUiBUFJNtWnJtZnvHWhd+3lyt3fFvVCGPRGL8C/fNWuatzj7ftGq6eMq0/m2u3Fmb321LXeTUopd7pWpTKLGsxRHdP1R7GC6uksH19JT68oUJlmz0QTFLQehseiKmjlP9lIg9bjfnPupWaBxYt2f0WepSEqXdMqVFXrxKpdL6bkK25bE6+KLXf93vUWV7wOXgFcb+NugW46iLKz29Zw04rUAXQzrunVFdxLnQJUrbxiLpmsl3vMUObEOeclQVBmUS9TR/oSXyFJM9jYyCEzd7ov0jhrktdSoI+6dF0wS216NgAGgcpz9t4tyN6qw7Rx9xR1IGakhHkkrrl3C4QSKhOsFDU8Ic0I2MVAIIilsJ3RgIoywDkPnmDW8pZRx6JIOkhbHpuAykEV/1R9giqVJhIO0DJjhrlSysEU/LT5+DqlFMNTe61FiAFwqGbP93i1GFCCo1q+Rah7VzqKT0AzxDldShkgJWA+M6RIn6rlLkfg7um1tzJRqTWUmAyB8OFy7Fsmhsl4epE2yKyj0bCRahgfAeUg0ujWOwTQEq6ol0IpGvQGmKJrWZ2/lgErXs31LfJVJKhDcAkocO26yw+RSiuadLu/8hTonb0c52WIf7LQSwXRlw2CIGvrsRK7JrJSpeXW8ZvSrnLiKzl87cdCDZaNWZv69aoVhjbMfsGayw2vcs37m66b4FvaV5PoTCopgzYYvc/dx37bTKKBVg54DN/20cVPgKwCcIFovjlAuDOQMIHJzvb7qfxU+1s3gst9ANS4Lp2vF/6UTALoPks2+Nq5xPXcr2dm64GvOkVbyYo9qkxUycayiwD0EybP9+t4C3G43F9j8h0DQIIKI7xM09riDVj85LvW213Pd5Wm31ychB7gviwj1lZaYN2lObOwZ1ZK3K5/BQf46a/qSPznvQesw3KFiT/FDP1BACpm0/rGokHz2tHLPrcFJqtH/fL2FwUOLxza1ps3vatzbxWTrV1WwsPExRNslcherBW81Ehivja8VIF7H4blsoEec9/N/K/tU56hL7Xrurp0oLi6FKQrEWhfu1S5l20rg9MupgvYPz0JNSOuQ5XSq1pbf8UpUixDhTqVfFmQ2oQ9STGKl7ZczluEA6l1HesSukfazLRuoZ5+KemnFh82CZZUSp206q6riVxhmaL4pklTjSTsXBg1A64qA7XSc7ZygeEqXS3z3fcEgDS3JTlTq2ZmtlqfK/avzuxQTtiMqDwgSmihU6eMdHLYiqQlaE56ZjKPHq2Y2dqmMitGxAWHSsqIPJ7Pg6qefSFR7VjKUGbOVJzBkMKlaXILFlIgBzNqzL2at56KiDlDFtI0Wqbkfp7H9Pg++MeO24MICTSOcQQzFdPOOedEIDGQsM1Jmrj5Zimjm3SjRjpcUjJnlIpGpm5Ko+dUjJHG9FHiYlbacjVhsrTIqketXWYzKEgvSWheAfRlHaWXZeg4uI9OFp7VNuv1C+2N+LKFV7IDiVkCI8iGQFfsp5Rqylvv+wKx2YdnhbEdU6XabLySU1xn4l++Knh++Vl1q18VcBbd4i2Pa9oLE8uUXG++XqmLT7oIDp0eoiafsdCJ7qVpyCwsJk+McUa01xAJWQ1ke419IJEylFhqpF7aVrEu4A0y7v/W/3JdYGcAK2waLwv6cg8iSkbvbQ0EpCUpu4KYdxe8fN9rNV/LfEVpZcwrdbO1rXoTrMTvPeLCMsOvDHTtzyUk/nptI4sXfKqrCVfr8pavw3XW/3VHrBPQd6dSUSlE6S0wId929nstm4sNVs0fpWhINuorYE0KgL0lbZebAc3fmqapFfxV8NPeXYvOaNa7fXkx9bVhMWnRQc/L7bP9VhHWrHVal7voWzG+FXz52geAangRoOwQd22RZRH6gCvTNNEcbBvTsbltFO7YyLA9wnkVYbAKA3jFHS9H0Zfx/nkZ7PN4CeGoqhnEOhg5Z1VoiFyMo/ZweU01yGBce7iEf5IpUjG4HkbFyd3or7eddznQ3vS6nNlrV9Wu9TTvmatIVnm4IinV35czXWFcP282BOktY1Wfagou6yUhMmWSchlsAII76BPDB70GJK/N+GayAGTIS0vBx3BNW3ar3KPPqmQmK7lyHz62cZq5E0ysYRbuwwdLZUySmzw06MDYNiMwnrERI2CwNMoGOUyjs+iMQM4SGIpA5KmUiTbl7GKRkZbS7GujDzfjKFE0UW6p0l31MboHis2ZU2muuc9NpS0+jxTOCArzMcedUObEM89MBmfOMef5zIQVZrLBiWFxk2/mZvREQgm3SMcY2eGWUbK0GjwIk3KGIbDa2UtOq4DA4q97I06Fbf3/Cfu3JVuyXDsQGwOYvmLvzKo6F1JN0lpmepCZTP//qt/QM2UmdavZbJLnVpl7x3IHhh4ATPfIw25FVcaOWLGW+/R5AQZuA63sCvCygPEtGlVmAjCux/mGkrIYX57JWnrXvsyMzMjhbCv3eqRykhJJQrTNlQCNWYtWibkTCLGd4IXtqtnn0/tTdFTGafbZu/dLOmydd85DtJQaefl8p54/tJrUGHu3WOUeWckFYCdXNjjfVe5bYZEF+7Tl7NzscZhHt3TCuprJJLdpA92AYpsSe9FaQnwRtVoDTSbedBuIenzwORW3kfQUvPf/5vT29NA07EdoffTEJtBAs3FFfBn1lxWYN84btqwbTHDvwn+NtwYx7vFua/6/8+bHx+6HLh9tT84Gd/sdY/b9H13qAVnmyVgWEa0opNKaiquE/R8/CuzT1upEs6rYh3Dmd2OGrcLaN9Ie4jFYBvvsN5KDV56iuG5t943+MG2tfnXPNW2Za2HZcTmX+ZHKgy7CjpOMzd8wT4btScAcfWwrX6ObvyrqBlVdN9ePCbCZY7+cAd1Q+rEI7TLHjHwAXx1pS7hSVkUjo1FvX9EA1L4e93QWauoB9flrJPfcAepsdqmdC1+2kQDS9oEsRyPbCOo12Z0GMpNZdceZiaseN1G2MdiOgfvkDq/cHOSdIbF/R10fnY/WasFcCrOEitVlmiyCUCSVuLxM0IoxVr8k5FUh/BLXSYOJQ1ECCIbLU0xIjlNrJWkrA4z3ua6MWKaMVChRAX+kKYEkrkwIhgAt6e7FnRiBvDKumDzysocF4fVTfoFuaeZ2LqaYMnQaVi2nFLt3hyfJdZCH01KkZ0rFSpiuXeoDIyp8oS7Rdpi7j7NXrXcf1FSFIPf8o5ciqU7B3fBurJ2HPHicQol5h1PHHvnjl7bg6B2YbXGNm+3h5ts7FdQOEY0ymp38iGLjwZ6BKWKpu857Kjpxq9ThE5hTsV3DT5OsHu9WWBjZNUq/LR3g4QrrC24lp5GZj7PbYnN7Ze+J1X3ieVuoras2RKjZ1szG2OCPI/ycdTzP95I0Mq83XJtMk3+wVxxMo9AUGk10lkrbcvEP+od4iKttG7WkeFim++23Dngox/uZn2/tct6x7W7XNcgmI6sQ+bx/ggICINsithFbf2x/G4fw1ictSQe9AOq8njvHuXYzZ7Y2bpk79QqYV2R0Brfj9XvPtqG/J7Efa8AHH0+KG0/OHdibqyT1HsUGpSpznrYjAo9hzo7a8Gh+fOzTWSsNCoOQldzKkToLAE20w5YOHf46Vy5zd1zLLJlcy3y0GFmULsUP1xCkXAh9iKdlB6cQGxC4i4PYumWnrXRFV624BlA+lFjJs6/L08hQ1cZDRr9m/hrHf8kUBFgc7FtvdXDzPjH34nEYulr2jkVf6qnodKVi9+XOQKsaXHWFXSodYLHcp49gmxweApKloLREZqJSa8yd5nYCPam1zzXcoNwysqRiV/NtI9+6b+GO1SnTPooCdhmJKK+sxkzScml1T682FlJ06jBaqHJzMitnD7qqSYNwXtCpiCwqmLetFXDy2094XBJSxV7qdHPSPAzXZVcE4ID8EtzrohGBS5kWURnp6Ly91OUwE5PHtwsRfgm5jqWfSxmHG6lgux5tLWdx3WUaLrNldjhM1SMTrB6AUeThtOUcrgqjO235RQrL29jYJ6xFYYXpGxp+QT9p0thZ2tpv224jiqZ47AnS+3p3BzM1LmvpaxIsUYI4J9CB0bmpr7do8a3Hu25F04dkDlhutZ6WlQA52uV/7+uLjNxnZp+yGw3eltpETypZ4ssndP+geWFSjVsM5BXri10hqRi17zH1XlddZzK4EplpSWa0vp6sk/0c/wcP+q++hojjztJqpdb0OD3eVkWqmOcec5Ma7AV5WsDZbIWZERFppJDd/bbnFbN+9Yw7u2k/fr9v/ID8ujI9n0+AN8Z1f64C1wRY7Llt9Fn5lLe6fXoc+so3NNs+7S9O61Zet+Bqtfl1ePzjtmOVUKhz58cr0KncPRuj8dWsXX3rbXFtuElYUbFlv9af3YBgw5gHXN5QCfdi/WHLlGXULl4pq+fWlgqpZCas+7nP0UP1MKalkChTI067cOLtPz/f8dPseuvzh30G4/37zzyrwCbG4aZMr4wn3Fai9PBWjGwCNKuJAQiDABt+DKYZmGE3PO4ZFW5rdGIPltZKCASyMTOz99m/QkbbHOdj9jh/mQ1L7keZF/ZRJUnzCp1lk/AnQw5NaKIlWktAH9FdDFUJFtWEMsVFJFitMkhZsf+SHQyGJqB1IwupVPr4tdjkx9ybv0jWaR7dgEoZF+juzoOrfH9D00JzXJKMoQ4VEqgcozRPUc5tbZgyrcDJEOxAccWFDNa+Y1cfm0j/LBjppf7LyVFC30ZZwVhmdZUXb3cPUVIuqXa2Gs0gGBJM2dKsVSXrgMP6NLk/qWhS2Cp9JBRN6C/jKkZXkmYWRQoIr1jeqvR9oqLqBb/7gLMcg49h3vtrbAbg1ndfD2vnUdUwO/zSu0y91ru8/ItdU2/aRKp9g3GJzV5uefGww+bDTw2snTEoPIT4w+rCHy+6Fc8+wLdr9Fntd2fzYiunp9SpAc4n72kZucn9NVaWUV2I2CVZhRpRRXp4jJTjRN8vDQypU7Uv/wVtf7lEUfNMMiDvi9TEcG0nwxiFnFnayGLmifPYfY+aslvxzzzNfNxJwiU2v0ohqNrglCS8K8MmLJidotdTO/uxGUYLW7dK2L7rErYaWr3WXL2hTJ1Q3wbWWALcOTJbVN5hPpJ34/dKOyinwD3L1NjjbSPfsOCewyJ5zMgQlM5JHtWet+2eqYDKyPu7PL7ofIv5vtJrIq4C0ahUm6s6tm2CKBKTUfM8PS1bG+jyy/lgFbzqoVpmozVI6Icz3wqwD/6tgvb7DMzyUkZUekU2F3XCir20vd036t8CQpBi8MJ9qgWo0r8ruRUNhZCPNS/9mhHC9nD0k7broqqXzKx6FXWRXaWNsciW0g0rTUwZE0EzWWcxlahhbcIC5FsT34Ch0ruqhCVDymgOUkG7Sgq7IxIs7Vhj4IzSb82bmRGSxEqYJ9vxzEydkaK5KS6FNlzPJWUukVq8lNmTkMVLEcHMvK4rcEVkXBHnu4goich28bRdoKu3cSYzj1W+Slw4gcQloPsT1SwmDXy96JXj3y1Y8jovIitrLd7M93letOtTAvQORcGKKhq7CAaQyGuJFjaqGgkoruu6lJEXT1T3A7c0rV/sdcJ5QJkIXg5KRlJ2rLTFywQkQlz+Wt8ZH/b69v3Xj3cwcBnkyw8a3H0dlpIldMV1mUdey/zjZQLgtq4IgBdgHglEBK/rzEwlnCAuEljLFyDq0nWV65Au91LCeb6j7rGTErEly5wH3aq1nO99ZGmegwqNBMzhBKa9UJ1SJ3z5VXl0CRppYnkBAFOCZqMDv7oa+0iNVxnjixum6cIZu1cMTLdVUYn+ak/WU/PfsapbaQ5MHaVckmHz1H8BvthRYz69TW0Jtex+vh3bBVicOD5TPIC9FEL5v0btbIS6lZkGHBBoCncVF/QMZ9uzbUqNA24ryvtHAVhxa4uyCcyenihU+mol0ZkGDLV+nklp8/W+7APMPQy8MqDKJnYBaV2DEa3gW3xtLa2Hndz7TW3MwNoFbU0adQOZGdJ4l0tmoykkc8vOp/YDzehm7sPdaLs70sQTinl/klg4BtTkY9+rfOvuRpTzUo4ur307c2WiOZurRqDZohxCFFWcVORYnhYNEKSIa8WVKGiblRe657+8NWUBbCSoreTrrxYiXJquub3gbQuOcqtAaLFAIGXV1tbMi1xiq88kmeXhxtFEYN//rNSf9bH+xlb8DezjLf/b47/Qr+9/9xO/GfJxWDaKGryKqhZoF7sZ1RhVApJZCcVCi4LeNzLCASZRbYOs65LbHDJzeFY9X51Hr0PyiKxAlNEXV3SwMmgAs3pX9OZxr8pdenZ1ImyGPpGX6kVhwoLBiba6ogSYG43VMIEgXH4wAhCRzFxVauoGepWxHsy+okOklMEUQlcug58hke5WprFxUT+ZFmuVA8C8HVyXMi5DSnFFUHldYKTiqiKvvCalvvpOoFPXea4DtPXrK/Ll3//yv0WK0aRoEi1heRyKy0CuCx9m1ULw4wjj+W2tRV9FUHvoLT+kS4rMyDhx/Vzny5P04zxNTBB2nLl0Xl6cVGtXjPnxtvW+8r2QEcnX8VZ8vN6CvfJ7/Lje69OxpIxEBqtoSbig8+eKjG+GlcBL+OVPH69/ufys5ed6sYUyyIwwZMblTmXw27cXUuuI45X49GSAxPljmZRyR7PfLR4eh62Fg7YCvKTruq5wpdmxnBLiOs8zjPSMW1tsnTHSwzoGgAnibyFLWoCdl9qsTDmtSUZfmluRdTScI1DhXoxtX3Ko7bmtCjltGgxTFVVwt60Ysrps0wXSfB9lPGBvM/uBWy9hlNFIqvuxRv50X9Bt6WKfqiJ8sgm6Es1h4+sSQDAI6zB4jFE1VxCUCA3pPTPB7lVYTg0JRnTIIbttH8idttn5IpWJQLRDn5osKg1uaNHdIrI0eyu3SQkFVmWOz4xIAzb4cAjPJ7YuzFvXaRJ25kstMcex0oXlDwVaWrhjEuj68dtAb22KHdcv41JsVuvyqbSuKi5b66ZIY/i1JVqPn6K6fmE4hNtd0vnYjx0tqfvG7m06hNxlVlViCb4gKzV4weCTW//2inDvLFbZN5uGuc079gmr2GCJeINkNgFe0KqfH637IM+ijgITgPGuNJ/5Pa8kOYHvTlfqIRLlJ7tNXFRo5V6TMddvSFUHEFP1rv2kY43WYzJ++TMz/qLX8bf8iL+TfXzK/u7jT+b8+JsP/lcDzGUuekoTnizpyim4670EWMNu66o8FR0+VWqNObq6j6+Lxkwwi/aCAj1l7vAwd6gkQ5dtlNM5QkoTAiM4jBKNlVubuVGCATDLllpoAlzDUHuxyRx6t7gIVnPi7KDS5JNmRhSOScsOKCBNsoGL5ag0bKc/yEoAKop2Vb9NKCyXrLLFBOfh+Kz+TQsEN/GG5gukMq28ubXAxTPVyApdMFb/QzULTn99AwSzl52QEgwJGQFeIblLF4nQma/MEgPHQVN8X75oR1nGH5CtDwNeLlZjkfhUYtH48YrLQ6aEmUI644UQoOVw0v3lr/NavJBRQdvuumDKqk8GgylXPUDkgSiXSjVgQTVkOeVZPEZnMPKELYKy8t0EzJCTnWNGpq3XC3mtQ6XrAiEy35+/GJBwb2EnYS3S4VUn6haPYp7b1SgJcPq13V77azSXwRzrri9nEyyazV4jyOKi462xmy0LYEEWTNpE175zo96yr4fQl1sysBsFzkcHKe8n7JuxhcKtJdCgfGdSbuPtaQDWH4xgZrAVzdNz3MBuTIs6Y2oqnLGADLQ0ryrrPuzcJvHWwKoAYFRSfI+p/MHVeXP7Ou8H+PIKml7AZi778W/z/rYY9+8lle5Xt7oR9OiGdL99RyHQ9lub0dzqD4BGbfUL9xzfQvAe3ViId3SsL7Xtz6/6bBTWbKwW8/dXj5UctNBj/3KtPS5R6nAeNNr/8XXr9RrbPPNzrur7Hua4IqgHd/ZcCrrDGNwvbjOZz5gv5mOdxKJ7Br+sxGNJ7lNzG/B9i8kxH8v3jgfsaa+3TtSVuI15tDtHX5ZzrjBTqj9OyyQebRQg9T4l1osHF47jdaS/0l/S8Xo5IK6DzvFX7d02zp+9oPuPXaqrEkvbu4I58uU/YAOHbczXCRhWF+wseTxm6AABAABJREFU/NqVfzxwfTymo1YdXN4L0gi1319iCZ6DGHtttEGkCmbOHBJ3YvcD9GHKEtWbFTRGv3+gawOfOcCFt/rtGpqSjMaJOZJynQAUIR+P1pbXtwQu56NyhNUgyDltNR39vDQj/fCCKDNXO6W1bPkWGMPHz53t5TSal2Kx5t/k7hWUUFQtKc2rLkZ5I+86dhvy126s5uxIhjJDlvH2CMS1+aXal1m7hZY0R9oKkTQpHFJKEYqu4+qq67KGaaSlmed6fYJ0s4XLrB4FWT2ilTGQWOUxwN1qKpACrUn7lQomo6z+67oi1makfR71/ta7eP8zm/HxIsbYnAKe1jzsYPluNVxE5K1iG53nTM3s+T2AP2iHvm1rX7Tbs2KRzVu5xUAPsGXerWzn7IzB8pBgW3zeFEf6+qmnpXefXt2/jh2gSUAdS1GQKvdsospfHhRQoluE1qlX2k5J335uVCeb3U34qXhmyP+H2WbP4UMAVg2XX/4AtITGo4xq27/jH29NMe/SVq/4wz76oqP3I99yBZj7/P/9GnAzEe3aNJN+1HfeEvvOCr9X+V+nRT333R/3yf5FnTgPTO3qf+eN9wduvDHBjlGzexM955RfLva4JsfbiVHOc8LrNm333CvxTHzuu7G7ZuwnfCY09jI+wWtppolm44ZVtzp6jnoftrqM0FD863xstb0xDzTHdY91oxB8ATv3TyMx9sI1fGhV+4dx3b5sTgNh3JP+BSVu/95IKYz6vy9aCqv1O1qFdbRCO41gT/4ItD3VLRwImbqQqOXePYoyaZ66j0Ax18wzD1jc8lfAsFypm3Fyb7qOUSlLk0zmn3EniXNEdX2Q7df3Iho2VP6VlUuwR2a3r70Cy4yKoaN5OSWCkpmbJq+9uk9V+7KGKkpmBNkU+yrKh+47GRFjrakIFGp8ymq8cEVUxLsN9Y5PV4ZEQoMEmhQDGaaM3vIEhgNSilTYdekkTqSYXQ2mYYDrjWDmvnK9XocD09Cv8hrIYrND23Ds2IFVbBXZZUzKyAy7LouKsuej8Gs2OWbpx9rY/GwcHNRbce/hrVBrvmBW2WugpSFNMFb6gpmqb2zRtcPyVsj3DVlJnY/9P0fi+fX1xb2Tb3fQbUJt7cSvyqGOcMfEADy0yH2Y5hRp0sA1AqIhK7HFSp29PZ23ch55t2vDZ8gcjdundFspt6jaur/1gG7Z0B9/qpj70HMrg5Fr86aBBwtftJ9kySYY01h1Begqa4dfNCUbc/UWeMicW3Q/TUy1hB8duhkBaoAboVdkfHisdGeajwlXZQts66LwQjnsC55NkHYPdJw3I/e2BLyf5cu/uif3trcfjo3Hhq033/6QEZt4fLhjFXPNkY93hmZl5Oh+P3gv5Z6iraf2fvzypkF+W0E98eiXr8fDWmIcV8MxsRODwY4iT0TjfqhyDdclxL0lWY3v9jx3iltTdpXOMiPpXa3Be2PWNqqVeWTGzZkEiY4B32hhQ7IaNiFZi2pZhY0f69Yj2m42Gg1mnjBztPsbFG3WhYaqdu2juoXkSCo8Lr3XztAOOaKr9qmumgBvH1nNk/WRrtVsyrB2LEu608/r/GUtBqlECH0SAMiQcBPMi1GTlEMK8TqQV2YjZQloBtANstBdb5Gjv+prU3eq0igsI2KIHjvrMNXURMqIShFsjtNakm59QjcXnJUCVI8cVe1ulV5VPY4aVVhGBkSHOVyVy5W+45NtbCbOYMAyWEkbZscywdLEyi8qQxNXqtycCdCxPCsnHIiMi6fnJf/kGzoSnQtW7XVQvThIwOnr+HgdQjiITKsqIXrtWfPqYLfgtHW81vHx8fbiQpCALr/qEjFfzsjjOMxXtbP3dDHhZuYyd0elMFROSt4CtnZv599yOL77fGpv8N6eLMfRI5NqC6hb5H0BkA38R7oMt3Bh5CJ2hTRCduuY8fVNUtI4emp73wmKt8T6g7xrpcN9lR7t9hf994UZR6m0C228wvxiqQ5gaIOCRMWMthCqI84RBPfYWrr0GKWEZTlQ2hvXr+MhlB/W93zdKqkneWLA98thteEkKZO7cVAvk2YqWhv80QIeoJBdD8uuQ9c+yOrKtu1meCzCl1nd/xuIcX/+Ji1pxbHHU1/W9soNF27UODtOj5+3vcW9WPPbNKJVr+lgCA0cmSeeHbNhBkY5PR5p4FavTz/XXpdbc96jQVEoPBHqQNabvNgqQVeVKbHPHtBlKve12425YcP8A4DPhR4j77+34/FAmPtrVr+jM4CmvnDDuER53Uqx6AHXnqs06/Owm8uOe7pJeoo3rlb5QLn/ekOIGmpGMXNgrP4E1c11sxTaQK+SNTJkZDH3KyvXSVIfiVrb8VENc9EkvY38qKzd28wtKkpUx4x+QvZs9C64wIKWDdrLbGpJWjIcTGVc1pwJk3cJTRMMVtOKcvY65Sfe18qpWx9RXcmpqAQ1sFowNectzTfCmapWzqlqSe9m7iCr31QBC7Mh7JoM/GDlVSeMExFsB4viWlfKzUk3+i5OKLwiQDKjLacIS1aaak1cZmZcofj51imXhKXqX7AIM7i8CEL2TmpPfyUFGFk515cUZ+TL44z15qfxikfBUVTaAYvqn3SvhixF05wRCGaYSZmDML3axxrqFfUcVl57ndm6ojtW1KJl3vHGL0623ioYEVuLOIAtERmdGQRVLVqLyO4RWUUSGRHRACATsMmEQXKgWKvcBmm3WJpzMbp1fuSI/9E62zYorzazmLtvYfG/4+jUQPu2cbntiZKR24Z76pivhslm8K8/D7gatVA5FwUGUflVxSyTYjIzPIydFYCNj5/i6T7Fo2kTHAlJoGo8MIY0Rv3hPp7z0/NrFefY+AgaslSDoM3JAo1NUyLzHlqZWfw6zj6uwqRRaSyFgmdoTJb3h55P2X+3qcd5fo0M6Fgf79hTDeypTjAWC0fNfN1PtZmmTOUPX6MFpRE9GkA5Cnnfs593P2PjrH911Sb7KbuqpuAPd98Ian6dDT1/+yMM1GOX8Ouf2KMc9Dhnd3ujG5D2wfk6MZvBmc8X+xm3gLghIfYSzE3mefZV23eUqbLv+Hi7kDlUFkoU5eGNuTr8b8Zi+7AOold/6KqSHWBz71hB3NXfU45VGwvd0E6byG8ICzRKH0rLuFwgIkPhmfQnmlBmToyvzcB93vv/w6GgzhWommo9fWZ7ncub0wt2Y04IGuLMCQzNdGatVKmtdgZZkjTrAuKIYkFo5ssWciVAW8V3z47MTERGSaZ8MJT2uDe0L8BRlUScHJGmylLGVYT1aSYJ5q3B6WT1VHJMOHpZhKDqHgKpqnL7YFcdOQlleJU9RxWxyQbyk1bkVlGdfivqKwo0Nx5Ya6W7T1fEsQg7ZVLXeeUVmRG6znPFO0+eK1NIwTWN183NUdEBFc0mcOexEokCFhoLC2h7yczclmdxxFhWp0EbwT3ZExyGyn1aNBb+FyWI9u3ZWHNjodySchu9G0G3BFALtTL7OEJt/DS8/x1B1oq+ZeEXScOnHuEop9sbhLHJnyKxRwthJ/rs/24FtwePLZupp5u1nwq3W3srmD0l7XGa0ZGP91h1v5mH3s++LQhOCU1prj5xya+n9mmo7df+YJS0nN2L+kVE1V/Wf+cTt9jVuCHUc8ESrvtGt9tij+YrSsF9rS07sAH7hK5KQdRj35f+w9NsE/gWzX19Plb/4bXAjHfHGketcmsUPnbefmnv3N5a4Piw+33GCZqSU0n2hAtzLWyt9dym+LpR9nzcEBLAI6/uj/NwT/Se41ub3bHMvmFjy8crfA6kfaP7yWfUN5DYsIbjA+ADCuzj0o84s1DLXOpyX2Yr7Bwicz32xcCPUYs31N2yZRb2nu99uIENi8Cny1/3ua1p5f1oj1PMLxfZO6ghpEZJji9ntmQr3Mdn9qU37iGIbUd2Rcd4G2YJixkAyKoLK2/ELlQrjV8FAyMJK9I+Lq52/c7JyIygMdTEw3HVqHe2vmbco48nFon9/zJB+uluYScpE51VCxWHV6UaMTNSiSuuyyJz/JS1r8k2/Z7NWVlVbXOy2gwCSMP1Mu6t154doamwjOaFY3FXqFf8OLwAFOnuW+zunSLREU0jkHmm5SlekZ/v821n8JXRMQebIIoFgUoMA2mWVHg7eySw+rdUm4gh+h+cqJ7iRLIblveTDJaJGC/kV4T9wMXbAALGd/g8zCjXq4jq9DEP/AcIfb82gq/aOI0SImGdlGVC50Bv8fqQl33a7xN2K2n1hu8l7ZdvH+LYcKV7/0BJc5/lr4fy8esO9j0mat7HnYUyvz8NHG0dwNu60h5Nvx/70fbD6qFhZj5QsB732dgHq1+ps3MvrL4scf/wBwX8r784CvMJxfTYKfdhvXX9F5VRmmp+wR8+t9X8Q2dLuqPUc8PMjcHrPbmv/lVZ/cFM5N3qF4Mtv47l60ix1Y9tzaWJCOybPdTVLCH55Yp83ILP11Qlsw1J7znlc4m26X4r/0fceseb72SCW+NhUMP89FDJdbUauRU1D5nilzcMHETzhWLPSsOrmkCbc3Af3vvePS53uhbczRMOc4f7KhIav3Hzvu0DDvG+9KRQjQLfOKz2UJ2RWYV2qKI1VB957ljB4xDd33vkDdtFE7L8qZRVcyH7Y6pKtXXO/vE+8+P7ubUKcMd9Kxu45r/rlxuwVDeaKkJqyNgw3Wxva+OUkH+JrpXu3KkbVV+X06/B4jrUQvBxP81Om4L5qiSt+ep0zz/u6bbnAQfRxcFjy81b2uE5jrr6njG4LZWVNaaErkqfKkdT7bU+F+lMGK/Mqqt1D1/wbC5X794rortVc6Pp1G3OTLHonsvApCq57f4UUxHSVXXdFnXVDENeAV+nkea2VlvlJbBTuBi1IJ3ApUrCgtBP3t7NnvDMiC7/xORJfpUFUlyXWyvVvUdr7zx9SFso3jJwdkAHPgaePNZs5Nbo2fIAdfDh1nvPM/xQX5iX7E7Bm4vVrzkpZ2h33FPJ7Rdu+cexTZ8K46vivU/Sfum2GEcTbY94ySh+gYnjuuaeMm1SR1WlaW3jcaUD5U5zMzyqbWxeI7xSW7obYT/wPcF77M2I8d/TlX/8hQKwMKv3DMJvp9O9ELWsLQJ3Yi77/dzb456dwdC1JecT9cC0osCr1VJ/+ku28r0WDy0zq9ogS+hShb2MlUXaftYvJcoty8pb57KB1HbnK/RFOCmi3EPeKTT/3fHpuW2eKOI+a0+nUuaX4DTB53UeW3M8A/PLGP8cX+cd0dR+e9NiaYLvIpTcMXjMAe7VqRWVbLbABkYYt9V+oBvMbWBwP/FGpwWDi6DrOnHGG8r3ecYZ5mdcp6eRiIuxD+m+43MGZ5m/nkiOTT0xgQd2mLfqsS3qPY+5vWMrupNEago0CLrvVdZdH4bthW0rsg7I4Cxq/2HOue6dUUqRQMIgI3KYlXvcarZieB8e9MHoBxKAZ8E+SEEbopEkrFvE9SgIdCyQEafeVRs7u5Ljga8tUvsolRnlSn/wC1fVuTRVJwQRV0hsyqpx2BX78zInXEX9adVjhGtVOhEjbVwXbhAzLili8pNThPISpDOa1kH5hgkOwc1g+yAa4AE7fKls1LxgjquaMwp2Nd947VWBDmAisoLitx9EXriS+ZaFIhPSdb3fyS6Ot5pnU1NP2LGoIJABZXCOJc1X2ejDWwIpUaRqNW+LeLPUaqvq2kJmNn11b0A6e17zjx4ydPvLsirDk9kCqkI4ySJ+JqqXdwsEbvfNpO3ch3uQdd5pLX03NVhr+FVH5k7gUYukLyqw9X0r0T45EJvVZRw1WyZuSNFjwdOW3MJQ0G5YviXerYu7IKQTCPrHgicPqVxXvPN5Wvjm7IsSIFuWDIZTszB/tRP3m3vt7mffC/hFnuEeSr2++hn+lUrdUBd/mEp+mSvOdM7H9kRtBVzzVbuOOemXmJdxF5zMRHFGhx0lpb6W/0ASaQ460QZLiaLnOx7vJx/2M3fuf+8fdbyuL9zPPI6GG4vdSqzXldougnlHaqo6NVPS/+MWze227pmutEhOn0v1vG7ocNtsG4KMXOZe7WII6fz/Xq4aQnmWeKMzQVRG1qknWfR0nVR5r/u0FsYdNOqQXy2zzQbetiT21SUlMi/LTBmuKzISEZHXFUld7+uuhOn91PqMW6+XNQbp4QDZ1hY5bJrqJSpLbgoNINBaj7ATe8aMrWfdx1jZheJfHqfyarLcu0EVa0uvcd2m7DWT3RNww99u4JwptVhrWygJNrt2CdDZoACufBEyS0HDxTYHsiA4ZzXcQoDR1+EGIkyWYhN5kOTiWm8TpKtCu5BVwLokwRaiFIz+MHk5ljEajtgAhXpFWbnLUhK03ClLZ0JxXtdp+PkZkfEZpyEVcV0JImpSALhTziKOTZC2OhQaEdeVqUgeVBKKKG4ncohhSaJTVaQiQlLxZEQ2NWJluO/+RCzSUDZVa14WcVnS6r48Sn06EhlJK84UVvR2TAAzx3K3gC5YmCAU3ajZ1ZKME+Rl712aLbkRVBUng8Wr0/iriwEiOrf0kdiXnbOmrLyFkUEtVarZU2ajxz5GHKmW1bt3J2GpN2zDlydw7toEPKVHe+G23Vt2sHXvNjz3+5gRgzVwo4gxmScM+PVro2/V1rYvcfQbhrBrtlltVkavPXTUtvxu3dyqrfFCyesyJ2kO3Md/5oHVVqtq7toAuRHWCN97P03q5JiejwgqHxkB1P3PjfA1FvDXL2mv8lwUz2Qo9nTcmn3rmBy8gf1cvUlG3z5QDfYV/pXhd+8L7PeOjN1yvn43yLauHNjWNRz7k18frsTOJDzo8YftUr31AFntxLHV2XNUX6HNPHYPrpajZoQjs1WCXjTHuAJnxh/D4WCpoXBr3fZ4C4oO+qYY4b2PSqDOmLbPSI8N/bzX3le1JrcObJXIKlDtdjj7vEwGxxczdGD67IxUSEpeoYjUdcV1nQFJEePTfW6C+nleuy1A9FDQq1cPWduJlZBEFWGRYJWm43soc5sxlSu5fXo3i6C5oWqOAMFWGT0gR031PPaCEG3b3ZiIjzuNKKsobtFUoVwRhXKGmB/3pwjRaFFIs4tWsHEGtL0yzYk3YrLa8gIZ+Zrjlg29nG4pxekoyklOimx/pRTVADmliMyYsochbVVGFG1fY49Mhs4YBDnXiVBGxhWSQkjovCTkZ3MkRyohXm2yJaDIQGSuhaSbO2zZehXfdvX+7UNmIuzotG2i6LgzpECGKPqRZ6CKAtKOz2h/gorGo6Oxicrxhi7psvfbcNK9A9O2mOfb8wpe2QnLMM/UzVmnq3hSgExLUNGFV1iepkwpcusEK3t0l1nldZ1XFDY10rxsLmVmVBfHVq3SZMFvcTxrXvBv258jz27kRPqdVDtCS5OlP9rUqsBK0M7iM7pQYZjavLf5hT/WmrbS5bgmb+za77639r5lO3z6QA9hyNZOMJg1a+Js7baoOEfkiQz2rGxLFo9JArZl9Pxi1SYXOzlLuk+hUhHEUH2uyUpTX9bej54nt8rWn0LJW/7dvLrCEyVMwPDOk3qI4q8KWOW8a0XS5lP/ifdyAFOt+fSWjAU5G2Mslhx2gJ6CKYRQmlU5eK3olxLjWcYbDg3wHdOucUEP8s5BbCE8qUW4Iw63dtKGarwh3l4ioAjysUfNHs7WLrqTIPcv9w32z7P+828C7M5fNaf7QbcG9BTxIG5qVzuUkk39VR9ATZL5PMJOBi4TEYUZWRgao8+446JmWflkrVSBunXvMFdzMGDjG4pFOjHxoT88eG1Im8z4xunGO6MeEs3dzMilDgTMetQWnE/uc/y1Kni+bT1TqS6t0DQaC+3a3NYEpv6tBVvnyOx73wkixgKwY4yovVujx0EQSWFzdnTHXlXn9hzPdmOaipWWNq7IYSVhtZ+jHizjoNkKG4bP3SujlK8BkSKl8jZ7WTpUB3i8LqJWgpm0dMASinOVoTQ7rfbTLJ6SMDdlJAhFAZTcPvxmKBBE0ty5jOWSMGHMQxpjrbVer9f69ouvV75er1esdSzDWq+11tKpzGUZpXgig2/Bl9JJ6BQlgy83P1bwA2G2DC/Bq1DYaSRTCuV1RYKErTB3GN0JW1R6Ii+9zPJCWhvVFmGqzV2tGqOKubDyjNcrImAvaoXRiESygjkZ1SAiCEDhy0xxHfRvmYjLqrEFlgehjvnWfovMAOkhZeYl0tMqIX2y2QskVLeOHaWvU19ckX3SaIO+eruOo5ptcJPcEo+NDKvK3dOARS03JzYvcFc4N5jUGOxjwT6k9d4lkwEw/pP9pn7jIMrRCpynU4/ui2x8KOltWj2l4n25fqAtZjgVhyzl9ki02rmy8/ts4lviY08bSBaPLVqzWEnM4rxtiTNegQfA3ihkD+Krot+af2ycVsN/hAMAsGYsdavi9Snxo5nYPQsl3R9ycHs9UGJwLwVnLkBW2dxA5W0dF9J7zNU9b3p6qPekj1l5v2fDL8LiOQ23YphZ2ARC48G50QKw/wbyOXUTc9/QY4+xKYUwyGIe/XlftDoitpK3mcV759ajFI6wm64a43v6Mj8F3mTV02za5Q4QY082y5SrGxVzOdVOWN1L2CVBvLef3f4Cliv3trmnNJ3CJmyrQ7hBzExlUQztuqJ6wm20oprUXOdlEe0XQGsm9IVHLe0rzzi2vuLkNQFg4ss8zfOQZpKnyfxwd5BraZdQo+145FBJ1k3Yj/fwDQcsYdn7bYyO+2zeEIoTQduryCjcpCqJL0Md5bFNNLQhAc9trcxtOjNHpS1gbphmkCWDSim6SdntD4IA0pRKS4R0JTLzqmZ9ySKYv2PL2X4Gla/UehXngIzs2XQDfXwAr8pHpao4t8qBIuI688fvP0/l+7yu6zzPt+OKz/f7fZESrrSMK1IZ4fCsEQK2FgCmrivO87wsP1/OuJKZV0IwlxThUU9g5jWagLnJD8gMoQOpJFVcWN0YWQDLQs3gpWoABHs5LO0ALtnx8VeRzqDT/X0zA/sysvv/vgSjryuQb16SxCuRi1DmNZRYBpRpaeXwdvPlZ+T5/uwAFTpjG1JVxsOqymUfuN7Kk5u1xfecu62Jxyooz0DH3B/qlHUqhwK1PL1GKitSTiLN3J1WFnApArX/q7CydQAH5lVmVlwfBsBykhdBmu7cjGplYVXgPUoEnFP2hPVz2GlqjvmdLHpr6S+W9T6uuv0DY5IMhB8Yr0ICHfdGR6rSsvlkxhUU1V6uTAJneZPqtAzLS+GXdjpHlMgu7dqSbEtzaRIlR/21Zp43QgDWyIuxqca3XsO6GfxGHA4ZaztKhsH0aRDuT7Qz4WFfPhPgOjt555bcxkgzT5QnZfs3Zui3qWNy0gESeTHHd7l94uIOw6coZWSUBCpTpdtdTFCs/OXItpFmp9yDA1md2ba99tgIwCjN3hEba2jvkqdyeHyw313dTSvmuHXvDkib5w5oTVxrwFbjGRQTb09BhRhruxFGm0fqIk+qLLyykm2MO6GiTUIGIjIIVTgMHeWIaknHPc8DWUsTAaBRSmVAZmkwTrowNinkpk/a6Oeeotl0G9x1nT3aATDqPbvupIw7oRsm1GEwg5liDH81Dp2cOxrG/kyW1ToP0h9AirCkcPexakOj/AM1sWku7jKZclJXel99Uou0II3a5WutqW8wVuceYCbL1y+wRanTopUhvMVF1C7FzvsCdVlTAZBWSdtGWxARIZiZ97EtCVPQy8b/Bpqt5W7oQkmMTdB5BSBZbCQgFYvhd7ZjphKXlcbNHz9+XMifP35+vq/Pd6jcxSlcTgW4aAb6csAWQK9UKXeSnmZcBNZRVnlYpohlr3WsI7HMfeNFk4QMY1xBZCqCRofcnaA5yHKyFfJLZjLLMMqkU1zHBX8f31/ff8apbzq1ju+JoDcayUpRrBPFyBQQ11UmcmQCyvKYz0Rue5LNj0kYu9yoUkRvytBa/CSVTu6cktnvWYc5mUrb611qt/tjpFLa0jKtOsZLuDunlmE+0tjUtCnMMVS3QJutt92kGtuotu2uwW/N2X2O6yK29/bt0nqYG6ODay+PnujbmUWbMS3Ubntsy7mtB6QdSNmvjqS9E8IA3BIE2hXvj5S3imV7+ZXRASJjt3cxc6OZi7exs+s8RymY7/TUP35tu+GPoOD+WiOEntCrBN1dvnMnDI37br7w/LeuLX2ZLgD3NI0mGhc1Hot8A7w9nIeVIeY2J8cBjjZSqv5iT/c4MTlAoYe+99B9Oh7m2945j1UDvzxer+1TaQzC6QTY/mk/7Tyz5luNg+Nuub/VC48QPtpU3crtXrhHhpaK82VgUI/3Bl4PY/92Gm2pf/vCc3/guQh7XCPj7wX9YpzfIGtP7gNn/OGIqHlDv+7D+7aPZXxcfv5cu7XH1A+ibadt14egzgN9DrOdLluXS5Myt+NG936RLAVENYGujCs+lggzxPbMoeXC7Z66mcUeYsnQbW9667Up0/KYkOzOiCnEQrNWkGzF3RKqezILlfPdXDx1x5oU1SXLhrWusdi5niS63VZJHgnWb98rOH6vQiUllUoK1/FtM+4qnFIZ+JDozfLppLOb0DuvB11ZHXONex0jNgsomRudBC2BZDAjlaHKYSotIQFwYJ1zROoQxN7e7GKveWbNRBdP5WQmzul2rSXoWA5rO7U8yRtAUyAyo4year2MamRq5lBmXFfFhS3LCK8EEIJGXwVtGutnZsR1Xdd1AdZCMSVNon6xg27dcsNU3aepdid7m9aWVoKlmW0Oa44/qi+UQHaCAptHplIw7Y7RjLJL64G0Mrfcsu7rl55yosa8DxaemUR9kkaLP0TA7W6co9PqHDskOa+3gQdNgHpemM/qSwLtY5Rbge671B7nvs4X4PDAKFtP3AibXy494a824bYFvOXwQxwCOwZ825lfZ4QzoX2gbxgz8o4zrv1EG/5Msc0cZEu7nfea2944Yd/4i3DfGuyhTKVJKcYdnP6CtHrJW+TiJgi9FdrW5+AW4Nvjxn2jbdE+VqOXt/yOd/DjARhwa3VtHb8dlkXct/cSH0O553Z2bD/Pc132NNy7pi/22Dq1z8rL+ofwwx7IY7q3tphp2KN+wBYzUTZN0G4kcadu9YxMff3sgGE0MAxf7soBzI231PmgvKfhhkQbLO1lmuXc/4FfNgPmGD2/SkBjwEnvq5KT1vR93Wo4qBRiwNOXfQpuZX5LwRso7L1c20hQ9/OZZDmV36EfbN5eLdHQ02DlzatNsal7enknKaaF5kambLRusuqDbuYuX/mimadQ3YjMrJLCVZwWrVPdJ8X6njn1UIZJZFTYav263AykE49UvVWE4G1UgAB9rdtD0OERtzxAQ5ZSCynzyvHbpJygKyHZYOBOk+1SGDMrjipYWtTo2qdOkd2hobtRZO71Nme6r+V0Li/yZkPQ0i2Nblu8lBt7l2TSgu7dlqtUfAqyFri2UVRrzFqgEsQ18Zjc2YEztdbe7eD38X7+C2Aa3X8RzuTjnHRCEx5huvvNum2oFppfTaTHVcU/HhyylV/t1Ue69OOvvU25Nctc7D6KlbPD9kvO5tYd9n4c/frLLf64i/BvCYEJQj2E+5yp+6MTP+/5L+y15wV3Ig5GSWqG3qtYCZ6WUyermeWHJfYUsO2Muy2wus1Df43sQVvA3Ms91tI9/5zAIVqntzrmYwfcPzw+SYzeu5dxD2hDuT1Zf/h6bJJ2lm1vNmnS5Klxlx8R7CCGkZvDQPhSDPwwfQBMt9V7m90PNVtdbV/Ur7s4cjuD5mnuzLznRN9vr5fzLqJ4TPqeIm113DP53JCPM7K/56hHjL6hJcCh+RzxvpEENrj4AnP2qeS+zl7mvay3Y4HFPrStmWGEKb926cHill9usAouylksUI6kaOZu2Q5QsH079xJsxFLVl5teYKtb3T/2WleTniKrSIC5/Xn1uF2ytBXpF5urFhr3HjdXJdoq0mJbJWJnwoVQmejxsFc6p6ar83ry0/fJ2q6mJyIqmJuNIMbAxTT0aduLVERsH0raiLBaKNFR1bTI8NroNPNlIBO26pyY+8wlSboXL6TRm1fLin15Lbmnu9zdK23U6C5fywlV5MfcuzshzI1wGu34sG/fEd9irWMday03WfWHljl42NohZV1lHCaNu6ioOaTEdNIvQisqmAuCVHvmlaqsBUZnNjR4MG9MZZaRFpHMK1jVabXUWawjWi8evqCDx8f6/lt4dxEayDT+h97VYAg045LxaKLMlC7xWnklpbC265Mp0EpSKItjv7OrW2wor7iu64xQ+pblfeJG28yRfWjlW5rdh3fj2EJCW6HVf14uhRGhIjtTtbcBMP7j6mG9hfhXnuG6XdpELLcw2nbNlh37r6NPRgy31nqCjQeYHaDaputOMuoD/Ad4sAX5DjXeZ3tIS2q8U6gqq4z+EYnjSuirjhi8n2zj7qk4HRXCx92e+VVjdT6l+vyhTPJ5NwVgPa0v3LJ8pNZMKmeh5nbtydgx3S+YqSfnDhVLyKIFx/3YI20LZtc0YtBFwkqCbQvzYfSq81lQtSOaa2zjkZgknXvfNlQZ7Hajpt4wrZrzMbfPJECAUNcj3JG3WZ4dd3+codkAvX/G6Xobdfc+QotgZUpdI/pc1op40SyJXRFQ962+4f1o95DQTq6qmrhhMgf33MedZtRQBNUeUCYQF6IoEiokTFQ/g2j+404E1s6s7Qklmu9ByDOvOKV4vyN+JvOd7x/xTuTnXy/7nNprsB5to5PnrNMMyMiMrPYImxK5ajqjtxMlFUE+G2LOqEB3ohRS7uQXzgmXSHfZ8GaxYpK9sSR05vkIOO0Nm6ZOLxeRRYNR6T+59TWSw0mX7TX2MX4bDoOThw4JdmcTbuGF2vBmZZQJoO+YQnXOlRJwg1k2m5b5ETBJGed7RQ2timSquM4dZa/6Is0NvnwJTnN3T1u5HGstX/BlNIPrWGvBladJgbhSdAOu0p9xfl4Z+u3nW8r3O88rflyn4bo+f/58i7DzitR11RpcIK+rc1vKcqcLSMDMjYdLxiprEqiwyOAZEqEMxnlEEu4GcrWEk9INQkJy8zIzzQhkm19wM7gZ/XAZj3IW0qvONwAAGarAaVw5K1OqyQCEEicuSbJKTM+E6YoqxELvEGYgMy6ADmXiYTRWZnxJwWpcSJTzFyZ3twJDAASzof1rJDYZiC1rStCWKBOtmPYAlG0OoUrMRNGqlpckZc1jIEnuDhtMi06cJSp6wOoZRAPlzUKqPqk23qfeslttzq/b6r7t7gEOJdZLGA0oa8nWRTGCylmzraba6sq7mkSlvau7pAAGJ/2plEZUFUbSzCtPzEKZKdbZzAimxBIBGtn81ZvGWy6VYyQyigXuNuoqQ+J+/HZu7Ss2tGlLRwSwbMp/SO4McKnKN1RRJZobRZusBFtIutqZZUDR05hKI5Y+jNY71XA6mbgqVEHSaT57uTI0WhBh7JFBBTPuEX0SkBdU9XZIJIoJoDJzSEDFQVtaoz0dJkJNHmAOr9i70boRn6qvrqAuf6xOF1W9N+wJlccays4fG3W3VS6bLKSUZ0p7ymv/EG10p3sjn6rDsbX7vGTa1u9zo9azmOyjHKyYXS8KTBWKdDUSZKdoAInyukwbVgK7J98ghS58YjUOJdGkSijtw8zw8onaGBFBQVnsDXUmi/bAANNVmvGfX/ZXIZ2fv0f8NbHe+jz9fz31/sf/T/AfztCl67oudN/yZFawlam8vLPRsupII7mVf4qyIuLoJgiZyKTijmCFDSpzwmgQnUUTXNrUQDf6ZdRy+ZLRPA3hDqb8Ol20lZaRsOpFt7L8Dp3XU9TuAM27py2HOKrPrVVukaK4EeuU0XOfRZofrzC6LJFhoJIIMCekG+/I0z1DjBASmSGRkUbCnPxYxxmUXn7WIxvI5bBP/VCE/2rxm66ozjSI6mkAstIP7bBMggcBC6+WEx5R9r5xOYzmbulwUrT4/IfyQ30e66AWrlV7P99+LPv981prvU/PZb9TwJVx/vyk1sdvF88/8UREGn/iQ9fPRUsQ8uP1kn3/Ld+/ff/JfON4XRc9xfO13mv9tPhGBX/8KdMy8kL8sHcw1gvEK3XqgsiAL4cFpOVLJtGWuVkCNCbwDc7Xyo/D16lYZ4KKlIPrOEJxiQoDRVZWJHUJICKWfVjk++QViPd0QXQj/DuvK0yRZmaXr0VG2oLkfB1aCnraWuswPz6MTqwDWL/EO5ep+LtyeGoL79ld8lsm3EZmbEtFgibdYFK81CULgpCV33sNxVl9nIM1W8vK14gw1FFu6Sluo2Uc++ZGy0q+E1DJA0l1IfT4zgQA1bn+Ntpbm+k29qzFux9Jd0wvcY4tbDTQTQVGvkwAcRusZcCULjOilWmJeat8PaO5H8t50PnxqnzuwggZdrn7UdxrY5hUwvhYUck6mlRekjPFbGNbzJ14M/bNrWRvk1jYLIYzJcv7MGK7G8Z4YQ7o83W4ZcemJNriSVqjQgAyTiZYLWmxvEqU4ryuK2VtjFVwyGDa1lip6m0XlsIys9qFnKTjptF1A0Srio6QkoRJHsikyRIpqgrhZEJVmkNCiFprkbYWzczXWlIhZK9uMagKQNWjVwlSl8qkAcm4QlXFkftgNKQp39i4BsrdXHXeoKYYQilkrFS5hQxwruoENz3FCWiQFYCCGB0i0wXLArxlgXn2UbIFs0wwEJmpakZTmRVC0b6ylolTIFCFRpkZd1U5slyUSms+vbzk5GVJkQ6rXO/Ee7Xzy4zOsh9LLRni833xkv2nf9Gn/dd0fZyhI2kX9D/hn35c+l8A6QyIeUbwHRHAeR1nuIuJiDgtIvLyI3Vd55UXVFRCzUnl3jGEZFpCluEIq8JYENcqe0++kN4eBDAzrkxLGasK+gqHOd0TbqIhzGC41u+nRYm+TFtaoH+sqFauyyu1gLR1sokYisiPNYTmcHQsOon3EZ9XBojrcDkSBBOGtOMDcreLYWc4PALVgTBFmiGCulIZwUsK6cqMNCTMV6wFfPgrL6Y++M/xzrzcIDO+X7//04+ItI93/PY6I01XJi4FLGo6Ugk7eKUJR6ZQ3BNmjmAazJYfrzzc18E84G60lb/98wFcxO/rCKTXZgAtfn7gG//5p9n39Xl+x6/f/tNxLNgB/Pjd4tvf/eO5Pj/sE5e0/B/XX/Lnvxz2Cjr9dfzyiz7+fOrzH/70G66/6viI9KW4Pr9/i4+/XLJvL1z5298pV17XT7z/6fV7+vndUsvyfeoygJ/XMl7++7rOlx+ZgPnHeq11ycwUzD+fS98WxJMAjhNcvOzHgfDDI38/P/P6+QFKyAgsGM5w0HVx/UXX+/27XZ8r4rD3B0i4Z65XZqTHGWbuF9davMIOCIf5ujwSwzgSsPi8rovk4uvjIyzyJw+MB6/JvC8Mao8pYa7jjMpobrslDYEsfFwK06wqYwThSl2Zl3YdeIltWnWIFBOgrSOTavEMefFoF9XzaM3S0KgEu/Z7l72aTNd1ZITYrd7afeqAUe3uJG4lVTq4zNSQ5C9xGTu7v8m8ATQhKFisGa2ctgkiAN0WPs5oViKCdYIwCg3FquHr8LUO0b4dSTN6eWoDvF5rffOS3KUzCnSakERKRhmU9Cqb8eYxgYqnxttHsnPN2CmdDaHazcq2p0ZzrI4sD1vHBM3qY3OpYg5p9I5xZ6It8zbl/tVXeWQzRpEXjOhrWqXeq3Te/ZnSuLWHdjo828PMygfRfYNKL9R4HLvYpT3mX1FXDdv22Mfvz61GN0Ic73BvPZsAdH+bj7En+/YUguJweIDb9wvqfpAkmlRu5vKOAjS0s3Z9zis92nH7j5dCsxRoI3S8ZDOXqu/lHiFVJbPtoAUTu3pt3ER1x0GAvLPjld2d/F7qag3P3lwdKpilLuP1/JGnI03XFXKACYQ+IVy/T9xrcpLRpUVkcwxGJ4RWB8M9NKoP5GDUmrNyhBe4N83kFpAtP7wJqta1UlrVQXHiFsNwNHEzYxpTqSq9jePeHj1hYGJiD3u193px76WqTim+pEnxxe0I7PSn9lvY4e1d62xWNMKIVN7xGKjYr5oR0BYJLpKLxZtReyp+vn+8mQJ1fVpkAFEelOqPnNWvEFQEAus6PYooIvOug61aFRVPmJkBivOHmwzl0yzaZwqkwT++l+R9vUW4a2LLOhmwC57uWelWV5h0XZdquWlMHlSckvIyt4xaSl92fF8BM0NeHSpOMk3pxuOSxZm6zkXmb/ki0pOHmR/nuNWI4XPgN0e8DrNL5orPyEAoT3vH9f6IfNvBKwap0s3d4G7HcuJ4vSPjLM+MwArJ8AIdBB1m7u5wc0+DeIUEXNRlQPjhvmRrkZBKxi0nK1Nggjnt+rtPMpSAc+wsAB0py5LV5etqp+X+oG4PsFm7Z1prCSyyzUloG6G1j/dORrjF7YStWKkm+yy0/Ch7/JFkP0qiDEV09nTHE4Qc7kThHoK6lq7uVkJvi7GS0npEYZWV2Yh9mYcD/PFVa1nudKtg1ACLci3GHXWeoOdDjFJKdqI6CvJP0WnZAPtG4i2D7xW8Z7VmZupFsW7l0/cZ8/h+jr2y3L9/9SkMEOpIo+7B74W7ReQ85Yg+9X894A24Wni2cfm83PwjPffGAIf2oY7Lfmu6e49VIfPX4X9ZqZK1TUOBrsrE8GjUt1Y0t5bdc7sPEDaYKLZDtWzfz3Hv3cFAuod0X/DxCPtGbP1SPpJxHLH/Xxqk3MF7uvZ8CdVWPu9F3BtOjWpacyW5uTwe6z/+9A1r1ZpvlNe4i1pie7okK06/Qgxmot8tVuqHwU+tPvfClqa1ojlQp2SlKj1LYhc07qjY7DAAw30y24UdTh/4WrumvfP3dirJ0Om4kXF5dg5Pi5mWXNq7794+ExVriN+/GqrAtuj5H3u0przdWSOzGIV3k5rikRp63zjRYjlV9M+RKShjQ4QyE64zeMWZn28vj3L3KZ8zzX6vUs4rMqY+jHtGmrkDKaMlKWRcl6rFsEdCgmWXZ2dMBNQNHY+v4ZPGKJpEr3Y0WDpDkHENl1nu4AAAI1W+Lg4i67VtEFLB/ujZaTBkiAxGXrF9SA/BVQadkVpmJhhSUoRFQuu84l35i1c3tr9Xu65wxffMqyIBbVK0KqxGg4PSWOtW7poIgl6GFfYGajdZ9VbmdGh5jpiPvOhZqDYfewJK9g94HjAN5o0Wt47cu3SrvEqAeBblUbpZk0YL1q/ZHReJTHgUkQwnIFYYP3szzUCrtqkufCuh0ZPag6RmmzzuyFsJbYOjLMqxE0YWltXWkrKQdMtMjt3FLd3QCh4PmdbNOaAOxbHK125D6iGmBlPUmTbKDHqYkIM2djSyfhe4M6E3rqGwOG6AEfkaSXzvg22ilTLcVCeamoUxG7ZcedgCKkI9jqlNliSCZZuPpjuj9anIthS7EdA+EI2FNpAYk6e1UyVJa2OBekpTZW2i0zJonveQe4pvNfjQhvOtdR/Z0ZH9MqtOYDTJpgFrrWSyNr7aQ1NcF5q70EiZxmz7V6Dj/tqguPY1e//Wmhf86Vlu/wHn7cOcoYfoHioVlEVRs5xdwK89objv1Xev9Kumk+9TM1C05HkmZGpSxCoGqb0Q7eZQ2hYoM88bZnx96DlOMxbwRmitFDYA2Dtmr0Nvqla4JCuRuS/NwvoVOptHVbmWop4hq7N9IeTHsmS1F1Gm0navosfaDdgcZ0TDfDM8miHthwwTNpmL5sHbEAArT6pJggHlOOJY1PIJgYtJpWU1dQ2miNBln9cROUivNk9i+IZRaS1Uc5poCIBqJAGoku7qvgHLzHCCbuYLEJzVVYLmAU5uyI7QC2ZeHQyrsjaLHPpkVPEOpIgRLgAED/P4fH94mHEV+jAnLVAuoiq9ZduABtJL71x2+aRvVvwHMAkwZslBGnHIjIk84/zxE8cPHP7tM3DBLDMjr0RG5nkJikmgj6iGdYJwUFlwsOithRhELrUhJPpyN1RbIjiHabtdjQ9kW24dWXaN35apW7jtjXLDwHsbt0SoCEj5ULo5ljp1JCUmOlVJaDPTdv/itug1uVIja/t/QlUul929PZo5e8mKt1OVRT1h6YRYMZRSDy0eRoJzJDm2ompRcovfW3OjM4kb2paULNXSiUPbb8vH/JEs4wlfBQwHmnM0TiXriaB7lXZXolAnoVUZ5YMasc2q0TSozTXO+u29v5donrbFiKB1y7+e/T1DKA/JpMntKRmXNrfCmY20xQ6t55NbgvQ8DXwAYU21N1bill4Y+bplPoFOwyuWAliF60YaTwFnq65Rqpqsx7rGVrIzHzca3RMDYUo1BwBqvxNp2D8/wOpDJvfzac915YXVLqUykCgn4f5EDccKvyM01qzpD6dOUmu+IuuXMORW/bdURnZucJY3t/4axgSaNHDObadOd19Tz1KI9ceK1w8YEVrwbi0H41D69/W2Y31m22SLVb9jTdoMgTnIfY5H4xIaadFWV6+h7Z3udp+VksVPSCqAJloa6EtDc9fpc0TnZxS6AKYcjByYK2Sym0PVrPYpsqJ2FIjO0q6s52otgBxaxRvNl75km2St3oG0K9BlABDZeTLjr6CUAUHmSiRShHQ6ISSuA0W/pCtQufgmIoazh6TDK7Wzdl3FsJJ5YR32/bt9vlYnIfWMZSGjGmk2E8tVRWxzSvYDlVgzc7kboYhTyaqQVOXJLANfx+tYrz/l90//9u3b7y9VFVJpF0Lq3rlkpa/bdUbZHXVLa4seAPC2PM/oVhCsQNAwFe15Rkv73ighmNKrEotmyE1G0ie9UsUSnJRkMPISE+l5nbwYdnpcV0xMhZD1bmTlOyVA2KFAFVBXKoC7FQ/ZgJxUVoAwQ4xJp2JVZh/HsZa7UWZdd9yUIPdOKrjSwpi3iro9f/M17H2dSjkKpTS5ydxwHCutzIDWVo1fTVRlfpUd9BQ7IyttspLLEtq7o+AfrHNuaAZzyixJ2HKzZWuttTDuv9a7JAhDESxB2spkq0zs0l9WjQSruNKEYuGzca2goIu6kq2tH3tmndY13N3c/PCgLxenHk8JFq3qyCkySW2AutWCEZmlWjoyqYfIBB8qdrD3H75GU2ss4NzekDaaMRB7z3hvhv2b2kOH/WfdWhkT6xyE3yDujkb0cCuPAPkV3eFxE2iP994NY2rDrKXb3GZ7/fZXz4q2YcwJ54+SxujjLXS4tz5ug/E+v+oaT6aywAm1B6yeGe0PoWyILjJRVoL27Ru7n7hdupjBtBVM63gmbd5zL0qdck3KRmeCF5gdIp/HmDEBlb10SqVVoreg4rqrD2yN3iqr1fQ9RJtKo32xO+VAbc1W1h44G6y2p5h9v17SkShzrT6CTXZ9L772LKMH2ep1dnDJkAF4bdPesoyQFAOIbtdJqdo/rEgPxXJ3i3jA3r21SZisqsMMmI12g01V4Y/Ubbsqbl4+q913huXNpglp9vCDdXZ5b81SNfW51ldF3qAcvRKhNGweSZoDnvb6y8dvtpzJhu8cZpqa2AaRVqkrntoqmPsZqV0mIoVcRgQXkbGkaCswM8DKkD3ANHczF9zcaXA7Die7ULc2GJVJVM1FsSKXZpVVZp8kWGV+R/tLU5W4WRsghVQXDV0nBaWnordLjNEPSBEKhHC+aZdFNZtUZfRr78XMyLzOQG5v4SirUfUEzAJVrSRlOOTrpNGy2MIqP71bVVTrh8rkHylfXk5A2fXNPlYl2jc8YmRyLXgLWMxB4Z3MvKXXvxIuuAXnCN8xNog7fFx6sJ9ZUvP3ln37tNumnj7vFBLcwuHx0nMEpZAkTgLVPKu4u7fWM+dt+4wlozaJtvLZF7gJLu5b98N1kRX2he7DPVINkzRC3nKhZTWrp97QFCdle+BfpraNy5nlufkfZcleiflRwB0DxsPYqX+3G630OYdQSbcsGoHz9S6lGx4LzXHJ1aKxBcZ0Hbg9du2te+ycL1tpDsjWt/PwLe9nbnVfa/Zb/6+4aOz2Oz/cgJxrzZ37Qg+lt83N+bNwA8O96eb2e/7m01uxzeHa9k8dH22XOe8zoweiISqOMFhm6/wBafdENSpAlziWVihkWBYHGvrNudq3L62o+w7QQxbfgMXiDk7fvgXe24GVBL593UVSyCx6/C1N94ptcNiCZe5V6lFNq/dAQr0CE835gt33T1W2teNcAwOkisWqIuh3kt04pjpMWQ86O75e0Bw7acPSIrbfalnoxqZl6xpM9ArzcWoNcVv4AGgKqHLw0T6+ZlJk8ySxm0zVFTvFnigKD0lx+mBnAqSZrzCa8fXdr3TOo+8prHnYEpSPvdDYToPmpxhgf5nJRNYExxVlUucVZGXPI3SbBwCUDQpo4wTvb1B71ln7BOXKVA6/tqDJvGvoRNx1o9mrUho9TRN57s8SIyT6jshEhuIKFLF5+2iv60R42OVX3E1RwD5ybeNZl2MKCrLUEMcY62Natcf1P59HzhRjbKwRGlW4UzpAX87djgZoxOlD1m7B+FVaDoCewDsaZTeU5vzWc16ZUJpoBqFdS31/YYP2EeT9and93V9TyCk1P5Jl50nUa2r++E2KmWPmTGqYehR1h9xR9cEUD632EKPQv5oHPtRZ7/qZDqDs1y0O5vz5WsdqF3Ql0q1jHcdxOLh7NjrW4Wzq0cfpJQ1ZIHn7CdWJANsE67936mdJuvUwTB5myIxrP98WXcQdWNXD0uneqA2uR+OOxtqi8XEkLDmsK7yVZP//D9prrqatGGtbtuAYBFgkfNt+YJtNe10w4kCjzf81Wpw7j418D4TPnT8fFPdYNnbFSOge8o0JSdLJtdwnfr6f8qHeUB4YjU+ovQgNMGsX/esR9y4e1LY3XQ+LBG2qs1tWmIY9b+AANpDeWqc3gGYdOUKx13fDq1nfFihTrT/Tfh+lukA3ss+Z6h7GXOyGlN2A6QYYbYUMUKhEJN0zPW9MdIfRsVpRwrFY1gU1Tf+T74cGmctg7qtaGnT3KZFmFi39AZlpehlsNyIgpT+0XEGf1mpQMHclNZNl8NZOc966sJg9IpMJ6OoA23kxqqVR26jizKnR6FV1mWYsa7fsryocbCfz7RIQsG1nQdOWbVQ02oc6/DEP9UwSyax0a1WZxr12Nb+dnS5MQh9bfotkomlfSLFqYQgoRNSMkFQk4nyPbujn4HhF2hNMmqyfrdg3DVUGFmp2kgf1YNs7yjIDVLXjuCINmVor4XCj+9WOVmF/uGVPPZgFPdHeZiiQzb2HYnjOTCUgmi+vooaUqpIGO2+pN5y5hAz4Pmaj+Gat9knnPEZtLZVr+Ckmvyipp3gb/2D/10RqVZqHJ9Hc4PX9fuxjWStZhwFs26BpVGSsQzLSb9vktA7TWqfiJKoMoHffiO9tFO3vWwzXr4mGi5VDim14bffA0xJoYbblkrVXzc1uaXt79q/zPM/e6XRmON2M77eDRaNMN+MVi1jmOs/q4BzRtEQ12RVlGln2tT0Pt72zTen1B/30dbl0z/uXVUSbDb1SY1yNSw0TGu/P7azsh5+15e2d48s9gaXA+BTuX4eojQhFU0Nhey7j7Jt2I8xVv0LyrczwVRffqGg6M/eAH11O1Or1vtcXa3YeZnay9hvGi9U4c2f0DQ7qGXuAqwY6+yZbovVZyPIQbobWe43qE0+BO094P25py/Fj7RnQKO8M09B8qeTZLRa2qNCOeD6GjduNghEYvU33tuAcng27NnRoBdCGWmdYjhuq3lWmNe5RPOfu9leoKMZsgGDtljn7RPlsy2+LUrdweLErWosrNGzuDXIvwqws5rnuXcQJq1mVfRcurlUZbT1LU5mrHO9jZ8tUSXi1rVOcYeOQUK57BaJt9e0s2baIhJSuqZ72nKr/G2jW29HF6BVMLyG1n4f3weojqx1smVkkKNvKl12k1Tvy5g8W3UBYN5phgxmrFulGcxMMBl0xmYG5CYgHqAnV9yGVF3ihWFzqeRLWqWyYBe4QUHb8Ut2usMhkDOyGeV6JkRlCYpCagbZafqOoeFJS8GN2Yhnt2jGgqVRXV8oAIKoCJ6PyM6Krym68q5y8rdn+VYQ/9lPj3/rLY4E3bcGEW/6gs/d5fGAQSY/fgS1zQT4lLv9wDfzrXT7bA3N+C7X88eNPYP/VYL396U9deg95W3XP+z1/KZNnNmOVB9wTsLdpJZum6emCGC04WY4z6oco/PKs23rZ61GvPuHSrEG7YO9BPse+H1GrxOTAV94eKej5pA/VN2N5SiNs82ZE4QjF4W0aDTPaqLQHu1vtF4RVieZbuTfIROO1SvkAAFpNRfPKNiS8j94eycaxsw84vnHsWHDbc4/NIUllyBmq56ipKdONhEm4GWdgadXzxZxR8nwIWEBYN/0jqUr+Xhpkhtl2HEnOKSmq0e7NUuqSjX0IoLs398ygBEaR19oNQMHBzJoFrNXh4L+9wbj/4e67RT7Oy8OnsBVubYMNOHYGP2fPSvPfnMHHAuiL4t43euh3dA/DNqAwvrpeInGMoq2bK5FZUmRmoGKTZYTUG4qxp4y04jfg4Kl7CAUCdEXktXKyx9RxMTEzk2XsCFlZOzRUO81hdtk+qAEg4D4eFAJKRQSjqMXU5daVi6SkkiwrUBE0DxqEvC7HoI9UG8uRHVSdisVMpUlxxTuKz6vD+pPbcx91IsM6XM3y95ZWAjIJUCJM7jQR2daMogqHr5rkjCvZOeYUnJX+1pIL5ga4TxMnKCPjAiEDlJkXr4xUZCrj6sosk2Ay1xYPrOFKYmrJV6YDygwRukhDULAAwLCCb4FrYjwrYFy49oEEqAt+nvk6xOt6x0RWTUpZp8J6xVVSkWES3GDVumM2dVH4uLu7+QEiFVe00EZGtDXSx3iOdjPYs4VaJSVCbVDitlTuBat/tPX11sBzfp7vJVAuhC2aM71/zu0WhrLIZjGe6mr4nMiOHGVWWn2waI8q/oAMTxbJK1pkl7jfPsvtgm51SCanDnjMxI0osurR+jCgpYjKG4SkKtG0TZjx2Y5StBGVGuHXkqlPbuWxPnFzuW/M/TiOo+wqO9z8WGutYx2gUd3aGOtwws2OtWwZTWulLsDGyuX2m9y+7sfqEZ39UftgbZXd0UY8RPIOymFEHMak+pqg9XVbzI55ajN2CFnbxq0vSxJ37JN7tviHbcfRw7cz9xYdY9O0K2Ws4779DSgGFWx7j+NTLWkzMql1V4OVOvOdimMGk9ljGKPbB+3f5sJAiP3Gxh3cfc9vcw0aMkz09HK+PbTZvlNHB/vHUvO2Z68BSxvPt5/y6Z4FqPbTjWdgcGzZU48Jfgy+U0yqlGPjmkcQtXSwkdZ6ZKP5Ph1Z+gnSDTTulcn5QQ937MR70aZwPUgO3fLk8AKjnHMuWfsnkSm5MoBbpuE2BpVKVBdytsEPgZrOqoVJbiu7P8zewXxsNWGS7kpBJiI7pAsgEqkwloPyTnpIK6ZgM4fFHBHDlKEXOMxwY1ZxSUcwVAHY6j2wmhgc3eL4cl1IQTSfgDLQsWe2Qf9wShRbWzlZZpqEpAHKx04GRBiY8NbBvVo0Jww0r6a9dhzu7jyOj4/ldlWlG6xNQ4WC1fAvYFcoCpHD3Rf89f78/O5XRnNDw1b1kkDL9doSGZCYGSiicloRLZ8ZF2Iqpgs79jpmOiKB84DcRD+WjuNvXwvfF3F++0h5I+hx5RSAOpGZl5YnjggQooN5WXrudDmWlKOhOs0aiTQp5eYoHsdWHpIy4io2utk00I319qb6ImsfR29siO0sb7R3R/0AE5BmsnGm8Xl89xHvLg6juLA3wRSejgDospwSbwU8p5ChXSq9rzQUjeXZ+erPnCXk/UhbFu6Z0GRSbaE1mmEA+MMmHJOrT+ec2wQtJ9bGjf62WUiz7gT2nOD9U53oJBI2lR6d/QorqKLJKp2nquiQaXDFI81JhXDq4Gs1hJo/T8LuXpnCA2aWW0DPus8OGVkp5dY/tTaPbGkO8K9ZVKPsOh6jqTj28B5OK3Eyu5yg/Uwwt3S1nTCZbJ39wFGhlXjK5h6IKzMvQhGpKpOPruQEUAEztogx2TRUKvULcpcPFdYkvqThovPH25PEASB6TC9A2DIedbjHA9cVDrVrudFgz3Tl2pgj4SavvWe+1lprXfSQFX2BWex8LUC0EAuZFU3z+M3Zm45S0/cUoVJtbAeKUxMdwnUXSHopy0Tl2KDkTSWY+JhL1GgfmuWYvJKiBZMaEFKXlFYsImXXb5zEHiHNHawolbkza8uFVImhdeY6/xtVODDcXOVECZkSTkXSigUkcxX8IVHZIsiMhIpmYmciCYm8loWxfIuyJJ0upFWecPWtt6Eb2b6auxIlBaVC6qKXssQqpoTMapVTJUl5pRE8KgQ6u4q1/pJAM6/nfy+lGEBYygc4LZm+83qb3sFwoEzCS4bzF+MRkKJwgEkyMqWEURmVqlVTnlB1I+9tDGOi6LSrWbAZzfledTj8gC2rPJUO4do73WmWeX0kgKQtN+b7uN75fr8zIkqE0t0+VkLnO6G8Qik30g93//aXX5ifb+iCPg8LUVgSiRCiw1CypH4cdiVouY6ld3x8C4nu+szP69MB0S/S6wmRC+/f9e0zoW/f8OPjl3/zv+nf/fmD3/7N3/4803R8/qfX3//TD3rF05GReeE8/XTlj2/6/fPESqyPnwjHtT58fV4u18rL4KqQL6hIBhnl0FdmnH6tRXevjXMcLvNMZUQKlWSnCdbvo1M9sRR3BfhWyQR8ENEYRdppfLYtsg5ctIppUwKVAVF1zdmmmt3it0VQaZd2wQiCugVBgiU90OlGX+EpISUsqVhbHP7BjG8LuSUGO0O6khwKSJeCm9Kv0UtjVCur6RnG4Vs14fWe+gcCkgm74+fbUjWjlwftsI+Xoyz5Rt7oSrUcFTN44SqbIbPaXwHl8eK2YbaufU4lng9+xwWx+EAg9c00egX3uqrFceUGtaU1KzmmUqvr0h+355mjTPsNN8DRY98Q7ax76KsJ2Y01uZ9ABZsr1kMUxW+O/dRWY29X3ab0Vmrlpdtz076ZgXADlMqrWx/eGPTe/nqapXXdNmwf9yrA9gQ1SuaX929/1Pikulakbda9VnOvmYPKPSLLbUWiG6CbuUxOM3k/PMqJVv146yz2r3XDfmprWGxGwc2R1uWNHMRQ+rpsZHHD3r5NA0/LaC+2Na8qQQ5hAfMKu4JQ5hNuAbNs9XtG5iTYdc8DMzNvP3z1o40ele0tY6QgQ3abBKFsMrnWmroeoMsvGqjP1isIWhlmygwL89t+b1O6y6yVUjIq5SZzx5c3HtUo0dlBEU6AEtmM3rU5SIMzla6q4undUiKnt6hI+nggBmMK5n68juWWMPoiQYUJaXV+aCnofUEZ0+G9/ZboIAQ7Mp2FzOKBmsFdlnSn60lYhMzcscyXO70JLyjz2lcG0YGsZjTx/lQRZ9HKFUkj6PD0Bcrofiwz6oqkzjBb+OTxsZQGV0Scqet9vt/vhLjo7qsqt6PG5Uw3Vpk9F40OAhuUlc4xShEkECL4/frME6/loeP79/cPiEo47PW5rMkJzZdSoaguj9cV8jh1vfMKc1DEcdjFjDMiUnW2Wi8h2wR30qywf21Gs+JAnkUea/ehfXHLkRudapt9O+jbJmbviT4yu4q2RW2Lvof/h42C6pdphbS33fAYlfXRH+ktXUGqtqpqK43hMAKt79DX3L6+LzFQ7isWbEVbbn/Q1CM7H38fuwxzgjofTIRtt9wop84c6LHU09jIqnJCIGqdio2ImEZvj+zML2ZxaQjhcZxuZ+3M7WSAzIDnifv5CAALo7m1LTlJW3jVATV3b5K4x33UDkCkKdOUEUixm/jUpCYis7xrE7mrdRs6QDQxNQV0l/ICquat9TVLWLn9oDkss3OvUxCipYORK6BiKh/IMGubJfcKBZhZn0uSMgJNt9e8e5jVmDWegszK/5OKHG9jkIIm1dcPNgqtFMWGFc3MxjEdJ4IslRN0SKRzcueAIkbAI2V6W8mZFwNKdpuxqkGsLlXlTLAk4QAhm+494y0iWIRkksEtu3Ci+455FPUFrczb5WuVWTRzZtF/LwuYpNFrGWCkKTL0rghTWsjakZw6yeXLJMBlnML2O7wKCZlxuV/XhHYyApUCI+3dq1BGBMtxDBV9RRoEo2jobBpkE9lATLGrN6snVm2upFLmJb0IMzpKAKWqs3FV9ruZJ1ScTiznFWA74xhAJ+7ArBt2REmPcgGO2DDrbd9IYgUKXzjkp1KIKm51wCrkJZWUzIsJ8MNIixQEwxWr8LxE/xS5zLgMv7/DQtf14/oZxw1Km3sqMxXXixkOERkh8/M6w6BQ14lVU8uMyEBKtLXofr2/FwXFmXGYmOmw9OUGJzKh83X+/j3fus7TQbcVP48zf7ffPd4eIZgZT71dzrNMax5mr1++yT7+/Oc//e2//ct/+PlfPlOfnzr/Ps71zVge7oDOCIGZFxNmIj+OeJ9caRFGYF3H98/r51//nSnTlaG8gOpnQ49fPt+XX+n6F8X606+ff/cX/8XJ//Hznw1pv3Hp+jhFyzQyrjMT+X5FYuXv3zNDh97xTQ6YftKqL84bB9/HardqBsFzxY/z8xSQYe9rOWyF23ERx3G8Xitra2WaJZdtsVwq0DC9vVt6YivPhyQea0Mi0qDmJNuBpa232s5sBOcmc7dC5DC3NOZOHNnKuaE1qayuXwSb1ayESWLA4Gg3Dg4o4Ngk5tw2pDBuso5Jt/WzQfx+tLKNRDxfVZHAZcpqQ2KgS9vN5aYT0naKC7N7lUHIrNaq5X4q3GK+3N2XY2LH5XViNf/haPAGKPVfQlGSuGR7tr36sF9bVO3Up4kt3uHYRdigltKNvWisS43Atuq1kTAgK9moqReBBwPlA5dsi0iqwzZwasSUZzMZ3qNtXDHPmnuvYQwJPi6Psv3Kv9dJNcUfJeytysFnmnywO9T7tC71HAgGJpapBEzCUUv/P/oUsP/65UVtj8RWqOVE385m3g77QiFPLauZTk6gkXy4NSrCgiENfFxQ+LIY9ULNxkZPLJBTTWptX7PeW8wSYxZXp3u7YyYFGO7L9IC3r6QAU/nOJtBFVKkHkJC7s+zOcS7M0dNMZsc36lzveX06QlgnrssHW4k21h9vWBk9PYl7qkule/c8rU3v9Y6pKmpJMiqoXFJcyz075j6QuuQO+YjzlEUyi9KpsZhy7ZT14dtsAEZCMaciBVi0ldPXE0jaslT1Ic3JqSHJ5YIV+lo9LDPRaJmgAu+/nj9wHRMD2rtDE68CQGREwhhXu+Hm1lIlcGnow0DL9+VkMuWX8eYUml1IQHHFeV5nXKn3GVde+Hz/9B+09xnXFdcV1+/vn5lQXrVL6FjfviWPb69jrV/+hpSHm9wMXHUMy/l3xXWd53VlfJJXFiW4AbSMPH54mDudLIo5lEcu0StO5bIEdeGM1HmGpxTOijJF6lKk4rLkdZ6ByAyllFcir7cxLlY8sHzmklWIY9RO1RZfuop7o4rNfNE9zT27HH+czb1ru7XGAHcky/ejOcKzo8bjhfGwASMsS+I9BNS8r52FvX5slkWz8UiPCh0FzF2zMubvUB4L7Hrs25873sHR8u0FJ4nwzk//Ih15P1Lp32e3QfZfW3CRrCgb78j2SDyy9Ju2+OhbCY+3qkVSoZ12PZG2+ytshWx6kEQ0yijDivfitJmKqVMfMTLajwO199man7Z5PIZwlSF9fS7sqDvAdpabSV2Ts30bBB4LN6LLXNZMlDLdrYFm/mvSu4aveJjQur+ugnsmH34NjXkOJZGaDbIraMbC23BgP2xhkmEt3b5nthXQ1Cw2YIDgwCCMQVYj4ibK7bZXqlBDZgUTNTxU47JUEbtun2T7ImrvYsBg75F7f/YfZ5hdfWuwvR/FynOxhMd8zPoqXQxcQhyawPkgogbPLHfAl5v2TtAOHMxGv4e3ge1oH8y53fOmWpWeh15MtgVcjZVBxSgDPK4w69ebzl2zsc2Ym4mmcWcLfe193xqDKA8Fb2ERlVUpcXJMfY6NGej7AvvYAYtD0pBx+iCPDZq0d71Zn4057o0jJpOKBMr3wlZ3GRMmRvtSQnEQpCP7SNmICZT7x8AdwK+dJzCLasQgmGu1nCm0mzzP670YuHhGnh94RIYoNG9aMXZmKl2SQmyW63mcJtBAAZLeEQEzXqxcXzOavCkxhADBY9EEW76c5r6OZQb/EKS16Cb6y2ytg3HxOlMIRPYxMyKOXz++m0zLcyV5ZV5nhIhy03djD69y8gy6K0QoI3JFxbvfEQclWaLdEkCKcUVen2vxW74lN3x8f4N/+fX4xX/mx29/xS/vz3WcrHYNiMwrlZF5vf/syNN48rWuDMuwVWgS9LwyJKXiikheRWg5ic8VyllBQOVSyMjoo6hRAy1bjeVfiS2rH+qrwfk+elvYAXe0dBzUvFXfxkhoQcRbJGHEXx8BcrTA/mqHZAmnfVx3me4cv1ZB2OqrJagmbP+UOoO+Bd71jRhZOYN6vHPe3jfkDIRdiNoSv9TL/vh+U80AWoO0UWK+fJX3qStaMZ2T2DmP9zjuYRSDGUB2G0eNRNRMDmbyhccy1MmvP69RFv1BQTm8B7c4MjfbR28eaNReJbNs+NS/wVBIv5AXS97fU9wWvk3w457nbYTPRhM0ZdfzNIT1iDo/XGNpSoOlNOHtEtvKFDJ8Asel2yf9vvVldrmYlFGZqpH2UCvcG6mfVHtRNKYKHvcclwL6kAFCguVjLtAPTCVrPj/PDkfWYj004hOjEiQd0ZCpyXSMz40+O1k7N7cPhqahy1dFWrnzo+oBsFlUy2eeLnZG/hRW7e2wxQacoDULLlnpgimFKAaX4wCUOOSkWRrL5N7auMdiptv+66w/dnQEU+0OwQzV+anceZp0gl4ECVKxxe893FmgINxozshq5jizSnPXdUQEMnVdqQDsWp2ljdyB4XKbo+neSR8ZaqwkODM3SJ46DLbcDbCi0ynYAoG68kWav65Psthpq6qGQNWhlvJWN2ChEwoo5C3LfdUxMY4pBcT7hL95GKLbFMV1dWZ3RkYWAy5wnQYgrshzksYlaf5MY0bnnQN5necbBk9b4koYEpAZkGfvbT9eKSVXAT7ah1/LXn/6DR/+/YNrcX371fixTKbDIKSWEXb4pVi+/ONPf/P6259/H/FPP9KluD4/f76vOrvW685lx8F4gW7GyDgE/BawxCXn9fOVWR2eIhNdTYV1WF4QPV9I/vLrn/h/+nZ+vl+/fH/xt/zlr//wafbx89ByczveCLm5my8HcPzy1nX9ELrk91qRy0IVycrMK+JSsU+eel/xVkgh86VVKdMRYegOgUQKPHSXqNcRMIByZjHugkBWB8BJCsC4o7YtsX07U+PY51+NiNsxPSwg3Lh4V9Jj2wNjr43ELcCJ0S265U8SW1D0A1SN21xooGb7wkaP35KzpFE1OCSbyuM2yGyHzL7UPY5+Bwc5fLXdMH/A3KJEviatq+V+HdXlvtxdHbFt8rL2AEHpeGj6QkhocdShIbtF9Ny/hDwbSHec9+kIoLDuX3inWxX20UN5EGyOgDG1G09tUS+MKOpdccunHE9jqZJeGVPfUhvgScrOjL575WhGh8d9McIUKoazbc+00t3eiNkdc4NZ+fJKYxthve9r2ZVWkc1iTCqQQypy4u7awLH3dauye8Dc+6DmosP7vasGuW60WSiogr6Pi9ZkW0vzjTUr9gqambp+pcW+Z22gm7mgi1lKjPaWHZwNniha7cdON5qjW3843MreHj8uSHrUwRuYuHH4zHmNJ6cQLrWgmm9eZi4oVHVIhiJczueV5ladqziPrUYataWtEW690Od7826rsSQGPNXI7+wWjEARsOPmtnmvaG4mFdNNV3lU+hNNwQnzN9SYJDACU4lYJ1mVKD4GgZd5QKi7i4MgPLwou8ys0kMAsEt/KKWzlzTBqJY64+cmYQxZmsvYGauzwBkVyP4Zb2QU99OWEJ1Wm4MpFIjoPkWqEmpJKURYZjEXjviO87LjCl1ZVkO0Z0Yhw0Vf9GpYkZ9KpvL988yMM/76Y2X8PCGazs+4zvdF5I90uV+f2IR6nsexfvnl44CYdr1wVY0zjUgKbkwmxPfrFUEGZev0xSvWL28ygYRldLSvYflykp5xxoHLIpfRvn07/Piu1K8f74MONzmvPF8RmbmUSV4WoYiISyofkFteYF5XEixOM0u4O5x0ZETyfcYZ56vSEsJdB4zZsjsj0ZwekUAGB/3nCJhJuKpDtFH9SFY0zzgm2jH+IXXf73L3TQ/HL6YnrdsDdWICjXYnv7SRq7GSW1p2D7QR5CWhhE676DFpH8hWCe1pa4P1MYbbyVeyj5UGqP3nUSAPvVaSfFuVmifrG07MT5jh7xu08X7/fUTVTGeODQQgLZlNRaNRF63jlCzTKGObUTsvZchihxbtUVlTU8o22tk21dqn/Y4XT25JvyhRaUVa2h7zvdSTCT3Sw0bO4TnZUiWUc1YWt1Oic7MKx3Xees1n2BweMBmsEM7cP6/MXUo5GIMtfB5YRBvKmUzma1mY12DdXEl394JdZlZ9PDD4AQN5VDZTvcCNYziJTbclOObpqOBaxcI1kGzOyTgeqt87qjYQuxh4RzXmCVPDCvvcjyOLG09omIZpzgc83Ft9lnlDkQSaEnqgEwfM4H4qZXb18mRAT++BOoDBcsKYOuG/71esJYUVJqpIY2bQmD6+imms9/VgDgqROCtTenpaixlgLqUcYoP21irFQg2pWnbYquNo5ehqfDtSgeaWC7tSsLZS6c0MRjT90cR+NGu0kTgEJffxz0ZdbONDSTo7l5jGosnlOIzQDl/6rJEzE6S3r9lawZNG+GFhJiTNUhIzdeq6+AY8KZhPjidk5maGC9lVZ1UvVQ/o3sHEgttKJ7MTw4xmbsVt5WwvvVkZ10r78+Ev+XIDXZQ6QyevRIIkjrVe3w4//HjhWO5+/PLNvv36zx/f8mUOly+XJd95+Iq19FouGTPjvOLKzPM8fvn1+3F9/n6QFldE3YcGwrqzMQg7VuORYJq7gCtPS0/RK9Kh6p5W9XIm2XHEa/Gyl7kl4p0/f37+0z/89Tt/jx+//ZPxX/Tj48os5597iQs6PLVeryvM9Hk6dMZ15ilQecBYmy4JKBe5YMc65ASVryMMeV3V4KlKQTOu9/vz8yw+nawkQQJTyV4WIbY1iOfXlnx1HttCpAmurtocKbPtIkHKRNKSJWxqZ7ekGM07Wp4Pzyhm27c0LxFfrvOJDrfEbJkzHq02T3uAmvvsL41PeZyWT8t1jJU+lKV/t89ub190+vNUMbf7vICzVy32XKZO7Eb6Ve4yoPapt3KSTLDdcEWQ1nPP8UwJzZM58KAN4EYwO3No66ONM9YGAu3G2IKQt21INuJBUkhZchLJMhkWmqwDhYydatofLZBR4y8LkbNUbbBoem1YWpGFkVDltA5Q6I2E0vOwTHK6S0LFhsVqQW/bUY37CUBTbs6E/bz901iprUlLg5aFWfx8Jpm5sRvGl17JMdeyeCmSTRXc1iXxWG7MSrjR15q+hm2IBDPLkCelDHIq/3EjPQ0W/YJlUQk5tRh10eZAz0xvyw2Py6CHkl2DXUvT8wxIrF51USw4HDJgVK7bdUU28X0NKslq1SSZEMiVjKwrtPhbyXSgKpEIoztdtQgzvJ5ZL9ohm/nXRhGcM0ym6krjtJpZYRfLAEZZtSZIWJnatSJXiyLJbJckUNrOZ4zjgLAF68gdKrW6HmHXxD9Mfo4521EA0OiQiybIU0sw0M1ZTLbLaZUzSFWqTcl7j/FdCZg6MTcglQ0MvHI6+wSaqM9AAszzvMr1P8cmITesS7acbRpvYa4ClbWOoENxfV4N+SPKJogIjZUs5XWdgH6erPTq9zsu74ZPdDdJeV4EU1dC0HXmaZb5Ps9zRebndUW83ytFvN8e+nlJ+RnMtc6fcruuzIx4nzjPv/zbH7/8Tn8fYQyYHYetMEpXgLp0IZWiMtJ0yQ9fvOzXv/krL3v9fAuvj8vSMhWiizxgaX7J8cuVWqGP15//z/8Gr3/zLX/9619++T2o8+dvv/8Sv/v5Ps+IAB3uISXyfJnFTxy/nPHG9S/nr46MK8yC4YjLzJYdB2W64rRV1NSuww2QbH3EO86MJAE3O17ykCKifVwp5hQCtOjO9rbrPvXKWwCMeXZLLXd1zmZbQSS4BCxPFiVm65w+WGZJJmlizEW3F6+kZMvA4tuB0Zw5p7JsJ3Y9m9F9KFcrylJJ1wYTxQIGbcfcYd62xh76dLRr6bm2s6YwChgDYjBF7dhKrchy9qbQlVR1KIt+lEkwFF7MXuO4SnTfqm1aS+q6mz2U8iA37znNEGkAyjHDNsQGKltbsyDQZWm3zT0PLbQL+uEZGGUrEbatfT7NQmWyKUgZl1EhKMgIs0SgBGO2CYLWBs2wV13cUVK0U4I51WnlMC3X9MxGP6wBi3bDQUCcNrMVIDbvDJsMlc/PR8tLNru1xnNPFG0KKxtFNQKpVP1jmRcDeKV3VMdPiGHjBWgY2HgVdzJs65Txl2RW+jmX2bHci7gSZnC3lyMRWRgiVWmTbQXTQhXcVNHOgJMyVvob0KWMyEsppU7ldVpxxF2Vm1mpfW1kY+Kn0uk2R2jaCgggXM3BGEggEKzuNKm83te1rsxrFVEimoViY0NSiJPu4e68FIwErYKoc5SNIJMGmEyg55YgHD8CnahaCRQbaLmokqEYTwcyw4z0XuSubjNCgby0YnzOpPmlvJCZxZyvcuxcVyoR8GLy8LbAaQr5IbPMsGUiEC60t4tQxgJM1zsklbF6Y/fiKg0SDrPXZxwnlmAwd9L98sVVXR8gmMMcABetPpmpLAiyFALgvg4g4u2+zI5Xrvj8NjGfE0bK/Lx+MN7Xmy8TwPVx2vV+nd/8J5nndTLzvFLxfnnEeRqFfF9xGk2W1WggLgDEeUUkKeG8EMm8SGbwSomIH3++wnm+8zy/L1yfl2KZMZQ4VtLx+/fU9cH3FW+3zOv9T/9kcb7P9/n6+SMshfzJPy8T8MuJFcz4Yfr9H/7+vyXt//vf/uEv/8//9B//p//5H355xz/80z/++i08QR6mcgMcyp9vXBEXef48LCx14ZfrW/70vzl+JezIH3nGZ0C+/E23E5nQSv+4LK78Cdr34/vx7/8v/9b+/H//+e/iH//DX/4cun5f+e0bfjV892+fR0DUZY4lkKfzIxIvXf6Zv5xMD/p5eCwcfzrDL+hUZAhJBCMVn6en/cI8LgvXFQkg0lLrlXS6A7jOcNMKQ7LaMyWzSghSiRBgV9AsqaoWI8KaIwYJ6Eyk0zT1hjnutUJcZkAeK+pno1oRF06kI64oR8EmemrATkVmWFcftrtyQBy6V71oDmi4BkCDTPTqCGzrdSx2N+3RuoQq2pY7TyYbXW+DFhw1NgCcLbzZQLKM4blkTlmDtuIuCcngzfPTHsRvxyl1jvwISKy1ueBQBB/kscZCaF2SoyUPvkl66cTyXs2sjejuvDo9sATmWjWa1aPaZtVAjDaXK4jctnlfbRiQMfxjEx5s51Xe+V7dG6X+3NimDOCqxZyW6ZOMN6J3xrft9XHzKVWN4xv35Dg1sKdnNOg2ULahoopHZyVQaH8I2/yrGdheRu4ImZBRdOmVqHVDsLFMi39GQkUSWHZ9GiZIwVLDcGXmpMnUjjG3qjvBvDAcYZ0xNfMBqX0Pzfm+5ya7KGnvMIyLAGkSuz21Wvt2JXr6Nopxr3AZdGS7weu81mErPVntW8dyteGhJq2ZE1nPYG7MPGjFuCWBTAMiww2wCCKqT8I9d8NkPKkaGhNxds/YcSimjwduZflCxkNUa19c/xzesR2BH49Kzxk5hRczp/2PNW1yjV9zEtuvoyabxr3ZRgp01oXKa0uCmaBkoK2fu4yrdqp7+S3eMeMuGA3uTbHKTHYYi3BFAI1uvg4nM3N1EDipEAxhy6QIM1/V96yeq9rl1qDVDe47wEEnUUEodS4I2whqmjmlkKSQRtqqQ8hMRNAWIs3BUBf/Y0FQvEPKKz7yKAatyDzfaRm0BcFdlsGXX6FMsytSv/3yV/yX3/nWu5L5hCKlug6KpgwllVec+fnxEjIvfGSEjBLc+NJ57LQxIS9kfjIj3lec5+dPmPm3hfPH5xX5SazXz9+U+Xl+xvla0fssA4aQAuEKXNL7DCEvvUJa1k0nSGRcEZCySB0oAG7RhaYkdZ5n5dTWqlnGFXFdEVm+d92OyvbTlKQcYVaaKbeDrYjkdt7gpDHIoirlzLztskaUhu7rNVqwCw63BGjpzMo+aEPcysl0C4nbN11jZEeo+/f5tzunj7XXUZv+5G2alElTNfxzbPG1rO9h02Bcsx39e7zcw2yn46icQep9VzNzT1/uF9Gdqesv477aaqBV6TY9RwJbT6pX7YRVALySyAoq4MvXbVXvp7h/Wl5dIkvpdd4Tq85amFYJeXUszVFt2Iol3M384GKYJ/yAHUVG4RbltRWUVp2cWrNa+1YZUoSXMzdSugCyss0kgOksQ6+tvIRkCwQykqY4r0giav5SrjhxKU8Zl6H7uapkCVBuksuP1wL9MFBiVeQJRUnTO3WtixIUXETIsIom4lqyIyNhRuXKxNhgs3jlQ6rUusqkNrLeT+WK8LUu6Q2PI0ELc2MCV2RDSCqvdKzjEE8hgRQCNOC6BAXSS4FK52XpgHBE8hW5lh8yJ/kKN2jRVvDYHXVY5dtgIWqFDMeKKwGmQZFSWEoG6MzLjvdrvXUqTkHMz2IhXwe/afETR5IVe1UUmBbTEIAfwqHrTF2k67u/PB18sxrccPH8jA+A9j5NgSuzdy8gpGW7dPMqz1/IdCUWgGPRXAftHSsT6zrkHp8GOODBgxcWQRnWkv/pzFcyudaRygg6vxdeiAAOEnL4h9vLjiMNXFY5XBHO0PHSlZ6y15VuF80yeSWisi/czoxPHfzt0vXjDUtDVdURkE4Sx094fqR+P45Y16dgOC3caH6FnetMS8riutwuA/JfiHWeL6djvVIgQrmMhrefn1wC/aXQz+U4/qLPl9EX+OtLl6jzf/j4N+GudSATsh+h69fvv317k5+HvZgv+2vmFXasED7yO367XodZ5nUeV/p1fp7wPM/z5zczGeJ95JvfYuVPrSuu5Ycp8nz7r8kDf00L2O8//5Tf/eJf85XfqPOvsf7lsgOv85vs+8f6M3i+c/39v+dvv37/y9+sn7/++u2n8Jm/5H/9u+vzOv+3D89lr9e//X8fv/6Hv/33nz+///t/+Mdv/7d/85//5vhvf/v5ftnfiu9L4vUP57reL4lJ+/XX9zcT4/397/7mdPd/Cfw3nXboP/75828/fv7T+y/f//ynbz+udb3PzM8FKv96IH/81F++f1t/+mn4T//L3/z8uf4G//n/8ff/C9bHX/5nfWB9+/ivH/rH4/0/nPEv394fqY+/0L/FL6+PX3/FL//4tx/v/yb/KfzLL2Hx+jPt/fNvv50//8svPHH5SvD1A8zrl4Mkvn3/ifN/PY7PP/0Jb3y8iSuVb77/+Z9//JXx+6eWPn414R2WMBQ1ja11pMIIOQwCvks8lnVXCqUt82UeFw2+1kUsIWkineZvdyx3K7bTKzLivVDCNwnSgXWmEpFUrONl0325aupdRBDAt9dhoikSWEEQbk3QZNWA4UpFplWXZRisi9zgOGPFkZ/vy1rApgEocjwTSFUttRVjGixR7SMLxlNusjVgu5VX9TsRjbDKbC2SWrez7IJW2IpuD2buLMnUORkgfnxKiAhQkMf5fv3C8+f1rRX1OtyXISM+w4rXpzJR4K/qJLuOfP2J7Q4buj9RoLVOBypjpzKd9EAXmrJtaqEy5kpvq83sUePtD7CioR38MyZHGYEcT+xD8bP96bkVf1XKb6xS6KId280igp2gtIc6wxGRRWzS8GuwUSMbDcJqBJngcHiL40fvfAIBxM293aHH3M7+QVT7e6rraVkdWHpcuN3NrPBnV0neQOeB6AoCwNzIjgGrszUmga+RGAAVhzk2ItZY/xzvAId9eNxCXYuQUkwsOBWdACBqg94ukutl0DbQ73ECaSiCmRt53z8ZSbeKmcwKEp1exCR9yR3KzJAjT4lpFfhMBAKvI9cyiSsqh7tn3aMcKnNp6554ZbqW+7+ozCLriTsxwAqhKwVFsDmPyC4WYmZRgaTQBURtDe8UJxuQu0NezduSoR0i52JVL1lBUwvR6JpghjrUZOX2MAuzCtdW2C7d0vpsLLLKhWYDX3E4ESZ/XctlcLfukWOH+3IHQCeQGRGf0/47I96fZxhgaXlZAraK3yjTEpbXejsy6ZZH2fROrmjvgJgJY+856ooKNUSHmyJOAIpqtySYM6W3kqYz+c6wSEZebimFxc/ffioXAUQa/cQi1+vj+3JnvD7fLlKvlcfrQ7mSabAMRMR1yo5v35n8/iI+vv/9rx+28sofv3rEOzNBc38hcZ0ZUATdzV5GmR087Mc6oCsQ1xU6f+rn53EKmdHShQuiWxrBj9/C4/dfAt9+/f04fvnlhP076fsbf/fx+v7z/etfXYcB5u8o28goKt44LM6XQngZTuj6E46XJUx0vdZx5YXohoMJLSediusd5LGWS3Gdn/rx48dbLnNcAJnbr0NUn2wQ1VSt2jUNiV+7UsYbVGl51da7lQvaMcO0akw9yLZ8vOUkZpF2TlphZUmWy/P2tpVQL9da0/O13GtJu11IfUzr3FDbei8zOAXLHjlUQa6yySiYKknDrXqhcDTJxHsnrWNb8u3pvaV136xY/bMH1CV+OzmkNU1JIWUUbXTlJVcthwAUXZ3Ml7WGULvj2pSfHFpI2dHUtrbvOL0w0ajJ23lkZ5dF34W+0moH67yjZnVzFbfJ78vLWa92HBCkpdLaHdEdKttxSFr758UqXdhUS0MPpqrwEoDbj9p3rN4xGdb6FsUbU+o4+vlphtVma8Cgcrga6UjBxnlQVagAqsfZZbKsYOuUDI0+audmSqSKQKOyWaMrbogY7u8ye7OOxuj+u34AWbOb9J28XVlqJJ1r+fLOdmwZbOgkf1Y3cWzHE7uCyKXK5Oaguto1rAZ0KmbsmtDxggvxoBtj74baL1ZStcuT6yTb+HgJpxRViOoEacfhZi5wCkNd2+3lzdFS3l03GWwdSiqYF8QsmoYWEeY6nAJfRfUom3CVke39BM18OUm6icsXRyNIeUYHBypgRotESnl5Cm6Z9OQ3vS/LgGcgkS5FHCkTaVbkxYZhWzsFsf1VrACX45JlSMkrr1QivTx5hV2yTq6SJl/WczsIie7tbbtWelRrnJKcCouWNJOEhYj39xf1QppfRUWSMsLck0b6MjNd1CkzCnkd10mkzjyv8/MyGvnt+vGZ9o4imbOggVfmT6cTkYrjygwBmZUvBTryM8LnBBhTKv+oKlYhnVanymjIa6WDuuDLZe50OWiX0pegExfik77gHkpzS8u1Pl4fv9h5uP9yhS+nPl7x8fFa378dH+v4wAVkxlt6fyJSERJ++7tX/vjt+8/3X//bh790Xdc7D9iBIgLN6+d5yWiHnZ955iL4bX37/NTf/2Kvn/L1+fP3f9HvH1dVNZsUWlpp3978zHWd9vGnb/82X//h3//nf/wf//wP5/lv/q//gI9/+fy31//r27/Ex/p4v15H2FKciCvPjOuN3+28xCSDH0Hi/fsv8Nf7/IlvMH8X8W5ERigDCDLcjl8sF1hSP+J6n2+m+Qe/fb7s53m9P4/Y7UxaBCswgcuOhWmIFDKZ6nrI6qdQerIEiRnCUBGwNqLgDDW3LADrFPyAG02UmvPyodNadwiIalXCrulr1dPqmCADFeLplAXME3TIySjQHEQTv2+j4amTAHracOuMgtVOwKq8RGw91pZ89ZDApLRUGVM5PBNe19ie0PGZpwC4JWmsbi/r5a/Xt9frZah8kyHYsUqarChqYW/rxBwDMxzs3q/mCgxfRMEHYutVbgadzsue8LBWobuJEhOTtNPhBI4im+tu5DFB/sooxa4BVvtgex1Ztu+2pw0TJKsdVXPY9nvvkN4ECbR93YtSJeNlTmTbdOWGr+cezgXsr94uqIhdJximlBEd1xjLcKywMoyq7JfWRKA96ZI3XwQngoeGRRgvyQ6P1BtbidYTVzRy0Sp6MCa4uS0bx8mgLuDOf6uz0FWb81Qb8qQJ1em7Anu6CEmpCGRm74oOZQCSrPOkiYBgqTaKa6GTrcUzIkLhSlUj92Sq8jUiO+SdZIWuhjvMYEgh6O5yIwLlPRAFMyacLjP3RtKEpViAp+qDOGGtas1eDWgV0btQ035wyAIMlUkm1fatJUyONlRHfMuxjczK+VKmVR1GbS6yMBOqeg/GhPuCBSrzGnmVkz6K8qxNgrhCQveI2htCYMKiMiTkIc+stlLVOTLodCsbPCMBupIoHsrGvVxlrNSx6ryzpC2s5YJiHN4pKC/ozPeZvOJTmZAHjvUCvJJTlbiuiBgRVHNvDHVaOn05kwYZ3YnmIzCkkc40EIoIywgCepvnZWc6LEJ5OqBT4ThOCZ9Kin5deVle5/vzx/sDh9lhL54l4C7+yT9O8UW+RMWn7PztX/7x/dZ//m//+Ot//O0/vv5ZCZA/Pj7giSZEFcEX9PPMpIKmuAS8I3jInTy4rsto/Hh7UbP7W84TKV1MSJmRJ3XGy9ef/vzLL9ff85fr5/fff9h1XT/ePywAX7mOZdQymfEwkKf5B/34hSKviCLU+XxVT+L4FKQzgDTnWuZ0D5qbf+B8HUiG9BlxnWkSvePapUFCA+9bUNV2rp8pIURPIpXdOFqZ1YORsqsCN73XZ2VH/ogOySsX15rPo75TEl3IcVaqjeiOeW6pWFu3FTUhsZuKCbQ7y6gyKUoSVCm9my03bU20sUKrkTGgS0mCk4h1y2Rto5ejtW/pO28AJmH8TtPQ/D45TAKDy4KUV3FgeVWRtS3o6vHcJc91Ejp5oifeAUjO7kEgYNQ9JN51tl++Y6Ljj3rkyYIe6bvVV3uz2xlXDsti57GMIsB7liHBFLTMRLCaMbB6KrVztaebDQqk0klJoskw9vvICsc3xYomEaeDChgPhTLZrGv95DEpzGxJ20+uyryHiWSVCdY90G7uWvA66v2l2cr3+sJcVq+azxzu2LYoa24bPLUvGvxkOV8ErmW+ppuNCCCVl++NVSnzG3Oo2S875yodSciUGYx8f2OqmMlZqNSafgzUFYX+Og8INZjaV0llrnZn1C4ZW7A6b9c5qb7YbNc6VSk+Pdamk8lqGr9RQVpZpspMMwXUh7onO7Gk5YYELVhZDOzDS1fz00JQRq+OIStNGSaDBQrJR7tbKh8TUbJgCOGRQEa3Y0IaSGe0xV8eXIwbXnm1y2OOICszQL0VMsOK3qDIKYtjvumRAZXffqRVleoDAGIJUhozJ6JQ9PS1vklcGZGE6VxupBcpdLWxE9Qp7xevkPuxqipVTh2diZfXGxkM+9TnSWRcAkwU3hewKAHny1msDyJJd08z+dr9Kjuyd12IOGo/9KoZ0wBmFI2uMjPp9aCf53WRPC8gZWvlZ1hUsUKmnNBFCfArziuPj2/Bbz+/Jdzt+/+PrX9bsiRLssSwtVS32TnuEZFZWVV9A3qAwQxIofCBfKCQIvwzvvGb+Cl8IkRAEOiZ6Z6e6qrKW4S7H7Otuvigus29GojKykh3P36O2ba99bJ06dJPI+779jLNxuHkdsNp7uc8zjjniS3m3z6/Ph9f7Q/32/ZWRZfhNLhVfzPTKNI3fzXF7JohDk487pxjw/ZEruFVCUERZ8SJIbmfj1/37+/Pn7Z7PD02PX7Wn26uV82X208//S4iExDHVipY5gC3p8Rvthf7+Rw/f3v6bkz6w0zPt2mYr/v+GObeh1AUt1cx3U3n9OAn5VumIulTVgWEOZWqBkol0EBZbTxqprKrI0oLp6wF8zLJZBSe4YsPiqymvOz4vqs0RlmBGlBWcWFJsypXNCZRNYuyHrIWLtnv3eDr4sVWlG/dLNs56QJ+sYh8ZmAr5pTRv3QvdFluXLkGAFquniU2l/OKJKwTaC1M7+qfQeflEqr1v52u3tte33GFFDFaUSas/V5mRlxOu+UV1uIQ6O4d0CijmVduBgGZVuDZ+tTLu67rxMrq3hOVddGj0YIVn9TvL+Gefqf1KDokW8kbbXkskdFkOXx0TFwDGxrhag/cqXK2w0J/d0EFWua+EgFeEGoX6K1x5aoHZtVJWOzomJQ5iCVY0TXysu9K0UKwnBHWzcsmxGSyQ4rejUVo7NZJk7I0QrBs8kfeeEMbH+w5VhC5AqL1n+HlHPkO+CiFwEcgiR83VX/mtXGxABhJiFW7qQYqEPTS5IGrMOtLK67f2nqyOkNEyViizyLFGmNXbOKqXmJFj7ni4E7oG89W7WpUd6yF3vVKClleEuKlR5NIizyJIsGveK8A7L73peuFCopK5SHrtNWg5qq6+ppGZVWmKH2qmhJSMSIrcWcFBtltDSphkZJL7Ti8NnP3o7VatBKRQqQpmCmLWSIKM6M7nU9mZJSEFN5V2DoIskDDWebV+LQEzXpnKtJS5TyQkzwBztUuhoChGr3YfUngGIMoeVTLkuMgZQiTHp4mGoKqGVE5w/dToqvmLzErjGIFx9XVk4aKDjLOM2iZknWrAcnNYoCu7KQs4+1NlhMMiAEkc5pFOlNHuHmSuKOKe4c0icfXb5PJp1tg5L2syOZnnPbtsHn7Rud+uyeGz+N4u8+T+nQ7fn87t7ef8z98l2ZxRszHiTPG5tu27ZtzUBlTHIIyoVMpx4umKc5je371TclSSbeyUojJGaKEjF9/C+Wrx+Pl/On8Nf7wD78f47jbT/6nP/uxzVMQOLbhPmxzo/k47FlP+ePxhb/4NNAiZu7Pb3Pi4JiWwyh3I5ThiMw5ciqCu22JQ5LMhoZTijmPyZANBRjTapBUy9K0a0u8t79e+QhQDRZFe7iKbbj+YZ8gXBl1R5rq+VYikGuSEBcMqav5AFAlrG2NGgi+TNMyctE5O9USxn21FTkk+yxokXIA5RpI0x9T0+wXaMo+3XVHXF+2p3jvWWVTUN5T606Uc2XKfTO9bLUTMhySLKqHXM70KlGYZYYXmyerUL0cEgh1lyYbm+4RaYWotWO74gh2x3BXvdFXefFLVkIN8oMUZVXoq6wpQFV9VFfl1szZ4qh98Kp8t1mtjYhrjq5lxT/thu3y4eWbqj+jktrLzy4HtkKAhjd4Sbv0s69tVvdm1frZEIrZxdJqVLcec8nCzqzprcnunfXqbOLKZN7zYFLIohrXvuq6I9WoexOaRMmSmdGBU+/7piPYtaHb0djq/67tUgHdO/+BrYHMnmfXffVWuA8AFVPJjV4QYV+yRU1d4Srk1jxrokAT8Coq1UepCHhcjP7+bmYRE/vA1kapjfExtcf1nK6YoWRVCoYYI4opYA4nxwcRsIgIkD0LgGSP5ys/fYVbffZYLHQgMiPX2ko9XTial9WJrKxO+xqLUT/2MEPmalJqe1WWpg5xXE1IHQcJDmVEdXxlJbAKhlY/tbLVyTqmZG+SrnYk0Ko1FWKDgqoUC0WqRG1K00RCRnEFim3wIWS6jI8U6TQFiw8/EDWeI9Or5cvtxeXzErJRZiQixrYdXu+jzC4PLpFhFn5OEZqurLLgCvbUKdSyaSRRE0yC+ZhQemYqUMrpOOdxhpTwTAWIGhAfESSSY+acHmUGKMCF+arzDMbU48SckjB89y9fbl+YA0jtXy1eX4/j9fWhGSPh5j7MfcDJSOjkbcuY1DktgjuRvtl2ngIU2dGiAmUEEja17Z//7q91x81e7ja28dt/+e6/cT2+bM9PL1/vcIkKETUP2EQzaYyYjyNOe3obMeHc3GmwKfmMDG/uoEjlCFlE5oSImwWqC1wp5Tkj5wyYImFCrAVvVEWFEzYhBvaR/PpO2SEBxjsca5f0Y1tDrXSnTzLW3GouN1CGtM057HLkF6gMLryoP2+Bmy3+pneMWJdRkGqYU4fZXcxc7/EXaWDHoh0Iv9uUNsnkZWc6eu1u5YsB22RUfPxdAM1vbTCqlVT/IiVOQdWd1dp46gS+ai9LeqyvwxrS7Mwel6lS4e01O7IyFDUR2taNciWW11uWQx7rIFzr8MGq9pG7vljgw4VZ/IU/fP8lXd9gmWxw0eyAlSvWOxneC8SVNF0XUyGTADGJCqUyAxndTaY0WQOQzaWVlpPq2IdgCldZQx2SLQSwQ8oLN1iJuDITi2T24U9DwVfCbpXhrt9ZIjbrLRecudyM1tpr4b5gIqsbtzYYV8i5yu/kUlfrZ91fcAEzbCdSO7Wk+N/3sfSxwL9iQwCoNuK8qj7ridcprQeglZFfjwd+RUFarI7eOh2nk33uCSAHQVyt4iSQLIXDvtF3TjtWit3HmTR8WFNU4IRgM9ooFdm0WYAVWSekBDPoiExFosjhRCigpWZ8PfF67O/h/SoakRE1mIDIuAAnLJCNmdkbt7dab+raegtXyDStKkjvuKSkSKSidmRkej+Y07Z1pLIK/gTWcJY6jQSAjJ12BhOprMnIwu5JOaoJPU0g3eMMgsYMZUYJXOWq5HDFWFIrfcmiIjS2ili32qsDBSkVsmFOii56kTlSggKJeYRnbB6wpilKANzNse9ws5Eo2l7aPjjCB8wBKa1mftA4fLvdnoFnx/efn19gEe+U9KaPg24+ChcRQZ0eSZzcaDP8tvuRSuQqzzfN0DY6bGy0229/m59uT/705M+pndsPOfHp9uIg5jnP0IyU8vQpZNXKP33Wc9CejnMv0RTIHbShglEAoELLSEVyjRWUsckGGSwkBT1zo+eXrym1nXihE6g699VpXzANxaYym1yC3Fj8uTZrH7CkNib6eOzRXJoVy0YXDLG22+UdO/1rq9BeYyFcC9P8kDI1fpl4B/ks5blO2PqYZSreHROWobvgUgHveZ6tQ4flvIlFZLrytStLXhe8rArZDr4fj0GZl1YV2KPlvKk/gJdkK9RY/Lr39z+AuoG+DONfthBfxvRfhQR/8R0K1FircBn2ukzhY4zyHoX3o+y3WXnH0oqu51kBSr6/mCtMqTfoT9dKGerLxR9bjumDkyrYod3+lQ606av37rRaHx/s5YS5PCCvbXM9rnetgUU7Xs722ozLAVzO2fDug3FV8+qO1ovXQ3hfxQ471sddCZcW5tm5cIcG+Fex0+XUweuUZm/AJgVVFXepi3X8pP+NTUAAVcnsRVtbGEt7pXdRLgRnRUhoteo1U7NBqndzXpsnz5Lb60uI1vfC+/mtSIiXw11bpR011vfrAFrpqPVV9lboRFHVEYUr3OPypStXvmJ3W9bo45J0qVfpuAoGZfzm6c2GWazTlFQ0sHL4ihrd130DFzSwzAhw6bFbTd1s0+lnhzXViUaaRn28LvPUNrRQjTW7tYzxO1uk76EvByFG9hYQ6A4DkoP0yFREjWReWwPNnqx2NZI1m5Cq8c8gaMZs+hwgIXsqJCUaouZJ56wUQXnWMtFJtdi6BGOeM7ndhmhjTBo5hnS/bcHtNjBg7oIzjuMx4+UtcLx9m5/s2ebzExOBWTuryrmWCjGQQU5LJYM23QdieD2nGp9cZyMBBqCoQo3kCEn4/BSfx5e3l9/8/Kzx/T+N72duX/YXuz8/HQY6lIKZAC+Z29vTp+/9l+0fx5fHbkonIboNs9vjNAbAqOFUCp47JDllCVeNXj0jMxdndVnE1rNax7wCIFzQ39pTl9nqCOQdiyIpFhRWFR/Dwi2tZKEt3br6cR2j0rHhhxxT/ytb8dHc46pRLsYTdAkjd9D88S0K7au6zsd3uX5+ZQnLxuiyMh+igPWVrsXgYlJzOeJ6l7/4mFqdv0y1ryiDRa36EBUTqPI3ljcpY+JX7lAoYyFz7vRhjWn2Wb181hWpr4Tr443z/ZsUMD48j4ZArzuyBdXhL9cV/won+AtNksv/992u32tjuejY4NpmWIHIvwYQrgVdv94rVWtURCFZqeJYXjmSLTfWmcl6TLnWD43Q0apcaGZpXr/BBiYbHV0gxOIklLNbkc37u/f1asUjl8te3yaA5iLQjb5UU9qNrT40doAvXWuD9QFK5AoM3t/8yiPLyAimahkwLEuu1ooi0MTKutKUuvLHdSdc6AybnruMhISSde1bX2q067is8LTPvxBmbkPz/cxqgWokWesNNijeGXZNPESzoNtV02gwZ7MfLsdTjVgADN59wNUc0KGXVgUpaaixA7ZEu8ycRBaqnIk0ZfqyLWvX5kyr1WnhknI71Umsfk5oWbUPkYMVDuFd1TYSFtWpKa9OrbE/6DCWJj7NMVwA6Ye5RrFPqsmJvUfH2LYRQAySNkLo7vnrcAhOhM2smb6g3F9lUk5gu780skNSkrlld3yJZuZwH24EPdx9293XJQBuHJSjMqXMGZ6SjEZ3dxn7fMUMzDS5O0qCrDQOc54xQ+aesOGn3EBlbsNy227buNlgnPQ4Yp7Kb69n/OH115/S052STeMkBM0EjbYzzxOpOfME7SQT8Bt3p9+mRyDdUucsKaoujCN82DbSSXOH33/3u/M342++4q9lnH/7H3/9ckqfbg//zY/3t22M4hfTOjHX5DHmcczzeLy+Ihklo2zmsPH6MFdWjc59bKzW9RxuLjrITDCUMV2ZCUXnpLN4bR+CbvQhWIQN1Om6YKMVn9VWLZp/uwmDt1tyc6Nk1oR+r1q4ZHlZwF4btB9698QA2sWtD1nRbJWZ0lZO+CHj05UdgEukvkI7NHTD/gzDBXpfLqqPELj863WjdTF1eytFt7xC/hXT/2uvUbC0XbgisZJms+F18pZTABQB5vsQvv5jFCveUC9JZ3nYNpCwC5km/yLwxnuE8SFWfk+w6u6u+aZXHNP8dBTdqfLbyLaT9U2llQS6tctuTdGeYwxf3LRizYbU85mW0+mA4z3p/Rg2XREBsIrouZIClZqCADPAgJy0Fr1zgk435FLrBGsY3fLzSYcMVrJdVp0yYne8u0m1B9neEisdLhnmWKmUsmQA/1WAY8xrcMFlxTuqBQXmoPIAOZYWfllsybjkNQMOwkpGGDRYguYBc3UVHqic2YwjO7kn08wSrF4kOtL8vVsnK4lk1UBqkw6mkknr1LnOZGlU0DPdlkJVVTPXdIlhYX0YKkPr2YeFj2XVuG/MVFRo1vWfVDmx0NRpPpREQslsPl1l8dOryioANjqhT9k4ElU+k8xkcgXLg0T0DC2uh1HxjZvbFl0rJ4kMrVIaq/+DpdDdA1PeKxNJm7ENW1qxMJNVZwVgrjTAIPgHBKQjyhbHzM6XbW4xQnnUdxMpM9BSlqINumH6DM19I+ZEKJyqNyzvESidcGrqOI2e9wmJp+hDNNt2moM5ts9Hovyi0TM2fxt5ImaaMBi77YruZgDoOHfAGWZSxgbajvSNRHLAHGbA3DdpxhiIIY1htvvk8CR0J3PmuW8hRBi28ZVbKE4cQgQ1tld3U376fBt8+fnr7fXl8cvv803BH0/70/df/j5e+JWvnzJfeHuc+XzX6Z/umt+eb//xx/jr89t//A+/e7Pcnn6h72ZDSsSRU5p+Gk+4NGi380DobVLcbYwzGefBOEkBlhmGmMjpUDJyQ263/U/72y83/vpHPn6k2f32BztftsePjHwcg5zmNmOGoGO6aPPb+es//fwPr8J/eTxbuOHcHfESx3zgi2AYkA1gEMPvhMOR1Hiau5/fgrhzu+1KM5YOMhTOVBBpwwlNmKKURlfh6KrX04s87Z1cFqzCzZRMlhMvramUKAfYOE3EPEyNtiwQtcBFCEtDnd1SUJO2qjpEkfLqgmQr0gJ0LLSp6EEiUKoHvCJ/JQtR7KHq6yyhI43OWNqjZfYkiphgtUVlmrJHK7KnwaBZJqujtEcYSusDiHcUa60fL/hguDlrGAxQ00Qb1C91oYWAkwDMrCpQqw7fUgpBHZ4hAAaYBC3ODJof3s5UF+DWxJIyFWoX2POAWe7jqmeWmynxXIH0MRwpW3BErhigFqDYraxcYqVxTYGtSPwjZ3glYB070EPtJKtq0A4UV3AEVARFNx/a5INww9jS0ZzzdEfmzj0TtjVzVD3qRheaZ+40J6Ztuw0zcxvUcO+mioqFTDQAwdK4t8jmugCKkhBXZvVLvzMPu9CXvebZkKuxWn6gyEjMCU36GJu/8+dzCo6s2QQL0y0LXBkczWQFCpLoQn816WTEzFzdwdWew1Az10raw2tl1W6iQutqnn9n8duq7ZKwhAqjae+K4e9gAKEe4XiBMwWICQXkb5YamjOmcnJ6IMCND3EmwYO+59CJeB6t4IIatJyZyGSCzMyImSrlURVJseAHpwtmNVXeWH3E6J7eVkip240jLRIGKI2Q5rllbqmYp6vhV1MNmlBgg7JlrW1w+v0WVixxo0qqz4agYZPKoCM3J30QUXpXRfLKtKSSOEMtmG8Mpw0GneZSmsVgd1o45JlpG5nPEE4H7awbdwMcUk66Z5JOB5h5IxwEcp45Xw/OTcrjzNhSbqW2ED+/fNvv29xzy7z68bsBICKnQsaJ9OPY3hi24+14cDofr/uBDFPOxz7CdZ5ICII56XnY/Sk8lIem8cxIq/7NmDeeiDxkkQbs7nS/3e+ft4AOO/P+TV+YZmO4MU68Ha/fXh+YTzsy/dPnzxB++OGr/9d/+/bv//nP8cvbL3/+PkbyKTJDNyRhcdBdyqT756EvxwnON7yMFyQjt88v+XR8w8v3PvdgBFO+p/yLlBpx8xTu2/3XP353//SJX87nJ5+/fv3NW+gcj9d/9n/4z59fx4xz+Kenn94Om3ke99Bu+uXPr2/ffjU+4scvt5vmETvHMaBz+6wZ3Fvd4DyGjRnn4+3XLeZux835fJ6HgbQ53Tcfe55HvPxyjxwtSUhmVk//nKDOnNoasor0SKBFnJhWM9RAotsBK3calnPDZBYFX1nCqWJOCaWuY9bi0y6omkbbwJVXRmbEqhPnvLo9M1fiwOzmhDZ5FzxucEoUZDR3L9JZIT1QluZzFgs7VGoanaUBNc06gtVhrVQoeI04MqB6jUJSzASiTGGDkjGD3fOQ79yfQsmq2kNJIaeY2XbWzH3s+75v226NEHaO2fjW1V5Ytq4GPg1zBYFEBkovB13Bq+h5URwJ9Ufle7yhhUZiXJy5/hOS0O0a5fMpxFTxZbEAQ4JVGW+limw+cNnoVPWBCEoo0Kne0hQrKJYVf4GMD1y6SrEL9gJao02pJGhFuFdtq3rb5v2CJdSojCMXnRf5oSjnhMzGPjJ8MDMhulOxEvUmtFbMlo0C02g2BiRypRs0M9aUO7vY06TZ4VYCZlXRr96TGoebcpn7mDSJU9pIWc1nB0K+MAL1YAKy8rgsQSTkzMpfkShuTFjYvJXs1ZANX0iHERhyJChHKQwSaLpzLyCC5mlzmnVndIwUDVkq8RxGQ0IZp0OaGrBQe26fYJYLE4OoOhezKoV0c4sZczIpk7kUDCDCgrOwZUswZkqRyvRMIeYcKvHrSoaPQFiGmOdxnJBaO61T+ZhngLCZZ0Ji1tBApGQyBu6PdJPMjaeJSRe8t8f0sVlygDTXdrdw+nBvWMmE4HBumMlh5/Ckuay6i0mjbZmkOHzONEW4DGrWs2dGoNbJkbG7qCN9To2ThmCEYo3IijkHneH5cG1zApbCmKyYzwXp4LmZbYI9nafDt7Qtadw4mGNEzpk//rBP923Si3mr8P1+1+eXl+2bDRcGbdDp+54w184p259miGOXEaNaFRLA/qhxxPT7RmgSU+kwgvJdt3l6mN6EnOTD3M/D9kFyy+fXIDAtYNKpu9uxPX7Vs2+ct4ebJjKQOh9fH6/fXiuNSBp1u//m/klxvw3Tp80+/+3z9vvX7Ze/PpL3+3bets09U8qZM6HzmPPNf2d+buDDbr/qfLofP//u7cfzjG8/fHl8/2XjU+xbhiNDeWQ+3mL++Vue4+sR/6B/t99/GPPHH/7mf/npF//d/3wf7rf7H3//T//4d4+B82DkGQHb/fZwV6bl7f66337F7fXbdve38Nzy7bvNOO8IyjKPI0CWEDPH0xcfesz5K39xjS3OU+7c4ZqPSOaB5+fIPZSVRoot8uopucialZnuSSdhyUEqS7WOjMrXVIAMa+ZqlF5/54FQaIZOhxe6U9LwJUVRmqNGU9WglnMoYptkwxwi63jl6nZxqSG/mZJKe7Bl5y+0kkhwusXqoIAl7OMUkjJWaueA1bVCduqnriCvSW0XpIsV9jfq1m24XNBqUfutZvCZsU1V/7ppnsWIS0pU5BmROrNrWDUGuqJ49Yinsqyssk0lP7YZazZDJmehBdkkzGVmk0vzRPjogLMT9LFA7XdO0DucDsEWRMAmtrCx+waE2w0XM1uk0Q3uWQe5uTpNpSlayPXe5bwvILZy7pbaBWVdytCiA1dMNAsw5bqbVk0WlSctFBm5gNeG2ResCEV2wUULWo4I+lLuKtcbwciImjDg7qzZXSUplQ3XMlRafl3HFCFlVFDFK16y1rCo9nIfY7fN2IPos6hpJOFDYA1RrPd/rwddKEZyKbUZjDXgBma2nUrQYGY2KxCqLU0PXIgNulTETCFLl5HRTHyl1ehpF7riUIVPSWEJZqf8vZxSMnBh+3jfFlwk7EW4MtKqYbfy9GQizrNGlFZXUSt4Vn9EClY61AbUpMuqySf6xQlA1dtRLUI1fKYPdcXlkVZ+tMKw8ERr4hkxJs3NjaXp4CaZmesyZUTFmzlp0zomMzcOtdQK3YYnM4Xh4UfGsDGmJZRWn0RQsKy9n8n0mJJyjmmuUih+1/EIF4igDnK4IQVz1ENHUjDfhkdKcWrG/TnednShO86zNMN0u72YdYzIhGKf8HjR6z0lwGlhlfBEj3TJAVsN0zD6fn/Dat1GZoFBLb9RGxw02TgzgprwGciUz0hnqX48zjMRg0BIcNqNru02xuY6Q+cBC+xIYcTDdd8DN4/UGQbQ9+eMp+d9+/zd90/66Y+/zbdHKl/mObfNyHmmHsdxnmZjShnz5Tbmq4/b3fbPt9uZb+7fxPEgXvRyfwARguXJwXihETOO09J+Onze9PPP59/89DOff369f/mv4vdPb/Nvf/jT93//P/z+T5u2TfMIuz8DLsLMU+P7+43b/es2f/jsmfvQd3w8M+d45esGOUCbMyNPTnBs+27OmDre/DHut9vpZjnz9esvoc+k3W2zyZlTG91K9L7IDKBXCVNQpUIkTM4y7GZGwRtCSZhIGEIjTCUwuDxwKqZmGiwNMIuavlL1wEzIRv/9oSWmLH8R9WWKjHoJABsx8yALk83IqNg3Ioiw5tAzCY/YrPTZL4WsPumdrS1TRwu915m7iS99uVuoC4rWgHMlV5V2FqpbPrzyOFX6Y8wq1sEAMyv6lHm2KlPVqg0CMuaMIklS5sNXs+8qNaqxtMrUw1JjEChv14krKgMv38RGn1dtfLnCbMUTCtCokyWiW84yytMXoF5jErTQaLXjW74BWNXkSt+uqijJhVsor+k2th5rmw5d7NXOkLvNFX3R4Cr7Ny5I9Ihhmfko1jCdMl9sWtX82AqEqoNDiaonpHJOB2fETCUVM+ZUZsMMxb0qclKJudIhdVt2x2q1Qk3xfu/XlpJFKl4Fd7E4Zy1/bcFiBvlG85rvV9BKVbRVs6KrF6SL0YRKRlVAN4fiUrVaS+ZFMklgSUIZgCpckK2zgTUtsS+OMouM2bTDdvFkV3jQ4p4VaFaFd7jRHFb1a9iKunAF2vUsBSgZ8h0ZOYlp5ZcQGWFE6odddyHlN+osqdIREM2TNHN6GknfdlfvBiO9B81HRXKKApQyZjUzF2pfIrgiJodOmSY902UClWlhbg7QvFYV5nSWcEUxMioCN9NTSXBMeb7lO+2tdbtQWi1AxswUfVHS19BjNxZKLhqc5vToaE0oias6n6XmGec9jaWvExCQxzxVdWO62TaGKY7jzVyQZyqhCQVn6JzIMXhHKJmZRjqooQTPx6Ebh073GMd5TiFDIHKGDYNCssyEXJGolfLNq3lEINyIYbIkFBHI45ibj5G8f9qNAR8y0A2T0+Sx7dvt05ucIYCHdpu62ZvH83dHbHiaD0dOjUN3xxh2gxPnWwrHWx7neZyH/Otv9t323/L+6/Z8YkRoRpkmw/DM+SYOo51vjDjyCUGM8cAYp+3KeHrG6y/fnZjnfp6aGQBlG933pwdu3/0WN/39/+EVv/m7f/n1r777/bf8zXe3/93206//7W/+cf/V9+KaxUODeW6z2hcp3H9zfpoQ8GXINuIUN8/giDe6CTYcOXMqp1KRch87+Rj3LCZenI88KI0K7uaboBs31OSUizNSVbfV8VsxtbUGEXNZ9TJtW2ktFN37nXuyalxyidpLjj0jMqZl1rzbKqQSqyGis0hd19IJbtm463uZJf5UjVdLX6/FkKqpHGxrYMxl87tWWf/G+x9JcFl5r57c0san8PE1YYiVIkpY2Q8KgqbRh/W8iYYlSwZ2ca9oRvOq+CavJko3t7FtY9t846kVGShLQi1yupSOdCBoKjKIAjWOr6RtrcCDd5945U9kxxerBtxsX5VZ/iDE0Yj/+7twAbnXD9orrJzyneO11vDDN68gCqoCdWMOzQRAb55CmP83CNDoMGLh2aKU3a6mTqfrga1mZ0FiT7voq+rScyV/ViXbGoyl9M7a1AX32mIFcTcxre6Uvf3pjQFUeHHBAagWE5potOw4bzEdmrfYWXldiDUU3CljvU5rZyHlUlWEpUZJMmMyEkgkri6E8vdVBSF6MRVS5pJaXl3o9vFQLlCghL5Q8+mrwqGajLKeaeWyApowCBbKy7Xhrl3WPyVsOBxF0UoFEGaERUyldoCgu0sizAszqBaXXgvIUM0L71Rp9+5RbUbX5RhYVF02xCVWzAb1HaOinhVeLivTwdratx8qFfUvsmhxADNTlEaGMRqRuX4RUsaMTNVYB9Y6dSWFJpeNJj7XTGWYm7k8zVnueH1igWq5QqDePqyivftoUdrwLWKMEDImWDPEkgYpzp1AdHAEpu+/DsJZgy/V4aWuMJggqSyjZG6iitAteqsuS63A3ryaiKk8zxkzz1SeSjCp2RDJec7Bwa5r0JwTMGYkzymOG9zHQG8QDdqc22YcJOIUzmM+3h72y9efP/8v818+/XzEAI7XaZQyubmPmW5JxuPNIhmio2dujo3bLXPb4kzNeQ61LoIJtIqSmv8qCnkeb5P7l6exf/50e5uYx8s43t5eHzcEfdc9bN83O+y2b/s53IUEtm13eTx2bYZZ1p9pG3Mz5lTOM1s1zOQ+Nh8bDtSJUMyYZ6bOpiap1ZIyQ9WztZifywDyf2UfV6bTdqrb9avKupZ+7SBxGTAztZxO52XLVVwBOBYMtc4Quvx3+d7lOZtftUzluym4gMeislQxzu06Xv2pf3k/63K4spc+Yh/CkQ+//a88ReebgqIQ9kLBlxIBr3NdBwo0N8q2NQXH3K1JURwO69kFlV3QfNhlHPqcFj/ZbSD93RvaQtW5PvL66HoYK1d9b6ICqg2pjRc/WKAaJlSKnA0Vv79mme9+U7w77l6TFYWQsEXTboxyqUpwrVxj9+uaeQH55Pv1Xs9pmSQUsv4ebqj9TYQi3+n0a3/XzaSVBq66W8UWtbV98ILKcfnfnlnYH661qFdYc/me9/+vp1QfCgDv28/reZsxypeR1eBQrgMrLYqlMIOUAkxlxEQm4DUTZSwFV6y+AECqyLjjU6YY9dOSmOsVFqozgWxdduQVYrNOqlFNgEfTABdnAUsATO8QedGI63F70pzWdjsDCSEHWcJvtSq/BUEqBETXnFpjrC+z6Wel+tU7EDXGqBJ7KKsLpuIar0j3iqXQ87moBIOOFq4mVfLQVawCsnScVAWPXtAKqUxxRouY1Q2hqQHIS1E719irXAgUVEYIgmhB0J2WhBcXRTSZlygmW7JNStGHAS1E161SZm5mMhvDxzZ8DN8O0NN8m1RprpOG8sLIMw0KG60gBtvNQLcgIrraUTaVQHY0BWiNM7HhUtSU17VMqE7nLDxDmMaQGRVM5CNP3aQ5U+kwm8e5xW0GePadBJw+XXmkjX03s22ILttvg0+3LWLft1HVTtLzeLy9+deXry8/jn/5Xvv2fN7szQBOtaBLITUQqhwvjjwFxeYDPvKcMWf6Q/dnuLlqqJbXtN1YWd05H4/8o/8VPj1vf377zn75l2+/fvnn237+8h1ePr29iMZtF2E24ft2e2xjkPuxfX98f/y03X89diNwm4IGPYzncDIVMYOoWWkO23aOkakIbLydkRkndD7O4yyntm2CoZWnF4RYLUyoGjCIxLJXIsUsFkJTb0CagqYk6aAHDKq+QcZiT/YJNYty+Zetw2XyFrJ7eZzlKK58JK9z37l5fVEdBe2a21qWA67SmC51+9ruEOS4fEd11ecVja7gduV979ml0CCosBocV37YhzCRvEZaED2JTyUAVJayaM1pLdUFKWfKLHFVmZfpr9h0oQ3LjbOc83q1PsQU5fX7y9Z/bgX+tS5XEEJAo/pGK5FKAGuQX4cPNIA+3GzWE0OWQVOypPpInUmeaRGR06TESDFbosl9oOneYDOiSZOKpCcUae7qLV4JZ13BMoAiq1BnHAP0bgihmXyoZsXWLJnqibq8RKHrAMjojBNGRQos1jAJpLFguc5e+gmo7W3tTC++AVLMyd4HInEJZqHGbWcudLGIwT0cNxWhyoCgZDtmlsyoSMuqXZTcJf1qOlMykcFMQ1JEMiLiHPH6naYoZCZzTgBu2WB3Hp1KATXvuDPawlertBSQl9P13llVC5SoGmrKRe4flVNnnCfVU3zfI7E600gKGZHz7VTOWSMiYJvB0jPBm3HQWaIBJclbgE9JNAFLjlmZmfPsYwDNN42o0JCseRA2jtqjPsigwYyOXEiFebUGZCkel83JQB6KzKj5tenIqQgbGQMZC89Iw/Dj3IBAT+8kc2aps6skoVOluSWVkeAKVFv4ylMFfNFMhYIkx8gxTrprgJ4CECmSdwu3rcwASiJu7E4S2xhGTccYbvKRbvuxc45SCTHDI12ixVsojg3TFLssFMngHq4zjQiFlDBLDoMBsj1La6LwGx88jrY6qRL/8LE5zfYhCZFyKiPH89M99eSnJm/cFYOy4Xy8wXM85tR8e+SmcR7baW729u3by6ft83bYbvtDND1/zvN3n7/7NcbOc0vuz5gb46c//fKmf/nzS9jP/+n/+O+ffvv0h5fvETpvGLtjr3lLvHPn2GWatzmHZsTrWzy2sb097D454/Yk3mD3eRzHzGOr6Ragv03I9pjn9u3b13+z3//+r38z9G9//Xdf/sv2cjxhPxHgSz7d0zSSY/N0gLsBwPNfv3333//d9/982n/98uuQbb7//LKZ3Vz2+NN/ZZPHQJ7QGaHt3O4vj8zNPp+/3m4TTzO/bq+P17cN51mUEkDIsJLwzqyOSy04COkrcUlQa8BNaqWa1S0UOQSaW8o4RA9slLmZmZAmJ5HbCMA0MuhuNRGMNVIylfQEg4lufmo7WXm7F+YVRXbxShsGzLtqk9Xkzhp1CEJydNOJ2RiDmctYJDDb0XY9sQK92bhlW+/276VyV79eKvUIIVBirlLKSu0yGefITKYIs2Rkhyrd7AzLdKeF0jA3nRK85mGbepjUYIQtiExUZsr98smdOqaZ+TCzTFm6Vo//Ag+ALld/SPRX5oblsUt5qtqQruyWvQKwerqFfnWK0khDZpouZ471I1zNWWmZITCL77Nelh9igfVZ6OvQCm2YFxrSn30lhVfUUMYM71pMHb5lXqnmykAW2LbCERE0y5qWsW52Za16B2hXWivVgL8KjBoUEhasuRLiS2QcXOFYq+k2tavDtFRGesyeaV4krHpdMteHsOMprrLtOxjzETeqJEXKjO6aVebVL1CuoAn0rVy3VnAtGjrp79/oKZqrytODkbFqoliQU7Y3WgOW6maLL4BqlYJiKiOT3d2XDG+lMJZ0Vc0wiKaeV/KrbGH3bLmLqGPbIXprTLNxl0rf3nEGNoeLNUViDZ5Ga/a1vqualLgeNtdzXHvw/ciAPSpcYommt/A8CmRgj2kR6DBqCQGiyKVZLroWVUBYtTw7xKJyeOunAjQHPJHGJ6VShBWDqfAiU+YZ3N02H2ME3cZ+wsB0wNz6TpWYxdCZZkjpJSJ2z4E+orE6NlqnpWZvyFD8Qofm2SlHwtPc3H1Y0cMBNtBubts2Ahummfnuk+5JdyLNpDkjlTIPTjFN5PEypW0nNjMLiuZ+6mncXlOMQ6KNnDb8OOfUTNcXzN/8m/t9P3747eMFb06YZmRACXNzs00QnT7Gm+IR/nbGTcmzZoJMbTboFikpzSXRoIiqRR3ImbvoCk9Pctqffnw7nuav+fP+57fXw3KGEorzjHkqT7li3MVxf8p4fvrjvs/M1AGfd59JKY4tmJHGEsQlU/PQUbIbpPI1HueM4lGkHsecs7SS0xg9JGMlfmp/u0wKMgVmZiYsE1bT0YUV8autHgmr4VEX9laD5tEmrCJ0XulYe5YVQOpKfVksykKkFobbqe277C0t16nsVyWGaMPNNnN3o6yL2Ze9/MDgXDNEUZSaqzKXCwXlCjjek+IPuDcFq0IzWRfbM5jabK3LRtvNWLYc13+8c397TkRmVBeyLn+1zmrfPoty3o5xfVQ70uVKBHQzdZtbrv6ktRxj+VmQi8jS3koViuvyiWjiltYH2Rq00//uaO196/Szb7ij20ZFlfY+riih4RCu5891o21o+b5WLGqrFsO6fYeqCzlrMS7fULB1P9A1mqnvE1fwAAndUnc5uLXtl9ctWZeM/LBvKo6optt1tVir9a6Y9QHV1nqAyqXYsBx//dMww4frX/hMJENNYysCBQC8d/Iu7l27qcvJXPGLFp7S3iaLeafguuZa/2pMkJkuvyQAJZ66NplSFy96ea0+KmYQFYruUazDQ8Elq8Wf0wvUvA5RPylcR7z2sQqJeMdH1qpLkl3TH0uUpWBUkkWSYwKYCcUolVzBPOW5ttyaYVHP13qS93oUyYxcPGVqs3VhpUTdjydpPTdo2TuSTYyrN0vSpDRFBIOIjWlgSJ3s1IFl4Wb5qLRCMnM/gVS1W0NETppvNYx0htFbOz/Si56I0msMn1l5g6s6xDZFmUxYg2vrH+M6JrWuEK21tqHqp2eDVYtjmJDMHlCejzjPQUHBhNKVAt6eMuWDQwNjkU/zgafbMIWHxsM30AeSvh1p8sp+9DZHvJ1nghjb92d+/t2+j5fPz0nNeQoIROmtGsy3nYM0tz3iVGLvIdBUNWWDG2lZeuFS+nCWR/Hdju0cvv/mPjYNzDyOsNvMz6+f8vMX++H772+DRj+r7+bMhMKVud2fP+3f5v3++9/9MzXDuFUFK+Vr9PzyZzqfDRsZx/n2sFPuz7eXHNsYYyDznEwJJUJgNYS1GB8p2mqKR7KEfgsEY8ubKwPKkkhFhRgFfGqmW2DxHdrE5YzIItFkthJ0xWSZy2wkmMwo6LtniaAup9pwK9Os5LSgQaigKon1xheiXWfFzMg1+bvRxtUqi64XrbJk+aa2l2XAuuNgbVlgheN9zrqsBHINWbFKs2o2iTuNaTS4CzB3d1QsaftweFVHJWXUIsJ5jUJZ5SySMixmBtaVmw2vWp2bLIqyzM5FLqu4ooQrd3s3Yv3F6EXpXK0WUO+3Wc+wveqVqqy8tL5hXaV/d2fq/K5voGVkxdU53JmmGrurxYRdj6SeVtFolo832bUiNHNz73ioPUk5Z7ba6ypKcOHEwHWRQEZNZJbygw+8/NBaI6mpBMrrsatft7Jb4i90r9FOr2xrXi4QEhSBWMItaAGW3nGX3yW5PrZm8JmgRmaXYtX7i8vPfGQ415t1HCxYDaxbuqIdDqD67iRzp+BLzepa4TLAAFSykezxW9dDruazDgYXHF3M7RLegjsta4K3TCqpR11xSipXXZJ0j3Y0XFe7AkOsQ9qjh9C1ZNLcrgFLFJVVfXCgRh+xSso0EjLAApnTCvNitjYbKSCojr6vB8Ge/1VT/Lizu91JLgF9Aco4z6g9ldcUjHbaagivWhmDHrXSJJlmKCFeKUGTTFETblOhJKO5o6RqHiKL6Go+4L6PZKIEQIwhE2FITZdUVT4DzjNjbI/7nfeROeW9LUWQWSFSZ0+lSprqduc6hMVwAyS3msacUCJOlymyh1SYIUtVOBQyZygDCouZx4zXEfT4+du3Z8Q89tcj314P6Hy8vDF8RiofM5Caj4w5X97m+Tjy8PmLPd2Tvo0RHEgoFI/TM2VuhoQ0pakjTjrPh5EpbE/H03nayClm9c4Yse3DMBpPp2S8bXb7m9/d/qsvvx3H38d3n/ff/PMfbsc25svr25xvhzHMzZzMiGPmKZHH7e3Nnz8/2b7NCW4ZSvAMZaArSNvgtvm2ycyNOdOx6U4r1ufYbrfnp8jP36WFyyhDQuZXI3B7zrK5SRAqyjuL6JHKyc4FEwAy4iLEVFvqOolYsvUwSzP1aWlf2vhHRb9Zhl8lid6G/yNkRlv6s1egfDlRvQdoxeGEFvWXi+awnJKkXI0pyzIm1JAy/tKRpEmW1T2VFFTNjKXaU29lbGOsD26rMb7rRmqsiFrGP5up3bY6gWzPUWa8xDVYqueVmy5AnGH1KdNmRIBiE7pzXcW7G3j/6z1p+/hdcZGwPgwDZMOytZJSzdHs9KyeW+mSXM65fwdAoXuVnuPy2dd/VYdDCRByASUrryA6/kMr+F1+s39aza/VZVVXXMwghdIq5VmBfL/Zel2FRqlUxZS4rnptsCrQ8YItTMVRKimN3mJKLqC01cmWzylwPRfZ/gIt1EFpr7iRPpHz0j+EoLQ6tmiEvgSL1+xVUJXlZPlBVxHezd19DN7d9ocIM6fMZum0TIJGjFkqz4tE92ETqF23w1F9Mx2DFMe3EqOFtnR4kOWzs3qK/nKfNeaOnJWfn2lm1YUiA9ystetAgjEj4rQ+cA7CzKGGoNiUbHUg1RmFN7kM5EI/imyqTkvV6ip9dAORc+a0VFhJ+PSer7TTezszlfCmf76jCGtcQAlvwEsVpQ5kva65gt2gpFCW08vQtOzZlABMhQ7LdOZmSk0oJxFU5PSwi5UdzqCp6QsRgRpoXMeUSIQIEXE+XrZMZHidQZqNQd+Osr4FG1itFGVWYiacmIksiZTMjPTO8asVJcMK2ddlENu8k2i59H7o5ydLC0FuiZphSCJpSLwJ+QjJYh5H5pT5cT7Ot8eI+eDbfDtzGnUeugnDHsfj9SAs4/HggRnH45jx9UzEt8eDP//8Ym9mj8c5X79+zTCbttu+mQBMOzPG2FN3x5G3VJrO5+cd2nfk8XZSpnRxOGeOYWYDSmLiWfF3f+Ofxu333z59Pge+//zpe9/zdovMLWBzWmaceohxHEFwHG/x8z/qx5/+8If/8u2xT26PKjpiEMf5TSfSJTDPM86pH3/981t8v397oYXtec5vv3yvVMyAQsQxZSYECDPMji9zbTCC70yWXPDTu8ZSiVGKoAlpBN2SThUd+N2+sdsHS2kKzdnEskzluarxp8s576d7iTXUmWNnICkQZrLGiXtYrboFfuUUNC/pDvSRvowtqsyKivO0Uhn8RRTMlTZoWQFaLqy7pAiBqhmTxaPkh/y1g0i8v2/hXUBmdDaeRKhV9nOem1JM2MXjUoTXndjCT9BduUpr1SuQXjJhpRLKqrjWujIb2tVlXHAJV2pchYDO77wTAamHQPZcZYCo4QW1nhcI2utTdvvK3Dt86gynuPTosLxnCiclmloxEgbC3FbiXmrL652WYmFGKLPDnnJhtJFms7oxlOmqOJKd0fe7FLaTSkQya8pdxRPV91uRZ4ZnJKo8GUZ2A22Pxq6uHH1oYAaunreO8fje99ObipWIWodZDpgVjYiSScVWMGZrW1RNxVaq2h6ufVKHk/oQab3PSOhpP0X2raw9JGg1anGFigYpw5QMsWbO5bqtOmn19sUPidqgH9CgjMjs0KyPWp8bgpaFkJJjE4ZTZsPnUHWUerOHaYylU7JaKZYzr3iAK9RWKrLVQQpm7EcCIBUWBFXEblmBHtlGonaQmg2FbqECi+lRZEZXj8Lq59UhvWWMcJhQg3jZHUgtxo3sdgUABXCx6kjkikCpJLMROCgjldpKLjOuWVQKZFipf+ltv2U3ZeIDwATRyFBExJlIYu521VE4HsoA3UgFFFYM4bQB5Dz2cfRBrmNatWmsMXh1QMltM7qXoprBCsYptZIVSaDa0my30BQVQwX6UYhqf3JzYlJRff0bi0QIEhrpIxNhlfIAY5Nnymxuj0nL4yu+vsT568vBr/PnH395ts3G/UVISx9mYzI359gFjN035zgfN4s0uSWDUzDQ93jcPz/fHslEQsGYp1FvN2nagHmmbdvt999NP6S0c2K7P/AFuz49uz1///zNRQMC+5NP0vY5bhyfvvur3yf96fm7z7/dFZvb9ljb8Di2U+kzjngZr28Hz0/729t58pgMM4amtUARoJDOKNB2JaTLOlfoeYWWurp3Pv7pwL7c6UXdIDLM8pIYbgwpI2MZ5PoEZEfnC1RSyjrz7lRMgLJ5zmVTP5qdZYfag7aeTk90kwgZ1JmGMi/orQyQVp6HdzNZKQikSnsBSxa1sjs3rVxH47WBmklgkgQjfMvq3oBbmNOdReAos8Ph7kbbB4Dtvqu+FK0kM32MMdyX1VnQnhlbWwFdxKtfoG8bjTAbMElV80eV32XrvnQFrb1mXGtbf0YvwfUidUaqFUMBUibZCXwTkC4/3D2bq2zXrxcKoO90tjO5RQWqOIpYc+KrhNDGddn+DwQwLL/B6OZrKWd2eZGlVREzHSn17DQ2olJ+pz5UKnyM1ESGqqaRguLCc/ReOIFQMp5GU2RFEnXHFZ283zJR4yG4IEjrnDpl1aWdlfBXQOJsBHMlFdV3RCa62VlsQEgsIr3ynT8kKDMmtziB6KmE3dKyPCJMmSXzhBUF2eXV63ZXG09V1bNB/4YiDCUVAkW9R6BaOdht51qQgNQC7t3nUrSgLG0Yuqu0ia2LP0UkAWAIpqiPO7Tit2pJkbJaxmSUZsHJqJFJ2Vle3292cGqkM7qqIWzHNPfJrs+ab7LttAlmdl3JUPyxTjSg2ncrfFXXistyLfJ4pZXlkt3HxZVaJsW6NanKCYTCoIwzSwphsKVP1XMlkOYcGVUMLXKouUfRtRa9LNMcY/fKghzpTVSGWHVaDdmiZFGJcXLzp7fPNvNMG8lR6qg+nNUqbOnmMLH/rVIqMsFLSAzm9xSNrkD2hCbBx5sxoVOiySVu0WL5O4eR3KpGGMcgMvzxc+4ZcYSI7SzgPd5eznw9n2ITMjLnS+w8yrXut79+td//m0/Y//D4m5//PD1BUIgIRMzIBC2VkWHOc1hq5wnA5ze9vG32OD+N++vws7AnAvChFDgth8/t7eWnP/0cL3nOb7/6P349Xn75n/6///GXp6+ffzjv8zjngKBZMFytciLlz8+cto/ffjaYy7djt5OMtzwfb/cYIiJAGFOcWype5y8/xY/bLj3500aO7XY/XxnH6znnGb5jlL+1LpzVCbbqvoZQnUclr0OmmnWohTC2ZyZFSjGducYmcYXvVaAFeZnXtlXlLy+c66Oz4MLtOh0HFihZxOKahl6tITUyKJs6uuBfqFuBMtrdNmZUGLUuT1Q1tMTl4VcwXtfx/pXaaBaGZ/l+rWX9yiZbNx+skubHvyq9ZNdVqykpUpjEfpTQoUCxxndEZGHWuijhRmYwqVhhMtAxM4mUbOGqbWXb1jemuYKQTinHuv6KPpoq/I5PrJSgv7eqcLyitWQgMhR1GpLMEi0uOWxkKEshotaL2e4bQHYDantJFQO8EQZ8+PiL70rSzStAoBdwsvgnZuYuGTJ6ZCmErvWhNrANDkI03+QOejLkBhsGwWglElkVz7bZo7/h7Zibp18BRLngCydpAIeND/VjL6VpRA1n6OBKLQSyRgjVklW0qHpulfhnImkLdwF70k+hxIbIQGS0x6gCS+kvoTIPN2BpThfOXTJsqFtduE25zq4hMLNa/hpSqZNXz3Se1X1aPqt+tGCKEkKmeE5lzoywhJBhcw+3BCJMCFNG64mNnuSeq9sfkFRK6LiAYwE2Kw1vryTVzCS1m2wJMwqskSDdTgA049cqP5tRfWJJ22pCakpM83WUK/SBAo+ZzyXJQ5t7qfuVNI+DBMx8mkEXPaERhly5SannNmhgcLqfcMKpMCu6Noxj1urRSdu8G9GgJlGzMwjIR0jKCCYHZkCkB2kM+XDLxP5i1NirHA1/g1vS7DxftmelV6Bu9fwSCiSJSA7IFLmT+ciQ4jGOItgndIQyZvV1w2i8BSPnnhuPBMzsnLA08+0VoM43DQ+G3uzxeIxh8tvxdmB7ev12vuz50+txAIbXYLzmxPb28vacmx1n1thIhMye5iAPPf5wzJ8e85HjONPOMzXejvMRyTHeEtskbjQIfo80H+ex73PGpuPXXx8jZFtuY0dJQu43H9jHq3a9/fSHn7790/bw+/zTz399vn77+mX7/jmf85OdT/fdK9OSch6RyDHByenfbRr34P3zJ7x9Pg6edNfjceiGG85Qnm+Pw47znBHi5P32hWN/s+3lvtnzfTsfsGKw2Ga3+Xra5jjSqoV+mTsDrSxW6TZ55kKD6q8rbDVI44qqYUGSSUEVpK54fcYcudyrGekGuNHMLN5h20oRFmxJGKJsHY2LklcpSVX9unq05roWYdIoumStlN+NK/xQT2rUtODJamdoyZB359t59LIy9Tg+yB80xnshzKZW/AUrR1i47+ovXr5dtiYl1mIazR1GdRLToHAZDXd0IbOzzpWfQYjZZOUW0yUuJO8jToB3rKJ5I/UFBGGwuazi9bpaH4ue7yRUvJ5SNUfUJsiVCZd58WKkm1degsasZDZMsdQvC2oWkIrKXPpxsCoCC3NWxSjtMSgSlsaq+yaQw8ewJDJNkYUHVibLTtFKkj/plWFH8szzjAdycs7QZJzHjFPmcUZqTcPLJU1cHTej8lBlKkOZCmhkzY0sHYMWfxEiIxaeBKZUZOUgW0A0kJrzkvWEQEUVVzoby0JgSuQJBevYVYFIMwy5IPex7dvNNjPPtBJONgeB0p4JwvfTSrvHVM0vZEMPKAg2w2CS9hFovdQEWN0aBOnjTHNL9zGKwAyxGOwGr6HU6F57VIG+NjqJ4VtuslO0JGPL4QaPqDwrBVKHr03hXmISvX8LwEgqQNIkumlG1LOBkR70bYycNeEhnTPJROwGjhA8xJB1WzC34VkDidyQUXwt+nAOik7zEo/FhRLQxGeoOy2eR5YChQm0M6ZARMaMOc/ImOKat5IgMi0yM08YnQbPGPsxcxuSm8ipzJxF3SY4mJKmFNykjGkZkUfEhJhETEvLc54P5hssgm479BYypFnOjTZw/+7P836fRxHUE/nrmw0eL783PN+hEiUJq2JK4cURZlM258DcmLzRt4cZyeHh6cN9mzAOo5FuNowI7gKOiIdg7hrbNuyeihMjHnmeechjOGfOJ3uYno6vW8ZjO19P/5V6iRM2H6/h26f9WYfeHoKNkU/ff5nPw373Vz/6d/+Xr/+vf/d3x0P7/TfH/xTnq3D+8i8//3ru85eXGSe3YbCDzMN3PaiND+zn69vu059z8H4fTz+/6TyP81QafWxDN4filnHHAb99+r9/+5ff59/k/jff/Pf2f/5/x//1j+PPn/cX/tcj92Pi+XyEAvo2Bo9vd7fTnsbbuG+f+Nc/fX/geB455g05Mc85X/TWZJ6YMCo3r2lrN+o3v3zv+/PzZ26vx2+ex7zv+zyOQ2bKiG1IHrlOQE3XUdNwsjBissgBgkojlyDMmCJ9cQKhDFjLeLQphSIjzhlJy0J7INTc0mqwzabf5argtpXH0vnqwtplGpnKgFeTXwXN1PSc7aIKxSlgPIt5yk4t9RE1xDvcGOXBlhZPyzxX5aTE6LLR+pVoVDBQPoMk6FOlV+hlMV3VqVNgQDHaqOKJnLkZaREC3Lm5u/GsAc+gkmFhljHfZgfVhf8e5k5CzjmjipgOCTWsqDX+C6xpeIIfUHw0sl8VcIgrA76S40b1ypWzMshEUozMa6iF1lJKy66X75dWFXHl2PkeEqwAooMbaVXp3nEPLa3nogMuBwyCmQDPGZwhSjP7ATXU0WVcsIFaqNq4Cm0NZjJyzpiMyTkj6cGcMTUis/BYVukWBc8VIasaua+BGNV0ku+sHna0sAi7um60v+owTCyBdeNwG+T0RnhR+uB0AaCCS32p45iCU2lOanXTNXqiRg1JkCEKxpLMaSpSrQOBnqrBLgEh1CNFjVO0gRX0gkhmuZkittJL0dhS6UhVVgflsPdYtapALETCErbfx+7KbZxJD6PGHOOARcqIh7nbKKy5wt6RhuHDhqPGTZZCmLf4hJnVhFQAFV9XiG5mtFy6XYBgZkl0Bk2LLAFHKb2AZIPbkOie4RlccwnTlESpDVfVLW2Y10akW0mmp7LHcSZati+nADLVQ7MbRRIFg0uehiH41DjsxtRIM0y3dNFkyRYpQqRKR2DWUlqD7OrT07lrbE4hRgZZw4XhDjO5nQ8pZowYhRHZttmGaXmMEYC6G9or8s2QbQFYyoe5JQWOIoFBIqwEcc8GKGxlHwF/e0tBs7tAYGFURnBMGnfznIfZgXm4hDjyPIDj27dfqOM25yAxj9jyoN8yTzDw+Prr2+NFX99ETszj59dvf/xn/DR/+fpQ0F1FGPYGYOM43iYijpwv50tY7AGTmWEzzvAcBs9jgwhl5DwDimMTc3qelgnfbm8Ineeh89z9TkXk68jD83xEnByPt5eX8euv2sxfX8Nix0/bf/oBnHrkPTS2bd7mPRxAz4hJOknKGDMffsbc/dtP86u97h63DXWShwHIOY9DYwCamFWOKFy5jlOlhtUBxDVq6JKkU3VxlJZN9QODLDI+O9mrLUNzObANLa5U7ds+7yQ9FJGX7oCAbi2qAq4gofuNsKjEEJVYCvidsl5edb2RVCTGj7ndhz/lGQrYm5CVj18+oz1CAjWIEV0B/Zhf4h1S72Ce77d4/bCy9QRCjDRD95yq09FMztPPiXfDrfLyqkZorLKspUTL7gRdJuzdiS2Um+j89cOP1mWvRF8AxvtvlA+x8s1kXo+eJFAdZyuZ7yxqeV+uZu2uG5BX9ixH0UFJH2SJv3wozXYKySU93XcPXh1VvJQwidLAElWaCN1yvaoU9UJzQyftbEBeiypUb873viSsWsk7blCd3AQUGpbRwAI72DRVtbdHCK/CgnV1+gNo3xIOXUUSIWVBBI3w1LpkqNDmYvcYa9MuanLnylpnE8vMA6AvjKcvw0rqclQJF2YBqUZ7V2J5Oc1OQtl4ea/C+56lBetGzQZ8+OI5SoYkzUsyjQUGJ2SqyVQgE7QxLOO+bRNDcPgc2waPjM2Pw22/DzvloJmSMkPBPf2k15VZoOoO5r3EBSCU+g6I7u+rA6U+7AVqW0ZKETnpQhiU8giJ3lyC4lv7hlNhPc8Nizwg+NZznlVSykoFA1bYSNuBzAiCzFwC8sys4MZpArymvFhgGJ2kM4koHBFpgbQ0aMqtSfBcYEKd1wL3wBTdZT7G8GkOZmq6ZeaZMYcU5xtlzMikgjU4WQzZoCeCboaV5RSbpDZbsf6l1EyL2mANWOqcMbva1MA+54H7t8hEWCZqLkYaDeec5yPHTgO1b5YKn3O4IjD2bdt320g330xu3PbcTo6ccprlfHt9yp9/9f08BcTx4NDj7fH60/Gw+e3FT7u/nmUZQM5jwtIGT2e+MSLmDhqfnh/7Oc95vA588y2+zn08zpfbGxE2zyhAZT8+T799Gfw35+/gf/vH85m/f75vDuoMf3399ogDe0wZz5nHyMjI2OLlx6+fB+53Hykbm1Jx6DFiBu2+Tc9x333svvkdfNYeAWHOiNz3sQ2cx3E8fE6z4dsAicgz9s3PLaMoLMo1b6WaSwFAjtWGKcW0ZX2qRKUSuocL9DSaO1GjIwkPOWLjPlJcTTNNMK6a80VhqO3bOdoV/H8wlpftzqwgTS2Q016iSVNtYt8NU/9dKDMrWl/GvlOoLqN1ia/7YtkFSqyE7HJAH6vfl9NQ+5ArrX73iY3BIi0qp6gos8T3SNvGvm0+xihm0bKktOFOT5i5IWFOmG3DNo6NNKaZkzWzG2Wvqu1k4dS0TjNXQlzFtTbEH1jQf9mLVBY71z5YGDEvJi46bb5WHoa8vPHKpstpZHNJVkG/n5q9E4K43lELYcfy0ZcqfnN0oei0tFy2sVB9QOUB6jFVqb1pCLRrmwBFXWsjpJWsapn9JR8jJXPamhTf6yl1fzyEgmxAImEZSGWsJjW+x5JaQWJmChnTrKYgXHFQcdYKGKjOP1sL8CFEMZgMrlZpMHfnQJp1KLZwJ9YkYvMtrlixkm0rMiGKUkuuayjAxsyUqCi5tqXJeNHel5v2YeqRAhVr2opqO2pkFf7VRKgSCE1k8CRmiJopnSaroT9VBMYCMtCkWRByS2UMqNhzmR1KLc6fm7lJNVyYIBXJreQzLWu6SvlxN9XEjE1i6eSg+jZoJttkG73IllxTqpyNHxgLXYrIlawWiBtQlGBFzpLVEFRgTVSCMjGCYhhyIEyyqbrBiJLijJJbtqT5DB0jl+rD0gWDkKnIRIREZDDnhGgKKDPOiVCGYt9d8DoxkSCOFJ/Oh409zuhhHRPHjI7tlTNcKc1jRG6BagvOOM+tjimwArhqgDQz0H3g0xnzdD+3UQ1YaZo4U3pwBvHkm29K225G35741fe8PX335fnptKen4aYxNn/+8vz0Etg8zfbn7+6ffri9nPD9y2d/+ve//ubvf/f1Ydt+3yw5qXj7+vrQ7Xh5aAY394y0LWMbtzeO2zj5dD4mz1++k97OM/f9V3c9HrdN55SIQ0+P49Vx6v72+nh5I+P49ssPby+/vr3xFonPX+fTJ38LbRnHA3Oe4hSOPU0ni8Qimm/8/IPvEbTTCUbgeOxD53kzyZxm3DLsPm887tx31z32TUb58O12y9vmPopUIJLuhi1aa7K6JawHAdmyvzBz0SFU1z7M3W0wsI0tBLhkniKr+npRAoHAnHN6viOGWRR61pkrem9WHbSYmTUPUa0MX5ICVhy9YrgU0GqUR73A6IYSe+g8rMqB7SUKryRAmNhMn85L0SkcF815ZQwdJasB7Lreq1KshcVW9ODd7NRZ0QosjDDHpWlViLBmjemoQmpZ07J/ZS5hVrhZnmHLfZqVU2EVlmsE4yXVgxUrtdn+kDwB4FpvLPYtRXyYhtQF17bJIjMW8xzmThew+vN7urG1P8+IptlJUl7Difpi1gWqtKZ6wS6I4Qpjypm1zmXdMyWkRS08iIWD9OR3qfnqbPdgBvNRIRgMskYAzCRQcsNIgiPM3Iebw+nuBnNVKuXJD6Cxu/ti9V319yWdhivA6s2mJpbWfipGwpKPMrGL+daeH2YFWLk7RzpUU5+MQvY4ZErFZpjDxKweUV5ASUzHaqCyonK350+3hZT2tuPFfWMRJiCAVt4KS1my0A8r9pcU6jBqtfQQVNRDnfQOWtDkC7ZslcBz7krxUIZGpofFGG8ckTDLSH+cu+EJ1X76rpkHwO192bTOk2L2JeV0xRpSWlUxOqlqzvbOSk2ZFnOassNCoJjIYMac2lY85QitrL+9dWnw7rd87KFmHribnQin0dLM3KCoyAYCZD7ZkVcHv4Ub1XlPJiwyi7/GLqRdUUtKCifIWO2HKmyOZl5VeYLmeKSs1b8BMk3hks7ppwXvb+cxkEjBxqQJ8xh7ntv+Mk/OCJaUW1QRIQY9g5FmGWZJJOMsYRcoozhtliWNEsS68Dhf75uc3NMgx8DrF4oDNl9522bQbOwPf+Z9HCOUHGbH48796dW3ucV0gQPfZPn2dnOfw932zZgzXqf98uvPn+Lt9YGnp68bnsa3g0fuNJjbjCNiap7nqTnH5HnE5qQjImMoFMchSj5u5yNDb69P9xmPeZifPHG+3m6WkUFnbvfPP/AHPn735Xmn2/bdt/n47Pnt7eRxnDZDCG4IyWC+8Xn88Ff//m+Yt+3TZsVlOd5yc/NxH9w27bZvPkDMeZ72pldwWuxxDmcy57kDAFJmtqWZUaEQLGtiQUXqVOtiadGVVpJQCaqwjnNjaSbJPJP0Uj5fiNZl28krGi9SDJvI2lW6MvAN4K5UZWWPy8yxLUa1SKjsm1lnDe+X09a8acP0le4l+E4vxXpZ3ZBtqpKHUJMvG2A0M9W0lRJEqHFo6s9Z0G1V4z4IZq3rFxalimbV7ykoUf03dTfs/za/0vzqRlHLfVBWLR/siCWZjHkJiXjX9gpfBYSl2/0XjuJamGuNqNFAQjGbhaUe1DlrHUF1aXTlZF08+FcWpFtrocZR6mXdQQqoWPStL9HzcZvl9t6eBC49Yax0/Hr8uBxPJYuEMtOjRI9beroX30lNVAtP8Y5oFEY4ARt0+Bg+YMJwd7oH6e4lxCGAdDOMbYwrxVe1H1fICpOt6G65VUsraLYEhNjqhe6Eh3rvSgK8+oRpcGpsoxwwIF5TE1rRCybRWTJRKvATQmZmRMzMYso3TyyEiCh9IqV6SElNf+6j1UC+l0LgCk2rUp6ylAMQ8mzNOyVOnxyFgZEZgWSNZjUl3yWxOoACQOU8mTaOCGGm7LAcPOBKgs5kxonhQtLOpMcUMGcwrHpnJWXGbAOizNnbNAIpRCtHZHWPRQhzVGpsYPeimVe86sO9zm2eQczzPDHDt9IWUaSJ29ZBE+r/zkHSM4YlBfjmY4x5F0ApQps7V0UtK0BRIsiw2pgCA2k8b2JYxHaecwoEN6rGPmY18cFSGONMIc8ZeSbmppYgZ9NRSHPPmOmpvNVJrYkTvm3OwZjM7emVYSYZYabYzhjSGBuf9llMGluuvXKExEWdm9VXlcNEM2sF/vrPsoVy74hvntwFG8c24WFuwzzDzHzsm59ZqstbDOWwaUbOdMsIkmTAEsjHWw4Rt6f7dv+0fff98/d/8/t74s1/+O7p+X5/7Nu+3+bjy9/wkz34Sbp/9/zTse231H3b9vv99MF8kBhP2GbuZuG7pp9vJ8j987Hf31IhZFqGK2bgzNA551QeX/3Hlz/fvv7Lv/z8H/75HOOv/vBP//CP+Onn29vjeMvXidQJm+Z79RjaRt+efvubHxhfnp72p0gLxHEi9Dgyibn73sM0IERyesbd4pAQ8aJt46uFAM15vn57HD6nqIyYD3V7dAqZDHWIWdF4VXUqRidQbYW1xZuhWBroNXndfKn3XiY0I7LrqFZ9fe28+uSudnY27KwuSDUCo5VKRXWjljJXhxKSFCBiblDK2MPhVcW+rFyy0HRdnrn9q0lFqDbzrpBdKiDZObPASvYWtlwOUp1MLjHDXNPcVwa6aihc6G8FBDBlSRuajWqdioOKsQteDCurxLuY6Obyq/UrBcs4kWYRNpw5hoFZg+iWG853Ck6HHmyOdOXxizsG/MU84PpHCxmtDq6VSi/fqvdyZCfaHbFndj83UyGgEvR2UNfn9T9Ez59fKQKvLBIFolcRAZ1TkfAaE+vufulF1UfoXRzlUsrCcrzVHGcwWdTmTFvbr5FII0vHFVjYxULWL5/PDjXwYfeszB2ltUAtFPb6q6j1LasrZZR66RVVXJBFdVpf4myFdPabZCuyZqkiFYLULlernVS4jomWXpOAzKtq0nlzLVRneip5w0wV5FR1jCqBYg2kq41eCZugjETPve7UuyJMqpNxSIpZjPCpEFLpkwmdUEVEBkUAyERCGcTMzOBMS3myks6SQ8nsYVPNgFZnwihJg34orOaJNSpiUegqQe//i6RF/8Y15gE5YxWU+f7AAc0J2hocWNSajjAq/COvtVyRKC8aZ4GJnRG3OUlgioqtNmVRH2hmGEpuhxLYRttBJOCrEqZUhIR0gC6j+6jf9qypjDZAMx9JSMGQJGbSavl8VAtT4VgwIzyH97tX9wLAIQdg5m5uLsLHGNtBtw5NSRhs34d7qpU3TGueM5TABN9IRgBSnqkpkHlMyRE0jZwZkuZbbo6kb6XjmG/p7jbGtluNW+UYOm3c3AxGTxLH6a1mnFAq5V6MkzMBd0HauL2dtiXJfZ+wMdy5b2OM4dsY+74FbwY3u32K2yd+/y0+jds2vn96utu28wzbb+mndb4TQsaY5yB94PH6uJsCiBlxY5roEUk3OBOkbPB21+A+fs/M7XePH7+c9uUAadSMKrNIiuoeZYkgcCmrY2VDJRbeNQh0Hqfmm5bERVvi4gfW2a9tbAtg6eCqTHkbHV1A7XuC+45Y9j8rweoyXv3PVqJbMHIVQdcxqDdgJ8joAH+9B5ucmMXta4WK+mxeqOeyh7qc+2KLdYFXWfeS3WyAwpmUVOSCp68bElpDokwXyOqDRZvZZcI7wyIzHEKa7LIsVRe0Ki91q1EiIfbgw0roq5DUlepCDcuephKtR1J2skvBVd4e7xfc177y+n5SVnvho1LL5YneQ6iyW2brqeHD23ZE0/lz33PfXM0oXw1Iy8lpGa22oIXhVsEVbG16NEDDStAr8ul28/IlfO/Kugh+xJoCUP1bfTnlkxtjwIqxrLdqP65MKTPq+aPkxkTIuhoQkRkVaxavX8WOyFC1MGWqyq9ehKW6o1n8zAEAmUkii/KFojyCCMvpoehuq5ovY1aNdh3amHWxpPZXN8J1/NUaCVXlqeVJURmsKmI0IsM1xYXuWjrAjaG3GGE94YvD3TALKfuAsWTQLBEYUqLUYobStkgjBkHngJnJVb0RGRmuVDKqk0OFBfdG8Q8De6+6Un8JytYctNrlLN46WIlvpQeooYsx3c1FsZRGJWVNYwQWHUFSms6ZiZxZNOmZOY+cCCFmZNYzjmowVgeABbWgdACqfwTuFei5++bqhg5zgJUtiCbV4ARw+M19wry652q1zQUfbltP1BR965leHe3NEE20UXi6bJrJhmMfipxfjwMjZ/VGRdWgshrKJFABt8qpfDNM0QrIIUD6pgCNTCpJMxvzdjM7MY2YaahRT13U0EOWwwe0bWmWpuZxELYZnLrpSIVynhgUh2/uBDUfFTb42Gmwx9t8eztg5p6R8dAWub98Ddjry+P17fH2eBxToXkeeRxSbc+aipMStn2n+8123W/Iue/3282fttNun17xKV7n0/n8W5tf/Pufzs+fsO3f3b/87sftvPOhH07ehNvtNLrHjdt2f4zb4Nifn5jQIW6fvjGS43aMLSS/m4AxfGy3O56etocf43eR9L/7+uN3r/zyy41+25/Mqr0XkuRjtOkGOcKq6iqnWY2G9wqKaVFklav8WRmSSodB1zfSAbjHB4mKMgD23k9STq0QZ2Ur6HIZ3vf0oKwrmlq88MdVhcNH0xxt/VfBah0iQGHKURXjRl1rUpk6h2l3kMqlz1smpHNfNI9meWc04qiPAUurN70HDQ2Wr86Uivg7TzR1aJCWwanydVYT6vJE4cO8uEjIWW7TUG9YfBmSQ6cso9ShJaj6Q9792+Xt2qcseylBTcHVWF3A7fDI6y8SK0xJXmKEpadSo2Za0oEmcoVc9ZQK9FxLYl7dkSv/bezgon39BVwC/sXFXAlGp6X27iJzsQXNrILKHmELFk1qcXtA1GwBhWZEeFZvmrIGSKL5hys4qDATqy7O1vNqJ4wrRGx4IFHN3uVpC4svZo4JV49MBxnKaTWsu4vaWDZ54UtoSeT3FUFhz1AUhtMvLJTEpZClXafhSuSq6SDTummuetUFJOlYsh8FUl9hVQM9NWQX7VoW2G4ghnd8663ZXB9anI22GFmam5SbICqdyA2wLdNq25RmZMe17TfrLs0713zfxwBQs656nyxlH0lZmoYVEKzoq96WNe1C75k/0AiIWQG8pXjAqi2sX633caOVGgkoutViKMWoQ8CuntRJpS1F8hUAk5X3Ku0Eg4rS4AQNbq1w5TJ4goadFLFZZnW5VdBMCjDIfQwTjE6JTvQostojm9Fs9+3u3M880twsDXRZRORpGtu3Uu4vJKUfeyyiB0BFqqkl+FC7qqYWI6RAuhlZoxcsegRj4TqJjDjTTORmMgaNdnvYgByRkyMPwPbYbrptTJ08bzLhmDokKOYc+23suH3a95uen234fs9fv/zNi214bNsYtjnHRvpwg7nvchilMWRyJgSb50u8TR1fnoZ+uuV8ef20HfPxskceeJuPk08vfHk85rdfddfrTz/97sdv345zc/t6PG/j/mnX+Vvuf3Ztz4/9+Q48x7bdj2/bXWN8/1fPTzuMn3/z25dJmjsmLOZMm4/d6Ubf0m3HqwzuIjNIyUiltGnb3Yj5+vI658sbHIGCblQjNGvVXUT1leo9DcF1tKtYt6whVzNi5yC1v0FAlK2c9z2VgX2YVfj+M7C1jvu4YBl0LQ9SsRsAeqwgeFGaWclWXwgvZojZ9Z026r1p182WM11H+0oEee3udS0qS7jKPv2BCzXta70skltXxZYjMbPimrp1l2NZjLLVkRn5HlnUTzuyXk4UnQKuP15suSqGq6kaoIyyhjrrYj+CzvV8SSbxLkWJFV+tUv3l/q4kcNnDC1Xo3bAg6da8lbBGlDcb+0L11C26rINtcEomXEzaK777eK3vq1+pWXvIhjpkXMNzCLQ2+LsrXc/wwhrKRVXprY2oegEulapy2O4NePvw1KitTKsZcFbluyWRUhLXVuqhnqYP44Wq0aYRUFJZXOa1K+nbxvT1pdau6qiowFGmcaCaxEBWckrA25Ky/Iy68g2s9oQOHNbddxQmS8kc7tFc8ZX3gaoqQsd07ZMJTWfP3bYefdOpuNbGkBQdvM6eNVTsDAAykzkNcKknMa3dXbMAy/tetIB602r9LfFoNXO8orZqmenPXtBPLi+tq/+9vXT0NO/eGZKqsahDqbWbVRhBvW2am/mAWBooFf0RNLoNEj6wbV59tlfVTSXjmY0sQhGWKcSMyZxBzAP5emYmTLnUcSBUKS3XnBf0ZBsRVWs4Pec+UqWmkHALdwOYuH+DW0hm8pS7ucFpGBLcbp9ufoNQQ2CI5nWDGVMl6SDzyR6QRQpZ4+sghZTV1yAgwwli7PubOXaaBiycD3NQgmu4vDBnycLG6zYEc9uw+fB4bCN95ga65RucIRz59pg5I19PuNWUOFjQdxun53j67R/8nmPbMIbvaXvWBvUNW2y6H/ttvE7zLY5HJh7JsHHy9uU3L7u7baebd9TFLZW0tz3zASTj29fbT3/66ec/v3wb8cvPhw4hznw5NyQryKuxgNHz2m6/+w4Reku73+MMo41IKU+N245JoOuhAHJmYhgUEYlzDihmJKhMxNtxhkIAbA/zai/v2J8FCU1DyaGZFpTc5nQ5zzJpS5O1TXXGKqh1AnIZZmReGRSJbpDs87TKuguifMdXpI5jL8sPXnWHxiFRRJBlQ7tETTpKp5gfL+jdn12mCSpqdNudZcOFTnIqF6qssc1Ywbn/KlurVs6Gb1aq3iGmLQsNVdy93BKAiHwP98tQNKm4JygxsRbrilwuuEzvngB/4cren9P7XS9bDEIcjbMzrZ6R1mChmqGaqB7wlXQu17YSVWKpk3x00fUGZUezZ6OZ2EWVqvRnu5gKmd6Tyl7lytSWeWxZx+XL2PXLUtiqHtrM0ocplnyL9gLlP4ysoTNZftqq6t8Oks1BoJnZsu4JM9u2+z5RsxCLZw9SHAwSaVeshyYw23Ar/+TeLrjmVruiGuRQhTKkSgMJVtlTKcG+J79o3bdGeqsRtfjvvB6CpvlJsIp7RfwxZYaFiFS6ZTUUJ2BIrJ7xAs6VJpAKZER0cyuggEClIkPV3Jrv2WepU4FM0urHH84lAMDozCCERx+bmC5jQIEMDA/TNHhBblf1hw0ddwXXXFEBL8262jMRkZpnnZc55zlD4MxqYnDaKL5gSpYpzWprBZWEImbhJKzjprCMCEOEbNhl3WhuyBmB0lipM+AjXR5l6BwK1Q5UZuWNbZBIdIs2pDx2y5w4IxMnkbLJNostXmMSZArBzEeYWQ1p7rS96HwSkQWgxMx8O3yVilOaNg6YWRzHPBjayCGjnt9yJDe/+bO/HTRINI5M0lMiS2oVY8iR+wAAbea+3/eHmsvVYx6zEg9XYL4ZN3lO+XHiU0wdMc0MzHBPeHhmHm+flHgZkTopfzU/X+PVOY/z7Qyeb3zJp0+vL/fQGUYq5vG27eMw4Hzbf/46ZkiK44CM25eN48t4mc/P39m37Wkbw0Zu52N6Yn9+jMHbORSPuVvmcP/N7z8//H6W1GhoSm/nSKa5LDB2Pn1+/vybb797/rfju9/98en5t3//d2Pfn2Lb037/63GXxtiebnR/Dr/dbN/vtg0pXt7mn/74D//0X/78C06M89fbMLPn5yn6tt129336llNjM+rc3bc78PR888xTHszMM2l0jDFzKmWlPqfVnlOEWEGlVkUl0hdLBSWp1zyf1EQUUQKZUNEfqjjaThswwEY5wqJ3FuhTAb+wOBPLq6iCAesineoa2vxTyMwadFb4belzICIGhdXjWu0NAFFksXIK3c2mdnMfci5rtisWk6nwsQJjih64LEwHB9W0SrSCbURGdLGtgmDraJvX2NNKtC51reYfUhlWlJfi4iTYhaRCfHgNlGtKEoBe7vfLKbOQ1URVlJh62XsOxM5/ChtWFgRdv29snlr37mQ3BLGe+CW60bFGwellNOu92+Oz8fMOrwAaii2xmGD98jX3SO8tSX8RNlzEqgWdlKW/mrIQdRnMZfu7nPGuiFD3bFZ8nRZbpcmNJTnrgtcwCbt8XwdS7pu7+yrYAFzj40nIL+ksrgDQFke9zXBn6c1Y5AXrZqwwJFfN0BwOR+uT1kW8R3Yd5nxcolp3M99RGlremGgC1SpqrTjoXTi4pGS1EGrRavxJ0wXFPk91eUWhkXKWq80ggyYGWK1wXcLmanuoMJTtUrdBDstMGrMq0BWKgnnOoOYAzm7lSNqHpVtFvCqIG5egbZ9KQkCKbj2G26ziBZNTHA4xk+4Y9/MclmHOS7586BEB1GTyMCQTubZqb86UmAr42MM2ATDtdQyyZjp3pxlUGn6L39SfIUCILmOvx7/2ugwsXmXFbiINJvhuIHVayimgMskOf+pX46xRdYaMOA1HbPsWPoD7637COD4937aTnkRO08Q9ZhB3e3q9+QiMNB/NiRfdDZMW3fHWRKsxtkGjopnkqlFN0HCixkfDnIdlRr6dTMsMu5mooA1aGCYRRxrShxKbOaEjn4bO1+Evn19zE4jQdiMHDp0G0YgxzczH8Ck9fvnxx//0P8/X4z+8fnuZMi/BU5htvt3ut3273caZhMNUI3UTAVHwnJ5xPI5tS+Ndtzvpuw8jTV6OBYfe3p6//fE/f/v1+b/8cfvP374bv74cP39FGG7+++fHb19jfBfn8y39uzm258fr5xsxnvwrzba7P3/3+YzdxnePzQOcU/5mT4cJIRjdrSCNyHOeBxTJc5ZEjZHI8zg1NmkgZppmVr8calL0Ku98JKi2F6DoTluturRqgC0o15WoXsgFzAqkFBGzMivzaoIq+oiqO88+xMB9ymrjqnVtuHxqobDlOpcz6a/6FGVXSkuQgBxWqvXt4Jetabk4QF3DjfYIgHQVmLoYmMFirXB11zTOlYmSzGdmznI7es/iP+JpbUDogxo2BqobOiVYzqm7n2uIFFHJk5m7b0YrAjAasyRoNN83c9LNK0JZWDGoC1JfZWmtxLot2EqltZSwWgjiSu4J4yp3qgCAa15yM5vqqQiQcd1sp/QZ9ZyawiNayeoYrzYkgWQmeKEgyzVftF2hE/uy99bRUI19G+7bEBPpA/CRpYhULBG2uV83K5TSc2GCGcwIRCSjirXIotZlRCwPDAGJ8h3mWoJgpJlsEc/sgjm56E/tJPvIqGUGAwvlvYpsa9gz1D7owom0/JXWW6922FUB6GiuwIIox1kjK7SKILXZl/IVF15S8UPFMxak0j9AMrVhXa0+t3QGubZjHyxwJCwdPe2TQPdcqxoZ6DXnz9wmPE3FtqOVeqxZjexoSMKKoJaJqdHZ+sqLTYRqaFLqAsHMPaCFhSGrq/ZaTKyiErmmmTmIzNF0PSkYPW3MCTPjGFaqzVZFVsdGGyPdIlHAfqL2a40mlzBc7j4wMq0nXTU+tkROUoW02Ag3EkMyx/ALzuoIV6SbourGMQ1FFqwtX+i5UuBpEHbA90873OcBkHSfMzOdSQsRTqbSE3wzd8G2wPCUlKUUmrZNtWm2SSJPq3gqpnw4zdyGy8xoft/c4QNF5sikpe4uMB1xMxO203fzoJlNbrKTtC21me9iVWmP5Ebuzv0F29uUJL0+voz9kG1b+Db2LePp8zMJ3sy2+eX1/OHf6eXt8Xg+nr/YHGbbvpnB3baxbe5PWx7beW6GON7Sv8uvwP3zL8cX+0rsTz/8d6//ww+Ytv/2h7cXff5833+0303Mpy8/js+KLV70/OnLd1KIY37708//v3/6h//P7495f+LPb//5P98sJWyjiIu3zcylp9///m9/90n/z2//3ecfxi4LYc6MPI7HpwikZSJP5HTTaZKGGSctKMnHTUC1aoX7oZiZ4AyFGw1Ta5CVhEum6EpyFni1pAEBEsYCV9MaOKX7SKMv8LNMtS0+dHWeFAtZsgaWqZWysOUrtADcOmTFWrJYLsgzS5cps+ikAFIImd7hcVZrZVYz/nKuQiwq8BqsksqcgfTlWAsaoi5hnhV3M1d3zYKLVzq5AmiCpK1RvUDZ23LAjbkX2Nt2vkQbWQqKnWsDGYbsToz+sEa5e2SQJEVeqDi64tU1RIDMlTQL3Vq7AN3OsNMEDry70wsMXEScdhCNMHbjhYGtNMQqfbJJ7vgQeNT9Vd7XE6Nr8gwWs7PyesHWoJ8LgEbHBnoH3AlAUTNy6oYL9WCxSt/d3xUYABchDQWnKiOjhquWHneW0C2q2UUfQrrlQc2KDWw0+IRKgckWkWlVKy7SXs3YqNC1yFD2XlYvxtSSXxIq7ahus+4TUz2ccvZR751o8EXFsyjNuVXNkBktqx10WIll1hlqKKJz6X4c7KclCWoeRtRaVLCJagMGwa1mmHR8qxKp7oCaKAp3Nq2LZOnYVrZHt2EEcsJcRgE+RJ/mSIqsRitSWUTctMzIVEgpa2n4DItMIpOMngtGZFb/tZAZtdZ1Haw1zH47M58XaJU5W3Uynb6dk4A7rYJlhWjDARRVsLaiAhHkHCCIWaFaj+muWYY1wXrbfSoM5t47x2r0RQWuCTN6mB3bxm1MiUpHuBIywEl5JtzcI2mjUD2y51ERoFskaWkKc5zn4Rk5baBmduScJemCxEyzWR4Y8HzstMzxmPYyZPSuC1lCU1IGLMkAnBaYMbb9NefcmTESVXj3oRRVz8du3Mzuvn+zoA2nhNg4c96h4AZhIGnDI3XiabjbbnR/eh178Os+pu3Tb6C5cbzOt9vLFDBPHBmSbds9nz7Z0+7fn995JBz2BYyTDgAKi5zn8XYGdxMGg5tMT3Zy3wB3+3Z8/zW05f377/1p285PfH5CBscYjab5qZd4efyXf3n7p//xf/z08viHn+znf7Rf/9ufThHcbrue/ct9A5kRh/ag+07zobAvP/h85f/jVbxTR7in5Zudb6Fzvuy3hM5AwjxjjoPQMCrPt3nm07Zt9w37tg8DjtcDPZHIJ/LEkK3pLu0G1v7l2pOJpGRWAzBLbBcAkZGwsmgRyVSscanqBCPOc88lmb4OrNbhrmSyWjfbFavzvWgXnGX9CsxrFmc5D2sj7IRpocZshmXQmxtc5hUfq8DLYzR9OhuWXWl1O2NcX0C6Eh3LhREWLFD31KvVS3gVR4vL2C8uxJ8gqrdPEE0xZ2h5gVUvdnevFESLykQbW8tUYglgQKx+z9bxr2yxB2g2Xr6gxcudFzY9MnF96srAqq2pe9SwEmmu9Jtc/Tndh3PlbXpHDUon47ofvEPny79f5nHVNlYMg06jlp+u/cLlMRYCXnhDOcuuPajy7vXc1jPue5Iy5dGT0CvJyDWBuO+w/+5/m5l5rltXPZZyckb21OUPd8aVMq7MGx1PYln1rpnXqyFIVk2m8GpNJRpqUxV7i1xrcOsYpj6knaIMNTq9cBw2tQyLMbxev3ble0zWlfiPW6vj65IyXoFULvWzfsmaGuVCoqh+Hfuooi0pYYjOSBcEI6thXxKAVEDR17MO5HWpFwaCpSxAgNk881TJMhY+jlYmyXflge5AQnfRZtmWDpRqwWtP8IryqcTh5hV7GNX/ypq/1FuZ2ZUsdfSI7FNcp2v1PHZ0u1Q8EeHFOitdEIMpANAJFoBqyzyYjQ1nSXaxiftsonUbkarLZdTITaOi+SMwmFfrdF8NC6OPsDDZxh5QAxitxnNJbiwmUNfqmQFUuKgStoEyA6vaoiBDcWxzk7nZjiLZJBIl+GojD0EwnqeLOuMkt6gI6zgeUERmCPNxxMuvL2/TYp4Kn/OMfNniPCPiNAZ2i8Q5p2zGFM2rkDmGwMoeAXE7w/w4/bbltluc+Xnftt3zy+ehYyqO85wzTpsnis+EGtZ+e/7u9//2D798efnv/Y//7j+Nz//N/+1///X/9PrbE7dxzvB/jsnb7b6Zttvp+3DbNsT2ZUemxfmYFm8PDD0/fJzQuNvwjJBgjq7QbgGlUSa7j7GDcNLMmHQOwdOheWaok7KKeFPWfZ9UMXzKNLMrsTGLsJWZtOLWX2eop45fvq0gkoaUq/TmATMbSDc6k8UysM6oLm+mnkiKth4rwyTfz2oNtwS9e6ksK6doO73qaH9hfJYpaQha631L8o3tUS6PoKqMc7nqK4tov9WYNt7Ld+8ZeFVhaxrxktIGIdJ9+ZBO+aqxiHE1+Ksh6M2rYWPNVrTl4klka4BcNqv/xcuTr+9KKzltj1S+EhoXhN/BSfaP9dEUds653uXCEur5WIsvLgj6gy1XA6jrOfQFlcbWiiw6UuuHsj5vIXoJMFcVUNJqw8+eOVwq0Ouhd3yn62bXU8tS/228tb0sDTUqfikxrj9ae4BrBerZok10uwpryBfN1OnN9WGH9n5jZa3N36lAc/m4mly/irNaN1J/i9anYl2GGlXOnszYT6MU5WC2ykZUTyYCWosE64QnpBpjQuW4SvAdbUlL4aNokc3e5vVX3Z9nobvlH7CMOFdlgiBbyrJdUbEK1KG1F3zdTZBmkKlJ3u8HeC1Jn+5rXclqmACaFbBUb1DsCjLjgkBY6VazLJv83i0SZXvo9ZLif4HrzrZ6d5JbIfHwsOtBN7jR9Y4lsQJctIVakSZbg+hND4EeaQlVWXmkaI6ZyjhZzHd2DNtWorEnSMkx6Q7n4OMxIikwFJPiE2WiR7dw0zY653kmx/1mKuPehTNLXK2SrYJL5TyTbuXOW/NlzkIaAyANmtTby20TmQGPVD5OZZ6MxJGHQ6mcpyKA84icSVM8gAzQRQ+fR0jH23zgcZ7yqFM0M70rfJB4ThF0Nxy3HeOYVnOcB6qHRJljJnVmng7l8eDMoFmcec6i0CURNUoVNHefRtuNm234jOO43X/7++f9+fu43fbbzfKnf/5DPPT8rPPl168s0U/j2M7AI3OG8uUPdovdjm9//POfX9/OtO3XFx/kaS/+dnIdtoSyW2FAHzCX756RSERMj+JhnvOcxIOwrOmgRYVofZ0asJ4pE0QzmcOoEjEubWbrINJMZui4bvhiAV92FWqpq3VKq1jSiJ3EGhFjq8FRWDgkjCZ1c5IFF6FKqNZP6MpndHmhzCszSUv1IW9CY7/9gkLLgH2sromWdtmFvt3VaFXqS6oenmUqtGwCLvQSbThWGLySPJJUrjGotMsQl8o5uchGbZuzpxDVHbTyk6REZIGMklbJd7mbtYQfi75t0FZy2V6PQ1rZL8o0t+tZM+3ffZI+RGV6d9kN2GNVhxebez385ba7dpErKUKF4X1jH5hYlxe+bur9BknUopnRijVVhhTWFAS7/MG7/RWa7OIm8+Rq5BINVaq8dH5WPfu6an4gQKHDkN5LHW11pLLW9H3T8wIbGkxRrgafy2OtfP7dC3ZS+GFpAIDWIljtZBZqVNXTejC5ZuXlYhypgfxrA7x/Ri1wgl0D4fWj9aru+umgz9yvXjHSll4Hr3gQBIzF9Hb2bpi1DdJ0dTsD8CJiyoZzdVhgxWxky822DMh1CcBK7HsWFqCMaCSMDaaXz2IlDMVR7keBXqGWiew0uRB+lV1jR1cVx0R2wQXLT7kMfjVHqRUmEmrSBkrZyq0qv7ULe/JF0fxU4x/objWA2UAZelYiSbMGW3k9/GJBQ4KRGZubuTfgrcprj4qp4hEzZlkRI+EJj4To27Z5YY6RWGpeWTO9UmAP4JIaiCMkZVpKJd7UaF2RwOZ5ZIAJIXKCjJmeMNic0JmZg3PGOWLO43QTJc6TFpzTEbMkRnMyzvO8eU5RiMfsfTsZp76+MB3at9c8UxFxWunIQpgzz+PxOBKZ0zXj8Xrw9Xxx3saRX/KwzVKYqSgJuqpAle12KsJJGoO3L0/f3T59/i7H/5+uf+m1rUuyBKExzOZa+5xz7/dwj2dGZlZmokrolKBFA4kGdIAGvwRadPhdCCE6SEAjS6hUgOgUBUqyVFkRkfHwcPfvde/Ze61pNmiYzbWPB+LKH/eesx9rzTWnPYYNG4bcBgKaD4zjy/m4uZmNbUOxxSvgc2KYxSPjPO5Axpjk7rvdvrdv/Nu3T/tSgCJpnvRtH+4uSsYxRoZKFdLHlAcQCwHs7gZJEi+5rIqauKDLNrnQUjFYYK2azdIx6zU5to4DcfmnAn9aGEsL9KyzkVVag1Zpd6U8FbwvW74ySaASbuGZyT4TZNhiV1sb1g9Z4geH9SwhdlxbNa6PLs3qk231xj9dw3LnT0tZlm45TKxIopge10J060u1vMNGa/PW24vpzSamrBy00h6aMgD4ZcMXBPhMw9fC9qc9M2F+vMh6xSAWT6yQt3IRFVSsZMXMYCOpMWZiufZ6FcjG7XHltyubrWhqzXmTAp2qUKimx8aO+REU7ee4XIctQC2NK4NdySk/3F7BtvVWy441IJFVdAcp0W1yOM1btYvLPbIGKlaUD0+Xg8yYIS78c4HRSsOlpFE0bySQHbcujyKBy+GisSQCNDcTvPKwMt713z5kJXFx5VMUaSlz6wIvKwhUpgyAySdHP6cQYR5Le6Jm7Yh0VuoplbV1JC3SQlnCbkCpRBS3PwW6Na+qcciCQQtybDi0I6/ltCUkssN/h1diDkNmeKWmUwjJJjSdnMNKVa4n/wAqnVZJGbNSyRQyTy8FCwsCsBEhAuYjgQDosHSImhxKA8cI2Sjie3toi9qwiwtYmX4MXFCrdUMfGCYIgYwyV6eYmgdmzkBGVoEuQyLNqJzF5K7d70Xr65Us/hncTUsThTCUlIbJWuBvjCyUIKLpGI1Sq9K4zAjRfN4PP+6PaYWkmWnO4XIThnHzEe4mJGGPr/vXNNp+G5qk2Rxnt6vkRMHnUdwMWugYGpaSMo77VqxZZfat9uYFYTa29xc5avTsY5wZSUYWJ+HlHpYzPJL+so3bTm65n9vtFGMzhu27EoI5dnc739PiQPi+2TYACfv+CX8+/NWPef9yN47I7dXM0xDHzGkuv73dLObM853UfZ7n45fHLc/9jPtXmPF4HDBDKCNQIqXn/RFHzB3OIzjP+y8//e79B/u7H17+9oe37W9/fH/kKYzteFfiIG7vX76An/R4iRMC3Tfftpdh3//2u/j07fscuw/lfejxy8vrl19GbgRUE04knaY57sc8zzgxHzz88XnY2IYDx6PUrUZ52m4bWvLfuCDHK1YvTt4F4BWnlQ7KLlhUptmKR880EFj98vV5FesZomEq1ZhP0hpWooS6h6TJLK0mYlkJLxlpA7EMSovauMxHqcNoDaIpN9gTYwtwbtPcSk7LQ1ZnULvH7Pqj+orWNLzl76qvspESLFYRu+u4E46yk/WKddqv+vGqOQNVA/YhZcxYBpKkL6kNq46XNVeNZj7oNcK92XClR1Oe+KKDth/rk1zwJP5//4yVyj5z2rpLryTiAzXr+QQ7s1qe/oLbaiPZFeIkcUV1M7INX/kGGZwpcA0eFT58E3Bhsc/dxKcPrMF/ItGpgGLln0umkM8seAWT4qWOUQ7clDR3N/YszAJMK9hSnuk146kbeJFRF1YxXwPCXdpdae4y9ytOVcYqk+eZ3odNEIpTX9Ku1hxbocOIfgxcRw0L0G5GNHJaBBEVypAsWcFhbiS8pQQFk8lGXabMpCX8KUlYMky+TiuroFCtKaDJ3OlWWKCIzJmGOvMqIhKkhIxaE0RgGRX3mKpOigiaJuxi4Wc6Obw2S0madHQFrf7YauPq+oJh1tpD2V2OyoiofRK5daBfql4wpDOijmEIVjkDqUBHaG415aJYYdaoUWd/pR+emTMXxgOpSHFmCRh9GpsGStoakwFUhxwgWroR0xMKk8bkyqc9YSw8Rkav9Jwbb29nlHlAZJNiFW2f6U4TfSvP+LDMs8Y2z+npzs2MsgAyiTT5HIipOA89zscdPpmrQlVrNax2nlPAsQ8ImBUzVMrgDiqsFP59VBGRyP3tfHkfr2fsNxSEPxgCObg98jb8dYe7zvtjkuY5Hy/keN3TjJwnFed5HC9G2NurazMizumP+/1+nqflDhI+H+fxsDTidk+laQZnHmlGnF+/iWMmcA7xnKk5ZaEwn/E+zX5z287fEOcv9/v9POMWp6UZNu775hth+3b79O2339iv3/Enc3/91R/9av76+893DHCe99NhoTmnxiPi2DLnw/Dl6/v2+WbffHr57rvb66YIN8TX/Xx8z+O485V0pQ+nDdzsRD7O+/txzl9+3N91fv099YhpQbPNYRNARiTcUOICPWmtJy04k+hu2k4uJc3ZExIW87Z4D8XcMjMvMHlpXAIm5vCVNikQ5hXAFsEeIsxhQdrCItf/9Z7OplIoRZNWI56VG85LQaszYAFUGhAy8GpKbuhzVT1XGxITJL0Ufq80ueZfVtVo/exDonthAvXBJU1kJrtSUq7/NHeog5QkFKqcui7E3bd9sODQbvBarqMmeBfyXg4EIpCsZkSYmaw6SvvmO9bov4EqQH71Oq6EsdCMwaUgwHZ6DeFh/YUColU3KiVd6b1YjSrL99T9WcVUNdYWnft2I3AnjO10eTk9NoSLi7/Eq7b+hBeK2VDXlUKy5w6uUAttsbvoVj64aWgNPi4RfkGLuVDpV1x1ug4lVhRlrq4XZjYNGsruF+tYtf+70OpOqhs10hX3kEZhBkflwFCHbeVje8tn45VPXZpeeUsTexxn4+ajgo8VYZYf6N0o8+BCiTu2WOsEASVPXIXA1a5aa7VYTCSWxucCw5LViqNcpYRnyFQhe0pBBZAJ2OZpBjBz2GpjNMSssjemV2LcSlhayUCpRPLDs4dZ5JMWWkFxwtwX+pZpLN2gegZmss3DbYRtbh1LpKF5jfW0wYUujyrt108lZZBmplFiG2ZMVZW45rGRtIpTqpyhXgtmDW1ddQSWZl8CXKiVFb1FEmBwsrJ4IvI85pzh9VQvCdQouU3frr2Vzn6Kbja2mwFx8uRNbXIUkCEH8tSOx2NsswaqWaEMEZSQZxFJqi86QJrNrDlUhUdIQGYoxFRmqWX5vt3nnOkxSyru3A3MSYzdHXkOnudpODVjExAJnK87cX69+ePTw/eZhjh3nemcmEzStm3YtvkY7gAOs/j6y/v8edobtU13+HAY0nL6zORwII1b7G/8knh5+0kRmwU3cUzAd76I7uZLM12wmXPGL/sZP/kvP42f/vrfv/zO/sPf549/+/r4m7/88W//5lBs20P7GSMBmqn4hE65W+y/eouU28un8fnmBw3f/Jg2xxjf/vrnNPMhmkuAjDGm77wNKP3FbOS2OzFu+7ZtCKQCmbTNpzQtrV1oneXKIYEEuUactg9z94WW4sLDynrXcHCxkax2AhkZ57npKhiV2JiyeJt2UZoqZ+My9biMz+pnXCkAW9+momRde1sirMbWiy1SzJbkWFjlVdLTAtTbDtfMmXYWZUIzxUADSg07sgD4led1Ul+L0d6kzucTJO5LXTezBn2tZFBQnOEtl6wL/i6LXbdgVzZYKQUv3GG1PGKhslfKiJWRfahjPlEMAcBYDrl/t15H9LD6anysMcldWi8FinY0V9a6lrRvt/QeO9w2GFoRv95FLjJRfcG6yv49P3ymVBKbXaqudpQKN6roUeabKzXlU9OlPrwZUqKkkEUkM8Mg5cyMYoxXLxBXqAkSPtx99FYnYV5+nFl0T8CvvLfAg9SFzZf7LyPqLIAeZkbbnG7VTERAiQy6LP0ZG1UmeFXRKWV3n63Yh7Wf4rAxUXx8WsER3q92ptLY2XheMV0nkcbGFvsq69Fq7VO7cBzSMun9kBKe4bS5AJVCZcxgNdy6II8WrpqsdiXRVsU1ITjQrJA1z6TuN3vj1QIEeZ5pgtJScV7Ut7IcWjM9UT0SKv2MnklZnCJRiag+QyNjZRalCVSCLc0bZwsxFghhbjYAFA9GppizwZ+qtAv1qT1YN3uKNK4tXCWzlLT7qCkE5BKDs0q+O0AuFMmYR+wbYOZl0EpjIGtjZkbmVMSkpyUyjI7ZBPATlrDh8TjjnEYxRGqej4g4A26f9xlEnOc5DTVOJCbliJkAS8c8AxaCAPOGbbSYHzXupYg0xxnzAEzOOW0n2RJEjMf+ktodeb7fX24JhkNmCY/3g6Gvcoyvcz9928/jbdtgpB82xmDEvm3DSUc+5v39keMl719y5tdtnvWkRQZ9VkHPdsyvv/Dn+3YcD3xvKZJnInz7zD/5p3/x8/4tj0eMPX34dvN90m04h8Uc8hG377/f/Y/e9z/DfPvu7e2HbfdHmo/j66ZgIug+Xl7u502hCQFzH9vA8eX9918fE6fZ18n4PA7wy8/37777/GL7Y5OJOkJfRt5fTu4vceQtT97j/fs43+86D+SZsqgBZ3QgZ1EYektLqJktRVAr88trh3GF/cLq6WPjp8uJrCQGEN0wW2LdY7FXSr2vjUJPUliRo6TOuZYaROOeVWmpFkCtovSiBgW6Vao7OJAyJbyHlF61OCxj9tF3mK1665Ustlsr16rlAMnk8nX1s8Wjqp5jNtdrkcIuT6gSOFTaJQpV7brWkUnPUuO638yIalruRt7iaqXBkPPsVoe6k+QSKFoA4/XVHdaT1xN7XtRY5qQdcI8yXDmprvRuLZ7amdSC2HM3aKkwLzfO5T5KfCUWktKf2oocWOb/yRTQKsJfUYTwdAdFvnI39+Si7/Xuqda4lRj3Tl78YtLYfVslUuS1RvUE22evQj1QwjPWmm397PtCXOsrF1B+xUwfvVI121XSXAT9TtEB9E4u3v2K20DIqgZc0jESKuVKFtCLULNvICmizpEKHIeizKei4GxFDaoHLhwHhKqzOWGQns3vhSItoRlISoaUTce7gkKl11EshBlXcXgFzoI5zWCJkJCyYJ5izmJO0gliWvVy9bStYpMhbeX9mVKeiZpvxUxfMbkW2tuoO92qsRtAVUpr9IFzRr1WKlW/lJRzFqEkojSVOVONOfVRL8R7K/4AlMicPe5zHUyRubSpV8NefjhuRMmekjaWiHZpmMBMxblSKafUDimf7BbZ1gBKyGrbsJK4OFLS2AoPcAFwduRVx8RmPKej0ex1nykq95fXXenFSes50RAsaciqQpM2KBHupG83nHo2vhuH1+0lBcx5YIOnbLxrjlScCqR0zLudAgXLDIztBQcJnOfUPO+DnhzbqG7rGbO6GTbPbbjOMzzlBC3iPP7hd8c993y9z7xFVSUlAzbbRg7T43EGLZA2dYsIaL+9zc/22d4+nd++4J//y3/2V9s303/yfbubW5yicXDcXnfz3Pfjy8uf/NlPt/d/xvs/n59vf/rH+7jJPFKAvZiNBIwn52ngIGCic9xo+vrl5y+Yc+fDfvqF265z2+aPU3HSGIL5RtoNnI8tIvfM8fLIeL+/z5jng8c0OFoxV0H3lDLc2p/1RmPt2ayW1jIsYGawIlASylAu06gqya7sdbkdXQd/OcCwJ4SVC7mSJCSxIsf88GM9p+sWnpk0H77cvpZHwPpBQWer8dpUJKxC0K4wtY9KXWFxt9uhLZAK6zCt5oVryhM/0rQ60Vs3XFoafOaDXVWqu7GS+hEUJfrJbvVSA0NkWc9y2FlQb1Gqsb6lD+lKwVbsskDxVYPsc/n0ZB9CAgrgqJnI7Q518XQaG1j9PHo+xaeNKZyy7HYR2Ju4io7gLp/UUFYlMMuzJ5kfc+ankW/w9mI51W+1sIl1RetyaEZqMWRTldU+yXnPIKI/jV3UW4g9Wr5sRRj1VQoC48M6LK5rOeb1EGDr8Zipe8Wwahu9WL1vlMmgyWtWiUrIpFLnVlv9sAoLbr2Wuq5gZdll3SnBirTT4Vt29g1wBZ5mi0ZcQHNT3qQMAch0Pr9XrQXZwUsX3TtKvJj6NLZjJ0mkqZuCi8tnJYk94izEPGN0CAqTpgVwjgWbY92O2QLJiW6FRwVOxRhe+6geva2L6mbJCzq7oIR1UAq1UQVGFXcbYatKXhsqyguzuZBtZTquqJy8i8SqqMQAKOecczXf1gVkkRZrvZyIhCg4bEDbgO+CecJLTGUJatJsBHKS9KjBf7pIbxWPSmZmw8bJVktzh2q8R8mWQJAlLGiEY0zbwrm9fbO/jf2kp/viAhpK1M3QbRRGEhHNAUxeRZBsM25yFxKK+ThcytCZyK1kU9KUiIRCecCwjWotizBKmXO/wdyHqXA3ZablzNBm5pDozcen0bjn5/v2esMxBfoAewJJM3OsjI1kLzj3z2/nHi9vvww/J7TR7n767//h26/z/YzznKHa4hmUFKkcfOeMsWUQu83MtNdfvby97J/2+/4WeX55odu2uVFJuNFgSaRPexv2v359CyemMN/cXw4z+v7NL/P+YmAGBWk4PsXGcTPliW1iO2/bF/r++nZ7nY4jCVNJ4EWC5snVQNnjyZKd34bqKBQ7okbPN+DH6mxHmTuyCrslU7GsvbJ7HT8AXmU5+9TYouZ0ztKuYhnDq0tjKfzU2/OySlr9Ua1wgavdj+6dXnaWwoviUQf98kjq8pouD3D5guefD7ngJVZZYayhtPKefocLzQdZuKIZzQbBFhm+QvqWKDELLJ9D0sx9jAqUYF1KrpYGo41Rk+aWy2pfo8ufaHmeRtprQl/LTRZLDxrrUazLFrmQgHoeCyFeW6Mt1EoUu3C4MHsBhZvpWonC6ItH1m8kJIdd7hAXaFC+7KKb14Ovpy4wIjMjE2lFkCsvam4wmps5skdoQp1aov2aivxUjxnNM15iLv3EeoOCqAal9j20ZM9OxXLYa0Nem6Vv+CKn6UPe2KiBKuBcjmelXEar+b9JFJ/hOgbrOwin02GwypmLFEBroPVyOhWkVHzzhyjIHxyBNDwLAldgVFHJc0v1A28wojxPbSHikjov53FRA0wLPpAa7xVoRQMDKYtSNGza1zVHbQUcHSA32Nz+OUFGLEC0x7F3ITVTUZKujtoPMgJWDL8KDHO6Q0pFlVyFShwzjaWdhRKIrsgYBmbWtAJruwBFI2YdZ0ggzdp4rvO82rRJFlVFhNsAqKr8m1ma14gOGt3RYq6ssjNmgXjex5pLgQw9gQq0zf0mMlfAZw7Q0hg4lUGfkGBUuBw+NlRikdmSwwCEjAwrVmCNV7cPzcy5zp5YqoMpE7vw5sMOd8NGbWPzl9uXzYvEPbG/zmm+DSV0IHMzGobtd9J43AmMqY0+bptu27BdqqEL0qExjGbDk5gTPMIA4yfkoFsYHRywdqIl5pLcvsR53L/ofHyxHPbz17d7PPRi2+tu033s+zbcnTTHOJHGd/2En7Yff7p9/d1vH/OH3/zyT3Xk77/cuY/BMx/nUGi3HO4DkaegkRIi+P2nSbPDPvG7bZPcP32ym2/x8qvxfb68vdzkIAlzRCrNfdvoNM/0cRubYd/2/XZYjih2ju2WRVjyhkHL7nZmok4kBCFY8yJpVeBoWNZakqPOfwaBuA5yp6WVV64EqhX1V/s8kZFZ5Q5csPRKDtG4NvsAk0Y6n6H5UoZjJ2FrOp07L9nedgTXf9Vmk5eNTEVJTa7BL205F6Gkrre75crvtvm9bm01/HWPZI3pQWU3C6ZfLoiXvRfpZigwtY93u7NOENpAQhAzs6rLQsa46GW86qa6THHbz8tBrFV4Es2E8VyKTgCbuIxlUBbE2ovGD8nUZb773la2wabxGGVIgU7rQK3EsQBBpeRTb+krWqZhce7rWlXzaNf+eg7tIaKBvUEHzVxB+jbWIKVCBuRqWLudYne0WApaem5qIAW16zKl0oWvqqYksAoBSFE1hrmXule2OA2XF6nTUaY+zJPmY0kTdyjSX7bg/BJW0sJ1lqegMs2K99SLgtrfLt/mNAVJ86oqWufUgLJIVFBaRaftPdRthBUQXMtqWnEUpBLRqHa4uoi4noGATNdqr0cucYra0M8DFyqHPGij3Y4AbDRoQO5mQar0xmTJokqVOIqZV0c/0e1azZQuSk0DzlmTHmQgeuKEJWgtIrtS5oxy5FVxVkJErqBRNcmqAyIINHdawGevoN8Y6+mi4rc+iWbeEzELKWFvgRrrFJIqsKr2qmQiDroEhkkJK4s6zPM45+DQNAF0GnI2Ox+bmTu9G6HTGjlG9TA7k1twDMfj1FREtfRZbrTdoHls+5tTRERmq7sB1ZQ8TsCDxm0fAcCM7vvrzNXOIBlozaW0orohH1vuxz4ekrn7NsxqRKOZ7Fu+7AwzYNpmSGP6q58njzjG7pkEx7Bt5HFyiISNbctTOnOMbdtOfr3/7cPfH6973I73IVeUBfaxjX17JDSPr9N5/jxffxqGxIwNGjvitHx5vY0/+Rf/9P328pI/2L4Bmrc8xEC6K+J9z9jftv3b7258/cxvPk0fjuOYj+O+IR9fj2M/83jEKYT2o7rMaefX48i/zv/V3//Vl/c5ndgnby/f+uPbP/mS4/Xzbfg4Bo2WQUzksY3bq2/YXnGbmyzj/ecfbz//YnqfwKkZcaa5Utnz0lKZDs2USvqtzjwbYIEhaq+2MQrE8tUNgpbOkS5vY6a0vG1wW0luKVw8iyYLnmUu9PWJMZJaWvrl9JXZFZCrBpykENHWMmCWi8GZ3XGpthadWjyTlebKLprPci59z2LPD79kY0iStTtLgKQixRSyVOMBZOuE5Or5KFZFkGku5chkmYCl7ABJOcvvdD9KOcZo7enOKM3Mzc3pBvNLSMiTBf61F6Gulg8uB1y/wIc/XOMfsNZkeZPKST64lnZD9bSeoyrQvgzLdfLy0OtDWbp6KmNhXCFA+96mCxQyAVZGt9i1K7JhjTSyNQa+9otBUohRD9Fa5/96tF1Lq41U5bdqy2QP6qjkzGDPkfTZaCarG6hcsXhWqEMAAQAASURBVKq5tUT7VIMp1qrpD1a1vFNVbtK06qflV9GosNKeb+sQiQsubQwDi+rWQwgTiyXItYNJH7Q6tKsPwVUTXIEY9nwQrTKx6F3r4TgJaXEvu95XjqTZjfV2M2O0CRAMCCivZW6MSrUVKNHphXoPhIxKuCO9eqWHxRR8Z3G5DbIxvKpK6nisao92kY1J+hSKzVXAhHVNWKBxpKp5YLW5VWE6IysXjSg8L/rIG82hzq9t6ZGj+IW14wFtaZCnA2O7dRG/w1UJsqgDllkMkqzGu3bpSdFPMw5IwUhFKD1Qo5IziayEprXEUh494su6c3OmirdfQ3RyKlSsAiQcZws0lJ6Gu287N7c8OU0Qq8B/wt4D9z2SMLkMqZiZGVlaSDXrjsg8E9AcgiLiLIGXOO+PzIxqfaENCM7QY2Izux3H2ObpPEmkwl6QZsP3fWzfvI4hbvVE3cee53wwpx7mQk5hf9xPQ853aPL4csyfYF/eZ8wTih+P+1/+F2/bu+Xf/PZ+Io+57TNA23wMH6bMAbNXw9vLZ83t5dsvv/pkn+Mb21/Cz+Pn37z89hf75IfmOc/cZnrY5GYbCPNg+m2eh+LL/ZcjJ2if8+WbF9u2kem//Xw7hhNQPo6bcqY0M3/63Xi8DI7XOb771RfXY/v22PagJn3b4uDw23laAjK3cZqlZR6HMvddjh2Q5XEc5HmKp0Szormv2QWdd7GtXyOCxiu4q0deBfpKBEsBliUQU43mXEAVzch0uZnTSjYdNPeGCFtVHkV4aKYIVTWlVoAus6xOD5vZvEY2kSbZ1YxcE11X2kg1C6fMzspmUKohy1SDgMJXdP/BC/NJkWmvUV9Z9IUa1nJ5LK00UO34KmIpA8zrQ0kbPkaJ4ENKy1nDK+iy4oQ3XE2a+3U367vp5jQf3tifhMoAOljp5GtNY0A55LKnT/9bNzpwxR2V+fQg8TJiVw4qLRd9NRPV1smyRtXiY+3DAgk4Og+UYCYWvWIJHlcekgbQUFlae6TKt/kMC1bsUF9rNbTC3AaFYuWZmyzN3CeteMvt4Nft6mo5qihC6dKlH6UItYI0jCamyeR+7YdyCZnKuvEegdjTkASoCw6LicPnl5MgJwis3BNGH1Wwqb21DZVxJ4EMDloPgLaEGeSEh1ssqB9Uxmnb4wFFKlXdQfWgE4AnStX30tKQ2J0A5aRcottAgNXmDIBljs0teqSQuZujsOQVYYHFghaWLt1HrL32kTe0McCSfROco5R23FzCNlovN5HFJ05FZAKKKj5HEKd5YaeICYouGIwcAU0zG0oLuZWM+hpOknKlUwEzJ3JzG0U7Y7gyAwqHvMKZGsU5qlU6CVaUm74bParhYsaLJ2rqfCfCkSLo1VjdbhuQccmLN9d7jEHkdgYrlXS3l9KVNdPgZkwA5g7XoBIx0ck5ApZdnsmcgXHMaLxtv5HVZzz2lzcTFcAjR0q0EELEmHzTi8fIL3nmpDsYQJrMz1TkADMn4ZyeYGTkFpuplfwbddxGP4NsYF0zsX2x4beXcXtsvu/v+80ZMBf981c4t80i8vbymRyGmDMft9svR/wS2lLnkFH5OB+385GDeW7DbTvx8ulGgvvd9u2VeP3jb/evEP8Dffpt+rBtc9jg2Nzt9nb6ue8Y4/UTQqd2M3623+LXv/hn8T/61/9av/rVjj1uu9lw5P6iTUq9kDqxP+bX83Fq/vjj1y8/f0381b/9/X/9//7T/Lrvk/jx999m7I/gA/uhMwZSI/z7P//nx6dX/ZH9y/fz27f9TDuOMxy578L2tr/Ah9xJUpEHzsdt5gmbfgP3LaX0MdxspKdag9M43KYuoaasDZhp5gRgXnnCFeprMZTaNaJxoYKwEizPdFF4MkyRER5lvIo+UaOQisXa0OZFRr1cxLPCpExe1BODOb1H5lW2iuVdiq9UKYYsE1EN+GD2GLH1P8/babP8RH7bMzeW279eow5X7tMbdOUvJi9rVoohWjVRAqKe4Gs7yopeUikY4KHqA0iBVUGjzfOMoFyEV6LSOSQMPQNcjQSungYA1TtWaNvVy/IkcfHyGABKuwQVZl1d4ASWIlY9A1Sqauxy5VVOqHQjLWtcfBXHLwJAfznNxe6J0WIo5zPf5koG1Rkg+ZHU1mB/koqYdk6tMjVrSE92Atfvv4KoDxDKcoyj+Cnm3s7vwmlo5TZqR0gVwy4JtXrm7lEhmeFi0XPhJZ2q09KsygqkeYF2BqPSrJq9nTTzBUPT09NoXdKTmZtV1YOiumXJVKNMa5BxhSJ18Z5LAt2jRSqaU8Yq+2MRj1vEtRa3eH/KajZtRUtKzJasAKzm3PafbLESGx13NFbNVvbEGnAtoIRqZViqNnCTVegb9ZRSVHVoqYZ3XNHKBWGvI0goYlpmdfzU1acQWfKONS604LkW1xQdp1WpjIQyh2hEzauElO621qmCIhUakaXQhpyPc24Ms1GKKSjiUkVe5l5QkGhmU5k1lbX8s1sWTMxEzI0meQ4769IgQM8WKqIcMC2qHuEMCEtRAC3DU7QNI+d7jjnPgEdhYHHenQnNzDhnZmI7Skv63CgbaeP27efbi4YdQJI2kka6E4Q8WuWnura7J3zpzKsIZNSZnjVzCXK3x+k2ajMGMeswcoQ7Mr3ADE3fxuY3pdt8d3d/YAAe4SwB/zmmOxKIk8G010+fPmn77nO8vOi7l1+9bf757dTt3+wziX13cwGY55zn5q8un25pytz2GW+Pbde0L8MfW+6xv22vTo/bw2iD5z543h+60+8/xbAvP//8e/3wd3/J3P/y8Wd//3vYO16//6Pvz9dPL/dtnp8tQeUxfdyCw8zGIPZvv//BgsdBOc/jkNm2+U1p4x1HuBmnbJ7Tc56PNN9vt9vAMfMxXcNv5sM3H87zFGxTWNLJnAuDXB3ipVxQHjUNsFKZQtWemsBBGqHhJeGWABDi7FlKuP4oI+eG4qq26em2lYwuMWUD0lo0z/J6yfXKtvpcKcCELDv41kpAJEVxRSFVAUtNHKpxLFBXwbDSO3SXZAGA5YKs9a+tcvA6dSuRLCXVOuo1IaUhxqr6mYprkeoacEcRviYcJc3dBGt8lOZjGKQaqSkDbLiPMcbmPnSp1Ju0Pojmvnu1rHwACy8uzopiuBa1nFOV2QvUSkEcDc4X1LFSZGFBA53M90+1IhEsdPj6XltYpLCqz1CNYqzTzavwWbBAY6Jr310Bd5nBjoD04R76S81NrInSy5+vAMGKMLtaejsRFVS6IxW8lQUuom6xq8qcrqvQB9e/hEieocaCs68Em8+6L54P4lr/xlf62XyU9a5ie9oV27U79/rlYtU26sSGwet9FxxBq4NZRHZlMQzzmiVbgUTlbU8aQDvUhmi7+0ddkTfWSBfLdfYvHKHXszDcOkvX/nqSuCmyxLnEOAvqUO6ZpqwWQJjAFOFmrTT69Le9X1RRWFe14OlFAa37roIGdMmprG7iFRsLKcXZ08YScy/90BWfkcZMOlKKTOV9GMlF7a6bitbF7wqxambKh20+Jvv82bDWZq81bL48CdVsXmoKqKL02fzCbg0jDZu7mYxuDGdawuMDxa9s03yoNq4T83wV4KbMOKdEDMNmM/+TTDC7IOFG4/Bt//ab21jqhrXo1VtPH4zKwuROKdPdjObZ0RWUoTp1tG5SVIYKns0QBc2ZlCdTMmVssG2UIlMEs8kuCZLnoOMMQpmP6YrDifluU/7z7378fNvuj+N83I/z/ktAZsDQ8BTmLMFS9By9eb8f5005CLNxRpoXzSy2A5oSGMf9zXFmZqZRkeZbDn992eNlhEN/8h/9Nz9u+leP+7/af40//9f/LP47f/nrY962rz5/+cRz7mOaY8pSZlIk5frdhN6PEz5j2JkCNqXs9lWecbpVS6C5me/TBgfkLk8b0+ikmxq4XQe5XVtRVbCqfY21lDc2PO3jFRlxGa1SvHiGrzTrZohySACw7UMtYPB0zsSVe/YXJiQUCaZfnKvbvYHuNo2lAd2AL/7ARJRr7VTZLbvfCmBeieeHNFvPpOkD/6suKdevFq580Yev5LjOO4Eq6z5dhdUQ+XY55m4+zOiOmnYtY8nBltfQjJyzaK6ystXbDM3Kk5dcACy8yIg9WlyJTk6W4+x7zOfzqrvEP/6jDyzoq1zMaxETH96j9Zplh9mVOtrKdjoTqjpgZz5ci9cK07ie1Rqct4w4O5fk2jkfYoi1rOtpaEUUZDbLbvnLsmdLKpTro2iOlF9DBNrOP6lx/RNbGtHlUVfBr5/zGnSwAsT6zmfCfUEAV3Mri7i3tlIPsOtjZVdyuVCK5lcvdld9A9eT1SI2r4dJ03NlpTU+YZUJlv1eW+e5urXwV/mlVaeu/veOxcgVVGKR8fj8eF0RUtmI597XSlTXZUjqScyCiGxR5usUPXGnDjewTFQFWSgSQD+ma/U/RHQNiNT9lghMp49SB/C48J/6gJLh6Dr7PzodK2BNSQqCEdnPqQ0GaszR0u35aFQuG9GWSdSyO/14JWQ/7jRUn3fDN6d3eQTXZ7J1/2psc46hYp+sSNhrmAgS8mH/iYFuVsdy9wSI8enFpeyylJTNsGjWSNGs2QHp2m61DmvnWE2vWktjY/pWY4mq58oW/70K8YB3WmFG0M3Mx42vt/1G38y2NKfxtr+4j31zG2Pbdy9Cb01+yON+RswpZpaiC6odiQtyHWYYFAw4zth6z47XfZcBOidKlk1VFXGjmdyMyW2zffNxe3nZ4/U2N6ff3v7HHSoAtAwXzTiC+xbLzWHs47e3F/wv4nXsgJDhShwZM6szsVaCAIw2NGijrMm080G+7xERzBpDCiChSZCWVzYjtPLjKvBBy7Z1nF1i5M+Xt/2s8kn2ueXajlXlyVRNti+CQmvUX2Dwet644vv17zq0KyhIy2W2cKWyuEwa2o1cFB7S4Ev3uWwlP7rfVeHE9ZvlWC+Drj5QWnZ6XdpzWXoJyI9uZ1k+sdQXOyIwb3yaT19BlfZ9U2GejuuyoB9tQzWYqCUmO8BZVnvlIfhwGbw8nxot7Ycljrw843oibPkV/OM/UlOS1sOI6uJm51wMZDVz5HoodVH54VnmpWBiNU/1mUmWtS57+qEdDM0PWJ2olWiALnGoUhISoo+B3IaXZbo6tnE1la+HVNa+O9ArRezYsR4xs4gKq8/UTPC80l0RmYpOmCuEJBZRsM0Ayr6VgMb6qmjEthx95UlXPNcYAJ//3+vUUqpmcQUvQMY8/ZyS1EyjijdpPtE+iSLMivvWIw1FdNefedA3QNRwuXk1DMFMbkoMmcHdbTBtjIEV2ookzTmC3XpgZl489SuqqqN1DrIQb3PjqK52WYbgFIu4DhMGr0pqfahR2RaovGVM72NaDwUpRUTpbmgdgxVCmMHSo4bNU2qFPiWmofpSc4zOXuvGlyFKoueii8wCAtmPEBB6hCUEmwCbrkbrXokaGrjihOqeoNESVse92gF0aSu0tkUGcob4qiMVEuac0RxNIiKDsXnUufTh283MmGfVrxM1ibIKB6ghztx0f3GF7kj/cTymYTZ/H8pEhrTlhCndgIxjJJgnTtcMzRXwWpypiFRYSXnJB8PSiIGZQcM5Y6uZOTGHS5nzOI47Hr+8z7uEl/k4Hj/+xC/H4a/zfr/fcyDf73q9R8bjl/ftDNrX9/v9ds6MpNPMb5bzTRnbOZXgjHlGpMXMiIyQaJsDlvR9TIWl4MQRuN1cnz6/wrYNbMRVko0ywRs5adtmiWGUvWw3RH79n1vmPI/z6xfHcd8yzoCEnDlnRs4UdMx/+Poe/8uvP83HmaOdL0HTGRq3zQpaKArTQ/PdvryfE+f7PBUzf/4uIsJkZkOaJ7Ja1YZaN7aimLIN3alemErbYPRZrxCyIvvVmVl/R7jVlBB1rA/CZCxhnX5fYlFCChNtCLhTMHUyZkJaVdSSSJic1RW9CE9S62Q2/5XoLsm238qJVMf7SxRnZa4dkHL5hCsXXtqbnQG0O/zgkoS1ELQmFpmX8qKxkaVnsrLICzBSJ4QT0bkVSJqPbd98Gz0/8rLAy1PYFd5cUX3O8wh1pYAklzr3SnmeadzKGLioxXXtFU8M/P/70x0vLNp5V1exDuWCB9ZK9HqshKgIYB8g6BWwrcG7RK4o5A+fRyc23RhcGUuDkvXhlUlixuS0QJoEJi1jOqcyo3T1V2n+Cue6rlx9Rxnra7UY0y2zcYUeC+wvFY0sf6aGPjs3wXJqH0GV60mILYiOVjyrB2l9RLOakdUKjLX9611rf2MRB4hkXhgMIEVkRBRxah0WdNoIYxVP6NG7AQuwWtsDqumBjZoubKPBbPQ58vXwVrwLKUfHo89AeRVzrimWxSZPMwNNAbnFnoFQms+H4E6Lk1aE8kYjPIvzXKlWZs6+bFPmZtDq1SpRNesDSAszVjetbEDOoDF90zQiexIZYZalkG0feOmFgNNabEdAje/IbHY8UUV283oA5YotrQ6G1bTcq4F2rYgkrraPa+dtrG61Ja76zN/NFYUep1F11YOZBJwq8VRuW41gj/Og0ntL9BbkMPcxzpEolBlVuD/tlwffvg3BaG3o9TxoIIOQMK1aNbyau9Cli1ROZfECVHcxU1vANNOOY/NjIjIYiZMZ5/3YIh7zkdPinGcghOP+9c3OPOc8H0ceOWcojvt5ezzGeCgsdJ5xHKHocIavGciICOfNM2H77oE4bGZMZAKpmOcMRMq3Sfft9ZEnbJ5m+wOWwoZznuecMUJIRMAYue3fBMa5bW83HI9T+eNvc3Mc9/f7/R6fXrjp8+tZWzDcbvdEKCJJfD0OuFnMx4Nzw9hgZtsZON7vR0wzquabJIa7nUVAiZAfcZKoKFoRxzsUk2kMIZhRDcQEZaKZxxJqAYyVn/UZphktVpN8n9tqv7Xiy7cm/HXWn2afPWG3u0RXUlkHfZGwKqKtNqVuFqkENp8fqMvsY5nungzcbLHqAQqSuUabkiyFl2U2OvOykpt6puKXZeHKZhZw1ZBXnau+gELTiqD9zFE6jsBSkVAWj1YTMM0QkgiW0okyqG1edq2/M6vrpM+KuDREMkMx6SvMSEYLAj8z5tbKwSKayK76psQkUgKGrR9ez3IR2mjQMuq2nMRactZDKj+n7FLrlbWWrWcpG9nwtTQFxQkUWnL/ojivdS8Aa8UT5YovF9IZZ2V7KjeKJyaaxYQlG3Rs10p0q1LnWCWK4p2Jtuq5rky2r2WBApmZUS2nrOpqfrzgCxiRgIs20eSiljaguMZXIyGaaKhDUhxGswsiNpl3U73VY+Ba0nWEVoZsNWSWTElZYga4RuVW+abHBeVSc7gAnUxlzBnMgi1WH6CVAoXOM6LyHmb1vDamkUowjRmmwnHVxHklqUTCEAJEz/R0KSB5nApMQBkSQrAIi3MyU2Hd7aVVV7mQt0ytPq0VILcPW5VWGqpT0ft51QuzGQxdcTP13mpRIGQEXMrMwCgmZANiHfJCUEOrZnYNpeYz3uqO8WKwtUHpDaSSLEtTDd7McEBzWM/GXOFMmjrfq5FIDyQsCXp1zBU+VkLSBUE5gczzTIdQDD0QZABjMKPrcknE3CxBx+un7//kZXuHrqpejY2xUhyx4YclxjYeCm23zWh+ekUlVHDUrIr0BnTmFPd97Mlt2zcz2jamk0qKx5wJxEw54XBPwzYxTLQX+s192LCxbeB4+/S23eRuvo2X29jeXl9uCjNIZ2TaGDlF7CGG6HlmGEj68K1GxZHKKaeAeYTOYyof88XEsblHncmsHkZKHukoxdLb/vr6x//mj+fP3/zp41e/sbc/+5P/Qbzcdh7by8PcfNYEZCUHpSKxGxkn3eJ+zrBMo/LYAZMx54zal0PDfBtj1GCycXuJ/dMn25XzPhXnyZmYQonuzGluZp4STDUrkmvKd2aqBTIqWesCB0nQ3eSSzAfkhBmsSOJFgl6eNBtf6yDbbAkOXF6u6c3tsNoxUhdD50q9hRIBVHpnvKrEgSx3zutb6mD6GDJ4PSG1w2j7fmHWq+RVdZWnuVtZZ+cXXJyhhr3RODWWg1xnT52UACgDyeWSCdJmBd0i1qRagO62YPSnQ+K1TBcwTZrRfdjY3EseS6xpve2AO2Pq9PJ5BzQ99Wo7+XpmwOvSpeaxd77UKHzblkrr1trpH4VEWmn/5Zw+uGQK+CBDiyv472nB7RvWui3/i2WvPix8+Z7Ek3hv5unFkfyQ6AuVLEmUZWefdLBHrbEVHxb0o+t5Vsa3RnjUo6gziJV/PW/2I1zfP+m8ilc4Iyzu3krFn88V1Q6jvuBaNqkb+T7krSLWBIEGTHtmdq7PzZ5JjLbWUbWekupo9KQQGyUQkZFMJWBZftFqmkESUTrKLc8BtCZ0wWHmZoEVoqxDUPdeP3WDizGz4xKOCEYKCgPAbEXEZtCjK1sJa/537bXyxYxliyKiEFoAiphRAHFU1ihBYXOmJTObY6ZCqUqHVplntiMikqocC1bDvrXWGQSCTlzM/49ci3pyq5TTYXhvWSZM6KJHJhFKDyqoBGYyYzcA4axIjXDzwY0F3FmF3HXJoBNdxESCgcjpKukti4SZWOOdJMwo4B4osI+2D8ncb5//9Ffaqlpj0YIxRlrxaxrUt61iKHNaqUNW/CINh1LdlE0YYsJK+dQcZ+ZMcenzy43cDJaaYM5kiX0phbm5uc9zZhgf93PoQaVFCsJ8F+V7xjBQ5493/fy7Tz+/w+f/Q/KzJ4hbhdeWmUkzL/bZts3ArpjueVc8znlO+EZw7LZtw0d0QSGduvuXOB/H4+vf/+c/399/83fx9rj/dPur/+kvf/O3j/P4/OWXXT/+YJpzRpzdIER3N52HnXHiMb/g5r6dSThiZIrDYbfhEE1jDDg3pNFcmhFffrkfX2J+/YzzfOgxcc7arxmCOYg6Jmj6+drw2czNru4YJPXAQTOaLE3uZmIFkE1iL/e5cgOw+GxFa7yEPMtYAutNbcn+IB8rzcAuE3KxZhqgxToDbfPc0hp/r9+qrYe5UxdPpBHHphb2yflg556WvwHrNixciVib1YXMleFer2ULCrW3at9DqDMamFOVtbSlb+M5Z2bEhRUHaREzQqihTmXCzcJAyEOd5FA1NRsVgq9UfTmHp9t6+kZcNJ+lhLVuIRfMWheXSoJ1mttdVNohU3XjJKxI3TVGtjtSWum7rZOWqRKx5ENrBmw7PAqWtQ3AP0iJO9TpZ5EZzXqFkaiFtFZswLLbKyDioqE9Ay30YNj1s+sR9F+Kqtvx5zTas07cNrsT5az0Z0Upa8egGQaNpbciV3bHa2SYVauPLaLRcv7sUb1Ca1xoQduqoSVqz1indPQQ+cicGcGIcIVizg0zYzZ9N66NfKmWdrRrsirJQhlAYS3ZZMqu2ajyfYPUk5DrDKclmZm2+NPramlmUMjdSxo7lSwVFjslZnG9Y7HL6yQ2sw213bJSV8HM1/kFzZghZMacM6oGGJHznEX4qk4NJUuqNOQxmecJRbgCllkDe6ZmKjODjsVoiQwibHVXddiYGTmAkmYtfxotcFvWoijdxc0V+Yw226qV3WJrgpTWyzmtd1+umycBpEkcJy/hg+6RsCY1mQ8fjqRC5vRtS+C4Ak93d0PkQp5oJhtDb5umhn/+9Z99+4tX/+IS4W/hL3cjEoMpH9xim8W0HrTOd9xFNP5erBqaI21uxw5sdxDUeb7USdPc9xO+3Xwzm1BmjgTgnhrk9mLaKgqMhCW4gy9jc2jm5Ly/x5zSeZ7nb+Lr3/7Nr76Rj/w6QVecfjNubjZOKxDRhg9wq8KWGc80U5LHO+I4Q/nYfWDfhjuULiTdhs1555339/N4vx+KnyP39/f3OkIZD57bfBwvDidy+vkuh4PGmI+xEZ7YuN98eGTejDzOzPGyP4hguk3QNxDu4W47J5Vxv89flHOiUakxKAuHfDMvTLiZowuouFTcOhFtc7rckFRloqD1RDct45mOC0ftzFarcZHVjdFuiwuIWfTodmoFIaWSUYcr6lUQMsE1+HsFqyWktNDhApLYmRLpz/bipxNacsNYuNaV/OTlVde/bQGaDaJenqG9uRpntiWmcOGFWFX1wu3dzXyjCPekoQSGzd19GOkeZhdhi6sOjxVl99m+Eq/YChxbx7392bqbFaV3KvqBoo0rYBjrHi5Hve6LuNqSeLEYLhSwI5H1hQX8ZYk/ZK4YoBaL9sQAVqrURghIZHHfE5RYI2J6hRf22ktvNJePsYHpRzdlrYQSHa6vT6qd++wq4VJHKlf8ES0EAGR0DKMnkBFg5Jq8deEB+fznRSjDuoAVrzUMut6kIgbPkJgkbVg37kgZGSHSm7RWtIbIauNFE2K5iNVCxckZETPWTgW5mlJbQqsQkZq1YUu1RqyJI/US0zWtWAJJR48ABozRFP3at95wb10jWXT9BRKtu7wg+HbfMxI0pMJHhSdcNTKIWJzzFpWU+qFXZhDUVLeVEzJPsVrGVtk6V2MYRFuZONBla9aIvWRYuw7IUSA30F29sCQVgNwvFqQtBKPwoBJZw7UzgAzW3K0yCI61wQkv8Vx6XWTVNoyVgxQFMSL6wNYOoNlgsVvcvOddXAloFfiYzDlhzm2QxlmTo9t8Bc3GcF81p1oEG4LHGNjNbWxWzcx8Ulwa0BBSzmJkC5f26DoabjWyrbCU3hK2a3NDpNJ7pqQRM0RGTXXPzBtSqZMEZui4vzAfvkmmgG1BG8LpzPOwgLlC1YBM8237/vz0F/+tb3EM2M07nD0TaTbMzYZBGXPCMgzIMx5TDj34wmH0feR8T0seaKRkAvQIAzaZNGh+e/nG9U8O/Yu//LX+9M/+R+/ffPp8iLDJ7eYAzH3oDE8p8nzQ+PjhGGA85vn1y6TjzPu208H8+iXOL+4cvI95nueMjDje7f0EPf0WN83HIUBmnoMCDjhSmpQ7Pc+LVdIbrXWYr0SzHa+imBYdCQqo6S5GMI2EFSNbywEbqu99+Q82FkyzuJBptNksI5h5ZUd9ulmJxSqIErqoGst9lEVmS2WxStfVdWVMMDqUWB5JDaGtrGn5zGW0L1+3jkJ7jh7g1O2IgIDkFalc765bRSdEV9ZesctqCa1o1Ie7zJTBKzPPhEDnkx6L7gIcY2y2nUSWOhNAw2JVVnuZCbbAgfYQrdtUd2qUJcDBnsLINo9AUVTq5F9p2vK3y5te9VhAyLSlMKWrdYvoFAFygbzgXK0LWtk/OkcuyLFmx3TIsyrzRdxrpmvKEhGziiPdIIMucuNy3aKVImrfTNFQTUqu2q/LqiCy4JiyuivIoHlPMKxt0qr8/WR7g5QHaUfM1bzFuhYj1cMVAJo7zLtvq2xs2rK2XMZWLTa91hglYBGs0eBZnqu2bLuxZC7+eCVcIeSckVahrExlXJcTUaqUCVHzYaiMwiHxRBDq7xkE4wPnSgYqg9enWw/6qJdDkuZJIaQjOv5ORsIlkKnNQcxC7Qq7qCal2uYLUQL9ZDNO3ODmFBLCMLbUTT80KjsONdJXP4wLg5MAjNaQd7Z5UWmFksl5JoKwAEbKKmBxwfKYUHpN4M2YJ5gqDCaLFpbPTr2ierfDBESWRSycOah6cF5gaxFliAskJN1o6T5oNViE5q4W4wTNfQwbY4mW0RwZgpmnkXIfZsDEizGsUwsab/vG4TYf77djgrIMoFYPcDcY4E6ZXNwHjUac4VUSkBCZCjEyggqk0ZHAsHfjcbO8y03k3D0Bx/7ODTm29DHTXE0+xAyMnCoCvp1pWfbbx7y/mMI8LTR9w6nMfPz8/vP7v9X87ddvX8LD/tPbdifdxxivuxnmOR8n3t/fX+fjNBCRcu5w7SPADbZR29sbb9uenoozH/PEfpzvOBARw0iOkT/fJ3Wc5+Oep//d/4Rf7ucpM5Nt+37CPEPu/pIvr2+vnz/Bv/vm7ZvQ46d4zDjPecZuwrjl8fbNb3OrGdOcevg9Qo+YOW7bfjOl4/Zmc2Qy48F55nGCVhXAsVmesPMDaorLBl1M2naEC4YqXfBQTsyI0uCo4ebMKQstroKUVvtdUkaEUsGMCSoQNZUzY0Z034FQ+lCrvhWRZf2ikiyy4PGFSmbVwJLKxDWWrAJEMqv1IdnzFLSy18oInrhzz+ItqoUuyav2YboYSG3wLU1reSqSjbDyIDI1w6gZrlYevxKhSoucLYVZObsiTk3EHAmINSioa8/Jpz9tiNfH8LH78vVleVePYX1Xxc+sJ6dC2j/odbT306iikVa80Raq07uVTPegjGWbl5muv9eAge5tWcRaVA5WmUikPZlB/fXltJ6BCe15qaxseQVDDYuq5gKs0IcCS7LUzA1PN9mZhwxPKL1TabIB9Y7tOiCzahjvlprFPGD3U9oaetx4DRuhWXjRFXH9QfS69tgiEOb6erqvpqqKqMzL718p+YpDywGzeFyAcjVn1UvacddeXwoJiOyx2ALKlfcQh4UtVyKqZl2kViJEdPzRgVo//qqEr9ev10kN116aGP2YjEDKIBjIpLkpAdGvtDJpDgNCdJdDMhhNoktXW5OPbWwYteXdvOT9cqFqBWewjUVFVgmqlEILIzN3ZDEEF/5hhJ3W3VOZJihLdRO1SCV6dcXXUM55UkDoat1QDxRaaN2Vq1b00EjcgnIqRElxDWlmH7Q136zIEczKzVewRnPjKPxOBo5tjEF4gDQbY8AQsm7NdRM0Z6A8thmHcfj2nb1Sc38cR8QRXnT+j7mvvPZ1TYOxTfsBcZg7bAkH1aa95mcRtEFEiZkeZqIz00jlTGVYwuw2trHJBkknAvvpvrlv+xivNxt7ItNclu5227eBvOuuvN9IGs55zL/eHn/73/B9ykbz0UMmKSbf3+976v32/ogjXUjANr1pczrPW5znnY+piONRNWshNTGguY9tDMEMEdmaIF8fsuMR2/j06199f//2tp8b9L0d+nST+Rg2trG7DY+c+4uf+XhY2HeDkrbb1/HiD41Pr5sBwZTpDJjc/QaOT5934HycX+W/IEyE5owZj7tsyzwTZphxp8UF0JaPyJ4QAmGF5VjpU8fGSkQCigrxysh6MSeam1hvjYzwThGQSMtcSWIKyIzIZKFuTZTtbC2KxFZM5tbiqDp1xb5tvrtIrf5FTTtfdrbt8tPxrqDiD3DIC/sug904djvtpuXq6o7pPPBy4NTKxLh83EXw7Zet8KYEsNerqgcxYrWcEGyiGqpUVunllUFnVjEqyiiU+89YXZJtErDAi6brdDa5tLnKJaQ4tMz9x0eP56vQsH+yIdCnj0FZ9EbKLRcxwJpvdEUsi8x3+f/eRB+KFCSqZluDoxYVDx9W21YkWP/o3ECdzeYT+l/qAZdPbIfKTj6ubG3dcUds/brnHshngtKLQYtn9osnEI+1L56gQ3/WcwdVKlR9BR90ONvFmfXchtokXW1f5hz8g8VbsCufcG+nLJ2ASSiiOGRqIlpfBbtAj2y+dHnfXte13EapsJHiIJUIFPulEKz1oblaFLupx67Q10gizTKTCTOYmQaTRFA+DHTHRA3bScJk2cV8gjQfNbgeAN29uBCo2GehGh1MqCWEOlDqAFzRcXCNGkOHoN3dXa4ewKU3XyHK9cdQskthURj5s/6zcHYoMyIycnW+oROASqXbMYPMAfoDhoRVTG5qiwVJQUSS0umsQTb1FQC6X8FsG1TElFnadoONwyW6j/3VzcmIThmsBlz6uL3y7QHk9nob10AUdDcGMkevgGRMdzOP0km1Mei9QmYyipRjadAqMRA+d7rFgIjIVrHN2G8nfdvGMAuGrNo/zGG+D7s5rAvnMxlTZtuLb5s7wjedDx1n6HFM/Th+/s1vvvu8HdzuZ0qBtI2g3M1LqM3NzDIViggEdEpGG/7InJUeiLSxVRRNgD6MjLXVzIfTM2R5Bg77+adPX7Tv8Ro//fw6FVKczox6FpRk/h+2oZsP+zxIZliCM8SxD1CpvPFEVOuEwWgvG82GS3FknsMrEnQwsEXnrlJ1DhFq3cVi+fuk9UCwOhnENcKokeDSalzhPeDavEjSncUsh2fGKmZcoC/KStAafeqXf7SM+mA3yhl0h0dzUJZL7Ze3TSKkbD2Sqqj1oVE7lGUTK5bvwOHCUP/QyTy9U9/UMrwf7W3v1ecZbwO9rDKeLzNXoFMN1uWSNOeaaI6OmqsV78rr1ryFdsEmPh2EVCh38sMd6qqw43LHyzFURgxxFI/8AlRxge1lBNosLQj8yqrRXDFeFeqrnKfK+Nk9v5Jyai3xiiWeehUq/PzD+j+vsz5fMqPXXGx0LlO8GxbxINNbOFGEYkI94AFiPiUwCRtWsp62+TDUEB2HbFjWPHZb1r8KGMSaWgdmVqNelgopri20tngxEcjnjtSV/FY+Cs8OherW2Y83RFWPfKtjFZmsRSZXtIjFNHvGjzuyNXSalNqqxZIi2SiL1jO6PkiJiMa32Sct0eSJjEhbz3+FZFroCkI9Rbx+mEXIWBpCaWBoZklBKMQlal25Xk2IgqwmEBhc1ZLlkqEysWd6KcMqc3CEl+RFjd4lHNVSWTLTdtHaVkRxHRYkPZvAXAqw5ugqfBJhAhE5CkrLpTx73GnwwkGGITJARbSoELJWKLtk0uvXEAkbTLcO4x1mOUSRKR6+lQorE2mrWb7uLpueL6DF7hZbsdJmo8lT8zgWxZA5Y+y2DaSbbzTA3WQ0215i24fo2wBv1k8UYE2wMyBRLpiG4QSHjQxIOZubrphHIhFzmCxAGDDMc8A2o9sYDx25aboZxuYjdppvmNuwR3z1W5jZgI/J2xu4m9vjU8p9s0+3u8fbzTBfU3TePlHcT27CsO3B784f/mEbL/HX/9l+EtMzNc395mM/NiLhSjeP4aRtw5LkeRcnDdL9h/idZnCDYzAxgCjK4KGcPt9P33774xffwnAofYs/+jRftxvduJ/+dvtq3OakpvkYRxgP6Ze//rf/5bvuf3X7L7eff/8V+T72pHOH6WHzMVKJceKMI6TUaUhun6TdePt0zMPUcnoOhjady67LLMyszEXNqoZhYW9ZEa1Q3UGXGhEgybxSCyUs6XCAkSoQsGPo7IpkDdaKtvdFuAWvSBDPBLK+2S6BOxEtswWsNsFL6ICGi0rdHqkyC/UltnBwM2iKS7Bs2ariZRdw2GheMVY62r5O9zNTWv4f5agMMbri1jz/dt1axqD3fyUr9fYu23Y1W1J2krEyE3aS2Q7evCWlzchRqTnXN1QSwObyrHjhSjz/oI69PPUg7PohuKp510NQ398CA+qyGwzAcv0FBK5AoWZeWDvpInyoDHkLQzTCnrRUoW8XbqArWmnLCwCtoYYULnda+ndUkbOKUdCslgQaLGwYdU0QhkBKBgWrirG2blo3/Ho/CGRG0nxeiWmJcVSNOBsCX6teroxkp831CPvqgBU3ZojBnrbUUMcHhFprgZXd6WfrodW2opJQmiqJiDiD82QNrWvcGaorMYU80OHzQkurorx8nLcdJpY6iCnl21xCwDRPgOZXc0O5FoNhmrura9kdHhc6EdVUR+MmsNL9KJ6kM700NyxhtJQVUbwGGKsP7BUxeq9kD4A0R4igh3lWAtBy76Ulsa6jfH1hqwLNB6GqUnFGZtak2o4dHVlw6eIDGGkYm8M4EACZ5tlKHaBrWSpzAEYXUbNiKogJjaQlKXOCUnoMTanmJ2w9l7Ucd6nhoezbnMBU0piCuVnvraLWbCeM2Jnj9vLq9BGk+9i3TIWO46HNfaNX/dh8Mww39xemIgTJUw4lRlCwAcsa7JIgkF464N13vaokboboU1oUCmm8QQjDZE6kATYgWCJz85cs7orfxia4GUPzoIdefBsbRjIJ05zm45ex33zY8M18vGKf5zw1Q8rHD/HpV99vr+Dt9pp8Cd9tuOaxnTMeGfdjPh7vmGnK1OP9/Ywjvt1HYn65zfzhp2+5DWZAiqAFdmNKeUrGyPH+I//6Nz/cxl//9fH3v//h97/70//77T/7N//ifo7bvuH3/+G70/H+bg+e734+kBkeYx9vf4Hty7+4/cfzu++//RzzbUMcqZhz182DZ27z9JgZImwDbpsXtWxOz+1LgbvMVE4x53G6qn1wtRiCUo8FiyYEV4jWPuSJuy6gpgpuYE/NdgYN7b0K7MorgKZFZ3ZgUzCp6k9l93YsD6cVr1U8a7WlC/L01ktRongdDWM2clfdLlxM/nKuK5dEXge1zLwEIOOZ814wZCUFV0zwIUW8MuXliMpzXC63rUGZYAliLJoylHI8M1oqSAyS9DIBaKQNBdS3CBjWYjx9VV1TO8hnGbG9ZmW6JhFWTaVcmONaYA6t/L/81R9kwcRCHtQRENdtPTcArowP1z/a2q+HubDLFXJ0t+9VjMIC/T/ADctA1R0KFRpQqNFKNFQhNcEFJSz6k69BQ4mm6hX/s+QtkA1R05jZZjNRA2wL+2+tGLt4v8uLsSTB/hHAsZTPkCvSuBa50qC+qWxwpOQNnjsH1ho4BjhrVEdmFftSMOuVXOfhidLkQct+Mub1pAxSxbg1dUPCpYyNPiA0M4pOk7yy7rV3aF5b2HOBGumkrekQ9BpDVhori7lYZXQ0XRijRaNoMKQSQRtyZkXyMQkOXpyoBY3kFbCvwCTayAA5bR09OgA1bZ1CypLuWb3+IAsSANFSJ4Uorc1VVIzl1kxu3rVU9sao5bEBIadFwuZ89dmZR/YhrGDHx4Zo89eQT8F4mYDY3zupk3lIkUztiMni9BWKCkUm3UVsNkEnjD7O6tUrMDg1OWU2qqI3aT7mGJ5tQOijMkSa772lQhQZFgmR28hEhOBDrKSqEM9OgdIyhBNF/roSbDPCjQzEleQjxyMdp/v9680y9f7ZMydinnyZc9ekKc/x8s0N280j4bnfjvNhR7yGTVgGcr6/y74of/7u55vPU/efXrc5AdrNR/wat8+fbp9so++P+VWfql0iOO18f7xMJKYY6ZFKiNhPuKjwN+7fxOP7P/vjb7dXT8xQTCY0Mg5MHTE3g+Z5zpHvBz9/ef/px5++fmNh33/+5Pj04hv9zZyWGsS2Uz4cftP2zR//kx+SL6+3X5/fvtBj2224jxnmNVrVITEj4pwxZQnM4/24H59P3O5ZxkDzPHI+0qQ5QZkjFdmGGpZOH2mkeyYoucO9TjphLVtVnBs3YtqShKUh5Q54hb1cFFW0H6+hwTSzkUKWfBaWEtYfaFaUuVg+bn0KFoGk+GZPPFkr7u1zxvWlV7JeLxR0cZMX1qcCBbvv/6l2vJzR9Q257GqntOj0ecFzvHz1M4tbrmiZTRWGU9lZibtRyqiqdV8wr4LblXb2BelKQgK2kC4tN4UF9aIm5a6V6YSm7mCBitAlxLEWqHL/tYQXjkfiKQ5/eaTnO5ejrHR/xU3AEtZYXuzyTP01thL8XI+Jel5LJ0+F0vd3lGBS0ZHVMrpXG9IF5mP5yMZ6nxB3KedXn8VylShf37FGXk+qktgOWp7FkfIaz0S9+OcrDez1WxFnVc7ZjLTOjvvqKylrl2MdHlTBRAv5Rak5g2ZKwvJKQkkSvsSeseqFFwiw+NmFyXbO9qSQCVK2GkYRvYqDBXbYp1jiWAWKuvVcpGoYrNSSfwA8XdF5anZAmLyCPoIlomwAOagasVbcrUpU88OtVVy1okErCYI1oy0XMl33UI8ixwp7KwImg1TmUGYz+9IruYOZFxSwDvRZkSqePQcGoQW/s1G+elRJyxJzNoKKmRK9Jbiv42tui9cOuiVhblIrE6+SXdcG3IxIpjvtoB3MHDljZufxHVBkxjxfas0TiunJiSXONuLmmpmQ0ktixsMw+cB2ewMC0dp6SMGgjNjMNK3ATtuQkoa70V3GKhEiVRCCwwOixIwUnebmY9uxDZrJzGMKJsytImLLOE/qPkoj7RGgpdMxRYPNiX24b+45dyHnfeo8EAGckfF1tzhmxKDhSMQpTSnNvPxFJGzLoXEEBgWnzKWZW47N0t5uzPt9Y01RIgCZj8232z7IYfun+Wf/+qfc7F/l/b/7l8fXP/3v/7e/++/97V980TZy5/nJwOGbuRPMKOVxTo+/n+Pr1/mLvnnc93kffrrNM2xXano3t2TjxwlNI7cNNwdjztMM52GzSgtI+pzJNHMwlulWtgoKWWhpZ46rDpvBNrKq5BJtVdAH8Jk1qHMkee0xrpcAANaks2UfnhqRK+Na/gvLCWYB5vE0HGwD3/aviJGdexetvqasXwlZX8VybEBNSVo/6yu6fGlX8rDcwPWu5X3W/S8Lx8tdtHkus2wXo601Zcg1jm+MMW5OrwN5JVh9rbqsWykzLZyOywxVAtRJ71Nlqdd2XcmHwliZZIrAaH/7fPZYZqMsFjrk0Qc219Otr9xbK0RYOVqn5lfWsaKED1lurWpHMWWfZbgm7baBZccv/fJnSFJgDC8GMZ+9mhd3qju6ckUlSNaoolRPeC2TiiakrlVbHqVypCf2mnpeN1ZyfO0DPh9fPV9bf4MFLhxg2fz6dwkqFg5sNeWmxqHXJzxjTzzDxbWz6giUTkQ9kEThJr1NqVK/WB1yuhYfS9Cy77k5WKAEs8qc288RuULHfsTJKHHi51HguqSeyUAzQ+nX1gHKulCzIA3GYcDVONZfvnbuh/vr/2+yLwR034N6sy/rkHFpUAJAQmElBNac/tpKmf2jmg3ZmwKsLHORjAiQPuoGM6yaaXj1QhdawQTIRX5T/6twpgWilwUSkR4BcRg5DGbBmu3ckTXaKSLl0eOJaT29S6L55ru7gYAxfdvMoJGCG8eWCSDkblHJSXcmDBnCmfP9Wz1KgV4qZmux6g0ZqgZ8ZDK7h77gzN7hqiErpdndl5pMy9ltKY0vMmOGlMPcfYg2klvx8+exT4zzLsUW5IPInMfj3IwAN+Yw5vGQl5KsZc7HD7cvP/709dzc9v9DjD2vjKOaL+fj/RFSIjKmkUyNMfKmYUTGPGG7n+EuGSVDJH3Y2Pbbi7vZuMWw109vm2+2vb7Zg57BmCeqdSZqfgkFTSgISROTt7/ftri9vvCPPr9+nl92dyCPkHls3nQmGB3kAAgzYuxJU2YkNsPuPoo/wFAEc6J1sS6EK585R29SPMFLfTgiH+xPv4atKFBOrH/dAFfb7FQ0J99W4XCh3SYxV7rI0uJQXhlrasksSGT3hgO4fKTaRaZlHfx1T1lv58KT1xVe5vxpS3B555XePeOL66vW/fPjK6y8VkfbVUZeGMAy7FcUsswKhJrjUcxFfyoldvJCXh6KuJKXetRdFL+8LZ4V5+smO+wQP1w4iGoeHU/xx+uWVg9Wf/HzJjsv7JhE+KDYco3vzsRqzH4GAF2U5FpUoYjA1fV6YaxaRdt+dwVKVWwt+mpp8a/9qFWmqJysc9rFR6vQIj+k6qvmXmUMds5cZvK5mwmsMGpR0Z+JMq86yJWoAWSLnJFL+KJdinXL5YVtcg1sNCt54vpGXWvF5dg7jus9eJVjhAWnLO2K2rrUE23qh6PLia6ArNLu9UHPvQg8/9JOyQHlmt/7PGRlJJYHlK4AdX3IH8RY5VPodIPDXKi662ncfV5MiOur165ZmypUl12l9UJF18iM69Gr8bfVgN4x20VhLHyr/Tk/Etn6xVYGZvEFTI0jTLhksBqQu6KLjvbqpNh1Pc/Ew3At5xMok63YKwtD4QK1IJlyaZIzYUorrjyMCcjc1sqz0iZB0wAvfTIhsyICVl95R14SaxpgxJlBc5PiUjbsOlPb0zUmk0QiUlFdocrMGsQ7mRFIAqXFISlGhM2gxTExT5hHRM5jCjHP4z1nzMfUCSAiqPMxjqFEHmB0BV0pzvOkolj5a4E9mTFoDkY8/o+cM6dyHgldpaGtI5QwYnhEKIFMzCPNmdtuaWOABqU0MxMZEZLGZnLfdg8Np7ZhuW38Kp4RKQcmfRhVoGdK6IrXGPf3fzj8p1/ip/jmccZM3g9N32R5f98pZc3XrlkkEzFzatBot3z59DinW8nssYqnah6UGW1eR+AyAepcqCCwsl01kor/+NQI10HqfLLTNz4z3n5JMatqoStYJ5GZzWC5wtjLUuiSaV1fLD1tU1eO1kxTXclTv2iFph8u92ndyzNZGXFc3b99Si/Z+/WOlb2sK7Fk8Z6JjzfZgN967fVHUovm/8GP28NVpe7Z0FJnbvUrceH8LTxnGL7uyJpkmu2wqpr7MdPHcq3Xj+rnw/hhwO0ywWut1UhZI4H80FZb7d1IIatLqXxC/fNKFGsR/eN2WWlOEswKq9XPsKhKfWV58Y8AXBugU8Aeg9jOgVcAVYFjrlRTz1o2rjiprPi6JDassVqUtbCQjnawIouOI6vWzxVQdWDUmtjtu/v5XbsEbGSiOviuA6ZGvD8Eun1LHUmBeIYJ3fKlpMlWHtb75UO2XYBuC4q0H+/27IUIUADy+bwXkIzlYNeBe+7q5zGOa9zPusFrK3eAIyDqa+i2JQzQkNOHUP0yk+KAzubWNcnuuoFe8+wREL0b6tlZi9ha4Qb1JHRFlyuIZpHdV/Rr7gZV3/gK2XrJmbVjaltZM6EFxpQJjpFe8xZLd51FrmsdjcYpqtRP8gq+FsGhXSFADq3kGs9pSL07aL4PGnC4q1nQq5UdAJFRKSuIRMw4JflcMW0K0Cx9Kzf38Lq/KBG0MQDfhiGsM3Vjt+9pbVihNNSqDBfnWbILisiMjHCWMjiyJEZSSh05p26INCVLkUXnabep968/x4E8HzlpAuY5NnCe1BH3GGFGTtvhycwTAjeN0/bxWB1v3yi3zy86SJ7zfEjcbEJRJj3N6RMhszRmzCPyyJznPTeaGXdmaN+QExMzPYSM0Jxzhvwm26cNpGwm9f7DizSPOO4zT43ETh5Tc4aUWQIyMBuv373Z8J2fX765TzfY5pkw+OYkndVK4ULmlKXrAAAz295ezpfpjwdgZu418GzUEAcjhzgQbMmBOllrtoEludoUWU6qvU8PYjd6+aGeiETSlmz52iAlxLFMMmuLVqXrUsO6AMdlurnO+pWBqG1R46ErBl75zfXGlUlwWUOsXtMV+y5+0PqypYWJzv11GV+olD6UFJKt1lQDu6TOx7OcSX8Wr4u+XJGKlC2hdGsvh4JEbeaMHsfAyuBrCUvv63k3deJtuLO0CT56Aluh/LUSuJhCED9443XnQ8u/1LXEauSqb11m2Lq2m5VvYOXFz2BlPQe2416xSoPUBlu5UVXo+pL73nqZelfg8roL4LA1U3hdbUFzlz0jCBsDGeZu7B5LkEi72MGCaupBtizGtRTFZlh/R5dxn7FUNdv1scheoit9xYcMuf5jbc2amVcrZQEhvYsiBvrVtVTOFCp1okXv7TjXTSI9FiP/GQLW5Woty8J7uAaDreZYXjDneh5YU1KtfYhWwFbwwKXwBHRnkDURU97PTJ0I4gpOq42IBDh8bAZKGYqEdVtVU3jGi3EfStscBsrkjhpKVn6Bl5TdWtfCGNdxrENaJ7POfcIq8F8C3QqNOIwZMirDi2phJ7IqWc9UXSsIez5/o5k7lHBkyMxqHmAjLWx4wAjFnKGiEpdhMiBNq7fDZATcZMlhniS9hRtpK+BhUnGkEza85Gmpa5uyTS1ZcxncuG270bKmXImYgtxgOWdWSzKNPqrL349hLy/vSoSC3VaKsuejtpmR5qxTZjTzsRUtsYplDhhzg4FJglkRM7kN3whzyDxtiEy48yXebrF/3U7SaNMQcx96f7xwTB+0aZsSqSh9JNMkFfd7cpZ0WCrO370MaXvz18DGsd0z75un6rLIPOYhdyrtmFBqHszQ9jKSw0aMb777/iZu2Li7c+RMjvTNxu3mOozby9vtmz86XuzXP9i/fLz8/vbdp9vrbVDza8B/+XJTV3LjfsuAEDEf9yPyxM8/xU/nrw8Nnec5hyy1bRa22Skak4ANpM0zZqb59iJuHF6sfJqNmwuRdoAxE5tj2Ih4mhIWFf8yLstEfkgQn8a8iUiElF2Rk7o/oVM3MDZfUg7V5JpYQ2MF1TyvXBkwslmRa4d28e/qiezPxYUpW65rZEDVqVnnNTU6fO9ekCtb/2g5n7aksoYlm2rJvgOgxneV86JZqgqQ/btuOEFHyfiDctYTCagkeA3HIwCHj227uQa0Qvr2Qsoa/SJ9cKoFziFydXOBQCnJL47imiP4TE469eUKPRasPf7g93ha+H90+UU6oV1yCxUHkNZDUlb21W5hbSMu3EB/cCV93bZ+UVj9hxiBH3Yaaijc04O07oSq9lnAYK1qKhNkT7ps3m61U9ZHWQPaz3waK4ZbgWHnqCgu/ZXR6gMjTYvAu8K+9bwEXBFEfWVhGOs2u1/ObGW0qKZUM6MLS4qqGLu8lq9I7PX6RTzuC0ZlZlzLrV68D/v7urf6HKy7YLm83vcLS8aKHusp9yfo0kvrb1kh8IpAWKAvWT1aoBGOyFHEWYPBl3ZcToczV+ff2idkTQJaQaZZGdsqZ9Y2q+aolWaWoE0pwBBm6CxOhDHpA2pp67X54IhO+HDBaFVQ1oqIURlxV3a5QkNrt98+06pDqgzTNdV4GZA2VtahT1We22+t2k3f+4dAo4onApCyZyjYD8zaZAQyZkS3BcMobUYzB73GKHS/VGo8JMpsH97qwGVH170rQSX7PJVkIVUj3teASF1AhJqFgkQV0zNpHKhqhptUgiui2dh294DTbHPImGM73M2dto3Nq0XL6DaAmmM/Nrhtc+PYhu/z7cW3Qu3G/3nADD6c9XBlpLkcSJqf2zZ8yD592W5SJOKIcz6+vL/ncRdTE1JEpuKMVJ5xDiAe9/uJ4+d7+M/zh5+//PJrT759es3X/fXApm+VHDYF+ebuNmwMOG+3vx/cb/vn+ObNxLFt++ZSHgGbd49g9LgNKg220RHH+/28U2eS1c4VU6fSXFDVqHOaIq2Z89WzmD0ZR8/ouJKSazf3hlhmAjQRaatZcyXLPTTT61Ti6o680rq2wXjSQ/ksuvahqDQmMy2xkMpcJkHL0KwsoPIbrfLXcjDWDrV/sAA4/KHBqiThw43WdtUF962348l4+vBmPrMHPPlbHz5uZZzoe4BA+MibZQf3F7d0pbgfTEZj9ldOcqHiH4KiD/4Oq2QKXJDthz8DF2wIAN0y00e+4QaDubzi6mf4cln7NsxtqHFVDtoKlftdCf+6JJaNvhZ2rQvX2iAXF+sKPMofr7DwiT4vgwot9Op5SUQFZ50VWKcT7r6Kbl1QalfMVYron6k4XFWwuTLwzuCvPXddf78kV1a6blcdaKLxUvZi1T3l5Q0qKUpBkX12xJ7eJF0VgXXbi/KAj9OeC5fpq20He0ElF+bZh6pdYLu5q4pThbPsc7DcYB1wpQOAdWPcdZCeubyozADFM4RJQtMdoBglNADknJqEKq9N5qrg6vq89fGXfVnJgJWSOlcPMh0CE8ro7daMgQ8fU7+gQ1iLUh7HkJlpQbciilXIJwoZXJplS1Pm+t9+gKwO6Yub1fEZVA1Az2OekXWXjrTKwn09F/PhhJsl3di9YxcSRcvq6kyrPnoFMiYw50kqvKTmUFaVpDgO+mrOizAlM6L3UAYTkqVSOUfmPCUoxA0C4tgsM2IepyISijlnXVIqI+WUQTPc4MwIyZ2M0oPQhKfyFX6c53mkEIdEjM0E2xw+N/rYtpuR9hVvLy+GMSiSvmFRj2Q+/PMYnz7vGcfj/n864uxCS9s5kkY7Usn97qaIoMl8s4lX35gc8eX2HtPsxFlNpsqanza4+WZu4jb+b/6mX307f/32+vLtH/0P/8k//9/++dfkfp7jl0/vTofM4kxlKjJDlMXvfZsvt09BuMnh7n5ISY69tGQ4sI0hd45TlnlOZGoi6KaQph3H3WdyM3CUETDmMuR9DHrC9PpJLhHjRf5o20lWuyUrDCrkZMAu6ZuOBfKSASZrRoLJGmarjv+VwDUsic4RrjRDKxRtw6nL/VSHDcVSv1zJmRl9mI80LCvUiQXWWV6uqX2atFK3C+xaTSnt+RqnTiGjxta1MhKojCJ+1Lm+rDKfiLQ62++2j8rSl38URNZ8zlXjRruB8vYruQVAc/eoaKRMatllPa3UxwRWy6qg8fdOOQEMrlo10Nnxs8pp2f8wotCGZ+DeqZ+eFc1yzVcatXwMtFi0hb9/uLWOyS+voeYmXAau/1bYPbmuvTmaz90n0uA+UASoCmwAyMtHVTISqJzE7OkubLGoVz90XrSjpZItYFXDO96z1sfgylHLc6/+vH4a1UVzBaftwEEooWUqiWrI7z1ShFJIyqQMxrw6dLGCuc7EuruiOo7MrBo6x7MnsPdFZ4VodvmV6qFJUP2s6gyXaKWtpddSOOOCJC4UAC3n9sHD4wrIswc7nmditusjN2BYBnaKcc7U4Af9lkJ1mV6zDuJ0n9HNqRHz9FSxNdFq3sieB1wHMkORwawMKVN+TiKipwcvECgv3N9IyFi0Kb+qZ4YSnx42PGq4KMmcRTRu6kpmRtWgmnPeUtR1iIIQVIPcKqd30ZCrhkAzLM5Y1BE3VzI9AkCkAZfJrGeh6UkiQTq4be4GzRlOM99QrjYiCr7NDDOZzWqQ8hoZFC3oW2LWZqS7aiYDXWYOwnyAdPfN6MU32bbRsC+HiSYfYTlgvm3YppsxYZ6xjWEnNyXlqZzheUIKN5pcj7Btk7+CDMB8G+fYCLiFzH07S4c953mmgCD8dnO3eBxmRsaMSrHHPrl7xNhseJ4MhTTnL/GwwPB7cB9xAwf2244CUipfMShD03Ao4Hb88P9y54Ed7vOHv/qf8d/97+9f7/L46r/81Thg93kGzsf5ON7v8Ri5Pf7BHrn99B6/P/JLEBnnaQ9/eVgE+DLi4E4bm9PJcSret0cQW0xTMB7vnppD8M1TlpNxRBoHmDWs/QInAKA2XeesC7rClSBVZJdLX5hV3Wx70Q6jkA1a1oDnKsNBSliW0lzZx2KEVsJjUH8li4JYVEoZ5arhaAXuXIBlBazlgFrLLhcclAu4LoqaxKygoKvIK+gudt/Se7c1XgZVIjEgre54JSDLBy3E+EMG+rSYWtl4vaPUAaxyyUK14PBt33bnzUbPjHomEx2jEDQz0Mx86USv1GD51ZULd0ii9Z1SIa/P1LxZaUL3AVPPPLZMW3nnUCaQnUj0bL+nL+gkbr3tw5/OERdckIGyV+1cS6PF/mCtnml1xQ6m/oAOd2HoWuT13U2EVdo1KoIoRs0zTiaKSkCoLIqU3WACc3nnuu1QjE1l1zNnrNhs3WfxXdT6F8/T0AzSDsFUYE3JxAPPfFgpJMwdxvBeqwX+ohVjyIIiKkhKsvYuUeCUCbCMOT1KVabKL8rSbBGUNFI0pfXe7BAJK2itjWv1rNGrfN1IJ56sGAxShnVArhUgNOtmYTwdkgCE0nJOI8nzMV3JRNgAhrSZAi8bTDNkRGZohnrMRpZuMJiZjDhnJhUhZmTl3StDVz7hoQ6Ks59kVwhMKVPSoaq2CyKCXoLojB5Fs+xVtzuz51RBcGYJeAkzNxNN69wUHpFI1XSZzJCqm70KRoXq1o50R8MpkRV4mXlJxV0QfB1ZZk5YxCWQmVlReeQ0BeBGG45QwFgTX8yNvg9CQNjraPRyms94bPE+c/Lx/oMejwnIJmgKKbqlPiPIGg1xghmWqZhznpVOpABaSrlOBJXo8QdmY9JGJEAvAolhu502Gdo3aKDG1SIRx75N2xjQQQsFCJzBnI+XZCbB7TXcdxnjJPbHN/TPr9tmL3Pe3sbAPof7cEL02znsppdIGFP7PmguIpEYNyThqeN+BofEEOgcCZ8y4DxS9KDm8fXnn348Ej/ob3//5ffj735//t0/bI87xzz283STDQz34WGlX6hAYmB/3bebBdzTUCFvYtpOTJb0Ckys8Nk8lSmmEAEDnS+vL/I9ZiH6fpHc60BCxdRvtK6U2FcFdiG8je1eINszqA7vMFBsZmxEZs7JU9G54xrGoAWDdc5wZQsr4gbKn7bK8LL8FWSvy13nv5omLue44MI0JCJKq++CJleccXlR9DiVq0K5wpAuSvVPWWYR1xeXRegMh2ySAhfwBYIwWqFD5uZ0W5XIct0CoLBJvzLYvnxUvsgPvUtQWgaN9NltcRCY7InmBZNDMpXwklYa+sFD1l3V3Y/KStG8V61vBmSt29DLe/0fV36tZ1iGNmKXSaTsit2xhsBVtk3AKvXQsn1Qg69d5VsfeRHIKvQBi82XFKOxgkp/WT6+KmYsB/oHeafsylcyTIsRtzTF63Ke9rhPQ/HN146sjV6uNHUV4NVEp+V+8YSgax9da9Vwty2/XZWJzlcFdqPPFRSibhrL91UzcgEUZsNLlRSAhVgMJ+BSzKRlGfje9VhQQy6cf+HhNW/IaLUxsTZnnQ91kt/Yf4HXmT1xo9bGSgkLcOtOmpTgaT5c1QNdjRzDYHAnO5SFN2f9Geug789LK6PpBlwjUOt812FnBy2r6AnUCOh1okcurnZjwmaww6OG/FQsWHGtkzWIt45zPaYUM1kaeS9aIj8qtd5GX7ymf5ldJqtTj/5f0W1t4x55jc4P+tETksJCyTA6F+AGiK2yYJlmbsPCJ0AZbQOqqUghwFHSW+ax+ngBSLSBO/C7DOUvRznJdC0YMyOGskb0NKnOS9x6gR2SmVI16lwZhZFw42kjWPdkvlXuoYiZmTPNpzLApBXe1LFQLdo+NPZWfXEzapjMOCNUWDF5nufxsz9++vHLN27b6//u9IJka4r2PM9zzMdjzlqhGoi3vcrt9SUwbhtuPD9/++mmGGQFEhla8xe2THKeEf7NyMAeeRsG/2Z8/vM/+qP7JA/sv/+0T+0D22HDzLBRHOdp33/70yS/fuL2Oo/7433bkaYzxtvLoDZ5CFZ8dSXBbeymwdyknMXfzNPnmTGTmBRpblBMhHUzmIk+krRtq8lFrRPbxnylBl1RCPagELWBsoWrLk9KCYgyjOa5xnCVtnRF2cJKaWoLG68E9qMZRmmqqwgOldtcDbOrILtouutPw2pX3FAu7xnuN+lzIahXWLHcQDvrBUOvF6xCXJcX2/A3/LhKhM+AoEKETMt4tp0KlQuSSqwuI5Ckr/nJV5q90k+tpQdUlMXmbC8ed4cknd+3E35C61z/FiCOylsWW7cywbas3RBJNMym6/YzmRnWqgaowbyrWqvlPdZDq6yoARZ0UtfCTeISfsDCv/F8XXVmPWF667mVFEOlLmwsIC2R1auYS3e/PqM/oVqlUprIsIyw7ptKskfBawWXXXkAOYb3GJ3eyyv9vgK19av2sc9cviPT5c0sSY7hMBvWvaMdnAi93Z+p1YqYeH0YSYjFcKHJei60w90rgc7rYFbfwuIeZaaj3tuLnwQU0d2KHW4XTN+lvqRlto1WsmPkut1MJSPDL/zp+tPuWqkoJjd327u5EGYYpBtSDsI9soUmvcf5GgSnuXszsHoa5IdGW1vQRKNdZhYrey9+m7sq3wRt7CGkCPogPOlGG49pLrOBiCZLSj2CURCCKPQ/IgnzWC5fpcBd/RxVD1+nreLk6gas2KcFYhrH0RC3w6NEJi1hXgpm9YQjvPCNOfgYO31WzcO8AhAQgPsYZoZQEgnMFQsCMDcyZkUDsKVxnf4a3/zCaffHL9/uKsRS6QQ6YKMNAywNFr7t7rFtQ8PpPt3aY9a4KprBFoxl25GcW8tymnFDGDJShvNg5uNxfk0d83FwJhgTUqSY+ziH8latcfvLdttf4LbX8Cg3zRkhfL3/8v5b/vA3f/8n38SdY0aCue0VuBkEZmaJRmScx2Om6M5tszhPZiT9MTYgozRRBUVSec4BKOYNjDPln3ZEktQj+foJvt/22Mb22G76NoFtZGBsu7v5oBOwwePU+dje41XnY8oHfDNpjPPuu+WUIXUcgRnHmRlZp33zUJxHjfpOZE5NbIUEmilm4nzpaT6mDgvHCEszmGXv8A5OK2BHg2K4ynpVTVm1yhXkgVS3DxbGBwEpqzHBlfUolzV/mi6UUWorlC3QwdKW9k4Y+reVO9QkATRUBBQcsPoXVka6IvcVKjeslbEy2s5sVjLX9cHLpxXc9gT1mpmqy+11LLFccuFWShaglVkrtGA7AUpEZvC682f8oGV6+eGPGUE3GtOKDKOnzb+IxE2hvPIpAcgPvhgSRlFhAZSk8QII2trlRccJPptZ+llFsUPK5pj9gUoBYKsaQDAZi4fMAk96M7REkyQTmoHZPjt1UbPRJYoiGVTuKyhLsR5Mp7rDUVKcZqCKFo4uiqjq86ZS/+HWA06LRuO7gcP7KRJk2bIqtbLij6TTrBTm7HJ2FYWVnS0qvMk8cXF3l+8GmPTaPeXKu5+1UklKHUgBVy7baEDJeWfR8BuhdvPh20suQRoLklYlRVJg0MhovlGFjFdcTFDwBBIO1bxatOOHgHQocknTMRf+7hCTDsCca8xEIw4r2AJAabdd2HD6Vk21JoobaK4E0mRjlg5rdUI5KDeqtdBRWjS2G819mNv2Muu8c7BIsGZw91A6quIis1LjXiqZfn1Sd+whi6orOAoBQSqYHN5tE1RShEz+eB+b6Cd3M79tIkrtYtkIGCTNY85zZs6zGmqw6BVFCgdQA8lBwzBuo3ivLnOtXNnNnAwYkdNpeCbjjZJAAixT84w4POK4n1Nn2bmIY8Icxn3zzZxmwwEb9NevTDpfPn/+lb8eQymmlBZTMHNXhWaCldUUqiOVGYGa6hHn+2kZZ7pxiFXviTgdx/Y+9+TMx1cbE0TGyT2+GgnMd9zG+/nglnDL9BfQ8uu48cgvm5+Oedgnj/j8es7zFTDIPw29vGzHty+fvhl6bC8//H/s99t39u/+Lzotp+W8H5FuUXR33DEPweACaEMTeb7f5/nlnF+Pr7/5D7///eOXV0vLCSnAec44ZXowkky+fv5yHI/543H+9qsdHr/67pc4gvDbC+PlOClh5sM4jPeEZp6//69+89+cvP+U/9Xm0AnCfHiC8/3heefMGHtExkwZLMgzNR7nEPeXX4DN/ERGZM4alqkM0XGcXI4jraoVAiLnTGVGIT5XftL17AozZaV5rgxRNBugMlB5noQqHpbhEACOrGqZlbkFF4NpJW/WGUilCJnBAug6x05TNs/haVAIq+lxuH62LLbkw1XZdGpp0TwxQiCpjLjKZRck7h1XoIxj38CK9/uXXW+lIqRuS1gvW6a0U+BC4FOMUqwpC28hjcw5y0y3GW9gTrZQcK6qaTtCeqcEKBpOtjRenepUZQYXVFpvrf8+/2/EypwbWWy3B4rJRQNhdCUYnQcaDaJ7FWZr9hzUE5BWBtxKYAtIN9YRX+hwLdYzk7zgj0YBLwyvdoEEZjbdqBBiszSxQEoHWMJBqs3ZF8QV6rDIn05FzcZa9B9k5gxbaiDL4GUGpxWLxrwqv6Qnkd3qBqy2rHLDZuYsBKYZUY2PY6XHMeVKJ22wpXbNrMUNTCg0oN21lgw0YLKaApGSAibPnH7afKAgKJpomTJdFRObgiNQnvmqkctIuJW206A6agaUzI4LHBLMXTGZIoYPovhtIG2A4qa5WFhKaGlmOoCEjU2UEWMMhYliumxIjqTl9Nx2w/kgHS1ZBVZ7aTdJNCfbzCqMVoiA954ys8yM6OpVqtODzhNED6JJT/WwSYgyzaL5TZvb2AbNOZ2ZvsnczE2dQxrM6Snv52xjip2Me/XlEGNW06xFdrGhW9dkAhLjNGdCmDU/Ajjd8wTmUUUQlIwCMjamjHmY5mTJNTMCJkQNig1OY2xm3CuqDGZWvJISFFL8fE+TVpIjN7i/3jA++5vVwIkNafIYflQxO+TuysAgNBHBgIVD8II3I7F5KsInUmEqHWJ7O4S4uW2nKRGhnUkbSXyCvfD1FfsB34yEM2fy8fnzzxaHpUdIj2F63G9/d/v2i+0RMyc4z3xgxCMmoe32tvunX/3xn/n3/varz/tj31LbbsODQ6hOKUVOmdNFnjOYZ/iN/O7vz/PMqdfb2zaWYhF1bpSYceQ7HuO4f/3J//1//e9p/u/eb3/z+OV3//S/+Pb/+p//syP2T/tn/+u/ud2px2lfBr/4GZgR5xzh4+V2e3z+7o/t09hfpqWIMyNgr/seB850TYOPw+n7wfH6ctN55zzdNvP7u9HcjHs5jTwxZJ4+xFyKsSjQKCNypSowd+kDyopKllcG2mkXU17kDMoWEkvaJGiWBoWKBVxt5e5ZCd46KEuusJyFKushHYJnXLa7+p2qv7OnGEvSpXZYULoS5MQ1R0DV5YKq5iyoeQHKKj/8lETCSgpWNl6utOSHlp8uj9EwnrmgYr9o1cXZcGstXE0UjLzi6MowK6wocvjKfggz8yHzZy5JuPkoabyLw1SzX9pdt6VfpNoLwXz6ucXlrV8NQE//e7nBlahVZtdwQCUypFWmQdIs2Sx5y6ypT5AyGkoonglojsXofKLTkEj1zFcCl3pQP0BgVQVksFI8Vq4BOpUWwwCYOZbnBbrX6AInulBY3501DVwKSykjYxKp0h+pdKl938IgULB9uagCbbNiCpEdNDZTXckirkk9Jbfxm6rPNAqypBTrqpKCbBgcNWKcsB6aXRGYerxyB0ydlmZGZuR5CJHe1yhVnh8CMgt0W+WTa3XQd1bjAGvrPQtGTfir21+oM9T7C53tO3GJSBIgzEmvXngnMWERhsWbUgoVH/X0iFl75xkJQioNv2tzdN0gOkoFYq7yUPRI1ehJ3kra0qVOI3vG2oXpV3Tt60GUnnrzPWtvWGZCYLXBFvpr8BEHNStqPjeUfMGzHzqjWrTqIJnHpSdeG88aozMwi9QcQghMgwJdmqBXfUZFjPdm2Fcgv1RPa0WCs5u1DO5wFmBgXqksXVWhETXtRFpMkYxe27OWL2soFwKZEQ5lWNs6gkDWCKnqvktLmCtJs2kZs0S/0g0T1LDUNNu80EPSlWObMHK7R4RtLwXci5aKY8M5SeJ9Z4o6KfLME/H+6VTOR2a+z8f8Lu/3HUd8ebeX78Yn/+Z/8/Ovv7LguJyYOI44zgPj2Hb4mFM2jFmVC03btb3u48/++R//P7eXF1HmWbCdG4yJjcacYOJXby+Ob272x79/sbfv+Plf/Plf3GN7y09v52cGNs+N+9uD8Ndh29tx+5P/+Fd/nS9fP337F+c/eSXp2xA4Atubn5t5zhpuFYmZM4fO4abb9tj8vM/zOEIW3cBnGCLhcg9GFUjKi5q55zT6CEeyA79nZlnYqYrNZw3HLL8caZKrOYkya3Z+JWJtYrXUE8sWZWAxUZ/mt/5V0qVVV6FNPXlQWC0+DbIt39NIGi6HUuXwbN1EIMElFPv/5ervei3bkixBaAyzudY+x93vjbgZEZWVVdVdBTyhVgtoEGqExA9Agp+HeIE/wBNPPKMWFEJqkEotBEV3UV/ZlZWZkRH3uvs5e681zQYPZnPtE+UR1z/O2Wfvteaa0z6GDRvWZlFEVEtuf3HZrarcVhWwvvmhv+dP6oBU0tUyMxeltFM4U+UGZcuSNjaqAfJKGmnuPpgLgVyRBq/ZPv1CQWSrALSw64fi6/pj1WEvTtlyxwuuXvc/VmxS15oX0l4NK50RFqLWLRdL9D7ZY1g+ePSrgtkbBR/EnZ+WtcBQgdelr5//8NcLnsD1vGtH9ZdKuKXXZFUZyi8uFLOy1r53qEDuVn1JQzl007osVf0zWoQolyFvOQKyBgFkwydt0T/sglyjlbtg0QHeKrOj4zgWtv3R9YjLm7AZ19kj7p9hUfW09HMBjQXCmreF7iqF41qsFeJVCt6fqCvxr8OlaoXtCgGAIs0VGt4xNy/9x25SxZq9dO3UEnZCTT/xDuWL2twMdlirw6ByzKJfdCBnefEmytzUHWQB3hUWCKtZrE87VTMYsE5LTZ2sZwyTEhnVD7VOzyqvqx9B165YuPhlf9YWyx4LXfuu45NC41jSXIuW3+uAhkUooxHVV1whLEDKuifSuYLdWhMjkJS5F7jf68nWnHAzH2OYGys0YYh0q2dqlnDDsNcRMlAJ864U0pS6vxzYvTSARZrL3GRBH25O0M2G0Q02SKP7uGF4NHhfD6q2QQ1JqjAkj207QxQ9JaMxEpqHWaoYPpnIREBhVGScuudrYsYGSoyYqWoLMcvzzCMJmnM4afvtViHB+X8qYkKhDMPooBE5RSoi58xMkG5VmEyHg9sGnSkFMlOeRWg02/dx22/2+dX101/8w6+Gf/C359/7/fj823/057/7iz//zXfsr3Hz3acU55w5z8xzzjnPiHn/fv9v53x7f/uWZ0xlata4SLMI0OU1iKEn72TOIyNLjXIzt02Ach5nnkoqPaDwgWwrsITrLrGMD4DuMjTqlKmMePWiLkfIy/T2ZiZAOBJwz5XsrsrwdeKvQtWqpup5OvoTmwqUKmJzGybYOpRqo7XcJNACr4lc93HJCeFKDuvmrpS2bWJjyrW9GxDEExddH87Lx9WnZjXepy2ZJPzpHZaNz9Vd+vzmdXyrNRpdJbwK1sWk7pxsAWGC0bIRzssyE7joVP1PPb9cAhjPZ8qBKxRp973y77JyuEKRuvpOKq6vpJ7rePnS9uG8nl8RelYF7bqcJzJxPYf1pdqFnXymIbMTyXatygwaswqtjs5alht6Lv6KnZ5QhtRrS7NkN6Ov0Ku3Wz/SfH4NLKU+rgirMeYrNFqfeMUNQgcaKxgrgFT5LCasUKn0llomPyQ052elQssZlhEHQGP3qhpb578DYS+g2NbQAV60pfr3x4ABi3TO69fiEa11aDW6GthenjcTVoSFFV+ldXJfDtlUpA5LOU1mQomkskiDJnBd1Bom0g+nPzZLM4tsT0drFnSdGtYZZxNs1STevvBa/J7qhXq2MIot06eMp27J8/CuyGgtFUkiNTLiOcHhT3ZJPeeMGQWKcMVY3biutVmqkS5gNAdt0Lw8xZ8cNlmVRiio6209bKM2t5XThtW0BiqmoFSEMENJkba5mzHWA54yTY37H+OHL2dma9Kw9+aSXimrxmZm5UposJgOlGosNc1UUL8cwlkCYKO4oygNMmKOyAiGEYiWwMiY2nYfSIVodFq60WHz3Iik0cxnZsahcxZb8uQwyCwjnVnziM3dMRxuiEqKx7G5jsd0zWnutg0N5XG8f93eHnfyoSOPRJx5oykBd7N9+A1j2//py5a3W77sPmiAkz0ZZspd7rnvrjCDd2jp6XaL7eUTDGMDZAqckcl922cooQxjDRr1DAcluPbNf5g43r8lN3cnPOqwI7PNYnvFqlrRWuKllAr6eV4n5DIcjedh5VAXZwrA6rVtxF6qEmCRCKU/jTaFP+HnkNfOKE/d6WrvG3SmiSfx4+KB0EqDnRfYV6oAWG59WbEPv3S9T9msFUd8fEHZY6v55cVPeprndhzly/UhXCmr1GFBq7uRyky7FEIqD+Pyun1uV7JwpQrd4bzSKKxphCXjUB+2XH3f4XUlH+734mgJwLDntbc96mVMFsSKGmS6qCVCltRIYQnZGXDP2S3O7HJA6vxPKt2CpxPpUGhFL2pTfl0mdd0KlyEQCCXYOSq42MQFosDc04sjufBFrXRlBVkGo5yAGZUJFt572SEAMMGyCrhq2RQLrvqiAryaXta1qu7WqvTQJCBbUmVtTpnVzlGqBk76Ra9p9EbiEzXuK66gDVmZ1dqgLJuWnB0XEZq114S16bXaWGyVLNYSrx+pzW7+J9JgavJuPUNjjzSoLvhey3LTC0sn8cR8COWcUxxlYHhSshCG0p0GYnt1bUCEW5YwyjX863oMqpDNCCUz5gcBF8jSltRoR9XMftqFQ5j3GaU6CqRoIKGEebhZk0HBooALmWJAzBo9TDODy8K8sCMxg3O2JUD0yBFJoPkygbVpQAIpBFS+hvBJs1FBz4rO05RG5JaKKaTggwidwwLzlKOJOjMitI2u+NJtvN48yfMYYGZGHOHJPBQTCcw5TQF71/EefHy2+PZ4HAGkIrd5RKZyBiJPzYyYZJaMq9KOOe3xfjwyC0JQ0SRUQ+OTpG37+8603U8OC8PJUgR1ptP9pPKELOI8hw7R9uT8Nn/4ch+vu1XgvMH1m9fXP2y+5TYEjA03xeMd97fvZ46YD376tL/cmN82c6TlHELOE2EKo22TGLeBwTgieJzIAXvxY1Aaj19e3kFMQLNQyC1IIMTtdYS9wPX+/3j9Ye4v+69fv+T5h9hoVD7ez/PTL9/90K6cvtt510yacu4vpi/2Zfv8+fNxppv7QM45I46347BNPrkZQYUbGYQ45ds+I/MNiCMJcKOMPOQnFRhG0mI8bEXXS3vOWC1jZuXQebnd5WueHRNKhwLVDAl0XVRQKqu/XVGSaBGYNWMUhojMzJxR6S2b6HQBZqwIoUhGPRNgOY/2BxU8aGFjVKcSxXPMgCmjjSmzCZMCipktdUvyVfG+fCoKsKkAf+WGzcVePvd6LWiXX+fzi+v3dT+JmABKoLayEYP52LbNvXFQXsN15jFyVVRt6eDGNCN4t4xpOVe0u2DPp+PveLycUSXrJTPyRH45LK0QhoJJn9PzbEEhbRBXlrhGzyotm8iUq7c0s+dAai3e8lRFcqtSxRXZECW4cS1i/8fKWEpnoIIsG8zlFOqpCVlRuRLUnFY7UxlhIJHNAuzV6ciow7ZGUatzhCAN3fRrZsqqw7JoOSunVqtON3Ke4DWqqr3ah0DuciYilhIYa17Kgjia0aCVQ1Kq1vna5vnhrddGrDisLiezOjFgPSSnihuA1XD0rox3IdHczEqvZpWLaYmSCqG3+1v7VHBxDJgh4RZPYoSyY/yUsyRQdOWMqPQ9Jh7tpwZBv+YjqMxItYR5ZIZnzCjJkg5CkKa0jMTpOCOZkaRqpDqv/A2CFLhYiHVmWCgSaekQzKNwlJoT0SSqoYzs5p46M9llC6mkN4JG9zglyzM6YFbPTCkapQDzzMxwARkxu4cCa86DQgEokTIZ3DhC2C3hj+oyWWifqu3SEUlD7grREQneEJUPzxnnELjdclq4NBPEsGP65iC3MYm50TxpUVQ4hfS+x0zkHfHL63EKkCI9MucJgRmRRxAZA9I8Xki3vJ8R85ixTiTiDPT45xI1GLeRN2DzcYbhVB7I5JkzaRTj4XZ/lGVPq9J4zjgP6diGLGFBYk4fG/ctkwyTzLVb0vJl3/YX/up88Xn/Bo6X/8OQ2zZuPHMKcz6QkG3MOKF4yLbbbdt3G6+KM+f94bsm7Qx5KQCYeRoRhyLPx2NC98f3+/vj/ee/+eNb/B3+7V/9+MunXx45mXQfOX48vxwGM6bkL1aTPtLAc/6i4/vj+7fYGYFt2/ZtOAfi/XzjABTmSsEkm6k57495zvk4jvOeb4/Nue+vJxSySCBkRCQetPTWxr8yrycohOtk4tnEWBhWNuWu0Z9C6Z4eKpWJYrtkGRkJGdb7vQT1CuC6YuCyXSKKwlnIb2UwLe+wADekaNF5MleIbM8mobKItNZsJDpYVnEiQWWBWx+YMeUX2qfWjls29UPqnZ1pkuyA1zzXRwhq8fNCk5fppxnDnbym64iqTuzsArK6f6V6IAl3Z5bkAstbLy2ssfVsNn1o3l+ubSWQWOAAVk76J2HG6OhAzzReWJmz1NMWs1p3L4bWertelk5SzZlmNd+wn0il7sOb3AP65RIT1LJPqxIL8tpJKrWLtMveJhyQavaWMS0TNf7NEql51LzPDBjUk/rWerTVDkIxqZwYyaossSgwuBBJYfUBN7W+piySZFGwQBvJJwTdKxqsiuB6EO3Y66ZS/XKuNAbmAJAZ154v77YogkTHboBqRjh9IRwg6dUMaFHZelVQqoRc5EaK3vy2BqXZCnNka98lmEEb1ZdtgGCZWdPmquArhUcufjaqCau0QYgS1cQqZ7LJvYxpsmRk8cFh4VZaK6hkayOpMyMiMhSqaa6Ns6zsFhG2IpfqbiaQNa0WpcMM9fDVSukFA5xK0AbynA6B5pthhA3S7Z4JGjLDVcdKaVlDDTpilkSmol2uqKixRmNoZp8QAzMjMmNOzUkYex5Z3TONsmoyKOEL14ybSzDQQZvI4XC13GfBAQ+XDZk0KlwJo1fkl8w0znBgHvMeGUi5q4rmngLG7cW7zkyQMV/H7gxMzO3Vtw2SGL5N+KAY4LaHYcvhpA++IMc+X9Js2+zFMGi+jbGb0fct4WahKeS0Wzqterb25G1uc4PijGHvP48fHsc93jw8EBHhOO7xeB33IyP0/bidQUkz48whIF4yN0sbD7tpMl9ePn0Ffv3OL59vG32ML5mR9unzyE0xUJIoQwaDdJ45U4JvY//yHnf9+nY7x4jPL7Dc5vE43sdhduaQQhJCtv24vX3h/Vf/5L/4Om7/8ff4HK+vf/6f/E9/9fd/+9vvtn1+e/nh3/zZ32waPgbG7VMKwswU9324fx6ffL/PeUwiE/56nr5xziB9APSZieTAzgfMCDe/7Wc+lGUArWwOnaQYq9fEHI0QNuZ5gc9oFknZpxYWvyouBdmVwVGxdst+N8Qm5ZznWSMK2c474ZUji0y13JCWB1TbrYJ5JEhWOWxxmVJ0oDxbZpV7Cxa17InYFUawBtwXftckkmLMtg6uACkB+jXdJCAunZ/qQq9rXlwyrYCE18JADF2Fp4XLVVsCC5q09sU1cyxrKicslKYpREZGZMAvD2UqyenWoyh1lZogU99kAfKiykUuCJcQ87ImuJxqg3gCVGmvMC7U9/IjC6T8EwaXCqsrpdylFkKaHIa88EhPM+Zi2/BZAWhAoPD4bg2p0laluhcHr3OxSty7t6V2Vt9ZgdnKnGUxQyKz+uBKA2I5/xbjQqeZaFS2G5BqnmQmkZkRhk7j0aBuF+VWAQQKgj7rRxeUW83TVziTee2NtDWyeLl2FYwbz/aa7jGy6MSukKSs+kIteSkaXliP1PNYQXMbw2hEUQ7K42ZYM9FFk1WrbWaJpa1gq4Q7K6pNyoindknDOso1QriZ3jmL1G4swd5F17AOSle90LxOXQAqgSyuaRIQ0oJABHMiMqtsuugYHURmhQJlgBaWArMmHAKir3AfDbav0L36I1HnTjCnpcn8eYc08yqAFUmhNpgXaYlX0auOWmw92VJLR0/9jGsjVyF6xAqJ1j00Hq3s/jIlFMipDEohQixl26QgZoB5TpUmVWamQ4BibgCEiEgYh2VK0zSlnRjRqAA5zJhgmBVdD5As4wjcz+MY2vF4PWNUWBUzMqYQYfPhRTycNmPahJQzMmsaUgY1QxUiRUDI8nmgvmvTsG2GTBJRI3JAA7cBmtsOSxv7dHPBODh2TrmmtFmKkuPxOh0BfzEb8s+2u306jm1zIw/h+9/98Sd/0GfxssABMHq2AChM5WMlQr5Z3sGb3l8SHoH99fMNG264+UaChoxIZeTxfj/ffrm/v/3xb/4yvn35b+7+19/z/t/+z25/8/v9vr1sjxcds+vdke7YtuG+vx7QyyvOt+O+BXfL7zjiVYhMwG6fEEOcEuZQVbNDPoYrz3T4ZoQ5C9DJM6aGIYxuOeNEnsOedNOaCL3C0XJTdeTY6tbLJYvViEYIsCwcp9cEZWmiftyNgod7dlaXgPnqcwVAGAgZq/uuaoU9afByHbXHWZN5q4z3gdNcuJ76JNVL2fYUV1Tw5DlcHgtQlvJEd+sWOKSVEy0dTrVzqM/BlQ/28bTOHfsrFwen2USCGrekUNOnlJKlOOxqpdGVbYOZZYOTMFef88v79zUqY6EOtfR6JrVlTpf/bbe6RpBhFJqMhVisJNrWTZV5JaMtZBJL/oxhisnCTi1LsuJKCRu4IKQIPulMi8ZbZIc/YQKUPyqwewUPXN/gktEli13vPY1aKlPvwyHAl8Yl0G5by1JzDcQr696O49n89QQQGpG9SAuoSCrmtZEElAxe/1zFkmqUUr39kqyZOp0GaYlHPsF5CDkrtasfrMiklTYvjh9Z6pdqAkUZXhSxoJ9ZNb4S1/wBSEak14wUCEtP22hmKVMTSivgRskde84qA0swz6pG2Yciskqa20rl+Dq9BEir+RHl2IKYFlB3GaSDzKonDJfs5me9HS0LpfqIMpu7L2QEtA/DD9R/15wzu8dlUSwz6SkpMSwnkGGakUglAy47zowUgiU2J1AuOki4W6FZRjPzYZJrFs7STevFiE5aSfHZap4yKdi1AkRRObzEm0kn51C4b8TmhWE5naLN0p5XxEw3+Y1FVq49A6sKtbvvPsZ2n3nk8By3HEXiB2nDH3PQb8MLFHD09nBL5ZEz7yPPmE5EAyhmWbAfyi4RADIMqRnoBkICpDKDiGuWV4KMnCQ5ZYQBgRJ6gwKSNtts32KETU2dhULDY5L+8j2gON73BDPmryw59xuSm3kUTY2GlOL45Ty/f/35Ox0//x9P3h46z/3m+9hHDGif5yn3sWfsj6kUznOjxcscNnj/+fz6+3/367f3916ItP0cbq/buPmnPc9jUvPx/a/+S9xuL9o//Tl/ub+/jvf727f9/bvij3/44xRptmuYRoDYHMr7txcfr/nDrwZfxucfjm8pj/n+XffpZnbDFHOW/8iRk2b72Maej/epA8fchSPt/pBAjCQzUES6yGjgsmIokkj1KHJnp4FXi2S3JZguhkx5vmHbOJdbWvGkudwLUetjxgLELBfvkt5A1rL4FIsO0464GhXA6m8K0MRVwSsOs1WYU/kDOs0NY1uJTh8ST8/0EXJatldPO9zOSyvV7++js6mVLpTFVCdAbBLk8iwEvcdVyMwQxpw6I2laI0zNtttt29K3YsiR7tWv3abMzCseYk3iTOjkzBqgarmMebueytwvZq4uh/RM21lCPmhBeq0E9Kr4ojtjy+gU9HmZWVwrvaoUDQMUiL1c6oWZXK+43GqxcVfR4bnanSthhSyNc7KzmpYT6G8nSvGgAqRCLcybUvO8gI/IfJlQmHlrLq1fHZ9dq8grJa38kwVwkswUMmwRAJ/7Itern/fZmHq/RVUQo5mo7WdYDmjRzgzWOTOuhX7OpH1+XmUyK4y8QAv2JJN+FNRF3e8Y67nQWtuhq01rOeouazQm2IgHzU2LBFJVzvqh6/lfWwyQarZ4BYUTSFeAVWcgZF61JI6VOPPawFiYR5X0VxRdGX29ab/o2hfWassSssQEOjiKmcju2+0cYjHbVaCusjh3RMIaSWr75u62wLil25ORUdkvKglDweqW1uRZkCYlWbIlAs1BmUGCWfVftYlbs1F7T0qtnqlMulKrtIZuBxArkGI7zkyp5IM8s0LSkjFQ7TxzLwz95BnHOcsBQyrB1pyJVCqayh6OEGMqMpWKzMzaZiks/KXaS1PKzWFjA2momWMyl7EqRDQGZhoioRMGcOMZIM59V1jxwusC6TYxQCotT+b9eH9/P5NfxTkz5gTeIk9gzjmSKL1SMKJaXEzTHMK8P+YBpfO0Tze8vNz2s8ID5bRUzuSwQdu2z6+bxg87fvXlp7+/52//Af+jP37+w6fbpx9eXm7T8vF4u72fGXzMnAcej+24xcwAnPMhxeNx3mNKdMTjfZ9J+JAKrrBqEATJGZm3M+lbbK+nv8z7NOSR45iNJNFnIsWh7MbcFb2yBY+ydSibcVgg4Iq5pe6SbWIkqkpbZPfOP0gZiBjWDPc2UdeHAK1Zw5pAxA/YJz8cueuwN9pkeckGsJuNVyJ9Gd5KE5erjGQ+v7tM65UfE/oT/7vcij5KV7TdqjdIrWopnpToi/19+Zbs8XWSCiAXWdIVV++G9YFH5brITkF0DZwo1LI6MsycbUwyq6+m8JJ+CFf4078v4/h0yevaxnKLf/IzxQZaFq4tWHuNFRXUFjND8UnA62NQ6igshK/AU9XP68L9mmKtD46lP1LPx9z6Hx/K1lZ3jcwSFFDUuKZ+IiGq5si4sVP+Mh2WytLRxRpckdlvFWod1Gb16xpls5rBIJaiMWihkqi5Cg2NWqzUbS1Zubeafig18qEIkvRCStr5F5fsQ6ByvesVFjKuZRE6XS20thhEV9FdUn8B1VKxcvPGcFjC3czQIjbDioXD5hc+fVwhEpn9GDvZN7D6bK8Se8OvH7q5LAqUJGFMo8npxtZjCcpcvR16LEvR59vnFvU5imGoZpKgLIoZe5qJWrIkAtYwF5JIFr6vROlUdHmk+mttTEhLp7IMSNJcXdAvFV6aEQ5116xAunHsHoVrseZEuLuPyMwl2Uxac8RXQI7W++6JtJkFItWj6+4ekuZSwiLmyDMpTdRQR9SuSbHY2RaTkVOQsZg0ISFSeVIsRRTst5Bt+2bwm502v+X7J6niTElgRkYoYk6CSoVBoQHvnvCe1qDipiiKpc0k3QhuGYKGAfUQ3GFugO/uL5STCCHc6BvNJHoOO+4/fz/ff8j72A4znjF+qSEFIU1GasQ5zMzdhm82Pp8///Fb5varU/m4jamc54w88v1I13t+n9/zjR73H7BvmXFGMObj8cN9H7ndXndtcNUVK40Y8GFuvruQp3yc3342/foXfvvOd7zDp+RG6fbp/dN8ENxciRIrA8xdxHHGt/fP74nBCKNgCdftNvZRCCMtklkt0IrSBR2fvhz7yNuRSBu3TJ8ZMWHKNJup82pKS1t+KaNkTLV8GCH2rJUUEUWAZ+uha6ZqZHRmRIFhUnEmdB4nw7tRYDWYrRnEgJSZvDDh/sj66baE62xXumvIldQSAFtr6kJvBZmUtEwLVTNaOUBeHlorsJWkQk+gBcjm09nW3bPCPF6JHVbSX0mEWMTGcjAfvEj9UdGv9/7aYlyCSCnKT99cKMY3kQbWPwr00UoQKh1t7UVmUvUTC728HG3f4fr3FRtcf+n1HU94/kNOlCrJueWVmUjYFaes8KbSqXVxvSJdMv3w2blQ0gWcsMdDpdC1Oa1ApKzbigoa8RS61lqVbevPpBkcRqdBVv9cD4jSJXy9wIp6J7vSmYVLqCD0QCDCYkophU3RI9Oe8Eg/3eWfVuKmTulX9fqCiYksYLcxYyjQOhla6bNQQVTvx1LsYQcjSUQNfiqmgwQoCMivMU5KLi3RJk5nLsS74fr6TVko6hVjFs+qaOTlZpuijQIXch2FD7WXdb/XniKK+kBLo1BqnKVuiMjR6RLJQt8HZOAkzKt05hkrGu6Z4z0BiDS3Uq6r+b/RcVfUA4yIVMzIiKhpLt2PV5WdTFSHQC1wWiXIjAqcRFnR3t3Mu6XISS/6e3UpJZiD1yz0dPTokzW+2dNqmi5zjGIStia6mRzwpQoj0hVJO3anzIWioK+oLVH9GYqr2QAq2fMulJs5yWmZcKTfaGsucrTaBfM8pqBgK8CKJt/34pDNU8V1F81N1oE9OTwBmpcfNW9gy+WWFGG+jUVqrLqcEWb7e/j5E5JzM7pqNAIN0jgMZmPAmIzEnKgChPlGUaE8j03BOXVueuyjKgn3eefXh9m3/OHt+/cN38b375OvXz7t+0EiHzFeNmLQSUtkyGxgmMeOeZwBGI7beBn7p0+hpHP4AOG50QyW2AO+7X67mbuN/YRtvr36D9Cnzy84eQYCJ48498f9bXf6kI0XO4ZxN3OGjS9f/nb+uG+fP8fLJPJx7EodBzA+bbdIKpnHdAHMGBP+8ulmw7iDvrk9vqWfPrYYG46jpgB55bUe7mVkTDTP6sNQVJObmWOlOR8U17TkLpAsroIybT5huRVHo9p3WbtGWHlkJZUd+kpQmzgtbyiwrK8lumMInSLIrxcJauAXrKpq9VSqSp0R7c07qV6l3UQHzqmOsfu9tDC8SmXbIrTF4Uo3GsBUZyDuVSxMK+dxeV8zwN3AMdw237zHWA8zA10cPm77vmv4Ep5pZ8aa8d7IQY/R7hzUkLKChz+k7YuO+gQFP3wP/8GrUA44G3n7D7N/smclMJd2GBaiWhntmoG3gNzLOV3LtXzc8wrUswEzCkIpU98+pLXA0MB5529JNVkrM1SNMDPMBbRYdkds0RJ/nfSshwlAqUDkciYrPa0vZHYA2MGCUoHiR5f2FRTIUglscD8XWa4z1t6yTxE0El1KZ4uTLjbA8mS89r+62LwQmVX6JatHXNUC0x1jpYVg3TVFeJYIOUQ0wlOzL9Jwia8+E/VEUbPqhzJLy334Clu04s16MFAPcq+ur/p+sIapVMRAkEgyVx+ju7tLVSES1Vne2ssVPaWVNWkYqMv17CsVbclvmZm5e5eu2DXrDua09kv/IMkKLYJznl7buEwY4FZNMUbrLBkAFG0m+phzNZe34Co64BQdRXcs3bXStTCzqxQG0JrnL1H9+FH4beEjihhZgQJU092qEdrSRtDI7TS5UwbmgusKJ2mdp9MiYp6WuViylA03bbfSw9TpWSOTkpIN2x/iGMEaplERMsnSbXFkTWYwuo3NahsvDw0ueLxQHNIMpAJz4tSsw5ExtwSRoZzHjtJUrSYXUyAC0yUmprYMaQ6CZsc5ombpVbfMPOgHMiODc+MYt9v+6tWJUNqxoLvfAIeFBM0xJGOGxgDlJo4xbBzwbRNiLwcAxIGX5BFTIaSZ2dhffvinry98fb1voI/XmdsYg4kzdT/tjvMtzu/z8cs2j5jnnCdCj7873t9++fHUnMeeOeNwZRIWj3mfOpI6s6K0iTNGgDDnD5/4+fv2/v7opsHeaZClUkbH9njq/F0MkYUrdurZLjfDL1ZghPWkrsJLFGFJKJdI6rJPNSQrI8veK9PkXC62JBxWRe+jT66qR0JZww6U0cMeKFzQIZYjfrr2RlHrPLdlwCrNlmd5omhPUaMGuhbsXTG9VUNR9sgxW3hpJb9dLO2EuAOUp2ZlHc7FH66V9T7bglJMk04On3MWJmsm7zubQSZSNFyFdzOne6UMxTDuDOyJLV8f/4R1y1FfmENlwKBoufRCnzConuiw4F5FW2tmcedBH0RztLpua1kqw61r+FAZ1hpbaGBm1jDYyn7Kw38AdNfmo+qWARWm2mSkCAAMCIKXjEBQQEa4BKeVtax4oSvOhurE9WXGTbA1/bLgtSdy31NiiXJtdFzNpuog5wP0egVlwmW3L+SmlbxAwkmjNy7afZUClTVpoTpOgZoZQBYU2NvXSK8BUBWXRNRObrp44SIEzcNMYb3jCZYkVClf1aqqBZT7FiporOJJSdaZmuqs1lnpTcM+2kZU/047rbofJRMKnIJ0crMMr076sICFSPBBZWTOULJLjH0p7N0FKGN2kzuJiFlsw+xhERJR4oNJmIZB2TMSSJqSw31rjRqShBPuNcdJz6AJ1XYNqmZ5VxYASHNC0hmytEpQzciC7ZtGGBExQERGZKMt4b2BQ5kIcd7kgocpCrUBkTKA8k6Py/xxhs9UlQIoFwbTKHPPyOmRcDPHDOb5XmOXBeU8j0BkHjgeGqTB981AN0YcMdKOB/57c5+7FaOVQ/TUoMGQA7JtSyKcPmo9DQEa3MzNOWgOjIma/WOQp400dz8z5mfDiCqqG3W+ICh8f+R8f9G8vRsMntxN0JmKXf6pxnLOGTMR8T54DLM9H2G77Um9bLb9zv/2x09454PbL/F4+0Iyzphxe9uObxjYnDpGngO0eHmtFGjcv769f/825vC3X45fhDkPvPuJnOYZOB6Hv/0MzTx/Ob9//ct/+m9f/dffz9///rjz66ft3Gz4Fi+fbr/+6eFmbnvsty9bbmcw0/f4/eOX+/fv9z/8++9f//g95sx72rxtZ3z/JU/b4DlsTGA+whW3+9QjN0UcnNPMfZ9p+3ZAOc+zmKswpCWzYYlnXz0VAtmjzCtZKLvkBWW1wED3ykFIRy4maKqo1JIyFPO07PKfY9T24II+ae6yrgBbRc4sJQ2rITomGE0yX7pIYnfeUTB2JbqjxerGa/jHoMuit3UvxsyVO3fMgVUDK+itTSfaMuFDStyJN5XZ2iBiicYAT/rS8n8N+AGICS+iSGSi+oeLMJPn4JrkSdJslACsx0gHvYYPlpnrqU+zy8mSgIz2rR/4VkTV9ZZHW5lo9UwW83mUq2mEtFwWARi88k6qmlspJYIpTnsqDF0tGeXI0AWDaqtsygDRpT+2L6vwmmOssp7Q49ZXdr1Q6NqGC9M30rDt20ZmuNMqJ0kgjIxATZ5BdacpEJccTNVM4c6NkcMnqwBJWwoTc0Z58ez5GQoLwUYpVWTAvKH0Uk5aqf4KwFDqIUWZYLdNJciSDqtgKgkEDMOWq6gWvXTIShZDKc12DxSjEFprsLKaweu5SHQmGSFubqSHmQ2/3enDLIs/mTJiqBnnskumiZRGmKpVu4aslvwlpOkOcYuZwzi2MXyJdMGcunHX6HSo0OMWAu3moXRE2nwv4pVoIdYQqiRsdxTJZ0EnRpaVJqxmbJmxtHtTmqKCLCa3OR2E0WWGVIqDRMJBWibIhMMsVphJhaeQEUa3iKjBprkNd6O5W1isUNl0BcYz3ScMkz7cNiaJYJHHI2fSh4go6HpmjUBuSosxR8jDYgXjfloN6GAcLxkncVpAQDocMk1lho6bzUzkeUNkHEJODA7LfJTM8ODrp3fjPLZTPHKeZMz7Y+Ycw44Zu22c6J5v+4Xv8bpR9ukv8sY0mGika6OmADO46TRkMiwz52OSSJ3pGpMSGWOEUeYPwM3NzGZiH+cuGbFvlDDGMBiPEdCxW+LYjYj3PA8kbfDt+MHsttsvO8+X/b7buI3HaRzvsc0x77/Ci85v++vntw3ST+fn+Z/h2//if/SbX28v59uf//b2JWc8XPdzN2h/uX+y/O6muU9sn17yOKc98vvn91fb7++Yf0z9y+1Xvz+OiMPug5Njs6HxIgETRn7a7ufb33wP3w+fbx7n8e/f/vU//xdf386ZL+LP/3I/3d/T+Xj7tr2PP36///yGG/+rT4FPj+Pnt/v/6681lI8cOum8//4crrk5R24vr59e7fP98+0d43w74tudf/zu3F/9PQ6muQ8nkzMztQ/Qb3GOJ9bS7gIxu/pRU1y6qZAXoIiK2qUqvZFUjBGlcFFjuVD8PNluVDKVEU34WIQApJxG05VXFFJclfPNbQTItLSUwTTGcAIpg6wl7A0rrOVwA1xJr5i8ZOPLC2eLO637LGOPhpEXBtvu80oHucrKlfNx9ZGCmQpvfAbMMxa2oAXBcgHYRSshMo0e+fW9qnKVN1bqpTMcUImrJzMzzjiruaG0xMpNpiVoeZxebZq0pGvlTZ3A2ZLL58fs9IpAGrXFWEpUi4PFq/ydiR4hsWZMqN+mciqWJmPhllG7gpConFXKtuU6CpdTCq6m3jURmk0A1bPcfGEPrHcrOMOQsAitgZfu3HJ4TTg0pJkLNX53SZFiEQJMBIcg87GLGD7MCZgD1uQrJ9HtSOoESYSy4z0rRTdUbs0FX/KJOXON6u3FLKYOQPOkrASSej8yphnS6Vas/IoaSDhPtaKDIA4kKbhLcoUKQiYVFtN9zvRZB7BmMmTDQDCSyb7iKhtk+ZWKSGiZApkTNC86RE2oyEIsYhvGWdCUJajTXVKn0YlMK/UuNsh74cWgbc4z5ezheNI0WambgQBSYRR0QiNPRdqM4MwzXUa5ZSojMKumCYvz8Sh8PUMCndLMc0aQyggZlV5qkyOhIG+e3EJ0nUZEN9aoRApygrcxVgeHYowu7CobMA9F5MikAR7ftjF77bqfi/QzArQhnlldT+jj4SRqQiGUQcd5UxJT/ogYGG6ySArmgxtHIs32EVLMyfMcgMThZYySKWhuU8GxDUVEaNgQY9x2421/+fG7DIjHtmMbkxtyhtnL/e3X7tTrm+a31xhu4qRK7u0UqDh90JnhsGSm2YbUTMXjFj3cwnd0ko80uZvxZXvwnDcNHYfgn/GIHHrQ9hz+6Y8WEf4483F7fZGNXWG7vm0//JHvP79g2nGOPIP59vj25eR8yzjHwfNFYZ9fH6/48qv37z/ov/t222/j0yf78fa/t3H8+NP90xebP7vynOc8x/6rX/3tZi7Yvo2X1/txm0j5dpyf7/vNzx///De/+emnfNtjcwOmATPu87jfPn/d4vvb+9/+9ff/9//9/3fz/85/Of/rf7/9O//D/+0f/Jt/8X6E8fvL5/E4LfxNr2++zbvy1TBe8fIX/8nvvvPL/Mc//k++/+Gf5ZdvP37a0sQzzjRMs5E5wYg0i5nTDC+4//F4P95++fbL66/zDmyfPu85bU7Bx4zt047H9BA2txI0QJpvCGI4mJbpw2yzq/ZXGRhBmsOMHFRZ/GQ+jg05GpdkeeB46DzuPIeh6HUKJ5DpkiIzvKR81rDxEvRFpalsSLMT89LOGzaTRsZU9xYUVSHD08Kqf8koEcPFKPWKa4ZD04SWNy5f3xXhld/WCxfFtOKQSFUG0vqX1oECCMhss7TK+Yqohh6F7J3KmftmZvuI/e5JGmvGWostGbdzVP5rbjbGtu9jbGEG4yCK7uH7Rrr7NrcxaNvW1HTUaa2m6ErwVpVRV1H7ee+sF45VIcTKAVa+DF2010WIbhIP8URak7Sk1JUvtjRXhzjAMs/qpLZrssUEVbWXgTTaBRVcFLL6dGZxvzs6zKWaVtU4pXNBGIJSMjfLxYsvi58dCRUak8FMiaX9nqA53cewsQ0fsO48N3fbtn3bvMdP1lzZ1sjq5Vrd4F1MXFVeVZFtkdKviAIizemlDNkX1fBPv093lqHZUmT3gBXoAyjVOE+/AzNhZyBLaZzVA5SSmDIISDKtZN1glRFXaFWiW6mwyhGNEN2UJcqfyswwKuK00sUHpJiOKeYo7pahSiJmC3zPiLhPM9gwc6+od2mhmYERiJiBmGRGQccVBqHbhLoOSaUX63A7yEhmzJkz4zxnSSVCWaPwoEuApRR0CUMqIill5uZVSSoAIyAi0/rEiHn26enVNcA4qTg8TxwZUTITRpb0JwwKZTrjnGcELRoz68I3icyIpKVZSfpCYV5dOxYYVr1OrgK4GJm270gfQs2KJAGHkzDft32vdznTbYs0JS0NPZcRhL1wfjsfIZcn0lJ053kwGZ++/D4tw5QJJ9aIhNtgzCyV2HSrNjgf43bjMDM33zYTbHsZGFzq30rqlOhmhnHbd4djlHl188fLPnZu523sr7bfQAyalJjI09O3t9ebiPk+na4Bt8crqHg/LYPA7VVpnDqP+wMJ7dvXH/N4mHHTCWccZ0wRwCY/Ob/ffjjvc9zet93zvN9uw/cNv/3dlx8fR0X3lNG2beY+dry+QP5i/vrjP/jP/2A3/0+/zv/hf/3yF7/6X/1n//n/ev/dNwPnj7e//Nfvwv49v/h+k9+3fcO4hW3/8Ke/5EtA2+03fPDt3F7ht/NMfiIe49U9J23OOXU+dsgVG8My7TyP2JBmXpSJ84xW7tv4OI8TPSdHWhyDPs2KNEsFIigQyShtWEqS9SiUBjiLAYi2kWxtPnMlaG6G7GFjgorcD3ZlrXxFFaTagCdUkiyVZmVIGcK0LEGiGge0UtNVDg5r8y1VKbI7BFaq0Va5YUOpENL4YDsvvLqy5mSKazTy9Q6d6C7fVZSNyrkrqa1+xM5IP7TvsEZT0UhzsMBycx/dQHe9snqTrhajapcnw60C9ZzOldC3B2DnNwt8e7qGP835+6vQaPJp49fN51oeuWu2FRBRQKp4vV2wdK9EV0mbnQcZzLpjs1KvIlh08xq7elnEuqY7W6ZdPqfWlbpkxoswUtSFjHmeM8qaJbMVjtIg8ykxxeYYPV1fZ+Y1PmJWrrfQ8IbqGuOo3oGF6yRY3es9ciL7ZirFbPA/mz3F6hhIXCjSxaLoEKSmyQBsRWYVQ5oC3MykaI11AGrI2Ugzz+Ladw18VVrQ/Uu1zgrnekQl6ghWswIFluTsUq9Cm9FZ88TRU427FICCUmNmzqQBrNlyznoM9VCXk7IlgYXuGR6cScicbmPQx2mijYSvzLzrqZD7nyxWua/S9M7qrbNa8EiJCjFinjqnMmpTRcyYqUT5o0ySUndODUxZPWvUplWaKQSYO5obnalr7g/JpdFCWo/HgUnppqKSgwZrydUsfnnODJmVSmnfSQuDZriBMNnkyO7ilbkNhBX/ISVpAF7TSc+pso0JzazE/ZQlxth2O/V2vFoSY8TgGedQ0vyF1YT75fNLD16uG/Efb7t/fzymjU8+gwxZRsRx7inNMMSGGRI9TretyHM2DObwNYFs5sZEZGEsSLfwhMlO98/nHDrTEYHIUJjeywSfZ+o87LBTZIa/MEjY0LTjMfZMvU9h6PNtf41tc3sc567vwQDy/Tjsn+vnf/bL3/v20/bv/t7/7r0AfG7ObdvnLfcbQH560U2I+W6gcxo1sQ2bgx7HtkH3k9rsxTcYzX2Ev4hfPr+4+77Bfvfn/9EfZX/2yX767Qt/+vXv/t4PP7zcbxnnpjyTFHgejlTGlGDn8fau97AT/ov9/V/t237SSH+7U8MhunTQETKn82bw8M/79vr59jL8eMzM+Yj32L6984g8LGmYxsByY1h5VJWCfdKiAkLSnALla5fRzKozbGV4dXyGgVDalT9BapS2fzRzqGREgYq0l8ttYbvKSctzdMVSWMkpSumHZYY8sNICUpFEmqdAhNmAG2ygGzsltS9Zjqh90honpHa7i8yFzmsaWdYag8PlPMrKqgB694IIALZqTv2/rTxBc3NzN6DGnBoBJofb2G9blbfXzKOioc3MYBsRIxLGmLQMWHMoy6DnGgL0IX9dscGfsNMAXK4N4GB73Cs9pYBcHncVG5qc2mvYZPS1ouXcynuF0PKZBmR1Ga2PbeGCxZtucGF1BV17r15QpNK8LreMN1q3KUH6gBtU6kUrxLEkUVLonYZgvXl36dTs1VKswIKq61XJVI/GrYAnYk5G6hqSDrYMcjpWrCIhZaucspCIa91Ya1MliBLVLuyoIjmp4Ju1ll09roBoqY5cp2gdASozY56RjCaMr8dNLCAnRUWxsupRFoEbq9yCC7XogK+gDazUm5XTE8W3rq/0vvYnwauOwRUzml30i9pJgUxEmqlum3DBxxbSXkF0oeOFlvfpWmIRqs2V2dIetbq96SJixiWlXZEIFegiVglhKakoyoUkKoq9xxUhQTKmEjSrpKNPtrMqB+ZNn+tIcp2pRDNLUTpDRWbgmtixeJ8dyHc8VUMdqpcJADItOwAq3GuBS7UY3b5NQBnznKWKFLZUiMo4lQKnjG6qeK03qydHd+/Goc7265SvXdUfRYO50b11OoEluQRYiYqUfQbM3W45XmLkAEoZdmaU0ZigWekhh4LMYMpolhvPGILrNh5mYk0gvtGM2x0eiJimOOxkRBA2ZVFTUfAOaN8CkLuNGsNZovnOV8yx73M/5jkpUIYjN8Ep3WFC0pBOxNliK7R9x3HuyHx/cKON1y+339znV30epOXx/s49cjrnZJzOry8xMXNGDlfe8hW2OXyMFx0+J89IZB73TzowD9vu55ipkJ2aj3me6VvATmEeoTNPYoY7lKBR3NM4sqaKYoXOa6+vY9n2eiVKVxUYuNC99aqM53msjKxMzvWaJm2pGZZPF7HcQtubD6eqNjBMsQ47dIkkdF++rBPI/9Ao9OlpE5cUn6az/CeX21Q7zT7SXM6z/96p/TNRuQwmQFaRq79+ubr20P2WfXfy9swy1KztfXO3a5j6OuRSN7IQyzW7mXFQSy0Sy1l9+LWye6yHpuf3+XyOBUGvby8e9MUguwB4dIqdFy7SQVW7g7W09Td2Gl333a7rWhGVeBVqDlIJELDlJ7HW9emBSz3Cuh3LnBhe5F0TC3BBidBWSZf9GFr7G71xLsNOKyW0Nf2hDBgucKJSM0kl/7SevHW01fu06hWUqbrN++5XEqcP0QnJNayxUQRaDydasVwFGutBrmBtMdexlo0Lo1g5bzvpWNdWzGks9qAWFgJEP9jKzkr/STAzdmNeRodUdSEXaFynG2nKnGYd1rRX7KBltYApCcrBCKboNAs66M1sQmtZGnMyvcne1fVoLezyDCB74/FapIq6aJarmYBVci7tO3pXfmqAaj2lDuAJ5CXDVTdWXvd5XK44R1JWY1+Fb4mMSw3B1p12LG+zKIXVy7ZMWa3ggkOqSkGiu5xjNEV1RUr9oFg01zGFJEuht/ZD3ViHZUOli2ckR3UxAjInByyjtNFkykRknpncYLNaySs5bgxUWBGXUZKZ8tzCJMuWmyvClbk3LECSNtyHwXdTwuAkPWmCD9SQAb99Osbt0+3T5+Pm2+3mW5qNaocyEDZsNKkWMGF6TtZYFZ05LGugj2MPvPzw45fP28vr/3b3LWdGZghpAU+HzMyzGq+QCXPOQQ7eI5LnObndjNvcNWwnN40RMWgCjpgzznm+3+/vxB++HV/nzz/v3375/de3/X3MOQ+eOYgx0rdt2wfchnvFQxGPx+OUFRBnZkqzjIk8l4sriHdGThhAnud8nBzaxBwjtrEFM3MiKfrJDKu5k+wNdm1FrZIMpDYTufyflMsalVlYIfriMl0mX4ZY1YOyp01zWo7po1N4eo6Vlj7zTays2hZMjMYngXWCS9ePKPQbl1mz/OiAyivxgqK58rRG44AeFr7qHh/eiuWDSge1LD4Xmnkd5Zb5uT7gw/dWrIxazlq1mCNySojlLqjSaKojv9x1EYpX10lhWGshe7WX2Vyfa89vr0VeAANGtWxAV1L0hEI6doJoVoVE8zUkAFhWqY0OLpygr4EsyiUo9x4d0VnssjpcEzGewVpl38/HjqJhlwOGrykPoJk8aZAV/FzwrKKzyArduRDODhozkakgVAiN1ubOvvPnPm5PKzUtGFo4RsFDa62ygi410u7tfXPJlnTkwWJ89yqt1iZcod3KSNYuZEd0sJ4urNKHEGt2oLUXQmdLShV9qoLCS6quevFMfT4K7zHrDr9kJr3fpC4hExIyicg4o5r/oGh9RwAKU8Cr6fAqF0ml9wYwwgA6zeBEnxKQpZzdHWc1JI2tPAZc2jUdV1c23c/6QxDbUQFpqY5iBK3WP4gsKFfCcINMIsqJdARGYO3DFYyrPbqZZ+WTKpe+0uFQpfWLAQGCVoXkGjP1AXBah6DPeVtJdFdzZbgdFUJShqyogBSU5xzrZNO2XtKSMB/uKNZpRJylbgJAmXMqi8LZmnN+raJm1Zi2m1Il6xIZKRXRoQIHq0Z/U9iM6gEAahMJGY3gAJQCgiUjdwNPUZk4I884MXPG1Dzv5xn5fpzHNo89JkvV7Dj8PF9uycgNysQ5U5v8EHKrLeK2+YiEFGcq8vRx233fx5fBQW4bovpHRJMyznnEHfl2zoxMKn2PjPEiL9IqN/g6emYJ5SkkZhrGNm65337z27/G+avf2Be//fjjX2wa9OE+8On2dRwCqIjkoJm8jGeeTR9RMNJNmvWUMs4x78w5avNibOPGxBi3/fbin79oe5irRtpAmBGhtKQeODWTM3s0HZ9YI7rVtDHij6nhskcCUhbrdFSfXRmbZc4lKSPVHJU+Tz3yD898gU/8p7DcNYME4hL+ASv/6ISjTn5ddZaKmlqQo/nAzB6yeuFzy0tdx6Uyv+WT+CGvW78vY/y8oY9/QSc/yhBwVYg7leDT2VgNYZ/oSXodpghXoevpPKq4tjDvVtGvLLCHEsGHmWwZJIDA1ehsBXNdz+vDrbZjrRhm0EpPYGXLHzInovS4eS1b5axt69oZlt/CtUrZoXxaj2peN7piqCtWaRNVMfuVNGdlvbwCOalEHmroq5QxmXlOQLDV9BY1xG8Z6DblhcS1MVTJtFJwNx/m9Q+a0YYBPexpgS6klRZTyVB07NhKEZn4AOty+aAO41Ykt/bzCkyXg1kPRBBZ5O1G5GEOPXP2fmGlU8yCyIMEGDHHnEI11StNWfKGmFHl0TNiER8qb10ZNEBlRvamqXHXmfGMI5TANfAgoQCjhjvJ8hSKHN29+L0RSuIhTRaZxwEhkWdLKNAS6vY5kd68eP+TyLHKq92TLUma2WfWEJ1Em7UTEth9f1wKKVAPH+vwM8Fstkoxtai2HQSocFOCoRJ5Mquu9JKoSmICfTDE9utUxXA1+aLsS01vssyLbgF1fwDoBpOmp6q6C6Uywrs7oGs0VuQJ0AYd1WFlgGXvA1Wp+Sx1JJKK8zStT4xJt6Q8J6CZhtZGw+7b8GGBPGv0ZrlbT6CvwGhRWG5JbEgWgtiNjQnlOVe8KKgyaYuW0ZwyM2e4i+6W0s3l29g2wH240j1pNAyTDcvg8COcBjfZxvPxYjimSznfUmdiYt6/3t/wb5g/v58JYj5o2UpOmxlzzlQe9v72OR7OIl+YOZjOOYWkUb7ZHTDMPHEfPKcz5mMcljNIF30fZ9BgGyyJ830OmdsmWXJseVKpc86JETWey7bd4t8d377/Yf+KL48jUkb6TurLjxtvQIYiwZizJTbc3TdIlG85Jh7hR+R52szCcOlOxOK/tAm7TIVKCxqFs+ijb0ElZhlmly9jpT5XmlXHCi6NbXgQz+wieblaEivTbqI1ntJIQGZCUpE8M1WqscQybGgTf331GYouKLWBnFXA4oqViVZEt57pu9wy+Yx0uaLWp1lsl7e+1blsPr+9lrNv8eq/UMKVmTJ7AgWElDFtWkaNKm37o+pY1DMBAAsGQaXmSz1E7SjXol82TR//+PC3K+HvYQzPH1lvow+QxOW+JfWE3pV6paoXLZlZunlERoFtZZQr1bh4XmuB666RRa/TE/xcky2BZ57JirhEwxpcdMWEy4UjzbNYd+hVK0XnJoRbku42lHDWGFiS1RdJLoZ/bxlTGqspJGfwQodyRRllh/rjVcEK0II9qhbxKiwWthipVJyTVXuwBYeIRb6vH9e6FDWKJSgtk4Aq4UzlZHH8E/k4Tx2BUARznidSmRGhjIg5wxCF4a/JjB9zfJDWuBCJp6h71yZ5tTQ1TJNIS5QUmcqlATAwKrEvTBhURmOeRILLB+aoRi10ab4i58be1XVPfthxykz4KidrBWS1QEvorBwwGzNeyBDoLT65+iivkz0VEVJIoxNlwYti44UFVUt69W2V+k0bkGdUDpX6MgFkluzu2sCFMUCgetpKWjKCRa8CAS+OTI0W6VCP7RK3qEC8hkSgsUZCMc/NBs3cQbNttzPbhzoFyJDv7w2PI4IU7SHY5jB6Tyxw1YQm69D5UgAgyUxNhmZkzjPP3n/RnSoq1Li4jLLj3JI4TLSBMHPRPI5pu2OMfTOXmWlSYTLGkWZuknmWATNPG+T7Z+eUSeaR4jymPx5nmjPi9be/++HTbccclojcgB5LCQJJS4hjPF5vOs8cGXFsBZLzPPH2y4+HCzF16kjmGSnEnBYhd7db4Pz5e77OmZkRx+Nv/vDz3/6t/8JjPvzHP3zNScwQOA+bIVEZ3C1u+w/bl1/9NJXbBqfVuCjltn+O8AedcKdoTKOo8zju38/v3w/3XecjXwAb7rectdPcSNuIvfsxO62sE4KnyVyJYSICLgjpa08uf8NFLuh2lEbSYLLhrDSwGu101Zdax20Zs5USrouwC6a0BX42mINOu0SuhiBTWrEXKXNzh126VGj7g+u/srdqW5jLCK7sr2vDK/sDG8248ptnxZjLdzWSt/7dbmSlH0C3MmZxgEt7h8iimXVNPKvkqOrVXJ9fZXYTSgAcAJRLyKvs9tONCrBc8QeohepeaSY6aePAwjp62ZOABKtMtEZL6gkW6OmVyxiukiCWmGMLJlS0VqmXUJXS7kxWv0tV2XLtoef7Xm4Qz/wxqafKcSEElr3e5HqgBpQ5bnbaM4poXIE9pqYuve8pdT3GDj4/1hPUOZCyLraUpVlP68ormXiehoZhrse0/JgKHk3SUL3bQKrriKYU3VHjCAgw6cwavozSiNBiAWUEp53xYTKxujSb62mkspoUWCTEC1Wo6+p5UazApoXIGnPo2LAf7YpMe0+sak91GX9MYXuP1UgLJpBFcMqql1fQBrpMw6Fc6McTz8IV3md2Sp9RevJNm9fzeeWqKlWYBRU3bo25MtT8oMJZ+8bUtd2PV21QRYJVxk7WXbL2YIU/WjbxWZpPEIWh19Zp1tKKH7vniSZmKR80k2Dx/LQivsaoQcJSqZphlNVZlSbNDZExzyNmFmgCyLCoD6x5t6Rgxa9JSAZijGFk2jYsspN7Xru+G78aKrJR58r7oKytXAH/NSoAxbYBfeiG7e6UQcNUZp77vuXmzsyUuZU2E23b/HzEeOwcdiQSsogNjOHBI5A457SS5AdmnPYt8fXr98dJ6HGf54u3i8mMMyBMA2yQ0qnt5RZKjs1N3HfcPsX+m9++ur/IQEuxdIgBsppnZnK407Zh+z5e/YdvD7t9vt32DWc+bv46JiEOJr2eJum5v7x++sO5D1icN+cmY2mXYdvmUTwqes0FBUeQk6DvL2nb293i230qkuA2XDohRdpuHrtpLCPT8zwBLkUDtvjd4otmFYQaKWqYrE6voBrWvYC5foq4drcyEYXyqCmC+ZwlD4gLBO9kdmktq2tbav+47COXy6v1ZUf5HRNfRaSub+NK8rDSyisvfiaK5SiqtHu5nwa6ynJfaTFWdszVZLK2+OW3yzdYl/FGAU4NxBKAGX0bbrYMny6xk1WBRDsNXlFHNaVct90fuFzrhfd+vK2n0bm+NLBYt+jl7v8Jyw/WIq7Af60c8NF24nJX9Xc9YYNn+9cqfpFraGTHXuXs1lotF/hh9bq+zGZDldetTzf19wWAhiyv2Mg/OybiGoQLWHYrWPGtKoXIGjp9fWybRK7JF5UJmUw0yepZsrLnig0MiKIEQcUrKkH/qhxCJmMJ7v4JRoGVW7VYVpc5VFn8n9AgUpWDpBF09zF8DJdTqJYdD9WRre1mS/qDi7B8xbzXY+0gqBnkF7xQmTv6kGPNAy4cyVh1LG8v17rbhRBWcjVIJpUBDU1JLAEuk2Cp7VZsBnomjFcIbt2YuBr2rOSlK/yw9gG0oslV2FXxQb1+WR8QxJqn3MdmVQ9KpA00XzMfV3XgCYGsPTxVeqCCWRuTgru7iM91RJhcqsz1HtkFo3wawoK1u/aOdvomIS39SnkMNHpPGOvUXQavSekEB0GfZLHnoqKixviIYkr0EzcDBgwZecboOKpGHLH63EqF2wLmTmP1Jbdx40qgoKgx7QtYIkHOSaeFoYSIpAy5ElNx3G3EHudUzJmITDPQXzBp2EU6HUb42MzG4fXjhGZQsM055DZFe9FxHJHn/X9jCzE095JmspAmakTVPsa2jRgbaY48D5Vm/HGvcRyZKYXyJLPGwGaGZpJHAvs+buPlZZzx6Yf9tu0Gvex+2wCawwdizRgX8/z+/Q/f73/4m09/NW/fHufj8ZrkNlIvr2PbJI1QskT7t80TY/jYt/108yGKzDhjHKcCior5zJwGKOyZRZWKRHsaXMSeZZVs2Ubl0j7Vqjt0rHxN/uvkrYzK0xn05m9iP7H8dLe1AniWg7O95zpvUl7nBC1MpZUFXd6VH+xv11E7lntaPywq5rPjgxd3+TqK165eMUYjaX9yMwUZF6vj+s66hr6QyhE60eBla3y42xpEs4yPLaDuw9Uus7Terplt5XH/JIV8LsQTwNYCID9c9PiwIG2f9Xzhgkb7m2aeNa5t+fWVgqovu4R6rSHWXvsPsD3Maxgv4F3ZW9+7wh0t61bhTj3s8qrq8T3t0r08XuV1VbWSSiq6MQHiWRdv49o5TFYt+gkFcwX76+H0i7uNvJbclDKYjZoEt+5ZoqEmy1leAUh9DwAN5X/MvfCZyui7c5cCjdnwRygr2Fx3AYBcvC8anIs5v41hMqY0suYVSATNJ4eVjgUdqO4Rrq1BgNUNpsJe2l13Z1GpUZpoFq1TXeGimQhYuLG0rLu1v3/WzEGaDYsYty3MIBuzD3SKniH0UKI+LbbO5gK7BWJh8sSCnxouVwVuEj1hDvMRFYVWFMRqOmn2AYGxyXZGFYWpaZ5pVCbpLIVtI4hEhxdYM4dFZWBy6xnpOX9HJSKvUJXmaQGKtEDFGGsvd4GBhe6ZWSWkgkyq3mnvMSYlsQokM92QnOHuS8BFyUxDRm8IRXWnn5EOILNKt1BHMX7bt22fw6ZRRJyM4zhPOwYZUTGjR9EaQdJCtNIgVrRSrHFbhusKR2mFqLfarLM6Ec+MQCKOtN65PBExt8eIIEOpocfug5k6thvMtslHMOYtxNCZY7jMdweVdN9EyxrXxKH7+fZ2zM0ppFtC2C0GJd9EbeN2J4cF7DzOmcIwM7uNl8+3x4Px+PZyMyRfzhs+bzzu/pra9hvGbrKx5fv39+P9l3iJP96+nd9+SfKMM6Ynb19uEz5ge7r75ryNbfNh5/0cL3/z+mv76cuP+cmG5uP+ovP+/k1/93fvx1cYzoN5pAmGmQgOt5IJPA/lrYOcKqzAN0BpNyVYXeUGEXA1BchNrIThQmJZzR8Vb5FGubfwwnJTbsUMtKZfAhEx52k9T6AGbnbU1odsEXvWmbNsVuvTj+jpgZWuRq+W3lu9NuvsmtS6RSgTcrV2XqHEVezt9E8rQ6sPQSapiC4uYVXlrk7bhlkvtuDHbPCDZ67w/aL+kjT3Hm8PwNZg06xe3rEyjXbAH4IFQlmjvjNkpVtDGt1R8R6usc2VRD/hdlzpdAPNH65xUPwI1VZy0aoJUAtK1aOVVjNCoWZdgiskuCzl8hv4GIL050oBCMZ2ME0DaJevDhAqGl4OuGrgK0KjMmOeI1r/qDrPrZvArV0LWf3DvepVlIOgrHHBUjwR+ecGKy3FK0Jc0ETFXf3AqpTfvCSjkFUtUBUza2TgFUQt7971ZWupZDNYSbAUYG6WFVQtjBNrL/aF9C+HWQmAOGrekI9B8zAE3WhjwggaaMmacdRkw9aPXZFlfVJXMtKqXbgO0IK7V3Qnoqrd7R1RIu78IBl68QLLS5cKc2PMriqC4xJDpVJzQJHzYm0D6+1KH/1CAkpO1qxWMIssfMUlCdKVTYlrl1GWSbK+CywdcFbplTIvZQ1WtT2xWtEujKfa4EGXclZvOH8nLsUSVAQDk1p1SI06SageD4iyAtFHZroscstS8u5D0pieNaOdEBDkrqmZ4bVhRRrScoZKx2hG3EeW3eMUhdScM+ZMmm1LWNZspJEZ4/tbKBHJTI3ajFkkPahqOugKe57OuVnpl+ta6apgUVnDVt3NzY33G1oPp2xAOqW0AdqngLPGT/i+c8+NYTBGvEc0HSQj8nHajDS9P2achiNiy/AaU+OUTN/+6vZb3V5/e38I9GoHn3nc7yc5JyKnRfh83IShNBkx5/t9vu3Kx+MwHG9bJqJukErNAHIqj/N8BKi4n+PPftnfzq/vm7/++KvffNHr+f79h0/z9ZF0iOR2qwFVftMI2+f963fqHJ8/W4T7zXged339+ja/jdfsnHBOnOf5Pkccx2Oe83zMyMgDtxg7jZj3RGxkAmHHaQcUpVtXjS6ZWqPYSishmYkqASwtyvKGJJE1+08yZMYo0s1VPWxe8IdqnBWkUpFY14Ysl2es8lK1El34JtZpRw9oUKIHcCK9TL01nNqIZWMj1pbsWWtqQ7tcOrHSvTJWyzB3Nv8BDcfKacugfkATL0AKVztFHckCkbjSayNgFvCi1KyX9eF9Iq22gL2+jZqdbGndr61MzjmATIZKsbYksa/reXrVLuZ/CAwuPzy6MKfL01RkUT+/gno9n177wnZcrEexINc6sTU+g6sKLCgjUFPH2reQJMIWeNKUqisJulD9HoRlQCJgYMZZDvg45C5AbsrmkuSK4DpM6+r6CrcW4ADCNzMvOYPSIauQwOzC/uvu3JyAMkrdcMkkFmQm1JDEWttG7a+0jaiR6aIlWieaYDXhLgyjM+0aS9NnRBc4fNWUrye20FYzNx8+RknPRUM7MocQWZlXVim//e/KYiAqTQrEVAZDDMizx3DIAlmnqohxNaElGWMl0VK1MWGVgJ/B1gJ7sgMJr7EKxIDRRocr52TyKnSqca3nMe0zcKFBRUgv0a7IBU8YALqYVd1BWacLTlbB0JKWjxMBYxZJgG7dNBZQqcWybUfbmpwGjQQM8NpcvER4yVLsgtM9uCLcCnZIyFpIx1wITyn3izgAQKErYqCX5lZaMjSzpqYuBoVJtEy5+6Ay47iHR5xHxSVSzmRGy1b1T1fHrWFYALQB+b5FVeJmpjJq+FyZ/JC5hBgGN4hupaIDkpSmjF35oLn7cBoJRS1yDAuv3UM6QZ4DmQH3sXPf9hy80R4338Z53kSe240GE3e9n8OVpxttg/lxbKNK08H7lr+/zR//cPty/M3X830HzS2riHn3kUIgqDmQ1d7soRPzeATCxqGYj8MOixMnZuI0m+FzwuyEuNFe9COo43g7j1++H9++HOPlZIrGhO7zcZh9g73Jle/b+/sZMD8fb//82y9vj/OXW/J8e4+wueWZlI3Pg3vCuOvhhokhlwc2c+V+2252bNOKRP/+0Pu03BxCxnZOiw4uK5JnRqYUUUqtqcsQPFuF2R1ulXlSPTsp25AXNTCLe6Erg66wypa2r+q36lmrAtDiSDxLn+hsd2VyK9lUEfE7yaBqoIO6wNHnaOUi9U81orqKpP2mghRP41pWoIFYrfLR5WvZzY9csNnl0z5ao74ENaHm8q4ABIfXj6ZRacnM3KoPYFlYmvsY42rw6goUxzaMbnQrtFWdhxfwxRX0LHfwzKV0/bZifZUW9GU9O9Coy7zkJAUsKg+kRECUJpEMNgSBEndGpYLm2T6khORxRDBnC/cVnsrOtsWQZVqpkC/8fmFfIGG4toQk5ZwBzPs93AqAQ6L0MAcBTXo1by2bOEwlNgAAsqHAKPx3WIZE56AdUUlf9gcls0510+ez5q6nNQhvMuhik4oEYmzEYMpcDeqy81wGSsu7TDvWhNzK4qMkE1PKwMroIAqGnEnIFYq8nmM9CYmDMNcEYMikYRA0heg0Zxb9mW6SXxPTQQIpD5M2wkrG/GqdQaa8PspMqow9bQWuM5RIJ1ADubsiVOtrWVDsIQSAQFrMWrXqVCENDEDmBC3WrAsP0SuEbCRCmREZ0AgvetEQSodJikwOLwoUhxsJUw2BSZZ6tipy0sLzldX1VEnxNopE2Fm/Qm6m9OagZ3Ic7/A0mhncbluRltFlKK2Jt9NyZlQBpA4PjapQDjbS6CSdI2E+YzOA07aBlu+oThYjkoE0mKN6dgTAEdPrceUc0vZpf4zX15MD4ZjIaQ5mBnbKuDHG6xgQfJOwbXs8jumGHHyz/X6aQWi2wJYuDncbqRy3g8PM98FtJYyd3rN4UeFbdGJgZsj99bEn3WgYOTkyzdxskpFbnvv7nTvx+GP4G8/NPezQ/vm+jwSOTxPitn3aPOdNG8/XdPPzNr4fN3/w2+9/ftP2zsf9j7d/ddx+fvur19P15jS+n3jBuJ22neCB+03MuLlsuE8MG3m+8I98+/54+1c4/quf83t+397wGBlmj/M2z0R8NeTUGRH/9vfvY7NPnNpu/ofX/P/+9du3l/Mt+f2b4Nt5Q27+yLHb24Hj5xh//X/5/G9/Gfd/8e3/vP3b/+bry+P77qdj+zH38y2NNbpEvt88N756xHk89JK8hW2kETPyNNnAUJw7MjVekXDjONyg6vlGIzAJmkxIubWU1SqcNHcuznBrpBYmwKslbaGxkCgz2ea2dHKTaXm24lC0bmFDzODybO2+vOckiStMplGNOdWREsASge2UrJmm4prLfpV3JPSQhG5O7YTLYLzUPSjUjFAUw+TioaK1DJR9nSBl1clhshrl+kygKmevK6b3DFogJ/IRnR6SVpM0I7M09NBJnDFjzpGr//9CpkskgWdV7pvJmN2B31VFLPzhGXMDwsVqX9GNhnXmg5X/11/yUl2B1vRkrFsqotmKYBqBj6RB1YY0s0chLUqYocqKRfYpyT1laKkJcKHYZGI5gq4WqOk0lkLJ16ddPKjKNoBSkECGJB/0NsBLLqYnbWYIlmGax+LXZdIREzV4IENCVidsoFyekVaQH11rhJ6ZjDIu0IUEc7ihR7+aG+iOBWNnVYCpwjENMFSnt5nLqm6eDYagh9avSwQSilZMzUlSlmHTY3ayZOielT4fUVDSmG7MdqQNJFW1mmalhppVqASUxRoGR1NRvdSKayTKCp8d7PEX6Rdsn1QPMDYrBjRKKQml1e5ElPUwyLCBshFNc5Ykyx6a4Fxa3pIURbtOMHOK1cBDhap6nteYRziuyvkAK8ZLbTPMIB/FVIPlNEqR6ZG7D6vs0yJ4Iz3NXHGhVUj3HJ7IDRoeWw43S9XEyRpkxkAKJCKyhwBClp0q++lGVV8hlTGpBNIXRSLW8UwHqVDGVvwZqeLYwuaziLX2CjP3DWnj5RaRgMw4djcfZwLv+kTmqPmCFhBsbJ7b45j32+zg2sxoPlVDb1J2w8wwOUFLGabNATpFJRO2DZxneE5xMCXlGM7Hacl8OJDw3Icx6ePgLe9f3uA7c1DJ0+jS9Pi6b+cj7455HneeYB73tJeDL5/M3EVw7F+OIsWc5w0nHi+//kf/5J+8vPz49//8y/Fl+L5hmDIQ5Hme43FYfvfziHkAcUwzpX/aY+RxzBn+5bbvfjhGxoY48jXebrfDvn75Pm5vb8fbV/3rf/mX283/+ca/uv3lOP6vf/OP/5+/fR/K/c/2+88QQziOPR8vjs2JPLRtr78eL+/by0/h2+3V45Nv2/ii88un13AemKfrDo9UnseMSIPFeSDy3MbA+R3D/WZk4CF5Bm8viYcmLZIXlALzhKrf0GQGszGLDZWWuaihVu6oqJ+VQ7lkJ9fQXr9Qm2aMrkJqKrfCWMBCFULlBTrZYVNtSFoawwxgi8zX7ByDVT84ETVIrbQCKt0skLCvKqsFeWHNXAmfydTdGNWaXqIpKosKa+tUNByrr5ffhegAo4ok1iBaJfJXN+OqM6Pp08sCKhkfwNHItBn06LyjKosLmltDb7AMaI99kG2XZNTChOuurw8nLv7aCoc+XJgAYSzYfMH2BUo1xsHGtM2sOhhMgSV8cOXlQMos1gosBJhN5SLNRyzi3AVHPGczkF3yr6DpAxxZLSAAimAug3JFFtZM9yIopiAFs5n17dd1kbrLps1TAU3DOT2EDEWIwShQ3FYV8KpBdvm+XV8tYnZYqQvC6f+U7S21pC5FFH1Kpsr/q+LAKisvSpxvBs+uxFSMx0WyMPeh4h5nLV6VJ7puWCC6ZiUtsGoTv3QgathitSEtjWxVkdVSOSdEBRouaFwiA32yBYnVVGFjFNusRjhmtbaxGeUXZYQkFYZZybknveaUucxYRXAkik8kNo2iQrkFPlwaZbWUACHLpJKREQrMDCV6VkDJ0zYsYC0snUq4QsoAM8IbHionbUkDIkCFV9/Fab5IJYWQwXzKkcmMExnVpalcnVNUBJRGRUQkPYsIye6DLBJLwiyt1MbMTRxOq/jdaeauUoY30gnYRoIjuhuwVrXoIF5krpxxBoU4h011KSoVTCq+5P1+v++IiES6tHHYGee56fU1YySyVz+7i8AdOasSCLiDhk3cxn6LjaCZDSfNx43askhCRYV0+Rj28pCPbfjBdDfNNA8d6WFE2hjDBwU6fDARxHSzLZwQM2Tm3N0YfuA8H1u84fMdM97vX+zu8/7tPU534tvtcaNbpE5z5Zl2zAciDXI83m4eabvPQZ93fbHb/uOJv/iLx/7+qnl65LkrI5LTttPGvvsYfNlf//H/HD8N/A/m/t//Z3//n3z6H/8X/+n/8qdff9vn8f7bl7/7V7/MQWMI2zhzpI4kbfzZ51+OPREcP90OA5JhtzP89oObaYSn3/JEYU1GzBPKzfn5dsfjfHcalTGT002RoB6mcyJ8kXEqOSrixBCrCixl9rxMZAQuM39xh0mKWVUGQ8kNsNFlG2AOj7IJ3iRZerZmZGW0QiWeJtOCQ0tafTGlKi1iUlGpBzmUZcLxxC3baquraatMlSvJu8w7tDK+xMofLnu6vp8sk9vJ6eXcikukC1gvlX0sZ9moc317sXg6vLGxslerMo+bj20bY0kOA9XNSLbQ3Zro1NhETZaz9mmd+qr/hoVSVgBSRdjiu+R142zfNJ717euqtW6C1/0ubL258fWKxikIrCgFV4WsApNawtLo0AXYpyWLcs/r0vu7TZdaGXl7r4YTsN7XQJmB5ihSF2iCpYEmJ5Lynui2/LCh2DpFnQtRwFJBRNdjF1JAGi90+aqPG8TMvqpVDLl2GhoEuio1vUAE1nyl6yRR65HVDlsSRZn6k9kVvEhiamCzw167/nA8W/PQu6w5dYBlKdGjCVB1c6vHsGkHLqF53FxVasINAaZAWlWnu/deWtuo+6l7w67oE6tbh8uFr3UylOevp1tptYk9j5KreXdlAM+NXoQnHwpCmdFJed/u5b67UIUEBqQMuCaKTZmLklfMs77C2nplJK4uomcdGxwGy8BMI6chLl2E7pOkAEVUa3b/u/ZAx5hrsErxVcd+pw/a6DGrVdtoly0FRppF+jjTHBX3YY1mTYAoDlNSUJxOlfg5WePPA5tLiejmesCNwwVhXovKxZFY20rZHc0GCTYGZXSvGL8K+GVmHKTT6O5e4s0SvIooq7Jd2OIpc5HKCCg5NwE+LC1jjox4ZBDIgGnGZwcjwoSYinNsE8P2MGl8uv/yt3+7f7nx+/cf5jFO2/czjUhkGpEy84Ftf7M9zA1IYosTw2Fwt5SB+9i2vG2psQ+7vd5kn263MV72nfuvP335wfaffuU//tlPeP3tP/yLn/7sB+7vk25R4BmZ0wJznkfMmefbO//4y8v9mN93Jphx3EA7TxMwEKP1eTOTgmmiSnKbuY2iBFSNxZ3mk6TNVMwwcxtmEhJMgqL5s5MOz6PUhbgL3COtOsGyEFwzN7PMZLX3V6ewityzzH+DksSq+Kz0g8swoZPQtm7L7VkXEPsYs/08LZfDYFGslykth2LW3oBLQLVO7zJVbTXWPX7IE7VMzNNtdzK96t9ar+KyvH1I8fHX8/WNPtUpLytgtLGNHn2Ha9G7+VFXT0ud5pV05QzXmp9uy84ViHkFSGwjxctW/QlFWwOQOq0szEF93CuB/sgMvsrwXYTX+kulhZUAUsuZ83qE/SvZeLMgykAyE9Y4yHogTwv8XMJy54QZ02v41nB6UU1gCVNoJVdENVjWdrgK9mj5JtbogcKcayOnFJkKNstqfbY+XgvJq42NNkVbLxTXD1TMSVuEHZRoQkcBSgAetUVLMEbVjFx8scJuS/TBKLAFpdVTui/diipduLsVR6o/z09AadbhFTOo7vR57tzaDezRUijaMYEPW8xDK6dc/LjK2TuqVVrHn70NelOvfVqLnpaYm6CTAfOqdJq5pYZTYACO2aBRxSU91ruMGD82R8AsnufiCngyA6GaCgYh5FJ4MRZBVlWk9GyKhOYrGOzDYHWSiym3LAHIFlSSeSyKoSzN2OpWRggur9izSmUVda1cHE3vuxYaoLvSJa8e6Cus7CdTrUmeKw5KzRZEs24qO8+MCJUgpDIIOujDpR0cA+YYhbSUVv1InxrTZSiKfAW0BlOYgQHSkILLBn1st9uOai/rsdjdXEyOcQIAzIfvG89PNQIoPHY3I5zD0g4HLR20c45ZMiUxSBv7cd9KOcWnAUbffNxuseN0gaQPDt/Gdtgws0e8yR8xz8fOx9fvFhopc9/MkToTEcyZJoyN5lVdlWR5TE07j8j0ScJiZM5DpyC8zhmiIuc8hXn88dv5smeMsd3w9k0vJikf3x7fIiMzYzqZ8/jh0IDb0O3l9fZl7qe9DLr5HubKVEzCmWZkSHNOnqGJ/n/atictRB0ZaQ/qmA6Jw+jIzWV2rmaDFX0KwKKEksjoyb9tj7Ji3ZY/SlFCRoNrV4awTg8Xa6m3WtYsVJAqNYQOIjvt6WptW8ka21nhVR9UsERv1hU3ElqkfrQ2ptMGSbdxDR5tJ9Xl3w9WSbzy0+W9eCXMbXiIkqa5vFCZOWWP3Yu82DPoULM/osQ8hRqd40TaKnxatdRXaywiVyq4sgdmlBUs455trUkaZq4kV+hkso90hyY9+q68fpOg20qwPe5o57KWX8vhdOPt8i0f4qK8AiOuVQCqFL3A7sL1L8+0MGsBQfsTmlUbm56b8cyh1Zg9OgNe/VB5KR4QiuXRWflco7xmayeoUcFa6ux4b2WelY+KgQxmhHV7h6RUKtY1lnVXEtXyicoZc2Woz72lDi/Ue5mrBr+iPQBmTfTCCiNRrSBY9htMXDhOlheGVu7S914+igsGcHeYpxGlkNFBBzpMKO9TgQAgpRfVsH1Td+sVYR8CUg7CHFFNHKQy2ndbgxbN7X4G57UGoQibp9KFCdE7ZVvz/irAQCgmPWLZmE74q4x7Hc8KP8ic87zCXoDe8GuEFAXZU1RXy4xkwkujscSVso5CrRihjKd+SKPfHTN3CCkwg8zh1athFHumdTVAmddcEh8jQwFzWi7VkMU+qTiEhHlsmcQ0s5OmtIyRnsFlLTl0zi2cc84gHcqcKAl5ARk5U2Ch2YKRvtXIWpM2IJ06KoZSMDKVRCDTDTZGzkLmo8psnkEvOsJWwzPMxtjGGL7dBQiO6kYxv23gcPdDTSf3cbvldhodoiHHiOFOuPvpL8fdzjNaMC7SQ7OaJcO34bu5DfcAfTOO10lLjd3SfH9xG4zUTIXGpz0+//Z3v/3zl5ffvr4ODPcNScUZMRWSbT6RYpwF4xBxapyZX/f7Zyf4OsbYtociYm7ng/SJl+OB+wi3mWY4Yp44/vbr8fvf738b//pf/6NfftZ3f3//WT893t6PEQ/DeTNM0Ad9s9df//jp2xxnnJul5kzbK603SgF3uNktOUbNALMzOeOcM875EPKcpjxdKLlSDnDwxbZpd2xnOSECnUSKpEWfiFXA7BZhLsMdweiYUVbUfwatfAtaSitRcqflsiuGttWz1qIfWgaYJLsMijS513wco6n0U53e9cZWPKjxJRSsRT1YG7PjzlLyvcqBhQw2eth+t/M8Xh66k4FK1Zdf67h7BRXE6oq+IEl9yDCv/JktPMByTSakIivpcWeW/GwdsrTSIdNKBK7Ol/WhjeH38UYrmRQj/QOAh+U58TTsjTqpTTEFDuD54use2i+uBwJ34+qBfr58AWwL1Vu+X+jMfvVO917iAg/aI1KsyR01xbex5utDrlgAXbxvv7/K8vXaltxk0jAMGWM4QY56yAaRCaelBbwGg6ZPcmyjxBrhIzgSsCaD9Kfr2iAXIFGUn5Us9q4AekHVq6ALpxXSr2AWVCqtIjSpZPiTGTOmGYLXMI7EmpbdcWVHIGw84kIGZJXBle+UUvD6nI4C6qGYMZeUUv08AcUloriydfSqZqs3VtauOsz1fLgIAiC6wW8VbJ/7h5onhdTM6T4z6SeZVqXxM9zFmDmHQxaNBBkNJRdmZAlsmRXM1jlbw0iwTrarQwwokayFTRTrpBgCpQfNXCAcwI91hz4aKq3uZi6vJN6ohNzroSFMkc8kpXUca6ZTQdx1JtgaBza6sFrDRYRKx9UhpfUGkwimg5LCWM+gmjmUGVkDILuBWAmBY1f68N6PVXmWFNU4NkOZiowab0R3MrkNyDSBaNmtSnw7yk4gYBwDUkQJc7Ycf7bgZ/c9L1BknhAcBpM5B+VDNm7yd4wTAjffN7jhVOaU7VtuZ4xP8Ro2zHy6+a7NXm7fYNvNQPcNo6wGFCnbaLv95tdffnjxCBPmaScZMHNzFy3hoHlF7/PcTBDcMHbuQ3Cex3sgVICBzNzguxObEzbGZnnbP//my/4f/9XtH/7dP9D7r3/z069+/SPthMUZQZiG5b4XaRRuCVoegOFxnvj2dUY+7gg5zMbuts2S4xGAdAtayLht27aNoUFqU4Cip+02sA1XIIc4PHErB/wMwzsXsc7nLKteAJSCzQpVyyRathW1JVvJp4Ei1ZFmF96ysc5VwFonpvkpVytS54hdH2rt33bl1cHZgNoFsnV/k/jBztfpRKfgjerUsajPLEtrlZCYVgfcAn1ZRrEceacQXDaaF2y6DNCyQ0/P3bfS1q8bHa7WJoP52PbNndnmvZK19srt2y/LUBlhxbOrmtOSRXq6349mup9DUcHQywyIpeG6ctp6jfq8VdLs6py/oAE8H3tFTJ2ZaslxFDfug/MmBLeFASzPSXZ+WqIbaWbPUkN7/baS1OU5OvqgGfNquuqwwNlqZl6k9c50DXImzCwjkUwzBWhO373wFeyWbmFmPrYtzLLufHN330ZnnrUfCuMoJ0pcGKnWPrGFPvRvS8Imi/vjw1r9ntfxsjVZkIZEja3PtaMvN4/rSdcnmRVzoJW3qsqIGooUUeN41xRblAITm9uvXlYS1rTF7FSw9rBZAKXXUCEgM1fuJ8tMNqtLT0TsAwJlDou0QDJpVpKVXjVfJ+m1DR2G8hUL+Vr5/YoFrkulGd2DoA2kD58hwIeN04fg7k2VYFdiiQQNdKS7YMOqZZvSwJH1NHI6ksgZlDkx1gFOSwOEaR5uWXDpIExcrRysXqMAvWARfJguXI41GIVSeHe7K85axqTXIOaFoJBufhtE+JkWmbWjatYxBHkVHDSTQGmgZyAy4aNmAbs7knx98b18UopQvGIzcHtEfh64zEaWgEYRWZBJGjNDFcqkFSig3mw6T1smGKTTzDenLF0xI7Ghxb8SADNOIDMex6vbds/NMfbbHg/fHJq3DS/CC33sZ25fbttmYTPg5o/HjkHfuW+045ev77fHTy+/2r/s2+MdSskYKRiSQV93MR2KKrxTxO6KmPLC34c53F2mIRpso9x2TkDz9HO+ff3lsf/wd7e/+fn1bx9//fO3P/wxv/n7KXMfmQPglgpuj0TWHKuYb9+Pb0fOsW3byxwv21a8SMes6Ywq7kWNcDPChVbvVp6SLNIjHmZ63AaQNHDqAI7CVGqHVeSZrRsurUxK5Go+WB7B3Lh4MgtZvQypJGgqZ0z23PSK6ZKlxi4JuToKsDZJj/qS6js1xCFRQzk65+NyLg3Q9Z/lwkGam1tVCvt6pSTWMOLlGdFXFKVIveqbWleny4xl5xoLfr2OW/1ascQySMsHgXYRbCvWMBiK3EwSonLiqrmzwfl650pmoDahV4WS5sPcTcMrwLfqV+IHsJhP3th6IJUWduGUAobWr0KyVYStJ1oACsWdLLhZLZ1jz1JDFYpLS7LB87C+A5FCZKQhA4SlZeFz1uLqvbv6ptF1iaaIV75wpaCs2txKUTozQ4Ox7mS6DStFTJY+vNwSRpcl5DIqS6tiGBiZqY0SJ324+1guv4lz7LY80hCjOt3caI6VjxG4iO/s0LGq95dqqNTZpZrzIg+/YrIsUljXrXunVsppvkXpnWn2YnFxAiUJbilmiOY+QZQoR2ZsXnH4wq9UOfUzmUc0M4Ns2DVLGhimIjmuSE5wNyi8QvuC4oepl0ZQsiIGQ2FU3KDK/NCVouqrVuYaNQSQNkaaTyYuV4R1pvsiuQ5f2QBTZtR5FoGIWX1YQMLoya5AVdeXijxWi5pI0dI4z5whKUc1wylqLhw6ntIKbvPQYoE5ZDalksLsCFHjDNE1BiE1yyQXYiZl/d8TwukMR7rN2JQ26FvCqxvNbR9uMMdI4DWOjOuhlRkaRfiMpovZDEGMTLhbZEZEZo4tue3uTi+sP8n5so3E+Ibx2EivdgO30kaVZUZsZnWdSsVGHUcQyDMnCMgoBQ2hENPplS1oZ94C4mN4xrxv2CDYcHcEJm0zd2jkDOx0G5z2+fPn399f54HvjxfYqe9fx1f83W+Pm94ejxGP71/NpgeHY+y7bf7lcf/lXdw+4cXMCA43jrElLZkq+UY3vAyP2DB4pzhwZkbe74/jOEHIzMOsC/+mwX1Lf5k3h/DzH/5ujNd/ueFv4v9z5O8fX3/h23b/fn85jzeCMZEP2Cnn7rab2+12cwL5+vqr3+z7DeDYYPOxpb/cxv2I+cjbGQPmnmN7s5eXTziOx8ivd9cw3ONmOac4jZFMgRY5HfCNZAIOOHrQtVFMS5rgjlx+FrpSQAE2KGUxKIhZ4rSZVqkmo4aZZFhQQERETzor9b6YDC3e3sdTWFa1QMyLBMWVWJlg5koQ5jUsdJUHixfdzA6aAk03LpNXIGznwoWsVomVC5hug4u0NAPc3IhFlKw8oTlj2X0zklEcfXjRbg6NKNBKv6/aL63aQ9ExAwlzMypzNGGjhzUQwOrwKhTSnPQxuADPZbAb9uxcHq3CvWpZQrbAHxZMrRWnj/6HrlSyMUk8sflyfY0IqwOyZ/XzyuawGr0qhamftOVk1+sL2Oz0/kp7VvbVLyl5DyscoUqQWGFYhV/dD1Jax2UohxOZPkptoFPUpDng9Aa4O803clCF1rhFslhRXLVoXjto3TBhPbIZZOWUa320gqO1mF3mKBfe6V1jxUZD0KplB5IUM5Oqe14bfmHDvTCkKtNtN48+D4uztc6M1oNbx5R5vVF/4fn3rMQByiVYzetuQFSJvEvPS0KMq03iouk9371VI82LGKFVAepN3oCJmWQmWdUX47mFnzjWZQEqhF9VEV3yAmQFnLYuiouejg/7yjSL2VsnklLGUKgQwgoKqNXBBgBV2K8uXxLGaZaRTGNCqqGSFc5IqZkSMiNqbCiuU1SNvUCh1iIKr7cAAbrTvAhDlYrU5VVinSKUqhigt0EVA0lEfc3g2zZ2KU6lABsZkckcnCnLhsiFPG+h5KRxDFZ0sEwvVXQJdGeAiVRkZhf5Ex00ZsAMTJhxFL6fM0dlMl0h92ouNlbRvdQbOMxhm8LGbY+XM922G3y3jdzIbRv26fXFfTg5Nm7VuSeJ8GEDEWDOxzt+ebtHnJPn3qG2waxw5DHMqHk+7vB7lUN9YL8Zt0qXG79LGIZhN5rvfrvtt0+/spcfP/32ZbPf/r3bn8fvfv/1069++PRpv7sivnG+ORCT29hSefAMxSbHMfx2e/vhy22/7fsLhpNCZs5T2HSLQ9pC5bTM3IqNPDxElXhYRkaqFE0yGfORj6iySdbc+1LCAjrn65qJgOLBdL6E5ROMJqOa+0nWcOfmffRhsupMWga8Uzyug9ahv1YO0QcGV5a9judC+tR9ESvxLhHc9bGAWmuozTq52M7tlNZVrFRCaK79wmg7t152DU0u5gfrVkqHH96WZTPqFKrrb+smBaH1C2uvt1kWSDPf9m0b/VKCUIKtBpoJlrxuAsYMel11fACxlhFc69qxUmeVnWs1QXrRosUrA0ZzoAv64PPt2gVw8XdQdu5CIHoxF7FUzxz9GR8sxAFQ9Th/yLqpFSyUG+t8x6pagIuDW3wRtf1gBUglsXhZ7KtcQJErQ6uXGkxeuV6podXAiILNagOTWGOq2LWJp0OoXJ6r/WRt0Kcr/OAtr58AOgxb8aOwTs7Tx2ihLurJBFZWmCv8XFvyGSHVYpVcSEVU7UW0ihvXpoZdP8YFyjw3OFWp2wrw1uehJjQvPKMhratZuPaOcyHvH/fe2kNZ2E1Mj5hJZlhPUiQxdoGhoOflQdvFcBHEF8YBdFxSGlGy6/votuM0s1YRpa3eGSNKg8AI4hnP6rrY3jH9WXbJxa67bEE1ALbCQ14/joXb/AeREpa1WucNnRZw9Vi0YutacUHKsCxiWC1+PccO5Cv8ppUoBgD5KNId6ZVj9JtIyLTsjCLKw4pgYeEqIkxQvTkjieZ9AjMwAFRreKmQCSj8sdh3bcGargjH5rBhSSSh4QLdhsFK8s1odHPaFknahpveNV5uvu8+nDTbbpvtrxvNvOYJbPv2ktg12D2K4/WnP/vpt5/2l30vD29NyQaqbQ5Ft6snHFFhj83jhFy+GfymSwKi+l6pFOgMGvG4p+9u49Pmux0/v7+9vft93t8fJ/ewilDGVpJ45iTHjf7lbd8yebxPQeIxGVv6sHhgFIaSGRFIICgM22/7DhtOp4WUIRI2jFnVCZrDBe+zzt6WHw1aHU1asMNUXq9aFk+dIZbObVUsV4LQBriHbqaKQk8trLe8ogCsiQLXkb5OSjVlfDg7VSHRsvJ9utrir+B88UrKnSqzmAkrTl2/2rJymamFJFpWqbJceanbX6etb+95gX2zHw4puhj98Qsl11RCHMu8sUKZZsXkGsnS/jcrOLqW/TKgEPtHuKRQsBZ8LchKGZYJwQcjIxQL+kMWU+rqXKFXJ/TVTYrluq0rYWY0K3mjGphZ+DqKGtNrTEjKqFyMXpX7yvlL3KnbNy8gsqbTqWvLpLKnEmeOclICMua06nNLmNIZSnefcY4x6nF16uwLSim6ucVpzJnWbUypWueoj+7Rc2U6jfR0J0bptOyREofJNpW2lXWLEUls0whP+QTNEMZGbicrEB5mIUmZvsuUXt7EEpkr5Z4zEtzgWlSYnCBYOmkEkAhSmj6JyFpBN1YVsljgaaP7llmCpfXuF2hMSnINKNKcSSvYShsSO5nyCXf64COnu3IifTBqxcu8VvuDrIf2NQOZoOjYdCQd243jJRJ0uvnmQMBGfNP0m2Dvx/SYksQEmUpQmUaHkZpnQCUMn8h00MKwu7idcGfShoP/f7L+bcmSbMkShcZQnWZruUdk5s59q+pqaLqRhkMfQOQcOdJCCwfe4JU3PoCv5A9AeEAQEG59OVJd3dV12bV37syMi/sym6qDB9Vp7ruJzIyMcF++ltm0OfUydOjQTVEV3xxIjo00EcPP7Zt4OHH4bbd0wZzY7EyYjDFsmHvZdNhusKS7spDvnMfDbvSdR2Bz35H04Z7KzADJwZnQBDwDOhAV3DJhBi8m0RAxn7L0v3UeoXmOSBKlcg4YzQZybptpBrTr8XoaMpEjLRFhoHyeNJ3C/rrf7jr0OHUkpg2nGfLD08Cc+iM+ftx9xBxbBjPP++D+pO8OYXJsNI6ww2A7ZsCH5nFzmiINQp7mgSHj9Ei3BAMChs+Rh/tRZR7ldPg+Y5Md4SF7hUYKr7n7cOzj9jIfX485wjDBeZde7Pzp9p3l48d/nmect+1lGD89vvn7Lz+NwEts02jb88bbPsz3pz2Q37y8vL6eX7/6/dtf/vr56duP+PBkmyG5kTBtT8bXfATDLfY7RaOOcM3by7zN44efzL/ZH0nQCYQpzs97gH8YP3xze/k5X374w//p//ZHjd/8P7aPL/d/F7/9P/7Xf/i//sXMnM//ePt67D5i3+0Bf77nnUYLO1//+PirPz59ycfP29+/nMdrhFEvcItP4S+CHw/sou17br49MfN5DHz9fDt0DHJ/TYwne55B5nGYx2EfPqS+aMrO3SyMADwJT2SkFV8BsM1K5lmwIS+uCIHMCr0KzDVl2hgH3nXpg5hTZz5ugJepMK/KTNF3acFRNlxY9FzQqsnGzFNmSEJNdCDCoSDT8lQkMqpAPxr5NvaodqWFG7KnedPykmPS5aDK0ypaDgEhsbs/soFyJcRkRl5pSJnoTLFGT+mKs/DWPgODqUa6CIIR5u6bJVaPiyGBCNjL83Nz+spEmtHMx5gbBuHmIN0JczdA6W77bTNtjkRMmCqHLxRY7JQ+sVL0Cg6abN7dQ9JoRvQKKoqKRqw4vIfAcv1fadXgY4YgaVbecc10LRWVxn0ILPz8Eq5q7jQBwZntuwpqtyuKWmQmwQATzKxjs0q4u06whu9SaczWsK10FWw568JLkOVhWktjJTQ1b4TZJMMVKIKgOTtZqYdddchqeF6i/8kax9ApfFaqcXGQ00kl6+RUxFJJMd9LY9iA2/Ai2LaIUouW96+a+MTqZ0krirC7u42ee9R4uzWtrPqYUDIzqVKmvFKuvvi6/941lTv3icjO55pzoGyBtZUbVoJtuPpv+RY2C2UM6Co+1qjMiQBK2TAg15zKcOtOMLGCY9VwpgJCanc1rRiyDLqQOaMvfBV8oojRacjW71HkcIoWqkJCAL7qCB0oE5kMSyirTQEteY+sZrOhk+JpSmTG7qwPzZIkIpuSh4UWWy+GVBqO6nEgvdDBtS2Yymi6q5m5m49UunvCJXAI0mhYoIlY5l7DeTBfj3k8ztcPGfLhIiJ342YW991gTN4SFkBMdynmPfdQRm7WwXIphQGKZLHhJUWaZAWCVot8y+fkBIlMQ2YkqOTgUS17NIwogGogZ4gW8XoS2xhA2pNxu8NsM40neEbOALRPmhndNg43eCo4s5bMbXPjjXdTfnp+vO5x5zzPmcMIJabOs9SgGBlJf03hjO3+8cXp8zh8yLbXc2wxzkfIBLonBOYpWabPaTa/vM79+/Hy0K++5Paa58d/9P0//W/yN/Ouh/4Hv/rxzzI2YfLwG08lLdwc48/vvz9uvH/482/+h7/8Y/K2ffvq334J4rbf9XVYznBGZELzsDl2v3HGw7Yj9bj77YDXsKQjEYO+7ftIpB4lp9xc1D4CNqqxR5276Q0tbt9qg9zLeHT2o3OzlC07VplWKiKqVw90k9EB1jSaBQ+vSk/p8ij761WxoLpUoaSy9AfSuuOl/WkZ8gTMl1VPtkvvVLnycvXrIJNJzOIcXgCU3qWxbdEFocfDXOjtsjlqpDcXZKB2ZsuOyfDWrtqsbm9l7SwpVSjmjO1C28yL5eo11oCNKqDx2J4zKqwuL7zB/SWarcvxFl5ZyVE/DluFNWkYiy1TmFk1J7Dw7vaLBLybDxeQ3Ja4iYhtndXd4VKxVWqp2q1XXonmoLPsrL+jvhYvpJXf29qT2WVM9cenImusUksclABCLYTXyL6x+ENtaJfT6bpXDYMYLMhH3foC97S+jFqkLsXWKLcoLzAzVSy1qM1B6xoECWXUJhFqc1Yg1VvbBKUwNJwJNweMCzleWtVCVwezC6DFVktABrEJsG4gObYxOIoMEddjKPxXCoUyZwEL7KbibjrpFubArOdHZz+yqiQp00ikYs6oabE0jtKQJlFiS1iKiyDd3Eg3mnGzmcTpGBLjsWGeIXpyBGiwEXP7qDxinttHnsPdUl6bzsqKNO5C3xwU3IVKuRE5A+lIMQgCmZqLd1l40gxaTiiEfGTmAeRJbqSo9JwVfNItA6YwpUsRNHNE9jQZwdzigS04RST3vZmiK6RT5syEp2amMEZr3y7+HGlUCGHh3YY9NMzpi3yglh1FDgNONx+4pwicMFgWJ85dRnO/7fTwkM4XCfsrbtJ2ZpXyz8PhxEe+voQC+/SaWZmB89BnbK+cIYWFdD4REyMzJd2YikgS5uOWGEMmczPNJOEiMNNpY8oZBMx9bJ6POwVpHndiH5pD2Nw802c86La7Y9B3c4bZ08fzG3x55nh+NfqYeRf2p5G/+s2nm3HnpOKYr3fqMWJoJvJ25NM2NDaLlx9+/P7xmD7nTprl6/lQSENz7Ns2XiJwPLbhcNv5mLfYv3HfPuwvj89POg87Hg8ek2EYIO356fnpfj4/f/vtP/kXf/yt5b8I/+f/6Tf/Dv/l/+p//3/4L55//v7z73767pf3bz6lGDHG4Hk+BEkD28ff3j992H68f/P9N7/euxzK2+eXfe6aH/2OjJM48fq6n/M4DroI+/jwuzttH0Pz6aEh5NCIDzffOUMJut1sGNk9OOag+eZo+M6QiCtsjsva0+Xupha+zIJoCCpLpKw86pAwSp8qQ1R4GKLI/kimItXcIesccw08mxmhrEAyl+svqVsRdCZFfwPLCdXLjYAZ/dJgVlKZcEqLZt03Uda9TnFD6ORC420lqlyCdaJaqqhRcjaevPxTZQU9uqFx6GbtAiUkNK62TsJ92Hbb95t1wadliio7iOiCEjMAZsxh5U1Lp6X0GsmV1dSarygAfcavGnDfcEPSVQNmf6WdgCoFVbmnft9VKgaSyq5n5yIl1UyAHjAHejngZtCLgVAWvxmqZEWrrbBjhECVs1KIqzOM6w2QUfKDRfQnkZFJh6vCZqteI4OUMFAVvtfM3sRVJUkbWYripVkBAYbRqnkqhr1s5TEQQigZcNpImCGsxiaUD+oCBwnC/XrQLcMAedX5Q9VXFlc1cpV5kDGVycojwoSMbCaQJiM0O/pdgUmfjyj59AKC0Sm62xqpyObMAoD51TfQJzdTVtxsXxUm1ESSCjxyU0+YM9pwe8twBQE2DN7oAJoF0HPPJBrTLSg9/BRjRoXU1dCQkWaiIc02pZmrZ1m5+eoD7kaLGrCQ3c1lJGC2jcLinanMBDczWx1foqKkeMIVU60HUWqfkJhZjJRR8UKVLB3IxXZsbM8HdRuvNhQw3m4+M6smUyWslLBwCxvQQMCzrrBgeiWMMDOlW2tFSKmcFtFFl5zIjGqJmBPTtSm9aAmpACQFzJSaE5bmnvvztJvLUoh5+mTM84BiEPPlMbISfhjddh2J3WF4dmwZ2modjLQRgNx8WMB8sJq5qF7+QbqcMEol/T/OjgfHZokx5KDTrIb2pCfdnXnSR9p+Joh4/Kg8NTwzb6+fN/Nn+M3tdm7GbX/aRoCyPBBMvh7Hp/Qxt8/zZT6OH3AL8OvL+Omvvux+x5Ez+YBv3J8O7XHO0+Ee454W5oyvVMLdXxznl5f5h795+X2cTt5ow9xs4/gwNrPbvPkxnfDzb1/H/cP9+6df5vd/+OnT/eu//eunn37/09/rh7/Dz5DlRvr+eu4PvDzw8uD8D/+X/W9/5z/85fP/+fmPf/nldnz6EIe+6Kb4/Ok1No/k0PR9OB33QD5ePs9bGn9OYsfUGY9XWMLuyOR5Kl3J4eI2oSY3CooUGKfV2W5OsyGpznRZrMJ5BqOQJKj6uZc+7ap+UsNTvnsjWlkKBKM8ZVZbTFdTq+7F5X4JdtF9ZXcgy8ySqAbrrEIUiEzV6IIGWYFqOoKseRQLei4+Q428eUsTFzR3QdMryuhpSCZ5v6yzq0qI2/tSUbadaADx6qXBZauL/ptKFWnM3Mx8cx9jdBe3xGSYLX0AkIXFU5Ktaq4KhKmLKXDh3S2Wacciqy9/eK1icXOYVQN+o05dIclCPYpxg1h56gWQ9Id1CruYRJ0LZ673eCNgVSBSoiuWVv1MTRUq95JZ3Fu7qtnrsppSrP6k/q3zHq1LLVnJrjFohUKF6paPuN6v/TqbFhXLiXV9gka6WZNG22llD5NaNyai1DS4MJG3zH19Sm/rupk0GCrJslGN2zSWgFUTAQoONgr29vRQE7fI67n0YggIdMNmZ6OKBNljjKR6rzoeqyyyAlUDPRrXIEBkguopTchOialkphXLN0FLmFonuyD/N6KZoIRlglETB8zGsNIQLSy5Vhwt86BzTs2JTIfCMiccVQJJZcYZYFEJMroqzyCZqHEsKXoxCdbgY9RwFhDmjLFlDWlyNxUtj6NPTYlWrUDURmldvT8Kgvu2uar4OyLxNr24cosxYSo9ZIWqFg5UWJQLyEDF/Rle26yosFOViMtXE7g7AQUxZyrpvbosqxoxp1wzMuecMU8pMoLm4HDuboPAHHsf/ZzT7Hw8WwZgmw9fCQIVM5U6ACKSexIKC0b0FEdlWExlKoGcpdzW2sheV7Vt5800xiPHxiB0S3el2XArYCsfMzPp2NL2fYyZY4Pi8b27hz9N8835tG3jhpPY3MeOr9/+AuM5/BdP35zBb7U7mee5fbibY7tj30BqFuHMdRvUzDkwwTEQysSZOB+/eH0yc9vt4/M2sA13M04qz9ctyc/46SM//X7Ph//lv/7Jnv/m/3n/4+cP//rrp3/3z/+7v/zwev/8B31nSJ02T7NZ6QIBMx/b8ybIt+3D84cPn91u+324zJOSHXMoM9iKkSrVjVSeh5/z1RVfzhlxYmQgwXk8UcMHtgOTc7qVC+7MJLNZSxd6WRkNFr+qM3C3Vt5NLYJrWzI0dzZSU2fZ/DJvWGpavMBfXD/B2kOrDoYaNN8YcoezZd3U05DKCJX1amKldfN4XWdD4m0rUFxprhhh1Tzfmp3K9HF14rGGk7QoLy+gumtnfWKvUQeoRCPbmBgARA2DrdCilRoLGJVgSnokC0dkw+k0c6sOq/K7bq1ogm5dKpstVHXxapTSyoBLMPRSHCnv2yIclT2NbnbWmzkCoc5Y61JbyKSfaibf7rJSUpaR8UaKM2s6eCfdq4cFQArNl5YUpUfaDrif+ZI16axdNajyDbFQs6RQHV0wQ+kLaXW10r3ZMO8K/e21kfY2kILsvhKjBLdE18cEqYW/1JpF9QFZBOPqOVmO9VpcKWX5vnGgT4ppyVYqB2DWkwiBlsDwYV7TU2Ce9YEmIkv4z9MuaiOWp4YZmbIsabXM6idJsGDysJyRFZComLH9PLpHgkFFcSGHQriq9YioqC6Yc1YLeN8saYXRZ3NvdX0DXCUWQ9KnQGHDpE+Wn7Zh5jQXciJmV3Grzk6pRtSXlzUSZja8zoABzFASGRFnDS6cVE1Aiyl2Ylq9HySieMPRleXp5rbUbaCUkoOVCRjSEzPoNjK77gpC5o8DFo2cFc8NuoJAKkLQqGIDbKD3Ljv+r8MCxnTF5Ik5GVMSMubZVWAU2xrK2AsYkGBIDJpWK0cP4Q1OF5jHxNQ8jaQ7wuJMzU2w3PQ4u9GATqPZGK7E/jyHl4CgSeZntUlH5E7iPKvBtNooT7iMxBSUBlR1wbfjBLTo8eJQGEzIx87N9LqBbkTkzebJkftukWP/wHSA2zYnt+EWr4MYR/XSzxO01yHx63NGnq+fNuqR2zfjce73nPnx19//9lfPH35pL48v93M30jKMmuI0+f3H4Xh6/gzjPH1/+gNti5fzyX2/TXz3/WOfUpyImJ6KGA5zwbft/k1uT/Jf/1ef/uHG/+IP43/8V3+ex//kb/7n/7vfPH3++PPf//Thtz//dz9qI9PpPmfiNuS7Pf/2f2r7n42ffv2bf3H/p9/+TraPO/32OKmnTRazTFdGpGa8OmHc8NiQH83GeH45X+YdHHMicmOtLmoesG8t8FNVDgiC944rrEkojntM+apRueAddNEIU542lg18s9PCmqCkXC1mhexVCfMN1Eanjm0Ks7otrA95GUSuPp7m9jSnpQ4hdGF8pNFKm2+50mwQVMs2V8aG1e9YrTqAFvW+w8Y2yCsIaMfenUklTiVzqdugUCxgvbG6WaJARjfChyrnv6Yg0ApPV6ffPc+O7JwbkjLkppqoTTNXRGd6JHpo76qElUvrOKEz0nXP7a4EZA9jeI9uKkVhOarsvLAh6Mpweb1x9xuqJDoqfFuQQgdhpjbc5WJ86T5VMFIivSv1xKXA0Ze7HB6YWEOJWSlV1z0q76tKPUulrZPT6yprkQGUgNOq0fY1qzGMmmZZ91TsLGYliMXDwzskpkMkvnn5txrIckn9+o4yC6WgQJplj6frL/ZoQSAFu2rALaIFokdcLNufVM2/rGSq4hdVi2omWus1u0G4j9IaBYYrvDW10+3hjdmxajV2AkXKAWtYN66ObnbJwrKOfEPWlqR6RDOwdNqFuh5bq+Q0xzZgyJMFpfEt+CKsda3MaD460a4Ef7m1dqFQtfTQYA70gD2jol5YyhJZRPvmkyOnZUbUcejf3v2vlnxhVp6OnjQqoZJUk3JN46xzVlnAim5I9NR7mrnM6Zs73bEV3m8+NIabOWgtC5arJmPQLPQjs450K1Dtm28OuiknR6sYnTGpPD1iPo79ZJzn69R50iiUUOAOH1yzIvsMVFBInwnZMGbACE0vKmrAEs26qSklWVXHAIQ8MyMsj5FUwsvom5XOCREU0tw4HDDSdRoyImrC4n6LQeyRgzS309xP2/abbUkpTvHU3L74l+Omn4/B51/88jdP99swuqZljcgwNwMVZ8iNG80zM2aFWWO/7RznY0aGYSIjAxDoqU3btif3+75t+/PHc/L+bX43/tGv7n/x9c9+/PGOk4E5z8njS5wymsl8i5nEMFIht/3X++3+4eMv4Nzu+mKzVGvGfss7B4/R5kSKkGIUlydIG7f78+vrkqg3M+7eoBaXWJOulI68MpJ1aDt/fOcp2zWpxuORBD3MVuzfJkrVOO1dgixLkGFcqbWUuUbpECvdrCvJRSrlsse20kO9m/SyMluuhtU+Uq2vdynaVyKEN6uJNU3gSjEsr4MIdDzSWSWv2yf5n8lO6cLR1yK9Q4XReaABdDSwSYLWuj5rxWgtiMDOqRbuKLT0X4ahgbyV4RtWJt8AORrouyKJK1/7z3+NMnzXgF8BTcQzrET5WuQGRpiUnMVcDSiJqLxXZfVzYXhXGaJDZ6z08Cpk1l5befC6+E6vTJfbZQlFtNYWLs+UpMieBkQzVdE1rUK1JZe4spOO+Gq8o66iSk+A7uv6k1iQK2ypD+5n3BvkDb5d1rcxHqBw7LdnhEssyzrLWo9Nl4vG6knTyvf7GDYStHZj++xqZS51h4I7eudRwmI3c9VXVjRSEVqqRE066sLa5VjCHpyhclWAMrPEiAVEBQiJi/TbyMqCSCBpyqptDRkxA0Qiw4VSjGo8pP0r/7PdWahtdzk3HrcI2n2Ka3xJaZPQSzGr5xnVD5TUx8x+1ks9vWUnSFpRasuZcz3VRkuKlShzjJGZhG+2AjCWfEafmz7p1/DKxsdImhMGGgcNwzRy7GElv0Uf3fnZq7oUO+mnefbU5OJVs5kyEM2oGupMc5D0UJmsqGfsOc8IsxklU5tzmyeGtg0bnanSaoBKjQ7mxZ6BGaoITLrFqA490rxaPV2CnMVlYf3UADhIH4RTTiTcN6+KOj2PLFDCEA5z+uNxL0o7D6RIZ/qH3d05phsGk8MQOvJ4/ZLJHx4f4svLT5/nuf18lvxpoip3Y4CcpRHnQCYyM16mImibYx/UQGgSYIsgVcOCWXLQMAO3Ebu27365f/j2m+8+fv/tizb7+ro98ve/+zKmPh8nMhGheWYNHUolHufXr3yZ8xO/nIRlPF7386w8y7aNCbOwfYzNcwh5Jv12/6in59ieBmTDXcMSbjZve/Cs2GXYLa7930eNXTWruBsXCFgJaR+2DG+uTVe1LsIGlxsEjaOFOPrANvraguBUV3De7J8uI9R2p1z5ajzWyjd4+d2eEeSVdNplpUCDGyuR4cVDWuBZO0g1dwkLYCdVvrg/y2QLyl5HDFh++vpjHcLyypdeQwUytmR/CVQfNrvK5m5j7MP7hKt4ad70kRVarGu7Qo2rsF0WIK3rZeVwsn2HgKJbLud2BSuAiBHKRe7sgmH9OQWxUNnG9tr2WZneNEqrUYsphTLEYtMVggowqzt1elpmpMSwkYIMa0MVeytDUpCKKregH8RVNCgYuJJRocdncbhfhYN+1tdLr1GNnbZ1zCNjRGEmcnIpiKiffwsqlpoMFc0e40LBrRF8FAibTfdeib9ayKQKruWbKjRhI/WWTNIaakemMkOyoLLYXzBSDi67TrhHiJKrfT8zY5pOywhIWi80gtzKamdCyK7DFL/4TbAYqFHxAVQj7BJJYqMOaaMG2IEw97FgEqJm4HSkcKX77TkB1vhnCgjDtBSL/IgCTCwqWgvBPCv1L2AimT3k0LLkm2aSyBDO85wAYFFayD4U0FmdK6zRel0+631vtAS9erdAZI/9AFhGu7FtXAQUqd+pz7Y00KIfMgiKEzkzS6aNCZnRQN8UjLdDWhWyZGRAKRy7MmBJlxQxg+ewhyYsvFiOQsIFmhtdRAjOKE4E0+R5zvk1g9Phu0LKqeHbmCLHGG63Tb4JCTi3mYY8k6f08iQ64NxeCm/srN0QE7AZp036oUg6LecggambxZFnlZJCbjTElDJoRh/jtm8cud/GGABfMU+jI2T7lj62KXoGD9+VzrAxttux6dSm41ve87j53Dju+z3t3KnztEzZ7flpOHyM+/6Nbt/Zy4fz+w+3jQk8ZdhOIuEUnVvYsI9Pm2AAbbNtH8iY9JmaI+5PwLYFP34j3fc9tlukMY9j5oxPt9fj64+fLL78w//7/xu/2H/+99/af+Bf/fVPv//pr3//8mn84e9/tnh6OY+YB3yOzDMRaeS4baGcr4+IwAMkB2UWviFfv2pO2DnTQ5EnI/Q4LePrEa8PfX68zDu+fn2RnR7JQd987CHErpcYVjzSTk9qEkdmTWiRqmhZypVZYCjRo3iqbM8s8iYxbbrNEPswx4QyjzzzZJBnZjDCBzVH5bhIoPUusPLthjpZYh/Wfs28KjE0Iht7XOlW5+tXypVFYnW+L3uq/AUW6Hrlqtex6/+ZSoXDusGVlPkKMtCySB0ddOeCw6zHlrVfgZQgTf3RdWVpyHcqJGaCjxqRqswkq3G0O1wIZXc5mlvtf6OzB0aVmSXK2q909y0MeAPOr//p7a/AUDtgEYVurjhl6VnKVK2I2QrusqzxZSlTnlICSYtjSDzTqHleOoQGCnbNCMil4ShhCNV0GI1fF4kqQaSBEhxFeK4oJpiWyZwnyCi8u6fKpEGlSrninQUSQMgJGZoYQQQRqfoKMtHkLJALaO5ApgMnrF3Bkj5rHIDlbmztVrajzUhpUbJU0UvBO5AyzXx0CHNFrSwMyEDYGCq9wSI7dg0YgJdWhSCaiVZ8Z7DHQQHs4jhAWZv1cGTxmN4qQh0A1xcMVYYqfe0Oesm3QALJGheyUPDaRlaf1vFg5/QdkVumIHLMlCIsjtqWUZO+bIY/JTIVNnCa1Uw7ujuMjrEZHG5mPrww5uIE9/qv5nxUU7cIeOfuao0YAl7kXUkJz0hFmODJOCaUctZM6ArM2cqwjWpIkMFcCEknCYag4c0v7/1gs6xlsTAkWVeBkF5BMWjVgEyUEOTmY3gqdaaLVlkdcjrnMaYFbUTUQaxGULoqyWcVn+iTniUkD58KBmMej1fOoZiPl6/HnIjTqsKOZIoxndR5MG3KQgC8ei+XqB7Tje4zM2KAViOdavMiAzQvVCnmUEbMmUZYIE9jGCIdJe4UjJgmmlMD2BQ2M0MzztfbHLeHw8bruUnS8WXbeBrHOOkEXu/DpxmVkfb6+vhw++4X3/9yGx+eNEbWkVbw8enLETaO2D59m4fFPKcyNpjb8MGQlOcpjGEnhIh5zrN2TSlKjwS57XHY8y/w66df//L7337+1S/++PH+9Otvn+b+Zd/OyXlOalaPvRVeC9p23zL3T/Rb7DV7Se57HNyebtjtRsxpSKdvQ5ube+HxR5yHTr0+lAoJCoMXDteXVYXCRVGpdG74skHdWd42vNHWBT6lYMxSm6jjUqZsZc8oBL+KTZmZyGr+DkfhlsgYC19i4zIlDr2mJ2GxPBdTcaWgAqQ0JqnIJkiUOka2QXHrGnBmpMxFMIA29kC2knUUbJklx0NJWeMBUaMIoAhAIlNERNULrUy8eM7jnC0AtQplSqDVz4fT3WDn7q5hr2epMgyHMErYRNXrBFaRt+NwlKVkTyEEAAU5MYVqmyG7eaQKZA1CVn/SAqdXnatr4MsFl8QT3pZSWmXDio66gFfPrJ5nVlBiwtScNREaHqeQmGnEnAtFp2BCTCVjRkIKsZg/JgVUIxqKPpSpzoArGEEiYReluJFCKWCMOdn5MECF9VJ1BmcX6IrlXKsAYNmWpUGeljMErj3FnqvpbuZmtgD8d5gJcdHA2/n29ztkWaFWQ9qqsDUNDfXzHQghLTT7qhWsMvj7dyIWONQ5p9VYtmoQJgFF7YAoWRxUcX2hqo0crb9CqGNp7B6e0lQpb0SINben3iCrQlRYxwxkA9xdwemoLln2wyJ9pkMkbR82UnLkMB/bLvNNlkqYD6wlLx63qfuCqLqkJroXKV2qYd8+vIb+jaEtlJZblWqLj16EfzPQkuOEu2hen9VeUFJplBURoDS47RLSqFbpiJgc6SODht1Ha+pxoXogPa3G1RRmsGLfIq6ieoJhTtMQx0mb2uoQO9MT1lG6INRsmsyzHlbTudWjodm1s7JtNoE6KY00VoYRSrpQTzHFPLfRWH3ktk0lMs2s2sIr2hQRFfsGENI8E0WHeIQCQMb0KBmH6mKISU7CJpCKs/xBbuMxBBrdkKJ5Ru5jVhJkZjgf08cw0UPnBHy7z8mPZgnzBLax58b703h1Iw/YS758/nC/K8w1aHueN3fDwHjaNjtu23h+2nc9DX+KfXMzG8M337Ztu43H7eDXz5sPyLbh4zaAvG/H7fkMG3g9Aud8fP7644/jw/j6ePl8/PT55fXT7//6b7/9afzDTw9o2q4dT7rlk/SUt33fbmlwO74G6cPnTw/kfEyLmVMAnBEySRnMc86YR4Zt3Pab+23j/uGb8eGc9M12AW50cwRZtHPLyeVn6uGg5640cNGTQAAuDQRegK2pomAH3Pf2IVilEiwGSbuCJW7TYxNWNgAuKYGVUnCBoR27r6sDrv4Ydc5evqeLQqYi/TROxiuGqImDy9tcv8q3Zl3R+1ITVCpArK7XZkFXAqGWGrpkKFqEqJtHOs1beH4y6zIEpWmJ7lSCmxMajtnttDU7gdnYw4U69yVlVDRSYWqNSW1Q/J2BKCxuRQO4DP4CzFHZ8VjNNW9roVWWTZQ0ZSlKLbqVC9UrVnB1PdhsTbSeLd+baF1zBnoMTgPIVR7Q21ArYD1HgM26LjjYYCUCXQUGs33bZSxtELLSQ9EhuNNX6GYVfNAKKLjqCItlbVZYukTjYu83W2tlOciK0ISrqSeXiVYz3y6fVsb/DdDu/1/bq2KYsqaE22gPVigRkDVrKTIiOiaqmrBQ1KNSflyhCCAFg0rNalQworpd+4ismIM0mVfpp22uwQxp5sjsxuG+lWLZM7JBZnOoAJo0evk3WKl3oWLCbmioqCatQQJW8mlIAzO1xoorA1AgQnRzFTVEicjM2icJGiylVGRFFiVF2r7Ya0IkbUFElR0AKLFwJGEmWgEUDmapQ/fhhSIhE4abO0mvOYNGeGH51Q5rNrZJt6Br92qr8pGSMAEA5sxw+ga36YsusSIoZGYGyfDIZBA5Mx/7hrkV0ZxV4avwCUWAzVGsoSJ8RxJpMkTm5AydG8Bdk7ZvWQebRYxWJjG5m23nfp9bim6epAlukwqu4pwijZqZnvGweyIR580i8hh4HAymAnOyEZ2UkBEFVaWBPmi3TJchMkwyuW9j2HbfJ/cbMTaYAxykAHdanqJsvu5h+VAkHHFozq+7OR7H9HCDZNujzu3O5xffn+/OioQd8TpufgYnMnLukKAJCWO4GSfOOC19c+2cMffz1e15D/+4fzPmmD7vG37x/cvQB5pB8/j66dPf/c19d36yLzy+/DC+/Py3fze/xN/9nfvr3Z7GEx64zz34DW8f7vF03G7bJvh+2+73DDzdTqSxpiNjmOIYr0fwZaM9eD7O84AlyAzmTLv7jrPyCOMAFZkxwZwHTs+UDAEBoZgZEccYRYYoJipSZQsv0ky2o659n0LCCQGrAU7NdNURp0eJ6WcOJ4vLwOoq6XzW1glp64O2RLTClCSsWqq8hryqJJSMBRqVmA/Fhmox3NGSvSL7ets6dQiP4iDJytFYwYIkezQvzd2MMldJh5QA4pK/I5FGuqUPrL5Fq6ih7EaTlq2C930bls7NzTZUN5GNzYra3KFFpEzwlGp0QZcbValP0US3UUV2yd8CG3Rs8Y5LDK4oqApsFdZQlbsMr6LCdblcfJfillsu1fPO/tHEVZpJK3ns92znru7QXQhulzKtKUpGd3fr7gsmBcGMnbKRBL2eB7SU8DHK3YrDHUYNdwaXvMtVe6BlL76WL0U5TLT7LFAbRNUikBUPZUTRLLI7OLNUSbUQ5w67CqiunVDR4lqB9rkrclybFyuIhaoi0hCmLl59B6YAQB+5BriwoiyipbYllbpazzAA6rqs02h2tQN0XEFsdid8QSNcfF1DzjPnVDKSoxy2hEwqiqFVcUfnoO4daVyl7gqPGrivG0eHf9W+KGa54ZipnNh6kzGCm0go2GPXDIwGKhYVQ6XqUndcpPSOVyACZj6v0KeSeyk1q4IsNcMz5GfW3i+JHfdYLG+3eixV3K+0UBJzaaEZqlmJbsmL2LGCc0AyiM4hydgyuldWItJVc5WqQ465xseIAJw9N5trtg8F2BizaAmGZQIr1Ygh0S2F+UCcEei9qGqGLpn68/X4bxWZ05VceYGOVgWXFJghlfxBRqRnZEx20y9EJGqwqXKgxeOmkVRcG41m8XpHmsSQcAvMLItb+1+yEYizewil/b6PM+DKmJvTB3zc7mPs5uP29DT2m287bN/H6bMwgtux3/Z9c6fwmsfrx01W9f7HecT5ijMeX1/t5ZnH4xYJxQxS8TjiOO5HKCJeZ5znCx4vX+4HU/PL08vrV716nI+X4zjO8+vrABDm5+D5lc/PT/dzWszzw+3Ll+MVf+D9uOl1/3K+fH59PY0Qnv35vo2nud8P+m0TNjfCb2Y3+BgpG07rkDQPQaGA4vWePI8XPB42co4wY+kC9PyQN8W/LmhVG347KuXiFCRiGtPYPSjZLQeV77Ao7FcKA5IwMjnWiNSiIbkzzKmyMLPfQliY1jrQKalUAVrWONVNL6aVqINL9ILv7Vmf5IVdr1/2lguu166UR+tz1cXTK4UpM1wf/S4D7kRTSiIiIuD9c1kXn8sX6tL2yvDcxwU9rWpl6BxxznXd6ZwjIpABWSzZpNLxqPKbtYdp1nitXEMIBWCJbzdw3V3/W+s6uk9IFYKUEtlyK4tCXHTdpvG60YpyDJl1E9FyxbgeeYOLlcCSKJFZgTaGj2Fm1biZCw7T2zNpP1fPob+cUM0BbtpO2WuYNx7QEAGAYmGX0oddTlGZQQrJCgQgrGpoKqWYMWU5I3rEFSHFnEMRRizMou+yEmd1vaRCjcSSNrt2FgB26aZEqIka71bdtAKq4l74aEsqFrOBBuSaFAGt0mdjPm9pNxa9bHkHdEv0Io2ui1kI/hXYCiBWy0LFdrV6BvCiyL0b96jGYaxnCzSosECQJfwGk5k3h/B6tKD5GCPlmNuGuZNpVkZmOfGeWQyEV9CfXTgAQEsDxXT3aqsx9wp33348IY8kAgYiotqBaz9Ws5MJSPGqvq1OqrQsTe0KF61I9wZuBrPYXFFrlL3YyozNRs3pdskDoCgrHXmo/mykARGWDKTijLmIArMYYhKEEs1ymc6aGVFP6QwqAgKVYfM8lUgJec7ImJxrdEpiAx2S+N+imqan5zy3CIncBMi8Z+mUilfnTSUVUEBXseWADAtkWERg6hyJOacQE1BwegqMI7Hn8WqgU9zsdNpwADjMzDmPeyBjhiJFZMqMyjMUp4253Z/O29Mtt5KEH/SdY2zbY06vLgYBt+9+cb9tyFOYecYtTEbfbrfgfg+vEUljd8556nyccWzuY9v3XdgxkZ7kiq5PI5g5ASCmAhnxOHD76Nv2YX/az/Px+vXrh8fLDz/w5X5/3U/HaRnH+fX7cygy4kjy4PZ08+35ccYYjpmnnWFJOLdz+pmKWSJTmCWi7Nu288M39pu/GF9efw4kEwkfm283yOf9vOU9YvNr1s+yIBehE53f1EFW7TCg+SUtNS/AErZE7rowRhJsaLjYU40l9om3GsxeRi9XKH1F28BShGj8VXh34lSgpxbyuto4YD0Qq0SIQdY47xWfXunvukasElkbQjUc12ff0LnHmzFr8KeDjCtx5/LmXJ6DV+MJbencAaOEc1VT9QQQEaaMMtYMS3HGnIwoiFkuVGe+AW7uvvJF6wsxu3KCwl/fOFll47kutDN/UaP7g3Q5vAtDfUswSrOx+T5V4180jQ56Lh+wwpnLAXcqRpPrjTFXCWkgo9QQKuV8N8d40Wvbijchf+XDlxtmhxqdl3U9UsuxrwR2ZcL1wStLFZYgClcG2QtqVYRMsyuIJAyr8FIdHKhGEUMuI18oRs2rKMdC82J890NBIT9FJnSohCaAtDTCaq493wD8zEyrQKK3/btIMhlSkbNXgR5toZHhymqab2BinTmkO8zdh20M94twVkRoo5Gea2VrESOy+QX9TJBIdL14ufIrjCVEZmDOUIyIU7BkhmVkZER0Tp7VaVrq7hdsv+I49XZ5Q6qKcFeQWwWc3ellgLfglLWFYCWkHb1kqqdw1YNPRPUJUCCHxYIzKliklcILRarnSAQarF6nrloHlD3pa4EWAK3lfFn4ckltFuZE0A1UTqzcprCAKP9giNpeaQujwTKbWv1cEqFQhk+0ZPcMSBl6pEU28EYCOKecskjxyb2mKPepLMut6AhMqw7RHWA1iK2GqWd2qwMyXCUqesJpg2QOw+aAzG1QSdowU1JzQLfCm8a4f50zps5zS95pPvYPH+8VEgVcEMZtNKCZbjly3G5P983j8fLz8fh6349tx0xxms7pZeA3cuzm2rY8xTHuJtvGuGP/7vk28v40MYYPHye3se33sRmHfbj52H1sduT48L1//+vf/PTbP/v2+be//ub7X/j28Wng9s23xns8+dPYvj627ebYzH0f89wz53l8/cP5FfOIfAnl8HPjqXE/920wCDBnMsMzcNo+xrT7ef9m++bj7XT6wNyefN+2WzIwuM1989v+NgPYWINIKiBsetCf9hzw7Y/QsnqdLGPVSpe/QmaUmNy7dyj8B6Z4n5gBeBPxaLX6OoKrV7WjgMtlrATVquNguXNdm7B895JXqGbQFBdHq1mqkKqnYSVS12ek6frSsuerwVTLaa1y6NsrGzvCqo+tT6hMpgEHXn7BOMYlQ1+pnvVInhVK1O1kA10tuJDqEEBvKSDW8r9DOS9U//2rLinKTgov53gl57X0NMZKGnW5JK1kqp3slZdV29NKbduQ1suqfO3WW6zB1IVWV1RTbt3QY4QEVq+hlSw/G1DNKGZ+BUfZWdvVL9fAROez9TGXRlYLuWAhwVo7q29GKt6DuRZyyKZHsw8F+kLfmEIAawii1dxXuhtLNqan7tJb0LjMIGVmbqqBB8DSKCl4AsnMCNOSmLuuDGXhbR3OOjUrYKxwqAXDsaiT5SXFxHqsoGzUEJG3HYMOP9F1b7Baala1AJIQF8UWVrwJdVlqPf/MVKQiBmMmb6fdJBgjxvk6mcjjPErIW3y3+LoUIpfbrUS7YZ1m7Jc+D4iisNNgATGjEqdUuEoIixGw6wC3JluvXwNEbEXZ98+SHdVs6AgxRZiVPmTFUyLLqBEZkblQldr5XZ4xyFzuoPX8Clstkpf5wgWEVzWJLKk8K04OOhk3t7GJMs1UxsxOfsIzIkFYooVH4pwCAAPmqZw550PbXbKCFRYcklnTKKJgsKxhnDnLIoYrUzVCt1pfou9PsHi9ySRr8XyFSSzhUoQlbNjOVMrCPWGDTNs2bvMQfGDbtjueiR3Ebdxvg2Pcnraxje2EyW3ct+PDd9992L8//MS9ho2ARjhtizDfd++cwi0k8zEmNnefJzhtnsfjOM8453me535SHudxztNrsJ5nKGaE5JGhPB+Dfn++PfDhbjY1LeY8jInj8YiIqZh2zEf4cZ5fXub88rI9Xs+YEIeHjTE28PYUafsY9zFGwmYMN6cSpnF7/vDLP964+ebNHjWTDQ342Lz0klVVyLL4Ig2rxZDvzTqWN6p6TwvzlJXNywtptYJw5b9tZhfVGm+KVgsWUyc4RSBqGcc3t8EqS9mSQ+R7Z305cDS5UIIKU+23bhSt7uZNcpgE5SaL60a5UmPWnHZe9KXr45Yux7r2xv+WG+N1WQsg7WzCqIiZ6XWFlsI0nGbvmjTbUtQ57gvq3tVK77LaKNQcThRfpdew1p1NQ1+EXy1IQVg8ImG0G6m6lAjrHpjLylfvPWsoz5VQrXLo8tLvbhV4jzCs+1/ALrbuAAEAAElEQVQyLlh4azO4ShKtDN/7XKxD/1pyMwzIfYweFtImDogSXywyUHc/l7ZC1eoLo1ubM6XqvKx+8uWaubjJfLfDK1vpx1B0hlhZptTTKIpNnY3iS81jXOXdNq9o4jmt9zPX82XXQGHAm4wladfcESxHD12ngxdeI76Rr7n6Xi68qU6NgAyTqOioMWsRsvrCFImkq5WOE3VZnfjKqMmMhVj1e4bgVyNe1ZVY6Z7XEmZtXR/FvzPuIJARc8bjRfF6zIkZMSPVfRFZFWgjECwOU64wNjNoqYw5R0pV3KnIcD3bFZchIy1k5a1DjYtdw5sr+yaRwHREZKrKLx0TN9RShixmFbnCVjTdz5apmFGDkSJmdukAnivWRs6ZZJiGLMOQ1msyfCBFWWnB04y+ORnQJBAlLmNwqAgkSNjY79tMxatFcZ0H/ASJpKWE88jbPOa/mrPKBsqchkCcmK9fn25O92pVy4yS1xQUUb2PyPmyJ6SYIrrABtJYUmJ9h/Th7paa3tSKk460w5RxblN5mkvsZ2e3nW772Mfm3LZ4PTgpctDcJEyFSyl3jW0fO0Vjmrtt+2nn1x/Ppz98eWyfH+dpjm1sm4G+D25j4L7fquqcIZqUQGQyJwJuJrO94IDaFebQnDMtpcMex5iZx+Przz88/fT885efPp8nMCVyu2H3sg5BC41dskjavg9xpwm3bfjtWfM0s8TExky7277fzpkp91Fy5sYpg5S0YT5823duwzUPJs/xOMIfx6YvL/k1/UTWIEiEac5QnnCGzQjmDM5QzVTNPqeLgp8JKciMNMxg0dgr5k5movD2tpxO2HAb1d3eGnNkR59QC0ys0P3NrmsFboXySNkJSXbpk82wF409/S4L/iuduiuxxTKyaJC2jh4XbbcdqP4kjWejtu1O3xzxu1yTb9nluuCyzKsGXdbTuW3jsvVlslNmvrkRatFKNx/uvh0rB25at7vXMFgnWEPhgCQbFF5QgqqbuMpMuYrBV5m1V2Ggcp23TLkGCxeV7ELn391VGits6N60la50fNFr1T/WItZVdvXURakhpOIwWjPainaCtb4XIEmCwzhqXVb6ZxnpCeVMZOS2b2neTLvq3FB1W68goD4kV8gng5UQczgyLQFzeqk1NBm6UAiRLM53CfQJRXB9C8e6OCyRGYser4WtNyIr2mik3lqXyQC5G7pFjkrh9BlRY4NWcrY4eLE6odjXIJFRhczVp+Sbd8gzzCUYZc4aKrQ8eD2blEOI02HMoFdcASYNTNCnqKQPEypJdxJFwqwGt2o0sCYSNqhV1H09ZgIcaRthW+TmpbNUjdPnK+KYJd5ydDPdItkjgwSjRhsLwioIZmlF0RsDK7TTSK6VcVTJiWMbScEsJBjphjQOU+Q5BaTSMufAKTuOI8VhguZQmgUFJzJOu00lYGa3D388Nw9x0JTWARxImnxEBJAlEZfwlBTyjDhPuH292SZKPkNnJGIm4RkwUeHTuWGM8TTyTJ8jzvlA+gglnkcNJxoSibE/fRmnZNNv+/Zs25YZjgjkyWPqFbeQ8gS0saEzhGxLcP/uVxETKkHtWQEViOg6AEzzNWnny2TukiCraXJQ0kCkBQsGs5GxP9+gHUlXjrOmSkfMR+Z5jph8fI2531zpd2JsNqdlcHIbH262n5AUr4/cXjHvmNMEv2sS6e4S5sbj8Tm2z/y6v+bt+evTtx92/+Z520eObTcz91AMnCBlSfNwYXAe6fEVL67th/sDppRttM1uGh8w4ORNX2fMeTyJeCTm11fiy+OnY9fxw7/5919ev/7u5w/z9bV0RUaRu1/9S9jMkX/8y2Ob42/i03/86zhPnEGGwm9xfp2cNMUZcbhJdsSUWXw9H/Hzz08//Pz4/NPPf/f3P6Y++X58sSE33wMP/OCfX25f/PnrSCA1YTHG4zGV3F9NfJ2PbaZvGWkpn5ipeRj5sDmjlNqkJM9TZg4AcQZmhf05AxmM8tOZiZQ7pnnZqDkjL4ewSr2IzAKIajhBWx5JZvBKSpsD84a7FeEhSSe8E662vwX46RKv5OVE39xyqJqJG1wvK9VXJpGyVs8o4LKdVqXUTTRa6WV5X1mRwUMmNh2IsDUzQR0Pm8mGK5MKazeZgDG8BqCVrpS5lIZttNZ0piHInIzFJOXCuxteRVUur2z0LQBZSWFiYI1qaL9dga+v6KEgwhp+vexhKf0qvRbJainSzJBVJ6i6+wIz0pYAIhd1py/rcvzX1a2/XcCBlUh2X3kZfrCYLlEQBLqCzKLCZsVwqrIhxJrH45a0YveOmogLM5go03vftKCCVCJmpmpMTpiDS6hKvQQLj38L0VSUajSMqCyyrkUxzCscFDLcypUoImLmCJkBOeeMVIZYDjMzMA0qRlGwdIITljFrCg+YSS8F4g7eFDbco67TSHBI6sYpkEXzAckRS1B5AbKV50YKZhwho+huUNYETtJM6Y7BNYwRibQasEUvDy1CQZqbMMa834q2DkATpgPnpG02FzZV8bMW1FayoxU1sOm5XZZQlhAX3Lq1wRxCpOjaSm7ZaHS36fbIQaaZWSJyOODjUNJcp7lbzyQk4DALekk8IoGTiZGlXzj2fUsKq6SRkVmNynk6CWScHW03vkflKZpHaQhkR2eipIkq6iFTiJbTpjNSp28ZszIL0QxQZE2BzmCOsSG2J5oBI0rThu6kD6QRc3t6+m9u8hL4iJRg2+a3r91hQY2KlN1A+kglXG6cOSBN93lURh8VXyRBbX56ptkZBqNixgH/dsYWIYAWr4Fh4RkZdJ6nh6T747aPOGfYoObx+Ud+e79/2PenGfvn4DznjHOGHXjC0wYfO+/pz/Fp93G7j4/3P8tPf/YXz4/vJ/yfDPvFjm3fS4nTtufY7+M2hl6hx3HjecQp8zlmjrspfxx5/tXrr4/I81UhubnZTk6X8XE8sG97fv4j/uEP8eGT/dWnP/z8N/+fv/S/+pfnv/uL169//PJnP74+/XHEbpjTgJHUyYiv+PLpd/F0uz3/8sN3n/7ebshzuz9vlPHrj5EP6cNxzJzDx8bbsT2fNB84P/0M/JivnzccX7GXDVOmy2foZsoIxdTU6oPNngw3ckXbdF/4LQisabusPsAi3JvXOSox01Ixr+NVilpowC4lIRZbWJJs1HRvhC3adTVygpt7I7I1sOHyno0YZqYQBWxbNZYKyBqblaKGRcsMAQ5rXkMPaCvoiqbKJxbgLYI9IqF5ObLLUVS5pU3/In8TrNH25QXfOWfQzVZdr6004uVUIi0MKM4f3K0+hf1vVU/Bq0qKBvGVCHomfFUlIcXyYsuP1QVk+VCtgpOWoy28V6Odh67AQ4BCbxXj4qQ0bbd6MQvibI0KXX1LHaqoofiynuU2K99UY8PrCTbcLSqNK0t7c2yd+VVsVaTSjtEgsbOvomO1YBJAYw3zuaBkZZGtrHSjJdR892IXdLdPizheib7eAP/m3ZNUDd+qYQ3ee7vbwAnVPJ9cn4vOuwu0BjPDsife0mn9CaCZDXkFDCypUknJKwgxADBTF2T6WsAad5aJBnCvVDmVkTFnPU2/toUap6mzi8KtCqNfYDmNkpklWUK43qvSrfsNTEil9oQKSllS8gQdLmX1B0KYBGNO3Q+6KwXCUrbDZig50rxFlt8Ap55UhlICU8MSq/QSMVPKRPdoByPIVpvLcp7tCZERFaZHyqskg5yqXLXEWhImURnndJkybUEwZhavKOnzOHxWZafoIkagut5pzEi0lF+VOFD4hRXDqeov9YPuCaMNKzk8qEXyCea5OzX27TA3BUW2HoAXariNHKZzznx53AMmzUfWAiSO45k2sEfMzNyUiZoGIWKadL4+fd0AIKkaPG1QIGgZjNmhJYnhEWFQ6piW1YFd4ExMIDKHiRzAmZm6DRjN98MS4LaNnXKn4PsNPG2nKUyJ/fm2PRLM/GpQBMbw/WlwdzfaprSIc08iXx+vGTOMz7Rhw+/PX0M/fN1enjinSnoWAGX0mw1/veE4EXPGzDTsnrkPu8d2f97GPM8ooh+SEbsPbm5P43l327Z9f/7up1/9419vP/z5P/ubXx+f7//sf/u//rNffzr+9u+/xe37jzkHAdJ5DOBu3O7j9t0/jl/cP37z3a//+8FvYs7NzdzneeDmuCFvOxXDu/Irgvvtfvvu5f7dczx9//z4w8f8oG2nu8vH2EPBPX3cxA9bRP2M0W2TLDB2F0K+MSq3UhdkKtAlWRIcfXqlkhGD8U86JbA6ZrrFVpU3ySptbZvGZeLxVp8DQhn2J4lGe6NlSwqHZVd6MqFylnXGsjLbRX4KZZnaSjEalkX3FujNBaBIWloAdRuwXDf6vvTc+XuNM8GqvTXy2RG+Ou9Gm/RRYGYnHebchvlWnOFV3gNx9XS+fVQSBA2pnL5+fuW7b863fWmVQvu5tXPptJNCk7BWDfT6cXaib43Lr7V/d9/LUfW9qvOYC+Pud1oOf9UL21O/u6MLjXirDVzv8FZJbeT2Kv4vH7cWWeszSLb1b3f9hq2s51LvhpadXgjJSu/wBi7WpLj1+d3dvnZJGWRe26O64vuQVKTYJDXW/pZU0pr1dosORKiqfUWd8jBPIM1UdB3rmWHsCEHrSUgZaBZGWZmed1HM4sJRSnxm4TLZcWSjvb1LdUHH9fZX4RVZQg4rnKrHXEB8x89aD6cafWggc4XQWDSQ4qXRzAVv8hgWOMW1A95CR1XwqQysV6zookYnaJEeu9ivVapPU7JHXmXMtAiMeh1QnOWUpHDW3PocJTQxS5YtS/yvRLkzyVkyqnPOmoycF3ezlMKsQBew9nrCmi+uKrV0Ybn7N1KFMKzwn2KzKWtqU/VYgTTrQVcokKxi18IDivCFLg2xS0Vl1s75v8hM1rmvBsnUWZxuQIqlOUMpmTQlS0wPGW4SMspYLQNMZKmovB0XiJrMwtpCwzHPRAjQfMzuCQhFDVitWZm0OBJTOc0yQHqDLorAnGRxvXIqZ2p65utrHglpnv7yakdYRDjh7mOEDZ9j+E3h3B40g5SasdHyTG5p9+9++YsnDT9f3Ss+rAEikocpY963fbvfnj989A/ffPvzd98+3fbnD0/PafsoWU0U+g+j0dxg+zb2pzmQ55eX19f5qvny8nj9qicDzCX5GB4lLi7MGQ8cPI4zaKIHUIIpQQulg0SKqYnsRIJYOR6XAb8sYW92ScissapZJeHuRSKzHwn5RsRaLobLTC46cMfjfYRTKj3p4rSSmVlhWUbOwRSs+QKaVKimW1l1C7aiTIWovatVkT2W6+ydsLKZrEgVwGrpVWm5Fj1ZfQf1a4Gf7WerPbPs7fIXemeI3/uNNih9s8n189ZEpfplKyd8ozR18lico8XZWV6SZGej4OqOqb6L/9w/XQ708lfNB6rlKhLWm3fup41FEVqs58voL2cnFQB25Zrt7dv1LI2GutL3pfE3J7uu6z2X+k8Isf1Pp6jLFLfLvCbqrvBIDT/0A3+3EM2ir772d2FKLbpVK1iNjO9kuvzd5YuvNWliynUdjY70k+xpEO2/Fz4LXkuxXN56mL2q6+1haavQv0hN9TYr1Hxbg3URWll6Rh9GdcqywO4VUDYxsfdoS22ggyi+HZM+lbnc+fW99rpaqTJWpCmUH3zbQhUxrIJOFSKayY9SsBFN9TVar78ZzJvwaEtwp4mQ7bGvGEGX8+690XEASwv67ayuAKECtaJmd8+DKrrIooVnoARDV6BTbu7K/1UgAJYoWvY5iLYqb+MkDFjTkuthhBwROWdGGlFsuCBBCMkgJydOBVH8C1PT5G0dl25uLMZMTyqSj5KZhln0s42sRjLZoG0+BNBH+JPuu9VUIFVZ2cYkzEbDSALc3KCEeSmw1vrTLpq8GVEooWZsE2TKphJLC8is6gZyEuyaf2+MpRETjETOXZJWog+ygKG2wxHK89Rjzpzn8To1Z9o0z05akso6nqZhaiknBGoYTJw608/H68sZmq2+QMfmtg36MAKwMYY7xv3pGffn7b7fbn7jjOrpQkgGt81v2KltDOseriPCFG7n4zXcqn7X2kRm29g3TZhVjEWx3D7dExXBbzbGNrBxl/vwWLkB3e0KySppTcsV/F9emVitvWymrsmMaGMBmJu85vK+mXMQrWxczRa8jtIltdN2txHJyx6v+tBbzsQVnS/r1idcjWzaG2+4rZQtxgTI5ZyvTKhtTCGu79IkvL37uonLuGA5ZnWlcRmdZdZqguqfpIK87BgRUKmHXgY4jFLGWZSaSjRlETEnI7tXh2hgNFhWIsiOMFQCQLlurR9qZw0rA+qcR+9ii0tJCitmUDkjZkl3CjJ69bXa5T7K+ln5vBYBsk6ZCycty9nwSOWBZbq6IZQgkMnUUtzMXDSjSg8aOV5pVOsbr76rFROBrZ7YPgvecQ5U0+76GmHVZHtR8Fc0WHAjehK7uZkDVfWoQuTqPCcdratS7kDAtbHeum3fhzJv2fcby802M9pQsdQlYJ4JsiSxM6L5SFmlimwBNGB9JtZ5KbgTjFjSJIqaQ1tzKQCls0UXUATpHoFY1xVgAel0MmFlCyuG9UKqSrVC0wdNkkEIqQydswvdvZbVNlvhayjJwjihVFxrlS2sk9fkYgBgS0DWrL6OXzNTWDMGC+XWCixlahjfzL1m1RLVOVbtKlpV8bIz7umgp3JmeMVMrQPO4alkspEK1PRxiJufRHCORJ5hCkRkImv6MgIpTc5oIjWueLMjYwHGZI4ciZG+T95G7FvGbtMUI81iZM6RFQG42Wvu8hgbOrNPMvM0RAZjcoKmjQDTc5uZsmG+AUqdVExNztMPPz0j8tUjx5Zuccy7STD2iCurlh63Kn4RGEMS7FZ8gVitg6VpFsl9WqcNQogzEeIMpCFs84Oib8PNEMPwkkkhTyirf3nwnCcQysfkqUwbG/d5C4spavP9/pxpzMgIs+AGbbsen394ff3D1+3xstnj3E7lnKEpbjbuu2ufoYnjPCNe94BiYrs58/aBxxn7DU4GDLD9WX4b5max3fcn+wZ5j/t3v/z18atfPd+fvvswv/MXzNfXr1/80/h6DCXd9/H81fYXT9sc2217RAzyaZyff3j9wKr+nAOYnz7N+eHp6fXp9nXubfvmjjlf8+Y3j422DfLD+TzvT3P4xzlswyE/trRx5/bRv04gk2A66dUtzipLdTF0Kdt1FGYdjGN5Y5iNK1+5PJkWZloVZhlrilsbW0vRxyAQKGugFdsC9BqVaRUxOyxZk0A7OC0/WP90wFpIL8E1sKVjRtX3roSuwgote0RQLSjXEcFFKGrfnl1yXUxirBzivY9+c2edftold08S5iThb4lQRQBjG+6tRFFV7G57jv74ziEKsbqQoZULFHPoDUoWE7SWnmQDZA1KURJMafmuBtwmZz2tK8EBcA2Of7sx0ordg8wCfNs3iM0Ba9QdUjUxsqvBufxJeU7ae32TtX4raTSszE+AZGtqE1AMlXpvwEFFGf/muvHKeq5oTtJSKADfPqcBjrrR4hVpNbd1yGPL49X3UOH99cxXHsbrrt6WtC+hpEvqTqrbHAsXyO6Zpgijuae5anreFVqAluSAOiu2Em1VLfwah5Sr7c/ArP5mdTDHtYux6ixawRN6knofowRQw5rqk1e4s/LcSkGuDJJN8F+ZOLNOd0HhaUqCxugCUXc3toAaS2NnZeBae3BF4/XX5aLlV6hYP6ISF1Nlriu2bDmaim+4AvWK1cws3dNpWtwBwAxKakbdbYJWkOlAzrUz4uxIu6rPVTLrWy/8+wqNFviA7vWPjAxTag5FSDPscDsjNNfJDEnKkk/KdCGhWIBTiWJLYZgnaMOSmsfx2GcISChnDEVCQDcJW0SCkUgzOocPxjGy+3lbPyCTU5bJTE6MBkgIyxlzxozIDAYlzRZezcBIZcIp0Mfm4JZhiFG0G/p2i5aNhxDgeZcyEvkATukQJhKeAhCEY4wsHf0JBoeJZu62bd99//m774Bvjnt8d9DN3TUjCM2wM0HnzEjpPG7DjBzJbSBkmM/ctw8fbzyLkV6fMC0mkWd4QhHnTH77Oc9XM+C0/Ulf73/++o2/vh7btx+/+4iDNGbMjKSGASnt3z2Gj9t53j48D/Pb7mPbNqf5iPN4jC0BG5tsdz8Z55zzcZ4Ahgfp5rfxHM8fpvs9NnM7g8fH+cqb9idE6XQLHNzPEDE2z+JLy0uxasnHFOvFxYSZu5isXkxBGEbCtPJmokUvJCESGSUr2sWcBXStyBHLeV3G8s2kcR1PLuxq7fsu367E780CLmhd7UY7IaqEeU0KRMsZrZy34/D66RqzshzSwnrbuHZqajRz15DX9DxVayFSNDOD19A3L43yK67JdvmS8jSeGe0trvb3qsjVKrQzKPS1c4V2AR5vgUX9ptX+ZF2cwv9/a5U0Lj/y7v76P71v3VrhxTLVasO2kMzrt4K88YYAkCxlxXadZVhQxrPkxVNYykIi3sxm3Zze0JOO9QBCaUoKNddqsQusiMpaDUMAKpgw75+UGWQksgC17MtFs3ob1aywqS9hoSq1EwgUs7qeid5Q5/eb4t3f3z2XyhVX+WDt3a4Vt4eu/O2NxrfyuooP7XpLtvgHQL4bDr02h2X1tbOGLzS7US6zpJUqWzMMLhQKb4gSVtmjYIQFGaifwlWbWT/ZT1wV8nlbYRJE+o1WU7kzE5iPnIcMCDV4W3d6gQj1tBVvjLYugy/gDUAlc1bCbHXT2QcriZrWUYUavT2P3o3V2lRbt1qhQWWBQatsHedJo9E5BvdhcJi7VRRXO6QfHQEgfdUMasnr0RUA5Em46A74Kln3SpKk0420MUTk0RMhRHN0vGSloMFMkzYAmfMQae7D5QTMm8tlmyNs+EiDm1Khbd827eZPtzkSzHB3VF9/0Wh9BUcN1ZKJnLlMs4q6JZu10Yy0kK3xEjO2PNGTaegDFhHz5Ew7n5RUVAAbGK7Xr/t8HA8vHEV2vk7N83Hmw4PD4wFLGnFzt1///eO+vf58/8OJ1ziOEIwpaZCEbNh9M8jSbN9IypCJOQ+5mUg/vuRj44zICKTSPFOYOeejG59n/vTDxz+O8fmn8x+ePr1OzZ8+++Pr18PoYKhq+5kEEWkKko/P+bzPzTJ/nqgZgUTS88iNSnofbc2yuTnPM47TJdD327Zxvz3dbPP9HG4ujNySsGoJB5ecQ0JAWA3lUy6RKfXR6H13IUvFzOhEAdICF1EjX2dGzmY1adn6rigCq4enk7OGoC/4SO8w0rY8YDUBlgloUan3mhUrHS7z0zky0AoeXPn55QuEqiQzl69ST3DtYH9Bw135yZ6jyLQrUsUC1P6kAPnO4TVGoM5D6u5SAt04zYOl40QVMboOclVssKzHWoB3rVmqH+kkYmXfZVnVPvMdBL0WXgAwFhS7WHPVqCuJNcwGYhBXfbH8S81RsL4YuxjUjMZkVyFj+asKZ0xk0JcKhmZas+OuksW7J4frv/qOOqeuDZgRflqRapk4Acks0xWr3cY63hDQg51rNInE6vwlLircSmLQxUaomIJsv5hMNy6tz4Ja2HXeHoRnTeBqjl5VEyv3spKS6/kVALquxvVGoMlYho5rv1b+pEwSivUNZUyJGeHUhJV9U/f6shSwSHrQ0ipZ7k1v6AsyNzo5YMg33lkpmawRxwXwNqFEkrhaH0RVvXI99rczVyw2cLQMP91kpthT7tYB2rCp4LCckc2JugJrveWSADQr/DQ3g43a3l7VEKNtkWF04wiDjKlSTrEcRULacrqlbAyrgqTk24QMRMwgCacbATmLdrP641A5dqSoRMmZudPWQKokLaSIwlgjrf1pLTONEMckbWwdzseM3OrZ+NaZAQmlJXpAIjKMSy9tlLC8YKWrNmzQpDGkbfPdWN7cx7aNfX/AnNv9/l9p1yQBU4ZlGifOr19sJOik5NUgbDBiG07zzYqIXZFfFWD2CfNB0m2MV4Cj6PFkRhzB2ycpJgyZfmhzZs6Yj3POc24bQqbhm2ASlC+fvx5p5zEGTHE7A5nnHPNx8Nh5bsNoOgcqQQ+EzvPx9ecj9/vHL8f54ZWu85YhTWy5b5ObGbGbzXxMxGmW0pZjs/0JE+d9CGMMbENIeLHUfSjNtsTtdt9525jPH3cLHyOOI/z86d//xX96+fz15xg7fTO/2d227Qm0scmROo/HD4fbfZ5fPv/hh+O0TB5zzg+3icfr58fHmBNSpLnLxhj3GY4xYODdd8e2jS5IReZBtyMmCwcq+TJ17FajQIobRCdrJpREmcHdPSm6e3GwOv242pJKUK9bmKx6lGAWICGclXjEBeP1gPJlazuML9lVmdmo6L6qRhW0Zjb8reovDkKRCFylXIGZVjwLZXDNOCEvB/k+ZVy15j9xmUv3Y72sc0OsFPGqmFfc0bWrRTwBQKqtB9tZLkc8sziNZY1PBcwhdp21CRAFqdVZXoFROXwlBR/FQzDr/p6V9L0ZR62YoG5afLu5euF4YydfSW6ZebuWJGOmeaRWKrLWbMUDtS5prhpplFl0s3XhvfiSVocn23kbEvAaE2hl84qf5tWHBpohG9ctFl1miIgs8h2KUp7hyjQys8zEBUWq01SWJyIsBYur60xKqwBz5S+oLhczc3czeGsFB4d5aQ/CmtCKlTBSqEjPFhUMWhdvSZPczMdUBlW8E3vv4KvRq565AUpHKi/0e5EVUOl+icX62AgjrnkUoBQBNA/ZaCJqICvAd1M7is5LAZpr3FZEpd8aVJZmvRkVNNAyT43qA7Zu5mIYy80qaXnx9TrmIBNjyIY8R94wx9i4jZE+TDMnzGCHYiVa64ytyJG1+rGgK67KCSHYOBezwUvUq9dhkEakGeEO3xSDdtg2LLsaY9vD+zT3kBBAcN/J7qZOAhRh5+kkB0DkgRVrF5ELNLOYkek+IiNOb3pWxVaEEqWfHLvydIR0njEiAzYAJZXe4FTocODMSHvYdkQ9a7OyeU2Io7nJQTAigtPcRaOb0T58NsyZ5+0GNybcKAmx3dxw3ubN6dH2qgimcyZAThHmKAZJVUloUILmFfFZh2A9TMWQcQZ9zjzGeaQiHzNPZObxuh1JZHDqcRO3IfPcdGM+Xs+X7cPmPH+1f/kzTT/99fPPX+zTeaQeuW00zxzuw22P/YaI+Xh8+eMPO7b78/OvX+yx+/OHe5gQjEDGsRlSZ5xfTxkV3D/M+YB2PT6Gnv18+u3zbz/f5suNG0jETJ6ff3nmfM1PvxrjMeOct+Mf/q1/+2//Q/z+L//u9/q//5e//Kt/9Hh9hI/n+eIKTHsc7tscvt+Om93w9Js5lfbI8d2v/+OBR9jzV5hr7NvzPh8WiGkbYXtugZuN8fzsx/kYm5Sf44RIp9HiOIX9luHjxnsymbMIyCaAPiIl392y7IsNT2RSZiy7BKv+dnSqUW0TULqr4+H6WTAjMubOrjHVPgaVnsqmkEQ0UK33tVms5LdFlzJL1iOb7VSzM5VRl16Gv/yCUkiV61uVR2szVu1TZbREqHa6iB74ul7WAQIXwl3caHak2EgzV8ri3iMNyTZSoAi6r6SiEnLCqaXsXAhcnLKCUWrlrGApGkJr5qpoTpoNJ5Fu3DbCtmGlP9EGqXztQmFxdW10V0N2Va00+6Vx3WblgxU3XL6l4GB1/bZgo+XlCRIX5+1PawdvuX9nrWrQUrkKuwK9m1xW6sAisvWJ7/FogJQLYGKmX7247FwDAC0rDy3j0a1XjQgs3cFErWJjKiQMLFVWrvReilCwunuipKdhNfW+KIboJo3laLngBl3UhcaAK1tsQi7K7xbpFjU1q3Fo1kR0UamxcJlchKv6r+ygF+TmKrpYx6CoCWQdR5Kqya8LiqDBy4peYMLa4i1h3A+8jlmpafZQxAKxaspNI9IVlw1wGDtC7TPX/YVIjgK4O9oyA9NoDnOnF1e8pmCB7qxSQgevK3KsyENdLK5LiVRmhCJnRKRmxAzMmSmGkL3vqwmrS7WtZRw9gbyFn2HgMEAmKCgiYJ4r/SYI5DzHTqBsHRMZ7cTLfqHyCary7gt5WgGqIiKDee4U00QDde5Qps8zw0xFAah7T5PCsAFVXgGq04Qyegbr5I6RBUMwoZkmJWKewATFwZjmJwd80Lb9+dyeXjA25vPNBqFIU8As5e5BhdmwDNCMY/i+exhd2xgYMWTGsd12jrHvUw4KNsa+PzPmftq4f5LRfJ8Ztm+b+6i5la+jUqrJc1KAbTc7Pe1ZOYhn0eFjH9o22b5tT4qYMedjZoTo+264bR+/vQ132T4++uDY0x3MY7DnXKbiOKe4nZkQct/OfRs4Ht/B4nEbOL8+5tcT3Dfsm6cbyTEI1/Hy9euP+OGHj9uXxy8+3KXn28dvzudf/cv/kf/5y8vPx4fbdx++n3G3XdCcp1vaPM+X3F/866dtOz9/CfDcIpHb7fkZRns2zhd7eYkXHRiszFtEOMIS43x5PW+i4GPfbDOv5sGE7VMR4XYRiNXy41Xra9tbmHIDs91Cx8i11bKMOkurYPF/skyVMi8+Qy792S2TrdiuVFghutk4VGZWwBaCsqHELgmlUmT0+b5MSiUJXMe4OQXXiVh+4TrqhRs3dlvZJi8YvEfKqs1av2W5uETlm/VSVtxuVfvtD2yQlXjDUNkTfKCyApX7SBBsOJ2Qrz5grOG/XFy31XZDXloN1LRlUaWExZWhEwtZ7bvKFuO8Kl+9BBrLT6rR6uK91If3+6mSILQ896rvrtazXnatasH7KgNAgenlB/U+Mb+WG1pXuxy7rsfVV1kLuUCBFCspyCiJDtROa5ybpIKmKxqqnVN+uFSqImvuULKZMgLUo4BTb5Tl2iE1It2h0IxUMBTZ8wSta3kG5YzImIyIVMJoAYdllgxDnRu/OpkAQgFjTF03hvfjolBpdhUsAJVuNmiW3SAMugJhjK590txromXXLcrbvJ0AQtns62SGg1JtMh8OZCtxOL2jTnKwQFMvJWurc14qxm4dkHuh8SScKRbWXjBKIqNPZIWWcEpBiptqSpETau8tpUFpWUyRLHGdHuvHzCqYpIhCagWJLkux+BJUMe4noDOwTrNXwERLo1NOQ1hj84BpkrH4lySIse3MGVPuynOLCpDW5q4NA9KJjARHYYswsHytuQdA+o0jNsHTb5P7lmM/bbt7SxjBRJiPAm325xP7GUmPnoBhVuKiGL4NWUZUj4/RZR7TRI19zkHf92/3yFQI555UzvN4nI/P/HLG7375fTwORHpERsykYjLonDirfpuJmGYVqBquVCZmxLi4lADBxHnSqWnbV7gbN+h0M0UEZpRabUzeQsx8MCl70iMObi83lys3d/PNbrxpG8OwuTPleByMjJmUXibPn7avP3/C+fOPT48HH6/BmEbBZGROc98nB046QR0zQYX0JW9O7J6Pn+08HpzztJSQfvN93z6c3z/ftvtut7/45z/d/unTP85ff/fv/unf/O3zy3/9L3/x/efHH34a+fTx/iKi+gkCx37OmACOQ4Y8FI+5bTDLOI8ROs/QOcVR0K2UyUgeds7Xc/L+4XZ7xmZ65Iic5zFPOR0Ibufj9eVlhnJWahcL8KENvetrTK5ZAcpYZuLyaCRAT5nBreBTokmGhG+WGh6o3ttZDQcwMsoQU+a5psN5/6S6a5PWWrwrKTMyFz3aLEzw0uDCIoeVT2SBhRfhBV2lXckaLn8lJNxLG/Lymu+5QOyy2CX61Hf+n61D6j1QXW/QXRVXJqTkMDOqWV8i6cNvt227hsSyfVRmIqP7GjsRQBRxNpntPyr1WsgBxHKVWJglAPDy1SsGKCsyFiTduBtqWFQFPEvV6nrKtcSNfZmZAVmDRQ3ZYUe/bmW2KE8goCUhyKsMemV+6xK6aNv2TZWvcsU1UrW7ApIiCruUCZZQjbCtZhJ1cdZWJr/A5Z6hV5wF77bDSjW0/OIqMize+oor0gpnqKJLp+BKg7D4xrmgghQzg7RkLnMdWfPu06+wcT0auXlCskU6urbVwmdXPxmUVTfFUk/O8jAp5Yxuy2+EoN6g+8yKFUmmwUxNvTHQkT0NcDGVK+FmhyECqMy09VclgKRnErCe1odGrkwgQ66EJX0DHYBp0eiVCMM5caaAONEhz8V3X1yN7klCxZtmJaYQWKyURiwqWquT1dzjVfM2rji1loQ0K/azLXpALYsBigafqjpiHcsVLdQA2bCoYZzZx7gK+hIUs6TBVQjAsj29hepyfKaHmCUylUnOmo/Emp48hg8HUwim/KzZKvWvQTlqFlOAShelnMdTnpOdrZgPNU7wr87JGkGhxG4wmhtvv3maERnrWQVTUoabnTMxB1KZI+cpJCJEpeakZWbO07NKgGHTID4Y5zn3M2d4mmcyLAHFMTMTSSe9vHgkFBHH4+vuzIzIM1n9G3MiHzg/7ObFS6hjE6IHzDJfI6EjjDfBrESgAflGd699fUbGPHg+HrgN3vZdk99unyI26oTFMWviUVSMMUEwY564/6zE7Tff4vn5V7+4f7ON78ef/+vn7775hT0O3/0Jz2frUoObUpEzJ49XPj4/Y7v5tm2KGTp37tsBwH3gPLY6FjTCmPfcjbcBnU9DNgS36FEpq9gpMGbMOW1GFxykEEOpjE0ZiDBm2+/2Cn28CXQZlN0X7YDcygeWiTGaqnfIh0qZrFvswdJhTPV8tooeFi5ch6s9UnP+K55VF+4A9sjysgvrMLa/W9XYhQquG69dLRGWnRQUYkvqEuJH5179p7VcCx1nX1QhqsspN0fpuoNlYy9Em92/Yx2Pw5RIMoSILNiP9VYEaO5ON7fLA6HNe611sN3mCtzbdy1Gy7JPbxEB1120nahhDLjalerrue7/ClF6RXEZ5eUluGwNVoK+aLFaFe7KwFdJQVf7Z8PLFwTxp8D/Wvv+aK5i6AJDsgf+NqAuVPtMP+HubWmOlVVeUkyXVULoZ1nxVa+JvQUQsGZ8QmspsMYVXd6tRI1WFi+t3dqOWICY3lHSkr5460LidX9ulLIbt3p3VhMNr3hQK8dfj7ZX/60q35DVmhPRbpyNIQjXD9dvV0TdsdtbNAleTq7rRT1AA2hFJllmiyr1PSzeHVEvAsCavkOLiqQFJdL0eODADZazxBtX8KNidfd+fle1IRYoX5KOWq9g8eoqNLZ1CgjIzK0z3K44XDurgo1eVixe3LWsC2pPVW7eWtlcp6cWqcKJWrlstdLqNFgb/S3Yb+QFkOxdCtEoBawkKKpwPD0TaMm0fv7FFQfQumeWEVmsuyI0NjoGkPxXdQsmGuWIEGCjCz6kV5pTq9iRdgf4DX2pqBGRS2o2onZZcXWraBLKGTNmxiEqLRyLQUqe0oyE4gr7jUyNkefj+TzOU4g545yK18iY55mZkjFfX14fgfM8LaXzy4+/sy/z0/6bP3y212eCZGbMzAxDl0VRElwJDMuNiDNvbuGG+YjJmHPmXFpc2W3tgG808xsyHjrmy+fPn04ftxuGj9zndn9+HfUIGXA7wRTMx2ammfKPz2Pbb48Tw27mNgNzakeaOaVt0FDTrHwWALaE3hNdqM2aUAYbzc2Eis0qovo+uJrgOyjusuIVvHf5xxrirNe1bErnK1j5YKUGtUUsDdXb267bE4B5K9LUdWDlInr3We+8Qe3x9MtEZzuh2vVvL8PSYnmTBtGyOpWQ1G4slFDILJwrE1Qqq9qbSor1A8vUdbqTxCJj53JNb44CELTkgAsTLuzZrnOaImBVa/cC2qy6YMx9OEexFqsXeukkrUylGqSX678i7/ojW7ayrHcLK/At4RRYEDQvqP2qJAJv/lxXCbex2uWQKierBX9b3X4Al1co+Z/6yLa1dYuQSpR+2fkOZKil07UetYqBxbQ1pC4jslqQTETKvGSXgxLhC8YWUMKMb4EJAVgkVm9R+9ce3J6ZQjKhaci3WxWyzB2Wh7iI3sCyfeS1zZZNR64/1AykOkOJFSss04zeTNlZrGwNjgoECES0p1DW/M/MarctduMVAgEiEwMQaEX77+1XsWZVSjOa6VMd+YIyXQvrztKSWfm/WcVQjdfUp/nq4JWSYFLGwh7bmQmKAoVnKgE/ZYy0TBhcoN43m3dcpRV5NcxQChWmjKi1t8XoW0ux3ChKjKjRr0L0rco6VgTz7M8EWNNGSC6lGDZT4yppgdUox4qPhkVPqLricroZIHo1dlXiaw23WBYWF6VGABqoBFNkiKDjukoyDSSCAu8F/BVJ3y2gumQD4TfD1HBpjLG3DGaRWEySDcCHWTEX2H2K7vDXKGENlOMvNKDnwtiIwpbLQ6d6yNrICxAYs1KD7A5vqHSu3Ianj0zKFw83DXxKDnP3QdWMYevwbex3G7s70yXRc3JGDvMNUp4VDUAxTzvj6wvgd/5q9/uHX7q2WRU/GsydlPLIiIgzLcM3kDe6+208tvl6w/xCHSliuNNG6Q1Eu6M8H3r9+uWPv/spfnz+6adnPz59fo1/+Ou//OvXn+dPx8fjqz0SBsuTSMFNYJ54+fS7z19yP3/Y/+F3//AFMc88oNhvwZyPbYs5Y2r6MKcV+jNsDGU8Zopwm5rzHJEZGTEsUhvpphrxvMqsl9lbiik0swDUeYGxhyYgI+ElpoFGW9n9eA1q9UGT+xLCFUGUTtEyP/Zm6EBwocY0wByoLsjOj6ttrbQt6jKY7QRUDibbjivh1cRxOQiunoyOE7rsw1yGZfFJy6SWJlvrBywr0SdXFY/0mWXZMXSY8s4ytzfsfKpi8oy3xI3EmuldDr3m6LV9UROKYUzLbl+upqdCrHO9ug74u0RmZWKXd+vLK7dZ3xjtsdXZuxq+W4pkVWzrYnmZ7OX6ac4u5a78goKwupL6zkg6O/SXMFF2tcZ9dNtNbaQqFcqqhTpVpfVOBIFIViMgaBhuRdpjyjLNPWXtKJbaU91UdnBYya8V6FAbnFbdfikgwhQtFRxMpDFl24wqCiMUGNYmSbAqFZfxLpdc9s4CNKnnR7LGWNVWrs5uR6MwJFvvJGNGQY1N8Knu6N4CTKuJfKwqflgKzMI9Y0oZum44a0ZBS/52CtV5t4qh1pxymZQVZNTIBQ5CHXtnsqTaRSa8L4SQnE4F3xpyACkEGhNK6w7PfZtmhiBU0m9gFLUjECUykshEhoRUNK1daZXqdhWGlJLIjFKqYAJgwhxJnREpwiLSUPPMSFaBSkT0TMpKLS1BRs4IQXmCt614y5FI+agGA+92Lkjzoc2GzDbLD08/n7Wc1jtSAsyJNN9YiocrGiRYXWU0CjpdTEP69mJ27ioVBK+YPhzgcN9uT8NDeRpLWNopUDZq62zDJGEL2rARGsNdY3BsQ0YF3NJ1vpwlhb9xhHE83bVvT7/aNhu/3r/PH7XDTOZjt903TcUu7BsfpA1tNxsO7TbAYX7P8sDw+z3NaJ4Sajqi6X5uk74h7o6AzmG7Ydye7ucY++0Y92E2tjBxzDHcLGHQJn4Ym4XrGCKCEVMOcEtwH+D2xG1ov93l9vThw6/+yfMPv7nz+df54k+Pfds4xraNbdN09z1hScUmC2K+HpxxjqGvv8LjBc+Pp/uHsSf4zfN82iK3jToRhz1ePj///PmRn37+3b/59+P+nf/HD3/3959//PLx//Vl+0//+PPPn/HnG5//PeMcL0nfTicYog7G+ennT+ftfP3y9efff7krM09gjvvpYVaNYpRs/Ek0x5eXb758jXQbOkxpg1tuNmUWR5q4z+HbXS+JTE0xTDMj46RTrDlo9CEkRbqvYNGtym3uNfa+x1ct8PEi1XpA2zYmgYgZKCkshUE5E6XEkysRS6pGrgEqlR4AoicBulVhpXiLkYgoeA/N4agj205BLBaSmTnVXRhaXq9zn2ZczXirQNUQXV1RCNQG9PIs4mJ0N+Qpa4LTBcNdCZ23HpC7G80cmiVAUZdjNUFxnrSIWRIIlg5r/1tzEm0USbhzYHalW2HZg2jMTAVeXjlZBSGFO5RnzbcUWIAwuMC3wghrbEYpdQtr3K+pvg5QsKLhVqSf3YpSLcA1Ewb97GsLmtU+aUSgd2WynxIaz1uJ2AVjFpqXfdeXn+u+Fa2ErtMi1mglsGte3ROiwhIqaCkuTgBq8m+GIVJEkJeoSasrSv2+RIMbQg+pnQEGpOomQs83yIwoEdkaTCRA6extRyaSqpm27Xeh/jAzGyIzQfM09VQvAjTzMQDSTAKZWgGQjzEIWqB5uYC61qWadCekZVp9TDv8ltAH3bNyV0UJHFwh4+qKrgCASXXvNiSy5QVknUoD3TNnMMgIU0icaSI3yVLI4uvW8TBoJmIqEc6MSK6MvjTmjaqeB5AZpgrDWVWaOOcZ9drCSIWcKoQ6qzWMb2jQTCgoRbYSTFZOm9PMM61nEqG4wUWeWIpz5mOem4KC5uE1ZQGNUJPmUynArcSgbYiX4WtaWyhFGCxNAm0YzNOqREeDE8NcDnMHjB6+nUaOU4JlKkStRjw3t6k4I1OYwry3jJdolrGTZvcxX/+XGY4ovsBpcby+5vHt08vT7WsoM7eMxNXdlEbNmYaFAZvV4AYfsKxwzZBJK75cGdvInIcUGVMJH9uwOWBuyJhEvlaLfsD8Dg5FGgwzFKlDh/j4hoDimG77YWlj3uh0wRHIoEUK4hkRlmG3+IN/GQGm4eTMeZ6aIbmGp4/X07YZObYvIuM4Bv3pw/3pz387/tPf0UfxT6uCzzHMtqfN7/lli/2/968y/untnz3u3/hvv8Y/+sv/2f/m3/zFp08/z6fbHr97OXynDfmwSXva8/bt/s1v/sUf/2H/zfH8/JvD/vo4k9hObHFifLw50jkifGOGFPNAzU2Y93377ulh83xkTdVOKdPhgzzyjFC3e63ctxNAd0MN3+hsrKxOEWEqPvKlXl/221kPzaNKXf2+bdtVlbWKFSnSshmaVWW4/FslaexBa8EO1RPKsKDXnLFEV41AoGm+a+BM116MZj3is/O/N0ujdbMFR5tpsWm6HUpXO0DlF+0hOlC4QNv2Az3tbvkzrU6k9rJXUk1Ki2CyWF2qpndDv3DZkGrIWSlWIVasw2xm3dJjVzrVn4zrV5fSL9uK9o1ElY5Z05DaG7/j/vaAi/eIdL19XP664KK1+m+vwpVwF7P18rm9sbjwh+WRG7ODCscrIM/w3l+TZjJ0p3lxiAyWhihBAWssA1rYfNfxuLKiDgwSqwpQdcMVLNCsqnJvi8+mfbIvpUGCFZO9g9nfyrm6bvSqAb97HERJ/rYiwoJhyGFOgE01XRAqUAJ8Peynn+W7h7QwCVR3U2upaBVVK05UV2D6YfWVVB5fEDS03htXkNa8rhTSFZ75doNKKq7DtAKt68frOGQyDQuyr8ktiWAwPBWYAUOGZUZyqbFUL6AApRX4neucoUfxasFC6zFggVt/ErxdT6lvqU9GTX2qgUatvFP3UwvSqBc7cPSWjyMUIevZbdcOrgVHF8sLIFMT9hc4/1arqGFI5dFq0m+7c1vdE4URnT6uI7VmL1yZlCSlr6dAGfh2LhSAW2ZIISWpDN+MMS3i+DAagOwnv7aIIWE95xImOukyH8NGmJmVvDPdHU5zq+iWMPfh7sPKyPbRiKwCdwYgadhWsLyyVh7RlhFQzOjpjizlP1WkjoRlUDPOl68+Z/huk2nwgSpnUrTVrRDADAwnK6OTbMDG/b5/+wve6FEyfFdiaADcYIinbbv/6uNx8/v96Yl38vtt/3B7ynnE+PDx9XZqDKefGF0zpJltH46f97s7x/a8H3BBMynZ2AeJyIwYVb3p4AWGHNv+dA/LOaOaeDuLjGIvRZScOIiWMl+Gz954NG0PizxUx4/LQK79cZ3Gy1KUFZCgkDqBWySRzuOaXnWBte0x+G5HvzMd6+CrrfKyrljAqrUNWCF8mae2Vv17HQ0CbbGuv75ZML3htCo25TvH0g643TX6099Z2ncm97pwKVcN2GwJ7HNNq2mfinfLeRnKt7JvG7RaCHrZiZqLumx2L1KzoLN7yqS8voZeXoGqSe2Lp9LxQlFTiYZBgSvmWAamqqrLzzQtptTsAS7ZsE7+WvSpQp034s/yKRf3lrx221s0sRZwLe7yiVePKUmazKzapJeNvMqhTLvKtWxGvNZnoEsdduVN19NaT6VsJFENLGU+K+20lQ5d27nfrG+G60qxAOoKLqzSrG5LaylFdIW1eV96966F5Lw5OCwMu/bCO34dr5VSXs1714ZdP7082vsb7vt9i5aEbrdTMUN0vVfzdtrRa31C/863XUYiIq31U5gKW0Hrov4VHrBuBKs8sr7EtbGvI9TsLghVyCjJvXXtWN/qLVp8cBLKVE9/yFx8hjJq6sVuVGUBOFX+KuijeuZr96292toA9XQA0v+Ercj3hrEXA4IxlmzfCu7bfnBZFzMhS4Ru1WSKw01DjbBQyeFXwAKs1mgtCkOiChZ1WLwGK26ubqqQ3kVMKkrQFQR3VFBA3SqYXQHym80ujXr6cC/2xfUeom/ysW3DYUuBGIANpkgn983UkzwSFhBcSWUcj5kRZYElfT0sk+M2x+7mDs1pG+g0AGmpEzJz2VjzfSzlNnTMyLMEimYUdVGCMro9bAMQUQy4gdu+2fb07cc8MW5P+/BhUzmVnm5Gcy9RHjMzKG2zjON1HjECFmeGZszjTLOCKVFpp5nJKRZ/nznP6k5UP9B2p1kToaybS9ud6DpD74Nma+LmosLhIm32cbrgWFzhpyo3MZlsoYLt5voKKktQsyF5fU/LQGiZ/fcGctmJ9zF9/7WIXND1s11tfnOoeCMX4Z1PWj+wYuqLKY7LOL3/fF23jSsceX+B7/6sd1e8rvLtJAuF6q+ZDfk+D7sIZW1UViSkt0fDFTBxcZ0WANzlWV46U1iJYD0fUUPvgohlZK/cSms7iFbnPVVYaskSXy9dUVFFWctNv4mKrpglS+khu6x5hRnrg8vCc1ldvv32tqAla0WuoKDX85077Ih8xSPL3EjZ5Jssz63L0Res0HlN7eLFccJ6UY306r4YXmaMXE1z9c2C1vneA6u6qerizAm4lj/uSMXWFrku+t1eaVnmK+cG2VNkCZDZUeu6ntVK8J4yyU7Tr8hCSmbJH1dIeqHQV6wKvMnq9+7gG+JTT7wT1RXzmhjKzBYM621pcNDXrCNWmdN9IV7X8+V6ku8OwPK/+RYzAbCeENbsdWnJflgRrsiqwhvRBMR+HraI5UvrutZJ18PGBXUVzxj1aAuLentoKzzIP4VFbF2+ZY2wqSyeUMXJYOFpy7b1OxnN3as00k/kMkydbHQ82kjPSq17iSpBq2trC0EC5hzbtrn52Me2la5bmrklaSUJbj7OWhsz8yTNrZsM2XD8mwRBE4AowQlz863YgrLVo+4Gaqn0qwrsmUrlYEKznmdWR1Kec4oIMVOKjEiJbu7w/bbfbqXtYfdbGjEqwqZZ0Yy8XOsiOZOGgUwMg2gkMuXRNaGcTM2aMDHTzLYxhtFLgOn19Uim5jHP12MKiozzNE7MLPWcgHIa9TgOPyd0ngkZ3OBOJxXHGcr2vUXGqzRXyvOI4zzntGoAufYxa/iCUM2d6xmuPXqZ/36zouYt435thrbxHce3H73CQV3HkOt0d1R6GYPew29W59p6WIHq+tKfRO0dXpVPf7P5yqZml11YLVcLdF2n9jK4fZGX5RNXA817p8llzyji6k5dh7Zs41s0//7Xn3reCjqquHrBsG16W4fr/bFaMTffzkArfbJnDC3ji3fZ8/LHYAeHi1mCy0f3r/FuddtmC1le5P9H17/0yJI0S4KYiKq5R2SeU1XffXT37QEfuxkuCIIAFwT4/8EFyQ1BgJgNhz3D4czt232/R51HRribqnChah5ZM2B+9Z1XRka4u5npQ1RUNF9mcYXpugKilQFjOQm+LoFXHtQWtbL/NuefwILVrixdb3a9V/1XHdNm3VJyuSBlqFex3iIFZYkMVn35Fbh0vgmI9PIolmyLDYpy0ro5rtWABV8DaXHFmclrR15r35FnGYArrvsUH/YrVllHtH52C13ot+HLkl87vby2bAUo6NZTiZkZTM8MSy0MqMHWZTPZeHsFetc+7u2GVxDAsra98Sxf1/XpJzrEvdzBpYG2tmcNuWgagCBylDa4oabBdnMSMzTDUAj5Ii3UZV+t2+hobkVF9f28Igm21gDRmCh0XYuhdPq8plGABZUCZA0Bb53StT9o9NfgzN64AnzzEaBZuBvtin8X/tajKldnMDse1ZVb41rV6s0ODFMpggne6iLlOmAGOhEY3cdOs7E6wzvONTuNrBh9DHUxxsdwpmIyOQavxkjKtjEcacFSnjSaYQVdgsH0GpTStUJ7bUSuMJeUVOIiLYSnAVqmFJBilp/JTFEhRc5zJuSd5hZ30k3KMdrMRUzVsHs37O5Wo0G00gSPj59//c+Px/332/63mUnSDKaIGRElgsCZQpwsoZWsjpCxEWcqfvyeD2AeEVFMSgshkszp227bIPJvP+Y3++vf8vufvzw4jo9//tfb7z++U/NQzoYD6HYCUSl+fn+eJvvtC+G3aZHbcCpSx4/j6m5pS2UmaJ7PH4+fHx+/f/8xvmx//f7UGTNiyoQwAHRDzhnzfKV+Bd4ss9Z2ciW2VRx67QtUylMDFQjAXOX16gillDErArncpLLVkSplwmIWrRNQiRD1iopfJkGLUFMp06c6UV1TXqVXoMfIdgUJf/x6+QGg+b5XJoY2P41XXX2qXJmZtLz5ZRuvZPmF7nUW0Det5fxtReH1ck4hEiiabS7vWVdy9abiep/u5Ov86vrIlbpc/v+imV03uf59+S6O618a6u/IupPQvpTmuNWhvqwdsEIIE+gyA5BYdKsrbi8yapmhhfIDbp2Astq8imSQlDUEuxKFQh6pWdLIa9S8witvbXKBgNJ7rnvOq4kG6wFa0lxQqsZBluQLxK6lX8xC1u9s5lmHPtkhjDlki8clAJ1nXorXjUO39V2VSQJwEJpWTUiQVO6+qE4LKJvZsZ16pyeMWF4Wn5Nvd1WWWl0BWXpGkuQGNuBfOC1Y4x3XpoW8hydjIcwSDEhvsMSsOruKmp2RHYwY5VUQXWDJgjxYLdfGYftIEdVegwC98Xt2Yh3tqy9xu5XsUXkpqIAjuCIJh4oeaWbuBE1ZMhor7FrJudrXJMbJIiobAyk3pNl1jAklGUnRhrdPVnRUF5jDh3dvfkgR4RfKS1PSJwziSCNzEgISKJ2JPGdk1okRZnUzcmQIcqdMMpEw0h2am9IJRMBTRXFAUCQVrllbGsUZVyhMwZCNmnRV9eN8ct/+j0M2aCzpQirJN5zxcU8fYzNnKETFDNEyFDJTWipiwgGewcgz5lSvewSURxQ3psJiIucZM+YJxDjPUFqex52mSYeEeYI5zZz2PnYbNx9vN55xz8AxRmZGisdxvB8/zsnwSJrStyEjRuZHPua//o/v5/vvX/70PQ3gnM70DZqIfEuvZttn7sOKw4EP+df7/Os/fXzMx/zb1228cdxw2+3mmW6pEQcy58fz8Xwcf/vL2//1/zb/fvw3/493/Phv/uy//N//t7/9h//F8+Ppv/7D3b5V/9g4wmzjtm+62+7EFsfPmTtvHPfnmb5v8ZHnfHzwNoNQqYymMs74iCmex/Hz46f/+Hg8EVFF4dTkRDiV5tscyDlboqMYr0SZrzqItrpfKp8YW7WKVcgtG5YpKKPEgoS0iA7Wk5E4j0g9FVVrTAA9qm/NoFtCrXUylqhT2ZvO2aGVxoGAtXnq+Z1AacDZpy3SiGHRl3HVyD6TYioTZnn77JoMFgD3BzCwHEeLEZT3arPbrAtUUVK8sue8fHPnX0Dj99XjgW7uKXfjZuUN6/1XRUDRJpK5lH2sQ5tMXY48uWKDpgS1H+3f68W4YgutOL7nAXe7T3vLioqaFFrGvqncK5ssYPGVM6zIAnhVLyvf6Cjy07SNBVqvuP5VQ19/lT5JPFyAyeV20DmyObyzHtBNqFnLeuWDTeYTgLTOHQFwaS9ke+yFwK/tVcLJRkIZPbWgL7iz2Vx6EBSFxWcvb9cvRdF8CurJVJEJi5aPP8zd+dx+vbLJVUS5QNKCzFflvP1qQNWjvh6+dU2vZtD0dX+KBj/F53WLFYS/lo8dYWJBEFjcpKvCRNB1rcWVUfdVNd+iyPQZYLJKl+W9Kyj2bBF55NXTjnLQWFp0tcN9ha/V62o0mmfQKyQuFojQXQoXjGw9Isq4YqIVxVcDYFPdoQYvUkjAapsUAmOsYSd92CKblbbWOSIAUqsVWbJey3qnCls+JTOrCVNSRlS8lWmtQKBi7H8Sh64osk9GxjzxPDhT4YqcZ6Zb6+eoJoBJ5+NURPW+iymdMXMM22nqZ1LMroJiBDI6XweBTLgqrVesQ5oJg5S4RBJpllawFMKVtrigNjafuG3Y3SRF3IjhAjm2cfOUgMQtNDxtbLd9c1hmzAiY7fvGsUVNISC4jf3Ln+4/GOfH87yfvIFmvjvlDKAHEkRgPLaE4vmIM7Y4zxOx+Xgb4877fowHIqcylDMZ54HnQ3mc5404/vxjo58+QuAjj8dfvn07f//A8/H1/eeAxjE2CMKZEZCNtxvi5iPc8PwxU8k8nts5hiySY/fNNwHM8zlPxOl55oHNt2FvefvqI/v8c5jM3YiMAG24+7yyB7QEYcbL9mQF/euAiVBtnqYTdmYmsPnKWhZKbUYuwJhFPsk1g7eOOi/g8g9Wun0fF5iNlYLWRxQtoXJVEhYFWxYz9rJe64wvG09eja2dDqBz60981mXWrq+ruszlp6+Up/xEW0NVw0KqGKhcmWoNxklahn26m45xSJbijUzN6VYjCNd1dc0QqOb2ZURWlnXNBeybRoG/3ePDhcFfNytgrF7WtlGyJqSW4k0l3ibQEysAMzP0zKtat3pT43IYLRAF61zQrmLkauTqxyW9Op4qDbqod2t1Ul2qrW2mjCgkuGYypAhGZ5R2baYrLmjDvpCC5b3tCsmWw0OjCReOAaCnL+XVFpTX99qDLbSj6Q3gH+I7NU0CC71AxS1G/0PXwZXsY134dbF9Itce/fzeFXjZqsleUU9HfddheiESffPXTWM9brTy+xUF81KYXE8HTbNZIef6EKwbQ6O/Jog1nLZCFSqitS6VykDWqNVcSO26sn5i9ebpWpZjueCSa1qryFVCYJUnrnIHVOI2ytTsY3ZJbF/R1rVoJcDdMkDShStxBXCkTxuvf3shUeW8ry326TbKOHAtCPNSLblC1E+vqJuDEW6NsJTUQgMO10MutviEUnPhfpIyZ3GCLZ5IpSwiwJjPeGwHjMN82HCad99FBUPrkZZGWwYTLCUaBSMr3IiICkDKLNTFRCgi6mykKUxpqAAqIauJw0gjhkjzbR87gEyesJSL5LbfuikvxBqcjozMGZE0+LZxOOL8mH/5fto5cZ5bZ29O+ubDhvmkOZR0i4DLkSmFjoHnDz3zzCJgs4ZqsGjHnufUecTx/TAO82173m/BL/+b/f2GPbTrlC8nxGTnZ5LNjwkjd7d5OtJZKix+zOM5nUaYJ2iGTCgGZiY3H4Zt29/97b7BqnpiZhxmXk8YNPMVwwIFXjGjVWLXN/iiP3YJzFYl6Tq7r4ThIo30IVrbdxF6xVWZvKwk/v996QoOyjdKUo+s10KDy4pCWXjzi+D16fBVSqgGjBv208uwfgo/u962bgDE6wxeFu11sJdRqitbRqv/pazXmoAErDh/uZml+NHvtoroDb+tq6/cCewy8PpQvUxqKUutj3jRWnlV/oWXWgeFsXLiDmLWvXD5BPV650pPWcZZLwvU/rGyp5UULVfGVeFXtR6qUpvsEXqtW0CSS2SnfuPS2nvdDstLQ2rShqRge36sIpah05/66EQZs4vclyvgX6RAgGjsunCfDq/Su79jBX9FFkT64uc1LtIeSj05Ye2Ny+3TkpSsTRRbgmY5tlzV2CubrJkcl9M146U7V7O7q7t5uLvnltUR2KQjM1YUSrgW8MCrW+/y5URWHaiUlnhlsURLcKwNXFI0djmaSrhqstjlyXvJ++grzpr5HuGXBy3YywyAyWvwLbobz5B1CwDWRZu5Mxx9PtxqLh/6nAisjuGIV4IrgJ+q9nndL90AWjhqhhvNFm+DAExh64yW3BzMyzYSxpzXc7sshRHRKjmZqZVeLiNW66W8PkUkkaXRBnNpqYornOaEwmLUjNZC5LufXMpV6jU/srnyw9zMlRRsuzlB3/H1y5CPeWEpDkGnpt/n4Pk87SR1WkYUJbymkYQqzoUxrabIZg3crKgsU6TnlY9I58wAM095+hANsHQyjxl8Hids2gBc53FIz8B8PqediX2fHvLvIWnOmGMbcMInSM2YGbOb0E0a227cb1/G29e/kEcqz3lObRScpOZuY5rrQ75/hO/3Rw1DjB95e8tj+7Lx5x0ZMyJQmLfM3Ld9u39V3G/v//S/H/b3+Y/nnfsv9/Ptn//Nf/X+b34+H3PwffOM8MCUyIxIC9BotzEwz8eBu92+YT83+vY+xr697UDkFA1GCO7kCDkGZX672/stcKaYcfoZyDnysFDqnMmWwuhizHIFVjMukZRVBFqZnYo9uYLkVR68TLZdpWhchq8rZCUh6G65TFjtr5SEpT562Yrl+pVcmbdkypI3RGUMUiXjMmVUB2JF6Z7kIuToYmjX2SirukwHIbUjseW1tDxER+Go1K5KpeySIJpE0dpv6/WXKQNWH6rZVefOdK5kRy3JW8S5KvUsvlEtR6S1zPX1SFjiuOo8EiDM1jVaE1XRAKGRyGLGdOl3jVsAwHF5vcZtm9datNCO0ytoTiWUNR+kI4FXIg9LLVZmp7XZ1eySui17ZGgxtdLbuxjONJpMPbugl7VyBlvhkrpzg0Yyh6cnJNjL7DcFCX1lLeZUQcfVjt6TBVWpO4NX8NhZyFo4QoJv6Sx1P6D6xwiwJBw6EOofribly9m127PaRvXoMyAZQbexPuvyX9UJ6dnZeT3VLniiq6ftqPXyqgusUio6e6lOWVyqiGITvvtjaj8bUS1iqRrNvfI166qzBFBKGKDsinl730Kx0rEA2VW57ao7pEh3wZbuiyDQ3W0zCkrfvPdz77dc5YJXCFdiVpkEh9k6MfViXQaHQCqYjEUeMJmDsJ79iCosJzwzNLOmExaEDNk8DEI6C66yUs+iEGVyS/uq5gtYy+20RB0JxZxR1qsLNj2okKusZqIG4HPs1etaSt81jcbN5WbusFE1Bc6TmdCIsgbNjkuFYlKZ9w2TppmFbs0tUnPu4QElnv+neRXr3ca2E7dxu92/vh1SJgdIZxWrhaTZUTZflQSoMKsiCIPFihZ8a+HQhGWMnNst922jT+UYLoD0Mcz3MYA4p3Lubs5pJS9nCYh5DIstyAnl8ZM80si3Gh6Wj1AConnG88f4+fxIHh/Yvu7nL9zv9/ddu9k2iGDOvON5z3Bz296nnVLQwgPvfgf87U+/ue/35wg4oEEjxv0tYn+Psb3Fj99+zD/9+/9++yf7x8ddH//F1+Pr11/eccPjcd6//iLHcLMxzplj5PTzPGNLf/v92PYUZH5O8+fpZ+zH9F/+/pfb1yEggyBtP8ft7Wvo6W8D9/vbr/fvUBxHGM08Bza3MNfMEsauuKNsXWFE62AjwpAIZlnizJzlPzslapH5To45Rp8sLXwOVSDw+coHuxkeF3MwKiSs8eFt7WuGa7NdrsPX+ZxhRbW0pJnywnG6n8fMje7DXKvOVFDVstfqkQ6l8FH5ZSnzsYfKZJDQEMIF1kQbqeSTFAkg2n2Basyms6WVbldPBMXFrlIV72ZJlRT2F5iRGfM8YD1LxAZsRqYiOuAxQaU+K6V5xnGCmq3GKVGWyBYFg7oQheqDVE931LKFtXhYPMvLA3VA0B2XebHPUPRvZMURV6d5I93V3wCg9RIgSUZkV57T2o1yEY5VCqVYvlP9VmDp37drdproNFfTkCr7zshZNMPVCgNJ8qtYjOV6l5JBJem+zKTQFe5lJBfQiZb9bynByqk6orCKQ9HTctnP8lPdovPhBassss8aLNhgd8lwqNEglw8zoDu06ueIFQPUgOTsG0X7qo7E9EpMAFkqssSdKkkPyjNf3f1XItdOQkT1jdYpeFXQEWtlMinLgCWZK5FOKsNQqtRY0A1B0jFFgg7bbki6OouAMhRpns+pI2M3HhCjNBoKF6GEAIxVPS/WZgEujIUzpMBVNW2S5NV3UfENFE6qRjYxtPJ5gOa197MU3K3V3a1xBls4kXJGyqypa2J1LwDdfkvr+i/6pSIFJZnFbW5uaPrSEWBGCc2DZl43Vus/fJDmZmfGwQ1tNVwtLREREt0wXUJOzggFeIYPuht0Gz6I1G3fxoSPOVJ0s/tmzDnsy2NYTY8b1bSWbUPDir1XRC7St222jGotq5kt/WjQaoiB2cbn+bxxnqeFK5IZu+s8z1Cm6fCkfHResPmgeN7udz/PPQ4DRkDnETazyHmbCyEMnROW+6Dt+zkf/+m/uX3E47d/9yPnxITAPLYzYubIExLmDHFyzmPGuH3YtIDGGAc1z4PDJ9LN4WYhUudMcwjYbszAbTt/2Il/pv1LPt6/anMfek/c/u2f/vrlmXd3ImW7tsExN/fMfXvEQ7e37Ve8f5xh/OW2+3nY47R7Pt5GHOdAmJGGHOEb7Pjx42+/3L993P62h6GVn5Wn5diFnXu6Yp5TpQnQogSkALer6FIkkEoc3MnORAgMX/AEjZ4JS/MoAmBJDsyMsDCTpaOKg128SVqPnsTyoMLnUnAyO4VFebikmJkZAcq7U10KJQzVmo81xqMYEdWXKlxg+WWBr08RimygmrklpqIqQ8Upk6J8U+DCBpcU7mVyS4UXq/patlsEbWFrFVEOYQxuRpgXEgglT3fj7u7FSxnV+e2GYaO0+Mp+dkVQ4Nho5BhIIefoq3iBZOXL+nGq5I3WBda3RY1PAOL1VXop7SuK5VJ9JAVd+gXS1tzm1BJtgFLN4vgcM3WM0jEZrkqe8sXSWj7luvhiB/XYLKPJaeaUe9tIYxqdVM2WKm/Bgj8UVpX+iwi+dBsUkBRtdxeyULXKgmM+b70FLENVYc7Gh/IF8WAl3ZXDAssjlT8vxtfykmZyWyVE9N7SEs0IVQluFSEKSuiMsksW0MIHIis0LjCKJvok3WxEytZsnoJqPyXqfdeFnjoCYE+cXV4UPeZZfF1IUUILCCESilc9s3/X6kcOnXMmAc1zGoEIhswsZAc5zyRsHqRvTdBaX8nsDCCZAcSaeJJzBtQQdI1pUCkIlbREUrFqLFnth45EIS+ZMYr0AROJ1WXlMIP5cMuabVpZo5Eu0n0/iCi8igbRo/ic5qqzyY7z3bNVDq5yuVYXRzOi+shcCIs6uiixyR79Ipo5vbo9175dRZIUuI/Do9hcdKRxno4Ec2YEavRFRacxwZjjec+Mh8b2ffo550idSkU0CigyE0ZTVMcQlbJgqstalUH4UQHEinEKWqJTQ7yZYBxbQSuajISAMM4NR+TTJjLOx/Rj5n5/jO0ceRpt7Nvc3rfkruFj23a8xf3Nt5iZtPvb/uX93/378fOfvr9v7+/c8nkeiSNsztCwGoETUzEPxXHOnEccYvh4PkKK4+eHz+ctg8VLo0QEMmKKyIMiH4cNP8OHdsf5/fxxxHGcifl7Hs9MwYz7vu+HubZ0uuGp27CpqTjkqfBkzrFpfjwOu1egIigOnR/27fn8+P7nb4/vP7/zRxwnz+cxnk/nGdUtGZmJOUNSKmdYdvt5Y36Zq6DCZdm1XFClYoV7lXmG0lLKgBK2WldKPLZgo1VIrKfBxpwAtVzvH6Cy2s5mNLALd1VLWT6TwOLJ9FZJXbXiJOtoz97bDXZd/glVsbHKuOvkdWogsOafysxQp43rYF35uNTpNAnT1Wn5+QPAaoL8pMwNRdlpY+n0g4K7+xjDfYxywHCas+6/6X4GG8aafl7ib2MbLFk1hTlplnDVANKKWoVuD8s0fR6ceHmAwSXKdf1KquDnhhTNSJktthvNC1t0J2FqoVuVGafQyPQqWEvZVNal9VBI/HJVV6ZVJr+u4BJJeOG5QnfWddaRZYmrv5hNBEwStCpHq4SPI1djljrK6+zxAmgaa30VPtvu9UUvuHON/yDN56o3NA5Q0R1Z2btB3UPcvrL2mkgz7qWLV2lwBQZWt54NGlXEUo54OabFVuunSGXY1Kl3pEcfo4bvmzPO6vT7FPzYq3GOmZnwwPWKzGSd/Mi0zKr6apGR2vM3ygSu2KUPs0ShS9cdisOYx2MOCkcyKaRgE4Y5LEfSYKNmCF5AdD34Ci+I1HEmmQHPnOfuWrPCSngzFT2aE6XDkSBxGlKw5MjZEXPOLaOyXkhYU5hqk6acqUiHBwhT0qvGlErELBpCHjOitMDVYts1BLjEffHaNjUCnbIVMhdmUUehhufNOWVApmXIg3bSkdO47ZvxlmcOI6ykGQs/BDNjxmaW5dIPEmNKCcU802kG5uNh/4eKhMVioYV7nsdpM8dwG5JoHAEzAXI7NSbp7mh4hygia6VKlfNUkp+CGN6BUMgcbpJwnj1mBJiPe06/b7sJeVJxS4Ju5r/kMYnbiS+i5e6+vf3CE6fHOEVEZjUkDkxMIPfn/PV+3/nr8/jPP8fjPPJ4bANmA/s4jTCX25aadpyPbcucN3GnagrR+zZsPrEdMmaGz5MxQx/nYxwfmD9+6OfH8e1//OH8+uXt18f333zOv/uSd0/f9cU+vtyedPqGcRtj2p7aINnxH/N8zMdf7D/8D/iXOT9i+/6xP+63Dzz/8u3ti0NITciRR8wPxqFz++Kex8D25vsbkcc+Z7jb0L4foRR9G9OtuBAlE06K8EjSONLN3Tyrc41Gt6VM1vRJs1yRMJOrERcrrqaBzioiix2bq/dIQBKpyDp3Yke5C8rMZNaWj2IOTPN5CkjLVM4zKyq3mDOFTJeVU5STltPYbIbXXMRSK0+xR502U6gztKwaz3Kx5XqLiU2s4KRJ32rvAWZORJNEFguIL1cnSRmCJUVatioTyKFh7qtHmmA3XiMzgyuH7OrayhWVMYZVzYltt7DEIysLfUGjr8Cgfe+yqRqVrl4Lxq4KwAwL9C34AVKrsxdo7VktJhUVYcF8RHOI1nRGiDFLjmzNa8zwNIAmJNbcx8Wwqd4Kw6LbFFaynDb7I87MOYhMU/hIbjVX0bxkkeFlZ8t520XPLIeYcpOVlK5JSkeK7ksjlMYiUUBSdF5f1WgAKmi/HhgXrAxUi+41C0pSkVxQ4W0XNvRJ3oStwzq9Agslp0d2J2pCaSFEePcaNcuMK52S70lTwoJWWuguOiCacZR+AgVvOLH3VnsCD0E+AsoxauhZRZuZGp5pTI5MDisB3ybwTaQgK7581lzbS+WjJuGBuTFBpw0aqdnSZECazM6MmNtOQw1ohZlc3sMDC3QmlLP2Is3MdzPKRPpWctm2k+M0YWywLWGiXdUD1ay9JciFjAHASs6BxdTTBDxTgYBibpsAryhGMPA872+P7SGS2L7W7AoHm7cpNJluznNG0jJb2L2SVyKjGpQ8ye0pP2xk7JBsyrcYfhrpqQSHWyrkqcKGOZqZFxITEefUCD0+3gg6hzCfJ8+YNTkTgtNs2Abdq/tqSBhEPr7/Hpv4/oDDJYNlSIznXmYlN4Z8YkjIuXva/qDBJMly0Bzno5hf94cP+DCMncfzcDA/Dp7CL/Fx1/NulnlyHHN7RB5/e9CB43dapIw53n5OHj+n6Yz5K2jM8/6Lf7Nf7Hj+3KZlPkL/cvM84wmM4/uPv378h//z+S//xV/t3/4/N48zPny//TgcU9sPDdMT+Mh84MzzfB7avjOA8dP2j5t0jn/59rf/8J7H43F/CjM0xrd4z7zd98evb7d33W9/+vfa7zff/uEt7r98xeN/9786trQ88oufP8fkPsdG5g8fOv/8ff9x5vh//fz4j9jx3f4v395/7GNDjM3xTPz4T3+9MRFKpjgcE9wPPf41/9v/9s///O3tz39VjPyXx8yP45mR+R7KPJ5zph8fzzGPZ7LqFmkJPpVEnE+SM4DAOYMpyaL0vChGzqkJQ8yZcmZacRuNMa+S3ZTSwA1ohaUSaTUoWeR2lBBB1YKQoJRRNeDQNpnIsLQ8g0rJtjjnSZEcRahNmNQwntHNKdGM7kbzgaTBmC91kE7QcqGMKWDOoURkOWdNoEdRw4HJLvJUmpKSihkZ7ZwlYEbhyZWwdXMcFxWmRpVq1VqHOd3JmOo6oSF8tDpun3EIMh9Xt2PlGzUTR0pacyQyl8+vbACotmGxBuEUhFbuXvg0tiXHbE6SgKaULdCrO9Y+QSDWkHF1dLtYXbALJ6tG/arlYrGaSVKKbkMEEkRm+IRhpomjspcGs2Xd312JmqELBsXwHRvgBgKMOeFWIx3P3LcNLEVoSAZF8pqMYcaSJ4Qx4b3LrBBuBnMyEMUwq2k8BmA4KJUeL/tWsmZRIEMrw9ciFVACNZsBVXs6SoNSQEQmBBdm0sECMJtdrBmeS8Mhz+YKTEA5I3IOA5SiQWaebuAYEOBOMjhM2MYYinHbPD3d9mEuOLyG+NjqFG/+njHnYHg+yR3I6ftGKsEw2lDIAc3gkCe3vex7ZcMOYtRwYzeOksutuqfq9FDTLcN0cA8MSnvkRiEzIq2ZHSLps/KrCmEy4b2XYUgparxbKk8qh6UN2X2DG+lb0VmQDhiDZjKLhAmbCQ6/6SGawrfdwqDEaQMRymIWWclSWbjZNjbmZiWB4TT49PevZ+5J3/TlH//5O4mY95KXhAna8NwwuMlwBmZajzKsOHk+Jo55brfH+Hg7PZ77+WH52D0+9hGJ07Y5cIxT6Sn6/nEoxvEVj/nDJ28P6NiZYySxx7khc3t7+sz4cvrNtl9PWMxwhDQPiOkb/f3rXSa9U+nzqRH4CI7v/93zT2NGSBbE+bOyDRr0sDcqqMn8+WRu8fF9misnAmbDzc4cgwNT1iOxbbtN3UK278M2A/iIbU96Scx+zBs+hn0/Oak5b27jy9e70vfhp7+N2295207ZvvsYfipP/Xzw3P1Xu/l4+/pxHL6/71/jt18e72P++M/fbXt/c359pEC508Yc25cvJ3X/a/BvxFMD589vt68nDHj8f7787cd3/+3/63jYTx0nDjC47Rth+cyvH3/+dvzt42kf8R//6z//8uuXkb/+5/EvZ/6r/7//rN/sL8f2X/Lb3/9+I2TjZjbf8Bf7duzPp9l//9/N/7Rtdvwrfgf/7vhxQN/nv3z97S8a//Lj4W/7jxPnh2vqSPm5DyrHlyP9bxrb28/4y5M/jg/OwHakaBGy+/Ht/JL799L81qFtyg1Jfff7NhhJnnpYFWjsjKjx5TzwzAiIyZlIHEHa2CXhbCBNjGgrcs7i5xp520EfQc3OkH0bHk2YLPUWyMBM5m3bJCWjhpbZgA+3nVvQ6CoTB0+HfDgNVTkFYW7swl3FvYvgW7NVgYVA1gwn0cWiekgJEyVZT4ETHWGWYHSVKleBht5CNMzJSG8HXJWm0jRxIxVWo20ObAwxolgPiRK1i3HjuG1OOJk0XwLgr+oxCcE324bRiIwE0RmaGc1h2EpZDlV5rCSFqhiDawxuUZ6QAMZCz64y5YKEqVYuK9i4wVAsPGClf1h/VwmirEigawt11MvaLqm5xmoX4I8uyHOxpsq5JSFWSm/F5G0YFyVETaNZzWzKREHD17t2OXAV3PoqUPoEC7dY4CzQUv0vfY0uTdePlVBz1+EuXHj92+sPC9lfKKq6cItPBOQq/KKjm86DPz3bCnYWEI0u2YgVSVV/dT9DNw8SXQUu30p2obQFePmK5161nRWpkIZQo60L8pdEQ051kw0twuhABp1VqslWeK/iMpTNyyeWDEVh9YZWhWXrU3PFlQIqdjS41QQClJpJB1u1+X30SQDA+EOJiYu51XQxFiZV7TU0AR4BiDXAs9qlyQJAWl3brUb/pLuZb4hh8GGwQdOIbWxkxRYc3rt2BbEZMyrw7LpfKeZIzaKGzZRyWkrHfm7zMc6fMZ82zunx+IgTFlACsDw5fB6xR3yAM3MkICpCMCYxKKbmbpMzI88ByDVQY+kkKEfh5SmlZljpCvHO7Q2Z9pxAZjd4Vc83RMA0ZQorht2GZJwJ9a1EAhGe9OLeQmXLSNB/HgPnlKVTRM2QUKY0n+fY9rjPfTMbuc9q+fJtvw33AuPdzMfYBs55mkVqWL1KdB/DfRvkeLtv+fUOjbcxULOfse3bG+Zt3HZI+23yvsnwS9jY3m4nxt8Zvvwy7r8cOwd4O+h+S2TInTB3E8inzA40wALoA/7z5DZlMGxyk55zP2fN6srEGRGBUAZTmpxv+w302HTb8k1vv4T927/kx/02NhDnME/effyW4+9++cd/mG/59bf3X//uHz+ex78oNXUGdYRkIdvg++0tu1BaWKZXywHo7hCMYcMTAYkOhycANzhUcJcTliYviLTJsdbpk1kW24ok0pxjEJvVsZckG+62JUTUbLJixNAytW2jkEkUjLfD3IfkoNeG8jVQq5R70YPv1XSrgshrI4MAWjLnlWNWLkOzpuxSYpqYRLpB7u4+1EibSaWsTr10NirNvSzty5Mlu8YsJMvWWoXJicqXhb5mc1YrxmK+lWuqwad21WTrgyqxlJDRpfJFBTK+yrnLwam/+apVLc9RQjUQVlmymLHFncaagNzAdLkylZfFesiFiqc10VcNQqv1EOrzOqNdbk8SsigG2cOf15y5+oCuKxe2LpiEFIKIpcoKMnOx4qSUURWklRLKko6sRe4snblQEKjQxMUjugrj6hEuSeuxs8qaNmvXY2WXhXG512sPEGsrAC0FRoCW1uEKHX79sADkzNV9XEJNyoob6pnkanbv+mU9uwwiEXNb91YCsc0BoajuFGw6zSpvrG0FWiyJFzX+QBAFIXTNvX7pWsQFtLMGZb32eU8KxKq7mFUjTB21LFefvMZHEYlqSaodVCgJFyxQdIbCFnRVEMoodZQHWpphac8RNfRaNIdby3VWHJReVYji+ZZ8jHU40uGRGZHJYHb5vOlkZkjE9IzsEcScEakIxTzn1IzzPHgcx3lGRPoq8rQ4VFZCsRVrjJEMuXcfWh0fMZkZXgo8AVrA5GbdwFWxmdVeV2Cb6oHMM32SOTeQ5gmlbNsyLTPCAlXZU6YGaZoBWjUGk1So2Bq+nRU9dZhd3elaQWyxOqrtgmS3uErzzE2EJpBBU1YzhXViQGMhdZvCaoR3yuM85vAphtmUpO19+LjZsPRqdRsZ5zGrGTh2QHSnYX6bmwR3Y8Bl2jffx8hIBwOY6bLBQbvTMMc2eb/5Hoin33HARFigWDIOKn653Y6J0993/vL1dvPbX84/ZWZs27bHPvz+fdotI2bGSY9w5UzMyKG/nu7ifeOxfbm/fT2/hL7mb/+Wpx+HD2VwnKqmXreweOw/T4rKfSNTGEE4OflmESLlmwfMbezVcKfEKIFo5hhjc1qSObzkZsQUjQbCHQ4mhnuFLilryq8rYepDBNggt11tpmqTljtCs6r6yC1B4nZkpMlIu2g0/XJ26fGygsJVFlu+i7LlbvQH+9//1J4Eyy91rmDN5ySxJtis3s42r4lFy1+tCVyGhZ9cXFteQ0tifuZhpfcVFbJYPJJKjcr0Y+mHtR0vtJLeBI/Fq27XgZVmtH9gW8mVBq6XrevS64lh9PNHG8K6asmytEa5zmbh0sIqfXXDBq+V6XcuN6DrqbeNW20+ryXIwrK7Z61Sxip1CkSlqasvrvQIVO4x05KKSDIiZF33bua/QdFw7VqFa6AqKr0Ert4Wa2jeEisBlZZ77SUorkyzxKRSW84aH7wyaQjFHM5Qz7Tp+/rs8HtGRAnB1VUtcunax13gXxm1GjMov6prN3dlOa9XVV+eTfQsBDq7N9vwh/jQ6vdqG19ShwuU6KfVF9ToCyml2dhqQ1a30uLlUyhOSPXpGqqjqyq70Bq2WHuuyEmEV/ZdcU4Eo2QfKkYSCEswDJxRXRB63XQ2/avOpdXgvRSi2wfrDBkxzGu8LYeZexYcVmexm9FLGqTLubTSSjKDOw1jJsbYM3wbc2zbctZQwmBOongMVQRzVI94FX6MGO5J0rb9lncM29428n7b3cb7/f3X+7ZtMuMO3d5vt6/7L+O2cWyTB6ySoVCnHrRqKDfjPMJTsLFtUiaN02mcQg1LGFPRLIEQkGOLaWLa2J6AKS8cbNE2unkjtVXoaKVLAKDEiZc2uFizG6DMUB4EMIxmNsaAo/Y0rLg5yeNxTynnVpNQUylYzM3GiDCYuybHBtvvd/jm2+0j777/8tzOL7dt27fQplRmpIdmcTrEOfpIKii5chtpcHaCfM0+ktuYo04fM2gZkqYKSMqcxT2Ab/uG+563eRrumw17CHTbTnUeCTrgbvQx9t3t6SBgdEfMzJiiufNtHxjDxzmFCJOyQCm7OZ0+dIYU+QBiWopZ0z0UyXPmVM/IaL0LLnQWhLLaDRs8azt4KWPg8h9K0C42sJYVlmoMZZJQYa6fPAWWa9QnH4H+K5sS0fAY+kcJYM1gX9BZW09cb7ReLYHmsCtrIZqwaboahwCUNmq2FUK1TjZXt8P79eqLuduVwDbD7QVLRbizRizUdWWNJOmktfh+e++iWZtNsalCZERKOZhRVSdYUnKScEukY8IRa17rKuxeg4r4KeTQusvPXxRQYFejessrt+tZiPPlg5eDuHL+jgG4fnKly5f/VbN9a8sUC66Fk7kYf8uJrRwvARUTq+5JqCaqXI3FRFfhnSUpQlaTb2VUryCvr0jSWoqlpFIfyVccVOtln9LYtVPMzOjZjHmpqp39fleQ1M+TtLwissuLN2R94S4sbcLaF2o/3RD02t9cnhWXn6sq56KI9yYXFFdgW602Fh22rZOwyhdXpIW+IFh2Hcig5nmxGeXGmkHpK6EvoZxOQOsdpeskdKcfyhMsE68anlCeyrBwCFRva+kyN7LSwW5WbFDjUV/CUkAbnGwsIDMyikOyEIJW7WNHGSQrGU1FRo2yYhGslGFm3uIquQL+BgRqbbPaEEMxkXmGctUi0IGKss6BuVmu5bpeU5oSSEVQLJ5+G8qMOPNa7QInYs6wiG1ISq32iGUbS+lD6WOYE1BoNvMxM2OyDHRkCj5td9vSbIzpkpsPJKKCp1q+VmEIND6X5TnT2mZQAjwr3jblZoaUFRxPmDEXS8KYhpgcwwgYMOxEKsfIDClFU4o46MaZyKhBFJlxHB9nKGfgwFuE4gMbOdLH+/7Gf3z8y29///vbHvHLL2DSCVomZnwch+1nQscZ+nnLw5/6ODY/HrTb8U2/HfPMKchzWkaEEA0NWSiFOejMJEY8PCPjr3wEcp4jJSiCPD5GnHH6FnGmzmPO85zxOG75e3Kc4B0/GI/UyCN/fPsZP077eHx1q+FkKcR5e+I8f/7+t7/k97/85V/f8/78eEglXE9FBdG0dnG2GmQ/m2hcCN2VXuo6EgXjYWVE2UF1mrGrgu0BDNE2u9HHTmOXyV7obn3iMp8d8tdnr64VlCoFqsZ6wSVQXualReHWhCVbuu/QZxekxp7LQlWuqGSqahlaQGnDoEqktXxMn/gXUXphZQVslft9Vf8ua9m3nyWVcGVAtecrGRmOUtuwajaileq4Fi5XQTwk5Qws7S2Ry53oWiJ9eoivFdUVP1DsYQwXlvD5bS5mka7M/3pWry3A1yewnW5FHq368dpNCyFYCPqLLYyXS6zr+nzBvfJ6rfQaKZxkZIJpGV0HBBfczg5CtJw9Kz3J2jhV5C/1+24W6h6p5n9d+SeufUd+uhvo82N4teldXveCjS83pbqZFKMUt3v51SFGvbYPYD9EYAmH9mkpQBbsIm7xDDuDVRGGVwhKagm7Yfn5694yo3vcC/RZ9wAlI1uKuQYQoMSgMq19QmWpr6h33T4brWgSdxgjmfKeNpCCMqoPoo6B+n7U+fZq87qC3VfXmLorDKZKzNUJer8LDPDqCG8VgOQ6Ch3i1OZpYp+5NUhUn5NVduMq8JhYSjylZe57WxQz5Gu/moXBw12wJbpe71IwOIlS8hJKSHNGyHiMVCpCnkgoerRWxqyqe9XlQZJRWr+VjiDNR5oTxJlm5lCViiuC9800hitFN7pDOUPuxkiOUS3nKATNBwSaaVjI/Jpeo8RoymOJxBpKiq+tpNF6RqPTHUDW5A+F1wGEwTOVmRnKJ7Mot2gY49wpNemAyjNias7JGcqI9HnOedi0g6DGvhPQpHO6aoPQMQZpHpnIzIN26rA4gzhoj48P2becdnuafrxNfz6OyTPJVARSoTyRx1RMzTMSw/22Cx70+WFnPg6f5+OtwkcIiLTM84zj+bz9/Hn8vmH7zvtf5hfPh4yP7bxrxvPxODIsScDHSHNum3Hc7l+eX+2359+9/ekfHh8fj7wdOxE0pgJRbFBzvrQmUallRVfL6F3w5Doe1DpGpe+7Ug8uBGup/LOmjJSmR8nsFSz2anFp99uFMF2Rex8gXo5EtQWuixJRQBxQrdZCX0WPrJOhG5ry6iMHqmKGbukTX5Zy/b/AUNVQ9hWlL1+sGm6TKwMuplAuTYqul+mTUdPyQPyUTrbvLGurFs55XSI6fatcpl0d6UWeNrM1dUJFq+BqvL2yo/rrWtL+Y3ngemeKY6Vcl9n/g9O8IolemuLZQCyOGhd/9fX40Czsdf1WNUQt/wNJzO5RUl6ymLxsX/lu5XoPb2SM1+dUYMXhxuVvzUXSTCzqEA0lJMi09Z7oCKGSk7rYyuzauy9X2QmkFZFvxQWLFn5lCBUYrK2+1i6vxV6PsB9/3YZ52kvr+fUKFrLrfml5V6qhNfTC5rUyFFhc3ToihSc3CatOidUubuVMfgofaIBZyT04QoCxnp1VJAJnpQEVD0hCDNTISMiydSyUnyLqFR6V9zWlSDOYbRE0Gr3CnSqAIxSiWwHIJGGsRjWi5qy3XLxZFi8ZumIwNZrZxxiEuVosv+j0YmkZmFdrFkuqBhkM5jwDADO3OqZl49zcqVUsKjhkbLtvOMydYyu95qUz2QCHSgNUUo2er4UR4USqVPkIKTgDddVGJJFnVFSvCY3pMZkpM810yYw1zCjpBiFyUJlxBs85ISjyDFNGFuCmWTLPz3kcxzNjxjhkoL/bOHNjprFavxO2xB4EjlICqnjZtkECHnLSyESKUjCjInRBiiizf46peTyfERVTWuvyJ3GcMajU7Cp/d4r4FOH0kTwdhdb4HUbDAH34NopfQyMO++C//sfv8cu3/3Q/8vw23hU2thv9Zu6VDShEGm5f4n38He6n73f345cfv/77m/180yZM3jw2HwJh5oxSjuc8bPcJCT+mbLhR08x3jL9Uu8SYm49zRkYqwM1Fgw3f3/eZ40b/e7+PL1/f7S3e7Ptvuu13/OnL920bTg43V2Davr+R+3jb980HM+P57S9/+xFzps2w+xSdNiuLStZADbDj/c9Q3h8sejuNstlrDEktWA+pGk02/JTEqj1SO0gJ1rUGLktFJ5KwtnGV1uUS2i+Pb1r5kcJl1sUy5gKPit3UQ7fTUoyVRH+2Xp3zvWxmKpsc2MbkKtxVdsLKd3MZ7gsJQ6nuRICcmJgq0lrFHl1/tVG4oZsNl5mYyXnSO0SXSHNfKjkVP5uZuw/vET+dAfds9iupKZt3rcfLj16JVDcw1a2XE1u4KwAMNYKsxcRadrqWGUsjeiVlHRUkdU3+7dT3D6n2ZY6vWOTl2fvK7JNnWnSb7CCl3UVtwCsC0EpL1Z5Ba/SExMI6U59Am9fVqCMPVmJ+cZ4avVjR0Prq++y0UmubvPTIla1WVFB9PVx1/UmZhqxJdCTsGmJZ9+P0XJBrP1stXKnT5nzFC5nKqOsot6e1PRtlWtHOWtXMapKqh0MBKh3JK4BBAfu8Mu5cGxxEFaGKCVlxUuG2SS1q3arYVEzaoAcqHEZ9XhPH0l2d0RawnAYYq1PbvEvM/Wt54hdEQqN56HXk+vHkUsPoZn3Uu5fKGHp4xLXwBKSMJqXVqOCq9hpriEBTuLGw/bXctSbmC3etO7/ixI4VTJ4aggearV8tyKCR4zT34Rg02khzBx1gtzjUuIyepM51zk86aVYNHTCHzGk+3MZOZNgWY9t2ayIXaRjDaebmSUdIyjmh6bO0X+w5Pa993MFqfSjMQ83rIEl26FSDLDrMkEEF0WVMs0xhMFIwH6XpGcr0EMws6XB3J8gZq1TZHAWDIXIe5HGec0bMM+KYR/Lx8f33b34+eZ4at7++D//xnz6+//3j2LNGe2TGlANWijiVN26Rg8aYiKQ0zzlxfMfjJ5JhynlSZkYHzWx05sKpUGbkPM/zmJnztGfqO7ePbTueJ5/Hx9tZgHvYYLI493EeM5FhOu6RlCLD3C3dCBsVr7e9hrv5IN7fv3x57Pvm9SyrszGzB4tYBOo7ujT4luUTPlmlC6RqbytgVam0eKOfTncuqecydwam+7I2L9u4pDFWkeyqWl1muXMfJgy02hRuJBswwosoBV0Z5bpYVHGtbCeXb12gYF/9uqaV7i/xiSJZLdN/pWiouZ+d9lY1rLo9zRrOKzzw8oB9lnvtaSUg86kGbO5u5qMn/HXfRn8Vkq41a6+BOhZI+NnJrPS1PC5eGTCuqnVn+5eLEjA6Jyx8kliNQ8s2V4ZXs5/bX9QtNQjShhcocL6/LywFPjYNab10FaFaXLKZ6liRWA0uaMCrUu5GL7w2Wk6qoqXazGECpYxPrlNhEJpQj5yBmpKr1EBHRgCRpFKTmGKficiMyZAIS9cohk0uBY0Ei4EcsRxw9/kCbH5QE9vX6i6SLmleH72Uyldma1VWyISMZnAJ0YUdu+KgXLzBlXESEGykOzSzXmVS5pzImkoiYwouFbEPRrDUoBKMOSeLUZ5pynAm2WLF8FF1KvMqf1CF+aYNEIhRvUfdhlQQo9fSAjCTDXnpVyZmnMzZqAuMMwDS3EdAYybrhTWogG7kZjQOG+4AiARKU8M8IeSn3IAlRYr1OiADSSLG8dDM6sGYGswacg9zjmFuWxoQlhnMNMKIrP4OIi1NeT4zEgiP4zGhmL502AQjIgd9F2AGbgqyB3RL5hq743Zi2JsNN+tRxpJsBqHSUE0asZkPmu93m2R1i5Oi0W2foyoJ23a/+9sdM06ERiI+fouUOUXTeJtuZvLzHDjNNttI3r9sv2jH7Y2mmYcALSG3SBjP9LHBObXtUGDcQCCcgIQMnW7KtMwNQp7ADAjiTJM8EsOHPnS+4xm+PTVOOw+4hSRPTJzmzzPGPJ+0DM6cj+1x6mkjzo+Pj+P88fF9bMf5kfqr9j//D9vf4p3n+Df7f/3rl/d//h/2n/+V/9mCx7/+G8cGCYbhMGFYPH9Ap3C4f8xtTO439/3cNt7/4faTv/4cX/n824yhEHXaxMd4nMdJJsZ+2zS4bX+nj69/9/X+5N8/3o8zHl//YX/7sT8ej5/n4yc+OP/m8i/f4stf/fk75zfZx5YO6MeY9ncR+3jQZANw+7rFroMfdqvR0q6Y89TznnHegbsNprQJ5MmcHKnpgnG/m2Iv8GZlK2YKgRzDjCXuTGseUEFx7V+gTORQWnbrQDwrhV3eDDW+kfvbPFI2Q5k+vJBlGqBJj3m1h1Qh+gK21vjKV8DPYRwxRgAwGWyoNPbdzIiQVCQeKmsuA1bKttL7FQxWUXJlzrQEmjxLy7LUNCwGfgXxnQong5EwJrtV2LHdONdUs85NaoqUGWy4DzfnNobJxrh5g/mG+k4GNwXbrCC9nLUthRJaGm1sA2NzOnzzQpKqk9hbpwHLLa5MllgZ8KcAaOERGt15pKu+0NFLPYtP0PF6D3ai9KlSV9av4qOm5F2/AyWdVZHyytN6fbF8bTvcBT2gemFAduHN3AWaU1IEK/2hk0rknLFlYCi6UL1upCsbNBDJ0voPOpXoDuIXMHuB/h2nUQpbcWJOFR+wSKAJFo9lPQdUxJGvftrlnuvP2am0wHKF6547dKncS7XxhBIjrsJbNcVCVt/ogkI5dIalUowoOUgwomaRBUyl3VRjA9EFOqL022qHZtEzzFvFkYpqTShtzLVDMQ2iV2VACSjCEBir5NEkaBa/WFf501ymaHtizU+yBAZixtQoLKGO6pLEYQI2zchim3ds5py8ImwbWg+NKOq5EkAOVARXQCaSnuKw7e42wIE0nCSRTFOFYFDI3X044hMmQSIyuR3yMaqW7vkpEQEIHaFUIo5z1kxb0ZiAKas4Fwf8vGXmmBjuGcbUoGzDEmphqs45wgh72jYn5RRCMU8MSpNzhnyjns85M/LLBGTYMjYj9hECddBv/JmmnL6VSNm0OB/IYaIxU5nUaWfMjBkCkfMxLc9jZGpOx3bbzidNEJmWjTBmdQrC5Du2feP2/DEscs7QqOI7zN0oWB4zcpNNmhkD+8PBXebAdhN3YmjbjnHb9/3t/Zfvf/r1tz/9OsbtH/7p/h+//D7f7dQ/+Z+/fvnq/8t///f/63BLvo+decP9PmQZkABLbvZohYkYC2SpLC7tNsZ+M9w2eVhFmGdgfvz85cBtRhxbBGGeyqf0Yb9/bCc/JhWhjHwez58/5nPE3zbgOM+P5znPKRs+hhcbYtzvEc9BYYJFKtiRoOfJIUBKS0Wc4ZrKcfNuHqLkEEuybstAnOeRg8O7qFljz9mcTwHK1TDZhrjbLCrZM7lbV9izeZqvjkmCVhTomFXksrRFtQNL9LgRkK4HJcjssbZaB6K0XyON0unmOT3gTczrZKkOIy50T5X3AKQPufVs43LzKUlBhgGZhIFu3vNmWE15INyM5oUXXYVTtDfj4vB2dRwNRi5Sy3pp8WaUCRg15TI6DeYDkhACTXHkiElW50gNTMs4OWflmikHFEHLCYK00Q+xLBcgYmHk7Ky2csjL333+qsUcr8tcrrSunMyV0qLbgRaW3AghCWvzvlCClTezMkAmFiG1t8OqiVehtkAWrTIEO7G7LrAh6uv7pHGaDzPPYWnmcBnNOTYDxZqiY2Q9QyOMGmMVS80trL0fK1cjDfCOJz+NjESjKjDvvnIaWDhRMaAMgJUsARfuUTDr9TjQsQpKWLNUdevaHIDgIJQRyA2ZoJgRUeSXlHoowuXOtcKeeojooXJR2t1GpszMbWKQhsS8KFtYeI7RmDTvNayescJWOnBwCD3EhIbwwn/sKkfUv5NuTZTnCpW6fRsu8Jy5jaK5+whHjiqfdF9DzXefypyBVPMKw7omDTE9lTHNi/3lWcFXZIHYqx8pa5hbcY6JlBk4YBz0gQosVI17FQoYoAxi+kYaXJ6zBNdFGt1LiAPj9LFVPl0zpauMlFGbNgAyNaeO8zxmRIUO6LK7oFCeMV3HrX1hqgZb+aCZsiYbGignjNT0yFPInJ7apIwsYTWMijLmwQj6EIaPO0ewln3ULDgRbzdu9xkctCDEubvlAZ45bgfdE4XHLJFWRYLOzJhEBL26xOhmY5iS9GFjyIYPHua237htm4QRHBTtIDf4bcttbG7ycQAxoByn0ZE+nGYjyF1Mwcew20YbY5hZYmxGDOB2+2V+vWn8HWf8u+332z7+7tdvv/7Ttx8kt9/SFJ6S4mAG8vB337VNwxbaT3PMnOaHztDzhx55JtOwmRe/w9N0e9v2235iGBSSMu20+WSOczx05m0fDZ9sX+9409x+jfPtrnH+o92+YN+229vdfUuD3Wx40JEQhsmMmtietnmcjKpymW+bza0YDJg5M0LhYX4TZeMQ4ojAGDEzrKS2228W4voqdRaB6apUfaqgGjCM3ZyfpqQbaXFhi5I0U6c/i8FDoiaLLj4S2dhTVj646s+dCa+znW0VWSzoKklYF+aq8Eshyx4YLnyMrebvxKVR3fZLn8pp2cXKns3S7qYcRS62GNbPZI8JRJUeBKEmAb7Kfa9guRwHlKGKzkHjnAVX6cKFfR+gW52pi5NpVZORexFcM4xCkoaYrw/qq2vR/rWM6xFfPGN94gsRVilD5ZvF5MYruuDyl1xEuNWxXX6mze7LYy5Q5CXRgHZLBqVVZ+61dUivZvCVsHIt3B/K8yuPbp8N0IZbOT5A1WftNLo60Onxt6bqnlxc1/K2aK1n9f3zdU3WCL9d48BY0jlWyKdZtbd24tWjfxoZUfn9aqJ9eeNqKDMJSJrDBSdalklXKgpAyOZJLVd7VUlqTTI/08qra5VmnqO0SKpvp6Sp8kquV8r4kuS69hxWGRhIOVXyMiy0ue4WgBQkM1kjCykw+5oS8N5v5Gp5SCQs0ONFc1hWEaFqXGqGR8faWHalTxZWcl+jLBbdGaQ5i2NlnguvrmdhcDMPWcIbfqgNkzXaHpAsglaOs1fdCmfGavBBqUg2HIbKJgjElOaBOc9QZmvOFOuIqBnB6WHuqnntaN55VcUc53DbABnMU1Vc7ajKTGZpILyNlVf4l/CaP20Gr2iSNrYxDOljxNi5EfHcp9LdJhCqDiCmYJh9F5Lk7hw3P0KhkESXuayb5kGYjWz5XhtGQi1b4H1genHNhno7WERkSStdCxdWaAwyYUqD0iWjbcckkEfEFPMEp4U4B2Iez+fj/Dh+2v15Pu/3j++//8UPTwb2219uG/Efn+efZoQ57PmGk5mgjEDGPON4hJ4R89gjxAiaE64hvr1ZjiPHFpoJnGfoTHI+jmDK6ZZj23+Yttubbve3LzPeJnjzv+ae7pts49vmmBBrSNGONBbnb9T97KfsiT2foTg8P45BPed5xlk33kI1M5kxZ2rOoOY8T6V0MpScbSpsnfkeX7byjnIUeJ1bXvZ5/QbWiE8BdvUHdGj9yXbDqHTXmu+SUZ+Mrg82fMYFTq5KLdo5LBtSBbhlgoyvwfUve9+nrMG7OskvTLYMxUJTl/ddIsZXEtdESynSJFgPTKtRd/3jF1i5fPW68s/dTteZzqXRX52WZpASccGfpXjUsxw62KjLr+9rWdBVMTR3e42QqKTsU/JWluxzOrk6avHHVHjgD18ve8hVc68lLa5Y4RLrqq8fWfXaaxGq9L+eubhcExZcDZTqgT474FIMM7L8Kmp8kFlrCRZBq6ZjEbROrgv9beINO5D4QwuU8kXlXs+EqzzdW249pPVEhZJG72daP24omlhtXK5dcZ2I8msrI1zOlKiRVC/vsN72AnBfS2Iuyxeo33d/PemSqrFrd5RyqRYMg1VeCfXeK1GXJoubiJpcViroRY1YJKwVZ9bRM1at2FB97XnJml3+u1tepaSttlbJmEnQW3ZaGYw18uQVB1abvZfk2vXGHTV2ANQj//pcrhjthYkUBZ9mlk0caIAOACxQWoodMDe0V//WG68ig4jgFeShsGwr3eqAwEwotQhfHVuZmaW5y73IJmZZ0SC5SOommDutug5Kqi+SmKGMhTx0GaPiQqMLlkQffHf16ptv29gGbMxK9OMIooAeRaQEIpETKRVqI3PbnLDN5+Ao8kIzND7xFA0pgt6gFbBkxepJSMo5lKg1nLVbDbk/2z7pzJygxaixOWms8EKcZMzkmpZT456Dx8Y5j+fjMefxyEyTNI/Hj++3D3Gb9nb+7b7b7/9p+9v7/LlvhoBYXIMEU3PmOfEReh55RpznjkxXceEJM0QcXpUUcxtMJ5wCzTffbrcxhu1D2z72/f5+AzbPkGRKRZzHR3zEg+dxPnXGfvzYciqFiHneck7Y4/aR24eAc/jzOc5vP94ynjie9tQu0dyHwTABlEyNqbxlUWNOGZP0QaBoaqgNjavmV+XXF95ayCK7Gw9Ywfra72JlFna94JWEuZQ+8pLxyFZnErqeXP0+V0K6/lhz5tQRdLu5/t8i5BbI3WkZyELR6+z3oLfLu5SJ/pxhtQXBZ9Pzh8y4i6XS5Xj16e76p7Hs/6fPeeWS/b7E0pACMof1K1eQiTyxRcUotJqRDoA1D7kIQ0aae4WrdgmeXDXZyrSb4fv5Il6O9XW/jTyPZpcXFLm4Vqt1iQgsitF12ytF7fyvF1kvv9uyvoXDlJ8RzQswXJhAbx9C1QVT4Or1QIAXXLH+YSV1pNkYoyGEFDJFS5l7V4GIbp9tYvmVZXWwsEAOVv1hCXHVhNnSPRGBiIhFtZVy4QlSdwt3/9orEfjjA1/7QguZr6OyUtzX3XXh5BrPIJSr5QqjKk2/vIY63dTqsA2tbrsakauI1R5Yr0MNu27d0LVv2iUZM7LsIGUd0VjOrmBkDpIt9dDNwKWJtCLyz0HniipcNgq3TrZgRccc/QCLr16MBSMXgWBxkevR1NOtFwdRlDgIS/MGvdzVOFVz1hA1TzMjpiB5CW9ASqTijPxch0e3OndoUHlwZxuiD6WN4WNbox0L9mnDQJbbtHVrBXgQJKx1R/qcVgGfyS41113zD2FcZk+2InvyZiXaoBcp3TKy8lYfg2NpGjHn9ImMnB8z0MwTmDkF23Z99fuffjk3N6hbDayGuLupUnkA8B1QyLfh7qNCgErK3d1nNLpkZpryON1jQjUmVxwF3yuSRtvgw0ubM6Pm8mQmq1Cg4IwrqHJzGlI5nzY1Ed4zECHuY9/dlDx1nD7ozw/dZ6uvMDki7/c8ty0Ft4GkDZvTkLBx4/vbuefx60wK9vXr18fbF8f72/02SHf5fj/ev37ZmJF6sgOoOGeeT0yvcEyI2f4qI2NGgppTkoFjbLbtbvdz33ezbTQP08yLw1P7s3oZBNAiM5p8WTzNqMrHGANHUEAwq7er6CbByKpFfbIa7IRHpBXk2OFSlsDc5Z3Yr+5rqZiTXFPde6x9kbNTS0quWwzqpttcdgCwokVAMvxBkrZsex3rFQ6jTzWW/cVy8Z37Fv4sJVADL5ezLfvcf2bHzFqk5ksWYKWEl9H4nI+jOzOkF6ogQWG+7LNKYN/MUVhAZfoELTMyQsqg5SCBJKowq5VZdWvEHz6yHTA+5aQrPfkcUFUgUyHYxe2pFLL+lGvtVupTNssKDHzFYf1wJBiKb4S2iMhOVUxplQlwXYku5OKiaHNdQiEohXytH1BGcZAjgt0WQICwxJrWfOXozR0gOyV5ZfZFj1mhppYA1R+2rFawt/DY7mMmoCystzI3SO2+a3O1mrUuh652MsW9KgTUzaszWgHCTFEdtrmkr9f+u55vhcSqzi+ochElw0qouvvnSrcvssDGRESGtVglk2hYTBIoQ0YCCKC9ly1D6VAGz1lRb82xclP6FJCIpMCsRN0JmT71GQugWrqNSJaCDM3Ss71vU+NK9SFK742dA65TIWWWTDKRYcqM0NIjrU4vxcwlYBERlw1Q+3SZjYhpISiC0wKJ8IJ26oCU/+uZEj3riUoxLZECC0e3XBi6rRXq6pBUFq/DNIJCLB8NCmaIWqnSzV9UkoJygIuVLuUEqqujWN1du0hR3SGZcxapxRS5EA0AyiM1w6RS5JDda9hcbSVNnncnsmVIAZgXLFOi5CyJDhqyJKM+VYFUIQuWCVYy5nmc047IeCZOZnFSQOb0zDgj3couaTWyxwSpOCry8ZOe53Hk88gM5WmZinmcm2HfZPvYPPk8tvmRqcQ5zrCDOQNzzuNx/Py23+2hyIj5sPPgI2XyPbbMPNOOH1s+Z0899YqSEwDjTLOYxxtsP4NPzQ/x9l1/2z7mew7Yxrxt+Hcn3pB8i5+b4X37+6/398f72/18uw17u0Vo3xTbSEvb/W23QeV5nHQLIFNnZh7niKzCIo7H979+y6FvP87Me8qk5Gl288ZV44jMiOTLMid6NGuZl2tRBCsUYsG5JX/Q1TWgWyckXba70u7Iy9RRa6JbBbeplSasrPMlAAK0SavNhDRVK1XrJ2S/ZmF7dQK70FQfWaXBNYa4yZ9aSgJYeNjLV71+4+dmJHQR8UpOV/Z3EY/V6cn1BuvNGuMqJnACLVHfNqCC/MmIdmwsSmEXbtStmQgTp5FwmoIwN3iNYk7VmJ+eJMDrqajFSKQr3Lh8tKAhfaoH1iJLAEq7hsDqOFoOmKtASlwP4FO8c32jgLhywDWguXNzVlq0HpBQjKbVqmrtqTqqsQ7Cr2fVys6dNxiDLAq+rF0cQah8gnWbZaPCF77R97bAg3LXHTtylb3aBfcwndK57Vu3fOlLF+aotRdwoRpcwR/FKhoD9HLAXFDR/yRyuzDqazeyfXBHEmsRKhVxlihxAlfF2a1rOraUHnsjvs4wr2XjyjrrQqx1buoZZPdZr9CgiBIXmPtSzPm05OijUG9ggRpAmiiVGnAlPmuOUaX7bCQA0iJ/lpNeZuAzcvHaSboUgK6ceN2rZJZZ4FqGebnK2uVYgXTV31JA2GJPlU1Dt1jRLyil+P8NQbuPhHu6Jc1LQIXXU+Xy81UTpkkUqj7vbfeWAhlQtT6JpIHRWUcWy4RgRsLcnBEBidY9bXpRJQXzhI8EfdaAFkHKPJ8hYewDmTGZXt0AACgk0q2k+Qo91ILpdKkHiFy6Kr3YZoQO1jBrGqWSjrUSF8c4aiJzMlIRzAqPlBkaIOiSV/vaGNtm2e2zBQdAPYubDOQ8n+5Tpw1Kia0LT0Y35uihGRmaEXneQmpO6vP083HqkTecMaVeXid97Nsw2Bgxti9+e/8TAew/5h18s/MW8ZQHM82s2LK22rpNebzzlOAK+sk4f/r+g3nw29u/fvu5hhTRhvtmskzO43ieRZR/juM4yNuVfZi7RjdPGAuNAyr4LFZ/BgLVTB3llysvdhXdrwLEcFy025W8tGMpLdfF7lj7rVjbsWxZ7/gez7AawGUrcVuu/uUkGz267NTypGSPsSOweItczqJSWF0W4n/y1R6iU98rg9QFLl4g26dUmk0aL2LYQgkWXxqrpLiAKH6+8hXY1Cf2nnvRqtv86uUbCjNMWypfkVJ1Unx6Mi+zvZYA1cbb94KOHwgkxXE9THz63FcS/TkDXidyOfZVnm/yjWo2WpFhu994rXcnmhXNsM8wOmvglQXXo6oUuFC6qoH6EkI2uHcH7dJoKetcVpF0tj1Cz5WlSi+sXKrRkA71qJBGVVjtl5VsL8ZaO0jl6jrlAjJ4cfsWbRqoAMI7kFvhA164a4WEDT6hoI/1arseNtdSdn26NlpRyK5n32EUIkOKhnGNgFnWb7joNP0BhT3UNEde8I3LSpcR3XMOwoxCK1SZmVoY0UtIY7loWrJn+rGP2ef9p/h0O1c0ZX8wDqCZVYPW2oErluudkBFr6zVMnNWR1gpZBrNEQ/flwEu6siLlpXyMvoiaFpF2xYtrWcyQNZDy+tFyBsXq8zHGdvOLLHMthK7FVb977+al89Ef0DhyXd91MVrYWGlEbFtxoMI76YCkqe5BITJiIk3LGWD4RYdrZTfkTDGVUDCzRsX6hhCNwjBazeqo4CPTCmVQVaASUmDGFrSM8zwLNZilLBmzmh6VKmDuPEape1gqYi+MiGgb4JRQA99Lo7KYQorEliDoY9t8jIHgrvkacVlAKca2PW+396/nz115xvYEzrvvOCOTVnqALibstuduKckyJQU3TDeAh87zjUojyl7BLJChTBJTSOXPwxGKkUmch3BkxJzI52N0+I0xnphiiAoRH5i1d+ejJ3oYOe4PCl7zVuc8DyiPmc/bGQefjyd///Ht+/hCG3Zgj2LvlEha2TjaiwKbCwZbBrR2q9krfFxJEEjS3azaDFvGtZiOJTqZ10yDLmY0w24d3M6fyx63tWgMiZf3RSe0/Xeal+LmOgftgNaVdXVvsZ76VL78yh891ctFdIqi/sTLPLZbbT8nXGVkfXozYaXtgl6cn/ZPWoXZ15H7ZGqgF8O08MvayB4xpzFZ49aoEp9dBEQOdS5NfbI115sS/7Ovtu3XWncN+Eq3KjZhXpnFygmXZ9JK5v/wMS0m1WPpKgi78i7wMmxENcyQZAGVWJawyhF6pWz1A60PXFzQV4BQeRTajqgZwiz4oyAALsWEDoo7/1uZ6rrEsqDGi6GWL3C7o001HlSuqihJenG9Xw623nRtoP6mXU/sAhbMkZ/K7Ogyr1pLtTVxLqe0opi8Krol24awyIzACzjoisiYJKTsHGxd2uWDRWthqlo961i23GQxkNQ0t3bVbuhSJ3zkrFCxwVs2p3a1yqMQCTNK1rObZUZnK+cZifAmOl8ctBdIgY7ZlFhIQUpyXfMPPGW2UAyiW4BIW8CHOWjmSqHlpdH7Rf3maaO11AtE6GjJij9vMgVKn27bxu2+XQ1qWG/VF6lqRP4cNb88rpRRIfblnqudiaBfopfkcK80pbRPu5ehkn2SVOnBMBJxCgA3rjQ+dZxhmVJGKquIV8ciTZYTLtBHBTySZCgMEYqcQmLCDKkIzIyTM2LOaSFDnBihmDgiYOFlcWfOx5N4HseUR074rL3gyUinjSE4KLhP+PDSrdd5ZnrmMIHmY5dJ4834Zhy3+/7r1Jch/rZ9+bK/nz/edOc+zpz6cmiPcjSpyiwNPHAeklLzwxRIDDCSBupJPs4z9nM8bczEmCkaZygUpxOw48nzb8IY+rl/HOf0n/fxcIXg94/gftJFytx32v7TxjbG3U5xS/vl3X/aF0pf3i1/OfTLw9xuvtOgiIzMnGD4oPsYdnwcc4bd9Es7K2aTVZRSZsbmztII6OFf1YUYaQ1mgMzLprOB2UJYbDF/OompxE5X0HtZ8C4C0r10Z2qf9ij1BTtd/o219y76Dxc0VtYmS++VSxNy2bzi64E0XaSyK5PA690q8VkpB8HWUNCVmuoK1TtoJ/tYsI35ZeHL/UT5kJdjWqakslxUR1Mhd92P1MKZZc05tpWpk917amNUAzcXStOhi/u28YoourJ+hegLKWsPuPJtrDT0+hrrZ64RDazK9icnfeEPnfNYoWBcz6scdQ30q/DLVnK81nfhWcsSSkKYEtZAXEU8K+pbHp2AqevcryqUqtyZNrKrcXKvkL42tggtf1hrRPY095K1Kg4wV1q+jKq0HJGuVLeMdzVYSJb9OVf69Cmq05LBklDYyNoJddkVf02hprd25dyA7l1TSjGXJuRq4Aag7tda26qMsrsNgyVrIGOBhjRzegiCpRjXrujlak5uKS2h2qY7S7MKRRZGKbKrRKwhS/1Qrfts1u4C3a2SY8KrmoDRJjbazlQTfp/qYuZlKGpobUHXK2NUUllhF90KUncz73E+VYxRVpyqTCBmokrtbgUquxsBc0/IkB3wChDM2UEuCgIxS5lZplcvtBnM3DXMaW4WcoN5j83EZVKwTFNGTVb+jNKpSIAlkzIWtm1tFQEfC3bH6hojsoj+XD0YUkaJ/0CSmePQVDiVJCNGJFCCilG90mMbIKgJiWCaC+dJArndCCCDCAVXG3XGII2aXvGTbJtoXcuR3YBQYafzpMudxS96wubM8wDSQtuYohvBQQzLnHNKVPSxyghN6NQwC9kmmVPmzttusu2W4/729stvz/m+he77fd8MFnHG+TzzC+2233M4hyWJMeg1iOI884eeP/Ld4jmmOAPPj7++fXzQ9sPTj584zwit8wtQ7rYrTL5t+zhu+5b3/Sufut00BvztYdvt69ddmr/Ox2a3De/3r18eb/fb+24a83FqzA8/nrJjTt+++wd+/vBvH+fDTsYcFfqy4qEnnmdsvt3e32+33Pe73XxHbmNEIaOZc845xfwEZTaiigw6Q4mY1fqlRMvdVukgMmCzmAbdyGC2KMuNulIgii9B2sKAhOWErFtHVcnQolovt3VZNxQaKq3C7woy22IWr2uZedIKcvRP1Tpg1TL/2Ct0OZlXmqsmWFWgixVg1OlfkxirfamcRkrBnkH2uuhPET1x5fDV+deOMSM5OZxAB6kLX8BK/0oWdgEPK+VS1fj85QPagyzTwE/ecz2uMluobJQalwMXULBslfYup/npncuzlKNsXLSf11W200pTL/dd99JFX0liWjKB2jCd9HVysmK4vGr5xbzqMXjLP/clp2W56k4GqPWI6yqXn6ytxs4ue9IV1w/VT/8hj+X1HF/b4QocVuOr1gv6rnundBDGlfp3dFieqACxGrhl9eBMWRGYIBVR+opZ1SlphUVgBw3qZe2UVqpemQL6SaI6prk+97X8/fgItPY5VtcUVqu0igov1UQ+acUalS1WNrr4H+uRlfFeXtTS+gB2VQpAklk4P8WeA6oaObSu9VrDz0jvdWheSMq13RsqZjnmFRT9YcPW/jNb2aZQEgImZNBqdqJAFFL5KUbvvtiqMEWluJfCbkXVTbbrmVFYMSPQHMR1AVidliE30IkSrusdWUMVUaIvk1Q1lVSvSNNLCMDrN3OX+XCvWgZpPtCiMYMAqfDOEKQ4qkcAdq23FBIsINRbGA1NrEwZhoHm7mnuRi9xUPM02hgmRZxnGN2QQjIykgnFHDnPiEBiHh8ZEwbPMzPm8fPjfOJ5+J48w2NuyvOcD2LLeQSD7sYhKeeZTzsdOB85xYjIE8fmUKnd0mn7bb9tnhvcqHNOIWf4AZjG/v7Vv/4YvFPpwUTOlMKLVY7e0YTt2769z19+ec+8+Xnz+8/fn2eM4+ehx3Gehxvow8cYBpMMos48MzjczvP4wK582PENB348+Pv3b3kLRrgyFcwj7t/P+Zfbv/75+xfkE/n48ftfftShNnKPZPEXdUzBVp/BOqzdiXm5N3VWSK6OPjZcry5tdZztXkzZVYJbFrA6hPokrZ25vqyFLHl5r2U51ynGK5OrvW4wvPC+yk71CssX2DPoV/62LNHLr/Qxp1o/fcW1zexgRQLgwsYWtopPvmkde376hGUh63L5yREsmy69nD2Uq2tSXdVl1PyswJqMmJSQlskIGKNYrOszlrVaxp6vO1sW9HVxHWwkhdFJfQkRtIhH6T01je0qV1dqws5T1zp1TV2lP4xX888q8TZ1u233a3kuJvUymJdc/AvEX+8iqRrKlvkvnDaRQqQrZ7AoLGus9bpXMle4ItWdffLJ6HWSule08qtseAelnPSJgIaCeVlEvs5c8CqbmJG2NPuxYqUuZ7BTYRJraDBWol6bgfTRjUCX/1+rhYvv3i8lgRz9+LXig5o0GKVYfpG2xFck1uACIcviTvaer2VQ+RpdUVWfa6UBCmYgBctYhZUu3zSiA4LmZpSCJ5jJhbZdfHSKsOFmzflaZ0laBRhASioiiNSiGV7xdYMi7J8r2l0iqsJZDU2ynBHKgj+ihf1ynZJ2u133WIHzdbft72suhplvJOi0F2FTYlpHnxfYcu0rogInswtb0HrM7VJ7flMbxG4CZf9g13Moq9Z3FvNqeBqhGh51VXCGiaBruGaaEc4RSLeMOZGw+GlHrptUwUmKWDz0ABSIyJw2nzxzRMY8Y4qYU8eTI+Z5BhjYTEjFc8bJLZJRJ3uWNrpBgaD7GBLOjaVtBvPqK/84JbN5M9q47dsWx+PXNOsByOeMpKe5uWvCtqiB3zMywhEi4L6PcQCt3TlO2+0nbuMcvL0Z5tfvvg16VaFP1Djkas3IoJNJZ8zcjzzv9pjp75y7Yyjyhm3ssSf3k7uQHgJDPx/3FA/FOfNQTMR8OI657/B5y/cvm/3ysf/j1zvfdplTKPkvG0MY+/vX4z3v729vv/3Dfvh3uBuKNFSj+kp9KWNW/NYt+spLx7Fdti3/YQZbs+K4onUWqJXg4s5ehl9kLgBMCSvVRy9mgGo/rRJmO5srcyT12aDW8S4cNKrJqtpVWEU5I+FCrotdjtgMduWF6KQM7Yopiqi+Wq40pv1Me5iVjV4/sxKJz27809fS7Ft5nZDjCiGk1g1rjnmZ25pcsECuts1G9yuysWXSzcx8eKNTZdJasIOvlKc9ZJd4F6dHK/rpZz2WO7qKgPXheo13vG53vS10cabKBq4UciWC7UPLkK8Ws04+OkQw4qVv1haaF/GovZe4mlgue4iyVIjIWMHY+rdS3OgJWsuFC2CL20OgR3X0MK1h6vZ2K+jA63NeJYjXMjcm3PHeK6H8Yzx5Jc99KZUxim4G43DV1G60TV5bDaIU1aeKzq9i5pwmREbvwAwv79q94E2zaE++Zu92dYmLclWX3VGaCE1JZL8kpc5PEV6dxQlxaV1EcMrR8AgVzBBqZG0i0EMIbOWuzMgAPVfIkZ2Vt8B2MkuzvRQvF8a0UISO3Sr/dKgxkNVnUTda3rTagwQuipmaEmHmCStmkaW0CAbDudL3Stw7BR9uqHbg+viMOCKb3lTIVqYjFS2LjNqFAoiIzJavKEJx/YjKL7tRdLMpOFIbaMUdTpek7oKugGoeoyagJujVgVWbzmyUk7ecYqaiCgIyo7BlcZK2235DtpS4BKMNzP04j+8/E/TkZXRC7EYxq2dLQnRXTDFOzBMJKgM5IwIzJ23aBhK2Hef5sHGe55mcM85RbTQQlGEmbqArECL2MXwbh9/e70xHMNIh0Yxps0ZjqUYym29O7W7O4RzzPLkJt798VcSsfhaKJVtkFo2q3s5MuL2PSCSOH+8/fozO2QNBZaTOOCOOx8e04zh/brvix/OJx/PP//k/2fft2/u359vj7etfXR/p234MgxKaiG2Ach/D9m0bN8ODp8Xb5m/E+dSw6eZUcnicEzHjmMex4ZTmiO3X9z99+YYpP7BtX//Ef65hkxE8sY+R3Om8nbyE3KwokWpSg5tJJrPBtuXmbmOu3nqUeyvZOtCIcKVVRXDZrYyY5yyqe8sV90RytaOyCnC50qbFBe5ItJ0AV6mZZCasDuEVhaIAnVeCJgHhkneFhuxWcLD05rP4qCwJzC46X24IhC2FqUa6ykwYAKUnJCsCZH02LJax5utXEd16uMzzJ4YYxcxgnE1CZVfHfdSIpKuIzlV3u77MV1omKBIsQPfCal/uqRLGLj+rUd96QOPKPdaltv8vvuzV5lyF6YrRdHleW+4WV0KbK/K53rB8aZVEq3ig1b5ciN8nXLlhvSvVMfIa1O7pbjUGq+yzAurEs1tkqxhaAwjqv6hu9pd970u7osurk9vdBJqNxMUch5TRTB8KxmtgonNhwC+Yw8Cqn/PavI2rCGaxEO9OdZY37LDs085oeEArFysnJpadlpDIMDIkK0YOkJmdhNTsweXHasYBrs8CWsUVVfSL2gYLfUEtURN8sShlaIZi7TeL8memlf92YWJpTCnOiGRaQcMihOwR90UQhhf5s1x9ccGyEt2qOnTvobFGd0vyXGBCtw0rYsWDFbtwFdMXYlTV/loHA1HD4VMiEorpMiiTlq3wHL3LFSbWNFxEZuJ8BmCCcmZ3UyUUWZzVUKp6OFXyYOEduJOV0kxmJdvG1FAszLrvU4qMtJEGJDPraul7MdzcaE46922bLXdUSk6Hyc3H/S5zD5q/39xHFnmC5hvcjNhuihkwOjKt3CSJasUGveL7JmhlMOaJ7mFTKp0ZCla4lDEjxM3guw34zZ9vR9zPgzZOJn2GtpgpM7c0jSnN48Q+Cexxc50YmYrHCWkg8/w49xlxzmHAROqMTOc5v1gGQOPYD8LoDL8PG6GdKcLo4W+3n+/nPWNznifizNs4eLt9zGHxfOTjiN/n8VRojJ8/7e25fd9PbTeM3879bfqv73EafuI47c+/+g/XIfCvf/sYP2z+fD5zQnH8OI4DIfh4e2JDYty0OZIOzSelA3kAu01DOhmzR/9MAM/nmTMnhs3zPMECC0tm1JrTQifHAovKcJqQWPXTplt3cqSSsjIuWpBBJTTWBsN4YYgN8GQnRDkjo49rtNZHTUwrr7CsROOFeWWZLxO9DIXZIo+qsoXOWhMQkpbF806TFEmy6PYF9vTOX96pTFj7TF2us/Kfy2dhgWVaUfoy82rbtL46oC8je2GE/b0kalJm88YzFdNSQlQ4KBIoszCn1whsRIOF6+0zJqhENCyxigAvlHI5wMvbop/T+rZQ84BX1r8St8qIClBqTHBZ8YYO1ietWuDL06e6RaU+lNcoiCZ2dtOJIAUBJisXRJfThDLn3SyVMKn60/oq06S0jJjq6bEg4dZl+sqaikXUviYzl+rkldP3fbY/5goTaj+/slEp54ysoWwDkSiEV7EEOED0lusdXAkL1SpsleRkN29MON2hC5KukIjd4rtw6HraK9DQKl9XKJoZBIOKm80xckpCpjLOKRIeMKuaH0q9GgB8Ddp9xVsZCJXeaEk+iqBZuQdj8bVS5m4kbNi6QgyFvGR5LxS9N0ARL4QIAY4pYzbRjihlFtkAfd6cwxkt3ALQRxQxiSrmA9Zjqq5486j5vVnTjzJRDTExa3Z8lOSWETQTxAxwRroGCRktYCmniQbfKBo4RjJDMbetevJIN6PGGFSkZVmq1Qn2Ovs5Z6ak58/Zg2Y6pqtDT+9NNmMjaYwcClOkZ3JLeoWXrKbi+oP5KHvVDvKFLEmpOO51MswY8COhiTlqZpINjfx5lMA/m6VhpALzy9tRssZgnpNgnkNAppFq9kr9jpg5ySkps7hL4TE56hjBmJPn83mcoCgDIpFnfhwjYDjPDEsQydCptxlZZm2KiZhmJ29xcw2nODBDH+9+zvRQThnOxzZx4Lz77QiMgduWeZzMc2dGlSUOnk/7OL/ngz+O4zG+x/ExJ7b3d0z7+Mup8/Hjx+NLaj6OGD/PYx4/PfKvv//rX94fOXj8y48Ujj0V3L/8yqn9iD8d/L7td9tCkefvf8EDeT9+7u56/Jjffv32w/nYv57fBfcwME5LyXKed97ebjTu7/swH55O2hkgbUTEjKl5ziamTCIgwDbRLc5AiUMgdZU3rqxmmYnybepgNjOjZxcsNPNKzkRCOWhlaCnAU/s4tre3qYQrV7sPuBoJro4ONTp0IXIqKBQd9ZftvqDtotitiLSbRzt3K3anW1Ed2j6Ui+dyuYuZY0gQZg5ZrouoIJtXTFL03kX0AXAlVssNfR6DcDlxNhaa6Z1TSFBuw2jmngSKhWkw8yJBtTAfMzNV/R/1zJIGJaZb2gLvukNHq2CNiyGj60KgCt/7jluvjAS0HPDCKOusd7DR+ROTy78sI77srRaWXw6rt8r6p5XaldEiVtpXDwGltNdUtz7xQoupSRceXEBbzpSRufTKUqtz2kD3UiHkAgBX3q6rHgs2+zyql7JeaoUjqPpgvUZarpiCLx3mjj8E0cwslhdnO9JVHVhYRd+8VhF1FZJBs+KD9PPr08OWU19no6a0v57meq+CD2BKYXqcrlihqyJbZa4pTovtS7E1JOrClN0YTM8LdW2aXNW8pXS1+p2SpsAnLeTqx2URm1c8jKa4rK8sppmbpQmDMJrX9jRLiMPZk0BAmaHmlVkRoM3NB91saAz34VypuNAOqrhRJTNduI/BHAaz1VxMs0BDZoqa3HWlqTKrScIGMtaKXX2SMpq7ejoMh9HSxmgxqZJNqH0YkSX4UadPMCpcmjMyT/Jw4HQFDs3z4Hn4th3nPHc7GSI08+S5ZcwZVCAEKEAwI6kI5p4Rp9v5cz/P1EjG+ePDz3zO4Gkf38bPGE87bfz4mM+feHIgIdOdNgaSOmW2TkQBVhCMn1AGCJMksqmdbYCrKa/C5+SaMZvB27fYAqzhG8nGzUjI5Pvw8JN0Ztk5o2G4y0zc6D3IAfF8zufURJYmV2mawOluToiufZ+B4cMIwo1OiXlsgRmnzzh/jnk8vzAU46ZjHMdP4+8/eN4Sefyb2B7n45gflnk7jvP4qdt8/vygj3NmPL/fdo2n7t/snP5j+/Fj14e7v93Md8SN+76/3fKXbbuNbd9i200Gh9zjSBrELbcR+25QAr7T5bMTWwP36cPNYz4/ZuQ1JleAIiGPY5pIVX0pSJi6cdHwRzH6DsbQJq/TofXL5S8rts7OABugo7F5WqhsjSvshVrG3DoNUTO+mgZVPqP/p64u9+QCEYbMXJ6oX5OLnarqIyy1t3a9yyn1J1zVoM/uomKQbims9kquYl7dTtKqwaP42i+4rowUV0zS5dflkgsXUzlMlKQAKMTL1bgXWeWTsgHNu+lnsV4uoN3cMXxZ1w6dVqq7QOCV8milwrr8MoDxImzhWiDK0taVl6tEo239oAslvNz8647Ryye+UIvOgJcLWrlifbMdYzvVVEUKnagv73Nh/FiRQcVdTFjEMEauKghE1nhb9eYrIPtCD1aAuYKCqse/wPFlfniJbmFt1BeWUGELr8vsjXXFjZ8+aO0vEt33bq4mCvUbf3pRP7W+3+wu5zpZV/jY/xEk3VTltEt0Bmw4nEz7dCVaJxAFdKtizw4R1lFfpCKhG2TRoeW19r2kV5TFV7zSoRcBs6S5tg0wB3Yj6S6bEgcnk+5mr5jOBfPMqvivHoGFy6yDYDJTmruribqeItyVEt3kjm5etrLW13zmWk0z8xnDQYM75Z6lJUdiDHNfDcRGmXHs206X+9i2wQsHUz+i6owqESzQ6AJU47HgxqSbDx/jtt9gGgmN7Z65je32dvdt0D3dGcPdx7ZvXFjIJcbTM5qMqxFxAD2+1Xp1BPMxCqi2UdOToMiApp3nOWHJ88jpVkOg1tbKbOvcZjvS0qKCt0bq0+qgxTXusH5ynqfymWkHFenKXFPLm4wynECNTxWKYTDLz0zLYF6CB5mokdT1k9nH2IiU40wBiAxjIpt1URoe277N1JgIp5nRKfN9unHY9EwYcoz8x7id2GGnRd7ut80Htt1tu93cI4fRcc6H8dv+M+8/t/PPb7cf421THpHd8wbzzegt7JTHnpwyMPPOtG2PMfJ2GzMizjdWC1zhcE3rgTGioaThi3NoSpmw5rW9QmQQpm6or7GBLJmSz3BjH74r9v2EE6M6BhcDabVvmvHyHpdp1vKtK9aqFuQ20Vw+o19WimlZbebRgrwRS4UBgocyA1RNlDalKLKmBFKqim9b20JFm8WBrE53LtmFddYqoLCFO3FZms63PxnoBR2sJ8RlkboO+tnPN57VhVllWIn+mHH1Cpq5Wa2Z1YkuA1sTVmn9taIisNiTtlhXBcNxZcQVygKdyl92cuTltbVWsEzNAm1fTkdAj3VaeTU/3fwr324/eP09dbncqi9K5VuXybflYFYI0b9c0DD71i+sc8ESr7y//GcJaGoFbVp1OTZcI6RW/y9ebl6vD33lcLWjuRLfaoJQG6eKt6zpUlUUKKoPVkmi462iRZUfTeIT7ejTVfIVx14BzYLX2yi/nCs/PZNXU/fq92m4qgNOfFojSdU61oFqU9+JlxfF5es7nqvnXvJjV7RZwMHL4+PTpa8/WA/TBtMTbm7wUnGg0yzpw4boyBp1U1TPT4/hhSf0X6UrnLyAt94n6mC34hoTiZpNRK+mgiWPuwBd88Ui7r1kpUsBXVIuhci8OGIdDGUu08XrYtbb/PExNB21r7+Eb3vnKft4dNAFAkj9YUW1QjGiRlKZuWXZDFQQhRW6ucvcZGO4+dCkbSZs2+3N7oUVuRe1InX9ULlTIxbQZ2AaxTWADFjLu4SDuI6cJR0+hnHQV+RVjNmaSFnMrlk9q6pH7D56aHRlcXUcho9R0EOtZ4+vdhNHPuc5IzZkWM4ZwUzAQTdvizCMLJFuSNEqEJLOJDL+NDFXTC0JcJn5yDkxQ7B9uI3Edrsr7l/e7l/uW2y72zZYU6mIEjdpOzEDePoh7QlPizmfc55xHFNmJTIEug/fsENjnDb8tm3a7rcxRjHjut8jiwM4DEaz3da83ct5VOZqL9dx5az52mwLl+ot02lrHV4tn1RG8MotKtpef3oZnM5B+6euvbrM0bU1ictA1CHVqoAWsHb5Bb1czbWT6q0/d0dqZbb15iLITqA+Zfevo8VP9/v6xjKL+p/+QG/jP/zI65ldhdV2IyuFXlKOBeT1o/xsoleEsHKOK1f849f/zKO87rpePz77zQbTtW69FxSLMsRlItZVXGdyXcSCES4GXu2mS5G57r2pA58upvnorVrUODJeb6csxRUtiJfmWuKpr+3TY/FgSLyefFWRdS3f9YDJJqbVzaumKfTzSFiGtOi67XtrgnrmdVJwYS/r9trx1wBdNOJBoPBQJKJz5hW+Lp+9kjVeEMDyxMCnmKGfXfI6h1yPHuzZgi3cS++gC4sfdW2hy72vgOrlq4s5nRKqKx0LKFrRY/cwXaPPuuXQsturLAEFLCLJ9iwdpFRKsUJ+qPRR1poKrdLV0D/t8n+im9LS0kh6Cwh7VhGmY7UC8Er8PWnmgVVEsCYYOCRVZZdYwZIKTWo7zUZEYJZBZajmhNKtZEjsChGhXCNK1WP8cKm2mUqtGwBNHrBy/JVis+OOa6GpmVPHqLZgVbzqShOyNMSSVKY7kXFGxMVmYU6fk5G230QaHcZ0msnGxhFHpmp+A80LOPEE6ANGDnmvvySDV9lupLVfc0I0O8zlEFKZ2Nx2o5NjmLjdzyIM7Qg/zTLTT7eRAVPM85y03fJkwjBhmHE+D+AUOFw2ZJpnxMwwccoQIduGUmnO2+3pfhvDgwaFR8RExNwEkRz7L7TM1MwI8TxP8gCMvN3243TXcOL9/nbev+D+y5ev49d3I3CL33/7zYP7vvl+6pg//3ZsP8dN3/76+z3GfD6ezH2chz+P55zHETi/vU/NvNkhjtzB8YSkUD5j3jirV1uZGbSiNp2RZyrd2fTiDgYb/Ucxg8cJi8tcr9gOayLsK2oSa97WZX6XAWBbYPeVgr38i7pDYMWY67xytUh4NyRKuCTMy727XQ2bUMCMY/MB9yWtk8UXKcypMJY2LitjWoEoWT0qlGQFmJTKT1T/lAk1SY+uatAX7SX79CndZQFCgEp1byVo1dZIoo1uQZ+fTEqph7JHu19HUK11K3NSXBLIXCZCHWrUdbSdSLEC6+IiXz76k9Feq9geny/Dsfz5akO6oPjyKq+xHGqL3F0WnfhgxavtMHpCUsX0tmKlDt3ERKsfFo+nMG0iC4DJq05PfIo0VHutn3j5VKoEt2q2BpWWRV0enpEdDyxx8ZbaN/PuMq9gJkWvxuRsr2dZvV10H25tE81927wwvUWNW11xtCLMXtuhnLq6RVlKmdJWt1mtRcJc0jaGC5mlBVOby1ahBWHlr/qdU/RcVPzyMi8pqjpvpm6RLBkuonE/JRDogjqqtt2nrbBr0KUEDWHd11PdgZEBSwE5pchhYSVV2B58zS5qxRgv3lODDeWQMxIQFTbIahegpIwJyfPk9NM9sgY+rkiigaGOph2915e7UomgIJEzsjFUTsZMwWguHzlAwCnVDMFDxR1LYNBC0tiegExgKr1WL6XnwDauIEgrI5yOJnfQYmmLLDqhoIg8nnFOiwvUUWfyrEJ4hG+lBIaM6LoCjeatOHqZjs2SkJ3cJ2duWf9MdIu7MJ8ywMlUHIlEuCsV54dtbqQ7h1lsbr6HaRCbMQ2GG758/c/mxiQgcy+KamZuJDypAGjSDHGYAhIiqhw0Sz/GnKyxT8/nw5UDIyAEeYLykOKYJxVTmT+PPE+P6ZiEWz6Pcfz/qPq7JkmSJEkQYxZRNXOPyMz66J453B4WR/sAAl7u+f7/HwHR0YKw81HdVZWZEeFmqiKMB1HzrK1p6qnOjPAINzNXEWFmYbb9oTa36RuydqrmfupxvGG+aT9DmLDeRYdCHxlhLpxz4DXYkvdbs9atdyPptAAQMWyM+YXR9htv7Zzv+fPR0XZv/qEPn2c8Ds1IzXkceZc+8tsD3I9kbp93sv3tzt/Tv/z9/x7pr+395dPP/8dv/+X+eH/8/bx3+3l/+2/jH39/21/u7cvnT184Nclxvr21NHm76TN+/eUxX71ThpZGR8Sc9OzQrbX9Ree+7y93A/sdaKZbdg+YZyYRTo0AyhL16siuqWTBL+uILIHiZa4rLtd3Fkqy6k1xhVnWkxKEnIpYY+uqLKUkebb2lj/opWpDAS5vBKtTr1QOxKWrhWQmSOGsaqqrc8RlLy3zy7C9Tu01Ez75VF1jZ/njXQ7CPxDoFJSs3byri+A6biFFLUYmS9+fqs+frp6cesq2l6NVc1n3OhZZahqi3E0iMpYopo4GejnB1cq0SoMlqw9wncnPkBI8/ymsq0ZVqj5z/xNU8ayNQvufIbQF+yNTa22kLuzlM4ksO1nK0vMvkzevMD6JWuXumq2yzuPaEV+x7AUEFjb1g8tYj9I1nRUaVk2HsG4pYpoUANl61G6b+VomN1Wqaq5oWFwSv8wsxCvpUMKqGhtJIVTpAVpx7agpXcpBjkgnrOZyz1zswyrz1SfWoFBPNUkXtBIjACrKaCUCZCpQMjCr1XWKXiRfPVdSpbOapKCbSNApd3m3BCU66E5vHg0CbSYdoCsjQmZd6SYTbaSpIEEXSFOo7Bv9UmZFOlsztuamqO1vU84IWgHlxmR5JZmmmWiZaRCdMJhzMdAJ0pyWZtZuXeq+3WBEUy6r/4ziB8yiQkVYq9KZYaBigiFPGLybCaGEhVlOQpNXxVI5W9W0rKybVlN+DDrDXbnlYzCbJtxuWzvNlFB6pqxsfFiFBcgm6/ReS28LH8skc2+tY9uC05pX+KNAq0Ums7NJmZa2HkABtISbAETMyAS1O6JDvboBcNucaQxDlOxTmaOfY7sfnIe3kHuvnbio/cg5T73L0hXpE0jky2tjbBN+3/aX7RboDE6ZeqdBGMHwPzf8/v5+np/Et6/T6DJjsvbKSbo0z+wDyPQMivIREKAJsJnR6G4bUtEAeG+RbPueh+bcU3DwvHEwW3zkS55xBP3hEQ/MyU8wYtu6uebZbSdvLp03pMy33tv9+z4e7dhmB/bPn872U0YyvbV5f1Ec49Hn3P/89SP57uehr+f+eLd0Jh0eI4AJPyZnBHlmvu4fv7eZ+vBo0/Lh4aE5GfGnffun/3rexuu//2P73D5O3Pdv9gpq7//973/k3/7zl/7fX7dsn758//bfX7NHm9+3Zu3jP3J8H2dr4/imRjNjbK9m3k8hwUx4i3z5NJU4Dzs/Ehyag++T8zYy0o21ND4HnJYN9ERxObh7hgJWGRISCrYh9eTsLVEUliDBsFzcU1CJ5TPAmBIQyHCfyTpcFZmKPPID6atJBnNSkSYwIuQZUxnLXKi2oZSoyMJyfpJSGbZoeygVAQIxtUhbg6QVn1KndzoKa0oEFkb0tJXSVVyXX0SFHAq5COLlDfWjVBUktFiUxKW9Xka6sDBfCKguVFYQE8ulICkzMDWTnPA6QZMhsLXem+GKSgUlJhBzjrOCkQUFjVDMhhyEGL1vzdCNzKjvLQfSqnoLhPjL/PusvdcIDLDWkBbtpycWuWiGKrZ2caXQs235K4KKVeb044WemO5ztCYpPedZ/OAZcU34+AE4X90A6l5cjoBAAqEozzM6F7IZSp+dK0CxSAQz5kXgZtT0JbEWaDMIIAOQxRQjNKUMxLRZACAzALRJzpWGqmpkCl9ayTlAGXxIy5S8KsTzOq+5VRJNXCZYlYXi5BXdLqm2wA00z6TFwmd59XnQM23hCWAsmk4A6nPiWUWmuk9rk37ZpQFKA7I+XUnJiJgwMnUFtRMKKnK5S6eZD3jfmHB3YxkiG5UxvYl0OprbE3IqddASeieUzlAKE4nhspaZQtKdLRnPK3q54FQbYwavT9yiHsvXslYV6jPMFlwpMnCY1y4febZEfcgMkREzlFGq6s2aTG6IRHFV17a0Iky2we3aP8jCmTRHlv2S5hlAZQmnwTAlAZEJwVtefiuXaDqpNNDgpFkzBgPuBnMGrJ6YhF+MLLVUhcqjvyqNzev6mhlzbRk2vt7ewEhjAmzG25t82++ff/k3sTFn55iZeSZtDIONw46AT9OIGasfNVBjN0hots+AQGeaZKLTMh1Ga+ZrkcnLMSdEmTXBzD2zKxTWYUBjjtNH+IiheQztGQ2QGCHEOLYtQY/IDMTI0XW080yz7O1221pvoOZIapwMKBvT+qv3nKSrP0KPl7sbJzPybBJKg289bnn66085DfvGM3u4rH++d7dbPn5p/jFpCFd+mSMYyDmx3+7Qxpee+32eMyM/5cfrH1/ub1/bsNs/87f/8SVa/hL/3NutH9/8//vtnx+vL+P9/MdvN0AIbfp8f0OnZdAUoBk2nJzLa83A1jwygBw03zcNHo/jqD4KzWWSzZw1aXhaI5DK4BMeW9LH9CpQuM7HVX1oNAd82RSbx+KwzF3CRR+TQs+2zRqgi2GigWJDZY7VefoUBJDVGJqL5lxVT0BZCXnzsJpd4EBLAOYqnVrZ8dB+nPBYbcQSTfASWdTahVTDN9JMeQXDLIi+1tjN6XVAaslr/6d8RVuec7ZWWH4cuhCeFiVIBmAKGLhCopdyR4B5K0lV/d/CpbxQoqhOfR1HT76vcuVrrFoKOT4xZ1b2Ay6dz5ORv9DJqnJq/CEMX/Uwn68gmZ5IAVFoOdZdZI18q2yW89KC5zR/zLVWOPwTs15fnlpqZaGWELWIhwLbFjlWmCuRK8tZSXpzM9IaKmE+vKHSWcuirWboqtckhZxJX4qywhBwKbqf0SPPSWwxNKgZe9ZMQ7pgJRYD3QkylobKSDIr23Hd0aWsVoGXMGQys4DQekcLaL8G/yX2qXFuqaPq2eTiL6CUGTJUECjTFJFChpgSamMBNKQ0xuzVUshsklRGIklX1D1e+wWGCDZD0JHhkJtAZCjhM3KqCrqbadb3uDvTWre/dFlXl7f0bxVGBHcEDzchJVMUIEKL+mAJOcunEIC5wbQ0haQ19+Zm2Zuqz9BEZmqqJDGJVK7YmSJB2cxsdWACsHB1iEbEpGMaFJgzqWyQmtENlKtrxjC1XgTuMuqQ4Dbc5wwch5kM9BacMJibWc8WMJTXIdy8PjOLZQJcNHM/Z+xn57HlaT7IGDszLJrPDfBhvnlzpW99nOfWZ2bLWegTaTYBSziJhNzcfNKhnshonTnGcebg0TUOWiPbx7yhNfXthWpjT9G+3Ga0Tnl4prGZmWb1MkiYW7Qc+xzQmI6IR4s5YFAoE8Nq/zxbzJG04/GQhz4C/a0j51GF532f0c/HMUj1fOzIPf84j/l4+/3tO83z+z9m899u3991fvvnv//b11/u738eX//Y/63ly59f//2/f8r292ZNeAyOkDiPGLi9UhvR9+7opzc9xjz7Y2ZvL61v/t716zkdN3/D1xfGzfTops3lD4wzv+SMgBRozXG/bZ/ip18gi779yna+p2X7BS//8r/i5Vf16Z9ff2r/+6/faPvct7a16L7b5tbkaZ9fvqmZ8mzt/VvTeeb75Mf5Pfr37/S7KcqDfsv02y3ap20+DsOY43h/P2f7WQ3ICUQIVA5zWvPWpmeqZBQtbYcD6Zt5qxPHe5Qhfta5bJC7rvif0rDZKtqLMQV0qRECKOvxHBGqI40IUGUezM3KLLVITZEygcG0ZhTcFdXYtpbWW1taRBrzEglINE8tIYGwdkIJRtFF6++WcT10Qaa105OKVQyha9Ctv13lvODBquF/gUx16UvqMujyxlwiLgJQGNkultFqbEWS5dRGr3dSpy0pmZvRWvOStEui0pEqZyx3QBlzBIT5tKMqcPzyVX+uMizjpafa7JovazxuVbNLe1ReArqGXdp1d7V0plzvf3ksPhn+krUp6/EodnSBJaUHunTfuFSgIaSThfl6ndtkGU2tX5zgsnCou3B1EVZ0V6OFm4nY0lqvzt6UZC23qtbFCqZEiTNBR9S14NVkFkZNgsiIjMjKSSAUc5JnAqzejDBXcTXVZ9Vs1rBKa4HOXDJPrn0Y4xJ+QmkGa+XfbCSr0KpolVjqcClTRjcpUVJgS2RtBicEJDGVtlFbZrpXBU5VLU9Bo8fUpEIdWOuHFDLTDJcpszOjLk9dilwyRigiGRlzzlTQenNWbFeZwJHqrEbDMkms/YLr/qZI49aI42DPJhHBWg9xKq1DITEARawcBWI56iwSKROQKo0tTOMZV1k+QALKx3gqc9bakJsSpqjrnmwnSoUWE26ZyuMFmaGEpcwBLyNPaQ7vaJDk6+l3N9DDGsyYtiGROas30uJO2qjb0SasLkAxCVWJ6+5yDJfSxJzAaanHbQshElnbQAK9uTUHhFs/pcRETkxQqUlYRMY4Pz5ahlXzG8w4znJ1mUNg76/x6dPtdb/H5h00Ntt5xju349Mvv+7uZpX0nsnSKiIV9ISKDKwGcKpl5mDGrA91SOZElMNRnLIYE/FiB+zBPJk5h42bQjEVx5vzYZ7vh3n//v71dYZ0fvvG2/nHL8c8t9PmoaO3/vv73zp4jm/nm+Xb+/j//dvfHX1r99MHDBkz0wRvftPsnZtF2KSmW/vkOdD7sNzaVyLYcmLv/ufjfdrHeQpmI8TOaL/mNOf91W4v8cvt5aXd9p/vY7Oj9RdyfuWN8H3+8sfHfot22vbl10Z/eefLeFjQgbY375nz1HnYoHXOTDNtbnZMPrb2+/vj//rtfnfPeInx+ilvCPMBHfbtfe42H3qf/DjGsFniz8hMMzN3J71vjog15FJZ/lGRjGd6jEDTRTAKEC1rf68UEklCSWQgtTAlrvNeGShzrpxxle2pBqZsJhNrJruwTl2kZhUUlGok3WBoRpovcFIVmK5ihgQip+CkG5R0YDkMPLm6p8DlwvYutLNmgsWW6hI/XMtXyz24RoKy2VocWVUlq2ULATBpKU7JGmpzjcjuZtaRUrOLTUYa6N5d6JVNtMYhLpn9kuc4F2e5diUTmjJM/JBzPesca7lsTVlCwUvLZiNX3jpEoa1Rs87V2lyqWqw0RcX21WC/jtmqun+5RVXAUJ5mC7qu7JAsSeoTgqhepVRm1dxEqeAW0lqV/bmBDF1Z0RfaUGx2pjFi0ieUmAxpzlvpRHM9RWXdSCiVa6BZSHEGiUJdtMII1rycuVTQVxk1pyIkKJXRbC1xKKjMNF5yHEAK1nEaE8WmLHOHYA2tCcEaCfNGWkat6KqkkRdrorRqQXXtvEuKiJwRMGGuj8mFv6hB5piSuZVNe/WXrMsEs0o9W0sOWmB6VRDPWTCA2GvRc4mxlLAy6bSqvFE7qqt7AhRC6rL8/PGZyoIrQkEzKlIhVP+rBuQJRxADFjJfFhAQlAtTABTgNCRlbYxqjS015a400XypJY0telV/Y4O7VT4PlGYCDWghY8o10/v01DzaJaTTyWZGjIiMEey0MNa6OwGMiXGeuXnkjDlmmiJm7ZRFVkfnJXVe6UWFfF1qjBpgm7ODbMaGQFKhpiT9uS4KKSLDwQZrNHe4e+FkmyVIea6NNtBbsfKRyTQaZaaYcprt6JM7QxZQEjP/7I/xJvn7V3t9OSNKYVqtomBymVmouaVLGHNkfVFKobTSd6ZBoNWUMyItIi+4b3JsNs3TUxL7TL+1exDZBtD99abe9i0BjuC5891x2EROuHF48JvdI6bkH+f8WeEtb9/a/7hv+cc/LV9aZuorttWb0jpT/bCNAbUOi46EAgbX3NgziIj5QowN3nubsUXnpn7bI2e/33bY7XWz1gBZh3f7op+j4/P5SPTd28svPye2l+/zp4kcX+77L+3x5dyit/vrfbQvGJ4zz+8vMYmGE+fm+fj+/c+fjB7cx7kP8gw7NkgW/aX7tn364iaouzKBmWNmdstIC29aqnYXFbCAc0oxR7ZZVjtxZilcyiNUZQM3cwwGYbPUG+Wrxbi0PKuWLmau7qSFyiSSP7CrTHsuL63iyAUWS+W9zCVmTDzXQcudnlbRp1VDANoSG9saIQp2vBYv1kh1jXLrBCn39sIma+SqoNZrEaf+UxwUoHQlTbWj4QkryvvZNAhkXMVeKV+GMO7evAHsW6u6bJRcRAYYWDESGeXPA9UJKIPgQIUHChU3s1B4BYEwXRsN1ThcHPA1rV/c7LX3sd54Nl0kIS/F+/OfOhqXivyHPJkXDbneqRaHdSHb0BpzSxMbqC4JNUjWbVg12UrZHI4nGAGHrqagmg2n5Ch9IOl+TZ/rZyWGYCMSfgVIlvVpNUhpqoUgXUYia7pCCbkuI9P1+GF1jgSkjKmckbZwYaw0YUUoJKJca4JSZmRKEbFQkySzZF5QiDMYI4eRlsnSUJQ5cFkSFH5bSy1JCGmhSIuMyZg55zRAgZXhaCgvzwzlRRoAKn9i8dIemGRZHzy7Ctzq0pY3iSNTsNRKaVpW5OUO2yEtTyKth2jRvWQFWkAFAhWHcOnQ5pjWCKhqQU7ClJgVEuGT0FRbq3ZKIatBkBSA6AEmVLG15hTo1T0vHBskisXQEoRWo5eZcNIczqCmoJClJreucuycMkOehG92JW3n+miAiWvps4Sz+diHHXOcmVMj57xCJCLC0kIZcyaSWgE3ggyl6y9hAPtqjGvtpCQVmVZG7/U5NjLGSCf8U3sIQspCucKgLGZm2JjV99Fo3Dw1E9MuHp39njFZefCaM8j28R7jGPrYYePjHJPW1lmmGSy8JJJSpBSJc0jJUSBMLrk9TBVLfNmkmHvDyADY0LShgZ4OtQbK95u3vvvRvfVt3510t97MJl2T9JL0yKOWEnLmCUQ/z4yII2RHTjmsySJzUBY6NUKNfH+z5vH9/DCNaBGToJJxGlxH4HRpBNs9GZM2ZQsTCmkZmqhkwuFmtjmDYm6ErPfdrJ9985g4wwQ6rPfGVF5ehN2mAqL3LkzLaIQyEGHbOpiMtYUoWPpmgOZ5HI974jjOs0sAm2A9am8HVuthM6oDXoY9UuVBLjhw4boLmAVUkJHZ8rVfc4SgbPUBWbNYFm3WW6xDQInKRLlYpDLPW0Xx0icvPG6RmNdXKSe4wq4zWYIWLsKxXCKee0O2ktZw/ToSKx1vffBV4+xqAi7X92U9lKuCmJS0LBeQZ0NxtRdX8eLlTqPnQk1RpuTl8HetFRVUX+baBCk6vO/drV/bC1gMc/FqixvF5TXAixAvqTRqhWUpVa42ZNVJArQlRX/SA/ihoEKr9iOXHl24tM9PKL3KEbU+jXlJbtb4tvqla9a+rsfCkblWVOpW6pnUgB9A+BPOh+WSPWvV2CcrvXYzuWpq8YwymChDBzcrLTFZZIOKYqYj3Owa/UBFFZqVZSnUS1hmpVaWFollaxhQssgOYTlRGJHGVXqfQgBd1PZ1757tJ/DEDCoJFjmNWvHuCclsbQtIlwOUUWoOAe7WwpdPqVm6jFYS61r7ygV31ycnM6LoBKYoKsSSM7vBSFNKGSjamC2wIqXcrRVLnzA+ZcWpVHSz1SIsICzX6J9c28VYsgSSlVudfSeEnFbKsrwefbqnWeu1S+GeM0NK+FwrpwjAYFG7xBkBoVk5yFXBrVWgaqBokqcSxlQlBUR2TVAwLU1YOqE8TbAxZ60VCOYaIBxZavsksqIbrsfY9s7VXWYMNeK5DbHWEsi25CCNF3ZXOxDFE2Cu0yaYRCQMkZ2O1FyHHQohj7ON0dxdCi2VgoQm1VZcCsp5vN/MzdzEmbSZ2ZgTc7wj5ugP4xigo21Gk6gDdrwdqeNxCA8RblDITFHUzxgt5jRoZIs25hTDLHDpEAgpDkFtSShLKEqFWn+/W/ODgsMmGhJpQHijNGOmYbvPQ95/3me6n2HhN95+fsyXx2He8pdfXjLl4eaAuW9/O+Nlm/vWXl78kLWPk49sThxU9wEjGhg5Hw/qbcTtPT82y9MCygO4OxvcR+yte2w5JwZiZE4Ezhxph2xr4R8f7/YyHcO6PuZr23Ofeb788ka+tn57+d73eDu+jBQ+89DLbb83d+731nqP5E75yzZe7WMbHXBja62/3LO6/Ch9XztaPvzbx+x+PjrkiLm10CqhMKZo1RAikX5VPAGIKrmrEIEZWuEHdeysolin7JqDLJJMZc91uFZomzKV85zre+vzWv6pRmQAnFeXTVwxJhAUypi1cFjZDVC4au+/1Hm4YHO7FlTBLKM6c8laM0z8UF49NzVrqFmtb50fSgjxBB3FzLTMZInAC16LXMd4FLgWKzJIeUF7JYgqA2VeFwJpUK6wnnURzCpP3cpj1nwhsEUF45nUjQUR17hQ79msmfVGNCcuALLoqdXUrKEIK6ziqnLXy1WDxLbyWCksi+Cq6PWV1wr2D1TtaqzqOiaXakoLcr/eLu0CM7SoyXq5RUXDXDXL2BJzcU03vGwMeHV0/MG9S4mp0+m2jCMrHgG2GENCQk5caz1G2NXRZdlxSEAy1gabIYt1uHDypQNYQmFvNV8Vy2pyZa6VbCzTweoxlDIZ3KxdTkXm5mtbTECCs2EwZc2v9qyqubkMZGaxvgZjKYWFsld0N+Y25eZW7ZfVO6OyLdK89GNeBqkey0vBKrjQyVbfUp8WkbAWUWtu7jIzohpWKkGTcmRdRnVfn1tdvuxQhhFl8uvLM2lhr/UTnG6NuEW9U2cKVOZ0hGrbIhwwuEskt0Y6UCkQDc28hloj0ZxGQLgMLnJl5Nizac80DSPdwLQ0Q5IZBZ25W3mHmIgiNoFmC4ohSZOZN290bxe4Qs9O0YwNbnTQmfJyj16HhgCNOaYYXhZ8ZaRaxhkVWUMBTFandOQ9WPcum8uCNjKPB8zieJwZwtmdjd5glp4s47QwDarx5dP3VAtTJCzBFmdzb/ddnprpPhExU5m+iJbDoBg539Izw3POJE0CLZW+qSRYlGTe0wZrmOgt2zQjYEzrSEodbgaFzvNIDhtbiKZGa5FOwFrtt+wzZZ4Z+f4th8UHz4+P++P7XQ3vt/NxHh/TeusONMLvuAHYvN3v9rBdlsej+/z2eA3s+5cW2V4fjeguwdTU99s9o4VMTMxsrTW3MeyVh+gRBucEFZ+3De0e4j7VPJBoGPPRBia/aaPd5xwNyIjhM/78flfcXux4fHzGcZwj8+xbzJHzEOO0x8dvL5/Gu27nnL/+C/yl9/D9+PvfX16+/Ln/1I95chyP1tKmbh9uePcDFTlimMeII2or1i3jLKGri5ioECxc5yR4OblU936NQxRtSfhZqC6v3nUVY6MBGQZQvFRaIO06nQ0QYjmvXXCS45I5rYpT84gVtVlPtS61hhSDpdao1wiRqZzVTwoThnRJrM1LXGlMzxrENXKoFpGYyynvOeFmKXHcaa3R3LTiTYBiec3FzIRb/clyQVwFa9GIsMXl1dsXMjhBK58zb+I1FGppbxb6yaq2GQHz5z5YzSCTiHSSrSy0r53XrCC3+h1zicOe4PM1ken6A0pAq1siAJev0cK0SraDJSq9MM5V3lfa+w9c+gl0X0M2/sKwa1nv8S8VGkWQFyy9/lkDwWoJ8CzmpSxNuSPrUK6aqevJWMtztvjt+k2ZNS9nUqbMXEePXR1FhTZl7RVFtEWBFtJadti81GZPXQCuCHepNt0vSAi6BvfnwV6rPT8A94qsJYT0UvxeH4yL467XWVqL65Jeq1xG5tUZLezXKCAj16TNUumltBx3SIev2Xt1XSRktp7ojRnOBV8TNBcE64yKRUBJm6r4lqtHphCplF8yhXXTSp5EJP3SjQR9io4y67c1hVsGPNLWHyrNWq+HUEkzv7yyimh02kUV5TNnC1AlqUlxXTznwoCUUFDznHMheKCZ3LwAv5I7LhbQzMMor2tiJOBKVe6qJxzWRoJ0m3BaSUHcannKbBknVnZYERykRfGSAA1mPizklqCVT1lpKpWU125naJYuxFMZbTmwFVsUa2md/WWDGCDnTEQmp3lKbEkkaEqjQjM6BchxzCZJ4+vRfxkx23KFmZOpSEZTDmiaUwphJpjHZCZnnMNJzpmmAXKyFpCmELIUT51kAZExhmee3SzCmXMCoeScx/c5tH2b+fE9jvPV4jw/vh/fcZ4uj8zz8aAMD0vNyT7exnue48z3ftMt286WrXGiWQNan9la3l/vaJ8Uduy3B/K1v33ZvoTd9H5+MgZfbJh9mQ8xJpH0Qp0NyAlLnJ5TDdORPmjx/R7nd+SBt8DRU6nx9j0fPD5u54jHFseDcc4Gm6UGzMCZwvuIBcwY2968Oc8zTo7z2CwwMdIDv8fvX6dx5iTVjMpcVvCWmpoT2QKk0eaF7cBAa2IA3rx6dYNdwl5dR2NxFbU7i7Vtowy5sUg4cblu/8V9uWIln2ZuJJF+gZp1BBmK2AFZjle84E8Zr+U0rPxvcfFCeh759Sclh80gUsjl5bAGqeqctaoLq6QspFU1rzmMCbpbupMlHlWJQMVUxRhY0irpTWbyAtZt4fUXFF3log4rUjJWdvUFiy7QUTXCZZ0AVt0HVAcgWYtW5vUXVE6xxjpbZaJOmqXxxUWZSWKyAnivs1wXRawG1QZRodp2VUxCcpXXUG2C2XWZWTtFy6+gZlVcvCRwFWAsMLYaruc8vAoQLx9lXJzwuk65NGzXYjFYgqprpackZwsMJRuFbt4bShgl0LOEV2U2m1ZXVeVvUXgF686vd4PMSv0FSPcoINr8EraVDp0/WGTpmuQhw9ppkqBc4EgCZDIt7UmRrmUhQwbowOI4TKvKszAZZqkPkshI19LWMtVtKZ2tnuYMmkXUQ5kqgnqhEoAykQhWaMWCZXR1nlW90hSEBHPXj76IEFss0ChFIiuZVFqub+6koe5lidy1tO8FI0dMMCFkwAwIhhGiOd0T3mAZijkVEUplrSguIWfQVNCBNb+YiktbfgEpmSnYCvMioForkJgoebr3QBBSgk5Lo1lrLaM4AmMGvBo6sWlaSjHM18BANgPhmWmjPUZYDI19llqPDpu2NOQlD9EyMauWmsmmkNGUBqdcbG5iK3tKwehwutlufevw5uaTgUfmkSctR2Y6RZsKsjt0HnOqvttHnKes5YNx3Owco7+fLZpmLKv4NPc22nfK2t05RuSQhSITGUORxDltO9VtjDn3LZGRcGrKMsZIM80x4TKHGVIR8ZDimPr4l5a9z7FpG27o0GUb0FtOGzpn3NLvf6CZpei09pq93163fE1469uIflceXb0Zo2+vvOnoxOye05CD0c1GYhsfpi5a80OamOccqRktkXa6Tp8PDh6HcQp5eznIdkvd7vupmS1z6mzRJCqDrQGibnDc4X33zpdht+31z3b31jpN/uq6ZWe43V335n2/ZWu37fX/wZY3jEl9Os+P+W7xm43vx+//ON/mW5O3tOaKIc0zCH7L3/4jbvzH779b8uv3D2yVbZlBNEMPg7V6YFcVhVJIZCKKGM0ANCOsfK1mZjK8dNQZAYQuL6DnMqouv0qhoNSc56w+O3MtyhB1hnqleGYpqMphkbkkvFlojyxJWaqol3rkEyuqc5FM7n4N4jXkO9gbiViqe2SBs0tH8aSXV8e85I/X9LbqRQZkFlfRyrXNVOb6qZAlassAP0rJGrXXFSWBLF9e0hyG1gxUXFwqTrRl13FVtqv/pTJlqEzAyqKAVRDKOJxIqzPJuKrC4uwXhLCgCf2l7C4fnyrHjXYB1rrWUxYqUQ0Bnrfxeu2FjlxjU82NNZ5jIasFh6uW06z2eGv5+3LZxoo8AdbQ/gQP6kkkhEqDFpjJlUYNGL2BlHuunVur2x24svS4vjYFXxOaMaIq4RIb1RO0Bti61RlUzBHL/AxEDKtEFNVyGOOajFRM8BJoU0SaF2SSYbZMGp/Iv+nHO6hrvQy3KhgmgToZCoIuuWwiMyoMmhRpzcTppakwM9JpLkcmTDQ2atZkF9Y7QDCtt0OXWaTKAfXHnVu2MVmDfRJMpZmUGXNGBD3Wb+KuRLIMSqRmaUUkgxRzja/FgZCwnhMe0yLMDM1KLpkIMNgkxaQRiDmxDEWvjlQrXFzKOfPZMCdSeW3KRdauXrFIIejagUhjgBQM3jlBxoraVRggZZzHTCNsYzn/syZpMtMWIyNDjuitPrb0263T2NG3vDATF6NOLRWT9MRAzGiShaEMXxQp4WwM0NATuwN0mGaniXSiRZbZUevskIX3dJ1iATiNyszpFtl7l1LsIzNu5iY2zWgI97btW9/tjN7qOH8DtCMNt9vn/vDuuxSz2Ww3lbwJL3v2FnLfbvf5/rCt7+dj27YYH9yFT823fbABDHm7q43cjwdvn9nMw3pvMH+xYX5qQw87pjXlsT2aYR6ZQHiOj3CMR+KIj0eOg+YGzZF7mk6cuLE7P3T7FNa3hv02/1/ff/8bzv8wy/Fppj1mxOjH2PYDmKNzS6epP8zn+R4YGHbsJzWj5Ti5f3tkV1BSsKu1Wztgd/nerCl8a2n+UwA/t8+KrfXX/fZw5pzjpb3kgBrZuH3G6Q05Nn2M5B8Phs29/dF0/qo8Hjky3/v7+9fH74e+dOvsp8xQWdLUd//8Wzva9z+P9/QwOg3dlixUZfMSbs0Fyn5Mt4CtBvYqWconr3cd6YuTzFyOCpIyXbyW9LlOH0CZMwhLWNB7OiWwhhsDrNd8vajENY0BDLqB4yqKF5OoK4WmlhuphJeSCEaUCusZFaS57BAuGHHJfS84VLYgT0mlwqxRWlSmZSw0bU1LkcUnRmWy11VBGXSNUteuYO4aFWWijGaUAjWENZ85WR0CQijrAse0/dJarQqeOeQOAnQqyZyWMobcR7ZGtU5DpF0EwEIF8IOA1kXyPrsLPmeJpwireiMuK4En2PxEgusGXEX9WUR/YKgXBk2tWUUFcy/0+npuUDoxlmv+j3daF6w8Wi5O/ipwC8+9ftrljJxmNJizmV38xppvlzJoFdw6Gm2JoSyLoV+GzkSZFXsrrMVtLe0SoC3tV73aFbX0bD+IckLD+hXXDFkzGbE0cU8/ZoEpts1Er7O5LmvWtKlA5oRTVEKNGRGBGZgTczKkmPAUQmZWSwlKJTNXKm31bPFccUdU9m4hGyve+S83tZQWCcBtMTOlqqV5JjJXAKzCYkUIL81wydWVsHj6m1mJDWVMX3qImNFyaDItDcpZHcjlVlpYjbDCdNdvqevz4/Lq22h0Q4m1FVxdfQih2npEFgZMmskEBYOZYBChZlggOrG42YQzAomMTCim5GAuCxUqGZHjMcaZM+f8/sf7AE+NOYGMzMiYedrIVCZyejkaKKq1Xb4xkDKy5hjETDHLkhcrnhdLnhBzjglzR/eegm9GBzYWeWDw5t6y+X7UlembOeEVYe3dLXvzRlkz6VoBbO7WDwiBQ3uYe2vMkpWD9ML9DG650Rph3m0UgGMIc0+xtW6E6IUqhVK1lZAc1dQwhJH9PC00Zp+jz0QFbcs5NwJj0pNb6/0Dp/o5bhipNqbhZLeGQHx8IA7BZ087Sf3n93Pvsd2Qj2MnzTq3O9t+63ufW5uU0y2p3ObbB/tNejzgbWv99v5y4Gb32+btDGuUQtMgjObu/eVTD97B+LkRf/jrsQ8ncoqizIk8M9xJpmicNHoL0rAnm6bPDd4/fOZJyyBCSmv2UgmbDBBmYgv0phnOc56IOa27zaoxlLJpZjF062CiqCav9MFkrdZBa9P0qloXsbuwrFrSkHiNLA5US3tBwzSJjtKtUAqV2/d1Aj0nzx8IKa8T7lIECZdWpk75ApktKxv9GtDqob/K1+LkSvv5HNAu9BsrI6LOo7XXSzwNnsjaZ8JFLfE5WRK2DENwZcYunok/LhZXbVqimR9FxJ0g0tIIk9FWWhpRJvFPDhHFdD2LV32mV6sTzFgJWILiWe3WFP7ks0toVpuwNclqDbeCss0iBrSQSDyPaBGKLLC4xKBP4HrpsblwzWTd/Fia8po/BCUJWPmL1piOElGCUk1j5dVVyd5Zs89K9XreVC25QDU3WtXxWWrrMcsQM2VJy1HfoZK2Pm28TRBshSNY/ZaliF6rLFDN60UYGANNV0+DRUTWI3XRvUtuXwy0ijXVehpWC0CWUUamhEjFoC+fNgBLNUwrLy1J5fqV8GREZCICKeSkZ9ZIjoDRkma2ayItM+fMOUdG5ozI2rsXkEOS4BXOtzrLYmQzlRxyzgBdtcj63ONrZ4UFWQgElHCLgj4CK8AeaVJ4ubpfcrn67xiiizbKIzYZtZZFN4K9ySBH80CGMklZuXAiCnaqmJgFoBFGk1liIghWiqYgenrUsZEhNUBam/AUVopt5RqZ0TzMWpoTCKYhmQhl1gZehkXaal3JUPiceZ6aQ/w4hjAQMYAMzZlzxuBQnOchnx5RdA6MtR0eDGVYKcmp2ebgsimX6COaUG5Z7tbM3aZp+pznDGgMDUUl5WbYFN3cai3OTWYW+fjoTRFNMsyIeIwtPWYkO0XI2ha8jT/BjBOPt/czmo8ZmTgjEGFAmk6IY4y8tYeNg5NnjMiZ4/BEbMdHWNDNUjT6+DiljwOPdgO7p3JET2VYTEo5MptmI06cDW2bRu8OdnYh8ujtZfDc3TJnuuzkdm9vDenMcbezbdxePPZ7/8c7/qANut0C0C3N99sUzq6PRzvj27H7B95PfYTahx0fvgd017jjGI/p5KbW2iNETEtOwg3Wtna7f7bTP82MEy1jvM3x2I7zn9/5kKvZy/Y2WgKKM/Xw88TRNYIKhu2twePT7L9+n1/OKdqM4+NjNKg12QwRtF52lWbvftPZ59v377+ONnW0Xh4bTEU6NNOgmdnYylxfKKSqpgVfxkpwV50uZQ0lGsyhoFnbehKSRULmzZp52PKEgVAyCTMxbQ3ZdYoZjS3nJa02gKidXa4jrGaBqpDP1Y4kYS4iRWSqGGKQ3ixVdhW4jkerrYXLG/DqGnQ1qM/5rDwYVBUva7aQksx0EpXIteQ+BQ+XEWACWZLnNHdA1xFQY2cVi+pi1hxlBvrm19hnKemk0NkrNIVgof00azdbRLGeKinA3Nw3DvqCuX+Q6NXPXCOqrvZGUsV7X1xsVehsueB0CJdl9tIEBWspswrv8/8X4HsN1UIZAGK1+QuEuO5dceZQhlAT5QLIvfiKOmDW0Z0JpVmBIwZUOJTloipSgmcwEgbFjA6UNygt954kSkJfixw0X9zg9aZxwS7hq10BKuetvlVl51imB4CSiYotXUTI9fSAJYqhLS/wJ3aKC0e9JmaWt+HyUs3Qgo9XN4SEYkRCitk8FMt3t6J4oqViIiYiBMs5nWtrdjmVsiZcwJprprCMT+BUUGbGusYlHFzbAu7LcCYDZlJYA67+ymUAvEnpy9HVrL7TzWEW9GX7WRbWRdcCvh6MSuI2IkbEPE04ITpDUKwxt8ysFk6yhN1XfJQsjEiKc8wkvZaDFqhDM4UK388UXYDS3AMgkLNC680wF85uUDlTmgk5QRuAT99cDQxamsm3Zcf9BPk0XRnTZ6Y5gKxVp/WxKjfixclXV1dPVHX6JVmJFAwMCcbWDlqENFNS45KcFth+ORbwrm/VtylVNjVr53JkO8/K9dAsP35XhMWc59t3m2dPe4zxuI1msEyE/Hhr559Hi+zbPDMCTcgZZsiy/FaEiVLGpFKciRmO6cpcxSVSMYk0TTjaGAEhZR7IR37LnrsswnIMd5yHCxxhkZO0ffTT0Bp08vjYPTlnRL6/7VI7Dn2Kx5/beX9LM215MslUTB2e8/zWeOeJiHPODQc3h94H7xrvf06f748db3w/5wcyQ+7uzWY/2yd/f2x3TCH6LTwgJJRu59nFOfHw+xZ5fMQRt3szc8WwUu8mk2TvuB9p3rp49/OnPu7Hnpb9yy9v7UZh5nzwtHFOnyHftr5tcabMSNWyeYbTTb3f79urtu4S5jx3yNxJtGnsMuSsMIXmI9dK78IIn1jaBceV1aqtkrxwQa46ch1PNGuiRZ3ZNYA9rYdZcA00zYQELOeYDCtlixbXqKyuNMuRq6JVq4NPKYIVPFJQ2HUmZmUSrN53lV6QxsaQrRJyTXjPQryyHZYRwPqcrzkxy0vrgkRX1GCVyL/MpFW2ngb9y/ihrkrFCOkiC0mjNVP5sdcXOWV9czd3hWFtGFapdl9HSMEQtQTo7uZta+sXCCxzjeXehTWlX3shz1+2bujVf9RA1OzqKQCxlRi9RlSroZFZTgi1+4nV7BSFugZ18hlfWKY5PxJ5y41UWaDFAmxJM3nSVGkA9ac/glWr48Dia8nlZaYMMRiTaZGqB6kcInFupU3zsqLgamHqRi79soIU2ITlzGJMKlQecOYtfdlmFuZJMkMRMis9P2AVFZPVNVwP/UJzynSSS7oPZTNemjQaUmYIRas8KRMNTMobnCpYNvOq54vRCUXUuq31ojKWohw0h7WhsoUGZgJmiKlVGB1pZQ2VTveC4UvooGj0lhDMkVpxRih/xDOStYBIAGzbs5kr02spcjTDvvClagl5NTmFVHtC0jYHzRGW6QFRAbckTXYMB2o7SapngquVcGtuRiDZQDN3AxxRKnZCUffI0wxaQiXF2UFkOJU5p+86p2olzZtl62bWNtJl3EAzhmHClBkZowtAXpqANM5z+skW3sclw84yNEsxSwNZCY1uPxz0liN49aMgCfbWCSGAjNzYwogcs9QvhaGZIUeAQbNsMjV2M5zYsyGJdLrI13957VNb8qXZ7RZbbht2bJ9+fv2X/IbeN0vRMWwbGInsx9unob2PT/vD03s039p06zxlYApttRA9hbTGJQIwItO6NTT3ZtrkUBiB2hvrWx4vW24Ubw32OiZgCDVXcqaNzYkWcZ4DjW7undPsdZvI+EC0TsOt7eg7XtxTORzHyDHT28QcCeo1HjvibK44P4VcHtIjuhL7fTOntQCI5sZx2ta7eHgop98+305iBvvYunqqWSLnPKYPPtrvE1scGM0/BL7dX9/fzqaX72/97EfGzPbHAUt9j8eZ7/ztp/v3/esGnO3Tf47Ym+5jbn5OH/aSX248Pv/rHdv7v75arTqw9U4h4cM9Rs4jJ2cqmm/1iFhC0jnnMX3vt4BL8C4KCsDMbcDkxrJHqO0CrvJVYwyIWhNv3UfNqS5oRllz6FrABEh4GU1ZHRLlbnHhvUlHXOE10g88OgUrDXmNqEqt9ZpUyauX1CiTjLAwJEQtJbO5gZI0IoLgYrxrkUIlzV7ILwCpkpVKMiEoQOQafrJchyxrHflyLbwqdZXnqlxaRsSL63pi60rAlGBmmFX6kqBZSmumdGO5sZYMVVe8A90X94ll3VGa2UKmy/CrtkGcvOa6C8OvG6bFn1+GD6tkCEBbFhzrECRrsl+vY7AA3auyPkeDKwOxplqIrH3PuFDwiq1fzRANtuJSrTbLiPKicBOpMtOs4z1rA3ptecIcLMVgFTFzendT5qhpxLop4VCEPMlmKWuVBrFsh6BYgvz1BlGuohcam1V2nut03swajc5JV6KyywU3laK1JKyr4tYrBqi8zDT4XMwqLMfK4yWRGSLznKC7rawFmHnQkghvmZAZUobugOMKnjej78wZZfVSsoAkDdCS3y3WZIqGNMRFr06Zl4dMzWcVJtU0RUObcNF6772qTAo2R0He54QiDXB30/BS76Wy/IkVTJml/YX64GJo2B5lbhfVu9O80mUTlkgkYqTMYuH6dclVrsSJcCwRYDlpKleSGTK9urvauLP6XJkzLMxCI1qroV10T0BpQZuAIj1YscRggDEr8rM00bpE/rmQnjgjAykHgThCKKE9IJFu1gm4eduuOaWS12iwYpK2PMtd0pjgabVaYWqKeEwJcIPBacgYj3N4phDQaUFNGB1Jn51zJsytNd7vZpytaXsZry17Q2u93356azcjsfP1NR+nExbglnNkYsaxnepunXDSU63TKHgkrElsZUkNwQjfhjxkbN4T7qSyt0iIbK1Nz3abx2E9msctzcOCOjMyD0ydxjh2KPfzbGNOi/k4T7k6uj7ajhRfj+kaQ+3bnj1mzjY4jzAeeRcB/2nb++ef//Hy9eM4vW0z+HjlqfB58IDpbA1s2+CW4/ay22NiDs3zuL/m+dXTZtxyZItHvp+RSBzcNcVEONp972F9dPI98i3w5yNN+RE2Tu/vs50n37gRj0N8O/+Yt8f+dQNgxz99/Gb+Kc795+/ftz8OnH/7Nt/3f/34zzY+PczvbaTf2nYD+7F32DYfH8N0ypDWSyTaGVDMkZmHtd582IsGzMRymUgzBJBksDI8gTxdhCpvWdnKEnVJvWYNvASYprkX6rk6YhAhzFPrHHewCX25gLhamjdj2TAuzddKX2dpHWngoORG0M0t3QIloQFJc1ZckDPZkNaQl68FWN7ywEofJNd4m0tvVLuIZdIupCIAISrMvMBT2lQpJjgLpc6iz0PB5eWA1HyybKs6WW12VTNiRjdvQOs9ck4vegt0m9b97sbeTVzbnK25GZAXfey2QEISyRBiRpKRLHvawshxSawuOlwqZ4h8VuL1LzUkt9rXXhiDO1BbZRXqXOtLSpbJMy8ZANdG0/KXxsVMo5x068etb6gwBF0F2C78Gpeh8o8BHUsIj4We1NBd2aW4fpCyOIhmzTpEYaP6fYORcFmLEYWFGCtg62IyllVWAHKSoaiarKz9BJOWmCksKUyiURFghgzlgwqCbpPtUjlUxeVCoDNroU2kGYJOVMFxwENJs2URUgU6yTFVCG55hpFoTHVbYqsMf/qolXa7XM8jJxSseNsmUiGY7Y8snHZmCnW+kpoLFBHpKktVLmk2UzmtAGQDOidFR+T1GDFnNnMEjU73TpVi5xJEoOj+5TuR0pxT5jbDurpRw7I5zdWyeddmMm8N7QqEpi+q6ILUquii7KwlJZZ/YaQyQwFmjpHltB0xwN2tMUVP5GwMMM4RzMweozNOOsbhOCCfEHvfUPfKkduUWIpnk8xkbL1vG9hB85jVsLN2qSAqcgJC5vHxIKNBiKgbDMLEjIzzzM5U2DCk0SwfhLbRw/2EDZu0aOcJEdYbkO/D3zNzPl7ag2O8tMmg0PbT+nb+j5/Gn+2ljXeb3/85vn3Hy/14a8d//vLb+XjfqPbp+Of3Pxi2xcj0+/hz03lwwG6nMk60xxmROScSVoeXJ4ZinGkIy+lUKCI9M7oUI062Qwq2WejMzHYcsbfY5s1mk3iM6fMc0wmzfXuPtsXsD/PdJ/qc031uzbPvQL+9vGWQYJ6J9tDDNN/vbgsYzIwxHb0jRvfePAOd2dkA83Zvt+3lPuYn4rTPMdvWfpp9uzHVa7UO3Ubf+3n75POEIWebSoRlZmGi3m73NvxfzKeNPf5d//r+x8cr/J+Pl+/T9sdp83ht6my7Nf8y7ZX8lC/i1u57Pn5N7okMcPaM8fbHHC9nipHmFcMZ431GMUjxB/cPfTagfTYecXaTp1lr0hxnO+MRfeMN222fHzW6Fg/bkBkrVNyE1ErzVdR5XyogRYpz0Ww5JgnTZENNP1zTRYt0mwHNzBkNc2F3rIWCpNsCM59+l3UiV9heehErKb9a+UhmCMWAucmYcKNgVvRm+RSFWUhwWuFLSRHwXHmSz1E+adZ7BQLX7wA3Js3c0jq5eaIm0YqEClkA6YjWDQylu1rPmuCXxIn0IoNoaLQ6vry1zW3b9gbvIOHNvN3NezNv5d1T4u7M4Ow0r8WeH0LftavYenO413oLr+ETgFTBsReQeUGIC5HVRXMJaGUjAj3x5HWiQsU3WCUBXtjx9XUFg6w/K2qYxmWWtippnchmrDUVPmH7ggeyVnRdFQKozApMxxpG1q+yvssgwZqFty6gURNm1402pODQDFjMpcN2YoUgXMVreb+YISm41bqcXOnu7mnmra1KbUZ2s0TpjRVmoDKXwCqzsGaUNwjSZIkKDqxCIsHNAHNLZJrkWyQUBDPqwi6ZQokL0pAzzZ9C48wIRSCVipyWkShRTqEEQsiCnqxAUkMQVFrCjSjLV4mSL4BXVmJmb+ZsDQPTXZjyjvRqcbwjLERmJElEqC9lv8JUHZbCwQmzctG6fHbWGGzeQgGJHnBTW4l6gpJpGlnowBnImYzCTAxpyJBXv1GpDqB56y0vgoU0s0AGzdOKbQLkAC3hCe+RxrBmj74fx25hfXN4I2y7+W7vMSHLyeYof+8iGaqTElLlPwUBPTIcaGQrrUMmQrM8ubuPYAgUpCkYPddGRYKzKHlZtsDYMRCHSNsm7ua20bewjj56280bmvWWPT7JaVvDKxwf/Y5uJ1ubvqO19svr8b5tUNv6/ad/Jm3fN/in15fNlW3z/PTp32+nH3F7TDfQ246R8/X42PpP2Lz5pwdjeLPssu5Dk9la98B0hncMH3J5h5vZ1jQ3i5ul99q0oqMrWt/ytjEKy7JmvTU2J9iQGqOXj3VP2Mv3w/c7/xzH8WKnMjiH0vxR7jCZNiWaMiyygX0zdu/h8fg83xTOLbyfmONIejzmOV6tz5GmRM5TjxGzU3uq46Q3Mr6KLz/zmBvTfd/VjbPOK1cYMDOV5/kbbe5/xvt/379/+z27ffrt7VXszi+ftvOnN/O4PR5urxOft4+Xfp9sbR/nrX+c7UMve/yql9Pofz8f//V//f7Ll23LrexZtu11g0Z08rx53/Bivr2+bh76fLe0DU0xznNmHrk1d+WY3SdpYgpuWf7TYrl0gmsdoUobPH+wa8VUlQ4o0pTiFqxhGpAikOfQaHt2u6KLIAVkCM2MaqDrkC8Qb1UxLAky1qJqIdgo+JiyhlJugFmRhEAZCzgs7eJCXUJGzb7l4Ju1Clsne/2cqjkwrSmyZD9V7WvHAc9oXBRZXNKOxZE/UThelDFRo3WpdLwwy3qLZg1QhhIygM3Mh/UMi2EqB7IFrQNkJp8csgG05m5u3hbNXhNv0Q9LGHVxk0V8Fxdf/iKri+LVJVxEcq6rv5jyKsXlTcmFua7rRIr+BDhWAS7U1XRFQcmASnoDZPQlLie0PFRWbjNoFjVKoxaFSifP2ixyw3UxL41BbUwpM2caIbNcGYOqGS9mPv3TqtwTP7KpYTA0llrJ10iJBU8vg3xeyGQBxARolbhtsQjLJT1ayyRLGlQvca0LFAACkKZKmDArElxaqqL1Qj+eFuSiAQJRsrRUJHVtz+MvHP7qrIq1WISIanVIIaCa0kuXYbbCNohEXdWsLAwHaK2trbAMZ4as+PIy1AQaKzigalAopuCVpUmyjEgLpoG5macpA5nUGYuHrl3wslKtvFyHMq51yVoFLrylzPdSiYgBs8wsTIEw0glYpMCmDK1OC1JYCiOaV5cjAqZwQ5pJvUlGk7khmoCo1auUlDFPWRLwYGS6ycBxUmPknTM3LWuRlMSs6208M6yWxjNTtj6JvmzugkY6uTnSlTkzZnR60FBZrKW1I9LAjJwUehsmAE4Z3fs099ZMvrPvXffje78Lr/t9t3c6DNbbp58/vZ9T3G74bPunCcO9bwLuj56iMqc9dCKCrKguSrAoz+IgusHy8oU7TTMmqZCQkcjBYOlMNAfGDAvFxCuatw4365NO0RCYE/lAGPK0wIx5JmJyjEMtpEwbDlM2MzppG26RFEXNCSUiKVooRESMOZohRmTO033qfFiOuZC4TEnnx4k4kEje2u21jXY7sG0/Se8zRoYIZxqyGuHWN58NMfnIjs82tP9yYx6f7CV7M+eudrvf9wTMaZgxH5bj46EIy/bn0NeT/f3jE9NvhlC2qI75sc2f3MCW6Lfd9V39dKSmWMm9Q0D5clmbMiMY5ret3WfrUsLBXFXnmaHAOnzY2mRJE4uB9YC3GsfMfc1AfS3zerMiBSG4UJa9tbkBwxRMGVwWEJdoSauV1FppLcDMyIrWK2Yty3AO5U2QZlam7VWjsxSgYo0hyVbOUdSlAyt/rovMXE0FSUusLY3rYEPKVp9hqHOjTkyh7EmySL80LM1UHYbP0W2hr0ZAZmrX5gpilIsl1zoXjZkVMrsAiMLV134TSKh0MqtrKAb7yk8wkri2xRbxuxToF/l7vdEn83sNwSorynWrVs/Bazq+fnxll+H5B1o655ID8IcAFFddXi9SU5eBl3flD/HvdU2vUXfJu+ot6PlL4UK7n8Q11r1VeWmYEd5gvdEdYhItan8Fy6Kk+pb1S1RCEG3N5zUBmyVp13/XNagybCtgSQAKg+Q1yNdjxosVgBYJI65qbLxY4sIP6uGsl/dmrG3RWpChKLciHxwg02lwtJ6Z3hqb42pZ1i5UtSGMsMUPFFNUvWMtCFDXIk4F+D3hhHUjr8Qt6OIQamHH1xmNq6eNihtbHUA9qDlncRdiLc5qXTgxQlldV8psbWLXB+cplc9M9Mtsa3kurm6kPoa1tObXJV/ghVIiQwAUkeUqVJxVzjoEpnI0IIWMJKaoMOQAPNJiphiSGRxagfMXp4+6Sm5psNLjm2o/Oc1h1kgSrmabZ9K69YiWZPNCy5+fHaJV3BYiMkJy0uVZK8mZP0SJ9HLizrZxXhtutmSMXpbX9GKvY+QYiDljnpEiXAPjYe/jcfo8/d3Hx2k0JhgUW9eppPu2oscA1K1aHu0ZTCZypowZUkhnKKzWsxQjBjwYISE5Z46Zc5xTGlukUVlyFqkiLKeRKblkYfJmpztB7jLC03NuR9iS52LO+dBWuAAQrnH21DEHEP/xlR+PSaSOj1/nYaNCH+aDj/MbGQcYb/v7yNmEmZw8zmnbmBkTj2846ZlRfqXDzrJqSM7uTJnHxjaObFvPONPiyK/jBrpbd5wt01OV0+at635uycbNE5/ejv3j9eWlDzeImFOZ2Pzz/fPdypU+p4+c81AMuSNO7ONxd4P8oHhgiDPYeXsIx/DUiQYOWVKZSEVGMXR6noc/6sHCbbHkWCUa1TU4XWv51ym1lkZrQuTSPdKaAFqJNK49TPzlLNc18fwFkL5GTK1quuC+coOXu7t87bPUF+XyqClM8mIrcZFpf/kxdT7/VTF8yVaqbF+nwzoi/vJ1Fav9ZFwhibkQ+FUVpaw3un5gJts1ES/RERDDFdPANTRPiB7JnCKVxXL7+jk1KIWDWSnOyxFi/b6ralwS7esSXkcqfpThVrk8XNPUk5JdUzRr0ENpnrWGa1SzVAKaUsuWjbgE5mJxrw6samh1VVWigGLdC3glbSF+183nqvp5vZ2a8A2tN8y6Sa11QJlpZedvZg4BSYuDiiQhL1yXTo9l4TxX+1BinCULzhQzQQMyIyMhE60aUIVaDNi0JGMIsLDZMSmaI+s2QJYhZcjGTCh5BYVkCfYt0+mMtGf7s27VyoBayfAX2C+VPLfMW9f9xNJGJ6FQSumJVlv5EekQTQFMkgr5RHlgXTFbBcKDMENTKNgTqQwPj04SnlibDkeapwx0zAijLzSe1io9trLAzW2t/T3Z27SctTZVbnOmZcGKiJofI60C2KqRrEBFo8FQ7v6oD35kABHMmYNNoczA5JnjzJxtMKU5bxA4IyzlMIPCMCf9OG7zlIc1T1mvKdSJGT2KrrNIR3gipmVwi2rqVh+ZbOZmzVrLbmaq5p+ATygCysCcY6RCy7aCZFEW1pVpJL3dfH98Cn/ZBtruDftm2+fXzb2ls6E1723zl3iF+nhn8AbO3CwszYyd3bGbu7Xt9j6MMwCeshZMdDm5tZZv3tx5u+HjbmYWRhCfb3YbJ3rL9hmMm/dmZPMZzVOplpnd3GUIx+5zwglGMsBhnpmR8pbnVKc0Z5wj5iNpkd7YbwnPmWo+Y+y+RfY57rdTdqod4/1hnDX33TB7O8PG/Jh7gM1pI/uHwT/O7aQZt+TW3aAHUqDdzqb26fs57PXfMcd9n7jn608vr/P1NVPeRfPTfEcyNwY+8mN4/zZe/eXj7PtHTs/ZiWQbk9Q4bg+bfWzpX922l/M48PEVD/7R/KHfXo7xGt7vHsfcTmMk7GBv/mY6mjA3bL9thiM/7Pxun9029o8vgf/3//b7v4VBr1A8qHyYDh2PDo33ezakv3zMO5XZDkghGdXbkTMsQXqnILgMDIEmWpKZdG9WStYGQTQIzMosM2cY3FpzRkWU0cqGJ1d8YnG8BR55AFnAnFUD7Fg7myZj1hJmtbTEVRZtGYQsVo3ubM0Xy0lj41RQAtOIzBLrDQJlltFDGMs+/4eBVp1zAApcrzoOW3by5W0/V8tYYtW18YiiOcEEIysQZ2UKGJfPcb0In61KlR4Wl+vNrDXXGWtzJ1ZWIWDMzJRZxVI1MiLG9lzTWGo2IURRsfWmZEbCjIqSjVrtLF0FDQseqH7kqsPPQRhoa7n7Bwe8yiAptsUtG9eq7+qwtMp0gNeRTpT6vNiD8oGRoBWx8zyhV3CyPXN4yR9ZSWU0mgVkJ1JWGG+WKjsrAw80uG27jJywtgZHzVaMbZwIEFabJjRkMmQKSArzTLaUEbKyCc8IBnwJ8fl8WIBYqfIgoLC2fttpU7gcH1b/co1umVG3CJMmRa2GY0LZlHFmWOVdVYpvOs2UmRjDPCLlSiDSjM+5sFqorL1RZeRUMcUaMXWkOMacGTFj4BgiMIdI0JeYUgsOr1mRxlRT9KxIhDT3QuEBWuMYT/iJCDMkwW5TFcOQIMJoFV+aBaatboNANsAaJzMUQuZMKB3lSmEKa3dZDJQMl4CyJIbFQMjcvbLgWamKZmadTL++MpLVehrkRIS58pg0UUF674RbP1sj5E4oZ/Z0mEZvfULeyVYbw90smpl7d1lzRDpF9Nj6vqG5ZWxG64a+3TamQIt0wHehOdnAbA1kkxrpaaJZ+Dtn39B23/Sp2abts3Jvn87e1NF/3rkfN7fm97b1npk9fW6e73w9Db5hgDdZlaqbkeTt9XHDa973fYN6ot28G2kfs8X0c8tv95NHv38WweCuvNlHf70/Evv2wYbWzIJbzyElPEQ/w7Y2h+RNGRFgmtue4S76zMTRGc0CDZHj4z2nj0OIn87+0Y55H9um4R2xdWvgnKcQtd0mf3mchi0fH1t7/9bb2XOLnC95SHPs/T0ebjPnbXCO73bDebslcaa/vb3xv319dJv3+MCwcXJkNLnax9v7H3edk9yO7U9+/hjt9COSs8nwhk/YGvbd9fH9kznPlnHswQbtLxtpzDi9PXR6O4bf//efv0Q7/vXA//O/fvp2b3du/eXF+hHzxq1zP8/+MuGTmmlDf/r3N/96ur9sL7dNxvt2+2//t0+/iqOf38c88jF0nCOgc4s0pFvOA5qbwBY00Dc2MCzPFmG79PE2X4Gmyj+t4RGw5sxCl6QILeWNwWIKVsyqmffaqgxzIK1n82WCdHF31pNl9pKeAgwKpFuxsTLTLIvw9bFXTAGhEHMs7fKCVBMNIlIGOCkLOpBGyZEwJ2S+zt9m1jvTWX48WKDntSGLixW7OveqUpmLkg5ksJxq14CUQKSIuNIlEsngKnE1O62s9cUh6sJC+XTRQGHTTjY2pLFvbgh691xpJcthn9b3tijHupCLribMWtflvCTBvLb3LpjxWWlV1YuELo+vmkyrBWlDZTpSFPZani3K9oqALgq6xraFzP4FJ6hvAyHJy1QDJRn7UcgWQKtnAQZgWUFozMsLtCRb10y9sJX1r/Xrpsxbb4Vb0N02mqMbW6skOFGwXiOIG1WxstWRGMi0Bom0kNUNpZlTonl5SrReeiaaqdqyHkaG9e6caAlvzcIMdKzSU82WO2huScsFDUFF34ss65OYz/TAIFZIEKRUak63utUJI+m0ZGtS2nJSXtgSLc0AxRBGVyRh1cnGlOAZonLaCi2qm7mWySEoqjGeU6RG3wnZor/X4xSBTGOeYQgENis8tTqN0iZ6NxrSqEDYCvu4LgW7T3rQIhYGH7BajarUHqky3DMRBOgrs7k2oYovh9B8ky5G39eLl2CAQCISSCccghUngGVgwBjmwUYSCncru8DKwWRb+WJujk1swVmxXEozuIH0/upUUvM02phpUmaGSohaWI+b9Sy+NycsVS294DbaOccJ6tGNm6UxHx+Px4Zhmz78n19fPcKN6YjRzzGPbzdMu31A72hmB+N8ZzHNtgABAABJREFU0eicnBb9lky9BVqG2zp9GBFHnuOIc34fmLONr9NvmLFkrv1EnmMOGfjxmBzqY8agUmXLPSXT+dAYycnwnHlsXsaBwTppU2VvPm3KBFrrIb34r83c/TjTcLQjuhjC8S7fM3p7uI29b/ToAOmO3jDb/cPujy+7NldG5gjTbNZW8Lzm+XMO9x03NA+9CJyWkz9t1jDCb++ZD2vjMI/jfPV3HOfnR26zzXGw07uN9quOeKAd376NwzEOJTTSHebbaP3msbfsADiw9c0/f4r97W85NiG6kWe+MIzNtsPa687db29E9oEx/vyYyXs/MtjOVz+PM0/p/O2Pd/1f3tuRI7fMfn+JmbnFFjPP4WYfX3UcnGVNVNLMQNO0NLZMeb/RM0sWWrMilErIF0mklFGCciYjvCqFEtWoU3DRAlbeoiShKovLtFEXjGuSwVv1u2bWaPDeyvMOIlWbvJCSdIIyGeQpJ8whwZ4fxgwZ5SbQ3IvUMmpl3xho8B/oJoAFnSp1ychIU9L8yfdpobgCzeIi7paGB1rM9XJPNz2ZwFWUanPn4lOX61EWuEWliH4ZXhVHmpZ1/q83BgrKoGVEnlFHGCeYFUfKQMrmY3bgEoBd9yIu8RHXwnPpdp+wJ5e+bf2uLWpsE5IGORaZU8XaLUk4okQwC5d+QvnlZiGVkX8d9kCRnsWG/2ic1sC4uPQEnEh3JCadpVuXUZX/84NUxxM1L5WPyvR7ihDcnIbGCqQMwZSV054wt0wgkVHtQCGxpmsTCGwoOsFa0HsjSNqWWFs/CZIJg0FqzZ1BB6w39F6+ZLy0XiWdWtuhSBNhZsXk02UecJRiGCGWmWPxm20LRwpoPXOmtQaP3BtStvesttJgre6DkekuK3+6LJclZIwpBSxqL44hITN90iBK09cWvCYyPedIqvkZXuosVhOZOTDHiJQ0z3ALR1qTBjeDYOYtAQuUvvmJsdCy8tKBRJCRjLw9xl7F9Wo0eO1FgxU3ZobKBLInrVMwvAG0XZnuy9muekPWLjGsSG4IiWZB0qlUOokZwzInlNmIaKSbIjCmA8fjbEQgW/V0giIjUxrZpkkZJmLMtMf54a6xxfwY1sHNS3aRlinOoDFgRkuckqDZQAMTjtFinFM2v72E5w3n/XjDR38d6RTmP75me7QJRh8nndyO7x0f4/0IHjcSwwmLYX5KPs59OPSYu2lwxM2PRxgxNrWch92P5OPBz8YNu+XRp0CcuiGA0dv+jvfRyjGAczaYO9EQkb2NhHmjYqM5pO3MHJZurWrBdI66mPLWZ1jX2f/lvO1wbbOf53l8sWPEFPupTEWnst383qz51nsLttu2+3ncdrvHvDU65wzN8047jqkeFidekIEUwvZmsNHiOJSW3t0aNNG26R021WG+6bW9tZf24lsjrJnyaGczSo+5v+Ptn3+cP/koIQ/P1mCzHXxNm+8bkODjfMih19fxbn9K3z7F1z1uGxtgH7Gl3jlznvHgMb9v5wTO74edZ1ibYXFu/ev3o21v8/f/8fERf75gD+KwVEQG2rAB2y0CdKX5HKDuIXMk54wZjDLYntzQfXuAKKmxRGaEWiDL0shayEGs+Hk2yGsSMavIeynMBLOc+wWZlhWvFA+bH+XAJ7scFhQmCeZAcyv1kqwckCQihLEWFUkLGi3J1hMF/y3Lf6Q30QF6syjCsRp1hUFZH0ss4vKqEcDS3QJlAFZ9ti7c+BrTGgWr0USrBKkmLS21M7mKC5cFZYHnWSfk2viUQhV2IXHEniNBVAwnLEeae+aR3dJsVQgph5mOMNCTkYI3QqZQyMKyNWdtWCmDYrEDzMsJomzI5jXyXpX4OSBT2bz+QjAQ3uqXX1Rwco1evEY6Xo3M87RcwgCw2qSr0PPH19jKpn1enQu2BRWGEOeskn0tgGSR3cKSTlcnQRPDKp0LkMxL/a5oyGyNCyoxRVlb00nS3GVLLK7yWVCWaGEyYULGLH+Vi1xfbxkpMWMGmUlDcg5LKCZKPlqa7fVmqTHlY4xZzy+ZQcIUyRUVWDvlIM3di8tNxwyFpBn0EFddXkrnSyWFTAQyE1yuloWFeJShvjcvb5HRMz1VFuVtICQVV7Nwi0AFf9OQLpIzIs08WUbyoCNTLdV2TRDBjoEGc5bSt+yqlBWWtz4yylpqTgEBybZ0P3XbuxWNsbThBKyRBu+UZ87M1IwE3NpSsSmVs/I1UjHDZYSaWT1MxoDYBMGa2eZbumWwZvxIdNU+2VCeYgojmwgPF+DJRic6oteSIBs6EZ2NYc2AdAqwbe/ttJsp9ya23a4MF1LGG8iWs+20Fs3QwQbNxqVfhd/GidjlP8nPm1mfmm+H79571/2XL/1L3NVawn7yjWj78fa5jfloLXdsiA3aOmi8maW9NsDmuVnPbd8ewDwdG/qN0XRwKnAPKaaN2W5fHtAx2T7u9zPsdtfdS8e173cMMxpnwKxL0An396Ho+0nF3PZgGmYo5VSMUbyDdQ8hjndBE+wv2x5piBbRc3SbMNo9LSf4Km6dt5fXn27fzpcv/3J8HC+b+rH33l/uXf2W5i3cPu9vpm3YDua2uW3+WgJL2Uc8btM4zzbP49ME7Gg6owX48X6c24jxYfMxG2MTzpTMhn28hr3G+8jZMm1s+3dITLfmBgf7VHoL87R+5vzt9mlHJo7Wz49/sL8d1MiGj307O+aDLns/+og0c8b2ojfsAAP/9X+L8/V1njMjTComAY8+DzsHpchtKmXW+sNJYyQ9c4bcRTrbZm7jX+OnD0vEAPZKE6rTMRDLyZdEegolXkxThjCzJt+aEQ1OcUWnuLe5xMhJFpwVcLhnApExh49JgyDzjDkGpVk1t2zxpTmTjIxBmwtvDM00IQ+xRSKt0n5nZImuABIhg8Ssg5W+YHADfZX1y8WrgNZci39iQnFplgoKW9GMBmUkl2PlAm5pZegjAVn28T8KOwCwPBRZue5WWyjenNYdag0wZzGA9NY4W++0xrWGUj+D5t5aHUuEzKzRzSA0f27elTEwy1+sSGqU8mWpzmQLIOba96WEdZiArcKBcIGHqA5j1Uh/0rfVlPBy2LAL1l5VlSsrgQvvLYJz6e5gFbwoYO1qPEu0QXCO5+us2Vzl50GlDETpA5ZCuUTZ6s2aLGeKHCUfKydHh+MyTcDFOpQQb1G4bldF0BLAlnUxWBZnysIhIgDFqAIMY+YxmmhzaiZZVGrN6CRNcxIxRigLsrkqsyFDOSEVGyrU3t3CRxa50dKNUlrF/VZHszqmWkRiZIJl1CrmU0a2ZtyL4cjSMAiXJkGagOBOGHPlM5Z//wiOCOq0ZikwiZx1rQL0gNUCrbVWfYmjNZgizOTptYO9nhEjrcFlZbvBptcTaWTt11dHC7ByOK2WiLFEvgssIGhmrXktqlkrJsyEXF55GZb0sPSWTCsQzdKE5gLBbqkIU8bgLFSPmY3JyEibjzP2FmGYzmQiEgqEc/pKJSFzARhgKDOsxAyKyBDScoRTFnFs9xlj4kTlrAeNKFhstKSNNO+Dfe5ncKRAc+AW7kq1DHNLb62T3kVCMxWSz+gGaNzMMWXkVjgCz+QEaU3oPrqZeXO/jfDgfewcqTPVHodimp2vlr37jf341N/RrO234IAmHRnB7iczUwQtTmqemfs+oxnC6M7ep5HbkDPds+1xJraU+dQMl7ngbfRg12TzHTnut5+aHs7+6eefvvzby0+vn9rntum2f33fZsC0zS6FzaHWb6f3ZGUfPAw6An1z75v6t7eGREjduqH33F+bOa3xht7i7K+Qo/eH4EaG3/Yt79v9df7RkfN8z/yYj6i5MPtkKxt1EJGz5+TZt2ZjkpY5B05tPqcJ43ffw9jPadv74w/bHvePzZI2v8brl5+6K1qPr/rptv05mWfM43tn0rdOvbDd9y2TdKCd2XRuUmqKbNOyNWTOYLjrfLANKdBtfGyafgGsWV7gBps+g1DMUfOv5qkMBBFMic1Z4KdW63I686m2UfFb3NTaXKC2JIrM4mtqSM4Kb8Blal5oWH1g61xGJdnUkeZ2YX+0AEjaqpjLikmofaZFlqAsXLUITujyba5yq2TWfIHFQQlAGlMrz/2iR0UAJisRGC7tCZJrhH9OiBcHW+sZrMQfIySvNZgE4BkVHJ4mmZmv9dAyWvA6Mku6xmXukbWRDGFtAIiqaL+F/S6BMi9d0w+LzEUlX5puCEDjhUkvhnd1GPVSCcnsUlM/QfbEc3slK0OjNHhQ/RuvugEivYIuVtwdnnL6rpCSSWfmD1W56pJqcQHX2ISlECuDUYO8qwGDV89G0YVkW7Tz9Us/X7detpwIwYsQLfl2ZkYYgzEjMoJMUDllMWckrUJskGgCvbJmlioZ12+Xdf0EUyXK43/60VWmYWiCr62BusS1RphS6QBVXS5xPaO68GFl1leilM1gS1DGNHenCwiLBCyhGFhvo3wwEa08rRcjomWZHRnOGGq8BGg0lyKidrGDmdYspNL3pjqFnpmMWsFnOMCKDhNS7gnb4aB1HQtRKutIUmiNSbqZrT2d+riowi+0oCVJpfascyFnjxBaSxgFZ5uEAHOYZSrq0SqAJ8BIKYabDAZLzkjSFfDHiMicamK10JKZ0zatJ6IOBIS8NWdDZE6b1NRQnAdgmiMGYtc8bRxzTpucpwdjbGacQfc8LKGzJ+7nCPB0PzPt1G7jNc8P6WwxiFSGSEsbpOIx7NQGvO+30Pzz1y1HBHEbZ2C8/z7jYep9IP58998/Pv1t8phtfo9zfFDjj79tx/H1trdzzHM2e3/Rh5IeA8cZFiBaC6UhkSItkUAzzGEmj3me5ZJL0E5HmiLS4WemVwiAmeit5xzfe7zEwwDRrafNk9sGcaN/ugect8+vP32+3V9fP7EfeOybG09INq3XR25risOVZ9sB8+GW54QT52trb9/aOHLmjsgbLWfMwOiUy7bmihE55iQiicntZb+/bPbT8b/8n8f/5+vrb/hDf5t/t/3nQU4h9jFXGolhRtvSjD66XNkedkyzzRyG1JQPfuzMEDMwZ2vNts1zwjak/NadvIfsb3dOZG6StR5o89Bj3jKYM8NP6dweiUe6aeb/Qprskd0DLnNrXQRvLWNXJzZbbrj0NSRamtNcC5JZQtqVgGmmKJtDhwlMKYMZiO7WF4RmhYLKEJW4l6k5TVNm0yRfYHDmpD+3PSuHdMnBmFGe9ZnlRpBwEEqRiBgpc147FhLMU6IMhFnSFZlVh7j2EXmxiqxANUbU9Hyd/mT57BZhCNDXshAEojxzai8SJQh3BeSqSvtD2FWi3loEwbJu9slNSG1eyzcFvcK2lmNsV8UOQbYMp3WVpcRlhyijNffmzdbNSiyE+MqE/CuQfm1dLZPiH2Q4UHnAVZUvMXP5iZskFjcpK7nQX7Zn6ryVqpqKRsCfu1csnrpAf6T4PCHrFWydycnNC1ZZFVdYWAStRNHLCMSzbCTNHe7NgNCsYLcrjyevxzYCK8Jr2W8VXOs/uqXCeEEZLiCA5Zxv3rPHsLKccKntnlExWKT5gyW4Q8XxGnhdABoRJd3KyyibNJldTleA0da2SnWmrDACZEChYwii0jTdx5jOUvykrm6JS2W8dEpkrTVNueKYPRHDTUkkmVMwyBhCGXcWUixpikTmHBRwmsEb3cu6lZm1KBUzM+dYcklae2Ly52GJPHjH2r3LsoOuDrH8QGKck5iPzphmimBGya8AGpsRzZxZC4yA0hIkr7ZDKjcyZFxusaXvcG9ZC8JPsKkQgpI/lGt2Az22vcd05gaiqW+xmRp6dmeO3txstk0OsBnY7diTiWxGyi3rqvCmHkh3b3BouLuDZpi+x7bL9HJDxnx5xG7eLFo3pmjeI/dA+pbb9mHnzrnLOOzW78iXdwf2V8tv2x7ipgbG/Dh+3vZt+/7tpPefYB58eZFT4emtSfj55+3je/Z9H7d/+S+///75076x3/1vr/0/Hue28/P500//8dlsezl6jNNfp99eDsUZ8z8/vWp3wKstNmNOlxBR2NJs7vuJaKVjRJ/yxm5ya2rb6cvhP+YEk8k+mxrdj09Dd93u5yDZb0N4aAIY2M+G7rQ45zxDGMfHNJ8Yw/cTCGtAt7NTvW3mun/62xcIZ3b3EQfn2bjzptuZOe5+EmL/YI42j6k944zxMBzn9Obgtvfb57u94P5f8rfHp5GzRW7+Ua6MOO/d+2EuRNO7Y4vjwPvXL9vtzpY55b61nA1zT7D31nxu5vLtxfHq22xbDr02i59/+twPixHjRs3RRYSy9fc4YW6+De0RM/uYGdtg0CsjRp7jPWMv9rSpbdao5paZguWYuWRARnLKDL1MPCpYNa1UjhkZBU4HItXgSw1RKCZa20qEtag/5QQ1IsiIJLUkxEAtEJnRshmrYTckyhiDdbCbDLQaISuBMBKchDsuuVgwkRlYkqRr6qE5rWVLpKl2nlBVouaIGnfL2Um6qpbVpMTCdOt/rQEsYcqF1dYfqCqal4CH5IojumL5kqg4hdo2at44ZfSylq+zlUJEa323uXIDUCismTfMkGF5SZBuBrPmrTWb08SsVajeUGuUsZoYV6wtr6q8pRFe69q4EGE2PkVEF3FcxXhF1l7lH+v+XiDxxfJeU/P1levSwJ5fZZDhOZPrWf9hDudSqxU5v8p/2uW+UH9HmOi44t4rzKu19Jrll6EFFJlBxJwhZRTs7kUpmqJyoanMxbFSQkAqPWZmQsqIiIgCAOaAW/OK6QTMZLMOL4pXn0X+5QrS3B2kDAa35cex+iE6WNk+JcMgQcrNvHbvtQTkVYIymanIzECGIhCM2lMl3NMFKxGjCdIKIaTkgSTgBd6oZsqcBpPb2tfOrFRDRXCZwThXZDATkQnjzPUICBlnOrH6GgBmVh9jK3fXathX+Ik8EyLMZ3WfNFhW8CZSiRlENljGjDlrrzkEMMTgSvaq5i0zEaQpgwGYRRouM9wlsS/iCQASebDki2SOMc8EXKFcXwUqZARBX81C9X0l5kDtbFktvIkuTUU0mQ96uvuKIaHSUGYnbohFC2SGi+VKkYowYipT4Wme7ZzUiaZ5zNljHh6KofRgJRa3qWOMx1BqRi//EKWGYIInMh4h5HCEH1+/HgfYbvH/Z+pfdiVLkmxBbC0RUd1mdo67Rz6q6lbfC7IBgiAI8PEFHHBGcMgph/xqgkATTTTuqzIzItzPMbO9VUUWB7rNo2IQiXQPP25PVZH1POzz6Psx5kzoSeZ+ETwcGWFvxnbBtVKXM5QvYgiWsFha+yAyZZt7pixQsmCGdZRLolnQ15d44T3G6Nbt+tYD28J7UngkDQmTiu2IBoZFRETfrrdL3mTHBQ+38Ha5XXtrKUtUpoyE5zTlfBzweKIZlZzX+/Q8BnvmG2o7yiLMADNpSfnTlu9bM1r0iOvt2+5kG/N+Pcb94x4/+ocJWgY4QlVp5ByHxONRR9Z+mCcmq13j/bhcawbja5bbkRwzG7THeNQecz7Zfkej5yX2vTiicmZ5HkfsR971pbu3uIx2o8c0b3O7NvYQUXvtcJZ8ulXVMUbG5vsdl/GzgmVBXgmIhqqU3LQoMf38igP2UlTA1texzNZsi1cqm1547SlcJCsWSHp+3M+Np2yRxP7vADnUyrZkJUuLai1QWVwU2HLzqqCzuChN/+6ieB0bteJ6c6KAsyXs5wZ4eoKrTljXVCtbaq0dgEpFZSFzdcTrp8vilaSlM+iv8DoAT1X1ieL+cSyvhYuLqDQXtAoc7PXLAirzDFF8ZfK/ltjX8l3IZU1elqfSssmyDKrKM8xnKc5OAKHqjM88O9RsYfNaBcYCKnyhf+tJua/Cc6icE5gsvSIQ1+hx8rzimmkgnjUqdYK+K2gPXLYVWDlUNV/5LCdVScCQbhNJxyxb3eviKh7EK6yRC3NYJLxVpXMFntEbmzAqYTJ687OLEqbV5lPCSo5Y5WYGUmlNh7jaMFFE0pU6Ro0xAMntuY+ctAlpDoREcwSM4UToIrLFpKUtfsSXeEkwuqLJzL3K14JqaLRY1YVOX9qBCV/pYAAMwWhIQOYRMk2UhYstACszRsBDramFqjWnmD2qp1x0lrn1vUWPgFqjOaE+V8gFLENFQVmgK7gk9TVXNingXSywJmxxJDyNQnlKY8uI6SYl0mFGiwArUOnQOV0lRZSZLDkrmvl181BA7jQROWVJY1Vqhwsq9baufsnREG4GLpX/YoOrkujLyJU1EQVUJmCQ09Zx1sLT9qmEgS4ZUTMRqEQWGKtiXOLZC6xEVIbQvDGNCSTNt9W5KZ5SbgKwHu2IuW5ms+KrNEZVVdS8mHI8VTOr8nCgJmnzqOaaR0wrVc3nMb3OwHbUoHI/8JzzGXMEuI4/St7G8/OHc4cX79c+Ob6z1T4GfPvxg5gfv74PMVs/tvvvd//t+Brz+LCqmPv+wDjsL5/P/CGEQBXKct917V/w8SW/b1nMwf6UEoRWep5aUZVlpoRGevc+j4DiOZBczmtJac0MfdMhb9L46AO4PR9XyNLm8Fs9j9Zb8s/1Xaw0zee1qvaqyqr8cWvzuD9vw7W7P2vnx/Naz6zQMeaN2fCYbiEwE/L9W35edu3PR+jLfYvb7bNf6P0xZh5FocpyWvnXy+X9fWwbzK9vzzo+D/vYH5/14zC/qvkRk1btre2IEANC37xD+/R69ur4+tsOfiH2444n9hn3cd0v9dREadaxXT5jtODo7x/NgIn3z4IX+tvX767teTznfgEv+cx0wC4TSIslus2iyhvMuiv7l7+8qXK3ecRWfQ5zeFyu4ZdLzTVJGiE2KqdcCzRCrZhnCcUoVi0xSGl9/QpQZVompRw9TaukTXMd4iuE3qp0FCk5ZTPjbE+1824GiaWqKrDOW2NSoXNA8PAV2FTzsFDWSBq1QOiV7eupCqzqgyRrosx1ioYWN62XoZYnAyqc6dHr+v8Jg6FeM78tIfUL53wplkyJMqufy+W5IbxUSRBkqqXHpZk541JV7L2vlkojshSskXwvQQtmXPlQOAFbWyMByVpbzZKarNJUAXOV4ArLt3f6KV+DzppMXqvrudHXOkledYR4pWv8lPKsOaaQr5lFOCuKCKKAXLA0uVTha/T4iXu//NAqrDCjtd+da7WkoRTI5GRWCgCXxGjRF36uN1re1DoDz8TV2ZBVAM2mnKQhD7lQSdSxD632XmeemIrLDFBhIEHlKhY0TpOorCrrUamShcoifCkDjgdGFoGlSjpjzfLVEr+GzpQILj/71JoMl8ZIZX42ESrJypwJyrxFvHQCABO2xH6qGrYsv2bnZ8lsFSxZ9xoAYaulgQCN42jFsjl3DV+ouqMQngvX4bm+N4qxCDxQtNCFSVk4SQt3jzCinZy0VdJyipEtJiz6ZgYnGnty4SrWgka5vXpCVvu2pQev83DHca1pFpxH0W3lVhq2puWssqKvb7lezaekVZUVJYfBmOIKr2HonN6rEmUwA/pqJhKXpMxKsUZQSqvmwcxg9NbtFI0UNWsjMadbDSbLLJ9zmqJ0ZkgrKQbG0KyqwXZ8XwWQM4oQkahqGDLuo6pSmIvkWBAH3eVNojV5wmEA1ewz3p24tKeb/CLP1s6Ym4k6+jv+bR74OqzbBmvceHH0OQHrVrxul8sjVXbb36+3Rz4ff+7dZLft+vHxW7tWu2xvn/O9m5Vxg2+K7Sq53+wHwpr55W3wdk8zWlCbobHMtu25bT1V1Y92aV50Tr+kb14Ii1syQbjb5bJSotNvPyyKiIu2IdG1j8+smNShPMaoiCfG868+7pjP3z9bDShta+3+/WvsgzMrbLBl7rN8el4u75+JmfPNsk1Xv9wv++wHag7NPvdnRac1daqPa7b4ZZK9fW1v1+27b23WfB6MW68//Xb9uzSmz3m/+iQiK6RI9Dl3i9obxqXSrn65mm8R9HfGNFMLS3zM9hHem23ptvtDnMUszQ/1A+39rV0Yv+2xH/cf3+bw/Hrt7duG504bU7XLy+IAR7D64ebR8U9UeF755YtlztAgn3sZijUR9LbtAJQneGteRV8r1TKrLvZgeVT1UiyyrZh3QWeYnIeanSjs6SWpUu02V5BiiASma5ZOd/EfCYjLQ7QynYVajgd4LN6V5h4GC5mr0+ALQjMti8JS9Nrylda6qc3BWUkuZvkUDxWrzgIILS57NYyuNX1t0DovosU2r/Tgc82rTGmmUDjVYjqPj3WD6RTenLvsefmR7h5WQrOsuWTfCbYFxG+bGVTg0mAJr3+vrZNG0vyEIVADNXnWPJhoi1nVa8Nfj0BaqAL5B/Cwft65zkeePbbLxbQiEnSKw19DRJ1PyV5w82tNPa/TOjPOYFjY8wmU8KXEhpHi6cZdcj0NJchFeae0FGMrqlvSCyxdm1oViktBu3jxylySHhrWeWmrmwuG52NUMb33II1uElY8hmouvZy7L0FfwmCoqT2ddawJgWa+KHDWqCPTHGCu5hys4GNT6hzoFu9tqKppc2TWij9VrVlqddFqzUgrAmwJAvXSy9EwQeUAc9KVrJxEzTlHKec4MIenxjgAY01DhpPSceQp7csDJDFQdCM0pZSUSUrGNDnPwK5V9hGatuJOgTx7G9eAZdTSyMHc1yxr5osYpzXVQvBXTjMoi1OceFLiRt6S7todUWbObs0uheSUGFFFxtbbnOubUYONJjM4Kyctz48ubXVCZNqqC2FOQBNwzkyYTxRUbqocmqnY3Uw5FOhJU2XN8LSScxpAc0zv/MlBAb6Vh4u1jqxTgo6qTrQAonnDNNOcNs6QGCcFebUeMM0LBjxMRRaNiy5ly2xe3ecUzNBqNpcbShrPVoYKN8FNOdPqaDe84xg9WqtN6RxbJ2HhPMyljPe8jL04rcRtv3pEeLNt61sebDGDdfswtm0cGsp9vxF2jAg0DFybXVrMoDWmZaNFTRfA8Ha1MsJanBkFFsgqYo6tmSyzae46+PFhlPzqJdQzw48aqTfNcTxUccTxWePPc9azHZ/2uFxyaut5bO+9+TgCuX9eUyJlN/vNWtS809PnznCpeQHqIarfWur6jzxGabedu7YWAW6OzsvY4gJZ+OXtwsmagj7qXhifXy/99ja//svx1Qc2P1h97p3YGAgzNRhoxZZFHdafh7caZmeWzhZRyRQyZ8meWdPbKCmYhWb5gI2JnPn75+f+1Kx4pxcvg2HQKA4hC5i26uZY9oS7PRU4Kp8YszrQfZZtHIUwx9gjz3psgUuFYaiT8lxRN6e+FFzbGADyVO4W69RJrqa2tWiZiid/eZJ+Uli4WYTSjCrzwEqXJBbtqjJ7lcWsyKUF/K5gJNDO6MISUVhSRi3OVUAWWHYGf3hp5VadN8e61HD+zBNLPmVIi7zFYkvX77+sLDo9tEuo9IKy16W0nEqkyqpW55C09jjyZQ5ZOp116layzjEeqw8FZhTd3RqXwmptQUbyrOS15UlR/vxNDUBFS0AI/pRDAa8FtNYpVidS/McFXH9owCucL+3b+rHnLos6t8gTBP/58lHryarOu9TOD8W53f7MID1X75UiydeLfr7K5//N9RZU/SGL+5mhLKyX8aQVeGJ/WvhpHoNGWAi0ollRiawyVs0US6RovkK1TVJKOcnCCkCSmwowroKylMYhGHJZZ7X0T5UlrUmEKNGol8D5FDWtxi69PlOq18d0vR3ru3K+iKQbtSokz2+ToXSGYK5fOhGFU/tOo8sg+opGc6dXRbMW5ZBcZi1QHo42whjFCFRYrQqUFQWKk/p5xVkuZ9XCL/hzrjqJ+DJkvoAUQirKTpkEBNANeeDVDrI0an8ALYTQ7NrI45xHzZUrsbUEDJGw3CFhGZJP1EUnLwLNVeGCJOkriG+uCnANQrMMDVDtliCVNWtkooCCqjBcZVDQaZpmxZiD5SETcoZw+gpP5ggri2XCY1Hr8KJ5GdSHSDU/dQkEYZSBzRmrPweMpijVOWUVa312ZE7WOCY8oTUpK4GZWq/F0lmOU/wCMZrsArpYY7kXpdKIOnzKpZrIvUeN46ix7vkmYOwVRmfDswRZLo78UCkSxJgX0wg3n/LW1b1zvjk8nzPBt+sz/+RP1LyXfzUc9s3cPu+2OScv728zC2+0w772uZNvOW5xg09DXW34aD0juWNrya6xGUk+xtCu/HEd8Dp2H17lsb8F9H0QRk4ZfEfrG67Xy8WGXccF1sicGB85rRPvns+3e/Tpfk5HU1BjHfsbh036/LQ4MGSm8XG0f/vP9uPv8Y/8nm0bGYEoNzSfOVTFsjyrDyPn9d03Z/TWpvv185FZNQuc9x1WVAkJ30wtN0jsDG/MI5+HZTETVKKIqsqxJyXC2iZS5pJz5Soa4aocc7ai1ShhSapCwEQ0kTXPRqpz5zL52kAXSXm6dNfX+dXco8JYtMla1URn81WDuxC0DFluVrND0WAU2QPWAhMKQ1JktLVT8SXCIl+s8qkNSiBPZy8g1VStY1VaHWZGQGnnmXBGKNUk11LJ0z+5rlO9LvifYYBGtBV3jbO+ZZ1axBrrjTrdPqf3ZCUPrBuYUJVxHJb4g2PVOoJ/XsBgTmCazBJBkuEneMfmznk0d8caWAigqjKDpwjbiDqFzjhDo1snu4y1XJYUeYrV/5AIne/pCro+DxvgFZ9lsZQpK0lwxS+uAYOv4/jEAtZkdhLKP/drLUz/tRjrRKNfXPvPi/QkL04C++eJC6wwlD/01Sc+jcXY/THrrGdu7itK/FVbWIsQ5slLW67pMAVpCQv8RSlU/gGALx83QNBJ6Czcws83a70MoAWX4p+kAb6KHAxl9EV5gIAZi14F+rSQr6ALE2HN07TEeutBugth7udkh1Mlv/5ivt7g9c/P1k8BS6i1RAVGWkS5il50elmZgb7qFNcKj1MUv4zbZbXaIdfbtqYyVSGxdHzr73ldMnxt6Skyi9U2X0IBrurRSjPmwluWjEsFFH9+0tPJKvfkCxtZunbQXADoy1lbqlcCrgGqVTS2bF5Y4fNYsytQZJXp1FBS5+09tZbWNb7ppY/mqUfXerXKGG4snGIOnyeGQoa3XodifynM1geT7u46SxeNVPZ+CjUJoLqfC0Bmvj7BP+PmT/VHFWIOh1m5rAUC6ttD3tJZHqGkm5cZoxlt9Q5HljmsFr9T3iehYq1k1WHqmqxMSMjcac/KjNR4tJGPt3wilUmbI0KU7Z9to/cWl+s4aquNIHqjpT0U3ts2e8dElGIjTDcns6I7R92ut+PR1Y3Nr9v+JK75bLdWoc7y7hdvPWui83KTWSUv7s3sur19eX97u93e8nq9em+9Bz22TmtmwMQ05RRqnp99MUyQMmvknCqu3pZjggcn5lM1aszngbmP+eQIdlPQXC4rGGtmjpHMIzE/6rgPzaoY2fLotDkupVyfx5l5bNtMeNaEz6q2cUZnd13JCalgCPmSAxN+zS1uW+WhGs9kFXpW+WUzqtnVVn62K5FFTbOSJSAmAOtyW1pFVmWFaQ7VYxqz2ML8PLNP4akh3dlQGZ4n6Lg+z2e53AkvG1YWcqFW8MTPLXMtPySbfspiV1jW4gtrAcD+mp4X6ag/zuM/sqVeSZb2U0xFmGn92fWQ7by5SLhxZYqDtDWAUCuqak31S+UEkLCyM/aBJwq3fvvUMIO2hLrnUmQvXs2sYEvBdV7KJzrwEp7JTDhV/sYEgErma5Xnisx4Pfg/tkb83CFfJiS8vtOC6qQLg7SfHWovyno5udaqUi9BW+EVLPJC4F+l8oLi7Ndd604ltEITZCeJ+9rL1iM9R4mVT3Jexou6/XnfvojeU7v1emQne7FiQqFV8sj1aM6fut4VW5+NFZhmLzGaXtMDUClUipLR5TDWQswrVZncx5iiylywYCK1auyhmQSEiow1pAkOEqUjPeeUuWmpWHX2YcsgXymSsMkgQKp5BX7WZ60cCZpgHomw9WsC3F0kZWvFcShQcL7Yj3V9/3sEYY21qaKVqrJMNQ/OdL1CQnR+N0y0uTIpgQKipFKFpDxbhta7qMWLGmA8NYM6q40Xeg7UXDmkzplGVqJUlYJs8e5TpUUqC9NRWecbJSFKJJYP2gCWvwYpjXVyrApuumzlasLCXup11PpjWB1Lr88zlqw/18Ze5TNFZpYqS/TBQ8oCWcvqlOcFnKtXz4xQijVZs22zjAkh8+eQt77OWHgfUlWyUpkRiVztTek2VVUJP/1fgq0PuVUCKFFGruKmlbBctvCnJR8Z2mfFCB6aK8IS96e0eyZzYBafsCHXcQsfpWwqinOSwFxrzpgJQSt7e4ZqpsYUoQlV5krcAzVtOdvXmaeIKYGWoeOwyjIeM39+1UqZNENleou2HI6eWVVkrPz/kaqsMVDQrMF9kMPcjlHH6GMANaYNzLmaffwE9FhQfT6es/Zt3/dck1u565GzpTSnjGmwTDYAGmGomsqumuMxflc8J67v/HL/c/Swbvb1fXzb9/YsH86QowXdtphVACO1F+x4Evvjue/T3UYLosorF0m4OklnWC+vrOdg9Pn5fbs+dlxNO2pAo+d+nAmDh0vj7HVXHhlWo4bzUeN7048fj9uc2svFzspyQSpMplSzTe/yIjHlafL2CmVeX8PmSGtta5GS8sVcQgaksk6na522fRWXsufcEapQCfmabF82oLVqnvfzmvDDKwzuduYGnf2ga3fl6irT2id5kj+v63tFc7y2MsPrMOcJ876w1HWRvYrRsKpfz81tdcS//rM/MGes772tbDm9kGKel+PCEV+WGK0w5PVc1wSwkILX5bC48Z838c9tUar1p89bVQWw8rze1kJrNelS0QNY8hvQ3Y0U3RbaR2hZmyBV5bCsc3LReVKvVoOFnzLX8XB2M5509evN57l1KsZqnnhpq/RC0X09tbV68IyYJ4jlsH0pwRfPsM6kWuIuvlYvQUt4A9Ufbw6x8AcRdK5YYL7GB5xRpMDZULiqnZbnxsygdWFR5qCbACVzTUsjoZJm5rrtkz8nrZeLtc7dvia4LMrr9U4t5Z9+qs8W8uPNOeUBwc1kOOsmzpLL1xJmhFmV0cNP7zhpK27CF7ZwLtLrXVnj2PlynKUMKis4aWd/5zmFcBmuZYupp5FebnA3Q8Ei5knKGGq2NIMVNH0t+TVfE2zVslwbIKQ8R815PN3PrLCVp1WUDCYhdWIfZq7WWfAVr74+D21BKsYz4ko/w03Wx9o7q7d9fbCkAixTKktDTsSSj5tBKA9BpdW4aea+XMdOnuNgLavhAstTVTxxknpJNk7ns+UJbpVyhJYGc/q6Uhaf5OHmMJnlOYkD5jxOiGYFtpNWFqnlXUFuLOHY5RxE2ZiCV43KsRLCkNRcX6piCa6qPKoNTtmuGUdG4nhuwbRjf3D8ePM95l47K6rNCrsP+g7OqpJF7cFszCUny7SS2awWd1krmGVv8Bpy9c019kYL8o7Y4G9PFknpF6jk88ufHvaxP43zeOTzYULZ8ZzpelbtSc7HsEGMvchmU9ksxwSazZFPNpPP7NLQfphX7S5Y9ll9fN4Pt/noa1rPKbVnXkRtv/ay1hTeb7edqFne4ijbNkOwtZK/j+Dk7Xp4WNhAzk4JNgscUzhszCb96x5v80K+ffnesi7ufrz5UWQWHuMTeRnsvaxHBuL9y61fbrRpt2p7lwo8jpY7j95yG0KKfYyZ03uLm4VdIt7a+/OeNjPEhkRIdMtZqWhTeTgH7Yfb1WBelZdrfO1RX/I9PzpmJEphiovhkshyXDSuB27Xm9h6C9VTectUzSUUSRPd3ibcsiq7SoZcy7ayBGnl22et4PTzBjpRSnot5nKFQhnLbZB0dRsEz4BGQXRaJ32dnCuqgCRQi7h0m2HkywErnEsIypEm+Qr7ByCtyqUT7jy/fnVaDUS3PJW4Cwh1Q2A7m1qqXhf4kgmvk14q0moJhV5/yyldOsUlXCfoqR2sdaGstbHWHHB2z58b5uvqrdf2Dp3nuZu7aZi/YIIqQE4tJ2DVKwvICJhHa37eIUtxZG7mhC2xxL+7CclX47ZOLIF2isZe5+JPmhL8gwqPfKmcBKK5XiUVWaDV8rsKes1Otl5952v9OdU7da7KKCN/vjyApb/23/OJ2E+qcKrISmAmdCKHqz1IAH0duDQrpOAwdwCOPEQd+26VLmMuiL5m0VXOfMGupgQrkToJWb1qrgTFYh9IX0Bn0mJWehpNZWZaOSA5j9U1Yr5A8FUZYY4AfeWcgQanr4GsJJwQ9ImZA9CJJtLMHXSUltdnAeen6VrrFV/lve6OozzKEq1rmgUGFx8tEBYZSBdiu72ZzU5e44imbCEe5xCMsCF/iZONgowqRMSUz9GT7CYjenfLhRlRyEPm/swV02qMS5tTNJrRbZrhTnMk6ROtq2zJPeAmmIJeF8POyOlWRlBlWTlJN/aLWkRzWI4UsJPuVIHEq8kzF3PkBgtLjaOvtmMzZtI9hEqgysiiPFRWzTyNUAWmhbPFmDiiqbdjOsKKquMZG+yYtc4HwGMvt2Rzegjm0HR6tGYPXY3TtktelFbbZYgKyBCgN3qsj7xFzOVRLDsVAXLapVyo2An2Y0P5xWYFAzQ3GUoykK2BDdXfefm0y5azSd4sdFxaZVFswVSNuc1+vbc+exu3tldnNx+densYPeLzyyNrNnuoLcjlFrw/0AutrH8L27zVZfDCwfHna3F81tywXc3++qdP1u9R13evR/z56gH6xb3ZL+83G8PeDLv96UI6343b9ZIuP8bVnxN9+4Ldjvb2jtY+nl9/secN+X77dvvL5bL5F+6PZobjaalrzFEy4igNxbxLs9ulsqRmEYxbK177+L1+cbTLiOH/qfXuEUK2bcIAazWfR7KIMLWl0Wb0OFq//cs//4c//fMPa7OEeOw4MjF2HnuDD10nAmTZreZntetmGT6fwfwgjhol9mO0MDVTEFHD2QxvguuKDZeoCozhYjvAZz54DNOz9i1n1HzMPIZk4VnKzM/a0DJ7JAxsZjFoMrqZS9aqeWuP54FceBvNYAbW1ClpVAD+B0kF2cqvlVjHEWZ9jaqaNkFxRON5K0i1eqmnaoC5ctZzKpSpdJsFUHLV0qW8lvATiE0G0wiXABhcsbp5bdLpMFUlaDUbpbNJsMQzG0cVBRwK/LFUm3Rae2pF9emE0FemIZfyckVwlNGWN5XnvotXIbDVWSS/oAqIGNMnF4huOt3HRZaLVhSskixzIsyYJlVNQTWT8GjRmvGPm4rncLCmBPmKeVTRVn5NDycEnT1ptvbFk8b/qYdZfuf1aq4E4teGJ0CI5RU+Z6r5wl+RFGBVm6AswORrBTPByFw/jUDSSavEEhuvrItcwfg6GWc4Tx2SmdX6X5CeS3K/klrI4mr7XYDBaYmTLwczeOrwZV6r4t28ies5mfYjPVwljWMWjUlzqZomiN6Zx5FzomMkohDWgjIryQOKoMeKpGEsssJhRrUq9Mu69BSALXtPaE1M9oJ9zKwouHt5mK1NH25mq9TSXHIk1MysjpK7y2Q9MdlkdMjpBIwo+U/k1wAmrNNlUa3BWWZo23SNo7uMaMmwdvFdDQwGthrYs0RnKmgyr2huicmwKfOLhh27XxkGhrA1GkVvXqxII3k0YODSPlXpW9+zWZGbW3fTrIsNrVDi26xmSkAWVqQ2f44O86J5b0tfltQ8DkQ7ovVps8G6alHW54d4uYLNw+kiVGJrZJghdWwF1HM3015iWXnOcqqBKCMmZkXSY1ZyjlaMrd3T03r/ctvlaZfruCdjuw1VBWVAuYY5uyc7YSFFYFVKYppfcRDpsVcgPXoFZiqpfUu3OacZzAo0GyClQ2ZWMqEedbVnGrenJ/v3LfZm1lAGpmI5uexSQiOa6co8TBd2VMy08Ot99DJm4P3Xnb+S/nZF1+/5vDVm82045vvl6FF9Go99fj7vzv/6FqP353NrvY2/tg1Hf8yLLvWlW69MfumXGhz//L5XXurjq7PZt//417/P/vZ1fmm5b+//6X3bcHX37XH8r/76OB709yN3/uXG5vW1b3b9x+9f6+328Zf7/l5fEpfLr4q3tx1bfr9NYctH3P88t+0h9mtKj978ggNsb/1Hu2aaxvPZJ9Tz7dGbHY+KeF4uZjG6AQF0vn358zi2jnrsMffg+PveP1mPyPteT+T2yJl4wnOPFs9xYPv9//uvEbf38Zf/8fH98LfjCOkB7PPI9rzHMdMbKTtM+eXy/LzEr3vW7d7b/MCzhvful2c841IzWbBhMvCHAA2PW/221z0+pu/d2l/f603NZRo/wg5PzFZsc52Jc+jH4y97D6Lx+7FX20gi1h5qByrJm3vvDUHbVNCAUR5KzUKsSPTGOcFSeZWW8usAKifnEx5MV1aZkhPpF+litex5mscR2XpVQRnKcijp44Hl/h9DcFaxihPGSiqZQ0KuMGZfFSulCSAKWl1nynKad+WstJ4l7lRJQcENS62RNaclBrEsVauPAH9woC+5BtxipQMlVj4WwMwCzVbtriSqCqg8/4PVEFQgTavAuF4FFiY6DUKa091ck4SmaqZdPAwMq7b2dsV2aVZn1tjCmr1MlVWpaHZeTBI0aabMGf0Caw5rTcCsOcykOvNz9Wqo0FK0rCmHVTARiwRaCMJpQ8JPefJP/HUNAmdpAH86rAgZFyrKFQW5opZ+LpeAsKpsBBfWUHCCJ3zZqSCagEDKkSsz7YRznafkfQWLneyqceG5sRooZN48zKEJjQNO0Viai442c9BjFV0QQA1VSebmCi8z8zMaZAlx1tz2QoXPoq9c6P0r4EwgEcxlVylfWS9FO8Vniz7HcgHhpcMXagqVxRRS0k4LwtyM59M1kS3zrC40inTSCa9FAhzGmSc6lLakWXNkojjKDt/HE2BxDEwyonCUKFNA6GLKqkRHLuTHYSw1z6CunqLSScBUQ0EPm9W5kl68lQds7lTzKghZ6YZIgG1BWIWzRw6ZloTU5SEZ9y1ryqcGNy82T9KjWZA0m4t4WjQApJpsZKXlilURozmylGkXNEd3c7KMrW1zenMGgiW5z3K1gAZQiEDbjNgTgdaQY/AKUMdUWsPIpOatyyMJT6yvpLxm0QYgKVmZwRlqVbOUlTkPwVqslGCPnnODB9VMWsEF5tRI+sz5FI8B9HZQsOE2xbw31a55qEVartKIePJIqxmmJ/qjsIdifLdjj+dgHdN+/EBMkPm3d358bJTd6j6ftRGm59MLE9dppampNq8dWYfnnPXxj3KOt136W7Mw96Oev1mPzHvdJvNjzrvzch/XH/82axz2W8Pch7XW/+udHu1+9PGYv/0a86jv/rf266/NsR3Xz+Qsjufz8fj0hB9+zMeHPXPXxe7v9mO83bdHfh6b5vPYrnloPDmP7YkdOn7lJPZoAXQDbOTQJS/bL1+HQVfGzf6Uv/9TXvpzG7HtR7sgc9bBeQTzQv825rf5I95AHxvdxn2z5uwXMCY+/Zfar7eZdcxEZT7zf79vmQDG3PSfju65H7SpdqVwk/Ho+xO7zed/j8uGFpElm4MY5V1G1RgR7VP9Fhhv4/5hvB+/RZ/7NOlZvVBd9VX5JouYzziqPY/ZFahLK1x++TJnqdwwbVphepdV7c82yxrGqoODlZLKzOVykCZziWaWxZ2QL20x/OJudWYGCCS25RY1EEUrd3doMPMkIgXJVrZckjKzLOIwiGem1VqcToWSRknr53slxor4MVYdFWLOkeeJJUEzrDJOUcxJ05qWLCxRK4nwVFSuvOl14VCmOfbSS7RUlasZj1TqFcOMWsfFunbtJ4vLJtLkfXMYCmdyBleW/KkYo5HhNFTNI7o3lvuyQ0RQ1SBw9SZVcXUaUKhULneQQFWGGWnNfWm8K0tWq8LWysSXE4k/c5l9TR3FU4UGvII5IETip6aUfyjghPP5EYt+XYFX6yIm65VEiJcIbKGvXN5g4uTbCswCtcqZQeOK+IUKhswzX9xeXTkLgDzfkvNZ0PiTl3MP1JCEOUoZJZOUJXgBK9ljFUaTBgTcF7VBEGytjhXjYdEJl1YuMY2aI4xm0dvSgy/hF8FUqgZgoChMVqafaL5WNc4ZCFVVwCxpclVrlNTKZhaRMytNp4QXp70u14ulFGzmCmzgKYtQEkI5lwGryhZ3xAIybQ4vItsxNw1hFDhsHBZV5MFxNJuN00uxHurJWLsX6LCaNIut640PiMZ0Q1jSgtBkc54GuVJzqRBEMZZ7xpS2RNkouJsnl328VqT6kSMaDj1//TzcFYfGZih6pLXi9VqthgtbZQ3Sw8KQgremWnV5cq6q55Uh6Ok25QDdEqocB2Y5MVdWgIGRNLhZhrU2Jtg1R+0StDvHdNWjLNNRz6RUKHGWs2VpH9PHhHaeVodSjaqPu48xJMcuzJUkYMLCr8ZelfaEGHNYSUsQvmqGza3PXYTGo6yX2sAFg1lm+8GWHgc4uVuuMNJ533rDRh127IjxxBidBJQzC7gW8x/J/G1udmz5vGPPGajHDhMjaJI8jmO6tsoLO+b1/fs4DtS3eLQ7EOrYbf/NbrbXE7fK4+B8oPWPemufz0eO3i75yJkb/W8PtsbHM/8G/fpph43P9nf720fzo923Hzv3+nV+/xs/v+NxvRx7OZ/+hI72/Irax9vYPr//7ZGP5z/GsW9/On573Nv1x63PHvfNWUk2Swc0nQEyv7bnZXugla5t/L3/J//+fPuO+/f/OP36aVH9XV9r9D01DXkMc+/3KwZd6ZZjthgf4/5fft9//1A+dNkFIjNbTTQL9KoyeuV+M9L2zy+XL/+Cml8T/X7D/bf/exY/8vp/GaE2sG86Lo/Ds/y5Wc2pHzbuqvkVf6vr78f3Xz8eb+3QhPrcvxzqA/tQ/ppWF959r7d6ZL8l63l578oRfRkbIbYwl5DfRYs5rFZTm1aq+XmolvjvVOKMKZMYSvdViWAWJiBWNGI3XpsNj8NIwY1oiOltWiDbKnVobnS3QhNozdN4ejKXZqu4cqlEiCc1kL7ExzOhNBVTROXJndGdpdVGvHSbS6sIc8FlFijylGvrJTfmuQCJqHUlcZmel/2Vq11hKc+orFztwVK+4jKzTl1aSkTlYK1GXqxqHNaS1phPwqEqGFmZKGQ6itFWE0GazGM1QBqrVmkHFuXutFM7RAF1GERHzTlAIulnFYOUJ9C+NN/SEqUuiUzqtfXbWnhNgCIEoGwNG256xVViCYvhJ8AuQwomnkLmn1USywKap0pITNbr/lziN1tSLABG8qdtaK4kEyNQeWZ9EOISptp6K2R2RpGJSi06AiRbGM09lQhzczskpjLNTsmV6H3NEG7KMkOh2JhZMqSjbI08xkAazYIvZZ3SaDC6pmQRpwBqKQ4Wq1vJ9pIfO6BatfNKlU4f/GoJl4dEolFBZMG2N45MWwkasVqxSkalPFOm4HoBf2a8QAxCoplZIM9pBRpZK9+j6PLyhEurOg4aqjTlei+C4QBIZxAKH4wDsHmSNrTlS6SFUVMaS6SoqtyJN9oyB5nc6P6YKwd6fdWMWBEuSSz7BawBF0XMiDQgmJbTJCg1Ymo8Lwpnjulnxl6eSl6cKvuTMTIYoCE1gTmHlhNNlLHRSClVtxqJGT1kWbAoNUdcnx8bh29x2x5mlcQR26DGbuVeQ3tADibNWFOs9Jd+gU6kcHwqyYc2cR7pdpDEwYrShY9j+IQlZm0qgKrDl15ZRzymy+dSzJEXJGvTCPfYzD9FR57fHcKwMT/jIB+cw2iCiytILUXWMdPY/Mnn7gbGrYalF2ihGA+Lg4xjaz+m0i/5OUvwmzbVcdzyyLd4jnDU0/bhz6757F3AXsflPTCeH30/Zo1SaFZNx5HTtdJ6CRWOi4fTSNQcj66HCcn9mFX+Jr71+4O2HQ9F1weYOmZRt0t6vB/mygHXfwxeL9svv/YGwufnP/P33936LwpUqL5d9qt/H1HHpc/8jV/6+5e3+6VfVNaCbOm27+ZSAxmXYmXz5+0huEXUeJpv8//z9hvePh7tf/zantE/uKdYnzrkNaXitO2yT7qPf4tL//ht/zp6v895NIyKdnnb7L79mb0cGHoT/Tv74y3Nxc/rLY5fH/36fN4+ef3U/+P/9rzji/6v/+fn//F/M+QYj5ZZpXFRGXlRu7pK2i9XmMLfYpQVJvb90MZMt+E57vstu5ccEF2CW9kQHeYirc61jqSHt7GfZDAjmh1Lp8j1ES7rJZWXNA3zODILdT/iEDSnVzqRUwXMbAkmJPfTYrNC6VeTPCmbRVWAMEuj3E1wdyJF+lpEkVUooxWRB4ImGQvOWqlFmEtFvSwIq27wZD2BEitFIs84KL6IaAEqW2j22Qa1FniIyiXBOSVXKhPoVrWct681cyHCNLNEiaLRok9FY62vflpONMyj6E0ZBZ3uluXShylP/t1AJZflwGhtHWdlywvC07AD42ky0b9TXJ1ZJCJwFr+KgBhPwVRIFslJSqoEahW96yyIjAVHLNB+hUaYimeJEpabFFp9dzzrfF8Zaoxu5BJulQUK9BWToSWZX04vCzRsFzujISgY4SRAXzEQqHTDkly36ywlIBxjlofBIKsWjBYQSt4bVcksz4pg1bQwq1FmTNnKNjKSRufmsJaI5nDRycAE9mJbGV6rM/MMhVvm6jWnFTATtERVqqpqAucg4UnBWTOpooBk2na5+H4vOrXypMtcUTQZIss9q9IKsHMd9FdAtJkvVcYSKTCnEjPHoVFjbFLNwowtqHp6WiY5yCiStkVACgy6cVJsV97nHNeZTIY1gKwnuhzeUz7nvfVKsbaU586tZc2il6T5NPuEyW1UX4OzGcpLcrBtMkozP+9WJRlaGJSyw5AceVxrpkqwMSJmKds41LoZ89XBNpqWU7hpaNWAmSqp8mBZlPEilC4TuV1Djzkrqc2f6vb0aW5x+aFo1ThyXOZB20ZSkdv4mOgZ3A1sDx09MzA+5/SQJVymmtd56Pg4fLf3sVu0KcDTVSu7Oz5/S7S2bXhmHiOm3DR3RpvFzDHnZ4Ud9z/lc4/fr1n9+wWP6M8HicNimy7gaPOA66Kp3YmL/fhaFbg89rdtfHse3uZl4r5fZtqX66//xFLDn2f6LU2FylvR63a//+n73f/68Tjm9uPzL/mwCHvPuT16zsvHpq0+p4/EUE4PF0MTVObD7rZdkvOH5XN0+/HGo/JoOXBYaBd0KOnDvPZ7fR9uHtWuf79s5v3CirZha1Ujdfe9fj/i/u79YZvbob/crh3euH0J4Th+a3q0yzf7/jWn7Mu3vfyv9tSf/In9eQz7x8ef/zTshv5tv/3u7/wofv+cjxv3Och9032n6hKpi3XHZcZRzn2Hz/bXdp38dvur/e/+t/7f/rny2+0xx1v7b8+R0PwxrMBdPi7j+Kf+jObX6z/qqx77Zr+3/+VPv5R9fn8enhxe8WlpmJPH0zRzMI4J55jH/dfPR9qf8seXv47t1jbffATu0uP+1dU8ngyV97HpbvWI+fd7Vh75f/o/3HIEvr3Zj+99H3te7iNbWb/6Ph+Krxd+0UNus5C7eY1SEfOwhjLP4KiemuWV7POwOZnVBFVVDlTBCkhOD+urSzjdKsezacrG0QvUePaO3d8eI4rKMVw5ssVhZ5Wn0iyRCVQ5MnyGs5kH6FlJ+CVJx2WyzD1qJI7hl0zvhr5lMQ6a5Tom21lpOMvMzoCLEpSsFfWkejl/idM9NRMUNMc0LxQNQpXMQHcvIrUcgAlVLiEyHTS25rWaEJlrfF+MoDeD8WUJmU9tlpo+pRgZqOYU1fq6Kk0wmq8yEaOzUFzFg0WJ3lbtyIKbkyV4QClftTFlJs3lR8Pq2VvuJ2Wt4UFnnTvE2MTlEj0zMJfvTE2IOKeYFzxsqykKr6DRtWgaIbm4lpYTAzfglelHI1KGV89CvcJJZCsp2lGvqA+tMkXUy5J9Wnx8tc+ZR7PYXDIc6WaUPcGcaPZcnvE0xywDzswwgB5euaARlwFu1kSXeyJs644mcaZKsnCptConmYCllK4qlyGnmpAkNIu+gEqtaBBAKauaKVNBRgkysCYFzGkTIFWjCnbs8yziaqhEZWXleotqlq+WPpbobmef5cAc8wwOXe3EUspTaD293FEpeSwjIBxjwbexSINML5TMghagcY4tl/23XoFjZES2C6WZzJLGoMasIioCNVJEySJ8K9h1JFAlrcigpdRQFpJ4vkV6hLUJqAY4L14pSVlGbyQMcUE2cAWsW8jdIWUSAnzlNAbTEBMSS3aUBMMBOAjOQpbKZ8WoRm0brGXA3Ojm0XSRP03ofcCSyLbhxxFpX/e53WBbmxkXO3rdpfbW0rsRZFHwvo/94b+xe0dsAqZeSkaWY/S3e1GPnRMpl0ArM9aePFxDB4yNbfq8VDNs6U6j0y+qXmz9kFdjmIOX2pJX7tbfJlvLHa2OeS/WGKOuVTN35scn/dcR+nBm3T/lnZbS3J959euXsOvXf0verhPjqdD391/0px8/Hr0ezhr7ARvTZ+7mNafccH8u+m1/3JtLUk3b10R+zIMpUDnT1ui7JuNCjePojdqv4/71mfzcSpdPNu/bs/oRl63Hdcx53JCPf7zLInA379z+1+O/avv+/DWfA5G/66+/j+9tq4/jVrr2j+3b27fLoPC9+8fHP/Bm4e16DD0VT2XNZ7YnMfe2Rd7Ht/mw41o7FAL2+ti2X+/PeNPjv/7rfX//4jW+2EfuMOmJZ7olfETW8wLuzfERXz2P6+XjjeOT/gO3vuGmhoLr2L1qn5u8/Ti2h8+ejOOafhx73FK/fJkb0PEcHbFX52N7lmvfGhqemlvDLbq98Zi1c+Q3PMbDnqwQPWJEs5sbtmOqA6NBcHQ7lYy+Zc2M6CRFn2levnrGFk26NqtaRVl+Sja7EBGrUHDVAuRI1mH8NA0ZJ5VpuZdR2SimzO0MyVhO5Dr3aUjGmq2UYRA8i4Q4pxF8zgE5kVlZy8+RDTmkeUphOJaQlsLJKFmehqDl/cWZnrOS281ar2V2ziqCYYe81j7pC4Y0ESb4okvNkzxNxqJhLvsUCr4g3nM/FmghEeYezeNyHWHN3dwZNllUOr3N2WvYGRhF1SQDjFcPwUollJGgyxB9NbcUTZTFih8xaUUDrh2fqKUJLyzK+4zA4oLOhegCzqKNJZI6wT/SBZ4W/+4S6KeGZ/l8X5G5Sx22Smh5hsxQ4IZtK9gVpM5EFTlfbDAFj8oComBO0axkUJwQNZdW2lYi52r9lUeYL2W6ezENsJp4SfodmJL1ohDqsdxAYaC1jmkoglXykLxoKPdwl6HolHuLcBSK0OJzczlwa+kBtGhmO7XvOtMWVpYIhVV1KCmx5N/K6a9ET3jmshqZVtYBMOVSZtYYCYMjTmiaJNy8LMyWEIsYqWVGWGmckpkPuW0ujzwjnt0abRV5b6pRpTPhtrnzDGlSCsZWU4kQaOnRmxVUsAhg+Q7Tm1ipVgaGO+tVTbxgJasVnbxk66tfy1aisIH7XTXTCgHQYSsIWs1jet+qVVm1rqolg4bBFN0LZc4VQxXGMTMBcxsBFHiMKomQlaG8dhVCZaGEpzvpCEzJzdE8J1Wjg7WQ6bSoUu9OVHWXM9IDtKOemM1hEcuiOBlRNERtcH8Te87tmO7GscCoYJ9CGbJWVwjMrRD0qIqmy21fooWMaIUY0qUhPMa1T4u7wqq6Mh1bWRty31D+p/ghve20wVZfnulO19s9LqVo17cvI0e3t83G7beMQoLe/W67LHrPvaYj9u94Th2B/Wn7Y9isb7fbQVU5MYre6bzerio2ZZDi1WJMt+Dp1QC7WQgMVOY+BVQlyxsbfO766y0ajy9v04qWPuqeMh3T9ezWDkWqox6PI6fukl36o9y+2o/3bXv//NhqDosHe/QCu0DDUA5Q8hydjx+lf0I9u4QxkyzbZz6tjsuD+5798Xlnf9rxNp7X2Ub5c58jH9e9/7//p8vf/pffn5d3z+Ofxq7DiBJ2hSk9mmq7+PQb9B3/+lWP7xd77v3X+bn1OKZoWb/Or8fBwHE0y7JjHyNmojn+fvun+Tm+3Ca+9P2t5fv32t/iPorH46/3g9qbOzdD26LH08YTvz/nMX+ta45D6KxGyvXWyLeqIoLhzcAOocGw7IvidIsVKolze/QFHa6pf3HCqGkwI87GOSOFOHcYstzD2S9mHoc7K81Ylec2RORMmJeKvoSkucReZ1wDnYRjuWlF85XsQtJagU7jMZd93gkLImhnZbcXYlWjvryFS7i8fLHC4oRZqzTW45TF1lmQusTRWKUESxImnin6Vaw5UzlTRC63c+LI1ShahMRY3qNFDdbSIKE4D6bVHBJRBygrC49LAHOysAw2NKEq05cv+4xgpIhVTDXMij0oD1KrD2p5tBdtv5JWIK70OrxebweEOmsTCoxNS1ez0FVCQmautAkUzQCx2xlRgTqlXSfDu1j0dbsaCmcPgZ/4vs7oMpqvAA4DTaCtnEkeh9PM05a0ehlXbX0GydMGbKcNmiuXfumSrZcMljK54IEtMFOAr3iOpSc41W+WrORShIvLXmTrJvM1MxWFOmbWUJZEM4izNGtpjk4fF93Xn8Nc+ZJrxDKgjCuWSXhNlKwVaAMoJ8hCWBVUM4xufpZOnA/R4edfC5r5gplxxqK44EkmEM1DncHWYNnYADU/2NzcFGMQZcDEIhgymxKeMgdakdMFTam3MWtmme42YRrDF1WfNR30GqD7XOvtk236VLnKKRGZVSPW7FqYhwux5kYYxPAo69L+vNRczm7CYE5orCKUXGTGEpGboQxainAsZhlVALNQylWKi0LRK5aRvEFsHqhsE1U0WpSKSTt2cpjiwUuWViDdsWPDdI1Y50r5xlmVdUjlhF3nqfCYp5ohDxuJqqEZY86NB+fwBk3HEHxQ+YCPTKaJq+S7cr3nZ26o5Mq3LXtrlwuQ6vus6DGaa+ZiuGRmBJrq3bMen9hm7oe0O/W9HNDkDqZF6BOFfB6dlWPs47HRsjjGM81nfY7KjJjeOu15dG887F5dt+Ph+XDKjA5pDkg5HmZm+74RwLznmON5+A1lOecT8TzE5Bx7lfZ9NA9DWbOokvb/PInwPfs+ZJ6P2/Y51FVDX776dvEp49E3v8W1X8YbNtrtaHv3/dLjT/1icrOLC21EWWuluHy+t/kGM8Ddq/dvk5jPfT++h8SYJNAurV2qrt3Nrz7bZHvza3OER79G/3KLr2/5564bL7f96uZJ0/RUjaKG02jHd5RF6rff/sM3n89b3RTP/fHLZZq3q0O/5i8Nchyj/zjAUOaAkHyOHWYhXGtEoTD3GverldgGbVoOmYUz9+HeJkV7i72r4UvL4zkfGBOPfKCK1udkWyfVqJoXlXPkMkGIYMEJqzp7UM48gWDzgbOZ+kwU1MkQGyrPALXFh2apNI82xLQ1CtPDrTWIcrifLD+wHChril7p0nY2W+JFCWo5bximrFMfaH1ab0WGr24x5oqQQrC47HZrJyNf7qMFqNbL3lsrQq1ytWmfdQp1nqenAgqsPBlQnI9GdNhrdKCtul4th5I4l2fHV495TrB00ne7b4SS65gRZ2BkWKzbwIEyrfpgAAtQMIGOqlrBxe7dw20xu0nZJFGmhalLK/v5VEQDeCnLFtZ7xk1JivaaKtbaewZxLAKWtphbC1uWGp0/ZPm1z/zp86YV6OdiyFMcDsFW6qavq8W4UGyz19UiNJ32MIoOebzS7te9uzqUV+wmzZYMBAAcLLFy1hxqPeYrO3ztiULY+QgImtsCLqB14Nmaa5apqRDMMvflKYaW8SlKzMozRhopqaaLdia/5BnGWDoZakkTwKl1JgqVxAIhVtSUOXu0WDfPKReniwzJ6XD5uoBec/B6HUvIRAmqBFc9BEEylvx6veku0muuSdHLCDQYzErANImEodxgMFXrar3MASXOnJFSTXNXpa9GYERUuTuy4C2XsCHhSMnCQZTcTeavSvFCEvPoWTXGc04hraxKNpJM2cybyXKiar02hMPbSoB2qiJqzWtKs5VtWwCLtJDMS7Z09UtUFh6z9SpB4SoQTskAsI55plymBWTBrLEXw6VU6wBjVsloN43cnU4sxyAqEz3Nb1n9omnZ2zy8A5MKpQUucygCzR+aFSvrRcqSKZA2O7KB/RLiQD7f8uOaRyA/N6QrxeGZVekuwJE7Mge9t72V6Y5QZNFoFg6Du8W915RNlWXVTTW8X46kOa+X7zNbq5pPYvax72Ab/5wjoubdLm+HGZTJwKSZe/WNUSNjC4uLffHvtqVtjUBHo7fOAD3kbawHkYlkCt7DdTcpfR+xDYyprs99ivto+v7x9VJuA29iPj577fc8Rtk8pj730t8f//Y75w6fVRsTF9Mjp9UY//BfciKcOff7MSqqbBNi22J05Pth4D4v9ShBaF9amMXteGdem+LSrq09b2/6l788/9vlbbRuOK7zqUNVprFRGjT1RJnZNqdF+8uVPpMaZhf3+x2tGqLtn6OmgzMrxG2fkYRPBPf2n6eOy2a1tSz39++BLY7jovH5PSu4q7dxmLfyo4NbNXcc5o+pfRz6qPHMYz5G3skrjbOm3GDSHKPAUYZJK2WN8iS9KjDhrlMfXHYWeYlYveuMtTbW2VYkWp66YjMLlUfYQtNg5uYRBrqAoug078tYi5NIkRlZHukGtwqjYOt2XOvR6XXRSmtfgKUS05fJabXfFPkS1a7QLFtWCQEFKW2l0Er10/0i0ASZsgTSITdnhMxXUqrOwAmua66MxSUU/mMpJPkH2LuMOTqT9QklDbaEYKfBls0IC0e25rQG0c1pbob5XGmcvuD+SpJQQi6LRoqrFJHDVp6nloRUp5uL66Gd8SZnUuYZkwGJcbqFl4P3lc+1JLw8IefTB7vEkDqdWML51/BkbVe+GX7qsk57yGp5IfWSYC+CfXmWjwFbiUev+xbxR++MziWY0GJVuST3IIA5ynLBCnR689BkGR2xzYIV6I3o5/vAs6imquYqmloxZVlWKyX41dRg53UJQEYOe72FJQYaBYoeq4Kpzg8iRcJr5hKXc8VCLWgWMsslvj+pmjKLBd9LXF5mM7kAGszSLDzg9NkaOUaE0sKVOZWr9A9LZJ27ua1uIyKrEg3ebJ+eNLOxPp9F9t62DUQVVSajb958vybcGgaam3kVmLGF5+PZjKg8xFFiahLgrGJC40A8P2gOgk7r3QWsvBEvA1QdBFjVDxrcR2TAA0ZHi2JVKllZrAKzRg9bYT4GEFWzGBQbJmZNzn1lsGedGd2JAU1uUtpEqs/HXrk8ZeVAYNFVnwwJmLNLolep4jqdFdayt9na7NFGNoDN3WaL65ogQdoI/Gaay64B2iwrMaGDZuq0P8PRAofGwFZTqszoVt6E9m3/mC3kne+4Htc3MBDT8AVPXKpa5Nv6XjQzWoNtTX4Z8zrTe7+L8usDZA+mb83UMLx1PN9atbYxRssfXWNPHjbSOPzNHtRl9E2+kTjG9/7UqM3frsHoDjKQJEMzazAfD7tUpj3mNwafgLe38VAVOaxGJOaU2nOuRh7UOGBeEhpKo1CT9ajctsc0J+J6mY92q/14wsoTbL5f5j5nv9zv9/1f+uZz71//cVBjOB+J94+98/1zCvxyPTT0KGbjnPG+cbiieN1s3vYaqYuLbpX9OWbCPOVvcW/71Uv7/YjrvbbY/2G/vj3Qwvr3++A1Qx3TzS6Hrjk8+r4fE1eWXyZv8ayb8/Z8HF/58dx6HoYvf327W0eqZj9y+BcMT0+B3nzos+Owo2zsj1+/27Nn2Y39ueswfHjXvLXcIumlsGVDmIyumXH1BxC7SV9VVxb2e47C/Rnu+yhxiDVhVplJCl4opLxexkiHeb3qgGvdNUYkISt6bBimskXZq2x6wZLAYu9Es8q1QJCmpetJcQKC8Wc1G8k5Aa+QWAs6Law+4bQ6V4qqkUsUVcVaEwByVRWSK70cAwUTvc5syDWq1qIspQKS5JxrjakJVOaZkVVKEPA6DcontosqWa3s51y4qs91JtXSKuCllBWSojVjiwgz62ED/QI5TAugdYtuDrqThZpmTnpA1hawMBN2GIEAQMKNi+q1V9nuqRw+n2G9EjV03oXLufEaB04oQIheL1x9Hewr4e+1D4OLul7EsF452IReWL1Ok+26dFCL/VzXOFd3BM18Cbags2geK/e7spS56HiY+EfRH89U73ORXq2MYNXZ9LN2ZgP7TMfJwpocK7StoMo8aCpzos5HKZplvC73lQ56FhifOSRkgUVjSqM0S2KtQHAk6kwaFGr1Uayh7Vz7K8/R7mVmFyqtqKpcvAAIrE7FBKCcsqSqLGcqfyJBJPJ0IqFWY6wMlFItopVoVSnm4S6Yk+0F3EUrM1o0VZYvHaH3LCkPvcB/ZFnmTIxpqkrSaocNwVR8msFvcuZlNpRaZca1q4iAV6k1UVuZFlbBnJU0RTs9U4SrbIIz82FOqA5uYhgJ9qzWvBdYsamiaL7VZKW28JV1Q/OshCVq9WZfxrAoVGY6qMwwrNBzIgpzQABreNjUGKVspNLtAIZlZuYdag4zfOS17XOk+7OGz2objgHM2Yxq/blGUpjZlD6sZvWvx703xZCtL90Awro+uYbUYtHDZcwsY8t9M+Q8joGoj8ZZ9SwfV+5Q1XHlEW0OJdXjQcqCqowuhz6iKmiZF5F7OkhkOZVZ4LvDrwz6eG58PqESuwjXvtecnzE5G7IdsOZmau3rGPg2b3/9GCCyWVp09JDVZaPi/Tg8rtZc6KonntwwU2nVh2IJ32B7KV1mDIY493kfrfIKb3C+Fzex2YR526ttWc3NL8pC5v37jcd+KDyi9//h8tHeHx3X61C5zUZPOOuIOcT7FkU/qMNoeD7+ZbSGPI6PvR/+Y3tkP3oHWRB9Fhuuga/tH9vbLTM007v80ceg8phbHPW8DT8elo7UozrrmbLWZ827auL+O64zh5fBMT7e/3qZtrWjnj+u7xyEFQKz1BwWZTIT2pfjKbuNiGLMx+WdjzdOtMD+bZ+lrtbm5nWx6TUYeaSjHk9u25zj4p0b2AscbtscFZlT7J9m16QaUqvFvMyTFiKQbgyYaI5lt4G5OcmgYOUwWhakhEekwlZA4Ln0gKqVZLhWKJCrzju0dClCW7c1E7LISsO6My3oJjcSZoKFGGh2OlGN0JQZW6fYQ2GQUFrh+CChoJZ9VWaVr21mpSquW2XVqDkjslZvjUBb/7tUXC9rDs7NEllQLgnmubdDxpmW63J/KZQcovPsi4fVdI/gbDHs8WGyNJL05r61OWX7EbK2QqDMWHMt+1CElhzWctVf0Jh5SoqpVdiM1QB8ht9r5VGsS2ItrysrGlqpKqIKcVZhrP38jP3nK2D63FhXBcf6k3hB8DqZgSVnOynXde+8yhbWD1nb8dI1nxbs5dcWLErWkMkTHj5F0DjXxzOD4/w3QTd62Hr+8GJVstVkszKWrNJVuXxDdsZ3nCIhei42n2bOFXtYi/JYxqpcxVDrUhXJZY1bqm0unGf9Dmqlly7U8SUPWOqEV7fF+qgvpd9aDwtGVcphzDx7QIxrElRhTYcFynyQBDONqJkTEGooF2fCFStOMMtYebGZgIIjBSGH40xmoq+OnNQqZuaqyi5INYA5joxwQ6a7U9SLcKqJxBwzII0EHbPgdsrJ6D47zGYalZV5ohKrhnspNxhSXOfXSSs6PJuPIqtmQTOXGg30EHyWywkQdBXD5BGejYLUsrEqUbPo5iXC2Mwg9/WBFSRrKUcPVlQJfZo7bZPT3cPc77TBi2fDGOZXjWmdjK4Z4SWr3Fmm1mIF2cKCE7PpEwpYv2BIh3Vp+SDKxmV7zCDcJlVWZyNNHTlFq3vcR+6Q3J9tWs44HhbDLX94q5mVPlCTgjAppz6b7jvyMacN09NbOdJywGIvP9LNjs2fn1sGCA1JA44EauymEQz33Qumvh/pol164tCsX8cVc4ol1dxJee1mdOyPrBqOR+sPCsX50S65B1XmxqCj0d/mbqpwgV7m3Z/ef8dn9TziPlHE3jbsIi0T1NxWSne/Xi5vX+wt3g497LIzjsoJe7AGXbPiwb0gPZuF+7CtrhMOY4hv+3+/Rvn0C8K+9uuXmL2Lg27MSwMz9IzD8RnPGxVOXonWuH35vL3b8PilxjYLbR1Ql7KEoFLJ+WbHyMe+f39ohm35b/s+nv9lonsD8tHumnTLEZB7PsmhEJuZbdv7G3of5JP+dbuPL405zTQK8uph3Izm/a26aIZMZY10r+OJolkpH1mfUBfEni5Ux6wmbYDMk7Zarj1O8jVhLIejPM/++GAWaL4imgCC67xoZuQ8YeGlp2hxMOSOMPeyrU1rHhplK4DWg2bUip90r0kwMxzd4FbNAbJMMxAOR7OsCQuqHGVwX7bUZVqF+xkGmTAjZJUrzQHrDXjFK7/oyqUb5iIi4WspXrWzcjN5KILFn0i1FeQ2ZHnCwwIgd1tL4AontPO6g3k4Zy3tkxTNViSWYEjAipYHuGraUWdzkEAP98pVL2EFd2jCW5yc88hTEVSllquah1o1KCtMAOcWuS7CtWjyvCsBwBC+2jVWPS7Jn1u/uc70K2esDqh1R6xoyz9qg04x+YncrblnYdBYjuVlfyZEPxs5CCnJ9CosgRBxvv4eP1XQZzOVrR9VTpBOZk0sg28CxFzl8qPqSBCDxzgWbT60CnWyRENliTlT060cSDjKrJxltizVM8dOrmkJxSzzWp2rxVplStMAVJk3uHFpbZbZam2WUy4kUuWErLRKg2amHIOw3Nl2I62MWaowRBm7I0RzrrkPdvp9HeDqauJqOqgSiFpNE+Jwd5UDGlWZwiySxRzmy6++kpnCzaNozGnQhFwNZGdDEeaxOOOM5pqGPZs0ZJmSOzJnQHOYn00/mmmTtaoj3AlIMwnzhQ541X54zf1wh7MbKAaNibbDWvjELLllmUQ2I5AezgI7BwCj0TiqVKgxzErCGJNT6UWZz4qqwUsAUftDqmUDsp5g7RU8Pib8iQ129SxZwuCd4bBecrJHORr3yZz0JrZuYNFKwWo+or1Pa3CrnF6zYJpQWLm1ss3O6LJZDJaqEr5FKaz47vfqgd111fW4zmN7m6PzaPYj3nCE7xEyGCgHXawD8mFsllBSZkhUmFdZKdzy6N5GmNXI3+OdbR8S5sy87LeW0OXzEZOVuVvAee/bfWpij7/O992157FPpNgki86jHtOvftAPa3Qo1Pzmu9WUTWTRfAxj5KeMfkxO7Sq7uNeTVIm0y73y+dY+f7teLXh73/cJ21kfjMfT/+df6zv/e8k2TnDcbY773XtON+ze0/zPz0G+TwVKPnQcR+XxdR97/Plin49jDAMvatcglTGFeTx5UFn3VqZ23PHcSnMm3R5ffsn9dnuOe5+xRbqjGdXMVdFAz2rGmM987xf7ert9afjdfgm//fj18R+vx0Tgvj8fdyWNmnR/jkoDDGS4avud9fk13Ot6PBq239cR0uz29XJM96csRmNFswIqQ4XCFsXmuWPn8+mZwbpZNg8fn5pJ446boUJeUPmSIBmLOOt+14FOlerkb0Ff7hMydFgBXTBe8PSfwlVUTNfbVjIfaws2QH6xpY6dgDvcrXKVi1VZrdI4ukFVkkM1HdDJtZ49nxxwh2Fk1lmvLpCpsJQvY0msTS3XhetL2HW6dF6WVsAhlK+7Z7kZ1zS/EiskogCV0lC1VmwBOdcP1loaIdbK+7BlgV0NPE5bv+KdHu7GsFRob2+UFQtZVZqyzXW0N2LZl5Y+i5DHdiLO0CANSiznLXyjaEnOteT+HCpWBsbPUWHxhYsHP4ePn/HF4foZPLJYdcHLl7yKWaYlS1oSKp0/TMAr05OSipgrWEP445/lnCIN5u6nCn0VKlLSMpqu5W7xr2ZyizCckPrL8IQFanDd+liydqlojjXx4MkomarAKVtJ5LmOMaeoXJx9ZpVXKRwomuSOMwk7rPZ98tkNmmtCGeLMIstC5irQo59wd6XSuIqSQEOmgZmVebLcgpDlq9iPVUKJXhVe5mQzrPy1LKcqM5VEipNAhJZzDMhlEWNNNhuHGlmVZquTywogg4NMt+Zncos4zZRwL/QsWhW04FG45oQWK2XbJ3IEwDnYQMqOhEWz68zuUUdQgzVg5CxvhFPGgQkeMOcae4fpNBsopRSibYiO+7iWJk2V0VxGMtVvs4N2KVVimZ+Lg66spmk48vAKVc3GDGXWNHmoFOLWMlhp8tssWG9IxtA8rhevLJWNoZx1BZrXMHOWX31on+WuHDCM8nnMtLy1OQJqG54Pu+3PVvJmnyuLtGiRxt82jhmX8fHG3EbSXDTtAL34FHmUWbqQfZOUgnspFVmTNrOrDjv8bru2/qz+Q5iXL8dsX3887ZgNKU8WRsm+CuPx/YbKnlXIYTMvpixVOUWD6ai5S4p5a1mf0zveDvnj3ZH1gd+/bcbqoWvPPXQbP/Y7Ltbz8T/8/R96s+yckd+lDgK2QXU8L28bj25Q7cesa7vftUfZt3tuszCp1p4HcdHcLTzI2s3yv/3pmd6Pj78cY7bL6Gj7wc2fg+/Xbxc9q/tm4+uXS7fA52+p931+Ctvt7fL0t/4DmLB2v+fj8fv21uYQv3z7gmroxf5g7nv+84f95e03iPOzP7Kmw7fbI/uwDiu0i3nTn9/34q2r7rm/82Cbf/n2X75/+Ti8Rf7+0NbvHPA5RnUVaya+fu7P3W5jPn61L2/9/tZ/6XN/5v/0Lz90/Vbis/5D1xxgF+dxmf5ORrYo8qvi2PXYtOf1uE9exueMi+Pm9xEzoU/r/qCpdTzjIr9+v/U5n22rqz32qj5VDNk0bGQe+4dvV+lO/36ZBcyyUoVrzjTGykFa9JpGVBrQTYcsULQ5VeUBttKqp3WUZlijykysIrUfKA81F8pc3q08BiU3JElVEERI5XJXptdi0DxkVrIAV3QGUpTB85ioHVOA12o2YpKCBUG35Wla0Y6rH+7kbnMZQ5ZCSivtHkpXjSEg66TyZlnBUlzZ1ocvsvfMZFapXozyykaSMSt+QtALvD6XPzd3O2AeHp4W8YE47hRFM1kL37od83rZn+ts1rIigYRW0ThF0Y1WRZpFjxaX0JlMVTIaTHZmOqv40srqhA1ruRXXAAFb0lwpTuHWsnkJLFVmJgxrExR51qlrrlueawNWvVbgs6ZBaxkQaiGSElFLwkzKsBTN7kviVeVkLyLh+iNBU+kSeeZf/sStCVFLpXNe6hWWpRJqasWSVaabSjlSEjVHmRsXBWuGqlSWMpfOmAREOo0OZyrnHLBpbstALkG+8kli8cSU1oCa6csitf6rxUCTBELmVNEows24BjkRSyzPnAz6UkUvUhQr8UugwUCiap+L+BcSNpNayYgM+NqUQ3aSxKSmaYRGUPI5fTa6TbkLETPlZ3qn0ejQNFfVKIscj8IVM0xONzerAVdlsBg5jmqR3FRxeDMxDEyEFqfTJQ+AWbSlMeTrtXiRPNY+y42w7eXkRmkeFV46UiWDT4U74SyrFu7stfk0S2ND8/RZplkyyg2YmVblbiBDRktYEy4tn8+JRAg1wklMa75k6GOm+0aKzQsccsTOtkeYu1k4Ea1vY+70zlrxdzK5+vjm0zM8usrdEy2kkuVEi7omrNnFdubMFhNlUDQrvxBG99Yo/3b3fD8aDzPThcnHNIzRcnQjy9OyqTH5+yef87AB3OU5IcBrkpGFWWHgJcFiVb/XbjfGcST7NNjzY2vPMf503L99+vPLdZebI337sCsxePm8XB8Te055TdNzM8w8AkY/8muPgeO+RSTmvCkrckNXUWCqJnu5k8289jK2MdzTkgffCxEeNaa7Sk/nPcf+zhwHYxx/+y8feIx/jKyZ2zGPfxrOfF7HMQzCpT02u/z5bb5vdzvGr/dZz3fcY9Z77Xq/bJePkdNx/FIC2zZ41PG0uz2HEXZ8vltMOx6jfwaPI/nQvd/G5z/jMnm1t6gv8/qYf81km6ulyPxpR/tFP+Z1s3j8P/9fjvq4xvZ5Gb/igA/fj8d4fPzP7zYmQMw2CmVRXXBrD+9vyvomcLOP2i7G3hBADGzb87C2kYgkrZsZML/fK/aJqv3OMX3u9wMzR01qWuuW3ZiM9x+ftzYhVYFplVkwMw0aK6FWtQScZ8Zgyrki2rXSiyWzZSnqCK5xHy6jXLdGeUy40ldIQ5IdAyha1GoqXZKfVQdoaQQNvTHpFpS5uKDp1hopb1mksKk8l1sJlIJDrRJeglNypgCeZaWnnenFk545HSbJeFKY4LpsoHkioHRzwl1aEp31pxd0hIUIGg0ibbWorbtkUaSLvAyjU6B7mMBR1uBXiqs9ATDL4lujX1xwnpfP4nxlgNJdIJJ1JkBMsY6Ts1wn3iISl/hsHYRncjz+2ICXllzrF9dsNRfGu0TKS+xsRiFtIQB5EptczZQLWnawCst3sh7BWht0tj3yVQi0fK2QWIAroYIJVCJfJRd4BQmTNIswnTahhXas17IodzJcOC1U+aovcpgKHhMoWskbiiB7N7aliiupZNZqpIrGWGBIpbM567w86dVaOLlqOJHymnMhkmbFMvMGSM0tuuio/GkwWpi5pZygpWBgJs0yRYdKoNxXtYV5nJrCZASdheMc28rMraVJVGQ4LOnOTPU1bCCRUKZJKqOshYkTOEANWRpyn1XmveekQ2IWV10Ii165rAEKy2fKfVWHgDSPHGY5kQd6zLsMmHDWeHJUuLlX2szCnCqlRCsDXCCryCRUKTWttuD2GIXQ7vUms2kG2LZwzKP5KJZLheoBHFKCVQkfYdWQS1WpJAaz3MeKq6dxGKdNwjPXKBXctkRNTxxBbJXWw2owNA2zzEhYjuimQ8BVW9KtN7Jto/r8HLQOM7utiq8C+uG32W4p2xUttWK7YJGyTr9VYJbMqjF6Xm1mlRgdsJ6WG1LR0wGPnl1uZlWYX+wDbqqLs5EbEemAg9dNH6lGT+Q8ZoWpehmI2pub8fmrvV+J1vfQRlrpuj3mzMy/bt5/eWc1fwurlnCE54fxnns7zL71PVuHTGjTs7ZZw03HPqOXDtszFXUcR0SpTeWoeexcjV9jJSqUVUDmqKxRzw3y9sg65gfR+vzckGJqix7e7tneJuz2vo2ImF5z3Gs3NCpQNgRgfGzHbsfjN+1vH0/ol6/beNsOPdkeedNbVn+7bZe7Nsv9l/GRPn7Z2PhF//gmhfWb72F/uv1+8HrD/fE4vl4+f9j1r/23f3uD6nt9/bc92pfDtOWe4vv9/o4P1pe/f/7+vPYpu/3//E+XFrc/f7lux/Z5rWO7zU97XP4ynv94clg++pPHj1/88/o0Ze3/evyYyOMDj+Nb/prw+v8z9QdNkhxLkibILKJqZu4RmQBeVXVPb89SE80e9v//ojnt9ExVvQcgM8LdTVVEeA9qgdcEIhyQoIgMD3dTFRbmj8cMNu3YvTa29tq6Tt/y8DH8vax//PYGDO9+22awjtvZxgi9uuTe8PqRlqwpP83gpqJozWZI7ugoo2ezJUgvX6zABiySYJmqLRSfrOjelDBrVkUnSuaZkTBDM9DK6a3cfYa1AlZRgkEpL/mKn6IlvbwuUPNllwY8q4XKaDWzwgxTiskmUGmr0zsJZdEJoWxxjFan7IpL5iUQXs3zqPXcWy6VWhSkqkCvWuZe5BLDYRdTYIEcl3R7GXWX69dWIPYSolcodTnQ0NzYGt07sZHcjCqaoXLDtL51qW1rFlwJ27VW3Pt6RQqZMGuULSgm237FnmwVFajKl2BMFrWcu1++mQu4uWCW1FJPhWq91ohfUNFRgBVgMnORYOeVa3bGwoDQIF4VyiXIbJ04Xy6sSzPgMhAvl0DiAio2MxPJDaLy9CG1iFX3DLqxdV9L5GWNuqz3FMwdMrJtZgRmGM6amcamar3nzGqswlgNGjDrbTM4FwTcIisvd5lBJrCSdLNuVa0Ea3BqknRDUqWrQcsvk1qskBVoqllwB9ZlCVjAkws2gXVfgdMhuEHpDoEr72SGMdZt0BwqqLltctU6zsqgaXUFtJhsTepMXJYGShHIYqWazhpNZtLmoomKNG4oi4H84mAFrGLxOXynmvpWOeplUExvudLQoDVX9a1PyzFwL4NnhnLbHOmEAkxv8k9jJZYkE0HBJS4VhZbIWUXWXtvs1gplq9I5yDD7OWszQ+/GGvAZmlHK8s4A2ma9gIqtEGQWcioSdpKIOenlBJGaOFFGg0a9HtkEb2a5wrU3Btv2NEftmUMNPFnwNme31+COW+Tp5m2zxynPE3SXn+uHgHvDfNanmWxxPDlodJloc+r+o/9gdBcRNuXZZ6WgrWAV0AzG+Xqr2M/Gj/zZXU/6y76/nv8dp/rHudfrnUFHufHl+3gi4w3/sX8zvHqbjT/f7zE0Cm85ArX/D/39+Tksb8/du36O88Cxt1/282e18/xtPk+cnxN/Oz5ec+xswdt5m777+16/vCzNHGi9Md2Uc/Qemdkb/fUaP97d9PFs71nN+g4eleKW1nPzQQ9sRrJmtY9hv52v95zH5nN/v3+v8a9/mx/17T0Kx3h8l+971Pmmx3y9bb7t3MW7jr+91Cv1kUd57y3ulvRf891/jaQ/fn7gVi/wdfdtxM/ovV7ztGnIUwf8F78dJ9/a7S4m2u575t0e32d/0TZ1jfPbL1vYf/32b//3x+1X2m9b1j6tTCdnetltfBuV/m37z/2d9fxz35//1/m3Xff+GH98/+2Eb9bx5398+9fx8uaZDrV6fW5Vvfmtv/y//Wv/HG9NOtp/7Fv6c5zcW/3De+IV83xajSk8Pep4PvPB8f9Qso/Ozh9z/74F65nu9K2cW29Alp6Pj8+/zRcaZpmDy/pT5hC91FpxMfWumOM1r6B5Wxouyoikcn6qLU22lGaVYZA17EwlI3amOue8oyHgaco0WV8mnayClTIKKmTRiCrPrKZpEc6kUay5jKpym+R8VhYajVKoqaI3Jk1hFK+a9aIyASqKuk6gFWQFYj1XsypLrOXWDlQljFKjltqJxq8taK12IUkyQ0p2VURAEsyQWlWEsSJJXkWl16hdT2/1GoSZpNLc9pthdMW0JeWVVOluUHX0RQOpatSFo+qQkLzlslnVTN8dXhCw8mK2QqaAL0+vilckmFeSavl4G4y2ZFAJFGvtVwVAZkwA1sxLtLbuBmv/CF5mtgIlNiYvAIiEK19G0H0ZmN0WDWvtgA1AFGQEvORtad2kcd+tzMQri0nCQPPLOW2toCyAorISOTLHrHbfjvYSlldrQ0Lcbk6TYKgsOrpnW36Cq13RMsz7Yj14ZVhyu0H0tadmJmBmSMLNIPkqWsq6uGGXz5xY/FFV6dpFRK0Vb8nEXAwuQ8ERZV6t/1WpDIjMzMn1QprAhGy1apWMqjHLFGNdhQg4sHUvVlQj5W2M1fU7q2zMsmK5G+EZgKmy1JsjV3MJVVCw95kfdWfLR9h2d4nJiPWMRVOMn3k0qACLP6GtswLLAVERicKild7Civl186xVGuwI1uMJiyJOujFyjfDOkgmcaR0KE7L8MsHPpkB6NEczUwoxq8vBnmhUrtSVVRVd2+4V2mTYDlFllTmBLOvOihtGcOkXIdvDLM2M2yHdrTHOIgyRZYX4cs0DuSA7igf3kecWcqCNoPURO1GByqyEj6ZzXz72zE255Inq61PZ5px9ekWLt/T3Qm5+ju3E9vvG9pwV41bW03QUsTd9nppodWuPt7rVP7Dbf/t89Lfhrh+6EUerP/42M7bQe84+7u+PYWnj9w3peM8/cf/9VHPVw6nqhZedf7Lfe/z+t3+x/99PG5SZpmikO1sbma1eP3fbPc9Pi2S8x91OjlxFqBTmSYWsbl6cmd3wrtzmt291h75lTv0Me+bLKp8/vb/eNr3uvn8217Rt//WOzf8WN9pb/8Gj9ffxHa+XSj/69/wHDkcFR1SP//it4dcwU+97nb2QIv6h4/jtsd10Mzs2nKcDH6dvzDneo+azbT9nSh+zam//OIbA9vw/6/h43I/Hh61tEYHeXDq28/tEZf2X/n3WL6Pf9/zz3XcDgy/7I77158n3e+PRY62IMvp2tserttz3P7b/6ZvN37Ks3/7xvPF2DjK7+v1vcdjnzc/WRN+Db85/IWBv4/HxuMUT7/o8z3/088yfj5HnGUiOV1Qdzartkz2rU5MM+Apxbbw4VL4WktTKS9CyFoLxcsymGJIlufeCJyBYEkGaM9gNznRn0cF2C3aOtU3JVHeGkat6l0CpYEFnOGdropuBG40w27qrtW1UlTVzCN72W0DqLoPBVZtLphVkqrRWBVw17ZLlepLl6lPQapuFULVy/lWAQhCQRPnytFKAqa59aimiIAZkpSsWENfxp5Vzza9CAIGrtc+kpmEUlu92eYm8Waa58FeFgNPc3by7dwsIfhmgKDPvbamYGlrDfobaaFdz2ML161pFL48zsYrtrsG/rseoxOa17gladvdafEHDVU/nCdCcX2lZsWoVEgILw7IApIJdJ7ytajtJwIqPfYWOFzHkL7kAiyJe65S/ckv88m4blwS9SEYr7LPKiJ0rhgzA5H3Cdqg7YSmaCb5+ttU3DePKlqNSmSp91TsvTxauw1iVGeGDYHC923N5zXAFja5E0crZmF0OcADi12pC12t/LTOuHgwSMJZAN/mq+7QrQA6ZoajSypujRLkDngQW0EloyOKGiLrAMUgDUGxQa1ZpAKsBmS5riGKFec+AZ9Gy3JQmu2wAQadeFNw1ACfrtfla5y/P13zSBJ2DSWbuG8Y4zehaccN81vJfWnH60qe+3hNCFTKFUHvNZFMgvmh0cK8MeRtby/X+vy4ihC7o57IRxELdZAXmLMlqBQBhQjLDCmyKKrNwm8GV87awzCiYDeEsWqCdg31IQtFMkyxohxyEmW2VXhnhXfinTd9wlPfP25awmdOZiqqAAFSxodvmE0RWGY1ty6wybt3kvaBmCrupjvHu+2msI+YucG/ORoq2w4zNXY2i/JdXPuPVmE04w2u233HUKWm6pVnM8s/WLVumLHvM2PpMM9YxOXdD3mqHwtrYywB4JOZW1n+5/fGjt5XjqJliMTNDoQZ6a+N07Ld6ptpvd59VOWwUlagkPWgwcwLWrPLp+fzxPillbGHPG9FNiup3Nf/O0Zkn/DVhyKft8/WK0k88K4zz8ezfIOu8k77Dn0+ZjYR/+zeMPR5PYt642b/9+fPb7vN4VX2McGn0J7aNdrNvb7G5+VEz778c81sdQ4fOz/vmvN32ycf+weqVZ1azl6vXZGk7X3qdZccr5tOeMxHn/dtzTh2tNVX88mvd38+hj/y3Ga9w5gSHyX/ZWo8tt3b/JawpVTt/ljfmoz4n87A4RmKMjlfzrNZe3oZuLDpNlbuyf/dxjoFE26rpWLlA5gMNjOc8liGFTrZumAnrjUARXLS0L7rSoh2TtlxMS4bFKiFHZGkj3aquDadUJfMSUImcZD5nR651oJFJwK4OPlsrW1/HCGpFc3CNcQSUZoAqEoZKMZefFYkycHmSQiDYa1EZtJaFWpjGquJfD8qFg17m3r/KtrkWhLaKbf1qwFtjPoDVa19+Ne+JdECiJ21BJa7pHJe0S6tlVHIzg7t8Pa0WiT4lcO9UXKSQsiXHA0vzN2DFaUDQlMuF5U4ukIgR0kWt/Mrj8rLF8GvZuza9lw8LsOvIQNPlmLrmZNRS2692HF5ESi8Y8jJL88J24Ov/0vUVYEtpgFYZBLVKgRbRygDTdUqRBCplJke5r2Pseovhr2AtF//6OrOrYE7XAp00QEWZS8vNV5KrWDEDpRLTYGAJFWUOKUoCSvSstQP+0iwMpK1F+HVHWNtuW/APikSWrVwWKhYs1YW/rHxXcmr92Av7vWjadNXK5FKozFhvjYsz6gBhyhnXZ4pQRSWRZEowLgKd15LobVXqqLtW9YSGbzYb0VouMKzxqCozE5qqjF+/gfUqgoVKqllkxrVKsRVxChTNffE2Rd8klhze5OxWqwU0jS9zhV3xqyvptujYWQUBTYWM1wS4yj6tSqyFtDLZrLJGIoymCq053S/TwBqIV+5ZUlZYIc1EFZFOwmWZRpqjIgtzFimPViPXh6PBdJabsRdkIm2PIrZQJWO9rioMFm/U/PrU6bLcFz2cQsIaZ9KU5m3dlAioFlTKGZyjciSkYtKLDsWM8+VNZ6+XHRPMPqTpHp/3Fi/T6KoVc1vvyHp8zqJFWSJgQWAXDdkTFWZWt9vHEm/2wRsn+2sklMaZP3l8Du4zR2+zWSMhOwptHs3bfJnjGfYi4fWC68u/MK/mrylmNyeghuYdvQqTZrQuUg10Q6EmzPYt/IleO6tvb/b2fTv3Gjpj340vYQQ0ptJnmY696HAE5vlgvXVzJItyzXda7Ztzbzu02ePtwJbTq9Hm+Bj5qqawtm9jU1kmI3nqT/6+195h1rLw79vjtX0DXgiVf976z9cvo9ux233nfbhgCVPSi/P8/npQapgHuVGPzWZ7nvR6tWnj5wv34+MRp/+n04a3Ekpu8Y/9BFvsfSrDDHvCb0fYW7P6zSJ38/0eFdkYxklxmFfuUMI5H6MXzsf2eo6omHaOyNeoUGuiETnH4/l516s6zmktN6sZxOJomYCXkeBMPXsxaRHolmWgleS2UH4eEnzBiwElKVY6pnXCoYaM1sp4nDOr5rPYkspu2Xw9uyvpypqr0XayopuUBVdxwTlWbgWVMEgFZ85WEitMSmuR5lLZ4g0VuZriWFXimnq/JrJLpxWUWLXCWsLH+vhr8RLqL/HvAlKsbA+Wkku7AFwXx3E5nnAdgwBgftmw0ShKche8YAURCN+8ZEdf15mrbQqL7XiV1fuF3Sz6igM300wA0OL5ffHzJF1eKawVtfRFkrjiyvjnn4qL2YcvFxVBrkf2AkqYCmzgRUguEa7rmrNWs2tmXYPql/F7jTNc8Vis6XoRENcG9Bpq9RVlMoCLREX+kwKCa+KFLjnbfO1TJRS0bPcLtCEiHBHnV8e5CmYsZHGdL4aSaMgU3NBUCSfMuyFBQ1VpnYp2RcBRXwiPf65cbNnUvC9k9YVC03W5oEhzu1JdYAnGSpKyClo6GyJyemtYV4HVuw7zKzGPAi7U1+WSX+qJkgQho61Gi7UnbxMbu5sMSoN5s5MNU2QZYGkmMy5H4pKEAClW+XWCzWVfYXiagYkalSgjZ6QgsoGWMCjdbPHSAemKSBiar8tmwQF4FhzKMVtWnJARYeqrv7KhzziO8vmk1Ew0mWUrQmFuXqXC7AYaG1wpGkswsX1dKsmEq0umOLM3goA3k4TNJ1JUCm41SxhskvfFKqO3imiN3seANYfLlPmcRTuqrtZvgyzSSuducq/1Tjaugu8qK3NPOWCYSROtuVWCZqSv+L/BG318sFmon0mbQ/Hnff/cjuORdWIfFrBiWXSyHImnvfsZYgSgelnrmsph1r3jP+ebqRI/W7zUu9n0GfPl/rbtN4bfX082Yf6db5GtPnJ7acAQ/e9vQ5alYoelgr0f9cpJO1STse12K/RqfojIGGU2TGXU1B5nYfOUuawV+nar1zcb2j/mzRU/Wjt+/n5nZdnRre5RqUGd9fEfP0/iM2jWrB37BvIc7duqYIW4pb2mYVO5Hb/dX+jT6NZ8f7s33qmy5Kbvvm3bQb0rI79z32WH2PMhdJriZ+ojzjg092/KjTjjlw+878/PHc3FjQX37cyP8Wit1+uTG63Ytb0pjv4mb0/d92fe3jcb2N6nb76ughORm8pVFlV6Pr3n53nzH/fxj82ED4y4t97/tU/TW4/mkvvZPSJbabe23esbU8c9Hz8f2/Ppn48RvldUb5wPsOwAsG+oRUHQisFrRVUKzOXuUaGyCvISwktRKghbz7WaTDO1mPaFvBMEozrKVWAQSBpOo6lGriu8EbbOuMIXpuoLKhGQshJVA1pdt1NQSVGZ6kpNzUKlZTmnJFtP9qW2XrHXSLLg+Aubz1qVSwtBaPoiSK+TpqASHPUFR16iorisS1QBlYFLVM31xGdOLLe1ckVil0a3/tBo1pqbOdm84GzFRqiKNeHdFa1fr7/JVg8QBPNGOOhZq5Hd3EDDuoeTICN1dTV+TcGXBH0BELVC818pXV5IJEgrB7zm2JUgXtvNthTlLLuGEBSXz3qNu8u5dvHB+CXNQ2W1YsMr64UVJP+6rfDiSnMtMpWriXZ1MguEcfG+1jq4tFzrFKpsveqgkw6X0hDUVNga+8BuAluFrXdBRr++mFiSrQUDbBmfvgJadSGranGygiqhmQhFLQ0fvjLodZV8CUigYFbXu4l12djWt9BX5hlKLBc7uaotazVH/1V/IaWts7KuH1UArdZv5ZqTfUOs9+NlP7A1jie2KnpZrgSTmQAXJXRFqmX4BrrZdM9KQXI3EOotlbDd9BLNq85uEJoJstZZCdu/D9LKagrNR9TlMWyWtHM2mpz0ZcW0ukJZoK17pjtwjKQ3SVddVzq8r3dra25+QbqZxS8fP0l2lmpsJbeKcoYq0ALrI2oSaTkxZICpGM+aA1sVTZpzVqbddKLnJEGbQ2hmQqg1BfoZtqkhTzNnw/mMHkmZSo/l8pDBJf48e6a3cbpXyyRamWgzacVnk49KuWcxj8ws2kK4EPGkUjcF2ZT1orcRPbIJv5D2/vFqeO2cdAsvice3R73GuWW5YeQWZZ/sGJTGhny1aX0/lZpdo9ztkUD2Dt+KHSMdP21Dzbi/zRZV2sZTKwmJ4x8/t57mxU4mTVUVYoOG7xuGMtMjMc3GjLDKdoI5VVRTIbCtqDpqloMT+XF7ol5Zzu32qpvpWW3T6PcPNQvsabPj8frEEeenfD4xvCbmGNoDGd5w9pZ5JsanODnxObfXs4Bs2NpRW2s8v43Gs7+UeXa8tqPqqO/vw4y9P3vxu//xN7ahjDE7x/HW2VP7H/wXOG/fqh/DqmFyBCPOx/yx3R9xfvgPpX6c9yPOb3176+fz9cu/ntbeX+frj8y9nkvBymnzvNXe5Gq2//red+bwN/+9nf+9xcQ5hJud7Y1jxuvzRaaAc4uHTUDbbN5sC2g/4py+gXhOIbn5UJp1Z1SeoyqzoKgVQ3GgzPo6F61DftlnzbpQX6ArUkU3YX0wKmrMqk5fXfe86BqyRhKmcMj4eNqeoQQTmDnNXQKLpUIhKwulqlEdibRKEisMx+hAVZ5n1VQAyYyhYHGmquglKYikZSJVtv4mBSgBLh7lOp8AsMDKcqKq9MWAXmtHfWWJiLqIR1+QyZLs2vjCnSWYs7VY1YkyXU2nq5GwQKyORS+Y6RTPBHz5lNrebk05GoMsOVlVrEIo3eQGNLDKjGAl06w5sto9i3SYqWwRG1eeZHmDJBkuhxD+Wrxeh85VW4hWa9pcJ4YKRVVVQmZCA9arYLmgltc4fSWGvyb8xcO8xOwvURaoNdoVV3fA6nS4yJJL7vBNMuTS8HGFgS5X0xfeclnYYCSXQr9EdxpnoOZ4hSLtOFSZJEpZzrW9WNU8AlK+kEXgSnOj1n42l1dK5gS18G1fBRLqIuQsETBwHb4mILMtNsu6ZCLBq0gvBV3vpPWbWPJrgao1vKds9Q4YSZglrl/Itd9GFTRXVhmsSRYiRWKq4Bfbcg2tVBWRZlWs4aYyREgoTIkIGTKNikjXRWhHs6pksmNGuG9YBcEoAdOkScGt5YyZnXAStMq5rgvXwhsdPbH6C9GuXbikRCVo0ApDDIdYamJbH5FpFjCao7EgcxAWjpLE1kiadQujqF1liKYu/2K/V6moAFGwtbEu98btcMgWndoLbEHVAd/ONJRosaYIzyB7+l4KP92GeSG8liw2OgKvkpyAZ3aXB1IFbnPUjlftGxBAzCL7p5d1shQZ8EgVxLZ3BKSaPmZ72LNJe00O9MJ50j4/9x2wMZE98qS/bLqlxx+f1f17DasjxVPQbUTvafBzNqHtx+u9Snx9ixm9jGe9treZS62JZu2PtDZyhiFLbPKnbe3WfqodeIx4suzoAcbmTmZBZRwF31rEZALjc5eX0WkE3Iqq+UVRxQA2s97Q/HAe7N3I5pU5X8aGsW31ijLr+fI9xznqvsWZ7sba0Ty3pnezPgRGbe2H2i/dsIXL6+Ool2/o0L6lHi+d2TR5vP1K29u3QbAYOES1TmCwTYzG0x3AYW0v9ho1dn+xmzs8W+ouGXrdEE3fjgFqx/jN3s340Obx+gav1irqluiK84Q/T1fQK6vS+/h3T6DFxtpf1Rve3Q8dj3jvu/sviO7adsuTm4caWYyGUhuM6sqZ93zN3s6P1DZDVIwxa6R1eCuDYRvPrSVca5PpVaBdHglIqa+9qQq5NGetx2GWaTWGw0DSaduKKnFlVJxu3WWaxVLfVe2eaK2FUi46N8PFyqiU9QLlDG3C1kdrtZljOYLc2LZebo2aF8+SRD9OSKRfdWWtrQbXtaV28WL1E2BZoRYsikuBtvWUufybVzXQFykaoF2z4fW4/eLtJyQuF5JVSVnnXCNSwq6aKJpdD3VJcPNVMQ/Wx3NtPZlMdVBoFSPXxhikrSp6zFJCaDC/CMTA2p/zcWr5tXPCT4MX1wbrSyhfE+RSFkpAFfE1oV0UjVYyvxTflZpac7tqJUqYhShAdsWjV8x4sZ6uy8iFQ+aXeiLAXGv4hVQs0FdNu5GtAUZSlTlXPOUyiBFpbhcW66+FLCBZXLPoeupeLh2ZrIU5WmFJl6BdAVKgfLdFCSWsoCJMZpkJcPUBr4Yllpx/lU3yYn6QkLki7C/tnmJ3yCV0WmEFpZdPWxdBeH0NrC15XbVTSwogZAVbxvBrL6zQJbvThOVUJ3zZpZSikzllVLEh8wtwRi1rg8rTWKopVVallISrNNVoVENWMcqvuHoFi8vRXxARwYbWouCrwG8ZoyKLPs8lNi/4w8hmRit4FpCDWVz/cO1Mc93wDFnpxtYx77fHKFpOyFsTHKe6ZlZN1GYS0EhztBLS6WwsmJmZbHPBt8o05DCWdaBV0qzc3AWxNYa6S2a7XYy19kJqS7p1wrw84bmxL5SuQDHplveIhqORpOJbjZTQZfZGqRmBpNsWksQneDvLZWwudIU57823nOxuKmZos6hEWSN968owV3hD3wfCCk6ibJNt2hpL7eZpm8W6pRdU3ERPcxKtymbaM3sArJwF7+1spS3ObD+C71VNxZ4xydk++uvTLWO4POtJ5px8crT8+Tb82WfOts1M33rTjN0UTBngLd2Zr5atiVN+u9scnQ2bofU2pezZHb33hSJ5yW3CPmfF8WA/O9xuW+w2pzUKe89XmxM3bPa9t1bKKpuviAHWzVWqGlhmDe2ssfXbK4zfsj3Qxsx+TPj9OH9/u5fqgeOjt/H2RyH3GiO++eMw7r7v51NWWTAc/qT5W3g43o/Pz773R7Z7fFo2lhuC7vvnUMtKa0haz4H6sH0Gqw1+6zzng8Zztv7+t9Mi4MhUu/HPow2vBtD/9vjZ770+7Tlejz/2G7Z/2OO1t8S3/dW3G6u3lBiGHL7P4dnI2Vt9+NucsSmydZh7z42b54ICkv3eCkb6Ri5eBHF1LRCBEuRBzpVDQYmsXEJauOUC96Zznc7NcRmPBFNYeZULTLNEt1mXCZigt3U3L5mEVQn/5bwxDVVleK7noiZZOehW5xllWQa5DAlk0ms1CdaakGiRMppXLWV67S7X6lB/OYm+JMFKLgzAWgqzsSpBuJnBllXzMrKAVdYgMFBA98wE1XytHI22qmLh1+xn7pfMDXf0btC81O+BxvDeKqu1S+6dtaZaN3qkARWWo3jN4yVD32xr19kwFzZn2YcE4gurcf05r6WqG7Ts2PxqRGztcv7oqtC7pNEr0OpGxToj7XrCfvUM8+tEh13L4LWuWCenABZCQBqxNpI0Xxxx0sjwqwSBY20GWGAU46qD0Np6L4+x/XMr7CZQVfA6szKysOCNUfT1t9AV4DYzGkqrS6hSrKpMuX3BspWQiaLNLFpCJaevdyIhtq9bT4IwX74AaGwlXmUL11r9cp5fTZjL3KersAeLpcmyGmuAr7xgXABgKmVddz1c1Omksmwx3SC4BLgVYLa+4sJxROdogF3XBpiyyawcdM/m8sZqzQ3mqzDRTCgazCJbEbQe3vryU3lDpttUQ6kTQaxUw4IFq8qLVl3e+gyjWcpXqXLWslx+UW7CGCR3lza8rFNCSjnLt7AJybux1qaItSqvJXenCfDOMkQLSBUy2y5zHNe3ycUdCREZNi2wWsDN3NgMbs3MGC3L2elOwk1sxJkQ3+JJ7oadhdnmpyq8sXmZ4ASt4K1qpBmavcUrSBGeNamadcfRX2fbdwIZZ3XOmZS1QN+IrCLSXcfdN7PGgE0GcM/X+w3l8fTETpFWjW1wO1/o3/7t8R8dJvWg+z4LRbeewSDb9wzIGT473x7zPvPVz+dudYa39utx/ntLRrzfR2NaJZ/f+panfwR+2166yjDY+4LqRiG65ZRzZD43o0G5ZqJ9dg4CPWSs7nIPXN52Jey2Nd5fh+O2Z9/nduPtfG22O/JHMWe15zb88/eASr5J3Chz+/HtNu+VHVuLVrGltl9e+8gGn+Pk9u43l975fv5/4n/+N414xX7cfv7Y7WCNaIbNVAqh54+aw+75YO/ugxW1/T6P9sfmNWF5zOdsSFjJjGyufd5GGGxrx9ysvO+PwWE3f423t85Rezp+TT2xHecoZ0G7Y7e08Ip42+PE2ybu43uc339++/5W+f/eznI+ZX1ObQ0F5TS5yTtAdosxt5zVi46piDbP1LMQuW9yE4WZmdtm5bCkqVmyzNbG1BCNUaz1AF2mHMm8FmDQk9sMAo5ETldvMNC1sveg+mGexVm2AiAkKmAt4nKrqBghrE/wsk1TV0tepYrRGNkzaejN4ch4DbYCFByhHqoKcpNZr4gNkLEiVjNvSbZ2k2RFsf7yRutL2QKBqow12leBQs51i7Dlnr4SRlgC/WIu45oUIVjVcoQa6MtHqcV1vrp9Ra6q+d78hXct99BLbK1ViZplAhI50izMWqcraJRKsQ5gd0pVcGp7C4FZ5pPWGk32lwlLX32E64ek/jJfaVmXao1SzdYxwMvcrdUwR7pDi8epNcWv5p61hVzr3Wt7DK0YVxmzlgFr2agFrAQwzJph1fCaO4zLRG81AkQtdtfqXG3uS6RdO+Bl6V4+7uVAntf0x6yZyqgFXtldU5NWmOeUKDQW3VY8dwXmLn+bCrRLgjdb++u4epH98rde7xGnM2qZIiqXZ3n95nmtKf7qgl7r8zViueS+PAC4dOqrL9l7hhxmtv5G6wJYukDnl5sNf2EdF3TKQJRfdNFci1YZC27yBsC9qGysBYueaC1Jy1C/7itGX8WhclPA3RssctOpmAUn6ChrRYDe1ZDKXLDniJmtsJAtqCYl63OrgNGS1pb7YFnk1wgLRzX92EuDzmHuWV6oqjKfp+ibGU7wauhhEVFOA5px0uThmTRlbghMKVsBVXQmi72McyslsnlWPqMjKeUjRmCraFsv/5z0gEXo5myE6N05mNWrkjbFQx0jTinJk9AJLpa7sh06qxUR/FEZbgr1UkmoCo6fmB7PKlYleouZKO/uHA4ucalRtu+NfRvyqPmZ0b8RDZxRamVaSL3wtv+ShfHvK0s4MyarythhHbmZ9aZnHoy2Tb7FH934DGwKPU7d+tZvijTdOG+H394GunC+WbW830f7hWEo89m3Et2lvnlmtmZdBL7ftNcwOveRmn3CRlT0KsrnZ3XetjGWLsOyY+r4+abvEbfHqM88t+czYrKH83gYAYzxpvm+mdp9T5cr3hFn7ol+3rzBeU7LP/PXrPq9l8HjB/CGH+nAq+HPt/PH01AZd7xeD8dEL/fe/X3wPs1sm3Ubfp89c0NFliKGd4Xai9ks0f6QeMDViPrpLZ6fz0lv/4gcx5Z1a3/Y4fF5yxufD9o+Zt9iKO6H5jcCxUAh/M02eBsW/TZ/qr1mfdpDdf7+exsuqrdtvyU7uk04c/fD6tw3FLaNs/LNnvP9pjl/NoUer4w7EGGOCHdXd7a+r55fsCD2hNI7S1DL3tCUvqla2Q7LWRuXjlnytnuuBZuptTSYXbPBqlx1SGwyOBIuCm6WBVFQLiaC/pqh7Po4gwpzaTXLyW1Bnem93IuFtF6LoeReVDXDysyskjchM72SfqmrF4YSAFlfxiqJM7PoSquqtXnFGpejhERVmVpdz+2VZ6xaj3IWFk4606y+mqHENBO0tFYgaN7MYBTN4X2eczwAEs6ovjxf5Eo2gdmLbGbm5vs8V9F9eGFxl90EZxBSEZVKUJVcTGJhiQiXvXgNZyteW/88gO1q2GiXKer6Y6xbSK0s0VV3iLWYRK5Z2pZAoBKrxCTLLqvX1xVElw9a4uoJ+wJaXTW/NKCb1DzBS4+4enjXDexSdtfE/7VohrDI0o2okgeZZ+WClMX6RTdkleXVceQGGR1ZoK8Nw/pSRbhqXQfkLHMBgjVXkWlEAiWVtZVxBYzmKhNAl5SXIwBfP+q1DDfSKksFonhlq1JmrIEVO1kx6pJAQ+W62OQKPQsqGJHQUua/TPNaPRydzjXJqKzgpUQY1nPcYCqjawPcZeZYdGoLeKWUVyukwQ1TlYRjojdlNKShpjFV2i2s9VtCwVZntLtHXhYIbkrW/dyymaE2XAJ7R1BFke5a5Wn7VpQ7PLl5NpiiSM5ZZm0VaqbEdAUgbr6uMrbB6or6CGzkLWoFAVRmPh3Wpji6U2xSKo8q84BJ7jTH3s2n3T/A3tByGm3BDaJ75uPV93Yop1C12fPxuuXDurZp/6ivN1z2LfLcqrjXtBqHSb2npWE8Urz/B4OeKx9pdtcsmFUXRu+FF+MM4I9bHcuP91YPxdR42yqPVFrO2/6kE80seD7OFouWZk7fAvjEoWmRZQjB6+gveVcXcPicKcTtt4/2y2PQqxI/4WPbU2+zlzlu+Mc3ZvNx2749VFbDDeGrLlIZBkM8+tFeqcdr1MuRvdmUWcaWOz6Qbh8+n82AkdaN7D9Tr5if/rD+6sPg+uaj9YPPbKxTm/LdtufW99voMXvNmZUKPk+Ztd5Bsymp2x539uMsI7fa+ytvvxybN+Jox/4/Xr//2uvzo7zZj3jmPrpPb4SNk2N3HzWPatGV3mZu6BFbHnvYTd8wmu0mX0mD9FJZzdB8Zvr87IpXTQ179LOebz/HG1WVb5xte5bN8d6SwFbqGLYNNLNKuFthf6OF/2p/Mn4jSRZ74/DGGfKlXwXT57M/xSqrmNkj6v2oCG3NGjfULukRiKK5oKrNXTS5SPhayJYbFtKnsxzRuszKDlmN2ijWpYd5BpnCZNJqa9S64BOmItDUPa1nP+fObHe84GYAq4oi1FhiiWmiVxTLAgb3Hm7mtiIkgcbQtHalSxWC2EqkF5xmrt5NrV2G50wwV5iFiYV4zNXnfCmGgNiN6VcquLS8z1VXQJJX5WJVrc0oLgEwL1MUAPeZV4s9tDIwy1VilIsOmlmFcLH/I11RpFtZVadvh5+f8opal5PlcYNUFkNGWIMtXEEmQLd+20u3LGET54y2O79i18uhsohU1zqViPpK/1yu44IgtLS/jiQsb1ZGRMrLZM2WSit8JWQujtZadAIw+DU34zqbJQjmZgsuIUS2xVMmaXQ3mpEoCu2tl+V0UCtsS3ezRZ8oril6jVU0kHUxPiYgOICCu5cinZkroqMs20Sj0Egr5JdLCoCRqaKBuXoW1q7DzB0ZlyXezImr7KDKTFjt0gYnzIrML8MY/mkfJ23do2xZvLJAGNcWmIa05SooeOOXRcBd5fR1tVmO7a+qYbmtSRmru9mdaL5kePCS/ZWClVijKcwRVARq6SLmiWYzW50iAwYgS+Fd0qBtLUPVemeb5Z2AKVMasiHfOCNBsA0dZTxTnapUw1ny1L0tfTSqAeZan7ilkKx6htL7FN0LmwauDg340O1bekSVOhcaxBjFCneYudwSVj5apkso11CD6AYu9nozGstlRF1g1z3CvUu0cLNKCvtNQvSF91wMSWZ1txN74KjpvpltguH+KLWSHw03Sd1ARPhGO1fs8a1OP3qpt8QwazUO7b9U2L41IPMM91TaIqg2QzI2kw3LM4Yl+OLP2WZ2xuNxZG9Zmj3P01g0ehT/Pvft9r/9QP+58Xv8w3b7L38+d5P59uM8suv+28dv45U+fPLYzu3t8TqbvXawJY6ftv3yHzN3H+OZXvB4YvdjjzH/3P7zv2+PjSO52d2h3LpsRjrqxkerYx45eThw/vztW9LsFu97yEg/T/sOB6fLkQb41sf+xr/F27MObQ6ktXrdHRPbHv/4eXs2Mlu15+sx+5zD0Qu9NWs7eLaeWpObzxv2+xg9o2Ui9jt4827s4jd802+wvz186/4vP427ghkn5FuxlaFehTMmtp8NjS+7d4aGHnWL+Xh3pW2H9ke1klmN3ZDP+/7yaEeftp+z9/fzhaOGc7Lr2z/O49WDWXZ/sbDqLpt4PNCo5HTx1/m4H1vEb5yZ4Xcc2z5U2cA+xb0zmhGNPd/qiGbhfJ3PfXu+blvT/GlzuMaIR0XM1qodlYAq5oHLxwKZ11kO57zEO0hVNgvDEpIxAi0zDSsgF2ESW7LSDVjEW66Gbq9twzHZuewVZtb3LPOynAQ6uwKX8vsFEHIT3NgB2FrPqsgahuZRbgJSEq0yZQuB18qIStZlr1resFWVAwrX83Z5Rbj+Lcr6VqVQIwHDOlFkdAvKoL43AZbl1NWavh6VzcCUUG1vLSRbfCIY4S6iDO1yJ9Po11FQhX238IPsLVXVrXmekQyYcyWM1iIXxZjThTRYziTo1ldHsJu4KhSTha/6QbsGxUu+X0IC/mlqWuYpWyFTCFi5J4J+6Q4mW7ghX//DF7ETa6H9JTUuFfhrNuX/ciRLRngjteKnXDosvwoFobXSLSrzTMUVpr0e3iukxK8vfMnjqhVAsq8G9sJ05bLD+U3ydTNwKwdDVQaj2fop5Kq6RswlGzdfOw7SjZKhcoYtB96iC1NEWdOlczhAha1OBRrh1wdjXT9wBd6ssnEp0QZmXibqS7UvsK3JvCNKlavyQyvYi5Vdk2huC1gGayZZGXBBsVbt5krzLldCOVayt4IlWBWzKKGlV7qi1gYa7kVkKRJFJzXAQg2nhJA7kmSowhV8EjHXzcI/5U1RJlv7Aogqt+sNxkpiJcdNNErMhVjLua38dyyI3VI19pofWgvbYWUowrrJlv8jpOAka8vEYFMpmFOQtYIgunOWWXkWqODZEGSpmwusfIUHq8jAiOBMV5n3VKGyOzJqWrP7p1TdadnQrJ+5bvDYBbgD6nM/Uk2g/bS3oFqj5GInsLUNdqtEZxQkb2YBrne+wencG3pr3F07Lext2PvJHrrf4bf7R69qbr0ZGkhspu+5Jf/v3GTwfNV89ddDTzc5k+n0z5/+k2PKfrg9z7SEjnpFfY5XbqepeKtt99Yp9yIeXef2yCq4ww7jlnWzhpq25CAHez9JlOY8lB5sd9tCqHEeS97J8TjgKnXDDZPdVONTpjM/c256bny4jXNuKKFU9/KGc5xmJ/0ZMTnskPkwssrT82wtWTxrs5+b/zz57JXo3vC08RPNWnF79fPn//SMZx7v7VO7E520LG61mqf7t2Rzt9yqGz9eY7A/y04+X2ccx2B/P+fqmm6w6s0zPiMdGJHIhmfVp93ytFa7bcAv7dw2nsN9azHOpBL04vbJHh5W3uLb+XHs0Jnj1eOhP1xTcxpbO6ya7bw2PoCp9l3s3SgoZL4r1WiGsIYDZeXM8UpfwlkyZRSKy3lPFMpQJEtY3eDQX+MIaHUV+mjZfAFYw0aadDWWEjRDjlDNrDQ4xc5prio6JXgnlsXEEovVQJjoWPWmWo3ty9KkFSSmZshCUhKFtpl5RHMYu8EFiQ5g1autBWbpYjzYNa/pC52h0lV/wAUeWYeB00x2qdbLR/t1MtD01/iU15G0IBTXuSZ9kSguQ9Jfr5xxalvWSQJmNcUII3yUbUVKzIgVhTWYLy7G5DhjDeNoBiITGYKYYmXUFL70cVxeGHytKbWO5YvKIXwFholqUJGXrwVc2rquVK6KXw1Iq3vjmkivYR/Xrh64RGdW/a9h4wIKMFum5/8FVMK1G86SCkUmbN39uIp7jOAqhuAFvfzyc6tsVSDU4qAmjaAz6RqCGSllFC1YZrritFWrDFDlCzO5TPJL8F0kjaiL0CUltfbgIr86Lb/MRV8/OQNXrukvk9t197leveUXWuGetcIuNjDU3I1QqQqgJdybdP3qvr7fsmFNNAoZy6XglspSmRVZzJSwGRxpxcXKSJVntWVVH65pbut3ZAajL44a6EIzkrJiFElnXE9kwL9auGQpalpq+MGqxbRZyNeMaBFc+K++JNYirzR6X8bGGMygA5mzN5igLDjGWejWbHkHJXJXuVJmq7PCJMRkTNsY1Zgxk/tC0SAqim45Mb0ZoWKdTTm2KSBNSFloa9KOE8zyynFaawBD2/qE2S4zRHojyGT7grZzJegA7ptbCMxUDVloti/JboWzXNlQJQNWWG3F+UqQr4UGN/lNb3N/YasGO0o3i+9O3bxQdfTN6aNTZd1+NnPPx7YXXnGku7pXEkLzCvust6OKbra/2KQ/XnlUQ99s3CSY298fm80fdtw/2+usspM3Ya+ed3+VzN3ZrYnNK+YGFNAreSwP6pbAyHvLIM08vYow+mags5tnVlQ+MraKx63229NwZJ83f/Ct2om2Y7T3KKt6JfH09vbx87h9q5l8aAsh0no13602vg0DZjDl0UymHFvPTxqQ7e2jf87373t2b2aYXY0kcGS0akeyUHr56cYspVG7V+tMfn87/vz5ZoKjvTTRguVV9ZTlOc5K9I9dCT+j1U8cvW58bfbWVfvQ0Sd31ttqvPSqkm9ja+nhY2/+/tp32jx8vIz/de3iypuSZVNsCwQ3FIjBn41p5YywUtxvM8N6WxXPscz+OI7yGvM5y975ZaV1IlGNcJRbCU3lC0NDWpPVV10tSceixEhsqAx2u04cYKVQjAaPr9mzCgqDnEKrqmxXsG/5r7CKHFRAhRElMdNYaSoummtYYZ0TyfLK5qVctQBLbZSzyFqbsQsAsVZ5QNW1CxZ0GV5yOaQBopisy8irqrKqNKgiS4TBlipdawGotXddxh7B6mvYWU/p5Suz6xO9zvrW1EBfYjUcZmwwzSl0wrBUTqOtIuFt4ljnTzivSj+59W3DKpnIJLp878sZpP91B0zpKktYVwxw4bdwbX1lDQAvPbPIC2OSExJkXHle+2I9r6NW1wH9NXZTvBAV+PJpG9dAZ1jfysoImrsvNLo5lit6ElhBJavLLn45ES7p+XqorVsPzGkG0Qk5QE7lLEa1vTKXlLIYe5fWsc7XXC+KrlS0pNTaDBvtgnUpr1dt0S8KeV20VAJDsoVukRDFpINXxOt/OX4pyfW13tB1Oi/iBxHiKkxoRpcX3V2AAbZeuUu9yLWAz5RkGLlCV4PX52/tNFpJZV1IktVkTbIKmeTGohVwWMpX7qgMrDKvMgPkjRYSrFfSUOhmREqssr1Pq1eseiiEBr25dDmWi0CECui+aqrXuoSmK+ez0COlDLmGIaSMBgJ1JokRRfjW2C6orS9txmzt/m0JJgtObdaIvQHmVijRDFp9jqJ5+gYLgmcGT1ogZy/QwxpGGEWH03amyVqhZCwNP1/mRcYo2ij7NuccpCGx2CkCc0R7Vg8O85e6mat1EK7KYOaYKcnbCRUvgigMpugQrGRubPeMCsymMqj7ljREm5igZGvSERJ1zqp67G+d1g5Gaw3moFewjdr2A7/Wn/kabpU2BRZe1o+5/7L9fbzr42dxEo/wE+de01DpT9yanfGZd1W8xlqiKHFr1dJuvWZkc7aF17PueVCdFvdWe4bT2VXzkB2M1m1m2/Xmj2j9oRd27+P2ttn2kYAbB3XeZ8J9z0Zvc7Bm0Mz9CD8m7OR9osdZ6rwfE9vetqSo9Nbs8TjGqwfMx5nz9ef/A31ysw3kfp/WmXbWrT29uYNm5eN2wPdePiqj1bQsxKlH9ti2/D5uOe8ysVrPIHdVKf/3TtYWaY+i69zPQG2Fcf60xDkK6uV5NkAo93vUFvSWx+3ltd/gR0Xa7TVvXn7eanavvpueo9O81E7NuXHuVULHPM/DXrF5jPMZCc0sk8xta0jLKuzt9To8VwMRoYWsqC8TraZqbRWLtfBUmagqAkrAArL1VN7pfTU1XKsxgelYrQce1qu0qlp6sKXnil649XUEX85aGOCG5d5y2GqQ++LWsmrVvKk7nC/2hBXNzNyaVWsX+JGrrlel5fwhrjEfLAFXQHiRC5vn15PUyqqmldIlmEG0Im0hNSCsLiTSrjEfomT2FcG5fm5bVUNGsTEqASOskGx0A82t+2LOmzWxY1XhpnUzM5qzUSwWu83mJrBM8EZ6v3zZlxq8BP9r5L3WtJevlsXFgcA/9eOrwwptwnzdDtakWyDNS4siSQdXJOeyE30NjlrZxWsW5go7/dXGCLN1DVivEtmMi0pVy4el9FRF0QCqCdezdqXQeK1UVzp8jdMsLJ/W6keo4hCSNDMJppeyTGGqMVdSytu6Oii1gs9VIKyCxoovI7uZFdxg3TCrmsHYgIUAM2QyaynSq19zpW+Jtpz0/5QDCKqyFi7smtvX6bzIjbZeyISUWEHjUFYtkVy53lcsQGFkihIUILTesl2LvyqTmQClYoXdk7mS3hVZq5U41Gi23qbrLQkzgh5KuJTwdtjnCe8mSWYURRW9ZdUMb3yObrGu6jkn4JVcf18aEj5rihZ2LDB2fm3tM9UFl/KpTQmWLD2gQb6SzkwBaoGoTpWvmsicq0YaZqe1iskMByoLdUap7bW4IgvsY0CZK3ljy81VcVJSOZXWq2S5XCDr1z8aypqVmJmrU6AMkhsIuj8DzsqxsJbLDRK1VSvrCSZRw1i11SpkrnPNy+qGLuVsmZJK1RgVSrQ4T7wUsyr2aqPatHyi/PXqwC2z0GeBGsEiapaqHe8FU4XqVaGtima79JGWI43zJqqjI/fE3h9b1Yj5+rg5t+9lz+SRG1rvDdume6XKcurRuk5ru6CkgL4pCzv1ytbuZgT3b80f7k37nrBm3s+SO2v/Nk76TlgbgyOPHcfb/XX2bds7k3l6UZLKdttVya3OA/H4ZUa+fTvd1Wy4xsnnOU6PN5VnpPJh9vHz+dsLxR6B2D/7GVmvQY+e/gqNZ+9tzv15vPbzo2a9nwN2bx+bGa1nG5tU/rP1G599+k1+dh3vdfr3XXrZH2OTFQTLMY043Qel8fFqENut/x6379/j2/463ur4fA0c+Pwx9F85UhPD9QDpr42vNMXHn+328Z/nrc+XDG/vf/bD2PaJbm9V+9y8dVm3UOdWadVnetx777jff/qe7f3pMVosf2u1vqFMNYNPtqSjMWo9faLWI3dFKZRllFRlVxsuUFFSlZxsebHnQRERaMsMvDyNZa0YkEze6VB1BylahANOgxkCC8hnZqUijW6TFa2rqdsV+Uh1bwS2PFPeyoEG3I5THYJt4FUrdFXurQTJhX++tNmLTbisRZePCuCqDeZ6cEr0JVwSKVs/colfvfdaaU+GwJrKKCHNlrEbup7yq1hHRpsLU0jDVLM58fpkGdwxALdVYjT5ImGcp4xugLltYzYDGud5Te40Cv5za68fIqHA/Aid/teCe/2mlmxqEq4LAv86lImFDgHQNl49Dlp67UIiO8zX9EexUOIVKQPXK3Ed4V8I6kuFvmZjLpvVWtaKyOtyYK11g67JUQIqF7kBWHmdRX7RgrEBXM+Ltc/2do3W5tevsVLKw9OQ84UVN3PzSMmNTm8SjF6skor9CoVJvomLc+G+jFJRC9AhhoL4WhHXkllX+W+VuYrEKlu8mF3XhM5VyWANi7a2Rt9muYZtK2S5IQpmfXNVZbmFEd7sum9UqWBojTKwVN5Mk+6qYqHWdfG6+Kogm8vmrCBLrNDFo8C6lqjQEI6iQl4y5UXOLIU8yjAmvGEO81X8YKDG5FBrzrSEtyGz3mIMtp6im4hWuE1ZaWtWXA8UOQ3GlNZL0L+VRZch0bi5JrwKzozV3qlQEkXCEkbrBMFQIlnmckKQ0YsCff1XA6U1xtOpcoyByk3snjBVbEetDGVFmdX05NatLCNfvVdMnLltWx6srYVpZ6LyDCpa45QvyaKDiMiXSyNx9+xwD5S5EaNKXpM5PlIya5BbCnRHeWZraUlTl86zjxPzNurtd3t/xvavFu392Tk5ePsDanJUJY63t0f72A9y3s66fVT7fd5edfth2vy52/bn5y//V0vm/f9mrxdH20PdEvvrj/4+eLPc32M6f9mfm0Wv1za1PzJeb798WGl/ObEXLWoCOSGrXsHj+DjHeLV5Hhm9nTDOGrP7VpLj56MFkrvsdmxj2KPaHAOPsIf32Sx69huTd2jrqebAvca9tjZb//G0ZApz32OU7mQbA4lQVhxP/sZ2FmWbyY/Dv7c8BwW2fVZVnuJB6FUh1ov4sfWs83nSwtFtVnGL0zOfPEeKFnbHy0zNthWJEffq8paWdrf8gMLfiDZ9Rzwbdv78A+8fhp/PeTtQD7f78fjz1pIdRjsIG/5Wv7SksR1NMJufsvmiXsh4xac87Dkd9JOVRg2xqETck2/nrbvl1gZbyWFgWWND76ATjx8ZZzHsm5XblRhRtQOXXLemmJGk0LBZoVF0Oj0TTtsqUEGBQbNu5lygxvWJBrLy5ZidwdFs5DYfgUT3Ug1z9+dwKlDB5CrXFazkDE2YyzFki8uQCds26ixIjQWnKZ8nFOgIt81ORyx5vFkVTGMdqloTYYVsld6uuUXXmbLom3MhPyrhtCwZJBkMEZMXmZEyQyaaiQ1RMF8ZGkddPi86HG5olwXbWmZWga4uM3MrGrZOnx8MwJvGQPphpNlALiHS6BXcjTRqgA2ahbBG7jdflA+Br3ri1vRlrLp4CGvcvX7Mr+1rfVmmLupXy1WZ+xXdVWWer5HVNl8dCCuIJZlV8WqrWcf7X7RIwS69/7pkwN1dpQqhzOiLz0Xz1tZq2yCruYohs5fVOpPLzG2hQVbhn2Mth42y5X6yZT1bekJROSHREKPYOodkPWnNrAKgE2yCq4FErkU1K6wxBZoTblUWC9HPKikv6j8NrbFWfN0awRStOZTNlrvsSlytNUQaOrtKuFqkcLVPlBlM6HXRWKIYUBm8L9AIvK4wWEh0WjKRBZEWNCtfvZB0alG8FEkJhxXCaXJgunxhucxkbarG6jFY2kNVAshalji4NKcnKKY7ImcRsK6KKdxMmY1CsXkLGW2rhLJcaiR2YiynAsQq8Lp8rvlYkaesE9g2GBmTm7AVWEjfoLSeWjJZkV6R3UwGwZpxT6eHIjLlMGcfWW0JASoqqIQsz3W9Ns7YEZ1kOR0NEeh+h/LvIZT3zllb53QOb1aZOY6bsVWpeblFRA4Pc7OZvi6bEebRx0SmbVY56ELzYsKpcRv95yea16z28mncNJKo5lsPWdrnbs/jp/0j/FaD+lHW5nmLt9+f/2Zjao7+kNWcHhrEC/y/6t34v8W/v2ednx3abBunaTDf4rTT2vHL/dvPZ/CH57T++Tge9+dv8/Pb7Y/bNvHn7fbjHK/3j23rMhPd5HbTj8Lnv9zet7/n+Sd55q37Edm2bcarGuiv9vJW+SERzx+P4x6ttreTOz5Rx6Go6nvao3kf5S3mVuN8bffj/o83xVH2HSrfb2F4ohA/7NdZwRdOjXxi21vH6PN+y886nL/x+HPfTs+PrT43932P/dw7rX7avx37cDE8+o+/8TxGGct3/OfTvE1rk0PSGGlKw7OOqf94/fIKdYz6pX9Yt/7j428vxO1se22/b1GrgKSd7NVGj9bkr+Zor7T+6/N1HozvP79Ne7PG91PG+/FNP4+PauCrbZjbe3z0YrH1+XO7PdvLGG/+Nux23qzu1K8aWfP+2XZVfnJ7JlLPsc1NL+V4jZGTL/OwtsGcpFWyb5KqWTXmeYb1u7ScV3QqZe4aLFLpLMvCBDOTbmSGkREIuAlE+lrW6knuvbR2dis7gv2IN37eauxK77C9f4Z862eSMXC4mU0pyxIuVtVqE66F2eOsWQDSzCpbKcGgjfROJiyjDCm7+oad2BouXXlZumBXKVqV1ajVOn91rxZvW5SKzkpZgSaQZs1QbErfNyEr2dpqG2BZQ4rWVhmT+s04S8wrNatlhJShc/lECPMIVQlV7AdnHea3nn3WPnqTXtVktxvRu48f+TUwe6vbL1bW8PnnuuRMSq7263vVbwDNqh7R7L2v0b3q2qf/LwewhIs3jPYlktdaVK7OaV58iQsNoUogE15cZcRLezbSCH4FhOrKFIslN2IRMq/d9wopi22t4UkY2FrvXGkbSFXIUcWQOSnJjbbt+wWCJCDZMoQDIN1XdVcVWbJqSHLOyCom7swX4VZWKaE5V+e9X3JNLssw09kvy5jnchqu33tOdVOulk7Zas/0Wr18Zhe7ua1ZvRn7cm9dwSCAtZbpaIq1t/76U9DXRc+g8rF2+F2p5ptqBXWalq8HUeWdliVFmLlTuboIl9l/+bFh6oJBXdTG4cxl6c6WpbRUCqaNWoURakozESPMzqR7W31BrNlpNocvSyRGTJgpK4zxig3NccKjBpILnJ6jEr2sr50OFvVpCe5mFJpbp6ax3yanC4oJpjWurgsJQgaLV3R5M8++Al5cyNOSoxFmyZUzdhUd1qBkmtvaSRPBZoSa6ba3F1bLc8xAt7KoMHnrLh6FLey6kjW675+zs1Bjpo35vMtgDoNdHx45yur0O0efsmrtra2uQTpSLmYeFMzbWp8t20RrOc+xYiG2t9YtXRxdFuA57/ij/e0pq5/bB6dVPOE0Ktyyq51//s/9v7SP22avx+R2/IzW7eRjN8ftb6dHtP0Jvrxq82+/Hb9v7ddn++Yf5vzHy3/9DBzk6zN7DI/PKX+29z4tPt87axTY+s3iU7ddPXC4P1rWGb1teT4tI4qTODFZ/fQka4xxxzlxC66ftluv4dtbG7s/jrt8frjOx4/3+POotrn7/YbZt/BhBJt7nW8y7L++Zju7JrTtn3Ba7XW2ckCZrbZthDkeagHO48/f/OP2q+Xj7bjZ+I727Xnvj2av6PlqCVRGtFdZ7eHtxPm4JfDHDd//j//694yPfs7f0HP2rK6Ceg0buSFefHv40V/b89F9lNdH+/eoDztu/1G3c2+jbw0+rE324D5iPyTvHF3boW+ft7d3zPpt/Nk/Wnu98Hez/+nw/f2P+uNxlJEPCyG2Db/C+narZ9adJw9l/f0T7hln1Evkixqo7Jtl0yyDhEqu4D8o2VwwXTZbUSSXChWNqmiLX1SCtxRU5QK8VVUFtFDxJIR6jENVFVnzBSlkx9Cs6eZCzfIMGXj1p9MoGOCVMNHEriDSIXWz5t75kq1OVivBG5qds3fBt46GZswsiWMR/K9ePdLS4IATq7aHIllFE+kgK8mrQrjK3NnFtm3FBN2clYsM0rQgyixlpXmrAtpiKRNFmkIwK6swr4Q1iX1NsumrfdXRpBxgDRJ40dFBysYMCTSCFtEH0g2vM+F0ayKM23HE6YJqJseIfcVbqVXHsoZRUov5uc5k8jp3sdRJAWpll8d4qfVLCF4wLxnUv5qKyFUpaMsoBrAWv0n/tCkv5BaXOAgS0pS4Omy1GB/mBtAMxhw9J+WMtFUOYchotlCe/Cq0x+VEUEoLC0pamrGaAMVroib2qrDWW+ZMyIT6aqgWUGATa02GELMqgYALCUHwZe5ZhrSrO5KLA8c0I60ssYEF2TrMEpePjovASYBI868ltq7duGEhw1jLlNZNeTVn+LbnlDtI1yoMBgEFKWXFoJtxDjVKbKzFXCdXh7bSLGGZKDaVNebMJ5qrfAFIAgAzDZDRHS4fIjtB972YDrMwtE41k0oB62iNbWws3MrSIMxsWmmIyw/ggBCL+2E0Xk1IpEDKWzWGYxSk6CjmiyPMVHN20Twv/2M2m2CxyVAh1LachiAVdaYDkqpqfSs6VuO2NUdxNmuyrZiI+5izzorpVgbRW1themwUFa0LbevDq1pUTW/cdjVjp+K4vR8R49PcqzvKSc6Jvb/7i41cK60hJ2wtUDzQtl8e6cLeZ1mlefoKkbsfttGyh23Nvv3vwz6/TdJveey3PYxGvNrxyt22vjewPB3V9ijm87u1N7HCCJ10JnvWjJntj7h1sh/g/VXH6DantcbdY7yfXvV4zs3s84l9f53nHxP1bPZ4v6POX99//MnmZtYWh7Vy5EgyfYa3W5dDt+LR7N1amJf1uckE8Eapb3k0OVFEE7/tv//Pf+GuxvQe9TZfHT3n6I7KUn6y/xzvZvFmewnGcGc9cvt9/rczbq9fRXiL9m0c9q9nbrWPLT5r1s9xkzKzjfF8bPzPV425b9/qGex/DmMb1WRymzuPpuLdf/ivH5t/xxnbcda/7fbR/9u/f+LYQ4I/wrIoqWbTCNzOnOZH2V2Pbbu9fp74t/dHnQcM/Lc/fsfmPwZv/69x6g1xNv85pm/sZdMwOLfvr3/02xui9Sd/Ufrr23sLtX58jvc/sfWmsGbNgAyO8vn8xxYzP2z8dCPOULNG77wTeOsM2xsq9XpEvSulTBR9AXpMLhmy1Veupa7ucemLWkG5KUeKVbRK1TL016qhI6tV7Jh6NaEmPSpdw8M9whI0WIEWoetsWPqfhKCvEK1oV+GKZTgdA6osBOGwNqb3LOFMMw/zpBBZMlOTVg9cGr9UWa1MpgTJZGLNkqGyVOMMc9DWp77qOjWEiIiGa+STU/IFz1/cDgpGOQETQGsNVmV0a1e0onKJ13Dj1i07jQqQrVkL0dq9sJMsKiIXrYJgmoMsN9CbaqYkGfK2JVNrWs2qWE0++uuHvDangi4r8UXZ+jojr9qB9gU0vl76dfnA8jiD1waZRqwdsNlXqukrf8MraXxNgryCulfoi2vlTPPLk2frib2mILuIF1ruLrt2IF+24q+S4es7OOR+MdYMaJBK2e+vsSih5swruCRdVZDSsgnqIhTzn1ZiCr4e0YIDXsbi0tTtS8avpXqurWoJ5csCULW+Er4c71j5my9YJ7588NdLo2usa6gEqq8IEMzK1m9IlSxWMYG66jRWx+D1lRK+KOe4Kq6ggpwTpYsiQ8DUVpt1NkhoLLBmwdaOCKCLRmOhWg9W7S5hZnaJXtkkqbGqSyqauye2JsHptoobqwCz6ZtYtVzQWnOjoYxAc4M1K+rBmVuS+VxMoorA1PseNl4m361bytBMtILJzD2+TPxanM1y1mWrh6fWpZmUzGhIVRpovrG1ZSnQhhIDzlARq/uYliHLVMaYQiGjm9oim0Vbb6/1koMNZCUSek7y5Mi5b8pW3njtppXRzWXE1tZHsrJSsqAqFWFjr1LKKoeGc1gMq8HZT9vmm2VxHpNTclbJSqKn/K33P1HEjIwFKA9DWpnzHLwxR6+H6nMeN24y8pwa5r9Uf4vtjqaWW3uDb8e0zWYz5Us/X7+mee9ymq8sN2HuxuxrpXNsNmNjb8rNrU3j1rglvHkzN9FLrR0TYL8dLfp/wT4x5lb1SgskCEV5edFnt8NvZ2sgxOmc8NjmnKN+z/ZCaKjneTz+8w7LPjSVr9pe7XgFYFmbHzh+2fvf57fz1g61Z/ZWlQ3pGVbdAjBh9Jp2ngrTI47bz9T9+OwvQdgo87ZhhAz0CC9YHjUSNwpHe51s7edH/dJ+jOwFff84/sf53+zfPmv7rxHZVAXMKjFL4lTUObZzRDvP53b7+fwzJ398v9mcaMfz7fufyttR6m21fwwytm8Y9zLpZrt0tP2zWKlBPlw691Z4UMVGmsXFg7eSRCCTWkHg1e96FbWuQwYXF87YJK369mjSX25iWl2+Y9AtV0xDpiqs++yCFtuqo9HXM5fG5c03kZ7LHIq/NrUglDQsJBRURC3dq7JpNM0Va4iqMlOqWLM5dTmFwcpalu2/TqorzyqQMFuteQuJeaUilt/xax2+Vse2wtOrNmjlf68DaD2Nuay8XxAGfp2NhHtbn3ZYB6O1q/TVy7a2bvkOXm5hIOe0YmKBG2TrhGTN0hShGZxzalvfsi6n2bWiXZeNNZqscxPXYXm93u06oXFZz9Xta7/qgq+l8UV+xl8JJ0hCZYnQdViBtXzTWjgC8EJ3ik6U0lYJ6VoOXHeFJY1fXm5KNJrzS7ldjL/rL7oevFfqF6hQGKvg3m79nCKKRWNKysB0Y3NzX/wvKCW6VRmXNWy9lVgr1gSlVk+UkKAvRxWW1RxcXQqOMlT5srVflq3kV9iqAFXRsdjv5Pp8VDVjFggv2nrnebMsVAVimcQX/KWyqtx0XRyAK/xlRIUVKlZCq2C54OS+Dvk+4rpr9BCFXF5xT1q6GU0X4nwZIw1kWSUsskwoGVJEuYcQkaZiaZQLFmkouQEMM1RlmrHKGaIWzIYLj2aebmZVpenNAPby1vYKHru5BSxI1/NHGXnzuipBJFkionPFeilJlFgTX1mDoFmtWy2U01mG3IR0qRtqRllW0TXUURGkUOPZULAXXVllKkvGsEo3VdTK/+wVOR5hOXyPCkFSU1oDchSdCB5Ew9gZDeZW1qID1cEe9UrC+3KGUey+FeHWHUyH4rPFHmURUWVsDd0EYiuYtaA4m4JlXQddt6e/zX5iPytkLSWWO0vMaDfX6XfdNstxVI3N6nE6UnhmHHEWj6f68XZ2/3ZruN3/uOfH/OC/NWtstrIIIq1W8QzbrT7zbW+gvNXBOH3b5qbWT6NMRa/nbhtr0UVq2ivbHK9vI1pN1evVHe5Po/XeLOcOe+31fLQ+0k31CbrPPNpP9OwIZ9lTt4RKzyNuzwcRaGOcYDyqbQCo9v31f/r++nQjjHv3W5yd+EV0eYHEGO2tZfe+1ffpwt0zzNqUbX/w56+vT54/v1Wi72nWlXbCNptl4GxVIxtsf6vWj7d/pZs3a6/8COM8wW/2ehTwcnu2MfG8xXlkKj/xbbjc7v3vE33n67z/wkFvbdRne/j+egWhKs9tPtrL3MfzeN8s0XNG+v2NxSjrsBvFZ28aroBVpPcS/TLWVGEF7nAB8VLGajBbddmG1hbgzTtC3S6Nsnc5G9Cs2GgEoxPb2Swb5Z3dZ9+ih3trpR5srdVYDW0FsNlXglSuJWvznyKpCjRjKaxZwOiOBQguNjfbzI2uWjAbg4pWo66Ba+EWK1mLEQFaFstQVSsnfHUZqErulgUpY1pBFQFbML2v04FYAm9JKUhmXM4mcIVWr9O8CnL3ZVxFA2136GzMtNb3q3uqI7CbE87JpZuWyAbbZHQ6MmFemTRns7IIknByboO955cFa0VeV2DIrpiyvgTTFQ/+cmVhsaC/ZIcFwwAAlYHGtIX/E1TLLb2yR6kVnOU19XFVSF6jN3szOq5iH0fRkc6VR0Kul0cJ5RhrDbjaERatkFdkm4YLXrW+sRmWvwcEzQobS2QI2nud1go64VmWUllRZpCxYBWZkrWaomUVjEzMwBq5r6X5ooIsi/ZKT3dWkZkKtjSbtpXESeTAeqNc9MoCWayJssYEifVqwIgilYJxwrPVRVMpKRkou3bu612Idh1qpGANzY2QSrZrXKMZ4CpfJMont1dT9gLdlJxDm9kWmTILZpZ6wRMO2HL3JgwN8JK2qnpVbV2Z3pCFKrjfXM9PuMFdhTxl1jYqs2JZ5VUW9DQvikrQXCbJzJxmMauhbZ6chynGBpqSW6b1SrZoQ2F7YwwfMhomFSZMUeUFxZRFVU1IDS7oRamVp5I0iOUa4qyqfc40H4goK6AiLGmbg1snimf1UtvGaMMAj8hqn6+98fxuU9s6b/e7P+brc1tkrnUVJ6t7n6/WqN2m9nt2pJZc4q3D8+NgQKxJc1lkIZrMUBRTys8sPBNjWLx+6bEle+y9fZ8lGjamoTJyToA6Z2swqmui2v6ybIJVtpZ+nOX0fWs/+/lZduJ2/9e9+giG1Xb/9z/u3/VHmX6Jx/2XeH/vO6b1feft+PFj/sf5/z0O+3gV8txGKA9vGsZj0xmn3dpjnJlbO1s0bvXyrv1N1Ut0k9nsolXCVPL9rnfV1nP+p712xn7+y33zP47vPbY+Hjl+uBP9/udxA969ebbvLV/N/3SX9ZbvPT5vRzW9vN2jZfEWR3s1xOtbpVRj5x/d4x+jvb7tzZ7VHmHD/nTX7/vJpgpsA3WP3s2OUvuxH3zVsbHM2vjctk/0ON5v314TvBdS9KkNOIs6OF/DTrXCj/6gW47fzDSY+7fzuVu0fR/nm48Db0/7VbfNP5pDaEcVtp41qzDPjfkx23aegrlgqWj99XgN14dnAUcdf3vl8csWNc+9Pbyf4IupqUb1ve+bQXUm4vWa5thU7lpLsCqyeY51//bMIjE2nAZmY565kRk0+FYBTRFWsnaqmdTMkmZuZfOcY//oNd630rO1MVXna2QLy8ik3fP5BCuUaYObIUXJig0To9zJnNUAkYoy2Ob5MtJspm/dEcOYdKSpAohlLRKpmguqBVitGXoN3bjyqjAXzZn4AmoAWElFA7zVOuEcazS+Rqevca2tNgmwoAz01FyBIhPkgJOyZV3COEdEWSsXt+22B2Sm+P8z9e9MkmTbdi425mO5ezwyq6q79wMbwAEIEDDcazAKFC5IhSLNKJC0+w8o0qhR4Z+kQvEaeYn3OWfv3Y96ZEaE+1pzzkFhRR1QaaHbrKwrMtKXrznH+D7JlG/AAibDG1zFDT3ByEl7MlJk+tS0ipwACqg3L05z/GhOQHVOGOaC9jnUlSeTCeAT0sTncHeCORxPx9FcLxay+v44Kr0FzZEqnNRlMEvmFH5WgJNgygSe2BSvy/PjiXAjCkwlqWIOU6W3ttiz5ltpDPqSVmkwzmIPxFQ51w5zUD7BD/OOXvJ0xwhkoWkCmCtIY2DQhEoz8QXqT2z0XAAlFGqTFyOlUt0m/1BMRTzFuMdcJcwagAQBBGDNFOIzTQLAsCAoTp1srprjaUCVBZqK+hiJSeioLqQWn+W3ZA6Yl2oeUumhIglopKbbhB3PNT4BfVqpUqChlgRgPls4fMbF6OJGk0WEDGBLVWqZ1pR3zlYNJ30hnx1mxZiX88dAmRuTxepVQKrVIKPWJiUmqWwuDrWyyiCqmlBF1NtMXs0XkZzWt+RsCYkhd8pqj3LbylsMayKNMOPBl7UweJS7tVIRsTjERRYpcU2IL5QWgrUsHCZigTKlZU5q+QpICKoyy+LwjJcWZiHlmbnh6I7aFr98rpa5mqgQG4M52irpi4DLkVgqRN7tfgvbRw6Rpu9DaVBMNpRo9lAblXa3VmwWI4zcH9HxNkBdEhB2iBFQUQkXlATGkclun/e24iH8pXNFX2vBqaR71L7eFRKpITNR8Tlf7OVThd896ILT9tIP0ZTS6hpx8ouuISm9cBvLgyfsxyZDqefVjLpd7i7nMe66q8CY8Y5t+5F3/9P4/fL/1boVbulLO9XSXI9xiPWTxrF7Ke4J63GcLy/V0zauPrUtR98CzuqLAUoblcfNxH9/nH9eGs7CYko9mjDGIrnu27rLyTgGfzndqrFDmuWnLT6f231t/OPfLVYVqcdx0m8vp/HxnZpet/ydrw8T4g+7PP718vWfXBQP0eF/++jWRvmjvffsuIcNkBHrkbd+zfsvZl/jd9ut+nb58pcPHrfXc77+8Hh3vVEgkDbUrd1U6rK7L7KeeM/8+MNI+awRcqQsX/7zj9/W6qfry2+/Xg/xWm9yamnboy8iIc2WvpxfP43k/uPjfuyvdcXuOrZxZF7EcHjKHXZIESW1tbKe474//tU/13/xrxe99rvmoETv+753BdJ8b5al7GdNZSEBGCqhYXnMuabNLmhPO2TeLI4I1RyqsBqwPIykJRXOxUNc1IomIsNGa34N2WpsuWOkUCoGzUZGptAHqzIRIR3hGgWKplYOyfRUZs9pGoJm00oVFx5wKCJ0FhmyFikRm9FugMjCyLmNFqnEd/ge5+DseS4R2lgV9nTOkiypEkI4BJX2VAdxruKetMnq6lN9gUhVQdEOPhNM3+emEHviiGGrqJdoITNWPWqV9bwOqxLRZqM/shSvhSbQ73FkQLNWnzZdhkAnuEQgvpZcqAQTMU+H79AHPOerz2VkzVlu/QOh6zmlZhF0maHvKYtHUQuVHOJmYva0vFY+927hc3gsUKImQVqofPZYJyvQBM1n+ljIYkmEwASEJr8vkfXZYspESc5/l5iq6ecU5r/BQlVsosGENf+7cxDIPO47oCMgyyguNjhXHabzwMaTQZHJgmqWq0nZUgCUaiqsEoyIFDOpetapnQLMBLeBKmjmUgpO2d4cvWTNt4GZ1GWzVFu0qvfnslxVavKRSVG0KqNgmIkB8lSsOGzVMgWn1d5sQqmYVVJS82eqKlLKlOeJr7PMsBCKqORQVcAyvAskY7gQqaykMwwlmoJBAElTQ3YVOMISW9zFlTCvykdSF9zZcIw0Lovc4aZVnQ1SoVUIrgpHoFR1mikBikqJFIRDkZDc6jaGSBxVFirOUqhlzGxFFSrm6nrVdORUPiY0KSUKztCbOMsgwyoSKiyUqGMhvbIzTJQKLs3uEEjKiGNH09vRGYJsrYWuAeMoOalUeWz4+Pa1NTdttXKV49FFF0BlVaHCBFEXpyO9S5hFQRUaHKgUJoekOjL7kSbuIqIlUG8ZQVLoxZM3X0+6soaTcr6NP/Tefoi09u0VjyylQfIZiWjLyv3nj7/31bwPFnjsqoaIWoYBnl9eegK7l2bQeSxqamc7/6Niw+VyhSTXob/9dfxz3plffNvvsam+fhiDvsC0lmo2+qhXU3ZZnIgMLIvZaT+fhZcXvXayetU+41p8nLwL08zczdbtCBlvXxe+me322lLy7eK3Lw/9spaerfH8qmPsp/Y+7I22C+NUrX07vKlcZd9+e2W2VnpqMexD/1kPv5uWf7C77yMaouK4/3U9/pO3o5utp74YBIu8tktJaaVQyKBHEqf7ENjjf/hX4mMfOP13f8j91dn/+tspDq4CaMFijkYVBkHXK71wvnfx0wMC4WVdXvL4qNLVxk+v99cMykVEGe/Ssiw5SmP9ez0Xr/1/fuCK9FsKvVRS8b6kVLAtheZVEAtfi4uYpVhZiqTtXSKAGoMSYFUx0UzHGMELkhJJiguHmCDUng8qstPFbQDFcHG6WU9GKaEViSJEYSJMQ6oVHTWRDKyattxRLKjVSM/sVjPC5MIsSmH6V+cjTSmsuZasqf0FDSxJKiMDzUY3QLKgTtE+2KR0k6FgzjufwZSUolKKagomGc9jCSVapMScCBakmKlMQZVApxuWcwnK5JTRkWAliMp5mjyvlJDvsCnMk0hE1ExVpQgYmhSokDGWSyvCQFHJvYR3NPWsygFN1WMfIACjSOqMhCEndDbHpBYltSj8vhX+b8zmGZGbvd4nO2oO4J8s4+/953lGu8p8MQGVgGZFZFFksrRFqSxkysR7oBT/kJWbfwpBCscsF82BKxFCZbFq/gwVNof7phPxJQLTHFQP8Ryic2huVVlz4zAPanlWS2uWpUrghhIljSpVFQHJlKQfdHO1padUWZtyCYXNbjImjVNcbJbMYc/O1AR6ITME1KKyZi1adEoPAqqqKZUupXM8XDoKREHKKBPaQVaW1PBnlOEfzMtzOa5JCzytI3MFXq7PQsuwEjcRWHJSyDzBQDOb3WewXAuFmYucKA1I6iApw7SaCgYihZqzxaRapi1LsqSKAtNACUTc0EqaiY6AW2NChMq0YramiHu2EnWBcE8xSH+E+l6qWlLS5qsVQWQKCCOSUIgBsri0SuEokUwTaAxZaVXJNJRPgDrIoGGIwopk7yyDacqcJUvs2oRJjiyyVKQJ4GDaohkYJdassSphKiKOGAAjaLIYU2yRvDig7FqAF+b6t4aWflp4ctvSavHV+sEu5zOPmq83Ebq4Vyl27BwbhnuTo6XQmGtZvugRkiYKSAY1akZYIgVWQrVmrqczIrLZcTn3ZsqmX37Mx9tLy9M7tBrVtYIsXJqN+HAWoKloEeMmJgdKMtmPD/l42Xtr6Xk87MNyN81F1kWcD4p3NP68CkEuvrT98PCjXx62Ys3f/DPldB7kC7YSW5ocje6W4euqS7vZ8t5klDggdC+zWGcScPuwitrQyr6DKtZaizR+i/0Y0DXlo7+rn/3RtyW6nPZKaqmi9EM/gk3zxr5jeeOX8dOh/f1qOxbsun6hnx99WUKv4ZfHsb0uu2qmjoyf1kdz7em6jP1IXoZRxQpZir6yWT2a1LClLr7KeJwa5WZ4f/nDf/i6uqjZIcd9yS6MzKHBogUPXX8Tt3o8+na8p/80Htk/HLadZd9r1buv2x9az8aiOQ81Wz1P6YymP7w+dlG/YeO+n07JwzbhSFszHwdT6UXVECm1rsZlPU4skYb7YuL7HouIsLUCND1D1d1q7IP3VaZEj2bCQcAmLR1KCVahm0EKJyoiVoU3xqRPHW5MUbCQ2qRh0UlVhIijdBGBwF3UWdYoBixFN6W2RmeLoaJMaeC8swIwoU15AkyeulpM7kPFTkWVpjorgcoaNNFsKE5Hr2AMiGSpgDpDKCnVA3OQyXl7swQKSJTwOEIpE8EhjIDMo5kRmZqTyDljR6qq0JriIMmEQiTxrKEAUrDKUJlJ4xwjcwoTTA+gPLUyhGoiYpIMShAM6HHEjH8rkIUEk4goU53yxCKshfqkDyqnBEfmjHwmlqzq+6B5YpVmIb2euaxnKIv+jDhJCQiFGgMkxTgLTPPy/ywVzQrn9KJr1ZxiQ56zAwj43Nnq5Io9Af5Voc/6+VNFLyImpVJjEE/IslCfGGZ5LmT5ZGfMQq0ZqOaqpApCJh1lRFRG55rJwCZp350RFJHJRy1CrECYAkuVBOVpNkTNv8D0cYGTVqHfU2wzlsiaNd4cqgWzLJsZ/8mgAAAVIcipiBgjrCAQmXk/8P/PlBEm4g1Koq3LM6yvAtoz0Kc1YlZcR5W67DsFdCtAJWer/Rmc09aBIcxqDNd4Jq0U4gZnOjIho1xFVV3EcMjUaIm1nkazjILIItKe1rNhTc14dJmEzigOVNni035dIxWgF90p7XvXHBTV7/4vjmnfHDl7UBXVdc4vxOJNQhIuupSUapoVmaRCfVnKjQO0VJyQUiosWU13NRiLQjqEJmKeWr5VKR52xJo3RNeRW9yzjaVaoK9Su3uxaZC2jKVCSixWecRKSlRXRouTLvdDllG9kEKTKEtVH1zv9q7+ta2sdDXXmHSeuEcaF11sF0Ijk2WiRreYsUsxFbWPt3Zfs667KMsMJn0RHRZv4iV7Sz0aQ7XhgYr/+Lt/RR/ewpu3LUG37OXMy6eTXUyxt4XXd70/XpLLUKaavD524i3GR+blceDl8i5u2tzOTZbmsXz62QLH+10RkspeH7ykd99K9S1e15O0Xx/ndjmNOJk3K6z7so421OczWv2qPJ3aEXsv80tm67pYtI9c5IxxT4iyEj1vu92GJnJZ8vi6rB3wU2v9aFveju38+LC9xqu41KkdY7X3PAVGe+Q+jp9pmluMVuPx51MPt27XhXE5RctEa6NZVVsoVjnEpcWy1aXysw977HGXq7bbf7mm7NsI4x/vwkNFqrJxlC5ZGtY3s21fMrf9f8z/o97H7d/924wufFQ681H+G471FZWNKfLGj+u+lnIAq+/bqS2rvm1LcfWDLxC8r1vK1fL9rlys57IRBa7cRe68idsSI9+h3iPfMwrkaqO8mS3LkgfR8ji1yPnbFGSk6Oz+CkqqZC6FrUnKrB+IKUoX4SrFFMWiKkEdzUVUJ7wAosNZbZiezlluuqBXWsuxLqPaaBRWVT5vKM/N5dyqQZlzpstMy3QJkfJmymCbKdrWqFH0CSks1wx/9lDobgZQKytztk+fsdoZsnxmlDjyOSyVHBE2oJrE6K12lpa6FSNGcIrgCRqYlQZxZiTHmhSZ2uInNUJFANOmJqYo2uQjUdgYtrhQzXxd1I8mOqqCp5HmqqynzmoeIylFJs2qyCyhxLxeQyPFJEzEVOCGp1ni+413hnuewbJnGPq7poDfX2Y8zPBdPoEoyRiRmVXNAQ0lTGic+2SaqcxdcUnNj81QzycwZqqdM/IjClayCi7qgAKt+eRTFKUqWBxHac3NJMFSis4KuT5z8EqfX0INCNBcWFVz8CGSIpl9j0juUdSHLjLoSIlVUVL6hAkrosMUveyIEjChEqU2S+fPppSUmiieukYBFDp9DClIHzZXMQRGazpruXwSrACwoiitEjqvyiw1raQqcogWy2wwBahZ2zENSKlG2RARY2nOvpY9B8+ATKHR6MrvxWKRGeSSnhjQLOvDjSHZOZq5V+2+iK+VSQsYpdHMVdKXI13dk6KvvleoH2o6xBVwjsB6LkHd9YSOhTG0py+YV1tJ0ufyoQEpTILaZtk6cxbMUJ4GXSvt+FKWgDU9xGqQNsYadTln7UemDjGkGvaWtIqqWg8vWKRIqxgJVcNqwpSghDKpUsiCohRDajR2V6+Qemsj+i6L2mpppVt7j9xH025qw9lXsOmOqntvfDuu53G247ThkA/hldZtW3gmaXSMHWO1HMIVfvFdtnNzzDgkfBmttfdDi65Sw5KqOmuaouYUNdv6/bordjz2tdrDjbqvNprfbwGYa5fsgkCDnKQ/uDjlT9d/uX2TXnqMI5gJlc2V5UNs/LKem+02uqqarufD2OP+Lv/1bKbttvLT5+P1eri+bKdxilbcuYzjt59ezx/f74cYMkDkVesYsp6ljwPu6DUu2zW+lSxXz/vYzDc/ClWVi6x6284F9HIT217qxXJ9/7gEOu7t07E8cNEbr9fOhyz8LV9wseqfTAsvwB7bht6tbjfczw/55Cc51Dwewq/bsZzXY9MuF+G4tnx1hiXvMn744eZ/HcfRDjl/+4y8ab43+bac+jpgvbm9r7Uql5eH2Iu84bzZqb4Kr7W/73+4xPF++euOUiHg9bU16rdF3j7Q7at1fX9c1n/x16/rDx8+r/jt9cP646+/8avJt//x/H/99PXL/YY8aj38HltCHwlWxL7wv0Z70Z9V4vLxPU7v68s6DsPryNdd0zYe2/p1WWha/XztnrWy7o8ftserbBv/iv44yaAOl1buyvdCVkZp6YQXsCiKJFQwUkTLMCafngmixow8p6gCqZKy4BBmmUHbqjRV1ZrbT7WGjq61b8t6HrZQF02nVrlpCGVpw5YamUmB6tP0J2Kg6BAVjxSDWrJVsO6yaSQIBzGqPUvK6hk22YYUDAh7uXZqpDVJK6oJKESbYd55FzSKTWUhCZhR5VmVM9BgQpW5LCRsxpiKSGRKeo2qYuXIzBGqU9wAQQ1pcyYJmyCEyOhZMESAmqquZKSO4pEBSReRi4gptNZFpFiEyIKiolzNoERAHZUlmbocJWCm9IjqE4MJPhuvk/ZNnZ2tWfrF9yYUZswWLHedsZl5lhjVWzTUTL4PSZM0Yc38twoKCZNiPYs7EqKgosCsObQVxORSgkTCKCwpClLTnxvTojbkY1QmvmeyaWZm39vE8/ZZnHVskuYiqTrFgkLIIgmzdsmIGI96QGGgCaoMY8rdo2ZIu1LmznYqMjJQ5sCc7hpTxBTCKiWRzw0FpVK8PYtMMNRccVNMMiGoQgrluW9mZlp1YUTJzNwzmLQ5lxg0l6hIsTRJyWyVCaqJySgBDxZhJqZSM9Tj6poKqxJVZlFFFCkcnVWqEAhV2lpkJKC4TJzWwshyiWWxpWharEoWhCvhokiTTJEGLMwhNcoI15MoIo/hjc2A7hLtrAjCUaGrloqaKQNhVJ9NMUlOSXLBTIS+ZWaZW+9jM208bEOrUGmKCN1ClrvSmqXIrOqHTsFasyyIAFpuRSmHsGx0aUnJoCStyJIgEcm2Jxb2Q/2iZxtSR5yrjxKWfnh7W/xxrLOqQMnDt1Pu7PvaOvNWKexq9e3tTSPBpkN/LSuWSWK9f13fT/Y+Kr8el/PbxZxi3cvK7/3Yt79qz9LglDqheikqm+Z7ncF7sY5F3v7OLuEytsdYD+udL0MXfUGqaKW9LeW7y7vCLa55Pulbz0QNK6JGi/Q75WXtOo57nSg3bEsyxnGq08lH9aj36Ffl+X/pP9rvPSA/vL4jT+euP9zsg/jpn3+43I5MR0o+lpOXicTsxcDOyeXtbtdQf0+73z70DClfRutamX3Z+8Z4l6Isitgff+GA1MdrfPwq4+1Pv/mtPqIWt+7bC7m93D99Psoub/nY7uTb6VzHGI5+0v6T/bz9Zp/e+6mkK36Bbn/fX+11Vya0/db0BgTo48Nd3h9/+sPSZUHEvtdSR4lZ8Bgezr2P/CePQAiOy+3XP+t7vdQtlvUaPy8fvsl/PO3ryw8wScvVDGq3vgiS9s5T+x0GXu3x97zvj98AhX1OkZtsX6+nR5Pjv2KVH5dkFWQX4PXQttMz+FLbVnx/NP76dVn3uG39SLC+3a6jHw/NLPNapNqxt12xxjdtH3TYmal2lUtLK5mZkjYL+fs+cqD5MiAyl3WR6iQUrYEqWZcBUHPKfVYh1aYVrbF5TFS9CcQoEjoM5iimKisYS1Nt1Xi0GpIJRO7H0heJOhQhIwzmFjFnXFKUtCqPiDJmSmWoRYJQloNYumKEN1QdooqhFdwwrAKpKKiTjKiCgf2Y2ARV0rIXSucVUYRJOithngIPVXNMqeKKRxqAyEqMXgkl6qn1k+qOCoqgYkTvFaqFQqoQEQs7xFSkm6IAtSpxUOlNdHSRxRZ1CJiFhpEZudZi4io8eglKMxUup6tAyRoHTa2CVIfzUXPYJya92dQP1VzE1ZOToToRYJyYaFC+X1SFc6JPnwLHCc2YTGxRVFBdqB6Tel3FUgVhTgpSZoqGJKD6/QKtc9MoKmqY94GkEcpnl3EK5p+7ZdRcSjrHsz/MCsKfILKpZxdBTWWRwZSYaguQRJYANY7bgZ7JDJRYk1SBZKo9V602Zb5aAjXZyxawZvm4qtQkZ+uWRYojn0G8qXcVBZgoSTUR6bQiaCoR67z2C+dbhijm8DebzA9GRZBP6lOVgJqssmWFALQBF2/NWGpwncYqVKaUSEhVIpPmbkdIpUgdFBhJYZHKqVHxpXsVGDOjlhrO+4I1FkSvqkM3frctZyJFYBIOaz66Cg2VoFOdmVqSUgEuZ6sc6Wgu5xodsGbsZkWSpey1TC/QDF5FqQMl0tRVwDjGoNFxPtFoLN00TDaoi0jeHqC+AJXZS4yimHEBZYVDdSZuJPsQ6LJ6+MhIZCRVIYwy50LlYNnCtYWfyeR7JQZ11D60eeOORbNeV53UeTmuSyTW1lVK5HCWhGhpO6hIS1RmxMxcaHVZ43rHS0D1dXRvJELJokfecrT7aPC+l1Rbl7ToCdhKicgBjfLsuZivefq29HE9uO3NfzfwN/uvKv34eM8P+sHXuIRtNzUsXd8vp7e2rnx73Y6ldLWTHMv4gd/aKPn4B79/2fP97UWpn3576zjFq22f/ubPn9dl3LB8lgu22/nPf/YPuBdxXDv80b++Pk6q90o2WcmgJy6wR1nT8c6CvZ4f+Xa8bvqej8cHquiy3lZLaevifZrK+51WWE/bgeO4hR8hcfr9j7BP3eznIW/1iK/Dlo9vb5+iy3t8eMtMWLz1xbqf9/FR2rmvi13VPnbZx+Xk/eXmGxJXijyiHmwLaKPj7csvxN/5+jjAvOxXGrg2Xigr23qcl73TP5wxTi/H5U0GQtddhhyBx28/fZP94f6ej+orQjTilIfEVW+6Nu1bv4z7y9CrdJGAr9LNrsRLwux0eVm/jf3480nk4S985xK/CCz1Arz/bNfTO3+wb9n+UW3lvnac2lI393Pc7dFzZ9s9EqSIPx5v/+6/QxuPLsnbW7MzQ3u51Vll4V1aUzldfRw9YiWLyaJow5Pbb5kK3eYTaVZMY8h3+p4xKxaUkJrwEGgesTVZBEWfj3VIpi8WhqUddam9bft7s7YuIUpQ/HQzkbVEVMQMFMKUArhCWRaiBgqFRiFNK4etOLq3zZkjRUln+JnwRVybCRghSwTFNMSmZw+ztDndfcQcfUZrMVGVlZWZUKGYcpggAyUJLTDKJo2XoCSjYqCUlcVJDkzRpyGQipQULSlVNUhVyRhjVDoo6qeG6k0Ojy1K3ZNL3y3IMTTcks9QMUvEwQpryBJ20egl6mSKQaFUk/S22NZKUPm8HT41GqQAOrtT8x6p9QR5PIfOnlSZKbKpMxoVEVlFKaog7FkNfiIkZYIsSKKmxTDnnz4pJyAECVFTk5q93Uw1M5ioudQxwVqzsXkcmHQIEjXX5pihPykRTk8BS54mTEJVE3M/bs2V6EGOO8WaTTLeGgFpuihFVSJQBWFJiUZMCuMMANSEyzz/HtI8tUqmgqGok/cWKW1etiFRomqAIQgcMle6VAiFlQJWlOrhs0XNIqFIYcfU9RGQIE3NVFznCClKZqLr+YEJBVADSiqg4grOUroKav44vcQgRVQ1s3IPbQXTzDokxQS9QkSwlEiWdJpQVQ0IMoFmsN3cqkdiFak9zqrOLFZpcx4hZjZSqTWiVsXYac9fJx1J7KVuipIqg5jO6th0fFpbvQZYsSAGJt/5RBFmD5FyTZgVUbKqlFJZixVZ2ZpWSkAYYTVsrYYamcGoxeUp/FzMjIPBBfQ160FZQLELIpYckEXNNLUt1PpgihzHVmCLXto0YCKCzUM9JSXL1x/6vbqq06hUUfQIWc714loN2BUZq6Z7zofRkurbutR4/WhFRrrSTeAmKLU1y+uguJW07CJLbdeOi9U3qd8q7w3siUcrjcroWHCYaOLe/7F9Wdo/Pv4c1l72NFlqe0ha6uL8Ipf1782/bvoq9bvVr6P97mvWGIssduemlR/OfZPl5Ti8r/t/Pt+XV//T699ffrTmpwGYtiKWBd1pCx7vdmrI3k/LUncBkEGE5wM5giKHVLnvO9fdMpTg4ufL+/Lz2/i68au14m4LOVp/vF9Oi4wVP3Hbjt2C3159L2lnDBz3WP5yf9iHfVu7tv/Chn05/3K8rDjaWnuj+2272Kmoan30bW0dp1feBK3uHMv6gMo9wNxGN0v6DV/06PbHf1/yql8fHz5yj9P26/rv/m7nPztxvTa+lSYhD+qDmTKgXYc9dn768Lj3+5976O/3N9HTm2yv3377Uh/ty/Lhd58eslwyDNlvutZiaofLMSiv455Luw25sbW3WIbZspuMy3Ac3iVAMxvqQz3W7awL1jEGT/q+ei3759IiolceQxJ10Cm193SP53xVFVKzxlOlgmHoKGpKClIpqlrEHGpBcIAyQpkiFLi5du4u1CEikPAYj6NiL6s2+jtTQgoYPBKZlDiG9MqQYiRQEjULP85h6OZpIkN1svsgBXPbo5cpR6g3p6oiyiRFRJH0JEcAe6cQ6gI+uVb5DMXOgstMETOVQH/Gsqb8d/J4jQZpDoX45m4FiBdgjVBZlqc+131NiJhJTjySuAOVUkWGzrizkDq5n+5iSxIw0bHfq0xtjMeOtauoDT3uOUNoJohqb1Ji8jjSTNmaaQaWZWOmkHkk7o+j7SmKaQ4AatI0J1LomfKdN/eZXCXmuUP6MxWNetKMJuyMoqpsjpoqP049PJ42OCHlu0Vp3sOfCnOpAoQlqsKqyHnPzRQzQaPY9EOpQFG5LDagkiUyI3XCYbOLO+fmM/LF2bkx1ny5KkG6KiozjZS1Z9VBX1rTFCSIkuLsxJDMcvNZ5YFqqSU4x0tJioiKVkZSZP4dRSYpu4qlw+fnChFMY+0EvagQAi0ImDAIoJ4mqmRx7g+EJSbGUkFCMmBF4TCb6L4J+YCZKVTUWQUVxpjc8igV12MnANfniw/nxIGogiizkKjwjECZaARqmEWaZK3OUE3oNBhCUEVzjAGxEUJpLgfVFhlUqrOWcRwwdfSkeRKbK2Pu0vfvTXTO4fMAiaewg1ClGqhqimMfXSHb+xgiQBu0UjM8ySmKVp0FrZny3lBlOVxLFiMsifDd06ilJhJm4ROLM9//vIlQmIVUs7Zkl8rFBthw1Bq90Nu5d7+Xs1xZ50xQNhkFYFtSr6xqS/KUut5j/PL8opVOo5QsYDM978NHScDRlQqxrO5+PPZxbOQ720NLTNCyqKlizdZlV6WH2gdZfPujvY7Xhbm3LfEq2k3assQl5YptNQPFU2/hXVJWW99O26PdYzlYX8sCwlqhR43bQy97rw/mLxl/Nfksy3I8fjvW97aGHe0Dj2/y+oh8rF9CI4TXH/UHa+uoP34bB40DypQN2MVXvD388tIY72c/UQqnZakH6vVjd01La1wSS0NSz9TzWC6n06j+COX720CtSD+lnFoL3u5mttiurnr/soZJkzzwyz20xrKYn2MJaSPe6/GBeSD6SD8etgCet6PZ++04ULFc7YPkawTlFfjtz+hnP6z5g6t0U7DZTV/ui+wZTdfl/Xz2F9lvMhbej3c88lj+/eJvv11H1vhd2v5tFe+ihYHX63ESkv/G9EVk6OmcXdf6/ODXT+jnXz7/Hx7/m/u/vb/w/faw1UaojpR3/SBjK3SEqB7r5bouuG/+vn7wuF0Xv74Pvx9+Pb8/1DaWrtTFYY4vJY+jaild89ZzPfseWlSBtM1Ca1ntgs519fe+jY4n/diRs9s6EiAklexpSFRFFqFMMURXQFWyRjHVRBIVrlLGUBQVKkVcz8eZ99N+ryJHMCUjF0/TorqIlQTbM8kyMQQzDbsWXGhVkXzOLWlNDR0uEaW+SBFqjqyYMcwSlmoRjSotwarUKiUwQ1gCpmKWeKYBVUpmBTVHFg1kiYopYiZcEUCOAKcpmOXzYZawKYuYzRhIPeHCMJ+4ptVMbArEWcjMpEnP60xSZUyDG0aa+DXVlwkUc1Km4Q8my4qQRWqMgkqODmHmUlVqz/atCJBUQCb2GJgnz8R9ob7DsZ6vHADxtDL4d9qUEgYiESKilvUMIik0iLndA9Xm9GPWi6a6QKbFVqg6szqAeZvRw2QF1XSKDlAVgApUqJKRGBHLc6X3DC6bysxry/MgriIgYjQV8faEbSrzMKNo0DIyEgUkwzlSNAVNTeZRpVBRzVIzBVUraSK1akDmNwYqBU+lNAXq2T4VQjIhQmTBITLRUCWmRZ8Ox6ICZpw6ezKnOYqlAqmab4ZiCGiRioSRmFyYHBaDotpUJEtLMjPViEWFFCmaTLsnZBeZLWGNmlgYLaLCE0LuaUphlO7l2UIPUTPHkGGZBc1afGbka5i5V4RZ4/u9naQ6iSZVUImdVsx4wyp9qBv2wbawRqlJUVEIOmXT1KwslBsMnHn1sAJCIZDmHb0aIw0dZio6xBi2MG58rO7se+nC+bCAjO6s1nWwDTUumXnjkosupgQzfIgKmlDHmNsUM6paKHRpAvo68jFIVedMKiZb6lKlctcaimEWVRy5ej42F/OAviJffNShj2FKlM7ZHpCyjp1kRcFpBuOwcJe09oAs697mWCPcgmRmoXL1qmySIvVwBoZ+1mzyOMd947fVVLi/ydJlvZ1qVEj4o8js8rqMEllOj1NrdhS6ZaoOWbZ3nB/N8tcvLxXjNO4bmn5bWHZalt6Xn+Uyqm76dtW2wqnbibodx276GDY+r39QkbRLh5xSItqWg2kvTfqgra21R5QcpXQJem2p2s11qdST3V8XaRFpqRC/XOKE42Sf/X6RHaKPT0dtxmORPWq3/NOynCT244+F/cfjET0utud6ue0lOJ3vp8tNhUTt7ZQ39T0WuiJ2uS75u5/O0tze5ajPy4c/9+tGlkI3xCHEa+baaDVW67Uu7X4ee728D/kAoevLeXkf+EP78u38I6+Pr+vXO7Y1NcgchPW+D3jh//PAy3Ec9tOnXx7bHz/8Jhd+ub78iMtbbuh8efln8fPomQ+zPRnlFpmZeL/7xy9/+/VY7+PXOMsP/U65OFjJj+OxjJOFijSDrStMx3KpteVllbx99Ds6tvU9GKWaaczFkqx3F4koXW5qcIWgCEcQtOolRTNmIGljlllXpWRvhpEl1EV6RGmViUKWastIc0k1E0Kj9SMPGTf186VOryO3ZS/raq3KqHY+3QsiA0qKLiacnUWaFMfMpDqoHoIYjj0XRZYJUXKoQ2detlXNOTXUkapBlYLryMlUmsq0Yo9Jvp01ThXRQhWTVEYPnbRZNkoEBsqOkur96Nm+F3GoyJRQQUlWsTKi0ycmsaiSaY4yy7Q5emR/9D4yXQ2mqKWGMJJG2DSULwlvUDVVqM9m7Ix2TLtPjqGCLDVjoK1njWH6DF1VUAs0+pzR1bxfFXRefYp8qgPBJ82aECl4k2nhIVhwEUGoLUWfPSgBRBKpoloUgDUxlBCA8wM3zraYqEglRKDNRShiIBqnYsuFZk92VYnmItS0FelWIU9m4yR7JFSeNzwgnyVteAPcm5nZ1Ak0RFBPFRXj/qhwdVMaECIOgaqiqAoKy0FTEVNpCaRzEROp2VGWwZlQYqGi5pacTAApTWWa7b0Gp6gHYGo+7+nzPUHnGF9n/RngbH+BEDcJU8uA50CKKjgGMx0VAmi22a1jkiTTBAOqIupmGGJW6QYplcmJFhaKCWEiiyJLqSAHNUxlVYOEcCiJbshJiqVKgjnfx4p5wDX2KIqxsauzl8Ioxr6zjqYLomTQfDcXNRllBaLMOfr50IRSWFk+W0hiMHeTQa1SD7nKaMvMJA5zAFg4TB5HMk+qCypCObQiy0iBqzahWiezpJbIGqQOi3JPMUEFhGia7ISVmNU4HA8WV6OKcZTVSFWGL8Rk+7rs0L1UbJUccow4ncmu0BKGDVFBMDKTQWFlaJ623Dv05g8eVddL5SO1yxC0gaEY98omhema1l5UYEbCo4BEqPSl3s/39mgSPwxca+HgmbqeGkzixFzuLf3Ncje4jdOhnzcZcVylr3vaUO+Hd+ln3ZH72/q7x9rFPmqs+uX0tm6FPGoFej7G7ZxCW2OLP/7pF4bT3eu6fBb98Pq/+EtAmFRHlUqyReZwl6J12cb+l/WIT7keI7YPS7X09uXDli1SK8JOXr6eXrfzch/HI9fe9W+iwd7P2y1f41NrevrgO876N59++CeJUZVXGe368vmUZ7v64DnvRZ7e86J2ybQRXK75U21vD9mMy3FEbfs7Hp0rwZWS70deNl+Xut03G253Xosv480sZNTodWW1Y/PH9XgcTltSc111u4eO7e9h0P2nT1FVLqz+YT/WtUGXXeT6B6nblrt8Xdf6u/9iw6hjP9Zz0mDLb/h/bs0cUpomlvvF6iQF/XFtgv/9ijyW2//j//5r/ZS3m+07M/DWmdvjM7+19T6eZBXfm6jcpW12x0mPysVfaB6ywc9QW5FiyX7viebLUaIys6GjEupOFudwzer5RJDSpkW25kKR1f2UjztTaABDNFTXFFUXnSqZLDjQmiOiNHtH3o9+rMISL2HGcVDFMKjTU/SciIolsxRAjrAotYKGGtSKrlgsq7Tcq7CSsk34Iwr7dMsuXWxR75mzypLF0ooC8R3FqMpJ3iCf1dvnElAAQcJshmxAMu15tomYfEdOMROVBRFbvcb0VICYJ5GQU82nHaKuTblpCN2Gq61baZmGr2AEJe8fDCxhxUyllBj6Oje2WRSVFoVEa76dqjdXVAnG2tpqE4uYnPDpWeRizW2w8NmnxlOv+z1K5mXyBFKQEmRlZvQscxeXerqHhCyRmW2eca5ZE64n6lJVKCKzSQoVgSqqQtDiiZR0oS/L6qQK1BgFUaU11jIH2wllTRK0ENN3oJgVKJUyI5sDQikpRikq9XjsWYWKqkOWJgHxJsSiYKXAJtXSGRDVSNUx2YkEk6oCES3VIyhqIgF7sl8AV9NpvMoZgjYZmLxoqOGZKJ81pPk+ItCZA5soa5X5TxhAK2atRZXJ+XB3dxekKellCmkkUSKhyCEVwkYpQaS1esDN+Rz0NxYbspuVS1mUG6BSmopazHZ3JopVOq03ooqSAsZs+IllIXUVL1VTFWRKBsVA6lJVmfBW2cBUwaKzBQQhcVQ6PWfmUNTnBCVBcxNQRkWp4HwcdEmIWVVmAKqJu9bKyGOvBo6ETge4qiRq2ND5VVApIAcXN1djY1RxEKqQBFQNWlnokq2hFyM8MSoVY3qkzm1Py54Nm7sNN6m18bAmSUc5WZRcazdI075VbKeG0zCAKhse2o4Pb9icyx8/fBrXV5HyxbSqSTvOXMbbhYaBEa0tKcjCKJemJhQP16O9LXhfH1t5VQv327Vd7uvl8PV+9OtdN57K4jVFdozPl+b+usbpvjxupyFgO7K1vLQf4ub0q39c7w/k/eanxf/k63KMtCOuP96+FPz+pbXH49cfIH95i5PcUzrXLvw8vrz+6/7767//8vYudT4uS12Hra1UUOxEvj9eXg6Mzy/mXuM4CtIu3RVRsjT1frusgbqzQU6n1+M89iN13c9fP36yy/a6xeW47dfTVr8Ex3+p9WOZ7qa9bt9WqxrXc89Guz7sd7/aj3b+mufQPK6B4at9HF5rmX+9bxXXNYFd2G+/b9JvQbL8T12F3GBDv3IJxfspifz5aoyjWsXaNPRMkJXHb99+J/9BLFus/0kKZUTWAtN+loe1F/l2josPl3W9Og7pculI/yE3zaNop+3y5ZeDhzvv7cV6Xvc/L4Oma1t+fjtd9R3/uB7+so6ffflUr2YmkQuaPmIkOn20imguK3u/b18e+6E9VR/dcK/pCZJWumrSm9SiEnWvtZGTDCyuGWqu+VBSUcsODHqa9GItajLGYjISB+1SWXVowggq0LGUZlFt3gOqQGkl0LYcWCltAcGlWa+yzELLAKWK31UAAtNqCmNB1caEKZRMqyxYI+CsgFuTyhCN8kprc0Eti1FUMow55mWiZMplS+kESJuYhXLKshSNIqjhyacQSQGjUYoiZkUfYqY15p58yOhihqqKYlTV6CzE83apRTQF1Z8k5sox9mMEjW9VKyi1imb0lsWeQg20yGY0M+e2ICNSVBTndZHUTfraJGtOrSvt2MRUBOpSpiYyjW5Th2jE3EbDOOVDkKcBaNKdvl/OpjDjeY2bd2eCEBXV0jo0herOootOkx8zVWpCsUCdP4+JwZw56xnDopIQFTqhKkoDvTUD5tKYRSD2yhwybcHiIrauDRROolbNAlCBKTblSUOKCaW1AkQ8aQ2pIhfNAZTJdDU4RGvOtUdBFJk6UiBJERiTpSoUFyTBmAXxElIk8dw8kEnxmSKQpuZzOI2SNgPSTxuFPummAFQh7k5RBZ+gtJp7hYRpFXOAsDkfh8wMelalOSCiJSquKkmtgJoJKtTU8zS3EkoIMdvRNIfB2Ndllr5lLBDjeLCGifiw0yhDmDOpUASVyXIBZNUM5nhBsMOREWUaYlX9SGybjFuidDFtsh80sSqFYgwpGxlNiqxCAyAlAjBFGLKsjqg0h71LlS8jgxglVc4itlYmOarE0CwhNGizyAqrkkCUGikRJYeFGOWbFAGnaGVpASJDNKsoA2Za6qs3x32kDkLyUH5ba38XykOyqouDPUyXNSNyWyEinuoAI++3pY62qjZ1OgsildxFf9t+qKLXF1lSPI654EmTVqbH2sZolFNJHJCnepPImOOmULUWX350tPXH4/Tyuq/t/vWy/llkdOvvj+2L34lqhb6iFtsi3va/ka8v2/b49fidXb+NdVFcB9u6r9fx1+2nl/73a37+cDxGvn7Qrzs3/IJfXq7pP40Pf6z3yz9q3Zp+HNt2fNx/bsiP//S4fBgtl1lTWBaHqrKpSkXVZRvVH+N88ccDowQPxm2EdPnmHXnXqk2+tcp9HXtwpS52PY7+aR1+/pby7f3zsrS3iMwvLk22n/LDI8RcM7m+eJwXumm/99dxjOLjt2Xk4708jzfcog1+rusuq55c4rJce0iefF/jX2yff1I9+quo/jpC212QNYLhj2BV7D2zmP1Dj4DsGeqMZrH9rsb76Xw/Xk41xio0FbQclPewPb9I+3XfXgZvcfrQ015i0Jbbcn257baf1vty+rj5wz4IdMOS9Np+l4jU6rF9ePhyluP9Ov7n5qnyUHWG5irXquPbIlLedFXU2mDqL3/csJNrS1lh6+dfgGLuPY592B59oDKW6jB90IGZohmQDIHUUEEpuprYs2FCbTBJLTEhknWjaZYgcw0WlrxnlJtozoUrU45jjayMgfE1ocwSjndNycyQClaySCSReCZgWZq7aYjBxHr5JPLSGLa8jMBgU2SJwC3Vj1ytQFtmfRQj0TmsKkRogtkDfrIHFfXsAYOSaQCEqW3C5J5IRdB0QbXVafRN3QkTllBdUqEKikulwNNTlE79TrlgSKmb5NCp3oWtC8WEvZY6DFlgZRw3Es2SkrK1VXRxlR5kFapEB86rwATbGLOaYxIj2iI5E9lH4nEEH20Gy7IUNV+kKDbDuM9m8LMlPHNik8fxFKI+kctQ0qCeKDGdI+oCUjJnHvl5F6ZJzbcMoXDGn/FMBZdAdWrLizWR1jXhWKiiGVQFOt+D9ihNRU5GNVWAVEHh6WeSJ+OjiMlZG9T54wlNQCUTGVTuoYVS26wPbUwsjTWzb6ICGGCAqEAaiIQmasp9q0AmI1LMOWYynpwLV6lpn31aL1KLNFMVThSjSOmTjlGzljRX99NkPbccICimJakKMyKC0xHdWksWMrS5PB2I852VJCuHeBV60CTLbb4XzJ/mIADxlQDZa0WoGaVcVQbRvKgFQt3SGqBIEKIKB2lmhtFtPekjS2xFD2mqbGhR4n7GIW6nMYS2ckRbfIDSaII0SDUtFRWUzLcxUcgCNW0Gc0T2w5lL0xK3qpEMqhkdqtn3kKKoeqmLlJ6F5QJPQ2uWigGxYSbSXa1ZtHPJSBETlVIlXOCEDxF3c49HU11tAGCy4kaYs2eIF5v5kG3QuDQDu+hmPKyIqkOqVOo4mD1DVuV9OCtn2K67PNSOGpnLVg8wS7pDpI/IzAgWjxCBuZeySAWQVajyaH6C+/b7U+shh4gKltWu7r8bfQOqPJYmKvAVe6AtV+/92w+Hnd2/xuvXwi+xaEgcdpFjjEc/fXoULWRVSiyPfS04r6fff8rKRy3jcW3L450lmXFfEUPSxb0fC/6DrOeSFSe9WGQ1U4nyTY2B9XTa+pDr0uTubVS6EeexNA20tnxqebL6aGi6YDPEUe23+vBtvWOVk2y6STq37NUqcTp9ORj0K9u99T9f5LY97INaRv94GSr9se4rzgHdTjez7fHFzrboKQa2z39pquV1XLs+RN5/Qdz8ZHXbtrFt3Zr4Jtj9T5HSpbcHWsrKTyO+qrseOLT1Jl+2+//u3+D+QHwYb1seBh20ilGXnqfbKZflgz62ZayFRe4y7uOU397/blkf482HUaXduW2gYhsH+HJ+nEA11HIbPwDiH/v56PpB9vw4cnvzbdd1G19epKhMdhbvsF+O9My9XpvEwDGkja18IeF6WhZpY1ClQQ215zBFEmSZAAtENCenCBRNAi6iRVamUFSfGhWb4YyZHqx6iIdO9G8pRJ5ae1fWOPZaKpF7Z7mlrNEn08MU5DBAXUWERjgJr8Ugk7TMYqkyh6lEdrQlQlScUolKVh5NS7KSEhRUqUDBWRvhs2+SygrO8eyUo8oc/zoykRGhmLoDFFDTrEoiowc4qx+AVNU8pK1ES5CRMHu2kCYMkNPLIDpJRqjKYhmUyRpDxfBAd6iqFxbtwSEnwTAd+0AByCS6XwPpjohEAmNUEXTPrmcISrSgIowpiuNTZ/D95JrvHDPQNYFf+J7GEqA85klBPINalRPqM5lG8Ol4MOiMvYiQJrN6I/xvKbanuZbz+sqcp6nMi5GYQJViNrPyEBBdwN6z/qFzBDVRMFSBSQYvmWEykaegIqpUTCCCDimhVkE4EkaxtKa0jDQIA1kQg05iGhKSdJ3vDhXjO+Ey5yRE1cWVVFJMWKWqKmBN1aAoFaGes0KcmJlxeZp++WxY59RclpgKprGCCha0qHSnF03NSFMB2rLEUUChinNfg6ToXFyDaUGRZ/1KhaKMeu7vKQUGrYoViMXESB6YUwBzKapU2TrMVNQgCpHwAoBFRGsr0LByk9JazwR7GLttzTAeTZWBTYQsdS0BrGXIBIq2JdCkDaGQTakuClBFTABRYhXY+OZDqCq69AGOQFUsVb4OjmFcHS4srcNUipHBBaUiWfQY7Dn5ZIi4gZM2UDQQDJXyhAhS1BKr1BEiuA2Vm7umAFz0CIUnXcfR/MBqaexIbcZDFstDT5Wjmr187CPe3ITNpQQidVT6FpbWKMnqrSTDrFlA2CIq1mEam7UYQk6gPXOGjQe5t/G2dff6EBaO+CC/rktvS7y5xK09HrI7hquUE5vggr7j+Hb/F5J5J+/VsRRNseXCaKhxvh4WhN1PrLYcVwl6k6bRQ8TjrtfXLG998/W858Yf62c5cRz87X7ZXXddOPb1EMBEklStx16nhd46WIvrYtoramgNGzUypY+TVyj1QB7xqNOaKqclfnZt4xRmVBunWy62v99rcNzi6/6zm55r/epy06MdaaFjSO/bb66PWPK2b9F0ZO/Wt2XVGtkG45GbvhpZY9slf4Qu7+KtiW7rXnVIde/75Xzf+lAdrY44ttrx0oNeHf7Sm7Qz7cP5Czbrx768jFvTwyRKIuutaMlDq/pZLm/pJ7y/5fWHzx4U3Zb68lar3oiXPz500JmqRx9Yd+vRBcH3E8f/xMvL2PX0dfnhZ7Ge14bFsY07vwyqHb2poBmqXDXX4mts4np7t2ptC9YQZuCRIwdNllePqsr+OC6TugeNiWQQpD5/2bvN0mNBVJtLjdJkUjAftlVQKigV5hhmBQpqwhR4oD8qwyQ4Kz1n7VzcqsqRErCFWVTAoeqVVEjQpWMJdSYx5sLVhXQpSGbpvG2pHuEa3pZ5QSydV8NIRVSLEOUcnj7xlrXMnehsydocaquIJsWaqgEooiTRZvslhdS12bz9saCUJ4AvIWI1CDGbPWMQ0w+DrFLM+xIk7kcU1SFlOALWVR9rSezDm/neSwv9CyCueQ8RAJWs3j4/WLba/oBEjqJURPnu3L6lSqHyeHvU3Sjz3qsy+7f87kaajIwJbpoLX3C2pZ4p6O/upacmiqynLKpkiKh9PzNlmggma3mSi2fMGoXnl4Mlk9QBex7HUDEVmhCmyjkPqO/HUyWeIkkQcJlbdj4dFzPVPff3z3i5iuoEfpokFKqW+ZCW2YRBoJKhKENVeYkUK2cza4JiAoKcfWjYhLOIWAVkmhKmvg+VpIjqJEMK4UwmKVIihNtEbAl1zsopLBh0Ls3J58151qtggoT23rx6Zoo0g7KKlexZ8DalSWUQYSVUnxzMucFAwbT49GJPH5dQdM1J0zBXGLKaa8w3Mi2D6Kpm6kJGAATVlhJVVfZoTE2oAhgFUmFaJjSZTb+aiwonfZGMLLdZm66ALlFoK/ldTmWQRVKntMl1ZKVm6u2O0tZ8MlFNEG3dx/bSdX+3tJNYq/A8lRPkmrQ2f61ZgqYDkSoqsoy05ETxCWgQQpnVMdo27cYqTVysoiFdPXgAAQAASURBVMZV7sCQhuN+E/WeptryMSTDJbJK6cLt7CnlKGcvWmaFAtJLSgvCfS+/94v0UqkuEmfL0aAOkRwloreKKLbMZDaxnO+8bV3oxmVZszkdxxuBBlS7DFntULtpnkctFA+7e1lTkBh3Px3+pv+mBjbvfR+yp6U6nKvCX663B8uGnvKXM97e7YNqR4/Hg/ysr0e7xu9+eu95TYoezdbEdvv6qcYy6P1EZY0KXWzGG6RUxNa9nTTGXk0FlVSiDknJIRM12sZ9+GHDVmT5NqoPbVJydtWv1svPxTiFH+HL2cXbs52ynsaKPOJbe/uibW1h7SHjXSq/7N1vSmOtUhe7VODOYXsAwupnM6G35XRpV//z24WbDrlY6CpdpBBjRIZqekrtUOpDyVuywW8YG3Xj69vu1/tbP/0RxzvMoArbbOG6skrlxU6w2m31Oqivvz2+7tcUe3z7/N//9/Ev3scLbOTYcSztqAGv21AQJVbxKHUA+xKPQY33n7C0v+BkY7k8brltPddFsTR34fqFH4YHRdbTsSou7kcKVLuD3PphXv3r+61Op7Po+cb5GKyAQCmDkGqVhqI4+By8Tcy6Uk0oUi4GnVQ/iMh6lkopULVgIiirVqbCjVTlKKCbqZqGS5QuyGpbGJhgifkSUQKVWlCUZq1QRVkYCRWBU4zjuagToSzNtCRq0VDfXJVWCTdCn1kknxGxKWWwJxlqbmxE5JmQdkNZlSoFmaQhyxTiq1FglSZkzlcUgSaaT7qyKAgFxSBKoeRzRqsqqiJIwJYoJd0pULeZliJRYq7JpZ1MIO4KbajTvM5mFnZZN+Gy+TiyKFVJxkhpyNqp83Ynoj4jZYUn1ArfrYtPwbtx0jb1u0h+HsQeMteVz/9MUlWMgEiG+hQTFPU77hlPVKR8L+s+IVbChM7ak86Z81wnk2VaMrkYKDw/Eqooe1nCWqRIFpQwzj4Xnu0pzreGaRWSp1/BdAbJBpAlOYREUsdxJmGZJENKDEBCCczL+dwtUCSn2woqbizBpFxLK9H5/gF+Rx8Lp9MIFJu0aoIqmnNULP9tyjBPRDKB4siajepZ2AXmxb9gMmCiXtCau5BKSKOYTnLlNJqgEdQZaStUpEilNVaWiRJUqfnDBMukpCEFY7K8u0iMpRDiVrZAwED1FJRINSjmLrstSBmhztG7W5Qo2wJXRBSttRwQIYPqNRipDHUrZTV3dCAeRiQFZjWNpUhhKcPGUUmMqPXw5prFUxcf6lQ9sd/T/LLOyZYIURUpkQQ1q0QpUoJkkCg4AOuEFF1goOShJZDuRYFkCtTVN1nY6qAsJketTauhN6/UHtEkxMch5hiiCZW4b5KVkIXHeNxQ6+PQwXsqpRQMZbK3S0oXjlPrBxSHFAsFyX6c2tZtIYcrXChq9VSSSEKShKQE20NXpjy0Hpf+bVvw9dXv+mksW60uq6poyaCs52Vt9r/6l19Or5R3uVJH2lYMWZ2Oo/98t+0j83Stq5eFvdX4lPb+jvf4aIzr7/tvf12Xt6/LsuIYwvj2pbSX8PrrT+dKuVKMeroAijSW8qF2akvXJraMQwgZxaXVCrUUU2vBtvGkOOGUqegda9ax2Xk96vxJ9/eLt9StX45xrm3dyjb7+fwHVH4c6zH8iOyyINzlwGKXLKtzY507GRZ5s/3xl9bJz8du6767n1cxmF74F77kIbZ0GUOzHfe16owfVjk/dDk8y7axLMu+1HKkVrviWOzTI9olLT6wN7vVf9b0LV0WDqWXVA8dhl9Vx4jwj5fPfbv88Vtdzs18Gf9yDBX2aK9+/1wmj4WP9hjs550YHPXlfH77dWi+4b3u+0/yNgR24ESDPfAeW4+juwVX2fLhHHbdD1sujPWoqubXDaKl8DDL4ICU+hrx/j41rU+LKR1VdFEjqynGMlREQ1Gi7pIozMEWddrZHDKLiXjA0kyFQpkHMM0OQ25jLGQDuQjFYIYhwCTCmhZRYvPUmsNOwOYVHIRPX06UNZaGNkOmmghr7vYKDWUuqmIUE5PZ0hRh5OQtkUIUY8ok+b2Mo62KTAW0MkoMBIe6M4IKJh0YI8q0ZCrnqd9vPs/NZxYnTALf16kmszJSE0RYi62TmrU0MzwOhhElBtHFqYw0hrvQFsSjSqHsKcqCzdrIY08xj05lTLlTYJ6zI4ImReQztizfedBP5wSFSqBKnnzH51wa5UrIXAdz6qeSxHOTLfOjjblGEFA0URRi9rjmLUyVcxw/D3IqZVFg7gbn/2GW0EwUtjw9MSrGqr4fKY1BgSKlUOql/7Cdf75HzCCW6Lzi1wQV5agVWqIQk5YsxSIiVG8aUWDJc/ZgKlIp04qhqkiKNjjIoMxv2yAZoJrKE5mMGYyfxDcEtubtcbilWJhkLHOCAKBgs4UEJjlMagwkTKdskyXGgAo6NMRF3DAD58IsYRW86onWoGaWNgasUFSCUaJV4ENILZ0phvnlkgO2wxGSumgdrCEtQlc11RwlY8zdAZIQI1ETVKO29j10y167oapEmz4hALZq9uBRUFD86Aizpjl/vDpIRY7wIc/BRUabZynEVU3nW6otsDx5D/Ea2GJxjbYI4lp//Q11fj15dO67IhlDEkQRQSktpJCmaB1CNZjbpgVCnKpq6cKqvLQOa0t6wyGVow5h3Gok+zOAvpxP1VfoRR6xBmVpLR55ykxdIzu69JRm1pZlPGYGkaVSJZAXj3is+g2QEnVV3bWERZMhg3k8+N5oAdyUbRnTbgowZPdVD3THvoksOTLb22m5udqiJ1n+FLgaylu5KWABwDZf7Hw//v5khyxbd5QY2ylGDV5XpC452vJZ39uWwFkOu0GPzdv5sj1+Q7w9at//aRrOy/kqhRyQ7eV0enuT8p9sePVsG0Wzp7Stemh7wdGPw86N/THiLMbKVikW4iNWEXXPESmt2CTVmtBN/DHqD39Xj5vqGg/7WC/6ODcET/IY367YLzyMubXV7+MIuUpiOf0il3zdv63/OG2vUy91v//w9fzn3q7R1l5SdvtZhgya319v+I8/X8anVTX45fjwu6iR66Xsw+dYK0t9DH4Sjvvr9a8/YLktm3JsaEu/2l9h179+AU92tUON4BF1iU5rX3gldj0tn28/xOOv75fX/I//7w+12H7ff3n9pzcxP59V/1+vL9V1wztf1SVQF1O0k7VxW/5p2x+8fu75f/s/ncb9hL+8n+D8vNnt+hjH1/Q+gln3tgHnEbo95IHbsFPVb8M+FJdHrcKP0HUdtcgRklUgLEtVzSDKQZszZCNVsJVS7RmlUVEkVE2qTTh8lLFEpQPNonlKA/Ifgjf17l0UISmpFkfDPgoT6VpK0TFMTBQlJVIjs6aBybK6iAiywpJEspgqanmIm/AgXEUz5ygQqmDqDJxKNRukibSRE+bAIgVRippxRSlqVYFVKuZFTr0NCsxnjlEYM2ZUz6CRCMSZlDkqDZCVxVL1GvPaChoAMbKEKk3g2UdVCeYv93Z6q6eBDzrpZRXKno0lGlmoJEeoYYSUtkX6QSOryNKT6snqC0xYaql72WluX2cQeUI28A+Uq3lDQz21B1N0PiPR/1Zn0ph4Rs1z9F4oNSmxEhfhxHZIlrgKOZNdc3D93AnOsatOFmfBVMyfXazJNCGawtRc5m7eEmTk2EuJJ5u7oOrNBfKkcMxo1/PZXkTSXVTV1TASUJT2Yz+OoTYGFzOaDDgS6vMPIFRUqtRERCRE0UM0hqz6NBGKWhGPR0qJeSWRBBOkVkqb215ac5sGaDNkV9OJpZ7j/FIVPNfnxPGY9iiV+YrFEpYjZUCzSXNGpaLcmzKikOmlag0wSBY5J+4zQRahlWZ1QNVMC8UShdCYwyxRthQX04xOT6eqadeWidTqRjeq2HPeogeaGpgJ0V5DfLhCFR4JJr2ZMVloWe46OqoWaUsSgmBybloO8+w6vwmiRjimNgScZ/8IpfXRGiG6AiFRFKuQ0EVZuWUikUF4tiMxvzLqgClTBWER0cdJLlrn+8yLT1TYfClKIYPi19Fgx6nupaqBsfV16VwKHxT971CebF43WJg2VITjuAf8+pNxVxhUd/ol3+J9+eDyX4dCoajqsryf+2Gl5zPfAh+Vua1dS8Bfj3/eL//xfYM00z4ArwWAUOXDZfnsJ8pt5c+ryF9tHeGWYk4bZtuhP9R+zdjPd9P2nxRokFYVv7artZOe/Fu7RHs8PtXnUi0udZaHHactXlyOvp8eJZL26OtbjY//7O8vP/7XO7X+Gmg/VT+/PrY/Rdi92W53udRfYr/98fKy/R3290bJC9vHbN7TGur4Gh/t9EUOrccyXKJ0g15leR3HS/5ceT79bcc4r7yM0Vannr/U635HfF3ov36S90/tfIHy3rZ8w6PwPh4ffvJ1SHzKAxrex4dlFJYMvXl7P3/Ay5doYZYbd7H+6bQvAZX122/nF7z6Ak3Dt95El8i46ePLh7f90W2M9X0krNDfbBH022kr7etLjlwl19+dDnXPo58Wu73asDptqvexHCxIXPzWpBOv42trrvzWLynXOlpkG3FQVUcWhp3Of/jbv/1godZ2ubadH+uvl9FXWGs/f9te12P5JFuZi9VH1/PCM94Cd7cDGfUOHxCUK87J+ry+3X/9VpV2Bk3eyFK3pB21IYrruaR6HylnjTkQ0jKrAkwqCReWj+aVmvOha648yqEgVGRhgX1uF4Nii3mhOHGDwkMr1keTOEudb3UaQ8/y9ajtzIjBqqV1NhYwKA/YYhEkNKTJ4RjNvHqmiCShWQvRtFJARULhVjtXDLfA4mjeBlznHYEcOt+l59kEUBjzQlVEMdlKXFlMuCJ7ECKmDBQmjBdtaUBGjGZkFsFSlzFkWTgjams7RgQXLehzgKnlWqZN3FRNgbHvI0MbBOLnFodrW3VYjetjOS3osWrI4rDNxgNEVg2ox2hXLT/b/oBmVZaBKH89x7c+gUl5/Pzwszydg4EZquJshZQ8J8c1Az6c3sfvh7RPuPMz6aZEGchMYQoAjwRMCNFCmxWi4lPx9TztUaSYCHP2jmhgOSgThqmVPrtdEFUR80neCpIFH1qpOsu64urNJ03l+S5RwpqTmVktN4mQLhBHJYvI0qVElAZDgaUV5iKqVskck/SlLDSlNgSxKpZRqjbj2FUlWq4Uzjk6nqONElPSlKRAm6mUQKgIWcz1WaWa43KBICtKTJXMORoRe87OTSQJwwpJYgw1nzscPGMBM6g/Q9BmJBvsu1pKZtZCmyiFpRQRWEFKl5VouiIqa5AwdewIBZnlxEbXFE1WcUJSTCkEDV2ajNpFlpexU6QdCVFZGL1yqLcg7iGaqq28v2ezqtmtKiJBsg0Ws0QlqKFVgKihRIWFHIolxgNAO6iahEpZQ/G8URC3gItsElptIU3YJKAoVriyacPguJ3EVJEl6aygYiTmemtCqCos1JT+04qmvR11GKyP1KKFyBLpkrWM8Oo36GIj9eIl611PLibpto/PP7OWpjVnMyoUj9JY6+WHy2XxXud42DKiRgEFNftHyTxpoXq06aRSQuisYsWAOuSq4u3tpNd91QeOi2byXc+72ukuLrUUGy19sGPyj/ySVTseGPf9I9YvaGv1FXu103Z53PLDOHo73l7jrvdWW0ncH2/3PPk5//Cy5uX14fna/8u5advyvmRf6uzyyl/+9aIrupT61UWD9lKZHcvyw+u9j+3aerstDd4xPlnVTlz2tlRCZPw03hPNNmsGIKW8SV4/fmvXO37ncv9qL6/vX3/cwk7tJW+3v6mHnR5AP4K49Hp3b+5YAq00/qJvvt8F4Fm/LOhv2+GXW6op5FEPyVUoHOtfl0tr24frInu93u7n9cglYhyd/nbosBz/2/911FF53fdv1Nir6e6FPIr6508f//p4WT6WvaEJ6hS1tIUlW34N9xjn9nEvJNeX7b6bfzvpQ0QfvkXl8a394OdlgGtlO42bv5qtKXVf19eHtut48HZ7qO6yUnJLrcdWi7zElxc1qtFXSGvHKnL5m4XHY9+24W1d2+d/L30X7bcxxh3C3nlPs+YO+oQjTcyRPp/XKkhDtJAMI2Uwy6EWTAWzkjPTMaRKDCKquz+GiLjOvXCxNufW1fvB6JWwu6nFEYbRCZoJeFDnk7xyFmNUn4lakaAiaqEIUxazFFsqdQxftGp0XYXqR181C55BmY+0gAxRpkhRhBAzlCBztmXnUZkARDQMQjWXmlniEncZUMXUABFiIGpikFXFJqtDBYh5VWEBMpkUTxZk0qzA7AJRbUZCJxJzBLuWLMx4iIxUgR+ijpp55irATErVSoXQDKKXquv8NHjb6zhmvgzHcYznvvsJ1Xi+bcwdLGqugvFc9E77z7y0OnLeM2eYCrSkGmWWdw1tAsRmvxmVOjEcSgj0OxUKilCdj8QQ1blIAItTlDT7O4KEtbkDFohSXJQlZvV0D2ESC2d6S/W7MuKZz9IJ5NBSE2LJJJUVB0vZh8bSCLXsYhNVXSzKMgEyEJqoCuiaILWl8fmXIVM5CKGJ4DmDnrN7UXCOmqW5OMVQUG1UOGdDCXMjLQCnfMPAFfk0KWGe/RR1MtRSTotllUgAFLUiG1PVOG18fAYsoCKZUFBoapJlroyqGbWWoijCGc6lR0iHqhkGd3qSQFWijVIyWwuagPNMl6SIyKkyl0W4d2Ax9nAtWKuIMlmX49vmxRAt4g53k0eWO1xozExxlHGgOP9nrbEAEVObANOD5yx9vWvWghRFqqm6l78kvhKndlqPEcfKMroYpVIrYSKiBmGF52BUGCwyo9KmCwkKoUllSjNZ2WxRiKskO3l/VFVG0ds95QgN2aAlTBOThuwU88S4QJ2HmGnTs3v20ZIhqEpJgYq9eK4cbGk8+sVaC9XHmk3BLhwifgiSdbyrL1SrQoHKjJIS1gLkgvbhGhK7xCWOZaGavFzfbu+OUhmraIpkVDL9D6dP92+fX1/YLvKmLYJfeLIKjqbAnXEsp/swHNXUXi63e49lW/zcPjzacb/fbvj6Qykg9xJHPmR1U0sZ0T7ZLz+/vLqYSpxiFMcSR6q5tm8u7bLoTWU7FfczQ/pSdZzf1lYEpLn62jrCCmtbt7137V+Xo/dLpj+2sJeRb/36eBxL27/JJrer5xHXZW+fYiAbjmO7tC/ZNiyf9rT68cvGQLse6bW9f1nsnF3q9eP4dR0K9zS7Xd9vP/22rvR73N/+aWJBNpfTOqS6LmORc5P0hS9rf91z0XVkXWFfbi8f/3bf/y//59vtf/jT8YIvl9O7Dx53qnrYQ7fua6o9TO9Zf7f88KGhGvIU/bd/9acv266ba/KPS76pDINbyLflQ64l0LCP315+z5Jx/u3RL6drrzb8WEwvpqHNPkrfC3g0T1m163bY8k2d9WYLfVPPyb9F8Mrz/4+pf/mRbuu6/KAx5pxr7R2Rmc/lnPNevq/qK6CMMUXD2IIysgQCNxDCEg0juogOTfgDEP8kHaCBjLEpl9/bOc8lMyP2XmteaKx4XtE9z1FmRmTkXmuOOcZv0O7fO3ltgjpdz6XzFaKpqT+q5KKqhJX0RSwsKS2ircnAByitkoa1RGYcIkba0qOYqMzvHHvOnYlZVdX0dlYBDmnOpEQs0YcVpFCxbIipIg1aCapBxYEqy0kiYraGSAWsVkjEWnDzVBvrGiFlpEKAmvpAIUclGI6V5H9MGBVJFGepIKMgP2rgaURRGmUdyUwu4iBJSIOILEftRpE0oTEgyMxHyJbLfEwCzDEjM1Woa/QJm5hDakajt4tEas7SmiHlWVXEdGIZI1CcIyvSx1HKhBmS5r6OdGvLwpyPyRc/pqnCYz0p9WPmrQfheq2JbSnRP0xFiYyYM5fuqwlQl2BPSUB/+JMjKZXLBLecXStGw2UHJiuVJWBA1uulLoEOqAeYQkCGiKR0Xz+EqDZdHYt8lAewamF9gQTLKT/m6O4EEFNjlnedbUeYlHJKIxUJNC7tnImkMJzNVtiYtQ7OKs8CIFb6uAA+XskaYTPWSCsCLRUwBcKg5CwuT/Iqr6h1xaNpKRAUSC1OtmIRzcSprQpivVhhrDRrOVNcQC3IKnkILHSISqZUgtSg0loRCzlaTFSqrHR0nDLPZllNk3mmBq1cmTZdZmmxXEREpSpzRoKqBakm4U4VIYCurJweOUN3q5j5DmQZtGZJBgJq6nEQ5CjYaRINS2TSEnmIFgGwqCL7gSrPbChag05FqtZwK78w6p3TPWuxcFa8ITPRTLTEMzUTtV46fPohqFJdqg47q5gNEgJSzKXcU5I2K+PWxEuRvKpOlBZaRV7t9KZD+mREZki75vkul4gRKu2nY8y7EOWZpcIKn8qmOmyioggd4tO2aCk6pnck44K5NZkBDUaA8ndSXpVnnRoZ3GM+Szx13uzyJvu8XbcxVIcxEy6ZngkGjrdW9bb/y/T7/jLuFPl4prBrUaf1tv/08UvkedZp7/05jmhW7M/H08/ffoM8//XGTx+30Z/v//ChELPz0v6tdG8y486mPH14aSSk6oMlhmwcxzyaST/iNi5ooJ9VhASHtpRkpej7xUKnPzXOez/eqrVLfN3slKj93YlLu5314fV2cz2/vz3h9Z5P8f2z3F5/GSLjCaJ1/PUuevmt/eG345+9131QutR2uYynp7dPehnbjHrVve9g0zT/emwc2nrsW35Av49unKi7m47e72FScUxpg9zkOC6SeX0Z53bNL/9VlzZ++UNAxh/Kb+n0U45DMkZMQwi5R/S39zj/PfsjNv92jnp7vd/+8P/+KnuN4pOen6TvHphOdf/pPp/eFen4cFbUrt/v9imm7Zupb0gd0+aMhYJzVrtIjyF7oHV7gWs8bfOVtUuNrGFWR7Q5eBXP/rzN4UhEyqP4lYHkCYF4FiWRbYCxjK8sNjBmCZnoTWA6Z6z8QQFOM4TEspYClUBkHKOaiigUVHuW4U3AgkhxlmY+xrWSxFIci02qSaJNAVSNWikrZGglmrB199ZwCGEwwjKAAAQSKfAVFJXAY6NYBMqwAkO1LLu1HkGRLhKF1ZxUiCmrAyfprBmrrW+NdLI09koUM7GstCKaD1swqoKVVsRDxJR5HDNLtKqqvTdLBlUtI2Y2s3uWTNUfRtx1RimrTlpUqCnV4BHVluEpKj1TGA+z0qIhav44CbB8so/AL9em8u9r4VoTHmhcU946pzOZGe6RVFZAZEJKVJZLegWcmQnqDxNWLVFSWc4qqSxIpjRZqAoU+IA3V6lQRCBLI1crzcpVhoCUgqiJ2no9mj8iPctlR0JkVcsLgEyzcQ/knD7OUU0cJlVEQ8IKKshY95AImhEwiEn6GnRVAIgAWlXS6hRw3Zx02ZGrZNVeY32YDSU1qSCZ1ZalALLMeFzwLnBRvKUg67aypm+qZqj43VpmRKiSKYrKhE5YaEuI6XKa45y1WpXAEqQ6FhwbzKoQrq+fAJ9GdJnNyjLBnvs2p7RgC0lskGtmmEpm+QKmKgpNKQgKZ3WlYgEmHbRMZS6L5ZYTqia5M6FYpcIimSRtigpI7lUB48MfjqCUQmg+a8Gcvw31tH2n1BnYwEQ/oj+5jds4a0tjqtWFvZCzVbCZFBlIETGsHkWa7dEzkPlwwycoG5OZgyqN6qtWSaJG8cITvOuG9/ud1RgefPKzZL5zusksAEEYrkFNtTPGLCSgBg2A5aJ+9P4mpWeV6eWS+rLHu26lQZNT97r4JiWWI1dR+gMwJ9akKTZcaih1r1ktWhvVdsSzIPZz4DL3qyioRGGvajfmOCv7T/13xvCacXg7p8zGlGzGbXueBz3Z2xg6/9JvqurzvL/fMb/rJ3/5B/xRrcLlPrZta4b3Ob7Mpvp+bOMf65zjdIrtSg7rqlmwp9MvKbC2i84WAxnNCIaxQwSpMo6nM0rZRHtzGKD+/hp9QZ/iJY43l/7+t+1Z57lfPxxnffTd9if0uA1/OV7dnt664Yhvb9v7efP46wHkjA/qH8/PLf5Mfdtvd8990/3Snub45Mr+08fx683GRfLfYV68Xc9wPdnzfXgGHaNtaQyHPGcI7vq2/U1c9fWj/vrbC47b+PAyvrsi2NKfpEwuyo3t5ar2+4rm+iJV+S3+8usf/6/3+X/6/n84/tO3/+TN//vyPW4jxml83+Ww7+9pEjGJv31NrWda3p5tbhcZ7i+6f/u6fZjFn+u8PIlbq2muT5L6Kh9cAfCX7f5z+sdu3zLuokeb3qWyiNu9Up4uHyKubwlK6srZLG9TegtfIUwpaElWxloP1zoFgimLxb9EzItF55gruLFMW3VF9JjbdMvRUivEslKhDEARpW2UVqBAiCaQKgktrdTViIsEET84wzbJDifNkJliAN0NzhWIBN2FE1qTEZDG5ENRFKyAozy8rhARKWRZ1jJYSZVQgFUjtwYi0cxaMEsiUQIsXgmLGusUrgXQ4QrbEEIRERGtWaW2JSNEEhW1u5uVkqQFOUeYqDK5aemWiVyFABEQqlJaF9Bn6ZrXI0avaFIR5RCfP7rRK1cN/CoirAdx5PHSIQ9gxGP2ZwEmtaoL/+7fDjP3ArSsQtvCJ60Sh0VXSeriWj7Il1VYAKvVbVBQKTGSVYYEIMpiEIgAbeGVgyiIn2s7ue5CFIoudjNAq1iyNAqIUqxqBqRIARpzLDFS9hjhsZxeojNAeNEpFLJSywDJAEtyifBQhMgqbhLAUzJLFzdlXVOQypWbqlViIEoRLY2CCGHIEEpUMEla5dq1o1zXLVJIRCp+NIuwJXdjoRsLzIHyZMyiASYSyOkZKDRyLynKYyEtSZEI6YUgaasoCUSlWJmq+bI4kwxYEvBszBCNw9SHrn9TKWaSvpYOhGx5RNnVvda1yGWLQzQj4WHbPA813rRBAw80ScvAyNXM+MiViz7eK5BL3HFh6N7iGFdSc7MB3UrolGT0+P4tKfeGGkBHOk4jOGdV6XSCswDGWaMyPVR8HuNOBkk2QuMuRVBalaVDUw3sBsGcFXFojJS6m0U2VmGMuBNgnrBrhSU27D7ACU6IQ3Dk+qWuBUBZlT1b7G+9VWKetZn5a80BtMwB24i8gpEKUaWWqS3qulRplnmFT5hHdG09997rrnoju43K2Lwq9nJAahbvqtuH8+OsNym96nYUtbwHlo/vgHq83f+mH7ak9qlzhiHnLhw+z+PjdgdDjr2eGHrdmkByvtWU88snyrh8fs2t1aVKtLKgp4Ub6oxOQDYBxVTZqsr2qQMzGY2aZRs2m1rgTgwXk/DWt9pLd7x9x69txnabxbu/cb+9t5dnudc9tu2c9YuO7y/7v/gHiMlv2LftKY720SH7mah2fkz5/vX1eq03HePy9H3uotBMonI/Ph5oeQGjLv7h9rePdbuKKi5TLiGztZ9Pqqne9pOKfbvfP10+/+XcPzu+fdrf9f0v1z//Nvfnd2VH8pV0V9pQC8FUdz6/fPXd/sFnzdenF6l/pKbsqPl5//Llt8hTjtdLZOKn92h3HPH+Yt+/fad8HTed/eV7zN3G2OZ5/1oHuHX0SNNoqt0DZfzA96eXXQ7LiPjer7sJs3Z3SXL3INOU4/htx1t79NRTIZwIolSYSgZZMElF0XZjZYBWISWJZR0GSXFhVM613cp6dMfmiNMirlLJlmqmDpJh5bVu9C6KgpQaRGhcoqmmU4HFfixAGqKU6kFqFQK2yumsRYk0QTEXiamqIQ1RrUVWPKgSRJWLO/7OhQLAUgHSKrCO5eWFBvXRBJGThEdWkVh9NFg53ypgNbeDJKGyRsyqEpK5tPBcwZ0U00oVi7owWFMcBSmprXmvwimGQ6FgnEGSNYJJuFbFgRgjSPqEkqpSQl8vI2bM7EyULVn0R/oIq7X5AbVYY8pqVEAtN3PZVsvL+oBhEV4QLZJJ5BSVhY1eWOaqH8yORbiseNQLZlJklRDLgkitJ/Iqmq9V1Q6KSa2teyqoY3hBK1er4YJ1P6STH0ll4lHQ9VAgREWUZGXbvIh5FnolJkQpkV0KCbAqtdnCuAHlxZrM2blkgDWdL8pDlSd9+HJe5ypKJkogknOxFimmzUNWT6TQH31QwPJAVDCxImOCOpOhrECgMiFFJTOkQTQoQEZkBVdwKalk8RFiqYEl5hvWyiOhAghPFMsrV1C6hFXzKElW5Ca1CbzSt6dgd2/CGpbuu1Zra7WKKjBVqKZq5whthrsPvUQsyKiTDdvW/fuoqW1L0IaP6H3HHFWOqKAQhpFoBkOikLLSgikUPg7mEpOIpuW+iZZ5tYRSCM3DA8jSSpmuCJHIQnomxEwLOVBIZMz1PgaOUInFvaYQpsxROk+hoUadqTCpbpjuEzNkE0Jde5uhKGvh9LLZ/MzQMVv19k92T3pgVI7+6bgjxRq0S2VQdNN7attKKEN50f50ZARLjB40m8i4yCS6a5WuqEAJBnFvDREhHI2SgkPabx8123ypY8P4p/tN+z163TYrhHkjo7Xd2t1h6tK2kpS0130fo83JX+ahTn5s/982D6fH86c879K8XT769cOf/qun59vsdf+ZQ5/92uExWF3/ZnK+ttO27Y3tPKFupFftVxwJ2+s87/Jp/3a7OfUyAfTL+1e9iG05u8yCpHyM2ade/bQySibMkTv/JK/RCnb51D+eX58/3N57r7d7zsSMafVN5+7z9W8v58K3fO+Xy/X9e96Rb/p8L93i9Y9Tv+rL5+vxEyO6ffdtzgKlDJHfv20fPfpZ79/08peTf+WYV53byIsqHPJ8KPnT/PWfxjbkpY1zmwPbNWHXz7fj6dMz5OnNWpeCN71ncAu2qdTn69e6+m1+71v+6ddtvrLN61f+ck3y8sS37x/66/tOjbnd+pMS9rFPa6afb/33M8dv+L/Eif/ttR/29uXcx2jf6l9/efrv1TlSKpN3vZ+Wh5xmR+2f+q04z+m4/rHUhjRkz0vbdiBPPysjqfW+/JUUrUlDASVSAmaviCYoiglFWEhVmC2BM0uqUoRDDVVoLpZMYF23Ms+YQ8sVlWjpgiNSxEjaEKqPEFEgklhYw3q0w6/2tGKWN0QmtdInVeI92BUxaCrmGSu6UsSMSmZZRSgyfJTqcg0JMpHMqAc6Hmv0YkXGOpPWuo6CiEIwMoSSWKJkFhc/gWTVTOWKGmdJnjPLrHxqVVaVaFaJRSTWYNX8fkSlNTfKbcplFFQqifIvYs+K+6FNuoGTMQKsSg9UmQWYjXMUqnIsX2+ClYu4pSkqIqQs+tR6fHMRigAkftw2fpyzj/OYAKwe70FyBTGRmdMBUUYVoIuhnAVG4uFJWpeKQhQX4Iq6huoHJSscbIthYQmBkMaFL5VMgiKZ3VIsxOgiCpRCpEIfmI+lNa4rErnqkrKStQhrlZAYWTlOz9P3PSO1NS8gAg9GhsQPHxNEmFEsl0yonEMW1nrll123M00ywSx5DPhqWlm2Dmtm6kwMN5omQtyXmWzhsJbKX1lGy8pRa7wmZ0I0czUilwu97a0qw5f6LVEBXWy14A8ot1dVNVKdAs+KZMsT0mR1UFVKeTE8L5F2VocBDBZ7E0dFM9MJuiqptmqWVyGxZzMKWM0qRrcqkZzoNgMV2LqpFuSp+WCjkk8+S9i5zUJl1EYVXPwWPQljRWonaFkVC8G6tux5M46bqpmJZXFG1BmQnIwOOz1lF26TXCxTEWEvEGYpYMIVJfUgnxFlKZIOQAZC1CAxb6Q8S0Kj0rVEgs1O6kNY2fx7qIxm40xWpYtHU8E2gXqOWt0qs/nNJA4W1vopgaScHu29ppTI07adILfIfglOgdbAkFFDWpPi6bmyfFWJECordLY62ruNw3Q7TH/7gNv2/ajtbTzZpEzHUIaV4SrGU/b7m+z272Bu0gtPB571F8L2Emz9kKy6/EPUMbS9fXS8fpxti3i/ZPg42Loc19LfRPCNH17amdkTucf+h5PbX5S/vPx6+sA4pKy3zN6Z816etBOn9eavB4k8CrlHoruXT9Aq5ZYozilZDNkH9qBA2gepT/qme4vw98s9IXVX0+ObNafa9/2Nf/t0vEWg+eDgZX+77/+2t+P5df/k6vf+7Z9lgZ8nvl8+ePzp+3ySD73LuP1c8rcPT3I5B5+u2P7l/e3l1+0yznc72vM3tEG5c/7ZrkP++qU+3beo52f2r/3slz//l/PflW/n7dPL+/X7L5OWKerXEHvVuQWf89A78+mwn/Dx8vbrx17Pt59y/O5Zzs4xxzO29l98+FIfa7vhLLz99PabYyvg+ZB/+7uL3/AS2ye7mu0vT9//Pb1so76MGFH7G/2VF8covmM73gp3uUXw83ffr1/Mfrclyr3syHMDs9l28aE8AuNqXsoaYhAGQIlHI/toCCLpJlMgpowzbP0jQxItvTQlAtPVN1bNIit1VcJcWJS0iMbBnqkfbnexzjgjvSSpDcWKEkQ0iaiiOitSFBBFgBWJgGptClD2yoAZGqP8NBtlkkGtyYaiMWbOjKwKbWsk46oNfsxy66zIYtEkAVghMvNhIw4tlAe1aCZZufAVy5abLGaU1qqtT0hmltd05DJAJ7MUlSEAkaxpIshE1VQp5ndpKZVRDPi+2TgO8H5RLynGiAIqPJHUDFQWY2ZFlTuRlTDgWQFWzXTPVXzhRJWsNtvHjpvIWh4sIh8xqb+bpEH7wQt9WIlQWinMRWFKSSjNSKKkAfXoVwgLRKBW59GD3/TwYy00CVNBEX04otebp4LFo0IizqiYMy1zs0UUI0VMiSWJEw+oCB7kLKyyxMhcoBM5oTWn1zHmNBXHWLO2aAREw2XV4pEquVzUiCgjVBGpmQYhwlOYGZlrdUushcIMZEIQmUUlMkhleRSRWsJViMwF4lzLiVjXkzXvr3KFiKJiOQxkE3+rKG2SgihBIhZXTFiFEOBxw00RSiJREZkSNWnFoJJaalXFyrpU9qdMaQlJdlWtXHpMSZOW7C5SUSNV08FmqUSazhKwuRf3fBvSbRYA4YwWGslt6zPAJsVNthpRpusXh5By6V5qUpIlK+UnmrLcE75CasUMEdxzlxOdDKyypyazlPvqmKK1EIgoyGoygVlaB7UEypSamkE2QTmRISJM8UiBVmeWC6qrXpObeq+Rpy4uiqvJvKXmdK/TtxhafrRFnN9BuabtM/vMLuFnl2gGsVXKHFHBY/a4fX65F7ufCc86v1+sVCqkQLOj15AQl/Rg0xU7r9YNFJHeat+4jbPH0/l0+fLprMuEubUz/ZKedXxIcEr1mSES2LWOapvcN694m9fY79Eug7tNuWrf83jd0+355k/3135/vryPPjzfp3y8XHA8l3bpwy/+9Q+tZBvzpn8Ts23mk89vN/ehUU1qlBaalGAKtkuOlOsoPbVU4ednOTyyx+s+INjuLveAQs9BLUuISUX+ruT+B9XrPfxvp/qvt4uMmtra2V84TkvZT6kmz80reuf2/FH9RT5S/Nza1zeN+358v10S53x7f3+vmaoQBPXEwOVtG3M//PLGrd698XJpl1deWuoHt7ZzQ1RDUP4Qnz9eoxrv71uf77eLvH5s6uPf5Hx63WffS6zLM6qdqAvPCmWOMWXc+8uI3a9Nm6X+4n/VTXbKhvhwnTaUehE6npqWBKdyBvfDU+vt2/bl7fevb896fRvbRtHM61264ZLYm2Vv+N1el/Jue6F4yeM8fnsd5jHyfQy8j2E1ZVe/BffrB7m/ZQlU1kJTi1nhVGXAIrVWFTciUAphuAstaw5Pbk+R9KJnC7YcJZYoVDmXN3rASjSyasLgvrNV3pFzIqrP4h4w6Op3N1YlBUW6SPZWaBzVEIospaVrg6vMtNU3bF3COMQiYSJSyirUdLpU1d+L4wFULhAlloKaSHDqGukgJAO6Iv9FgKa5phtZ943VsQsAssaxouoAKBJYYx640NNgBZcgnAKIGJBmSDSdbuWJijRL3TfJ1j4VpWmiX6oCSSKHo7JnA7YOTk8Kp4MVnjnLHrpyBpRKEPogEC8N98EIW7EVPEI9zFwurSWdG7F+R1Xgw6PFh5ssSlXMxPSBnEBlrSCxuix8ExYHGVWCZSlZ4IsFnISwKkSpjx9rAVEEoBjrDG2hPYBkgXSwAsKHbJB/N4tFgqKIRDzYVmisuqBCVXxTVgx0ShqHJwQJqiIqMh8nGlFrZSnMikwyKavSIKi+7ggoCrKyqjIpmCXLmpXEKKyuZamkSsT6bK+g1aKRrsoHRCUCQElFiWRJQBCVSGemz5R9oxS57EYQKQ2tZCEhJRJlqVKU1QxlleBFKh3FDJK+Fj/ioBdMSEIxyFkiQJPhaSJUsFRGCGtm0sRKDCUiyFJlTnrRJG4zEIUSVTHDMfq2oUAvSaRcfCRWfXaTgsS6ISlSiFRAsOzykRWpNCTjYOcIShXCNM0pBah6EGQzesmmZVAQAiGo4goaNMvDJ1mM4oKMgWVCZnrRVGaeVdJEpbyEMXoatcSymEmo+NbSm0X6eXROo9Q9W6/qszg+XTfcQ1FPGuzGKYUInW5VCbhs3QlKxuzx29N2v/sc0NqsJqbf4lp18gCzaZarZqFES4UJU4qk5bPyhX1s6hI9cSGt5iV5v1xxDZp+68qZ6Yl2abunbTF74PReyN8uL+WaOLaLp36vp3aTJ1x/OXv+XB2v5xYqVjmv7t9Cxr/95Y/5mhXqHpKpMZ5i77btF/+T7FeXrnl59mqtwmkS0mzuW2Ke0j/wvEtuT65NstoG2c6k9qd5EW+8bDGjo20ouSZuf/r6lFe+PrW9/+MFf/D3rWK/FHd874z7efH2Evb09b/105BZnSHuMd9E8jiueUxYtKw5n883DJ3C8XH//oZbQl3vDS/abU6Ijjt//VBxH45XftX4JkP3sOrEW+j2/n0/nw+F2iFP+OVNr5//43/+9Om44dvH9qz68pQlXYcx9Wh0/4bL2xGBc2v7/2OcYZ+kydMhf6Ln7ScXjdtfL8+1f5jUq/i9fzr7fmd/LtA/f3afm3x7uTDsM3aL67Zn7xrHsNfY55l6/+p3pmX6NPAyPm1uYnq/H8e5b5T+kWiz0u7vUM5sE8iTT1GAlgCrosBTRZRJKKEz6EhycsVIsugVjJGRnPdCtayoHHmf4s0oSSRFALIcmWhRVas8N04XMXdfG6Tph63aG1SBAiAQNRb1UUuKwlYIZpSOhegvtiaRRd0C1ArGys6wsGhBTaYIxLQqKLVK2Je1ZcVaH1tGzaqK0ipU5o8Ep2rVcjc+zvAHEaFqlayLmEYWTYgKKTHRdfrW44yr5ecASDHzRc3IZiY6ZgUKXlVhCW4dZjahmdaZgYRoiIuEsIvsreAOYR1HMYRV4loagpRE+KJg6uoAqFoO8wLILAKCwo8Y1Y/REiRW96kso1auADWqqNCCr3XhYhmuxem6v2TCiw8h4YHKxMquVizuBbhM8Vi5oxQV5JISqesdVBTknLQ2U2p9h4QviBjWB7Ee9beoAiSD1DVzVRdWVrlK0OfjaJc1YifBlYJjrX7JgjVBsBVASRcpoGzpAbYcRFWxtrGSCnh60WNBvgmIJMphWGVPKYGUtQauLCoXl7uwbrCPz1auxXZUaVU5ROAZaxGw7nGSlQVqIomi2irhchLFYnilp2QqU1iESP4QFB4rGi9BtkpJn1pzWSKxdkiYTgBePzJorBSgAh4WVT6gh8yxKYyozBCkMsN2zRIULF0uEEy2niGwFfMO2ZwpgMbft/VreUAhNZlJwGxvypasLTWtTIKuvYaIPKuJJ2DUajNRqkqq0FiammGNwmgEqkQ3ZVoZqwTOUtVACdXsUrt2D2TEyayznJiiUZGjqqqmk5oZMfoeWaF967ZdnpwWEY7UftkvDDpzpvvjkq3ct8rtdpAz59nGzecRhlI5eYz73FuKKHZeZAbruhLzRbprrkswk/gUgFK2KOnMTh2H+XCgZJsoQhxxGplVWXGKU9qOasrLboXCtnlD1EGTi45+CSs5/IV7JquYR8Dvxfk6XtuniaN9kBNpFPucvsUe1ydhESrWvDIrh0WsQu/CdPFKyXP3bJZnpzYPzLqIKiTJ2TdAKI2SGWKXC+Xnd33a2PrbNF4ip3ShbRevU3FeWpu49Ia9t5DZXZ/lOImb/SaFER/i/g/yD//0z/FP5y8fD9dbT3OTYx6Sp5aPj3umH3rzUVbq3/9g97R39LOaTznUx05PL7GIGn2MwU2O+pbtksdrn8/Hq887/bNNMyt0yV3o7QOODlF+njf8/Eny3zw1+J904y9vX75//xfP5+dJ1q/fv19/bh9TdGO78TJKzj0uiT3ym30yzP6y7997tiY1oWXWTun5KbMnBLr2bbQDKi0aclbgPuL+altp9xSLPrd5ilnZxhGgzz3n8vBICXwxegSUtd9BVIWgFkOYuSY7msTy3het1tN1g6lW6WPRmlRcRAI8s0pZ7qRndTs9QytdikFR5kJgZOTKw3hXs5kBJlICymKmSpXQGEVDETCMahJAFQxAi1ryn3AUCiaVCTwqWytTsCDJj8OpPFnl1Qpr+OHiTi4PEwlEIZGIXJ1CWC9sWbRq6mMYAYC1SY2SZaBe46WIiIxzkpH+6D2OrApkSgJFLQes3BsiDVXMoudwioNDxHdUluZCgSSYWeGKXI24nqsYOR5m5cSjnudRBLvcUfRcsdoV3EUSsFglSVVFIICqcI9iiqkuCggLifWN11p2NR8vz1ZpErUqHLmWmCUUqqxYOZP697N4xctWoDxcQtspDGsua/xOqap4IPopjygwqrSYIgLVlfmpCsQEAGDcx8gsihvE0lNEUhpFlhgrwtXHp6b0IoWhkmSoFYDMVPMMFCEG1nLbpwaZMKn1+TQkrYCElUD7A+a5nGkLxl8e0jTLGSUQQEQX1YTCksoFYq8U7Y0AqEy4INgJVa3qsvorkFzvRhWISBQrlY9K5yKrRIp6mjBd5iEFVIYd2opIL1UiapwtvaUoiao0g4/SQjgF4iVNR2G/tDBPzXCRnBlEGCIFOUllRaHZwrowI6vYqjIR5bliBKBmUSHClJxaDgiGClFqal5Fs83B0qfS5HVEFLIytGot+nVJNCvLVkYIRxTN6ukTxB+uSeQUh+qG7J6wLS96vU2ZE6c7D7CLUAf3nMGaJdj7x0q4Xrb8eHhrVo0tjkxIWcBr70gVR1SMqbk09WGULSeJsisnlKXKQgaJ5EaOQlZDlmC1hBYJMbamtNg9t6qixGgj63bpdd/7lM/3Uf1mfUEBtGZBusR57FvY/fKJp3cLFtplHlRpJpnd28fJ9jLruXXINBGoeKVIXo5dpL19PaXjphd6Tm2nqffr656DX+vzaTEzBiIPVpmXaqRFKsbB5mwRHEOahIuHJgBtapki485o11KkbFJ6uQMJf++f4+O78fY7l+v3vn+Zz09xnrHf3nHp2PLL7676Gsf8+c1TLptcXu/2of7Qw21+Om6p6v0p01/yJt8+3YhCtP9YY7Z//R/n/7DdZq/r99s5oYmfPrrUCJmHfhPN6RyHEa92mVvpJbxqnhIKMZ/5/f68/6nt4+09nySpvebWBG2PAu9UKc4Z1njRf/77J+lTfprsb//q23/n6d28He+Xn9/5UQtzThv5+iW1Zj+3gPr1r1P1Stp+/fL8/AbVs7e2mW4B6wKxOPc2LmIK2IVgpgpyNpwbtFiSd5pKyi4qUJsZy8hzsZQSWVlX0SBVa1bJKhhlUhQQZKCkBaSgWCb8xU2oUq3WqK5VBa4iGglWde/urUXzJuFuLXNQequ7Vu42s1UlYiFwCVBEU61F41I9M4LmVPdkQIJKy8c5A5DKpRcKTZqR5SmAPWOWoB71gmsKyNI10xYRRVlP+/KU1Mf6jBSpKqo8wksAUKFgxCOEKMgUlQfxQiiVIatfaa16UwlSpOvCwp+VlQHyLJGOYUZIhUq2quFdJGswZeGSyawKd+gUoaCUUURGnicqESVGVEpRGYx6dBMlsO4ISLAyuSrtV/55nVeP0PBjrrQi1sD2QMlHxYxCQQIZqCaleLiTQClIPngteFQmVGL1TiXISpZUUlNAyo8LhgB8nKyQhYwuyarkCoMvFoiYqaxdu3Alt/Fopy9WgaqChWcTUxIlkvve773mIaqMBAupMIFpFYKCtV91KZDCKpFUoCgpvQoVESJSBBQCkYolEqxvpVqSNHTV7AwgSxDSdUHGgBWbYgHImdaRjDMejXnLSLg2AYGNrSoiBWaKzJWEasIBqVzwrpUms6UwGNORc0o9kJVJ6MNaV1lQwjuhJYl0WCJ7qXkkkKGSxa2lrCOSD3NRFikJipZGqkmeKA/PLJSCxjpSIUCM1JnSQ8eRlwxfeJnKgiLSquphaQxQprucTKBMZMnxNbSmaFfMagERNsrUD50p+j4QKK1AZgqElCQhiFq3cmpqM4uVpWN7yAmei6njlV4Jr6Keo0QMew21LbZVeQUVXTDxejwc4q2kMDJKUDSlsJdaZJ19eitZtIBHpEwy2m3XqHqK12dzkRW5JlPOVErbWt0xwQKmxfLbh58WbsV5YQI1vm7mThEkPA8/djmCJkROOfM0sCpn8zJeQqoEp2wY45iou4pZCl1ZqfO067xV879c3r5616dmKXl7x2G7MvRyf/ndSbXrRQ5lz7Mlr2/SPtTdW3CPoUAzlKHSxMwnsl+RM3qDHucuWnpHzED2PZtUsIDLmAf2tSTIeYjq3sbT1Z3zbNdvrz7zox2szCabZn7qR0Lj7oM5ztgr5r0JORQ0v2/nHO8iqOTby5vkYZhHLz637eU6jy08up/zU/scRwSend/jO6hvOv5H/2NE+L+T/Y1/aPjd2LMNt8RExGga281DcXnD7aNlWOb+LnpahE0/7jaP7R7ZPn+TmHUexCm9/ywzD9mO1/Ot5l0Y6JcP20ts7tHpefbs/byMqsn49PT7n+05fg0Z375+nvc5x4VbD3w8T/Y6Ljrm835K2xqzT20v/Xi2wNikqCYjScqejDQ1lfDzrmcmsm3uXNiAzHK1qICsfZSgl6LWIztFAZOSXJEKii4yejq1svUswEVFCgJSkWIzM6kltqj8aYGAWCaq1EJ6FIkqJXQ18mqVkaCu4spVaSu0JJJqgBRU0oOlW6Qw2NOLIinKNDAjlwocIkrEQw2NR/P5OkJEa5mcM+GtIoolKDopmRBksaEwkQt5AWRRRCPKrEqESAq58kiUAnMpQw9nDZfBWizTEhSEIn2gQ5sWMjq7kqi7Vm6W24U54UyogVJp3bi3IgIUMUdlkeLR6EUk1P5uqvo75Zk/CM8LVy3gghBmFWTpFyhWmj6SSykr86K5smiqstoIKqrCl3yJpX6uHfejMmidVlz3LaAgKimiRCKXGR4uqykK0FVjCVAEHhorN71YXKz1XbCUdPDh7FqYLq56AzFV1NK96ZBMazlgEIlqnIWH7WxGUigrPJaJCoFnqlY6JVlhmYlIZOWIIISRKvAkkOEANmWVlgDNAlZKLLm5SVVVLmrLDzt0empHwFusOClRrFpvrc8qsbLwMVJXfd0COEptumERNoUJZSaXaV8jKmcKoljICCJjzcS1GqcEQJZkztSi2CzMGapVlQyV1AZFZEVVZNRKMVRp45mtN8XJEowzH9XN9a5I7TxLJGZnM41jhnjMaQvhloms9HKJcEkXuIhUuRahAImIk7ArZYKKSjKkiTZVAHIXbNqlBgLFKEWbS8EuGgOMRccOFRFRZjIyM4JEjnJNYWXOLYDGpvTTq19qiJh5xXyNpL5Xfv3e6LQs3Sd6+ZQi8mkLxKYFZppyy4wzRtFXeGMJ/NL2FpdnFUHv2JSEi2Suv+UqAClFzopzTBvFtRdHTLpF1US/QCltdImR6sEzNrHUl3NKqIS4aSbhrGRIp4pSbmrk6dtZ+R6tnCebwp3BD5c4b6JDnKQdeWVsri8X0ebBTzHfn/Kce52jGjrft09fYbmTP7+/53Z9UxWza0Sc2oEjpvXNT9eUKyPrsrdxbpKhSCIrw7M8s6wS4mEgctxqHJfb5duxzZG8tH7azPQ8wN5d27zj8zcdF9VBf8v729VzZ+tT9+5+1Td48KqEdl6vst1Lab1Fld3vL6/zgvSGIV8yT8O4HDmP7dKhl73fL9ec+dvWvxlMjvt1PvmUbZ7n1P+k/qN//1+hTTnm4C/HOVVCTbWFBWNmuQ7GrR35fr/KKNrMv11cvw3Ot4+3b1/+/C//+I1pko7Xa4Yho1XiPMf2ckiiKMDZXzY5f/4063fz5fn2+sf843jagtxO9rHp1JpxEmY+9u/Vdnnru9jdJSF+5Ador01bXa+9ECOyHjbVbbuXZBGEopS2ilxX1rw76yFEojSrlAKVWRAR86SwoNXLeqbqQvfyx5NpM93l1HFKphq0XCW6sEGmUJvFFmV0VLF6I1dfr1TT9qDwQGRh6LRUlJWt+3SliqdUpa55QtQqTZKtWMKOKKuZUJQWAMgPOuH6M5N1jhcZkb3lGr9RUFIQKZUlTRKyOpHWOwARRkAFQs1gE7B0mXULTBcu2VGMZsbI4gYDyiGo8EYXiIgWA9paQtWKlKYpXJ6pomoWRPcLq1ky4EiDe6USFZONKIgADbK4V+uW8YjG1GMFulxgWE+MAh5XdRAoS1ZiLYOWS2qR+8sJaTIg9fAErzlagJJ69D6siBCzgOWXBhcKW5TUdfZKkfLjs1BizB/nLdc2WZbv/Ie/HD+wmPLDTBYkSXv8hFkJKdAZRWHmnOfr6dVXv2BGsK1XGUGkSq0SxVV35yzNiqRlKw+vpeynZHE1P5BVlazlBRAiwBSK6fowL0WExEpEL/FldRcXhCaQFIlHdEsBRDFpqfSmkK0hYjoDKLVWXoYM4EefZVVVRgYFWQh3yYCjMmL56SSSkIIJS4b3yYAzmWpSdRwNIeLRyGBWJFPX7UyoBOBkNQkB1DhjcDbGEVj7jarKi5pOoROzwsQPSQ+4cCtPZWIW0LJCYmZ50kBVNYg8XB+iyNYnW2i7eZWoRS2EiYskY3045x2DEBvi6+pbZWYsRYVGpJ8tklQiPGpqQpmUEBHRMwIQNWu6VTXxuJUgcVdKvSdUOzxzRtsUUO8q9KzTbX+xOaOLmHhmmeTWz6ufnHvT6I1ier0iycvGV7aEWOeRVVHLV2DVhkDlpDVpCF/+hwK8sAx+GQOYEqgdUQPIPb7tNsX8vskYn/xsrnVmrOifpZfMcoldX3fudreGl1tsrL7vd9/vqk8fjqvzm78a2vM+WoOXbGjXt7i8y/df+abvTzoXO3gWbHq8IY5vmB8KDlUpjPOONlSPKmiP4828VbeS72dJleedEFZrB3OklxWOvaJuN4pBxBxOra9l3r8IhX8rvd/zVX4jNG973vGH7dDzy6cPPD/8dFjfeozD7TY83j7a0Z5lWqsq6YmUw+iXzcF5xHaR7fIS3UfN/bf65a2/vEid7/R7zHw6cyiorjpYzub2Mpr0Xb/zZ99wfTqz+cif+9ff9vZtm6//u/9Vf3e94+YyvkN9hDf7UFnRrnZzG+gos+Mcv3n093r/DoRdL8/9FuNrm8gcOk081pMh/PjOWwTq9jZa+P3GDdv29Dzmnn/j3rc859FUBE0TuVP2ac1u71+7eh8ntrcIzG7ll6vu3c8iVJ7iDJkHwADBEmVEVm1w0DKanQ9ZcyVYfriRJKsqZCWEKpf+dy6TTZbwEZ/FYVNkNBgjVKqRRyBBR1TUsvVOY0hNFmUGUIgMKVZUJSOjXCJTnIhQq5ieHqmCBcxsgTYBzUC6CSQrEkEvraQx8wFSLCKWRQqsSmghbS1gBYjgsu+gIkVYCaoIk9TF0VpZm1UmICKQxANYnY+kbWZCF6KRCZICyfI5szIoURUpmyYzMytUrYVQSsRMDdbE1/MYYsjZmMhpiKRNjzJFQITS2toH4xHLecy+leCj3f3vcatcxqAfv736+wlMi4ULLTyC0pWZmSzmyj5pimBRMJY97WEkX9JzEox1s1k+r0qu3C4bi1mrG4eKIoXFXJTHXJ4g+ggZuq2CZopQhbUc2n9XywvrHCxIpNRMdUDZJTONaeXmEOrFE+WgJ0QyK0qNxGp1z2gqS1hXVtLC6NDlFC9oAUiPgDXBcmwXSa0SkeCat0WLUqxI/ZGjLqxzM9c7vlBK9QB4laz5fbHGxMimkqSJIoiQ1hK5ti5VqMpUFphz3YMpS0Z1EtoIZKyiRTBKWRVMVyQTEmPHo9DA4MlZkoLMmmv9C1U8xNyUzMgV41dW32RUKawqgjMkt4y7ptNTKJiVyAJcM30IRO+u8k5slyQrwyTJqmQisNSqbnQF0oNzbt1MswSmUoHhTwjxt2O8HvpIq8v2wOBaN4bMmDnPa8GgVhlzvFGDVbPSM0v5oOUgD4s9T8V9GGMzUMd5ZRSG7Ht5KDCjhKblUbOCmYdGxdkEPvI6Y57ecqMM6VzbpMVKgXaZrUqMZTM263n0jReXPme1htR9u/cr5+h+2g9UfGsqfQH20lqJa5svqJ+cGRfhYdeztnlvvEk6zm0yOETgU/qx/cn/J+MOfvz1K8d2uce5d8iUmZf2YX/+k8s8NzooMS/P+ie4aUj/Ux3X45v+kb7jl1t7yXOvbc6Pt/tnQrb3P/OJcZtjztYukxG7cs5qFdMPDdezn6xD0kKi2qHnGHYgws+4DanzZkgD8gw9rJzNmeMctZ09j5kSJzIyQX19v97+q7mNL8e3+K+33fvbE2tie7/PkLfPP33/y+dBncbSFz2kLrtzu97ST84u6BSgIdg+sD1p7yzNZxlX9wsouJkeMYESUW2o0lnuQT1et99/4bB2+8vL/IKfa7SfP9SWb1vUAfPvJjnfTed2bNj9/OX1lt/+57/8L2q7H+031u3840/HPbfj1a44vv4xqZFSo9EIExoyfM7XDdWhqCyrEcV74O3r+7i8n3XttPDZMRUXDWRQNOOyhcnejo3s2z3H+cc/hp9VM0tsTIzRict21OGykiu5BNUY5dk1S4yGxRtYQpVkIEgmBZI+a52iOqn6klXzFFAJETABvs+W2QkJz6YosUXE9Vna6lBND8h6Li9uBEg2OB/NZOFtJzPVmDbZchjFGKsCDCpKSMshGsFKITIy4HSwoM1/6KMrqrf2vssSvICKP+wuooKSZaaqMvDHscqWRDLXAb7c03xgl+Ph9SkIq5QsVmaVgQyAlSnMGYSScVYVuaEsKJk44qju7Zllm7XSvsIuxUqUr/QtoJTyULAVJIXne1xiSvqCW8Uj/VSrGU+XNZUgWHh4nx9D2xpfH65Vcz48zvh7+DfTq1YJecErltqKLNAfMjy46uOXmw2E5CO7mwSx7tq1Vu+iGopH/GhxtR5BKwKUkhwry1PxY/W65InHOfbImz/+G7TZjy8WWVme1EaWH1VS5mROkWRGRapKRkTJQnhmMUukisg1J1dRCFqhkDEdmSokMmvhIEmCaqxV7LFsQCtWvlTzx/1kOaUXkfX/f+3OxyK4MrHgckBlpq+JKaNq7esXFSRAKY8wCTID8YCCFWm5uguUwSWHEWymkqJToKrrfqkCQQwYiq2SopqetShmj4qIctC9coqh3GvhZ2GisPD76pYMRx3RwMxS0tMVkgpflotGz/WpkL/H1FCLIUZfvE8efnpjwNoNksJQG6MQzc/wo0oI1RBthCd1YcYk6RAuk0YRSKQvcSCqopBURCQcmNM5PIWq2jaBtTt35HSIAaRrIKfk84LjiqtOCohtE/aLm1nXA/lbKExVcfUqVYLDwnoVo1yRfVuLGSWRGVXC1reoJuFCxd577xQmem/7VtxC6yo9tz4u2/XQXg1n20uyF4X23O7mndfrFaElUnu30svv/Z94RbydWpXvZZmpYGFEHSPosM0agGTjadcTR+SZjR3P//yf9tdg3s4pATMwaoxybYoe0us6JqT1XaVONVUMr+tPdonWd+svvT1p1tasqdlUfXxQd5zSttb7eZHOcTIB3M97T9dwS5dmqKEszYRs+vNVgFlXPSbczu/nudVRO8c97dAxvpFjhanPGsf2vX3jFd95vEv70w5edjNy3qe1d4XnZL61MYdrn2nq2aGChmDuYqQ9T1zKkh/Fd623yT/Y9katVt9nXvLGQsL8raHgYjVcn7u1/mHTP/6HFpft6S2PP/1+h/31/D/e7S3n/3Kr//W/fv2bni7+4RMKuSXaiMjUjxqV5ufbbGk7MJitHwfGfLftZqI1k7OYFnBEzfvr85PmIf7KbPtHVVTvEQ1blpZYwlK67C3ZRB5+GhE6ZTXUZxLTRiQMoGvWRIK1Ip4CWwoZiwyIDE2p6VwmzSX1bl0sUqIyhpUKMGclEJHJytSoREVlJjIiftS/o2YEND2XLzoQqSnF9Aqkh4imR7DnzKDBpQohKUxgdSWAi6C31pMkGJEP7AFBQBZMIjLh8FpVt5ksQY41EyIRVbU2I49t8jJIJxJZUh4rp/Q4kVGQh+l3YRlSNrX1xNct2ZlMyWBl5VQJWN+baAOwPChFETSidYUhm4lw+kJ+CJGIjNOdWSAzooiUpKzyRP7YCT/IIVX8EeZ58JAf/CtYJlV+5FOkwIpYprWSM40P2gSKJctJC7CqFuDzcUpKDVLWPLlM5MWUrB/zt0OqRFGgiKwRWpD0ey6LVxKPVar+ENHlEZDCYmauJhBkJTMA1ghBGTx1S4maohDgEDKVmCgIUfFjc+ghIr7cciWopEjlapp4lHale0IThYcfnEZPKConBZCCwUsqBF5BYeaylVllsKQeLDdkgoKKcsmoWt6vqmqIR6i6QPGsmQ/zvtfSWRM0rfqBJmOu3cFifCJBLlyr0jIL1RXaCkbfWicmeoGE9zgcSu+bo34wywoZ1HqYsjWzDXdeYgyKFhDsGtitcx7Mmqc20XEyJawhwUcpBE15h2RNMpKZYJoEksEqhpukbs1ev+02YJfmIlLCSZk6jH/5VrLls/qUEqEH2aPOKZAWkNSzXMoPHtMyOJFxjjILwGFSFqtOwSyoqhUIlX7RsTMr5kkWod0u+/sH+3QaIDYyihraMObFU4fUBe4RZ9/mpFmQy8gMLYQUZBs537SQPmeSGwdrDkOLyTZbYQtdyDrAVgwAEYgpPqBnDkSw7Gb3D7Vn/nJ/vVxe5TLGT8dX+2ne+0CPKywyWOj9D0fXM+2tdcNp++ke2ZAnxvNwY96sfcn6W+yHKDRvPXi9tBk4/c4+3i/zuHx6+cJPNn++aSMTuOo7h/wV//ildcPL09Dnp3vG560BL1MVL7qbzNbAtrNnwd4vYubdfNpI5MunlCPu7VqRbTuHHNgIi/bXD/ePB5/PT/L60/SoeQztXvvvGobez+ekPG8f+3/T2lNmdTs23X7pMvMSqC1SRc7rez++vF5VOAvy4fy3kVuCl5u1/e3tGpePjYec1y4f7rfPNZ8aYQZcIB74qKPrZf/t+Wy9yO83tadbNx54+xf+5dLv/TghTyebRX3MREJad0p5vL3tGIJz8v7xeiD//PJyfNfc+tV6j+vT/f1r1rTx2m3P2yc/nu+kv1Pz7VvAz6vvm7ykP8m3W/PQt5l1u2xesesKm0TG7H6bx/nR2jl2O85DP/xBjvAbcPBMPIEVHlQlzG/F1XbDTEFnZda2wa0BGLMZQpBkU41VoFUVGcwqW6vUM5uFFu9lKv7IXIC4Z7qLPUB6AXNCtDRWqlimX9gIlARgYpmZFCgjUtQg1RYWo0o0Fw8yqCGqVKlByxApga4lK0DVCooHCZr73yuBQPr8e2Bn9YuLZtCQkkQmrTKjqJK+jq5JIrLWj/T4IgjogvJCg5WxHGKZC0gnFBa4wB1VEGNWZdJgrW3uMk96ZrdG6+odTbMkV29pjoAm63TmYiXpBHwOh4QvdNX6v7GKk5fyC4gol404aoWBH2Ne5UJN/Rh9+cOja5ELlsUqsArMqLUkda8C1u6Ty5WBJQZEZa740rpqlCJqWcf/Ph2ub7Xsz4+RNutHkAQFmAbcE9XSbSEsAwhdXUm10CBr4boSKGsFK5giJiosus/ytHM4xRw75GjXHDMFERS1xoclLqKkKhJSwXLlGuEzStKwKtaRtczLvkx5qTWsgowypEqhpm5k+QSj5MfFhaBWgtAKIlNtcTDpBVkM7IcKDWedoFo6iohyQAtkhWcJsrSjKrUiFFzFALrmfzFIGXydghQRMmMScpdd0iibzpMnWm61WSRKUvfyFIq7LP6bqkDMpB7eRjs5lay1Gzhjbmnb857fEFHbrh1IRrE/cSbLUWm2pemhlUVrGBmZwixnVqakM7Jvq68l2IpCiFqqV4BTx4ZjQNCLloxpQA45Y92tkKJCm1wIlfQh+ZRehwuHQlgZKIgSN5eBpg3zDPM5T4Q0TTdhU1RwV24qufEcOEuSxeHT+rydg2rPf9xnVLhOiXj5MKbTuDqsMli4Pt/H7X6RAyni196udzkgQrORRff9APVwhUjEOPvZ19+ax7uqTHEN3zP2KfNFXp9SnvVD+Mvbt8u0bz9dz82+9yZEe9fEGfoPZ3d5jhv2KIe2ae+fPt2Gppwv89xjcr/+24s4rxx2vUeWafSEyftf7eMhF5zy03F+sM8v/atK1AumfvO+t09fT9SIHtq1IcR6iyObqcz3b79ctrfjz81kO19v0AuOvYJ1BMcgTnXfmEXvbcScQ0UUUz58j5HnxlnYrr+fx9Xibcolj3Fpf/mE+/vns9rx/IffusyX0WrT67h/++lrib5q6uFQcXC8S28qs9nULrxEMWxkv2Zs2FxHP5Uef/owvvTvWYOfXke/j31uqHru0P7cv+3Xj8kneX/7+Px2xF7Xr7//5df2cXsq2WJjc7SZux2FlsB7yX33uudF/G+XnPfz8+0aY/wm7/tzH3lpty9vn1q+vqmZ98QWOvOiT8pNKf3puE+x01/k135xub1lv7/3839zfOn/QR1T+jz92+l3ER83ND/kcsg5Mwje3//AapksrdklhNCsPO+HXbMiYExVJc9SFBcfABGNx0Rk6gLtCGqCMUSpvdwLommAlE9qtqggE4BYVQlnNp9W3mRNChecU0+rMTojeYaffWvMZBQYGRUhUYlQTAGtRLdW6lnFZiUtRpXt4i7UPk9BpZh4drowgiIsrTxVGKKKR0KgqgS5YtJVIHOZWiEVVAJUVEEtfbXKLZ10GW+s1my5hL61Kc8qKWMkdFXaCB7qZVYJIioLUKFURWbs6mU8D8szXXVOMfN77y9E7Zu/dwkmAz8EXLYYCGiklFZZLbGPKNp5KMqrlGBTlqJUlrMsuULPj4LSehg2F+v576kZkLSjlq5crJWNZobnwolUkl5IMWRCMsmMXMiKlAXuAKgF1dWDWkUgF9mjClxjb1U6ocRCVVYl5IffuSKSvlKsCF8nKzLXchUiq4qw8vHjYeVrRWWCXoZIryGSMlwUuKlJ0UOoxtSV60moCRWO1X7ZMAlYrIkVmljOvg4zLWFVVkBRDKpUZhZCJOacIuoDMsOoglrM7TWlSpSIp/7IteZSTymVBMQyJTXBVulViswsQ0VRI6BrKa+RQC5lXSWCgfAoueQJE02hMrNUpKRkth4ptFKA43TN1kYUKNwR05Fwbi2SzTQAM7giIwS7zIrhJhW3eN6rIiUyaTIrxq5jenWJefCJdwRwlSM0onG2jZGW70dLhsNUEaACMAuRDJXwER0BfSrfzXWPu9NFghN2ngrts0DJWOA7L6qUUhkmKBUL3bONMTUz2VpfdxovJcR9aBe9yFlEr25WdxLIeWKagIJy9pZShSOiqirTQEUa23bUqfL0PswxK+/Cqu8ViWIsUioB1ul1b3Bnyf4RXq8+v+6WRZ99uOCYYUOx3OkU0S5MlO3ZTDQkK1swL2j7x/Pjy4EXGSCkf8v9enZOe1F0QXUwdjF9j+1p83eVJBXZ9Ccts1L2CDVH3eqf1fny89vz+/uXc8vL6+ZzerzfLnJXzmq/3n5/mLf9fDWkugvujku7ffil7E+/de+Bo82+nYgUzvDkdrt/GGV+8OnuEWN+NObUNkLjbKg4531ctq4Mco6zMe08L58/qfn7x+c/f3vaYuRfP4pA4k3O9+jfpk7HsKypF/s8nvkzt3y/5p//yD+3C376NbcbCZ0f/j9/OPFy+emLysTb2zj8Kb3udanx2/X9/LCf92/75fgwr+zXWz2NEVTbeGLz8bq/KI63fjPu36o9zS/Saqv4gs9P/7df5/75cn1v137f597er8/m7/3jvXqTb+LV4+kp5/UTX798f9GX/idV3kJnanC24080CfI+forxdml/Y5HWCr+Op0t8P/9B8amFAP3T/JIXH/19/3TXe3eoTGLecEpr/+eJ//1/1v7TuMe8ic7vv7y2f8K98mTd7abbVibFEAX0fNs2JCnlFcIJSpPMyrIZd6a7IQ0+ZYoxzhJMKliRqQoiZPXcG7jPVQVQOQVR2lqraeFUpCCnXYPsEii3GUyaJJUMkcyqysqqWDp4JYxJzBRtETG3DcO5KSLZzKoEJc3LwCaNk+ZTDKRkaVFCLjkTgDAewvQDZbHqBfAY8EwkEqgIAKhlliqpB9+xCgXlA7oujFiCaDVNZLIyWgWw8B5RufrVpa3gCh1CESS1Zls9IzWHdklJabO4S87MSCMfpK4CaD+ISSAtMxfiSiMLeds7LSnxyPIgF8Ve8SAhFqCLscFAYeWqyB/iNNfXX82FRAqzKFVZEfAMlg9RMVl2JBhQ1Kz6Ie8vFXstrH/QL4ksWTEiQkSWnUn5ODsfs20V5p163qAFaZWPLoPHFrse2u5CXC5DVK1rU8xKKqWlQ4msyClEniYJ92LBSkiBKZBeiBRRpEsRiIgFBq0UEkZTiaxKzhm59uIoj6pkEj6zyxmMNFFGWFaM6SYuQGQmmI8qWAKZqr6m51StLHkwG0s107I0eqYMFpuuEJeneNHrB3pEQaiJSTmoUoRRQGijQ7QCSFTCqAL67Ia9ZzDSqqQ51UipqBRRMNLSbZ916aI1aECks6DE8Jbc57hwa5ImHr2MUaiiHXft6oF59+53bWiII6U0aZ63mX4XWEoltZlSOmSCzVwqGpsmIguSMmer1Jg5q8A5cmr/qHHVKAIwhYr0RtFIZIUL86CgZMWMRUxENpkJolQMaRDZtvCP0WpkIKg07VO6OKMntDFRKqlPiJTxATzvFOGOiwEB7MJCZTOjzjSPflJbEzSrVplVQr9Nx2WaUExZ7WneVcvRfdIzLed5mRMnCGvVmoCAopa5RLrObKXx7SniVnXTfn3L5+OWfzhf98/nOVoOUyn4FmgtI5+63v/84Wf3lmtN86aapsxhCdm38ZW31sfX8M1TefErJDeb/ezx5Pnarj/zvDzb65cXZUWddUTGrY7jTS6fWaXqzKzREta4kfd6PX+58B6Y20t0Vv9smZFUPB3nNilpYu32vomZp7YLLxF6/+b/9S/5a6tx3z7uzzf5MPO89JiDTxr2j0WPPVsp2DoxYDUZBbYudZ39H9/Pp01rc358ulLll0+O/aIz34/L+bXGphz/4X/0P/v1X2fVX7Sery+Irb/r+4n5LqnT7WgiuA1FazVftq00ffzecJyi39vv3w5+/fPevo/Ly9iiI/at48BzWBgCX7XfrlfjP/wJfssv8/q329P2/F0uEnujvv8k31/mLTNExv3i3TSC2lPZzy1L3o9fvt9+d/zt4/Xt9tfrlgqVt0PGnSaqLZulbpf5XGd8/sBxum1sert9vZXc0sacHv+Df9Vnoc5X0pqlPkEtGmdWIcUIlntqRmpIMjkhiXJxSKMjMhUxPBCXKwIoMK0oeSC4Ek1FQCr8YB2dZiItQtRHCiYLBjK7JB9x1QXCRYHFVGUVoUaqRpAuCjBOARHTVAQVJQlrZGOAnFSlmEiURGYFEQ8wcYpWcnlW8cM/HFh52Yy2sTIl4uEVRi7IftAYysdjr6bUqiAkIZYu1TQTQAQjH/7qWtzhR9qpqCKS4bWCxcEuMF/b0fRpPo4PV8OtV55RcFl65RK4kSGylnZSEoFcEllv6pSiqMV4RHuA4kPk1Uo+5M+qdd6CqiuvjIV3BAHLH0cifvC/mFmkiGAEqgR90cHTiUxWQSn4MeRWrDJBrCbBRZ3wLPFHlIhVJkrBQ1YGFVIgTCJ28SGVtbzl67SWdQqS4NpYPHAPYBWCSDBBUxlJqCGlIbNiCosWIQltLLAcLEcWhCWiLBh9ilDrrBC1VqBkLoVexZKqiixZSBj16YKiPOiozSYU0Cpe57oX1IpLyQpHVWhzt1rGpIIgpmgWIIVJTY41MMm2SSZTbHLtHTVIqhi8bIso4arwTRLsUsInoGaVRFXhXsuG4aPLzHzCWcM5KiVqO0b2iBRkWU/bbautRWYJwU6VTEsqtV54b1tO2/MehRmqqoI5hrF3VIVFXfbnEK0AS5q2zURL8ohzlmoRImvHIVLM8EixvcOPAwdehwwdnechPqUAit7lUyeqjlQilVNLTWmtkonKvaKBkmNzNhnmLmKeaJNooMwMCDJnfp/OYmyezol2GU99bFP2UVrYUXHtAbM7yue8l0Posil8Q8359FztFR3mwfsbgkZMtgipykmpymHz8vwNeDp+e9m+thrn1RAZGclhWup5SuKpBKcaqFBmZRKSGDtoG/KQnz2q53wKx/sB+W2knVshMkKnqAYwI1v6he1ne/Vt4MTTENy3yntPPa6cb/EVuDxJ27Zz3L+/5/Vu/iHGu/rX8Y93q5er/IrPeXrxudwN2CfZ9+3pd6/283/9X6rmTB+qpajDtUW8321AY7y/Ayn7+b3cdotyND6f98u7VjyNvr3Hps/XMYaQFskmZ4b+fkY/0OM/b/e/vuCG2dsHa/b99WmeLVvex5TfXr/gcrpc5m2/vF/ynfVX1Mvt3femx+1d/vw8mmxv94/328/ytf+Rv/1Ub/zDXZ//g/j679oZR0fdf33H/N1fkO9l91OPsO/P2r6frxHb168/cTuO2O60v266X+L+Mf55gx315PrThjYtu9bMind/eY239vlvkFv/9W/xZhdMy0vwp19HwuSfrJ5U317vl639EjMk3t/fN9m28eSlQ28/UZ7p46/7v7j8v763nzTf54vI1YWn1W3gihjdEOQe39qf3m2zP7cjRN9SNRGj88kucjLnbbfDfMQ5TpF53t0h0IisRW7wgqrACTD2osylXQboYSVZ1EKCqd2QlBwqMcLnaRYQQTqVYGoPSBccUMtRfeIKLXANHj6TuyHmmoEmFb6iR4LBTbVS11O/AsCaBTpdokQZo6w4mVVp4iAr/bHKjuHoXjrEuRZ9iJJAoVaPMBeQmCks6xV4YHwrJQmWwypIDTJJRrCoKyoqkasuCptGcA2eUSpJzaiqoGRSKEKBCLpdhKUs45T7ceOWmsyQUtFNKgYK96cIiVBFJnUhxrBBZLdSCbRMqShn5pjf61JZLC8RwREsEPF3AHISa/JNFLR8hcceXOdFuwBgWkiSlWsyripmZokC1S6JhDgqapURLv16ZbCQi2NFCClgCoq1CGpRgpWPIqqCq51w1SKsWQ9omlAvEYniI4i0EMKoVc/Ev4fZVl/OapkCRJgoStGnjlGIgR0KoKHKgYUNK6fGCj2vmqWCRKhpQXZX1MLOlBQkJatKHnuK/BFGNqLcU1aRU4U/uCuSy/4tst7RElkba1tu9IJSA1YLUZJUVolWmZA+Hb0VG0MkCpnSeyslVbQIQXpJAohMR2WJZMqkImdJJpMKUYGUNFblUIxsBMvOlmO6RVvSSU0g0h0WzGglUrJQj4xbE7U271ooLyGprcWYXeVJTpToZLten+R0tfLiZo0USFXAQi4pXNyaLFFYyzIJpPY+w7HZ1tqIoAS5z5JmlKI+azn18nRmpIeyMS5yKbYEPVmbLFwrruEhKvtFant28RR/OARQusmWbTtaiV1/EngbfcPIrDvPMV2KvYb99l01CCqv99pTrk+U0v5B58wtxBgpuaELgGSWGLlyGBDJS6uPNV0UKY75S84crQqBcXDj1U8X3InvkK4PP+ajLzKoDrs2lad/8Gu6ZErNkOd21FOfTcIkVaCVAJFRlLbv4/bl87NsjFmiG+ZVQLh1Y4lm4OU2su5nk/639seYeIdY3/u+NylVj/jLZ//t+qp8Ucpm5x//c1wnvpyX47t/NNeNquJxG30rj6nX/v37a8Gv+5d4nwiEnDdjIqp9TzuNcdxgGW/C6enaJGbk5N+ev9zaGM/bW6bMG/8bPWq7ds2rvn95/mdJHvLxNzFnz/CQap9HfVTafo7rrfN6mMl+bpN2F/waw/1+8q/3p5iw837D2+31fv2/+2gk7/7SdNbb1qV9mG3eXub98+xv59yo97Fdm735LzWmU/q7vo3/6X+Qf/qah7+rnC0cNUpF+XpevpzPyfuUfYLaX7798TkA1HDe/ds/f/rzy02e+5e3v+BF9iphPb29v+hVx4fZhfu5/+n5X8hx4Of/5/XXS2r6VuSHnoqu89NrJ3IC5S6DXZSVuaVp03m0uo8vcZ7smSH+5KXzPSm2bf2S51/fYyvA/cG6QgJMSjCT3oj0JFeAIkRMF8JY0i/t2iohpWiwrEuzNiOlhBSCZW23JuX3hKRCJFkNkLNsgkLV1pOdWTVLKCVJKcmw1vbJRCSjXFjOhJsWZ+Wm4xBYi1prt6xhXA9pyaKTFFPNMl1C7hr0suArY1rL31yooDKOFaN4SLdElEixICaE5GIwQvSR/1TNCNkfuY+FPLQ1RuaDrk8VilIVj/ENFWBqpvRAIaMSIdq2Smumm3dBFSqVSpoCi78d0xoTolmonFWP8l9LRq3sLRbQqqhrBF91t/jhIyaQayG5lF6uhDJgXj8c0yJZhVycknKB5ACkUI4CI2VFhOpHGjhXMjgL8FUzyGXjAhKh5IIYV5mteZnxwyVOokxqnjXhm41HBYQkERSpvweBUY8kzmLARGRSEdSpKLHuebHznJm33rJQzCj0XPhQXZQtBVYMGtQmKSRKVs+xrFcMhQQqgqaVLAcgkJ63VWdFEUGi6UgJKkmZc90juFxvlWurLpIJzRQhNBVJqVkQyHYusvreIjLNWCmUOqsCVKms1avgKPcHDDEQCZGgCuQCYq4bENeNoGaxQJ/nNK9U1hkSaOpu6956ZssYWUrutpbzM8taMac9cZw+1cic3AskagxeWsu8pXnMVON819J5ANZ6ZEmlR0jzhQioiuhKmooxICAFpNKM8OE0SaiZhXW4lM8t9aKVfkbMI0TT+3AtqzOzsmkB4gUd8xwuAc2qnEVIhykCLUtdDJNlm4lY61PUqu5D5pHD7ilBQqNZ37U2zNb97UlULvto81QFyIoOkBYpR/vIa/p4LVkVFKQx3Ysf6KMc47iZxqikKjsphakq1y9XjI97GweR/VKhRMQyHICe4/bhoM/rEdn6/LT9Bn1V5/nOMy63UWf36eoh7rimGzPj+9d/f56iP98PaPyuXs2qdXvDdm+612+/vN1nO6LpzqenNmaXlzn8rdp5+fZv/PmnWfKkn67dwzUbx4fe/Hvd6h+20N5DkDGGrcSadUPMyeZ9090jYtuN73fChNiu3q8sXlQixpQ4rQgXQ+P1crlfsrerish5Vx5CvKdpu0sd8ctvfT+Py/v99RfOgSZyerUqef6yPx15eX+bckaa4rze9kxr+n7EOa+XlyvConxzfvhwvR5v29PTPPf365+ut5uWV9bl2eeBM/0Fp7u0v379/ZeUJ0/ly7BNnsfnT99w+e/e9vHd5za43c1hfqO9ftdL8Gde9rR4/i/Gxs/X78fn3/9F/T5x8eff8ox4a87/9peP595Gtnw7ITI+Ajk4vvz28+v537w1+2v/sL+1n49TL/nZrh98Ph1v/z+m/m1XkmzZEsPGMLPpHrFWZtZlX7rZp9WUSJEgHwgI0IseREKQ/v8PKAEChMa57LOrKjPXinCf02zowXzlORuoXVVZmbEi3D2mmQ0bF837FxvH+ekFPu585DbXGDs/LSk/2ZEHbvuTVbYnXMwJWqYh16n66cvvZlBW+ylZlcpkGqwMzGGsMlVHsYNpEF21KzncV8I04cby7anwdZkyABJPSmXOjbCE7xWz5lZ0nyYCYtR6dg7sNR8JJvoyFWISRllkx/3keZqzklnkFG1lmoysM0W3lFsVappkofLYaOo8gK651yIYKJlBS15hWUWKXT9MWgUbuYpay3M5q8NZqQQL1ihzqw+MRZrsWm+aIAQXzeHhbmQ9zzwomq9irIMGyoeKcb/fPcJM6Tuc7iAuUBdcqSXo3FzmVnXUiJpVkLZdoAulkFZLezr2wNqjShSQrcRitdTK/p0RBwGEqc2ru8A1dMo2YpZMSyxKBdbqdISuNxcTrdsKu2B9kUqgsW8jAOUyWrZNlwwdNKgPV6usKimtkkKxgtWjOJzVDsq8NsMwdTA06AQ5y880ii6MEhZ3y2K5H4c+9scBenbEpJactA6NLgSThcEUTWmjzuVEoTsatBT4hG9VHEUTnIs090qnsO8fzqRtz8m6HDBdpQs4/kBtqts1mnLzTFXRI8SC+9p40m0Ly2rumdHXSqehqeUF2IhZ2FTKLFBpuQoG4dN5DMu0VZVrG+Tmh9kCxJlu3GQW3ChjWKnMMLRtEBZMi2N/OWeZWa05PJCDNnxUrnpbgGdwox1auG21HjTV1G09bWbW7rCSEyVqWiKNgBPKo2Im1vhNeMp2sXpTYeA4tVsac63HKtOZmOZhAq3CzX0JqlxriX7LIYKItVlWVqUMGaOSweWo09eoaecfa/gaY7Mx+RmH4aShnufOVKVur8911lhlpqeWc1Vsie0wX4NTxfSZpqS5yQR45TAHFTDpxf3+s9vPP4Xdpe3JLTb3V8NThVP0oKWbGXMY6eQm3+lDjMPOe+TrGp+/+p9kevFzsz92//76jO2Pfe51q51Th2716rXO9X2LN19PvG37e3w6i5utT7aT/rfH91fEobG/xZGfVXyq9k//NV6Xffn0n369f/37K+xWtb+a2Z+//e0/jGfy5/P/Z+YQp8w3Y9YonRNx22UHkE/P9y9VgeK+ps99Ze5r2lp6Pz0yH1sMDhv5/GO5v7+W/o7t25/wiJ/ef6u6/fXvjy8Kjc+3+Y9zaBXWY9bxj8e5HzeYQvsv356f/5if37/+8ccrz3D3e72/zny19biPc72fGZZPbWZefPkJ9ulRM25jBH/+2/iEKJsxbZXWfpu+xi0T/oWGPYHH2/r5X/bcxnncz52vYeeZL7f7V0bIX88Y8eezPluWfonbfPvP/1T2Xq/rHa+/jX9aX37//eunb2ucz5jMZ8Gt8gl+M3/IR8JqzWVr7vHlU/xl+7LtEy/2/P08wf259m/f4Xe7bak9DOMW35/xx2P7vNWLj9huRy58Rn2vXrpu624TG+fzePt7vnz+sm+//OOyJA1Vq7YNOBRWgUkazT3l2Yw/lTkIt8XdCCuMVQSxYRvDXk97J82qBTPCnpnjI7ig3LL2pRXjRtQW65SP1fHbDgtH00gtOHgYJXrBO3sQTLcbVlqQWWBVllcZFodORT6L1sZhq80c81yjbScuNwcirzSkC0GUqJUtcnTrnF/IygxkLVRSndECJVVgEj/8jopIgWYK8WPQrSLoDJoHVeBWUx9RyqdAwgCPWazjyG3bfxoVLmvSUINZcxW8CkQlgTrXWuvITGo93pRHsjp4qPlhJMVopy41+mv14Xl1KZbAKxaq330c7QMhqMMYPsZphLUHLC9ZcFXrqsx48a9KAIqqZBmQQM/5zYhuT0XUQoBC8TIRu5bVELE8TrXBYrVNBtu2S0wT2WFrCZE0UGVO0bd2rcyjUKTZPM+FmG+3KvlEKp9sWdE0E0gaQ+7h0BLqlBNmXOjmgS4TR4jUYCu/SXMzSrkmRYMblxvgcg+tQHOgwRbHdpiTTMbO/yD8uhFJFCFXe7jeCFvJBbuI5ZsGO43TaGJnMtmH9WoZCtXJnbUeJaHSbXaH9SiJ5THPQC1LxCwcK+0xKg01uIYTqkR5JnWzsjGEtJDFWue2n1pSK/7M3cJ4FNPuR9IMMuM9i7UaaNco29zklbkiIUBm5WYuUd46aM1SzKBzbTmCiP2txrJNcMV4hr9Ezj++FdxAlDBxpXiGZO4phWNqZcFA92OOmskqS+hcYpK1SzCPJZnDh90IW1uER86IOGq+HQzH8/BQejwPPRigDpMcY8RkjJ/1Pb99HfCFyA7zNIrc3VHv2/LlO7bzJGK/bGjGOrlecJN/mjwCHH3WXM7rLAwU45wozKfb0/0xvq443oLHI86HiPEph8nLhIk5p2pgu/+v79+Gx/lmUfZgcPDgPiZvKw8O/OLT799eb/n+68uZ336e9v0EvmGf9flnfP3nT2v964vtWkFV/j0ev92+K+fPsYx7TYsFadyebxFTNW+fRHy1tUnxOAmuXOYzTujIOrJO4Zz7qNDx3JcTz7VgdsTLP7/Qv/rx1B/vMf2PY5n74jqxaf638od2gz7Z13jEhm85PunxxFscuMfL+/aadebxfKv3922dK5bnN736l/ux/cSXXJHbO26PHPf9qfVyxv2P46fYFbhv+CNYdkqJL+dtmZ2Hbhpf4hWf7dviX2/fnp9e/vhsv+Eff63jZfk5tuPheyA3eeiP91u+/9M/6W6fvhY/vT4/bedP/3HmfRv4+vZLuK3fPv3td86n6feXSj1uRltrzfdte/ktv+H769f69D33v5933ubt87fHLcrNf07qufy5trG/fd/esc01tw352GSOm/+yFos7OfnisjNVE9POP97Hix7l1yjkY0BFH0hYpOFWAQpeIF1cZiRpLqeBK51AAVHgUe62oYkvzVTZkBbKJeQZZtxLHLJbTEKFYT2v1OX1u6QSKjHNS2tllgrLz8Rcg7kMRV95lA+tLJnkE/uSWFI2iTg0ZZHojZI6pFumHsx1obYQ6SxDZgNcHTrB9uNPS7VtwgfN13GZKDahqAd21jRmcZAUoKq28iqbMF+VFAZCVRMO4AxbSicrS3tsvtwRn9wsDTEE2Gp2djDWMmp3seaRBWWaVbl1lm0NEqJonrjej9j65cJ1kkDt95BLdvlxNHsIim4rBAhNm+PlDqWpBE9StCwmQbi1oxOKui5K11wIKG8Iv8nRnUJlMJLUbEVRobXTUsG8iqsWm/0lyJywS7h8zeMAKwVKRsBdrIxEwQtlLJIeEWPiNsJWecrGoKSkBzrewN2U5fRYcqJKZg7JVWSvW0qmrEykK1V12YM58kxIVTRwZBLiEA2JdY2+FNyVrZFmJTsTS05mwpVl1o1tepDbzWzLrJNKWY/qNqxIUyaTV6LdpSijqQC3KisSDniV09ovk+BQmlWQG0zECmSWaoyTC5lmqwgy6TBJy1mH6LBSYZy5AOZkmNEyB891dz/PhfZ8vPlZzppca3SG1LkEYh044G3piiKbGUe4m/WGOMY+z1+h8/lpO+K1Totlmyk/8Y+/Gf702bYQTqrOmbkXVK2XX2VisipVSzkVZXWmWqRIMwaOQim3PemRmJfrmQQ83rLcs7PKXfF5aVhCD8jrfLcxUHwuBh5Pnm+Hl931zHmPc6Gqfc9LKIwh5luNKsyHA3s05OUER8WWS/Hplff7pyrFBq9rcVCsZTh1RuZAnVajDJ/Hm7h/w412H8fiKSwJWbS19Nh3vdZ9Pr+do4Zb6+fuKGApEm6jDPV+n1/vt5Uj7gsayJdOVP4jTjyfsl336Z8/fanfLSrrOPLr94fHwKffkVm02gwLh4eyYK8+iw/F5ljvJnquw47PyiXmViUg15wbNbFpFZHnOt0Tn//0nuv9/sz5X6c/X/JvI55LuL0XB47f15n59dV18+MZn27zOLfteQv/Ncb5vPn7uB+HrI7Puf+GvNvyNavycXx5m3ft8e2e+7/86398+/LTn376hrfFzK+P8/YJfsM5mBDX0ifc3P603v/8LwhuM1LTtvscpe+/vP/m+38Yty9Hff6+Ldf9pyN25ckXlK/Yj+Pz+e35z687/un/c27n6//+Vd9efrGq/PMvn7dvJdxuVVm/bGHz+yfb4hm25r1+YZ1v//LzH+/7v/L+z1///J7f/Ew+7a9fP7/u8/3EkYcew85z5M23+6wYSHFjPcf3LYm3776eY9j4/DixnuXbQ/v9eb7LQQRQy3xoLY8AVaInq8WxZea0uZqtaurlWRv2lSaiSTciC2h7WPH9TLssdg93jUilEj6XUiurDFnmAg9AVVIlkFF5ehEryKRz1oIoX+U2WXqKB9ApN6O4HIVULjPIfWbheZoRWAm0OwkoVhtY4ofWBwZSia2FvAWIHS9MAz4S4Igri0DsIxsfNhQwZRlhxkRvUQFW0dyKy9omrNqJa1BlyduZIi2IbdvCKeQRXtmK12IxiXMRI09L1glgTZWrChaoXEh3VuuKCm2I2JPXZUDlsEvwqy6zHbqHj4Vxz8v9MdTxwJcoqc0R0dZL9kPfq4/w9SZjddm+VLAtML56E4dQuH6YUaUOgMPFyhbQniWVStm4EGt1InTbaVVfaF7mHUV1NhoEQ4dINgVstngOsDSSyvYdzfToObRJ1MwzS1NSClw9cUPWhqIqklXyVc3SE3ClYwowKJGWAqHiiSxe02+3QbqsxeojZ4sqiG4CrSX1pAFlJ3zLPFf1orvF0R/X0UiTVGtZmTGzvLGK4i0ERkz1s0easUrLsTqxTOEFVRpjF8HN01Qz9/DhGPvwWqIrQTLpttKW3HLGFi8+zbQql0w+DPM8F93Dac5adndnc8JWmVBPjUqngSi6ER8OotUkAJJZGGduFcNvY0zVKuRCPnio8GbUM1UJsJBZIookbQOruQNJe2Y2muKhMpS0wHSRI90glMxYvo73r8xPw+uh3EYSSESEFQwIdiyz38rcXLUQ+RMqn6c533mk3VxTag6+qlAsonCbtSU9xpG3PSNmv+QSOdasG2cZSZiUVwaLB2ExkpVZXuue8f7rs37+5i/P7ae8nWL62/lrPl++7pbbwjPMM+0xddy+5Z9ye7pPH8PdMDGG9FLT028/z29123V/yfh03n4z6Ijx+np7/PF4jPkb/8O7dPzydv/8d5jKnXOElq34/NQ4vwGWANfdJ5SznF7rj33clM/Hc3+Vcq1tn3QFDsYEMo/1zM8pn9pMNZ9ZtHR8/8oT76/j8HHffZ3jdpxVtHybqD/DdFiON92/PXV8xmMmHzLAqfTcHGHm8flFSs+9yHM932xzeQwb07av9aj52M+3z3P9xn19/Xb+Ya/PsXPT0xM8y7F/nvaZv3/5w1G3CJ4bDPZtft6PE0LWl9eX2nabADDFwIGNys83/2S437U+jXy3OWb9Ymd9+gycp81v9o/vfzq+bcAsDZviN9wbGHn79tsvfpyffrnlz4/58zy+POL8sj3mjH/9+tMTb+9rzjy1oo7/8p//0xfawXMin8hgyZYXcNqWFW4oboZP9cw5z3OMmri2ez1+EZppVGp7boAoK5CLkSvBZSTDaNTyJUKemaqUVa1WmlJY4jrT00m3SqhyaD2TY3EixTyNfxBuqTgE3xKoYgkrPU+3skSNiSWhphlYZ41FV1VAzENWM1gl40qUqmc+g7e/MVpJesXmejtQ9mlx6W2ZyUXmFSMBYU34FbHnV+3tkRUfYbjGSz97iUo7nOAyXC7BGlB0iMV2/SWeto4M11TBKiHke/jIebujMpmaKFEoaVVHPkByim4rUVKqp6dZMMi89UQXct4DWO8nleyS2+Kj4mUrchGGADIWrgqgzl5s52sVjKALnRGL3sJe5swmNT+tCdXtbVj2ARMUPkY7tEcySciMALITd9C0awONs7yZxFCJXr0exg+7Y+Gy4mj6cfFCiUsy36oWLGVpNQuRZSW3WibjWpSubKbGzkGtJQZT7UliHXvI7o7IQLl3XDHNnLV1OEWZmcQq47Wd7o14bzZMai2wNVO/eW2djXyx+lbTbHcqJ9fMDEMV6MyyhVVtXtUc35LhMsxsXRiclfCmoIMFI2G2cvd0OM4MmsjdwDJDpZoCR0w4BWSoVjm54KtkcqnmRPgwqWJ0RoYJOmaeB4fOc9QsY9golbGykFVazTwczTDvr4sBvNAiQ0FzMGnzKc95EnR5lmol9Ga2Ua6ZM0ljuWS0Hu1VZdDpoNNk6fBOB69lTBwpM3JlmXl5zioPS8h9G3VsjiGuCOOc/grehjTdFKPOMqd7hmvlzuF/QY4bh4tmpe+xOMzoDWNVGp4Rywk493H/4zuwaSLtVKURYanS5KaKiTJD0DlRZTQj6VmMRf1+WzZre8+KOO5ap32bQ++fjCtQOyLvaSM5/87y+IdvhqfOPZ5h+flxcK/N4jFfA7cXf/+MV/Fxv1XuX+8vb6ue1AOTHJ/OvH9+m9pf9PivedRGzvuEp4rvlvef/v6IqiUMjb0EC1QdzP1lPbBtZWOBGOe5bSTNwgpyuVnU04jSUQH4Br4O8BhjbbXtRuHIWPO7bfE8ltvpUJkeY7fHK749xlmRdYj7edg2sctXHkmcpeMZ+TmeAWrzeoxbvCz3Dc9dwb+8/uf/g7/4+81v69yUN9ycs2B6PLaotTLr0L+u/Mfvti1gj2cAfDx8L9zX/TPH42U8e8jYl+8Vqoif8rDyurtp/fwp1uus/e3kr/y1cFtuzv2l/uZxN+E0H3F7WW83dCzPcT4eOk//rc5Pqv86/a9fgb+9nOceR+Xr7c/FBU+usdK1YdW8vZ3H8//B838d/6/638bbmo8Sn08cGCO1VA/F2OLqW1FQG8aSSKRIIAvL2l8BkORUL+YoJkXAFlU1pGGeGTOzaUAAOxo1oKIMS45Vu4Wpqs5Umpc7kkR19FGlUOXZhpppfaxP87JIGNVJBVoTYcjMJWqVJkGp8uILG05tlQSiXTT4QTxCw8hFVdvpO9gGwU2iUoevth6hsVy5VXv49q4PrJKZMhk95qHShy4AGELBEkYjS0UpkCoRlsfSHpqznTLttMWNtX9aGmwo02hqpwvzyKIpohN+DBEyamalzmmW7k2pWvVhB9ETbs/4vK7eJcq+UqBaO2QEGJuusVIXhxmQVAVma49l0UznLiVUycyun1BNL+9SW+0ZAgPa7KOZ0RfUfWmFUxe5WRBnmbJNunSVsi7YAntXoB+qpK5GwuoqdZl5TxL0bZFjVCUjeyz3TqC4chSNlAq1nAkHzJDF5pqpEjAJ0bzjdk0SnGXFKpV0+ZOQ7tYZWpXt1NUxEeAlZS6oGjEwSGWqKqbK6FWkqUyouVazqxNIVj+JvQSGBHPLzcstWQEgaaRz0ErZw/SVx2UsDjOcw6zy37wrNbka27ex1marNpYyDUkoayGMEwGMde6A15FLqjVYS9O4nnPYOI8T6S+YMvHIpAOVRGb2dV2kgJyEG7OqrCgZXFu4WdrrW82lSoXNuUFZlGkdhjiX1qLcl7m2HfTZiI3Vx7cs8xpGlc9JQ2rBmL1g6U5fWnN7nrYvhcfnAA+dq6gn1lttj8OsiHmYnbjhPJn315qmQAyKtQYk5dsjovaXrGGE8cPcXj7v4ywETwsQVYsoW0X4udf5kjOxjhfA5I6+L1BVOumr9rXzMbc7hl5G3bbft5fv3+Pz3+ZLlGFGJotVNJZjfNGWz7/jz09B80yAz2WQpT07VePxx5jx5dvycz++hVm9zHmQ70fdR+XtuaFyj+T7YiSydPwxn/jp03b4PPgCqBwctRsmB5TTRulVudJ8e3msXDmCoeRaqTmsn+ibPWBrGwsYRqXGMb/N8/Fp/OE4Z6tWkit0q/Gns/znU/OOmzDCjaFjrjwcz9NOz7mm8g/Qj+nn163el22japB85O185z3wvM+IWPvLAMjNdrxAu7ubzzGO+RmGhaoxOXToJ7MaXuefYr2dt//mNGKu9R1+wCMoEZFwXxXGkJ3u4WLFjWNLjszTXl70vnGrfQx7+l/Om58waxWC/wwybcG/3A5Y7Ce384/XkuPtXK5Vmf72ngxTWNFq+ZIfLyzSxra/btu63cNRv8MWhbdHzZSdz2NOahiwxWlD1FQ3/xJVaD2Src2NRfQUJUCGq/1NJYMlqXKUluKZo1Yjjm2fYL7aJov0M0fYSpVWJpYq6SelbGaQlMwuwgWby03NwZWav9UTkpkqM1nQmdWhr+vD63CqvyK2ctI8mbjqTkt/URcPC2gPXKZRlVWX4VX/vI/VqMAEWM4fHOK26LgClChw9ZDDy8ZO1d5SigZok8CNZXbpmICqauSwjCRzd6vnFlUqTJinZAbKwq0A7F7hy41cZ4VVYXoZmdIyK2se2IegCKI1jHG1DF1W8UFuvtB3GBC3+ijYuEKD1VW2i6vLWh10fTKhdMH0/aIs5Y8snEaMHT/eBURj+//3S+Nj985xdXYwW9AV48Qr1FJX66OOtyjpmn0vSdJFrbqgT68lB6o4StkaZLWJMapggNHcCW0RifYp7nRKI0tpDT06Lgo5G/RmqeqiDjSI/5FIQWUP973lbnl8Q9eXCL3peKhswN5oF7/aaq5zwUVdVwgMkK5KWPPKLvigmkK94F7lcaEJdenYuSRXqwG9yX+NvNDoYyrzojoo+7q205cxzBAkpmKYqbg4IldhLXiWhSM9S/Igi4TNxk8aIDHGKC0cVd4vn7KPhAkCED2tEwFXzXNNrBl4mwvCJJ3HOzA36PEAw5cVotmfMidjIVxc0lrhtKLAdbqpcImbqzfaqYrhenkdy7QWVxJ5Yi3A4YO2GQeXYFmoGmTA1kNpnJy1IVBFhG27beMYnvSODa9C0hy34YFDPg9qZdaZoxxmMlIjUlBpEJ3gnVSV1uIKVQqD3PF6HzEVqH3L7YX321o/P+182fNlWwMboCXVwr7XOEr+rNeJ8hs2abO84LrMOvefcM5l492ex0Il6nUI274kYS68veOn7Tzu+20tMsOexDO+vN7ihf/vv3+5JcAcfriFFU1g2GnGzVBvOffbYc85bK+JYmDbygh328xSw11lxMyS73bL44t/Po6X0+82T488q+L2WBbfx/PUmaz0XzXny2Bm1LzvvK11m2/+5rsmNqu1+23ONdYyZd303dfbt9ioGmt7+bpuSWzfQ1+/4Htu6Tw95qHjVm61Dfu+GaXYkYHBdUZtPuvl/s/1GY8E+XOKniIRJUoDilORW5Q98rB3Gefg+bZPv00f2yfw9nKbuIkT6ZSOl7vZfr5QFOeX7QUkfxu37bsFFfE6yQ2sFa/wu2GgIs5jzOnrYNK/maM05sogWLUbfJwna2N8mrNqrjAri+f3pDLZGy0rCc1HLtBp1T6LPRLKrd0UCo2R8pq/lGfidCuoPo5LOw/JSjDi5CrvuQJTqFymmpeJ8cfEolI1k7Ks7QZ7MmEpJcssQKMWilgF5YIXyokUarb/O1Y1h9ZWj1J9QPaYxz6ZBGus0/pnXrOb1CeW9WTXQe1puoQ37aJ16XY6JKbFM9eH0I/pHwTlLUpNgT1FV1nnqlUCoJu7QB9jmCPjJvMWea0iuZnEfci9RkmzKcy55tRmapqO9+6tE48ueFm81Dg9lnZduGqvoYMbqHi5Dm6RH3aSvdDUEkpJayJQf2bJLo4XiBYCX8IhXZe3fQV02Xhd2027oh/ZDtVXpr0ql+jZ+YC9suCFcv/YLF9d0FXSqtrakshWIy8a1lwLN5nEFJnpJbUdRg/nKTOgrK72oa8CO61LgCpUuBIaPlh07UbdflofH7y6u6gEkpdVyMUmEAhYMYul680SVUljpoCiKYWcWZwZVgaSJiVsWfmqKhAoFI4ZI4M5UUoVkZ2jCFij+o20JEYlslgN2Aq0WgIsxn6sLDJT7oZL+gULtClIu7YYLVYaVQzr5Aij2WZWt5wIM5OzJkXvZq7oCgBpNRhBFcpcFqTDKiiC4Ses0latrJlnKs48jgXpLC+nicdSJWqoijKlN/dAwgUrVObMyKySFKGhjCKLpkWnR5nouzvGJpfVgXUsncc45GvLRStf0z2y6LIxgoFj38KOQG6Ch5tknWb68/6WZGxm3vbjLACnDs+DY61ZIRPDO7kmZdq13G2NlsdV4XIYADq8rZvQcWfBhyO2Mzx8Lch9lyrFsrb8AwtDaVWP+DlzyTPDGUyaedSkhdn989SCasG4lkF8By2B8V6FNfWLWT2l2Eiryu25ql5r5m//9P7bIcnCpmzyCscSLebjbgMOzUUrBrHWSFZ/G9uvN3MlOFLZgTIWjtN9LNvfebNdiapErdICn2/7XiZoxNBDL3cWPJZ/UczK78bV2WsqVw7chvVQsR6Z8f08gTxtR5534p/m7b5sPf5cKibyWaPsPD+tjQrmHMQTgy+1EVjMMk8pttd9+Tpy7bWVRooj4Dy3rTRmWQSxVbh/j/OZ93V+jrOKY+r+vl7e9TjThlQMn8fL2FzzzlFAfXpGwLYZt5p30PmwsevmqGm2MDBG5RjLLWirljnvHkvbfuShDfZ+klUrK7NyGXoR6XTjrWbvOFGCQtDiVmQlTE4sWWOygESLCwZMtPO/LblUsEF6zZ7zCAleO91VArWToMfK8qgkvGdNB8yWeZU8Cio3CA53mFkU0RHcds1vRVTLhmGsLM9iqePEKAg1SyAcKmuzvF6vmQEA2ZrfPj2LSaq8/h3Lilqr4xmMrV7lhw2UCigYC2TnvKGgy+a4D/SuRWp2hvW2UJe+uFYnEZhkRHkEh5tJ2+Z9vjZX7GJJLUsBKyjYlmtZVGXbZaDtGqvft3ipX3H5frDJYF1rHN1LWHOOKdFoVIQuXJ1G6OIjGaRyVKJg3qquCyCw7k547VDZGXwXAenqRT5o4Fcv42HoZSjrCmZmM6G7iEasqzGgCR//2NdcffXRv78XyCqwTcXc2iFDwPJUYaDafLmpSz1zOn0Eza3KWd0ntdQ8eFGtDGlG0pzVUx+sFM3sBSBYRx2XGgm/VNaNKlynGfBxN3hprsQqqv2Vs6yWQTWTs8XYBZawYGSmsoQyk6EyiZRX9cHGglQhqTc7MIMKILdZTqPBvBZFG1kwM9K8V0ZM9nNCgvBoI2zYCXNR06PN1NnUalf0IsTdEmwewRaZ9GiW+6qA4KWkO0QxggxaYDX1HcbLV209l891DnABtQAt8bDXHZyzskQnLBbRSkfQS1VIs38XitCrCRdBY1q0Tex1n4rdQPs2vBfZRAyGFs0cSGBmayVniD6gIoePE4KZDyunyMyP9DYANCtoKmp5nicXlEc87HiMSePqZXn66uGkQ7Dbwl0VW7mRVl3Iw0w2tv3cbgJhy/Xd9tBi5XaUWDQzG+LDzSkNzyVDWq0XJN3GhjnGMPL3fKkNr8/xkmu93Otwn8D5fn9ZafXuf/1pRG7DnMucxL69j3vVOnzchUKVDnquUBF0ZILbKLAY5Sz6WCvSlwBYdkZpSWCoHEKp0ml+898/hTDen7fB4zifX85vQT9mub+9bSerJn4aa3G+2DSwlo0U7DY3mheykOeCh2lUPiHgxOKnNXJsui9uZmMc5hsMsf26CmvUe06ZreOuW9KtcsJ+s/vjdb0iWKbcH8d8mf/02Xc+3uZ2vH9e3E4NKWMkJm16wWq5H3nnL5W+/bJyzvOv/+m/++Vx+zxyN9txzpFnyf0wKfKojHNhnr9b/rG21/f5inmLR73y1V6O12368f32dv/ZX0J2i/e6+eJbF7D9ttb+esyoAZ900V3rEKsskBLNhwEFp5kkrDKZJLOGw0zpIYOVoI+YnZ4lVIQFq0TPIKrMp1wO9I5LglWKgTSA24KBI/IIT++AcPfxomQbFWbcMtXebXZG2HAZDApfhkqDQzCDC7isC43eYbJ1LeOA1XCnoQlF+KBO9ax+lRwkSPT/92hmvUcWW+9szTRKwKw5sA1PqWhs2SLCmAtmzOofxI5Zd0s4aEzAoJpyFuFY6ZqWJwplNUYGCzbM6XiwetAG/JKw6pTJk81UIt0SZabUmtH5rBqNTPQhiw8PDkm0tnNu0vEFjPe2lTSD4tbVo42xSAKrjFSmYQkGxnUEtlczdUUtXfnHhBVYlH3M4M0KvmCGKtI+AFLC4kKQAZQziwCCVpeDSC86PlbRfb2bFnb1M4Vy78EbY3OWD1dtK1NF75nDnQxaY7UGGmNYpUyVqEsblyDdr/LOKuViqWM7ei1cKk9gJcwkAwLwVl4b6sIXelyzJraxV96ttqZ+QCIGo/GUTGmVS0vWXYuVmDLnNaknjRvoGmR4yiJNacGUBy8xNdmGFzIYo+BlvGIgwYBliAZYwWsU6dE+NBIqcXHYqTw5hFousdZKlEDrLfd6ygh0LnUlq4V6RmsYOb2k9jf7Qa1ofImEDOESjbu/FywiJRZdQtChXMA8rCQDDS4zb5eUj9ZMxVKWVn3wzVjKH2sPlNVFtGToeFRpyYbdMZ2jNi8WMk2lgSyZEclyWwWsk5kDNSWZucFNVXmcIxdD7bBrhN9Wxnmr0nrYm7t7QyZuoK1yhIer8iS7dYQuFp1VdkrnmLT5iJqDJZotj1pxO5O3Z3CMBVsxhdASbezbY2q8rHkOW2DE6ay0LMQmmR/P+8Pcxn1yG4fHeafHDt1vPuyE5/0X2vQ7w9NHQduxvazYzy/be44vnObYb7EiUnhhoGJsz18NK3nTXkWQ9VQsmozHfZ0Zt2/rPmfRHdTGPAruw/jyqMnz/b+47rztL9o8yZi4/+XbTy8rty/5+UY87vtgb0ty7jfj++2J0kxomeXL+PTtnLAkSP/1xdeSJzXPHfSHbRqbUuvXcQzCSgY3+ba9PCHsz3KOYfvnwwCsI478fr4f3+f4NOt4nJt/+0REcq4tFROjXJnj80zp+3h7/fPb2zOHTT3lHt/zvjDgY8bL95ieGGFrG+77I25a4+mfbk//5ZeXCc333ae29fl5P+8vdXx/23+/f9YejuHHuvvBt9pgtl5/+WTxBc8/0mL3CoM7RfPzsFBOnSXEbTwYnaGOXGYOZSFkKFmVU04rtX9UwSzlnVBAGFRCyEDJYq5A2JV30APziVC7zE3BVFFwJxHlNIibSkiaYCOMKFiVcUAR1hIYVAsSMifyg0nUR71nEllRCx0lxPZrNjgorp5OVBSqic2sS6AD9S+2dOda5UltDHwVGUCWBbXD1KXoyT4rjChKlYbCBLr3rwRkHyMjZESuKiaZllKuSJE2qO713cOvKFl36xRZ1UpyEYM2HIbKoqnwQQtiDLnJczHZLmLoE7CH8I+x+xodP1DdnunYEQPRh4es6wlxWV2BtJShq2c5CevRUd7GzT1hgoB9GIBeJGsor6PoAy+lfbC8Ll0yYVapHFVkwuvaHTaX5WNrjWtOlF/bRVQSZkUqi+4GNwA5JUwNRucwGfxju2oEzdys1/miwVAqXXvrqmr/hEIZ0cwGAUKVaERVx17BhMrRIHYlTBfQjDb+VOFjEa5io/S46rKQcF36PECVFdmDlgTDGMZQ5pSR7OVOW6q5Ja/1eM+Cqrpg9Sbbc1VC3peYDEuT4CSYJTPQLcLaFaV3Mm5mbA9s3wpDZlfAR2Zs5u6B9n3dR8pspQNwQ2MdpXC/Cq79uCnpSq32ni3hhEs2WdsR6QYCtI51TvEs4lwDTBSqWEZNizXFq5kQULkyr66LlbOsPnbxa7lUpZVIE5NWVbWicxgjhs9A7rtvu4++NBJSyqyndK6YjOMv6JRNyXQaIRzJ0vrwgmHUqjyHx1ojrNynB8gIo1QxB1DhQQRFO/PimswzprlvcwwsiiuX3re3x1/mO3n67fHtp/N57sq7ckNwuAA+6Stg+/+5vg4w5x6pla9RVcjgEu3Y/kN+P5+rzpfFL6zHQz+fu9dn+Kk99eua56+nzpszpBIthbR1Hu/HmqscosW+LxsphbkUMXQDreAFH/RViBw3eiBfxpO1vwJ+qhi1mIPBZcNvhB2v+Hn8+t8Z7w8971qRcDvX65c/9k+5FI+XcTvf/G5a3FB2wxh8pF5O5F9GmoE+aLHfM+3LdFeYjkcUzIov+9O34+QtCs1B7FAVWo/nkAwmR5bnTz5oECPv+zrw4p++nAfvB/nVgL0oTSjTWW6pNc9n1reXzd7evn7PPxu2dTyP/cGlQxvn94oVNYW1r8MG1lxi5O6RfM3J7dPn1/yHv9Yv9Zdf/nS8vH16Xe/b518+3/90+vAKm0w883jfcXDePt/EF//+9yrc7oq99nvU3Pf5jFtUUqqUZk6Y5M3eaZUJA5ABoxY8dSGPPT95gfzBnrE0SGDVXA6LBrcvvwrypqgmPG1KuQi7jerTz1BruITFOKCx50LvpThosVEoJgaKJqhNkegBE+hFK0yp3KnBS7zSACCaufNROXo+6jplF8H2GmMk0K/s9I4i+nF6tuOvhDLgkvP0NehLZQSxLpQaF/DaNF8WYXURgVSo1TSamYsqEwF6DIabGx2AX2G6XXnWIiFzo4eIWimtVWvpOI5nkjQzMwLVBhbXDPtv/2vQnB8sNF4zZRdniYiu230M4QMeBmHZ46OHqs//fxude/5ryLrrvYmX9qjn196zdxfTfOveAXdZoWi0Ug5NC+bi5dfVwi3pgp2vOf564ABJhSLKDNn92ZKUz6dxIyNYVC8r87qxvICVgrk3a6iltXHhpKABbXT5cZmuFTavdqvjMUPMlSIKizURuqxM+roQooOWHf/bvPEuw0Yp3au0kvRVNOvFP41k0R1tb0LRjQY6KEJ0q5ISxGLS2TmJMn04js+hSjO1WnB5KKumwstJK/eVXivBKmO2SWqzAkrmyToipfNYDi3L1QCMEbavMqeBPiugkzGsKV8FEmWliyMLdOwyqkSHmKWJcMrT7kig0lG1MEviyfEOY7rcAEv/WGp1r1XKQp86rfSuVenXlzYN1bUcxSW5jdhExpibxYgQZtHoEZWliTmjoy0StqLJnekOPxFqR4dU0WxsQy6/IGhrySrtgVOZFcZq6n8T7ERlPj8D0h47YAuqTb2hkTJz5Voh1Dm45brXtmiP9aJzR63FtYbkc5+FQvMAI1POvJ2HMgFLCcN9KDHGGTYCXA8j0+G3M3PsWVXQOucNqOR6nL/H/nxum7bFJYz3Fz8/r1g6aoxKEVHhpawqw0ajZFqcNK/nZGyciYooi5KHhdxd7rIWCYA2Ruy63W4n7/YSf3o53MixxtgKtHHu98/L4tT23O778Ym/1tuswIz9fZvb2+O+/e3Xv/56nLKqVRRu29vGO0Jn2fF42tQxvg0ff0t+/f3bX5+gbr/cEFl8zXPkHKLNhcrcCggzgr1HMOPY7ia4nc+1EI0DkWYY7hHB4ftziVD62PSdw+e3G/eXr4zz5N3e88XW+RW82dNdSsHs+ObztgmZ399ez1w5BL7at4kKVs5VteKn+88/3Z2xJQBb2sp/+dP4j4j4y7FcuH9eQ2Mi8fw+Yh0x5oPbAHkbxuGIUwY6ZSrWptKKrQdDajF6sXehQGVqp0mUZOp0TYmpFUQ18NkKGJKDMGWtSw9LL4sYxxIjl+LSboBuFwW7D08DHDLiyknlB5HXg+7tuG8WlYDSDDAibUAEMnG5RdLZ/ksf68WLSXtxf2VXTt5FzqmLDXxJdoxXDS67hsDevvUXtVeVksFxwag9XTfQjZbTyKDKy+gCHlmj1+kFY2zYjTC/gzBLD5QuxSdhqIT5MpGV2btV67C6hlIXM5F+8Y4vkvDHx1Vd2cI/Jl98IACSigpdZeLDn5k98xN0Vssbs28l/h15ujfYJnwMt6qeWptG1OtXfrDIPx4bstUrIKBc6wIgtujUpGsze73/6+3y42XV/F9ly46zaINIkimnzNuxDDAn2k4f6sWcNeRj9D6/WSZjV9pS88Troo0LLUpiG7ZUyUpIUWxT0KrOzLImpfVNbrydVP+Zy8C6eWlpkArZG1wVKNfYovsVOL3Tkk0Ghjeky+wLKIJ1XRo6cuVFDu/WsdVnieVlU8m5pgGmVQEYOZ8r0gZshDmAiAKShGDgcHOmzLfNsRvTwqsjnRYKNVeCPOq0muaZkGQSJg6MpZ0pSYxuYpSSdarVLBOKkaITAAK5Vi6o4yXNq2qmy3KWlXKjWbATU/opcRngPvueLmwUSWeJsm4PEcP88r4wA6aOXMcZeeFHxXVSiXUGXBag38tmIXzL/fWeRgt3Me32+omuU5v5qwaSUTA7c09M6PP26u96ffVcGOFmZWF+y9f3YbE7F4PcuwCT+659H1v4Hhm22VY3bjdtm26Wu58vt4WbzhtW8CzjJIb53Q+COP73/U8+y5mydIIwM+O2aR9jfl2xjeUvEan10w2l3cKeqvviWH97v8XcfUflQStZ3f584P6t1j3ekzrktWrqzFFEFgMlrYds5eAyn8NiaL2hpwOtKmCV5aLTLfuINh8V/na7V4hbCPDcKsGoPK2e9hLLN9Vt7OPwly+HTrzUvFfd1+3l/fbJB8cbzUQm9sfn8f3ry/jjrnPcv//3x8jJ+OPl1+3767q/jVdxkbbKn8vPTOUKT2oN4PlyLvMAC+Jcpzaj2afnH+L7afN5JlVyD1mUmW2G8DVC8TzXVBYmeDvtvv+cv+KFdxp8cCYTvsHcIXgdx3PiiCotfuPmzHydzPcvnoF8f9e7385JxzZmqqAUbZJNZ8Q+RmKLHZuOrDMWhyjzjeH0AMx1YkIDEGmSq6BZ4vKTfeJO9uElu4J0im3bCJSVs3gl1Yq0mZCgasFPQZUpo6yAfVXpBGuO2fbLALKOZUDRJwUokakSfCFRYVy2uFDeTpN1kaeu3WVVwsousQxAQqoS3WW1EAUrAeVqvrOx4eZLV9HyjKtYthgGMglwU7cWpIHJHpauMoWLPKZraPjYf37oaq/fdiGKWJ3HAxjhZV7RbpBuqgly0NC7p2JH0yNLFFGmymQZqKVMZYEWm7TwQV++mLgX++sKHezkvP4XY+OFH1NewdwMClx0IXyc66gPwJ7MfovJy+S6wedrs25Xc9Zzduffqo05LgwbQuFi0PRByvogRAt0GIaRXvWRRth35hp5/21aF4DiRcRukKLKOYwyVfqwmiZzVUgW12DbewR2lqHMTReLGJ0NdeEB1ys2oJq9aMbViKy1AF4TftGoi2xs/kEq6Gas1QKgTKUCVB+Me7AgR2Up5ZX10fuVzBrpyKX2wu64gjYoyeZoG0AFl9nuptkjt4RVJWNL6FpA3P4pIIchE0hwZVFlgHWOYPeWl56sQeu26hzeKmKC7qx1zgoDWdX6PhrZ4HcZxJI3BVySmgnXfZxaNg12BVEdR1aa4ei1Thn84PaL5Z2ZiHAZXe7GMTwEg0XTFU2kuUaAZkAbtzusgGLY8gVmx4qmsbiF456H73ttw9wdd8PLrU10vFsomrFEL1PFCMIjgijRMtXdQu8vor9I2wqqAKYhRdI7rtyMjnE/nQwzV0ljqNsaN+y7e8w90t3reX2Byr3UmzH4UCAcVuYKc8OGeMKxv46wSoNYZblc14OcJ/LxRvd9euSa3dcP0sk6P0NwZIUlban0VMF8f8YNEeOJ2+kpVdUadEShzCPmGYyBygO3IZ6imewhmHGAnK5w39fTBze4CR4AzQa+fh7tN32rg8J+cjChiK3G/g0BYU0e8/nMykrUdCbLty3iTjAMQKxPXveR3PFyc9mXP3/O0NPigT9v//DzO/6f/5s/Yo1zPN9/OR94rlz55VMcY2x3cQ8A6btser4fZsc8ptd5z1++jxc/tld93q3pn5glrBV45OkkyaqcrCPBF51nOZyyQ34eEukv5gCkeprTY0SDafe9Yrv5/Fz57fkkv+3n+v12nkfF528bzGhBJdJrSdOyMuw8I+7nGsmZYdwc7m+bEeG9VCmW2JxRXMl9HRg/r2q0QPbh2XCRl2HSBQmeYUSRWcYEbVUHCxUkShJtKUEWqOqu+ZrOBLI94Pur1AdifVSU1h7jKmxFtz4GZFfUUnP9G/ks9W7RICtak48lA0AnOmHVTLiChkSY6CgviEW/JvyP8baPFFpHAjQi1vs3tLqnz2j+Wy8gXQxaqQ2B+GMmVGYjCDBrH96egMwAlIGmU/6Bt150KVwWUmFuH0O1qmMM6ct/EJ97Fy/JCmjy61VDuihfyLM5Ljkv2UHFinlVZf1An3u3iEVUUomsamC2P861fleTt3DB2u090sitrldIXbM1mNe53x0IC2DDHA25GrskWvdAzdj6kAhd07vTOj6SAllXCqAutpqMchOY9NG3pZZAkilrClKTjnm5cPZN1MWrZgrlzNkfstQuXF4XHgkjreASmu0VH2DQVYRxzfiNd0MfnRwAUuYoIuA+Wn/CD2w8ARRoRqIxcREXIbeZ90KJMjczdSIIpMoUEI1YZTmvCAkFtaRktwGJEM2EYqOn/d6KAjVF+qrRzLsSSh6pqawsJGE6RStm6XRWI/hW6Tr2WlvVggAZ5DDk6jYJoKkyEVG7gx6e7M00Mqxu8Lq+iG50Izn2W41YfRW9AMlMESRIB6pKarsKFFCFWlloyl5F+srk2HFLVlpSWsdiSlllJeclj0h0NGi4adumWxaNJdaZTXMBHC6Fw9JwQrFJONd27SK66zKiUICXWS05RG/dkWDtq5I+ZSwK0+MOojhlmVByx6qq6UkW1HdnGVPHqOHvcSYSscZaolmiOFlkVXI+n3Odo6pU62EunlC8Dqp4uz1qbfaOXLd1GI2yx6ZJfi/WF9gqKGWBnE7DnNPpgXUeGNQ6aVbM5SAkc5F9OsuD5ksmMVComroW3reRY6YpV0wKco2x8Ymy7T0fePvbn49zfcfdzOE73eQYEXMbBriecj8vEAkY+f6GW6bMi4iu92Nst3P76f0v+W7JSrzZfdHeRmb5u+X/9L/wf/ofJvz9Ifj7a3L9jpdfkSWLhmdlUC4qRZyhhZJQ8gEQY6z6It+zWBa8WLkZevVhlHmuteTmRrqYd7pXxkh3YN/Al3NVfclpN3cAyzAFslbOOIF3GOmqJ/PIpeeG6ZCGnyW9wZ1kOelzVnw49f87N4I22StWgapOtVOa+iwspDp8jYIr06q0VBaGf1d9hm/VKzwXaAUZRtAbTm0fgs6tEeXGK3u3IWgzyvu47knFLM3ZHn5X2oNdqKexI7VhzffpjSrrGsn7PfSkQuFH9WSPxvyxbmznhI8gnna3uuwVCaBTJkB1b94HMV15CVRaSIwL7O5ggWvBKlS7boIAHSQ4AmYRnoJ7GUCpJ0fhipIPA1FrTlZmFUo5p/fYTrt2zv1zqQ+0WJcj08fi/qoWIvRRmRXfP0bO/uUuGIQh2X7GP3RA7f98tTuAjB+w8zXp9o+w66eUXRBtAVcm08Usupy4ajEIGa99MXrF1qM4Pv72MQ5bPzisrqr0si5QYj6THG13ZVbu/RM+LuH1E32wt/qDOdq26kejUpefG/16kx/Xwcx/MNrUwjdlGstSKV3Kkw9iBNBa2erWrfuofgx1wbfZDynMjLhcFFFF63UHwyrhpmvBft1Si0QL4taJMms+AAzl6Zqp8PIUp5YMi0gEM9o5q2pWOGgf32ZhsMhyuM5q9b5fCkOddbMo1zIA2dQ/j8o1aVZFw8rMU/tUtqepVq8aqqCUVLAUZsVUuaNSylAiyzt5knqaykErWYIgblVp6zxlQhVc5YAbkC3AzWo+hbtQNPOsXKSHmaaFm41mj65ZrtxEc+hEShn7yVoYjMoqZLjEE7YsuGaaK+F2I6cNlV0uO6i28FyUWEdT8nllYLssU1qpD0UtFr0KckJZpaw8Uc9jYIswnzWX1+Oux9jn+oT5LdaxT1uHEqqqFX4kznwj1nhETTmwNMqV9FVyafn23es884jSvfBhaAZI63hCj2+v45grlkJQ4TVzfb2fa833+9uKQvpY83ksSXjOCvko7TWX1VpH1v7COCrHlozXk3gu7fv7Ue8x9Jin5RmvTi7MfHuz9IP3Z60/9pVMe2blPOvtp/G+Nq24fcfatv22onIameuII8a5m71+rRK44a0eY9Yz41ymsVuZ38p8W7XtY8dbMuiyLbNmpRtzU7zsz3HsO2ttYXre7PzJST3LtrqvGnV++1Oddf7f/i/5/B//M0lljTcbVUuBWfBjQet0X9IU1vmkf4cs7fRCIRW77wZTWEmeZWOJAZd5oMQK2G0tiLSNd/88XvdPt0QxM+wsjLMwqcNhwXUqC8Sa64yZgZzbNqvwSPmIbatinku3YNGzU15UBXP+OLnV0gvrIQwiEldIOhL08spFzkoDzAZ0KW6xeIrV2kXLpUqrSU7Oog/lmpk5HKBLl4YUgoosXGEuMdoBodmwggNyTkiyaHtm2qI3BNqGmmVZHcDTlaAarrrWyFdBh9Amg+jpqqttkzn5sTO8/oilNeT6sWntiHqjEgY3zcY261rBFnt66ZHlsr2EyJxMmNqsepd5kaSP9TRmH+rskDuYUjNZYeUgL4cL0ciyqu7GYc7skbc/WbcNF47b21XoB5SAhoLlRcXRo+BHUVa/tpGyojfzvP9sX7+mpTaPCtd53gyaSyV9gQDF5EdbgA9Io36sRvuTmbdUivgQQvWADgDZAEm3GOwJv5OY2n1qMFFKquY54eaSLlaz++WaYW6X/KrMrHFk1TW9V4FLq3ENIkavJC7JVLti5eUL084QhFjqNIfq0VzoHGBeTQr98sy6vC56GCdVKSQcWYR5fZT4XuZ/rFQQEUnSilRnOUDQMi12UMicaFeR1U/gWXumuLwAwmwtMyspI2BCzYoCq8yiyRSFBonkDkV2JFT6dVUrVwWoXEiwJKP6azXhmxIyK83SCh0ZnZ3tBmF5FaCUCp1DYumxvObaGpMXysL64YBoUNGvIwV+9fvObQBSkohgTKKUtXJ4mRWhJWKgssrKzQwVu22pydKtMi/mH0uZen9Q+zyQFbtmrSiXULC6Hu1S0cXbtm34bu37eh0yUuysE9PGObYTxoBoxqKVRRnM4RbDZmYfNSQJs7JY7TVPZ3yao16AT7NCtoft633oe/x5y2DlMZYnbO18PLGtOvJ2ruKYMwLDTXAbad6ze/p4s/1lwC3vO05huudzPJ/PsvlgPXFs6Z9wBGGG13+uO8zur6c0D8/akvlcBVvP99p8ELJE0fFc9vQXV25re8zk8LFWlcUZya2dVfO7dh+x+Or6/WXGc8RX8l+/HBa1SM0MvM/xR9mo4xPjfQ0iZQUXwZrPYUcetr8/ig4f26ibYV8vp0l1RPY9p+N0PeehxUorwxwrld4WoWvFQQuVb7kbh1NiTu7T5jb8u7/E2m3s+76qMowz/LvfqHe9nE8W3+v8n4n6H/7bv99Bnr/q9urHY93q4aaVa3t8f/V9c7nkLchhiSfXeojb5tteezyTuUZwmR6S77KqgJbPIqtcsDVeteF4ipgxbMyXEZMw1KwqDMDGS3AeNo65HYeBVu0frAQ7fZxiwa89mBNCSmo3fQxrQ1uITFhh0CVNqOMOSJVVGeQmpWVeBxnAQ+Duyime6aQlFtMGEpxUdcrJHBjJMiOUK0G/XlfoFDugSFvWloNz+jXykoSrpc29gO16cXGp8aFeRCUNq63w3Vjl1gNPXH6aEnFRfD9A35as9KFrEs3MdHUoPV7iSj28prhmc9HJ0Jm2AkKVCbGUC3ip4DKzHltbROoQk6pqOLbPrH4HVXNC2S5PtrVBSZV9DOll13inH6tOfkyh3R20L3Hkx/CGH6Ncuz3QLVCoViipWwigCPY+mbwoM5CoDx8O4No8/3hRXumFV3Nz9T21qi0MlvzaIUAou5bBXeuvCgUzNeTvP6buq4KFrSVa9gAmZ2YUCsbe+vUYLgEqUWcCi4KjUIk6UX1jGnq6/CZ59TUgq/PAWsoNU6GUABlomji6tuD6YOamRu5bziWCho9QDCDCzLgy3Akzk4NMa2vUuqAYVWMpyOYT9RvL8g9ePi4fFZecIXBeUERVhdGqFoa35Q4SA6J7GI2FKlgqGUIo5XbKxuZyyN3NTEtZqg2V0iLoloiCtY2rdFZVjUQaF1m0iA+KARwClZTo3Pg8ltZkTrThAN0tV+9dKrUFPrrcj6t44TDdCl6WtAIjMJ2B6j6tqhIIZ5Wy2vJCC8eaCRqFWqfudZwz8TwXCk5HTHNghMrcN88FXFXT8j1tQRK6JyS4lHQ7RZIRS0ZPc3elTDKG5MS4WPQ2rI1nfey279xsOWTGpOK4fff9m7a1ds399bekPX3MjWBGKoMfGo39yV8zNWIVzDdMC46Y3Wqf3/1lO2jbCCleYzwnc1CWHM+dR4z6259seyOfcNBq1APfnvc3++sfpqNJ9O85oUpVu2XGcayQu7mQmEKpzq2kNTlTJc352BjMgwPQguWC8Nstvt7+ZXv5lw1v8c7TPyPq+b7bceN3vew2/X0+l86vb3nW84R/fX+xx/1Y8pty64j2l7BFyAslnY/bcWIHAqZJprbgMcnjNkveg15yB3lK56pTQt5eD688NTFmlZ3nzj/+gkdssCzzUopahTytyFTduX4pvtfr9Jyxvdba8v7wetTa/+9v/9fx9j/W6x/6P2qRtWTxdnb2yzRQqhw5LTlPvWepMmftj0Fzi0/fScMs5Eb3gW07LN7ymKjTlgw2HOM5AUOFVXDRzCRJec5tv+LgTEbNsqDO5cayxVutIHv91linZKVrYZPWZyfoQUtPWhEkZSxjoAxuVbyoG9QHmadanrKqKBqWlUkFrh6eCk+bVmstky0gJ5dYWLSqapPAytwsF5jwDgWUqWBu2Eb2luaCkdF95IWlNlUXH3s2saHUy1BCAq3KGmNXCabrb13NqgX+kuFKHc4PtOCaB3FNP336txsCuFSMLcxRoLkRmV0oLRLWG2B8rA/dfrgxaa0FZJMRx4BWNdKvvGrMDz8NNPZ8UZqvCnsB0R+bbEFAnPzxX9mq7qbolIUtSyuR3bO0lVmzd1o53bXyWvn2Z7525B3V269k6Mpl9rHe6Lu/oMnlKo2+Yrjw895ddFlsOnjYJYVqkroSNbMsLBzOTVmUq4ODoZQxDR+jfRfHj4oGQPSqAlgpmhtQdSmz0BH0QPXwUTG7GIDFhCMlLZq1SetHueCPGwZSclOCMPR0Z91bpDlGDF0EBrPeztIU+kHwzmpJuV0TaIMRPtx9wApmMOv8CwkJI2yTtb8IR9oIBybMsOQ5MYbvW/kWYxCUQsXhWowKR1pE3E7bmt3PMWbcNyJQ5es0Y6mwWLZZoRXRVc0Vs1ImTbJwByzr2uxAsE4Mz6kpeBQqonEm661D4WnZMtzqbBGsNZNKromJTLCwzHzIwEQmKGQKhK1aKUGJlVUvc60x11DKOHyaua0z7MaX31+WDAb48JFw3+haKvnCSxDm4W5EsdZe5pJvELhRgC/5OZYpzcY620ujGx3bNIIeVsBZliQdJkenKjZhoLBI4F/DV60saq2qDNQOOkDHcg4fMAsXqLAYOLJXK6hs90vhxFSYTHEuPVJJ04vNzOfOBd/d0/atXl4en18jbqDdDkYAP0V8Od4PHf48dsEic1klbZ8pt1jP8zMRniVhL4sAsJBLlOpMQFKnrOpyyFtSTUx8+wcdrHlghU/SQ6Wa+azlc3577rXWfzXV/vb/lav+kD498H28oc6b0X6rm0vv2/fapu6MmssjbJN9el25j0M3z4OxDxyC+yJ9GXGfh/F2A4KeeOFb6CNZ8ySqIOGJfLwfn3ia71UalI02MZYVg0Zz2P5kTdjjMI8hM7t/9t/tef7y+u2x/9m91qIfU4nv5tPv304NaP6fPn//E92hOfMYOgXLxVny9bTnu6oeGAK9DMrC0lrnGosuG1ZKluQwc0LebtJZmajSvJNX214/WI1SGQtIVXl1umbhOh0SqLISlqOt/QGMUk6BKTiYkKg5pYhhcvShowrPzU/Q3E8A9JIDYWntXEEoUOyMTXcgbJllhcx0hblicBUyBWUJdPPOb7uEpkWhQw1wMWDlwCWD/RDGMs1FBnDNnVcxMCv7MeAIuOwe65okVbRS+3B24e6NpT6WndcMdwUbVJNVZaQC5Z5JFD2MWblQIyeCp5fVR3NiMDOf04lhBi/9KKE0gHmUCd4bA358HrMu+t3ZWNefa7jA5YKBhj6JawLu3X9vLq9FJlQMV5tEmpqV3R+MPwDuq1VoO+zmvTfBqel1PdkWSsVC/dtut5F65nSVMHE5jOry6/jgwuG6Q8xWB/X+vW0vrNAL2w67sqRl9Xh7Iddqg4q+M2r3qj4eYYaLAU9aU9tbcyCioR0qq00r1Ai17KIzQ+y2QB+eIh/9HIQOTfoI/GCzjo2CjImQmzebYsGa0cuG9QVQMKeqaJbmLShuXv4IM3fArEXtH3v5kkNqlwK3IkfnYnoFK7tD9HGPVLuzmWRuHga6nQUKyyjUZEm15B7WwEeeIRZMbFOrkqoNRuAE1EeBG4RMFGGZQrNbRM9FIrd5dAhnGmggyxwWyKIPi6bNoX5QEsiCaPKiBHfKWwaoqYoHq/WNUVZSzrEk1fzrg9wfyz3Nw+wpfPjoEFwG56yriK+9fEwJLPzDDjOiwKhTGVKYGP39kmzbeGAxlhQ5N+foxCMaI4HUdnCpMNcNCZ42zaTEVD2Ya+Zj43mv/L673s+55WkrJM/zNvOsQugAWLRU1cEJD9SXb+9VkUmycN43KY+eXqbZzvcx13HC4S+Pc5qnl9zGN651+5nQbUpU1lmvSdejVmKMrZaWfHPY3DdZ0hLtOpTphHCYEUPHsopdCSWl9t02DcfBPEamUFk1l/izc9aErRrT4dz3U7671brbGize1tP2svOPcFsJHrR3KLX2/Ga/5QZ54E1b5ivvVYWxDZ16vK16BsvGOGdY+m5e4920XpK3sO0sp7Xx/y2J+dmer2OceE07YizWuEsR+YDHu92fyGyGGVePsN8YObaKHc81PexMvh3nfRHPfbt53cJqvnoVjS5fL1Gb3XzVwOZ/uq+XwcrtWfbb+4u9z/39iP/+H0w300//+j7m5naGMtfNnVnFyqMufTykLT1syXYqRlVWrVlr1XDfr4OU6OrCWgYSxUIUkE1N6DRAZ6ldIKmqWS1XTGliwlaGOswdBRmfKGoeLl8anAYAc7mfvsrmw7h8u4pdiSpVAlL1gF0FwAKmosVyuEcKdA4Iq3ooX+bGEnLBlGZWmcsLslopu5wYr4j1C0fuIc7U9hwOtBK1BzWrHkevv4w964Cksu2RpfaXrK506GP5Ulx0fm67NpfC0tp8ynnSaymtT6ayVPgWFn5ChZJ5CaAb6FFVMAMsymJ0j5CoXMexhLIMc7OoVvEA3vNj88LwwSnuApllHW3f62sDYvVIeyHTnZnXNdVgDnUwuUnoTqf0UVivCbdLf2P53anYj90AL7fndhZi/3LvlNuMCarGT/pldPUCH1tRwTpiz4APaKLQPAllCmbIdKqF03TD2aW/ULISoZVA0T1YrOhPYFboLXbTuwCje0d+dhMGGs04kguoFv0a2qyv9TkfV6E/aaPmvau+VvFtCNPRXYAF4SA8+qOjw5xIUtb7wwIDLEKZySJrZf/UhbJOJWx0oB9CAot2CbR4rVe6NzVXu4VB8oEE6RcFIKmCyklJmQjVWtGS/qosrQTMHGvmhx5g0vPabPf1YyYxC2VWzFSQVYWPToK5qq6Zmm1BqyrDxUo7HuBmJilbrKgqFTObZUwTIyIjkbpY8FItUqsAeWbTrWkLptw2IEyFebpoU1m2lkzpVBG0NUXIaHvQbMtN7vrPCas1xeQlqrhY8bi01+mhfcLKgvuSo1GgKmRru5cXOw0LRn7w0y8QqHhSlVb76AzFnHQUtve12zpSZYCbd4xnLYMyve48sW1nOceW992J6WYzI3O9fHrfkmH1iZnM9DOzhKEt1nOo8FyvLK1lNWuY+6QvWIwZ21m1ooXsaT9OeQJVCt80q7hP6qy7wRLI5PLepq9BMperZhVZWdP+m+8Hht8//TZj25eeWz4wsvKc/v7HkNKrCu7NX08PT7MSzLibeIPcWPHGOrCxpDrkx1e+vi43d9c4ftv42ZTazvt8pXbgyzbjJGqtdc+1hgXLjZ4GbFaEW+Ru2LE9z3Gzc+tcP8uUk8VIhOyEieAm/7rvkSvnshM8iLd5TAqeiFUOUubRwtwm9/gTK3Nut8NeXref/X3347i9KfTCuf8+cXSGPWfuNvwt64l/eP7pz788t5vVSppUay7TbeWKuWS3wFpup8zXtV4qYy3xglWJ4urZoh0pEiy3EuBKYDGndzCcJdaaHquyOsIAkoKHAyxF2emqOSxFrIUzcHIdwTPkoJhYHG1LiYoyVZJaYGqh2JmBDRcTlW5WQFZZJZEcUlV7TEDWiSRFQyq71da1/O0yXP/GMEJdA/CHcAbIFn10OqG1i2IvttGV+oKaf8xRbeVx8W+UhOzDdL8qYCLb/JYxViyDSkaQIQMQ3rXqMoNu/PhSYBbrA0Rmq2AzL7cnM9ICLHWK3XX+f9CC7IMi9W/LUAmlsmKh6bUNLn/s4dK6ABe9OtrgYjpfnchlrt3VQ+osBFCXMX7HxePjQzSQchmF6VrVtggbXiEgf0QldbOjC+luJprBzLIVVR9Vv3ukNMCtQUnECO/BJS9mnT4oySWoeya2URFERvbNM4tOxTAzqWB2MapI8uKU/1sKRKJPLHEp+luMj/bmEmf1hrOvc8+vKrVL1CUoJejOiI+VDmDMvLIWaVZNWTB+XJUrn6zobPmtF8O8bT9c6VZLRjI7SF5mWSpjGXKVRaZZteCulCoZpCWzWlMKGtJHe2itaaJnPSuUk9uidXxFTo5Y15erAfKOLmi7k2t5a1bdq47YbJrMLUslH322sE5tPfUbuXT19CuLUmYimJk4WVmXrF5NrLT2kjeA7oTCEjcPUeOvXj5icc5UFUqTm1mqtCqkwIjlvhUQI8LCjjJy0WhbhYnwO+oF08M5QiI8RcA2lStd9M9P3G6c+xlhJtCZbsNNZkjnKiDpjtZrAuYYlYLAfaRK7U9uZNKeq55r1Uf4XClLjoRn1eP5acr9Xu83x93LzTwqzeCIeo7Y30s1MOh3e8iW1an5tt5f6ruHPWx/fYf75gbxyPzGlcuOw5TnBsDqOERZ1sJwzed0ZNhzBaBKWj+JylN2bo4sHktn8X1tmVOIDeP+7v/wu3//vB6vj9PvtaxmLFuzMr/f/vwcjHr48PX65f2T1a3cBWhW5jg8HkNPR1TdxqngisMqYXWS4Dp22bG/xfNbrKdzMWbkgcNRr3H6Efd4O/XCM+/b6c9fXr79vvZMi1qvTE6/RXEqBuOM8qggyxluxDYt3XhWjlOwLTxu2xnjfg7kS8XmO3CW3JYpmSmtkbkfsnQt7oanpy+dWmtohfkqYpZeXuo5tuTY9jx2p87P9/r8SObt7S2X22Ps0LHeV02da3J/TMbIGqO70nExZn84FQkFZhpAcUXzgKvV+/17rzC/LlmdVCZeRkRtx98C2lrHUA7AClVUmhWzljDLkjlhpyma7bUajkxCpeU5rX3uGgeDYI0+V4Gm7PNX+LHMBplq4pKUEOsCD3tClT7GiP43FpoetNpwmFcLi6qq4fUBZoLWsuL+c2X2MbRJVn180yCwWSNVTtSH5f61/6V9bDl9AAASaakPgS2lhSTLYD0+E8h1LHHZ5ZRYDA+ey8ctjmmAEoZqhqv9qLz8sYK+xmHpGkIp/gjfJRD/jh39Me0XmtfNBa1GBto6uz02LjeMS/Csy73ourYNYpdRwhXa08/GVf+vuoduM6ZYS2bNcsKHHqkhaYnto9a8gf4ADc0CMi5Q7qrCTuHMLLlfJiZWKGtLrrUAXAbTMKg3/6UsolntJYfMvDoLEOi2wgStzN5XoFTXNoOWcOblamH/vgBf343r4bqaCraXJ4UC8nSTJUqVHzGNJXYOU9FBBiR4wGKZnECaW0cOYY7m/YmdB+oC3WB+tRaZkLvJ/GA02yFZbhb7FpBhZQFIYDnEVS5nwW/e7CbJzVRr5mof0iz48IRbAKtI0ZE0Mz/Vvs3wdqcArh7U4BblMnkdDojRmWC9ekjYJhmqCjKPRRVJRuOCMYhFtfedT7NqKp7B2naaHS7qdvWk7pWca60S3WSdaBykm0cATJhxV3b/7E6xsfmFsSxgVeI8WZF1RV1XSgmrG3bkKTltGByRTdAkHbflEWu55HLLMPqgF2PjvnPP7anAhkKNt6Ht9n67HTGqRn7PPWbwuS2M9GVnG9yaDH5gw6iwufnwok3S6yAPLDyMFbHbXuc6ziqvkQt2PkvHmjz5cnI7qHh9M/PyqhPQ7Xbn/dv35+Z7ljlt7B5LjStFmMMcCbtv5+Osevlyn8tUtV2rlva6JuOWOdZEaSnrH6aDw8oGNoPdjSM8fNWrfxlzxHnW4ccvx/EwX8qoE5E6nEdlfTlWZ+O+I18FxvieYnhicK4oxZrjE9anT7n2dKz9YGaduT9qxfd4zvniqndMnw87Y5WyXBqm3SLyNs/bi3yfv1oi3TqETrGWIeUcXuM10mxUaejEmZsmb8sQOo/k6yzbwDIti7XwIpvOqbVppZznO/jtvE3MSsPMtPxOnZXboGOMzeRWOo/llcdUmVnVfkN9F449a/r2nNpxzop8vs8gac+TViUoDZLMDaslrzJagQYHYS1CaUbrD2xQBBzljCuC4YKvCDAGrH0HAU3DMuSsRUMmQgqXtkmU906qut2tUq45rFRLrM4LqKYlW9doqE0/1M6+EliVIjpkk7wWh9c8xbrKb6OmbNRWMiurfnvNMOuZsdgFuthQbLcaFJQN7LYy/0NTcvlCuXgtTsuaHCyi4mN2Np02iAEAy8qBrCCUR3WIURU6i1YwwWQGC14ZhkAiUevM0pVc6m5++ZPoY799ub9c8Ypt0kilPrbfFx8ciE0fS29dNKIeUBt7ulbdlr1LzRJ1xQ6wScAlXJac1+a7SJbA6k4I1EckwSXWIdRtgBmKlazsnUBvoesinvf7Rhtu9DtzEg5r0wmJ1ak/vnnmeSVUlDJNlAlrwR1VAkcYsr27MslEVVYAHtZ9V/Xio9aPmffaEvdd9Wu+vTi4HpW064NcW/b2mUFa+518PA/XSF+0VSC2Ed37VDVRu/OUzcoFsB/nypVWrHk28e9Dfl6EA5QMjDBoBUxm1EjKQS2SblBs1n2nW1nsVxhnQYLJLWHOqprlCat0NyRIi6FrRZui0VHpw5fIrXKmWZQcA1bALpbRwNbi0QhGoOgwZQGewsysVK2RKykJFkLcs6l5BrqXdRSkW5RfDIrruqpKDHcWi1zla5qLqTLSzLiqgHNKKAYRkf11X3piwCIcPEUfL3Ey6RbwmSu41zIVI+jljgMTtnFxG1WBlSmiqJrbzJnQ6SEjTZn9nS5b1LnWPM7zBQxfqSpkYpXXioKV36cz16ZIv61wWtxO6abH+KyQKW0sRN4q7dDuI2vWbYttnSdffJ/vL57EwShUFd7sdkie69jyG3kWdmwZ8KB9tvGFsHDh9f3bVBVtbbf99khylWT7bcNZCepmWC/DoCrj88ZCfJqvn+hvj9PX9tPzdJyrkmFIbBNjLnO9qm46k6v0sv7LC3cN1mvVzfbh40r9GL88Hxw1ne928mU+v73khqPyjN2wj5PPT6seN+Tp+fCot+8jh5ZncXuuWDV3Ha916nXObT3qJXGcTj7CUDkWPp14Oe57KffF4F7YZ800r5V+Pjjuz0/fJkaSx5/2B1VxydoHRtJrg28vh0X+/6n6mx7JsiRLEDtHRO57T9XM3MMjIrOqeqqnmuhmDzDAAOSOJECCO/I3EOSGIPgfuOe/4447coBhN2dqqrIyMiLczUxV37tX5HBxn3kWE5mIRIS7h6qa2ROR8/lYDNTwUY++lmXzrbd+dcSz9uO+aKdEjdF5LFao5PPD11oOoHIfbko7lnGxQynsa0ruQItQcFlqSzQlYqW7AeVRdbgthY7NSpuOErQ9WVMij0HUgCo5m/pYNfW5BVmXz8DhJAH3FMBSkqcUw0g2Ek5rSFh+wJK0TbHMB10IZlV0grOuk9aCq5qhONVTMJvyDKPY2iSrqtkI97QxKbQ0S5qhstMxCA3nGKJyJguTEpNFVeaZfyTjJAV44qkT5qup9bM5pE2nFkknZl0TBTwLdQBBOc22qqIkZSVLaufFOVU/k08///K9HHmu5qVxPlaVJQ0s7ko3I93oJ487XW/WwDBFJOgYo8hx3x9HoZnk80tblXOvAL/7j84zbCYIElBmOT4UxxOhjviAL/RXbTjoAAoaRpsBLPPsVIJ1anEI0Awpgjr76fERWDndr4Lm1jL9u5qez+8ZLbSsmBP1g0nF+UpRAlKTV52vdQrtUXOnMk8GSK9wX6L65Or8r/uQlHUe/1OMUFlzXKFmkBQNaIYivMD5O8sgpUa51QyBKcE52991ch+IyGNyf6fb+sQPAKYp4sQaZqz4jOAyHUkr+iLO/e2kGKZ5OJXINOSosJqjf64gnASHucMQS81VyFoz6NjN0gxigkEkzRkiUjMtp5y7eZxwBTB3sCoYUUOj86g25dRTW+1ms22qAkBq9LyUDHUiPnR5wcwH3fL4joXRWAaZWcERGEmzrNXpETE7bFRVhiLHmaznH6gQVKbMnOB4fSy6pcxpzWalOLL1YfL0qikr1wCQP3dBBZq11kusLNPuHOEtTlv70oeJ5p6c8kfSDR9JLDHcgEZZm9L12cyoVOZee3fWJrJKo0qhpLCMxsPG4ce4ygANFNEHjoWdHJW7Ytyt7tvd7rLHgkM2qirCsmIkemIocfhRPMpbDD24OtnqaMboJRE5fHkQR3JYARx52Mo0YoTgRBUNM15tTdjRqkeNhAn9pT2cfn/VwTUWHj0hXcistdnk4D/7Q+v9+HHT09N9X9/54z2bH7UfTjKX7SBvuy3jpeqTjVQv6fjhOHJZKrYxNvMc6/ptVFtG+mXkbazOKizXS0Vbn7C7UMlNqFw+71RLWNO+VuHt2yc7cq1hy/24GsZQP7D3y/H+SUd9StoxGqqYh2lkdV8gJJN1+OjjsSWCa9s1M9fQrJ72bpH9wfcFx+J5EFUcS+f6WMW4klbvF/RlwfbWb/5rLv0nrckMk62OjhV0AUvm8qSNCRqvXJZ36cBxDGa4L9nQrraF+riXS8VklaidvI/9Ef2RW1PieFhfbFX4Kh7aMHZmT3grD9bFbgHMAVxwDgLIeZEYRmdT+LyQhqnMqiSr4eBkt9JdMuacsUk4IU7VU6gPgm06WEwFsBlhDgHNEGyGrJDMQuBkUAlaLZbOBpiZO7F8UIGg0Q3lBs50QAmZbYJgnDRmuUmhJD7gckPN6Kz5KkwzqKh8Zj2gMMcqz0hBOKtmWNFHpJRm34DObsACComZZ3wO4A/y1Wb1KqleOSvrMuTI6mVypEDQY2nNOA0as03gnI+Y0lM6QZqLojlLmQUyvOAeEKtyUu780BlPWfEM7iNmDWOOOl+cTjhZcfZU2Hk7z1veTjHUjIec9B4h0jTTpSVOhPec9FOuq/MTqFMD/FfpM06J1eniJWETPa4T9/0w8cykFHwEe+qUfE0jtgMA3GEopXqBUDQrwxgU3Y3OMQVk50VtmMuCKsfp6aFOoTOcdiIOZ6zGuXsBhIpp5EiBrtmJmxknAFLDZ+riKcvSvxJf26lS/yjlSJEMjVkkmAWNwiwFBKcVKGN2RztRzhNbqTMcluYutyDZIyeyPyFousmKswzFDWoT1Q5nP4h0J9yNPstO8EFjk94qdMjoUqaVs0pjN0/Im0dEdRh9ybZWV5U7q1AplKuEYUb45N2riGQ/NPF54yISI7pHqzTS3WFJQlkjXCihgai0ysMyjyPA0csMrKm8SthuWaqaujYjnKm590TYktNzGMtPbaBGP6x3Zs8YBZn7rBhzlcsRyDJOy0EB+cB++4FVI+zoNh7LBdn6EagDpj5SZrR6DBRyIChEyBe3YASS6RZ041HmF6ej19maqbIRlAXatcyBtoOb+UrWSrebPXcxWkVTmwC5pSHd2UZ4GJtyaRuWoW2h3N1XiGn+ku8s0hdbnsaR1byualfG77dFaFjay01x4W5jGNxGv/Bq16v9agsjokXKMC4C+7qYTLrzuizavF9XvbT1EYFLjIv36ndjebZLAWbR6mnUJx4HFqDnH4/dls/ZjuoWdiC47LFeXjIfj7F8+kFZ2/W6FV8ubeElxvJj3Bu+Xaz0dvFhdMfqsb98wUuaLUkVlxVZHNXZ2ZuP28N2WkQXHuujLyOtq2NLqTC8j6P6Ue9alXE8SnjfbPD62ttDm7evhDGdEuR2TMqmyg69ech2dPRX1y1vW3+M/rqvduyBXj815brouFjly+P95+Xt8wPa27I8mtLRFo9F15+Wbzwuy5K1rHw8HAW0Zc8rqrHYjrRhq41Y7Igjq/dcjw2DTB4Jdbpqnn9tCbsLBRc8QS6GkplQSfcegiwm6huU6MqC15hMnTB35EJjESWflBiQBEQ3YzFw/oDOf0TF7C+lYO6kQsU5gD9cQrAWYzqLaTz1qRJg0USn3Nu8zguGqpN6m9gxlOWqLGDW3EkzBxffNUqY8iFp2prPCSYAef4fseM0LvOjtUdVhlkYPOU2M+vpI31isqp5KpSmEBlVM5JwFGhZ3QTjbHXxiDAzUz91pvO3zI+wm8hygLQpza3zxCmf+QcGsPV5Gk6k1HhWA3woxubRaadU+/t/iPh+suNsqZs2m7JiWdgM7D55W81yx8qTGIKbXJCxTB9bx7wL7SSWWSoYijML8Syyp8HcKz2YIjomRC6cXr7vWimBPHnFmnUYA4MIiFk9MZJLyFhYMJaAKWdjH8/Tc/Lg5u6knaGnqPPuMsd00NIgc8ZMg5XJNekLchYujSxX+kgaixg5yekJ54Mf4aaTwa4pJbMpL4BOXhoaMLoKGKPqtNObkjanthkdIVNmzn0FyBJSOZA+zLgfKcEN9ILBgsUh4xA1HN14qAyGIbcYjLFTo6NCcMHpGu6CKs+yEtNdR5E5CtIYMA0TYvr3sPOyDktWL9rUfyAkVVAYMbH3jx+Pk78RaxhNiMCyZ/UoVlX3UQVWs1EiG2WD8aEanyTFhyCaQGEM1ui9Lgpr6QpYSxmBM2xUvrhHLGvzXGTWmlmNK9LFAPsx3r4tUIp6UB0sjio2mXKN6gwzOFt7LKbL0R4ZqlKiSipo8243yxrYZJomgG7OAaUcl+KOSJ/fC0PgRNmn7M5BLl4Vf4Mdi11698jc6gH79ggdtnTfQFkXLG2puq1iuy42O4ll/qEeuViuA1H5um7Pfrv0y7X396d2rNZhee/Pl0E8r4X+DbnzhiF1sf361N+etktsn49FMaUFkAWOcVALFTzcM1FYFo7H/TFYVwaj2VHLPFAghrcY3qBw0gt62LOaPW1yUcMPbdJlXddLcrwdjyc89bsj8GyHRj7ZV+vvn/tbG8cnA/pFYblKl669fal4Dxpxe8+MKSlVWy89nnQ/1mzw55b2ngXmsWJYP9AJjB7V9eh5MCtXJdJoUQh/2u7VPOtT6ejLodSIAI0xuEWmjYXj8rTu7rv11q7Pvggr2rIPR+Zbyq6lfrXBfH3kOH7dve6x/vl9GTtyeXrYF1yOuPN9IPo9M97vpoS3zBwDKXZCi9ul9zw24urclCPmraOh6kPHXPizjLNi7rvSdjpWmTKqKRyq+RM7zzRzVcGn9QA5Z5hpyJONNYomoMQC6VuroeMwjeQokmUJGxnWTNlcw9wptCp6lCydgiyAcreproQRyppt9+4x+3RhDiZjhqob3GAyZvnZnjLViTklM4TRih/qUgmCI800Ms4M/zpVP4VZl67TYFD6YI4F0jjyRIkN30XRJ1tnKE4HKearNMnMkCi6Z9HKwVJl0oPU8ORmB2Ayk+SYALxMqjImpaxSCUayDHQOsVRj9sxV2czPh+pfFVucOPY8UWcm9sR654WGcHxsHDhdJEoLCOlkgQOumsFaNp/6E20g7bzFTgXVxDhtssCwD19nTRy/zoFCzbZJoPY0DlfX6nnaauoUMJ3n+xSYTzIQZ9BfVRWMYlW5IaJRjjxy8f2wxfZR7V+7lDUlqZWJ81AtltzrpPlRlTJ1mXTkTHeWhoIoReUjRcuZrFnVrKpktDGrmeYnaSd4P0XhNiaubJqRSmPWhmD0jAojiQBbMwpIUGcbsqqQ55udnH6qlEKmza5om9+y525gJP0BqOXIIipKqXRVVK+EwXgcRx+9nEGLOSYyi4UUVPCjlKTFssx3EBowtepHOquQe7mo4gG0UxZeo+oIegVS8iJkU3DhHs3aBBLMDQtbRaFFb24MsLmkJ8dgTk0CS3ArmTksvGgyVQ1hsu927imF5sdSjgXbdA2ipLYWLGBhy1iwFtX39+6ipVeieXZgpGW0tqcP2LJEPxjVYt18tyi2aCF/8liiET73VpkJDlUghkXct3bkOnreHuLioxxmMdb7mhVQwcKQMBocrZUbSFtnrOJa636p9nl37rC8PT3/ckTLkfct7uPWbgnUfqGckP7zy7/f+6Mto3uvdvR0o7KHheH9l6cvTbKlpOPrczMeuK/Yb/bjco/jN/ywffucy1J2UFmW/pS+CyOu+ZrIfWMRVQ9LDgcXFmBHDe/AsXr6enFfleqsGXJdUh8mNV8Io4phRrws+w96a+394EycGDvpvcaOum3L3b3un+Kal/vz9S23eLb3P+Dxw2f8fbDw81PXqovfzfu9et9en/fHov7E/+p/sh8Pa3pDXN/zjrg0Vo3f/uB5fQWGExybI1qtZfQ7bbncmJk8PI+n48Ly+jWqP/xX+NC3pVDIMnGQVQcPIBfl/bXVOFALj+726UDb83VF+tV7WI+xeZI1cht57Kjei9aJfuPOfH8f/c/LhTbaSFiZtaXfnzgC22WMLeRm5s1UbsXFaoG1NcabbB8NMbRaWoNbjvA0quoGAvTJXE0jfIkFq5bZNBZ6yQrMSclNxVPJ4UmorFqleS6d0wdPGzVtOGuRtjSrin4Us9weQa8FyNKiIoMMGacqZsYqIwrSLGiD0hHepWIV5omQxOT1WoVLWTTSz/4itwiJpmEac5JqqlQdp890pjogJ7YqzSbcSaCq6gy4OCXUJUy5LjTVVpXTTGl1go8o6UzlhDiL7IX5bMo+SFaVo2eMcpOnic4IBii4FZcebo6ZkQuoZDP94qQyp+OjHJuig3IDZZaqPCHkGXRsNcHPeYMZAZjIaPqwFMnczaFYOeHO+fcJVpk7IJfVUd4QGqjpcPXzftR3IhekEtQUIU2Tr32MCFBjfifM5t350dqsI2SZCXAo0PFx9J7qak6G/gOpkEynng6YpfWpkDsYC4cx4iaSzNDpT3dWgrCoJN3Uh06lvHHm8J3tCpmprtGxWuYUdLMGZiDMUFZO2ZcTZlXIPr+kH1TzCfx/gP6uuesVbWIQNWQyoo6RGdwxYH00aLZADaapVyGVxZnOqZSUxjwhBYuo1laYTYc4oNQgLbmP0MiTQqESHksYUi7BJDSL7cl4XcwIMN3lDpgrIW3I3fxpc09AZDZbtogMdFk066271QjnEuOY0iiz3M0NsXKwEPQwJ3liRgKsYKxh0HGMlLXYVK3SDJDf8fxFx/1Qd3egn1Q4vc3dMoY4yob3fTExirQqgycwyalyLynZE1Db41HL8ZYspCnouba+9LR15TYg87FeNj2Wcie9q+dRl1HrS5lZbGYp365pVq0FzFo2UFZKmNre2oAv6miy2MJblKszmvu+1I6ixpJWjiGTkN3AGtuxxCO74S/bOPa4Z2y6c9EiPOXyfCec+6iqhDsWH3mvxhZO7LdF8ON9v71cdtvq7l7d2GJpv/F+i0dKtPdlX7MyVWv/dbddu+cP7c0XNBI2asGXwh/3r0e/3G4V1jVGt5BqEaUqdOC2r5fbfh/OVYeRC+sdNHIZsj7gyNAjT3bfPA5AyfofV1q/j/eXn95fN8ePr9hKKqfe0x+tifvh+uX3T1++1evSxi9xfY+l9yOYUuWlrezkH75Gi3p7etTTBdvWauyjt3yVr1/W/+Pn/8P7sfk73/hn4au09xhmBTPuW/O3euNaYDY09Dustaroj2W0G7db8nlzq2iV3ljRcOzbuC/DeM/e3sz6p/4tseTltgf8GmMbAz0t6rDeEyWv0XUFFouAVwz3vqLl48v+WNtR/o5oB2zU8WbfDIsZSHqh7d2FTHuiGi7rEJ6f9L479Kkl174ufkRDjaxhtC14BE4IV4r4iJaAyrwMDrSqyMnGpSFtejaW4UAvYMZKXtoOjgrI0CCpSm3PAheTtt3Mj6MpW8BcxYIPXWilYoigS4YDMnkhY3VKVta8Vyxb7UJIw9zjLCOYHaxkjBNyNEowo8AqVFlYTJhZsJm8UJPlAx2qnAanslN7NftuRVLJoCVmb4vrLJs3IKlZpE7ZhG+ZOaM7eA7pWeLupIvKXienmmpV5heYWyaJY29N47gXa6rQXFCVUDWB5ma2sAJVmZXMkY9jDEVJhDXznAFQU8wEABMOEGE1m6XcQFNNDRFLcDczKi6ThlXxNBiFxDCUikMxaWTUGfrkRIE+lVQGFU3yabKZvZaSWF02c/8TZWDYVP5MPtdPYbpBxbWE1ELVDNuAz9LAkzwWpzEIThOoLIOxLDlTo5LGpR2KmBRqsDeYwUmT5sdRSTprJlFYYQZ+YxKEykpwHqkIZgcdVGqGtlmZAMIn0xpKdxYAz1PJJny/YM8juJgwliAae4mes/Kprd0xM7nmhHf4tF6DmsakM/n6LHjwCCRUNDtN9XP5kzRQBUPUIMBaUWMMR7P16KNUDdkJ8sL7tsiYO1wyjK7mAkZF63f3qlh5e10v+Va293WR19j3V3sZNQurWqPr2MeKKUmPZNsQw53HKTYwiBUSmKOpDGGqfqw06s5Gr37U6DCNpeHQS8tLvY/RluYlUL5uGast5mtenmKoH4sr0l1ah43RH+WRqBn/k2w1mEzRzfrPd/RxMJ7t7+w+yh7hqEMuXWJHywftsb/35tkT3AguvpheKuN4vDCq1eP+Ci7Dzx0PDraB4XW057SdQ616Vla05gW3ku8rtu6fNHDZUSzTKGAwx9SRv78sRA/+ft1exuJv129l+SfU/pYX+A+ldaz1QDUEG3h5/sfXy3b9n/8Xf7bHGHUdSbw0NVMt17fkyF7X+LK+V/u1jeNPh4/CcvSbHvvzz5cd9m/D/iIf/+llMR6xTNRma7xe//ObvWxDY/SuT80a7rJ1weM9tvi0vt2ybdd461vw8ZqbM8dBLIcww4i2pk4W0N+IvWgKe/o5OsY3XJL3x/Iqdu3hvNjn9bf1/dEvn/95jcv7va2x3JPDalnN1rhf38blzb339/p2i5/39+dPR/+niG8xFD+Wybsdevz0WK6f/yFzrJ+i6fW3fnXTuI3H6PeE1TeoP+7/s+M/3Mv+3d93oI8FO3ePnk2j8vGIth2r7T0hwrLj6Gm9+iO2tXh9Xqp8HUMy3UrW+Mj+PlitrdmXdzTZyMyylz1Ju4E2HusakWGJptv7NZGXaAbjrrhUD2/auXAvaO9rJuuovZ7Uc/Rx2ZbHtdF/t4P5rWncDcNdbYt+Pb6RspoxP9OpItBhkmOswzBNvJAzMSfVjI8ZaQaGTOzMow1QZ2UvAND886WEGo+eJq4OX6Njc2aZdKRv5kKhaEIypiRXAFwXzAxH1KLmaZta7ENXuh/J1es4hMmrafFpY6DEBTIcqVCd7qCPsBspBZMmk3xqeWlw1bQ3AUrIg8xBM8I5KxBK4Cywn/2150EKyCcJOMTSVKsAU7KodLKEKrpPtbHBj+O4PRs9Soy2RUMf+5FuzegOqmbcEACzZkanWOO2J4PFysr7+3HZkjIdYKZ1zONzktDTA0Z+ZEhQDtoYsx35vN4EVoSmx2Z2D51NMrSz784sCxVTdWU8ywbnMJhX+TxnJYBNp+FeiyjOEuA5OEuAu831ZmrZWIVikcU0zNpsYNq+6sOLRFH2/Z6mmMqcYc1pbqYj1Xlk+bMvBKMoWzjkAYSZL1EsekhKM1aWTz4gKSmJgldWVTHBQMKMlBRmBotUJjB7+NB7Q05d3vAz92tGZE09gIEp84+AcyFhrpKbO9NKzuUpq4pHNPNZoAgQYWHCSNh8cQvWTAjIyYpWVfJhtNF70VwwOAzGdKVr+vlcbobSbuFNCsgQYpWPkvEU0oEqM7Y2Mp41+m5m1MEFEBYc3df2lMcAqXJaa8ebID5gzQo8sohuPdamMzEtCTMyQI9QATlUdI7242Lv1ca+NpXcLQ14ujzegSr38mFlgXQ6mMfRieL7jhp7HbXs8MwBkmiyTnQnPbCUt8vU6C/28w8//6jRlxHgQ8dbjw7beXfdjtdfjkvh6anEtjJcAy1nnL/0zeI4joe0dFhuIZZXFpRVdJQWr3s8wtmq2uO4eBeGJS05pNT8+bwX34qt7RpZYFkd4zDF0Yvq9OuLdvT9MexR4OqDV91l+17OA2AlTKD52F6M+39uG+rSx2LKKncLjX4fCdFssa/r/X7va8MPeV3f7CEPu/z9vz/243g8/OLfvN7w9rpZMM3uX+y/f9LV//G36/qF6pu5r+2xH2Ox+w4sFx9fUd1iHUd/yGyY7zDxwSkxthrJGmMU1OmIxlSO41h/GWNc3h6j/Oc3Xvzx+j5irbel3m51vRzV4o/Xi+fLp9sxEPInjBe2gcuedy3WjP3aPvcvxTtebUE0Ar8+xDoavvJr/TN+bcWRS7u0/JJLLVumeUm+at1sYNNO8sdbtE3g/rhfx3Hbx9O+7+1fbv/+v7T2+IYf0lNZ3sjEc7cVsd9364+rYX0fhcNe8qkjrn67HgaPtak+vS9vhzvbNhijv7cM2qX0QJb15cfL12N9ft0pLl8d/cnqwuXwFxWvo9g7Dl+GL30k/HKxtZS7vub+CVpTCAmVe9Ieh215UY5M70xawqwM4VCWBwdoBXz0GwnUoIVkddo1cdiZzb8vYE7pjA6d2h7w63uDqlcNmbnMR2cjegYFS6KDFhPlsJn/6NOJOqv6Kiwnlq1Uz9ToapelH8MmSyqYKw8o3bzcZn0F4b03lhWRtCrOZtqaj/mpPiqcmGpOMRVwXrWdfvKas4Ms8T1jQWTCJdK8RCCpglFO2NlYcxYbaHo6BKQMKBoGLtu9WRp6K5e0xsHt6WXrsmHThEEIpprTD6AtKq9+HLAcpSzQIsfkC1Wz9xgwmJ1D7xT/YrYGagZ+leoUwJ0yZUWexT/T7YPJ85njFK5xvruprPYJEJzc52xOdUjSh5XXTFQvitNwMiGVU37lnCQ2JoU8DrgvgIT53cRzAJdBrPPcw7zaqVKicnZVyi2NtjLNnccxFJxx+Gzd5myTYLSFKZGaYaGnq30apXT6cqgqwT0Mop9B+ggnGayZYcxpSYMglKqUtDyF3zyzMaYdiWoqN+QsjkrNHDbNbwjlKJitormVgrNPQSMJVEJBVioxZu7HmZFE5lTYTuf5VMYgWSrU3YGijPYYNiiVc2CALIdSyQLD3M1IG0e5t5LSNi1jF8fShqAoGMett9Y2eKohfMNudYwQKodty9AwI8qgUo5YQCglbwZzzhScmYU139WtUGOv0iiyKnSkWHLU3h93PGLNgqv3vTj2xx4XIpOZhZ7YuZbQx25dVvC2vXCIABuyjjCua1uWdenOFceIO/Y3XRMrLURz21rUZqNG9ouSYQ+YN+s6ohhLpZQcPTb74XLcZFk1/CjQmQePQXVP5Rhvj7diP97Ts6pykANFRMTzsuyjSkTZKVpIi2SO6vc7H8uP73n7nP0yLBkPJ38D9JdUacHoxzrs3YeHjlePtWG/7vvwSz7i6CvTejS/9YCsX/ge7om27PzpLxXrbr0W6PgF/Xf5q788vTq3+/Jv885e9enbP13ff35xHuPpLkveKZbfVFbHqLa1x3FPa+J9LONoX9ncbLm5B23Qu7rUzL6JsB1Sda1cLBnrn9MfVvfXrbXy6rLnImS4Hen19fN269da9/Xl+mx3yO2265He4b2XqPe2rO4Xhj89dZLRjcv+5DCv27YVl43t7lr5aNh6v90uD68erxX32Lxav8gN98C3n7bfP/mzDXrrj+eWr5/+5pfgf81hl/b404/9tt1xKGvV+4HkW/R3/lf/5X+8PX5ujPurri32z++l/un13YA84GHjeHk+0MxGb+Hrvo2+AUc//i7/kha/vi22HXjXp+7r9hXatR/bXyKQZupRAIcOX6Q6Vj4OPvOeawum1cPd6D2HrAWAMr3m7cqkEfRCzIe3GXOGWTAVYz7XjbMLYcdE2ux8rFt50fJQ5hYdoennnNLWu601rMzUY0gI9JJaz2RAubuOZgW6FTR7ZsZ8xlh2xsyQB1DIPiyHCsQjyKOgtqrLOODZ6V7kmOZchPV5mwUFTvH0ZOpOc6gk2OxYQBUGzxzjsJmbHBNtRs2ScE6ImAK/9yABtHlO2+Ssp3WGBVbaaWtxBwZRmDZHjKwwWGFwuDhAG/u9l2oPaEqASGGUMBLp5LAMEGM0ixyw8NC4uyEFyc+VgjbdtucIn6yknSwl+T2TciqEbcqBpv7pzMHiJHdJiklnDQpmc/zM9GJRNb8VkIJzDsmq+QtmnjSsJjTv8+OGWOYzTBnTukU2MZzJqTH6CNM+Mydnh+XksUFTQoEq1jTjSuYaWWgasjPtDGWqaDG1UXSaG8tzItp0EsqEGW1KtFSVbnCKAyA4DWnuLidQ5cgUMyUYMzVAKqXSOtfLUxQwv2lJFo053DTOpBeBHkCpR/UKGw8YUixIRYyyYS7j9NiaLRhK1oyJwkxGT2kYYO7jOMpCFIYg88jCKPNBqbQvi2wMlLOnO1JNHW2a8qoghCfJAOpYA4K3p6NDuXgfNA8Fm1XWYcvRgTXNbGx8VCGMR1mmKgkkvBLrDPmWKmUjwdNj0AH6gOOVe89DZ3CKGeAN8hWXe1Zia4sYZNsuw9yelrjUtlEH0oJxsWWMaVX0ZpdLHMoqgpY5CBHV+yigtXsm3cm4wrGue/hNmz3u+46q6mnLsnvtOQX12RjyGlyGhTlSxy8v9g6bDSS0xRl0q1u0qKDHl9+PcPd9aeuSWGK4l+ya/jSayXM6DmUAL57Lure2XLaRwcv2+6bnPa+v+bmP1cr7va3Pvy68bxzLLbxhjSbLB5/5aXw9Rj1W9Ro7WdbDiDQbzwUN1LjHsnHg29dPOzX6nW2Mz2+jbL3gy+6X1zWN+/1pHejb5Q02qsay/7ze3+SEcR1ZtR3V7+9+iRFvfTFZfYPffFnG5fl1hSreP/nDjjJ1Wj1ZZDyajv2t1oa+fhIWvj8Qd7V874vur5+fmY9PXq/qVrYsd6n++Zef19ff3uNvLC5Lxt3s15dx26oO1V7FQPAat/IQdLtJf/Gt9n2XrB3t5XLrdqc/PrVnPl+QQnQz36pHtn2PLYgleuXj1W5J1341Hu/2/OUX/+Ebfnzmt/j27ce70Wx9tku0jLfPx+u/GQ/X5bI81q2Pt7fn/ulP/5f/89vlT//b//VR+d+857/58zGLRkbjat3628udTKm9/xM7ffzEfLrst7Lj8fr78nZfOfgUa90Xhg8jkWqoJlkuD9e4iE8ZTE/uA4BHX2QDix/3d5UvPx758j6c5iifz6VwVclJ5hGRJfOTiEo2qrwoa2QWZiUBPcFobp5dM8BexjKs0Sge/VANFXKf2e1yDZh50pAQhJyXU1EJUrJMKC2ylwGsXj19MVXJfabqYxYX21B5lS99NKucMTto6FOMOjNsJwH33eMzAyKn6TVlCBadMpkXeGZB2qwbnHGMMcU1Ot2wmEZTJeCkmJjdsiBKMGepTX64bNnEaVgZo9zUnBhojM05ukixhpsByGIJxhqVVqYkmVLV43HIciSksb8fZeE1cww/gqm9jDN4AzM5w+WnTghOdztD+yFO4UycPX9Anl5cklAih1kZDZDDrWYax0zbhGizl1EnYQnYvADpJScNkwwAqJqVEHKnMo2agd2j12w1YYXjVL0CohLAKd36kM6ZMObl3k+firEQpmgGaUtzL6roWQGUZGY8ERubMZDmwcfITGsLS6CPXsWZggZvbiY6qClYcwc8kVVUJT2jBnyASJvQ8NQ3TKQhT1ih1PrI4NAUUBkKi1gc3QXLHO4mCSNUpeoKd3PLNGVBMCbZFDngXgKCnQQGQI39scu7MBVPNKPRKOtHoCOtOMaothMjGBz31jMjynyhG41yqzQjFOUXv4+dxgJR1ChvkR56ZB5HW/pePNQR3quEepQ5ksiAUrIxSjK1lS3KpiWuoaRM70amFzRsOI+sBk583+FO1/pKVNYolGl2ppWAGscjMTDDYLJnib6wc2RxDCMs5Y+qNGqh73hwOZxt4YXeigvY0HikW3ALlKWQD70tDOtlCEt32+B+IGTEunYxf7+vnazRnDBGA2p715JujBHAElBlifbQUW5IJpTQeCTTAi0nbWcR3BwhX/AYjXXvYbr39/3h9khrZlShsZFt6YuvCIZV8bquT5vzLy1Q77aQIjyciz/duKiOflu/2BpLrHZvXy483r7YOGq829/Wq2+X5T1h7dCde44G3fPLEpfHa/z58/K5ffWQVX8gR9grcIRu9+2y993VXcPU+3hgRN59N94QPbLTH8dW9lJHz6Hfh63j6Ln2X/0Pb/a7juzCbXgf35rr9tiXdQ+/bo8cXvvA32x32MrHqMtvt8vXTz/+iy75xzc+W4xO90O/F17d1983K7gtds28LHdr+rrHbV8Nt/R2Y92/XvC4esY11lssPQedjbU8jdvIldfV9k/1h3+8f/7DL89++cSn9z/lP77+yfLb4WZEBNccy+uXcfv91x7vbfth+3evjys/PfE/hP3t+jf/7+XTXmFH6F3/9//bP70RdyLutN/+l/+LvwR0fT/+/u9f/zKg26ven5Tf9EIYAtuuRS57KvUHdQOOpfL+vFTpvkSNX1+u66LitYcOlRmgahj7ZjBDpbG21dJbVg3AeMAWz4EDgTxar15Bm/0z4jClFalIqyQWFOCWDVUUcyUSOGEzDMKKaVlimhUSiUznI9MlZwer0gnYmdPRSU5NUTGyUwkTbN+JPqojujg6rKQkTdlpI50pJSFUtGljCBs1yV6ddQjfLxNiZtPOE9jLT6cskcQ8g6eh50P6fMqr7Dx9T0mMwVIsJfPDSUOd7oo6SZ6qiWd3mnm7tItaWqW0VGmF6owXOGbextn5UGm88HCbGRw5RqfGMBMifMNB0acMqhxZQllNcW2dZLDrNCpP7BVmNWcb3cygaB+3Z81371P7jUGwkuY1bxz4jPOtrHnmJgKVCIEpJspISnmab8oIOGU8Kx5Ol3FNDHciwbkvrI/gxg+jGNrkiEWc2nXYd42WDBKLzMKlwdw+aqq2KVFzLO3MCI0GMp109INh5mVLDmM0H0iRgnlEVR0+WyUlY2kWuKNQ+bgrUDmImqVAk+O1kT0JKU+deRXmglVpVbAqV83EYw4zWalG+NwFjSqUBqnSgBDW5Rodwaz0hYAXbIarI31xmsEgCT459BREK4u0ECMRHMnE1VAxqgG5NxwXG9WmaUxQTnl0ORuqwwJ5w2rep/1pVHj1beNeXblYDchGmk8quzTKmQStqS9lVgaoKqemgBM6KSVDMgZtyeG2RTFkSyIYKN+rj1S5GSPTq1j7PZtndvTqY9ShoyUcpBtRhXG3ZINkKpHuXsgsPMyZefdh98yWbKDtmVCqCW17ulwuh1kn+4jDcdQT9mzZOaxdUEO1xxhIf4nq0Y5ZyQ0VuV3G0e5bVnkcr2Ch7/cPmwUjS3Vv7FkmTIl9WRbQS4NVRx7tMTbkL5X1XvdPl0N16T3c/kDdVdl0CEj4ALot/mnZOO7vuiPkFOGGAOoRRaT38gvf1tvxec+Vn69Hxaq1Lw1/PMCD0P7+Y8N6eXhb+mAWr8e19Z2fbbRvPj12Vfk4ePV9JGM5vu3sa4x3xt7anUHw627+EHYtGBgYD/axvJYsWT2jp/qeDNwet7J91Y9xX443XPrvqjFet7ro63ITv8VtfVxe//QkHTX6fruMo5ljvx3vgYyy7H9Hvu1NT9i2y2Wrxa+Vh8nDV1x/e/3xx4s+vcXyvj8fy6bYeGl9GIzLWMq+HCP7ko8vA/BxX473bnjxr/vXA+/jdf3bv/HbButyjrBhphrS+6F3296P9fGfXv+foP9y/B1+Pn5tV/725TJefrCXz/jTZ7SxxfaKz0d9wS/78/ta7UvXb3+I1Xf12+W2H//4v6/r/2797x5vy9P+m/3YLlzxdjgqfEcS7FvX9dbdMV6fO+OOvC61dBjMhy8GM4w7dOzooxe9lVHBTLk0NCooWoZVTXyJnOlR86Ik4D5KKCRZfci6jKNoU1k6seDeKRhWgA0G8IACldiZDczUjJaftkxjigMGVxKWykXIM5K4oRKy6EdGQv2AmbEGk3KqalRCWW5Vhq7RnKwx24RS9T0J8fyrzfFQxdKMHpzTSJhzCLT8Xus3w5XNKaLLz9rRAsTSlAZNxfD30KeZ6OSabW2kO022KmyWGdEc6hJh471WlOsjgHCGN1SFUO6gGBsKtADMq+coOiFGaZFs+p7szJhIoz5sPGfQhnOGM4GClZmZAbFMTltl0qzMhc3kMFawjK5iYAgcAmdO6QcNPBJZFpLZVE3VfN+zVg4YQHMzifPYcBJZEsDM5njAAki6nSj5tCqdKPmUGMNsdk2hsrIagQaDGJFVWSgjYjGzch+HkX1WZo10F3xKmNCiRnJkgkb1gZLGSBsjiENGmptKnbMjaxRdJUaWgYFSqvhIl0rMqTGwMzx9Mu3T5ezTDmyC6MiiB9Lcy5oJ6Nk8xyFPNje0oameo4H0hZGH2T4aD5drNtg5YVd2WOMNclZOuXxVUcTDvJrKaSHSSPgWB4pIR1nbYnDbpnZdXc1haeuy7738Jfdi08yC1jiWxQeC10+5H+tKS7v88fPRYw09qlhdziVoydiKDEDwBpkJLPhHm6aNXR7sWXTHpaGPrkV7M93TLlhu2KutMIlihIutfA3j8qnqOHwZtaT5DnnDMMDVXSIyDQjQXMqKFIFRo9+1YlvLTH1UlrxYTemNXLb33Ny8UMBqC6O6RvPUsbfL8eq6c7E8LpBFoYQ+bM2dy369y8M/48vb4i+X992e3Htceh2ocTvGxp7mKjBjaFozTUWDjQxIPoLXh2PsOzBwqZfX4wtkth5uh0dYc2ybv2p7f39c5O0NG3c1N1tsXVDuwtPtYLeXv8f/0C+63/+uSy+Pb1j7feN2We7/XEvLqsuf21G/H8vz+zFSfvHuy/Xtsj358fT8vncgx8Ntw9G2zHFnhN7MllwgPNLlB658u6pklugF2hBueHQbXm1/oNKyetut3Ud+/fnJtmW7AI9LU3ceq+v1n60p1/ufvtyW/+ETj+dx1DXr9dhefqnf/9NPtS9ft6WvIPdet3Vb73r3jfX77/Z8rIatfnuy/u2H5fpD2x838+NzFfZnIL956dP7cbmXJfd/wvro7fZuWB69re7UW8Py/vU//vHbG5+e/LWeiJ2pGpHMt5AeI2tHXtp1Xf645wuP5f0zj/zhsP1C8/vA2z+//7f17LeLvbz6D4/c1te3Fc3t6RLv/6+Xf3i66W+2z472/1l+eoIe4bbUv/jK48943Mf7gWO8P+Ttf/O/uu397d++PWX8zd2Lb4e8Z3p2C1G8P8bSlvY0cDmAxzW6IUeyuVWCbpka8BwPV40aMc8CoZwiVOYGF1DMSsOSnfmo3FwYSSnNIMHdNsJGFrC3phHYx2quGoQ0ck3EcHXa0LDArCOEFcMzhRrINoo9wysbM+VhcEKbumqH12DM0oQyQOaVrJKGRE+CmNSbzkQmTjaXhGgcbGhinT0E5LQeWpbOGpf5vJvC5KnVmre0CbIyEOQZgjgVyFVmQBlnRTpaDULOGkBF3i1kBFQDGWsrP4T3hqPomLLuqQZWa6IqKKcMpTEEst5vfdmKE83w2QD/UZPAmaIjAPTZS0TBTsp+ImWa2GkcID40xqhSmlXWmVgx86cQ6ZLYJhpss3wDAsM+rjlazWvbqJn9XFPbZSogSCszUJkzDoMssqKUUVOlNUOvKmxyn+fewJlY5TQpU1mZOVJAtN5LHL2Gstr1s2FQWT2AFioprBJVNcSC05zgUmfG/OyZLPpE/2JxMFTuIixqyN2NGHWtQg2aSt19prScdSM6JWaQkML3Yg+b0DuQhZLXDizK4SzYwgiCAV8cmEXS5pDJ3MzM5udkTae1tkjth9vII8hRM+3TliiwlBdPlk0d/oQmes9BDOjEdHIcx+G4bwsqmOrQ5OxtpY4jfbP7o21NO5R53P36GNW1tJ5320xKLq57yT1KM43BsllSGQc4bFOVl82w7hoJq8Li6XiLze6P8rw2IhUckB1jSatYkcwe1uAQ2dwkDdd+K90MdBmPYClHmhmyLwTAmPuyua1PVzyhbH1KtdfjE/RS+zGIw5bKtEUDrdFdqN2aYHKo2tPw9tDDD8Sipu4MZa5cV/swSVC1753XVC6nl+LAPfp9SdYowJPlhTqCDZYo+Zg9U5VLmnEaX1b5Gkt92ref6+mW13z34+i/rXqoRrwtVZfh/To6ImrkYePnbjEu78Fvy0v+8Hi/rnu74F8eF7rH7ZeX97D1z7l93bdvT/YLW0b+nmixLHtr97TV98/4y7PIJn/j4+tPbbXHfX2pPBYhdZFgK2ixpqqwBnY8bQ/c3qTN8taWNnDQxx3VWG7M2lb0ZRz9zm0N6fMnvD4b/O+e4+h7fK2B9hvX1h/rEoObe7VbLMdrPO3r5U0yH/Anj5tvR2z7u+33Ra9jHX++vj8vt3Z/DvP+T08/1UupBh+lb7/3/K1Z/F5PF42sO1fs0V95MT3uEWSrtvUj+083taccaZsMtLe8vPLXa/MIu3Xnwd5SS/eAejQ9HXY/xuaW3VbD9g/vQer90+fLP3271ZNu9+b/08eha2irpfX29JSPdT/g43Wk/fbfVuPleHI9ff31+YcfMi/uYZf2Q3ZcXr7UPRaNJJ6fbn+bo421v317rHY74vb4v/6f/pz9eByjHvt90Ny1t7o+8R+wv8bWaJadXnJBmZUyEFZphY8SEBSqWUkazauqD7MVoDIq1ypWHmOtnP4Xl7NGLuw2ugGjhI4V4bVXP2pRoWDc6TCqqjumwKToKLMhUyKQ4ZDNcvpRLQrZ1UwFpFY/mlWCOWOTtxnWURhA2urnuHGD4xRpy4pMUCJdKqRUMj+bjf5ajidQs/l1qsqMZ/y5RnESdpPqS34g2KBkYpaBbhLoIl0gGB2xCNZKowuxmK1NXeUQfRTME+aisbKQjH5QMdloelkzoufoD7UBVo1HYV3qzPg9kfsZqDxdLfN9lAxjzLr2ggNWRjB87hfn2nAqibJ4bjIlOMzhFIzK8ul5Pg2pH8FgQp6xxeRpzBEN5lNAXOalFKhMnTyvBtEH65DVYcZZjOHSLFyYr2WKtZVjeqpVhdFzNuURAMrMcmXWlBQPLJVVDiuZBwaUJYgT7jViphbRe9a5o6gP2LFRmVUkq6BphlId9ztoWVaoUSx3QEpFkueHMGXzs3TkI1Wcs3VABCXNcsaSYcFgJobozVlSZTebu8oZh6Ik6PAZTWowsCpMyaUFVRUoJ2nuBbLMypUz4bRspA+B9YhDq1kcxTG0jH6R0s0d8ixCjpHcmIG7ma04hpzAYlW9O7i/tc3vR7HS+U6X8uEBmUZUr2I+tg2ilK067FSqTdmduzdHoi+N476bDZZGcaanLxkOhHcvgOsqB1sLxrF1LCBLieqjSoyBmbPmtu5m6YtLhYu0RWFZZxVydocxWE12WJop1cu+ZbyNxW2M6sOolFctYeOx0k1FsZVBS4mAhFbHcjLRoga1Pz0W5uB4vC2oYVI/hqH2bMv71tGgt0EiZOk0gzy4LrvZsurKvNSPMX7qcfv0Hp9+++HT7y8/vX379Md/1g/b+4X353233bvuVns89EOpH/+Pp//wdozL8rU3Lm+jPXLpy298GtvS7n+K+3bd6w83G+MfV+5f3pfHdfmXRyyIvLwP+6zLeDpyjaucZf5e/cuPn+K/+MtuT7hsIF6eWo4hiAMRsOMRz9jvo/DD59/rwOfYSiP7o60jotjZB+p1da0X7k/Y1qh95fH2xN/16fdcyx/7iHXPXICny7Wu/uk1Cv2n5318frZR9GNfxhimV3/U+77+5fP9Vy1W2BLa9t9pyzcRn39onb/d9yUNfvRjPHBtfNPrcr++y74C7+GDjoU4uMp4+4a+4P2+dEPxjT8cS9X2b35vS1ufb29Cu9titVp5uPRpLG7vBz4db9Y6tcfjaJ9jqf3L+7P1FYuuL+Hv++PTp99f1p5xwbA2/sf4uW8J5SN/ev7Taj/x9/Zl/Nmt+Paq21qP1p7r883qsdDdqpkMz9vvf0D+cMFni8/rT1nNVt3+v8CBrHvP26M/CuNx9Edm1KefKlLGYxgx9+waCYDJtgeyaDSko5huLhXC6PAlKPm8sxzBxqPGDAE8TSPHoPY2Y6j27nXcRhxdg0qYCQez3OAsaBiQYFkpmMoHQxehw2ZPNEYaTNqrkXXUrB+dIKk64Ewic0CISIMnWqnwobaSUZxzSRQtiTwIcFQZXXOgzIQtNyYN7CJEVdbMm5sWF4FGmWhIwGCa/KlOdxNZXlQJZvM8djppaS15ib2Szbx26DFiRe60GpCUlMHCBMpqVBmQRjA2WSaNMr8WbMwoyjOmcl7utMmUTsj8dFnNzxSgidPrfZp5EQmfBrNThDxtvZDYSsxFZBYgK6VmVDRwVv/ovLH5YQ6e4CvO+5iT+dVsvMfpZTpLl8ig0NIU6jPDbJ7P0/U7b/ZZ7aBTYaaUYDHh6ogyE63GyKUqXx+TDp+Nw5wZ/md4JwBbgiWHIqcjiQ6YF0E6EEYzsyybzMNMQ5u+n+njQgoFpWA2TUBz+5jf4dMXPenvgY9kNE6Xk2pyEYMFyUlWjQoWTKMEMXwq41DFFJmDPtyqJzGv68wII6qqQ6NwZFmJrhBHrfOF1BmQZSDoGjhy5oeFxdKcJKZOkomzWQ9xHVHcbB/zbW9xXX3AnJn2ZCMl244KLJuNKamzsE/PL721XnYy+x+cAQg2qEYRNgrvrUe5W0BypRMWw3wpjrkBSp0gMuUE6A5bTAUtSmOL9CinmhOrw6GBBEo8NJCs5nJaQx/jjboyZYhLE2LYkvEcpnEUAywkl+1pUyWVQ9VeDl/T1/YkiHdqquBOP5kBhuHPt3tV9aOs9kfvpZzbtZXDtje0uXPSNGszkShNYUI2JrLAwfdlz9h1Vx184dfmfV8a7VLWRwAPkrfeAhbrv/ubt/H0hod9JrMvbTxgDzuwj+paLjWytdEeaXn8y16fjnpXu71eDbXF8Vv7nF/bsB/2Ox0Nz15/iP2r3v7w85+/PbcY8H0X0NgH0nSoeVVu2XM/sERsC7Heaj2WTl4JZDjsMZ4/UQazyHzYGLk+lPz00OXW3e3l3bn8OF5c0o1m/bb6oeevfdfv9+PSH/leeYxqi9oDsKXn5V7wOOxlyXvzhaXaH350dnhhXNg26cK6WXsft68/7QDx2Dfsi+/+lI3mbru3euxPabeAbbX9y/4TW/s6Pjd50e7AGtM2USPL97Ikykb7BF+6uarx4fbgt1yOfLcWCyqWYUfyhqUkItwCBoP3xlvL594fceCxPu3bl7bAf8AwNLzdro/lGcBgiJX2u/qvlYFfL0F7bHE/bLErwWqxGpbOeBaV1V/vxzKwWO80XTANtxKcvbICVRsOy3JjuSnnQ5fD3eQQKmdEpQ+PoR7R2jIlgTptpU9eS0GiGgVUZbl7MPusachmlCgv+vdIBmRrjtkZm8nhJeOoHKZBShA4WxDyiNzps2tclKHKQhaOjmZWZaf36EMTXNJsHyoAwSnxmSkZ4Ezcm67VJDBlXWf6r8jZ1GusczS4lGdOETHjrgpws+LsjzKjuqRKQGHWdWhz56xUMaPTZhRysOCEz5k6BLFsdURQTiuoehYq8/6oixlYm6saR837QwJoKHzUI+tMyz+JYDu7DQrmTiAGSpP1xFndwBlmAhZYg+SszyjwzJ04IxgBfZ/jH4T5qfiCcOreRGEi2meAJ2sOeM6zY7h9PL8BckZpfqjUiQ/f8YdA+3zSi2c8JuddTWf55IlpKiMFtxm5MW1mRtBoNS1OZ7WFMDNQXecWQZpQKtXZeh3NZXbK15Bn6YJ9JLCcA3h+uiTPzeecRKYZyW82301yBjhbUHCngeUz+uqMGZlgNplVKCKzTIUqzf/O7/q53UxJgoyY9ZYgElMOPwBTkFPK73Z6dA3zz5pfaCMwWAW6qcpbJQBGefiUPPZUhUooWQ2LmHHcGIrCDHYBpupfgph9LjOAsgpmGaMsWB4ZMVwEEaLFai4ikjSc2gPVXCGGIqsKs4BnSidAmjlYYhoxf74n4q5RefaY0ymDlAUzIWeNiJkSRJi7tbLhJGbugJCCubvRatT0UkaYi5QV3FX20N5TNfKyCJtpVYQJLUwhFAyeKQPN5iYmYMaVVjGb5RHxJsXhlb6HDvbWh5uWow8cVcmimgwWs3uu6Y5Hzajd4RqyYR4H1pbLsOKxu3Yu62MZozjKqiusmqO19dPzF/ZahWWY02TbLfJ25L0/coVsBvw5VSWfLTpy5hjmVf0xFrfqqblAOSjJrBJUUsgpb0lhZ62xVeOn6zvJR7bdE6XjsAmj7Gp1x1H3IWUfah0BMq+XO2O53ipY3f1uhvuBzvSq/rYhSJYnAB05oD2fbbXxfFkqiWbh5gG38lLfG5GH8s58iL7zMTK5xD99+8NP3y6WGdibAd0dFkxvjt5MaMGWFEe1DewjA64uUBs1llZbJmoYKmEt5LmnLItc87DLErV482tPD6xDCc8BttE4AChRXjQPu6IWe4Jkq9my93Abo0pskA+JKVONPjI1BRua4lNxhtA6TSZLE7M0wx1VKDoAz6AcgqY6h04PY3BhNv9rDAcAi6ppj3FTlSaI1jCMThIVOAP0Z+nePJvo5Pw+4ewSJEQvztXZbdCZ3zt0OLMWofnYIaGcqLn0nasTzyf7fAypZrPCfKR9j9k4s7MmUTitsx8WGX1U4+aUGkH4HhttM5kRs+lQfgYsQypUnlJRDGs5oXbBbaYjoHLAUEOQne93MsCwOVpFFftx9JylLJkDw0/rzl/HwNzeTysUp+1Kf52tUxeG79ApFMdHZMhUSevjmTpXgjHbjWxO23kZz5o9nZJk/P/9ayT7SMuqNGi2UglnJQPJj64gCIbAR4THOTXndD3R9Pm2MRVtcwbr+zXsSMw0tg64ksSgJm1fTsDPAuLZiWDNKLIKswbQ5yQWpyEXmmWb88s+46RpkLeFNJ2dUaUxGVjT3D4+huZcIWxuHWftpc44Sk7EgSqazTiZKnBGM8/gVPNpejszyoy0RgQ1O8IsmgNwM5JzfTknPEU4cwIHElOqRi+xe2g6k2aLhoeH5CihBszMTXR4BtLhrSVQWVJyqtP2aER19gzSWTUooIyShlhX7SzOFawqTcwE6fMbYq5grrEL8pjZHIJkKA8OU4RtggpDch2DsjESKI1RJWRRxfG4E47IApTn5yuoVFa8sIqZX+7hzBzUXiPpfv5iFXK2WWAUrFWOfVFrUiHiyCRo3th47FnR3YpmXjbTRJxA7VrGKPfWECt5OcJNDLkyLJszUdlqXsYiAAEAAElEQVQ4NSBl843SbEZ4Nja3I8Ia2A7nrq2LpmPN3TSszzOCZC/0i/EoSOWSKoNYQAruY2mMZM8lwto1Y4uLHu+oGIYLPslat9Vjufxx/0JWO6rMYKX/nmbL4x++/Me/LPQQGwWGK+GEKeURHo2GWOvCloZqpQGYd4NSyJGmEtKZg4RyYO2ydTy5P4X1u6r2i0t1DLJa9DULR3vsE/Ryq9oj1EeN0bqTcdBTBd2j15HFzsgu67ZR8INRtW9Ez3paFjJGbw8Hg76xebIVZZWOBAaim+RC4ZISr/H8lvto/VZvz+9buy8zNA4blWidl5tvQqK8mcx8LHnxY0HogdLVuYTwgHsZaZZWAbPBpHuFM0Z4HSVe/cj9OlqUhXkPjUIxaxjJFka6tQtS4WNqgQdhXqSpOYWeZiLyUN/HsU4YTAVNQY37KJkKsE3jXNJnTC2heXeoJmsGCZsjo6e3MysBE0RFje4N52hEJtIN56lHnJEQpGCgzjQMk1iI8zoygzPNSm7mkGMYCWNyRlEkZnX87GapeafKmoumNFoVzkKjf3Xnfdfr2jm65iAq2FSq0FiqOXsmxDSHdElIQCyYgfXhgjQa6sRYZ7DlFESTxfjgNMUxWGnADKUWTZl70XIHc8YvT5W5OAlxZonSMXKCzZI03Ztn/jMtz8feGQ55zmHSMBvcpLNCB6ece76amE1F4DndTn8QigGFjZqH7CSU67zvv1+/dtq0Phpxz7Tr8xYu/qs/eI53Y+X5Omd/cs7AijnkjZR9bD/n/+y8f09U23BivU5YFZQj0QvyVDJQo1LmRtRk3wFIdr6kKtDOWIj5iqa1ZzLNU6DNkmqa2c5fA3LOa81E6qkQONuZOE/2mc2KqYDmuWzMnqg8V58xPwmjz+A4m1f4bAE+73OrMxDM4M6ET//5PCstmXW+ejMawA5Lnz+Ac2+p7pyRa2ISVAJK1nA3Cqiss7GjVFW9Ww0OdFUO5Bg5gensCQAFFmtMJ/3HzkVSVjGOdjruSmkoy8TprIc5R/hY1yIHQKenBVUK1RLZqViZOQBZsmoMImcL41wAdRb/utls9wZkZad6EMR0vgl0+4I6U/mqKE1XUMIyVVLJyGDEhK56SpmZmnQDoaSj0AyuHoYsMJUok4VjkGRtS8DCbC13wrykD79BcCajzLZwFVMGhejFRVIlHweEI8djRK8BRu6PFGb/acGYOSSZQ4ebW7PRufhWCJ+z0L1SLKOcI0c12x0hj0Y24ZC7iL7b3YiGxioEmdvvaXa5/bu/ef/nXyCvajpQzctGA8iC2RrNk8AyLsIw8yfLtT59lltCdLv2ZaNshNNMSltgcbUjib76uL9Y1bg87+KyGJLw7Vi221JD17V3W9rTkkFbRz249tK9J7Mnt1FmPKSNiVK/9xHqtlSNfNS+a9Cf/DANHjXSuZRnQcqSZVgvy7GAyz2pI1vksS/e+am9oVJc6tN1mLtLQiZdh7Sk9LaQruNut6U132/L22c+luNllFrGtq3Lsdz9RSoj17znVoFkmceO8KXbUnsWWWIf6TmPgYZhqcpK0AZNiwHWjtE5UoWyiEd3JjVkgjUektMWLzPLGV41a3fnXWSRMBWMYPGEHJOQaCp3VKDIHNNHr5Zoj4oZAKWPexIqeQhJU5oSGGUc89/CD6Js6qHwoQmap9pUQtUk1z6kJ6J7QpmWM/JY0PxRRBZU8wcDAM0rzctqXiNlsplfy3nHnhBqgTaqvmdBAFOC7B/lFB+32bwk/xUCOxVG5IwSIGe9/Dzbaj6/xRM0PZ+jjOrVYj56QQhVKFTvVva96+YMxcTM7pivo8aoeYDT2BYsUyl24m4f/h0CH8nOH5HemjgAqqZ+V+c/mH6Oc+84RVgzXULT4mTj/AICwqlPO4EBTLPFlCuf7O8HKzzdaicf/oEoQwRtjgEQSvg58z/GrfTx/J1fl3kBz4+cfz2OSXCiD6CqcqAMiAHFRLFL5XHmWtDmfQaWhpAyLxhUhdl2URIIh1IamQ7LCVmYJCLnre7MOYjJaaMWjHNj4AfQM2cviKkAEGFTQDTTNCmZIcxalFWZ+Qeyb7Nge7IbCGqk6sRocMoPaC7Awn1+KEEaVRWRgclfLGnMNDMGILkVoqbn64MXJqqnsdIsiLRRLs0p9/EHEz0MkCqnCK95jTR3pniWb0qlo9sJwtNi/tRCIB1kmdOMAS4ld+NZxQRUogYKYlaWTKFmkHwK9AmTu1RVhYkAuVvISHE2fOLcfaItCkJFj1kPOchEFVnIgQcjZrK5MUxYnQDph0tsMBiGQRLrWKpzJVtmC+gkIdQVJIEoYmlmDG/XXCiZI3Mxd4BAjBAcZ52XCAtzZ3NYg/lwaHhZP5ijIgZaJVSusYIO1kyQFgqkyZ9lo0Z5vORhlFkzoLLMY1uHeB8yKa2Voka7smwfm2vILv3rs46U7YtyobrYFqzj/vq1XorUMA/nYntD86ww6nWztrt/nixZN/bLlPHvzi7Cx/F+0TC/XRrMSscA8mhHz1ZqWz39YEeLyyphJS22fTUuW1RLT6GL9F7qcNVjqb22x+Grl/OC98aIZbQy78cRjO40wxF5qBMadi2g63LUfE5rWDzY9sAB3lbnCHdkBguxYgjYdbkcB1CetWCBwnTAekfGMYKqB0dfradvCtrmr6nrWtniOLLf0Zbnyy/t4Z8zxcJ663EZ64CG/NPbeo01Yzu6aV1Mie2ylttluD/tPd07Y17JCy6Z7Mp9FGwcntvW7mVZspJLtfZELCbMYvJlzEcc4UKRNA3Qq5yg8kObMh+2ZJHwOTG9RNHgLm9asixrxltwMjhwFjq8hiulqhkbJaUBxFDOvOaUWcxsZgGi+yDpOUMQaSw6SZUDc7NGsdIoo4lwI8vO+xVwECjQzxLkeWvNa5l1lrZOWTSzAM7H8bwfP26/iWLm9/kyDzrOdIOiZhL/qfY5Z/V5Ip5oqk5xx7y2iSRoJJrNpZ0IMDPR5lTW/LXnS56l3Chp9KpMCXUMmS1+Pvpz1FySPnaWydXijP06lwoh53V+9u8IRcTAuV2csHyh5hcojfQizuDI+Vt0DmBI0odiSbPEYzYYzX/V/HJhgv8zW2oehXaOKypl9gFYJk8oYDYLk/POnUj6CTvMz5WUMVFVKhdNMhcJHeaafVfQWSo0l45JQWhKd2A+e5Y+SoxnLJWbueyEA91CRLOgbMz0L8bca1yz/3pS/TwRm49FEd8P5pMU1mTSatLBkyeeyx9p4RPEhqockmke9GrIJIVils+Ni1FgMyd8yvjhTgryxcoWoGNe1hOYbsKYrdYyqaZnkHPXq5p4wKhU9gNGV5rQ0gA5NeOcS0IfBLQIOfsbzhBQ5DTvtjZqhqIYzIvpovtUqKFOQV3lqGEyjKzKTMJoRlE1yqb4wCa2fDoOanR1QFCW5BFmcPOSW3kl4HNFDzA4CqIHbVl8KbYS3dONOODNdFFuzbCEObDLwlM93dxlHA5vzQfEJRyxHOCkjSe4UoOBHH48dkMc9ggdNQjUTBTgss9+miqT2QDIVGk+qAANswTLDsBaX1hmray2DjRUlIXnWqkYpA1UwAVfa9CWLEItUw7z9g1UmevwucdHtdjX7m5tQQ+O1ew2uG5Lo/txmApELbhGVR9vevdWvtTuUEMQhqWVAqxcG9uCbnYzKv3IH6SmwoEoQV7HZcVu4if3jSOPQ7iFQbnKnzHatRTupmLVQD0tcUON8tfhsT1GVPM7MptxiVgbNo2JPI5KhWQ2jyz6sqJFwjev1RI7s/Kxe411CMlD2/EtcN9GLnIPDyyj6AmFDu3t2Huv+/q8v9WnJshdNuaJxDMRL+iDTxltAcayjW6+vfvV2qfrogcVrfeGz3XIGoqWKgsJe6V0VPbjz/XkGvswPWe16J/Matj10dxjWKuy8BYT1W2kD4sl1Y7KkuDNR4AJZU6XJAjSFyrdIOaZhpBGeKYZ6YGUchJQ57PcAKskExAzS1ZEkeabx9H5wZLhHEuVRbjTonJ67VAwpBtpGhNbA4WyKGGWFRk5wlwsD62wxYvWRZTLyIHFVGKGT8jalTIruilFiJFFp87qozl/Z6fpPA/PRyVA2am7xalbOuE0gVbCVGdNaPEcwxN1P5MP5piyOZ15ouYlcP49gGMkav4ztwjDsIJxpiOXDE61uM0R/uF6AmDqNNnsPJBqapsrR1oeE2NW9jrVJR/TagLJM1PiYwCTOWQfVC+tSDAGPoabPrDhszWqgDGlaiV+B6LPoSpBKiOSLH5A/vhYPv5KqU9Me16VJ7vMjz/IAjkjQXWS6MRcJebxh/PY/AD/p0/JZhXgqXxjNNEwHqKFmaLGx/zX3IZYshngPIeknSo0wuwsfZg3a82los7vlvkeM+f1Or896XUKCWAfl/oH6nCupxJt5p3wAzy1+d54BpOpzmk5d7lTgDWhhxwnWfoBURflaG2gbUbs7vhYawEwlJy6fmGC2TKHQTbbkCGZe4QvLQLn7gPS3GhVZJE+QyphgrmbR0RHDYZykJVChgTLOSAFVJUt6fCaivX5aWWHdTewEl4pGwhAYHgaRFdakjBXCi6eyoLiae47s5SNYulM/cHcpscQTi3lB54iAS6Vsh9crATSnXBTM5PDrMmbVTLlPun+VFG7MdYP8iOMxOg2o36k8+exiuY1+oPlqIPuviyy9oA7YdSAyRv0oMQw09z5DVByEG2Wvpjw4EiYGFU1Pz5kdeVI78qBxJFDOWqVVQ5dMhMYM9fIRjEPp4skmYcdhZB8GVV9kQVh1u7lYmC7fMm9Yr17lTWNS9Xl0cvX/TXaFk0KmdNHM60OGC37dakRPdoSbsq49w0VGFwyMFALxtUP84on2hV9Z8gb2ityWXJro4e2CL+uh8BRP/1wqXdUhpU323mpDNDN23FcntDWo1f0nYVly+3pstwL5aNqxI/Pu47sorq0lg432urItNns2V0c9xwjdIhodmcF7mEORh1fvUbfaL1jXRN91Iv3XEC4d4dWmIU9RrhjH6PGWMbBfDJroxGJCBkvaY99My8ZNh3L1d4qitErPa6FRc9+7yiDLLD3d2p0f30HIu4eaCizJWhh0ZLrHrVaNb3ddHlElakZQTaOJKjeNBhyfugr51Ryg2CtbAYVVYWdDcECa5400wxpAGYxfHG23WsqWM4nEqTSGDSznOlCSksR5rJyK6TgURSsIPNJpaBIQh4ulhs2sUWWc+ZOnfKJoUIY0r3kHLOc9q8pUDTOHOWThZz/QCd2diJn85WSc2kHJ5M5Sxdq6nZPnPUcTSecejJ4whzD+M5Y//US+i550gc6C8JnhvCMrwDKYDRfFqGXFQRiENOFI/Q6ZeGmPNVSgpB9VtzTbU4u6K/RV99fBqBZGin7/lu/Y+FThKXzofZXgRMmLIbyBihUM8Ru1k6BUyM/R7lV8l/tLSdpqwnQTrjwNFZ/4AaYfcyg2RgegnnOFmGozOrUW5/AxIQBDB+wxGx7mBNv5jAXHDSWjlrmHW7OUy1Uovlf14KPnUBV5xeJpTz3CbM5gD9g+2KaGEvg+5dwPvLP/YUfk/f8avNMezyXoPmdVCDhVtDJxiu9pjQQZpTJQHhzwUxlQnUFpgaDmvc6bWLTbgCnjGHy00WVwVThDjBg5XYYKCeKFeIaR8DcCFRpVkBYGN2crPJ22HnDV5VyuMKjOQzUFCmXISmYVdUZ0h1qqtWsav7cSESJo5MKFmvQq8AkYaQb6Waenkky6fsAfDGiC5r8tU28v1DmbsjJNU9QBGWqc+WqSVk48wOrsRkJXzlgRIjNVy8MxWKzJZLIMX2SyTwIZY0kZAuM3kYsD0RztqILE+wn6c5extXZtT0vY9nGMh7RwsVKNbRmnStSYYwsTN4CSCupHNbao7i0HID3YznSqmu7vX62462IJRiIClSR+8j3MOhn/OrLMY71iv7Yf9gwkJLbMDzsctyXQ4ZFvvYct3we7W5WrMfzzqd8xU+PR3+eQgyZ59a1FponYlrtw5rJo3pKkIK+NVr4wbDlUj2L15VqllmTBomWoz3CRt+KAZVV2bDr7748b7YcObCWfeKlDjAqj+v62xeZlud63kL2+X000rxfHnLtfxvr0cPcAm5WF1031fC1dOEPGqk2htkg4xHL7YBAC3GBqrTE0fKwPtq9MNyW4XoM3BVB7+XGyBV6fmvXHKvb/WAvojPH3RxiK5qF3q2bZRt97Huux9uK2FFxJXn00I43VbcHDjejhesuzjj5Edst+7D1iC9Hi1KOJ/QwX9YOtAXG1g/sVZRaNuzLYMKKvO22LtEqrJEWDN3DRF/gpZTwEXzPIsk6VZoz49aGcOY/nQ/5U886H+Xg7Lm3kgYXmj40nhABMxsDgp8rok9IgKUopzAS4cWi1Qy1O50/iEo2F9PJVgorwEVm0cwFN1P5RNmc4KKagLJL9BL1IcAqnNKbeV+CpJ0AsVnK8lwXJnXqp4lktsZrGog/jpnvT2BytgJzlu18VzZ93J8nlozv2R4JSWwY5gNWqmGTS4VBdtExgpPTnXEWAMzT7OS0K4cmPVXVR/UigclDzZ7ij8tI/FgBPm6e+TXKj1c3VU0SGceUMANnhqY+9hGpHNApxi7xu4WlJp8+idV5NE9b0XcK+vyMgKnnhqZSDDPwcjKlYgpgqWqcdznqVLCdWwMIzMvlfGdzLZRMhUxAVaSySDZYNCeA8LlFODCPwxP4doKCIwGzM+nj4xSeiYlTkDyxZT8zvqpQxpKBM7ltlmvMvCqSQiUhOMxEpiBLkiUTauaWSFkkMiFGpdv080iVZfPMHpNPJwOUT+YDRk+VMo3dcA9D5nTzkWYyqjsqp1SaUK+mUpatTJl70keqPOmcHVU6NzIiDQbUo4x2SJtTNbpFMouZchKOudY5oEPmUQIdMxROqLQiMs481vkEsHPvkJNuK+yR8+PTiJTI8na7uZbmrpQljaUcs36TVb2Pc9xSyDpMyzAATKB8/pxJKkmLaz55lksGQxGpkQ1pAGqMytu7kjaQVADZqWEuT/TV8u6x1zjGCHNDkw0iTzO1Cu7M+xhLYX8sSlUe9TgmA86RIy9Dw9swB1XqY5BUEhjHGQGQWeHLUHNrhcMXjgT9MWbLhBaNUYXqI2U9jdByVCXkNlxYHc2GXbi3UFX/qusVx7W2q15zS3OiU5kt9FrXUr396aJKLXZQKr6yf92w0uOyRO1OawATquyV4W4UtRMst3FU9qH903S/9ApVQ4c6YpnpPSRDa6H65Y9vUZ/Edb9Xk+rteRkkrXZ7fr5fg3p+WmK7OrQfa93khx/3xL/723z5ZocCO1D4wxrFEHgZ5fvBUey5sNXKfX/ce5o9PLDqc+98xJNjOfYlM2U6qhlEe+o67AHIhonXq7vatvyewyNKYnegRjZUtsvbsbqN7oN9xZE7nf0r/eXy3nc7DHUM1ohf+f9j6m96JNuSLTFsLTPb57hHZOa9VfW6KZJNigQo9EADASSgiWaEBGhKSH9A/1hDTfQB6KPZ/V5X1c3McPdztpktDfaJrL4FVCFv3Rvhfjxi27b1Cd/areoWKNjDtTrhn9bNc37djrFl96zQ40TlmNt7DlAFVbFPabNx33wqjiOh6dv7F/JEV7wmIUMWs2Lsty/KRpfvizVcyFcbzC0FiAPobr+kNXbV3SErlsilM1b2rVomIiT/3A8oA8dQInMZKquHNY2oCaNmRaPLnIR9ritqE0gxWjCWNUVfq40AD2+w6ZBWTjwBLp1QLGVu2WpVLEN3qtYd//PCvkTCWJxWy6wluyr2FvsNrqvIVftz5bv2lbVBXIuYrWRL0D71UUD/A/z9XJyAvphAc/Ois9q6CrDN5SRj+6LHUV4WaPgqixfCclUh6tqeSQBlZoZpi3xe6zGIRUdDvDY8/pp113i+Xs4FB0irQfG6ZK3tdn1GvXTf1V5pa++9MFngaqLXksiCvzZ8QaIVmr7ExSQpGkuqC++/1myY1G2aiWJABNnrS17wtNZSfZUsLX4QaLug5O4sDsqiS2FqGevUZpLxkglfNp51OZQEs8sdWgv+RBcXcd2d6UpAS4pYdukEKhsCWm5GydVC8+oGabuIAWgx/cbu9QN2fVlBaKK7F7gOM/qgQA6qL0ecFq0OrFS2S8+bmkDVAkRFg2gR60HCzECTKRrj033WyKqNdPZqu9LxSDvjbhZ77AbrInrSKkIqUvSJwO0+tEeWXFVVaPjJkKCcr2G5tL+LQWmJnH2/dCBLtW4FcPW1N1tZ63LY6DGXkLmFgtE5bqD5rOxEM3OZ+wqtq0qs1cvXlMXKKlWrsSkNAbsCXNvB7b6pm2U0p7dSzzkPBeUgbaXMdDYq3JOjjG5fv3QPDIwdT/dprXpmYYQGisp156SBKDPZpuitx9fHEXnOqUoi5WVmLzu8WbOTfklXTbTw9liY/gSUG6K+HX7/ebudffuY/v7Rt7f/qDO/ddXpibYwZ2ROm/+3+552juo3vTpd1dRDnh2w1483jGINrzp//LmZwhmbifdXef4z8n3u2+Ycrzcc9Lp9ecRpcf72T38/pFdGT69q+spIIpVeBzbOSux3WDe5s4qhPpZ05ayZrqDIYaQFITj/ZR8/YmZFYL9XGwPWmnU83t/1sZu+W6tr3nZg9zfNmvZGe33R7w+vsq0d58Y//EOKx86X78/efv7bfzv/zX/m8XibE6/JN++M09tYY3I1r3FsaFfMdC8h7g9JxXSe9/RonP/xDY/TP+zN7o9dNVrsbWidA+U83ayfaqkxLM+v27tszD7fZ2rrs+4vx5ee0FE+Xh/pEzXdjNsLHz6q3ib1FGZZ8JnsjbnZGEVfZTx7qWk2dpy5XQel2V7588YmZpQ2THfGtm/7PRvH6+g/WRmvK2+X2QilRGqot6pNJEzmMPYKqBAJ+YUys51tjmgzXVmESwg8cUALv91ybZMm02KfAMKq/NPgKOG6SJsV1GxXt5SUrUPQl1TK0EXRsJh8VyOoHmvGtA+DzIpSZheu7rh/yKS0RqXYZcO9gp9GguvANlfBpEUON1ZTO3g5jXhJognQ1xLFwi+C2RZCcNU79MQF9Q5qaPhsawKGQK3ZWNU9l4h6zbeVGtl1fQUTqlAlufnGwR8rkt9WYvDCJRd4bhcCvjhXYb1CiwtkBrA05UT0tafzcviu3sEiDKaaIYaWrPvabT8X08/3s34MuPZWoam+KqeWnmzpmrR+4dcVi4K6itY9rW19sa7rZvCJlePS3a1rnwpGuC2VO0iZBTusZ9Kpg96ZteIcDDBjNZquLrNSldO8yBZrlVVWt1bNdAu9pPiXmadRNAnVNK0WJ0AKgy15YqyaWoDgUnMvSS19iZ9Ao9oYXNkfbFQjwyU1P28JC44nKj9VfYal2balB1x6soqwMCPN3PpCvwUoWyew8pYoGSphwfBDXGL2SdIGbGzmJluhbO4kKVPZvrUYN1/sp5JFN08qrUkD28SUFFHHQsAsoizuJ8ySS0VJATT1st4LxKCXxXwA5+k+IstnLRDthVvYOfcsyhuJgCDSx+W7BLqq27qMHhvchtMWut2L++AaeIVKZtXBPqQjZiecdKON6i206SU4xtv+qBAYVmcVJ8Zh+20dQZE5tvfx3E03E0mTO8hu80F7WPR220+0b7Bh1DoRaOLTq+oF5L6zVHJT+SEKdY560wOn67gpn5MJj6nwzM0y1t7ywlwPwHZlP0Wfj992zjPntmf63xOnAtPvr2OU/fzRP56zZ3OffzwTT7+zvI7z+YXvhT+Yb/Nv99E45m7TrN5Ct+PAUXOLiWfxPDZV2Q5ItOjE67VtNTtl9xIKwXq1NmvHaQl0Dz9fAIHkoBtaXfX8+5/ZOetpv30Y5O+bO2qecv/YO3nDeZ6pA0d0Vdj8eW5W/rCsNsIx3CsHvqXd73UO5P3b/PjTe8fzOAdemse3/j/++X86vv/3/wN2+67XdhyMY7x4A4mYg/76OOl8xDEFvT7uMbZsvHQ/82/bN3LcRtu5cgL95ZZ9lI4vNEuL30ZBo8Hb+76fp/zGm+ykHYf2eCGzU4fF/Kg3KpBL2N81qzkft/ru8ar762hTzY5HjzPn3foDGwwoW+Wgc9Yrz2DN+3irOg3Yh8wK8SaSgSeRXRjntOaKTmSTtJ6dItnTzoNKOeVNkxlyNecYgC0vELhsKwyvyU67JJ8S2OpMQGOQli94tXnVp/JxqajXstB2mUev0CqprVa+27C0zaKyRXWJvqzCi7tdFCGv/jqHGItYK0IR13jQL6MILqSTLijpqvKlLbqkquhCMIVleVnPBSmQskUUrtdvMq7zE7VK6A1g61o9L3lLV9ZypzTVfd8wVoFQA2fZFn3+WKirua9/ZomiylZluWVEtvKqWq5uxOcAVnOZw9Zq/hnrbAsBvmblpzyL13K8/jeu9BItcc1iXbXSDpClgiWbl6tMn8Kwz9nbuBI2HJ94OyQUSP9PMHqu0mACtkRQq/XKkiH3a338fG2kdIlVcGnlsLAOsq/QFIFxJaK4l3xcORfN5R2zldgNCX0kzbrbaSZfan7luoGs/R+L+gXVZWbWXU3CeinGSRqLlA/BiGyC8M/KRxBUa30MS0WEC2kxomVsBrIVrhXIpVKtobOwpE8YA8tEZSbAaL0UhZDMYRafSAAujQSs5UUjsaFTckbvBlWdzDbJuUfbZjAlHR19ljzMVPM26qz2spBmizN1nnH3QD+frx6Ssbsk8yH1ZpkzCMZw1/sXJ21e8U+2NBZNZFqXcQS6pyeyzpo+kI+c1aZ28wf+8jv6eZ7pHgIQpW3vfcMwG9jv7KhzEAEa+KbRxCyZCZ0QurmprTnL1Jh/efDFl9/fx1/s5Rblrsru1h6P6arYes7ZjjxxhLV82w/7stMM4Xsa9Xw8voYGYEYTA/JTwKibwWsotz1lYDAgmaeUG+Mk2HozR2l1U1ZPWle18qbiGfnHl9v2s29PTaD+OHWe2dm3bJtYuXZoIGvMc9zGf/3nP2zWPN7y9YY6z5RQdtTxSHycfqs88PDbx7/jT3+931552veP8794sznu/sf/5+Y/P97s4AhY5Pvj+YX7lz8f//PtLc6dnVVbhPsU4sb8wN73ez5ejPveD7eeE9ownTXGCw0kzL/gQ8Z2TUSfWeomtrfa8Xj+2R+vFzv64e3cNv4T9Oc/uvzrWV2vrTkiu/J4jv2YOU7+yO1FNVU/7fk2X1///PKHabY+9t+0YVTU16flf779q//O6+f397H7v/z4+C1eZa/+cfTTnjMenvNxzO7m+3M+Tff6Yup2V/+T5jNYdts07HWqVeABA5M87+U3w3jXU2km3lJVT1fvPWMOzUmEUR5lgVkHhM0NjcbZg9waPW+Yj+h6P8utbXac/a7HSauH39ANlDDPVP18fWAOV956vM1jEDeeEz/Ur2SdHvO+Y1rIBbsEGWgjlVxgISQ+HILzyrczK1cJ5U175jCmN8SQtGFlETmEawx/vfWUsic8z2NDEt3WtmIme9Awl2jVcOXtLWEqtPSFSx2FmhxGUhYQs+BRmYRZUScGCzCV4EYCPSE/KQVteVJNMlGSC6sz1wh4yT+3b10M6pL9Xg4c1ScAazJe947G+hLWsFBLrIbb6h9iiexuW0H9jfa9L+XMQG92+gZzSHRnxeDO2fswV4x1yeQKT+IAHeYYPmFuYdWlVp41XKRfurImWmLh8kddLPSFEROCVc4LmpZgBhkRKNUnIUoT7NJtS0TD0SXDIuTIxeV+JokR6l9k87W22rLeLp3qZ4rGQisX272801o4QdFXvPJn/od9zpdPRdi1cluTEJeliIDkTRrqCHeqXzYQJtv6DBaMa0E1W6mRZktRQnStOE4RoOciSdYLauOl2KIZzczNjN0AF6KzKoQJ0C9dnLT46aW2u9D8xa8AuGxuKzXD0zqccYu7z7mKGgh10bttF03ddEAwBhwogOh1F2OXCerOvIqRV8YzLMQAojrNzLVFZkIaWSiJu1/hRaSzoCxzqmlj6Kgwe9WQpGS76LftOHMQY4+jDVOIsfGZJ3VUwWiyylB59YheVySt/Cd4MMLbDGZzYm6P7f7sFHNG95mgtbvfe/wN7OIyPxqBbbvncJhs3afBKdQ2mjS6Ac1uGLKbUkKHmaIMMjJvX6zB2jaGy1B5VM0fYR+OP57wc2wsRqYLklvW+9e3wK7niAN3FNLyZ5+7GglJefn0wpreAd/9zC70xDwDISGBlsrbfHbftdpG+HkotGZU0kaN4R3j3j0VxzTZ1nor53Zky+WAiC4czfFFHsf3N9obju0W4TSz+ETSCtr2u+rs7psb7MaDSbP9y29f/+JefeN+HF/Ov/XHX+MWw2Ju/4vvDc79n3/cx83Ytp2271nPGbszX73fKl/nabd3KeteMWW5VWbOvV6bYI1CGE/3ppromTkx872ffLFjnIMPSvN7435Djvd8bOOcMx5+og4+9lsD8DfZ1ywTH3jRNpB+f71xzO9Nwew4o//l72KdFWXF/vfz8f99s48Z+wiG0sd9Q2TaEZaeneXPw5J72ytn1//pf3/ySNbzf/u/4h//m+fbF/ta6NygYGbckq1I7CKr/HXu7P457jgyynZIP7/en8P93rpxk7dBIW/gYZxLNTQ1cfezcH/MNGwb3fI1+hLc29soDLWhIVKPzlZP3H7/OrXzdej77ZQ/V7YNSlXUqfCbBc5/3MUJSQ6s0nVRNVjqT/kly+gltLpSFMJMlKNnqKvVoMu0tNAOi7SSzkSHWlWp4VDSjcWaGkWzoRUdRIdWSDPFNc7XtICbCO/BFOCbjvKIWD0uFme1o40qQ7Wrs6ZVA2JeejBbI6QukhSEE0CrCV+RUutg7Utg0+vMlS9bJthY3tdLGbsUIc1qNVY1Keho0dCXG8VWmsNY5i6R0aGzbLqmke34ghnj67e9fMVG1ZKGmVUJHMvgpAuWX1+Dfc7iBmkphOzSfWmFFVye1CVQJlur37H/4TmCBDYZpxosiavrHgvoNy7Tjkyy9l9C4vWWBV/r6hLrCugk6F70NjTtl3VoTXte07RXttJy8iwx0epuwhJqX0/2MvHgE+AnAIfU6obW2+2lV22UUkz7xn0nqWgNGsy63RjecDoWIL5KGmUA/BJzo2lIqI1GNEfg0tiZmexirx2g5RXZ1vTEWv1tacs+PeYr9orw4OU2hsG6DGYrz9ka40YgsR7hOrWXX3uBCkQRrYx1Ucoqh2goc2vmPBd/gE9hHpXV09UeIZ31IOXrkx6EuuoU5sqGGyPNe8o3w1D65vM4M/wWgm3qajw//O1t7/yPp3lo8xJjJnf3Z3LHahA7u6w0zJcyoNPJ8HF3xCAJWCv83kd96TwbVTsniDbH1Nb9YQq/9TEnXIxSpmY9HqdJx3Na5+Rr1pxuT2CvOFtVSY6VQWb0924PwxC//dO3Ar8mDzxwntrqHM7boLI1vL7eulVza3Dv0xPjxj7zlb/dJbNqa/962/U2/zqqW0hRK1QePo9Nap0Pe0a99DpGmKOnYY7RUya8fTUz0/LaGeRMOa1bfTTy9l/nWZvmuOvE+1bufM9+iOU8N8lSsxTdjR2q025HbbzjhcMx6EW3ORBl9Xbrk/djw2+2/RnZN9Hsvv2mUD0PP8fPP6nu/6Xp9+1PKNg//fjb/Pnmr7/++x+//bH9ed+GnJgf8wzVT9m2xev597dbGH/MzeL4WXl/eCakqR8sAw+6zptQByJ7jOhhNeKov+O4b+f+Vybf+zn8/secxMmfwGF3POfbTv4ufZ3wfPFAnH4/8k/Z4xHblIVp33LeM7fnjuZJd2h2t8XHOP2Pn/X3uFWT4xE3ocJFp22wfbVebzM3l9G/3KJ3K77D68B/rp8/bo/vPOajzsPzwDyysurf5n/33/C/+S//K/zsMc+pcOYRMVTbkw2+dCpLWX57az+724GykYLGaeSsPep8hf+xpTYLEQ6rYW1bzJ8mr3OCJ7udViUkUCHjEUo9+zi24kouDW8Atr19G39x66z8mdvipc1JdYrRUlNw9aeSeOkorykmq4muEMzbmo3sruVF1LwgNcK+9z3L0m5Jhw5YvsIbZWFgHWcA9IJ7F2tZOLqhJs2TJvbghVdPdlEtNm/+qlOIUZBBw7McgLeoKjl4NePQTFeUBa4EI1xknwCwyoRaTKZRTXeiuy1CIFntaMoXWUuKq4Y+5UDToVNY1YQNW3mHubz6Sx7tAnTUFRldkrhjdpegRXHG7b6/S8e0TlxJ/auFpzgnELsJ2Kqn6ELRzd2rUWmQDWMtZhdcM39ZVxcozyXhdoPrItovxTYZ9Vk6hM8ELzUMZFwyVMNnpldfMi9cZU/Xl1nTlABlpFHSykG85Fzsq4dqrYxLar+A7Fia9brUYVyYAi7x9JIHXNB0oXEVHhtghLOtCVGphqafRmMbetqwSsAQS3wl9CTNzIf1FCVzohtekrlEalUmLrhHtEucsHR7KEqsuhJRyBWnSZpp+ezAvrI/lpfZPiuCqg0qEc2CEMzn3GqFnRbDzCGsGBlYq7jSTNWflzw0u3KmayWZXMoDVRJa25jYGKqajTkFbH01NjeZKdcp7w6S8nGAPqJ1+lBn1W6rYKwnAZ0ujhjn9L0g271U2t+TXbZH5Do0tAQb0Giu/d6Uqjb0cnV594jW4I8laHQXwyFaiiujY8r6kqpfwAQZihv2Aea6BNLDBiunigaF494lc23sJsIGQ4aARnvOZpng1P4G3boNPdq4zSSbtxUxPTZ4n94eHuQwp0Dc7hb3A+yl/DeIpddGjqPgRjC7D5F7jCH3Bf+MocEYcSasIKO5FcKwjQyizsOtdf+4Hd8e89sRUUbJny+5ca+57fIzmoe30ern37cY9rKXPWJ7ycyi59QOvGSHQ8oTOMiYs/hHLO5gVp4xDQ3Vjfus+/mf/bfHaQn7cnu9NHzYn276NuvjjGleOPusyJm2bXufrzwNfKr2+zzB13yj+qz8uxk26VDZ/JKHnyNc89VzePZ4m9NHDPezVTflud+/nGF+P87t9vihG+bbGbOPcU8pbsOedyQ+ft6eesvSjNjsvE+r95DFNqV+6s0B0ZpjaLN4qdrH2G57nBXgVM50c3MzDIvSK+Ko0d6udttPjG/b6//6uw9345dt3rX9mKaqRVeU2FXduudpL8Pxf2D/96VupT4+5n6KhuP18XHHvt+72pQYtjec66Kuk6+5eff9TYdVBHOTRlIPSZhbdxPRIFLjLB9yOyfNU7L9LSlxI6DqbmyhccN8pAV107H2Jk2t5u0JldkaWwDka+UzSK91pJo7GqpKOESrNlpMHdQKQIBklorZ3gVhZdk4psybiaBm2hD8pJkKzeAFP5oxPiZCXrPdiU7lav+Tc8q6RGBDwlCkd7llrpBktnGUWwMKlj5dQkskpcsytHZEmaPF9k8J0HV3WIjz6usz+5TTLLbQHdYGNI29XUMel1pLTKFrbZSEiazZveyOrJ7DR6O7vXQzJ2N+vErV5isheREBWUKzkqxaIcpqOqoX5eSSXYqwz7X2OhjF/szFuFjhS4B72ZHBpdoiY024XysuV5KwzEnJKntlP61sRBBXOrPh2pe1WhMd1YsKvWakaXHBvaIU1tNe2uKF5wsGx9lNq0u1DZp6hfiAhV9BFwIpYenkL6OZAFalQSVDo/Rq0oldJ1aGLdCGKqnYQJlHQL3gEBrYJTQ8ZDIdBdLEXrW2Xa2WqrquziuzRqUZRetaXVKErSRNYX3+V7XPL75cjgIpdcps5haZUe1uKrWkk1a+EHMhioAt6X2ZqpdpXlBWVZnzmNUrZWk9pTuTaOdsq4ZZm1pZZG1oNkZpc5FUd3NlHZImKK26u3jjc75i05QbBx2753PivY5T5hzlGImpeGdUjPuutmhg5Il1GmxhVKErSWppxHISpU1/GyV1dZ4IcHhwv7U7DLAFqXUbLBwC4777KJfJPGz3sJZtZo7t9huMUC15srokixgOVkEJJNzME+VI261bp+7n4+jCgcTwt5jUrHu0qTrM7tXT38BhAvT8Hn/6kWc2TTCzhqtsHFZNAPbluYXtg4J5yTlpPPwm2+p8qc337iLcgaFgrPoyupHz5w09K7/n1/r7nyuLL92+/TPGq03b9BER2mbXqzcExoz9Jx71dnafYS8SyMHeoZ/nm/L4/VTO19+Ob5XbG/J1O16b9je69XaSZ7ow/S5Fvv3pr7dRrD/vT/9nvI5sw6ySjsONcz5ub4zj427W86mzkRTddLKVW2NDd77gB+Wmk2y9DpBy3823orfZazxqPM/Hfu/zuYF1HG8DHkTZ4xmpqRjTb6P8wO2H3vV22j1ML00rnH571sO78DpedwGGhpXNfd/i43XO+3x+eaU3zWH79MESR/M8EQPcmBKeVSDmPf9a7P/71+3pt5xlsY/XuQNhbka/uaCb+m3r3uAbh3GZBv/6p/5eNXmelf/nw87zf8Bx1tms8Xxu/YwaKtntSJU175yz06hnHVuPTAIdWxbCq82W/wXexDFSQIDvbtvsbPWSCbt70aw/Zhb3AdyfBVCo6i4MNjqYRiVFc6r7iotDGwA3TI9rpWmbKNsTAU2wIX42FaHD2m6YVaaqNHYHEh7GTrFVznVotdhM/coHvhrjrEW6r3ZXlknFYamEGzobTvTKxCCLK7dheHPfkOwZyxL8uffhMs5wZRAwTA7atSleEQBsW7r1plstYtetL7ExYCYaVrwFBzyQvNLOQK3g3Gtn+dVeAaDoOF40M1CNURVCH/Soo1UpsUrIwtKxus8Cmtld9TFn9zzlTsSANQ3GdrNr4F1i3E84E4uTvSYrtToFBAC+lt4Vd7uo/jYAix0F0RAK6vWIPtMvbKH2vL7dxf+2sFhvfMLHv3I3lr9pCayXMnqNWgFKdJfg10xdJDz5mbuxvqFddwaKbea2EBJYdflwH2JXsBB+vXX51iJpTl8PxIxzkRtsgtnLL07vgsXVGGqOFY7hE5DgdBdaVWv+Uja0WjfpLF0qNoGAf8aNqRfKsnzWUBGsZrCr2G2D7bfbTlof7Nnehy8tYTeEFctV7u7mglUBZj0BoAQrnVULC7gogPx81cVxCquU7xIslFBlbueiqmm0EAxdbdYw2ehHH+WL0DQIY4DbjZ0tjchu7zrYlZMRaBGj2xWm8vZONGEw34xkmdOWTa+jfVPb4cFbbTy7bVXwmNGI8g6ZUKwoJ7pOjT6zZcXZbCThjdLqFhq+S7B0ygNts1am+3L899MOeGzldyVUGzgam2zc32tUR1fgSLiRsRG1HRztYGOYYSAt8jjHsSwGzUtCEEFLLqpt0no2bKpK2W5QY1fSmW1ihOa29pRqeInZqWcHxI8T9kfY+dHKnu42Rexn+auVKJQmT0nvtxC/jR/jJvvpe6rrwalEs7fzyPPvH39+73kALztkeab/a7Cez5+vf/XbLND+nb/7cd7rOPkh8cO/nf1wi5+/ffuoMiBUNas4HrbgmNyriHp6VufhBdsPT7VLs3xaSp23A/vcNeWpjpkQYmrfm/342uf9+2AzO7P0rPHOfYv5DJG4veHjFps9Txsf9H6//Rxfe/xhb2KNztuDf7M9R97Sxj72Ly7UaXgKr385f3d/m0cfPT7Cn8+d3LibjTwEy4NvAFG3kUfSfI/Xbb89JsfhHxEvdW0fz3B+yL0MibHjBHdVM/xFhd1n3Ldt09vrdfP99RbJET1urp/18eScbfuP3F6v8RFTyn7+jx/fj8dfaHNWvc8HbtEz3npK0yd2nFmyZouuw4dvnTZSPxRfQ6cQWGKpFnH3md2v6VZP3OI7DWZSSxm2Ld/NEAwoB0ATF/a48vhawBTMCrKyVmvFM3R7u3fTudQtFWfnSh4FjQNTVLV3Qw1sM4fUbStOOdcax8W1ejYN8jYvsAS8yAY8VM1YtTjeVoqlt0EFCblLrHl5XhZKuhJ2VYR6SZdMAEzdJNuxdk9+nqpJEQvoVFfLL6sOFoDIqzOHxq5W0ayIRen1Lyms6UrjZItpPmx7k3ylTwxLwirko3+0awZMymJDUslty3SgT6TmUVOakwL9NqynsRxgV2Gs3iZcpOlVqqOlHtZl073q435JoYXYcbHZWh0cVz4vgQYnxMvju1BjQiuyxNYdBrIVHCJohVF/Nj9+xoeJ7OqLCabHp+RaJthM/uIpLk8sdbnBFqv92cV4/XeluPYn1HZ3yXulUXYOmoSOjZYyyujDKyHRURD6pGlUdZuWZq0m132uE6pVmYA65ZApkEKez15OJZhZlVMEZJYrBmpJ12Do1UZi3UUQhBySFpUhwtzU4WLQw5YhvyGp5VWDLUotK1T55tdHRbqj2rdQmJwcUaSuCCpRRSRc2oph3Tb7rqlQ3vfsCaRHGw1jG24uduXqYrAdU27k69z8RrS5Y4ohcKN+dJ5u1qKj5ynEbdS6eS+KHK/u8Nrw6briQjCMJNoMEUDvG7JzwAZOjwwyAOtmd8rMzV8Kayu0Ct1tuX4xK40kRjlJdudJsERBSdL2hb9kB1h1IPGgUPsI8GPq8MTojO2NI4/B2vyjHB2KjZNGWbbdKkk0K0f710mNcdpY3RYkR6hpt6fTRyEG46SRIgdNruwdO7nJAMaF+wPI6S71wdM0HfUd1h/z+BKmuWla47dyP/IUH1ur4W0EY9vSj372kDZv+ciAkWnH9G0elh26/WF538bT7O0tTt7ewm/2ez6eH7c8h9nmR9t8y6O7Za8v3/ftx8F3/Mv5eMEUnJaZVQqlC1ue3eeddUpzDnfBx1ELgFOzGkoPNh7rY0Ojpniyvs6fx8/hLz9s5LvPbeRHBo7X3obys98+gm/l9R/+tN/s45Dqi/e3fpZq//sNRW39/CZVju39+T5tN/DN88hqVVn3x/Pbb/JbKT9eb4dutFCMo08L7ClUnJPzvR6/JQ4LsL0e3JDZ7R9Pe//LuI92PZ2a7h+FqZePnzDc35JbPZ/aBn/k2ww/zzH57b1ie3vb8GMnj3Z/5vvsW9jNf9vOCNsz/E/4/jr38ZrP79EVr789Rsz8gXj5c+pn2H273VyNISrhmuewQJd6qnYxEmhjbbHtmWC3elUeNNUyIzltoNUIb6B7Q9KlpoMy49oACPlSii44mnOaToBTVlKzzKrFnpZzAzYLkUXXEQ51QX5quSBhF3rKLtrKoKIksRNmavYk5IbZIeowd6hLTCORQ50DCVq3mxCoMhZgtprDPqeOVrKGrqT/latU5ODiH9e2VQCsdfWf+id5ec0NwFSrzEnsYqwkRa4OXGFVPegKdScNCw5YJbAwJsYB0d0c1VkK+nzi1lUg0SlhtZKzqn39XvcqiQHVcoPZGbZOvJ5pbpcJaKmffrl67JLorpz+BY4CvKqKEb62uBX9uFTOK9SWEKzNnava9sof0XoChc8Qz/UD8wlirwzJulp/AdDsakz6nPyfOL47knRaXZiDcKEUFwfxuWASq+pRaw+kOUjzsRWVRRiweSPkXhlR1RBR6USVlMjOJjoV6M6CuuSQcpKFIrIDtBV9lUlTt6pCkEWtH5RUVfJc+i7lJxu9/BQL1V+rJ6/M66JoyqYtDzMpb3nO6lLPXL0bA5cG24iWRxWKOBVoVDdoC5KxwTQLjWpHd1FqVvUNxWlupnIEoOgEERsM6gJbMagYm/uyX3c40BaOc5bvL4CBWpHLk2ZWsH0/eL6G08l3JpvjFgdhfYoIk7O0sXtl2pnWp6OyXr/KwERHAd3eoVtgloqqoJIw8ZTMrDrhfYWPKFHd2wb1ESZZW5fLiawD8pPMRV0gwtk4Zg5Cd1XVsw4abvDRM+VtVRtETZiHDGO53lC00B5SftmOrsqdL9PhMPRKwr7EbcMNtPfpN8SX+e2YsW9xyKDCSJSDrwMDHnTpM8EOsr7uIkovvQZ6Z8ye34mJtu3b3/XnrsQ8h+a9NzmG+faB/fujHF/53bGdfbNh29s2fIO/btuze9qf/tf/7bfY7PX8LRm/P1/+dj7fwLfbv/p/n0Nz8/tfbx+e9s6TYm/Gx9v2299hr0f6eBWEw7sRyAj6nG7MQxO99YlH3FzZZ4kwhjVa5sbYSmg7SBZZJbH79VXz5v37Fwu7271b1ocwSX18tLMc//4+v/689X/8bYtxTjuG7PWqP+5vuP2YnKaX/fyrZuhWOm6G8zj0xoG0er2H+Jevz/f+gU3m+0zHvcWXn/n2GiO7C/UH2Mf++KBuyY24dXzcg388/tVvyHz/fTzPW2tCyPS2OqLUKuSWeQ7e309/w8857fYYb+XnG7Y6jjnr51/znnPneOE96aPTtmhu9z2f/zTsY37Z3/7pS/3737+Af/Pe7cTfrE//nser8wR05P/4v4vxeOar8P3pw+9bnUdieNOZ5YHG40ehg3Fy28ZdX84CumqxnqRpXhnptUnNvKQyZYAKAVFsVndR1SvNFlO9mduCYI2NJtgjAzWtuwd40itDVGqFkRvatQJg1RKlpnoZQ7ByLeklVo+xwoLKzUGSodSqqIcWMdYi4Z2XR9UK4bQrWhZazqglheXyWLmV3BydWr5koGlVSx59dS0IRH0uZ6wr9khUl13GfNQFba8OIV6icmNrLcCiQafBWLNMdNSprrKxwTtUsqtxphZJSkiB1RkKYLXlWqsKDS4XpREBX97lhUsQoq8sx8+U+yXf0efq+ymRJqM+GW+Y2FLSVIKMK6/6s72RtLgmamuZaLTyPBYSzVVmu6TU13eSZNarHsauBWnp2ECWo6wp7/bVHmNQr8RjrEDoi3YWza7iaLXUda69uRroA035vo9YmalVWUaT4K7MrC5ZS0YqhlnbRIzuJVg2M6cEC+RC80u0qIKZD6Bir14eOLLNJ5YCLZfTalUM1XVzEIGWXfK3zxubo0FfqeHJ5qgsQBdWTFEM9WV9Eq0NgjnZXEnb3TkDVuXbledMWKgaJvvWSTcpVo6YQzVbZvBCVFh4d6XwypujUdWtZtPMbcvOLLvVI3sbWeyqmQl4HjneXn1id7G537IrzK1LYBdR8EQ306193ZPJ7l4h0GaVG6T6GBvnFGqXYYo9p6SwJGCrXdov++GyinX0ea4KOzY1yyfT2iVM2YXSUNVtdJo80Igtw0334hfOgmk9qfVaqLBWnfIOL5N4uz9952aRGKawNmOfHfBYHNKSxNU8tnFU7xQGx5FMV7WzpAIbsBlS2FBcvSAkRXKQFhFq2Ghz3ub7Y3vP+3G+zw+PV//L3s/iwXP0eTtt7kfTQ6/X66Z/mjbOt3L7oXv/+fnc91d8HR/Hrehv+Ntffs4cf8TtVT6/jTpZVj9f/SXu+z22yIr9tdnjLSYG4+dTP77stPOv/1WoDxIZlMGc9FjhMDv7YV/N8XxlmOWr76xWsyYYFJV1tIuju5s+BsctFc7x221nfUd+zOP1ympYj+49DFGc3PLJjm9v1dp32HarbZ6jNk7o4wi+mv/z97qPPOzjjyCPH+Pu75oj+2l67q0XcG/uY9vlp7yx9+zaPKebh2GHOJ+3D2NoQobGWecP/e2cIDtfrxIT8PM65CocW9WHvzb2MLMD+vMp2zbFZvXxMPbzqP7LU3aHmZlht+1MPw/xxz76+Pn/PM7abPi321Nfxvvf30bshRE6x13vMLVtBeR+971U29vr+6Pvj0fj/L+c/9P3qcqZ6vNZZ5Xy3PhlGx0++65mZ5FFa5MqV8Ub2DAOK332v5q6jU3WVMI4Wmwxy9Be3eeq4lR9BkO4yZgEu0w59hPePVOGo8VxdQ6rFsatC4rsdrasZcYFPRaXGm2ZJiyiuzQ7rIEsslZedJiyqxrTbWLflrfQCCxB63KJLIxb9KjlballP/7shF/UKMxq9QhLxjbqcp3U1RZs69BFL8oV15BfsYRXhQHljLU0JcLL5CvlgZSN4SiOkBpa2QxX7zvBWAVIK6M7YE4RlSpxmEhqEgvJ5S/PDrAiuNbfwUXNrnekz+kIQAhfk3gtrL4WDJNWRZWWG9VWIBUpgZfcav2Blxjo4j1xVbZqxUSRRr8iNn5FTixqoY2oqiYKlt4EaFfQh/hL/byQb+V6X1qWXcnEEaoGMiWGpcbKdfF1kwAJd4NZrXvWElXLubo33ZBXDUMry3isJlle1Luu+oI8D8kkW/FVvQzl+vRJ6TOR5FIt9Hp+6yNbmLSgWo0QvWr98kTbuIJC8mxfsZIr45WSuXlweKtnwyh2hjplYegqg1baVjSBUDSQZletRCLLStloCwRhNQvFUzFdDKO12HRv0qPEc7Yc+QIterCVRNecCqGzu+mzIZ4059IUZMvmaUNGqE0ziMbsXsHhJGwf7jwR6HOqE2jAgVBhiz6JEbCSPKw6cgxz92g5HYWkcvnapW5vFDlAdqzuMSmcoLm7ugZhHtrbdtjkSuiB8Mr6uA2xa+a5Y6JbGHRryTZrgluZ1d5ClUtbpa0LcEsFsb3GyKLyR3vPYSuqUifcJ9u3rJZUAcJ6k0zORrtp7zH1zm3gXTu+HHc/3v28jfP7bfvoNztv8Rp2qKxwdObe9W5bv/4fb781pvMjWfZH8yCP+DH2DsOPf2/72Bh/OjDz3+2DN/Bk/JhjtNdbAu/2jre93G7Vjfo43p5/+epb/OXPr8ct2oy3/aSKyvbKEGjtpYdl7arEtu+n9YkJs5MjoypsvM6B2OwisJhBPV6vj/7Xzx4/7fEMxXPSenvbDF+nVeSpP73HvNfYkegt0KFX68eX13f++DK/d8SJt+PV78cHxJPAbvO4P1+v92kW2btyOt+it222jTNaGPL+eGP6a/NCKI2gzZuaOA+7mVr40o+9GHiMjz65Sy5nDfZ72WZ6xf27ziH19EdH7J3YRuPYGdzlOo9nfHnGlyf0hrR7P+OLTI1X99vv54n3+UHMP155PKf9CDbLvrj/2MfLsd9q3ttRt127+fiT9i9j3DDNyPPjn9OSmYU65iuVx2sConngmRJ6NtRdCKncBguFkT4YnW1YicsmbhvkqtFdZiPDozUEkK1aPQcrhcPojQloEayTjDqw9VFQNBrEdGHlEjn+kwMdUrlgFbgCQJRFuRWBWVD3uVKj0YZqmGpppGt58pRFoqs+Jymus9JYK3TE1LIJgFsvN05fd6VrTXaBngYT0evtyKC1rq1IaIrTADo+UW1gmWqXq3cFCgJmZpDfF/epbECQZm8pBnVy8cK1ju/V/c6ZXP6bpi5BrTldBqDYjSpHkiJXOPAaYWs6XL8yF0EHXfbUNdBFShHXAL48PsIV5+TorsKtyFouLumze2Jd9ildbiGuIKuV1Hnh0L3yLXtxz1ebB41GuzTZZub7QIcdq1arJKrMLrx8naIUfjUSC2vtJwl3wrt9VGNE5eOwcDeyqruuANClYwAoOggPu8K+QRHNFQzZy8MJrDvagl9otSSHC3zXFcClBnylbyxp9wWXL4WZrgyU9YQ/X/Lypl9XHvdcMaVAt3Wr/UJthWuELw6m1fMU0TXLlfAwqC6Vl1rNhvkL7AnrFkqU+gmsK4iZoaG57HwWBpjJrWVu4gofc0WeoA3kCoPEsC1c4QlqNyQaK2/OgKQRuFoPb/K5JJL6lOBfnSxGlpUgeF8F3qhK4bPXmEOrxkhtqJWepl6/I4wgrHH1hNXClixWr5HZFUPnUJtMDFQEKOiQn+ozysPMVr6tq4WaTVOZEKO3Nlq1OGxMurD36NjePnY7kSDWNyDBuPVmZ0o58zmYUiAv3ELd5vsrjQlb3Jx7N8womJHmK+RH4y8/8LHPjiTNTWPrfXONu877ZMMUh9OytxUJv794f9qj3lL987bPI6rL41V2PutbuQ3HPNseX79X3LvPDfPx9VTuPf/grY+O7dsTlh0+aj/UXfZP8c9/+9dbi8M6CfWsXJzYduYwZp8zbk2jh8+yJlRbU0lSs+Le4elYMSXaeWSeUc/4OVh477S4CTkGm8CrO1+228b92Vt6oaGumXt6QGPfm2XmHIz59WdtZWCntmfmnHVWDyUaqjNfXzLG3zf3ZLZGD9Nojww3jsJQnVH9kg1WtYdZoON3NnYVBuFdaCAN3QqllStGE6J7v5Kvnjy2OJ74asMPEDo+2Oerq4HCPB9jP2+Nks53GxNyme2cYxj1ts9m7lbpBXazZ76aLYkvmt7mAPcGVGM00I6g0/22DSGrO/KR3tzuZwtVWHkHpkZb9CQSiZLJZe0rLwmhkKyb6L/g2zq/3u/v3dsZXsPeQEFvuhFUDcCK1VZxcxlSRG9dAQXhCRlb3Xadu2tfKyMKKi2Uet3dGwhIVrVWPDFUZUxZiUK7JEPTYM4NpFa+8WXIuZrha515Bsislj3qSuJYWTwrZOFCXwnWZXhdnfEG8/V6VTKzJUsigKvH+OrQgxadakiZwG4OF7Pl9BWi5KZudWtoyoHqBRwUsRpvhpFl7AbVKbQMrdXGI9LCr5zltc9dowdrI+Na5tfKypWSoJX2SBKIGy5y93NsaEVAGtXTxFhZaEtALrsSwpZFaInegBVcvJhdrlxprLCwq8fhItsBmvMC62yFLNOvKP/Pb724h+sdEGva4D/56/p77Ya1IMIZmUS2rmgILW5h/atGEO0AzJ0E6H5Fd1G0INvA1BXxps/nZ5/XkqU9XJz/1cBRny/mV1gXgDai+WkRWoA0hYYBfaVgU51X9/ynaKevcupWF0pdwHLcKCeF7m61pC6QZpeWvxMChjW64Fg9EFhlu0ba6F71kWaSDzd3v4Tm7SCUjhZlTlAczGVxt1iuIu9qLVs33Vs2uG6cLQRMvMgcF42rYnnhw2ak6nKTnbuW/3iFVQMk0+KmZe9yu6Rrlctm4Vc6ShNgpS2zddPMjAnKBGdrMVvqXgpBIrMNSuVUNlBqwQZOM0lw9zYTaX4rCt1OAUVfP+sgiCrPX/JyI7hMgK8oK0VPfAbZruJv6zVFVv3zImZ6dXeZ0ltZ3pxuj+zTCl1KVWbMdCosC4kVTw+4UXFUc4MrAEZ4he6cpUaPToDm44sjzWcVivthOQEWoya4lbDZXQ7ednibubZxe4+jFE5F52Qr7RhkXyLUJL3TCWIee+1jIHs2Wj5HFD/7kDa1apq6pYmozV+DtxdwmBmrEwXTrMnp88AZneDbtPm3251dGyoTBYtt2vBxxpbGVr/phTF4aJcGKm57Zo86fYw0Go6GOWDOpqBOdaAQGYc3ouB1nltuRScUZXt4/03bq0Y48Bjm2TLRUK1pLblb76PlB8lNXWpsKarnl+45Rfmdh2nd2mjE7qLIDnkfbBRcy/atgDY7b4LqauZ2IFwrjmW6l7lIYFLHmuimzyj5Ai91Eum+ubfYktTZCgnNUBHZXSXvbqrWAOZUQGw5NFDIXnnEamzhFX4d6RLbqrdSTFN5uc0emLKKwfKWkeMUrBO9Zl0RqxJRtgBoNLSWW9mqD+3PxCRC7G4akl6L0DXA2FaqkRDU8Oufhlasoi2XKdZt1wyFcq3I/b6gXDjVWHPOKNaqJVwKYPpnayBVbR7shY2t8WaEmQOQS7AmoGnr/sCT5rm0JbbqbUXOM6FSXIOuAVyjw2GxgNlaxlcCay1j+Fp02VXwZapazQu/BtUawPyEsH1tlbq024Tinb8G3NpzW9J6zzrPi8nl+kq4xNyf834lSmr1YxFEf2qgl+tL3cIGArxBW3O3C2eWxABW4KasP+M2Vo3DEr9dGLTWHLlyObB4PX6msl30uJt2tq0eG1xV6L0EZmvhpkRTW00BtnR+ImGxFF7pFlgnvX45eRaGQeTqvLclMADIlUO+IkUuv3IvnFvS+sprYLG1NjtdVmZblzpIWKo6UnUx5594tqCqAMyGA41YJSvXdXARHyYKXuWWS7jWsIbtpyzFiAQ5ZZCr3cPdY4VyrtZAp+uT3dfVOSEo5Gampfhf/MNi522w1s1UBplOwCXSZTb8yp1dnz6tGAFAqhc9zYwgu9eEmhhvpfPIcjdUQ5nZq/cKXSIb14UneCxRhgluKTUaYKuMjW6g3dHVOB7L1O6JkqqjFME+bXSb2qwzxHqNak51mcrGoZosWdc8KjNvZW4A0ND6/S5JTQ9tk765wwMoGxC6TVw0hxqCjSuflOZN2iBs0sMfEk46BtFdQwjA3woBsoCWhwcdHtbJp40h2hDtpvtMwcq8XGZ49c30anYN/XAb+2hbVXAZCpZ9LRNgEQHfimWxuQok7/FPdxIxQbel5vDuKlvfqm0bqr7D5DlN1WxrSN11aLRblU3DbNk0nX3q1vvxuJ38erwmeHsdNx6Ac/yH58264PObVFNz95r+lOW0n+Ptr7eXun1PZnL+tr8qkZiIQhXe37oMR93R53h7m398+JtSf+nj9nT01Gbhx7GSXHRonKxD3UTFge1xf3jor+dtnh5O9bnTo9CbrSNaMZ3DZdK3KT85OAG7//3N/YZ37pbaXY9zjtcjWgjFUUMw7SDcbN5v88y9IQ16Vb+2hKXW7TTSkR2tUnSzahjIHRvbtpucoWIVGUyLvaE+fma1ZWzbyuIXJGVhQF0cFJWtJa8QVVjJSdUBeSuIQFpNdeuXNNZR9rmLiI3txHYC6Ulu3PKETQ1vqzRYgEMzUO1Org2gV9QD6Vlw1NWAGOwS21W0Ao3snsA6a72yqCRX2VLZlMq75cM+B8MaNFdbHARQ7az26+RcsDAF9OW5Is0gWwv6Nd94NRSBRJa7cyUxfEKRlJnzuhcbCSrdVzZJtY06ODbCglytuJDqaPLiTj/3t3Wqtl2iYJBhF01ugAcEFmh+1bV/pkIsCOEam7wE36CJzc/lbwUJxn1ZxSBwVfU11g5PybdryrJ12YN55WKtZbe1/MPXFnileJs+R0mvqsT1UpaqbO1BnyBtuCFhg2uUY8V+rzKFtRvoH/O/8YmQN1DWaLOCt5Ua4asMDgUz2Ghi/Rlm6+EsgRcMGKNNFrzAAKJBdzfI3NM6Os09DEJ4irIVFnndbEDQP8sycPmk8cmxd+uKc/3Heuzua6oQ5gvX4aUarPWDw2sAk6ACsIIxZGHdNCfaaKauXKay1d5EpBytgUQX2eYmqRUmmstggmBmPiICK1udhLkHFLKCI6AYa8Kb1WfwOQ3IDiJAEQ6thOvuRlelxeIzBDM3Ch5YPwnqtbUjw6tpQdACoKGdl5jdzaQy1vrVImFX8PV1A16XmC7rG+BYMAAAFErllJSkhohRsNmbw8mysFZ1ERJedZfcq1tqt+4OY2NQlZApj1EYejx/6P4k50akA+VCGIrF05diDoATmb5+8s0y7DAzcye7GxyWS8AVfiK2MNqsLWA5XgZFDn/pxnMbD0TX/v4cmjq9rCLkpH2J1368bkx3P879a//248PNNPTcvG2Ity3/eN2Ovukn4/WF35vv6n8j+zd/f8f0r49Z96SsJKKRfjNMoHaOb6dBw4u3YGTDvRoIY7c5Yrslq1TzxhnWqPwS6yJUuVW3Tjb4FKyRAPY55IfX670/OPmn+cebF8htPH4eX1pwaJy8nWjTxOQtT9dwbq9GDjs5T+SbVfWZmDMKmtotc2geJX+wPblZSNo/sL16DNMeYdFblBWgen/uky4OYBs98HY2/A16qZ73nv4fb/V2m8wbN0yzrtuLjO0HWe8vC7sZ5EJ+N07jx3Am4Jtsi2ogsK6fp1WPKrXCmXQU2V5lecDMLEyKE1NjBf6nmobi1RhEqE4zzeZtD4tpvqEjmFU1gV43M48mVhVBXXLZ5Q6pFh1q9uLH2KBVUIbeQLMJTXSrywSox4XOLhkF2vzcxoE+LZtDVoeYsgByFhnUwEyW3HjtO0VDlZyWxVjh5wCiFWo1zSOLZqpTRHNg+YDXntAFKc2s5yZ1+Wf8g3y9LfRiGU0UzLsqVyqHftltaLgK7M1WTa7s8i+JC14EQFabuUn26W0CsUqKFoCH6049HMbu6AM3f1YEYUFjMZxHx+4Er91pRWXKDHK3MFl3+JLCcSGr3Viyr4baiODCma83upjadZVY2yp+0cErb4RGomO7+OEyFgxrLFyA9uhCd8LaWrag42UY+fQKa1lIsJxovFTg12XnE/k34DpYVyzJWvEM8gF4M/GrPboR6xnYldixQmMk2SI5F18oVVsCbs1Mc5N9uRqzUdxWpRRWjaQZGVdBlYrrkqEV6pItooQyWzs3e8HqZu5uS7K3wH4SYEdf95vSp/zs11+fYWveK0bmerDXgkx00cS4bil0oK2sVmaIXKu2fskQLonbatuuStbammvOVRjBbq0LHeSIhWgUrA+yYHXEqi8GuLbyriKknAlTtDvLInBE91A7jeous2rSqNnmIOcCm22vfmGsuo8mUAIzMVbUOnmFg9PMHKby4WSN9nlSZsLmDjPrQG3oF2mDVulYhnkYqJpqVGV1NtVQNucMdYbWbgB3X4m47G41rbjCbUbUujSmuzc4Dgyg0FkAU2khqF/7GUMq1V51pzI3dtjxeobmjrlblZaoUVhmtrt6puhZDj0+yqLlbZS2v28Xw+0QGrUuLiRy6R327bEHxisYttJMPQ5Qu7txxzZOx5ok6PRZdxvf7v/xPIv+xjlGvc1zg/H9mbHTbhHDEvyy8Rb/hR7Pbyee8bVvX+oZb++xf/3xOM4bz3G7MxuJx+OZ8bZ9/Pbt/GnNlkfDaVtyLohBw0035LA65FC1BJgj9m2oG07LU+7kIv3cKMr9EflRz336WysMiXtQaNU56v3312m5fbOKtBtRwos2D9NGZjaO7ZU8plv9iJ/4gPWeUiWfddYm5dPx+L7/eNm+fXQzP25Hq2Npf20fNGMafW9ytzYT6OF7bfQaX/rN53wbXr/dfLcFQ/UBM810zvly6O8Ws6cp5/P9j2M+aqv/133XjPHl/fXYvN16tC1ZXcFI2wQfHhIU1F6HZIFj9k51M9U5y1wtVZQCY2wdhoD32O7tj54Q8PStQMga5ovvyWTNT3hsNfwuIQ5BdGKMSiIprVRbs16Nbw4wstFSgWmyrBGLxLlKbdCU3raz64Wavk3hLFO6STW5yowQxXXIqyUwachpAcs0VwCqJjl5MbxmsRg6d5fRwdBS1w9HgcgwD43gVvALrlzuI/06OMXLOCvMa1lZaOcanGugtpva1j9oF79I9KWDZYPmtjQk+Ay6WMYkOsQiRSmmk2z5fOGD7Q7QXGFNc7xy+L1pE2B3XcvGhWnS1i9GS2s9oKzRmCSA5c1b4PXKm1r+GF6W4DXaVLJfK/4q3wNJxLhGRJmVXJfuCEu1hrN63eoWa2b/WHYv31N7Q01Tr4RufeY8q1uolRW8HvjaarsLSxAmGZUmZ38OJQG9ok+FTyfzGvZaFGqvDE2p9uEQ0ahs0pzVSxeGLn1CL6sYZMU607pKsWxtS/ynru5uY7qLkgBUTutPHrhrfQUAK9tTWBfS1V4Bo9a9bf0fMrLaLy1aX/gtDUXrrsuelO1cDIWbNd1Wc/XKiZQtV3HXVUICgRHracjM7B8wNVSGbjVlcAhp2wlPkX11euvsm7Wkhi5gp+3ScVdZosc5N3RVFbCMvNMZ4Wy5ib7ZLDC8CjR2GSwE2IgyN8gbXZMoVWOZ32iINwNy4EWWhgaI/dy8z+5Jm2kMh/OEly/1IkEPcOMY3tZUh4LczDDgPjokqwil+2yHTigxPBxjpXeepofsHEjTaa1Gl7F7EOY2gtbGIJDVzDCV8jy3rHPLk6YcdXZlDi41QoPO7TmtOt0yfTpp7CoqoeSCDBlW1qX1g8vVwmCsRV6FyVoZPDi9J81VGTWzl2QlyrDXbuVebkR+vNxGWcR4v02+dbRzK3oMv+2bfTBw9igv8w3jHvEF79+mtt83Wo8xv+zjeP/z31yN8jz+6C/b/vN/+fX74/HjY8INyYztxABOjWgGckSSo/3tRopxN/faSC8Grci+vRk4w3kuJcmc6qyKzuHQvpknv97WUnDuvg8N+9gre/M6t1GJimnvr0O3/rhP+P4BGuz+x/Or3sbLz6FCP+0OmRyiDHYfr6rzBxO/PQ/XPkecUxS603Qmj6FX9c2OO5ydu28FnPl2/5tzjNtw4nUbM7Jbo+5n723d0Xgv7DkVbJ0J9Pfkw7j/8WwX/f0LfnZvKo0kX2Zft3PzYXIbj23ULcduXjtq2/ZzmJ/37ZSdlZmzw9Qj3Y7mtEPFHa9TgXl7j7DxQ8HoKe/cRhkxvh6IrCzsNRe7RAZ6ldW1zFVmvquFeQlpC/JVMqPdQJ+nIKSCLZ4YwVwa317XSLTub2f3DXVyqxVvfBqFKoPkas1abfZQtyAnZc69aE5XwlUN2aDUBp0r0Gp9WCm3wzZAgVkeKJgop49TxsngGl+7bmgNxBpScl/9h1g+1P515APQRFsvY8oFPP/aDdHXnkipK7wWabuWnsXuUeLFoxkhdsmuxTmfvO2lhjlOtgQ7Eq93u3stMY5WFr055d1hvchVNCzWIopmn2XgKkGj4DT9egmX9OkXGbycq2sqQL28NjRq8cjXfJRB6msCN1XduLr3VE4stdnFi179gu76HE6Fz/xpLKJCtuRhtLUcrbD+WqMUvEKxGr4U44s/X2SD80LRr+EsSU2ITWNJlZCWbfNc363KhtkAEUtKLQco0I3un0N1dSWiJcL6U8BLi8LSTOsSYxmNYOecuKxN1kB9hllfUjet5O+lC8PC/YBeZuwll1gweNknPe/bztix+AXV2oB0ydVavXI7NJVevSLUlq3XLnEtSwTpq8VtXQ+MQ+ihHTC6WQynANjQyrNysxjsZTTv1dh1yfDaZBY64VjGsTXqVWoLN0pmZkYNNtLk3vCUS+5AtIWbm7BUTgZbL1qtcz5lWGUmTajPl7LbYG3zEO2a1yI6qDbQiy20rIhs4+ePu8EI8zCZgWkGtz4rnDYGCQ03WKsrWAvTD3h+OT3draOckkXEYBfMs1EHD5Goox8/y4/CfJXmUkKzShp4WJdS7VEZ5b5t0QvcgnOOcLrfbdLQCThWH4c7WG5miGY9zvnM2zkVr6lUMu9s56NnrT3FGPDBycHQidstZ+zofVunTY+VlkQVZ5WcRBoMsb08/Na3Tff4Fg+9/E1v7RgYpjKA281+i4pZX7bBOBSs9un3WYSd0y1xO84v+ynfX7eptuMrn4L6feaW6vKy3/vLm9VWuRI6m5Hb1jZv/XbHV5gd73tnxUqdKbx+k6rsGIWnZyGr69zH4JnwV/AcOa3R7X00OOKxUZ46Xp4zQt1lKZ1+r5/ps1/Hf9WnnaMR7NdNZXYOPIWTZ+WP4+uPrDfTkV8e0wuv2xc9+z76xJtSqT4BqM07Zhv2o+9HvscPv6ftP1/7jON1P+/fvvZ/OPZKa9vs+7FFtcOUgXs9bud7pIF/9/1n9O33R+n30T7tuL2Pn1/GYQduj31UhMMDbgQUS4q9z2aNsOa2/+zKo009QzQOk5XtrHppzFVfa7y6fCmYfAW8DpPaL/9sS351rbpozmgBKfcSNyKsPk02grxRGbsAt5oMCShoElCWgU2LfOVnwXkVpIapU65ttqETq8bG1uTsMlvrjQEop8vNiR7wcm83NkQYTQRsGC6K19HqteOuunYRMggmWoktMtouzSpo0CpQvZjlay/FxVEtLHUpaHTBjlwiorWFrigqXE6dZXFArDm2UpP7gitfhWMrENXdZnSCzjJ1WNfa3+UWxjXSiM5YlHkX7HZlQvJa7a8d/zMCexlyiM83rba05qpKBj7Ja3A9gkZL7Mv+3ASMdLNP8dAFFVxyIlvf0RYM3fh0I+ESzXDpTFfv0HrygEpQr7pXCb3uAVfbrez6wy/SHlfRMi+D87pdmDC4vXMbCIt9pTMsww1h7SRjJRRVqlrLiutrAMPaVvbXgv1V6l4+n8tPREe1XdIng+i67hccq9NyWbdWAjj+8WcA+OQrgFUT3YvHjX3HuHXLNKW+pEmL/8BsufeE2QrgMl0LPOERpBvN0CTNhoS49PgwgLEqJkgXmO1AXKD2ZcA2LBsTTN1NJPus3rwpjKDrij2H5sMlCsWNR4eZpM6FJPiScLtb1Ar15HreTdCHEV1eRSLLplgtWfWpyTnZyrltsDqXW8DdTBrbcLj35b9PUuYV5k2Shjm15AHGFV8rCLBmq+pGORBb3e4l3focjdEt3xgBh8s3oXnCOpx5Di0rgiFu75vMLEYobhHhNjaTNmt2M/b51ubVzduIJbs3LutZAzcu3Wobncxf3DVMxTbKMWUvZShq3v2MkbbQD48JFlEhUwDmcPPWC4QBebZq5mvtDfKJ7sqcx8EsV40t/NyFcHS9VIUhuEZwPxD1R0nGM2/2do86zp95u2/j/d5Qlg8MImgzDan3PPbbkSPe9sjJvPG3msh7scVq9M6xmCyJCUmItNvUNvU27a1Hv243fz6jUWMb7+P2r7vnZk3vjDAdppZcZ+r22/YGWR6FfvV78vb17PO448yZZ94HhNOFTPcffeTBsdf26t3AtJk3HLBzz9qf2e6jDbt3HxljHoU88BhH/fX1PL/ekPbb9+9T4QdoZ6o9f+qefPitj0NS8YufvnVvvynu7396vuB9Mm6+40cw2gzn/TY70VNH+sHn/TyOcf74a86ftzx6zG3f/rjFMx7bfr5zbrG1TO7m9vG+waw2v3X4vvvYvmwfKApu3tEvd/icc4wwbAUbhIEOGuMqnYGDJqxeXb9MoI12mV3+jJUOrOYi0sy7Oy67HiRaIcLa2zb5tqL52HLBytrNJOynzQU8cAEZtfIA1Xs3pQKUV16xit1nq4pNsFu2cNVQOqx4GX/aRAYk46UQBmm6agiIFsReEhyVAX7tYF1oaEAAHBFYRiSQWikZTUnXcrLWLwgFXSYqCij8khuvKOi5tFkEJLeumRAGde0HiGHV/YJprmIJB2ic0efagE1dCotlGyEZerkt0FWtaQSJz8is9RYvodSnctdt3ToWDm0kFeh15rVWBgE/KWSQSncICxHnZRrpXqvfctZwDVi0/AIOJPJqKwTZDqyIDFHddVHckpeRqbBFKXIpctc6KqxVQuTKBNPVfyhBdGuhW2TBxT0GbMOxyIfB2ai+6HiDdbAldHWVwDI0e6UpG+2yDfGSTfVFr3cvCNLMPRjrYUiK1ZxsMveJy1Z+KfcuazhsVQFy6QbwqaawJbZeN8iF9y5m1gynL6IWmLqIYNLM6MOKHnJrxh6im7mzDfrVeMitZ6ybnqHNC2GHjSlyqMJOBoaP4fZJRsuWzqIpMDHMI1xuMc2DDDNDNU3drUC3Bd1UCeNyA7YxEc5afYs04rJHkWRX80wannnv2mAQuk6yqgkWKmR12Or21UJJFj2yLgqNVJXOHN0FY+L1sz0oc1/RYmLLeiJb9K15q2MEtOA/LN5uReo0q2SOmvFCF9uPZ1uaqKZmEUpT3jCbKyC8rTupMMtphUJ0nx/aRtRKxTdUe4vmSZRni13lpsUxuK8mMfMuNTxttO20+1DeD9g2bzXG24tyLdahHUmMrWAqpCSd2T37dG+YOZ3qAhQv821TxQi7rciuREqaKgC13cZsuiIZzfH+8+tvzx9P/cttG4O7qXSWE+Zypw212xh3D2EE7nY24ThVKJc1bar9C2JCnG69ooJEGH73Fw6mwca83VzceQikW73efryeDHYP7P7oQCluOLK3O+/jpO0ZDZhN3u1+nraNbD34xfvoCUhb3e1P35qYz9F+G+/PzQs2z/1lW530Ok/37sPty3zcenNGHSrV677lP79p57T5nI/8G7+9IF88yfEcR5/zXnn+/76Uhev46L71++Q9n6d+I0uw7XX/7e1Zt+6BY3j0+Vvv29RA/hb3MUdI7UcIrH7081lRx8d2nsAxphGnD0Zm61Z9+7h/GaPx3ir7+hui4ULYtmGiEjO9X6xWr9pyETCupjsDaZeGY13tAdLZorWxL95zefLMvaYjnVD/ErFiDS5oUg35SBJFa24iaDVAdA3z81NkKgnKhfg1hrB2sJ5GUCY2WrP6kt9Wythljai0bhFVAAO+fly01RpaF4J8WX3YF2/XEpqrxdgkei22zpBErfitz+12Ha22qnOxRKu4wFHn5172CVVrAboormOZbQbCR89ZDclNoQqjw9yhKlQngXIUG+TcmVp7BlTCghyb7N72Y1W5i9bnNOpX3teloIOuNoMr+GIZQVcMtNZVPhKkQSvmsbGMPy02UCmJXlIb2tirIJjQQrHRRPMze6Iukyj4jxX8MuFeVwJeqr61KAfY3uLwrFV5RFv2s4UgrhbHC/+XVhME+JnhWC1mEZCzS4ZCYGl6VoLSr1sHGli63JXARXTXpf0RPkNLuAIrQGuz1aFsQOy3faNBRgqpS1b164qylrCFMXAxudECAoEx1I4IX3VJ699q65xVcJOBsFDQB2V2jWCZKeTGpW9QC1aNZqeWWO1SwK035OgsmSjzBGhNtDhgZmq42e7VYZUajeqZcrcIN7PZZAep80Sjq88aUngMWVhOcx8YOAmUDN4XOkuLUVsYCmKpJtoFHE8bpiRqZqACqBn7NEbLPE0EzZDDXk+KdPOqWQ6CmenMbEZVV6nRYPdsL5mVo4UBmRoqdssKRIqS6xzWVTxl2egk3XtURbjQrWS5owolZZHPj9K0Zg2rqcr5Yp33mGaP6vM8e6QSGBu7zlMdeL1Gwyya3at7A5WRtzlpSjapnqqcBRE+42Fyao/56tgPivn2OLbXK85nvB8/fjter2DtlUNoSif0cDtOa/vz8e/sptSGc7a9ubJQu2Vxans/X5q+T1YTj9kzak9tXj95n/a1fuhPR823PbcPOjf43dDT0E/bkAzKRrgAXx+AVqZ/cAhE+0BN0IZY0SDapT3R7rLW+s8CFvFtftweBDz38bzjdNm5fs/jCX+OL8bR76fXBlWxboie9VZ3C/ncXLXnsK1oZCTe9PUsxkrGbSfv535kyWZrd7y24J5xN/NOHYqchQ2+CsgZe0DAbDupmvWW+6Gbb52Y/gRRGoQqbpS198+zXr7HEf48Mn9s9trUVgdswsr8vN34SgDyXe1mT+qY8BGON/QAfp8at3mT+PJ+H25636ruGDRAns0z5XOcr3mery1m3Z7Vp7//5hZTdrPerGD7mBhhKKlW2SVt4XgkCPMVSuN6IZa1kyZeA7kuIq0LvgSuRBs19DmtwSUgpRdZffUH13CCBpZCISLFsMCCWZcEwhZ2Vh1atnHrsUIeALDgDckosrpbSgLe5Z1ydi0R+GI02UXgc3m7jsJLRrXYTHU3fYmTpPAS2oztkuEqEF/S6cVu6Reyi0urpTYucP2a0Qs6LV2CF5qqTeXWCJ/VKVcfpxkMhUJaD5vdC0UWr92AZXZdOrUicD/9oiW/obGK6V19fiKzvwbwZRVay5nCzGuN1+sqQZKIWppr6DM4FOvDJXq1+bJLUJd7A1TCltzz86YhsJe6aoVjf6ZxrFnh9hnTcWm7dWH7opFeE2Yst09R2PJf/vIe8RKd4ZKU0Xph+pqryLKEwol5G13ullxZnmueWwsWgsJggkkN0knSPEitj91RMDgM5kSDBjeXebXMeyVxOKxRbSuxerViXMN4YeYLI0mB1ssmRkLwviiABYZAlYPXw1+rCDy6rEXz1eNBKrSyLSwltaqqOgdjVq/UUwMNvdlgA8OLbmSXq33VY3uEerUHdp0IVPjS96/fSANdVFlOO57J0d05V7IGaWPMdJdWr9Rl+Y5/GOMRLUtCapNUvSy8lgIri4SXWdrbow1oqVHoavDc/XiF4ovt9iQyTLI8FJZTiHkeuqRv2Tq3bBsdvg06QPcrf1vU4lzpBDzoC5DjrLvBBFrPOh65rtjo9qLySHC2pnXY6xk1bfZLzJzhhbM6K9HVSRVNfM7HwNtxDvsla1QRrUy89tT0UUBbV55dVcv4PV8hGzRWFixmDaH7OGBnz9es40hrCM1iFUWgLSqbjZitOQyeBjNnoHuDWzrVD5mxYAw8HHAvuc9EzrvH7d6v+QM8d7mt1rs/hh6wr8Xz7c/xL4d5BAqLUpaZ0ZfWr0uD5/Nh0hyGzYwjc0iBWonkMK8rkocWJf/6qHF/maOOm9HOL8M3sLzq/f788/l448dN7317ZpRmv/az/fn97RyxR/z8atXbs/f7XzE3Qq8389vjuwVHGnzAtj++5otm+diHfft3X/0wRjxxK9uOnk3NR7/dzjCqaUd3eyI0Ahq3sX3v9y1cpM9o8HRXZ1ifw3h+b83vX6O3R3adj99/1vjOTT98HIrexI/UzNOj7WueuvXfQs+yuI1n5vRn/76Hj/sPtwyqwj0qbj9pyaX6wfSir+v7b8lGtG7jUB1P8/3j5OhisLRtTb9tdQh13xoepHuQcoo1jCasIdFeRcpWKtxaksQwrRT4hb91OWSjrlRCXr/wsbfzPGudRWXWVx+ugSWTCriyCCS2riSbNcToagjdXFGFoI0linY0zdXZdJBsRSeGLWE3CUlFLMdkS7UkSKBW7QMu0EhSt5nVKuEiiKYtZ+wKvtFF+/ATCW1do3LBZ92mz/sBu8HQ1Zl0nejmlyVHiFvW6FrVjCvGwpaTULOohb3imlTOLskagGX30tuaUUGKhrWWrZnyDxZ6bY3gVfG3ov6IhvU1ANcrNURhhTD35bq6Nne/pti6QBhNNIKQy2RaM3fFZ/Bz2/6U9SwghQLc3GDX1DVHrQDsRco2pWqfvQxD0rVprswQfWaWydatqYiG2TINUVWtyqpVFjg9Qis0bRlDlmIYCy9eH/FF0rIXy7GCQrp7heysd/JLLGa2zL/rDoUykLUMIysXFIvfbVzlgEuIxsSK3ugVTCLWekxrWXaY2X6T7w5IVqs5ZGmlbbmUiLR2mVPul938/8/Uv+zIkiXZgthaInurmbmfR0Q+6lZ1sXH7MSAbJAiiBxyR/z/kkAMCJEj2ZfWtyozHOe5uprpFZHEgaicyEAlEZPhxM1VT2yKyZD2kalTzh2GJkUYo3IDq3RAAKsjqVCeYTEpVBhI3M58Q0wMFC8thYskroKCz6IAqWRkuOTmGVShKlofRnmAGAWVFSlbDhIage2/RnqtSDtrQEIZvSxAMrFSUiKi5wsrEFFBRzTskzExqr+3zC1/GzGSmSsYO7ZZB58JC7ia6zTG3A1JVJrKqleqQmEeNBpAyO9SkaBgbr4ePj4+5P+bhq3Qk2Wzmiqpss/MwzaI7fHLbPgAUUwlapmHalk+Ch1IA7Vy3jKE5kz4346Tj07vrMl8+B2+hkbrOVVfsU2urpEZaDWBuh5Jmf6+ZowxpzEkZfNhIp7as+Nhso9lNrL1uxpQt8XiszY6s3+rY37/ux+6+givF9z/Vx8V8Oz5/uU5faOae2mMDNE+ZHdgsYTVsr4Iulw+qSCAksaIglTtHdrLQAMFR40qrcQHH3Ma4DNnmyoHcLnO7bBfYJw59PY6JXLzf4v26/uNVGC8v18fNVPtdt+3lJW62ly4L/vaX2z/v46iIke7+7pIPlCr95hvvdM5Jx7C7Mc14wJJDwyIPJKosuG08jp/qfj/uYa9Y6NaBIA1IKK5VdeQKyepOh/8qzXlHVPkRRIVzX0VkcWHgUbrv2Cc8Fd/3u8aKecQlfX14XfeobUxp3mrUYh0aipFlA/O2acvXVR9hVZdPE0m5Io5O451WqkxVHh9LcftUNQbgNlxlpPfOCgTMNUakU/RhRJWcRWPTMDms0wNRou2ZPE1rcGooQ7CskjEQkQaoWFHledSsWkWDoOyTpk3yhOeOCYKyBiVkH6xmnrACDUi5FUEkBhaGhehyszaawRREtFtuLylV1j46vQfOTrHxNgXoo5Xq1p1PnhaR7dpgqGIJlU0oMlY1DSn/AKb7hGexk15oRRucG+XkAGv0AvC5K8dJL27xMPy0K2huEFSNoFfvdJ0GYnQL0UobQSg9uVQ9QD7/uaubq/gUhp1iZ4HjOGvmc0nu3UWonnESJ5sOynbkauTAdc6avWsgSG+RFpRwqy6kDYw0gbvX+883nRHDS2DF+en1BfxhCNrCKpxP1o8a2VesiDRaZzIMm3ZMZGQZOYa1VYKZJIWKylgNkfPpMFwklFWna2R3WARJt859HwC1osU7SLCSs7fEsPMxRZ1kuufUreZYqM7dDaneslcLs9j2mV2nqkVQtSKa4txMo0qxZX3Kf/gzPXJ3IHEnbApIpllGlZGZFuFm3KKkgRQigCi3OafN2RSxII2xZDW1IsLoPmmbkMWE0yKUJdOqDGa7j1n7pBQ6QVllEIPqBskMMBs+JgGoWnivaakqFLBWKfrltR6XGUKawWBn9SbglkZDKledDiLDzhWoT+Uma70b+uOtQSuZO83djbFWKGfTDEbBtthcFqbr5F0jzA3U93UZn1ZcPzKSc3Cu3V6/am3GDSkfLp+mMZh4Ya65YQxHKlYdFYBVDrca9fJhhMNKFEbHnJIGjVFIeezd8Nn9sq+ZtgWuEZvf44o1LFwgvACTD2j5qO1dr/eC3/b0NWaWzAexlB7uS5TFfivUpsFxLMYYNdIsLL8P8fjwVxxY8qNks/yyEJb+UbcIz6ICsSYcBaNiSeELDxvY/DDOmJZZxqgfunpjtXsr5KBNkOD76/XDFO7DxtS8CDk9M+x4v9qbyg+GK40lGwSGPeZ2vGzLbnqlxbBYeL18ub7fPHCp93k7fv1J77zvd4xF/8874/rfXT6+vGKrl1mfuI8c40hbTs0YYW9l0MWNdgQezvWytiHfbNZbvRQv9un9MuVQuWVSK1THqLo6Rw2aDmxbXi/zepiTGKuur2+rRiKulYijZn1npTYRsMXQ9zFKH/fL+m3dfx3X9493d3sxjipfD9ZeY2jLis3rtu0ACK+6zrFNW8fh6xFpB1BwszFWxSOOx65KoXxAZsNLok0irR0WcwpDMhJmp/8gm3v5dDoQDRjgmFHh5/azmZyao+AhwK6rtKo9FAsqx0FIRxpFVDUrpi0maHmmEESRUXCisp2p0iU79R4krUNI5agyc4BuZjZb/qDWh7D/hWiVUPXJUkgRCdJ0etGKaNEwM0mkIDf8+Lk28EclDKqzTqm79J4/DdnGDgZaYRDcT/6REByDFlUjy2hQLYMcRzgPN/hpp6xTELsgyCGaNwMKJTo419FzpvpEfuYeoIWeJ05+Lh95UomfO8we14Xx4Sd1CiSFdtBUITUILrMicrAo5vMn7VTcArInMiAyw/Fc84Jdo1p6KmvRWOlUcJWkRA/aVSd23wlVhdPQ60mda9wBT5S6W5HMqBrDt7GOkm/2vlhAjKHN7XxqqZRS5aaIENTvyaqQPmwgI6t6Nd7SYMnJzuloZ9QS+9FuJLkpanL6hPLcIeNpe1LnlrbvcvE5sJqR1W5MpJTrSXwroMSMLLPR/AuhOuvODHQS/e5Mjh8EYUopI6gHK81jVJhZhgmYyBEZ+eorerSexu3lUmZQu1cYqZbVb4yN21URgEQvOSvXkQ+fJqHCTEW/GrgHKWmM0+CMNo4nKYFmHO7u3k/XRccjMMYbBLE2rOibD8NRL1evvaJkG15v7sLLVcNrEObD1eeLDx9iclDTx4gTNMuS0Aqz3LWS26cS7kLVylHXF49LFEckt+OGO13zcp3jcLMxsGQZ1Hg3N+N2vfhY4RWP7y+XNRQCaXMzOLg+zC41JoazJXLRXS+goh8rho5baSZWWqaEAg8DtBY015sflm8+P17qvqV/vuPndb+Ot8d3f3sZuSJkvsyGOOr94+t1217ul/XtajPulqEV7s1/5q7Lxjo4v0UV5xelTbzd56ecL5TNEf6ylN//9PL79x3jIlP9Wfn5+3txi++f81BWVNYloy2LmcexNC98PN5fXm5buuxCe7ytsZlvAWQheNnqADHiDtGmX0gov5UeePD4NJcQF7/nvG5FzfGtXqouQ75Wfkt+mIcRrEfiDr5zf4zrPa6TN5/7y2VuM1+u90+329i/5jfW/jE37eR+ff/Z7f5L7U7F48v9PaP4vey4fdrnxf/y02eX1W91Pfxwhrnf4hW27v7J1+2zyTHnLdOF4jowcpVmvFReiBlpflBLdr0WVxrGRRdtNBR96XU2Altl5X4dGBwZAbDS7u9zfwzt/vURGsuPGLUuhRyKMpVbAsiP42MXERm6vsTcBlVWa96EWbJh02nG2FcumR6ULYAYI9uko8LpZFnSqq3WxSq5n6pRBMzo5iwYbQxo2GGyUx9pAll+NG8aGLXD7/ucMgttkRg1BWYB1aWuR0G0rxISrKpMULXbRDKTGzNT2AhUAgPZa8vGV+pcIFZps4yJFooQ9KarmvDDxL0NJ01FL6G8l9B4ErR0ZuGgc5oK0evZajGmVPCEylUl9YhMicj24nTC0PHKlQaZZQrLEdykV9WgtNZmsFzp7TdGoJR1zoqAO9QQc5GQsZaG2KwiDc8yZq8EntopPG8k69Q561wAAmrqNEoyjY9m9HS+rcAnjJyMpk5JVos63TQoiWZtG2Uoe2pn2SHG7TB2oJxnE4BST2sFVZ1vqqgaDgyqmuRWINn5DB3eZ6cAmGd5aygmE7SCMK1EmrnINa4WZXPSnDIzdwCKZpVWyinBqxelGo4qNx8oKSW0lSngVILJzEIUJkFzGLt2nYIf0OB09oxr0qkAb9zDLfMpzqJRKvBHbMYzKidFe5o7o9p5pT9iUKUBGTcnuCHcCPkAJt1skU0Yjmq16takDBsZsyh3t8T9gTp2ZdrYWJzJgciRVDxW8xBVoB2YR162bR1RSHEvH8jCenysLYWKiJzk5cKMOMqdsMsoctZ2gXmUe7JqmWRSO9IDnH7cs7hd187pvQug3LPcwXG5GMeauHJrQZ2/vMZ03lJDt1vlqCR9G5ZaNqIijrW8QMCPkGmoDMRjxbdf5l9EBX27+peZt9d4DEZGlcrHkQPHyFVZUgSwb4r9YnPYy+GX5BXmsHz//m5XbHZalw5xgJGxf72K9P3BmZOGVjTbUHlqMQBpXZGVnWYKlQyWxxrrcyYeI//99fN8n/p2e+wuYh2F+jDcbXzztV8BzEMy7e98vKy/fvzt+IZD9a5Do3Lm4WTG2BWwnYuwu1l93I6JzGWPmDaNgv/T62+H768Y+bhJtxH25fj+aeSx1WMdlu4ZtbvBkDU2q/1D4vXlfj8I2crbHUvH8qxivnL3SMaAvSgSWkvBoYLJLD/Bt1W4mvj+vr1LYSVom1PF+aHx+fvH8fL39893m28cYyvjkiLrY13jDQ+Py+3j1y/DuD3++vf3+W1cL2+K6ZjQT7/P8afb939V4o6q+f39uPojKvwted/WipQf77WzHm+v5E795/rf4LgObDFvm//8ytvrzeKTZAfNK2uAmS5DzjWxfZpu8hkHeOTDjsfwY33WypwRTtfFhJGyuelAyoOwpdpeKnTkT1YfSRy5bPiMzHjJQE5fGX6skeXGhxZsYYcxj/HxAR6dM//wtZK/a4BzSuZ13Q+lWZIyZcqyCGMZrfOBZ6VRbn2M9vZFhUOET7dmZwyrNWpt7T9QcoNcfAl0LFRe7THmx9quNWxHHNDUUT4sy3p3lV0+IARFGlkSuitG0iZUtFGqlHxUruRApalGE62CClql53EYVxqqMLtnV/GpOSHEU2NJZ3HGmRnb7kJmpoR39raaBpvZ8xmUTJ1T76jMcigNDxkFRxb6TO2cAUHABWWUWQS0mB/jdlpTGbe4vMTlosx6kWg0L6WASsvilSYrTouDNpmwiIoj8jYSBZbMXEfzhYtOJK1JyuxdsASWVZ30prKnPgkYAeAEfQG00NF4ujYnqlomIsrsB//HHQT6h0Ajsveucdr7N+e4KdGmxImIq+AEO/HDbKAKWVQI51avxWFSqaw1umfXQHMDkZGn0tgMLOSeBQeyBuYYdkHRG2o35KnMJICKauI3zIalcdAM3q6mLa8QvRcVgNKonJK5ZbW6t71VIXSwZPPlTrrbSai2U6B9qlnJZ0dCchBuQ+Xbqyc3L4EoGM1gw7dx3s0UOOgwR+Dk8NmYmWbDbNi54UYCoF83yqTYPCV0ylGs2AdnDBTcL2JJsbOctLWvSaWLJBY3mMWljsisMi5MHnK5fONBw0p3gy1g1bFrJM0qCsTIqtl6PYQAue8x2pREZAbMhvPFgbGtsnGIboY59BX5m3P4dSACg5Lb2GzCBpNmBmwhEmSFWVUIR6i4CPd2Mg+qnNwWVsinyca4mg0i933nythdK9fDN09Oa5rdQqCyILtcXm9v36/KrIywSw76xeiFDtSKMhv+ouMYLgcfSQPqKYRkURnaahHvGQslZK4SXFXCqEeYHihJ89Pr9eX3jfzyLaYzZ/BzLVnsSqcspyyxfNwuyo9ff9NHsY4P0/vjEpuFsjhtUard6xE3pIbw8Sn5e30wf7fKTxIfeT0OvEx/22b5zYbD6/rLR9Cn5fX+/YJlputlrHqHnLnu5XCupXm9Hu8aX7OSWi9xRMR2fGzMoVLNl/dInwnJTMtybut1fFzzy/12+9Xm9xmPq+25vFDz017EO3AfD473q8FSLgo+ryN/vv962ecYBCriJc2+C1HrpXT9+tu7C0D6l4fnn+vj/y6B22Xztdlj+CXi+kmXA5MLhwfqQdb3+Fp+rxe+P4RVuN5/+1TbL98ZR12u31/8MUwHmZW8bfr6bVzCL2tdZr0GLB7zEse1dNkxlyXGyPvLn48FQ23hNSzqktx2E+vVp4o1bnW17XjdzB37pWpb/ilUtdZiIneT3EdW2pbA5dN4uK+PY9VPueYj1qgepTkLV59j6f1bDH9ybxdIpOTTK8iEZ5kWq41oAxiEjUrtKsw5WlFR03JH5dzUqyM3aIpvh9M9F+Pmxxgr7IXGA16uVVU+Lskh4yokaJSsc4m0eZYCJqFM4rQcFqoqWoYZzCvdskaWrKKE5VQRKChxOZ0RTmcKQg0ln4vXZqwWBofnGSDoSMDNAIchDF3YzLK9gnpXDbKytauZZWQNPJr61MSdaK5xGaAEhzpHvcpzX8f19VIoasjqKg1NDwS8snfU58IzV03TkovwiDQoklXDPg7VS8PL7UslFp5zLmDnOhomNJkJrXOtzg9i88PZgN+z/EqwKpOcZqVqoDLa+cC8C/CwOv2dTl+RtDYIHgyxzJI47SxAtZo8T+9oniYdouSsCgXdD8HUjOneuFfLy0VW77GLp7RaIMxdbgUuSXtahtvYwjb3LKuoLCuRkfxhHBLZ7Ga3jo0HXCGZqwaLUwhYmqAKIctCMzsgL9t3hAIsBcINhcxGGZqlzT+gd0LOJzc6Ydb2WZg9B3JOv9jGLEhmPv0UtWhOh9gdsmCeUDyNLoQ8WGarxF4AnxnZZOGI3JxjuK8D5W1BM3LykoNgViV3Wrh7jQsBjmFeNId0JKzWXZMYHhkL13ndPg54ul+tXrTv3AhkjovRJjkyN9vzuAyDGRzFMz2pV/hlnpMwP45t6iEe7gzAyK12XlG7afs05nHIFs1cD8PS/b7yotzFioDItfLCqJCjgyXkm8FRqEHQJI1/Rv35Qj8uE7tL+u55nP3gvh77p4tuzbL30GXoiP3YXMGyuN0e9FiR6/VPP//8+Jy/20INJSqko3R5vSyQfrnlTNs2zcsbA6xME80+f3OTv3AvFDmeMsTEHAsjVWuEtn+1e1WBr/XLZa6L2XE9juNrJItOF3wgtovN8bjvfzu+vtq8Pe5mGeP3P9txpDxvWrvvH9f6HVZLnv5QecXxKSPv+q/g/JZ58F+oy3p5FIRH8NNvl/j9MuDD/vv/z3/5nDGttrkfa78Qx5JdLo/7uhHT8pCumYvb5ShgJG3Pw8qK3SiXTNHMbK+r7S/7r5/ebvlGftxu10W8fKx92MMfvM85NuX8650/vw/FC4NuwVy3t+O/XZcvv2gS8PXAdT1+vu6XgKQ6fvmmT7pfQHust/jpfX/3/LjZ3PS+Xj/2T9ffP76m/7w/PvmxxfW2Y7PXV4+/2J88P9Ub/Msveby+/BK//aff//b1+I/Hfvnb6+XDqpZLFSvHfr2T/9Wvd8u0y9sDmldc9vRUTO1Wpln++ml9v5uSrlUBnxjccLhe1nV9cLyX5uOfXuCY327+mnn9RP263SyENLk0V1ks7HOmYzcJ+3ZEecSYGC/XIHiRYdrYOADcxvsKVaLDZmzLI3NjqlDm99quSGai6OgQF6ZlBgMAk7BVMZWRpscrGO1kIDj4y5oxXZr1sSWGIR4OIjhOMvLlmhpltrLJsIBlU5EuntKCkaKvGLEKomeW5syDw8zqUCllB1kgqiAsFWyIYBXcZYaWMFYDh089kghkVHlGAH7KWF1gpoa3vQisQ3gS1imoyLLJlW5QYlMCtKGJ6hLajnrNISbpwtBRRtGELfZj3bYtFaqDA5daV7PHAVCwgFpwicpE5jWiABthcEO2WtUMwNfPD4VQGG7yFtr0aU170oKa/ScYzc5yBNWZTwTZaPHPybUFCZZC7rRSLIBA/ohYaJ5rI6Ad80EB9ux4mo1SKRSeGUnkkysgoL14uy5reEYStNNxq1nz7QDWdG09B0wRyEbEYUa6DUEzV2YOFcpgs7Ht4VW1D0+YX+x0flBGR9ZLViGrOjVviuhGi1CaAsU65cBwA2Ot0+5CKhisAG+TKOEZwPe80PPTbsIZWL2sEFoqPHv5EYFxndsCs3TmX9MgoSKbph7tI5JZtBCUGeMokGxNk7mau2SVsMqEb1vCVapFk3nQzbY8SbpxsHKYjWmYSCMtw3gVjijVIUYJNkeUyv2yzdQ2Iwanau7cpCSBcU1TToTMtJdvNUgruwzbkhyYHA4ywVkOGZZdY3Cl57FyrDrVA3mBtPForTdQxz3p2h8LG7XKcj8MKq8as5RVMbxaMZ0kbJSR6QCGOa3oMTJicyrd6I6aLI6JMTXTnWvdmJg45hg+wBgTVG0XGjNz+ou/vJ8keIkGV2ofzgWLynoDQunjyqU0uGjpn3Kb3K7zY8U67BGVTijTPhkfs2zlHMi/PMb6U2wX3H6e18ja9Ng+xYsbPpmmX3PEpF1tyx3bf/py+3kxXz/dl7bPmStyS3yo7uG5EuaRef14XK7/ftu2bR2bPd7rbp/gxz0//T19POyn277yA7h+xJ/261XrY9VuH8zKUOwwE/aHkb6W8v1iK/GyB/5NuJXPw33wUtdRll7udqzQGLxqWR7Gbc4rHyGrpce2MuiHNIZpTkRd5N8BrZWQf/J1e7lo52AO4TjujyXbdRU56Nv1ceF4zdgvR+3LLobNygTF8R8K43h9nXN7e3nownFoxtv1+3umkmt7ecN1DP5y/S/75mXDP795/Pz67+vzZ71v//Kn2+Oe2760TCt5BDLuMxjCv7rVjIL2R6z/+X/6ff73/7p9x/SPuW/4XsG//LZ9v113IxNNiBoBMOKfP8/7vLpw/fozrgqnX7Yr98t42MW9IB3GMoiLIxGcYFjW0LFk87rNNhk3ALUNouqx1/HAJ0ulenGLCgUSjF0d7pK5Lzxd3gdVSxMHk3IjlgIww1qswvB9H8p28wfTZZ/mjsG0kRyZgGWUj2IVM2tUL4/IlDoWFFaEBnOhIy/NQ9tal7FGixC5HlfuNd1GRWt/EOWnFS1M0vADRaT5k6hL61rau+A/5DFsRTOU51zcLC0FQPk5jkfgFB+fphsGa4ovNyRpGih4qyUKrGb7EzbAsbZ2ayx34rHnNkqgRQBuGisr1tgGmEIsAVDB4X5tUNlXglaJAZX5nGN+ts2q6gAz06239E8/61Mx0mIpnDKVtgfDGQINEKOefk5sOxECVZVOIgQVUQGYBHP11KHTOLEAo9pgyXG6SJ/cIrJNvSk2p4oSzQbHSQgTQJsIN0VD1SeB3HlaknaMYZc3IlulZEK7MSQsq8yG0quqHnAiQ5iAdNqK919ZylTRfBrYoZnnuk6FsREklsrBao6Z86QpCc08LMEcGQ0VmIrb7H8uAVVw9J2TD0Xnep7sPIhmKq6pkA2te0Upj1LKs8jsY5/2h1jqJPWhSkRVIBdZMdSmKNktlCBZLAhTISnLDJsM4DA5GRwWZgbbTGpgAJI5oGNUpYTLLIAOI+WbaNMCe3ArHbbBcDHV5ZBNbKKnqg63Q3S6rEi609rIpb18pmXgLpdhWyggilhIz4KbQbJNt12McQGLA+7XSzqEgcGB0wcMuSmc7iy7uiNJaKkIU0mDMK1Mv8yxDaql3dzmmi86auxxmR8RwkqMYZ/8QQQ2pLutdKMD8/U6xnhgjviecy8O0Q2aBgfD8mGPmrIHPHPAnVvLD+2B7fAdqIvW2rN46a0LjW6D4BwLhNGxvzG3I/xjv6xjImuG8fo2L8ew5KNiyAsf8m/HtBcn/YHpyFDZfcVgrkTurnnkJu1zWBFxuGx81O36EZfbr3DmBV8+spYdbwi7pOnXbf+vt/WbEpf/x0+PNztQ9TI41rFzZlbOQdnH3Q/b1kc98jLs4P3Y7Mh5bwmk4/t93YeI3C/XcYQOjPfHfjnMH+H6wDbXfe7vMW5R3zYoF+7utytK/u/fv2z573Ebg5fIq14v34DH9u3w0m6X2sar5heudZHiHbf927gtCNf5WXG98H2fdb085J+CNh5zjrupHLkF94WbBsbnnJXfFBf87dfET6/5b8f/YV9xu9xS15u/H9NMGlbOz59ijKHjz9us8TpdF9Tj+/Hmj8fnbx+rHv6bHf/Xt/f6l4/69Pm2RTlmfCiOSguZje1+QVRdFfPytpcr3GXv+6vWl23GDrMBt2E+vvqf/mnPn9fY81JUjrX7HKwjsuCgVbpPHvfaD/MX1OtbnoKCitDmrmKIbSaRKPY0AQwWooabltHoyKgC3IPO4WO0OQUoglZW2xUuAjmiHFVyX2kFtyj0cjWLLS42oNoWkgpbxwizrKBV7Zlhy4eZLW2qZIKqDg9GlmX6JDYKXAAXp7JQVRSt2ainxQWK5wAniFOCTI2cymBIGY2VdLSoxiqqaCjRqsyFJJUOSWkDgqKZZyA7fcDZ9gwUhGGzHR2AICfiOgkbXhFQJsb0T4/H9WKsqnWoVJVSbZjTqTI7IlfiM1+rXnizYdOGjQQCugcvpiLYUojmsKED0HvPPZ1nlmA7Q0IlkWM/5+JzxjVvnW6D0S5BcrlDnfllIEQj2gqRlmas0um2cYpSek3ZsUCVJ1+PqKqYPWsX23qteieNk8/Exsl1Lq9PKjcIeiuzK2jIAiG5yaZoZLlyWB1Ir7JmfDkKlchKwTBCHHMIdRTLWcPpEeAYo0v89DFUQi3MstODtOJ4+mpxFMkqFN1JF88td5vKNOTv+EGcbgaiUwU3Vj1Nk7fNM486gCpmcLh1eiLy/BzMJgmDywpwJTAEH3Bf3TmALZevduzAPA6zyPZqRMmQarkVBHLQh42NpMY1NC7TwzaMy8pVGypkRqtKusoHVtraaWsl5VX0WU86erPza4mwRJR7WbkPgiGnoGRk8cGbJf04aGvLgl3lyPZZYSyD5XAUYZUA4B34SeVyAtbBZskSMcSRkUShBKRmLKPBtsxKzNevxOWApQbDvYYRewEX344dAPDhwz1kCZOwKpfFw2ybFHj5HIbHL7Ytc6UPgsNg4Hb/LiUtEMgoKTwelCGBsWzieybLMtpUL0slpiYRXF4g4yjg74cTHxAPbXtNqvZVqKtbzDqOqqOab7GuNuft/hjCA2tVvQ/P67StGOOaVpcVnzIw67IR29DaWasecdTmHxfzaaTM66CVLqg1fn5j/H7U9tXe9mVMZE63TPt+UbEeGpO1I7aqhcycsHvU45JDwZKSvFT6Y8z4HrmjQlOZhoV35IVuWbYf+KL69umq+3FwO/xutziu2xs2XmZWZNphjHuYX3/hxuvat6ULr8dR8FzBww8+tk/jfuiSsQ3455dftuv+blfXXZfdZtxfES/YzF4Z26iZ2LY9ucfjgc11+3zc//Uy//b++X/6N87Nj+v7v/Hjk6bDBlkut1G4wJi/HNN2f/ny9X/4fh/4H76Nr//LP71uX/8+/+n+/ri8fXu77n/75T8W96zYDh3fgw9bsFr5ur6/iXWs16+qu1sRw2HHuP62qdVRA6mRTqXPYfCXz1+xX3X7/Kb8MmvRpGF0+/SSNnCvo1CPq+kw2KlYpFnJ5K2drZbuAKxTR2tktVQjLDqPACxZ2VqS2ZBAWQquSMvFXhoqDmOGj9DBMfYqgdQq66Vk81fYL4YwVSiloglDGhlEpDENhiC9KssciRSjIJmWQ0jzSk5LY7YvA7q5PWWf1Y6UliDah2mT1KFvrJI0rARa9aiHyjrB6Z6AOoMvWk91gAx6prG6mBTMW83qCjVyWx2Cl+SIpYM0s5IwAIztS60DjRNHKFWlLGqIW6+Dcz2yR0EmLHOMxiOHNHIZs0lPPcZ2WrHkBQMFbufwx05BIroWjxLt3IwbgYRAGEulWm5pLar6B4OtghVVbdBZbfR4Ttwkskv5Sf2ipEqKlkZWO1UAEAy5lzZLQD0jG1DGznokTk0XUGcW7KniKpBZMGUNNyPgPoGK4a1zXdNo1q1c83KHW4jTxzZIWMk2ZafEK2yOkuI0VjYArCiRTNArT/e0coXqdBs10pgyoTVD9mPni0JknoD7qWYjbbZ8zcmw+LCQVZqCo4Lwoith7FIkjW22e0jRTFTaGBWgs6LalAVVUhnrqrKRdt19rDLKZ3CI8Ipyx5olebt3p4GRtmXrAYIbt8fx/dPFM0pVxO5X5pomxCOnmZLAnnab09ayQWBKRoOtvOzyBicqvNKsdx1CVAJEsjCvQeMtll9Soyhz5rSPu9Uc1612ip3VOrIQEbRaKlQ2gz6kzl7Le8TFqxkFRpsqIRJVRCoPKmpcdB3h7OgUXgP2cx0bcw1gfcyAVdicuSDpEbg6MubyoVxVfDRdM0kroTTF5H4ZBrtEUisf2B/EYK2LrIRDwGNUOALV0vzGnQocu46I3UrfNueK4jUW6mNul2PzY9n9OnfmEUlkMi4jygbu1/thcVuoBPapaQpQ8JEId2iUbpGTtxUad3fRLsqXeHvki+5fvnzU7Ujz97hIsPE68/vxU9R4S9BcXG7HoZfIzI2xjssrmfUeVwyPw+8IMvdjzLUlmWVb5ZdYEXREVfnUeBBj+3953W9H1MfL/vZ6fH5EPcK+VM6x5WPU4yUf7hf5ERf58pCuqe3jgm3XzLc0euTdYhwb5jU+Ln77a8bngpLzPsfL33+9fuT19fVD2+P1YVMHnPwU+2d/u0qo7YZHwla8gC82UJlr2qfbHf91/LXeUhfHzPF1H0a+W2E77qNwpB/C454X1/V9r8dfx3j15S91+fJ60fhy02N//fn258d2oIJ+e/9lG99GDKvI2/j4dtc3/V/+T5/z/r//39Ljsa9/+c//fPDLZb8a95haMWp3j5EXYDtMH4rHdhmftrqkzYvq9XUUKGfQ/SUex7rvnrubkXZ6SERRww0yJo2TwQKLZ35ZB1F33iDLUIZEwSqR7j481dpnodaxO2xMd1hOFo4ZXJhxMMGBQA6TTOjc3RZDdl7dJII6tccVGKxMWKezIVdB21zpJaOIZRJYwsYswDSG1JE2YlvydqxK451WauJvjaOpTC3HURpaoiIlTqksOj1cRsFCLTIxqlHfHOIonLCtUIkTfi0RHNbkGSOkIdU6c1XEBUGcts2UCQ5zSZXKcl6WZjNycm3q11YaVth2iDI6UTGMVdWVX0B3Ha2yakruIHnmRdBOj2UCY6gzh5poBvzwjqZkyminzTNGAqdBlzXC2seNWZ0TblPbjG1Q0uMhAVW1CLRgp+RXlsPJDAYsnW1agjS6wJNh/AeFu3e/DlXB0HFfy2eCQJnBhnIMk0KDzoSUMgOVnbbQnloVNrowcwxlVVahEqjFjKoSgNzTIC7QZLh/1IAUMofnbg6y0qryyY6qM4UZp59KPYXBpj/8JtOGLGQpZpJGZIrWoIxO1AcwFzJSmTU6btaogA9jmyGOkR3IRZaLZhM6jMdlwiarvOgJDQ1VBWAP2jg75cPF9Xg4dRg5jwgbUnzIVYsu1lqczHWztDkOjS1l07bcyoevtnsxwWkOWfks+iiUqLRcmTCBHJBdwp26rd0szYvzoOEKXWy/MCYxL2PKuJehgDzCPRMI0a0ZXeZ2XVCBFUoOWwaZqhy+UVplWeYGHtBKyPF+YfKhSNTwsJJdZsGmgYZhq7LicCgqy4dlqCRL6oFpsSsDKlKlcr9ulneaam3MMrct6ABogwzloZ2bKwWNKKyq3iAcZQLXbg/jYxtrWdkx3mGHhd9zfjz+hArP98+5T1UNLwBhdqFW1P4grsoxKn0fxl27+BULJft8/DZWROnjk0Z8FO82gU/X428H1vpi8+EfftF1ljRqbB5+1Pj68pep+zchZBrIVbFflFwaM+7uELAX9Xo57izjyIpkNHm0QgrbH5rWGcjH2rZV08c6PnJSuc/LbezzJyxOImH3j8t9x/qmsVV+BKV08wC5f9Fj2OOWNAmD6zP2hZpTVzOb+jh47EHsPj50f7/rBZX0dX+/7Ph0+O3YXt52pCPFOFja43N8u8F+9895LMZ+vX7+fc4//en/V3b702/Xn96MZCrXJXcsO/bb3anX+Xb9+rL//f2vt4//5X/9ar/e1rf9P/7lr1/mw75+3v/j3376qabGkD7ny8v3nWNyztvlkx9/+e/w7fvx6vX52//3tr3X3769mS3/fY7fP6/39fv//H8+Pv53/2Pea9h4p+Ll+jjGrb7Pl4NH4GukHUtrjrqQpHvJX2qN+boNQUnvdFSnSzY9i6jNlrspaYVTxeKwARWfTk5hjlIxjjhgbXFRZqUqxBImGGFIX3LLqCHq0MxCZNq+DUcUg9a/v2Rie+y3z5QjmWEzS4nJI8lhVcmi5Z6XrLFJaqsBYVZlO0kGieiz8fx6nfJkwGjVhsMmZbtB90RYJYGVNoEy78M12yVRRrCy5FIHzHuJAEe2zVT7GYW84SojCRuUjE5prEdyLq85RgaChW1gi7Jjv6q0qKzqBMJErgmZFaryGfMnc9hWehGTpGH57bnJrdZ4PufQs3q1aV5zk3FWZgDgwHkvdOYqNdbBcirRAUlFoAqWqVPRWW2qKQCUt8dw8WR9qRWxLWPmEIWS2Cm7p4uDEaAjldk5sGxVTvI0wjpjm3osJeg0nr5l3m7OreJFRnn5ZTDcbFqlhQjrd2znoNhNlGJmAVlkprtKkYyYZJ6UPJNipdp5zB2CbwlKcwKko4IuV6ZOrN104vV2ctRIKqvJhc5adLMSEu0iXeXjmqqQkcNqNpO68Wszl1iMHVwNRZkjEot5xao55+jo6XQaTFVzVIX5YRYtglpWQZ+A+1wyJFsDNsfWeaDwTgC9VmrZdjMpbZijaJVOyxQuYXqYuxcv47DEsAkYKvrmEwNbNywUp9Ed3kuqMnqVWZX7umMSxJycxwEqxHWMvYyHrcMKtdyqTp2ZCJAbKQ8HTIUAbRi2xVTDP1VIuJM+gDKTz80gxA6zkI+KRSQQm8QjzGiXtTg0Z7zGPi7zSLDsikSWttyHrQZY9JziQfB+3+bHp8Km8fLpX395n3Y1bbMUZOXx0k3Y8JRHgLmCImQaFOhbhBfDc7tyWFzyQPCwefvtiI7lzaJz5KhN7uHzl7f1sobHbY58fN5yM/Ny7K+P63y3nXn9GuOxHTz+esf9hVor1hfSPEcV7r/y9e26Lr9wvKaDnIwRdRPH5XL5cvt1f5SVGzEuFRfWWrmZRx3OCzPvvI7aw6YA2GZhR3C4qHetiaqwCBsXhMex/uNbFe/D/epf0+NjjLZVi4WP+FnC269fPx4f67PVB68TtQLb8ev+uPHT9aGX5W5jbh/TX0ZsewyOt1/2wGWMS63bfP+Ga8Hr28Nw//IQ78My99hjHu4fsKzH222s5XldgpTXaw6G5/3393+e38OkjzViWGzBjFETO5V1jPo7Hps9jpfrp/k64i+vV8ZWF/+nr3672B77ev3ylrMwt0N3/ziEb0MYwKeXxy9f/sV/i39+pf/lqvH1z9t/erG5VXzb9vv17fj4mPm+s2I/5uZ61H2//v7+jfPXur3s2194zdKkAbbeQqv89vliirsY18+3i6qCVu0XYcisMFSYioh2rRBIq5DXaYPUNsl1GsEc+9pq+Coj6wyMH1eMF1hoRLfD25FwMhMZRQwEYihkdQ5SPYUlhh0oZpGVYuZwOKgoMWsRNlB1j/JHUAtb70FFZ7ZGEZkYZ9Jw86Z63BMlZvtZm8lYxiiVVNZJyJFEYDYvVzyFQXUyhllFR/V63LeikBH1ZOp2OWu1jvUQ6DqTw8baL7Zj0pwN6o854tBFi6NOOjLovU3GnEOlwShfWUWBpiTdNc9JF9HptSpYs5Vadgucrhotl1FLN1B4xgaDowH69rlgCdVmFxVWJaDtv9vvyK1hg77Kc4neqqsEyyi1k/VJsgIkO5MEW+TbEuAWZ5WQisy5ALNz3hWspaQtsW3ynMzohqYQoVa1pBduNrDWocXL9TYRXmr33NYtQ1Ur2mOazZNywyoNmKhSJt2HFcwGMzv419w8E7Q5gMUxhErKzdplA8ZWcXXSI9qIJONUu9F6EQoUj1YyF8yZ5gVpjM3bXtNN5GlPXGU5KChRWVbwwapOoQRxyC0q5JlVbcS1NXK/vbTdmHkHEABGj+LiVk4TMWqvJTviNpoaH2XAsF3zUhkl3pSK7YodtbDSb8vWsd9efH3wgrIom3lfmptnEqoDRuoOUFkKv5o7YbMMbiLKbfkwud7DKw6TLrVWFdUYDI3Cqia0e++qh1tF1eRdZQc5ycoVlCfkpDWKJU6DZdEd5scAMOaV2sTt4KXuy03hA15we9SFYSZ6cRxl7nPmeLE1GZTIq4GF43WsuU3m6G7SzIo67pdNi5uyiBWHm+dRpaziMJ/A0kjbCAWSM0YCKXCj9dMfuj5si0/fXt7t67fX+LjUg78d89fbgch9e/uy9mvg+PIhbCNzoyrx1/HrJ3ze/p1f9OWX759ncLO/7z/lfPG///LfSA8+fr8d3D5+ev3268xP6/tx+AtfPu3jy9fiX5nv/+vXS+Q8cF/z47N77vXf1tv+sYrrOsEa02nbNbSq5rR3XL/Gig/a+Fwf758VXDGPNJFmmvEh5QV3grx8inHDHm8/vfv+Emvumn8fWJXww3ZzeVx/v5LfQitKu4+Quz3u9skuOy6xv95/H/lw3nO8/Erzjff7drW5vvt1+1Q15Zajruu+KX3V9et4eCldx7Z+s5sJx2VDbRy6xf3x87449JFzBsr8932+3R+b5xov9+9lofKIy31YZYK16eXtmK/XsvTPVv6X+142vvuXf9p/W2Xrzfz6r9++rxeHu0/huh37jEiv93f6+/9tJ/7fMecceJ+3z/twKv11vAavmxv965hOz5dX/CkBfPn+63tujzfhseL+62M9Yq1c8f0Q/lJ1ZW2bA4rHaC8bMYs1KlJKZ4GOTuJspUURg0CSrIwI+pyhRm/TxlinEOYk1tIUiXF0OrgAUsMuplhC8NBAzJlVQu8oG+rsgSwchIqmA5YyhaUq3Llngj6WpJRXkrusFrah4sasWikrInGbalKMtTV/tjhJvbMTbTBtSFlIVD3VJQ2nQo7lJalIIp/LUxWMUBFMDYQKI0HZk4oErPbWb1OqSJUIs1i26eDAeTaHm2uv6ZHYaM5mJbW8F9Vr5dMkAxbu5tpDJvO2xQ7Fx4l2nhSmXj+eBbI54adW5pzXeE69wNgadz7V0kNiC1+JsApKaNcJA+h6srT+QbrUuCsauGsLXxVOBw1ntrmkPat8L+EVpqg6Doo5TsNvtr30qXhqL9Pq290eGmCVZUqUXYxOs+Ic0iSKA8waU6vSvdngnp3AYSykwS7XjvASmL1WVjIjnZFHlgGoSsyK5hXU+rizczQKZUMDYqFoad4O1QBwbtHLkCSdkfVDaF5SuRGOIl2VHzZjbpjNBV/pvdUEu5mtIkk6ByoAH8XCGLIxxzSM9JKXRtGK2MQtZh7GWo1ijKJJMfe1EVv6tkPtAQaCrmIGFYOSjNg8rDZXLTjhU49amFV7uFHLaSbcr5XQPi4UK01LNdcxXvwMoU4ZVSvICrY3rTPCwy/yGBO1CQVzlP70s8sD5Uisol084PVypTMqc9hlC5DIs1+SQ6RoowZBn2JhimYk5tTKqCPdSL/iCqv5kKPygGLU2sawJCSTKblrbjPuspdhKnHKbLkOfdi67dvar6CQaUUVkZfjJ5NY6/cywOB7lkhF4sOWzW0/VJqDLJEumwPLJPnIEbj65+vb0HVdtf2kT7e8zPXt89dfbePbFW84Vj6wx/cUvyx8zivWf3z9Py7sm3+/j7Lv9/U29cCxjWXb5f6LvlyviNc37fo2PF6+QeT33Q03TfErPuI2H+GfbrtGHpe3l9v2cuHtv/w/5327lSvnlCFAs4qAtsOHH8cO1uv0yXHd0uKwo6Yts7S00k3fLqbb8KIbpHXZ8LY+Hnn92/HPR35/TPv0yxq5z+t2XWP/87dI5OPz/sHfvnz9vnJ+2o73y/2Y+vbTvv/pl78c/75tXnpN2eXx2y22DzO73XL5Lx/rC0bam77a+/Eyl7+My29AXStwJ6bRJzZgLrPYufs114ZCRuin0lE+v8WX8CveLr++PPwqTNaFFutGN4/37dWz6uGKl/E7NxtcP739M5fvvpnz7WP/Zl/Wl08fqZeKGt+///nL/cuxat23v1z/7Xr9gr9vX9b91S+fjl/e5bXLP5f9+sl/u+jTa8WnzS55ua2b1+Wny4vGl9trgGOLv//boTsr3yPv3z8ORK4aR5j71X8/mKqVQEX5yDo+f75YqiiB7iWBCwJlGAkOy7xkymzKyba+JdeK8pMvayRZpvVIvyABOzi4H+SeRTcl3atyZStQTxIOTWKxgglj0bOKUtJo0da8K8yoVSVwsOgrrI6EMcVSMNIQNa1CQzIT3Y3ZXF9LtVuXJGZ03OXqf+0vbMElIk+DZWXLdNoF96wkFMyqisEsukywE0xtMptDhRbCOgBzg1nQMgcJ2LS19n3IHOKRHbITUFTHvgFavPVqoDq83SDShpmZ0F7HLhbQXU8LXzrznl1vW3F0tjQNQLfrBgmNOmVZOkdQnWXFsGUM3wRYNbMsUaA/Q5fYaplqK4qShbpC8nRAru5hmovUiUR2ym0K4rRceL1s4zpLMvVeoDOX8MM2pdlMkE4SH7gVQdVwgpTNo2BKHY9tczNHQZnuqPXHx2VmHJBPhyX17G36MVOJVNG92dgibbTbNW20x76pLUdFEaP13KdmqN24XZKbqt1K6KSohsG7EWITwmoO65yZpnZHidYIu0GGejYbbaLdGx5zD3Eac2WkkKijCkWbSeaOgRLLmO4J3xa3kWbD1hja6MDFDVmGpMttmGGIBb/VrZLGl0i0yutGd/PtCqNef8ILhhK0+RIBcyM4bPvknz8HJgfM3dmRLeY0omgsrkSwYmQmzMsgmo3zG4PMIjloJZ8ymJkLIN2d2zXQXAq0jhGEbMiuCZkCoqipAA6lwXxeUgE+CCeH22YpL9CUlh2HofQjCMJqlRX3ynl9SfmhbZtZnA89AojD2wK8CPlt8RpEHZl3065jw1Ew0QoybgcOIZCtdfDVbBC1OmvksMLA9IWD6z2NBXf6uN88H+MiADPCoCLsraZ84+e6vPAFes/PR67fx4sOVhZsX/lt+efKmKOQ7rt/fLwp5q6XITz8wT+//MeV8es8dv9gwi3n7bJZPVJ/xr//9tfbvmz6IOisVRarjFMB9yqUrqBH2C1jEsNyq1QMwFe9XOpiEh217xwLb/j9/aeP4xaPLeJT2O12Iy63jUNuj5vqfRvCwLpdvkdu9aKMN33e31/y+Ph9SHv0pnF/jcf8KM6IvL19vO5wN7jrWvn6/uuRn4OX364Xj6rSlnNLixfbtwWzGn79IOfmwsB9iJsB9rNevwjb9nGMuRJKMcOJI686RiJz5B05pn67j33WGn8flR+//uVTjkeYr/u3sncqw91h2xZWxctxveSor7/HTru8++f18kXBl23FOC7It22//rnSM+JNMNtr/o08Lo/tcv0Ua677Zsu/LNf0Mfxir55IZV3u79zg1/lbQXGRSu2plsnRPnPFhKfavqCsYJtMbpmqT/xaGKqb1eYJBTe7bPwBegI1vxzmx7WKhY0gA4QPmGnZ5gjNDUIZyTOnF4BKQ3S14kJApiEzCzz6ZBdNVbRYtEdbL2pVndwnivQsOBIIo/JpzdhUWPY4x+agVmWS2cmKJsmllJUQMYDM6hWfcIpxYGA1AisoxUm1UBZU2/AjAeEMayBObwmibK/bMCKfc7SmcYsdQ5V86ktZEsrnBqiQqyfE0OJKGHV5AQSncYtnDMSpNDoXvziNqH4YWuipEW7CuTgK5wqyj7xOgjvDeuCnDuikpqMtKrtasxcFfJZznb+nayaA5zCr4qnMxpmC1m/iPBLH870+f8uJMLCTGU568pMc2O+LUMLR+YqGDIc3kH2Oo/6kZaM1Qo2Cu59V3EBHLpykWpkIOydw9Nqcvbkf57Zc5KBlk5NNoWYAPAuwzqumkmdv1nJndCLWuXcn4GOOCWb1I9T5297X8yO7orc3kChVW3dVyl1/eGMbZGCed0LgSEtMBitrg0b7YVEGLG6LbaDTIZbuxTKH1T2MvvYcXm0UUxzTDmnDktHg3ONmWVk2HKfGzry2IdLKR/wwTCkrncyAoLunJ25Q0cotHZLBlDTCYO5NJoM91/1nBCkNo9qTJnt0bWKK1K4DMgmjMgWYu8HG0CgMwYBoRwEi4YUh5mCF6SGZYKYs9zVK6AbXxDHC4BsPYI42YTFRzqkHpUq/FyodmZlt0zqQOjYv8KJR7iVGVCm79Q5NrrKJWHDDhx2D8elt/3N937b89nW+vX/O9fK45MKy4gIdiwxfP+vjsuZa20EdY8p5yG+yC8cdfn/lvl+/O5CWsodV7e9IjQUddhyXaesw08xEGY6b0yL3tW4r35VllgERruookcDgOuCpep+TPt4fabIQM6dKlaqYQ1ZRB0XGJYYfHPPbhTN9ZiINx3uByscBcVv12eQz+DLw+uWrf2jbpl1Nmjfj5cX+1NGvtMUVf1v1fuQ1Kt6v+76v6QXU7Vi/jp9+k31yr4fFJd6kHBVzX9vaGQOrXgivXUeEi682aHZR0msf2+M+/DLByVIUar9wDcsHgcjHi3Bw4vHYRtbBY/OP9ZG/T8djv16lB8zvB0qATznedIeVsO2qTXvEZa1P+fDKkWxUcMvjarWWeRw6CHPTC7Yan8wz9pVz1trx2KXgcJ/IRJUZLxYM4/F4ACgSLkJWoPs8k2EU9KpqDW1zfUywmSUZq8k/VRZADbtMbwPcRg8F22DTq1DlKJ/dMZfgBM2UbbDaHhEldNxb0QqmskYw6ed+tcqAtqY8T+yiwpq+tUpn9kCxw191TiXnWhQtRjwP5yLoaL1RgQnKnEBhpKroFC1Z6ujW3p2yA+ZaylQJKUtW1intpx8yzyL0pNh01pOI2dvVQRtWp/eyktsc3fJDpR+yFlDRqHfWaaEMA0xEZVi7FlY9FSHt/Xjud/vmPyvkEzrXWWIIgHoWYJ7Tav2ohafXH8XT8qnB7OeOoCOA+x1COvOGz0L/pJlbA7PPXS6YvUAmYGmrPSU4Gq7tD7N+gOX9lltjSeGUiK0zl0gQzKQ87TUxXEmm1Vm+nwcsRLOONrInMN9oejctT+mbw/Cce8mTEZX2TDXks5F5LiCecmXhhMz/WFr0DWdvzNEsMgI/YqSMYJLCSCONxmeTRBAuYz+TPF9OLZCncZjRTs8tCHZy3Jmn8UmivL1cYWz+/yBEmI3pJCoS5k43mInggGCGweovoEgbZUoUWgVQZ99Es4aDlLRO0+i6aeYOwTqjmEa1uK8ma/qKgboQCcgNJbNY0HSeyuczURMdB43zVlEEXEssf/qznE7TMHS2o1FmJjpsPdISzghbBMtUKOQhSzFiqGkk7oOqCjkjVMglq0uUYW5aKBQbuykKpsqRCTF9PmKCyDQ/OVqwzBpVJkQ7nzewIrPqYaLxJLrNutBex8UMN9e8ZTrvg9FuZ5lKcHBZFfU3/4xKeiWF4UXfChzmHLZWwRc0aIzjZq6d4gghark+9nE7LrqkTYSJkG2RXPl4MY3L5VhqmgvpQCVhWngwFsCMQ2tMIqOdW5fZUUlDlsOy0sMRfXocZhba8zF5B2g1Hnc3RhK1z+vum441Dju4zET61WtkURgm2pxFMzd3e8T1sLldrIi6Xj5mGCcs5rKB+0fpeGQE7fC3Q5oWwXhJWswR+TED3NPWGPIH1rBxAfBxsHwdgeqYd2ax7Opp2ojhYy+vVBYrwcrH5mjDxSqPFGwc980rTSmzVlIujBTt47CMiA0ULugRL9dALN6XLrZ282PPJprOx7BVTkuYbBIrMSvydCQEjHRW5g4zPwUo/YWXIFqd5vNEOd07ha/PlpCJhnKIiBJKlvKgbSg34kRQxWJlE3CGWADLVWQLgzp2DZatWDHQTvdEEkZ5X0rTIwXqDE9vXBgnXCq0wqeAPqcTotKpMxheJ1Ws4StYnQW4d7jVY6nqaWVpvd57TpJWfUj84bfQ5bVP2EymSTBZtsO+DH8UYPQ+WAKzHR0WC7IqY7r6q05pc1f/MEE7CcUtG3rqcFgdX0t6D8fZqeXnBHLOdn+U0LOKnXSmE4l+YqanRGg8a+tZYe2cOPsHu5jbeeJU14SztwJ/2G0JZP7A5fudtIFyF7zqGpKtMjtboT4KACmtp8fmueHHje/9+R/Xdt5ylgBhGeE2cp1BEEAa3SWNlgD1CNrEKjrOwsoUzkOU7YR4NipCx7zQnhF7BDFHxx43PGOnzxjo8p5G0UOudSvYm+pzIjytQZ8l00xlqlyn/K3X3vDOHxDOmOBntS62K6aqh/oyVQdiCVSbgIhIO0VJfkBnYKisFcSdegGBNnwOpzG6LBB98e4JgV2saQWae69PqBbnmzJVmd18ywSWPA2rhspZpzka1uGdaOzM4JBi1vu+VQWz4v4oydgNUKoe3wdgdAnyiijzijIospRJlGeYilUlg0Sv1sAJZ4bZmdxBlVUehYJbrHkSCvvIKKoEc2cJruHD/IzrLKiccgr1pFiad2IWi/RudsxrmN9KL1ODH25N2aZ5MkeZDRSUKhup3iI8WzGaAUzVIn3VoRVs5n9pvyGlLFoZB7nJFtDp10lvbUanrXuWCYCHzzkZEBIHmFM0JMjyLEcuzixate4PLLAiAd/8TugIColCO8MAyAxsGenZekvLghjJqFG1MktTpYxtgIpisUJgEuGYyHFgq6rw1HGlKrxwaK8Nx4X3wUOP75GBYYdmaR942ywcRSozcFN9aNMFbnQ5N3fKKlkX+4n538SdGyrHTnFW1ap7xhK8MOOYPGSl9JexPOyIeXlUXj6+zcFHfiPf5wVMS7ni5kXOKsc4nBeYXWjXAbzjGscOvyDyVnLjpdZWUXcrh49VwsNgUZiobDrqGkzGdC9k1ZGW5PBMzW1iTFWyuTPM2q2y4+/MA+bNp0nJNWCjqpNuMPf2IiyAMq+i3NW2E+VmQktGm4Mqwk3lBStvXDAwQmZVc+jck0osprNshPd4QjHdrNrYtmBeA3Rr7QutSbOgtQfXKBn7uT7ptOCJsDYu2qYYvT7t47yLtVBmvQOqf1yFnuXjiWeeZYLPEvOjyvf07jzjC6v9Bs+a1tWVAlBJdwE0y2oFjuEclnlia1Q1UNAlJ41lLgIlC61gaMurFvy0Hmkg1iCqhsgsZge4u5GMLLIUhlKlK/SsUk+M/VnKnsYcOsnQ52jxo4sYp2vVCSuf7RdOoL1HvP6d9oSGnyURz7uBJ94tCCb7o/rXuXXGs+afr0qCBq/+qNRDcb+uneztH5/vH+9V3ZX1XFgSKGW0rpZknZj1j+4MPEOpzZ63pv00nu+6z2HqTHeGCKmSqXoywZ4dwQ+8vccw0/kOuzU0sNOmgQ7J+jEq48d2HdVvmOknQ5FPW8/+qepmoPPsVHVCPVCpVIWSmFV8jlb9B89O70QhikaUMs9ACKGNpvu/UZURhOBMMascULUVxNmsuCmqZc9kNXMMz/6XOlsvmJU7BbQ9f4do9OdgBpJmZU47e5M88vzvEih/dtZuJZaJ2cYaysooVXYwJUreT+4w0k92Y7MEZBRQBGsZl4DG0xw9sxSWrWJP7t5PcNIdgxk+OEdmDqMrS7lnKeaaZxhb260L5mXug+OywgC5t1N+VbFquNc0yBt4Jgqg7QXPc5egdC2LKtOeh+zhvkbKMSoLVYLDNODcmOUxfJaPwx2+YGYVQ1IxyDR2InfuAfNekVi5ASOc48IXvXLHZU9EzSyrlZ6RhhpbbcAKlZhlbZfT6W5usSLmcGlxqNcd5yaomzyVMkvKhAu0KEB1VKIK92uu8sXc4R5IiTR3ypISinkU6FaRccCOXDatFgyGSLtlZckqCaeOoPUUstKDFnMiJurqOSeXINUmbYKrxk6vGZR0eEXKoshU5dvH9k1HbebrY4yRro5qLcNA0edRLqZfic8PxRG70TDGlN9wwbABGzm4dduMIjuDDJUxcKCUYUhWKitVSVYN1TFdqizB5YyYi9htK/rAMpqHa3rED/t3VAtahSof8p6VDLCi0SQzJuzsxsSkqrVuVmUYLHPJS1CVSA2AStuGGs8riWKYDR/LcXgWTIw0O40zUuZ00RnoyFSUeP7V539ZIanE2UFXGShWPutDrz7rx7xn5whNmgmsptbiSd19Fl2cNG04nxPPs0KyqcLnNvVEGDtb5xxVoPO4ZAbPxW+HEkONY50M5NORChxWsCoKMKOPARszhfNIjY8jZaBqKbPfhbcd0tbeWFklargZM+HD8zzbUU3aAlR2gv5nFe6Jv6vROY8+60Fzy4Z1n9CuVlS10W6f6NVqXJ7jMP9hauw/c25BcUY2djXrutVf3vOGn6oinmRckOzVfPWC9NkSCH3uNRR6zsXnbyH5XAJInbPb6D0cPswMNBvTmsf9hG917qzbW61btYQJfT6e2ZRVVik5gYwklA1CQBnR18ofMLGBqCfS/wSJyZ58hNHPAWQ6yeEN4PxAImg073UyezH85JRLaIpVNwzKHw2V/QHSPz/Edty2UuGHrIwgVBXnUrUK5nbOjR1xHauYlEzFRo3LHWa0RoGtJNRz06RniwtAqudwTrZfTgMCz13EaWV38iOqRATKh1SV0ZuB8zCEpOzG6Oym1e1QITNLVYCjsdlCFVb2ZNB6dpw8/ufbO1wh0LyQYeFVsgOEyp1l5uXKsmZ2uMvMnI6I2E6Y6Vhckp6zSDWd0saxhpmIAs8QkGaPtxfcZqNGNzkGLQ9AZMlZmSWqSsLjkrZPLF/xEotKbZY+Ym2HV84yDLnoBiweZFiZwoQqZVouLHdhCXvi6MlxiNeeiJwy09RwlY7pPpYhbWZatQRAUVFa4Q5YmXVqi/VhJDjZ/MNMQCEFK7OS54GjKkNmtNzQG+tEHnZswQpLcDFX4ai7heX8XIg6atupbd9f3pkFZKDKVyDlywtTyqh9fNQjpixIpmLnMBWViO1hrrLKJcVWDnqYuW6KCZGJ8Cuim9ThYQNZHA5wzE2KLJ8Z+bjiITCYK2145MC2kuS6PFK/ySo+PhteDjI2e9PDfVjkljloAK7eTWY5aDbCeIFiYuXDkWunsGIYjK+QMxKVCeYyCuUwryIKB0XIUwVfAXMpmSWf4OZS6ajzMO2q4SwZh5lMYhm9wSM0IpxldFZ1dEj7SOaZfSe2LZ3hyZgF6OWUe5qXVfTJk7QAnVZGUFbmZiZYdwBMyWZjh+NMVnVLge3TVc+BA+fqiETRrceTAKVCe2vgBy0Jkp6V+CzGZRK8zaFabMSWymaRpwxLlcJpKtUloE7wslSupq3lORWSxLmqfAYIy+rkR4FmZUadeHvCxap8eGgYVDtyNaFqmOBCAOtQrCqQw2mWsq169w0JuSJHy42fKPOPGRh/FLhn8eqJqY2chs7B+FkBflTc05S5T7w+9vrDrPNP/Nh06sdN7d6H6nngj5cvNozdkP85SSJ7qsOPN/f8nBpleb4dtQsayWcRPVFqcyfN6DJ3msl8mJ1ZRD+GdAit10bbkKhOolSmqqwbkDSZ2A6lPfO5u6m9KQFDu6+2H7VwerLiefPOEZ+gmpjbH0Iz3c7/iQWXjbltMC+gY5j0jKlqCL4floI/JU4Srehys9GGnif8cmqxocIAKBmzTs2Od/tTJxPNDR083PMgMdxmZxzTZC4zejdbgOBuk1WJcyPSVHKUikUDGmnoLvP8QhAG6yjkboUJMhOAspCBzMUi0wsoeiHWgJurHzRZe4I5eTa3BplZX7qgcCitk9JoSQcSSBiYRYghqCYqezIjABqFCndlu5pkIUuFKgvkdlGsGFUk0ramsPMHK4AYzH4YM3FEFAu5BkC2b3wFoWrD0MKKiERZBspSVnRCZ86Fmbgtf7XlVnHx2AHQqrs6FbSi3IhcjoJWZlvJbDOE6FS5GjMOq8NjoxutYzw4SascVVGDqkgw7IhyQVIMUP+6tB6Xc7EnQHAWAVchZOZ96k5rwojBKhtkYaWR42wmS1khpCqDwdiIEUaQ6WjT1pWfbeWmVB3QARx+SI5A5tTksu2xhTqmteNamj6kmqiSGFbVuXsrtcaR0tgHDgttIyqPtPPRm5WeMg9z+SbC4UTcrnXNKvI2tsCtMglgcPVKMBApzKMqI4cDx1vdxptgRHDXxFo5c27lRgQdqYfTDZNaNxvm64YjrpUJYstZmSwfvjhoY1axooWMjaWQSMWjLNZRIURq4AR0DdWAKc5l49n1AnjisGgv/R4KzzEE1keqefsj0IqU6IB5naPlubPplr0K/tRbUHCvEuhsOA5OR4lOC9LQyp1U1aTDvJyzCjSzcIK0NFA0sU4To9OKwqwRy66yqvMQZV/aOfydACeal/MPF01r00XrIczOmeKk6/A5ZZxb8ifpuEJnNKuex36egKnqVANxWJchmVfZMKONo4jITEv55iPPx/8EQ9s9q85MXJtthSVBKe0hxKBUZKaUIoBnAcaz2/hRg358ns+TvU/L8UxP0okZn/X1rCh2Dm49pfFHqcEfs+/5ajKrvqU/KAY/GgHYH7ykH4VRgNgRik9gt9/x+UOnAum8Anarg6f157lZMGbVWa8H4UTTO9sJpc24Sqd3BiTrBlGSkGnnYIzG+3sYAs8rEUj5ZCNDRQjP5KgfXMSzYzhDp9lZy70IL+JHc9ihHH6C+10Knlg81N5t59pb6LrSgDZOiMtOGLhx5WeXhXMLnUNsJReY1ClpOgc20loNSBHmnnS6UbTOE3Za0dxIlur5rSiqYC36hlmflZAkb1Co6WSAqoVcOAF5nR9dAmlVp8hmnBC6opU6hUzBIucJKjnN3QoOGych5Oxn+lWX1MkifdMNWQVFPw4GpypLgwCH6Oi66kekbKGkrE4tTpilVIrpKOXsp9HnqJJZL/xPlKHzxUSYN4KpSDs3z6kmBMKJLKUiIton0PTHQVDpcwaGw22sUZgWq4TV4TDVPX973C3ctzVKCK/sTamB5Chjopi2cUxdLnkl08kKVErK4iJW7MclLaAUQhA2c41Lhf+06livp6Hv6XujVAM37eJdpG0wok47NzTJsPpgZoO4xT53iblXVfo4Ck4JMpWRnrjF0qYseWWGPFZOjFWmxL20PlIIFQnGt50Glmy5YmlfnB6u2qz8YvJ9NSV4VmZVKI9d2ftK0yHbRy0bYgrh51fcwOt1QYLxVhrlBZh825KT8jBstLFpQ90dCa+86wHYWLI9vY501rjAMbA4s+rhwJAbAy4UX3DgYugclQsDLo7N5DbGKHq6YxovBfaeDIq7jPKm+suckVFCYZsjRUv5j9Px5J3Q7JSUqNHJ7mzPcvZjtKrnidjYHOjPOfE8+WE1QX+Cl0gYAGNbOxJFa/pjOwSdS16yXCq36tTv7JPUZlDAWMEnFKyEVfa2tmCNLz43i2c1eW7ansXkvI6zAz0vo+e4vjyyA5LORxF6Un3YI9VJEer/oxoUe07F0A+2WuN3kpA8ebduVeQYhHvJVZle6fPa225A7GUznVJHzIgcUEQP6KoUWK6uRlQinpBzfxT8Y1Nr513nWbyfq9wGVUc8692PAv1j6Vv9de06YYJ32X1CCXg+COeiu1ED4kffdnY+TxOtf6ivwlN/66VWmOAf6EvUGWGIc73wx6PUpxoEGErVv1fpSSsUzVH1JPjyHAOb26ZzsjlvIYDnNCmxmWYSTz170cwIK5q3Vzb5pF//aMbOq/wDDfiBI7TO+McyuzOPCQiGyqgT8AWykp3w/OP2PD0+8YeAqmu0dSgFz01I4wwN9/xgqatQxS6fo1vSVIVnyBLsBR8shaVhWmuPSWX0wgZGpSwqVgyi0pWu0DCViu5qqxSorMYznOXsSdAPFE+mJVRZLHnlk6XVqDGbVO8d6WLEaTOu+uPaTj9tnp1MZ4Oe6//uTrvTEUC4OTydjjZKPZ+XMlqCJlQjQ6mGHLLKNlTqaApmSsLJTqtoHT1KVPBADZ4TjELM3lJmp0zVLFYzwAtlpAFFmhch0BzwbPys2fikcivqA5EeqPIQ2Ft4J5YDTGwkYEoWhpXMRzHpRWg/fvL0OYja7TJ9cYaUd3uR3ExzO66yUnn2fbtBrOLdas6LRtW5pEIfbJQ4VuY0UTZn0SNGv6tgCcYCqtwNARdQG5wyYmrSJq8ZDKV3lC3KIKOORT1GAO3FnfSB5TMNNRTerBUWmKUr4bJMKKuWZMvIAzYKd3tEzfIRFnIYReyt6+wEbS3kKs9j2HpwjaFuwdfax0CyQzpJdiyoA8Ngbi4N1xC2ElwBr4uVD1NeUqt0YUCsLISGSuEIBwE5Htr4nmHXYpvKad81Lj6G3N18AuQYcidUa7JiEiqlYyWRCRSaAT+GuVun7hV7dSVAFFaBhdXfg0xD1WmTKpSZlO3oX4XnLgYkrdyDf8zQ3cye5x9AK3jmU7J/LvdaWwc7PYLRbA9Yy+ocxna5gFA+vAqERx/aOokMZ75gndAfiEZN0PRhdM19QrPPze5J2OpiLMCeP9J1ur/xPLm4P065/s8onCNnqf+tzunwj2GRUJsbVyuCJLAlXLUAmDRQysi6VJTqgCoagQPQ+eUHgN4dZz1xTiDB3J/b7bNgPWv+k8IEiM0Ixj+UjGIf9GRv7Z8fFv64wj5VTW0UfRbH8+8uiU9E/wcpHXyOu/ij7pyNGvVH7T0bnh4imgn8zD163lvhaSLCs7ifz8k5eAHPy0GimnpzXmGVnQlFZ7v/A4uvAlg85UwtcPtBYDp7pBb3KpvVICGlOrfbsvN61NIse743it3hiNT5O58Xet4IWj9MrRGN9rUEoKo8qeA/+ouzmSVOWxuccNvpjoY2HcWJVxnKYHUy5TuC8Ow/KTtp+13/6jl9QwZHdKuUVTzNrwF6V8ITyD0F+KkY6lBSAU35NQh1RjsTyVJhLVnZ+dXrcdl+NIJqGL938gPNo8Zz9urFBLyMZJWeYDyF3vzC/cSkWrT97KX7YUxYCVZGep07opICmeZySN7kbapGowqzvBK9uGl7+zQoee4pqtQjfkoGdpq0wdyeCwcENeRUN55W/dHQfiBsfp6LqCqArtPaZ8xI+Ilj97ehO80x0ni4n8gZSon+AAoGmuXSQbFsmTId5kVUHoe9ZIHiHPMSbnQXTErLQiqB+3ED3EYKzS+obkh46gF0QN29qUWEirUBTom1X1im8iGEDxKqkJUFq5rMp8lKt4QZjT4fBGyIRE4VT7f4TBlSVtiOowerUmZKGFk9d1C5XKRZzjY354SARcWqOhKCIzxzZA67h8wSRMHqeFy9sma9b9vOWYcfW3H2KV9QDQJVWUSVkgVyYZRNXdbEMr9SQWzHerk8hi2uKcHWGhMYnWyGI4vIKtw3S48iKx7wq5kMy80vqOEuTBNRvHIgJicnh6/jGBWswNSIlHe0S9CtDQD6ECRAA2BmMoEs8vRgqK5ozfUVu18/zYFJUv7cCT2rEE2nmRZA66mVfrobNmJQ/FE9+FzBnLNGY96nDgmlc1MEybtIFdBpTD0qdVdwDnQuylQnooznqzxxvC643TroxLb4LAI6VSLPYfF5RP4o4ScO+MdvtLahPDeZ5Pka/drnoNL3poNy8AR2UMiKdS5Ea+kJm/fzb6SUFCtFyWGKgghFM26NT4j5Hwpwdxj6QVzq9c55a37c6n/YAZ9F8gSYeRKEztOznsconlLhBqiEJ+fqpOedrfVZ14Tn2vU51OGEFCAXWmR3On/iPOH5RLl/1LDnkdfzofevRNNth4fMzRFKB30QVNZ5WINEN/Int677pfPgrhasAmf5xbPREMm2GjsLKH8ck3/MqHxurM82U3iiKecGmk/Y5FmRAKDczGH+RBqee+RuW9T6osYV6glDw8wLdP/xvJ05ymilSTt6nYh08UzggkrLKVJmZsN+9KtP4KZAo7OMA366TskbRG8dl7HzRRLmpzN1W3mY4ES1Z46e3yfhB0OiR752PGEFCg6U83yjPFujc2PcF/0EoJ7NY5U9Mz+e8SJnEybZ2R4QgBKM0kom2u4VtHSa1fBmE5j1fsLcgPJUNeGRRhdAWZYjq1T14/EaKJgVO2mbyhpnV/tjB9k7sJ7bO765T6nGzCzLIC1Lr3aeF8uhaQJnG3o5pRwsiUazi3GZFRMDqSAVwg5H5lqFEUPQqLBL+kIOMHnZygwYM9tkrnye6TOjaDtVY3tFvvQQdY5GapksNq2yXtcPApn0EyPKS7GFnOlzJs4vkDIxIjJFK6Uo3tI0Xq4ygIGrvZdqXXw3G1pVBUvmAamND8j2VFPxCvh+TKR5+URg8MnHz1uu63YcCRsrX6nKJGQoHYKUlVtIrFFo1U/F4aNt8jlAkg72jtkWsjJty8SaAgv79HR92DRMVckWt2nLRhlQUyRortG42rkKpN0edwxklWXNq1izDnONkmbKqYxMp4qSPazCj/8/V3+6K0mSLA1iIqJmHnEyq7vvMkNiCJAYcsAFfP/X4APwL0FgMNt3v+7OynPC3VSFP9Q8Mi8L3dVdlZknFnc3VRWVRePbXDXoB8/6q40AIjfMJiKqqrKbLgEotw6Wm3DYUXPZt129t4F9UIqgV7WBDbqeMHbowT6aSnFtMjIDFIbJlr3SEqtKoTTM2OivDMGl6sBAgCy736P1roM9P9HBe8Lew/g+A63qjnpbNb7rT6+xvI0v3wPcfinTdPBmG+2O+11Zfs2au2Dp9jrqH7qBeuLX4cpbtNRhhiTVCo1QobXKyUqIVRc2F1tBQBVSe3h4GVjqo5Pa8bS6Z8L3+9ln/ZvedJfc92/hr08x7rq7i97tY+U90nUBey/Nf1XJuj/gr7/+0z9vBICNEPi3iur3b6Dwu3PFPZ6/UZj3O30fyxSF5maC7CBzG9aeMVmS+/1qV5LeHKKELcHbSCdBdLQCDTCBbnmSkqm2R2RIN6xBVr19RXou5rtX6FN7rxzes767WHDzxbt2KaDtoIHOp+RNcCOhui+Q3zvmfvJWSa4tad87IO9Wi1ZwszpaQxWi28qSuCdsbySBIQpUxW4uCmhiL2kGmbiXUL6tyN8ucDYZIxG/HoRfd/t9k1S1dzjmkMnSSKG7Z8hVLjRZw7kREt+l9W7VepPdza9C/K1z5OpHRFnNESVwd+kAKUhhhFJCmmTEtbkJttNZzn3L70iNYAnZ/q/b7yMQj7PrLePjdYpgJ3mysb7GzPquNSrbqUhZ1k51KSdRWkzmims97Jp5fY+U4Mg+oTBKolwu4cP/DA7U3AIEMulgkQVIvuBaBDyrVLZoDbwY9CNXmAOhHGUYisfJcvm7FY+RN0vOAcIKE3n086XG6e11cRKA5O8E2fJQkWqOKQmyyoOFuuQCHkVec9vfp5+xDMuHOGTkEIK5khEST0n8Ypi1Lj2v8fOieX0XRrwyRlwtyefneH1RmclZ8zV8mYOmMlhYEb7WTKRKNcA2/yxlMK8TCy+DDyxDyyDPyUxPnWsAV81hK6qKqvP8I1/jh1ic8fKB5ajVxX7h6YonP6Xw0GAhhrNGrBAYNSZejonpmFQOFmXJi6XQg0U+Ll/I65rw+sxKK80Qi0MRMQilWXZ1W8uuETDYO0k1yAPTe1lnVrNejV68brpqOwA6fsGd2CgM34s09QDYIr7OIYM1dgxYjyD332RUvG2h0PfF/dgLAujoqcQbhax3heufV+3n1MAe7j32/idTvWosGryDkvb/xG7ubQTYe8rfilmPmT2s6sbcfx2I97y8D+ZN2uqRkOV28u+hh5mo5Yk0TZe7grQYDwW4kMktKoh6g+aL+3T07iTur4m/TkPem7S97f7t1AQMjN+qh3/7v7uY3zaK6qPGv9bq77KNdwm6/3Z/8vtobh5QX7T3tvOeeftIBdD8zN98Qd69zz7f+2RvELnfFOhKw0kwyFCQtxNJIw21zci68ypiM+5s9WnfA27vCt/l49cnu99iXzz7Bj6qNjR6fwO7s3n3Qr99+3q/n35TMdzWxzevgOJmYDVrC73ElgUJKEUowOLNmL5XACyPG1Mhbw29IUKKjSTtj/ULSuh/KdjdrhDoSEi72jyMklg9SYojuwVo7jjYHB5WX9Zm8vL2PN1foawghttLYncYrUSyWhHdvWNXX77JdrjXxWZVobRvgZtd0XdWCbKJjf1Xc8QWmy3ZT7sNZ9M6uDcKLR5vcqiThVrMtVJK8r6xmv1bgLHy6obDLoPK7jO6XXDmlUJVt1JeubJgOstC0awsp3IN71aJiWifH0YzuaqlBmR7hgt19eaewA52IYEaexcSKeZVYieDT5tySyqMLOYV0ViCDSNXXY1GcHSazL5Wu90RI5ZJoLblE7KDUHvv3VfGoLPS3XcQcK6iXSjJBZawjugpp4k9CoSA4aOuAQTLLT/2wqPGNWFXi+4uPEAHIZSmBoAyIoZNWBMKjWikjNWrAntknflwAlGr8lhkGaFqfThdqUGkXE3+0zrTrrNGvZavw682V4bPcxiRjOSaV2W46qxUOZhAJcs/JYJRcxUOrnwQYLxm5FzjwXRURHay+z7YktJkQgyLkRRhciXlJOCUwdBQxX113dHzjIYcG/2EWKo+eI3NlrllJ7jNh/v/1KZb/DqRfI9Ue878NY11h110NmnllyD0fXq5D5ZGT1U91tya0p4pBd/Loi68/cCRvJ2Y7onH4M6ev894A/3B3t13v/P+Nd2lxgjU/Sl+23Puw+Ae8/qY7x1pA7Mby76nyo2vdmHZzknNxi0xmHeibqPS3oqdsAvMbFrLXn3tz+3bqqw/i3+j4/56p++d5C90HpvCA3nUPYHcH2APfO3huGWq+/vek9fvNXz/5l+z0C/KlO/iz82J2zPerz9X70P1pl/tt3pP4f+p9+J9Y+0/04NA1m1VGoUN3Nb+cdu+Yp9I3C/v/UPc3H00Wr3duFT6z8aQ0kbWsZHT/kL1vlNxt1x8f827xm0WGoFdWP07X+t9dX4BK3ff2rhsK3JRcBWLjU5jz7P9Q9XpELdP9i0IbF6T+mPxPZz2J3wvVgJuAVAnyfeTW2aRxWhGYSNb/dTEvv/fF3Fr5vf9382BushX4ao0roCMqnKbd/ZV3xSMfVGA6pl4Y1PeHWh/1rL3t7gZFSYaKBEQLRDYn7FniH2H7itQPUXesDHKaiFdmYsJ5VoXIx0OLNtWohiJuBx19skheq0EMm/whU7XWWofPRO1OtBtowwuwLVYuVYYRVdWOTVoJOBqjnjf5S4WkHlFLqW0nxe2X32s/XniCABBhPt8KruPJhHOq2QUKpoxYiLhhCq+E70qRR8Ye0HjPZOAiLU1HeUyshZSCTVXWkhUCnbed0/fYzW4paiBq4njA6Psaqh5+QDb2LPDeRKhRcc+5Wi0Ge7h3Y5Sah/ubA/UZSboSRVmH+nqy4cRQ0WqWnro/digrutZCSEvA5tlYRRjX5s+AYLCHuqLy0XmWCtRy+WRS517tlDgulr+FvLLhfIHijjqK+iVFXKIYyBIF4r0co1JcC15uKN4SFcMQaONg8pksQLuR1xV6OZIbKJJ20WSpZIAudHo9onvHfDuOJvv2lezavfojb7KbjOF5hdaLNDpLVTHLpW+C8P9PDcJorEyOW410U5uY/3moyTLd4rg3i0RrQnZR/m7bv6ac+4j6/5l/v8PcffIa3DnC+K9ytu14d7y3SPvfdgR2wyJ2JxWq7+7Ls5q90pU7zTgKprs1rybm63LcbXBpu292Ovxp5qVoz3usTdit2EyfytsXQH3pmp3DPdDSIx814PfC3AXKfZKUb81Rvf35l+FcRdbAG2TsPsne0vgsGkzeJcn/6rad5/2ntbk317k3Yrd8Drvt+c9OpFGcbuJ7nmVbZfNFlp7v0P7Zrb9euN+d4q74vdbfPMBaFEdXOlfexcL9+V/fxe/9WX7v7uf2AuR/TB04Sy/Nx7e0+Ht8NRXxT0GNV9inxh3x7Z54Qy49SHYc9v9i+jOQwOE7vfMXXp73e/7HdrulEC0wvn+RLkCxOZTm7E5ynv2qw06Ed5a1rvjuFs/9YAXAJxt4nY/3v37fPcrosFS1DYDaaDGxHbUYvG342T//Pvy5G4tKMu3FbUBU1EFVR2FHl6mCoaZpBxzKqFYRzzCaXHKEwmWZ6AUO4XtwCM0dYyH16HAmkIWtt3I0W0pYVdG9RbbiVbZKsBIRrOedjduFHwZyx/bSHMD7yrUCCowG1S7AtypmspmAwhrUGUkKNURr6tfvWG6penlGMx1395/uU4L9ZeGf0hjd0jqs8E26Sy2as2IvdffJ6CB4k7r9m5jJch5JJaRkZl/SR9e7b2EyCRb2G1DVL9GbHK8uXJkbXePuBYiLTDBitgnp0mnZmUYIiLq3v0TaykLq2+iZs+hWIArLSZMhs/LrDJUuRu+BjLM2GtNBavFAkeAAwHNKJTo62LkQhP+WcZVp1AQhqJWQT4Lvp4+J7+ucrw8Dx5uhGPrGXOOmkRMrSUSy2KeV6xG5HpnNgR6e647s2nntGiz+J5hrOKwdctjce+GGzPzuwrJACsB+bcdnvtB6SuUVlX7zXYXvJfF3qvQfTrebo7cPoOb7wijdz7GBp3bv6ntXUA0X6i3l3BH0RDbQfc3pGsfvCq8a+euQX2CtFcQG7EUpfucw5uxxG7EWHArl+GuEAZvRvnm1MBm3NJkGeMNlfb7AxFheBdjkHQ1yJ1OE1XsR9vbOvIeEftVW9nUz9zNgv5PBZj39Lk/Qj9eJIbvUrILEu4vZJ/oPWxtj+67h9jDXRelfRSLv55com21G/3ze62Ju6ByD0IUamux95fqXYPetDe+a+TdH73RmF0DFUP7ffkuEvfQd7+quyyRqALl6sVL7RruewuLqmRWaol9FfqFXJtO7j7L3pX797bNvIsyNnS5X7wrk4y8izYAu5hZhAFteBBtnsRNStqH3rtZ2J7FXdcJEqPjRkp3jmOw9kMsD4rVh6saHwqpQzVZXB5FXWkqiITu6ly2BjX6Y1sQgpE7G5H3jQsS0bZeEmyNEKP2c1IGqkm23aFRN/9+d3Qkgwq+l4wxzUDI1n6W+pYqF0KlQI8r3ZaDYAWqR3MO0yERRwIpCcyCdAeTqbqMRLBSjyGkFCNG1FUw2rzTBOXtBnQbvxjiSmRWmHAVTAaEAQOxHyX6GgUQqvrAMOexDlH65nk+L33kB6BD5wOnHjE/4jpizQHTYXfGJWPFI4HARaWSdAV1zpFSYT2tmfVIk9eTkaXlMPQwayzTOY3MqtEbhctCLI54vfjQtj0g4GL18B4khExqTC84MO47Lk13SmGKfs/QdKHW55cLDq5dDbtTCLvCz1MIjiqLzGpbI6btdNVIHa80GbO+kkcGJjNVx8yvFesLxgRkhjxGpHweq9vFhnpGCt1KFAvFGMVoc86oEqL7Cmc+9maoIkEiAaGISXK0H7XFkdhuZ8QU4GxKaTFZX7iPh+abZKlcnxVrfeCVw5d1JRdwgVXBChtiXedXDp71QaSoSI4pjlIhbAwlHI01ryykd8ZpB4EV0ttgngQWItshstdoJIwOlNlMgd52NUVqtXylu/uNNOzeJpAVuQag2j3JHrfu3v7XANRrnAaQ/T7emqBrcsOGu1nuQ29vqZohs+2GCCLf7sw3DrzhQO0Thb59GHavbe8SsnG7poDfJfpG01EteYH2d8J9ubg/3Sb2w50F3Fe5EIRTtqFmyYiBgnIBzqZY9QfabWiriQEqupMQQrmtCtFYYo8OXZ3vSaMbm3v0+LU9xN1FjL30fTNh0JyhHpi6kdnDm/Uugv+pmt6gLHqhZ/9W97o7729rT7q3r+Im2sNjj/E2boE17n53YwubeASjmmFgNN2obKOmCKCiPVu9mjwcxTelzLnH296VNwm97o9Td1PAPfz3XyVks4B7t1GO3ojtK4+bs1D3HcG+dzoW0borsb0NtEwh5ixNR20wor+L9uhsDHDfc3sZWbAZHQ4gRdxsA6OnV46VCEKuocskBoxgkGEgdO8YYQcVoEKgBpZTwWJVTHTkAUEMwvOjCpBqVcb0KsWodB9fEcbExhrAkHpVFYGxPQBSGo7EEeQlYAxTKLBMttppj2I3MZKKI4vReRp9gb1v/+ZlaDPM+W7iYpJwRTh0Shhjr8zGHMtelTmZUEJ5yyW7mZ6CssOlKGrWc+Vw8MJv+4YEpwWwlC/4hYpsUXMfDSPWKawyTHlETxh+pJ98gXNKI/HxuI7XPPl4mReU5BfGt9fXgdcj6ScQF4uFuF40PX/kX1658rsvvj6OswKK8IosM77OfJpaNerMXE/Wn9/9ymdwPZWfeTyucz4fV7TLqxqPv8bjZ/2NHSdeAbMqacMaldK49MLH0VTtfmrO0uIBAJxlkoqhtL3KS77mkRPz25jJQ3DpsThAJB+VJ6C0rwEwg8WozAIeC08qYLCSZFWkNFoTVWIhfKXto6e9WheHqev4M6adKZ41ylYkxigfj5qBxz59ZbTtZdQ6SJQz6oocbbAbwjnBwlSMOq4qwmnGORYeL6coyHBlFk+Hk3WRwHqaNBL1hIRRV83ppRUDr7A2XNRzwwUWo7qvO5H2JTPOM44wFqgWWEk1Aiu7zVQho7NO7uF16zOJQsELxm5i93Z0laFe48jCHkJS8oth0AXeWr+RjJVyxFVCZg2lW6HUNXZXMdsFVst2GgG5x5M+zaoq4l6stjhfnYiI+/jb8gQRbV2wQdR7utvw4Yb7oqFiaHsNgWgbrt1W3IPsez6/pZUMLBO0ArcT8y4Xe75rb4/N4gai6WMOaSOmzox9zJCDRfZOrxD9byUi8FpCZ6hmt5BF0bUUWbQ60rDPF90TMHf5vact3l2N7+30nkyG7qFyA4IANz+nl/JEZdfrjYaavazZH7jLN36DN+9BWI0Q7GF1jxP070RXA9LojKeuhrndH/l+23s2vhHnglqs2y7/y7vrqsbQSlFZNHsmzPaY2G9f2u6AQavjlmGpw/4SAqRyU/olkaisLLTsBS52o0okue4unHdLZgc7slN3x4H3gGzAKCBzRcF40/vREUYNsVZloquKXYnmdGtEtfdq7prEctGumJWqYhvKSdDoDzBGoIiihDvbo7mIYoR2q5I5q7M0daND1CB8EGdaHIHFkSjM6Su7D+Fhyg6fEIBOGCqPGhyz5AKv4igBMZeCvcambbpUwfFehfTL1lq8AaRa++aAYUSYpTEBB5O4g6ekDS3DntpT8Tb8AoCinIhxhB3FA+fFvTKzNWanTFLddAwdeS+dJUAKBBOayBwdaNhy3rgXJyjHI2vE6ptAarZG7+TB7YUOHA/qUUf5uSx7PK76puN5VBxch7+XRtp6cb6OXPrwTx184XhUDR4aHD5GKpQ4no/8eT1XBRnj9bUUOgCNXB9UzMrPD+P6GDXKdg3XR6ZzXv/4VkN6joyVJeSbyRHIkgJmri9AzkVG2fJAPIY1vqEUcDVul9l3dRx5LD5xLD/SWN9kF7GuyAsZUGVmzMfXi48nWL5imMVVQb969OJCrOd6rEyWV7soUkmTR1IjXplVqfKqoFGehVgUHtdyMBU9jaCzDa49xZSjF0kJF1IsjLxKqAXCHFTFmURkndTiFVhYGbKIB88JrmrYPIvRw0OHcg0QYY+YgzIqZ+EgXRjLlTpTs8VbZuLyWHUeRpwnv4JxOcaCOArTDK5yLTS8fQNDIHptvBVutLyInpGxQWBLy/eAWSaIWB5eGsquJOUujmRo0WcF3IcAKp0QbKdTxHEzEFG29kqrY4X6/wrpcAVKbfICbAXpHs9cFFx0bnhdwFYm1D1d3GMb9xD3XoxlA0+1Z8hWQoGNDKKKlvauOnZJUNxbbbIcaLCId8nrXKTOCQVBpgTCAYZUUF61QoGQONtPkofTLfe+IwaJ6R50Gx643RQAuN2VSJp9oP4qwO8P63ve3SLd+7njXQEHf30V+6thbwDedOXtGNX3Qq9SN8fFNyK9v8Y+3u4FwN3wbKykX7AnTxioZt0a6y5V2APjfRTu1qBr156KUNDmZTZA3HeR96ZqidirFLNEV+193f5gu5gD3Wi0kW+/f9BUlN33jXdB2qOyi25H8M2evkfjG3LG/cPrlrVvDgH3U6TYkM7+nNijX29xykUi+/G4CYG9BDUJZ9OUtyEkuHEgo3Wn3kVBKhIVirGfEghmh6+WMGInI++URBTKSBPmvaonxRG8jLbqbxLUgMrsEEywUqmAQMQYioIVo/eDe6AHOuLiRlv67mjKMtqe1Ls7q7VYsRr+zu4WtrKxbzKOBrPurtK9RW9gS6DSieJSuLKzx4hVay2AkDqPEkRC6YoQtDZkYVQi+w7bOtmdBmHbaVeMhZQqD9CFBDlGRGnWodnjtaekBFlpDGR5xNpAFnodCaQVybHCdM3V7twNtU/GQXyF83sdMbhCnEelEMW1Ymj58ZghjDFJ3j7o8fiGj2/rWw18+Xg1xjTh1h3E44yM55FkfLRvemkbPXSuU4Oe0BGHSxieuJDdsbYo1ZAXUHRm4boGAR3/Aj2/PJLjzAtyfl3skL2vK9hzxqHxvRQP1yfG07JjZEwHU4ahpBBpDizYMxZYK7Nel52xsLKes5ShOrIfL0HM4JWLSDuBxQ/32cfVqxzhikqWkTMZJSqCNZQYJKEk1lxJXFUpr7FmXszvCzJGjNQ1d0T1Aon6Xg6glLUO3oxStUueELOtXd0Kw14BwalEU53R7suwZusD7vOGlSvzZVjPI9oZuzPwNtuBFOs2eNpoqIGC7qN9n9wmNqmeLmBr4VRGkiwsOQ240m1YhoLE8ulSIDYxxch7uFU/Rg1VVzJ7n7rjc28B0861FF2xW+w9cfiWmN6IHnFLfblJVNwL84ZR+4tpnsSufrfrED2CqsRWZqGwLXwAWNYgiYymzoB05yI1p9ACUUMSXURnTC1mpIelpL3QBP49odpv0Lh3Tr43sRTr8BSNySVx2wvcnDhv66DfCjDfxee3YfguQmNf0Q1U94YB7nfa3mdmr9Eavr0p3f0+u5HdHKp7ZX4jrzequ1Fu7W3CnlgNu0brGLRRFeySgpvotyvZThDs228rceH0XclciqGYhIKM7W8rsVyduWMSjEGj9TWO3r+XOwek72BGsAvM5jlUtVOhAWxLM2+Lqo2QoyfS/jOoAurm8wbqtoLuca+VZP1o3fC3q+0Z1A32Ju/1ZqVhhV0RCMBVSaTdTT8Yq/fFtbHqGk7bFUgNcQFdzqgQt2K8etK0SNZab8et2F9xgisNqB/nGu3JA44q2E08r5pqEzJIbasQDkQgDNdaFfB14ISqIfp1m02idQ29D29HkcoUkFW1xSwblQGu9Wq3+JuEJcMd91csuNr1uxOX9zerkiil4bUEml5VNFGZmARR9roiuCHw61r1xvzdiJrq9GDWw7YEmyrH1hwyImaumIMgVGlM3UuI4GHbx1jZ9LWxxuL8IhODjueJYGKc4XbiyYEinJKm83mCx+NnxXz+8fMlDeinpj3j2xzPUY/Hw2N8q9fX9A/EXx5BnPMfc57jUR+fz+9DM4OWx1X/njSWPgbDdGI40RxC0W2L1F7fEVSVMqHsVEKprT2rQkXnRr26R4/xmohX4pp8yTmVhSEZvmrYIDUOEPwYJYJDVDDmPE4Kl+3kEfGXx3cvJC74fHVto1JE1aoo8yMmTWnkUrW9HQtxZR40R8QY+ONEEqjIWvFAeXZrXAECs8IKSjFfYLmqrshLuYRlSpXfOQN5FquIquvE4hUkWZiV15mLXEjmH5WEEjQ6cHFgSykYgFzOzHXGgS6iMyZSRF1X2pw9mKujptPXur6szCx85PBdgLW3HGIhlAVo4Jf+tKv31qMHEJuXyLgMqlnybGJOn0ULm1dtl8pAJW0Fq9JJM5l7Mt2cte5HK4j2gCWVaOlZ7/De3K0yUYhd7dyqiRtG3ylH8Ntgt/8tGhXda0ARTsceZpqFbMNdX6tj5PuE+kX9qT3OkK5BEh2svvecN8i6ecqmItSR7Asx1yIoOgBxEKtURZ9Xm25vxzuFMLIDTs0wZES75Ktw+AQZJCJum3pvmGJ/0P12CbSWa5OIdy0224jDv5fsfsR6cxyxm709RnfNfbddewV6Vxvck2svtd/mWf3H3iPd/cYAaki7n9xTJJv03bfYr36hmr/j+54q35tDK9Kkk8kqCtXZtsb9ufpqeb+ygTYt719pS6S6TUtbxwISCgXlvb/eb8Z7hf7+gXfI039GD6jt3LbHs37d2ltToorZ99l9KRSKcvdtd+LPm7Owf/4OG9oLkPti9Ze+mX6FTm41sCQCy5WR9/dftfWczWlcFXKS0NJQoXwtujTNa2V3H2ghDwO15Cy4MhfBCt9tqhIO5/u+kksSyIxD2brXXkH3MNvwFPemfd8aoqJw12bYcqFQud9D3oQU24XMIqlAOW0NMdjil3KRlGwgUOx/poxwVq2ikMUrUIkIm+BAZKddteFHX+g+aBLGtWq9RoLJTG43fVC8sNobsM+wtQpRplgECxw55DE8zwdwvCjM7wmRjsy/zHFksLsrX1lAyIFTcOuzI44XKSlGBpnj+Yh55lMPa/zFP+qZZ43vz8fhz8nH+Pb086//HLUe8x+Ga+nfviZKoz6+/bOSU7Qk9KJELKo0kvGc9BrHvFJm8hleDAVjKmEUD1ePGYVS2AMuTKvy4bJk5jMGovJyr69wLC1rXcso1iKNlpnnEhOEHSHFIRe4OhMYCjpqrkelv5Fe64+zVHkNdx6gQuOFAUkPDsSgIfbYBvcsw9irBVCPjO7xVLXoWHCWwYG+xKwk23LWg5RpmTGgdo0xnVWvStWCeRVKlINjjqvurs9Jn9ve/kroXCPaTDaOWeTgwlzX4nrGYkAKiLECiAcVH6vK5xrYSR8b4VM0NmXT9LqfjWrz46q2KmzPZnf+Sh/RbKC5fG+2rgxmc2Fd7YfGqsF2xisykZt2Uz1k0UYlo5G5wupDphISkNzK3EYf20C37qXnTkGEjdievfo1uu0ji7jnOQKB26njHj9x14t9AvpGQrum1K9/1/zgGzS+ORz30viuIm2OYxTy9LpcWe8DiMQy5mAN2GIx1JluItpNBwZj781aY7ey0Ls8W6NNyxou6B7j/p/N9OFWrr4L8K544y53/VfbAHFjoyMy/YtU7ZsrvEHom61idyAq3l/tDtjb7cheE9/f55vnVBq6R757K73ZZLeSijd6rL4tRXGEy8WsALbBC0zUat8K1lJzyGlXZvtGoHe6CNP900SiA5Y69t3bTqUnScIIAxrtR7BtD5vXUmB1zK9BCAX25lbRadUywWJ3JWrXLhuoEvJqJhJhQsOBTS7Fbu/fYAVv5lmjThRdVfCyEU31Kqlg1wUUFsPLctJnHSMTrpWTBtZSL4q8L0WpsFirVI6TiFziWmJJQuYFuFwbVlo2rcqCvVaJxshN2UFFaLhwZbHUmrD+gHOkkNcBWmM57i+xvsQ4wDoBsBrZ36S8LdfcW+3t7xFj5V6w1FaBglL1KqDDTDdqKnXD7rSy1ldZ6MHcdBkXYiVGQhFCprgDSB0tZN4vbjoZMxZJYB6tTUj/euxVhYUdB2Owsm9WkdsXZjiGg46YiSnNGcfqiJeqxzyPDAJWqOSoC+weqWFuUZwJjRiZk8rx0Izn2W6CP32tVdOgmOkYmom1Lg2Px7MdPyLXz6oY9de//v1zsSZyVJUHckOcGuMoAzy0HlGClxgB4cijjw1FJkSP1S1mA4OuqDxU8Pn1l/Hi5/VRioJ4Ho/5GHFcx2fyCPh5uAK6OM3P5/fPOHCMChk1r8FgSAjGFYnOClUclTySOTHT1CDr0Y97eRziBXjFhVkZ8LLlZNRw4RPzOL9Gz81HDFwyC1hlOyWPLEgHR1pYPiIO+pgalj7xwFX89liNd65Kp/085rRIPp+8qGQqaxVBBFbD0KzSWmyvCh3jRGAAubRWJZjF4DiyuawX1Clry8N7aNteZGZtpYLJTLjfie6uv23CG0LqfQJrc0P0Jjt5R7D2Ua4go9PPKlW1M7kb0zMMrnd+bOt5CyCqdIdwW5SLruIS2rw922S7t8VtVaP9GBiABSrgoFU3ERs33bdraXW4LCxk4xU9XrVCrt0oqy18irc5leGG6MvEjVq0rjreP7ga0N0vQL/1gjbqGodWhy8VVGVnDkYckXDQHR5EMIJaUQTtiN3nlCHhSp0CGdoCENLbFaAx9j2T3Z3ABtvf4plmrWH85uu5ITQ0Tcq+B0DS7mi0ppdgNyv3lFluJ4itDuoJ4pe11A1obKJitvyxV61VyLzdr3beQbctXaCwkd4uzltMo43f7psdm/ZUBJK027C4EeYsNK2reIf6NclgLwiq7lDlXqjbmeRu5uDrdS73UGOw9iHbd4f3PJ1vTGUPjJvC0KBdR2WzFxuu2BOgjXI500Dd5Ooby78/uawmorvs7sPs5tVvN7Ci1saCqq3+26CzWMmLdlYSQFWxSeGV/cQJzoNgoVDIyqSu1WmcXNfZbhDpQBUSQKbTSGcX8gvlACBk9nObCbJ6qxNchpBzKP2wjAo/atnwiPOL9fi2+HoZiA2LN8Gh290uQOBKpu/MYPC9X8kSzfQG6gHnLuD722/4K7dzjTIwKoW1eNa4rJOYiagqYbHyXAue5VIlAKrK/JpHZu+iZxRMTlS7GQcxwjlCIqzOpNkPUWwH7BhATFdmXXPdthu1plxlNTGCS1XJKwnHmCsWP+JxjWfloRkhgxpjhIkARj36zPFXQLMMxIhRno8jxkh/fszyiKAMVBanx6Mej78NVhJ5TKGmzqCYRcUYzg8GvY5OWqRH2HisCByMEmYyko/NX29o13/8eeK6fFTlDM6JMRT2EvV6/OVTE+vxsw2/wo6M0vP01+tfF+YrpoPyGNfnR+/fAa/rq8ajriMUgaonyIfsrMp1oSTFeoiPpJJxIV486JgaK1mJh5wVVc9xLQIRp+6o3cp5JhS1AnDW1QHzqCTDpbUa3swaXppHLMDIvOBc1wQYGabGPIsdH18LGpd4FSE6yjlEJxKuyLFAs/eLlVVTegDfjj8TlRjpAxEHiOQm6PeM0Rm+ciW1qSG2oOhkgJvu2rmh2jtVYEtD8J7+ulOKRuUIxKCK4tVt5m1MmB3PQWZuwK3NbFqem9UWd7abD8oqmG1RuQvwRt+iHSt4D0097rn23yTXDa7iRib31pK/BRXsg81bH7UlIQ3lFnqf6/dWc6O6puCswi0q9kbS97i5tcQ939GZVRUd3hh7IpEGa8V8mNuTzmCbF88HaG6md9tCM8RjYcjqMM43VabecO4eaLF3tLhnUm4UYO8ShsB3o7RPsz7Gwu+Gd8/q4cbNu2PhDghiQ5p34F6XT/0am3lXT7CLevX42yw9owxtOL9/o7vB4rsvYKOn5eAWr9xHLELKZjZsyLdHzn3xiaqiXerVpgnty8+9fCxvt8P+VP029oUzqjKX7TuEOKt6jX2jwO8m4xftrG1l7g+9JV37iyTIMUZptGtS5SJRwWR76PUasgc/uVNwqAj2TttUoBfbuBnlsNXGdW1bQAFBMpnem5ebG0x4Rw2VnJ2cXFtkVqUeLtnvjFXZSE8litHZtQDAMFWlXjv0ba2NjuzKZ4STTINTddSA0n7iyqIV4fDjIa6mfvX9eEMd3dM3D5JBI1pxqGoyRe93REQT6ikXsAy6EiQXtAAwMOpQ6ymnZJkBlfKSoGv23G1kuErOqCrXnTTqojXsA6hgxJUyNRLc6W1kDW2na9woFdhGBLWt7ADW6/p66RWvpEtZtcS6ltO51tinSjHsGKF65YMPxjhqssOlqhbZzrtR5yonXGPv8iVzHr5wjKzFxxyhtquFcD1wfDszamB+4wVUhRM5gxyKKxEKcD2V5HqMB144tBoXX6IfdoHDH14OjG1lAwf1/GFUAB/4+N9nHX/7pknZHJGv748XssYD61xf63wxz/zuYLtS5cepP0i6qIFjjC/bIjOrIoA4iIGsk7Eo2HnpVfjU0MxwEKXCgCEeZunhTg6IsSjxix+fRTQjIS2gUKm0FcgIwYvrAAYiDhyPpgMBw2nkMtX6XKdNalSMBjwIxWxeobxU0mWYLqeV5wKV0Fi214c91xjWlWa6BqSeQFFLIz1anBPo437MWXUf1xu3bFJiv9yWP2xWTiW78UMDM7vOlcBWeOGN2BEE1oppQtJq8VXzIcJ1bVmBs5M7sRtdWnAxHTvbhdHPuIq2s4a2mVm13L/ZLEKuPvUBFlmmfaHntrf8yNxw8yaS9l1l3xKe+1htyJT3P20rJN7coN7V7cXnvRLebgP9JngX/f469+leaPU7KTUjlFTgYqPMvwztIFte3JY1uRDY6BHdvbbH3kPoXkHi3ULcS/XtEXyPl7irFAGODVpsktcuYY0cd231/Z3tX3yXJ99fYjsWsScV37Xm/TV0Odr4fzWpe9P53H5V+8DdpcAbkm7Iu+uGcU86xarWD/UfM4cUYobGwXsI0/5GamPY9+S+ZSe7ZFJgqT032/O8YfN3W6ntqLK/s93VoS/IPXyRFnb30QV0F2nubshdOfoHahxHKvZZtpnlW0BXtncUypt4ro1RjogRPrXNMbVbv+jvXo3dcsdSgGrTwZtRzqZi706M6C1pFbB4iE51XLD61wKr79RC70dI9rT+3tqWGezNPDZjrZfitxtlyJauq3IZrOuLhfOCjPAyvrx0uVtVmBEjcouEdu/aAAMkwHUlsXsFojb7HZXE5rYVRYztPX2jA60N6om1vHlW2c7vfhs8gYoJjFHOga0ssIkZtrpf9M6HBO6xgr2Ga3TDvaQAOgCj2lLBQkFrcHIEH6p4HCJDHNDOTRdQYlCuEFVmm/7J3XsVRAwTgBRMo1yKQ8OOkQyLGvueHR6hRF7llItjzYdp1Is1W6yagzFYc8YYKckVnqrS44hHBQ5cg0W6kHwYNUk8rhfBD3tyvgCg4vFY9KH5BI7zMeZ8uAQPHJlHETrCkq2SSdQqXsbj+AimztfMTPoT82mzRpmoFWqelWtrUnDlHFWlecZZrBO5kGfOmKK2svMkVx0Y6QhXccARYy5valJUi+gJeC0/8ipU5sGQjki6Fw5+UKeGl8TkF19Gm3rH0oisSRPla8K2Vl0KeVIxqUCtr6vi6O0SCD7oLbAAJU0Q66TmyFGhGUPgurBqIVfAah15afN6tI1h9l/OG6nbh6/3aJkWN1XdKELVC9gGXGrrXlZVwQoqs4mMdi0DXimVilUtcuhzvbelbreslqX2a8t7Lk9EN5yu1qOwbGYrN/t5oHmBEBZD0UWGPfvofTL1yK++rWuHed7LYvf52g6du+Lc9W0Pu+ySxDdUjXsHvAt17SqSO94eTrBW+44ZVVUixRjmiLxNCTeKrtzaXLDdhhppK+MGTd7H+P2etN/67i/M2pIs3FbRXeK6pI1dsnlD1n2S8l6Tax8v++D2u6jeQpmu5rtI73/eCLPfYML74OYN3t5NTWeoFnR/tbfNIN59zwbUuUfyXehAyFsGyAgnFJMEubDDMLmR7N6UeC9Ditskr59PSq7+bukNzO8Ogu+GQveW/N2E7Ot8T8odFcrb53j/9q0mMHb63f119TYb2NkiVMvld/tBqtC1AyGDVCjGGCN8jro//d2rYDdH4nuBL1jNKyPYBKdQuwX41xVWW5poKIotXzKaEBYotS2w0dy2fdHqzVswInrS4ruBuq9qc7ZJOpKSLBnFupPsDSOv6oekFQhSaD9kN3Tie3EBoFZiw+Nv1M3bMTnLlqgA54bwG+egIkYp2bqDfnxaVLAvJGhV30jlMZYRu2+GIc8oRGsYzDhUY9ucmtFJjoMVwiRqcy13/1hbM4gic1ocqukV0Vl05ZLd0/MOkLBJZFk9zkNXCSNbFqCzk7/DClRYQ3Oe6hA4A4peTWh8UIJehyFnPM6PeaVdn7GMEBwOWRicY0SSch6gkOIQHcyzx3obyUfRU4H5ClQ8kA+N0d/wX/LFso/h8STwOL7hEpBFfHuWS2HGVOrxEKX54DCOj/ng84i17WE4njGSSKOQeRiVzioHgj6kRMUQcFhO5cJYuFYmmYUAk2ZdA3wAXGe6EFEvj0OW60LkdmKwyiLAozxC9UIRnCifsgJHjDUZUWSd16NkSjWwOAettcuCSCaBxcIAh1nFWoW8ctWz8r5/OGMqZbPIMTPHdeX1cXUOUrN1T/fOG024qcZ+t6VdO7EKrRjs4McNre0tC6uA1Q43HY5S1SbHdwd5c5y8jOzMI2enDmXv61hZclFZuyq8OU/ak9Nvz+PGTwuubbZ8rytdgeZyVDts9xNYIIjFiHzLegRvg6deyzb4CLclJ95gdJ8T7B59T7M7Tgf4nVe0YdZ7iPN7hH5Py7d3YlfipJwbdpMFhII5DiBi2ruG3t/zLsAFqZ3ksXv+y6Mx4Y3330UL+q074O6msY0Gcb91d73l2Cc47vpwjx7YhdddqHqGur+Xu88Au800Ngfu7l8K/qVXukuVfZ+Z4B5tpB09eVcn3Pyx+6r/9j/bSE9AG+12M8M3Lq2gd+qjcNvu7YN2C6miXdGrtqqU2y55f117c951/j0Ho7O7cP/gXUHfyO5di5uPtf/8exGwURCigx1rXWyQj62UkmNqGyE2l4QmYkhWF+AmSWsOYbRjaS99TUQwRJgKb7SpE1XaIJWEa3sq/9bQ9K5h47ntoX53GySpnf5H0iG9Pytv4KF14mITvu8MBrt1yuVsKTpvpogduRKo66TcQYZXOXw3Knvevzs9b0s1d+94nzfYsztKCAw2Lw0ISdFR8AYVvSQDFRjTTpTU62MyqzcLv8cBGC145GYmdNPUUts20KEUYyhHZ6ShowaigXiQMWrtDlh3Y3TLtGMIISBngSzOVY9yko5AYCRHoyVEwjXzdJTPIoprUxzYlhDWOrNbTwSrLjW/CFAiK2Q8T9foy1tCFpIzY35yX23F0T15RMc2egY4nBRjVlkRk0m5ePFIGRExQKzxkflowEqpMSHFGvb5caDGfIyT1EeWcogVRMUxlmJO+lmP12NVjISeyfHRl2lkeLC8IDNmgLDz6IgETKJBmJkiA+XESn9d9cJKVBUvFe2TY7TkrE8uLNFBK5W5Vc8M8xjhGcWDdZVWUM5lljUec5kiAlFrlas5mKFCZO7DwA6PKBFVwpzTrgVqpUnF4sfq0zx6+kGSyRwwouKygFUGAySSqLPlbdDegvLGrDZVp0/QAuzcGO8+wqtMuIDsXcTGabO4umcH7lpE7LUftjZ2R3nTCYf7ILnuWaFNZu/kMtrtZb45zPtER9UtM/XWDPW6txkwdRcGNKCRxB1ELUM3aug3WlwdbrC7/N/WdrsAdw3dPJ+b6b1L2W+7L7+BM+zDcENc3sfW7x4T7zp2A5dN0O0B4/6tOw1nv0T1m9wQwBZM3jPDPkV5DzK4EXe/DzncM9tGqoUuwP+p5GGf783qvgebfaLs2ct+txneZK5dwPB+ja6bvxwlfnudrlvscgmy8n5rtwinJ+p29TZ35sTdBOiNEbuyuhZII1FADd2Au4O7gbiPd4ZGMM0OI2R2xioAhWF1LoZM+vZF3sFKnS6zzQwB243z/Jrz9y/ctRZ7zjeaotNMhiRTWZsph7upUNCO7loRXXIYokX1erechUU7q/ym+3c1aiCY2j+1qQi7HaCqAjbWsgmqPV32u9uj6/Jplha4VhitrY3pLQGN3vXcWux3c1cetZ1wmiVWHXVqVsKxPUJ4OV+mal1wnpeUwavBOUE71ZFYbp5qVWWWq4owEqqiHBrEuPuoNjsI3kazIY0anbTMwsTtMHHltqnydZKnnM0uc+EsXMMGLrxirFWJr/lCFW9HPiofVdf1YPnkqy+Y3CZHXKzSOVY4lfTyysrN3RSr0S0M2zkvuOhaxUoWgHWxdW/sJb2JsgsWNbn62GkPBJVZY1EluE6UsBC212XnjGTUihSEA1rnSr+gcqDK+Odr/pwfDz+in1tqzsV2uwVERmSFaWsKdTnpAKIp3m147WCIAfrIOtrGVAvHrGPEIgsx0oznfFLzKgzXeBE/Y9Wc1wsxXd/w+DHXS3xNjvMVD3iFcyguxkAOFkaZ9ped5SD4en58WRlFubUECmiilKFVxSMxShKB4U4uFnWMEPRtyxKIzaQvUkODDGusdtIjV+PcT4eR+fHAcbqYfnqLacH3SQd2mnfKFQSOmF0Gs9bWSA2Xg4IK5arIEXYIuXghIRyUJpbVJnVkG0VUFj1cXSoJw9mVDgDTLXb3O/pug9H1PrGxlbPNPA3sSIh97rXjcVOIc5teJ+yqrReBfSfPbqJFpyT1/pmoZIkt/UEvnxkF7SefrS6uJrD8GkB4t7JsFwWD1clMd411E2hN2Cn16maPK3BbXO1+diPIN9C659v7PafZ9iR9n7+/FmB/a0K70RsU2z7g109BwoujhaCNEe+FtMwqkM4S82J0l9BxXy2NdBGJhq5rr8hxF1qzz+s2K+h9Wy8x+/Jy3DdXX9g9qt5Lc7w35PjVYLwL7D0kNsLTYP17XvYu5feI2G3dRg5IQPEG+/br9jabe3TfHSH7m92vfZtyGUB3cUEbXlBkp3mB47083p3RnvEUUuzbtgn72o1U07z243ZPw7bzXDstASChjujrnuaWW/+64DetD52zeHewm0fRt1bT6ttC5o3G98Kt3R72pLoV6LCRaWFl911b7rbxBY27Iiq4AKv9bDo+Rja9NcclpzaCXNrpunZl+aoLs7O07EVpefkI2qwMmgNpFCOyGsLYUP1iI7guZvZuNdeOOoMMVR7tdG9AUXKAwjGyYAbHjpywvF5RudJVtdislT4jrkwMBKe0CzCN4QyL4CBEhMYos9XIWVP74c+WM6CMuqjsDQFDBZzCdfZteUauhRTyZS+W1aYmw3WtxIeWP+NHBbiE0ySxwgSdKtJmqXvBxkTaHfbe+iMfp9aRik9M15UYcaUKzIqd4ZKs/je01rKZU6t9VnJ3uSPI8qUnVjlcyRPnKDac7w9/Dp9a11LC8e01KwF/nt9e+GOQsz6j7RLeZd82USFlDfYxf8kojsyOoJp9F5W8PDwsUGSYGkE9x+PpVfCox7WI0ChNJD7wegj5nAvx8fU4eFT+oecPnS+9Pv8tH1/fjmksO48zzqc/FfK1Pk7Y+CxXuoSsAudjuzGh2jDWB64Z1tntriw9mapLTlxtBcqsUAZABNqcPJxBg+EqBC34EpxXBuvkYBjr/NfBUSqDMTDmSdAcaCOIAkxBWZFlIXiF1rqQWQdQjniMDA/daaBL0hwsoDJfByDgospZgWzPChvGSKPGHsYaCHM1OdgooVhqlkgPg1Txl3QF29vDKKKgggMI3Idqb8LUIHzLdWJb7iUNZEfemkS9raqaOmTDJbFWZzORVRUEjdFaEZaBtF3a8qnfl2nNuOlN2T6LcTMm2Pk9NtzeDtmB0TeJBp0c/tYu7v/sT609gQDbD9jYeUh3KRF/w6S64nRaBQ1Bt+pTJjiR5bLLHZnUtkddmpCkWE14az7VHRcZtKF20Oqg9i5u7yVhN9m/Jl/jt+rcdXP8hpV683TuoVF7W96/943CNryy2We3oLobFm2aTAszcZuSdRX6bRhuyNsiyfSdM+z7DwDve6fXBG2Yt7uAX3gACTDSVOYirrOqJ787u8Luysv746ZZxnaNKOS2dmx7RHdHsZH/dna4Uy6hW928ket4x261b3mjO3fP5/3t7/093yC3iErnstmTHlm+kEBrjZq/1RztLYjLQqIajzTl6iwDgD0gm3Z0kysX1XtlDshVZadHbzS65bINpdIF5cpa8Jod/LwJR4nSgGSm5QqliYjYGHol21Jh313dFIHRHCDQ7LmEcS8xuzm5s5zalgMuxb1jysu9c65KlNl2l1adVRCtMbRn092hUEBMbHUEe7tR5as8utRsaKkSFYoFFDEcwPZJqRWkSoVyBIBaYDbvs2QnrlVYOZa/JnIUVumVpLCGgnJebTCbKrS860137C4qUchvihrF42t8/OnHecX3f3jwn81YiRXJJZe4bED/wF8ur8mMbgDB0dhLiH4doF3HBeD1FJl1DUIeWfbX0LGsYQ+DmTRmsF4X5lE1Mk1cPMFCLgy13cBKRGZdFUiYg7G8/QHkNrxNQFaJMYiWueEnwrwQi0px7LTKzIXzwWKoPr4invTQo5x+HNf8pnN9Xx+vPx6GFujxml+PPMc5zhN4SVf+dzBd+Ct8HDP6h0a2pEGUS9YoCeIAGoh2ejWBoDjk9k02GFMWRRSZgHwlKiF7lc7mLLJsB72WkcNVDLdq32h7uct9pigOxtoDIRnDWOdKZbrkkmY/uSBvWIqD9uiVXA3YCXG5CoIiNHAiFwHXdU1v0tZ7blF0YDHgnL8Wo/tY6+vTHK/2Xm1gz89jlOM+9lmt+kdFWBBXyUUWtSuRb+R7/9xdL1GdUt01pgwrWKvaH7qm9rKRQOsg9hDj97C2TWx9jyd+//RdSH1PKGrzgE3whEjaFQ0l7anY6HIJ0whs2g2bXtP+TbXPQxLbJKlfqGkc2uUjPbeApEBWAcJ1w+i6x7A3vGC32XuLjbArl0fPYyACrdLdZa02ML+7jZsFVs2a7QNvX2Aao4lse5Zv/exm7yCcPYPuermLmHdfcSPbXeF5J53DewLmjXVuzLvepZ+bMyD3fcL7knszJto1cc/Hv9hLmwS2/zEMOsaQZ9zZ25XY6fTcV/cmUzXpowIJuvGp1r1v5U1uOS/SDdaQ5VrbStok1bcJINOi7107m33FdnS4fa/3FN3u6QSFghjAL8PT8o76qMo2tfGGy5uy1ENKfxGigoR2jIF35ytkKLNIsTC8MKjD7Q5EYRVdiogYlITe//RLpbz629Qcja3uZtFWLQQhOrOtKcZE8oYIFrcno35R0RAb2iDGQoiQ0mePHKx0pVdF4aX5obpcOYPVT4sNIzqyFzBdMqoamu5kdMvv26HDi/suqbKIWnJVVGZl8xRphkZPqCO8lopUqJZlhCGkHCZdMY6VatDe3t6cgaLhr5ktqaIWca1O4dJQVH11N958SvbmBrHvtm5xXKu//+NxfJzxrIrHzKP+hN2GQklQh1JerOvncOWL63xk4TqrQkjClTmvl6xEZWEVKldkucJMud5rhgABAABJREFU1gJOH0dHKzdMJPzxGd/gq+/RWlRdtRypDvkKpOrCANYqDhG2GiGgR7X3QzmwKYRsnUbWZX7968jxFdJjvUpLDBdyXSvS/vQk1jn5mbEmZV9nSXg8Yj3++uNffMVIT6/nX/9eIy76vDhefDzyqlp1Rer6v/8/p8wvxmvR/wt0JqsG+cDIY14gF5s0Hi2gC2IQwvmJeGFcUjicKthipdNfoyANpeqJpTNCVYrHlSRc5yMzrBE/r8FrpSpxXEWj0VHqWvOIBV5/jBNg0IzC9+6eApdZF1sJPmoAEcVKJyoPIeaVAgasWOTo2z2p0ELVtrXExm3ZCjuCnXy9z2Huzdf93EHQjv/twzaSW5KLhrVqjQSrAnBUdjUovg+bbVSwH717HNtby5ubtRHIDprBtk2vRoblyj7sfXN1DQIJE6zUdibzXRewd4sEVPen6Jd7T497udnt0B7N69eM1nUbXTBKb+Lvm3ETm6nT79lnKwVNvlwOZfOPmUVv/jiUd/X5LQ0AewAr7Za+R6+k1Tvv7VHcQ/OGynd9fePA79EdN4i+5/nBW96xX6uDGe/prXWR/SPe559Bv/kOfbc0P/Uuabjpa9grR+yL+J5s0bhQj4zFX3X+vaPswny3St0SCPeUDGzIuLpEaa4WyvS9171Xtm58o/OgS6gqRSVVtXsVlP1LDN04A2snJ82r95x9qSFms6Kovitw77E3nE2QhRv9MEk3ETCQZSp2r5HGL2GXNsH3joBWx3Hhjbir+TIkt7frG8ZwNXhEIFvBMCHux3VpJcJTR4yxPeE61U+d1WBhCgMYvB2YR+q2ao6oVcEImTSjjbD6LqdYGm69Noe2brcdZNo4oEoxXBfMAMqFJIzguR5PuK6rQFkWLIUierptNVVtnJ8lDjaXpsBt+iEUi6yFsmugcn0pwBkcCPVlrhFmZS6BiraKOVNYNWCuL7PQeTHmetUFdatLuXPpSgLjnCPrOM62ImgApj9mXRdpLDIb8ymKdsQ4VdHjWqn+6wyvzMrVc/6ZtpErMy/mqlUckOFPA3PIPteJuoDEckMjWEVoqM5Y58qcyrqwnrmC9Bylj3l9/3ZY/zhqYX3Bi/ABPq9FKK/5yLO8WsdeC4KQLpSla60xOIoBDa6LNdqRz0knI5klYYnFtiEL//lvWunTz3H5Ss42oltzzp8YK0Ov83U9X+sxpi2ccK1x5sz48TrZpk3p4/kTY8zUqPlx1l/+OBfzpZcv5et7oBxWHOLQR5Uy41IlHfgk+CNxRdZcxWBlPQI1kTmIK3TVmFaVaEvzRGReVenKyNXH/hp0LIzzmnGcHziRdTHC50NJKuWqOIoC1ZQ55xj18Zo4rFRcg7NMO31cEFFWWAWWvbgW5nLoeESUUNVKqwQWmCW4pQEr+1xtHA0uQGRlirudK+eeqm5MttqCp4/T6qNRxNhLsPtUhT1iw5UmOByLYdEaBGJW8zh32b9rQ1evPurZspgS1NtpoI0MSLoh7caC2zuLnTyKuqLZM4zY5xXNul8Mv41uEGIXrPYU2Mr3XTa6ov0mvSm4/by2w2+TdMx7Bw3spDo2bRBeN1spLyARzPYjuRK+aMZwcfThvnef/YNG25bYwqo9Yi54lR47jqAZaBvyb2rZLnQErD36N6xO391N/6bR092ujV2xmxC660G36bvQ7t+l96rW97fa1ba8VRh7/96UgruV6pmYdwsQIbOJ8dzC8YYUsM/fe4V7YxY9bat10uCoDIZMLJMqxeBiT/WSqrIImZXobAngHh/78zai3Nt2GfY2Pm0nlBKcuD20ZRJDZ5dQeiLq3qPfmzL1u7otmfb9JWAHHWzA1unVoZb9vJHIZOJOKHIIbJf+zinMTq3XreHq/+xYkiUUNics1nDcY2OWKiOiNAM91ZBZIEhNCYzSWNc4tkinsxdaXpvnzQ7gHDkGFl6rqF4mFeeAh9jI1zbd7pU1bUVgVLogfF1Uj51ejjIQ5TjMXICj7VvM48kxFuGyBqqZ+0ER2ay0srjQqyhUi6RYNor5zc40J/nk1Q9jVfNCVnZFzYIvsRKXbaoiF+fAwmgxVZZNDjdLuxrtIjPxJKNihONjjcsi6WCBfOaRhAbHQmWxUh0QUZcq5/VN5RX48bz4GeM/jq+feWFdV5xfV12fS3+e7UXy+CKrrq9ZuP6bV/Gc9liMNXQFT86xVnyJPHCMeY2TLP/xOb5NlXQBKmfg+7dFp4w/PwERy+Plj2HRf04sj2IRMdGuXgO4gJpHfRV1PK5TWchVBSE5TyltkSOWXKhEPKYEoZB/mYNcC/GNZzL/gnMUvDQfP38+Z2H87WfF/JmLPBd8mt98Gj6fr5+RiIdT5xn5X2s+vuKFx+e16sUY/HhUPH+Or//hb/jr+vrH9bzwx//63ThK19fTxa+lcf5h1bdznBN5kMiq/9vxf/l8/B/+O65rvvi3j3hE6DW+WFk5yomFunjWpeNVLNXKFVVLxvX1vJL6w8dZ5ByR354rkQaDFWDaTHu681rquia/wOl1LZl5VjnSKzm8FD6NmJq49LGqb9XArDGWLNJJn7HGi1lYX2u0NSqt9BYmbovbaHq0RnMNUoH2agxuK0vS24fqPnp7qf8euUgNB3nBcC02UZdiuzWatAayD0Oo9p81WZZDLJUYFsolTuzJEpYhZy7KnfaA6qyapNvoaBSsypij5/FdbapPvx5wsREt3uTRLpitrdhvRu3jd1evzVASDbXxYU/waw/o9+6TuAfJpkHBIK6LrsrxwTCW6x6ERNkPbDOjm3fr8ujJb0f7RNGVtlfqUahyRWcfbLiAugniPby9oeIb0d0Dbc+WozZG3V/Oxj6kXS/JdG0ffO8KfTccG2D3BiV4F1cQnTVQ3hMznepIHDYRiYRCpLkPuw1euoGevjgdl/OucH3GJwiXXVje3qmNfT6CQ9BRjklEG3Tv7yIk1z2WhrQXoVTZ2eTmTYi69cKENO6RHrcFZjh6n8zQ6vLJfVNt5fHuScgeqUm3ri/kVXMwcszj3UIEjGQIGh3WQ+0kBpCErP1EkERItHarxYRAUcKoQMouMmuWXHV5HdXWbFPLWNq2mERmsKqzPeWgF6MpryahMc5VRlUp4fVaMZPJQq1VMQETudrCCxxZEeXUto9trRd0L0scQUDy8sLVTyVr5Od/OM5P0G5zKnMOiJUFUqM9Scv9yQVWXley7eNQxZuPvgo0koqUzKMijLEq87oylGM4EcwH1nVlhYH0rIVjIKd/1rhK3YHlpSHCqIjG5lSHkxjDVZ/FBNdCrRIJCEJdOC6OCUxfV2ZV7/qrM1ZxXZPLBa9pn3Uhjci6wpevr4pLI+s1WKzBHCJwzjo/j8xJ1nWwxrpCBecVw16PzOfxypGjmK+JKQYg4du4rqgx9fpJnufrxbkiKuo5GDEfP2tdYlupThWupeHKK0fF8OsVRzzGaxwLrMLxclbkdV0srZzmcSWxjMwR7ks6cFm6pH/kVTwV1+saE3V9fFyo9HqcrzgidY1IW6g1OKpQC9d0CKEM/bmur0/yq5PAfvyzeLC44vWRf/+YH9/i7/n0qPUd8wMDxvRKKr7qqvTPurAISS90TO2/a+mP+PPr+LNAXmv+VKaNlbWuK/h4ujoOUHP7amE8vpQ5Z6a/yl5xEROKIqN8kVbAEBPFo2yK4wu69I1f+BB4KWqLwZfmwOHeTp/XKLP4OB7Pj6MqX+cfhK/1CpyXtLg4QT21nFfNxrU6TyiryxBAoMaeGbBVRW0K6l6Bi7d7uFGrqj7kTqbo07fXNQNVGYnZvF5xtSVUwVK2zYzfNJcNCFphQpbNFF1SKBd6IwY2FplAKtuTvZqyQywzE8MF1XkR2/CIbAt5d9Hr2VJEu9pvwHdPtZs9Bhbbet97uKHROoOe/HqOEpsYVj2at3/Q5oe7ZisNwSmrFnAxFVUFHHblTFbU2j++AElqgy0kkCXlWZyxcdfLvqJ5QqVq9znfG+733/rrvzHpNyTdOouegG+aEYG3jVfvHsslZ7mYu1nZLJpmxAFC3U1Jg5H5C8mH3zvYrkq90Wger8iNVibKqCZvCQjit/FxD+TdbRGQt1O/LLcOPQOWkeNvNRXycLbOjm6RdaGFChuO6LYri8ZvHs5U+xLCd+Iu3Ias6R1czI15FN+0ed9d3bvDullYN8SyQ5wQMBjstN63Yzq33qXbK6h9QbzZYKxO3Gsb6H6zzhsSaA1xxEtCpgtGTLFwrraAVGpwYSgKQiWZoo0memiMJWhEKVd05GdgVOTlGMdwlcjhOaacxZh51pwEWRqvDC5WtPhWaryYcftjwmtUEXnFrAtMa1ZwDA8qHtfrhwXPwOqMMwSMzDPTlK/sFrPCPYvR9AxgqII0VWrl1TXM0vr+wSp6CmutS1XLqxRxeZ18Uhh+eYwvU0itRGblZ71K6ywgI0OeEflywcFeYLHGIdfXd/Xauw62dlo0FkvDCRc4+cLKTOatUzPV6eROY/yl16bX8FeAFPw4V/J8zbrkYjEJJzC4/PpT/54aqEJd+gGkC85Ry6LG54+HXVQdT5WwrtDh+bfvnz8yf/Kf86/jtUZ9VXQHfeLCXyNX4fnj60AOaj7iXCdj1LowHytXFsbQeX1NuhCRmcWvwKuKOZSqVnbrNMEIogYzPr9i5DUz4nEY308lLgXiWokxWR7fwOeJb+frVcHyqphf59/4NX/8DVcoKh9Pr++v1/PzcQGGz5+jPmfJa336+w9ef9H/wuBzrvUoPD8ujCM08nn8efCYfmg94/F6xvfL4/oCjp8+518/f/74l79/Hf6ZwI9HXE5dF5HnFz/+xH//f8l//Nu/nzyy8OySEA5IZ+gfgbiuwccfK4vEdHIOuIW9iSX7z1kjeVLHiKopXMoY44GTHem72YbIa60LOQpV6dNwpj92/nhNASVojoPgUdexVFhI9OTQHFZVb0tzYnBvm8SiVVCgym2acyOgYLRykptgQgD4+ZJaZ7kcLqire3rQVFW/KqD9Z7ogGL0L4gZFe6OHLaghDp6LVB8LFDMZgGKDjb1MJYlm0PVSbuNq7wG9TCxq82i6cjWDOT1arIg9dLUf585BagU+tO37uttvShYMBoTcZC4S5ZjePAZt41fAuXk2OEEvZ2HB7bMoSrKdyWuPkvIqnoLFpU6ST9eOA3PHOd7VroujEmD1lqsgOndtITtZExxNT8ZmC3XxbXcqA1ls/769tr2bFm4tLmObgme/JCyoNY216yeqTRvY4O5209C+UFkEtfZv5tu8+N1E/KJm23ClbzOOtjPBEDOLVUZxeGms/iiViZDNTlRz/1yFquCrQmQWUZ093vw6/yq+DRjUWgm3V4UKdEU7D5ZO5MZfG/jxpkRjw/sG334krhVEQcnkoYnOBjOV7JijNFNC20zc1w+E8ma39/LR3LYlVhS8oKvWYtX0xPTCBSGs5HCJQWtc915BQxkJQDMo4zDhyGZaSoEAEno+H/bKIeEJRV1CBDjr+Uw3x61CyGEGtG0qTAR5P3biiEfg9boYpSKJGukqJytKkdGQezUysl457OtMdixrXFWr4OIRBZZKUGDwAVt0mM4MhgJactoHauHy+owox8SkDP7ByCcqB/M4wNBijqj0V+oKLrDgZWl8izgzU9XeF2KWrljXApc/+aelyBlVIuEUckXDG2PYjUuhu8u+7bNWubjw1yuvI5fGkfr2tUblN9hP/YxIUJGBYQqey6VprXqNyGQNa6WpfD2ZmVzjx0pdpfXit1z7Nkuvf/582bhsTmJef/sXPc8L+Nt//C/fX8+5rvr86/X1UZWSuC5wcKV9TOZaOhR+kevxeuUxMs8V0Dz+7D7Ten4tQuGFEtKhcRzjfzvWWBxlQ3Oc/Pjbzx9J+3MNnmvAZU9O62PimWch40z8eE3K+hpaJpe+4sRIY0nna50ehTk9vMq4Ht9/pp7XrOSP9c+MBy/UYyIw5tewJmp45gE8vmUdgWdBczz+j/PH179e61/xj78zfuR1rlX5ZbxO5HxljfoSjQO6FnIh9OP//O8fD/rz9S/pGXXi42tdURfBs1iBSwJI6DFeV0aUfXz7GeJ4cWgciIOvDGYSkOskkZU+Q1c2e5NZi8VHutJkWGAEY4ypJl+vJqBY4ZvyzFEQCjJzboYWiag20mjAk6MpKM3nRCGmftsNF3xe8+RKBZseP7EQJZQRXJVZjdhtmQUBVRUKdraRAdDIDssdrY1anF6w4riKdDGqIFZE7QkMSrGSjoGtuWpIUptC1Nk1ZHUgYU8X9vaIzIpN0bxRa5TuXV7P37sKwUwpKBbkAjq3wCKtzmFQZ7eEzBj65EdzqFkGQxJ8Dud1CWlU9YADO7NmAgVVe35GEEg12pCdZR4dRyRQutXbxq3c6Tl0z8Z7h93LUFhjE3S7yoHtYcbOpylvSUwPbTvsQnct5v3fttO4aUX3nnK/TLcEpNj2TPdOuC08bLeTVTPRtjV2I3kAuFXUt97bKElFCVRpGVDULB7Jc4jJQp4km+fJWmuHHPRoDbVYzYleG5RFKyJOMNwSpT0sy50kuPfl6SS9NiwRbluZX7CC0PYcm7W8wQJka2eK7GbmZXgEMolCVKdqIhJqt+JBdiBPc+F32DeKSLPbFhlGbQ+cBZsqcMFw1sy6W6CkjeSsGkzIrnIE4QjgrIm8nHFU1cJwNniMcbAyx6yygxHlKRfw1EE9ugvxUJiOpgtGBMvbQYoW7A6YkP7M5UzRl6xazqJfpSG9XjMOaVQ2tce2jopHp2qrFATAI7KFCYjJAVzpEWaWu9lM01gWlg1S8ZRrjqpena9k5FWuhCs9UGNkbb4aXi5UFeBRf+p4XdwdGGHXyggw/xzGGrh0Fj0AZ0FOMjmzPJ3IlWsPLBslowXkBbniOqXjNVge4UXq9XNwypN6FhkIC0Hoz3/6OSJPz9PYU7GTgYrUiqysn6GrWHXy9XmMiFIu5/821zV18etff178Z3z+9fv5CQiv57/w4zt9XB/zf/eFn8SVywU3P9GvFUvjTAdrXOuEgVdFmHD+YK7hcub5AqyMg/Z1eo4Bg54f13TyOvAyXgN6JIcuYNaP51P2n2Nc6/GnOMaEX4cdhS89MJaPRNjA5Die0JVr6c+fHz7nI8t2zviisTK9jPH97/zAzDFeX6gY66plVRpQyZdpXBwfPwJH5P/r+5Hj27fn4+RjHj/4bSHwsuri62O9ps8Hv+qZmAs4T8aZr9d3XtDnj9L6f5we/8NLZ2d7/gzm89K4TJT8ObFGMpIx6M+XIw5m+PqydQ47vERFeKRDax4zyrqaZHAckwOvWJIvEDFCwFXn4lB+XxVhGWNVGcLO2oOxnICyQ2oD7LBEwZpdmKpQKgNiiO3cw00yJQK62MzCECTMuEoMdgow24aXzj5waw/xFCuT4TZSRnsGK2wgtFazsoS9UMYoi1d1ARZJ1uZMl5uLxL3V3czgWwDlZIuENvCZ9+F/c7JNc5Ozul43t6sg2NlTsy+DOwKla5b3RNoTnRq95CDdEneAo5KVrQhvBi978cso0nQRq3Yfg2q9KuGCM8pJI1N+06PijiHahG/wLaFqW+cN77LarIfj17J+D4kEupfaxLG9E/Vedu6fv4FiNADQ/mJo8PVmb7f0ij0k0YawtUtGAdlJFCR2SB+AdjJp1H1TwHrNKpfV/nJt1NmixtWzNBOtWMtaHoFNA+sb82YX2gpVKhdkeytOOEIpKbKonXwXNtokvNCVy0khuNTxdlRiVm2E33tYR7OCwsVmzsuJ5pjTcEVlucnIe/Bz5iWu5pTvFXwNbruJ5sZ1LLzdsV/nuSqUrtrBXZEYxKyLWNcE5uPVXDujGgjtdTtAImkNGoOkp6CoWPK53FFnjIGaB1ztClKiryKzFseBLEllN6XF8AqQHP1929kULriSOQRhnb6EhAewWGVwikUxjhjYqy6DGmI/hY2etOWIsAolMgpL0+XXBSG1lh1hVmVhBMNrjQkE4qiKySqePLxeNdGDhb5e4CquuiCo1iiCkQlSeV0vfnOVHX0GZAc4nLw8oxaOiBg8gArDRXsYX6r060dlMUat7O4zpMsmp2h64OuMsdK88MA6QP6xHM8XHm0xUc6AImGPMUfRYunksZKLsabL6rysH1ckru/D6+CP0tKEVvLk8eK38uRrIX+Qf/+vzDmtPx94fT/PGj9HzOPnqhIqpSKNWSD8YAlIPIjHMl2alaApxDVkaFbqn8M4dHHEeBnJL8VjrOcnIlP6+Lsfs/7xOLCuEc+vjA/V8T2P+PifM6+4NFDHc+Wsf8V//cvx+e2frw+uF+r8y8n/+v0vL/ORk56BuryuKNXUP77mUGld+fpvqmIlqzCBwTgZK79ecwr8I/75XPxZ4Pn6euQ/8P3z//1/uio+xvzB8df1J2QNeoB8rh+8vvP8m+f17d8U178+J//EwJ//83/3eH1+nZ9fyPMV+Fr542QWuZ7rmj/q+PNIIOLHT/9b5PXt9R/AcuWZr5/1PNdIUH/5dtWoMQXpwnMcj788ePqKkJPPuoQRY8HQ5Hc5dJBf14mac+h4LGwBJhKYUV49HcGlui0RzUq6oVghq9SDHWwuUkfsJOCbaUv6oTp0tOgkbGaqWIyAkxCzHmtDxbexbwtitTydMozVM1Ht6NCaQwUFUauiOTAAOtsGdkEuzaZr1H1M9vupe/7dHBqhihyOdlTnhlVH7VPc6gmo2sWObq97E67G6llQmm1Pjftj0+0jkYDVfvYbqdNaZNPjCcJXac6m31C2w30UFXzQsd9vJXpFNgDjikBvqTuZ3Rs+bo3krr7QBkaxzTxuWhn2+T7aPepNwWoI1ahqIn2rraXddWy6dJfbu3K3qW62DTPfr9HVVr15V2fl3mA2ir7EBCmsBnIJC7gJ87fmepfszRfuO5BVZC1RkGY0g6pRi2C18L6H/v6krRkq0tWs/9bJBRLioINwACRLWhlVYMSwM7aralFWJEeLn2LP/dU+Zz3V31LqX5nMjaU0tdgsc4oYI6Lv9TQzLUUEsthOV1wy1QkgapYScquif0EMaDZCLtIQwld7WlTfb4YzC6yaaj9HqAebHqYpIlLhC1fE5mehSlGWsBKZ1Mqc9gkuJmVW2ko6iUR55CrRkhkAsdokFEB5rCKqcNiBwQWNwTQUQ6MSRIypKCVh2EqzqlxRFAu17WSrCAaU5SuQyCIS8zoBl0ZvcZYaaDImFigzmJgcPHwGi8xV55WQ26VDTNUqkwUjUHZ+6Tmq3D433TnOzyvqpeCVhQgjiVclmF0QI6uSdS1VzEK2pb0DlV4sR11i+gs86oXSVbOueBpxVnFpuGIJqnrFdXniEXM+8x8RyJrh8iyMAeI4OZzl0iG6jMATflX9UZFV/BxahD5qPV5YcZVWVvH6Ylx/nvn9v+B6PP50UIUCijoDNeK6ap4FlNPJrFDhq7KOnNmeNnZwgR5RicLKHPSCL754DVZWhcYYIUDpuPiwoFFplfhx4J+POXWu8CsDH0GO5+Mc3xwH1/nAyD/LfB0v8clDh78tP/xFEa8/63koVur1lcQ1sEavYJLKTGqRWMPrNYTjUT///UP/65/6t09kfFRcP+Lzx6lxKQLmxTguxfmI+i+fvNZ3zOd//4kP/7cV3z6/nn/823/94+PLjByL8Y//+B9XOTPnF/wn4pNnMPnXbz9PnuuaI59fyjzI+v7H6/t8PIhLrGutMVZEpRc0jPDQx3qhZ56YVISCuJUvYcDnD37X5djuSlEIUeBm5JdYzntR94Yfe0ELuCqMslzhtZL24PZDNQEs1kopAFGElQCKMy4CiUAua2cMb25VS4ywy4qbCoXIorMVIyIYo8wdlw5W9eEgwYzIBOBgq3R6HIUrNsvJ2iTbaud5dfQLet0IdTaY4U6p3hrcLrJd4oTaJtNtdq1d13uf3dk0aXWIu5q8KxEzUNUzfbXjd2P5CO+9cW+cDchHE9Mb2C4omzQlx2ABbLv+eoOub75VY8r2zQO6ibm7NO9GZexGqT+Y9j9s5nZZLXBJN/TMHpO5+c23Ds3tewD8KvHb4ndzqrzddKod3TZw7VqKjX33m67dNNyNTPttATtHqt6W8ujw10BA7clZUSPa9SVarELG3pJMrkJIUQpOF0e2PriIICVkfzsIxu5C3ES4bmiK6AUxu+C0ydSGtgu9GO7RHVUbVO/bpMOuDMvWQGqdnvR1yQlWMemyV1sFoFDgCEHtvGcJRbXLXJf0vQGwQa3oSL6ZbRgJRnO4RnYH1xI7/PK2tvZFsq0x13lEjIUS6MSBfrVVjl7clBOOULszFGlFUFdHWQO077YHcDunGQzCRDw5FfRJBFUXqFGz/vkFj/kcJI1oHX92TD3uR24b8WGbwNdOWBJoKWZZqKVKUVhYSg4lh+CstKQBx6P8JPLIqJ+rYLhmAPDiT84huw2CUJiogl3KpnLCQyNbB6IASHupTpNR2bHYSbKoyVR3PYTtLC3bF9MXBvLngaWVI75q6QVqPek1zjFWk18SFVUDFQAef641DnJ0kE/fYyvJWh7TlHKWEd/9I44AMCvmddWJEP58RvIB5VxLdvn8G53nv+b5eP1LmgFm8cp64jSe8PX5gGet85ouv0aAWlcZ0GLRNofkUwXx5e0Z4MT8439LfhJnru9YD04fyhrzTByo05l/pI3jqKpHk5/zAxnXocqleqEQWeeXv5yPD06MB2KdwyRqWDT/UfqYU3UEJZIrJjDX67uqTgDUtUzl13c2aHY5D30f/8h/Xv92fdb3f43n4xXHlwav7LsNl0/mnxWfP191rf/vi/zz448aye/fr/Nvoz6+jz/+Cvzlyj+SypyVH/6h+eXrMYjryMSP85PXa7xWfdbTf/+agj+Puiyc5/XXvzJDL9nhyJorPfL14+tDca040sOggMsavDKO0z5Xfh7DibZYlXo8ABBosnkhWt1LycPNrqVARarAHvFBNJ/HUvkmjnilX8lZoNERIoaKrIySg2BJFWwjEG9bjw39Ghtn3oohlIHogqdaRQgrm0QatYddM2CysjCoXFvr09Uc2LkLTWzuvU9uJ2hvMHYbVbIZV3umL90FgsvSPpS9jzP2HsjtO7OLcS+jwY0LSLTojnAEPQEvZlnLDuziWmZVoWogy2x3WhQFMRAEgUHusDo3WYx2O/zQbZa1VSHYHvGbJoce1zalasTmnu35d/tctN1Y3ENu2x9noQ0wIFRjJTbc78Jo/vc7pGqzwUGiIw2Q3pv4Zs0BaIbyVkizS9ZGyX0jGSBkysE+mNU+P8eFuNy7PihgcR7QmJItKQsUs+MKAGrAC3Ybt1PExtkNqBbhIlHESttWVtnr67o0+rPQyOsWntvpbM2s3aN5T6bcy/P9taG283nnYdYO4SSutBHNQncV0IK/sJwNybScW2QxbE+cZHDZ3KaVpmsNlElOwSqUXLQRCnOsNFZJAXAMwqha12wo+qjrZELMq6LxbpTPIV+PmNdRZx6P1IB8XTymOlEgjZLaWE1UKzpqMV3Z194kqciswY/IHELN8uWyXENZMB0Y4AyuRWarnkVItg5WnLYlHmAku11mXIEiswI4zGjNDAlW1VrXNaqeZBtS1+GyqcEY8axXfsSK1erCEdCFUjcX9jl8AirN3v4TrhWaD6w8FoLDa8QxpZEy4eFK6PTXaNyBRwHZSzgyreWoNa7BK7RQI1f9+eE1XsOIL/7NXoXrwNf3SGusqTwZZVLyShwcg8xgEPZV13EtpD7+Pf8nc/3UseI5/NLHdT4Hvv/L+f/5AlLx7efjxzyuY7yqluOBSyf1Mf/9RwbXyojyVfD6ZJV/KlCf5YfOXCd/DhQWBl4kEAvyJfIK5xVnqIq9lgFfpf/WufL1x/evBL4f4zw+KjUxXOv6gvHg6fXxM/MVWDbjourEzz/9/ASYtqb48PXQH/Px+ph85Dq/Cuuq+orBmh8Wz1dJ9hrX498+x8ef/PjBFa0Q/LkW8nq8/mNi/AOPrFPra/Lj8/z+r8//shzz74+//RMX6HXVxMtSLX6NHPOZ6686P/Nvz9ePv+ta+fF3/P34byZ0zO/68T/99YnL+lj5ly98lD1m4jn/+At+Pv+vf/vn5/ge9fzzf/yX5ys//7m+XaX/+M6//+W//P3rsx3c8ivJ5/VaXxl//Xl8ww8drrV+/OtS1KtizjW1qjjGx3VSCH87iyiT4kgQwaXRdhRDlS3lF5Be9PaL0RDLqwQ3NRWZ+Riml+Fmfphgi+thrw+tDKw6JJSC8DJqDcWuXh0eUACZrVKCXFYl2vCWAYWDiH4WrFwON5zZgohCYPNbvBg3ZpcNJ6PVx27NxHvqUhtRFXr2rmrWKc23MuEGXduJo9nPvlHnEbmZXWjG8R4KOtmgp3TJxTxFOKyQ4fIaQ/AJrevYUiJvq8sichR6HXnPZUkBjMpHuQUsXZ3ogt4f7d5LBuwNAPzagN+/rLFuOBp7emPzwWkkYk+8UNn0NttuxeyOrWzyONVK7oag4epMiDJvNl5ILIJpgwzBYk6ZkR0HhA4jar4vfq2USfRBj8r2ADNBhOpclYWzCM05i5qhcN+NaQPLK7NQdkUEbRUZbrSArtpAMC052nPD0kBaUAicR9sWCwSTcVGEq4oLO3WiM0B0u3q8+7a+jdOhNkuEiIUtZrUpKlrIIsJBhYcE1mWsvuBSOmhVVaiSIygV9vfqbdvmjDqNVLICL1+FI7LIkRWVEzCrzCiH01fICUoHa8lHsE7EVKVRqznypaNwrsAc6zCjDZHIxEJABHFQXx1D8LbaLmWgCgGcZV8eXw6RlRx22/RlLI6E5KgVDThV+5yMTPWdYh6wwVJUbvt5tvWOAXihWYoQrYyI/x9bf9MjSbIki2IiquYemVXdfc6cuZckHlfckuCK//9HcEWAGxIgCOK+92bOR3dVZriZqnChah7ZQxa6uqoyMyLczc30Q1RU1FxrYekz5GZxmUMpFxwBF48ZPHiuOD+WPx6X/fJzrUNiQodWkc2te7yRBCk91/Dr/Bin5PjtR4In04wrNMRrKCZUGbKACKVqOGAVT0wZi/MQTxxPjGCeb595+md+i+fnGfOYwjrWcZ1p9kT+mPr18Rs/RuIT39MHvj+vB5/vcczPx5Le//0f//6HM57/7af0/cf5WOvzgNPGb3yef/wM/Of4tE98nDjSbbx/fmf+ZvQxjm+P/HA6wGHDUmaZc+ZCYpo9MOfH+CZeFx9hz8wjw9dyo4auaSOSCzFpbyZT6sd0++3Hb9/++fyWzLn0AcO1hj7X58cvHPicx/X3f347H3zS3R/Kk9fnMrz5e64z6RhnPj/Pt1+viGuIn/+I1LfTGc93rs94fJtPPJ/D8t8kCwyaxSUfwBWnPP71eNNx4e0JSnH4L+YYER/TH584Bp5PfTxx4WIswjmHPGD4DL4jfj8e75/HiP/2+XZc5maPN19Dn9eM0P86DOk/U2vlv471+1s+j0O/vX/8ffzffv1x/U+/5vkX/p6/2Pn2l/FbJuNXfnz7jz+u4DPI4M9488fjn7z++PU//uOf19v/5fP/dPz8Pz/j342ZdjmxLsQKPn55/+W/x7Vi4tvKIiSlISfA5eAidJFJqbI5KOkImcKhyVAptFEUM6Xn9ICiEDkKMubhj4OrhhHY8sdPe1RLv+USDkcuL46RNu0nKWhwluwdKK9PdiGA4UDS3bQYgUNwWxwZQLEzBVskqGBVYmldlmXF6bt6KcpYSGgmoKgEjVpkynaNVKWDUN6xZtWoGMNE9lj7rPe3bW8BmDWFycoDJ0JcB58YoKIkQcax1so3fK5jVYtUy2iBTNYgEMGQoW6KSbGACJXF8+rITSBrQAvUDDJil+MBVFVA/TApYGS30jQxWap+m+5uZiyKo6Sgzkr4bYOBMBP32HFjl3RVNKWCa+Ejs6h5Vd2ORLGVGKVzKc0oT9KwanHEWGk4xNJ2pKk43jmvBYAPi5lALFuQ2/nLw6GrunbcIZljZc4n4IKwdFQkudIdRznOpJfem9Gzmq3N7MAKpx0AfqaMynQSolVpQUlvZW9hT+RLa8C0GFiqblEBimwpq6oDGCF3l7O69QF5JGvWDFj6G2aRgCMkmeYkYoUhI4IS6aOqtuMhye2Sar5nTfIDViTN5Eg805SPdbydkGUoFmCWi/421jOnvl2Zme8UR2BefCzPtWhH/hHvx6Ik18fMxxixQDCnEr6YwiRz2HJH0QbNgEw3d9M0m0F+YAnHyJyy1Lxg+ZDBfWpCflgO5oED9hTDFE9gDQdL3SwdgiVca1gaBiVnahy0IUQss0Gei2OmaaZcaV7EvE+6g5aUzEKg7KQfyx/+/WmfgcMkjTzelpz+yI6cOAK61knXcQpEPnPJH9fH0zEpuutipnDZCUxAsxIUMSp9kcZcNmLQvv0Yz/H4fZznOZf+rm//CcsPW8/n8blGzo9vn6Dz5/QVP//n51/z57d8j39+O+CfH3iXTv2Y3zhO/r/+x3/D+aH41+PjY/z8y/v85/t6098/hz3Od3+O8y96++sj/v7P3x7LB/Qx5z/xZjjX2yMpg9KRCjpADnDGdR7xYeeZ1PMZPB7P5zdNBY9MC8OlXFjPh+ItU+Hj3Sl+2j9z/P3Xxw+uH8/8XI/x/Mf4ztDxuPT4bsfJj1/Mn++/DvEJPh484/HUE+9z8fOhf9HGil8+/vH8RXMN+zksyF/M3/Dp+Y3xQWktHd9X4tSo+ud1XJ+hh6d4vCOehz1Wrt/+iWV6XuYuB3/E4+/5n7/9Ej/PI/+1MJG+wOfDHpl2XCe//3HFX7+5Ptf8Cf/vv2t9j+udf71+/zjf9Pm7nX+7fr5/+6kDog2Hr/drgfMfP6R//P30+T98LHvXP4/j+6efh5b++/svP3/1n49jYIzjcf4af33T/zbtHP82//6fz7f8+fZt6fM//h9af/Dzx3Ouf/6k/g9z/bvr3YmY/9P7UJpWgAsgU4kkkeKQCjtVQ6qVGgGIyFjDPWmZaQYb71fDYkINrDZb19LTiloThAv2Np4XJBxKSoeFJQwBle8lK8km01zwoRil7uGWKR/HqlbTJaWGMx1BR8otgKGVWgmmKfAYd5pWVazdNNMqGiXem+jhspmUYSnl3imjiWwbuv03S/lDpCfABiMr6WbnozJUQmdgZiWWnglLuEmhdgL5ecF9AraqqO7eoCYVihoQWgpBYW6DEwCNE8rMIHmgSsUwqQQ5ajZgdRVVA0/Td6oe3hUrjLNVtDqNkQAveLNkl5TDaKJ3jkrrRuFi7KErtVZz5G8xpIKqesBUE76A6rACyOIqZXh+xtBCl6WN3cNUA0k6E84L2s3AnDNADSv4b8gEP2MohzHTPBLPs6rRmxAnsmQzZBCGUxgpiE4SuWK4PBIZdMtIRAxzpq7Pj3UOy5ZV8J7VjtItpXblG1Qak6qlYLa8dYlHJiCzTIC2Yk5WTTakjBlGS1nrozeE6zQDIR1psLTTiMM5artVIxIt6d8iBkYsQ0Q6EGss81xhU+OEXzlimStpSDM7nrKq1ySkIzXmdaYfOT/NCB9rZiBzPT8f34zrx7Hy9OfhyhV2EgOyjBVHPuPdoqLTVVUDyAj3tGF+2jqg4/NDEwnkhasGWcChc8i4CDj8sEXowUfVm4mijNXuHTWewTKzw/wxgLSjittyAhG4ckBmhwyelhxaSiDygMtspa/Uyjktrofzep52ckwXnBDHYe5rGcczzYoALsIO5i/8hhDj5+9v55RHRioMWmN8Pqa56cMJDadoRic90wXw4Nuap3+zHw/+Or/Px9vvv33/1y/j5z/+9t//n/qrfn/Y54kP/+CKn4x4X/grMj7/r7/+H//FD8c/1sXxnz/0Y/p1/D7eLjP/z/8x8tuv4/O33+Nj/uORH7/8HD9gP34+/gI+x4/Px7+lv/3249thv6xhGv/+D/52fLO3v337+Pw8fiGUTnlcA3YsufNM2ql8PjV+i/gIfH9bx3NJz/fxfDDyyqVvvJJ6PJDDB1PzyOfnY/54fvvXwz7sB/D5y2euD+IBHnx8+4cw8py5xrWUiLgmrriegXlc/8sZ/7vPfx30g5Hfc1yflu8fxMdffjWdMz6OTM/lgw97f1y/Qfzx/Q8NQk+TMzLtl6dkA1cqv9t62JowrOd3MuKXb8vH8Mf8Of/4TeLj+YCPy1a8P9NTv5/fdfAYYy6tH/g+j2vaj+94To1xPsx/5h/Ht/l4xOLb8yl7/vHtL/Obx1gLf9N6f/vl+vvxNv/zGs/843+J9PPn5f8f+/7HX9b//G34OPg4H+IvY/1tHn/7/ni7wt7fg3j8il/S7eOInx+5fvxcqY/ntRhTDOhKCDmTyoyDWcqWiQUsa4yzsuD0oi4aXfpl2XclmHm+mzDsnBhNapFZATIXL09YmImDzymfVyBdWa1QyupeZFcjDWIaM5hCuEemJ0Uzy5S5aZa9CVEcnuYzDTPStZRrBpFE0uHwiJp0xFLsE8iiGZcjWXMYWvgaKJ3X9pblUlaTwbIS9PK7VM0iFXqOK7e8Y9NvUPKSRFcc4WYGO2NFxHBJgOZacygxtILMhJiymkFISor0BBhgEt44bMhIHsosXXVEhjZEXtNrbPufbF0lsjCAbnlpgtNoblYh8eIrhHB6TJ6ZrpSKg64sOpwnuIf+lZ8BCXj5y/KihQlE13WTzVEqchWAAeNlHjlGcaWQwEs7hF2i73pwtQdLMA4CPA+PAaWTyfdxPa/5+Vh0RIBapDSxqinTSj6m2GSCliEjc3PZV1IphCAoUgFEak81orQZ42aGAOwwHpxRhKhubmOUiJU7SuetsHOljJ5mLqZooJ3nIWpVGVcRGsXTKsGREs8WDbISPGcmzFNHc/aLtDqrKc8upM9LR0ZKwMq04bnsCDH4eQ3RbPA8HsNIiyrQEjDLienntEgefj3TSBt6y0GJrljkoyiXvMwPj3i6pygNPjwsTGFVo9mFGeuxEWacn2Cc6ypJP9XUHgP5iHUc07QUSsFXsoLhJDGq+6CEXJCDOdJoSYIjA6VJY9WWx8szEWay/IAFZZ5mCx5LMCfPTFgscpz6VMAf47Ar6NC045xg4jyoYY7wWOslPEPmadf7MT+OlHJ9Ry7SK3Z1GY5jfV8yushw17ElZIgBEZ5DNCY8zufbUzYRIvy7z29h6/2gHtebaQhhjuf1fgSM377/b/Tb9I/4i6R/6THXI5/h8RT/9czv69NN4r+uR/KP+H4qf394fL5/Ymldn2PE8/N5jT+ggcPezvHbWvLrl8f/++dfHisyKiyGCFux5N+W8IjlV/JXPZTvtnI9gOMBHwBOuI38fsKGeQwx1rwe+FeMeMMnp7/peFt2xK/L6COXref8R5708/lc+H182vtT9m0818nHNdz/eFDzu4lvI+zfjm//mO+P83Ms5bePp57O5PXrc9mp4Tb/ecyl3/nDTkTo4Bo+8WbTchAfNkjDt0jDGAvJh+Acf7W//vpt+af4yOp+FFbkz8s+Iy6/BpkHRLN1cZxX/v16V/z4mxWryYJ4zI+xYkXqWh/D4jDKMbUOzZ+amiP/+Nu/hfHtXI/z8xzXj2PFd3d8rjG/zbS/z/F//9TD/hj2/Vyka/x60ofPb5ayB47jyMcK2R8f6U+MdQkZKYQyRyk1Wy4qFEqUqFBljAWkGTUgPqymCx/gkHIa6d484QJAD4QQAySPxziYgZA5jrfDfdBiPN7gVVgUdveMYEWvoSKKRGTUCkELIyglzVJCphBR/SmBJUPIKLfDBhyMIh4VuF38HnVLDY05AqAjJIT6x2hEzRcsIZDIZaFXgrsHIJtSnfF0F1MznVim6KYbVU08gcELuPJxmhJGO1hmek1xPKqonKX/Kyl0jFHK0KACa/VMjGH65QzSH0YEZnPUi+eEnmi0O4zq/puqik5/i8pVczRQ2XvVXVsQtBBys2aalYeGtPvFdvXvDjlMPXOwpROgajtqLQl1Krw7wgr35WnK16q1Awr0OlfZu7uKCIm06lRSVTaT5FwlBAljkLRSNlHWQ6B7RSMwo3GVniW9pDhEmBmNin7mQWTUxcocRKplWaVYZOHsmX2v2NTz6iICUATF6sTuXubqOqZorboWxQaHF/1fnd4rlaCsYrwvTEFpqblzRccXUlgiVxG9zE2OoQEF4OOt5iT5AAA/EMYgVwgcw81cwJIi3TMv4xHBlIPj9LiEN0zAnGMhfAh0D4C12cfwkLTYPHeBZOi19fO6PkHFHDIjXVoHZNXwVLiQQQ4lMkmGJrAyUczC/lFoSeaguUqJTkqilAAS5JoiIEckzZHmddeWdBuwkeGmYcNyedZU3XVBl+PJ4ziG18ak802niUeJ1RYHO6Vpzwlm6vwGGF3D5eCRXGecuITDabkIk5RiMpCugGPSMybt+fgD/7Tnx/fnj/f5z+Pb9R+/xoXvP663S0cOeTwWxtPsUhz43//7T9exrvex8FxHWj6hb2vaUo7vxI/1tv6Di3r8PnP+FR6fZvGP+KbrW8zx/gc+afN45rAwTR7x+3r+wd+WLdK4UE2+NeEFibDBxJtd+SPfD0t+XA8bwuOQfELH0MhxUp4zVbPeT7Px7X29TRy24L/KKXdSmLH4/Pz1c64zP/k55ufb8/RP9yuepSX8eSXWf3w+JMg+Y37kh0X8a3nqZ3zAOQ4Aj3A88kiFHXTNhUkHtXzm2+L4rHnH5mOtJDA8B098DsP6iOePM/VxfsPU8AwFSxX0EpbscYDjyPHMzLfEJ/ERf+QfwefvA3Oahh9njp/zfMantILneGZG0t0R79TUzGFvzGP5e5x2DtqwtYgBU83iHcBZsdVjXY+cioh8c/fkOixox8VxMmSwz3BPrljoOWiiuXc7fjWbrieZpMmyZBmBVhgSzLJ0a23CktKRdvScnrKLxFjygzDZkQ5bkB5vNuDpMqM9Qi3BVya9Zmq6h1HKLUlUdJhi+KBV6w0LyACRacwcyhQNgzOF1mvLTZ+SbvC1xXvR8jVo6SkUAakaYNVl7OpCaq2schH5ciYia3Juxs4FOttMqBuCFZFZHtoBXfFo1To/zPRYRiOM7wIIQ2t1Vby9wcySd/DhlYxmDUHzIj3XTVSK2YTnqk7upLxq13dfbfeLjCq2VhsuK0Kpf0EZ4equsxLA6jgAKJ56Ea4qAwaq0wUilFt9opGCcsLdo9QcKzG1ZOkQvC93C37Uk9r/5cZFKlioy5FUzSklKWwn/Dw7YNuEM0drjN9YdK1qvVe1kjSBip2D9q5FkwfNexTql2Ws2u+d5O81w33VdRoEsVrY+km4VVc9DObZ8Qbv0BAqWjY3c906RLwPBbakCvarmDXNr70aYDyWlLIa5kM7j6i2aDXDt4noAL1hCbOM3HmsqSAMWMoUcJBZ9F7UZE2WXt6EVckXNHq1qEFJisVbTVkKFrTkXiClM1JLy6pc3Sxyq/1WZYF+RnvJa0Z1DUGr45tVZLkjkRAyLeU8RonXsKJGYywNChkzIMt8rkEiAk3nz/AUMGckcW9u5O42fMZEsjou7Bxm01U1uVIgZ9jBaiS0VxgJVbWDyDBcHg4jkRkIuxYviLkygiuRCiTTbGBlJBe1BoYtmb0RNKXTBRI24jCXG04jnXwT6BHuk5k584AS02OdKSj0/ByLjkM/ZG8N4NHcUqQ3r8QLwDsSV+l8ZUCi0kM13UXOVTtItbmNeHwjRiCERMQI00qppkpOEms8nscw0E4HkgHk4s9U5vUR8cxMPe3T4rk+lfN5xSU7Pzh50DTj48MCgQfMjlGUmDdTiocfcvqqJlhLYaUlsvYAJoIZMTE53GxlceNADMkSI5nSskg3Bx/Qgh1+pHGYLiqhgUjG4qpi4UDkWjOWJXOFjExnXuI6mKY9Kg7LLAVofXIOYvGYkYZhMY5jpVYcY5ziquJhxMfQCpjNNNpJzEpxqBLCyhBGGxuaWVblFN23w27SVJX8IBaQZvAEXbsllT0zWYfSJA4DTSGYVXcgmrSzZYChdsAgzG7OJ6gE3S0zrIirZl7PgT2ttTxFVUFTlKpMi5JP6HREnUpkqzvg7nnRbQkBtaJCaXNt79b+oyuL7UzUeoLcN9A2ulz7y76irJwT8tCjv2Os6nqOlm+iVOhueS00+a2C/pJT3rm2UEJcud3B7Xxxu+AdMrTj2/lng+TjlSF/+TFuHKBcFLYDvP3sbWu0FxA9E68/gNt9Uj1i9/7MVsWk7Qe/34+9m/6Lu9vQeiOV25QrMzJTXtFVj1fuPVBPQiXoaV4qy6WWWI7tXpltMbtK3rUHmjUclR0XkAAy/+Ruv7xH+UnrNdsMuP3293559X+9fqCa+ypoyO57tj489WG9HSmmkvcTAegVnBnZ78z2UKDJQXiPjkBvoZuNV/MzHEUvrnUp6RRJZmMJBpmnsTZ/r16BHFnFkrrpupZq8i4nn5mtX14JpfbzJZT0dVXncLU0b3n1egTKrGiXArikmtbc6uObe7CJBbWFvBGWqiyUFD7JDK7wSCnX6qCy5g0SSa2aEYk0SgETFGOjQCkzUBOXg2oXH/uot7R4ieZW7cx2jFR/oZmClmZ4N+dheQge8DKHtEVLE0w1wvSWfQtKLjK9qa2gNM3kIOGLdDDghjPgAs0wzs+LNo50L81ib6zuypmOdSUnB0MtppsBSTPgRCmWZkaQU54MRFgSOWpsNSuzQrZdylQmg1ccSbOVRxBoHQEjbTxwOI9zOanlDhiP4Ugz96c4UAKvZrCzqnkRRVe8EjpAxXNOfsZjvnO9C1oZHpeTgsVihQGCDYfTY8gvnYx0p+hS6lhxai3NVXZBcom0Y5kGl1ETLPRmpWkUc9ZIabhlHMUTMhWAGRkF53UzjI8whzloR3GbMFBisISWZSkzrUWli0rFHArMIVgGwmQmWtYwbIE1LbtDzEqTaiwqlBTsoO3ksDZFkiy2quhVNQFL8HaUP+h2DIqRZtLINGkQzU1ylhsVg3TsqFdCt7Bu4cP2qOWiU6QTpHmqWaPVkFyW7AB8aPeaCgYrymofVzWo145JApACS2dTlf+gDle1yEZb6Nsf3OkYWXaiv1ln70/50nZbIliHrQyWTR7ATk1K+IeMfEc3kVY21vqT5YM7M6jHgIryVchr3rb6le7ef+N/uSi13xQAjPvrGzzdr9LWssIt4tm9wmxbWrfiXdO9X/vK6fZC7Wy+XBd3jvcKgPa3Xhfd4VDdarsN7WXh6xdUQ5HZ3bG189KyW7i3ocb2kdT9zh0edrW26GPVfqSeRVXX++Jz7aOhytzuBdaXS79/ptPOguKz8e7NSTOV6SnWNvceolhH6/UQGwYIlaUqB6y9HwvFKa1KKoXZqV+XPhSWKWWYdqR1X2mpT6PEljs6zLo6SyNqgEpt7ExZzXEBXAB837PukKSBpaL+2UGBUbJsSUU11iU0kEvV9UUwElCGvBRgd+Wk4CkmkDV+GrvHEKjCE0WYobJ/I43JVM7SpoXBlAEqK9KTGWDI0u1CluNlD8AAcIQ1Y652YpqR4JIzlx4VYmRXDqRAONDVYkAtxlOtEEVgVM3ROhBMZCl8JyDVPJaKJzvCTmFVTYhSGioCc1REqCxpVCPdUTNn1EfSU9Wwwcw4ECR4EEHAF/l5HlyPMSIkwpxUKKngpBMZlNUg7wQ0wFAkRSK8KT+IcgR1QIufMcwkTwO0lquavrKKTg+dRj9+AZDf3FMP2DDPAI8AxiNkg0HyfITJ1UJLSEfv7AXac/JJX4CQE7aCZGoIB+VriPRwcORKOxdiSOcjI99GPM6T65vhsnMiDwcs2SUzUQrPWK5UEIrlOpbGyOwIH4pDHitLkYUFOgcCjCV4taYcXuhZrR6QcVLJ4kEQcAy6k0avImoFErZpLQBU8jIuIWnbBgCwcow1VtXg0JCXGxGb9VmxrlFiZEOYlFnw2AaiYwZomEp5PjCYQIRBo7DJ5vV0HYzb3AG6LWeDnKxe2Gyu0HZH3oG9i6y2ZS9JePOsanIRlLl9x5cEJBvLArL4HcLOI17Z3MvQbSPcTrxsK3axbmdvDQ9+8TwsfYZdkA3YsC3E1RmZVDG72mnYTrRqRKHasHfQQbm3JpKqKm+dovdd3pArN2R7l2KJvQgAxp0U9ZcrYe34CZWXvVSwbr9wNxpvJ/X6s6OQr6GAOjPaoUV7ng37/Sk13273TsvVH6S9wl9Ci/sTKSlWTcYrEwhCykx2Xro/4k/4cf19L0Ypi/4pa62P7O1sHWgIZRNRd7qDo7LCO0NtRqGSnRmWnVEkaDedusFv2167dqVlTXbc8Ifub3GjAaoygO2IeZPpAJlbnabah6ZS5iR6tBSNRBZXTlVy7e4xCFYoVg2tMPdcWTVXjhKruzHxkFXpoCH1O2yoSr0gIqt1ueXFCvJuK1Jpv9XO78Cy1eJVVl7i0JZFM3qH4WKNFNvPqLRrgJpjtKMzS2MaprUmTl1YfSLLiHCXM1ht4UB4iVALCoC2NGocNt8yIN8PofZ7EqULhjQkK4GqVEo1/6t+MioqEWhYw7XMkgdZnZG2BQOlRfqhqBlj9VVKrF4MY5qlIQxCCAuLOFAYNtYBaSHe/TI7HrmMMBsyG5YmulGBHm+N3YBd4U2SKYU8KCyVZIzFUAmtCgjPIndm9ORRzyXQPS2NJqfoTBoSxpXmCE5IOVKi+TCEJeZCjsYq3WmROYaZ+QSBpJZKxk7yJSlIhQL+NC3mgSuwHrYsvIavldggEDYOQcMiPvDzPOxh4owRY9pBEhwUEiN1Mo4hYworBnBYwkmuHFrGsEjEDyUTUKYTFqgZQcJ1QSeToDJtrYTZqBRUhzm8aRGjZfut5khlzgDcYFKGIZJaiVE84SyZppG5D9dteRoYQw1Lq9kGBIB9pisqjnbApvQSUW57VEfVjJI8w0MHEjhWluovqstTL4vCl8UF69DKAFiTgEpCuTV263K05X9hksk6bR40FQkZL9PN7d7vjJg1XeH2yeUzdiTQrkQbpuYXrwNBYA1E3v5pVzC3k+b+B+5XEhCtCSlFODOW0ifVOGv9bs+y3YNut1nZJ1uHa3va24dp12p3+ta39MV37R8de6n1+qPsvtqJ3nnn/mQAaLnI/b9aR+03/tMHVT5R/p/tuzt57av/s//eX8OdpKJqw9xpaK9zQwVQ5Y1QttpYp8l3DeTeTqJKjfH1/HaK/vLLL//7CgsrKd0sNbTT2253b5ztJ2tgxn7umzDGLVwqocIaFH1QluwW9Xvxq8OpTlW/KUv/sD3yRnXJgpmzd3GZfaJcswEi04uHj/7gXWAov21hoFs5EOsX06SWuapE2pOdEJcjT9Ou17pVQ7jdwVWvDxwTgHpSPUs9TcAxqnJtJ8xTIo+tdceqSbrJmCTTgq5qu+pJVkUMrCttpbEa0wvr9jgWN7s9c0UPHjD1zGJLM5lZwgkvQZQsjXBUbaRDRiRc6TU1rN5JKvmRiq3KVS+1CfjzMbIarhKRSIQCD6UhgASPLNOw9xKAXHC6q+QHDEJe7hJSNb/UIrgMBkayhBMySy1YccqGllYEJERWC+AIYs6ZPl0xoUqoCiUKpkGyFJJcYQkJCQUUliFhMREJxBCq005qkfg5jcKpKc+lUxHH6JHr5nYMGBcU1Zg+vAZ+5Th+4swhlI5ayEzjLZ0jZVhvl/RYJVX8/g8+NHxAETaC9MRBjQiaUlmKDV0IyeVjkrqOta71cT6eb25Uvp24ABJ2HQ7IJkGuA+UpM05HKvIR8sCD16F5ErouIxe5FiyNFkcUm3Aunmfm4YyRWqUkGoqodLd2TVWyzGQy4pw11eZwGDCRKSRcgjtAooZ8R4u73haVLeh7u6ttF7WNaR9j4EYVTeY0j04S0LilexmVZaYhU3KI6QCS1chQUEz+/zrgLEWHO8MuLLdzI+ysrnyptfAwrFUNrAtsZN5OsPOoQtI7/C4nWmZrexxa9fO0p6l6Fba7YKfCXTTf1jz3AeysroUxSd3AIa1rotomHiGt7QD23Ajt/6jsMUbtLQTV6HYoeBuFG+u9mUZfsvEdOey0VdtNAqPw+H0LX7ym7vuolOlOQNUxRFOvGnhs247t5gtDFGqg1na4uAOFLvm9Emvuz29sc2d9mwhXjrxcahaSDMBknd0R/bcth0ZYqyiZJcieISF1pxbAFrqsSfVqTLMa1mmVgSq3oqdRWWFgMY3EO5nbp6QfU9/BhgNe3ycAc7eb8KdMmqIbqolm+km5l5s3jvQleErtZ6Gd27dITMEx+8M6lFaj3bsbrFauyA0VuFZKzqopI3uwSIqKYD0xVrAqa7mXegNsV4P+kMr1kasGSa0cEJKBRLEjmRhHmlZP+hDu/XNH3EBNJfQieMtKm23DTexAyUr15B7kzRdc0w60omyCXiM36DUSdWBWbk260awmMJGsFu3eAFHM9kzlN2da9rYlKFSvVFJCaBCktabqPj5WteKlnlylxkYGUbqTe6M208TNvINHpZFZ2uyy9NKfyxyjpXuIgwGBCmr3mVTtfREq3WdheF552XIcnDKRS4bqTZQskqqoBjOq9S/zUGq68oCFBRhxZphQvHlmKCM19J52EdNyUYZ4RihRM8+Q0049yeV2EUQGXeHx/vgY5/wWca6w4/xJHlM+v8WSME4BfMwAhsR3vJ1uvnhhcKQdi+4YC2OESFQBNXgAyuoeMo65zCK1QhnI65ELi6Rdh7ECEFg+Kpa1T2i4THEE3DiO84j4RuTPh7BEQ4xTDUQXrkOcxyREXZe0TFVMVUlUgFDCkphGVEAl0Bg9q0a0bP4wRa6VyLTSR1g1CIAQS7oW3mPnrIzMtqGqAJMAa7sWBHRXVKpK8Kqb1mSbNLmZfG/htCp3JW20uy5dAwna43bKNhKgsvK5GqHLApZZZZitC18ZcI8w7iDBuG1h2yTunKh8YBtmmKVpe9JmfUi3ed3pCW9LWLnIbXhVdrEtZJmBns0NQMo9Nah8Q266azEtioelyC6z3Xj5/UE7vVSDi9ZjkrVzwhfmva9huzp+vayXZwMAdYvT/W+0q67VyhvRlu0b31jlzsyFG1vvoL5/rAC4HblshtsOCAA1W6iOdt+u2KRsdLj0xadDjebWx3ZlyknSFWZOel1wCWdhG2FrAkN1mBBkDSQw5gtLVueG3F662OjsXqtKvZqHTQNiBxS6i+PocKivtSLIHb9CpKN4Ye1uAbNE8Roa1cyGPjYuzqLjWXO1v+zlepo1QYQ1jQxMq0aFRj4UXrop7mM4Nq6Fhr0BIH0Up4cQzBAgRWYkFeFeYGZ9FiQgWIRkGhgEkL7T5EI26vIzmU3L81ZnU8dH1T6eSC72NamxjfLIHT+SVpESUbXqnguFLFVUC2QiYxA9wswsqjGRkJHDamwjnbELZm4rRfpU+W6nFFU5oPkXHoMhMwfGck/CWOOdukghggaFKS0bIem9U1tn55JpeT0K1T1SVXiGE6ZlFrAsFpYB9IVULiTgkkJKSxnT0kIG2ChmOcTBI6dFJXckHNSaifPtxwBiWaEOp06bc41LNs9SVVolW9vGJdWHwSTScWbOUI2D7O4DKyVeteSKCxA95slGaRWG8MgrAAgWw38O2skPYNljytLHwfFDJ4MHL6blqkKi2VJM8lgwfxx5USdoztQ455JbGuzMAxjD8xjgwHGUBVwWkyZohLn7QLrcx1j9zgEzCR51dMJ0kVaD46iMxKf+OEwH0pYOW++PeRKLhiXQDtZ4eU893GtwzUBkyCIzVtgKyKZU2oR8UmDIMg9zqyAtTStoyVyFKxGl6eSREpTFf6KqS/QmOlS01zlTkQVKwqG9YNmHuwJVIWdPvysHdhvNhKYkeMFC1aFZkkFJWK3JK12A2tyXVVtQTRrI2xOr6loIuFVUrJr3S2Z6Ag6wKI4yK6Wn7Xbbo3fhqfNZAXC+XNCmePfdCdySg+r8v2PXTmH3ob2TOKCkIzamyt3DpILckaEoCY/OP+sdA7nNNdW4ZFvyfXldxzNl0cPk+x50Xwe6yNaOT19cxBeaFQBgfH3lDj+wcXvtEXZdBd3BAPcnbe+7sYMN0la1Hl9uZkdkFdm0S+o63A5vts/9upDaF72nLDYAYmCqWIpVTeRxnLThOxPrR0VW5lE3blaCJHc0UFdblJl699QGIzYtCFWtLCDB+mY2aPyqSQC7raiq8+hxEzsrU991D9m7XbSqLFRHrSDTxK6c1yF0yyZKN7FQqV6Uugu6rFoJCFiy9UJh5jKoE+5ERrJj+do/qE6xcn0ISiotqMxWn6G0p2OJYUhjV7r7BLR8LCLQDliIzKDCy9sbWMQiL87UIMBRvDSmqqWwMkSkbVAHyG5PAmM1eGUQGM7uYpWocCxWAFsPNHf6iw1gGc0bXc8MZbXYuZWGXZpW0b2pqtnXsAmRVVCnAZZtEVhhU50GNX6IrchaR7321P4JCDmqdXNcGFeemWLmoXXIwmSABYnE0gNTZIRlprI5Pllhx3k+Y7kSJjswC9kQh9tcHqI03j9gQFiAwHH8/DYQec7fD2ere6LmaxEJk2nBbVVg7KMyRJqoHOhI3GxIgCyVqHmpAA43chDph53iWy2+07Qq7MyVyAzZRPJhmtLl65OY9uMRC+lcyzXJsOexWD7xyJmEmcX47dPtjSkcb5/m6QdsiJaJTEua0y8BpjjOc/lB0Y0HzuM53nQ6zed5PvdkcCulQDDgeWKZr5VPgBOmWM74/OVtHsQpRLyZIen+HE965Ch6GI8T9vZm8TTOtRLZgu4BmuUD02FlXaynwBST1UYgMJjTOxA3klpSkA7CncZ8gakVxMka/u0q1c1laVO5cxF8MdlC2K5Qbcw0w7KKVN3qsFuYKt1JkbBtzwHo5YBJKul1NNT4luhZSs2tEpHZliTSM1Q8SLUsBBrcuqPbr7B1+7QKBNlORaJYU3r6slX7tlwbdy7ZyYQg091WenuN7a/YiWtDZZKgiDrdiII9Sz0jszBs26guWpNDRE9n244p7xS8ghjs6Uv98e18+5+dUqiwLn75ygDu7LUevXZ5HQW5FD2ssq1+WdF/6o+73pmFVVSmm3xdSMFsWzu5UzmQlkFjukV/pDp97R2mvRX3/irktPSWMCxWKEPmEIdRaeZ0V6TMmtMuEMoAZErJGNVDlw0TN1WiEXTeFRW2mneNgZA5yUZ5WfszGh1hY+n1N7MKA8u/ssYeIBpBKh5LJtNkolBkHQhmlFWFNHNjyQWVq9CfWrTuBLKkiYKZSpyq0ApmNRWFGxJm2T1/NY+C5eC6JdWsJhCNov1VMoMEe6qJZtJgJi8Nlt5NKcKiyjdIMwZQGF3tBAIqCnLjglFhp0HyivVBVEWzHrkH4WYmdj/ZgQQqu6NZd/gQG0CUylh0BAKWVjwSZNJARsWFzHRNDYqZz6Q8hLm8RMbQIJozZMo8UGNsSnzPgmlyCEFA4PeycFlZiKVSOuSlTms0rmXZxHfknkzqyyweMHMjphlKnTWUz+OImpVdKbtCyGmwM1IHKuTPHIM9vhlg8sQzhwlHZoRiHYyjjiM9xhHrx2NFeJZiEm2ulfb2OOc/n++EWdKGhtsKmhgpswr/Xd7DstdykIzaKIYlk2xV8NOTu+BKj7AzzeqaAxyC2+mMXPFOzwOWl2OMOrY2qbXi81Aen4wFYAY/9PEt5pj+OcJWrnmKMRAPfn4w7Sp9eRmMOCI9NCiXYQ0p1qKYtHUa6hRLI6g3/4V+nAu/H4MjakrpGIHjtEAMEwKSHW/TnB6Iw4YmjLDQc36ufPjpE3Zc5sp5Os5Jho9jzh/vHvFmUuLBpL3J9RQ9423SwWpIplLMNZBUixHaOKaMjtE2dUXO4GkppUx+y7BtNY5uQ6vo56aDkD2yWgLp3bFHEA4uqAfH1SQdkmbEkcu4svgmaQx50zS9qGkvC71dexm1GrhXbGkP2YYYuZookVnZZo3J8zSFXCLgUPQddA78cmDkTRrCTfVRf2M7nPJBsAr1bfOMK6KyXkRWzC1YeyTsoYSorDb3+2yI2JFqymYW2cvoyCTz6UqxmvW4E0JuRG5Xgg2QJUI95gluDUlo+1vugKO/QlRyVxnfl6R3T0MqmeSiYVT9ClA5faWVa9IdH2Gnb7wbIIGdye9qc+WuFIq9tL/UDCyaobL3zTW4M2m9HglQKsl9O7RSYCMkxSpgP0XMcaQmNbSQsIp2qOwKfeGLReTpGt5dLK8EVyZCZg7IGWZmbtA4AFDlHGkBgLYNrLALnl2tzSLKst05yHR5xaNiN8sPd/pglIdqRrKgmvNQ9rsKMkkgU4bFVjtFDeWWUAPondiaWQKgNEwxwpTyUTV5RGaxqzqvTjARcAehpGUsujXnLiBBCXPO6uCR0UMssJYAFGmAg2tZIjGs++BVR4MESxmBc7C71KrS7R6gMac0hmWktmCAVJxbowI95qOSgIQVrzvqRDhIDyTMzCUmD9aJl2shWd0hSlMsBJYJnkkLG3KANOMxfXDVsSBRo49NaZkBikiK+YDs8tAKKFNyKA2pVCKt0AoHVRnlPuNWmgZGQi7aW6QdHJEwDwDkQspc4hiwNAKpkEW2nmlzSwBT8attaki5nusNfkYeK2MlbB7MdES6wSzz4/ojK5s2UNTUlf7mzLciu6fRoqo4pYICukXA3a7MXDBF+CgLERs1zCttqOCd7oWVaigsLJSw5/q4lAPJxedDc9AzzozrG3gwA+e7+UIizu9X/BJvmZIZhn4a8mmWy5df1+f1HalDBP6Fx/NA6pp0LL4H8inwKS5fOZ+/pol20D8f4/JlysNj8fAVMF/pFZ6FMCEiFp1pj6Xxds7p9GUKPDnG8cnLkDx9OBeZM/xxBoaSko+5kpP8JMNwxMd/niPie4zr85fjqfeT69DTz+E0nYdRgSpZ6EAMJCeVlzIIZbgiRUWezydPZRpseB5RFM0OdfcxuDvOoVetsLpflcxq05NHVHCP4i6OUlCHUJqIBjtQmn7AgGieblXwskaodl5Z9q5TgDYvQO1oeSLRpHzPEvwBmemeKYQNJJkyooCHysmYK3ZChuyyXFthbe4H7mzxzh97ObDLcti/dP/BqlfbXdwV0GLRuzK7f1bwKsEZYBgAlUmjDTNVwKmmi1VOu0FvCr06DRTWorkudj01ZI068I6TuP8vFoSrxi+FG2gANwt6P9que2+G2MaXdwNRfzE37spNtaoX33UH3pOE6yW7EeTLYhCZslSqeh53cNM/xk3RAmH1LHO/vRpIoFVOGoQoH8bMqtFZy0pQNkT30qbaj4+9L4vBZQk4t1pTM7pgbr6LwlQazUBr3oDBwvdk41dEou40ZVon83DIUHNoTKCDNsaw41gNVVb+pt6suuvHhFUd+674qpVurCBqmAlGGdIsiiMutqqHl74LiShMHQDNtDUCiKYnTnmJi6m6ZbESBqu5xQqAq7r5cDcGBBCUZUm0IpGSSdoPuZd5GIh056p1DqeVozugQPqRuXfOhv1rawSQXppa7BsrJmaD+2xgmebWB1zlrBKpoGIjwYyKk1N2hBtoHJ4hpDwVIowOMWzQhLFAy13zUXffBpWp7xnWMJYq2RfD0iJFBEllWvO/i54fo+LKFCKYfFzmCdcTx0yzp+kqkD0XQmJN/4z/dbxPyS1DhFbJEdSW9/UD35ZG+qXEJ1Muw1GvhuMzx+lZPEIlagAJr+HhFXmVuYiSMhTMa9d5pTCnp1kJwhBFWyxyfKK6Tq0ozkDNe+I1sNY04lpSVNla9nMOrZE5jcNG0F0HD6agHIYROgIepuH6Bog2Hxrhxzg58j1nHPQw8PqYPMe8RuaSL60l8eepyFgrPv1aI6YxRlxcFxZ4nYZ82q+pdR2mNB6ArTrYw8JocIOnBo4PX7IHx9vh9nH+OI6BOBJDmo/zfP94QxYPF8IAnKDWQfsUHOvS9bxszIgx47wuvI+cv+V6YLh0GM8Y43og3cdI5JPXcZzj86fEcOeTPtZ4y7FgWiuR5rNLLACyxAF1g6jZDqENbSEDXtZJLhV9gS4bMEaXCWukCRg5tUosw2u0YM3o9ZrrbtX92vASGs8W2KUWaHuAgttEFqNS6FOEnk1PmKFa5opyAdSs71A7iCrQoIxnVnG0svWs0h27yismaGVUaucS7BItRBmzADJwM2WaTKQ9Emjj1QSA1T3+nRAcWaevEuhM0sKMsW0M7hqhupxZy5KVdtH8GKUKLbLZWHc9+2ukoK9lX26Lp/10B3ETiL4A2AKoIqUVxv4FwNcLo/iz06jiel99YbBV9f0ChReU+ro+mgi71dzuvHmTedvRC1KN2OLOseuCjRSGhRSWq1RRBcC2GmQLE1UBgFkzJ4GaZPu66dJX7IXZ+D3NRzV7Vm+sF4DPxMhoUPYFNVQ1k0HKtRcAYlfEKVT25k3D6uo/6QJdsoqi0iir1rQk7/Yfjuruz6bM7N0urwCQxS8AMUaMZNa9G2A5bIzjcNTUe4BAVpnDaUj4MXLRC/gso4OVu2ZqNSXKalqYstXpOlOv+E4FThZC3pI4Ei2XVcuarACtij9HMaDUmnp9LMrNemVYApJuwTuvtnby6tgeCpXdyEzJFE4TrcM/UsZcKAKA+6xgG5aZOTMoVwIwR3b4oZvjUJNDkaNGBYMSjWaaBEoTRCOJmlIulAgh7kYAEmaSyFy++Px28Vxv59MekTaeMbgOXEca58hcFHKaaWD85KCHaw6lTR5Lh1aemEymzpnMOdbE+RxPDKTAxKQQtkBYYqQfsyi/R2CslON4Cm6NQaHHfYKSMSsJTj3GZZb+YAL0TGsEolrOunyYUmopAhO5oMRDc9Q8ngEcyQAQ4JQWr2dYPgFL6hIWch7P6/F8W2mkw+JcRzwOP9PHeNeK9zXDDcm3ITvtO3OYFkwWoVxcjpgRWtewyIs8ZnDZc2IA8+lv+eF+UXOONbGSLHYQIgVGlLE1hx8YDK+6g+bCAZ0jjbKV4zGOYUs5FswdPvJ4kzH9iLFQsiU1ei3lMgNyXvqZIU5LudEDIMOPlBO6fL2dj/f5NDI5CJ1+jHc8p8SZwTyG7gSlclWr0eub5/GyVZtownYG1TJAyDzhMJF5g8iV8GX1S3R6lKJCVppsVegqe9A5T2HAMNZMPTQoq+o6rhkjAu11djuGZ/HC0CZ4K3yAvk2ldiVVqNAOLPEaZdLLnbUfsaaqVFZZ+MCuXFOsAd7lENJ2oZS3v2svsdFT54tFRqt0BjJIikyYMqxGCrIdwgav9wyj4kqmCkitARCo6mrnhmocmNuNajOmyqPbXRbdi4ShZuDs5FlF/OrbvF1ge88NEew3be+IjiRePTC4f0C41/zGOKDbSGWjtTdCf//ovd+qggqTseZT1Uc1HG3iADWLN9WWk1UFaKtY8UCRuBov7jexrs6gs92KcjaFB/QR1V3OPZNYBA1eReEdbdQl16HhFi5nb76+pRLRFUcxolLKZCGV3Gfj3jr7d7VSlQbV3rVV2KC2XkoNAqA6dakW23Jila6LXuKL1Ulg7s3ky8JlWAloiOzQRwnLvMvOzqwRGL3hjop6IwjKiGrJLndWG62nSVkECpBQE6VNBviRGjWE8WsAVBFmu2IANJp3xFbOvkZyIa2BdEtJ5pZSGpVej65KzQ3gpaza7oVCtHMV9GUumnnHbBkO0dKyDBjotw5YEt89uppCdocDjLto17Q9VHdqjwSNXslrMWdiag5lwuIq0Ma8DxQIMVOJwfFXfMRQBCxS6ZCi+oS0RAfyOnJmMDgnrjM56zi77DuuHFSQ1IKJOQ44Q0r60ShCqtloYinYV5NjLbtBMweqsrbtBmnWjA8CmanIxCMGjyR95BWCjcvd5OQxITfz5DJGpoJERmFTngGGPq8i1yY1EwhOpTKU5tmDTR9n6P38lgOWVyq5qHgXzvTHRfJwwoJJJrTWAienjowPy4nxmc9YXL+fvJYgy8unLJCyTCgZTOXMQS0RK3NFGE4oxpvcMBjF5a/x4oQnzd3zcRweY1TDco8NNWniWTXSGgROk+SKURO8dWG+j/OxrgOWj9OCI/IEr4nMNVOw0OrwTcXhS2x8TbCGVMuUFOW10xsaNvmxmhfzJjmhkx3zrBrbbbBJdsW2caX2wDcCd4/x8zuvquh6t/awmqmQAC1EFfGZLCITrTpNttp955RsvnV5HOtkTclEpvyOrhtve4k9dNtr8mUyKuXY7181q9e373Dm9iq07CpxbrJ4vUmZVCseUevPcafsNUGuHHAUYgkJGciw7Efzgm6xfS+ALzSmRupuWfyXA355iDtuaNHM7ZIkbI+9PfANBO+Em3cEsO9o+957D5F3O9S+AmDXML84LO6L3nsBFUaZZM1GIdS9sBCqAg5xDGNHH9vbbvCVd8hVrqKA5nJw5XNq/To7vz+e3prIBOtj2ldWkWA7YGKbpzZaVmEZvhCMVWRC2Bg7BTZUlAeiqaXqAm+thdClfTPLbjqrD+O9uVw0MlmIrVvtZVp2FsiSuSFUyX/uEjXLY8oEIldlfoYt7gbPUs00eEUe7Hbfvc2t41yiifa4K8AAAg5zt1GcajiBHpnjlguCmWMiOqVl136yvE1HtuXTO3xCJIKEYKkeOZ4qYeOGtGpvKAUFDFBEaVGyQqNqFKxijClvJpciV2D0WSz/Y0MjMlbRDP5KsgU4dqQblsoayVWsjhoCHd2irjTPDEUIYwKL0wjCg8NyYJEhpMISWWU/AnjMlYuSJyQvnUi4SmD/QCrXAp12XoBlDMmd1xA5nB8wyrS6/F+PQtS1Sp+3I8IOQjvyTsFIyzAh1mp6Tq8TCdiQkGtoM2dWjvdpsKT7IkL5KYUcjAwgBkIWSTegptaGADOegoNj1sFQHDM+LeK0yNSTE5xLZogDOT+ggySNR7gBhvfw97Xe52IOaJ1vCn8bT8/jE2/vEg7ncIbzLX6AnD+TM4LJWM40rYVzOXSYLuN6Lox46v0z51z5vDAY6d+Eae41+9xoo4aeyIYdnGN4hJ8RD9nB+Q0zxolIW2GJlHmo5uzAkVJISM2IR15rXg8Rz2Ehzzx+6LlMxSF4ZOxunXswCK21JAi9LOPr6LazRnYDLwLI7FqnXhbUsvVXqr+/RHoaHiuicXUeCxtzZiOdBleqGgJJlHhbcU0NUZmtyGKF7l7EYhtWHmJGa426Mo25fac2XqSOH6zl89rDFOm5BgBvP1PfZttnlfkGttPnvUbau1/bOtclpw9AHNXW3IekK6lmfrUvswodBNCjYx5utq2xwaTqopb+VN19Jd03Xxs7Zb393q4ms9qQ7uwT2IJMOxjKtoWoDfElptgZ8+2Fb3+3g5Dt59oVk53m9KNAZQx10axEqQDxl+sFGw9h/0toQfkekigokQYeHMP26N+vkQFJWlTsoCqIahO91J+u/PKA6/FVnkXbQ256VapCwFZWwI6/6qNKmBUbKCfUQxUkVB4m93Ecxmo6LzXD25t+QdbZrGd+ea+6g17bymdY+qu1eUt7sX5a1rnLi+Kw45pe0RKaqhPXyp1onkf1K9NMSQMMkpV44A6TJKVeUz672mA7hBFR9W6OPSdp3xuQg3EBPkpyKlM136wkONRUq5ryqRDybkJMZcMzu7oBlQC7RKWlde2o9BVTKaUFSDXXIEPJhIVqamEj50Sm7zaI2tttAHNFBYhfQua+Y0qrAhOgNzKSUG5VTwGKLsCnpXsVy0uZRoqe37ZNgQtGxFrIPPYx4F4zEKC7QoiwQbcjBywFkw0+EUkp8lpes2ckgZF4lnjYaaYC04uhWJGU86a4g5Iy18oikZPLvNo/CnmQrFsdQKVc02aSDFJEwEJk5hKJQYTBfJzIqLZeFC+D4EFGMw6SK9YAIJc5Ja01ZcaLmT//0PJDhK5jGpcGlTDAPGoKHh1w93XmcH1/E33YHON8wMbn8zAbfopRA5FcgCKQylifI5/D1vPzm+O57FOxDnyauUe4Ax+hvJ5GlIyH0gS6xiGMN7803q/lQ49jfA/izRBx2Mfbki0bDEspHHA6zSOjOhoznlOgTbeAZwbiuUxpRkCx2mdQVhQ4wRtCc267hHYHe5cmKNZ8wjrl96ykl1lmquoJFLLGzYAWVWAs+dwvLkQAExsHtaqKoTnLZaDNM4seW2VbqhgpndhWP+TLmPn+m/rgYMv6NucIlYEYUXzvCr/TOm1uAfaCWm9fU/5PnU9Q3DB6xb+FT36B7as0WZdixtVU6WoIMyoqadmhQmdG7Do0u7EKZM/4YRtkNIO8Po33y/taCzf74ija17aHHTsrLYtzW+r6SufMndnvwmatBV/vj3b4Ow//UuWty7SkSvkXL6h3107vyrG2i739N74WsFFdMtqy10B7sATh4+Xsk763at+H7psqE72TeHzBXKp/di8TucP/++kV1NiasNVmez+vrxS9doH91/0zG9arTO1ePs87COvZ19nFdOt0TpvQhdu/7ZPAHVYI7XN7Q3Qal//llRX40rzm1nT02cWc7tsjinnuCQOd5Kj5hrh5/k0mbFSZNGMrnzSBwUxeIbPqLJdquiUzFRxrGtZBZhS747V2X4oeEgsjr8O0G+lxy+BuoI1WqisR1erp0RszUtV7hvLJJG2pSH1JNcVD1U7uZtb92x2CZg4JNS0af1tVY7L2vxU+Uru0JqkzgG0bayBgKqtFprZyOiCtBJYDume5lChYkBNJSD3wrNMQJJJRfHMSkikNdsj6ySSQirU0ueArj9rZI1cRzM7TWHvWM4u03iUGRZZcp5BI5cpMQMzMCMEzciCrty2FaEoFjUFPQAwSyOj2Ami5MkcPSm11OhMznMjreYYrxYr4XCk/ugoFraxgx+w4wh4PZwZQs7ejEvnFyCtaTjZU/4sieGAYzQ/DyeE2htOP09ZKZUYYA8mFMwCU+hkduXLGdUlXMvKnnSvMxecnHuvTDFeIoq0ByZcf+n192Ar3SAcC7nqM8xhrWeJ02DJf4UqGmXk60zOU4HKHBgrYNQnK9Yy53Kt4s5AVC4IgNevIFDdBTrfbGrJYOQhsTeZcSYLBFELp0NphVaWJ6SRDJi44ZTVidJmYUDUXVdqWKJXBXVGxbTvYmSRhglnF8T0HiSI94aircfgeQdtIY3cS7uJ24cid75UBNhVSJWx/J6C5xd2+UbWSMg6FZG1TWXaLe2RIA1DtxHY2Rr3SLZjX/HI1q8sMSncV+ryTYkBViC9/wZ3Il9vqgKL7gPUCirWd4suV4RWA3M4VksiRndEDd0b7ip3uht7+wNvB7Mu8vRtFlHbezuc6He7anrZdYwP25RusO7LuQRj96eLro/YVZ7ui9jLKKIZVzbyRWYgImtI7e5CaunX3QZlDgTuXaUfbOyGN5ijsw9rSNiXuviWpOtC2m65L7NKsrJxe72Zwn5aOK8uRxIIzb7ygOwBYuupErWOpJOxaNHAvzr0waAp/FtzOamruwIwogoWpyh3tr8BupaqzZJmgFzehvp9p9QHmIjScYQ5GktUZ1Ma7NLO6cs7y5bv8SqjkOki/0lHAbxqhZOxgaOOhHUTkjiuq3Wgrf6TXTdvIXj7s5fVd06AXSLekjL6ETlmzFUpodsa0CmIlmsuUAHyYbPVivcK6cqkZWWQ9UaEqUxcJRWrnWAqA6sW5w4cCLGpOFygsS2hByYEE53JOjlWltg2cKYxyi7Ek95mEeQQJImYRpoAxOZaTsgTdUukVrMkQdCfsLcMrTB05tdypcSaWBXeJoUa5dyihjdoUSlD2cFc6iuCTQInMDYuiBvhj2MnTzIhRScotOE7GoGGkjWFXsT3IdRxpPdg1SnQkHAHagPWYKCBzCXDCj+lxQDLZkBDKlR5XJJABE0I1lBTLGFNSXuSBBRcU8nZ1SMIBczhhi2cq8i/GCebz+zjXQ+fQPIbGDAtoTlGIUreSgmlasqgm6YgPJ64PMpZnQrHiGFcC13TiIO3wUzU40kSkx0SuxzycgEFGd1+ySXMrEmBimA99ZqdAlNwFpbecSzJdbZKBrpA61apEucIIhHlySDVCrz2AwMxMK4iiZGFsCNmit0Jkq9QU0lQdGRsG7P6EKiFne5cm3tZeKfe8qcOgekxQ8aRQTjV3YG0SvIsfncmyypMtu2Osn5WQVnWuLa6k7cZUHB+SWR2AlbtaWYtWJWinZi/jmQBkisBwi5CQjGyh7HrDOxPUfhJbY6dBpY4p1AhEe6j2DPVf/tlm73Tyxtf2vyUIpXeDXfHdGZP20kTnr/s9O6Lh9rnszPlGHl95cfscNH2gPTb3q2tYjFr++ot7V6X/95X0G91xTMcZe6hC/1gio/nqKW/PpoyQl5xvuZzo4Klr+r3ylBQJWQIrrEIuJXOttWMokQjWZCHoFlfb0Q33quJG9fomynHs/pV8DmmMbFyvWTxNEkK2pEwtxP1YiZIWxB5h37hG7RbryEAq/mMwUQBSd7IJamgU+4SVxE6GIzOIjPvZVBnWSkYya84nWRogZcDJ4gcaLJlmrWBLc9BBQoZA8aIWUcG9itatzZZuWI+eMHnJfTbkJKIGDDlAq6RrhGC31muRJOu+07MavUqLl0Za6VnNDAfMaMYcVvxnWGaaG/kM5zhGVUxz4VEnzNCYmUUp9tVsQJolzS0aIyKQNjKZkXQ6uar1zfrS2Hul2s3EDBwL32LhvGRDqeVI25LUJlsEceXjAMxX0kyx6IyctbHyY2S41nFJWJ2BI5NuNpjg+QSZEUU/QGTWtN9x/DxKTigLwQk5qYVh7M3swYCVUHXl9bYPdsl/dzGn6on0FQhZTL90LnmsElAw1wnS6EmTVwlPYNE3pIgwpVkAgHvC2+4E0mBxrRWCRYjpGbNqqc/BfAuEO2jgGXk0EOApYvkMXJaXr/ecaeABkuKnnu/X08lFpXIYMUzE25CH3OxbmpvRzh9mCz/tzbWOGXI+H0wJDmDFmbJIZtjIiXReHMAcS1QuzBEhPAOWQ35mRs0bNkNpUBzyIw66x1oyDfMp+Mwt8VPDE4qPKSA7IM2UVQKYJfm4PVZZ2GqIIGU5aQDTM01SAGtnnGUjUkZlyxExVUbJwUwxv4wg0HbAmwZcgZHVHOnsyJgZ3NqUQsPfufdJ6/5VsRRgbi1rcINaDTyLbMKqSWb34UfxSq1Lkmw3L+wScX2kiNIqqBFnPTIFLwQaKJQudwJNyRDrOm2sJ0RwrSo2MwOgF4/jVXhvkowgpDK4nTUNbnFZU1yqD0q7dn9H8tj0GKizlS/1XEGsNqQO+eskqIUhiFLR67jmftev+WAjBa8Un9tN3hlbPZK+BGAXB1QU913zf+W8d3a63W7FIv05dncUE+CwbBqTUDCou7EYOq9PbTClHPDdgVFJWz9YUirXl8oQOuKi1pwdXJhIJLNFwjvOqQXbS6PN/Npg/E5xVdxyIRM1h04oueRQc3YIKDNj43HssKSqq7fS2t69dRo5UqlWpW6kJLtwH1ZqJMXQUFV7VTpbhXKKKUVXN5O7oFnDE7eYqLJ58iWI0tUidDG2sozaONbt1w3eJJGR8pKezTt2YrF1GKW8t+Gt0m/vfdAWps9QsQeFZnGzcLBXlZRLkJs0wrj5GvVwjDBr07/3UqP7PlAUEa/m19wDDnf4k5K4m3sXkTW7cUPhVecy1LO17uIiLeGDMtKUDuSmnxq92ydH+nkCG0gvwqnshGdepf4awRTWBGRrrcNCyKW3NRGRgeT0TJcyIpO5MvP5nM8zp1SN5wL06VCGXRrzevPGs26QrYx5cV+yGldUjxa7aUWk8kCaaA4YhyZgER+hM5TXQQgmyFNruNIeC1njHJQZmQIUNA9Ala+AWY2hWkhbJFyZcRi2ujRBo5+IHL6oj18qjM9h8KrtUzAPH7pwBKsx4RBMIzA4YMwVmXktBJgMEzJtCpOwmR4pxoqhxKqxwHpzP4OHtMxcfirNcNCnHeCQsHQOnzBA0/L5NqcvqyAsI0fYcGGlPmlUyGQmC4JYxNA46rwc7i6uY411pWQDNDNv9SOI3brH25qrtNPLs5A7PZI65SgaQSrTi+6SDdH0Uch0K+HZIjKW9E+WHHopaGjXRBt7KjOz0KgxIGYAVgYBSmRW62DX81om3aq0VRlajVZROYHbLxXc2cZto6n2UpfYJr4LdTcK2J6q3hMdp7f97uPephm7FESyMyJrw2l0H85RA9wYqxofLQTCzbIKuj0UBlJTatW4p1S3Y2YnnKBLiF1H3bact1u7HRbL93Xa1OuPgRuCfjnWHQyhtCfshTj/CRFVEYSrIN6zWKG9Tl2qbUpKXTrau2wPB4Cye6W35t5GWrb/LKfTiWe7NaPxoCCrKLsmYbuzqF6q4v2N4arXj8AWc9g0fkBZWBYTQGQbdpJaa0LVfmRERvGybNMONwKxF6QqB61zxvuq0ZmVKgmOlLQyQ9BSRW7VIaJQh3S39gkBipa00ithZ9ztzVB11PuBJFJZKHpg5SCSCTL6oa8C8g1Z5yo4dhSaiRpyAKViRUK0zKjYQ2EpegXTxk1JQDXQ2xdsXBIyYBa566VAwYWkavBPpfQdYNfuYLXZ1fhb0rvyVCBQrNAezlYZPFsBv0R+m/JgFdgAkkzDohr8Jy2vyIjMQDQmCafLfKQOurDWg/NsDz1QrjfBYQQR30cudiuiUJL7phAUoW4Dk0QyCBa6MXx56cFYGnGaBsyPzLdUHoEzzIl0lioV5dBMe8JyZYxQPmFIFTE8sWjPnG6MQEYqVh7UDFtQcC0tyqXs7r4yIqZnYIrr0x5VSQYUtsEZoLLvOYPjWEBe/kjJQjQXTL6iSaP7sFe5g8MS8owCWoeX61zMNWVanBeYF4DwaqKGMw8SUnjN1w04GLI1R2YMlnyMkzTaEb6ufM9p+Bxvyy0LI1FmFbZ4AEc+5Z2SmMlcmY/HNTAQU5BWFo9MABIWpkkK8nUN6sJMezxzIGLZeR7H5IlVsz+WJLk0MgMuwJVjrIUBO8xyHJm+TkFVZ34sHExZAFlAyM5vDGKsyzx5hA8bQ6hpjQHJzDlYBPLyN2yOp21TW8Ocy8ALPV4bLRtB5WKCFllB9858N0UQqtISrQrLtHK+NQgagtRjuNpnde7T2vaWqOlLtQFAJO6ZnB1GCkSSe62LqokaiJyynaZ1I2FHFTv1axtHFSvlDhvucJvlUPuuXn9QG6GrTgxi4wQdvBdwKaj1Z8qkVoNZ1V5gcifc0y8oRGGwUrHWgXYZUHlEtQuXIjoJHoMwV8prvNj2rHetFDsT3dBxXVwn8wZq7Gzj6y8CpYBdVJ17PV6BBTqj2S6yp9HghoorRd0MrX0dKjoW70oC2cDL65PvpHfnxi+GcscU7GdeRUDaLfktKmj9INiZYi1Lyqqglf1MO57Y+EAHDq+nZ/ziMxv1qXCxY4Lkvsv9+lr3QnN2k+7ua7P93pQyIC3t7FcFJm0vvm8VuFtntQOCV2DcT6melF6tO+ojxYKc0zrrsQ5fehMKgoUYAEa3D26YwADFylkixCWvWdoM5QwhKgGvq+zKvFr+M4GegiRBHPQsbabULrQUXE6JuUooEyqhPCuubJdLZKXWCgK8sj65YrWKXVmjOtNcqtL+YWnZd5yiIRfJSHo+IxnIWVmdM40HuUr+ctDmONMPCevmQpA077QxpRiI2OLJAHE8p4glRLJkWERDHIZ0kOmcNesdIwg7JowYtsyVNty4ytMrMoWs51ENFRm1IWxApuNxUFKYmxnhSea8TOFDgUBQjpnMM1dGOpOTnoRoFjJ+LlabtEoOCxWsk+5Qta5H7QzFcjcFQpWmyZgYmZZyVHWOSsH9AFO8gnGTYFjK5z0u0y3cqlPfDDAz0EfEAdXEyyJwscd+oGk0dSIjoMiQYIPHGDDCRrsTL3nczJhYMUJt9OuxxQqZItUqwgRrPC2y1FTaeNdxnNIViLlkMR85F1NBTvclagnmvKNhIYEMZrpzAPThZY9DyHDfFQdRYmQpnaD3/VL4UCaCCkymZUQdmBxeYuqpTvkEik3JE6rXqAuRWWmDMloVPWrYVzKp6AnRDWrWuoqIsgBUeinpGHgL2TFqKJMSMq+KWRGMS4hGaM4GAe4Kcxu/Kip2mpRIVUpgkJgwryvuDacv/Ow//0p1X02X1vBKy+6ETNWhpTu5r7S59ATKbqudb25XVxVbUKvAGBpTQ5ELIhhiN4W+DSpgyRMsQ6kI9tjpMdhl82yqoIShQdBYTRXSPZFou8u6W+zV2oYDTR4TcWfA9WMFlG5ov4pMtsku7W3RwWQ5x7aonVvWs98Osj9X9dUGbtnPsxJQNQl/R2y3o7+JZE2druehXviOCrLH3GfX/tqZGmzjKR3okyYzN3MHYX8KvfpCmzVXTSEqFEzdpvplA1SyvfPyepObZVWu6MaO21pQO9YrZZVEqvC5AndVLrlUXui8pTlJ7j7h20CxpDkqqBOHnMZWJEZuIRDKs/GEynbURf/eBDs6QUnyKqqvP4GiQmQ0nl01Ia8y853mKoX0zF3SuGOvAv8TWKJSUUpDTjNGgG4uq1pwbTvVbIpefG2/19aRADKsVMrjRZfugLBeL5of2dxRsx7Q1pbCVpTWdsZaYUJEod6pIGlUKlYK/hp3lpG1sTg9Bfc0H+c3hHkF9o6UJQ6v8N+3BfGomHC4YqS4RpqBc9fWbeSo0SpprEKcQ8FKgM0sMqU1DpTHgNHcITowgATNzDou4VwnHTBRWvTIyPwMe1pQORTGIFYiZfCnHSZHBlaWaJcVx8+Amu8qIo1IRWXHYqojqYgIvYRcVKfPzwHPHEtYR6o6fUV6XhEMLhN9GcNF0D1ZRH3z9Ms8YI7gGXJ7WnrNjIz0XJXZxDSU4pzkXsM/mWuBsigJEa6Z8tRUnZpMDlLUvB7MzMxcrN4vg5xWBaABCTUghUbYXIMCTLFGhdjEGijZhRBwlDCnIHNmrEzL5eQjcR5HFcCUFlFkPAOZGlrkMqNKsJ3IASUSGQnkwqKaExhCMDKuPeEGd8an/g1rqdcyTwVvlEvaprmKYYr2V+142hGkbYWbQGUFWd3rCjFgqzoaFGUYdhy9nOGdYbBGqt1lza5iIplfpQwBVkxdtu7OanibsJd1v70KUdoj/PrVJlzhTpnROeSd9WzD0yisvjjg22bvTFHQnjqQ1Vy6nRm5u8cRsLRjg62KqKJR5bqouRM1OwypXHKIVm0h1RfbRulVOdhX3mB9322neSzOBcu53XjtzlW2j8JttftNd8KnjTjeDrhSoA6N/v/94p2+1Qbhl5+7HdeXB/Glfny/xFiKWOgLl4Tqqymn2E4IrOhzjx/sz72fIuu59yMtlKY2dpX1YFkY0T4NVRilhNxThFXGsiltlZObevyJcI/4wd4NUkxPJ5QRaBG2rdLbPXXoKUgAivnOind7HJ72cGPIPGVb2rzPgu59BUiVZ9e5hYRYiQwalalkZJJbcUNVCkwwVqmyFkUM2ryc/fhZZa9WnIIoZZnoRkDUKrp1M0DpUdUQYhI9pLslNQFUfA6K+hJfVCirCnKJ6AyJ4mZsmLEbNBybb6EdPCSyyLsGiC0l35wn2IjlADIzkp6JjExk9/QLsGw9hTtuYRN9q/ZNOAHzXv6ex2A00Iy5Bds6G6JNYaVCYEJeLRRqK0Y5WNR7H6KdCtG8KVO1szhM5i6JXVt1AhjLjjQkQzhyFSKXxkyuZ37LeDNK680jEZ3ylLnKYqutBDOUaypWzPWbEiks7czh+u3MOhZF34EpscQ11mJQcSi9CoURmYwcbURkY8Et7fCdOYdAmKeZp3xU4w0CpNuKCulqKpMFYFQY7Oi+VGRPTke6JE5ETnEZAhmZ7A6XSIvCxuCFzaUBGSlmpGFaWi7WZGrEAZjAmjhkoDEgds92Ju3Q1kA0Y5BGHo9QjugCIcEajZsyim7hCpSwv5mZSW5LQR1FgIQySvxfqYWMNFtRZd6yRwGyWgJepbzklxSo/yzzXCmxBKUp/b+QWtEYpbC5SaWPm2xpntKtgVSzvtWPBVNYWWITgLF741bdQghVKK1cIva17BxJZZ+BDdvdcGr75Db6bfO1exIF7lpq+SXD9qDbSXROUp6yukVuz/uy8zsX3Kmw5KjnMypcrmUcY9ANeRnCS5Sg6nuKJDPKq6rVjEtV00jGU7W7FJENdBJf+iXVt4S2EB0qtAMu3zwawG+spowu2zZ+WcbXnRWXddeN2W/+xeH28n+lUX39mf0tNha9Z2MU2Nv95K9EmDsz/vJ56BawuvIMdQ8mOivVvuM7Ae532/yo7iV+wdyvPH533VYlL4veICob/e0EN8Ne97sDrtozJe3Ijk47G8teytxbiyRvfAnlhHWnzxuo1d5Z2Iz4V2CH2gy1rk3MKPci3oMrvhzTvXiJQnuFErCpJcn9TaEKMsAecWjNlOBegTQ1R2lv8nsBqolP4oCaMd7dsZZdAQBoJitWbXP0GhntR1tYVLE66peN9CRF75qOFeFbo3qVay+gtb7u59JCdRBASzelewNWNjoRxK6/d/JDvDZ3jUzM/qwUvK+tpIHcIVsNSiwDRTMaYC2+6U5wTJOLI80DruRYtBFDMspogBwayOFH+PIzxcErzXysOnExzGhCmA0px6zU19zAY2GEGXCsceTCONKPeW6LGcGBU26EYnlv56rRFLtO7diAqSUZovkBkjIVa63ZhSPeO5FPZGYG2dL/EpnKTMF0DBhNjr1WTbxFj/CiL3MTx3GxCK1mMkt4MfqU0lScSct1Kn3VrHQqjlJxL3xwWXK6JbAYA2GQKX0IpcXJjNOCASqpjJAyBUVorFJ3wqDOGHwa7Sp7LRJMjF2fynGURqFAjGtCDCuFImYMbX5JKh6m0elQ8TGGiXSQ0lvGiiBoWW2z7qAis2Vz7YaB+vzbttMqq7STo47D28az8yR24rXLhrvoWFC0ytyippQpVdva2iOrUe2M5oz2gV5Q7MG+MmuUI2jVqV6cnOJdqoSdN3le2+mgk6Y+kztb2H+Uxd5RBV61R6mbWnMr1t5Bxbbmr9SGG6zuo98JEPmlhMrSVCJDw3mWWhykGMPpxXbJVgLYFUSSBQ5wr3VbDzO3yBztuNL8JkF1fIuvDlh7UW5X2jes0fnfvT4iVVYpgVbL3wB/e7LXOtTO2P5OQHOTcPOCSmT2XtcuuG+vyIyaU/RC7neJai/kTl430W0nrbnz52wGiyJNr0fdJlh/fmovH4lEiKWCqL7HL/fX8DSyAX9gg9UNQ+cN6Pfi3DuobfjtKLUBZcFSZj40DqwiIVUZ3Gj0F5Vpo+K3nHCNN27eakuA9fPmzugkS1pNOHHIjZRZ2khS5sY9fcJqtISsmDMJg5f/N0BwwZmOIg9TcpdAb1A8C+dtzwWCTtS0nUJZalHMCzB374COpLNHerLmRvG2d9XKdIu5s2LFIg4CDhPSFzdDK7tb0NVKYCY/7i50G4AwJGSwOpJFke5Kc5NTS6H98d7g5A5UeBstK9iv5NeruW9Pm6BZT2vtTN8YNCatsJnWNhnmHKeGTBjLXPAUzc2dx0SlRwBG3aeB5GD1dvsiVhb3IyqFX8tXdpebqRqHzYdMPjz9xEGjq9DDMNB0Zf5tXG+wucQI2+dIZS9VBdoIRxjCyHGeU6aaaVelgeNtYmhYELDqUDvw47gWkT8Ph3uEMNAb6MR6c43qwZ1pXJBxBYqjTsJgNDfCxxhPKgEj3T17xhgrxUsOW5Gptb5FqKcyCaCseIkjHGNMX6qNvZxUFlAROUzTmAwpmIhUTkUwxKRgliRd0+oBWAQgZKamzzdkSumOUpkxCOnmJAOkVZWasFQ6FVjlhc1DyFXFZUbGHErP7I6FFJQctVNF0RxOGm23z+7f7UGF/cS6C6K2abaoFVSbwQQENti1S0M73yRUAWyiRbas1FwLgs0bzAwjW71NTMSemBKAqvswN+my5HELnKLUg7QLIoSQ1d5eDYkvV5sNT/VVtS+o5LtqYvWFFym7Niqk1igo6lQjr7s8uIeG3Bbozr22K74ZbTQvtl6Bc2lj1/pIGyb2IKpKiHy5D8L9ZXAFM3M3GkbfZqR7W76divXVv3I8NVGn/r6jnEHtZ9x5X8mZ0FRa9n0PrICvK57dCFPOqeU9by+FXRatSxH3UCz1b3SfDSSldDtooRp5X676v9QK+k4q1ykP2XyKeoQVC7VDvenWqBowd2SI7SA7ykHHvOY0Y7f7eM3m2dXX8rK5VTZSsRUq+ycatLBWBn5l1rljJxWdcMelNBeBLKKCmTWZ6Ut084pDjPXSviNxt9of9TOkuWRGg6WIckgs+aoEMUapxNdmdIMhCY0UlglWXGIABgcs0xFReyHNMoF6tUlMJ4MIygwQnXTIUCBBEqAGByFGUd/KAVLVhVplASVBk1kRLZtWCJZyM/v0Vj5ZUPUIZkvwFF5TfwLmih0DN/m+drVchUvvOkO1sVLmCllNDaXXGJdy0cQgSpIHGBncFX1KKq06EAYzi/LS/XCtzPl9GXWEzXkOjTTJDY70MPBwnqt6hW04TE6agnDRq+CeMIOy2GIwM1XvbGHSBoaUcQ7ULGSaB5h5uOViTfoAOB4+9GsGcKyscKLntAeLLLhHUFtIuRwwacJSJTSBpNK0LHNw1fEPQaYPA9fw5zvZtKsKFS4HCEsglHrOi2fCpFhHCq7LzsCSJZSImRkcNeqGEk1wM9Lc+eFHLi85sZqXUQwH4zhyjAz5MDBiRAagNIcMbho08+IC5ctpZaa1XvcgxJUWtJyJhNFI26Vmc4ZgTtNwsZoUyDTkZZkWbgDcqCBsaB6cUxgXf6nq+kA6YjGZWkyG5xxj5fwMip4JZKiDDVfx0yrg1E73rLfQBr/vBjttiLPt+x5OTiG8vqJmSHaOXLUDpe3CWWLTUnat0m+PddvZcmt2exQhs8SpTVFlpyYolpBVVb+6uMTbyRLIcTu/nancSPhdarpdyG37uGslN/j8Mt7luF8vv98BzeXaZOk++3VzQof7pbzQDnVjmWbDzLoBtSBa0Q1WXOcipW/FGOyxeiQrjO17L+/aTmN7gftOv0QMdVOjv82duqGaVPlyfR0fdDzBez+jM7tdIt9w4ssEsXPrPxcAGgeviV4JSNbYK3fe+FrN+2kJNz4roDoYgrdDRof1aRsAqO98eTZsl//yiH1dHTh0algpcQ8VqoR77wrdhLV9kRRkr12ziwV3BPJ69ug02LZeELqshWpV7U3VUQzwBQzrdGtvzF49CbwbMroXlw5jgg73aue1IplXvFYrUh8ngkWApsBXqzwcNMVmozo6aLAWaxVyoIChqr6iHDCxYTICNbmq+7l63xS0kUT3wIitvQ6KqPigSzY7TiKtaY5qdKvDv6SqdxWvIdFSb+EK+3Y1gr1gNbMQIFXqBYHdVG9ScYHZUiMdxu9xww1ekayOOQL0Uk7p2PSlWabNCMG9q4Sa0FAsOFsUpFT0syyeCg2JMVKSM4s5TDiMnaiVW+q4pIAxy4YhCs+Xgma2ktGiaMlTNM2QNOXVyu4sNkFxhKU6itUNXdXuRU8YciERlklKKwcr3clFyswzzzVMVtOKyEUoEbIl0opLywgtD6sqoVmSc+Ba14oggbhyTn/MUkCAc1xpVes9/Q8/5rJDWmGHoEAxQkGDj6q7Cq1TDXPSRQszOyggIuCRWQWdPqShbgetWFLxKJQwPWXGXEod5o6VPYcnwTEkrwIKFXQL+kC6YYWraSDMfrARiYxczVmj0W0KSrMEbdXgLSo6lyviU9Ujy14K1bUhJPkyOLf9VrTzKQ4X9ogdZVMQ6306O6mXTLOFoRbiqWNQBjPRBSBth7UNf1lS2//YnrAhy21uhUUlypKowmmQYqueEVD6PvL1Pi9PuyOJVxr4xQsTIjvx35DkZgTvFO9LwW47vL1M9ZxvAFNfKFFIZZRhUt1QiqTztrtSGyK7c7X2jp2ZpbQZtvpCWmq31z8vYFONNpLbF7Wdw7hjqb3+bVcA9MSMzvq2JX7FYe1ayubA0LJ6G0XpD7zz9ttxERIYCrXvLiAELUjQJ6QuNTf5ta0b9nVurBNWkn/dAX5rBm9MpeSjt63kvUQEad3IbaIqDyLNu0JNbJCSlRpWabShS7vjq75b9DjMDZXXS4oRVpDJCxbZZ+auLdTa1Dbo1e3Qt08S68nzFbLWM8+tDpdoNIIod9kYL1Xyz1Z6hTDPdsAgqrGqysBtfoWy+GmWkEqlgSNBln6V3LrhHtYEYKOV8gPLYEFqhVPPjjm9z1JxVixrkmTuzXGnjh0+15p6RwObFwClpVil9Swh5gDgaPo/rIaglYeT1agH9obmC9XqjLckPGA9SuFPhapCarb+OlI0RxEPys3nNpi1abOfTPb7UYIyl2khsRzrzNW+MqkVImQZJXlEAiEzJdOQRs8w0yPpQLrMXQ53s5Vh8NP49q63h4ph6MRSzHVCELXASark12sI1gzKjnDL7LXsDZxx1HZ3lN7o2ud7I0aGwWx8k/U4k+NblAxOMENBRYgyRq5FmywNTWJUuBbAYRMyjqEwi8xF8wiDYS5aLsqcWRYc7nacNoIYXAoNwsukoni/qvEOIkdNTUG3wiSHwscBdbN3hVYWtcUlpegWqwdcQosLdQfpJETPkpOvB0uODOXu8QkMuiUpWckvsIYuqEaWUIJmdD2LAMMTTBkyE8OVBjfKgAhInCFW2v/F+73C7U5V8fKQ2pb8azpYe6jSs7CGV2/TnqmZDJQgePY5hbL1p9n9+BAhu1/Y5lu8p/yWB2iP0H0WNROo5bXYl1JNFah2fWz9hvv2bm+/gVkWNI6d3Gh/dX9lFyN3GrSNAu8U+f7SK8ts3kKFUu08QgS1IrqtvP/gYE9tNDgKn4fIG0Lj5iIJpDEDyBpXvoW5gI0l3/eg/RTuC9p/6yvuYQx6Mab6+esFGbP/1SfzTwkgX8u5t8eXRGg/wf3tnY6Wi8zGWbj3anun12vuhr02GC9fXOZandV1GtgwKl6P7WVoSDO6WXmNvifbjXK4ve2XYGYvknU9fyfRuH+oM1XtayX2OunOxjo1Iu+eLSm/Lre0taq0ewsKmd8X0StOtrC2sEsJYGjHyHW/XUZq3lE3DhBVYK088n6M1QBlREcV6PfNMlRQqiaSWOXiRm4HW4/OpPvB9adWsKXMICI3bp00hHHPu6pa9yuIuQ/8K/rdBY07tt3b7uve0rZLPY1k70zt3VbhC3DHqHd0CKgHhtd3Q1XyI4Fsa7MFhlhirGhEDs2rIEoOy0QHu75tyKom9PPUhomAEhTcCEim12PaUXtR/oSUsk2/jpWk3EDzNHjqsDDgMHM7Ja4ehUFcVOjdzKrzt4paHj4QCbPozdujm0Ewm8SqZDGuzEhkVD9oPc0ShCAJRGOhZartCIObLM3CJVaTpUsh02QuWnow0mJ141/ImD4ADqVEo7thMpNjTZNZ5rrgHJ6Zx0DSBz2IQDADCYvlMWoSn9GBtGNLmCJSypStCdIsKmOQw9IL0Qq6G0HzlTsjsKrJjMgokCSRsZwNX2iYZVTnXaxUpOg1wxPV91ZvoI5iUSM+jJ4kvcJYAB0Mlj8zRzoQFR9a009M6A69baK7RaK2W+/qV0fHTkaEZmoBAlKIO1HZ7xPLNsAYrqr9elXVytHFzs9KSWMft2TXXyo13+Z9e+I6Cy2XrtyyOuiuRtY57vh2v5a4HXDlE11uzSxgrhLlsls35NgpjAC11vLGd0ko+HLBdc/9cLexwzYUhVJilAIv2JJhBmwQbuc2vbSdI298tuqz3cdRhrtYK7cjuZ3hK7zAy7DpizcDAIz67h307zvYXndnnW1OyBvo/tMbon8mub3z/np5jr0e+8Iotj7QnZm3h3394t5tmwao/fR2flJN74lIwKKq4PxSYtAX/IZGMxqtZIXYb9b3Yl+ygk6/8Yqw6qHdx6MKbPt2+unUhxQyo3vFdQcOQklEZvX88uv+2JHF/sd+k310+xw1UXd7JNx3sBeFosU+p21A2BOKeiXUj5m7Dr87gu7Qpt+qK7eDlGraQYFa1QZi7ZBF4J55eL96k6/JYCYjkq99AqAmf9ZV1Bf4ZUvWDtv+q8Fkqy7kjV6D1ZF09yaTt55tnevKhBtkAkTLwo1EpGUqGwxCVpLILUeiVhNCDBY5VTuIus1OmaMinWsf7Vpau2GTQhMKHfDY9JOy0T0Sh6TJYEZTNVA5tFFFvbaYsXavaunNYekpEuZJ88wDwcf5OOZhlPOgQWYUTD4dq0xc9sYASpTh3qG9Izt+kfbBqZTTutZ0P2gywor6aqRR7oXrOk3OMfKgwYwZpXRsAZtuay5H5rIISa3SIEy4pJxlKCoeiIQiI1CSMd34kMnM1cGBNoTWmOCr9KjX0dkppKlUwV2iuaFyTpM56N7qFRGZk7GSLZdnpdbcOEUGiDTbpMEyzt0J87KJ1Q5fIWy15rOi1o4qsxGoGoVpUJo1Yr3P6X4j3I0s9/nV/qa9fri+vJ03/2SXJWQkVShNKmX2Ss32NOtGIYOvQ6cezZaFLau08qyzDEJKIZPVOhjockqd6nrDBhnux/HKyu6Dur+ctxQlSLQgSfP17fXydpCN+5ar0m1A6yO/+rvbq7B7Hr8c4t4vt3Y/JGUigYKka2GqcaBLv8wa75Ob3fzFOuNPN3cbO/T18otnef3Q+C804f/iC1Abr+DzurE9AaFMuXZivpOSfXtffIe9srT7tSUdbA2cqE/9fqV4V7T3Wr1S1Q7ICs+UlCoB5TWqRqz+zaKa3aWTCpu2QySw8e2NFXyJodohZDY9vz+/b+3e9Nt/77hmBzFfIRGgiyG156tGRt6GQ+QWAyuML7tk+uVyyitwD5LAHS7ct9g3V9ysdMQoN9AqQ1IHcL3Id7hVpSaJ1UiyYSJuFTCHJYyZHeURPXjb2971uu7n2l7P4HC6Zc2kkapEUSe36ApGy1eI+ho7Dule6y0wUxTRsOp8LQMQVWpETY2oKKMVRRtgq3fqAyqAzFTWWNm4wZjWqU2LVMnl1uNsXtAauYhcZU25nbzSkjR9OVr7MUB32NVJFCkrxqIUFaXSqnmpJCQqhXOSOvZ2bVuz+xJBKhcGBCBNmZlyL9gTVRZYMId08GTUmeRMc1/feV7TLM39oEk9UBKEXLY1WzNquJOBVi4/0TMaaRql9c0UTU4Nc9DoSIGaOqAgCJxHPM5YGGscI/EY5ky4jQMmOT2RI0uLaRIRmbmggJKeMHMzMybckZaRNXgRnnQ0nT9FhTypTDeAyjBmlpbrACj4IZsldF3aXKn7QCbYh7Jk6cJTZlfPI6Mfo6URSSbZhDuY0muHGs2nKu8VlSm6mTIzIsWQrUwDXF3igSoHhipY7DHUQHEpWKap06F6+iU3V4ehMuTsekrbcKL0HYhoyNmqFYFNCOx6o2hmI7njqG4uRyfXWV6mVobVYLgzYNHZ8T4RiV1cI1hTxFMGppgBryzqVjNDlSzwhZP0X/zwpjQAYCST7F4m1EVSsJaDQd5jibcpx04vVSQNcd8Y9MUf3XZ0ZyvGjFK6dUJSDSRRmrDIZGnRtey1KWi4h4rQer5eR9LbTmUDjH/KTvubd1z4BcS4U/PxJSB4+c7NDqpV2gCgdibFtrb77b44io4ktlFWZ9d71bh3TpURLFsnVC/f0M7tdTMvXLKupj0J2AKdLWDR/AKiaPRlRqX9u03jn2OBjmt2yF8veKXiysjcTXidMKrjNHF7pLovcS/PLS30WpyOllhRdKeMm16ETa7ppGnjpr3r76dgRBck8n5oX+KGnb+BKrp1x2UdpN/1+0Y1tuMsOuqXB1u5m3VIwHvBdwjUB2SsV8zx2nPbIZe0PGGDCSvJ2hwqla+aiGilbr0fxJYnq2DLuKWpyr+w3De6j0ksjnf1tVQDbjEpirj/2itWke+OofbdKGHMUkzLrh4iuFWDC1gRaDW/qQCH3OK8ZcYEbxSbNOszxPvBoyh07PoF6ws1HZlKs9jcfKvowY6ScAmzRDQ9/A4IJGYGRtFVYq6FyHHIUoh1kEBmzGFMjhNeD96DODy/8/ETHJK5YGGGQPO7S6QkTcieaN5rXeSFvWiW3vWFzgnSzWgLnnKzDHlKYiw+KJV2d5RcqxUnlwYk3HyAZ3WXjlxHxsqsMewBzyXIFAuRXHKPT4qYttq8FvCRNKUyTInh5ku5zFeuQISTqjlCHAGG1SPMcK9mJDJlC7mEmVKakHDaBS1ZpsBjehEAyciqhleYN2YcJa6Ri8bucoAZdYyxk5StjkP8fxn72yVZchxJFFQFzeNk9vSIrNz3f8aVvdPTVXnCjdD9oQBoHpmzd6OyMiP8w4xGglBAAQLaO5nSvhIgszWQKuwEBFflMUQxvaX8rHHUxvLQRRg7udTSUzu2tikj1p+sUF3by4zqguMAJsrSpYTyW7K86RTFbLdzt4fh1phdZdvzlO2NhCPjvn+1emk/h+0LfbiBpNzytMJ00VNDaSFtXlIZURvPcngQJZCypYS2Xwv32Q6U2smyYqzyZAEo3UBm74hmqG31N3Necyzny+QkZLrCKkVoo0954h9/xqoarV2Uma5m19S69+l5jiXxN7e4mN7y6s776hjouXc8/Cp+fL0yU9ewKn31/kxJ04dBgQrHl6Idxa90bUfiY2gtyGaMHvdoW6CNFOLI+lhLxrMZT+egfop948ZPLgFztTEaHjM4XmPdlD8/oNogA3ECQJcQrOjlMt8Zcp6sQSZILoVWSQ67LfrMYLC5fy9VnbiVy60XLpx22166q5A3i4cOp72BQawZpGklRlRvpeZ8nHZtTqnH4sn1nlSP4sFDmfQmw/8kqqafTe9YwHJ/1ajCZDzCpQJim+CMiG0PlulDj5kMZDWZySpfnc39I6SdCwjrnlXh91n1Dk5JEJM+IdNC5bNUXouox7fxVilTjLU5b5ABLBBB7b9+vVbsyOC9sFlTtwIM5X2pleb7e0GqrsjKWFv3N5GR70upRLqUIxFrxWslMrZWLB8ajRWQYi1kYAlXxsV4UblEkFrEihSWez65F5JPGaOi3ZD2LRQRP/kJ202QXFgukOAy+xklGJS4xFTy6/36HRHACq29teLKxSB0v++N98L7X1QE193ny0Qp6jCVa6iTyqQCmfvmvil86+b7zZcLv26E63gVodrZ46AQcW1WAQHqG/u6tUC5vo8USFaGrsrZMS2gO0M7MqtuCfinS1vC0TWAsLOeZVannIifSTeai8VOX8BDO8JIiCIeOeryQ3X5gy3h9SXf85C5R5VkRZeL/G7XXaNHZxNGc9CqUl5J+RmqTrWH405KkLgBs/SmuCqKjLIhWrE9/bWx3VvvC5E5udi9DYGOKttIKEQ1S6FuRyfABdaSzQuX763W74CT5UEnYLKR2ZAvG2GF8LaZP5UzeGwizxi5xApUVHChcK5w+Blz+9TsHfsiIFzrfN7KsnO1hUoFYoyfUwcm0TPx8CVHvTfUzJM7FdMKftxPv5k7z4Pp4d5yUughdApen/BKgNpwwxEXdH/gvQ/yNqo1VpJQMtJS47KdWS77kWiHYRxy8PeqfS6hojI5Rucj9PCESDyMhuGyB9YjXq8r1qonkyMzbm0RxqTaDfUwToiXe1IxBPfksbYPBrBWYOESViiWszLBlaEgF1jZLs7QFMqvbRkCluhHVp2nqaZeMY62HLU9CArgnVU4g0E+qri67kYEk9jSvUpZ2/FWKrZikdosG9YLVY0ia93KCC2VwpaoyvEGYYhH46xatdTo3HvjJe1wBia1VZ6oecD9jqts3dR9y/3Og208K6WNW6uOLQFcuFYR5AzXOHQyEJwJVSlwqPNSWlhrBRLudhRMMvgOx08yoVTsgIpa4wrtrT/Xvb+SlA/+kLFd3aM7Clk/rBUrGOsLyR0I5b6vCxTzLQkZeMeXFvTe//crvoW1dAFczJf0qsWM+8LafAEZ9woA760lXpFX7M0r3tfaDF3xl0sYCJcnIu7cW9dCrvXrd0VBF7/zl/bOeH8lfn/v37zJ944rd+zX+l775v2tZPKSrrXWa39pufHq1/7ii4G4dPH1x8p4vfT+/hWZO3Jv7LXuvF95MTewlbjvpZ0REYtbaysF3YLedx+HTchdFGJvJDMvIV43KF1bXMLGBuNLWrnXer0Sge1gfLjenOVa+3srt15bbwlmmVcuShv/UWyZzN0s7hXBOxm3TRKHltUl3hgvDZK47jzQqFrWdinDCqQMQp8Yb+OQhPJmw8MajWzwx76r1G0pMLsSMgmC7vNqI2fUn23gKH3kRjbZdbFgr7A8QjddJ0gpnR9AuJ/SHVe59oNgOJ5NUdzDQJZxXs+TjvabiGKrxlLnHR6vAmd9IKeUiuQiZKU+HL+jj9XfvLdMQXaSG3ISOPrxnS779II80gS1oFjO6BU7H+vwChivtNF0MOoodwDXh9M1cwHXPgHbQa4Vq3uk2oaaQZXZ0BxKzyzKZRK6bMegpSTVWZk+osrmXMaDrX8PJd5YyVCEk0wAuXBCu2t2CIUG4CIfdPJ7DcBSwv0kOrhaxp1U54FYLCbpCm9deb/kpybt0+U/WPQ0e3rs6pU9nAGQwYzSE4oJ8Zav6GMUiCAiVJnf1tiWlxUS4FocDDG5quLvIR+KBXeRG7f3FhV7+6ivqVSxiqpAtxnKAJFV3a6cviYC7MyUkLTJ3SkCQef0B+QIuJiu60W4Zv59E5XdBRKLq2WyklZ8DyngMHXuAkkCKK4pheSO4ekupfXZkple3C6aE87+pboJGVxVI9uJcI5WRFRfzaVqlriapE5pjjCXKTi7ilDwuBQjtshE3ss8dtEpAYWlLhImzQ3q90YA12ViiM7JQpF5XXp1h/YF8Pql4LYGYiSkTIZPO6eyaHcm45be3ERsQal7AZzjaiPfGQvLxbSDWIrFvALU4rXWEkmtiAggtQTdgW9p5w7Lm6v3JBS41nat4GVb516xM9f7r6/8iszM2HcmtTI9Ymt6BK/XxsvhaOAvfd24rjsRWF+Ka+9Y3+GZlHJn5K39vdab26U61jeJxAoCXNd64X5p8yr6Njf3ctPcm98bvANgiPjaRLx+V5lG5K29uzQkr8AiA/ES4lfy5a5+19t9PL5XSOJKIHMn4ewxlzGSuFa8kLjCIVVUQAPCtnJXgEruLJ/MdUxN3TpOZY3Rqg9op1UVphplYzOahUUHsFmdQ0gQdeK7cCkKYdtRYXMDFWWzrDg4juaADVeW9DmJa68uKinZ7b6LhvdbFYbU+CUFF+UYGH1AoMp0VTmsKo3fVUTKkHZfk3LTtNOVsGo/FueA2IZiygnfzh1di+T77Ux195+gT2uWyu1A9KmCAj70MWx5lOiq2s6pgq1jWfz0ggccnnhx/YiKHtyoBVnosFYF7A1mnVtuO6UQ/Vwe5XuqAs5ZmUJs7xpAZtT+9zS1pdCeJM+TsD2bdoiIUKy1gERAufCOcGN1yjq83fHKUvLXYmV2AMKYSAfxtOD0J6+3lhYK9mlmqZ3ymr/mSNpLr6hqWxHttNUn5N1HIDNdkeYQ2Y8Hd7SGqBNSBW4RAJdLW3Q16JZXZkop80ToKLKb49WuYK+JVAe2mkvJvblc8cxt5Jwp6G69QiqWeQb0WQMomaJcwdGpTGVlf9gbHnTI0TiViU3vd0wUOqyCqgiKP2EkdnZVCIEoEiz70k2XGdxh5GBAS3eUF8JUEMlNYRPMxM4QtKEg00Ej5zxWrksx3GU9Mkw2uD0FoUR33bLJvZd2aO2qdblpb1xX6KbW3uGGe3tp5cp7bV7QUjJib4ReubKaV4aEey8Bf6zEm9tNS5e4sHF9bS/DygiBm9fm0trWIKnMEONSAFwQ+foml65fGdetADeutbGqK7Ttu9qyDuNBLLbnjQtXEuJakCIvcHkxFheJS9cG1xe/mbg2Aiv3b1wbVOa919f+vpCINxKoc7hsX4JOL3UlOWqvje/gJhAp7ZQocF3Yv74Q0v2NBNLp3ugTfGnyMFPY+/vN9x2R++a/l+5vvb6vLd63U4uyQ6sVYUjnPFSdGnHrlQVb4VPn2nfsZmnT34esoyHXTY6ofDQm8877/d6541d3RvWeRaztAnpuj7GTr9LeuRNxl6BXJR5vECsRHw+yUidZJXFhP6f81NY1VVfUzErDQGtPl+4P+YCbdQ1dcf0BFKrALFtrAkC1czS91Jk2LJ+3NknWKVJrO0EZWfXVHpZoH+Mb36SYddiTgB+4B271GmPgpk/DdZeDAuB2Nm3p2uDRjMO4cxLC3GvFBwdfgaX3Ta4gkAvL0RGGc0wdqgcqsb5cH/iYTbUroLbelRKeBRxGksHdivL2fwYa8USgPgdcUFrexVmFgb5u5YRO6/ejl9w8oOkYZJ+GgE4nAj+IKhsPHe+eCth9nQ+lfvxKixWUusIFEZJIRJX2FxgTVX5WtyC5fPjS4636So2U0TbDQpWidCUafyRX0scjMyTHcWxqRnn9TYZmJ83bMmTZPQJdgTW3GGHZSFalK0OR7CAFXMYKTvoPVy1cwb1rP8rpRutSsoqiKbcPConmSDaSTqnGnGFpeqlmKS5EBGI7HtrWj0NZG0l0B2WnI9P1lZVltNYBhbJNXElXoHRfoS1JSxnLiXI7SGUdBUsgIvuEoAH4QZy0UeiEIJDK1ctFbpsp3CAlxDUGhlNOPUVm2d0HwMFXliTuWMrMTOZNJXlvpsoc3rX10A4EI4jXtumQxALMl7ZRx1gp7dXnHlM7wMxcxvEUqmQ5BMTOSKdbO8bTSxqZQV54r6yCnukSn4pILlAXXOhRl1LcqQUiGRG3xLXA65d5glfiIvAfb/1KRvLfG8Q9pcBEJ4+nnWcJ4RaTZCZvcoOKhZTgEuuQmJsKup3m9esPRfAdf6x4X9JX8lIoYpGvHaHU2mvjrzu0fwew80/uhd87mRvrG0Hu19ob10KCSa7c0Huv4Hrz4kWtiG8i2AVL872R+5W6Aldi7dyL2PuSIuL+vqD91vu///crNr+/7/f6feF93biAhST4cjBh/RZ5rU1A7/zPpeTC9+8Vr1yQvv/6UysyI/LOjOW4OBJr532/cimvlV97XUEo7xXIzN/fry29XoivO671zrjjfb/zQi4yrq9F5p8WEoetM6IIqBUk79GhhhplNVsqOUQjkB4ZHVacdtscLcxuZ1LOktz0M12GleUwVZhWIHbZmAci2ozou7O9QJ90h0k5yOdYJiyUIJRh76ws5nR7rqLOWv8Ukzx6EhP1RfuRjwcsm6OOOZ1JakiXDcn2Gh/wk819O11jqOzFvYkkwdxuQxbBC4zEqqSu8kO26PNokMSoQWjf++2bhRIrngP7//NHPBQ02zFu532evznWwvUixPo0cM+LsZ+wf1VqpdzjDj0IXTLD4iRxpU8/d6Yq5jxdW3t9XrWocFrcAIJ5C1CKWzuQbtXRR+zK1CPAAjBXZfw5B7XwZS52+t5YaxSL0CaSjuGkj5OqfeER9freFELqQysCqm9nJpCp2UtKn8hxGJVw0seittOt64Q4VUdV9952Y3MrQWZNj7KygJEZDjrmXuByzcYq9TF5DIRZUMZyTrVLDZQ9lN5dwUtxOQ2JcYqDsA481OHeOmdDGYC3QGk7WSA2U+HaD440GPnlQ5huQD6lOD0BlTvR/F/xFBeDjM06hegTD0xGai1AWPaf1wIBBYJg2nh1T9zYi8hULlO/yl0GSa50M70AqiZdWbPMpUjzNIuMFTu1F6TE3gsLdj+ihZOkC7PR50uSwJXae39/X7neWuDWa9ep6nRF8GBEIvcrgl/5zgqjpb7Xxa2t78BeTJF/BbWpxEsbqdgAYyl13a/r9VfGd4p7V4zwrf07SF6R1/UGwFhrOWaFBHLRAJybKeVbtjTdo3ljI3W7YawDI+ku7vfW+78jvyKu6+K+9vqP71w2C8k/7v8M/ZfWX1/fwvcf2lBocXHn9X7Hr70Jt0F+/f6+N2OLoXXhjrUZdDmz9dcff/7G9bpw45WJ3Lfduf2FvTZi73ciY++4cSEuJl/XHzf39ed/RSSuXHn/vnjrW5v74o3lKgD6jb9+vXHhTroX9NL3smBUuweBV8VHY0VwiQuhYFxpymB/hVsbeLWvfCPWKxGXwNTOfevN9d6x4q1IXH9k6LpoP8BV54M+5ued3+FN69mxl9WaeOJItQftKnbGS6ki1uG7/pLDkZdiV6Miaz02P8w6WnOwYwKy6RuYODCPKShdJtPeirvlVuLQBgqmJ4eD2Q16DveCIbiBPqKEKnIDUZXzU+BTMzMKdnCpH/ppONQ3/HYraL8e0TQ+uedWArcSxAUhVi5WnTzvTzH0vbpnr0CGdvm92oktOehej5hD0qPR9NgKKK9CjTqEcH0+VSUWWeWompcMisz09YoXB++AA2IQ+jjNdgJPnGJwnWRoBbHcZXKEbMb9FImaUB6XPhBY7mWuhI+/hXJFp5GRgFaEVQ4iYrHyxutk0U5KnXG1HGqln76YUva0tS1yOJQqFasOiaAi6BXsq2CpiN5YlrlEIGItqhBYZfx03hhBuFgAKu7Qid0bTGUii14GbNnqXilsbigX74xMuNpHjyblZgesjI8d1f9E2iSQ+9O0zL0d7HAIBg7KlcPnnFhc2c9bmqCMpZrgRcaOUOhib2hte8ghSbyqPRhs4h1TtkJPLnBeO1Thtg7h6F5lHHAxloIZVMTGcrfbCinpvvUqOXD9XGsQRnDl65eb2qQi4oq8K1EMXddZEZc76hkPXyEgklV5D/fNizsuhHW1PXS4SHpCG7yVlK57cyfy3vtX7oXUm5srzTxHhsNm0OtF6NrfZa6G4AYAe2GTd7xTMk0uShGIK8TciVxMrWD+pnSHLuMl/1r863pJX9yhm4HrVUu1WTXNNvft9nRvCBl6/wq3hY0LSe2dmy/5XGTBk6S8MsgbeN/41jfLaFLu+LXu68o/8MWvtf78/pN/EZmBl/J+Lb5+3b/u9UdCiFTq/uv3TYHvSzdebpKdhL4zlfo245nCW2+GEDbc9tp777wiFmLlfhOLkcL6yvj64yuUV8b6HQ5fsjQKMkPAN7/5Rrz+yj/4zu///a2v763FWIu8QvdiJBavhSsV1hQ7oS3FWimuWOuGduamq6jha+3rulN7U++N0CZ5xeIVQN43YvOKi+RtYAvpBpZyBdOVqVoH9E+ky7SD4oBV08TmhAmnV9jtkZhgOJo2TpOWy8V3ihIdlbOt2SdBo3BhqjIUpbdzzvBIrn/iKr6gFCcU11c946/zEserGgwpGKiXw6khm6Xys9Cu3eJ29oBihIzzpTPVejMblDhudIMKgaocDncdc2jN4SzXk8gboXw1VgkVLtF7VctviVERS8fpblIuJJ2daIoZKgf6Wz2WyWAs7gITV1sFpT9ltc8+4DYe/IHDupLqZOYIS9GwQB1RKB0CtpM53y47brtDN9lT1+YBNAlLpeD7gQg3tCKAAENcAhaYWlSmj9Fo7sMW55ITG4z1HKqCvkUg6zFnMPGYds+NhGFf9GG3dQSiFnYM0ZkLj53lyikCWtfXr3hd2D6WH1Vzt01Yn/IENufIaZmgEQysyMLFeoZ0NRrBJ8gT2bESENB7CxsiY7nQ4DurdivMGRmV17VMHq/7scrbJzA2dWP7jICHA6QL7tnwcwarn5EEmLuO8SF4ySX94aYzrl1R4iEyfWihtMXDjg3BLZgkoMvUV+J1Fw+JQBW4oCN22xWW208A23NjSAvg5dOs+Ar+ur/r3GuaaA+n5NEnSaBrkVfEOxRvYYvmfSvswM33Vy65qheWOyUZuzPsK3glFlb8WuBCLKa4oFhM5lvMDHo2l66Fzf2/mMpcuImtK43R3M5WuvEHMsBLIK67Korgxh96Y//7fcf9lQtxuTg2XysjlYkX/7qTSsZbt3ZAjI0QU/h9r0u4976q3Tw2vkHwIpjw90ggmRXw3hf3r+u+oFgZEPZe182de79D1/t/vfI387fufTtNPICFa+E/439//fH68/d1S3kBX2/8f65rL1y3Lv0C7w1tZF7Y78T+Y20K+3dArvC4AhFfuiD47NT64xf/49p77cXkTfB6/y/qvfX9/lorF6EQqfXOi7oFQRFLe+X37xsrv//6f/3+4/t+37q/VrwXiHx/uSGVdqy9N5XaEG7e+R0rNxj8fmvfjIUtBPeOa128DK7h4MsrLmHnlt6///zeeetmJG4ubKUubQQu/GJi5/tJvsnGDkifs93VcdBceGvjjq059cWV+4FIN/thOwXKTKzNBZ/59IGiaWBb7kF1hW1Ysw1IoDJDulWsY6JWV6VpCgJDaS7OFyl9UDlAPu7D40yZDbMS8yullB6OKyvjrt0+TjtDj7vO1fChtKRGraa8PUe5O2mGCrlerE7m8o3cvXIHvVNk5WbUZPncfzACws3qJSThjgfoSAN3x2Mri+OgqQDoGtgZ19bDdEXtzSnqV0s+l6ui6Opo3Yd/2JaXkbN5RUxAGXR1VTrMWFhbofkxA1APTc5EObJg+40+NJIgpY24I+NmxcPruNfAvqRk6E4rRpb49IeoBBlZfrG2G7quOjwsMXYkQo6WhNZEmXmmWaj48yGTxoionMDBaAAB5+BsLCy2rSHWdI/Ro4RcDq+MQglCgOG6xakqQxebWuEWYkFElYtf5ForOmpZQKkMxQsJrhBQHQ8lMrRcqaFC4PciY8nNp5JKJLlNGjg8Yvogin9y5Xq4B4oNPmaG1XgoOwak6I5Jk3np+doOdLiKly3aUCXMZRuKYe7Mn3I9tJ3V39Dn2KJj1deVXxkQFrmdxJP3LTfUTiG0rr26Z05RZrqZvIAVa/N6J+c0tSGd976vxI3Y5IrJaVH1JQHT6eYBLewL67Xxx97xuvF6/Stw8xbSPBcEvheI//vXf6YUsYnNtytZ3Ll2Xvzad/zFYH69I9aOa8c7uEK/kLry+3fyj/XGtfXNoIJ8Xf9e+Vf+96+v3ze7VnJyJzzcALQVvPdL+Vq5grz3DTF8XFgguTYCCGzXckyBkX+97ncC98J+rX2lD0VuBN6b31K+mff+/ut15TvjC4nv7z9j49I3N4UgLvLPTa479KX39QKu/f0v7vviv78Q/4X8Jt7f782//sfer3wxwDeZQawklquI7SuS1wXttTYY2jfftw/X/OKSO1OvuF4QFwPcL5G6Lu54Xck//uOP2KHrm/rXF5YQuX/H/1Rq517KC1vSHXCX4eC1Luot6n2vyLewA5GIHctujA1XSHG/xdwR1+vX+833ncv2XiX4T+viauABVN+CyiLack0KVuU22fGrUhWr2EVB2CKlYCBil0cRrWgSN7ZicvSqUqZjQlxl0Wu0u2NQrkPTPhSAdJq8iKq6ZlnoiHMPkMdHsIV7uZXkOF+llTlnnFXJZe29le+HOcRhlWhDu3aZOrXIfDrHbikvUM1cqvA0R1dn+mytKp1mK6tj8cq5+sSMK9+70sg2JGfE+ox7BadVrLZRrmcRx+2lnolYzRvIMeBG4w4QDCohWYeq+zODsPPveVUAulryfAKAyNVQUtF4AF3Ri1ERNL/fE044ys/Olev/S1XMX8EV1UkKwZ1Q5by1sSI4tI4SXqepaywN6HHjKhzRg4R2JPft1HSQdf7CaQxIQx/LZsu5ToXCm/E6U1QmAO/4rcjFypXw5LoIoPselNdepgtbo/cM9/JJAB0JvhGQWBSotGAzz5lkC/R5JTW9vqKgMgR2K7sRulgLUuYKQmQyFBfTCWOiIhSKeIW8qq5VNbSA7KdE7hSv2yJ/UVwmmhVv/FoWezoQjGLxOYHzog6cCoV2aCsrtfd7RjVyUyZyXQ48h1e8CtOwsimBOfGzQUF5I752ms4EqmKkLXb7sQ7PQxB5KVcwlkvXOT0DWpTsUmXkRnVbbSuCSd2vDb2/pO9Lv18s9iGxGSHEDSFEt4PPvReRf16gQrkE4UYkXCsvvwM7IV3Uzpf0Svd/0J3rnVwJIqF3XNqOMjDwGwvvW3fGLzG5nTSz6nBFILnztfaduKE7MyLeWyBh19wGoTbTdUxafdziZuj7wr9+JXT7lIuLSd7/cmgAurHzfu+9mcAd+ov//lJ+7dfGdk3l//dX4uKbb5fizj++/oz1XmIm/q+L+873v+87cO/kL1A3v4lvIAMkfufK9UZs4gV9v9Y7fof2zZ3vP178YuSXszUDvAkxV+7IpQz8cb+Xlu4dv/b6NyLjF/HnhUjF+h8Z17f2ncT+/bXuffG2eldkgjv/4Htr3/j+ZiC2XnuFdIP7e13OlYxgxEvInVvM38y1AL6wQsFMxjuqPqZC7vyJ4x4O2DQ1/chWElqTRWWAiJCcK21uCmBlabjcn8lGuYFpuY3sOFilRLNdLbXqLpVGCqRLwWnLHbrV9emq3K1RDlD1cNCuMGraH2/fd7Qb67kqYshh9kpzHhXYLztrs09+FmVdKOm7N/1ZlHoDmdNi6qprEzsuOCYlY4dzJYsWMEFfnmMMPYs6sIodDOrCrlGoDq6qB14Za23NN6oVxORJab6ewKp2ctlUa3HcZU8MG92z8/ACWXjWqpzFAUAPT5Au3zu4zYg+YW4Lp428QS6r3cK5joGkwIggtqAIbvRhtWpdVy0GEtWTkx3n6MmwaU+noGBKk5Q4ZkmkF9kueKAMLRBQdV8m67ushzckF7yLbmNXlhYcPqutJaQPkKH9qrK3/FtGuX1edHq8GhvSu3Cpk31hIidAbQjUdt2nBZujZffsvQG6mCB91PQVuJPErpwTJfL7jkCS2zN1rdyVfV/MMeiICpuRNqEzFhRTO7QX4ZqDbpYKaFUfhmBmURtqZsQzFJR7G55WB6JS6n2wAbJivRTcIxISv0jk4qYMttTizuCNfP/1+1trp3auqzKqmaJ3TeT+TgUXhJMmCGReuS5h686v2JW9XXoBuXKJDgHDrdy9MpOtikUh31gBn8e68O9F/MW1uW4S4eYQuxTXe3H95/0blZMa+NoihMUEd0ILf+6oE6eRANbWOzP1RyT4H/v7339G/hsMbi1K3/fautZLdy7mcie2a0HauLawda3XtcEVX5kRoL6/YyES1BUgE7HwohjKi8rM4vz//PpKusb1N/Je7gJyAbG49s1r7aQ3ypJ2JXJzE38xvpGZewXef+R+RXXDC64/+F5Xrrz2ivt6xfr1x69QvPP7/evXW3wr8U6lM//3+7Vx3aLuTQVSO1K4YoGuBseV7nBIYIPMkG6XLOTaiUWseL3FexHxpk1juQ+7xCvvVOaOXLiZ0lo71qXfAPGXq2EGIzYAJO9N5JaPztu6urSZ7q+c4EJEzIkr7MwdLxvj8OFpHAa3C8DY2R0oYhn3FdxyM17CpvDUUAZYqATil76gch8EiKsP1QJuATZZM5h0YluwkaPaYGfyWgm47n4sq6SoVgU1pkESq6vsE4TZbpHTxA6OlH5vnHlUhIafqE2CExI+JHxb7OioX/vrvnRhmoByUWQlGQ20inVVJpYJgupuGqhi2cs63ecrXIJNQKYiRHUtrd7+j2d6/nwAsI6xcRV/fEDvcAGNgh0ksNXlep21YvWGDgnwAbh1iWPCAepkpeelhaeHXXZffbONivaQxg5PF+ZUpRYFbfVEx3RthU04tK7tivoTbanVrFBxQafrG67kRDvIKlntT7EKYpQB95g/9vYo08el+8BAevUQXc7JGZkUyHUxenqdLtw+pRpseYgANjPDKLJTVHfThLCBxWapvSx5xwoJubPaD8JnTUAo72raKZ+ecfvAG/4vEKm8AQcs5TRFS32WvWQAHtffdkxCwXX7CPDF7eLQgUD+BV4+nyM4Va+S3jQVV7wqYxvyZJ07Dwhi1++KCEjb5RcCfkxP297inTRDnzszoe2DZsjtgj0AtHfnomJX9MOB48vmZ9JVvXBb0/nkdTIVabY/K4rBNEnoTcEIvLjWHbqoRVyLCq0d7iK0VPfacIqZfit5gdKSzwsFb5LAkkLKfb9cWwuB/YUgFvhirMTr5lvXd4ZubCpw79cOOFdxXbnMXb6oOxWMeyOWEWO97lsZEZnQBYR2XuXhaOPLEfUFF/NIite+QeaX7rW0I1NZdUIZuMZxvq9bIay4oCv21vX9Xn/ZglvB3Av79mFaIt7f8b2WFgKI33p9v679zvXaX9zXveNaglOYgAR1R+qtlfn7DWFJNyjdIvf3vrdlvpqdRFrd8V6xCOxF8Y2lzFQsSRnXX+5RpSCuSwiHQV1eJhiVAplaSy6kssEb2MqdL59xcK6AtNOcAySuhc3YjpdYBOUzk1EqagW0Wk2WyHdBPtB7kOP4qmJZKtM1t3OSRS5nV6j7MxFOiiBKKn38xPSmVWbdMXqjmf2uLVi6dFQ5KDCRgdCtiPaaEakolVuJSkaDOF0k2r8rrTu+rax61U3F0SHJAhecKLB+XAigMGmX4/MZ+SfmLGmMFcInpbABRCClhX07x3BFAbBjocq2peJEziUgyJTDyvbVOCP6IC8xLrl6+nCejBCuY1edh2oxqEzc/nxBRAEiijxgmwR+2if5eiheNVz7+EiJD6NFShMgP/PeDwAcyKxMICfha5fFZzr2Kj/SJ1/LugMyRvRYYV4Ptm2W+rsKnaLWS0Byp7Pwy3YbI6Fy7PUwRttq0Vy+Ln3sEihRDfV6X429xjU2U4cenPE3fhVAJ32nK2iXp1mP2Y40x+/o2I03JLrbmXmaBSoV4YL23rsiyZ0iubo/GQDqZmB1I3fIBPWsPCLNqBfn25CvSGWQm3U22A46AspNKqLSo0csk51fh+JbUrSGqF2Xjm16QspbENZygiKVwq2b0mYkkTkO6nUt1z92kWIgq6uTN09wYfW6+niCEdLVIFtztdhLcpzPYQW39FoTALLlT/ODcWHzvu58IQNxYUfssb2K2QchxBV5Iwhd3T2+AijdGmNBWpHk0lpV2YeMWPfWrfv9/aWti78zdFGIy2FzafM7kSCvFN09DDsZa7nfX3AXMxNkOtV0r1mMHbGJvOnDOLePQeXaypuM12Y1B0yF9MIvALygvIT13re0EHhHhNaFyAvbOv9KgCmrbjK3tiAwqZV77bW/fycj18rfr33Fjkt7CdSSg53r9eu+rvxGSL9Dcf+11r/uL6TWO++X7tBOWIWaIxOxV+z7knKLcfO6mSQyv1bECnC//7xf+52K7abr9jARCwl72tIOrSvBVGyRuHag0ksoVHKloNy8sTMW7S+4yxICiqyafOQVAm+rLzuaZQO2jmCBYZnl5QUCkrv3sG9bjNLTA9POwUWtDThqxyo0NWq9Gd1Rc86zrgI47fi4M1CCXOlKXeVvUAjXt8GTQW3+Eb3RB238WvmomeWxt3Os+v7zw6VgTUei/Uy2X1cOpMYHO9aMaxM5agvnQDgYDCpx52Im8U4KLnSPciLcibERqDzMok/tZUexmsURoDNQ5849n75Ika319mWwmL9t4zRHi3n840M+JvA5M+39z+vErNjxiQfmbRkc125gvd5rEWx3fpJfVJcrb6fxuqWgzmHZgqvmYgwqw7z+8sTqLHJbFBaGsRRRGbetolVmTN2veqs6jUAzDIyklUiU/WWt7KafEbGWOlDuIRqb68oEXeF6QLDGVjPweC2F0zS7EqQcBrJtI0GJdNMwW98pOwKSAX2mn031RuG68wYyFWwDoAzN45sTyOjd3iME3NvF3Lkq1xzbW5M+pg/YA5ZQCXU5F+me4JIP9TPtLyy2jUwXAen1EgKZTNUhoBK+uJQMO0sKkvY0YTeuTZ0y6SyQZUraiEhXpITrj6DKpdR8KSkyGFSnqzU6e7mlXWbe7bNjO/jW2vtS6qV0F8ie/TJJq0GWgxugog9LJ3LJsQLwxjKL4opLN1bawZIg1QkvLuiSVG0CpRBlMwfSTgV15w7CxZNXMVmpQPigHB0fdG1rIpMKiRH5DuSStrAVK7G+vgHGeyOEHdzJm3l9bb5Qz7C5EvEmoSACi8sVOavB9MK1sK+VL+zY8Vu/dr7cwYjYK7dC79RebebzvoR9Rb4yGVco8ov39T//818vvhTf73tpY6cDPtrWaaQyifsW9ztyOaE1FvnOTW2J4ra9DuQWfXAtTMi/kYFNJMXgyrjojh13mfco3ZXV/UGEc3dSubmpOkBkDxixCGXenqVWb62XWjRKC9ob1kALYQ1XJ+dAyAetKlqm0aGV6VTBsK4zQ7Bjwqj7tRIul/JxzEit+/yhbfu1LGlUDlRfyRo4jSGBOQvSV2s3rZ+SaCx+QAE5Dm3t+vNFHEXL8oJ5xmkmrh7DgUJrFJYQLAkn+2jZIGUlHWV5e/KG4Ykll9OhcBmtpj5njhrpHohiP60o0kHFnojrVYLWweLC6pqGU6PYiFJ8QwN6veL5iX6rLZEGXB6ERPHXNY7qu6P6zPiN9nSPmdDRZrXDiFAbmOQcY6k4YxJdOBRtySSyMg7PR06E2oPw19sTfshK7wnfDuyibhOlQJukGo5hohYtZwTc/G9fNa6uBmcDTmxzSml6CF3b1OnybRWgmnfKwVFUxm/pJFYuQVTaf7cH0xgbFho7sZXIkDV32pkOwZo2iijn8iE57pKEc56oHxwdXJCgtciKMnd3Rs8cIpMAbhE5eNqzVTOaQCLBDDtwWVxDxXzbH9ltm0kVVRF8dsCag4Y0h9AjfUoNDbMjVEEsxKmGjzJocy3GlulSG1Tq09kCHDEPXSvbAuPhVXz0wmeHyxuyMRi6u+Z7ETkQsSjle3H5eK67sGJJJgXKV1k+o4kUVt5VjiQV+x3URr7IVOzXK7/dkuTWxSVg62vdSGUVt+dqM72qMG53GhdMKzK1v6q0ujkrKJwh4O3xtXe4FiSXELmCFyQY7t4vd5PK+87FzYjYuUhtfAva37+2GHrjtZEXeTtr8K/1iy+Yvon8En796Z4ir6Bya2fuzffKKnSKm3vdeG29FRkv6P437/1fv/76yj+vO9ef1147eRfXkWRpgrW538n7r0VEcq0/3pnQ9xvi1uJ7h2vRiFesV7oviaAd2AKveO3vwFsrXuQduO8k3j5sm6T2YgoZTszeyUxyxSVwIUnle2OZzXHRnIVrZ4OsSidO0cdWZO32FWmCTr/396puXjU9PFDQKRadMhKxU3ViP4Kd8dJ01MduNGppIHSgok6RnO8BbXGmh1dfqNoms8v7Dmq/xns+fSyoLikPtht7H3gYA7lh2FmR40nPjJUTXiqvamLNkHy6pRxSQplbYLOohUi2K05UcW7p0oAuH1Rr9fRG58C1ehE4UFKA0p+4vpoueHwAZt08ierq4U13t6llZdle6ID2WEwFGRPKa/OtB4AxSHnmayyitgDZtkctXEFrKsIUYNlxPQW1qlamtJfRgsVy4lgyWd8S8HEU+QygOj37yIZa/oGHWchs8sHvVGr9mBKeCFv9T5vLzl+m43JAmnH22+kimGMR2soJnBk1iijSeFBWQUTk2/NaHUwIOEENauCxHGdyyf10nelnOaLhTFMYcm422KLit0pUy98TxuOHu3ODi5W9XFegiIhULHBvIK8SdbIaJD7sSQ+/Y+umRX2C1UEBMCUX0jAjbMsiXJiq/GltAFsMJ52fR4hYmpDClcStyQwAQASpFWBYU126uzWhH9K9DcC4K6VNjwlP1yt1gjkS4f1+BSPABV6rIgTm6CIg4FvAijtTCPeUW7dAkZFuZogru33EppkOh2Tvy73TfXiOYqwFxS/XeVLqHUsbG2X0lD3UrS7McMLiy1zI7OLD0NaVAafTVyghg3qtO5Xvi+DOrBynRCwmtbdwx4V731/2uG+EVr60X1vxJoG93/gT/O+vyMTXZuTNyFvI0P0K/dYSoC1iva73tQj9XnX8b23csfa6Id6i3gHuzTv05v0b8c7XX/f1x+t+vXe8ceFiMq/YQki/XsL+H+D399fS9/uPN35/Rd6/A9eKrUvvcHFOKRbi9b65L5eC3ncQWgREN6i/XdFtL4RNea7IZDBun9oBgWC8LCMrdK/IzAQzqZ034LQElf546GDvP/czeainDgyKFKVWXlDApUoe+r+CJy6cgcbTwiHAiavROe7tDwwkRDrIV/US+nDi8bBcKbDcZap2qntReIzJsBk5MdnS9C1yjgC342MsUIzb08p04BcYF3Jci6ev3j+lkT4RyQdgC6sMXz6JBFXB/5OC6+rRfADsPIWyLZQZzgNlzyLO7w+4qd8B4ooHAB9XD+w0ucHFogQeXi1r9VRx3QJnndnxnMYxBB7QxWx/fR73SeZOJLs8rDa19LiYrRKyGtS6bHG7pf3QHRK2S934C4JRhRkxxPYxFdCsjnBQQSUKvaYFOscRRLu1mAep//kuBMEI51RHX6tO8jyeKWqSqYmXo5xOyNDrZjn5GIkcpe1MNXWEdebhufDkiuquW2Fsz4zpcBGord0HHNQupeqgYzmcfQKr8PMM0ItZfbOYy92sBWy33tjF0IEV1i1r7/D2OtLiLhLwWfk6xhhMLac7I11wx+RY82E+xW8S/PaNakOxDI1aoEzorVDUbR7OacKpqLH1WHarCfdG0i6L7hjeVgYWRGLnasKQauOsVaRDJisgwf2IYvcRjyToFO+KGs0R+IWNCClX+RorXApuJ5S5geTyvCsZePF18a5ZcaU2ZwHkC05JibagACiZmZkukaOEXF6fwl3kau7vPwGujStc00DCcqVP2INmgnlvJTOxENSOjXXrumO5C0Wu4FrMTNk6CB+d9mZQrDuZ7wQvcV+Qa/cSC1pJRsRS6MI3YoUIXbl+f8d16+te0p38fv/ae33zjkRCmxuK3PF9xx1xJTdi8Wv9+t/xEv/7a1+MveO+Xvef38qv5KpcZG9m7oBSjI0N5p1IKeAcvC8hstRs7YoVgLtv+qD/mPBcGU651e4EkzHvTFyzjtWwyStntpUP196GBgLabB2s7Nes+6L3afMvLHLsmF/lGbUdfHyfgZR2XGwbj3IsFe1Ht/IB0bWb1QoCMwTM9TFjD+oBdDanwfbFHijQHH3vpjbW7Z2fGNFjTj7u29hiT11M0m1j0GGwh8dx6mB6PapMdCA3ug2fMJUs5rYPovwYEOeB5+eKozvaJ7TRxflmqdpappM+Tspx+q6r0vweCm3KkOJZz3aHcHz6R2En2obq2SpTqDCsBa0hJu05Ovfe6tYnLB8nr8bYaEeqrNrKquJgZM5zYzXgGgoD06OqJQ+ual5Bd/UbI6hF6U/eGDX/B6G8KwrqnnPkQ1qK6tEI2OwjFzRPyXVt3IhTPsAiMie3DHAWZ4XBH0srsA5FmXZiLLl1aDuxCqpKNqO4KlYrgY48+OX0UYoeVzcu7T1iHyARlb9gFI5MQLmTDZNbsGbok4UOFlsFQUI2r8xyef3NTWRVhUSlQXUcvOoZWJcFENU4rfxVwM0ZarcrmKvKRtnkckRiSp65CwC3q1CjrUQz9JX7nYQJ8NYWZYKgAhZU7khGRkgRykCK+yLAylZ1DkAs8HpnTO5K2UGIG/TRNN6sls/Xt7uRbHdyuVMRm1/uOWtZqgTFm/fW1o2ofkpyjRDShbTAuOsY45JDCxJWWVMMXEDkimmmIynXXrHpJLdvXpfzw4Fg6JI2vjZjbSXiuvNmIF5xr+tewrqCRHLxrx156/YMxNcCIkJVBoLS3SJFAXUIrPJRU7kckeb1yhUZC5e+9opLb8WCtDe+gX3vyPChcn6HeOPOvX4DV1IZue77/rd+rdd3Sou8Xlf8+uuP18pXau3361pcuaDXDb2+FFjehtDOhLMggvzz3ZpXiEDEjkXEG5l7B4Dt4BgBIhawyuFl0WgE2fHhKs5CWEPqGeVJZyNa2EhBvYuJDqx525SjnBIip21365X6gxUXdXx0eKjSaz5xaVXHdo1sg2YpGRdOaKHT3KCVfKpV9+dPA9IQ64VEra3ZKrctgAdic0YyDzEOTKMJ2tw5r9lNZ5VAqpNK0N6ShD6dxeKmtli7aBhfH/hlMHcx7VVxuc0APPzGzx82jGBMFOh60InNypJkdU+sU2U154d7ICAUp9osCyecN3Tlwz1X1Vbszru+Z7CaYfas9lL10tQ61n/lexEI+TAQEY49c8FFASvNsMqXuI1vjXySAI4nUi58Mb7jvEpQ5gynJJ0VBG8w6jgMRmSP+VZiU/BsFoCRijZ36z6Woe606QLTdElEscrioGKONfb+Cl18btfBK3cyRWzZ427yAIfbV/9t2sHoFena+xIcsx0BryXpdWlLstuNzb+ygxJtO7Hz27nqgRwSrnJ39quFeTxVdEFsE23krONHoakE1hOfrGJoGdsmRjFdBeOnYqedi+okVlTzRMnaaG5bnwXQLnZW7YKS2sNre5RmAZzOopYUEj7dr0RWIyTP0UXS5SbUuxDzm2uZudQWQfi4Vv3VqhmxMiuXPa4oi8fF4HlWxJZIZopKZF6B63cwA1REjJ4USggcdXBti3FLgk69FoilFqWqgpJ5LeW+lxBbC7AHjpCrDAlQbBDKCJfH4eImeS0osZCC1orMtdzUkIx4+dRffdgHdRa5d5xCxYtQHWiWKOzv6/WObywFpFsg+ZUr13Xt+ML+wpu4RB+6xmbi1nvvP+4MbZd55O/4fu8r/5X6dS3xpe/ffynfSQm38oZsNSV37BDJTTAY17XXtfR1MemklFzF2SbCmSaISJLrMlcjIuHmdiSc7LCsgPLhALfqs/rtfdEE8QeEltOjhsACwFKboh2Mo1KBIRIxztJDbbXKtnyVCNoxPtrw4b0U51hkE9xuHK5Z14L+APUnNrXD0I9Sh6KGz21sEjpE0pvMurjUXGvZ545v1Gr3Wa0AxeZsa5Ym18ENfYCyfiCJ2v3QhyG1MlYmr/EQ62b1xM+s5n/AYpXfBOC6HgCMDqZOFouftWZ6cKTwvo8rsyynkY6i+5t7Lbeo6iWYKTWCZFCdJOORpllVzdrp6KnsuDqIIHNFE8py0+oC6ge1cYyOWsVGEouHCnAyGlKL21Vzoe0oD4w9PNaG3iPAqOIRR3is5TpHtthPFMr3pyw9858yN0EUEVEZSf56LVFMOedS1OKxL6yxN6YS/UMQvMFtuD2yhprRLkENJ1/FEPhnSkNk5NhwtUg17v5P7B3C3quNnLFvK2o8hWSbfi40OfA/G9pgmll9ua08OgjW7H5ZXKW1usK00rZC7jHCPRup8sspdapLf93C6RIu8Np5kF2hoBe7nNzoWWsXoe7TTFnrqtJErvIZ1b90bgpiyxUJqwRkDNuESBFOzSK0V+5Nd7XgjCQp5a6EPY9tb3mrMFAVA20QdaPnzg0zjRT2xYpWjJMwUV+CXMMCDLehtm+zYq3iXkMh3C/em7p/Jfb9ApS57NhmKuN2p3q34lrXdSWWr67MsgpCt9sHuB+BgBQjXcfp5rqvFLHl82+Qq56GMqX7e70hgmstXi/tyACWqLwQQey8gHi940KGUnzv931j694LSS1o537vOyOlWwjeSjB3EhvRmY8rV/yhF1/f/7G+rxV/XBG3Lu1Q7tjxteMF8F4rkbEAxmLFZDK1AZjNxMoBqZLoxtSATW5l2E1pG7dY13ZMar+IymS4BCoLEEodlXtUf5TFrLmkjuwPPJeKK9ip3R4xapEdjTmajNVY6QQ2D9I31zrOqoNWfH6zfteHEu/Pz7mSx9iO5dxPMeMZ+H5CQKHyXo2ZRjZJG/vrfK6sbOXVw2pSWkLYwF0cL7xXgoPBpVJKtY32rfnsCb7iCcCNACiP3ik6MWyyKxjWEhY7Vv/nwzwrg4btbBT6lFzVgVIFkDEYUHPkhtj1SBSeshAFzAQQwYjl7MRZBDRPeH46JlyaZtyrp4FSVmNnqvd8+nalucxFslVWSxt6VnvKiJ4NFFSzBS+GxNcjK/nEDliPr/J3H2Ms02FE055SdwhiUXauaOPVCWH6+nRi1VhE/r3UK9r8nHkoK4ZVwWDW/KD7YHIRVrOATRvBdKWLivk+OtFdl4jV7MRGXRZ9dsxzqxMLVYLFJCqj9EuiEMMClTAPgHTqfnuv3JmuaiOdLMCekVxni44lRdRpJlKINg7G/DKKZ1cI9R6t3d/y2L+26D2lsgVojLd6iF5mPT89q7TQBFUb7dncDJRRxTajfX8Kbre0pcqtzx4jD7dnePVqdnL/0+oqQ8OSUU9ZJ8iOfJXlS1BbSIVrnyghpYukuG6SJm8hq2dsLJsYSi7HgHMpkaDc9sA/UQK3So/Y4uQQFgCVyZWpFaiaqkhnqWElq+Fmtf6MKxYyqtITDd55L+Xe+Rs3sTfTLa343khm3AN2qOAwGdfFayGu6+sGt2JnaGfs9aXXEjevxR2vlyhcfKNVgjUBSBeCZzuMpatt0bV5OTGNspHry1WouLxe8y7uiFC1pVvVeyM3F8YfK9u/QXJQsblMsLEIowC8zFElekvDjh6Uk3Ie4q5WkCizmUdXjMJCkeCPz842G+t4NkbTc/OxcoPPkxVaP9QLH5cQ5byTh/NN5wcXbd4f7r4BDwiXy61kFTFsdaDGrMF/P3gV+/lgAJ4A3PVHAZZBY/VUbSh8kKtI+oPVY0s0aYt63nnIVj+hmerBWNY6IGq98LzugC9GRQ7fIRVbGYuV3New2AEO/wqQUkZEO43VH4QPva+G94dfWx85fCoXhAbf7qBXNYxbOEagR9AeT2TDqBmip0z4u2ypZRc6bhirqOSHNm5jtyG/++oKxcZbkn0OtG3H9s9qM7HWjkeaaS3KPlV0iKWO+w1MQrklmuOcEc1Tl1ikAG1JVT3VcFgnr7Ytu9E0ZYvMyWe3kzAz2rzXzJ2GgmnmCKAzS1QHzFqWZxvkLtFHeZW9GgCg3X2V2/aSoWPzanS9Fxz6brFQR+EqNJRdYYWgPXBU1zTF0h3h01vZrUM7vEEEut465NrS6TT4mkWY4QkwtGcfkQ6+G0lXyVeQgciMqWSakRm3lhEzpz6/dZ1zzuq8tiNi9gozulMIEW54mVJ24iS1Fxg+C7lTyJ0k780QXSoEl9InwLG3RCgEF60IJqRM4Du+KSAuCRnLNR4ARq7IRfiUEzK2C9CQ2+48YGYXiNy6U1GlsRELGUpwJbB1N3Al3TYMwEKWYrqgRd4RcfH69RfXenGD/JIUq5wDJiKs6zIYwBW3FNy59VamtlyoKhwTWZEXudfSrxD1K3TvfF3KpRcJpSpg6VPlgaq3MRFaNEvXWJu9Y0dt9aa2GYTTTBCST8S3RYcyVKfLAToMbTEuL9ipJA9Fg4ocHmrq+KrmTDo2Yh0V8gUYg19qVDiwOHEx1NDGlH98rMEPhZF8+KA97lY5nC0J04B9jTIKzyXnT9OlAy19WXe7OfiJPgiF51Ua7AAgHjfI5uU8i0efHG+iLqvD5FO4dk9GT3o9aILARm/3AfTm3Q/s8Fge2QFKqJ0Fv0CqOOoq8WAc8ELFEA99xVaebdr1ghZrCCFWJOuA1AP/hE50dmOumPhvm/xzXSv4eSpI4vD9fTlJEch2s8Pnt8HWeF7xKJ0KOelnGiMXK9/GqWOnFX4DQIWCTbQOndF8ess2NKiZOfNbIoJYhStAhBIRV6QSgWDsk1HvJ9f41xA6ROl9FABDk1DA5QnNbMFuiwS6FdwTWm48rOYgAnL5UGlWLRmVQ6qaGhdtJPsMel+o6eWO4FNQbb9wD78g3NZRUQFgQFAgFlwpnU7FooE85Ev08hCsmjiQfNSBcLJ3W15QV/lILRe5ZSYuRdlfJLpcsy1pAagCXQh3v2MkYzMq7ypYBgLyjarEXU68hTohLkBb9CHwzci1d+9YT8H3TQS5tsWJywQIeOEK4r5fl0vxh0MSVr6JjLyFzprppLiyCj0BAHWDvKpybx0TBRnLnnNtgAUh1r4vCBlX7vjrztg3Re29tK9fX78DF39pSwjdPtTkQPWOdwZev9+pTeL99Y7M5PXX1n594S4yZ+116RUp4EpB6zu1b23GTSHyErAiI4lr79qu9wJ38qV/v2q/b13KSBcgF5buIBIrAhXTVYYIJi7EjnC2P5KxYgm8MgFs/UJBIncukLnveEuJd771zm+K73wz/rI1tK/LUXWJa6+9uK8rQ3xFMquEzKs78EhI5kbnao6t2e7v0bdsJd1I2IRjK0jaaJj8B3YARF0rgagNobbx2d0CownAviId02+NY0msPJXScY1gemhtqxG1e0t+qNX+6Wc5jv9hAycC2TMwqKL5Jj5+0wOLH09Q8IThCQgypLVJajV4td8x+Rn9MM1qsu2GwdEI/UF7vIT9lPrn6VrMyLycbXz4XQoGYLXxMeYDWElTICshqGOgBR1l/4wJU4ybJhRcmQOGZBbYsp0wTHyLTvJDh1oPeccGuILkOmBjJ+5iES7lFKc7ZludsUrytliWJdL2SCofAOwrNkqEyjF2+TSGk7yc+DvHg8gugG5e056VEhHMavnEaA6fvQ6CFNUBu2VJ3RLi1Bz/YQmW3TMcYGVOUlwYRwCyr27ktAEUI8rKSIDjz9rimAMQrHVlFE+LCg308ZSxhgoryRAjn0kPJbYPKsjMKEr6260uzJ1TEYQqfeL4py2lYc+VQtXHLrGObCmtW0/1uA45KNU7ThIjYhNls8oEfhIMKGJlRLv+PQyFEJGLHkHuX5FAMyD2KRi31D3f8mI/pJq58AapUx9WIDTxkIdMsWWylQZgLAB0w2XdiIRPQigDW66XgS1tc4wOqwhYefUW9bkqAW5NqUzFfRMRCVrz9Hqhq1RVdSY3yiMWsRgUSK7l2hwi48K1JIRLq8U71rfuG9KdV+VOAJcCDHz9VmKt8hrhwrFCvl+J27n8e+P++r4F3JT4em9X/9SKja+FyF2m7R3dYzpAxLoDXxCIpfd2QjwAhbi+9H7xxSQ2df3GyiXXp9HOK7HFO2MHlAmXzcA3KOyrPIi8X4rdrpyQiiTE5L6q1wEzlFzKjbh5Z+B9ucdyArwZiRRvYa3vtcH8zsx35DLk7cDKlk06zhLDBJbWUq0MIJj7aL3ewfFCjd5mo2QJtY/jK64+BmzIzCrnL6lO9T5UpBubltZxa9CmIEWoexdWgKZuqeN/166uhfPufjrXLXkojVEY4UiVOprZGP+hA/PporfT1vc9blpdGn2R4rzaOYzI9nkJNr1AgpmvYRnaO684fCu0VMeNiFgbiE6g7YHyDG4ed0jz83p95Cr6cgC7pp3NWNLB8bmc7HepvtUGCTu39Dk1TfQVCyEnYs3c2/Jm1QoGKn1ynPAjF+fxymIxIpYhL8EpPdW8ORU855nqWgeOHSZUv9TWiop6bEOpPTs81vwM41AdH/P5yHDl2F8a0wG9r0ZO2uAb5//jdrOQ+vvKlYEyFMVgpB+4jhY9Fo4Wwkf8JOch/PVj/Ag+RPsYTY+kxlsOev/1nOjzsbaJnVVkvo0Od/ERpDkxZbROmTvOLmx8nAcCFa3zvSceNLIdvIqKqIiIOq8E5E9eqXd7qZA6H4gKAoDBX6HowjxFkDOiA+/WOZUjPTHUjn5YXDnjJ203Ga5lj6U2rrtqVr69u1Jvd++taOYOaQs3IJfvd4lDRl672uG4ZFVg40KkMnMJ5IJ7LrpahxeaVQfAY3afyjAl2tW7yioiyKiWJKBr7EO0E1mqzee3nKnt5sNKqTL5BEbulfu61xZAZoabDmXkApQ7X6WKlXup4hYt0WAgVjAjQqELqSXqm+u2qMabN7Df7+t9vwNV5jy4TFgxMi4peGUwYyMdg6XiXmtrX7h7N2WYdyaLyK3sjNieBbd+WbmxI91vbIuxTZTfkpB5beFa75URuTPz5r6C26UsS+roREkUB+VdXFawWh+24zEb1Za9003kpH/CyXZC/+shh1a+Sqd1VKXFIpDJU7dj9EzDyKBWttKSMIRY25izkZ6uLnXQb7RbfY7toD22IUslz2fqio//znGLceRYA3qQOjX8H8p78nuck5L58nVYO8I8Ol8PFVOaZ4LT7XsWpBb5WKnro7pHKz5n4kzpx/QKH/2A646lsIpdPXf+2ww3RnZsNfqBDwA/eWqofbeeEkjZATCdLz/MnFlbTQpnjcHJHcqUusZL6cR5IOHIj6/ctaTGS/fkuRTRibpkR5qfj/ppBDxCxg8MJtCU5EPo2OYU5brdj44MJIg+ADJMPJtl8mpGR62bTw8XEXdn5EinqJCLWSF3W2WR7TY+pLEjHzrDYzUsQTMOHNO54ue2e0sfx/h45eE5F6nhVhDytAn2CyM39OSXwn+aN+cjGjZ+/uldS3Khi1R4OiLJcF+WpxCVRQG60nDdWgKYrkBWIpwyNleV+RICW03bVXNFRqHL8GrOtXMIwWs4d/dSjl3XtDyyMpOO+Nd6kKEV3HCRYTt0Vf5IqlN6ZWy1Go5qvdNmf+autuLB7XBCs+SZlUCrdFYtKYtNnRNnlBjh9Mc8+tmlG4TaKQLCqZlBisFcPmJt2IiYqCKxVIU1lHK9b3It3KCI/S1ivwXeIaX27zt3aiXy+0aKaysybGtTG1SGmyBdKb1jK3KthYjYZPW/jlgMVP77zo2lFCJNbllzJrAXVCqrS4dnhqOyJCKQmXQIpSqq2qQKFHPmuW3nj6vOKECg60GllFRip1K5U5tChLCx++glwYUyxD6M8LLfC5yBmDrzgFkUdpanyq8hFSSCDMVojMIHAZFBIFyTvoztMBPU2u7orNo9pQQeRnbb3k+uqvdtGfFWPwiMkX1g/YkfRwupjW6dMOz4R8CP//P51WPx6/lHwTZR2+98VgAV8bJyY8u5Ru8c3XMMAg+92ztW8voV7jvRWFI2AVsBnbls/dMEYg2PwqXHGIuZhDQ4LovrMX+ejw62RAPAVKUc/PU9ehnRhnY5PHR8TVkdo/2U7TJAj6VFudzH0BBEpVwrN3HYW7o02vG0P65Ss1v42vRwIckDpay46UxjA2W7OQ0rffn+3uANWk9+CuiBcFaamD/avuEHbD+xWPX/c6E67kEH6k4etGsrMDKape4ISw9FnyMqJsYg2xP0cG3xMAQ6h6tJJ4zJXrQhSmwdBKgx9tlwYxsqrZMumMHAeDjor9cqtBLvi54qnuzRlB6wQ4mxDzWPOrxDacs2B3tDls2tLgg0jzsroa7mY2aWtR4nebL+P/TPkOKoPLSSSo66qqj8lC7oySpiUKqDlFnqR0XtwLuvTr174cIJ9W1TVdG5cm/RM5SZW6x6z115soo6HxuniWk5s69TxKCqWuP6AzrsurjCxTqrU2XtCoYUXNVuigxeWgs23TL4Cm4FEdxa8b11uZdX4FafyUys5t8CjEVVcdaURN2rJiV3uJtSCY07WCuhjTqCXpHVUDKUSyYuykhwCp0CQWhf5fTbmyjhI+PaKmSoSo8IkE7Lo8IEddQeyEwktxwdC2D5UHoCc9BUGW4faksWmczMqDOMD/XK3qEFwONFsWJ9llvrMjf1DPuH0R9kb4dOWR9yljICj4JGeRrs/f1wQvpDR56PvvqExNay3ggfLNrs5fOFZp4mD/F8eeAXtS+a5UJTsH3NwY95QeiIEFoHHQ8Yf//xWHJ0ZF8LxHr8NS/WLNQTPii7BwzgMbEDM2fkfuPaTRMee8N0x/GA/x8AeKBBo25qfNJZoPpCDDli4yypo7s7gtGo0TT8AbNj56RPFWaTkBhP69hMfZnCRGsXAeaeWjTGZqlJJcMpTESsJadbRUDJNVxQaLp1PswOistKEUSfNXJVDSvplYhY4dKDjky5jwKP3ddw1wtnC6vxngQzOnBAZASDiqTQ50cJKqi1gCwvsfZZqB2j6kDT3nZTjQ9qq5Okiz6sPICSECl7i7fH3htBkKhYrhPisk6IllKC3FuMoCtRq07eFP0vOotNtYlOWmLlb9Vh/T6vgwrXOA6h9k0qMFQ5ASX7ibZHm2vulXtWKnDkWnQP1l2uT4WCRvaPZTSP7vdVdKmNjYo4LC5VHlCdfNlFtPRIa7f2yWXXh3ugbYCBbYfby7bE2EIXLlvE9bU842BLftiphboJRv/MTvNs+Jhuu3Agq1IqKa49xmxrc8UiA1xXgNtl9Ecs4l1NBtJojHADZhcoZzC2AhmMdEzNjmXXhrWABeqaELSQlH3uRb12vpK6uBDplOr6wl7bq5exD3S50TJB82VS7ggfIWO4zHgisUzgo5VFU45hv5GMXGZB9wazXN2iYJltCNWYM7T9KCsFcKd7obnq+m76UCAC6Q7Po7MeGFzqmiGuyREC0ck2naiIYiosLKkBYIzOZ8g1zqWqD1/K8XgRzYiUFXJ+OqPHInAIwFGAj5G176Yfb7Xc9V6ZXVMEMh57EngkytTnHrDVn3LiDfWj+PV8o+xi63zUk/mNw+WqUKHayxzMH3/R+9rCX3qgrvTkvWeuPhC456XG+xgfAfDKY3S0Vio2F4Sp/wLgOkN+blOzPAd28nihs2Q2dNQ4TJk/LfUVMxzNSpU6f4yxpaRvqrak1IBbLmSWDnA+g9A6cJZMIpJuVIM28We0tv8YkT5fK+LajvaQ4ao+bWOsbOvgrJhPTUSokasRo91AYpHXiqiCCqRBqjMhHkI/D8rH37AiBlxG2ci4lot0ULYPGCtdoHAt9ReiXbA4FJJTmbq0SuGwAds5xjU952wT9BhIeYOAHwK93GUSMqiVJ9YBNhnVB73jyY1XdKeMpHzcysteDFybdE3zNCtXwpAqoTlbvoBouZFQlLLEh1X4uGZvn2Lo2AnI2RMotOVGNuusJpCOPNA6cuzFOp3hovdK5Mbh+etbaedzvnMOVfjyrqjksVlROrMOpoVdedjHFpt1LNVwLTkvO4fcUD+6OXKEq2nCgFKVykiiMrAAdcxMdoelxerCPNsRgJIJhTOneSHhTssAUshlPMiZXgHVb4tRlTkDIsPVZrdUlaoriK5mzx3qRkQfMVPCzRYZG1Ku4LpWMspeVRn7tgIQa9MpoEHkiiDc8wMBTsJl2QfVrGURyURWIieOJ+hJz4op1s9SmWlaJdAqu1KNtM66Tg4D/XAlH2BlwTyizXZ8Aqw4ZBnSSzRf0Opz1FzvwAkVnZ3E87nnj9CtzDye2gLPp8aHtNUubrbMFoJFmi3Uj505M2zFfUjCWlAcrH+A1vkTjfDHfVYzXY0SH1+YhNjIeUWokrfFDhzn2U2bcRYEQ6jThtMWpLZV/3EKH/fX4xe16XGdB9N5oysitFPpG+QQfB+6sRXPIQxEEJ2+jlbMhDvF51PHoG/wvLRNjsPkHpakHDWZwrulfLou/lom++QMu6NEef9zgTL8i+6KwpL+HEHaJ1hfZfGRlBi79g4irxbvtj9q6ib962R8G+wT1FJe4eLsNibXzPaZ0vHpC4764QVw0bdwdRBRuXi1bBmiFiNc5JMr0vEhA7BQodmWNdeULUsaBWmEM3db/VeCQrP8ArBIrjOhDzbKVHAZyrje24lPqNNNLJ+k7lAlpLOiK2wL9CBTM56dbtIbob12W7JNpOyJQxWAFE9PvracLaGh9G33bJbCaqGOgk7SSS2g+xKiVP6D1QK89yUUmQFIna+CrZWCY4Fw3rTcl2H7KLQ/qdpcuEFwaUOJytBChYGTs4PlPixgJgLKG1lNbKFQfkfvxKRyZwKLX9xXZM9aMd0qKNXOojgu+4MBRJ3IJSQfALP1EhZO3Yg3d6zcjFzLX7LOl+4NxN47ybhSQX+dEHJfBjNEhjsz3SS3reaNYMDnzRJQxgsyUXKBK7gS3BD07nw67byydbxIYH/zC9qkFLq4sFXl0xNiJsQNctmi3FiLQuzLuiLpZvXBtVsnJZYPLSkXDPc+BWwrgIoEYlW1NvajIrxdlTLTF4tmzh27yea53V1kTTG/ATOOijnKFg3RDag2l+H7lvJqCvpYy12Q4elDia32GXvAcFS4+kZqc/REE0vTASiCxSo+WoE1WFE+Lz9OWiPiwxXsV/R4xHqFnzTVoG/t7drnbed2SYs+3fh5Nat+T2j6xAjYBwZ2ggzGsLFlH6JOXHCGUHMskPF2MXtP2uGdapB4/owmLztk/JVLz48bODqq64caZ0RNdLdf+vl4RZS2H1N4PqZIfajzdwyX6kYqB4BHl49JSDR4oDFZZhRS0kloouEFEwErZdHjybbj0EBQyv3EP48X1JahEwlM46qyp0RUPvcHudJPeaS0HgSOhfqkXayIiDN1traOGc0SkPqLD1GwPvYbc7qpsiFqMIHaBVdduM+PuJhTS1ZNADvBnrXBagrU1M1APVp0/XKgncP6vs3xmYCy51X1wwoEo6JQCpUnZvJCOHGMsaXUksreOUKHQKapdLbgPc4nzC/Fr6JDEE7KnBNxltc2hGUuvKe73u++Mq7tXwf8Juoi14iTzQQ9DFzrEjdHVaN+jkUmQXlRyId5LWSAa2U2A+WCEgCqnhjtcMKEhhPatd0KQkkyrtwZoWouB+QGiLVWRj17GxlOHwGtYCIArAirwbW7RkStQazWAixrObkyoMAOxstZtwJ8oGEnEMB7ByNVu0du9LHcoDkiGLgBLYGRGVRIx4r1fdalDTKplz3KtemrOAt5I7TjsuUJO375/XVB4kpQkdGZbIQSV8LH/nJVgCKwsHNl200QkovaJdBBJS9U/ML58ZKk1H1FdkNHK1iVCozihSmmuHNVRZXARoa8FVQ6W071jsOw2Gi3EhxpxhiUD4U3b7X2ckgE8fjgqJUS9NbnaJxq9OiP6QG06NTsUgFl5p9tVBzoqAhQXdVjlhKfP2Nma35tbXx2feMBy7cXZoRnn6GdAj4ufgY/r9a+r5gWUkhmwzfmTlWqRA8l2YjQ47ZGdmJ6NuWrod37bgPCddPB9Xr5TMlVN/+cIM6HHgjWb57VwCx+f/aJ/w88Pah6HKueN6lOqOnxhRr83JFtBfUm6Yh6LbxcHWdGoNZzENDnzifsMibB4QgP3TNwWCv/ePanJNX92UbJ8c805OTPSVWDyfjGZ2b+Lqfo1f8UpsLaB+6x/ztrEs2g1lVIdFPItn08Z224cCZ3BM+vhxifO7JZ5Y7wF8KdBa59WsnVdS0RZAchnZ4Uo1Rqts8sfIhrebTjG6A/j1rUh3dYOvBhCrHl6BBlD5mcNRPPSEpGRUjZqaa12JNwALgLyknIOlpAI719L4f5I+12wyGoTh06D+T4RwKtQfvSFso+BsWiPlnWG0lVhqvIle0JgdsIp1QVXNeRG454tUVMoc4R8KHsnGF/VtnSHlvMEAJxBapaJ52wVVFzPru0yRlcECoVfe7h9k5FPUs+1kTGzU6xrDUQFpImvXxFJt35C2VfJYDmmYU+JWalSSgskVpBW4Q51JcKOkvPOzG04am0T9CFp31W0So4oxRNkm0WVyS2bJWshAnzan2Cx5NcMFUq+6H75pc+V8+mwizgg0N8aPOnWuDHtcYbmv3bysMvtcvYCuSELMu6r/E9khSJx2s6L05cZh7zU8+1iubj0yXUvdcfHx33//EV9Paaj45Hd0YxP0cTzx2foIRBHi8Ifs7fczmeo+6I10Nz6+Pfkx09o+BM/zxCe8B6XmEcHWPMPO0nQvwgEQ4/2Zd4PvgMqezCJjaaZHg8qz6+/4C145f46Qdjee5yxG5guF9omlejHkc1Ez+ebRa15IDn5X/+aWnj51qp93dDCPUYKBvfi5U7j/IByJx4Txkw/qVAkg89+qhFwRk2T+KqRgH333qYej0RA1vnYZ+/x+Ok0hMNnhPU92kx1mOKKiT+ub7n/j9/ahGeZtNMCw4H8fHNoqsHZ/4uwWNijdCO/V1z5mvowM6PtT8CPiJbE8iHRI3jSEdePOs8k92w19+vPs+uat325EcWg4pqFJ7We01OMfLwDqOBSH3Sr/YO9bnpWCKGR9zHd6tdUh7mTE0Pn3DIAjVbZWFWsEJiF4nz2jWFplnRtk96faZ1SM27bvv29WgUHSsc08CXSdB16j34BS3nresE0AqCzGE4Tl1usULJjF4ciBVB7c6WmCbVHoaHrKhmV50GWiapwCOaBbHuavpxrp4YirVDqy3/vtj89iHXP39+GvpqoO60hBnY0ZQPCT4b1E7B8VcfW6Fm+rHn+/eyfDow+rz+p2VgYdLfx/vxYOxx1F71nR+qhbNrHtj+U3PMfcbh+kBGnN3WdFZttGjh+7zcz9dE4JEyht4Aeozjb5Cij990Pnnh44sHtfva6kf/mN9ej8a5vvRD4T4/y6ft9JSCD6/hc8AzaeeXgS/1hhppIVCRu6erVHvlh4ky1/JviYyC5ofYs1FznutEasUWqefgnjDzYB2eE84aTmtAFa7EfHDm8McUNl725mrp75i1BllLBxytfnZGz81jYssePnjVC1mNSdtyKxCzxmsVysem62+yv6yeefbmVt2mx4IWoX65fCLV7coI0OMmPT0z86y51lgXNUwCz2Ktz4RoP/FYwiC7MMvzxxoj++uE+w82wJ2PnUfCxAXOmvUn6EMiqEVGUeqjxT6kwyrEWFNwp2mVbCJYxXok3KMPrelZgZKYOVXLxHMn91YoAUoQERuCk5HVwpHqeOJkhNRB5pi10XRBYQFuEtGObm38qlluLz3rwwIe/cY7c9dIsaC1tLYzKjNWcpnTZT3uzOZROw7Im3wJH4eV+BQcVWhGAWVpXyn3GpEiwWjvBrTrrpAzs1ILFLtsY8uQxKrPAkJyx/DWRFJvVB+uUEtqmxbV4FOzOOxd1mqKxeo9NHz/9wDLJL4+8G90ZUuryi8Y9IA6J7ptkP5o7ZT6Vy9kbfFGQpab0YLfs/Kp7j9UxQ/ldv60DvrciP+I2TwKvKD0HwDvqfY1DzguepPt8zF2yPkJ6ZKm1kbrvbp6u9LeX3pcagLTw87NO48xEqagH+/r8UHN0w/yPBHzTM4JTzz0ZVvKP34Kquq9hz8+7z6w8W8zitaL5/Yku75W6bc2Pf/xefGI1Q1q/hjmA7zqGk+k+X/6EX5Q0GwsKddxZP3BRn1c4G/RG9TT6fzlDa2mser52y15pEui3Oe2bYevPmLXU9DoMUBcz8NGrZ6OgviZn4H+mvvnzDV7eR7jMalG34eSLtA1V9cPOkzFY0Lq2q0EHt7r4zNll/WuLvQ9hzke+/Rvi3umyCdOw92Wsy2n0vbdK2I4vjnofEZheTJT0Et3xveUlLqy9z+lCtRqXBO5o49PD3SgfWanl38KAa+hmfgx92XaGMvbMohYShrDI+QjbK7FWnVu3Mj8IdxkuNJkF4bxU/cDsnDjoX7sp3anyxERV/84aEZCcv3U9pSTiYhRUGG/mT+4ER+ExwJCEVkh0cGFKq+LJhoCLkFitJ56vsmulSYC3SFVUGa4T/hAbRlSYziihDdKpisvWwJVtPaDfjg24AjArGSLZkuhSs2X4h8bn81VPnzOZ5itFK6qpClwZuuH54jWSsQRmt61zYmNAe3S4rOEBcvzbn20bE62uzIK7PFTGogPRcMfb7cCbqwXHy/11H9gw4+fv4US1Ytd42KnpcwAzsbCRAma0XTUoa/8QGB+zusjzH1+nn9cH6yI+j+c1evrPW2oNs44gofPz/eLnzdtK2WslbM3D1w+ULt4tM+LsJ+Tz7l63OT8p979EDrN5uknbZOgiLORgNHhFotqthTHDPqAuNZ9/mrHM/D4kDVTQ53faTvksWIj8k1tdAYaZ9I9kFr08oB9oghQuzwjyyfAMwvXMFfKsiyEo1Y14ld2+1DpBTK9F/r3cTDmQWtJw5V8oj/lKgESHGssEP3QAg/R4Vgovd1mCnraZ3d8BltGlB9yoV7hDzw/N26uCbM5P8d2vCjN30/4PMTuUYP9H7sm4wHnGl2vDicCGpvVyvTHFvLjjpKa4JvQba2jvvPAPwFVJvvslraeyCN/rsgw0QuyztOgTQDwbFIyYymqvTUAMlysMSTXsAxRboWyBOcpVR45QUSComv2E5ikBVf/9Em7oQ7dpZguguFAcq1QqsX841gMi5oe8T1Kn5Pz10h7lJF6MqTIdey8H3JQ8V6rbMuzj00dawC9mGc52pjLOd3KDzU9Tb/6Hm0WqyGiCdMjdcfv8/X66ArUWRuzmQY7RiCbd1Xn3wjnIf+mRD++3oDp7TuEWLHtj2/MJQvM1VD5d5Q8e+/vL3tE/Nub//Cjn78f5HoiyTzxU/M+b9N6+jxP+Tn93LVxWejFud3ohp74J+vYv6mUAoALJXUfAPBQVhi1+xwn0dj1XKn+Av6+fPNUT1Cqm+Cpa54r9ERYHUt2Rsn52Blfnyx8SOF5+qdvpsYmnb8fQ3GweoyMmU/MF84QPvV0Q1N5gw86qS9yNuQYb5/T//PXmV4cd4+zcuMj8kDjExMf6TM2THu7PLfnmdSnCD7eOTJ5nnxe/7CT5lU9XypzuFH7rOBPW+1j7Z+TUJNfO7/38tgT/sTnos8H/vnq89qHz19y0CtDiuFGf2Um9+DZ/oKOm/5587/9JZ2neI6ip7Zu2/5Xq1oKVaa8ohbm1DPsnzMTCtdCP4FhIDfS2cWzRSbGVhzKj8k/aPZ3bYgW90Y1UVWh1FPxQZQANC7bu01hqmNWggB0avA2rJCznz1Rmr0sn6yaWAIAySfsikhRHCPVUzVCOhQL56wO+OGMlsePaZIxmq/Onojq8xKk0zYehTF6mz0doVOrpmz8ajryjAU/1PJjvfsr/XKL0jOuqr8LXH/5J6787TP/8HeDyEesWC17s4f+STT+4Vad6VB/4Iem0dGLJZqj90eZ6VzqARoPK2A+dvTfg9EcT2HePahzXO25bu3sxwMdkKsnP78dkeJPdfPjZ+byHwhhEcB1/jr2GC0kj334AXjzmcH5h1h8/NKb/iGnFU1ACUrFtQ6Q/00bHxvo8z0B6homzzd8QKPudfI+xEaef5oszh3YOk4StLf9vzyrB80EfU7JGDU+xNkLfEIFnrGNdD3AeoIzn8//PhbsU1mrv9XHOGdDc0LK4Ek9sME/RwwNF0UWHp/rCPvnlLRC/JgwNfB/onJtFOcQHte0Hr02snAKX51bNdr2tXj+eW6J3tej7Rt12QOtDL8P9kyhQB3gbttzcpUekl5FEfp/SHS1rziiQj5Wtm/xaZmcuav4InNt5I6qAFzFlnQULwFFqZIxU3hAs0VcdfQoSWyVrlS9XkemlPvISqX2qaeLR203xd/BCzPaT4epMetjIdqFrb7tOoBcIylkyILYlkIU7B4Aq+eMHgHmLCAqbzAqUV4dg+7ZarrQw2ov3VWQ/WIoos73qB9JJ/hAl3e2d60yFeinayu2YV7VCKmCDrXJqqSkI+JqXYQiC3qoklLc6tzniuqrNExpE/Qq4ZOunM3DXuraeAdg21HqTzf4/oMi/djFHetBb9uPvTT2mtqJaEdFZS7x75/luXqvzLnd+dcI2HnNSNzG+SdM8VyKj5f6GsKDVhwdLzTE//1SgFuNdPilRLf13Piytd4ulftcovoEQXWv+xb/h8r+uGvPRz9hMa4AOgnrqKZPC6du/AQFT//fkLdeHbz/8eDnj5/XbjU2w/8Hh7sps4doetYsmqOnKhzihAn0RvgbRD8GqH4sfjz0YQa3W4s8ncgCuJ++gy/2FON+3iac6jPMfdI//eKxlGvcj4VFa2Kpv1FlDerh6kQo7JB4X86upIqZehjXnDDjWIV1rYZonPwqtj78sDcq7lxP+9CGJ0NV/Q5nb1g38akLKJqVfgaAalP38YZnqt+Z2lnz2YWPLV97tt1NSH1gZMoGt1XQRUAaj5O99zrgO9j9EUfqFbFS/DBcWnfV6loKfV31PubNRvqzbTCAWCGGUoy08/XgcAr40AXFognAIcqIyXJyXhKE1BTtqwnCXA2Su03nEW7Lgg8hn9uKCGjJpa0K/TnXM0BGZDxoDo28ibM6LT0hZKCOu00AZ04PuQk3WWlgBtgyPADtrtTXOCIFuUE6cFzv9nrBGyaTSlTbqLrnbtGxnQNRovZqvTxH3yEysMYxC9EFJ+pjNMSzXXUipBDrOLDUeP5gOJzqw/PikbSHanoI4Gj72U4lpScS0hh1RLNeOhJQz3NeeP4cFD1J1f1lPa7NWfmR5cfZpNrOHyj6GBGOc3Q+/HcM+MSWuS8fLt1T6X7O4eedp0Zy71ZV+IDH/Teg/TRk+HGLyfEcy+FDN50RelmOTm1jCnMOuJ7s0+n6+09JzWh/HqPhb+F9/PMsnvHxn29So9TnQ/TKHklpc10fXzvShAEA/p8epnXDoGERzhoCS60ju8KTkZnoltd/94CpgUwMlA+kVIfd8716Bp1doVnIgceD0aXB/c/TXz2bbuyjPtz48Hv+NtkNoT2F9Zd62vgQbQ0K/9QR/3hpEWLkPEy7x/AMBNscrLEe8Jh1HRqGH8vMp5OL2YSYfVcyrwbwoS3VBt9DC40msd5kS0Vf6scheyuhMigKWlrVzWPPFwkun/5cqyCAUzS/cbL+nQVThe2q1S56lWUTlr/5kblqhHW8vbc5q+6ldXup+4cx3bNZ1pUAuDAz2vVrED7MSsGfQKk6OyopMLV4Luf65IchedCGLUuzeBndy6flMURVjyvSB3ZdGywjq/2TvI4p+ER1+7G1YO5z0LxFm1dHUMLGVcoWWK/2+KW9/2VDW6fpDcsYFUhGljERAWoF3OKoZ6pPkcXaaN7mAwba9CJKocRDd53PfMjrHEuwOfhQ+P+k/h+A/QMAP3bwJ/f5fOHc98eO/3yOoUvmhZbYjyF9iEEP+R/AkvOhZwi156JTXHr2+oh0q4CfP8+XejIn5H7M+tI35/OHjnhaEr1oPaLHbfR87/k4Z5nPxPYv18fT/02t/h8B9LnIQPEY+nyxLzCK6cdqnBn9/E4PZXbNPz1US11ngXwO++N5yrNrdlJtxx80+ceHZFvNKrWq5yqdnI3PVeDTEBmGkI9PdbRhyOQecgH8mbPBP+CH5kTNd3vB//RTO+ex5mqNj1GE85GzRWgtaqK30PF8qsAl3KS8tObfJtDXGAeyNGzpqw9122CFUm/1erscHys7Dno/YUsO53EU2X+wBt4aS/OIjQ1zt34wg0sbqE5Cmv3fzFvbqcJ8sZ27j5E2rNdjpDse+Rqds9OajWBl48L/xo/t7Q2eZ5+rD3+o2EmSSMmt203ASURECqmG+wmONH80irkmZZrS9twQkc/cGS+ienY6R7BG5NmbjNLB7LNjP9SN5sWeUVKO4BSG24ILIQKuaoh40JWKx0Sx3BYeZzikQ/2NV43yee1yR/oghfu7nrNyDepD8PxwreRDxPWrAFdm1rA/JQDF8Cf1Y6u23h9FcsIbwGzTkvFjhHpa+fyr1aU4PJb3R4HhnM583ho4W/r5z9y8BjB6+KFKiridJaV6f4/0oyb4uTt/IHG/0jJyFvEovIedPVc6V/wpU50OUCp7RvPUbzy6HIe+44n9f4z1Q70/cvb60j03oyY+HxANEY/xPheijyH1Rx9a6kyCOrT2txEd/NHHyz8cQxw56U1cHF02pulc53xLZybGRh19W4HUcTweVvtZviEbBupyLjbff8DRj/TtaUnGs8mKqsjH6taI2aJeytVK0PayESk6dFyPNn/OQx+B1aQF8MHOFvq3U6ieIsGenlVhz3cHyUdm7b4Xa9O5Mx9PTLFay0+uV2nfhyNT39dcuAVk7BpQkYjemb1HrQwdBa27a3DuaUWP8rOeGHHgzNNj3p8Cz35bM8TDbLRk1GVHx1gLNxDMsDhKe2YP6glp3cBCpI9Z1Hiv452PhLWp5VXqhiFE1fImGj1KUI7WFhRQhV9Hdz6jIUcvtyqGtNv9PzHuJ4xwrL8zeMuSMaaH8EG0q0lWdbQGNeUTDyn5Y7uZhmdv04Ka0Dk6zaZ+OzAjoWO1SrpNcrmnM+UyF9UlwipRDiyX4FGidIxvAZlR5bLo24S8f2BArvsk3VKiJ+BAAu0BH9A4S157T8zMopppTl7ILGItyTpMFkXKEE00NPjVqvxIJe29UWhboM5hZjBSOtpQgCKRck+yB3iU9qst2lvrxy+lJucFHa3/mJQzvMed83Pi/uHnWK2jaKx2jrKpux86/ImmD5vBo/6hC47y+/jpQR3pCNcK/pjr2hhH3fC8A3TFfHi/NvX1qSSPpdPb+ofGvR6/t14p4+Vs0onafD5Y6aqaoo/PH/qhV3MGUlqwjdUjXyMzrS3HNlIbcCfLqL1ZMQONB88nUUHmYJGfgpUQ8XTt0JG2I/dqsJ8Z16yW5iMP8WkpPTPZCzZP4WsPWV8KCWh500jeM7aqTxf/sNvlWArlVnGE92mo8/H/ugD7OgdTP+JE7cdIjdSPeeoBzDFMjOtUsuOg7typLffOH0Dx+p0zoKfR+pi//nviiDrpD4+HG4n/RMkWpxlaM8stCi0lLR1/E/GCDx4r41zu7KATiHt+88SRICAD1bzKotqPMEzMrItKZbU9rfbKe6OHO+8liYTr/bsyIlNJbHelIrUAO7NbC6L0dStuJ3SnKV7f1PUjqvrkqh5+IZT/RpoFlqByRmtDx9rEEpdq6F1/esSXPfG2R6mh3dvDUXKs03pHFVV+NEoDgdh0GrpwwJeNPWQsBDPgrpw5YMIqzmPqWKUqwRGbWn73mqgg+NNUQU5FDt+2TZjKglZVzmzNWeZTS5PGXguRGWKEyKx+XFnhGHBKLI/seVLYLxab8nnEvyVungVlZAy4tFlkc7DY9laOtbFGO9bPB8ywOavZZ2VS1CfnYXuv6nHn8rTmIfoGbazXRs++70NTfUBMg9d59lECkz/l/9QVZh5HQ8/Xur3bGCxNJHXtjOcU1OT1XDwPWulTlx98mC+e7T1zgflUz8cDgP+2sHPtcYQxpOIZrHo4LLeMJaF+TPbNywuaj/QEzWP2lT6xDnhYbQ/GdrTgY3UJxrRQtRIZVTt6uBfxQb0M08jm1Rqtz1ydp+sR9JN8oPBDqbOf8bjt9cgNksCxVmcynkLYo/uBTZ8r/RwUCmhsMZ5LWYLbkW6ZKMVU83NqNRPVf7Y3XjEA0V6sxsvwbAdGIlRsKBoCRqRpu8k+HYlwT/PyPQb2e70AEK7wTYDpxBvC7ebjbD+7EAUYTjIqY2yOQIsxwDfEaWfUjM5sXEDLbXlleAS9P3ZIA03GkaOSqscOrt1dnDHVvfjc2EMfn2xT+sGyGr3lhgwtEyizSAXI0t7UVr5jm4tmiMs4mvFO7ireUUZmizMEscu65lHT43breUS5pVBQZC73YYLdnMxCw5qUkNgdBtDcb4u6RjHlwtgxbV/btiuuGfmQLY/ikIXuU0lGyMloCxIXg9KCmOGErYAISuEWWK3xJZERu7o8sY77p/oU7xPuGoDAaWNlymlMZA3qCoIytUPIzAS1jdeemwjYFXC1TM7W5Yh/beRSVShzTngonCa+Bsm8cF0UvyS2FJsmYsFRNh++2OfPJzE6d2N7+seKenxovjQ8n1BdcGoHPa1j1aI+5P+pXx8O3U+dV2qnDCr0Jj705Wg9jUiWMQBIZMzUoe3Ej+hAz4/w84KNXZxZ/WFc/JjGGZQOO/X83MXRx6UieSQ9HSdpL9INOItlRdtnBKv3YBlCtYlW20IEAmmtx/VwMsmtpDMAqz5GmySDxnOkCASRPnxRRm9Yv4a2lIm4MrlD0E4nZWbk+zsQ5IYyAoFdUlI16haqOywXtFPiIq8bWorY5P3Nl2FqKbmvBUoK3FrbU5FHqbnQzCWFsSmUVbJOijqnHztvLuViyasEcIWWC+OBBCLcGz1CSjKQCiITigvATsmNDLEjckWS3HpBuMFLWO+AxFy8nSmCOs8hvNx6UZEQ4tZLvERtI1SnyDJWXL33SS4ybwKrlbYAAQAASURBVDFAVbbNuoHqi4qy3i8HwAAJL+TmeuM/cjv+GOLiXgGC+P1v4tcfwPvb0vWN74QUVyiVd4DEhhCpWFAi19rVGhDF5F8bEpEK3tKlFVIitW77ikiE+ItJcO8FJjJrr11fSt12BbUDQe3IzVxUtqUkxmaISOIL3yvfINd29xsmqMv1n1AO27VdDWMZtLiZ1udMZjDXeoc2QCjw+vo342bVc9x0h0eEFu4kbq4bsYkkFcF7IwWUH4i4Etf69f07taN6mcT6Q7n/9R9YYiz3Poyti//Ofb/+BPcCkSsTEZA7SCu5X2DyAkRtInAzsdxtQbly83WHblMQq+IX16L2/qZe+/vi/bWVXzsVifW+969r7fX91/9M8rV/fecXft/8ArSVvzKp338A2Am+8bUovq+luG++lt586U/mFblxv9+/rn3j1zcDl3bw/drrBQS+cue612sHtPUW860V2nG9vr9fryT3xXz913uRXAl8vffCiwisXPj3/e8lxPpTuJXf//HHff07+f3CN+LNwJ1f0OteuF7ft/KmvjLz174FvnklGKH9/X6vgKQXUsLCut477+CNeDEj9i/9xk4s5PX6rfzOP6o0lrQC+33/WsiluIS90V1XJ2zRsRCQ3azpwzcpSQVgWls76JacK0ejSyQDuXZ70ApiUwB2V1Vbu1tFi30ez/2r2pmUqEQkAaVbPCeBIJgutNIqPOr4AN3hOt3QxVASjdwH6YpLT4wTa4O7ipaqPeCeHJW5PiDoQ2+2rqUm5yqTne3z+FcSiiCS3HT0IogVEfkbyV+3Uw48BcoE8NpCZeHa1qqyoYpVCJhglQWfNTs4q+mgV2w8P4ybJwX9gc4Vz1Q7ae3Izmd0/Mmf/F1zfWOCHSgux6vDgWyzjUeq6nYPQqBv3ZGoFESXIWizworfoz2h0A+v5RiX//C4nz9n/pyG2W3Cw/1V2N4O3V5eLKAS0B8bgrZon/JtJmGpjDhWsLH9jjNLY/F+GliUGULfMyJQ3X8Ld+j0UYCIYLjWgTNLbbkdL6ZsIxxKjkVUwCkwaACOgCrZs7JeDu3ch0AqfQflMzIQ65E0dGSDFXwG2xfhxxI9V6bNMKIjsm30zg4sv6kFSHPY8+O+beaCMRWZNDeh++583tXX7t1mpyYqNXbs/1mdSijiI2pXPHJphgrcpm0Dn+D5HKUTIor7L8+oDJo0Q5DVM3aomrKcl0TGgngFr821kqBW4C2AWhexE3C/vmr3m3b1UIfxa+l9epZQZAIMZWa5el7LNKsxLYncFdQZRqnqdDUxnBQ6mxi9ax77nGfdfOq60pxTPoe9U/YYgVAsBMPFLAMVs69drhYeecDIHZE5LsxTxAiGogWwAr9e5ZNC1uIxl7CsJVDp072t64kSyk3u3KdNnW8R3pZcm2f7O8CcEup+dQwJfEjEh3M4QyI/XCk9BPbA0jhEnmYVWT/8Iid60nh2kKOj2RAeakk/fDgdvV4ef/368GH1mPh2zIi5TEPx0CYmeVtBtfNVmNGr6JDVGcXDOR3NoJmLeffwFAxU1OXB3Zv+KX37yZc3WdRK/Txg+SszDbNipRhaxeN5s8eaArgq2HsCcSWiQ4u0514PxSJhzmof+q6vq4KHc7nW8s+VOPI1wc9Z3mbXH8dt+xFH2E6oKZKFi4Pojwl8iOOZvFrsMR/6z7OafZNhpVW/Rbv6j0fq9e8bth3n4gOzy6L4p3APteZI2fA8wN73LtvPL7unHVUJQ+eOj2c9A/owPmZFTxCDzWfZHurlngdX2Y61j3lsjlrW4ceeaDh6rkysw4RHINxIGAdLwSJpWEtZlYo8x9F5aEeMcSTJobV87EaD+0MbsZ+bNf6zTxmnZLIR8hP/n7KLeQY+bIdavQfJynrwNr38hsba/DAcfuxHv9sRiUe2YV+8r1Wq1FWwBGUoiQT2G8xUplxUEmCsvRi5sC7eeOwAzdWIAnoJdKllso9tmf8SmMMZK5NUup957NpvVsC9pbNgG8Ic4GO0qqUNRCeBdMsIDbXp6ymNhgUIrUJXlENR3K+tywS6xS46ZFCrejY4Yz3cKDBszVQxLoJixKbLeYTPhlvEnLGOs1edpxiS2yidU1qMKR6SzNxVcceTk6UFFNU63v7YuAkxp75HKI6GnH1WUl0o0TqmXz0qST/gchYd7Rq0aOrnzfpj84JxXzO61v69ZT4Vbptr/UnV/9gmZUE3R8m3BOEcSdHj1R+jmSnpvdJO7tgYDxX3Y3BN87PnDjNnH+hQ/2bPTtEADx30fB11+3JaeS7yUE7/h58Loy9a7f8EsElwPfikApnh1x9C44HMArTWKdFlL90HNX+eCx2/Q2WeiB0CYA2mZpLVgWU22kMGW2+XudeWwPh0ag1+zKcPW2n+VCKRtU8cyOuszD5cpFaxCp90ysqn86/sQBFEJ13MjvubnfuciAGZfsgC6Ke6AyROy3F8SuzkP39MbmOJs9E64+ufghgfCHTE7aDJWXOej+vjIs67HPH+aS/gMcah2oZg0KxujxloeWghqOUGweiyiLN+oTlsDCvB0t1hH+sxnr/tkj5ChZmAAdFjsJ0PPz6EEbGyCB8cja+hoBABHy9Fl5XgWLYUEekeCV1neAZpP75jBfYI4QzqrByrMjgBwwfSVaUCVASjGukFFAoXCuOqYCaLsWRhCSMiUP0NYAMqwAghsD37K8f2fUwlWzXWSp+su4dh4lMGOWdsSs9wkVjE2sTeSCXyuOhPO9zrG+wYngTbHzGG3ENKu3SCUbai6EUYBU+9uGoaATBWPsSE1fEoCJ9C1tLYTIygsdsV0MPVseuhQVsVeAx8thqJMpp6W306YQ2BnyL6478YffRPOuWondGHDwv6gdz9+Vmk5ws6ge420P5PEMPH1z6vPMD88aIeb9WeOcJTGOT3WlLaLWy39XFJ/ZNh0G+ciROpIMEIKrK2ERi9/QmUiTaug7VQrdkxix6Y/ZwEq6cHDD59JKAo6J7Vp2P/U4G3saC+Yj35g8iYSz/81DO2j+H1Zjrb7vF5oKPRfKr70l49671SgPtFCeljEc1dDA92TGvNPyQq0uw/+8jGWXQAQGYX41CHBDLFytR0RtFQjb502NYVQQ/EREU6+wYJxlZXo9CTvUHblD+B6gwUpvXqQYGq/nt2Xl/kc99Yoh9kmo5Nz2PVPFZAj0knGdhPxO0P8hGMeezmEYK/mxae+Ow4TS1hG2Y/9/IM+HB3YzcTrJRhlPH6w0ysD7PNlWxzzJzuXs8JbvUO5mzqLppSA38M6KHhWlE9hLiPt7bRoWO++aSDOkhyXDwlxTVbtPoTqQ2Kca4jEB3JKC+XAJmRHBNNyQx12AtHzGaZ0JNm9kOdBDUP+UylM6q1xcl2FZLJTBdW7eQN37IG100+M7ETm4ZabaaUQKZJiJk41qZVL7AA6rkFMzNJJJlKKCMTh7/BUKbFwNXWrsdtu8lGKCWBkfVEAhnK3FyJ9WxPeba/pMzYTUqbbs9lqYMQUDZhP+Kh3qz9cGU6l/Ym6UE0kJ9EpOEAizo+HmM7js0a6ujhMXMftFBfr7yY9hS95LWYI8Z4lrA6HtCZCtBmxN8Y1RpFc16zpA8LAf8/fzQ7Z8C+Nwjan/8ADX18GbWfeBiJ/jbVM8WeiM/ht8c+ER7vYm+wpAaAJ6uw8iS9I/rmnzOP+avs4QfOFrMoF+J4Gh/PxyoN2UvRrnLP6kFcb2f9vPmgL1uJsu6tfuh/WIanXTO/jszXRq+HK5XSCglPCro84JrSdjCa1kU/CfVQKjx1Fz7+U5eqTNtjjrTxUbdR87yPiUarpL/h11mgH/P1N+Tic6qf2rS/dVbOSkg/Jrc3a08V0Az852PW75+SfZaw7IoetD6/VYmWDYn+SNMG45NBLg4Vow6aVn04tGMfFEfe0/ChG54PXap3xtdL8TCfamIfMttHjM4ijwKzNLfRwVrEXkX2K/gQYwvEpER39waCrmsc7ebMT9vYjQ4PKOkhdt2sFtRhCYiyANlO2OzI6WsUhd5Tl+rodaBP/CSqVpaSYGZIgHYmAO6NnWXuVSXrvkwm0qlvZr491VkhUIdKK9BR5tZOVly2TOXNVEBKuDgkwYhJWLzeEWuZv94kgyvkczyUxMyAMpiJyNRqOio6LWeEsJBQQtthxsOt1GKNzo0YSfIyP5BlQLFE5SfkWLxrJSOikDTduVJV9NuGBwTG0uVlLjuFY/AIfvyfll3ddeT2xzg4/7AlcL5uS+QMtzd8K7gxTBoL/llBzTdGl0/M6DnAhkCrD8242UGO56X++S79COfZfj7A3z49bGvBF/vXE0r/uTdqECe9SQ3wB1Dt/BXPG1GNOWvj1tjqPEdp/Id+Q4NCxRRn8h4m0XnGqwxhjK45l2l1o885Od/+Py1YYb3mUw/NekLoHAbbkDZw9fEgDwCFyAnGe6ugT4F9/mj+VVcY0UGj2SPkPID0GP7M48cV9TAMekn1AL5PExU1d+oIyDEsjnHRv41R+TQP2NZvSUprs77cz0e24FmiSpN/ZFFYNvUcRtN6Z9Lbi6irPpD0Z3Sib/wAMvaCzayX1e8EplmYURidozRmxBNiZ0ye6MekqgaPD6/MlxlPKikleJTvrBJw9oFjjZ7Uj8Z9UMy20uNfhfBOlCI/VNnzyu29tk7qJRoJ5iHa7PHSB7dMOlezOzNdlR4Tseq7AoMhlyBWMDICqVsVNgEjnaJftkywl49jsj8Woa029ur4KUlCuQ6bXMYCRKUPH0PKrdBOMlEtAklTd2uDjOz5VaixF1mhHYiblHJjxd6ITErM3dlO5bQGSYYikjTWwQlEQ3cVccZn9ww4WEvlje3dYZPBci8GSjONgNuK8NBSmVtVH1tj2fqgQy3o7M2y+F59Ratmq62yhBgEs4//fW6jp23HNhLG1K8lQ110NtAnZNU2sLdRZqxvqsXkeCF9rWPpgv+4vY8l0KEUu5n1YpmgBwXbYlbr0LYbnxu7//tALbXK8vOOK/zxLfmd3v/scX3i7ehptYZVIUy9PeqdYzTUhHU8B54POm8WcfiKoIl3hGu/fiyFfY9yyBpA2RjKM9/jq+EKVR/ZugDZhGdAST6pS0Ydmu7B8wHcs23rLZ/UrON5zwcqQRLgRtx1tZGthwlQ/1UL8JEGkIiep0g2bD/42JKXBiQvw08XHWdwsyDnR0q69gGHGzMYZqTqhOassg8oFgUlonM6U07EOoM54K5jqdhwjHyo5R8oO572g0yNTE6QekSRIJSBXReJeSDPs4oJdZaIOq9f5SAM3U12rSOdK2S7XOxKNwNlNcjBQUY9+ywzAOQm1gYyQ9VyvaT6zHzZDscjnAm0wdg70AWJamXNEibHEJlbVmJMHSYmqrNzVrmj3iQaOk+Quxg7gKAcCaql6UCvgtpoVELLcg+bUHWRf+TGc5ze1lAJRgSR22DAtUtxRpJxe1KDwaQytPcFtVcuZCT2e0Pbk1bsXRENECIjojd9AVqtiky/IrNUcfM6ZQSgjQYcYwOM65uxxdzBlN5X7hS38tZ+JTfuve+F1M4yMXIF9rUyvHMVCCytNLZ62+5M5t4AkMidyu/vt6OtVyZxx/ZJxoB9TiBiLxF11FsS874EIuGGDPb+11orG3jWYoDJqtNZGtWqLsiVDNv2IpCgnHrNiFICIfCuzNlMYnGnovHPh8UCobWZ3VNLylubyNiJ2JCPwbhQqHW7cWAoytrIw1Sd/7QPfTaWA5qGj81C014voQgJK2E1LBwEajWt8yradOvtiCMDox+eMahB5TImzhMcD/jJ5T0Q8oCvehReyw6OoEyZUk6t/vrNUR16ADBHIRGsENQTMeuyNPXhI42lYlm80tM1QRNznjGR1eizup23Pqo40D8gTU+pn8aQdfly7XuVBKRP23hH6ty/Unfanhjn9lgVYuuvJykSMJtj62xWWWrzzlZTKze/zb7a4+chGWiN7VbgNcu1AcYYGMD+wXiXEhUbAy1UAyiNt3adEkr/qjGMy/0ZQdBgVyM1C++a6CiRe1CNBTO9sSw2cngNfdRDs8fsj9R+KodYhlG0n10PXIAjQE3tPkT1iHzvUeLxdZYQFyJV1/QOtfvZrDpG4lFdyOuvzZQifQZ/8ifbTGKl22b2UZyzgfqvs6v4sQeALsRAzvmW8UXUFqHP+iDgukgR7WG2eZbD20KqIyDG/BmRALmIshDTVse6bfg4Vec9Pf2CEkyDmX2zLBcIAV1UJQWzQxsrWHqK6YSieAqYIZCRqTpuHrH3fbua4ULxC4qvchMZAfDa8bpD1F2yO7PoOiu1WRKKTAav8PlyklyZYfZ3iV3kuPFgrW9G8kW+dF37FcHLda0ipABy7zu19f3mzqV741YhzlhOxFpajGSsUCzh4jajm6jz+XWQWkgpmXe8q7L1zuTGTuSVacD0sezc2rcUhJR5v5CRIjIzBZeYBJEJqoL8Lk8VZI2ueOVoRVYJUoYtbiWprA4SLkYQISJ3EmTEr1iHtdjasqmrlLBPocuxaj2lEa3Wyjt52I/exp+qEM2rKYu0ahtcPm47W0ZAsgqmHO+vwhdHRPH8Qj85G0r18FMOVDTDU2bb0bYYfkUf6DvbWceeyPa8SuuzNHNhkj4u+9BgQ+96Hvj4zMfPgVu1vdmlyOoNAVCmmNXfoy2M5Gf4rLwCa7m6ac1AP02b1GgUPCYKz1R1HjOuxDzixL2KLUoJ2R4xermfg56H0ONDLTqty1t9nFk4362FO5b1ma7PGWyHqmNQPhtYCHf3GdyeHRt0ZqtmVh72e5EYZxHGlvxBDPlLDXgYAH58YpTaGDE/Bi8cG8XI3ThfwYa2qc4CjqpvHdyGghLqJKxesPMcLCyS/bYiL5vGfjAZwKRzFutW1Y4E4BS8eOBV/zuLVBeyye0zqRjLOEPJLWXk1i63PCW1O9iu1ccslkGmng2nyKjY2EfomUcVoC2RIkqW43+BXZVvi0ZliEmlGMjEzvuKUIgJQjlMzccCSkBsy0UoAvbXKooSLh/DEQzA1r5KzRSzx9rfbtTryKUQiHZuDPKbQfLit9CEraLyn2OBcsFJi/L6IpAkVoBU8nXHV37HC1BUSReEoA2SC9miFkRGVLiEoBCILTl0LUTHPPscOMLV5dhK026C3jvFiHWREbxyIQObr/fWr4XX+tYrErFiN3W7ldiRN3Pf78Cdi994h08Wk2QsKtbSFfdC3LEAXi/qtXr/hug+RrdSubmT93e8tVamcJGMIL9ILi2tOXgkZkLdNBH3favpG7kPg6CF951bNyBtrEqdEsNtg0koaztCyKVYAVR9mhAyoxZTgLBTm7mxwkZWkCsrs53AiqMWNdRY74ZGGWnECk2Q45ET/LDEKwHVJzSex5cJF7VA29ll07WSYad0PsBtNJo3VkXt/Jce27DUVGmYvmNd+UAlZ1/3z2OfTVbNM+Y0Chmt3z6xv/21B/hxYK4v/4HJrVIZrtja7wjY1ZGrjXI1wrvqTn8XHe/oeRLG7PZweIYxz8GmKvQgMw6V9OdzLtoiA4ZlHPiG9+tMhB5XKZPl2AkDxM9Z+5zIugaLT635H1zBcBH+ZjPL7eKYqkkpKIFB6I8/gT+uvgYg4P79TcSLCa7lcRSSNqEtCuESlpKIUL5yI8Al7v/6lxYFFqH+ALLMJh5YriLH0GAhGGB7yicO61zj69drrS6nn1uiEOw2tQaeYkKiswIBnxxX7kTtLgLNOQFg6Ra30nmmfjIhXFcUluZxwM38IrRVpR19CCXgPmumj+v1sq0wpxgrFiEFT2PMNk4uZoKJtW6N6Um5jodyI6LTAQRsyo3ZW630zCGbJJsUq2M6P/gnHq614uUFhKEMKIXf//3XXkllmra8f8Mt290ydk9NYx3FsbZInzSG1iIZcY9lD4UisyO5iTA6WhYEihkUmeC6V94vKnA7sKP1+q2VqJQtC2QIzIgbRGoFtva1SpztrG0hXEYgU3HdXFCFFF/viPteiPcOYlWJZ1sket+/5EJIqh4mOboiA5m6JD8AXVKSuLYIxM71K2+IjmcQXqm4v96RiUBGYiljTUXyEChedwL50nY8d7n1bkjSpZSd5W+9SOC19xLJLWlxL0SGsABe+ZfA62bG141Q0mGTXMkEqLhX5EKKUUc38nXtMn9i2yis3bsVS6lkbDAh5ouZXHhf2nG9/veWlktJYQd3XpHM+ytcKC6Ivdd3/g8AGdh3vt+Br3uZP7vWbWSMUFajYUX9m2DgltYVggM9KgYprGUzmyFiQ1F7vaxoQ5vyeMi9jWewrHUIUZ58a17TpPvRdFwgtMwhl7sXR6+zAcic9ih136nOewXbkLaEu1FXK/hJPMmHrUz1M3z8ePO0G/K4Wzv/LFf/+fzHjW5l0dNWb/DkehRkHSRaod1MZ9OyoP2EurxHXRu7oZKlIvqmiQlHceCcc/+53wFb9mYflx3XLMtPM0NiHyk8r/KDEOSPbz4mr4fCeftghQGC+iFYbaLxH4ylstrG7Gta07a6CiJqBSuU5zSZsVgqAwmlnXv1y9AY17ap52KlpYyJyLS84Fimqmsca4ptQniF1ajUC11HK1UXUd/8cfUMJCima3xWvHGm+2H1jLwd4PqwpVX7E888RAcPhtwM6ZiogBM4y9wpq6S2e82eUDlIbQRint+XV38tL/deBdDxDNdxLBtBXYa4VU7LcYNYf7C30YAfZ07LmnKoqe7sjdMjqliCLVrUYc3l6nG9mzoT9mEglmAdal4zuTa0clW0o0ZqvuEpuGWMk8FYtEvaxv1sCpsVwYhb0IYqYQDAYsl0TUHiqnLFSF0lXKF7vXIr897iNU9g4jgI4F7XOytjqc1FNleERGS4s14Awa7QVdu3EorCqsjOVkRcIiGtjHLNs8LrSxL2WvvoBZIrBOYVwtZXpqS9QshftyVDCSK37EmHIhmIS7lLNx6r3Krdh0PE66W1UuTiG2Bu5Ls18tp1BMhkSKV6pzPLKv3BhTcThLZT2cDMVX0Gc5HKqiDmqo2do+FaI1XaH+kCoAMjFIPR7c+UPqTEfZXkJ1MsGilcoFHxAAqgF0lPfhAle618aj1Guc8GKpHhgJVd99NDvoTqJ7H9+CnhO8M5Cr0M6odzaP7JGq4u7/PsmrGMmjh3rEdAS5xGldXOG4+n1E0N+vGVjzhl0961r+cwxEiiA3LRGqhtRmKYzUPocVBgptTBs3He+rqPexxg6Yf4oVZ+/Dz26wNYO/Own2n4dUtTTxtmDLNej6U7WD2YQJ0vW7s/sQ19gx+rpIkQ96zDqWjFtZVKgRKVZDnq/EzFAKaar+xr2Xn/EHJ/+ZEcgrJaWGqYZ2h6iM7HoxyLrudR0RemxsYwIVwFgyxQxI/RqBZl1sfyXoWe+yGjHm78xBHTxy7q5z5o1u8dITpLVIImzgdLnThE/PG8PTbqEcE5g5jpocxRE6MDHPpRH1JrXKyOb09o7sF7a02B1oqVyoN/ymMNowjV3jpgS0Q9J4tlaSGvuEPEZAA2+fjjRzwdLntuVXSTeRaXhUxrbhcJbVVVxmlWuF8Ad5R0EyhMK5kGieyqt4qt1lCsuKsEMStpwWTkyu3Y8p5OTOhdDAdKEzK7ampkqP5sNwwtZOztKXaeMAadga5FasnEpsuUGmLIuBFBIncVcrtWKPZFYV14YyFif6dcRxuJm9Trzt8CYi3hbvsYIhDWopbj9qBiOy+cuwJn7rPQLKDT2jW1NCv9LqoZpYLbs77TReNRZTpV7aKqkpNlQWS2l1icvc+MRtuFNvwCTngLl8yphANFCBHs/MfPLd+2y0Odd5voI4IHAqzG2r3haOre43osXesz9gc+1G9vNv/+Y3uzVYEe+/kjyHlUv/2jAF0ntzY6JvQ3lxzl28pg3j8Ju940j6ebr35CzScXPlM30OEpO+kQ7aijfIpj59Xt5VYSOrdVEQZ9K37c5+GoDaoOBNsgOHcWIV7qRPeD2jVM+FxgQc+sIw7B0Jb56LSZ1jYldKZp4h3H5iJ+CsBjqR/GWQWti43oZUfT636WDiu2RQZUNv6kn4LgY/kKAnv3eCtbn+Bg4DjaLZ0tB5xbjcDUWB+CW3Z0j8fMGDsS0MDNI3cqgC6jtXy7T/upVLec98RegHk69pr/o3U77IHY24mzDBpqMgcG1YauRkR0LOnPS5d9cqy3EedabLkxX3MxZorPdrCmAYgcwf2bfPRB2/YYPG8hH7rJqReBeqxIsQ5pwpojkTkD9qqEM9rPWMQ7QU0ioh7ryjaJILltgVv51vz2bEhMRsKtbBdq3QJVnT5nFtxag6oW7352Aw56iiSSCUYGCC5bQAxyYSskpRbdaoFGjtggMnVrMTaOL1JTFoC2zZiU8/3bLvGnTLCnKOwyDUFRO2QXdA4tEMXWictAV+T+LkPZNTMC6bLUtZF1q4h/EBsvXMCO0ifUCh9kys3NJnw2FF2Ht3gZ1zAJhOXAPSyouFGVKkGIYS+/aJJE0zCJDdWhJ/hkF0G5qroYzoKuoxaRLiLiitnC7WpewnYKegoLBE36VsBHcPoG6YYgdTSgkbIVVO9bje1a82QlVcLXOqzVQujsAp4CKhoIc8mSY4ewXcgPtHiwuv+wt4+2QyMAWBLNT1P843c/4EMl9dCPlVGK8WDs85Zqy5iD6o/rt+ydmNtDSX+wsmzBbmqg4b4nnhqVV9vSXSrrHEQ/j6xAKKDiw+dJP35mQEcLq92+Q+ToqpU+TvR5MulzUs74h5aeqdfjWa1H/790/d16JUuOJIqZAb7I3NU9883oWu//eJLO0VTt5AoHTBcAPGJlldhdm0wyVoSH/wAGw9/H0J6LB9y0t4h/U8C8l+cxezNiHpUIVvXH8ntAJddtHn1ge+vFifLP7Pc9Ohaf8VkT1tDi9R76XHQsIfV20MOe7Tc+5HDJl3aRC8fuUp3IVlDxMM4qc/GhxPkHrDs7qDdn7fBZsXOO9KCZcc/IWMhJTFTqWa1+D3Xp37qi1+hkOI125XmTBwt0U+nJElOqhiYtKosE7YAf2VniCuQ+WOr8Y3ZhP/5sCJ2KCqob2pzLCVdNoHpYscoujRlfnt6zXhoMfkMgns2jDiQ3JNsIwgfTIXRbh0FzwMDF/ruiDC4qLb2EPCH6vZQDvDJALev6GHkHR5zTmqoqFWx1AzKpqkFR6LQLcFZh5IVwMk3KqN4FtXodI1vymM4UBGNpqvIoWrYgJ42dqthvN4rYwIQSKaPAV/SKGREETe2wVrn+axMUZmgJUZFZTrQ2T1IymIsijAZfWU12tsykSger4HoZEi5vNxnpFRyXepkIJ5VwxyQM91apEGeTik2QYBbSppKkl52LGS2SUHjV3jqR8+QWxagy0e61AzUeziH2Oj2joBEBwlmFPVGdu2oanMAjaqqO3TlQR6b0QeZIIBwp9Kzbc1rUjGTppS583hpHdQLa7fIhIj6FzDltmjMxh6wdFXVybsuNeACEGbLwx2ieP84blWY6GXwtiB6DeLJwnFd66J2bpnlq+Tnzn/dhgfx2XgKyLu76ifaFI+U+hjq3PHoKN0/9hx5+qN+HRnw8Zc3M6ON9j5Qd6v2ezDN3o2GeEzrTOL96jH2E+4cg1b3X1GLsYVfPFHCeePTfqNjjvuzbcOagkPlxl6CxPG6FfwektXaeq2pmWefn341PYNyFN8D69NKc7c9mpme4JQDuOZnPdez9TC74MUePRTvvU6Zamc89URo1NatEtSNUZ5RHQdaDMquT7UQT3AgtDUlItK5k0RuVgtov3XeZ4/88wA0RNYGZ9eNhsufE8x69ZhrP+tfr5j0LR3oAbE5rdqQgVvV+it1/tFbzud0IlacRUxKo/dgCoEhyzpFmux1g0s76yTDGY1ofkOs5E0AVjqpYZQJdKZwA0ia8Rc+lziSntH/tZgd0XroBfVp9cq/anhpiBaSrKjyaEgakVfCgGdIse64OlT5qEAdy9ksQeCT8o/PLqw1bwqoMBQ2EGEJaKpnlLRBkCtASm6q4bfKEIrI6AOcAFoqEGRPEHMKi0BkwsOBfOLRcSexEElkBEkw0Z5NJLJfSIW23zJdjzrj3K5cbNyW4IFkya3o6gFGoALEk0F3pBpoV7BBFUp205CGhs8WLpq7Nkw3TU51JJrmIZIyn49iunAyLhOyQajyAdkTZLNXZWU9ZznEH9XZ8CL25kqTyLoxNsfwl49a65cP9xXub31KprZb6qQQYHgiRmG10D5GH4jhyG7cQf0rDFgCjPZ7D0ePcAWd+ZniPyelR8AxirtOZryOuW6oB/DRzb5mjjzcBRvLV8XxipkYG4mPCzsv+p3u3AFx4vMo98fcKP3yl9dw/ccwnTLmf+JCcun9/T9OBSo+7fMKHoynPTxAeKofSx3USOqjnMZTJphH6GJ3PfKq48149tPntcbCcmx72+wG3PtwV93Bn3ubdbi63LtY96R/7ZxT2GRJbBrfiaTffvEX9qSOpexIAFarjeXpJGJ7Xkcr1ep8Y2bH8W+zOJjqnSGKlc3TmUs547mWswLI8mql/GIgzOVIA6sfHPtbw0KOGJ6SK9z4q+6Hu1a3T+WDcpZkxsPvjlZ3ab/EkDM7+UjLLk8nHdhxHAMZxcC/syKxSXPlwSDywsdWOO6URWKy5pcF5eMWmPrp/wKHeW9ThhiqGZzKWYXS40disEp3JU3EjjemQNBnQI2hbBFagjCTAIq2Dr8rrmRVWXhktOUKBRdxk1bqUYAkqTMqduD1cwXIJZCLaZibMCKtP1y60dj5ns0MTkpfTq96QsctZa+oWx+yw4ipwlV6e7quLYYTAd35lXpbgFw3hSTqqR1OFX5PVELY2Z2R53rErNLpc6kL5rgrTWSlaCjtByEW+ASI9I03Czu9mJ9WJ+aWcLEoLR3E/NWpkRzqqzzTvLdV6ifc6PUQLe0/oYxt+KlG7P3G++kNqdYjnE3n00EM4fQDfc7Dvg6zHB3V3SC2d3qdG55KnahmA8aH0R37eqn3+Ni/xiQ7+7evxsjyDbIj3nKih8ssG1oRJTsjm4Us1N51DdtblcFKSnRc6Eoj3TR6j4WNAH39h9wPWMTM/zP6+22Pux3wZEfOhMW8q4t8mZTDMHxb6WdzzCH1e09Nz1qvPKW5wM0f+If/np6NJWjCPCH+Mqb83xCwl/biHzt/vuWtfxMP1Ve9aiq358f6Exj9yNsXxJus5P+W+nNmYKLIHmkFPfJFgpxx8pQ3126EfxiZJy1w9DnuMZpvRjto+b6F++pCyh3XulRm3qQQZm9VTQf6jG8+KCoAsP9egtzJHS3UUODUk4QHzNdIcSHLvIeJjG/dvOwSt3vd53jWIqtz8dy7Gwa98+OD5mPGKzKmz0X76B5aoYUnDw8zrPbYV2ZYTICj97J52+FIqa5aApcRqFM6xOO9dynvWun6C+FL7NmldcgRrm2OFIdxJwCzLSpSYXfhKfWj6pQ0TYNRy2zquoIvN10vUgxKVmiagGxSLY3yffYxxK1UsFkep05SyfhaNbDK+bNxeWnWBMLmoV9Kthm9RXhE1BXGIFQKOeKUT5tjLlLHs51VWbGz6VgThEJMSIymYaAFPSKrilhlulqhS06LCUqEE05hhisKpIBReG5XR0dQJKilk8RHEHPGe0cpAbgf+AYiDxUsZcqj/I7F5hPY5oMNPfWrWcwBGM84/W/QcsTwHSec/vSM4nzg/PA7JeSwaFnzoYdznoZcceOLUiunDLZTA0TX3ET1+zJb0n1e0NaePZ+rTNn2clDmFD4V8Rt9eq3GBFyBqOfTULzPhf3z1qZFO8YaHdDpD5udnj1CvfTHzfEa2bok5N/zAEM930VmiPzHNQ2ydmxzTecQSbwF/T1nzK7cCfpINh95oQ6zmbTz6qt1srWo+98O9bAdZfMjy+yWF5w75wC5nwhoI3/d/QJ8HQ3GW5f7ea/b86WlJNRX50Tbt+XWeM+zsiN9zFghh2h/eGhZzLHXbTHzQwDM3aWVkooVCSRnNXJXH7BYBfcv+gU9z+gGSarjJqkN6Flh9to7/VY+hYuDS/bBz5PrOfyCFs9IQ0V1ZH3N2HliKq6E4NfDilkNjgGDe/5yFohXL+8eu/fWQdVAVqKybzrZNzkpkMnXPWL/BwUtn28zbjwR7So8W5jWaHmWOjdOm5Mx8+UjL4FUvkGUS8CAO6MHj+bc8OSe4ElOnERNAA7ySqp/TnkJ6b4LKDE5h4p57MkFbVd+vDmzn5DSYgPcdK1IAxWrLIE8gsUUtb6RCmT32/GwEIdPyaj1mBEN4OQMOZRismg4OoERAXaElGZATxJc238sXokveTWlbAVD0xsrypLhBQOUR11Y3WxXk0du4fQiaCtJAxYYhJVTOH6FpRz3DEx7ShyO/PrTmLXOOFfqn1CAem+dI9DlJc1BbeWng3P1x1aI/DtjM9YfFcPR133eqRtT7dFL/Pd57mA8Fjs8fOaKazz8e/UI8Re1/HskBL0/5MMLq4J7a45wIyslUbh7tpkXZYvfjqPLxFJxj9BDe/ybGT+DzU6fpVo/rw3Z/eAtZ4/y823ME92Ujcg9C+ljUe+Mc0f/5l49r7/cZa3+k1rFnOEik+Kv+BCdfEfc7jFtkmIHR5I9xPLHXH+7e588f2OWpBead9FDGfOBXoUVfldeb13m8Z0GKc3Y+SOxz0UAujv18Nj80gyI0Fu290x/q4o9JPvfnmfGq9kD1dj3X3Mx9y2mKH/P1BKz9TRMgO1TBw5qW/tgEetyCes7MOU/6c5efnT1b5dBs42Mrn3BdnAKU/KgCWGykZlfxYz5RwbtnXErLKkvymAkdPDnzNYRD9mpka+d6d1rSOtpyemcWE5zCONc7UuoGQgeZkNk1V1uL3dPRuKatyymW0ueDVkU/Zpzn1vPKxMCiE/x10kw6pEjFwA5TREtAlhgjazBOgo0MJOi0+yNAOu+X6uEPkiz8lXYUBluXsUP3CvtzPjnp/6JgzKg6VJku5FVOYsFegJfvFdW1aWAsAOzouO3IsNxcvCzNygzPLNxGViFKlB8rjyem2tOl00GYUmkMFNgsY1Yd6VM9wFO8Pw1AytLSj1iUJ8Y/2nNOBUcl1JxpJFaR9hxp/MnFzubthf93CYyj6ud/GllUv28O52ng9bG8pdfsqfnNIJCRZo/3ueXW/aUb/X1+aSyHEen90g89xBF8gzD79/pjIvqVMA7g2YVqZK4nAmpzi4D4FIR6aringJyfboL2Yzrm7wdO6OjhYwHPTfrCU5PoWAtH/+lxhv6TbNfokf+sXUeqPraBzmfqX58v/WGx3E9oIVkvXTRH/ebsOR5xU/C6dhNPgYbh9Upu9b1wbJFar7N/nlq3P35LwofS53m/85s5McftMqk3ExE9y4/JRDvWTm+b+32HYNWRUkdh6Q8I0TK2p2AeOPp5PFAdBtJ6r9REj6cjj0pd6r6toCaHR0L/W1JSqizggMZWaKs9W8ef3Cb19Ope0/l+0vp41uQcAWBCvOaft+HKs+6j7814b7zeb4/VaPUxx/pgAdOgk449bo9Sq44WUBVAm2eeZ5rq7ZgEw5RdcRnJ8m5W2yIceVBxIG05lSQvLX78jxzpptnh1Shw4LzolmVGFq9tQLe7CFmVZOnJHGwy3QUxLI/OROle9TnLzTFaRZ1POTeoISRLdnUhF4FEPpgJq/BnzkM7ZopmoI/IQ9NC4DsX0CHbzmTVlSLaMaDskEBW+VFKyuThZZSoMpMzWZzeyYCbVUHLXFC6QZQipU2vd4BqWZOcTiq1+FExZVXipBhJodRpyZO0yYouZoAMAKQqfayUU55WEeMDItSvNvv746uFzeMU9m5u6Xz27uAy/fFxPT93X/wwuQ7WnTUfXfO4Cxrz9PX/f0T8rUn+/PYfv4Yqrx8fz2u7VGdbnGH/+bh/m66n4XpGOlL8VpPjJcIcqnv45wA8fVp8PP5PfypuXfCHKc+PWb7/Qqh9wP8+/CP/cATf7GQ8PcWPJfjjpW8F+lzXx6DFf5+4//jFz5epVRi89uf0n12qwwrqMcG6hfbDqpslULeuGReTTozvv+lfPCV1/UsfYPI/bZTH0Rgz8izOv19YQxSPEuKfLwseZ9K/3UH3JZ/3PPNEPZb2zNvRS4+tprENMQhn5NpTZt/7ojdLMc58zv8IrJr9CWceQX7Imtbyh9frYd63n5eY/TeKVWeGBCDHZdnm4bkmpwkEb2V2/vt4i9KjvPXLCeroSRAe93gsjR5jex6SkS96zOq92oDQVZE0JvHAIYiJRDWOrQXOKahmCavLK+NFH9ZIpcPcCOQ+j+w1mnGxgapGkjw2cqvX+WQOuzfRaf3BJqLqExQnP0ysvOCWhLUtzWZuHw+fxxiNRsW9Sg8g3nAapFsaIZhTThPtlauNXhmTI2/ZQpyAGyEmLBeRhq3LaRn2hjNFBlFR4yiUU0X5BUhhQvcw5jT5yLpxB5rfmJeqbOjRsedtTeNOVx43QuvSgTTnrPXdHsfxPtM6f2yQ34fpD8F61uSse3+a997jYwc/YP0fR+4MbmyUP0zXA2RvYDErh1Gptx48qlDHgfc8RP8Ri+BPiTmS6OPSw0o/NdS8/dHH5zhyErMfM37Upc7KtTya7arndX3x/d/7x5uWJP+YyfXQsb0KDbZadBBH9M9wHi/0+HkuOarqOZYRx89HnxmraLITSDwqb2RnPfO2bI+8560N6ltnkpQFX/4lqyrM814j3M+76H7P2xzFkapmY93dELSpGTuvWE9ERUTxLNlBWmP7zpKNHTsiREMv4SG6nvJI82kcA77CidgNijBPU8/gOY+sVlS0KkFelZTqxhWpWdUYqkJTxxZbyfiGYTcDiQ5wyqlpbzjkwlx4Vr4qXVhhjHv7nNAtAl0St+u9zMIc0sEqREkEOml5NoD1/LEb3oKsGN4ecAtqlvXXZ6aPexWjJigZ0jDhL25klEdsGBiT2NWb4PAv0rspRA1ddZfygMXUV7ZefyuLhgwqQshULoQzIUW8UgyW3ZRCoJKOquKRqer/+zgXmQaDI0yCZWUlY5lIRVu5kfnqzcMyv6oqlgCk/EYXurcdyl+Mss0qTT4EqNuZlIC1ClufQoskqS+rwGRQVlVBysNrCiCTtkBIezGZQLWTEgjtBbuaf94mTzmVSzDbWRoNloFX0cwk0qtfxVSsEhQun0qQpFylzJcgWrWgUCTMLlDFlRuq1pVBmV4gLDdpFpKBXAsCaUn7UiYgGszUjV/OZgcAhXZSXcYk0ujureTbwq/Q7S5sBqsWIfAavrrQrwolqoIIn+LxnAeIVUz6YKRjuvBoQnbMGypf+gjr+nym1AFuY7/kiIwjOI4c7BtPeOco9sKuNHXltzPWpsnOTW6kMD/cZWGfavIW8CBmAg51yhbFOrrl1qKtz3gmqmbgfmCJ06kzoBaFR0CBSvqIWwLqvD14f761Dord6oeWqGErHgqOgQ6Pr39DB7ci/DfFDKx5VQwCeuyDJ9Z/qO6BR4MtxiVRbqRjrfyHr/kERwJ/uLH61rwBFm+4hdbRN1TUKelAdFttshsgDXanTfAnGq/djNgMqV4mny9+ZsmahGyo1APQoazPBJ3pHWpjMFZ9YrR1mQpmlreFytswGMQ4r/ARlXHDJz6fSDXWINFlpnLW7sRQWPWnG+xcjC8L5tOaDQNhUc0BsuvHKUwJJ5DoPniQkoa8MzNQ7FDeGWCcJWO12CSCIywITu7QYF5WUHXtnwMFWQK3dL59JN01K50VQPaIrOq/9xqczSSQJoO0wkxJQ/WYX4CJCWN1caeqq4PqMApYTmLzlf4NLE80XhKwX0bpZVQqd6p7nKVokkyWRoLt/svEdl0yhaHbzlNTgEQGkkl6kkEawgjP3T0m1FDEK9+2EouWone1RXmHGZ0MJKqUN1r9oLqWaLbhmUJHhguu7QStqrnWdusSTwMCU6CqZVP3+a7TmRQssqScbVR/vO5FVYGmMIJKhrlS+1XeXkGZrwyTMhPQjgVSTEbSqnc9SLMxCkoxhHD1RgRvudDDFFceVSlVHZFqbR7VWkNHg2nTmNFFGJaNZ8UOcDubTqBMsAhpOpIQUkLxlrF6Yz10ooBIaz8DMtsLIiW0kZZVuQs0pE5Vu2PJPBoqaJDQczQYwdiHpbzNoDQoe+TD9EJi17JuAXYfp8FmA5LPK+CYOzoauI38tn5EfYjOEgc1t/eJvY/u01qof3N0WD+rLBbd2vypVUuMHsv4w5zkYIfHm83Dztv3bElJu2kBWRASEq5Joxg1pHSg2aXuHExkPW3qHD4jcecpHw7B3rv8Uz0Dn3nAOtr4rMTR4J8QYwBJmxVP+fdkJB/af7Tg/Kbwy5hp90j7MbzvMVN/3uP5AqWXHprqg9WdKIpjY95fGiTRb/nwrtY5ebC4H2ihJNi9kR5beeTEGS1vJuZIvr5C89ADClulTtDu3PJzzGNP3nebonYchu05GWPYo12ddZfEBC4qK93zaPyxeic2tlJ7eCrxPadv9Nw5r7h/qF7jpwHcf/rSY10/A9kpjPao9chBL+eJIk6M3TkvD4x4y+uzV1HghzCckKsOJzuosaI5cKPaSua1pjaeiAigMWlek+uHQhM9JVN1CgIHJYJNfqTxA+jWjZvSOBhv9qRYGYcVc10bvMwz3+jQvhWNhBOl7VEa2BxAIuzUuHhgOEGQWWZPslnWiwQ636I+8gHwJaUl1HreQ4wlspz7gyAlm27UVXQZJKqvo7X7VIBJdijryo8NGpJSpjevWlszu2GcUaBF/bJzO2oD157JGl0l4rZsmE0kqeuNVnXJCuA2YELH6pVVnIxS3R92yGQV2WxWzE3XNh1TbZwoczjuHVvFvrtCgSGzC3Cjew43FmmLk4/zakfl9FG5ecDHKTqb/ZyekTYfWvhcdFjiP2Sp/u03c/enEBI//4lzcDU31+yxf7Noeut93u/WwJ+/fiibhyYTPoeoMfzAc/HTo3Re7eZYm6ycOVAJyrb3n3b4vFfDjluQsEsu6rzln4Nv2KJDH/OGE89r1xFPfeJGLrDZKh2PUC+mjgbVrYeP+OwnHfE186Zbdx5RwH7RcRTMVTyP6Rd5bj4dFEVUARmQlBwSutY9ZhvTzM+GbnGeef6MVjAaBloElTaOYgqWdupGqFMtzkfxRC31TnrO0ONrIIDJOG1Szu/1OBxnH/e9Zi3Z+rTmsBI/yXQ4u8gvgTIVrY0eMtEF49Gsdgni253HMotoVpeWidO4pV46uiVhv5+IbN44w54a+SAXznQpXjbcf+9IsT6vobgkZdlzB09igr86kwdlKfZNNIFjvfAsIT1gsXoIWOcedfWDxM4pQWqGlMkYJ1MThHlvQnprkN6X5iDMKurIqqswinGRu6zKHg/II6AUvRktOWFLS0xPMC3NjAtGvXzTKLiBAsLguLqavycShkSUe9HSRJMYFTaLlDI9M2mxTdXg1xhlisIYpBK5LWmEXfgVfnZ0FX/ukHmb6Pxo1WnK2mg8tRoRJIxjJTBlGd8isV71RlUxGzJzIBWgWWECZulZowzWuWle5m1jBPoSOEW7CCo9Mr+rC6+RWDs5/C6mQ2T10zVWxToqacGU4oLecJ9WKiqUSoNE71NL2JRzMQvCrGmY2rkUU90XLCftsfYFjcUhd5JReHlBbJHI6Y9SypYg3SwtDSHDYbIratlW0fa0FDOwbtnCDpHAOTkYgds2RuuI6iDP5ntKUkxMpI5U4WRjtbNInD6jnM4qOMd0COc+xFOGNMX25tjkLAMdiTciC/oA/ajOF3yIwz/1+xEeAwnn25Gu5x82798AWXcESX/oT6JA554fBBkKaVLVcHuCrcttNPL2yEiZOF6rZlV6ZnhGCUzeAUoZPtThvPXDMjojEdYofIySU2OEwp2DJDS3Pi81cE1PlTk6o7V9g5seDGfUjwUYa4bCyNXRJR967EGAY4LEJVU1Oe+njQP2hirkSaro/TmRx3fkjCZ5sZdKUtXP7zs0fr/x4Ykr+sRYN0rjufLAvU6kqNNQHjrlveXLlXaQV5llHHr8vunhTFjeXTrMIBkTlDEEDpIuz1UlHo7GeqhqQyJJJLpjjvrgkN2lpSJVxOLvTsBUbf/ZMEM+3LCtKFoaiPCh5azF/223Fn/durbwgY4zZ6a3u9ydnd636+cVfChvVk6dinI4dp30LpeUiKw8TqFzMe24QUASa5VCUg+19lxJFxOUUgB5tlap/8zERWSAx+aCi44Y40bL8wUPYxhSq3J0PW1dWkksotpOwnUZKQ95ZuI7k9tXgjQ40iWIofgC5aSEnQ7tVyZ2Ml+qbZbuSIcEY5b9ngmxpsgpWvYuJ9xroRHhtQdIIOGtdixRLakMIyuIEBPfkJm9LhqtbiKTLborSC5PJCiHWaL60MtAT/c6lqVpk1xmHQXAtbygzzEGmoAI697Qd8neQkfmgKWTGeyWyhe0c8lIZFYdyHFoyJSAbShdZd7SKLNVa9vUPVidi45CLN+/UK0b8wSqKAscEeZVb7KaOZVeg0Pk4iZpUXFi1XupjC4zIrNaNLWMeHxVSa4jEPKmbwHORmzLfGRZnQULTXbhWLSWGuMxS0Iqu4l4VQc7+qmPluYnnWcWQpacHJGPtsQsD21XnFMLkrFqzq3/NHVLXOh8piVz61GeWefomlsTtEjO5lLRmTvPUOe64ZgPMwKIyqQKZJ3UD9ZJbLuwFHDNX3sHxvnUIKBKqwkQbdaBD4mPo7seP/c63SNcJ6pkNPWtrC2buRpYcQyNR/zY/J3jD8RzLWcrAUMT34FnPcc0xENDz7b/DPkelAICdlQMVDXjbkKYI9U/VPjRfB9DPt/UfzpmFHA/fCIRUMpGrVxp8cB1xZUNbGmUOvTmY3LbLXaygfRvNH2vywNjzQSOY+SekfoXa/PzsQ4VclLVAAe+twLjKPI6i0Yo8zxGA1lYFnRJOaZQdXELh5CiqXqs9SfqrMy7FDhIS37mJ2mA22NppZmPgRZNAz7B7x9rdiiZjojo+zQIO/K2rqtlmVDdpJEmk1GJ2ZJGt65NV97KNvWcIGlSWcBopkqs2gpeYX/sRKZu6ArRJVaTeOR67ZcWzejcSjkhvBJEvoLmLLtQtLwAorq/F9tZ1PSYLmw/1BE2mcsQr8zGlZRMERSSyKhYpJYcvupTxqpEnY8VaBIVgiS3LhFZO703Vukvlt2XKPhY2695fo0bsv3ZkvXYvRGUZUWlFYJlNSTIJpclKIahwaSSSZkGEwJeE92lT1FVHdFFI2lQEplR3eijezgoM5nFlgeBrFxjNjbuxJ/0LEcflMYqpt2vxawiysMKWWnjMqFr8y7lM/hb7XVpcJmmDIYrRNAZnV8MGN0sUzVwHjk2IuMpNR+6sJWAxCbURxz0b/D4iOZc1itgNCAH2Z/gbs5yHjOk79Cc/TFddEzjczQfZujot5ECBwDc/stRJh9fgybOz/fmxCiF0dXgSPbbmKshaRjU2rmNasYAvzln2tT4n6PUX3edvP4i6ENV3mKr9g7NHm5ujOZ8KK2+9qn5/7i7sHwUZk0951MlTugaI6fO4xGMdgyBo2amlK5GW2PgT5k349yaxxsqXlMDQg7xO+rr5hqefotCwj0XarmOmx2okDb1BDdgZGerP0IUSmu2oKshFU+bRRRrfl8BOoPqiqi4tXmDplsf84QXgVTHWRSisKqTwHFNjVl45v3WN/WzPcZ6gpzOOh+TsMsSgPAK2/On3pqg6tYgo7xMrMqDz8eWIKkdSibNzDJryGWUl4Ct/i+YhX/qX8w8EdXRy4Rg53XBJC5UxSGrpNequN/BY1mSRNUo/j5i3Q69mJJySDf3p5QUvdTNptWPZdZXtEUpYzPidAcWKpr5tAHAABCgIm4MnWHCmab2CB6WyEbbT6AebjDRuj0pkh7miZVOBpbC1vZ0c5OHA4l1LWJtCitgMtGcqC2g0i20DSlNiQqUY2+2QMVP7VBuLF2JCOqdFWW2I3o42ZtBkBkoMtJI0dMUAOFIsAtBkyyDrUtmFrgFwEymo9p4dSOgstVlEaY0KZAOy7ejKIQglNixdCktgQxSGQSzOjZsX+ZSIgDbGQYgI0nL8Y2zY+C9oIgGiBLV9ypM21ZmuFCDbyVg2V2mhKq3OS0YSn2jmzeRlmZmMst65Ux3kpSZ3LJSmxvbEaxSmhofNEnRAesC4UJGpEtSLKjLqNcQzN0culKc6tpHXNXWKeyAfsmDSsXBm6Ot+4ioSHnVuWnbWQDMNEQjjbfPq7QowabOj94bD2QPptSgIHAYa5tkgfbXQTqH7wyI3cD6iJ1RR63IWqt0rMiINDy+nqr2A47jYTf3/7J3wjl9YzJzJGZHs5hFC8gWDQKggDNLrA0zaxV6yudTWtEPWCjbV8eKZeO7jzcYJPQH8hCwXnPxaKT6DIG0DDtLrfvGOmq0eePhPDs+/bzaABKBTXfwJiSK+TKDYMdHrF6CHnS/ZCPrHkD9X/VWMZk3U2tmrRKKF6hknK7W32E8qDo3c15yyu+zznMjIKNkcAPTvXxA3bjqRgH6nMr5U6nBsmDUXkTeIlpWeS3tZBvSvLFDadwDzTAghpowO1pWGb3ZziYpcjZ/AmYBqUVlc2zzhHPXDookjDQDqSrlqK7lS4IWhURdRhJZJYOlO+SR3lG/JaiGSQEFik6Y+axs77BSquWdzW7p2gePh/Q5OwtQRbGLs/az/uPHLPauqio8cVKCYALBMtjQjm1F/431Um17lwJu5Q5hqA4ao+V00qGY2tYokSEZVU2IEMxkbzVxswnNlMLSQsy0IqWRiDa/az6TxTDS8OWxRINvmPtXyMxlFiDARRiQ0TYrzRVwgLxWGuB2VamvErGCB0xca11vz2rxnESXFK+N0S9klszt5qHchY+8VUB/RlJx8AY393jBZPqpSpLb0Y21ZHF5JBPhlcFl1W94lyc4ELZjAQS3/0KKYF4ATUE3BRK60jLlXqlGSC0zo2XCUCYqRPrF1n4SZJZIMqJNlNjmSDpIER6yrA1CpYCdIcugBZFQpLhfvtwShkhAmUwgA+h+y1Ka7XIOe17lOnJanREhY2K1FNV0WlUC2+UIX6uRuWDISJicyggByJePDgKpLD9QIWvJhvQe1TWSuhDGnRdkAEuozm96I1fVVA25+oCTUJMsPFrhDgXuLM46GW0KapLo+7T3Z+qmJXcbCjd195Q9B0Qc2VnUSUlIHY1c6uAZXnuEy5EnmmvrDh/WSSvExMeDADHC9g7ec6DauMpSSSBO2svkKYx2LYoty4N433i4/nmJmZZ5jzOqwwQ0LwcsP7fhsSPrcjHdah+iWYDRO738jUKHZC0FdjwVD//wzBT7bDQqA90NihPGzXnyvcBHQqOB1IiXuqAdRuj6fgpQCfXEZ2S2854j40chEfDRfJxQLhCU5cARHGu2VLoOunpS8EVJP/2Tc9veWipFb1X4jpCZisSb6cTEQs9ddV53MmeLdJzNO+NIKRPMDqlBpwqBHSPfzdLqQGgUWyEqqhXA1BGqYPvi6FhBNKST5uqdNZH3RPWM4ewYDRPSR0ySUi7kY8mJIa8bDTasqOk6IKEUYYMUDHdkKFYPDaiqOV5nmTE6rJEcV27xJFHTL6swM0DdfLEOkFJtzedw4dEdpUvTm5Kus3E1EFMSLFMAzdKkaj7XmzLZeQuUMkLKZOxUlChVhjK9DJAsBRzEFrnWj6UML8Lgv96bvuT6gS3699o71dBJG8tCILi4FSu0XNxmTBZ0BLUI0Mz2y8vRcxcorv9EZO/vVJoQ7RPMcPbe2UXmFkscKpn8pSY4mGDCI+AEYbyiltbd09ZlbLeZAMFgG+kIWOWTV6RUh1WxdvIHzmepWGeaMizB3MXAMyLSkgJNaS0UWWlFEbVFWZ2JQZMruVLO2pzlkKlTb05AGVGWKETYqlg+0LotEitLKSNVLY5GNAt0cyq5YHBfiWpDXZOdheI45JKEKo+VJDMyNwD/PmTnSFuMjmxpN0fpIyydPErqqAGabv/VHM85WzXobuii4p5HLo7k6bvpSOSKPGSbYdVMspLbiBRRxfDq6HdeM1g58h2EM/plxq37hw7H/YOgVZtirfeOin3o80aRB/o/Plx3bDX46U1RKo48jf6+88x1WbhHBmB45plbVlWbJvRqoHbcnGfCcaj4j4S25/AJaM286Chw4CCkemVrAvl+u2MpY3w1vVQPD/zAkGGObjtv5kSqQAnZ0M63tuB5ou6Rn2Osqnog0NwwZqS1ZecgijtEGdkGAdZVIc5Wa2gw+nhYcqokj7ECXvuK3pG9hpNT9wG6eJI86u1u081v8hjIzKHPzhQ/NqRpdB0N47foWIMGnxX5WBADyf554oFvb4VgNrkfRlYISf3RULKv+pAmpuKtegmb+BTogBddUeqixHdGhWaB6KDufgtObkim0jKi7O0OIUlBGXWK720yykAdYHkcUzju5S69y+yKDGXBAlmYoyEYeWaPqgoHZURE5a+OrU5lap8SK9gnrXPOW23vjdiLUdRhb9wzaCbMzZqkL/qxnGojcsrM/3lbrIDvV2xxCfzJROorGExaliRTXu5w+1khs1/vy2HfGfYyWIBGs9eLngjRaEtvfvP3Xmb8Ns+/Xx62XkmzCIsopjYr/ddXiXyhgpLnNXJqKki+skLehCBZCTBIdId3QFl5132A/Sqb0GhScuVGA3QJno7VST5EWCboTAWQzq2BKBZGoOqRVG3kq84AZCteL9FeGwCxCr92wRBALO+xIZeFd+GqqaidJqMts8hV+BUhRAKhIKGoSPxQIQ6aJcSw2d0VLlaHxh1IZlYFFe9TKL0CBApkspxJpKoiSIV6M8xQIRYJVtRBVwStZlONUyUAQYthy+rk1VyWeOWksdYka9wfILt1RNGEJE1pp7bN7NoYBlrlY2BSXfui4NwJobp9tTXVTckNT3sKc1onS2dFc7VKeyhYSVUEqDjzNpVHgI7KqM1HDKnKP1Rswbd+vSZcRwecb11DHPfz5+8FI0a+sQcgr1A78L5Ra4CiOjqUBCQQUVLhGANlZlSm2k2pc7QobiOMtyP08afWyfXTmkia/uOQpZAEL3zBfiQf8/OASxoocub/mKUHQZkwUGg4CwMIt+Z22XK3BWDTkTPKGnTBGglIVEwDjO7Vmbsdq+XyY3dOZVa6A1Uk8j123mvVX02c0EQXrMnF1ZQemS427B2S/NiiZ3f2brkrD1e+obc7hgbQlldIdgPec+IaC5yVs6N+AdEw1nmXaKpJAUUzyGQmGOlo5ImuNEzKzFqB9jK15nSlusyOejMO0z8aHoYyexPOdvYkMzMZ3thNU1aHgyjms7lbWt6EgYbEFQaYj9g5G0oPiHh2cGPE8r8KRaQWQcpE1QSrkAWczolIIWmZuu3sPr8RGh8itMO6jEG7XFDTfCE8BcASr6KU2ztqYF7ftVY03cqsR1UrIyJ0+YVNXNLG2kF/p7CdFzYIT4ua+KRIxdJFe22Z+PopCRqCGfzlaRkpM9iXgF/6gb3o/1jI+IX165cufb1+0+VuGcjYcKdeEXkFZCxDlklLdrU4qx3iRJLmFsqqM9HUSzMnBb4qJc/cLEwV0kRLzPYqcy+8nMJSIIVEMaqbYXZ5Bqpoh38Vfs6OkpIRXZ3CJMRShkDk9vRRcEtRccsCFh1MVRk0GpMyKNkVUMzqfarKgpiC7UpwYPVhlEzlVc9LuRB0pFX9Syor79pYqtlkRTeh/mopI+kFzXPLNiwMFZPQ+8nIcDfLNnVkyCquWTAUttLKTxaerQfqCFix/3UirMiOI+nLpBn9am0hGoxkVm2AEfW1gZrXGRFbER0lf5S3chgdUhRUTNTp8cH2Qcd8WlJWqsEfshqQTp2YOcyPS+bCFhwdJDa5qbXhRi60h5Mde3ELj6NzbiUCHkP5aVGrQbvIlAJxhEoVsMugo3p48AjlfsGDyaBjGBaLxYESepC2D2P2lmvPNx8JRwBYw6qzZRvRLjFJsjG2jn6/efoPsHPWh7cY1cC4XtHbOCvxRsGWUWE2PDZUgvQxYN1PInncHZOLxio4X6ZiV+5x3juG09Z0MGQ/qF+1VUwZ6B9pACXs/VVeZNbEZAtw3iWMemStdDhoq2aYYDWPa57AcJIB+xF2kvbuQdVb4NjR5/LK5FBDJgJEkhsYqS8rUXY2phU5bu0cbc6k+QdUwuisZS0YsgK4qsoUZxI1CRqQqqP6rb2ylexY9b1BJTKbIzZY++QNxo5Le1AlpfxGG8+iGFnPrR10GPt+aANhVdV7CVkoohd6dqEUmUJjEIFdI6SwAmGWqjijeyUAgFa1HOtw58ibuUbKCJY3WsoMDEmdtdQsPwAzmZGyAIIeycxgxJdF7NpJgUoGA3HZxr7MImO8KtW+wl3+5bugq8m/4oKV8eSv17pIwNf3K/76a2m9crk28Pc2N8Nf9k9cURu96FFUXFxxiCYqEqjCnAFlBRGVxatoaNYKWJJE3wBMRqQJBvPlDACRlg6kTJQ2nYiJIAFJJL2Du1ANgoMWcJCv7ovdDD6Uqvwpi6+MBFj5VWmRC5WaZNtWWNkJZqDCzCt2NcQqfyFCaS5gNZFEc4UJsJCAMG6ACLeMVXqKRiNlJM2iN1RmPnYtzWR++nNnGkjzQNPFqkCVYrKwJBe8qqPW1jICcKyqR/fwiw4EbdkpEzpT/2DymdFb8rBonqOZMJga2HSUPSpJAZoSad0eKnOsoqH/Z4vfzFY/JW9SbpQhB9rzJpM7WrPQ3el/87jzEXh9uT3KW96KhWPXTZj5x+c5mvxIQx2draPL+lizvwAir+x+1pKKBtjBl2HacXGUg1A5dxhe+qxNxs6c9l6Gqtk24vqpwNpIOn/Q/W4CsD64/oemE9hF0m611GqoOcaDEpqzU8c5N0uQR0C3LjSqy9kdDVBp0GwFrF6TcV/M6/LozLaVRKADMsyqlXhTpOxlhwh2qElVTKcNXGlrFLSi2B4r3n+DygIcPdfLaDdS4bhNNBPTG/TsyVIEBKsIYvZEJZjMAQjzsfnxxgBUZ/7gwJCZ6YdTonratQ3ajFa9Q5QVTnSdyrMnim8mKwQtj8utaviP0YPstPcuo0BF1uuYBBm51p591OWuhkLi3E/+eo9SJQmrkhFex31Yo56IJsHmUEkwVPHMRh5HbQ70hgDk0br128ZRBwMU9zYzJlXuS2+TmVii6jWdXAnSMFWz2zFxpJEgiAEpIln1YBFR4UlzPtkOi4R4BTIzdwjBhSAyIy73DAlEqGzC1Nr4zbd2SFdI0lU8JRo9ZGRWfWIu0iurCDTSg5KuZUlbr+2lg+Ff/7RlZv8T/4fXezcUrQUv1jSLkZSS5AqlaAsQrACXarkLeB1XYMp4WRJbiI48aq3KNMsXCUc6Vpq3495KiL3cylhFoeiXIJmlKiEhAXJZIA3MXF3lorMgqokuO2MZmILsJYtoLqbZazmM8mVdDLytCQHKlCkSYnSd8NpwKdr6ySCUZouM5jxdXicRt2SoQMjVaqHcGmbZfCkRqm2ZME7dqz5nbd/Mc7NAs5ZOpdibJy1Zeghsjnbp0rVN5jwUU1nNtcE/+eB85CadRK5hc+YczwAPxXRkzY2rge7LXJ7NgmMcpdMeI40HCay6c3lji3HM1T/aVE5WHAqGCq/JGW1a63vrGwL323HA9NNWe37pvGDvktfebtOeM9oPEAae9t1HCpUgL0EzoqdTrGmqnpXnRA3mLzZx/v9jRLdtOQNbj2JGBND1Zc67qdXyKL+RtK2GdE9D/XdwGe76SXODjjRtMwp9o3NV6aJeVTRDMnuiFHNV620/AEkTD/yyGRRYSV4cFywrR6dJgha4RMfRz4DPOWz0BgAVQHPbXX1+NHQHByt8TvIDygBHVUAqQtr4AIVoO7n1VKmgwhynXULP30FP98tAYHlijVUaSxMLhFKuTbz2Thm1U3ROnZY5jU0vn0VRzeAJLnxa+37bzf2XB57oBwTk1g3gumDRQSfquPKDCh6GfmvZDsQc6dKmZz8mO5Pohvk5XVsbaR5JUiumzExRO1PctAo+otTRe4qCGiphlWzOCWN2tGpWSSZKkVBlb4pAZgY0oh4TQwZJCkVe0tUsZWWeyhFVlC010s7dFCTMK1jfcmdpkIQ202BbylQEI33bFTRSecXGy9JdmWvqJgvIyC19G5dDf8PrRBFTvVSw6GRDc8hMIRCvInQhWlIOGlOwvMMjQICpwBtrx/cbKwvwpSDs5aHSXTITzTKSaS5FJlMm72uTfnHH6yJSqVwAikhNuBsdEVC+JvA/zfS6FoWq/OlIc5dVfJJ5Evb69b3THXT62maJsiFD4fEGFOGqyDpNemNEruVlEQaWUcEoNZ8deEiAMs+dEj2BXUIxWw5cMmoHDUEpPczTjayoPthyhBwQlEBmYZJCln5qS93yhHMWMJrjlhgtUObotNhvEaGYns4YPVy6nLVyhMEsOmIEzZEVrhxNUuK3QihKMnSo+XBnwqmg1dJ5RjgBNbcZWLbIrXyefzqyXPh48U9BOsDxIVXHHBOJUS11jjjzMAOam83RZWdClIzt+xgVnUl74wOJlRiCztvQqTgiSe6rJqvKJ44f8nzTsOE35fwAIvW1fOQYhoIWWLXx7xnRKCk+KOiZ/HvW+Pj5nu2ZxInCGgVcU1Aqp3Z3T9I9T7eKO9vwDJ/mTLpzYOLRoy2ry4dzntgQ6x4mHt/Y+09dJgYDnA/NUqRrSaassE2Mx+AYvh0rVAxCQcJ7GtE6kkbSbg087NPBJDgKpFUzMaFN2W1n5pbWY+tY0v6legBCWvMVtU1mL6BNCHL0IgcnjLotLE/6oXJH51dUaA6hw5suf4C+Dr3K9HmpcZ6gl74TkHtfFlY6nFPtg6N/hejOgpyj9NjFQk5Mp6nc4xtejomWLEBmUQXQVNBU5UGV+d7m9uP4JqqRVIuinIjvmw5T7Qn75LWFPrXwKh0ZVb4piO24CCQV8lTxFk1WmuBIXbgMACKVUkRIctTYk6+LGaG09P39JnewypldkC6DwRbhtkzm2M2OgQnGhgXRpaU6hEDF6XLJDNElqtKQFcZQwq3cw92yrCCaLfNv4iLTK5mAHlb0u/SWv9P1/hUeaeyOp2lL0c4KvWhJqyJQsAoJ78jrdCgo5KKLEUlJRmZpfxI7nWaBEzy4BIDugoHx+utb72WA0h2iI2FyWdLMBBMc9mUBYENyK3qbeFXdVquKoKlqqpQtFyq9QjsiTYrcnQlv1R+sg8kr1TpUbJjgVfVKbgTcq+9CZQiaUZ2NX32OS8qUVGxx3qVOSdwE0RwAAlOl6SFyE6nwI0nreGW1Gej/a/w0Z4gSLHQ02NGVjWFRrujB37ATYTHEEoDbDMaIWKkrg6Xs/PLpmT3MppHwk/RMzHPnZmM0P479YG+y//OhbuclWrPcw+OACk6lh7qZn+xNDiMsSLrr7RYX1XJGVb/o60i07kDSz513fEzPDTsOlQ0AWFM9Ay1e+AD6ak13cBjausFRUQ8G+5573HAG4HCTMwWlbYaDpQyrNlxNVjlZ5l2HVQdY8UAEmCjfExPupb8KJNjpm6Ixh8pD9xE5VTKgAz0lYdqFgNlu5CoxDZEVrdDNlsQs+3q44huCtHVBNCk1CKz5as3atAkcZ78cBulgmHGIYwAegKHYNQhljh+Z1m3DWcUj6oUqr96KjJ8KTRhCSUJapJR5yvQDqq5vApQ69bWiN48qd+7BEQ3NVeTrDcwFKqM2e+MEMs2KXclzVjXrRNgAu8YuVR2inO8JQSW8G9L3EpaxCar7v1W4YA56h3XV/2wpQ5BBobriDDYph6OVhr1FCKu/4auSukmQ5vQT69lujqyqE7W7apqLKHV19Yf3ggqcpXObZSwqPE9caCLqTF+CQm4ICEjlbyElBryCLveVjGQouDPsZ8u0k0BsvH+D+VIUBVhmz+v18zJzN3P7qZRjI+iEOaWAgy9ABjPY16/rQtA8NrFMO0lK5l+pKjdZ8btGp0mCXqYX+Hotrr0cScIi8wsSFMnc76/1thBMCEERRnkeiSLyRdlUMzFV7jZyXx4rwgAnEk4zc7GsxzKkzdRR2iF51+COzJ253/uLUJuxACrUplJmyp2QEOSW4rIfQ5jZQgIIBN1zlEvAMs2aKqLcE2ZUbBdAikbtpFeBU5gfHktJS4UqPEAXgFWebyoq6MFAcNFyqON249X/WhHw2BhHBI86KgbnmKViWkIVdDaxO/UxtffWoPJJa0gsmg2JOlqtzjnaB8S2aoW+2FqhjUFDTA+6o3nR2LxlzkNOHj2hY/LNXHfQ6C37xg5oFTZhH6Ppmo+tX1LoYvaP2Wlo3/937ACONAA7jccqGIfNEs3YBNK60Iz1rwd68H7lo4V74A9jHAcvsGXrPQWisD64AQHdHG/uMNT7Y/XxeL2+3VAXH3qY5xtbfY7c1eTgZFXicI4CnsVoPdPT3a/Ix8OLbA0YukEKUrQprj9sP5SGUSRt5dYIqspSL3Z7d4EuX8Oh8dkKeF7MUGwNq+A5hy3nfQiOM3p23Inu6qUvLXEb+E8FPIdM7clsQT8eZOLo8fMhS6+kETlYWmBsW7rZ0rzxHTM5NBcblKjdLUNS9PY8jEOHkrSSaUCmjmOfwXS8VKM1z7bw/RwGVQYli02s4v+zP2aFBzEOaaFhiLJe/z6rYLWZ0GBGVh0jAtkK8bEXZyuxoIUVO9J9kRplghblG2hPBtBkgoEmM6d7uUYpIk0nYKMZCY14YMu38YEk0xSe2ciWhHkFu427qJGpBRwmK08CN1k+a2qTkOJaCotME8JCEiw2MmNlWL4TuS+LcJpDl6/crlTSfG1zdZM/sFWKAeQKEN6p1OZppGFZMhEGua9twsqqY2Eyqz7EjC4/Ri5PmrhAd+U3MteKlxhfq/PPLEVFXq5AmqyZd6e6qXWdYnWFk6RXA6F2NqUYrgSjcvwPYSIvyrVQeUJOYrWfx6vschuV1XczITCRdMEYMiN9y3yZZci0zWI1nqIlVlafhlJWk8+ioDHAulEfKm+hLFo9kaEpElNKwkAc2lNT6tyUrGriN+3IPgktGuIuZzDssMDOS5wUj0ghkYw/zaBlwzC2IYF7j5N+S/LPL05TxAfeLlTNcU6OhMOdojajByueDsPY3RC6FfWYZufNPgZhZwKIcU3e9mSLzpmwoYv7dgTGaZijtlWCVRy7BDz1rUGaNBXD9KDjqzB+PbYHyIowtbVm2nLyLngrz2NGDRT4tzmmqh0hOAxif+ABh+qfKvX3EGtnPDOlvThHFz+YBgySO5ilxsl2NeSo6/lDfaYF5jFm0V25T0TNnT6jo7rOlsMTMPDmBfjHXBS9+wHNDj4v1cDR/QWu2scx0dTJsxHr0Npj5x9F+VAbdUuegc0c9xMacFJzUenPpojnY828lLFbF8nniA8x7uhSRjjbQYfx7SXvE5DowoQ3/pxXn0L5ulkUoqH/4w0wcElnN5jksyOEZJUGIhAUM8vsmlUanVt3qbJNzKbSz7vfvqbKZE6wK3tYz9mJU3/MOlo6qPfEXInxcNNohEXFFfSeL/dBFEKvnNM5DsUZdxZls/2FH7pQmIAut1h6PnsW1FH+GglRJGazMIQqa70a7hiyInnBvctuigQTmYyAYNhJQzBTpDmkbUjt98u4qQu+6S/tdLOmyNk98FDFyiTQE1W0IkK2SGIZlu2l6qKwQJOMQSyYJd0y/eu3R8K6cEccUOfrZTKu9f0VS/HqVs6WcCBQ5HZhJIkKAcfflWW/A6SbWzIjITIsEkptrS3PrqpXdZkX9NpG2quW2J3b/YU0ZrKIBgFCV7IuX80yLlVSX1DaYuKiK0lzZgKZXaVXxt1uVINfQgKv3IrK/s4QtlakV3xlZO9S87WYxZXDjKlpljBVlCq0Xvf2IbtzpY5SYYu1+3xoRFhFD9WiFlbJiXcSj4SrsbSN2zbrRDdPHFo+DbgjgTmokjc5DSnLxZy4C5G0A6m2WNnHGsGSRwoX6HjohfPAp9v1cXQ5wr/xf1Ou/Sfed2SbQq2ANMhiAD5OXQNRo7itOMM+sk3rjsurw7g7lpgHRszJTRm4XokqjqTpmEeM2au+y12VbF7yaFEBXDM9HA74KA9NrUY87KEe5lHYA9bK6upRtKS79dhztvsu9duk2HXPz047fxkj8aidNiyyVrhCJwEiEyzfDQZ5DU4603k0IHAK3ReP2GTC0CmNAuZW9hg0GkdzlL5Or676bzbbO6zJmZgzSXN/HvioSpVq38ONkO6NOjbmh7brhSh5xuONUm9Ii5G36u3LdgIfVdnnqlo2mA1lVbNgXfyOBtLYhPRsLVQjJmoAk6CJK6sTXZdm8QGs5/fpYpNOY2DPTSa6rtGfWg32DldzvjMhmvNyDi+pCmlKSLKebUfm4CfQshI9qyFQjiybIHq0R6LiMi2lRJjAHfSCEa05Kx7gkPCG6KJidW4ToKbCJFQqPkFGO1lEhVXPW6jbalqkpWUii/WgLCoizHdUlYbsELvoHuJBw5YgXQihMmC8dKzqTpniO1+UWTCz0nusEd8gUTMqEHSr9r1U3SONRkeYYLIRFeaey/Cyl8dX0s3rvKdIOaH3DtiOhMJr3YxpxJe2WZinLYaY+arqE0qmIn13JyEwbFtuo9LNaYKhkrVq+zmjoScsY9VOyjoHjutF6/JiM/2dz56Nkp1pYOIlZa6lHetlqCrcoPbquGerEhPT2sFgykwydiiTZoLYlTqzJNJEeJBO0KkwM4MzIhPmozkFYcvYktKY8ILEIiqjGaAPSq49/9jpNyULHPmr3qNjfY0xAyFPanqx1Q1uS/mH6XGj59etHx56dBTjmAhHXukpuRoxZDOKbV1p+KiWj+fmvLdjmQiD5tGYZSyyx0g1Gq8E4RHTD4ldxQGPmJC67t9BjAXPJ4vonmUJfZLviX+8aQ43W+FAGAvvtlPalJ4Rn7u0jKyfls0bzP/aKGd2xV0eBuEEz3+u1DFb542KHJkHPi970OZE6/fa4zhmS8uFoSXUz5rwhIeq7uvLAsyHU+NWV005jAdjbORSeHyMrub+xEbN9jiZQK3MizxqzUag8pLPwthNPybuOR3d0UmxmK4KBNhBMRUxN4rl1sQH9rGHX5+btWx4cNvgRPU4olULIxtPCqEpPjWWvKpZ3ex4zb1AClYF8gfvCWzzrjHZkEw44RwaK++snADXHN1ahBwapGDzANmGWfV/rVk1FsHZvW0Dz2bqH9jPyhM0zmOwVOYUmjcs5glDoz3OxcyTZmGsIYNVOo6ZUglY5xqpjGIltPttMpPlUspyH0uOUEcu8JxXj26Qh97PtZAiduQL4LW0kV41RKBK01Swiy4rPZG0a+dFwiNAbDG3Y9vaqZeuykLO4Y545YuKXb8qBwwEyTItlSB2L82RrCOg2Fx99YPS8DKxlfjK/E58aXG9r6XsMDATnSSdvF5fkWEvm4ZSpFsspzu17ZUelO1VUZ9fewsC7ZLssouukMm2uYpMlrBL8hgApOECfkzGxMZKMsOxETSEpC1kOXRJggYTuJFhUQ0exUXDX+/1Mt+UIxWJ0OZSBSgu5RLVhNu6qv4GK9vCcskEX6yi9rLVXYoSCvnOsrwJQEZEGVVExZ3wrg9k3QBxUDAxFTJAUQHT4OY6i0wq2/ioptnsM8hy8jxU6VSIU59+Nf+bBtCQXZ/1ls2YM4tWcQ+7e6TlGJs87k09njinE4e5LSlRgl0fCuQA7klMmT/cGnG8fT0H5+P91DGwJi2FM+5bkh6mAbLu5dUKvlNz5oZq1X+wQc1JzjsW/S8gQ+N/emrDMaZaU9ccnn/jwzuGReCEDd3TPfujFfDRbW2kQkcZnOeAB8gcCFJPHrL/cKqs81M1rb0blZ6/3LM/czomXA0zJ1ChWy20/d8kOUeIzh7QYxUaZfVsD1NRQpXNDw9IENrLkP3RUizHuD1vXXhhzLOx63jvhjOW0swPOMWyfGqCprnVH29x753adXq+xQGXZ8fnmTtS5qZO/mmTd6zcHqpVs8EKowegqkpXx9KqS3nmkFG97dnw++ZB+gECEGXeTS0SK+BtJ/ZdDwTck0cOWGuHdN9MaDfroWeO7csWCN3rptF1wzgzVWXuTuuDKr2GKEjLubn19qyp4DnIvYK0BMJyxtp3GIWr6hGbzQNkapYl84gNoGN0s3LBqjJbIkXjo/83OvOaL4VOYFd4vW5zPpB2d8ihSYpVWaSGyBV0pWwnLHZVOQ/RchlDOwhHNL+UiUSF61VlxpQTmXQYUfUFYtBUmjLSmtUhrZqYq+w5o4tOW9sWw8xludIytfwbnvvrr/cWX57gTmKTnulIwiGCYZZlnRMwKcqpY/a6zALdq1YQNnQRmQGTcy+IDJFQvMwttzrCKLOYQSgZoCwpCg7SqhGSstLD89oVV7bSTWEOC4IZ1xLZiWVE5eu6AFOzubRYLwSBqGqWxmgFZtXIAVB0eZUqzi24ygFhEi2rWSgmWWVqZrdCwfmp0KIa/h7YOr+m0FmqrQsqpPwWgCCqBTQxR7BEppAjmUO3OD9Sp2yeoy9ahKmLQo3pjpGRY+PUcdKoZo08wvM/vM9Z/1n3qb91wcPke+jseq9jHvCGi40YS4YXm3Ab0ee9OElfaEow6xeWD5DRmv2B/w/OAI6F3gZHPkQ9dAyQZhGf73revoez8iiq/tttgAy1r5tNv1f1A6hAhDoH59+/hid4gJTiFosd5bF0xTMAnBHONhRJVUzzzEtmUqasUrNnQttrWlxs+QnZztLCGToqqGvx1X8rwsIeeE6wwwiMFigCtW7ZmokDugZjfMzN/NdGEWoW/1yUc4gO2X6+9bS1XXmr9UJJXY+LgwtK+dX7gG3YHW2N+kUT7mVdCkjEML5gB8vRRXpVqyInAUtgldwvKZB+r8/ZsTpRD4BgSkuYUszKEs02NqfDYauvAZ5zGhvuRHO9aHxfG4hA5fagK+RbhT5TyFhzZBQt3JSRO9OYykwzVFnjYitAAE7rQmqFwwCKltVOFsmM6mN4L9kNVAnxEX9yI8c+imsT3XXKMk3sHCMeAgMlFAED184IVLOAOX+VUAVlhFlneBVtLYV2bGr/qMJoI2HFYSby93r9/mVcEZ6Z3VwgM5NbCaekDWIrQ9gRzkVmlf8AlRFGM/coJFJ1WSpM0+Ev2CtEvStRB21iwuWe+b2WO/nr12u/8e24eIW43F7vr1d1SDFcFq+z8rXvSMheWs7X2gFzs1X6MguJBDOrFCo8nCmEuUx7c3uCpMVywWHvLHZR3QMFRc6alIVgECkKLube9gW3oBNRjZA6zgnKqq4MElhyAHR8e5qU2yJCC25hp7lnoTITzZbcSkNbk2OYeEZWyzmYhE4GLrnOLHjU1cwrPvo2JEbbjLbLiVw4CvlD8KiPCXuiW61nZUilktVK5MbEDbF1pPI58qVVRFTkeoHTLidc+qv08vNA9Evfon3E/UMpPL+yjJi+5P79881a8M6M9EQUjdk2SuH60dl82C2ULFpcAiC8E9r2GMJzLTWYuzMu0AqrRlgaODt16EPS9vupOY651czn+Vp7rKoxLPp1ygFmXVb3YIkPEfTH5E3z1kNS9L94T54ayUAo122Ncpi//tMNNDCiqUotjEUDVGn0TGPJsSo2JZKVpAp0HZtBQhh37dStPFv0+FOBcvACQJc/PsN4IBBgrK7/sDtmfvVw2Qw2vM1hPj7yB2gZC7u/F4Ol+sUBkoJwt8NiPyHv6I6yzmr4eWTHjRCBKuIJlMfAOl3UQD94vBRkCpZVzHdgb48jns4P8byfdeh25fzYdHlUBSBlN+M1TvPALqMPDgKuSvXVeoaaGol3UWrrEIniRXFHsSe1pabYa25bgO5IteCgqxvR9IFVIilvI9MbW1cX2q6aVa7lupZEvUOa9UkEcfq5tp1yQsHM9eKim6W5MoyseP3aIsZauKpSSGVuKKa+f5dHEh1Aal8vpi/qUm6G9IJ26uIvVUlNYb0lviiFoO2I6tP4QgJMpzIzK7qre7uGkklqozs9a9d0ZihodCCSskwJsmRWK3Ka23pZcodlZjnFlHl8+wGrNkHAMjfYFfZa/MWv750uAPavMkr9kPWdFWeqdDW62aKZkG4Busxy+c/aHXuMBBFbZF7B9JYdBrjDNydFDVIGrTyAtVdc1ReHYeksTdR11UjCjcpFihGVQSeAu8K3SaxXcMXW6WVvdK/Ii6SbQFQryfLoy2jl2peQQR/HpAmeKUV18S0RmMJGDjGlPrmPNJ1BpSUyBve33Mjj9hmGTnMPdJIaLeugWKqKUY/APuEyIqqUQospzQNIiGZlBuhWjONHfFjC41gbQXfDgqeVNWqpTMVbc4yxhoeq5YzyGCdqSnZkdFtE58kzM23OECVaDlNZQkzoRlWF/ueP1npFE+LRPK+lIccExhiSDwE+X3f4USOOHs/YbmuUzPCCY2h0Y/R5hfLf635Os/uatVEZhAcxAM8/nTwXTG1EDb4sBfMwfHWvyvk+hF77HUpFKTPanA5YpVGw4iKhntWDxebuOaE+h0S+UWOzp7PR6oTPoQCALuYkkuSAE43vsifjMA6jGKd3dUe3Ht6n5rZTm9hQwPBYkDYjq07vsKhzicl6fdopkWRmQ5rsWD/kSPpRSbq3ZP2YeXgPYmiwclpqCCQNz61Zoax2heotNQ6WQQkSstMpWbmbmFzMWRdOb8PzNSdXA4ZsVoeV+dITo3L5HxrCHAhxCnSzfTRBbLNsh1eftJIbJCSZxIqUOsi+d2J171WySkXJGrk9N+bh+RofcRZ9ntDuCA8TIYt0pZnMk0CAMlZbxahAM4pgdSo9N+Mp81nFHbuwE5j7paJG2U4MSBaXpRLaYgoR/yMikuJ3tQH2BJjKclM35tkBwhXFFKmqcTFEZSZFhkIJdSNDmUxJTxZzIqVi5b4Wa12SgIx8yQBzyAPLDeFsw5Bfsi6+aHvJhbXhFVtccacprI2dVelDaWG+QTcR6+V6WbwguQwvxLeV7lLKZPx5WyqNZm/HEWGVIles0KlLmVnNnGjKq53cEhiDaZGM/XbritiMkC0lbbUIrdxlQlWKpHWmG4WEIlMsSjyq2lIyk5GdPOkVSl8uyakKX2d5LNVjdEy1ZB1lMkJmLB8QBuuOipP82K4ayzqIJFCJeDimB4goxWej1Y4iqIYKI8KVHXY96qxFY4X2lzZugrpOgURmVQNvVT1q45h7h9qSRtLOCM73dlu1YXbrgNLXD5tyBPl9ZUskHdKqyjY/2WwpLrFryPGccNZED8ym5kx3VNGR4hN9fPDTMb5Gmd1KRkeK1rBW1zjh/KZucgjXp5IVzusAg3Qam7R//yjhYw/1ZPUIDejKfoSeltk90/x4A45Wy8rHZFXVQHHkqRKTheoU5eq4pxtltLOz3k8yCjo4eHZ997ZEVzgcBFCB1ciJmevVSeD0a7vB3XzkwJH+RNUus4mnmIXEEBow9O2H/7j3Eh8/I1FWYMMk0IwV+CMpij5QmRANciEpuhU3eAzxs+1KNWncKaNdCRBZmlPTgHCK0ba40EHXBGXHyT/7TlmpTSlVrJ2qXhArokddQ5nDOZcGO0CsOg7AFao+7u6a7pBovNLFIQjCmExkWdjqg6N+Okhzl9yso/rLZrmPrehg1ZE43oeaH/PQwN1hR2rTkhSirg6R2c2Uak1VRH7t+yISqkaKO81CZhMQNIc0VYWdI421qNBkvSHd4HBsjGvbPD2teA6uSurZeBFX1toRMshD+YOU/XxRyQSYqQCZkhmZiiq0kiEREiwvI6h0ZYigLr8KB9ZGlcKkuF5v/r3w2/dGfufe2xLhlu/XllzXdzC7WQMB+I8orMyAff02l9H0cn1vJ3/9zWX2ElN8byAT6+K6FGLKYNeK0CS6pPKSGzYiTREW5VAwW4C9+F5MQBGJ6lCU5IZbXvDM5YoL6WSVnQSwBMD3F3edca/Sld1pi31iDTRuOBRuG2mMzO5XBH+5vQgCBoVNBfZUd9GpB4oFE6PCn9ySyETlx3ef3eY8Cm3m0VxqG6Z9Vb0NAQKdgqcy2capTJxrytHU7tGpEnzHdBAdl90arYRUy4o5oWOYlWxT3n0fcED7GBU9QBVDUUHHLT6PmJiLcccingN5O3iOWOmjNRKsUcCAgBaSHYmb3XCc93W6c76grHaEbAgK5a466WNCFH8ljG09xs/DYKBNkztikhcHGdVwbx3fq/EU7udrHWukBR+PnrXmYPvt63geBd2q+Gj1o/PAI32IQR9z1XmBVoWz6EcSonX3jS56Hdozd7sqSKJSuc7LWD/v8SvcNAxwt/uusRSfMGroj6/StdVPoVieqWjainN2xEcskmY33iiqbjRbHG0X6TAysuyeU/324JkEHUZltOY8g0R1KfXqpgoKXjRg9QYywAINrrsI7DlUFCjrbKHin+uhecgAJ4jqeFme8cdWmhIY87lq//iHQ6eERR08y1ZKJnNVmUMkTckxmkdfDZYpdqds0tunxHLWD+ZndmzK6XVVqpVqQYLMloWcYHh2uS8+5NQUgn5OMTPHaHdDn7KhmQl5JolqVMPBrGPjF1YTBG2h6vEhmUDSr0Yl2RkhjXBbBjpigUiC1YPOiKo1JLqvtU2kmzO+dAEraFgZrrBkhC8k0gGK9l8ApKu6/qlrJLVrsTKksiEXoEBBgk0DpbSoGCfmhim1K5SpBvoO13onr+/9+xW/17UvZMI9f6oEbL4C2ghsBSzAK7rSPL2FfQqOUMIzMqnEi0i/AAS+vhlmsV9IYkcVvsmVVd2wNmZSfBGvXEk5zF4JfwWc8gqg9KwgZCogy/21IxeuzWtR2ikuRfUkV+zlGwAqnLyNActq/1Up3RRgspTnXmVKG8xhRtK5rUpTCfCq8AUSKYmWLxpTnvBYFVGRilJRlXbcW7cPt8q61m0s9Ea24+Dg6CVjHlHDxFQWu6lYEROjczTkQ6gMaFe7AY+6G3oZPHckYOVDachZVWJvCG5zinhL4rFT9Pn9/utQb2ji8SE963SMmr7VhR7/xZh5Ix6PiYz650EXUGaZAKqsDE3AWCkbPQZwi6Pnj+U5cGod23LcrCVRNOYrWaha96vclmlpgZVjebX5M6PmHdY17S80hOeZmpu37piCma8nBpsFnoW3saRG2A1SOdbPcWlwtkyt/cEsR9Af+EVRSBiAPJUjzgJ33HTToDNwdFbcWcibgMYgALKb79bQR2lXMYMHjXGjlNkMQwSU/kCxwnZS8TEAr/oXzxB4PvrYgeRs2pqAE9kHQt2Qe45a4YVBPUdR8SxY80RUvRmrs3YFHN9Y5aYiku0wGh+KDo5ucqYQNBOzzcuuJwYAl8K1HI7b/SS4d6GQgTD8qIc+UBRSWgVnz8rVvlSfrZhNxqrxRLRFBNEp67rQoJILFMnMpgDIzLYOH4dNUDLENLOqs4cD4ksPVzAB28DJgYooEZ1kmpJsM7JWNpKhFrmE0N3yugpwqtSBlOaRBnpUj+AEKdKZy9UxOhANO+nQ0kv2tbGWIpeHM5xpkhHOTLvw91+rLEhv0qfxTXZpKC1lpePWLwwyRbEJFa6USrF7c7rlb2ciw0L6oS5T5s4koG3aFMMuy3TY9QpelH56T1/G9/aAJSTGaulAUv5ljDQWx0s6l38bVlz5RTeTbCuW7Bvx5UjmRvwIO8QMWGbQM82jW2DvL8tXrKA54L7lmRVWKUZmINKpjaArMqBLnqKvKG/4mNFGTzBTMmSSqqZABOWLtiteeCPASIcA8yq8QbpIOKRMAjY8TLgqMntBiZCu5UfdoQ/jeF0K8I+AJR8QtG3YIyvE87FbqoxyKok6bnqOUOMxKG7BqpEjtxQ9iLt1y6jrqT7TJOkJweggGn08/Qi2+d4sTxkFwqSdfFynEbeD+2c4zVq3msFjuEUjgE0naPRfz8dRcuXJhcI5PKfGqzRCqGcaZ7D1C+tQjZJLo/Ierzm3u9HT/Up95dps6r4XHf1kVjwiMCUHD1TXLDmPAr4n5bAiejzm+BqsuqeVmCdkUnGGbYc/QMaMlkLVvMHzPY75XM+vojia8Nhm8nM0ztHs84ZAO/4w+rcDEyF1es0w/GOME5BZlNLu/XqPh33p7Q/A+Ao0XL16ZU/Efwvxse4EVWDQIXvOHHD4iFldCR3UCalPQDswAaZUwSYRZ1Q1VXnmofUBaOpi2jdVIICpocbr45xDLCg/borBBfW9wQIBmO0uY9njNhAm2UowhGkv16q4xQePi0VV5Ir3znoEixTAyIMo+rKTdYWJTRHApajIIkPXr1JFXNRFrB5I6OCpWT7rypoFbsbCVzf26lnXbLE+/AfFNPeAy+3ulVmxNzBTvUxNn7HC05rvD4JZTQKTZDV4R+WSZJTpWoUzQdD4ZXj5t/nXyr2/7ZK0ANe27+vbA3JXyeycIVpvk7btqk4TK3hAbRlXuEIsJbWPNZEiknH9ytTGK/b+8RSuuCKl5XozNl725t9U+hf2d5hDukgGLbWS71WJYohrbZmubRVobF5VJ0EumCMg0ai1KojJtuT6+jItlyn2WksvWUjJvHR9Wf6+4tpcfFkJsdpiInKqgRkd3x6bsdwQ1PvFjCvx/jGP5PLg2zyzMpmOzGg5JBnTFGB1PmKKFo5UGjIOiLUoDj7MVgRaZJFQMjOnUC7A8jF3iZ8+cyOCiKH/RgH3G1XlTrKLT2noU1Wea5OorUxyMgJGrbTXjUUQTEVijkF0C6DxQo9ppLLrRlZWNKjKSzPyGMeUqDu1uqv7HSfmh2Zi20M4fC4ff63rzw3wNHfHyOmIMLZjq+jbMhik4aTLGsomPkt1KlNhL9NRaDcS4vkHDkYpn9GI8xvs3HY9x0wZdDE3e6Cc+vVYwD3VTUYToOWQ9/1ax0vQ2wPzkjpezXEpVHzljH9WryJKOPV32aon5Ik8WKv2wVFjmO2n9lRqUgOZVb12fMrH/ExSNJ32N+2nHLcGzxLOS6PVY3laZDjUi1rG1kpXkHG9WD5AUq307Ih7jmueakpb2h8AoAcUkT5Wpgf5UO+DBepPEpRWZZHGA54Qqtl3lVwu3FdJuffL3trfhtZtxTBwgoOyiueDwcvH0aLjbLLqmFcrRd0UflFd7CbtDELTAb67k9fi9fSMDex1cFgJxOUGrUTccYgC0kkLbSwgKZFmzUrkXXGutrI21aTeSlXx/uiSsRjNXtG3h/KZrUyBbkqjCfSGCGxDvnaQawDLgWMtbzTYjRaVR5QNJSsPufqDCGJlBxUVAUSDfQ32rZzszikzL7oSZunVFRIgbW2hHAUiPUOkucnwtddy2F+v/Jbt8qdiaBRVV8eK8iUTTmQ37M5ilAiFmaw2Aw1VwzsRRinzstjvfWXuXSy+UtvfkEG5gcQ7A8mF4Db4ZZ6h0DsJZsh5+RXO/XsVY/C9QpvhSf1XXF/23kivQtLmznRLWtgruBweeX19/7p+vdelvOT+65/L+LooBAi3RGa2h4esWaGb2cqvdQHka+Ver2u9wrabtQJKKfYqfn4LEZIUaUTSVlXiCqVDyIy13+HFj6ep5kqZUjUG2WlFlwOA24JVgStU/mit8yu1ePZSnQ7dYoDohLc2OlvQGqhy+hZwpKrgdUdIjkBiHpa521qVM5pA8w3j/2qtqJuJ40iJ3jaWAL2xPyoUtcmxzsg78r5tw1tvjRB6eAVrfA3vdQs7tIq4ZWkJF/5xL5wp4zF8jkxG6zPVGCsPTJYBosr+V2hhVARES8qDi2n3GKvZlSp7si7KbVGUoqGalrbvSWcUYwOMyfXH8CmuDxXeJAJEtPc8R5YcJYKjvwYBAMOQlCHV5ugMAAc+1XM681gsZw5SspZZOORAzV9vwKk6PEWIKsseVdufAqhnncKZBKkCqE6Oe7tin0ryhmNPv8SMvT8z0O5hfOnjRsQ9P8oxBNt5iTHeG0bA2uIcT87DaTIR4fe5a7sNKC9lm/XDWpT5NRqpoUSmEpUd24P4xHIUuzOi4cSmsaOzdZZBzJa5x797Tw5UlgkH4DbZrjo3VjbbYQ8q5aG2IqnoGk0TyE9+HLUim7sFVSPaqtqiPg3HN9yW+MhX65Xo8pP92zW9DKkM9yJWqyph11CPvepN57wJpor78rJYyKqcQVqSmmS2Y0Wf4c9C6Lb4xVQG0eE8aSm1qO+0cwKw1R4k+krQjGbeAWdVeJrNVyWRcOX2KtjF6bqopGH32SVMbsnF18LL0hwUnBCCJBXlLJSwlhtSqw8dk4CV/ztBemd4DgUjQyxLCJmGZEqJ3O2z0JWM94orAVhcWplvEbm0w5Q/X9Qu8162/85ty/n7hZ/FjcuEYNjbiMBe8U5LrRBkayGWh5H52gS54Fhfhl/+faVFIP96UV//+/+s/69tLZsuxqrgXfLKa2dqbTOEV3Qg7TvFa71+rUVfZib3lzHfFIiMJOgwhqfBESScDEm5qpjIt6WvRTEzUAl12asuagfASqAKgB3ZiWZ7hLOBiFMiojdURTuImCz0YpBHMtTlJ/v2Dk3urPoWRKpOSyirpfP8e7O3WgaFCYbirfjqfI1kLhEwKR0gPzTkLVPTWotnh1p35PQxCUeU1HPHVO8o41G1IwzKbpmf56Spxdh91T1+fHK+TVP5LUyrBE+OZaI2kyrz+3CiqD5IM9JWKBwrpDV7yUI291B/uCnoAQW3vplvrXd00pDqRjdsItV6S6OTj7d0Psy2SFp9FULQoRVvc+k4Kk7IVKmZbCZuROtz3npudMY6OvxogrsnO6pvjZlZN9sZY6Z13nx67qbHr84Szt1KadCOtc3KNr3nk4cN+iOa4BySc5u5ik20wmlWMSSlgFVIaw5YL9xspMPpj7l2oGMR5ujkmf4QJaVpDFmdSPWhTW9XfPcu/NQdjaHQvFI/tGkcerkLzuI8FogYDmAmpOJ4rXAnnEA3fTQo0mzoFfU5n+18zr7APLBUOobwjXMHmjfmOhsrAWh0k6pir+oumWSKUtSDNbKiZvSGlF37oAxoNsQhNAz5FPY/MebD72vc5BXU2sgsHUA4ValiGX7nCzToHoACrmqi3E0T6qzlRmoNlhK4wmpfpnkVQQUzcqRm0qT97n4KWk4ZgHx1oYOaRBPkzPWiybAyBXBtGmQywShzwitNpsLEa0d5mbxAVoiaebEIQUZ8JVI7s+KsE4g0JMN+7FdEpDZMVUTkzc3tuJC2cRlcTAvp4hVGJ1IZ+LksLaOC2NBlw2hudKeWHGE0xutF+S9afEX+WvvKf4h8r0RGQnhVeLIkWFOtUtE7NHs1xK0VWOGcWmXlDyHJRSmY6TsSlTru+Pq+vr5WpjmquI2iqpGO/iyarvZ6oEsJFW9TcgBd6rxO//FX3oKMtwrEkSm984587v08Xs3Reg2hK1teJOGoevgltm9hxnk+mribbyNKNd7j+8KhjkbvdGfkEwd5G4RP1+h5wfPcOb9PHcD7h09lj6JdS6jmGfgNHnhI1CYxWzaoMiIfjKlQ+JYv3OG0x1q8X7M1R4K3zL3V2ceohX/7atU8AuG+dvHx4bmxxhd3ZkHPW39w4efVcF92C+LWHR82dv+WRMWNq4pqYFZbI43nVxNx8BEaj9asRwe1RutdUuLd2lh8mvAj2s/EDoPOQzUfPdq09My0quIYy2sgnvd+TPSM/1Ov3aqkJGuOmXsDknmxusNkOZ39cJai3Lbq7qgFDCxNMOf4OQ5vdHwFs8IDMMlp70NQARAVUoCql7TreqsOy5XuYqZqjZS+lECVrUR5K6oeQcoSZePX8s2pGXha05jt1RRAQwdt1hY4HTVqEWyakjUU7X02Z6ums8DfWBPVYAeqAvdjcAjdFa62BKv0kADJAdgiETNP7TQgLWs8UzwW7ZxTQ7RW71Edy3XzNwdOlJdtzq+JYBoUIxN6rGrzACkHXEyRTfUdMMuKTLdChGXvk1U+Egrpi6KqawJpgjvNzPzYWKygQhopGc2qX645HOmvCBFpnktiQmaUnPLq3lgCz4CVua5tW7EVaahiZ0mYmFkVmDOb31Q4U5GwxOYrLn9H8hLzokcq4YHISMVldFEW2Al/G3/pt8Ps+tnrIoMMaGEzL0lejmoYBCeZ5ssp2C+pfAbfeP0y/3JxK4Hc+f2SDGmOhWqJjZcupW9AzCuoFN0BmneLOrBKghoRLkQYzBTdbcG+drfzQ8jIdrH1tq56FUbLrsxdQVJVMotmFH2QK59H/kgTTkBIa6nDKY4dfS48evGIkb6d1JnuZe9wRLjuD42Qf1qn4ENcVEhGw5WKbmr1zvYAlnYfBNrQWve555FjE+z60Ekc6HrkHorqaXk9R+Ach4c+r3c8KGLm4DGJ92zW/GvcoMdmaNqtqVZRE0k+lqfumYCV679DXHs+PhTgny7Fx4oSH39bwJ9XjpIqvdOiqNbx/qRwNsafhutIlQei0/ORwv0MjP17hyz3EgwRoAf4aR5GM23ZDAekqqHDo11mXe7JOyuUeC5qy6XHuE/yT4/jMZ9So6yaST7f/FYPhwu/0V3fpATmsT8OrJr1mztMwMSZJD4ewxbrHBalGJTKhOgr2ndQnPZBUA2t6xTnY55Hu/XssbFIkzTV/u3Yp6zbUodHuA97vSB48GIa2uRSm+flloOqatGQOWc1zgkF9Dh2g+SydSDAKYtSvlnLeZcHWjweEJpxiNlMoWohlAgpS93usM4DxruCc+1gPY58L1JzEN1IPE+AQM9Htm3FXTlIijURGdK3jqt3spESFYUMjsSrd6qMGykj6/17ISsQlySYeymR8urA19KDVinQ9UwDmBXJBHMklL6uhJTrlYvA995Iae1cAqNyPbm84noTtKUESd/2dSU3INBBM691cZHItDQ77WmQpkTX9c5QZl4IigpaRYsU4Im8KmrKEtp8X2ZXBtKha//8EOXbeCmMO9OdqYxEsopFKi5cRvzQ6Rv25elfIcpEyQgtLYJMf32le1x4pxGw/bZllgpUOEUGtDMjBdXO6hNrlsastsIFJC0lQV+Kqsx6ktxAgFlVpqzgi6on1ugWcbH7jhmo6SlbZ+VYcnOmAEyYLsZFqjkqve0nQBQ3N1hnqzZq93Q6hXdaRHxwgg9xwzrnH5quBVvBzYnH1YECrSSSc2+csT0M+3PEBkOU+V4H4qlVex513rg1U7FrrSmbC3i8w8zZc+BDmY18aLlcwD1OMl4h9GFNNeluo+LPQ8p5eiTrLa1GDD5G8vl1YFF9Xwfv3PpoOMU/1gPnmnOr5zSiSYjzj3OXukeZ/byN+zOdOgwBb7dqjpVDsKEbe0mfTPhxGQyJ96B/5+01wQAAYKO9ed6sGeWzxINmBkecZ888PzgNHvP6cYfjtRhe6Ay5w0FgZ4HHfu+D0k9+KMy2kjsbcMgzuQOoWoW9bN1v+xi9POT7LM2BtrXp23PMRtkzcxw+gA3A6k/dfbneihWMBPLxFAKUJSvIl5DK+mx+ug9JmZZ8arQ6LpVNVf0/an3uDEhydtPh6vv7HIsxS1uBGiCarKtazjGuu1CTW1eu026WVPe0fmd1YtYpMzQHl+dN0OAP6O5TcyrqV3m2aZpo5OpgKgn8asf1jY1q34BesrJhVQVrdX2onVEhN0JuFb60lOudZZ0gilVo89wFhJmIKn1YMpU0M4AydwUkuoEuviAq9aIWIMs0Gu1Fc3RJ0KWotZcvDLp5aQXMwkAmSTLLcBzHeSPn7HerYtJlA3a1rO1kRkjv5TAl4rK/01nUceriDtsikYotk64kXUamvfPKSEMi8seVZq94hzJzM6no1qal55Zo+3t9wV558R8gxZ/3a//lJr39x3fVPsvMyBpj0rJCQQR1DnLsfKU6ZNDr5JcqLj+/KCyxAmm4zKwCHmri6Wkm4TVVcyoZv5TAHPhSR2pW9UPytuS6GU3edkKtvJ3dWFJvPHNDBd4odW5yy66RCre4EKBHQJKaeuv4G95E3nxS94BZjds/fV08O/5BBNdbaRRB4+HP44eRIWi2756QljAPNfhQvzWHVKVG1cKBJHMyTJ8tkzXEI4TTp+ZIZ6pqdDI/Znn0Z2uNvtdjXnSP5tapq4XNrT0KyECsMn1ihU092IG+5XnQPZmPKTwrwglMHVO2N+kNRzTNoXonNR5qbCe0q7Qlfy0wJVnTzgDUaRu9Ge73LjPlIX/vOGQexdaxOwUfx+tqdtdmOLOjw4Pf2/PQGH/Mh+bteBT2uUnprpqVKlU5llGDh4YErTs4vGc/v9ey2PU6q0eSszGwUKV16smG4/3qm7LqPMypHQVsZ2LaxOuAp/OAeoYlTOjmfAPLWce/NWe5BayhQTc4rYfrdAB/BAXUnUur9GWoIhdlKZrOn5Tl/myDZZBHo97sHhJmZ4CsTVPlO6EOiKzknnpYdWPF0eIayD7wamLCao0ollUz+voPD1UdH6vSjEKD9tklB2FVr+V6WbNZbytHs2U/rgtjRiqA2sEZ0JaRSuUPM6ujVxn9Jme33XjpiI6in83SfJKla/iCOd0r1BtXLmiByVLA+bIwvcpP8UqCNEO8XlppNEKvcNveNd+Ahe78BL1oKeeiQ2EegERbAa4O6S2vh8KkzKwYcPNqiKSwHW/HAt5LiUiYQtgovcpX0gT/iR2ZtEi8rivwDV0u5P7ZkW+FaNoGKL0qm8iRzADW60fkS8Tvf3w5c8dviwj6/8DP67fHNiS4zSBnEgZnXmnisZkEZUTE9h1bXavFJa/mV5kbQaCGJ2EFhUCQXXOUhurVNX1favuMHCggSvVG1Ry0o+TqlM5+rayIPv+3IUZlgtU0oQ7aqLyWMufCD+2A+VmF2I/ilBq2D+f4sHfqF+dQjk6ZM3ospoe8nHs8pOSRrzrDvBH4aMI/ccnw3SwnwKj2UQH1IXVJ05r9umXhoA7p/UOZEY9o6F6BcR31fPDIsF6kWaCPCcRBNrftgHUuebxPs4gqn9Vo9vMZ/fmssYCkUZDzuu32eJLkJQvVcZsYXkX3dNWc3SgNQIOAB+lbSq2bowGMjsHilC3oQROcyIGSQRitRVJWsf3e63vsoBaNOFqt7cGehvtsfH4dFqEXskKBK9G5iniMATdL3zT12Xg5xTFx1mQuZ1Y1o2q2TlSdpoLPrSpU7tDsqHIVkCBogpsG3rWpV8yc2a42A5BgqpbhAKrBbaGjjnNIHJa21OiBF4BY/UUqgtYAJDKDxq6/DHYheqciZ/dkT9OcqIPEUGlWRyCwYVkxrs9TLQkyjT+WosFS4lpIOAIdTCMANEaj4NqM3Z2QWaWC70MFGnLvVblPnh210iCBKOCWSaSDTIWam5v6J+GCqJ+vC5BKaId7hivyO8XU3ZCwrVwtbEfR1xkOCcHtrMavvMy2GaCELiwnmCkgs4uQ/tqgSZ6CsF/B6q/3t3d6kdFktEXImBBpWRYwu7yRcklOVsdco172CpB6RSVwV0GQ/9r8ju8feGr9/gK4XxlwZeaLIcZXiMw3DSkaxAXZrx+u4qsNRPCVXgmDSFmuSiu0zQqgDieSDL0KcgQ8i+mv3efaxktXJlOy93b9jss81v+5yGu946/rbUktRjqn90uE4aKCl7hFmgP6+suYv90U2lz/8NfXb+VeSLM3LBMhbTfbBEAPxTJfTJejeiBesTyB1X19QfpeDM+1livNk9qxEiIdJ30nVaUr3U62BbsuKSSrgiuWp31AH4aD5/J4mQhB6e2GPXISVGaGgAX+oePGukuhUuVGbDeoPHLPHpFWrXvK8yOxYkTIHO3FogFus+5WmIepfVpJrTRHS42RViViijGbD4ySmE8NXsYf3Gf/5vGEPpot+oei6fLERNJRfrGZtgH26aOfbrJgXFK3tJ/yIWPd3P+od24ROKJsyjZyfUKSEfeQdWHSLkXQdNMYoM/b3y86PnnmLD1upV53LhVNyNhl8u0k8hLHPlW75mYCO6auhzlx48oq7UOwXFTW3elqOfLgg8Pq2HCnPVA7HK6E0zmq0VY1DCmGuGJiZnSi0jX1XmeZWwkO1LoPQM8qEkwlqj3fSN3Gaz07zQ6w4ekYdY2JeHwDncBAUzenIUBLsxRAYyZksuVSh0phyq9XKbI5PyP+U+UdNzd1OT2ztQowlWcz+9Q6YFFLUG6+di1FaX8CnjQFJXoFpXB6cBA5OWUVaDZHveLY+QTP97xW5FBCqB4YQmVF3pul1rfSctLIFNB5sXVFN4nd24FMMeP04yUjuy/6CDIJMpiiq0ZzpVdZh8kdUafQpTKXkdohr0VNSxhFwTYEZoUaZpVioPIriG4Iax3MaSFFhOkLf8szrpdLupZlKgKvAl1f/oaqUR5y5/X9StspacdXyC3jryvzK3fFfWtXLu+6fmwVdDHzDnDmNOrxwkZmsMpSQbf8Ba3aVTvCKGc2veGgrQTshfiWFr9sxc8rE8sy97WUil8/ztcVy3KbLypfAXgQruj0DjOlaFUfxGDMKHJP4cAlyx2CW/pyg1LK9J2mMBi2tl1m4T90Ewy5l9t7r9g7MzL4896vvdLSGXjZZlqCwnu7LHwl8JOy7Tvj+kqD+P3uApL4ih/aEnwl/Go5taQkU1+27B+/Xn/xzfeX/Ot//y/jv379A5H0tcNCmUZtaQecb7ckHSbtSpMv0JdA8V+ZaQP8WtMYBZmVf3jwarvCbsqxTl7JYYFKUpsYJ1jrLMMpkzEYWqlJggKQYZ+28Ajslvzjmx1muOSnlTvBKl1BHMNdJ6NII+TGYtPtQzpa5/bXzaNFwG4evd3ULR7PZ6vCHrr790B1tngEOtJ9oolsXJ08GPn4qId6y64SV1hCnCY4T3EkkYq2jgvWtptgxv64trXC+ej8cghllQXMo39bJHYQTluGNT2WFYHRvsPWifrYNg/80J8sN8EJqubYfNa5oqD1cx6ICcMd13TNy+XQjjXZmbEJd5K0DoYobVAstxqpaLBcAy2k5dFvmHWYAaJNIgkFJTq2Bu2IK+MMKO/gsLNjD5cNVHe9ZTq7JRoymEyGuj6hBOl2QJYtK3VBCc6yZTcOGrg2qLDK9pM+beE7LqJKwxq4fM/lWaniwgl+7o0amZWOzgSsiryaS+7mHlEdFeblAHOv0GUpnRy2eOAVzllqD0t3C60qfiguOQAsN2YX6u8pn5M1BJykZBKyA35UkosteKoRUKKT32CmdIEWCWgvRfmocu/YS8rrWotkbAHTpoouSd1S1WbrALSUizBxOSs1SNUb1jIUFtqSIpjWRawwkVn1ypSAl0gTtcMgGzQNo1VnoTl32pnEL/1TBiQ8ldfyrAh1i8zNsKTR5KDSIWGvjLRU6vIXr3/m78x/5K5g6P3+9t+/SPNvLAuR5DLAVBFWCWPQKlW5aNkgX3CsxbcAwgSHi6Rs7SKpYYC93rkWXlwK+3rxO/AC/Yuh/Hu9Au/vn0WP/Irr+vIf4Gtt1zJbX5ebvRyeSWq7AfJlJGSBtAxlmPA3/fqSLUIwVndiZRXsUDq2cilNjHCllv1s5E+4/mVu6x2vV/xsaMeKxFZasipR4jeYK9ZfwBUW/L0Y+Rup7x+8fm9HphilHp3+XQlnMvO19F7p7+vbzb5/ff3iWr+/uf7Hexn/+X4xL3zxvdePdtIskaA5r1xV5UPDvVHM2OV+cBOiGjgMB9TlIYlT66hFbMtGoEibsYaeRDFi3bKjha0xo2KhyxMoJdIVmSjWocojZzPDVUeP3UoNT75YsNQkyA2oRsdFn4MLUF0fvs5UaygdC/jseqFDOhvIYyrr9n377Y6/7lYJHGazXHA3WdvBFRPvU780q8ZvoGsbsjprt6AmTXjlDypv7KHQGmfECcUrOVyYcUpws6XWUwWOvDruwofL+ri1qhnD9ME6C5wNN3XE3K1RRqm1MH9o95qX4uY+RlK+2YYJEzBeX9W6N21icT/cD+ypxzE+k5AUEMBUZMTMiH0pI1ieKvbbVTOcwV9VcMiy5Apba9agddwY7ACY3g8aQFKpsG2WH4BxIpnwmPWCHEJR0LXpasSYFKlKga4akv056wyn3kHHvBNUiTV53CS1+YBKnLF+H/V+rl0Dl9f5jYq4rM1AlOBGVhpiiooojCkVB6OkzDzMihbjCiZV5RPpTqsurjmgq0139IzOkaVgXghGzFS+RWGb7Q3yVaZU3SGlvk6lswdvZ/G0RQKodwKJ6foi8+pLLNZJj+JrQYiZOe6VjNxmMjNwediEOJQV7wAWbiFQgAVI2fVKCggtSMFIJDKANFgqYUW8tGWiyXXqI2EX/bXBhKUnfO8laGdUx99lQVXQUlEs5HeUiDaAWBQt4bYTUljq+yUxSUWVus7YGYmv/SNLXP9KRL7abrf4v//7+/+W2774wk51T/gOGyZYiXVxmZfzN1JJL6lt0VX/CU7CWQsyx9t//cp/+JcFt4G5IsKrWpjh5a8X/deX2Sv5imu//DL8ZlyxaN+/fv5C/kKudOGLLyysSiNKXSCqCbN5pLSDCUOyAL/1qU5GMVky9/LetweqQr4z974Q7ze+gtpp3Iklpmcs4ArqQhC26cHLXf7zzvzfidyblvEjQe8ClaaMNyMcmZFvsBw3y6lLcikZm/n69pcx+MJOe+MttxXQT7ryb/CHlhQqhGsLsEhVNdR89UHnaSeDAXG4g1KOTuhk/FtP6DjOBCKAah9SYcoUQXdEZABRhqAlYaaAmNVs+mHptNlT58EOvS2QyBQnlFSTWQWVS6EyOokcaroUfoVC3HL96byVdBoq9+lLGMhKIc1bIbBbbx4fKk4nW/H2TXZGKg5fSExsdbVhqyCZyhipXmmLQFLLqywvKMCP4YxhHVX/6N7koFXiZ/mzGgk1Pmo5XZJ4QE0HLeFMsSCW2NG95IUmCDKGgsUxwXuAc+ex+3gGV+bVpxVkhyhsa7MEDVDdRqfP2wEzeMKPHqyq2W9pqAgZaMqs/gZdNt1FiMwikutbFSArUkk1GHZ1YaslKu9Ckw4FLJKp45bv8rFKq6m3Y2PfjE4HKpazewiOlGmwahXQPTwHVPc6rMNAD81S9uaaJ2XUjiYnKFJ0qO2ZNEN7OIjWHIMQFQqhZriqHmUVB6OqLnEqCNC8mu9a93IZ4h2RXeqyrBD1S2rLM9TpUvWZHLTUsiKB+PKVBHLxInoM7h6ULT/FQdtJMm8MTZ3rKuFTrulOoqUpTcXauCHNMmCGTCpT2tsZ5llwBKeIZiVEmZvZK82Tvq8sg66O/EKDxN4VBZnJdJXmlXIzQlJuEpkXo/BD2gFvMMgSD1Qm52Wm1y+leygvrIC5IpO2k1AgBKNhR8T/i4rLUkHVtoeqEU+a6W/+VWnxjK0vEBvXRlzr9U7uf9JML6YDxsxEbhCKWO/f70XIvhzANrD6ClCVcBNUXhmM5jkTId+plBC8aBkuuaTd23i98KK9XjDEK0AgorRkl0+GIl62Yn/bz/XyX46/ckf8Zfr+73/l61qmxZ35z9+GlfHidnvZ9j44aYGdTBrNGenUygQTa8diumFFygLx8iQySMSPB03r+tdfX0ht5vUVyESmcC3EMl4pMsjM968Q3vaV++ev+Np6//02Z77T8h2/F760TZRb/LztstjJwIprfxmR7tVvTIX/FunMv/RbuZyCM/Ttbpa/8FL8C9z2JY/r70AkwAARSaWbra8QpF2JeWODatq01HkywYrpKcdANBqFhE7pr95PxTW216eNxkxgl0pfrfTQrnRW1ffs0mwdp8LRPeP1JTPYFcybMISNfY5idBokcH4rUvDpKNwpk0dwYpRW0Xlj32BsjLLH2XafeIRjzw/PP2fE/CQK2N/aGEh0xCWVXtZYZ3+w6+eRDQU+AU8mimOa2SDJ5cursrxOjFFT7KVDzx1ui5KjzlUGAwFwfVicPR61idUwoz/a+4ITezPE8Oj+mzks3aIxW2ouS6jVGMoJ0qWcNUQm7noxM+33sDHmaO5ddQQyoJQptJi5jbHTX+UV7khSi16r4T7amOwiEF27NMWcVPVev2zOWsWgZheugls2C9y5FLx91cdKLRsKw5TrsBQyQVmUrPEozWLoaR1Fqm7dc3hfoNmeCvrR6YtXLePFyhFJGEJpBqMkuhPKyKBBy8vHFEWMygiFEmuHyV6lOZhtwtEU5ZzLwEsRoA3Hk2RkVEvNbOhhBcMNNHntkooQdg46y+mUaCZbKCfUxJt1fGZ2HHoZ46S80AJAroJIVRfDkWbiqh6+Blohi6kADhEVpFZk2RLc1qK9gsYVkmNtJWjpmXI3qxK5VfGynHPStteWkdv9SpqETIqZYcS6LEzJRIZ3/o2lIUiTGVZBz3R+4XXh+/frl/CXrtfX/6WXY3F/S0iLaBYqIxP/n9evjDAPUlRKtrhjUQtLbw8w30uy9fdfNP/JIPlyRxj+Zf+T17U8d+6/KHU/lcRev/6G8015fuHyCnAJGJl7S6FMy4rzJe23QNNGpoTAC/t6f7GjgGhO0PBP2ftFxHqlvuSvH9FgZpbXV2xzxcteouzXtWBfa/O31tevv7i+eP3Pf+Gbv3iR//o/X6K///vn59crTf/v2Ne/BP3+3r8it5bFotb+SvsOgkRUpetII9772h7xhnGvwBUGE9b7/V+v3xd3UP+9DXRLkMTyK4HgQu6tAIQfA/bbvnQhf/7+71fqLcXPDrP/4m9HJmO9f69UXrTc1469li+3L/DL0kCLSshzGG0hlxP2Uopp2+NnfUMvmPPFX/qNWNd+RW4uvPfCJrQ8U2necVdZgF8ow6KweVbvxZbS7TAeBm9OJ0hzUvKhyXKOU1i0IoWq+2I8VC0QXRqkNDqH7Uwo5JXFnsUsVgV+BaZ0Tymaj76wZVvCaATTvKMS2zGMZq5L6TaTarfkh6wquB5v2dHDY/K2Fi7NmZgiryW6byb45gNHmxJAbrqqkG6l120qCEbsyuWvhldKcDo9FRHKcZUaQJ7eVWZHW02ixiFzpxDJ6NDRZgNDOKUoD5/BE7AMVIidncVohFT3sc57qDfrrnJkWy7oqqaqoIo2a5v/BVSV24seqBbjqDqBalv5bIOuyXDSjPJKCiblZUpDKqmohmN8dZVd0DF5WwUpVFM1JajGPOV0Z2+0NCit5rPq9o9nr5z+rRCKgpk1nemvoR9d3m9Sm55RMTExmWUcaDK0cutdEPbAH3WMTo5C3lklkIIV1xFgNDtHEsp00DIzVaa/9/k7/hOIgJuUsMWsfZtRPn4qaWZVAKr7HQ6tbkU4WEOZLnHZBRkGPBqlpCdcEs0SXokQMulrIbQ6yLHCcyuCW0P7t/Oj2FKQpDdoF1EZG5x/NJ2iKjAcCZp1tc/q2uJpi+sCTf5iVg0xBVbzqdq2zAxRJFrtTiqDwVdUCwkpt1QNdaqDGY0ZK7cFt16KyRkqFEaYTIEK8N6vDGm9LnkSi0HfYNlBfRCVuY20Mq5d8kyFTOnIXbtDwbyIsAy4CeWEWTRDiowVK35//0UxhEzRIvIfb8Wvr8y9EjvTcKWc3AIciAu0HWT6twGwhXhnBUalQiE59bNXxYiB5aKInReFNMbrSnuvL4BLBDwvKH1FLjJ1haXCzMM97JX2BVvx663lX6Rf/3j/T2H9/K//8/2PX2b+39j7X9vyx97/9f/Qz4Xr+lZ8/Xz9xnq9aYidVT5f5h4Q7drclFM7V+XFy7/9/fragP93uW8TyPe3aZtHujP2BvfFfNPS8se0Ye/9/6RiI693MPzHMyF6pJAV6rzM6IgQcsOwXz+yn7cZAPva2/Zyh9MsnQmkR8mzDrLgi5lK4bXyay1GGjficiJeYV+JRn+C6Gwe16vBrwl1fFpRNo+YTDOtEreiw2mIl8I6/RrdTJIIYyVIGHZ3DbNFmujqNFiSVvV3KsKnrKUiSwUqnUoGiKKwKwrjRO+071g69TiGL3ZOuTuUGYasdqJoO7T8xaPDWRVa2s826ksdUFXuqiYMcZvUR+GO5Kw/smkuoTQN4uJSNFXbFHgsYGwrlNO81XiFc3bOVVmNiooG4pmh8VU3WchWH6W8b307blvc0Ge18ilCOkXdOnuYkOYVHgRp55W2iTcdXQ/s0LAEEm4lddNyLM2mrodaloc65bS4CzxqZZeCn3yRwjxqSFB6EFKkYNVjdDTAHbQsVPsZzj6mIer5B7uM9Y6ny2XnWVdCp0hEF7aRzkqX6M7BC4DawVM6FhIR5byReXYqX9+s6w5jcB76NsQ4hYcjkHJIYhCuTDmQqswUSu1qyCzk0ziz1VX/rza9zJNVvNat9vbAVKVSTloFq8Fd0Riq0prKmWppt8Oz7lDQwju1mQhJSCcivXSlTPpe2OGhivQEQUuasQZsqepwT9JsgpRAz44dtSrwJySYrLMguABjOH2l0VF16u04fmoyadHQm0vCMr1WYL0Ak9EoM/pxK5jRvITDqu5gNUVmhYerzD4RVizd4NE6iEURcjN1iW8oDFsZV2Qkk4wu/ukBY3Uktf+C9EaCkVJUfJkUsCRixzeYiECafmyJCuoCvwXzX3/Z17a/VrnESIBfQYMSm7wopKo2hQsBCjvzehku0OixjfaK5FWpBZIiTdqv3JmJeKeZMUXRc/tXGrX5ff3mG/+VASj1omcQsNcmiLzeaHS0XxkVWwRLROLie/39HWFLiAJL6395/vz3ttwZ//D1z3X9vZfF99/xf8XrHz/gtXH9/FJ8ZX55XjAYsGKBzMuQK4G9+Y6/X5ReS4YLwMbK7XDlQlq+9OX5qs5YW8DeuYmffcH2JndIUGALVVdsW4AIpXk4gouZ355/79/bdL0YCvzjX+KXXb/M5ZBbldiC/Vqv3BZYwfX6WvHbHItXrjS4POUBc9Pid2wrkiWFdNPQkBNRWUVX6gybWGEjSbjcEFVwrhUIZcYRGyk6XVFBFIUxywlqnYrT3syiVzuxqANCzY487IgsqaVfNZDGuOtMUmbFyLW0DyKBuPwRGDHH+ZxrsGIMKphbXcylSLTbWGyBmOOSvsXOfWdNFBhHrD+M8rFLoZQu5a/S7urOcJXX2W4oqKuLMlsl2CB9ss0SSMtSw4E3/93PGH6Y/aq3+TskRve20jIm2z48H+B4w5JqJrY9lJA64vsULBre4ChyVIKjyvJLTa3skx5n/epWBT4w1uLoHjQgGLu5uIdsvKKspobl7ResSg9XCkqK08dpbNIOpB0lnMkqw8Aq3liXpSakmRSq0HNDinq+EbVfO2C48CdLcfbklnl4W9ACp21hBdY6msHuq3uRDN0ZiywAMQq26Yrb63I0qE7VulhNU+UmRZmSqS1Fed/LK4kzuZP/RAIJWbcDlqJM4ip/j6otGBURJMWmjz2uwspqaXrz9qp3qzwLJkQL7XLJX231GwCtX1pbCnhjZTcXvapJr+7iKjMuTYozmq9Gb/DiuMovGUnk/4+wt122Y8mNxTKB6rXJmZF0Q/L7v5//OG7YmiH36gLSPwBULx45wpSGh9xcH93VVUAiASSSdsEsQsuNUyCgBEqcPpMO7Xv5oozMjHeaRFMatJGtKNnES6Fwy+q63QamnX1eE/pkDpMlF51ltFo1mlJy2j0DDoOvtyyReTMD5rCiztSn1USXc/kNhdySIvxOOlOtoATRTVXTm+8vvL4gZbzz9V+X1rKv69e1fMNlDjdPd66/X/iy979WJDKRURriCMPOOy0NscG1Qsm1IhM7tSWuUCiVrhdugp6JsLxpcOf3j6+41n3/oH5x697vTWGB10XbrZeh9/sOeNTOsBRNjEDrJSPDcrunImLf5lolGSbIfX3pR/xjX1/59a/8oR/xm/a+7f3fP/NfP/71/odt3x6vTHdTIsN6MZcC4YhYgEuQgU7kZupSgIsurK28g0GzUq3O3CaFMQItMyOPnalwC1dg07bCvrSJC3mD2u8EInfqFr/06+/mNcHi7bhfIddX8h0ibK2vH+s3VsQXFUyqRFkTGVHFdq5ywEjUaCwzGBFqRETrYYK2isfLSkQvgkBiVV4KhjSzJ+rylbaCGbCq2OeyXeX01VhmXoL7bNhgJXKkcUhFPreaqwkGJ4tbyyxmkKkaztOtIsxzUAOtm1wkl/Wgl6nMGkPXHaKTCG/MzGFn+fiIDjvR/rap+YdJ/HAc46JSZiJroIdq/i3hTIkrkCrh2MmrVjBc6T7rTrDOrVmZ2RqwwbHzhzQ4q94Bb19YB/L9g4nRgdW54OMIR9XhcHuC8CGppImUgGN3TxK0PTmff1YN8+MYL9Kap6xLNMTHJ/XjmIuboF7P4qoLf9rfJVf1SJR83HSJdWa1KFejF69CQN3/w5NGYIbIzCyYk3XP6pFaHIvfCzJ/cO874MdaF3dQsGAyAOPrjClO12etTG0t0SX45IP7Kdn4mfn6Sc9kC1NFp37qcAhQhDVAzc2wMCYlq55PqIsupCn+MkTCPUIibIccMNIQkXKPJC0SlFm9pvnmQ2DrsAJ10YWDOKA50lQyt6XgARrc3FiDX7waakrcnQbVlNSke3AFRLoMURXh8DlyUtdh5vAiNbM+dS2wChlToSACFnAkLTMgFc27LOk5JH+I8GR+wyllRdbqWwNg6ebJBBXZue5uv5BUPwfDnF4TtFn8Cs1jwbVEj6u4eNoWAbrZtcIYllX6nhWkm73WtZFYNzNfAe1w5FLGMllh1owqw4ib2hcKqHz915ZdXy/+Sstvyn4vBHDvf+w6kl/fMOcNpmAmbSVYq2H7HeBSuCwj4chdmPFWSAhuRtxaO5AZCTHW0ncs2I4dd7x9435//66GdPfgKulr4fvX/v3r9c4NrUhnUvkdyg0AXHEL3FTmrt6f97p33P6N23cQd0SsOxm+7Gcuf8W+9n9/5fvr/9k/1/7v9zvW/X69LbbhNz3dydiUv0ysZJcZzM3IogsSsaTM4ma+41V+0BF5+3VDoqcQJqyUo0oVL7eqohDcrw2uCIQz9l29zMjUK2buZNj65fH7x7eWvl62wSv0Y9m9f4UiFt4wu1TsTBCyJGkNyjIhropWDEaYsmqnKggWawQ2jBuougsAFBeNzORCmtegSxhSr7WXNvItdP2Ne4Y7lujMRYuaGUyvqli2A2bN4+iYojovy1NUWyoBKmVVcFFmT3lSoFWg1JkZTm1MtuGbjj+d0iWcSLCpyCbt6qx2ylDtyOrfmhbV8RjjeOci6iUSzEALlGrCxiSzAvTOBUmnDL2zfCBoDoJVjEoBKovZppSAamT4c1XtxiY84Ql/5l+OzyzR17n2fuVcd11AdkpuysBqI4yO1eOdBqbo86NwWPmc8BvtX8sHFMtwEt0TZ+O5qo/4vRPM1uQ0KZKrpoYPN8ioNBWtY2+CtE5ETjZ78IGSxXtnNvhpZ6YSMDDkZALYlW7tSjhsvz4+rVj3KZxoIDAAklRSRndYyTjXTSdZRbDl0bJb56SeaTsOOHv4c5YgRpXEFFeBLdT9Tco6Z3PUZ1lph7NrAVF7I1GC8lEOdarJFVEBbolSksYeC0cz51R9wAv0kKxKDCvtN+szG3Car108faLHxy1ZHVDSjDWSNbNTLkMmmCEJmiyz1KV60m8CgsG8d7yxS70AYK1amc3QzTSmIsjE6sg8JfhitpVi1wrCaH4Gcs0zVg8aLE2LBLbI5A6SslAVpG6ZgLiBFnIEUJwCbRd556+7phEtk5Futl5t52BZzwqESeZes8Jt2aYl8q4TSK98j+SFHd2Vry9BMMBf+sfr+xZc4b8E6u3335iwnbiFDKyf//gF4yapRGZ5okoVxb63GyOTviWGa4Nb/g5uAXnrO6iM77tQU2rfnhu/kBuK2L99x3//+u1vc//9uv47nD36TlK837x1535lXtf+24aATCdE+wY9gkJs2/uNiK8IJWVAvjqRETtvfhsyLhPt+vEjX1/S1yt+vKNqsDNu2G/Tb3fwxnt9xYZfL9eV8HR5yW+CqHJQuyph8xuG+9atH+/3+/fvSxGyy/BPYCuqzHBDd00/NjJzLYtIAzPe/B3wfNMyv82qIiM3ea/cjB3asBuxDXbHP678in+m79z49k3AmSGKThN2270yWTVp2NE5UpihiN3C3DSwmjsAI7ztuZMGORflk3Xq6NAgYIVgcKxNW3SYS1xh9KvigXLsJKtJu4ZiC1kEEI+nq/9mwIEWhka1imBcZVcMd/NKy5B11ndM/PxHBExxkoYTc7Tt/XQbDy/YXzxO+kTI6oaR/nRDVrVOENROTqnsdqZVgyWCxtWRKqv3SsKMZy7L3rlwkqCZ3PAoebMROwFWevuEZWzYPmz5XHL7yXVynicCRjMR9NLuKS94QE2o8hEFaMBOelKF3+aZ6xSO11mEIEN6++RGPCI5ZWufnvEs30CibgJVh1IyNjtp3m1g3gpPB/FU5AzCZtPWiHgWjw9VKXIVOHDgDiWkqvd0sFZ50preBs6IgSmHHtpiuIEO5KvcqdMqRWY4YHBYscZq99njwrP1M6opRlnN8fPoocdD9POiVzDNzPDhijF5mWUqOYpMANYllFOlVx+YiNxRKMCa5IxKfxoJxc7TfgfSFmGGCM3SHp6+2YwOuZcySjbKDcaeilql8KeftKUwc1vRcEpX4nBQteyZTNQo22Y0koS5ivpymhlLdBeV47y3Z+A2mTXbbk6AKn1krpYGq5z1Frch17rgkYFuRMjSxE4Stzxyh1ltu8yquC6z8E4yYTuMJQM6mXpISkcwBVuwDdqLopPL/YK5vodPBEmmkTRDfvNLaZ0+uAQzGhfMNzz9x1epJ7t0/SNKVqzO0Nvwy1/coODr+mGRvPzfX0SEvYXALvowoxywZ5oR+X7fMseOTlTkymANlaWY0K4KAyGBMCLzlm9/rcBv2sb+Xvltv+5/Ggi/vv6Zy7j8Ai7YF97wxb233Sn4128knfZyZeTbwfcm+Z3YtyLsqvLJTPzi2yvxHKH7vUBS26UFUZYZATj8ut4/N964bovvn4kb/+t/X/z7e8u594/f7t+XjBeIkCJgUNrXG74jzV8MB/dv5b5v5Xtf8MsCX9/fJmX4/cssg66CL5tXhXlQ6otpUH4hDQvyjcB9u28qE0YXDbj3l2Lvt/I7f7lvfuubbjcu5hv25mWW3Fa6NgBIuEsjok7AeI0cSEnWOQAvWqRI4cKjMGpZvGY0Szu0RMnUWYmo84KZwQmXEGmkS5q+p+rJaEzppaxgp3jT1DUV1v0aJ+Tq8RsF9Dtrxta7I6aNdGKqxwOnYPlBSLfXq7Lb5AkgK2bpv2aFBMBUZ2vqrKpW19qbqiOOqqewnY4IFyxCTCbldMuiD3133RjZbydbvgNINDFvhXttRqwXqJtOZLY7GdyAuoGPNG6FaMU5a8YRNus2b+llzYmkayOcpLhNlnsC/omay1GP2e/QrwO59jc4nEFJImWWkmInPR++vBZ1gklQaV0hOD4SrHCSVJq7Cng3ESwV/dEmvwLWViqfCXBpRexUdVQhiagSGrKgQ11Lj/qj1RR2NhmMxmUdv4s8uiXqPfnxEOiyhNMuRfUom+HMOoNQrSdCom6xPqjSi8beomr9FkhVDK6SWYQRlkkDXGEGpSm0yteZd3BXz6+hgdIrH1dpnzoNbOW69Iw0IpmSXF71PLmlSErI0VshQBg/tGDUnfmAk+5GT++hF1NOv3PjjdC2atEVEGKlNDKTSQRS3VIYw1YVNu6FT5MigMgMIJXcu8KWAAWr/hMOEEWRylk1zQFFam3qpu9XgcqD3JLS3gTCQ0nbuQz03qkJkltBBcSWx2LaU+V4tlu+zdIy3WokgEsO961M2/VtoNkiQ0l/86vOYgpaIYGeqObeL9Fyu2TgywZdLPcvOW2/r6/rtZ3ply5Ve4SbRWb8vqr8Abd5JvJUFURmwMygQNXNa8cmU4mo5i7DtmpJYtyWyrz10u9/28GAKWRibPFOKo1fv/Jrm/sV9sX4na/7vvkd98/kK/N6I1eVZjEzLHlXwz4IbS4SoF83oJ2btm4pydgwuHZkFAF23TXyPmDY742QkraMol3vV/rPpFner++b3+sWf0QyEOsrze3F62vJ4PZa0gXFbcb3/c/9S3Gvr6uGA5ZlSKxKTFdNzH4vWVYdLMz9wuvFa8M2EWBtmgreBSXEiExCt2Lr2zzgvJmEkhmyLNpeui8wCgLWQUcUnjvNtvY0s1YMw3ES5TDPKLLHhEIQNnKXHTSIVmOkrCLvYvlM2XYdshJHK/LFrJQaOkRzKKtciiNm0Fes1ritzoWmognrgHNcUuGAye99BH4TArHCLnZ8o2Yl8+MTxuGKKmHWstxq/rUqsCF1lWcNt4q0GmulHa6EtjE9LZkUq2uixVkxLp80+ATALB35JuoIUTsO2TmswFMZXa/USWXjwymfX1yslpyKMqdJp2L7Li9VCyaYxhm3Q+MMLD0Q5bDx3TvU+6byAO2A7allUWUms7vYPugFchgICNNzMsnRUiup37McXlpvBlRtfDGOXetRbHETi62RVMyoBHTvE1COD4nRSi4y9IPzaGalbH9h1f6t8u8T25217iiYtTlqIeoHSSPMDAmrWs4BevXiJxkyi9AbUwN7iCpj0CRY6B+AtB4gzKwo288KLtKSDqdoji0syzjfIxjoYNSR7hFy7rNGqZL0Cmt9j0qciKRazT2JFp+NBMsuUaziYWSkhLy1NXVileOvuJqsqQSlRFV18mjGoN1Vo2mrOsywmk1D1Q1N+wUO8DMpbdFkO24DlKG7nIeUyG3f70uZqpq9Ih2wET2HPs2uOxYJOmmJUkFhnIhlIF5LSmt2NwXtOu4O5AYTeZdRlUptQ2mAA9phay0V25kN5wmT4qUg3BBbJVa1TLL0TFvuX9edl8W6XubfGNFRp6293WDwwAKVjHs1bwkoYa6saJLGSXPEnfRESqFK09QdqLSTigrF7//K+3Un16oxKahcqFEyC1LvoCK/ed339mv//pV4/X5fYvwIpX+58d4Xf8m/PXlbMvZr3YREi5TdSl1ri7EyKpFRQ3fToEgmqtIO+TuciK2lnchv5Y73y+x18fYfb/zN72S8xftr/4j3ciQsrq3kIrU8Da+X+MNzJyM2qO0wE9MyQGOJvyG1De8VTHGbA3bZBXcypL0lj9LjI8Xv+4og8NqKtJTLJDOD3IQqO0GmpJ07S9asC53UArhNW6bInAwkhjcr43q4/k7CkZTzhFim4vONqGBUpQJFeJrTKo/kJfMxElTFG7JIyy5qaBKcDbbRKsLjN62pwC5vJckjWDmzkJtJwzGM0tOjQdSVot+OaQJmV4OVF6tAkhMHHht8vC+Pn6s+3rL7lZ+uVSnrVXqAlYSvSdvqPOHY24qdT/DdoFo9Vbk+NeohaMbJ4M9LqE/h+IYTy5+PBFZj4fG8/fVirY96bA2HhpzlG4dbROxgtq480sfFdPqUKG0GjmzIMKkwRHovD+vRlFkvFbRkligRSpZcquee6taPhAK6oGyppkqE9opn2RA9DVSFcbL3RiPIWvmGNoaeZTUheeMyJHMWqN77OOHZKrOuZYL7jua7Ml3aJkNkD/SZ1x22aEy6Td65H5C667g01JWlfdwj3LpETUJNX9JwE+Z0Dq2DLu0r6r0fBD3A3MFsvfne5l3E4lgeXtQXidJqkMOL/kf1LDyHosod+srFqJCcCGutumREWHQBf6GybHij2aM6lIobexZTcU9KgZalTplRItlVmZ4OehVk1vGt0FSkbcnWBrSj2hdD7+0/WnyXlnGHhZIgsqZGiZUCjEtGc3OYOa1K8F0Bar1rwoEp7eBJgbK0ElSUAL1dtgm4Zcqp+EbKU+aqZwlCSubbzNb/epvTsTJqHGF1fTFMkH29b1pIcJp9u61MX7LLvs0M19dKZrqQqH7uvN9mSSD4k5FuaW6VDSluj0ozZpjM4xZNWaJzUJpYcUwksBvhIJFgbvHvUmzxZsQNlTuxYrXDfYnITPneIdm9f99u9/tfLyK/dtAvt3zLfv5a15dl5mU3f/2IdRkzZCAW0nXHhuAhhSENEclNImXk3tqWshQduY2Zb9u//bXftxmltUmT0w01SWL9CL+AgPHrN7RoSl9v8AIumnal75f/KnUNGAF/RUdnHqK9aygDjMotJak7btvb7woclnXItrpiQq+9WKJz3bspVPEpEZlbZlhOi+RQgUrWsIYKUs16EkqV75xYDyAtUQ3zBUdonYqdAhV20atIeYR7CdfYLrNKX+FOpZ1a6y7/ArM2X9KrhjXAVsFBVExGA+DqsKos6djOQhj1N7ZxRoP8cqj1g+aNaLJTtoPTaDJ1XG1WO6irc0vMYJ3mYzv2OX+AIASlxGoVSSatxcXbwSorq1birHjqkJqBPJY+234+yetiUitmOH5AQ5P3/bbxP163nmKH2qux07B758mV2odp2mzwpwPuHPP51kkTH/M5zmUcNlVVEBwHXL7ldJKOz55rHsc28+Iw7hms3Li8mWJW7axAp3uxF6W52u5t/E7jPzQ1XZF+V1XjjEcEQSt1pZLKVUXC6JFw09473PZzO2waAkLT2eWPBg80l5TYRa2O1jkaXE2D+tTuje+unTTZ2/kYZKL1Z6rekVAW75ukkknBHCKyA/ZBzUggKKfyJhsf9jWCKkUuzwptDFzNwgA0WJaMm2HP2KsBgEIeLfPqRFZVjaTSq2gkkarR6wPIqmm4njqH6Si2j5JbP/ooxd+mZxv8pQ/4o6GGEVrDqgqYLUWkZezm6hGl4xo10wdpJBYyf3j0Xq26AAhWCVBFlkRM0E+wC0nOa8MBXiS4QTYmPBu6zFcSQUYyLcMtv5cyJFiYiXQzEFlYGf/451s0wZKWJbVJU0Kh71y6JDLcpFUazIIUhRl/rPzeXtWswghNatl601xYhMO9MvKVy0742gF30DcQGYG1GhdYG54o5e1YqVYryM3XdiJzxW8qtX+rMuORdr03kbr2ncYrb26LO/L9g/v+vWn+W2+3TcStfSWuvyW/1xUX/3v92/pyv1/SdhHxN1N+G/Xjt976unmpu8sCtgXbQORPpCkj9vr+3re9f/38isiQ3LRT+waQiUo1FBVGOuyKpEl+ud0/g+bXTmkh4Y6fZLUvMkNiFOA1qbtcAeqWpTItsXeIoEWAoskEk7n7WuBSVqPcK5PJMCQCjMCqrHp0cn7VMVKXbEKJbk5FWtVQdBTX4WNIRiKQZ3pPggrznGrYArKm7gscnQWv/iWWS2u0+pjcyeuiODs7ak/ZZ5PVsWBglbWBlui24tOu51HjR7L169hGf5zNCdxO0PmEjh14dEQ33F1bWg0l2foYH1xpBTxV1TXTHSs53EXXoDPNcD36S6U+UtT8XJPGpD/GBmWjSXTfaOyhf2eQ21xe0Q/juPsDoJMvr+iQIrDamw9J3YnruR1a0w6TnCXGuff161ywPhzoeV3bsk4GY5gFilOQKBSMm3Wd8nH25ZfL7U+sTZId4YFnwgJNMCsWthDkeN9D5hSLVaR69rxNVJl37/x51Af+1O0XdKjVsd42mRP+6rlZECjFwgfSzFYW2WMzzb09F4ftNDsn5hjvfiSFJ3pn9VWxCshRuekmg9R1QOxmaIPkc2TrlJSIjiWrjr3UIM4pLOShHYVsqzS9kkFRSKF2UC1s91ZjOBB1GSIAVWmSBK4IM0lZEYipEPR31pgBklxIuRjqRrCCpyzYL7O2LQlU5VxnhPTsMsLkIXp3JFWk0IhbVCr2nVXpntUz2WXKQ1xn5l0IR52XoEDLLDiXQgBSyKPaqgQCCU+5BLvqZ17Dy4oep4Mrl3htt1fQo/GmKawSHYeyYWaJhzhVj40iaV6oIst8wMxcAdoriHQkrNqK/JVJmul9L4QKiRGABeRr3Yzv1u8Cq+vCoBBoa+Wmr+oRCySwlmhCADCnzEW3BOhN5ECguRLuou3LjPs2ZDgM4qsYAVJK8wwPIARsCleLvqpH6Nnt76ThO+9N/uI/tRy67MaL/2fy599+5G2Of/5uGtTTFG5JILe+CAtfN4kQFjc3M1KhrXcXGF25SWYKEWFW29EY+gZFTy037H+80/D65X5dUmKLAU/Cbgn57dqW6ZL2j12aKREWCqZfN5CgDLBQCMb0Me7FGdCNNFsIpJmwqz4gkmJgeYWHu7i5FkvIRLJKQUjJ2JosYElIWUlHWIIBhKHPZimi5yEhOzPpNT2lrFyMRNbEe1SMee7AokLM/kMVjbTxrb5pjscoWbnywLSeZdCv7Jwup5c021HOJmrYXQ5F40fbSx9323a/7Z+1gbZ20ZQ98RrLRLfjnNuoZNCL1TrVIzXXvtEZ18IHR+x+Uo2jvtHurrjV0eAhJETdgw7kfkjR8SUnunw8wQEegog101t0fjvBa4U1dmLWA5HEoTjnCWuK3AiwujZRFVEnep6PyLMxErDUOPjH/eB5FPUgpihMsxb9lO00tRbxSCMtP8wzB8VgtgxR1rXdyAEGVZKG5n7nTtrrZwfNY5BV9UJ8LlXjZJV17Mo19D82pJB6ek5FUWxAMDBm/Lg6X3yI6Q864OzQaj2T6MWcAG4WKNRs3uonRmSJ3qLy47VQAjrPn7SsbCrHecNIN+1+9pWsdGcU01K3lUBiMp6dqaovrBCdSWNm2uUCBffSPGMAxn0rTGbKqZw/YKtKV3rOWZXADC6rAdXFjPdYB3XmqNTvd/UeMatBuviswhKsHAZ98EJmyq209UDi9dOE2/ggqi6HZvSf0qEa28Ui1yCFFEVHVM3NPHKZTA5RlvwisFCK50a4pQmZXlR1mkwQkYJRd+46OKIB4U6RmStVLcrfTMBNvoLIJGl2Le3Qbb9Kk+YiHFWWHWYZO9/fN7Kq8WBEiRdlwteS7ly+1r5zLVPSZZ7sEZQ1b63yhmlLJTKu4C197wyCse11AXv5bUZmBO0N475B4lpwBhEomfEUeaFynYYkbhqTybbz+/YVevnv9fZ/beL6YW8QzJ/pLn1dv1yxVu7lEfqB9K3fe7uDsO9c2/Pe7lUPlDfwhsJku0srbTuB7QG7kcAWAshA7kUwbmRwB4h7xQYhptMYWaMZgIjbzaA7liuSo7hXPu0qAG4CAiZbCDjXYrpVYVfro4kuo8vMVm3wErUbICxkBWa147UxhppgAEgpEC0Cj+hpzlnEZU6UXvbC3nsBzPLkWQLIwHGpzKyERJ+wjlVBb3BfBftppYlfjJVgDAFcHZsXB1nOtsyULZUOkIqpZ4d4Op4JmHoXdW6QnQfs629PwKk86yCkPc+JCpvWnth73klMoG1Ycb41SfNqwyNJZGbVpDkCE/KdVCly3llVR5yGVWZU9VIWY3f854TBaBc8oemnj+u758pxH+r76thWAqt781yLeiHG5/bSlOMowsA+PpwTlz9ULR+3LWSCpUU0wTcOOjjBY3s2PDf4QWWYxjijmpHMupxNmuvqbwZZGU5mGqxtfJPRlR+pcOI88t4Ek041YXj+KfJubIf5GgEtUfVcOAdqlAFNpDNomV2HrQpXelRn3/M8sIrkujai47azCsBRnzQTadMMCKs/aj5jwCG6hKE3vsAMXbXtrSo0AND7kusktgM0OFr8m4RlwkWeR99YVywBnOoeSEV7l5Z1VSoq01yip+hs62H1psy8T+nJjgBZs9sOJ9LnjiKQyPT2mDVj0CoTQfMNOZuTVRf1VyVReunw1fSGtSrTPHdC1NLC+wEVSuhEToqQEqEp9xdm4MiYSVV/nZCWMq/xhdXJ1KqctBb5DVZAnWQoMq3E1lLpFewATEsxc7N6RWpjbjel6caOGuHFF2nuX5GqDW23Vw7MgWMLW6nTzADJbC3cSbu4E5CvoQ9orS3iNMBW9ji6koxYgsF2ypzSazFIRqQpw3kHv9cSlV6Heb8UO9O4bqYl4Ejb29K0MzzVgiTlnQFUW+36FiHD+1o7vta/oFive7+IrS/e677/N74XnFpm635pv/nv/9q8DJlaRARSock5VW8Rk0x6T0rasb8TWPG+maGNWKVgD5J08+bPKDol9UQuUlgGeiwkIZdX6ipbETe7mBiZrFpGm6wZS7sCalcAZZiVk6lDniVIfgpQJE2HS0UdKYWR5YCbO02ljDPDbcyqZaRkMp8kskmWfSuoWvexYx+BWleP9q8yQ6ITExq4BNI7ESt2gi/K6FOMzuiop5/q8cLHRp76jj5+rHZF5Qk9Ov4dBrCi9L47AQVgWQ5Y45EwcVVFM03eWBV503xPurCVDUWjjexDH3OCpKLoysnzPf5yGp9rUtiHs+qACzMIFieJ3Y7xcc7ThjRRW4kF4g9C9OG3x/B/XOQ8q4ElH08QzTA/jv+pXGq+kk+cWD88n6iPDTGrN3jiz28wmug1lZVQgfS6xo/P6+9rhDmsBTlPvXznYMyeVlUg8Tjj2mUfT/jcdf28V6eBWr2zo+r2VqWXmoexlUR9NLDj0OAfK9efN5de3ut5HLTuA6xDUuMdLQTJ0qR238TD21caqeZYFIPU+/xZ4CnvHzKgZveyYmWS6YpODXwsSaGhhhFKi20HhQ65E4ClKVgdUOfORLNW72nYRCvMQU1NXeR0YVesGpBgGSWgK5LrYxOas1GamY2oW5e21Nijus7qCCrTp7NZmvdC4bpK5ORTcqiZl/2XTXleMAhro0ZBz6q3rUlvQ1LQUfDdOK5SVTYLUxarKjCr3rJNbZ+kip8NNFxRg2ekLQfCTC+n3AzLpZpcUmfAplLHBtKa+eoBn0moQ2aCdCMlszGGFLDslcvlK5YEOBOgm2UC2LcnsDOJ/b7iIoqdqpKPRMvJEuZjNBsy08qjsIWKVeM1l5l7Zsv00cwBHwEoSJmMG8L7on793/8RlK+8vvi68b4VHsNASVLKK6pHBhGbuL+1I98R4SIsdgqrRSmqZdbSzcwQcLiC5uaviHWtSwZHhHxpSubM2QYbRRa72RhY9mnJVM2OGM32Bv9tXNUt+DLRVIritVTHAbeTJoZI63RjJz2PGaEqI9ctnBU2Tk11VjTS8sDHl6mDlnKf5X377avccqdrCMw4v4aG41bZZ3yQQHtT6ngyApjrySreLiMJDMOtjkJUPRfzLyo6ggJlj6mcwzWWDKxCQk6cRpZa8Omj5Ri5/qJySlMOJar6qNDvm4C28lIZPSqwjNSxPJNrf6x5/+yJCse9aR26dzxa/275rFtf/Xw8ThyL+SSclx13yj8D37n651tKHuOEG4+TH/uJjnQ+gp1ZHHVNlc77Jns3fo8fCcuBFuox7uDoQbU3aoajsGlfwZmg9eTOMfXdmhDsr+s2N8J5M457waE0qgelyFZwcFzdmsa51xf/uWJzq1O5JpqlTYNrqSmpGFo/H/R479Zc4kFxGjLlSa2c5Sd6xNjc8VlIdvf/OSGdSS0PW5xx1pCEYih0bMbcyWQWUJkL1qFsuavC0iL6xwKrI7LFm8rQfKpu9xZimjXWaFtXIUXdWUYlhKoLdmzG5CNPxqEkbMuKnSdnVp3YldCa8sKiB6KfeWDo9wYahatrS0zsTj5Pa05+AYwEkch7YQPMbY7KLUqd7Jq+CiozM5DYcSGDDMb2aI1ayBTZGkG+AcAzM/5oAwHNE2DNpiBotwHOmoljnUXsDdQ7w+pRlemSLydJ38uTZrDSReGVPcSKKE3uogIsxVUprWAlegDJfPoNCNRAzpRFUJkeMO2qaLAapqUdTOVbuQ2qFgBDXkbxMr1BKXH/kKe4/ct/3t+xXVZHJcMjmRm3l9PSZu5Nfm9+C+YCE61vo0yCYUoYmWI1tkZI0DIYFmnX6xItk6A7w8zA5AoxSDHgskhpMQz0THVa/0zNmYaHJpKG+Du/92YsqcjoTVQOuJK6PRcVqD8WGaRmeqsoAYGuibSsRCjKH1etdU1a6eClRoEda9CkZeU620q2MWsJvDriWbVZYxHsI4c3x57zn5M2JNCZbmK6MqiOlNVfz9YRPh9+8tPtYP/8onP662vIqVQeN1uzFe8o7A0mVBnFrIUhMeMKylaTAA3VET3WMAtGni/9bP3pTPJx8Y8BPfb15G/XiRP1+QK1A60AbuhLoBuf/4L4n28e490LzUPmtaN9fNCkODUBY4O1T0d/DDbGp308xYqCyBIwdqWZNTuHITc7/dpJ2LoBnJvpFrN+kG3Ha4PpkMHEbDc0v1lf/FH31os8ToVse34QSGMw04FqjWlybq+zxA10pjarXPa01vWuxfEMKFJKZ450+6FzZceZ9wnXxOg6joklKjao42PNqQ+oU86sYXEBmI8kyXH1s1xTaSdLq2qPxynW97N8/qx6P+GTAOpsZe1MEgjOriXm+D77fUxEX0yTZ/MYKxKpAEJRdXSFPapDLa0mKps68G1mAgL0RVWCz/gomeqcZWUmjNCZ5nHWsYnijGqzqCEgAmHMroR4wK8k95CyNImQ3dZRasZDoRA16Y6W2TqpCt8hJfZ6S+HM7UoYPclMS7m/rjQz4mj3GNE64uysYU0msTELGLIHACu87dtiq2JymbxgT7ntg9gtYcogSdmV5iV1p8jsdn0aOy3PrEx9aY5byBlVbpzxotyVcmukqOpKAEIBRwYyEjVCM+DMdCfT12WGXd2ze2t7GtKcmbwCTMXbwZApv2FKLVUyJ9rOK1Dl5QQsFfSiaNPg0QP3nG8zmBnIFY5lzmvTSGQVrVXaoBrn3OhOtwiW5E1kSqpO5jnLaU2xEIbWJimHI7Ac8JyTccCti8U0MgHmlJlO26UgomThSzKquJgsB5wiEwqmir+lZsR5GdESKx8TOfaRgkrCsTykRDjkVkxuJ7ppiaJGTrIZc3afP6OVFtielKexp91y2SCwgqc5NWzAUG/J41nGkZzD9RlXYA7dMQ3ZzUh9tjWE1qdp6zTluIe5lw7Xh9ZoLpAf36cxwM/d449LEoX18Q8fl4ex6PWyQfA6vkzPZ53vwQkq5gZ6Qz+Z0U+CviHQATWoyJJ/WbE/gsk2CQSI7EG18/cBGmf/8fjfc7sdJ/eRPjQ3ILICxLP0z8oOsiMGUMA0YwlqOdkIsl1nFYGy4+fBksAZMomhPRoPPjyC0FRJr89hZA9m6hccCkA2WK+evolECt6ptIaY6tiy/Et2tURVLDcpjQkJp6kPyrSzgjpXMpjmA4mdp1oogmdpk+0F00hm9fdrsP75k+YBtRhl8UzDmcM0Kl7PGZ79iUqUzZmt/gMR1R5s57JMs9vKDZybSeumRXT5wISwAF+HiuikRMcJM5Ghyt7KDtjZnFVSgNkUYHUUQQbRIYMWynC0E5ZAS4JmMkgcb8kSOJJEpRvds7QUTMYaHsQ0o5lMW1ppkaQyjPfm1lp2SdWQVqig28CLs69CeDOvLE6NgIJMHffDk1QRAKWVJDqVZLB6cJZJUldY1NOCmO6W62u720ojEaEiVVa9xgRe3x75/bIagAjQpwD0ff9977+99E4Y7/0q1JssPBegFHY/GDjhCFPluY0UjX7vDX6bqFgmJb92WljQafdiMvdlFVoSYCyXrchMenfEw7C1nblCBuFaNwG9L/LtBogZvAwup1bNS6MZtwGW5E6iJB0JXkQuGh28ozNJKRmsJLdqM2rcUB5kXbu8mJA5mcwZ+9d1cgVtS6xAgwSHjiWrDK31B1KlKi8rnvuIDktJhyDWpM8a9F4mDSzg2vhszPRHLPYYYwMqceNUDXPHsbVsR4DHAmJKtD4c3wQJbVCewz+pHI0brFDxwxIRwFEhHKPZdgVGwmrQKbuee6KJptWHJsfjZ4/ZnXgMVm6/grEJxz6d7PlN8zv/+IfyAetjOQaY/LGkQ2gLHyte63Os6HRUj/n9MJTjOfuDCDbSah96CC48d1puecKNdi8aDg/PanQGpPTRGh2oveGsyRidutLSU20lSjxQA/jwgf24iG4om/uZjUce93qe+DyyaZjCkPb8Y9nqYgbDKJt//NyZs/k+36ceWI3ZJujOdqVnskIIzp7sr2dHnRP+q0FFu9264areNZYAdSMqpZcEQZUo2W4mQGhywMq5fbrkhsm9QIWbm4gVpGdQ84O/8tzuc6+jPI2yJEnJoNKqHQIcQDd1FXs+4KEe6KmMRw1vKfMzWNDciFZ1rnKiOemPSRlcoQHLAKIEmCqurjY4TB7pYxPxPKZadYPgYC6Bu0YshDzSLQzJz6WTYDSaXeGigSKjymkUnslEbieMLBUfouhOL6LJllyZMlMyHanE973e+W8eW9HV1g986Wk0FkWBmLmluo4VJgM6amYNDHOCdNIkwSMgRWgHso18s1zFJZhIp1qjpWrQUTsyXqehmssXMo2iy5zwhZ6nizszAWYaiE2llFXTJHlPC0C3fhMtohJOTFmnuQeq7KK6ajMM6hYIM9Bkl5wleSDS9uV7+B4MZi2qWGWXZGAm8rbLtBeFtOBVVRyVy+jD6ZKzNfywSO+tVQlOc1mX0resWn6ELmOJeLQJZVJweKTKn1Utc1b8U8XXOTbm4PvZxOVP+oMfH81OejbIHoc+7zxp3nZ79REVM0zHv4Yv7bii6jYImFGmk/RrDm8C+wYGk7pqlHuSJMO/lKmfiGSOGcDzfxjXp3HW9YKe/nBuupNslU02mqeqaLh5xuqVHAt9Itkqg0PJZ/aylPcpGUDrTpHxUH/5pXEa9ZcPP9kftobbxAMdDjrh+bY/XO/jKXCW7MPffHyH+lP0LE4va8cU8SzQH3fwAYQOqzyfoMYCPRa46BQyLRvf4bC/5wLnwzuueWK6zzUry/npgM+CsH+bTPTBc39ddA5hTxwvetLT7Qh6x/RiPjfW8b3OF0wcWX+ZozJPgOD0/YAnzivICXhhgW4voI2Q6HORBGGLZS9yUFVDFg92e7GNRHz7pX6UPUPjwTHjNwtOkmNPyFnag2VKEqDWoGqALNh+8jnUk0k5aChJlUmv8kTYaalSeuGlD+Q4K/y5rUi32WC1zp92ZRZ4mAoAujLV5mYC9bMzaxueYihLmyUiVXL8nLytTKLoW+mZIiyCmV6dTUDLzpu4hO7OojIDVGzPMLHmmyM99u2wzGJoCcnNFq47M5dBYqlsMXfciczcmUtZXUV9ZzWbxJpUNjMLwSwVWeE4WESRZVTcTlUrgfFSejISgUJCqNi5TCsB0mDJvEtkSIpYhFskQj0MkqSzBkTddqXZCne4ltLcaEZjZHB4GgDIHiTvzk5iRAJUZEfoxoIJQM8Es2Oja+KXpSXsusINJi/OIZVmRkcH4N0zX1cO95wMLZURbaeTJvZQ8RJF2l5CPZ6wVkCogjqDV7NVWwXSrOhrkdgkFBZTusKxQGOCiIcazApKaztmmT+rADDHnGhIpdqpamnk42OjqjWHW+6dPf+XANSJmqzdi4Z8FQNbVcOXd28KukxcfeYouKBN7TE3c8LUPmwgeYGKRtIcXpQTX1Ifh3lOHwDa5C8NVeLTXluoib3Nr0Ht/tUmnAJqRJ6IkRVWNjo67hJCNcsek1k0m5pwhnk/4fNLfwnkMVZ9TEaHJuefF5/XPs6TwgjyfXxSrxjHM6sf3ni6Rkccz3S8yUQWjwdGRbYP1X8ohHnp2TrPBR408RSrDh9ScUmyioqFyV+dQOZzDT7Wa/5az5NmTdc22ziU93PvPP7wgJV5DfoxdTcaJ3v64aXH9pEDbgAg2fTgBHfAAKAPXoDjxMqhj/sTsuM3NZC0II82qehldkzK2j+owTtl0ZZFKdrMinQZTlXHkAut0D4QsKxH9xrg47Q8iwqydWdynh9ngz0bjX/gn2elz5FsygO1pJP44fmoSYRMwn6e9vl8QZO2rdlLbOW1zi7VUK2PnPlJO2AOKlB4oaFEj7IGnl2urDHB/eUsXbFywOzneNgVASM53ZkAa6hAHXG6SSX0vclq7ocAZGluSpmQ71JUqRVb4TKYbydcdpVIZwRphh/bfm+XcB50XyMI0JjyKM8hT21JgIcqV0iPns15np+tkKdjKb6QVYxsnbVnSWxaKeneISiozMg8LOmfW6W1lmnubqKbBBhLSr90a/ouh4LopckEEdEIvy1I5lQTK2ONywGkyIe8sJoRN3uhfoYp6FFf0pCgtXOIEnxCpWrVDWJ1WFjuqnWHBuRXpDnAuw1cvcNLBV4tzyOTXM2I1QEievoHUIUuH5Tbx259QsVTnnnqRg8ObTWmwhcl6zXNXqjZNNYyHTkrLSGLNWmet46MBK+217oMWSnvkNJnnDpkVo7znmufiAjntfNOHGa7rMqJTQYlV2R/PukxFYA6/XHwfrMRh2Oy9i8T3NJQqYwO/jPysMWEJhLAB283RxI1G0LyJkJ5LNdc2CFCdR6ajuH4/NXa7M2wjCctWIMSKeCkQItm5UksqL3ueRT97TwI50FwbTYHRfSaYbwGHm/f0Gnylifg7QeATtKdDdA+XUIqs1oVbfjDz2LOuf0aAFB1Aq31zyqzL+dJG4fdLlyYjpIDEZ7v7xjt8eINDICzM+rFsy8fPzbUlmEmezVIGcuo2V+cSK0PtmoKtjRx2YOqzhfPu21iFFjrxxgzp1zNfXrV6uVdR+yr3L1lyUmTdO56tOYwAXusZHGQ1UXB1q2THIC48VzUkGvVIViX3AXVY4hrkjOoGlXIRrccqbzSqh4/9cFXzaPoWKct9NmP3U7Tu7TTt70qaEnMBjHP+a7HucqGDRTlgCdobBTamdaTL3Qkago5KQoBZUmCkki1xHpbAhItq1uPs+rdrGZUWzY3ACRMyn1VsAVEmKqMKeCQECG36EbNsuG/VvyHcV1XvsmKddUnqFYj22IfjsZ2KoEkokS/+oBWCxQiSpDVSNdSLrXwzYwLZ+VhKTtugFBWa44paQJUw7F1I+s5UEjSzcJqOr1fP+31E3BzE685PH3KeqJLSxgRGozWrfFtsjKbw2+b0kQs2wyUyVEJz3a3PkAvsQUSqNFznTsrc8cz6K/2WpJ0eg+t631QVIlGECOnVLk3DWiwVTuJHBX7jriqQ2gmJwzh9CgUzP4E2IHSpDs1exVtQT5Mp2xIY1EKy6pUnyb3zpmMPev4Wg//3HtkgLOOwTnEkJ5/6YglQQ7Rjjl8+LiPPsCSPtzpoVLxYeIxLMYp3WijUeRYH9duqRvubbzWY5LrMjOOB5oyrg/rwA5vikaYBq9zHbWYQg396WX+CHNPeKvntuevxxc/B2ONndfBEmct+tVP2Mpehl7f4+VnvT7o6DF+OEANhTs/L0Aqqh7jZTkM53NoejjIBx17HE2Njy3zN1YwpzSmnqu6bnIokEG0aMXwpkrrn/NEQs+SPcRMdSEMk302lcaUzvUD+sz/oyH0GPB+0uch1Qda2tMT9ITZvZof6Oo85QMNDv1clGy2WYJ6KALxeVtVBNTNMBSsRl70E2PlF0Wzmh5IIxwr6CYsVQC4CEiMKtbs7tCiM+r0m1WFpBBdOWVgTegEIJiN9KdqqkN1MNBszq9ZdeMbZwn0zOcAwJ7PUUvbm8WSRk+iyDi2xly3nFZ40ugNgGitPmAfKzT7BAMJCXQ9Z8dKT5hxEgvzjwd99z+gs0lSQMEqUIVCED3GXJ0D0nP5YCZ1sMF+OtWHXG3kUpgyTTWyUNIOS2V6SrAAU9gVhC/jxTDYcnTia+izvl09iII2eLinoSWAVKlGi4ZUIqO+1VJMmXn28OdoT+ERVjWKEsGuJgDXyyHDDe5EQkn6/dYWV+vCphkbgNH8Rwl1XYSCL3XkZAYTHMsFmdNgNSsEq0bywoEl54qq+GAaQBTVXBNFRDfgus0Uji1WvQFkihVaS6F3BFMyRcgZmMAw3/AucqvadMjcLE0pGxbgoGslQFXNtzwFrlRA1QVldRwh0OFJj3PwB561sahdWbWF48N4PGW9QRSyBkhOHWHHSQV9Vf48VY0TavmxlLqOXcf/fhi+Jkoq2DphDZRsjq0kMrO4gMcTE7IaZnbmCPYCUgOhTywzwKoDz0Il1PGmczJPZIjxuHNwJ2BpP/X46PmMPtVCyQOevxQc42MoNRFZfcREXzi5x+4GEVKV2FcbuONGn3v7668Ttx2MwXUu+HlPPdh+AM06H4rgeNsB8PPZn41Q7f1PSDuenccDla1KSR//DPCIDbVRmr0wH/tYvWLvQeDIFTbVVEUXrHa4M9L40w+dErfSsMDgl9neTb48fvSPPioR4zjOYzxL/zFE69zYbKCn2Umd3ihTbzys5wTsDxM9rGuv9vFI5VtM8u4LIaQ0qwrWSmjaAUw4H1bB8LneHiY4lRPoei66uludBjda1dvW+BQACqh8qpXWpcHYETlZQ9xqIsY4o2fpQNMRzO580ZOm0Dmg/eLa8DVnYqwbz+r04rKGkwOqXASndHAol2J9M5uBwGSbil6T/AF2GAZJkfFlE0/ZyIbMSyrx7N0hbDyQ4Nk1SlS21BBLG7gzUlIs3OxUAjvGJcCuFIK6owRDPqPIzeo6SZaIIRiQAjU2MCA4PEnIa4eEQR7JtUYeeOpqCkuyacU2Pk5MXdlINTEh88zSL8zSSjBqrYTtktLS9nOWU1R6O3QumDthMPAyUE45ZZlFLGxY9aYaWxU5Qylkpr3eYqZe107kqi4FTRaqR6N7UtgySURuEw2LScA8KWkzUM5OVE3rgIGOfFNi5AJhcRG2Fd6V5sbYpddCg7szzYolBsKWM5Sx96UMoxD5laF7m6wZ20iFUrkluLnTCtKSVLAJXKnknqEi3fRpQHv7PIaxDrxw/mcqYY4ZNNBgjSjhiAmSTqgzNqjM3wHD7XXtGNznaHUseBoQn+19HMV5/4yJU3sOQnkcMB+T/4fvmys4V/fJMNfp6HjquId+8xjwJ44ZNz9X+eevem8NSGtoWz8Z9tOMgnuenoYCBxppk+6tAoCWVBHoh+ikkDps9xMm/v//+hAOauYbfWea1XkW/CMSPj7ymJuzxkSjoznOH7f0eKRy79IJ4lHvf3xtPYV+ppNrnPple76bVXPbIVUedDHdJPN5Z7fUl/fjGw68QUc9nZIbKmg8rxbLWdWdncvUh8E9q3Rus6nhg6lAdHZsAq25BZuBRawnzs917UfCz6fK3j8zaPOD9bYe9VBi2eLzoHq4p0omjwd8tDOClTZidb7RiCLgDJUsrbRYj9cIWrcOQoTVIPD6ZfXOaLXm4nishW3Lk9eTmK6V6aT4KOgnBhz17c/9adK2J2E092qt6vDsnWczCSjdyM4ZVKCtqVJrZFLpB+LpiO2VfVaeMMXBo3MYJhd7NnG9vZkiS4ec8hpxIaQsjJqhfymrNDsia5OVecxzeySYih3IFNJM6adSd8MEZGcVewkIgIs0SHbZ+5c53JqzRGM4iuYWqMLQ5TDPklSwtUt8G+Yr4tRvlr0CXchgyrYULYBVLj7pc6RN9FWK7XQDaLYMPQCFbsyLKcDItNBrFeFNN2LdTt1mK+vUV68TS/BM1pPxPCwBpdUQD1lYNhuJ6ndW8fS1o5VOJi0lzyi5uMSGdcW8GRNmJjV2lOScwZLI3EEzyYrR2OE74cnMvLfBPEkyIFFpEchq71WWTDYskGCL3uacvSJjLD4s0eyiOqONwytw7WdbxD0f9rpi5qICeXZv/xq1vaLd809DNvTz/3hXb2Ph4z8lsNiyOPOz7K8vOrIDjBo2rZkm0LbtoV9q+1YQbc28f7r653XHDjwuaKzaX9JvEz6e0zoH9bj2qWb5TPPRTA5z1pRzWJV1WGu+A1MR8ukg2Ww/n+sdzqEcRr8PH7/+vDpQ6zO6PBjjeb1QLK59Lk5H5Sd1DnRl3ocT+IAyaILkw/1CbAq9Q7ezjkNytIsc2Y9j6NpXZI+iVCUiK/RFR+x/OLBzI1MjKOmMHTkICge9SZadjm8NlVm4qWwnWFKq/GOtZiWKRZ43HtDaUUE9cM026v1Y++rZFgCtRxM++6jJCBRLCwKoLt6actTUYhFMtc988Nw85DrItZxVrdJrVZ9Y7qhop2p0audUWVKz9qUAJuRj34/B7Kk74w4Sxh/bWhUp4ei6LUNC5iWhUNDbhaquHKKhnIPQrpB8+vweKoKH+6+PtXkf27tXL9XHHfQfKPoyOxEGka4ZMX5K5BhmYbQkWm6Pp+KxQ+sTYsC8H/VHBCEqq0y26m6I1k3htL3WY5ee/EOqV1WAQjPbSQKYt0Wz9EZWeXqFtuFZ6sTvsbO1ZSpijp/mvsxL7O/D7Fb6tfNPJWPsoMPduDxmwhjNwijSqjYAKfp7672V8Y4rgRurZB4DoCfkSscSvRiCSkUY5aP8Iona5u06Ch1l7O6swjJs7EUjmMpUKgr2yU2mEEhZEEJkj5hQEd4lnki1Zo1RtATYkzdkAWSY8GUbYtKSMGblC+DON5RHRDFat4sZLi/mgaQpolBlZsS9Cc+okg7CclumRWRqX5IzM+neCZ6EVZeZDQFeG7ENQ8tlVf3GOYO9u4qeHT7NNKRh473aml1TcohsTjq793zHFI/1w8Gpp+BaTYCOjEP37ZQSelvrOrCdeVNTkONNGpIRgpq7/YwhhvRWdfhBZxKiBoOe0/75vjaI7BsTxx/b80/9RnyUjvaJI82QVnXXUtsHU7IFu4mJHIVjrnWW5MO5t6nK1pp91vIEe9TjC/9wxePIl56VP5BrnHqzuWV6piwBwDREHoeLJ1R94spzB7PubG8JPev71FnruYW5lqH7Dy/b1z1A4RD3vVcKfp0PP75LqgqWJobVs0DO7uMgzfn6AZFCx296UJdaIbV/Ut8xdo0PyhjM18AQfYiFkV2ZR1VZuI9a+2EkD1naKKW34wOE2Njs5MDP+QXY3XNn6f/IM5wMDwDIenRmPd/+0lpala6FOjjsR1D9HV20PW+tu6gzXkWkhq/LECbCAxc2DNCy+zfhX+T92yr6fVYMH88UPXJUBB1Z3UelE9EvdZxchdUR77/Mw+unVGOC+ikaaWnm1VzQDB7YTPBkiIt8c7s6RzXhRp/4clnsMOSJf3tXTKNIh8Yk6aVOsEUX6FGGg4fr4pCQTM4WYUaIKsWkKh6RUMMtdDZAAmlF/+a9JgZJkNo0BO4ITAmyFemg5m2Liii3pKDBa5wWzdxd8hY2tmpMW6sH3dnrtwBUV7ARmWaRlfYcMN3TCUWaI2VGt3hlLPyuHhAYuKrUwGFWsikJGNNoV36X8/FrScDNAkVlQrOVQtxCTCX2VWEZkXElIbfk3Y+/VKgLRFRNYiYk+xlJKR0izXb+m6Twblar9ioZkZUNKNWzdGP39XKiBVS6waqzP2FgbiKZURYjzeI7cXXqpcJ1ISgQWfUN1olzCYK5yKSXREjjyALTbIBZPucDRfYvehw6uqwFu8CUrONcmQMe89V8b5vewf1tInL2JVOdNraOk6Dx8aLAHmE88Vc7qLZoGNf+BLYTAeP5qaayaBwGDov+R46z6+LmHryILMNxNjhUwvFKw8+idPbqp8X3lbwN0vp4TMZKIvzg5MIi42FYlS4c9zDOHkOqfnjWv3jfMXaAPinoidYmK9cLr+ZZx8Z2ZKjjbfmBWCqULf/Vyby+Hx5NjdkYHeI/YcXH6tY1sjGYUEPnqmBmaIOWCi9OLU/YXBd87vwBWp++q6Knk5zov/V/+ym1x6t7rjKiYunJs7M+P63OgfUHHV/2eIIDe9ot9/uP3+Oz2LU+k/I6q8LxlejqNFGlVtWVDNbl+PIy6oK1QtFMrRwk18jOaoqP9z2iPY2j68FlXt2sVtO/m900YjWa7v+Mfx88BgBwd4YJ8G2LRhfzcm5gfRntznacrJEkfd98PBMbfhCcJLXs4Il6NlE/VHVwZMf8lPXkFgJe3hKWSTqMrlX5rgoChxoujfVSOCiCJWtsTOYJoNE4DPLm5AmzqtOa6JdEK0d8wqhkILKqYflBFKLSssjsgdPNQcC166Htbg/RUvvPcrxRUhSkqWY7GAm4lVQHTE7eGXHnfW9Wt3x0i2cDUWSNNUzglpHIKPEyljKHldQxauqayp+4v173D72Aau/KHounjFwZQCDjyuRtFo0+l+HF+Ir9Cl+LIXLFWuiadCgzRJZqppOvbWaUufu7/SfS5LZINyNBozE8raXMpNzIjF173jT17v1QSjndZFj2BiGuREaCkhGZ9JSUVEE7kqXYlZlCqCdNdC05AqwhBz7MKx9cRCOqA1BJITbv36k71obTLUUqtM269BBogfIC1B2WNTNrnFxs2w9OtMLGl2NRJ7+AExqV/8nzRzwtHdZhU1UjFCNSnzqTvFAKH+WSy7BQk+9sAWpNXDH/fQLWOgjtgsc+THA0tR46BlMTsQ0UOEFd/VltVMtEn6iseYGJbKZo6qCL8vRlDeu9nqSVBEbpf9O4yUdzuoLP6iTPoRIGlJxfNmTdCSP/CJPO6+ZZ6JjP51PWc6Unnis3eswGKhA+ucR6YEOYDrt+HC4nDj0cAtBT7XrpbPxkwnKanI8nf67iQUF4rqXD0LrLU7BzfmbWQwAaPA1j2h/R4f0AjHO7wGh4dF56rt6GnkU7zHqrqo647JbqstQcUS/G43J7O9Wn9HDJrv1nf4mlzbMda9FXbMdBn8j4mRxW5rCuo7y/J6tcxKRKCNJUNVcPj1LEN6FisGqeVC9PR+cGCmZJlYWvJCVnuyerpLjoePVT40ELmUX020wSIn1RcIDeZS3GkiNqtFPPhR0xzhNtq1OjeeZsdDV0z4k5aO0E/eMgq9xVJjnWKv9MMyRrora4GJ7RZUi1EuPTzXKJcPOkm13mifVCP+RMT5hRikwDL6MQ3c1CDrnVW87atqK9u1U/WA6GVHVeh8DLAkwkqwCqssBUMg1wILEKFkCpTDBUzBlEmq7K7hszCTHhyIj/AEPhJaidVMk7KWBMpkI2uiH1hTkVdB0G1OlOQInMCqXovi7ttczctQgzgA6uzURY3BGG39crEj7cpN6rCobU6SWlyfUmkqruENX+WfSqyIeZva8AZMJ2uNc0ORMfBt0qYSOkPGITe2ciIoD0HrxOmmO5mdxY0nm23ilAy3QFafx3gArGonVXae2MrNq+VAJR3hW0KusqaTVfRYRUmJmdlBdUONWICMg2giQsBc87w42riBSpRDzIAZykjJ0BKXOHE9JMODgWYCyZdDRkHrOpDinUZxwNZyciPJ+EwosdbLZB6tltwwqOFVHrV7DZtKpDyBNljQFXjeYQqiq+mh5PZQw05rUMUx6+t5xmfVdlrLPdr+a951frzdpA+P7XNvMsrVp7HB9TLfNWiY82x8NllG/KIlRsQn1lZZDG9B4XAFOPEZ7Q8k+f88ez+KAdIEwV9Fxr4ZI6zY0p2enaWmk2uVcPpfENbXgx9Wf0cas7noeGBpWcuy1Q0reB0iQe/HSc93CMPb+mVpEi4KQULaaNbpukCZnCOTuO3nwCSjV+YMMICzQkGZlmISeWlvnsogOBJsAbueR+qrRkjSs35UFrE+MQoRIHHkW58newpAB3Ny+19TrcJOnKcYeHQGbNGELzMv3hNC8FaJJWdUY9HdYcMoQ6sNdUaNfaJGA0pZvV5GejqqHUgOoKsRqTzbZzqERgybnF9CGoE0IdiJ/WWFY1TmGHx14cuNzMrYnwElgCQHa0agQT5onuwHmAmoxikgkrobgOium1CF4oOdEiNpJprTRlBm0JgjMl1xc3IyyNl1RBH8kyOhai4lolyujw5PX1a9d52LlSywVFJsllJjHNiFtutKzBOmaeRjdDIsODNIWZhBZydo0DtjuTefntRG5jOvaqYJyrmEvqrgny6S4ZJXmmGbSvzAuCR97OnZcE3flKXMoN7tdNStLVmXygOFNVB+tuM5SgOcNq+kuZ/KRttFBR5x9FvWMnJL826VwbL6bTAeYl8HrrxRXg17u7zpl54/cX8r4zbyjDtNe+zDKWSi5KcjmtJsov3zt/pnh9rdu0jQkXwQzGFkrO02TCWkzlgkVJUN32vslQyHB1gGfrMrm7YMpMSxaKccjMzOkIASlZNp8B8/ArtBPBRKS2ECBfYl4e7wIiKdBBxaqqi4xwYaciMuUo6S+B5l5FogGF5d5iTw0WM0cC8vGgfWg6cGoysNNBGo96zEPls+oHIo5kJWQ1mDcB0ZFWRRdWlWxGZqB5zY7+yitUUXgbTJYGTA0UKVT8RCYJMMQmdzpoqotSdoxYcD3HhzV3r05iNXndAGMCYWVz9m3AT6TZkX93+TXnBXS+G506L9a4cz3e4TtMIWGJtBK52UI9m10dZ000F9BnT69Cl2OUH8p0X9eEVUpgals7ZD+EOW1SVu0KP+IgUOvED/PIKwIUyQ1DSyrVscOsa/WXV/VdOYVywO3ZcUjsE273opcM/sEHhUslA7OqKzuCbDw7Tkykyh50oh8E3JhCqB6xtwNG47eOfX2iTxONprQnqtB0oR9f38xsPcSOHqvO/4PCr2yANVV9AumJanmg5IPu0EFnCtVpD1ItvqYOu+Yjm3sqIGIUNXqwUJUejjQDibsegW+KvQNKB3dH613dJfQOiS2PZ57izMQtlk2gZYkJukAxw6s0/8g/9tT4LotmklGxOOWDGYnDhlmC3QyaRWOFMQAgvNtmWPX/FRZysxfJSie4tIcn2y7wsGiT/ugyVagCf5DGJGRuEFI0ZRjkUCgrqIwMLEKSERfzRVqIO+2LIXBZGglVoCiL/foCocscLrteuSqIvPcV5iuZRdA5mZHoIQkLNODCgvkVVhEwMxdgyU3kNqflwXeCFEky19pefWQNISWarFQ4BLlpZZgr/MvuJJhKMiBYbKbivnCL3Jbf97W3RfxOlmQ0IGMWmEpSxoKNCRp2kz/V4+REdDBQNmdor0Jgsh17/0bceVskgVwOx/LU8iVbFj+XRfz4229dDsJcnuV8tm6H4nZ9fy0XMnMXLE04DQaHEn5F8D8jBefFWIQ7S8VbsWW4V5LApb0u5rZXmvh1r7/nWxGvGnLQXDW4roWLdIl3sDbS9069bP87v3by+vmtyKQIC98Gwpbb8oKXAC3SnKQW3nFJ994Jo75l7s5v80qE3nvdAIKkv14ZUI2dkhGpRBAwy0wFgGXQttChbgVUBkM9aZAdgA6zxiYCP6y5hpbmR9DFPq9WepnRAy4JDLQuD3E6MDQUU7sCpMiOWSFVY/MUxgaKhcAMyuxLf2rBxKMOnDXSkcpOsp1AFzXyWTK1sGZve0B5mCQduvOE15N8bY/erqqpOrXLmeQkS6SjViRNUSKoUpagNpZ7/P6yIAIRUI1nEbXcxJACCTe41YgaX+6NDHrS2VQKNTCZQNf/4oB79eoHVQU9T70RSUk5Cs0PFpiaD/3ILp9f+ohY8ecfOAXTlTT4kCsFqtK3ycveNHz4iOcj0J6pPPiUBPhiGkOmgJFMd/fFXKmolG3SKpPKSrubp3XBIzGQgqhmtfLgMNaQmcNlNvXZahc2GQgcd6mODTHwcbbv85ezTH0+HpKChePambBbf0qbyZFOMYUaTd7fXODPKMxMQO965Ed0pCxl7XeqZAaL+JwOLtU93fAqEnUbp05KCXMhmSlKy6idXCRIr/KeAglCaxtUkRs0kT3vKkDu6bjKYCAgIiOznBixBMoq81e8frUlG9BT4OWZJqF7GQzoUixGcb10Qr7SEzVjoQ9e1vS1Hkpn2lUpa0kaA25IkkYrfeBYZCxzk3dxfdBTN9faZf9WgbpqmTJbJnv5qDMmxShymauymFXvu2wRTuNy0i7J4Bme7xfN7Cr5u3b37iFS5psuC3q8lsyCEN02MmJ9/Ui9thw312tVjJFhP+OW9p36/nvG2xibm3m//w9k0n/JDEp23adAKtIARTrzfZv2yzZ3ABQq6Y1S3MiMKgDITDF7YF4ATltv5q99R9DeeiliY1uu/AbCHAG3f1z2xR98p126se3vbva+Fi6F1rop3BEZStt3GHbNapRl5mXr65X/GdDNvNK+NhZ1bURKW4lQysSX0xzoe3Pa6ysuL2rnyrRVp84A0TNTEo3EZal/JdaSy1cy80WluSP5DlbnczhDqWBIlC1B1xf3F1IWgaR5hCKX88tXRiiRqTsBp9kSV52DXV4lvQbzko6MlIvYF6DcYWXQ6wwrJLHjkHJyj2nBBIinPKJYNTZVeQJCdpLX0T1rZecJDbwuv1ux8jFWwvRfqqcYNv7CkLFEC3s1p9jXIkBDMw6eYANMZvXcTbzSYTBnABpEIdjFIFW5UlX8pYCeOkKyeDJ2VclQEkQC+p+aTetcYrFmKLn4ChM4VKaMWpJktpLLkkqVA67gJs1NPaoabuZOZUQupxkIZLklM+qIUk/cSaAd8CSK/3DABFav20l7Y2LB8hXegratK1dZz0Pgf7rc49HQ4WdTJ+rUQZv28wQaU1Z2UZ2z6w1YvqbWeIjiLn9hz+iiuXu6KUqWWBZutpYaNri1a2Vq3lgkrSxHLaPBXlZn3yENxOI3BmRO/SBh9siNY2J8nTD/rF1/Vm32XhDCykI/k+HmKhIx3eGF2YbynafCLlelsXTSq6yTTjeZmZhwiQ7zpqLL/57Sq5nA16tZ+TxkVFHosknidk01JCSYgWzkUwVHkjLATDU2+MAYpJBd6FBiSvrC9K/RSSdnMeu4VcuUpK5bZtdTGOClsBWDcdAwSLKxMIVkSHN391rg0zxMccFqUl6EtG9QMsMyN9BgltPDnNMMZk/oIIiKTM+SMs5kWuoGK6lVPOygWmsgxxLxMjdmQI6LNFz+gy858MJ2rkyvxIlfZQ/GkELQ98ocBZPeBl5zzyz5zn+/br1Ig+4fmZu2kwhe90Z+f4Pf/xly9xC26U5cboT/ohBMBfBmFCxWMqlczC1AmflCkX7FWxRTg3pdxw+oKeZhwTcsHVq5LZ2ZGYgQi139bTsskdvCuHcY3a9No/vFxfXjbcgL1/7xeq3brMgbd/yW1YxRS6beW6bbGGFXmEfa2tR2bqSRUYOVrwoyRATTcIdJCBEGvm73KtcvMG4ypAIE31DeGUnIrgVRTNtwINICckelLBG7KpIJ+HvdSmRYShECcIFKKp3mW0U5MwxYxrVK16wbNAyhiGit6wzU3Ag3CIjbDM9uyFCNgK+m4zYshCDTqBbn1HWwApkKN2xDNuqU9f8lyVuJGaFOpP3pHoEzywAnX5x9zMrNG5Tl7XDC4k7od+Q8cUU72U7EUYmukJ/ioeHMISI7BV4FayipuUZ94wXwzEqA0Dp7k0oUQy3KhL6yktCbYh5RQjhIJT1hALaseMByb0m/soS5Ux4AqunKMt3ETGUIRnejlCG3ivNkAuzYjo/gtI2tH/dYbux4ZopdBd0rMimFrHpzGA3+hxRJ2+jzas43dVA618BT1dMRdT/g8waikAPIoHcOsVl+Ptyt+pL7QyXrFmkkzXxlemVEOuwvf1Alk8Ckm1svtT/niVQbwVVm9XjjSs71TN+6hxaLIujsztn88LqztJ/UwMAdHgZVpxCARE8B6tojTdKmRng8SBXVbJzojtZGIYWETEaXSyVWX6OxsnotC/J3yrgj2wmYWVdvrAo/sW55Tr/QosQd2wsr5a3VY8lQYmfXdanGovR99GlGIzUBviq1WMJaMJdsye+6odS41lM+YLPRCFhSUWExJwdc+7ZWkW6UDHRfliCSFNuAg1pMQgrsgBQWgFf1VT9xFX3LFNyFLHnLRFNlmWnOIkaKFcp815ydsoPY1cuhhjT1GCppbkmTk3SPoOW1cL0uD9fy99f19pXEVcnrsIrwJfJNyk7XEJdgKwjKjLn83z3hsuLrItyDV7r9BylLxVWq/UowBPhKF83uv0V2T70yAS82URQYIUAKwXNyf4BSMXKhLBdZP6aY8ox/Jb6vpO90Lao6dSTwNkNIuT0yl3LfEUqLiIQRLiy/uF3kxdBPM1i+3tvcvnSHIWUUYmH/Fj2Sm+8X7pfesNx8x2JS8LLwua4gAU+z/dICl4uu5TfMXzCWDQszUrYMTnkiaSlk6BIWV9ID9xVhK1JMM28XZ5kbRssqesVtchCXZJLZWndJX0OCAqWftRbSDW5Vx4ZUwWNFloqLDKgma7telulS5hcey12d+Oosi9Iy2a0gNQgA6qarjpE16R+RGeVsK30IMUu0q6TzCsSeIJlGIE6rEDhRQ1G/WRLyrBnoWxofMkKBJLoaUhwXcD63Ypm6nCeAf2LtirdqiYQP54xODvcAWdYBm8CsjORUcamSWmNpUVXcQwnWd6WiJGC4nAueoeJErEsE/Frl91Xsc+f5at0pMRP1zCAgRMvvSsWaav4Wx/b3NfYNTg5YwLT7Nz4hocWPQJbjJ9GNnpR30qCLgNSApJHNsZsTLdbCYQQb6kJYs2C7JnnWNqNu0twzUaQD+omdOjaUf+QsLxvgwGA0SZGBksZudFSgozrGrXv+qsnantz8PLfnitFEQH9b3SDN6PW3yfVrqrXwDPBDnVSdfTURd8VUTSnVlxkA89aK6v/P8lj9SFoqgFPDpl6milzq3JQzsp5I2TOzTW4pkbayxgM7E2DSdaTDSlOP2RqQdJdQBawTvVsdWCPNqsopZNWMoAqdkVHixL3u51bQFhtNgMM8Mkg6o7LdQunMFPk1Vns6cYFOK3NgjGRgF35XQXThCYHGZVQaZHRrHA2klfJf6KrCXbRM8VAyyQxDyq3KjWlBu5YizXPOSdUwwY2RhJnVHIi7Gnyz2Jt8Vw1YBp3n6ZeopRlTRuL6EalrL6aky5R+vZd982vLqZWWMsdlrGO/wVjKrUuJ+7U2zUnXfdHSvvZOF5rEKdi4YHin3ZcMa4HefbuwZf9VExL3Vr688gUD7qoDUHinC9JdJVhyolL1pyxRvG3VxihFNGXmvl1ve198A2Yw0imDzBBuAbP3VT09iLyN2rjDrp24wZQ2aBBX2mUy/YAv+GWARcRCMNaP/AWaFPLU7zCJ+439trQNaC2+O1dXpdGJ6+VbcNxEVH7BLwgtXWUrI81zRS7x/sKGS3LYWnGDS8x7LwTsJbm9i2u1NE965yvWjlYIjfiK1LUy3dYCLbdQ05gtyRbyiL0WoXCrSfcMkA5kDT80hxmqwrozSL3JARotOgufqUxDjwdOsiJKYaogUmBalJT4umtSQJfNJcNKBM5U7YkKTp9dBSOV58F89ZwWdgdDRUFGwvPBqVaImayJzjw9tBOcNgCYOEjDig/7V06hiPauCkHb+zbG3i3qfWkqXzTJvKFJWxS9PrJlBieVhnEd0fhCazG0ivUKLjNlJn2tSq2his/LAYMWNdnTKirtKYwElNOOVSAoOMZ/aMYDMTp8xQl1P/5xzWsP+uk4Zhww2eioPbCej59gDAKcE+/2v02wRlRvxvnkEyqVjTZbldUbsuRc3vCOHUS2M8d8Ec1UyH0AAqsRInuEUxWPnCdq3fFB0xR4li9sx1S7oumveQ4nlkdRHU+Me9RhHtJFquKDQXKzqBMVipJyZhKcX4VIZ//PRuI5DaXo9xcMpJGRrZLrgpCkxPqCAw8LJhXs0BQCTAYkqt5Z6sK1JjLyPJ8aQ5CU4JklbVzAwvGp1PVxK0pVy37B8kglLSu5A0tZAJfSUQPXdZaq8wLNSYw2SMEWqrvuusyxPtzryYLKU8DHhNPNaFrBZpm4ZGanka4LRNgGL2RWWGU+ow+SzNEze9MVPgYvEUCYMwIAkNv1DBoRNKV9qi1m9EphB70qUZfpcjGvtq9gEm+Ra319U4qNV6doaNWkTZBrqSWnYCtjl8aUFF8qjSm8fkI0mdFgl9M9DH5v8TJU6qPop1AYk4gNhzI3X5GZylzGlG2qMx4NTwtrQMncCL3/XqUS6VUYaCZYNsyMltVEeESljXeGDIH7htu9b3Fr2ZvfSU9mCqT4k75jrwwt+xk/1w0P+br8bW7ODMtgaBcjfGNvQbqUsp2mZAhimnLRzQwrNwKSMSRlvhQIEkueSbuYy52ee/HF2BkLgjnDqwwGqbR1mzVlVc+PCKvyOyLPqMBqqM6cAdpQh7HFC6sb+JwvZhajBWVWcUwd+1MaUv3VmDIjdOJ4YrxK5kUHo13gpPFQbW9P+RItqRZvyJqjVtxaWe886Lljy7ZyQkWvx4QWtVRUjzi2uLJibWgrQ/zEIiPjMBHe+arpHixfWTfPNveYYKQ52WNkhI8wZwwxxmiqvw8TGFXDRVYh2gMwaJHlOzNMZohIy3QSupt5GsoNSu4kYFZdAkGoiiGo2Kkpz9XDEuvUfwFgr/Tko/GHj4NWFWKOp+Bhh0E6AXdUuu6E10INmPn/9PMTEnX4O7sJZwJ3LbFI1RQ4unwesv5ycfNefECIQ0M22kI5SkMa3OsoiGO2qfHzgz9MALzWt4sxKu6drG5lFVUnYJ7hcRRPbjcnQj0P+iwiujq+AUqR3e1mlOg+m6psaNyBFmMjVKmHHko2D3V2fP2/Gk0SQnQTGDB8SJXQUIkoRXnk86y64EFTc0h11hc6e15Sd6oKsGBLvT8UUqVoreEg+xNRIKVgSKfQhcq3K+RzUFJrqWyuzTHHYT/VEK3Ng7NWr5uVVSFvo4gGJ2X3WJDbPawhsGBkuHBxpbtDtpAwEy7C144aHZsS9Q7dVAqrfTOUcG+yQSBqjM08eVPYWjXKQE6r/UJyFFJyylcy67aSBKpmkFyd7K6xjSKDxE1br/WmGX2ZwK+ujPNdBajFBIeUCc8QvYMMOdfy9aKBmQ4kS3B6Xd/O618J+8e0NJZVlgwdh6agpMICpqiAOANVtMvBR639r20FnNyutQxGZnJnFS21quB2IG+Fyd49UymSlpG4w5JbCkOGJ7ccydwpy/dFIjIjJBdoX04E/XVTenkqwJCTabadJQ+dmWJse8sl/K5M/37Dm0bUYMnSB5EwwzO8UAPMDXAzS166DGFGW1okEyHlMncgTaRz052JS2k0flXi1CTRMzepNPNKC9VOrfabNl2iF6AyJZSGLOFbCWcA8UDkwv9t5aZOQdW4WX3MJTQysLJCxPyMsMYvmWXR4UXnTsFuv5E8Mu6PTRub39moUTWpxBnI9u/jb6rJXt0zwQlOhU79YixdrQk1f2VRfP3lbd114jl179C4uePxgOfz2haLgxRwfkcXprJCYwmkOa0ridrbUZG46XiLgwaGQcXdkTrMFGlUqtofY8dxccfE1sI96e8/vKSeALgXeLUU1uQx69MyUV0oWCoWfsIx9QkuTrX+d6DMw0myn9PswLoic7eZTiZMvc0UWGdtvpNGmGC3w9m5U36UcbGqw6yiBHezmmfb0WwNnSdroE05Zs0TElOTp+iMZT/0OjduNfGtU9OVdKnRp7Xr+jhgmlzHPdXv49JmF84Fk2Zmpz1Js/E+t1Tf+tAI/e/qx9RhWLtrWKL7R+ZZJKN8QCCToB5BoFbE7kh3Djm7dLD2eX2Wt1vsRqACI2ePWDdvz+U31K6d1DXSfUorAkjImlFIwYoMIFk1HV3HQdbwmtlsIGkpAmk9rrFMKcCO3ZvwLqBByKw6+ZiSkG6O5IUVy6u+HSCMC2HMYPUIS9r3xl4Rc2BrMZczDW7Gy6KkwTRGKCG/ZJ4gotieuolIuZKhpsX25trV+MVbtNymBKOukeo5EuSCG/+GZQu0a1Ggg07AimKzy0UoyqSCtlxr2bri8mXrFfddeGsDTCpeWU09F+zHlU3l19ZzddmfpdLgSKQMljwbrBAChKqR6VoFdMWcwwCFeTPyu+GlFDUkKZVKy1swqoRLEr6haLSWgIshhFUTacCZe0SfvwGREegqBRrkLl+C2dqEiCv1VQVttmRR2te3rR3u3/5ipBXIDENAmcFg944Vd2jGpOm10rgILFeYJ2gXOgFjC26yNHnxMoGKA2teZzfVy9nDL8zJ4oqtAADktElEQVRrL7eueMrhLi6zVievXE41lFJZx9M+45WKA9pbYhjZMS06PLGefmB9hgefJqV8v01xzThQArCE0JM9D9DCoJZCwZ18+Yg3KyvdzWstGHMY4EMvoW3k6C2M+cLjiud+yBnPPnH1iV6ePx37/8fN1SL0mpVo8vMPwyegnEF5KFVXYFM75pzOmvvWZe8ixIssq24U3mhQTashkmWvivCZUEHG5wofB4WCTGNdB2Hp9MEs+3DeH1cLdkdMR8Vt8TsT2pNVJ8wba/64mupBmeCxJ6HB3O3J3aOldIt8bPWHaXTGYTjQwzTY4KD2QtLYXSmwUhek97CAqoIpJ9BgyGCn9Lw/S+10m1zpd02mkvA5WbMfUDROc8xn+zzRX7dM9zbuf+WsWLMLTvcWRmpHcw7X4Z/OCvVGfg5mPfHMzhSz21ClQFcnCjVwFjLF7M159HUWMZXyeZUdBx5mt8TnGhpiYBTBifkBJCnJPqEQphTgIEASLEWs8pGTO2c/xZBq3O/hHz4OV2Ekq4MZAMwQhbU5UTNLLUqqZEkjPUDlgNtnCensg1YKH0V89LJIpTWkjFPcheZZXMvQ1Tdm6bAS0m1GiiC9K1dJtQA0Tq92QwgTpA2EiT7LPOlV9GYiILlvqubficuZlLtJgLvqOgp7wEy8gpbkel1icr1yOc1lTs+7TAz9FWbGWJNimVqd6i2OpoZI+FTTVQ4zW3qrsF1VOCC6WLKMbUL7JmFRqGmLpqBVC1tVp6W+YkNEZFjEFdf1ZujKLEmtfaXtHXkhmDBsGDID26BvY6aUW3FfgN0OJOwyz3wZDajBfpfkYvJSDU2gDEtLTO3cDfI8LJVIbAmJW54wk9LsYjh5FaIwI1ufvCC8rGRaVbQZCLop7YxINmhThGQmdyKLthHNQl1BITfxRUjwoQrQ8LzaWKBjO+eMCM24HkJ7bE5+VJvUq5pNq2KQbCf6pMIwhfVZeBZddJM5qUJWsurxi2Pcis5r8MUxaGgZU7ETYOxLAFT1cdAMXeyXtXPGJMLGrPQxOHaEOC3/HL8yxCeIj/HC+jCK7IATOCx0Fe7UNTU4/gAxc4Ni0SgkhO3SVHsZZlZbZfnq3TP3otj8jrMIsmpVgGYXumsLo4zQqWOOQzgJ7LUOvDjW1Ool1Vtb0qhnf3SGk4OLPkj92UVnGdHhgmaeubmPbe9eG9CN6QWXWP2UTzDaptAmL9C5hN6p7IEnx9zbanRnvf4VO6Nm2TqBLu9GCRR2YnFeW0+ZpVhVeQuZselRznkZLzdA8wN29Po/O3iyLIUJK7lqdu6kJMaIU9EFYvj94wnaN1YcUl6ukHV/F6tRrtmghosaIDLP1QZ3PDBNpRKmbghs/6PsJ+B1oMkUzRo7qu/cgJEgew7S7Ho2alfrzqHB2Cl179uzfPwP8SBmDvZoB1UPpr7aILYmyNkl1OAE1eS6rhZLCZFzVwA7T1unlzlDRUCC5hqgNzapKmW7jFxoPNcgtmvgQCdV5WE0tQ9DVeJTBQ5zNkmpOLLybrUfP85lDcbRRZlxqWYCMJN2bdV3IsGAlkGvNxSSv5bWhgMMyRNXeBbSxfpaXCvSA9pZ+i3dKz6ZOestSLiKZC0NPsnSm6VCFS6klOksOT6RmaZrx0otRSkm5N3JIAhmsJtrk5IiooVbVJimjIVepZOgkFV3D7QhKQqgyY0QkyG/t/GOVCJ6DnEm1l4CjF6NKYvvFHPz1+vvXz91+Y1clqNFoGQqIfzOlSjIgB+uNFJpfAthpfZkR6FHRx+caYrKLFRRORdAulWnt0+RYSeMMBuyPJ6O6ipFVBWkovLshszhBcbfqDMhBAGThxnHptSjywfwVwlu6foIsqOvXeck4wg3a2Lo7IIeKWs0xbHvY8PHr+OhTaGPeKPimGKhKHVNSJdVNrxOJIGjLH1qEBqAjotWWqDSYseNPFzdY131+Zf5FJyPHkfXfypsUIGBpukZPS+icGWaM5E5UdJQuG1bzteUsWl9iLmPnMfcrqPfVcZvLrOT/RWWfDjntmFr2M7J5aEaxJrYNWssr/NwxgFXKNupyO7fPFhmPKY6pqq1thOG9tfRuDovq/Yc6nLu8b9F9KCQXf20s9rzhapyXdVJ8KjPKwJPDshMMPMGecVlajbnsO50qM1NuWc3lZZj1d9PkfbgLIzbGPRVDpofe+X4uhxuvf1wfeX5mLPHxs+3FTd09mhiwlpRTT6A6Nzxg6dqnpdQg0+BUtYbG8+xRP3FJmR2c3P3XrUcHrKy9hPW05QxQFAJpPN0I85K1OFSO08yVTPs29vMsaiPkSDkk3t6GgaeVanDiIb25bU7BixDQ7QuTyuQSl3BWBJb7SprJ5rXHZfMJa23oMFqL1nWRjOr2jzCchmwwsyqeZxJDG9SHJGbw6lWCKoZ6Tx+Ws8GCDAowZVEwAKLTSh1Pg89mThNMjNuh72QJNx6HnOJOr0JN661wPc7YQvYhlieZrbNv6RlTkBG1ZjmxW9BsJxpwJV0RAWNJDOcZGF/6uQ02iShcFi/qw/m27bvQOwqgyRTgzTSyx2QtvzStqqxyogSugZRugy1Wm+YogxmjEWhpPIbIUrhSgKRoUDsKQdAZm4wiDJJpfSGRSh2yr8sczEgQ9kyWbI0RhCQGCnz9MIEHqGA7zrrrNmJoNFySFfREDFtegDMLQ10Kg21FVBgFWZRDZLV51A+qJXRoaxEn0Q3WCgilWVAiB6JaiUXq3npORs4ZFFD7rZjXRAwSVEMTlWnqeavbZmV+bS+jwsDnp/UuSQ5WvC9ixqXjwMGZBPYdtAgNAnSCeYxPHPMjxM+p7vzuO3RJrQcu9YXNrf1l9Qq+ovRERg+DM6n1z6Hkh79rwnLbtb0NjZq/1HNWln2rrnUjn0m6YxGH61NoOcSPy7rAbzlpNsw1b+vOU/9Po0xLe0oWRKjX3LWkN3GOq4XveyDnjoInS1TDkIAn+xnXbMbV1UXI6lzlb1UaAfMWdXmiOce6kFnha9WzGIz/QQTZqyydRfp3lumSsAwi3z4Xz43X7PdDd3PPXUFh1OviG6i/Lmw878/lx8HTKBSR59uis8Dx+hdzRF4EN3surMC81fL6iuqQJ/ta9WHYUBVP5x5vgNyRZD5MDl9nJpfZJ2pfhQ106Zj61JpnD09V/hBlqEjUA7GflBJTZZJsQs/O2P8h/dVYSCgS0pUowMOSfHHszogPRv/FWVS011L5VNt56p4ygbpRw6ehZTdsHkgfd9EgXlKKYSlNXqodSnHbVQB/Qc8dcJNrDFMFqa0jaqdBVADdisk7Z3V5XHu6QH4StTYWLTNxig2+IKR9tPExdzmy1ZGBt1c3Lpebw94jRpLMUmZ/y7AWx8k0lRDQXLSQEAXMVdHIwjrSSmNJR+KRTJCYVLK9EUVVWtJFgRoFiQy8p2KYLOsqdwZ3+bau6Z0iXbtJBCeNCjYWaWSe9lBbZERlrmakxXoTIdnlrrsyjFIkdv8fl8ICFjXJcmRgqclqY2VGTSjI6REWOzMEL7emfZ9py7bcKP5DI2ofqkuq6w26DpShdDNaWmGDGOkqdBFgdIaTRVuRksruTtvwFoYzRz+cgko2clj/DoU6fyPVBbnD+Ouw2PgWN4JsT+hLBrijU1i6DOlbGaHODv/G8tRAh8feLLsf5/0x4tizgk/A5EJKPA/LmgSVZhP+LixgQjtctQRBSdU6dfo49VDs/UdftCQj6WwiVGL8jk2FJlQVkNRsDWf+4IsqfAQkGmAKh3GkbeMjiSq5aw8IDGR9l/v+K8/qB8u+3jkdcJ0+rucaSphg34yFdCfjdKR3dzKJ784TwVVkSlAsOU2bkmCwQnP86GayLYNcz889phMPli8g6EWPxgKbxxNl/iVh5scHT+2PQE+jVFtxJvdb4Pemm5DPoMwGaic+JpTf8jjaMkit2djnj67fpVRRex2mNEBEHA+ac6fPn33OSpgc00GuMbW13KxWo5xmBR+Pp/sTEjXwrefaYfWq5eEUAN2kJWlKiF00cyqqf0kWWlm/cA6LNK5ZhaLDox4A2gll8oHUYHTitGL09xMQ0Odh5FCIpRZlPecvg7Mkh339gBeldLlnLBmybJH2yeEqg8XOYVsmu2POQgDLItqtZ7lwpzkyOyIuee5nInJ53TVzqS1OJeRcKZRblbp5A/PFjXTl8ZISRlSMjPZMVBRm+jGY1ThbfUfevXCrNf1zUuXrpJjssBX/DZJsmtNp0FBtS62ogDP0qQ3eFFdsppdNnehmRbfMjECxOSiCVgVLfrNlWJ0zYIiV+UAvpVClFi8mSTsKPOVAddNk8phK7cl4GkV8Ga6aaeHUT2Pr2TdmpkRIlwpbKzJQSXuReV7ZYYyxBrk22r1RX8b6bKrtvrNoAWUtm6lofv5gRDMsWu72YRnAHZW7z3XNjiBYA+nMrlCEx8gnWaJysZb5aQXiawhwbX5zWxdJpjxjo4Gni1EloQ9Op0GNsjlY1jUR7wDUD6m49PmS8c81/kfAuix2kM15Z8uop78QdEScTozyy2M/ZlTgYED9RWN9XH8+lzpH/fZlX3/81d/6rMqs76njGm+WX05nzHoedEBx0hKER4s80tAqI6yqkWdN6ubfqNTMm04Sk1bmvD3+W93IJcAUmN0Fay1D8Dwkc4lgNX5Lcxt9XKgK4vRrQs1C+q8pgdtcBq7Ov592M3jrYGH1zTvZsmJ/7wanix7rafuT71/yhA+nzQuuUvZEmIfqoOb1IGVCCgwtEujfLKvHN2Py/MsP/ZtfUBiBp/rlEXJcsw6nv3WhtwOrpwQqX9rsdLxrp1vKIAhUq5za5qNWjVqBwCg03F9sYN72/VkHpRea610SKx2+T6wZ+N/FHHUrWQMvz/rXATf7HgS09LeEZJzlQSP2FUkUg8NK67Us1QbChG2W7N5iAJo8vKiU3E760UiK9micczl5guMB5tRA9Bq1ejCp8xk1ebQMsAqNq5RP0qmILuNCKO1tBX6uilJrXMwxlZ99g8DwZofM1YlUh34IrMKrydu761FsMWTe++xxn4r9mOnxgbKybzfO0DkrqdoAmW0BbhYXEDJMXxfwR1cGZbvCFoq3+FYhi8JZmDip/1fr/0N/v3n3wLdosaQmdIsEzS6TE32LK+Yd2FbOfhhh0o1jcdsSLocRqeZ5Uuw7RW6Qm3E/H2sewvRmUE7GQ2ulUh7A6ZKH2eGJd3kTGUmovQYC4kAPT8hO71vaXlfK+HjO6p8U9su1L0pQ9peQj3MMeQOE+mpMCP8Wrkzruta7nbFCy4rSWBruCqjZKEqA8w2GVV6n1tu3HRfFit3w0YQacilweFw1YyL75pmD6m062yCgvWR4ypc2WxZf111g4/pOQfGpmaivU/xvZzrbIOhUs+inipSDTFV4Phkdtthqlwuy+dAw01ybGFvWjwbve4E6Cbban3oXc4x6G0DT1RR1p18brXtGp5O0+MMPkK8MtHlPm3KNPqV52Q1o1w84yRiaxqSSt+cQaZCKWTwvPFB0X2j46rrr1IpynXc3/v849J6ZCz7ZvMDDOm8FkA54A+U0JYGNUt8Pmwk5/tGJgIeSPbYzvNragCG129cZs5JLaFss7IaRI+he1jTeUI6HXAY519bqDoLRDPWgM/ZAk8561AizWOL1jtWldxWLxSr6mIinEkwjvGdLHjVvuZzvweClQsfImH2GVBJlHrPJAOqvrzirGKO2289T6CuuT/64JCPj+3/ZtPNz85r0DVpIYozWWogSJM56sQQkQrrAnsQNnnCccBZ2ncY/z0xLObrPrbW/CrCUZX97zUtP1nQph/ieODsAKfJi77/2jIaBdM6pDowr0IB8ima5Exqn7POwR6NWct0K5FqG6Eug/KsIiNOfF21XGZ1s5Y0wat5aDb82WYSKmHUxtIsUTqC0IcJgwzRZI6WRBnSki6BhrWQjI30KyPNHUx3CUYrlhJUSJZB8bc283bfb7v3pl15I95Ge6cBSDNIcS3XBX39XLEzTZsi0yok77Cx5FgEGhWUcUGTACNbDq70oNH3ypQDpJs7an6JgOqwYwszApBqJEOKuTwohSyBvHbj4ht+SSkGs8QyITATsXs3ZSaTfJvCkB2sZEiJyvovSMHigIFIuknvWFYlY6e5sQo52nZkkkpZQDALTzguJ+RfoNbLNyOXAGQyaUudFARqQ6T2XjWuoboIuqq0Yxub5Hlm82ZU0nT5Dcml7DJ1Y4kcC37h6PfOgZpABMeqHBsxkR7HPBz7gK4z0kc6EY0/KtZ8/N+8DAWmpWOfT30R8ASv7Ur1cXmH+zqmKTvEGE/Ip2rrmNMH5ZaT5BMrFDF4/O2Yovrox8TIRvlg5IFaKekkwtqdZp/m2gkNuIvteygBSV0ZmDUSu10oT4RQY0qbKj0eNA+7rsmFNXTXYx9m0GI/2qkTqAtclWj4w+GfR5nHxg23NuxmPwxMPrEN0jyyjlsOUz385OgxF6SrQvWPDCF6kzzkwgRh6NsbH9w+8gRsQ/aRUyQzG7n9GkvHAROLDg/cvLaji4XQTqUfYp7lfq6yBx0cquY4jbMEOFmLs30HpVJm/ogyzVb5IC/Z3mNKtj66np811oCFgr1t+3n4HjQjMaAarW0tnqPEGkeA2eV9nDsMn0cgZsWes4Xmfkvp4dkXeJI6dddZ8da5eGEy+U1a1SOsx/jpfzV8Wu3TgTaY+VPzgXO9Bz4SoHUBK2dbF1qU0Nrf0z0QqELQBrK5lVQmGZMZKLdQ+3Z2FGeDdnLjM3k99rFAnpWie4UWBRvIFp4HaF38VT12lFG2pEiZ+8oMqwK2qvsyQxBKK5GrpyrSPElFLEKIHaXxD6jmH/ki6brIi5MPVjvgMjS2IHJtooTOIcJgVm2qJTBiA7qkInnKyVZdU6mI2wsCycW1U5VokofMRFVutydHme/PaMIIZci0lT3ZrsKxUGGdZCriihqmlxX+ItXdUpIZLdKaIlECCHsHtTPNEblEGLCNhhtQD1DzDOEtrlRwg0Xmm8Hx+uGbe18JYC8EeUms77pZJXkZ94vI1tkFNG1s1ZRgEIrCZCX+xU3BVoUKSq3yv2VFM/OM6OFJoc3R1eN6Px0wJnzQQ3rWMTxR8Qd0PeYAj28rH9UHd+L9cwTxBIRlFfX86DEZj7OcJGXLWrJyROjyr/ZIf+Sxj3WYsJDtGw7C1nxZ5T8eN9AL1/HH44A5oRMnFajP0ECt8fFcRHkK0pCkj5lvw9WzZcaktTVV4yELHtP++NBT2t2uUJ3tqdwhJpHXn7uGGP3DzBOCTVBP2mPUDxz7cwEfK3TWd0qnegHLkFmvodrBlIT++ebeM2f/1RL2MzguoaMq9aDeSjVORdNfLuu4wu6XLUriQ0NxdijPvrezaQ/Q0fnQWvjnAucfIXw0IHX7wPPcTz8B3axUEefqDoKZTfH5wWf71V4719EBomUHtHbWr0vGa6juA067urJfVAc0WJ44OxI8+I1gt6qjEI3AP2JdTH/BAKMBXH+ceaaskwGsUmMDCJdlRYlKdkalteykA2vRRXmNyFmQf1ahID4f/FGhNSRVl3R260NTwJkZVUvX6tClTAhkRheqZjJ2GsBkt7nQtW0HzHDXP1QLZyMyRSTb1qqFfEklFdUDdVZeAyOYFBZrwrIaoDfgKSp8r+UOJ70LGftEGDG5fABA7B5T5Uwpnay8MXITAdGQyZWZoMXtokrdzEizdLAMykoYzbxG25OyDVoJgJjD4OaCAE8wnTnzIiFTCSytALyqdtkSYSYwvrzzNZZd6UUzmlDtuYDSzCtkYmVP3JSWQip0h7dYRZZ4xkIgZQRqhLgtf6U8l0FCBhiqzjFEJkGzQLqSTBjCSATloAKwYmJI27FgyE3cW64bvnX7Luqq6ISyOtS+aEhlRO79fe3I9X6RBNd9ZU2aTiCZjrDcDM+9nDaAEZaV4Esz2AKQwYAEdx0fO05mDG0Vwz724SDZPnkTFAlVJTLW4BObHlMENoJ7HHDbhj8s3digPnZz2tSRx0D0gcsPYPi0i2jEy8ER/LwJPlcmTtqQHzZQnCuYc9QXcaKPx+391dViaJjnatqdJoCYgYZ1TUE6U93c8An0dVDD1CrOB6pUMuZo64+vasabfcmqn4y11KxBRcDnr/UfPaipFn78KMfvNIt2lq+40olX6ubncsc3dXtl5W3rZ9XrNtqCAxAO96uzhmgOvn16q/PU2rkNVKAkhVVetHdyFgobKKRM+HRLdNJ0nsIM6qoSkarWzkcVGT0noB9ZpS16j/E4Hhu+62wjqn12J31ATO6iQQFSwzXUalZPC9VtSDrbK8fzliw+AZqdmr2iPM3RdfF9xnqbT+luOSkTkJmSZcv69/hcoHJ2eqBnEceHSEJmsvsjchIc/fTnvMNYlc6WUNZCJ6u4i5IDymr0FBLKjOqwUXNgedYyklV7Q3TVcqKeS2XZIEyBnikkM+0oLqqWumjnUDWiUmImFSMAmJnMqDQfm4/u+xZi673uLXP89kWmf55xZbQQd/XMtJmSgExYjcCpwo0N0MIko2JZwpLINFUlcDLlKRJh3/pikRPeqcLOohhkUVXrTDI3wCXQTcvkBku8PG3Bu9GWXLQLb1J3RG3jQFXOd9ZG9G0ifFFcFYb9Ao0Gl9JlWLxSSDqSdAAOuoeUdpvJPFe60SwHU+7IAHCvLYV2yZiTNKW4I4vohnFlLnoYPViCA2ju3oD8+rHuhC3LnRu5GVLpuKenEMqNQNxhuZPKG/nWdoW/Eurk8BCOysxIx7Z+sBZ3JIQM2BaAjYt8BWVI6c5v2haY0h0/GFc2memk8qbombZVM5RFOpWKDYSgxAroLeTyICqRb+F+eZIlioHWZdORgv5wkzgsmJlASx96iRBY+sYoCwrCkEUyEwSjNdzboXeWh8e3Hyq3ld2miliPezzuBxMFsctn2tQC07yg7hIBpqGuEGoTVwJzZgRjrO38+iBtO/HFv3zHR/B6gvvDZneIiW7KOPFXZ6x5ftQvng9nT6bnYdtsQggbwm2WQjlpRE6QhmZOW8imf/QRftWWmyVsJ4LKyDV5O5dSSlg6Cw9OCWtFmkQN30CpqDUc4XHAAshRZOCEq2B7pXnQfU/lgSd758zs8Z8YF3Y62OY5NGLJ4+7b/37ARRsnSXYAlSVCMfX4DT4EZUwjZJ6vUD9DNJxJCogKgbsk26r452zOQT4fd9jr326u8729pZ74cNiglKlJQDH7w/rllSOw4Xw+UNyzKAC6gkjKzJqdq7SjGke1ArXNps5hrKYqKINV6UelIcOQLKG1MggEEHDVkHsi+o6Rsile4DmL9WDm1NVwsVTlTEvRj1QkS1GLSuxSOQWUlXu1UG/PBKp7nDVFLRhCFJZIEJFN58YYnUw4wmpSDbMaUwyZQkAZ2JthoMIy1oDHrn03qUrr2TIKNJamfJk4JdKSDDGesRnVRD31LYNWaoWyI++a2Opy0dOVZmnTlm0tk1ijaIrO56qKqBbn7RER1gCS5kmhhuUZaT1entUcY6s7VelImOgr7QoZErY7h6WqxACr+5te2N0NtjJAcoEGyTNlotHWxv9L19+tWZKryqKgGfLImvuc7vd/0P56n105XFhfGCCNmKtzrZkVGTHCXT8IDAMBN5kPt00JYyl2Pi8DdHmdXM/LFbmxtPFuKt4tYGsvi2MKC3u9QOy/60eAU82kCBe1eh890krIOW0pJdaj7RvDiuQTey1wBeJj1mDnXngTym2bGn8juLEV4XAD2OT5ZiYI7f2K+mwxMnfqAxAvH/LHyFtIvssxoBN+AbWfeCRpE3g2SHA9CGSsSldwalZYaD7SjjfWQ2dcr/d/fd7IjcW5wGDgl20x2rUtdQlFqAu99Pnq+FZrJHe8qwCJJ9ymorwAa/N68uUZF81LRBRvrcL445aU1Eykq+v7lJvefjFuxtfHqhOjVDaozeY4Lrd2o1P4RvlrHu3A2XHt0BGq8YBuxViPFsTOPa7vs64MwRfSGG0cRS4DlFjFYg8MGOOctb41SWW+1au3dlFtBNodbU50UmlRIGBsNQHXgj62G6xWil7xzVDVjOIgmgOl2h3sQoCnegy6wGHRJGyxKLsioarcXqLmDIGhtw0WUK6VakcsGML4HUW3W206Wp5ZXtNIqRMkHY6YAFpjIgnqRpDH6FX+81hNQrk8sEkK5ZyEiYxXjNkUtNO1moOFgABTWWEAZQMcYQj0qJSATknx4ytyz8lvMXOXwXys0BmbFBYH/iDcB4A94RQW0Z03czPJ17WQre5EN7BQZUR0wEAMqsrBU0nstc1xlmhXhLl3MoWdAWRkRjpPdQddyhx4ATG28AJaknJvgoFUkbwQq8VLOncmJTGXd9qZL5Tkjn8Edpk8UpuofM/AXsKG9OZncwt4Ejulrcwqml3JAGmDWgKcpPDujHydMu6k8MDOMtUB8SOSiQylW5KpZc1S6xY2EREr19Kjt2hYLORLJxOwzKA15EKRdshNhZvlxLDYzwsqFGvhSde+EOA2dyuW9l+F040ggfnv+nxe6f3z83bqjaEqBEaRQ8F09oTP/6pco01FLiw96b4mEXRYIRDxxBtBrlTEig0+aSGP5fph+RIPoLWeTb62+R89+PODv89KRL65IsAVWwvB/EjSXhlU/HkevG8yDXs28RH25r/4EcgnqZWxEE/lt7+be++MiPf/+b+IxbVeJrSXma98g/oo6JuA+09u4Odv6C8y3vc/jJ1gBtwzN5AR2oFKWvIZjbXjTQGb4CLJBUHxmI9aSF/rePDEXyzGX/MesYn/g+T/wmcvbbsGzL2jsqtzKL8xMVGRsVKyGuVbGrP9VdIlRhNL2zdYwGefVCvCJfMzGfaWwknh5uvsC0Ze2m4ovOLgp1wazSnOgljxojjxCnRNLM5jL+5yrGPb2I5FSsdTKm+wsayqulaRlUJbDzZt3sSrSuK/DHwZ/WMG/TpxqRWN50qCQeZ6PhVGK+DgPEigCYeheF0n/0IdTupsR+wKR2p8YTT5i77ACWDaEfaKtT/L9uCoduhWR7g5JtUmlq1ybCzKFS7U6GQTtYmqDTBJGqmIid/aLzim7HwWHbGAbYE6gMecgovLrpPRSQvsbDnLA+4UggIk3cNaRHbwBJ1Vq+MCoy6ONhTOPhg4KWMaxMhGK6x67gVpHEnK8Z79weSqPOMmoio2bOhNIZjcRgtPmWkjhsyVcl13olkmjzCcaC+XEDEpVKmsvaauIKG9pVhwW5ng8gly3WED7g0Z7aVFbe397HywCxT5BISSPtTOQ0nm+8kdr2Jr6S+pvYMZfAXXRf4Lu5TaxUAD2EYiTGKLKwNBre3rqZa6zI12H2CGRm8kqwUQzLu7S0/oDSc3gYQS6UsuerUSe1dmts9UFaMqhZd74+NCTNjCohK1oK7YuRUBQduhBHTd+UhbdaU2HgYWHmiVGVWsIpCEcL0lluUDAttCSgl4dlU6767ffNLRAvD5t4pcR8T699FaXOI/CzuWu5cq3n//+d/vBvBKzI0HSx3yU6F53+hdkfnvG4uEti/IJF0DW3/eTdL2hpEB6if4T/4ggrnxswOICLn6yvrDTTEW+Ed8958/uV9Fxg+xFPFP6F1BZqYr0ywAketZiIdRlzb+wT/8WIrwLP19+JIvnr/xEXM978LKB8J63x8u995N6OGjjbWC68kFKqOIfIl4V0F4fiIo/vnk/t8hfPjDJ3fGJvcK6YkmERNYKW6kyEBi72C8sXKRC8xXaz3MDIDgUqzQHzwiFgLredI9YiKVn7+vgMwM7f3ob674pLar9KH1pzMvfe1pwnB9W9OKu9CSCN9LluAWnpUbuDqTqewDx4gsSMt1vqP69ClQ9UHr7e1R6OTRZmu4TmOauKMbU3Qt/3p7ac/oPM2jRkuplwtUBtjuVeXmVEpE+1+hRKfM3I62yl23yrtcxPlzWNNWvwBNiI++rYVJZcCmhbaUbTjWeg9wVXmTrga20lRdjYb9K2W/NDa1B2OHxtgDtwHWLMqYmNo52eMzYkZpfxZDcGxkf3U94fzF/hnrE4PiQMnaqr/ReTyt2b0+dRfJM4g2J/24+oejG+zyRRMC74Uv1N90OMahrF6kTT3wa07RxhLNEPmBHKTXn/fusuGpsYff2xjRY6+bhGBfsImah+zyYVIRDwzJrIZF55685dQFjTpbAdWbmoh0peUmvfsktulvV9vurpwkm30/nwxnCwchbaRvyyrttqe4N7jL+kYFQl0/y3AQgPbn1WdtLoj4MPW68JL+ADvFB329c8NuIVhRfHfzse+uqGz0xmHKBFZLkjvgpZzfsrWAqEvJPtFJ+68k3UV7I6FP/pFe55Ix+cBcsHfXSOn9+/y7GcoXn4guMe7jLIl7YLquereQtuBQQhJ1qVkZtqwhVTXCAn2mbgrqeTf6Eqfhh7OeQms9r7SR7ky8MwN4tBiMlQ8ArP9bmc/akUhivdQnI9bOvxvavlVsrZbh7DqnVouEXif6mHtX+ecMrEcE4gG6i1uszD/7Tz54n9TPZ+3nD1eGVupPYv2FE0rj/ZHWs+EeuaFnvYxkgEKs3OtPSk9FSReePwowcyMfABHpYGesT3AtvsGFzJB7P1aDDud2rYItdclKka9rhteF0hWMEvpOolR+9haITO1M10GKYCqq52uFS1OZlJK7lBUEbFBdH4G0o+zmwAFSXEkgfiLFhwE38ygyN6mP0xPWm5mAsBAtTlCiH+dD21Aac5ZLDZW2bHUN2CS3DwhU8hKSsZuNHN8ZUDhlEZwWLKO9/BGKgE21/21/i9WG0VXxgNZlrYtZzVeouSZ49Grz47eqdVcYtmluWzPO7tHJmumpnHb5yvwdvSzft1kAA5tarOhI9QS9qxBHYGALi8PmlFPCsJSSUpmrqrZkx/bKSoyZGANF+3g9n8IOAKwDx2CTmH4P3jY29+LIr9oMXRHewTDFKDR8GEx3PFx05LjJykCGibBGC9mTmHWr6dQ9NqHhyCb7hivkIrBRl02LK70QAklX0FIwOFdca1zDHFz/rXlF5OyrqF0fyiq3NzvdqKIQ3mGy/bO2dXSWrvOXIVVmV5VwmI2ojChjXDFZv1VC4bEI0kJWbxa6wkFogxsukitFUQqZQlZ+L/3bicoHz0zg5ZZDxqpoh/tWsEKggLDTRYUIYCt37AU5Z0UAGLtXTYkFvPps/F1QUFpb0rtJiM8PuP+K+il+RhKmE17f68hil/o4sO4mqhoKdFVhmNAvGBppV7eq6btaCPauFc+N7SD3R4+DDsp434C2c/bk5EYCr3Z+MrbStbgudaHEBnZFLRyODhajV158WB0Kb4jaeAMbFV+o1kmTLcJ4E0pukB9yZyKU8Vcrwdzqyvv8pIhl/37nA0QEFx49iODf+F//O3fsXSEpPMAPV6z9uksFvTjo+oquNWOvt9iZZQudfclSKBX6SH1XndL7V3z+cP+JjT/k/+tnBxao959843nj582MR89+loh4uHMj8+/7PB9pfyRhI+JvRLw7E4pnx7MXFDu3xL/Pn/fZ8UhiRGSQsbD4ZubKz+b2Jmy8JLi2xSGV66MEsXcaHKW43gwG15MJ8sUWxMj//SJ+ELF+Yr37P7lXKPJDvP+4hFEglgt3BbEjAEQ4qdoRX3GRUX0+IiMWKLzItbPi+hEJvpkgf/KNhYAW3miLF3S332rsLfqOIzuUmvaG3WGzNGnSeVet1E0FnZrTu9zL9oFKbQPGgY0US+VQhq+2GLf9PQg+mrdj5X/anwA6BggyQ0BdlMtA9V6sDiTtptr+lrqs6Kb573Fgada8DM3RjG3j+hQ6iUp2ui6f31Rt8dXjL6Fygd2Sz16cKGjb2VjAmzmtW+s/kVWruu2d+vavMrNzmzFjmq+OES4T/OsTDu0/1y+UvrjWPu6f9pia1T92sYzOzRs7GCC2neqf9GhlmLTAqAw9YEIPjbLQC+dNI9Dp/HIetjg1R2J6V9c622VHtAfaudfo0LifM/GDmnqlM6A8TM6es5mSYj0GzZV0nBU4sOqsGpzwm1XgtYIfqqzw3L2JRHH47U2horC5RUGuKkY4FCtyQzuYWHztypqnTemlEqklhXbdVedWCZNLS2Jjf7rfFSU3iK/sTKKqNr9WZFmN1IIZ0OfhuyiEO8UI1cxXEJB8COJ9w1X3ZB81NynE+xfxJqAtuih6NQ8UqF1I2zHVSvJO9GbZAJvsTQAL0K4ObI1nCiRnxlYoA/pk9F3EOjpS1bYsY7+VyozdnTwgMrC1ocyXW6lNuvLlSpGJyKcaB5HSdnAESMi5E87S3vGuXLnjEz+vtBOBT3Vg9j2sTQJb+SBEt3euNsh1ZFQlHnMngklzthCfTD4uSSw8YLo61850c8HMn8TzhP4WVKEvCQDd5MyCnkmG8C6t6MLzE5/xYWMDTDew5HpTRCyQGcmIZCyE+OBnPxl8+a9+4k/mzxIY69MXMxa1XLyegb0ROxuw77e5HyI+Uax8aiWwcwPci29s3yJ7kSFucWtYr1jgn+eNlW634WtPir0rRTeVzL9CaCH1QTBe7sRWKRjHy5h86qAtYRl5CIsrIaWexI/w7Fe+qpwL3MyUkwFVjc7k6vcv8HGWipVbIIi1rGKQzA1xMXM0tPrkI+uyRkt4U7bevaL4KonTFTHn3uilkWISnm0x4Khg/VQdymV7jG0qeYhsb4xS4mpF6x9XJSo6d9AG2AY6mAzuLuJCtWEAZ2ytRCfjud/YkvBlor5NHduatwc3jyhQMIRvm0CrgHJH21XKSt3Nfd9IqcD2dvRYDj+hQUvEWdEqLHp5nT1azVDvYdfrDWvvH83ij685Tt7x6NB+PWGBtQXu+GXZZx2g02CspKdG4c/FlStQTG1hF3ZIvS99qegQgz1Dc9P2RILmpShElGT6bnVhn2azA3RKApugaMt7bS7PiDrZmXCN/Rox1cQPB5P4Fycm7v1o/ODPkEGEuloyXH/WtqUSlo/z31Z/EG4jurMltupezy1l+J5PFT/YQjKr75j7/Ga5hGTK3T/27o7Z1fAG4wKW15dvinuZyHLdWwKf5Lv6REyru5EQNyuMSkmyZzgU+8s0EsjqFFVgoxoqqKXG4QRlSBlZFz5sh8UOp9zkL3UVqtk2+llpptnH3Vp57d3oC3b7OqZR2Y4RWS0C9ZZ3DuW2jTVBKBw6Uzsqet3XqBIhaT+JF0K8XEnsfNbnjdx/kOwSPzJgCon7jUwtp2PGm3KM/EEC+/VdnkgkFFzPhwokGevv4g7s/6OoWLME7vyRGEuP2x0zogAOADAyorJ8yciaSjyuz++2FStR6ZIifYMJoGvCBbCqrkn2Wc98kCsXgomfnwd0Fa7nL5jvyx3/pBSPtrQj4gdBPni87ik6x4vgZm4SCopyltN6ENwIX6NTkBQeKfXCCWyxFp+6JhzxRjxhP1/cG0t/kwxs8sHi3iJDH/27X6W0zZ0wA5HsytBKJ//V4RSwN0Jr/TUP+Gcz3yci9rPfBOsWpN32tVBJrXyY8QO5KJaA3Cu0G/uPx2qdYgk+VR/J0aCtjdHwHKWl6q5ndiJN6c+iG0O37oAJuG6+bnVdL29it3Rb00vZfK86KOuxoB0Ql3eZtDER1V25W+X2R6Gv0fG7EPTJdy79Gq2f+wmzKHbVSYBdV76eoF624wGh1skXtcuyq2esyqR0Bnl7WALrfoKEZM50Vam4uhrGzxzKBta+Sn3bFW0Oz0YUBX22SQ182iYVOJ3luUzAeH9txYqvH54Es09jsHktdLMZIdOPNoq1rtenvKaVOFbvYkhYSVmDpLrSsMRVk72wk8bV7clPRFr9fzl56l1j1E5fwxJfEdNZn5lUi4PPAmeJ/bCTXYG+gQJ2t8sQJOyNcobh6ls6G0gIw67cKAFAlRLLhIIv0vkUUqRUJe+5O09NHd2zR6PcdBjKEUC6mITTOOlPZBKkMuuu1NQaIiBXD+TsvBut2R7DCVquulRcG8HIoKJUge1iuaHFWR0ZrkqIvoXnnrFdt4uqvXKKvtNWRchHyKWsWHkjFYgttje8BW4k8UbliIgR7wRexTnuApmUthJvEOQrSEruEF51aLoPmqcFCCa3d2a+yvVGcr3xbids7VTuze4nVG7ZfqSd+T7KuljA9XY5ETEVgB6mT4zAk/aCxZefv5H737WWsF7L28IDBcmfnc92PH9XQelVxyNyV/CLK0htPtXpuApUOuMN2A8FdEr2UmgplxKI1A5uSdx/95/17lxEbG7fRWAwfrAD8fz8G3+0Uj96wUTg+SCe+Kx0H/fKdyV2an/wrB2BN7BczcP9D5ZrcHNxIdfa2PZfBZGK3KR8l42+bWU1IklbwbqqmMyqYk7TEXrtlQurso8crMq9UDSUMnd3kc69SDeMcwUSLm4oItPNpbVCVWeUmcFQXQdSVwdemWYXpmNfg0pWsLg1eRJ7Fbwr/8ay1hpWlO+UFMfY+cA2cBDrxg3qHqdjOqXGjz3E+YqAA8PjmloDxvlxqbWKUrYZsHsSzrjR4pXfHaMih4Ysh+3otK8vRU4X9/EGxzqeD9dQ2K6ezqP6GtNcw911qDDGqTP/NOq5f+Z8k2Mw2z5GH/XwnDiauQ1mmRn/qZ24/jSEeq7vVYy6gYELvGKe1RhJZ/Vuizar4B0tOWohuGjyLwtCqlv7AORJvcW9EOVm9qpfC+zTjb0FyOUFh365oJATWJF9Ia3Eu8oQeu2rG6BQZd2rDEfJtMfakJRomNRIpffzil5/LwlQ5Yyi8m5tntW+N9nwpQNvLQMoiokDduZ1dtUaXajoa6LzwZVVDdeTSMj3K52TWVz1rFZ2TDMoIeSSG4GdVHQNKJPFbF0Z45UfOemMhgGuLlcoLi0cPGxOUEWUaHikEhmrkbptpor01ub3rSzjpt5qJSjt0sTVGpiiOWLHVErVUdSWNlj9K7zuI6sixC0gdsAYSdB0xdUSuJVLuz3yE4G6lIJ8TTt9mwLFdxDQVu4njS3c6nC/wc3/J/9va3qD8iQYKWQ4Uzm5EwvJ9QLKjVyKxQ3p8+96SPBJsVz6teLnLV/Y40a3deZwV63o8SBUyRQCteped1Y17kqeqBiy62IxJCaBsNsKULn8kmevlyns2HuRscEV6wfxw5/9cHElHnw+guIffB68Yu6TefTGP1vcD3Z+lis80dVIo1Idg6G2XSSElUZJy3GG8lQkSElrzahglNFuU+ve/WLljUp9pPZeoXc9RSqkn2ohcdfJGA1nFoAL9c5ssAjYFlUg1BJBJh9fRQvMRTaUy1G0v0q4UFfF20CPJyVl1V7NdghxwCBKGVRQq5LtyqsaPeU7mgalukXYHBzpjuaomwfT5a17qwjOPgE7twhncSki8hoNjsk1d8wcX6nTPPpD/fVtYQa9n0zlgxDqh5dNaiPC8TNMndQjAEGRvhBaVoH3rysHB3TG0I0/jqEaZX1buFLmOAve9qj13FMbqlZCbDZPg6F6s0dzzVPGX2lLi95C9moZkRGj4vpZ8E23sT7zgDIsvUPz13FMvN9pC2hn1NVs/E9W9tD15GsnKz7cu1S72G5vxWaP09nf6O6gzrazxh8goHJTrrldxKq/qg4+aUzlPKIErcpOjcEjVj0ZdBQb90c8hxqcETlbXNgXmn3jmN0UoZL2UmLIxetR5UyrNwGa+s/NBXcXWranVZ4Dvv5lHK2ufTMj9pI5Qo+IbkQarARQgIKDRBrx7DPSgiaJ1fpOHS+n+9Pg1x8Hpmff2KfFHHLf3ovlqr3WPIqsKiWqMJZcFrshkU2/l6uG5kDlSLBd8BSlyK6/UA3VXT+x8u22dsbe25UVXz7eVjIT0oYvT/neLJ7I+AjaiJRS+dlZ6isLt3ycdCn+8LPCbGH8QSaRm/zDz5/n87Ze+PlEKD/vD3P9uJ9abt/lpFs/mVeQErGwuEFfVCYUpC9+JSLBDd8gCKUypfefN6CfN6gn45Ei6voZiIi6jr2D+b5aALEjM0ZxBhmxlh5tgBng1qMXdZlsr/87/q+/j2Q+eWKdbziCbfsn6d14X4iZzuljIqGMFe1e+e6q4ll130ISMiokITrJGMSTCTmhvon6UKxHgZCIZZcnFwLIx51lMphKBbXfPx4s6tQZ/hoGFkVKB5oJigxGEHuU9PzV1IaNukTmdf9BieGTTf0UiqwnEEYfVswilFL01Z4yWa1Bqr5VXT4qU9O6JtzEoUZuZ/Jo9tadduDLHKn48HFr20+4jGjHEo/tmuBq/9BJFhUIzZjuQrf9UnvdpfP6/1A+YgcG29hlmYvMiChdAUncDZ7dzaExhLUPTmCNUMEsWwdeM2hQgHbKZpF7K0+s7Wgv6CkDOzjCuZFs2vqibtsm6UDn609x1f7E1bp1tPPl4MzWTI3Ufmw9iOcTaK1dWQJjNhmmJ2uSSLJCu2WAS7V39oj3ecrHO1rCcorYhdyOS2uj3PX1CjfusnPOgThBmzIc/VVLN1Cul0BpV8wld+1qW5vw/Rc20DglnoUKuek891pXH5tq65GIqgPv9EjRvl2LbXnBLLvilNa+niNV81kFoOS7lyfoGxB0QpYzQsbhaHGvw/h9RYoAsV9naEuoRnKQuFZ52+hgS4nyvaAt//UvIXKu7M6RcinJSKkbcJEBUtVtElCdfZagZKY2ZbKQisOAeanqLqVz93w7iCS4gkFavdanY7caLAhW9EkWPhMzU5kP9t/Uv2/GJjP3rsZL3OmqLBbXjSXlk8Becs6ry48wIOml2xyuikr9eeMJZjybzwaD8fzED971J7ebJojrXxU9X0mKRaTQ7pUvfK3FVDoVN7l2KBeaSCmkWnrLcU2mS5ZU8reajQixnOXAKtC1xcSrAF5k6hUULzIVSeaKPx/6Kp019/O4VzHfjD/r2fy8Szu5X+6f1TmG52QTRC666Fk8n5Ukkwo9P4SA9WmImrNxLif9uAcjRWZ8ggAiXWOAjKSTHrkIntLtjFxZxTLNruT+gZDkxt6ZXQANKEk8veRE393xfZvYILsiD0gwnCHpqXmD5rhHGcBG3VZLcdah9A+VxwqMk+HaA0kWWGZDZfQXvLzZUWL9wukoWkekY1B2wUq5VS60SoGXYvC4snTyHLLW+h5EJSWPy1QwIDT3oZyUeEjU1tBnTQ5PXsZivK/GExNmLoIJVa3XmK1nfV6hdpgmzuYjnoAPorCiEc0YiDajnIHOqHjY0ZokKD5tF3WreM5HejO+vhj68/yzwhX63keUlTCumfl1CLUojTa8/ty1zA0uevpt0mqpqGoZIcDha45HW6No1XrWo0hbi/ylzFH5NC2zMKvTQd956jzqG8ucZe5hoqR0IhZFLWGcP+NJ4hojr6fbMraEnXVt5CtAXEIfiPIAIWR1+KxxlCnvxam0QURQUcFWoK81+ZRKzXWTUMR0/qp9Cpu5Ehj5AKSgzvO0O52vr0MIUipjb0JZdY0v+mBWAXAQrjp4FRSVM3M1JM5xQTOSLl/oZEw4U74hI4TiHow9YH8DtbqmJV25ydEM/7uYxWSKy0GveGI5v8a5pqiIcjXjy81GkCornHXgdne61AbeV/gLpQLVsKFaxzk2Ljxv+sqwkghmTKMKaDugG0rsz9rvswBo67NzMfTzQ67nYTyWruSzPMuV4YspUKs2F6UTEIsQq+Ohg8CdxAog16QrMjuqzkXwP39A36vOV65MBokIJvRiYUtrb4VbYMQblSW/xczIDeaO9YLceAOJrU26KuIi8c/zA34+Pys3/v0gc6UYm3gBuV465CgLyylgJMHnRSi4kC+fF11pOXe4Dp/IxecnlOY/QtD7I2XmyqKTuHaaR4797vB1vU0Rigi+CmjHD1/pfzmoJO1/9r9EQHscKbn8CqIqODqZUxD2i4CwQfeZmuPfqtWOwxJDqvoF5Zq0/DYVjkpG9qkHXBKkda3QSZXR37SFNBCz60ieQzMUaym0Bqf+EZ3iRdYU/wenbrTvxMXO4bbbegMNqPRFWZ6aUysuEKo2aJfzZeM1xUB61aoS75nS5c176eg+zx3jp1RLW10Lx0zeOdnsabbiqFhcrCpDS+vP8sLZ///LRPSy1FcmE57LNrWyr3W/LOFEe5sg/bKSxhpXUGG+7A9/GbryNGtBj626TPq8sodUvMZBUI3P1NAwoi/B1S+134qLTa/vfE25nmqnBZKQiMYSLEE68qrezHrEf9EKpYd+r3xvXUuFvmbSxtpYa9petrU+V9xqRWvAfW1AJJRIUC5Kl8sms45phcB9HjqhstpOVHpG1+/wglXz9szqwz49Y1u44wDa+z+c5ZRQd4jOsDvDsFzS3uBepTotJBA+F6hSvJApXaFoIhsjZ8X4HEENMvzEbPgoFUlAwmiWILkW/pYsEpQywy5cfYcAoxpfid1IcwATi29ihGtvNUlXB7bVjsXqCSACCPo+WCgXu1kjjRhiRSIDeIXMnU0a+Aqqn5Xbpj4Vf/m+Hwr6u1nXIILcwfx3H7z4rLXxxJPZ4Wuv8Q4Q2lvhJgJVCziylJQAVIwBgJs4FQ0S7jOEtUBuLLfVGJdEEURq+65Yvn+IIBcf06CLqVAg6PpLgis27EhK+UYy9AqfJBJaO3MFXNTyqTtvH0jbJWdXJvfyDVkJcrkaMPfyrf9SoJ7Q0a8kGWkl7gvEhqSmt93HoarHDitaiiwDdFW2vXwTtPIdwT+lJRO7fTID4+MAOkqn6QSWaO1GMsAuADBOQPuKpS5KtNidzK/jcxm+nIsE3r+IDGYrUV7PBcrc9Xj19VAM59jvsAqokrXNVPphulqqj1J3X5A7TFsqxHrtGkE5HeiRO+R6Ta+f20qtRE4dtcTYdfR37olEDbabDlKV/MamwaThXk0x1/lsdGIFLRQz3exu7SxKU5dRG++klDXbPKHSiT3L56isnv2JA5R1uYg2YaRj/JOWsms/2Va3sUz/BxfOawk4qlycwELZZsvmBT56s6kq35idEzq09UxOTU5cwIMlQJh31tqp4juq9S23qxMpzhKPIOiMstfa0x5eSWcW876KaPbKqY1pf6p+x6tQNYkK8TeeqJ3wgFtMqrGBz189xSwqRwyuhtaiE5UlOKZ0IkzyyfKqFCshOMLRpqXNVnFimuGj9wzKcD3C+ibBBazIhU5Q9QnTsV4jifVe1FbryJo/5Uq2dSGqxGKtJp2lbpOwNVI9HJfVRxX9qmidY8n2SqFIJoEdoWprwJDzeFpksvEa5XTyYqorWQjtiBOx3C3EjrRIcjEjRwlG3ZKs0LA2I7gVQn7KZ3xg8iu7eaG0sfOloyR7IbW3XoL5us61an4kYwX/k0IlIgV86XWo45RTg/WQSGKxKnp2GkSUcTWEgoD0rY14Y2FBqv48IBeXVryLoSfB9M31xUcbZMbPTr7LdSu0IhZzs8ryIv8+RGQKrpm2/7z/5ksRO5AiH+bSA+h1GsiTuT7Q39zKD/8E4wdLuTbTBP52/kKVDlTEDi4AylwEUytCIJ7Y2Fh/YSSbNWGYKALdmjiIqjwYG1uQtpAbCWYEI1bHxNqj6xIRvirrKrlWMs0hKUNOYePwDmj/6Eh9WW40Km/Kt/RzX8Wrf/Yn51SaTqvI5dxu+jpTNJ7/8rtaU92WrS4jkaiAdz2+Tld9g41uA44//3LdDgdu6zxa8NIil8MzJmr+V8RUmStczhsbiBesOorXflQkkBHVNSGSK5SIpiF6Xa/hjAmyH2Ae4HicBZoKfJ+N69HUPNsmG5zVUj09HYwDo1aC12/fe1n7+bWH5W/bXLRXVrvJ379ynIlSrZr1/xr7ZVFxC0H9jz2bdE87NVApC63awUn7OKI1K32QSJaEW3zhesaq4IS6M0EbxP9elbapZ8GGgzgm2wrNzepQiNMmcxBubZquUU7o6jzbS9tbXYkYEedtjGy5bO/fYl4pjOydUOcF14u9LFZYDERcs2Sd0ewPttNaotKxAm9tkSJZ577Q9y1QaCa9v6EGF0Vbd/AFlWJpuxyJMC7FkvuupS+JdUOEdAO0lJvcVg6YiCD3FJy11pEZvgfNcVtzJk8Kxokosb0aJ4YIUApVbljlRczBdI+zFQlXgRStd59PBbVa0CviT+TOAGMxGQltw+kQZD6cW8tgAY+0QwsQqZ1bW8CfvfemC44B+OznzZC2ftzMMaJyJ4LmJONVUYAN47xrbsqkguP2HCUwXGFMO5hEKGMlBK1toZSYSQa5tBLVpcBNfsGIqBgxeJjJ4sM6f7IYCK1YiFCGknpDb4biQXJnIAkFuLj++c9er7bwr57/rH9X/vD/G2/ixy0+crFDPmrNBpgoSiVsbfUfoCp521Qt0Fl1iffdz5xhQqwirVmdDazpGGuvEr8DKE1jMJEpLkl6UWFmkItBbtRXcYUxx49gE6cXc4s5cMcN4JxDE34RtXcAgKxrru4ywvqBrcj1Sn3/t/51fUStfHx83NCyRti++dHbDWHkckhsV7see+xkv/WC8DO9elSMjjhahGPtOLm/xf6OAa6TKwIbHP1cmR1euYjY4bKn5e60AbQzpnF8Lg3GoNaqcptkZdOI3ZC9d+OW9OZBcO30fQ3p3oPW/YC9ulGoHARy/4r17mXt0VlctiMlH9fWkr2i0/ygrUJ9V7++258+fiCrMH7Zb7qTSdOjPuf3UCu0pY5TzArZ9R4nuhegvVkDRzsh7VwmBFQWWO2sFGK2W4kjq4WOiqiqLLc2/SpHDBqxqf/nCCmhql0IK9zCUf59A+oienIQVNk8ZRXBGXqnNyl4SkdIcdjsXgH6Zu5c3bK1qlNeqVW9i7x21JRa0MnMt1AgGw9YD+rAjPYGRo3g1NzhGHy7I04LtUyHRT8GjXjBvJfu9CFQu+sI2KFT9nnz6GLpXCQfGClJbrn0RnkPpcsL9QzOtgW28lOllLtWbBLpboPKoJCU2xA0UWKpojrU4qb3Ero4vT+5yYRL+gIV+qSE2HayMl8otGPz3T4C67N/JCX3m3/ZpFphiBRD1Rk+gSg2IOpeOJf3ohoWdk4Mw90Fs8hj8wOqLo2EO4esFWSGqHf9Wc+zw8VPTM4RiMrZYCUQKEy+BhFRF6E2YqNiyy8yO0yHnaGXYrr+i7PyxQdPrBXvn//8kxt41v77f9ZCaE8PlpaRpFaq73AuiU+wOgqSRK7lJHW500BdWiAQz4vN3Nziztw26xSfpSPnLlrBDHMV1W1S4s7S6mU9moaVVGW2RzdO3KzVQZ/5xq7N4LC29Ryy4wb0mThK9U6Gsi+X6OyK5nyPmrZnO3zvfUCOEjtUpgyLcB/xmhFnNKPlx5ScWc57v3Xh5OLMqICizlg/1Dz6vxGDjY96okIRVfW0qCrh9Vm0+R1rWSMpxF4LxKhyt+rx18h/faFBDee7l515vpall643wciK19PPjurLR25FxmOFOd/8tbo1vfat+IX8jrz1WFXg7kgR0F2LrVNyBqJiTL1fcXw9FYGj1me1UUMV1Tm4d/kyKcZBrXwFaJfRr7WqU8TD7w9hxNpwA3B1xZheI79WTZzSdyIEUp3Ji4pF4f5reN+JbwGojomXl+50bY8ILUbFKda9nlaMtV/zjtYRZfz8LiOTWC+mdTVOkkQvdgTd8f3kgIJOEBWgEPa20zrPNW03uIe4IEkDuaqgcaFlNm5oWegIZlHaSRMbvvq15mzWR0QJqeV8xsI4JpkSvsyVSAg7V6j6nBcMSUa1I75KZRZ3QfmlErTIDGhJwecvqh3L87LP2qipJN3nF4gcfFhvbE5m75A2sXfuZYF8M38sDlv5bnFBWwDw+c/elD6fp5pCNkdQ9VTq2ryYoeRurRSN/0g3mw2SjCr7TQT3ZiWyiAqlghsI5qsV3LHc6phrYT1/8ofrTUYIuRnYfMQltwkCQpsRgc2oBHRzM1mNMwukIhUbTw8CkFL4N9f2YYx4M8m9ny08Pyt//gR/IlXGe1MfbuLJD7mqMfh+V3zsnbpgTEq58EGuqm3L4Apxr3TOzk5BiojXnPt/yKVFCO/DgutU0/RZvVY6KlU4nNJ2Uc8MJF7xpzuVo/IgbdEqiOQ7DnVAwOFCgTB2mrwQVFmjSz+rXcTOgDjWYazCt9s7OrBY6dJW3g2PwPftBNMqY/7Hw5UjKgSEGHezEfr1jiatB1ngeKrWO1+Hdtzo0meH8b0tL3pGpZLbxynb2VincEenM5fjM7Ch0byhce/L9R5aaZUR+bJjX182WP9adgCQY8AqX2sMbQGPb87jGuBM/yxBzeUAqG9kUFvSTjQvTHN9ZL5oLNYDloQpSuWnX1GEIrKT6rLe53lNmFg42vQYwtWwvgj1Oijzm0VNtvGG2jz0u/uLtlOVJ3QtQn3RNl7ClLM45Ik/pfNL94PVtBV48IjOrxz5nxxJltFkQ4j5QJm8bkzYIHyYIwCo3Es48XfsVZSBDE7M8zpz1ybWCn0lZKqJGTk4dwdRetd9tbUkUM0xqW394S3Rd7Mqsc3jcBIB4TgXmWBU1+Wyj+1dVLShN7YSMQ2lfLHYbp2qqZS6eZ6arrBR7PItE58oz0VKZ1c3AYoUVgpibsD8J7PqGwkBvKKUeuA6xp12RkXWrWVftPVgXihSsd18l6l354KQyggXsM16Cvf+SPlWcX+li2QCgDKq/mdVh6jxZtTtal898+aQLh4aqA6aZFYX8HCuarjN6BYYOyBVFnUs8mFw+a7gwP0VK7jo+8dqvVMQG9s0he/V+dZUVo2ShiyAfJcLyrX+BcX3w8LCfB4sJQv4JfVhImKvpSeo3KaBQlypVO5PhJsTJblKKUbUdQ2ScnVXAFgRkBDLjuAb0C4b6qobyQBjlbJgNoiGJCY2fAsMlPZGXZlvfqj6iUmaul0lZPORRnvWBtlpgeiG1KM7WgO1XStPoEwfj3X9/ado5fvP7VNdHyuG/NZe17EszeOzWmqnDN7w4dfjMKa+rE0ffR4rObrmeAu3+aiXcXhNovqIlgOhcl/DpZlc0Vesbo5NRn09r8DAbSwOX+D/fWtv1Q4WbeHpnN3wdx7Mb19w6NKlqljY2Bzv81AKbHPXTsm3Dz46vXPsxlScwi/fvwacefSO8try3ubyMA6lUuaRUyytPj421VupovmHG51amEcA/DEb2h6HtepsSAwTczbpv0VY9RPDj7LCN4gS0AmNHGly/NqzBNtknRm1Uq8duPMm6K5cTfnDdMARCvLqDlZ8AdpLr/PSpFY/H21/RxBLwc3hHZtZf0vIjCKOmwoobREVAKtDqXazfCzGkALX1b2q5X7hQAG0QUTfpzEbBVpjW8TqRg/AyJrXuWOjTlEDymM80BINXdzgItrCWmFW1YNMitnZ5LOhI62lekvwfX2J4Cp8U16+GppsLTSZ29Lc8ksBsdNyy+3ahkTVBg1tZWY+SGylr+qA+SCXPclNpjOAClSoguLbY++hlLBcIK64TrtOy0WE0hELt9Amtu80E74HYtJ/aVGfVGBvQFxi4A8Riac2YMVamdWcBtyxCsuQZJR15NRy8xrQSb2AyHgkCrHzhVwydZGfzz+xEdtlo989riMZJFfw/3qw1h/k3/8Vi/v/Qf77YO/PylWH4E2m+0s7iiOWtsnPq3Z6zBnr3RISe6nxevoym8K1XxwsWANjvZ9RRy+1gUqCHplRuRTqIERafZT9HBJ4AiJoqXF9sNGnlzDHUR3T3JOtNHFCRfwvPcYmbjGeJzSoZPy0tjmtv1u9th780vUdmru9Nb/q8K0H+OMEUn8NbQ7dZQauH7KbHPavauaowSmuX1Tl4FkW4R5vW/S2EtYMuFa/n/79Glw5Lq0fZxoGLI+OutfJvDuqo9T5wSQz75772ZRWG2c81yLdqzyD/V4tjC+EMdYz4xjsdCSvn6tau5OM2lO+fHgLry+UokxAz8qGrF26tmklnkR7Nf0cG+W20S1wWWtai3D2ot8iKnwOeklnsr05LM5fZ+6X29fWAk1pacz+/UZgApS5gA7vssESiU6EcYJuvWySJhoDemiVE3rtopJ+co/ghIE4g2nepw57Vi2wotHChftaNhvE6pyzmWU7wY3E6injveYwXB4Qe3OqlkWV1663ndPQSVMA5gJLC7MEhjKxk+WvWxw8DtuJdANdB7ZLKXuuMboSV/Se7kfb188tLF0B0bjAudP9gku1eJBhx5ZEwsW0WLUX0pezk8hMc+Jcytyb2u/+G3xfE5XpHDWl+YAtwqWVXPQ58aLrpPh6TyKL+1f14pKvyFfZkhbJAJK5EmB3xTX5WFuyycW/EXhcTZOMn9hiJBAZ4Fpra9GeY7x8FArzmK0og2BEkNlNmyI3bA+EHzL0z8//55/nEz/U+9k/uXcHmnPxJaBVlUFj/az1E+8f6n3/0ftZAnLvvfEKxceLUDoZ3fel3ij2BARWpMDYClH6D9vPMXFLuOwdI+iLfWCj4SL3FZVyXaq6sCQOwdcqxelThrPDJdmETxRHoJDxld3QmuCyTjr16/yb1UzlBHa8yYWUdazGpZ7rzGZBb/oGpHUAR1WOkzO/rksps829qhz5fbFJrmBLmlUZ3XbMgte6yobdxvlQa+db94Daeg5TSV75aCxFS1GuLDMOZ1HOtWr1P7Vf4iN/oPc8r09xG5V+CYVnMoTLilyK/7q1cox244EBFReO6M/20L5MbuMjzoPGxOPXH86GzcAHPagtcKKdKsd3CaXaVTlDapag529nrTiGQ547xuXMTu+IxdzZLJc9GpvdwqWZc1vrZp85CpTmnNstnd8oqSz+boxplXYrEp4TJTlGm1VcoJvZFBFYNu8+ebryGSxFJS/EKhHvNb7O4IVhBJL7WPr5/BHuco6vg6FcLGjnmlLWCXU/Edbl4+o1/gNacPyXrgsTrq6mOgHZ5ISUbjdzolBoAgB0OW9rQn8k4S1tfhUVClEmJx+gZSLVRWKHoO9tvwQ3e+tLNuWWUZmhnQm9gpT5OvppBnpL6T7PowrSROuDRHJX+97MuqqyDZTstwpQEMmUllR2iYyI9VZ3dBCIWJL2uz5vLO0NkckdKaQLNmptMZnUTrnKyMZ2f9rKI++qhylbohDE4OaK9WSuWEgyuKs9G8N0n7PCj/ZStRZiIDJCvnazvLcu8Lqeh1gkoFjrX67PTkRoQYwEoyvsZVBmoYTMdA5ICCvWTjueC/H57Leyn4p4gkAllVvkZ4XW+zdE8dGK55+IH76b+00oX2VCelf82RA3mKFY/3ATFShGQorquR2vPp0NpESGa0H7gLPgWHm6IrFJMKtEdWXlYViHVhusk9lH6xfgndNxfak8CrR+W7seydIn9gCj6u+VJ1svYaf6k6jiHVZObNs0T669vdSo5p03+42yLOov0DbzVsBTYatjr/NDsPnyeXwHmxrzs42/WsVWSze2ZhyGrh2O8XJI6pQzGpqvVVLP0mbNTS0A7evTo7e+8pkuuzgqeZau/jy/CHh8bfbAfbRRvzzKa8duc6/zILV2ZTabeJAdi2e5OIh79I0HehedZMrzo6LMUHtgrcga7jeLMsYcVXOt7n00jMimX0cMvawubQmn3PKIar2yydzZx5YRlSB0ohQr39DuSvuBx55dicItlp3iwpHur30qWXCRdLlthsCJsKB8c7d/OMvho8cb1gzyGzQz56QPOs8O+7eDV4uxPgHHoW0Zqv5ItXTHgllaYxxvfP/JgwJb8vrLawU0SdhwYgvp/GYnEdtg1blurdb0cx+J1h88sKnOajlXhasqxxwDAb1cAq5uFg7/dtRXbheVcMRXmblDTPsJUoX8ys0NELkJYuV2X/OEchXG4GY4m9r0NYORu4W90FqCwtp0spgaTB2uQpDCEJUu21LFReGoZCYJAxGJPfeGR+g9sZTG677A9bNQrWQyIjOYgV2o9vJRiFjP7rCRoN1J+gIDK4IPhHgZAWVGFV1TxiZ9qTQjEFxQLMt5tRFTRiqS+rwf+gaR64o2VI2Hm4YuSFA7cjmNbgF/Q3o+78qksJb0RELQu9b7pvABc6t638Ll+90OeyGXScxkt15qbrd6MIh6l6QEK/OQZrAz24vSKphYSogdsb0OWZ8DnrPUu9J0URuEY5WMVGsbmzdqQq4Ybvu/Xyesfbj+b7+kZH18xx5+n8KhwIbI6df2g/v0qdX2yFcZsXGXVPcr63u/NcAYysIW+lKSjcFH+Zfato5uaAjuWjB1Cnxb+QLHnIfUfHop1Gb84I5ZoAIjXteDHGZfjsl6LptaLJ8KQDdmOStWwOPXn9GW/dv3Qa0EH+R/2ZCzjrUbxi/fEGJolE4t7DdGRjfCMSF01qlTpvz7HEPRv8wG5WonlBrJqVW20GbVgbOUjB0dfdSy3r8ZnKa+uDncs6uQ727ARaZ7wPZn+0HH1s3SqDf84JHLVSxsITWDyYMKynpq6BdOy/myzF1f0AfgigCxL8aytRgqFpIVrq0pdmSkBlcW1ya4Y7zy/y3Il8f4MNxm9b93qByWEYbjgBLUJGa3NfSpkM4x97KmIrcBcG5FkakDxdGYi7haGR99QKxqYuT4XMlafZFhapNZea7bUTTKlTmojehSVoiUdrr3I14TqGLGrhY3QtgAUwlsOPUmIWEjH7gI1s4ufCC3MFTuxUwEkcAKS5Ic+CWQuQEEH9H8MaVMq/14AwltskqyZG7fG9uL22Wqcot6O0cB7uSQZALrb+5NJTb2lr0NunQi+QSw9ARD8RMZXETER7712pd76OIH0E5I7gkn+HbUWnzknudkNlcTwiJjKYwszdfmAVmB0HoTj0zSr0eobsCLGXzUMFwQib8K5P5HYnB//iP8eRUS/3UOv+XP0WASwtp/X1B4sNc//8QffPT5effifoX4s17tFZkBaRt/lmxSXAzQbIUIt0CSklPnneX7NYmJL3vSwPGETeqMOWGvv9/NhY62KM60joxpiUQ1LQZg8MVz03ZgLXT+r5WGJ1Sv0ny2AuOt5Vpb+K/Rmq0C+1D3USsjXa8ev7Zjb5eFGTVw7Gq/4jeQH6a2vqyyVxcrXjcmVI9l5MUf11rPgyB70VEKJKtAVlFSrXnGFrNdkrZMR+HXfAGcdoSHYayltTG+KWJ9QxDOg2p9GgnwhJIbRBWgATq6fZZV1ycLE52BDCOq67PCbE6pr7qtcJKLii7g4TjHuGXZiYZvKtJQ9T4r2aw2IOZ0z1RGBx/Zq5H+1zqih3xRKXOGmtvobRP7snrtWgl9VWuQzKt1A20/pQPVNXTPyCUlq0iqoufAHh1VaLFq/06/hkLJZZNCcnDOhlkl6PIzhphqkVKPudeCDk0JnIYbmtKU89Ha1wKe1VXFzkFbeE8ksEbzfMXAmhrLugE9y1sy7qLBfkwAQDJ8Q7nixi1ZLcns+fSLfVuWOyLqfQMF8wpDjAw06mqVmU8uAd2gCizy0uXlW0J9ZRhBYNsfjwrMlcWS4MumQpovg6TMrMzslER8fjbTHR0IUJFaBBd3SZEqg2xT2spgghkJvcpaq9jga5HaW1xvPknaNL/m6hT57Fj6LIhiODG49GnqXbtwTiqqpU1g80lfiY21H/fEopsQP+JPNUYmwK2lF+JKbkh6f0AqlkJ8TE+kgNzLbn8AH64nmGTo+cuff3IjuBUhZeVKE9tHnR+BsbmeyCf0KrRDdbcZwnrzo2BsWqm8my9fPLkf8v38MPWz+DwR/zwv3n8yFvSXf/eP3jcD7yeoDwNrbcZexLtC+1mvBaJTxwVox6J1V+dZVQeVMZvnvv31tyV2zEOJH31Vyc2Ubq3FUDQJX3rQD+nTXfqGh8AF5EsMEqq2ntVoZy6WajcCbwzM+wz02KyNcP5qw3pb1d+K86JVaeLuMnP97TpjY3zLAgwr3fx4mddesa7o3vqlrAex8YPG8qNMDuHQK1f02pQDbTV85vI10lEt888LaDy6fegBI4nmUvwfXvgkBri0cYOo8ws3fjpqtt6so3U9m4taqI4l7chciOGaTinWdIKIwd55NmpTVJ7H/KjfQGdfW1RaCpsyuij/knkyckBDbUe1PcUXtVCP1yU296b5tBAy6NeJXjeqLJTYEnzs+4j0WOvzkVoQ1eFjGTFjNcdZK55y74Iu0NdC2Oa8cBXJ+WWZOz9Ijq6Fi5xz1OazXmaRDTJVnVsJuqMKeR/w7629v90ZPr3EvUo9AzNfbTNHmpx16roHoM9+yUfanjpRVltYObLrK+maXOcRJ4ZXNbSzxUslGFJdB+g5c8DQcKwStJHMrQ3lyg0KXFK8grvK9eU8bqXZVv/V0DqhyE21fhT3Y8oHr7S1mYh87a2/CGZ+mEi4BTxF6vnPv6Ay5UB0S0HKxSKSq1aUgpJbSW7mTmwIe8fKyK39Oos94Tg2AFfl3MRWENKLyFeK93kJvfn+G3zpz4QyguHO0AgjCcPFEJZeNRCizyAfBLeKmrFcLbrgDkPg2kw378CzyA+WXA8tRTHavVB3gxXEiNgg18+zEnxSG8hnh1LIne4UnJSLQz5r/TxiAI+eh+8/PwAUwQgEU2sRUnBFIBb3jswPQ3+JXE4BEBfdWC3RtW8sdnQgZgXdZ6pUZxWPExNEN84EjqZEWz9JVY4RsFIEpM3vK0EoWRLckhqicEidNmQcrWJAT+DkmLbuOfG3GRWGemLUFUyVVasj0+f891lvT4/tI+vXj6ErLfrYsNHppRY4Cm0wCuc/o0Kjz3ZfwyhDUPi8eNR+fkWUUPfSUWrxgIVKplF9q8nC3/DDfF+t7SwA28c/zRhw7e7BYrr2pKwA/2sdj2DMGrQe7Tynm2esucPXF8shHUV+r/O1E2XSIagyluZ9DhJUoZ28QA3A31sKZIcem9WtQR272LMtm9wGiv1NgOh+Dfo92N80+xkOBcdk29bPHRhbYvYvt2TPAy3Q2dU2bAYKl1EIVYMS/0MHBRyY87VDNA7xNVcWFV8h34aTbDZFqDo0Z3dmEEcseoX8hAgnLlZ09ZoUASIClV7VwK9vqLZ9GxjKgVw9pdqFJoBOlhm9u6Kq8WxZYNMAzZHVNKshpHdjMjlrDi0p7frXLahGl21cO0h7FFB/vzRbobToIImAHRq7bHdFyEh7KKTLUFXxJYiqkswmKiUtMVduWQLmSqwkd25KkHChJjIRASXxanG/riDBjQ0sowflfnwmfDsZBKUKB0OvENjAxishlS8Zqhb32O+zkyI+yZV/4yGUG9Xrfr9PwRXRnEm4QR8DnX3GUHGDsQnioWKVgIX2u6mgA+tZ0qtUt4oNkJErqyx8gr7ftALaZPDHxTIRSLfvwkYwYskdBn3L2BnKSGBH2QN2J+kG2YwnScTif3aE8ll/1j8CGcv3soXgG5GeKhcWyYgEkpn/S/yLh5lIp5jbjvmGsW9ZMQpglH79gu/lh5U2qCGNTqmFUX9yjvkos4KrGNp3NKO/2aL7Kw5ciAzjRHWQqXWxAF/Vugw91Fa79JB6MDwfPL8AtLW57W8zajoGhb+GVk8+keSbyOYZ8/H5x1MziScOkUm4JdpC+SSFRENyMd4yYmTrXUrhZ/B+yf/sTRRc0jXBmefDMVK9qUDnt8zy4xr7eU95RxAvnd+6UmOqcHyUwiNe6sSpclCfKq5yWJX670FAgO+z+OJgHY9y4s2xsC+BeNd7NGqrXymA6MuFPWaz+bVL1559JYZd+OasfM9zzkKv19iokSJam7pp+b1ZhWXPq9rjHLh1LQK78n1JLc/BOJ+Z/Two45jjy/ALdPCjay1WYplXshimuZdrmCexgniN5ABGRIUGHLSDg3w9bPU+gRWCu8Y8uKdOdGtuzVa0SmGtjEg7rKQ6F8BjBVKpTGb1RwoULZCoi6oZYsVnyw1gTo3LQdNlQiER2gIZu3Gi98o9GvNrHoNOBDg9t3KgAKcIZDzeQrWnXmfAhcf/5f8ytf0yyEwsOxsgiZ0hqrJ+Ra6/QOxcTIJ615/Ye603wFUW9BF2xP58gpkDDzJUxt2VqTKSmW55pC233nNCUTIVelHdElsJa2fsj2upxauVe3uuKeXaJN83RJUvn8DeT77ZrugGoIzMjv+QfLSW1pBx/+xAuOQLFIgVkLtjMZKuIlkHVrKHKSq4nrUC8VAPfJe3qaWoEp8mEKLUXzzgQgA/FDYpKYKqhrGE4/EWv+QPYj1lZ7WZ+e4qiByZbnrsIAIIBXNhZS5SWpHE+3+E1JaQKSIUcJmuzh0Zlfaty49VZhtRos9eKzqf6dP41n8TppDduqRxe9F/pWKHFvvlQTTiLMWt01+q1PTA5QqndmpSmUQILJen9M3X8/vYnwE3VXcNZ5wOn7Ai9FCOBsfdvd5RD/h2hoqwqkTMinq5m3VT7JVZ4AlNfGlecSVSA+1S1nCvG0O9YwcQYAIGvxfYhTiGhNYvQy1B6DJdKJxSurVRSht4nZn3utRDzeGPxUTxI+UAaq5JAkekeryckehEY4n2mIVqQd8auBlddBLb/P+MT1HJHv3W7vyWdblnQEcRQe5fW/2sXEzLjh1z4MQ4ToXway7W5bogC35bZ/jlZ/m+cA7bX++OOaTIaQRNiqyeERUXpeO6KkNNYbjczhKqt9r7ABBMtw3q8E64XYgztqP6Ogy7ULaCdTrOJHuGRfwGhe1mMw5QEKRCiFXrTGCBCFeK70jwnMvSFsVQXVJTbRNLg1BuL3AHN9p779NaAMgl1NG3LhFEbZeGybLfXthFYW9tC3Mhpx4WIiKrjQZrkKhCT5XqhqCo2PHGetfPZuSO9a+TpjaVyKV0nMMG5bOeDYFvArG3N0wKZcT+G1yReF4k5Su2eyGJpSQ2kq4HXXEJxf8hN8mI9dniFuAJldmSe1amNgLB7fpPO6WEexkZKrwsdp4d2H43N3bmdrUNPK8LWgcQ4A5qYUuf92Hyg8/C3sqtgJJ8/tbp3nUR1nWiVjUUEVeK/0kyXrVBYUh6RuG7SrSlNlceZWcuKNfafUFNPHxVpAREku5clKgbBAvJn0yC+SYXk0H1Lal46CvcGXBFNHG9uUKvcm1sRHweId5ueWV53ErgrUEQsaIu5QmUNvVubIMQroqJy21hyoaHORScwNNxZea+LTmIXVXp5hglQ+Q82sfadHRuG/P+N8dyiR1PPtrr+qnqE5gCDarYnsolI9ozuxii4xiPMmkm+mjs1pK6I1Y98k4xV8/62Lh57vyZDJxynkhmlckjKtMHKh2oeVzWC9rsNtAZe4R238Y/LIVR7/9iDi5vqpVWW7hnvqrlwIUcjqmeRWwXYL57D+DYtDkMX79YXGeJS3lut/fcclAfQWcWlfEt0GYFV7sBuVfMIQjLFBXauj0o9dTbWTa6ycYVdoIH+qD+yX5roSCOgLd1OCvVNgT1O8ee3gtnvEKB3QD0WN1Z2EuW+iTV4+fblVJ1b9dgp6wFGXR1D/G8YObUP7oWoo01TnKc5xpcvcq4/7A2jwQ3AfclyJLM+lkqloTdVBpYOSLGFRXhDSmStA71w61tzzCatKh52OHuW47F2jU70ItgcSe4KyRtV8qznleN0ETGasCnKYw0kM7U79z9mj0/CMo3cOzvV0El7Sxpo4Tu0urUWbggpJDJ6oa0wxzTVn4+P2nBz039aFeMc/NR+Cw715tZNXtCzJ8VWPFu0nxhHxS4SkS7E9U1Hrb46XZQaRQ3p1nKvQFGfp7YufdLG2zf6zYLlZEZ+qSUn79U4IOP8LrN7ub7gDvBCOSKyO0qigr60gEinW9dQVKz6OATuZ3zay8mFHv8Bn8RgHzntS6OrRiBBjfLBzb3a2W+nZawHybI1Q5bVM6eEmu/f2wQU2Uk+VomVmDzcbREf/OHLxHEXlVKNFPiXg5sbBG5Adt1IgN4NpTKnUTUHUWkqrq6U7+z2nYUOLaEGfC5IpgPlWWuKziNBsJA1nZSLcKttibVsa1aa5avc91o2V/Xx8cKHoVjI+rU/75t6wOoGUmfn3nR4bUbJrdiapNS57MPXj3rHt38/Dx2DuT9hyUZHVqspbtM/vlonQQM05ekLzacpZ2VPpHq/m32RH6P4ig0AFMV7vrm+fdtv2r+bM731/fvFeHZRR1jLqiEupQjMXcVZ+NP3vJZ0vOvmlDFk/S1aGqb6hBLv//mIXTDh+s29gQmJiPKb6LIfs9l9H7vf0GCAaPHD2t6nzMzwH14KgTWax9YqgauR9KvP7cR78Xs86JTJ5YAWA/nxDAX++QdcbBznu3/nWVmr4SrHCLcDFbtZMtzDEbz0rUSPXFz/KdrFDrLwVlZNs6OpGg0xTi/hfxt3cPl/KYkZU33AOCpsgBByCdBuk2H/Vl0T7Z+srevGxCs7aMVrp6L2WiNzeybCdX3oG04s9OVTK+CNGY+0uzeR6VImNQ2kMRCPiG4RnAg6zZ530ur5Ntt5tBvaXjIFe7v8G5BSvwhuFPUh3RDo7XzVbGMZIRiZ0gfvHs1OAClDGgjQWUAgrs0ApJeAErsAFPdGiThpk7Y8QKBd8deKe2y6VsFh0W82IpExtb7L/dP/MVP4q8i+TL1/mfv3S7i+vDjUJtyYTumnmImHmHn5++PwJeBulGcy+nUqvqxyoyOQ1IAU1hArOi+u8WKagosV1hfEKl8V2xtn0a3mCWwYqI3ThPbvkCNxQfrYYIrM5ZbYzoSspnRUeMCZm9mxPusRQl7ByBOeXRWY+zUhxFcdVvbCd7mnFILbqmkrPv6YopZvHz1w+bAfOPTAYStpDjhvRLfiuSEDBFBe4aW3k6JUmuwcUIFXk5jHftm7+wm+YI5fO7UTCRa9vQ1rlLpHBVQpvcy+PPvgo4+ZSdV92umRyMdv75efVmL6l7bHyGMX7ITsmr0/euxCIWzSKeGmIw4isqWUfPA+zIsuMbQ4/xG+NRzr8bMheMmEeg2WbN+VyoQjoE7EOWCKmqFXcbc9xzq0TPf7A9GXw27IiA6S4HyoEcAOv4jVUG/2xZmcy7Hyrcnp1+DveUB5UKVc1mdfo5AdRTl97L590vznSVhL1St+9zVn0kdhxvHzszURz6/Zc7sOLD8H/a2sPJaSO02fk5j6WedBQLpWklsVFJID1F9pNY5jxNOABCKBRNxDVU5pqvPI50FpHBBOav6qLEJCHGxogj2VDvk0sfCtrVmr7tW3GnTB8Auk19RKzNxLpReGM4juHt/wgJp5ZflGAOEezlZvKqQv0BlhlyPqwYXhEAnXE8EJ2bbzMY5uUZAui8xqXzs3IUvljm1UjXx/0QGkBuQ9iZcoyuJ7Ws0SHFDicitWB4ANik+Lp+F3GAmRcYbQr74m8+/nz+dDiABTt9yUwaX4UxBEb4uvACN6wWmuzzkdpKtA8OpR1hOACwuW4A2F7Z7auQOtxl4mRs7tGMjxdwfhcV5r8/6YOf+USK119NwMfCklHsvIVLBXTlnHqpR+AKgiFwhRebaEeYL4glwFX2gEv9sCgtid5uAtlgdnTOSscWFBCqvhQTjoQi6apzWmy/TQrLE0EKuqkfHBwggn4AoNx3GhoTcsTc/4MqFQJ0wqUhjLsaq3kEVqg9AG2s6g3SQFT7gIBTdlL7lPBvpHlKYnknUXWkxEAjjcngprPF89I73MabaXmppRF6K81ahhdLMKpRGU1dkb3B+CNpRnjZfZpMPmXXbUzmao+xLRseOorx5dAZzE6ajKNpWAhNvAeBWKIWTR/GW7j66uIO/psoQXWcFZXT2U0Gx1qrQPOZ8q7rf0ZegvuwxIT6jeG8r25BGHPPVH7tcnYEnnno9gK2A+gm90jdiodACdeedtnH7Gudl6S7/2KrJm57pQML4byDaVb0GDoDBjLYY7Zx9f3KG35bNZ6sXujmgr4ffBpRllC6sU+RpActOEattBc21XtTyuORoA/cldJgP+2QU9uoUMWmGEogoy9g4dCxaVy8CfauyBwUQUUWLARRDWmcZRHVbQTPnF4NULzGLP9HrzpuoA5OgMpGHxG8McrIhS17iRD3OOhbGctgQZJDOuWYk201Ac9V+nvNcxGprX+lPq8vTmwDdpWpU1lCSi6aUNDPcy54RDCm2k8641FI0YMsWmREb5gOSEvX+4OWT78PUSrmwpIjuOCQgl0v79rMGoFCRNji+BOBqkguoZhPMDCVJdWch2PEmAO0HTZ2xRKUTGEiAQXckQmV49V3Si2ASlLmZ3jguL5LhFDsCVJIexFriQoRv7WX3kXSrobfz+2J/1g5VgQ/sWLH4JD7AevN587WpUkbqSW0xhdyF5wViCWtReDKf/VB8Yi8+oQW5i6IA1+ILJpyjEZ3OVyLgVLqNILUi8hnE6aLX4bw9is7SVviGMxEuLkZE7lXUjTRHPBhaDi5Y6WWSG+U+Od3O9XNYeoYE3MVLFi44IuksSSu6qgtd7UqdESLAqRkbHANcFC8gViMzb3io0nkr5cI2tk4kL26uDXP5xGp4/Eu3tsYsNr7p6Q7/VNOOL8dFrVer/koy29MbCtWqx0lCGr2mHub1QM+hwpl2tco4+mxxRmWVZnawKugVDmmagDb6FJTh1lZjkErDOJPgOCac/zVQGbvaJTZ5jf1yKp+xvaPrL+t6Gb8vzrk3zR/vcEB5MGBDIPzXqqNNo5RUW059M+gHJZXmn39XjD9GAqrLsjTthXs65ZdcChtjVjkWnqQdqDYunMTvsqZDijdz+iv02XjhN04ZQ1xGj+V+2s1PNH1hI9JmzF6uvmBPGcdjVtkj78qT18DPEA6Z4oUycOpzrvoV77h6AWxRHWKq3x5gNtHvy/x74lEsL+tXAbhLqGI5XbnMgVlokzjsJDxbujlHIyts+boXmpdYqNe2ZaGlpGygMGy8rPCUqHSPZkEamIihOSiW3/r5jU1U+1qrVovKS6uMkFla1Y4tEdz0Y9VREH/C8J90l1JXguQRwd5NK0AqFYLzo6zeUgIWVPSYhHjiFSBscdM9o2J1omb5vr6HVcy3uzZAAWGTmUlwI6XNnaE0w5oJ8rUkSXt/uKnUS20lmMy1GS+TyL2fSK61Fh6EjUyHCX0DQcCSXikrllBB541MQp/881cbUaZezWyyVQGQdPx5M5GR6fz2eH6eWHoSf/S4l4hj2W1bJAYVrMgCual0fpSUwSiCGgEwFhgMRhBu4xzBP/GuHzGwoCVuL8lToaHMROW7IPgwhIBW7uqnk4OaU6B7KcZzAmZ9EiuiUk5vGWBeyjXqvKnMXZU3XVgtjkMCsunxIIlXhtmIxmptIdhq6igWfHk2Vah+ZH4cvZu2tI4hGiX9cv08uMvGZFXS6afOOZoPqw72vHV+pj6KWfoEBVLqLeW191FuVXwOWOVctj4r7XFeMwq4xiAXqc2oOvrWM7XQtX894bk4c2nn/gkA4AFaZ/LMHbxnaExQ69xacdTORO97dL8MwTFuuNxNlerQ14d/rfqvL5tIPXtZqEZqYqm2nG3CSpZaZ45ncXb5y3tVr0KbM16Sw7Nq9av4H/98rdv57xhD+00DX2o5dfynXw9pCVAL9ZnI97Nb0Or7bEErm+nr52Mg1VzGAIzBbfOfc0aoYrctGtUzz8vLkeciuvuFPUJOQgaYYuVrdP7pbQ97B1SZukKG4ns1iEOHF3cNoHxbe2rRsYm0nXK9/rbNPkqatSYg8WT0NIkD0PH6VocjR4PRhhKZsdHHiSyA7NBsgFUtGQKzL50xm70d+dxRtZ4M1gBWRhDp+7pgLEEJJxyDVIIub7qUkZW86wOGfAAwIqIRSkPKqaYFKpUpCC9FJJnJDJdK3Dtd3yTcmiKSxIv4YOcOvaa7s514m+JCeIjlPPO6zAsp6UlXfZtMSqncTClzrapTGdi5P1sbG9rPi5+/OwViLQW3E3sTqHrKIaSSilRKe6W2lmEeF6GQQpvYzDCR6HIbRoMkVzXXi+x2fj4iElZbRAG0RwxGMB4s7rpy5zq0lCRmbjpn3lHViBfKKi0f6U1rh9finkQylKcN3q1FHDvxNbA2wAIVhBbKA5E1OSgt3B5wqRW7wEVNRZdkbX1d7gfz8IhtPMa0zoVY3N5FncjJ2+4gYisQfkHJUaBtAVVnPfJQx5czd8yS7UxrlVuF41AOzUmfj1w2vO1YxRh1NEHPeH7pgHle3xur7bsctnt9Q139iJnpF+V7fRu89LK5loaVflLNsaXjWI4DlH7lfNWqnTHf7/12xY6BxL2y1/aUQPQOX1tmTw21En3IWxs6oCJd3yrZGPlKrzzP2/ELMtQmcja+N7xH8TXxbybmIlJ5bx1m/n0cWs2PqBSF7q3RvRsjiT3bYzUwaiKaC66Yr0/4yYWqR9WP0IMwwWkwnKXvR5JC18a5tb3jyS2uWebkTGz2yZtHOn91bGv/aE4aB1K03HyjaK94jfXc7kYpkqZAi2a08dWRRBvg3mvTZ77xdEDG4I8bXwGCwhLnkPLcCZ3dZHiRoluy0akDbD/B+ha9mfF6d90Uj/sAV5WRJZl81x8SsbIAhtVGVC3BiJAWtij9IDogTSqpvSPeAIG6sCyVccCzgmX0lEg/rM7Xia4nArmYyJTczVHJnVWayS5q3Vz68eCUtO+sHUw7bJW5BdBN3mazoZVgMMx2Q1PuwixjbhumDSxov9huJPnGi/hsQKEnFYhIcuMhN8yyi9JmhpTr838ShIT95toxYT6aKmbAV5BCUERmRuSDysLJFImN1dIQZEQyywhvGOqrfEiq2kFnscomMlVEb7Q7mfDdO9OcRljl36Kzny4SZ8KlatUSlQ53YDMjnDteCYBmT0Ig6+JhG+A0qVon7FbKTSnPwTvnz5hDpUGPuW2lAx4djlaxGN1ZAiD2fer5aWmH8Wd1pl4aZJZhzBGv9+NSrhQk5tGst0bGTLcUp08mirA78z0BVA2MGrM+sOBoc5upso8Yj+bmff97JA3fObMnZAPstWDPb+D4aEO2VcJYyHmD96kdx/sBuJ6is/y8dujL/M5c+vNjj79YeMsaSJRf03GHAU7/NftZmDvMaIM18mcTMEtRK31dhAJQ92E9LI6N/prAr8Vnz+RAH6JSsa7l7STd86ALNA36uO2/sdFIzo0orCu+bFmxWh5/P9pnq/5uzYDi6vpznGdWsaZ+9TBVc0TZBScFkaGI7lHLCpszXNV6NhcX/FGR0yhpO/4lSa3KaW7sdw61Rj40lEqPutpJBtIRCXeHaFkv5rxkshaigX9TKvZ4XDJpdKdTQxiatYiv49L/ESDzvCWllaY1fKOhV/ERcDQWNG/cLTAEZd+uMqTp9a9wkiFbZrU/RqmFBKSda/NPBNNOLlgV7izXQjWPklDdB3S2oYgqs201mORy1FO5sR3BZuZGSPWOXKltG+DoLxLcDK34LPhuMiTweddnkVhPMhPLZSUlgfo/rxKJz9J+3XdCELa0sBeEFxnx4snPkl5k7KoMv//92UiBO/fHl6goKjNYNaojVuIntLFC/+4fMchaelc9c0IUHSGsHeOqq09EBEjmZpLvdlnvWCuEjKCWq5xEuMdBJBlYmWlTsxVRvCPpei6HMWkXJ6SOP6ooZCRQ2YLGdIGM0qcVyEiXXo+uIVPuDDNWAtvBZboBcLBoEKQj9bjwb5uJ8+ewP8PeXWqu7A+HeXRU5YbVPTv9Ui74fk8dmsILk1rRwaQxs60LJ2BUTTAL0eqeytfTbVGqnAOEIDty3dVEaqMkIcI3Id2W2v2jzAVElWbo1Ue7I9+v5Wj9r58Wqnkus3r9+IIgvy15m6yeTS/O/Fob29soXNhgsEwTj7/WZ37hIBc1gvmamso99DMKtdSbdb9e6iFKtfrdR6lqRqiV5QVCDa5OmSMRR9MfLuSyH/Wxihs0TD2ITv1p5/+z7c/NRrVVrV87on7m1k+zNtZZfqE159Gg5e7XyncgxDJaCIQuxntb1wMbztSipLwiIR5nm1Gwf9EpbqA9hwjfJCqqmAip6hENXvhGGjVvoaFnm8ZZ616JCn6xWFxWvigolxIUIS7CXC0yRCmoiHO5OFBKzndi54XGL77oQhCoTKuTXFH8Zn2B6Pj4NU4rER3Zk73D6pChSAVWBdC9lIx/mp3kkRlfzCmXGbkTwEMiw6V949Vyk8KdWxCzd+nlxqP80/ZddQ3mPoJzrOzblu/KNgVDltb3K4r5SbyZrryxbKkAKTfCLsRWKjOp3DsygReBYOZS12piRZ1ns9cy7nH7Rcco3coxNrZb/S6I0Hr5Aiu3qFTuzVwZBBPx9+/eL/ki8/WmSODe+cQHxOJ2gnIgfySGGP/ZT/DJWHi1fDXUCFsZsTFgqrRCX2TZVSeYgSDXigQiFFzpkiRVxiKYhlWsEnERTTHhcpxPvY2oUPUEXNFhQgJzI7iTUoYrQTNCCGu/CmyZY6+XUETdkChl4vBIC38fS7SAN+r9hvyop4+f5hhzo2a/y3wkO9kF7YZ821ze5/nr20OQl95pOSz6sCfQbFKHsn7ZrJEvQzHbctIT77wyZIpVAb8yEavJaTpFJxPQLvr1qlDC1njzskYqE0E+vOUvYwr9dz/gcquBi5Pv01jaqTDJ6JvvR46tZH/jRNvKsWkQ11bi9yfZ6MvbfmGl/kExi7WvlYB10ufu0cCSUikM0ebL+iLKEHf1/oliWrBtcHmhF3uJbYCag7Vs/M9QokfEayknYeFam4E7X1LY3MIkUf966MUN1HpR7Bhj69C+8DUi3qVN/DshNaCo6Eivgr+sm66XOMxPzRrcUx+4V6+ak2srU/W0mDoFfqxKLhE+87cpJJwL2ThDtTLWrY5j1ueL/T24sp4RoBweozOx7SZElceHQ4GlBX0NyRjeGdbl/I4FrnERLC+pu8W3/HLw8A6IJnStJBQAu3EL6dRcFpJ8gP4SR4GaWSwiIVNARLb4dMjBGIm4+oJtXyXK91ygsOa2CLpsc8V2Gqir4eclaK0O+lK3XNNYSl9gb7emNJPcpwn5bn6033gTeklpvSBoEJGBz4dbfFdmlvGIkijGqvBtpZuGXRZJeHL7vhWRW8zEBoXU2muLn/2Xf58QoF1keyK4M9cnlxY2QeYOKpPcmeTWsyJzWWbiwWYCTIRLrMZ2V/AMVuG893Wfe3KlXSgKNF8dzpgWVyYUrJD9UkSCCi2yXdSBWnVIbC4scd/dfY4qZ+vgSixSabSBCehDeGxjW8aYg1Z1GFGRX8fuAd9OtpUPwXS2X2qj6iZqx+MYsbdtaIU9mrEh3DWeQx/WL6sCOA1y+mGXDA46uWSy9b6/SNzRu1/S25pv9Nz5cdmCrGwTpyv0IRwKt4MyaGh9m5kvLXz+sL3Ee6q4f/M5n+wdK3g1v3HpxmOEhrHm97rcbjRGEV+LclPOuj7kH1HfH2on53xeY6jKUTgQ0UtTKqVO6wF2szOlbBo/XWKNmYtnEYzoss0tTN/0ev/L5EuJ0plSC97Jxi5HpFe6lv2S4YGtFgScT3zvcH8ErVCdH2IsEtm+WUP0dqvI5r46J+vLpiBctu/And/S7DW6D91Z34vn0HyWbQS9A040KaQqtnzx1/OM1w3X47oCrIYxF5Y4+8fujjqmt9rKVwPariBc/XTMR0fAWCAizMRFlJlR3zH+7+M1tTt+/aQnd9ILu61sW1XlOuD2wrbG51EFsxrgdpBac3KzalMVh50WGM/Wn1cHPmO5GW6+ePdUq53B1Chu8ITCoJIdgOblzLccL0OSuKV0IQxmEyMVQssqdK1UZOqVlAv7yY2l2FFtJD5/47Oeyj0KQdXbN0koM6hIKBMEVgirgKNMayu1E5nGTM7l0c7InVn9mMWEqgS4tDe4sV0xDZkfia8yI/XnJz75RqZNd7JAqrCqfUJQkS6iFaYLskZtDW3otlYgIhNRhTW9J4a5QU4hGVdENILKVhXlvJZ3DPrWQItgqa5bIAVFw/9KijDmPXq2vAQC7ECJz1fY3zPp4J7Hk2Vd5pCqYjZ1WANSMozZ+xrjOd/XnZsCkLiGcYzLN2bvqQ7gaN+Bfe2Ec0m/nt1UAMYfO+vRZni00PWJ815DDdteoGi0Y8Fbtx/0QF4Tq+NazdZyuNzxPQ8MuXcL51v15znfbvvRcTk1BXhjl2+ta93XP8kZ/C+t/aWm2n0u1HIv0706JW4qzI4KL5QcCbUv83e691r0is4EhhKxabuAlP4H2w40dJtNwjGS17z6JsG5tuS56MIbo90KNXk2pZdqygKqX2ytxTWolj0cozeWuATNV9BZFwkVjrowKg3S1zBbl1zmnoDSJZUPtJjnk0ei/cIuvAvCuVpZ1fYa7ACOl1cWA9o7LYOpSnqNrAwgG41jeJsU0Lf01LpTQjgwQwHpUtDyxR64kkQ0wrmO/Ewk5mT1UovL6fMRxPYEDFAQYfIQ2pXriGIAep+PgVWmVm+IoUEXW/Z7uENwe+M6xoePahQJAm7xU5ihrKPxc9vKgEOALaGWdNKpQYjgLtGWKlSsmsgebkntYzWT6SFkzXD2GI1kS7HUBZkCJinuJifLLmzIvRNWJiPFTLlW1k76QnXunR/oL97QSyTFf59XfPE+QnCbVZSCXPqJ/VOtHJh0uGDtXruKbQAf8BOO2j6JndCOd+Wm8CiRvqEkLqW086XN6ZORev8GoDcFvkruf9fKXGGU5GqULgqZLh/AIFasVW0QuYqGaFIvqIxnc5lWt7wyghHbT20SIVYWZvdHndNXbmCttEYFHFPEBL+JwpaoDlQXFcPRoAQCEd1gm23CjHNKJCPcJmPQVwWfxSU2PSYxIJEB5wE6A39iJgG7+5qX9xngGDSU1pxPYBDCsoqsUTTrVA/ImAa+ZrpzLM3lTY8J1NFpc+jHnvUwRuHWavf5x1neWrNWD6M9BTGvlnjn2NSBPk9p70ksVHM+B/CZEeMo/vIvrmkNejmacd7aB3vM1rfBb1zdI50fzwrMEy8bN5+2K1B07+yLgMKPFbLCefvY13v0aMPqHuvl1mTpk69M7BbbNqU1LNX9zFKOTc/OFus8QddMZsos3FCllW7jPF8f7HIEq84yJmdjFllHQvtb97Ft28pfzx3MIUVnYVxCdzHNPBgMZSzYsj2TaqvIs8RwxUQkF3vswwN5qWybW5gPzVLj40SfwOtXYDBx4MKtg64OhyqK61qtniIBICj53ufl7A8hUN/jtXm1it0B+dBf7XvOx+4NQrQqFXVOosGbffNzx6nu/m8hG9319qpGVw1+SwF0byrCFcskRSGOk4sWpQdzu4M2K6bgjoLtSpe1Hxsh5UbdbpHv3nfOQVTiY2mYqIOdVBonQZl7itsluwaKVmit7E70qign3FcIiYxynJdCWiRy537c2km+jIvGHJViLiiUXCiGulSuO10IucEwXU1qh7aq42PkFnJHSq+0Azvf9Xn/wOx2MpdLY7v81mftCJH5KmM9pH70T364wpF8ukfjdtkHARWJhfmbIMjYHts6EilQgQU66nGsox/QvOyxmK1E+pSUWRbliuuWQfF/ArNVL043LTy4lKxLxbcB9tX9/kdx7L7yWeSIne8QpqxPKxfrSA3K6G/i/nM0Na9vzF+dLclRf9cHyirp8g/n/f9NCNv+1tOu0dQp8zHllbOPwTwXKUA2PdnXLiaQAAwvd6262hmcg4b2J2uIT29SfU7zO7rtwrVc+mWJ0ToUDUnuXf9y+GdlNC+k5tevHRnZ0ayIyutQfFvxwUE2xCdS2S+t8TbiaXSCWvRZHn59al7xxaryTOH7T1m5L3q9PUscHd1b/0392bbdrL8H3UHp8/RD/nraJXU9z1mQAiwXJGr73R8qW6pLoFGVEu8lLbPbZrH/UzxCA8NyZukmrZpsXQKKTs3A/CaaKxskX9iwXkGocsJmp474jJz2lNKv7mW6yIvj9NYQC3cTIWSFFIdAw3+/zbq+nZFKIkDh9Kq89wWxykssrNI/6DVmW1Jrub7fMN0ORHfabOU5Cx4ow0qnWjGkJLsRIhXEdglJQamEtivHx3KfEmeYYPiBcjW9iJ1Vy+U6pv8l4AyCGaVTa/GTYvVEcRkjlFrKreRWJrRTCLeLrHx0RcjjRF0EDxeHsgHeVWiTfOPd+XkTC0WGw12RG5SJrOjzLLOwLXrPMnO+ZXrQkYgEMxGvS0jtAJHMfFHVtXLnyzfJ/ID5hAzRlrZ2mGGL3Ds+T1DJ0FvWaTEU2JaAcNahulBSiMy6jtTWAiRXpayLCwX7lms0345fnZvy0QocHojoVw51R6hp3FtHt+0elWA5PFaAbZCNhAsdq8evIpLkqlvlsbV1FaMZthrr8K+NTy+9OIQZzhc8WnVsabkbnRzSOrTthPt2jFJiQ+Ge1OVm8jcSAcgu/JNAtS6vbMzu+YbLjqnX87KsEu29GPjUhzq+MO+UfXX6c/fj6h9P3i/r4/n1OH55rxg3pkbljMJvaOOlaZPQq+bWL6UUzdPNy4+8HAergcrgixp420K/VRUVAjUFIjA+KDsm0M88gGyG17b7mGg0+IrQHAZc+MBNv8QxCIcC4PeHS/GyvXh03BdVIfmy9m3fB0PchPS3ZjRZIjYHDjVQHNv+S/jGg+6XtZ5vo3H/fbibgzfuE2As3FvU8WRd70iEiN03aWy/6pouAXSfIJaZ1wnY1/Q8R/XUK4fJGzbDqz/BBo4KVsF0XuaxhscazpXRNvAXUc2LG2E6lakNcKVoHTteizM4HyNT7cWYRCHDtfNDGWpj3h6iU7xs2gko6zRVgSrLSPrirF0dj6jK8Vuw0xlZO82NM7nqGNinBUHt5YHU0Yg+SpZzJYCl6MBerYKdKpZduCJ6DnxEPH3TV1kO/I6dQuYraDdw2cvexfausC88pXZoJ7ClHVH9CsWlLSHys72IQaawHSvQWyZVgns0W3IUO900wnRCKtNTqA7i4s7KnEJIC/WjVBKJvSDlDr1/F3M/9AWtNz/K2FwZIt4UfkhlvMj1VxFLe9HgZFFOHKENMJgRyUrpU3bMCJ3lo4LFjBZ6XJJdB7sh9XElS9Bq2tVB+1JxQAUrdL6vhvJt984Zn1cfe19xjpJOn3UKWq1q2cXlrNzqmDOdkNYGMUrr3ZCOx9qUazSYwlxWu/Loyj/zs1GWY7uLM9CMvmd4LDNasX6t3txgHfegqquqHt64pvaogatj38rOxupV1CiDWs+ygSJzUq/HpGEe/+xraeo8tiasocyMMESE+jwCqO4yX4b/l0Fua1jhDkcrqllJzs/Gxl7jqWHUgNVvRK9IrwoKsh1r5f2dijBoVX42pA2m7ncN230T8PPX+a53d/jx8Y9b946zdSRg5KXMc9v4IVp/2fj7MJYinDU6hqNxSU14DuH1KJX31E8qmFuwtoDHVWCOcwpACXk+ORtqTX8N8BLws0JKM5AUYY5SyGma4a0D1LephnoZyTsH/zo/vaKaxZxiGBYoyeadFfcuuNs6L0socm5eycXxq2x2wUq4ZHvvQrDKnVRLhaSvKF1bNbjO4kyQAYYiCTIj3fIHUJXE/Mral1b0BURUGyS3rfMUxSz+svWClBGU9MaTAnPHjyJ9obV8cG37rAvbZbOv9peIbiTRMT7AmRyCu+9YGfQScGADQcaKWOH+Dwpl+uQkNpBBKjbEh82hyB67z1A6WScTejYTeKV3rSK9M7qlWSZD1NaOvbGBDefhZhLJtSMdnyUpVd0LMvdLMJXv9IGRkKsCGZGSmB9sQQlurKVNIldmZr5p4oASEpF/CSmlLTDxIpDSWilGBp58WZfkfwhG6rN8vyUgcGFhmRkKoCqOe6I5Z9UxlLnlr0HSaiMFTkVlDInH4y+z22pVU88hnSro34VWS+TYBd2PqmZBQTSyF5GuIFoqu/hHa8F0EFR1nek69tmaspUSMRas39QpNHWUj5Gdp8zJ4nxk/Irb1vSj+a2famlLP6Pjl/KSdPCF0vQGopzIMLq93RGNbj5zPEanmsbhC+5UVoB1mr6g07c1xaMecE1FtwPW267zG/Oakg/WUrSDN4nMtdLnnZcnDDc1cUC0tCwKG3EWsHdRs5i1YYfTBPfFb8z+sHD7FZYY6qz+X02cHgNiSDNooBBSARu2jKKjw98goxajxq3vR/bD2Jns5FRIbkP+xRmNOJWTfRM7LR6FL6hrCmWHkN1lrOZeu4EvhNNCev2LXl6oOpzXdjvloc4SfalC94Bnieus9M1CV6Al2nsUxepYM2eufHfcM7xWoqS5IHLftPHEu4h9X7PyetnstbWu/kQ6QnA/oXiiE4qtG2tVYxx71SkCJ0LcB7HiZigPEYcFOWt9NElUKoo7D/nMqNs6QdV2eOfzuENgIoreUrmhsV/vNdNt2+tuSe65WRty8e0HvryqSpJ5S1EPzd7wrRdQfbbhDg8X1uk7fJg1gO/1pJSZu/r3RMs1V1ZzEWkhTkASWwnudC2vsvZ9xHYFBcKSRojxuq0DYB5hbjeHuEVl4LNepQtMIj++8ENCuSO0O2YT8u3lEBGR0zU3t+9hWcAz3s189e73jaWIjsTnfnzQnHWuslNbgHbmzg/EBebam4w/+PvEkuVQWhmA2XK3UERlIBekllfGm1AdmoqbGM0xHmPJ0rk0OBqTvbc8qrfCyCX0ttNdASTG1CDbzI+BH8dzdn2UQ0u+5DpmYlUYswmIpBuAW810qc8jTPOmEcTLqvWpaZetKUXVmL501fxO/4oPcKGaS5HcarrOQCsAdO9Gr2Gb6PPpeUy9vnNVGDp28rYZ53db9898cH1j/jzHlJQpPgHKOo8ue9mGll8f9rfKgsrLWSZwRo5GIuDRTmPt1Ejhe7VuC3eP2mQ9jn94NInxSmvbIuuuQauQw6CR0oJjbtW6elSsL193Ris7z5vXkn4NT9cXN+STW24JkvOTRj+3XWjWZaZ5b1uv7X3AzmGBvmYxuWmzLV+WYCh6V6pl313R0D8wVCzUmJUgOPPUWctZgDkQmt0Y09274MZPACMii1ch2DQX0HR6gQBb0sbG7sMOX+elZ9CVC9jmk7KJKHZBoxfaWDYE6zuTfmkJRkG0CuNEVSiqb4wIFBgQUGfXneh7hYs6L2vOYq8RtkyuO+GbrUuKgxrQxOT+AaBgUqgWfFAuE6mftQMUU5n5Yw+ZRg3UsaNck3wl5FpagOgobN/qLInxWdoQKqgyEZI2nHDN9lZcEe7Vt5HUG5lZ90nDDRAzF5MS8ql8ORsM03MbYxdtbZNrbwAKrScSa/bv/ZPgs3ODSIVOzzBvBx3tdnUvvEzk6ztlO4mqtRKVe+TSJAnCXSUDzCDjTRIZmfQsU4n9/t34s9eqU/W+rxsySULEKyPQSDl9THP9VO8mgvnZERIRovTJH+LJcKGYhKKEGymFY5COQGiO+pz0gpujcd1x4AhvaxK1qarj54Wq7zZP3ECVp/hE/cp1SfzLdKFf3bahdNlxTAEwWIUuCQq+j6CWP9aV4eFwvx/t70uVydVDKoXQ0zuw8fggQ2Fe4kp0jlCpsloswTFDywQxZYXqqibIqud5FrZ2Aw2xGwa0IgD1NkI4ytvQiW3qJjyPex7XAusZjq0XuSxwXMt/OjHWbw17prY148X2zo/fXmAGB6VRaAnwz1J1vYID7vjrjWWwDWDi3kOnWJodW42RexnPY+6nXpaR518ne34+38J7vtHRCf/0op7nNeUO9b6Xj8WxWzpJ0teiH6/qPK69Ev9qmYUBK3VRoJvDo2Pq9TaH/6C8+aF77sawjEwwqmnn6AEPuxgpYKjaokdqXTUXItAI8Xo22nPqeQMIBSdz5oYXffCJBpnWR+2KxXhhY7Iw/2KpsGr51g8qh6L9PNaaoe86XAtv45U5NbpqQds8twI6tkss6kESTwv0HlSb4AAWYgfAHbER6mqYSyKrORSrmi25+A8QiI1IUy/qqCHkC0/0rdv9k8kHQD/QPRq24NiZz2DqjdB6XMP48mzVAEnTmqgAcS2hfJecgLaquIl5DYHauQRu7FTGSm0PguXNNu6zx2+JyL7bteQSYxCfTUKLitgR2mb8JCk/P3s/K3eQ3HvBvQgzCO2AHe50XxosbPlu7hPan70S21gcbtqgdHL20l657JgRYvjilg9+ai27bHqEndWx4f28P9o/CYkKRCrxWSvy86x8A/stU1KExs6sO8rPi9Rnr1g/G5QYGz8K92gMcCEDynAdmeYKOv7VBF0ztKaiB86WholuakkwEXUTvJ9Tmw1muWzj/dGYv5wBMeIY/vqqzmKfeGdp1Enr53b1rl/NpqwsDhLPX0B2uE22MFbU9LbC53xfevmAkfn5t+q5fvC1YHmsYZkmlpNSpk7Hp50j3+j9Qivqyyde64mTnSH0Q4jvx8y753MEnjv1BaUtq96lM+rG0l5/dC+DeBvgSlKPY1Qa1J231D0vT+cs7r0B13IeSFbuL0d5WqCqnW2plN79w8yykE4vhXq5jgrmGAkVBXR7pDqm0hbpvP97VW5BuX4baMBivkZXuOJ+fLEWFaxsTv+s2OGpNSekM5/A6ufVFFT5Xh320Kwwb1a8lvgy+/U5X/jrfjxtEct2VrpS64v6AHg2eXaUjVfcllpStMeqEWv2h9vjZWc/Fm7sU1jHoV1ZXYC9KkzPIWLxNj3JSdos/dALLtuIBky2L1kps00HRYGT5q8ibZI0LWKahvYEytq7S0MNikiDpb2cxMmWg9o/AK7G6O5zaeBr78jiSbD4add5xPL6ZEbAZZdQfeebrAWS++/P4pqkc3vmvgZVJXGJdKdj092R/W0yOonXc6irFwIzchNpjr8C68mtj14Q2jt3pjIXBe1iWanUo0/1zcvlxlXOPN36oLMec7/7zcxEIqid3K3MoyseAXKfedOqXNiEiyvs1PvAdTctieH4jOPEquvyiHCFtP1k3YROklwPkC+hjYA2tZVOdcrMl8SrZL5YuYFQICGmXHrc97jYdUx2ZqReJ6Nv/rNjgYsRiJNdb/JDlQXdOgGd9dJC3Wd2DlgDqTK16lDI+UgzpnNM6kCOI+wT3NXMjkbjxYFcjmu7KUfN2cINXzyxnHFP6yvNaNk0U/+myUcjgn7svHDO/23k+pdnim1/vnWyfdsyB363Lv/P9rnbMmadxGbn+/2ldfL6jheSQXckw62Hzhfz92jtnl6ZOhUFPfvlY6FE03zTCu5rWqO/y7Cwvji63Dq20kivjx8hKbOj3t3L58f3n3rDwC62/rR2le4s1JpD71D//mw+Z/SXFzsO/dm2/otju73MYwZU8QDhehR+/+G15P2UZk6KZeElVCXHGnB2QITUyNJkrOWWZYOtPJq3ASoLad59RnYL+beUf4+es0xf8gQpq/Ha/PYcW1kMvJE+c8GvU9MLIY3TWBNr5qKkCJde+V7O67XoIN/Z7DPTY2av0bfjV5ZaPWqAkUWuzkOar/A8fBmnOkJduKdvxBZVcaWY8RqqjeL5hqO3E7pGI+nqm17YI+brpumjT0gWDWvEpgZDWRes0KdLkvTJle1vWJuYJOscMwLhfn5u+wDjDLLaFPHMgo2d2B4GUAZYgOxq2tN1DEH2mzNBIek7U345ItI0RS5A+dmr8yyr+R4AMPh0FjhQ55nIzG2c31aMsE0z9oRmN23HMrEq56QwRBUrEXwjiG3fwvVKo/q2v0yJbsYEvZ8AtgmT3BlCMjMZ2j6CTmOP9MVrpJw8tr0mexfgIKu7iSgqhKyWSzKkufXGsTV9Ik1jtxtz4bjq9nNhahIGjDqRF6GLx9SxC4RO/g2rTCwFVilAlgDQhsdJet7/QPbtgktN+1Bc9rQPvrdrmDxYDuvuRRuJW2W0Ab6OsScxB+y2Gv/lxNWE1SddOnAX50tTtnUeW32xyXAer6sIAlZW5mySf8RewduQlabvNfDgrcKf1pfzI+schdF3F6HR1yrO8b4U+viyJBqUFo76Wtpju/u3y/L2jjR9r9tac4xz39cAKfsUHbTuOQ1ebGE7s5rvkk2DtlHr5Sor8rXfgy36m+OQXpvtzbkE8IhCi6Ga1ett7c2pz15WupZizhdHWv1/J7xmtcrwpflq8sFWWDb1ZZonWV0d473Mo03EsR915gqeMGbvzUxfJ3wmPAdHCjcZGGvVRLPrbxd6Ye+TeQf/w3c2nZ/TQFHSYHh/b7g5XPTLvVutSYDIvvLVsqLCVcWKKWzIv0gPMFP28Tyj+0R5bVvugcq3l1pixTbxrmDlggbOTAsSK+c8emh1NSCKHaUjiyajSqIjRBVj7J1hkzn2CQMRLlhBmeNNAq9yvz+aq01zjk00eMO7/QsKZRYp3uk35TUM3BFsXaNM9YEsGSBygVIm0DW2JvEhtYDdlUOWUnggBAPA+lnLZi7W4xT6YDDWAiPp4CNCYlXzTEpKYFUQKhHKnQG9JKlkOaS1jDnBjgpnLUhkKLIpYFf/HoJMyu4IDLAqf0pSktq5Q5l0M8YsmtYypUTWw737PgA7EakgxXCKQxuEyChG7zehWscNpcPUQOHWL4WDio88ZxVHJw4B0ifjPL2x7eHA53SVmW9XoRndcSIcNvzWGjjnlgbbbJ1fuqjovMKQLBunwV9HeTZojOt04k6ixgEopQ76u99mvNW9o5yd7FfgwrRKOG3trKqkSecs173HNdG6cRVu038fiXkYzpaNwX3UklFmurdbBj8uANbOfZtaHkeidcCYVG9TWp+0+ZyRJenW3Za0PXdM1KtKzauEo810XmHT2xUN6zuYQNxcVyx2nbrt7wExJQ73DpU2aghDFGPZzueo9gNaShe2Fh5E8fXnEpbxmGZT2mZf0UaUoLcsxDF3M7JyfISKvmFsZyWp5YjETKqegCHhPXz2STgDZtOx/scBe8xSx/XcL4+0/ggm+c6O1Ii/TBg6ibiAVh0OoM3XbCcBFU/c+3afuD7brR9q/NeoBnhluxAHCEp2+7KlrR7pl+5VasxWsKq1W2fmRE+/lmCS1lpCDETWRrxcWwwpYpsRreRON8wRwdw/1cNY6YIOdKPX0Y5AJDOw4BqYBDo1oG7hEHUaFtB93CvHqibDUnKlnym54kK2fEBVJE3Z1z0bpEDYvTdkVEWuiYL7e1V3wKVBCHX9LCRWkYCla5NrW2SFCBtSiCvel0isYoybgaRyUVHXUO3aNrSShI2+/cZFKWN6XzpJoFCJZKUbzPQMSGVuCaq4OOR2PsGFYrsYqW58lauKfBkkJbQD8O02UUSK7iLZzaycVm9dRAh15yyrhSDPNfHJzK1T21/lqSyuyg/gHALW82LUiC5JrvM97g5QmkdjJC5HV+0lFADrS4rVhNM4sjEVu8PDMIkatXAgJs57bXRbg5Q5psVQrRKPw8jWd8ANLi48yarJFddh1BlFO4k+G+7XuNzraFbIlHKOmZg/4Uz5RuDH8ovcPj/mYFuh8uvXSX4/7/ojUM/p2X7s65eZF8eaD+5So/tj1lXvvlTq9aYhQ027jbfsmCrL4gvgKURytq9+6mEkzxAOAuqqkjiY4/vF6hnfpua4q4doLcPXAlS+bs+3845uxNELoXn/WXP2ltVu2DyWuf29VZelLjP96wD2GvfApJGhy7i188WSQpTybMbq4k3nBJSUH0ZLvdN+3/hKBQvOm1HHoiWwyQ6ynIrSEbxWRTPOQkhVb6c/ecB0VGjuwIWa6TysnlWmrhs9ojiNluUDax0dqTF+Y+RrRA7Q1vsuaNHWeBJKlOnnTGxJB5d8iyMhLqX70Wd9Qr0CtoT59v0xNtPI1LC+selbtiACOxIIVf4cM0uDZcitFxjC2mZmy5GpsHKLOzOjDmRkR0B6ci3ihTM4e6YEU93doRel2ra5knMdgghjuxJXmyjnC4qoW/DioiiuFQMf4ucFwAiD2oTSAyxxBMMlp7ntLUQ4hatLWgidZT87SCXK4Oa2X07oFd28yd2NM8hMk+cm2gKbzLAi2CIrCWIlEOtFN03cTbW7c2RaHjKsq7WYmVGlgkqrJoTc9AHD7hQmtWw2wYWC07NwBrl2DqwVxDb8FZ4wQ1fGTTDxj86HSo7+HftbT7usZJ0bh0KgqnVmhqXxJirLvYTUklLHC+NYl1Xo0I2+OcfSjC1xmh+z/fP+HFqLd+apIalNdlFCOb9SqoQaIz+Hq310tIoiw60nD6IBjhP0S4sNp+edODpiVNdlZ66ffJtjOQnr4KWGJUdVNkqftTqqvtXO//BqDv151vgy8Wj2ViqNLaBuAbH3boTg6yE9yjYALTzzGbbnO/8jBr+U4A88a5tSKmS4WxyquOJFNmqYbWuupFdHtRG1HY1lxyzV1NgydBvmIUv7H1975MHUvM6sJj3WUvTFht/ciPX4QACr07ik44CNLvQHzm+cBam6E7LwsobcHysmiW2DLbmxa6cL9A/DUm/m2b0KiM432imOush7dt/nk73mB+Z6f8aM1wmFCfSKapbTxBviAJ1YPxrFR9RpFg0iahRNcKhQqAuNTMTS30GFGnvMw/8xriRw4ni1QOV4zTdKc5XrK98eTiKmc/GRjywVInOk2x1Nu/xjNeEp4aUu+FpdG5pJglA1CtL87iHXiugfU9rIJvsaaSEW68Czg3ag3eJJQErJTDfINXap7Q9qLVT784gnS/flVTXPQwARGVm9q5RdVMLYqITUJa7Q0Q+vhJOce6f8q2o1XwwK4eInaULL1wmOp4Agfa8shFgRGbEENcuO9gQECCm69Ikk5d4RLsBJKDsHq1JuDF4kOUGujGUbYBe6bGB9Tnr4RBFwV0HABRZKiw9/7EkpmAxXJJwaSAVp+uweNX7MTwEBNZ4pg9y6ssQ4MF0KD2HX9s7YdALNcRSWagJREobhR8bd5TFnlwZWb3pP15eLzAEcrVvjaMqH/Y3bPg7QUeEZ1MMnVjlCjTn+2WU/+wRfxhG/Pemv2Rxl9tw+1Blpb+9l2b5/8K29vxgGFgA9qvHsyjHBJR7XYKtGUQPAXqVZSMzDKlmEZy7zsuFnrinJIagyVLUybI9W18NnCY7g65r2yMUc4kncKzNo1VRe4P/giqsNg7XYCVD1mNUvqJerYOzXBjRzdAyTjX4x+w0Nftnyokq+/nRexn+5sxgFy4vWtLoklwrw3jlRdsPYAfRCIXOEOdfHOu54JViXXjXnV28BaeIUfWg9C6LJA2ahqQL6rT95THoLUqGGiF3RtwzQPXVKXlvoCFcWoHVh7DbJbhhadJQFj7U+Nc0+FW61V3C80pIHMdIXTw7WwRh3AvFn1bILdeEStu/Fe9e5mWyRUkOCGGD1VBMz2cuBnt3FOGokRCd7HmNwMTKoXr0jMP7hSnV/ptWMmXUVeZgbFos+6kKlYyXA+UnJzEgJQhIZexOhvXJ/4pGQyR0KY6jQXJ5pRVzgs/QCtZ1x4FIqyAeaG56qsnMJXyIBwUBoKUIRIbXHLGTVq6bIqLImROxKpQYkZHe/GD59BN24LYA8sidqW4lglflLSrmhKPrTY6/sJ3QW/ehYjTtQkuSPCPZCs2Py5eGMAbZetXnPTm8r0gZtSAs/N7bFHH7NmWLrgPZoa9eLmiZirqyOH0XcPYjRr/u2LHXsOkoyWpUzvraDIOQWk7UYnLht9mUFGcoQwGSpiXVtyAbY4E1nID7FcFLdHIE6ztWUcdjnQsR7t4G7DONvv/f/z582io++pvn1kMoeqc+PGa0x6F5DND5CG68m0H7/mj9fkS20wdeFCdpQ1jtKIV96gZDrt3KgBM8AZ2DsR7H0Rpncr3VvomP0dC9wOd8HerfBLoX4tZJsB7s/WI8eY9pG85d7e6z71wb8Wq3+MFsyD4axqJVadaEBto1qThBVQnB2kjO6cQfG7h8HoVecbYDu8fCs1azf/ZEIkpuhWHLSNKLrtTnyW7avjGf9qodfWsdn0qW9ckxAm1aMoLfT6AFX44LCeqyDDWcvzzxKTbF+jxEtF0WN9oFs41iS0LJQ5ALQct6fQv/MN1XdJQihwK4Ws3ab07zqvJLCRoB47Cws7KMNjU8MZ0RIQUU3oCh96ENjXlha2XDEE05r6FrXC1TODqIhhCEZi75FMohodtEKGEnGrrHXhciRCAGxlhIRgbUiQsFt+7nHeWQPern7u6nNYKMPgltKxPIQVxd/aD7AZ4HXiWAocomJxYhI+ooR9wBeTK/HrLoLgqRULmaSrxYPAo6sGTfsAZBZUWcryRRymmAYlTWxYDKC8q0BHzZbj8xy0FUG+MVqbqZI1C74mGUTGxxKPQHvY7EjUBlg1CXQcTVKulrK1MJ5K8SjWsv5PLKuc6508Z19EI5CYevqtrtf2muk7lDQODwkGmKfo3TUfrHRbANcMhCiwYdhu0cWF9NXzXFnFA1h+vFu2Eox54h9G6HW2EAjXODwXLUit8YuavW/1fb9G/ivnzypHn+n6JrpoMXUhRxyuEKdB7HN3ddWnEmO69YvVydZtfcwW9J8mP/V3iR0CJFrZUvmshDT9f5WAk3cHSQjtYdk7qs1U8ME1JYfB+5ax5aWEoqejjXC5ZxhrBILFLA3pvcIkiqjSkNOG2Gq2uD0m1vzttwYuJEzhDYxJz2tsp4ug1+TuojOs1j6L/cGBaJURxpot3Rom+GYIy+Uc2gd+rmtSSMCGSm4WSggKFZuVEGsZnvNRrL9bdDVgJNV0qlzsFv5HlHo5edsP9zItaruEgxXwS/rxWi9Spzksu+IxjHicHi6xdp5qu2UqGrocB0dg3ZAymmFXbFEZkYWZiL3Rt0LKS6GMtUayGpuT2hyvjJgZD6hhig01sx7OawCKa0IBRT0PVo9APdQIq1EE1XE1lW6q7tT0inFOkijlqhxGoXq6GkU4Doozy7PaC2WtwHQF42F0CbTRSuJzqPn3gFtV7RMpvgy97IRieXldEFHBlIIF7Rwf6SUFNrAputRJt6g9g6neaoKkXtP7JNWx2SJLkOZ2pn7fQjtENaq20esipGgkBnenAB2yMUWYz2vL6eFmjgoLzstmCqBTxYPLXdLZgjLnnN2KdJyeL3bpSTtl7ANN3q3a7vLWUZZfTddOlYDo1D9TNgr9E0wBGv/URRcNsqzaNSZmAeMelDj4z6IjcrGex69etmio4jrsN7PnN9qhCXej+zD7VcWxHOl2Lo5UOoMwmIJstp0qH4Csu5ReF0iOhoPsmL6B3C3OVatSlF9ZaeKB4C2SjEIv5TofNFa5DK+c6AgEE8BpINpjqpFq2I1Qafvj/QinYU+61iQi2c2x9e5tlmCcpWmYpNTvVHHAKM5vw4VKhWXI3r4vWu/58U9P34Z3979IzKTdjqTqLUbRJCj7doc9z4PcFI9/KLBD4Qt69wSeC/o13eKg2zgc4jd66P87aN3ZgdLfBvNo9HpgIfZY561OzOpSzH9oRK81gtFruL7D3HWbW5Y1ogHGc9cSy2oImwc83pPj8XFiV0S4Gx32cSDbFAIXxhxVmOD6kdEOoW7ztpFtn6v/i+gCnQ7h8vRv+bdMObstOeWRPdoPcwLC9mMPPeatJi6ire9UbbYq4mNAX1HfqwEkMzXp/lXloNAt2zoe2R2+xzZHPnhSVyxob2Fgr3C/VCjHCqQJJ7dlLwfnomdnX48W59RN+XEKG4ainC/9xwkNyT3Jna4dqOb9M6Kq7nZQEQkEctuY/K0+m5g1YJBDnKiBIQTrLKtZwpOwAqKjLWLAnHmV9VUk1DJR4oTo/EtWlVFRrcqVjR0BcQuITZnKgQonUBdOGd49Ou0jntmF4nScTn88/J4PcPKxisgMJLsS1DBl5JQFaHkJjqQzFxbaShtoJ0IkEhvSJaflKyHFxLQse0ok3Vrhq8z2p7XnJ8GGeNQlCJW41v2jaBymtFapn7FdaJI2bbKl5uLEilj4ZvVOsOx6WQwlrGwFUQB7nJVeJDMdUrPrEqyC3tQ/C+18PXZOa8HHs2fR9+f/a2OOvFHt2t4Gbqa0VnBhkAa/NXmoa1vWfZGBl0e+SzTBQZ0q26MATYGWr37rgrbDMCXAIxl7mAEBUwigdXzJQG8ZnNvQelfVYG+msDvrfmfvoHmXebjiYpgFdSQoO50IkBDtuDgh2uNa+XVg+D1g6M1G2oUZqtv+L0eiQY8FjBpEqIH3WNuzDLVcrxIVVv1mid7UYs+SSD1jBB5ZJNJ1nvVIGFWa5axDjSbbmiuq++o2k1JB0o8fYtBOf6yjQDtqlkTuast6QIDBzf8msyYIcGUbzEblzqpDdW1Nf2RxuktEoXelFgnoUvtkXZiAYjqHQg0GaDzTgqkS3DV3kave5tTLkWs1OOTEe4+LzAy3R/SNzJbsRWZRKdKcdXlwTEIxVaW7vOC1rwWGOkkrzDd3AKudzMz3fkAfaqACHW9ww6aJ7m29SVFxnEIkRlEuMdS7p25lRvaYUC1OZbzSyl5sYWIJDLdi7g9HXI1G1SlF13FurWpUzJAt2wgUHev65mqZpEitYS9xapDUFZdMzWR1YfJX4cCCzui8V+fI5/6cIEX6ys4yYUN2lhkSJEW5Wv3hWPvoK1p9sXiaCbdlpiZ4OIbkrBF0S2QC1ooRfoWMqQqWilIUSnTNRJWabamsVHDVYET6jI1t2IZ4vOCnePozhm8ScnGY61Q203S+ZUTuSotJRc5kz1gtWdaqs6WGQSYyhVBVlPMtp5DBfbB/nVMrx/VtqkJvKY0vzTZUST/f/4BAHhGgdwIs5eWlYbf+L0/YZ0OjQo7WnX4KvsAv95c6PweR6GpiaseUwwcc90uQFlDMbvGNyQ6txLuUWH1gYHkmhXrxSp8MDtfA8b8YN5d1r5QJXskvV28NqYU23lg+9mkC8KXUlZ09LqEt/9X3mhNcSSwJ+nf9YrNa82BzkFE17OpgF/5fDy+pXNMwMsSFpSq/9TWh3uhehox15c8saCS3A0Nui88e/dZC49QbsIpcAFeGqSX8eAww89e/ksIK9XCJtWuRClwOxsFSewg1DhLnbNYMSbDjTYyfKuHsQEw7EJBdXVEF1AqUEhVbUgACF/j0bBkZU4E0H6OuXSjgPZ2DUXTpV2TSi663R8u8s2pQztagFsBQNpLfcwqt2dUEjTNSciIWLFiB5ZByNpigCv+RXYHc4tdHemyTSlDlqKYq6pFVtCQMxaiATIFIqrNBLgoL8Ri7OgTEueE2XgzRamYwrIOpfkIrguoeZqqlozGGy0hJax2KrM5xvpL7hFMIudSsIWOJMMe7uJ6dgChLZBUJkjk/9sZSoyVEUGEGHExvfIiBJ3XqTJVAKQ05mzepiCtRTUQiAyEuc8uS1UxjKwWrWo4PirqOIMRQ74VYlcUcUDAB2OjOEQV/dBqQlurSHdsQS5pYuvqcieR7hufKrMMyP9YrZIgqFoNtvfLiaJInU9v4RjSi5hchzqluP/cHFYpzC5K3fwZ5pBxBC/rHZjLUKQyVktpoaLWaeOzECBz51pPbhlpliegRsnU6St/VC/UKSsz9BLrOuC3gfzm0EbfHb09JgbPQdjnmWgj0DgqfSR0fURtJ6xp+ki36Rjc6ceqScNZ09H10jX2w47OsjX+bwvCY9jmomYvgUeWYLoHGIYbGcM5ir0AW41pxnp9kgf+1PoSNHmHsgBfFrxdl6NXLw9Vv95zySfLDe/NHvSlMyRUch9mkdsDm2fpbF9/e0T4F4I7E5+F1gVMBtrVgpfD2bqAnaQ5EPPeoN4LtsT0C24WMb5EdA7uNZr+Se8S3U2OxgSGF4iMOiLtZvWBOutbDrwNsIPK/s0UNbUe9Qv4+TtH75e9c0Czrd8V+GmfznY/aqCzbIX/s9G4ZWrSrGzNEpD2126lRGRmt9yQC4kVjVwPsOmFMtzctFQjh6LQ4tt0S03tgt06XAx6ipfIncXo7RDo/pQg8lkjWK6V0mxFPSIbVNVBt6vcBzdWDG4TEJRYHpgytbe8t+Gyu334DzeDOOiwzLOHIvdWbvvo3evpnzNZ6D/bsFdhPUZE0UKxXEWz7E6tKltii5a5VEHzsyV+0bnXyizOFOGamLsOWNRgMPAGVcZ7CmAg0X3d+6pPQbwWe4C7elyoc5EHO2WiKB/l0HG+huRG3X1DoTCGb42xlhAY2qYmKsHd1DTBA1SJNo2xblVzwCRxZnod9i/DdsjQofO8uYDHwbLwHWohhHCLsTp0AtQDswteY/EJTeaKtR4JUGbpYHyZpXMk2mzB1MelJGK9lvboJbXqI9C3rqysxvJ96WEBoJ6xceev+l+vBL/d0EMd94pWgZk6+POcOeSl1Ws0dT4Be0RV8F5tFkrWcfDCt8OMtojBiBDn9mr/YaWesoXRBhllPimo3aXa0iMyTtFvWyDUtcVZwRL38+/fBPlt/nrFLNCTi8XyGg4R0J+vZb7F854XGtHVsT1LU7bOdrwJ457Tbem+nljy2ZzAyMYBD21mrUhKFBnhexYcy1E/6KCNIFyls1TjrLMbJFeojJRQpmos5hyBlnhYlC+srF5r/0ZWGHPkb7TFkKfHUl6q8WvQ0d+efZibQnWe2uTyCH47ZH2AC4yeaRCoPvB1M6X1q+IinvwdhXm0WhmzkIb5gsOFnNJLnc5V3zPwVILIxlDOVCrxXWnTWjsWLmSbtgYBcSGGHwwb7wiW/xbZvRPHu3PeShGWlTCk1tqQWZ7MzhUj6i5PBJSZLRFBNgWWJOp6mE+xugVWdgM8gRTlApSumVWiqVIjCWed+2sUraAGAJnMnaTkokcu82XloGT8XwCUuZmq0EZlgN8nTjY3mcXIyHe7HRsAJGXugh1csRlphZM5e86WCKmDyne+U3+uXQEcaqxkXyyUNcrcTnigNr4l2RrIK1SsYM2oTHNlR9YY+/Z3ufdWz6wOH2V7UQa4nqID6GYCkz91yJxWKw1Acezo+Unpsy8Ve6v3sR0tyjbBt5LzOpp7LgqsEUT72IiOQaAMsAvecQni8jRb3zCAzsgbLSwSXFiE6fzvIRxtemw7Gze2qvMTn9ml2p75/6b/enFridkfyBEQb4bvIrboWD82FcHbA24Z83kVLsB47aEKv7Vv/w2bHGNZR2YbccMd2ZQdmT9w4TDGIrojNQFUT9FJCzzTAA4ldK1m//DXqs/at2WC7p1oe2wNfhnudsFGFeGCWXX4Rm7LZrEzZAmaIS1vyv+J1Ni8mUfvl49uh5zGiAwTwTOA5sEqOdpCHIwEFYVnSjOCrSRLw7MuROteKh+XxaldeB02L25RC000117Y8ljaUqoEPOvZUmH9u7aqEOoeJihk7ASELTNw8kTsXS22QnQv5WM9I7mQ1e+vTgxQOQTOlkr9NqR12tg8uQHRCkmIvjDpnr0NDBJAYjX1h8rw7Yc2rFGkun+6zTPsKCooJLCxoj3s1n7ttOknKplFQTIyIgOMXMFisSuWtyDnI9UeMmxBqHb8fb/HNh5tBv3euu8lmGNnrEJogapcoLLKIrUlKDe1kdu8OUkomIplt0YAYnlUAQopZbaLC4jKBDLTxj+rm9SWC6m1NyNAzJAyos/4TnXHCwpPRpQvkbXOfXgyLkKAiEBuYDvsUSihWRggdza7gs6/iDfROeGWWkMnDKl3HXq0CRzZyoIJziAx+6G89hqY+M7mmsB9ay/NA/5/hb3pmiRJjiMIUC2qd7pn9v2fdcqV2B8AKWIeWd9aRnqEm6mpysEDPITkHO47zmaxx504x6gkTcvHGMWjPTDlC6wcVrQc4z2CS5Ar0vYoY+LiluviAQln+tcrhu6l4I/8dfR9rpprDh8KGFPr66aWjhuwQj0QnoKxaFYA0mSPJD0XhGmYgruHme77yhfzX3OGBOMZy27g4A9vzAf/8LLyO9Pc17e+0V4k8Neq5fLLcPnne/xaGAYp6Ovq9UKPTWPpV3d1YEEugcLuUez+rC84E88MOdmG5pfRQzH4hyIWgg0r+Qtr9szHs+g7gUuvLEIYCPUb0HESEMtu1vHsMljH/vu5MRfGaSDpoMHsCacV8NKQed7RgjxWAEe5ev9GHXtVpNbW2HVntfQnHC3uhwHr5PMmhNGqUGxs/anBbR4WM60eN+plYq4IH6+uRX0v4M55nY7vw+h7vHjDdAFpHqJNxI7CGmYmWWpWF+y5K/Vjz4iNO7LxeW2rw6m7+uKk0lnkiaTouoSFIh6f8nwetlifpuohxA8FTtKuhJdPTA4goTiOpV3+xZKbarrp/AvrsJ/+lCTpFT89FaIJgD2tOqX1LAFflrtpSSPD3O9vxcTQ6OFDwemwiBNSUF2l2U+WnTOrVvmFYDS8BjLNEfQ0BucSEdSq+iFYSSUmqSYrZbFG2B4ZVyw5os/s9Ki2kUCDogQ6zQqgazSbBQw2XrLiWxvGHTr3DhTJ6dV8yR+30hpG1UCMXKF42sdTqfQ3DMkjXx6b0Iolo/UNU2hLw9mYpRyVA6rTHWqzlbkCGsEJjhlOeuwFMYyXl4xXZx0IPZfiUBT2k4wrmzLRWpz3zuOOkwrnBl+/Xw90Nih2K/bCSOjYHvgKd3299tsY+6PbvRiuz0Q+bo6hemgCtDMFLjZa50IIIYAqjH/8lxXOvTun3sGOIIalr592hDdGsJC8Ba1/XGpRZ9PvuX55VZcSeZZ+hjCcmMFmp6iLx/m1QiueR+FEExnixkbQrXfPt2du17RNj5BrEK9SGY/GkaEcrXvvaG59+TgXrIzQHLk2Gjie71tF7ESyfyKorjZ/17eu5vn1a4JZrZkeRwGMj127BLt+qRjnFg5LO1caARG/IBwj6wjvtkqbwz6R14w3jKOAghcIkMXHzRtKZaqF6PQPAic6xOTwAKjHRoNVHkl2aQyZcEZXaNSzq8iuywIu5aistLmbWHgFAHicolsoPFVC9fs06eoPQJfI6k9TNdleu7PIYweEHH4z0Qc/oEoPS6Seh1TVp00zzWejBcEwCY9IKDngp7avIb7upW8B+iH40sbq2z7YqR+UGoV22F718NGkQvEee7hig9tWW0xspOToukkuUfNhwxBKnAxWMwykMamyps0G5ywSFJgzPG6u6J8/9KFMyVoPRAqAFkfQMLp+KX6GEj5lqTD+ckhl3Va7a9TO3p511wUxNDwnl9T9tno8xbNG2UvS0YEO6FpFVHa4ax1Vg6mHN2MsDhwkXSl0UDoCFRS1q6zSWScNtxFCu7TIYFkkxdNM7/pauYfxDwPikxTbYFPkJGq53EijGiJyDAmuGrMuacAN4hHTUXJQ+toSXT5pQnuIvYdaEKeNxftXvE23XLsTmnj9HM9VPskq4dexuwVcl6DHbETI1FGKGfvAwUL5Vh+Au8cuhevKWV7EltFKI40dhhgxkNnia+NU6xRbDySy0QQ+S8Y6gWiljgiT5ILV0RdhHj24Ez6G8CRsHW5PaDw4QN7jQ+W7VquAj6I776yGjEXHMfUV42GBwRnlGbbuG4+rtzeClFHNl+RE4lkSL91YZ8B4XLMBl+paWaf5FJhTDT4goNN/2gPTvbiH+nbs2qHNlcPf5KjVsbgLPu1Brjw1ohvKQBZwoNBxDJ3tsoolUqIhRsX5UDqDiWa8MG28LrFmB8rDJTDEstE0y5jJ7A04/3mnI5WHBJdXBXX7wMbCrFXAIUS7Ka9TpsSLpFUVHwAPrVyqq1Dp+MsHI6X+PICrOWU8DgJYKLfsYv1YV5PEKB6fPLXQBlRCidUsC0BnxBSvjTd2YlUBHkEcAD7GLMCF8jJHCXw0nQ1sQor4v38215oJCDrgxfoXBy4ERSFC0VWMqyQnuMO6aeFxYmnjf7WcKEr99vvz8yPIrYBI2uaOwrWPSljnbFHlJKAfkVB1E2TVQ9dEmcDu8Ki1kmxNWiy+1dDbUuvFyx9HYh9U4X1e4u0HTfb7ovojuBsC7AR5vH+TYxWHM52Lk3iJR/5W29v7Avq85jDHg+1Db1SDz6Of2K5vXMIObFB8XjcJzkEfga1muyiHIyQ5Kh7g4XmPDD7saLE3FjBW0e8yfUuOA9wH8GwgBLP907H5eCw0ApKD8iyoa8RTopTm4EaCkFBZDfWGlp2SlLajZzf3w3nyUQtmVZ45mDJ1fICMv2HuMTccgW+C3oy/vd0CmRFvGkY7hnWcFYVyLcxn35QbRPCUrow9wlap35FzAHZBLZQnC8s1T6IiLqNWoyc+/KU6M69rjrskFek3dtgugs73YJf9pVSRgdOxC5y4IIbS7IhcibByfb0x52oj8l2hWAU2i8aEGCK8vrYGvZXOOKWzSbnRwRgaDaWJXowUmRvylvU7OAb77q33O4N8ZsTNMVtD/JzdG6MVyxuDWDCoMkMAFS9vnj72+PXIaxkW2ij9AhqlHDn8AgCr6/Ps45WIvI6rarS2ft1/R3+tzQjhg0mOwuaq8eW8YZqTyMepvLVAyHoiRpkSpLG9uPvohxVYTw7YPoCqk3nKp1BEs6hKU+A0d0SxWXpK1FNAqWqbkhJioaqbQOMp+XDuAGt7t9e47IF4jXhvd5s2RnGsyBJtwxGYzg72Ow+UGuFo1ZgGebDafxc+AT9Ao7vV9fN1gjOSV7PI4SGMHvDI66Igpi/VCCRAevXqLSVHWBhv3Ahwsmq5ah4Cqd7AJdivn1Nl9VTn9AxHIeYobfDYnBO2wGKSJgqgj/ac1D+zlH0HQ12LIRkjvbo+3RDKjS7wyhHRoAwN6w+sJqpceHOkXuVgtHPDUnQ0E+5u9s+rnz0iTWbvtHgY5QJY4hLEYeFvvtTFiMI1IY/gi/uGH0c8xVLRyt6cbBk+zXFpotMk0eU4mJ6PZnwOYseT9pJrq6qmE8TF25MyoJnHJcrni+uyy5Yd/l9r7JiN0FjXuz7Xh4en4g9zQyuO8JWTmFEin+fRM1PgdMoO70aJhURjiDEKkREvIvpHz5L8ZKvMWmEntnsw7lUdkwTOgv6Pr13iEW0rGL8uyydxZQZ4HZWDYf24Db7vP+L41v+7jyGWX75jzrvRZ3vxaoXLETzD0b3/f01i9J6uO9eqRwOIy2uxI9Ft+p2BDJ45FJ+VOjp+JnbP15p2/sPRUrr/rXsauh8cxTla7vjBdrI6YljT+MbE+bU3Glxuhavjw8sQbFiDurTd3GLmdNjkCwZIS+TX5EIf88XDlqObx7/pn2NiL1YZvrucejGabKnkiAweQ6l0VaiyG6UoVa8CTnkuCHqk5yFQerjl4m2+dEWwFa3QSihBJ5EZI5uPuDIQ5eYv1Ajn8nzKP6K6NTWYvDDlX/FmHyHYmymNp0KzXg28KAh635fvbu1sFgZhBVlpWGZdO0tLXxnbfsyReRwP3aS29esSGE5iPng6SgcbJ1LJaWDjw3DglQ58OA4hPijUHI4+LC4k6Ug/KTWKtJqqIlF6a6AStWB5nLUg6gVZRfmEugCw/xvqBO0yyoGFw1JtjOWMc8Zvb/DVgAJ4uttpVu+bBjOmFFJQM9Y1vgJtzPYxo56B/iW0dmCJ3G9aA1z0/WCkAbddXckwZSyPtNTKMRyojv9Y8AEogUrYCJeOhwS8wrZ5gsk6gWdOeCrxUS2vC44+CUeH3oBhyWvk0xjLR27sSG6Vu64zXv+OhQIgrsEoKIF0FqI0Y/WiayAJhuEE5GQ01wKf2TpSsw5ILcvssO4tw/3B6CMA4Idf768/PQJcR4eGGOZ6RcvF2g59zbPH8+jpa4DQuQGOsry+9UVqxhGIT8QP7GUjyZHBeLwu1GiwGof6mqCzfAdQHFl/gKPuT8yGlm8t4o3VkKI0sUfiEfT4YliMRrsJi/OzLt/7DVmXjCIHs46ehMZ1vJaiKLi6gsXVvd8Tc9qZWB3d3trZJcSvjlASBa7H/OaA0fJn5BEXEZp7nbfAYrzsky0KTEj2Sv9YH4JdnL9Fjs4vu8kzTw4fh0gyuvBjMAVkl2/J2WCgS7UQz+PwZPIuHJB9noRcHPBxo70PUJ/GAz1A2XiTzHQfim771xRfcYypsmkjH151iLD4GpmzwWQWIc5diI/ER6WmTXK9nKldW+YCGUnCjtWxhoKrk3WElGSEUHjf7iLo+ogXxR1OH4l1FtglnzxC8jwiQ2ax2a5kgm2LYqkph2MFuP2Pl7jGa2RbqwGm8uGfHz4u31zqMTv5ET94xUdsPg28pdeHrgiyIfQDiC/QtoGfeoB6uIIaElCsqEhWT1cOBVMWgaQkEMX/VW8/JPHqfXtNwAaduq3+QdSN6tFLQqypjjdywHrwuAEq3SIFPq/QfGuKTIYFR3EcWRR74aiQSzqOqaBl9YFTPS1ARlz4baaaOAwsrFLjign2iBk9TDVga/4ojdqZfMhusp1MggaUxOxBFV05IeyRjinDHdFM5abw+WDkw+XI2it3oWe9R1/lo8sPNoqbWcexXQfm5pBGhBjX2g+JRePXBgi2/x7a7tajyvL/qNWveNw10/hzbwv4KwuaZ2Eud+vvW3150MbswMhirDzO2GJuhVoyziWkX27KX39/vcclEJuzchu1ToGYkPhogku07BODA2aGX8/OBo534axCgohqunpbGwikLgqSyBFeA5XQCFdNuvHn4EtM55gLNNh3GVbhNSqeS4YDk9Mw+Q6tt/e8RI9HQBi3wG6CtasdfqbuBSlE3crz2JVWoRak6/nhYdNcM8Ll8k1IWBd9MmLsSYWPe2oiWgicnJJJwt7iMJoFQFbADxpxNZLvl3DKBjsKnm49XA4FEo6GqlRUTja7sm7BSVhiNVr1gJ8ffKQHeLZpEgHwA7l9IreuPcG+EpYAjPgNqhEBlLs2WQOIYvNRV3XpUwG0HmyfWRH10FrAqKnIn0NGZOLQBvZeQjlD+X9f1sVsoU74z22abLYQ6MIGZBZhelf7hMRIdhUebdPaYCo+xadrTrsPuR/V3gcN6yvJNTORWmKpiq3/8zRYjzYtEAJU67Bx31/CSdIUStIEeGyoGgmCSGAdRSeg0JIDrvcklQ8v+RCAI1o+ldAaudAdASPV0y+JYBsBPjNFi2ml1nMHfpopayfIftDsXIfZjEPAwZJHlH35Dn9R+3FRxEjQ18crdReQX24JzYJG8zrsPl+LAB+zlsOxcn2FaJ0mJXYuW3/jouMZ5urbKKLleMUdIOwej1I54CQi5550zGtyw0MDJce80NAJEx6JK9OJDqNnmTTznB1fbkZpgl9qlGVPp/mzbcsx2o95jovZcPTy8QpfAv6DJeTZJa+Hr+Ow687q2u7/TA9h7AHFa9CfqBPnt18uliEkG2zj9bjAYAxiZjtcXeY2AH8N7vptdcKa6heEkbfk90DmEJlrtcMFBZmeDBgF7BtYAZ+FHMxnAvZpqCm545UeMPNPeOlSuiNhZ1zGAAC0Bw8AjDyd6jWm5KDZIUJoF2sc1BdJZD/8Sah0l312xs+qQ0VhgB3IQC7sfV2NTuMszaxahz15uOxgOQee4noMZ2nXQmehOHuL8QlNwIWjog+uYdDw0AALLDaLabWuIkF3E6gSUERJD5QOTp68qh456cq9+RpNn2niMD5VLlDrrB87AroKQlViBaqWD9yC5IdC8hOVZsXm23ITnd2i2ZoTkbBql7XgRGFA6FW/3f81ynyc4S6PtPDI+iPwzZCHt6QGldoeHlShygUNghciMuxLj1iUD1cRoOsVTGcME6ye2cqBc6Gffqgp10x0oTD95TQh8bnURT3V7crOfLufLEl3j44JbXDlcJ9Eg3J7xYWec0aIJPjwbXCQRILgTVbN6bCO4lBRKNZ6d/W4SIxSPESR8aMl+/gWDufznF5akfstdv8WF9lo2Fw3+x1xcfuw7hSrqNJmsDE4USBjnQax9UgVVWDbot1qpAGyEQWclOoE78PFRwErcF2rZlbXhGAsybl2VujO/6lJ0YeTmZlcsobD5H/J/3vZRl9GxVgCtAHz5PX8/n6W3qL0C9OUZ3TkDzX6fyERS1MrKmNZxSNuFvRIq2unItrO7PIdg4OBSbNMX3SUbZxcrHEHzTPvv/F9eyzkiVPyCBfyvjKQItPi4B4fGzyRni/hdEy7LMetLrR3vxzSQrcG5uQ/p2YOrlIUcAjH+C8rDzSKaFUiSy47Y8hmxThWgx+uA5LIO7y6gx9LxXIyFHvBrsjPJbOZj+/4m3Xj2l4zci/I912E0ky3bKwBVcKYWtcUzhPJSvtEjkPazpGZ/OwnFTU17RFuL8A4JQ6GFk51Iq5nma5gOMy67TYCF6asFYhUssajXpPFtXFYhUIRTpYtFl49AJ8Xj166u+I8WeAjueJBLXLwYatHZ2mqSGdLN6BCs/CgUXQlk2xD+hhDtGrQutYi06rUAgrvLMXUAoZzMOPZMNFs6yPLeJ96dTUsG562pKP9IpWRsHnKQBshJy1Ho+zCfP8eahsxPhFfHwoan1PzeRMNiOeez+tTTpCV2PqkhgliwDk08n8kpAo0uZ6M1YasdFof8cAEOyVYF2MTwQ6uxNjSBMBm8Wmt+FW3On0jWHQ7yzhTRKrE5y3+oUFl98+nZCVdUtpXtk6nJQDo5zCARls6nxpVKKr7Eo68mJq3fRGe+VIzuT6kbvk81C47grBKHRjtcOc62p84ijLiUBiHWpoYhkjybhBMRSFAyVAYPZ7wr8YKnT8DwEe/bHkBh/BSDXozBmbQfb6//tBLns0CDHfo/L/TXt2SBuCZvO3eKS0BGXWs7q/I9bgKadwBML2WIPncKMbNwDCjN9cldY4C/trMDweEYMUogE3nxKCUbD15+QAtLv8DIPvS2hgtH2s4m4vo6RnWrskAhv32t1NFy/2GkSN4wpfQ4JndDadMjD/VyZJ9D1yHsKNxYAZzcd4etdtCwgWzz86tcwNR97sTco5rXRRJWpJ6A/ce80VCI4eyPBrgPj8ZNRjS7KylErnAANVhe0sy03Ig3iKSGAPFlDhajgC1aebArSq/xikV4rlEvJRXfh7nlHs+/5ofzqyGACK4nRL2hZ2PyPAgqyDMoQ7BJQxSivXkUBjbxjdgD1lnDVCpYc/iHPGbtWGVCo9d0hELLAjF+rxdEGuOUhGCHvRjuynl4YHyIW6BFXat54dNVLG6mmIRj6BHZL2gI8X4AwKKHQyq2h3/IisLfNqDjWDqSlv7AvlYsbrE9dpxLkmYilvj9R8P5fQJoisesbteK7qGusN0DrzMIRoIaPUD8qfVaL6Ws6JE9qTpu6uC0VHpJapZzw8Eqh7yeRqUvf1iUm4nqSo2+Ot8cL0NsR+10z1YsJDMATs0P82V1GkrlJywKKFeki+AqXdm24QkVXw+P6vcAbIbj0s180njxXwACe1Cb+XGCoRQHRwoupGS59D/BR/OEBv1mG7UElE9VR6pKvRKOA/5ktJk1grQsYmBTS4DmTjP7Hs8EpOWGI8sOWArm4PVyVn1gfGrgK1oGSQGzVekdmOTXGUVZeMEpRy3I+QIgUMGxxAftuZYIARcnXWipJlr+NkRBnPkdRDEYefMJ6M+mm/+Hxtxt9eWGibJ1AffxuerCKGoORWgAltcYTC9GtgZOATyscw62TqRz6yzyqO5GAom9BngOCsS5DKOuyNAY1usghsL+JdG/3pdH47Ghgaqr7C8YMoBR9dNfhmC18eR3mPrBCXvmPaZmHXHRaezQJfDdnYue0eoewxO1ZwmWWI448u6GuEOnqDS+RpjlPYYDUGmuBDFRVe4fjt+J66/Crv24ybEuXqR55LTcOQVfJ61vDHxGBmX2gOiJQc6cTdchzY4fwYVwYKNUJJfrpt1ZxN7DohE1R6f8AX7aud6dwA6hm8R7LGNLAQqDqGOboqkCcImUfE9Tf2FLUmCYvnjmvu/9dh//OTb1QRSDEklVmTzgP2HfN0d3RWlivVRNcjHxesEFh+8eNreKegRyI91SKO4lT5hzA3nZz2EypnDkVrkBIwrJnDqIh+HPlmPiqyqPyu3F18OuY7ckSkFlzQOipsN1phNPyFS2pVuyrplIbHVHDVRn/i1kyQ+Hf/eE1bwHgsQhSq5SY+eFSWqU9vDldRaH/0/AZ1jO8PMVg/1r9jKYim9IkDnbx03ocRWPUovBiHxkfCH86qZk25d9ll70bVFz+vjBOpK918OEiSlgurRY296H3tnYTy+2HgBxf06l++vvo+P9x9JMRx7fWMW4Z9l9chRywzNyuTt48PUCCfFpd5WQxqh1zUBYqR2XvST8RV3rp5jLHSrrUC5oBkLmksBx5bYY3whAskF0kaW7BRHI9++wnzGI2KAyyoZ08teAxj3WjenozjsQ1IwXRP2xLv47r1Xu51h8qHfWcIR/J/VeDzwarXD7uCJH/8Sz7hudrbzaJX//FoLD7ur/ufqyL+oRffVSJGFF6o7VwU7SF6KOAk5swP33TgbtKb2au+wIwQ1nZnvzK947GYmgJjavaopKU27bnK/9dJI0GmbGOm0Wv+b3qM/ebFnsEIkDQ8+4ezvLtxgX928fQEq36wnzP29rxPZvd4ZXaog1fN+gFuI+UAYi8IN5mRGistzbJQxe7BrcnZcaWY4IwlZGgaOm3uIdGHYsOyQ0tTbN1W4ItOgF+/T3HbshlDTcXge9ZBJ0+lVZFL/CmihyAd8hLLJXXw+jSb4SCU8YjWfis8bKujTJB6qJT1aK0yZAyGx9DzEnHmViB93VAAIn6aJG37BrQWkABesnnLyWYdj84wYcwj1rDzDyCvLsdeq9JLZrfXLDBS+NmtpZm96XKGR0/7G9WRTpfRArvO9rts9nZVpxM7+rIJhcORhBK1n3YowibCxnRBlsVsKJ8ixOuyToXI23ko8Z8UyWGKOil6DOwEkjiyiMWOS5N9NPNTos2uhL7D063Xx5Nenl8Rc2X1/4ZuZI7LOnmIqqlt0XQrYosoRBLvdOGljR3DbBSJXaMzx+J4aHu7KnAiTBozlWcpxs3jxYM+kvOgdmgFT6SP0yhAQnQ51i5xAekapW/7EBkYsLo7VNBZEhGlo8VjK00KFOXLIBgtOs2RKgQX8x7xJprMFoek2Cl9L+feOff7aVa/o8MPIoi82/Ps1n0ZX/FMa9q4Tvwjn7MV56yajryfw1wcWAb7FInkcyXJGv4PQ3OzWv4ubv545oHICeuPb+xredxhioOza+OeacQzbNy0fGN2V+0ojCwr6AoxR3heN3UOEzoRC3ysz5vPfL0+c5ytf87nW+KgerX/8m+FNpuKweUIj5wTpfUMT7OWxvgDIhUZ23Xa0FwHr8EwscV37OSszAal7BIYK4+IeujqG//V33LeoQeuHHoAV+vvcGjG8XR5snD7uaFt64ETbDx7iLXBMIy9uLeEmQDG1JSy66OAqOj6tPdYDpqwIeEZzIbiWWs1y+2TsBV7t1bpH+3IJEJfEO8ddGlDnZBeVDP92c/uGfBY2nDlH3GJMuKp9Oiws/gm5EKWuB+NTqHql/xHiBynAqa7W8zEu++mq/8Wn3MFYViWSZ0vMsTf/Q9MNG+1eUGqBXZC9Duw8pkQjO+rlFFCxRz1EPtWwul51i0W3Oe63U82L4J+ofaDKrRWXfr17SV4S1qGU//0c9pxh5kEKwx/jxjiRtkuLDFAcfRCdui6A5YZIw3X/rlHAVcBHBllW2A+4siKuvNTkzGJjtEBcQ6NSJjEIFgFckdKaoNFIWZbcC8IuqlZpgM0Ao3FBXwpYyC7jZDMDFrzxVa6SCN3DHFYuGXBBRi/WHFzZJnBRrhzHzl+vXax93LLdfDSvzz5rPOJH0q3KG80WfjySSpy/Lq49rhCMHPwKaexYFmecZJLZ9mNIHS1m2bguy2uNIng2mLyeKOHSkBphcg1iVuWmpK+P+v7lngd/Lb3ljZRRzJ9E3lYuMk3SbARO5EeYIJB2x7Qf/dPry3mwpru1fM3wOCYnrwGfOTg66tUc/8eOeUYgbcB/HZurZL9e8xBh3b5rLt6XyUnHlwJX2tMNcsnSaVDHpZJnrw7ThV3H962ef+jSpjl+5XFddC3TyaGmJSgAFJ8OcWdEXzsyl1UP+IiatIdbPnVaKdlRgsVptarwOOtqFHDUbaCNPcvFpwWyUO8o2mrg6QbwkM8P133epbHW47eGABQKrrpgLc0V9F9+6oubMJ6isf/HJ2BlORYR+DQkOgdZcvEJvdAPnu5/j0SQGzZojBjrN47zZpzbs7DlrkcPqM/nU5/67xBalzV1uzGEhHSiYvFTSLfd122SmAfaCTbSeAWuD4ZXxAlBdDo16+3SewC6ALw5DKblHktevVL367pwIOp5KFGv27yYHESmL2IQ46gjAK5/qrEKlmmHPGNURexN/GeHgtnjixGTGjmSF3NixD4mrgHy648OA61+mpsvTw5fUXenqC95pesbR3z5oFqmPYxum9lfZ42/5uhnIE1yILbT29zvgkOngHwmSIfko42ach6mYaZAof2tPPDKshrP594W4Y5Lj50NXRdYJjHbMRAgT7wExuVV+rrU9/nQ/7ZDbuCqK8ABcGZM1N6JIcakniGvQsYo6Pxr/PtHSXMmO37PYQzdOmsW7fJnjsTVonLZwZv73gpp7Lqxxw91Gwdzn38ITFn0Lxdo7+MRyDOf/gfgw+t+vK69NbufFL0SG/4Kw+3eAq513GdpxrpdXp0kqYNNjKp9CPMYGOMdPiMQ7H0+Tb8xdKFZZAxDjDC4nOFdceec1wJxVjupEs8lyLD+Aa+I1ikwpzJ1fA7Do70nn3cLd601+6CFDOZrzBlvrj95TUWhkMpFvo9WWhxq00Uh43+zTD8CaUbDcI1la5ElPmmWIh9xqn7Ep+vF42rI9WEX9KhA6rEjvd6muyg4hA2mjEhRKj2FQuHFKNJRyLZtAYIP3dmAE2nsh2DVH0lV6Q0/Q7/CSsFNIwWWZsfnMOGb6F4LQvpA5OoEyeUe3gbef8PWgvpnOn7PFo5xGvQCAEUnMTVRLwVWqz8P//yJj90WrQhSDsNzqztMW4WQg/OxvQEgPxg5WxxXNFiqmpPAJMtprI4CNKa31lBIjSa3BiOfpEZzAgWrFZIM68R3r1lSx0NPCYVZlNc6VRWuPsykZSiuQ5Jfl+CwQDzrHD0xxDnQfENpoefojk1f2QjLctcwrrJn1/u5doZ0C1L/tfoH2ut0jWZ8Estyg/QVAe0b1bTerGR5YUd1LOBJjoac+Gqtcem6Ye1ds0zXwodxuS0Y8I8BMnS13n2wZWn58Cd+FpAf6wYaF7b494Z9jQSgflvAc5PFXeT3V65d4nlDo2T4ddVsqtbj+JfeWp0/mwjq1yjB2dKlLyV1zaL3AJN1Ea8knptnw4Zats0lgBzyBaZ4/fhwMUa35ugohp7+nscCpuy5DnNkiYaQtZu+z1/YN+op5PCyiW4fpdTNh97zYtPnylnA8x7W4xBBvWb5ASKXET/sOBEDLmGPcbfrX1cIMXeKr5S4n3ctRShZaIjcCkeOvYFbdd/vXr4hYHwZs5zeey+8zkMP6cx3lwQyqpqk9MjZoyyHM8LUUwoX1w6PyJKc+jhlgi2HK1qM52YFqFgturk6JTyqqud9xMcGL1XF5+FPQdWFYn/eByRfuSh1XNIOOrksiOrRh5U28k4J6nbWdtVHqhyTeJo+cBxbmGSSi7hVjJmy1ZfQJuGuv3AzCgxHkbwKb4/zUYR+/iCNBRA6sIyvN3te7wMUGk2oXxZbLz6qbqmn2EcEuNyK5wBIF7Vmua+wk/XBB6V0hquKoOtTgaFYL6F6SgL75EdFP2ogamwnuvxW2JrPD+yWSjvPITIw3gWMBHGWnkblcknXyx7b9zCBBZat7SQJ+sOJiBvV3PIkpHhLG319hkliHME4epTHfLplxQqGjHEqVI+hvh6DI+V2MN/hS153Wg20CnXklwnQYg9ftxsmz5Ip4hjDb6Nqu6wJN9caWE3puwjEHEiJymcUp+tnaPxAxyUGpIR3w97CHAfw7Vt1ec8MyrDaKxrRcRRKk/Y/DpcRhTuxYbCZs0fnf9qc/WCgY6LN1y7v3X5ZOgA2AnBbYEeX5w6/3NG3hX/Rkb/KQKbFDvHfAOQcNLE88bmz02rMRHQd45ufueW+BQvTjQnN28q+Xs6CneSOUvv9+3Y7573VrSgvJKGxoXZJziVaFIeDHngppDU9FgRGgq5T0dqwZjV1HpxfdYbLWZwZ1m+QuKr2mpsN6pEEe8VM5t7YoyhH9IAe/iyiU3X3SeO6n1vvYsSTHUHx6wkz/kVM81RclBTeyMU6CfLYwV97zjP3SHSnQOk34S7VxZAZMBIhxkEHsXJs6VROwZBV7t0Qkp6+3nxQrD6NAJ3cWSS68LgEROmtJh8Co4ALTT5xPueQjVev6mGjqqV63PGViJc80c4Uxax6ukQkVTgdo44+WbqZieq/kzrEk2jo1Xk1LmY0bCj6YGWjXzTffuttsN+Xrbf0tvQSEPk4jbtJ9dscp2WEwTR2GkfVRhk02wWwXjz1bwDSB8CICUux0PmbWHF1N0tqH3G1r7mB4ptI9MLZSi4AqWmlIkBvl6TewjyW9H2MufLuxsNQvxQztCJF0CPcfLi0HofM9wcrjMaKhXhh2sjfoOwp13P8bvvkAfvCdbcjeg4oXg/ARAETJbqHI0GpI+0qcQ0CnUNUAtyrYkV0Ht63YObxG2eNCFTX8W+fJ/qHjKT4Gr15sdMtHPE7jCdCI+/jQ63R+7PyAQJfEu2Y1SbxETg62xkOuQTV5XsbPzAijlcJC7+TsBR1H3SK2LX6Oyl2Ro2zDeNG/ZLmax3vsEabLEv/0u476tEznPABmb71mqzmWYfzraxW+GbJliv9Z/Nmnce5mCv2CBYRP8WqyiOERnhvVHCVhlY6EHBRcyDIWpp8fX5hms63znID+kIKQ5SKu3U14WRP/lKfv1bzy0UFDLAZsTDekkM9BNKE3evBE36YNTgAIhtVNy3uyNseHHNIyndlSVI3cVfu6Ogzm12VCwyd+2dxllIsIQmM61nLaNLwOuFwUicuKEIvG6d+khHNAB6NiFov2IK68RMGXp5lxbiRkzw5da7GZGIyoCe7ikiTQqJ+iJojTJBd0FUoFnzg4iHrqXr5fJr8U49bJ1bjLZSIoHuJYCkNs6rLJ5StWCalNDqGT6qgVPouYcFEznhw3JFW0I201uuOqHNXCFPnLkq1mo+6C/1TObvS6gbf7nIdi37RJNjVmlZn6FdMyinctbCzrBcZECo8ejyqaCk77QF+Jm/aagHuj0D5FKskve+yvddojngurLtpjoSPbmOwXR4IEFVPjWgfp0tlWHNxT9JHFpE+WGyX3hQFWDN92EnXMK7kGGv1ayUCGOriB2+xj6/PPdxi2rVbZuaDrPDPrzHSwriMucIVUZUZjqKZpJyLl1fqH1GZP6p0xBwP4ShBbDYbUD34YLnvWMARqz3+Lauc1TQR82W6d1NP9eulTldvbZpgZgyCVaye43LpRTt9XGzm7GTWEcazVd6v3YjzijUJEB8dpRtlOsMebbY3CwoI8BktjQMEZkHzFnZwXw+/1p7nnTyFO1jeFEGNXrTYmPju3DLIdW7H889LWeiOV5yhrHo/X74U8HBTZrS/nfnyWsD4Wf3QGivQfBbNqZnEqqsNzO3PqMsIbAz8MBIa4qQIpMuJ41lNoCvIsbBJ+rtT2sEBQTbl4kjWgyM4JNX+fpBntFmrznLZPhzK8JsLWTg+tjGiSqiUaqyRtQEdnPkzjA3uSvjRIY/dVE0knahNl+NZKbID2eO7BY2Se1AzUuNonF9m+j7fCx+YiWfDRrtfFrTtonGlGwK6RNOekhJsSRdBdMOJQF750+KInx8TezXJB4JYhZfxMNdb9YCsp+RiWlUPCfccEJ/Ch4+J5lU9WVgvUzXd4vtJbqnAUonlmCjJkqzLCVITq2VtbSur1+LzP0/VjzOZytxZY8mgMGs/KgkmnKXD4w9UnENmf70v5zRuC4XHBL1kP2J8tqKLj0oVj8Kch0bFo84RyoQ2DZwGAlJ3V0FV9XlJFPupdkHR5cYQng+TuaYdAeh1R6Skf0N6J2bZPU68tFMs9WM3l169cJ0QgwvJIM1nG0P7O+pv3lim8hyGRThrQSYbUEf9GvGtSIUJINqXil45r1EnAWjDoIFjjTV2rgFooHx4L4bQueWaqkAfq3nErxfrSNpIt+syn29Cao7O5L/0z9qxCIDW0L2GV91NAeoqAm8H61gqKjkQIKaV6GDTKJ7GKX2C6OxrU3D/eu1WbJ+/nMh5fS48f/4eq8e0s/Yzvy7K6gNHwnI003h9eJzV99c1HEh8DYyDVnb7LkiRp4wNv1/T2JNa7IRr88+9h5Bvgss3KY5Hbn+OAp7xTy4ODqrDgJLRUieDAOMOiHaWrmo3Fwz8HuTXOt0DPVR069BLKk18b9KZKpGNngvvJVlT7VuR5GZEgnQYE5CA0NSUImli7Py60Itvv0aQVqmSNeXb4ljNEZH1UNh3pPXcrhga50Tuqgki24K25CsW3tzlOnq6G6imlSN9ANSmeXTDbMmY37M31gkzuiAteyx3OzQZNjl/sauV3SMKKTEdxWVPNCmWqx2uWQGXvnpcV6SaVXwgCs+Dn4cPWfWS0iPwefDD55Hw1IctH0t6HxYVk1BkffAILHxeVk4ilTSKn/GGVfziK9rNs+NhvxSAlqfjY35SEykuHPk88TJGXDf9dsCSqJ9uqMHXDhLodX11sSbYd5BQswk8ERhyU8mDf0IrcSN4oE9VxY+esP+KTc1eZmIErPjecrH3njYOW3LTIn9hna/Rl0RbehkN4soUow+1OqNdfea4dRma4N3n+xKnR22KmAM4O6LlOJ6v/hZtIxFXGo29twsN3IbcyNVx4mWeFx4mvi682H4kX4+BFuNkN/QA1qWmWT5BulqwCRPrFQA00DUgbCY3/Hb5qndoI+x1fyUmrlo/dLK6fKqeUDf+YOzS8f1cCRFIrqNTLeTb7D4mtLMT88JPliPPLyvGMTv7WZWjUafGI7TUJNyJ29JpfJA6G7Obz7mLGJh/EciEaVbaLOLgrw1ZUzJajyvdTZc3BrnoMOogXsJLr+sSKjvrs07flMSZfwS5MAe2r3sNpUL8TYVBIJc/eMY+anw8SPczb2X8TzjpWwIeM34HI2fuLA6AVuGupfHlTchHN6Ca5RoH2Aqf2JhLzWut/EIDmWEoJN7Z4ZKBZnFrxyH919p9A7Uz/WGp5ehNgRni3328PJTaKPQty/AlgzqCaLX6UoB33yUeObS4IuySznEG8Xv3xoJB/H+q0YE2SMTqmpqyriCNkjWH6+4Ui/VAfB7Uw4d8is5mJp9HjztF4PnU+9pLXY99197Fl58/7wfgn/7D+ryFB6UGeeFbDq7lU1VjLtYeXYvP4SbkoZguFaSuwfggQTdYqBRydLUCqcuFJJVTugJcumEPT69CNPV1/79vo/W+At+c3cPqOBN/VPpKzFOXEzNkHd2ZnSe3YYnGjJHAovRCzuo5ZND6nTXvCs7CFvnMNmNxLgnXWetoh6HTi7wJAmV/FQ8THW/i9+svvXVvx76XTZjO5dwPVhtnEr+Yb2f3xWJ/uSivq2CyGU1+FPX80SUG/kGo4Yh7LX6ZkRyW2htG4FgLDRVGVVdOSvSpoevzS2Fs52OVTydB6teltxOFameEviyXHO5N+jjTH2h1C+9U9Rvlpksx/uOy/ePrg7+2e0ICJukLpZyVPdfu33YdRlNfynfWwxsSV2WmcZE1B/Msgwn4okXzMy9b23dVsBFkta1zMVYteIQaKc/Z01tuHxHNFT1fyxmBbmoeXz1+S95dn2MKnRVQQrZBK4NoTsr0L+1z/3bcd7MJCwm1oHPcLG4aohT1/Xrp11jHoxeQMNr4sNXBkEfhIG5bN1HnrMX3yEdqTynqy2txvMnf4/oabSAXctijBovQG+RObzzPGltl5TjXiMsZFtvdHu9kSbpofsoaylXK/Bmxpgm31loyeA+OWn7JeEOf89O/dhoZ1EKETConeKMkWGShukpVrIeSe0SQhXqKr6piM5XqEYTn8xSop1TPAzI99Br1/tfn3/+C2P0v1R8+dDaMa9rGX1uiPcyFpxkL2SlJoxfLnaLaxb24UZRhRhbrLZfoC2elpifyJMohd+h/tmTIhnPTCSPCWpsur9dJArC7wvCtu2nJiXaLoVqSCHc0oNedmG3Wp1kDAfe66irwI7hx1WBL2s3yB2A9RE7myxlaw3jMATcdHaRZBTQ2mXeFD+TyIK7XOJrctNo+s4ZeUjpW0n96HX0Ky1ONkOY81uXII+zma7egFsCN7cTPcTjzEDZ8zHbWJ9z5BTIj29azSG6Si6MSKs2hf493NfxfQ4woO4mSXz+yNEoAFBhamQDH3OFQ0RDSOnmj0IXGM+gNwMvWK33ABz8qt7pLOdpC650v86psGNKIAq5f2yaew5NHmi6wObJSHyuvQJdFTPNdjpDf7G+NFs7ll8QchXdRi74umJNeWYZ7zLvOGKy2KJazy6kuVHcp5h24tPXmuGXgGOstG8MrxvyNyn7L/VHCO/lso3a74+pdaDazGF90tvzardmI0Quj6aA06vvyON9JjxZrfrz/Msi5EiDHHJdhCOSiROMx16AB2x9ez8UwZ3izLa7vFl3fD6yw5g2t+jWg4MyQuGsWjCw6O7V46yyzr1gjYP0HN5trt4WrgzWEkW8cY/sKYLgQ00gZgazevUH7wHtgheKX2bFkvLp2gryAhuxkLNeQP5QzFDASQ+pu14mw5Z92lse3kBM+4zMFSo+meIcuZecLALri8OdtgM/zqHxOuB5S7KdBNl7+efR5nYlb9VSlvzgLUNqpl6CqUsFtiuI8BbHFk9Ou0bqmWQAfPC5lYUNvzNfx9J5ojtOQsjqB2BFhA+dcNosC0MWKE1ip8ZvsDh8+bk3KjEquQmxdjJftjERa7z7go2J9kO6IuNmJDx+QZD96qp9uyflQCTyImLR/ElUECt2PJYja5i6fATChxAVdeUyWxLLmqdcezTBbSmv5WOl0DsHBj8NEGDxpK2fvuAL5FmeX/XEL4sXVsTe+rK4LF1s+Hc13fTuC5et1eYnNm5MQuf6tHc86R7/Mkn96rbQ/A7iHcl91PtPXxV9eyPs1cZFLalpWqvsHJfyg4QPeTbJVfPWDrHJJqu2HsnScamah/e+JCeAYlkfqnWkmC/ofBxtUOv/NDbVyfzT617rOd0eb82vd1laFNsBwbvy9UlorWHtT7+SBY5hYIe20Ew/BA4ucduSStPkC+r1Tq4JmTk5ikkbvTpnnWfrrMfsPYdQTMICpfJ9c7rMUftYwxO/t2cUIqryDQtgrta6Wo1AHJzTFdi+WrcCHqGUWkFSjGEXZVcHJOd02FRtTY2lctB7aYq3VlpdicriKx048NHEG77skf4O/CFCH6w1oe51PX/MPjG1rsDlmZCiQhFh38ql6May33qTmjaC3Dn+0Oqg5pZl9OKokoyRzLGZylXTLBU/A8c9OnX+2qD36EH2PoMNUaRyPZvrsSmN4Apwq5EBV6XGzYj4u14F6rCsfkZSq/5T+vC0+f1R/UKSqlN6PTlISi13P20V+hC65iaQAVFvxFJ5H7johQjmgXAmS+V56avHhMW5BH1sogvXKG01xQRuzYwPXRjUL0s+fx9/QC4Evkggl2QgWXpZ70oqofvVpxB8+RHr9lX0ZdBQYUp/Pn7fYnxb5PExMTp2mviAKVUjfrVIXH7Dcuk4CXu9SET6BO00+FsOxnG0XuJZDOpggnPwdciPIloyXBBidhuCCw02j5iZn6p+UwCV859MVfycUoXPJLdq+2RGXEJ7RrRvvckRcGh0j2Git+h/c0feL11h+ffL1m+bar1HffhRf9ftGc3XEyUipflt6kdpaDmio0P3vkSZVQD8WSzjGTe6RrsJx3h+toC81hFnFjO/z5e0eB4k2exoh4N8b8jWbiYPMcH5f+5eXFpsJ8dfVuhTjysK1SDKvcVf0daD0MlRWyB4N9wWRLq27dJRt+XLyY5CLlpCObbTgAmNhRqheWvT3U/L0KeS+9x/I/L2sX7GxxAOOX5zft87KyX5AQds+bNdeGDUDODSl7jmXF8sCUnPyefdbCI7T16h2FIr45CIXICkL0wHFWGrOKQ4LrOtqMdytwHZH1z7/YqcFYUnozYU4QydZ7ouW4yiRfHZc4nUFOyV11Up4zCuMahw0OWPZOMRNUTd02tMkN0DbfbVWzbkkRa2X2Gs/MbjkoC6O7HXPXQFgPc5cFlz7qop8/hTB6o9ICu/7L+rzed/6/MHzR6wWH+lxzwafp33YfJ7PT4Ef6ufpKtUPAYHPYwXMT6nxxFdqL/pTVU99Pv18WHzEsmVXT/1hkY+VgvO7RFapXvJ/u7hG+iHJqWUqlctkpMC1iCRHDbG75p1DBd2AukG5pZGQw7zd/OGjf3/efz9Gget/5Ag2TMGAUlEPf6beEqDyaS8+xZcjXokNrgEgn3ZueE4dMfdLxeK1NRdaTVkPxZEeLSU98R4oo+sFf2v+XV6jUUor2Hje9SocSbsq85KIZh0N064ndRhp7subxS4KXyOLuF3WVIq2mVC3LtovNcA4C3nmFH/0GcLN/7e7DP//OjsC7Uz1lqQBDhGp0Mm3tgXshIDuVxReOevYMf3qkmwBi4RdPrUaRQnxO+K/UafszE4tGVkY3LLWmwD8f5G/ayKHBG7TAAAAAElFTkSuQmCC
Eine Abbildung $$f = (f_1,f_2): U \longrightarrow Y_1 \times Y_2$$ in eine direkte Summe
ist genau dann differenzierbar im Punkt $$a \in U$$, wenn dort $$f_1: U \longrightarrow Y_1$$
und $$f_2: U \longrightarrow Y_2$$ differenzierbar sind. Gegebenenfalls ist
<$latex text="
df(a) = \left(d_1f(a), d_2f(a) \right).
" displayMode="true"></$latex>
<$details summary="Beweis" tiddler="Bemerkung">
{{Beweis: Reduktionslemma}}
</$details>
<$details summary="Ergänzung zum Reduktionslemma" tiddler="Bemerkung">
{{Ergänzung zum Reduktionslemma}}
</$details>
Die in Gleichung ( (4.4) [[Einleitung: Die QR-Zerlegung]]) dargestellte Repräsentation
heißt //reduzierte QR-Faktorisierung//.
<$details summary="Vollständige QR-Zerlegung" tiddler="Bemerkung">
Bei der //vollständigen QR-Faktorisierung// von $$A \in \mathbb{C}^{m \times n}$$ werden $$(m-n)$$
orthonormale Spalten zu $$\hat{Q}$$ hinzugefügt, sodass $$\hat{Q} \in \mathbb{C}^{m \times m}$$ unitär wird.
Gleichzeitig werden $(m-n)$ Zeilen mit Nullen an die rechte obere Dreiecksmatrix angehängt.
Schematisch sieht dies wie folgt aus:
<$details summary="Projektion mit orthonormaler Basis" tiddler="Projektion mit orthonormaler Basis">
[img[qr_vollstaendige_qr-zerlegung.png]]
</$details>
</$details>
Es sei $$a\in\R_+$$. Wir definieren
<$latex text="f_a:\R\to\R" displayMode="true"></$latex>
durch
<$latex text="f_a(x)\coloneqq\exp(x\log(a))." displayMode="true"></$latex>
Man schreibt dann auch $$f_a(x)\eqqcolon a^x$$.
Dann folgt direkt:
# $$a^{x+y}=a^xa^y$$
# $$a^{-x}=\frac{1}{a^x}$$
# $$(a^x)^y=a^{xy}$$
# $$(ab)^x=a^xb^x$$
Eine Funktion $$f:[a,b]\to\R$$ heißt ''Regelfunktion'', wenn es eine [[Folge|Folgen]] $$(\varphi_n)\in T([a,b])^\N$$ gibt die [[gleichmäßig|Gleichmäßige Konvergenz]] gegen $$f$$ konvergiert.
Es sei $$(a_k)\in\R^\N$$. Für $$n\in\N$$ setzten wir
<$latex text="S_n\coloneqq\sum_{k=1}^{n}a_k." displayMode="true"></$latex>
Die [[Folge|Folgen]] $$(S_n)$$ nennt man ''Reihe'' und $$S_n$$ ist die ''$$n$$-te Partialsumme'' der Reihe. Man schreibt
<$latex text="\sum_{k=1}^\infty a_k" displayMode="true"></$latex>
für die Folge $$(S_n)$$ unabhängig davon, ob diese konvergiert. Gleichzeitig bezeichnet $$\sum_{k=1}^\infty a_k$$ auch den Grenzwert, falls dieser existiert.
!! Notwendige Bedingung
Konvergiert die Reihe $$\sum_{k=1}^\infty a_k$$, so ist $$(a_n)$$ eine [[Nullfolge|Grenzwerte von Folgen]].
!!! Beweis
Sei also $$(S_n)$$ konvergent und damit [[Cauchy|Cauchy-Folge]]. Daher gibt es für jedes $$\epsilon>0$$ ein $$n_0\in\N$$ s.d. $$n,m\geq n_0\implies |S_n-S_m|<\epsilon$$.
Wählt man $$m=n-1$$ folgt:
<$latex text="|a_n|=|S_n-S_{n-1}|<\epsilon." displayMode="true"></$latex>
!! Bemerkung
Linearkombinationen konvergenter Reihen sind konvergent. Dies folgt direkt aus den Rechenregeln für Grenzwerte von Folgen.
Seien $$X,Y$$ Mengen.
Eine Teilmenge $$R\subset X\times Y$$ heißt ''Relation ''(von $$X$$ nach $$Y$$).
Für $$(x,y)\in R$$ schreibt man auch oft<$latex text="x\sim_R y\text{ oder } x\sim y," displayMode="true"></$latex>
wobei die zweite Variante nur benutzt werden sollte, wenn klar ist welche Relation gemeint ist.
Sei $$(X_i)_{i\ge 1}$$ eine Bernoulli-Folge zur Erfolgswahrscheinlichkeit $$p=\frac{1}{2}$$.
Die Erfahrung zeigt, dass bei $$n$$ Bernoulli-Versuchen \textbf{ungefähr} in der Hälfte der Fälle
ein Erfolg eintritt.
Für die Wahrscheinlichkeit, dass Erfolg in ''genau'' der Hälfte der Fälle eintritt, ergibt sich mit der ''Stirlingschen Formel'':
<$latex text="\textcolor{blue}{n!=\sqrt{2\pi n}\cdot n^n\cdot e^{-n+\eta(n)}\quad
\text{mit }\frac{1}{12n+1}<\eta(n)<\frac{1}{12n}}" displayMode="true"></$latex>
bei gerader Versuchsanzahl $$2n$$ nach leichter Rechnung
<$latex text="P\left(\frac{1}{2n}\sum_{i=1}^{2n}X_i=\frac{1}{2}\right)=
\binom{2n}{n}2^{-2n} \sim\frac{1}{\sqrt{\pi n}}\xrightarrow{n\to\infty} 0," displayMode="true"></$latex>
d.h. die relative Häufigkeit liegt bei großem $$n$$ nur mit sehr geringer Wahrscheinlichkeit ''genau'' bei $$\frac{1}{2}$$.
* Wir wenden das schwache Gesetz der großen Zahl an auf $$n$$ Bernoulli-Versuche $$X_1,\ldots,X_n$$ zur Erfolgswahrscheinlichkeit $$p$$.\ (Es ist also $$P(X_i=1)=p$$ und $$P(X_i=0)=1-p$$.)
* Dann misst die ZV $$Y_n:=(X_1+\ldots+X_n)/n$$ die relative Häufigkeit der Erfolge.
* Wegen $$\textbf{E}_P(X_i)=p$$ und $$\textbf{V}_P(X_i)=p-p^2$$ (wieso?) gilt nach dem schwachen Gesetz der großen Zahl für beliebiges $$\epsilon>0$$: <$latex text="\textcolor{blue}{P(|Y_n-p|\ge \epsilon)\le \frac{\textbf{V}_P(X_1)}{n\epsilon^2}=\frac{p(1-p)}{n\epsilon^2}\le \frac{1}{4n\epsilon^2}}," displayMode="true"></$latex>denn $$p(1-p)\le\frac{1}{4}$$.
* ''Für große $$n$$ ist also die Wahrscheinlichkeit, dass sich die relative Erfolgshäufigkeit um mehr als $$\epsilon$$ von der Erfolgswahrscheinlichkeit $$p$$ unterscheidet, sehr klein.''
Eine in $$a$$ differenzierbare Funktion $$f$$ hat dort Richtungsableitungen in jeder Richtung.
Sie ist dort insbesondere partiell differenzierbar. Ihr Differential in $$a$$ hat für jeden Vektor
$$h=(h_1,...,h_n)^t \in \R^n$$ den Wert
<$latex text="
df(a)h = f'(a)h = \partial_hf(a) = \sum\limits_{\nu = 1}^{n} \partial_{\nu}f(a)h_{\nu} \qquad (8.10)
" displayMode="true"></$latex>
und ihre Ableitung $$f'(a)$$ ist die $$1-$$zeilige Matrix
<$latex text="
f'(a) = \left( \partial_1 f(a),..., \partial_n f(a) \right)
" displayMode="true"></$latex>
<$details summary="Beweis" tiddler="Beweis">
{{Beweis: Richtungsableitungen}}
</$details>
Das Differential einer in $$a$$ differenzierbaren Abbildung kann wie für Funktionen mit Hilfe von
//Richtungsableitungen// berechnet werden. In Verallgemeinerung von (8.9)([[Einleitung: Darstellung des Differentials durch Richtungsableitungen]]) gilt
<$latex text="
df(a)h = \lim\limits_{t \rightarrow 0} \frac{f(a+th) - f(a)}{t} =: \partial_hf(a). \qquad \qquad (8.10)
" displayMode="true"></$latex>
$$\partial_hf(a)$$ heißt //Ableitung von $$f$$ in Richtung $$h$$ im Punkt $$a$$//.
Die Ableitungen in Richtung einer fest gewählten Basis $$e_1,...,e_n$$ für $$X$$ heißen die
partiellen Ableitungen bzgl. der Basis und werden wieder mit $$\partial_1f(a),...,\partial_nf(a)$$ bezeichnet.
Sei $$R$$ eine nichtleere Menge mit Abbildungen $$+,\cdot:R\times R\to R$$. Dann heißt $$(R,+\cdot)$$ Ring, falls
#$$(R,+)$$ eine [[abelsche Gruppe|Gruppen]] ist
# Für alle $$x,y,z\in R:$$<$latex text="x(y+z)=xy+xz" displayMode="true"></$latex><$latex text="(x+y)z=xz+yz" displayMode="true"></$latex>
# Für alle $$x,y,z\in R: x(yz)=(xy)z$$
# Falls $$xy=yx$$ für alle $$x,y\in R$$ gilt, heißt $$R$$ ''kommutativ''.
# Falls $$\exists 1\in R: x\cdot 1=1\cdot x=x$$ heißt $$R$$ ''Ring mit 1''.
In dieser Wiki sind Ringe, falls nicht anders spezifiziert, immer kommutativ und mit 1.
Das //Residuum// (Rest) $$r=b-A \hat{x}$$ gehört zu $$Kern(A^*)$$:
<$latex text="
A^*r = A^*b-A^*A \hat{x} = 0.
" displayMode="true"></$latex>
Da nach dem Lemma [ [[Trivialer Nullraum]] ] $$Bild(A^*) = Kern(A)^{\perp}$$ gilt,
ist auch $$Bild(A) = Kern(A^*)^{\perp}$$ beziehungsweise $$Kern(A^*) = Bild(A)^{\perp}$$,
d.h. $$r$$ steht orthogonal auf $$\text{Bild}(A)$$.
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/oqGQvtb9KnI?rel=0&start=2546" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
Bei der //Rückwärtsanalyse// interpretiert man die berechnete Näherung als exakte Lösung
mit gestörten Eingangsdaten, d.h. $$\textbf{f}(x) = f(x + \Delta x)$$ und untersucht $$| \Delta x |$$.
Gibt es mehrere Urbilder $$x + \Delta x$$, so wählt man das mit kleinster Störung $$\Delta x$$.
Gilt dann
<$latex text="
\left | \frac{\Delta x}{x} \right | \leq c_{R} \varepsilon_{M}, \qquad (5.15)
" displayMode="true"></$latex>
mit einem mäßig großen $$c_R > 0$$, das von $$x$$ unabhängig ist,
so heißt ''f'' //rückwärts stabil//.
<$details summary="Rückwärtsstabilität" tiddler="Rückwärtsstabilität">
{{Rückwärtsstabilität}}
</$details>
Für einen rückwärts stabilen Algorithmus gilt nach Gleichung (5.14) in [[Problem der Vorwärtsanalyse]]
mit $$\tilde{x} = x + \Delta x$$:
<$latex text="
\left | \frac{\textbf{f}(x) - f(x)}{f(x)} \right | = \left | \frac{f(\tilde{x}) - f(x)}{f(x)} \right |
\leq K_{rel} \left | \frac{\tilde{x} - x}{x} \right | \leq c_{R} K_{rel} \varepsilon_{M}.
" displayMode="true"></$latex>
Bis auf den Einfluss des Approximationsfehlers in (5.14) in [[Problem der Vorwärtsanalyse]]
ist damit jeder rückwärts stabile Algorithmus auch vorwärts stabil. Die Umkehrung gilt i.A. nicht.
Sei $$A = QR$$, $$A \in \mathbb{C}^{m \times n}$$, eine mittels Householder-Transformation berechnete Faktorisierung
von $$A$$. Sei weiterhin $$\tilde{R}$$ die mit Floating-Point-Genauigkeit berechnete obere Dreiecksmatrix und
$$\tilde{Q} = \tilde{Q}_1 \tilde{Q}_2 ... \tilde{Q}_n$$, wobei $$\tilde{Q}_k$$ der exakt unitäre Reflektor
des entsprechenden Vektors $$\tilde{v}_k$$ in Floating-Point-Arithmetik ist.
Dann gilt
<$latex text="
\tilde{Q} \tilde{R} = A + \delta A, \qquad \frac{\| \delta A \|}{\| A \|} = O(\varepsilon_{M}) \qquad (5.19)
" displayMode="true"></$latex>
für $$\delta A \in \mathbb{C}^{m \times n}$$.
Der Algorithmus [[Lösung von Ax = b mittels QR-Faktorisierung]] von $$Ax = b$$ mittels QR-Faktorisierung} ist rückwärts stabil, d.h.
<$latex text="
(A + \delta A) \tilde{x} = b, \qquad \frac{\| \delta A \|}{\| A \|} = O(\varepsilon_{M}) \qquad (5.20)
" displayMode="true"></$latex>
für ein $$\delta A \in \mathbb{C}^{n \times n}$$
<$details summary="Beweis: Rückwärtsstabilität der Lösung von Ax=b mittels QR-Faktorisierung" tiddler="Beweis: Rückwärtsstabilität der Lösung von Ax=b mittels QR-Faktorisierung">
{{Beweis: Rückwärtsstabilität der Lösung von Ax=b mittels QR-Faktorisierung}}
</$details>
<$latex text="
\begin{pmatrix}
r_{11} & r_{12} & ... & r_{1m} \\
& r_{22} & ... & r_{2m} \\
& & \ddots & \vdots \\
& & & r_{mm}
\end{pmatrix}
\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} =
\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}
" displayMode="true"></$latex>
Die Rückwärtssubstitution ist rückwärts stabil, d.h. für die berechnete Lösung $$\tilde{x}$$ gilt:
<$latex text="
(R + \delta R) \tilde{x} = b \qquad (5.16)
" displayMode="true"></$latex>
für eine obere Dreiecksmatrix $$\delta R \in \mathbb{C}^{m \times m}$$ mit $$\frac{\| \delta R \|}{\| R \|} = O(\varepsilon_{M})$$.
Insbesondere gilt $$\forall i, j$$:
<$latex text="
\frac{| \delta r_{i j} |}{| r_{i j}|} \leq m \varepsilon_{M} + O(\varepsilon_{M}^{2}). \qquad (5.17)
" displayMode="true"></$latex>
Aus der komponentenweise Rückwärtsstabilität (5.17)
folgt die normweise Stabilität (5.16).
<$details summary="Beweis: Rückwärtsstabilität der Rückwärtssubstitution" tiddler="Beweis: Rückwärtsstabilität der Rückwärtssubstitution">
{{Beweis: Rückwärtsstabilität der Rückwärtssubstitution}}
</$details>
Die Subtraktion ist rückwärts stabil.
<$details summary="Beweis: Rückwärtsstabilität der Subtraktion" tiddler="Beweis: Rückwärtsstabilität der Subtraktion">
{{Beweis: Rückwärtsstabilität der Subtraktion}}
</$details>
Bei der Berechnung von $$Q^*b$$ treten Fehler auf. Anstatt $$Q^*b$$ genau zu berechnen, wird ein $$\tilde{y}$$ berechnet.
Die Operation $$Q^*b$$ ist rückwärts stabil, d.h. $$\exists \delta Q, \| \delta Q \| = O(\varepsilon_{M})$$ mit
<$latex text="
(Q + \delta Q) \tilde{y} = b. \qquad (5.18)
" displayMode="true"></$latex>
Das heißt, das Resultat der Berechnung von Householder-Reflektoren in Floating Point Arithmetik
entspricht einer Multiplikation mit einer Matrix
<$latex text="
(Q + \delta Q)^{-1}.
" displayMode="true"></$latex>
Jede [[beschränkte Folge|Beschränkte Folgen]] $$(a_n)\in\R^\N$$ besitzt eine konvergente [[Teilfolge]].
!! Beweis
Da $$(a_n)$$ beschränkt ist, gibt es $$A,B\in\R$$ so, dass $$a_n\in[A,B]$$.
Wir konstruieren nun $$[A_k,B_k]$$ und $$(n_k)\in\N^\N$$ mit :
# $$I_K=[A_k,B_k]$$ enthält unendlich viele Folgenglieder
# $$[A_k,B_k]\subseteq[A_{k-1},B_{k-1}]$$
# $$B_k-A_k=\frac{1}{2}(B_{k-1}-A_{k-1})$$
# $$n_k>n_{k-1}$$
# $$a_{n_k}\in [A_k,B_k]$$
Dafür setzen wir $$A_1=A,B_1=B,n_1=1$$ und
$$M_k=\frac{A_k+B_k}{2}$$ der Mittelpunkt des Intervals. Dann erfüllt entweder $$[A_k,M_k]$$ oder $$[M_k,B_k]$$ die ersten drei Eigenschaften.
Sei weiterhin $$n_{k+1}$$ die kleinste natürliche Zahl s.d. $$a_{n_{k+1}}\in [A_{k+1},B_{k+1}]$$ und $$n_{k+1}>n_k$$.
Nach dem [[Intervalschachtelungsprinzip|Intervalschachtelung]] gibt es ein eindeutiges $$a$$, welches in allen Intervallen enthalten ist und per Konstruktion konvergiert $$a_{n_k}$$ gegen $$a$$.
!! Bemerkung
Es gibt auch eine Lied mit Video über diesen anschaulichen Beweis:
[[https://www.youtube.com/watch?v=eM3S74kchoM|https://www.youtube.com/watch?v=eM3S74kchoM]]
Sei $$T\in \text{End}_K(V)$$ und $$\dim_K(V)=n<\infty$$. Dann gilt $$\chi_T(T)=0$$ und damit nach [[Das vom Minimalpolynom erzeugte Ideal]] schon $$\mu_T|\chi_T$$. Insbesondere ist $$\deg(\mu_T)\leq n$$.
!! Beweis
Sei $$V\in V\setminus\{0\}$$ beliebig. Es reicht
<$latex text="\chi_T(T)v=0" displayMode="true"></$latex>
zu zeigen. Die Vektoren $$v,Tv,\dots,T^nv$$ sind aus Dimensionsgründen [[linear abhängig|Lineare Unabhängigkeit]]. Sei also
$$r\geq 1$$ das kleinste $$r$$ so, dass
<$latex text="T^rv\in \langle \underbrace{v,Tv,\dots,T^{r-1}v}_{\text{linear unabhägngig}}\rangle\eqqcolon U." displayMode="true"></$latex>
Per Definition ist $$U$$, auch ''durch $$v$$ erzeugter zyklischer Unterraum'' genannt, $$T$$ invariant.
Nun ist $$B_U=\{v,Tv,\dots,T^{r-1}v\}$$ eine Basis von $$U$$ und es folgt:
<$latex text="M_{B_U}(T|_U)=\begin{pmatrix}
&&&c_0\\
1&&&c_1\\
&\ddots&&\vdots\\
&&1&c_{r-1}
\end{pmatrix}" displayMode="true"></$latex>
Mit Induktion ach $$r$$ zeigt man nun $$\chi_{T|_U}(X)=X^r-c_{r-1}X^{r-1}-\dots-c_1X-c_0$$.
Induktionsanfang: Für $$r=1$$ ist die Aussage klar.
Induktionsschritt: Nach dem [[Entwicklungssatz]]
<$latex text="\begin{aligned}
\chi_{T|_U}(X)&=X\cdot \begin{vmatrix}
X&&&&-c_1\\
-1 & \ddots &&&\vdots\\
&\ddots& X &&-c_{r-2}\\
&&-1 & X & -c_{r-1}
\end{vmatrix}+(-1)^{r+1}\cdot(-c_0)\begin{vmatrix}
-1 & X & &&\\
&-1&\ddots&\\
&&\ddots&X\\
&&&-1
\end{vmatrix}\\
&\stackrel{\text{IV}}{=}X(X^{r-1}-\dots-c_1)+(-1)^{r}c_0(-1)^{r-1}\\
&=X^r-c_{r-1}X^{r-1}-\dots-c_1X-c_0.
\end{aligned}" displayMode="true"></$latex>
Es folgt also $$0=T^rv-c_{r_1}T^{r-1}v-\dots-c_0v=\chi_{T|U}(T)v$$.
Wenn man $$B_U$$ nun zu einer Basis von $$V$$ ergänz folgt die Aussage aus [[Determinate von Blockdiagonalmatrizen]].
Es sei $$I$$ ein offenes, nichtleeres Intervall und $$f,g:I\to\R$$ [[differenzierbare|Differenzierbarkeit: Analysis]] Funktionen. Außerdem sei $$a$$ ein Randpunkt des Intervalls. F+r $$x\in I$$ mit $$g(x)\neq 0$$, $$g'(x)\neq 0$$ und
<$latex text="\lim_{x \to a} f(x)=\lim_{x \to a} g(x)=0" displayMode="true"></$latex>
oder
<$latex text="\lim_{x \to a} f(x)=\lim_{x \to a} g(x)=\infty." displayMode="true"></$latex>
Wenn der [[Grenzwert|Grenzwerte bei Funktionen]]
<$latex text="\lim_{x \to a} \frac{f'(x)}{g'(x)}" displayMode="true"></$latex>
existiert, so auch
<$latex text="\lim_{x \to a} \frac{f(x)}{g(x)}" displayMode="true"></$latex>
und die Grenzwerte stimmen überein.
!! Beweis
O.B.d.A. sei $$a\in\R$$ endlich und der linke Randpunkt von $$I$$, sowie beide Grenzwerte gleich 0. Sei außerdem $$b>a,b\in I$$.
<$latex text="F(x)=\begin{cases}
0 & x=a\\
f(x) & \text{sonst}\end{cases}" displayMode="true"></$latex>
<$latex text="G(x)=\begin{cases}
0 & x=a\\
g(x) & \text{sonst}\end{cases}" displayMode="true"></$latex>
sind stetig auf $$[a,b]$$ und differenzierbar auf $$(a,b)$$. Nach dem verallgemeinerten [[Mittelwertsatz der Differentialrechnung]] existiert ein $$\xi_b\in (a,b)$$ mit
<$latex text="\frac{f'(\xi_b)}{g'(\xi_b)}=\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f(b)}{g(b)}." displayMode="true"></$latex>
Die Aussage folgt dann, indem man den Grenzwert $$b\to a$$ betrachtet.
Jede [[beschränkte|Beschränkte Folgen]],[[monotone|Monotonie]] Folge $$(a_n)\in\R^\N$$ konvergiert.
!! Beweis
Ohne Beschränkung der Allgemeinheit sei $$(a_n)\in\R^\N$$ monoton wachsend, beschränkt.
Die Menge $$A\coloneqq \{a_n|n\in\N\}$$ nichtleer und beschränkt ist, besitzt sie ein [[Supremum|Supremum und Infimum]]. Wir zeigen, dass dieses auch der Grenzwert ist!
Es sei wieder $$\epsilon>0$$ beliebig und fest. Da $$a$$ das Supremum der Menge aller Folgenglieder ist, existiert zu jedem $$\epsilon$$ ein $$N\in\N$$ mit
<$latex text="a-\epsilon<a_N\leq a." displayMode="true"></$latex>
Für alle $$n\geq N$$ gilt also
<$latex text="a-\epsilon<a_N\leq a_n\leq a." displayMode="true"></$latex>
Es gilt also
<$latex text="|a_n-a|=a-a_n<\epsilon." displayMode="true"></$latex>
! Aussage
Im Setting des Urnenmodells aus [[Freivalds Algorithmus]] ist im Fall $$AB\neq C$$ ''höchstens die Hälfte'' aller Kugeln ''blau''.
Es sei $$a<b$$ und $$f:[a,b]\to\R$$ [[stetig|Stetige reelle Funktionen (Über Grenzwerte)]] und auf $$(a,b)$$ [[differenzierbar|Differenzierbarkeit: Analysis]]. Ist außerdem $$f(a)=f(b)$$, so existiert ein $$\xi\in(a,b)$$ mit $$f'(\xi)=0$$.
!! Beweis
Für konstante Funktionen ist die Aussage klar. Für $$f$$ nicht Konstant hat $$f$$ auf $$[a,b]$$ ihr Maximum und Minimum in $$x_M,x_m$$ an und
<$latex text="f(x_m)\neq f(x_M)," displayMode="true"></$latex>
da $$f$$ nicht konstant ist. Also ist $$x_m$$ oder $$x_M$$ in $$(a,b)$$ und die Behauptung folgt aus [[Extrema und Ableitungen]].
Es sei $$I\subset\R$$ ein Interval und $$f:I\to\R$$ eine $$(n+1)$$-mal [[differenzierbare|Differenzierbarkeit: Analysis]] Funktion. Ist $$x_0\in I$$, dann existiert für alle $$x\in I$$ ein $$\xi\in (x,x_0)$$ bzw. $$(x_0,x)$$ mit
<$latex text="f(x)=\sum_{k=0}^n\frac{f^{(k)}(x_0)}{k!}(x-x_0)^k+\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{m+1}." displayMode="true"></$latex>
Sei $$H(t)=f(x)-\sum_{k=0}^n\frac{f^{(k)}(x_0)}{k!}(t-x_0)^k+\frac{\rho}{(n+1)!}(t-x_0)^{n+1}$$ mit $$\rho$$, so dass $$H(x_0)=0$$. Außerdem gilt $$H(x)=0$$.
Die Hilfsfunktion ist auf $$[x,x_0]$$ [[stetig|Stetige reelle Funktionen (Über Grenzwerte)]] und auf $$(x,x_0)$$ differenzierbar, da $$f$$ $$(n+1)$$-mal differenzierbar ist. Nach dem [[Satz von Rolle]] existiert ein $$\xi\in (x,x_0)$$ mit $$H'(\xi)=0$$
Nun ist
<$latex text="H'(t)=-\frac{f^{(n+1)}(t)}{n!}(x-t)^n+\frac{\rho}{n!}(x-t)^n." displayMode="true"></$latex>
Aus $$H(\xi)$$ und $$\xi\neq x$$ folgt also
$$\rho=f^{n+1}(\xi)$$.
Sei $$\Omega=\{0,1\}^\mathbb{N}$$ der Ergebnisraum des unendlich oft wiederholenden Münzwurfes. Dann gibt es ''keine'' Abbildung $$P:{\mathcal P}(\Omega) \rightarrow [0,1]$$ mit den Eigenschaften
* Normierung (N): $$P(\Omega)=1$$.
* $$\sigma$$-Additivität (A): Für paarweise disjunkte Ereignisse $$A_1,A_2,\ldots \in {\mathcal{A}}$$ gilt
<$latex text="P\bigl(\bigsqcup_{i\ge 1}A_i\bigr)=\sum_{i\ge 1} P(A_i)." displayMode="true"></$latex>
* Invarianz (I): Für alle $$A\in\Omega$$ und $$n\geq 1$$ gilt $$P(T_n A)=P(A)$$; Dabei ist <$latex text="T_n:\omega=(\omega_1,\omega_2,\ldots)\mapsto (\omega_1,\ldots,\omega_{n-1},1-\omega_n,\ldots)" displayMode="true"></$latex> die Abbildung von $\Omega$ auf sich, welche das Ergebnis den n-ten Wurfes umdreht.
!! Bemerkung
Hier ist es wichtig, dass $$\{0,1\}^n$$ überabzählbar ist (vgl. [[Überabzählbarkeit der Ergebnismenge von Münzwurffolgen]]).
Lokal quadratische Konvergenz des Newtonverfahrens}
Sei $$f:\, D(f)\rightarrow\mathbb{C}^{n}$$ zwei mal stetig differenzierbar
und $$\hat{x}\in D(f)$$ mit $$f(\hat{x})=0$$ und $$f'(\hat{x})$$ regulär.
Dann konvergiert das Newtonverfahren (mindestens) lokal quadratisch
gegen $$\hat{x}$$.
<$details summary="Beweis" tiddler="Beweis">
Nach Konstruktion gilt $$\Phi(\hat{x})=\hat{x}$$ und $$\Phi'(\hat{x})=0$$.
Die Behauptung folgt damit aus dem Satz über lokal superlineare Konvergenz.
</$details>
Jede quadratische Matrix $$A \in \mathbb{C}^{m \times m}$$ besitzt eine Schur-Faktorisierung.
<$details summary="Beweis" tiddler="Beweis: Satz: Schur-Faktorisierung">
{{Beweis: Satz: Schur-Faktorisierung}}
</$details>
<<list-links "[tag[Sätze Differenzierbare Abbildungen]sort[order]]">>
<<list-links "[tag[Sätze Differenzierbare Funktionen]sort[order]]">>
<<list-links "[tag[Sätze Eigenwertprobleme]sort[order]]">>
<<list-links "[tag[Sätze Grundlagen]sort[order]]">>
<<list-links "[tag[Sätze Kondition und Stabilität]sort[order]]">>
<<list-links "[tag[Sätze Lineare Ausgleichsrechnung]sort[order]]">>
<<list-links "[tag[Sätze LU-Zerlegung]sort[order]]">>
<<list-links "[tag[Sätze Nichtlineare Ausgleichsprobleme]sort[order]]">>
<<list-links "[tag[Sätze Nichtlineare Gleichungen]sort[order]]">>
<<list-links "[tag[Sätze QR-Zerlegung]sort[order]]">>
<<list-links "[tag[Sätze Singulärwertzerlegung]sort[order]]">>
Seien $$(a_n),(b_n),(c_n)\in\R^\N$$ mit $$a_n\leq b_n\leq c_n$$ für alle $$n\in\N$$.
Konvergieren $$(a_n),(c_n)$$ beide Gegen $$a\in\R$$, so gilt schon
<$latex text="\lim_{n\to\infty} b_n=a" displayMode="true"></$latex>
!! Beweis
Es sei $$\epsilon>0$$ beliebig, aber fest. Dann existiert ein $$n_0\in\N$$, so dass für alle $$n\geq n_0$$ <$latex text="|a_n-a|<\epsilon \text{ und } |c_n-a|<\epsilon" displayMode="true"></$latex>
gilt. Dann folgt aber schon
<$latex text="a-\epsilon<a_n\leq b_n\leq c_n\leq a+\epsilon" displayMode="true"></$latex>
und damit die Behauptung.
Wir betrachten wieder das Beispiel vom Zufallszahlenautomaten in der Fernsehshow. Als statistisches Modell haben wird das Produktmodell <$latex text="({[0,\infty)}^n,{\mathcal{B}}_{[0,\infty)}^{\otimes n},
({\mathcal{U}}_{[0,\theta]}^{\otimes n})_{\theta>0})" displayMode="true"></$latex> der skalierten Gleichverteilungen gewählt. Die Likelihood-Funktion ist somit <$latex text="p((x_1,\ldots,x_n),\theta)=\begin{cases}\theta^{-n}&\text{falls }x_1,\ldots,x_n\le\theta,\\ 0&\text{sonst.}\end{cases}" displayMode="true"></$latex>
Bei festem $$x=(x_1,\ldots,x_n)$$ ist $$p(x,\theta)$$ genau für $$\theta=\max(x_1,\ldots,x_n)$$ maximal, denn $$(0,\infty)\ni\theta\mapsto \theta^{-n}$$ ist streng monoton fallend. Wegen $$x_1,\ldots,x_n\le \theta$$ muss $$\theta\ge\max(x_1,\ldots,x_n)$$ sein. Also ist
<$latex text="\textcolor{blue}{\tilde{T}_n(x)=\max(x_1,\ldots,x_n)}" displayMode="true"></$latex>der MLE.
Die obige Diskussion hat gezeigt, dass es hier einen besseren Schätzer gibt, nämlich $$T_n^*$$.
Eine Reißzwecke falle mit unbekannter Wahrscheinlichkeit $$\theta$$ auf die Spitze. Gesucht ist ein Schätzer für $$\theta$$ bei Beobachtung von $$n$$ Würfen. Als statistisches Modell wählen wir das ''Binomialmodell'' <$latex text="([0:n],2^{[0:n]},(B_{n,\theta})_{\theta\in[0,1]})" displayMode="true"></$latex> mit der Likelihood-Funktion <$latex text="p(k,\theta)=\binom{n}{k}\theta^k(1-\theta)^{n-k}." displayMode="true"></$latex> Zur MLE-Bestimmung bei $$k$$ Erfolgen betrachten wir die Nullstellen der Ableitung der Log-Likelihood-Funktion (beachte: $$k$$ ist eine Konstante, $$\theta$$ ist die Variable!): $$0=\frac{d}{d\theta}\log p(k,\theta)$$ und erhalten mit der Kettenregel und $$\frac{d}{dx}\log x=\frac{1}{x}$$: <$latex text="0=\frac{d}{d\theta}(k\log \theta+(n-k)\log(1-\theta))=\frac{k}{\theta}-\frac{n-k}{1-\theta}." displayMode="true"></$latex>
Einzige Nullstelle ist $$\theta=k/n$$. Da die zweite Ableitung an $$\theta$$ kleiner Null ist, liegt dort ein Maximum vor. Also ist $$T(k):=k/n$$ einziger MLE für $$\theta$$.
Sei $$f$$ eine reelle $$\mathcal{C}^2$$-Funktion in einer Umgebung von $$a \in \R^n$$.
Ist $$f''(a)$$ nicht die Nullmatrix, so beschreibt die quadratische Gleichung
<$latex text="
x_{n+1} = T_2f(x;a) = f(a) + f'(a)(x-a) + \frac{1}{2}(x-a)^tf''(a)(x-a)
" displayMode="true"></$latex>
eine Quadrik im $$\R^{n+1}$$.
Diese heißt wegen $$f(x) - T_2f(x;a) = o(\|x-a\|^2)$$ //Schmiegequadrik//
an den Graphen von $$f$$ in $$(a,f(a))$$.
<$details summary="Bemerkung: Schmiegequadrik" tiddler="Bemerkung">
{{Bemerkung: Schmiegequadrik}}
</$details>
Seien $$(U_i)_{i\in I}$$ [[Unterräume]] von einem [[Vektorraum]] $$V$$. Dann ist auch
<$latex text="U=\bigcap_{i\in I}U_i" displayMode="true"></$latex>
ein Unterraum.
!! Beweis
Folgt direkt aus der [[äquivalenten Formulierung|Unterräume]]: $$U\neq \emptyset$$, weil $$0_V\in U$$. Falls $$x,y\in U_i$$ sind, so auch $$\lambda x+y$$, daher muss $$\lambda x+y\in U$$ gelten.
Eine $$\mathcal{C}^1$$-Funktion $$f:U \longrightarrow \mathbb{C}$$ auf einer offenen Menge $$U$$ ist auf
jeder kompakten konvexen Teilmenge $$K \subset U$$ Lipschitz-stetig. D.h. mit
<$latex text="
\|f'\|_K := \max\limits_{\xi \in K} \|f'(\xi)\|_{1,K}
= \max\limits_{\xi \in K} (|\partial_1f(\xi)| +...+ |\partial_nf(\xi)|)
" displayMode="true"></$latex>
gilt für beliebige $$x,y \in K$$
<$latex text="
|f(x)-f(y)| \leq \|f'\|_K \cdot \|y-x\|_{\infty}.
" displayMode="true"></$latex>
<$details summary="Beweis" tiddler="Beweis">
{{Beweis: Schrankensatz}}
</$details>
<<list-links "[tag[Schur-Faktorisierung]sort[scriptorder]]">>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/771_xo46ybI?rel=0&start=390" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
Es sei $$(X_i)_{i\ge 1}$$ eine Folge paarweise unkorrelierter (z.B. unabhängiger) ZVs in $${\mathscr{L}}^2(P)$$ mit beschränkten Varianzen:
$$\textbf{V}_P(X_i)\le v<\infty$$, für alle $$i$$. Dann ist die Wahrscheinlichkeit, dass das arithmetische Mittel der ersten $$n$$ zentralisierten ZVs mindestens um $$\epsilon$$ von Null abweicht, nach oben beschränkt durch $$v/(n\epsilon^2)$$:
<$latex text="\textcolor{blue}{P\left(\left|\frac{1}{n}\sum_{i=1}^n(X_i-\textbf{E}_P(X_i))\right|\ge\epsilon\right)\le \frac{v}{n\epsilon^2}
\xrightarrow{n\to\infty} 0}\,." displayMode="true"></$latex>
Grob gesprochen heißt das:
<$latex text="\textcolor{blue}{\frac{1}{n}\sum_{i=1}^n(X_i-\textbf{E}_P(X_i))\stackrel{P}{\longrightarrow} 0}." displayMode="true"></$latex>
Sind alle Erwartungswerte $$\textbf{E}_P(X_i)$$ gleich, so folgt insbesondere
<$latex text="\textcolor{blue}{\frac{1}{n}\sum_{i=1}^nX_i\stackrel{P}{\longrightarrow}\textbf{E}_P(X_1)}." displayMode="true"></$latex>
Die Funktion $$f$$ besitze in einer Umgebung von $$a \in \R^n$$ die partiellen Ableitungen
$$\partial_if, \partial_jf$$ und $$\partial_{ji}f$$. Ferner sei $$\partial_{ji}f$$ in $$a$$ stetig.
Dann existiert auch $$\partial_{ij}f(a)$$ und es gilt
<$latex text="
\partial_{ij}f(a) = \partial_{ji}f(a)
" displayMode="true"></$latex>
<$details summary="Beweis" tiddler="Beweis">
{{Beweis: Schwarz}}
</$details>
Sie $$V,<\cdot,\cdot>$$ ein euklidischer Vektorraum. Ein Endomorphismus $$f: V\rightarrow V$$ heißt selbstadjungiert (bzgl. des gegebenen Skalarprodukt $$\langle\cdot,\cdot\rangle$$), falls für beliebige $$v,w\in V$$ gilt:
<$latex text="
\langle f(v),w\rangle =\langle v,f(w)\rangle
" displayMode="true"></$latex>
<$details summary="Bemerkung: Matrixdarstellung selbstadjungierter Endomorphismen" tiddler="Matrixdarstellung selbstadjungierter Endomorphismen">
{{Matrixdarstellung selbstadjungierter Endomorphismen}}
</$details>
Es sei $$\Omega$$ eine nichtleere Menge. Ein System $${\mathcal{A}}$$ von Teilmengen von $$\Omega$$ heißt ''$$\sigma$$-Algebra über $$\Omega$$'', wenn gilt:
* Das sichere Ereignis gehört zu $${\mathcal{A}}$$: $$\textcolor{blue}{\Omega\in {\mathcal{A}}}$$.
* Das Gegenereignis eines Ereignisses aus $${\mathcal{A}}$$ gehört wieder zu $${\mathcal{A}}$$: <$latex text="\textcolor{blue}{A\in{\mathcal{A}}\Rightarrow A^c:=\Omega\setminus A\in {\mathcal{A}}}." displayMode="true"></$latex>
* $${\mathcal{A}}$$ ist unter abzählbar unendlicher Vereinigungsbildung abgeschlossen: <$latex text="\textcolor{blue}{A_1,A_2,\ldots \in{\mathcal{A}}\Rightarrow\bigcup_{i\ge 1}A_i\in{\mathcal{A}}}." displayMode="true"></$latex>
Das Paar $$(\Omega,{\mathcal{A}})$$ heißt dann auch ''Ereignisraum'' oder ''Messraum''.
Ist $$(\Omega,{\mathcal{A}})$$ ein Ereignisraum, so heißen die Elemente $$A\in{\mathcal{A}}$$ auch die ''messbaren Ereignisse''.
!! Fazit
Eine $$\sigma$$-Algebra $${\mathcal{A}}$$ über $$\Omega$$ ist ein Mengensystem $${\mathcal{A}}\subseteq 2^\Omega$$, das $$\Omega$$ enthält und unter Komplementbildung sowie unter endlicher und abzählbar unendlicher Durchschnitts- und Vereinigungsbildung abgeschlossen ist. (vgl. [[Eigenschaften von sigma-Algebren]])
!! Weiterführende Links
* [[Beispiele von sigma-Algebren]]
* [[Typische sigma-Algebren]]
iVBORw0KGgoAAAANSUhEUgAAAr4AAAHjCAYAAADFfxzBAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAKwcSURBVHhe7N0HXFXl/wfwzx1M2QoKDsRt7p1W7tQ0NUdpuf6mpeaonA31V+5t5i7NXKWl5c6tTcuJW1REUVFxsOEC997zP8/hMGSDgIzP+/XjB/c5k5vc87nP/Z7n0UgyEBEREREVclr1OxERERFRocbgS0RERERFAoMvERERERUJDL5EREREVCQw+BIRERFRkcDgS0RERERFAoMvERERERUJDL5EREREVCQw+BIRERFRkcDgS0SUGcZb+G3qF/jhcoTaYEK439/Y8u1iLPt+B/7xC0P602Bmdf14Ubh54DusPHobZrVFCvobiz7+BseDTGoLERFlBoMvEVGGDLi9awmm+VbFi5Vs5cdGPPxrPt5u+z6W7D2NMzvnY2DbAZjx5/00wmwa6//1IOOwfGkrZn0yA9+eeZgQfDXOtfBKuX34ZMk/COKk80REmcbgS0SUASnoGL6dfgldh72GChYaIOosNn6xAYYhq7Fzyxp8u+VXrB9iwvdfbMaZqFSSqFj/f+tTrL/mf5tSX18wBuLcz1PwdudJOPg4ec+uA+r17oeqP36HHdci1TYiIsoIgy8RUbpicOfgz9js1Amv1XOUH0uIvvwnfvGtjrc614G9nIOhcUGDzq+j0o1D+ONyuLJVorj1t/q+kHJ939TWF4y4v2saesy4hiZzJqK3OGwymlJN0f31G1i+6TRC1TYiIkofgy8RUXrMfji88Q/YvFIHFS1FajUhyP8G7qEk3Jwt4taR6ZxdUQ53cMk/RG2Jl9X1BR2cGg7DzgNrMLFrPZRI7ZVaUxw1m9VF0KYDOBXCWl8iosxg8CUiSk+IPy5dskTj2p4Q1b1p0lnCRqf+nBnprq+BdZnqqFbCSn2cGj3cKlRBqchzuHzToLYREVF6GHyJiNJhfnQX12KdUda1mNqSBlMMorLS8ZrV9VOhcyuNqrgLnzup9RoTEVFyDL5EROmQoiLwBFawt4kvU9BAZ2mB1Dtr9bCxTL4kq+tnlRFRMSx1ICLKDAZfIqJ0xPWqPoLf/bD4FhSvXAsv4CLO+ca3SYj0vYDj8EJNLye1LV5W1888KSoSYchEbzQRESkYfImI0uNcFtVLR8LnbhDi+1W15Zuga5Ng7Fy3G5fCTZDCL2DLun2IbNwRLStZy2sE4/zPS/HViqO4Y45b/40mQSnWj2qS+vqZIyEq4AYuwxMVPNKtPiYiIhWDLxFReqwqollnT/j9fREB8UPuWlRDn4Vz0OXObHSpWQmVa3bB9DudsGJhb1QW4/wiHDf2rcaSlWfwQKRlsf5Xc1Osv/KrJOvv/05ZPzDTwTcCvt5nEF6nORp5ivBMREQZ0Ugy9WciIkpBQsy55ejc7TzeO7oIPctaqu0yKRx3LlxDIFxRpWYZ2IkMq5L8fsA7022x4Ns34B7fnon1F656A6XUtnRFncJXr4+Cz8gfsfSNcuzFICLKBL5WEhGlSwPLWl3w0etXsXLLeUSprQqNHcrUqof6tZ4OsZAC8fuaP1Dz/5qiVNL2TKxfUm1KnwlB/+3GJryF99qX5Qs5EVEmsceXiChDEoy3t2PsW7+j1S9z0NU9cSKK58JwHt8OmIXg0YswtkkJOZoTEVFmMPgSEWWWFImQUD0cHZOUOzwHUkQIQq0c4Khn5CUiygoGXyKiPBIVFQVvb2/c8PVFyVKlUL9+fbi4uKhLiYgotzH4EhHlgbt376J/n74IDHyAqMi4SmF7Bwcs/HoRWrZsqTwmIqLcxeBLRJQH2rVtixvXfdVHiUT4PXT0CHt+iYjyAG8GJiLKZdeuXcO9gHvqo6eFhYbi32PH1EdERJSbGHyJiPJAVGSk+lNK/v631Z+IiCg3MfgSEeUyW1tbpaQhLeXKlVV/IiKi3MTgS0SUy0qXLo3GLzZRHz3N0ckJrVq3Vh8REVFuYvAlIsoDw0eMUL5bWVkp3y0tLaHVajHqow9hY2OjtBERUe7iqA5ERHlgyHvvo1Wb1qhXr54ynm+8j0aOwrqNG1CuXDm1hYiIcgt7fImIctmmTZuU7506dYKHhwcqVqyY8NVvQH8sWbwY7IMgIsp9DL5ERLlIDGW2YukyfD5potrytC5duyIkOAS7du5UW4iIKLew1IGIKJc8fPgQw4d9gH79+6Flq1Zqa0oBAQF4vcNr2LX3N1StWlVtJSKinMYeXyKiXLJj+3aU9yqfbugVRPnD1JkzsGDefLWFiIhyA4MvEVEu8Pb2xvq16xJGc8iIqP8V4uuBiYgo57HUgYgoh4lRG15r1x4z58xGzZo11daMiZKHIYPfw8pV37LkgYgoF7DHl4goh82fNw9t272apdAriJKHMePGYuJnnyv1wURElLMYfImIctCxY8dwcP8BDBk6VG3JGlEP7FXBS6kPJiKinMXgS0SUQ0Qv7afjJyglDtbW1mpr1o0YOVKpDz5z5ozaQkREOYE1vkREOWTC+PGoUqUK3urVS23JvuPHj2PFsuVYt2E9pzQmIsoh7PElIsoBO3fswA3fG8qEFDmhcePGqFO3jlIvTEREOYPBl4joGfn7+2P+3Hn4bOLnz1TikJyoExb1wqJumIiInh2DLxHRM1qyeDH6DeiPSpUqqS05Q4RoUS8s6oY5ygMR0bNj8CUiegZiwomQ4JAcqetNjRgSrVuP7li5YoXaQkRE2cXgS0SUTT4+Ppj4yacYPXaM2pI73unTB2e9zyp1xERElH0c1YGIKBvCwsIwdvQYtGrTOmG64dzk6+uLj0aOwtoN6+Hp6am2EhFRVrDHl4goG37avFn5nhehV6hYsaJSR7x0yRIldBMRUdYx+BIRZZG3tzc2rFuPzydNVFvyhhgqTdQT7969W20hIqKsYKkDEVEWREVFoX/ffug/oL8yvXBeCwgIQKf2HbB7315UrVpVbSUiosxgjy8RURb8sHEjvCp4oUXLlmpL3vLw8MC0WTOxYN58tYWIiDKLwZeIKJPERBLr167DiJEjodFo1Na8F19XLIZSIyKizGPwJSLKBDGBhJhIQkwo4ezsrLY+P2IItRVLlyn1xkRElDkMvkREmSAmkGjb7lVlQon8QJQ8jBk3FtOnTkNgYKDaSkRE6WHwJSLKgChxOLj/AIYMHaq25A/i5jpRb8yJLYiIMofBl4goHf7+/vhswidKiYO1tbXamn+IemMxtBpLHoiIMsbhzIiI0jF+3Dhl2LC3evVSW/Kf48ePY+oXX+K3/ftgY2OjthIRUXLs8SUiSoMoIfC74YfOXbqoLflT48aNlfrj+fPmqS1ERJQaBl8iolSIEof5c+cps7MVhF5UUX8s6pBFPTIREaWOpQ5ERKkY8t77aNykcb4ucUjuwoULypBrLHkgIkode3yJiJKJnxiiIIVeQQy11m9Af/xv8mSwT4OIKCUGXyKiJHx8fDDxk0+VCSIKoi5duyp1ybt27lRbiIgoHksdiIhUYWFhGDdmLFq2bpUwLXBB5Ovri49HfYi1G9ajXLlyaisREbHHl4hI9dPmzXBwdCjQoVeoWLEi+vbvhyWLF6stREQkMPgSEcnEBBDr167D8BEj1JaCTdQnhwSHJNQrExERSx2IiBAVFYX+ffuh/4D+yjTAhUVAQAA6te+A3//+C6VLl1ZbiYiKLvb4ElGR98PGjfCq4FWoQq/g4eGBabNmYsoXXyr1y0RERR2DLxEVaWLCB1HiMG78eLWlcImvV969e7fynYioKGOpAxEVWQ8fPsSb3Xtg5pzZyhi4hVVQUBD69+mLhV8vQr169dRWIqKihz2+RFRkrVyxAm3bvVqoQ6/g7OyMMePGYsa06Uo9MxFRUcXgS0RFkihxOHTgIIYMHaq2FG6iflnUMYt6ZiKioorBl4iKHH9/f3w6fgIWLPoK1tbWamvhN2LkSKWeWQzdRkRUFDH4ElGRIyZ26DegPypVqqS2FA2i5EHUM380cpRS30xEVNQw+BJRkbJzxw743fBDl65d1ZaiRdQzi7pmUd9MRFTUMPgSUZHx5MkTzJ87D59PmlikShySE3XNB/cfUOqciYiKEg5nRkRFgpjAYezoMWjVpnXC2LZF2YULF5Q655+2boGbm5vaSkRUuLHHl4iKhPgJHBh644iSB1HnPG/uXLWFiKjwY/AlokLPx8cHkz79DKPHjlFbSBB1zjf9bip1z0RERQFLHYio0Bvy3vsscUiDr6+vMsrDuo0bUK5cObWViKhwYo8vERVqq1etgqOTIzp27Ki2UFIVK1ZUSh7EEG+iDpqIqDBj8CWiQktM1CAmbBATN2g0GrWVknurVy+EBIck1EETERVWLHUgokJJTNDwwdBh6D+gvzJdL6UvICAAndp3wO59e1G1alW1lYiocGGPLxEVSju2b4dXBS+G3kzy8PDAtFkzsWDefLA/hIgKKwZfIip0xMQMosRh3PjxagtlRvzNf5s3b1a+ExEVNix1IKJCRZQ4vNWjJ2bMnqWMVUtZExQUhAF9+2Hh14tQt25dtZWIqHBgjy8RFSorV6xAm1fbMvRmk7OzszLe8fSp0xAVFaW2EhEVDgy+RFRoiBKHg/sP4P0hQ9QWyg5RFy3qo3/YuFFtISIqHBh8iahQ8Pf3x6fjJ+CrxV/DxsZGbaXsEkPAiTppMSQcEVFhweBLRAWemHhBTMAgJmIQEzLQsxMlDzPnzFZmdRN100REhQGDLxEVeEePHIHfDT906dpVbaGcIOqk27Z7Vamb5qxuRFQYMPgSUYEmShzmz52HzydNhLW1tdpKOWXI0KFK3fT58+fVFiKigovDmRFRgTb0/SFo2bpVwhi0lPMuXLiAzyZ8grUb1qNcuXJqKxFRwcMeXyIqsDZt2qTMMsbQm7tEyUPf/v2UOmoiooKMwZeICiQfHx9M/ORTfDxmtNpCuUnUT4s66p07dqgtREQFD0sdiKjAERMrfDTqQ7Rq05q9vXnI19dXGeXhl+3b4OLiorYSERUc7PElogJHTKzg6OTI0JvHxFBxYsi4Tyd8wlEeiKhAYvAlogJFTKggJlYQEyxQ3nurVy/l++7du5XvREQFCUsdiKjAEBMpfDB0GPoP6K9Mq0vPR0BAADq174Bde39DtWrV1FYiovyPPb5EVGCIEgevCl4Mvc+Zh4cHps2aiYXzF6gtREQFA4MvERUIx44dw7ZffsW48ePVFnqeRH21RqPB6lWr1BYiovyPwZeI8j1R4vDp+AmYPmsmZ2fLRz6b+LlSby3qromICgIGXyLK91auWIG27V5FrVq11BbKD5ydnTFm3FhMnzpNGWKOiCi/Y/Alonzt0KFDOLj/AIYMHaq2UH4i6q1F3bWovyYiyu84qgMR5VtPnjxB965v4KvFXytjyFL+ZDAY8Gb3Hpg5ZzaaNm2qthIR5T/s8SWifElMkDBr5kxlwgSG3vxN1F2L0CvqsAMDA9VWIqL8h8GXiPKlo0eOwO+GH7p07aq2UH5Ws2ZNpQ77m5Ur1RYiovyHwZeI8h0fHx8smDcf02ZM5ygOBYiowz504KAy9BwRUX7EGl8iyneGvPc+WrVprYwVSwWLr68vPho5Cr9s3wYXFxe1lYgof2CPLxHlK5s2bVK+d+zYUflOBYuoxxZ12aI+W9RpExHlJwy+RJRviBKHiZ98itFjxyizglHBJOqyRX22qNMmIspPGHyJKF8Qs7OJut6FXy+Ch4eH2koFkajL/nzSRMyfOw/+/v5qKxHR88fgS0T5wo7t2+Ho5KhMiEAFnyh5GDr8A2VWN95KQkT5BYMvET133t7eWL92HUaMHKm2UGEQf3Pi5s2ble9ERM8bR3UgoudKlDgMH/YB+vXvx97eQiggIACvd3gNu/b+hqpVq6qtRETPB3t8iei5+mHjRtSuU5uht5AS9dpTZ85Q6rc5ygMRPW8MvkT03IiJDn7d+gveHzJEbaHCSJQ8iPrtn1jyQETPGYMvET0XUVFR+HT8BMycMxs2NjZqKxVWon5b1HGLem4ioueFwZeI8pz4yHv+vHlo2+5V1KxZU22lwszZ2Rljxo1VRnkQdd1ERM8Dgy8R5bnjx4/jrPdZDBk6VG2hokDUcXtV8FKGriMieh44qgMR5SkxoUH/Pn3x1eKvlbFeqWgxGAx4s3sPzJg9C82aNVNbiYjyBnt8iShPLV2yBP0G9GfoLaLErG6irvvzTz5lyQMR5TkGXyLKMzt37MAN3xvo0rWr2kJFkajrbvNqW6xcsUJtISLKGwy+RJQnfHx8MH/uPEydPk3p9aOiTdR3H9x/QBnSjogor7DGl4hynRjFYezoMWjVpnXCNLZEvr6++GjkKKzbuAHlypVTW7PIeAuGmd9D6jkWNtWLqY1JRcN87k9E/3sFZpSArkYTWDXzgkajLn50Hoa/bqgPVBo36Nu/CL11/EpJmSD5/QfDgdMwW3rCokVLWHrZq8syIsnb/ovos4Hq46S0QIUXYV3bNf1zivoHEV9egsXkd2HpolMXElFmMfgSUa7btGkTjhw6jHkL5qstRHHEpBbi04A5c+eqLVlhgGnbZIT9Wh923/aC3jJZUJVCELtuIiImHgea15aj5T2Y/rgL7ZBFsP+8ObQaE8x7JiBk6A6RSZN4DTbH58Ha3UJ9HM8I818LEdZ3A6T6DeX93YDpdHFYbFgKu5dLquukxyif7xiEjvxNfZyUBTSTfobT+1XjzmmIfE5Pkc/pxHxYl4pEzILBiIwYCYeJr8i/g7qYiDKFwZeIcpUINZ3ad8DufXuV6WuJkhKjPHwwdBj6D+iPzl26qK2ZFHQUYW0XQLNsPeyaOKqNSfj9iJBWX0MzdyPs36wADaJh2jMVYUOuwmL3dyhWW4vYJf0Qvr8L7LcNgD6j4r+oU4joOBixHZbDYfyLcvB9gpg57yFibwsU2zMSljbZSKHGmzCMHoioe2/Dbs0gWNhFZ3xOAdsR2mYH9NsXw7aKrdpIRJnBGl8iyjXirv0F8+Zj4deLGHopVaLe+/NJE5X671u3bqmtmRED08GfYXR6DVb1HNS2pCRIUVpo2/eBdVtPOfQKVtDVbyRf+PxguhEsr/IQxv9uAg0rQpfh1VDe3+W/EHu9Giy71InradW4yD+/Bs31w4i9HB63WpYYYPp1IaJ2V4f17H5y6NUlOadKaZ+T+4uwet0PMZvOwKw2EVHmMPgSUa4RExU4OjkqExcQpUUMbTd0+AeYMW262pIJ5puIXv8X0KJ2yhIHhQaaF3rBfuUIWDrH18LGwvTvUZh0dWFRxxWIvAPTqQhovL9D6Mt1EFS2DoLfX4povzB1/aRMMPv7yfHXDVrnJCUQzq7yhfQuTP4hakMWBP2LyFlHoRk+CNYV1Gm7E85pddrnpCkO/Ut1IP1wALGhjL5EWcHgS0S5wtvbGxvWrceIkSPVFqK0iZseNRqNUg+eKSH+MF20hK52fG9uRkyQLm1GxJQ/oB32LqzKWwGB8j5EnixWFZaTlsB25SjoHm1AZM+5iA6MjdssIzpL+Uv9OUsiEPvzdzAGt4d1vzqJv0N65/TQGLcO9NBVqAxNxHkYbxrUNiLKDAZfIspxosRh+tRpGD12DJydndVWovR9PGY0Jn7yqVIXnqFHd2GOcYa2RGojOSQXDdO/qxHWZyGkbnNgN+bFuFIF11dgu/0X2C8fC5v2r8Cq47uwmz0M2sCdMOzPZNmFKUZk6qyLvIDo705D814PWLnq1UZZZs/JrbR8AQ+A6U42epqJijAGXyLKcT9s3Ig6deuwxIGyRNSBT5s1Ew+HDkdQ7YYIKltF+R658htIUVHqWqqoCEiwhMY2+cgLyYiRHX6eirDeyyF1nwu7T1tDp1f7V+3KwKL+C9CJ2lqFBhqvmtC7RMAcmDxQyssskwTUp8jtllnp9pUgnf8TxoAXYNGxxtM91umd04Pk52QEYrKTuomKLgZfIspRYkKCX7f+okxQQJRVHXyu4YUbd4Cg0LgG+Xv0tHkIGz0u7nE8pcfzMUz3U6vHjRcO4w+TETH6L2i/XAeHiUlCr6jZPfolgssPR5R/tNomC3oAU7gjdGVc1IZ4Omgr15KPeRnG6/HHlAPs9YvynspD7+WktmVGFIwnjkGyqwuLikl7rJOc0+0YtU0Wf05lk5xTVKR89Mz2eBNRPAZfIsoxosTh0/ETMHPObM7ORlkmBQRAWr8ZGnPKG7ZMR/6E6e5d9ZHMuawcTiNhvhOkNgiid3cZIlYchcksh9KrvyDi833Aa31gVTMWsWdOI+a0+DoL4yMjtBVqQKv7BzFr/4LJKMk5+ToMy1fDJEaKaFkm2f7kh+WbwKJpEIzrdiM23CSvfwFR6w8ATV+DZSXx7z3Z+opU2uJHbmj6AnTFkvb3yuE6/py+T+ucBPl3u+sHM8pBV5rDmRFlBYMvEeWYlStWoG27V1GzZk21hSjzJJ+rQHSSns6kIqIQe+Kk+kBmVREWXctC+vsSTAmj0YfBtHcNYpZ7yyEzCsb9O2CW06b021xEvtEbEV3jvwYj8q+HQLnOKLa6H7B1OEK9qiKoekdEHSwP6/VjYOUmSiiS7k9+aFEVNotmQ397PsKrV5fX74Fo/w6wXdQLegsRYJOtr0ilzfQY5nNhQA05vKtNCeLPacsHKc8poRY4Akbvs0C9V2DhaaW2EVFmcAILIsoRhw4dwoply7FsxXL29lK2mP87DvPAYeqjlGy/WwarV9uqjyRI51YgpMsFWP25EDZlLdX2bJDCYbpwDSa4wqJmGSRMZyyISTCm2cJuddfEkJrV9bMjvWOIiTQ6jYZp1AY4vFFWbSSizGCPLxE9M39/f0z7cooyEQFDL2WHdO4cpJ+3qo9SYWsDiwb11QeCBppanWHd9Rqifz4vx+BnoLGDrlY9WNZKFjClQER/9yd0A198OsRmuH6TZwu9QlrHEHXA/+1BrNQD1u3jSx+IKLPY40tEz2z8uHGoWrUq3urVS20hyhwReM2bt0C6eQvaPr3lXGeGefJUIDpxHF1JDn768R/CYcRwtSWeBOn2DoT1/B2Wv8yCdeln6PUtKAznEdl/DsyjF8LuxRJqIxFlFoMvET2TnTt2YN3adVi6fBlsbNTZp4gyYD5yFNLWXyEFBUM7eCC0DRuoS+Q46+cH89oNkH47BE2XDjigkeBT0g0ffvQR7O3t1bWSkCJhDtVD61gEgm9ECMxWDtAmjE5BRFnB4EtE2SYmGujUvgN279urjMFKlBEReM2r1ig/Jw+8yRmbtIT+4kkYoqPxZvcemPTF/9CmTRt1KRFR1jH4ElG2DXnvfbRq01qZbpYoPVkJvPHig68ocvX19cVHI0dh3cYNKFeunLoGEVHW8OY2IsqWTZs2Kd8Zeik9IvAa+wxQQq8IvPoVSzIVepOrWLEi+g3ojyWLF4P9NUSUXezxJaIsY4kDpSssDOaTp5Swq3F2gqZHt2yF3aQ9voLBYMAHQ4ehvxyAO3fporQREWUFgy8RZYmYnW34sA/Qr38/tGzVSm0lksn/NswnTsK8cRM05T2h7dUTGi8vdWHWJQ++gih5+HjUh1jx7TfKSCJERFnBUgciypId27ejvFd5hl5KZDDA/PNWGPsMhPT3MegmjIHuk3HPFHrTIkoehnwwDAvmzVdbiIgyj8GXiDLN29sb69euw/ARI9QWKtLiA2+XnpC8z0I3b0auBd6k4uvK4+vMiYgyi6UORJQpUVFR6N+3n1Jfyd7eIk6UNBz9A+Zv10DTqP4zlzSkJbVSh3gBAQEJdeYseSCizGLwJaIMhYWFYdFXXyk/i0kEqIjKo8AbL73gKxw9cgS7du7CtBnT4erqqrYSEaWNpQ5ElKELFy7g4P4DGDJ0qNpCRYkUFJRYwxsYCN3q5XlS0pAR8cmDo5OjUndORJQZDL5ElC4xisOn4ydg5pzZsLa2VlupKBCB17R0OUwvtU0MvP37QuPkpK7x/I0YOVKpOz9z5ozaQkSUNgZfIkrXyhUr0K1Hd9SsWVNtocJOun07IfAKun3b8l3gjefs7Iwx48ZixrTpSh06EVF6GHyJKE07d+zAWe+zeKdPH7WFCrOEwNv+DeVxfg68SYmShzp16+CblSuVenQiorQw+BJRqvz9/TF/7jx8NvFzljgUZnJQLKiBNylRf/7r1l+UenQiorQw+BJRCqLXbMnixeg3oD8qVaqktlJhowTedRtgGjQMGje3Ahl444k3Z6IOXdSji7p0IqLUMPgSUQpimKiQ4BB06dpVbaHCRDp3DqbPJycEXv3GNdB2aFcgA29Sog69bbtXlbp0IqLUcBxfInqKj49PwsQAHh4eaisVBiLwmjdvgXTiNLTvDYS2ZXPRVaouzX8yGsc3NQaDAR8MHYahHwxDmzZt1FYiojgMvkSUQJQ4jB09Bq3atE6YFpYKOFHD6+dXoAJvvOwEX8HX1xcfjRyFtRvWw9PTU20lImKpAxElsXv3buU7Q2/hoJQ0zJoL09jPoKlbJ6GkoSCE3mdRsWJFpT596ZIlagsRURwGXyJSiBKHlcuWY/TYMWoLFVQJNbyz5xepwJuUqE+/6XdTGZKPiCgeSx2ISBn4v3/ffug/oL8yJioVTOYjRyFt/RVSUDC0gwdC27CBuqRgym6pQ7yAgAAMGfweVq76FlWrVlVbiagoY48vUREn6np/2LgRXhW80KJlS7WVCgz5v58IvMY+A2BetQaaHt2gX7GkwIfenCBuzhw6/AMsmDdf+XdORMTgS1TEiRuB1q9dhxEjR0KTzZ41ej6UwDt0hBJ4RQ8vA29K8fXq8fXrRFS0sdSBqAgTA/3HD/3UuHFjtZXyOxF4RdgVCkNJQ1qetdQhnih5iB+ijyUPREUbgy9RETZt6lTl+4cffaR8p3xMlDScPFUkAm+8nAq+gpiUZdfOXZg6fRrc3NzUViIqaljqQFREHTt2DAf3H8CQoUPVFsqXHj6Eec9vSkmDdPAwdBPGsKQhG8RNm45OjhzlgaiIY48vUREkShze6tETM2bPUqZ5pXzIYIB5526Yv10DTaP60PbqCY2Xl7qwaMjJHl8hKCgIA/r2w8KvF6Fu3bpqKxEVJQy+REWQKHGwt7fHu4MGqS2UbzDwJsjp4CuIkod1a9dh3Yb1sLGxUVuJqKhgqQNRESM+6j3rfRZvv/OO2kL5gihp+HkrjF16QpL/++jmzYDuk3FFNvTmFlHyUKduHXyzcqXaQkRFCXt8iYoQf39/9O/TF18t/lqZ1pXyARF4j/7BHt5U5EaPr2AwGPBm9x6YOWc2mjZtqrYSUVHAHl+iIkIM4L9k8WL0G9CfoTcfkIKC4np4+wyEFBgI3dKF7OHNI9bW1kro/XT8BKXenYiKDgZfoiJC1DaGBIegS9euags9DyLwmpYuh+mltnGBd/Vy6Pr3haZUKXUNygvips627V7FyhUr1BYiKgoYfImKAB8fH3w86kOMHjtG6e2ivCfdvp0QeAXdvm1xgdfJSXlMeU8M5Sfq3Q8dOqS2EFFhx+BLVMiJEoeF8xdg2qyZ8PDwUFspryQE3vZvKI8ZePMP8Sbw80kTMe3LKUr9OxEVfgy+RIXc7t27Ie5h7dSpk9pCeSGhpIGBN18T9e59+/dT6t+JqPBj8CUqxESJw4qly/DxmNFqC+W2hB7eXv2gsSvGwFsAiLp3vxt+nNWNqAjgcGZEhVRUVBT69+2H/gP6K2OXUu6Szp2DefMWSCdOQ/veQGhbNhefpatLKTtyaziz1AQEBGDI4PewctW3qFq1qtpKRIUNe3yJCqkfNm6EVwUvht5cJgKv6fPJMI39DJq6daDfuAbaDu0YegsYUf8+dPgHWDBvvlIXT0SFE4MvUSHk7e2N9WvXYcTIkWoL5TQG3sInvg5e1MUTUeHEUgeiQkYMyP/B0GEY+sEwNG7cWG2lnMKShryTl6UO8UTJQ6f2HbBr72+oVq2a2kpEhQWDL1EhM23qVOX7hx99pHynnJEQeG/egvaNLgy8eeB5BF9BTPaybu06rNuwHjY2NmorERUGLHUgKkSOHTuGQwcOKgPzU84wHzkK04gPYZo9H5q2raFfsYQlDYWcqIsX9fGiTp71vkSFC3t8iQoJUeLwZvcemDF7FmrVqqW2UrbIYcd88hTMq9YoD7WDB0LbsIHyM+Wd59XjKwQFBaF/n774avHXqFu3rtpKRAUdgy9RITF+3DiULl0a7w4apLZQdogeXgbe/OF5Bl8hvuRh2YrlcHV1VVuJqCBjqQNRISAG3hcD8L/Tp4/aQlklAq+xzwAl9IrAq5Q0MPQWaaLkoU7dOli5YoXaQkQFHXt8iQo4f3//hI9kxfSrlDXs4c2/nnePr2AwGJQSoplzZqNp06ZqKxEVVAy+RAWYuPFm6pQpykxTb/XqpbZShh4+hPnESZg3boKmvCe0vXpC4+WlLqT8Ij8EX+HChQv4dPwE/LR1C9zc3NRWIiqIWOpAVICJgfZDgkPQpWtXtYXSZTDA/PNWGPsMhPT3MegmjIHuk3EMvZSumjVrom27V/HNypVqCxEVVOzxJSqgfHx88HqH15SB9sV0q5QO0cN79A+Yv10DTaP67OEtIPJLj68gSh6GD/sA/fr3Q+cuXdRWIipoGHyJCqgh772PVm1aJ0yzSqlg4C3Q8lPwFXx9ffHRyFFYt3EDypUrp7YSUUHCUgeiAkbU9W7atEn5uWPHjsp3SkYE3viSBu+z0M2bwZIGembi5tF+A/pjyeLFnNiCqIBi8CUqYESv04qlyzB67Bho8klPWL6RtIY3MBC6pQsZeClHiXp6UVcvxvglooKHpQ5EBYiYne2DocPQf0B/ZYxRiiPdvg3zjl2Qlq6CZvhgaLu8Do2Tk7qUCqr8VuoQLyAgAJ3ad8DufXuVEVWIqOBgjy9RAbJj+3Z4VfBi6FWJwGtauhym9m8oj3X7tkHXvy9DL+UqcTPptFkzsWDefLDviKhgYfAlKiC8vb2xfu06jBg5Um0puhh46XmLv6l08+bNynciKhgYfIkKAFHi8PGoD5XZo5ydndXWokcKCmLgpXxD1NmvXLZcGVqQiAoGBl+ifE7cPb5yxQq0ebWtMpB+UZTQw9urHzR2xRh4KV8QJQ8i/E787HPlzSkR5X8MvkT5nJgu9eD+A3h/yBC1peiQzp2DafZcmAYNg8bNDfqNa6Dt3o2Bl/INUW8v6u5F/T0R5X8c1YEoHxO9SG9276GUOBSZ3t6wMEh37sD842ZI/56E9r2B0LZsDlhbqytQUZFfR3VILigoCP379MVXi79G3bp11VYiyo8YfInyKVHiMHXKFGW4pLd69VJbCzfRw2vevAXSyTPQDh0M7cvNGHiLsIISfIXjx49jxbLlWLZiOVxdXdVWIspvWOpAlE+JAfL9bvgpA+YXdkpJw+eTYRr7GTR160C/4Tto27Zm6KUCo3Hjxqgj/9sV9fhElH+xx5coH/L390/46FRMk1pYJfTw3rwF7RtdWNKQm8z3sffyPgSXfgu9nWzUxqRi8ejJWRx67I8HcERlx+po7uaBYupSyeCL/YEBiFYfKzTOqO1RA+V1WemRjcbNgEM4oG2IQaXckvS+JD2+E2oUr4eXXusG64snYAg9h4OPgmBW10ykgZVDHbRzdQairmJ/wN2nzw/y+XnWQXl95s5PysQ+jJHX8Pvdy7gapUFp+RzblC6T8BwZDGF4Y+JAvNq5Oezca6Fqibpo5VkOdupyKeIKfpP/tg3qY4WmOOpVrI/yxlOY//c1vPzSW3jRRqcuJKKcxuBLaTPfwa6/tyKo6nvo52arNsYzI/zJaez2u4QHOnfUL9cUL7nYyZehREb5Rf7wzYu4EgmUcWuEdkkuAHFi8PD+cey/64t78sUlKxcJL4vMXMji9++HMMtyqFe2IRo7FZPPUYJBPve9Dx6neiG1dm6A10q5AM94/Mycf1rP0YTx41GlSkW0bl0Bhx74yUHAGZWda6J5kouskN6F2tPojcWnb6Bp/TfQyDofXUjDwmA+eQrSwcNxgXfwQGgbNlAXUu6IwR3/NXgzsBJ+qN8GXik+6wvHZd81eOfOTbjblkZZhODfyFCULTEA39eoixIw4dGdb1HL9wIi1C3iVMeGRkPRxTaz/77k143ggxh3fif+cR2JU9WqQK+0x51fF7/LsLMui+raUPn40Wh29hIWfXYAT258hSqXzytrPk2LpuUnYk/N8gjyW4xaF88kO79a2NDqY3Qplpnzk3/HdPehQfjj3zDu+Bb8oy+HF61icTk0EA4eI7Chfl05qofh8uXl6Ol7FWERBrRzc8OpiDCUK/sxNr/UBK4aEx5enYMKp07Iz3ZS9bD19c/Q3T4Sp/6dhA9i38HeVxrLf8VElBsYfCkN0fC//BU6+VXHtvZdUPGp64YRD299h17/HEJosYrype8+tkXYY0yzififp6scHeWLW+B2jDy6EX9aeuEl61hcDLoPB89x2NqsgfqCHoaL3gvR/bIPPBy8UA6P8XdokHKR2CRfJNwyvEhkdCGL2383ef+lnauicuxN/Bgef44uuH95Bjy8z6jrJqXFy1Vm4GiDingiH7+ifPwwdUmcetgiH79HhsfP6Pzli2gaz1Ef/2s4fuggBr3njnd8feFuV04OIkH4NzwYZUsNxfcNGqKEkpszulBH4Yz3DHxs7IFf5WCZHy6k5iNHYV61RvmZgTfvSNGn8cWJ7bCrOg7jXJ9++ymYww6i7+m9cCw/Gos9PeQwGoN7d9ajs+89DKo1BsNcNLhwdS6aPWmE0006oFJm3ncmZw7C+dvb8enNk/hDfuhVclRi8DVewtx/v8E+l/fw6ws1YC//1Z25shgt7vtiZ7sf0cIq2d+b+S52HJuFIdEtsP/l7qhlGY0L575Es4fNcLp1l+ydH6LS34d8josOz8d6+//DziavwF0rvw76LcPLF59g4kufoY9Wfg7/3AHHqhNR/499iAwLwbu97NHmlD+GtZqBUaU0OHtiAuoGtIBPlx6okso5SqH7Mfi3o3ipzSS8WyK1Xnkielas8aVUSVGnsezCLfSu1TJZ6JXFXsbaU4dh8PwEh7vMwPouC3DA04wvT+3C6Vj5fVTsRaz4axP+LTEcf3SZi7Ud5mFPg/rwubUZvz6K65s0PzmMiZevolntGTjQaRrWdlqEPxo0xr3bP2LTAxHjYhAQcg/htn3g0/sXSG/Hf03KROiVzz/4T0yX9/9S7ZnY32Eyvuk8G1tKhuLL04dw2ayDe/VJSfYpf/VahK0lnGBn1x1LalaCLp3jZxx6BbH9/bTPP8lz9HuS5+jCre/x2ZZJ+HBYY0z1vYEXq07CjpafY2XLGdhbox7u3/8FPz+KTDjG/bD7iLDpgdOd1iL09fivsWoPlx3qVnoVLzzYg11BT/U75zkReI19BiihVwRe/YolDL15JhZ37/+Fb7T10KF4ytAr/7Ug2qSBp10z9CtVSu2BtYS7SxU0kN9weYeLt37B8AkJQmm70vDIVqg04f6dH/CS/300K/8aPkx+5TGG4q5Ji7LFiquf+NjA1aYYoNEi2Ji8byYGt31/xIjg0lhY/3U59IqdBcEn6DFKO5bN5vkJ6e8j5vEZ/BRTGsOqNJRDr2jRw9WzP3Y36odW8t9btFELT8eW6FfWA/369MFZ7/M4dSkWjRGIU0Eh8rP8GFcePkRZF0+UTuMcNQ718Jbrfcy9fAGhahsR5SwGX0pFLG7f2IdlumZ43cNBbUsUHXgSG6JLo3+l6ohb6oRGlV7Cy9GncCQwQlm+MbosPqz5IjzUC4RbpfdwpMVgvOpgIT+WYJAvEl4u7fBuhbIJF1oP95oJFwlk4iKRHqPGA2/Vfh8fVSgNcUTIZ+rl4ir/aqEITVHfIHq3v8d7j8ti2UvdUcdKnPSzHT+j7eOew7jnqLT6HNmUfButL4djcs8vUcLFOeEimhBE3F6Qg8gjeIfGXxIzvthr7Gqjh0sgvva9nKznOm8w8OYD0j0cuXcDTg4VUSHVV3wNbJzaYGaD7mim/NsXjLj36Dx+Q2m0cnaSHz7ElahYWEfsw5C/P4LD7x+h5alfcSgsUv5rzgwtnIp3wvFGY/BZ2cooobYmsK6Od1xdcDhgL7Y+uIIzD37HtwG3UPFxGBonK6OQDGex6vplVCndBV2d1Hrw2Ae4EiGfX+hODNk3CA67BqHln5txKCQik+cnS3cfJjwJv4cLWjn4G0/g62Mz0f/odHxy7gLg7IUyljrYFO+Ama/0RjNrLaytrfH5pE8x8+Tf2A53tC1ZHJqY+7gYFgProK0YsLUXND/2QuN967DvSXiSc3RGbfcKuBPwD04aUhZiEdGzS/VlkIo46TYOyhcWJ9dqqJSic1O+AITewVk57LrZxEVKQWfjggp4gvOhQXHLtWVR2ngM8w5Pxlu7J+LjE2eB4pVQVumd0cDWrTMWtO+PV2wSL7QBd05gp7yXNvJFApm6SKTNwrEu3qjRHHXETSLmJ7jk+wsW+N5Bq3JNUDMuSSZQercvXUDV8j3kkKheSNXjW2Xz+GL7S2HRKc5/r7K9+hwme4567VkPPLFA/06dn7qIxpGDyP3TchDxRKsSLnFNmbrYO6KGW3ncffAfzkTn0YVU1PAy8OYfMQ9wIUaH5g4lkbxSP3WiDvcwpty6jtqu7dDB3lL+G3mAi+IfldYDnbwGYm/Ftmhu/Bvdzm7GYYMpbrN0aWBdrDyqWSe+ZjzNHi94NECb2JN498oStLjyKxbGlsEHfz1BKXWNOFG4cn0XvjXXxtgqVRFfDCBF3sNF8c9bVxadqn6AvTU6oXnsEXT7Zx0ORxrjVsqA2MeFNPcRiUcRj+Sn5iQ+8T6AgGK10cXNA0EP1uCVv3bgcopeaTNKOl2DtoYlHEMj0dIiGlL4XZwT+9d7omud0fi9QTe0it6PDoe+xf7w+HPUw83ZE5XNvrgQ/HTlPhHlDAZfSskgv0BH6eSAlXhHd4a0FupFKAaB4Q/l1/1/8fE/u3HXvj66e5TBkzvL0WD/FlwUpRApiJrgnfj8/AXU9eyG112sMnmRyATzZXz9y3uocfxnrIwpjY6lPfD0mAGRuHTpFyw11cenNWskBIP0jr8vE8dPa/vXlPOPTPEcNdBb4rR80d/ZpkGqF9Hwx/sw9eoV1PbohA6Olkpr5i72erg6lEFF6SYuhubyhfThw7jAO3SEcuOabsIYBt58wBz9GFcla5SzykzNaAzuP9yNMef34rZLH6yqVlN+iyuzro3Pao7Gzrq90dujDpqVeR2Tq7dFJ9M5rLp3P3NvBtMhRf6HyecPINClL841+xohzT7FryWiMfl1T2wNTVKmE3sNu+74o5x7KzRP2hNsUx+fNZqEnU0HoHf5Bmjm1R2T63WSz+8UVt2+l7nzk/fxeSr76KjuQye/xolPXtpUGYmZtTuh5wv/h6/qtkHNyEP48Z74lCqe/Bze+wVjjm+DxvVdND9jgveRI4BdY0xpPhOH2r6PfpWaoHmV3pjerBu6GP/D8ht3E85RV6wkakF+s57wyQ4R5SQGX0rBHBGIy1IxeNpmrn9IYY5FlPKDBhbKBcIK7WqPw4JGb6B3vSFY/mIH1A7fi3V3gpW1EsXg3u1NGH70J9xyH4GNLzaA0p+ZyYtEhrTVMarnVph7LMDOMjH48q+FWPco7kwVsT7Y5ueH8uXaobVdkgtpOsdfceNOxseXt/8yle27qucfdxGNe46m1WyPk9+cwxK7aqhpOKZcRBP3n3gR9XcdjFV1xd3jqkxe7HW2bqghajTDn77NLscYDDD/vBXGPgMTAq/uk3HQeHmpK9DzJBkNeCi/AbLT6+W/zvSE48qt9Xj30mHcFaG3egOUUq8QGgs31CzuhTIWiZcMvV0FvKiNxaXoCGSmzzdtJjx4dBqrzBXxXoVGKC8fQ2NRGm0qdcAgrSU23r0vv/UTJEQ+OoOtRncMKFvxqd5rjWUp1CxZEWWUT5Ti6B0rxZ1fVHimzi+tfTRV9hENextHucULLd2Kq8+jBjYu1dFSa8BtQ3zJRxiuXPsWg07txV357/W7Rq9g4sdj8PGoD+FzIwS1S1dRP/WKo3epild0MbgQGZbsHM2IMsX91kSUsxL/AolUkjFSuVA66FP/WFKvky+i6s9P08JGZw1nWxHNKqKtuxjhQdDA1rUW2mqjcCsy6cfwYbh0cQne+WsHbovQ+9JL6k0j4iLknoWLRMY0luXRqXZ7dMIN7AgITLyQ3j+BTbFl5Atu1ad6t5/1+Glt/7KyvQGOSZ6jTRs3KnP9t2/ZAa1SuYi+q15Ev63fJCGICFm72MsXUnNWn7UMxAfeLj0heZ+Fbt4MBt58SGddXH7jEwG/qPTqXaNw3W8t3r55DZ5lRuDHGomhV/zbCb6/FvV//xpbI2LVNvmvJ+YJbklWaGBjjxQVUdliRGy6gwwZcOPhZVzSVkRtp6SxVz6/2ytRf9dsbA1Ncn6GR3HnV8whE+cXt496qezjprIPZ7jauaMm7sMnNP7mUnl5dDDumnVwlF8rNYjEdZ+VeNvnMspVnIBNDeP+Xj08PDBt1gzM2vIFqvz4BTYHJ9l/5EP4mq3R2N4x4Ryl2CiEyK9GWep4IKJMS3IZJYoT91FbGK5HpHY7lA7FXaqgGfzh/SS+B1FCxJNrOIKSqOvkDBeHMqiDAFwOThxkS4p+gtvyBcLJQlwghEhcPfcVup07j/LVv8COVxJDr7gIBfktytRFInViKLGZsP/xc6x/EqO2xdPAWhe/tQHX7l/ABW1l1HNJ+jFw4vE3BSdun/njx21fNZXzv6Fs76KUH4jn6PCZf7F+3XqMGDlSuYjeSeUi6qleRBOfHyHzF3vJGIVQ2KKcdQ5dSEVJw6/bGXgLCis3vKAz4nJU0jds4bhwaxsWXTuDO3LWjA35HZP8rwB2L6G3ownXH1/FGeXrOq4bTHCw80R9jR/W3DyH+/K7Rin2DvZdP4BN2proU9JN/vf69P6S7z99OpQsURt9NTfxvd9J3IyVD2AOwumbh7FOY0Q391LqhSruZk7YVUCFp8bR1sLBsYJ8ftew5urpuPOL8ce+S3vk86uHPqVLqq85YbhwbTMWnT+hnlPSxxntoxSsXJtiaLEQLL66D6cj5b858wP8cWU/tunqoHNJZ8QGHcKkaxcAx1bo5WLEtQeXcUb58kHV1u1hGWIBN1zAyvPHcU/Z/03sPrMNG3SNMMDTXT1H+c142B2cltesbM/hzIhyA4MvpWTjjloWsbgYFqJeKENx9uJ6zDt5DLflC4bWuQ562Udg05XDuBhtlgObDzZfOYkg+2ZoXdwGVqVewUj7YMw/vwsnIuTgaL6Pw967sUXfAN08iit7jH30G8Zf9Ibk0g59XY3wuXsBp5SvS7gaYYSjc2U00lxJ5yLx9Dk9fY46lCjVAG9qfLHm4gkExG9/bh926+qhb7n4C2ncyAtwrIxKlk9fSOOP/418UUx+/P6eHhkcP3H71M/fA9byczTQJggrfWag3/SpcHaMeeoiakxyEe2d7CJ6PUoE3cxe7CVEhd+DN0qgot0zXkhF4I0vaTh5ioG3oNCVRjMXR5wLuYV7apN443nj0Z+YdP86AiUDfB6cwG7534pv+D50vvg1WlyI/1qOuYFB0No1w7QqTWH35HtU+XMEHP+ZhYEhrphf8020ViZHSbq/p/f/UHmcPo1tE0yu+gpcgzai9j+j4PDnJLR8YMSIP+/gnfiRG8whuCO/nng5lEoxKoTWoQWm1W4Bu8DlqLJnABz3T8LAxyUxv3FftLaNv5s1AjfuHcLk21fVc4p7PEl+LM5Z7GN6KvtYGL8PbQW83eh9jDIdRMvDg+GwZzw6PyyGT+q+JS+Phc/tv+Oew5Ad6HJiFlokfM3H3IDHGD14AswnDdAELIDH5u7Qbh2NtwNLYVmLwWhnF3+OUbgeeB23beujiXNcLT8R5SxOYEGpCMW//0xAu+DOuPBaR5TT3MMve8egR2hbnOj5LhrKqdEY9jemHlqMKVFxPaJ2Nu2wrc27aGMf92JtDDuGOUeX4vNw9WNBXXXMbfoxxpQtIQeyqLiB3K/fiVv2FGv0rzsPa6uXwD2/9Rh6Yg92mOL+idpZNsKyV0agr5u9vA9xTmPlc2qDk/I5NdDGnWNP9RwbaGNw79YmfPzfdmxOdXuZ+QLmbZmMFeWm4MqLNdVhw+LJ28vHHyYff3uax497TpIeP/Fx3PbJz3+pvH0/efuY6GjMXvQJ/nS/jYN6ObUKusqYXncYRrjb4qIYSN8/MaYkssLb1adgZUVxr3sM7t/ejI/OH8Iec9wxilnUw4KGg9C7uPo7ygHkwrlpeOnhiziV3YH9RUnDzt0wf7sGmq6doG3XFppST99rT/lbzJNt6HTeH0MbDkOPYmmNrJAZUbgTdBsP4YQqzm5PzyIYdhDvXLXCggavwF1ty7qn92/VpCX0F0/KV6rM/sONxJ2Ht+TtnVHFtVSKm3OlkD3oc9YGC5q3SjZaRFLp70N+247HQTfgH2ODcq7lUDwL3UdHjxzBurXr8Pn0j2ByqoiqpdyfLhuLPY95O+fjUvUZWF1dvMEmopzG4Eupirm/Aa2PXMfI1z5HL6e0LpQRuH3fD4EonvIFXBGDR4+u41aMLTxLlUeJbH2+kPYxpCfb0e24DZZ3aJf2hdYchKv37yJMm9Y5ZuQZj5/G9idPnMDY0WPw8y+bEBEVkK2LaKJ0LtTKbFNL4VPxcyytmPJCGhD2ACcDL8HNxgVVXcrD2VrcwBNHun0b5h27IC1dBc3wwdB2eR0ap4Rb6ygf2HrrKLxDfFHXsSJ6eLZUW1MTiL1nFmGeTX/srJY4DFjOCcIf59fhb7d+mFDSJcc+SjRmOfim5wn+OP4N/i79Hj4pHX+DWt6bOmUKqlatikGDB6st8Ux4ImaCO2OH9Z3/Dw0yNS07EWUVgy+lTrqHXYcmY4bdKBx8sVYmx//MS49w+PfF+KP8CHWa5LyW/eM/fPgQb3bvgZlzZqNmzZpqa24wIej2arx62Q7ftH4b9fWJZxlljMboYwtwMPQ6HkiJw7PtqDMSLVCSgTefO/3IB50uLkEUJIjPC0TQtJH/Fe6uMQL1S1RV1knOGPEnxp25gFb130OXhI//87ecDb75Q1BQEPr36YuvFn+NunXrqq2y2CtYsW81ntT5DJ+WdX5uwZyosGPwpTQZg/dj5MGTeLXdeHR3KBgXyvwuLCwsocfnrV691NZcYryG1X9uQFC1jzHa3empXri5p9Zg6r2j6qNEojJ415ZbqNToLQbefMz995FIbYwG8dnM9RdnwNkq5YyLcQwIidHB0fJZyh3yTmEMvsLx48exYtlyLF2+DG5ubkqbFBOGUL09HHOqu5yIUsU/MUqT3qkdlvf8GK0t+d4op4gaP78bfujStavaknskqRR6tvgSY5OFXiG10Cs8kMPU9kHdoOvfl6E3nxLlDaKnNzXiZtRf/P+Ie5Aq6wITeguzxo0bo07dOvhm5Uq1Rc72lgy9RHmBPb5EecTf3x8D+vbDwq8XoWLFimpr3rsedAs9/52BG6YkM2JRofGhcz1MrT1IfVSwFdYeX8FgMOCtHj0xY/YsNG3aVG0lotzG4EuUR8aPG5c3JQ4ZkM6dg6P/fPVRSsNda+HD2t3UR5TfTI74Gpv+C5L/Q6YMg6LDcL5HBwyq/HpcQwFXmIOvcOHCBXw6fgJ+/mUrXF1d1VYiyk38YIUoD2zatAkhwSF486231Ja8JwKv6fPJMI39DONNHmrr01w0WnT1fFF9RPnRlGKjAAt1CLxkxIi63cs1j3tA+Z64ubVbj+5YuWKFUv9PRLmPwZcol/n4+GDiJ59i9Ngx0DyHnivJ1zch8Grq1oF+4xqMaT4GfewqoaTm6ZsW+7rWQnnH7I/CSnnkRT/lW/wLuPguKncP1BiZzo1tlB+906cPznqfVer/iSj3sdSBKBeJXhwxXm+rNq3RqVMntTVvSJcvw7zhR0gnTkP73kBoWzYHrNVZsFTXQ+/gUrAfiult4FjMFh9dXIt5dd5h+M3HDMYYjD7+HXqWbQKrGCtlHN/yNiWVnt7CFnoLe6lDPF/5zelHI0dh3cYNKFeunNpKRLmBwZcoF4kShyOHDmPegrRranOaEnh/3Azpv1PQDv6/VANvasK1Efg94AxW+x/GgsbvwlrPKVPzo1+v/4VrYfewoNZwtaXwKirBV/hp82bl06HZc+Y8l0+GiIoKljoQ5RJvb2+sWLoMn0+aqLbkorAwmI8cjStpmCFfOFvJgWHLD9B2aJep0CvYmYuhhUc9lLcpjt9uHldbKT+5GXIPGwP+w/vVX1NbqLAQQxyK+wA2ywGY9b5EuYc9vkS5QMzONnzYB+jXvx9atmqltuYOEXjNq9YoP2sHD4S2YQPl5+y6HXsfvU8sxLQaPVG9uKfaSs+bKHH4v7+XYVH1d1HHpZLaWrgVpR5fISAgAK93eA279v6mjABDRDmPPb5EuWDH9u0o71U+V0OvCLzGPgOU0CsCr37FkmcOvUJZi1JYUL0vJl7cooQtyh++v7IfLYtXQu0iEnqLIg8PD0ydOQML5s1nry9RLmHwJcphosRh/dp1GD5ihNqSs3Ir8CZVo3gFvOpSVQlb9PxdfnwLB574YEKlPmD1Z+EWfxPs7t27le9ElLNY6kCUg0SJw5vde2DmnNnKGJ05RtTwnjyVoyUNGXlkDkLXf2dhao2eeKEgljyYtTjynyVCK0Wjq2t6L3Ma3L5hiT90sXjb05zQGyBF6vD7HR2e7vM2o3oFI8qqo8AZI3T497YONyKBUq4mvFzWBNu4RTINnjzQ4697WkRYmvFCaSPqOGbl5TZu+/13zFj54DQm1HHHgJI1kwRfCY8CjTh034wHcmtlFz2al9GimLo0+fIapfRo4abF0wPYCRJu3ozBAa0FBpXTZqk3RIo0Yf9dM6LVxwqNBrXL6yH/L4nUj5HR9sYmrYH//sTvt2JwNQIoXdIGbcpbKL+jFBmFxX/FoOkrDmhkU7jeDoiShyGD38NXi79G3bp11VYiygkMvkQ5RHw0ueirr5SfP/zoI+X7MzMYYD72rxJ4NeU9oe3yOjQvVFcX5r5zYVfxwfnVWNV4CJys7dTWgkCDe1et8d4tE5a1jkE5MbNDGiIeWmLqXxY4WSYa+xoZlUkghCfXbdDaWws50yZhxpIOUWgnPxUJ21lIqG8NXAvWwL5sNBY3McJRPv6189YY7qOFm5MZ5Y0a7AoHBjU2YEQ5c5Lwmpa47UfI2xssQ1AWdrgYo8eohtaYIIdbrRwkL1804J1rZrjba+XlEv4Nk1DWwwrfN9KjhEbCnWsGdL5ohr2tFtV1YjnwUnUrLKqqU8b8jRf+KAbjjsXin9JWOFVfn0owTtujG1Godc4MOZMmocWGtjbokuSfS1rHyGj74A8O4bOOL+JvCx1etAEuPzHBwcsR61+2gbP83+LMP4/xcawdtrWwgZO6dWEhxvVdt3Ydlq1YzlndiHIQSx2IcoiYfvTg/gMYMnSo2vIMROD9eSuMXXpCOngYugljoPtkXJ6GXqG2fRUMcn8F31z+TW0pIKL02HhJg04vxKYdes1aXL5sjWG/W+AXk9qWQIPAUA0ibWOxv0cErvaM/4oLvYjV48d/LeBdPAY/dIzEnLaRWFXXDL/bljjwWAMpxALL5dBav4YBa9pGYVoHAxa7AYvPWsA3E10N8duXLnsJL5RYhZ3tLLFBzj4zz8fCR97eHByLqXLofbG6NXa0scFK+WtvbR3uB8Tg54fyCrEm/OhjRvEyVtjdLm759+WAjT6xOBbfvWo247yPAW//FYuNKX7/zJBwP1RChI0FTncthtA34r+ShN50j5HB9rFGrGnVGMdd7bG3uytWdiqBrY0tcdUvHDsfiSdRi7o1bfDCnQjsfJj6THYFmbg/wKuCl3K/ABHlHAZfohzg7++vzLkvShysMzl8WKqSBl7vs9DNmxEXeL281BXyXmfPl3Az6jH+untebcn/7t3UY4POhFal0k6ZD69b4Y0rWjSsacTgFK+EGvg+0sDd2YySqXTPxjzSYWe0hAHVjXBTty1eIRrrX4rGS/YSTBozOtaMwf+VN6m9qxLKOsvfYjUIz0TIFNs3rRKMB1HbMKFGV9joreDpJJ9IrIQweftoI+THevTz1Km9p/K5uunQQD6Od4gIvhIC5HXK2msRl0E1cC0mb2+WIGdmxX1f+Vyvysd5QY8Ps3UlkODzREJpJy080ujCTv8Y6W8f89iEny3CMKyWDdyVbeXfobIj9rR2QGv7uA00DtboUdKERZeiEaq0FC4jRo5U7hc4c+aM2kJEzypbL3dE9LSlS5ag34D+2a/rffgw3wXeeCW0zphdawAW+u7H/Ygnams+Junwt58WjiVMkHNhmhxKxWB3+yiMqmKCS/LgFavF9XDAKtgC43cUQ5UtxdDjkBX+DIpbMSRMiytaORQb9Vj9hw1G7bfBjNM6SMVNcLcE9A5GtK0Wi2o28spmeV9+lvjOT4MXyxpRORO1BGJ77+gf8aHXS3jRphau3IzBkptmNC+jR3V5e5sSlpjZ0grNkrzHunfPiN/kl/RWrvI52urxdhkNDvnFYOsdI87cicG3fmZUKK5HY7UI2KmkJY63scFnlXQokUrwzFCsGVfk58g6JBZDdkfAYVsEWh6NxqFgSY60cdI9RgbbPwkz44L5CdyNUfj64CP03/EIn/xnkP9BWqGMVdwuAB1qeOhx944BZ+RFhY2zszMmffE/fDzqQ0RFRamtRPQsGHyJnoGo6925Ywdu+N5QBqDPsvge3j4D813gTcq9WAkM8WyBxZd2qS35mEELHzkjNCluhsidabFyMKGSbeo9wlKEvA/x6blOQtua0dhY14gXY/QY9LscfiM0eBwupzizDjOOW+CBnQntS0kIDrBEt8NWuGaM24dCXmfdTht0PKXHphgJLTzMSMhs6dh/66TyvZ97eyz/LQqNvY34LlaDdqW0qf5OooZ2yhUzapexQAfRMwwNXiivR5toE949GY0WJ2OxMFqLEXJqju/BtnbQoZptdhJvHCnCjIviOdKLkhIr7K2tR/MYI7r9GY3DamF0escQ219Ic3sJjyLk/zbacvj0r0gE2FuhSxkdgm6H4ZXfQnFJ7bVWeoGd9ahoNuJSUOErdxAaN26Mtu1exfx58zjEGVEOYPAlegZBQUGYP3cePpv4edZKHEJCYP51O4xd34QUGJhvA288Matb97ItYCHpEkJZXjGYtDgc4IiZ50th0aWSOP0wvoA0deZIDW5IEkrbpB5qM0Nja8SHLxmwtqUBXSsY0ahSND5uHIvWRh1+vKmFTnnllPByDQM+rR+DTrUNmNLIiKrhOmy7m+RlVWtC/64RuNrFgJWlgcXHrLDtcfphU/Sqj7i+B1OrDIBGq8OwTsUQ0tEaP7kDM49H44cnSX8vCfcDojHmWCxul7TEqvp65SYvKTwW/5PbHpayxLmOcdv/WlrCpGMG/BKc/eflKbZ6fPaiNXa+bI3eXno0q2CFyQ0t0MlkwqpbpoRe3zTJ23+eyvYdle3N6nNsQpu6zpjZxB496zvjq5esUSMsCpv8E+tFdMV0qAEzfEILZ/AVxH0D4v4BcR8BET0bBl+ibBK9L9OnTlNKHCpVytykAtKDBzCt/AbGpq3lwPsAulXLoOvfN98G3qRE+B1TvTtW3vod9/Ko5EGE3o/OeGCSnxPWhFhh6RNrvO9THP87K6fANEhGDcTZFcvK8ATJWZpR1T2ubCGe3tmMhjrgqhys7ZSeYgnNSiWO0GBdwoRmWg0Cnh4GIo6lCa1qGNFKfsk9fF8rx7TUiQlDppz9Cd9V6waPYol38mssdWhfXY8O8pa/PTCroVLCFZ9ovHvciLsi9MqhsZT6iv7gnhGr5Ofu/RoWKC//DmL7NrUsMFgyY8Ndc5rHzwqNpRY1S+lQJulz5KTFi/JzdClKkiNr+tLavqm6vb0yRNkTtHDXJTzHNq5WaCX/jrcj45+DRFGmHAr0+ZB4Uy3uHxD3EYghE4ko+xh8ibIpfoD5t3r1Ur6nR7p9G6aly2Fq1VF5rNu3Dbp33obGqWANwlTZxhOfVeiMqXI4y4tZ3Vb6uOKwQQcxUEE8cRPTvnBLpRc4NbpiEirLUck/Iv2e1fSE3LJGuy022B2iNghRGtyWE2NtOwku9mZUk4/hG5LkGAYt7snL7S3ihkKrK2+/PTjlOVhppYQgl9xvN4+jvI0bWkY0g/u2KPyYSu+stRyuRei9ftmAty+b4VnZGj82Tgy9ScXmYidosL8B9eVz3JrkrjLJIOGWfMwGxbQJw8KlRWxfL5Xtb6rbu9rLwRgOuBqc+EtIBhPuyA8dLTUJz6FklOR/ExqUsy3clzNx/4B4kz13zhy1hYiyg8GXKBt8fHww8ZNPMXrsGLUldQmBt/0byuOCGniTauFRTw5nxZWQlttED29qxKf92++lUfJgY0YVOXxeD9ck6dnU4MplK6w6Y4F7megYtHcyo5ZGi82XLBAodhKjw5FzFtiuM6FbOROs3IzoZ6fBdxctcV4EbLMWxy7osU9vwqvuZjiXNOE1efutl/V4EL/9RT2OyNt3KSN6iZOfjwaHz0hY6GONrtXaobibHt00Zmy8asR9eXspxoR9l43Yq9PhrdJaGJ/EYpIoQnbSoXdxOQTfN+KM8mXC9UgJJd316Ctvv+ZyLG6K9ydmM07L26+Vz7O7e2YnqZBwwScai87G4o5yjk8/dnDSor44xpXYxHM8H4tNWh36lNXKv1H6MtreSn4O3o+0wuKz4TgdLh/QbMQfZ6KwTW+B10snxuqoUCO85d+ogkPhv5yJ+wj8bvgp9xUQUfYw+FLOMN6CYeqXiLoshqI3QfL7B1HfLEHE9zsR45eNGzIenYdh2/anv7Yfg9GQidQipLd90N+I+OhbxARlYlypVIgSBzGX/rRZM5W59VOTauAVJQ0FOPDGEyUPH1frgQ0B/+FmyD21Ne/FpvVPQQ6XDUtJuPRQhwcJ62jgf1ePOTe1eJyJf0Jax1hMaGiE7X1LvPxLMVTZYY2PH0r48qVovCJGRZCP8cZLMRhk1qPHb7ao8osNBtyXMLJRDF6Wl2vsY/FxIyOKy9u/knT7l6PRyl4c4enzMRiNmHXLBvej68JBVwEaOz0mN9DD9UGMvG0EHPcYMPCxBgubWqGDnQQffyPE5w2+wUZ0/jcaLRK+DJh7V1K2nyS2D4xB7T0RcNgRhZa35fOrb4W3UwxhkRYJNwKMmORvVnvcn36sdbDAtHp62CU7x/nyObZOnL4uTWL76alsL35HZXs5APfetQujTAa0/PUBHDY+QucADT57yQFt5Dcdccy48cCIu8Us0dA5s79XwSVKHj6fNFG5r+DWrVtqKxFlBWduoxxggGnbZIT9Wh92q3pA+99XCOu3AVK9hvI7qxswnS4Oiw1LYfdySXX9jJhg3jMBIUOS92q8BpsT82FdKqPizYy2j0TMgvcQGTECDhNfgfLJcRasXrUKx/87jnkL5qstiUTgNe/YBWn7bmi6doqbaa0QhN3U/Bd0HqMvb8DGZiNhrU9SqJmDev1XFmdiU39/3tpWg2/bWMAUdE1tSRT7wAr9/tSi36tR6JR6RUQmaXAvUIfHcsCq4GZOMh1xPA2CHmtxN0ZMp2uCc/JTNWtx84EW4bqU20vBlhh+EviybQy2XogbLeOLau8q3xOYJVwPNCFMq0UVt6TTEWeWhDvy9g/lv8TsbC8Fx+CdM3IYbWWBUmpbSs92jPS2NzZpCf3FE3j8OBb+0RqUc7dE8aTPcawBi7aFwKeGC5a8YFFkenJ+2rxZ+dRpzty5agsRZRaDLz27oKMIa7sAmmXrYVf7OiI6DkZsh2VwGN9UvhA9QcycwYjY2xLFdo+EZaaGT4pE7JJ+CN/fBfbbBkCf5atZJrYP2I7Q1jug37EYtlUy0T2l8vb2VsbUXLthvTLGZjzp3DmYf9sH6dDv0L43ENqWzUX3jLq0cArXRmDepc3Kz0Nrvq58z2nej4phqE8JpbQhKTEmbF93DY48kjCiig5N7G/CWg6XCSQtjvxujeXFYrCukRH577+EFv/+bYUTZaPRppgfJl3cggONv4StPj+dqRl//BuNv8tY4ZMyGZcu5Ia44Cu/O9CkdnQJQb7BePW0/AboDSfUSzoPcxEwbsxYtGzdCr1791ZbiCgzisobZMo1MTAd3AKj02uwqucA6fJfiL1eDZad68T1pGpcYNmlIzTXDyP2ciZLHqSHMP53E2hYSR3SKIsys737i7DqfAMxm86keYe7FBWFyJXfILTPAIT+3yAEb9iIJV9OUep640OvCLymzyfDNPYzaCpUgH7jGmg7tCv0oVcQJQ8jqnTDgSc+uPw4dz52rVsiAjO8guGhkVBa/nKT/03VtQTWNNZj3IsW+KGNBR5ESuh3qix+D66gjAKh0JjxSj0jqt+1wB/5cuhTM158KQrveRiU0DutRs98FnoFLZq/aINPn1PozVBsDH65YETvJvaoW8RCr/DxmNHKfQZ3795VW4goM9jjS8/GfBWR3d5CdIOlcJrcBOZtYxA6ErA5Pg/W7urV6P52hDaaBnz9Cxy6lY1rS0/E3whvNAjGas2gCTwFs5ypNK+9D5tP+8PKSymQTF+mtjfCtG0sQj9xgu3xybBKdmOM+ckThLbuAOlxsNoSJ8LZAY4H90C6dg3mzVsgnThdZHp40xJf8rCq8RA4W6c/xu6z2HC9BCxt7TGwbspSl+AoCb/6mPDzHbPSA9zaS6eWQGgQapDgkE//08w58zMq27tjWPnuagsllV6PrxRjRqheC8ci3H0jRpY5cuiwUnZlb5+J10YiYo8vPaMQf5guWkBX2zPtXiGdpfyl/pwZgfI+RS9dsaqwnLQEtitHQfdoAyJ7zkX0w6TTYqUhU9vroatQBZqI8zDeTDnXacSsOSlCr1AsKBTG/xsc18Nbt06R6uFNSxPnWhjs/gq+vfyb2pI73KyNKJlGqYyTjUYJxPE9wN33xSg9wDrnSvk29P519zxuRj3G/5XppLZQVohxgIty6BU6dYr7txM/tCIRZYzBl57No7swxzhDWyKdW1pMMeJ+s8xzfQW223+B/fKxsGn/Cqw6vgu72cOgDdwJw/5MfKSe2e3dSst/AAEw3Uk6WGsc44+/qD+lIjiEgTeZzp4v4ZYc4kSYe57SDsCV1TXyh2BDOBb67sf4Gl1ho8/MJMZEqROjPKxYuky5/4CIMsbgS88mKgISLKGxFWUNGmgs0yq20wOWmez2tSsDi/ovQGcXv768X6+a0LtEwPwgZUhNIUvbG4GYLA5r5lqCgTeZElpn/K96byXMiSl3n7e0AnBCDfBz1uRkDQzxbIEXi9VRW4iyR9xvMGbcWGUWycDAQLWViNLC4EvPRuk1fQzTfVFboIO2ci358WUYr8ffUSRBun4RJpSH3iszw3qZYD76JYLLD0fU7SQzgwU9gCncEbqyLmpDWrKwfVSkfHap91ZrG9dTf0pJUzJxKllKVMGxtBLmFl+KG5orP0gegFPcBPcc7L91Ej2tpqJ/6bhZ/IieVctWreBVwYsTWxBlAoMvPRvnstCViYL5TlDc4/JNYNE0CMb1exAbbgLCLyBq3X6g6WuwrGQTtw5CEPvzMkSsOAqTMqRC0sdyeK5QA1rdP4j5/i+YjJK8j+swLF8Nkxg5omWZHNhekAP5XT+YUQ660imHM7Od/BmQWu+1tSWkW7dhmjUX5pOn1EYSxCgP3cu2gIWkU8JdfpJWAM7rEgjRGz7i+h5MqdJfbSHKGSNGjsSGdetZ8kCUAQZfejZWFWHRpSykvy/BJMYHsagKm0Wzob8zH+HVqyOoeg9E334Ntot6QW8Zf2NSGEx71yBmuTdMSpVBksciyJbrjGKr+wFbPkCoV1V5Hx0RdbA8rNePgZWruKM/2frJ95fh9kIEjOICUe8VWHimrLG0qFMH+19qiFiXJLMfNKgN3a6t0G/ZBE3b1jCvWgPj0BEMwEmI8Dumencl3OWHkofknmcNsMEYo/SGf1etG0oXc1NbiXKGKHmYMXsWPho5ClFRUWorESXH4czoGUmQzq1ASJcLsPpzIWzKqjN4SeEwXbgGE1xhUbNMytGI/H5EyDRb2K3qCl1aw0Gkt4/47VfL26tNKaS3fdQpRHT8GKYPN8LhjZRDrImPDNetXYely5fBxia+pzol85GjSgAWtIMHQtuwgfJzUbf7/l9Y7X8Y8xu/C5scmtVt/x0nWNm5oGOVrAwRkr60h0HLeb9e/wvXwu5hQa3hagtlJP0JLCg1i776Svn+4UcfcYgzolSwx5eekQaaWp1h3fUaon8+L8dglcYOulr1YFkrldArBSL6uz+hG/hi2qFXSGsfCds3SX+UtDTPwQTzf3sQi56wbh9f+pDo/v37ylz44m7p9EKvoG0lX5i/+wbaYe+zBziJFh71UN6mOPbePK625E95dRPczZB72BDwH96v/praQpQ7hgwdioP7D+DChQtqCxElxR5fygESpNs7ENbzd1j+OhvWHmmN7JBPGM4jcsAcmD/+CnYvFlcbEw157320atM6YYzMrJBOn4Z56zZIN29B26c3tI0aFtkRIG7H3sfbJxZiXp13UN7RXW3Nvtzo8U0ueQ9wiqmQs0GUOIw+/h0GV2yNjsVfVltlZjP2noxBcAUr9BZzMKcg4VGgEYfum/FAfoNZ2UWP5mW0iL8VU4o0Yf9dM6LVxwr5HV7t8nrI/8uE9PeffHmNUnq0cNOK8VmSkXDzZgwOaC0wqJw2SW9K4vbhFlrULq1HQwf5jbK6NDPie3yNYQb8eNGEevXtUDNJZZIxPBq/34zG1QigdEkbtClvkeT8Bfkc7kXh0J1Y+XfQokYZG7Rw1yf5HdJeLkVGYfFfMWj6igMayW+QChIRej8dPwE//7IVrq68GZcoKQZfyjlSJMyhemgdc+aj7VwTEQKzlQO0+pQXs02bNiXMhPQspMuXYd7wY5Gf2e3Iw5NY7LcHCxq/C+tnLHnIi+AbLydLIFZciBvl4otq7yrf40i4c82Anrd1+LGlJbxSdDBLuHzRgD7XzChlr0VZ+fG/YRLKelhhTSM9XOV/uo9uRKHWOTPkzJeEFhva2qBLhhPoxe3/HXn/7sn2/728/xKauPPrfNEMe1stquvEcuCl6lZYVFWHpG9twx/FYNyxWPxT2gqn6seHyiT7d9SiklHCz/KJjmpojU+yMAWyEnzP/YNNvwXj/WA9NnR1QRc5PAvhD8Iw7nAE/rHQ4UUb4PITExy8HLHhZRvEjR8j/w6XgtD5VAzs7fTy72DGvyESXqrrjEW1LOXfIaPlZpz55zE+jrXDthbx+yw4ftq8GT4+Ppg9Z478fqhgBXei3MRSB8o5Gtv8H3qFYo6phl5xkRBz348eO0ZtyT5N9erQTZ8C3aK5kM6fh7HPQJj37gcMKWeJK8walayO2g5l8P0V+XcvQHLqJrjLj2/h4BMfTKjUR22JIxmM+PaKhB7VLFIJvYA5OBZT5dDYpLo1drSxwUr5a29tHe4HxGDLQ9FXIeF+qIQIGwuc7loMoW/Ef2Um9Cbu/0V5/9uT7f9nsf9YE370MaN4GSvsbhe3/PtywAafWByL72I2m3Hex4Def8ViY7KhsKXQWMxV97+jlQ2+ftUaG1yBmedj4ZOlrpZyuHY2FOODk20Ua8DqPyJwwtUee7u7YmWnEtja2BJX/cKx85G6bowBP56LQXE5DO/uVgIruxTH95W02HguAsfEn2GS5buSLN8Qv1y+PNataYMX7kRg58Nn6/V/Hrp07Qq/G37YtXOn2kJEAoMvkSwsLAwL5y/AtFkz4eHhobY+OyUAf/5pXAD2PlvkArAY5WFElW44IIc/EQILmmepARYlDhMvbsGUGj1TzM5295YR3+h1eK1k6j1x0UbA00mPfp46tQdVA3c3HRrIgdc7JC74+jyRUNpJC49sdOYl3X9c7+3T+5diJdyV1ylrr0VcjtbAtZh8ILMEOTMr7vtG4+WrZjR7QY8Pkz0dRvnS0v0FSwxPcv6eTvL28n7DsjBfjKHBYEy+DLxd8ule/phAAzYbdBhWywbuyrHl86vsiD2tHdDKXn1CYswIiNWgrKNe/R20cLUTv4MZwTHycygvv5vecpnGwRo9Spqw6FI04kcmLyisra2V+xQWzJsPf39/tZWIGHyJZOJjQQdHh2zV9WbIyiqxB3jpQkiBgXEB+JdfIQUHqysVXmJWtwXV+yohUITBgiitcYDjA3BwtB4zz5dClb88la/BJ8rgf97X0c2tDlo5NlLWSSCZcOSmGU4uOlRIo2rDpoQlZra0QrMk1TH37hnxm/yS3VLUOcSacSVcDjchsRiyOwIO2yLQ8mg0DgXLoVVdPz3p7b+VvH+NrR7vlNHgkF8Mtt4x4sydGHzrZ0bF4no0VotonUpa4r82Nviskg7JS5QtHPR4vYoFaor9y0Hyys0YLJF/5+Zl9Kgel4QzJMnpfFXzWrCp5YARZZJeqiQ8CTHhglYPD2MUvj74CP13PMIn/8lvJktYoUz8eww7a7ztpcWhq+HYetOAMzfD8e1VEyq4WaOxCMfy8ndSWV4xfrlChxoeety9Iy8vgO9VK1asiL79+2HJ4sXKm3siYvAlUgZ8X792HYaPGKG25B5N5crQDR8G3erlkMIjYGr/BkzrNhT6ANzEuRYGu7+Cr89vV1sKptQC8MHHFdDtlAfWhCT26v4RrcNuQwc0dXwbyTIhEG3GRTlENXfRIuXUKakTdbRTrphRu4wFOjhpIEWYcUF8+q7XoNMLVthbW4/mMUZ0+zMahyPjtsmK5PsXPagvlNejTbQJ756MRouTsVgYrcVIObXGd1JbO+hQzTbFb/c0swnLf4tCY28jvovVoF0pLTJX6S7B+2IMlhlPYGJNUW+blIRHYfIvb47BJ39FIsDeCl3K6BB0Owyv/BaKy2qPtAitL1S2QpuoaLz7ZzBa/BmBhVE6jKhro/4OicsHJVk+MmG5oIGrsx4VzUZcDCp45Q7CW716ISQ4BLt371ZbiIo2Bl8q0sRA72KOezHXvYtLRtMh5xxN2bJxAfjvg8rjohCAO3u+hJtRj/HX3fNqS8GVNAD/dteMu+aUATBGDk3/u2WTogfWLAfmq5IG5eR9ZEzC/YBojDkWi9slLbGqvh7OotlWj89ftMbOl63R20uPZhWsMLmhBTqaTFh1y5TimGlLuX9xE5cUHovJctvDUpY417EYQjpa49fSEj4/ZsAvyett06PVYVinuO1/cgdmHo/Gj08y3j74TjQ+vqvBnP2rUEGbcn29euVqU9cZM5vYo2d9Z3z1kjVqhEXhR/+4WgopNAL/OxyFh2Xtce6tUgh5qzh+LS9h0uEg/PLErCyfrC4/m2T55+ryeLpiOtSAGT6h8jZqW0Ej7lsQ9y+I+xiIijoGXyqyxEd/P2zcqMxxL+a6fx40zs5xAXjfNuVxYQ7AouThi+q98ZXvfgQbwtXWgk0E4PQ+uT9uTBluJaOEh/J3uww/8pdwxSca7x434q4IpXKwLaW+YmsstahZSocySe4l1Ttp0VQHXIqSkLky2rj9D0pl/w/uGbHKpMX7NSxQXj6GxlKHNrUs8J5kxgY56Ge171Ns3766Hh3kLfc8yCBAmk348awJp+W1tr46F0P2PMH4S0Z5gRErjj7BIlEmUkycqB4t3XUJPeo2rlZoJTffjhT7l/DgjgGrjHq8X88W5a3kc7CyQJuGxTDYHIsNN2NxL8lyryTL31OWG1M8h1HK1JQFk7hvQdy/IOp9WfJARR2DLxVZYqxLUeIwbvx4teX5SegBPrIHGjc3mAYNg2nZCkh+fuoahUMFx9J437MF5p7/RW0penS2WtSQg5lfZHpBSsL1ywa8c9kMz8rW2NQ4MZQKwf4G1NsWha2haoNMMkiQMyEayKEw4wHf4vb/trz/cqnsP15sNj/dF0OtucvntymV3mFrbQY93RoNapTRY2ppHeqHBOIFZz2qKr3jcTeilbHSwMVRh5pyNPUJTjxByWDCHfmho2XSsYKlDH6HjJbLa8hvVELlPZaT/7sVZPH3L7DkgYo6Bl8qkh4+fKgM8D5zzmzl7uf8QlOyJLRv9oD+543QVKkC09jPYJo1t9AEYDHKQ/eyLWAh6bD/1km1tWAyxAJ7rppwJkJKs1b3LZtUwq0c4sQNXpfDk/bMSrjgE41FZ2NxR94k9kksJvmYITnp0Lu4hGv3jTijfJlwXQ7MDk5a1NeYseZKLO7LwU2KMWHf+Vhs0urQp6wYJ/fp/aW1f8j775XK/ku669FX7P9yLG6K+xHNZpy+bMT3Zi26uyedpCJ1xd306CZvv+GqMfH85O336uTjlc7g/OS9N69jhQ/rW2Hk+nH4sKkDBnmJKK9Dp3oO6OGug2UpWwxzkLD4bDhOy88jzEb8cSYK2/QW6CwHZhGSS5axkn8HI9acjcRNMQSbvM5p+ee1Zr38b9AC7kmW+yVZ/r2yXJ/w5iEq1Ahv+ZwqOmR+/OH8SozysGLpMpw5c0ZtISp6GHypSFq5YgXatnsVNWvWVFvyGUdHaLt1hX7HFmgaNihUAViE3zHVu2PE9T24H/FEbS044gOvGNrs9EMzFlcLRCMr8VH808rKKWlKZVHpm4wc/pqV0uDcIxPuKaFPkHAjwIhJ/mY8lCT4+Bsh+uV8g43o/G80WiR8GTD3rgStgwWm19PD7kEMquyIgOMeAwY+1mBhUyu0VlJ40v0lPp6cyv67pLJ/UYcxuYEeroExqL0nAg47otDytoRRchh92yXj+KeJ3z6V82uvjB2W3vmJxxnQWeLtVvYYZTKg5a8P4LDxEToHaPDZSw5oLYYkk2kcimHSyzZwDQhD7Z/uK+u09JUwspkT3naVQ6y8fLK6vE6S5aPU5XHMuPHAiLvFLNHQuaDHXsDZ2Vm5n2HGtOnKm3+ioogzt1GRc+zYMXw24RP8tHVLvurtTZfBAPNv+2Be/i00jepD26snNF5e6sKCaff9v/DLvX8xqV7vTM3qlpczt6VGBN7DfiYskUNvI9tovFUuGOUd4sa4+unaCRx4Uh3O+hfEULWoaWPGB16xcLZM/eU1JjAanf4xY2hrG/RwUBuzRcKdQBMeQosqbkmnG5aXBMfgnTNy2GxlgVJqW9alvf9MMUu4Lm8fps3e+cVPWSzKH1In4fGjGPhHa1DO3RLFU+3KMePOvRj5d9ChinvyKY2FdJbHGrBoWwh8arhg6QsWBb7HN97UKVNQtWpVZcQHe3t7tZWoaGDwpSJFDOTev09fLPx6ESpVqqS2FiDR0TD/cwzmVWugcXaCpkc3aBs2UBcWLOHaCEw++z0q27ujW6WX1da0Pa/gGz998cQbZkyroEW74rfhlKSH92bIPYw5+wNWNx6CavoKamsGJDP2/mXAvGKW2FlfDxu1OeeY8ce/0fi7jFWWpgjOO5k7v4yDb26SEOQbjFdPa/DtG06o9/SYagVaUFCQ8jooSr2aNm2qthIVDQy+VGSIu5mT9nQUdOYjR5UALGgHDyyQAfh27H30PrEQ8+q8Ay9Hd7U1dXkdfJMG3qly4G2fLPAKYkKO0ce/w/AyHdHGo6HamjnG0FiM+8OIVi0zN81wUfRcg29sNFbvCUVQPReMKZc4ekRhIW7uFfc5/PzLVri6uqqtRIUfa3ypyDh65Igyd72Yw74w0LaSQ8HGtUroFQHYOHQEzCdPqUsLhrIWpfBZhc6Ye3F7vpnV7V6ohDXeRtT4LRYxkWE43uguenn4pQi9wpbrf6C2Q5ksh15B72CBha9bo0Uh6kksTCTJAj07u2JsIQy9gri/QdznIO53ICpKGHypSBADt8+fO0+5q7nA1PVmUkEPwC086qGhvRe+v7JfbXk+bjyRMO3vWAz6IxZO5iCca3obfSs9SjXwCpcf38KvgWcxoVIftSU7NHBMnPCN8hExVrJjIb9CDhk6FAf3H1DueyAqKhh8qdATJQ5i4Pahwz9Q5q4vrOIDsG7CGEgHD8cF4L1ymDTE3YCVX4lRHt6v+joOPPFRwmReiw+8I/6JRQ2bYKxvcBvtygTDWpf2AK+id3rSxS2YVqMnbPRMrlQwiU4AUecrSh5u3cr7vz2i54HBlwq9+AHb4wdwL+w0tWtDN30KdBM/geR9FsY+A/N9ABazui2o3hcT5TCZVyUPFx+YlcA77aQR9V21mQq88UTv9BtuddDKsZHaQlQwiZKHfgP6Y+mSJWoLUeHG4EuFmihxmPTpZ8pc9UWNpnr1uAC8aG6BCMBNnGuht2sjfH1+u9qSO07cMePd/bGYf9aE9p46LK57Ey2cbmQq8Ap/3T2Pc6F38EH5HmoLUcEm7nu46XcTO3fsUFuICi8GXyq0xADtosRh6swZylz1RdVTAfj8+XwdgN+u2AY3ox4r4TKnxQfe5ZdMGFj6kRJ4X7D0VZdmTrAhHAt992N8ja6wZYkDFRKi5OGziZ8r90GIIR+JCjMOZ0YFk8mAXQcfI6h2KfRzTzm8VVhYKFb/+C8OBuvQtGF1VHa1RvPyTw9OH/EkCnt9YxCo06FueVu86JJ0PFEJj+5F4dCdWIRb6lHb0wYNnVIbb9SMm9fCcUBrg0EVLbL4TjLtYxjkczt43yTvPSUrZxu0E79zRDT234qFmG01kQ61K9tA/lVTFx0NKTgY5i2/QNq+G5qunaDt8jpMejv8eM2MejUsUTNhLgn5/AKNOHTfjAfyWVV20aN5mdQmMZBw82aM/BxYYFC5pNPZJm7/RKdFw7J6NHTQKL+fZDBi8QkTmjayQqNk9xqeC7uKYedXY1XjIXC2ThznKzvDmYlJJ/67Y8Ja+XdzkZ+Trm6PUN81XF2adXPO/KyMOzysfHe1hXLT8x3Ht+j5afNmHP/vOOYtmM+JLajQYvClAsgMf+8AvO5jjV97lkDFFDnIiK3bfNEvQEIdOz28dBr8G2JGWU8HfP+KLUpo5EB2MwT/96cBofLyajBhZ7gWo15xxifl9XIwM+Py6SC8c9EIdznsVYo14uewpMsThT8Iw7jDEfjH0wmnmllDr7ZnLL1j6PDg0hNUOSWntlQ0reaMPY0sEeTzBLWPy6FZbY9jgfVdXdBVDpgZkW7fhnnHLkjf3cFPo4ZjqFaD9W3t0FWdUvbyRQPekQOju70WZeXH/4ZJKOthhe8b6eXnUNmFIvxRDMYdi8U/pa1wqr5efQ7itu8jb29nq0V1ndge6FXfGuPlcKyXl585HYWPjZbY1lgPJ2WbOGJii/U39uFk0A1Mb9Rfbc1a8E06y1ozZw26lbyfMMtadu2/dRK/B17C6npj1RbKbQy+eW/s6DFo1aY1evfurbYQFS4MvlTgSBEh+PSHx7BvWw6fe6WMmg+u+qPBwQhUc7iLn7s2UULWPZ8gdD5uwqC2xTGsRAwWbQvGTndH/PqyDezl4Hvir8doe88SR99wQt2IcAzaGQGrui74upaFHCWNOHTwMboF2eB4DwdUE12aZiPOXwzDp97R+EN+6FUxa8FXCs7EMZIyx2LHgScYEmWN/a85opaVGRf+e4yX7sphs5sDKmU7F5hx9Z+HaOsrIRj3sTb8ON54/TX5GbNF36OxcKxuja+r6uTzk5/DG9HofM6MQc1sMMxNPqDZjPPXYvDpZVPcc1AuMfiag2OU7a0qWmNxLR3s5O39LhvQ4rocrl+1Rgtr+TkIj8Xww0Y0fdka/Vye/gVE+B138hs0LVkV7TzjxsjNTPDNjcAr3I94gub/LsGVhv+DRzEO9p9XGHzzXkBAADq174Dd+/Yqk/0QFTas8aUCxozbV0KwVF8MncqmHjPX770K99i7GNdOhF5BA3d3SzSQt/UOMiEm0ICfDDq8XdlKDr2CDvUrW6OpIQZ/BJrlCKpH93p2GF5JLwe+uOWeLvKfSqwZYUrtgYT78jm8dN6IZvVs8WHmP3lPkPExkpJw+2IoRj7UYeEr9nLoFW0m+MjnWrq4BTyeIRMYHoRj8g0t3i4pfom4mdNMg4Yjcs9VeNqb0c9ThF5Bfg7ddPJzKME7RJL/Xw6DvtF46aoZzV7Q48NkrySBD03YJb+8vOElQq+gQfnSOrQxmXEoMO69tsZOhx7FJSy6ZkKo0pJIDHE2unp3jLi+RwmdBpMWgQY9HkSm/j5dzLL280UTuu+LUdaZW+0BPq58M0dCr7D40i4sqdSRoZcKPXE/xLRZM5X7I0JDk/9lEhV8DL5UsEjROHgpBs7uNpAz41Oio6OVgdh3/TwFe96pg2Y26gI5pt27E43f5HDZqpQOT0JMuCD/03e1SUyMOhstysvrXZKXWThZ4/WaxVBTLDebcOVaKJZcM6N5eWtUV46pgZOHPY53LYHPXrBECWUPWZPxMRJJkVFYdSEWlSvYoWtx9U82xogroRKsnkRgyOb7cFh/Hy33hODQE7MSSjNDijbgm7+jYFvLASPKiP3qoe3zHvQbV8PWJQBTl72PJl/NheTnp6x/755Rfg61aOUaV6frVNISx9vY4LNKuqdKH9In4VpE/DlqUcNNg7sPjDjzdKGyorKNJ1ZVeANjz+lQ+1hZLHlQDEtumvHS9hj8fSvu3YEIvPGzrIXHSvi2zl285eGXY4FX+PX6X3DU26B/6Y5qC1HhJoZ+dHRyxM8//aS2EBUeDL5UsERG41w45ABrleImq6ioKHw24RNlQPaks7OFPwjHlLNG1PYqhg7JPlJPoNUgISfHM0dj+c8P0fjfKHwXo0W7MnrE79XayRLVimU67aUtnWPEMePKxQh8Y7LEmNpWCecohRtxQWQ/vQ6d6jlib2NbNJeDbLd9wTgUnpnoa4L36TAssbDFpJqWaq+uytUV2jd7yAF4DTR168A09guELDmNKZfNqF3GAh2c4n5vawcdqtmm/hy4OGrRRD73PbdMiFBaJFyRfz4k/3RJDqsmpU0+lLxeRbNZfsOR+jlbWLTBaVNt5ecn8ir35d/5przxkNNGzP039qlphUXgTWuWtey6GXIPGwL+w3vVX1NbiIqGESNHYsO69bh27ZraQlQ4MPhSgWIOj8VlSQtPu6frC8TsbEsWL0abV9sqA7LHkXDfPwRjDkfitoc9VjWzeeomqqeYJUSpPybQWmFYr1IIecsFP5UDZv4ejB8fpqhDeDYZHSMmGrt8TfAsb4PmdklCZjFrfN7aGTvbOaN3FRs0q+qAya/YoKMxBqt9YzPo9ZUQfDMUo2/qMO8VO3ilVaqhBODueLRsFcaVqQL/wH1YeegrOKo9wOmxdLPEjHJa/HfNgNf2R+F9+av9HQk15F+hlD6ux1jQ2WpRQz4fnzTC+tI7NkgtygbJq58KghJ405tW+FmIiTTmXNyOKeXfRHV9BbWVqGhwdnZWxj//7JNPlaEhiQoLBl8qUKRYM8RLsINFYngSjh8/jrPeZ/H+kCFqixlXzgfh3d+jcFeE3ldsUUr9166Xg17KIbni2OhS9mBqrCzRvo4NOsgRbE+AUd5zzkvrGJH3o7E1VocBFZ/u4dZYWaBmaSuUSTKUrN7FEk3l3+1ShDmhRzVV5hj8+F80TklGbPn7MYbsfozxl0RwNGLl0SdYJLpUFXHP4aBjMQgo54jVQ3rBvUF9mGbPh2lWYglE6jRoVN8a2xpa4j03LVpXtMQfL1ugkfz0VpcDfPKsHZXGCR83pvzvEc9Kis2VwBtvy/U/UN6mONp4xN1cR1TUtGzVCl4VvLBje+5OKkOUlxh8qUDR2VuglhzIroeZEno1xYDrU7/4Ep9PmggbG1EMIC8/G4S3vWPhWcMZP7ZIDL0ikLkUt8CLcjQ8/yQxwkY+icUf8p9DLSctHvk8hvv6R9gkPlt/igbW2rSDWOZJmTyGGTfuxeKSVo868bW9qmDfINSTt98anLi9FGnCTbMGDex1KYLlUzRa1PCyxtTylmjgrMcL8ldVpd5Zg7KOejVMJz6H5eTncJN4Dm2toe3WFfrvvoGmbWslABuHjoD5VMoAbA6NxbenY/HQxQL96lqhd0U93OT/ZvvNWjRQSyUEySghVD5uuST11pllo03+3OWcy49v4dfAs5hefbDaQlQ0jRs/HuvXrlPunyAqDBh8qWApZolalsDFEGNCr+aSxWvRsu8s7HrsjjtyFop9GI5J52KB4tbo7Sbh+l0Dzihf0bgeIUHrbI1uDhK2XIrE5Wg5fEVHY+ulGAQ7WKFFCS2Ku1uhm8aIDeejcE/OxlJ0DPadjcJevQV6eeoz+UdjwoXzIVh0PFI5p6cfazJ5jLiRG+BkgQoJk0rEcZDDe315+zXyNqLuVdn+VCQ26SzwjpcYazid48MCzRs74cNm8V+OGKTUO+jQsZ4DerjrnnoOe8nP4bWkz6HREtpWLZUArB32PszfnxCjrQGPEgOwRg/43o3F/CtGPJLPzxhpxLorJkQX16Otc2LIjQo3w1s+2wqJ81Q8ZYJz6l3BolS7U6m46uGcJkocJl7cgmk1esKGs7NRESfulxD3TXw6fgJLHqhQYPClgkVvjZfLa+F9Jwp35UAn5pb3uxGB8vaumHQ9BoGSGT43orFbXtX3cRQ6HwlGi8OJX3NvGeV8Z4m3W9njzagINPnpPhx/CsL4KEv8ILdVkvOfxqEYJr9sA9eAUFTdKJY/wcAHWixs7YT2mZgYIo4ZN/wNyjk9VIJn3OPJ6uNMHcNswp0wCV7O+hQjR2idimF6U2vY3w1FlWTbt1FqgVM/fuLj9Dz9HHZJ5TlUdmFlBe3LL0H//QBo5OdN8j8R1wN88hQ0tnp8VEeHCP9oVNgRAZf90Vgpp+HvGljAPeEplHBDTsV3bXRo6Jj68zq6Uixes5JQMslivXx+7zhHoLVHiNqSs76/sh+vulRFK8dGagtR0Sbum2jb7lWsXLFCbSEquDScwIIKmpg7D9BqZzR6No7C9o/ew8pV3ypjT2adGXfuyUEQOlRxf3o6Y4UcPK/fi0WYNo3lGZCehOGdYxos7GSHUmpbCs94jPR+h0wdP4eZjxyFtPVXSEHB0A4eCG39+rgeaILBVoca6nTFCWKNWHQgBj6VrbGkctKpjlP695EO50LjCjhuRh2Dpe4shtZ8XXmck/66ex4/3PobG+tPYG9vPsAJLPIPg8GAN7v3wIzZs9CsWTO1lajgYfClgkeKxs9b72DUtX2Y7eWCbp06qQvyEyP+OBKMv72cUkxznDee4/HDwpQb38ybt0A6cRra9+QA3LK5+MxUXSFOkL8Br17Q4NtXrVDvqfHU0vfIHIT3Ty7GO54v4eXStdTWZxdsCMeg4ysxr847aFqsjtpKzxODb/7i6+uLj0d9iLUb1qNcuXJqK1HBwuBLBdLGjX9iRpAen3WrgS6ZLj+gvCadO5d6ADaasPpINIJq2GCMR7Ke4Ew4F3YVw86vxurGQ+BknUaBcBbNOfMzKtu7Y1j57moLPW8MvvnPT5s3w8fHB3PmzlVbiAoW1vhSgePn54f/fd4fW9s6o0Wym74of9HUrg3d9CnQzZsByfssjH0Gwrx3P6SoWPRsY4ux2Qi9QgXH0ujr0QTfXP5NbXk2+2+dRIgxCv9XJj9+ekCUf3Tp2hV+N/xw8OBBtYWoYGHwpQJF3FU8a8ZMLPx6EUqXLg1Ha/YEFQQJAXjRXEhPHsP0fwNhv18OwMHB6hpZY2cuhn4V2iMyNkYJrc/ifsQTjLi+B1OrDGBdL1EGxCgPYujIaV9OUYaSJCpoGHypQBEDqYs55MXA6lTwaKpXh+7/BkC3fjWkwECY2r8B07oN2QrAIvyOqd4dI+XQKsJrdi2+tAtLKnWERzFXtYWI0lOxYkUMHf4Bpk+dpsyaSVSQMPhSgeHt7a0MpC7mkKcCzMoKmpIloRs+DLoje5Sm7Abgyjae+LbCG0p4zY743uL+pTsq34koczqpNxXv3i0GPiQqOBh8qUAQJQ6id2HMuLHKHPJUOOREAO7o2VT5/uv1v5TvmXUz5B6+ufU7xtXizWxE2TF67BhM/ORTXLlyRW0hyv8YfKlA+GHjRtSpW4clDoVUQgD++yA0dsVgGjQsLgDfv6+ukTZR8vBFzb7YEPCfEmYzQ8zONufidnxZ/k1U01dQW4koK8T46dNmzcTC+QvUFqL8j8GX8j0xR/y2X37FkKFD1RYqrDTOztAO6A/9ji3QuLnBNPxjmGbNVcYFTk9Zi1L4rEJnJcyKUJuR324eR3mb4mjt0VBtIaLsECUP4r6L1atWsd6XCgQGX8rXRImDmCN++qyZyt3EVETI/621b/aAfuMaaOrWgWnsZxkG4BYe9VDFpiS2XP9DbUnd5ce3lN7h6dUHP4eJRYgKH3Hfhbj/QkxwQZTfMfhSvibmhhdzxNeqlXMzdFEB4uqa6QAsSh7G1ngLvwaexSU53KZG9AZPvLgF02r05NBlRDlE3Hch7r8Q92GIzgqi/IzBl/KtP37/HWe9z7LEgRIDsCiBeKkpTLPnxwXgS5fVFeKU0DpjQfW+mCyH29RKHr6/sh+vulRFK8dGagsR5QRx/4VXBS9lyEmi/IxTFlO+JAZG79+nL75a/LUyZiRRcua//oZ5+TfKz9rBA6Ft2ED5WZhxeT0iYUAlew+ceXIDFe1LopjeGrvveWNj/Qns7S0gOGVxwWIwGPBm9x6YOWc2mjaNG22FKL9h8KV8R9wgMXXKFFStWhVv9eqlthKlIjoa5hMnUwTgC+HX0ebUIkQh8eVNL38tLdcVb3u9GtdA+R6Db8Fz4cIF5b6Mn7ZugZubm9pKlH8w+FK+s3PHDqxbuw7LViznDW2UOckCcLt3rHFSMig/J1VSo8PvDSZylrYCgsG3YFr01VfK9w8/+gj29vbKz0T5BWt8KV/x8fHBgnnzMW3GdIZeyjwrK2hffgn6jWtxY2BnBJqj1QVPeyCZcODeCfUREeUGcV/GoQMHld5fovyGwZfyFRF6h3wwTBkYnSg7tA0a4bYm7Q+yoiWj+hMR5QbRabHw60VKyYO4X4MoP2HwpXxB1PVu2rRJ+bljx47Kd6LsKG7jBA+tpfoopbIWTupPRJRbxE3J/Qb0x5LFizmxBeUrDL6ULwQEBChzvou53zWs56Nn4GztiLeK11MfPa2CpMErk1fAvHe/uAVdbSWi3NCla1f43fDD0SNH1Bai54/Bl547MeC5KHEQH42xxIFywicNBmGSe0vl5wYWTiip0eM12zLY03I2is1ZACkwEMY+A2H+5VdIwcHKekSUs0TJw+eTJmL+3HkseaB8g6M60HMn5ngXN7VNmjxZbSHKGUGGEDyOCoat3hoe9iXV1jjS7dsw79gFaekqaIYPhrbL69A4sQwiP+GoDoXD7t27ceTQYaz4ZiU/0aPnjj2+9Fx5e3src7yLud6Jcpooe6jk7Jki9AqasmWhGz4MuiN7lMem9m/AtG4De4CJclinTp2U75s3b2a9Lz137PGl5yYqKgoD+vVHv/79lOkuifKUOQB7T+9EsFd/9C5uA+nBA5i3/JKkB7g9Hptv4dBjfzyAIyo7VkdzNw8UUzeXDL7YHxiApwZO0zijtkcNlNdlplcrFo+enJX3fwfheg/UdquFhsVsELelBEPYRRwMCoJZeZyUFlZ2NdDOxQnItXN49uN7Gi9g8eWbaFq9IxpZ6dSFWcMe38JD3MfxeofXsGvvb8rkRETPC4MvPRfiXX/SQc6J8lYM7vgux5t3quKHVzrAK8lnXyIAS//8jku3dqBfJQu460uirGUM/o0MRdkSA/B9jbooARMe3fkWtXwvIELdLk51bGg0FF1sMwp64bjsuwbv3LkJ92LlUckUgJ8NthhVbTg+KekiB08T7vuvQFW/y0nmnounRVOPj7GncjkE5cA59JHPoVSyc5hQ0hGB8vGryMdPKbPHN+DMlYX42NQZv9aoA2d1aVYw+BYu8SUPYpx2V1dOIkPPB4MvPRfHjh1LmNbSxsZGbSXKG5LhBL448hPs6k7COHcHtTWROWQP+v65Aw7Gxvhq2S+waFQPD16zQpfgMAyqNQbDXDS4cHUumj1phNNNOqBSFnOZFHEUg07uglX50Vjs6QE9nuDQ2TnoFvEyjjd9HdVS25/5Hnac/RpDY5phX/1OqGURk3AOp+RzqJyD5/CffA7Vk+9PPf4Q+fj7kx0/redAivwTw08eR9M6w9HPMesT0jD4Fj7x09EPGjxYbSHKW6zxpTwnRnEQoXfmnNkMvfQcxOLu7cP4RtcIHdxShl45riHaqIWnY0v07/B/sN64Bpq6deG2+hzq4wHO+F+S1wmGT0gQStuVhkc2MpkRJdG9/FsYXqqkHDgFO3jauQCmcISlrC2QxeD27V8wIqwU5r/QTg6d4qU7L88h8fgLs3B8jW0N9HB8hK9vXwUrO0kQ93OI+zrE/R1EzwODL+UpUeKwcsUKtG33KmrWrKm2EuUh6S6O+F+Fk0tlVEi1GkADm+IdMPOV3mhmLb9EurpC+2ZXPPyoLvbCES1+mA/T/BW4HBUL64h9GPL3R3D4/SO0PPUrDoVFplKakJJFsep43bMxaoraV3MwrgTsw5L7D9DctQ6qp3JOUvQFrLp9DVXcOqCrvVVco/EhrqjnMDSXzyGj46f9HDiihnMZ3H1yGmdiUk30VMQ4OztjzLixmD51mtIJQpTXGHwpT4mBzM96n1Xmcid6LqLv4YJBh+bO7rBVm9JnRvjjfZgS4IfaHgPRaeHPwCvlcFFUiYUEoqP2Zeyt2BbNjX+j29nNOGwwqdtlgnQdy49NQuNr+/Cd0Q3tipdEyoKAKFzxP4BvzNUxtnylhHOWoh7ggkiYWg908hqYo+fw9Ocwccf/Vj1+/DJx/IsZHl8HV7vSqCjdxsXwGLWNijpxM7NXBS/8sHGj2kKUd1jjS3lGDGDev09ffLX4a2U6S6LnwRy0Az3+PoyG9abgs9IO6igKaYnB/Xs78D/vfbjrOhir6jdBKa0c+mLu42JQBBwv+sN99ffKmuaBdTHAcBEoNxY/eJXOYL9Pk2LvYJ/PGgx8bIs5dZPVwxovYe6/K7DVZSgOv/BCYvCNDcTF0Ag4OXiijFJ6IK8auhd9z+yDRj6HjfI5ZKVnI+k5zJbPoX/8OWTx+P3k4z/1HET+iaEntsO64if4qkwJZb3MYo1v4WUwGPBm9x6YMXsWmjVrprYS5T72+FKeECUOYs52MXc7Qy89T5IxCg+hh51en0E4DcOVa9/i3VN7nwq9gsayFGqWrIiyrVtBv2IJtIMHQrvOG43NsbgUcApZ6G9VaCzKoL3XK+iAO9jz5HGSUgEJkUHnsNXkhgGlvJ7qodZYuKFmca+E0Cno7SqgqVY+h+iIZzqH3xLOIevHfzHV40uIMrPUgRKJWd3EfR6ff/IpSx4oTzH4Uq4ToVeUOIg528Xc7UTPk87WDTUQDr/IiCQBM7lIXPdZibd9LsOz4gT82DAx9IrSh+DbK1F/12xsDY0F7O2hbdUSuq//D/5aPepf2Q9p6AiYT55S109ODIW2Au6/z8emMHn7p2hgrU1aYBuNG0HXcElTHnUckhZByOdwfy3q/f41tkYk7kOKeYKbkhUa2NgjlVLhJBLP4cd0zyHx+LVTOX79VI5/K9nxJVM0QmGNcla8kZWeJu7zaPNqW+W+D05sQXmFwZdynRi4/ONRH2Lq9GnKu3yi58q6JF7Qx+JyRGiSXskwXLi2GYvOn8AdOQ3HBh3CpGsXAMdW6O1ixPUHl3FG+fLB9SgTHBwroL7mGtZcPY37ZhH4/LHv+n5s1jVE3/dXQz9xFM5f/xkLN47A7b37AcMjXLi1DYuunZH3r0NxlxroprmDDf7n4rYXZQZ+f2Kvtjp6uZZI0hMdN3ICinmigj5p/7QWDnae8jn4Yc3Nc7gXv4/rB7BJWxN9SrrJa4QnOabYJunjxHPYmMo5vJVwDpk7fsL2SY4ft7aEqMj78IYLKtryb59SEvd7HNx/AMePH1dbiHIXgy/lKvEufsG8+Zg2ayZKly6tthI9R7qyaObmjHOPb+BeQpdvBG7ck8Pu7asIlKLgc/tv7JZDm2/IDnQ+MQstEr7mY27AY2gdWmBa7RawC1yOKnsGwHH/JAx8XBLzG/dFa1s9NNVL41bVWPyvbF08OHcWxj4fw9fvCCbd98FD+Zga2yaYXPUVuD75HlX+HAHHf2ZhYIgrFtZ6G+3l7ROYQ3HHEAOvYiWRvDpWa9cM06s0hZ28j6pJ91HzTbS2Fv2tkbjx6E/5mNeVYyZ/nN45dIg/hwyOP009ftLt5yccXzDgRshN3LWqgYZ2FmobUSLRGSLu+5j6xZfKfSBEuY03t1Gu2rRpkzJTz7wF89UWoucv5uFP6PSfH4Y2H40eDs8SyCJx5+EtPIQzqriWSpjOWJBC9uCdszZY0LwVSp07B/PmLZBOnIb2vYHQtmwurvhysAzB9aAHCNM6oYqz21PbZ14U7gTdls8h5T6ksIN456oVFjZ4BaXUthSe+RzSPj6MPlh0/Dv4lBmNpeVKJunJzhze3FZ0/LR5M3x8fDBp8mTY29urrUQ5jz2+lGvEi9iKpcsweuwYtYUof7As0RxjXO5h+Y1rcmx7FrYo41od9ZKFXuAJ/vQ5h9oVa6Ok/EhTuzZ006dAN28GJG/RAzwQZlECEWOFSsWroF62Q69ggzLOqe0jCH/evIjaZWoo55AmreMznkNaxzch6NF/WI/GGOwRX/pAlDpx/4e4D0TcD0KUm9jjS7lC3KX7wdBh6D+gvzJmI1F+Yww9gnH/nEGrl0ehi12S8oI8IN2+DfOOXZC274amaydou7wOjZOTurSQMPli9aktCPIaitGujtnqZWGPb9Ei7gcZMvg9rPj2G1SrVk1tJcpZDL6UK1avWpXwsRVR/mVASLQOjlbPp/40IQAvXQXN8MGFKgBLxnCEau3g+AyfKzL4Fj27d+9WyuNWyuGXKDew1IFynJiDfcO69cqc7ET5m/VzC72CpmxZ6IYPg+7vg8pjU/s3YFq3AVJwsPK4INPony30UtHUqVMn+X2ORrk/hCg38GWJcpQocRBzsE/832RlTnYiyphG/ltRAvC+bcrjwhSAibLq4zGjMfGTT5VPDYlyGoMv5SgxEHmdunXQuHFjtYWIMiu+B1h/7DA0bm4wDRoG07IVkPz81DWICj8PDw8s/HqRMhQmZ3WjnMbgSznm2LFjykDkYkByInoGjo7QvtkD+p83QlOlCkxjP4Np1lwGYCoyxE3Rjk6O2LF9u9pClDN4cxvlCPGu/M3uPZS518U0lESUgwwGmHfuhvnbNdA0qg9tr57QeHmpCwsv3txWtAUFBaF/n77KBBd169ZVW4meDYMvPTMxO9uir75SBh1/d9AgtZWIcpz8BtN89A+Yt+2AprxnoQ/ADL4kxvVdt3Ydli5fBjc3N7WVKPtY6kDPTLwwnfU+i3f69FFbiChXuLrGlUBsXAtN29YwzZ4P49ARMJ88pa5AVLiIkgdx38iPP/ygthA9G/b40jMRc6sP6NtPuRGhYsWKaisR5RXzkaMwr1qj/KwdPBDahg2UnwsD9viSYDAY8FaPnpgxexaaNm2qthJlD4MvZZsocZg6ZQqqVq2Kt3r1UluJ6HkojAGYwZfiXbhwAZ+On4Cff9kKV1dXtZUo61jqQNkmShxCgkPQuUsXtYWInhdtKzkkrliihF5p668sgaBCRdw03bbdq8qQmaLThSi72ONL2SIGFu/UvgN279urjLlIRPmLdO4czJu3QDpxGtr3BkLbsjlgba0uLRjY40tJiZKHD4YOw9APhqFNmzZqK1HWMPhSlol322NHj0GrNq2V6SWJKP+SLl+GecOPBTIAM/hScr6+vvho5Cis27gB5cqVU1uJMo+lDpRlu3fvVr4z9BLlf5rq1aGbPgW6RXMhnT8PY5+BMO/dr4wNTFTQiJuo+w3ojyWLF4P9dpQdDL6UJaLEYcXSZRg9dozaQkQFgRKAp3wB3bwZkG7cYACmAqtL167wu+GHXTt3st6XsozBlzJNzM426fOJGDNuLOt6iQooTe3a0E0YB93q5ZACA2Fs0QGmdRsgBQeraxDlb9bW1pg2YzoWzJuPgIAAtZUocxh8KdPEnOnlvcorA4oTUcGmKVsWuuHDoNu3TXlsav8GAzAVGKLzZcgHw5Twy15fygoGX8oUb29vrF+7DsNHjFBbiKgwSAjAfx9UHjMAU0ERf59J/H0nRJnBUR0oQ6LEIX4ImcaNG6utRFQYSbdvw7xjF6Ttu6Hp2gnadm2hKVVKXZq3OKoDZUSUOsQPrSkmUyLKCIMvpUt8hLToq6+Unz/86CPlOxEVAfIbXvPRP2D+dg00jepD26snNF5e6sK8weBLmSEmU9q1c5dS98tZ3SgjLHWgdIlpIg/uP4AhQ4eqLURUJMgBQvtmD+g3ysG3bh2Yxn4G06y5kPz81BWI8gdx34mjk6NyHwrrfSkjDL6UJlHiIOZGnzlntnIXLREVQfEBeMcWaBo2YACmfGnEyJHKfSjXr19XW4hSx1IHStO0qVNhb2+PdwcNUluIqMgLCYH5739g3rgJmvKe0HZ5HZoXqqsLcxZLHSgrRMnDOjn8LluxnCUPlCb2+FIK4qOinTt24Kz3WbzTp4/aSkQkc3SEtuNr0G9cC03b1jB9vRTGoSNgPnlKXYHo+RAlD3Xq1sEPGzey5IHSxB5fSsHf3x/9+/TFwq8XoVKlSmorEVHqzEeOwrxqjfKzdvBAaBs2UH5+VuzxpawyGAx4s3sPpUSvadOmaitRIgZfeop4lzx1yhRlWJi3evVSW4mIMpbTAZjBl7JD3JQt7k/5+ZetLHmgFFjqQE8RNVIhwSHKXOhERFmhbSUH1Y1rldArHTycWAJhMKhrEOW+mjVrom27V7FyxQqWPFAK7PGlBD4+PgkDgYvpIImIsk0OHGLkB/PmLZBOnIb2vYHQtmwOZGGEGPb4UnaJkoekEy+JG7WJBAZfSjDkvffRqk3rhGkgiYhygnTuXLYCMIMvPQtfX198NHIU1m5YD09PT7WVijqWOpDyUdCmTZuUnxl6iSinaWrXhm76FOjmzYDkfRbGPgNh3rufJRCUqypWrIh+A/pj6ZIlLHmgBAy+pLwrXrlsOUaPHaO2EBHlvIQAvGgupCePEwKwFBysrqGSA3H88Gjm/44zIFO2iftVbvrdVO5fIRJY6lDEidnZRB1Uf/ldsRgDkYgor0i3b8O8YxekpaugGT5YmQxDhFzTgPeB4FB1LZmTPXRbfoCG9x5QNgQEBCTcvyJGLKKijcG3iFu9apVyU9vESZOgYR0dET0HSQMw7IsBYRHqkiTk8Ks/vDdlbbBR3nb+RuCNUdBWtVUbk3h8EeZjN9UHKq0rNK0bQWOdmde8GEgX/4F04iokFIemWkNom3jKV091sZDbx0hv/4b/YJrpA+2nfaFx0qkLKbndu3fjyKHDWPntN2oLFVUMvkWYt7e3Uvi/buMGODs7q61ERM+H+Z9/YH7/Q/kHs9ryNO2a5XIgbKw+EqIh7ZoO08460C3uDo1l8pBpgrT/fzB99Jv6OF5baI9Mh7akXn2cBikU0o9TYZp2GmhWQ86h9yH9cw/4v1nQjXtJvecut48h9v+FvP896gbx4vcfCWnJSJgihkA/rhkLGNMxdvQY5Qbu3r17qy1UFPFPpIgSJQ4i9E764n8MvUSUPzwJSjP0KuTXracEH4d5zlVo3mubSugVooGbt4BaY6G7cAr6S/FfszMOpMKt/TDPPAPN9NXQr/oaulXrofuqPfD9NzBfiu+Vzu1jZLR/B2h6vgXNzz/A7Bup7JJSJ+5jmfjJp8qnnFR0MfgWQeLuVjGwtxjgW4xvSESUH2iqVwMs0giLVpbAU7NwxUA6sg2S46vQ1v7/9u4EvKr6zOP47wIC0SKkIzMWZEdRCoI6orbVuqAiq4KCBQktjoIoiGyCIiqLLCGAEhBwqyzKoiAgCKKFearSYaoCIprRiA0QLFrDnogkZ857cgIJudmAJHf5fp7nPnBfT85N5FHe+7/vcq4fO4nzLzl/T5Eua6BAif+2c6QM94tudJPKG+r4sSoKtLhMAbn33OE35JX2a9j9Py7i/v9xpQJtvlXWm1v8AIKx+fS2in/kY49r7969fhTRpsT/mSL82TrH995dpz59+/oRACh/gUaNpDoFNLCdX1MVWlzqP3FlpchZ+Dfpt78u4LTXlb5bzuYj0mfzlHnrb3WsqfsY8IKyvj3kX1AY954Xd1bFZ+9XheO1sz/L+d8P5FRsrkCz87JDpf0axbl/4JcKXN1MemODsg4WcmIOr4m7QcMGWrlihR9BtCHxjTJW4vDYo8M1ftJEVS3BBiUAKAsV58yQGtaVzvb//2QnvfVqq+JLs/I2th3YKefLym5ymHNSGsT3u+RYfnjOhQoMi1eFaX0U+NciZcU9q6wfjmVfU2yZ0pdLlTXhI6n3PapQr0p2uLRfw7u/U8T9KynQoLGbJG+Xk8Lot6I81L+/5s+d5/W5IPrQ3BZFrMRhzOjRql27tnrfe68fBYDQ4yQny/niS6/8wTsJPlny6zrWYbECL7+iilfX8IMnObxbzlcHpQvdpPEcO1F1/7pLXuh+3Uzpqbmq1LVB9nVF+knO/76urEGvyGk/WhUHX6dAJf+UubRfo6D7d3Tv/2Su+/9zlTJvnCpNna+Kt5yfHUOBbK7v3Ffnauas51UzTwkNIh0nvlHE/kPf8c0O/aF7dz8CAKHJkt0K7dsFT3pNhjV+nSVVdR8FOae2Ai3dxNlLGI2bSNZrqkDsEWlvrjnBhbGpC8vildn7JTchfTpv0mtK+zUKvH96kPtnSkfdB4pkJQ8tWrbw+l3Y6hZdSHyjREpKihLiJ+vxJ0YqJibGjwJAmDrvV24K+KOb/BWUtLgJ4F8n6FjzwcraddSPufbtlQ6dq0DtAk6J8zgsZ8k4ZT6+UYERs1Vp2PV5k95Sfw3//pcGu3+1vPfPSJcj9/l55/gBFMX6XKzfxfpeED1IfKOAvZtNnD7d21luu8sBIOzF1pZqucleau51x/vlLHtRmS99ICerotTgEgUqbFLWgo1yjjlujvmNsl6cJ6d6awWudb8+z/Unf717/dcrlDnmL1Lrrgo0/VnOli1yNttjm5x/WSJa2q/hJr4F3f/cnPsbN77HFlxcoMCvgizxQFDW52L9LiOGPer1vyA6kPhGAdtYs3/ffnXt1s2PAECYq9xAFdq5id/GJJ3oVDkk5/0Fcl7eKlmSeUEbVUi8W1oxRJmX/qeOXXmXsv67rirM6a8K59nYtJOuz/08002q/7La/dX9B+89p6zuvZV5/NFfWRv9RKm0X8PuPz3I/Wc/5N/fHJGz9TOp2W8UqFPZj6E4mjVrpju6dPZKHhAdaG6LcDaoO2dHuc0wBIDI4P7V9fnLOnb3dlV4Z7wqXFBIwucclrM92f3NvynQ1E2Wc1cr/OMNHYuPUcXEdnnCJVbar1HY/dM3K/OuEVLfOarYvpApFwgqIyND/fo+oLhecerQsaMfRaTixDeCWYnD1IQpGjthPEkvgAjjZn5N26jCbd8o663tfqwAgXMU+PWl7uOkhNH5XlnzPlKgx5WnnpDmKO3XKOj+Vgf893fdtwGdVOHGC/wYSsJKHqz/ZcrkBK8fBpGNE98ItnDhQq1//y+aPCXBjwBAJHH/+tq1WplxHyqw4ClV+FUUfsyfsV1ZfabJeWiCKl75Sz+IU7F40SLvU9InRo1StWrV/CgiDYlvhLLB3AP7D9Cr8+fpl7/kf4YAIpiTLh2sKJ0bhYnv4QNSFTdJyzNtAqfCSh5snXH7Du0peYhgJL4RyLpTc+qVbFYhAAAoWmpq6vG+mCZNmvhRRBJqfCOM1fWuWL7c20VO0gsAQPFZP4z1xVi9L4stIhOJb4RJTk7WvFfnervIAQBAybRr18771UaBIvKQ+EYQK3Gwul4byB0bG+tHAQBASQwaMlizZszUl19+6UcQKUh8I4gN4G59y83eQG4AAHBqrORh8NAheuLxkWx1izAkvhFi48aNen/de97ucQAAcHqsT8b6ZaxvhnrfyEHiGwHS09O9XePjJoz3BnEDAIDTZ/0y1jdj/TOIDIwzC3P2LnTM6NHe2JWu3br5UQAAcCZs2rRJs2Y+r5mznlfNmjX9KMIVJ75hbsP69drxzQ517NTJjwAAgDOlVatWatGyhddHg/BH4hvGbKd4Qvxkb8c4JQ4AAJQO65957911Xj8N9b7hjcQ3jCVOn66eveLUqFEjPwIAAM40O1yyUaHWT2N9NQhfJL5hauHChdq/bz91vQAAlAEbFXpHl86aM3s2p75hjMQ3DCUlJemJEY95A7YBAEDZ6N6jh7Zu2er11yA8MdUhzNi7zCGDBuuGm248vlYRAACUDRttZltS5y6Yr7p16/pRhAtOfMNMzu7wtm3ber8CAICyY3011l9jfTYIPyS+YWTz5s3e7nCb4hAIBPwoAAAoSzZC1PpsVq5YQb1vmKHUIUzYrvB+fR9QnPsu09YoAgCA8pOamqp2t7bRqrVrvCVSCA+c+IYJ2xVuO8NJegEAKH+1atXS2AnjNWVygg4cOOBHEepIfEOcfYRiJQ62K9x2hgMAgNCQ02S+evVqSh7CBIlviMvIyNAjAx72BmfHxsb6UQAAEApstOjsmc97pQ8IfSS+IczePdpu8Jtubu0NzgYAAKHFSh4s+R352ONePw5CG4lvCNu2bZu3G/z+Pn38CAAACDXWf2N9ONaPQ8lDaCPxDVH2rtF2gluJQ0xMjB8FAAChyPpwrB/HFlwgdDHOLEQNGzrUG4/StVs3PwIAAELZpk2bNGvm85o563nVrFnTjyKUcOIbYuwjEhuIveObHd6AbAAAEB5atWqlFi1beP05lDyEJhLfEJOWlqaE+MnedraqVav6UQAAEA769O3r9ed89tlnfgShhMQ3hNi7w2fGjvN2gNsucAAAEF7s0Mr6cx4fPoIpDyGIxDeErFq1SlZyTV0vAADhy0aQ3t75DsVPmuRHECpIfENEUlKSRrrvDh8ZPMiPAACAcNW9Rw+vX8f6dhA6mOoQAqzEYcigwbrhphuPrz8EAADhzUabDew/QHMXzFfdunX9KMoTJ77lzJLexYsWeb8n6QUAIHJYv4717SROn86UhxBB4lvO7N2gDby2KQ4AACCy2GjS/fv2e308KH+UOpQj6/bs1/cBxbnvBm3dIQAAiDypqalqd2sbvb3mHV188cV+FOWBE99yYh952E5v2+1N0gsAQOSqVauWxk4Yr6kJUyh5KGckvuVk27Ztmj93nrfbGwAARDbr4wkEAl7JA8lv+SHxLQdW4jBi2KMa5777i42N9aMAACCS2cjSWTNmev09KB8kvmXM3uXZDu/Wt9ys5s2b+1EAABDprORh8NAhGjdmLFvdygmJbxmzEgfb4W27vAEAQHSxvh7r77E+H5Q9Et8ylJKS4pU4TJv+nLfLGwAARB/r77FRpps3b/YjKCuMMytDw4YOVZMmTdS1Wzc/AgAAopF9AmyHYavXrtHZZ5/tR1HaOPEtI7ar23Z22yBrAAAQ3Zo1a+b1+0xJSGDKQxki8S0DVuIwZXKCt52NEgcAAGCs3+f9de95p78oG5Q6lDJ7Fzdk0GDdcNON3gw/AACAHDklD0uWvqmaNWv6UZQWTnxLkSW9Obu527Zt6/0KAACQw0oeevaKU/ykSZQ8lAES31Jku7lHDh+hQUMGe9taAAAATmb9P9YHtGH9ej+C0kKpQymhxAEAABSXbXMb2H+A5i6Yr7p16/pRnGmc+JaSxYsWqXqN6iS9AACgSI0aNfJKHhKnT9eBAwf8KM40Et9SYAOpbTC1DagGAAAoDpvzv3/ffq1evZp631JCqcMZlp6erl4949Qzrqe3lhAAAKC4rD+ofZvb9Paad7ylVzizOPE9g+zd2WsLFqh+g/okvQAAoMRq1aqlMeOf8eb/c+p75pH4nkE2i89KHIYMHepHAAAASianPyhnJCrOHEodzpDvv/9ed3XuovGTJnoz+QAAAE5VWlqa4nrco2nTn/Ma36pVq+b/E5wOTnzPkNmzZnk7t0l6AQDA6YqNjdXgoUM0bsxYZWRk+FGcLhLfM2Djxo1679113s5tAACAM8H6hRo0bKAVy5dT73uGkPieppSUFG/Htn0UUbVqVT8KAABw+mw0qvUPff31134Ep4PE9zTYuy8bNG0Dp63+BgAA4EyykgfrHxr08ECvnwinh8T3NNhObdutbTu2AQAASoP1D910c2uvnwinh8T3FFmJQ0L8ZD028nFKHAAAQKmyPiLrJ7K+Ipw6xpmdAitxGDJosG646cbjs/YAAABKk+0LsL6iJUvfVM2aNf0oSoIT31OQM1CapBcAAJQVK3mwvqL4SZOY8nCKSHxLKCkpSSOHj9CgIYP9CAAAQNmwviLrL7I+I5QcpQ4lQIkDAAAob8nJyRrYf4BenT9P9erV86MoDk58i8mS3sWLFql6jeokvQAAoNzYCFUreZiRmEjJQwmR+BaTvbuaP3eeN0gaAACgPHXt1k0H9h/w+o5IfouPUodisIHR/fo+oDj33ZWtDwQAAChvqampandrG61au0ZNmjTxoygMJ77FYDuybVf276+/3o8AAACUr1q1amnshPGaMjmBU99iIvEtgg2Kth3ZQ4cNUyAQ8KMAAADlL6fvKGfUKgpHqUMhrMThrs5dvB3ZNjsPAAAg1KSlpSmuxz2aNv05tWzZ0o8iGE58C2AfGdhO7Na33EzSCwAAQlZsbKwGDx2icWPGau/evX4UwZD4FmDTpk3eTmzbjQ0AABDKrPne+pFWrljhRxAMiW8QKSkpGvv0aO8jg6pVq/pRAACA0GUjV230qvUnITgS35NYiUPi9Om6J66nNyAaAAAgHFjJwzMTJ2jEsEe9PiXkR+KbiyW9tvvadmB36NjRjwIAAIQH60uy/iTrU2LEWX4kvrnYIOiE+Ml6/ImRiomJ8aMAAADhw/qTrE9p27ZtfgQ5SHx99q7IBkD3fbAfJQ4AACBsWX+SjWK1kgfrW8IJJL6+nMHPOYOgAQAAwpWVPPTsFef1LbGy4QQSX1dSUpJGDh+hQUMG+xEAAIDw1rFTJ69v6e2VK6n39UV94mtdj1biYLuubec1AABAJLCSB+tbsjzHtrshyhNfe/ezYvlyVa9RnRIHAAAQcaxvyUa02lY3Tn2jPPFNTk7WvFfn6sGHHvIjAAAAkaVrt27erzn9TNEs4ERpxbOVOPTr+4DiesV5a/4AAAAilY1sbXdrG61au0ZNmjTxo9Enak98X1uwQC1atiDpBQAAEc/6mKyfyep9o1lUJr62w3rZm0u9Ac8AAADRwPqZrK/ppRdfjNp636hLfK3EwQY622Bn63YEAACIFg/17+/1N3399dd+JLpEXeJru6tth7UNdgYAAIgmsbGxGjx0iJ4ZO847DIw2UZX4vv/++9qyeQslDgAAIGpZf1ODhg28ka7RJmqmOtiu6rge92jqc8+qcePGfhQAACD6ZGRk6K7OXbzSz2uuucaPRr6oOPG1Am7bVW07q0l6AQBAtLM+J0t6re8pmkoeoiLx3bB+vber2nZWAwAAQF6/k/U9Wf9TtEx5iPjENykpSQnxkzX2mXFMcQAAAMjF+p7ee3edtm3bFhXJb8Qnvjaoue+D/bzBzQAAADjBDgWnTX/OK3n48ccf/WjkirjE1/7QvvrqK+9dy8KFC72YDWwGAABAfo0aNfL6oGYkJnr50+7du71HJCp4qsOxf+id8a8o7c6h6n7JOW4gU4d2/E1r3vtEe8+qp5a/v0HXNKimQPbVhUjXt+te19qzbtZ919cpJNMu+P5O2od6bvTnumbUvWoVWzH78pPYH9B/9e6tXTt3qnqNGvoudY8Xt53UnPYCAAAUzKY89Lj7D9qzZ0+e0tDE52fqqquu8p+FvwLy0AztfDtRY5Ob6OrGZ7vPj+n7DxL0h9b3K3HNJ/p0ZYL+1LqXnvnrdyp8FpqbzG5/UxNHPKMXPv1eWX40v+z7d7/5pPt/8E/v/oHY5rq27loNT/xIaUFe0E55O7XvoK+S/k/pR9KPJ72VKlXSB3/9q/d7AAAABGeb3OzwMP3IEaW5eVXOo3dcL++T9KDskHTMU3rti8N+IIcder6s2Rt2FpL7GTv0/FBvvDBdM/+8Qh/tOFh0XlnA9XZI+uwjc7QpLdOPBBc08XXSNuqFcdvV6YHb1PCsgPv9b9GCp+Yro89LWvnGK3rhjWWa1ydTf35qkT5NL+BbPLZXW5eM1h86PKF1PxT+TXj3f3Ke0u9/Mc/9X3lyoT45Yvc/V5fd3VNNXn9ZK746kv01ubyzerX27Uvzn51w7NgxjR87zn8GAACAYCZPitfRo0f9Zyf89NNPmv7cc/6z3E4+JM2Rfeg5Ybgdeu4t8tAz36Gqf+iZX+GHsLkPSX8sIDU1QUodjmrnkoFqPaeZ3lj1gJpXdn/oT57VzV02qufqP+u+S2K8qzK/eEHt267UrW8u0MDLq3mxE47pu7cG6XdP/6A/jrxJGaPHas0f39TfHrlclfwrTnC8+7fuvFFxq1/RfU2z/+XZ/dvdtlJt3pyvgVec6172T617tKue+MU4vTvqd24qfMKD/R7UWjf5DaZylSq69rrrVL1GdT8ChI9J8fEaNnSo/yyyRdPPOnHSJD06bJj/LLLZn6v9rFGyKwkIW0uXvOH/Lrivv93h/y6bk7ZeT94yWb9IXKBhV9XIDtqh57IZenz4XH2RKdV4+A0397siSO7nSv9Y09r/UatufUFvDr3azet+1Kb4P6n72hu1+O0BujzmpGJau77Dn7Tqljla6l5fzb++h3v9Iv96Z89b6nfTcl29LFG9mliZbn75E9+sJL3auYumXj5bH436rc72k9hrH3HfDWycok7n+9/+d2+pzzWj5UxdoTm3X5AdO85Rxq4v9W3Vhrq4xuea1upOze9pP3ywxNdPkgfa/RN0+6/Oyg6797//6tHS1OWac0cd77o9bw3W9Y/V0KyNo3RD9RO1vmNGj9GrL7/sP8uripv4vrpgvqpXJ/FF+LnwwgsL/ogpwvCzRqZo+lmBcNa1y506eOCA/yyvevXr6/0N6/1nxg5JH1brOc39Q1JLUoMdehaU+OY69Hwn76Gqd+i59ORD1ezrizyEPX5IOlbrRl3rJsdBWOKbx4/vOsMuvMy5b9lOP/Czs2dZf6dx/f7OW3t+9mOuvauchxvlvq4AP3/sTL2sgXPFlI/dOwWTff9G9fo7y1KP+jGXe/8BDd37L03xA45zbEuic129250Zmw/5kWybN292mjf9tXuP+vkevf/4J/8qAAAABJMweXLQPMoe8+fN86/yZX7p/LljU6fF0x84h/2Q42Q56Tu3O198n5Gd+7Ws7+Z+fy8y98uTW+5Z5txXLzu3zPJD2QrIRd3r76+fN2dNXTbAadJ0lLN+f6YfyytfjW/WD7v11c+xqlMz+BHxcZlHlV5E6e5pCXL/iv9eW020W0m79vuRbC1atFCPnvco5uzcNSbypjuMHjvGfwYAAIBgHujXT1e0utLNpbJPU419an75lf+pzl26+BHf/hR9vr2KWl1aTycyr4CqXnCJLj6viv/8FFSsrJjgw7uCy3d9Jf17w4t0/pGt2v5thh/LK1/i66Qf1o+qomoxfsmB+4NUrHyWgn8flRRTuSTfYTAlvf8xpR/Nn3E/Ony45r/+mnr17q1b27ZV/NQp+mDjR6pdu7Z/BQAAAIKJiYnRosWLNTE+Xnd26+o9ZsyepcVLlnj/LLdiH5KWVEkPVUtwSJojX+Kb/QU/aMd3OWvrKurfLmyupvpcW5NzYo6OJG/TJjVQswZ+QfMpO3H/z4q4v5N+RAdV8L9oO/l9YtQTmjFzhu644458f1AAAAAoWNt27TRh4kTvcf311/vRvPIfkpZUSQ89z8whqck/ziy2ji6pfURJu9OU8yUV6l+lTlft08q5q7T9UKacQ9v0xty1OtKqra5vbEOO9+mzJTM0bdYG7Sp8YJsv7/V2/9uvStPKeavz3D/9qrb6feOc5NVReuo3+kL11LBW3pIGAAAAlI38h6QlVfShat6ZDsU/hC3qkDR/4lulkX7ToZ52fPi5UnPmPZx1sXpMnaSOuyaqY7PGurBZR43b1U6zpt6tC23Orw7pm7UvKXH2p/pnsY6o3evffdm7fq8lynb/afHquNt9jVz3nz3tbl3kdQqaw0re/KkOtbhOV9Y7sVEEAAAAZSi2jprWPpznkLRoBRx6zl2lzw/mPfQMdqha9CGsOXFI2qigQ1K/yS2XLOenLTOcWxr2dZak/OTHfFkHnZ1bP3E+3rrTOZi33c7J+maBc/e9y5zUk+IFybl+j//cU8j9nSN/d6be+Bun77J/OMH79AAAAFD60pz/mXCbc1GvxU5KsLwv6FSHnc5b917mNG45xfnYC2Y5P6e+54xp2+z49IiL2o531qdmeFfnXN+oiOv/sjvnenPQ2ZrY2Wnc8RXn/wpIFoMssHA5u/TOwF6aUn+SVjxyhYqslHX2asOTo/ThLU/rsd/9x0nH00GU9Hr3/UTahnG6bUx1zQw21BgAAABlxNHRrc+rwx2f6b4Nz+rOOpX9eOGcHa+px7izNeXF23W+H5NzSLu2faW9qqmLml2gX+RK8ez67u71U4t5ffZSjAFK6v+aZt5eL2h+GTzxdX+gYzuXa0jX/9YNSyepU85SifKS8Zle6DVB+wY9qyFXnVeMRBkAAACl5pQPSZ/SY787v1QPSWesHKArzg7+FQUkvj7niPYfqKTq1YuXyZcW5/B+HahyrqpXIuUFAAAof+F5SFp44gsAAAAUJMwOSUl8AQAAEBXyjzMDAAAAIhCJLwAAAKICiS8AAACiAokvAAAAogKJLwAAAKICiS8AAACiAokvAAAAogKJLwAAAKKA9P/eo+yfmIj2lQAAAABJRU5ErkJggg==
iVBORw0KGgoAAAANSUhEUgAABuoAAAIwCAYAAABgGz1tAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAP+lSURBVHhe7N0JnNZV9fjxg7hBaoJbNipagn/cpdDGFs00E1vMNlNT29E0NssU1FBAS0ANg0x/lSK45IItEGqmLfpTfiLklmAJCKlpuIMbzP85d75nOHO532eb9Zn5vF+v0z333Pv9Pg9IOjOH7316NBQIAAAAAAAAAAAAgHa1QTYCAAAAAAAAAAAAaEc06gAAAAAAAAAAAIAOQKMOAAAAAAAAAAAA6AA06gAAAAAAAAAAAIAOQKMOAAAAAAAAAAAA6AA06gAAAAAAAAAAAIAOQKMOAAAAAAAAAAAA6AA06gAAAAAAAAAAAIAOQKMOAAAAAAAAAAAA6AA06gAAAAAAAAAAAIAOQKMOAAAAAAAAAAAA6AA06gAAAAAAAAAAAIAOQKMOAAAAAAAAAAAA6AA06gAAAAAAAAAAAIAOQKMOAAAAAAAAAAAA6AA06gAAAAAAAAAAAIAOQKMOAAAAAAAAAAAA6AA06gAAAAAAAAAAAIAOQKMOAAAAAAAAAAAA6AA06gAAAAAAAAAAAIAOQKMOAAAAAAAAAAAA6AA06gAAAAAAAAAAAIAOQKMOAAAAAAAAAAAA6AA06gAAAAAAAAAAAIAOQKMOAAAAAAAAAAAA6AA06gAAAAAAAAAAAIAOQKMOAAAAAAAAAAAA6AA06gAAAAAAAAAAAIAOQKMOAAAAAAAAAAAA6AA06gAAAAAAAAAAAIAOQKMOAAAAAAAAAAAA6AA06gAAAAAAAAAAAIAOQKMOAAAAAAAAAAAA6ACdtlG3ePHiLAMAAAAAAAAAAAC6nk7ZqFu5cqUM+fjhYQQAAAAAAAAAAAC6ok7ZqJs8aZI0NDTI/1x5ZVYBAAAAAAAAAAAAupYeDdoR60T0yMsjDvt4NhOZc/tt0r9//2wGAAAAAAAAAAAAdA2d7om6Sy6+OMsaXfWrX2UZAAAAAAAAAAAA0HV0qkbdvffeK3Nnz8lmja6bMVMWLlyYzQAAAAAAAAAAAICuoVM16n5yySVZ1tyFEyZkGQAAAAAAAAAAANA1dJpG3a2zZsm8++7PZs1p/Y477shmAAAAAAAAAAAAQO3r0VCQ5R1m9erVcuQRR8iyJUuzyvp22rmf/G72bOndu3dWAQAAAAAAAAAAAGpXp3ii7uabbirapFO6ftvcudkMAAAAAAAAAAAAqG0d/kTdypUr5YD3vV/KeRv6VN2NN98sffv2zSoAAAAAAAAAAABAberwJ+puuP6Gspp0Sp+q0/0AAAAAAAAAAABArevQJ+oWL14sRxz28WxWvrv/9lepq6vLZgAAAAAAAAAAAEDt6dAn6q761a+yrDLTpk7NMgAAAAAAAAAAAKA2ddgTdQsXLpTPfeaobFa5ObffJv37989mAAAAAAAAAAAAQG3psCfqLpwwIcuqc8nFF2cZAAAAAAAAAAAAUHs6pFF37733yrz77s9m1Zk7e064DwAAAAAAAAAAAFCL2r1Rt3r1ahl95pnZrGV+csklsmrVqmwGAAAAAAAAAAAA1I52b9TdNneuLFuyNJu1jD6Vp/cDAAAAAAAAAAAAak27NupWrlwpP7n00mzWOvR++pQeAAAAAAAAAAAAUEvatVF3w/U3yNInl2Sz1qFP5918003ZDAAAAAAAAAAAAKgNPRoKsrxN6dN0+w96XzZrfffPf0D69u2bzQAAAAAAAAAAAIDOrd2eqJs8aVKWtY3/ufLKLAMAAAAAAAAAAAA6v3Z5om7x4sVyxGEfz2ZtZ87tt0n//v2zGQAAAAAAAAAAANB5tcsTdZdcfHGWta2rfvWrLAMAAAAAAAAAAAA6tzZ/ok4/m+4vf/5zNitt1PARWbbOpEvKb/R9/PDDpVevXtkMAAAAAAAAAAAA6Jza5ejLSuy68y5Zts4TS57MMgAAAAAAAAAAAKBraJejLwEAAAAAAAAAAAA0R6MOAAAAAAAAAAAA6AA06gAAAAAAAAAAAIAOQKMOAAAAAAAAAAAA6AA06gAAAAAAAAAAAIAOQKMOAAAAAAAAAAAA6AA06gAAAAAAAAAAAIAOQKMOAAAAAAAAAAAA6ADdu1H3+kNyxRf3lV0Hnyd3vbAmK0befkGevG+uXHfFFLnk4ovlkkuukOtuu18WP/+6NGRb2kLDM3+TX+jrzZwvL2W1pIblMmf4wbJr/2/KVYtezYoAAAAAAAAAAADo7Ho0FGR5p7Drzrtk2TpPLHkyy1pRwwsy/9KT5cuX/Es+etF1ctkX3iMbZkuN1sirj90s5488T256LNEA67mXfO6CcfKDo/eSPhv2yIqt5O1lMuesr8p3b/iXNBx6sfz1yqPkXdnS+hrkrUVXywlH/FDmv2+M3HL112T3TVv5/QAAAAAAAAAAAKDVddMn6hrk9cdulh9fdp+see9x8q1P7rJ+k+7Ra+X048/MmnRbycBPfVW+M+y78p2vDZGBfXoWtjwkN33/ODnpsv+TV1qz1dnwkjz6q/NkpDbpslJxPWSjAZ+V7526r6y5f4qcf90/5K1sBQAAAOgqxoweLatXr85mAAAAAAB0Dd2zUffWE3Lzj6fJ/729qxx79pdlv17RE2ir/y5X/+BHcsd/14hsNUTG3PoHuWXKOTJixAgZcc5lcstt18oPDt+xsPFVeeSScfKz+1e2zjGYb6+Qv146Qk4a98cKm21byH7HnCiHbfSSzBs/TW5d9npWBwAAAGrfvffeK9fNmCm3zZ2bVQAAAAAA6Bq6YaNujbzwt2vlJ3f9V6T/Z+ULB24jzdt0b8nTc6+SKX/XJ+l2lWMnnSsn7LO1e+Kuh2y4zWD5+oXj5aSdNyrM/y6/+OWf5ZkWderWyuvL/ypXjPiafP2SP8nKrFqJHtsfIt88Zd/C258tE6+4V1auzRYAAACAGqZP0U259NKQjxo+QlaurOarZQAAAAAAOqfu16h7a5H8ZtrN8rz0kQ9/8xOy58bR03QNy+Vvs/7c+ERb1shL/Sb16DNYvnTS/iF/6w83ym1PVPMUW4O8/eJiuetX58pXPnWS/Oi3i2SNbCYDT/iKfGLzbEvZNpe9PnGk7FG4w/Mzr5bfLH4tqwMAAAC1S5+im3ff/dlM5Ibrb8gyAAAAAABqXzdr1DXIqvm/k5/f95LIRh+Rz3xoh+hpusKOZxbKHX95oZD1lO2HHCAD4kZek03lPQccJLuG/B9y7yPPSeUPsa2R5++aIt/44TXy4AtrRPrUy0k/uVGuPeco2bX5h+aVoYds9P8+Jl85uE/htn+TGbMfEz7BAwAAALVMn6a79JJLpKFh3fEVE3/0I1m8eHE2AwAAAACgtnWvRl3D03L3jJvl2ULa84MflEHv2rix3qRB3ly2SO5fo3lfGbTbu2WTUE/rWddfBvfW7L9yz//9U16p+vjLbeR9X58oN8y+UkZ/ejfZLKtWrMe75f0f37eQvCVPzpwr81/h/EsAAADUrptvukmWLVmazda56le/ata8AwAAAACgVnWrRl3D8wtk7pxnCllv2f3gvaVuvV/9Gnnh6RXycsi3ll3eVeL8yd5byFZZJ2/VU8/JyxX/rKCH9NrtOJnxp7ky4+zPyaDte6/3hF9lNpEd96tvfMrvudvkDw/w+R0AAACoTfpZdOeOOTubNXfdjJk8VQcAAAAA6BK6UaNurbzyyH1yZ/jwuR2kfuD20jPUvbfkhef0eTv1Ltm2z0ZZnmPDbWWX9/VpzP++XP4TnsSrRE9558AD5IBd+kjFJ13m6Nlvd/lg6C+ukDvv+6esClUAAACgtvzPlVdmWdq5Z6ebeAAAAAAA1JJu1Kh7XZY+8vfGxlXPPWWv97wjVJtbI6tffSXLN5N39Fq/ldfp9dpBBg56ZyFZI8/e85is4PRLAAAA1Bh9Wu7yqdOyWdq8++6Xe++9N5sBAAAAAFCbulGjbqX868Hs8y222EG261ODTbhy9OgjO+2+XeMRmo8+LkteqvgxPwAAAKBD6WfQlWP0mWfK6tWrsxkAAAAAALWn+zTq1rws/1n2amO+9w6ybRft04lsLH2220Y//k7krWfluRffbiwDAAAANUCfktPPoCvHsiVL5ba5c7MZAAAAAAC1p/s06hpel9eeCx9QJ7LRRrJheOSsK9pQNt+yb5Y/I/95Ifs1AwAAADVgyqWXZll5Lr3kEp6qAwAAAADUrG509GU5NpFtd9gpy58t3eRqeENeeyXbs81m0qvLNv8AAACAtnfHHXeEz56rhD5Vd9WvrspmAAAAAADUFhp1zWwg79hyS9ko5K/Ia6tLfL7bmpfkP4uy4zR32ka66sfeAQAAAG1Nn4qbMG6cNDQ0ZJXyTfzRj2TlypXZDAAAAACA2kGjrpmessUO75F+If+3LPjnf6XojwleeEaefLkx3aL/9tKHJ+oAAACAquhnzenTcdWaPGlSVU0+AAAAAAA6Uvdp1PV8p2w7YLPGfNlz8kLOw3I96/rL4N6avSQLHlsu+Z920SCrFs2Xu8N93i2HDtpFNgn1jva6/PvJJ/TtFewkO2zbOd4VAAAAkEefhhs1fEQ2q851M2bK4sWLsxkAAAAAALWh+zTqerxT3t2/b2P+9LOy8o2cv227xe7ykSPfHdJXf/tHuT+voycvycN/vUfCwZcbDZYP7tlHOscDda/Ly/99rTHdfAfZvu+GjTkAAADQSfXt21eeWPJkbvTose4r7dS6xYABA7JdAAAAAADUhm509OXmsvPu721MX/mHPLHijcZ8PVvLB44aUvjfgudulmnX/l1eWa+nt0Ze/fv1MunnjxXynrL1Vz4vh2zf+Ml2zbz9qjz/zDPyjMazL8rr7XESz5r/yOL7nw4P1PU8cE95Ty/O4wQAAAAAAAAAAOiMulGjbmN5957vl8ZW3ZPyyJKXcz5/bgPZ/IBj5cxP71TIX5IHfnyqnHbJH2Txi281Lr/9giz+0+Uy8qsXyQP6sN1Wn5Nzv3mAbN642tzzd8jo+gPlQx+olw994pfyaN7Dea2o4T+L5IF/6nvtLbvXD5Tt6NMBAAAAAAAAAAB0St2oUddDNt7tADmirmch/7fcdu9iWdW4sL4Nd5YjzzxHTtpDP9Pu3/LXS0+WI/bdVw4++jNy8G6D5IivXiR3/neNSM/95KuXjpRPpJ6m6xBr5ZXHH5R7QkNwPznqg/260z9gAAAAAAAAAACAmtK9+jib7CYfO3afkL465x55+LW8syh7yIbbf0xGX3+jTBn+GRnYR5t7q2T5/L/L8tAE6y07HT5Kpt1xlZz1oe06yWfTqZflH/fNCw3Inh84Qj7y3k0bywAAAAAAAAAAAOh0ejQUZHmHuffee2Xmb6+XOTNvlbXv2kTWbL+pyAY9pMcba2TDh1+RnfZ4rxzzuS/K54/6fPig+ZZY++RMOf7Q0XL/moHyretmyPc/0CdbydMgb7/6vCx/aoWsXL22MO8lfXfcUXbYZjPZsHFDCa/K/Iu/KF+8+jC5Yd4IGVTeRdV55a9y/iEnyVXP9ZXDLv61TP1sv07URAQAAACq03+X94h92/LEkifDCAAAAABAV9Chjbr7H5gnPzjnTPm3vCD//cCW8upOm8vrG6//kN8WL7whmz/4X9lywWvypS8dI6d/Z6T06tUrW61Qw3/krnOOk29Mf1K2/srPZc55h0iftuxmNTwltw79rHx/4/Pkr1OGyDZZufWtkZW3nyMHf3OmrNrmG/KrP54pH9qCgy8BAABQ+1reqHtVFv/6Ypn0f7vLqHFHS/+N7BuANfLqk/fLH+9+UJ4sfM/RY7N3y+4HfFQ+uve2Zf6lvEjhe437r7lBHtzxM/LNg3es4PiSMt5Hw/Ny/7QfyS/+e4iMPvMTsuOG/JU8AAAAAOgKOqxRd+HFP5ZfXfNLee6LO8rKnfSz4Erb9M21svUdy2WbxQ3y25t+I3V1ddlKJRrkrUVXywlH/FDmbfAZmfTni+QzbfYZc2/JC/dNlZOOnSHvnnSjTD1qp7Z7wq3hSbnxq5+TH9y1gXx4wrVy+bH9ZeNsCQAAAKhlLWvUNcjrj/5CTvzU5dK32dfkb8jTf7pYvvWNy+WxcLy92UEOHTtVJp6wl2xW0RfvhfvNPk8+e8pMeXvYTXLviEFS3ncZ5b4P+z7mStnywl/KT76wa5n3BwAAAAB0Zh3yyFVo0t1xvSz97m5lN+mUPm23fMhO8tSRW8qRR39SVqxYka1Uoods1P8I+faxu0qPt2bLZdf9XVZnK62t4T+3y3lf+x9Ze9IFcs4nd2zDYygbZPWDv5HL73pB5L1fkdM+uytNOgAAAEC99YTc/ONpsuD935GRR9rX5Nr0uk5GanNsyyPkBzfdJ/9Y8g+59zc/lmP3eFHuOPcHcsk9zxV2lanhJXns1+fJN06bKc9npfJU8j4K38cM+Kx879St5fYLr5A7nn4rVAEAAAAAta3dG3VNTbov7pg85rIcz+/6Tlnxyb6hWbd8+fKsWoEe28pB3/2efG7bBnly6nS5rY2+ye2x7SFyxqzfyjVnHiLbt+XRNA1PyW0/nyFPyu5y0nnHyn692vC1AAAAgJqxRl7427Xyk7s2kiNOPEx2bTry8iV58JbrZd6ad8knzx8jX3+fHjG5iWyz9+flzPO/IbvIozL96r/J0/oR1UXpkZV3yRXf/aIc9b2Z8nizJ+LKoe/jhpLv45mmjuEWsu9RX5D9X7xFJl/3d1mVVQEAAAAAtatdG3WLFy+W6TOvluWffXfVTTqjzbpnP7K5fP/sM7JKZXpsc5AM++EXZeu3ZsulV/6vvNAmB4BuKu/q30/e2aafH7FGXrj7V3LBH16UnU4YJd8+cJs2fHIPAAAAqCENy+SPV90qz/c+RI78wHbrvk5+459yz28WifTcXz6637bu6+ce0muPD8mRdT1lzZ33ycMvvp3Vc7y9UK48+qvyo9/+W3b94niZ+dOvy5bZUln0ffy2nPexrgO4wc71cvSHN5Mnr7hZ/vrfEu8PAAAAANDptWuj7rRR35X/fHo7ee0drfNpCs8M2loeePLvctdf7s4qldhEtj9ipEy94Lvy6c2flifdN781peG/svipPnLM8HEyccRBsg1dOgAAACBY+8TdMvOulbLRoR+Uffv0zKoFLzwlj64ofP2/xc6y4zYbZsXMJtvJLgO3EHlroTz6ZIlD8ntsLH0POUUuvPmPcuuPj5VB278jWyhT4X08Vsb7eMS/jx7byz4H7y6y6k6Z/b/Pln88JwAAAACgU2q3Rt3ChQvlqVeeCU/CtaaVH9tWpl45NZtVqMdWMujLp8rw4V+UQf4b91rSY1vZ/yun1favAQAAAGh1b8iyeX+Wh2Qz2fcDu8nW7i+0rfnPCnlck/ftIu+O+mMi75Ctd+pTGF+T/778emMpT8895YRJ35PPD9IjKyvX+D4aynof6xpym8p7BtVLnTwjc+96RF7MqgAAAACA2tRujbrf3P47ef6DrdukU9r4e/iRh2XlypVZBQAAAABekSWP/lOkYVvZvV9fd6xkofT2m/Jalq9vI+m1+SaF8RV59sUSjboWqvZ99Nx+F9m3p8hb9y6W5TV6MAgAAAAAoFG7NepuvfEWef3dFR4FU6ZXBvaS+fPnZzMAAAAAeF1eeuaVwriFbBUaXl1In3fJLlsUxqf/JctX0qkDAAAAgFrWbo26F5/5r7zcp22+QX77Xb1lceGbVAAAAAAI1rws/1n2qjTIjlK37cZZsdEGm/cpVAveekveXu9D3lbJf//9UmHcRnbdXrthbaeS95H8KOo1b8mba/iUOgAAAACoZe3SqFu8eLFsO2jnbNb63tx6U3n4wb9nMwAAAADdXs8tZNudNpMeslJefOXtrNhogy23lZ30453/vlz+Ez+Q1rBaXvqPHki5pfTZYqPGWhtpfB89Ovx9AAAAAAA6Trs9UbfxZptmWetbu0m7/TIAAAAA1JSV8kLUqJOt3iuD9uwt8sJD8o+n3siKmVeelIXzXhLp/f9k17o2PjKz8D72K+N99I/fx6qX5b+6ffNtZesttOMIAAAAAKhV7dLh2mGHHWT5n/+RzVrfpitWyXsG7JrNAAAAAKCvvGe/foXxeXkyfFads8GOcuBn95eeMl9unfOovNp0euTr8tTcm+XGVT1l62MOk/e9s42bYPo+jirjfWzR/Nu2hv/+W55YVUh230XqeiUPxQQAAAAA1Ih2adT16tUrjO947a0wtraeL74pO21Tl80AAAAAYFPpt8fe0rvHc3L3//1LtK+1Tm/Z9TPflG/ssUYe+PGpcuqPZ8htd/1Rbv35OTL0B7+Vt7b6rJz51feLfULd2/MvlvfvvIvsut/F8kCV39LoPQbv0niP+U0P+On7+EbJ97F5trvRGnnxiYdkgWwku35sX9mRPh0AAAAA1LR2OzPy01/5vPR6uvm3x63lnf94Rfbde99sBgAAAKCr0M+79uJ5vg1ki0Eflc/07iGv/mWh/PPNpsfVgh596mXElT+Rb+//lvx12hg55aRvyKgJv5Yndjxazps+Rj69Y9sd3e9V/j5elkfvvV/ekr3k0wfsJBx8CQAAAAC1rUdDQZa3qbv+crecPOX78o/Ptu6Tb1s+u0r2u/5pufPwz4r88IdZFQAAAECtWr16tdz821vkokkXScN2m8hz/XpKw6Y9pcfra6TPw6uk1+qecsb3zpAvfO4L2RV5Xpb5F58kX7y0h4z8zVVyyt6bZXXvDXl+8T9k2StrRDbaVgbsuYNstt5Tag2y6m/j5cAz+sjVd31H9t4wK1dk3T2m3/0d2Wu9Dls576Pglb/K+YecJNe89zyZM+NYeQ+dOgAAAACoae32RN0B799fNln6ZmistaYt/vKsfL3/wGwGAAAAoJatXLlSThx6koy78VJ58sR3y9+//G55+sDt5JlBW4fx0W/tIv88Zms5+xcXyrFfPS409fJtIfsdc4IcttFCuXrWAok+qS6ziWzdfx8ZNGiQDNorpzn29lNy9613y6Yf30d2rqpJVxDu8efGeySba2W8D3lbnvvLrTLzuV3kS0MPzbkPAAAAAKCWtFujTj+nbvT3z5Ltbn8uq7Rc32WvyjaLV8vRO+3aWOCJOgAAAKBmadPt5JGnyD0bLw0ncbzcZ5NspbkXt+stjx/fT/684T9DU6+YHtsfIicPHywvTL9R7ny6mg+Ya5C3npont7/8Wbn05A80fW5dZeweR4V7NP/MuQq8tVhmX3W7yMFfk5M+uE37fTMHAAAAAGgz7Xb0pTnua8fL3T2fkBWHvDurVGeLF96QussXy8wPHir7brttVs2ce27hV8anqgMAAAC15MKLfyw/nX+DLB+yU1YpbbdrlsrZJ46S4754bFZZX8Mr8+Qnx31Trt3nYplz3kelT01+q/CWPD17jHxm2EsyfO7Fcux7emV1AAAAAEAta/dGnf4t2Y9+7GBZvkePqpt11qQbu/f75QvvHZBVIzxdBwAAANQMPfJy/0Hvk2dG7ymvbbZRVi1Nj9bvd+2zcu9d94RTPNIa5PUn75XbHtpQBh0xWHbYqAY7dQ0vyGN//Kss6ft+OWzQ9lLtCZwAAAAAgM6l3Rt1Sr8JHzriZLnv1UXy3yN2kNfeUf434ts+slK2+u2/ZeL76mXITrtk1SJo2AEAAACd3uw/zJZv3XReVX+ZT5+qu37CL2SfffbJKgAAAAAA1IYO+ViDvn37ylU/+5V87xPfkJ0vXyLvmv+8vOO14p8XoZ9H9/9uXCJ7/PEFufXgI8pr0gEAAACoCQ88/KC8td2m2awyL+3+Dnn48UeyGQAAAJCv4fm/yx9+c78sf8ueX2mQt59/Qh6cP18eXPy8vJ1VS6v2Ou8NeX7xw7L4+TeyeSlFXvOt5XL/b26T+c+Uey8AnUWHff64Hktz6je/I3Nn/UFO2e5wede4h2Xva/8t29/zbGjcWewwe5nsMXmxDPqryKR37iW//9inpH+fPtldysATdQAAAECn98y/n5Y3t66uUadefuPVLAMAAAByNDwtd1w0Sn447zXp3bOHyNsr5K+XfF0OfP9h8oWjPydfOOwDcuCJU+SvT5dodlV7XTNr5NVHZsrpQ06Qi/7yn6xWRM5r/uXf2WtutIVs+tSv5JQf/kb+9Wa7H6IHoAU6rFFn6urq5OzTR8sTS56UGydNl96//bf0uv/5EL3veEY2+ct/5c9z75bbf3ubDPnFVdJr3Ljsygpos679T/gEAAAAUIENXyl+ygYAAABQvTXywt1XyNk37yFnnvIh6bvB6/LU7y6RkZcslkGjp8ufHvxf+e0VI2Tfh6fIyAvvkKdzf5xc7XXeG/LcA1fJ6SeMl7+W9SVw42uOunT91xz1o9uz19xC9jr2m/LxB34qU25fLvw0HKgdHd6o8/r37x/GDZauDtHjhcZ/S+lRmc1U85Tc2LFZAgAAAKCzOfADB8pG/3k9m1Vmw2dWyb677pXNAAAAgIS3Fslvps0S+crn5ZDtNxJ583H57U9vlZcO/q6M/saHZMc+28nAw74pZ//gY/LSrb+QWx7KObFBr5v6m8R1hxa/LtPw6uMy5+Lh8qUvTpD7124mPbN6Udl7ffGg09Z7ry//5pdNr9mjz/vkqGP7yO8m3ywPrqZVB9SKTtWoq0g1zTq9hqMwAQAAgE7n4A8eJFve+2I2K9+mb64Np3DstttuWQUAAACINciq+b+Tn9/3Ljn68D1l80Jl7dIH5fbFG8nuB+8tdT0ad4lsLHX7HiC7yz/k9vkrZG1W9fS6OxZvmLhu/6LXmTWLZsvZl/1L9jrjSrn+4uPCeyml6b0eVOq9bi57fuwwee+/bpTr//ofnqoDakTtNupUtU03mnUAAABAp6JH4n+gvj58TnUltvrrM3Lie7da/xQOAAAAoMmL8uDcP8izvQfL/gO3KMwb5K2V/5Glsolss+U7mv2QfIPNt5RtZJUsffZFWf9UymqvW6dnv8/IjP/9jVz6rYNlly02zKrFlHrN1e41e8jGu+4jH9x8hcy5+zF5JdQAdHa13agDAAAA0GWc/4Ox8q6/vCpbP/FSVilO9217z3/lOz37ihx5pPC51AAAAEha87Q8+tenRPrvInWb6Y/E18gLT6+Ql2Vz2W7LTRv3mC22kR03F3l58dPyQlZaR69bXsV16/TY6j2y2zabZLNyFH/NHeLX7N1P9j6gj6z6/YPyxNtZDUCnVvuNupY8Vcc38gAAAECnoU/VXXzRxfLO//mXbPvIyqy6Pj3ucvt7npW665fJb7fvJ3032qhx4VOfahwBAAAA77X/yLLlb4lss6Vs3uwn4hvKxhuV9SlxkWqva4lyX3NL2XH3d4m88KQ89TydOqAWdI0n6rTpVk3DbuzYLAEAAADQGRz84YPk7vfsIgfd/rzsftljoSG35bOrQvRd9mqY95v8iHzqwVflzrr3SN2mm4r06NEY6pOfbBwBAAAAs+pFKXw5KVv03176hEJP6bN9nWwhL8hTz70WKk1efk6eesXv9fS6Haq4riWKv+byNnlNAO2pax19WU2zrtomHwAAAIA2UbfJJnJD3x1l5obbydF/+7fUz/ynDLppiXz+t8/KWY+tkT9ut4tcvuWO656ks0adxgaFb3E+85nGOgAAAKA2eYdsWfjS8bXl/5WXQ6GHbNR3W+knb8hzL74ma0Ot0dpXXpTnpLf0225Lyb7adKq9riVKvWavNnhNAO2pazXqVLVNN5p1AAAAQOeQNd322ewdMuTBJXLqvCdk5F8fD825UzfdWuo23rjZvvVC0awDAACA2WI72Xm7nrLm5dfkjezTkDbot58c1v8tefSuv8uKpk9IelNWLLhPHpUBctDe2yd/eK7XHdr/7cR19xe9riWa3uvd5bzXV+TZJ58XeecOsn2f9j6eE0A1ul6jDgAAAEDtio6uHHLkkWI/i/j973/fmKQacz43Rx0lcvTR2QQAAADdVs93y+4H14nMf1yWrs6+utx4gHziq4fIBnf9RM6f+idZ8uqLsuSuK+X8C2+XDQ7+onx6r80b98nrsvjXZ8u3vnG23Lj49cbrTkpc96Pbil9XtsR12XvtefeU9d5rj4O+4F6z4I1/y+PzV0rPDwyQHTeOvj4G0Cl1zUZdS56qa2j6KwkAAAAAOoI23PQIS9d406/Sw1fq1pCLw6RqAAAA6BJWr14td/3lbhl59vfkmKHHh9Bca7qWr4/sfdCHpPcr98u8f7ya1XrJe754tlwxvL8suOhrcuie+8mhJ02WBXsOkysuOFres5F9Pfm2vLL8Abnzjgdk+StvF+Z63Zj1r9sjdd18d125Gl/vT82ua3yvPx+2/nv9+YTPudcUWbvsIfnzij5yyBGD5F18SQzUhB4NBVneKey68y5Zts4TS57MsipU07TjGEwAAACgY3zqU41/eS5rtD2+aJEsKoTSb1w+/elPhzyIG3QmbtLp/KabsgkAAABq0eLFi+Xbw0+Wp9/xijy/12by9uaNn8q24StvydYPvSrvWLZGrp1+rfTv3z/U17PqPvnxx74mt3/xavnNiPdJr6ysX2W+/fw/5aFlL4tsvpPs1X9r2TBbadKwVG48aYQsH3a1DB+0mRWrvK4Met1XR8ry714VXVfqNVfJY1d8Qz798/8nV9w2Wg7m6EugJnT9oy9p1AEAAAC1RRtrFgVNT9MZt9Zsr68rP//85xtHAAAA1Bxt0g35+OHy0Aca5B+frZPnd32nvLhd7xCaa23pke+UIw77eNNf8lpP773l86d9WJbP/L3c98KarKh6yIZb7yr7DRok+6WabfK6PHX7dJn+wkflIwN6ZzVV7XWlNF53zcqDE9eVeM3Vj8nc6xbJ+7/zefkgTTqgZnT9J+pMtc03mnYAAABA+/jMZ0TWrl3XXCuMjz/+eAil37h8Rvcot2c9eWt6nOYNN2QTAAAA1AI90vLDH/1waMRpU66YrZ94Sfr9/iX5y5/+Ir16rXtmrsnrD8kVJwyVO4dcKVedNFA2zsrFNcjrTy6Qx3rtLvu9a5OsVo72vu4teXrW9+TwX7xXfnnNKfK+LWjUAbWi6z9RBwAAAKB2aHPNosCeprNotp7taZJai+df+lLhRuFOAAAAqAF/uvtP8lzdmpJNOqV7dK9ek7TpnvKV8WfLR15eIkvfLPdrwh6y6S77Vdg0U+183ZtLZMGy3WXcj06QQTTpgJrSfRp1LXmijm/kAQAAgPbhG2sbbCD/ePxxWVsoa+z2//5fU93vCdGz57rch9+no/rylxtHAAAAdHo3/v5mWbVv32xW2qv7bxOuSeshm/b/hJz83SOk/8bZ14Zdxcb95Yjvfks+PfCdhV8lgFpS+G61G9GmWzUNu7FjswQAAABAmzjqqHVNNRfN/sqc1X2eqnl+j1+nWQcAAFAT/j5vgazevvzPeHtjq03CNQBQK7pXo85U06yr9ok8AAAAAOVJNdQKtFmnMXD33dff48PY3D9RF4c69tjGEQAAAF3Ki8/8N8sAoPPrno06VW2zjoYdAAAA0LqOPnr9Jpoq5NakC0/W+T0WXmrdwvO1449vHAEAANAp7T14X9nkv29ks9J070c+9bFsBgCdX/dt1LWENuv43DoAAACg9fimmkb2GXP62XT6lbeO6+1x+5qFrcXX+HXL1Ve+wtf3AAAAndSnPvFJ6fXEy9msNN37sQ8fks0AoPPLvjPtpng6DgAAAOhcfGOt4PNf+ELj03QFv/71rxuTaE+z3KTW80KdeGLjCAAAgE7lE4ccLts+9JZs+eyqrJJP9+jeoz/12awCAJ1f927UqWqbdWPHZgkAAACAqn3+843NMv+0mwttzmmjTuMLX/xick+TuK5h++PrPJvTrAMAAOh0evXqJZMvmizbX/NU0Wadrm31y3/JhHETwjUAUCsK362i6s+e44k8AAAAoOWsiaaiRpo16cJTdbbm1gNfz4tY3p6TTmocAQAA0Gkc/OGDZPf+u0vfK56Qujv/LX2XvZqtSMi1ttWV/5SGt9fKQ/MXZisAUBto1HnVNuto2AEAAADVST3pZnlhbfc99mhq1F13/fVh2a83C1+zPX6/X/fh19XXvtY4AgAAoFO4ddYsWfi/D8gOfbeXwzfcU95501J575kPhjjo4S3knPqvya3Xz5Ier62Ry6dOC/sBoFYUvitFM9U23fQ6PoAeAAAAqJ5vmPnIrPdUXSpMas1HLF77+tf5+h4AAKATWLFihYwaPqLwpVmD/OSyy2TTHhvLBv95U266dZY8seRJuXn6jfKtr31L9thjD5l+7czCl3M9wv6FC3myDkBtoFEHAAAAoGMcc0zj6JtkPjL2RF1Toy41GrvWh697fk8c6hvfaBwBAADQYSaMHx/Gb59ysgwYMEDmzp4T5prH6uvrZdT3vx/yEcOGhSYfAHR2NOpSqn2qbuzYLAEAAABQlrwjKDUKtb8//LCsLWzT2HPvvYvubRbxWt4+C7/fxze/Gd4mAAAA2p8eYamNuZ127iffOfVUWb58eagfPuQI6dWrV8hjQ08eGtaXLVkamnyrV6/OVgCgcyp8R4qkaj97rtomHwAAANDdWDPM802ygmZP0xm/Jw4vte7DS61rqG9/u3EEAABAu1m5cmU4wlKdNWaM9O7dWx595JEwP/DAA8OYZ+KkSaG5p02+y6ZMyaoA0DnRqCuFZh0AAADQ+r785SzJpJpkhWjWoFNat9GHF6/58FLrGvGa0mbd0KHC59YBAAC0j8mTJoXxmOOOlUMPPTTk8+bNC+N73vveMObRp+2mz5gR8sunTpNZt9wScgDojGjUlaPaZp0G38gDAAAA+XxDzI6g9PUCe6Ju7333XVd364HN7R7+OEsv3peKeA0AAADt6o477pDrZswMT8WNHDUqq0qoqd122y2MxdTV1cn0axv3nz5ipCxcuDDkANDZFL4DBQAAAIB2dNxx6xpiPnxzLFvXz6bTJp2O661ne5qu9fcw8T6/39dtHkd8zXe+k90YAAAAbUGPvLxg/PiQ65GXffv2DfnixYvDOPiA/ZtqpdTX18vpZ5wR8hHDhsmKFStCDgCdSeG7TZSl2uMsx47NEgAAAABNrBFmuefWTjjhhKbjL6+66qrGxNbtOp8bv8dHvGbiWt66olkHAADQZvTIy6VPLml25KVaunRpGA86+KNhLNfQk4fKJ44cIsuWLJUJ48fL6tWrsxUA6Bxo1FXCjrOsVLVNPgAAAKCr+cpX1jW9fPNLxXWLAjv+0tea5crmpcJLraciduqpWQIAAIDWknfkpXpw/vww7tp/1zBW4qKJE8M9586eI5dNmZJVAaBzoFFXDZp1AAAAQPXi5pfmdrSkjZlfXXVVU5PupK9+dd267bHc1+N7aRibx+txeL5u16jvfrdxBAAAQIvpkZcTxo0L+ZmjR693vOUf5swJ48CBA8NYiV69esn0GTNCfvnUaXLrrFkhB4DOoPBdJqpSbbNOo8EO7wEAAAC6Kd/4ihtqbm2fffdt+py6X/zyl2HZrzcb49zv9Ws6+n0aqb2p8GtKm3V8fQ8AANBieuSlHk8ZH3mp9LPldE2fiqurq8uqldHrpl87M+Sjho+QBQsWhBwAOlr23SUAAAAAtAPfDLPwiqyHdlhq3Yfxc79uNROvlROx4cOzBAAAANWIj7zsEX3NtWzZsjAeMWRIGKtVX18vp59xRshHFr6G0wYgAHQ0GnUtUe1xlmPHZgkAAADQDaWaXr4WrWmDzmK9dbcv8OtxeL7m96QiJV4fMaJxBAAAQEX8kZdnjRmz3pGXauGChdLQ0CADBgzIKtUbevJQOXzIEeEJvQnjx8vq1auzFQDoGDTqWqraZl211wEAAAC1LNX88k2vaK1Zk07l7Y3rPkxqLS9iqT0+1MiRjSMAAADKdvHkyaFpps2z+MhLc/ddfwrj7nvsEcaWmjhpkvTbZWeZO3uOXDZlSlYFgI5Bo6412GfPVYpmHQAAALqTk05q3tzSz3nr2bNx9HVbK8QDDz4YmnT6OXX7ve99jWsq2tcUVs9bT4XtLXbfOGyf7dVRjRrVOAIAAKCke++9Nxx5qc4aPTqMMX3ibt5994e8f//+YWypXr16ydXXXBPyy6dOk1tnzQo5AHSEwneUaDXVNus0+AB6AAAAdAe+wWXNLROvFaLZ03QqsSeE8XO/Htc8v8evx3Pj63Go00/n63sAAIAS9MjJ0WeeGY60nHTJxVJXV5etNPf444+H8Zjjjg1ja9HXm35tY5Nw1PARsnDhwpADQHujUddZ8Ll1AAAA6Mq+/vV0U0vFdR8ZbXu9b/Dg3PX16hbxmrG5fzouflLO8/U44nX1/e83jgAAAEjSIyftyMvPHHVUVl3fv/75zzC+//3vD2Nrqq+vl9PPOCPkI4YNk+XLl4ccANoTjbrWxnGWAAAAQJpvZCnf3IojY0/UNT2fFq03uyYvTGrNRyy1p9xQ2Q99AAAA0Jw+vaZHTqozzzorjHnuueeeMO68yy5hbG1DTx4amoXaNLxgwoTwpB8AtCcadW2h2mYdTT4AAAB0VXEjyz7rzYc1uNwe/Ww6jdCos7pbb3atjXHEe/y++L62Xiz8/mKhfvCDxhEAAACBNsL06TWlR17usMMOIU/RvXNnzwn5gAEDwtgWJk6aJDvt3C+8lj7pBwDtqfBdJtqEffZcpWjWAQAAoKvRYy/9Z7ZZEyvF1rJm18knn9w4L5g6rfFvXdtavLeZSvb4PC9iqT2pUDTrAAAAmpR75KVatGhRGHVvr169Qt4W9N7TZ8wofPnWIzzpd+usWdkKALQ9GnVtjWYdAAAA0Mg3ryxPzX29oNnxl1ZP7GtWs7rPjd8Th1/3/J5ywzvzzObNSgAAgG7IH3l51ujRYSxmyZNPhvHAAw8sfHkVfX3Vyurq6uTqmTNCPmr4iPBeAaA90KhrD9U262jYAQAAoNZ961uNx0X27NkY8RGSfm41i8L8p9OmNR1/+Z3TTkvv9TW/ZqPfE78HC78vvsZq8bxUxPvHjAm/JQAAAN2RHmM5cvjwkOuRl9oYK2XevHlh3HOvvcLY1urr6+X07HOG9XjOFStWhBwA2lLhO0YAAAAAaEPWuDKWx6Nx+wfvv3/T03RT7PNC/H7bm6r5PFUzxdbjNePr5YYq42+OAwAAdEV65OXSJ5eUdeSluW7GzDDuuOOOYWwPQ08eGt6jHs85Yfx4WbVqVbYCAG2DRl17qfbpOJ6qAwAAQFdkjSsblW9qZbHeYZGJPc3YPN7jw/i5X/fhpdaLRR59su6cc7IJAABA1+ePvBw+YkQYS1m8eHEYBx+wv/Tt2zfk7WXipEmy0879ZO7sOfLTyy7LqgDQNmjUtadqj7OkWQcAAIBa5ZtWvonl6yq1VogDDjggLNtTdaFuo+XK5nHYmhfvicNLraciJbVPAwAAoBvRIy/1GEn1w/PPk/79+4e8lEcfeSSMBx380TC2p169esn0GY2fV6cNxltnzQo5ALQFGnUdgWYdAAAAuhNtTtnntMWf7xZ/jpuN2XWXTpnS9Bl1+3/gA+uus/DX+/DreXutHke8z8LvUX6ukdof1zT0c/J07dxzRRrWe2YQAACgS7n5ppvCMZL6ZNzRn/tcVi1t0aJFYdxn333C2N70M/SmXzuz8GVbDxk1fER4KhAA2kLhu0R0iGqbdTTsAAAAUCtOPrl5I0tD+TGOqN70JJ1xa8kwqTULL7Xuw0utVxPe2LFZAgAA0PXo8ZXnjjk75OeNGye9e/cOeTnmzJ4dxp122imMHaG+vl5Gff/7IdenAlesWBFyAGhNNOoAAAAAtB19gsw3p+KmlYXJqxc0HX2ZCuPnft1qKq7H4aXWK4mUeJ1mHQAA6IL0yMtz9LN5C8aOO7/sIy+VNsT0KTz9nDh9sq0jDT15qBw+5IjwfiaMHx9+XQDQmmjUdaRqn47jqToAAAB0dqeckiUZbUpZ0y5uVCm/bvOMNuj06Mv6Aw9sfp3bE9iaDy9e8+/H83vyotivxcTreaHOO69xBAAA6CL0yMt5991f8ZGX6rHHHgvjEUOGhLGjTZw0KTQN586eI5dNmZJVAaB10KjraDTrAAAA0FVZM8s3tVINrlQtq9vn04Wn6Yrsa4pS636PKrYvDr83vlYjdU0q4us01PnnN44AAAA1To+8/OHZ54Rcj7zs1atXyMv14Pz5Ydxv0KAwdjR9/9NnzAj55VOnyaxbbgk5ALSGwneJ6HDadKum8UazDgAAAJ1Zg/t0Od+Q8qzm11w+ctSoMOqdJk6cGPLA7pe6XpW77vNULeb3lYo8qb0aaty4xhEAAKBG2ZGXDYWvBSs98tJYo65fv35h7Az0CM7p184M+ekjRsrChQtDDgAtRaOuM6m2WUfDDgAAAJ3Jqac2Np7iJ8hMas3CatmoxwxZu+/0732v+Z68SK0ry/169HpNYXwtdZ2PWLxeTqjx4xtHAACAGtSSIy/VypUrw/WqmiZfW6qvr5fTzzgj5COGDQufpQcALVX47hJdAs06AAAAdCapxpefW035dRvdHm3UhWadr2drgeXF1kuFl1qPI5baU22oCRMaRwAAgBqiR16eO+bskI89//yKj7xUjz/+eBiPOe7YMHY2Q08eKp84cogsW7JUJowfH54gBICWoFHX2dBwAwAAQK3TJp2yppOyJpQ18HzN16N1fYrOGnU/+vGPm601229jOes+/F4Nvz++Jt6rEe+zudX83NdLhbrggsYRAACgBtiRl0qPvBwwYEDIK7VwwcJwbObgwYOzSudz0cSJstPO/WTu7Dly2ZQpWRUAqlP4LhGdTrXNOpp8AAAA6Cys2aSjb04Zv+7D1wr+ds89656oM36/2xuk1uIwqTULL677eanIk9obh7rwwsYRAACgk7MjL7WBVc2Rl+ahh/4ext332COMnZE+KTh9xoyQXz51mtw6a1bIAaAaNOo6K226VdN4o1kHAACAjvTd72ZJgTWbfONJ2dxHLKv7Bl3I/TUaJq5b2JoX7/FhUmvlRCy1p5JQP/pR4wgAANBJ+SMvL7700qqOvFT6VJ4+paY62+fTxerq6mT6tTNDPmr4CFmwYEHIAaBSNOo6u2qbdQ3N/s4xAAAA0L7iZpPx9Xg9sfahD32o6Ym6Zo06z+1fb55X8+HlrafqGrHUelyrNJQe+wkAANBJXXrJJWH89iknyz777BPyaixatCiMhw85IoydXX19vZx+xhkhHzl8uKxYsSLkAFAJGnW1oJpm3dixPF0HAACA9qeNpdRnsVkttWbrfszudcGPfhQadGsL8aEPf3jdftvbs2fza6Prm9V87sPqPuK632t5vCcv/P5qQ110UeMIAADQieixj/oUnB55eeppp2XV6jz80ENh1AZYrRh68tDQWFy2ZKlMGD8+PBUIAJUofNcIAAAAAK1g+PDmjSXl53lrPqJ605N0xq2F8DWfp8Kk1lJhUmt5EUvtqTbUxImNAQAA0AnoE2R67GNDQ0OLjrw0jz32WBj33GuvMNaKiZMmSb9ddg4Ny8umTMmqAFAeGnW1otqn43iqDgAAAO3JGkoq9TSZSdXjmtULtFn34YMOyt8T5/baxtZT4ddN3nocXmo9FS15yg4AAKAT0SfIVEuPvDTXzWj8zLcBAwaEsVZog/Lqa64J+eVTp4WnDAGgXDTqaok23appvNGsAwAAQFsbMaJ5Q8maUXFTSucWOlfxupvbsZcaqfVmtbz7xut+Xxx+LbXX3zfekwq/1yK+RzUxeXLjfQAAADqIP/LyO6eemlWrt3jx4jAOPmD/Fj+Z1xHq6upk+rWNjUZ9ynDhwoUhB4BSCt85ouZU26xraHZoEAAAANC6Ug0l4+d+jMNkczv6Mnwlm1hvquWtpcKk1nx4qfU4UlL7WiPUxRc3jgAAAO3MjrxUeuRl7969Q94Sjz7ySBgPOvijhS93sq93aox+tt7pZ5wR8hHDhsny5ctDDgDF0KirVdU068aO5ek6AAAAtI1yf5iSt8/XXT7m7LOzTOS8885rTOJ7pK7NG42v+4jF67bH57G8va0d6pJLGgMAAKAdtfaRl2revHlh3Gff1rlfRxl68lA5fMgRsmzJUrlgwgRZvXp1tgIAaTTqAAAAALTMqFGNox31GB/56I+BVH5PsXohzjv//KYn6s4599zGNb9PQ8W1eG578sKzml0f31fDxPVi76FYrdoAAABoZ/7Iy1NPOy2rttw9f/tbGHfbbbcw1rKJkyaF3x/9fbpsypSsCgBphe8QUbOqfTqOp+oAAADQ2uLmkZ/n1Xw9pxl2zjnnNDXqfqgnRNg+Zfu05q/P25PK4z0+/B6Vt69Y2DU+TGqt2vjJT7KbAgAAtB098vL0ESNDPv6CC1rts+T0vvoEmja3+vbtm1Vrl/6+TJ8xo/BlWg+5fOq00NwEgDyF7xxR02jWAQAAoKNZs8j4eWq0XMW5X89ya9RpNIn3Kj9P5cVqPrzUuo94T4pfb6tQ/G1tAADQxvTIy4aGBjnmuGPD57G1lsceeyyMRwwZEsauoK6uTq6eOSPk+nl+CxcuDDkAxGjUdQXadKum8abXFP7DCgAAALSIbxb50XJl83g9DmO5r6l4bzxXxdZUat3vieulIpba0x6haNYBAIA2cscddzQdeTnSjj5vJQ/Onx/G/QYNCmNXoc3M0884I+Qjhg0LTw4CQIxGXVdSTbNOjw/i6ToAAAC0BmsY6ZGPxs+tmRSPdkSk0TyLP911V9OTdE1/xcytN0VeXcOk1jRM3lqq5sXr5UZb+elPswQAAKB1rFy5UiaMGxfyM0ePbvXjKefMnh3GgQMHhrErGXryUDl8yBHhaE99InHVqlXZCgA0olEHAAAAoHr6N4S16eQ/k01ZzZpScdh+Ddvv627v2sKyRWo9hNXy1nzkrVvuazaPw6/HkdqfitS1rRFq6tTGEQAAoBVMnjQpNJr0yMtDDz00q7YObQLa59PpcZFd0cTC75/++vSJxJ9edllWBYBG2Xdx6DKqfTqOp+oAAABQLWs8+dzP/aiNpHg9DlPI7/zTn0KqT9Mdcsgh662vF3l1DZNai8Ok1uKIpfa0d6hp0xpHAACAFtAjL6+bMbPpyMse9rVGK3n88cfDeOAHPxjGrqhXr14yfUbj59VdPnWa3DprVsgBQNGo64po1gEAAKA9/OAHjWP8w5q4YZSae3Hd9hZCG3Q+ArfeFCau5a359bim4rqt+dz4PZ0pFM06AADQAv7Iy7PGjGn1Iy/VwgULwzh48OAwdlX6tOD0a2cWvkzrIaOGj5CFCxt/3QBAo66r0qZbNY03vaah6UcgAAAAQPniJpHy87w1X49qvkH3MT1mKVpvork9rWfzOI/D71fxeipMaq3SaC8/+1mWAAAAVObiyZPb7MhL8+e77wrj7nvsEcaurL6+XkZ9//shHzFsmKxYsSLkALo3GnVdXTXNurFjswQAAAAowZpdOsaNMl+z0aLc/QXaqAufT+frPlI1q/v7+Xkc8T6r2+v6tdTeeK2c8Ne0ZajLL28cAQAAyhQfedkWVq9eLfPuuz/k/fv3D2NXN/TkoXL4kCNCA3TC+PHh9wBA95Z91wZEqn0iDwAAAN2DHXuprPHk8zhSa8Vq2WhP1IWn6qyubL+PuJ6aG1/34aXW88JLrXd0qJ//vHEEAAAowY68bGhoaLMjL9WiRYvCqE/sdScTJ00KDdC5s+fIZVOmZFUA3RWNuu6AhhsAAADaQtwI8qOvKz9PjT6sVtDUpDPx3mxfsu7D79GnzOKaifcUC5Nasyh2n/biX49mHQAAKMPkSZPa/MhL9fBDDxW+1muQgQMHZpXuoVevXjJ9xoyQXz51msy65ZaQA+ieaNR1F9U262jyAQAAIHbWWes3nPzo68rXrB7XrK5crWiTzljux3L3GJsXCy+1noo8qb1tESlXXpklAAAA67MjL9WIkSPD2Fbuueee8Ley9txrr6zSfdTV1cn0axt/n08fMVIWLlwYcgDdD4267qTa4yz1moZmPyIBAABAdxc3gnxzyOqpmorrtpaoX3jhhWFJP6Pu+2ecsW5NuX1NT66lnpaL10qt+31x6Jrfl9rr721he/01ca0tomfP9WuKZh0AAEiwIy/VpEsulq222irkbUWPflQDBgwIY3dTX18vp+vXuAUjhg2TFStWhBxA95J9l4ZupZpm3dixWQIAAABEtOlko89ttFzZ3K/Ho+WqkNtfGSt5BKaGX/O5zZWvpcKzuV/L21dLof7nf0R+8YvGHAAAoOB/rrwyHHl5+JAj5DNHHZVV28bixYvDqK+lR0F2V0NPHiqfOHJI+H2fMH68rF69OlsB0F3QqOuuqn2yrprrAAAA0LX4Zo9v/ljN+Fq8x+cqb70Q2qBLNuni3LO6X/PzeN1G49fj8FLr5UZ7Sb22BgAAgKNHL+rnpamzRo8OY1t69JFHwrjXnnuHsTu7aOJE2WnnfuEJw8umTMmqALoLGnUAAAAAKqeNHn+cojV+fN1qlvtRaa6hxzNarty+226/valRd+jHP77+UY52Xba/aT2uWy21J879a1jdr1vE+/xafF0q/P62itTrKp//8peNIwAA6Lb0Ka6Rw4eHXI+81M9Pa2vz5s0L49770qjTJwqnz5gRcm2W3jprVsgBdA+F79zQbVX7dBxP1QEAAHRfY8as3/Qxqbrl8Vo8V/F6xhp1t912W5gnr7EwcS2eG18vd90iXvd8vbNF3MBTNOsAAOjW9CmupU8uaZcjL811M2aGcbfddgtjd6fN0enXNv6ejBo+QhYsWBByAF0fjbrurtrjLPWahmYHEAEAAKC78A0eP/q68jWrp+Z+tCZSZq57ou7jhx/ebC3k8fXK1+LIq1uY1JpGvOb5ejnRHlKvmwr1q1+JXHVVYw4AALqN9j7yUtnn0w0+YH/p27dvyCFSX18vp59xRsj1CccVK1aEHEDXRqMOjapp1o0dmyUAAADoFs45p3G0xk7c7ClVN3E9nivNtWlXYI26wz/xiTBvtt8ir27h1y2PmoJN66XC+Jp/Si1+Yk0jJd7T2lFMvK/UfgAA0CXpkZcjhg0L+cSLJ7fLkZdq6dKlYRz0vvcVvgzh6xBv6MlDw5ONy5YslQnjx4d/RgC6Nhp1WKfaJ+uquQ4AAAC1KdWEyqtZXZVTs3DztYVt1qhrtpa6Jg6t23XxvnjNarbu98Xh11L7/H0tbF97Rvx5fhbxe/OheKoOAIBuQ4+81IZQex55qR6cPz+M+w0aFEY0N3HSJOm3y84yd/ac8M8IQNdW+C4NAAAAAMrgmzlxc8cUq/l6sVqcFzQ16uI9flRxHodJrfkwfu7Xfd3E9WJzq7W1+DXLCXX11Y0jAADosuIjL9vzybY5s2eHceDAgWFEc7169ZKrr7km5PrP6NZZs0IOoGuiUYfmqn06jqfqAAAAujY99tI+o9h+iON/mGNNnmJhStXcmr6iPlUXZLUg3mtPipl43dZSdf+UmfHrGqk9yu/xkXpyLRavt3bkiffE+y2fPr1xBAAAXY4/8nLSJRe325GXSj93TZ/i22nnfu36urVGf2+mXzsz5KOGjwiNVQBdE406rK8lzTr74Q0AAAC6Ht/Q0UaUsbpf92Oc+5qKa9GoX2E2+yrT77cwmsdNMqvHua+Z1FqpPamIpfZ0RMRSeyxU9je5AQBA12JHXg4+YH/5+OGHZ9X2sWzZsjAeMWRIGJGvvr5eTj/jjJBrY3X58uUhB9C10KhDmjbdqmnYjR2bJQAAAOgyzj23eQPHmnSW+9HqpWp+bhHXC6M9TRcadXn7/ZrVfN2i1LVW9+s+4j15+zRsvSMj9Rl1qZp/z/7XoKFo1gEA0KUsXrxYfj7tZyE/b9y4cMxie1q4oPHJsAEDBoQRxQ09eWj4DEFtrF4wYUJ4GhJA11L4TgwooppmXbVNPgAAAHRd1vSpROGan/zkJ4Wh8dpTTzstjOvxTSX/Or6WWlfxml+3ua/7XBVbz1vztbYWv2Yl4dGsAwCgS9AmzzljxkhDQ4OMHXe+9O/fP1tpP3ff9acw7r7HHmFEaRMnTQpHhc6dPSc8DQmga6FRh7ZDsw4AAKBr8Q2cODeV1HyYRK3Z0Zep/TbGeSpMOWs+9zXl5369WKSk9rVmpKT2lQo1Y0bjCAAAatbNN90k8+67Pxx5efTnPpdV28/KlSvD66uOaBLWKn3qcXrhazH9C2yXT50mt86ala0A6Apo1KE0Gm4AAADdW9ywUZb7uuU2V3k1G+Pc5qYwt0Zd0/GXNvqIxfs8q+Wt2Zi3Xm7E8vak6m0ZsdSeVKiZMxtHAABQc/TIy3PHnB3yseef3+5HXqqnnnoqjMccd2wYUb66ujq5embjX5waNXyELFzYeIQogNpHow7lqbZZp9c1NP39ZwAAANQibdLo55f53I9xnqr5ay183dai8fdz5siawteT+hXlkCOPTO+z0Hn8GWx5675uaz7KWfd5Kvz+YpG6trUi9Xo+/F7/z0LD77FRXXtt4wgAAGqGHXmp9MjLjvp8uIcfeiiMgwcPDiMqU19fL6efcUbIRwwbJitWrAg5gNpW+G4LKJM23app2I0dmyUAAACoadaosUZOLLVueRwmVVOJ2u9+//ssK/Br8d7UWrxHxWt+PbUWh0mtacRrKX69tSNPam8cXmqNZh0AADWlo4+8NPfee28Yd95llzCickNPHiqHDzlCli1ZKhPGj5dVq1ZlKwBqFY06VK6aZl21T+QBAACgY513XvMGjc+VzeOaH1W8R1kttc9q2dh0RoNfUzb3YYrlfq9fU6l1Pze+nhex1J72jFhqj4Z/2s74dXXddY0jAADo1PyRl+eNG9chR14qfapv7uw5Ie+oJ/q6iomTJslOO/cLv58/veyyrAqgVtGoQ3WqbdbRsAMAAKhdpRo3Shs8ymrxnry68s2hLH7/+983fT7dtMsvX7dfx8T+pjULf2Rjqh6vxff016u4HocXr+Vd014Rv6dYvOZHy43NadYBANCpaXPs3LOzz6Ubd770798/5B1h0aJFYdSnwTqqWdhV6O/f9BmNn1d3+dRpcuusWSEHUJsK3ykCAAAAQII+Tae0wVSsyaR0TO3Jq8V1m9uY3XNtYdDQRt1vf/vb5nsS+9e7j4XOLXRu+20ttScOv8/X43tVEv4+rR3xa8Wf35f3eX6pX0+c2z5Fsw4AgE5Lj7y8/777OvzIS7XkySfDeOCBB4YRLVNXVyfTr51Z+LKsh4waPkIWLlyYrQCoNYXvsoAqVft0nF7X0HR4EQAAAGqB//qtvb6W69FDfvazn4UfPqjf/u53YWzim0XK5nE9Jd6rY3xdvJa3J15L5TZP8XtaM1JS++JINeP8ehzq+usbAwAAdBpNR14WvnTryCMvzbx58wpfRjbIe9773qyClqqvr5dR3/9+yEcMGyYrVqwIOYDaQqMOLVPtcZZjx2YJAAAAOqXzz29swvinqawxEz9Z5XMfcd1fp3zdcqtntW8PHSprGxrCE3U/v+KKdXt1tL1ufwir+72+bpFaV77mw9g8vj4VXmq92LUtidTrpfi1OLfRcpPaAwAAOp1zxowJ47dPOblDj7w0182YGcbddtstjGgdQ08eGo4TXbZkqUwYPz4cdwqgthS+KwRaQTXNumqfyAMAAED70CaSbySV21SKr7OajsrvsbofLS/QBp2GHn/ZVLeIr/V1X7Nr4/Dr/jq/5sOv+0jttUjt95G6pjUi9Vp5R13GkbdfI2+vzW+4ofH3EwAAdCj9zLJ5990vO+3cT75z6qlZtePo031Kj+Ds27dvyNF6Jk6aFP5Zz509Ry6bMiWrAqgVhe+ogFZSbbOOhh0AAEDno00XPeLSjrmMj7uM57H4ukqvV4X38POf/7zxvRR8/etfD2PFsuubpOZWy1vz635ufD0vUlL7WitSUvvi8FLrPoyf//rXjSMAAOgQevyhfmaZuvjSS6V3794h70iPPvJIGA866KNhROvSY02nz5gR8sunTpNZt9wScgC1gUYdAAAAgObGjcuSAmu+xKPyzRnl534sVvfy9hU0a+vZPotyaxam0jWLmNXifVaPpfa1R8RSe3x4qXUfxnJt1tGwAwCgQ+jxh0qPvNxnn31C3tEWLVoUxr333TuMaH11dXUy/drG40VPHzFSFi5cGHIAnR+NOrSuap+O0+vK+VvVAAAAaD96pKGJGzJ23KGJ99ror/Nj6t62brJabpPO+Hlq9JGqWd2k1nyu/HocsdQei1LrbRleat2HSa1ZAACADqdHXurxh3oM4qmnnZZVO96c2bPDuNNOO4URbaO+vl5OP+OMkI8YNiw8XQmg86NRh9ZXbbNu7NgsAQAAQIfyjRcdfVMuNbfwdctt7vdoxDW/z/YU4tbf/EbWNjSs/zl1yu/V3MLmfs3v96MPrZX6HDe/lrfH7yvnc97aIuzX6yN+HxZ+j7/Or/t98R4b4z2Kp+oAAGg32pTRJ6mUHnmpxyF2Bvq+li1ZGpqH+tQX2tbQk4fKJ44cEn7P9enK1atXZysAOqvCd1JAG6j2s+eqbfIBAACgdfmGS6nRGjRG58rv82E1Pyq/x9cLtFH3maOOapzk7YvrtpZXV6k1DZNa0zCpNR+x1J72ilhqT6rZ5td9GF/z12uoG29sHAEAQJvSpkxDQ0OnOvJSPfbYY2E8YsiQwpcH2dcHaFMXTZwYGqP6dOVlU6ZkVQCdFY06tK1qm3U07AAAADrGhAnrGiwq/mFKap7a70cfVrMxLzeFXJt0GrNmzQqlwO9XqXlqNLY/Dq+adQsvtd7R4aXWfRibp5pxytd8KJp1AAC0qc565KV6YvETYdxv0KAwou3p05TTZ8wI+eVTp4U/HwA6Lxp1AAAAANYXN1pKzZVf8+K58tfGuSnk1qRrYnujfU3zeE1Zze/xo4pzC5t7qfViezoi4mZaHHnNNuXrPrxi637u6zTrAABoE3q05KjhI0I++ZJLOs2Rl+buu/4Uxn79+oUR7UOPGZ1+7cyQ65+PBQsWhBxA50OjDm2v2qfj9LqGZj+WAQAAQHuwRku54a/RBpDNNY8bQr6m/Hoin3XrrWGbfj7dr66+ev1rLeLrNezz4Wy/7YnD9ufVq11PRXxNW4X9en3E7yMv1/DX+z3lrNtaqn7TTY0jAABoNXrkpdIjL/fdd9+QdxYrV66UeffdH/L+/fuHEe2nvr5eTj/jjJCPHD48NHUBdD6F75iAdlBts27s2CwBAABAm9NjL5U2VayxovLmVsubW+75ed5+nxfYX9265ZZbsqwg3p83V75mdT/GYVJrGia1lgovtd5e4aXW88Lv9806W1O+5tf8aDnNOgAAWo0/8vLr3/hGVu08Hn/88TAec9yxYUT7G3ryUDl8yBGybMnS0NRdvXp1tgKgs6BRh/ZT7WfPVdvkAwAAQOXip6J8gyWeq2JzvZfRmp+nGj5xXmBHX2p89uijtbRuX7w/ntuokfd6NlqubB6H8bX4vhYmteYj7/rWjvi9ePEeP+Ypd59K7aVZBwBAi+nTanbk5Vljxkjfvn1D3pn865//DOPgwYPDiI4xcdIk6bfLzqGpe9mUKVkVQGfhvlMG2gnNOgAAgM7nggvWb7oUm2team7y1nw9zrPRmnSB7fHhxfV4T5z7MHG9nDWfm9R63rwt+NcoFp7V4uahzY1fszCal2qKmptvzhIAAFCNiydPDqM+rXbooYeGvLO55557wrj7HnuEER1DP7fw6muuCfnlU6eFJzEBdB406lA77Ik8PrcOAACg7fhGikrNfa3cudX8aLnKWb96+vTC0NiwO/7445vqIYxvDCm/R8M3mvzcolTdr8WjRrzP7/H78sL2tWakXseH7bPP8fPX2K/H1/1e22cRr/nri42KZh0AAFW544475LoZM8ORlyNHjcqqnYsesahPcKkddtghjOg4dXV1Mv3amSHXJzEXLlwYcgAdr/AdEtABeEIOAACgc9NGijVTVDxXxeap/SZeszyuZXP7a1ph9HtU6lrlrm/i9/o1P4/rNsZhUmsWXmq9I8OL16yRppFaj8Ok6qm5HxXNOgAAKqJHXk4YN04aGho67ZGXatGiRWHUz0fTJ7rQ8err6+X0M84I+Yhhw2T58uUhB9CxaNSh41TbrBs7NksAAADQalLNFJNaKzZarvzccg07JcHWPNvj6G5r2DWt+8ira8Rrxtf8WqpuYfw8ta58vVhUsrfa8M23OEyq7nOleepeJrVu9byaolkHAEDZJk+aJMuWLO3UR16qhx96KIwHHnhgGNE5DD15aGie6p+hCyZMCE8+AuhYNOrQsew4y0rxRB4AAEDrs6aJ0maL55sqKm9utXLnxXJVyK1JFxp10VrT3I++rvw8NVqubB6HV816qWhtqdcoFV6l69acM1a3PB4tV5bTrAMAoCR/5OWIkSOzauf0j3/8I4x77rVXGNF5TJw0KfwZ0qNJL5syJasC6Cg06tA50KwDAADoOBdemG6i6Oifjopr8dzX8uZx+Gt9nsVNN98saxoamj9Np/vi92B1y63u91rYPFXPW7Na/DltcZ4XticvUtdUG6n72++Hhd/rx7zr47X4fnGUWtfQ+xmdq1tuaRwBAMB67MhLpUdebrXVViHvrLShqAYMGBBGdB56FOn0GTMKX4L1kMunTpNbZ83KVgB0BPedEdDBqm3WadjRSQAAAKieb6J4vqGibN2P/pq8udXy5sXygs99/vPr1XIbSz5Mqh7XLExeXcVrcXhx3c9bO0r9nnip9TiM5vG9rW7h1+M1m/vR9isbtVlHww4AgPXUypGXavHixWEcfMD+fD5dJ1VXVydXz5wR8lHDR8jChQtDDqD9Fb4rAgAAANBt/ehHjQ0SC1Os5pXaE89VPDeJ6+yvY+l44403Nk6M7c/2NhPXbJ6qWe7Zmg8T1/zcasbX/J44WlvqNVJhUvV4bnzdr/sxtVZODQAAJPkjL0eOGpVVO69HH3kkjAcd/NEwonOqr6+X0884I+Qjhg2TFStWhBxA+6JRh86l2uMsx47NEgAAAFQsbpjEUWyPPhHl11Nzy1Vq7mvR/MabbgpNurWFuO6GG9bfZ3uVr9u+uJbalxr9enxNHLrmw+p2TGbePh9+X0sjvre9f4ti19heX8vbE0deXSO1ZlI1xVN1AAAEeuTlBePHh1yPvOzbt2/IO7N58+ZJQ0OD7LPvPlkFndXQk4fK4UOOCE9rTij8OVu1alW2AqC9FL7bAjqZapt11V4HAACAdVINk1QjJW+fV+qaeO65erNDzv01/lqr+5rytXiPz1W8rnwtDpNa0/BS6x0VXmpdI7Xmm3Ua8R5dN37u96TmKlVTNOsAAAhHXi59cklopnT2Iy/NPX/7Wxh32223MKJzm1j4M6ZPa86dPUd+etllWRVAe6FRh87JPnuuUjTrAAAAyqfHXqpUgySvcZKqx7V4rsqdR3Vt0lmj7te//vW6NbcnviawWjl1P0/Vy1238HzN74mjNaXunwovta5hLI/XfV1ZM8+knsSzUSNu7ll4fGYdAKAb088N0yMv1VmjR4exs9PjE/XpLG381MLTf5DwOYLTZzR+Xt3lU6fJrbNmhRxA+6BRh86t2madRkOzv3sNAACAlLgpkmqWxHOTqufVyh0tVxts0NSk0/ELX/pS48TvszyvZoo1jFTcYIr35s19mNSaf30Nz9dbI2Lxmh8tN6k9JlXz8uqm1DoAAGhm9erV4XPD1MSLJ0tdXV3IO7vHHnssjEcMGRJG1Ab98zX92pmFL9l6yKjhI0KTGED7oFEHAAAAdFfaOLFQqWZW3rqPVD2u6VwVm+toNTdveqrO1+M8tR7X/Fpct70292F1W/OjRjnXFtvT1mGv66OcfcXWU2v2a/Q1vz+V21wjdb3HU3UAgG7msilTwpNpeuTlZ446Kqt2fg/Onx/GfffbL4yoHfX19TLq+98PuTaJ9elIAG0v+24I6MSqPc5y7NgsAQAAwHp+/OPG0Z9CoLmFzb21a7Mkk7ff10yV8xtuuEH0b/Wqz33uc2FsEl8Tixs9KfEeneddZ/W8a1LXxWt+j68rm7dXmNSahrFcR2uoKb/X1nS0Nd98szEOq6u8e3s335wlAAB0bfo0kx5BqPTIS/t6qBbMf+CBMA4cODCMqC1DTx4amsPaJJ4wfnx4shNA26JRh9pQbbOu2usAAAC6C/9Dn7g5Ev9AKH7KKW+/r5m4Fs99k0a5ubbjki05fw/LfcR1Y7+OvD0+V/GasXocxvJ4PS9aS+recfh9xub+98fWfZ735yDOVer32sa4ruH+ua+3x9CsAwB0cf7Iy0mXXFwzR16qlStXyrz77g95Lb1vNDdx0qTwGYNzZ88JT3YCaFvuuyCgk7PPnqsUzToAAIB81gSJmyEq1SRRedfE+22eqpky5taka2rW2Z5o33riPcrmqXq839f8Wl7dpNZTEUvtqSZiqT1xM07Dy1uL67aWV1dxzY++boo162ykWQcA6MJq9chL9fjjj4fxmOOODSNqU69evWT6jBkh1yc7Z3EEOdCmaNSh9tCsAwAAaB3WEPHNEGuEWCNH6egbO6rYvJwoc//1v/61rG1oaN6kK/bebO5rlsd1X0vV/Ri/Vrzfaqnw6+Xsb+3wr+nD1uJRw369FrZmfM3qlseRtxbXba703savK8tp1gEAuiA98vLn034Wcj3ystYsXLAwjIMHDy78J9v99xs1R5+InH7tzJCfPmJk+LMJoG24736ALq7aJ/IAAAC6ovgHJ74Zkvqhil+PldqvnyWXuj6upeZOaNal9lstb1R5+3xd+bkf4zCpNQuTWktFa0ndOw4T133zTSPek2rY+fA1a7bF9bzcz1XcrIvnimYdAKALsSMvGwpfO9XakZfm7rv+FMbd99gjjKht9fX1cvoZZ4Rc/2yuWLEi5ABal/tOB6ghNNwAAACq9+MfZ0mBb5B4Vstbi+u+VmzNxDU/t9yta5Ou6ak65daa8few0cLLq9kY576m4rqt2WhS637u+bWWRMzX/T6rKT/368Xqxs/jsaXNOhuNb9aZm27KEgAAalstH3mptNFon0/Xv3//MKL2DT15qHziyCHhz+aE8ePDP2cArYtGHWpXtc06mnwAAADNGyBxgyTVHIn3G839uo4Wfm5S9/LNl2j/9Tfc0NSkm3Xrrc3X49e1ua/lzX0ou9beS7zuR4v49ePcvx8LE9dTe6uJ+N5evMdGvy+1nidey9tb7B6V0qczPZvTrAMA1Dg9VlA/C0wNGz48jLVm0aJFYdRGI7qWiyZOlJ127idzZ88JDWUArSv7LhSoUdUeZ0mzDgAAdFcXXdS8CWNh83iM14vNTd665akGVzzP9liTTuPaa69tvq7c3qa5jRZ+rnttv69ZHu+13M/juoXWU3vie/o9rR09e6brGvYeir2XeN2v+fVUzddTNV+P9/iI95Wa66ho1gEAapQdeanGjjtfBgwYEPJa8/BDD4XxwAMPDCO6jl69esn0GTNCrg3lW2fNCjmA1lH4rgboAmjWAQAAlM+aHJZ72vhQtqfYuh+V5rZu/D6/V6XmUc0/P/XlY49tvu73p/LU3GrG14rtsTHeE9csiq2lojWl7p8Xxfan1qzmpdb9XPma1fPmca7Kmasbb2wcAQCoITffdFM4VnDwAfvL0Z/7XFatPffcc08Y99xrrzCia9HPTJx+7cyQjxo+QhYsWBByAC1How5dR7XNOhp2AACgu9Cn6Tzf7PBND6/Yur9exXmqaRfvsXmcu9GeqGvi9yo/t9zPbbRc2dyv2xjXNVINyjiMn+uo11rNRyy1p5JI8WupvT43fn8srqX2ePF6fHRlnrwjLk1qbjWadQCAGrJ48WI5d8zZIT9v3Ljw5FKt0mMRVa0+EYjS6uvr5fQzzgj5yOHDZcWKFSEH0DI06gAAAIDupFhjxdby9hRbL3XfeL2cWiFv1o7x69qUsbnVfK6K1UvV8uaWp0Zl+/LCS623ZnjxWtw8NHHNj6lIrfma5TYWa3im5qrcua/RrAMA1AA98vLcsxubdHrkZf/+/UNei7ThqPTz6Wq52YjShp48NPxz1qdAJ4wfH/4cA2gZGnXoWqp9Oo6n6gAAQHdiTQ3fNIkbHXnrtidv3c99nqr5PK9WsLYQoWHn132jyWqp0H3l/Drimq+nrvfX2NzCzzVPXZsKv6eaiO/nP6/O9vj3YnW/19asbqFzu9bXbPThaz636/NeKzUvtS8V5te/zhIAADonPfLy/vvuq/kjL9WjjzwSxr322juM6NomTpok/XbZOTxFedmUKVkVQLUK3+UAXQzNOgAAgPXpsZe+iaHWaguswI4NtKMDjc39ut+TWo8VW1N512RuvfVW2SB735/85CfDWLG8187jf5/i3zOdx7VY6hobfaTEeyqNWLzuG11+3ee+pmxu11otbppZ3cY49zWl13vF5vG1qfulatqso2EHAOiEmo68LHyZUutHXqr/+7//C+M+++4TRnRt+uf16muuCfnlU6fJrbNmhRxAdaLvhIAuQptu1TTeaNYBAICuLG5YWSMk1eBQNq9kPbUnr25jvK65a9Lou16v1Za6Jm9eKre5itd8bnPj6z5Mak3DS623VniptVSeClu30XJlc1/3YypXlus/Z18vNdc8NbeaHy0HAKCT0aMCzxkzJuQ/PP+8mj7y0lw3Y2YYd9tttzCi66urq5Pp1zb+cx81fIQsXLgw5AAqt+67X6ArqrZZR8MOAAB0Nda48JESr1c6V77mw6/5PFXLzLzuOlmbNRjD/2rjxjdvdMybx+HrqT1as9C5sjxv9Mc4+tGH1nzE6xb+qMrWDntt5d+D5bZuEV8Xh66Z1LqGX/O5n9toucqbW82vqVJzxVN1AIBORI+8nHff/V3iyEu1YsWKMOqvp2/fviFH91BfXy+nn3FGyEcMGybLly8POYDKuO+uAAAAAHRZ8dN0vunhw/jc5O01eeuWp9ZU3nq8z8R1P7frrZY3z8ttrvyaZ/t8s8qkrrH9Fqma1Vsq776pmvLrsXh/POY16/w8L8+bq1JzZU1E4/ek9qsbbsgSAAA6TtORlwV65GXv3r1DXssee+yxMA563/vCiO5l6MlD5fAhR8iyJUvlggkTwhOjACpDow5dX7VPx/FUHQAA6Crs8+lSzYuY31dqv+3N21fOWpnXNh1/6ffH1/s8j+0pdh9ltdQ+X1O+Hq+n1nx4qfVKw7NasSfj/D6NvAaYD6urYs065ffH9Xge38vPVd57i3OlebxfabPu+uuzCQAA7csfeTl23Pld4shL9eD8+dLQ0CD7DRqUVdDdTJw0SXbauZ/MnT1HLpsyJasCKFf0nQ/QRdGsAwAAaOQbGj7PY3tK7S21p9r1wjx6FrBRvNfPi436ZKHNTWqfRTz3kVozcc2Pliubx+utEV5q3Udqj/HzVJ7XrNOwmvF1Fc9TzTlle/z++FrN4+vjdQAAOpAdeakNja5w5KWZM3t2GAcOHBhGdD+9evWS6TNmFL7c6iGXT50mt86ala0AKAeNOnQf2nSrpvFGsw4AANQ6bVBY2Nzz66nwUus+Su2pcH3GzJlNT9Mde/zxzdbWC23S+MZOuXO7Pq8W14td7+s+8vbE++N9lUbqvrZm79vWLPdhe/Ku82E01/0mtc/nqtg8bzQtnavrrssSAADah36O2w/PPifkF196aWhsdAX669IjD7X5WFdXl1XRHek//6tnzgj5qOEjZOHChSEHUJr7bgroJqpt1sWf6wIAAFAL9NhLz5oWOlqU4vdWuj/m10qtO01ficXX+P329Vre3Ng8r+4Vq/m6r1m92LoPL7VebnipdQuTWtMwqWadjb6uNC+3WWdzlTf3NRXX/ejrnl9LrdOsAwC0ownjx4fjIb99ysmyzz77ZNXat2zZsjAe+MEPhhHdW319vZx+xhkhHzFsWGjkAiiNRh0AAADQnVTT0IgV25+ap/aZYuuFmrbaLI7XJ+pU6pq4lprbmFqzppTNywnja6nmlq/5NRXXq434Xl6xdb9WTN6+UtfFf9nNz/Xa1Dy+RpWql1pLrSuadQCAdqDHAOpnd+lTZ6eedlpW7RoWLmh8aur9739/GIGhJw+Vw4ccEZ601Ab1qlWrshUAeWjUoXuq5qm6sWM5BhMAANQWfZpOmx8W5fLXlHNtuXtL7ctZa2qxpK7Lq3nxXKVqnt3X9vnRcmVzX1N5+4zNWytSzUAN4+fxelyPn4yzebzP5l7etaaceXzfYq9X7lpq3Vx7bZYAAND69IkiPQZQTb7kki5z5KW5+64/hXH3PfYII6AmTpoUGtPaoP7pZZdlVQB5ou+KgG6k2qYbzToAAFCrrCkSNzDiSEnt8+Hlrftc+XUfbs2adGH0e+JIrVvTJzVP7ffhG0Zxzc8t4rpf92u+nlprrfCvkXodq+WNPXs2jhoq7x4WcV1H5fdZLTW3XNk8L/y68msa/n7xmkb8eopmHQCgjegTRUqPvNx3331D3lWsXLlS5t13f8j79+8fRkBpQ3r6jMbPq7t86rTwVCmAfIXvUIBuTJtu1TTeaNYBAIBaYM0IO/pv7drm87zIk9prkRKvV7I3M2fOnMIvo4for+Twj388fX1eLa7b3P++qNQ8vjZm1+Tx65braOH5emuFiet5TSyb+zHVENOa5Tb6iGvxPK4Zva/dW+la6r2a1Hvzil2r/NzymTMbRwAAWklXPvJSPfXUU2E85rhjwwh4dXV1Mv3amYUvtXqEp0oXLmw8JhXA+tx3QkA3Vm2zrtQPcAAAADqKHntprFFhDQmfV8Lfp5zrK9mr/N7o6yydhUrqXnadXytWM8XmfvR1Fa8Zm/uasVq85uttEcbP89Z8Pa5ZXVlDzdfifaXmSnPfnFPxveP98dzzzTkVr/vrdYxfW9GsAwC0En/k5cWXXtrljrxUDz/0UBgHDx5c+E9r9N9doKC+vl5Gff/7IR8xbFj4/wWA9SW+MwFQNj63DgAAdGbxXyrKa1z4qER8XbHr/V4LL55b0yWum7y1cvcXm+eNytfi3ObG1/16qm5Rar0lkXdvq9toubJ5qm5jXC81jxtktu73mdT1RvNymnM2WnjxXF1zTZYAAFC9CyZMCKMeebnPPvuEvKu55557wrjzLruEEUgZevJQOXzIEbJsydJwFOzq1auzFQCGRh1gaLgBAICuxDcmLMqRui4VMavF+1J1k1pXrvlyzTXXyNqGhnVP1CnfxIsjXo/npUL3qtRccwudK8tTo4XOfc1y/Ry4eE+1ofzc7uvvbbntLfa68V4fVtM9Jp4r22v8PM5Ta35MrVsj2q+peB4rtm73pFkHAGiBrn7kpdJmi/4a1YABA8II5Jk4aVL4/4P+mblsypSsCsBE30kB3Vy1zTqafAAAoFZokyKOavnrK71Psdd2DZjjjz8+jE1NupTUvWwe11W8v5J5XPej8ftVnMfrytdbI0xcy1u3PB7j3NdU3txq8dxUWjd+3e9J7U/ty2N7/H6adQCAKtiRlw2Fr2fGX3BBlzzyUi1fvjyM+qRUV/01ovXon5HpM2aE/PKp02TWLbeEHEAjGnVAjGYdAADoCqzZZYo1K6w54aOU1B5/bZx78Tz19FZm+jXXhB90NYnW15Na97V4LX4qzK+n5sbWKqn5MKm11gqTWrNIrVvNj6rYemq03Fit3LoptW78vtTeuBbvjZ8IVNOnZwkAAOXRo/3UMccdGz6fq6t69JFHwnjggQeGESilrq5Opl/b+HnAp48YKQsXLgw5ABp1QJo23appvOk18Q/FAAAA2ttFFzVvQlgjohLx9T78uuVeah7v93nMrYdGXchEvnLCCetfFzf54sZbqgloc1uz0aKSubKa1ZXNrWajhV+P11ojSt3Xryk/xjXbayqdax7Piym1N2899XV4fH3qfnZd3tfxV1+dJQAAFHfHHXc0HXk5YuTIrNo1zZs3L4zvee97wwiUQ5vXY8edX/iaTGTEsGHhCVQAhW+hshFASjXNurFjeboOAAB0Ltac0DEvKhHvj+9lYWteau73xk2eWLzf83PN9V5esWtVXPNzf62y3Orx3Od+bqOvK19rSXhx3Y/lhO01vq58ruK5slpqr4XNvXgtXvfsz4zf7xWba25/TjS3iF11VZYAAJC2cuVKmTBuXMjPGjNGttpqq5B3VdfNaHwyarfddgsjUK7jjj9evnzccbJsydLwBKp+3iHQ3dGoAwAAALoSfZquGr5JkdesKEfeU03V3K9wTc4zTuvYfVP31/dSbF1rcT3eH+/xc8v93EZfV75WrN7SSDWt4jBxzY9x3XLl163uc6V5qUap36/svat4Leb3qnh/3lxHjdR78+K50mYdDTsAQI7JkyaFxoMeeXnooYdm1a5p8eLFYRx8wP7St2/fkAOVOGv06PDnR59AvWzKlKwKdF/RdycA1lPt03E8VQcAAGqdNTXi8KqZW83nKrU3s7YQJ5x0Unn7dUw1cvy6X1N5+62WNzdxPV6L63GtJeHvZ7kfVV6u4nlL2L20SeobpbFUQ9eusTzm7+XX/XWl2F7b7+d5AQBACXrkpT5hpkdejhw1Kqt2XUuXLg3jQQd/NIxApXr16iUTJ08O/5+5fOo0uXXWrGwF6J5o1AHloFkHAABqiTY0LOzJIV/z4nk5/H0sj0NV8tSTXWc1lydbJfHe+NdpuY1xnqr5PK8Wz33Yrzeu+d8Hq6XG1gh7vbx7l6pXG/ZrS4XeO7VuNb+eeh9e3r18GJ+beG8c8evb6xlt3P3yl9kEAIDGIy8vGD8+5HrkZXd4wuzB+fPDuGv/XcMIVKOurk7GX3BByEcNHyELFiwIOdAdRd91AMilTbdqGm96DX8TFwAAtIcf/zhLSvCNiNS8WvHXPDaPX8fyCoQ7pe5j8r7esr3xerF75dW8vLmva543tzy13pIwmuc1vUrVTLnzYnWTt251v27ifbbHxnKUc32lc0WzDgCQ0SMvlz65pFsceWn+MGdOGAcOHBhGoFr19fUydtz5IR85fLisWLEi5EB3Q6MOqFQ1zbqxY7MEAACgjVlDSkcLP/d53ryYeG/e3OSt+T15Cntuv/126dGjh2ir5JCPZscrpa61Zop/DWVz32zR3Pb4vZ6vx42aSufK1zTPm/ux3Cj2FJqtW+7Xi81Ttby5jb5ufD21Hiu2L675uealfh+8auc6Wv6LXzQGAKDb6m5HXiptpOhn8emvWZ+IAlrquOOPD41u/XM1Yfx4Wb16dbYCdB806gAAAICuwJ6m800Za1z4ueWpeTmh19h9Lbd5uaHsGqVjzvzQww6TtQ0N4Ym6O//0p8b11F6f9+yZvx5HfC9fS63nzeNI1bXmr1fxuuWVsmvyrvX1vOZkuVLXa61YPRUp8XqcF7N2bfFr4zy1Vkp8LQCg29IjLyeMGxfyM0eP7hZHXqrHHnssjEcMGRJGoDWMHjNG9v/AATJ39hy5bMqUrAp0H4XvBAFUrNojMKu5DgAAoDX45kLcbGjpms1bIr5Plp/wla+EUX3UnqgrJr5P3Lgq1QSrZF1zi1JzX1ea+8adrVlua+WEXeOv1Walrdl9/TW25uvxXCO+Vuloe21uNWVrFn7dz1N7bV1HlbfX+Hm8btdazeepuYYXz1Vc0z9rV16ZTQAA3YkeealPAHWnIy/VE4ufKPznr0H2GzQoqwAt16tXL7mo8P8pfVLz8qnT5NZZs7IVoHvIvuMBULFqm2406wAAQEfwjQjL43kxvvnVFip9P3ni+8TiX4ffm9qfd6/U3pi/Ns59TaXqca3cMKl6Xq5KzZXN89ZKrXtxA84rd27XpqJa8bWl5opmHQB0K3bkpTr5lFMK/2lowX93aszddzWecNCvX78wAq1Fj1Idf8EFIR81fIQsXLgw5EB3QKMOaIlqn5LTa9r6h10AAADV0B80WcRzq7U193XSCSeeGF63qVLte8j7NeR9TZbaa3Nfj2t+1HvraDUT1yy3erxeSnydv1Zz3xCz0e9ReXO/1+cmbrbF6zaP1+N9Kq6l5nFUK762nLnVdEw1Ga+4onEEAHRp+vlZduTlpEsu7laf06bHfc677/6Q9+/fP4xAa6qvr5ex484P+Yhhw2T58uUhB7o6GnVAa6imWTd2bJYAAAC0AmsKGZ+rls6N1ktFKfGeIvOrrr668EuLmmm2rmN8bbns2vj61P3y9pW6Nt5j87yar6t4LS9MuWvxPFXz85hfLyZ1fblzu9ZHS8X3iOd2FKbSMZ7H++O5+vnPswQA0FXp52fpkZeHDzlCPnPUUVm1e3j88cfDqMd9Am3luOOPD3/G9P9nF0yYEJrjQFdHow4AAACodT/6UZZ0EtbUSIVf97mfO1dffXWWiZx40knrrTe7TiP1hFccxnKr511r4npeWIPH309zqyubW81Gy+0z5kpFfK3Kq/k8Hi03fl7OumdzbbCmnliM96fYtXZ9fK94bvTe8XuL556fF7u/n1ueN7/88sYRANDl6FF8P5/2s5CfNXp0GLuTf/3zn2F8//vfH0agrYweM0YGH7C/zJ09JzTHga6u8N0bgFZR7RGY1VwHAAAQK7cZoVo6b4lyXstqhVFbH1n7o7Ry7m1jKs9je/L2pta0Ueb5Nct9Tdk9KgnfkLMweTWv1H7j11LryurxXqsXE+9Jza2mo/26bW55OeK9lVyryrn+Z40/xAUAdB36VI8exadP+ne3Iy/NPffcE8bd99gjjEBb6dWrl0ycPFn67bKzXD51mtw6a1a2AnRNNOqA1lRt041mHQAAqJY9TafNAmsYWJ5qIFQqvkepeSUquLc260766lfX1XS0ZpjmRa4NSs39vXwTSKX2as3q8V67l4rnqWt9zfJK2LVxbvw8Xvdz/4SY8Wt+3XJ/L6XzvL0qNfejF9/b2D38talcpdZScx/xmp/n5ak1mnUA0KV05yMvlTYq9ekmtcMOO4QRaEvaDB83YULIRw0fEZ5oBboq9x0jgFbRkmadfVMPAADQmrThYU0Py+O5z21ea+Jfh+WVsq/J/H3yFHud+Pp4rx8tPF9PhZe3Ho8mniur+caiivdW0kxMva7VdLTXsrqtlaOSvarY/nit3LmOGvGvw0ybliUAgFqmDQJ9qkededZZYexuFi1aFEZtVOrTTkB7qK+vl7Hjzg+5PtG6YsWKkANdDY06oC1o062aht3YsVkCAABQAd8Y8LlqyVxzm6fy1LzcaE/+NVN5ai2Wt9fmqth63tyaXr6utXLCPsfOrvdhdX/PUnPLVbH9Ks799cXubeEVm8drqtT+1Nxq/r1pnporraXmOvrw4rk1fKdObRwBADXJjrxUeuRld32abMmTT4bxwAMPLPwnL/pvHtCGjjv+eDnmuGPDE60Txo+XVatWZStA15F91wGgTVTTrKu2yQcAALqfCy9sHO24vVKh1q5Nz5WO8bxYnpqXG2W68847ZYMePUR/HHTwQQetu9bfJzXGeaVrKam95e4vl/3gq9wfgOk+30CymrJGU97crrHwa8rqxs91tP2+Znxd+VzFc1Vsj+apudXiX1fq12nKmXvxPFbO/p/+NEsAALWmux95aebNmxfGPffaK4xAexo9ZowMPmD/cPzqTy+7LKsCXUfhuxcAAAAANavaRpCppClR6bXF7lWKu1Z/hRZN9WKNmErF1+bdy7+Oz/PYnnifr9taqqbiehwmb83nsbw1X7M9Ploivj41969TTm4qnbdENa/FD5UAoOb4Iy/PGj06jN3VdTNmhnHHHXcMI9Ce9LjViZMny0479wv/n7x11qxsBegaaNQBba3ap+N4qg4AAJRDGwKtESp+QiqvGWa5n+tey1PzSsJd99FDDpG1DQ2hSXf3n//cbK1Z7kOPhLRc30c8t1+Xz22uY95988LuY9f73O9J7S2nlhe2V8O/Z+PzatlTgT7ieqylrxvf1/K4lje3PDX3Ea/5uUnN/ahSe/w+H1OmNNYBAJ2eHnk5cvjwkOuRl3V1dSHvjhYvXhxGfaKpb9++IQfam/5/cPwFFxS+1Owho4aPCI10oKsofHcHoM21pFln3+QDAADE7OsEawL4PDUvFvFePze+Ho9xXmrNR7zm5ieeeGI49lLjoI98JCwFfl88Flszfp+yeTlNprxrTTw3em9bS617urec0Iad7bfRwuY2xhGLa37ur7OwZqFfN3He0nkl4v2l7h3PvVLzUlL7f/KTLAEAdGZ65OXSJ5eE5tTHDz88q3ZPjz7ySBgPOvijYQQ6Sn19vfzw/PNCrp8duWLFipADtY5GHdBetOlWTcNu7NgsAQAAcCZMyJIuoFTTqiXie7fGa2nzxRowlmuUc2+/X8OzeTzmsXvEzTrj7xOvmdQ1fn+xZlwp8d5S80pUeu9KXruSvaqa17r0UpFLLskmAIDORp8gsyMvzxs3Lhy7153Z59Pts+8+YQQ60nHHHy/HHHds+OzICePHh6dfgVpHow5ob9U066p9Ig8AAKC1tGUzrYiT9Im6Uo2SlmjNRp6+Tx+x1Gv5vX7ur/e1eE3FtdTcs7mNcTOuEnn3NpXer5hKX6uS91JsLaU1XxsA0KnoD/3PGTMm5PrkTv/+/UPend3zt7+Fcaeddgoj0NFGF/4/qk+7zp09Jzz9CtQ6GnUAAABArfI//G/rxkFrvlZ8r3ju6GfUNWQNrpO++tUwNlPpvSude/HcS63Z/SysIRbPbW+8brW80HXjr/Fzk5pb49A3EH2u4rVq58XWlM9VPFelrre55aXmJjU3eWul9vh9xeYXX9w4AgA6jZtvuknm3Xd/aAIc/bnPZdXuS48W1CeXdtq5X7f+nD50LvqU68TJk8OfS336ddYtt2QrQG0qfHcHoN1V+1QdT9YBAADFsZflie/dnq9VKWukxc00P/fi/cX25mnr/V58baXzSrTma1WyN6Wc6ydPzhIAQEfTIy/PHXN2yPXIy969e4e8O3vsscfCeMSQIWEEOgttHI+/4IKQnz5ipCxcuDDkQC2iUQd0lGqbbnpdW/6QCQAA1Ab/A/9SzYCWzivRnq9VSnu+VmvT9+rfr81TNS+et6VSr92W76XS167kvVR6baWvnbrfpEkiEydmEwBAR/BHXo4ddz5HXmYenD8/jPsNGhRGoDOpr68P/3+VwpdXI4YNC0+AArWIRh3Qkap9Sm7s2CwBAABoZeU0FapVaQPDzfWvKX01dfSlqfR9VvJeNK90Xol4f3wvO+bSh9K/vGV/gcvyeG7KmXuptbxRae7rqblJrZWaG19PjUpzCz/Pyyud5+UtXQMAdCiOvEyzRt3AgQPDCHQ2xx1/vHz5uOPCEa0Txo8PTXeg1tCoAzqDapp11T6RBwAAalvhm882FTcNKm0iFNtf6t5F5tqa+uUvf9k4SUm9brH7ax7PvVJ7S81jWvNNNuVzFc9juu7vHd+r1NzE77XU3Cs1L6XS/S3hf80p8Xolc81Lzb14rnzNfl8uuqhxBAC0Kz3y8odnnxNyPfJSP/8KIitXrgzNS8Xn06EzO2v06NBknzt7jlw2ZUpWBWoHjToAAACgKynVIGjpvJRK93cmbd2UWrt2XU1HnVuemvuwekvYPxsdUxGv+blJzf2oUnv8vmrmxucqnqtiezSvdO7F81JKXZ+6349/nCUAgPZgR142FP47y5GXzT3++ONhPOa4Y8MIdFbaXJ84ebLstHM/uXzqNLl11qxsBagNNOqAzqLap+p4sg4AgO5j3LjG0TdwKgllzaJ4rqwez/Py1LxY+L0mNXfjn+68U3pkzYxf2RN1/hqfq9aYVyLeX+m8Uvp7YeHnJjX34rkqdb3Ni62pcuZePC+l1L1Lzb1Scy+11pJ7l5qrH/0oSwAAbY0jL/MtXLCw8KVLgwwePDirAJ2XPvU5/oILQj5q+AhZsGBByIFaQKMO6EyqbbrpdS39oQ8AAKgd+oP9akL5zzvzc2X1vDWdW56at1ao7LU/esghsrbwdY5+pXP3n//cuKZ7Uq/t5z5vyfuMr/Nzlb3P9eZKx/i147nP8+ZKv9az8M3WciK+3s9V3KxNzS238HOftyTi+/h5Xu7n8fuM5z4vFfFeP1fx75FfS+WVrNn8wgsbRwBAm9EjL88dc3bIzzjzTI68jDz00N/DuPsee4QR6Ozq6+vDk7Fq5PDhsmLFipADnV32XSKATqPaZt3YsVkCAAC6tPiH+j4vFfFePzd5a6m82JpJrZUKt1efqNugR4/wGXUHfeQjjWvK70uNSnMLP49zlVorNfd5ak35empUmsehjSBrBsXhr8kTN/vy5nGuUvNio4rzvLnllc6Nz1VqLW9UcV7tvNia8rmK56qcPdnfCgcAtA098lJ9+5STZd999w05GumRoPp5X4rjQFFLjjv++HBc67IlS2XC+PHhzzLQ2dGoAzqjao+0rLbJBwAA0NqKNZFaqjXvHd+rPe+tc6vlva7tSYWtp8T7ylVO8yhPqWtbcu9YS+5d6bXF7lVKa7zWhAlZAgBoTfoZVnrkpX6m1amnnZZVYRYtWhTGw4ccEUagloweM0b2/8ABodl82ZQpWRXovGjUAV1NtU0+AADQ+WnTxf8gv5of+ler0tdqpdf+1VVXFX7ZUbOpPX9dLeWbZZbHvx4Tr/t5XphUzfg1H9Vo69+vYlry2qWubcmvo9J7VzpXNOsAoFXpcXj6GVbq4ksv5cjLhIcfeiiMepQgUGv0/9MXTZoUGvGXT50WGvNAZ0ajDujMaLgBAABz3nlZ0kGqbey00Eknnig9Uo2L1hL/ulry67QGmEUp8V4/t5qK635N5dVMXiPI77Fcx3IaR3lacq1qy9du6XvxKn2tSucp48ZlCQCgpS7I/gKEHnm5zz77hBzN3XPPPWHcc6+9wgjUmrq6OhmfHSOujfmFCxeGHOiMaNQBnV21zTq9Lv6BDQAAqG3+h/ktbQTEcy+15muV3rvYXPN47nz0kEMKX9I0fk1z0le/GsZmit1bxfcuNTdxEytv7vPUvfy6KneukfcZdRa6vmbN+vvKnfvXM37dcg1lue33a7bf1lRqbvLW8kYV5+XOLY/nJjVPjV68P29ueaVz4+vq/PMbRwBA1fTJGj0OjyMvi7PPpxswYEAYgVqkT4SOHdf49dOIYcNk+fLlIQc6Gxp1QC2otlk3dmyWAAAAVMA3Ctpae7+WhbKmk81trIa/VnNrYJl4vZx5OWH7vVJzz98n5huPqtTc2D3tvqnXqPbeptS6V+lrlZpXoi1eu6OfrgWAGmZHXupfAuLIy3yLFy8O4+AD9uf3CDXvuOOPl2OOO1aWLVkanqZdvXp1tgJ0HjTqgFqhzbpqGnbVNvkAAEDn0Z1+MB81dE488cQsK4M1hCziWinxnnLnOlrk8Xtt9PtTcxvzwtaNr6u83PONINvjx1SjqFypa/WeFql5McXeS7zW0nklWvu143kKzToAqMqE8ePDyJGXxT36yCNhPOjgjxb+s1TGf5eATm70mDGh8axPil42ZUpWBToPGnVAraFZBwBA91TshySV/uC/2FzzeF6JYvdWqfulmjRZ7eqrrgqj+upJJzUmvrFjuUax95pay3tvdm/lcxXPPXsfxvLU6MNqdpRkvJ4Xtteui6/VuR6Nqbnye/xc2X5b09FqyvbmXWthUnMvtWbX2OvE4evxHpsrzf3c9vi81Nyk5rG4Vup6m1team7iNb7GB4CK+CMvv3PqqVkVKfPmzQvjPvvSzETXoE+GTpw8WfrtsrNcPnVa+PcB0JnQqAMAAAA6s/Y+yto3BiphTYRi4fdZ7sXz1pS6t70XW/N5KfG1sbx1P0/t8bVSYfuLjSY1j2vK13ye19SM5d23mHLvbSrdH78ny/NGr9LXqkSpe5fz2ueem37fAIBm7MhLpUde9u7dO+RIu27GzDDutttuYQS6grq6Ohk3YULI9d8HCxcuDDnQGdCoA2pRtU/VafCNPAAAtUf/++0jVbOI1/zc5zZXfi0e855i8k8t+bDrLFeptVLzLL/zj3+UDXr0EG1RHHzQQevWlL8mNSrN44iftkqNSnNf979mq8V53r1tzc9T4dftXuVELFWL+caP7fc1y/NeI9U4imvxtTYv51o/1zyee6X2xnMvnit7n/be8+aq2P00j+deS+dKv8Y/55xsAgBI4cjL8mlTU+kxgX379g050FXU19fL2HHnh3zEsGFNf96BjkajDqhV1R51095/Kx8AAFRPn5ZR+sN5iw2yL+F9rVjEUjUTr8X30de2XMfU3HILm1f6vrM45GMfk7UNDaItkbvuvrux7u+j7N7G6sb2+v2Wx2s+j2k9da3n1008T7GmT8waQnlhNLfGXtzg07nVVGoe77dc+TXlr0+t+Xkq9+H3l7pW1y2P1+I8NfdRyZqfp3J9X3m/Ds3t+FG/Ztda+LnPSwUAoCR/5OXXv/GNrIo8jz32WBgHve99YQS6muOOP16OOe5YWbZkaWjir1q1KlsBOk70HS2AmmJPyVWq2iYfAABof/EP/eN5as1yDWV74ii2Foff63ObK78Wj8XyeO5+HSeecEJ4mk7jo/pEnf2a7Nfn96dCxXN/rUZqbntVsb1Wi9c17Nq8eeoaber4tXLCrvU1Fc+V7vPiud+r8uap5mOpa1Xc3MxrYuq1/vpy7q3i+8WvlTe3vNTc+FzFc+Wv9aNJ/RrjuRfPldbsn//o0VkRAGBWrlwpp48YGfKzxozhCbEyPDh/fhj3GzQojEBXNLrw7wN9alSb+D+97LKsCnQcGnVAV0CzDgAAdLRUEyGP7rX9lvu5Exp1qSZIufz9LUopZ3/euq/ljapULW68lQq7zuexeE1H/b3VMd4f7435dcvjf055jSnb75W6tpx7Fxu9UveqRKXv089bcm0emnUA0MzkSZMK/yloCE/PHHrooVkVxcyZPTuMAwcODCPQFfXq1UsmTp4cnrS9fOq08OQt0JFo1AEAAADdVaqJ0Vp8o0n5vKVS97H725rPS/HXFrsmb09cj+cqVYubccrPKw2Tqvt1z+8xfq7NodQe45tHtq+cvcb2xqMqpzFl4r15r2WRmper1GuV815MJXtTUvvPOkvkzDOzCQB0X3fccYdcN2Nm+EH8yFGjsiqK0ScQ9ThA/T2rq6vLqkDXpH/Gx19wQeHLqR4yavgIWbhwYbYCtD8adUBXUe1TdRqV/nACAAC0H/+D+FI/1G/p3Mtb840Ny+O5KnbvUty1V119deGW2T1j/vUqZdfG16fed2pfXs2L99g8r+brKl7LC1PuWmquSs2N1VJr/vcvtV4u/9qWx/9sWvJnLMW/pornXqn3Uuy9VfrraMlrAegSGp7/u/zhN/fL8rfs30kN8vbzT4QjCh9c/Ly8nVVLq/Y61ZJr1Rvy/OKHZfHzb2TzgreWy/2/uU3mP+NqrUQbThPGjQv5maNHc+RlmR5//PEwHvjBD4YR6Orq6+vlh+efF/IRw4bJihUrQg60Nxp1QFdS7XGWY8dmCQAA6DTOOSdLWolvOuSNyvb5NZ+3hlRjIec1exRG3a1x4oknhlozeffyo3L3TIqvsf1xXaXqxUZ9cs7YXEe/x+oWVisV/hp/rd1X5/q5d/E1fm5743l8P5sr2+vnqXUNm+uazeO9fk1pnppb2P5UpO4Vi2vx/tTcwr93y+N5aq/NdTS2L86Vr6dGpXlqrvGDH2RFADWt4Wm546LT5YfzXpN3bFj4b97bK+Svl3xdPvj+w+QLR39OvnDYB+TAE6fIX58u0ezKrjuw0utUS64N1sirj8yU7x15glz01+eyWsFGW8imT10lp/zwN/JkUxOydeiRl/pkGEdeVmbhgsYnigYPHhxGoDs47vjjw78r9N8ZE8aPl9WrV2crQPuhUQd0NfaUXKWqbfIBAICO5X9Q73Pl55U8dVPqiZ1S8xR7L3GUcPX06VmWw9+njPuVfN1i6/Gaza2WN49zZfNS9VLhrzF+PVXPy1NrJq9mY7ymiq2n/gwV218Ju7e/j+Utua8q9We/1NzE78e/L6uXe69izjgjSwDUpjXywt1XyDm37C5nnvIh6dPjdXnqd5fIyEsWy35nXS1/evB/5bdXjJB9H54iIy+8Q/6d/b2A9a27btDo6XJndN3T7l9B62vJteoNee6Bq+T0E8bLX97MSk22kL2O/YZ8/IGfyk9uXyElb1Wm+MjLFn3WbTfz57vvCuPue+wRRqC7GD1mjAw+YH+ZO3uOXDZlSlYF2g+NOqCrolkHAEDtKnyj2OwH+HHu551J/N78vIX0R2zhx2yV3tfvja+J6/G60lredSbe4+eW+6eqbIzDS63nhZe3Fuc2T+3zc2Vz+0Gn7SnWhFLF1m1Pnvi14rzSH7rG++1e5dy7pXOvkr3xe4vnKan7fe97WQKg5ry1SH4zbZY0HP85OWT7jUTefFx++9Nb5aWDvytnfePDsmOf7WTgYd+Us3/wMXnp1l/IrIdeyS6MuOtGf+NDslN03S0PvZptTGjBtQ2vPi5zLh4uX/riBLl/7WbSM6t7Pfq8T446to/8dtJN8uDqnH+3VcAfeXlW4espjrwsnz5FNO+++0Pev3//MALdRa9evWTi5MmhwX/51Gky65ZbshWgfdCoAwAAALqbSpoFsVTDwDcNSt27nNdy99TdGjo78aSTtFRc6j2Z1Gun9lktXovva3N/3/gaL75e2dzW4vVy2HX+WEV/n3jd70nlKj6iMe/Ixjhszb+WD1v3ue7VsHm8brnS3N87730Zy309b1Sax+/dv4bVfJ6a+4jXis3z8mJrqd8PyzXU6ac31gDUkAZZNf938vP73iVHf3xP2bxQWbv0Qbl98Uay+8F7S13TT/Q2lrp9D5Dd5R9y+/wVkv2/vplm1zX9J6v5dWuyaqwl165ZNFvOvuxfstcZV8r1Fx8nWyT+MyyFX9meHztM3vvPG+X6v/6nxU/VXTx5MkdeVmnRokVh1N87oDuqq6uT8RdcEPLTR4yUhQsbj4IF2gONOqArq/apOg2+kQcAoGP55k+pZleqAVWM/SA/FfG6n6tqXjt1HxuVr+cIr+KvjXObm3jd56maz/NqeXPfHPER121uDRS/5uvVRrH7xWt5YXvjX1ve3IfVTCqPaxp5f4bK2WtzWzd+Hq+Zcv7sxuJ7peaezfW1/Ovl/TpUam889+K5StW0WQeghrwoD879gzzbe7AMHrhFYd4gb638jyyVTWSbLd/R7Ad6G2y+pWwjq2Tpf16Ut7LaOmVc92zqOtWSa0V69vuMzPjf38il3zpYdtliw6wa6yEb77qPfGjz5TLn7sck55nAssRHXqIyDz/0UOGfeIMMHDgwqwDdT319vYwdd77+q0lGDBsmK1asyFaAtkWjDujqqj3OcuzYLAEAAO1q9OgsaSFrIFijIJ63ldRr5im1lq0nWg7rs3u565qJ1+M9ft3EtWKjRTz3dZVa0/BS68XCi+vFxlJ7TKm50Xpqb95+Y+vV7C21X8VNq/han5dqglU7z3s9L762lErfixo5MksAdHprnpZH//qUSP9dpG4zPTRyjbzw9HJ5WTaX7bbctHGP2WIb2XFzkZcXPy0vZKV1yrwu8a+lll1b+NfQVu+R3bbZJJsV0buf7H1AH1n1+wflibezWoXsyMuGwr9fhw0fzpGXVbjnnnsK/30S2XOvvbIK0D0dd/zx8uXjjgtP504YPz4cCwu0NRp1QHdQbbOu2usAAEDL2A/y7Yf5qdw/JZXK/d54HucqtZaaW9jr6GgR74mv9XPj6/4+We32226THj16hGbdxw45ZP39OvpaPMZhdVXsPcf3LjW3XOs2t9Hqcc2Hv59Gpfx18X1sNH7NlJoXY3u1MaRR6tq8dWss+fX43iaeG7/fK3atn8fvLXU/n6t4Xkpqv76OvZbPY6Veu5z3NmJElgDo1F77jyxb/pbINlvK5s1+erehbLxRz/L+EkszjddVpyXXlmNL2XGPd4m88KQ89Xx1nbrJkyaFH6ofPuQI+cxRR2VVlEsbEXNnzwn5gAEDwgh0Z2eNHi2DD9g//P/isilTsirQdmjUAd2FHWlZKZp1AAC0H3uaLvXDdWNrOsahNih8iW+5jqm5z/PWLDw/93sqiTypvYU47OMfF/3b8eqPf/xjGIPE3hC2ZuI15ff5uknVTLxWal6Mb8z4UWleTcQNPw27X7HmouU+fF3zvLndy2o2t5rlNk+t+1oqt3vnrdsem9ten9uaRTwvFvb6di9//zji+/q5z4ut+dy/Vpzb3O/3eSrUsGGNI4DOa9WL8uwqkS36by99wn9aekqf7XeQLeQFeeq51/TBp3Vefk6eeiXbm5XWaX5dM/665H++WnJt67v33nvliyd+SXbdeZemOOTIQ+XccT8MR16qM886K4yozPLly8Oojc5evXqFHOjO9P8HEydPDkfpXj51mtw6a1a2ArSN7DtxACjCmnz2jT0AAGg7qR+qx7W88Ht97ud5P+hPrVlu1xbLfRR7DYvUtbbX9hfGE44/PmzVnwEe+rGPpffHuZ/7dVvz65qrvD1+nqqtWdO8prnVrO5HH3aNX/PXVhN2P/s12b0tjyPvGj/3is0r2asqnXu65tfz9mrjVCPeW8m1PvfzPPH9Uvf391KpPB69VK3Ur8vmNn73u+vvAdB5bPIO2XIjkdeW/1deDv9X7SEb9d1W+skb8tyLr0nh395N1r7yojwnvaXftltK4ZJIGddtl7pOteTa1qNPe51x7pnyjbNOkT/t+rysGLuP/POC/UI8cOQm8ovHfycNvXvK6HPOlh122CG7CpV49JFHwqifzwWgUV1dnYy/4IKQjxo+QhYsWBByoC3QqAO6G56QAwCga9MfvFuk5i0V3zfOy1HBtV/5yldkg6wpEf632Ovk3ctq8brm1qgyqT15cz/6uoprfoxzX1NxvZzwUusaXl7Njybea3Or5a3nsTXfbCp1jbL11L5U40ql7hvvLefa1GtWy+7r72153ntRpd53pXPFk3VA57XFdrLzdj1lzcuvyRvZvyI26LefHNb/LXn0rr/Liqau2ZuyYsF98qgMkIP23j75g75m12X3iq/LO9iyJdeW7xV59l/Pi7xzB9m+z/p3O3309+T6+38n/zqpnzy/6zvl9Y3X/Spf7rOJLB+yk7z85X5y6eVTmp4MQ2XmzZsXxve8971hBNBIm9djx50f8pHDh8uKFStCDrQ2GnVAd1Rts27s2CwBAAAdKu8H/TZvLfF9K7m/3xvfpxS/N3VNvK7NthS/z4trfp/lqXlc8+I9ytdKrflaNfLuZXPla1bPG1WqpqqZl1OzRpJf83tSjSbb6/flqWRvTF/bX1vsXqUaZMXm/n7+tUyl9y7HaadlCYBOpee7ZfeD60TmPy5LV2f/Hth4gHziq4fIBnf9RMZNvVOWvPqiLLnrSjn/wttlg4O/KJ/aa4vGffK6LP712fKtb5wtNy5e3ey686f+ab3rPr3X5onrXm8slXVt4rpKvPFveXz+Sun5gQGy48bN/z1211/uljvm3y3PHvPeZg26mDbwnj7snTJy9KisgkrY0aG77bZbGAGsc9zxx8sxxx0bPgdzwvjx4SlfoLXRqAO6q2qbdTyRBwBA2/ENp/iH9P6H9aaSH9Lbmt7H37PYvJR4b2quUu8rb6+O7r1+4hOfCKNW9Om6XPG98uaW581V3tzXi9X8U3p+bnm87uutFf7+vhbnqdHC9qbu4/ek5nE9jlL30TC65td9ruK82L2UzXWM9+Zda6PyufJ7NfLu6fcaP7c8nhu9j4bP47ld43PlcxXXv/OdxjmATqSP7H3Qh6T3K/fL//3jlazWS97zxbPliuH9ZeHEr8uhe+4nh540WRbsOUyuuOBoeW9Tk+tteWX5A3LnHQ/I8pffLszXXbfgoq+td917Nkpc94pep8q5NnVd+dYue0juXtFXDjlikLzL3krmJz+fIis/tm3RJp35zx595ZFli2ThwoVZBeVYvHhxGAcfsL/07ds35ACaGz1mjOz/gQNk7uw5ctmUKVkVaD006oDuTJtu1TTeaNYBANC5+R/KW24/0G8Ju5fduxz+mlLX2prbd3z2GXVNbM3taVJJvZq5jXFeqqbimp9bzcRr5YSXWovnJq7Hc+Vrqbopd67hm7e2x+9VtjeWulZZXqwxbHvy9pZzbUvE9/J5Oe/FlNrr53Z/lffa6pRTsgRA59BT+n7w03L89v+U3/95kTQ9v7FhnXxo+P/I3/7vdvn1zTfJr2//X7nnqtPkQ9tvkm1Qm8mg4dPkwoM2Lfz7ICtl191T7nVeyWtzrnM2HDRC5j05X35+VPwZcqvk8btuk4e2+aR86aC6prer9KmVv//lgfC0XLle2LO3PPx44+etoTxLly4N40EHf7Twn4/ovycAgl69eslFkybJTjv3k8unTpNbZ83KVoDWQaMOAM06AAA6gx/8oPkPzctR7Ifu1Urds5L7+mtKXVfmXv2RkcY106eHeTN51+fVVWqvjX4tnluz09f96Pfa3NfjWl5UI3WfVKT2Gj/3o99j4pqfF1szWrPwUjWTd43n9xTbp/yeYntTP7SMr7W8kgaa8nP/Hvw9TaX3LsX2+9c6+WSRoUMbcwAdr/fe8vnTPiwrZs6W+15YkxVVD9lw611lv0GDZL/+W8uGWXWd1+Wp26fL9Bc+Kh/u/46spsq/7iMDemc1U+zaYteVsPoxmXvdIhn8nS/IB6PPp9PPm9vhI/8vm5WnYdOe8vg/F2UzlOPB+fPDuGv/XcMIIK2urk7GX3BByEcNH8HTu2hVNOoAAACAzsL/oD31Q3Sfx4r90F7zeO7v6UdV7r38NZpr+HXl83i/Su21exVcc801YdTZbbffHnK/3ux6o2ta9/erhN/vX0ul7pW37q9N1eP1OG9p5B1/6NeMX7O6n/v9xe6bqvl5sde1uY0aqf02xutWMzaPw1huo/915d3Xcj83mvt7WJi4lsrzQu+rofxrKL/PR7zm5z73cwCdTC95z9HfkRHvuU0uv3WRvJVVS9tEtul/pPzw59+S921eyY/+1l03aLP2uO4teXruNfKLd5wo3/vcANkoq3qvPv1ClpXvnyuWyU+n/lxuummW3H7HnbJgwd/lqaeWy7PP/ifbAW/O7NlhHDhwYBgB5Kuvr5ex484P+Yhhw8JfKABaQ4+GgizvFHbdeZcsW+eJJU9mGYA2Ve1TcjxdBwBAy3z/++saSy0JlVffYIPy1lSpdZsrHXVuyt1bal0V5kcceWRo0mnMve22dXtV/FqW2zz1Wirel5pH76PZuoprqdFyFed+7uXVy5H61i5uwvg9eWs2WmPI11N7fcS1eJ6qKWs+Kb+WV/NRbL3YWiqK7Vdxkyz+PfLrPuI1P1dW9/N43b9WsbViUc4eDXX55Y0jgA7WIK8vniu/nNMghw79hPRv+hy6LuDNxTLnZ3+Stw77knxq4DvD0/Mx/TnhM2P2lNfekWrjra/uzn/LF/p8uHBd/6yyvi23fKe8851byA51dbL55pvJZpttJn369JGNNy7vNbqSFStWyEEf/FA4zu/Ou+7KqgBKGTN6tFw3Y6YcPuQImThpUjgaE2gJGnUAmqNZBwBA+9NGnW8ixQ2lUg2m1Hq50ZrXKX0v8Vyl1n2oeF7Ye8SQIaFJp/4wd+5664G/zq8Xm6dqNlf2Pk3ePhvtvZjUXlWs1prs2zz/7V6c5+3xdb/mm0E2+rCaivf6xpIqNtfRh8rbH4eK536vKrWe915Uqb1+roqt29zyvLD1eG851+aFsvdi89T6FVc05gDQQc4490y5etXf5JlBW2eVfO947S1517iH5f75D8hmm20uL7zwgvx35Up58403ZfmKFfLSSy/Liy++lO1e36abbiLbbbetbLPNNrLJxhvL9tu/q3Cfd8g73uGPD+1a7r33XvnKl4+Vb59ysnxPvx4FUBb9DM2vnXSSzLvvfv7/g1ZBow5AWjWNN5p1AABU7nvfa2zU+KaTz5VvGsXrqXleqHL3xqEqeZ1UPY5i+7K1IUceKVk7Yl2jTvm9Fla396ny5rZf+V+XjT6spvy9VOraYqNJ1eM9lfDf1uXlSuepdT+m9vh1G33ENVOqGVRsXqquYWupppWfF2tqqWLrPlS5e+NQ1V6rofR6y+N1H8r2xnOlY2puua9rXHlly/58AkCV7Imv5763u7zcd5OsmrbTjU/K6Z/4hpz2ze9klTQ9AvPNN9+U//53pTz3/PPy8ksvyzMljsXs129H2WKLLWSLzTeXrbbqmz2Ft2W2Wrt+Nu1nMvFHP5JJl1wsnznqqKwKoBz676cTjj9elj65hP8PocVo1AHIR7MOAIC2Z406C+UbSTqm5pan5ho2L2dvHKXW4yh3f6l9iXVt1Ok3LBp/+MMf1lsPdPS/LlVs7iOu2dzGYnVj87iu4lpq3Yvn5Yq/rSs21zye25ha8+s2llv3zR9Vztxf7yNV89HSdYty91mU2q/s15Vai+d+r58rHf087/fL5qlrLU/N47A1GnUAOtBdf7lbvjPyO/LM598tK3faLKuus+mba2Xb3yyVAzYbIL+a9kvp3bt3tlKZF154MTTwnn76GXn5lVfk5ZdflqVLn8pW09613bayyaabNDtGU5/KqxVf/tKXwhNBc26/Tfr3zz8uFECaPZWqbrp1luyzzz4hBypFow5APhp1AAC0vbhR50Npg8nPS63bXOlYrEGV2hvPTbF1zS38vNh6Oa9VcOQnP9nUqJujjTqVt9/up4rNdSyW+7my14rrfq9K1f268msqXm8t/ts833QxNvej3+PnqdGvq1TDKC8vNbfmkfJzW7dQ/nVV/D5aY91yP1fF7uX3au7DannreeH3VnqtD2Xv1eblrP/iF405AHSA+x+YJ6d852R5baeesnJAL3lz601lw1fekk2WvSab/O/zcughh8olF17cJp8T9eabbzUdo/nKK6/Kc889F57Ke/31N7Id67PPwdNjNLWBt1Xfvp3uc/BWFn49+w96X8j52StQvRnXXCPnjjk7fNbj9BkzpK6uLlsBykejDkBx1TbeaNgBAFDa6aeva9RYA8ciVUuFsiZUPFdWj9fiudLRz1Wxdc2Vn+ftVcXWdbRQbu2Tn/qUrC1826LfuDRr1vn9fp6qlZpbTcXvO2+fn5c7mlL1asTf2vkmixfXKxktbG5jXt0aSqrU3JpDSkcf5dYsiq1plFrXKGePRrn7UlHJtSpuoNnvX7zu89Sajqm55X6ubP6rX2UFAGh/+plQCxYskDv+dqc88++nQ23bbbaT6Zf/QgYfsL9ce/31odaetGH36quvhgaefg7eG6+/UdExmh35OXj2JNAxxx0r48aPz6oAqjFm9Gi5bsZM+f/t3QmcTmX7B/ALUYSYLGnsGb202KKUolL+9BYtrzVRSWijhQp5tbyliBZL6W2zpUWoSKnUW5RKoShT2SPLDGMZ2zT/5zrPuWauuec+51nmmf33/Xzu/31f13Wf8zz8X5rnuZxzOnTqSE+NHRv1lb1QfKFRBwChoVkHAACQO7hRx3TThptEso505OZxLNz3FmpPhHVu1PHHFv7gsmDhwiw1c69Dv0/mFTPOmXWeZUgss84zHZt5v1nYjskJ/fHO9lGPc+Yec5/kvPbZ1jqW2cyHG9tyzGwsmXUzlv3R1PVg0rTyq+tY1/0GC/XrMuu22LZmfnttcajB0KwDgAJGbt84bdZMat26tZvNX3wbTW7gyXPwDh8+HNZtNCvyVXhVqjjPwStTpkyu3kZTrgLCs7UAco7/IcFNffs6fxfdOmgg3Td0qFsBCA8adQAQHjTrAAAAYu+ee4KzbhTptd8IZ485cvMYcx/jX4tX3Rxe9YArr7oq44o6p1HHLPtC5mwxk/fJzH2yltkrL7OshZnTe2288uHy+ngnea+Z6ZyZt9VklmYPk7ptny1vxua5dCOJcaz3y5DYdrzU9ZpJHKrOeDZjGRLruu1YWTO/ui3moWNdt+31G5HsNQfj13v99eAaAKAAmDd3Lt0zeIhzJcvzEycG/lOaw/+W5qIDBw7Q/v0HnOfgHT5yJKLbaOrn4MXiNpq333YbffjBAjxXCyBGtm7dSr179aJNGzaiAQ4RQ6MOACITTeMNzToAAAC7u+/O3iSSwcyaLZa1HpLTdXOvxMyvLjEPHdvOzcxaOHUZklP7r+zc2WnQsR6BD769AiPbfq/YlvOKmX5fMpt7zJrEzLZHs+W91tHSH+9sa/Pjn86bNd0Ass1SZ3K83uO3tsW2nBlLjl/bVjdjc+R2XY9Y7mXyazZjJnmzZsaMZ1ssax0zW50HN+ti8b9ZAIAc4itZrujY0flyfMFHi6hhw4ZupfDQz8E7cviIcxvNvXtTaM+eve6O7E444Xjnijt+Dt7xZcpEdBtN/j07u/EZgb/O02n12jW58mw/gOKIbyl7Q89ezp8tNMEhEmjUAUBkctJ0Q8MOAAAgqyFDgs0h/rLbHExqjGczliGxbb+5ZqH26iE5s247n23NOJa117G6LiNg5htv0KxZs5xmXc+ePann9dd77g071msdM/O961nWTGJdF2ZO15htLzP3RUN/vPNaM4nNmemcDKFjc9bNHJll6Fivw43NxpKu2WK9n5nHm+9V172OtdUl71f32s8i2Wurcyxrc0iN6disSxzJkOOmTw+uAQDymdzGsSg+b42vuDty5EjGbTRT9qZE9Bw8vo1m8Cq8Sm6VaOXKlXRdl6vp8o7/RxMnTXKzABAL8vdR7bp1aNqMGRQfH+9WALyhUQcAkYu24YZGHQAAQCa+mo5/FJcmlTmYbmAxvVfHjGczliEx1/Va12RIbDu38KtLTsd6LzOP1YOpOjfpuFknH1ref//9zLrsl7Ut1jkm74uZe5jUdV7Peq+5R9eYrulZ0zlbPVL6453XRz3Oe+3TNds+XZPZa83MZpG5xy9nxracGeu8rRElMdd0bKvLWsfMr85rpmNeSz7UXrPuNULVwxmRnoOZvxYeM2YEYwCAfJSUlEStmrdw1stXfE9xcXHOuijj5+BxA49vo5mybx+lpKSE9Ry84084nn5PTKTnJoyne4YOpYGDBrpVAIiVEcOH0xszZjq35B07bhyuWoWQ0KgDgOigWQcAAJAz3Khj3Jwxh1feazCzweQ1mN9e5tcIM4dfPZqakb+qc2cnxa0Lp0mn95hNNx3Lr4HxHM5aZj2EjkPlzbqemV5rXvlw+X20080VPQuOdc2rrvM655XXsddax9KkYjqWPbZY1kxiycnaNvzqfjUeoeoywtnH9K8rkmEew8zfA/175FeTvF+dY1nrPbNmBdcAAPloyuQpNHbMGLp32DAaMHCAmy1+9G009+3bb30O3ocL3qe1P62mbtffQKeeGp/xHDy+jSY/B+/kuLiYPAcPoLji28ve1LcvffvNcrp10EC6b+hQtwJgh0YdAEQPzToAAIDo3HVXsCmjh1/zjIdfzTYi2R/OXr890dS88jxUTR7Czu2B97hRJ7iuf8+YGbvnyBiSk9lcS8zMnG2WNfPbZ/Kq2fZGSn+881oLyenZdozXrJs25myuJWa8th2r9+nYljNjnTObSbqm60zHXjWeJZYhsVkPdbzUI93rtV/W4Q7ZH82xMpjt+DfeCOYAAPLJ1q1bqV2bCwN/JaUXm6vqIsUNu/3791OHSy914pGjH6H9Bw46ay/6NpqRPAcPoLjjv5N69+rlPD9z7PinqcvVV7sVgOzQqAOAnIum8YZmHQAAFGfcqGO6sWS7AkzHZiPPjHlIbJ7Lb69XnQfzOxfzqjNzvx5MH8sklpy75g+1/LGFP7jMf++9bPWMYeYkZuZr2fbptTnrOjNrmm2vuUfYjs0J8+Od18c9zuuaLZZZ55lu0thm3VCy7ZWhY6+1eS6pM69YcrK2xebwq/vVeISq8whnj4xI9soI5ximf4903syZg+nfb57NmAc363L6v2EAgBwYOWIEzZo+g8ZNGJ/xj30gq8TEROp42eXU8txWNGv2bCfHt9HkBp48B+/w4cNh3UazIl+FV6WK8xy8MmXKUPVADgAyLVu2jHr36Oms35k3l5o0aeKsAUxo1AFAbETTeBs1Ch/kAQCg+LnzzuB//3RDy2xQ6aaS3it7ZEhO181jZUhsnkvHzK8uQ2L9WkzHUhfh7DdHgNOkC8w85s+fn60eUaxzMvvlmMS67jczc+1VM/nVwuH30U7XpKkibGu/WYbQsZ51nvGamzuyllnv07EtFyrWOXktphtUTNYS66YTM/eb71vX9T4zZw5zD7O9lqwlbxvM3Ktj5leP5lhZ22JZv/lmcA0AkA+kCVW7bh36YOFCPBfKYt7cuXTP4CF079BhNGCQ/y1CDxw4QPv3H3Ceg3f4yBHrbTRNchvNmvHxzm00y5cvj9toQrE2Y/p0GjVyJNWuU4emzZhB8YE/GwAmNOoAIDbQqAMAAAiPNOq8BrPleTBpbkkcqu7VDGORniuSeqR5M3ZzV19zjXPbSzZv3rxs9SyxLadj25rxr0OT2NynZ1kzr33Ctpd5rXNCf7wLZ80kNmfGa6+6zNKwEbqBI7Pf2hbbcqFiW86Mdd5sNEle1rlZN2vRnEsPv5rfiPQ4xu9Fx7b6228H1wAA+aBHt27Oc6GmvDSV2rdv72ZBPPXkk/TCpMn0+swZdP7557vZyOjn4B05fIS2bN1Ke/em0J49e90d2Z1wwvHOFXf8HLzjy5TBbTShWJGrfTt06khjx43DPyKAbNCoA4DYifZ2lrgNJgAAFCfcqGPcmJFhxn4jkr08/PYz3ZTyGl51rzwPW03nzGaYLXbX11x7Lf0d+NjCH1ycZh1TdWeWoWPbmuljmW2P3quZe2UtzJytLvxqOaE/4nmtheTMmfE6nLotJ2uZ9RC6+SSzuS+S2JaTWJpLQseyV+JwGlFM58Ot6xFqD/N6n+Zg4bxvW6zXEsvarDOebbGsZbzzTjAHAJDH5FZz+taOkOmSdu2cZ2Yt+fJ/VLNmTTcbO3zF3ZEjRzJuo5myN4W2B3J+9HPw+DaawavwKrlVgMIvNTWVburb1/lHBLcOGkj3DR3qVgCC0KgDgNhCsw4AAMDfHXcEZ27KhDsi2R/O3lB7/Op+NR62uldON+d0XseBwY06/tjCH1zmSqNO7/GLmW622fbJbMvJLGumY3NmtrXOCTNn2xMN8yOeXyxrW47x2tyjZ1kzif1yerblzQaQuY4mlpytmSSx1JjEkdRlMKnpmJl1xrOOmV89kr0Sy5r51cM5lnFs1r0G44ZdrP63DQAQJrmqbtqsmdS6dWs3C1u3bqW2F7Rxbg36yWefBf56zru/n/k5eNzA49topuzbRykpKWE9B+/4E47PchtNPAcPCiv+89e7Vy+nUY7naIIJjToAyB3RNN7QrAMAgOLg9tuzNqhszSr50sSvrodXXR/L/M7FonkvEnNNx7a6kFjqzCe+9rrrMq6omzt3bjAve21rr5wwc+ZsvlezznTOlheh6ppfLRJeH/F0XtbmXjPPs22PmQ8np2evtTR/mNR03Su25czYKxdO3qspJblo6jrWdb1mHOv90byW39B7c3KsbTA06gAgH8hz2Pg2c89PnBj4awh/D7HFixfTgH63FKgrevRtNPft2x/Rc/D4NprcwDs5Lg7PwYNCQa74ZW/PfZeaNm3qrAHQqAOA3BNN4w3PrQMAgKJs0KDgf+d0U0qvzRrPMiSWJpLkdVMpp+eKpK7PzSSWnKxtsVfeEs9+6y2a/eabzprNeffdzPfFjP2esW0ts84zW47pnK6ZOdseZjtGmHG0zI934cZeM9O5cPM6p2e/tVfMdLOKmc0rvd+Mbc0nrzjU6+hzMa/3Yat7HWvby/zqkZyLZ6/9TOpeNRkS+53bFvOQK2EBAPII32buio4dnStXFny0iBo2bOhWijd5Pl1heX4fN+z279/vNPD4OXiHDx32vY2mPAdPbqOJ5+BBQTRj+nQaNWKkc2XrtBkzKD4+3q1AcYZGHQDkHjTqAAAAsuJGnW5o6cFseRksVHNM16WZJXU9mK4z81yyDqfulfPKh5Nz4+v+9S/nSjoe3bp1o27du2fb47uWmJk5rzWT2MzZZqH365q5j9mOjQXz453Xxz3J6zqvvY631XRDxjZLncnxtr22fKhj/XJmHElOhlnTsa0RJTHXdGyryzqcuv59MM8d7bkk5iFxuOfWI1RdD4ZmHQDkMfkyvHuvnvToY4+52eJNbgm68OOPKCEhwc0WPnwbTW7gyXPwDh8+HNZtNCvyVXhVquA5eJDvRgwfTm/MmOlc9Tt23DgqW7asW4HiCo06AMhd0d7OErfBBACAombgwGAzJlTDy2uYe1k057LtY7pxZ6vb8jy8ambeL5bXZkb8Jl9RFxisqzTqmO08XmuJmf51mrO5V8dmXmadZ1779GzjV4uU30c8qZkzM4/j2G+frjOJdV3P0vxhtr2RrvX5dKOJSaz3hxuHyvPwqjGvJpctZw5zj+1cZuw3ItnLI9L9MkIdJ3X+9bz/fjAGAMhlSUlJ1Kp5C2e9fMX3FBcX56yLK/37UVS/az1w4ADt33/AeQ7e4SNHIrqNpn4OHm6jCbmNr/q9+cYbafnX3xSoW9FC/kGjDgByH5p1AAAAmY26cAez5WWwUM01v7oMr7pXnoet5pczm2O2WNZMxdyo4yEfWt6ZMydzL8/mWsfMfC3bHrMmMbPtEXqvzguzZu6xHZMb9Ec+3TQR5kdCc4+51y9v1vTslZOY6YabrtnW4cS2nMTSBGMS67oMMzaHV90vb2vAmSNUnUeoPUx+XRLrut9g+n0y81zm75kZy5CY6wWoUbdy5UoqV65cob6qBAD8TZk8hcaOGUP3DhtGAwYOcLPFkzwbqzheYaifg3fk8BHnNpp796bQnj173R3ZyW009XPwcBtNiKWtgf8d9u7Vy7lF77gJ46lzly5uBYojNOoAIG+gWQcAAMWdV6OO8awbSjpmtroeTNe99kpO15m5X2Jm7teDcU3WTGLJyTqaODC6du2acevLt995J3Mf0+9LZr2WWdbmr8u2V2ZdZ7Y9Wqg6C3VsrJgf8XSjxMas24631XRO72E61rOspQHEJK/3yWyuzRyTc+lY1ixU8yhULty8fh+2upmz7ZfB/Oo8dC2n55LBwt2rR7j73X1bX3iBpr01k5Z+t4zWfPWjk659xml08cUXU/fOXfOscTZv7ly6d8jd1K1nD7r7nnuK/dU2AEURfxHers2Fgb960ov9VXXStERDICu+4u7IkSMZt9FM2Zvi+xw8VqdOrYzn4OE2mpAT0kBn78ybS02aNHHWUPygUQcAeSuaxhueWwcAAEXBgAFZG0u6wSWx8KvzWoaO/ermuWx1WbNw9vvV/XKhYiPHt7tk/KHlrbfftu7JWMvsldM1pmPbbOaYrS689tnY9saK+RHP6yOf5M1Z+NV57VWXmsRMx+aaSXOISV1qjOv6GL+1ea5wYp6FVyyD6ThUnke0NR6h6jJivU9GqP1M/x5JzIx6amD+75HdNGVHEiW1rUapp1WgPdXLOVsqJh+mcuv3Udx3+6hdswto7GNP5frzWqRRJ1+L8BU3ffr2wXNiAIqYkSNG0KzpM4p9g+q2QYNo0YKFhf75dHmFn4PHDTy+jWbKvn2UkpIS0XPw5DaafFUegB95nmbtunXo9cC6Zs2abgWKEzTqACBvoVEHAADFETfpmG6I6WYXM5tf4TTLbGvmdWyoOpOaV13Hfnlme1/ML5Y1C8TZGnWM98g+WevjbDnztfRs7vXaI2x1zW+vjV8tGn4f8aSm95j7zT3mXp3XNWY2aMxZ6kyOlxozc3ptHusVm/vlHJL3i71yOm97XV2XIbHtfYRbD+fcZiykJnWvveHUdY3Z9pqxrN3BTbo+SZtoVaUStOW6unTgRPuzf0448jed/OV2qvlzOn3w3gI6+eST3UrsmY06xl+S3TV4MF3eoQMadgBFRGJiInW87HLnz/cHCxcWyz/b/Dyssxo1dtb4njVn5Dl4fBvNffv2R/QcPH0bTTwHD7QRw4fTGzNmUodOHWnsuHH4GaQYQqMOAPIeboMJAADFDTfquBmjmzZeg+mmkldd1kxic5+Zk+FVizTPw6yZsS1ni81fs7vu1r17xvPp+Fl12fYzOUZqTJ/PnM29OrbNsmbm2qsmJBdqX27SH/lkbfsYaNZsxzFee+3VNSaxrutZGjrM3MvMho9e22JbLlQcSS6aPA9d078mZv4azd8Ts24bUo/0XLZzSxzOXh6S86q744l922lylTTadF32z/w28Z/+SecfqUNvvjbbzcSerVEn+Av9xx5/nFq3bu1mAKAw69GtG337zXKa8tJUat++vZstPviZnNd27uI0ASZOmuRmIda4Ybd//36ngRfJc/DkNpo1apyC5+AVU9xMv6lvX+fvqVsHDaT7hg51K1BcoFEHAPkDzToAACgu+vcPNmbMwWx5c4Ta51f3qnnledhqfjmzwaZrfrkw4+49ejhLbgG8+eabzjrLPrU3Y/bLMYl13Zxlzfz2aaHqwuu4WDE/4nl95NN5Xvsdp+tmXmYzL7E0cIRu6Mis1zLLWh8veXOfVy5UbMuZsc7p98Jrs65jqYtw99vqevjVeDD92n51iXVdDxbp+zZfOxAnpqbS1Ts30e/3nEGHyqgmewinT99IU+5/mtpd2NbNxJZfo060PLcVPfzoo7hNHEAhJ8+B4j/Ts2bn3j8AKKjk1nqjH32Eel1/vZuFvMK30eQGnjwH7/DhwxHdRhPPwSse+JmaNwT+fG5cvwHPkiyG0KgDgPyDZh0AABQH3KhjunljNrdCNbv86raaV51xbKszc78eLNS59N5Qse1cgnOq3qNnT+eLdP7gMtts1jHzWF1jOrbNus7MmqZz5ix07LU2+dUiFeojnq7L2jzGzNv28dorL7Pew3SsZ51nOif5UOtoYlvOjEPleZg1MzaH1LmpJWtmaXJlrJmOQ9W9zsX86ryWoWPz3LLWQ3JG/YmU7fRMq7K0vXmVYD5MVX7bSxeuq0xzprm3vY2xcBp1onuvntSnb1807AAKMbmqbtqsmcXuall5Tt878+ZSkyZN3CzkN7mNpn4OXri30awZH5/xHDzcRrPokH9UwPDntXhBow4A8l80jTc8tw4AAAqLW24Jzroxpdd6SC6ausRc07FfnYWzX9a2ul/OjG05W8zU++rZqxf97X5seYP/Fbx5HJP3ySQvNaZj2xxOTfjtNemc1zov6I99XmvBOXOPuU9iv71eNVtO1jLLWho+TPLmPlvOa61j89w65rW53yuONs/Dq+aVlxGqzoMZDTPrCFXXI8q95/z+CyXe3pBSKh8fzEfgtAd+cFcFw73DhlHXbl0pLi7OzQBAYcHN+XsGD3Fu//j8xImB/xTn8X+L81FCvfqBv47TafXaNXj2VSFw5MhRSk5Odp6Dd+TwkYhuo6mfg4fbaBZOcgUs34Z72owZFB8f71agKEOjDgDyH66sAwCAoowbdbZml8Rmo8xsOIVTl7UezDzWVmc6ljWTWHKy9sr5xfJazBbLMGK+mo7xh5Y33njDc19GjunYNsuamb8Huqb36jwz8177mNexwnZMTpgf8SKJZW3OgmNbTef0HqZj2xzuWsdMN6FkNvd5xbacGeucrakndaZjnmUwr5quM7MmdTOW89nqthHOHh7mPqZfy6zZ8jKY+nU3+Oln+v3xZs46UnWm/UbHrdnnRgUH35Lq8g4d8IU3QCHCz4C6omNH2rRhIy34aBE1bNjQrRRtiYmJ1OnyDnROq5bF8rafRY1+Dh7fRjNlbwptD+T81KlTK+M5eLiNZuEwYvhwemPGTOcfFjw1diyVK1fOrUBRhUYdABQM0TTd0KgDAIDC4Oabsza89GC2vAy/ejS1nORDNdrMhpdfLDlZ+8TvzJnjDPnQomcz57Y7fPcyiXWO6ZxZ13k9C1vea23yq0XD/d3zpOu2tXm8zttq4dR1Xsd69sszM2fWwomZV03H6n/d2WJem/t1LHt1rOuy1nWm83owW54Hs+VlMFveHMyWNwez5W2DyfquOnWpqDXq+DlXox95pNh80Q9QVMiVKnw720cfe8zNFm1ym997hg6lAQMHuFkoavg5eEeOHMlyG81InoMnt9Hkq/Ig//E/LLipb1/ndr23DhpI9wX+/ELRhkYdABQcuLIOAACKmptuCvzEXYKcJpVqPvkOvz3R1PzyZvNM8rZY/xqYV6yPCSdm8j4Y51R8fe/eTiNLBtOzmYu0Wcf8ZlkLr70iVJ6Ztbzg/k5n0LGsvfaEU/faq2tMx7ZZ15n8L8G2R+/jtfpfUbY9OrblmI5tOSZr87W8Ytkvg+k647VZ17HUma7Z6kyfTw9my8tgfudius5rJnU9mN7LjbrtI86kAydG/vyc+v9ZRSX2pblR/uPbUD04YgS1b9/ezQBAYZKUlEStmrdw1stXfF8sbmMrV+YUx2fzQeZz8Pg2ms5VeDt3hv0cPH0bTTwHL+9t3bqVevfq5VwFzFfyd+7Sxa1AUYRGHQAULGjWAQBAUSKNOhleDalw6zIkp+tMx7yWPNMxz3qYORbu8bZYvw8mMeOc7dxMcoH5hj59sjS9pk+fHqzLEJZjrWsmsZmzzUzv1Wth7tWzybZXeB2TE+bHPB17fQSUvN9ejvW+UHUheVvOtmZyS0gmdXOPV948Vt2G0SF1cz/HMiKN9bDVJOf33mSvjm3v1bZmEkdTl7yOdT3Sc3HsuuPQNnqjbSXa1eAkNxOeismH6bTXt9OKr793M7ElV5mE+7UIbncJUDRMmTyFxo4Z4zxzsjhcYXZJu3bOF/3FpTEJ4dO30YzkOXhyG80aNU7Bc/By2bJly+iGnr2cn1XemTeXmjRp4lagqEGjDgAKpmgab6NG5c4XXQAAANHo2zdrQ4pnWyyiqctgusYklpysJfY6ly1nxracGUtOfg1+e4x138DvHX9Ika/5X3/9dSph+/XIbMsx22vbZmbuFXqvrvnt07ON17GxZH7M8/rYJ3ld9zpWz357dE3HtlnXmZnTs84zXqtmkHWP2Twy1zo2z2WLZT+zndsW6+FVi1Vehlfd69do7uPB/OoRnGvJoX1069FdtG5Qo+CeMMV/+ic91Pom6n9TfzcTW+E26vjL/K7duuILboAigq9SadfmQufPflFvXvGvte0FbZyrgT9dssTNAvjj22hyA2/37iTnOXiHDx+O6DaaeA5ebMkte/nP8bQZMyg+Pt6tQFGCRh0AFFzRNOtwZR0AABQUZqPO1mjScTh1pvO6bsvzsNWizTH9a2JeseRCrY34xptucr444w8pPF6fNs0pO2zHyKzzTMdeNTNnm4Xe77WH2Wq2fVqoejRCfcyTut5nHmPWbMcwr1qovFmT2WwAee31y+u1V86MbTkztuW8Yv51SMx0LHtlsEj26xHrOpPXNvNmzhzmHuae65o9m2lZmzja3rxKMB9C3Kb9VOfd3fTVZ1/m2hVsoRp1/AyrgYMG4QsxgCJo5IgRNGv6jCJ/O7nFixfTgH634BlXEBNyG039HLxwb6NZM/DfUnkOHm6jGTm5hW2HTh1p7LhxuLq/CEKjDgAKLjTqAACgsOrTJ9h80U0snr2GXz2ami1vy+lh1kPFtpwZ23JmLLmAG2++2ZnlA8qrr72WdY+edZ755Wxr28xs+4SZ99rHvGq2vbnN/MinY9vHQcl5zYJjW03nzHyoml9Oz7Y8N4SE3qP3ecW2nBnbcrZY3ofO63o4Ob88j3Bq5vswf3+83qfkdD2SveZggfrWI0foih2baVuXeNpxhv/VK9ykq/7WVnplyit07jmt3GzseTXqWp7bih5+9FFKSEhwMwBQ1CQmJlLHyy53rlD5YOHCIvul91NPPkkvTJpMk6e+SJdddpmbBYitI0eOUnJysvMcvCOHj0R0G039HDzcRtNbamoq3dS3L337zfJcbbyn71pFi5YeojM7tqSapeVzSzod2/U7rd6UQlShNp2VUIWOcyvhOUy7An/nJldOoIQqx7s5P9G+Xojjjm6h5QvX0HGt2lLzU8J5H3kLjToAKNiibbyhYQcAAPlJGnV+g9nyPKKp+eVtV+OZsc7JfuZ1xRyT40LFem2LA2PevHk0b/78jCYd/+v2Lvwv3GUP07MeQsfmrH8PhN6j80znbDW/2eR1vPA6LifMj3mhYqZzvDZjTdfNfV55mfUepmM96yHMnJ5ta2kgMc7p2NZcymksOT63rW7GktP7mdfx5sjvuh7mXia/DjfmZl3vsiXp9xN2U8qF1WlP9XJOXpx44ChV+mYnVVt9lJ5+6mlqd2Fbt5I7zEYdN+juHDyYWrdu7cQAULT16NbN+dJ7yktTqX379m62aJHn0y358n9Us2ZNNwuQd/Rz8Pg2mil7U2h7IOenTp1aGc/Bw200M/GtbHv36uX8mR47/mnqcvXVbiVG0rfRx/ffQCPLPEgLH76YKvNHlGNb6cvnR9LdEz6jJGdTKYprexc9/UR/alMjnGZXGu3/+XW6vctzVObJefTi1bXcvAeP1xv3eH+68FSf13OPuydw3G4nYXufKbRq4gDqv/pqmvnsdVS/TC58BssBNOoAoOBDsw4AAAobadQxns1GmW6E2eoyJOdXNxtQHMuaSSw5WUtsO3e4sRzL/GLzOGPd75ZbMhp07L8vv5x1H9Pnktm2ZhKbOZn9anpmfjXmt5eZ+02h6tEI9RHPrEtszkLHvPaqe9V0Xte9ajJLI42Ze5mZC7W2xbZcpHG4OYnDbcoxv4adLadHbtd5eO0R77/vLjLxvwif8967NO7pcVSyQmnaWTF4u6zKe0pRyQPp1LVbN+rfp1+ePDNKGnW16tSmuwYPpss7dMCtpACKkWXLllHvHj2dJv2s2bPdbNGRlJRErZq3cK4a/OSzzwI/cuTCzxwAUeLn4B05ciTLbTQjeQ6e3EaTr8orTuTvLfbOvLnUpEkTZ51zaZS85DHqeEsSPfDFU9S5Bt+a9BBtnjuSrh38NTUf/jgNvy6B9n/3No2//xn6sc14mjfhCqrh+9fKYdr5/Qwa2f8/tHh3RbpkfKhGXfD1rhvyNTV70Hy9pwOv90+P11Pv88H/0PB/NczyPueOv4JOdT9Kpid/RqMuH037/j2Nnr6iFhWkvxXRqAOAwiHaptuoUbnzBRgAAICXG24IzrqxZGtgyX+fwqnLkDhUXcdybp2XWqicGYebE7b3aaz733qr06ST8dJLLwVKgZp+3zLrtTnrOtOxbTZzzFYX5n6zzrxqOrYdlxfMj306lrXto6FZM/dwbKvpnFkPNUuDzlb32sukbu7zW4cT23KhYr+8LWfL61j/nvjVmY5lLfuZjr2OjabOax7vvReMw8D/MvzgwYNuRHl+q0lu1PEXhH369kGDDqCYkqvqps2aWeSuppUv9Pl5m488+mjgR5B8+hkEIALyHDy+jaZzFd7OnWE/B0/fRrMoPwdvxvTpNGrkSKpdpw5NmzEjNs/SPbqWXru+F00+41n6+KE2VIFzR1bSpCv+Rc/EP0aLX/kX1XL+CjlCm9+6i9rft4Pumv8aDTq7PCezSd//K304dQI99fzHtKdieTqQXJLahmrUZbzeo4HX65rl9S4buoPunOfxeup9fvzyv6i28zFSvc95r9KgJs6vKCCFVozvQ93eb0ez37+TmpctOH8vup9+AQAKOG7URdOsGz3aXQAAAOQh+cJa1uYX2+HUJaeH1Llm1r322/K2Y3kIyQl9jBmbQ+/jtdc+HgH80UiG8+HEzVuP0zmmazz0a+tY52SY5/eqC13TdR7CVgtn5Abba5g5c2i2mtceWQuds9WFrjMz1my1cI9ltr2S02um15HS5+IvRM2Y6ZxJ52Wf316p+Z2ba7puCvW+wqnPm0c0f35ETTrGXyxxc05GXuNb7A4YOABNOoBirHuPHs48fdq0wF9xlr/jCrGVP6505pYtWwb+qnb/Lgco4PgZdXyVXONG/6BzW51D/7yiI918Ux+6bVB/uu7aLvR/HdrTBeef59wekxt0jJ+Fx1fjfffdCvrssy/o7Xfm0tSXXqH/vvwavf/BQvrif1/Rjz+uchp+3Ags7Hpdfz31cG+B+Z/HHnPuVpAz6XRwxfv04jen0DUdzgw26QL+3vgDfZxYmhq3O5viM/4KKUPxTc+lxvQLfbxiKwU+9VilrVtAI5//g84a9hLNHt8r45x+Ml6vbWSvl+V9ZnS7vI6rQGdeehmd9sfbNPvLHVnu6pLf0KgDAAAAAMgNXl9qM6mZdYltedt+Ec5+M2Zm7NWcEuHEItS+wBg4YIAT8ucwHlOnTnXmjL1ynMTML2eumcQ6r2czxyTPI1TDTuc0vaegD5Pk9Kz3SazrJnO/kONsOb02Y83co+m81x4b/gJT9spaHx9uzHRji5mxSef1+2ByrKbPK/v9zh1OnXm9ll/93XeJ5s51AwCAwodvecu3hly0YCElJia62aLh8yWfOXPjM85wZoDCjht4p51Wn5o2Pdtp4PXq2c1p4PXs0ZWuurKT08Br2LCB08RjfBUeN/BWr/6Zvlr6tdPAe/W1GTRx0ov0TmD98eJPnQbe5s1bnFtxFiYPDh/u3LaX/+56/rnn3Gy09tAPixbRX+VaUqtGFd1cOh1N2kEb6XiqWunELE2kkhUqUVU6SBv/2kNH3ZypVJ3ONOPr+fRM/3ZUr+JxbtZPqNdL9Xi9MN7nDn1cCSrToAldUGErLfx8Le1zswUBGnUAULhEc1VdtFfjAQAAREO+1NZfcMs6VCzMOtOxruucbWbh7NOzuQ4V62aWxLLWw903aNAgGjRwoLPmr/5feOEFejEwMs4jQ87BbK9hy/Gs17aaHnIeGZKX48w9Zl3X9DD3ybDtzauh34d+X3pPWpp9v7nPq66PN/d45cyavDe//TzMfVJj5nF6n5mXGuM1/xokL7lw41BDv0eJZe0V8yw5qTNbXQaTWqi6MPeb9TffJHr7baJ33iGaMyc4AAAKOb6i9uZ+/Zz166+95sxFAV9hw7f0ZPlxxTJAXqpcuRLVqlXTaeBd1v4Sp4nHDby+fXo5V+FxA++ss85wGngnnHC8c8z2v3bQunW/OQ28+e8toJmz3nQaeDNmznauwuMG3u+//+FchXfkiFc7Kv/w311jn37a+YcGL0ya7NzOO2pp22jNV5sDf1nUo/jy0i5Ko+RtWymFKlD1Sie4OVfFqlSrAlFK4jZKdlOmEifXp9OrBn+vw8Ovt8Xz9Wp6vp7/cdb3Wa4OnX1uZTr4wQ/02zE3VwCgUQcAhU+0TTc06wAAIC/oL7Y1/QW4Jjlb3Ssns17rWeg9TGLJ+cW2nI5FqLxm7OEmnXONDjcEhOzRe2055pcz14zXuhkhNR3b6kzn9NB0Tu/Rw8a2L6fDxraPh65peo/UIt1jqzPbHmHGTGLbXpPeq9nyvNZ5HrYrx0LR52FesZzbrDMz1qTmd7zGNd7r92vRddu5pM4NOh4AAEVUx06dnPmNGTMpKSnJWRd269atc2Z+Ph1AcSW30eQG3kUXXpBxG81b+t3oNPAuvvgiz9tocgPvw0WLs91G85vl39Gatb8UiNto8i3EH3v8cWd9z+Ah9OOPPzrriB3YQZu3HCWqWokqZOsWHUdlSpdy13kh2tcLHufzk69SiWo1PoUoeT1t3lVwOnVo1AFA4ZSTZp3flxoAAAA5wc850f+d4bXXf3e8apLTNa9zMHOfDGHGzLZHCye2Ha/zstZxwO23357lA9TkSZOCC9knzOOZrEPt1bHOa345fYxeM4ltQ9hqXiM32V7PawhbTQ+9x2xqyhA6tuX18Tqvh86bDV05XmbJyxBcl2O99ulYn0+ODRULOV7omNfmMPM61q/DJDb3MVuNc7bXZlLT+3V91iyiN94gmj07GAMAFGFxcXF077BhzvrN2UXjHyb8tHq1Mzdq1MiZASBTmTKlM56DZ95GUz8Hj2+jeUpgH5PbaOrn4MltNPVz8PL6NpqtW7em0Y8+4qzvHjyYtm7d6qz5Vr58lR2PxYsXZ+StDu6hvw4SVUyoQZXdFFEpqlwjnipSMm3eaTQkU3bS5n3m/pzi16vp+XpbPF8v63HuT7JBufI+cw8adQBQeHHTLZqG3ejR7gIAACCXyJfdtqtZpMa4rr8ct9E12Wvu9zrets/rWNus94YTm4w9d95xR8ZVdDwmTpzI6SC912tmsk/XdCx0bO7Rsc4zr5rMwtyjh2arF5Sh2eoyNIn1bO7TOV0zY6bXzFa37dGz8NvLzLW51+R3LmaeTwsV+5G9+mq3UOfTf9eYx9twTZ9fcIOOBwBAMXPlVVcG/losQWPHjCkSV9UtXbrUmc886yxnBoDw6Ofg8W00r722S8Zz8MzbaAr9HDx9G039HDy5jWZu6HX99c7Vs5s2bKTb7rqNWpzXgq67pzcN/OQpGvDV09R39gi6rPPldOvgAfaG3fEnUqXSRAe27KYUNxX4QZFKx1WjOnSYdu45QO4//XL8vW8P7aRyVKd6JQocFiOhXq+sx+uF8T6rxfJ95h406gCgeMJtMAEAINa6dw/O8qV6qBHJXh5Cxzx7XUmjY7PulzNjW07H+oodfZWO7AsYfOeddFdgMG4N8APPJwZGCdkj+/Vxspbz6fOasW2/jmXovBxjq9tqepj7ZPjt5WHu52E7JlbDfC1zRHIM18znz8l++XWFqpl7OPbK6bwtp58jJ3kdS04Gx8yMbfskJ2tzmMdJzi+WYYt1TtbmPh5M1rbz6FhycoxZ5+cwvf460bRpRNOnE82YQTRzZnA/AEAxxLeQk9tE/u+LL5y5MFu0YKEzN2zY0JkBIGf4OXjmbTT1c/D4NprnnNPc8zl4chtN/Rw8fRvNnD4Hb/iIEVQl4VRate0X+qN7VVrV41Tadn512t68Cm295FRaf0cCzS+9hq645p+0ZcsW9yhXxepUp3opSks5QIcDPyaKknWa0WUJR2nNklW0NSN/hLb++A2toYbU9uwaMW0uZbze55G9Xpb36f7463/cPvpr/S6ik2pSjcp5eVtPf2jUAUDhh6YbAAAUZPLFuO2KF5mZvrrFtl/vZeaxeo8+l2aLdS6aWF5bkzgwDxk82FnKr+bZZ5/NUs8YZmzmzDWT2KzrnDBrkdRlbdb10Gx1r5GbbK9l5mRotjoPXRO67lfTsTBrmt9eTXK6LmuJhVds28t0Tu/Ra/PPmi2WNbP9efFj7uWYh7wO8zufuZ8bdDxyZD8lvvUIDRj2DiUe9Xjt9B20fNrz9MKSzVn+ZXNoabR//TKa9+okmjB+PD0zdTZ9vGoHRfb0kDDOkb6Llk+6jwY8spA2HfP5/QOAYuWGPn2c+ZkJEyg1NdVZF0Z8yzvWoVNHKlu2rLMGgNwhz8Hj22ie2+qcjOfgmbfRtD0HT99GUz8HT26jGclz8D77/DNKPrKPtvX/B+2pXs7NZjpUpmSwaffPOLrqus5ZrxwudSo1bhdPtOJX2piqfi4q05D+78ZLqOSSZ+mRSZ/Rhv17aMOSl+iRJz6mku260lVnVQhsOhT4uXAk9e83kt5OPBQ8LiyW49zXK/X5c9ler0Tbf7mvx4xj1ft8dNKn2d7nlWdVdI9zHf6Tfl2RRKXOa0i1yqifqfNZifQAd10gNKhbz11l+m3DencFAOAj2oYdGn0AAJBTXbsSlSyZ+WU4z2YsQ2KuC4l1XQbzqoWbCxXbcmZsy+nYsr77nnsynhPA84RnnsmsM9mvjsmYdZ6ZOdssa6ZjMy+zrc50jdnqtlmYsbDlvfbmlO1jXqiGjpC1OQtzr1ddz3qPX17XzFnXWaicV94v9lrbYlvOjG25UHGonL5SzqzpOpPayy8H5xxLp0NrXqY+V75AcWPfoklX18lowmc6TNsWPExXD5pJx+56h5YNaR7m7YYCx302nvr3e4HWprkpR01qP3oSjb3hLCof8o+L/zmeCpyjgnOOdDq67nW6oeNLVOnxl+nZrgmF4pZIAJD7enTrRt9+s5ymvDSV2rdv72YLF34m1T2DhzjP3RswcICbBYCCgp9ht3//ftq9O4l27tpFhw8Hn3/nh5+VV/GkilS1ShU6+eQ4Kl++vHOVH+N/WNC63fm0sUd1a5POFP/pn3R742vo/iFD3UwaJX38ELW7ZTXdNGcGDW4uDbGAY1vpy+dH0t0TPqNga68UxbW9i55+oj+1qcFXDu6nFeO7Uddn0un2OW8Gji3v7NKOrRhP510zjZqPn0cvXi23DOXjulK3wMfD2/RxHq837vH+dOGpwSsVrce6x90TOG63s8d8n5n+TnyVrrt8ElUf/zZN6lLb8rNs/kCjDgCKlmibbqNG5d4XZQAAUPRxo47/OyLNN3PNdLONmc23cPfrY7xiW84vltdmZqzfl3mcGRvru++915nlA8f4CROy7mUS++WFjr1qZs42M71Xr4Wu6VnTOds+2zGmcPZEK9RHPbMusTlrofbovG2Prc788jpnm82cbmTJ7Lf2ipncMlKYTTK9tsW2nMRmQ832WrZYcrK2xTz++99gPpaOJtLMW3rQ6NQ76L1pN1BD818hp++ltW8/SffeP5N+TSOqFHajThpn/6ZvK3Wk+1/8N/VtcRIlr5pPzz3wMM38uTb1nfEqDb+gqs+XKcY5XhhFfc+plPUc01+h4W2quedIoRXj+1C36Q3p2fcfpY410KoDAKJly5ZR7x49qeW5rWjW7NlutnAZOWIEzZo+g6bNmkmtW7d2swBQ0PHVc/v3H6Bt27ZTyr59lJKS4lxVd+jQYXdHdnyV3vZtf9ILn7xOib2z91VsTjxwlBq+9Cet+Pp7NxNw8Bt68tKb6OOur9P8IS0o67W46XRs1++0elMKUYXadFZCFTrOrTjSN9LbfYfQlrtetzbqPPFxN95NW+58zTguxOsx67FhHEcHae3UfnTVi/+gqR8Np3YF6NaXaNQBQNEUTcMOV9YBAEC0pFFnDhZu3pYLJ+/VZJM9kcQydKzXXjnhnmvo0KEZt7vjDxvjnn46GIRxbJa8nvVeiXVdmDWhc7pm5vQ+zbbPRufNPbZjvM6TU7aPeWZOx14fCyVvzhrn/PaFqskQep+tpusyy9psfuka0znJy+x3rI7NnF57xXJuv1jWTMc862HmxAsvuIvckkbJSx6jjn0X0nmT3qGnO52qnqXBt5v8H816+nEa+966QBQUfqNuDy0f04t6Tk6ifwbOPT5w7uCfjHRKXfEsXXXNBNrUYTwtmdKFanj+keFz9AycI9k5R+b70+d4OnCOqzPO8ff6mdT7sn/TjttmWb6UAoDiSq6qK6yNroR69QP/eUin5Su+p7i4ODcLAIUVP78uOTmZdicl0ZHDR2jL1q20d2+KcwtNtvznb+mjcr86t7YMV4uX/6R5r77jPJ8zKJX+mDmErhh/Kk2OqIF1iDZ/NJZuf/4kGjXzNmpePvOnQ3/B4+4IHPdQRMexHByb+j1N+Oet9E3v1+n1vo0L1B0VIvkdAAAoPNCoAwCAvHLddcFZf3HOX7LLF+3h5s2czsv59fGSS0uzx5LT5w4Vm4NrTNbmXp1j7pq/A9cjy3FMjtU5HfOa6VjWtrzsZxLbjtE5ndfDPJaH3ic18/xCcuYeW5ybw3wvtpyOTeYePQvZ47cvVE3Hmq1mHmuKpG4ya6HOpek6N145lpzEWqSxH27Oycht6Zvok1fn0q5yl9AV51XP+mXCsZX00jU30pj3/qQGXR+jmRNvpuDNmMJ0+Hda+t46olKt6OJmcsUbK0Flz2hDV8SXorRPv6Gf9mS5n2VWfI75mefIfH/6HMuznKNk3dZ09YUVaP3UOfRlks+5AaBY6d6jhzNPnzYt8FdyBH8nFwDyfDq+IhBNOoCioUyZ0hnPwWva9GznOXi9enbLeA5eg4anuTvDV75GZTp48KAbsbJU/5rb6O56i+iFeevoqJsN7XiqmnAF/fvF/hE224LHjYr4OBbtsUdp26Jp9PKJfejea04vcLc9j/R3AQAAAAAATPwljh6aLSfMmsS2nBZqj8SSiyTWOT0LM2bquPuHDXNm+aJ97FNPBRe285k5nmUtTS0hNcl5xULXzbzZMJO839BsdT00W70gDc1W10PYanoIr5pXntliITXJ2WJN14SZk7Vfzmy+Mb1m5jHCPI5FE+vcpElEkycTTZniJvLG3799TjOWJFPp9hdQU/NfWZcoQ3GXDKIn5nxC857sSc1rnOgWwpS8mdZuTSOqWJdqVTVuUnR8darXqCLR0ZX08/pUN2kROMeaEOcoYZ6jRA1q0rYx0cFP6YOv/3KuAAYAuLxDB6pdtw4tWrAwo/FVWGzcuNGZm7do4cwAUDRt3bqVFi9eTK+/9irNmf+Omw3frrVbqFw543l2J5xJvR8bSRelbKANR8L9qagEnVCvGTU7Jetz4EKL9jgW5bFHNtCPmxrTo2NuoOYVC84tLwUadQBQdEV7VR2urAMAgEjpL9HNtcR69srbZsZrndfDzJmxLSexOethy8ngRhcPteeBBx6gB+6/30lxk+7JMWPoqSefzH6crFk4OeN1PPdLXmapyfA6zq+m6zo2h1n32ivn1kMfG+thvpZt2I7joetee826bZ/k5NduHid5yekheR5eV4rqmcla8mZO8jLLWvbpmuT0a+uhzyGxLSfn8Yplzcz42WeJnn+eaOLE4OAmXb44TJu+/YJWU3lqet7pVCXzkregUmfSDePuo+uaV7M8CyS0tB1b6Vduk7WoR6dmO8GJVKV25cB8gHanHPJspgXPERDGOTKdQPWbn0fxtJ0WffYz7XGzAFC8lS1blm7u189Zv/7aa85cWPywYkXgPyHp1Kx5czcDAEUB/6MBbszx56tL2rWjthe0oQH9bqEXJk2mfb/vorJLd7o7Q6uYfJjKlCqjbnspStAJCf9HA+/sSAnmc4iLgjIJ1PHO/nRVo5Ocz6sFDRp1AFC0Rdt04+PkCxIAAAA/+kt1EW5OeO2VvBmzSGNmxrppYM62NfPIy4edjA89um4eo2vML8ekeSHMZgaT2BxeNeFXY7a6OTSd1+/Ta+Qmr9ez5XloOmdb6xyz1YXORVJjZs4vNmvMrGte+4WtLrzymt+5mV/MDToeBcY+2rDm98BcjRrXiYv5lxvpx47QAXedXWkqW4H/xfQ++muPbrJlFe05StWoR01LER1dto624O6XAODq2KmTM78xYyYlJSU568Jg4YIFztyoUSNnBoDCiRtz8+bOpRHDh1ODuvWo42WXZzTmNm3Y6Nze9t5hw2jKS1Pp86++pLqV4ilu0373aH+VPvmT7rn7HjeCggKNOgAo+qJt1o0e7S4AAAB8yJfrPJtfvAvbF/LmfjP2Yx6n2WJzvxlrZsxse9zbAX7yySc0PPABkr+453HppZfSE0884Wxz9tmOldlW0zlbrHnVJa9rzKxrZi1UXa91zqRrem9+DbN5qOm8bZgN00jqtpp+L7qucxLrWfbqugyJZZZh28sj3Jzk+Tz6XPJe9J5IYp1jzzxTwBp04hDt3b4vMFekk52GVxFS+RSqVzEwb/uDtuA5dQDg4ue78Zfg7M3ZbzpzQce3wuMv8Pm2ndmvlAGAgszWmLtn8BDnHwswacxNmzWTlq/4nmbNnk0DBg6g9u3bO3/ex/9nHJ3y9p/O1XJ+4j/9kxoeqUrXXHm1m4GCAo06ACgeor2lZbRNPgAAKB6u9viAY34Jz8xYM/OyV+dte4RfjXFs7pc4VE3Y9gV8/umnzsy4Udf+0kszGxlMjrMcmyUva51jZl5qthzTdZnNugxpsghdC6ceamhedVs+VsN2fpNZ07E5NIn96n41YdaE7Vgz1sz9fnuZWTP324615byeX2fGmhmPH080YUJwFFRpKbTD+VfatSi+WplgLoZKVqgcOHPA0aN0zPjtITpIu//cG5irUoMaFT2v5ovkHFZpR+lIWrYDAaAYu/KqKwN/zZegsWPGFIqr6jZt2uTMcjUgABRc0TbmWrdu7fxDAlOTJk1o4tMTqdYrm+iUFbvohCPq81jAiQeOUs0Fm6jhn+XplckvO7f4hYIFjToAAAAAgJzSX8ybM/Oqm3kdC90s4jknMfNaex2nc5IPGPXQQzRq5EjneVH8oeKxRx+lxx57LHO/eT51bMZa8jKkxsM83m8/12x1yZt1OU7vkdgctuPNoffovWac18P2uvo9mYOfxSZr8zivY/32+NXktSRv1jmW/z9xLM+J03v1MeZ+c5/O87DtZTqW2dync/K+zGOZ7JH97KmniMaNC46nnw426QqDUhWpWu3ygUUS7dl3LJiLoZKVqlHtUiWIVm2hHeZFbemptHcH39SyElWuWDqYswieI7DwOUd6iHMAAGh8lUr3Xj2d9f+++MKZC7KVP6505oSEBGcGgIIj1o05m3YXtqV3Z86hjocaUvyolfSPd7dS7bfX0zmzd1CDqVtoSMte9MHb71HNmjXdI6AgQaMOAIqXaK+qw5V1AAAQiv4yXkSSM4WzT8fh7JWcXjPbWvbIkFzAv0eNcmbGV7c88sgj1n3WHDcuhNT1sOWFmTdrcm4z7zUEr80Gi1n3Gpqtnp8j0vdksu2RIXTsVZfZVtd0zbZXr5mt7rVfr5m5l0ls1sx9zHYsX11nw805GYVeEiXnQqOOTj6Nmp1Zjih5Nf2y2bhl0771tPLbvUTl/kEJ8T633Qyco3k05ziYQrt5e4VqVKUid/oAADLd0KePMz8zYQKlpqY664Lq8yWfOXPjM85wZgDIP3nRmLPhRv3Lz73knHP+Y9Np8RNv0synXqEfv/mB7r5zCK6kK8DQqAOA4ifaphsfZ/uiBgAAiqfOnbM2dwTHtpyemezzy+nYltOxrEPN5tqrJiSvatyOkJbExe3aZallWeuZeeV03lbzypk15lUz8zI0W52HsNX00MyavrIqP4f53ky6Zg5N50Lt0TW/PTa2um2/X13W5jHMtk8zc7Y9gmu6PmYM0ZNPukFhF0f1m9UJzLtovfOsuhgrWYvO79KKStEKmrdwDe3P+G08RJsXzaG3D5aiKt0voxYVfb7C4HNcnXmOfdZztM92jvTdf9JvBwOLxvUpvqxHsxUAii3+0pu/UOdnv3311VdutuDhW3N++81yZ40r6gDyXn415rzwOfnvAhlQ8KFRBwDFU7TNutGj3QUAAECAXEEjX87bvtTXOYl56GP1HmbG4Qh1Dol1ntdmrBnx50uW0MMPP+ys+d1zk+7iiy/OPI/X8Tpv22uLNb+61CRni4WZk33mHl3Xsyb7vIaNbV9uDq/moKbzer9ea5KTYdtn5vUQvDb3mHmeJSezOXTefC9mXnK2ffo1dd429PHmeOKJzFGknEB1zjibytFO+vy7P4j7WtE6tmI8taxXjxo0G08rMi7OK0cNOvejfmek0fdP3k63PzmDPlryCc178SEacP97dPTkq+mBG8+hCu5uPsc5dW3nuCXjHHdYznF/38xzBKXRnt9W049Umhq0b0q10KcDAIs7Bw925v9OnerMBdHmzZudWW7VCQC5q6A15qDwK5Ee4K4LBP4ftum3DevdFQBALoimaYdbYQIAFG9XXhlstMlgJd1/A6fzUrPFej/jWNZMxzzLCCe2nVtwTtdlT4g1P3/u72DGeS7dQw89lLlP9jKd88oLv5y5ZmbNnM2cCFUzZ3MP0zmvtWbmQ50zN9g+6pk5r4+DOu+1Fpwz95j7JA63FsksQ0Sb07Mtzw06JjHj5zIWFylLaOR5N9Ks+Pvo3Q8G0lllvP/3y4208655luiud2jZkOaknwrHtdbXPkvJle6kN78dQs2PcwuBv1mObVtC4+8aRi8s3+nmiErVvYZGTXqIejQ+KeNKXjn/nsrRnyMomb56+F/U5+WT6O75r9Ggs/k5fAAA2fXo1s25Yo2/dOcv2guaGdOn06gRI2nchPHUuUsXNwsAscC3vd2yZQut+fln+vbbbzOacRo35tq2u5iaNG1Cp59+OppxEDE06gAA0KgDAIBI6UYd82qySU7WttiWCxXrnF8TTmYZfrHXOjD+85//OM05GSNHjrTvlbXMOs9s781vNvczXsvQdM6rbpuFeYzXPmar2fYJr5rfMbHg9VHP7yOgrnmtma1mzoJj236mj9FrIWtpkjHzGHO/rpuzV05iZjbkzD2PPhqci50UWjG+D3V9pmQOm1rpdPCrx+j8YZVp2ue30VnZHgt3mHYl/kKb9qURla5GDc+sSeWz/VGJxTkC9n1Jj1x6I02vP5o+nNmT6qm/TgEANL5yhq+W6dCpIz0/cWLgP+G5/N/wCN02aBAtWrCQ3pk3l5o0aeJmASAa3Jhbt24d/bR6NS1dutT5s2XivwvOP/98qn/aaWjMQUygUQcAwNCsAwCAcF1xRWaDRRpyjGcZZuyXN3PMbFDZYlkzv5hnGTqWtZybSU3qLFD/z+OPO0v54DB8xIis+2T2O5dtljWTY73263MzfbzMTOdC1fUswjlGs+1jtr024e6LVjgf98w9Og6nFmq/V13XzH3MrAvJmzU9y5pJ7JfTsy3v3vK1uEvfNpcGXXQv/dD7VfrooTZU0c1H5NgmWvhgPxpd/iH6OHCOrLeiDJNzjpsD5xgV/TnoGO1c8AC1ve1Huu6VGTS6XTXjajsAgEz8xf0VHTs6z6pb8NEiatiwoVvJf/zezmrU2FmvXruGypYt66wBIDyRNObOPOss588//pxBrKFRBwAgom28jRqV+1+yAQBAwaEbdTzrYcvZ8mbslQ8V23JmbObMNTfAZM2MhtkTY8ZkXEnHHhw+PLiQc+hjbTl9PsnrWe+V2JYz18wrz3TOq26bhV/d3Cv89ngdk1/Mj4E6tn1E9NpvzsKvbquFqgu9V6+ZxLacrGWWtXmlnq4xPJ/YkEKrJt5K/5pQncZ8/iR1ObWMmw9XOh1dP4eGjfmLuj3Sn86tmnHPygjE4hwBR9fSa9f3oCfKDqUPpvag+qUL2J9RAChwpkyeQmMDPxfxc+AeLUC3Pl65ciVd27mL00iYOGmSmwUAL2jMQUGERh0AgBZtsw5X1wEAFB/cqGPSeOFZX+2lY9mjm2E8yzBjWy5UbMuZseSY7b1Y1k8+9VRGc45d0KYNtbnoIjcKkP3qmIzZK2fLyyxrJrEtZ66ZzuuZ2fbqmIWqM8mFOtaLV83vmFiwfdwL9RFQ121rv3N67fGq63289srLrPcwsyYktuVsa8b/+ApCSt/3LT3b6xaa1eRpWvjwJVQ5l/8nnDuO0rYFI6jzXXtp8IdPU8/Tyrl5AABvSUlJ1Kp5C2e9fMX3BeZWd3JbztGPPkK9rr/ezQKAQGMOCgM06gAAbHArTAAA8NKpU3DWzblIG3G2Rh4z94UT6/dhi/UwczpW67Fjx2ZcRScfFoYNG5b9fcuxOpZZ55mZs82yZhKbOZn1Wtjqwsx57RGyNvcw2z7mtfYT7r5ohftxT+8LZy0k57ePY7Put8drr1/dlpO1Oes6e+ghdwHhSadD65fRR6uPo+YdW1LNwnglWnoyrf3kS9oQdw5d1rwGRXlNHgAUQ3JV3b2Bn4sGDBzgZvPXiOHD6Y0ZM2narJnUunVrNwtQfKExB4URGnUAADa4sg4AALx07BhsrpiDRZMzY1suVGzL6di29mjojR03zknxhwT5oDCUm3RM9slaZj0kJ7NXTmKmY9ssa6Fz+tfB9HF6Zl41vYfZ8uYe5lcPFecn8yOgX2z7uCg5v33mHr9jvGo6r2vMrJuzrJnEuo7mHAAARCExMZE6Xd4h8J+S9AJzVZ18l1qQrvIDyEtozEFRgEYdAIAXXFUHAACmDh2CDRduDvEszRdZ22Jbzi82G2g6ltcVUpNjpWZbmzlmvNbT48dnadDxfN/QocFAHytD6Jzk9SxrJrGum7OsmY79Zlkzc61jJrHXrIWzh5n5UDHzOles2T7y6ZxZ9/qIKHm/Y5m5z++4UDWvfebMeC1D6JjnkSODawAAgCiNHDGCZk2fQeMmjKfOXbq42fzBjcOOl11OLc9tRbNmz3azAEUbGnNQFKFRBwDgJ9rGGz/jJK++fAMAgLwjjTpzMFvs1XSTPX6xDL9Yr71ygs9t1t31hGeecZb8wUDGPffey6kg830ax2fMtjWzHS+zuVfHZl5mr7zMtjoza8yvbu5lkjNrtr1apPtjxfZxL9RHQF33Wguz7rdf10PVQtWFrP/+OziLBx90FwAAALG1cuVKurZzF6pdtw59sHBhvjYA5Pl0BelWnACxxs+H3Lx5MxpzUKShUQcAEApugwkAAOzyy4PNFWmw8KybXyzcWHKyjjRmZvPL9lrMPNaMAyY8+6wzM/5wcF7r1tQ68EE3Yy+T/ZIz13q2vbbMsmYS67rfzHgtQ9jqshZmTtdYOMeYbHuZ135TuPtyKpyPfLbml7Adb9tvzsKv7lXz2mPmdY2hQQcAAHmgR7du9O03y2nKS1Opffv2bjbvPfXkk/TCpMl4Ph0UKdyY+/XXX2nljyvp8yWfOX/WTN179aRGjRqhMQdFBhp1AADhQLMOAAC4Ucd0E0oPMxcqtuV0LK/DbLEMMzZztrU617PPPZdxFR0777zz6Dxu0jHzOJnNtcTMzNlmWTOJdV2YNab36Tyz7TVjIWudY7a8117Ntl/4HZdfzI+BOvb6iGjbY87Cby8zc6H2mHldY2jQAQBAHlq2bBn17tEz3285eenFF9PG9Rvo86++pPj4eDcLULiE25hr2bIlNT7jDEpISHCzAEUHGnUAAJGIpvGGZh0AQNEgjTpuukjjRdZeuVCx5Mwr0MxmoF6Hiplu6vFa8szd9/zEiRnNOZnvvOuuzL3uvowhzJyeZc0k1nVzljWTWNeFX15mnWdmzmuPnpm5h4XaZztGeNX8joklr497fh8Ddc22th0bzj6OzX1+e8y94v773QUAAED+uaRdO9q0YWO+Xc22detWatfmQqpVpzZ9umSJmwUo+NCYA8gOjToAgEigUQcAUDxdemn25pkMyenmWLixHM/8Yp791rZYcsw496TJkzOuopMPA3fceWdwYb5P83x6ljWT2C9nm2XNdByqJrz2MHO/OWuc03mvPcJvr+1YUzh7YiHcj3vmPluTzOtcZt22j3M6b4ttszZsmLsAAADIf/J8OH42Fv8DqBJ59d921+LFi2ngLf2p/8ABdN/QoW4WoOBBYw4gNDTqAAAiFW3jbdSovPtSDgAAYosbdUyaWPz3uQwztuVCxbacGdtytpiZTT6Z3THZaNTxuOOOOwL/N0Dty4hl1nmmfz9k1mtz1nWmY1veqyazV17PzFx71ZjEfntYOOcQtuPzm/kx0C/2+sgoeb+95p5Qx/Bax2jOAQBAAZWamkpXdOzoXFW34KNFznOy8tKUyVNo7Jgx+f6cPAATGnMAkUOjDgAgGtE263B1HQBA4SSNOm64SNPFuEotW3NM7400lgYY45zttZjk5Fi/2J0nv/BCcB3AHwR43Hb77da9njmJme29yKz3Sazr5ixrpmNzZrY6M3O2GvPbx0Idp/kdy2zHMK98rNk+8pm5ULHQeVnb9po123HMtg/NOQAAKCSkWcZNh0cfe8zN5o0e3bo5DZCFH3+ERgfkKzTmAHIOjToAgGihWQcAUHxcfHGwqWIOZottjTbhFevjzXUkNYkZr93X+n7FCvru+++dNX8A4DFw4EDv482YmTk96zzTsW3WdWbbI7NXjUVbY+Eco9n2Mdtezase6rhYsX3kC/UxUNe91sJWN2dh5nGrLgAAKMS4QdGqeQtnvXzF9xQXF+esc5t+XXxvCnkNjTmA2EOjDgAgp6JpvKFZBwBQuNgadcwvtuVCxbacjlmopp/ey9wm4NSpUzMadIznAdyoY7LfPN5cyyxr22vL2pxlzSTWdXOWtdC5UHVmW5uz5rfHbz8z67b9NuHuy6lwP/LpfeYxtnPY9puzpmto0AEAQBEhV9XdO2xY4GerAW42dy1btox69+iZL1fyQfGDxhxA7kOjDgAgp9CoAwAo2tq2zWxIcWOFR6hmmd7P/GIZOtZrWyw5xucy9xjrl/7732xNultvvTX7+zaPl1nnmc7Z8rI2Z6+afh/MtpfpnFfdjLVw6npmfvtFqD1ex+Unv0Ya8/qY6LVH1uZxOr7vPncBAABQdCQmJlKnyzsE/pOXnmdX1UlzcOz4p6nL1Ve7WYDY2Lp1K61du5Z+WLGCFi5Y4DyHUatdtw6df8EFaMwBxBAadQAAsYBmHQBA0WVr1Mkwc2Zsy/nFzKuJx8Joypnr/778srP82/m/5DTp+vfvHwz0+ZgcK0PYcvp92mapi1D7eZY1Cycvs64z2x5N580a0znb2naMCHU+ze88sWT7yBduTuiabe13PjToAACgiBs5YgTNmj6Dxk0YT527dHGzuee2QYNo0YKFtOCjRdSwYUM3CxCdcBpzHTt1ombNm1OjRo0oPj7erQBArKBRBwAQK9E23tCwAwAo2C66yN4gCzc2G1Q61vuY7XW81maOybkDXnntNWfmH/blB/6b+/XLfoycR2Kmc5LXs1dOYqZj2yxrpmNbzTYzvddWZ+HWmdceYaube72ONYW7L6ci+bhn7tWxrL3OJ3k05QAAoBhauXIlXdu5i9PQ+GDhQipbtqxbib3U1FQ6q1FjZ71qzc9Urlw5Zw0QLjTmAAoeNOoAAGIJzToAgKLlwguDDRU9WKicGdtyoWIzZ1urxlxGza2/+tprWW512axZM+fDtt6TZdZ5ZjYUZS2z3iuxrpuzrJnEZk5mvRa2ujBzXntss2ar+e1jZj1UXJCYHwX9Yq+PjZxHcw4AAIB6dOvmPLtryktTqX379m429qQp2KFTR3p+4sTAjxoF+GcNKBDQmAMo+NCoAwDIDdE03tCsAwAoeHSjjunmFdNXwDGvWHKyNmPbWl6LSU3XbbmAH1etcr7AYfyDPo8bb7rJiTP2mr8Oy3my5GzvRdbmrOtMx7ZZ1kzHZo3pmp6Zud+MmVnXs2ar2fYxMx8qZl7nyi22j3xmLlSsSQ0NOgAAgAzLli2j3j16UstzW9Gs2bPdbOzNmD6dRo0YSaMffYR6XX+9mwXIhMYcQOGDRh0AQG7AlXUAAIXfBRdkbbzxLMOMbTkztuV0rNd6CK/mmt4XmKdNm5bxPDrGP+z3vfHGzD2M15E067zysjZnXWc6tuXNnDmHqmu2/eYeZttn8qrb9gqz5rXX7xyx5vWRD805AACAmLqkXTunKTJt1kxq3bq1m42tEcOH0xszZtI78+ZSkyZN3CwUZ2jMARR+aNQBAOQWXFUHAFC4caOOmykymF9sy5mxLSdsTUGvtY5Z4NjpM2Y4S/nhnucb+vQJBrZjJKdrzMzpWeeZjm2zrjMdm3mZvfIyh6qLcPeJcPYIXfNa+wl3X6yE+5HPtg+NOQAAgLDNmzuX7hk8JFdvSynfna5euyZXn4UHBRcacwBFDxp1AAC5CVfWAQAUXtKoYzzL8IrlCjXmF+tjZIQby2yce+asWRm3uWQ89+7dO/vxei2zHsLMmbN+fWb7tcksQ9j2mLOsmd8+4VdjXnVzH9M5r7UWao/XcQWB7aMg54YOdQMAAACIRGpqKl3RsaPTOFnw0SJq2LChW4mNxMRE6njZ5bl+e00oWNCYAyj60KgDAMhtaNYBABQ+55/vLgK40aKHmTNjW05wQ8u2J5y1zjE5V8Dqn35yBuMf7nlcz88skf1GY896LqbzetZ7JdZ1PevXYvrcema8liH0Pp1nOmfOzFzrmNn2mrNm289se0Wo8wi/c+QGr6achgYdAABAjk2ZPIXGjhlD3Xv1pEcfe8zNxoZcsXfvsGE0YOAANwtFDTdk1/z8M3377bfObU5N3Kht3qIFGnMARQgadQAAeSWaxhuadQAA+YMbdfxjsm468Vo3V/xinmXoWK/DjZnt3O76p8CH+J9++imjQcejFzfphOyXY5j8utR5rGtm2yuzuVfHXrOcT9iOYX55mW15pvfoWeOc7RjmtV+E2msKdb684PWxD805AACAmEpKSqJWzVs46+Urvqe4uDhnHQvyfLrcfAYe5L1wGnNt211MTZo2odNPPz2m/5sCgIIBjToAgLyEZh0AQOHAX3zwj8ncTNGDxTK25XTstXbjN996K6M5J7r36JFtX5bZzOnGmdTNPXqWNZNY1/Ucqikna2bWhJkLp6b3sFB1Zqv57RdmzbbX7/i8NGyYuwAAAIDcJFfVxfrKt0vatXNuexjrBiDkLTTmAMCERh0AQF5Cow4AoHA477zgzA0WGZHGkmPcsDJjpvfJ2ow91m+9/bYTSqOOR/fu3bMfo2Pm15hjOjbXMsuaSazr5ixrpmNbzTYzvVfnmZmPdJ+mc+GsTaHOKfzOEWto0AEAAOQpbsR0urwD8deusWqq8XPK2l7Qxnke2adLlrhZKAzQmAOAUNCoAwDIa9E23tCwAwDIGy1bZm+kmc2tULEeZs6MdY75NdLc9dvvvOOE0qBjXbt1y7pP5lDn85r1EDq2zbrOzJrQsTkzW53pnM4zc7+uR7JXeB1v7rUdq3nVQx2XU/ff7y4AAAAgP4wcMYJmTZ9B4yaMp85durjZ6C1evJgG9LuFbh00kO7DrasLNDTmACBSaNQBAOQHNOsAAAoubtRxE0UaKdLokpzkvWK9NnNMN854resh1u/OnZvRmPvbna/717+CC9mnj5NZ55ktp3+d5mzu1bFt1nVm1oQtb9bNWJj7dY151b32Ma+18DuWhYpz04MPugsAAAAoCFauXEnXdu7iXAH3wcKFVLZsWbcSnaeefJJemDSZprw0ldq3b+9moSBAYw4AcgqNOgCA/IJmHQBAwXTOOfYGWqhYr3WsG3O2ui0ns1qv/fVX+uWXX5xQrqS79rrrnDjbMTqWWedZqMacrGXWeaZj2xxOTehcOHXN3G+r+82azvnt02zHCL9jQ503FDTmAAAACrwe3brRt98sj0lzrWf37rT862/o86++pPj4eDcL+QGNOQCINTTqAADyWzSNNzTrAAByR4sWwQaKHixUzitmuunHbA0yPSQns7ueN39+xlV07B+NGlGjxo29jwmVZ+E065jEum7OsmayNs/PQh0TSV3LSd3cy7zqtr0i1Hk0v/P4GT7cXQAAAEBBt2zZMurdo6fTuJk1e7abjVxSUhKd2+Ic55l3+J4076ExBwC5DY06AID8hkYdAEDBoRt1zGw02ZpuZswkx7MeOmeufc41f/78jKvoePzjH/8INumYnEMfa8vp9yZ5maXGbHU96zrTsW02cyycPDNjZtsjZG3Owm8vM/czr7ptr8lvTzjHayNGuAsAAAAoTC5p1442bdhI02bNpNatW7vZyHDD74aevahbzx706GOPuVnIDampqbRu3Tr6afVqWrp0KS1asNCtZEJjDgBiDY06AICCINrGGxp2AACx06xZsHmim1Y+zbOMoWO9tsWSY6HOHfD+Bx9kNOfEVZ07Zz2XrHUss1dO15iOzVn/fjD9Pr1mWTMd22q2mem9tjrzq9vWOifCPdZk5m37vI4N5aGH3AUAAAAUdvPmzqV7Bg+hDp060vMTJwZ+PIj854Mpk6fQ2DFjaNyE8dS5Sxc3C7EQTmOO/393/vnn05lnnUUNGzbM8fMGAQBMaNQBABQUaNYBAOQvadTJYH6xzjGzgaUbXJyzNbhk6Nhdf7BggbOURh2Pq666ilPhnUtmnWdmTs+2nMyyZhLrujDfG9P7bMfY6kLnzJmZax0L8zjbHmare61tzLrXflsezTkAAIAiiRtBV3Ts6FxVt+CjRU6jJ1LyrLuFH39ECQkJbhaigcYcABREaNQBABQkaNYBAOSPJk0ymye60SRDx3ptNuNse0LFHusFCxdmXEknjborr7zS+xiZ9RBmTs86z/xysjZnXWdmTejYrDEzZ64lNmcRbp157RG2vcxr7cW2R+dGjXIXAAAAUFTJFXHde/WM+NaV3Fg6q1Hwluf4jjRyaMwBQGGARh0AQEEUTeMNzToAgOjpRh3PekiOmVeLcSxrZtZ5lmHGOsdU0y/x99/pt99+y2jQsSv++c/sx9jOIzm/mqxl1nmmY9ssa2b7NQvZa+bMOVRdeNX0Hhaqzmw1v33MrIeKvYwe7S4AAACgOEhKSqJWzVs46+Urvo/omWYrV66kazt3iarJVxyhMQcAhREadQAABREadQAAeevss4OzbjrpYeZ07LWONHbXiz76yFlKk65BQgIl6FskyX45hnk1CJlqAGbJ2/bqNZPYlpO1kLxXTWavvMxedZ1nuqZnFmov89rD/PZpfucQjzziLgAAAKA4k6vq7h02jAYMHOBmQ5sxfTqNGjGS/v3Iw3R9795uFgQacwBQFKBRBwBQUEXTeOPbZ/l9oQgAAHbSqOO/Q+XvUVl75XTMzIaYrUEmez3ijz/+OMtVdDz/X8eOWfcyiSVnrmW2rZmtsSezuVfHtlnWTMd+s6yZ3z6hczrPzH1mrNlq5h7mdQ7bXk3XuUEXaj8AAAAUG4mJidTp8g7EX8VGclXdbYMGOc2nt+e+S02bNnWzxRcacwBQFKFRBwBQkEV7lRyurgMAiEzgQ7zTVJHB9DpUE87W+JKhY9vaPXbx4sUZTToeHTp04HTWc+vjZDbXEjMzp2edZzr2qtlyshaS96rJrPNM57zqtln41SNda5Hsx+2oAAAAwMfIESNo1vQZNG7CeOrcpYub9Sffla5a8zOVK1fOWRcnaMwBQHGARh0AQEGHZh0AQO4688zMpgvPMszYlhPcTDPrEawXf/ppcB3AP5xfdvnlnnuzrJnZNNR7mJkzZ308041Bc5YhzJqw5UPVmbnXrDPbHs2rbu5jOue11rz2cIPO6xgAAAAAlzxvrnbdOvTBwoUhG0p8FV7Hyy53GlHPT5wY+HGj6P+8wc/z+/XXX2nljytp9epVaMwBQLGARh0AQGERTeMNzToAgNC4Ucfkiw+eZZixmbOtQzXOVFNv/YYNtCEw+AfyvwOjffv2Tj5jv9e5pK5nvxyT2Csva5ltayaxzjGds81mjtnqwqtmW3vVmd8ec6+w7WW8fvxx7+MAAAAAQujRrRt9+81ymvLS1Myf/TzMmzuX7hk8JOLn2hUmujH3+ZLPnN8bU/dePally5bU+IwzKCEhwc0CABQdaNQBABQW0Tbd8Nw6AAB/gQ/8GX9P8ixDx3rtFzPViHPYrlBzx5IlS5wmHeP5kksvzbqP+TX+9KzzzJazvRc969diofbzLGumYzMvs1fdlmc6r2u2faHqQtZ++5nknnwyOAMAAADk0LJly6h3j57U8txWNGv2bDdrN2L4cHpjxkyaNmsmtW7d2s0WbmjMAQBkh0YdAEBhEk2zDo06AABvjRoF/47Ug/mtQzXOvHKyduclX3wRXAfwD+QXX3xx8Nyyh8mx6riMWeeZramm1+as60zH5myem9n2M7+8zOHWhbnfnEWoOtM52z695gad7RwAAAAAOXBJu3a0acPGkA04+Z50+YrvKS4uzlkXNmjMAQCEhkYdAEBhE+2VdbgNJgBAdtKoYzybTTivphwPM6djr7Ub/+9//3NudSk/iLdr1y7bHt81i6YxJ2uZdZ7p2DaHUxNezT2ZbXmmazrPzHyk+0y2+rhx7gIAAAAgd8gtLf2ePbd161Zqe0GbsK68K0jQmAMAiBwadQAAhRGadQAAOdewYbCZpJs1epg5r1hmM2/mAr5cutSZ5QfwCy+6KOsePes8C9WY02tmazLK2px1nenYNvvV9Mx47ZWX2VZnoWp6Znq/Zu7R8/jxwRkAAAAgj6SmptIVHTs6V9Ut+GhR4MfSwM+lhsWLF9OAfrfQrYMG0n1Dh7rZggeNOQCAnEOjDgCgsEKzDgAgZ/wadTr2WnvlhG6sBcbSpUudBp2MCy+8kKvZj5U5VGNOZlnbGnNSYzq2zbrOdGzLe9Vk1nmmc7qmc7Y60zUWbt3cxzg3YYK9BgAAAJBHpkyeQmPHjHGaWI8+9pibzfTUk0/SC5Mm05SXplL79u3dbP5DYw4AIPbQqAMAKOyiabzhuXUAAMFGHeO/D2WYsc4xsxnm1Uwz44DNW7Y4g/FtL9u0aZO5j/G5dCzHSk7POs90zpaXtcw6z3QcquY1y5rpOJw803m/PTpnq+uZ6dyzzwbXAAAAAPmMG16tmrdw1rZn0Mlz7D7/6kuKj493s3kPjTkAgNyHRh0AQGGHRh0AQOQaNMjaZJMhMTMbZxE05fT6m+XLs1xJd/7553Pa+3yyllkPEU7OnOX1hO319Wzu57zXXluN2epC58Kp2fbYZjZpkrsAAAAAKLjkqrp7hw2jAQMHuNnM59PVrluHPl2yxM3mDX7ttWvX0g8rVtCK779HYw4AIA+gUQcAUBTgNpgAAJHhRh3TzSivxpkMnbOt9bmkFhjLVaOOnde6ddbj9FpmnWf6vel9Mps526/Fb9bvnfkdb+aYX91rFhxHUrPtEZMnZ68DAAAAFFCJiYnU6fIOxF/P6qvqli1bRr179PS8LWYs6cbcwgULnKv4NG4WduzUiZo1b06NGjXK16v7AACKKjTqAACKCjTrAADCd9ppwZkbUroBJEPHXmsdM30uFlh/+913GQ06ns8977xgYB6vY2bL6eaZ5PWs90rslZe1Ocua6ThUzWuWNfPaJ/R+vxoz4xdecBcAAAAAhcvIESNo1vQZNG7CeOrcpYuTkyvtdC5W0JgDACh40KgDAChK0KwDAAiPNOqk4SNNH6+Y6avOOGfGegR89/33zsw/bPNo1aqVdZ9DN+Fk1muZZW17bVnLbFsziW05WZtzODUWTV3T+/1q7MUXs+8BAAAAKGRWrlxJ1/S8lo47sQyl7Uh1s4GfH8uWpG5du9PI+0dQ2bJl3Wzk0JgDACj40KgDACiKomm84bl1AFCc1K+f+XeeNIC8YuZ1NZsZB2zbvp3+DAzGP2ifc8452fd5rZlXA1CYOT3rPNOxV82Wk7U5mzkma/2+mW2/7ThbjXEsuf/+N3sdAAAAoJBLTU2lIQ/eTR99t4T2XX4q7a9dgQ6VCf5MVTH5MFX4YTdVW32UXnnhZWrSpImTDwWNOQCAwgeNOgCAogiNOgAAb3XrBv++040l3YiTWYZXLLOR/+HHHzOuomMtWrSw7stY50ZjzpYz10xiMyezmferyeyVl1nXmVft1VfdBQAAAEDR1PPGXvTFcb/T7janZDToTFV+20vx7yfR+++8RzVr1nSzmdCYAwAo/NCoAwAoqqJp1uEWmABQHEijTjeGIlnrHONGmxv/uHJlRoOO5+bcpGOyXx8ra51jZk7PXjmJmY5ts64zHdtmWTMdmzOz1ZnO2epM4tdey14DAAAAKGKW/O9zGvDE3bSxay3PJp2o9nMStd1cnd58bTYacwAARRAadQAARVm0jTc07ACKmP2U+NZ4GvddY7rn0WsoobQ0QdJo//rl9MnnP9D65MNUovyp1Pjci+nis6vRce6O0GJxDiV9By2f/ib9UKsz3dKuFmV8ZZG+i5ZPHkMv776EHnzg/6j2cVE2curUCc76CjrdOPKLGa89rr5buWqVE/IP1zyaNWuWUXPIrK+g8zjE/VUAACpsSURBVHofMvvlmO14JrEtZ66ZxLacrIXOhVtn5l6zPm2auwAAAIDiIH3XKlq09BCd2bEl1cz4+VQcpl2JiZRcOYESqhzv5vyk07Fdv9PqTSlEFWrTWQlVwvxZNJeOO7qFli9cQ8e1akvNT7G//8uuvJxWtCFKql3ezfhrMOlXOuXvSrRt659uJgiNOQCAwg+NOgCAog7NOoBiLp0OrXmZ+lz5AsWNfYsmXV2Hgl+DHKZtn42nW295gdYccxKumtT+3xNpbJ+zqbz5fUk2wXP07/cCrU1zU47AOUZPorE3nBXGObTA+RY8TFcPmknH7nqHvh7SXH3hkU5H171ON3R8iSo9/jI92zWBSruViEijjnGTyKPpli32WgfGTz/9FHh3/A6DI+P5IWqPMyQns5nzei+yltmWY7bjvWYZEpuzrIXkdF7WOh+qLmbNchcAAABQLKVvo4/vv4FGlnmQFj58MVXO8qNCGu3/+XW6vctzVOap+fRil+y3e8zi2Fb68vmRdPeEzyjJSZSiuLZ30dNP9Kc2NXyafLl6XAqtmjiQ+q/uQrOeu47qGY1IfjbdWY0a0++PN3MzodVY+heV/XIn1TnpVDTmAACKGPfTPAAAFFnccIum6cbHFKx/ywEA0Tj6G815cjL9eM5tNOSK2m6Tjpteb9Dd/V6gNSd1pPvf+YZ+2fALLZv/JPU8Yw8t/vcDNGHpTqfp5C3zHGsrWc4x6v4wzqGk76W1bz1M/e6YSbvcVFYlqHTDq+m+26vQ4jEv0eJtR918hPTfa7yW2C/vs/75p5+ckH9feTQ5+2wndsh+GZKT2cz9/Xdw9tsjOVuNjzfzZiwzD7/9UhO6Jnkd63PxsNVnzgw26NCkAwAAKObSKPnzqTRyzhl0/8ALjCbdYdr5/Wt07w2P0Zdh/bh3iDa/P4HunpBIzYdPo09/+JremzqEmv70HN39xGLa5v5Ykl3W4z6L+XEV6aye/ejy7yfSsx9vzfYz8ZYtW6jmRf9wo/Ckn1CKbunXnz5dsoTuGzqU2rdvjyYdAEARgUYdAAAAQJGVRslfzaJnl5Smjn0uowZl5FuQvfTDu7Pp27RT6J8PD6ebW/BtKo+nqmdfRw880o/ql1hD017/irZ7fkHB+BxvBs/xyIhs56hH4ZyD8a0zl9DUO7tSl/tm0q9ZrswzVaSmXf5Frfa+S0+/sYpS3WzY+OH7upHEdENK18JdB8jvqjPrOpPYHLoma8bvh5l7ZEhOZnNtDlvNlpMhNZllzXgdTkNOx2z27OAwr6oDAACA4unoOpo/eS5R7+voklPLuMnAjw77f6WF4wdTt67/oeV/l6dSbt7XkV/pvYnzaG+7O2l4vzZUu3J1anTZLTTy/ktp77yX6d3V+92NBuO4WpEcN2m+5bj22Y4rUbkFdelZmd4b9w79kOr+XKTs35bsrsJ3UsWK7goAAIoSNOoAAIqLaK6qGz3aXQBAoZS+iT55dS7tKncJXXFe9cwf/A7/TkvnryMq1YraNauW0WjiVlPZM9pQp/jjKO3Tb+inPT5dMz7He8FzXGw5xxXxpUKfgx1bSS9dcyONee9PatD1UZo58Waq5JZsStZtTVdfWIHWT51DXyaFOLeNbiJJI4mbS2aDSQ/Gs26iBcbOnTud31P+tfOoVq1a5jFyPqZzOvYacqzXfsnJbOZ56GPNWYaO5TXNvK4Jycta6NybbxK99VZwBgAAAMiQTgdXvE8vfnMKXdPhTNJtp7R1C2jk83/QWcNeotnje1EFN+/n740/0MeJpalxu7MpPuMH0jIU3/Rcaky/0McrtpLtJ8ZwjnN/msqCj1uceJzluFaW4yrQmZdeRqf9/jbN/nJHlqvqEhISaE/iX3TigfDvEnHc9oOUUKO+GwEAQFGCRh0AQHES7S0wozkOAPLd3799TjOWJFPp9hdQ08rq3yQnb6Y1W9OIKtalWlWNJ70dX53qNapIdHQl/bze55q1wDnWZpzDeOR+uOdgJcpQ3CWD6Ik5n9C8J3tR8xonugUPJWpQk7aNiQ5+Sh98/Vf4t9Y89dRgA0mGX2PKzOlGlbv+9ZdfaPeuXRlNujMaNaJqVapkHmMeJ7Ptdb1yzDwHx3q/5GQt+3Q+3P1Sk7qtZsY83nmHaM6c4OA1D1w9BwAAAFZ76IdFH9Jf5VpSK/55USlVpzPN+Ho+PdO/HdWraPx8aZVOR5N20Ea+q0OlE7N8yVmyQiWqSgdp4197KHsrLK+OK0FlGjShNhW20MLP19I+Nyuu7dOdKvy61438cUPv+P/tpubNm7sZAAAoStCoAwAobqJtuqFZB1DIHKZN335Bq6k8NT3vdKqi+iZpO7bSr7xoUY9OzfYdyIlUpVblwHyAdqccCqYsgudI9z5H7cxzBHZ5K3Um3TDuPrquOd86MxwnUP3m51E8badFn/1Me9xsWLi5ZKPzuhElsZ4DEtetc2b5LW30D+P5Imqv57l0npl7mN7nlRc6J3kzJ3lmy+vZVjPHvHnBgaYcAAAAhCttG635cjNRQj2KL5/1a8kSJ9en06se70bhSKPkbVsohSpQ9UonuDlXxapUqwJRSuI2Sg782JIVH7c19HFuKlOYr+emHOXq0NnnVqaDH/xAvx1zc647+99OJ761mSomHXYz3mq++ycNfegBiouLczMAAFCUoFEHAFAc5aRZx1/OAkAhsI82rPk9MFejxnXiMppKLP3YETrgrrMrTWUr8Bck++ivPd6NulicI1qlatSjpqWIji5bR1vCvful2WTSORFGPjEx0VnK7+c/Tj89uJBj9HHMzJt7zLWue81C72VmzPzqfvulZu6ZP5/ovfeCMwAAAECkDuygTVuOElWtRBVi9q3kcVSmdFhPtDPkxXGVqNYZpxAlr6fNu7J26uLj4+mlaa9SzVc3Utwm+zPx+Eq606dvpLOrNKDru1/vZgEAoKhBow4AoLjipls0DTs8tw6gkDhEe7fzDXYq0slO06wIqXwK1eM7JW37g7aE+5w6s/EkzSeebbd6ZCr/x++/0++//ZbRoGuYkECnB0aW/bLWw5ZncttIndN7zJzs5Vnn9dB59d6zxHromgzJSX7BAqIPPiB6//3gwNVzAAAAkBMH99BfBwM/oSbUIL7/Qs6Uoso1agZ+2k2mzTuNf0KWspM2B34Udl4n248vfFx86OPcVKYwX89NhaPdhW3plSmvUL13k5yG3CkrdlGlwG9Qld/2Uvynf9Ipj/5Et3e5iV6b8iqVK1fOPQoAAIoaNOoAAAAAiqK0FNrh/MvcWhRfrUww5ypZoXIgG3D0KB1z+zWZDtLubfysjKrUoEbW54ZoIc/xZ+Y5cq21k3aUjqRle3E73ZjSa6HzTO1JTkpylvzr4HGyvuWQHKf2ZzTFJJbZK6drzJbXa/P8EuucOXRe79c1xrUPP8wcAAAAALF0/IlUqTTRgS27KcVNRa8ElY6rRnXoMO3cc4ACP8Vk+HvfHtpJ5ahO9UpkPJE5IK+P89eqRUv632f/o1dGPE/3nnYN9dzUgG461orGXHYnLV/xPd1+y21UtmxZdzcAABRFaNQBABR30VxVF+3VeACQd0pVpGq1ywcWSbRnX9bb7JSsVI1q8916Vm2hHeYFaemptHcH/wvhSlS5ovfXDMFzlMjROfJM1aqZjShma1AxM++u9+zJfBIeN+riKlfOfpyemRwvQ+c0vUfXzbXMtryw1XXMdE7yPH/0UeYAAAAAyC0Vq1Pd6qUoLeUAHXZ/FMmJknWa0WUJR2nNklW0NeN8R2jrj9/QGmpIbc+uQbabVIZznO1LUz6ufcIxy3HLPY7bR3/9sYvopJpUo7L37TK5Ede6dWu6Z8Bgmvj08zRm9OPUq2tPPJMOAKCYQKMOAACib7qhWQdQCCRRstGoo5NPo+ZnliNKXk2/bDaeIbdvPa36di9RuX9QQrzPLTMD52iWcQ7jAfiBc6wM5xzROphCu/klK1SjKhXDfD4I37JRGlNMN6qYblqJwHrDhg1Oc44Hq1+/vrsK8DueZ13XbLVwc8Ks+e1ltjrHixcHB25pCQAAAHmh1KnUuF080YpfaWOqz88uVoco8a2R1L/fSHo70f0ZtkxD+r8bL6GSS56lRyZ9Rhv276ENS16iR574mEq260pXnVUhB8cx41g+rq/luDEfGce5Dv9Jv65IolLnNaRaZfDzFgAA2KFRBwAAQTlp1vl9OQwA+SSO6jerE5h30XrnWXVKyVp0/tWtqBStoPkL19D+jD/Ch2jzojn09sGSVKX7ZdSios+PinyOLsFzzLOeo1Toc0Qpffef9NvBwKJxfYovG+ILj5NPDs7m7R5lcN6sBeLNmzbRpsDgd8+vUK9uXaofGFmO07O5ZpKTITWdt+VkmOeQtZ7T0jLXTPaa+3hesoTos8+C49NPgwMAAAAgT1Wms9u2oXL7ltO3v/Bt2iNxjPZt+Z4+Xfw9bcn4h2hlqX7XkTR1cAL9+NRN1P7MZtS+79P045l30dTHr6H6pfknuWiPY+axfNyI7MedYR4X9Pem1fT51ji6pGNzOiXEj60AAFB8oVEHAACZuOkWTcNu9Gh3AQAFxwlU54yzqRztpM+/+4O4r5WpHDXofAv1OyONvn/qDrr9yRn00ZJPaN6LD9GA+9+jI3FX0wM3nkPy74GPrRhPLevVowbNxtOKjIvz+Bz9gud48vZs5zh6cvZznFPXPEc00mjPb6vpRypNDdo3pVqRfOEhzSzhEW/ZsiXjCjpWp3bt7HuZLSfC2S+x13l0ntdexzOzLjGPL74IDgAAAIB8V4riLriKrq/xO33w+TrjZ9RMxzUfQt9tWEEvdqnpZlh5aj54Mj3R9gQ3dh0XT20G/5eWfvcxvTXnHXrr469p6Wt3UJsacmeHaI9jlmPDOo4dpF+XfESrq/6TurWNz/LzJQAAgIZGHQAAAECRVJIqNr+YOpcj2v+/lfT7EdXECShRuTUNeelZuvXco/Tl5BE0qG8/uuc/b9Fvta6h0a8Pp6tqGV9kWGSco1X2czw8bURY54hcCq1Z9i0dpbPoqnNrW585kkGuptMNLL6yjElON7QCUlJSMr5E4R+UTzrppGCg97l7HWZOx7acXOEmJJac3qOH1HjIr4HpWOo8vvqK6MsvgwMAAACgICl3Nl13x4W0ZeYH9E2S+bBjP4do88fTaFryxXRRw8APuVmUoOOqNKBmzZtTs4QqdJybDYr2OOZ1bKjjAlLX0qI31lHL2/5FF/g8nw4AAKBEeoC7LhAa1K3nrjL9tmG9uwIAgDwTzZV10d4+EwBySQqtGN+Huj5Tku6e/xoNOru8m9cO067EX2jTvjSi0tWo4Zk1qXy2f+6bTge/eozOH1aZpn1+G52V7XuGWJwjTPu+pEcuvZGm1x9NH87sSfX8/tkZN+r4R11+/poM5rHet38/pQSGqFCxIlXkRp3sZSXdFzTPIbOZk/1M6uYerxzTrxfO/PXXwRkAAACgIDu0mqbeMIA+7TSVXu/bmEq7aX/pdGj9j7S2bGNqdkokz0GO9jgW7bFHadvcodTh5fr06oxB1LwCGnUAAOANjToAAPAWbeMNDTuAAiN921wadNG99EPvV+mjh9pQRTcfkWObaOGD/Wh0+Yfo48A5jEfkh8c5x82Bc4yK/hx0jHYueIDa3vYjXffKDBrdrpr/LYTi4txFgDSyzMZZIP7rr7+ckH8olnFqfDynsjbC9FpmW96vOcd0bK5lljWTWNe//TbrHgAAAIBCJZ0OJS6iVxamU/sB/0cJZYrYzzVHEmnhlM/o6GXd6MpGJ/n/zAoAAMWe+hYBAADAkJNGXcH6dyAAxVaJGpfQwMEtKXna2/Tpn0fcbCTS6ejmb+njlC70zMDzomywyTmuzsE5Ao4m0oLXPqb0tjdS3wuqhv7Cg/8est0WUv5+cutyHp55OD8g224/6XUuc5jHciw5Od7cI3mZzTwPPub774m++w5NOgAAACjkStAJCf9HA+/sWPSadKxMAnW8sz9dhSYdAACEAVfUAQBAeKJp2uHKOoACIX3ft/Rsr1toVpOnaeHDl1DlQvltwVHatmAEdb5rLw3+8GnqeZr5fBGLSpWCs3k1mlrv2rUr4yo6+aG4+imnBBeyV+135OR2ll45r7ysf/wxuAYAAAAAAACAIgVX1AEAAAAUcSUqnEO3PjOJHmxZng4cK1D/Rit86ftpT5k2NHr2KOoaTpOuQoXgFWjMdnVaADfpmNsOc1SvXj1zrwgnDrXHj9fxK1cGB5p0AAAAAAAAAEUWrqgDAIDw4ao6ACgsuFFnXp3mjtTUVEo9dCjjCjqeq1SpknUf07POM7mqzmuPOYd6bt3ate4CAAAAAAAAAIoTNOoAACAy0Tbe0LADgLxUvrxncyx5zx4nxT8Eyw/CJ3Ojjql9GbHMOs+8mnW2NTPfzy+/ZNYAAAAAAAAAoFhS3xYAAACEISeNuoL1b0MAoKgq594aU/+d46737tmTcatLnnmcfPLJmXt5NoeZF3xrTXOP1+02mexft47o11/RpAMAAAAAAAAANOoAACAK0TbrRo92FwAAuUwaZdIkC0jZu9ddZYqrXDnLHkeksclW59xvvxElJroJAAAAAAAAAADCrS8BACBKObmVJW6DCQAxlJSURG/PfZu+/mE5HTx6iOjn7+ikg8eo895UunjHPkrbty/L8+h4nHTSScEr2uSqNnMts84znZO8nmW9cWNwBgAAAAAAAADwgUYdAADkTDRNNzTqACAGUlNT6Zkpz9H0mdNoT9MTKbVBRfr7+OANI47bd5ROWLeXTl6RTPccSqWr/9iW0awrc/zxdPwJJwQDs+Gm1zJ75XSNbdniLgAAAAAAAAAAwoNGHQAA5Fy0jTc07AAgStyk6zOgL32zfx3t7liTDpxY2q1kVTH5MJ0yfyNdv/0A3b1yA/ET5CpUqBAsejXczJy5llnWf/4ZnAEAAAAAAAAAIoRn1AEAQM7lpFFXsP69SMwsW7bMXQFAbhj8wBBaWmYjbbqunmeTjqVUPp429WhA0085keaeWZsqnHhi5t87POshzBzPf/9NtH175ti2LdigQ5MOAAAAAAAAAHIAjToAAIiNaJt1o0e7i6DExMRsozDq3aMn9ejWDQ07gFyw5H+f05Ifv6LdbU5xM/4OlSlJ26+qQ6P2laTdpUplb8LJ4Gacmefczp3BIVfQAQAAAAAAAADECG59CQAAsRdh027J9i00KXUfrfh8OVVuGk87Sh1wK0RVU46nPYl/0VW9r6M+111PTZo0cSsFm/7vWfdePalP376UkJDgZgAgJ7r17U6fnraTdjU4yc2EJ/7TP2nk0m1064Zdmbeu1M23ku6/YZN8UlIwBgAAAAAAAADIJWjUAQBA7IXZqFu5Ywfd/cNXtLVSOu0+vyrtr13BufLFdOKBo3Tihn1U5au9dO6ZLeiR+0dTfHy8Wy2YbP89u3XQQLq5Xz+Ki4tzMwAQKX423dmNz6Df/tPUzYSv0l8H6eIZv9OcNX9mNuN0o47Xe/e6AQAAAAAAAABA7sOtLwEAIPbCaNQ98dN31OOrxbSqUxX69YYGzpUxtiYd4+dP7Tgjjtb0r0cLT1hHbS9o49z6rrB5YdJkatW8Bc2YPt1pNgBA5LZs2ULVLjjNjSKzp3o5WrXrWNbbWqakZA406QAAAAAAAAAgj6FRBwAAucOnWcdNulcPbKJNd5we8a3rtjevQjuHNqZBQwbRZ18scbOFy6gRI+mKjh1p3ty5aNgBRCH5yD53FaWDB4kOHAgOAAAAAAAAAIB8hEYdAADkHkuzbsYfvzhNuo3d6ztXykUjpfLxtPWmunTb3bfRypUr3WzhsmnDRrpn8BC6qW9fWrZsmZsFgHCcuEfdrjICJxz5210BAAAAAAAAABQMaNQBAEDu4mad27Dbum8fPb7yB9p2ZS3P21yGi5t1f/0rnm689aZCfVXat98sp949etJtgwZRYmKimwUALwkJCbQn8S/n2ZWRKr9pH130z0vdCAAAAAAAAAAg/6FRBwAAeeahtctp9+XVnSZbLCTVLk87E0rQnPfedTOF16IFC6njZZfTiOHDaevWrW4WAGxuuO1mqvBr5M+Tq7J6P/Xuer0bAQAAAAAAAADkPzTqAAAgT2y95Rb6+s8dtOfMODcTGymtq9NT455yo8LvjRkzqe0FbWjKpCmUlJTkZgFAu+2mgXTiW5upYvJhNxNatZ+TqMaBCtSuTVs3AwAAAAAAAACQ/9CoAwCAPPHBog9ob8vKOb7lpYmvzjtUpWShfVadl7FPjqHrrrmG5s2dW6hv7QmQG/jPxMm1qlGVKevCatZV+W0vVZi+kaa9+BqVKBHd8+0AAAAAAAAAAHIDGnUAAJAnvv5hOaU2qOhGsbW38Yn0v+VfulHRsWnDRrpn8BC6omNHWrx4sZsFKN741rA3XH897d68gygtnU558Xc6ZcUuOuHI3+6OTPwcu/hP/6RaH+yhhR9/RPHx8W4FAAAAAAAAAKBgKJEe4K4LhAZ167krAAAoarb+uwkdOj72/0YkbtN+OuntjVRy5xE3UzS1PLcV3f/gg9SkSRM3A1C8cJOud69eThOb3TtsGF3a/lJ6/Nkx9MV7n9DRFpXoSP0KVOJQGlX84xAd+zmJ+tzez7lVZlxcbG+7CwAAAAAAAAAQC2jUAQBAnvn9P80C/+Vxgxiq9NdBqjxnE5XcVDxuEdm9V0/q07cvJSQkuBmAos/WpBswcICzZvxMx82bN9OG9euduPEZZ1DNmjWpbNmyTgwAAAAAAAAAUBDh1pcAAACFzO+//UYHDx50I4CiL1uTbmjWJh3jK+b4atPOXbo4gxvZaNIBAAAAAAAAQEGHRh0AAOQZ2zOkYiY1zV0UXbXr1qFxE8bTrNmzcftLKDasV9INytqkAwAAAAAAAAAorArcrS8BAKBo6n1bX3o/YTvtqV7OzcTOKSt20b2nXUP3DBjsZvJfrG/lzA26yzt0wBVCUKxwk+6G66+njes3OLF5u0sAAAAAAAAAgMIOV9QBAECeOLdpSyr7+z43iq2T1hyg85uc60ZFCzcmlq/43rmVH5p0UBTMmzvXacCFsmzZMudKOjTpAAAAAAAAAKAoQ6MOAADyxNWdulDcz6luFDsnHjhKx35OoqZNm7qZoqF7r5608OOPnMYEP3sLoKh4ZsIEpwG3ZcsWN5Od06Tr0TPr7S7RpAMAAAAAAACAIgiNOgAAyBPx8fF0Ru2GVO3nJDcTG5W+2UmD7r6zyFxt1vLcVk6D7tHHHqOEhAQ3C1A08JV03Hzjwbe0tF1ZJ006ce9QNOkAAAAAAAAAoOhCow4AAPLMo8MfoZM/3EknHPnbzeRMpb8OUpVVh6nv9X3cTOFVu24dmjZrJs2aPRsNOiiylnz2mbsip1nHV9bpZl22Jh1fSTcITToAAAAAAAAAKLrQqAMAgDzDDahBtw6iOm9uznGzjm95WWP6ZpowdkKhvjUkN+jGTRhPHyxcSK1bt3azAEXT0qVL3VWQbtZxk+6Gnr3cCm53CQAAAAAAAADFQ4n0AHcNAACQJ3re2IuWbl9Ff3U/jQ6VifzfjFRMPkw1PthOfdt3o/uHDHWzBUuDuvXclTduRPTp26fI3LYTwE9SUhK1at7CjbKqUq0q7dqx043QpAMAAAAAAACA4gNX1AEAQJ7776SX6PrWV1PtV353bl8ZibhN+yn+5Q1097W3FtgmXSjde/Wk5Su+dxoRaNJBcfHrr7+6q+zQpAMAAAAAAACA4gpX1AEAQL5Z8OECGj5qOO08+3g6cEYl2lO9nFvJrspve6nK6v1U40AFGv+fcdSkSRO3UjDZrqjjBl2fvn3xDDoolp568kl6YdJkN7KrULEivb9wAcXHx7sZAAAAAAAAAICiDY06AADIV6mpqTTnvXfp1Wmv0rbt22hf7ePoSP0KTq3EoTQ66a9jdHT5Djr7whZ0Z/876NxzWhWKq9B0o67lua3ozsGD8Qw6KNbCuR0s4+c2TpsxA806AAAAAAAAACgW0KgDAIACY+vWrbRr1y7asH69myFqfMYZdPLJJ1NcXJybKRy4KcENh7sGD6bOXbq4WYDiaeXKlXRt5/D/HKBZBwAAAAAAAADFBRp1AAAAuWDe3Ll0eYcOeAYdQMCM6dNp1IiRbhQeNOsAAAAAAAAAoDhAow4AAAAAclXP7t1p+dffuFH4uFn3+vTpVLNmTTcDAAAAAAAAAFC0lHRnAAAAAICYS0pKom+/We5Gkdm0YSNNmTzZjQAAAAAAAAAAih5cUQcAAAAAuWbx4sU08Jb+FO6PnHwVXcdOnajNhRfS6aefXuieTwkAAAAAAAAAEAk06gAAAAAg14wYPpzemDHTjexantuK/nnlldTq3HMpISHBzQIAAAAAAAAAFH1o1AEAAABArkhNTaWzGjV2o6xuHTSQmjVvTs0DA1fNAQAAAAAAAEBxhUYdAAAAAOSKlStX0rWduzhruWruzLPOoiZNmjg5AAAAAAAAAIDiDo06AAAAAMgV3KjbuXMnrpoDAAAAAAAAAPCARh0AAAAAAAAAAAAAAABAPijpzgAAALF1aDVN7dqUGrR8mJYkp7nJ0NK3f0Uvjx9PE2auoL1uLiaOJdP6bxbRG1Ofowl8/glT6Y2PllPirkPk+y9W0rfQwrvaUoOEW+i1dfvdJAAAAAAAAAAAAEDO4Yo6AACIvfRkWvHMQOox4Q+6+Kk36Pl/1afj3JKvY5to4YM30p1v/kHp7cfTly91oVPcUvTSaP/aOfTI3Q/TO2stjbZSZ9G1jz9K919zFlU+roSb1NLp6LrX6YaO/6YVLUbQu6/fRI1PsO0DAAAAAAAAAAAAiAyuqAMAgBhLp0Nr59CTz39Daaf1ov7/rBdeky59L6159WG6m5t0birn0mj/mll0X+8H3CbdydToyhvptrvupNtu6kSNKpcKbFlN7wztRX2f/45SrC9cgko3vJruu70ppS1/jh554xc64lYAAAAAAAAAAAAAcgKNOgAAiK2jv9GcJyfTd8caUM+RPahZ2TCuPju2lb58Zgj1ffQTOuqmYiJ1Fb1+/xj6eFca0cmdaOT8RfTucw/RkCFDaMhDz9O7H82i+zvUDGzcTz9PeJRe+Ga3R5OwIjXr3ocuK72Xvn1sMs3bmOrmAQAAAAAAAAAAAKKHRh0AAMRQGiV/NYueXbKbKOFq+tf5Vcm/Tfc3HdryJU0dchPdPOEzSnKzsXGUti16jZ5bxVfSNaCe40bRDWefrK7uK0HHVW1JNz/xH+pbt3QgXkUvv/oFbfe4nK9EjUvolkFNA6ddQONeWkbJuHE0AAAAAAAAAAAA5BAadQAAEDtH19H8yXNoF1WmC2/5PzqzjFebLp2O7UmkJa+Oot5X9qUx762jNCpPjW7oTf9Xwd2SU+lb6Ku5XwSv0PNpGpao3JK69W3lrI9++A599NshZ51dBTrr/66gMwLvdNfMaTQ/8aCbBwAAAAAAAAAAAIgOGnUAABAj6XRwxfv04jd7iUpfRJ3b1PS5mi6Ndi15jvr9ezr9kJxGVLk19X32bZr1UBdqENYD7UJL376SFv8vObAqRTU6taKGnk3DE6j+uW2pgbP+hZb9vNPj9pclqPQ/LqXe7SoH3v5XNP2DtYQbYAIAAAAAAAAAAEBOoFEHAACxkb6NPp8xh/4KLEtdcAE1P6VMMO+rKrW4eSy9ueAlGn7V6VTezeZcOh3ZtI6Wp/E6jpo3PJWOd/J2peITqGU5Xu2mpd/9TvucrEWJU+mcy5tSiRJHaf3MD2nFvr/dAgAAAAAAAAAAAEDk0KgDAICYSN/1Iy1auD2wKkeN251N8b7/hSlBZU/vRTM+W0QzRl5LzWuU87n6LhpplLxtC6U46ypU75QQ99MsV5FOdjt5BzfvpBTP588dT7WatQ5efbfzI/rw+9g+VQ8AAAAAAAAAAACKFzTqAAAgBv6mfT9/Q586D4SrSa0b1aBSTt5LKTqp0bl0br3KFKM7XRqOUvJOvraPnUJVK5d21x6Oq0b1WlQONgtXbaEdzpV4dqXqNKbzK/DOrfTpN78TnlQHAAAAAAAAAAAA0UKjDgAAYuAQbfx5VbBpVepMOqv+iU42/6RR6n65gWV5OrGsf9swImVrUqPmJwUWafTX0rW0FXe/BAAAAAAAAAAAgCihUQcAADGQRH/8sDG4rFiTqleOYWOsoClRmWo3qh5cr/mVNuz1ufwOAAAAAAAAAAAAwAcadQAAkHNpKbRj0/7g+uyaVK0I9+mIylDl6lWDy6N/0c49x4JrAAAAAAAAAAAAgAihUQcAADmXfogO7HQeUEdUujQd5zzsrag6jipUinPX22lHsvvrBgAAAAAAAAAAAIgQGnUAAFAEHU/VatZ213/RzlDNtPTDdGDfUUrnddXyVLZINxoBAAAAAAAAAACgoECjDgAAiqCSdGKlylTaWe+jA6khniOXtpd2rHNv3Vm7KhXlR+wBAAAAAAAAAABAwYFGHQAAFEGlqGLN+lTHWf9JP/6+O3i1nJfk7bQ+JbismFCDKgeXAAAAAAAAAAAAALkKjToAAMi5UidRtYblg+tNOyk5xAVseaFUfAK1LMervfTjL1so1cnapNPBdSvoc+c9n0rtm9ej4528l0P05/rf3HVtqlnNfzcAAAAAAAAAAACAFzTqAAAg50qcRKcmxAXX2/6ipMO+16/ljYqN6aIrTnWW+9/7lJZ7dg/30k9fLiXnxpelW9IFZ4a6nu4QpSQdCC4r1KQacccF1wAAAAAAAAAAAAARQqMOAABioALVbXxacLnvF/pt6+HgOjcd20+7tm+n7Tz+2kOHsvUGq9B5XToF/m/Azjk0edYq2p9tTxrtXzWbxr24NrAuRVV6X0uX1Ag+2c5T2g5KXL7NWZY6/0yqX7aEswYAAAAAAAAAAACIFBp1AAAQA2Xo1DPPoWCrbj39vCHF/5lwsbBrMQ1vfT61Oa81tfm/V2hNtgvmSlKFc3vSA1fVphK0l75/8na6fcIiStxzNFg+lkyJn71Ad9/4FH3Px558LT3U71yqEKx6St+xjlb8zucoR41bN6Lq6NMBAAAAAAAAAABAlNCoAwCAGChBZU4/lzrGlwqs/6SPliXSwWAhfx1Xl6544CHqcya33/6kL58ZQB2bNqV213Smdqc3p443PkWf7k4jKtWMbnzmbup4apngcZ7+pn2//kBL07gN2Yy6XFAH/yEFAAAAAAAAAACAqOH7RQAAiI3jT6dLezZxlvsXLqWfDhSA59RRCTquxqU0/I236LnBnalRZW4kHqQtK1bRFucKvHJUu8M9NHnxa/Rgm+qB3aGk0C/ffEsHA7+0Uud1ootOO8HNAwAAAAAAAAAAAESuRHqAuwYAAMiRv9fPpOvbD6flaY2o/xszaOh5ld1KbtlPK8Z3pa6vX0ZvfjuEmh/npq3S6dj+XbRl81ZKSv07EJeluFq1qGbV8uR7mLbvS3rkkr702s44umzC2zSpC99WEwAAAAAAAAAAACA6uKIOAABipmTd9tS/Z4PAah3N+eAHSs7tfwqSnkybf9lBpdqcTrVCdttK0HHlq1LdRk2pefPmgdGI6kbSpKM0Svp6Ib21M42oame6/tKaaNIBAAAAAAAAAABAjqBRBwAAsVOiKl3Q+3pqWSqNdr0xn77YftQt5IajlLx8Dr28uCRdcumZVMXN5pr0TfTpjIV0kE6mCwf/i1pVwH9CAQAAAAAAAAAAIGfwLSMAAMRQCSqd0JFu7dmAShxdQM+/sYpS3Uqspe/4mB6+6b/0d9/H6aF/1srlq9vSKfWH+fTCkmSi03rT7VcnUGm3AgAAAAAAAAAAABAtPKMOAABiLn3nR/TAFbfR28lX0LgvnqLONXKjrXWItif+RWXr1aaTjsvlm1Cmb6J5A6+jez6sSn1nvErDL6iK214CAAAAAAAAAABAjuGKOgAAiLkSVdvSXf/uSlWOLqBnXvo6l55VdwKdklAn95t0lEbJn79Kj3+4h2rfcA/dej6adAAAAAAAAAAAABAbuKIOAAByR/puWvHGLPrir2p0UZ9rqXnlUm6hkEnfQcunz6alu6sX7l8HAAAAAAAAAAAAFDho1AEAAAAAAAAAAAAAAADkA9z6EgAAAAAAAAAAAAAAACAfoFEHAAAAAAAAAAAAAAAAkA/QqAMAAAAAAAAAAAAAAADIB2jUAQAAAAAAAAAAAAAAAOQDNOoAAAAAAAAAAAAAAAAA8gEadQAAAAAAAAAAAAAAAAD5AI06AAAAAAAAAAAAAAAAgHyARh0AAAAAAAAAAAAAAABAPkCjDgAAAAAAAAAAAAAAACAfoFEHAAAAAAAAAAAAAAAAkA/QqAMAAAAAAAAAAAAAAADIB2jUAQAAAAAAAAAAAAAAAOQDNOoAAAAAAAAAAAAAAAAA8gEadQAAAAAAAAAAAAAAAAD5AI06AAAAAAAAAAAAAAAAgHyARh0AAAAAAAAAAAAAAABAPkCjDgAAAAAAAAAAAAAAACDPEf0/Ng5uQX0N0Z8AAAAASUVORK5CYII=
Die beiden obigen Algorithmen erzeugen eine identische Folge von Matrizen
$$\bar{R}^{(k)}, \bar{Q}^{(k)}, A^{(k)}$$ mit
<$latex text="
A^k=\bar{Q}^{(k)}\bar{R}^{(k)} \text{ mit der Projektion }
A^{(k)}={(\bar{Q}^{(k)})}^TA\bar{Q}^{(k)}.
" displayMode="true"></$latex>
<$details summary="Beweis" tiddler="Beweis">
(Hier ohne Beweis. Siehe Lloyd N. Trefethen and David Bau III. Numerical Linear Algebra. Society for Industrial and Applied
Mathematics, Philadelphia, 1997, Kapitel 28.3. )
</$details>
<$details summary="Einleitung Singulärwertzerlegung" tiddler="Einleitung Singulärwertzerlegung">
{{Einleitung Singulärwertzerlegung}}
</$details>
Sei $$A \in \mathbb{C}^{m \times n}$$ eine Matrix mit Rang $$p$$. Ein System
<$latex text="
\{ \sigma_i, u_j,v_k \: : \: i=1,...,p,j=1,...,m, k=1,...,n \}
" displayMode="true"></$latex>
mit $$\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_p > 0$$
und Orthonormalbasen $$\{u_j\}_{j=1}^{m}, \{v_k\}_{k=1}^{n}$$ des $$\mathbb{C}^m$$ bzw. $$\mathbb{C}^n$$, wobei
<$latex text="
\begin{array}{lll}
Av_i = \sigma_i u_i,\qquad & A^\ast u_i = \sigma_i v_i,\qquad & \forall i=1,...,p, \\
Av_k = 0, & A^\ast u_j = 0, & j,k > p,
\end{array}
" displayMode="true"></$latex>
heißt //Singulärwertzerlegung// von $$A$$.
Die $$\sigma_i$$ heißen Singulärwerte von $$A$$. Ihre Quadrate $$\sigma_{i}^{2}$$
sind die von $$0$$ verschiedenen Eigenwerte von $$A^\ast A$$.
<<list-links "[tag[Singulärwertzerlegung (SVD)]sort[scriptorder]]">>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/RFXF71LzwKk?rel=0&start=0" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
<<list-links "[tag[Singulärwertzerlegung und Lineare Ausgleichsrechnung]sort[scriptorder]]">>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/RFXF71LzwKk?rel=0&start=4467" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
!! Definition
Für $$x\in\R$$ definieren wir $$\sin,\cos:\R\to\R$$ durch
<$latex text="\begin{aligned}
\sin(x) &= \Im(\exp(ix))\\
\cos(x) &= \Re(\exp(ix)).
\end{aligned}" displayMode="true"></$latex>
Für $$x\in\R$$ gilt also die ''Euler'sche Formel''
<$latex text="\exp(ix)=\cos(x)+i\sin(x)." displayMode="true"></$latex>
!! Lemma
Die beiden Potenzreihen
<$latex text="\begin{aligned}
\sum_{n=0}^\infty\frac{(-1)^n}{(2n+1)!}z^{2n+1}\\
\sum_{n=0}^\infty\frac{(-1)^n}{(2n)!}z^{2n}\\
\end{aligned}" displayMode="true"></$latex>
konvergieren für alle $$z\in\mathbb{C}$$.
Dies folgt direkt aus dem [[Quotientenkriterium]].
!! Äquivalente Definition
<$latex text="\begin{aligned}
\sin(x) &= \sum_{n=0}^\infty\frac{(-1)^n}{(2n+1)!}z^{2n+1}\\
\cos(x) &= \sum_{n=0}^\infty\frac{(-1)^n}{(2n)!}z^{2n}.
\end{aligned}" displayMode="true"></$latex>
!! Beweis
<$latex text="\begin{aligned}
\exp(ix)&=\sum_{m=0}^\infty i^{2m}\frac{x^{2m}}{(2m)!}+ \sum_{m=0}^\infty i^{2m+1}\frac{(-1)^n}{(2m+1)!}x^{2m+1}\\
&=\sum_{m=0}^\infty i^{2m}\frac{x^{2m}}{(2m)!}+ i\sum_{m=0}^\infty i^{2m}\frac{(-1)^n}{(2m+1)!}x^{2m+1}\\
&=
\sum_{m=0}^\infty (-1)^m\frac{x^{2m}}{(2m)!}+ \sum_{m=0}^\infty (-1)^{m}\frac{(-1)^n}{(2m+1)!}x^{2m+1}
\end{aligned}" displayMode="true"></$latex>
Aus der Darstellung über $$\exp$$ ergeben sich nun folgende Rechenregeln:
# $$\cos(z+w)=\cos(z)\cos(w)-\sin(z)\sin(w)$$ und $$\sin(z+w)=\sin(z)\cos(w)+\cos(z)\sin(w)$$
# $$\sin^2(z)+\cos^2(z)=1$$
# $$\cos(z)=\cos(-z)$$ und $$\sin(z)=-\sin(-z)$$
# $$\cos(0)=1,\sin(0)=0$$
Für zwei Spaltenvektoren $$x,y \in \mathbb{C}^{m}$$ definieren wir das Skalarprodukt als
<$latex text="
x^{*}y=
\begin{pmatrix}
\overline{x}_1 & \overline{x}_2 & \cdots & \overline{x}_m
\end{pmatrix}
\begin{pmatrix}
y_1\\ y_2\\ \vdots\\ y_m
\end{pmatrix}
= \sum_{i=1}^{m} \overline{x}_iy_i
" displayMode="true"></$latex>
Für $$x,y \in \R^m$$ entfällt die komplexe Konjugation und man erhält $$x^{*}y = \sum_{i=1}^{m} x_iy_i$$.
<$details summary="Bemerkung" >
{{Bemerkung: Skalarprodukt}}
</$details>
Man kann die Zahlen $$1,\dots,49$$ eines Lottoscheins in die drei //disjunkte// Mengen
* $$S_0$$ := Zahlen, die weder durch 3 noch durch 7 teilbar sind
* $$S_3$$ := Zahlen, die durch 3, nicht aber durch 7 geteilt werden können
* $$S_7$$ := Zahlen, die durch 7 geteilt werden können
mit den Mächtigkeiten $$|S_0|=28$$, $$|S_3|=14$$ und $$|S_7|=7$$ einteilen.
Nun werden gleichverteilt 6 unterschiedliche Felder des Lottoscheins markiert. Modellieren Sie die Wahrscheinlichkeit, dass genau $$H_0$$, $$H_3$$ und $$H_7$$ Felder in den Mengen $$S_0$$, $$S_3$$ und $$S_7$$markiert wurden.
# Wählen Sie dazu ein passendes Standardmodell.
# Geben Sie einen Wahrscheinlichkeitsraum $$(\Omega,\mathcal{A},P)$$ an, der dieses Zufallsexperiment modelliert.
# Wie hoch ist die Wahrscheinlichkeit für das Ereignis $$H_0=3$$, $$H_3=2$$, $$H_7=1$$?
[[Lösung|Skatbeispiel: Lösung]]
* Wir modellieren das Zufallsexperiment mit einem Urnenmodell mit 49 Kugeln in drei unterschiedlichen Farben, entsprechend der drei Mengen $$S_0$$, $$S_3$$ und $$S_7$$. Beim Markieren der Felder ziehen wir ohne Zurücklegen, berücksichtigen keine Reihenfolge und zählen dabei die in den drei Mengen $$S_0$$, $$S_3$$ und $$S_7$$ markierten Felder, wodurch wir ein entsprechendes Histogramm erhalten. Die zu diesem Experiment gehörige Wahrscheinlichkeitsverteilung ist die hypergeometrische Verteilung.
* Der Ergebnisraum enthält Histogramme der Mengen $$S_0$$, $$S_3$$ und $$S_7$$, die $$\sigma$$-Algebra ist seine Potenzmenge und das Wahrscheinlichkeitsmaß $$P:\,\mathcal{A}\rightarrow[0,1]$$ definieren wir über eine Zähldichte $$p:\,\Omega\rightarrow[0,1]$$:<$latex text="\begin{alignedat}{3}
\Omega & := [0:28]\times[0:14]\times[0:7]\\
\mathcal{A} & :=2^{\Omega}\\
p(H_{0},H_{3},H_{7}) & :=\frac{\binom{N_{0}}{H_{0}}\binom{N_{3}}{H_{3}}\cdot\binom{N_{7}}{H_{7}}}{\binom{N}{n}} & \forall(H_{0},H_{3},H_{7})\in\Omega\\
P(A) & :=\sum_{\omega\in A}p(\omega) & \forall A\in\mathcal{A}
\end{alignedat}" displayMode="true"></$latex>
* Es ist nach der Wahrscheinlichkeit des Histograms mit $$H_{0}= 3$$, $$H_{3} = 2$$ und $$H_{7} = 1$$ gefragt. Diese ist gegeben durch: <$latex text=" \begin{alignedat}{3}
p((3,2,1))=\frac{\binom{28}{3}\cdot\binom{14}{2}\cdot\binom{7}{1}}{\binom{49}{6}}
= \frac{28!}{25! \cdot 3!}\cdot\frac{14!}{12! \cdot 2!}\cdot\frac{7!}{6! \cdot 1!}\cdot\frac{43! \cdot 6!}{49!}
= \frac{3 \cdot 7 \cdot 13^2}{11 \cdot 46 \cdot 47} \approx 14.92 \%
\end{alignedat}" displayMode="true"></$latex>
Sei $$f: V\rightarrow V$$ ein selbstadjungierter Endomorphismus eines $$n-$$ dimensionalen euklidischen Vektorraums $$V$$. Dann besitzt $$V$$ eine Orthonormalbasis, die aus Eigenvektoren von $$f$$ besteht.
Für nur einen Vektor $$q$$ mit $$||q||_2 = 1$$ ergibt sich
<$latex text="
P_q = qq^* \qquad \text{und} \qquad P_{\perp q} = I-qq^*. \qquad (4.1)
" displayMode="true"></$latex>
Dies ist eine Projektion in eine einzelne Richtung $$q$$.
Ist $$\tilde{q}$$ ein allgemeiner Vektor, so verallgemeinert sich (4.1) zu
<$latex text="
P \tilde{q} = \dfrac{ \tilde{q}\tilde{q}^* }{ \tilde{q}^*\tilde{q} } \quad \text{und} \quad
P_{\perp \tilde{q}} = I - \dfrac{ \tilde{q}\tilde{q}^* }{ \tilde{q}^*\tilde{q} }.
" displayMode="true"></$latex>
<<list-links "[tag[Stabilität]sort[scriptorder]]">>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/v4p0lnH3K1w?rel=0&start=1057" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
Die Berechnung der Hessenbergform einer Matrix ist wie die Berechnung einer $$QR$$-Faktorisierung rückwärtsstabil.
Es sei $$f:I\to\R$$ eine Funktion. Eine
[[differenzierbare|Differenzierbarkeit: Analysis]] Funktion $$F:I\to\R$$ heißt ''Stammfunktion'' von $$f$$, falls für alle $$x\in I$$
<$latex text="F'(x)=f(x)" displayMode="true"></$latex>
gilt.
!! Bemerkung
Stammfunktionen sind nur bis auf eine additive Konstante eindeutig
<$latex text="x\mapsto x+1" displayMode="true"></$latex>
<$latex text="x\mapsto x+2" displayMode="true"></$latex>
sind beides Stammfunktionen von $$x\mapsto 1$$.
!! Beweis
Seien also $$F,G$$ zwei Stammfunktionen einer Funktion $$f$$ und $$\phi(x)=F(x)-G(x)$$. Für $$x\in I$$ gilt dann
<$latex text="\begin{aligned}
\phi'(x)=F'(x)-G'(x)=f(x)-f(x)=0.
\end{aligned}" displayMode="true"></$latex>
Also ist $$\phi$$ auf $$I$$ konstant.
Ist $$X\in{\mathscr{L}}^2(P)$$ mit $$\textbf{V}_P(X)>0$$,\ so folgt aus der Regel (1), dass die ZV <$latex text="X^*:=\frac{X-\textbf{E}_P(X)}{\sqrt{\textbf{V}_P(X)}}" displayMode="true"></$latex>
''standardisiert'' ist, d.h. es gilt $$\textbf{E}_P(X^*)=0$$\ und $$\textbf{V}_P(X^*)=1$$.
Es seien $$m,v\in\R$$ und $$v>0$$. Dann hat die Normalverteilung $${\mathcal{N}}_{m,v}$$ zur Dichtefunktion $$\textcolor{blue}{\phi_{m,v}(x):=\frac{1}{\sqrt{2\pi v}}e^{-(x-m)^2/(2v)}}$$ den Erwartungswert $$m$$ und die Varianz $$v$$:
<$latex text=" \begin{aligned}
\textcolor{blue}{\mathbf{E}({\mathcal{N}}_{m,v})}&\textcolor{blue}{=}&\textcolor{blue}{\int_\R x\phi_{m,v}(x)dx=m}\\ \textcolor{blue}{\mathbf{V}({\mathcal{N}}_{m,v})}&\textcolor{blue}{=}&\textcolor{blue}{\int_\R (x-m)^2\phi_{m,v}(x)dx=v}.\end{aligned} " displayMode="true"></$latex>
Insbesondere ist $${\mathcal{N}}_{0,1}$$ die standardisierte Normalverteilung.
Vor dem Hintergrund des [[letzten Beispiels|P-Konvergenz impliziert nicht fast sichere Konvergenz]] ist das folgende Resultat um so erstaunlicher:
! Satz
Sei $$(X_i)_{i\ge 1}$$ eine Folge paarweise unkorrelierter ZVs in $${\mathscr{L}}^2(P)$$ mit beschränkten Varianzen: $$\sup_{i\ge 1}\textbf{V}_P(X_i)\le v<\infty$$. Dann gilt: <$latex text="\textcolor{blue}{\frac{1}{n}\sum_{i=1}^n(X_i-\textbf{E}_P(X_i))\to 0\quad\text{$$P$$-fast sicher.}}\," displayMode="true"></$latex>
* Der ''Beweis'' verwendet neben dem schwachen Gesetz und der Tschebyscheff-Ungleichung das Borel-Cantelli Lemma.
* Wir beginnen daher mit diesem Lemma, das zu den sog. ''0-1-Gesetzen'' der W-Theorie zählt.
Eine in $$a$$ differenzierbare Funktion heißt //stationär in $$a$$//, wenn $$df(a)=0$$.
Nach dem soeben bewiesenen Satz hat eine differenzierbare Funktion auf einer offenen Menge höchstens
an stationären Stellen lokale Extrema.
! Definition
Es sei $$({\mathcal{X}},{\mathcal{A}},(P_{\theta})_{\theta\in\Theta})$$ ein statistisches Modell und $$(\Sigma,\mathcal{S})$$ ein Messraum.
* Eine beliebige ZV $$S:({\mathcal{X}},{\mathcal{A}})\to(\Sigma,\mathcal{S})$$ heißt eine ''Statistik''.
* Sei $$\tau:\Theta\to\Sigma$$ eine Abbildung, die jedem $$\theta\in\Theta$$ eine Kenngröße $$\tau(\theta)\in\Sigma$$ zuordnet. Eine Statistik $$T:{\mathcal{X}}\to\Sigma$$ heißt dann ein ''Schätzer ''für $$\tau$$. (Oft ist $$\tau=\text{id}_\Theta$$; $$T$$ heißt dann auch Schätzer für $$\theta$$.)
!! Bemerkung
Neue Namensgebungen (Statistik statt ZV, Schätzer statt Statistik) wegen neuer Interpretationen:
* ''ZV'': beschreibt unvorhersehbare Ergebnisse;
* ''Statistik'': ist eine vom Statistiker wohlkonstruierte Abbildung, die aus den Beobachtungsdaten Essentielles extrahiert.
* Statistiken gibt es viele, ein ''Schätzer'' ist zugeschnitten auf das Schätzen von $$\tau$$.
Ein ''statistisches Modell'' ist ein Tripel
<$latex text="\textcolor{blue}{{\mathcal{M}}=({\mathcal{X}},{\mathcal{A}},(P_{\theta})_{\theta\in\Theta})}" displayMode="true"></$latex>
bestehend aus
* einem ''Stichprobenraum'' $${\mathcal{X}}$$,
* einer ''$$\sigma$$-Algebra'' $${\mathcal{A}}$$ auf $${\mathcal{X}}$$ und
* einer ''Familie $$(P_{\theta})_{\theta\in\Theta}$$ von W-Maßen'' auf $$({\mathcal{X}},{\mathcal{A}})$$, $$|\Theta|\ge 2$$.
! Notationswechsel
$${\mathcal{X}}$$ statt $$\Omega$$ beruht auf Vorstellung, dass die Beobachtung
durch ZV $$X:\Omega\to{\mathcal{X}}$$ gegeben ist, wobei $$\Omega$$ eine detaillierte Beschreibung und $${\mathcal{X}}$$ die tatsächlich beobachtbaren Ergebnisse enthält.
''Konvention'': Wir schreiben kurz $$\textbf{E}_\theta$$ statt $$\textbf{E}_{P_{\theta}}$$ und $$\textbf{V}_\theta$$ statt $$\textbf{V}_{P_{\theta}}$$.
Eine differenzierbare Abbildung $$f: U \longrightarrow Y$$ auf einer offenen Menge $$U \subset X$$
heißt //stetig differenzierbar in $$U$$//, wenn ihr Differential $$df: U \longrightarrow L(X,Y)$$,
$$x \mapsto df(x)$$, stetig ist.
<$details summary="Stetigkeitstest" tiddler="Bemerkung">
{{Stetigkeitstest}}
</$details>
Jede [[stetige|Stetige reelle Funktionen (Über Grenzwerte)]] Funktion $$f:[a,b]\to \R$$ ist [[beschränkt|Beschränktheit von Funktionen]] und hat in $$[a,b]$$ (mindestens) eine Maximal- und eine Minimalstelle. Insbesondere ist das Bild eines abgeschlossenen Intervalles unter eine stetigen Funktion wieder abgeschlossen.
!! Beweis
Nehmen wir an, dass $$f$$ nicht nach oben beschränkt ist (der andere Fall geht analog). Dann existiert zu jedem $$n\in\N$$ ein $$y_n\in f([a,b])$$ mit $$y_n>n$$. Außerdem gibt es zu jedem $$y_n$$ ein $$x_n\in [a,b]$$ mit $$f(x_n)=y_n$$. $$(x_n)\in[a,b]^\N$$ und ist damit beschränkt. Nach dem [[Satz von Bolzano-Weierstraß]] besitzt $$x_n$$ jetzt eine konvergente Teilfolge $$x_{n_k}$$ mit [[Grenzwert|Grenzwerte von Folgen]] $$x_0\in [a,b]$$ nach dem [[Schachtelungsprinzip]]. Da $$f$$ stetig ist, gilt $$\lim_{k\to\infty}f(x_{n_k})=f(x_0)$$
Das ist aber ein Widerspruch zur Annahme, dass $$f(x_{n_k})$$ unbeschränkt ist.
Sei also $$M\coloneqq\sup\{f(x)|x\in [a,b]\}\in \R$$. Es bleibt zu zeigen, dass $$M\in f([a,b])$$. Es existiert zu jedem $$n\in\N$$ ein $$y_n\in f([a,b])$$ mit $$M-\frac{1}{n}<y_n\leq M$$. Daraus folgt nach dem Schachtelungsprinzip, dass $$\lim_{n\to\infty} f(x_n)=M$$. Die Folge $$(x_n)$$ ist wieder beschränkt und wie oben folgt die Existenz einer konvergenten Teilfolge $$(x_{n_k})$$ mit Grenzwert $$x_0$$. Wegen der Stetigkeit folgt $$M=f(x_0)$$.
Es seien $$r\in\N, D\subset\R^r,a\notin D$$ ein [[Berührungspunkt]] von $$D$$ und $$f:D\to\R$$ eine [[stetige|Stetige reelle Funktionen (Über Grenzwerte)]] Funktion Wir sagen $$f$$ ist ''stetig fortsetzbar in $$a$$'', wenn es ein $$b\in\R$$ gibt, so dass $$\lim_{x\to a} f(x)=b$$
gilt. Die Funktion $$\tilde{f}:D\cup \{a\}\to\R$$ ist definiert durch
<$latex text="f=\begin{cases}
f(x) & x\in D\\
b & x=a
\end{cases}" displayMode="true"></$latex>
und heißt ''(stetige) Fortsetzung von $$f$$ in $$a$$''.
Jede [[stetige|Stetige reelle Funktionen (Über Grenzwerte)]] Funktion $$f:[a,b]\to\R$$ ist eine [[Regelfunktion|Regelfunktionen]].
!! Beweis
Man wähle $$t_{k}^{(n)}\coloneqq a+k\frac{b-a}{n}$$ und definiert für $$x.\in [t_{k-1}^{(n)},t_{k}^{(n)})$$ die Treppenfunktion durch
<$latex text="\varphi_n(x)\coloneqq f(t_{k-1}^{(n)})" displayMode="true"></$latex>
und
<$latex text="\varphi_n(b)=f(b)." displayMode="true"></$latex>
Dann kann man die Folge der Funktionen als Teilfolge von $$(\varphi_n)$$ wählen um eine gleichmäßige Konvergenz zu garantieren.
Es seien $$r\in\N$$, $$D\subset\R^r,a\in D$$ und $$f:D\to\R$$. Wir sagen $$f$$ ist ''stetig in '' $$a$$, wenn für jede [[Folge|Folgen]] $$(a_n)\in D^\N$$ mit Grenzwert $$a$$<$latex text="\lim_{n\to\infty} f(a_n)=f(a)" displayMode="true"></$latex>
gilt. Die Funktion $$f:D\to\R$$ heißt stetig (auf $$D$$), wenn $$f$$ für jedes $$a\in D$$ stetig ist.
!! Satz und Definition
Es sei $$D\subset\R$$ und $$f:D\to R$$ eine Funktion. Dann sind äquivalent:
# Die Funktion $$f$$ ist [[stetig|Stetige reelle Funktionen (Über Grenzwerte)]] in $$a\in D$$
# <$latex text="\forall \epsilon>0\exists\delta>0\forall x\in D: |x-a|<\delta\implies |f(x)-f(a)|<\epsilon" displayMode="true"></$latex>
!! Beweis
''1. $$\implies$$ 2.''
Angenommen 2. gilt nicht:
<$latex text="\begin{aligned}
\exists\epsilon>0\forall \delta>0\exists x\in D: |x-a|<\delta\land |f(x)-f(a)|\geq \epsilon.
\end{aligned}" displayMode="true">
</$latex>
Das ist aber ein Widerspruch zu $$\lim_{n\to\infty} f(x_n)=f(a)$$.
''2. $$\implies$$ 1.'':
Es sei $$\epsilon>0$$ beliebig. Daher gibt es nach 2. ein $$\delta>0$$ s.d. $$|x-a|<\delta\implies|f(x)-f(a)|<\epsilon$$ gilt.
Sei nun $$(x_n)$$ eine konvergente Folge mit Grenzwert $$a$$. Dann existiert zu jedem $$\delta>0$$ ein $$n_0\in\N$$, so dass $$|x_n-a|<\delta$$ für alle $$n\geq n_0$$ gilt. Daraus folgt die Eigenschaft.
Es sei $$f:[a,b]\to\R$$ eine [[stetige|Stetige reelle Funktionen (Über Grenzwerte)]] Funktion. Dann ist $$f$$ auf $$[a,b]$$ [[gleichmäßig stetig|Gleichmäßige Stetigigkeit]].
!! Beweis
Nehmen wir an, dass $$f$$ nicht gleichmäßig stetig ist. Dann existiert ein $$\epsilon_0$$, so dass es zu jedem $$\delta>0$$ $$x,x'$$ mit $$|x-x'|<\delta$$ gibt, s.d.: $$|f(x)-f(x')|\geq \epsilon_0$$ ist.
Wir wählen $$\delta_n=\frac{1}{n}$$ und erhalten zwei Folgen $$(x_n),(x_n')$$, so dass
$$(x_n-x_n')$$ eine Nullfolge ist.
Diese beiden Folgen sind beschränkt und haben daher nach dem [[Satz von Bolzano-Weierstraß]] jeweils eine konvergente Teilfolge. Da die Differenz eine Nullfolge ist, müssen die Grenzwerte aber übereinstimmen. Sei also $$x_0$$ dieser Grenzwert, dann folgt auf Grund der Stetigkeit:
<$latex text="\begin{aligned}
0&=f(x_0)-f(x_0)=f(\lim_{k\to\infty} x_{n_k})-f(\lim_{k\to\infty} x_{n_k}')=\lim_{k\to\infty} f(x_{n_k})-\lim_{k\to\infty} f( x_{n_k}')\\
&=\lim_{k\to\infty} f(x_{n_k})-f( x_{n_k}'),
\end{aligned}" displayMode="true"></$latex>
was ein Widerspruch zur Annahme ist.
Eine in $$a$$ differenzierbare Funktion ist auch in $$a$$ stetig.
<$details summary="Beweis" tiddler="Beweis">
In (8.2) ([[Definition: Differenzierbareit]]) gilt $$Lh \rightarrow 0$$ und $$R(h) \rightarrow 0$$ für $$h \rightarrow 0$$.
</$details>
!! Satz
Es sei $$f(x)=\sum_{n=0}^{\infty}a_n(x-x_0)^n$$ eine [[Potenzreihe|Potenzreihen]] mit [[Konvergenzradius]] $$R>>0$$. Sei außerdem $$0<r<R$$. Dann konvergiert die Funktionsfolge $$f_n:[x_0-r,x_0+r]\to\R$$ der Partialsummen gleichmäßig gegen die Potenzreihe.
!! Beweis
Für $$r<\rho<R$$ konvergiert die Reihe $$\sum_{k=0}^\infty a_k\rho^k$$, daher ist $$a_k\rho^k$$ eine Nullfolge und damit beschränkt durch ein $$C\in\R_+$$.
Es folgt also für $$|x-x_0|<r$$
<$latex text="|a_k(x-x_0)^k|=\left\vert a_k \rho^k \frac{(x-x_0)^k}{\rho^k}\right\vert\leq C\theta^k" displayMode="true"></$latex>
für $$0 <\theta=\frac{r}{\rho}<1$$. Die entsprechende Reihe konvergiert, daher existiert zu jedem $$\epsilon>0$$ ein $$N\in\N$$, so dass
<$latex text="\sum_{k=N+1}^\infty C\theta^k<\epsilon" displayMode="true"></$latex>
gilt. für $$n\geq N$$ gilt also
<$latex text="\begin{aligned}
\vert f_n(x)-f(x)\vert & =\left\vert \sum_{k=n+1}^\infty a_k(x-x_0)^k\right\vert\\
& \leq\sum_{k=n+1}^\infty C\theta^k<\epsilon
\end{aligned}" displayMode="true"></$latex>
!! Korollar
Die Konvergenzreihe $$f(x)$$ von oben ist als Funktion $$f:(x_0-R,x_0+R)\to\R$$ stetig.
$$df: U \longrightarrow L(X,Y)$$ ist genau dann stetig, wenn für jeden Vektor $$h \in X$$
die Abbildung $$U \longrightarrow Y$$, $$x \mapsto df(x)h$$, stetig ist.
Ausgehend vom fiktiven Laplace-Raum $$\Omega=[1:N]^n$$ versehen mit fester surjektiver Färbungsfunktion $$\phi:[1:N]\to F$$ werden wir nun schrittweise mittels geeigneter ZVs die Information komprimieren: <$latex text="[1:N]^n \xrightarrow{\phantom{X}X_{ZR}\phantom{X}} \Omega_{ZR}\xrightarrow{\phantom{X}X_{Zr}\phantom{X}} \Omega_{Zr}." displayMode="true"></$latex> Konkret wird einer Folge farbiger Kugelnummern mittels $$X_{ZR}$$ die zugehörige \textbf{Farbenfolge} zugeordnet: <$latex text="(\textcolor{red}{2},\textcolor{blue}{4},\textcolor{red}{5},\textcolor{red}{2}, 1, \textcolor{red}{2},3)
\xrightarrow{\phantom{X}X_{ZR}\phantom{X}}
(\textcolor{red}{\bullet},\textcolor{blue}{\bullet},\textcolor{red}{\bullet},\textcolor{red}{\bullet}, \bullet, \textcolor{red}{\bullet},\bullet)" displayMode="true"></$latex>
die ihrerseits mittels $$X_{Zr}$$ zum zugehörigen ''Farbenhistogramm'' vergröbert wird: <$latex text="(\textcolor{red}{\bullet},\textcolor{blue}{\bullet},\textcolor{red}{\bullet},\textcolor{red}{\bullet}, \bullet, \textcolor{red}{\bullet},\bullet)
\xrightarrow{\phantom{X}X_{Zr}\phantom{X}}
\begin{array}{ccc}
\textcolor{red}{\bullet}&&\\
\textcolor{red}{\bullet}&&\\
\textcolor{red}{\bullet}&&\bullet\\
\textcolor{red}{\bullet}&\textcolor{blue}{\bullet}&\bullet\\
\end{array}" displayMode="true"></$latex>
Ausgehend vom fiktiven Laplace-Raum der \textcolor{blue}{injektiven} $$n$$-Tupel
<$latex text="\textcolor{blue}{\Omega_{\ne}:=\{\omega\in[1:N]^n|i<j\Rightarrow \omega_i\ne\omega_j\}}," displayMode="true"></$latex>
der $$(N)_n:=\prod_{k=0}^{n-1}(N-k)$$-elementig ist, könnten wir nun schrittweise mittels geeigneter ZVs die Information komprimieren:
<$latex text="\Omega_{\ne} \xrightarrow{\phantom{X}X_{zR}\phantom{X}} \Omega_{zR}\xrightarrow{\phantom{X}X_{zr}\phantom{X}} \Omega_{zr}." displayMode="true"></$latex>
Konkret wird einer$$ \textcolor{blue}{\text{injektiven}}$$ Folge farbiger Kugelnummern mittels $$X_{zR}$$ die zugehörige Farbenfolge zugeordnet,
die ihrerseits mittels $$X_{zr}$$ zum zugehörigen Farbenhistogramm vergröbert wird:
<$latex text="(\textcolor{red}{2},\textcolor{blue}{4},\textcolor{red}{5},\textcolor{red}{6}, 1, \textcolor{red}{7},3)
\xrightarrow{\phantom{X}X_{zR}\phantom{X}}
(\textcolor{red}{\bullet},\textcolor{blue}{\bullet},\textcolor{red}{\bullet},\textcolor{red}{\bullet}, \bullet, \textcolor{red}{\bullet},\bullet)
\xrightarrow{\phantom{X}X_{zr}\phantom{X}}
\begin{array}{ccc}
\textcolor{red}{\bullet}&&\\
\textcolor{red}{\bullet}&&\\
\textcolor{red}{\bullet}&&\bullet\\
\textcolor{red}{\bullet}&\textcolor{blue}{\bullet}&\bullet\\
\end{array}
" displayMode="true"></$latex>
Wir beschreiben kurz den ersten Übergang $$\Omega_{\ne} \xrightarrow{\phantom{X}X_{zR}\phantom{X}} \Omega_{zR}$$ inklusive Bildmaß, überlassen die Ausführung der zweiten Informationskompression
$$\Omega_{zR}\xrightarrow{\phantom{X}X_{zr}\phantom{X}} \Omega_{zr}$$ als Übung, und werden schließlich einen einfacheren, alternativen Weg zur Beschreibung von $$(\Omega_{zr},P_{zr})$$ vorstellen.
Da nicht zurückgelegt wird, besteht $$\Omega_{zR}$$ aus allen $$n$$-komponentigen Farbenfolgen $$\textbf{f}=(f_1,\ldots,f_n)$$, in denen die Farbe $$f\in F$$ höchstens $$N_f$$-mal vorkommt:\
$$\textcolor{blue}{\Omega_{zR}=\{\textbf{f}\in F^n\mid \forall f\in F:|\{i\in[1:n]\mid f_i=f\}|\le N_f\}}$$.
! Satz
Ist $$\textbf{f}\in\Omega_{zR}$$ und kommt die Farbe $$f$$ in $$\textbf{f}$$ genau $$n_f$$-mal vor, so ist
<$latex text="\textcolor{blue}{\Big|X^{-1}_{zR}(\textbf{f})\Big|=\prod_{f\in F}\big(N_f\big)_{n_f}}\quad\text{sowie}\quad \textcolor{blue}{P_{zR}(\textbf{f})=\frac{\prod_{f\in F}\big(N_f\big)_{n_f}}{\big(N\big)_{n}}}\,." displayMode="true"></$latex>
!! Beweis
Kommt die Farbe $$f\in F$$ an genau $$n_f$$ Stellen in $$\textbf{f}$$ vor, so stammt dieser einfarbige Bereich von einer $$n_f$$-elementigen Teilmenge der Kugeln mit Kugelnummer aus der $$N_f$$-elementigen Nummernmenge $$F_f$$. Diese $$n_f$$-elementige Teilmenge kann man auf $$n_f!$$ Weisen anordnen. Insgesamt ergibt sich daher
<$latex text="\Big|X^{-1}_{zR}(\textbf{f})\Big|=\prod_{f\in F}\binom{N_f}{n_f}\cdot n_f!=\prod_{f\in F}\big(N_f\big)_{n_f}." displayMode="true"></$latex>
Dies beweist die erste Behauptung. Die zweite folgt mit $$|\Omega_{\ne}|=(N)_n$$ aus der Formel für Bildmaße.
!! Neu
Wir gehen wieder vom fiktiven Laplace-Raum $$\Omega_{\ne}$$ der $$\textcolor{blue}{\text{injektiven}}$$ $$n$$-Tupel aus und ordnen jetzt einer $$\textcolor{blue}{ \text{injektiven}}$$ Folge farbiger Kugelnummern zunächst die zugehörige
$$n$$-elementige \textcolor{blue}{Menge} zu, bevor wir wieder zum Farbenhistogramm übergehen. Konkret:
<$latex text="\overbrace{(\textcolor{red}{2},\textcolor{blue}{4},\textcolor{red}{5},\textcolor{red}{6}, 1, \textcolor{red}{7},3)}^{\textnormal{injektiv}}
\begin{array}{cc}
\stackrel{X}{\longmapsto} &\{\textcolor{red}{2},\textcolor{blue}{4},\textcolor{red}{5},\textcolor{red}{6}, 1, \textcolor{red}{7},3\} \\
={\ } &\{1, \textcolor{red}{2}, 3, \textcolor{blue}{4},\textcolor{red}{5},\textcolor{red}{6}, \textcolor{red}{7}\}
\end{array}
\stackrel{Y}{\longmapsto}
\begin{array}{ccc}
\textcolor{red}{\bullet}&&\\
\textcolor{red}{\bullet}&&\\
\textcolor{red}{\bullet}&&\bullet\\
\textcolor{red}{\bullet}&\textcolor{blue}{\bullet}&\bullet\\
\end{array}" displayMode="true"></$latex>
Bezeichnet $$\textcolor{blue}{\Omega'}$$ den Raum aller $$n$$-elementigen Teilmengen von $$[1:N]$$ und
$$\Omega_{zr} =\{H\in\prod_{f\in F}[0:N_f]\mid\sum_{f\in F}H(f)=n\}$$
den Raum aller möglichen Histogramme im $$zr$$-Szenario, so sind beide ZVs genauer spezifiziert durch:
<$latex text="\begin{alignedat}
\textcolor{blue}{X}&\textcolor{blue}{:=}&\textcolor{blue}{(\Omega_{\ne}\ni(\omega_1,\ldots,\omega_n)\mapsto \{\omega_1,\ldots,\omega_n \}\in\Omega')}\\
\textcolor{blue}{Y}&\textcolor{blue}{:=}&\textcolor{blue}{(\Omega'\ni A\mapsto (F\ni f\mapsto |A\cap F_f|)\in\Omega_{zr})},
\end{alignedat}" displayMode="true"></$latex>
wobei $$F_f:=\{i\in[1:N]\mid \phi(i)=f\}$$.
$$ \textcolor{blue}{\textbf{Frage}}$$: Wie sehen die Bildmaße $$P_X$$ und $$P_Y$$ zu den ZVs $$X$$ bzw. $$Y$$ aus?
Siehe [[Antwort: Stichproben ohne Zurücklegen]] und [[Hypergeometrische Verteilung]]
! Überblick
Die Stochastik ist die Lehre von Zufallsprozessen. Diese besteht aus zwei Teilgebieten, der ''Wahrscheinlichkeitstheorie'' und der ''Statistik''.
!! Wahrscheinlichkeitstheorie
Die Wahrscheinlichkeitstheorie untersucht Zufallsprozesse mit ''bekannten'' Wahrscheinlichkeiten.
<$details summary="Beispiel" tiddler="Stochastik Beispiel" details>
Zweimaliges würfeln mit einem ''fairen'' Würfel. Typische Frage: Wie groß ist die Wahrscheinlichkeit, eine Augensumme <$latex text="\geq 10" displayMode="false"></$latex> zu würfeln?
</$details>
!! Statistik
Die Statistik untersucht Zufallsprozesse mit ''unbekannten'' Wahrscheinlichkeiten.
<$details summary="Beispiel" tiddler="Stochastik Beispiel" details>
Zweimaliges würfeln mit einem ''unfairem'' Würfel. mögliche Aufgabe: Schätze anhand vieler Versuche Wahrscheinlichkeiten ... etwa zu Prognosezwecken.
</$details>
Die Erfahrung, dass die relative Erfolgshäufigkeit im obigen Beispiel ''ungefähr'' bei $$1/2$$ liegt, wird präzisiert durch
<$latex text="P\left(\left|\frac{1}{n}\sum_{i=1}^n X_i-\textbf{E}_P(X_1)\right|<\epsilon\right) \xrightarrow{n\to\infty} 1," displayMode="true"></$latex>
für alle $$\epsilon>0$$.
Diese Formel würde besagen:
''Für großes $$n$$ liegt der Mittelwert mit großer Wahrscheinlichkeit nahe beim Erwartungswert.''
Dies motiviert mit $$Y_n:=\frac{1}{n}\sum_{i=1}^n X_i$$ und $$Y:=\textbf{E}_P(X_1)$$ folgende allgemeinere
! Definition
Es sei $$(\Omega,{\mathcal{A}},P)$$ W-Raum, $$Y,Y_1,Y_2,\ldots$$ ZVs $$\Omega\to\R$$.
Die Folge $$(Y_n)_n$$ heißt\textbf{ stochastisch konvergent} (oder \textbf{konvergent in Wahrscheinlichkeit}, genauer $$\boldsymbol{P}$$-''konvergent'') gegen $$Y$$, kurz: $$\textcolor{blue}{Y_n\stackrel{P}{\longrightarrow}Y}$$, wenn für alle $$\epsilon>0$$ gilt:
<$latex text="\textcolor{blue}{\lim_{n\to\infty}P(|Y_n-Y|<\epsilon)= 1}\,." displayMode="true"></$latex>
Es sei $$V\ne\emptyset$$ abzählbar und $$\Pi=(\Pi(x,y))_{x,y\in V}$$ eine reellwertige Matrix.
$$\Pi$$ heißt ''zeilenstochastisch'', wenn in jeder Zeile der Matrix $$\Pi$$ eine W-Funktion auf $$V$$ steht. Das heißt:
* alle Einträge von $$\Pi$$ liegen im Intervall $$[0,1]$$:\ $$\Pi\in[0,1]^{V\times V}$$.
* für alle $$x\in V$$ ist $$\sum_{y\in V}\Pi(x,y)=1$$.
Wir betrachten jetzt den Zufallsprozess in $$V$$, der bei jedem Schritt mit Wahrscheinlichkeit $$\Pi(x,y)$$ vom Zustand $$x$$ zum Zustand $$y$$ springt. Symbolisch:
<$latex text="\textcolor{blue}{x\xrightarrow{\Pi(x,y)}y}." displayMode="true"></$latex>
Dies ist ein weiterer fundamentaler Begriff der Stochastik.
* ''Intuitiv'': Zwei Ereignisse $$A$$ und $$B$$ sind stochastisch unabhängig, wenn die Wahrscheinlichkeit des Eintretens von $$A$$ nicht beeinflusst wird durch die Information, dass $$B$$ eingetreten ist, und umgekehrt.
* Das bedeutet: <$latex text="P(A|B)=P(A)\quad\text{und}\quad P(B|A)=P(B),\quad\textcolor{red}{\text{falls $$P(A),P(B)>0$$}}." displayMode="true"></$latex>
* Mit $$P(A|B)=P(A\cap B)/P(B)$$ und $$P(B|A)=P(A\cap B)/P(A)$$ ergibt das sofort $$P(A\cap B)=P(A)P(B)$$.
* Diese letzte Formel kommt vorteilhafterweise ohne die Positivitätsbedingung $$P(A),P(B)>0$$ aus. Daher vereinbart man:
Es sei $$(\Omega,{\mathcal{A}},P)$$ ein W-Raum. Ereignisse $$A,B\in{\mathcal{A}}$$ heißen (stochastisch) ''unabhängig'' bezüglich $$P$$, wenn <$latex text="\textcolor{blue}{P(A\cap B)=P(A)P(B)}." displayMode="true"></$latex>
$$\text{Hom}_K(V,W)$$ ist in natürlicher Weise ein $$K$$-Vektorraum. $$\text{End}_K(V)$$ ist in natürlicher Weise eine $$K$$-Algebra.
!! Beweis
Seien $$T_1,T_2\in \text{Hom}_K(V,W),\lambda \in K$$ beliebig. Dann gilt:
<$latex text="\begin{aligned}(T_1+T_2)(x)&=T_1(x)+T_2(x)\\(\lambda T_1)(x)&=\lambda (T_1(x))\end{aligned}" displayMode="true"></$latex>
und für $$V=W$$:
<$latex text="(T_1\circ T_2)(x)=T_1(T_2(x))." displayMode="true"></$latex>
Eine Funktion $$f:[a,b]\to\R$$ heißt ''stückweise stetig'', wenn es eine [[Zerlegung |Zerlegungen und Treppenfunktionen]]$$(t_k)_{k=0}^n$$ von $$[a,b]$$ gibt, so dass die Funktionen $$f_i:(t_{i-1},t_i)\to\R,x\mapsto f(x)$$ stetig und in den Sprungstellen stetig fortsetztbar sind.
!! Lemma
Jede stückweise stetige Funktion ist eine [[Regelfunktion|Regelfunktionen]].
!! Beweis
Dies ist eine mögliche Übungsaufgabe in Analysis für Informatiker und wird daher nicht bewiesen.
Sind $$X_1, X_2$$ unabhängig und ist $$X_i$$ $$N(\mu_i,\sigma_i^2)$$-verteilt, so ist $$X_1+X_2$$ $$N(\mu,\sigma^2)$$-verteilt mit $$\mu=\mu_1+\mu_2$$ und $$\sigma^2=\sigma_1^2+\sigma_2^2$$.
!! Beweis
$$X_i$$ ist genau dann $$N(\mu_i,\sigma^2)$$-verteilt, wenn $$Y_i:=X_i-\mu_i$$ $$N(0,\sigma^2)$$ verteilt ist. Daher können wir $$\mu_1=\mu_2=0$$ annehmen.
Nun ist <$latex text=" p_{X_1}*p_{X_2}(y)=\frac{1}{2\pi\sigma_1\sigma_2}\int_{-\infty}^\infty exp\left(
-\frac{1}{2}\left(\frac{(y-x)^2}{\sigma_1^2}+\frac{x^2}{\sigma_2^2}
\right)
\right) dx." displayMode="true"></$latex>
Substituiert man $$z=x\frac{\sigma}{\sigma_1\sigma_2}-y\frac{\sigma_2}{\sigma\sigma_1}$$, so ergibt sich $$dx=\frac{\sigma_1\sigma_2}{\sigma}dz$$ und $$-\frac{1}{2}\left(\frac{(y-x)^2}{\sigma_1^2}+\frac{x^2}{\sigma_2^2}\right)=z^2+\frac{y^2}{\sigma^2}$$ und wir erhalten
<$latex text=" \begin{aligned}
p_{X_1}*p_{X_2}(y)&=\frac{1}{2\pi\sigma_1\sigma_2}\int_{-\infty}^\infty exp\left(
-\frac{z^2}{2}\right) exp\left(-\frac{y^2}{2\sigma^2}\right)\frac{\sigma_1\sigma_2}{\sigma}dz\\
&=\frac{1}{\sigma\sqrt{2\pi}}
exp\left(-\frac{y^2}{2\sigma^2}\right)
=N(0,\sigma_2)(y).
\end{aligned}" displayMode="true"></$latex>
Das ''Supremum'' einer nichtleeren, beschränkten Menge $$A$$ ist wie folgt definiert:
<$latex text="\sup A\coloneqq \min\{p\in\R:\forall a\in A: a\leq p\}." displayMode="true"></$latex>
Falls $$A$$ nichtleer, aber nicht beschränkt ist gilt $$\sup A=\infty$$; $$\sup\emptyset=-\infty$$.
Das ''Infimum'' einer nichtleeren, beschränkten Menge $$A$$ ist wie folgt definiert:
<$latex text="\inf A\coloneqq \max\{p\in\R:\forall a\in A: a\geq p\}." displayMode="true"></$latex>
Falls $$A$$ nichtleer, aber nicht beschränkt ist gilt $$\sup A=-\infty$$; $$\sup\emptyset=\infty$$.
Es sei $$I\subset \R$$ und $$f:I\to\R$$ eine [[beschränkte Funktion|Beschränktheit von Funktionen]]. Die ''Supremumsnorm'' von $$f$$ auf $$I$$ ist durch
<$latex text="\Vert f\Vert_I\coloneqq \sup\{|f(x)|: x\in I\}" displayMode="true"></$latex>
gegeben.
!! Bemerkung
Ist $$I=[a,b]$$ so gilt <$latex text="\Vert f\Vert_I\coloneqq \max\{|f(x)|: x\in I\}" displayMode="true"></$latex>
und man nennt diese Norm auch ''Maximumsnorm''.
!! Eigenschaften
Es sei $$I\subset\R,\alpha\in\R,f,g:I\to\R$$ beschränkt. Dann gilt:
# $$\Vert f\Vert_I \geq 0$$
# $$\Vert f\Vert_I = 0 \iff \forall x\in I: f(x)=0$$
# $$\Vert \alpha f\Vert_I =|\alpha|\cdot \Vert f\Vert_I$$
# $$\Vert fg\Vert_I \leq \Vert f\Vert_I\cdot\Vert g\Vert_I$$
# $$\Vert f+g\Vert_I \leq \Vert f\Vert_I+\Vert g\Vert_I$$
Der Beweis ist eine Übungsaufgabe der Vorlesung Analysis für Informatiker und wird daher nicht gegeben.
iVBORw0KGgoAAAANSUhEUgAABoQAAALHCAYAAACnoiAPAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAFiUAABYlAUlSJPAAAAAhdEVYdENyZWF0aW9uIFRpbWUAMjAyMTowOToyNCAxNTo1MDo0NCgWCRMAAP94SURBVHhe7N0JuJXT28fx5a/SSBNNGg1FsygapCQNilApkkwVQkiihEQqmYqIlCEKRQOlVJpUUikhzUXzqFGF9/2t1tEZnmfvfeY9fD/Xda7zrLVP1Dln7/2sda/7vk/59/8ZAAAAAAAAAAAARK3/uc8AAAAAAAAAAACIUgSEAAAAAAAAAAAAohwBIQAAAAAAAAAAgChHQAgAAAAAAAAAACDKERACAAAAAAAAAACIcgSEAAAAAAAAAAAAohwBIQAAAAAAAAAAgChHQAgAAAAAAAAAACDKERACAAAAAAAAAACIcgSEAAAAAAAAAAAAohwBIQAAAAAAAAAAgChHQAgAAAAAAAAAACDKERACAAAAAAAAAACIcgSEAAAAAAAAAAAAohwBIQAAAAAAAAAAgChHQAgAAAAAAAAAACDKERACAAAAAAAAAACIcgSEAAAAAAAAAAAAohwBIQAAAAAAAAAAgChHQAgAAAAAAAAAACDKERACAAAAAAAAAACIcgSEAAAAAAAAAAAAohwBIQAAAAAAAAAAgChHQAgAAAAAAAAAACDKERACAAAAAAAAAACIcgSEAAAAAAAAAAAAohwBIQAAAAAAAAAAgChHQAgAAAAAAAAAACDKERACAAAAAAAAAACIcgSEAAAAAAAAAAAAohwBIQAAAAAAAAAAgChHQAgAAAAAAAAAACDKERACAAAAAAAAAACIcgSEAAAAAAAAAAAAohwBIQAAAAAAAAAAgChHQAgAAAAAAAAAACDKERACAAAAAAAAkGn+/vtvdwUASE8EhAAAAAAAAABkmm+++cZdAQDS0yn//j93DQD4f8eOHTObNm1yo4SKFi1qsmfP7kYAAAAAACA1tDXZrl0788EHH7gZAEB6ISAEAImsX7/elC5d2o0Smj9/vqlRo4YbAQAAAACA1Dh48KApUqSI2bVrl8maNaubBQCkB0rGAQAAAAAAAMgU+/btM/v37zdLlixxMwCA9EJACAAAAAAAAECmUEBIZs+ebT8DANIPASEAAAAAAAAAmeLPP/+0nwkIAUD6IyAEAAAAAAAAIFOoh5DMmTPH/PPPP/YaAJA+CAgBAAAAAAAAyBR//fWX/bxr1y7z66+/2msAQPogIAQAAAAAAAAgUxw9etRdGTN37lx3BQBIDwSEAAAAAAAAAGSKuAwhWbFihbsCAKQHAkIAAAAAAAAAMkX8gBAl4wAgfREQAgAAAAAAAJAp4peM++WXX9wVACA9EBACAAAAAAAAkCniZwht3LjRHDx40I0AAGmNgBAAAAAAAACATBE/Q0hWrlzprgAAaY2AEAAAAAAAAIBMET9DSOgjBADph4AQAAAAAAAAgEyROEOIPkIAkH4ICAEAAAAAAADIFGQIAUDGISAEAAAAAAAAIFOQIQQAGYeAEAAAAAAAAIBMkThDaN26de4KAJDWCAgBAAAAAAAAyBSJM4QOHTqUZA4AkDYICAEAAAAAAADIFP/++6+7OmnPnj3uCgCQlggIAQAAAAAAAAgbu3fvdlcAgLREQAgAAAAAAABA2CAgBADpg4AQAAAAAAAAgLBBQAgA0gcBIQAAAAAAAABhgx5CAJA+TvnXq3MbAMSw9evXm9KlS7tRQvPnzzc1atRwIwAAAAAAkBqdOnUyb775phud8NJLL5kHH3zQjQCkhyNHjpidO3eaP//80+zfv/+/j+SODx48aP97p556qsmSJYv9HPcRN9bn7Nmzmxw5cvz3ccYZZ5izzjrLFCpUyH6O+4gb58uXz5xyyin2v420Q0AIABIhIAQAAAAAQMbwCgj16tXLPPPMM24EICUU8NmwYYPd5/L62Lp1q/vK8KQgUokSJUzZsmXtR7ly5f67Lly4MMGiFCIgBACJ6E2RgBAAAAAAAOnPKyB03333mddee82NAHiJ9IBPapx++uk2MHTBBReY6tWrm5o1a5qKFSvaIBICIyAEAInoTZOAEAAAAAAA6a9z585m6NChbnRC27ZtzYcffuhGQGzT9v3vv/9uFi9ebJYsWfLfZ83hpNy5c9s9u1q1atkA0aWXXmrL0iEhAkIAkAgBIQAAAAAAMoZXQKhRo0bmq6++ciMgdvzzzz9m9erVCQI/+rxr1y73FQiVSspVqFDBXH311ea6666zASL1M4p1BIQAIBECQgAAAAAAZAyvgJDW3Vp/A9Hs2LFj5pdffvkv6KOPpUuXmgMHDrivQFo666yzTPPmzW1w6MorrzTZs2d3j8QWAkIAkAgBIQAAAAAAMoZXQOjcc881q1atciMgOijL59tvvzXTp083CxYsMMuXLzd//fWXezRj5ciRwxQoUMDkz58/yed8+fLZHj158uT57yNXrlw2u+Z///uf/VD2jde1Qg0HDx40+/fv9/z4888/7ed9+/aZzZs3m40bN5o//vjD/P333+5vljH072ncuLENDulD41hBQAgAEiEgBAAAAABAxvAKCBUrVoz+KIh4CnzMnj3bBoD0oeyfjNqKV/aL9rbKlCnj+VlBnnChYNCWLVvMpk2bbIAo7rM+1q1bZ7OolE2VXtRn6NZbbzWdOnUyF154oZuNXgSEACARAkIAAAAAAGQMr4BQkSJFbPYAEEkOHz5svvvuu/8CQAsXLky3zBdl5ShwGj/QE/+6UKFCNmMnGhw9evS/0noKqsV9KMsorV1++eX2NalFixbmtNNOc7PRhYAQACRCQAgAAAAAgIzhFRDSZvbWrVvdCAhPylpR0CcuAKRgUHqUgFOptvLly5tq1aqZiy66yH5Urlw5psqcJaaQhvbvFBhSoGjOnDn2I60yic4880xzxx13mHvuuccUL17czUYHAkIAkAgBIQAAAAAAMoY2XN944w03OqFgwYJmx44dbgSEj19//dVMmDDBBoBUDk79ctJS1qxZTcWKFRMEfypVqmRLwCEw/SzUo+nrr7+2H8oqSq1s2bLZUnKPP/64DVRHAwJCAJAIASEAAAAAADKGV0BIje3VgB/IbNo6X7RokRk3bpz9UEAoragkmTJ94gd/KlSoYIMQSD31Ipo6daoNDunz7t273SPJp2ysBx980DzyyCMmb968bjYyERACgEQICAEAAAAAkDG8AkLacN2zZ48bARlLZcdmzZplA0Cff/65+eOPP9wjqaPsn8suu8zUq1fP1K9f3+4vRWufmnCjXk7K6Bo5cqT55JNPUpzZpdem7t27my5dukRsyT4CQgCQCAEhAAAAAAAyhldA6PTTT0+XhvGAn0OHDtlMEgWBVBIuLQKS6v1z8cUX2+CPPmrWrGly5szpHkVmOXDggPnss8/Mu+++a0vMpYTKxz333HOmQ4cO5pRTTnGzkYGAEAAkQkAIAAAAAICM4RUQ0sl7bdoC6UlBn4kTJ9og0OTJk83hw4fdIymjwECVKlVs8EdZQHXq1LHBTYSvtWvXmvfee89mDmk/MLkaNmxohg0bZkqUKOFmwh8BIQBIhIAQAAAAAAAZwysglCNHDpuxAaS1bdu22ewQBYFmzpxpjh8/7h5JmXLlypkGDRrYIFDdunVt/ytEnn/++cf+PvTr18/2G0qO3Llzm4EDB5q77747IrKF/uc+AwAAAAAAAECm0+YskFaOHDli+8Zcc801plixYubee+8106ZNS1EwSBv+tWrVMv379zcrV640v/zyi3nttddMixYtCAZFsP/97382qKeygXPmzLFBvlApm7FTp072z6xbt87Nhi8CQgAAAAAAAAAyhTZiEyMghNRSUax58+bZjfoiRYqYVq1amUmTJpm///7bfUXoTjvtNBtMevvtt82WLVtswKBbt27m/PPPd1+BaKKAn7KEZs+eba688ko3G9z06dNNxYoVzeuvv25//8IVASEAAAAAAAAAmcIrIJSSTXtA1AagT58+Nlijjf0333zT7N271z0aOmX73HrrrWbs2LFm165dZsKECeaOO+4whQoVcl+BaFe7dm2bSTZr1iybPRSKgwcP2gw0/a789ddfbja8EBACAAAAAAAAkCnIEEJq/fnnn2b48OG2h496Qj/55JNm9erV7tHQlSpVyjzwwANmxowZttfQyJEjbSm4XLlyua9ALKpTp4755ptv7O+FekaF4t1337XZRdu3b3cz4YOAEAAAAAAAAIBMceqpp7qrhMK55BIyn7LIpkyZYtq2bWuzdpSRoUyO5DrnnHNsAGnp0qVm7dq15uWXXzZXXHGFyZIli/sK4AT9XixZssR0797dM5Cd2Ny5c0316tXNsmXL3Ex4ICAEAAAAAAAAIFP4baySJQQvv/32m3n00UdN8eLFTaNGjcxHH31kjhw54h4NTcGCBc19991nvvvuO7Nq1Srz9NNPm8qVK5tTTjnFfQXgLXv27KZfv372d+fCCy90s/42bNhgatasab744gs3k/kICAEAAAAAAADIFF4BIW3Mh3ICH7Hh+PHj5vPPPzcNGzY0ZcuWNQMGDDBbtmxxj4ZGG/k33XSTmThxotm8ebN57bXXzKWXXkoQCCmizJ/Fixebxx9/3DfLMY76Cqn04IsvvuhmMhevrAAAAAAAAAAyhddm6mmnncZGPWwfn759+5oyZcrYDfWpU6e6R0Kj36EGDRqYESNG2P+WsomaNm1qsmbN6r4CSDm9Tun3c8GCBaZChQpu1ptKYD7yyCO2JGFmIyAEAAAAAAAAIFN4ZQIpmwOxSRvns2fPNm3atLFl4Xr27Gk2bdrkHg1N1apVbTbG77//boNI7du3N6effrp7FEhb1apVM4sWLbJ9rILp2rWrGTZsmBtlDgJCAAAAAAAAADKFV0BIJ+8RW/bv32+GDh1qe/lcfvnl5uOPPzbHjh1zjwZXrFgx06NHD/PTTz/ZUl4PPfSQKVq0qHsUSF96zVKg55lnnnEz/jp27GhGjRrlRhmPgBAAAAAAAACATOFXMg6xYcWKFea+++6zAZ3OnTub5cuXu0eCU0m4Jk2a2Ib969evN88995wpX768exTIWPp97NWrly1RmCVLFjeblLLgbr31VjNu3Dg3k7EICAEAAAAAAADIFGQIxR5l/owZM8ZcccUVtvfKkCFDbIZQqAoXLmxLya1bt85MmjTJNG/ePOAGPJCRVKLwyy+/NHny5HEzSf3999+mdevWZvLkyW4m4xAQAgAAAAAAAJApCAjFjr1795r+/fubUqVK2c3wb7/91j0SmoYNG5rPPvvMbNy40fTp08eULFnSPQKEl6uuusrMmjXLFClSxM0kpcDo9ddfb7PkMhIBIQAAAAAAAACZgpJx0U8BnIcfftiUKFHCdO/e3WzevNk9EtxZZ51lHnvsMbNmzRozZcoUu4GeNWtW9ygQvqpUqWLmz58fsIzh4cOHTatWrczBgwfdTPojIAQAAAAAAAAgU3hlCGXPnt1dIZItWbLE3HLLLaZMmTJm0KBBySoLV79+fTN69GizadMm8/zzz9v/BhBpFASdNm2aKV68uJtJ6ueffzZdunRxo/RHQAgAAAAAAABApqBkXHRRw3z1RWnQoIG56KKLzIcffmj7pYQib968NpPot99+M998843NnMiWLZt7FIhM6nk1YcIEkytXLjeT1Lvvvmvee+89N0pfBIQAAAAAAAAAZAoCQtHh6NGjZuTIkaZSpUqmcePGNqATqvPOO88MHjzYZgMNHDjQjoFoUrlyZfPRRx+ZU045xc0k1blzZ/PLL7+4UfohIAQAAAAAAAAgU9BDKLLt3bvX9O/f35QuXdrcdttt5qeffnKPBFevXj0zfvx48+uvv5p7773X5M6d2z0CRJ9mzZqZAQMGuFFShw4dMi1btrSf0xMBIQAAAAAAAACZggyhyLRx40Zb3k09Urp37242b97sHglMJeDat29v+wtNnz7dbpJ7/Q4A0eihhx4yd9xxhxsltWLFCtOjRw83Sh882wAAAAAAAABkCq9gQPbs2d0Vws3q1avN7bffbs455xwzaNAgs3//fvdIYAULFjS9evUyGzZsMCNGjDBVqlRxjwCxQyXjXn/9dXPFFVe4maSGDBlifv75ZzdKewSEAAAAAAAAAGQKSsZFBm1Q33LLLaZs2bK2Af7x48fdI4GVL1/eDBs2zGYUPfPMM7bBPhDLlCX32Wef2ew6L3///bfNJPr333/dTNoiIAQAAAAAAAAgU1AyLrwtXbrU9jWpUKGC+fDDD80///zjHgmsUaNGZsqUKWb58uXmzjvvNDly5HCPAMifP7959dVX3SgpPXe++uorN0pbBIQAAAAAAAAAZAoCQuFp4cKFpnnz5qZq1arm008/DSlbQT/LNm3amGXLltnN7IYNG9oSWQCS0vOrcePGbpSUsoSOHTvmRmmHgBAAAAAAAACATEHJuPAyZ84cc/XVV5saNWqYCRMmuNnAsmbNahvlr1y50owaNcpUrFjRPQLAj4KlyhJSCTkvej6pn1BaIyAEAAAAAAAAIFOQIZT5lP3zzTff2Eb3derUMV9//bV7JLDs2bObLl26mDVr1pi3337bnHvuue4RAKHQc6Z79+5ulNTTTz9tdu7c6UZpg4AQAAAAAAAAgEzhFRBSoAHpT4GgL7/80tSqVcs0aNDAfPvtt+6RwPLkyWM3sdevX28zHIoXL+4eAZBcjz32mClVqpQbJbR3714zaNAgN0obBIQAAAAAAAAAZApKxmW8uEDQJZdcYpo2bWq+++4790hgaoSvjIUNGzaYfv36mUKFCrlHAKRUzpw5zSuvvOJGSQ0bNswcOXLEjVKPgBAAAAAAAACATEHJuIw1ffp0mxGkQNAPP/zgZgMrXLiwGTBggA0EPfnkkyZfvnzuEQBpoVmzZvY56UUl48aMGeNGqUdACAAAAAAAAECmICCUMebOnWvq169vrrzyypAzgkqUKGGb2q9bt8488sgjJnfu3O4RAGnplFNOMc8995wbJTV48GB3lXoEhAAAAAAAAABkCkrGpa9FixaZxo0bm9q1a5sZM2a42cDOP/988+6775rVq1ebe+65h55OQAaoVKmSufTSS90ooe+//94sXLjQjVKHgBAAAAAAAACATEGGUPpYvny5adGihe0TNHnyZDcbWOXKlc3o0aPNzz//bG677TaTNWtW9wiAjHD33Xe7q6Ree+01d5U6BIQAAAAAAAAAZAoCQmlr5cqVpk2bNja48/nnn7vZwJSVMGHCBLNkyRLTqlUrz6wtAOmvdevW5owzznCjhNRHaNu2bW6UcgSEAAAAAAAAAGQKSsaljbVr19qsngsvvNB8/PHH5t9//3WP+KtevbqZOnWqmTdvnrnmmmtsHxMAmSdnzpymXbt2bpTQ0aNHzfDhw90o5QgIAQAAAAAAAMgU//zzj7s6iYBQ6DZt2mQ6duxoypYta0aOHOn5/UxMQaOxY8ea+fPnmwYNGhAIAsJIoLJx48aNc1cpR0AIAAAAAAAAQKY4fvy4uzopW7Zs7gp+tm7dah544AFz7rnnmrfeesvz+5hYyZIlzYgRI8yyZctsfyECQUD4qVixornsssvcKKHvv/8+1WXjCAgBAAAAAAAAyBR///23uzqJDCF/u3btMt27dzdlypQxr776qi0jFcxZZ51lv1b9hdq3b0+PICDMKevPz+TJk91VyhAQAgAAAAAAAJApvDJbCAgltXfvXvPkk0+a0qVLm/79+5vDhw+7R/ydfvrp5tlnnzVr1qwxXbp04fsKRIiWLVuaPHnyuFFCkyZNclcpQ0AIAAAAAAAAQKYgIBTYwYMHzfPPP28DQX369DH79+93j/jLnj276datm1m7dq154oknTO7cud0jACJBzpw5Te3atd0ooSlTpphjx465UfIREAIAAAAAAACQKSgZ500bvkOHDrU9gh5//HGbIRSMSsGp1NTq1attFlGBAgXcIwAiTc2aNd1VQn/++aeZN2+eGyUfASEAAAAAAAAAmYIMoYT+/fdfM2bMGFO+fHnTuXNns3XrVvdIYG3atDG//vqrDSIVK1bMzQKIVLVq1XJXSaWmbBwBIQAAAAAAAACZgoDQSd98842pXr26ad26tVm1apWbDaxp06Zm6dKlZtSoUTabCEB00GuBsv68EBACAAAAAAAAEHEoGWfMDz/8YBo2bGgaNGhgFi1a5GYDU3+R2bNnm4kTJ5rKlSu7WQDRIleuXKZKlSpulNDPP/8cUj8xLwSEAAAAAAAAAGQKrwyhrFmzuqvopiwgZQNdfPHFZurUqW42MAV/lB0wa9Ys36bzAKJDoLJxK1ascFfJQ0AIAAAAAAAAQKZIHBDKli2bOeWUU9woOqkv0D333GMuvPBC2y8oFCoH99FHH5nFixebJk2aRP33CIAxNWvWdFdJLV++3F0lDwEhAAAAAAAAAJkiccm4aC4Xt2/fPtOzZ09zzjnnmDfeeMMzOyqxokWLmjfffNOWiLrpppvM//7Hdi4QKwJlCBEQAgAAAAAAABBREgdFojEgdOTIETNo0CAbCOrbt685dOiQe8Rf/vz5Tf/+/c3q1avN3XffHTNl9ACcdPbZZ5sSJUq4UUI//fSTu0oeAkIAAAAAAAAAMkU0Zwjp3zZixAhTtmxZ8/DDD5tdu3a5R/zlyJHDPPHEE2bt2rWmW7dudgwgdlWpUsVdJaQMoX///deNQkdACAAAAAAAAECmiMYMIW3Sjh8/3lSuXNl06NDBbNy40T0SWPv27c2qVavMs88+a8444ww3CyCWnXXWWe4qoZ07d5pt27a5UegICAEAAAAAAADIFNEWEJo7d66pU6eOufbaa82KFSvcbGCXX365WbRokc0mKlasmJsFAGPOPPNMd5VUSsrGERACAAAAAAAAkCmipWScNmabN29uateubYNCoVBPobFjx5qZM2eaatWquVkAOImAEAAAAAAAAICoEOkZQhs2bLCl3ipVqmQmTJjgZgPLmzevGTRokPn5559NixYtzCmnnOIeAYCEChYs6K6S2rJli7sKHQEhAAAAAAAAAJkicUAoS5Ys7iq8qX/HQw89ZM4//3zz3nvvhdTc/dRTTzVdunQxq1evNl27djXZsmVzjwCAt0AZQrt27XJXoSMgBAAAAAAAACBTJC4Z988//7ir8LR//37z7LPP2nJvL730kjl69Kh7JLBmzZrZ8k6vvvqqKVCggJsFgMACBYR2797trkJHQAgAAAAAAABApkicIZQ4QBQujhw5Yl5++WUbCOrVq5f5888/3SOBVa5c2UybNs2MHz/elCtXzs0CQGgICAEAAAAAAACICuEeEDp27JgZNmyYOe+882yZtx07drhHAitcuLB55513zA8//GCuvPJKNwsAyUNACAAAAAAAAEBUSBwACpeAkErXjRo1ylxwwQXm7rvvNr///rt7JLDs2bObnj17mt9++83cfvvttm8QAKRUjhw5TK5cudwoIQJCAAAAAAAAACJG4gyhzO4h9O+//5ovvvjCVKlSxdx8881mzZo17pHgbrnlFhsI6tOnj8mTJ4+bBYDUKViwoLtKaNeuXe4qdASEAAAAAAAAAGSKo0ePuqsTMitDSIEg9fq59NJLzXXXXWeWL1/uHgmudu3aZuHCheb99983xYsXd7MAkDb+9z/vMI56mx0+fNiNQkNACAAS8XuRlbZt25pmzZrZusGvv/66+frrr826devCtuklAAAAAADh7ODBg+7qhMxYX3/33Xe2z89VV11lAzuhKl26tPnkk0/MrFmzzCWXXOJmASBtHThwwF0lldyycaf8q/A3AOA/gwYNMg8//LAbhSZr1qz2RlBNJs8991z7UbZsWZtiHqj5GwAAAAAAsaxevXpm5syZbmTsulpl1zLCjz/+aPv9TJw40c2E5vTTTze9evUyXbp0MaeddpqbBYD0oT5CygbysmLFCnPhhRe6UXAEhADEnLlz55rBgwebLVu22GaP+fPntzdz27Zts7WB9UKaljWLlS5+0UUX/fdRrVo1U6RIEfcoAAAAAACxq3r16ub77793I2PKlCmTrL49KaGA05NPPmlGjx7tZkJz6qmnmk6dOpnevXtz+BNAhlCfNR1E9/PLL7+YcuXKuVFwBIQAxBSloufNmzdJ08qMVrhw4f+CQ3GBIgWOTjnlFPcVAAAAAABEP51s14ZmnFKlStnS7Olhw4YN5plnnjEjR45Mdmm6Jk2amIEDB5oLLrjAzQBA+tu3b5/dy/SzcuVKc/7557tRcASEAEQdZfco22fTpk1m48aNJnfu3DZSXqJECVtXM1xP8RQsWPC/4FBcsEhl6AgSAQAAAACildbqWr/H0WFJreXT0tatW81zzz1n3nzzTXP06FE3G5oKFSqYF1980TRs2NDNAEDG+f333+3rop9Vq1bZ1hWhIiAEICLppWvHjh02zTvxhxqt1apVyzaDbNCggTn77LPdnzqRZlmsWDGzfft2NxPedAKgatWqCTKJVE/5f//7n/sKAAAAAAAiV4ECBRI0RS9atKj5448/3Ch19uzZYwYMGGBeeeUVc+jQITcbmrPOOss8++yz5vbbb7el4gAgM/z6668BMxNVYlOlNkNFQAhAWFO2z+rVq83SpUttCrkCPop867NSJkV9gC6//HIbANJHxYoVAwZMOnToYEaMGOFGkUeZRPXr1zdXXnmlDXgl50UfAAAAAIBwctpppyXI2ilUqJDN6EkNHRRVEEjBoLi9g1Dp7/Pwww+b7t27237DAJCZFi1aZC655BI3SkolNlVqM1QEhACEDZ3W+emnn2zwJ+5j2bJltu9PYkqFvO6660yjRo1sNpCCQqF64YUXzGOPPeZGkU8v+goO6UOBIt08AwAAAAAQ7o4dO2ayZcvmRifoEKQqgqTEkSNHzNChQ215uJT8N9q2bWv/bMmSJd0MAGSuGTNm2P0+P1u2bLG9ykNFQAhApjh8+LD5/vvvzYIFC2zgZ8mSJbYJmjKC/CgariCQPpQqmdLeOiobN2jQIJtyuX79env6J3/+/Pbkj9LU58+f71uvuHnz5iZHjhz2hNHevXv/+6wP/ZvCgTKk4gJEdevWNXny5HGPAAAAAAAQPrSWzpcvnxudkCtXLpvhkxzKMFIlkD59+th+G8l12WWX2X2CSy+91M0AQHiYMGGC3Y/0o9KYajkRKgJCADKE0r3nzp3738fixYttYCaQLFmy2Ai4AkB64VPvn4ygIM8VV1xhA1WJ6e9es2ZNN0pIN6B6EVat4w0bNtigUtznuOuM7l2k72H16tX/CxDpJjfx6SsAAAAAADKDX7N0ra+zZs3qRv5UaWTYsGFm4MCBKQoEqeKGqoi0bNkyxYdOASA9ffTRRzZ70Y8OqCenchIBIQBpTlk+P//8c4IA0Nq1a92jgeXOnds0adLEBoEaN26crAh3WrrlllvMhx9+6EYnffvtt7ZfUUrpRXrTpk2ewaK4a6XMpxdlC6nM3rXXXmu/z4lPYgEAAAAAkFH8mqXv3LnTFChQwI2S0kHOIUOGmJdeesl+bXKpQsjjjz9uHnjggWRtpAJARnvzzTdNp06d3CghHQRXAD05AW0CQgDSxObNm83UqVPN119/bT8np1avet4oQKEgkDKCVMIts+nv8sUXX7jRSdOnTzf16tVzo7SnYNAvv/xiS+jFfShT6c8//3RfkXb0pqHglr73+qBGMgAAAAAgI/k1S1+9erU555xz3OgkBX9efvllM3jwYBsUSq5TTz3VdOzY0Tz11FPmzDPPdLMAEL569Ohh+vXr50YJqXeQegglBwEhACmiTJfZs2fbAJA+li9f7h4Jzfnnn2+DLvqoUaOG+d///uceyXz79+83Z511lm1GmZj+rVdddZUbZQxlXK1bty5BgEifk/uCH0zlypX/Cw5VrVqVdHkAAAAAQLpSFQ6VbE/shx9+MBdddJEbGVuaXWXh3nrrLVsmLiWaNm1qBgwY4JmRBADh6sYbbzSfffaZGyVUvnx589NPP7lRaAgIAQjZqlWrzPjx421QZNasWZ4Bk0AU+IkLApUrV87Nhp81a9aYc889140S+vLLL20pu3Cwbdu2/4JE+liwYIEtOZcWSpcubeuT6uPCCy90swAAAAAApJ1JkyaZa665xo1O+uabb2wFEa3P+/fvb0aMGGHLIqVEpUqVzIsvvmgaNGjgZgAgcugA97Jly9woobp165qZM2e6UWgICAHwpZcHRZkVhR47dmyys4Dksssus/14FAQqWrSomw1vCnwpg8mLAmLNmjVzo/Cin5d6NU2bNs3ePOtj9+7d7tGU0xuPAkM33XSTKVGihJsFAAAAACB1Ro8ebdeaifXt29f2JlYzdVXNSAmVUtJ/p3379rZUHABEGu31qd+6X2bkDTfcYD799FM3Cg0BIQAJ6CXh+++/twEgBYJUtze5ihcvbm699Vb74RdYCWd+TS1l3LhxNrgVCXTTrPJyCgwpSKQSfyr1lxp16tSxwSGlqxYsWNDNAgAAAACQfG+//ba566673Cht5MiRw3Tr1s1+aCMVACKVymWeffbZbpTU3Xffbd588003Ck34NO0AkGkUBJo7d6554IEHbAaISru98MILyQoG5cqVywaAFHxYv369efbZZyMyGCR///23u0rq+PHj7ir8qS+Tai7rJnjKlClmz549ZsaMGeaJJ55Icd8mBZU6d+5sihQpYtP6FSA7duyYexQAAAAAgNDt2rXLXaUN7Uv89ttv5umnnyYYBCDiqYpRICk5rE1ACIhhCtw888wz5rzzzjO1a9c2r776qvn999/do6GpV6+ereW7detWM3LkSFvjNyWBhnASKB09kgJCiZ122mm2WaeCdfPnz7c33p9//rk9TZDcNxB9H1Tr+frrr7dBRAWZ1q1b5x4FAAAAACC4tAoIaa37ww8/2H2JQKfpASCS/PLLL+7Km0pjJhcBISDGHDhwwN4gKZBTunRp07t3b9ukMTkUQOrTp48NKE2fPt3W442mkzfRkiEUTN68ec21115rU0u3bNlivv76a3PnnXea/Pnzu68IjYKBzz33nClTpoxp2LChrV2a0mafAAAAAIDYsXPnTneVMtqf0EFH7U2oQgYARJNg/dzPOeccdxU6AkJADFDGi0qFKXCjyPFtt91mZs6c6R4NzRlnnGE6duxo5s2bZ1auXGl69uxpSpYs6R6NLoECQoEei2RZsmQxV111lRk2bJgN8Hz11Vf290Q/9+SYOnWqadmypT2R1b1796CprQAAAACA2JXSgJAOMr7yyivmp59+sgcdTznlFPcIAESP9AgInfKvmocAiEq7d+82w4cPN6+//nqKy3kp7bpTp072Bit79uxuNrp9//33pnr16m6UkBpe3nHHHW4U/f766y8b5Bk9erT54osvzP79+90joWvcuLF56KGHzJVXXslNOgAAAADgPzVr1jTfffedGwWXNWtWc//999uy5fny5XOzABB9FLbR69y+ffvcTELaYzt8+LBtEZEcZAgBUUjRY/WFUZZGt27dkh0MUvm3e++91560UWZR69atYyYYJLFSMi4UelO55pprzPvvv2+2b99uxo0bZ9q0aWNy5crlviI4ZRsp+6hy5cq235SCTAAAAAAAJCdD6MYbb7T9NAYOHEgwCEDUU593v2CQFC9ePNnBICEgBEQJBSrGjh1rM3oqVapkS38pSpwcF154oRkyZIjZvHmzGTx4sClfvrx7JLbEYsm4UCgoeN1115lRo0bZnkNDhw61QZ5QKVDZoUMHU6pUKdO3b980ax4KAAAAAIhMoQSEVMFj9uzZ5pNPPklReSQAiEQ6qB9ISl8PCQgBEU6b6v369bMN/W+44Qbz7bffukdCo94x6vminkJ6obnnnntMnjx53KOxST2X/MRahpAf/Y6op9SSJUtsX6lbbrnFZMuWzT0amHoUqQeVTjJ07tzZ9qQCAAAAAMQOlULSodY9e/a4GW+qXqKScrVr13YzABAb0qN/kBAQAiKUNtVVDq5kyZKmR48eZtOmTe6R0BQqVMg89dRTZsOGDWbMmDGmbt269HdxKBkXOv3OXHbZZbak3B9//GH69+9vg5OhUAabsowuuOACW5Yw2MkHAAAAAEDkU1n7Zs2a2UOtwWjP43//Y/sSQOz54Ycf3JU3AkJAjNi4caPp0qWLLbulurkHDx50j4TmvPPOM2+99ZZZv3696d27tylatKh7BHHIEEqZggUL2iDlqlWrzOTJk03z5s1DunHXyTAFJStWrGhatWpFYAgAAAAAotDRo0fN888/b8vTT5o0yc0CABLTXtmcOXPcyBsBISDKrVmzxtx1113m3HPPtf19ktuYv0aNGjYdWw0Y9d9RPxh4o4dQ6igIdPXVV5svvvjCnvxSebjChQu7RwNTTWgFhlTGMFhqLAAAAAAgMqi8fZUqVczjjz+e7H7HABBrVNFJPd4DISAERCkFcNq1a2fOP/988/bbb5tjx465R0JzzTXXmFmzZtmauy1atDCnnnqqewR+KBmXdkqUKGH69OljM9tGjhxpypUr5x4J7NNPPzWVKlUiMAQAAAAAEWz79u2mffv25oorrrD7GwCA4IJlB0moLRsSIyAEhCn1BOrQoYNNpf7ggw8CljFLLGvWrOa2226zpbcmTJhg6tSpQ3+gZKBkXNrT7+Stt95qfyeVBaSTYaGICwyplJyy5AAAAAAA4U/rapWr16HA9957z80CAEIRLCBUunRpkzdvXjdKHgJCQJjZu3eveeyxx2xG0IgRI2zNyFBly5bN9hdau3ateffdd20wCclHybj0owy1G2+80SxevNjWjK5Zs6Z7JDAFkS644ALz0EMPmd27d7tZAAAAAEC4+fHHH03t2rVNx44dzZ49e9xscKeddprJlSuXGwFA7AoWEAp1P80LASEgTKgn0EsvvWTrP77wwgvmyJEj7pHgsmTJYm+0Vq9ebV599VVz9tlnu0eQEpSMS3/KWGvSpIl9g5sxY4Zp0KCBe8SfyiXqOaI+Wvqc3D5aAAAAAID0c+jQIdOtWzdTrVo1W7Y+VGeccYbp0aOHWb9+vSlSpIibBYDYpIPQK1ascCNvl112mbtKPgJCQCZTGvWoUaNsGnVysx+UbaGycr/99psZOnSoKV68uHsEqUHJuIyjwJBqSU+dOtUsWLDANG/e3D3iTyfM9Fy58MILbUm55GTRAQAAAADSnnoXV65c2QwcODDkyhpFixY1AwYMsD1nn3vuOVOoUCHzxx9/uEcBIDbNmzfPXfkjQwiIUHqCV69e3dx88832JEyotImuP6OGjMOHD7d1I5F2yBDKHHoufPHFF2bZsmXmpptuCtr3SqURW7ZsaWrVqpWs02cAAAAAgLSxf/9+c99995m6devaqiWhKFmypHn77bftmu6RRx4xp59+up1XCf3Dhw/bawCIVcHKxam0ZsWKFd0o+QgIAZlg165d5q677rIb2T/88IObDY02wNWY/4MPPjDnnXeem0VaChQQChakQOrpTe2jjz6ydadVVi4YBYN0MuKOO+4wO3fudLMAAAAAgPSkSg9avw0ZMsTNBKYG6Mog+vXXX+36TT2D4iM7CACMmTt3rrvydskll9j2ISlFQAjIQCpFpoyesmXL2tMwyXHllVeaJUuWmDFjxthSWUg/gUrG/e9/vGxmFC0sJk2aZKZPn24uvvhiN+tPzy2VXnz33XcpIwcAAAAA6USZPAroNGzY0GzYsMHN+suWLZvNBFqzZo15+OGHTfbs2d0jCREQAhDr1FN+4cKFbuQtNeXihJ1NIIOoDFadOnXsTZMyhEKlLKDx48fbkzdVqlRxs0hPgTKECAhlvHr16tn+Qh9//LEpU6aMm/Wm59btt99uyxUEa8AHAAAAAEieCRMmmPLly9sDeaFQufuVK1faXkH58+d3s94ICAGIdaokdfToUTfydtlll7mrlGFnE0hnqqerEzAXXXRRSE3B4pxxxhlm0KBBtjxcs2bNKFWWgSgZF34UiGvdurXtm/XKK6+YggULuke8zZ492wZQe/ToYQ4dOuRmAQAAAAApofLcCu40b97cbN682c36q1+/vt3YVLn7UqVKudnACAgBiHXB+gfJpZde6q5ShoAQkI6U1aPybgrsBAoyxKeN73vuucc2Y+zatatNrUbGomRc+NLz4f7777fPj8cff9zkyJHDPZLU8ePHTb9+/ezpNZWeAwAAAAAkj8pxf/LJJ3ZvY9SoUW7Wn0p/f/XVV2batGn2YGxyEBACEOuCBYTOP//8oIekg2FnE0gHBw8etEEd1dP9/fff3WxwV111lW2kr4aMqX1yI30QEAoPyqDr27evWbVqlbnzzjsD/lzWr19vrrnmGtOhQwezb98+NwsAAAAACGTr1q3mxhtvNK1atTI7duxws96KFCli+7mq93GjRo1SVF2DgBCAWHbs2DFb8SaQ1PYPEnY2gTQ2d+5cU7lyZfPGG2+4meDOOeccM3HiRDNlyhRToUIFN4vMEujGlYBQeClWrJgZNmyYDaSq11AgI0aMMJUqVTLTp093MwAAAACAxJQV9N5779msoLFjx7pZb1o/60Csynvfdttt5tRTT3WPJN/27dvdFQDEHgWDgh1kTm3/IGFnE0gjR44cMY8++qipU6eOWbNmjZsNTDdK3bt3N8uXLzdNmzalP02YICAUeRRI/eabb8zo0aPN2Wef7WaT2rhxo7nyyivNAw88QG8hAAAAAEhk06ZNdn+iffv2Zs+ePW7WmwJGKm+kKieq4pBa6sEMALFqwoQJ7sofASEgTCxevNhcfPHFZsCAAfYkTSguueQS22BRPU4C9UFBxiMgFJn0c1Mpg19//dX2FwrUf+vVV181VatWNQsWLHAzAAAAABC7tJfx1ltv2R6s6gEUiNZaTz/9tN0LSYvyRXEICAGIVXoNDhYQypMnjw3EpxY7m0Aq/PPPP6Z///6mRo0aZsWKFW42sFy5cpmXXnrJfPfdd7a0HMIPAaHIpueY+gsFC/b89ttvdvHSs2dPc/ToUTcLAAAAALFl7dq1pkGDBqZjx45BgzK1a9c2S5cuNU8++aQ57bTT3Gza+PPPP90VAMQWld0MVnFKr9OpKcsZh51NIIV2795trr32Wlvy7fjx4242sMaNG9vA0YMPPpgmT2CkDwJC0SFYeQNRUFfBo1q1apl169a5WQAAAACIfloPqXpCxYoVg/ZaPf30083QoUPNt99+ay644AI3m3Z0Ov7AgQNuBACxJZRycdddd527Sh12NoEUWLhwoS03NXHiRDcT2JlnnmlGjRplJk2aZEqWLOlmEa4CBYQCPYbw8tlnn7mr4BYtWmQuuugi88UXX7gZAAAAAIheK1euNJdffnlI/VWvv/56e3pdGUTpdUhSfwcFqAAgFgULCCmxQP3d0gIBISAZdGJFp2eUIq3m9KFQTxPdOLVp04ZgQoQgQyjyaTHxwQcfuFFo9u7da09bPPLII+bYsWNuFgAAAACih/Y1Bg8ebKpUqWLmzp3rZr0VLlzYjBs3zh62K1q0qJtNH/QPAhCrdu7caVuLBKIAfoECBdwoddjZBEK0b98+07JlS3t6JpTN4ty5c5sRI0aYjz/+OM2esMgYBIQi30cffWSfsynx4osvmrp165pNmza5GQAAAACIfFu3bjVNmjQxXbp0MUeOHHGz3nRYbvny5WlWoigYAkIAYtWXX34ZNEMyLV+L2dkEQrBs2TJz8cUXh1yCqkaNGrbJYvv27ckKikAEhCLbrl27TI8ePdwoZXQyQ2Uhv/rqKzcDAAAAAJFL5bHVK2jy5MluxlvOnDnNsGHDzNixY03BggXdbPr7888/3RUAxJZQ+gepj31aYWcTCGL8+PGmZs2aZvXq1W7Gn4IFPXv2NLNnzzbnnHOOm0WkISAU2R5++GGzY8cON0pImXuhUmBJp+f0nKaWNQAAAIBIdODAAXPXXXfZ0+UqSxRI9erV7eHWO++8M8MPt5IhBCAW/fXXX0ED9TqwnJY96dnZBHyoru7AgQPtTdPBgwfdrL8SJUqYmTNnmj59+pisWbO6WUQiAkKR66WXXjIjR450o6QWLlxo2rZt60ah6du3r22iqoUUAAAAAEQKrX+0kfj222+7GW9a5/bq1cvMmTPHnHfeeW42YxEQAhCLvv3226D7TWldupOdTcDD0aNH7YmYbt262cBQMDfddJP58ccfTZ06ddwMIhkBocj0/vvvm4ceesiNkjrjjDNMuXLlzIcffmh7DOXNm9c9EpzKK9SuXdts3LjRzQAAAABAeDp+/Lg9rBpKtZPSpUubWbNmmWeeeSZTD7cSEAIQi0IpF0dACEhnKhPVsGFDM3z4cDfjL3v27Obdd981o0aNStbmMsIbAaHI8vfff9vTbLfeequb8VahQoX/frYK4qo3WP369e04FAr6qoSC+gsBAAAAQDhau3atufzyy82TTz5p10qBaA2lEnG1atVyM5mHHkIAYo2SEIIFhBS0V/+3tMTOJhDPr7/+amrUqGHT9YIpXry4mTt3rrntttsyvLYu0legnyc/6/CyZ88e06xZM/Pss8+6GX8NGjRwVyfoOfz111+bp556KuSf67Zt20y9evVslhEAAAAAhAttLI4YMcJUrlw56CE2HWgdPXq0Lbd9+umnu9nMRYYQgFizaNEis2HDBjfy1qJFizTfiyQgBDgKAl166aVmzZo1bsZf3bp17ZP2oosucjOIJoFeaMkQCg9a7IwfP95Uq1bNfPXVV242sEaNGrmrk0499VTTu3dv28CvQIECbjYwNfy75ZZbTM+ePc0///zjZgEAAAAgc6jSSatWrUyHDh2C9qLQIVhlBenrwwkBIQCxRq0PgknrcnHCzibw/5Sep83iffv2uRl/999/v5k6dao566yz3AyiDQGh8PbTTz/Zso7XXnutWbdunZsNLF++fOaSSy5xo6T031uyZIkNCoeqb9++pnXr1ubIkSNuBgAAAAAylvYnKlWqZD799FM34+/BBx+0/YJKlizpZsIHASEAseTYsWO2v3UgBQsWtL3g0ho7m4h5H3zwgU2/C7ape9ppp9n061deeSVTGy0i/REQCk869XbvvffaEgjTpk1zs6G56qqrbDZQICohp0xBLZJCpUVXkyZNqHcNAAAAIENpD6Nr1672cNvmzZvdrDeVhfvss8/MSy+9ZLJly+ZmwwsBIQCxRJVqdu7c6Ube1CIh2F5WSrCziZg2ePBg065du6CNFs8++2wze/Zs0759ezeDaEZAKLyo5EGfPn1MmTJlzOuvv56iMm1qlhoKLY60SPrkk09Mnjx53GxgM2bMMPXr1zc7duxwMwAAAACQfpYvX26qV69uXn75ZTfjr2rVqmbx4sXm+uuvdzPhiUN2AGJJKOXi1K4gPbCziZik/iPPPPOM6dKli5vxV6dOHdsvKFC5KUQXAkLhRemxTz75ZIoXCBUrVrRZPMlx44032ue9/mwofvjhB/tasXHjRjcDAAAAAGlLh+N0gO3iiy+2QaFgOnXqZObNm2fOOeccNxO+yBACECv27t1r+2IHokPRV1xxhRulLXY2EXN0A6W0ajWSD+amm26ypakKFSrkZhALCAiFD2UHqWdQajz22GMBf6Z+zj//fDN//nzTtm1bNxPYypUrTa1atcyvv/7qZgAAAAAgbfzxxx+2PNxDDz1kjh496ma95cqVy3z44YfmjTfeMNmzZ3ez4Y2AEIBYoao0f/31lxt5u+OOO9JtD5KdTcQUBYPuvPNO2wcomPvvv9/eQIVrfV2kHwJC4UPBIGX0pVTZsmVNq1at3Cj5cubMafuMPfXUU24msN9//93Url3bZhcBAAAAQFpQ71JVL/jmm2/cjL/y5cvb9UioB9vCRbDNUQCIFu+995678qa+QbfddpsbpT12NhEzFAzq2LGjeffdd92Mv+eff97W4mXzPzYFCgilJNMEKTdr1ix3lXxZs2a1Qd0sWbK4mZTRz1wZhQoMhRIg3rVrl6lXr56ZOXOmmwEAAACA5Dt06JA9Jd6yZUuzZ88eN+tPG4gLFy405cqVczORIzUHAQEgUqxbt87MmTPHjbw1bdrUFC1a1I3SHrvdiAm6sVC/oLffftvNeFME9p133klxiSlEBzKEwodKNqZU3759TbVq1dwo9W6++Wb79ylQoICb8adSd3oDT01ACwAAAEDs+uWXX0z16tXN8OHD3Yw/lYXT1+kArKocAADCkw4bB6PqVumJnU1EPQWDVGP39ddfdzPedAM1btw4c/vtt7sZxCoCQuHhyJEjQU9N+Ln11lvNww8/7EZpp06dOravkPoLBaPTfE2aNDFz5851MwAAAAAQnDYML7nkErNixQo3409rkwULFpgOHTq4mchEhhCAaKfXuWDl4pQZ1LhxYzdKH+xsIqrpiaZsH5V/CyRfvny2Fm+zZs3cDGIZAaHw8N1335nDhw+7UeiUDaiTcen1szr33HPt361u3bpuxt/BgwftG7mCSAAAAAAQiNY/d999t2nXrp1dSwRz00032X5BlSpVcjMAgHCl4P3q1avdyJuC+6ltfRAMO5uIaur70b9/fzfyVqxYMTN79mxTs2ZNN4NYR0AoPEydOtVdha5Xr17mlVdeSfefU/78+c3XX39tM5GC2b9/v7n66qvtQg0AAAAAvPz222/m0ksvNcOGDXMz/tTbdMiQIWbUqFEmT548bjaykSEEINq9//777spfRlSuYmcTUUv9Q/r06eNG3hQM+vbbb0358uXdDEBAKBz8888/5uOPP3aj4HLnzm1rZj/zzDMBf35pSYuwESNGmKeeesrN+Pvzzz/NVVddZZYsWeJmAAAAAOAErX3U/3TZsmVuxl+pUqVsWep77rknw9Y+AIDU+euvv4LuczVo0MCUKVPGjdIPO5uISm+99Zbp2bOnG3krVKiQLRN3zjnnuBngBAJCmU9Ze+vWrXOjwNTXRwunzKiZrd8VZSIOGjTIzfjbu3evfXMPZZEHAAAAIPqpb2rnzp1NmzZtzIEDB9ysv+bNm5vFixebiy++2M1EDzKEAESzMWPGmN27d7uRtzvvvNNdpS92NhF1Jk6caG+oAilYsKANBpUtW9bNACcREMp8I0eOdFf+lKEzYMAAM2PGDFO6dGk3mzm6du1q3njjDTfypzd/BYXWrFnjZgAAAADEIvWRUOn6oUOHuhl/p556ql37fP7557YHMgAgsrz22mvuyluBAgXMdddd50bpi51NRJXvv//etG7d2pab8qObp2nTplEmDr4CBYRIyU9/OhmnkxOBFC9e3MyfP9888sgjdnEUDjp16mQDWcGChjt27DCNGjWynwEAAADEnk8//dSWiAulpHRcqXutfaJ5PUqGEIBotWDBArtnHYh6VJ922mlulL4ICCFq6MR906ZNzaFDh9xMUqeffrptBF+5cmU3AyRFhlDmGjt2rDl48KAbJXXJJZfYN9OqVau6mfChN3DVhM2SJYub8abTgNdcc03AfycAAACA6KIeEl26dDEtW7a0fUaDietDWqtWLTcDAIg0gwcPdlf+7rjjDneV/tjZRFTQSfvGjRsHPHGvpvOTJ0+Oylq7SFsEhDJXoHJx6hekco9FihRxM+FHi7tx48YFPdmxcOFCc9NNN5njx4+7GQAAAADRSj1Sa9euHdLGoNakTz31lPnqq6/MmWee6WajGxlCAKLRtm3bzOjRo93I29VXX52hlazY2UTEU0aQGiuuWrXKzSSVM2dOM2nSJHPZZZe5GcAfAaHMs2HDBjN9+nQ3Sujyyy83X375pcmTJ4+bCV/K/lE/M732BKKvueeee1j8AAAAAFFMB8ZU4WDRokVuxp8CQKps0rt377Apjw0ASJm33nrLHDt2zI28de/e3V1lDHY2EdHUK+iWW26xvUT8qHSTbr60mQyEgoBQ5vE7LVe3bl0b1FWmX6Ro0KCBmTJlStAA1rBhw8yzzz7rRgAAAACixdGjR03Xrl3N9ddfb/bt2+dm/SmDSCXitJaINRySAxBtFAgaOnSoG3lTJasrrrjCjTIGO5uIaH369LHBnkBef/1107BhQzcCgiMglDk2b97sGRCqVKmSzaSJpGBQHC3oFMjKnj27m/H25JNPmuHDh7sRAAAAgEin6gc6mPryyy+7mcAeffRRWy2hWLFibia2EBACEG20Z629rkCUHRRoHzI9sLOJiDV+/HhbUzeQbt26mbvuusuNgNAQEMocffv2NUeOHHGjE1QuQc/1SAwGxVHfo08//dRmKwbSsWNHM2vWLDcCAAAAEKkmTJhgS8QtWLDAzfjLmzev+eKLL8wLL7xgsmbN6mYBAJHutddec1fezj33XNOiRQs3yjjsbCIi/frrr7ZUXCDXXXed6devnxsBoSMglPHWr19vS6fFp8XQ2LFjTcmSJd1M5GratKkZMWKEG3k7fvy4ufHGG82mTZvcDAAAAIBIovJAOpiqPsd79uxxs/5UKmjx4sX262MdGUIAosnSpUvNnDlz3MjbI488kim94tjZRMRR3d1rr73W7N+/380kddFFF5kPPviAzXukOX6n0sczzzyTpMneG2+8YUuuRYubb7456OmQHTt22NMhhw8fdjMAAAAAIsGWLVtMvXr1zMCBA92MPx1CVIm4uXPnmtKlS7tZAEC0CLb/c9ZZZ5n27du7UcZiZxMR5Z9//rGZQb/99pubSUr1dpWenStXLjcDJE+gDKGMrusZC1auXGlGjhzpRic88MAD5o477nCj6HHfffeZp59+2o28/fDDD6ZTp06ckAMAAAAixPz58021atVsgCeYokWLmmnTptkScdmyZXOzYP0DIFrs2rXLjBo1yo28ad8rWL/p9EJACBFFPYPUXN6PgkB6XDdYQEpRMi5j9e7d2wZ741x11VUhnaqLVL169TL333+/G3l77733gp4mAQAAAJD53nnnHVO3bl2bIRSMqgEsW7bM1K9f380AAKKN3hcS98iOT32yO3fu7EYZj51NRAw1lu/Tp48bJaWN+o8//thUqVLFzQApQ0Ao4/z4449m9OjRbmTM+eefb8dZsmRxM9FHv18vvfSSadeunZvx9tBDD5kZM2a4EQAAAIBwcvToUXPvvfeaO++8014HkjNnTtsz9bPPPjMFChRws4iPDCEA0eCvv/4yr776qht5u/vuu02+fPncKOOxs4mI8Pvvv5sOHTq4kbfnnnvOXHPNNW4EpBwBoYyjbJk4yvD74osvMvVNMaPo90gnRpo1a+Zmkvr7779Nq1atzIYNG9wMAAAAgHCwbds206BBA/P666+7GX8qJbdkyRIbOKIEOQBEN1V8+eOPP9woqaxZs5quXbu6UeZgZxNhT5ui6hu0e/duN5NUo0aNTLdu3dwISB0CQhljwYIFtt9XHGXNlCtXzo2in24CVFO2UqVKbiapnTt3mhtvvDHoiUMAAAAAGeP77783F198sZk9e7ab8aZ15WOPPWbmzZtnKyEgMDKEAES648ePm379+rmRt5tvvtmcffbZbpQ52NlE2Ovbt6/59ttv3SipIkWK2OgrG/VIK4ECQpzoShsK9Hbp0sWNjGnatKk9MRdrVDdWWVEFCxZ0M0ktWrQoQSYVAAAAgMwxcuRIU6dOHVvFJJBixYqZb775xjz//PMmW7ZsbhYAEM3UAmHt2rVu5C0cEhrYQUdYmzNnjnn66afdKCltzn/44YfmzDPPdDNA6gUK+px66qnuCqmheqo6WSeqof3222/HbLCtVKlStpZ4oL5J/fv3N1OnTnUjAAAAABnp2LFj5oEHHjC33Xab7Q8RiE5/L1u2zNSrV8/NIBRkCAGIZP/8849tZxLIddddZy688EI3yjwEhBC2VCKubdu29gnl58knn+QmC2kuUGCCTLTUW7dunenZs6cbGfPmm2+awoULu1Fsuvzyy82QIUPcyNutt95qtm/f7kYAAAAAMsKOHTtMw4YNgzYJL1q0qBk/frz54IMPTP78+d0sACAWqPrLzz//7EZJaa+xT58+bpS52NlEWNLJkLvuusts2rTJzSRVt25dyighXRAQSj96bnfs2NEcOnTIjtu1a2duuOEGex3r7r77bnPvvfe6UVJbt241HTp04OQcAAAAkEGWLFli+wXNnDnTzXi7/fbbzYoVK0yzZs3cDJKLdQ6ASKXXr2effdaNvKk/foUKFdwoc7GzibD01ltvmbFjx7pRUuq3oVJxlO9CeiAglH7U7yuu9Fnx4sXNa6+9Zq9xwksvvRQw6/HLL78MejIRAAAAQOqNGjXK1KpVy2zcuNHNJKVMoMmTJ5t33nnH5M2b180iJQgIAYhUU6ZMMYsXL3ajpLJmzRqwJUpGY2cTYUflpB5++GE38qZGjmrSCKQHAkLpY9u2baZr165uZMyIESPMGWec4UYQ3SR88sknpnTp0m4mqUcffdSeVAQAAACQ9o4fP24eeeQR2wvo8OHDbtbbvn37TL58+dwIABCL+vbt6668qSJMoH2ejMbOJsKKToTceeed5uDBg24mKQWLmjRp4kZA2iMglD4efPBBs2fPHnuthqz169e310ioQIECtvZ47ty53UxCR48eNW3atPmv7B4AAACAtLFr1y7TuHFj8+KLL7qZwP7++28bODpw4ICbQUqRIQQgEs2aNcvMmTPHjZLKkSOHeeKJJ9woPLCzibCiUnHTp093o6TKli0btCYjkFoEhNLexIkTzccff2yvS5UqZZ577jl7DW+qK6uyE35Wrlxpevfu7UYAAAAAUuvHH380l1xyiZk2bZqbCc3q1avNQw895EYAgFgSLDtIB6KLFCniRuGBnU2EjQ0bNti0bD/apB8+fLjJnj27mwHSR6CgDwGh5Pvzzz9N586d3cjYvkE5c+Z0I/hp1aqVbU7rZ9CgQWbhwoVuBAAAACClxowZY2rWrGlL2KfEsGHDzOeff+5GAIBY8P3335uvv/7ajZJSbzmV/Q837GwiLCg1+K677gqYZt2lSxd7gwakt1NPPdVdJUVAKPkee+wx8/vvv9vr6667zlxzzTX2GsG98sor5rzzznOjhP755x8bMPrrr7/cDAAAAIDkUMk3rVdat26d6pLMKn+/ZcsWN0JyqZ8qAESSYNVvFAwKxz5z7GwiLCjzZ+rUqW6UlEpMBUvBA9IKGUJpZ8KECeaNN96w18oKUoADoVMfoY8++sh3cbRixQpeGwEAAIAUUH/Tpk2bmhdeeMHNpI76D+nAFr1wUua0005zVwAQ/pYsWRIwM7RQoULm/vvvd6Pwws4mMp0yB4LV29WNQUpTt4HkIiCUNjZt2mRuu+02NzLmqaeeMiVKlHAjhKpatWoBT508//zztt45AAAAgNCsWrXK1KhRw0yZMsXNJKXHtYZJjsmTJ5shQ4a4EZKDgBCASKLs0kB69eplcuXK5UbhhZ1NZLp7773X9hgJRA3UL774YvPSSy/ZMklAeiIglHrHjx83bdu2Nbt377bjChUqmAcffNBeI/kUNG/QoIEbJaTvtU4i6jMAAACAwL799ltz6aWX2qCQn6uvvtp88803pnfv3slex3Tr1s38/PPPboRQERACECmmT58esHdQ6dKlbWuUcMXOJjLVxIkTzfjx490osKNHj9pN0UaNGpnNmze7WSDt0UMo9Z5++mkzZ84cNzK2bBw1oVNOv3fvvfeeKViwoJtJaPHixWbgwIFuBAAAAMCL7qmvuuqq/w6uedHBNu1TxJ3sfvHFF03Lli3tdSiOHDlibr75Znp9JhMBIQCRQGVBg2UHaU8sW7ZsbhR+2NlEpjl8+HCKaimq11DFihXNZ5995maAtEWGUOroJF38vjYdOnQwtWvXdiOkVJEiRcy7777rRkmpnMXq1avdCAAAAEAcVRpR+Z727dubY8eOudmkHnjgAfP+++8n2MiLO5x1+eWXu5ngli5dav9/CB0BIQCRYOzYseb77793o6TKly9vDxaEM3Y2kWn69++f4r5AOs1z44032jJJ+/fvd7NA2iAglHLbtm0zt9xyy3+NVPPnz2+f60gb11xzjbnvvvvcKCGdQOzatasbAQAAABBl7Ghz7tlnn3Uz3tS3U2XqvdZ82bNnt83DL7jgAjcTnDL4Z8yY4UYIhoAQgHCnUv1PPPGEG3nT+0igykPhgJ1NZIq1a9faRuippdPyVatWNfPnz3czQOpRMi5ldOru1ltvNVu3bnUzxmYK+ZU5Q8q88MILth6tF5Xh/PLLL90IAAAAiG3bt2839evXN6NHj3YzSWmNN2zYMNOjRw9zyimnuNmk8uXLZyZPnmwz90OhQ3JaH+3Zs8fNIBACQgDCnfah1efez7XXXmvLkoY7djaRKZSGnbierm7C2rVrZ2+ykmPNmjW2HJXKJcVqU3VlWn3yySdm5MiR/2VmhEI/g9mzZ7sR4gQK+hAQ8jdgwIAETfUqVKhg7rzzTjdCWsmZM6ftyeRHTW+pVw4AAIBY9/PPP5tLL73UfPfdd24mKQUhVI4+1HVLiRIlzFdffWXy5MnjZgL7/fffTefOnZO1To9VBIQAhLNDhw7ZvWc/KjWqnnORgJ1NZLgJEybYU+yJqZav6vIqu0ANHGvUqOEeCe7vv/+2DbsUGIqVHhq6odTpJJ12KlOmjGnVqpW57bbbbBm9QDWR43v55ZdN3bp1zeuvv+5mIIGCPuGe9plZtMhKnDY7aNAgkyVLFjdCWrr66qtNmzZt3CihVatW2ec2AAAAEKumTZtmatasGbBM/emnn26mTJlirrvuOjcTmsqVK5uPP/445MOCyk768MMP3Qh+CAgBCGevvfaa2bx5sxsl9cgjj5hzzjnHjcIbASFkqMOHD9vsoMQURY2Lsuq6WbNmZt68eTbjpXDhwnY+FAsWLDBVqlQxw4cPj+oTOFOnTrX/zsaNGyepSTxixAjTp08fNwpMWQb6Pt17773mnXfecbMgQyh5VALhpptusoHZOOp1EwlpspFMdWnz5s3rRgnpNSDQjQoAAAAQrVT+rVGjRmbfvn1uJqlChQqZWbNm2QOSKdGkSRN7Px4qrbnXr1/vRvBCQAhAuNK+V79+/dwoqaJFi9qyo5GCnU1kKN0weZ3QUQq1Uq/j08a76u3+9ttvpnv37jZQFIqDBw+aO+64w9x4441m165dbjZ6fPHFF6Zp06Zm2bJlbiYpNcNctGiRG3nbtGmT2bBhgxsZ26hevZ1AD6HkUEBRz7eNGze6GWOzgtRAFelLi9j+/fu7UUJ6HXz00UfdCAAAAIh+6mnarVs3c/fddyc4rJaYTnDrAKoyfVKjS5cudi8jFH/++afd3wj094p1oe75AEBGUzBo7969bpSU9mZy587tRuGPnU1kmB07dnhGU3PlymUef/xxN0pKtXn1577//ntz5plnutngxo4daypWrGizaaKFgkEtW7b8rySc3wka3WSqfFygLKnEvYOOHDkSUdHs9ESGUOhUbnDcuHFudIJOv5UtW9aNkJ4UjFOpTC8qSzF37lw3AgAAAKKXDkTdcMMNQQ+mVa1a1d4jq+x6ap1yyinmlVdeCbkygtbgfge6QIYQgPCkXnCvvvqqGyWl8qRt27Z1o8jAziYyzLPPPmv279/vRic99NBD5qyzznIjf5UqVbLl0ZITFNqyZYtp2LCh6dq1qw14RDL1BYkfDFK9Y6W4+6Wpr1ixImDJqDlz5rirkxRw8voZxRoCQqFZunSpff7Glz9/fvPkk0+6EdKbfh/feustkzVrVjeT0P33329PSgIAAADRSutelX77/PPP3Yy3evXqmZkzZ9pM+7Si+/AxY8aYcuXKuZnAtFYKVs0jVhEQAhCO1LPeb09ZBwMULNLnSMLOJjLEmjVrbL+axPLly2cefvhhNwqufPnyyQ4KiRqsV69e3SxfvtzNRB6ddIoLBkmnTp3sv0kbvvq+ePnpp5/cVVLxS3zF+euvv8z8+fPdKHZRMi64AwcOmNatW5ujR4+6mRPUC0xBIWScCy64wDz22GNulNDixYvNJ5984kYAgJRQD0wAQHj68ccfTY0aNcwPP/zgZrxdf/315ssvv7QHK9Oa+npOnDjRFChQwM34O378uLn55pttRhMSIiAEINzoPUZ96v3cfvvtplq1am4UOdjZRIZ44oknEgQz4jz44IPmjDPOcKPQxAWFChYs6GZCo2DQxRdfbDNqIu3E/NatW83IkSPd6ERQ4p577vnv2i8SrbRGP36ZQNu3b3dXsStQ0IeA0Im+QQpIqr9XfDoVp3lkPJXdPO+889wooV69enm+/gIAQqO+lNddd53t/wAACB+TJk2y5ZMDrXtFPYWUxZM9e3Y3k/bUl0hl6/0y9+PTOuqRRx5xI8QhIAQgnGjv64EHHvDdQ9YBA/Vwj0TsbCLdqffP6NGj3egkPXGU3ZISCgqpVm9yKZtBJa4aN25stm3b5mbD32uvvWazd+I0b97clCxZ0l7v2rXLNxPo/PPPd1dJ+W1q7Ny5013FrkBBn0hLA00P6huk/jSJDRo0KKQFENKeFreDBw92o4RUbnLEiBFuBABIjoULF9oT5Sqr26BBA7N79273CAAgM2mNrHWxKhcEogoGQ4cODVgFIq1cfvnltpxzKPR3UlYRTiIgBCCcqNrKt99+60ZJ9e7dO6QWKOGIgBDSlaKpjz76qBslpCirUqtTqk2bNqZWrVpulDxff/21qVy5sv0cCbQREUcZVX379nWjE40p/VSoUMFdJeWXIZQrVy53Fbv8AkIKBsV6QGjevHk2sy+xq6++2gZakXnUL02blV5U85aSRwCQfHr9jKNDTh06dHAjAEBmUMm1Ll26BO2VqTWdgi7asMvINdxtt93mW845MZUaiqSDqumNgBCAcHHo0KGAmZxly5Y19913nxtFHgJCSFdfffWVbdqYWO7cuT03lZNDN3XKEkrpzZ1uvLSJ3b179yR9UMKJMoPiMoCyZctmG2VeeOGFdizTp093VwlVqlTJ9mjy45chFIm1L9Oa3+mxWC8Xp+dMy5Yt7SIsPn2/XnzxRTdCZnrhhRfcVUJ//PGHzewCAIQuLjsovvHjx5vJkye7EQAgI+lQ47XXXuubGR9HgYXPPvvMdOzY0c1kLB3gbNGihRv527Fjh7njjjvsQVoQEAIQPrS3smnTJjdKSr3qtUcbqQgIId3opkZ9LbwoipoWjecVvNCpmtTo37+/qVOnjlm7dq2bCS9ZsmSxmw/vvfeeWbZsmbniiivcIyco6OZFJ5MC8coQ0ouZyvHFOr8gYywHhBQEat26tdm8ebObOUkLLX5vwsNFF11k2rZt60YJPf/88/S/AIBkeOaZZ9xVQn369HFXAICMogNO6heUOFCfmKqQTJs2zfZ+yyxaN77//vv23jwY9UFSJhMICAEID+vXr7d7xX50ULpRo0ZuFJkICCHdqB7ujz/+6EYn5cyZ0/bxSStq4JXa5pA6AVqlShXz0UcfuZnwoewLleJq166dTUmMb/Xq1fYjMQWRbrnlFjdKSg3mjxw54kYnVaxYMaIj3GlFASGvoFAsB4R69OjhWTtVJQzjl9NB5nv22Wc9ezmp3xiZXAAQGpWH0yadF5VPDdbAHACQdn799VdTs2ZNe0AykGLFitmS6gocZTaVYtfBzqJFi7oZfw8//LD9N8Y6AkIAwoFKxXntmYoOHbz66qtuFLkICCFdKDtIm5Je7rnnHnPmmWe6UeqpgVfTpk3dKOWUMaOT9co4OnjwoJsNb34lS5o1axbwe7xnzx53lVCTJk3cVXC//fabeffdd90o+ngFf2I1IPTpp5+agQMHulFCTz75pClYsKAbJY9KNer1QMFLLZb+/vtv9whSo3Tp0vb76mXQoEG2NAUAIDC9vwUybtw4dwUASE/z58+3vYM3btzoZrxdcMEF5rvvvgvYRzejKUCldU6OHDncjDf1+rz55pvDupR9RiAgBCCzqS2HSo76GTBggClcuLAbRS4CQkgXU6dOtVk3iSmTR6df0tpNN93krlJPQQ6Volu6dKmbCV9+AaH27du7K2/KFEhMmUh33323GwW2c+dOW5JOwbMPP/zQzUYXrz5CsRgQ+uWXX3wbaJ977rkpbqKn38GGDRuaN954w/4OqRa4MuCUWYjU69mzp8mTJ48bnXTgwAFb6xYA4G/OnDlB+wRFwn0iAEQ6ZWrWr1/f7N692814U/aQXruLFy/uZsKH9hZUPi6YxYsXm969e7tRbCIgBCAzqVXCAw884EZJ1a1b1/Z9iwYEhJAu/LKD1GskPSKp11xzjXnzzTfNXXfdlSYnglauXGlq1Khh0wDDtcGj0hcVuU4sd+7c5uqrr3Yjb1431NqQP/vss93opG3btplbb73V3HnnnbYOs05eFSlSxJ6+EgWFfv75Z3sdTcgQOpE1d/3119sgghdlDaWkxKBO91122WVJStCtWbPGNG/e3AwZMsTNBDZs2DCzYMECN0J8ytrq3r27GyWk7y+9hADAX69evdyVv2i89wGAcKKDmlqjKnsmEK0f1DMoLXoUp5cbbrjBPPHEE27kT03MZ8yY4Uaxh4AQgMykfm4//fSTGyWk16e33nrLt+d4pCEghDQ3a9YsW7c3MT15Hn30UTdKW8o8UnaLnpzLly+3dd2HDx9uWrVqZes7poTStRUZ1k2oMmLCjVLnvW6O1W8oWE8lrwwhvxJThQoVsqXk3nnnHfPFF1/Y2saKmsfR96lv375uFD1iPSCkQKiCfX61rHVST4uv5Fq7dq25/PLLzapVq9xMQvr/qseYgrKB/PXXXzbbUPXB3377bTeL+B588EEbvE1s3759NK4FAB86bDNz5kw38qeAULgeGgKASKbX1n79+tm1SLCS0jq0qNI+wUqyhQP1XdVaPRD929U72Gu9HgsICAHILNr3DXQoTI+df/75bhT5CAghzfllBymtLpSGimlBtXpV5mr06NG2X4ZK2LVp0yZFNxgTJkwwVapUCWlzICP5Ra1btGjhrvwlzhBSqS5t8Ptp3bp1wMacH3/8sVm9erUbRYdYLxmnXjPqHeRFJyL0eHJPRqjvlIJBGzZssOPOnTvbALKyheJTkFG/U4H8+OOPNoNJwclOnTrZ5t9ISI1stfD08tJLL/k2SQSAWKWNOJXcDIUyLTdv3uxGAIC08M8//9hDTT169HAz/rQ5pwOhWbJkcTPhTevLUaNG2bLbgfzxxx927yQWDx2kpPoEAKQFvafs3bvXjRJSJapu3bq5UXQgIIQ0pfJNCr4kljVrVt/yRelNN4gNGjSwN19auA8ePNhUrVrVPRoa3ZQpYKIGw/GzYzKTV6kSfZ+VzRNM4hNHyg4KtLmvx5S+7kc37lOmTHGj6BDLGUIKfgZ6vuokXuXKld0oNOpFpHqrei6Jsov0XKxTp44ti1C9enU7H0cBn0DiB4B0ctAv8BHrFBgvXbq0G520detW895777kRAEC++uqr/0rihiJWT3ADQHpQBQAd4lTZ9kC0Nn399dfNM888k+wDaplN1UvGjRtnD24FosocsZjRT4YQgMygHm46YOBF7zOqShNtAWsCQkhTftlBt9xyiylRooQbZR7VFb733nvtk10fXbp08Wy87kUndPr06WPq1atne6BkNq+AkP5uZ5xxhhv5W7dunbsyJl++fKZ9+/Zu5E+NOtWryU/8/2Y0iNWAkAI2ygjzK8+g54ueB8mh/9bNN99sgxCikg4KBsV9P73KSQY7db1o0SJ3dcLXX39tDh065EaIo4C4Sut56d+/f9gEuAEgs+k+L5TeQfGRaQkAaUNZlzrYOGbMGDfjTesGVTFQpYFIpZPmI0eOdCN/KqPtVxUkWhEQApDRtCeiFiQ66O7lvvvusz3mow0BIaSZJUuWmIkTJ7pRQl27dnVX4UNZQjp9pJ4mutkK9eZjzpw5toScTvZkJmVcJFa+fHl3FZg2z+MoEySUIJK0bdvWXSWl72M0icWAkEq1tWzZ0mzfvt3NJKVmqOorlRw6TaHXhzj6nStevLgbGRvISZx+e8EFF7grb5s2bXJXJxw7dsyWh0RSyhIqWLCgG520Zs0aW3MdAGDM559/bg8LJQcBIQBIPR0au+KKK2wPt0C0ZtU69vrrr3czkeuGG24wjz/+uBt503uMMqa8+gZHKwJCADLaa6+9Zn744Qc3Skj7VtHYM10ICCHNPPfcc+4qoSuvvNJUrFjRjcKPNkpffPFF2+RetXpD2fTfs2ePvRFVqbXMukHz+v+G0qNJmTxxDf3VcF5ZUqFq2LCh7/cn2jKEYrGHkDJJApXKKVWqlHnggQfcKDR6riiIFEfB1MTBH/UjSvz7U6lSJXflLS7bKD5K93jLmTOn7/NcDXtjsT45AMSnE4EqC5xYuXLlbIarsqS9EBACgNTRulSvsfEPj3nROnf27Nm2H2m0UMm7xo0bu5E3ZQhFW9+KQAgIAchI6m8dqELAkCFDQq4qFWkICCFNqHyZ30nzcMwO8qLIrzIZVqxYYW688UY3G9gbb7xhe5/oz2Q09QtKTAGeYPRvjKMXPm0Wh6pAgQLm0ksvdaOE/EqMRapYyxBSeQaVcQtkwIABJnv27G4UGtW/jgvUqJeN+jPE/53btm2bDUoklpKAULQH7FJDpTK9nutLly5NkDEIALFI74Hxy/KodOrq1attNvYHH3xgy0h4ISAEACmnEtC1atUKerBQwXkdWgvnQ6YpoQOIH374oTnnnHPcjDdtSI4fP96NohsBIQAZRQdjtU9y8OBBN5OQquc0a9bMjaIPu2dIE8oO8jplXrZs2aCnXsKNbjg/+eQT27T+qquucrP+tIFwySWX2AZkGXnS3qsR5VlnneWuvK1fv968/PLL9rpMmTI2Iyq5lCXkJdqi5rEUEFLpsLvuusuNvNWpU8eWNkgubaipT5WCrJMnTzaFCxd2j5zw/vvvJ3kDVo8hBVr9qLRd4mwgLaj03IU3BXP9nu/BGvcCQDRT3fDevXu7kbF98j766KOgG3RCQAgAUkYHklQmLljJ58suu8yWbA+HfsTpQesklSz1WtvHd/vtt9ter9HO69ArAKQH9aObNGmSGyWUN2/eqN8nISCEVNNJ/dGjR7tRQiovFamb6BdffLG9Uf3mm2+C9uZR+baOHTvaE6V79+51s+nLq6nZgQMH3FVS+jldffXV/zXeV4p6tmzZ7HVynH/++e4qoWgLCMVKybi//vrL/t6qkaufU045xbz00kv2c3I9++yzNnijIKvX744CQok1bdo04O+TV48j/beTm70Ua9Qrzev3Wllb0dYDDABCNXz4cPPbb7/Zax1iUpnTUN/vdEABAJA8o0aNsvf7fqey41xzzTVm2rRp9mBTNKtQoYIZMWKEG3nTeurWW2/1bXoeLfT+S5YQgPSmfdv777/fjZJSdZzEh5mjDQEhpJoW0jpdmZhOu+imJdLVr1/fNhjr2bOn52ZqfNr0Vo+UefPmuZn0U69ePXd1kkqbxC/dpowlZQWpR5Ka9MdteCjdXg0qU8LvdBYZQpGpe/fuvg304uh5XK1aNTdKPr+NtWXLltmPxG666SZ35c3rdFywEnM40QNKwb/E9DoxdOhQNwKA2KE+d3FNvXWPp1LAyTn8kJKDEgAQy9Q7VL3ZvPYP4lNGzLhx45JV3jySqZrCY4895kbepk+fbjcpox0BIQDpTa+3Xm0IpG7duimqphRpCAghVXRCZdiwYW6UkOqtB0t9jhS6KVEJEZWRq1y5spv1pqZkanbZt2/fdO2r07x58yQZETrVqsDM2Wefbfu1qKeQPj/yyCMJMpf0d0tpcMMvIFSwYEF3FR1iISCk8gSvvPKKG3nTIkwlIdODV3ZQ7ty5TZMmTdzIm0rcJVa7dm13hUD8mtK+8847NtMRAGKJSsXFlSDVfVXJkiXtdagICAFAaLRvoPvQhx9+2M3400FM9b3NkiWLm4kNqqzQqFEjN/Km783ChQvdKDoREAKQnlSG9M0333SjhPT6o3YgsXCPT0AIqaKSaspASUw3b/fdd58bRY+qVavaoJDKrQWqb6tAkG7W1INo8+bNbjZtKeijElCJaVNXGRT6uahhf2Kqia/0+5RSkMkrMKL5aOL1bwyWIRZJFLjs0KGDG/nTyYmiRYu6UdqaMmWKuzrp2muvtT2EAlFfovj0c/HKfEFSymBU6cjEdu/e7Vv6EwCi0fLly83rr7/uRsZ07tzZXYWOgBAABHfs2DHTvn17M3DgQDfjTa+pQ4YMsQcxY/H1VWsaldNTr18/yqxq27at2b9/v5uJPgSEAKQXtUxQ8oKfXr16+bbJiDYEhJAqfmWGWrZsaQMW0UiBIL1IqMyW+gwFMmPGDJtR5NeoLLW0WZ/cupYq/5WaG2wF+2IhIOQV/ImWDCEtylSWLVi/q+LFi4d0ii8lFDSNK2EYX7BycZI4Q0gn6c4880w3Ck4l0vQ9iFXKGPSiBTgAxAK9D6hueFwmtzbfrrzySnudHASEACAw9bht1qyZ+eCDD9yMN/W2Vfn1e+65x83EJpXdVxWHQJVWtBa699573Sj6EBACkF769+9vW214UT83v4oq0YiAEFJMWSgTJ050o4S6du3qrqKX+vB89913pl+/fgFvWnbu3GkzcvQ9UTQ6Lak8nG4Yg2VUxNeuXTt3lTLaSPeq+RwLGULREhBSacH58+e7kb9XX3013ep2K4Mt8fNBwcYGDRq4kb/EGUK33HKLu/K3YsUKM3jwYBtwUqBLi049bxRQ1QmQO++80yxevNh9dXRTXzSvk4eLFi2K+hIUACCffvqpmTlzphuduDdKyXs8ASEA8KeSnLrv9KoKEN/pp59uK4/ccMMNbia2aZ/h3XffdSNvKr394YcfulF0ISAEID2sXLnSlub0ont6lSrVPlGsICCEFFPPCa8eObVq1TKXXHKJG0U3bWCrKb82ki+44AI36+3ll182l112mWdWRGrUqFHDbNmyxWzfvj3ox44dO2xPodQ4ePCgu0oob9687io6RGtASNlqoTQjVRBT5dvSy6+//uquTipfvnySvlhe4mcIqeeQ+j740f/nuuuus6c9unTpYsuiKZgtR44csWUVV61aZV/PqlWrZhsIepXBjCb6PfZrkkiWEIBop/uYxNmvqT0sAwBISM26r7jiCltuPRAdKpw9e7a9B8dJqriifYZAVOp07dq1bhQ9CAgBSGvqY9exY0dz9OhRN5OQ1gbaW40lBISQIgoEKXrqJRaygxK78MIL7cn6m2++2c14W7JkibnooovMe++952bSxhlnnGFLZgX7KFiwoPsTKXfo0CF3lVA09deRaCwZp35Wqt8djDJnlB2UniefvQJC6tEVzMaNGxP0xtJJQq8sJmUfqeSEAkFffPGFmw1u1qxZ9jkaSgZVJNPvgdfvswJmymoEgGj1wgsvmE2bNrmRMXXq1LH9FVNCBwsAAAnpfl2vrT/99JOb8Va2bFlbcaNSpUpuBvH17dvXs/dnHPURatOmTdSVwiYgBCCtqW/ot99+60YJKSvTL3MomhEQQop89dVXCRbTcUqWLGlP48ciZSoodfuNN94ImGaok6najNVp1EhsBqmggpdoyJ6Jz+vfE8mlYdQvQVkhKt0QTM+ePVOdSRZMXJZOfKEEhBIHd7wCXFoUtW7d2j4X47IY9SavmwCVXyhRooSd87Nnz56orsstxYoVM40bN3ajkxRI++ijj9wIAKKLMkJVOzy+p556yl0l3759+9wVAEBU2lnBoMQlnhPTSew5c+bY/QN40wHFUaNGeZZ6jqNDqb1793aj6BBLJZsApD+9H/llXOr1RuU3YzEQTUAIKfLmm2+6q4S04RxtmSLJoYBBp06dzLx580ypUqXcrDc11tQGuPp2RJIFCxa4q4RiISCkoEqkeuutt8zkyZPdyF+5cuXMI4884kbpx6vcpDJzglHPrDjVq1e3pSgSUyPA+IGj559/3mbnqazCbbfd9l/t2EABPq+Ad7RR3yQvaZ3BCADhQO87eg+I379Ojc7V3yKl/vzzT3cFAFDPTgWDlCEUSNOmTc0333yTJtUrol3+/Pnt+idQX1f1NJ4+fbobRT4yhACklbj7f79KR88995w9PByLCAgh2bRR+uWXX7rRSdpcDaUcVSxQLxL1FdJGQyDqhVKzZk3z4osv2pqWkcCvlNaGDRvcVXTwCggdP37cXUUW/Z4l7pfgR1k0GXEqK/Hvu14/Kleu7Ebe1AMrfppvr169kgR1lHkUvw+OTh3qNEj8QLX6FD3xxBNm3Lhxtjyel1jY5NNivFChQm50koLUP//8sxsBQHRQL0cd2IlPr/XKbA/28corr7g/kRAZQgBwwg8//GD7AKl3UCDamNM9eK5cudwMgtFmpaoc+NGhRVUfiZayzwSEAKQV3cPPnTvXjRKqV69eTLY8iUNACMmm3kFewYurrroqaCmmWJIvXz57mke16gNlz6i8lTIytDm7fft2Nxu+/AJCiTdZIp1Xplsk1mfWiQgFalWqMBj1wNKbYkZI/Jw4/fTTbdnFQHr06PFfZpGy6/ScSUy/h/EDd35NA+Xaa681M2bMsP21EguUPRQtsmbN6hvEV/lLAIgW6lungwCJ6ZCBMkqDfSjL1AsBIQAwdrNN2ZbBSlNr42348OH2HhTJ06pVq4BVHFTWXdVaIrmiRRwCQgDSgt/9v6gP+4gRI6Ku0lFyEBBCsmijVQEhL7oBQUJ6cXn00UdtCnfhwoXdrDeV81KGxLRp09xM+FHWgF896KlTp0bFDWicaMkQGjRokO+JiPj0hqhMtYySuKSiNtUCnSicNWuWeeedd9zoRJ8jr6BN4gXEli1bbIaUH9Uv9zpxFys3Brfffru7SkglLb3K+gFApNF7t4Lf8UvF6b2ibdu29qBBixYtbAlNLRhfffVV8/HHH9tSRsuWLbMZk48//nhMZ5MCQCBauzZs2DDo66H6tWmtEQuHrtKLShvVrl3bjZIaP368GTp0qBtFrlhuQQAgbej+XxmpR44ccTMJqapMrCc0EBBCskyaNMmePklMtW112h7elD6v06Ve/U7i04a4bqi1KRGO2SjKdvLz008/2VO00SIaAkLqlaOyaqHQAsOrfFh6Of/8893VSdp886Lspo4dO7qRMRUqVLAlfLxcdtllSTKNvF6z4rv66quTBGxjpZlp2bJlPReWv//+u82eAoBI179/f9t0O44yTJcvX24byOq9b+zYsWbYsGG2t1yXLl1M69at7Ul3lehRCeC+ffuaBx980P3phNatW+euACD2TJgwwWbs+/VmiKMDar179yYYlErKrBo9erQ566yz3ExSDz30kF2XR7JYPrEPIG0MHDjQt/+57vV1MCzW8UqLZHnzzTfdVUIqNUVqb2DacFYWjU6aBqIsG21QKHgUTn159HcZNWqUG3nTpr1fBlGk8TqZFEkBIWV3KPsj/oloP5deemmCgEtGKFeunLs6ySugqM029dlSum8cBUz9Fgoq//b000+70QnBFp9ZsmRJckNw3nnnuavop5PxXt577z13BQCRSYHt+Acjmjdvbr777rtkv8ZfdNFF7ioh9Ys8fPiwGwFA7FBg4vrrrw9Ynln34Aq4x3KPhrRWtGhRuyb3W9/oNHybNm0i+r2JgBCA1FBQXIcQvBQrVsz2zeaAAgEhJMP69ettWTMvlIsLjTaeddJ04sSJtsdQIOqFUqVKFXtyNbMpSKVN9mABEfVAUg8av9+TSBLpGUKvvfZaSH2dsmfPbmunZnRqfpkyZUz58uXd6ASVo1y7dq291vdaZcsuvvjiBJlDymhp2bKlG3nTovPJJ5+01+ecc47NGgqmePHi7uqECy+80F1FvxtvvNGzse9nn31mDhw44EYAEFmU6agTgHF9LwsUKGA3JlNygKlx48YmZ86cbnSS3qu+//57NwKA2KA+QAo6BFobad370Ucf+R48QspdeeWV5plnnnGjpLQZ2q1bNzeKPASEAKSUKi2pVLTfYQW1C1CFKxAQQjJos9arR4xOTar3DUKn1HptICTeEE9s79695oYbbjD33nuvb+3LjKBgkFefFS/agNHGSbNmzQL2bgl3kRwQUpZWsEy0OCqRoyBLRtOJDNV0jU9v3gr2qMa4Ssq1a9fO7N692z16wmOPPRY0eKX/tn5nP/nkE3t6UQvSYBL/f1RSKFYoGNSkSRM3OknlP8IhIA0AyaVFoN5PduzY4WaMbcYdqMxOIHqdTHxwIE4offoAIFqo15oOgwbqHasDZ59//rkNyiN9aK3XqFEjN0pK/THUUygSERACkFL9+vWzGfxe7r//fnPVVVe5EXilRUi0ER6/oXt8fk3JEZgyF1S2RM2Mg1FKo5rf//LLL24m4+gFNXEJrlAoKKHTuJHK60Y0HPs6JaaT0FqkhVImQKXY/PoiZIRbbrklSaNuvXnr982rL8PZZ5+drFqvynxR/4dgVApTmXtx9LNv1aqVG8UGv9ch9dgAgEijHgrz5893oxN0UCU1/E4Tjhs3LuDGKABEC5U1f+CBB9zIm3p5fvXVV/YAJNKP1ivvv/++72EF0T7NH3/84UaRg4AQgJRYunSpb/akKsBobxMnnfL/CxhWMAhq2rRpnpFUld3YsmVL0PJn8KcN/D59+tisiGBUrmTw4ME2syK9a16qVNSUKVPMypUrbXBBGRR79uzx/IjLnNFpMGVWKNCgkl2nn366nY9EDRs2tD2f4tO/L9zrMes02H333edG/vRv0RtmZmQHxafyPSpZFwqVnOjQoYMbpZ4CfD179rQNx+PTaTstZGPJn3/+afsvJU6tVnaVSkHyGg8gUug9JfF7xRlnnGHvV1J676S+fHqN1H/Dy6xZs0ydOnXcCACii7aM1MPz+eefdzPedL+o0uHVq1d3M0hvOvxw+eWX+x5crF+/vvn6668zvDx4aiiQlbg6idZrkVwGD0D6UkUlvfcsX77czZyUNWtWs2DBgpiqAhMKAkIISefOnc3QoUPd6CTVDlZTQ6Se0upVIiuUnh3KknjjjTfCIuCilxD9nfft22cKFy4cUnmuSHD11Vfbm+f49G8L5ywhZdVUrFjRHDx40M34U2BRpQhjlXoV6XmkG4P4dCJNC6tLLrnEzcQOneT88ssv3eikkSNHmltvvdWNACB8qTyOmpwrgBOfypDqgEtK6X0hUD+6K664wh6eiqQNNwAIhQ4vqqKA+pMGUqhQIXuYTmsRZKxXXnklYNUHBfJUdjtS6BBg4uo0BIQABKLsVZU09aLs1h49ergR4pCLiaC0qFY5DC+Ui0s71113nS0hp2b7wSgIp95NixYtcjOZR6dt8+TJY8t5RUswyI8yocI1hq6/11133RVSMEg9nu655x43ij0qg1alSpUkwSBRj4lYDAaJNlG90EcIQCSYOXOmLfeZOBgkKe0dFCdY1qj+38qMBoBootdTbc4HCwaVLFnSzJkzh2BQJlFfDJXK9tOrVy+zcOFCNwp/lIwDkByTJk3yDQbVqlXLPProo26E+HilRVDz5s0z27Ztc6OTdOOnFGSknQoVKpjvv//eNGjQwM34W7NmjS3N9tJLL1G7PgPplFw4UhbHN99840b+ChYsaIYPH57uJQfD0V9//WXLCKl30f79+93sSWpArvKNsap58+aeCzCVjgwlcxEAMssPP/xgX8P0Ou9F730pdejQIc8s+cR0+lDlfyOh3yAABKPXsptvvjlJ6a7ElIE5e/Zsc+6557oZZDSt65RRc95557mZhHSoUZVdVCI6EhAQAhAqtTDxayugnnbqtUYGvzdeaRHUZ5995q4SUh8b3qzTnpoW6yRq165d3Yw/3aircbIaJe/cudPNIj3F9UsKJ/rZK7MlFFosqLRfrNm7d68tA+jXr0gZUx999JHJli2bm4k96o/h1QND9XhjracSgMjx66+/2t5vXoH+OKkpsasSveqlFoqnn37a1KhRw75mEhgCEKl073fDDTeY0aNHuxlvlStXtsGg4sWLuxlkFr3Pffrpp7ZPrBeVy46UcuHsMQEIhQ5ra196x44dbiYhZQ2VLl3ajZAYr7QISJknfuWCVJYD6UOl1wYNGmQ3r0877TQ3608pkrohV8kSpK9wDAgpGLRr1y438nf33XfbE9SxZtOmTaZ27drm22+/dTMnXXzxxWbu3LlmyJAhnBz5f35l4/wOBgBAZlq2bJmpV69e0EMxKm2bEirDqr4FybFkyRLTpEkT21MIACKNssKvueYaM2HCBDfjTX3VZsyYkeqSnJHu6NGjNtiiUu5+WaoZpVKlSub11193o6Q++OAD+xHuCAgBCIWqJSXu+x2nRYsWNlgEf7zSIiCVL9NmamJly5Y1F1xwgRshvbRv397MmjXLFC1a1M3427x5sy3h17t377AMWkSLcDvxq4WYysUFoxICCjLGmt27d9tm3ytWrHAzxpa0UBBNr2+qp63SizhBvcy8KOis06IAEC50f3T55ZebrVu3uhl/efPmdVfJ8+OPPybIDtImVbFixewhnECboOpFp78bAEQSZVqq12iwMtRXXnml3YTLly+fm0k9nfTeuHGjXduMGTPGZrvoYOoXX3xhg1O6F508ebI9yLVu3bpMvy/V2qJt27YmZ86c5pxzzrGv+3qvUUUCvXdkFpVOCtTnWVURVHo+nBEQAhDM4sWLTY8ePdwooUKFCpk333wzJtskJAevtAjI71S4TpHz5MoY1atXtyeOLr30UjfjTxldzzzzjL1J//33390s0lI4Bdt0Cq1Tp05u5E+ZLzoNlitXLjcTG7SwbNeunT21F2fixIlm1apVZsCAATY7KPHrmPrl/Pbbb24Ue0qUKGG/L4nptOjUqVPdCAAyX7Vq1Wzd8J9//tk8/PDDtk64n6pVq7qr5FH/INF7xccff2zfd3V/tXTpUttfU/0YdK1NS53K1n3zggULzPTp02PuPRdAZNPrmcpvzpkzx814u/baa+39dKDX3GCUVaMgzwMPPGCzkcqVK2dy5MjxX4/i1q1b296eKlunw0qqcKCvU7BKWf9lypSxveEULMpoWm+rZ5x6/6rc9N9//+0eOVFqT4Eyrd9fe+21kPv8/vHHHzYbVaWb77rrLjebcoMHD7bZQl4U9FMgK5zLmhIQAhCIMvjVF83vdUw9s1UOH4HxSgtfuoHxCwgp/Q4Zp0iRIrYcXOfOnd1MYDo1q9OrwVL94c8v4BlOAaF+/fqFFLxQk2stTGKN+iV9+eWXbnSCThUG8uGHH9qF6J49e9xM7KFsHIBIoICLNhCVsT5w4EDz008/2fJxiWXNmtVuIKaEMkxvueUWuyGpDUqV9I1Ppeh0v6X7Yt2j6fVT77ep2SgFgIwWFwyaN2+em/F28803m08++cS3T00gCpxoPasS1upnqiCP+jso82flypU2SBQqZeXoHl/BqYyk/ZEHH3zQPPHEE27Gm/4t999/vz2AFsy4ceNM+fLlTffu3W0wLlA/vFDpvVEZVn7lUlUhQVVFwhUBIQCB6DCB3z6Y7sdVuhnB8UoLX6rL7pVOfPbZZ3ueIEf6Ui8hnT59//337U1wMCqVpRtt3bRmdj3jaBIuASEtnHQ6LRiVQ3vsscfcKHbo56SAWWLqFbRhwwY3SkjlHUaNGmVP6akebazS6UsvWngr6woAwpFOlqtvj/rFPfnkk7Ysjj4ru1GlI1JCASDdd+mAAQBEo3379tkyZ999952b8aaqBO+9954NsieHgih6DVUWuoL2w4YNS9XBKwULxo8fnyllOfXvUBArjkqIqhqBHwVdAt07z54929x44432ZxAnrbJLVS783XffdaOktE5SNms4ohINAD86lOB3X67XvVAC8TiBgBB8BcoO4k068+ikqsqRqI9TKF555RXb9FNlspB64RAQ0sJKi7JgJ+lUx1oZL4lPNMcCvX7FLxUXRycga9SoYR+PC5SqHNqIESNsmYa4sg9arMYqlZjInz+/G520Y8cO2ywdAMKVNgq1Sfj000/bAwD6XLduXfdoyqVlnwwACBd79+41DRs2NPPnz3cz3h599FF7MDG5mRvqcatSb3feeae9TgvqGaHy6BlN5UJVnjSOvhdxvVz1PfSivqV+3zOtOdTwPHHASIdv04pK7ukkvRetJxXM2rlzp5sJH8n9PQMQG9RnTlmmXmK1TUJq8EoLX34BIb9yQsg4qlmshviqrRwKbeJedNFF9gUSqRMOASGdzlPJhWC0QClVqpQbxRbV7/ajvg86jaegh8oxqga5GrDGL9EQy5kwWoT5baCqxxIAAAAiW1wwSOXDAlFFghdeeCFZB0IVbNChNK1ZE5dvFp3iVlCnSpUqtgpGqHRoSZmfmUEluHWwLI7K1enfoe+LSul5USk4P8pe9Tq8VqtWLXeVNtSbyK8XsYJ0d9xxh/15hRMCQgASUxBdr7V67/LSq1evmGyTkBq80sLTL7/8Ypv0JlagQIEU12FH2lJN4NGjR5uXX345pAwQZUHoFJBOIukaKZPZDTh1iiv+6TQ/3bp1syUDY5UCpsGoWfjWrVs9SyoqEy+WefXhEAJCAAAAkU0l26666qqg98uvvfaazchJrhdffNHeS8cvDaf1avv27W2JZvV+UIlPHVrU2kbr2aJFi7qv9KZSdToUly1bNjeTcQ4fPmzLFMXXpUsXd2U8Azui77Efr5JHCoT4BW9SSt+vMWPG2H0cLyq/98Ybb7hReCAgBCCxvn372j5rXvS6Gay3G5LilRae/LKDdBImFstPhSudSFIauOrlq4ZxKJQ1Uq1aNbN06VI3g+TI7AwhlWzYtWuXG3lT0FZvmLFKgZ4VK1a4UfIp4KaTkLGsfv367iohNRuOfzoSAAAAkUN9Zhs0aGAWLVrkZpLSGlP9Z+677z43EzoFerp37+5GJygo8cUXX9gSzcryiS937tx2PfvTTz8FrGygctmVK1d2o4w1ceLEBPe/VatWNVdccYUbGft3T0wBLL/KKqpE8NVXX7nRSRUrVjSnn366G6Wd4sWL20ohflleWvt4/RsyCwEhAPHNnTvXloH2otdM9YFmnzr5eKWFJ8rFRZaaNWuaxYsX+9YvTkynstRHZfDgwWGXIh7uMjMgpDJxgZqDyplnnmk+/vjjZDd8jSZKI05uyTd9v1RnW6XmBg4cGPM3FBdeeKE566yz3Ogk/f6HawNaAAAA+IsLBmnd6EdBAx0gVFWJ5Fq3bp1p3bp1gvtw3WOPHTvWNGnSxM14U6+2QoUKuVFCui9/5JFH3Cjjxb/3LVy4sP33xAVX9G+dPXu2vY5P/16//nObNm0yBw8edKOT0rpcXHyNGjUyPXv2dKOEjhw5Ym666SabCRUOCAgBiLNv3z5bKs5vf+ett94ypUuXdiMkB6+0SEIpz17ZIzq9kxkNHBEabd7qpNFLL70UUi3mo0eP2lT3Fi1a2MUBQpNZASGVNdPJuEC0MFG97lCzxaJV9uzZ7e/1+eefbxdiiU/D5cyZ05alUBkHLS7ff/9988cff5hPP/00YGmHWKLvWfyTj/FRNg4AACCyaL2ntbzKtPnR/Z8On6nMeHIpmOC1rtRBtaZNm7pRYH4HslR+rkSJEm6U8dRvVGttVWGYNGlSgkwm7Zts377djU5q06aNu0pK5fm9+JVsTiu9e/f23c9RdYVQypJnBAJCAESH17UHtmHDBjeTkHqg6RACUoZXWiThlx2kGzlttCJ86ebpwQcftPWglXIeCqXvq6GnXz3OWJU4iBAnswJCKmG2cuVKN/KmJqsENIzJnz+/Pbmn75cWpfqZqYa5rtUDSifyFABSNtCAAQPsIlOZVUjIb1E6efJkMgsBAAAixP79+23GSqCS4Vr7DB8+3Pb5SQkdSlN/oPiaNWuWrAojXgEh/b0Sl6DLaH369DHbtm2zmUAXXXSRmz1B98WJ5cqVy/7b/Xj1as6RI4dp3LixG6WPU0891ZZW8uvXpF5C6jeU2QgIARD1jdOhAi/lypUzr7zyihshJXilRRJ+ASGd+EFkUDBo4cKFpmvXrm4mMKWt161b1zz77LPm77//drPwkhkBIZX4C9YTSOUfevXq5UaIT4uKvHnz2mwhasuGzi8gtH79erNq1So3AgAAQLhSOTD1AV6wYIGbSUpBl3feeSdFZeLiqGxPfAo+JLcnp9eBIwWUtPEXrrx6AakMtSoS+Pn111/d1Uk6fKtAUnpTptPo0aPtz8fLnXfemen3+QSEACiT8t5773WjhNSXToGijHjNjGa80iIBnZr3ulnUEy5Y3V+EF2VzDRo0yDb2PPvss92sP9XkVEBBGSabN292s0hMGSYZKS5NViX+/BQpUsSeyvO7sQdSQiX39Lvlxes0JAAAAMKH1i2tWrUyM2bMcDPe3n77bdOhQwc3Sj6VoVOFivgUWLjgggvcKDS///67uzqpR48e7ir8qALBd99950YnqfpAIBs3bnRXJ7Vs2dJdpT+VvuvXr58bJaRsMv1dMrOfkF+lDgCxQa9DOgzg1WtN1PO5cuXKboSUIiCEBKZOnequElL2SJ48edwIkUR1gpctW2batm3rZgLTgkEvrl6nnZDxGULqbxNoEacgkE556bQXkJa0GPPLEorfXBcAAADhRVUfVP5twoQJbsabgkG33367G6XMsGHD3NVJye1Ho8OJqloRX8OGDU21atXcKPx8+eWXSaprFC5c2NSvX9+NvCX+d6pcXKh9ltKKfj7KHPOi0n8PPPCAG2U8MoSA2KUD0Tqg4JVJKSrHed9997kRUoNXWiTgt8mngBAil0plKYPko48+sqWzgtm5c6fNCFPD/UCZKbEoIwNCOnWmn0Egzz33nKlTp44bAWnLb0GrnmNauAMAACC8aEOtc+fOdu0XiAI5asqdGsok+eCDD9zoBGWZn3feeW4Umq1btyapxBDO2UHy+eefu6uTdAgzUNUG/WwSZwhpryWjSx/p4NeIESNM6dKl3UxC+t1I/HPNKASEgNil7B+/Nibqf6Zed2QRpg1eafEf3Zz4ZSIQEIoON910k1m+fLnNGgrFiy++aFPK165d62aQkQGhJ554wuzYscONkrrmmmuCBoyA1KhVq5a7SmjXrl2+p3YAAACQeZ566inPrJ343nzzTVvWLbV0P6jyPvGlpNT8hg0b3NUJl112WZrsQezbt89MnDjRBjfU5+jll182Y8aMSZKlk1x//fWXZwnl6667zl1527t3rzlw4IAbneB3v53edFD0008/NaeddpqbSahjx47m559/dqOMQ0AIiE1KUHjsscfcKCEFgXTIvWDBgm4GqcUrLf6zevVqz7q96kVzySWXuBEinfoJff311+aVV16xP9tgVA+6SpUqtmkbMi4gpO/70KFD3SipkiVLmpEjR3LDjHSl051+JxaVJQQAAIDwoQ2zZ555xo28aY1x9913u1HqeB0cTEn5s/Xr17urE5599tkUnwI/dOiQGTJkiO2Nq81DlRhq166dDXB07drVtG7d2q5vEweykkMHaRMHdqRChQruypvKsSWWWQEhueiii8yrr77qRgnp+6h+Qn59PNIL61sg9ihIrwPsflVIdFj6iiuucCOkBV5p8R+/cnGXXnqp76kRRCbdZN1///3mhx9+MFWrVnWz/nSz3KZNG3Pbbbel6sY5GmREQEi1qO+55x6btecla9as9mRb/vz53QyQPlTyQgtmL7Nnz3ZXAAAAyGzz5s0L2g/ojTfesIGRtOIVEKpevbq7Ct23337rrk70DgrWh8eL1k4qNXTBBRfYHhPTpk3zXbvt3r3b9O3b142Sb9asWe7qpCJFithS7YHoZxRflixZkvX9Uom+l156yVx99dV2n0YbpI8++qgtX6espZS46667bMDMizKEAq1L0wMBISC26LVLwWe/6jg1a9Y0vXv3diOkFV5p8R+/cnGXX365u0K0ufDCC838+fPN448/HtKNlzJSFEBauHChm4lefifSEte2Tg8q8bBo0SI3SmrQoEEpWmgBKaGTg14ICAEAAISHdevW2XJlgfq/vv7666ZTp05ulDbWrFnjrk7QYaI8efK4UWgUbFBZtzj9+vVzV6HTv7tVq1bmxhtvTNKjx88LL7xgJk2a5EbJ47VW09o6mMQBIa2t42fjq3SeNj9XrVrlZk5SMEgHtR566CFb8WPBggU2kDZgwADTokULU6JECdOrVy+zbds29ydCo3WvAoXly5d3Mwm999575t1333Wj9EdACIgtDz74oH0983LGGWeYUaNG2eA50havtLB0E+aXIURAKLply5bNno7SKacyZcq4WX+66ddNqv6MMlliTXpnCOlUhAJ0fnRy4t5773UjIP35BYS0YE1t/XUAAACkjvrkqLdooN6jgwcPNp07d3ajtJM4Q0h9aZJb6m3JkiXmjz/+sNcqGRRKBYv44oJB6oeTXCof99prryXr0J/2TrwCQqVLl3ZX3lQK6bvvvnOjExKXmDv99NPt1zRv3jxJVo6arf/2229udFKOHDls5Yjt27fbUntly5a1Bwz9Si95UVBK2VW5c+d2Mwlp/bls2TI3Sl8EhIDYMWLEiICtEt5++23bLgFpj1daWCtWrPC8gVQUVg0dEf1Uu3jp0qUhNRdVIKhnz542lT/WNoTTOyDUvXt3s2fPHjdKSP1c9IaY0nraQEr4BYSELCEAAIDMo7WJghqBmv8rGJReB8q8AkLJ1b9/f/tZew99+vSx18mhnklffPGFG51QrVo188EHH9iMHAWb9H1S4Oy5555zX3GC+uOolLqCKKHSAUmv9ZqyowJRyW+VqosvcQAm7uf466+/Jsm+mjp1qrs6Qd9rZQjp37Bz506bVaTsKv1b1SNKPZQS//8C0fdAa00vR44csQcTY718PIC0o8MAgQ4q6HVMWZ9IHwSEYPmVi7vkkktMzpw53QjRTun9Ok2kGsRnnnmmm/WnrKJKlSqZTz75xM1EP90Mp5e5c+f6puNnz57dfp91agzISKrD7tdHjoAQAABA5lGpnSlTprhRUq+++mq6VhdI3LcmuYfnvv/+ezN69Gh7rc2/c889116H6s8//7QBr/gUYFKJ85tvvtkebi1atKgN1mgdpTmvwI3KsYVq8eLF7ip0hw4dsr1+EkscEBo+fLi7OvFn4lPgJz4dJFQ1Fx0W1Ie+d5pT9pL+raoAU6dOnWQd4FRwsUuXLm6UkLKT9DNK735C6bneBhAeFKy+/vrrfZ/vKsGpfmlIPwSEYFEuDvFde+21Zvny5bb0QDB79+61KfpqYHrgwAE3G70S34inFS2e1LDTz8svv2wqV67sRkDGyZo1qw38eiEgBAAAkDkUCBkyZIgbJaVsGL/N/bSi8uPxqaSwSpeFQuuq++67z17rEKr63ySXyqsp8yeOTpN369bNt+yY+uyoH2tiyanA4Pfv8wuGqbqGAndegZn4wakffvjBfPTRR25kTMGCBd3VCYn/+1qzeylXrpwtwyTKOFJQaNeuXXYcCpWmq1Gjhhsl9PHHH5s333zTjdIHASEguuk1UcH59evXu5mEdBhVrzUkJ6QvAkKwT8aZM2e6UUJ169Z1V4g1hQoVMuPHj7cZQ/EbXfpRZovqPeuUVzRLr4CQFnR+dZl1ckKnsYDM4lc2TuVG/UocAgAAIH189dVX5oEHHnCjpB5++GHz2GOPuVH68coi92sOHp8yctQnR5k88tBDD5nChQvb6+QoVqyYuzrhrrvuclf+VCIu8cHH5DQsjx+Aim/Lli3u6iSVfrvhhhvsmtrLnDlz7GeVTmrUqNF/mUrFixe3mU3xXXrppe7qhEA9i1q0aGGaNWtmrxWku+OOO0LO7FGQT+Xt1JfIi37vUpIlFSoCQkB0U5nPyZMnu1FSCtpXrFjRjZBeCAjB/PjjjzbLIzGdqqlZs6YbIRbppJR6CukGtXr16m7W3+rVq+3vzPPPP28DjdEoPbKgNm/ebJ588kk3SkiLAS0g6BuEzBSouW96LggBAACQ0E8//WRLe/3zzz9uJqHbbrvNDBgwIEPWDw0bNnRXJylrJ5BffvnFNGnS5L8qJQp0pDR4pR6r8Q+xli9f3l0FlrgvxTnnnOOuglM5Za8MJAXCFGxSabhbb73Vrov1tYn7G8Wng7nKWlLPI/UBipM4+CMNGjRwV8YUKVLElhQPJH6pQP0dPvzwQzcKTn8nfb3X79DRo0dtPyG/wFhqERACotfEiRNtQMjPddddF7CvENIOASH4lourUqWKOeOMM9wIsUw32jq91LNnT9/0+zhKZX/88cfNlVdemax6xeHGbwGVHgGhRx55xLNBp77XuhH3O50FZBS/DCFReQsAAACkv23bttnsFr/m/iojlpGHydTjYejQoQlKx40cOTLJ30+HBVUNQZkqFSpU+K9CifpETJo0KaSKFF6UoaQ/HxcsCbXfqnoPxafATahUveHTTz81+fLlczMnqCzba6+9ZoNx77//ftDAWBytmRNn77Rr185dnVS/fv3/fq76HgZTsmRJd3XCW2+95a5Co4wlrf+9rF271paMT49+Qsnp5wQgcugA+S233OJGSZ199tnmnXfeybD3r1hHQAi+ASHKxSE+9RHp06eP+fbbb02pUqXcrD99nXre6GY5mqR1QEjPv/i1ouNT1pBqPgOZTSnbXg14RY1rAQAAkL60Ua7T0yoB5kXrd/VdSE75s9TSxl3Hjh1tGeHGjRvbOVU/uOmmm0z37t1txoz6EuugqdaGw4cP/y+zSZUQpkyZkurDbwomff3117a3ZbDDi3FWrlzprk5ITkBIVJJN5eCUCZTWzj33XNO0aVM3OqlAgQL/9Xj26+8Z38aNG93VCfr+JJ4Lpnfv3vagp5exY8eaV1991Y3SDhlCQPQ5dOiQLZ/pl1nIYeiMR0Aoxh07dsy3KTgb0fBSu3Zts3TpUs9TS4mpt4jSyXUSLD0yazJDWvYQUrp9/FT++PR9fuKJJ9wIyFwqSeFXgoMMIQAAgPSlTAxlZMyfP9/NJKRsbvV/DVZGLL0oiKFMnc8//9yUKVPGfPnll6Z///42Y0b7DYnXUAps6d+iE+FpQYEprZ9CyTRSttJnn33mRieUK1fOXYXurLPOstlQWhsrkybUcnU6ZKW/Z+7cud1MQurR4xfY0mP6t7Zp08bN+PPq5eTV5ygQ/V1HjRqVpJ9RnG7duoXUMyo5CAgB0UXvXzo44NczW3r16vVfwBsZg4BQjNPJbr+N+osvvthdAQnphNd7771nM1tCKSuok2BapERDJkFaBrZUYkEnyxLLmzevPR2Rkaf7gGD8FsoqGaHgLwAAANLH008/bbN/vJx//vnmq6++CrlcWnpRoEIl61atWmVmzZpl7rnnHpsFlDNnTvv4mWeeacsFTZgwwWaX+AUZ0pv+blu3bnWjE2XnatSo4UbJp8wnVdJQb6e//vrLZuF8//33tlfzb7/9Zn7//XdbTk5BMZVX14fWlCqrp+CHSsbpgJXWf/o5a+PUT/Pmzc3o0aNtz6FAlAGlgFxicT+L5FDga8yYMZ7VAnTAuFWrVmb37t1uJvUICAHRZciQIeaDDz5wo6SUjOBXnhLph4BQjPMrF6fTKml1WgfRS6UAFOUPpbygFgaXXXaZ6devnz2VFanSKiCkhYJfM723337bNvIEwolOfvpZvHixuwIAAEBaUoaGAgVeihUrZsuladM+XCi7RRt82gTUmicuEKIgjHrrqAdSZvaISNxLp0mTJmkWTFMvJQXBdLhWZd3Ui1c/I5VBUjAmcVBFwSjtu+jwZNu2bW3JcJVq96M/rwocgezdu9d+TeJ1q7KSUrrHU6tWLc8Ak+hn3L59+/9KAaYWPYSA6DFv3jzTtWtXN0pKh6EVLOIwdMYjIBTjZsyY4a4SUnPHzLxJQ+RQ4OKbb76xgZ5gL+JaCPTo0cM2/dRJqUiUVgGhBx980NZRTUwnwlRbFQg355xzjrtKij5CAAAAaW/u3Lm2VJwXBRkUDCpZsqSbCV8KZITa3yc9qaRd4kyrQE3OI432dxSIWr58uZs5qUuXLiZfvnxulHza1FXvJC8TJ040L774ohulDhlCQHTQIYAbb7zR7gP6UYCew9CZg4BQDNMbrW4wvSggBIRKN/hqGqo60GXLlnWz/mbOnGlvVBPXbo4EadFDSCUdxo0b50Yn6Xk3aNAgNwLCS6AMIfoIAQAApC2VG1OJMJUhS0zZHlpTsG4P3bZt28xdd93lRieoVJz6GUU69ehQP5/69evbEnSJFShQwDzyyCNulDI6MPzuu+/6HhLTwc85c+a4UcoREAIin8pJtm7dOmDfsttuuy1oxiPSDwGhGKbmf35vttxYIiVUy1ilozp16uRm/KnniE4L6KY8LYIsGSW1GUJ6zul0VmIqF6DTaimp6wxkhEAZQgSEAAAA0s727dtN48aNPXuzqKSYMl2qV6/uZhCMevg0atTI7Ny5082cKG2nnq7hkLmUWsrOGThwoBslpAwyBWoUFEot9Q/+9NNPTfbs2d3MSSoLr5LyO3bscDMpQ0AIiHwKQKtfmx/tLbz66qtuhMxAQCiGLVy40F0lRUAIKaWAxhtvvGHGjx9vG4cGo345qpkcbhvKfiUTUxsQeuGFF8yaNWvc6CRlBlWsWNGNgPBTpEgRkyNHDjdKaO3atTbICwAAgNRRWWllBun+KjEFL9RTSCW4ERoFga688kqzdOlSN3PCm2++aXvcRjqVbn7sscfcKKHKlSvbHh7lypVzM6lXpUoV2x/Kyx9//GHatWuXqn5C9BACIpteWwMFe9RqQu9jefLkcTPIDASEYligDXgCQkitZs2amWXLltmTbcGoHIJuxtWoMq2aUaYXnVjS6aeUUCDo+eefd6OTtODr3LmzGwHhSRsQZcqUcaOkfvzxR3cFAACAlNA6Qz1tVM3Dy9ChQ22VBYRm3bp1pk6dOgnuU7UZ+corr5g777zTzUQ2ZYslXp+eddZZ9sDhd999Z4oWLepm0476WnXo0MGNEpoyZYrnmjdUZAgBkWv69OnmvvvucyNvTz/9NBmuYYCAUAzzCwjpBHgkNKZE+CtcuLCZNGmSGTx4sGdaeXyqMao+RFdddZU9WRTOUlLiTnWdVSoucQ1wNfbUCQq/jCQgnATqI/Trr7+6KwAAAKTEww8/7NlrVLTJnrgHDvypIsqll16a4B71kksusSXO77//fjcT+X766Sd3daJXkA5ZKrusa9euvtn9aUFrfPUF9vLkk0+aGTNmuFHyEBACItOqVavsgYXjx4+7maTq1q1r9/2Q+QgIxah9+/aZ1atXu1FCF1xwQVTU0UV4UKDj3nvvtQFIpawHoxMFurH0WwiFg5SUjdPJLTV+TUx1qxU4AyJBoD5CBIQAAABSTlkr+vDy0EMPsYmWDFp7XXHFFbafjQ40PfjggzZApMyrxGW6FYDYv3+/G0Ue9fW57rrrzAcffGDWr19vunXrZnLlyuUeTT8qFa9+Ql5ln1T1o02bNmbr1q1uJnQEhIDIo/Lx11xzTcAy8nnz5jXvv/++OfXUU90MMhO7/jFqyZIl7iopysUhPej3Sjfgai4XjJqnXn/99ebuu+9OUTZOektuQEj/hgceeMCNTmrYsKG59dZb3QgIf4EyhH755Rd3BQAAgOTQYThldHhp0aKFGTBgABUFQjRz5kx7Sl29aHr16mVPresQnrKD4r6Hqtrw7rvv2l62Cmyo9+3Ro0ftY+FMpeFq165ty8Ft2bLFzunfod+fm2++2eTOndvOedEaVn07VJEjtX1x45x33nn2/+9l27Ztpm3btskut04PISCyqNpPy5YtbSuIQFQZp3jx4m6EzEZAKEYpTdqPMoSA9HDaaafZxcw333xjihUr5mb9DRs2zDatnD9/vpsJD8kNUj377LNm06ZNbnSCTm1RKg6RhgwhAACAtKW1jjbOVWI6sapVq9oT1VTwCM3vv/9uWrVq9V8Q4o033kiwDlOw4eWXXzalSpWyfXB0UFbfdwWIIuFwk34X5s6da0sLqjeQ+nsqEKTMstmzZ9uqHHEfyohSsKZjx462UocyifS1+vNpmUF0ww03+AYzVTauZ8+ebhScfm7aXAYQOZSBqT2+QG677Tb72ozwccr/v/klvetA1NONgE6HePn4449N69at3QhIH8oC0s2p0syD0QKoR48ethZxtmzZ3Gz6Urqr+h95mTVrlm1OGgotLHQDnvjG9tVXX7U9hYBIonrkgYJCKrcR6GQiAAAATlqzZo3tc7Nz5043c1KRIkXspv7ZZ5/tZhCIgjqXX365/Z7Fpwx3bUSqfNz48eNt5oqXb7/91v75cKVMp2rVqqW6vF3nzp3N66+/7kZpQ2tdleibN2+em0lIa34FjoI5dOiQZ7BKfZFUCg9AeBkyZIi577773Mib9g8UfPcqL4nMwzGTGBUoQyiUzA0gtfLnz2/GjBljTy0F20BWDeK+ffvaxdLPP//sZtNXoEZ4oabY6++txq+Jg0E1a9Y099xzjxsBkaNEiRImS5YsbpRUsDRxAAAAnKAgUOPGjT2DQTly5LDBC4JBoXv88ceTBINEvZOfe+45W33CLxgkKhsXrnTIUM3YUxsM0kFLZReltaxZs5rRo0ebggULupmElB0Qyjqe/kFA5Pj66689WyPEp70DJSMQDAo/BIRikG4iVq5c6UZJcdOJjKJyabo5XLp0qQ32BKNTBarzrBrQCrakp0A1pEMNCL311ls2JT8+ZTi9/fbbNNJDRNINXaBDA/QRAgAACE4b39ddd53N+vDy3nvvmYsvvtiNEIxKeivgkxrhGhDavn277T0b1zMopdTQfezYsQGz/VND+0ja+PUqia71s37f9+3b52a80T8IiAxa98cvz+nn6aefNtWrV3cjhBMCQjFIm++BKgWqFi2QkXRTqprHTz31VND62CoF8NBDD5kGDRqYjRs3utm0FyggFEoPoT/++MN0797djU5S2Tv6dCGSFSpUyF0lRR8hAACAwFSJQD2DEh8ci9OnTx9z4403uhFCMW7cuFRlz1x77bWmQIECbhRe7rzzTtsbKaV0796hQwd7uFL/zvR01VVX2TW9FwU/27VrF/Bgp8rKAwhvu3btMs2aNQsa4FUJTq89MYQHegjFIDUcVNMvL2eddVbANGogvX333Xfmlltusb1Kgjn99NPNa6+9Zm8svU4ipYZOMXz//fdulJD+n8HqpKpGsk5gxVe2bFmzfPlym1IPRCrd/E2cONGNEtLvfSh9wQAAAGKRTlPfeuutvv181ev3/fffT/O1TbRr1KiRmTJlihsljzJnfvrpp7Asna/giX4fdGhSmfr6vVB2mQ4oqt9O/A8dnNS/RaXZ9ZEvXz5TunRpW2Ej2KHLtKS/c5MmTXx/HsoY0CFJLzNnzjT16tVzo5PoIQSEBx2cVsaieq4FoteiH3/80ZacR3giIBSDdAOqmwovVatWDdhfCMgIOt11//33mxEjRriZwK6//nrz5ptv+tYsTokqVarYNzAvqkHdo0cPN0rq888/Ny1atHCjk3RyTanyQCS74447zPDhw90oofLly9sFNQAAABLSRvndd99t3nnnHTeT0GWXXWamT59usmfP7mYQKm06btq0yY1CoyCJ7msVoChSpIibRVpQXyyVPNywYYObOUlBrQkTJpimTZu6mZN0sKxly5ZudBIBISDzKXzQsWPHkMpzqqeYSsohfBEQikEVKlQwK1ascKOEdPJbzSuBcPDJJ5/YN5w9e/a4GX9KhVdvnmuuucbNpM6FF17o2w9FN6O6KfWitFn92c2bN7uZE2rXrm1mzZrFaT9EPAVD+/Xr50YJKftNJxR1ghEAAAAnaNtFzbdVacBLyZIlzYIFCwKW5oU/BXXielnos7JldJI9/udjx46ZUqVK2bWaSnjr44wzzrB/BmlPJepq1arl2RdI33dV4zjvvPPczAk65NmpUyc3OomAEJD51Mtb7RuCUZ/wd999140QrggIxRilFqvMll/d1rvuuss2wgfCheolt2/f3p6WC4VqLA8aNMjkyZPHzaTMueeea9asWeNGCd1+++2+J/vuuece88Ybb7jRSSqFd+mll7oRELmC3Qj+9ttvSRZ3AAAAsUpbLo899pjvgbLcuXObefPmmYoVK7oZIDqoNKLKIHpRZYH58+fb3/84ffv2NT179nSjkwgIAZlr0qRJpnnz5gF7gIn6gysYnNr9OKS/jCskirCwbNmygE9gTsgg3Jx99tlm6tSpZsCAASH13lGWkMq9+TVpDZVOkPlREz0v+n96BYPUFJZgEKKFes0F4pdZBwBI6sCBA2bLli1uBCAa9enTxzcYpLJlH3/8McEgRKW2bduarl27ulFCqlqjkn3xz6j7rbMBZB6VhG/Tpk3QYNCpp55qPvzwQ4JBEYKAUIz54Ycf3JU3ZQ8B4UYLpUceecQsXLjQniQKZu3atebyyy+3pa1UHiAlVFrAj9eNqv4/yrBLTKWznn/+eTcCIh8BIQBIO9u3b7dNv9U7cevWrW4WQLQYOHCg6d27txslpce9eqkA0ULB0Pr167tRQmPGjLHPgTjqPQQgfOzYscO2FlGf72BUurNGjRpuhHBHQCjGBAsIEclFOFPmz6JFi8yjjz5qg0SB6PSC+pxUr17dLF++3M2GLlBAyOtG9YUXXvDcCO/cubMtPwdEi2C17X/99Vd3BQAIRvcrOlSiviLq80kvTyB6qMxuoDJXOkz24IMPuhEQnXRAUg3m1SfLi8opTps2zV6TIQSED92ftmjRwqxfv97N+NOBbD2XETkICMWYxYsXuytvZAgh3GXPnt0GX+bMmRNSnxKVSbz44ovtyaO4RqOhSE6GkAJBqnecmJ5PvXr1ciMgOpAhBABpJ37vBN1fXHvttbYf4aFDh9wsgEijQK8OsAXquVivXj0zZMgQc8opp7gZIHoVLFjQjBs3zq7lE9Pz5aabbrKbzgSEgPCgUo533313SK0YtO/1/vvv25JxiBwEhGLI4cOHbZ3WQAgIIVJcdtllZunSpeaBBx5wM/4U3NHpPKWqq5xcKAIFhHbv3v1frWPdwOqN0uvrtRA888wz3QiIDlrQBbJhwwZ3BQAIpnDhwqZYsWJudIL6EeowSygnMgGEF60Jbr31Vtv/1I8OtX366ach9UcFokXVqlVtv18vCgRdf/31ZvPmzW4GQGZSqcf33nvPjQJ78cUXTYkSJdwIkYKAUAxR2axgGRKUjEMkyZkzp3n55ZfNjBkzTKlSpdysv1mzZplKlSrZ03gK5PhRsCdQQEjPo3379tlr3dQqWykxnX5SuTgg2qjsQ4ECBdwoqW3btgV8/gAAErrkkkvc1UnKtlRfkb1797oZAOHuzz//tM9bNdX2o6xAlYbMnz+/mwFix80332y6du3qRgktWbLEbNq0yY0AZJYxY8aEXP7tqquuMnfccYcbIZIQEIohwcrFSfyyFUCkuOKKK2xpuI4dO7oZfwcPHjT33XefadCgge/J2+PHj7srfzrFtGXLFpsF5KVNmzYs9BC1ApWNU0BVzw0AQGjq1KnjrhL6+eefzY033miOHTvmZgCEq61bt5q6dev+1wvFzzvvvGPKlSvnRkDsUeaBKncACD8qEacs11Bo/3jYsGGUPo1QBIRiiBaVwVDzEZFK2W1Dhw41kydPTlJ6xYuyiipWrGj/TFz5tzihZDcoINSlS5f/MoUSu/fee90VEH2C9RH6448/3BUAIJjbb7/dt2zzN998E7ApPYDM99tvv/1XzjoQrR1atWrlRkBsUrWB0aNHm5IlS7oZAOFg1apVtpflX3/95WYCU3CX53HkIiAUQ1auXOmu/CXeGAcizdVXX21++ukn0759ezfj78CBA7asm9Jc4/c9CSUgNHz4cPPZZ5+5UUI1atQw1apVcyMg+gTLfvv999/dFQAgmLx585pevXq5UVI6vLJjxw43AhBOJk6caGrWrBm055fWBwMHDnQjILapJ+nYsWNtmXUAmW/nzp2mSZMm9uBzKFSlJ5QKPQhfp/xLBCBmKHK7ceNGN/Km9EDd0ALRQPW57777btvTJBilu6oZ3l133WW2b99umzynlJrvtWvXzo2A6KM08vfff9+NktJz6aGHHnIjAAg/WgKpFJtKyerj0KFDCT57zSV+TH9efQVValaf41/7ffZ7TB+BFuHPP/98yPXcAaQ/9QvSvY5KwAWjgzTqj0LTbSAh9du65ZZb3MifMhHIlgXSx5EjR8yVV15p5s2b52YCUy9v9agvU6aMm0EkIiAUI7RozZUrlxv5U3P8WrVquREQ+bS5ovJtSksPhbKFnnrqqRQ/D3TaSc0wOe2EaKbMOp1Y96NmsYMGDXIjAEgbWrbs37/fZsvoQwc49FnlW+MHarw+e80pGBMpdLArWAYCgIwxa9YsW40glOekeit8+eWXplGjRm4GQHwKrL700ktu5I2AEJA+/vnnH3PTTTeZTz75xM0E98orr5j777/fjRCpCAjFCNUzrlq1qhv5mz17tqldu7YbAdFDb3DaxA4lBTZbtmwhlY3zotO7OsULRDMtyAKVPWnZsqUZM2aMGwGANy1DdMo+fnAn/kfiOY1T+v4cDbRop3EvkHlUdaBv375m8ODBIZda79mzp+nTp48bAdFJBywOHz5sD1zoQ+/toX7s2bPHLFq0yP2XvBEQAtJH9+7d7fMrVDo4rUMR//sfHWgiHQGhGKHsCEV9g9ETu06dOm4ERBct4jp16mQ+//xzN5O29Ka4du1aGush6j399NM2k86PSo+qBCmA2KZNIfXo0yl6faxbt+6/6z/++MPWK4/lAE9y6XuVNWtWNwIyhrLpfvnlF7NixQrz888/my1btiTYzFWGnj4re08Z8uqJlS9fPvsR/zpuXKhQIVOqVClTunRpO46EIKf+zSqH+/rrr9tN71DVr1/ffP311+bUU091M0Da0VZe/LKjoXyo1Kkaxuv9OS6AE+hzKF+jz/rvpicCQkDaU8UPHZoOld7jf/zxR3PeeefZvTXtfenA1t69e21gVx+Jr1WOTu/z2isL9XOOHDnM6aefbj/y5Mnz37XfnMYqY6c/j9AREIoRwTbv4sycOdPUrVvXjYDIdeDAAbN161bPj88++8y+OaW1Bg0amKlTp7oREL2UHRRoUaYa+doEBhB7lMWycOFCM27cODNlyhS7iaxNqGiSJUuWBJvdiTfA1ZfwtNNOswtnffa6VmAn/gadPtq2bWvvX/zosVBKQAOpoQDPtGnTzFdffWVmzJhhN3zSizZyFBiKCxDF/6wPPZ4Z9DqmChsK5uj7oCoaKdk2ueyyy+zrgjbt9d+M/9lrLtjnUL4m7u+pjbHEH37zcR/BHtdHsK9J7eP6CPY1gR4P9Jg+Aj0e6DF9pPRx/WziXu+9PvT67zUfykesuOCCC8y5555rrxM/F+OPM/Ox1P43En8Wv8dC/Syhfq3fZwn1a4N9llC/1u+zhPq1wT5LKF8jei7HBS3if2TWnN98qHOi9ze9PoXqzDPPtL22dV+gwyLhRP9GryDR/7V3J3A2V/8fx08RWSpEWZMl2bKGUCFRIYRUtKCESqJIKSlF1rSRSkQUSSqKlIqSncqaimRJsm+l7f9/H2d+ZuZ+7zIzd2bu8no+Hvc333Pu8NPMvd/7/Z7P+Xw+Ci7pujv5V6+5hK/6+ejzNPlD59zEx4k3xhQpUsR0797d/v9GCwJCcUI3mG+++aYb+Tdnzhxz1VVXuRGQOXRa0geMdhomf2gxxGt+7969SYI+mfEBNWrUKNOjRw83AmJXsN1EWizVbiB2xALQTmRlF+jmUVlBiR/btm2zX7W7OCPpRu+ss86ywRt/Dz2fEORJCPQkfFVQJuFmOpyUTaAFeC8VKlSwDXzT4/8X0LX0pEmTbLlXZfhGykKz3ofKvNdGk8RfE461MKVFoNTSQph2MX///fd213PCQ++1QMFZAAAABYK0Ufauu+6Kuix+AkJxolq1ambVqlVu5J9Ky7Vt29aNwkMvMaUSJyzcJ17QT36sBQFFW3Vxrj+nr4kfXnMpnQ/1e3VzocVMLWzqkdrj1P65tB7r35/ws/T6Gui59PiqG0t/wZzkD32ffh/RRjeTSp9NT/o5Ktiln5HXIyFlX9+XeLdZZhzrd6/XYaw8tAjnNZ/8ESnfJ/odJPxeEn4nXscpfW7NmjXm008/tf8f/tx+++3/22GTXg+dJxIeOs/4G6f0ONBz6fXn9dB/U8LvT+fzxL/P5I9AzysD4ZprrjGNGzemvBQinl772lmXECTSdYACynoomOR1rIfeA+r5p9e7vvo71i7BxIEePbR7T++VSKPyzroW9zJy5EjTs2dPNwLCQ9euL774ohk/frx970UbnQf0flaQVpl5yR8J8/osVOBHZSrVTzThqzaU6bMYAACknO73FRRR9lD+/Pl9vurzN2Gzd+J1q8RjZdnoHkDlWaOF1tjvv/9+2zs5Wu+3IzIgpAUnvTi0sKmbv4SH6mZ7HafkueRjLVwmpwWZxFI6lsRzulDVmyShRETC12BzwZ7XV13g6msg+hXrQjmUjImXX37ZdO7c2Y1O0J/X70NvTmVeJHzVzbvmE97I/o714EIbsU4p7Js2bXKjpPT6T3wTqkfi94fXw9/zWgQDgOSU4t6wYUPTtGlT06pVK3POOee4ZwBECwVxvUrP6kZTN8q6uQbCQRkwDz30kJk9e7abAQAA8E/ryjVr1jRVq1b936NMmTJ2zTsctNb1yy+//K/faOI+pHrs2LHDrk9nlsKFC5tmzZrZClyXX365ZywgmmRYQEiLoSqnlBAoSPxIaEKZ8GDBM2UUHFI6feKHdj8mHOsmcsiQIe67A7v66qtthkPi4I8eGV3KA4g2lStXtgs5yXce6qt2H2bmBxeA2KTPa5V5VRCofv369noAQHTSRjWVpFNWfXKDBg2yi/dAOCxZssTcc889tnqEsn4BIKVUkSRx341QjnVPPGXKFPc3pIz6XGtHfkIlCn1NeCQfe82F8mc4H2Y8LagnVDhIfJx8nNLjQM8FO078NS2PcPwdgR6h/v3q5fnhhx+6n3jKqUTrDTfcYO831RcvM7NhdK2sIJHKUG/evNl+TfxQbCGc8uXLZy666CK76VKBoCpVqtifaazIsICQdsirMaSifQAAAAidMgNq1apld2XpUaNGDXuRCiA2KOjTr18/NzqpU6dO5tVXX42pG1BEBlWPWLFihVm9erVdWNHuW33VI9yLKkBmSziHJiySJhwnfE3LnBZmE8q3ez0CPadHav9sev29KrcaKLCjr/rzKaWAS8WKFc2GDRvcTOiGDx9uyzOlJy2NKlCkf6eO/T2Sl3xO/gj2vB4Z8Xfooe9JHORIzXGg59LyZ/QV6U+f8xdffLEbhU73nnrf3Xzzzfb3Fen0elciiq5htClbxwpCJ3xNfLx//35baUtlpZVEoa8Jx2effbbt26lzlfoUxvLrNENLxo0ZM8Y2WgIAAJFNN3qJ6/DrkVCLf9euXWb58uXuOwNT5pz+XPJdeF4PlXTVI6FPVgZeokQEXWwXKlTIFCtWzDbL1kYaXcArAKQxN05AbFL5rurVq9vzYGINGjQwc+bMsYtzQEZJWFRJCBBpN65KheuzOdRH8teyPt+0qzj5Q6/tlMwnPHSNkpY5LZIqG09VMBK+Jn+on1ewyiVaLLrkkkvsdU7C353w/5nWYy3MJyyaJn/4mw/0SM2f0SOcf04Sf82IOUQWZbs+/fTTbhQ6+ugBqaPsIGX3pETXrl3tRiVlriN2ZWhASIs8lSpVMhs3bnQzAIDU0E1i4hvHhJvGSKGPFt1sB3ok7L6Cf1oQ0e6VxL3jkh+ndJz8Oe30Uz3gxAEfPQItQD7zzDOmV69ebhSYduhop01K6bWhRRotLCXvpZWWOa9yTOlNP+OcOXPah34WCQGfxF/1UF1ivZ8BxJfWrVubGTNmuNEJuhkfNmyYPR8D0SahZ68+0xKuU6PJ+PHjbXZeICpftWDBAnvtBCA0ynhN3rM6FGo/0aNHDzcCEKqU3Lfrs1p95YN9/iE2ZGhASNR0XbtolKaVEXQTpZ07SnfTxVpCumvihxZo9FWLXwkLrAm7chJ/DTaXcCwJO50T73oO9Tjhq1L1k/cj0W6tjKAUOfUhAuKRdgMqtdaL6oaqWbsW1XXe0NeEh7+xFt2Tn18Sdv+FMk7+nB6xsuNNH0F6eAWM9FDQyGs++SOU7wv2PXpeQbXkD53XvebT45H4/yvxTsdIE+ruPgU/9PkVSfR71s5flYRI6UN/Nvmcfke6vtAjIeiT+KHzgH6fAOBl9+7d9l5Fn0OiwPBrr71m+4MByHg//vijvd7XJpJAOnbsaN+rAEKnzQ/aBJFSzz33nOnevbsbAQjVZZddZr788ks38k/3rG+//XaKs4kQvTI8ICRr1qwxbdu2NevXr3czaVe0aFFTtWpVu1NHj/Lly9ubq1jbVafFJwWFkgeKvL5u377dbN26NUU78PVz04Wt+hQA8Uq9zrRr38uyZctSVYMViCXaNaTds8HUqVPHfPXVV24EAEhO5TfVE0yBY9Vp1y5oSnQAmUP32pdffrn5+uuv3Yw3bQLRPUG5cuXcDIBQ3HLLLeaNN95wo9C98MIL5u6773YjAKFYvHixqV27thv5p02cs2fPZh04zmRKQEi0O3fcuHHmpZdeMuvWrXOzoSldurQN+iQEgPRVGUDwpdI4yspSmb7vv//eftVDN58JOxET6EQxf/58m9EAxDP1R1FA2cuqVavsrkEgnmnnkOoRB6PAkT7rAQDe1Fz72Weftc2ydY8DIPM88cQT5rHHHnMj/yZPnmzatWvnRgBCoc3KZcuWDVi+WZn3XkuUo0ePNt26dXMjAKHwKkmcnMqWf/LJJ6ZMmTJuBvEi0wJCCfR/v3TpUnsztGPHDvvYuXOn3XWjkgl6qMFywlc9CFik3YUXXmgDRAmUHrh27VpTokQJNwPEL5W09NfzRI2fK1as6EZAfNJudm0sCGbIkCGmT58+bgQAABCZlixZYurWrWvLwwai/l5jxoxxIwCh0Dqfsu9UktGL1vjGjh1rBg8ebNcGk9NG8i5durgRgGC++OILU79+fTfypj7CixYtYn0rTmV6QAiZQ9lASh9MoN3es2bNciMgvqlmuD4cvajUpXY2AfFMJRVVWjGYmTNnmhYtWrgRAABA5Dlw4ICpXr2638XqBPoe9WJggyoQuo8//tgGUjdv3uxmktJ9xbvvvmur/1x66aWe5abV6L5z585uBCAQ9cSuVKmSrRblj0oVf/DBB6ZJkyZuBvGGLsdxKl++fO7ohCuuuMIdATjttNPcka+sWbO6IyA+aR/Jb7/95kaBKRsVAAAgUum6RgvNwYJBefLksQ23CQYBodm2bZvtHX7VVVf5DQY1bNjQrFixwgaDxF+VDi1eAwjNwIEDAwaDZOTIkQSD4hxn1TiVvFmtSvEBOIGAEODfwYMHzZ9//ulG/mXJksWULFnSjQAAACKPyr8p0BPM66+/Tnl1IASqItC7d29bVSPQe+uBBx4wc+bMMfnz53czBISAtFIlqKFDh7qRN2Xs3XvvvW6EeMVZNU4lzxBSmjyAE3TBqcVsLwSEEO9CzQ5SMChbtmxuBAAAEFlWrlxpevbs6Ub+qR9i8+bN3QiAl9WrV5tbbrnF3gMMHz7cHDlyxD2TVM6cOc1bb71lhg0b5nNvnXydKgEBISC43bt3m+uvv978/fffbsbXlVdeaZ577jlzyimnuBnEK86qcSr5B61X4z4gnvlbyCYghHi3a9cudxQY5eIAAECk0oZIlbM6fvy4m/F22WWXmaeeesqNACSn0nDXXnutqVq1qnnjjTcCLkaXKlXKZjDccMMNbiYpfxlCLF4Dgf3zzz+mXbt29v3oT0LWXqCKOIgfBITiVMGCBd3RCQSEgKT8fUgSEEK8CzUgpAtOAACASBNq36BzzjnHZjJw/Q94mzVrlqlYsaL9Goz6lSxbtsxcdNFFbsYXJeOA1BkwYID55JNP3MiX3lt6n6ofHiCcVeNUkSJF3NEJ69evd0cAhAwhwNvPP//sjgLTLkEAAIBIE0rfIC1Av/nmm6Zw4cJuBkACBVVV8k2lFENpP/Doo4+aDz74wKeXdXIEhICUmz17tnnyySfdyJc2O8+YMcNm6AEJOKvGqeQXtlu3bjWHDx92IwBkCAHegu2mTVC9enV3BAAAEBlC7Rs0ePBgc8UVV7gRgAR//vmn6dixo+2tpcBQIGeccYZ59913zRNPPBFSUIeAEJAyujdX765AXn75ZXP55Ze7EXACZ9U45bXTaePGje4IABlCgLdQAkK5c+c2F1xwgRsBAABkvlD7Bqm/Se/evd0IQAKVjm7QoIF5/fXX3Yx/Kh+9dOlS07JlSzcTXPJe1wkICAG+du/eba6++mqzb98+N+Orb9++pkOHDm4EnMRZNU6pHnLyD1XKxgEnkSEEeAslIKRycdy4AQCASBFq36DKlSubcePG0cQeSOabb74xNWvWNF9//bWb8e+6664zS5YsSXFPUWUUeeG+Akjq6NGjtmTjDz/84GZ86X341FNPuRGQFGfVOJUlSxZTsGBBNzphw4YN7giAvwwhvXeAePX333+bLVu2uJF/lIsDAACRJJS+QSpXNXPmTJMrVy43A0BU9q1OnTq21UAgCqRqAXr69OnmzDPPdLOh8/feIyAEnPTPP/+Ydu3amcWLF7sZX5deeqmZPHky7x34xSsjjhUpUsQdnUCGEHCSV4aQgkHsFkQ8002ggkLBEBACAACRQotm9913nxt503X+1KlTzfnnn+9mACizbtCgQaZVq1Y2IyGQPHnymA8//NA8/PDDqV6EVtlpLyxqAyfoPXnvvfea9957z834qlChgnn//fdNjhw53Azgi7NqHEveR4iAEHCSV0CIcnGId6GUixMCQgAAIBKo50mbNm3MX3/95Wa8DR8+3DRs2NCNABw7dsy0b9/e9OvXz834d9FFF5nly5fbfiZpoQVsrw2YBISAE4YOHWpGjx7tRr6KFStm5syZY/LmzetmAG+cVeNY8oDQpk2bzJ9//ulGQHzzKhlHQAjxLpSAkEo9lClTxo0AAAAyh4JAbdu2Ndu3b3cz3m655RbTo0cPNwKwY8cOU69ePfPmm2+6Gf9uvPFG21eoVKlSbib1FAzyyhIiIAQYWwKub9++buQrX758Zu7cuaZo0aJuBvCPs2ocSx4QUhmgb7/91o2A+EaGEOArUNPKBFWrVqXXFgAAyHS9e/c2CxYscCNvymoeO3YsZaEBZ8WKFaZmzZpm2bJlbsabrvdHjBhhpkyZEta+W15/FwEhxLv58+ebjh07upEvZdfNmjXLlCtXzs0AgXFWjWPJewjJ0qVL3REQ38gQAnyFkiFUrVo1dwQAAJA53njjDfPss8+6kbcCBQrYZvn0WQBOmDZtmrnsssuCZtXlz5/fzJs3z/Tq1SvswVSvDCECtohnCtK2aNHCb+lTBWf13q1du7abAYIjIBTHihcv7o5OWrJkiTsC4hsZQoCvUAJC9A8CAACZafXq1ebOO+90I2+6rp8+fbrttwDEu3///dcMGDDA3HDDDbZ3UCC61tcCdYMGDdxMeHkFhNRIH4hH33//vbnmmmvM4cOH3YyvV155xTRr1syNgNAQEIpjF1xwgTs6iQwh4AQyhICkdCNGQAgAAESyvXv3mlatWgVd1Fb20OWXX+5GQPw6cuSIDQQ9/vjjbsa/Dh06mIULF5rzzjvPzYSfV8k4BayAeKNMvcaNG5vdu3e7GV+DBg0KWEoO8IeAUBxTybjTTz/djU7YuHGj2b9/vxsB8YsMISCpX3/91Rw9etSNvOXMmdOULVvWjQAAADLOP//8Y9q1a2c2b97sZrzdfvvtplu3bm4ExK9t27bZEnHKlgtE98GjR482r732WrqXWCRDCDixuUHBoJ9//tnN+Hr44YdN37593QhIGQJCcUyN+UqXLu1GJy1fvtwdAfGLDCEgqVCyg6pUqWJrGAMAAGS0/v37m7lz57qRt0suucS8+OKL9CRB3FO7gBo1aphVq1a5GW8FCxY0n3/+uQ2iZsT7xisgRIYQ4onKwzVp0sSsW7fOzfh68MEHzZNPPslnGVKNgFCc8yobRx8hgAwhILlQAkLVqlVzRwAAABnn3XfftaVzAtHC9jvvvGOyZ8/uZoD4NHnyZFOvXj1bASCQOnXq2H5BdevWdTPpz6tkHBlCiBd//vmnLXsaaF32gQceMIMHDyYYhDQhIBTn6CMEePPKECLzAfGM/kEAACASbdiwwdx6661u5E2bvRQMKly4sJsB4o8ybVRm6uabb7YLz4EoI+izzz7L8PcMGUKIVyp7esstt5h58+a5GV/33XefGTp0KMEgpBkBoTjnL0OIHRiId14ZQkA8C5SynoCAEAAAyEgHDx40LVu2tCV2AlGZOGU7APHq0KFDNvNAmQWBKINu3LhxtmeQ1ybJ9EYPIcQjvcbvuusu8/bbb7sZX/fee68ZOXIkwSCEBQGhOOcVENq1a5f55Zdf3AiIT17ZQOxMQjz79ttv3ZE3NZgtV66cGwEAAKQvXZvfdtttZuPGjW7GW9euXU3nzp3dCIg/akyvsm/vvfeem/FWtGhRs3DhQtOpUyc3k/HIEEK8UTCoT58+5uWXX3YzvhQsGjVqFMEghA0BoTjnFRASysYh3p16qu/pkZ1JiFdHjhwxP/zwgxt5q1y5Mn22AABAhnn66afNzJkz3cibFsGfffZZNwLij8q+XXzxxea7775zM97q169v+wXVqFHDzWQOeggh3jz22GNm+PDhbuSrS5cu5vnnnycYhLAiIBTnChUq5PmBS0AI8Y4MIeCktWvXBr0Ro1wcAADIKHPmzDGPPPKIG3krUqSImT59eqaUvQIym67dn3nmGdOoUSPz+++/u1lvPXv2tH1LzjnnHDeTecgQQjx56qmnzMCBA93I1x133GHLN3ptWAbSgldUnFOEuXTp0m50kvoIAfGMDCHgpGDl4oSAEAAAyAg//fSTadeuXcBrc/VBeffdd03BggXdDBA/jh49apvT9+rVyzaq90clnydPnmz7kkRKpj89hBAvRowYEXBjQ8eOHc3YsWMJBiFd8KqCqVChgjs6afny5ebvv/92IyD+kCEEnBRKQEhlJgAAANKTythed911Zt++fW7G20svvZTppa+AzLBlyxZbKlGBnkBKlChhvv76axtcjSReFWy4D0eseeGFF8wDDzzgRr5uvfVW88orrxAMQrrhlQVTpUoVd3SSdpSsX7/ejYD44xUQYmcS4lWwgJBuKPUAAABIL7oW79y5c9Drknvvvdd06NDBjYD48cknn9h+QatXr3Yz3ho3bmw3AasHaKShhxBinQI93bt3dyNfN998s3nttdc816SAcCEgBFO1alV3lBR9hBDPvHZisDMJ8Ug3YMEWXq644gp3BAAAkD5GjRpl3nzzTTfypozlQM25gVik63WVn7rqqqvMnj173Ky3hx9+2Hz44YcmX758biaynHbaae7oJO7DESsmTpxounTp4ka+lBk0YcIEgkFIdwSE4JkhJPQRQjwjQwg4Yfv27UHLsjRs2NAdAQAAhN9nn31mevfu7UbeihUrZqZNm+a5oAzEKlV3ad++vS0/FShwcuaZZ5qZM2faJvaRvNjs9f7lPhyxYOrUqbYvkL/X85133mnGjx9PMAgZgoAQTP78+U3RokXd6CQyhBDPyBACTvjuu+/ckX9kCAEAgPSydetW07Zt24DN8bNly2beeecdU6BAATcDxL7NmzebOnXqBM2cU9/oZcuWmRYtWriZyJU1a1Z3dBIBIUS7d9991wZu/a0pqdSpet/RMwgZhVcaLK8soTVr1timnUA8IkMIOGHlypXuyFvFihXNueee60YAAADhc+zYMdOqVSvz+++/uxlvL774oqlRo4YbAbFv3rx5tl/QN99842a83Xjjjbb6S5kyZdxMZKNkHGKNSjTecMMNfjc19OnTx5ZEPeWUU9wMkP4ICMHy6iOkkxVZQohXZAgBJyxevNgdeaNcHAAASA/ajNWtWzezYsUKN+Otc+fO5o477nAjILbpfTF06FBz9dVXm71797pZX8q00SLzlClTTK5cudxs5CNDCLFk7ty5dlPDX3/95WaS6t+/v3n66acJBiHDERCC5a+P0Jw5c9wREF/IEAJOvOaD9ZOjXBwAAEgPo0ePNq+//robeVNW0PPPP+9GQGxTBRdl/Dz44IMBNysqe3/+/PmmR48eUbfQTIYQYsUHH3xgmjdvbv788083k9SgQYPM448/TjAImYKAECx/AaGPPvrIHQHxxSsgxIUo4o3qku/evduNfCmTrl69em4EAAAQHl9++aW577773Mib+gWpb1D27NndDBC7fvzxR1O7dm0zbdo0N+Otbt26tuTzZZdd5maiCxlCiAX6bFJm0PHjx91MUiNHjjQPPfSQGwEZj4AQrBIlSpgzzzzTjU5SM/Ht27e7ERA/vErGcSGKeBOsXJx25Z511lluBAAAkHa6/2zTpo35+++/3YwvXatPnTrVFCtWzM0AsUtlp3TdrfWZQNSYXplBhQsXdjPRhwwhRLs333zT9gzy9xmm7NeePXu6EZA5CAjBUoqiVx8hoWwc4hEZQgD9gwAAQMZSaR0Fg3bt2uVmvA0ZMsQ0aNDAjYDYpA2J6i9yzTXXmH379rlZXzly5DBvvPGGefbZZ022bNncbHQiQwjRTGVOb775ZtuTPTmtu44bN872xgMyGwEh/E+dOnXcUVKUjUM8IkMIICAEAAAyljIcgl1/XH/99eb+++93IyA2HT582LRt29aWlQp0H1qqVCn7nmnfvr2biW5kCCFavfLKK6Zjx46er1dtOFbQtlOnTm4GyFwEhPA//mrMzps3z/z1119uBMQHMoQQ7/744w+zevVqN/Klev2qYw4AABAOWkx7+eWX3chb+fLlzWuvvUYTbsS0H374wVxyySVm+vTpbsZbs2bNzPLly02lSpXcTPQjQwjR6IUXXjB33nmn52tVr2mVOG3Xrp2bATIfASH8jxb2vC6sDx48GHSXFhBryBBCvFu1alXAzQBqWKvyFAAAAGm1ZMkSc88997iRN/W8fffdd03u3LndDBB7VKFF/YLWrl3rZnxp3WbgwIHmvffeM3ny5HGzsYEMIUSbESNGmO7du7tRUirhOGPGDNO6dWs3A0QGAkL4H11IXHTRRW6UFGXjEG/IEEK8o1wcAADICL/++qtdLDt+/Lib8TZp0iRTpkwZNwJiizYfDho0yDRt2tTs37/fzfrKmzev+fDDD80jjzziuYkx2nkFhNiYiUil9+wDDzzgRkmdfvrp5v333zfXXnutmwEiBwEhJOGvbBwBIcQbMoQQ77788kt35I2AEAAASCtlI6tPyvbt292MNy1+N2/e3I2A2HLo0CHTpk0b069fv4D3nFWrVjUrVqwwV199tZuJPV4l49iYiUij9+ljjz1m37NecuXKZddRr7rqKjcDRBYCQkji0ksvdUdJqY/Ezp073QiIfWQIIZ7ptf7ZZ5+5kS+VbKlevbobAQAApM79999vFi5c6EbetPg9YMAANwJiy6ZNm2y/IJWVCqRDhw7mq6++MiVKlHAzscnrPpyNmYgkej0+9NBD5oknnnAzSZ1xxhlm7ty5pn79+m4GiDwEhJCEv4CQ6IQGxAsuRBHPvvnmG7Nv3z438qWLW6/dewAAAKGaOHGief75593Imxa/J0+e7HltDkS72bNn235B69atczO+VELtpZdeMq+99lpc9O9Uf6Tk9xlszESk0JpQr169zJAhQ9xMUirp+Omnn9p+u0AkIyCEJIoWLWrOP/98N0qKsnGIJ14l47gQRbzQRWwgV1xxhTsCAABIOZW96tKlixt5U/8FZU3ky5fPzQCxQfeVAwcOtL1FDhw44GZ9FSlSxGbQ6b2iQEm8SN5HiI2ZiAR63959991m1KhRbiap/Pnzm/nz59sgLxDpCAjBh78soY8//tj8/fffbgTENjKEEM90IRvIlVde6Y4AAABSZvfu3aZVq1bmjz/+cDPeXnnlFVOlShU3AmLDwYMHTevWrU3//v0D3l82aNDArFy50tSqVcvNxA8yhBBp/vnnH3PnnXeaMWPGuJmkChYsaD7//HM+sxA1CAjBh7+A0P79+83SpUvdCIhtZAghXqm584IFC9zI1wUXXGDKly/vRgAAAKHTBsMbb7zRbN261c14u+eee8zNN9/sRkBs2Lhxow3wzJw5081469Onj92Qe84557iZ+EKGECKJPrc6duxoxo0b52aSUibfF198YSpUqOBmgMhHQAg+GjVq5I58UTYO8YIMIcSrZcuWmSNHjriRr+uvvz6uSlYAAIDwefjhh4NmIqv3wogRI9wIiA3vv/++qVmzptmwYYOb8ZU7d24zffp0258knvt1kiGESHH8+HHTvn17M2nSJDeTlFpuaDNlmTJl3AwQHQgIwUfJkiX9nswICCFekCGEeBWsf1Dbtm3dEQAAQOh0Lzls2DA38qaMiGnTppls2bK5GSC66R7y8ccfNy1atLDl4vwpW7asrciicnLxjgwhRIJDhw7ZPl/6TPJSunRpmxmkNVQg2hAQgqerr77aHSWl5p+//fabGwGxiwwhxKtAu3ZVLq5SpUpuBAAAEJqdO3ea2267zY28KQN58uTJpnDhwm4GiG4HDhww1113nRkwYICb8aYgkIJB5cqVczPxjQwhZLZdu3bZPl4q3ehF71UFg8477zw3A0QXAkLwdM0117gjX3PnznVHQOzyyhASgkKIZceOHTOLFi1yI1+UiwMAACmlxdxbb73V7N692814e/TRR82VV17pRkB0U2k49QtSqTh/dM+prLm3337bnHHGGW4WZAghM/3www+mTp06dkO8F5V+VJk4Ni8gmhEQgqd69eqZ008/3Y2Seuedd9wRELu8MoSE3UmIZSoXpzrJ/iggBAAAkBLDhw83n3zyiRt5q1+/vunfv78bAdFt5syZdtF448aNbsZXgQIF7PvigQceYMNVMgSEkFnUT1fBoJ9++snNJNW4cWN7z5w/f343A0QnAkLwlCNHDpse6eXDDz80e/bscSMgNvkLCHExilj2wQcfuCNfqpFcuXJlNwIAAAhuyZIlpl+/fm7kTX2DpkyZ4vf6G4gW2jyowKbKxKn/iD8KFq1cudLvmku8o2QcMoP63Glzgr9s1ptuusneL+fOndvNANGLgBD88lc27q+//jJTp051IyA2+SsZx8UoYpVe27NmzXIjX23btmX3IgAACJn6p2gB7e+//3YzvhL6BhUqVMjNANFp//79pkWLFmbgwIFuxlvXrl1tuamiRYu6GSRHhhAy2oQJE8y1115rjh496maS6t69u3njjTdMtmzZ3AwQ3QgIwa9AfYQmTpzojoDYRIYQ4o12Ke7YscONfFEuDgAAhErXzN26dTObN292M97oG4RYsG7dOpv1E2hzlUryjx8/3owZM8Zkz57dzcILGULIKPqsGjRokOnYsaP5559/3GxSTz75pHn22Wf9bhoGohGvZvil8kClSpVyo6SU+v/999+7ERB7yBBCvKFcHAAACJfXX3/dvPnmm27kjb5BiAUzZswwtWrVMps2bXIzvs4//3yzaNEi06FDBzeDQMgQQkZQAOiee+7xW9ZUa0Jjx461z1MpA7GGgBACatKkiTvyNWnSJHcExB4yhBBvAgWElB3ERTAAAAiFGulrkS2Qc889l75BiGpaTH7kkUdM69atzeHDh92sr6uvvtqsWLHCVK1a1c0gGDKEkN7++OMPWxJ99OjRbiYplYZ7++23zZ133ulmgNhCQAgB6eLGHwWE+GBGrCJDCPHkl19+MatWrXIjX5SLAwAAofjzzz9t36AjR464GV/0DUK0U7+g5s2bm6eeesrNeFNJRJWRy5cvn5tBKJJnCHEPjnDat2+fady4sc3u83LGGWeYOXPmmFatWrkZIPYQEEJAl156qSlYsKAbJfXzzz+bL7/80o2A2EKGEOJJoHrnKh1apUoVNwIAAPCvb9++ATeZiMrENWzY0I2A6LJmzRpTo0YN8+GHH7oZX2eddZbNvn/iiSfIgkuF5BlC/nq7ACmljZCXXXaZWbhwoZtJ6pxzzjFffPGFadCggZsBYhMBIQSki5c2bdq4ka+JEye6IyC2kCGEeBKoXJxS6SkXBwAAgpk9e7YZNWqUG3nTIpuyJoBoNH36dHPJJZeYH374wc34qlSpklm+fLlp1qyZm0FKJb/3+Ouvv9wRkHoK5tauXdusXbvWzSRVokQJ89VXX1HeEXGBgBCCuuGGG9yRL9XUPHbsmBsBsYMMIcQLlbz49NNP3cgX5eIAAEAwO3bsCNown75BiFbKUHn44YftdXGgcojt27c3X3/9tSldurSbQWokv+f++++/3RGQOgsWLLCZQdu3b3czSSmQq2AQ713ECwJCCKpOnTqmcOHCbpTUwYMHzfvvv+9GQOzwd6NKhhBijWonHz9+3I2SolwcAAAIRovlt9xyi/n999/djK+EvkH+ypEDkeq3336z/UYGDx7sZnypxNlzzz1n+yznzJnTzSK1kgeEyBBCWrzzzjv2PayNkF4UKFKZOPraIZ4QEEJQKp0VaIc4ZeMQi/yVjCNDCLHmzTffdEe+dO6nXBwAAAhk6NChZv78+W7krU+fPvQNQtRJKB8V6PWtReTPP//cdO/enevmMCEghHB58cUX7T3tn3/+6WaSatGihZk7d67JkyePmwHiAwEhhEQ9JPzRyXPXrl1uBMQGMoQQD3799deAN7iUiwMAAIEsXrw4aE8gLairuT4QLRSQUD+s+vXr23KI/iizYOXKlaZu3bpuBuFAyTiklV5D/fr1M/fcc4/fTb2dOnWyfcFy5MjhZoD4QUAIIVHjxKJFi7pRUioREGiHORCNyBBCPJg2bZrfIKfqJ9NQEwAA+HPo0CFz00032ftBf04//XRbKi5btmxuBohsKouvDbE9e/YMGIi47777bB9OyiCGX/J7bjKEkBJ6vSjYM2jQIDfjq2/fvubVV1+15R6BeERACCEJVjZOtXKBWEKGEOKBGjv707lzZ8peAAAAv7SgtmXLFjfyNmLECFOuXDk3AiLbmjVrTI0aNWzWgD/qEaQNsc8884w57bTT3CzCKfk9NwEhhOrw4cO2DNyECRPcjK+RI0fanmDc6yKeERBCyNq3b++OfClNeu3atW4ERD8yhBDrfvrpJ7NkyRI3Skq7eDt27OhGAAAASakB9+jRo93IW5MmTUy3bt3cCIhsb7zxhqlVq5b5/vvv3YyvCy64wF4/33jjjW4G6SH5PTcl4xCK3377zTRo0MB89NFHbiYpZQNpM7uy/4B4R0AIIatWrZqpUqWKG/kiSwixhAwhxLpApT6VEVqgQAE3AgAAOOno0aPm9ttvdyNvuo547bXX2IGNiKdm83fddZe55ZZb7GvbH2UdLFu2zFSsWNHNIL1QMg4p9eOPP9peXsuXL3czSalP0HvvvWduvvlmNwPENwJCCJku5u+44w438qUdNezcQKzwFxAiQwixQK/jQOXiunbt6o4AAACS6t+/v118C2TcuHHm3HPPdSMgMv3888/msssuM2PGjHEzvrQO8tRTT5kZM2aYs846y80iPREQQkp8+eWXpnbt2uaHH35wM0nlzZvX9vtS1iqAEwgIIUXatWtnG4N62b59u71IAmKBv5JxZAghFqxatcqsW7fOjZLSrkftrgIAAEhu8eLFtndKIF26dDHXXnutGwGRSWWlVAVFWT/+nH322WbOnDnm4Ycf9nt/iPCjZBxCpUzUK664wuzevdvNJFWkSBGzcOFCGzACcBKfaEgRRdbbtGnjRr6GDx9OBgViAhlCiGVjx451R75U65/yLgAAIDmV1urUqVPADVJlypQxI0aMcCMg8vzzzz82y61p06Zm7969btZX9erVzYoVK0zjxo3dDDJK8nMMGUJITu/j+++/35Yv9ff6uPDCC82iRYtMhQoV3AyABASEkGKBysZpd43SNYFo528HmC48gGh26NAhv+XicuXKRV1lAADg6cknnzTr1693I19q2D158mR7PQFEImURXHPNNWbgwIEBN/ppkVnrGsWLF3czyEiUjEMgBw4cMM2aNTMjR450M75U8ULv4fPOO8/NAEiMgBBS7PLLLzelS5d2I1/KEgKinb8MIQJCiHZvvfWWOXz4sBsl1b59e3PmmWe6EQAAwAkqNzt48GA38jZgwABz8cUXuxEQWVTuUCXi5s2b52Z8ZcuWzbz88svm1Vdf9VsqH+mPknHwZ9OmTeaSSy6xpRz9uemmm8wnn3xi8ufP72YAJEdACCmmUkKBsoQ++OADs3HjRjcCohMZQohVgcrFde3a1R0BAACcoN35KhUX6DpYu7H79u3rRkDkUHDh+eeftxtbt23b5mZ9FStWzGYUdO7c2c0gs5AhBC+ffvqpqVWrltmwYYOb8fXoo4/aTFUCukBgBISQKrfddlvAHivBGo0Ckc5fDxV2JyGaqQ66Hl50cV21alU3AgAAOGHYsGFm9erVbuTrjDPOMJMmTfJ7fwhkFmXFt2vXztx7770BgwoNGza018g1atRwM8hMBISQ3OjRo81VV11l9u3b52aSOu2008yECRPME088QT9cIAQEhJAqBQsWNC1btnQjX6+//rqtzwtEK38XEWQIIZqpBIY/3bp1c0cAAAAnrFu3zjz++ONu5O2FF14wJUqUcCMgMui1qwCPyiUH8tBDD5m5c+eaAgUKuBlkNkrGIYGCgXfddZe5++67/a7F5MmTx76HtXEdQGgICCHVevXq5Y58/fHHHzaCD0QrMoQQaw4dOmSmTJniRknlzZvXtG3b1o0AAACM+ffff235rOPHj7sZXy1atDC33HKLGwGRQUGgmjVrBiwtpcy2GTNmmEGDBpHdFmF07kmMDKH4tHfvXnP11VebMWPGuBlf2ozw9ddfmwYNGrgZAKEgIIRUq1Onjm3m5s+LL75ojh075kZAdCFDCLHmzTfftGUzvHTo0MHkyJHDjQAAAIx54403zKJFi9zI11lnnWU3AVKeB5FCwcvu3bvbpvJHjhxxs77Kly9vli1bZq677jo3g0hCyTisX7/eBnXnz5/vZnzVrl3bLFmyxJQtW9bNAAgVASGkyf333++OfKlknGpJA9GIDCHEEt1UPfvss26U1KmnnmruueceNwIAADDmwIEDpk+fPm7kTb2FChcu7EZA5vrll1/M5ZdfbksYBqKseC0iX3jhhW4GkYaScfHto48+spvPf/zxRzfjS+/jTz/9lFKPQCoREEKaaEdNoHrRI0eO9En3BaKBFsm9kCGEaKSLatVR93L99debkiVLuhEAAICxjbl37drlRr5UnueOO+5wIyBzffzxx6Zq1ao20OOPysJpfULl5HLnzu1mEYnIEIpP+r0/88wzplmzZubgwYNu1pf6fqn6BRUugNQjIIQ00UXVfffd50a+Nm7caGbPnu1GQPQgQwixZPjw4e7IV7DdvwAAIL5oE8lzzz3nRr60CPfyyy9TKg6ZTptPFbxUn5E9e/a4WV/nnHOOzSbo2bMnr9soQEAo/vz555/m9ttvt73K/W0qz5o1qxk3bpzt++VvAy+A0PAOQpp16tTJ5MmTx4186WSd/AMdiHT+bhTIEEK0WbFihfnss8/cKKkrr7zSVKtWzY0AAEC8033bvffeG3AT1MCBA03p0qXdCMgcCgA1bdrUPPbYYwHXG9RnZOXKlaZevXpuBpEu+e+TTZmx7bfffjMNGzY048ePdzO+1LNuzpw5dv0RQNoREEKaKd26S5cubuRr8eLFtlwREE3IEEKsCJQd9OCDD7ojAAAAY2bMmGEzKfypUaOG6dGjhxsBmWPZsmV2U5MWiAO5++67zeeff26KFCniZhANkmeIkCEUu7799lv7ufLVV1+5GV/nn3++WbRokQ0aAQgPAkIIi+7du9v0TX/69+9PlhCiChlCiAVbtmwxb7/9thslpTrrXFQDAIAEx44dMw888IAb+dL93quvvhrwvg9IT1pTGDNmjLn00kvN1q1b3awvlTWcOHGieeGFF0y2bNncLKJF8rUj3YOznhR7Zs6caerUqRPwvVyzZk27ybx8+fJuBkA4EBBCWGjHzW233eZGvlSy6L333nMjIPKRIYRYMGrUKL9BTGUHUUMdAAAkGDFihN1M4o8aeVeqVMmNgIx15MgRc8stt5i77rrLHD9+3M36KlmypPn666/t9yI6eQV/uA+PHfr9qrXEddddZ9/X/rRu3dqWPj/33HPdDIBwOeX/34iE2REWP//8s7ngggv8pvNWrFjRfPPNNzR/Q1TQqdHrtfrOO++YVq1auREQufbt22eKFSvmeZFdokQJ8/3337PDFwAAWNu2bTMXXnihOXr0qJtJqly5cmbVqlUme/bsbgbIOBs3brSLw2vXrnUz3po0aWLeeOMNkzdvXjeDaKS1o+S/a93T5MyZ040QrZSJescdd5gpU6a4GW99+vQxgwcPZv0QSCe8sxA2xYsXtyd2f9asWeO3dBEQacgQQrR7/vnn/e64UjkYgkEAACCBMof9BYN0XTxu3DiCQcgUWkO4+OKLAwaD9BodMGCA+eCDDwgGxQCvfev0EYp+O3fuNPXr1w8YDMqSJYsZO3asGTJkCMEgIB3x7kJY9evXL+CNgi7S6MGCaMbrF9Fg7969tuyLF2UN3X777W4EAADinZp5B1qgu/fee03t2rXdCMgYCgD07NnTtG3b1hw+fNjN+sqTJ4+ZNWuWeeyxx1hAjhH//vuvOzqJjZnRbfny5aZGjRpm6dKlbsbXGWecYT788ENz5513uhkA6YVPS4SVegl17drVjXxt2LAhaGooECm8soS4EEU0UDDo4MGDbpTUo48+yg5fAABgaeG1R48ebuRLVSCefPJJNwIyhkoYKpNA/TADqVy5su1XrFJxiB1kCMUWZZheeumlZvv27W7G13nnnWcWLVpkGjdu7GYApCcCQgi7vn37mhw5criRLy1G/vHHH24ERC6vgBAZQoh0u3fvNs8++6wbJaUmux06dHAjAAAQ7yZMmGAX1P15+eWXTe7cud0ISH+ffvqpqVatml0cDuTWW2+136PrW8QWAkKxQf2COnXqZFtL/Pnnn27Wl0pCLl682PaOApAxCAgh7AoWLGjuueceN/L1888/m2eeecaNgMhFhhCi0dChQ/32DlLZztNOO82NAABAPFM28UMPPeRGvrTgzm5tZBRlqz311FP2NacNTv7oWnbMmDE2mJkzZ043i1jiFRDiPjy6/Pjjj6ZOnTpm/PjxbsZby5Ytzeeff24KFSrkZgBkBAJCSBd9+vQJuJNs0KBB5tdff3UjIDJ51aAmQwiRTI06X3jhBTdKqmzZsqZdu3ZuBAAA4t3AgQPNb7/95kZJnXnmmXaTCZAR1P+yefPm5pFHHvHsH5OgaNGiZuHChbZMvdfmPcQGMoSi2/vvv2+qV69uVq9e7Wa89erVy0yfPt3kypXLzQDIKASEkC7y589v7rvvPjfypaaQutgDIhkZQog2gwcP9luS8/HHHzdZsmRxIwAAEM++//57vyVmpX///ubcc891IyD9qGShFo9nz57tZrxdccUVZuXKlaZWrVpuBrGKgFB00lrJww8/bFq0aGEOHDjgZn2pn60y/NT3lvtTIHMQEEK6UZZQoLTP1157zaxatcqNgMhDDyFEk19++cWMHTvWjZKqVKmSadOmjRsBAIB4d//99/tdYL3gggtM9+7d3QhIH1r0V48qlZXasmWLm/WmPsVz5841BQoUcDOIZV5ZYmzMjGzKNr3qqqvsBsVAihQpYrP8brvtNjeTsbQ5vV69embevHluBohPBISQbs444wzz9NNPu5EvXQD27NnTc/cHEAnIEEI0eeyxx8zx48fdKKknnnjCswQiAACIPx9//LGZNWuWG/lSv9ds2bK5ERB+R48eNR06dDBdunTxe/0qKl347rvv2kXmrFmzulnEOjKEosuiRYtM1apVzfz5892Mt0svvdRmBNaoUcPNZDzdMy9YsMA0a9bMzJkzx80C8eeU/z/RshqPdKOdHbVr1zZLly51M75mzJhhrrvuOjcCIoealB47dsyNTlAt9d69e7sREBmWL19uatas6XnzpAtvXfRSZx0AACjbvVq1aubbb791M0ldc8015sMPP3QjIPw2bdpkWrdubb777js3461ChQp2raBMmTJuBvHi/PPPNz///LMbnaCgg9aWEDl07/n888/bjNNgG2e7detmRo0alambDVRyUsGohAy0008/3SxZssRW08hM+tmpjOsPP/xgf6Yqo6eHNnQqKH7hhReafPnyue8GwoOAENLd4sWLA35wlyxZ0qxdu9aejIFIouaG2r2W2KBBg8xDDz3kRkDm08e4gj66SUpOQaBly5bZuuwAAAATJ070W6pHGRhapC9btqybAcJLAZ6OHTuagwcPuhlvN910k3nllVdoNh+nihcvbrZu3epGJ2iD22WXXeZGyGwqvXbHHXeYqVOnuhlvp512mnnxxRdN586d3UzmUNBF/ccUFEqscePGthxlRtK/RZmP77//vv3MXb9+fcBMSVG5TH0261GxYkXToEED+5VNn0gtAkIxQju9tNPmm2++MatXr7Yfnjrx6qEIvDIddLLQoqBOIBmdbn3rrbeaSZMmuZEvNS1Vw3MgkqjsoS50Ehs4cKB55JFH3AjIfG+++aZp166dGyWlUhzjx493IwAAEM/++OMPm22hvoNeevXqZZt8A+Gmcl/aVBfs9aV1ipEjR5p77rmHhc44dt555/mcpz799FNzxRVXuBEy07p162yW34YNG9yMt4IFC5p33nnH9gnLbCqFqs84L5999pmpX7++G6Wf/fv3m3HjxtmsquQZcKlxzjnnmDVr1tBbDalCQCjK6STywgsvmFdffdWeXEKRI0cOU6VKFVteqEWLFubyyy+36Yjpafv27TbN8ciRI24mKQWuFMgqX768mwEyn9JzDx065EYnqObsgAED3AjIXDqnKsi/bds2N3OSdlQq9bxw4cJuBgAAxLNhw4aZPn36uFFSWlDSdUOePHncDBAeO3bsMDfccIP58ssv3Yy3QoUKmbffftvUrVvXzSBeFStWzOf+Rv1errrqKjdCZnnrrbdsZpC/tb0EysZRRmAk3IsquFiuXDm//2b99ygjMT198MEHpn379j7rS2mltVbu95EadJiOUnv37rUnE5VbGz58eMjBIFFPlK+//to8++yzdoeFTh4LFy50z6aPIkWKBCyzpR1Dd9555/9qeQKRwGtXmrLxgEihhR2vYJDonMvFIQAAEN0/qvSxP0899RTBIITd559/bntWBQsGaZOqSjkRDIJ4rQsF61GD9KWSZj169LDlHIMFgzp16mS++OKLiLkXffjhhwP+m1W6LT3XeZ577jnTsmVLn2CQ2mbcddddthyiNvvv3LnTttNQBZC+ffuG9PNTnyEgNXjlRKFVq1aZiy++2EyZMiUsAZTffvvN7tpJb0rPLFGihBv5+uqrr2ymExApvAJCXIgiUqg06JAhQ9woKZVZ8JcSDwAA4o+CQf42EVatWtUu4AHhonWKp59+2jRs2NDs2rXLzXpTQ/pPPvnElpcCxKuQkTYRI3NoA6JKqimwEYhKPiZUMMqePbubzVwrVqwwb7zxhht505qoSq+Fm17HCqLpkXzttlSpUmbJkiW2v5J6Y+n+XedAVU268cYbzeDBg23WbqNGjdyf8JY7d253BKQMAaEoM3/+fFt/c/PmzW7mBJW2euCBB8zMmTPNli1b7EKhTh7KBHrppZdMt27dbKm4zKT/f/1bAlEJA0XFgUhAhhAimc6X6gXgZejQoZl+zgcAAJFB94fqWeCPKkekdwlxxA8FHq+77jqbrR5oA6vKG0+bNs1WPFEJeSABAaHIod5NyvLT2mIgKjuqwO7dd98dMf2/9Drq3bu3GwW2ceNGdxQ+06dP9wyiKfCjn2ulSpXcjDedIydPnmx7W3tRdpC+B0gNAkJRRFF5RYqTLwCqHu+PP/5oSwepJ1Dx4sVtzdULLrjAXHLJJaZLly5m9OjRNgMnf/787k9ljsaNG9sm5/4cOHDA3HfffW4EZC4yhBCp5s6da6ZOnepGSWnTQNu2bd0IAADEu0cffdSW+/Gie0ntTgbCQdVMqlevbkswBaIemMuWLTPXX3+9mwFO8goIcR+esRTMVZaK1vB2797tZr0pYLR8+XJTr149NxMZPvzwQ/PZZ5+5UWDhDggdPnzYs2JHzpw5bT8hrduGQoG2Nm3auFFSSgyIlOAbog8BoSihk7Eu1pOfiLXop4hxKIEelQJQs7TMNmLECHPuuee6kS/tEpo9e7YbAZnHqx4rGULIbLq4VM81L9rdqzR9LgwBAIBogd5fuRxlEyurGAiHcePGmdq1a5uffvrJzXjT4ubSpUttk3fACxlCmWvfvn12s7l67wTK8pObb77Z9ghTybNIogBiqNlBogpL4aS+fMl7/WbLls289957tgVISlx66aXuKCkFhIDUIiAUJT766COzaNEiNzpBjRcnTZqUovT+du3auaPMky9fPlsnMxBlNelDCMhMZAghEvXr18+WBfWiXUgK/gMAAMiDDz7ojnzpuUhbxEP0OXbsmLn99tvt5tM///zTzfrSuoU2h2oDqL8SSIAQEMo8CVl+s2bNcjPetHl25MiRZuLEiRFZqvy1114z69evd6PgwhkQ+vXXX+25LrGzzz7bzJgxw1x55ZVuJnSVK1d2R0mpKhSQWgSEosQzzzzjjk5SM3FFmFPioosuMiVLlnSjzNO6dWvTqlUrN/K1fft2c9ddd7kRkDm8AkJkCCEzqXazvx4AJUqUMI899pgbAQCAePfxxx+befPmuVFSKjGekt3TgBeVrle5Yi2+BnLOOefYnhnavEQmO4KhZFzm0PtYWX7Je5Ynp03eKmHes2fPiHw/Hzp0yPTv39+NTmTmBHPw4EF3lHYqU5cQwDz99NNt2VaVpGvatKmdS6ns2bO7o6SuvvpqdwSkHAGhKKCTsS6eElMdT/UHSg3V640EKmuUJ08eN/L11ltvmSlTprgRkPHIEEIk0Y5L7b70ukGSMWPG0FQSAABYKvPTp08fN/KlTSTqZQCklkofKZNg9erVbsabAkYrV66MuP4iiFxeZcrIEEo/yvJThp/uNQNl+UmlSpVsv6DUZLpklOHDh5tdu3a5kTGDBg0KGrgK9t+dEl988YU7OvG6Vek9ZQil1mmnneaOkiIghLQgIBQFdLJNLnG0O6UiJa2wUKFCNsU0EGUJ+SuNBKQ3MoQQSXQh6y/tXeVAr7rqKjcCAADxTn1mv/nmGzdKSlnFt956qxsBKaMNcio32LJlS3PgwAE366179+52t3yRIkXcDBAcJeMyzrp160ytWrVsD7Bg1MNcrSz0GRKpduzYYQNCialCkXqXBXL8+HF3lHaJA0JaP/KXqRuqrFmzuqOTdP6tWLGiGwEpR0AoCiTfcaOTdd26dd0o5cqXL++OMl+HDh0CLmLqAlPfE6yRHZAeyBBCpPjuu+9sQMhL3rx5PcuKAgCA+PTHH3+YRx55xI186Tl/O46BQNQbQ5kBQ4cOdTPelH2moORzzz2X4jL3ACXj0p9+xmPHjrVZfrrXDETrIk8//bSt4hPpFSm0ef7o0aNuZMxZZ51lihcvHnQTRLgCQspM2rBhgxudoJJxaVnTTB4MVSuQYH3ZgWAICEUB1eVN7M4773RHqRNJu8j1wTJ+/HhToEABN+NLO4pGjRrlRkDGUaPE5MgQQkbTxWnHjh393gRpB5TqsgMAAIhKc/ursqCd3bfccosbAaFbuHChqVq1apLd715UkWTJkiU2gx1IDTKE0tfevXttxkzXrl3tBoJAFFCZPXu2zQoMVnYtsymwpfXFxBTA1r9b66CB1h3DFRDyCq4pW3fSpElulHIKcKnk3GWXXWYGDx5sFi9ebAoXLuyeBVKHgFAUSL57a9++fe4odRQdb9KkiRtlPpWOmzBhght5e+ihh4LuWgDCjQwhRALtKFqxYoUbJVW/fn0bLAIAABAt9D311FNu5IvsIKSUFue1AalBgwY2QyiQFi1amGXLllHKCGlCQCj9LFiwwFSuXNnMmDHDzfhXrlw5+36+5ppr3ExkU9+8xJk42uD7+OOP22N97t1444322Eu4eggdOXLEHSWlHk3Tpk1zo5SpVq2a+f333+3vrm/fvvT/Q1gQEIoCp59+ujs6YciQIWbLli1ulDoTJ040DRs2NFmyZHEzmUsBqvvuu8+NfClar5O3v5MrkB68AkJkCCEjffLJJ35Lcpxxxhl2B1Sk79QCAAAZR7uH9+/f70ZJlSxZkuwgpIhKuKv/Ru/evQPeB2nhVa89LTIrowBIC0rGhZ9+fo899pgN7G7bts3N+teqVSub6RcpPciDmTNnjn0kpjJxFSpUcCNjmjdv7o58hStDKHG5usT089eapkrvhev/C0gLAkJRQKmBie3evdtce+215uDBg24m5fR3aqHxt99+M5s2bTLXXXedeybz6MRYpUoVN/KlZncql+d1cQCkBzKEkJl0rg+0aPP888+b888/340AAEC8+/nnn+31gT9kByElvv32W3PxxRebd9991814y58/v/n444/tznWvkttASpEhFF76bFBliSeeeCJoLxt9Rjz77LNm+vTpdgNiNNAaTa9evdzoBPXZSd56okyZMu7IV7jOXarI5I9e16p+pCCVzqv0Skdm4tM6CtStW9cdnbRmzRrb/C15BDyl8uXLZ0qXLh0RjR6zZ89u3nzzzYDpj1OmTDFjxoxxIyB9kSGEzKKLRZWC81eWQzu2gjXGBAAA8UXNtP2VvVF20M033+xGQGCvv/66ueSSS8wPP/zgZrzVrFnTrFy50lYfAcKFgFD4vP3227ZE3FdffeVm/FOPOX3fvffeG1VVKMaOHWvWr1/vRsYULVrUfPjhhz7ZiprXuqOXcAWEdN4MllWl86ru57UWO2jQILNz5073DJBxCAhFATUO8zoZ6ySiWp46kaS1hFykKFu2rHnuuefcyJtKyyl1FUhvZAghs6gZtJp3eilYsKC96I2mi3QAAJC+fvzxR/PGG2+4kS/1JCQ7CMGowbyqcnTo0MEcO3bMzXpTQ3r1tChWrJibAcLDKyDEfXjKqN2C3stt27a1pR+DUdUgBXdr1KjhZqKDeqyrFF6CXLly2WCQgj/JKehTqlQpN0oqXAEh/T0qnZk7d24349/mzZtNv3797DlU67qffvqp52sfSA8EhKJAnjx5TJ06ddzIl1INdVLTrhwtEqrMUDTr1KmT/dDyRztDrr/+ettUDUhPXhcFZAghvak8h+q0+6O+QSrNAQAAkEDlt/2Vn9G9ItlBCEaLk6pO8sorr7gZb+pxPGHCBFu5w99ueyAtyBBKm2+++caWewz2XpaEEnHvvPOOXXuMNgMHDjR79uxxI2PL4qlcnD/KyvESzs2WFStWNJMnTzY5cuRwM4FpjUnruldeeaUpX7683RyalhYhQCgICEWJPn36uCNvuvifP3++3aVTqFAh07hxY/Paa6+Zw4cPu++IHjoR64NL2UL+/PLLL6Z9+/YsziNdkSGEjHbo0CHbbNJfuZe7777bXH311W4EAABgzNatW22JL3/UOyhr1qxuBPiaNWuWqVatms0QCEQlpb7++mtz2223uRkg/AgIpY5+bqq4o1KOGzZscLP+RWuJuATff/99kr55lSpVsv8tgfhbQwxXhlCC5s2b26pOytLKkiWLmw1Ov7fu3bvbXsFa0yVjCOmFgFCUaNasWcAod2I6wc2bN8/cfvvtpkiRIqZHjx5m48aN7tnocOaZZ5r33nvPp+ZnYmpcqeg/kF68LooIQiK9KLCvvkCJ6x8nduGFF5qhQ4e6EQAAwAnDhg3zu1hKdhAC0Wa3hx9+2Fx77bVm//79btZb06ZNzYoVK0yVKlXcDJA+vBbB2ZgZmCoF6X2s9b/jx4+7Wf+itURcYqqqkfh18dBDDwXd/JA4myixcAeEpHDhwraK09q1a22Vo5QEhlQKT2u6yhrau3evmwXCh4BQlNDJKTULgUoz1A4BZdvccMMNUVVmrUyZMmbKlCkBdyooIDR9+nQ3AsKLDCFkpCeffNLMnDnTjZJSOQ6dD3PmzOlmAAAAjPn1118DlgVS7yCyg+Blx44dtuz84MGD3Yw33RPpvvv99983efPmdbNA+iFDKGXUe6Zy5cp+e9AmFu0l4hLov1nnpAQ6Tyl4Eow+M734K7kaDtrYOW3atP99XquiU6jBIVWCuummm9wICB8CQlFEZYL69u3rRimnE5CyjBYuXOhmIl+TJk3MU0895UbebrnlFrN06VI3AsKHDCFkFF3MJm6GmdyLL75oy3gAAAAkNmLECL+lZtUrQWW2geQ++eQTm+mzYMECN+NNASA1aFdgMT120ANeCAiFRj8TrRE2atTI7Ny50836F+0l4hLov7tnz55udELx4sWD9tldt26d2bJlixsldeTIkXQNCon+fXfccYeZO3euDQ6NGjXK/ruDWbx4MaXjEHan/P+LildVFFF2gqLeX3zxhZtJOZVjUy3LAgUKuJnIppeospvefvttN+Pr3HPPNUuWLAnpZAqESpl1ycstalFepRKAcFGJuFq1atn+QV46depkxo0b50YAAAAnqPSN7n+0kOVFfYVUjhZIoM1tasKujJ9gS0G671EWgXpZABlJWSzJK3OoxNmMGTPcCD/++KNp165dyJuj9fNTT5pozgpKoKxGlbpMTMEW9dsNRFlFX375pRv5OnDggF0vzUh6nWutUwGuXbt2uVlfv/32W9Ss4SI6EBCKQjpJtW7d2p7MUksBpcsvv9yNIp9ucurUqWO+/fZbN+OrYsWKdrdDRp/AEbvKlSvn04xRO+lWrVrlRkDaqFa7mn5u2rTJzSSl19uiRYtMjhw53AwAAMAJ/fv3t4v7XrQTXA23KReHBFpsVMZYKOsI6l3xwgsvmNNPP93NABlH563klTnUHydxibB4NnnyZNOtWze/GwoTU3Bt+PDhpnv37lGdFZRA982qfOQvMzYtfvnlF1O0aFE3ylj6/27evLlZvXq1m0lK61IqPQeECzm/Ueiss86yadsdOnRwMym3bds2dxQdcuXKZXtr5MuXz834WrNmjc0koscLwsXrgokYOsJFNzna1eUvGKTdW9qVSTAIAAAkp02C6hXrj3ZKEwxCAm0IrVq1atBgkPpWqsfFq6++SjAImcbrnpuSccYGgJT1efPNN4cUDIqVEnEJ9Lq48847Qw4GFSxY0FxzzTXmtttuMx07djRFihRxz3hTD/bMUqxYMZu9pE3JXvbu3euOgPAgIBSlsmXLZtM9R48ebc4++2w3G7po/DDVh5mCQrpI9WfOnDmmR48eLNojLLzqZPPaQjjodXT//febjz76yM34mjhxoilZsqQbAQAAnKT+ggoKedFmEi1+AeqJofJKV1xxRdAeI+edd55dkFSPCyAzed1zHz9+3B3Fp+XLl9syjpMmTXIzgalE3MqVK02NGjXcTPTTGujnn3/uRr5ULUibIWbPnm127Nhhz3naTD9hwgT7Z5VlFkhmBoREG+H79evnRknt27fPHQHhQUAoiinCrzRR9QN64IEHbJAoVNGaRXPZZZeZKVOmBNzdoCDZyJEj3QhIPRqnIr0obf/ZZ591I18PPfRQ0AtWAAAQn1ROO9D9jjKQA1VWQHz4/fffTbNmzWyvjWDN0hs3bmz7pF588cVuBqLyzirVlLx8WSDHjh3L9IXlaOcVEIrXDCG9d4cNG2Zq165t1/6CUYk43Weq0kQs9AtK8Ouvv9p1Ty8KlCmzcfv27bbUZZMmTUyhQoXcsyf16tXL5M6d2418+dtkEYjaCah060svveTTfzo1VPXIa1Oofq9AOLHaGQN0ktcHhMoODR061DYnDyaasxxatWplnn/+eTfypg8KmrAjrbJkyeKOTiJDCGmlXV19+vRxI19XXXWVbfQLAADgZezYsWbPnj1u5CtYY23EPvWgVIm4QNnoCR555BG7i15N2dOT7qNU5mrLli22Ib52vAcLVGU0/RtnzZplrrzyStvAPW/evLaEk45Vpkt9PoJRJoKqm0yfPt3NICX83W/HY0Do559/No0aNbL3jqFs6o61EnEJdJ5Q5qICtAkSMmGXLl1qg9l6PlCwRy644AIzdepUN/KVvH90KJSxpH5+2qyvtVh/5eBDpVKvV199tRuddMYZZ7gjIDwICEWYtDRGU4p37969zeLFi83WrVttTWmdIBUtT6548eLuKDrpJkc76APp3LlzwJM9EAwl4xBuc+fONZ06dXIjXxUrVjTTpk2j5j8AAPD0xx9/2Exjf+rUqWMDAYhPuldR9li9evWC9g1Wb2I16dfudq+NcKmlNQ0tkqr0UYMGDUz58uVtLw+VfldJJy1aly5d2maxqcqJgi1ly5Y1devWNddff715/PHHzYwZM2yGU0aaN2+eqV69us3SV6+lxP//Cl6pkb+a2WvxORAFbNXvQ/8tgfp8wRsBoRM/g/Hjx9vX2/z5891sYLFYIi6BzmkqAyfKntH7SiXhFHxN6X+vsocuvfRSN0rq66+/dkehO+ecc9zRiQwjlXNNq8R/ZwKdO4FwIiAUQVQTtWHDhjayndZFZzUk6969uz1BKmUyOV2ARbunnnrKNofzRz9D7eJJ+OAAUoqScQgn1X1u3bq1391d5557rt2RyMUeAADwR4vSgXrB3HPPPe4I8UZBCy0Kq09lsGyCypUr28BGuEoUayFUi7ba2a6sGgWCBg0aZAND69evN7t27fJc0FcpNgVeVGpJWU3KqhkwYIDd2JqRZe61wKwsfZV/CkT/nW+99ZYb+dq9e7f57rvv3MjY30VqFpnjWbwHhFQarXnz5nYToTLqgonVEnEJtOE98WZwbfzWWmda/lv9nfd0Dkqp5JlYylhKq+SJAtosSm9hhBurnRHkgw8+sOmdKnWmHeLhol0CiWknkLKJop1OvKoT6pVOmUAXkW3atDFffPGFmwFCR4YQwkVlMZo2bWpr/ntRyrt2aEZ79iYAAEg/ug5Vv1R/tLlEm08QfxIazr/33ntuxr9bbrnFLnyWKlXKzaSeNrWqnLs2nCr4oWx49dBJK23+VFZRRlBfkR49eoR8n6c+Jf4sXLjQHZ2g9YgRI0a4EUIRzwEhrQNWqFDBbhIMRayWiEugIPeNN96YJDgcjkoaF154oTtKSiUhg2VWJqdzb2LKDkwrldVMTFVETj/9dDcCwoOAUAR5/fXX3ZGxpd+OHj3qRmmjesCJKUUynCnhmUm7Id5+++2AaaIqq6BmmsuWLXMzQGgICCEctItXOw5/++03N+NLfYVq1qzpRgAAAL50P5N8s19id955py3BhfihexNVBFG5teSLiMnp3lkBRa075MyZ082mjv5/lc2jxWstRoezvJtKHqofR0bQhqxnnnnGjYwpWrSomTlzpi375k+gBWmvjajJF4wRWDwGhNQT7qabbjI33HBDyAGFWC4RJ3odKEtKfZQSC0cVl0C9hvT+D5X+jckrEilInlbJs4xUChYINwJCEUKpx4kbPioyrd01aaWgUvKao/rgiCU6mc+ZM8dUqVLFzfg6fPiwzST69ttv3QwQHAEhpJWCQfXr17cZQv4MGTKE3bwAACCoQNlB2vDXpUsXN0I8OHjwoF1AVvmkYIuQRYoUMQsWLLCBlrRmEqjMm0q6qUfODz/84GaTUjknZQ0puOPVD8Mf/dvGjBmTIRtYtUag3sQJ8ufPb/sItWjRwpalUm8jLyqJ54/XJlQtaGd0P6Ro5u9+OxwL7ZFIAQVlgAQqRZiYenHFcom4BMOGDfMMzoTjdbB582Z35Es/23///deNAtO/7/vvv3ejE7QhPS10rki+dqBWGEC4ERCKEAoAJa+RmzzdODXUiC7xCUk7eGItICRqSPnJJ5/YWsj+aKeFahmzQwehipVMOmSOhGBQ8ovExNQzThmhAAAAgWgH+dSpU93Il+7xtOiP+LB69WpTvXp1Wy0jGN0DK5PgkksucTOppyyN9u3bJ6luItpIp1Lt6pejBVuVetq0aZP9/1X/oECboxJTRkCtWrXcKH3p35q4PJRKu5UtW9aNfPt4JAgUEPrpp5/cUVLhKHMVL+IlQ0gBXd0LqpqN+gaFQgFW9f6K1RJxCSZOnGgefPBBN0oqrQEXCVSST0HuQJ+1CVQaU+Umk1NAR0Hz1HrjjTfc0Qk6J4Xj3A0kR0AoQugiKTnt4EkLZQc9+eSTbnTC8OHDY/Zi5Oyzz7ZBoUqVKrkZXwoKNWzYMFXN4hB/yBBCaoUSDNLFv3b6xvLFPAAACI8JEyYEXAhLnOmA2KV7EfXR1QKhv+ycxLSo+vHHH6coS8cf7ZpXRlLyxVItWG7cuNEGp/TvUmm65NQQPVBFD1FPzccff9yN0l/i0lzqs6yAVgIFirRg70WL8l7UK9RrXUd/dyxncoRbPASEPvvsM7tupf7hodC6xMMPP2wWL15sN3nHMrW8UGDYn7T2KNM6a+LqTF66du0a9PyqoJVXmU69TkMN8CWnPzty5Eg3OkHVRFgvQHogIBQhvC4cVq1aZQ4dOuRGKde/f/8kJ6JGjRrZPhaxTGneCgop5dYfXdg1btzYfggDgRAQQmqEEgy64oor7E2z1w0zAABAYlqIf+mll9zIV7ly5Uy9evXcCLFKJc5uvfVW2yvKX/ZKgjPOOMPMmDHDPP3002HbEKrNpe+++64bnXDeeefZMmsqDxdM+fLl3ZG3++67L0Oz3HQ9npDtox5Mifsq+Ss1r+/RWoIXfz2czj//fHeEUMRyQEjBDL3O9dpL3hvHHwVTFcR46qmnYr5HnLL2FJgNlGETqNxbMN99951p3rx50LJzWjNU6chAmY3qP+aPAuQppde9AviqHpXg2muvtf9eID0QEIoQXgEhXfinNpPl5ZdftinPCRRR1gVcPESWVev3008/DbhzQrt3mjRpYnsPAf54BYSAQEIJBmnn5HvvvWdOP/10NwMAAOCfNrwF2q2sIAE7iGPb2rVrbfP45OWEvOg+WGXSw1kqXptV+/Xr50Yn6F5JO+2LFi3qZgIrVaqUO/KlEvB9+vRxo4yhdQMFsy6++GKf94/WE7yoL7Eymbz4W6hWaT+ELlYDQkuWLLHZZepREyqVlFN5SAUsY53OcU2bNg2aAaTeScqUSqmtW7fa96/6t4di3bp1NqtRWVxeAapALT4ee+yxkPsQib73iSeeMM8884ybMeaiiy6yWUhAemG1M0L4azKY0j5C+pAcMGCAueuuu9zMCUq5DFRKLdYoJX7+/PkBdyGp5IKi7V6N6gAhQwgpodISwYJBuqhUGnzu3DTc9yUAAE4xSURBVLndDAAAQGBqsu+PFrLV0wWxS/16FAzasGGDm/HvxhtvtIulZcqUcTPhoZ3ryXset2rVKmjWT2LKdPBHwabMKKumYM3SpUt9yjT5KykVKMjmr3+QMg0QulgLCCkbRa/vOnXqhJw5ovUsbSBUeUhl+8W6NWvW2Mw79R4LRsGTyy67zLz22mtuJjiVh1QwaMeOHW4mNMrKVFBOa6nJAzyBAj5ffvmlDegowyeUh/5+reMmUG90nYMoNYl09f8nW0SAxx57TJ96Po//P9G57wjs/z9k/vv/D4z/Lr74Yp+/o1ixYv/9/wnQfWd8+fXXX/+rUqWKz88k8SNLliz/TZo0yf0J4KSrrrrK5/VywQUXuGeBk9auXWvPtclfL4kfF1544X+7du1yfwIAACC4rVu3/nfqqad6Xlvo0aBBA/ediDVHjhz5r1OnTp6/9+SPrFmz/vfss8/+9++//7o/HT4LFizw/P/8+uuv3XeEZsKECZ5/z3nnnfffsWPH3Hdlvs2bN3v+OwsVKvTf0aNH3Xf56tGjh8+fyZEjh/09InSHDh3y+TkmPNLj9Z2evvnmm/8qV67s+d/i79G8efO4umf8/PPP/zvrrLM8fxb+HqVKlfrvl19+cX9DcA8++KDn3xPKQ/+22bNnu7/ppKJFi3p+f1oep5xyyn9dunQJeJ4BwuUU/c//v/CQyYYNG+aZIq0aoZrXDp9zzz3XlhhSirLqAKu2pGparl+/3tby9coyUobD/59gbQQ9XikltGXLlvbnEMiTTz5pG/VRbgEJlLKsbI7EVB9706ZNbgQY89VXX9mdPYF2NBUvXtzuFAq1pAYAAICoL+zAgQPdyNf48eNNhw4d3AixQpkE119/ve15EUzBggVtb8pLL73UzYSX/h3Tp093oxNKlCjhNyPGnxdeeMF0797djU6aMGGCue2229wo840dO9Y2lU9Opb7uvfdeN/J15ZVX+pSaU0USZXogdOqjfeaZZ7pRUsq2iYYerMqm0xqfSoeFmtmkChJ6jXXs2DFu1qT0c/riiy/svbL6ou3ZsyfJQ5k9CV/3799vypYta89z6o1+9tlnu78lOJVdVbaNMq/09+i+XX+nvno99DpT1o7KSaoCiFdvM332Tpo0yd7jpzV7Teu27dq1Mw899FCKsi6BtCAgFCFUBiB5mbdwePTRR20tynin8nA6wSZvgpnc7bffbn8XNHqHaJF/1qxZbnQCASEkpmaSN9xwgz3H+KMLSF3oBqqbDgAAkJwWmdS0/9dff3UzSWmjoHrRxkNJoXjy1ltvmc6dO9tyRcFo4+fUqVNNoUKF3Ex46d+gRdTkfT10/at/Z0oMHjzYbsBMrGLFirZHSpYsWdxM5lMQ54MPPnCjE/Tz1WZcf/2DRD+n3bt3u9EJ6j+i8v0InRr6n3XWWW6UlHpB58yZ040ik8qHK8CZkj436hGkfjGByioiMukcqf5Q6oGkvkP6qocCS/5og7/OfQo4qWylyuXxu0dGIyAUIVasWOGz6yatdLGiCy6dbGBsI7hu3brZOqyB6GSsHVb+dqUgfqjesxb8E9OifqCmvogfOpdo92Cg+sHaPamdgvoKAACQEronadu2rRv5uummm8yUKVPcCNFOG4x69eoVsGdUYvrep59+Ol03M06bNs0Gf5IbPny4uf/++90oNOrFoQBJYgq8NGvWzI1STtfhCijNnTvXBq30/6Egamop4JA/f36fzV7BsoMUmFWmVmLK8lAwV4GitFAWhbKMli9fbrMotMajf2OsUoUXf71TlN3hL1iU2fRafPHFF22/reQBVH/03tUG7t69e0dUUBRpo2X23377zZ4X9LrQWmTC1+zZs5ty5crZ6k9AZiIghLiil7uypp566ik3400N4FQqjPJO8U1NQ2fOnOlGJ2jnhnaHIX7pPKLSLSoBEIhS2pWe7pViDgAAEEyDBg0Clr3W/co111zjRohmur9QabZVq1a5Gf9y5cplG6oHChaGS8+ePc2oUaPc6KSPP/7YNGrUyI1Cc8EFFyTZWNekSRNbjSE15bF0Pa77NJVYStyoPzWZS4mpokirVq3c6IS8efOa7du3B8wO0jV/8p+HSlstXLjQjVJHmxNVZm/r1q1uxtjWAbG8TqGgj37mXpSBFYnBsJ9//tlmgs2fP9/NBFehQgXzxhtvmCpVqrgZAMg4p7qvQFzQxaZ6BWmHTyCq1VyrVi272wjxS7VcgcS0K+/OO+8MGgyqXLmyLRNHMAgAAKSGFs4DBYMKFCiQ4gV5RKYZM2aYatWqhRQMuvDCC83SpUszJBgk/noY5cuXzx2FZtu2bUmCQQquqKdQSoJBChRoAb1v3762aoMCN4mDQaLyefq+1PLq96MeIoGCQeL1c9LmwlCpvJR+PrrXUHaSKgzccssttmJF4mCQ+MueiRWBqi+ktVdLuCkwqeCsNhSnJBik7D5lfBEMApBZWO1EXFK6ty4WA6Vp7tixw+7qCXcpP0QPr7Rtkirj186dO80VV1xhXn31VTfjTcHkzz77LM3lIQAAQPwKdg/SsmVLSoNHOTUuv++++0zr1q1t35Rg9H0KBmVk03F/AaGUlldPXoa7f//+KS6prFJhWkQfMmSI2bx5s5v1lZLeLYnpPm/27NludJIy9YJZuXKlOzpJwZxQKcijKiZan1AG2JVXXmmDX8np/lTPx7JA99uRFBBSVlDTpk1tH+pDhw652cCKFStmg30jRoygZBiATEVACHFLu6oWLFhgChcu7GZ8qYawUvf79Olja/civnhlCBEQik+6+VbTx0WLFrkZb/Xq1TPz5s3zW+YAAAAgFO+884478qaAEKKXFpMvu+yyoJUrRPckw4YNy/A+t+qBoYeXlPRxUdaLeh0lUKmslPYfEmUTDR48OGiPoK+++sodpYwydH7//Xc3OilYQEhN5ZOXGVfGiLKYEmhdQb2hHn/8cTNy5Ei7+TQx/bc988wzthxaoAwZ3WOkpsReNAl0v60gamZTHxi9b/U6/uijj9xscDfffLP59ttv7QZDAMhsBIQQ12rUqGGWLVtmatas6Wa86QK8cePGfi+IEZsICEFef/11c/nll/vcuCWnGv6q5X/GGWe4GQAAgJRTsECZEP7kzp2bRcUopr45VatWtRuOglHGuTIKHnjggQwPBGzatMkd+UpJYEoltdT3JsHYsWNtM/3UUOm2QYMGuZG35CXWQqV1geQU+NLCfyAK1CkolFjigK0ayyur66677jIDBgywwbBjx465Z09SltATTzzhRt5ivVycRHKGkDLm6tSpYzP7FOQLhcorTps2zUyaNCkufn8AogMBIcQ9ZQipPnf79u3djDeVgKpevbpZsmSJm0Gso4dQfNMNR48ePUyHDh3szsZAunTpYmuO58yZ080AAACkjnrKBKJNKJQbij66tnzwwQfNtddea3vGBFO7dm1bikw9bDKDv8X3bNmyhfz6UyBIWTEJ7rnnHlO3bl03Sp2bbropYO+V1G7O8grCqjxbsECcVznpSy65xB0ZGzxIHKRSZlji7KHEOnfubM4//3w38hWoukmsiMSAkPo6Pfroo7bXVyiB3ARXXXWVDSKp6gwARBJWO4H/p51G2rGhFPRAF3xqhqlMAe1qIlMk9pEhFL92795trr76avPcc8+5GW86XyiDUCUgUrvTEQAAIDHKxcWe7du326yuoUOHupnAunfvbjctFilSxM1kPH+ly7z6rHrZu3evXRBXhoyoP696p6SV7tFuvfVWN/KlDLrU8MoQCnbvpz4/XiWly5Yta7+qwkDyfmC6d/BHfcFuuOEGN/JVtGhRdxS7Ii0gtHDhQhuAfPLJJ0NuI6D1pRdffNGWlIuHIB6A6ENACHC0sNu3b1+7yz/QRaTq1nbt2tVmDYTaPBDRiYBQfFJZjsqVK5v58+e7GW+60NcNXmaU8AAAALFp586dAXsWasG4SZMmboRo8PHHH9sF5S+//NLN+KfrSwUZtClJmTiZyV9ASNkSwe6JFAxq1qyZWb9+vR0rsKXr5nD9N1133XXuyFdqA0LK5EiJVatW2Yye5LJnz26KFy9uj/V7TBxEULCnVq1abuRNvY79ycwAYUaJlIDQgQMHTLdu3eyG4I0bN7rZ4NSWQK8NlQjkHhFApCIgBCSjFH6lAQerFTxx4kRb+3nx4sVuBrEm1N1viA26wVBQuFGjRnYxJhDVc9euzVatWrkZAACAtHv33XcDLoiqwT19KKKDms/379/fZp3//vvvbta/0qVL23vLYKXMM4pKu6mPbnJ6ffpbmFfwY/To0eaCCy4wX3/9tZ1TgERlEM8991w7DgeVVfNXNk5l3lJKvysFAJJTYMsrK+SDDz4wV155pQ2OJacsHt1HKjsocbWBAgUKmJEjR7qRf1pjKFmypBslFQ8ZQoFkVEBIm4TV9+mll15yM8GpWoR6RH311VfmwgsvdLMAEJkICAEeypUrZ4NCnTp1cjPefvzxR5v6rrrIoaYPI3qQIRQ/9F7WTe+QIUOC/o51c6BeYjVr1nQzAAAA4RGsXFyLFi3cESLZr7/+ajcZDRw4MKT7h+bNm9uSZZUqVXIzmU/ZSjNnzvQsUZg4EKJAivrtDh8+3PZYufvuu20gRdRfc/bs2ely3axAmxdt3Eopf5U/1Ed08+bN9nf4888/m6lTp9rSf/p9Jfw3JqefjXoG6b167NgxO6dMEWV+hVI+TN+r/lFe4iFDKNCmTFVrSU9636rfj17zCuiFSr8vZQU99thjlBEHEBUICAF+6OJ13LhxNhMo0C4j7SbSThClEv/0009uFrGAgFB8UP8w7TD0qhuenOqga9dXoGavAAAAqaEehspADkTXIohsCo7o2lJfg9Hiv3qTKDMsEjO/FBRSdo96HyVeqNcGSj2U1aR/t4IkvXv3TlJ2LW/evLZcXsOGDd1MeOn/38t5553njkJ3xhlnmE8++cQzEKNglp7X9f+NN94Y9PeqflH63uXLl7sZYx5++GHPbCt/LrroIneUVLwHhNIrQ0j3+Fr70Wsqec+nQPS6UK8glYMMVmEGACIJASEgiFtuucVezFWsWNHNeFNKvC78X3/9dYIGMYKAUGw7ePCgfX+rKe3hw4fdrDfdrGvHl3Y4UqYFAACkB5Up8te3RYoVK2ZKlSrlRog0+t0puKNSYrt27XKz/uXLl882ne/Xr5/nfUek0HWwgj3qr1mmTBk7p+yJDRs22Cx7L8reWbNmjc3ATy/+ynLpfZJSCkIocKWFffX5SWz//v3myJEjbhSaxPeMqiiiDaQp4S9TLB5KxqlPmj/pERDatGmT/d3fcccd9ncdKrUaWLdune0VFMnvXwDwwlkLCEHZsmVtiShdJASiVPMOHTrYRpBKN0Z048Iudn344Yd2F5dKNwSjm3V9v27kAu1YAwAASItg5eK0aKnFeUQeZXc1adLEPProowGDegm0kVCbDqMp40sVMbQAPm3aNFO9enU3m5SyYJRRpGvnUMqjpYX6FCWn90dasmh0//fqq6/a+/9g9P+lXj8KftWoUcPkzp3bPXOSghsvv/xywCCHF3/ZT8q6inUZFRDS3/X000/b4Fso2XwJ1AtL7wEF8OO9pxOA6MVqJxAilZB75ZVXzOTJk81ZZ53lZr0pzVgXcUo7JqMkenkt/vP7jG5q6HvzzTebpk2bmm3btrlZ/3Rzt3LlSr81ygEAAMJBO9M//fRTN/KmslyIPConXLVqVTN37lw3E9htt91mFi1aZEqUKOFmoofuj9RjRcEs9Q5auHChvfdVtQxlRelncN1112VI4FKbtpIHYQoWLJjmHi76O5955hk3OlE2T0ED/Xcr4DdlyhSzevVqmzWkDCllean/sKoP/PLLLzYYpg2i+ln16tXLb3AnEJUi8xIP96KBNuCFKyC0YsUKWwrwoYceStIPK5jbb7/drF+/3r4WCM4DiGan/P8HCqubQAppIVkXA6qJHEy9evXsrqCE9HpEj/vuu888++yzbnSCbjJ27tzpRogW+qhTE9ju3bvboFAolP4/cuRIkz17djcDAACQPtTTUGVsA9E9SDz0EIkWur4cMWKE6du3r+0rG4wCFbq36Nq1K4vJYaLASeLSzyoXt3XrVjdKPf1u1c9LGUD6O1NTOULBIWX0eGUOBXPs2DG7ITU5BZ38BYtihd5L/rKEdJ7U5r7UOnr0qC0Drnu8UDL5EigbTWs69evXdzMAEN3IEAJSQanBc+bMMS+99JLJlSuXm/X2xRdf2B1FTz31lDl+/LibRTSgZFxs0OJJixYtzE033RRSMEg3X8oEVINQgkEAACAjBCsXp34pBIMih7JjWrVqZXvrhBIMUvk03Rd269aNYFAYJf/Zq4R7OOh31KBBA1O8ePFU3xMqkJSaYJCcfvrp7iipeNjPHejnnZYMoXnz5tm+0MOHDw85GKTAlLKIvvnmG4JBAGIKq51AKukisUuXLua7776zWUCB/Pnnn+aRRx6xtZbViwjRgYBQdNMNooK26hX0wQcfuNnALr74YltCoF27dm4GAAAgfWnTWLDKA5SLixxaHNY148yZM91MYOq9o+vL2rVruxmES/KFfQWEYiFoov8Gr3vRv//+2x3FLq2z+Csbl5oNtnv27LF9ntXfavPmzW42OJUOV2nEQYMG2bKBABBLWO0E0ki1n+fPn2/T/4NdKKxZs8beCNxxxx3m119/dbOIVF4X4WmtSY2MsWDBAnujrl2YKq0QjG46BgwYYOu5h9JEFgAAIFzUr1AlogJp2LChO0Jmev31180ll1xifvjhBzcTmEpQf/LJJ7bsNMJLwYHkGSPaEJaSRf9IpX5MXlksGzdudEexzV/JuJRkCCmo9uabb9oeTnrfhkrVItRDSn2xKleu7GYBILYQEALCQIGDe++91zaXrFu3rpv1pguTcePG2Tq0Tz/9dIqaGCJjeQWE/F2cIjL8/PPP5oYbbrBZe3o/hkIlWHTBr3rSBPwAAEBG+/LLL92Rf3Xq1HFHyAzKzFBwR5kGody/aVF5ypQpdmGZ68v0oc2WXkGTadOmuaPo5a8PkjJW4kFaA0IKnDVq1MhWfdi9e7ebDe7qq682a9eute91f1lKABALCAgBYVSmTBmbmaCAz9lnn+1mvan5perRli9f3tYMj4d6wNHG6yKQgFBkOnLkiA3oKLsnJTeBCuRqV65KAgAAAGSGr776yh15U++gQoUKuREy2r59+0yTJk1sRYhQlCpVyixevNj2r0T6WbZsmTtKaurUqe4oevkLCAU7V8QKf8GYYAGho0ePmocffthcdNFF5tNPP3WzweXPn9/2kP3www/N+eef72YBIHYREALCTFklnTp1srtSVBouGKW0t2nTxjYp1MI0IodXhhA7hSJLQikABYKeeOKJkDPuihYtahuL6sZeOzgBAAAyg65lgmUIqQwuMofu6VQiTteNoWjWrJnN4tCCNNKXv4CQqgSEknUXydRzysu7774bF6XnU5ohpPPoe++9ZzfbDh48OEWl5W699Vazfv16m02k/kUAEA8ICAHpRBlCr7zyit3FU6lSJTfrX0LPk44dO8ZE3eNYQMm4yKWLfjVf1g26Lt63bdvmnglMF/ldunQx3333nbnyyivdLAAAQOb4/vvvze+//+5G3ggIZY65c+eaWrVq2d9RMLrGfPzxx+2idJ48edws0suff/5pfz/+tG3b1uzcudONoovuc1RBxIv6Jr300ktuFLtSEhD66aefzLXXXmtatmxpy4eHSr2g9RpSfyFlCAFAPCEgBKQz1fvWDp+RI0ea3Llzu1lvuvibMGGCLT3XtWtX88svv7hnkBkICEUmBU/VI+iqq64yS5cudbPBqSnookWL7E0UN+oAACAShJLJQEAoY+mebNSoUbZM3IEDB9ysf7qunD17tunfv7/n/QPC77XXXgu4IUzBoOuvv94GUKKNetj88MMPbuTrxRdfNHv27HGj2OSvKkfi36cqQwwcONBUqFDBvv9Cpffo/fffbzcINm7c2M0CQHzhagXIAAoi9OzZ02zYsMFmMwSjpqVjx441pUuXNvfcc4/ZsWOHewYZiYBQZFEtdjUHVTBo4cKFbjY4BWIVkFX5DmUUAQAARIpQAkLVq1d3R0hvyjxR2W/du/37779u1j9tONI15jXXXONmkN4UCHjqqafcyD9V6tDvUr/TaDJ+/Hh35E0Zhd26dbOBy1gVLENImT0qy6ggbKglw6VKlSp2Q+Hw4cNNrly53CwAxB8CQkAGUkNYNStUvWMtagejHTDaAVSyZEl7UxIP9YIjidfOJAJCGW/VqlW2Hnvt2rXNJ5984mZD07p1a1sTWu8ffncAACDSBAsIFS9e3BQoUMCNkJ5+++03W1JY2SehuPnmm232ealSpdwM0puCIA8//LDZvn27mwls0qRJpm7dumbLli1uJrKpsoh6nAbz9ttv2z6qscrffZtKwinz6+qrrw6YRZXc6aefboYMGWKDQQTYAYCAEJApVPbhs88+szWm1Qw/GO1qUtkCBYaU3hxqvxSkDRlCmUc3e9rVp1rQ1apVS1EZADn//PPNrFmzzPTp003RokXdLAAAQOTQZq9gi5qUi8sYGzdutJnkoWRs6X7g+eefNxMnTjQ5c+Z0s0hvyti66667zDPPPONmQvPtt9+GVPovs2kzqPoJ//PPP24mMP0sQulvFY38lYxTIEz3dymh4JHKw/Xp08ecdtppbhYA4hsBISCTqPFo8+bN7cXJmDFjzDnnnOOe8e/YsWO29JUaIN5yyy1m9erV7hmkBwJCGU83QGqiqt5bl156qQ2apsSZZ55pnn76abNu3TrTtGlTNwsAABB5tPklGJU4QvrS70HXnps3b3Yz/hUsWNB8/vnntqy37ueQ/lROXdf2jzzyiM38V6kwbfgKVvJL93KVKlWy/UdV2i+S7d+/37Rq1cquDYRKQS6VKlRmW6wJxz231kx0L/nhhx/aUvwAgJNO+S+WC48CUeTQoUNm6NChZsSIETbwEyqVNXjggQdsQ0RuSsJLtYV79+7tRifo5z1v3jw3QrgcPXrUTJgwwQY8f/zxRzcbOu32uvvuu02/fv1M/vz53SwAAEDkUklbVQEIZOrUqaZt27ZuhHBTtoFKv4XSZ0ablaZNm2YKFSrkZpARtGTl7z5XWTX79u1L8lBwRaUWFUyNlj4xyn5K7dKcfjZeGxmjmYJ+a9ascaOUyZEjh3nooYfsfbxKxQEAfJEhBESIM844wwwcOND89NNPplevXvZCJhTqqaI0aO16ev311+1FMcKDHkLpb/fu3WbAgAH2pk0BndQEg2688UazYcMGWz6CYBAAAIgW6pMYzAUXXOCOEG66dlSwLZRg0L333mvmz59PMCgTBNr0mC1bNnPuuefaMuzqN9qkSRPTrl072zcoWoJBooCO7j1T84i1YJDovys12rRpY7PIHn30UYJBABAAASEgwqgMgbKEVLJA/YJCDQwpvbxDhw62d0r//v3N1q1b3TNILd1gJEdAKO20+23hwoW27GGxYsXM448/bn7//Xf3bOjq1atnG4Oqoar6awEAAEQLXQ+FsgOeUkfhp2wMZWdpE16wrAzdi02aNMk2+qf/CJAxUnrPXb58ebtRVj2GtNEQABAYASEgQmmnk0qWKTCkknChNizduXOnzTRSYEg9VFQ3V3WXkXJeAaHU7laCMXv37rVlUSpUqGAuv/xy88Ybb4S0IzO5atWqmQ8++MB89tlnpkaNGm4WAAAgeqjvx549e9zIm+4HVEUA4aPS3MoKClaqT7Th6Ouvv7Yl5QBknFADQuofq5Lj6q3csGFDNwsACIaAEBDhdCM4bNgwGxjq06dPyIEh7XZTA8WWLVvaXTJKm/7555/dswiF1y5AMoRSRq/DL7/80mYDFS5c2O7GVBp/aqj0w0cffWSWL19umjVrRs8sAAAQtULJDqJcXHgpAKd+oO+8846b8U+lx3TNqbLcADKG7h3VN+377793M/6pOsrGjRvt/SXZewCQMgSEgChxzjnnmCFDhtigzhNPPGHHodqxY4d58sknTYkSJezNjW6C/vjjD/cs/KFkXOrpNafdWhUrVjSXXXZZqrOBpFGjRubzzz+3ZebUL4tAEAAAiHYEhDKW+rTWqVPHLFq0yM3499hjj9ls9Lx587oZAOlNPdVUElz9Yfft2+dmfVWvXt2+j8ePH2/L7QMAUo6AEBBl1DQ/Idtn3LhxtvxWqLTjRhkWaraozKOOHTuaefPmUVLODzKEUkYX7q+++qq54oorTNGiRW0PrHXr1rlnU6558+ZmyZIl5uOPP7Y3BwSCAABArCAglHGU6VO7du2gWQdnnXWWDQQNGDAgJhv1A5FI5TPvvPNOG+jRBsBArr/+ent/qPczACD1uMoBotTpp59uOnXqZL777jszd+5c07hxY/dMaA4ePGgmTJhg/1yRIkXMvffeaxYvXhy0sWo8IUMouCNHjpi33nrLtGjRwgYZO3fubHv7pPZ1pJ/vTTfdZOtAq/9VzZo13TMAAACxY+3ate7Iv1KlSrkjpNbs2bPtxiItOgdy0UUX/a8sMYD0d/z4cVtRQoHvV155JaT7R5XCp6cvAKQdASEgyilrQkEdBYUUHFKQyCuQEYhukJ5//nm700Y3nv369TPffPNN3AeHyBDydvToUbt7Ug12FQRSAOf99983f/31l/uOlCtUqJB5/PHHzdatW82UKVOo1w4AAGKWrrFDyRBS/0Wk3ssvv2wzznXtGoiuZb/++mtTunRpNwMgPanXsYKwqiihjaqhyp49uzsCAKQFASEghqhfi8rIbd++3YwYMcKUK1fOPRO6zZs3m0GDBpkqVaqY888/33Tv3t2W7NIOnnhDhtBJO3futDu3dFOtsoX6OnnyZJshlBaXXnqpzTBSCcT+/fvbwBAAAEAs27Nnjzl06JAb+VegQAF3hJRQwE3XlV26dDH//vuvm/WlTINRo0bZa9pcuXK5WQDpZcOGDbancdOmTYOWcPSS0o2vAABvBISAGKQF+169etlSFF999ZXp0KGDyZEjh3s2dMrWeOGFF8xVV11l/862bduaSZMm2ZvYeOCVIRQvKeq6kVaW2MCBA23ZNu1QVW1nZQYdO3bMfVfq6LV4xx132MahqhN9ww03eP6sAQAAYpGusUNBQCjl1BtVgSBdwwaiLPf58+ebHj160KcSSGf79++36xPKClJP49QiIAQA4UFACIhhurmpU6eOGT9+vM3wGDNmjG3WmBraxfj222+bW2+91Zxzzjm2FvewYcPson6gnXfRzOuCM5bT1Pft22dmzpxp7r77blufWVli2l25bNky9x1pU61aNfPMM8+Ybdu22Wwj/f0AAADx5pdffnFH/mkTUp48edwIodCmJTWd13VmICqTvXLlSnP55Ze7GQDp4Z9//rHvxzJlytj7QAVs04KAEACEBwEhIE6cddZZpmvXrrZZqm6A7rrrLjuXGgoALViwwPTp08cu8mv3Yps2bczo0aNtGnis9B7yylpJTaZVpFK5N/We0u/x4osvNmeffba57rrr7O8xlIWKUCizSH+/+lutWLHC3HfffSZfvnzuWQAAgPgTSoaQsvNPPZXb9VApA0FVDbS5KRBtfPr888/pzwSkM60X6B5TVSZ2797tZtOGgBAAhAdXmEAcqlq1qnnxxRfNjh07zOuvv24uu+wy90zq7N2717zzzjv2Bkt9i4oWLWpuueUWM2HChJBLYkQirwvOaA4I/fnnn/bCfMCAAfZ3njdvXnP11VfbTC8Fa8IVyMuZM6f9/c+bN8/+/ocMGWL7WwEAACC0DCHKxYVO9zS6tlUpYn9OP/10e9+jctgsKgPpR71hVRJcFUVWr17tZsOD9y4AhMcp/8XKVn4AabJx40Yzffp08+6779rgQDip/Ngll1zyv4cCUtFQem39+vWmfPnybnTC8OHDzf333+9GkUundgVjFi9ebB9LliyxmWEKCqWHrFmzmgYNGpibb77ZtGrVyuTOnds9AwAAgMRuvPFGM3XqVDfypusq9bhBYLqHUWaQFqH9Of/8882MGTPsPQiA9HH06FG7EXDo0KHmjz/+cLMpp7L3Cvx43beqFL76IwMA0oaAEAAfCiS89957tuTCF198YWv/hpMu8HRDljhIpKBRpDV0/fHHH03p0qXd6ARlVqncXqQ5fPiwLQeYOAD066+/umfThzKBrrnmGtOyZUvTtGlTm3EEAACAwOrWrWsWLVrkRt7atm0bNGgU75YuXWqaNGli9uzZ42Z8KVg0ZcoUShYD6URLijpX9e7d2/aKTS1tGFW/Ym2+7N69u602kdzkyZNNu3bt3AgAkFoEhAAEpBus2bNn28wh9ZtRs9b0cO6559ogUaVKleyjcuXK5sILL/Ts45NRVM7jvPPOc6MTXnvtNdOxY0c3yng6ZW/fvt18++239qHePN98843NZlJvp/SmPkPNmze3vYauvPLKmOqpBAAAkBGKFSsWdOG0c+fO5uWXX3YjJDdnzhzTunVrm5XgzyOPPGJLJWfJksXNAAgnVRbp0aOH+eqrr9xMymlToTZcKgikNQFRQPztt9+2x4mpoone9wCAtCEgBCBkuuH6+OOPbebQBx98YHsHpScFg1SyLSFIlPDQhWJGZBMpw6ZQoUJudMKbb75py3xkBGX9rF27NknwR1/37dvnviNjKEuqWbNmNhNIO1pVHg4AAACpo342wcr4aoFUmenw9cYbb9gNWn///bebSerMM880kyZNspuYAITfzp07zaOPPmo3S6Z2SVEVQnr16mU6derkU268S5cungHx999/31x77bVuBABILQJCAFJFN2Bq3KrMIQWIQmmOGy558uQxpUqV+t9DAYuE48KFC5tTTz3VfWfaKOCljJjE9N/aokULN0obnX71/6HSdIkfP/zwg/2qC+3McM4559jsHz0aNmzokyUFAACA1FEgSAGhYO69917z7LPPuhESjBgxwjzwwANu5KtChQq2X1CZMmXcDIBw0YbFYcOG2b66gbLzAqlWrZotL9emTRu/Gw0ffPBB24soOWUGqgwkACBtCAgBSDOdRlauXPm/4JCyWjKLbrBLliyZJGCkh4JG2oWk/kWhOnTokN1hmJjK5jVu3NiNglMZN5V48wr46HHgwAH3nZknV65cpn79+v8LAFWsWDHi+jkBAADEgt27d9vNN8Goj4YWXXGCrqm1SBzoZ3LDDTeYV1991SfbAEDaaDPouHHjzGOPPWZ27drlZlOmUaNGpm/fvqZBgwZB7zWffvpp89BDD7nRSfPnz7d/HgCQNgSEAITdTz/9ZL744gubQaSHAiCRQJlDynYpWrSovRFX6Tl99To+66yzzPHjx312cC5YsMBcdtlldnfUb7/9Zi+I9dXrWBk+W7ZsCVoSJKMVKFDAXHLJJaZWrVqmXr16pmbNmikKlAEAACB1dF18wQUXuJF/Cn5oURTG/PXXX+b222+3ZeC8qEeQsgl69uzJpiYgjLRcOGvWLHs+Us/a1LjmmmtM//797f1nqF566SXTrVs3Nzrpyy+/tCXMAQBpQ0AIQLpTYCQhOKSH+uBE+qlH/YsUHFJ2T2IKFilzKLUp8hlN/x1VqlSxF+AJjxIlSnCzDAAAkAmUVV+9enU38q9fv37mySefdKP4deTIEXP99debjz76yM0kpev1qVOn2mx3AOGzfPlyW55RGz1TQ71+1GeoRo0abiZ06tvbrl07Nzpp0aJFpnbt2m4EAEgtAkIAMtz+/fvNV1999b8A0bJly+zOP6SNdkdeeOGF5qKLLrLZPwr+VK1aNaQ69QAAAEh/n332mbniiivcyL8BAwbY8kzxbM+ePaZp06ZmyZIlbiYpXeu+/fbbNvsfQHiowsXDDz9sgzKp0bJlSxsIUq+g1Jo+fboNBCentYNLL73UjQAAqUVACECmU7bN0qVL/xcg0s4f7QaEf7rxVeAn8aNs2bIme/bs7jsAAAAQad577z27YBqMsoOUJRSvtm7dapvHb9iwwc0k1bVrVzNq1CiufYEw2bdvn3nqqafM888/b0unp1SbNm3MI488YipXruxmUk+9iVu1auVGJ33++ee25DkAIG0ICAGIOMoWWr169f8CRAoW7dixwz0bP3SDq/JupUqVMiVLljTlypWzgZ8KFSqYvHnzuu8CAABAtJg4caK57bbb3Mi/wYMH2wbs8WjVqlWmWbNmntf/uj5Wf5EOHTq4GQBpoX63o0ePNgMHDrRBoZRQGfK2bdvaQFDFihXdbNq9//77pkWLFm500qeffhpShiUAIDACQgCiwt69e83atWvNmjVr/vf47rvvUnzRGmlU91zBHj0SAj8Jx4UKFTKnnnqq+04AAABEuzFjxpi77rrLjfxTuTiVjYs3H3zwgbnppps8qwUUL17cvPPOOyH1YAIQmJYCp02bZh566CGzefNmNxsa3aPqfaosRm1aDLfZs2fboHByH3/8sWnUqJEbAQBSi4AQgKil09evv/6aJEiU8FAZusyiC+Rzzz3XBnQKFizo96seOXPmdH8KAAAAse6FF14w3bt3dyP/evXqZUaMGOFGsU/X9c8++6z97/ZaotAisHqanH322W4GQGotWLDAPPDAA7aXb0qoZ2379u1tjyH1rk0vc+bMMddcc40bnfThhx96zgMAUoaAEICY8++//9pmmMmDRKpBrnJ04aBSHzVq1DB58uSx5dsSvubLl8/kz5/fXiwDAAAAiT333HOmR48ebuRf586dzcsvv+xGse3vv/+2PxOVrfKixecnnniC62sgjTZu3GgefPBB28ssJfTe0/2vsolKly7tZtPPvHnzTOPGjd3oJGUQemUOAQBShoAQgLihYNCmTZts6TkFjH7++ef/PTQ+dOiQ+87gdDFdpkwZNwIAAACCUxbMfffd50b+3XjjjTYjJtYdPHjQ3HDDDTYjILkzzjjD9lxq2bKlmwGQGrt27TKPP/64DTL/888/bja40047zfbrUiBIvW0zyvz5803Dhg3d6KSZM2d69hYCAKQMASEA+H86Fe7fvz9JkEi1lEeNGuW+46QcOXLY4BG7FAEAAJASzzzzjC2LFkzTpk3NrFmz3Cg2bd261e72V1/Q5MqXL29mzJiRrmWpgFinMuojR440Q4YMMYcPH3azwWXLls3cfvvtNptIvbsy2hdffGHq16/vRieph1irVq3cCACQWnQrB4D/d8opp9iSb1WqVLG7ju6991574eylYsWKBIMAAACQYqFeQ6Ykcz0aqXdJzZo1PYNBbdq0MYsXLyYYBKSSsoBee+01c8EFF5hHH3005GCQMoLuuusu8+OPP9oSjpkRDBJ/58mUZDcBAPwjIAQAfvi74KxUqZI7AgAAAEJHQMjYzJ969erZMlaJnXrqqWbYsGFm2rRptlwcgJRR1QuVX6xatarN8NmxY4d7JrCsWbPavmU//PCDefHFF03RokXdM5mDgBAApC8CQgDgBwEhAAAAhJN24IciFgNCWqweOnSoad26tTl27JibPSF//vy2kfwDDzxgM/cBpMzq1atN48aNzTXXXOOZeedFQVj1CFJ/XPUXOu+889wzmUsBKi8EhAAgPAgIAYAf/i44K1So4I4AAACA0OXJk8cdBbZnzx53FBv++usvc+edd9qeJMmpdNzKlSvNFVdc4WYAhOqXX34xt912m6lWrZr55JNP3GxgCrq2b9/erF+/3owfP96ULFnSPRMZyBACgPRFQAgA/PB3wVmsWDF3BAAAAIQuX7587iiwffv2pagJfCTTf4uyFl599VU3c5KCRAsWLOD6GkihAwcOmIceesiUKVPGTJw40WbghaJt27ZmzZo15o033rB/NhIREAKA9EVACAD88HfBWahQIXcEAAAAhC5v3rzuKLiff/7ZHUWvb775xtSoUcN8+umnbuaE7Nmz2wDR2LFj7TGA0Cjb7oUXXjClS5c2Tz/9tPnjjz/cM4Fdd9119v04depUU758eTcbmVTKzgsBIQAIDwJCAOCH1wVnrly5aHILAACAVAk1Q0i2bNnijqLTpEmTTO3atc2PP/7oZk5QNtCXX35pm94DCI0ygGbMmGHLl3fv3t38/vvv7pnAmjZtalasWGH/bLT0wlXQywsBIQAIDwJCAODHv//+645OIjsIAAAAqZWSgFC0ZggdP37c3H333ebWW281x44dc7MnNGzY0C5OX3zxxW4GQDBff/21ufTSS03r1q3Npk2b3GxgjRs3NosXLzazZs2y/YWiib+sJwJCABAeBIQAwA+vC04CQgAAAEitM888M+QSadEYENq2bZupV6+eGT16tJs56cEHHzRz5swxBQoUcDMAAlHw5/rrrzd16tQxixYtcrOBNWjQwCxcuNDMnTvX1KpVy81Glz///NMdJUVACADCg4AQAPhBQAgAAADhdMopp5hSpUq5UWDRFhCaP3++zURQVkJiuXPnNtOnT7f9TrJmzepmAfjzww8/mA4dOphy5crZ904o6tata9+DeiibKJoREAKA9EVACAD88LrgLFy4sDsCAAAAUk7N4EMRLQEh9TYZOnSoadSokdm9e7ebPaFs2bJm6dKlttQVgMB++ukn07FjR/u+ef3110MKgCgLSNlAygpSdlAsoGQcAKQvAkIA4AcZQgAAAAi3UANCW7ZscUeRa8+ePaZVq1a2HFzy/puaX7Jkic1yAODf5s2bze23327KlCljJkyYEFLgQ9l46g+k/kLqF6Tsw1hBhhAApC8CQgDgBwEhAAAAhFuoAaFff/3VBlwi1aeffmoqVapkZs6c6WZOOPXUU83gwYNtqSv1TALgTUHfzp0720DQa6+9FlLAo3Llyubdd981y5cvN02bNo2pQFACAkIAkL4ICAGAHwSEAAAAEG4XXHCBOwpu1apV7ihyaLG2d+/e5sorrzQ7duxwsyfkzZvXfPTRR6Zv374xuVANhMPWrVtNly5dbCDo1VdfNX///bd7xj8FX2fMmGFWrlxpWrZsGdPvLwJCAJC+CAgBgB/Jy14IASEAAACkRdWqVd1RcFr8jSTffPONueSSS8zw4cPdzEkXXXSRWbZsmS1fBcDXL7/8Yrp162azBF9++WXz119/uWf8UyDonXfescHh6667zmbgxTp6CAFA+iIgBAB+kCEEAACAcDv77LNDzhKKlICQduw/+uij5uKLLzarV692sye1bdvW9jIpVaqUmwGQYNu2bebuu++2gaCXXnoppECQAqwqu6hAkPpxxUMgKIG/DKFQMqkAAMEREAIAP7wCQiqDAQAAAKSFsmxCEQkBoa+++spUqVLFPPnkkz4LslqkHjJkiHnrrbdMrly53CwAUUnF7t2720Dp6NGjzfHjx90z/lWsWNG8/fbbNvDaunXruAoEJaBkHACkLwJCAOBH8gvO7NmzUwsdAAAAaVarVi13FNimTZvMgQMH3ChjrVu3zmYmXHrppWbDhg1u9qSEfkF9+vThGhlIZOfOnaZHjx6mZMmS5oUXXggpEFShQgUzbdo0W5axTZs2cRkISkDJOABIXwSEAMAPr4AQAAAAkFahZgiJV4m29LR582Zz22232UyFd999180mpXJWy5cvp18QkMivv/5qevbsaQNBzz33nN9Ml8TKly9vpk6dar799ltz/fXXx3UgKAEZQgCQvvikAQA/CAgBAAAgPagEW/78+d0osIwqG6eshnvuucdceOGFZuLEiea///5zzySV0C9Ii94AjNm1a5e5//777Xti1KhRfjNcEitXrpwttfjdd9/Z9xSBoJMICAFA+uITBwD8+Pfff93RCQSEAAAAEA5ZsmQxTZo0caPAli5d6o7Sx759+8xDDz1k+5y8+OKLfhve0y8ISGr37t2md+/eNhA0cuRIc+zYMfeMfwoEvfnmmzYQdMMNNxAI8kDJOABIX3zyAIAfyWuhExACAABAuDRr1swdBTZ//nyfjUrhcOjQIfPkk0+aEiVKmKeffjrgYjb9goCTfv/9d/Pggw+a888/3wwfPtwcPXrUPeNf2bJlzZQpU2wg6MYbb7RBYXgjQwgA0hcBIQDwI/luLQJCAAAACBf138maNasb+ffbb7/Z/iLhcuTIEZvpo0DQo48+ag4cOOCe8VapUiX6BQH/T6XhHn74YfveGTp0aEiBIJVgnDx5slmzZo256aabCASFgIAQAKQvAkIA4AcBIQAAAKSXs846y9SvX9+NAvv444/dUeopA+iZZ56x5a369u1r9uzZ457xTyWtFi1aRL8gxLX169ebzp07m+LFi5vBgwebw4cPu2f8K1OmjHnjjTfM2rVrTbt27QgEpQAl4wAgfREQAgA/KBkHAACA9HTrrbe6o8DSEhDSbvsXXnjB9gjq1auXzTgKRhujlAGhXif0C0I8+u+//8wXX3xhrr32WlO+fHnz6quv+s1cSUzfO2nSJLNu3TrTvn17AkGp4O/n/Pfff7sjAEBaEBACAD/IEAIAAEB6at26tTnzzDPdyL+FCxeGVJ4qsb/++suMHTvWlC5d2nTv3t3s3LnTPROY+gXNmTPHNsunXxDijYIOU6dONTVr1rQZfLNmzXLPBHbJJZeY9957z/YIuvnmmwkEpQEl4wAgfREQAgA/kgeEsmXL5o4AAACAtMuZM6ctJxXM8ePHzYIFC9woOJV5q169uunatavZtm2bmw0uoV9Qo0aN3AwQH1QG7tlnn7UB1BtvvNG+D0Kh3lqfffaZfc81b97c5x4SKUdACADSF59UAOAHGUIAAABIb7fffrs7CmzevHnuyD/1BVKvk7p169pMhZTQIjj9ghBvlDn38MMPm2LFipn77rvP/Pzzz+4Z/5Q5d/3115sVK1aYuXPn2kwisunCx18PIUrGAUB4EBACAD8ICAEAACC9KZNH5amCCdRHSP1OJkyYYMqWLWt7naSErnmHDRtmpkyZQr8gxI21a9eaTp06meLFi5vBgweb/fv3u2f8O+2002wAd8OGDWbatGmmWrVq7hmEExlCAJC+CAgBgB/Jd3mx6wsAAADhpmvMfv36uZF/a9asMT/99JMbnfTLL7+YBg0amI4dO5rff//dzYYmX758tl/QAw88wLUuYp4Cp/PnzzdNmjQxFStWNOPHj7e9toJRoLRXr172/aeAa5kyZdwzSA/+MoQICAFAeBAQAgA/kmcIhXKzAAAAAKRUs2bNbP+eYJSVkNinn35qsxS++OILNxM6+gUhXug+ThlwysZr2LCh+eijj9wzgSlgOmDAAFtGbsSIEaZo0aLuGaQnAkIAkL4ICAGAHwSEAAAAkBF03ak+JsFMnTrVflWmw5AhQ2xD+5RmBUlCv6ASJUq4GSD2HDx40IwcOdKUKlXKtG/f3qxatco9E1iRIkXsn1Mg6LHHHjNnn322ewYZwV/JOHoIAUB4EBACAD8ICAEAACCjtGnTxpQrV86NvK1evdps3LjRdOvWzfTt29f8+++/7pnQ6Pp2+PDh9AtCTNu0aZO5//77TbFixexXlVUMhUrBjRs3zpaG69mzp8mdO7d7BhmJDCEASF8EhADAj+QBoePHj7sjAAAAILyyZMliRo0a5Ub+XX311Wbs2LFuFDqVv5o7d65dIKdfEGKNggXvv/++fX8osKMMH2UIhUJlF99++22zbt0606lTJ5MtWzb3DDKDvwwhAkIAEB4EhADAj+Q3ymQIAQAAID2pBFyLFi3cyNuWLVvcUegqV65s+wVdeeWVbgaIDbt27TKDBg0yJUuWtO8dBT1D1aBBA/Pxxx/b94Yy9BSUReZS1qO/jZiUjAOA8CAgBAB+UDIOAAAAGU2ZDdmzZ3ejtLvpppvoF4SYoh5aX331le0LpLJw/fr1M1u3bnXPBqfA0eLFi838+fNNo0aNyJiLIP6yg4QMIQAIDwJCAOAHJeMAAACQ0ZTpoP5AaZXQL2jy5MkmZ86cbhaIXocPH7blEqtUqWIuvfRS2wsr1E17p59+urnjjjvMmjVrzMyZM02tWrXcM4gkBIQAIP0REAIAP8gQAgAAQGZQxkPNmjXdKOXOPvts+gUhZqxfv97ce++9pkiRIqZr167m22+/dc8EV7x4cTNkyBCzbds288orr5gKFSq4ZxCJ/vjjD3fki5JxABAeBIQAwA8yhAAAAJAZTjvtNJv9cMYZZ7iZ0Cl7gn5BiHbHjh2z74ErrrjClC9f3jz//PPm4MGD7tng1B/o3XffNT/++KPp06ePDZIi8gUKCJEhBADhQUAIAPxIvpuSDCEAAABklFKlSpkxY8a4UWjUL0i9Vc4//3w3A0QP9QZSb58uXbqYggUL2h5Bn332mXs2uBw5ctg/+91339n+QC1btjRZsmRxzyIaUDIOANIfASEA8IOScQAAAMhMWhC/5ZZb3Mg/XbeOGDGCfkGISjt27LBl3ZQJVLt2bfPyyy+nKBuoRIkStl/W9u3bzUsvvWQqVqzonkG0oWQcAKQ/AkIA4Acl4wAAAJDZXnzxRZst5M9ZZ51lPv74Y9OrVy/6BSFqKBNk+vTppmnTpqZYsWKmb9++ZsOGDe7Z0Kgs4nvvvWc2bdpk+2XlzZvXPYNoRck4AEh/BIQAwI/kASHVsQYAAAAykvoIvfPOOyZPnjxuJqnDhw+bnTt3uhEQuVQSbuXKlebee+81hQsXNtdff7358MMPzb///uu+I7hcuXKZbt26mbVr15p58+aZ5s2bUxYuhlAyDgDSHwEhAPAjeUDo6NGjKbpZAQAAAMKhcuXKZu7cuTY4lJwWSVVW7tlnn7UL7kCk2b17txk1apSpUqWKqV69unn++efN3r173bOhUZbcM888Y7Zt22ZGjx5ty8sh9pAhBADpj4AQAPiRvOSGbrDJEgIAAEBmqFmzpvnoo49shoSX++67z9x5550Bd9gDGWXfvn1m/Pjx5pprrrHZQD179jTffvutezY0uh+76qqrzKxZs8z3339vX+P+MuUQG+ghBADpj4AQAPiRPENIVJIDAAAAyAx169a1i+M5cuRwM0m9+uqrpn79+rZJP5DRDhw4YCZOnGiaNWtmzj33XNOpUyczZ86cFC/kFy1a1PTv39/89NNP9s+rz5DXvRliDyXjACD98YkKAH543XQcOXLEHQEAAAAZTwEfNdLPnj27m0lq8eLFtizXokWL3AyQfg4dOmSmTJliWrRoYc455xxz2223mdmzZ5u//vrLfUdosmbNalq1amV7Cm3ZssU8/vjj5vzzz3fPIl5QMg4A0h8BIQDwgwwhAAAARKJGjRqZGTNmmNNOO83NJPXrr7+ayy+/3Dz66KPm+PHjbhYID22Smzp1qmndurUNArVv3968//77qXqtlSlTxgwdOtT2BnrnnXdsibksWbK4ZxFvKBkHAOmPgBAA+OEVEFIZBAAAACCzNWnSxEybNs1mVnjRbvonn3zS1KhRw6xevdrNAqmjXqoK2LRt29YUKFDA3HjjjTYoGWgB3x+VPLz11lvNggULzIYNG0zv3r1tiTmAknEAkP4ICAGAH2pimtxvv/3mjgAAAIDM1bJlS/PFF1+YIkWKuBlfauSvoNATTzwRcLEVSE69qNSXSq8zBYHatGlj3n77bRscSo2qVaua0aNH27/39ddfN5dddpnnPRfiFyXjACD9ERACAD+8MoQICAEAACCS1KlTx6xatco0btzYzfhSqaXHHnvMVKhQwWZ1/Pfff+4Z4CQtuKsHlUoNVqtWzQYaO3fubHtWpbaX6nnnnWf69u1rA5MrV6403bp1M3ny5HHPAqGjZBwAhAcBIQDwg4AQAAAAooGyN9SMf8CAAQEzLn788Ufb96V+/fpmxYoVbhbxbP/+/bb0oEq4FSxY0NSuXduWGlSQMbXy5ctnunbtakvCbd682QwePNhcdNFF7lnAP6978ARkCAFAeBAQAgA/CAgBAAAgWqgRv7KA5s6da/Lnz+9mvWmhXmXkbr75ZrNmzRo3i3ig7LB169aZYcOG2cCgXis33HCDmTRpkvn999/dd6Wc+gKpr9D7779vdu7cacaMGWNLwgVa4AeSC/R6obwgAIQHn8wA4IfXxeiuXbvcEQAAABB5GjVqZLM7VEouEAUGJk+ebDM3mjZtansRUUouNu3Zs8fMnDnTdO/e3ZQqVcqWDuzTp4/9nacl60JByKuvvtpMnDjR3ie9+eab5tprrzXZsmVz3wGkTKCAUPbs2d0RACAtTvn/Cz6u+ADAg26OsmbN6kYnXHLJJebrr792IwAAACAy/fXXX6Z///5m+PDhIffeUNaQAgXXXXedXexHdFJwRllgCvjoEe4sMN0TtWvXzrRt29ace+65bhZIuxdffNHcc889bpTUOeecwwZNAAgDAkIA4IdOj8l3KKketnbYAQAAANHg+++/N71797alvEKlLJL777/flgDLmzevm0Wk2r59+/+CPwoEbdiwwT0THtokd8UVV5iWLVuaFi1amMKFC7tngPBSqcG77rrLjZIqVqyY2bp1qxsBAFKLgBAABOBVp3j37t1B67IDAAAAkeSTTz4xPXv2TFG2iAIBV155pWnTpo0NBpx99tnuGWSmLVu2JMkA+vHHH90z4ZMrVy7TpEkT+3vX1zx58rhngPQzduxY07VrVzdKSoHqH374wY0AAKlFQAgAAlCpjH///deNTvjyyy9N3bp13QgAAACIDiodN27cOPPII4+Y33//3c2GRtfFyhJJCA6pfBPSn6oTqCdUwuOrr75KtyyJAgUKmObNm9uSgQ0bNjSnn366ewbIGK+88oq588473Sip8uXLm7Vr17oRACC1CAgBQACnnXaaT8113UR36tTJjQAAAIDosn//fvPkk0+a5557zvYaSimVVa5Xr54NDrVq1coULFjQPYPU0tLMjh07bNBn5cqV//ua3iWySpQoYQNAetSuXZveUchUute+44473CipqlWr2vcEACBtCAgBQADZsmXzuUlWo90hQ4a4EQAAABCdVH5pxIgRZuLEiebo0aNuNmVUYvniiy82l1xyiX3UqlXLlCxZ0rP0Mk5QBYKffvopSfBHj99++819R/rJmTOnDeY1atTIPipUqMDvChFj/Pjxfjdf6vzy9ddfuxEAILUICAFAACqT8Oeff7rRCSqj8N5777kRAAAAEN2UMTRhwgTz4osvhqVHh/ptKjCU8KhZs2Zc9qDZt2+f7e+T+LFp0ybzzTffmIMHD7rvSl8JAbuEAJCygLJnz+6eBSLL66+/bjp06OBGSSmQ+fnnn7sRACC1CAgBQADaQXfs2DE3OuHCCy80GzZscCMAAAAgNihzZe7cueb55583H330kZsNj7Jly9rgUPXq1W0G0fnnn28fuXLlct8RffTz2r59u0/QJ+GhQFtmUBm4hACQ+j7ly5fPPQNEtkmTJplbb73VjZJq3LixPT8BANKGgBAABJA7d25z5MgRNzoha9astqSG+gsBAAAAsUiZQsoYUgmnAwcOuNnwK1CgwP+CQ4kfCmoUL17cbtDKaAr07N271+zevduWcUv++OWXX2zAZ/PmzT7VBDKDAj4NGjT4XxBIATcgGk2ZMsW0b9/ejZK69tprzfvvv+9GAIDUIiAEAAGceeaZ5tChQ2500saNG02ZMmXcCAAAAIhNhw8fNh9++KEtmayvGZ31ooDQGWecYTdq6WvCI/lYj4Rso7///jukx/Hjx+1/j0q7JX5o7p9//rF/V6Q59dRTzUUXXWT7qaj8m77qvoQ+QIgFb731lrnpppvcKKnWrVub6dOnuxEAILUICAFAAGeddZZnfW/tTNIOJQAAACBe/PXXX2bhwoX2WlgBoi1btrhnkF7Ujykh8KOv6gek4BcQi2bNmuX3Prtdu3Zm8uTJbgQASC0CQgAQQN68eT13QQ4bNsw88MADbgQAAADEFy0lrFmzxgaGFCBatmyZewaplSVLFlO5cuUkASCVfyP7B/Fi0aJFpm7dum6UVMeOHc1rr73mRgCA1CIgBAABnH322bZ+eHJ33HGHeeWVV9wIAAAAiG87duywi7lLly61jxUrVthyc/BWsGBBW/pNj0qVKtmv5cqVMzly5HDfAcQflWYvW7asGyXVtWtXM2bMGDcCAKQWASEACEBNbn///Xc3Ounyyy83X3zxhRsBAAAASEw9eDZs2PC/AJEe3377re3dE08KFSpkAz16aKG7fPnyNvij+wwASe3evducc845bpRUjx49zKhRo9wIAJBaBIQAIABdjOqiNLkLL7zQ3uACAAAACM2xY8fM6tWrbWBo8+bNSR5em7CigQI7xYoVM+edd57PQ/cMefLkcd8JIBgFjE877TQ3SqpPnz5myJAhbgQASC0CQgAQgEo57Nq1y41OUnNXr0ARAAAAgJRTebnkQSI9dC1+4MAB+zh48KA5cuSI+xPpQ318FMTxehQtWjRJwEfjnDlzuj8JIBz0XtP7PblHH33UPPHEE24EAEgtAkIAEEDhwoXNzp073eikU0891fz111/2KwAAAICMoQwCBYYSAkTJg0WnnHKKfeg6Pflx4jk9cufO7RP0yZUrl30OQOYoWbKkDQYnN3DgQPPII4+4EQAgtQgIAUAA2vW3fft2N0pq7969Jm/evG4EAAAAAADSokaNGmb58uVudNLQoUNN79693QgAkFpsbQeAAALFzPfs2eOOAAAAAABAWuXLl88dJZU9e3Z3BABICwJCABAAASEAAAAAADIGASEASF8EhAAgAAJCAAAAAABkjLPPPtsdJaWeXwCAtCMgBAAB/Pvvv+7IFwEhAAAAAADCx1+GUP78+d0RACAtCAgBQABkCAEAAAAAkDH8ZQgREAKA8CAgBAABBAoI7du3zx0BAAAAAIC0Kly4sDtKioAQAIQHASEACCBQQChnzpzuCAAAAAAApFX58uXdUVIEhAAgPAgIAUAAgXoI+attDAAAAAAAUu6CCy4wWbNmdaMTsmfPzoZMAAgTAkIAEECgDCECQgAAAAAAhE+2bNlsUCgxZQedcsopbgQASAsCQgAQAAEhAAAAAAAyToUKFdzRCZSLA4DwISAEAAFQMg4AAAAAgIyTvI/Q2Wef7Y4AAGlFQAgAAiBDCAAAAACAjEOGEACkHwJCABCAv4DQmWeeaQoVKuRGAAAAAAAgHJJnCBEQAoDwISAEAAH4CwjVr1/fZM2a1Y0AAAAAAEA4lClTxmTJksWNCAgBQDgREAKAAPz1ELriiivcEQAAAAAACJds2bKZcuXKuRE9hAAgnAgIAUAA/jKEGjZs6I4AAAAAAEA41atXzx2RIQQA4URACAAC8AoInXfeeT5NLgEAAAAAQHg0aNDAHRn69wJAGBEQAoAAvAJCd999tznllFPcCAAAAAAAhFPiDKESJUq4IwBAWp3yn796SAAAkzVrVvPPP/+4kTE5cuQw27ZtM/ny5XMzAAAAAAAg3CpVqmTWrVtn/vjjD3tvDgBIOzKEACCA5DHzXr16EQwCAAAAACCd1a9f3xQrVoxgEACEEQEhAAggcUCodOnSpl+/fm4EAAAAAADSyzXXXEO5OAAIMwJCABBAQkAoS5Ys5uWXX7Yl4wAAAAAAQPpq2LChqVq1qhsBAMKBHkIA4IdOj6eeeiJu/sorr5g77rjDHgMAAAAAgPS3efNmsoQAIIwICAGAH//++6/NDBowYIB57LHH3CwAAAAAAAAARB8CQgDgxz///GNGjx5tunfv7mYAAAAAAAAAIDoREAIAAAAAAAAAAIhxJ5pjAAAAAAAAAAAAIGYREAIAAAAAAAAAAIhxBIQAAAAAAAAAAABiHAEhAAAAAAAAAACAGEdACAAAAAAAAAAAIMYREAIAAAAAAAAAAIhxBIQAAAAAAAAAAABiHAEhAAAAAAAAAACAGEdACAAAAAAAAAAAIMYREAIAAAAAAAAAAIhxBIQAAAAAAAAAAABiHAEhAAAAAAAAAACAGEdACAAAAAAAAAAAIMYREAIAAAAAAAAAAIhxBIQAAAAAAAAAAABiHAEhAAAAAAAAAACAGEdACAAAAAAAAAAAIMYREAIAAAAAAAAAAIhxBIQAAAAAAAAAAABiHAEhAAAAAAAAAACAGEdACAAAAAAAAAAAIMYREAIAAAAAAAAAAIhxBIQAAAAAAAAAAABiHAEhAAAAAAAAAACAGEdACAAAAAAAAAAAIMYREAIAAAAAAAAAAIhxBIQAAAAAAAAAAABiHAEhAAAAAAAAAACAGEdACAAAAAAAAAAAIMYREAIAAAAAAAAAAIhxBIQAAAAAAAAAAABiHAEhAAAAAAAAAACAGEdACAAAAAAAAAAAIMYREAIAAAAAAAAAAIhxBIQAAAAAAAAAAABiHAEhAAAAAAAAAACAGEdACAAAAAAAAAAAIMYREAIAAAAAAAAAAIhxBIQAAAAAAAAAAABiHAEhAAAAAAAAAACAGEdACAAAAAAAAAAAIMYREAIAAAAAAAAAAIhxBIQAAAAAAAAAAABiHAEhAAAAAAAAAACAGEdACAAAAAAAAAAAIMYREAIAAAAAAAAAAIhxBIQAAAAAAAAAAABiHAEhAAAAAAAAAACAGEdACAAAAAAAAAAAIMYREAIAAAAAAAAAAIhxBIQAAAAAAAAAAABiHAEhAAAAAAAAAACAGEdACAAAAAAAAAAAIMYREAIAAAAAAAAAAIhxBIQAAAAAAAAAAABiHAEhAAAAAAAAAACAGEdACAAAAAAAAAAAIMYREAIAAAAAAAAAAIhxBIQAAAAAAAAAAABimjH/B9JT5fbfAS8wAAAAAElFTkSuQmCC
iVBORw0KGgoAAAANSUhEUgAABWMAAAHNCAYAAAB7DWn9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURBVHic7N15fFx19f/x1+dOku60pSyyl6Vspc3SsLSAEmibsitIBcUFRfgKCLggbkAREUQ2WVT4KYIoaBEFgdKkxSpLy5J2kpZCoaCUTbaWlu5J5p7fH58JmUxnJvtMMvN+Ph55ZHLv586caSeZO+eez/mAiIiIiIjkuxJgBvB2juMQERERKWhFuQ5ARERERER63I7ALsCuwKHAKfFtsVwGJSIiIlLoXK4DEBERERGRHvcd4DTgXWBBfNsV+GSsCjJEREREREREREREeskXAAOacx2IiIiISCELch2AiIiIiIiIiIiISCFQMlZERERERPJNCTAq10GIiIiIJFMyVkRERERE8skI4CVgdq4DEREREUmm5v0iIiIiIpJPfgKMBrbKcRwiIiIiIiIiIiJSgAplAa+xQBP+uYbAwNyGIyIiItKW2hSIiIiIiEi+uIXW2X8O2D6HsYiIiIhsQclYERERERHJB18AjkjatkMO4hARERFJS8lYERERERHp74YB1wB/TtquZKyIiIj0KUrGioiIiIhIf3cZ8DZwVdJ2JWNFRESkTylqf4iIiIiIiEiftR9wHvBJ4M2kfUrGioiISJ+iZKyIiIiIiPRnNwB/AJ6N/7wRGBS/rWSsiIiI9ClqUyCSHYfkOgARERGRPHQKcBDwo4Rt7ybcVjI2N3TuKyIiIiI5NQsYlesgREREpGB9ATCgOdeB9KDBwGvAuUnbn8I/VwMWZTkm8Z4GIrkOQkREREQK0yBgA3BargMREZGCFQBnAPfiV5v/KuA6cNwg4HBap3xL/3U5rQnKPXMcS0+5EljClq3X/krrc/1fJ+6vCPg/YCbwR9o/d9sf/zv1M5R4TLQ7/t9e1bEiIiIikhPH4k9I/5DrQEREpCANAeYB9wBHAhfh35d+185xDl/dZsCtvRmg9IojgTp8Zej/aE1OtlTHvhzfXwcU5yjG7tgL3xv2Uyn23UTrc43RsXUyhuNf778BDgWuiB//8zTjBwNvJzzOlzoRe747D/9vcnmuAxERERGRwnQz/oT0XdSnWUREsm8mcE3CzzvTmkA6IMNxlQnjrskwTvqm7YCjgAnxr3HAHvGvlm2HAJPpn+cnj+CrV1P5AW2Tzzu2c18OeBT4XsK2MloT1zulOGbPpMf4fx0NvAA8jP83eba9gSIiIoWoI1eJRaR7jo5/3w6owFegiIiIZMNUYD/g9IRtoxNulwLPpzn2iITbz/VoVN23B3AhMCALj/UevsKvv/VafQ94LNdB9JIT8e0z9kuzP7k1wQ74KtZ0PotvxXFtwrY94t8j+IsWbyUd8ypwPfDt+M9bZQ65YAwEquK3J+DPf9/LXTgiIiIiUmj2pm3VxCW5DUdERApMDfC5pG0/pvV9aUqGYx9KGLdbr0TXdccC62j7HttbX28AI7LztKQDBuEToRdlGDOVtv+Hx7Vzn08D05K2/TLh+AlpjguAJ+JjbmjnMQpFNW3/7U/PPFxEREREpGddSNsT0vm5DUdERArIXsBKfKVaohfx70mrSb8wVyS+34D/dvDxBuGnvJ8Z/5oGjOxcyCLtmoHvd5upKnocbc+/vp5hbCWwgratGgJ8JWzL6z9TG4fp7TxGEH+MLwNn4atw+9rFjZ50I23/7f+U23BEREREpNBEaXtCGgKjchqRiIgUiq+w5cJb5bS+J92R4djKDo4D3/bqUuADYC5wF74idyPQiF9tftfOhS6S0q7AelpbQKUzirbnX5dmGPtdfII30REJx17VzmONjY87KMW+zwDL8eeDfwDux0/Zb7lAf0Q7990fvUPbf/v1+Is7IiIiEqeesSK9ZxAwPmmbw0+duzf74YiISIG5G58ASnRqwu2ZGY5NXKH+nxnGFQMP4C82HoBPxLTYAZ+YPRVfJTsNeCZzyAXh17kOIIcuBd7vxvE34VsUNOGrsNNxQIzWJOAOGcb+ki37ASf+nvy5nZi2wbfMiCZt/w7wf/hp+omv+xLgMuCH+N+tC/HPKx/sDmyftG0wcCC+FYSIiIiISK86ltS955I/GIuIiGSDw0+5NnxCrDjD2MR+salWkm9xMb5nZrpp3IOAl2jtvTqscyHnHUd2+tz21a+9uvFvN6Ubj/tAJx6nCHg3ftyLHRh/IfBo0rYJwCpglwzH3R5/jBgwqRPx9WXnkfrf//JcBiUiItLXqDJWpPekm0I3Df+hNcxiLCIiIocCo+O3/4avLkwlAhwWv/0iW64i38IB3wRew1cp1qYYsxG/sNGvgZ2BzwO3dS7svGLA1rkOIofWdPG4AcAt+HYCHa0ircFXZELmythkk4Ht4rc7MpPpIGB20rZzgbX4/rDpFvb6Gb7PbIBvlXBSJ2Lsq9Kd+x6NrwYWEREREelVr5C+QqMyh3GJiEhhSlxYZ0qGcYn9Ym/JMG5kwrjXO3h/d3UiXpEWP6T9RbuS/Z2OvT6T/T7huH3bGVuCr4BNrh5/JuE+9stw/AfxMe9kGNNfDMT3h0113hujNcEtIiLZEwDfZssZHJJjqowV6R17A3tm2H80UJelWERERACq4t834VsLpJPYL/axDOPW4JNcu+L7eKbzXsLtnmpTsAu+qrCkh+4vk/fxiexYFh5LtrQz8ANgOrC5E8f9L+H2J+j4rKQj49/fAJa1M/YY4Hm2rB5fgq+YXUvb13+yd/GLjeVD+45P4fvDphLg10z4Y/bCEREpSIOB4cAe+L/Lp+MvCubDRb+8omSsSO84pp39RwNXZCMQERERYAh+gS2AZ/EJ2XSOiH832iZtR+ErFL8T/zkEJsbHz8pwf2MSbr/UoWjbNwH4Mb5VQm/7CF8tuSoLj9WTpgPXkJ1/o476JLCik8dcj6/o6WxVz7sJt4vxr9/2Fg/bDn9xAeDfHXiMbwC3pth+Hr5NQgOwMs2xJbS2Demp34tcSteiIHG/krEiIr3ravwilG8CTwFPknmGhuSIkrEivaO9E9KD8B8K0p2gi4iI9KQdaV1kK1O1X2K/2Jfw06hbTGHLqcZvA/e089hfiH9voufaFDyAXxwsXSVeT1pD/+vzPhD4BT7xuSDHsSRa18nxR+HPqbryQTK5CmgH2k/Gbp9wO1O1N0AFsBvw1xT7NgH3tXP8Z2h9/f6unbH9QXvnvtPwf19UYS4i0nvOj3+1uCBXgYiIZNsgYAO+oigkfd/YU3MVoIiIFJy9aX3/+UmGcRMTxv0had8dwJc7+bh74qeWG77CUbLjIvziabvkOpBuGIlfHO6HXTz+BNqed1V34JgxCePPa2fsP+n870OLIqA+/jiL6f8FMruT/nw38euQXAUoIlKgLsD//f1fewNFRPq7Y2k96UyVjG3ZpkVMREQkW4bQmhS9Os2YCH5qdsv71Y8S9g3Cn8iP6MRjFgPz4/f1UPxn6X0j8BXN6f6f+4OB+NeM4WcSdcVBtD3/+koHjkm8oP7TDOO+gf9d6WoLiCtoXVhs13bG9gfn0bFk7OW5ClBEpEApGSsiBeMWWpOuqZKxsfj392idMioiItLb7mfLPrAtHH6RqvvwFZUGnJWw/+v41ek747b4/czEJ7kkO64CPgS2TrN/R2A5EMVXP5dmKa6OOgjfWqHlvOmILtxHgO8pnHj+dUMHj70zPr6B1MnWI/DtH3buQlwAn8WfC75I5sVe+5NHyDwjrGX7s7kKUESkQBVSMnYksBR/visiBegVOpaMNaAyRzGKiEjh2Q2/QnwInEFroml/4EH84jrFwJX496iWxXbG4k/iD6Djro8/zk/pWwtI5bsdgfXA99oZNwj4G/7/eT2d+7/tDROAfwD/ZcvzpmZ8hfXJ7dzHYPxrdh7+9Zrq/GsRMAf4E74SPJVRwPPxY64FhsW3DwO+i++l3NXFUE7AV6jPwX9ozAcD8a+h5HPcVOe+MbbsOy0iIr2nkJKxt+Kf69JcB9IR/b0/kUhfsw+tVQ5G6g+glnD7aKCut4MSERHBV/NV4isGL8NXULZsv4bW5NyP8dPcz8efvH8AnI5PUHXEVcA5+GnhyX1npXddDqzGz9LJZCN+avk0fBLzYuCLvRtaRi0fFF/EJ+zW4JN8g/AXCIbS/uJbEfxz/wh4Jr5tI34xrQG0LpbV0sYh3UJSK/G9TS8APod/La/EJ1H/iq/cXdOZJxd3NL5K/A/x+2zqwn30RZ+i9d/W0oxp2R7ge/fe3dtBiYhIQSkHzo7f3iGXgYhIblxI20qOVJWxidvn5yZMERERiklfHZg4pjOux7fhOTTFvr3wK8hL79gHn+D7WieO+S3+fGQzsH1vBJUnBnbz+BPwvWgvTLEvAny7m/efSzfSOiOsmdSVsYnnvvfkJkwRkYJUCJWxjrZrHhhqjyVScGpoe0KaLhkbS7jd1YUpRERE+pKr8NWzu6fZ/y063rdTOu/vwDI6N/OtjNQLtknPORpfiXt8mv37Ay9kL5we9xIdS8a2nPuupP2LQCIi0jMKIRn7ZbZ83xmdy4BEJLsSV+CNkTkZm3iyemoughUREelB1wOPAltlGPMwrVPIpGcdjD/n6Erl8RP485G36HwltGR2Aj5ZOS7DmPPwLUL6o91p2xe2I8lYw7eBEBGR3pfvydjh+OdWS9v3nYm5DKoj1DNWpOccSWs5fLqeWYlaesoeA/y5t4ISERHpZdfjE0oP4ae9J4vgF5Y6GN+bVnre1cBzwANdOPYW4DD8/9EJaBXinnICcB+wALgkzZht8YuX3ZytoHrYMQm32zv3Tdx/DPB0z4cjIiIFZgbwH/z55ZSE7eobK1JAbqHtNK32KmNbKgTexS9oICIi0t9cR+pKuHRf2+YmzLx2Av7f9sguHl8EvBG/j3/2VFAF7jh8H96O/l6cnpswu+1htjz3TVcZm3he/GwughURKUD5XBm7P36RzgPjtxPfd87NYVwdospYkZ4zLcU214HjtgMqgLqeDUdERKRXjcCvpL6wg+PXAu/3XjgFKQL8DJhF1xOpzcD/Ay4HqvBT6pf0SHSF61Q6929Y31uB9KKB+NcLdGxGWMs4h68G3g6/2J+IiEhX3ALcgZ8ZNCJpnypjRQrE3mzZMytVVWy6vrHppq+JiIiIpHMG/ryjvJv3sx2+usSAX3U3KCkI1aSvfE3+SlU5+8XshywiUnDytTL2NPyCkNskbGtZv8eA3+UiKBHJvgtpe0KaKRGbatz87IcsIiIifcRo4C7gE504ZiCwAvhjD8VwL/6cZC1+QYyOGIZfJON0/NT8/ejYrCDp/26kbaK1vXPf5HH3ZD9kEZGCk4/J2MH485/kRWFfpfU959FsByUiuVFD64lm4snoO7Q9EW2MfyVW0bYkZkdlPWoRERHJJQecBXyEPx+4sRPHXoTvS7pnD8RxGL7CpOX85Px2xhfh2yO8CNwO3IA/F4rhF9KY3gMxSd/2EqnPfVfR9tz3I9omZFvGrsS32RCR3nUCvr/7Vfi/9R0RALv3WkSSTVfh/+auA4bkOJae8nNgEVu+hzxJ6/tNZ9r/OOCz+HOZnwKV7YzfA/87pRkeIjk2GNjIlhUAfwIeS9q2CTgFaEox/rRsBy4iIiI5MxKYg+/Xejf+XGAjsFMHjh2BT2bd1ANxHA+sB76NX+HegOVkXlz0V8CtQHHS9vG0Xog+qwdik75pD1JXv15Fa5I2sTDh22nGT8x24CIFZBDwSPzr8/gLZyHwrXaOC4AF+N/R7/ZmgNIrpgAz8Qss1tFa/GX4hcPnAn8F7sxRfN01Bn+udHiKfTNp+1w7YhgwD/gLcDJ+llAT8OU044cDbyc8TkcvcIhILziWLU8u/4KvGpmbtH1T/JiTaVsha/jpiSIiIlIYtqb1JH43fJWrATd34Nir8BWH23Uzhi/hz0dmxH8+ndbzkuo0x4zEf1B5Dtgqxf7PxI9/ny2TtZIfzmXLc99fxPelSsZC25ZeLV+XZy9kkYIzE1/p19I6ppzWz6PbZjjuCFp/R3/ci/FJ79gPPzvlFPz78eSEr2nx7afgF5rsj2aRPpH8S9rOQG7vHMTh2xn8KGHblPjxq/HtoJJNou372E86GPcWirp6oIh87Oikn2cCX8C3Hkjnfnwl7L20/pE4Gn8lMuzpAEVERKTPWYWfUge+99nvgG8AXweuAd5Ic9yO+DYCP6d7q9FfgP+g/mtak7EzgWuB7fEJt5oUxw3GTw2sxFfxfpS0//H4922AXfE93CS/JJ/7Xotvm5FJSwuOG5Lu57KeCkpEPnYcsA/+M6nFt7XMuhgAlOFnZqRSlXD72V6JrutG46t8U10I7Ekx/IWlP/Ty4/SGF+Nf+egk/EXsfdLsT+yLG+AvWL+V4f4+j/99uCph2y7x78OBfdmy3cGzwGx8Yhu60WpSyViR7ks8Ib0HX2US68Bx9+PfIO/B/y5uC1TgpxOIiIhIYfkp8BX81NIfAOekGfcTfFuBG9Lsb4/DJ3Ivwp+DfDNhXyO+bcKP8TN/9sD3gE30Fv7cZytSf+Br+cAf4hPOkl8G0jZZczX+9doRN+Jff9fHf56A/7DcnYsKfc7MpUtLtl2/fuvNJSWjcG5rF4ajcG5rzEY5s1EEwSBnNtB8QcZQcy7AbDiAg+E4F9Da23F9y/2aWWPiz87/vq4HNmO22sFqi38FsDqMRD40WF3k3OpILLaqqrx8dfb+FSTHLsL/HW9K2HZowu3ki2iJjoh/N/re59JjgSuz9Fgf4d8jMxVYSfYMwvdpvYz0i5G9nfTzDmROxl6EvzCdWAw3KeH22hTHNOMrj5fgZzV1tB3CFpSMFemevfEfVKBzidgW9yUcW4T/cNPX3vRERESk970N/BafHD0TXx37WtKYffB9zL5F6g8J7SnC9w08A99P7itsOSPn18DF+ETR/wHfS3E/qSpmW3wp/v1e4MMuxCh92yfx1dHQuURsi5aLCNfjK5eq8T2T+7x58+YVNW6zzQ5BLLYbZruac7tgtouD3cy5HTDbxsHW1tg4rKm4mMAMLF6U2PLdOTD7uFQRwJm1faDkn1vGZQrOuY/v0+GzaC4McbSumlZbX78Jszcwe8Oce9M5t8LgTWf2Zujcikhz85tTKivXdO5fRfqg8fjPqImryTt8FSD4FjKL0hw7CDg4fnsJnb+gtmv8Pl7q5HEddSu+HWBvV8Y245NsSsT2HT8ANgC3ZBiTnKTdIcPYT+Ffq48nbCvGt3YAWEb6mT1r43H8go5VIQ8EDgSeSNyoZKxI9xwT/z4T/+GoM4nYFvfhz5HuxSdjr+iZ0ERERKSfuQr4Gj7Z9X18MjTR1cCb+OrVzhqCP+c4Gr84y6m0rZpq8TZ+9s6p+KTwDPwHoI44DDgPWIxvpSD5p+Xc91o6n4htcQM+X3gD/vXYZ5Kxs55+eqtg4MB9ndl+zl/8GA3sitmuTc7t6JqbIx+nSuNJU0u+3VeZDQTG4NwY53/+OMEbmGGRCLXR6GqcWwYsJQxfdEHwfBCGy46qqFiRs7ils6bgF5JOTCQeik+Ugk9mpvrbD3AIfto2+EWNOmowPtl7dfy4UzpxbGd9EP+SwrEnvor106R/7ULqyth0pgF30PbP9lR8P3/wxXKZtFzQWJxhTICvNL8O/xzaXERQMlake46mYz1i29PSQ/ZP+L4jK7sfmoiIiPQz/wNuw1e+fhXfTuC/8X0HAyfiF9na3Mn7HYVf9OIgIIo/f1mfYfy1+GTsSPwH7N924DEOAR7EV81+CVCFXX46mo71iG1PSw/ZS/A9iLtS0NBltYsW7QjsZ87t42B/nNsXs32BnVJWprqMdan5ZARmhwCH4BxmRsw55kSjaw1edGbPh84tM+fqBhQXP1c1duy6XAcsW7iD1kWjWyQu1jQzw7FHJNxuLxl7If5ixRj81G6H77OpHNOWBuP/vQrVdXT+vCXRjfiLyMtpnZWcSvKCW5mSsdex5QyjzyXc/nM7MQ3Ft9h5OWn7MfhWPrvgL4IMwp+DbUy+g4J5VxHpBYPwU/nOJH0idi5wVMLPm0m9Kl+Lk+Pf7+92dCIiItIfbYvv0zoUnwT9enz7PHzFRjmdX+zzSuCH+A8Nh9OxHp0t5zArgHFkbovwGXy17qX4c6M+XSAoXbY7vpdxpkTsS/gp0i3eBT6RYfyFwNPxrx43wyw4dNGifSwSmWBmE5xfeG4cPmnUG1bhiypavzu3ijBc6YJglYXhSnNuY8RsXQhmZqsBXBB8FEQiscimTRvWDxy4udiscdOAAUGksfHjxFZgNqTEuZKWn5vDcJCLxQYGkcig0LmRLhYb4WCEwQjn3EiDEfivkZiNwrmdaK366gkx4HmD+YHZ0y4Inp5cVpacmJDcK8LPqNg+/n030r+H/BvfiiSGX4QxU5/hC/Cfa/8TP+6X+KTvA7RO9RZvO7rRWzQPjKDrF2ir8QtmdcVtbDnDKJ2B+P+jrYDn8BevM5kB7I/vH5voGPx52jvAfPyF6jvwydjBiQN11UKk64rxUwl78kr+/fgqFBERESlM7+MTmhfhWyBdBRyAr1iaRucTseBXhG7CJ3c7uljSafieslvhqzrSJWO/B3wRXwmyJGH7D/HPQ31j88dqul8Rm+xGeujcd4ZZMHHhwr2JRCYAlYHZBKuvL7cgGJo4Jb+LQuAdgxUO3sC5NywMXw+cWxELgjeKguCtJw844P0ZznXl97Ojuv279FBd3eCBzu0WBsHOgXM7f9z7Ngx3xrldcG6PeDuDjogApQ5KzblvmBm10egHLp5cjwXB4wNWrVpQVVWlvpu5dRQ+EQut7fFSGUhrAmohmROx4JOv0jErgdJcB5FDXelxD/41eQtwOf48piP+ha9KhcyVscmOpbWNwF86ML4SPxso2az4V4tD0t2BKmNFeldnK2NFREREEqtj78ZXWXxA21Xsc60En2yN4asbNyTtWwHsTJann0vOdbYytsseXLZs2JD16w8Ng+Bw4DAH5QbDunGXIf51uwznXnBmL5nZyxaJvL6mqOit6WPHNvZM5H3XzJkzI1vtuefukSAYG8L+DvZ3Zvubc/vhZwV21hrMHrMgqAmam2dPqax8vadjlnb9Fl9ABL6dwII046qAf8ZvX4W/oNYZ96LKWOlZl+BbM42n420O5gMT47fr8AtndcR9wGfxM3t2A97IMHYIvj/tnrTfv/gMVBkrIiIiItIvvA/cjF8g6YvxbZNyF84Wtgb+ip+2XotfiKlFCbAvfjqsErHSY+bV1W3TGIkcBnzKOXc4GzeWhUEQadnfid4YjQbLHLyEcy9aGL7onFs2dOPGlyZNmrRFX79CMn369BjwSvzr46qvGWbBYUuWjI6ZjcWsNDA72HzF1zbt3OVwnDvJmZ0UXyDsRQezzbnZxR9++HhVVVVyb1PpeS2FQWuAZzOMOyLh9mO9Fk337Ijvnb5VewO7qRnfn/Qfvfw4kt4uwMXACXSu3+w7Cbc7WhnraP09eZHMiVjiMS2gmwvJKRkrIiIiItL3XAeci//QeT/pq5mybQQ+lpbqx7PSjLsjO+FIvnqsvn6n0OxT5tzhmH2yCfZzLTM7Uy2yldpmYDHOLcRsoXNu4cjm5ucrKyszrcgtSeLtF/4T/3qoZfvc+vq9LQwPCZ07xPkLRgfg2xeks5/Bfph9q2nEiI010WitM/uLRSL/qC4tzbSooHTNDvhFtgCeIPMFsiPi35to+36zA35dk1t6OLau+CzZa4+wAd9bur+12TgZX1HalxbXqybzoqGp3IhPhv+zvYFJEpOx2wMB7bd3GkNru5x/deAxvkHbi9BdomSsiIiIiEjfsxJ/sv9d4Ec5jiVRgE8Ut6eutwOR/DJr+fIBRWvXHmbOTXMwLWZ2ANCZxGsjsLgl6RoLgoXbNDUtUeK198QX7HqZeD/HeUuXDt3c1HRgxOyTIVQ734M0XXJ2kIMTce5EF4Ybauvr/2Fmf4kNHfroMWPGdGfldWm1S8LtpRnGDQIOjt+up23bmePwCxX1BbcAj9L7lbEx4HX6XyJ2MD5Z/S4+/r6is720pwCTgf268FiJydgifPV+e73yd0y4/VI7Yw/Czw5K1S+2U5SMFRERERHpm67AtytYmetAEqwCbs91EJIfahoadg9isWkGR7Nu3ZE4N6QTi5qsBp4CHjd4ck1JSV0h9HXty6rGjl0HzIt/XT576dKtI01NkwnDanNuGm2THokGY3aqg1OL1q1bUxuN/t059+eiDz98TAuAdcuAhNv/yzBuUsLYZ5L2TQX+3JNBdUOIbx8gqV2In71SSdukZH8yEn+O8VN8X9bOSn7eO9B+MjaxYvzddsZeB/yMri2m2oaSsSIiIiIifVOMvpWIFemW+fPnD9owYMCnwiCY5mCaheE+5jqcfn0XeMLMnjD499Pl5Uvi0+elj5o2duwqYGb8i7kLF46PBUG1M5uGc4cDxSkOGw58xcy+0jRixPtzotE7g1jstqMqK1/NYuj5IrH3ZZBmTAS4NOHnFxNuDwMOB77cw3FJzxuJn0lzPf03EVsM/B5/0eZXXbyPVMnYhnaO+W/C7Ux9sP8Pf152bxfi2oKSsSIiIiIiItIrHly2bNjADRuOdc6dvA6Oxq9E3ZEFt97FuVrMHo8FwRNHl5a2N31U+rjJEyYsBhYDv5j7zDOjYgMGnByYnWrwKVInC7c1uCgWiXynNhqtsSD49YLx4x9REr7DXsO3HSgDJqQZczVtKwMTqxG/hF/MawPS1/0Y//94bZr9+wF34iukFwK30X7FaDbtha+IrcK3h9iazveZBRib9PO+wOx2jnkTeBI4DN8i4dYUYw7Ft4yaRKfWi0yvE7NARKQL5tK6Mh/4RQQG5igWEREREZHe9BKw99CttmLiJz/JoUceuWlSVVWMeAK2HTGcqycM57ogePip0tL5SroVhnl1dds0FhWd5My+hE92ZMpTvG3w/wiCX1WXlvalZFJfNQn/mRT8Il3Pxm/vCPwc32f08/hWBJ8GZgCX4xc1ehKfHHuhA49z+jrYTgAAIABJREFUL3Aq8ADwmR6JXDpqN/zf3u/jF75KZ0/gr/jk/JtABfB+r0eXXjl+Maxx+F6siRdkVuGTqDcDT2e4j+H4Bcu2wV9wOCBp/zr8ImDv4C80XJ7mfsYCj+MrjL8M3B3fXgR8Bf9vezLtV9kmOwO/oOlG/O/ax5SMFeldSsaKiIiISN6bu2TJ9r/6+c8bDjr00O3HV1ZSVNShSZhv4dxsC8PZJc7NrSovX93bcUrfVtPQsDtheKrzCcLkxEqizQb3R+DGyeXlz2Urvn6qArgKn4xdjJ8OPhi4Bj8tPEbr4k9fxFfTbgucDzzSwcdQMjZ37sJXl++DzzdkciC+L7ADfgJc1ruhZXQ88HVgEz5p2rLY4nB8YnYQvu3CvAz3sQu+yndd/OfNtK3kHoZPqBbjE9DfzHBfu+MvRnwGnzx9Fd/mYC6+KrYrF3+UjBXJESVjRURERCQvzaur26a5qOhUMzsFP40z0s4hIb7a7pEgDGfHp62LpDSnvv4wMzsHX5FWkm6cOTcbsyuqy8vnZy+6fqkI2Ak/DfytNGMG4BNQb8bHdZSSsbkxDp88PwP4QwePeQw4Ep9c3JX2E7iFxgHb4/M2bwPdWRhSyViRHFEyVkRERETyxqzlywdENmyY6sLwi8CJZEiSxcXw00zvw+y+qRUVXVkhWwpYTUPDds7sDMzOxlevpfOUBcHPq0tLH8pWbPIxJWNz42F8QrWctr1/M/kM8Lf47S8A9/RCXOIpGSuSI0rGioiIiEi/V7Nw4QQXiXwJs8+TecVpmhobWRKNsnDBgrVnfvvbe6m3p/SEGWbBYdHokaFzZwEnkb4SW0nZ7FMyNvsOx/c5PY6Ot5MA/3vzCjAamI+f1SC9Q8lYkZ5W09AwJGhqGkVR0ajQbBsHI4Dh5lwQhGHEgmCr++6668xNGzbsVTJgAABDhg6NHX/KKbeZ2VoA59xGc24TgAvDj8IgiDmzEFgTmH1oQbCS5uaVYXHxyurS0q6sJigiIiIi0iWzFy7cywXB6c73kdyjneHrn33iiXDuI48Me+bJJ9m4fj3Au8Anej1QKTi10egYZ/Z9c+6L+H6QW3Lu6SAML5lcUTE35X7pSX8BpgP/wFfMS+97Ct/65fAuHPt9fB9h8H1k63oqKGnja8BvSVGUp2SsSJIHly0bNrixcXRoNjqIxUZbEOyG2S7AdpiNwrlROLc1ZtmtcHVuE2arMFuJcyuB93DuDReGK8JI5DXgv5sGDFhx4r77rs1qXCIiIiKSN2oaGoa4MDwNX9EzkcyfGZsdzMa5u4ds2PDQpEmT6oG9E/YrGSu96tFodHTE7Ps4dwbpW2b8A/ju1PLy5VkMLd8NAbaKfx8D/D98P9p3gTOBl/ALKa2hdXEl6TknA38FDsMnZTtrG+ANfILwDnzSULqvBP97sRX+ve9SoDq+7wL8zOn1wEdKxkpBeqiubvCAINjfgmC8g/0Jw90djDbndgNG5Tq+blqJc68RhivMuf8Ezr1gYbhkcxi+cHxl5Yb2DxcRERGRQlNTV7evC4Kv4NzXga3bGf4Czv0hiETunDxu3LsJ219CyVjJgblLlmwfNjV9C+fOx6/CnqwJ537tmpsvnVJZuSbb8eWhX+HbEqzBV2c24ZOuQ/AJKYefOfpP4LM5ijFfRYAlwMvAp7txP78HvoKfQr8LsLLbkcnJ+AsTG2hdGO1D/MJ4LW0KhgFFSsZKXps5c2ZkxJgxeziz8aFz43DuAGc2HtgTCHrpYdcTX3Fv1QcfDNq8adNAM2P9unU452yv/fZbBIDZ8HgMATA8fmwJ/g2sN4TAq+bcYsyex+z5SBAsXvXyy69Onz69o82+RURERCRPzFq+fEDRunUnGJzl/DoHmT4fvoVz92P2+6nl5fVpxigZKzlV09CwHWF4joNv4avTkq0Erli9fPkt+gwk/dTZwK1AKbC0G/dTDiyK374YuKabcUknKBkreWX20qVbRxobJ4Yw0flG1AfSneSm7+f6msFrzuxdB6uAlWa20sH7OLeSSGSlNTevLF6zZlVVVdWmpHvo0gJe8+bNGxiOHDkqDIKticVGYTbKYFvn3ChgVAijcG4755tuj+5my4T1+B4xT5lzCyKbNy+YfPDBuiomIiIikqdmL1y4V+DcmTj3VWDbDEM3Ag9bENxdsmrVo1VVVc3t3LWSsdInzK6r2yESicwwP/061UJfLwZh+O3JEybMznZsInHb46eu/wRIziOkMxhYDtQAX+2BGObj29GswBesdeYChQMOBp4BrAdiKShKxkq/ZWbusWh0vxhMdM4dinMTMduHzr2uQ+A/wMsGKxy8Zs6twLnXSjZvXlF10EHvdDPMLiVjO2ves89+ojkSGR1GIrs5GG1m/jvs7WB3OlcFbDj3EmYLzOypCCw4qrz8Reec/sCKiIiI9FN1dXXFqyKRT+Pc2ZgdSeZz5ufM7DYikT93chFZJWOlT6ldtKgS524k/YrxfyyOxb5VVVn5QTbjkoJ3Cr7VwzbA+cDNHTzuh8AlwD7A692MoRJ4BNgu/vOJ+P7KmRThk8iTgPOAT+JbHLzZzVgKjpKx0q/MWrRo2yLnjnAw2eA4YMdOHP4h8IKDpQYvOOcWFhUX11eNHdubDcWzkozNZObSpSVbNTWNiYThBIP9nXNjDSYAO3Tibj4A5plzc2POzTqmtFR/bEVERET6gQeXLRs2aOPGrwLfBnZNO9AvFvsQ8Mup5eVdWRAGlIyVPqqmoeF4F4a/xBeqJPvQnPt+dVnZ7dmOSwrOCPyCWc34z+OHAW8De+FnImQyCngF+B3w3W7GMRW4H7gKOAe/+FotrYtNpbIn8CQ+8ToP3692DH627opuxlNwlIyVPi2eSDw0CMNqnKvG90XpyOt2pYMFIcyPmD0Xi0QWV5eWvtfL4aaS82RsOvOeffYTjcXF4wI4yPzUhIm0v1gD+CkI9eZcTWBWMzIWe6qysrKpd6MVERERkc54NBodHcAFAXzN/IIhqZktMed+E9u8+Y/HHHLIR918WCVjpc+aP3/+oHUDB34X5y4mdSu7WZh9fWpFxdvZjk0Kxp7AOOABfCL2ifj2bwE3tnPsdfi2G3vSvcW2TgL+BNyAr7S9FLgc/zl/P/zf8Y54Av8cRqNkbKcpGSt9zuylS7eONDWdaGafBo4EhrZzSAi8CCxwzs0Pm5sXTJ0w4aU+Mq2+zyZjk5mZq124cJ+gqGiiwaGYTcT/Mc74d8LB2hD+6eCBxkjkwePGj/8wOxGLiIiISLLZ9fUHBWbfwX/gLko5yK+LcB9mt3WjCjYVJWOlz3usvn6nmNnNwGdS7F7lnPvGlLKymdmOSwpSLTAFeAefZN2QZtxu+L+vl+OrWbvqPOCXwB/wPWcN36bgdWBAfN+FHbwvJWO7QclY6RNmL126tWtq+jRwijM7CijONN7BS+ZcjTOrLYKnqsrLV2cn0k7rN8nYVB5evHhkcRgeCkx1ZtW0PblOpQmY65y7L1Zc/OC0sWNX9X6UIiIiIoVthlkwsb7+BAffwX84TmeFg1tcY+Pve2nBViVjpd+YU19/kpndQor2bQb3lMC5ffhzpuSHifhFtMD//b4+zbi78EnbMfgFuDvLAZfFv/6O71mbuFjXn4DPA2uBnYGOzJJQMrYblIyVnHl48eKRA5qbj8e5U8z3LCnJMHy9wQIHD8fgwaPLy1/LUpjd1a+TsclqGhp2x2yKM5uMfzMYkWF4DHgauM+C4N4ctYkQERERyVvz588ftH7gwK+Yc9/Cf0hPp87MritZs+avVVVVzb0YkpKx0q/Mi0ZHNDl3LWZfS7F7hQvDU6dMmPB01gOTQjILOBq/TsvuQPKaNuOAenxv19u6cP8R/GJhZ+HzE8fh8xKJJgEtsyTOAX7dgftVMrYblIyVrJq5dGnJyM2bjzfnvopPwKaeOuUtBR40s5qSNWvm9/KJY2/Jq2Rsorq6uuKVQTDROTcNv/Li/hmGNwG1OPe7rZubH1aPWREREZGuq2loGOLC8Ezge6Rf0DY0+CdBcFN1aelDWQpNyVjpl+bU11eb2R1s+fvUbHDlgrKyn8xwLsxFbJL3JgDP4fNz3wN+kbT/EfwCXwfgP1d3xiDgz8AJ+ArcqaSvrH0WOBCfhxmHb2GQiZKx3aBkrGTFow0N+0RisTNw7gx8T5J0XjC4L2I2c3JFxQvZiq8X5W0yNtns+vqxzuwU56c8ZErMfujgPheGt06eMGFxtuITERER6e/mLV06tKmx8Rz8dNZ059Qbce6uAG6YXFb2chbDAyVjpR+btWjRtsXO3W5+lfhkjzRGIl/U+hjSS/4BHI+vjt0D3y4A4JPAv/Gfsf/ayfscATyET5guBo4AMr1+TwFaeiUfBfyznftXMrYblIyVXjNv3ryBTSNGHG9wlvO/zOleb/mWgE1UMMnYRHMXL94jjMWOx/9BPzTtQOcWGtxeUlx8T9XYscnTMUREREQEmPX001sVDxjwTfMrbo9KM+xdzG4tDsNfV1VWfpDN+BIoGSv9Xm19/dmY3YCvKvyYwasEwaerS0ufz1Fokr/KgYX4nMkPgKvj2+fj19M5iPYrVZPdim858CpwOPC/dsZHgJfxyeCn8IngTNXgSsZ2g5Kx0uNm19ePjZidD5xmMCzNsDed2Z2Y3TNlwoQXsxlflhVkMjbR3EWL9o8593kHXwF2SjXGwVozuyeAm/IwIS8iIiLSJfOi0RFNZufj3IXAyDTDXsO5q5uHDLnzmDFjkvsAZpuSsZIX5i5cOD6MRP6C2b5Ju9aZ2RnVFRWdrVIUac/fgM8AK/G9Y6fiq2EnA4914f6OBE4DrgRe6+Ax4/C9ZUuAnwBvZRirZGw3KBkrPWZOff1hmF1scCypX1sxg3kObi9evfrv/bQHbGcVfDK2xQyz4LBo9MjQubPwPWbTLdj2lAXBz6eOH/+wc66zV/9ERERE+r3ZS5duHTQ1XYgvcBieaozBqzj3s1HNzXf3oX78SsZK3pi3dOnQ5sbG3xh8IWmX4dxPp5SWXqbPK9KDDgAagAC4DDgVeAOozmVQGSgZ2w1Kxkq3xBfkOtXguzg3LtUYBy+Zc78PIpE7J48b9262Y8wxJWNTeHjx4pHFYXgKZuc6GJ9m2MvAr4Zu3Hj7pEmTNmYzPhEREZFcmLd06dCmzZu/jXPfAbZKM+xlZ3Zl0Zo19/TB4gYlYyXvzIlGLzS/qFLy4tP3Ng8dekYfqEiX/DET3+ovxOfrKoFFOY0ovSfxLQlHo2RspykZK10yd8mS7WPNzd9w8A1SLx7QiHN/wey2qeXlT2U7vj5Eydh21Eajh+Lc2Zh9jtTVsu86+HUYBL+uLi19L9vxiYiIiPS2urq64pVFRWc4sxnADqnGxCthryn58MM7+mAStoWSsZKXZjc0HB6E4X3A9onbDRbE+8jqc4r0hP2BJfjq2HuBz+c2nDYC4Ex8HnEn4EJ8W8p7gQX4XMe/8EVV0g4lY6VTZi1atG0RfAfnvgkMTjFkDc7dZZHItdXjxr2R7fj6ICVjOyghwX8usE2KIZsd3BWLxWZMq6xsr/m4iIiISJ9nZq62oWG6M/spsFeaYc+bcz9dUFp63wznMi2m0hcoGSt567FFi3aLOfcwfjp5opcjZlOPqqhQdaD0hD/he8eOB17JcSyJIvj+s2uBVBcEhwP34xcik3YoGSsdMq+ubpumIPhuhiTsK8AtFgS/rS4tXZ/l8PoyJWM7adby5QOK1679nDl3Mf7KYLINOPfbsLn5aiVlRUREpL+au2jR5DAIrsZsQpohS51zlz5VWvpAP0jCtlAyVvLanLq64RaJ3AdMSdr1ZmBWrcWIpQcMB7albyVipYcpGSsZzaur26YxEjnPwbdI3bfqKeCXq5cv/9v06dNjWQ6vP1AytovMzD0WjR5lzl2QZlG49Tj3u+LGxquqDjronVzEKCIiItJZNQ0NB7gwvBTfFzCVN825K9a8/PLv+uH5tZKxkvdmzpwZGTlmzE0G5yTt+jAwO3ZyRcWCnAQmIv2GkrGSUkIl7LnA0BRDZgUwY3J5+XPZjq2fUTK2B8yurz8o8D3Ujk6xex1mtxaH4bVVlZUfZDk0ERERkQ55rK5uz1hR0U/jffJTfQ5b5eCqotWrb6mqqtqU7fh6iJKxUjDmRKOXGcxI3OZgLc4dM6Ws7MkchSUi/YCSsdJGXV1d8apI5Bz8m8qI5P0GcwmCH1eXlj6T9eD6JyVje9CchQsPIQh+ZHBcit3rDK4rWb366n78AUZERETyTE1DwxDC8CIH3wcGpBiyAbObi527uqq8fHW24+thSsZKQamJRs9xcDN+caMWG0LnjptWVjYvV3GJSN+mZKx8rKah4XjC8AYHe6bY/RRmP5paUfHvrAfWvykZ2wvaScq+7swumVxefrdzzrIenIiIiAi+5dLcaPSL5tzVwA4phjQDd0acm3FUWdlbWQ6vtygZKwWntr7+dMzuAIoTNq8zs2OrKyoez1VcItJ3KRkrzI1GDzSz68y5w5P3mU8mXlZdXj4/B6HlAyVje1FtNHqowQwHk1PsftzC8NvVEyZoNUcRERHJqniLpZuAg9MM+bsLwx9NmTDhxWzGlQVKxkpBmlNff5KZ/Zm2Cdn1BlP1WVpEkikZW8Aeq6/fKTS71OBM2k6rAOeWGVxUXVb2cG6iyxtKxmbB3EWLJsecu87B+KRdBvw1YnbRURUVK3IRm4iIiBSOec8++4mm4uKfAV8m+fzae87gwjxOzigZKwWrtr7+M5j9hbYJ2dWh2RHTKioachWXiPQ9SsYWoLq6uuIPg+A75twlwOCk3e9hdlnxmjW/raqqas5FfHlGydgsmTdvXlHz8OFfN+cuB7ZN2r0e+Enx6tXX63UtIiIiPW3m0qUlIxsbzze4BNgqeb85904AP3yqtPSuGc6FOQgxW5SMlYKWJiH7LnD41PLy5TkKS0T6GCVjC8zshoaKwOx2zCYk7WrEud+45uZLp1RWrslJcPlJydgsm7d06dDGxsbvOucuxqzNv7XB4iAMz54yYcLTuYpPRERE8kttNHoMcANtk5AtGg1uim3efMUxhxzyUZZDywUlY6Xgzamvn25m9wCRhM0rMJs0taLi7VzFJSJ9h5KxBaKmoWGIi8Uuwbnv0vZNAQcPu0jkgsnjx/8nR+HlMyVjc6RmyZJdXCx2JWan0/ZvXejgt02bN19UIB+KREREpBfULFmyi2tuvgU4Ic2QR2NB8K2jS0tfymZcOaZkrAgwJxr9usFttP0cEi0uKflk1dix63IVl4j0DUrGFoCaaPTTDm4Bdkra9bKDs6eUl/8rB2EVCiVjc6ymoeFIF4a/AcYk7XrTwXlTyssfzEVcIiIi0j/NMAsmNjScGZhdazAsxZBXgB9OLS+/L9ux9QFKxorE1SxadL5z7pdJmx8tXr36BLVOEylsqZrKS554rL5+pznR6N8d/J22idhGnLuiePXqUiViJd9Vl5b+s3j16vHO7KdAY8KunQ0eqI1G/1a7aNGOuYpPRERE+o/ZixaVTqqvf9qZ3ZaciHWwFrh4dUnJ2AJNxIpIguqKipswuz5p89GNI0bclJOARKTPUGVsnqpZtOizzrnfAKOSdj0VOnf2tLKypbmIqwCpMrYPqY1Gxzi4zaAqadcanDtvalnZH3MSmIiIiPRpD9XVDR4Yicww+BZQlGLIH4ubmi6qOuigd7IdWx+jyliRBDPMgknR6H04d1LSrvOmlpffmpOgRCTnlIzNM7Oefnqr4gEDfmFwVtKuNcBl88vKbs7zFVz7GiVj+xgzc3Oj0S+ac9ez5cWK+8KSkv+bNnbsqlzEJiIiIn3PnGj0iHjvx1QLdP3HOXfOlLKymmzH1UcpGSuSZP78+YPWDhr0mIOJCZubHEzVTFWRwqRkbB6ZXV9fFZjdCeyauN2cu7+ksfE8XanPCSVj+6jZdXU7BEFwS4qr1K87+LJOjERERApbTUPDdkEYXm/whRS7mzC7fuimTZdPmjRpY9aD67uUjBVJYe6SJduHzc3P0vaz+ntWVFRZPW7cGy0b9t23cYJzTW+/+OKQ/2U/ShHJFiVj88Cs5csHFK1deznOXUTbPsAfmXMXVZeV3Z6r2ETJ2L6uNho9BV/tMjJhs+Hczc1DhnzvmDFjNucoNBEREckBM3NzGxq+YmbXAlunGPJMEIZnTZ4wYXG2Y+sHlIwVSWN2Q0NFEIZPAoMSNj93+Xl7n7NyZdFnnONzznjihWUDzshVjCKSHVrAq5+bs3jxuKK1a5/DuYtp+//574jZeCViRTKbWl5+XwwqgMcTNjvMzo+sW/dsTUPDAbmKTURERLLrsfr6nWobGmaZ2R1smYj9yDn3zfllZZOUiBWRzppWWrrI4OtJmw+sOu6D5xz8EOO9xuaS/8tJcCKSVUrG9mO19fWnWyz2NM6NS9jcZHD56uXLjzqqomJFzoIT6UeOLi9/bUpZ2RHAhfjqZQAcjHdmz9UsWvS1nAUnIiIiWVFbX396zGyJM5uWvM/BA81BMHZKWdktWn9BRLpin3027XPBafvv+cSckR8lbj+8ehXlEz/6IIg0nfTKK06z8kQKgNoU9EOzli8fULR+/TWYnZ+06wXn3OlTysqiOQlMUlGbgn6mpqHhABeGdwNlbXY4d/fQDRvOVl84ERGR/FLT0LCdi8V+naKPPMBbOPfNqWVlf896YP2T2hSIJBg7dtNeFnPTQ5juoBQgCIxvXrqcPfZp/nichXxU5Gy8CqpECoMqY/uZR6PR0UXr1z+VIhH7y+ahQyuUiBXpnurS0ueLV6+eaM7d3GaH2RfXDRr078cWLdotR6GJiIhID5tTX3+SC8MlqRKxzuwOF4uNVSJWRDpj7NiNu+63z6YL9t9305NhzL1scKWD0lhsFWvW3MOK10/hqh9cwoZ1rekYF7BVCHfPMFOORqQAqDK2H6mNRo8B7qZt/6p15tyZ1WVlf8lRWJKZKmP7sZpo9NMO7gSGJ2xeaWZfrK6oeDRHYYmIiEg3zamrG04kco3BWSl2v+vg7Cnl5Q9mPbD+T5WxUpD22mvDzsWR4GTnOMVwk4jnWmKxD1m3bhYfrf0769fPwayJ4uJdGD36KUorB/L1i17Htc3KXDy1vPyaXDwHEckeJWP7ATNzcxoavofZz0ioZnbwUsy5k6eVlS3NYXiSmZKx/dyjDQ37RMLwr0DiQl6G2TWrX3nlR9OnT4/lKjYRERHpvLkLF04Lg+C3wE7J+5zZX1xT07mTDz54ZQ5CywdKxkrB2Htv2yYImk4KCL/UNgG7mnXrZtlHa++39evnOrOmj/Muzg1i9G5zGDiwAoOHbvzTC68HAecm3O1mF4kcOGX8+CXZfj4ikj1KxvZxDy5bNmzQxo33Ascm7brXguDr1aWl63MRl3SYkrF5YN7SpUObN2/+rTn3uTY7zB4qHjDg81Vjx67LUWgiIiLSQQ8uWzZs8MaN18ZXM0/+HLTSnDtXs826TclYyWv77mujnGs6FrNTgGlAEUAYbmDd+tm2Zs2fbP36WvMJ2CCp5YBjpx3vYqutPguOF5uaSg654c8LmwdGIosM9kkY2LB1LHZgZWVlU9aemIhklZKxfdhj9fU7hWH4D3OuImFzM879eGpZ2c9zFph0hpKxeaSmvv4sZ3YzUNKyzWBxEIsdP6Wy8vUchiYiIiIZ1CxcOMEFwb3AmOR95tzsIjjzqLKyt3IQWr5RMlbyztixtnUYNh2XnIA128j69f+yj9beb2vX/s3CsKVOKghIbj4AbLvNj2ybbX7kgJWRZjv4+VcGvgowu6GhIgjDp4HilrEOfjylvPzKXn9yIpITSsb2UXOj0QNDeBDYIWHzWy4MPztlwoSncxWXdJqSsXmmJhqd5OA+YMeEzW+HQXD8tNLSRbmKS0RERLwmqC6CfznYbGautqHhQmd2NQkXU+M+cs5dOKWs7Pe5iDNPKRkreSGegP0MZtOBI4knYAHWrZ9jq1ffYevWPWpmGxOOcimqYb1hw060nXe6x4FrMsKpy5YN+lfi/tr6+ssxuzThrjYFUDq5rOzlHn1iItInaKW+PmhOff1JIfyLhESswWIXi01SIlYkt6rLy+djdiDOLUzYvGMQho/XRKOfzllgIiIiAoCDASHMf+vkk8vn1tf/w5ldz5aJ2CcjsViFErEikmyffRorLdZ4M2YXA5NJSMQCDB0y2W2/3VXBTjveHWy7zaXBsGEnuZLivQKIpMivmA0ceEC44w6/AxzO3PnJiViA1cXFVwJLEw8LzW43MxXQieQh/WL3MbXR6AXA9SQkys252bFNmz53zCGHfJS7yKSLVBmbp2oaGoYQhn9ycGLCZjP4SXV5+YxcxSUiIlLoDIo/OPjgD1644oqhm7fdNjk50ohzP5hSWnqDc85yEmB+U2Ws5JXx421Ic3PTAWFIqbOw1DlKDTcO2Cp5bBiu5e3/nc3atQ98vKUoso2NHj0/Uly8K5j96sWXBp6bfFyL2mj0UOBxEhftdu6rumgkkn+UjO0j5s2bV9Q8fPht5txX2+wwu35+eflFM5wLcxSadI+SsXls5syZkeFjxlzr4MLE7Q5u/3D58nOmT58ey1VsIiIihSj+3nxJYHapuS16Nr4WmH1+ckXFgpwEVxiUjJUCYG6vvRr3Ky7mGoxjSMirvLbiSDZuXGAQhs6VsOsus4PBgw91Djdv0JDi6oULXcZFuWqi0V85+EbCpveKYZ+q8vLVvfVsRCT7lIztA2YuXVoyvKnpHmd2csLmGHDB1PLyW3MVl/QIJWMLQG00eibwKxKa7gP/KF69+nNVVVWbchSWiIhIQZnV0LBzcSx2jzl3ePK+Ec89999Br702cdzPfvZuLmIrIErGSt7bf//Ggy20P9D2tQ6EvPTydmEYrjWAHT7xq2DEiK854LWm5pKDXnnFvd/efc+pqxseFhUtc2atvzcLrUeMAAAgAElEQVRm10+tqPhOjz4JEckpJWNzrKahYYgLw78BU1u2OVgLnDalvPyR3EUmPUTJ2AJRE41OcTATGNGyzcG8DYMGnXjivvuuzWFoIiIiea920aITcO4OYFTi9mDzZva66SZ2uecegOcDOMHBf3MSZGFQMlby1hFHWNF77zT+2ODHQCR5f2Pjq7z6n/1jAFuPPM9tv/11Adh6w01ctmzAko4+zpz6+jPM7I6ETc0WBOXVpaXPd/9ZiEhfoAW8cujhxYtHOrO5JCRigf+FQTBJiViR/qW6vHyOi0Q+ac6907LNoGrQxo2z50WjIzIdKyIiIl0zc+nSktr6+l/i3AMkJWIHvP/+eweddhq73HMP8X5fB4TQ0NT2QrmISLvGjt28/7vvND5jcBltE7HNGA8AbN68xACGDDnKbbfdzwMgDIzPdyYRCzC5tPRO4JmETUUuDK/u3jMQkb5EydgcmbtkyfYlsdg/MTskYfMK4FO64iXSP00ZP34Jzk0yeDVh86QmeLJ20aIdcxaYiIhIHqpdtGjHEY2N8zA7n+QZf87dPf7CC6cN+a8vgr0MX6IJDAugJgYXm2YJiki7zO27b+NZYYzngIqknf91QXAksARg0+YlVlw8mp12vNs5V4TBj5e+NPAfnX1E55xZGJ4LJK4bc+zs+vqqLj8NEelTlIzNgTl1dbuGzc2PA2Ufb3RuWXMQHDa1vHx57iITke6qLi39r8Vih2OWeAV8LM49OXfx4j1yFpiIiEgemd3QcLgFwUJgUtKuD51zJ08tK/vSyBdeiAKvA+wMTATq/JgIcHUI9xoMyV7UItKf7Lffxt3237fpMYfdBgxO2GUOuz2IlIx/4YXiJwgYD9DU+F922fmBIBIZ5Qz+umxZSZerWasnTFjo4N7Ebc7sSjPTRSSRPKBkbJbVRqNjLAiepG0vpbri5ubDjyktfTNXcYlIz5lWWfm/4jA8EucWJmzePWxu/ldtNDomZ4GJiIjkgdpo9IIgDB9rs8ANYLAgYlY+pazsbwmbbwY4BXgPOBK4s3Xf50KoM9i314MWkX5l/302n4IFUcOSqlHdu4ad8MKygWcvXerWAWA+GTtq1HfdgAH7OaBu3bqSL4Gz7sQQBsElQOPHjwwT5zQ0fLo79ykifYOSsVk0p65uV6AW53ZJ2Px48+bNR1VVVn6Qq7hEpOdVVVZ+UFxcfATOPfbxRv+7/09VyIqIiHTevHnzBtZGo78HbgSKE/c5uH1NSckRR1VUrEjcHsA9QGxrYAqwCTgLOIePMxz7hvBMM5zY+89ARP4/e3ceH1dZNXD8d+4kk7SUUgQBFVm7JE1plqZtmhZsoBsVFFAqggLqS1FfBRUVFH0t4lIUFXAFRNnVAiIKhTSFCLTpkmWS0jQpBUQWFVnaQrckM/e8f8ykuTNN2iadyZ2ZnO/nw4fe89x757TQycy5z3OedDd6tL67sKDjzyosAQ6NGxTuU3KL2tvzH/acPxI4DiAvb7wA/wnkRM555RXZeaC5zC0u/gciv4kLql67SNXqOMZkOPtLPEhqGhqO0UDgSWJv1DFLR+zcOW9+RcXbPqVljEmhqqKibSN27DgTWOoJH+1GIsurn3nm/X1dZ4wxxph4jzc0nNg5atQa4OKEoZ2ietHs0tJLFxQVdSZeJ/Avgb8DnO+J/xaYC8R23Rwp8GAEFqt9PzJmyCoat2tebk5nM3B2wtBWRS5ta8tb0N4ub3oHgsFwMbv7T2sHImevXz/85WTlFHbd7wm8401zus2ONSbj2YeNQbD8mWeO1JycaryFWNXq8IgR51RWVh7wEzNjTPqqrKzcuSUYPFvgYU/4eAmHn7BNvYwxxph9WxYKzY8EAvVCdCnwbqovO/CB2WVld+7tehfuATgTOMQTXwlUgK4BJVpMuVLhIY0/zRiT5caN04PHF+y62RV5FEj4fC7Lu8KRCe3twVt6u1Y10vO+JM7Ctrbg6mTmNr+s7HWFX8S/pn7bescak9msGJti1S0tR7jh8BOo7u5FpbA8d+vWs+aPGdPhZ27GmMGxoKioc3Mw+BHiZ8iORqS2du3ao/q6zhhjjBnKFqk6NaHQd4C/kbhcWLXazcsrmVVaWr+v+wTgAWBnPnBmtPC6279ATgW9LRZXOMOFtQrjk/YbMcakrYKCrmmOdDYpsjBhaCfCVW3tuXOfe254n3u7SKxfrML1bW3BvT4YGqjcSOSnwDZPqKQmFDozFa9ljBkcVoxNodqGhsPFdR8n/sPcChznrKqqql1+5WWMGXwLioo6R+zc+VGBWk94bFdOzrLahobDfUvMGGOMSUNLV68eOb25+SGFRcR/Z1GF79eVls6fV1T01v7cS+Dt7hUqF/Qy3gXOQnA/BW7sA/pYF1aH4ZwD+10YY9LVpEmaO76gY5HgPg2M9o4p1LuqpW1tedeBuHu7j4qUAMva24NXpSrXqvLyNwR+HRcUuTJVr2eMST0rxqbIw+vWHdoVCNQAEzzhlbnB4Olzi4u3+5WXMcY/lZWVO3OCwQ8BdbuDIieFHae6NhQa5V9mxhhjTPp4NBQ6Licvb6XCGQlDW1E9a25p6bcWyd4LJIm6WxVUgbwH9rjWAedO0FPAfSkaOljgfusja0z2KSzsmLBjW+dahe8AAc9QGOW6gw4KTt+4MX/jvu+kDkpOXn7wYyCRVOUL4DrO9YC3xWFlTWNjRSpf0xiTOvbBIgWWtLYGg657H1DSHRPVps5A4MyqoqJte7nUGJPlqoqKtoU7Ok4H1nbHVKSsC/6ydNOmPB9TM8YYY3xX09hYEYDVxE9oAJF2cd1pc8rK/jqQ+wbgUeBNBzgX0IR2BQIiII2gUyDyZHwf2Yc1sU2CMSYDqVM4btflKA1Iz3d1AIQ2V2Va28a8qxobpWt/7jZhwvZ3K/rx5mbZkpJ0PeYWF/8X1bg2COo4V6T6dY0xqWHF2CRTVRnV2Xkbqqd5wi2RvLzZZ0ycuNm3xIwxaWN+RcXbuTAXkUZP+AO577xzxyJVe182xhgzJNWEQudrIFALHJkwdH9ubu7k2ZMmtQ303gKdwP0A50fXHfc6O1ZAXgfmgPvjnj6yp8f6yJ400Nc3xviroGDncYUFHbWI3AB4J0CooLfk5gYnb9wYbOjPPdevH/Fae3v+s8nNtG/qujcQ/951dnVLy/GD9frGmOSxL/1Jtqy5+UfAJzyhF5ycnLn729PKGDM0VJWWbskNh+cBm7pjKvKxylDoBz6mZYwxxgw6VZVlzc1XKtyNan7coMhNdSUlH0vG6jIn1qqgDKQI6KsgCxAGrgL3QnB3RIdGu1AXjk6sNcZkkMLCzgsFZx3IKQlD/0b0jA3t+ZeuWydp30pwbnl5u8RvCBwQ1/2sbwkZYwbMirFJtKy5+VKBr3pCbzgip8866aTXfEvKGJO2qsrL3whEIqcD/90dFLmypqnpi/5lZYwxxgyeurq6YctDoT+guphoW4BuHaheOKek5PL+9ofdixXAPwHOA0ejm4EpwHCizSPPBYrBCcYuuAe0qqeP7AiBP8X6yAb2uLsxJq1MPPGdIwoKOh5C9Q7g4LhB4T4nEJzQ1pa/tPer05PrOD9LCH3aWp0Zk3msGJsk1S0tZ6L6S09op8KHZ5WUDNqyBWNM5jmtvPx5V+RMYPfTeBW5YVlz89k+pmWMMcakXG1Dw+Hb8/OrVeRjCUNvojp3TlnZXcl8PYkWXu8FOC/aIxYXXAUtAK4mOnW2CeQdCGyAwP3gfBjkp+C+uvs2XKnwqMJhyczPGJM8BQUdH+nKzW0V+FDcgLJFlE+0teUtaG2VjFu9Ore4+Alggyd0eO62bR/xKx9jzMBYMTYJlodCk8V1/0DPE3JXRD4xt7S0bm/XGWMMwLySkrXqOB8HundhdVC9pzoUqvQzr14EgP8BlgD3AZcQP4sp0Wii32t/DuTv5TxjjDFDTHVLy4SuQKBeRU5OGNrkiFTOKSt7MhWv292q4ARgWuxnmAvu+ITzcoBxwNkg3wS5AZz3ecYVZrtQryRsAmSM8dXo0TpyfMGumwXuBzk8YXhZRCMTNmzMu8eX5JJF5La4Y1VrVWBMhrFi7AF6vKnpWBceAQ7yhC+bXVLyZ79yMsZknrnFxX8T1S97QsMEHqxpaDjGt6TiDQeWAzOAG4gu9bwFuK2P8wNANXA+8AXgc4OQozHGmAywLBSa77huHXBcwlBNLkxJ5coygVagGeACzwPFwli7ggQvAb9TWAX0tlv68S6sDMMFKUnWGNMv48Z1Tc/N7WxSZGHC0E5Uv9TWHpz37LPDX/UluSRyc3NvB3Z2H6vIyY81No72LSFjTL9ZMfYA1NbW5kdE7gfevTuoet2c0tJf9n2VMcb0bnZZ2c8VrveEjtBA4KG/NTQM9y2pHr8j+mX0YqAOeDAW/xRQ1Mv5I4n/kj0jhbkZY4zJEMtCoYuBh3SP/o3ym9wtW+ZXlZb2VvRMtnsAPgqSGwskzoyNOQZ4JQcqA3CoA0e7MAf4MnCrwkqgQ+DuCPxMoxNqjTGD7LjjNL9wXMdiR9ynUE5MGF6jaEnbxvwbQXp76JJx5hUVvSUQN/lLAoHz/MrHGNN/Vow9AF2jRt0KlHtC988uLf2GX/kYYzLfqpKSK1XkAU+oJBgI/Nq3hKJmAWOI7m3SzftBd2Iv12wm2n6v28gU5GWMMSaDLAuFLif6cM9btIwgctWckpLPVVVVhQcjDwf+ALiHA3Njs2MLembJbk44/VtdMBNA4NVcqAnADQFYmAMzAvAuB94XWyl30mDkb4zpUVDQcdKw/M41CFcSX98IC1zT1h6c3t6en437uPzBeyCq5/uViDGm/6wYO0DVzc1fBj7hCbWFOzo+I5IdT9uMMf5YJOIGc3MvBtZ3xwQurG5qusy/rPgq0Rm7XZ7YBzy/fr2P6xYDD8V+nfFLwowxxgyMqkp1KPQzom1uvL3Gtwl8eE5JyXWDmY/AqwJPApwPMhw4vmf4u4DrOd1x4E6Fd+3lfv/KheUCoRSlbIxJMHOm5hQWdlwp0MCeEwM2IDJ1Q3veIpBIL5dnvEMjkWXAm55QYc26dfZAyJgMYcXYAahuaTlVVH/kCW12XfdD8ysq3vYtKWNM1qgqKtqmjvMhPB+wROQnjzU3V/mQzhhgEj1tCbqdG/v3m8BTe7n+pti/N/Qx7sTu/yngi0T77hUMKFNjjDFpp7a2Nmd5KPRbgS8lDL3lqM6ZXVr6iB95ubFWBWeCTAbp/lIUmzX704TT369w86AmaIzp07hxO49/7bWOWpTFQNAzpILeMvyg4OS2tmCTX/kNhvLy8i4B72o6NBKxVgXGZAgrxvZTTUPDMeK6f6RneZWrqhfMmzTpOT/zMsZkl7nFxf9Q+DjQ/TQ/x1G9r7ql5fi9XZcCJxP9wrrLE5tIT3u9B4DOvVzfXYRt6WXsdKIbqdxGdAloJfBDoC12/pkDTdoYY4z/qltaDuoaNeqvKvLphKF/RhynclZZ2SpfEgMCcD+wazhwdc9s3TcFXnPgmwprvecrfDQMFw56osYYD5WCgs6FjjjrUEncj+CfrrqnbWjPv7SxUXb4kt4gi4j8MSF0nqpKrycbY9KKFWP7oa6ubpgGAn/Bs2GXqF49t6zsUR/TMsZkqbmlpTXA/3lCh4nrLqmtrc0fxDRuB76SEPM+df8De/duIEx08y+vS4BfAQuBEuAiosXn44m2RZgA/JXoclFjjDEZ5rHW1nfhujVEH7x5tYYdZ8bpxcUb/cirm8BWgYcBTosVYzX2AFGgKxBdqbEt4ZpfKowd9GSNMUyYsO3IwoLOvwp6MzAiblC4Lyc3WLpx47Baf7Lzx+ri4ieJbwV2wrJ166b4lY8xZv9ZMbYftuXn/wwo9YQenFVaOqg9rowxQ8vskpIfAks8ofKuUaOuH8QUXOJ75wk9xdh/A0/v4/pSoAnwtnEZC/wYmNvL9RHgJ0D3e+u3gTP6nbUxxhjfPN7UdGygs7NOYFrcgMhqp7PzA/OLi1/xKbU43a0Kukl0tUb3r58Drki4ZEQE7lHIHYz8jDFR48d1nBsJ57ayx2dCfR3hnLa2vAXPPCOJm+9lvUUiLtFZ/j1c11oVGJMBrBi7n2qam89B5NLdAdVn1HE+aRt2GWNSSUQ0Nxj8DJ4viMDna0KhD/uU0lR69jn5Ez1tFPoyBXgsIXYpsJPoTNi+fg79iOiMWoCv9T9NY4wxfqhZt+6kiEidwriEoQdzN2+umjV16pu9XuiDACwlfgOcDQnjtxD/QBSBcjd+1YoxJkVOOEEPGV+w62YVlgCHeccUHnM1UtLWlpe4r8GQoo4Tt0pNVD/iVy7GmP1nxdj9sLSl5WhVvcUT2q6uu2BucfF235IyxgwZVUVF2xzVBUB3/ytR+H1NQ8MxPqTzMc+vl/R5VpQAH+7lvCLgKGAR0T6xvdkCvBD79VTs55UxxqS96paWqRqJPAW81xsXuGXLpk3nVlVV7erjUl9ItOf57g1w3F42m3Tgs8BLCeFvdoEfm2oaM2QUFu6aFQx2rldkYcLQO4pc2t6ed/rGjQf9y5fk0siciRPX4n2PEnn/8qam8X1fYYxJB/bldh8WqTo5kcgdeJ7Eqerlc8vL231MyxgzxMwqK9ugIl/2hA7VQOCuJUuWBAY5le4vn1tJ2NykFycTLaq2JsSbY//eBby8l+tfj/07j/idco0xxqSZZaHQdHHdZcCouAHV62aXll66YMGCfa2k8IXjaVWQ00sxVmCzA58kfiWI48CdCu8ajByNGUqOPlqHFY7rWIxKtcDRCcOrnICWtbcHb+n14iEotlJ3mTfmisz2KR1jzH6yYuw+VIZCVyNyavexijwwt6zsNj9zMsYMTXNLSm4R1T95QqeMGjPmykFMIY/oxloAK9h3i4LPA7/sJf5tojNmy4B/9nGtAGNiv36RaOHWGGNMGqoJhWYSbUkz0hN2Ff53TlnZVf5ktd+eJvpzZrNEe6HvQeApov3MvY7WaBsDY0ySFI3tnHLwiM4QwpXE1yq6BK5paw+e3Nqa/5xf+aWxZQnHVow1Js3l+J1AOnusuXkKqt/eHVB9WYPBxGUSxhgzaHJEPtsFFcCxsdA1y5uaameVla0ahJc/HOieifv8Ps4dQzTPi3sZ6wL+uo/r5wBHxH792/3Mz5jdlrIp73A2HxHBeS+4R7jIQRIrFAmMchFxcEeA5Lr0bPrhQJei26LnaSfwNsjbgrNZCL8jyNsOztvllO/o46WNGVJqQqGZCn8jfnfziMJn5paW3uFXXvtLQCPwR4UZezvPgW9F4AMSbZ0DgMJHwnBxDtye8kSNyWIzZ2rOa691XuGqXsueG+StdwLyydbWYHNv1xroDASWByORCD2f02cu3bQpb/6YMR1+5mWM6Zv4nUC6qmloOEQDgWbguFgoDMycU1q60r+sTAZaDpzmOe4A8n3KxWSJx1paTnZct5aeD1z/kEikdHZ5+dYUv/RhwBuxX38H+O5ezn2A6GyjGwbwOg7wJNEvxs8DJxHd8MuYOKtZfaQSKIxtFDQOKAQ5BvQoUr98uBP4L/CqwmsC/1H4t4O8Bu4rEXjBIfxCJZX2/67JWtVNTaeL4/wZVe9nmwgiF88pKbnbt8T6SWG8C5cHohtM7u280S40AQd7wtsdKBN4NrVZZoyNwFjP8WtE+8Qb06sJYzoKIwHuBMoThlxFfhEO5379uefEior7sCwUWgtM3h1QnTmnrOxJ/zIyxuyNzYztgwYCP6OnEAuq184pK7NCrDHGd/OKi59e1tz8fVS7d3M+XgOB64FLUvzSbxEtxh7O3r9YnQ8cT/xmX/3xFaKF2NeA+Vgh1gANNBzeSaRCkKmKTAMmuYm9KQHQwUopSLSX3dHdT7YFUBSQ2NrKXOqo/5fCCwIvgD4PTpsg63fx9qYqqsKDlawxyVYTCn1QRe5PKMR2isjHZ5eU/Nm3xAZAYEMX/GE/znsuDF+W+BUbB7lwr0JlbEMwY8x+USko6Lokgv4UOChh8EXEuai9LfcpPzLLUDV4irEa7RtrxVhj0pTNjO1FdSg0W6Ca2J+PqD69+bnnqtJ14wGT1mxmrEmJ2tranK5Ro/4OTI+FFNXZc8rKHk/xS18PXEG01+tY9vziOQX4MzATGEhPr3lEl7u+DJxBL5upmKEhWnzV2YrMEXQGMNrvnJKsA2gTWO8i6wVpjpC79mQmbt7nlcb4bFkodC7Rja+8y4k7BRbMLi19yKe0Bk0E/sieDxx/EICr/cgnzdjMWLNPhYXb34Ob81uE+XsMKnc5OcHPt7bKNh9Sy1ixljG1nlD9nNLSKb4lZIzZKyvGJqhuaTlIXHcdcEIstMN13eJ5kyZZo3AzEFaMNSlT3dJyvLjuM/TMJngxNxg8qaqoKJUfXg8i+v91BfA74Eqis2UPAj4DfBFYAIQGcO9TiRZiQ8DZwOtJyNdkCEWdlTRNcYjMB5lLdLniUNtoVBU2ObAWZK2iaw5heHMRRTbbzqSNmlDofIU7iF9htxORs+aUlCRuIpOVFEa50AIc4wm7LszOhSf8yitNWDHW7NX4cR3nqvAbEtoJKfLfgLqXtG7M39e+AqYXS1pbg6M6O9+kp3+363R2HjFr6tQ3/czLGNO7ofYlZ58kEllMTyEWFfmWFWKNMelobnHxPwQWeULHdXV2fi/FL7ud6KzXLwETgH8A/6HnS+lUBlaIPQV4iGgxdjZWiB0yVrCmfBVrr6+j4UUHdxXIt4nOsB6Kn1FEYKzCJxS9CVizlR2bV1K/bBX131zJmmm11FqLKeObZaHQxQp3El+I3e6KfHCoFGIBBLY48AnAu2rOceBOjfZXN8YkKCnRUQUFHXersISEQqzAA66bW2SF2IFbUFTUCXjbOjhuMDi1r/ONMf4ail90+rS8qWkaIp/3hNZsffbZm3xLyBhj9mFlSclPgTpP6Is1zc173RE6CTqAG4kWXg8G3kd0CflXifaV7a9TgaXAYuDj7Nkj9sv0bFZmssBKGk5cxdpr66jf5ODUK3KFwPv9zitNDReYrfB9wanLY8TmOuqX1lH/pToas611g0lj1U1NHyXaK9X7frzdFTlzXklJbR+XZS2JblL544Tw+xRu8SMfY9JZQcGuuR27OtcLXJAw9LYil25oz/vos8/KG71ebPaf6uqE40k+ZWKM2QdrUxCzdNOmvJxt20JAYSzU4YpMmldS0upnXibjWZsCk3I1jY2F6jghIA9AYGPOli0lVVVVu3xObX+cQrTH7GXAvb2MH0l01q0tccxwijqraThVYSFwDlZgT5YXgOWCPjySg6qtpYFJhepQ6CyB+4ifEbvVUT19VlnZKr/y8ptCTgSelmjrHm/8MznRVj5DkbUpMLsdfbQOGzGia7GgXySh9iDoyrDLhc8+m/+CT+llnWWh0Hzgke5jhYfmlpae5WNKxpg+2MzYmJxt275LTyEWgWutEGuMyQSzJ01q0+isUgAUxnWNGvVtP3PaT6cS/bJ6Or0XYiHasqBt0DIySbeSliNWUr9oFY0vaXSn33OxQmwynQAsVOSvW9nxWh1rb19B/fxWWoN+J2ayQ3VT0+kCfyK+ELsF1VlDuRALIBAORNsVvJMQv0lhnE9pGZMWCgs7Kw4e0dki6GXEF2J3IVy1oT3vFCvEJpc6ToP3WKL9940xachmxgLVLS0TxHVD9HzIbH5XJDKlvLy8y8+8TFawmbFmUMSa9jcS7eMK0OWolswqK9vgZ1570b1ZVzPwah/nHAGUEC3Ufr6Pc0yaWsWq45ScrwKfBob5nc8QtFngL4ou6WD78iqqwn4nZDLPslBoOlBNz0aRADtcx5k3r7j4aZ/SSjth+JTsORO20YFKgaE2W91mxg5xkyZp7s7tnVcrfIs9H76uc5VPbtyYt86P3IaCZU1NLyGyu/WTG4m8d155+b/9zMkYsyfbBAKQSORGRLr/LMKu43ymvLTUCrHGmIyxoKio87Hm5s84qnVEP/jmuiI3AHN8Tq03M4kWYocDlftxfntKszFJtYK1RQHkKoXzSJ/PGduA/8b+3aWwU2CXQKeCEmvxEXMIu1cOyUjQkcBIMq+gfKjCp0A+lceIf6+k/i4H5/ZpTLKZ5ma/1DQ2VgCPanwhdqcrcoYVYuPlwO8j0Z+353nCk1z4LnCVT2kZM+iKijrG79jeeRdQljAURvmJkxP8v7ZWGWoPKAaXSAOePvyBQKAMT+sCY0x6SJcvSb6pbmr6KCKnekK/nFdc3ORbQsYYM0DzSkrWVodCtwh8Lhaavay5+ew5JSUP+prYnhbQv9YDDfs+xfhtDWuOj+BcA1ygg98G6S2iRfs2YKOgz4O85iL/yYN/l1O+40BfoIGG3AiRkZ04h+Qgo0CPBDlCcd8LzpGKHiXwHuBo4BjS6zPWewS+rrhfX8Xa1Yr8voPh91ZRtM3vxEx6eqypqVhFlhLdpLFbp8C5Q3Gzrv3hwOdcmAYc6wl/rQtqcuFxv/IyZnCoFI7ruMyNcB3xDzgReEFc56LWZ3NX+JTckCLQqHC2J1SOFWONSTtDuk1BXV3dsG3Dhm0AjouF3nQ6O8fNmjr1TR/TMtnF2hSYQfVYa+u7nM7OjcDhsdBLHZFI4ZnlB16MMqY3a1l7VBj5FnAJMBh9St8C1gisUZzVYaTpFMpeH4TX3W+11ObkMOKYXDjRhRMUThBkDOhJRHu8pkPP/q2C3hFBfjWDyRv9Tsakj0dbWsYFXPdJohsodouIyPmzS0qW+JVXJlA42YVa4pdmv+pAscBQ+X5hbQqGmMLCnceigdtBZyYMqaC3SiDvitZWsYd/g2R5Y+M813Ee3R1Q/ducsrIP+ZiSMaYX6TRrY9BtHzbs6/QUYhH4hhVijTGZbF5R0VvLQqFFwC9ioWOCOTlfAb7nX1YmG9VSmx/k4K+G0auIX8acbNsUnnCQxxRqpzFpoyCawtc7YLH+rC/E/olTR2qOztAAACAASURBVN0wh7zxSuQkxSkCLSU6a+WQQU7zEEUuc+CLddTXgPvzaUx5JN3/bE1qLW9uHhtR/TsJhVhUPzm7tNQKsfsg8HQErgO+6Qm/T+FW4Byf0jImZcaP6zhXlZtBD00Y+o+il7S15z/sS2JDWEC1wfUGRBJbRhhj0sCQnRlb/cwz75dwuI2eL5ChLZs2TV6wYEHEz7xM1rGZsWbQLVmyJDBqzJhGoDgW2hlQLTytrOyffuZlsscq1p6pyM+AE1P0Ev9QuE+Rxw5l2MoiirK6v5yizmqaxoFOcXGnCjKV6N/fxI1PUkw2CO6PR3LQvdn+Z272VNPQcIw6zgrvxi+Aqsj/zC0pSdycyvRBIScCT0m0ZYE3fkkO/NavvAaRzYwdAkaP1nfnBjpvQThrj0HhPtXg59rbxSY5+WRZKPQq8N7YoarjHDy3uHi7nzkZY+IN2WLsslBoCXBu7FBVdebcsrKn/MzJZCUrxhpf1DQ3z1DVp+h+nxf545ySko/7m5XJdCtpOFHQG4EPpuD2/wKWCPLHCiatHeozNFezeqSLnKI4VRLd9K6EwWtv8IogP9vFsFusr+zQUNPQcIg6ztOInBQ3oPrVOWVlP/EprYylcIILIaKb/3Xb7kC5ZP+mlFaMzXLjx+46XR25jWifdK+tiny9vT14ix95mR7LQqGngRndx+o4J80tLl7vY0rGmARDshhb3dR0iog82X2scO/c0tIL/MzJZC0rxhrf1DQ1/VFFPhY7VNdxPmA7YJuBWMKSwPs54XJFrwWGJ/HWXQJ/Fbh5KuWPC+Lu+5KhqY66dym5VQ58UGE+8cvIU+V1Ra7Lg18nYxM0k55ieygsw/PFHUBUvzG7rGyxT2llvDBcJHB7QrjJgWkC2Tzz3IqxWWr0aB0ZzOn4sSIL9xyVmq5w+NPPPTf8lcHPzCRaFgrdDlzUfSxw1uzS0of8y8gYkygdNpAYdCJyredwhxOJfMO3ZIwxJkW6AoGvAt1LkiR327YbFc7V5BbTTJZbwdqiozl+paI/IXn/7/xT4Fth5NhpTP5oBZNrrBC7d5VUvjWdyQ9MY/Knp1H+XkWngHwXaErhy75b0Os70efrWHt5LbX2MDHLLFmyJLBt2LB7SCjEqshiK8QemBy4A/hDQrjMtR7uJgMVFHRNy83pbOylELsT4aq29tx5VohNI6rPxx2KpKqtlDFmgIZcMbYmFPogcEr3scCPZpeXv+RjSsYYk1QKIxVOPr24+Kz3Pvzws93xyPDhpRuuvnqMgM1wM/u0hCWBVdR/00EagalJuu06kAs62DZ6GpO/fwrl/07SfYcUQdzpTKmvpPw7lUyepMho0G8CzSl6yaNAbggy4tmV1H9S0SH3+TFbjRo79qfA2d6Ywr1ziou/2cclph8c+BzwYkL4ii6Y5UM6xvTb6NGaVziuY7HgPg2MjhsU1rqqpW1teddhD1TTiojEFWNRPcGnVIwxfRhSbQpUVWqamxuB0ljozXBHxwnzKyre9jMvk9WsTYFJKYVjiW70U6IwiejspkOJvb+HR4xg5cMP03XIId3nr1tVUlK6SOxDs+nbWta+P4zcjefh5YFQWAGyuJJJS4d6L9hUW83qMS7Ox0EuAlL15atJcb42nUlPpOj+ZhDUhEJXa+IsTdUntuTlnb6gyDZwSxaFGS78nfgN+f7lQLHAGz6llUrWpiBLFBZ2TMDlLoSShKEwyk+Gjwh+u7FRunxJzuxVTWNjhTrOqu5jFXlsbknJ6X7mZIyJN6RmNixraVlATyEWgcVWiDXGZAKFoEYLrhdH4GcuPOHCWwovKjykcA3wIeBdeB605WzbxjF//OPm7mOBidNCoXN8+C2YDLGS+o+GkRaSU4htcGDOdCafPJ3yR6wQm3oVVGyqZMp3p1E+GnQm6B30tCtJljLBfXwl9Q+tpOnYJN/bDIKaUOh8hWvjgiKNuXl5H7ZCbHIJrAB+kBB+r8KtfuRjzL6pUzhu1+UoDXsUYoU2V2Va28a8q6wQm766EmbGiqq1KTAmzQyZmbFLliwJjBoz5hmgMBb6d0ckMvrMctuQwqSUzYw1/abRma0lQIkbnTlTDBQBub2d3wG0Ai3AOqAC+FjPcOs7ZWVnrbnttr8D74vFns3dsqWoqqoqnKrfg8k8S9mUN4otNwKXJuF27QrfqqT8z1aA9d8KVhwcIP8CRf8XmJDk228HXdTB9huqsPeUTFDd0nKquO6jQNAT/kduV1dl1ZQp//Err2ymkBOBpwSmJQx9NgA3+5JU6tjM2AxWULDzOEHuAEl8IKuC3poTzPvKunWS7Ad8JgWWhUJbgZGxw64tmzYNW7BgQcTPnIwxPYbMzNhDxo69iJ5CLKJ6rRVijTF+0+jsmDMjsMiFJS60Kryp8ITCTyW6E2oJsULsFqAO9OegnwdmAocRbei5kOjuSp5CbL3AzEOamp4TEe9GLGM7R426YFB+gyYjrKTp2FFsWcGBF2I3K/q/r/CPCdOZ/IAVYtPDDGa8M43y31Qy+aTobFnuA5I1o+kgkB/nMaJxJWsSC00mzVQ3Nk4S132I+ELsG47IPCvEpo5AOAAXAIkr8m5QOMmPnIxJVFjYeaHgPNNLIfYlR91ZG9rzL7VCbEZ5wfPr3ENPOOF9fZ5pjBl0Q2Jm7JLW1uCozs524PhY6MUtweA4W4ZlBoHNjDUAaPS/+wR6ZruWABPpeWIdxwWeB1pAY//QDPoqiNPLgzQH+Bnw+Z7QGoHTJLY8OfY+2EZPD8l/hkeMGDd/zJiOpP0mTUaqY+08ov1hDzuA27iK/i4P5xvllGdjD8SsE+sL/GXgEmBEkm7rArdGyPvGyUzcvM+zzaCqbmk5Xlx3FXCkJ7xDHefUucXFa/zKaygJwycF7kwIr3dgssAuX5JKPpsZm2EmTNh2ZDice4tE213FE+5znOBnW1vlLR9SMwdgWSi0FNjdJ9Z1nEnzioubfEzJGOMxJGbGjuro+DQ9hVgUFlkh1hiTagofjsDdLqxXeEehXuFWgS8Q3WhrJMBOoB70VtAvgDsD3FEQGQeRBeB+H/QR4N8Q6K0QGwTuoqcQq3CPwMni6RO5oKioU0S8G7UcG9i+/aJU/d5NZqij4SqQRziwQmyzohXTmXKJFWIzxxSmvFzJ5K9A17Eg/we8noTbOsClATra6mg4Pwn3M0nyUHv7wRKJPER8ITaicIEVYgdPTvTH9b0J4Qlu4kZqxgySgoKOj0TCOev3KMQqW0T5RFtb3gIrxGasN70H4roH8lnPGJNkWV+MXbJkSQCRKzyhtq2bNt3tW0LGmCFD4CEHfqzwF+KXCgGgwIOgJ4M7FdxLwf0VaB3otp57SKCPIixEp7M9BCzoueeNTnTmzR5LkDc/++ydEp2xEr236hWLVLP+54DZUyutwZU0/B70hwz8s0CXwHWHMHzqdKbUJzM/M3gqqXyrkvJrg8hxoF8CkrFU/UjQe1ZRf38dde9Kwv3MAVik6gzbufNuROKWwytcNre09C9+5TVUOdFnpy8mhL8Shvk+pGOGqNGjdeT4gl03C9wPcrh3TKA6opEJGzbm3eNXfiYp4oqxqFox1pg0kvVfwkeNGXMOMNoT+pE1rjbGDBaBlgB8y4FxAqUa3VF5U2yMs0EawGmDwLXgTIy1j9lXERbgMNBqYFb0UAWuDsCXJFrn3cOCBQsirsiPPKGx01tazkrO79RkijWsOWwrO2oEvXig9xB0tUOkZBqTryrCVppkg3LKd1Qy5UaXjrEC3wIOeCaUwkcgN1TH2g8kIUUzQNObmxez5/LjH84tLf2VH/kMdQJbHfgE4N3wTgR+p/Ezl41JifHjd56WG+hcr8jChKGdqH5pQ3vw9GefHf6qL8mZ5FGN/zkuYg9HjUkjWV+MReQrnqNXtwSDiUuDjDFmUAg0B+BqB8YKTFC4hthM1XHA1SDN4DwPgRvAmd7HfRT0KHCXA1OioYjAZyVa6N2rw8Lhu4BXdt9L9aoD/G2ZDLKKVcdFCKwCEjfn2F8RhWte5sUZFVRsSGZuJj1EN/ua/P0Ock4EfsyB97E8BuTxOhp+0EBDbhJSNP1Q09R0ocLXEsJLt2za9G1fEjIACKwEvp8QPlLh9zpE9vQwg++44zS/cFzHYnWdZQjvTxhejWhx28b8G7HNN7ODSHybApsZa0xayepibE0oNBPViu5jgRusV6wxJh0ItAZgkQMFAicDf9fo5jccD3wReJT4XXUU1AW3ENxV4EyIfmHbJbBA4Jb9ed3y8vIuRH7hCU2ubmoaaGHOZJA6Ggpccp4CHTPAW7zk4lRNZ/KiBdgKk2xXRemWSiZ/PQcdS/T9xT2A2wVAv9GJ1q1hzdh9n967Naw5bBX1f1hBY8W+zzbVoVCliiT+bNgQ7uj4uK0S858D31Oo88YUTnfhs37lZLLXuHEdE4fld65BuJL4GkCXwDVt7cEZbW35m/zKz6RAwsxYtZmxxqSVrC7GJswEeJtI5FbfkjHGmAQKBytcqfBXYKYkvCdXA9voKcK60d6y/B0CR0dPeVvgdIE/9+d1w7t2/RrY2n3siCTOmjJZZjWNkxR9WthjJsx+EXigg5ziGUx6Otm5mfQW2+jrUsWdAaw7wNuVR3Aa66j/+EAuDuN8U+E8B9fes/bh8aamY2M/G/I84TecQODM+RUVb/uVl+khEA7AecDmhKGfKpzU2zXG9NfMmZpTWNhxpSPUAxMThlsRqdjQnrcIxB7QZBvHiZ8ZK2IzY41JI1lbjK1pbCwE5u0OqP56dnn51r6vMMaYweEpwv5TYTFwaG/n3ecpwiroLJBqcGKfpF4TqBL4e39ff35FxdvembQKH6xuaZkwsN+NSXcrWXuKi/u4wOH7PnsPYUWuqqD83CpKtyQ9OZMxpjN1VQfbJsU2+XrnAG41Ari3jvqba6nN2d+LYhuBdfc3PFlRW8rdh9rW1hERkYeI7z/ahepHZ02cuMdmksY/Ai8rXJoQznfhXoV8X5IyWWPs2F0nvPZaRy3KYiDoGVJFbuoKBye1tQWb/MrPpJjrxveMVbWZscakkawtxqrjeJdgdIUDgV/s7XxjjEm1/S3CAuwA/hYrwgJcAPIIOAdHh18UOEVgwB+gHZEbge62LSKue8VA72XS1wrq5wvyGHDIAC5/HXTedMqvE+sfZ4AqqsLRTb4CBcB9B3i7hXmMeORp1vX5Puil5F4mPZ1b3r2KxnEH+PpZaZGqE+7svAsoThhaOKes7Ek/cjJ7lxP9u5S4a/0Edz/6wBvTO5WCgs6FAUfWoTIjYfCfintqe3vw8ueekw5f0jODwsnJSdyIc79+3hpjBkdWFmOrW1qOALxL4O6eX1z8Sl/nG2NMKvWjCLsSWA3wGOi2WPALIHeAE9v5plXgZIFnDySn00pKXiX+y9/5sfdOkyVWUn+eA38Bhg3g8rVhpLiSKY8nOy+T+WZQ9q9KJi8AOVvh5QO41ZwAHWtXsLZobyfF+sx+3RtT3JMP4HWzVmVz87UKZ3ljCtfPKS293aeUzH5won1iE/t1fikMH/QjH5O5ioq2HVVY0PlXQW8GDoobFO7LyQ2WtrcP+7svyZlB5YbD8RtwiuT1caoxxgdZWYwV170Yz1IMdZyf+peNMWao6k8RVuA0gTOAMoD7YzNirwK5CZzYm/UagQ8IJOXhUsJ7YzD23mmywCoaLpJosX0Au9fLEuiaeQrl/056YiarVFL+l06GjwduPoDbjHaQVXU0nNXboKJOGOc2SXioIIgVYxNUNzefAXzDG1ORx7Zu2nSVTymZ/SSwzYELgC5vWOB3Ckf5lZfJLOPHdZzrRnLXE/086aGvI5zd1pa34JlnJLFHsclSTm5ufB9g1YBPqRhjepF1xVhVFeB/uo9F9em5xcXrfUzJGDPE9LMIe6oDMwSeIDqbKbgDWAr6G3B+0PM+/XCsR+ybfdyr32LvjSs8eS9cpJp1PxeGmpXUf0TR2+j/z3gV9HvTmHReJZU7U5GbyT5VFG2rZPJnBT4MvD7A2xwMev9K1n4+cWAVjd8RSFxmC3DKAF8rKz3e1HSsqN4BeHvptjnh8HkLFiywjXkygEA98L2E8BEKv9f4/67GxDnhBD2kcFzHnSosAeI3aRIeRSLFbW15f/EnO+ObHTvCccdWjDUmrWTdl+5lzc2zgDHdx67IgczWMMaY/eYpwr7UjyJsref6cwEeB70VnIWxL18KdwucI5D8Apnq7o28BE6sDIWqkv4aZtCspn52bEZsfz9wK+iXpzHl29Yf1gzENCb/VQlOAB4Z4C0CgvxyFfWLuzfnqqP+f0H/j9hKgQTHrqDhmIHmm03q6uqGRUQeBLybs2wJRCJn2ua1mcWB72nCxpwK81zY40GFMQCFhbtmB4Od6xE+mTD0tiKXtrXlzW9rO8hWugxBgWAw/kGc4wxgtZQxJlWyrhiLiHdH0jeDW7Y84FsuxpghoZci7Kg+Tu21CBu7x6HALIDTQM7tKcRe78CFEr90MWlyt269D+hp8C+ysO+zTTqrY22lCw8C/e0JFhHkU5VMuTEVeZmhYzrF/51G+ZlEd4ffMZB7KFxZR+PvVlP/aeCmaKj3WYEB6xsLwPb8/F8ApZ6QishnTisvf96vnMzACLgBuBBIXEp+vcJEP3Iy6enoo3VY4biOxag8JnB0wnCdE9BJ7e3BW3q92AwNwaDNjDUmjWVVMbZ27dqjRPVDuwOqd1RVVe3ayyXGGDNg/SzCVvVWhPU4i1iv6+Gx2ytcE4CvSe+zwpIi9h55lzeP5c88c2SqXs+kxkrWTgZ5lMTNOvZtJ7hnTaP8jlTkZYYeQbSSybc4ONNAEjck2s976MUu3Kaow16WZ6v1jWVZc/MnVOTTcUHVH80uKfmzTymZAyTwskLig9F8F+7VgW3IaLJM0djOKQeP6AwhXEn89/kOhKva2oOntLbmP+dXfiY95G3dmtiiJseXRIwxvcqqYmxXbu6n8WxW4sBtPqZjjMlSCiMHUIT9+z7uea7nMCKwMACLkpTyXmkk8ht6Cr5BNxK5eDBe1yTHSuonSLQQO7Kfl24T+FAlUx9ORV5maKtg0jqHcLnCXwd6D9lnm8yhXYxd3tg4EdXEdlxP5m7d+i1fEjJJkwP3A3cmhItc+KEf+Zj0MHOm5hQWdlzpOroCGJcwvN4JSEVbW951INYn2hBMnBnb/xZWxpgUyppirKqKgndmwN9nlZVt8C0hY0zW8RRh/5msImzsvocCp8UOd8b6w/42SWnv09zy8nZgZU9Caht5ZYiVNB0rsIzEDTv2QeENF7dqGpOXpyg1Y6ig4u1X+cc5Cj8iJTP8tXAlLUck/77p76H29oPVcZawezEFAK+hen5VVVXiF3CTgRz4X+DZhPBlYTjDj3yMvyaM6Sh87T+dq1AW45l8BLiK3NQVDpa3tgab/crPpJ+HJ02ymbHGpLGs+bJdEwqdKnDi7oBnUxpjjDkQCu+KwKL9LMLO3N8irEd3i4ItAnPlAGaSDVj8ZocnTG9utp3K09wKVhwsRP4GvKefl74WIPKBGUxtSEVexngtYEFkOpOvBC5ggH1k90KEXdOTfM+0p6oyfOfOOzV+ZlxYVRfMKSv7l2+JmaQS2OZE/954e8aLwO8UjvIrLzPYVAoKOhdGAjQA5QmDLyJOVXt78PLnnpMOP7Iz6WuRiAu4npAVY41JI1lTjEXkPM/R5vDBB1uvLGPMAfEUYZ8X+A59F2GXC1TEirBPDuB1FgD/EagSePqAkh6g3M2b7we27M5J9by9nG58toQlgQB5fwRO6uelbzk4cyqosJUjZlDUEhr1NPUngFOv6BcEtib3FZwh16qgprn5axp9iLebwDfmlpU95VdOJjUEGoDvJoTfrXC77qWfsskORUU7jyko6Fou6M3Ez4IH5S4nEDyprS3X/t6bXi1pbQ3irfeoWsHemDSSFcXYhoaGXOBsT+iB+WPG2JuNMWZAFA7rZxF2tsCaAb7WocDxAicL+La8LLaR14O7AyIfib23mjT0fo77qcL8fl62w0E+XMGkdSlJypgEK2m4O4/w5gA8D+4mQX6ncEiSX2ZIFWOXNTWVA9+LC6r+bVZJyU/8ycikmgM/SNz8U2GuC1/wKyeTeuPHdZzrRpyQoKfGj8hrjuqH2zbmXdjaKtv8yc5kguGRSPymro6z3adUjDG9yIpi7Js5OXPx9stT/aN/2RhjMtVgFmE9jhf4gIDvu96KyJ88h4e/6TizfEvG9KmO+s8oclk/L9vpImdUUL4iJUkZ0wuBjYPwMiUrWHHwILyO76pbWg5C5B7i+0U+J677SRFJQU9ekw4EXIELgbcShn6sUOxHTiZ1Skp0VEFBx90qLAHe5R0TeCDi5k5o3Zg/+O2sTMZxVA9KCFkx1pg0khXFWCd+Oe1/c7du7fcyYWPM0NVLEbavmVvJLMICINAk8Foy7nWgcjZvfhz4b/exiHzMx3RML1bSMAf4TT8v61Lk3BmU1+77VGOSp5Lya8E9R2FzCl8mR8iflsL7pw1x3V8CYz2hDhFZMLu8PMmtH0y6EXhFYWFCOM+FexWG+ZKUSbqCgl1zO3Z1tkq0V7DX24pcuqE976PPPitv+JKcyTgC8cVYVSvGGpNGMr4YW1tbm69wZvexivzJdpE1xuyPfhZhpyazCJuOqqqqwgoPeEJn19XV2Ze8NLGShhMF/RP924AhIugnplP+SKryMmZvKpn6oCIlCisAhOTP4HRws75VQU1T00eAi+KCIt+cXVIS8icjM9hyoj+fb08Ij3fhOh/SMUk0aZIOLyjovFGQR4H3xg2qPB7IiUxobw/a5tSmX/YoxtrMWGPSSsYXY7tGjToTGNl9LKp/2svpxhgz0CLs2sHM0TfxbV5Gbh8+/HTfcjG71VKbL+h99N06oy+XT2PKklTkZMz+mkH5S51sq1K4RlF331f0jyKnJPue6WRpS8vRKpJYiKmpKy6+wZeEjG+caJ/YZxPCXwh7JqaYzFJY2FmxY3tns6CXEb8p2y6Eq9o25s5Zv374y37lZzKaFWONSWMZX4xV7zJa1Zdnl5TU+ZiOMSaNWRF23+aUlj4NvNR9rKrWqiAN5HPwTUBpf65R+Hklk3+ZopSM6ZcqqsLTmbzIRWaDvJrk20+tpTY/yfdMC4tUnVzXvZP43pFvoHrxIpGkF7ZNehPY7sD5QKc3LHCbwnv8ysv036RJmju+oGMRqiuAMQnD61xlaltb3nVgf8/NwOSEw1aMNSaNZXQxtrql5SBR3b2btIr8yTYwMMYkUji8H0XYKUOxCNtNRBTV+z2hM/7W0DDct4QMddRfqOgl/bzs0Vf5x5dTkpAxB2AG5bVBKAF9OIm3zRvGweVJvF/amNbS8k2FKm9M4H/mlJX9y6+cjL8EGoFrEsLvVrhd42dWmjQ1fnxH0Y7tnas1+pk04BkKo1znBIKTN27MW+dXfiY7qEhcMVasGGtMWsnoYixwKp6m9QGwpZjGmN0GWIStH8wc05EGAt730uH5gUBVnyeblFpJ/QTgV/28bL1D5LwFLIikIieTVAFgDjDd70QGUznlb0xj8odAvwTaue8r9s3Nwr6x1S0tU0X1/+KCIr+ZXVr6kE8pmTThwGKBJ7wxhTkuXOZXTmZ/qBSO23W5ujQCZd4RgRcc16lq25h3VWurJOV90Qx5ccVYF3b4lYgxZk8ZXYxNmBX7n9NKShr8zMcYkx56KcKO7ONUK8L2YtXEifXAa93HCtY31ge1tI4QuI89e37thf5XCJ9ZQcXbKUvMJNOtQDXRza2G1BJjQbSSKTe60YJEazTGAaxukqwqxj7U3n6wuO7dQK4n3NYRDl/hV04mfQi4Et3Q7c2EoesUiv3IyexdYeHOYwsLup5A5AYgzzOkgt6SEwxObH02d4Vf+Zns4zrOYd5jgc1+5WKM2VNGF2NR3V0gENVHrUWBMUObFWGTY5GIq9ECUbf5fZ5sUiaPHdcDBf24pBM4exrTXkxNRibJTgM+5Tk+zqc8fDWDKa3QNVnQmwa+xFoBpi9hSWBfZ2aK4Tt23ACM9oQ6ROSCM8vLbWaTAUDgFYWFCeE8F+5VsPZCaWT8uI5zcZ1m0JkJQ/9B9MwN7fmXrlsntoTcJJWjGveQV0X+41cuxpg9ZWwxtrqlZQJwrCf0qF+5GGP8ZUXYFFD1vqceX9PYWOhbLkNQHY1z2fNL9r5cUckU28QyMzjAdQmxI/1IJB1UUrlzGlMuVzhXYGv/7yAAI9/PCVkxI3BZU9NpKvKpuKDq1bNLSkI+pWTSVA78GfhdQni8Cz/2Ix8Tb+KJ7xxROK7jQRWWIIyKGxTuU4IT2tryH/EpPZP93us9CEQi1mvcmDSSscVYcV3vTK1wLtT4lowxxhf9LMJOtiLs/uvKyakGwt3HKmKzYwdJAw2Hg3s7/ZglqPCnSib/InVZmSS7EJiUEDvKj0TSyXQm3w/hEmAVRFsZ9Od6zYK+sUtXrx6JyO/w/v0XebyutPRn/mVl0pkT7RO7MSH8+TB8yI98TNT4sbtO78oNNiOclTC0FZEL29ryFrS3S2KbCWOSxk14yOs6js2MNSaNZGwxlvgehiurSku3+JaJMWZQDbAIaz2l++GMiRM3A6t3BxzH+sYOkk70V/SrMCebAkT6O4vW+GcY8N1e4kN2ZqzXNKa92MG2UxSuUbRfxVjJgr6xOcHgj4BjPKHtjuMsXCTi+pWTSW8C2x24gGirGm/8Nh1ivajTwejROnJ8wa6b1ZGl7PHnLzVd4ciEtrbgXb4kZ4YUSZgZq45jM2ONSSMZWYxdunr1SLw7D4tYiwJjhgCFd1sRdlD1vLeqnlLT0HCIj7kMCXXUXwic249Ldih6jm3YlVG+Cry/l7gVY2OqqApPZ/IigbkC+z2TR+EURQfYd9Z/jzU3VyES92BF4euzJk58wa+cTGYQaCT6ucjrcIU7Bt6L2fRXQUFX1d7n6QAAIABJREFUZW5OZ6MiiQ9IdyJc1daeO++554a/4ktyZijyPgwIr5o48Q3fMjHG7CEji7G5weBsPLvLiuMs9TEdY0yKxYqwixVe3EsRVoGHrQibPK6qt49ZrubknOpbMkPASlqOAH7an2sE+fx0Jq9PUUom+Y4gWoztzZBvU5BoGpOXuwSL2f99Ad69koaxqcwpVf7W0DBcVG8lvnD25JySkl/7lZPJLA78SOBxb0xhtgtf8iunoeK44zS/cFzHYsF9iviN90BY66qWtrXlXQc2w90MjqWbNuVBXJ/i12yFhTHpJSOLsSpS5Tl8ZfbEic/4lowxJmUSirBX0vvuwN4i7JlWhE2euaWl64BXu48VqvZyujlADp03Aof145I/T6P8jlTlY1LiWvqe0W8zY3sxneL/TqP8g6BfUrRrX+cLespg5JVswZycxQInekI7XNf9H5H+9c01Q5eAK3ARkNiH9IcKpX7kNBQUFnZMGJbXuQrhSiDgGQqjXDd8eHDGxo35iT19jUkp2bbtPcQ/3Pu3X7kYY3qXmcVY6OkJJlLrYyrGmBQYYBG2cZDTzHoiogpP7j5WneFnPtlsFfWnK5zXj0v+FcC1PrGZpQj49F7GrRjbB0G0kik3Em1R9Vw0Rq9FykzsG7u8qWmaqP6vNyZw9bxJk57zKyeTmQReVbgkIZznwj3a+2cpM2DqFI7bdTlKI0JJ3JDQpkhF28a8qxobZZ8PkYxJtlzV+H7FqlaMNSbNZFwxtqah4RCJfqHpttK3ZIwxSWVF2LTkfY+daH1jk6+W1hEKv+nHJQrOp6cy1XZhziw/BnKA2/sYtzYF+zCdKfUOkUmK3NN3H8zMKsbW1dUNc0VuJ/4zed3KkpKbfErJZLgceBD4bUK40IWf+JFPNho3bufxhQUdtYjcAAQ9QyroLcOHB8vb24P2+dT4Rh0nrje9iFgx1pg0k3HFWA0EpuNZAuLCCh/TMcYkQT+LsOVWhB08Adf1vscGyMmp8C2ZLBVkxzf6M2NJkF9XMqk6lTmZpKsCTgfeAr4GhHs55yBgxGAmlYkqqHh7OuWfAC4S2L7nGXrcChqOGfTEBuidYcO+C/T0uRXZpZHIZ6y3nzkQTrRPbHtC+LNh+LAf+WSTwsLOCx1x1oEktkR5yVF31ob2/EsbG2WHL8kZE+N6f65Ej22lhTFpJuOKsUSXqHXbvLq4uM23TIwxB2SARdimQU5zSFtRVraeaAEpynWtVUESPU39CQJfceBChZ/vxyUv5EaLeSZzOMD1sV8vAt6I/dMba1WwnyqZfCc4kwVpgfi2BQHcjJgdW7Nu3UmSuLmS6nfmlpcnFtGM6ReB7Q5cAHQmxH+v8P4+LjN7MWHCtiMLCjoeQvUOEh+cCfc5gWBp68ZhT/iTnTHxRHVcwrH1LTYmzWRiMbanEKC6wmYOGJN5FI6IFWH/aUXY/2fv3uPjKss8gP+eM5NJ0wK9cNcCpfQe20zStLSFVQJN05abKFRFRC4Kyu7ijasLUpVVEBTFK7iuCigYcAWB0iTFgEApZZrJtIQUitxE7tAUeksyc579Y2bSd4YkbZLJvOfM/L6fDx/yPjOT/Nwtp5Nn3vM+3pa6xj6eXqsIm7E5FIBcD2D9fMx54F944WsK/LWfp6sDfKka1dxx4y+fB1AF4HkAN6Vqr/fxXB5VMADzMbt9M0YfKdAbzQNk1QdHFaiqaCLxKySPrkh7sqSj40e2MlFhSb1vujKrPDYB3Kr+/B3QmvKpnacm4sGnBDgp4wFFhwKfbW8vXdbWJu/28XIiGzJ2xqrrPmsrCBH1zld/Ede3tYUAVPcUHIfnxRL5iNGETe+ELev9aWzCeolmnht7ZOpaTEP0KNbNA/QUQFYCwDIsS+yF0OkAIn285NZ5mNOUv4SUA2UAvp36+mLs2qXWVzOWO2MHaCkmd87H3K8ocIpC082Qo/p9kQc0xmJnA1hglBIicn5NTU1vR1gQDYoDXC/AKrMmwMdc4Ou2MvnJxIk6esa0nTe5gjsB2c98TIAGF/HyjRtL/2grH1E/zGZsfEtZ2fPWkhBRr3zVjB3d1VUNcwedKs+LJfIBNmH9TR3HvNaWjd25s8pamALiwL0KABT6aYUKAFSgYlsQeiKAl8znKvB2HIGLLMSkobkYyVuC1yA5VCftjT6ez52xg3QU5twTgFsB4H4AD1mO06/71q8fK6rXZBRFfl4bDkctRaICJYAryd352UejfE+BuTYy+cWMGTuOKy3p2qCQ87Ie2g7Vrz69MbTkmWdGvWolHFE/mteuPQjAGKP0wrLy8q6+nk9EdviqGSuq841lZ3yvvfraPUREHjDAJuxsNmG9yR05ci2AzvRaRTy/68zr1mDdbAB1ACDAlNVY2zMYbS7mvi5wlgDYvOsVeslHUfVWvnPSkBwA4BtIXuMugnGmKbgzdljMw7xXFmDOCQsw5z9tZ+lPKB7/PoD9jdIbJapX2cpDhU2AVxX4Yla5xAX+oBwa+AETJuiI6VM7r1HXaYR84HzdNRANtz8z4ieAaK/fgMiyrmAw44gCAXheLJEH+asZK1JpLKJLJ0/u7OfpRGTJHjZhXWQ2YbkjyKOWTp7cCZGe//9kXItpUFy4FwKQXRU5x3x8Pma3K5xTkbytPbIAc36f14CUC1cD2AdAPTKP+gD63hnLZmyBa1i3bjZEvmDWFPhGTWVlh61MVPiCwN0Abs4qT3KBH9rI41VTp3bOKhvR9QQElyLz9+RuAb7dvjF0dHv7iE228hHtCUckY3iXirAZS+RBvmrGKlBhLFutBSGiXg2wCVvNJqx/iOr69NeqOstmlgJxpLkQyLIIIhmD7I7C7L8J5DxAvyLgsEqfmQ7gbCSb6Vf08jgHeBWh5aqOOM7PAQTSNVF9ZFE4zDMnadg5wNcAbMwqnxcHltnI4yXHHKPB6dM7L3UETwLIfo/TJo4c+fTG0uWAJCzEIxoQN3t4F8DhXUQe5Jtm7IpNm0oB9HzKI667vp+nE1EecSds4VNg1zVXZBqHeA1ZIGu9Tyf0k9lPmo/q3y/A3NV5ykS58yMAQQA/A/BcL4/zmIIidFQ0ej4yP4jpTjjOl0V4uzMNPwG2O8nG686s+q8UONRSLOumTNk58Y03OpuhuAaA+d5GFXJjdzw0++mnQ3zPSr7hANPMtbgud8YSeZBvmrEl27bNAFCSXrsiMYtxiAiAAgcOognLXe0+JJnX3JJ9OjunWwtTAAT4wN9hTnInJfnfsQAWI3nm7/f6eA53xhaZhljsABX5b7MmwI8Xh8NttjJR8RFgAz64W39sArhFP/ghYYFTmTat67yAI+uhcnTWgy8p3GM3bgx95bnnhMfika8okDFoNw48bSsLEfXNN81YVTWPKNBEZ+dT1sIQFTmjCfsCm7DFoXvnzvUwBhAFMo+NoQFy4fwiu6bAMU/gicMjiIxcjdW9/TdF3ucAuC719dUA3unjeTwztsg4icT3AYztKaj+MxgKfcdeIipWDvAjAVaYNQE+5iYHDhaF8vKtB02f1nWvQG8CMCrjQcGdpSNC4Y0byx6yEo5oCBpbWj4E4ENG6aWlVRwAS+RFvmnGSub5PS8snTfvPWthiIqUAockgJ9wJ2zxSV1zX0qv1XF4buwQJM+DxbVZZUkgcFYXsGgBFuywkYuG7Cwkd6S8AODn/TxvM4DedluVITn0iwrIqnXrZqnIWWZNgK/VlJdvtRSJipgAKsA5+OCHQldr1nnmhWjG1M7T3ETJUwCON+sKeROCU9rbS5e1tgoH6pEvicgcc60iEVtZiKh/vmnGZu2M5REFRHlkNGGfFeBCACN6eZoL4E4BPsImbGFS89rLIV5DNh9zLgPweWScKarTFe6LliLR0JQBWJ76+nL03mxNU3B3bNFwHec6ZL7nbqqtqvqzrTxEAryhyaNxzPOKS1zgNgX2tpVrOIXDOmb69M5bVVAPYN+MBwUPiHSH29tL77aTjig3VKQqs6DrLEUhot3wTTMWIjPTX2YMkiGiYTPAJmy5AywToD3PMSlPRMS89oatBSkgCzDnlgWYM9lF4MMOElM6sfX0ozCXH2T40yUADgGwFkD9Hjyf58YWgVXr1i0GsMgouSJyqa08RGlB4AEAN2WVJ7nJAYQFZfr0nbU7d3ZtgOKMrIfeU8j57e2lS9vbR71mJRxRLqlWZ1W4M5bIo3zRjG2IxQ4AsH967WQ2BIgoxwbZhN2Y55iUZ+q65rV3/+ZIZD9rYQrM0ah6dR7mbapBTdx2FhqUA7HrvMWLkLnbrC/cGVvglqs6ruNkDHET1d/VhsOczE6e4ABfQ3Kol+kLceBTNvLk2vjxWjZ9auc1UFkpwPish1cH4lq1cWPoZivhiIZB1s5YDXR1tVgLQ0T9CtoOsCeceHyiOrv6xq7IsxbjEBUsBQ5xgYsUOE96b8ACySbsnwX4FhuwxUWBTWKsE4HA4QDetpWHyEOuRvLW3v8D8MgevoY7Ywvc/Gj0bIhUGqUdbknJclt5iLIJsFOB013gSRjv+wT4lQKPC/CyxXhDUj6la67rdN0CYGrWQzshWN7eHroekISNbETDoSkSOVRVzfcQLyw88si+BokSkWW+2BmrIoeb652lpS/19VwiGjgFDuVOWNqdzpEjnzfX2ddmoiI1HcnBXXEAVwzgdX01Y7kztgCsXr26TICrzJqo/rBu5sx/2spE1BsBngLwzazymETy/NiAjUxDccwxGpw+vfNS19FH8cFG7FNOQOa3t5dey0YsFRoNBmdnlXheLJGH+aIZi8xf+N86edq0961lISogRhP2GTZhaXdS1953ewquO9FeGiLPuAHJO41+iYGdmc1jCgrY1hEjLoLIIUbpze0jR/7AWiCifjjAjwW436wJ8G8ucLGtTIPxkcmd0994vWsNFNcAKDEechVyoxMIzW5rC/FcdipIqprZjBVhM5bIw3xxTAEAsxn7grUURAVCgUNd4Bt7eBzBlQI8k8985GnPAxgHIPuDMqJidCyAOgDvA/jvAb6WO2ML1KoNGw7UePxi8+BgUV3OzQTkVQKoAuekhiSb16DvKtAswBO2su0ZlWnTur+YgN4AYGTWgy9AnLM2tpf83UYyonwR4Chz7bgum7FEHua7nbGiymYs0SANcCfsjNROWDZiydRzDdbMD8qIio0D4PrU199D3ztd+9LX83lmrM+53d3f1uQZwgAAAZ4Z67r/YzMT0e4I8KYCZyNzAGHQBf5g/nn2mvLyHYfOmNb9oEBvQnYjVnGrEwjNamcjlgpcc3PzCIjMM0rxbSNHevxDFKLi5o9mrGrPL/yu47AZSzRAAzwTlk1Y6o95DWYzlorZ2QAqAbwC4MZBvJ47YwtQYzQ6GSLnmjVVvaS6urrbViaiPRUEHgDwi6zyES7wYxt5dmfG1M7T3ITTqtCazEfkDYWe1P5M6ZltbbLVTjqi/OkcO3Y+VHt+v1PgSd6NQeRtnm/G1tfXBwD0nLklwIv20hD5Sy9N2NJensYmLO25zLsTDktdo4mKTRmA5amvLwewfRDf47U+6gcBkEF8P/IATQ5xM48Be3hRVdVfbeUhGigHuAjJ4wpM58SBT9vI05tJk3T/6dM6/6yCegBjzccUuCvhlnxk48YR91qKR5R3DnCMuRag2VIUItpDnm/G7jtp0nhkHsDOnbFEu6HAYQNowk5nE5b2lGTenVAyduLED1sLQ2TPpQDGA2gF8MdBfo9tAHrbsVUKYPQgvydZtHLdukkCnG7WXMe50lYeosEQYKeT/HO8I6v+SwUOsxSrx7RpO+tKgl2tAD6R9dAWhZy/cWPpac8+K2/byEZkjeqxWeu/WUpCRHvI8wO8EiLjs9Yv2cpC5HUKHOYCX1fgfOm9AQvsGsx1hQDP5jMf+V9c5MWA7jpOTgOBQwC8bC8RUd4dDOAbqa//DuCTQ/heOwDs1Uv9QAAdQ/i+ZIHjOFch87114+KKikds5SEaLAHaEsld/+bxBGMSwK0K1AiQyHem2bN15LZt3d8X6H8i++4BlQcDJfGzn3pq5D/znYvItnsjkZEA5hilrk7XfdxWHiLaM55vxiqwv/m37QjXHeiADKKCxyYs5UtC5E3zXAIB9rMWhsiO72JXA/XC1D+5dhB4t4KvNEajk5F1G7frOFdbikM0ZA5wowILFTghXRPg39zknQHfy2eW6dO75m3f1nWLAJOzHtoJwfL2jSXXASE3n5mIvCIUCBwF4/c/UX3ixOrqwRyfRER55PljCrJ+0Y8fEw5vsRaGyGOM4wieGcBxBGzE0qAdP3NmB4B4eu2qshlLxWQmgLPy8HM4xMtnNHmG8K5NDqoN3BVLfiaACnAuPjhs8NsKzOvtNbk2e7aWzJjWuRyqjyKrEavAkwkXle3tpdcCwkYsFS3JOi9WHYfnxRL5gPebscYv+irytohof88nKgZswpItqWvwOz1rx2EzlorJdQACSE4bH5eDf37Tx89hM9ZHGqPRyQJ8yqwJd8VSARDgTRc4G4D5+1fQBf6gwD7D+bNnzOgs376t6wkFrkLyupsWh+LaQCB09LPPlm4czgxEfqBAjbkWVTZjiXzA88cUuCL7po8pENV3+n0yUYFTYIILXK7A2ZI52M7UrcAdDvBdATblNSAVi3eQahaJ6r6WsxDly2IAdQA2I9kc2JyD79nX+YZsxvrLt2E0i1Rk5aJw+FGLeYhypgRYmQB+BuA/jfJEF/gJko3aHFOZPrXzQnVxLbI2GwjwfEKdM595puSx3P9cIv9ZsWbNPgJU9xREdgY3b15jMRIR7SHv74wFzF/0ORmTipICExLATQpsEuA89N6I7VbgVgHKA8CZbMTSMNp1Le6/GTsTvQ8nIvKbAIAfpL7+LnL3fqSvc/APytH3p2HWtG7ddADLMooiy62EIRomDnAxgFhW+aw48Jlc/pzp03ccNn1aZzNEfozMRqwK9OZgKDSLjVjyuEoAI/L1w4KlpXXI/L3wsZqamp35+vlENHie3xkL1f0gyb2xKsJmLBUVYyfsOdL3f689O2EdNmApH1TfNq7L/R1TsBnAk0jupL0XwCoALci83ZHID85G8sOFfyB5REGuvNlHnTtjfUIDgW9B1byF+oG6ioonrAUiGgYCdCrwWTf5d3qZUf+lAo8L8OJQf8b06V1nQvVnAPbOeuh1iH7h6fYR9w/1ZxDlwQ4AbQCeR/J9718BtA/bTxM5EbrrbbUC/O+EyCc8vzPW/EVfXJfNWCoKveyE7a0Ry52wZIVkfjDWXzP2FQC1SDaWrgEQAfACgF8BOBncNUv+sBeA76S+/gaAzhx+b+6M9bGGWOxwqJ5m1tRxvm0rD9FwkmSD6dKs8ugEcKtmnuk6ILOOeP+A6dM774bq75HdiBXc6QRC5e1sxJJ/bETyPW4Fku99n07VbgCwCDncNVtfXx+A6hKzponEvbn6/kQ0vDzfjBXjF33ujKVCN8Am7Aw2YckGzbxFe3cDvF5BcrDAc6n1YQDOB3A3kjtmVyHZ4JqR45hEuXIRgIMBPATgnhx/776asdwZ6wOSSHwdmU0o7oqlguYAP5PknS49BDjaBS4fzPebPn3n0u6SUCsUJ2c8oOgQxefa20uXtbXJu0OITGTDUwCOA/BWaj0VwFcBNGDX3WIXADh8KD9kn6lTFyDzffjTi2fPfq6v5xORt3i+GQtjUqcDdNgMQjRcBtmE5V+2ZIVkDi4avQcvyW7IpoWQfLN6PZI7bl4HcAuA0/bw+xINtw8h2Yx1U//Otf6OKZA+HiMPWNnWNg4iZ5k12XWuMFFBEkAFOBfAa1kPXaXA/D39PpMm6T4zpu28CSr3I/lhl/lTmhKa+MjTz5TeNuTARPZsAPBRJN/bmkYCOAHAz5E8yuAfAG4CcCIGuGtWXPckc60ifx1sWCLKPz80Y3ddlER4GDUVFAUOZxOWfEfVvE27tM/nZeqtIavIPD/2QACfA1CPZJOKu2bJtu8CGAXgdwDWDcP3fw/J8+WyhQCMHYafRzki3d0XwDxqRWRdbWXlQ9YCEeWJAG+5wFnI/Ps76AK3qbGJpi/TpnUvKCnpalHIeVkP7YDqV9s3ltQ9++zIf+UyM5ElG5E8muAto5b93ncikr8D/hXJO8/2eNesABnNWKjyiAIiH/F+M1ak5xd9F+iyGYUoV4wm7LNswpLfuI4zmGYs8MGGrCD5hjSR+sfFrjeo2btmXwN3zVJ+zQLweQBbAVw5jD+HQ7x8ZsWmTaWiekFG0XV/aCkOUd6VAI0AbswqT3SBn/b1mgkTdMT0qZ3XCNxHoDgi40HBWoWG258Z8RNAOOSTCkn2Dlnzva+LzPe+o7CHu2ZXrls3CcAUo/TWlk2beEwOkY94vxmrGjK+zuXQDKK8mwgIm7Dkd6JqfjA2kGYs8MGGrINdt2Mrkm9KsxuzQHKgUXrX7NsAHkVykMhs8HZuyj0HwC+QPA/0egCvDuPP4rmxPhN4//0zkHlr9SvjXPcuW3mIbHCSfwfHsspnnps9hAvAtGmdM0eM6FoDwaXI/P0zDsW1I0eGjt64ccSzw5mXyKKNSL73TTdk0+9907tk+3rva+6afRdAE5L/3U0LOM7Hs37G/cuWLUsM1/8AIso9Tzdjm5ubgzAyZjUAiHzjcCTHx28EQnvQhJ3OJix5WuYHY07qWj0Q/TVke34Kdr05zX6DGgRwFJJTaiNINsq4a5Zy6QIk/4xtAfDjYf5Zfe2MPWiYfy4NgqqKiHwtoybyo+rq6m5bmYhsEKDTAU5H1lErPwQOnNCzCmC//b45SoCIJKfLm55WyLz2Z0ovW7dO+N8PFbq+GrKm7Mas+d63DMBCJN/7trdv2PBd84UiwiMKiHxGMDxnoOXEyFGjnLsffTScXl/3rW8933TvvRziRb4xEZh6CTDqHPTefQWAOKD3ApuvBF57GuDub/K82hNPHHPxd74zMb3++NFHt27fts0dxLcqQfIWq/Tu2oHcmtjXbtgEgDVInrm1CkDLAL8v0VwAf0fyz+UdAD4zzD/vNwDO6aX+VQA/GeafXYwOBnDfYF98TF3d6G9ec03PLdY7d+xIfHbJkqfe37KFO5KoKF0G7P/fwCFm7TEAi0om4MCDf4ORI4/OeoXivffq337t9Qtecd2tg3nvQORnIwBMRvI9MDCI975jxo3D7Y2NCAQCAIDuri58atGi5q1btjQAuAfJxi8ReVwQQJXtEH1xUheYtPe2bJnYx1OJPOkqJO+rBoCNo6rQsO/p+MrLyYHcXQD+F8A1gLwMjEPyHyLPe2/Lloy1EwiE+3jqQOXiuIEAkjsaj0qtXwLwQOqfBwFsy8HPoMJVCWAFdn1AkI87FLb2Uf9wHn52MSrFEN77Lv3EJzLW99bXB97fsiV7xx9R0bgWwDwkD7VMOwrAtft8Gr/KasR2d/8Tr752LrZvf3g/APvlLyWRZw34vW/N4sU9jVgAaFmzBlu3bKlBcuftNUg2Y1cAWInkh8vc7EPkQZ4+piBUUpKxjnfzDhbyl6sBbA6MwY8O+zHOLl+DPx78NTSMOxW3AihH8j7Yl+1GJBqw7q7ME2Oyr9UecxiALyG5+/CnACZYTUNeFQBwPpJnEe9r1Osw8HORB2IMgKV9PDZ9GH8uDcIRU6ciPHduzzoej+Mvt99uMRGRfQrgi0hO2TSdvfnnGJN4p2e9ZcuteP6F2di+/eF8xiMqOMcuWZKxbl65Mvsp0wB8HcBvkfy8ZP+8BCOiARnoOX95Fcz6BT+7AUDkdf8I7IVPVjyFbSW75nxccdgPEd2yEm6ir81QRN6WfS0uCYX6eKZVLpLnyaZ3xT6ZqhGlHQZgBoA5AD6LzKnEaXOQ3FF9HZJ/hoYyyCuI5GCbfZC8RXE+kmeIj+/j+YsBXIbkn9/3AXSk/s1Ppi058bTTMtbNK1fi7Tf6mr9GVDzeAnAWktvwBMCzwfG47JB70BHYF4nEW3jt9f/A++/fbTUjUSH40PjxmFJe3rPeuWMHHn+45wOObiRPCVmJ5HuH9XkPSER7LAjgQtsh+jJ+woR9kbzTGwBw2BFH/Hj9unXPW4xENCBuYut/vPvOXVNKD/rPnpoTGo9Jk+9qenbjYh60Tr506MSJhwPoGWAzfsKE777x2mtvDeJbVQL4PHbdpbEnzVLJ+rdpG5K3Y92N5JmQQ2mcUeGaguQvK3t6i6x57MVKAEv6eW5fRiN52+BAhnIFAXw/9Y/puwC+NYgMlPQOBvHed7+DDipddNJJV8PYKR1bu/Z68AYXIgDJQ9ofAk55Bph3sW4t+5AzBl3bmvDqa+dtjcdf/abtfEQecSyAj6e+VuzZmbE9732PO/54iOx6C7zm73/v3rF9+90A7gTQhOQHt0TkA7k4n2/YNGzYcIjE4z1vcgWoqa2sfMhiJKKBWhUI7HPczIqnUWLsjgXQFRAnvGaNtNsKRjRYjS0tH4PIQ+m1JBKH1VZXD7QhsQzAH5BsOKWnx/ZG0HcD1gUQRfJ3wNTvgYgPMAcVn1MA/N8gX9uA5I7VgZoO4OlB/sxsVwD47xx9L9pDja2t50P1V0apdVFlZaW1QETe9QyAKcHghxGP/wsA3sDAPogiKlQXIXmnDbBn730/0Kv537/8BeMnTOhZu4nECYurq+/PbUwiygdPH1MA1808bFpkOM9tIxoWicR7eOXly3H4Eb8zy6EE9KcAFtpJRTQEjlMK3fVBvpSWDnQwwO4asX2+CUVyV9vfkGy+cvcrDcY9SM6b2RvAZiRv69sKYDuSQy4cJHeyZv8bAFoG+TPbjZ+ZAPBeqr419fPjSB5BkDY29e+9kfzvZASAstRrHxtkBhoCcd3z1NiNJMAvLMYh8rxUI5aIknbXiO3vve+bABpO+cxnnh4/YYJ5t8xb+wGNOU9KRHnh6WZsyHW7zIPRXBFPHkxItDtvv30b9tv/bOy9z8d2FVWPmzs3ftratcE77SUjGjgVKRV67hZxAAAgAElEQVSjGRuIxwfSjP0UgNuQ2Yjl7lfKJxfAE7t5zju7eXwwdvczTZuH4efTIK1sbZ2rqlVGaev2srI7rAUiIiI/6a0R21/zNQGgFclNB/ci+UGwXnDJJT/KOtOgvrq6mufIE/mUs/un2FO6Y0fmL/iJBHfGkk8pXnrxQqhm/n2pIj8qP0b3shSKaHCyrsUfuFb37bPYtSM2LYDk30XmG9K3AfwRwBlI3tpYjeQgo1VgI5aI8izguudnFERuO3natPf7eDoREVHa5djViE0z3/um/QvA/wA4FcA4JN/7LgewDoAuV3U0eWdZD02+VyYin/L0zthXXnmla8zkyT1rhztjycd27HgKb75xc+LAg/49YJTHj9zh/heSf1ET+YIjEjI/mX/llVe69uBlnwXweyTfgKal34S6ACJITn59AMmp9XsyzIuIaFg1RSKjVeRTZk2Am23lISIi37gcwPeyaun3vt0AVmPXe9/1/X2jo6PRY12RDxulFxaFw4/nKigR5Z+nd8YuW7YsgeQ2/SSeGUs+969XrogDeC2r/PV583S6jTxEg5J5LU6krtX96a0Rm7379UgkdwA8ATZiicgjNBA4A8Aoo7S2NhyO2spDRES+0Fsj1tz9uh+AYwBci900YgHAFfliVul2EdFen0xEvuDpnbEpnQBGAoAC3BlLvpZIvAdRvUxFfm+UOcyLfEVdtxS7Btns7oiCMwD8DsmdAGvB3a9E5C9fMBcqcpOtIERE5AvpRuyAdr/2pTkS2a8bONkoqZP5uyQR+ZCnd8am9Nz+qq7LnbHke2vXBm6F6sMZxdQwL0uRiAYk64Ox/pqxCwEsBXABgEPA3a9E5CMrW1vnAggbpS0Q+ZOtPERE5HlnApiG5PmuB2AAu1/70h0MngtgVx9EtXlhOPzskFISkXV+aMbuSH8hjlNmMwhRboiqG/gPJD8t7cFhXuQXWdfinf08dRWA05E8X/HVYQ1FRJRjjurp5lqAP9RVVGyzlYeIiDzvFgCfB3AngI6hfrPlqo6qZhxRII7DOzSICoAfmrGbe75SHWcxB1HORCLyFIBfZpXTw7yIPE1U9zWW71oLQkQ0TOrr6wPZg7vgurdaikNEREVoQSy2UIAjjNJb3aNG3WMtEBHljB+asW+nvxDV/WwGIcolB86V4DAv8iFNDh1Ie7vPJxIR+dSYKVOOE9WDjNLzC6uqnrAWiIiIio/rnm8uVeQ3SydP3t28BiLyAe83Y1V7ftFXETZjqWA88YS8J6qXZZXTw7yIvMv4YExF2IwlosKTfUSB6h85uZqIiPKlee3agyByolFSTSR+Yy0QEeWU55uxKvKOsWQzlgoKh3mRH5kfjDmq7/T3XCIiv2lubh4B4ONmLeE4d1iKQ0RERSheUnIugBKj1LR49uznbOUhotzyfDNWMm+BZTOWCgyHeZH/iHEtVh5TQEQFpnvMmBMBjDZK0cXhcJutPEREVFyWqzoKfMGsiQgHdxEVEM83Y5G562rfPp9H5FMc5kU+tOtanHn3AhFRIfiMuVDgdltBiIio+Mxfv/54ABOM0mtj4/F7LcUhomHg+WZs1nmEY+vr6wPWwhANk76Gec2er9Ns5CHqS+oaPCa9FtflzlgiKhjN0egYAEuNkotgkEcUEBFR3ojrfiNjrfqb6urq7r6eT0T+4/lmrJN5C6yz16RJ46yFIRomfQ3zclwO8yJvGT116r4w/+7gzlgiKiDdwKkASo3SI3UzZ/7TVh4iIioujS0t1QA+ZpQ6E677C1t5iGh4eL4Z6zpOxq6rQCBwoK0sRMOp12Fe0IUc5kVe4ohkXIOzr9FERL6memrGWoRHFBARUd4IcFFW6fbF1dXZd1ASkc95vhkb6ux8KaOgOsFOEqLhxmFe5H0ajx9urgOO86KlKEREOXXPxo17Q+QYoxR3OjvvspWHiIiKywPR6AQV+aRRUnWcH1oLRETDxvPN2GPmzHkDwPb02nHdw/t5OpGvcZgXeZ6IeQ3ecdxHPvKmtSxERDlUtmPHYmQeUfDYwiOP5FEsRESUFwGRrwEIGqUH6ioqnrKVh4iGj+ebsSKiAF4yCmzGUkHjMC/yOPMa/ELqGk1E5H8iJ2asVTm5moiI8uK+9evHQvUcs8ZdsUSFy/PN2JQXjK/ZjKWCxmFe5HE912ABnrcZhIgoV+rr6wNQXWLWHMdhM5aIiPIilEh8GYB5NF1s0axZzbbyENHw8l0zVtmMpSLAYV7kWao912BX5IX+nkpE5BejJ006CsB+Rql9YTj8rK08RERUPFZs2lQK4D/MmgA/4B1oRIXLH81Y1Z5f+AWYaDMKUX5wmBd5k4hMMJZsxhJRYcg6okCA+2xFISKi4lKybdvpAA7uKaj+c2wicae9REQ03HzRjBXHMXfG7r2yrW2czTxE+cBhXuQ1K1pa9ldg756C8UEZEZGfCXCSuVbgHltZiIioeKSOybk0q/yT6urq7l5fQEQFwRfNWGTtvpKdO3lUARUFDvMiL3EcJ+Paq2zGElEBeCAWmwpgilF6u2PTpjW28hARUfEYO2nSZxWYapQ64l1dv7YWiIjywh/N2Hg8c0iM47ARRUWBw7zISxzXNd8oaufIkRzgRUS+F3TdE7NK9y9btixhJQwRERWN5ubmoIpcmVFUvWHpvHnvWYpERHnii2ZsbXX1FgAvp9cOUGExDlFecZgXeYbjmNfeF0+eNu19a1mIiHJEVReaa1G911YWIiIqHt1jxpwBYJJR2iyu+xNbeYgof3zRjAUAqMZ2famzbEYhyi8O8yJvUNWeZqwC621mISLKhUgkUgKRo41SojMY/Ju1QEREVBTq6+sDAC7PKKrekNqIRkQFzjfNWBXp+cVfM3dnERU8DvMiLxCg54MwEYn191wiIj94NxCYC2BUT0Gk9YRZszbbS0RERMVg7JQpZyLzvPKOEhEeRUdUJHzTjBWg5xd/UT1o1YYNB9rMQ5RvHOZFNjWvXXsQgAPSa3XdDRbjEBHlhADHmGtVbbYUhYiIikR9fX1AVTN2xarID2sqKztsZSKi/PJNMzbhOBm3xCbicR5VQEWFw7zIpu5QKOOay52xRFQIVKTGXAvAZiwREQ2r0VOmfB7AZKPUEVL9ma08RJR/vmnGPjFr1iYA29Jr4bmxVIT6GuZVfWT8VDuJqFiY58UC2LY6HP6HtTBERDlQ39YWgup8oxSPd3Y+ai0QEREVvEgkUiKqGUfNCXA9d8USFRffNGOXi7gA2tJrFWEzlopQzzCveEYVcgOHedFwMs+LBfBU6ppMRORbozs75wEYaZRals6b956tPEREVPjeCQbPBjDRLHV3dvJOR6Ii45tmbIp5VEHYWgoii1LDvH6RVeYwLxpWmtmM5XmxROR7TtYRBeB5sURENIya29r2EtXlWeUf8YNAouLjq2asqLb0fA2UN0Uio23mIbKFw7won5oikdEClKfX5rWYiMivNGt4l6P6kJ0kRERUDLq6ui4CcLBReqMkFLrRVh4issdvzdjHjGUAweA8a2GILOIwL8onEZkPINBTCAZ5piIR+Vp9W1sIIub7yO7AiBG8thER0bBobGn5kAAXZRRFrqopL99qKRIRWeSrZuyjVVVPAXg3vVbgKItxiKziMC/Kl4TjHG0sNz82c2Zbn08mIvKB0Tt3zoTqCKMU5S/EREQ0bBznOwBGGZWnSzZv/o2tOERkl6+asamBMWvSa1E9up+nExU4DvOi/BDgaOPrxzi8i4j8TkTmZBRU11qKQkREBa5p/fqZUD3LrAlwSU1NTbyPlxBRgfNVMzal56gCBebVt7WFbIYhsonDvGi4pa6xu5oWmcfFEBH5k8jsrPU6S0mIiKjAaTx+Hcwjv4CHaisr77eVh4js810zVlXN87zKRsfjldbCEHkAh3nRcBrd1VUNYGRPwXF4piIRFYJqc6GOE7EVhIiICldDLHYsROqMkquue1GfLyCiouC7Zmxi772fANCZXksiwaMKqKhxmBcNJ/OIAgCdwc2b2bAgIl9rbm4eAaDcKG0PvfvuRlt5iIioMC1XdcR1rzdrCtxWN3s278YgKnK+a8YunTy5E8Cui5cIh3hR0eMwLxpGPddYUV1bU1Oz02YYIqKh6ho3rgJAiVGK8tw+IiLKtaNisc8DMO/k3eEkElfaykNE3uG7ZiwAQPURY3VMc3Nz0FoWIk/gMC/KvdS19aPptYrwiAIi8j1HNWN4lwJP2spCRESFacWaNfuo6n9nlW+ora5+2UogIvIUXzZjVeRBYzk2PnbsPGthiDyCw7wo17pHjz4KwJj0Wh1nlcU4REQ5oapV5lo4vIuIiHIsMGLE1QAONkpvSSLxA1t5iMhbfNmM3RIKPSzA++m1qi6xmYfIKzjMi3LMvLZuTYwc+Zi1JEREuZO5MzYe51nYRESUM03r188U1S+bNRW5rLa6eoutTETkLb5sxi4rL+9ygb8ZpaXWwhB5CId5UY7turaqNqbO7CYi8q1IJFICoOcDSgHef3z27GctRiIiogKyXNVxE4mbAJhHKa5eVFHxW1uZiMh7fNmMBQARecBYVjzY2vpha2GIPITDvCgXVsRi4yHykZ5C5jWXiMiX3gGOgPELsgLty0Vci5GIiKiAzI9GzxZgvlFKiMh/iIhaC0VEnuPbZmxc5H4A6QuaJHhUAVEKh3nR0AVVjwcgqaUG2IwlogIgjjMlq8RdsURElBMr29rGicj3M4oiP68Nh6OWIhGRR/m2Gbu0ouIVqD7VU2AzlqgHh3nRUGWdxR07Lhz+l7UwREQ5oiJTMwvKZiwREeVEoKvr+wD2N0pvlKheZSsPEXmXb5uxKSvSX4hIbX1bW8hmGCIv4TAvGqz6traQAxxrlFb0+WQiIh8RIGNnrDoOm7FERDRkjS0t1Qp8wawp8I2aysoOW5mIyLv83oztuW1Wgb1Hd3V9zGYYIi9JDfO6PKvMYV60W2O7u2sU2Du9dh1npc08REQ5lNGMFdVnbAUhIqLCsFzVgcjPYfRXRPWRReHwHy3GIiIP83UzdpzrrgbwTnotIp+yGIfIc9auDdzCYV40UKr6aWP5dum77z5uLQwRUQ6piNmMVXWcTdbCEBFRQTgqFrsAwFyj1J1wnC9zaBcR9cXXzdjq6upuAf7cU1D95IpNm0otRiLyGA7zooFJXUM/nl4rcGdNTU28n5cQEflCUyQyWlQPMkr/qquo2GYtEBER+d4D0egEqH7PrAnw48XhcJutTETkfb5uxgKA6zh/MpZjAtu3L7IWhsiDOMyLBiKwdesSAGPSa1H9Uz9PJyLyDQkEMo4o4PAuIiIaClWVgMj/mMd7AXgpGAp9x1ooIvIF3zdjH5816yEAr6bXjuvyqAKiLBzmRXvKyTyi4LWO55571FoYIqIcUmByRoHDu4iIaAgaY7EvQvU4o6QQOa+mvHyrtVBE5Au+b8YuF3Ehcld6rcDHG2KxUTYzEXkNh3nRnrg3EhmpIiek1wLcsWzZsoTNTEREuaLA+MyCvmApChER+VzDhg2HiOp1Zk1Uf7soHG60lYmI/MP3zVgA0MzbaEc5qsdbC0PkURzmRbtT6jgnA+j5MCshcofFOEREufYhc6HAv2wFISIif5N4/CYA+xilVzuDwYts5SEifymIZuyicPhxAC+m18qjCoh6wWFetBsi5hEFz9dVVDxpLQsRUe4dnLFynOzje4iIiHarqbX1bABLzJoAF5wwa9ZmS5GIyGcKohkrIgqgvqfgOEubo9Exfb+CqDhxmBf1ZWVb2zgAdUbpT6lrKxFRQRDVjGZsIJF43VYWIiLyp5WRyMGq+kOzpsAttZWV99jKRET+UxDN2JTbe75SHRFX/ZzFLESexWFe1JtAV9eZAErTawkEbu/n6UREvqMiGc3YncEgd8YSEdGAOIHAzwGMTa9V5HUNhb5mMRIR+VDBNGMXVVa2QmRdeq0iX1ZVsZmJyIs4zIt6o8AXjOUTtbNmbbAWhohoeBzU85XIzuNnzuywmIWIiHymKRo9HcApZk2ACxaXl79rKRIR+VTBNGMBQFRvMpbTm1pbF1gLQ+RhHOZFpoaWlo8CKE+vVeRmi3GIiHLuno0b9waw63x01dd5FAsREe2pFbHYeAUyN6+I3LEoHP6LpUhE5GMF1YwNhkK3A3gvvVbgPItxiDyMw7xoF0fEvFZugcifrIUhIhoGo3buzDiiQD94XA8REVGv6uvrA0HX/QOAcUb5rbjrXmgrExH5W0E1Y2vKy7dCteecQwFOSw2lIaIsHOZFALDqiSf2VZFPptcC/KGuomKbzUxERLnmum5GM1ZU2YwlIqI9Mnby5MsAfDSr/O9Lq6respGHiPyvoJqxAOACvzSWZU5XFwd5EfWBw7woUVp6JlRH9BRE/sdiHCKiYSGOs29GwXHetBSFiIh8ZFU0OkeBqzKKqjctqqy801IkIioABdeMXVxVFQPwZE9B5Esc5EXUOw7zIlHNHNwVDkethSEiGibquqMy1qpbbWUhIiJ/aIjFRilwK4ASo/xcSWnpRbYyEVFhKLhmLACoOchLdVpDLHaMvTRE3sZhXsVrZWtrDYAZ6TUHdxFRARuVteZxLERE1C8nkbhRgalGqdsV+WxNeTk/0COiISnIZiwCgTsAbEkvHVV+ckXUJw7zKlZZ10YO7iKiQsZmLBER7bHG1tZTVOQcs6bAfy0Oh9faykREhaMgm7Gp4TM3GaWlK1taKmzlIfI6DvMqPk3r188EsCS9VpFfcnAXERUwNmOJiGiPPNja+mGo/jqr/PCWTZt+ZCUQERWcgmzGAkBJd/cNENmZXjsiX7OZh8jrOMyruKjrXgwgfZ52p7guzwkmosIlwmYsERHt1nJVJ+G6twAwBz9ulkTizGXLliVs5SKiwlKwzdiauXNfF9f9o1E6vSkSOdRaICKP4zCv4rEiFhsP1U8ZpVsXVVW9ai0QEdHwy2zGqrIZS0REH3BUa+uVEDnWrInIl2qrq1+2lYmICk/BNmMBIB4I/ACAm1qWaDB4oc08RF7HYV7FocR1vw4glFqqo3qDzTxERHnAnbFERNSvxpaW4xS40qwp8OvacLjeViYiKkwF3YxdUlHxDFTvT69F9bzmaHSMzUxE3sZhXoXuvvXrxwL4QnotwD0Lq6qethiJiCgfRpoLAbbbCkJERN7TFIkcCpE7AASM8tNwHB53SEQ5V9DNWABwA4Hr0l8rsHdc9Us28xB5HYd5FbbSROICBfZOr13guv6eT0RUEFTLzKXrODtsRSEiIm+pb2sLaSBQD2A/o7xVXPdUDrglouFQ8M3YxRUVjyjweHqtIl9tiMWyb1UjIgOHeRWm5ra2vRQwj2t5rK6ycrW1QEREeaIirrkWEenruUREVFzGdnXdAODIjKLIl2tnz263k4iICl3BN2MBwAGuNZYHwnV5dixRPzjMqzDFu7q+AuCAnoLqD+ylISLKI5GM43fguoE+nklEREWkoaXl0wpckFX+yaJw+DYrgYioKBRFM3ZhOPxXAGvTawEuWdnWNs5iJCLP4zCvwtIcjY5R4BtGKVJbWXmvtUBERHkkqglzrY7DZiwRUZF7IBab6ojcnFEUWdMRCl1iKRIRFYmiaMaKiDque5VRGiNdXV+3FojIFzjMq5B0iVwKYGx6rcA3RUQtRiIiyhvN+rsMqkFLUYiIyAOa29r2Crju/5mzFAC8GRc5bVl5eZe1YERUFIqiGQsAC2fPXgngofRagK+u2rDhQHuJiLyPw7wKw4qWlv0d1X9Pr0X1kbrKyiabmYiI8klEMnbGBnlMARFRUevu6vpfADOMkguRzy2tqHjFViYiKh5F04wFABG50liOSsTjl1kLQ+QTHOblfwHHudL81N8FrrCZh4go71S5M5aIiAAADdHoxQBOM2sCfGtRONxoKRIRFZmiasbWhsOPAnggvRaRLzVs2HCIxUhEnsdhXv7WFIkcKqrnpdcC3FdXVfV3m5mIiCzgmbFERIRV69YtFuD7WeX7HwuHs2tERMOmqJqxAOA6zhUAkuckqo6QePxbdhMReR+HefmY41wFoDS1UojwmkdExUcknlXhzlgioiKzsrW13HWcPwHo+UBOgX90BQKfWy7iWoxGREWm6JqxiysqWgD82SidsyoanWMrD5E/cJiXHzW1tlaqyOfTa1Gtrw2HozYzERHZoEC3uXZVS2xlISKi/GuORPZzVP8KYB+j/J6KnHzCrFmbbeUiouJUdM1YAEgkd8emJyQ6LvAjVRWbmYi8rp9hXt+0kYf6p6qiqj/Drk/+u8RxuCuWiIqS47pbMtYiY21lISKi/IpEIiXxQKAewESj7KrjnLE4HG6zlYuIildRNmOXVFQ8AxHzvMujV7W2fsZaICKf6GOY1zc4zMt7mqLRMwAsMEo/XhgOP2srDxGRVSLvZKxV97WUhIiI8uxdx/mpAjVmTYBL6yoq7rWViYiKW1E2YwFgx4gR34bRVFLgB81tbbzdmqgfHOblD81tbXtB5Bqj9IYkEt+zFoiIyDbVdzPWIuMsJSEiojxqika/CpHzzZoCt9RWVl5vKxMRUdE2Y0+eNu19Efkvo/Th7q6u7CYTEWXhMC/v6+7svALAh3oKqhfXVldv6fsVREQFjjtjiYiKTmNr6yIFrssqr07stdd5VgIREaUUbTMWABZWVPwOwBNG6aJVra1TLMUh8gkO8/KyByORIyDy1fRagcdrKytvs5mJiMg6181oxroibMYSERWwB2KxqVD9E4CgUX7JCQY/sXTy5E5buYiIgCJvxoqIquN8BYCmSiFXNfuTMyLKEonIU6r4ZVaZw7w8IBEI/ARAaWrpiuqFIqL9vYaIqNCp42Q0YwVgM5aIqEA1xGIHBFz3PgBjjPJWV/XkhTNnvmErFxFRWlE3YwGgrqLiCQC/N0onNbW2fsJWHiK/CIhzBTjMy1Mao9HTAByfXivwm0VVVRGLkYiIPMENhd7JKrEZS0RUgO6NREbCde8GMMkoq4icu7iqKmYrFxGRqeibsQBQ0t19OYCe8xRV9Wf3rV8/1mIkIs/jMC9vWdnWNg6A+X/7zXCcK2zlISLykjUzZnQAcI0SB3gRERWY5ubmYGkgcKcA87MeuqI2HK63EoqIqBdsxgKomTv3dRW5xCgdHEokfmgtEJFPcJiXdzjd3T8GcGB6LSLfqKuoeNNiJCIiz1gu4gLYbJT2ra+vD9jKQ0REuaWq0j1mzM0Alpp1AW5eVFn5PUuxiIh6xWZsyqKKil8DaDJKZze1ttbZykPkDxzm5QUNLS1LoPq5noLq31IDComIaJd/Gl8H9548+RBrSYiIKKdWRaPfAXC2WRPgvmBHx79bikRE1Cc2Y1NERBPAeQC2pmuqetM9GzfubTEWkedxmJddK9as2UdEfmWUtjnB4Bc5tIuIKJOK/MNcO44z0VYWIiLKnYbW1vNUJPt4rrWu43y6pqYm3uuLiIgsYjPWsKSy8kUV+ZZROqxs+3be0kC0GxzmZU+gtPQaAIem16J6+cJZs563GImIyJMc1Yxro+O6R9jKQkREudHQ2nqCqP48q/ycOs6JdRUV26yEIiLaDTZjszxeUfETAI/1FEQuWBmL/Zu9RETex2FedjS2tHxMgC/1FETWbH7uuV9YjERE5FnZO2NdEe6MJSLysZWtrXNF9Q4AQaP8WgKo5ewEIvIyNmOzLBdxNZH4AkR2pkqO47q/W7FmzT5WgxF5HId55VdzW9teEPk1AEmVOh3XPXfZsmUJm7mIiLxKs3bGiip3xhIR+dTKdesmOar3ARiVrgnwvogcv6Sy8kV7yYiIdo/N2F7UVVdvFNWrjdLEYGlp9q0PRJSBw7zyqaur6yYAk9NrBb69sKrqaYuRiIg8LRAIZOyMZTOWiMifHmxpOcxxnAcB7G+Uu0T1E7XhcNRWLiKiPcVmbB+CHR3XAlhtlM5obG09w1YeIj/gMK/8aIxGzxLgdKP0WKij4zprgYiIfCDwzjsvA+hOr5XHFBAR+U5DLHZAwnFWwpiZAEBF9YsLq6pW2cpFRDQQbMb2oaamJq7B4KcBbO4pqv5yVWvrFHupiLyPw7yG14ORyBEC3GiUOhLAGZwUS0TUv5qamrgCLxulMaueeGJfa4GIiGhAVrS07C+u2wzN/L1CgEtqq6pusZWLiGig2IztR93Mmf9U1fOM0l4u8Mf6traQtVBEHsdhXsMnEomUJAKBPyiwd09R9QKei0VEtGcEyDiqID5ixAxbWYiIaM81R6NjgiINADKu26J6dW1l5fWWYhERDQqbsbtRV1V1F4Df9hRUZ4/p7PyOvURE3sdhXsPj3WDw+wCONEr/s6iq6nZbeYiIfKjVXARcd7atIEREtGfujURGxlX/CqAy4wGRG2urqq60k4qIaPDYjN0D6jj/CeDZnoLIxQ3RaK29RERex2FeudbU2loH1a/3FEQ2quN81WIkIiLfEZF15loBNmOJiDxs9erVZSMCgftU5N+yHvptbUUF3wsTkS+xGbsH6ioqtrmO8xkAnamSI8DtDbHY4TZzEXkZh3nlzoMtLYep6q0AJFXqFOD0uoqKbTZzERH5jROPZzRjIVJtKQoREe1GfVtbaGtZ2Z0K1GQ9dNvqcPgLIqJWghERDRGbsXtocUVFC0TMJtK+onrn6tWry6yFIvI4DvMautWrV5clRP4CYH+jfGltOBy1lYmIyK+OnT37eQDv9hRUp6xYs2Yfe4mIiKg39fX1gTFdXbcCOD7rob+UdHScvVzEtZGLiCgX2IwdgNqKihsA1PcUVGdvLSu72V4iIm/jMK+h21pW9guY52Op/l9tOHyjvURERP4lIqpAi1FygqFQZZ8vICKivKuvrw+Mnjz5FgDLsh5a0REKfbqmpibe2+uIiPyCzdgBEBEtCYXOBfCUUT6joaXlQluZiLyOw7wGr7G19esAzuopqG7QQOBM3pJFRDR4opp5VIHj8P8DuqYAACAASURBVNxYIiKPSDVi/1eA0zMeUP3bXjt2nLqsvLzLUjQiopxhM3aAasrLtyaAEwG8k66JyA+botFj7KUi8jIO8xqMhljsWKhea5Q2u6qf4DmxRERDlD3ES5XNWCIiD4hEIiWjp0z5kwBnZjwgsmbHyJEfX7BgwQ5L0YiIcorN2EFYUln5ogKfAZBIlYIK3MWBXkS94zCvgWmKRA4V170DQDBVclX1s4tnz37OZi4iokKgjhMx1wLMtZWFiIiSVmzaVPpuIHCXqH4y66EnJR5ffPK0ae9bCUZENAzYjB2kusrKJgDfMkr7iuqdDbHYKFuZiLyMw7z2TEMsNgqOkzGwS1T/q66q6gGLsYiICsaiWbNeBPCmUZrUFIkcaikOEVHRW716dVlw69a/ADjJrCvwuCQStbXV1VssRSMiGhZsxg5BbTj8fWQN9BLXrW9ubg72/Sqi4sRhXrtXX18fgOv+QUWqjPJfFlZWXtvni4iIaEBS524/aNZcx6m1FIeIqKjdG4mM3FpWdg+AJVkPPbqzrKyOjVgiKkRsxg5BHwO9lnaPHv0zW5mIvIzDvPo3evLkXwpwcnqtwPqSUIgDu4iIckxEmsy1A7AZS0SUZw2x2KhSx7kXH7wGP1wSCi3h0QREVKjYjB2imvLyrQGRxVD9Z09R5PzGaJRnYRJ9AId59aWxpeVbAnzRKL3qJBIn1pSXb7UWioioQDlAo7lWkYXLVfm+mIgoT5oikdHiuo0QOdasq8jKvXbsWML3wERUyPimMweOC4f/pYHAUgAdRvnqhmj087YyEXkVh3l9UFM0ejpElhul91zVpbXV1S/bykREVMiOC4f/BaDdKO27IBqt6uv5RESUO83R6BgNBBoALMh66P7Q5s2nLFiwYIeNXERE+cJmbI7UVVQ8JcApADpTJRHg1w3RKG97I8rCYV67rGxtrVHgtwAkVepW4NTFVVUxm7mIiIpA9u5YvmcjIhpmzWvXHtQNNAM4Muuhu8YlEqfU1NTstJGLiCif2IzNodrKyodE9TwA6fMdSwS4c9W6dbNs5iLyGg7zSmqMRsOO6t0AQqmSQuScusrKpv5eR0REQycAz40lIsqjhljs8O6Skr8DCJt1Uf1TSUfHZ6qrq7stRSMiyis2Y3OstqrqFhX5llEa7TpO06qWlhnWQhF5UD/DvD5pJ1F+rWptnaIiDwDYJ10T1W8uCodvsxiLiKhoBEOhhwF0pdcKHNUQi42yGImIqGCtjMWqxHUfBzA566HfbX7uuc/W1NTEe3sdEVEhYjN2GNSFw1cD+LlROsAV+VtDJFJ0t2AT9a14h3mtXLdukqvaLKoHpWsC3FxbVXWNzVxERMUkNRxmtVEKIZFYYisPEVGhamxpOS7gug8BONCsq8hPV4fD5y5btixhJxkRkR1sxg6Tko6OrwK4yygdKIFAwwPR6ARLkYg8p49hXocU8jCvhljscEfkbwA+lK6J6p82b9p0gcVYRETFSeTejKXjFMXdGURE+dLY2noKHOc+BfbOeED12rpw+MLlIq6laERE1rAZO0xqamri4xKJ0wH81SgfGgAefrCl5TBbuYi8ppiGea2IxcaL666CyCHpmgB3j3Xdz3FHABFR/mkgcCd2nfUPqJ6wevXqMnuJiIgKR2M0+u9QvQuqI4xyQkXOX1RVdZm1YERElrEZO4yqq6u7O0Kh0wS4zygfmhBpamxp+VCfLyQqIrkZ5qWev5Y1xGIHBF23EcBEo9zYvdden+awAiIiO+pmzvwngIhR2mtbWdkiW3mIiAqBqkpTS8t3AfwMmT2HHQJ8si4cvtlSNCIiT/B8A8PvlpWXd43asWMZRB40ypMh0tQQix1gLRiRhwx1mNeceYlThyNXrjTEYgeI6zYDmJ6uKbCqpKPj5KWTJ3dajEZERCJ/zlirfsZSEiIi36uvrw80RaO/VJErsh7qcB2nrray8h4rwYiIPITN2DxYsGDBjs54/CQADxnlGaL6cMOGDYf08TKiIjL4YV7z5+s4KL42rPGGYGUkcrC47oMAZhjl1aFQ6JSampqdtnIREVGSitTDOKpAHefkpkhktMVIRES+dG8kMnL05Ml/hsj5WQ+9KoHARxdXVDxiJRgRkcewGZsnJ1ZXb1fHOUFUd/0FpDpN4vFHGqPRyRajEXnCYId5xTVxDCBz5s/XccOXbnAaYrHDJRB4BMBHeooia3aUlS1OTfEmIiLL6ioqXhDVR3sKqiM0EDjNYiQiIt9ZGYkcXBoIPCTAyWZdgX8EEomP1s6atcFWNiIir2EzNo/qKiq2wXVPBLDaKB+mIn9vWr9+pq1cRF4xqGFeKh8DEEg2Zb1jZUtLhbju4wIcYZRXl6guOXnatPetBSMiog9QkVvMtaieaSsLEZHfNEajYScQWAtgTtZDa0OJxLzjqqv/YSMXEZFXsRmbZ7XV1Vs6E4laqDaka6J6kCYSf2+IRhfYzEZk22CGeSlwTPLfUjuc2QZiVTQ6x0meE31guiZA846yssU1lZUdFqMREVEvJJG4EyI9R8eoyNEPxGJTbWYiIvKDxpaWkwA8AmB81kMPlIRCx9VUV79tIRYRkaexGWvBidXV2ztKS08CcKdRHiNAY2NrKyf4UlEbyDCv+fN1nKSOAHAUC/OTsH8rW1trFHgQwL7pmgL3BDs6lnJHLBGRN9VWV2+B6l+MkgQSifOsBSIi8oGmaPQiiPwFQMaMBxX5acemTSfyWC4iot6xGWvJsvLyrv9v787Do6zO/oF/7zOTBUEJYLVawQ0UiTBLIiAuNZIFUWtfFVyqtr+6tFpftbVWbbVF21qtttZWrdrWWre3b9C+VSmSReNGIDiZmQSDIAouuAuEzZBknnP//pigkzAhATLzTJLv57pyMXPOeZ65h2V45jtnzmleufIcAH9PaB4K1aerotHT3aqLyH2938yrY2kCAwAKjJ08WQ9OW5lJVITDZxrVZxXYc1ubqD64YeXKM7hZFxFRZhPggc4N8u2amppcl8ohIspYNTU13qpI5B4FbkfnTMFR1SvL/P4rZs+e7bhVHxFRpmMY66LZs2c7JX7/hRD5XUJzjqo+URGJzHGrLiK39Xozr/h6sV/eNY5rs2MrI5ErReR/AeR8WZDevTAQuJgXo0REma/Y738RwOsJTaPaR4w40616iIgy0YKmppHtw4dXKHBZl64NInJyWTD4R1cKIyLqRxjGukxEtNTv/zFEruvUDPyiMhr9aygUynKtOCIX9WYzr23rxX7JpH3d2JqaGm9FJHIvgD8g8TVV9bbSYPC/54jYdNdEREQ7T0RURf7SpfkqV4ohIspAz4VCh5r29oUQObFL12orckyJ31+R9EAiIuqEYWyGKPX7b4PqpUj8arbqhWs9nvk1kUiee5URuaOnzbwmT9ZR29aL/fzzRgUAqJ4IaNpe1+Y1No5oHz68QoBLE5pjKvK90mDwum4PJCKijNRuzEMAtnzRoFpQEQ4f71pBREQZYkE0WuR4PEugX06M6FAbU50yw+9vcqUwIqJ+iGFsBikNBu9TYCaAL3ZbF6C4HVhSHY0e5mJpRK7Y0WZeapyvAzCA4v01c7Sjc9SUKQiko7bqxsZDsh2n08wAATYBOK3M739gB4cSEVGGOmXSpPVQTVzPHyJytVv1EBFlgopo9BKjWgFgZJeu8mEtLcUzg8FP3aiLiKi/YhibYcoCgSorciyAtxOax1nVWs7MoIGksFCPLJzi/OCoozQfUEk+qvvNvGClGABaWl7HhuZ56jjxzzAsbMqXKqgOh4+2jrMIwBEJzatFdWppIDA/1Y9PRESp47H2DwAS1/o+hR+KE9FgVNHQMLQyEnlcVO8HkLh8nkL15yV+/9nTpk1rcas+IqL+imFsBprh9zcZr3cqRBYnNI8SYyqqIpGLXSuMqA+FQvKaCCyMbTxqiv1o8hQ7N1k4291mXhCcAQCbNr6kqg42bnihY3aspDSMrYxGv2dFagDss61NgUVqzNTiYHBZKh+biIhSb3ph4VtQfSqhydjtl80hIhrQFtTXj4W1tQDO6dLVIiJnlwaDvxQRTXYsERHtWDez0SgTzF+5Midr8+a/KfCtTh0ij7TGYt8/tbDwc5dKo96rBjA94X4rgFyXaslIkyfHzlWRh9D50/ZPIPKiqr4o1rxgLdYYr30dwH5dj3/rzXPsurXlus++l8qBB91tAGy1MTOqvl769N9HTU1Nbnte3p8AXNSla+6wlpZvc1YAEdHAUVVfP1WNWZTQFDMez+HFkyatcq0oov5hBYDEmeQfA/iqS7XQLqqKRE5W4FEAXfcuWQ3g9NJAIOpCWUREAwZnxmawmePGtRb7/ecr8GsAX37qqHp+jsdTu6C+fqx71RH1jSVLvI+L6ukAtiY07wPVWQLcDWNfM177BkTXbH+0YtPGFxUANm6o3vZvJNfjiR3XlzVWRiLj2vLy6tA5iFWI3Fzi95/FIJaIaGApKShYrPEPVLfxOo7DjRmJaEBTVamMRq9V4Gl0CWJVZIHNzi5kEEtEtPsYxmY4EdGyQOAGNeY0AOsTunzGmPqKcPhMt2oj6itLlnjnqdiTEN8ACwAQi62DtV9knPtA5aiux7W0vI729k8EALZuXYnW1rcBACqmuK9qq2hoOBXAEgEmJTRvFNVZpX7/L/j1LCKigUmNuTnxvgDfeTYSOcilcoiIUqomEsmrjkafhuqt6JwTqAK/XuTznTwjP3+dW/UREQ0kDGP7iTKf7xlr7WQFGhOa9xKR8spo9K5QKJTV7cFE/UBocdYLouZEAJ8BgMcMxepV37XLl51g318zx27c+IImhLMAgE0bX4KI+eJ1bOOG57cFo7sdxtbU1HgrIpE5Yu2/0XlmQNTjOMGSYPDJ3X0MIiLKXDN8vpcBvJDQlOURubmb4URE/VZFKDS+HahV4JTEdgE2ieqsskDghjki1q36iIgGGoax/ciMgoI32xznaAD/SGgWqF6xzuOpqgqFxrhVG1FfWLJEQgbm6wDeF5ODQw59xOTkHIwP3v+lrnh9ug2HRjrLl52oH7x/EzZufAEbN1Z1HBkPZDdurNoWxvqmTdN9kj5ILzwXDh8YGz78eQF+gc6vk38f1tIybXph4Vu7em4iIupHVOd0uf+tBeGwz51iiIj6XlUkcq54PCEAR3TpWhYz5ihOQCAi6nvcwKufqgqHL1CR+wAMSWjeqCLXlPn9D7hVF22HG3jtgsA0PdDr2CoA4wDFu+9cYz/+6M4vlgMQ8Xi6HqPqOF7vKAQKPvIABqp6bmiJ93929rErI5FZAO4HMCKhuRXAtaWBwF278HSIiKgfq4xE/gNgZkLTs6WBwMzuxhMNctzAq5+ora0dsnmPPW6F6hVJup8Wx7mgpLBwQ9oLIyIaBDgztp8qCQYfFpFjACTu6ruXqN5fGYnMra6rG+VWbUS7K1Ir7xiY4wA0AIIxB95hDhh96xevV6o2ydekjInF1uLzLQ0KAEZkp5YqqAqFhldGIo8AKEfnIPZdK3I8g1giosHJWHs9gMT/d06qDIendzeeiCjTVdfXT9o8ZEh9kiDWUeAnJX7/NxnEEhGlDsPYfqzE749kAQUAus7+O9NmZ0erw+E+28SIKN3q6uTjnCxTBNVaANhv/2vkwIP+ZOIvW6qq2mnjLBERQGTDhvjm1wqU9vaxKiKREvV4mgCc1+mcwGNZgG+G379kt58QERH1S8UFBY0QeaxTo8hdNTU1XpdKIiLaZRWRyGXW46nD9ssSfALVsrJA4HZuUEtElFpcpmCA6Phq9X0ARiY0qwB/2eo4Pzy1sPBzl0ob7LhMwW6aNEmHZg/Rfwm0FADWfva4rl71/6yqI4mbd22z515F9vDxFQYA1DHjQyFZ0d25a2pqctuHD58DkWvQ+cOpDRC5vNTvf7Svnw8REfU/VaHQGPV4XgewR0LzVfzWBNF2uExBhprX2Dgi23H+BuC/tusUec7GYufPKCz8MP2VERENPpwZO0CUBgJz1ev1Q/X5hGZR4JIcj+fVqmj0WNeKI9oNjY2ypWWznArIkwAwau9zZey4J4wxOdvNjgWAzZtqxdqW+B1jS7o7b1U0emx7Xl4YItci8bVQ5LmYMUcyiCUiom1KCgvfheptXZrnVDQ07PJmkURE6VIVjR6b7ThRbB/ExgD8rNbnK2UQS0SUPgxjB5CyiRPfKwkEilXkewASZ8JOUNWXKqPRh7mWLPVHTU3SdtAYOUuABwEgb8SpMu7w+cbjGbrd2rGqrbJ5U22368bWRCJ5ldHoXar6IhK/niWyFSLX1fp8pTN9vjWpezZERNQfZW3Y8FsAqxOa8mDt7W7VQ0TUE1WVykjkSo1P2BnTpftdESkqDQRumSOSZD8GIiJKFS5TMEBVh8MTrMijAAJduj4W1Z+UBIMPu1HXIMRlCvqUyuSp9neq+CEAbNkS0jeWn6yOs77TB0tf/erVesCY3wiATTZmRtXXSzsAVDQ0nCrW/hnA17qcuAnAeaWBQDQdz4KIiPqnqmj0dFV9MrFNgdKyQKDKrZqIMgyXKcgQleHw/iLyqAJFXftU5Mls1YuKAoFmN2ojIhrsGMYOYKFQKGud1/sjAHOg2jUAnO8APzgpEHjbhdIGE4axKTB5qnOtKm4FgJaWZbpi+UmItX/4xevZHkP9mJDfseeWMcf86r7GD8XaewCc1OlEIltV9TZn2LDfzBw3rjV9z4CIiPqrykhkHoCTE5pWtTrORK7PTwSAYWxGqAiHzxSRPwPYu0tXC1R/VBoM3udGXUREFMcwdhCojkYPU9X7knwqugWqvxhp7R8LCwvbXSlu4GMYmyKFk53LRXAXANPauhpvrJiJ1q1vdfQKfIH3kJv7FXzzgvcrg1PWHYvOm64Aqs9D5PulgcDKdNdORET9V8dmXk0Ahm1rU+COskDgGhfLIsoUDGNdtKCpaaRpa7sbwDlJupvUmLPLfL7X0l0XERF1xjB2EKmMRGYBuAfAV7p0vQHghtJAYG76qxrwGMam0FFTYucB8ncA3vb2D/HG8ploaWkCAJz8zX/h7IsOwz77b+162HoVua7U5/uLiGy3ARgREVFPqiKRqxS4M6HJQvXE0mDwRdeKIsoMDGNdUhWNlqnq37D9clyAyCMqcmmZz7cl/ZUREVFXDGMHmXmNjSNyHOdWBS5G1z//+EzBq7luZp9iGJtihVNipwnknwByY7F1aGm9BOd/vxhHHTMt2fC5MdUfzAwGP01zmURENICUl5d78saNqwUwOaF5VcuQIf7Txo/f5FZdRBmAYWyazV+8eC9vTs7vAFyUpPszUf1+STD4ZJI+IiJyCcPYQaoiEikR4G50vlgCAEeBBz1e743FEyd+7EZtAwzD2DSYMqW9aOheztPFp308rGDaenSd8NrW6lmTnR37Tmkw+JxLJRIR0QBTEQqNF4+nHp2XwflraSBwsVs1EWUAhrFpVBmJHAPgIQBjk3Q/C9WLSoPBD9JbFRER9YRh7CAWCoWy1nk8lwH4OYCRiX0CbLLAb7Kbm+8sKira7nve1GsMY1OstrZ2yOYhQ36oFj8T03ld2C2bBTXz9sOrr4z626KF3mSzBYiIiHZZRTh8hYjcldgmImeU+P3/cqsmIpcxjE2DZ0KhPXK83t9A9b+x/Xv6ZgWuKgsE/uFGbURE1DOGsYR5jY0jsmOxayFyFYCcLt2fQOT3wz7//I/Tpk1rcaO+fo5hbIqUNzVlD29v/46o/hxd1sZyHEG4djjmzW1HrO1QKPB6qM4zwaVSiYhogFJVqWxomC+qMxKam9WYYJnPt9q1wojcwzA2xSoaGqYYa/+hwOFJuqvU672wbOLE99JeGBER9RrDWPpCZSQyDsCvAcxK0v0JRH6ftX79XZwpu1MYxvaxhBD2RgAHdO1vazUL77/90CM+WjOk02xvAzO6rk7WpK1QIiIaFOY3NBzgtTYKYFRC85Lm7OzjZufnt7lVF5FLGMamSEVDw1BRvQmqVwHwdOneIqrXFAcC93GDWiKizGfcLoAyR2kgsLI0EJitxkwH0NClex+o3to+fPgbVeHwpeVNTdlu1EiD1/yVK3MqIpHL8tra3hLV+7F9EBtVY6afMtV37AdvDz0SgtcSO1Wd6SAiIupjM32+NSryHQCJAcjk4W1tt7lUEhENMJWRyEyx9jWoXo3tg9hXPI7jKwkG/8wgloiof+DMWEpqjqo5pqHhTI1/BTw/yZB3IXJLbOjQh2aOG9ea7vr6Ec6M3U3zV67Mydq06bsKXA+R0UmGNInIzQt9vifmiNhtjYHj9CveNrsAQBAAoHjs1SWe89JUNhERDTKV0egdHUHJFxQ4rywQeMytmohcwJmxfahmyZKvxrzeP6jIWdt1imwV1RsX+v2/T7wGJiKizMcwlnZojqo5urHxZLH2ZgD+JEM+gerfAfyRO3UmxTB2F80Ph7/iNea7HRsTfC3JkGWietv6N998bPbs2U6ycxQU6HDjdZ4B5DgAH79aZ/YDOGOAiIj6XigUylrn9b4E1akJzS3WmGNn+Hxh1wojSi+GsX1AVaU6Gr1IgdsAjNiuH1jkUb2oOBhc5kJ5RES0mxjGUq/MUTXTotEzIHIzVMcnGdIKkXIV+W2Zz/dakv7BimHsTqqMRMZB5HKoXgRgjyRDXhfVW3cUwiYqKNA9jFefAPQka8yk+kWytO+rJiIiAiqWLh0tsdirAPZNaH5XjTmqzOf7xK26iNKIYexuqqqvPwIi96vIcUm6Nyjw00V+/32cDUtE1H8xjKWdUl5e7hk+btzZInJDN6GsAligwJ2lfn811y1iGNsbqiqV0WgxRH4kqmVI/tr0ugC/Wuj3/3NnLz7z8zV7j6H2ETGoW7LY8/u+qZqIiGh7FZHINAFqACSur/9qq+OccGph4edu1UWUJgxjd1HH7PofQfUmADld+wWYZ73ey8omTnzPhfKIiKgPMYylXbJt+QJj7Q8VKEo6SHWpGPNAqzGPnTJp0vo0l5gpGMbuwLzGxhE51n5Lrb0EIhOTDlJ9Xo25c5HPN393ZgDMmqWe1e863wzVeZ/c5YKJiIh6oSISuUyAe7o0z631+8/mbDYa4BjG7oKqSOQEAPcpcPh2narvAbi8NBh8Ot11ERFRajCMpd1WGYn4BbhURS6AarKgsRXA02rMIxtWrJjfm6+WDyAMY7vo2BxuGlTPV+A8JF+KoA3AU2rM78p8vro0l0hERLTbqiKR+xW4pEvzb0sDgWtdKYgoPRjG7oSKpUtHm/b225Nu0AU4ELmnJTf3htPGj9+U9uKIiChlGMZSn6leunRfJxa7VIDLAYzqZtgaqD7miNx3UiDwdhrLcwvD2A6V4fD+MOZ8Vb1YgEO7GbYBIv9Qj+cOfgWLiIj6s5qaGm/78OHzIFKW2C6qV5QEg39yqy6iFGMY2wu1tbVDNufm/hgi1yH5xISoAS4pDgReTXdtRESUegxjqc9VNDQMFcc5X4CLVSTYzTAHQCVEHo9t3fr0zKlTN6azxjQa1GFsVSg0XI35hhpzrqiWAjBJB4rUA/hLayz2CNfTIyKigeKp5cv3HNLS8hIAf0KzqshFZX7/g27VRZRCDGN7UNHQcKpYexeAg5N0tyjw2w3Z2bfMzs9vS3dtRESUHgxjKaWqw+EJFrgAIhcC2LubYa0CVEF1Lqx9qqSwcEM6a0yxQRfGVoVCw2HMaSpyCoCTkfzTfgDYIMD/OsbcP8PnC6exRCIiorSZ39BwgNfaRQAOSGiOCXBmSSDwlFt1EaUIw9huVDQ0HCmOcxdETuxmyBMe1R9PDwbfSWthRESUdgxjKS3mr1yZ4928+RsCXKDASQA83QwdaMHsoAhjayKRvJjqNyAyS4ESJNkBtoMFsEhFHm6LxR7lLFgiIhoMqsPhCVbkRSR+MC2yFcBppX5/pWuFEfU9hrFdzGtsHJFl7U2ieikA73YDVJdaY66c4ffXpL86IiJyA8NYSrvqxsZDrLXfgeo5AMbuYGgrVF9QYyqM4ywoKSh4PV019qEBG8ZWh8MTHGPKxNoyiJyA7gNYAFgJkf9RkYfKfL7VaSqRiIgoY1RGIn4ANQDyEppbVeTMMr9/nktlEfU1hrEd5qiaYyKR81TkdgD7JBmyHsBNWc3N9xQVFcXSXB4REbmIYSy5akE0mi+qs0TkLKiO72H4xxCphOozbR5P9SmTJq1PS5G7Z8CEsTVNTcPaYrEiY+0pCpQBOLCHQ1ZD5BkB5pb4/a+ko0YiIqJMVhWJnKAiz0I18VqgTY05s8zne8a1woj6DsNYANXhcLEVuQOAL0m3hchjKvLjMp/vk3TXRkRE7mMYSxljQTjsE5FZAsxC54u4ZGIAlghQqaqvZOXk1BXl529OQ5k7q9+GsU8tX77n0M8/n+KIHAugVIDJ6H55CQCAACugOldU5xYXFDSmp1IiIqL+o7q+fob1eP6vUyArslVFZjOQpQFgUIexlZHIMQBuBXBsN0NesqpXzAgGG9JYFhERZRiGsZSRFoTDPgOcpiIzehMCAnAANEJ1oYgsMqoLM2Tx+34TxlY0NBwMa6cJcDSAYwBMRO9+3+ugusCoPsUAloiIqGeV0WgpVP8NYEhCs6Mil5T5/Q+6VRdRHxiUYWxVff0RasxNAM5E8vfY74vqT4sDgUdERNNcHhERZRiGsZTx5jU2jsiKxaaLSBlUyyAyupeHfgCgFsCrxtpGJzu7qWzixPdSWGoyGRnGVoVCY9TjORIiE2HtZIgcDWC/Xh2s+h5EKlS1IlukuigQaE5ttURERANPN4GsAvhhaSBwl0tlEe2uQRXGdlxTzwFwAZJMYhBgk6re0WrtHdy4loiItmEYS/3Ogmg03wBlsLZURKYpsOdOHL5eVF+zIq+JaqMY85pX9bUUBoquhrE1kUheqzETPY5zpBozCapHAjgSnTcP2aGOi8haNabCY21FcTC4LHUVExERDR4Vfwte5wAAEXhJREFUDQ0nGmv/vd21jOptJYHA9ZxBR/3QoAhjq+vqRtmcnOsB/KDLGtDbtEHkvpi1v5oZDH6a7vqIiCizMYylfq28vNyz12GHjfdYWwCRYzS+PtMR2Pm/2+shskpUPwTwgYqsguoqtXaV096+cubUqRt3scSUhrHzV67MyW5p+RpisUMcYw4Raw+BMfur6n4CHALgYOz878WHAF4BsFBE6tdnZS2ZnZ/f1lc1ExER0Zcqw+FCiDwLYO8uXeVZzc3fLioq2upGXUS7aECHsTVNTcPa29quAHANkk9usAAeV2N+XubzrU5vdURE1F8wjKUBZ0EotJ/H6z1arT0GIlMFmLiTs2eT+QSqH0NkLVTXichnCnwGkbWqunZbO6xtVWCDNyvLaltbbFZZ2cOx9vavt27diva2NiAhjJ2/cmWObWnZAwBy2tr2lOxsb6y93QgwHMbkwJhRsHakiIyC6igB9lbVvRG/PxIi+wLYZ3eelACbFFgq8XVfFzrW1s4oLPxwN3+viIiIaCdUhELjxeOpADCmS1edGvMN7rhO/ciADGM7QtgLVeQ6UU36fBSoNiI/KfH7I+muj4iI+heGsTQoVIbD+xtgghXJh0gBgAkA8rv5WtFAFAPwrgDLLFAvQJMVWbbY53t9joh1uzgiIqLBbn5DwwEea/8jwKQuXW+LyOkMeKifGFBhbFUoNFyNuQIiVwEY2c2wOgGuKwkEXkhjaURE1I8xjKVBq7ypKXvk1q3jHZEJInKIAAcqcBDiPwcCyHG1wJ3XCuAdAG8L8LYF3obqao/qsnW5ucu51AAREVFmq2lqGhZra/sfBU7p1CGyFaqXlgYCD7lTGVGvDYgw9qnly/ccsnXrZVC9FsCIZGMEWKHAjSV+/xNc35mIiHYGw1iiJFRVqiKR/SBysAIHGdXRCnwFIqMEGKXAyI5fRyH+k6p/SwpgrQBrNf7rOgXWQnWtAJ9C5F0LvC2qb5cEAh/yQpCIiKh/q6mp8baPGPEnqH6/a58Ad45wnGsLCwvb3aiNqBf6dRhbXVc3SrOyrlKRKwDs1c2wlQBuyWpufrSoqCiWxvKIiGiAYBhL1Aeq6+pGiceTFxPJAwAxJteoDrn5Jz/5rVUNGGPg8Xiwx7BhsStuuOEHYu0miMRExBFrNwKAFWlRa7cCgFe1WR2nuXjKlLVuPi8iIiJyR0U0eomo/glAdpeuV9WYs7g5EGWofhnG1oRCe7d5PJcLcBWA4d0MW6Uit2WvX/8gQ1giItodDGOJUqsawPSE+19s4EVERES0I5WRyDEA5gLYr0vXBlW9qCwYfMKFsoh2pF+FsdWNjYdYa6+E6oUAhnYzbJmo3rb+zTcfmz17tpPO+oiIaGBiGEuUWgxjiYiIaJc9F41+zQGegOrULl0K4F415toyn2+LG7URJdEvwtgFDQ3HibVXC3AqAJNsjAKNAvyq1u9/khveEhFRX2IYS5RaDGOJiIhot9TU1Hjb8vJuEOBGbB8cva3GXFjm8z3vRm1EXWRsGDtH1Rzd2HgyrL1egKO7Hai6VIA7FgYCjzKEJSKiVGAYS5RaDGOJiIioT1SGw9+AyN8BjOzSpVC9Rz2e6zhLllyWcWHs/MWL9/Lk5l4oqlcCOHAHQxdC9bclgcAz3BSXiIhSiWEsUWoxjCUiIqI+UxUKjVFj/g6RE5N0r4Lqd0uDwRfTXhhRXMaEsc+FwwfGRC4X4GJ0vymXA+Bfaszvyny+ujSWR0REgxjDWKLUYhibmUYB+AWAEgAWwPyO+593M74YwB8AvA9gNoANaaiRiIgoKVWVyoaGi43qHQrs2bVbgL94s7OvLsrP3+xKgTSYuRrGzlE1x0YiJ1qRSwD8FwBvN0M3C/C4iPyu2O9/I131ERERAQxjiVKNYWzmGQOgEsB9AB4EUIr4TtXPApiZZPwwxEPYvTru/xTAb1JfJhER0Y49G4kc5BH5K1SnJ+l+X1R/WhwIPMKvXFMauRLGVi9duq91nO9A9XsADu5unIp8BNX7NTv7jzPy89elui4iIqJkGMYSpRbD2MziAVAL4G4Aj3S0HQFgWcdtP4CGLseMQjyMzem4/wSAWaktk4iIqHd6mCULAK8qcFVZIFCb9uJoMEprGFtRX19gjLlERS6A6o6usRtU5N7s9esfLioq2pqqeoiIiHqju69tEBENRBcA+BBfBrEAcHjC7bHYPoxdC+DCjmMEfN0kIqIM0jHr9YGKhoYqY+3fFCjqMuQoAV6piEQeEdXrS4PBD9yok6ivzGtsHJHjON9Wke9BdbwCgCad/N2uIk9D5N4yn+/59FZJRETUPc6MJUotzozNHIJ40HoFgBcS2u8FcGnH7QIA4W6OfwjAtwH8qeMcREREGUVVpTIS+a6I/BrAvkmGbBbg1qEtLb+fNm1aS7rro0EhJTNjy8vLPSMPPbREjTlPgdMBDOl2sOp7AP5irf3rjMLCD3f3sYmIiPoaw1ii1GIYmzmmIR6oHg5g2/QJD4APAOwD4E3E3zx0t67eCQBqAHwfwP09PNZoAFcB+Aniu/QSERGlzfzFi/fKysm5QYErAWQnGfIOgF81Z2c/PDs/vy3N5dHA1qdhbGUk4ofq+RA5B8B+OxhqASyA6v3Nb775n9mzZ/P6i4iIMhbDWKLUYhibOS5AfBOuuxPaShDfzAsAfgng5zs4fgzib16nAFjSzZjDAZyL+Jvf4YiHvJ/ueslERES7bkF9/VhjzC3ofq3zdwH8flhLywOcKUt9ZLfD2MpweH+IzBLVC1Qk2MPwj6H6kPF6HyieNGnVzhZLRETkBoaxRKnFMDazPQjg/3XczseXG3klcxyA+QBGAmhPaJ8N4GcADgSwBUAEwMkdffsC+KQP6yUiItppleHwdAB3QmRiN0PeB3A7Q1nqA7sUxtY0NQ1rb239L4icD+BExL+91B0V4AUrcv+GrKz/4+xuIiLqbxjGEqUWw9jMlQPgIwB5iK8l6+9h/H8DmAngpC7t+wHYH/HlDj5E/A3Ecx19DGOJiCgjlJeXe/LGjr1YjfmFqHYXjn0swB3WmD+X+Xxb0logDRS9DmOfWr58z9ytW2eK6hmIX2MN3dGJJX7uR4zqo9ODwXf6qmAiIqJ0YxhLlFoMYzPXNwA81XH7egC39jD+nwBeBnBPD+MYxhIRUcaqra0dsik392IRuQbAAd0MWyvAg+Lx3MevftNO2mEYO6+xcUROLHaqipwBkVKo9nRd/KmK/FOBR2f4/d0tE0VERNSvMIwlSi2GsZnrUQDf6rg9DvENvLqTi/is1/GIv6nYEYaxRESU8cqbmrJHtLaerSI3AhjbzTCrwPMCPJDV3Px/RUVFsXTWSP3SdmFsdV1dvmZlnQyRWQqUIvmmcolaBahS4OHm7OynuAwBERENNAxjiVKLYWzmehfAaMQ35Tqoh7FnAbgYQHEvzsswloiI+o1QKJS11pgLIHK9AIfuYOjbonq/9XgeLPP5+H8bdWcFgMP2Hz0ak489FseXlrYd6fd7sOM1YAHAAnhFgEe9wNyiQKA59aUSERG5g2EsUWoxjM1MIwGs7bj9GIDzehj/IoDbAczrxbkZxhIRUb9TU1PjjQ0ffq4VuVqASTsY2qrAk0bkYe/69c9xtiwBQEVDw1Bj7QkLnnrq0YnBYN7+o0f35rCYAi+I6pNZsdi/iyZP/ijVdRIREWUChrFEqcUwNjONA/BGx+1bAPxsB2O/DuAPAIIAtBfnZhhLRET9WkV9fYEx5hIFzgcwZAdD10HkPyoyN3vdumcZzA4u1Y2NhzjWFhvVU1WkuBfrvwJADEAdgLnG6/1n8cSJPS3/RERENOAwjCVKLYaxmWlfANtmX1wH4LZuxhkASwD8CsC/e3luhrFERDQgVDQ07ANrLxTgewAO7GH4+wKUW2P+t8znq0tHfZRe1UuX7uu0tx8HkVIBygCM6eWhn6vIs0b1X+2trfNmTp26MZV1EhERZTqGsUSpxTA2MxkAawDsB+BeAD/oZtwvAUwAcMZOnJthLBERDSjl5eWevLFjT1ZjLhXVUsT/H92RVQI8aY1ZsMHrfYUbMPVPVaHQGPV6j1fV40XkOKiO7+2xn370EV6trUWkrq75x7fc8rVTCws/T2WtRERE/QnDWKLUYhibuW4EcDPiYekhALZ06b8AwLUAjgGwM5tIMIwlIqIB69lI5CCv6tkqcjYAXy8O2QzVGhVZ4HWciumFhW+lukbaNdXR6GFW9XiIHA/V49HzbOhErQq8/Mi99/pefv75r7zz1hd/zB8D+GqfF0tERNSPMYwlSi2GsZnLC+BxALMQ/3O6CfEdgEcDuBzAYQBOx86HqQxjiYhoUKiqrz9CPZ6zRfUsBQ7v5WEroVoBkWdbhgx5+bTx4zeltEhKqnrp0n1tLFYA1QIVKYDIFFHd2dD0TQAVAjxrjXmhzOfbgvi11GEJYxjGEhERdcEwlii1GMZmvpMAnIP4pl4jAKwC8E8AjwFwduF8DGOJiGjQqYpGA6p6NoCz0PsZlQ5Ul4nIIgUWqeMsLi0oWCEivdkwk3qpa/AqQAGAA3bhVB9C5EVVfVmtrZxRUPBmkjEMY4mIiHrAMJYotRjGDj4MY4mIaNBSVakMh4PGmBlQLVORoxH/NkpvrQewGKqLYczirFgsXFRY+FmKyh1Q5i9evJfJzR0vqkeI6hEAJkAkgF0LXgFgNYCXVOQlUX25NBBY2YtjGMYSERH1gGEsUWoxjB18GMYSERF1qGhoGOpxnKOtMadC9TTs3Dqk26wHsEyAJgWWGdWmmLVNMwoLP+zjcvuFeY2NI3KszbfABLH2EBHJ1/iGowdj997frYLIQgVegUhVmc+3ehfOwTCWiIioBwxjiVKLYezgwzCWiIioG1X19UdYj2eGWFsEkSkA9tmN030G4DWorlBj1hhr33WMec+orslqbn6vqKhoax+VnTY1NTW57Xl5o9WY0bB2tAEOUpHRUB0NkTFQPRDAkN19HAXeEqAeQD1U69u83vApkyat3/1nwDCWiIioJwxjiVKLYezgcxKA+R23xwB4z8VaiIiIMtqC+vqxxuOZCtWpEJkKVR92blmDHflEVNeoyBoVeQeq6wRYr0CzAZqt6nqParOqNrfHYs0zp07d2EePCwAIhUJZH2VnD8sFRsBxRsHaUY4xo6A6CiIjJf7rKKiOhMg+KrLfLmyi1aOuwWuWSH1RINDc14/TgWEsERFRDxjGEqUWw9iBb18ApwHIBrA3gNkAjujoq0U8mF0PIAbgcQCbXaiRiIioX3gmFNoj25hCEZkK4CiIHAnVsei7gHZHHADbAtlmAIkbiW2EyJcbe6paiBhVzRJgWEdrHuLvr4Yifl2QThbAOwCWQ2SZqK6AyOte1ddSGLwmwzCWiIioBwxjiVKLYezAdziA6wC0ddxPfPPmAbBXx+1cAD8G8GlaqyMiIurnypuaskc4zuHW2gkC5CswQYD8NIa0maQZ8dD1DYi8rta+LiLLh7W0rJg2bVqL28WBYSwREVGPGMYSpRbDWCIiIqIUKG9qyh4eix0G4GBYO1qAAwCMRnyZoAM6ftI9Q3V3tAF4H8B7EHlHVd8Vkfeg+p4Veac1N/fd08aP3+R2kT1gGEtERNSDwfZJMhERERERDQCz8/PbALzW8bMdVZWK+vqvej2eAxzga0ZkhAXyBBih8V/zYG2eAHkK5EFkBOJLDCR+s2VnbEE8UG0DsEUBFZFmqG6G6loR+UyBtVBdC5G1asxasXadOs5ax5i1SwKBtXNE7C7+dhAREVE/wTCWiIiIiIgGHBFRAB92/Ly6q+cpLy/37DF+/Bfh7NC2Nk9bTs6QdtXNAHDyxInNHY9FREREREQuq0Z8/dBtP1vdLYeIiIiIKGVWoPO170fulkNERJR5jNsFEBEREREREREREQ0GDGOJiIiIiIiIiIiI0oBhLBEREREREREREVEaMIwlIiIiIiIiIiIiSoP/DxLnj+VMBdqMAAAAAElFTkSuQmCC
iVBORw0KGgoAAAANSUhEUgAACDMAAAIOCAYAAACvGdQ1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAuIwAALiMBeKU/dgAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURBVHic7N17vCVnWSf6X63d3bmQkCsk5ELESSDkQtKBwyCDg8LoJzODjoqHGdFBHQZUUAQkcyAwIBeJKIYAIwFkFB0REIcTQYdRnCCIOjgndEIIIUi4JSQQEjrpdNLd6b1WnT92A+nu3b3Xu3atWrVqfb+fz/5A165a9WTvtVe971tPPU8VAAAAAAAWTH12MvoXSc5N6kcl1QlJjkxyTJIdSXYmuTWpvpjU1yb13yVLf51Ud88waAAAFkg16wAAAAAAADiY+rikvnyNfe5Olp65xj7HJ6PnJvmpJKdPEMiOpPrzpHpTUv3NBMcDAAAAAAAAAP1Qn5IM6zW+bj/I8Q9Ihr+RDLeP8Tpjfo2uTOpHtvczAAAAAAAAAAA6ZD3JDLuflAy/0FwSw15fO5PhL7b7swAAAAAAAAAAOmDSZIbhLyXD5SklMtz/641JraUxAAAAAAAAACyOSZIZhr/ZQhLD/b9+fTY/GwAAAAAAAABgBkqTGYYvbzmRYc/X8k/O7mcEAEDfKP0FAADQhjobknxPkvMzytmp8rAkRyU5Ys8eW5NsTZ0bMsgnkvxdqtwyxXgemuSxGeX8VDkrydFJHpjkmD2x7Eidz2eQzyb5WJL/kyrLU4sHADiI+pRkdNMaO92RLB2fLP+HpPqvBS/+jSR3JdmW5EFJjk9y2ISBbksGZyXVVyc8HgDmTL0hyeOT0flJzkmq70pGRyXVA5OMkuxIqjuS+otJbkgGf5/kqqTaPbOQYY5IZgAAAFhNnR/OKI8/6D6DfChVPrrG6zwxozw7Vf5lVhIFxjVKcmWqvCPJf28kkaDOiUn+feo8LcljCo/+Rur8YQZ5U6p8ad2xAAAFxk1mGPzzZPR/khx+kP0+leR9yeCjSbYk1fZVznd8MvzBpHpKkh9JWXLDf0uWnlGwPwC0aHhRkuMOvs/gsqT62sH3qf95MnpWkn+V5NjCIO5M8v5k8DtJ9b8LjwUAAAAW3jBvyij1Qb/q/KcDHl/n+zLK36/5GuN9XZM6T5j4v6XO8RnmNzLKPQ3EsivD/Fbqg94kAQAaNVabibuS4acO/P3R/0rqCcYT9UOS4R8VtJsYJfWZzf8MAKAJw39c+1pWn3vg43c/KVn+u+ZaNI3+KqnPae+/HwDmUn1iUp+3Mqnd/S+S3U9O6kcn9clJrYoLALB4Jk1mqHNkhnlrRhk1lMjwra9Rhnld6gyK/jvq/FhGuaPhWOqMcn3qnNXUjxsAOJixkhkO9LU9WW6gUsLwl1YSFcY65+XrPx8ATMOkyQz10cnwHQXXwpKvXcnwJe7FAMC31eclw5cnyx9JhrevcSHdmSx/IhletifJYWnW0QMATN0kyQx1Tskon5pC4sD9v96XOoeuGX+djRnmbVOO5Y7U+afT+hUAAN8ycTLDrQd/urTU8MVjnveupF57vAIArZskmaE+Ixl+bgpJDPt+/VFSb5zNzwUA1qX+Z2Nc6K5a4zU2Jcs/mww/s84L6i0rk9f6ge38twMAzEBpMkOdMzPKTVNOHlj5GubdqXPgJzbqHJJRPtBKLKPcnjqPaONXAgCLa6JkhjuS+pENxzFIlv9hvPMv/5tmzw0ATShNZqgfl7UfCG3y610r11sgSWF5UmCO7b4wGd2QVL+bZL0T2YckuSQZ/WOy/O8aCA4AYL7VOTF1PpTklFbOV+XfJXnZAWLZlDpXJPmhVmJJjkudK1Ln8JbOBwCsbZSM/l1SXd/sy1ajZOkXVl5/zX3/ZbPnBoC21eckoz9PclyLJ316Mrq4xfNBp0lmgN6rD0uGv5cMPpTkuxp+8Qcn1buT4TtWqj4AACygOoemzp+lbKxVJ9m+zvO+InXO32/7KG9McmHhq+1IMlxHNGdmlF9fx/EAQLMuTzZ+eDovXV2V1H8zxo5PmM75AaAN9anJ6C+SHFt44PaMlfR3UK9I6u9Z52tAL0hmgF6rH5wMP5LkZ6Z8omcm9QckNAAAC2mU1yR59EH22JnkT1Ll51LlglQ5KoMMMsiRqXJ4qpyWKv8qdS5P8tWCMy+lzm/v1W6izjNT5efXOO5TqfOqVPnBPedeyiCHp8rGVDkhVc5LlRcl+ZusJF2Mp8pzUufsgvgBgOm4Kxn85ymf4w/H2OespD5yynEAwDQsJcM/SnLSQfa5L6n+PMkLksE/SwYnJktVsnRkMtiYDE5IBo9K8otJ9T+T7Co4/4Zk+CbtJgCYI/U/G6OX0lX32//E8Xo/Nfr13qQ+cO9mAIB5MsybMkq9xtcHM8rwAN+7K8O8InWOGfucKy0inpdRto9x7pWvOj+259iHZ5QdB9n3A6nzfxX9DOpszij/MHYso7y/6PUBgDHVpxSsz/xaC/EckwyHY/Qcf+z0YwGAEuPcNxn9yUG+vzUZvjypjy87b31KMnxn2T2X5adN5UcAAM0rSWaoH5gMP9lyIsO3vp43258TAEBDxktmONDXR1LnoROfu86jMsqtBeeqMsr/OsD3b0+df7OOWDZllD8bM5bl1I23NgMAxk9mGCX1P2knpuHnx7gJ8+/biQUAxrWeh0BH/+/Kg6Trsfz0ZLhzzGSGv2/mvxkApm7cZIZ6sNLHaayL7zeS0f9Khr+XDH8zGf56MnzbygV5ePXKBLj4gr4zqb971j8tAIB1mzSZYZj/mjob1n3+Oo9eo9LC/c/56wf43udTZ/03NOocllE+OmYsr1n3+QCAfYydzHDV2q/VlNH7x4jnxe3FAwDjmDiZ4eXNVaZeftr491/qRzVzTgCYqnGTGYYXrbHPF5Phf07qs8Y450nJ8NnJ8NrC7MQ/mf7PAwBgyiZJZhjmD1OnuZ6Ww/zaOqpD3Jw6pzUWS53TM8quMc57fWPnBAD2GDuZ4ZL2Yhq+aox4Lm0vHgAYx0TJDBdPIY4/GPPcr27+3ADQuLGSGW5PhrsO8L3bkuX/kNQTPCVYD5LhCw7y2vt+jcZLlgAA6LDyZIb/kzqHNhpDnSML2k3c/2tX6jyu0ViSZJhLxzp/nTMaPzcALLRxkxmWf7y9mIa/PEZM72wvHgAYR3Eyw+9NJ476hGS4dYzzXz2d88N8aO6JIaALjkuyaf/N1V8lg7OTDb+bVMvlL1uNkqU3JKOnJNk5zgHJ6JfKzwMAMLfuS5WfSTXWWGl8Ve5OnXcWH1fnN1PlfzcaS5IM8uYk9Rh7PqHxcwMAY1j6bHvnqreNsVOziZ4A0K4vJ4Mp3euovp7kd8fY8dykPno6MUD3SWaA/nt3Ul2YVN9Y/0tt/HBS//yYO//bpN64/nMCAMyBOpenynVTee1B/nvhEV/PIK+dSixVvphky5r7jaZQFQIAGMftLZ7r7rV3qVZ56AYA5kV9UVJtn97rD941zk7J8mOnFwN0m2QG6LXqfySDf59Uw+Zec+kPkurKMXY8Jll+cnPnBQDorN0Z5Dem+PpXJbl57L2rXJYq904tmip/OsY+Wo4BwGzc2eK57hljnwnanQJAJ1yXLJU+XFCo+mSSz62938Acm4UlmQH660tJ9fRmExmSpKqT6pcyVnnhgWQGAGAR/I9UuWVqr16lTnLNmHsvJ/n9qcWyYu3KDMmZU44BANjfvUnVbMsrAFhcv7PSgnvqPjHGPo+cehTQUZIZoLdGv5BUd03ntavPJPXfrb1f/b3TOT8AQIeMU6lgvep8Zsw9/79UuXWqsWSsWI5PncOmHAcAsLcdsw4AAHqiTgZ/3NK5rl17l+qU6YcB3SSZAXqpujLZ+D+nfI4/GmOf85J6abpxAADM3BhJnus0yPVj7Ve3EEvyxSTjPPX5oGkHAgAAAFPwqaSa9oMCe4zGSGYYPXj6cUA3SWaAXhq9fvrnGHxwjJ0OTfJdUw4EAGCWbs9Y/S0bOc/aBvn7KceRVBkl+eYYex4/7VAAAABgCv6hvVNt+Pra+1Tm1ywsyQzQP19Nlv5y+qepbspYi9jLZ0w9FACA2bkqVeoWzrN9zP2ummoU33H3GPtoMwEAAMA8GrfVYxO2jbHPoVOPAjpKMgP0z58n1bCdU9Xj9HI6cfpxAADMSJ1vtHSmcZMZbptqFN9xzxj7HDL1KAAAAKBxdVtz/WS8hwXMr1lYkhmgd+qPtHeu6oYx9jlh+nEAAMzM1pbOc+8Y++wec78mjJPMsHHqUQAAAEDz7mzxXOM8vGB+zcKSzAC9s/TJFk921xj7HDn1KAAAZqetZIZxWllsbanlRTJePAAAADCHlu5o8WTm13AQkhmgf77c4rmUPwIAFttgrAoFbWmrKgMAAAD0WZfm+rDQJDNAv9ybVLtaPN84lRkOnXoUAAAknuYAAAAAoEckM0C/fLPl8903xj7V1KMAAAAAAAAAekUyA/TLnbMOAAAAAAAAAGC9JDNAv4xTKQEAAAAAAACg0yQzAAAAAAAAAACdIpkBAAAAAAAAAOgUyQwAAAAAAAAAQKdIZgAAAAAAAAAAOkUyAwAAAAAAAADQKZIZAAAAAAAAAIBOkcwAAAAAAAAAAHSKZAYAAAAAAAAAoFMkMwAAAAAAAAAAnSKZAQAAAAAAAADoFMkMAAAAAAAAAECnSGYAAAAAAAAAADpFMgMAAAAAAAAA0CmSGQAAAAAAAACATpHMAAAAAAAAAAB0imQGAAAAAAAAAKBTJDMAAAAAAAAAAJ0imQEAAAAAAAAA6JQNsw4AAAAAAICDGiXZusY+d7YRyHfUu5NqjZjq7e3EAgBAH0lmAAAAAADotOqWJMfOOoq9bfyrdC4mAAD6RJsJAAAAAAAAAKBTJDMAAAAAAAAAAJ0imQEAAAAAAAAA6BTJDAAAAAAAAABAp0hmAAAAAAAAAAA6RTIDAAAAAAAAANApG2YdAAAAQCcN8uIkr1hjrx1thJLkhlQ5do19Rq1EkiRVnpK155Pb2wgFAAAAxjd4TNZ+2HtbG5HssTMZrDXfr1uJBDpIMgMAAMBqqtyb5N5Zh5EkqTJMsnXWYXxblbtnHQIAAACUq+6adQR7q+p0ab4PHaPNBAAAAAAAAADQKSozwPy4Paned/Bd6i+2E8q3jG5MltaIabSlnVgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2E816wAAAAAAoPd+tH5w7supGWRnRtmx1/fqDFNl237H/HnuTKq6rRABAAC6ZMOsAwAAAACA3rsvT0+VN6TO/o8XHehxo6ckyQFzGXYm+yRFrLzWztT7JUvsTDXGtm+97jj7Hmjbvuc+UEzjblst+eNA25eyM8N9to1ybz5U7drveAAWzw/VT8goh37736tdS6osp87d+x27nDuzYZ+L8uG5J++r7ptOsAAkkhkAAAAAYPoG+90CWa9D93ztbbVzrJYscbB6rau9xrjbDvS648aw77bVkj8OtH20yralJE9Z9Qe/fzJI3xJBktVv1EkEARZVnXenyin3+/f416eNq2zbkQNdY75l8mvNgbdPfq351vZJryvTuNbckx3562rnfq8JsIc2EwAAAACwfhcnecgBv3vu2y/Iac96fHvhwJTUu4cZ7V7eZ9tyRvcN99o22r2c+r699xveN9xvW5KM7htmtGvv7aNdq2y7bzmjHXufJ0mGu5Yz3LnPvjuHGe7YZ9uOYYb37r9t+d5VYrp3Ocvb9z7X8J7lLG/f579p+zC7t+29bfe25Qy37R8n8+TSJF+cdRA07Cn1rUlOnHUYjEUiyP1JBGGBqcwAAAAAAOv3U0keecDv7vhSa4HAVFUbl7K0cWmfrYfMJJZ5M9qZDHesvW24MxmtUvxjte3r2fat7ePENO629R4/3LGyffbeE8kMfbTvZxfdtX8FqvVWhDrQa4y77UCvu55tq1UHGbf61BFpvvrUgbdLBKE5T6l/K1WOSJLUGaXKXQfct85dkhmacUiSew66x4k/VuXkn/jOR009TJa37b/f7juz36fk8j11Rvu0XRrtSob37nPwKNm9yu97+a6kHu29bXjPymvsdfh9yfCefU5e74lp39e8O6n3T1gGmEMPTLLvByoAAECzKvdPYOENDl35Yjwr69V7b6tHK+vd+1retrLmfn+rJUaMdifD7cnyPck1P9tsvMwDF2MWgUSQ+5MI0sVEkJ9NnWO+/a+Dt+IbSmZoRpW1LoJHnp085MfX8/rzZT1ZxtPKPG46S3i9xw/v3T+hBJiF+fuMBQAAuuupSf6f+/17W1YWUf/3huQfZhMSwFwabFr52tem49b/2vfdsf7XoKsenuSlq35ntOOIDA5rNxpgnkgEub+1EkHq5WFGu/bOJKzrOqN793lCP8nyPbuT0cqB9ejoVINVAltFlZFkhrYsWva9LOPJSQRZe5tEEAAAALrqhCSPXmX7rUuSGQC6Yt8qDvTJiXnCPzxj1aQX9ywAmlNtWMrShlVugB+xf/uxVXITx1KrzNCeRUtmYHISQSYnEWTtbRJBgHlXZ2OSB806DAAYw85U+easg2AGDvSQ0cjaEEBnaKHcb4d/dzMVPACYNZUZWiOZAaZPIkiZ1foG1svJ8t3777t76/7blrcn9e59XnOVpI56uNK3cL/XvCsrdYru/5r3rPRD3Ov4+1a272W05/h9Y1qtP+IqCRyjHcndn9n/eKBrfiDJP99ry0/kpLwr/2E24QBAgevzhSR/tMp3XpVk9yrb6YsDLQF5pgigO1Rm6Ldxy5cD0HWSGRr33Ukets+2u5Mc7kcNdMzSYStf+9rUsweeD7k3OfPv9t52z93J3/zYyv//o2zOw3P/DIytqfKF1uIDDuZJSV681xZ/nQDMi5vz3Uletsp3Lolkhn5TmQGg+yQz9JuHSwH6oZIS3rxnJPnPq2z/3aXkT9sOBoA8+MvJq37gYHv8zT4FIt6d5OnTDAkAAOixAyUznPSPyXl/tfe24Ybk+iOzX0OSjUcnqfbetnREMti4z7kOSZYOX0ewAAvmYdckJ92Q7LotOXaV7w+TbEvyb/OY/GwOy4Z8OlW+1nKUrJvKDAC9UKvM0LwDXSPljQDMRjVae5+9FR8AAADwbQdaG/qXl6987eunMr0HYJYO278d42rbSvZt4jWX9tk2GHNbyb4HOn61mDYcpSQ5LIoLPpQ84yXj7HlZkmSYn0jynmmGxBSUVGaoh8nX3p9UG5INR+7//Y3H7L9t1QTDQ/evglstJRseOH4sAOzLHfbGHegaqZQgwGwMJDMAAAAtKr0nPs0ZyHDHytf97d46xRP2yDwnghxo+1QSQR6onDvzxTrRYihJUBvuSK562vRiOZi2rjWlx3fuWnPkSrIJsIhUZmicvogA3TIo7oFokgpddEaSh+75XwCYB8ckefQq29+bzfkn2ZlkZ5IdSb6aKrtajY3p6lIyA5OTCDI5iSDjxeTm3GyUrxMVH0AHFCVZzfBX7FozOYkg48XpWsP8k8zQOG0mALqlvM2ESSp00bOTvHDWQQBAgcck+YdVv/PxvW5eD/LoJJ9sIyRaUvo8ixkIfePm3OTcnBsvzvXcnNOOdEEUZBbWfsVzybVmcl1IMOz7tYYmucPeuANdI5/2muTCt678yHd+p+/Sb+Q3srnanDvvSep670O270x2L++9bdfu5N59ntcYjpJt+3xmJ8ld9ySjfV7znp3Jffu85n27k3v2ec3RKLnr3v1fc9u9K+e7vx33JTvv23vb7uWV+AFmziQV+kELYwD6y/izb1RmACbl5ly5DUft31Jg6fBkcMje2wYbk6UjksffUnoGn9LzqKTNRD3MYGDRgQVS70qGqxSGG97VfizzpoGkjbo6ZO39Cl+z6USQujq0S4kgKjM07kDXvAd/eeVrH4+p7sz3V9MNqYtWS4BYbVvJvo285u59tu3af9uBtq9n24FiWi15BCikFyL0g45dAPSX8WfflK7zeAcATG55lZtvB0sAWWVddg0+pefNhkOLMhMe/KDj8/WhMkkA0/CtB+/POuusfO1rX0s2PCB58k3jv0CtMkPzChP4BiUZgj1y2KaVr/s7ZjahzB2JIOPFJBGEb1OZAfphMYdMACwGq+d9UzhuOfboY/PJL+k0AtC0N7/5zfmt3/qtvTeWJ8pbJ5o7Dyi6Ei95eAJgao56wMr/DoZ3rSQb1oXT30plhuYVXvgGVuYpJBFkchJBxoupd4kgKjNAPxgyAdBfxp99U/qgSwY57bTTphMLwAI76qij9t9YPrd0nZ43Gw4tqpE0WMDK2QAzUxVnkElmaFzhYGhJzWRojUSQclu377/t7h3J8j7Jczt3ryRM3N/ycGXffd15T1LXe2+7Z1dy3z7JFrt2J/fu85qjOrnr3v1f81uliu7vQ3/50dz01duSE6/f/4CDM0mFLiocYz1292Nz1GiVhSsAmILrr78+N99888o/LkhyUtHhxp99U7jUU9XuogC0pjSZoVZBae4sHVZ0JZbMANCi8o4F2kw0boLse4CuOuaI8bZ10Y/+1WW56aorkvJ4TVKhiwqHTG8+5M15bB47nVgAYB8///afz9ve9raVf7w3yY8XHS6ZoW9Kl3rMQADaozJD/y0dUpSesOQWDUB7JqjM4GO6aZIZALqlPLvaJBW6yBgLgHnhJgml7wHvAID2uE4vgE1Fv+WB5QOAFpVXZvAx3TQL7QDdYpIK/VCYtGuMBcDMlHeTNP7sG8kMAN1lnaj/lg4r+i2rzADQovI2EyozNE4yA0C3mKRCPxT+LS9NcCcJABpRPv7UZKBvCt8DVa1ZN0BrSqeKG6wTzZ2lTUUX1oHLMEB7yttMqMzQOE8NAnSLZAboBwmjAMwL409K3wP1VKIAYDWu0/23dEjRXRptJgDapDLD7HlqEKBblPmFfpDMAMC8cJOE0jmIdwBAe1RQ6r+6rDKDNhMALSqvzCCZoXEW2gG6xSQV+sEYC4B5IZmB0jYTI/WtAVrjOt1/SxuKfsvaTAC0qCq+EGsz0TgL7QDdYpIK/WCMBcC8MP6k9D3gHQDQHtfp/hscUvRbVpkBoE3aTMyehXaAbin/mNWxFrqosAKZMRYAM6PNGZIZALpLMsMC2FhUa2Fg+QCgPeVtJlRmaJyFdoBuMUmFfij8W16a4E4SADRCmzMkMwB0l6TD/htsKvotazMB0KLyNhMqMzROZQaAbjFJhX4wxgJgXpQviBt/9k3pHMQ7AKA9kg77b2lD0WhMmwmAFpVWZqgkMzTPU4MA3WKSCv0gmQGAeaEyGIXvgar2SChAa1yn+6/aWFaZwfIBQIsKP3RrbSaaZ6EdoFtMUqEfjLEAmBfGn5S+B6RTA7THdXoBqMwA0FnaTHSAhXaAbjFJhX4wxgJgXhh/Uvoe8A4AaI/rdP8NytITBgokAbSntM1EVGZonoV2gG4xSYV+KBznGmMBMDPl3SSNP/tGMgNAd1kn6r/BpqLfssoMAG0q7cmnMkPzLLQDdItJKvRD4d/y0gR3kgCgEeXjT00G+qZ0fa72SChAayQd9l9d1mZi4BYNQHtKKzPUkhmaZ6EdoFvKP2YtJkMXqX4FwLyQTEvpHMQ7AKA9kg77b7Ch6EqszQRAi6riC7E2E42z0A7QLRaToR+MsQCYF6WXoMr4s3dK3wNukwG0xzpR/w3KKjNoMwHQotLKDNpMTIGFdoBuMUmFfih8UsIYC4CZKbsEGXv2UekwxLsAoD3WifqvLmscoc0EQJtUZpg9C+0A3WKSCv1QmLRrjAXAzJRds4w9+6hwGFLV6lsDtMY6Uf8NNhb9llVmAGhRaZuJWmWG5qnMANAtJqnQD8ZYAMwLlRlQmQGgu6wT9d9gqShLcCCnEKA9pW0mVGaYAk8NAnRL6cdsbZIKnVT4t7xUOigDgKZIZkAyA0B3lU8VfUrPm2qp6LeszQRAm0rL2KnM0DwL7QDdUv4xO5xCFMB6qcwAwLwouwQZe/ZR6RzEbTKA9pRPFV2r505ZZQZtJgBaVFqZQZuJKbDQDtAtygdCPxhjATAvVGag9GGjkfrWAK2xTtR/1Yai37I2EwAtqoovxNpMNM5CO0C3mKRCPxhjATAvJDOgzQRAd5XfuPYpPW8GZY0jVGYAaFFpMoPKDFNgoR2gWyQzQD8UViAzxgJgZsquWcaefVR6o8y7AKA91on6ry5rM1GW+gDA+hQv8qrM0DjJDADdYpIK/VDwt2x8BcBMqcyAygwA3WWdqP+qpaI7ZdpMALRIZYYOKLhMWmgHaIFJKvRDwd/yUmmGLwA0qWz8OZxSFMxS4Rykqt1FAWhN+XTROtG8GZRVZtBmAqBFVeGFWDLDFHhqEKBbyiepFpShi4yxAJgXKjNQOgfxLgBoT/l00TrRvKkGKjMAdFVpZQZtJqbAU4MA3aIyA/SDZAYA5oVkBkqHIm6TAbTHOlH/1YWVGdymAWiRNhOzZ6EdoFtMUqEfjLEAmBeSGSgdingXALTHOlH/Dcoe+1WZAaBFpW0mojJD8yy0A3RL+YTEJBW6qGCca4wFwEyVrc0Ye/ZR4VCkqt1FAWiNZIb+q5aKfstlewOwLqVtJlRmmALJDADdYpIK/WCMBcC8UJkBlRkAuqss6bBOlXpKkTAtVVmbiYElBID2lFZmqCQzNM9TgwDdUt73zlIidFHBsGlpgj98AGhM2VR/OKUomKWS90C95wuAdkg67L96ULQooM0EQJuK741rM9E4Tw0CdEvpR21tQRk6yRgLgHnhJgklt1C8AwDa5Trdf4Oy9ARtJgBaVFqZQZuJKfDUIEC3aDMB/SCZAYB54SYJJe8B7wCAdqmg1H9VWUN2lRkAWlT2EZ2ozDAFFtoBukUyA/SDMRYA80IyAyXvAbfJANrlOt1/VVmthSXPnAK0qHDdtlKZoXkW2gG6RTID9EPBG6KDSQAAIABJREFU4oIxFgAzVbYgbuzZRyozAHSXZIb+q5eKai2ozADQIm0mOsBCO0C3lGZXbzBRhU6SMArAvHCTBMkMAN0l6bD/qrI7ZZIZAFpU2mZiIJmheRbaAbpFZQboh4K/5aXiLCYAaJBe3JQMRcw+ANol6bD/qrL0hLKmFACsS2llhmToY7ppkhkAuqX8o9aCMnSRMRYA80AiLYnKDABdJulwAZSlJwwsIQC0qPBDV5uJKfDUIEC3WFCGfpDMAMA8KL0E1caevSSZAaC7VGbov6qshrk2EwAtKm0zUavM0DwL7QDdIpkB+sEYC4B5YOxJUvY+8MwvQLskM/RfaTKDJQSA9pS2mRiozNA8C+0A3WJBGfqhYJxrjAXAzBh7kqjMANBlkhn6rypLTyhrSgHA+mgzMXsW2gG6pbyjj4kqdJGEUQDmgbEniWQGgC4ru1b7lJ5HdVnjCG0mAFpUWpkh2kw0z0I7QLd4Og76oeBveWmCO0kA0IjysacmA31UMhQx+wBol8oM/VeV3SlTmQGgRWWdgJJKZYbmSWYA6BYLytAPxlgAzAOJtCQqMwB0Wdm12hrRPKoKKzNYQgBoUfGHrsoMjfPUIEC3WFCGfpDMAMA8KL0EDYw9e0kyA0B3qczQf3XZY78qMwC0qLQyQ60yQ/MstAN0i2QGmH+Ff8fGWADMjLEnSdn7wDO/AO2SzNB/VVmthbI6DgCsS1knIG0mGmehHaB7LCjD/Csc4xpjATAz5QUYjT37SGUGgO6SzNB/2kwAdJg2E7MlmQGgeywow/wzxgJgXkikJZHMANBlZetEPqXnkTYTAN1VWplBm4mGeWoQoHvKP2oVeoWuKfw7XpogiwkAGmHsSVK2PuQ2GUC7VGbov0FhZQZtJgDaU5ZvlqjM0DAL7QDd4+k4mH8qMwAwL4w9SVRmAOiysmu1pMP5VHTjRWUGgBaVJjNUKjM0y0I7QPdYUIb5Z4wFwLww9iQpex+4TQbQLpUZFkBhZQZLCAAtKn7QX2WGRlloB+geC8ow/4yxAJgXxp4kKjMAdFW152t8PqXnUll6gjYTAC0qrcxQq8zQLAvtAN1jQRnmX2HC7qC89xoANKO8m6SxZ9+U3ijzDgBojzWixVCVLQpoMwHQoqpw0iyZoWGlyQwW2gGmz4IyzD8JowDMCzdJKH0PeAcAtKf0M7r2KT2XqsLKDJYQAFpUvNCrzUSjSp8atNAOMH3lH7W61kLXFP4dL02QxQQAjSi/SWLs2TeSGQC6ywMvi6EuuxqrzADQIm0mZsxCO0D3eDoO5p/KDADMC2NPSpd6vAMA2uOBl8VQDUoaPqVsbwDWpbTNRFRmaJaFdoDusaAM888YC4B5YexJ6XvAbTKA9rhOL4aqLLVQMgNAi0orM4xUZmiWhXaA7imfkJioQtcYYwEwL9wkQZsJgO5ynV4MdVl6wpIC2gAtKvzQXZLM0CwL7QDdY6IK869wjGuMBcDM6MWNZAaA7rJGtBiqQdFvWmUGgBaVVmaotZlolmQGgO6xoAzzr3DItDTBHz4ANEIvbiQzAHRX6VRx4FN6LlVlV+Mlt2kA2lMVXoxrlRma5alBgO6xoAzzT8IoAPPCE5+UvgfqqUQBwGpcpxdDVVZrQWUGgBapzDBjnhoE6B4TVZh/khkAmBfGnpQu9XgHALTHAy+LYVR2NV5ymwagRcU301VmaJSFdoDusaAM888YC4B5YexJ6XvAbTKA9rhOLwaVGQC6q7TNxEgyQ7MstAN0j4kqzD9jLADmhbEnpe8B7wCA9rhOL4aqrIa5ZAaAFmkzMWMW2gG6p/SjtjJRhc4pTNg1xgJgZsrLFBt79o1kBoDuksywGAqTGZYsIQC0p7QygzYTDZPMANA9ZddGk1ToouJWahpeAjAjenEjmQGguyQdLoa6Kmsz4TYNQIuKP3RVZmiUpwYBuqfso9YkFbpIwigA86K8TLHxZ99IZgDoLpUZFkNVdqdGZQaAFpW2mRiqzNAsTw0CdE/ZZ7Mn46CLJDMAMC/cJKF0qcc7AKA9KigthmpQVpmhPBkVgEmVtplQmaFhFtoBukdlBph/xlgAzAvJDJS+B9wmA2hP6Wd07To9p4rulGkzAdCm4soAKjM0ykI7QPdIZoD5Z4wFwLyQzIA2EwDd5Tq9GOqyWgvaTAC0qLQyw0gyQ7MstAN0T9m10SQVuqhwjGuMBcDMlHeTNP7sG8kMAN0lmWExVGUN2bWZAGhR2Ud0Umsz0SwL7QDdozIDzL/i6mPld5IAoBF6cSOZAaC7JB0uhqrsaqwyA0CbCj90N6jM0CyVGQC6RzIDzD9jLADmhSc+Kb1R5h0A0B5Jh4uhsM3EwBICQHtK20yozNAwTw0CdE/ZZ7NJKnSRZAYA5kX5JaieQhTMksoMAN0l6XBRFN140WYCoEWlbSaGKjM0y0I7QPeozADzr3BhwRgLgJlxk4TS94B0aoD2uE4vhqoqWkXQZgKgRaWVGTZKZmiWhXaA7pHMAPNPwigA88JNElRmAOgu1+nFUJU99qvNBECbCj90tZlomIV2gO4pS/QzSYUuKkzYNcYCYGbKu0l6Lr9vJDMAdJdkhsVQlyUzqMwA0KLSygzLKjM0y0I7QPeozADzr3DItDTBnSQAaISbJEhmAOiu8qmiT+l5VNhmYlBYcRuAdSjLN1OZoXEW2gG6p+yz2ZNx0EWqXwEwLyQzULrU4x0A0J7y67R1ovlUdDVWmQGgTYUfuoeqzNAsC+0A3aMyA8w/YywA5oVkBkrfA26TAbTHdXpBFFZmsIQA0J7SNhP3SWZoloV2gO6RzADzzxgLgHnhJgnaTAB0V3k7AZ/Sc6ksPUGbCYAWlbaZGGkz0SwL7QDdI5kB5l9hwm41wQoVADRCL25KhyHeAQDtkXS4GKqy37Q2EwAtKq3McITKDM0q/GlaaAdoQdm10SQVuqhwjLU0wZ0kAGiEXtyozADQXZIZFoQ2EwDdVfyhqzJDowrXzS20A7RAZQaYf6pfATAv3CRBMgNAd6mgtCiKftMqMwC0qLTNxHaVGZploR2ge8o+aj0ZB11kjAXAvJDMQOmNMu8AgPaooLQgCiszKKAN0J7SNhM7VGZoloV2gO5RmQHmnzEWAPNCMgOl7wG3yQDa4zq9GKqy1EJtJgDaVPih+30qMzTLQjtA90hmgPlnjAXAvCi9BNXGn72jzQRAd0lmWAx1WWUGbSYAWlRameFXK8kMjbLQDtAtJqnQD4VjXGMsAGZGL24kMwB0l3WixVCVNWTXZgKgRWUf0aNkkss3ByaZAaBbPBkH/VD4t7w0wZ0kAGiEXtxIZgDorvLrdD2FKJi6sjtlKjMAtKjkI7pamS/7mG5S4bq5hXaAKfNkHPSDhFEA5oUnPilPqAagLeXrRJIO51JZm4mBJQSAFhVcjGuVGZpnoR2gWzwZB/1gjAXAvJDMQOmNMjMQgPa4Ti+KoquxNhMALSornjNMkg3TiWRBWWgH6BaTVOgHYywA5oXxJ9pMAHSX6/RiqMavzDCo6iSyGaAtw+Ew27Ztm3UYramqKkcfffSsw+iWqijfbJRIZmiWhXaAbjFJhX4wxgJgXhh/IpkBoLtcpxfE+I/9VpIZoFV/9md/lh/5kR+ZdRitOeuss3LdddfNOoxuKavMoM1E4yy0A3SLSSr0Q2G55qUJGqECQCP04kYyA0B3WSdaFOMnM6SeZhzAPrZs2TLrEFp1/vnnzzqEDiqaNA8TyQzNkswA0C2lH7MDk1ToJGMsAOaFmyRIZgDorvKkQ5/Sc6m0zQTQlk9+8pOzDqFVkhlWoTLDjHlqEKBbTFKhHyQzADAvJDMgmQGgu8qv0yoozaexVwRVZoB2SWZYcGWJDInKDFNgoR2gW0xSoR+MsQCYF+Utl93K7pvShGozEID2SDpcDFVBZYaBZAZoy2233ZavfvWrsw6jVeedd96sQ+iY4guxygyNs9AO0C0mqdAPxlgAzAvjT1RmAOgu1+kFMf6jvyozQHsWrSrDySefnAc/+MGzDqNbquJS2pIZGmehHaBbTFKhH4yxAJgX2pwhmQGgu6wTLYqxf9OD8qpawIQWLZlh8+bNsw6he7SZ6AAL7QDdYpIK/VB4Y2hpgjtJANCI0vFnrclA70hmAOgu60T996t10W+58iuG1mzZsmXWIbTq/PPPn3UI3TNhZYYNzUeywAp/B5IZAKbMk3HQDxJGAZgXbpIgmQGgu0rXiSQdzp+/ziBHjL/7wPIBtOZ973vf1M9x4YUX5i/+4i8Ous9RRx2VrVu3pqqUZmmfygyzV/jT9NQgwJRZTIZ+kMwAwLww/qR0qcc7AKA9rtP9d1jZlVhlBuiXq6++es19Nm/eLJFhVsrbTIwSyQzNstAO0C3lH7My7qGLjLEAmBduklD6HjADAWiP63T/HVH2Wx64nwm9cfPNN+frX//6mvtdcMEFLUTDqsrbTKjM0DgL7QDdYpIK/WCMBcC8KL0EbTD+7B1tJgC6yzrRIiirzFDV04oDaNmWLVvG2m/z5s1TjoQDU5lh9iy0A3RL6cdsbZIKnWSMBcC8KO8mafzZN5IZALpLMkP/bS+tzCCZAfrik5/85Fj7SWaYofLKDJIZGmehHaBbTFKhHwr/lpcmuJMEAI3Q5gzJDADdZZ2o/waFlRkimQH6YpzKDIcddlge8YhHtBANq6qKL8TaTDROMgNAt3gyDvrBGAuAeeEmCZIZALqrfJ1I0uG82aQyAyyqcSoznHfeedmwYUML0bA6bSZmz1ODAN1iMRn6QTIDAPPC+JPSpR7vAID2uE73386y33IlmQF64Y477shNN9205n4XXHBBC9FwQOVtJlRmaJyFdoBuUeYX+sEYC4B54SYJpe8BMxCA9rhO919VllaoMgP0wzhVGZJk8+bNU46EgypvM6EyQ+MstAN0i0kq9IMxFgDzwvgTbSYAust1uv82FFZmiGQG6APJDHOitDJDJZmheRbaAbrFJBX6oXCca4wFwMyUd5M0/uwbyQwA3VUVH+FTet4UVmbQZgL6YcuWLWvus3Hjxpx99tktRMOBFU6Wam0mmmehHaBbJDNAPxT+LS+V918DgGZoc0bpjTIzEID2SDrsv91lozFtJqAfxqnMcPbZZ+fQQw9tIRoOqHzNVmWGxlloB+gWk1ToB9WvAJgXkmkpnYN4BwC0R9Jh/y1pMwGLZvv27bnxxhvX3O+CCy5oIRoOqiq+EA+TZEPzkSwwC+0A3WKSCv1gjAXAvJDMQOl7wAwEoD2ln9G16/TcqbJUkp+gMsPi+eAHP5hbb721+LiTTjopT3nKU6YQ0fy64YYb8tGPfnTi408++eT863/9r9cdx5YtWzIarf1xvXnz5nWfi/UqvBBXK9dhyQxNstAO0C0Wk6EfjLEAmBfGn5S+B7wDANrjOt1/y2VLApVkhoXzx3/8x/nDP/zD4uNOP/10yQz3U9d1nvnMZ+Zv//ZvJ36NP/mTP2kklnFaTCSSGTqhtGNBvZL6baW3SRbaAbrFJBX6oXCca4wFwMxoc4ZkBoDusk7Uf1XZaEybicVzzjnnTHTcF77whdxzzz0NRzO/3vOe96wrkeH7v//789SnPrWRWLZs2bLmPoPBIOedd14j52MdyttMjBLJDM2SzADQLVXxESap0EXGWADMCzdJkMwA0F2u0/1XuCCgzcTiOffccyc6bjQa5YYbbmg4mvm0c+fOXHzxxRMfv7S0lDe84Q2NxTNOZYaHP/zhOeKIIxo7JxMqrcxQSWZonqcGAbrFJBX6ofBveWmCx2IBoBHl48/hFKJgliQzAHSXCkr9NyxMZnCLZuFMmsyQJNddd12DkcyvSy+9NF/60pcmPv7nfu7nGquSsHPnznz2s59dcz8tJrqi+ENXm4nGWWgH6BaTVOgHlRkAmBeSaSmdg3gHALSn9Dq9QdLhHCpsM+FCvGhOPfXUHH300RMdK5khue222/K6171u4uOPOeaYvPKVr2wsnmuvvTa7d+9ecz/JDB1R2maiVpmheRbaAbrFk3HQD8ZYAMwLyQyozADQXa7T/bdU2mZiWoHQZeecc85Ex0lmSF760pdm27ZtEx//q7/6qzn++OMbi2ecFhNJcsEFFzR2TtahtM3Envs1G5qPZIFZaGfOffazn83NN9+8rtfYvHlzjjvuuIYignUySYV+MMYCYF4YfyKZAaC7XKcXQVllhqqeVhx02LnnnpuPf/zjxcd9+tOfnkI08+Oaa67J7/3e7018/CMf+cj8wi/8QoMRJVu2bBlrP5UZuqLwQrynfI5khiZZaGeObd++PU9+8pNzyy23rOt1fud3fif/8T/+x4aignUySYV+KEzaNcYCYGa0OUMyA0B3WSfqv2HZksBAMsNCOvfccyc67stf/nLuvvvuHHnkkQ1HNB8uuuiiDIeTFza+9NJLs3HjxgYjGq8yw3d913fl2GOPbfS8TKi0MoM2E1MgmYE59prXvGbdiQzJSnYedIZJKvRD4d/y0gR3kgCgEdqcIZkBoLskHfZfVViZIZIZFtGkyQx1Xef6669vOJr58IEPfCAf/vCHJz7+h3/4h3PhhRc2GFGyvLw8VrUMVRk6pCqeMA8TyQzN8tQgc+oLX/hCLrvsskZeSzIDnVL+MWsGA10kYRSAeSGZFskMAN3lOt1/hQsCKjMspnPPPTdVVU107HXXXddwNN23vLycl7zkJRMfv2nTpvzmb/5mgxGtuP7667Njx44195PM0CGlyQwqM0yBpwaZUy984Quza9euRl7rmmuuSV0bBNIR5R+znoyDLpLMAMC8cJOE0jmIdwBAe1RQ6r9h2W+5ksywkI466qiccsopEx27iMkMv/3bv53PfOYzEx//ghe8IA9/+MMbjGjFOC0mkuSCCy5o/NxMqrgqgMoMjbPQzhy68sor86d/+qeNvd62bdvyxS9+sbHXg3WxmAz9YIwFwLwof8DL+LNvSochbpMBtMc6Uf8VtplQmWFxTdpqYtGSGbZu3ZpXv/rVEx9/wgknrKuqw8Fs2bJlrP0kM3SIygwdYKGdOTMcDvP85z+/8de9+uqrG39NmIhJKvSDMRYA88L4E20mALrLdbr/qsLKDDrOLqxJkxk+/elPNxxJt73yla/MHXfcMfHxl1xySY466qgGI/qOcSoznHDCCXnIQx4ylfMzgaqwMsOeZIYN04hlYVloZ8685S1vybXXXtv4615zzTX5sR/7scZfF4qZpEI/FFcgM8ZiPg2Hw2zbtm2iYzdu3Jgjjjii4Yhmb/fu3dm+fftExx5yyCE5/PDDG44I1lDe5sz4s28kM9Cg4XCYv/7rv843v/nNWYfSKyeffHIe//jHzzoMZsE6Uf9VWSrJT5DMsLgmTWa4+eabc+edd+boo49uOKLuufHGG3P55ZdPfPwFF1yQn/7pn24wou+o6zqf+tSnxoqBDimtzLCnjp1khiZJZmCObN26Na985Sun8trXXHPNVF4XipmkQj8U/i0vTXAnCbrgYx/7WJ70pCdNdOwzn/nMvOMd72g4otl75zvfmWc/+9kTHftrv/ZrufjiixuOCNagFzeSGWjQ0572tLz//e+fdRi99KUvfSmnnXbarMOgbZIO+29YdttlMJDMsKgmTWZIks985jMLkRT3ghe8IPfdd99Ex1ZVlcsuuyyDwXTug37+85/PXXfdteZ+khm6pvBCXGkz0TxPDTJHXvayl62rPNDBaDNBZ0hmgH6QMMqCGLff42o2b97cYCTd4WfC3DH+RDIDDfna176WK664YtZh9JbqTQvKdbr/ChcEVGZYXGeeeWY2bdo00bHXXXddw9F0z0c+8pF88IMfnPj4pz/96fne7/3eBiPa2zgtJhLrAp0zYWUGK71N8tQgc+Izn/lM3v72t0/t9b/yla9k69atU3t9GFv5x6wn46CLJDOwINy435+fCXPHTRJK5yDeARzAlVdemdHIG2QaDjvssBx//PGzDoNZUEFpERRdiQeVZIZFtWnTppxxxhkTHdv3ZIbRaJSLLrpo4uMPP/zwvPa1r20wov2Nu1ZgXaBjSpMZapUZmmehnTnxghe8IMvLy1N7/XH7FcHUWUyGfjDGYkFMeuN+MBjkUY96VMPRzN5wOJx4THnSSSflxBNPbDgiGIPxJ6XvAbfJOIATTjhh1iH01sknn5yqqmYdBrPgOt1/lcoMjG/SVhN9T2b43d/93Vx11VUTH/+Sl7wkD33oQxuMaH/jVGY4+uij87CHPWyqcVCoKm5xMEySDdOIZWFZaGcOvP/9789f/uVfTv08V199dZ74xCdO/TxwUCap0A/GWCyAnTt35oYbbpjo2DPPPDNHHHFEwxHN3vXXX5977713omM9fcHMlF6CKuPP3tFmgoY86UlPyplnnpnPfvazEx3/9re/PU9+8pMbjmo827dvz+7du9f8986dO7Njx47s2rUr3/zmN/PVr341t9xyS77yla/kpptuyp133jmV+E499dSpvC5zwDpR/42ylIJcpUplhoV27rnn5j3veU/xcX1OZti+fXte/vKXT3z8qaeemhe+8IUNRrS6cVqdb968WfJi50xWmUEyQ5MstNNx9913X1784he3cq5rrrmmlfPAQZmkQj8YY7EAPvWpT01cOauvN+7X02LiggsuaDASKFD2oImxZx9JZqAhVVXlec97Xp7znOdMdPwVV1yRZz3rWQ1H1a6vf/3r+exnP5sbbrghW7ZsyZVXXpnPfe5z635dyQwLzDpR/xVWZtBmYrFNWpnh1ltvze23397LlkWXXHJJbr311omPv/TSS3P44Yc3GNH+brrppnzjG99Ycz/rAh1UWplBm4kpsNBOx73+9a/PP/7jP7ZyLskMdIJJKvRD4d/yUnGzapi9cZ4qOBDJDPvr68+EOVB2zTL27CPJDDToGc94Ro499tiJjv3Qhz40cdWnrjjhhBPyxCc+Mc9+9rNz+eWX54YbbshNN92Ud77znfnRH/3RHHrooRO97imnnNJwpMyN8qmiT+l5o80EBSZNZkhWKgn2zc0335zLLrts4uOf8IQn5KlPfWqDEa1unBYTiXWBTqqKb9gME8kMzZLMQIfdcsstueSSS4qPO/vssyc633XXXbdXCUGYCZNU6AdjLBaAKgT7G3eBYjUWLZiZskvQcEpRMEulcxAzEA7iAQ94wMTVFeq6zpvf/OaGI5q9U045JT/90z+d97///fnKV76Sl73sZTnssMOKXkNlhgVWPlV0rZ4/RVfiwUAywyI77bTT8sAHPnCiYz/96U83HM3sXXTRRRO3elxaWsp/+S//pZW2DuOun1gX6KLCC3GlMkPzPDVIh734xS/O9u3bi45ZWlrKu971ronKAu3atWvivo7QmNKrXG2SCp0kmYEFMGkyQ1VVOf/88xuOZvbqup64WsUxxxyT0047reGIYEwqM6AyAw177nOfmw0bJusU/Pu///u58847G46oOx70oAfl1a9+da655pqcddZZYx8nmWGBqeDZf7XKDIyvqqp1PczZJ5/4xCfy3ve+d+Ljn/WsZ+W8885rMKIDG+fBh8MPPzyPeMQjWoiGIqVtJlRmmAIL7XTUVVddlXe9613Fx33rAvTIRz5yovOup1wyNMIkFfrBGIueGw6Hufbaayc69mEPe1iOOeaYhiOavRtvvDF33XXXRMdecMEFrTwNAquSzEDpMEQ6NWs49dRTJy7ZvH379rzjHe9oOKLuOeOMM/Kxj30sp59++lj7azOxwKwTLYKyygymDQtv0lYTfUpmqOs6v/Irv5K6niy555hjjsmrX/3qhqM6sHEeBjnvvPOytOSB8s4pbTNRq8zQPAvtdFBd13nuc5+b0ahs7H3kkUfmFa94RZLJL+jXXHPNRMdBY0xSoR+Msei5G264YeJSjlpM7E8pSWZKMgMqMzAFL3rRiyY+9s1vfnOWl5cbjKabjjvuuHzwgx/M0Ucfvea+D33oQ1uIiE6yTtR/VdlveVCpzLDoJr330ac2E+95z3vyt3/7txMf/4pXvCLHH398gxEd2O23356bb755zf36ulYy90orMwwkMzTPQjsd9Ad/8Af5xCc+UXzcy172spx44olJknPOOWeic0tmYOZMUqEfise5xljMl0lbTCT9vXHvZ8LcKrtmGXv2kWQGpuAxj3lMHve4x0107Fe+8pVcccUVDUfUTWeeeWbe9KY3HXSfBzzgAb2sasWYyp/C9yk9f4pGY5VkhoU3aTLD7bffnttuu63haNq3c+fOvOQlL5n4+Ec+8pF5znOe02BEB3fVVVeNtZ91ga5SmWH2LLTTMdu3b8/FF19cfNzDHvawPO95z/v2vydNZljPIjQ0QjID9IOEUXpuPWOmvj5tsJ7KDH39mTAnVGag9EaZdwFjev7znz/xsW984xsbjKTbfuqnfiqPfvSjD/j9U089tcVo6JzyiuM+pedNrTIDZSZNZkj60Wri0ksvzZe//OV1Hb9x48YGIzq4cdcKJDN0VHmbiWEimaFZFtrpmNe+9rW55ZZbio973etel0MPPfTb/570gn7HHXfkq1/96kTHQiPKJ6k61kIXFQyZlib4w4dZW08yw/nnn99gJN0x6c/kAQ94QM4444yGo4ECZdN8Y88+Kh2KuE3GmJ761KdOfCP+4x//+NhPMs67qqrymte85oDfP+WUU1qMhs4pX453rZ43hW0mqkhmWHTHHntsTjrppImOnfdWE7fddlte97rXTXz8D/3QD+XCCy9sMKK1jbNWsGnTppx99tktREMxbSY6wEI7HfKFL3whb3jDG4qP+57v+Z78+I//+F7bTjrppBx33HETxaHVBDOlMgP0Q8HfsmRR5tGnPvWpiY47+eSTv90WrE9uuummfOMb35jo2PPOOy9LS+ZazJDKDJQORdwmY0wbNmzIL/7iL058/GWXXdZgNN32gz/4g3nIQx6y6vdUZlhw1okWQdFkQGVWWlgDAAAgAElEQVQGkskf5pz3ygwXX3xxtm3bNtGxmzZtyutf//qGI1rbOMkMZ599dg455JAWoqFcn9tM1Hlg6hyTOg9One/e83Ve6jw6df5p6vyLPV8/mjr/d+r8ROo8e89XeSesSVlop0N+5Vd+JTt37iw6pqqqXHbZZamq/f9sJs1ku/rqqyc6Dhphkgr9YIxFj335y1/O7bffPtGxfW2noMUEc00yA6VDEe8CCjz72c/OEUccMdGx733vexemeuZgMMiP/MiPrPo9yQwLzjpR/xW2mYjKDGQxkxmuueaavPOd75z4+F/+5V/Owx/+8OYCGsO2bdty4403rrmfdYEOK63MsCf1e0MjJ69zXJLvTnJKkockOTKjHJPkkCSH79nrqD0lfjYlecC3t2W/bQ/MSvbcxiRH7Hn9yVV5Z5L71vEK47PQTkdceeWVueKKK4qP+8mf/Mk89rGPXfV75557bj72sY8Vv6bKDMyUSSr0Q8E41xiLebOeFhN97QHpZ8JcK1ubMfbsI8kMTNHRRx+dZzzjGXnLW95SfOzu3bvztre9La961aumEFn3/MAP/EAuv/zy/bZrM7HgrBMtApUZKLaIyQwXXXRRhsPJSoQ9+MEPzktf+tKGI1rbli1bUtdr/81aF+iwqvBCXK1ch8uTGVYqHWxO8uTU+b4k56fO/g1l2quHsJZDIpmBBTIcDvP85z+/+LjDDjvsoD0FzznnnIniUZmBmTJJhX4wxqLH3Ljfn58Jc01lBiQzMGXPf/7z89a3vjWjUfmb561vfWte8pKX5LDDDptCZN3yiEc8YtXtKjMsOOtE/VdlUPJwbCWZgUyezLB169bccsstOemk/W+RdtkHPvCBfPjDH574+EsuuSRHHXVUgxGNZ9wqjtYFOmzCygzjX77rPDTD/Frq3Jg6V6XObyT5V8kqiQzd0l5jFE8N0gGXX355rr322uLjXvSiF+W000474PcnTWb4/Oc/n+3bt090LKybSSr0g2QGemw9N+77Wjpx0jYTmzZtmrg1GjRGMgOSGZiyM844IxdeeOFEx37jG9/Iu9/97oYj6qbTTz89Gzbs/xyfZIYFV3wPxaf03BmVXYlVZiBJzjrrrFWvGeOYt+oMu3fvzkUXXTTx8Zs3b87P/MzPNBdQgXHWTwaDQR71qEe1EA2TKe4ENBrvqDqnZZj/ljo3psrFSR42SXgztKm1M1loZ8a2bt2aV77ylcXHnXDCCWtewM4999xUVXnJldFolE9/+tPFx0Ejyj9qJ6utBUxXwd/y0gSrUzBLkyYzHHfccXnoQx/acDSzd/vtt+fmm2+e6Nhzzjknmza1N/2DVZWNPxdj7FlnY+o8PHWekjo/nzoXZ5hfv9/Xq1PnP6XOs1LnR1Pne1PnkanzoD3VQedL6VDEbTImMElFzm954xvf2GAk3bVp06aceOKJ+23XZmLBlV2n61TraoDNLFRlV2K/YpLkkEMOyemnnz7RsfOWzPCWt7wln/vc5yY6tqqqvPGNb8xgMJv7m+OsnzziEY/IEUcc0UI0TKS0zcSeOfOBU43qDJL8p9R5earMc+2x9iozWGhnxl7+8pfn9ttvLz7ukksuyZFHHnnQfY466qicfPLJEy0uX3311Xnc4x73/7N35/FRVefjxz93shEIq4AgUCigQExYqtaFX93QIipqXVi0QgVqFVFBQUStgPIFN1b3UhfUurFYhLovbcXl237BBAiLKMqq7IuBQEjm/P6YEAhZZs6ZO3eb5/16pZV775l5IMncc8997vNojxMiblKZQYhgkIRREVA7duwwvnEf1KoMixcvNh4rpSSFJ0hlhghFZ8JcicW5KE4DalfYf2yKQvX3ERRhtsNRX4qtwDZCFbZvLf9viyLb/h4mdH4GFDX93YWo1oUXXkjnzp1ZunSp9tilS5fyySefcP755ycgMm9p1KhRhblW3bp1XSmLLTxE7zM6uOfpGql0oD2UdgSrNdC47KsBGDzpVvG1DwE2lPANvwlpH1e5S9pMCEO5ubmsWrVKe5yfkhl27drFgw8+aDy+f//+/OY3v7ExotgVFRXF9P0J6lpJcGiu21qRc3HVyQyKhijeAC6MNywP8GQygyy0C7utWLGCZ599Vntcly5dGDhwYEzH5ubmGi245+fna48Rwha6H7VJe6EqhMfJHEsElGk7BQjuBXo8/yaSzCA8IZmTGRTpwHUohqPobFNNBQtoUvZ1ZEvk/aoWZh+RxIYtRJIfIkkOofJtOziSBLENi522RHqYzs9ActTmEAly66238sc//tFo7PTp05MmmeFoQaxqJTQl83m6WsoCToXw5aDOgfCpQK3KmYfgnQy80Aqg6mQGzRpJ0mZCHJaTk8Ps2bO1x/mpKvW4cePYsWOH0djMzEwmTpxoc0SxW7p0KSUlJVGPk3UBj7M0H/RX1SUzKE5A8T6QY0dcHiDJDCIpjBgxgkOHDmmPe+yxx2IuC5STk8O7776r/R6SzCBcI5UZhIiPIoMjT1LWJ/JbVdW2f2NRnLA4NOa5MscSfmLaYgKCe4Eez79JUBM8hM/orc0EZ+6puATFVOBEt0MB6pR9tQZiSX4o4UhVh/FYzInr3XWmIsH5CRAuuO666xgzZoxRhc6FCxfy7bffGpfU9otjq5C2aNHCpUiEZ+hVZgj4XW7VAMJ/hPDNlLcW9013p+q/N2FCOn+NkG/+yiLRcnNzjcYVFBSglDJq0e2k7777jmeeecZ4/JgxY2jdurWNEemJ9cGHoK6VBIYtbSYUdVH8g+AkMgA41zRVkhmES9566y0++OAD7XFXXHEFF1xwQczH5+SYfTQsXbqUcDjsWi8lkcQkmUEEjaIe0ApoBjQC6gJpQAMAwmQCtcqOblj2/5lYlbbVgvI2Yg2IrFhU3hbr0o3FCcCPmn+b2MkcSwRUXl6e8dig3rg3rcwQCoWMF5+EsFWyPfGpqE2YGSgGux1KHFKJzK2aYccDMZLMIBySmZnJTTfdxIQJE7THhsNhnnjiCaZNm5aAyLwjJaVihplUZhBJd56ukkqH8K0Qvo/Dawn+U/1qhaX3XbaC+m0W2kyvJ3/++Wc2bNjg+XPMiBEjKC42ew6pVatW3HnnnTZHpCeWBx8sy6Jr164ORCOM6SYzVNlmIsxMLLz6nf4ZKCn7+jnqNlW2ze5ygTWRpwaFC4qLixk9erT2uLS0NB5++GGtMaYn9H379vHtt99y0kknGY0Xwphm1SICe6EqfElRFziHMOeVzc86o2hc4xj3ksATWwlLkhlEQJlWIahXrx7t2rWzORr37d27l7Vr1xqN7dChA1lZWTZHJISBZLpJomiA4h0sznQ7FBttjfsVJJlBOGjo0KE88sgjRjcnnn/+ecaPH0/9+vUTEJk3pKZWXPpu1aqVS5EIz9BZJwpkZQbVBkpfA+sMtyOJU/VnUKVZmUGWEESZtm3bUqdOHfbt26c9tqCgwNPJDJ9++ikLFiwwHj958mRq164d/cAEimX9pE2bNpVaTAmv0b5hc0xlBsXvUPSNI4KDwHJgA4odwE5C7ASKgcKyYw4nHxyKeZtVvs37ZKFduGDy5MmsWbNGe9ywYcO0kwuys7NJTU2NqTfRsfLy8iSZQThP96M2VbrWCpdFek1fjaI/it8C6T6p8uiZZIYUgywmIdywb98+ozkcQNeuXQNZ8WrJkiUoZbZmHNRKFcKH9H41/Tv3VNRB8TEQtF8+sybCR9OZikgyg4hT8+bN6dOnD6+88or22J9//pkXXniB4cOHJyAybzi25Le0mRBJlXRYyaFzIfx3sIKbwRShtSgQe0lKEXShUIjs7Gz++9//ao8tKCigV69eCYgqfuFwmJEjRxqP7969O1dffbWNEekrKSlh+fLlUY+TFhM+oFuZQR1dmUGRgmKi5lsq4HMsXgM+B1ZgcUjzNYJFFtqFw7Zs2cJDDz2kPa5hw4bce++92uMyMjJo164dq1ev1h6bn59Pnz59tMcJERdpMyH8QlELGIZiBHCC2+EY8EwygySMCr9YunQppaVm9zGDeuPetMUEyKKF8JBkuUmieJHgJTIAbIv7FaQyg3DYiBEjjJIZAKZPn86tt95aqR1DUBQVFVX4s5efmhUO0fmMVkH6lD7UA0ILOdKW0u9sazMRsiSZQRyRm5trnMzgVc8//3xc7RynT59eKTnQaQUFBRw4cCDqcbIu4AOW5pyz7Fx8+IP9UqBjjEPDKJ7Doi0hfoPFU1jkJ30iA8hCu3Dc6NGj2bt3r/a4cePGcdxxxxm9p2mrifz8fKNxQsRFkhmEHyh6oihA8Sj+TGQASWYQQptpiwkI7gW6/JsI30uWuWekqqe7j2cljrPJDP6tzSE85Fe/+hW/+c1vjMb+8MMPcZWd9rr9+/dX+LO0mRBJk3RYgToJQrMJTiID1JTMoFuZQZIZxFFM7314NZmhsLCQ+++/33j8H//4R0455RQbIzIT61pBUB/8CBTdygyho9tMKH4f47A1WAwgxFd675YkZKFdOGjx4sW8/PLL2uM6dOjAzTffbPy+OTk5zJkzR3tcXl6e8XsKYSxZFpSFPylChJmI4i7wSTOJ6iU2mUFjKULmWMIv5MZ9Zab/JpZl0bVrV5ujEcKA7inIj098KtLLEjBN7ATyUfwEbCfSYjSFyM2VTCALi6ZAE6Bx2Vdi5xgVFWIR/ZGvaKQyg3DB8OHD+eyzz4zGTp8+nSuuuMLmiLzh2L7n0mZCaFZmCMBdbhWC0ufBauh2JDar/nujCOmssEhlBnG0eJIZwuGw59pBTpw4kR9//NFobL169Rg3bpy9ARmSZIYgMW0zEWkx0TOGIcuxOBfLhv6BQSXJDMIhSiluv/12wmH9lY9HH32UtLQ04/fOyckxGrdp0ya2b99O48aNjd9bCG2SzCC8SpGB4mUsrnE7FJukJ/TVZY4lAsj0xn2tWrXo2DHWonr+sX//fqNWZgBt2rShUaNGNkckhAH9Ku1+nHsOAHQebf4OiyeAj4AC7cbUirpQKcHhOMIcDzTGKt/WGDgeqKf1+hXFX5UBJJlBuOLyyy+nbdu2rF27VnvsP//5T/Ly8gKZGLht25Ff64YNG1K3bl0XoxGeoHOu9mPSYSXhP4LV3XDwFrCWgVoKbAT2gdoN7Ad1OPkvFSy7frHqgBXj2kKo+uwtzTYTulMTEWydO3c2Grd//37WrVvHL3/5S5sjMrdx40amT59uPH78+PE0a9bMxojMxdIm4/jjj/dMvKIGum0mOFKZIQeIdsIpxOJySWSIQp4aFA55+eWX+fzzz7XHnXfeefTu3Tuu9zbNToRIq4kePXrE9f5CaEmOBWXhNwqLMH8NUCIDeKjNRIrBL74QTispKTEuQ9mlS5e4ElO9Kj8/n5KSEqOxQa1UIXxI/zLff00GFDfEeOQOLG4F3sSK4+9p8TORCg7fxXS8Ih0qJDg0BRoTLv9zk7LqD0cfk1o2ertxnEeTZAbhgpSUFIYNG8Ydd9xhNH769Om88MILNkflvq1bt5b/d8uWLV2MRHhGUlVmUGkQHqM5aA3wGoReBcss09h9WosCUplBHK1JkyY0bdq0wvkjVsuXL/dUMsOoUaMqtVuKVceOHbnllltsjshMOByOqYW5F9phiBjotpkoSywMAdEf67GYhIV+am+ykacGhQMKCwsZM0Z3HgqhUIjHHnss7vdv164dmZmZRmOl1YRwXDIsKAs/uhsr5hZfXnAQ2FX29QOwFlgJLC77+gTYk9AIZI4lAmbFihUcOGBWyTyoN+6l7YYIhKBXBVO0AM6M4ch8LE7D4rW4EhlMWBRjsRmLpVh8gsXrWDxBCuNIYRgp9CXEeYTIJURzQqRh0QiLDlgMtCUGnVso/voJEB43aNAg48oDr732mtGNGy8rKiqisLCw/M+tW7d2MRrhGXrnap9/Spf2BmL9wd8B6o8Q6ggpY32cyKBfmUGSGcQx4mk14RVfffUVb7zxhvH4KVOmeOYhijVr1vDzzz9HPU5aTPiF5kNoocNtJuAXUQ4tBf5iFFOykacGhQMmTZrE5s2btccNHjzYlg/0lJQUOnXqFFNpn2PFkkEnhK2CvqAs/EeRi2JcnK/yM7AB2AHsQLETKAF2E+kbeZAQh1Ovj2xDe9seLI/8TkgygwgYuXFfWTz/JrJoITwj+HPPsyFqF+ptWFyMhf5Fq1us8qRNe0hlBuGS+vXrM2jQIKOS0gcPHuTpp59m7NixCYjMHQcPHiQUChEOh0lNTeXGG290OyThBXqVGXz+KR3qT0zFJayPwOoHVjCqcodJiTpbOYq0mRDHys3N5eOPP9Ye55VkBqUUI0eORCmzn+1LL72UXr162RyVuVjXCoK6VhI4+pUZytpMhMmK8uH+XyybSu0FnSy0iwT7/vvvmTJliva4rKwsxo8fb1scubm5kswg/CH4C8rCbxQTgRh7QJbbhmI2If4NfA1865kkA6fIHEsEjNy4r8xkbnmYLFoIzwj63DPMaVFvDlgM8lUiQyLo/BxIXThhs1tvvZXHH3+ccFj/4+WZZ57h7rvvJiMjsR3knNKgQQO++OILli9fTvfu3enYMXpxYpEEkqYygwpB+MLox1kfg3UJWMWJj8khmpUZpM2EOJbfKzO8/vrrRi3KAdLT022p7m2nWNdPgrpWEjiW5oP+6khlhtQoB/7bNKakIwvtIsFGjhxpVJJ4zJgxNG/e3LY4cnJyjMatWLGCgwcPBubCWPhA0BeUhb9EqjJcojHiv1iMAz4ghFkj+aCQOZYIGNNkhrS0NON5mJcVFxcbL/wcf/zxts5zhYiL7iko5LO5p0XbKEfkY7HQkVi8TCozCBe1a9eO3r17M3/+fO2xP/30E2+88QYDBgxIQGTuOP300zn99NPdDkN4iV5lBj/f5c4B6kc5ZktZRYbgJDJAJJlB4zsnlRnEsUyTGVauXElpaSkpKe5VZT9w4IBRi/LDbrvtNjp06GBjRPH77rvvaNiwYY3H1KtXT9pJ+YVhZYYQIQprPDBEsBqmJZIstIsE+uSTT5g3b572uJYtWzJ8+HBbYzFdRC8pKWHFihW2xiJEjfTnjrKcKBInzPVEL80MUIjFTVicgcU7WEmeyKDdSk3mWMLblFLG1aqys7OpVauWzRG5r6CggIMHDxqNPeWUU2yORog4BH/u2bLGvRZPOxSHt0kyg3BZPGtA06ZNszESITxI71zt40/p0ljuxo4DK3gVucN63+VQSJIZREUnn3wyoZD+2tKBAwdYu3ZtAiKK3eTJk1m3bp3R2KZNm3LffffZHFH85syZw86dO2v8+uGHH7Asjf4ywkWav1spkXNxCKImK+w2CyjJyEK7SKDS0lJGjBhhNPaRRx6hdu3atsZjmp0IkJeXZ2MkQkQhlRmEl1hcFsNRu7A4G4tnk66VRHW057juZcALEYu1a9eyZ88eo7FBLZsoLSZEYOjPPf3WZCAzyv73HYnC63SmIjLbEwlw7rnncuqppxqN/frrr/n3v6VIrwiwpKnMYP0yygFFEHrJkVCcptlmQioziGPVrl2btm2jFSSr2vLly22OJnZbt27lkUceMR4/ceJE6tePVtBFiDjpt5koq8wA26Ic6reLa3doLlpIMoPQ8cwzz7B06VLtcaeffjr9+vWzPZ4WLVrQqFEjo7GmTyIKYST4C8rCLxRNgJOiHmXRFwuz+vNBJXMsETCmLSYguDfu5d9EBEbwE2nTa9hXCJg9BhY0UplBeMCwYcOMx06fPt3GSITwGL1kBj+vER1f827rI7D2OxOK47TulEkyg6iK6cOcpu0T7XDPPfewd+9eo7HdunXjhhtusDkiIaqg32aivDLDyiiHmt2xTDby1KBIkF27djFu3DjtcZZl8dhjjyWsvM7JJ59sNE6SGYSjgr+gLPwjm2gtJhSvYPGhM+H4iCQziICJ58a9VGaoLKj/JsKngj/3rGkhY7XcDSgjyQzCA/r370+zZs2Mxs6fP9/1MtlCJEzSVGYgSple9ZEzYbhAszJDyPLzt1kkit+SGfLz83nxxReNx0+bNs2otYYQ2nQrM4SOJDN8C1TfGylMtJJEAmShXSTM2LFj2b5dv31Z3759+X//7/8lIKII0xN6Xl4eSskkUTgk+AvKwj9aRT0ihDSorYrMsUTAmCYzhEIhunTpYnM07istLTWqQAbQoEED2rRpY29AQsQj+HPPmtqUSovSw3R+Dvz8zK/wtPT0dG666SajsaWlpTz11FM2RySER+idq/12nj5aWs271QZnwnCB0mwzIckMogp+S2YYNWoUpaVmE8v+/ftz9tln2xyRENXRvmguazMRyZz/32oPszD7rU02stAuEmDlypU888wz2uNq1arFpEmTEhDRETk5OUbjdu/ezfr1622ORohqBH9BWfhHgyj7fwJpL1ElmWOJgDFNZjjppJPIysqyORr3rV69mn379hmN7datW8KqkAlhJPhzz0017CtxLAqvk8oMwiOGDh1KrVq1jMbOnDnTuFS1EJ6WPJUZCmvenbLFmTBcofXYr1RmEFUxTWZYvXo1hw4dsjmamr399tt8+KFZodfMzMyE30cSogLdNhPhI5UZwGJuDYeegYpWlkjIQrtIhBEjRhid/EaMGJHwp9RMkxlAWk0IB+l39JHlRJEoNf80Kj6S0szV0K4+JnMs4V1bt27lp59+Mhob1HYK0mJCBErQ556K72vYW9exOLxOkhmERzRp0oRrr73WaOzevXuZNWuWzREJ4TKLaM0fj+XnT+mfo+wPbraSZpsJWYoRVWnfvj2ZmZna44qLi/n2228TEFHVDh06xKhRo4zHjx49mtatW9sYkRBR6LaZUIcrM0TMpvpsvQzgMtO4koYstAubzZ8/n/fff197XNOmTbn77rsTEFFFubm5xk/C5eXl2RyNENUI/tNxwj8ORNm/2ZEo/Ejz9zhFd1IshIPiuXHfrVs3GyPxDtNKFRDcfxPhY/pzT381GQjxeQ17WzoWh5fp3iiTqw+RYCNGjDBeu5kxYwbhsPyQigDRvVQM+/oud7Q1hgxHonCHXmUGuU0jqpCSkkKnTp2MxjrZauLJJ5/km2++MRrbsmVLRo4caXNEQkSju9BbsTJDIYrXqz1YMdQ8sCShW5lBt5SGSCrFxcXGGXUTJkygXr16NkdUWYMGDWjRooXRWKnMIBwT9AVl4Sc19ZiGEHscisN/pPqVCBC5cV+Z/JuIQAl+Iu2/qD7mVijqOxmMJ6Um0TO/whdycnI477zzjMZ+++23vPPOOzZHJISLkmqNKLy85v0ljZyJwwVK7zstbSZEdUxbTSxfHuXXzya7du1iwoQJxuMnT55MnTp1bIxIiBjoPoRWoc1E5L/GAfurOfw3KC4yiyxJaCeTyFODonpTpkxhzZo12uOys7O54YYbEhBR1UxbTUgyg3BM8BeUhX9si7K/2JEo/EiSGUSAmN64tywrkDfulVLGFbtq165Nhw4dbI5IiDjpnoKUz+aeFjuBRdXuBbM7pkGi+zPgr58A4VPDhw83Hjt9+nQbIxHCZfrnaR/f5U5dBjXFH/qlY6E4T+vGi7SZENUxTWZwqjLDuHHj2LFjh9HY7t27c80119gckRAx0H3Qv6zNROqRF2ATpUzB4r5qBjyNogtWgPspxUMW2oVNtmzZwqRJk4zGTp06ldTU1OgH2iQ3N5f33ntPe9zatWvZs2cP9evLgzsiwZIvmSEFSHxpFm/ah7cTAmpumBeWJxmrJXMsESCmyQxt2rShUaPgPTy1du1adu3aZTS2S5cupKRIgrjwmGSYe1o8heLsKveF6QP83dmAPEb3Z8DHz/wK/7j00kvp0KEDq1ev1h770UcfsXTpUjp37pyAyIRwWDKcp8tZW6E0D6guI/pXTkbjKIuQTn6CVGYQ1fFyMsPq1at5+umnjcaGQiGmTZtm3IZKiPhonoxTj63MEPnTA8CX1Qxpg+J1FM7dKfUTWWgXNrn77rvZu1c/Z+jSSy/lt7/9bQIiqp5pZQalFMuWLbM5GiGqkFQXqkDkYnRnkn4NsuHfL3EsfgJ+qOGIXzgUif/IHEsExN69e1m7dq3R2CBWZQBpMSECKDnmnvOATVXusbgSRUtnw/GYFGkzIbzHsiyGDRtmPP7xxx+3MRohXKRfPcfvd7nfrmHfuU4F4TjNNhOWJDOIapgmM6xZs4aDBw/aHE1Fo0aN4tChQ0ZjhwwZwqmnnmpzRELESLfNRFllhoof7BaHsOgHbK9mWC8Uc1DUMggx2GShXdhgyZIlvPTSS9rjUlNTeeihhxIQUc1MkxkA45LCQmhJjgVl4ReK/612n4X5B2rQac5xZY4lvCo/P59w2Ow0E9Qb95LMIAJHv1iI/+aekXWju6rZm0GYBxyNx2ukzYTwqEGDBhlXeXr55ZfZunWrzREJ4YKkWyMKvUL1NYA6gApqyRWtGZlUZhDVad68OU2aNNEeV1JSwjfffJOAiCI+/fRTFixYYDS2Xr16jB8/3uaIhNCg22YiXFVlBgCL9VhcBuypZujlKD5F0UbvHQNOFtpFnJRS3H777UaL3DfffDMnn3xyAqKqWXZ2tnF53/z8fJujEaIK+h+1UuhVJE6oxqciuqBo6FgsfqL5e5xicCdJCCfEc+P+V78KZhXYJUuWGI8N6r+J8LnkmXu+Bnxa5R6LP6C42NlwPER3GuLz22TCP2rXrs2gQWbF7A4ePMjMmTNtjkgIF+h+Riu/V2awvgVrXvX7w+YlW7xNrzKD37/NIqFM77kkqtVEOBxm5MiRxuPHjh1Ls2bNbIxICE26lRlSqktmALD4EosLgeoamJ6BYhmKu1HU0XvngJKFdhGnV155hUWLFmmPa9CgAffff38CIoquVq1atG/f3misJDMIRyRd1r3wuLeA6voIpQC9HYzFP6T6lQgISWaozPTfJD093ZVEXiGiSpa5p4XCYjBVV/W0ULyCIsYawzkAACAASURBVNvpsDxB2kwIDxs2bBipqWbdg5966injctZCeIbuedrybdLhUaz/AUqq2TkA1IlORuMIS+/Gi7SZEDUxbTWRqGSG5557zvihgPbt23PLLbfYHJEQurQvmqtoM3E0i/9icRZQXWP7LBSTUKyjlEdR/AqledGWaIpaKBo48l6y0C7isH//fu677z6jsffffz+NGze2OaLYmbaaWL58OSUl1c2lhbBJsiwoC3+wKELxt2r3K/7kYDT+IXMsERCmN+6bN28eyCcnNm3axJYtW4zGZmdnk5GRYXNEQtggmeaeFt9j8TuguIq9DVF8jKKr02G5TtpMCA9r3bo1V1xxhdHYzZs3x1VRSQhP0P2M9n1lBgArH5hczc4MUE+DCtZFtNL7TkubCVET02SG5cuX2xwJFBYWMnbsWOPxM2bMkOto4T7dygylkSummtNxLVahOJ0wM7AYUs1Rx2ExEsVIYC9hvkaxmBBriDx9eIAjTyFaUJ5cUBvIqLAtTCZQ65jjMrGoVfbfDcu3UWlbrbLtlI09XCGoEKhb49/TDrLQLuIwceJE1q9frz2ubdu2DB06NAERxS4nJ4e5c+dqjysqKuKbb74hOzs5H9gRDkmmBWXhDyH+B8VAIvOgY52FohcW7zodlqfJHEsEQHFxMStXrjQaG9SqDNJiQgRSss09LRahGIziRSoX726G4t8obsLiVReic4e0mRAeN3z4cObMmaM9rmPHjsYPswjhGfrJDAH5lA6Ng/DFQBV3ZVUPUA8AZk/ZeZO0mRC28VJlhokTJ/Ljjz8ajb3kkkvo1auXzREJYcDSPBmrSGWG6LXFLIqAP6L4G4oZVHnSK1cPOAeLc4zOAYmp6+BMqpEstAtD69evZ+rUqUZjJ0+e7Ho2nekJHSKtJiSZQSRUsi0oC++z2EQpU7G4t8r9iidQdMGi0OHIvEvzpoDMsYQXLV++nOLiqh5eji6oN+7jSWbo1q2bjZEIYSP9bpL+n3tavIJiP4pXqbz+UhfF3wjTH4uRWKx2I0RHhaTNhPC27t278+tf/5r//Oc/MY857bTTWLhwIXXqSKdh4XNJWZkBwDoAqjeE/xc4vooD7oXS3ZDymNORJYjWjEwqM4ia5OTkYFkWSun9nKxdu5aioiIyMzOjHxyDDRs2MH36dKOxaWlpTJ5cXYEWIZymeTJOi1wxxT7K4p9Y/ArQT991V5puaSEjkswgDN1xxx3s379fe9w555xjXB7QTvFk5ufn59sYiRBVSMYFZeF9ISYA1d3Fa4viNZTBT29QyRxLBIBpiwkI7o17+TcRgZSsibQW87C4BNhezRGXolhBmLkorkaR5WR4jpI2E8IHbr/99piPveCCC/j4449p2rRpAiMSwiHJep4GwFoHocuA3dUc8CiUPgkq3cmoEkSvMoMkM4gaZGVl0aZNG+1xpaWlrFq1yrY47rrrLqN7SAC33XYbHTp0sC0WIeKi22Yi5soMkYNDQD8UdwJ+fDQoAyhK6DvIU4PCwKeffmrUoiEUCvHYY95Ilm3fvj2ZmZkUFen/iuXl5SUgIiGOovtRa/n+QjUfaOt2EC6pbvHceywOoOiL4v+A+lUccSlh/oLiRqzIhC2paf4ep0geiPCgeG7cS2WGikKhEF26dLE5GiFson+ZH5zzvMXHKLqh+BtwdhVHhIArUVwJHCDMR1gsAtYAq4FvsTjoYMSJIW0mhA9cc801jB49mo0bN9Z43IABA/jrX/9KWlqaQ5EJkWD6n9EBu8tt/QfUORB+D2hexQFDIXwOqJvB+szp6Gyk9Z2WNhMimtzcXL7//nvtcQUFBbYk4n/11Ve88cYbRmObNm3KffcFqYuM8D3dNhMlkSum6MkMilwUfwHOMInLI9JIdDKDLLQLTaWlpYwYMcJo7MCBAzn11FNtjshMSkoKnTp1MlqQjmdhX4iY6H02B2ExuRjQn10L51l8W/Zk4nygdhX7B6E4AcUALLY5H6CHSGUGEQCmc56GDRvyi1/8wuZo3Ldjxw42bNhgNPakk04iKyu4D3ULn0vqJz4B2IzFn1G8TtU3SQ6rRaRaw6VHbVOE2Q5HfSm2AtsIVdi+tfy/rQSv85hIkTYTwvvS0tK4+eabuffeqjvfQeQpzmnTpmFZiekJLIQr9NtMBPBT2loKqjuEZwOnVHHAyRD+N4Q/hPCTkPIPsEqcjjJOWt9paTMhosnJyeHtt9/WHldQUBD3eyulGDlypHabi8MmTJhAgwYN4o5DCNvoVmbIiCWZQXEHioeIJAP4WS1gb0LfQRbahaZnn33WqM1C7dq1GT9+fAIiMpeTk2OUzLB161Z++uknmjVrloCohED3szmAF6nC0yw+QnEJigVQZbnli1AsQzEGmBWAyiFmZI4lfC4cDrN06VKjsaecckogbyIsXrzYeKy0mBCepv/rGoxzu6I5Ye5E0R84wfBVLKBJ2deRLZHXr1qYfUQSG7YQSX6IJDmEyrft4EgSxDYsdhrGFjvdaUgQ0qmFLw0aNIg///nPhMMVP4ZCoRDTpk3j1ltvdSkyIRJIkhnKWN+DOgvCDwHDqXIGoy4E60II74LSD4EvIZwHqYfPrzvA8upZTK8ygyQziChyc3ONxtmRzPDaa6/x+eefG43t1q0bgwYNijsGIeylvW5bQ5sJRQphpqEYFmdUXpH4Xk+y0C407Nq1i7FjxxqNHT16NK1atbI5ovjk5OQYj83Pz5dkBpE4kswgvM7inyjOR/Em0KaKI45H8TwwBsXjwJtYbHE0RrfJHEv43Jo1aygsLDQaKy0mKpNkBuFpyVaZQVGfMA+Utcaq5UIEdcq+WgOxJD+UQIUqD9tQbCXER1j83ZaIpM2E8IF9+/YxZMiQSokMGRkZzJo1i759+7oUmRAJlmznaUqGgDWz6n0x/9UaAn0iX6FjxpXu0XmhMnuxJZUvfCOkfVzNTqnMIGxlmsywfPnyuN73wIED3HPPPcbjp02bRkqKVIgXHqPbZqK4psoMYWZgMTTuoLwjI+HvIAvtQsO4cePYvl2/vXuLFi248847ExBRfExP6AB5eXn07NnTxmiEOIokMwg/sPgvil+VJS1cUc1RJ6KYAUwlTAGKJYRYQqTH9C7gIHD03dIsIpW1UoG6x2xLAepV2hYu31aHSCJoCIv6lbZRvq02kTlWZJvFCVgcMPo3qInmdZfMsYTXxNNWK6g37uP5NwlqgocICP21Qv/OPxVnongZi3Zuh6IhFWhW9hVhAWH2gk3JDCFpMyG8befOnfTu3Zsvvviiwva6desyd+5cLrzwQpciE8IB+pUZfH6XW/eOkbb60Q+ppKE9b21l1rBT6+9t+f3bLBKuQ4cOZGRkcPDgQa1xP/zwA4WFhcZtEidPnsy6deuMxvbr14+zzz7baKwQCaXbZiJcXWUGxRBUoBIZDuBEmwxJZhAxWrlyJU8//bTR2Iceeog6derYHFH84q3MIETC6J0bZSlRuMdiF4orgWtRPAy0qObIFKAzFp1R/MHmGOKVAQlIZtCcMqUY3EkSIpHy8vKMx0oyQ2VdunSxMRIhbKZ/me/V8sw1U/wRxTOY/I29KNKWwq7X0iNXIMJBP/zwAxdddBGrV6+usL158+a88847dO3a1aXIhHCI7qWi/9tMBK9f3RE1ZSBofadDwZjNiARKTU2lQ4cO2u0jlVKsXLmS0047Tfs9t2zZwiOPPKI9DiAzM5OHHnrIaKwQiaf5oZtVVWUGRZuyEsZ2KCLSP2kncKjsz4cXuHeVvV/lbVBEqNK2A2XjY99mlW9zhjw1KGJ0xx13cOjQIe1x3bp149prr01ARPFr2bIljRo1YudO/RakkswgEkoqMwg/iTwO8DcU8wnzBBYD3Q5JU2IqYUnCqPA50xv3WVlZnHjiiTZH4769e/fy3XffGY1t3bo1jRs3tjkiIWyUDOWrI4kMzxKsGySSzCACb/ny5fTq1YuNGzdW2N6pUyfeffddWrdu7VJkQjgo6SozBOpcfayavjealRnkZCyiy83N1U5mACgoKDBKZrj33nvZu3ev9jiAu+66S87rwrt0KzMcqCqZIczDBn0OS4HPUHxJiK+Br4FNWOWJBslBnhoUMViwYAHvvfee0djzzjuPuXPn2hyRfUyTGVavXk1RURGZmTVVBxPCkN5nsz+fjBPBouhMmDuw6O92KAbSE/KqkswgfM40cbNr166EAviYUF5eXqUe3bGSFhPC84KezKA4G8XTBO/myFbbXilV2kwI7/nnP//JFVdcwZ49eypsP/3001m4cKEkCorkoZ9w5vdP6aCdr49mX2WGIP8rCduYttkuKCjQHpOfn8+LL75o9H4tW7Zk1KhRRmOFcIRuB6SSY9tMKDqjuEbjJdZjMR14HYvNeu8eQLLQLqIoLi5m5MiRxuOnTJliYzTeUVpayvLly40yFIWISiozCL9Q1CfMAyiGYfl2kiCVGYQ4xqZNm9iyZYvR2KDeuF+yZInx2KC23RABEuRkBkVDFC+jX6TbD7bZ9kq6PwOSTi0S7K233uLaa6/lwIGK3eB69+7N66+/Tu3atV2KTAgXBPk8XbUA36ZXUplBOMrJZIZRo0ZRWmo2SXz00Uc92aZciHK6lRm2Rj6kj3ywh7me2E5wh1A8hEU2FlMkkaGMLLSLKKZOnco333zjdhieJK0mRMJIMoPwA0UPFCuxuA1/956WZAYhjmHaYgKCe+Ne/k1EoOmfgvxTvjrMeOAXxqMj1Q9WAP8C/gMsBtYAGznSftQtO2x7pZBUZhDe8eSTT3L11VdXSmT4wx/+wLx58ySRQSQf/TYTfv+UDnAyQw1zKKX3nQ5gMTyRAKbJDMuXL9c6fv78+Xz44YdG73XWWWfRt29fo7FCOEfzQ7f30ZUZFBYqpnLGhVhcTohPdMMLPFloFzXYsmULkyZNcjsMz5JkBpEwkswgvE4xAMVMEtWiwVnSZkKIY8Rz414qM1QW1H8TESD6NQv88Vy+ohmKIZqjPsHiHeBzYDEWh6K8RxbQBGgKNC7/CtMUaIJVvu044HigvmY8NXGvMoNcgYgEUEoxfvx4xo8fX2nf6NGjeeihh1yISggP0E9m8E/SYdWCnMxQPUu3zYTfv83CCa1ataJBgwbs3r1ba9zGjRvZs2cP9etHn7oeOnSIu+66yyi+UCjE9OnTsazk/LUXPqLbZmKcFYYjbSbaAC2iDFFY9MeSRIYqaX5GyEJ7chkzZkyl3oTiiLy8PLdDEEGlt6AchKXEWkBbt4NwyY/ALreD0KK4AcVzBGeBoVZCXlVzypQSyOrXwq9MkxkyMjLo1KmTzdG4r6ioiFWrVhmNbdq0KSeccILNEQlhs6CWrw5zMxaZMR79FhYTsNDLXLIoBAqB72M6XpHG0UkPkQSHxoSP2maVbTuSBJFWxSsVYbFPK9aa6E5D/PETIHyktLSUm2++mZkzZ1bYnpKSwhNPPMFNN93kUmRCeIDuZ7RUZvAyG9tMSDKDiE1OTg6LFi3SGqOUYuXKlZxxxhlRj33yySeNK3sPHjyYU0891WisEI7SazNRfh4+nMzQNeoQxYuEWKgXVRLRnAxJMkPyWLJkCbNmzXI7DE/Lz89HKSWZg8J+yVeZIZdI2d5kdDPwjNtBxExxJoqnCdbiglRmEOIYpgmbJ598MmlpVd1z87f8/HxKSkqMxkpVBuELQU1msLg8hqOKsRiMxSsJjwcoq/TwY9lXbBQNiVR/ODoJItYkjdhImwnhov3799OnTx/+8Y9/VNiemZnJq6++yhVXXOFSZImhlGL16tVYlkWHDh3cDkf4QdJVZkh5HHg89uNVfexpfZkK1LXhdQBqU2VLy9CaGsZo3amRZAYRq9zcXO1kBoi0moiWzLBr1y4mTJhgFFfdunV54IEHjMYK4Ti9ygyVkhk6Rh0SYqJeRElGnhoUVVBKMXz4cMJhWaGoyc8//8zatWtp166d26GIoNH7bPZHmV/hf4raKN6gygtyY0VE+k2XAnvLtu0Diqvcpqo8LkyIPZW2EfO2jTb+fY6QZAbhU7t37+aHH34wGhvEqgwAX375pfFYSWYQvhDEZAbFL1B0iXqck4kMpix2EankZfbIWyykMoNwyfbt2+nduzdfffVVhe2NGjXi7bffpnv37i5FlhjhcJiLLrqovK/4k08+ydChQ12OSniefiugJPuUtuwsK2xfCyd9Wt/pUEiSGURscnNzjcYVFBREPWbcuHHs2LHD6PXHjh1Ls2bNjMYK4TytC6by+zWRZIYwWVFyx1dg8a1JWElDFtpFFV599VU+++wzt8Pwhfz8fElmEPZLvsoMwg/C3IVFK4ORPwJfYfE18DWwHtgJ7MCiyM4QPUXmWMKnli1bhlJmC2MdO0bPNfej//zHvHjQKaecYmMkQiRIEJMZ4PSoRyheJuTxRAan6P4MSDq1sMEPP/xAr169KrVyatWqFe+99x7Z2dkuRZY477zzTnkiA0SeaBUiKv3KDH44T4vKpM2ESIhEJTOsXr2ap59+2ui127dvz7Bhw4zGCuGKOCsz1FxWT/GBfkRJRhbaxTH279/PPffc43YYvpGfn8+VV17pdhgiaCSZQXiN4jgUozRGHEDxWtkNgn9iJeHPqcyxhE+tXLnSeKxUZqjsrLPOsjESIRIkmMkMJ0bZX0KIux2JxA+kzYRwWEFBARdddBEbN1Yskpadnc17771Hq1YmOdTe98wzRzoMWpZFv379XIxG+EYwz9Oistgf+1XyLRaxy83NxbIs7YcWoiUzjBw5kkOHDhnFNG3aNDIy7Cz8KkSC6SUzlKd+Hx5V88VWSKoyRCUL7eIYkyZNYv369W6H4RumPaWFqJFemVe5ghFO6Euk52MsPsXiV6QwCItPkjKRAbTLNcscS3hFPMkMQazM8OOPP7Ju3TqjsW3btpWymcIf9LtJev+5/DDtoxzxNhabHYnFD6TNhHDQv/71L7p3714pkeGMM87g3//+d2ATGdavX897771X/ufzzjtPKn2K2Oilm0FYHtn3JUtnUcD7UzHhHfXr16dly5ba4zZv3szOnTur3PfJJ5+wcOFCo3guvPBCLrnkEqOxQrjG0rpgKr9aCpX9b9W/SUfs1o8oychCuzjKhg0bmDJlitth+Ep+fr7bIYggksoMwmsU18V0lMWdhDgfC/O7oUEhCaPCp0yTGVJTU2nfPtq9Q//56KOPjMcGrc+3CLAgPvFp0SDK/jcdisQf9G+UCWFkzpw59OzZkz17Kra4v+qqq/j000857rjjXIos8Z599llKS4/cgLzhhhtcjEb4in7SoXxK+5GSygwicUxbTaxYsaLStnA4zKhROsVbj0hNTWXq1KlGY4VwV3yVGbZHGVCoG07SkYV2cZQ77riD/fv3ux2Gr6xbt056HAr7STKD8BJFJrH0nba4HwvJiDtM5ljCp0yTGdq2bRvIMpHxJDOceeaZNkYiRAIFMZkBakXZv8yRKPwiRdpMiMR78skn6du3LwcPHqywfdCgQbz++uvUqhXt19a/9u/fz7PPPlv+5/r160vLUhE73fN0WD6lfSr277QkMwhNpskMy5cvr7TtueeeY8mSJUavd9ttt3HyyScbjRXCVXptJo6pzABrowzI0o0n6chCuyizaNEi5s6d63YYviTVGYTt9D5qpbacSLRcoj8L8iUw0YFY/EPmWMKHCgsL2bBhg9HYDh062ByN+5RSUplBJIdgJjOk1bDvELDGqUB8Qf9GmRAxU0oxbtw4hg0bRjh85IfHsizGjh3Lc889R2pqqosRJt5zzz3Hjh07yv/cv39/ateOtYufSHr6n9HSZsKfNCozyFKg0GOazFBQUFDhzz///DNjx441eq0mTZrw5z//2WisEK6yQmiWsiuf8B6e4UZL/5EGpdHIQrsASktLGTZsGErpz3Xr1q3LmjVrOP744xMQmXNmzZrFH/7wB6OxeXl5nHvuubbGI5Jc8lVmyAfauh2ES6JVmfKC7KhHWIzHCsTPon1kjiV8aPXq1UbzQYDGjRvbHI37li1bxubNm43GtmjRwnjBSAjHBTOZoabyeduwOORYJH6g+zMg91BEjEpKSvjTn/7E888/X2F7amoqzz77LIMGDXIpMueUlpYybdq0CtukxYTQovsZrXxxnhbHsgjFnoYi32Khx65khkmTJvHjjz8avdaECRNo0KDmTnBCeJP2BXP51VIkmcFiG2F+ANpUeXg4hsX3ZCcL7QKYOXOmcXWBu+++2/eJDACdOnUyHiuVGYTtki+ZoRj43u0gRLXqR9m/F/jEiUB8ReZYwoe+/978o7h+/WgfFf4zZ84c47EXX3wxlqXbhF4IlwQxmUGxpYaHZw44GIk/hKTNhLDf/v376du3LwsXLqywvXbt2rz55ptccsklLkXmrFdeeYW1a48UF87JyeHXv/61ixEJ3wnieVpUpnTaTEhWodDTsWNH0tPTKS4u1hq3bNmRzmwbNmxg+vTpRu/ftWtXBg8ebDRWCLcpzUslqmgzAYoF1R5uIXU9o5GF9qS3a9cu7r//fqOxLVq0YPjw4TZH5I7s7GzjBWdJZhC2S75kBuFt0eqffihPN1Yh9gKRZYdrDhAiAX766SfjsZLMUNHFF19sYyRCJJjuKUj54Ln8EOtq2Cu13Y8lbSaEzXbt2kXPnj0rJTI0atSIDz74IGkSGUpLS5k4sWI3vmSoRiFsJm0mkoVGMoOciIWe9PR0TjzxRO1x27dvZ9u2bQCMGjWK/fv3G73/tGnTSEmRdS/hU5b2z2759fKRD/YQs2sY0AFF8Jq32kkW2pPe+PHjy09IuiZMmBCYHn9ZWVm0bNnSaGxBQYF2VqMQ1VEh7WtOuYIRiVbzyV9RUOP+ZCUJo8KHtmzZYjw2aMkMy5cvZ+XKlUZj09PT6dGjh80RCZFAwXzi839r2NcIVd6+VIB+QosffgKEazZv3sw555zDokWLKmxv06YNX3zxBd27J8+zZy+88ALffPNN+Z/T09P5/e9/72JEwpf0kw7lU9pvxinNhuzyLRb64mk18dVXX/Hmm28aje/Tpw/nnHOO0VghvEH7grmKygzwObCihiFDdN8lqchCe1JbuXIlTz31lNHYzp07c/3119sckbtMW00UFxezatUqm6MRyUpZmskMfngyTvjdzhr3htjtUBz+InMs4UN79uwxHlu3bl0bI3HfK6+8Yjz2vPPOC9y/hwi4YCYzLIZqK0elA+0cjMX7UqTNhLBHQUEBZ5xxRoWy1BBprfDZZ5/RoUPyPHNWVFTEgw8+WGFb7969adKkiUsRCd+SygzB90/N77K0mRAGTJMZli9fzsiRI1FK/6MlMzOThx9+2Oh9hfAM/coMVSQzWISxeLDKwyP7b0JxvO47JQ1ZaE9qd9xxB4cOmVUGf/TRRwNXGig7O9t4rLSaELYJ5mKy8LftUfYXOhKF38gcS/jQgQPmbeTD4eCcjoqLi3nhhReMx1933XU2RiOEA4I4/7TYD7xbwxG/cSoUX5A2E8IGX375Jeeccw4bNmyosP28885j0aJFxtUw/erhhx9m/fr1FbZJiwlhJIjnaVFRpmb9DWkzIQyYJjM89thjfP7550ZjR44cSZs2bYzGCuEVSjPvmyrbTES8Cfy3mkFZhJmi+05JQxbak9aCBQt47733jMb27NmT3/72tzZH5D7TygwgyQzCPtqVGeQiVSTehij7azkShd/IHEv40MGDB43HmvbO9KK33nqLrVu3Go3Nysrid7/7nc0RCZFgQb1JYjGr2n2KKx2MxPtCUplBxOfvf/87PXr0YMeOHRW2X3nllbzzzjuBa0cVzaZNm3jssccqbGvRogU9e/Z0KSLha1KZIfiypDKDSDzTZIZ169YZjWvZsiWjR482GiuEp9hSmQEOV2cYAFS9gmZxLUraTVRJFtqTUnFxMSNHjjQaGwqFmDRpks0ReUM8yQx5eXk2RiKSWlAXk4Wf5UMN7UzCNHUuFB/RnOfKHEt4QXp6uvHY3buD03HmiSeeMB77u9/9jqysLBujEcIB+gX3/DL/XAB8W82+nijaOhmMp0llBhGH559/nmuuuYaioqIK22+77TZmz55NrVrJl/t8++23s2/fvgrbBg4cGLgKp8Ihup/RSj6lfWeP7ndZvsVCX+vWralXr55j7/fII49Qp04dx95PiMTRXrOttjIDWKzC4haoJvNQ8TSKq3XfMfAkmSEpTZ8+nW+++cZo7MCBA+nWrZvNEXlDPG0mJJlB2EUqMwjPiZRpXlnD/o7OBeMjmlOmFIM7SULYLZ6FhmNLSvvVJ598wqJFi4zHDxgwwMZohHCI/mW+Px4HtDiExT3V7A0RZoKj8XiZJDMIQw8//DCDBw+mpKSkfJtlWYwdO5bp06cTCiXfOuKsWbOYO3dupe3XX3+9C9GIQJDKDMGnuyAglRmEAcuyOPnkkx15rzPPPJN+/fo58l5CJJylPZ+tpjJD+QvyIhbV1S1JRfE6ijtMGlwElua6uSy0+9/WrVv5n//5H6OxmZmZjB8/3uaIvOO4446jaVOzB4x37NjBxo0bbY5IJCMVkmQG4UGKd2rYe6ZjcfiJJIwKH4onmeH777+3MRL3PPDAA8ZjTzzxRM4//3wboxHCIcGuDDYH+LDKPRb9UFzibDgepbvU46efAJEQJSUlDBkyhLvvvrvC9rS0NGbNmsW4cePcCcxlGzduZPjw4ZW2n3322XTsKDngwpDuZ7TySdKhOCJDt82EnIiFGdNWEzpCoRDTp0/HsuQ2rAgGpXvBbEVLZogc9CgWd1H1pVUKisko3kHRXu/dA0oW2pPOmDFj2LNnj9HYO++8k1atWtkckbfE02oiPz/fxkhEstKuzBCSi1ThgBCza9jbAkVnx2LxC5ljCR9q3Lix8divv/4apfz9ENiHH37Iv/71L+PxI0aMSMonUEUABDmZwUJhcT3wYzV7X0RxktNhRgRI/gAAIABJREFUeU5I86EfuQJJagcPHqRfv34899xzFbbXqVOH+fPnJ20FgqKiIq655poqW28NGjTIhYhEYEhlhuCzdFNW/DMVE97iRDLDDTfcwGmnnZbw9xHCOZonYlVTm4mjRRIargB+ruaIi1Asp5S/ouiiF0XAyEJ7Uvn666958cUXjcY2adKEUaNG2RuQB0mrCeG6IC8mCz9bDCyrdm8YWZ07lsyxhA+1a9fOeOzu3buN25h5QXFxMbfddpvx+MaNGzNw4EAbIxLCQUGff1pswaIPsL+KvY1RvJ/0D7xIZQYRo127dnHBBRdUaqNw3HHH8eGHH9KrVy+XInOXUopBgwbx1VdfVdqXlZXFVVdd5UJUIjB0z9NKPqV954BuZQbJKhRmEp3MULduXR588MGEvocQjrO0OxaUn4dTo784C1B0RfEscEEVR2RgMRjFYMKsQPEvQiwhsli/BovCGl9fUbcsjjQgq2zr4W2pZf9d3bassnGphCttS8GiXtl7FJFCYlfEZKE9aSiluP322wmHzeaz48ePp169ejZH5T1SmUG4TbsygywlCidYKBQPonizmv1DUDyExU8OR+ZdMscSPtS2bdu4xr/zzjt06NDBpmicNXXqVFatWmU8fujQodSuXdvGiIRwUNCTGQAsFqG4HMUCoNYxe9ugWISiPxafuhGe6yzNygz++wkQNli/fj0XXXQRK1eurLC9Xbt2vP/++3ElRfqZUoo77riD119/vcr9/fr1Iysrq8p9QsREKjMEXxohrXOrtJkQhhKdzHD//ffTvHnzhL6HEI6ztC+YyzPOKiYzKH4NNAUyy7Y0ACwiCQsfo2gG5NTwwtlYZFc4zUfOB4XAgbItKRyduGDXlKCmy0WLLTa9S/VkoT1pvPbaa3z22WdGYzt06MCQIUNsjsibJJlBuE2SGYSHzSWS9HlKFfvqEOZhSHASpp9oJu3KHEt4Qbt27UhLS+PQoUNG4+fNm8eIESNsjirxCgoKeOCBB4zH161bl1tuucXGiIRwWDIkMwBYfITiEhSzgUbH7D0exYeU8gQhxmJh1pvRr6Qyg4iioKCAXr16sWHDhgrbTz31VP7xj3/QtGlTlyJzV2lpKUOHDuUvf/lLtccMHjzYwYhEIEllhmSgdyaWygzCUKNGjTjhhBPYvHmz7a/drl07br31VttfVwi3KaWX941VXWUGxQzgdDuCOkYWR6ouuCEj4e8gyQxJoaioiHvuucd4/MMPP0xaWpqNEXlXPG0mvv32WwoLCyXjXsQnWRaThf9YhFEMQLGYyk80gsUAFB9g8Tfng/Mgzd/lFO27CELYLzMzk1NOOaXKEsmxWLRoEUuXLqVz5842R5Y4Bw4c4LrrrmP//qqqz8dmzJgxSXsTRwSE/vzT+yvoirsJU58Q24DtwI6y//8ei/NRvELlh15SsLgdxfVlSQ0vYvG906G7Qv+pX5FEPvvsMy677DJ2795dYftvf/tb5s6dm7RrIAcPHmTgwIG88cYb1R7TqVMnzjjjDAejEoGk+xldKpUZfOcQIb0lATkRC3O5ubkJSWaYNm0aGRmJv6UphON020yoI9fLx57CD9oQjhcl/jdf83sgC+3+NGnSJNatW2c09uyzz+byyy+3OSLvOuGEE2jYsKHR2HA4zLJl1beUFyIWKiSVGYSHWazAovrHrhXPofitgxF5lySMCp86++yz4xo/depUmyJJPKUUN954Y1zVtVq1asXw4cNtjEoIFwTxiU/FDVjcjWIyilkoFqL4CsVaFHlATSX5GmFxP4q1hMmjlPEozkER3KylkLSZEFWbP38+PXv2rJTI8Pvf/56FCxcmbSLD+vXrOffcc2tMZAAYNGiQQxGJQNNdjlc+SDoUFVm6lRnkRCzM5eTUVMTezAUXXMCll15q++sK4Qn6bSbKP6QlmcEustAeeBs2bGDy5MlGYy3L4qGHHrI5Iu/r2LGj8VhpNSHiZdBmQi5ShbMsnkHxYDV7M1AsQEm7CZljCb86//zz4xr/8ssvk5eXZ1M0iXXvvffy8ssvx/UaEydOJDMzM/qBQnhZMCuDNY6yP9abBl3KEhv+iWILYXYT5j+EmUcpz1DKgyhuR3Edip4ouqFohcJfHwy6N8rkCiQpPPPMM1x11VUUFRVV2D5q1CheeumlpKngeax58+bRpUuXqJWs0tLSuP766x2KSgSafvUcqczgNyma32VpMyHikJuba+vrpaam+uqhBiG06VZmqLbNRHCTGUIoUrEoSeA7aB4uC+1+c+eddxqXze3bty9nnnmmzRF5X6dOnfjyyy+Nxkoyg4hbMBeTRdCkcD+lpGIxpoq96ShepJQehLgTi22Ox+cFMscSPtWjRw+aNm3K1q1bjcaXlpZy4403smjRItLT022Ozj6PPvookyZNius1zj77bK699lqbIhLCRUGbfypSUZiV24uuPnAacFp5LYPqbhmFOQDsOuprM4ofgV2EjtpG2TbYguVSmoC0mRDHGDt2LA888ECFbaFQiClTpnD77be7FJW71q5dy6hRo5g3b15Mx19yySUcf/zxCY5KJIUgVlASFVmk6KWgyLdYmLM7meHWW29NSLUHIbxCKb0idhyV+p0syQwQqc4gyQzCyOeff86cOXOMxqanpzNhwgSbI/KHTp1qqjhaM788iSi8y6Ayg1zBCHekcA+KVSj+QlXVpCyuR9GbUmYQ4ikstjgfpItkjiV8KjU1lX79+jFjxgzj1/jvf//LXXfdxbRp02yMzB7hcJg777wz7tiysrJ44YUXCIXkd1cEgH43Sa/PP48DzbYJiVELaF72FVFzAkQJYbZD+dc2FFuBHYTKt63B4v9sj1TaTIgypaWl3HzzzcycObPC9oyMDGbNmkXfvn1diswd4XCYzz//nL/+9a+8+uqrlJTEvkR7ww03JDAykVR0p5ulUpnBd0o0lwSkMoOIQ3Z2NikpKZSWxv9z1KhRI+677z4bohLCw3TbTKjqKjMoDnriMjUxMoB9CXt1WWgPrHA4zO23345SZvPXW2+9lXbt2tkclT9kZ2cbj122bBnhcFgWtoUxSWYQvmLxEoplKJ4DulVxRIOy0sz3EOZjLD4BlgCLsdhl9J6KDKB22Z/qE5nNVLUtHahT7bYw9YjcvrFIYbRRLDXRPA2kGNxJEiJRBg8ezOOPP248jwSYPn06zZs3Z/Ro+3+9TG3fvp3Bgwfz9ttvx/1ajz32GG3btrUhKiE8QPfSJdXzTQaauh2AoVSgWdlXROXkh4VAb9vfWSozCKCoqIh+/fpVOk/Wq1ePt956K+5WVH5x4MABlixZwrx583jzzTfZsGGD9ms0a9aMiy++OAHRiaQklRmCL4WQVgqKkm+xMFerVi3at2/P6tWr436tiRMn0qhRIxuiEsLDdNtMJHFlhsSRZIbAmjlzJosXLzYa27BhQ8aMqapyeHKIpzLDvn37WLNmDR06dLAxIpFU5CJVeJWiGZBFJDEAIskDGYCFxaMoRhApu1yVVKAnip7lW8L8BOwH9hKZyx2C8v7SDYgs3x+dpBDZZtczJkcSYUvB/WQGmWMJL+ncuTOXXXYZ8+fPj+t17r77bvbs2cOECRNcT/R89913GTx4MD/++GPcr9WrVy9uvPFGG6ISwiOC1mYCGrsdQMKoBLXvkmSGpLdz504uu+wyPv/88wrbmzdvzjvvvEPXrl1diiyxfvrpJ1atWsXKlStZsmQJ//d//0dBQQGHDh2K63UHDBhAauqxy9dCGNK9hxKWygw+pPldlhOxiM/5558f97nul7/8JUOGDLEpIiG8TPNiyaquMoN7yQw/E2kBcQgoPGZbSdl/H9mmqtgWKSJ0eFth2WsdfdyeRP4F5KnBYNq7dy/jxo0zHn/fffdx3HHH2ReQz7Ru3Zo6deqwb59ZUZT8/HxJZhDGVEgqMwiPUvwVuMTGV2wW/RBHpKBIsb1HtSQzCJ/785//zNtvvx1XdQaASZMmsXjxYv7yl7/QunVrm6KLXUFBAWPGjGHBggW2vN5JJ53EK6+8gmUFtzSgSELBS2Zo4nYACbQ9Ia8qbSaS2oYNG7joootYsWJFhe1NmjTh5Zdfpl69eqxdu9al6PQVFRWxf/9+9uzZQ2FhIfv27WP79u3lX1u3bmXTpk2sXr2a3bt3JyQGaTEhbKWfcOb1CkriWKXSZkI466mnnnI7BCF8Q+meiKttMxFiGYqPiCQ17C87eA+Ry6tiDrdpCFWxLfI0YGk1245OUjiyzSrf5n+y0B5IY8eO5aeffjIa26ZNG2655RabI/KXUChEhw4dWLJkidH4/Px8+vTpY3NUIlkYtJmQKxjhlKBXwtpv6yvKHEv43CmnnML111/PSy+9FPdrffDBB+Tk5HDXXXdx2223Ub9+/eiD4rRo0SKefPJJZs+ebUsvUIhUL1uwYIGU0RTBI8kM/hFKUGUG3edW5AokMFasWMFFF11UZSuFbdu2ccEFF7gQlb91796djh07uh2GCBLd83SpVGbwIb0zsbSZEEII51jaF8zVtJmweAqQVCITstAeOKtWreLJJ580Hj9p0iQyMhLb3cQPOnXqZJzMkJeXZ3M0IqkEbzFZBIXioOYze34iyQxCVGHKlCm8//77bNmyJe7XKiws5P7772fKlCkMGDCAAQMGcMopp9gQ5RH5+fn84x//4PXXX2fZsmW2vnZaWhqzZ8/mpJNOsvV1hfCE4M0/F2ExgjCNgaZYNCHSeuLoL7/akZBXlTYTSemrr76id+/ebN+emIIfyWrQoEFuhyCCRtqRBl8KIa0UFKnMIIQQzrE0M7+rrcwgzMlCe+Dccccdxv2Ofv3rX9O3b1+bI/KnTp06GY/Nz8+3MRKRbAwqM8hFqnBK0Csz2EtznitzLOFFxx13HE899RRXX3113O0mDtu9ezczZsxgxowZtGzZkh49enDWWWfRuXNnsrOzqVevXtTXKC4uZtOmTXz33XcsXryYxYsX8+WXX7Jx40ZbYjxWeno6r732Gj169EjI6wvhOv1ukt6ef1rkAzVflCkygebACUDD8q9w2TbrqG3QEoj+4eSMrQl5VWkzkXTmz59P//79KSoqcjuUQKlTpw7XXHON22GIoJHKDMGn22ZCTsRCCOEg7Rvp1VRmEOZkoT1QFi5cyLvvvms8ftKkSdL/t0x2drbx2E2bNrF161aaNm1qY0QiWUgyg/CwYrcDSCD7kxk0p0wpBneShHDClVdeyZgxY5g4caLtr71x40ZmzZrFrFmzyrfVqVOHli1bkpWVRVZWFmlpaRQXF7Nv3z4OHDjAjh072LJli23JFdFkZGQwZ84cLr30UkfeTwhX6F/m+/9xQIsiYG3ZV3SR5IfDyQ1HkiDCZdusSokRx2PyLxtdYtpMSGWGpDJ//nyuuuoq29owiSP69OlD3bp13Q5DBI1UZkgGmm0m5PNbCCGconRLFUtlhgSQygyBUVxczMiRI43HX3755Zx//vk2RuRv8VRmAFi6dKn0lhRGVEiSGYRnSWUGHTLHEgHy4IMPUlBQwPz58xP+Xvv27WP16tUJf59Y1KlTh7lz59KzZ0+3QxEisYLXZsJ+keSHImAzUBDTGEVDjq38AM0Jl22zKiRHtATSY3jVxPQDkGSGpHLjjTdKIkOCDBkyxO0QRBDpfkaXyKe07+guCCj5FgshhGOkzYQHyFODgTFjxgzjhd+UlJSEPG3nZ+3btycjI4ODB83u3eXn50sygzAji8nCuySZQYduMoMlyQzCu0KhEG+88QZ9+vTh7bffdjscR5x44onMnTuX3Nxct0MRIvFk/pkYFruAXTEfH0l+aAI0PuqrKeGybRaNkTYTwgaXXXYZL7zwgiQ02CgjI4M//elPnHXWWW6HIoJIP+FMPqX9xiJFqzmIJDMIIYRz9Ndspc2E7WShPTBGjhwZV2UGUVFqaioHDhxwOwyRhAzaTMgKlHCKl5IZDgL7y/57D5El9Zq3qfJtxcA+AELl2+wv2SyVGUTAZGRkMHv2bPr378+8efPcDiehevfuzUsvvUSDBg3cDkUIZ0gygzccSX74xvH31u/HLnxs5syZzJw50+0whBCx0v+MdqYfm7BPqe6SgJyIhRDCOZoP+VtSmcF+stAuhBCeYpDMIIvJwhkhtqBYCyhgd9nWIuBw5lfkyUNVxTY4QIiiStso37a77HWr2nZ0ksJuLJ8szMgcSwRQeno6b7zxBqNHj2bq1Kko5Y9fx1g1aNCASZMm8ac//QnL0uyJKISfSTKDkDYTQgjhXbqf0Uo+pX1H2kwIIYRnKc0idkhlhgSQhXYhhPAWWUwWXmXxOPC422H4hmbSrsyxhF+kpqYyefJkzjnnHAYOHMju3bujD/KBSy+9lKeffpqWLVu6HYoQztPvJinzz6CRNhNCCOFdUpkhGejNxpRUZhBCCMfodiw4KqlQVnvtIgvtQgjhKVKZQYiA0JwypRjcSRLCTZdddhlLly7lyiuvdDuUuJx55pl8+OGHLFiwQBIZRPLSv8yXFfSgkcoMQgjhXbqXimH5lPYdqcwghBDeZWmv2ZZfL8sddbtIZQYhhPAUSWYQIiBkjiWSQKtWrZg7dy4LFy6kY8eOboej5dxzz+Wjjz7iiy++4IILLnA7HCHcJZXBRIpUZhBCCM/SPU+XyKe075TopqzIt1gIIZyjeSK2pDKD/eSpQSGE8BZZTBYiGCSZQSSRSy65hIKCAmbPnk23bt3cDqdajRo1YujQofznP//h008/pUePHm6HJIQ3yPxTSGUGIYTwLjlPB592ZQYpkiWEEE5Ruifio9pMpNodTNKShXYhhPAUg8oMcgUjhBfJHEskmVAoxNVXX81VV13FokWLeOmll5g9ezZ79uxxNa4GDRpw/vnn079/f3r37k1GRoar8QjhSXKTREgygxBCeJfuZ3Qp2gtLwnV6T5BKmwkhhHCOpX3BXH6/RpIZ7CIL7f+/vfsJte267wP+2/vc+959T0//GmIsoUHtNDEJtYuhhlCjUjAuGBpBBxmEDjsoBAKeNDR2M8gkGZW2uB2WDtpBwZNSBwpGNKS0wxbZFKTWqVsKjmvhxlYkPT29d8/ZHdxrW/fe86TzO2/vddZa5/MJwsrWudfH7xztvdZvf/fvB1AVYyagE9ZYHKlhGOLll1+Ol19+Ob72ta/FN7/5zXj11Vfj1Vdfjddff33x//5nnnkmPvvZz8YXvvCF+OIXvxif+9znYrXSXQ4+lDADwgwA9cqfo52lWzPEmIqg6MwAUND+YyaEGeai0A5QF8Vk6EPy3qk1Fj06OzuLV155JV555ZWIiPj+978fr732Wnz729+Ob33rW/Gd73wnvve978Wbb74Z6/XuBbl79+7FSy+9FB//+MfjpZdeik996lPx6U9/Oj7zmc/EJz7xiaX+50C/8nkf68/ejDGkXu8bAFBOdqt4rjNDc9I9zDcRyUs3AHsa0htmnRlmp9AOUBWdGaATySXTao87SdCaF154IV544YX40pe+dOX4er2OH/zgB/HWW2/F/fv34+HDh/Huu+9GxMWYiGEYfvqfH/vYx+LevXuHePvQr/w23+OAvdGZAaBe2a2izgwt2mPMhBoCQBHZMROTzgzzU2gHqMo0CjNAF3S/gp2tVqt48cUX48UXXzz0W4HjpDMYOjMA1Ct7nX7kLN2cvcZMuE8DUEK6ec74s+uwau9cFNoB6qKYDH2wxgKgFdafZL8DenMAlJM/R7tOtyeZTPARA5ST7szw092Sau9cFNoBqmLMBHTCGguAVggzYMwEQL3yYYZ0YYkDyz72O0kVAhQzpDvh6MwwO4V2gKoIM0AnkutcaywADkaYAWMmAOqlM0P/hmyYwUcMUMqU3CrpzLAEYQaAuigmQx+ssQBohfUnOjMA1Ct7jj7XmaFBucchdGYAKChd5NWZYXaeGgSois4M0InkkmmVXZQBwFzy23wV9N4IMwDUK7tV1JmhPZvsldhHDFBMdszEJMwwP4V2gKpMYzrMoJgMNdKZAYBW6MzAypgJgGplr9MPnaWbM2Q7M/iIAYoZkhfiQZhhfgrtAHVRTIY+WGMB0ArrT/Lz2AEoJT9mwnW6NUPyUzZmAqCYKb9h/ulJWrV3LgrtAFUxZgI6YY0FQCuEGTBmAqBe+TBDurDEgRkzAVCx5CnamIkFKLQDVEWYATqRnMxljQXAweSnSVp/9mYwZgKgWjoz9M+YCYB6ZcdM6MywAGEGgLp4Mg76kLslEKs97iQBwCyy68/B+rM7OjMA1Cu7VXykM0NzsmMmXIgByhmSF+JBZ4b5CTMAVEVnBuiENRYArchdggxp7pEwA0C9dGY4BsnODJZjAOUYM3F4yT9JTw0CLGsa02EGOxiokTADAK3IXYLcIOnRypgJgGplt4rvO0s3Z5P8lI2ZAChmytdsjZmYnUI7QFXSnRkmm1SokjUWAK0QZiC7DBGnBigne45+5FrdnEFnBoBqDTozHJ5CO0Bd8qdZm1SokTUWAK0QZsCYCYB65cMM6ZafHNiQ/ZRdiAHKSRd5dWaYnUI7QFXSnRnsYKBOyclc1lgAHEzummXt2aPBmAmAaunM0L/0mAmdGQCK0ZmhAsIMAHXRmQH6kPx3eZVNPwDAXHRmQGcGgHplt4oPdWZoUHLMhAsxQClTdrMkzLAATw0CVEVnBuiEwCgArchdgjwK2CNhBoB65XrnRDx0lm5OdsyEMANAOdnODMZMLMBTgwBVmcZ0mEFBGWqUWGMNl/8HAAehMwOjMRMA1creCXnPWbo56cd+lQIBykneF9eZYQEK7QBV0ZkBOpFYY+nKAMBBCTOQXYq4hwJQTvYcrTNDe3RmAKhXtjND6MwwP4V2gLrkT7V2MFAjaywAWiHMQPbJFd8CgHKy28X3I/2UDAeXe+x3kioEKGXKPuSvM8MCFNoBqqIzA3QiUYqwxgLgoHLlc2vPHmWXIr4FAOXkwwzO0q3JdmbwEQOUMyTHTIw6M8xPoR2gKsIM0AmBUQBaoTMDwgwA9UreQ4kHOjM0Z5PtzOBCDFBOcrOkM8MCFNoB6mLMBPQh8e/yKl2dAoAZ5daf+hr3aGXMBEC1snWid5ylm5PtzGDMBEA52c4MwgwLEGYAqMoenRnsYKBG1lgAtEJnBnRmAKhX9hz9wFm6Oekwg48YoJQpmfuOMGZifp4aBKiLzgzQB2EGAFohzIAwA0C9Mudo5+dWJW+8eK4JoJzkZmnUmWF+Cu0AVdmjM4OtKtTIGguAVggzMCQeN9pEmMYOUJAwQ/8mnRkAqpUfM6Ezw+wU2gGqkg4zTLaqUKXEOtcaC4CDytVmrD175EYZQL2co49BbjUmzABQzpCs2046M8xPoR2gKtOoMwN0QWAUgFbozIAbZQD1ytzmdo5u05DtzGDMBEAp2eY5xkwsQaEdoC75U60dDNQo8e/yKjseEwDmlFt/Wnv2aEyOmQCgHIGz/m2yRQEfNEA56Rs2xkzMTqEdoCrpMRN2MFAngVEAWqEzA26UAdQrc44WOWyTzgwA9cqOmdjozDA/hXaAumRPtSfKiVAlaywAWiHMgBtlAPUSOOtfOszggwYoZkg/6K8zw+wU2gGqojMDdCKxzrXGAuCghBkYjJkAqJYwwzHI3SnTmQGgmGnafasUERGjzgzzE2YAqIowA3TCGguABkyjtSfhRhlAzZyj+zdliwI+aIBisp0ZjJlYgKcGAaqioAydEGYAoAHpIO1k7dklN8oA6pW5h+Ic3apkZwYfNEAxQ7pua8zE7BTaAeqSP9XqLQc1Svy7vErWLQBgLnt0BbP27NHKmAmAagmc9W9IVgONmQAoJ9uZwZiJBSi0A1TFmAnohMAoAA2w9iQi3CgDqFnmHO0ed5uMmQCo1jTtnvu+pDPD7BTaAaqioAydsMYCoAX5S5C1Z4/cKAOol8DZMUiOmXAxBigmO2ZiozPD/BTaAeqioAx9SJQirLEAOBRBWiIiYjBmAqBawgzHIDlmwgcNUEx2zMSkM8P8hBkAqqKgDJ2wxgKgAdNo7Um4UQZQM+fo/g3Z+d4+aIByknXbE50Z5uepQYCqKChDB8aIxPON1lgAHEw6SDtae3bJjTKAemVucztHt2nKdmYwZgKglOwpOtbCDPN6KdVIUKEdoIT8qdYOBmpzkllhRayyD2EAwEz26Apm7dmj0ZgJgGoJnB0DYyYAajWkb9gYMzGrX8n9OSq0AyzPmAnowCoXZhAYBeBQrD2JCDfKAGqWOUeLHLYqd+NFZwaAgpJ125XODPN6KffnqNAOsDwFZehAsjODNRYAh2LtSUREqm+n+ycAZQmcHYNkUcAHDVDMkH7QX2eGWf28MANAdfKnWjsYqI0wAwCNEGYgItwoA6iZc/QxSHZm8EEDFJMdM7HWmWFezwkzANRGQRk6cGqNBUAbptHak3CjDKBmmdvcztGtyhUFjJkAKGbK1m1PhRnm9bRCO0BtFJShA6tcZ4ZV8iEMAJjLHkFa1fMeZcZM2H0AlCVwdgySRQEfNEA5yXvjkzET83omd5EUZgAoIH+qVVCG2hgzAUArjDgjwo0ygFplr9PO0a3SmQGgVsZMHNiznhoEqI0xE9CB5JJpzC6KAWAm1p7EFGOqOuQbAFBOdqvoHnerkmEGF2OAUtJjJjY6M8zrdnLMhEI7wOIUlKEDyTETOjMAcCjWnkS2xuZGGUA5OjMci9wjETozABSUvBjf1plhXqfJMIM/doDlafUL7TNmAoBGpMMMk7Vnh3ILEd8AgHKEGY5F+rFfAAoZki14z4UZ5nUizABQm2n0dBw0zxoLgEZYexLCDAD1EmY4FsnODD5ogGKyUwuMmZjZrdxFUqEdYHlTKChD85KdGVbJugUAzGWPMRP6GvdHmAGgVtmtonN0q3LXYmMmAIqZsvfG39eZYV6eGgSojoIydGBlzAQAbdhj7ek2SX9yt8p8AwDK0ZnhOKTvlPkRfRxUAAAaa0lEQVSgAcpJnqKf15lhXsnKuacGAQrIX+HsYKA2wgwAtMLaE50ZAOolzHAchuyYCc81ARSTHTPxQGeGea10ZgCojafjoAPCDAA0wtqTEGYAqJcww7FIjpnwQQMUMyQf9D/XmWFeycq5QjtAAZ6Og/Yl17jWWAAcijADIcwAUC9hhmOR7MzggwYoJtuZ4U2dGealMwNAdaZRQRmad2KNBUAbrD0JYQaAegkzHIcp+0kbMwFQyjQlT9GfFGaY15hL/Cm0AyzP03HQgeSYiVW2lQMAzGSPtafqeX+EGQBqld0qOke3aTBmAqBa2c4MXxdmmJcxEwDVUVCGDiTDDNZYAByKIC2RvVXmGwBQTnarqELUquSYCR80QDG5MMMm4mebbBXfOSQr554aBCggmcWOIdIVaGBhwgwANEKYgdCZAaBexkwcB50ZAOo1pO6NXzlBq/jOIXmRVGgHWF6yoGz3AjUSZgCgFflLkPVnf3LfAg+DApQjzHAcpuxTpD5ogFKmKVXmvbJbUvGdgzADQHWEGaADozADAG2Y8k2+rD/7ozMDQK2EGY6FzgwAtdKZ4cBuKbQDVMfEWmjfqTUWAG2YRmEGhBkAqiXMcCx2rwZOmwgTZwHKGVIXY2GG2Q25W2YK7QDL05kBOpDszLDKdpQEgJkk154Rhgz0SJgBoFbZraJzdJtSHbR9yABlpbZLxkzMLjlmQqEdYHnJgrJiMtRopTMDAG3YI8yggt4fveEAapXdKqoStWlKfNKTDxmgpMwpOnRmWEAyzKDQDlCA56KgfcIMADRCmIHI7kDcQwEox5iJY5EcMwFAMbkxEzozzE6YAaA6xkxAB5JjJqyxADgUYQZCnBqgXsIMx0JnBoAKTVNE5Mq8OjMsQJgBoDLCDNCBE2EGANowjcIMCDMAVEuY4TgMmZFPPmSAUtb5U64ww+x0ZgCoTrKgbAcDNRqEGQBog84MhDADQL2EGY5DZiC7MRMAxWzS22VjJua3yST+FNoBilBKhPatcmGGVW5JBgCzEWYg7EAA6pXdKjpHt8qYCYAK6cxQh9Sfo0I7wPKSBWU7GKjRqDMDAI3IX4LcJulPrtjjGwBQTvY6rUrUoGmI1EB2F2KAUjb5U67ODLMzZgKgPp6LgvYlOzNYYwFwKDozENkdiBtlAOUYM9G/v5EMFerMAFDMHmMmdGaYnTADQHWSBWXbVKiRzgwANEKYgRCnBqiXMEP/fj75KU8+ZIBS9hgzoTPDAoQZACojzAAdOBFmAKAN05gOM3gcsD/CDAC1EmY4BsnZ3j5kgFL2GDOhM8PsdGYAqE6yoGwHAzVKdmZYZWsXADATnRkIYQaAegkz9O+tbGcGuVKAUvbozCDMsIBU5VyYAaAApURo30pnBgDaIMxA2IEA1EuYoX9nxkwA1GqT3i4bMzG/ZGcGTw0CLC9ZUBbHhholOzMMuZcDwGyEGYjzZLHHNwCgnOxdEFWi9ozJ67DODADFpMdMDDozzC/51KBCO0ABnouC9iXDDDozAHAw+UuQ9Wd/ct8C91AAytGZoX/vZT9lHzJAKekxE5PODPNLdmZQaAdYXvLpODsYqJEwAwCN0JmBEKcGqJcwQ//SnRl8yACl7DFmQmeGBQgzAFRGmAE6cJILMxjlBcChTGO6OuO5/P4IMwDUSpihf6fJT9mYCYBi9ujMIMywAGEGgMokC8q2qVAjnRkAaES6M8Nk/dmdZNdO3wCAgrK5d+foFiU/ZR8yQCmb7Cl3NGZifkPuQumpQYBlTTFF7haoHQxUSZgBgEYYM0HozABQL50Z+vdIZwaAWqXHTOjMsAidGQAqssnvOu1goEbCDAA0QpiByD4R6hsAUI4wQ/9OsmEGHzJAKekxE6Ezw/ySrQQV2gGWlQ4zaPMLdVoJMwDQBmEGQmcGgHoJMxyDXKhQZwaAYtKdGQadGZYgzABQkT06M9imQo10ZgCgFflLkPVnf4QZAGolzNC/8+yn7EMGKGWdzY8ZM7EIYQaAiggzQCeSi6ZV8kEMAJjLZjDmDGEGgGoJM/RvyHZm8CEDlJLuzGDMxAKSF0phBoBlrfO1YTsYqFEym2CNBcDB6MyAMANAvbK5d5HD9qyS12FjJgCKWWf3PjozLMJTgwAV0ZkBOmHMBACNmIb0oybWn/3JFXt8AwDK0Zmhf+mCgA8ZoJRN9pQ76sywBGMmACqyR5hBHBtqJMwAQCOEGYhsjc0OBKAcYYb+PcqOmXAhBiglPWZCZ4ZFCDMAVCQdZhhtU6FKwgwANEKYgTBmAqBewgz9yxYEJh8yQCnpMROhM8P8BmEGgJoYMwGdEGYAoBHCDIQwA0C9hBn6N2Q7M/iQAUrRmaEOwgwAFRFmgE4kF02rZO0CAOayR5hBb+P+CDMA1EqYoX/r7KdsKQZQyjp7yh2EGean0A5QlXV+Q2KbCjXSmQGAVuQvQdaf/RFmAKhVthzvPnd7jJkAqFa6M4MxE4vQmQGgInt0ZrBNhRoJMwDQCGMmSLe39g0AKEdnhmOQHDOhFAhQijETNRiEGQBqYswEdCL59Iw1FgCHkg4zTNafHcotRNxDAShHmKF/OjMAVGudP+XqzLAAYQaAiggzQCd0ZgCgEdOoMwPGTABUS5ihf+fZxyF8yAClbLKn3EFnhiUIMwBURJgBOpFcNFljAXAoxkwQwgwA9RJm6F+6M4MWSQCl7NGZQZhhAQrtABURZoBOJDszrLIPYgDATPYIM6ig90eYAaBWwgzHIFcQMGYCoJhNdrs8GTOxhNSFUqEdYFnrfG3YDgZqlIoyCIwCcDjpMMOJ9WeHhBkAapUtx4sctkdnBoBqGTNRB/OcASqS7sww2aZClZKdGayxADiY/CXIrez+5G6V2YEAlKMzQ//W2U/ZhwxQyh5jJnRmWIAxEwAVMWYCOiHMAEAj9hgzYf3ZH50ZAGolzNC/ITtmQqoQoJQ9xkzozDC7QZgBoCbCDNCJ5KLJGguAQ5lGYQaEGQCqJczQv+Q9mph8yAClpDszjMIMS1BoB6iIMAN0IrlkssYC4FB0ZiCEGQDqJcxwDHKdGXzIAMVssqfcyZiJJaQulArtAMsSZoBOJMdMrLK1CwCYyR5hBr2N+yPMAFArYYb+TdnODJZiAKWkOzOEzgxLSP05KrQDLGudrw3bpkKNkmEGgVEADkVnBkKYAaBe2XK8+9ztMWYCoFqb7HZZZ4ZFGDMBUJE9OjPYpkKNBmEGANogzEBkb5XZgQCUk9pZhqt0m3LXYZ0ZAIpJj5kYdWZYgjADQEWMmYBOZDszDNZYABxI/hJk/dmf3K0y3wCAcoyZ6N8m+yn7kAFKSY+Z0JlhAQrtAFURZoBOJBOgAqMAHMpmsP7EmAmAagkz9G/IdmbwIQOUkh4zETozLEGhHaAiwgzQieSYiVV6ECoAzCS/zdfbuD/CDAC1ym4VnaPbMySvw8ZMABST7swwCDMsIbUcEmYAWJYwA3Qi2/3KGguAA5mG9KMm1p/9EWYAqJXODMcgGVnxIQOUssmfco2ZWEDqz9FTgwDLWufT1XYwUKPkSlWYAYBDEWYgsjdRfAMAysluFT20356NzgwAtUqPmZh0ZphfsoWRQjvAsvbozGAHAzXSmQGARggzENkamx0IQDk6M/QvWxCYfMgApRgzUQdhBoCKGDMBnRBmAKARwgyEMRMA9cpuFdOXdSpgzARApdJjJnRmWIQwA0BFhBmgE7pfAdCIaRRmIPtE6ELvAoCbdGbonzETANVKd2a41sdOxXceqdSfQjvAsoQZoBPJzgyr7IMYADCTPTozqKD3R2cGgFplt4rO0e0Zkp+yMRMAxWyy22WdGRbhqUGAiqzztWE7GKjRYMwEAG0wZoLI3irzDQAoR2eG/iU7O/qQAcpJd2YYdWZYQurP0VODAMvSmQE6kezMIMwAwMHkL0HWn/3RmQGgVtnrtP5J7TFmAqBam+zeR2eGRejMAFCRPcIMdjBQI50ZAGiEzgxEtsZmBwJQjs4MxyD3BOl4O+L0+Xi0OVno7QDwE086ZsKZeh7CDAAV2SPMkK4+AwUkm1lZYwFwKMIMhM4MAPUSZuhfdszEL/5uxC/+bvzmNyJ+8xsf8rrNgxg2D24ci/V7V4+tH8QwXXvd5fHY7PDaba/7sNde++8fpvdvvqdt7zPx2tTvPH8rlFeBxzn/5FcjPvkPMz9yJfotzDAPYQaAihgzAZ1IFiOssQA4FGEGQpgBoF7CDP0bYrXIvfTxLKbxbKeXupV/zbbgw2OCII8LcmwLgux07MNeu8t7ekxoY+fXZn7nox+Hbw/dO09eWAedGZaQem5QoR1gWcIM0IkxN2ZilW3lAAAz2SPMYMhAf4QZAGqV3So6R7dnk60gsLjx7OIv8gRBdvud529FTE7YTRjS98V1Zphd8jIpzACwrHW+NmzVAzUarLEAaIPODET2VplvAEA52a2iyGF7smMmoGaCIPsTBNntd5YOgmTDDJPODEtIfQqeGgRY1h6dGWxToUbCDAA0QpiB0JkBoF7GTBwDN10AQZCsaR1x/uc3j28bf7J+N2Lz8OqxzcOL41d+5+YiLPFBz3w6975GnRmWYJ4zQEWMmYBO6H4FQCvylyDrz/7kvgXi1ADlCDP0bzJmAiBtWEWcPn/z+LZjc/vTr0d8/+uX72OIOHnu4u9v/dwb8Su//58++FJhhnkIMwBURJgBOqEzAwCN0JmB0JkBoF7CDP0zZgKgLW9/+2dhhqv+NP7kD/77Bw84wc9DmAGgIsIM0ImVMAMAbZhGYYajl72J4hsAUI4wwzEwZgKgJdPurep0ZphH6kKp0A6wLGEG6ESyM8NK7QKAA9mjM4MhA/0RZgCoVXar6Bzdnj8cvhIRX7n8//56jGd/HKs7V1/zxe9HjLdLvzMAthFmKC61YVVoB1jWOl8bVkyGOunMAEATkmGGKYZIpx+oXq7Y40YZQDnZraIqUfs2Dy7++qDBfRmAakznO79UmGEOkzETADXRmQE6MQozANCGZJjB2rNPuYWIG2UA5RgzcWzejIh/c+Po/e/+zRguvwzDrZMYb1/9ZgzjGKu7N++Zre7eSj5rAcBHuf3x/xoR/2PLP/lv1w8IM8xDmAGgIsIM0InkmAlrLAAORZiBMGYCoF7CDMfmjYj4jRtH/+hT8/83/fp0J+7H2Y3jq7gT62vHx7gTmx2ORUQMcSema8czx4Ytv3Pacvxxx2KH1z3u+Lb3FPFURNy68fPA8fqFv/8v4/Xf/me7vFSYYR7CDAAVSYcZJttUqJLODAA0YhqFGRBmAKiWMANL+frwXkS8t+Wf/Kj0W2mOIIggCMdu5zkTwgzzEGYAqIjODNAJnRkAaITODIQwA0C9hBmgPoIg+xMEEQTpw86D94QZ5rHKvFihHWBZwgzQiWRnhlVuSQYA83EbG98CgHplt4rO0UDNBEH2JwhSTxBkEmYoLbVhVWgHWNZ69+vgz34EqI/ODAA0ItWZwYizXuWKPb4FAOVkt4qqRAB9EgTJ+/XpXtyP0yvHprgdQ9y9cmwVY6zj2Rs/P8azsblxJb4bp/HtXd+CMMM8jJkAqIjODNAJYQYAGmHMBJG9VeZGGUA5qZ1luFIDwE98fXjn0G9BxXcewgwAFRFmgE4kwgzD5f8BwCEIM7DlaaOPej0ApWTL8c7RAFANd9XnoNAOUBVhBujEavdFk7AoAIc0jcIMCDMAVEuYAQCapeo7j53/HBXaAZYnzACdyARGJ2FRAA5HZwZCmAGgXsIMANAsd9bnsdr1hcIMAMsTZoBOJMIM1lgAHJIwAyHMAFCvnav3l5yjAaAaqr7z0JkBoCLrWOd/BKhPIsywSlenAGA+yTCDtWefcosRN8oAysmW5F2pAaAa7qzPY+c/R4V2gOVNkSomRyglQp1GnRkAaIRn8sl+C9woAyjHmAkAaJaq7xwGnRkAamLMBHTCmAkAGmHMBJnaUET4FgCUJMwAAM1S9Z2HMANARYQZoBOJzgzDtPNLAWB20yjMgDADQLUyZ2jnZwCoijvr8xBmAKiIMAN0QmcGABqhMwORqbH5BgCUlZn87BwNAFVR9Z3HzsshhXaA5a2zA2gnW1WoUiLMsEpVpwBgXqkww5RdrNIIYQaAWunMAADNcmd9HjozAFRkj84MCspQI50ZAGhEMsyQauNAM3ZPVrpRBlCWMAMANEvVdx47/zl6ahBgecZMQCcSYYZh2vmlADA7YyYInRkA6pW5C+JxFwCoijDDPHRmAKiIMAN0QmcGAFqRuwxZe/Zp92+BG2UAZenMAADNUvWdhzADQEXSYYYTW1WoUmLhZI0FwCFthtRy0tqzTzozANRKmAEAmqXqO4+dZ0cotAMsb51/1MlWFWqUWDZZYwFwKFNMsXsvoYiw9uyVMANArTKTn52jAaAqqr5z0AIZoCrGTEAnMmusyRoLgMPYY+1pyECfdr9VZvcBUJbODADQLFXfeWiBDFARBWXohMAoAA0QpOWSzgwAtcpsF1WIAKAqqr7z2PnPcZXqaQXAPhSUoRPCDAA0wNqTS8IMALXSmQEAmqXqOw+dGQAqoqAMnRBmAKAB1p5c2n0x4qlfgLKEGQCgWaq+8xBmAKiIgjJ0YrDGAqB+1p5c0pkBoFbCDADQLFXfeew8O0KhHWB56/yjTraqUKNEZ4Zh2vmlADAra08uCTMA1Coz+dk5GgCq4s76PDw1CFCRPZ6O0+gVapQIM6xS1SkAmE967bnHYpUm7L4Y8Q0AKEtnBgBo1smh30Anti+HfvhSxFf/+MqhP7m9ib96evVlt04injq7emyIiOfu3fyVT9+JOLm2Pb5zK+Ls1tVjJ+PFa697fsvvvHcn4vTa7zy7dfF7P2g1Rjxz9+bPP/dUxHDtVsNTZxf/uz7o9mnE3ds3fx5gblr9QgemGDL/ZgqMAnAo6bXnaO3ZKZ0ZAGqV2S563AUAqiLM8KQuCu3bnxp8dBbxfz955dCDiPgvBd5Wi7YFKLYdi4g4O424c3u+Yx/62h3e02Pf546vzfzOZ5+KGHXShg8lzABdSKUThBkAOBRrTy599GLk33054l/844u//1sRsXkQsX4vvjeO8Rd+4+JwK3WQxx1/0prHtuPP3L14wAZgbzozAECzhBme3OOXQhvtjjMePLz4izxBkN1+pyDI8VBQhi6kStbD5AQPwGFYe3Lpo9cu1+tE41nEeBabiPjRO8u8qV6VqoOkf76yIMi2Dq9wlIQZAKBZwgxPTpiBgxME2Z8gyG6/s7UgiIIydEFnBgCaYO3JpXyYgb2pg+zvdLWOW6ubffRPV+s4Hc+vHLu12sTp6uqx03Edt07WH3nsJ8d3/vlr7ynzPre99sN+fttrr//Os5PzWI1O16177bXXLv5GmAEAmiXM8OQevxRa26RC7RRAcsbhIthw3ba2n3dvR9w+vXrsdBVx787VY0NEPHfv5u/c9gTJnVsXgYsPOhkvXvtBr//qOuLFx/7P2MZWFeqTWkgJMwBwKOvscO3J2rNTH70YWSvDcXiP1qt4pGa5n8vRMDsdXz+I2Ox5LPvz1/+7M+9z12OZ156/EzE9uvnzh5T5yrtKA0BV7KKe3OOXQht/vEBfNtP29qfVtUR9aZMNMyQr0EABqXTCKpd9AIDZ7NGZwdqzT/8o/nn8vXg3fu7GP7kXEacR8R3hS2ja5WgYEs7fjpiudr3YGoCY1hHnf37z5x/9OCKma7/z3Yjp2pNJm/cj1vev/c5NxPlbF38//s7N3/M4wgwAUBV325+czgwAtRm0+oUOpKr9w9TQLBwAumLMBBERsYqvRsTfjtgSZviJXzqJ+KVi7wjg8E6ePvQ7uDD+g91fK3IIAFURCX9yj/8z1JkB4DCEGaAHqXWqMRMAHIowAzsbPPQCUFy2RuQqDQBVcbf9yX1ImMEmFeAgRgVl6EAqnfDa6rX45bd/ean3AgCP9Wh8FHEn9SPWnsdqUIYDKC5bI3KVBoCq2EU9OWMmAGqjMwP0ILWQeu/kvXjj5I2l3gsAzMna81jpzABQns4MANA0YYYnNcSfxW/Fs/Gv460b/+zZVcRfPsB7Ajh2v/fvI5768c3j//nzEe+8HnEaEfcuj/2r+HT8tfhhybcH7MTcCAB65TbJsRJmAChvmCLeef7qsbN3Ik4ebX+9qzQAVEWYYQ5fi4dbj//ojyL+93Dz+OpOxHg237E5fudqy+8ctxx/kmOPO771PT0VMd66+fMAu5iGmxvViIgfTRHvXP79m5f/+fn4XxGxLvTOgN0JMwDQp43bJEdr837Eox9dPXbytPETAEt6dDvi7/zZzeP3/2fEf/hL5d8PAJBit3QI6/cu/vqg65tZthME2eE9CYLAY00yC9AQYQYAeiXMcKze+MrFXxm11UF+crxEzWPnOshj3ifAh1EjAoAmCDPQFkGQ/dVWABEE4RBsVKElwgwA9EqYgd2pg+zv0DUPQRComxoRADRBmGEeU0S8deg3AR9KAWR/q7vDlg3/EKs7N4+N245tLWBs/527/PzqzrC9gHF28z2NZzdfO275+W2vi4gY7gxxsuW1N97T3aGJIMg0vR03i8fTId4K8JG+F5+IfxJvx5evHP3ViPjDw7whAEj5jxHxd7cc/6fxO6XfChwldZD9CYLs9p5On4uILSOGacN0fuh3AADsQJhhHu9HxHOHfhPAQtb3L/76oEeHeStN+LXpbmzi9pVjq7gV63jqyrFNDDFuPXc+ExGrK0eGuBNTXK0cjHEam7i35eef33Ls6RjjJD7/3T+IVwfhM2jBEJuIeHDj+P8r/1YAYC/vR8R3txz/tfhh6bcCkCIIsr/egiCZ17YWBNGZAQCaIMwAwLy+MdyPiPsf+ToAAACAngiC5AwnESdP3zy+Lexwci9iOL16bLwdsbp77XeOESfPbvmdz8aVaYYPZQsBoAXCDAAAAAAAQFnT+fawhwAIAHBJmAEAAAAAntyX42JsHgDte+PQbwAAEGYAAKBe/zYi/s+VI38l/mJE/PYh3gwApPxCvB4RX9vyTx6WfisU881DvwEAAICe/H8fru2w/Ypp2gAAAABJRU5ErkJggg==
Die affin-lineare Funktion
<$latex text="
Tf(x;a):= f(a) + f'(a)(x-a) \qquad (8.7)
" displayMode="true"></$latex>
heißt //lineare Approximation// von $$f$$ in $$a$$ und bei reellem $$f$$ heißt deren Graph
<$latex text="
\{(x,x_{n+1}) \in \R^{n+1} | x_{n+1} = Tf(x;a) \} \qquad (8.8)
" displayMode="true"></$latex>
die //Tangentialhyperebene// an den Graphen von $$f$$ in $$(a, f(a))$$.
<$details summary="Zur Erinnerung:" tiddler="Bemerkung">
Eine Funktion $$f:D \longrightarrow \R$$ heißt
//stetig// im Punkt $$a \in D$$, falls $$\lim\limits_{x \rightarrow a} f(x) = f(a)$$.
</$details>
Es sei $$f:U \longrightarrow \R$$ eine $$\mathcal{C}^{p+1}$$-Funktion.
Sind $$a,x \in U$$ Punkte, deren Verbindungsstrecke in $$U$$ liegt, so gilt
<$latex text="
f(x) = T_pf(x;a) + R_{p+1}(x;a),
" displayMode="true"></$latex>
wobei das Restglied mit einem geeigneten Punkt $$\xi \in [a,x]$$ in der Form
<$latex text="
R_{p+1}(x;a) = \frac{1}{(p+1)!} d^{p+1} f(\xi)(x-a)^{p+1}
" displayMode="true"></$latex>
dargestellt werden kann.
Es sei $$f:I\to\R$$ $$n$$-mal [[differenzierbar|Differenzierbarkeit: Analysis]] und $$x_0\in I$$. Das Polynom
<$latex text="T_{f,n}(x)\coloneqq \sum_{k=0}^n\frac{f^{(k)}(x_0)}{k!}(x-x_0)^k" displayMode="true"></$latex>
heißt ''Taylorpolynom vom Grad $$n$$'' der Funktion $$f$$ um den ''Entwicklungspunkt $$x_0$$''.
Wenn $$f$$ beliebig oft in $$x_0$$ differenzierbar ist, so ist
<$latex text="T_{f,n}(x)\coloneqq \sum_{k=0}^\infty\frac{f^{(k)}(x_0)}{k!}(x-x_0)^k" displayMode="true"></$latex>
die ''Taylorreihe'' von $$f$$ in $$x_0$$.
!! Achtung
$$T_f$$ konvergiert nicht unbedingt gegen $$f$$!
Es sei $$f \in \mathcal{C}^{\infty}(U)$$. Dann heißt die Reihe
<$latex text="
\sum\limits_{k=0}^{n} \frac{1}{k!} d^{(k)}f(a)(x-a)^k
" displayMode="true"></$latex>
//Taylorreihe von $$f$$ im Punkt $$a \in U$$//.
Die Reihe konvergiert genau dann gegen $$f(x)$$, wenn $$\lim\limits_{k \rightarrow \infty} R_k(x;a) = 0$$.
$$f$$ heißt //reell-analytisch// in $$U$$, wenn jeder Punkt $$a \in U$$ eine Umgebung hat,
in der $$f$$ durch die Taylorreihe in $$a$$ dargestellt wird.
!! Definition
Sei $$(a_n)\in\R^\N$$ und $$(n_k)\in\N^\N$$
[[monoton|Monotonie]]. Dann heißt $$(a_{n_k})_{k\in\N}$$ eine ''Teilfolge'' der Folge $$(a_n)$$.
ine Projektion ist genau dann orthogonal, wenn gilt:
$$P = P^*$$.
<$details summary="Beweis" tiddler="Beweis Orthogonale Projektion">
{{Beweis Orthogonale Projektion}}
</$details>
Da ein orthogonaler Projektor -- mit Ausnahme des trivialen Falls $$P=I$$ -- mehrere Singulärwerte gleich $$0$$
enthalten kann, liegt es nahe, mit einer reduzierten Form (vgl. [[Singulärwertzerlegung (SVD)]]) zu arbeiten.
Im Folgenden verwenden wir folgende Schreibweise: Eine Matrix $$A$$ habe $$k$$ Singulärwerte ungleich $$0$$. Dann ist
<$latex text="
\hat{Q} := \left( q_1 | ... | q_k \right)
" displayMode="true"></$latex>
die reduzierte Form der Matrix $$Q$$.
<$details summary="Bemerkung" tiddler="Bemerkung">
$$\hat{Q}$$ kann von einer SVD kommen, muss aber nicht. $$\{ q_1,...,q_n \}$$ ist ein beliebiges Orthonormalsystem (ONS).
</$details>
<<list-links "[tag[Theoreme Differenzierbare Abbildungen]sort[order]]">>
<<list-links "[tag[Theoreme Differenzierbare Funktionen]sort[order]]">>
<<list-links "[tag[Theoreme Eigenwertprobleme]sort[order]]">>
<<list-links "[tag[Theoreme Grundlagen]sort[order]]">>
<<list-links "[tag[Theoreme Kondition und Stabilität]sort[order]]">>
<<list-links "[tag[Theoreme LU-Zerlegung]sort[order]]">>
<<list-links "[tag[Theoreme QR-Zerlegung]sort[order]]">>
<<list-links "[tag[Theoreme Singulärwertzerlegung]sort[order]]">>
Phillips and Tikhonov minimieren nicht nur die kleinsten Fehlerquadrate, sondern schlagen vor, gleichzeitig die Norm des Lösungsvektors klein zu machen und betrachten für $$\lambda >0$$
<$latex text="
x=\argmin_{y\in \mathbb{R}^{n}}\left(\|b-Ay\|_2^2+\lambda\|x\|_2^2\right)
" displayMode="true"></$latex>
Diese Problem kann auch als gewöhnliches Kleinste Quadrate Problem geschrieben werden:
<$latex text="
x=\argmin_{y\in \mathbb{R}^{n+m}}\left(\left\|
\begin{pmatrix} A \\ \sqrt{\lambda} Id\end{pmatrix} y-
\begin{pmatrix} b \\ 0 \end{pmatrix}
\right\|_2^2\right)
" displayMode="true"></$latex>
<$details summary="Tikhonov Regularisierung Normalengleichung" tiddler="Tikhonov Regularisierung">
{{Tikhonov Regularisierung Normalengleichung}}
</$details>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/oqGQvtb9KnI?rel=0&start=3245" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
Für die zugehörige Normalengleichung ergibt sich
<$latex text="
\begin{aligned}
\begin{pmatrix} A^\ast & \sqrt{\lambda}Id \end{pmatrix}
\begin{pmatrix} A \\ \sqrt{\lambda}Id \end{pmatrix}x
&=&
\begin{pmatrix} A^\ast & \sqrt{\lambda}Id \end{pmatrix}
\begin{pmatrix} b \\ 0 \end{pmatrix}\\
\Leftrightarrow \left( A^\ast A + \lambda Id \right)x&=& A^\ast b
\end{aligned}
" displayMode="true"></$latex>
<$details summary="Beispiel (Tikhonov Regularisierung)" tiddler="Beispiel (Tikhonov Regularisierung)">
{{Beispiel Tikhonov Regularisierung}}
</$details>
Sei $$B=\{b_1,\dots,b_n\}$$ eine [[Basis|Erzeugendensysteme und Basen]] mit
<$latex text="M_B(T)=\begin{pmatrix}
a_{1,1} & \dots & a_{1,n}\\
& \ddots & \vdots\\
0 &&a_{n,n}
\end{pmatrix}." displayMode="true"></$latex>
Insbesondere gilt $$a_{i,j}=0$$ für alle $$i>j$$. Daher folgt
<$latex text="T(b_j)=\sum_{i=1}^j a_{i,j}b_j\in\underbrace{\langle b_1,\dots,b_j\rangle}_{\eqqcolon F_r}." displayMode="true"></$latex>
Die Unterräume $$F_r$$ haben folgende Eigenschaften (welche jeweils direkt aus der Definition folgen):
# $$F_0\subset F_1\subset\dots\subset F_n=V$$
# $$\dim_K(F_r)=r$$
# $$T(F_r)\subset F_r$$, das heißt $$F_r$$ ist ''$$T$$-invariant''.
$$(F_r)_r$$ heißt ''$$T$$-invariante Fahne''. Man kann leicht zeigen, dass $$T$$ genau dann trigonalisierbar ist, wenn eine solche Fahne existiert.
$$T\in\text{End}_K(V)$$ heißt ''triagonalisierbar'', falls es eine [[Basis|Erzeugendensysteme und Basen]] $$B$$ von $$V$$ gibt, so dass
<$latex text="M_B(T)=\begin{pmatrix}*& & *\\&\ddots&\\0&&*\end{pmatrix}." displayMode="true"></$latex>
Eine äquivalente Definition ist, dass das[[charakteristisches Polynom|Charakteristisches Polynom eines Endomorphismus]] über $$K$$ in Linearfaktoren zerfällt.
!! Beweis
$$\implies$$: Folgt direkt aus der Definition des charakteristischen Polynoms.
$$\impliedby$$: Per Induktion über $$n$$:
Induktionsanfang: $$n=1$$ ist klar.
Induktionsschritt: Wenn die Aussage für alle Dimensionen kleiner als $$n$$ gilt, folgt folgendes:
Sei $$b_1$$ ein Eigenvektor zum Eigenwert $$\lambda_1$$. Da $$\chi_T(X)$$ in Linearfaktoren zerfällt existieren $$\lambda_1,b_1$$. [[Ergänze|Basisergänzungsatz]] $$b_1$$ zu einer Basis $$B=\{b_1,\dots,b_n\}$$ von $$V$$.
Dann gilt
<$latex text="M_B(T)=\begin{pmatrix}
\lambda_1 & * & \dots & *\\
0 &&&\\
0&&T^{(I)}&\\
0&&&
\end{pmatrix}." displayMode="true"></$latex>
für $$T^{(I)}\in M(n-1,K)$$. Insbesondere gilt
$$\chi_T(X)=(X-\lambda_1)\chi_{T^{(I)}}(X)$$, was über $$K$$ in Linearfaktoren zerfällt und daher nach Induktionsvoraussetzung triagonalisierbar ist.
Um die verschiedenen Urnenmodelle einheitlich behandeln zu können, gehen wir
bei $$n$$ Ziehungen mit ''Z''urücklegen von einem fiktiven Laplace-Raum aus, indem wir uns die
$$N$$ Kugeln zusätzlich noch durchnummeriert denken.
* Ausgangspunkt bei den \textbf{Modellen mit Zurücklegen} ist die Menge $$\Omega:=[1:N]^n$$ mit Gleichverteilung: $$(\Omega,2^\Omega,{\mathcal{U}}_\Omega)$$
* $$F$$: Menge der verschiedenen Farben der Kugeln in der Urne
* $$\phi:[1:N]\to F$$ sei surjektive Färbungsfunktion.
* $$\phi$$ zerlegt $$[1:N]$$ disjunkt in gleichfarbige Nummernbereiche ($$f\in F$$): <$latex text="F_f:=\{i\in[1:N]\mid\text{$$i$$-te Kugel ist $$f$$-farbig}\}=\phi^{-1}[\{f\}]." displayMode="true"></$latex>
$$\textcolor{blue}{\textbf{Vorteil der Fiktion}}$$: W-Raum bekannt, $$\textcolor{red}{\textbf{Nachteil}}$$: Realität $$\ne$$ Fiktion
$$\textcolor{blue}{\textbf{Idee}}$$: Verbinde Fiktion mit Realität durch geeignete $$\textcolor{blue}{\textbf{Zufallsvariablen}}$$ $$\textbf{!}$$
Die Matrix $$A^*A$$ ist hermitesch und positiv semidefinit, d.h. $$x^*A^*Ax \geq 0$$.
$$A^*A$$ ist genau dann positiv definit, wenn der Nullraum $$Kern(A)$$ trivial ist, d.h. $$Kern(A)=0$$.
Ferner ist $$Kern(A^*A) = Kern(A)$$ und $$Bild(A^*A)=Bild(A^*)= Kern(A)^{\bot}$$.
[ [[Nullraum (Kern)]] , [[Bildraum]] ]
<$details summary="Beweis" tiddler="Beweis Trivialer Nullraum">
{{Beweis Trivialer Nullraum}}
</$details>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/oqGQvtb9KnI?rel=0&start=1665" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
Ist $$Kern(A) = \{0\}$$, so gilt $$A^+ = (A^*A)^{-1}A^*$$.
[[Trivialer Nullraum]]
<$details summary="Beweis" tiddler=" Beweis Trivialer Nullraum (SVD)">
{{ Beweis Trivialer Nullraum (SVD)}}
</$details>
Zum Beweis des [[Schwachen Gesetzes|Schwaches Gesetz der großen Zahl]] benötigen wir folgenden
! Satz
Es sei $$(\Omega,{\mathcal{A}},P)$$ W-Raum, $$X\in{\mathscr{L}}^2(P)$$, $$\epsilon>0$$. Dann gilt:
<$latex text="\textcolor{blue}{P(|X-\textbf{E}_P(X)|\ge\epsilon)\le \frac{\textbf{V}_P(X)}{\epsilon^2}}\,." displayMode="true"></$latex>
!! Beweis
Wir beschränken uns auf den Fall einer diskreten ZV $$X$$. In dem Fall ist auch $$Y:=(X-\textbf{E}_P(X))^2$$ diskret, liegt in $${\mathscr{L}}^1(P)$$ (wieso?) und es gilt:
<$latex text="\begin{aligned}
\textbf{V}_P(X)
&=&\textbf{E}_P(Y)=\sum_{y\in Y[\Omega]}y P(Y=y)\\
&\ge&\sum_{y\in Y[\Omega]:y\ge\epsilon^2}\textcolor{red}{\epsilon^2}\cdot P(Y=y)+
\sum_{y\in Y[\Omega]:y<\epsilon^2}\textcolor{red}{0}\cdot P(Y=y)\\
&=&\epsilon^2\sum_{y\in Y[\Omega]:y\ge\epsilon^2} P(Y=y)=\epsilon^2 P(Y\ge\epsilon^2)\\
&=&\epsilon^2 P((X-\textbf{E}_P(X))^2\ge \epsilon^2)= \epsilon^2 P(|X-\textbf{E}_P(X)|\ge \epsilon).
\end{aligned}" displayMode="true"></$latex>
Zwei Typen von $$\sigma$$-Algebren spielen für uns eine zentrale Rolle:
* ''Diskreter Fall'': $$\Omega$$ ist höchstens abzählbar unendlich. Hier setzt man $${\mathcal{A}}=2^\Omega$$.
* ''Reeller Fall'': $$\emptyset\ne \Omega\subseteq \R^n$$. Dann wählt man
<$latex text="\mathcal{A}={\mathcal{B}}_\Omega^n:= \{A\cap\Omega\mid A\in{\mathcal{B}}^n\}." displayMode="true"></$latex> Übung: $${\mathcal{B}}_\Omega^n$$ ist eine $$\sigma$$-Algebra.
! Satz 1.1
$$\Omega=\{0,1\}^{\N}$$ ist überabzählbar unendlich.
<$details summary="Beweis" tiddler="Beweis">
Wäre <$latex text="\{0,1\}^\N" displayMode="false"></$latex> abzählbar unendlich, so könnten wir die Elemente
von <$latex text="\{0,1\}^\N" displayMode="false"></$latex> durch eine binärwertige <$latex text="\N\times\N\text{-Matrix } (\omega_{ij})" displayMode="false"></$latex> beschreiben.
<br>
Dabei gehört die <$latex text="i" displayMode="false"></$latex>-te Zeile dieser Matrix zum <$latex text="i" displayMode="false"></$latex>-ten Element von<$latex text="\{0,1\}^\N" displayMode="false"></$latex>.
<br>
Mit
$$\overline{1}:=0$$ und $$\overline{0}:=1$$ kann die Folge
<$latex text="(\overline{\omega_{11}},\overline{\omega_{22}},\ldots)" displayMode="true"></$latex>
der negierten Diagonalelemente in keiner Zeile der Matrix vorkommen. $$\square$$
</$details>
Im endlichen Fall ($$|V|<\infty$$) veranschaulicht man gerne die zu $$\Pi\in[0,1]^{V\times V}$$ gehörige Markov-Kette durch einen gerichteten, kantengewichteten Graphen $$G=(V,E,\Pi)$$, den sog. ''Übergangsgraphen'' zu $$\Pi$$.
Genauer:
* $$V$$ ist die endliche Knotenmenge (engl.: ''V''ertices).
* $$E:=\{(x,y)\in V\times V|\Pi(x,y)>0\}$$ ist die Kantenmenge (engl.: ''E''dges).
* $$\Pi(x,y)$$ ist das Kantengewicht von $$(x,y)\in E$$.
!! Beispiel 1
Es sei $$V:=\{1,2,3\}$$ und
<$latex text="\Pi=\frac{1}{6}\left(\begin{array}{ccc}
3&3&0\\ 2&2&2\\ 6&0&0\end{array}
\right)." displayMode="true"></$latex>
Der zugehörige Übergangsgraph sieht so aus:
[img[markov1.png]]
!! Beispiel 2
Hier geht es um folgendes Münzwurfspiel:
Spieler $$A$$ und $$B$$ haben $$a$$ bzw. $$b$$ Euro. Nach jedem Münzwurf zahlt - je nach Ergebnis - der Verlierer dem Gewinner $$1$$ Euro.
Das Spiel ist beendet, wenn ein Spieler sein Kapital verspielt hat. Es sei $$X_n$$ der Gewinn von Spieler $$A$$ nach $$n$$ Spielen.
Die $$X_n$$ haben Werte in $$V=[-a:b]$$ und bilden eine Markov-Kette mit Übergangsgraph (hier gezeigt im Spezialfall $$a=b=2$$):
[img[markov2.png]]
Der Übergangsgraph zeigt, dass die Zustände $$x=-a$$ und $$x=b$$ sog. ''Fallen'' sind:
''einmal drin, immer drin''!
In diesem Beispiel interessiert die sog. ''Ruinwahrscheinlichkeit''
<$latex text="P(\text{Spiel endet mit Ruin von Spieler }A)." displayMode="true"></$latex>
<<list-links "[tag[Algorithmus]sort[order]]">>
''__Numerische Lineare Algebra:__''
<<list-links "[tag[Übersicht: Definitionen]tag[Numerische Lineare Algebra.]sort[scriptorder]]">>
''__Numerik in der Analysis:__''
<<list-links "[tag[Übersicht: Definitionen]tag[Numerik in der Analysis.]sort[scriptorder]]">>
''__Numerische Lineare Algebra:__''
<<list-links "[tag[Übersicht: Korollar]tag[Numerische Lineare Algebra.]sort[scriptorder]]">>
''__Numerik in der Analysis:__''
<<list-links "[tag[Übersicht: Korollar]tag[Numerik in der Analysis.]sort[scriptorder]]">>
''__Numerische Lineare Algebra:__''
<<list-links "[tag[Übersicht: Lemma]tag[Numerische Lineare Algebra.]sort[scriptorder]]">>
''__Numerik in der Analysis:__''
<<list-links "[tag[Übersicht: Lemma]tag[Numerik in der Analysis.]sort[scriptorder]]">>
''__Numerische Lineare Algebra:__''
<<list-links "[tag[Übersicht: Sätze]tag[Numerische Lineare Algebra.]sort[scriptorder]]">>
''__Numerik in der Analysis:__''
<<list-links "[tag[Übersicht: Sätze]tag[Numerik in der Analysis.]sort[scriptorder]]">>
''__Numerische Lineare Algebra:__''
<<list-links "[tag[Übersicht: Theorem]tag[Numerische Lineare Algebra.]sort[scriptorder]]">>
''__Numerik in der Analysis:__''
<<list-links "[tag[Übersicht: Theorem]tag[Numerik in der Analysis.]sort[scriptorder]]">>
''__Vorlesungsvideos playlist:__ ''$$\\$$
[ext[https://www.youtube.com/playlist?list=PLBQN9Lxu5Q5_iZ7COb1FI2-ELjFJK7Ce4]] $$\\$$
Oft formuliert man (8.1) anhand des durch
<$latex text="
f(a+h) - f(a) = Lh + R(h) \qquad (8.2)
" displayMode="true"></$latex>
definierten Restes $$R(h)$$; sie lautet dann
<$latex text="
\lim\limits_{h \rightarrow 0} \frac{R(h)}{\|h\|} = 0. \qquad (8.3)
" displayMode="true"></$latex>
Sei $$f:[a,b]\to\R$$ eine [[stetige|Stetige reelle Funktionen (Über Grenzwerte)]], [[streng monotone|Monotone Funktionen]] Funktion. Dann bildet $$f$$ $$[a,b]$$ bijektiv auf $$f([a,b])$$ ab und die Umkehrabbildung ist ebenfalls stetig und streng monoton.
!! Beweis
Sei o.B.d.A. $$f$$ streng monoton wachsend und $$A=f(a),B=f(b)$$.
Aus $$a<x<b$$ folgt durch die Monotonie $$f(a)<f(x)<f(b)$$ und damit mit dem [[Zwischenwertsatz|Zwischenwertsätze]] $$f([a,b])=[A,B]$$. Daher existiert eine Umkehrfunktion $$f^{-1}:[A,B]\to [a,b]$$.
''$$f^{-1}$$ ist monoton wachsend:''
Für $$y<y'\in [A,B]$$ mir Urbildern $$x,x'$$ ist $$x=f^{-1}(y)\geq f^{-1}(y')=x'$$ ein Widerspruch zur Monotonie von $$f$$.
''Stetigkeit:''
Sei $$y\in [A,B]$$ und $$(y_n)$$ eine Folge, die gegen $$y$$ konvergiert. Angenommen es gilt nicht $$\lim_{n\to\infty} f^{-1}(y_n)=f^{-1}(y)$$:
Dann existiert ein $$\epsilon>0$$, so dass für alle $$n_0\exists n\geq n_0$$ $$|f^{-1}(y_n)-f^{-1}(y)|\geq \epsilon$$. Es gibt also eine Teilfolge für die $$|f^{-1}(y_{n_k})-f^{-1}(y)|\geq \epsilon$$ gilt. Diese Teilfolge liegt in $$[a,b]$$ und ist daher beschränkt. Nach dem [[Satz von Bolzano-Weierstraß]] existiert eine konvergente Teilfolge mit Grenzwert $$c\in[a,b]$$. Da $$f$$ stetig ist gilt $$f(c)=y$$ und somit
<$latex text="c=f^{-1}(f(c))=f^{-1}(y)," displayMode="true"></$latex>
was der Annahme widerspricht.
Es sei $$f:A\to B$$ eine [[Funktion|Definition: Funktionen]]. Dann heißt $$f^{-1}:f(A)\to A$$ eine ''Umkehrfunktion'' von $$f$$, wenn für $$x\in A$$
<$latex text="(f^{-1}\circ f)(x)=x" displayMode="true"></$latex>
Außerdem sind folgende Aussagen äquivalent:
# $$f$$ hat eine Umkehrfunktion
# $$f:A\to f(A)$$ ist [[injektiv und surjektiv|Injektivität und Surjektivität]]
# Es gibt eine ein eindeutig definierte Funktion $$f^{-1}:f(A)\to A$$ s.d. für alle $$x\in A$$
<$latex text="(f^{-1}\circ f)(x)=x" displayMode="true"></$latex>
und für alle $$y\in f(A)$$
<$latex text="(f\circ f^{-1})(y)=y" displayMode="true"></$latex>
gilt.
Die Implikationen $$1.\implies 2., 2.\implies 3.,3.\implies 1.$$ folgen jeweils direkt.
Sei $$\sigma:\N\to\N$$ eine [[bijektive|Injektivität und Surjektivität]] Abbildung. Dann nennt man die Reihe
<$latex text="\sum_{n=1}^\infty a_{\sigma(n)}" displayMode="true"></$latex>
eine ''Umordnung'' der Reihe
<$latex text="\sum_{n=1}^\infty a_{n}." displayMode="true"></$latex>
!! Der Riemannsche Umordnungssatz (Ohne Beweis)
Es sei $$\sum_{n=1}^\infty a_{n}$$ eine [[konvergente Reihe|Reihen]], die nicht [[absolut konvergent|Absolute konvergente Reihen]] ist. Dann gibt es zu $$S\in\R$$ $$\sigma_S$$ so, dass $$\sum_{n=1}^\infty a_{\sigma(n)}$$ konvergiert und den Grenzwert $$S$$ hat.
Hier geht es um die Polarkoordinaten eines zufälligen Punktes der Kreisscheibe. Es sei $$(\Omega,{\mathcal{A}},P)$$ ein W-Raum und <$latex text="\textcolor{blue}{K:=\{x\in\R^2\mid x_1^2+x_2^2\le 1\}}" displayMode="true"></$latex>
die Einheitskreisscheibe. Es sei $$Z=(Z_1,Z_2):(\Omega,{\mathcal{A}})\to(K,{\mathcal{B}}^2_K)$$ eine ZV mit Gleichverteilung $${\mathcal{U}}_K$$ auf $$K$$, $$Z_i$$ sei $$i$$-te Projektion. Wir definieren neue ZVs $$R:(\Omega,{\mathcal{A}})\to([0,1],{\mathcal{B}}_{[0,1]})$$ und $$\Psi:(\Omega,{\mathcal{A}})\to({[0,2\pi)},{\mathcal{B}}_{{[0,2\pi)}})$$ durch Übergang zu Polarkoordinaten: <$latex text="R:=|Z|=\sqrt{Z_1^2+Z_2^2} {\ } \textnormal{(Radius)} \quad \text{und}\quad \Psi:=\arg(Z_1+iZ_2) {\ } \textnormal{(Winkel)}." displayMode="true"></$latex>
Dann ist für $$r\in[0,1]$$ und $$\psi\in{[0,2\pi)}$$ (günstige Fläche/mögliche Fläche):
<$latex text="P(R\le r,\Psi\le\psi)=\frac{\pi r^2\cdot\frac{\psi}{2\pi}}{\pi}=
r^2\cdot \frac{\psi}{2\pi}=P(R\le r)\cdot P(\Psi\le \psi)." displayMode="true"></$latex>
Nach dem Unabhängigkeitskriterium sind $$R$$ und $$\Psi$$ unabhängig und zudem gleichverteilt auf den jeweiligen Bildmessräumen.
Es sei $$(\Omega,{\mathcal{A}},P)$$ ein W-Raum. Eine Familie $$(A_i)_{i\in I}$$ von Ereignissen in $${\mathcal{A}}$$ heißt (stochastisch) ''unabhängig'' bezüglich $$P$$, wenn für jede $$\textcolor{blue}{\text{endliche}}$$ Teilmenge $$\emptyset\ne J\subseteq I$$ gilt: <$latex text="\textcolor{blue}{P\left(\bigcap_{j\in J}A_j\right)=\prod_{j\in J} P(A_j)}." displayMode="true"></$latex>
Bei der nächsten Verallgemeinerung geht es um die Unabhängigkeit von Teilexperimenten.
!! Definition
''(Unabhängigkeit von ZV-Familien)'' Es sei $$(\Omega,{\mathcal{A}},P)$$ ein W-Raum. Eine Familie $$(Y_i)_{i\in I}$$ von ZVs $$Y_i:(\Omega,{\mathcal{A}})\to (\Omega_i,{\mathcal{A}}_i)$$ heißt ''unabhängig'' bezüglich $$P$$, wenn für jede endliche Teilmenge $$\emptyset\ne J\subseteq I$$ und alle $$A_j\in {\mathcal{A}}_j$$ mit $$j\in J$$ gilt: <$latex text="\textcolor{blue}{P\left(\bigcap_{j\in J}\{Y_j\in A_j\}\right)=\prod_{j\in J} P(Y_j\in A_j)}." displayMode="true"></$latex>
Es sei $$(\Omega,{\mathcal{A}},P)$$ ein W-Raum\ und $$Y_1,\ldots,Y_n$$ eine endliche Familie von ZVs $$Y_i:(\Omega,{\mathcal{A}})\to (\Omega_i,{\mathcal{A}}_i)$$.\ Dann gilt:
# ''Diskreter Fall'': Hat jedes $$Y_i$$ einen endlichen Wertebereich $$\Omega_i$$ und ist $$\mathcal{A}_i=2^{\Omega_i}$$, so ist $$(Y_i)_{i\in [1:n]}$$ genau dann unabhängig, wenn für beliebige $$\omega_i\in\Omega_i$$ gilt: <$latex text="\textcolor{blue}{P(Y_1=\omega_1,\ldots,Y_n=\omega_n)=\prod_{i=1}^n P(Y_i=\omega_i)}." displayMode="true"></$latex>
# ''Reeller Fall'': Ist jedes $$Y_i$$ reellwertig und ist $$\mathcal{A}_i=\mathcal{B}_{\Omega_i}^1$$, so ist $$(Y_i)_{i\in [1:n]}$$ genau dann unabhängig, wenn für beliebige $$c_i\in\R$$ gilt: <$latex text="\textcolor{blue}{P(Y_1\le c_1,\ldots,Y_n\le c_n)=\prod_{i=1}^n P(Y_i\le c_i)}." displayMode="true"></$latex>
Die $$\infty$$-Norm $$\|A\|_{\infty}$$ einer Matrix $$A$$ mit $$A \in \mathbb{C}^{m \times n}$$ ist eine induzierte Matrixnorm.
<$details summary="Hölder Ungleichung" tiddler="Hölder Ungleichung">
Die Berechnung der Matrix-$$p$$-Normen mit $$p \neq 1, \infty$$ ist schwieriger.
Hier kann man die Hölderungleichung verwenden: [[Hölderungleichung]]
</$details>
Sei $$A$$ eine $$(m \times n)$$-Matrix. Dann entspricht $$\|A\|_{\infty}$$ der maximalen Zeilensumme:
<$latex text="
\|A\|_{\infty}=\max_{1 \leq i \leq m} \|a_{i}^{*}\|_{1}
" displayMode="true"></$latex>
Ein Farbenhistogramm $$H: F \to \mathbb{N}$$ beschreibt, welche Farbe mit welcher Häufigkeit vorkommt.
!! Beispiel
<$latex text="H\quad=\quad\left(\begin{array}{ccc}\textcolor{red}{\bullet}&\textcolor{blue}{\bullet}&\bullet\\
4&1&2 \end{array} \right)\quad\equiv\quad
\begin{array}{ccc}
\textcolor{red}{\bullet}&&\\
\textcolor{red}{\bullet}&&\\
\textcolor{red}{\bullet}&&\bullet\\
\textcolor{red}{\bullet}&\textcolor{blue}{\bullet}&\bullet\\
\end{array}" displayMode="true"></$latex>
Der ''Raum der Farbenhistogramme'' für das Ziehen von $$n$$ Kugeln ist also spezifiziert durch <$latex text="\textcolor{blue}{\Omega_{Zr} =\{H\in[0:n]^F\mid\sum_{f\in F}H(f)=n\}}." displayMode="true"></$latex>
Die ZV $$X_{Zr}$$ bildet wie folgt Farbenfolgen auf Histogramme ab: <$latex text="X_{Zr}:F^n\ni (f_1,\ldots,f_n)\mapsto (F\ni f\mapsto |\{i\mid f_i=f\}|)." displayMode="true"></$latex> Mittels $$X_{Zr}$$ versehen wir nun der Raum der Farbenhistogramme mit dem zugehörigen Bildmaß, das wir mit $$P_{Zr}$$ bezeichnen.
Eine quadratische Matrix Q ist unitär (im reellen Fall orthogonal), falls $$Q^{-1}=Q^{*}$$ ist,
und daher gilt: $$Q^{*}Q = I$$.
<$latex text="
\begin{pmatrix}
& & q_1^*& & \\
\hline \\
& &q_2^*& &\\
\hline\\
& & \vdots& &\\
\hline\\
& & q_m^* & &
\end{pmatrix}
\left(\begin{array}{c|c|c|c}
& & & \\
& & & \\
q_1 & q_2 & \dots & q_m \\
& && \\
& & & \\
\end{array}\right)
\begin{pmatrix}
1 & & & \\
& 1 & & \\
& & \ddots &\\
& & & 1
\end{pmatrix}
" displayMode="true"></$latex>
Es gilt also $$q_i^{*}q_j=\delta_{ij}$$. Die Spalten einer unitären Matrix bilden somit eine orthonormale Basis
des $$\mathbb{C}^m$$.
Ist $$V$$ ein komplexer Vektorraum, so heißt eine Abb. von $$V\times V\rightarrow \mathbb{C}$$ mit
<$latex text="
(v,w)\mapsto v\cdot w=\langle v,w\rangle
" displayMode="true"></$latex>
ein unitäres Skalarprodukt, wenn für alle $$v,v',w\in V$$ und $$\lambda \in \mathbb{C}$$ die folgenden Eigenschaften erfüllt sind:
* $$(u+v')\cdot w=v\cdot w+v'\cdot w \text{ und }(\lambda v)\cdot w=\lambda (v\cdot w)$$ (Linearität im ersten Argument),
*$$v\cdot w=\overline{v\cdot w}$$ (hermitesch)
*$$v\cdot v\geq 0$$ und $$v\cdot v=0\Leftrightarrow v=0$$ (positive Definitheit).
Ist $$\langle \cdot,\cdot \rangle$$ ein unitäres Skalarprodukt in $$V$$, so nennt man $$V$$ einen unitären Vektorraum.
Eine Teilmenge $$U\subset V$$ eines [[Vektorraumes|Vektorraum]] heißt ''Untervektorraum'', falls $$U$$ mit Addition und Skalarmultiplikation aus $$V$$ selbst ein Vektorraum ist
!! Äquivalente Formulierung
# $$U\neq\emptyset$$
# $$\forall x,y\in U,\lambda\in K:\lambda x+y\in U$$
!!! Beweis der Äquivalenz
$$\implies$$:
$$0_V\in U\implies U\neq\emptyset$$, daher gilt 1.
2. folgt, da $$(U,\cdot|_{U})$$ ein Vektorrraum ist.
Die Rückrichtung folgt durch direktes Nachrechen.
<<list-links "[tag[Unterschiede zwischen SVD und Eigenwertzerlegung]sort[scriptorder]]">>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/RFXF71LzwKk?rel=0&start=4000" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
Sei $$f:A\to B$$ eine [[Funktion|Definition: Funktionen]], dann ist das Urbild einer Teilmenge $$\tilde{B}\subseteq B$$
<$latex text="f^{-1}(\tilde{B})\coloneqq\{a\in A:f(a)\in \tilde{B}\}." displayMode="true"></$latex>
!! Warnung
$$f^{-1}$$ ist hier ''NICHT'' $$\frac{1}{f(\tilde{B})}$$.
!! Folgerung
Aus der Definition folgt direkt, dass
<$latex text="f^{-1}(B)=A," displayMode="true"></$latex>
da $$f(a)\in B$$ als Bedingung per Definition der Funktion immer wahr ist und somit jedes Element $$a\in A$$ in $$f^{-1}(B)$$ ist.
!! Anmerkung zur Notation
Für $$b\in B$$ schreibt man oft $$f^{-1}(b)$$ statt $$f^{-1}(\{b\})$$. Wenn $$a\in A$$ das einzige Urbild von $$b\in B$$ ist, d.h. wenn
<$latex text="f^{-1}(b)=\{a\}" displayMode="true"></$latex>
ignoriert man oft, dass $$f^{-1}(b)$$ eine Menge ist und rechnet mit $$a$$ weiter.
!!! Beispiel
Wenn $$f:A\to B$$ [[injektiv|Injektivität und Surjektivität]] ist gilt:
<$latex text="f^{-1}(f(a))=a." displayMode="true"></$latex>
statt
Wenn $$f:A\to B$$ [[injektiv|Injektivität und Surjektivität]] ist gilt:
<$latex text="f^{-1}(f(a))=\{a\}." displayMode="true"></$latex>
! Gegeben
* W-Raum $$(\Omega,{\mathcal{A}},P)$$ [Detailsicht]
* Ereignisraum $$(\Omega',{\mathcal{A}}')$$ [Grobsicht: Modellausschnitt]
* Abbildung $$X:\Omega\to \Omega'$$ [Informationskompression]
! Frage
* Wie wahrscheinlich ist es, dass das Ergebnis eines Zufallsexperiments in $$\Omega$$ nach Abbildung durch $$X$$ in $$A'$$ liegt?
* Ein $$\omega\in\Omega$$ landet nach Vergröberung durch $$X$$ in $$A'$$ gdw.\ $$X(\omega)\in A'$$ gilt.
* Daher bietet es sich an, die Menge <$latex text="\textcolor{blue}{X^{-1}[A']:=\{\omega\in\Omega\mid X(\omega)\in A'\}}" displayMode="true"></$latex> aller $$X$$-Urbilder heranzuziehen und die Wahrscheinlichkeit, dass man in $$A'$$ landet mit $$P(X^{-1}[A'])$$ zu definieren.
* Einziger ''Haken:'' $$P$$ darf nur an Ereignissen aus $$\mathcal{A}$$ ausgewertet werden!
* Das führt zur ''Forderung'': $$X^{-1}[A']$$ muss zu $$\mathcal{A}$$ gehören, für jedes $$A'\in{\mathcal{A}}'$$.
!Allgemein
* einfache stochastische Modellklasse mit endlichen Ergebnisräumen
* Zufallsereignis: Mehrmaliges Ziehen von gleichartigen, aber teilweise) verschiedenfarbigen Kugeln aus einer Urne
* Vier Varianten:
** Ziehen $$\textcolor{blue}{mit}$$ ($$\textcolor{blue}{Z}$$) oder $$\textcolor{red}{ohne}$$ ($$\textcolor{red}{z}$$) ''Z''urücklegen sowie
** Ziehen $$\textcolor{blue}{mit}$$ ($$\textcolor{blue}{R}$$) oder $$\textcolor{red}{ohne}$$ ($$\textcolor{red}{r}$$) Berücksichtigung der ''R''eihenfolge
* Das liefert folgende Typen von Ergebnisräumen: <$latex text="\Omega_{\textcolor{blue}{ZR}},\quad \Omega_{\textcolor{blue}{Z}\textcolor{red}{r}},\quad \Omega_{\textcolor{red}{z}\textcolor{blue}{R}},\quad \Omega_{\textcolor{red}{zr}}." displayMode="true"></$latex>
! Modellparameter
* $$N$$: Anzahl der Kugeln in der Urne
* $$F$$: Menge der verschiedenen Farben der Kugeln in der Urne
* $$N_f$$: Anzahl der $$f$$-farbigen Kugeln in der Urne ($$f\in F$$)
* Beachte: $$N= \sum_{f\in F}N_f$$.
* $$n$$: Anzahl der Ziehungen
!! [[Beispiel|Modellparameter im Urnenbeispiel]]
Im folgenden werden wir für drei Varianten des Ziegenproblems die Erfolgswahrscheinlichkeiten berechnen:
* Stufe 1: Die Kandidatin wählt eine Tür gemäß Gleichverteilung. (Gilt für alle drei Varianten.)
* Stufe 2: Der Moderator wählt eine der verbleibenden Nieten-Türen gemäß Gleichverteilung. (Gilt für alle drei Varianten.)
* Stufe 3:
**$$\textcolor{red}{\text{Variante 1: Kandidatin bleibt \textbf{immer} bei ihrer ersten Wahl}}$$.
** Variante 2: Kandidatin entscheidet per Münzwurf.
** $$\textcolor{blue}{\text{Variante 3: Kandidatin bleibt \textbf{nie} bei ihrer ersten Wahl}}$$.
Wir zeigen zunächst das für alle Varianten gleiche Grundgerüst der Baumdiagramme.
[img[Wegecd3.png]]
[[Variante 1|Ziegenproblem: Variante 1]] Da die Kandidatin bei ihrer ersten Wahl bleibt, ist das Verhalten des Moderators irrelevant.\
Wegen der Gleichverteilung ist $$P(a)=1/3$$, $$P(n)=1/3$$ und $$P(z)=1/3$$.
''Erfolgswahrscheinlichkeit ist daher $$\textcolor{red}{1/3}$$.''
[[Variante 2|Ziegenproblem: Variante 2]]: Da die Kandidatin im letzten Schritt gemäß Gleichverteilung auf $$\{a,n\}$$ oder $$\{a,z\}$$ entscheidet,
''ergibt sich hier als Erfolgswahrscheinlichkeit $$\textbf{1/2}$$.''
[[Variante 3|Ziegenproblem: Variante 3]]: Da sich die Kandidatin im letzten Schritt immer umentscheidet,\ wird aus der Anfangswahl $$a$$ eine Niete, aber aus $$n$$ ein $$a$$ sowie aus $$z$$ ein $$a$$.
''Die Erfolgswahrscheinlichkeit beträgt daher $$\textcolor{pink}{2/3}$$.''
Für $$X,Y\in{\mathscr{L}}^2(P)$$ heißt
# $$\textcolor{blue}{\textbf{V}(X)=\textbf{V}_P(X)}\textcolor{blue}{:=\textbf{E}_P([X-\textbf{E}_P(X)]^2)} \textcolor{blue}{=\textbf{E}_P(X^2)-\textbf{E}_P(X)^2}$$ die ''Varianz'' von $$X$$ bzgl. $$P$$,
# $$\textcolor{blue}{\sqrt{\textbf{V}(X)}}$$ die ''Standardabweichung'' von $$X$$ bzgl. $$P$$, sowie
# $$\textcolor{blue}{{\mathrm{Cov}}_P(X,Y):=\textbf{E}_P([X-\textbf{E}_P(X)][Y-\textbf{E}_P(Y)])}\textcolor{blue}{=\textbf{E}_P(XY)-\textbf{E}_P(X)\textbf{E}_P(Y)}$$ die ''Kovarianz'' von $$X$$ und $$Y$$ bzgl. $$P$$.
# Ist $${\mathrm{Cov}}_P(X,Y)=0$$, so heißen $$X$$ und $$Y$$ ''unkorreliert''.
!! Bemerkung
Wegen $$|XY|\le X^2+Y^2$$ gilt <$latex text="\int|XY|dP\le\int(X^2+Y^2)dP =\underbrace{\int X^2dP}_{<\infty}+\underbrace{\int Y^2dP}_{<\infty}<\infty." displayMode="true"></$latex>
Aus $$X,Y\in{\mathscr{L}}^2(P)$$ folgt also $$X\cdot Y\in{\mathscr{L}}^1(P)$$. Daher ist die Kovarianz wohldefiniert.
Die Varianz misst, wie weit die Werte von $$X$$ im Schnitt auseinanderliegen:
''Beispiel''. Ist $$X$$ gleichverteilt auf $$\{x_1,\ldots,x_n\}\subset\R$$, so ist <$latex text="\textbf{E}(X)=\overline{x}:=\frac{1}{n}\sum_{i=1}^n x_i\quad\text{und}\quad
\textbf{V}(X) =\frac{1}{n}\sum_{i=1}^n (x_i-\overline{x})^2," displayMode="true"></$latex>
d.h. die Varianz ist hier gerade die ''mittlere quadratische Abweichung vom Mittelwert''.
Ist zudem $$Y$$ gleichverteilt auf $$\{y_1,\ldots,y_n\}\subset\R$$, so ist $$n{\mathrm{Cov}}(X,Y)$$ gerade das euklidische Skalarprodukt der zentrierten Vektoren $$(x_i-\overline{x})_{i\in[1:n]}$$ und $$(y_i-\overline{y})_{i\in[1:n]}$$.
Der sog. ''Korrelationskoeffizient'' <$latex text="\rho(X,Y):=\frac{{\mathrm{Cov}}(X,Y)}{\sqrt{\textbf{V}(X)\textbf{V}(Y)}}" displayMode="true"></$latex>
entspricht dem Cosinus des Winkels zwischen diesen Vektoren.
Die Unkorreliertheit ist gerade die Orthogonalität.
Seien $$X,Y,X_i\in{\mathscr{L}}^2(P)$$ und $$a,b,c,d\in\R$$. Dann gilt:
# $$aX+b$$, $$cY+d$$ liegen in $${\mathscr{L}}^2(P)$$ und $${\mathrm{Cov}}_P(aX+b,cY+d)=ac{\mathrm{Cov}}_P(X,Y)$$. Insbesondere gilt: <$latex text="\textcolor{blue}{\textbf{V}_P(aX+b)=a^2\textbf{V}_P(X)}." displayMode="true"></$latex>
# $$\textcolor{blue}{{\mathrm{Cov}}_P(X,Y)^2\le \textbf{V}_P(X)\textbf{V}_P(Y)}$$ (''Cauchy-Schwarz-Ungleichung'').
# $$\sum_{i=1}^n X_i\in{\mathscr{L}}^2(P)$$ und <$latex text="\textbf{V}_P(\sum_{i=1}^n X_i)=\sum_{i=1}^n\textbf{V}_P(X_i)+\sum_{j\ne i}{\mathrm{Cov}}_P(X_i,X_j)." displayMode="true"></$latex>Sind $$X_1,\ldots,X_n$$ paarweise unkorreliert, so gilt der ''Satz des Pythagoras'': <$latex text="\textcolor{blue}{\textbf{V}_P(\sum_{i=1}^n X_i)=\sum_{i=1}^n\textbf{V}_P(X_i)}." displayMode="true"></$latex>
# Sind $$X$$ und $$Y$$ unabhängig, so sind $$X$$ und $$Y$$ auch unkorreliert. ($$\textcolor{red}{ \text{Die Umkehrung gilt i.a. nicht!}}$$)
Die Vektoren in einer orthogonalen Menge $$S:=\{v_1,\ldots,v_n\}\subset\mathbb{C}^m\setminus\{0\}$$ sind linear unabhängig.
<$details summary="Vektoren in einer orthogonalen Menge Beweis" tiddler="Vektoren in einer orthogonalen Menge Beweis">
{{Vektoren in einer orthogonalen Menge Beweis}}
</$details>
Angenommen, die Vektoren einer orthogonalen Menge sind nicht linear unabhängig. Dann kann der Vektor $$v_{k} \in S$$ als Linearkombination der übrigen Vektoren $$v \in S\setminus\{v_{k}\}$$ geschrieben werden, d.h. $$v_{k}=\sum\limits_{i=1,i\neq k}^{n}\lambda_{i}v_{i}$$ ($$\lambda_1,\ldots,\lambda_n \in \mathbb{K}$$).
Da $$v_{k} \neq 0$$ folgt $$v_{k}^{*}v_{k}=\|v_{k}\|^{2} > 0$$:
<$latex text="
0 < v_{k}^{*}v_{k} = \sum\limits_{i=1,i\neq k}^{n}\lambda_{i}v_{k}^{*}v_{i} = 0.
" displayMode="true"></$latex>
Wegen $$v_{k}^{*}v_{i}=0$$ folgt der Widerspruch.
Seien $$x$$ ein $$n-$$dimensionaler Spaltenvektor und $$A$$ eine $$(m\times n)$$-Matrix ($$m$$ Zeilen, $$n$$ Spalten)
jeweils über $$\mathbb{C}$$.
$$b=Ax$$ ist der $$m$$-dimensionale Spaltenvektor definiert durch
<$latex text="
b_{i} = \sum_{j=1}^{n}a_{ij}x_{j}, \quad i=1,\ldots,m
" displayMode="true"></$latex>
wobei $$b_{i}$$ der $$i-te$$ Eintrag von $$b$$ und $$(a_{ij})$$ der Eintrag an $$ij$$-ter Stelle
($$i$$-te Zeile, $$j$$-te Spalte) in $$A$$ ist.
<$details summary="Interpretation" tiddler="Interpretation">
{{Vektoren und Matrizen Interpretation}}
</$details>
<$details summary="Beispiel" tiddler="Vektoren und Matrizen Beispiel">
{{Vektoren und Matrizen Beispiel}}
</$details>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/Cpjo9PzZliU?rel=0&start=240" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
<$latex text="
\begin{pmatrix} 1&1\\ 1&-1\\ \end{pmatrix}
\begin{pmatrix} 0.5\\ 0.5\\ \end{pmatrix} = 0.5
\begin{pmatrix} 1\\ 1\\ \end{pmatrix}
+ 0.5 \begin{pmatrix} 1\\ -1\\ \end{pmatrix}
= \begin{pmatrix} 1\\ 0\\ \end{pmatrix}
" displayMode="true"></$latex>
Die Spaltenvektoren $$a_i$$, $$i=1,...,n$$, von $$A$$ geben an, wohin die kanonischen Einheitsvektoren
$$e_i$$, d.h. die Vektoren mit $$1$$ an der $$i$$-ten Stelle und $$0$$ sonst, abgebildet werden.
Sei $$a_{j}$$ die $$j$$-te Spalte von $$A$$ (d.h. $$a_{j}$$ ist ein Vektor mit $$m$$ Einträgen).
Dann können wir das Vektor-Matrixprodukt in Gleichung schreiben als
<$latex text="
b = Ax = \sum_{j=1}^n x_{j}a_{j},
" displayMode="true"></$latex>
d.h. $$b$$ ist eine //Linearkombination der Spaltenvektoren// von $$A$$.
Schematisch:
<$latex text="{\small
\begin{pmatrix} \\b\\ \\ \end{pmatrix}
= \left( \begin{array}{c|c|c|c}
& & & \\
a_1 & a_2 & \dotsc & a_n \\
& & & \\
\end{array} \right)
\begin{pmatrix} x_1\\ x_2\\ \vdots\\ x_n \end{pmatrix}
= \underbrace{x_1 \begin{pmatrix} \\ a_1\\ \\ \end{pmatrix}
+ x_2 \begin{pmatrix} \\ a_2\\ \\ \end{pmatrix}
+ \cdots + x_n \begin{pmatrix} \\ a_n\\ \\ \end{pmatrix}}_{\text{Linearkombination}}}
" displayMode="true"></$latex>
Sei $$K$$ ein [[Körper]]. Dann ist ein ''Vektorraum'' über $$K$$
# (V0) Eine additiv geschriebene [[abelsche Gruppe|Gruppen]] $$V$$
# ()V1 zusammen mit einer äußeren Verknüpfung (auch skalare Multiplikation genannt)<$latex text="\cdot: K\times V\to V" displayMode="true"></$latex> s.d. für alle $$\lambda,\mu\in K$$ und $$x,y\in V$$ folgendes gilt:
## (SM1) $$\lambda(x+y)=\lambda x+\lambda y$$ und $$(\lambda+\mu)x=\lambda x+\mu x$$
## (SM2) $$(\lambda\mu)x=\lambda(\mu x)$$
## (SM3) $$1_K\cdot x=x$$
Man nennt $$v\in V$$ Vektoren und $$\lambda \in K$$ Skalare.
<<list-links "[tag[Vektorräume]sort[scriptorder]]">>
<$details summary="Vorlesungvideo" tiddler="Vorlesungvideo">
<html><p align="center"><iframe width="560" height="315" src="https://www.youtube.com/embed/Cpjo9PzZliU?rel=0&start=1297" title="YouTube video player" frameborder="0" allowfullscreen></iframe></p></html>
</$details>
Eine Teilmenge heißt $$I\subset \R$$ heißt ''(verallgemeinertes) Intervall'', wenn für $$a,b\in I$$ und $$a<c<b$$ gilt, dass $$c\in I$$ ist.
!! Satz
Stetige Bilder verallgemeinerter Intervalle sind verallgemeinerte Intervalle.
Seien $$a<c<b$$, $$a,b\in f(I)$$. Seien $$x_1,x_2$$ Urbilder von $$a,b$$ mit (o.B.d.A.) $$x_1<x_2$$.
Nach dem [[Zwischenwertsatz|Zwischenwertsätze]] gibt es $$x\in [x_1,x_2]$$ mit $$f(x)=c$$.
* Für die mittleren quadratischen Fehler der drei Schätzer ergibt sich im Fall $$n=10$$: <$latex text=" \begin{aligned}
\textbf{E}_\theta((T_n-\theta)^2)&=&\frac{\theta^2}{30},\\ \\
\textbf{E}_\theta((\tilde{T}_n-\theta)^2)&=&\frac{\theta^2}{66},\\ \\
\textbf{E}_\theta((T_n^*-\theta)^2)&=&\frac{\theta^2}{120}.
\end{aligned} " displayMode="true"></$latex>
!! Fazit
Strategie $$T_n^*$$ ist beiden anderen Schätzern vorzuziehen.
| Klassisches GS-Verfahren | Modifiziertes GS-Verfahren |h
| numerisch instabil | numerisch stabiler |
| $$ 1 $$ Projektion vom Rang $$ m - (j - 1) $$ | $$ j - 1 $$ Projektionen vom Rang $$ m - 1 $$ |
| $$ v_j = P_j a_j $$ | $$ v_j = P_{\perp q_{j - 1}} \dots P_{\perp q_2} P_{\perp q_1} a_j $$ |
Es seien $$r\in\N,D\subset\R^r$$ und $$E\subset \R$$. Sind nun $$f:D\to E$$ und $$g:E\to\R$$ und ist $$f$$ in $$a$$ und $$g$$ in $$b=\coloneqq f(a)$$ [[stetig|Stetige reelle Funktionen (Über Grenzwerte)]], dann ist die Funktion
<$latex text="g\circ f:D\to\R, \text{ } x\mapsto g(f(x))" displayMode="true"></$latex>
in $$a$$ stetig.
!! Beweis
Folgt direkt aus der Definition, weil $$f(a_n)$$ wieder eine Folge mit Grenzwert $$f(a)$$ ist.
Das Bildmaß zu $$P$$ bzgl.$$X$$ wird auch die $$\textbf{Verteilung}$$ von $$X$$ genannt und manchmal mit $$\textcolor{blue}{P_X}$$ oder mit $$\textcolor{blue}{P\circ X^{-1}}$$ bezeichnet.
Ist $$X:(\Omega,{\mathcal{A}}, P)\to(\mathbb{R},{\mathcal{B}})$$ eine reelle ZV, so heißt die Funktion $$p_X:\mathbb{R}\rightarrow [0,1]$$ mit
<$latex text=" p_X(x)=P(X\leq x)" displayMode="true"></$latex>
(kumulative) $$\textbf{Verteilungsfunktion}$$ von der Zufallsvariablen $$X$$.
! Satz und Definition
Sei $$X$$ eine reelle Zufallsvariable auf einem Wahrscheinlichkeitsraum
$$X:(\Omega,{\mathcal{A}}, P)$$. Ihre Verteilung $$P(X^{-1})$$ besitzt genau dann eine Dichtefunktion $$\rho$$, wenn
<$latex text="p_X(c)=P(X\leq c)=\int_{-\infty}^c\rho(x)dx\, \quad \forall c \in\mathbb{R}." displayMode="true"></$latex>
Solch ein $$\rho$$ heißt eine $$\textbf{Verteilungsdichte}$$ von $$X$$.
Wir können $$h^{(k)}$$ also durch die folgenden Schritten berechnen:
*Löse $$\|f(x^{(k)})+f'(x^{(k)})\cdot h^{(k)}\|_{2}^{2}\rightarrow\min$$ ohne Nebenbedingung.
*Falls $\|h^{(k)}\|_{2}>\rho_{k}$:
**Berechne $$\lambda$$ durch Lösen der nichtlinearen Gleichung $$\|h^{(k)}\|_{2}=\rho_{k}$$ mit $$h^{(k)}$$ wie in (11.2).([[Optimierung in Trust-Region]])
*** z.B. mit dem Newton-Verfahren.
**Ermittle neues $$h^{(k)}$$ mit $$\|h^{(k)}\|_{2}=\rho_{k}$$ durch Lösen des linearen Gleichungssystems (11.2).([[Optimierung in Trust-Region]])
Es bleibt die größe der Trust-Region $$\rho_{k}$$ zu wählen. Diese
sollte möglichst groß sein damit der Algorithmus in großen Schritten
der Lösung entgegengehen kann. Andererseits kann ein zu großer Radius
dazu führen, dass Iterationsschritte das Ergebnis verschlechtern.
Sei $$\mathcal{E}(x):=\|f(x)\|_{2}^{2}$$ das betrachtete Fehlerfunktional.
Gemäß der Taylorapproximation gilt
<$latex text="
\begin{aligned}
\mathcal{E}(x^{(k)}+h)-\mathcal{E}(x^{(k)}) & =\mathcal{E}'(x^{(k)})\cdot h+o(\|h\|_{2})\\
& =2\cdot f(x^{(k)})^{T}\cdot f'(x^{(k)})\cdot h+o(\|h\|_{2}).
\end{aligned}
" displayMode="true"></$latex>
Um also zu bewerten wie angemessen unsere Trust-Region ist betrachten
wir den Quotient aus tatsächlicher und geschätzter Verbesserung:
<$latex text="\mu_{k}:=\frac{\|f(x^{(k)}+h^{(k)})\|_{2}^{2}-\|f(x^{(k)})\|_{2}^{2}}{2\cdot f(x^{(k)})^{T}\cdot f'(x^{(k)})\cdot h^{(k)}}
" displayMode="true"></$latex>
Wir wählen feste Konstanten $$0<\mu_{-}<\mu_{+}<1$$. Falls $$\mu_{k}<\mu_{-}$$
ist, verwerfen wir $$h^{(k)}$$ und verwenden in der nächsten Iteration
eine kleinere Trust-Region verwendet. Falls $$\mu_{k}>\mu_{+}$$ ist,
wird in der nächsten Iteration eine größere Trust-Region verwendet.
Diese weit verbreitete Forderung an die Verbesserung in einer Iteration
bezeichnet man als //Armijo-Goldstein-Kriterium//.
Mit Hilfe der Householder-Transformation konstruieren wir die unitären Matrizen $$Q_k$$ wie folgt:
<$latex text="
Q_k = \begin{pmatrix} I & 0 \\ 0 & H \end{pmatrix},
" displayMode="true"></$latex>
wobei $$I$$ eine $$((k-1) \times (k-1))$$ Einheitsmatrix und $$H$$ eine $$((m-k+1)\times (m-k+1))$$
unitäre Matrix ist, welche die Nullen in der $$k$$-ten Spalte einführt.
$$H$$ wird als Householder-Matrix (Definition [[Householder-Transformation]]) gewählt.
Sei dazu $$x \in \mathbb{C}^{m-k+1}$$ der Vektor mit den Einträgen $$k,...,m$$ aus der $$k$$-ten Spalte
der Matrix $$Q_{k-1}Q_{k-2}...Q_{1}A$$. Dann soll $$H$$ zu der folgenden Abbildung führen:
<$latex text="
x = \begin{pmatrix} x_k^{(k)} \\ x_{k+1}^{(k)} \\ \vdots \\ x_m^{(k)} \end{pmatrix}
\quad \stackrel{H}{\longrightarrow} \quad Hx =
\begin{pmatrix} \pm \|x\|_2 \\ 0 \\ \vdots \\ 0 \end{pmatrix}
= \pm \|x\|_2 e_{1}.
" displayMode="true"></$latex>
Daher ist:
<$latex text="
\begin{aligned}
Hx &= x-\frac{2}{v^{*}v}v(v^{*}x) = \xi e_1,\\
\text{mit } |\xi| &= \|x\|_2,
\end{aligned}
" displayMode="true"></$latex>
d.h. also, dass $$v$$ ein Vielfaches von $$x- \xi e_{1}$$ sein muss.
$$x$$ wird also durch diese Transformation wie gewünscht gespiegelt
(siehe Abbildung: Geometrische Anschauung 1.).
<$details summary="Abbildung: Geometrische Anschauung 1." tiddler="Abbildung Geometrische Anschauung">
[img[qr_geom_anschauung2.jpeg]]
</$details>
Damit bei dieser Subtraktion keine Auslöschung auftritt, wählen wir
<$latex text="
\xi = \begin{cases}
-\frac{x_{1}}{|x_{1}|}\|x\|_{2} & \text{für } x_{1} \neq 0 \\
-\|x\|_{2} & \text{für } x_{1} = 0
\end{cases}
" displayMode="true"></$latex>
Nun wählen wir $$v$$ so, dass $$x$$ auf $$\xi e_{1}$$ abgebildet wird, d.h.
<$latex text="
v = \lambda(x-\xi e_1).
" displayMode="true"></$latex>
<$details summary="Bemerkung" tiddler="Bemerkung">
$$-\frac{x_1}{|x_1|} \|x\| = -sign(x_1)$$. $$\xi e_1$$
sollte aus numerischen Gründen nicht zu nahe bei $$x$$ liegen. Um die Stabilität
des Algorithmus zu erhöhen, kehren wir das Vorzeichen entsprechend um!
</$details>
Setzen wir nun Werte für $$\xi$$ ein und wählen $$\lambda = \frac{1}{\|x\|_2}, \|x\|_2 \neq 0$$,
so ergibt sich:
<$latex text="
\begin{aligned}
v &= \lambda(x-\xi e_1) \\
&= \dfrac{1}{\|x\|_2} \left( x + \dfrac{x_1\|x\|_2}{|x_1|}e_1 \right) \\
&= \dfrac{1}{|x_1|\|x\|_2} \left( |x_1|x+x_{1}\|x\|_2 e_1 \right)
\qquad \text{für } x_{1}\neq 0
\end{aligned}
" displayMode="true"></$latex>
<$details summary="Abbildung: Geometrische Anschauung 2." tiddler="Abbildung Geometrische Anschauung">
[img[qr_geom_anschauung3.jpeg]]
</$details>
<$details summary="In beiden Fällen gilt:" tiddler="In beiden Fällen gilt:">
<$latex text="
\begin{aligned}
v^*x &= \|x\|_2 + |x_1| \\
v^*v &= 2 + 2 \frac{|x_1|}{\|x\|_2}.
\end{aligned}
" displayMode="true"></$latex>
Analog ergibt sich
<$latex text="
\begin{aligned}
v &= \lambda(x-\xi e_1) \\
&= \dfrac{1}{\|x\|_2} \left( x + \|x\|_2 e_1 \right) \\
&= \dfrac{x}{\|x\|_2} + e_1
\qquad \text{für } x_1 = 0
\end{aligned}
" displayMode="true"></$latex>
Mit diesem $$v$$ ergibt sich in der Tat für $$x_1\neq 0$$
<$latex text="
\begin{aligned}
Hx = x - \dfrac{2}{v^*v}v(v^*x)
&= x - 2 \dfrac{\|x\|_2 + |x_1|}{2 + 2\frac{|x_1|}{\|x\|_2}}
\dfrac{|x_1| x + x_1 \|x\|_2 e_1}{|x_1| \|x\|_2} \\
&= x - \|x\|_2\dfrac{\|x\|_2 + |x_1|}{\|x\|_2 + |x_1|}
\dfrac{|x|_1 x + x_1 \|x\|_2 e_1}{|x|_1 \|x\|_2} \\
&= x - \dfrac{|x|_1 x + x_1 \|x\|_2 e_1}{|x|_1 \|x\|_2} \\
&= x - x - \dfrac{x_1}{|x_1|} \|x\|_2 e_1 \\
&= - \dfrac{x_1}{|x_1|} \|x\|_2 e_1 \\
\end{aligned}
" displayMode="true"></$latex>
und analog für $$x_1 = 0$$
<$latex text="
Hx = x - \|x\|_2 v = - \|x\|_2 e_1.
" displayMode="true"></$latex>
</$details>
<$details summary="Teil 1" tiddler="1.">
Wir betrachten zunächst den Fall ohne $$\mu_k = 0$$ $$\forall k \in \mathbb{N}_0$$. Es ist
<$latex text="
A_{k+1} = \underbrace{(Q_0 ... Q_k)}_{Q_k} \underbrace{(R_k ... R_0)}_{R_k}=A^{k+1} \qquad (7.3)
" displayMode="true"></$latex>
eine QR-Zerlegung von $$A_{k+1}$$.
Vergleicht man die jeweils erste Spalte dieser Matrizen gleichzeitig, so sieht man
<$latex text="
\underbrace{A_{k+1}e_1}_{\text{1. Spalte}} = Q_k r_{11}^{(k)} e_1 = r_{11}^{(k)} q_1^{(k)}.
" displayMode="true"></$latex>
Nach der Potenzmethode (Algorithmus [[Algorithmus: Potenziteration]] ) konvergiert $$A^{k+1} e_1$$ gegen den Eigenvektor zum dominanten Eigenwert.
Nach [[Beweis: Lemma: QR-Verfahren]] 2. ist
<$latex text="
\begin{aligned}
A_{k+1} &= Q_k^* A Q_k\\
A_{k+1} e_1 &= Q_k^* \underbrace{A q_1^{(k)}}_{\lambda_1 q_1^{(k)}} \approx \lambda_1 Q_k^* q_1^{(k)}
\stackrel{\text{ausmultipliziere}n}{=} \lambda_1 e_1
\end{aligned}
" displayMode="true"></$latex>
Damit hat $$A_{k+1}$$ in etwa folgende Gestalt:
$$\quad A_{k+1} \approx
\left(\begin{array}{c|ccc}
\lambda_1 & & \dots & \\
0 & & & \\
\vdots & & & \\
0 & & \dots & \\
\end{array}\right).$$
</$details>
<$details summary="Teil 2" tiddler="2.">
Aus Gleichung (7.3) aus Teil 1 folgt für eine invertierbare Matrix $$A$$ wegen der Orthogonalität von $$Q_k$$
<$latex text="
\begin{aligned}
Q_k^* &= R_k (A^{k+1})^{-1}\\
q_n^{(k)} \; = \; e_n^* Q_k^* &= e_n^* R_k (A^{k+1})^{-1} \; = \; r_{nn}^{(k)} e_n^* (A^{k+1})^{-1}.
\end{aligned}
" displayMode="true"></$latex>
Der Vektor $$q_n^{(k)}$$ (letzte Spalte von $$Q^k$$) ist also das mit $$r_{nn}^{(k)}$$ multiplizierte Ergebnis
der inversen Iteration, also eine Näherung des linken Eigenvektors zum betragskleinsten Eigenwert $$\lambda_n$$ von $$A$$. Daher folgt aus [[Beweis: Lemma: QR-Verfahren]] 2.
<$latex text="
e_n^* A_{k+1} = e_n^* Q_k^* A Q_k = q_n^{(k)} A Q_k \approx \lambda_n q_n^{(k)*} Q_k = \lambda_n e_n
" displayMode="true"></$latex>
wobei
$$A_{k+1} \approx
\begin{pmatrix}
\lambda_1 & \dots & \dots & & \\
0& \ddots && \vdots & \\
\vdots && \ddots & \vdots & \\
0 & \dots & 0 & \lambda_n & \\
\end{pmatrix}. \\$$
Wir vermuten daher, dass $$A_k$$ für $$k \rightarrow \infty$$ gegen eine obere Dreiecksmatrix konvergiert.
</$details>
Mit der Potenziteration kann der betragsmäßig größte Eigenwert berechnet werden.
Wie berechnet man jedoch andere Eigenwerte?
Sei $$\mu \in \mathbb{R}$$, wobei $$\mu$$ kein Eigenwert von $$A$$ ist. Dann besitzt $$(A - \mu I)^{-1}$$ dieselben Eigenvektoren wie $$A$$, denn:
$$Av=\lambda v \;\Leftrightarrow\; (A-\mu I)v=(\lambda-\mu)v \;\Leftrightarrow\; (\lambda-\mu)^{-1}v=(A-\mu I)^{-1}v$$
Die Eigenwerte von $$(A - \mu I)^{-1}$$ sind also $$(\lambda_j - \mu)^{-1}$$, wobei die $$\{\lambda_j\}_j$$ Eigenwerte von $$A$$ sind.
Ist nun $$\mu$$ bereits nahe eines Eigenwerts $$\lambda_J$$ von $$A$$, dann ist $$(\lambda_J - \mu)^{-1}$$ größer als
$$(\lambda_j - \mu)^{-1}$$ $$\forall j \neq J$$. Daher führt die Anwendung der Potenzmethode auf $$(A - \mu I)^{-1}$$
zu einer Konvergenz gegen $$q_J$$. Diese Idee heißt //inverse Iteration//.
Diese Form der Stabilitätsanalyse heißt //Vorwärtsanalyse// und $$\textbf{f}$$ heißt
//vorwärts stabil//, wenn Gleichung (5.13) aus [[Einleitung: Stabilität]] erfüllt ist, d.h.
<$latex text="
\left | \frac{\textbf{f}(x) - f(x)}{f(x)} \right | \leq c_V K_{rel} \varepsilon_{M}
" displayMode="true"></$latex>
<$details summary="Problem der Vorwärtsanalyse" tiddler="Problem der Vorwärtsanalyse">
{{Problem der Vorwärtsanalyse}}
</$details>
In der ''W-Theorie'' geht man von $$\textbf{\textcolor{blue}{bekannten}}$$ W-Räumen, Experimenten und Verteilungen aus:
* Laplace-Räume, Bernoulli-Experimente, $$\ldots$$
* Verteilungen: multinomial, (hyper-)geometrisch, Poisson, Gauß, $$\ldots$$
und analysiert diese weiter:
* Unabhängigkeit, Erwartungswert, Varianz, Unkorreliertheit, $$\ldots$$
* Gesetze der großen Zahl, zentraler Grenzwertsatz, $$\ldots$$
In der ''Statistik'' sind diese W-Räume, insbesondere die zugrunde liegenden W-Maße, $$\textbf{\textcolor{red}{nicht bekannt}}$$, sondern müssen erst aus zufälligen Beobachtungen ermittelt oder geschätzt werden. Allerdings kennt man oft die Natur des zugrundeliegenden W-Maßes.
Es folgen zunächst einige Beispiele zur Modellierung der Schätzungsproblematik.
W-Maße $$P$$ bewerten den Grad der Wahrscheinlichkeit eines Ereignisses $$A$$ durch eine Maßzahl $$P(A)\in[0,1]$$. Je höher diese Zahl, desto wahrscheinlicher ist das Eintreten dieses Ereignisses.
! Definition
Es sei $$(\Omega,{\mathcal{A}})$$ ein Messraum. Eine Funktion $$P:{\mathcal{A}}\to[0,1]$$ heißt ein ''W-Maß'' oder ''W-Verteilung'' auf $$(\Omega,{\mathcal{A}})$$, wenn gilt:
* (N) Normierung: $$P(\Omega)=1$$.
* $$\sigma$$-Additivität: Für paarweise disjunkte Ereignisse $$A_1,A_2,\ldots \in {\mathcal{A}}$$ gilt
<$latex text="P\bigl(\bigsqcup_{i\ge 1}A_i\bigr)=\sum_{i\ge 1} P(A_i)." displayMode="true"></$latex>
Das Tripel $$(\Omega,{\mathcal{A},P})$$ heißt dann ''Wahrscheinlichkeitsraum'' (kurz: ''W-Raum'').
! Definition
Ein ''Wahrscheinlichkeitsraum'' modelliert ein Zufallsexperiment durch Angabe von drei Komponenten:
<$latex text="(\Omega,{\mathcal{A}},P)." displayMode="true"></$latex>
* $$\Omega$$: ''Ergebnisraum''
* $${\mathcal{A}}$$: ''Ereignis-Algebra''
* $$P$$: ''W-Maß''
Es bezeichne $$\Delta(\Omega)$$ die Gesamtheit aller W-Funktionen auf der höchstens abzählbar unendlichen Menge $$\Omega$$. Für $$n\in\N$$ gilt:
* $$\Delta([1:n])=\{(p_1,\ldots,p_n)\in[0,1]^n\mid p_1+\ldots+p_n=1\}$$.
* $$\Delta([1:n])$$ ist die konvexe Hülle aller Einheitsvektoren $$e_1,\ldots,e_n$$ im $$\R^n$$.
* $$\Delta([1:2])$$ ist die Verbindungsstrecke zwischen $$e_1,e_2$$.
* $$\Delta([1:3])$$ ist das gleichseitige Dreieck mit den Ecken $$e_1,e_2,e_3$$.
* $$\Delta([1:4])$$ ist das reguläre Tetraeder mit den Ecken $$e_1,e_2,e_3,e_4$$.
Statt $$\Delta([1:n])$$ schreibt man oft auch kurz $$\Delta_{n-1}$$ und drückt damit aus, dass es sich dabei um das $$(n-1)$$-dimensionale ''Einheitssimplex'' handelt, das hier auch ''Wahrscheinlichkeitssimplex'' genannt wird.
[img[simplex.png]]
Das Websurfen kann man idealisiert folgendermaßen modellieren: Ein Surfer, der sich auf Seite $$x$$ befindet
* gibt mit Wahrscheinlichkeit $$p\in(0,1)$$ gemäß Gleichverteilung eine neue URL ein, oder
* er folgt mit Wahrscheinlichkeit $$1-p$$ gemäß Gleichverteilung einem Link von $$x$$ auf eine andere Webseite oder bleibt auf $$x$$.
Dies ist eine Markov-Kette mit Übergangswahrscheinlichkeiten <$latex text="\Pi(x,y):=\begin{cases}\frac{p}{N}&\text{falls }(x,y)\not\in E\\
\frac{p}{N}+\frac{1-p}{|G[x]|}&\text{falls }(x,y)\in E.
\end{cases}" displayMode="true"></$latex>
!! Bemerkung
$$\Pi$$ ist zeilenstochastisch, denn für $$x \in V$$ ist
<$latex text="\sum_{y\in V}\Pi(x,y)=\underbrace{\sum_{y=1}^N \frac{p}{N}}_{=p}+\underbrace{\sum_{y\in G[x]} \frac{1-p}{|G[x]|}}_{=1-p}=1." displayMode="true"></$latex>
iVBORw0KGgoAAAANSUhEUgAAAdIAAAECCAYAAABKXlYZAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAE8WSURBVHhe7d0JXFTl+gfwH5YtNma4VKggiqCGiYi4p1CuUW79yTRDKU30aqa5ZGpaiqVYpnavaFKpZVpSdtFErrjglooKKiruoIKC7AOyzvM/73DGxmEYhmEb4Pl+PhNnzows0znnd5bnfY4FScAYY4wxk9SRvzLGGGPMBBykjDHGWBlwkDLGGGNlwEHKGGOMlQEHKWOMMVYGHKSMMcZYGXCQMsYYY2XAQcoYY4yVAQcpY4wxVgYcpIwxxlgZcJAyxhhjZcBByhhjjJUBByljjDFWBhykjDHGWBlwkDLGGGNlwEHKGGOMlQEHKWOMMVYGHKSMMcZYGXCQMsYYY2XAQcoYY4yVAQcpY4wxVgYcpIwxxlgZcJAyxhhjZcBByhhjjJUBByljjDFWBhykjDHGWBlwkDLGGGNlwEHKGGOMlYEFSeRpxlgVoeSD+GrGepxVxuLwb/txVT3XCi4e7nBs9Kj6mYYqNQnpz7RGx2490XfgAPRq+TQs5NcYY5WPg5Qxs5KNS997oc17v0Excguifh4BmyIpmYfUS7vwtc9kLDrRHp9uX4f5rzTHw3HLGKssfGqXMXNCSbh04oI0YYkO3drgeb2HmnXxjIMHPpw3Bm2Vu/D50NnYeClLfo0xVtk4SBkzJ/djEXnohjThhFe72OKxwrl6PALL9l3hZilNKo9hz+m7UBW+wBirZBykjJkNQu7lcPx1TikdkDrBqZVCnl+SLCRl5kj/mjFWFThIGTMbebhzMRJnpClFHxe80NjQVc8CpJw7hv0pYroTPFyaS8eojLGqwEHKmNnIQMz5S1CK66PuL6K5obUzLxrbV/2Ei1Cg7bTJeKuDsUevjLHyxkHKmLnIvYnToVHShCNecbYu/voopSFq00p8+WcOXH38se3zfniWx78wVmU4SBkzE6pbZ7H/TAqgcIBji/ryXG0qZMeHY+uct9D9SyXGBv6FnatHwVHBJ3UZq0o8jpQxs5CPhB0z0G7wSiQ/5Y4Jsweh9RPah5nZSDy7F39ENcDA4WPg88HreIEDlDGzwEHKmFlIxd++w9BjXjgcF4fg2NzuqCe/8gBl496Fg9i8dA5Wpb6O5X4fYohDA+5qxFgV41O7jJmD3Bs4/lekNGGLXk42eLJw7sMsnkDjF/phypcLMODiVxjmMh7fRqYWP+wl/yZ2fzwMPjvi5BmMsYrAQcqYGaA70fj7TApI0QVuHZoYPMq0eL4TBr1iCyh/wydLd+OmbpKSErHH/sSqyaPgufQs7ucWyC8wxioCByljVS4fiWeOIlgpTXZwQtvn6xbOLo7F46j39OPqSeX+SFzJ0OpplHIQy9+diX+HxqNxu3aw5PO+jFU4DlLGqpwS1yIjkQIF2g/qDPvHSkg/ykFWek7hdEsrNNIuSrJ8CTN+WIOln/jgzV4OBloMMsbKCwcpY1VNlYjL4aK/roHro1rozinsChXvt0T3Yd1KDl7GWIXiIGWsitG9aBw5IAWjoiO6v9DYcBUuJePkzwHYdCkDaPs+Fng5F63uZYxVKg5SxqqUChnRJwt75nbogg7NC6996kXpuLZzFWZ99icy7McjYNsc9H+W70LKWFXjIGWsKtE9hO8MwUVp0qqXI1rqPU2bD2Xscfy60Bv9X18H5dtrcXj/arzryGNIGTMH3JCBsUqXifObPsPSPbeRFLUPO0/GF862c4NnT91rpPlIunADaOcKl2490KfnS+jxohUeanpUjPyTy6V/5o8e2/Zhw3BreS5jrLxxkDJWQ3GQMlY5+NQuY4wxVgYcpIwxxlgZcJAyxhhjZcDXSBmrSQouYeuHX+Cv9AzEHt6N/VeVgMIFHkMd0ehRZ4z7egpesuTbrzFWnjhIGWOMsTLgU7uM6Zg1axYOHz4sP2OMMcM4SBnTYWNjg5deegkhISHyHMYYKx4HKWM6Jk+ejG3btmHAgAHqo9Nbt27JrzDGWFEcpIzpMXz4cERHR6unra2tMX78eGzcuBFbtmxRf7106ZL6tdpInPbu0qULfv/9d3kOY7UbFxsxVgJxRHr8+HF1iP7vf/9DamoqTp8+jY4dO8rvqF3u37+PXbt24csvv0TTpk0xY8YM9OrVS36VsdqHj0gZK0FMTIz6KPTatWto3LgxFi5cWGtDVHjyySfVR+zBwcHo27cvevfujaFDh3KBFqu1OEgZK4YIBhEQ4mhLBMaiRYtgaWmpvm7KgIYNG6qvJ9+7d0/9+YjPiQOV1UYcpIzpENc/hw0b9iBAk5KS1IGxf/9+eHl5qY/I2D80gSo+Jw5UVhtxkDImEwEqjjbbtGmDzp07PwhQERSCCFJnZ2f1NCuquECtzYVZrHbgIGW1nnaACqJad+7cuQ8CVOPEiRNo0qSJ/IwVRzdQxecqPl8OVFZTcZCyWis5ORlLlix5KECXLVsGBwcH9XNWNppA1Qwj4kBlNRUHKat1RIB+++23aNSoEa5fv16qAM3KypKnmLHE5yo+Xw7U8kbIjw/FF5NWICwxX55XXjIRuepVdFoVifL+zqWSdxm/fjQXm6LSpL/WfHGQVpocxO/9CpO+2I+EKlkiCHnXtuGj6ZsRpSyQ59Uu2gG6Z88eHDp0CN99953RR6Djxo1TD4FhpuFAFQqQcvAbeI95G691bgoLi/po7f5/GDNmzIPHO691Rv36XfDmp5txMjFH/ne6RIjuwaIZh9Bp/iT0bvKoPN8I+dfx+8QueNH3CIrfLZS+f+59pOfmFx9gWZH4fpJ34e9rYQGL1u54U+vvGDPmHbzp7oD6nUdh/vdHEZ9vwoavrj08PxuOVN95+MGcw1Q0ZGDFSaAwPx/yGu1BLgrx/9Ce3DxHk5eXl/wYRR4uVqRwGUnzfzpBCXkq+d/pyqa4Pb408uNdFKf3PSrKjPiBJsrfD1CQndsbWj9HPN4gNztrcvGcRwFHb1Oe/C9LJ58yIv5DI71/pHMZ+fK8mk86iqTAwECxDtKQIUNIClD5ldK5efMmJSUlyc9YWUmBSjNnzlT/fxFfa9dne4eCpzpJf3s/WnYiVZ6noaK8uF0029WSFO7L6EiynnX1fiStGexBnx64K727NHIpLmga2YukHPELxRb7jzMo3M+N7PzCpX9hiIqyj/qSrfT9rOcfIKU89wFVKp31H02WsCZ334OUXLpfVqai3Cs/0Uin2RR8x/BvU1U4SI2RFExTLaUFz8mPwrN1lwQpJIPnkatYUBaH6VlQVHT/3Foa3H0RhelbIR6SSkcX95JWru40PyypyAqiyogg/7ccCAoP8j2SWMoVSCOTrmx8l5ym7aK7pn2DakMToK6ururH7t275VeYOdEO1NWrV9eOQFWG0XxraZtiNYf2pOrbLmi2BVbUP+ACFchzC2VSdMAosvIOpFsPv1Ai1d1dNL27vTr4YLeMwovdIzc2SO9Lv4un9Hs60dRd8fI8HXGB5CV+nmIKBSWYugOfKv0+g6jd7D2UZIbbLT61WyJCZtRR/J4iLdIDOsH+cQt5vsbjsHLzwBDbm9g3bzX+uJwtz5flXcDmuevRaIYXepV0Q2VVPM6HXQUse6CnYwPo/iQLhSMGe74MKHfiiw1/4548v3Tqwe4NH4z++wt8vS8BKnluTSJa2Ik+sH369FG3sfv4449x4MAB9O/fX34HMyeaU77iVLs45S5OvYtT8OJUfE1VEBOFfTeliS7t0LK+oe1CPK4mZz68nqaH4ye/Wxjn3QdNS7MFpziEfLkJio9m43VL6fnVq4gp67VVSsC5gxHShANebNmgcJ4Oys5Empio+xjqmnxP+QZwHj4Sbb/7Htsvm1+dAgdpie4jJioSN2GNLu1tUF+eq18ikjO0F0wV0v/+DX7RHvDu27xIMOqiu+dx8Eg84PoCWj6jb4krQHamUj1V94m6MHmZrNcBwyfaYN2qHbicKw4Eag7RBGDkyJEPBahoZ8dNFMxfz549sX379loQqHmIO3sch6CA88sdYKNvK6zZqUYvjOpqi3+ugErblPBgrM90R79ODUvcpvyjACmHfsDXj72LqUM6o7WtQvq3MbiVUNw1WCNlXMGx3ZelA9IucGrxhDxTC6XizI4ghMIWg5d4oU9Dk7daqGPritdcj2ProVizOwDgIC2JtMd19kCkNOGIlztY6V1wVTHnEXZDmmjbB13t6xXOVEtG+M4dyJSOIjs9XdJHrULGhXDsVirg1K8DWuh5OynPYUfgYUAxAkvG98TDoxxL43HYdnWH65/BOHxd5wi6mtJu5yeCkwO0+tIXqKtXr65BgZqGy6fOSF/boF/7Znp2iAuQfvy/WB+SAXvvyRjbTXtNl7Ypu0OQ8WpntH3K+BillEP4ZnEmpk/vg4aPNkTzF5+T5sbj2p3CHXNTFVw/h/9J+/56z9bl30X4upnw/OASPPx+gP+4F6Enao1Xpymc+rZCyNYjuGJmScpBWpKMazgtUtLKGe1b6tkoUzKOb9uKEDjDe8EodNMOzPQzCNmUiVe72OEpeVbx7uP6udPSot0GAzrZSlGnjZCfeAzrpozH1PM94LfzK4xzVMivmaZOiw7o5/Q3th6+YXZ7d6Wh2w9XNAHw4jZ+NYJ2oIaGhqoDVdw8QJy6r9ZybuDUblG53AGd7HUu4VA6ru/9D6aM+Rb5Pv74Y9X/oVVdrXcU3MGlI9fwXGsriLOzRpG2UcfWfIfEKRPR/1lxbGuJFi9aS18TcOF2ShnW/xzEnjmO09JUdtR/sfar5Vi+vPDh9+n7eLlta/QPbYM118Lwyww3WD1qfPDrVw9NW7UCTpzH9VQzG3kgXytleqkoO9yPOlpISTZiS5EKN1XGFQpd6U32il7kszGS0nVez49aQy9ZuJFfeIY8xwDVZdo4xJoAO/KYupj8/Pzkxxc0f0J/soM9efqF0NViq22zKSH8B/Jx/dDIC/qxFOhlRw2n7qLqWNpRKwtUajlRba0pHBNFZKKYrDoqiA6g/mLvWOFCHqN1K/PbkvsEX9qw9wpl6CuqSQulWVZ25BUYK88oST6lnVhBg7y3UsyDEQO5FLvFmyyk7Zr1/LCilbZqxhQbaSqPPSkg+r48T6bKoJijP9Nsd1uyH7GCDsRlyy9o09pm3TVuHEKetD220/fzqhgHqUGFFWligVO4eNBo7eEontJCZtefJizeQHuvpempoC2Qlvk51NRiAgXGGbGQaCqD+wdQtE4lnirjBh39ZQ65K5xoxLK9OkNoxBCdCeTp5kouLnbSQm3kz5NXFAs9P8+c6Q6ZEENSWO2hW4ld/QI1nxKCppBCWn4tpwaXfidWXQFrfJCq0v4mv4ETaONl7bhUkTJsAdkUc4BQyIgg1VQeWy+gMKW+b6KizPDl1F38raO2UMyD7UzRbda228YNaykMUiMPTioRn9o1KBmXjp+VFgMnvOcbgE0bNmCD5vHrPly5shv+c73g3vJpPddOVchMTUa8/MywfyqDrbvao5nO/xULRQt0e2s2/BZY4ddZEzAj8LrW6ZgmeGmGP37ddwRBn/SV55XC1WRkVINzu/r64YpKz+bNm6ufs9pBcy9UcQ1cFJOJojJRnS2qtKvHKd80XDweDiWs0dvFzvjTsyZR4vzmtfirfib2LJqk1ShhLCatPoC6Ync0/CYSTDxLqqk8thzeHY56r9daoF7TlrCXplI270P4XU0hZhm3WWaIg9SQzKs4/tdFKebaw8XhGXlmRdBUBjtheE+HYq6nPoWmrVpIy+ZlbP4rAnfluTWdphsR98Nl2qptoBbEIWrfRWmiEwa6NNVbvGjQ003QwjoXaZk50nbJEEJ21C/wPfMafty88Z8DAM3D/2O83lD66VevmDgEJh8JFyMRYXCHgJCbcBtXxGT7FmjawPSK3UKEnCwlctEMzzWsK88zDxykBjwY69WrJ1xsHi7/Kdkj0jL/vLSYKZGZXcIuH92T9lLPSxOGAjsbCbduSV8VaO9gBf0jtkojF1npOdKPfA5lqEivMJoAbdy4sbpy8/Tp0xygrIjiAtVc74VKsacRfCgFcOoFVzsTCuKebALbdvk4dzcNBrcqYvz6ksv4v49fhY2+Ip8GzdDGUcSfqUNgUnHh2Alp62ZghyD/Bnas3YgjcIHPZ2+hc71S7zboKEB64l3ctLJBs0YcpNVEDmJPHlKP9XIa3Bl2pQ4bCzz5nA3a4TbuJufJ84qRcQXHxVisXr2KCWxCfmwI/L89AGr9Hj57xxnag2xMk4nEmARYtWmKRmVdvsuROJrQ7ocbFhamrtzs2LGj/A7GitINVPO8ubgKGdcv4Lg0pb+5ixHqPAv7rra4Gn4F8cUdkubfQujiT7D1JS+8blPMgJNHGuDZVmJYjYlDYDSVx1YvwKG57s8QowzCsWnmBIxdU4CxAd/Db1hLrbGwpspEzIUoKNyc0Lq+eUUXB2mxMnD9nDgFo284inHqNLNHV+sYhF+5Jy1axSHkXD6F3dJaYdXDAc2LBHYOEk/+hJljPoQ/RmL97wsxrLiVozRybuNCGNDHuWUJTSYqhwhQTTciEaBiyIMIULFBZMxYmkAVw6C0by5etYGajsjvP8KYMW9iyPur1XUTGaFf419jPsL3kemFbzHaM3Byc4NVyAmcT9E5JlVJR4CfvA33tu3Q9/M/cWT9XEzbeknnyDUP8bu/gPc7E7EkUJx0vYodX/4LY7y/kLZBJezwS1SxO/CJ9xi884YPPouUAjgjBF//y1vr+qtouu8Ky1aTEKT4P/wSEYzv3u0ARXnsrBfcRMTuW+jR1wnNzWjnX00uOmIamREUMHFsYVWuSDlYkYvHKPKa+ANFZOotbzMgkUJndy6mOi+bYoI+p7EPGtXrqQzWaoo/z38nRSToKyHXyKO4wAnS9zGualcMzeklysgvVm3FY/WvwmTmTAyLEsOjxPpVlhsWmJXM4+TX3Zl8gm7p9OAtT8b22i2Lf7ZZJVftqig3yp/6N5xIgUZW+FYmDtIKJZd/W041epyU6UoTpEqKWjOcLE1oel2eOEBZZdEN1IMHD8qvVEf3KWbLBLIaEkAXc0q7c28sMwtS1V3poKQ3dfc9TGkV9SeXAZ/arVAWqOc0FFOHHMH6HZdQ8okTU2Tj0taPMWaMN6au3is934vVU8Wplo+x9ZL+9n+U/Dc2rszCjPfdStf0upxouhFxP1xWWRo2bIjJkyc/OOXbu3dvjB8/vpreC/UJ2Az/CCsabsM3O65X7Y23TVJ0m/Xth+8a2GYVQHlmG1adeg3LfbriaXM7rSvIgcoqjIpyr24h7+4fUmCMGXTjUKVQxKq3qZ/J9wY0nTitJo4GxGK3atUq7kbEqoxY9nx9fdXLomjsIRp9VC/inqUh9OnQf1HAuVTpWXmrjCNSY8h/55CK+jvLBx+RVjgL1G01FL6LGmPjwq2IUpYwFKZC5SB+77+x4HQ/rPigOywrac9O7PXr9sOdMmWK+iiBsaoglr1PPvlEPS5ZEOOURcOP6nOEaoFHrfpi/n+G4Y7vMuw0olCodB5F/YbN4dDwKf1DWypL7lkEzAxGa19feOu5taS5sBBpKk+zCiVCbBU+2tEOy5e/VgWnVAm5UQF4999PYs6yt+CoqPjBo2KjtH79evj5+UHa+4ePjw+HJzNL2suqdISKcePG8ZhlZjQOUlbueKPEqitedpkp+NQuKzeiG5G+fri8IWLVhVhWxTKrfcp3yZIlNfDm4qw8cZCyMtO08xPdiFJSUjhAWbWnHajXr19XL9tiGedAZfpwkDKTaQeophvRd999xwHKagyxLItlWizbYhkXy/rq1as5UNlDOEhZqWna+Wkaymva+fXs2VN+B2M1i1i2xTIulvXQ0FA+QmUP4WIjZjQRoLt27VI3UhAWLVqEAQMGqKcZq01EUxFRkPTnn3+qj1BHjRrFFem1GAcpK5FugIpuRIMGDeJORKzW0w7UwMBAXi9qKQ5SZpDYUEybNk09zQHKmH4hISGYN2+eeprXk9qHg5Tppb2nLe6o7+npyRsGxgzgMze1Fwcpewhf+2GsbDhQax8OUqam3dFl1apVePvttzlAGSsDDtTag4e/1HIiQLW7Ed28eZMbyjNWDkRgitsDitsEihAVgTpy5Ej1WR9Ws3CQ1lK6AarpRtS8eXP1c8ZY+dAOVPFV3AVJ3A2JA7Xm4CCtZTTdiLgfLmOVSwSql5fXg5uLawJVNHlg1RsHaS2h287v9OnTHKCMVQFx2WTy5MkPArV37958hFrNcZDWcKLgQbcfrmh11rFjR/kdjLGqoAnUe/fuPXSEyoFa/XCQ1lAiQEU/3D59+nA/XMbMmO4RqghUUb8g6hhY9cBBWsNoB6ioEhTVgr/88gsHKGNmTjtQBVHHwIFaPXCQ1iC6AaqpEuRxa4xVHyJQNfdCFThQzR83ZKgBNN2I4uLieNA3YzWMCFBNs5SZM2di3LhxXCRoZviItBoTASqKE8Q1FXFtJTg4mI9AGathRGjyEap54yCthsQKpB2g4pqKuLYiTgkxxmomfYEq+mHzzcWrHgdpNSICVNONiAOUsdpJE6hiLPjevXvVQ9vEEDcO1KrDQVoNaAeoIPZIOUAZq93EWPA//vhDPbRNDHHjQK06HKRmTKwQugHK3YgYY9rE0DYxRpwDtepwkJohsQKIFaFx48ZISUnhAGWMlai4QBVjy1nF4iA1I5oA1bTzCwsLw3fffVcJAUrIjw/FF5NWICwxX55XyfIu49eP5mJTVJr02zBWUXIQv/crTPpiPxLLe0EriMSqTq9iVWSmPKMqELpYxcOu1ZvYFBKm3o6IseVijDkHasXhcaRmQCzg4gbAb7zxBoYMGaIeK1ZyJ6ICpBxcjenrTyAxah92nsyAndsA9LR5Sn4dUCVFYfuBOhg07UPMnvIGXJo8Lr+iTYToHiz66Ah6fPUxBljpeU9WJL6f+Q32xZzF9p0nobRzg2dPG/wzyEaF+7HHsCujMz6cNAWTvLrB6lEL+TXjkfIkvn3/Rzw1dzG8HRug9N+B1UyJOLj8U6yPvImo7TtxUmkPN8+usHlScxyQjyRpHTgAN0ybNh1TRrigid7lTwrR0K/w0Z5OWP75ADStW4olLP86fp8yAguar8Tfc7vjn7VMS/5JLG87A9gahBkuCnmmNpJWpQ2Y8fX/EFvMOgtkIvbwcWR0GoNJ0yfCq1tTPCq/YrwCKCPX4f2V9TB31WhEh/zJNxevaCJIWdXIysqiwMBAcnV1VT8OHTokv1Iadyj4w47SzlA/8gtPk+dpqCgvbhfNdrUkhfsyOpyUL8/Xcj+S1gz2oE/DEqR3G6Ki7KO+ZCstMtbzw0gpz31AlUpn/UdTQwtrcvc9SMmGv1kxVJR75Sca6TSbgu/myfMYkyUF01RLKY2c/Cg8W3cBy6a44HnUpdjlT0X3z62lwd0XUViynvXAoFyKC5pG9iIJR2yhmAJ5tq68cPKzc5PWwwx5RnFS6ejiXtI6253mhyUVWe9UGRHk/5YDQeFBvkcSS1gvi5NJVza+S07TdtFd6RvobmvEtJjHygcHaRUo14VaGUaf2lgQrOZQaJq+NVyz0lpR//Xn6eF3ZFJ0wNtk5R1It0tcW+9L7/WUvo8TTQ2+I8/TERdIYyyk30UxhYISSrux0kilcL9B1Hb2HkoybQvCaiSVtKgvIGspzKxmhZLuLqNa9lFa3FJa/uBJAdH35Zmy3CgKGOJK3oExpQ4m1d1dNL27vXonEnZ+dCJXfkGXsUFacIEC+lsRLD+iYH07t5QnrUo+0t8BUkwIogR5bqllHie/7r1pdujdB+s9B2rF4GuklUx0I3Jzcyu3frgFMVHYd1Oa6NIOLesb+t8Zj6vJmVDJz9TSw/Hz8lsY590HTUs6y0UJOHcwQppwQIeWDQrn6aDsTKSJibqPoe4j6lkmaADn4SPRdt332H45S57H2H3EREXgJqzRpb0N6stz9UtEcob2tX4V0v/+DX7RHvDu27x0lwwoDiFfboLio9l43VJ6fvUKYhLzCl8zEd09j4NH4gHXF9DyGX0rSgGyM5XqqbpP1IXJq1K9Dhg+0QbrVu3A5VyRy4U3FxfbG7HdEdsfsR3SXENlpuMgrSTa7fwmTZpUTg3l8xB39jgO4Sk4v9wBNvq2EKp4nA+7Kk30wqiutlrXW6SNS3gw1me6oV8nI8ajZlzBsd2XpQPSLnBqoec6KqXizI4ghKIFBi/xQp+GJq/+qGPritddj2HroVhpk8KYRNqRO7s/UppwxMsdrPSGoSpGCqgb0kRbN3S1r1c4Uy0Z4dKymen5Mjo9XZpNXgFSDv2Arx97F1OHdEZrW3HdMwa3EnIKXzaJChkXwrFbqYBTvw5ooefXIeU57Ag8DChGYMn4njB9tPjjsO3qDtc/g3H4erY8r5C+QBXbJ1HxW1qixqO2VwdzkFYw3X64ohvRmDFjyulifxounzojrXlt0K99Mz17rgVIP/5frA/JgL33ZIzp1kieL0gbl90hyBjkgrZPlbyPXnD9HP4n7URbDegE+8d13p9/F+HrZsLzg0t4den38B/3Ip6QXzJJnabSRqYVQrYewRVOUiZkXMOpMCklrZzRvqWedYeScXzbVoRQR3gvHIVu2oGZfga7N2Xi1S52+ouEikEph/CNbyamT++Dho82RPMXn5PmxuP6ncKjRdPcx/Vzp6Xv0gYDOtlKUaeNkJ94DOumjMfU8z3gt/MrjHPUV7RkvDotOqCf09/YevjGw2ejZNqBKrZPvXv3Vm+vxHbLWDdv3sSUKVPEZUJ5Tu3DQVpBNN2IKrQfbs4NnNodLa1+HdDJXud0K6Xj+t7/YIrXt8j38ccfq/4Pdo9pBWDBHVw6cg3PtraCOGNlWA5iz5zAaWkqO+q/8F++HMvlh9+n7+Pltq3RP7Qt1lwLwy8z3U2q2H1YPTRt1Qo4cR7XU6toOA4zI4Scy6ewW9qRQ28n2OtcwiDlVexdPQNeX2RhwoYfsOpNe9SVXxMKbl3Ckfjn0drqaXmOEaRgPrZmHRIn+6D/s+I8jiVavGgtfU3AhdspekPJKBSPM3ujpIlURP137YP1aPnyL/Gpz0C0ffYdhDouxZVTGzCjdzMTKnZ1PP4cWjk9hvAzMdJPLJ4IVLF9unfvnnp7JbZbxgZqYmIiXF1dy+ngoJoqvFTKykt0dDTNnDlTXSggvkoBKr9S/gqiA6i/9HOgcCGP0V7k5aV5vEFudm3JfYIvbdh7hTL0VVekhdIsKzvy2hYjzzBEUxmsp4hDlUExR3+m2e62ZD9iBe2/nS2/IMu7RQdW+tDgwaNotIcLKeyG0OytZym9hIqPvHA/shM/7yIXQjBR6PZmYfGNiweNfrCcSw9PN7Kz608TFm+gvdfS9BQSFUiL+hyywgQKjDO2Ejyf0k6soIHeW+lGruY75lLsFm/172A9/0DRqnXBmGIjTeVx/wCK1qkNVGXcoKO/zCF3hRONWLaX4vL0rSTZlBD+A/m4fmhkQV8Ghfu5kYWen2eI2G6tXr1a/fcOGTLE4IgCUbAktnUqVQkrdQ3GQVpOdANUPK9Y+ZQQNIUU0s+znLqLSh3XcYHkBSODVFMZbL2AwpT6VhYVZYYvp+7idxn1i9bwgDSKWOlN3hujpE2hUDhEwRXO5P1LtLRpKl5hkEobpRPp8hxWe92mIJ920rploGK8WJoKWOODVJX2N/kNnEAbr2TKc4R/qoYx4heK1bcalBik/3wPvUPI1ETV+kCygD2N2nJVq8o+gcL8JpCnmyu5uNiV4u+Rg9TOj8JNGFGmG6inT5+WX/mHCFlRAVybg5RP7ZaRphtR5ffDTcPF4+FQwhq9O9kZcXrWdJrKYMvh3eGo93qqBeo1bQl7aSpl836E35VPx6aHY/OX0Xii3mPy9dvHYdX/XXw0Mh0/+gbiZJZYPxkrQeZVnPjrojTRHi4OzxTOqzBKnN+8Fn/Vz8Sezyeq6xkKH2MxafUBPCbeEn4TCSZduxeVx5G4CScM7+lQzPXap9C0VQtplbqMzX9F4K48F2iCl2b449d9RxD0SV95XsUTl6LEKV9xaUqc8nV2di5yL9QmTZrgxIkTXGzESk+3nZ+4pVGl9sMtiEPUPrFx6YQBLk1L3wXo6SZoYZ2LtMwcaRfbkHwkXIxEBJqjt0txgU3ITbiNK2KyvQ2aNpDLnuo8hSZtk3Hx+j08qHO0aILWnaR98nMxiEsrbmtEyMlSIhfN8GxD7atdrDZ6MMSrVy+42OjrzmXII9Ki/py0u6lEZnZJ6UfIjvoFvmdew4+bN2LDhg0PP/w/xmvqITBXEWNKK026J+38npcmDO0QZCPh1i3pqwLtHaygf6BZaeQiK11a+9o/hzIU0j8IVHGgIIgDB02gim2euEZ66tQp9Wu1EQdpKWlKvUVDeRGgolxcNIoWtzSqTBR7GsGHUgCnXnC10y71N9KTTWDbLh/nEtJKGGKSigvHTkBJnTCwuMDOv4Ed/htwBC7wWfgWOteT36Xoihl7L2DvjG7SZkGWF4vIQzegGNoDHZ8rrpSiAOmJd3DTygbNGnGQ1m45iD15SD3Ey2lIZ9iVOgws8ORzNmiH27ibXML4z7wL2LzkMv7v41dho69grkEztHW0lL6jiUNgMq7guBhCVuwOASE/NgT+3x4AtX4Pn73jDBPWbB2ZSIxJgFWbpmhU6r3tokRoigMG3UAdOHCgumiqtuIgNZIIUDFoWQxe1jSUFwFack/ciqBCxvULOC5N6R2OYow6z8K+qy2uhV9FvKFDUk1lsNULcGiuO6hFlOuHY9PMCRjjr8LYgO+xbHir4isNKQ1Rm76BX9wQrP1yGFoVu/RlIuZCFBRuTmhdvwy70awGyMD1cxelZUffcBHj1Glmj67WNxB+5Z60xBYj/xZCF8/F1pe88LpNMYO3HmmAZ1uJqvt4XCv1EBhN5THBqocDmhdZrHOQePInzBzzIfwxEut/X4hhxf0epZFzGxfCgD7OLUtoYlE6uoG6aNEiHDt2DIsXL1Y/r3Xka6WsGPpaalWdNIoImC5X5SrUBQCFVYzTKSBCb9M0AwqrGZs21N+mrCAmiOaM9SqstBVbgSKVwfJrClfynLeWdkTcJYO1DHl36IS/D/WbsJaOxOlU9urKP0tretlS/4ALZGqjQVbNZUZQwMSxhVW5YvmDFbl4jCKviT9QRGZpi1oSKXSWC1lODS5alFdwnYLmjNJanwbTv7ZE6yx3uRQXvITGjvYgF4X4XRRk5/YGeY1dQsFxWiVzeouNsikm6HMa6zWKPFystNZZ7XWp8DWFy0ia57+TIhIMrR+ieGqC9H2MKzbKj1pDvSqo+l0UVPr6+qq3i+Lv0jxu3rwpv6OSqFIpeu8+ikqpuq0F3/3FAHEEWqPvmpB1Asv7+eDqnP/iP681K/11ViOR8iL+8P0GhzpOxudvtofCIhEHV/yFehO84KI5DfwAIe/8Onj0ioTPuZUY3rR2nNql5IP4asZ6nFXG4vBv+yF6UUnhARcPdzg2evgYX5WahPRnWqNjt57oO3AAerV8usL+39UMhKyTX6Nvv5v45OJyvKYeF1oBSrz7S3nIR/zvk9H0DSAw7lsMtzL0t2TivL8Xeh1/G2fXD0ezcjr/KOpDxHbRz89PfacqcccqUXCkUWl1ImoFSN67ED1f2YXBocFY+nJjeX4lU8cpK0IciYpy75rd1Pk+xWzxIashART9YLxceRJ3nzlIq8b0JPdZa2mb9FmKzzPwNz/ycl9DUfp2IFV3KXR2b+rue4TSamU1vebmANKRy8gtFKP3M8illOg/ab67NUExiD7dc9Pw2QAmHchdoS1jXWlIQJTBYVdlYvTdX8rC+CNSVdIemt12IPkeLXqHGVOJo01xBDpu3LhKGOJXMvVQpf420ufRnnyCbpXb31laHKS1Xe4l2uI9iHwCr5X/xjhDWsjFxl4cEug89I99zaeMiH/TkH7L6Eipb3VVQ6huUZBPe+kzsqQeK09Tjjy7qHxKCp1HbcXnqRhFAdHaYx5ZUSrKvbqFvLt/SIExOk1FykuFBqm0g7VlNnl5jSZPN3tp+bAnN8/R0vPZtEW3SYqgSqGIVW9TP5NvaViUGFMqQlSczjWPg4sMOrdmBNW3ENsUK/WloFL0nChXHKS1njhqDKFPh/yLAs6lVtkenfn8HlUs8wgtbi+u17nR4qMp8kz9VHeDyEd0yYEdjdxyrco2ItVHNsXtWUxDvH+ks+kVsKNWKUekxvjn7zyXUX5/pwjS3bt3y8+qmtgx2kr/mjqHZrqLa88Kar/4CFXV7iRX7dZ6FnjUqi/mrxmGO77LsDO+bLeIMlnuWQTMCkZrX194Ozaopdf8CLmXw/HXOaV0QOoEp1bGXmfLQlKJ44GZuiHIKzOwZnQCvliwy3C1uiksnkJDh+ZoWL+CrsEaRVqGojZhZqAtfFeNhqOi/KrexVjS/v37y8+qGN3C7n+fxktTvNG7jbguqkRS+n1UVWduLjZirBgREeL+q6jEMcK5iN06CY5vBQBDNyIy8B0DQ4Q0RRaLcREeWBmxBR84VVSBC2MPCwkJQefOncv3JhxGK0DK0dWYe+ZlfD2hKY58PAivLA2HYuQWRP08Qv/tJCsYH5EyVoxr165h4cKF8rPKkIGY85ekfWtLdHB/Ec0NrZ150di+6icpRBVoO20y3urAIcoqz7Zt27Bjxw75WSXLisRP3z+Cd0c64glp+W/u0Eo9W5mUiewqOiysxkFaAOX1owja5I/ly1fAf1MQDl1P59NbrNx06dIFf/7550N9RStU7k2cDhW32HLEK87WhX1d9VE3tliJL//MgauPP7Z93g/P8vgXVolEJyMxPLDyZeHSlo2IGzkCLk+L09Z18MRT9Qs7p529gltKk29wVybVMkjFuMTtC95Ex1Y9MNhrImbOnI6JXoPxUquuGLpgO6IzTOoozdhDmjdvrh4nt379enlOxVLdOov9Z1IAhQMcW+jrQ6NCdnw4ts55C92/VGJs4F/YuXpUuV4HY8wYbm5u6p1McYq38sgtFKP64gP3Z+U6ikfxTJNnC7s2ZWchK7tqgrT6XSPNu4ytE0bgrR/Ebab1UcB+7BrsWPM2HJ7g3XRWNuJoVPQT3b17dwUXWuQjYccMtBu8EslPuWPC7EFo/dDym43Es3vxR1QDDBw+Bj4fvI4XOEBZFdI0rBFfxU5nhaM47J67Dpk+H2P4g/aJhNzIb+He8QMcgScCojfiXYdyaK1YWiJIq49MurLRmyzFp2fwYU8jNxq+3yVjxtqwYYN6uTp48KA8pyKk0NHFbmRhqIxfdZ8So0JopZcL2Q1eSH9E6xsmlE8Z0dtp8Yh+5O45kjxcrMnOfQL5bgmnBL03imbMNGIsqWjMIB4V3xYwn5KPrKB/6WmoURAdQNIurrSOljxkrKJUr1O7Bdfwv3XbkSI/Ld5l/LJuLy7zGV5WDry8vLB69Wr07t1bfecf0SKt3OXewPG/IqUJW/RysoHeRpQWT6DxC/0w5csFGHDxKwxzGY9vI1PVe4+FRDXjCoz+MgEDVgdh76+bsePEOYR8YIntbw3DiEV7EJ//z7sZKwvRLnXVqlXq6eHDh6vP2lSY7Cj8+vOTGD+iHXSbhtZ53hYdrcRUBtKzqmgAjByo1UNcIHk9OOos6WH8HfGLo//78oMfoNOnT8tLSflQxWyhkaIhuuJd2hJTfD8jNdH9aOKL6t/joTaCOadpZe+J0r/X6XSjbrvYQ3p/D5oderfMjRt0Pwt+8EP7IRo3lK9MurrlX+QqbhTwULN/+fHgZgJV192Ig5QxI4jTWDNnzlQvW9LRaTmfysqju0FTCy9Z9FhJETklnYJNlIKxc+FybjWHQtMKNx2aU1yKfqt07pBSeKcfaaedrGaFUiqf4WXlSOxUau6OJS6DlDdVXBB9tCCUkopbbgsuUEB/0d2opLaaFad6ndp91gHde4lb1BuhV0e0rai7PLBaRZzKFfehTUlJgRSgmDx5cjkXVyhxLTISKVCg/aDOsH+shCI5ykFWunxj6ZZWaKQpSnqiAZrbK4D8fOSpRM5q1EG9Bg3VN4mOv5OKzMKZjJXZ4cOH4ezsrL78ceDAAfXXckUJ2LdqD14Y1Q0Ni1stLB7HU43E0p2C67eTkV04t1JVryB9pBVe9h5UOGbIIFsM8e4Ney5qZOVg9uzZcHJywsqVKyumOlGViMvhN6QJA9dHtdCdU9gVKt5vie7Duj0I3jo2w7H2SBQu/PcDdFZor9q5iLtyAXel9/dwaYVGJeQ0Y8a4desWevXqpa4fEDuX5X+LyQKkn9yKX5p64S0HEZTFsKiPJtbPqCez07OqpClDNRtHWg/2b07HksG28nP9LEd8gsVvtilyUZqx0hKl/ZHS0eLSpUtRr56BlbkM6F40jhyQglHREd1faGy4zzAl4+TPAdh0KQNo+z4WeDmrjzQLWeDRxjZorjssJu8K9vyyF0rLofDxcMDj8mzGykIUGolx1iJEK0ReNLZ9k4j/G9FBaxnX5wk0ava8eirlWgJSqyBIq+HdX+R7XHo5F14jeuihIPux6+j4XUN3mGfMeOK6j7iHasUpoLSwhYW3Q+uxik5nG7iAqUqjq0ELyF0UVtiPN/IuORl0McCLLPm+pawciXuRim1uxQ17EQVGU2igUdc8/7mHL9ovoaMP1QdUjmp2RCqIu5X0wpQf9+Na2K9Y4zsLE7x8MMt3DbaEReLU9+Ph+izvc7OyE9d/Tpw4gUGDBslzKgDdQ/jOEFyUJq16OaKl3uuj+VDGHsevC73R//V1UL69Fof3r8a7Jd4lJwfxod9g4oxETNm+DvNfaQ6uGmDlQXQ0EkejFXGpg7LvIjLQF+PHB+FxxWMlLOMSykLynbTC6dt3cU9Z+eMe+e4vjBVDnNa9ePEiPvnkE3lOecnE+U2fYeme20iK2oedJ+MLZ9u5wbOn7jXSfCRduAG0c4VLtx7o0/Ml9HjRCiU37RIh6ofRU2Lx9m9+tfjWdKwiDBs2DDNmzEDPnj3lOeUgNwqbpn+GH6Jy0MzmGdSR1pPYw8eR0XYsFq6Zh9esH+4+TYl78cWsAByJktaPNq3RSH1YmI/UpCw83eg5tBuzAHNetqqU5Z6DlLFi3L9/X/21/IsoKlphiI5ZCsz+cSZeaSqfoUk5iK9+qovxU7rh6cI5jJlErBvVb72oONXw1C5jlUNsKKpniC7HxJ+tseL3Of+EKAiZ5/bid3qyhMINxkrGIfowPiJlrMYoPBJ9e+h/kN7HHY6NtK+I5iMp6gwaffIXfhxuzad5WamJGziMHj268prUVyMcpAaIYpNOnTrx3herFgoufY/XXN5DsFKeUYQb/MKDMMOFbwLOTDN+/Hj1cLC1a9eqGzGwQhykxRDdbMTNa4WPP/5Y3ZSZMcZqO3Hjhg8++EA9jnTUqFFo2LCh/ErtxUFqgLigvmvXLvU995o2baou9y7XKjXGGKuGIiIisHDhQvXNvceNG6fu/PX4448jLi4OU6ZMqXXhykFqBHF0unnzZvUCMmTIEA5UxhiTiDaBe/fuxfr163Hw4EG0a9cOhw4dqnVBylW7RhALhWiDlZSUhL59+6r7Sw4dOlR98Z0xxmojcYCxfft2jBkzBq1atVLPE89r46leDtJS0A7ULl26oE2bNpg1axYHKmOs1hABKq6TNmrUCHv27FEfgdatW1fdvN7BwUF+V+3CQWoCEaii2010dLT6OQcqY6ym0xeg4ghUnM4Vp3Zr8+UuDtIyEHtfy5YtKxKoYoFjjLGaoLgA1QTnvXv31F87duyo/lobcZCWA+1AFTd/FgucWPA4UBlj1ZUYtbBx40Y0btxYb4Bq3LhxQ12EWZtxkJYjEajfffedeoETC54IVHHdgAOVMVZdiAAV3Yv69Omj/hoWFqY3QDWUSiWaNGkiP6udePhLBRKdkfz8/NRjrQIDA9W34+IuSYwxc6Q9bl4QjWiM2WaJ2hBxWUulUsHConY2n+QgrQQiUKdNm6aeNnbhZIyxymBqgGqIsaTW1tbIzMxEvXq185YIHKSVpKwLK2OMlafy3CaJMK3Njew5SCuZ7sK7YsUK7pLEGKtUISEhmDdvnnqad+rLjoO0iohA/e2339RdQUTFm7jbvOiYxBhjFUW7bmPbtm149dVXOUDLAVftVhGx8Hp5eT1oO9i7d29120GxoDPGWHkS2xWxfRE762J7I7Y7b7zxBodoOeEgrWKatoNiULOmjy93SWKMlQd9ASq2N7WxH25F4iA1E9p9fAVuO8gYMxUHaOXiIDUzYkHX13aQA5UxVhKxnRg/fjwHaCXjIDVT+vr4cttBxpg+IkDFDrfYTtja2nKAVjIOUjOnCdTTp08/aDvIgcoYE7QDVBA73nPnzuUArWQcpNWEuLOC6Hep3cdXBKoYRsMYq130BajY4RY73qzycZBWM6J5g3agahpLc6AyVvNxgJonbshQzYkQ5baDjNVs4lKOv7+/+rTtzJkzMW7cOA5PM8JBWgPo65k5fPhw9TRjrPoSAbp582ZMmTJFHZ4iRDlAzQ8HaQ2iHahNmzZVr3Tcx5ex6kc7QEULUV6XzRtfI61BxCldcSQaHBz8oEsStx1krPoQASqKCBs3bqyugRC1EIZuqs3MAwdpDSRK3zVdkrQDVTMmlTFmXjQBKqrxRYCGhYVxgFYjHKQ1mG6gtmvXjrskMWZGxOUYUTCoCVDNEajY+WXVBwdpLaAJ1IsXL6qfi9J5DlTGqo4mQMXwNVHTsHv3bj4CrcY4SGsRTZck7baDIlDFaSXGWMXTDVBRYX/gwAH0799ffgerjrhqtxYTR6TiJr/r16/H6tWrMWrUKG4txlgF0DdEjcd81xwcpExd1au5az4HKmPlhwO0duAgZQ9oB+qGDRvg6enJKzxjJtKsT3FxcRygNRwHKStCbACmTZumnuYNAGOlwzuktQ8HKdOLT0kxVjp8iaT24iBlBukG6ooVK7hEnzEtHKCMh78wg8QRqGg7KEr0xVhUbjvIWCGxDoh1QawTr7zyirrxiVhHOERrHw5SZhQRqF5eXkXaDnKgstpGc09QsQ6IdUGsE6K5PAdo7cVBykpFbCx0+/iOHz+euySxGk8ToJqbavMRKNPgIGUm0Q5US0tLbjvIaizdABWdwUSHMA5QpsFByspEbEz0tR3kQGXVXXEByjfWZro4SFm50NfHV9wWivv4suqGA5SVFgcpK1eaQD19+rT6tlDi9lBiSAAHKjN3mnuCcoCy0uIgrTQ5iN/7FSZ9sR8JVTJyl5B3bRs+mr4ZUcoCeV7F6dixo/q2UOL+iqGhoepA5SNUZo40Adq4cWP1zp/YCeQAZaXBDRkMSsTB5Z9ifeRNRG3fiZNKe7h5doXNk5r9j3wkRe3DAbhh2rTpmDLCBU0etZBf0yaFaOhX+GhPJ3y1aACsiryHkBW5ATO+/h9ipe+382QG7NwGoKfNU/LrQiZiDx9HRqcxmDR9Iry6NcWj8ivGK4Aych3eX1kPc1eNhqPiEXl+xdMMWue+o8xciADdvHmzeujKkCFDMGPGDHUVevVByI/fC79FZ9Dzsyno3aT0W4TiZSJylSe88QWOf+BkwramnORdxq8f/4icd2dhtGMD6Nu6mgURpKwEScE01VJaap38KDxbJc/UyKa44HnkCmtyXxxGybovk4run1tLg7svorDkfHlecVLp6OJe0o5Nd5ofliT9y4epMiLI/y0HgsKDfI8kFnndOJl0ZeO75DRtF9017RuUSWBgILm6uqofYjorK0t+hbHKkZSURKtXrxYHECQFKB06dEh+pTLkU3LYChrrNYo8XKyk30FBdm5vkJeX14PHaA8XUihcyXP+zxSekC3/O10qyosLoU9HLaTguOLeU4y8axTo40rtFx+WtgbFyaBwPzey8wunXHlOEZkRFDBxbOHvK1Ldzo08tf4OL6/R5OlmTwqXkTQv4AjF5Zm2wVFlhNOqkZMp4Fyqidu8isdBWiIVKcMWkLW0oFjNCqU0ee5Dso/SYltpQYInBUTfl2fKcqMoYIgreQfGlLwQFFyggP7SymX5EQUn6QvdPIoL9FFvABQTgihBnltqmcfJr3tvmh16lwrkWZVJhKduoDJW0cRyV3UBqusOBU91kn6XfrTsRKo8T0OE5C6a7WpJCvdldETfDvj9SFoz2IM+PXC3lOGSS3FB08heBN+IXyi22H9sRJCqqaTNny/ZSt/Pev4BUspzH1Cl0ln/0WQpDjR8D+o50DCGinKv/EQjnWZT8B3Dv01V4WukJbqPmKhI3IQ1urS3QX15rn6JSM7Il6cFFdL//g1+0R7w7tu8xNMSdPc8Dh6JB1xfQMtn9J12LUB2plI9VfeJujD5xGy9Dhg+0QbrVu3A5VyxXalc2m0HxWle0cdXdEkS11MZK2+iX/Tvv/+OPn36qK+BiuVMXL+v0p7RmZdw+PdIwKozOtlLx3MPscCjVt0xdIgjlPtWYOEfl6UtibYsXNq8FJ83ehfv93q2VKc7KSEUy5fsQJ54En4TCWUul8hBzPkI3IAThvdwgPbFKDWLBmg/eBhel7ag+774FYfvmfIDLVDX7jV8NPoMpq0IQ3Llb7JKxEFaEkrA2QPSAg9HvNzBSu9Cq4o5j7Ab0kTbPuhqX69wploywnfuQKbny+j0dEkftQoZF8KxW6mAU78OaKHn7aQ8hx2BhwHFCCwZ3xOmDwd/HLZd3eH6ZzAOX8+W51U+TaAGBweruyT17t2b2w6ycqMdoGJnTey0VXmAygpiorDvpjTRpR1a1je0SxyPq8mZDwdpejh+8ruFcd590LQ0W3CKQ8iXm6D4aDZet5SeX72KmETtHX8TSNvHcwcjpAkHvNiyQeE8HZSdiTQxUfcx1DV5778BnIePRNvvvsf2y1nyPPPBQVqSjGs4LVLSyhntW+opjqFkHN+2FSFwhveCUeimHZjpZxCyKROvdrEruqdWxH1cP3daWm3aYEAnWynqtBHyE49h3ZTxmHq+B/x2foVxjrp7saVTp0UH9HP6G1sP39DZ2618mi5J9+7de6iPb0SEWEEZKx19ASrOfoidNvOQh7izx3EICji/3AE2+rbCqnicD7sqTfTCqK62WsU+KilHg7E+0x39OjUsxdFoAVIO/YCvH3sXU4d0RmtbhfRvY3ArIUd+3UQZV3Bs92XAqQucWjwhz9RCqTizIwihsMXgJV7o09D0Asc6tq54zfU4th6KrfJtli4OUoMIOZdPYXc8Ab2dYF//4Y+LlFexd/UMeH2RBZ+NP2LlCAfUlV8TCm5dwpH459Da6ml5jgEUjzN7o6SJVET9dy2WL18uP77Epz4D0fbZdxDquBRXTm3AjN7Nyl5F9/hzaOX0GMLPxEg/0Txotx0Ugers7MxdkpjRDAWoeVWIp+HyqTPS1zbo176Znks0BUg//l+sD8mAvfdkjO2mfe4pGeG7Q5Dxame0fcr4GKWUQ/hmcSamT++Dho82RPMXn5PmxuPancJLRaYquH4O/4uXjjMGdIL94zq/T/5dhK+bCc8PLsHD7wf4j3sReqLWeHWawqlvK4RsPYIr5pak8rVSptd9ig7wJAsLkMLFg0ZrV6R5upGdXX+asHgD7b2WpueCfwGlhc6hphYTKDAuT55ngKYyuH8ARetUAKkybtDRX+aQu8KJRizbW6T6TZVxlrbOHkWDJ3xCi6YOJ/exfhQUXVKFW2ExgYWen2cuoqOjaebMmeriEPFVPGdMn2pVDZ59gvycFNJy7U1bYnWKZ1RpdC10FXk5WJOrz090LkOn0Cj/LK3pZakuAjJiq1JIlURHfd+miUGx8jZBXvdhRf0DLhRTcGhMsVE2Xdv4tnr9tPSYSkv9/MhPfiybP57c7RRk6elHe/RuH00hF1sWW4xZdThIDbpNQRPaSgucE00NviPPM5b4nz5BCmFjgvSfymDr+WFFK9/UUqUFe6D0u9jTqC1X/1n4VbEUNGkofRgUU7hiqVea/mTRdjYF3zX0c+WVyc6Pwo1eI6uGbqCK4QuMCaLyVlTgVqfhVAXRAdRfWpahcCGP0Vo7515vkJtdW3Kf4Esb9l6hDH3pkxZKs6zsyCswVp5RknxKO7GCBnlvpZgHO+C5FLvFW32AUPz2xpgg1VQe6xmtoMqgmKM/02x3W7IfsYIO6AzRMW3nX9qqhvuRnb6fV8X41K4hmVdx/K+L0hLfHi4Oz8gzK4KmMtgJw3vqqXxTewpNW7UALC5j818RuCvPxb1I7Nx0CpEX46EuG7KwhPPLfWAb/Sf+OJ6gfkt1p93HNyUlhbsksYduqi0uA5jnKVx9CpB0KQJHpCnL93yxcdMGbNigeWzDvisXsNf/E3i520Gh78xtZiruxMvTRqD0cKybfxEjP/GAzYNGMI+iYVMbSDvuuHkpzvQqWE3lsfULsG/2cFUHLBSw6TYSn/pNRuOt0zB0xnbEak7H0k3snDUPR3t9gUB/X8xb8R2W2O/B60O+QEiCMcVPuqMjqh4HqQEPKut69YSLjc6CUqJH8HST56WFVYnM7BJKvukeLh4/L00YCuxsJNy6JX1VoL2DFR7Ux1l2hOeno/Fqp2by9QcVMtNSkQPpZzfWriDWlYus9BzpRz6HMlz/r1QiUL/77jv18AVNH18O1NpFO0BfeeWVB/cErT5dstKkdT1c2ipYo7eLHUTxbMVR4vzmtfirfib2LJqEMWPGyI+xmLT6AOqKAC3DEBjN9tFyeHc46r1ea4F6TVvCXppK2bwP4Xfl8JN2/ncU2fnvDduL1Xfnn4O0WDmIPXlIXVnnNLgz7EodNhZ48jkbtMNt3E1Wj9oqXsYVHBeVb9LGQX9gE/JjQ+D/7QFQ6/fw2TvOeBCRjzbHyzN8MePl5niUlIj9eyuWLT2El/w+x/tdDR1FZyIxJgFWbZqikfE1C2ZBDF/Q9PHVBKrYoxfFJqxm0j0CFQEqWvtVu3uCFsQhat9FaaITBro0LUXVrezpJmhhnYu0zBxpq2AIITvqF/ieeQ0/bt6oddQrP/w/xusNpZ9+9YqJQ2DykXAxEhEGdwgIuQm3cUVMtm+Bpg3kjai08//mgndM2Pkn5GQppUOAZniuoXZZZ9XjIC1WBq6fEwu8vuEoxqnTzB5drWMQfuWegYX+n8pgqx4OaF4ksHOQePInzBzzIfwxEut/X4hhNrq1b4S86yFY/ZU/fg39GxfgiM5tmsDgPnrObVwIA/o4tyyhyYT50g7U//znP+pqTVG1yYFac4ghULoBKo5Aq+tNtSn2NIIPpQBOveBqZ8JR9JNNYNsuH+fupsHggWTeBWxechn/9/GrWqd0tTRohjaOIv5MHQKTigvHTkjHvAZ2CPJvYMfajTgCF/h89hY615PfVczOf+/li0rY+S9AeuJd3LSyQbNGHKTmLSsS30/yxpg3PfH+spPSjDiErvgQYyb9iMisUl5MeKod+oxshJCj0ZBWHR3SEe+ORfAeMxpvTPgaEdK3zgj9Gv96cPpFPN7Ga51botWEXVC85Y+Iw6vxXvtn9Cy0Fqjbsj+mzJiBGXNXYpt/dxweNQpTfjpfeOpEj4KrEQi+0Ql9nfU3mahORKDu37//QZckDtTqT3NPUDEEqiYEaCEVMq5fwHFpSu9wEWPUeRb2XW1xNfwKxKg8vfJvIXTxJ9j6khdeL7LTLXukAZ5tJT5LE4fA5NzAqd3R0h/yAhyaF92xz08Mx6aZEzB2TQHGBnwPv2EtdYbs6dv5b2x45x+ZiLkQBYWbE1rrDEWscnLREasQKsoMX07dLadSkMEKWlPlU8a5zTR74ioKS9D6/nnh5NfaguC8kiL0VokrKWrNcLL0DqRbZjr0xVS6fXxFVSerPnQrtG/evCm/Up2lUUTAdLkqVwx70Qynm04BEXq7dxtQOKzOSt8QkILrFDRnlNbPGEz/2hItbSW05VJc8BIaO9qDXBTiRJncNH/sEgqO067P1V+1WxATRHPGyo31RRoWqTzWaro/by3tiLhrxDAdFeVGB9AQhTON3RhFxdbjiqE/L7U0MGSn6nCQVrS8K7RlrCsNCYgyUEZuqmy6unE01a8/lFY+WCFVlHf1J3qrfkNy/XS/3ibRqqQ9NLvtQPI9WvQOMzWFJlDFBqXqG5SzkvCY4VJQ33TCmXyCblVgoBgz/MUUBnb+7aRgLnbnXwrbKH/q33AiBd4u/y1pWfGp3Yr2aCsMn/8RGq7/DkGx5d3X9nG0GrkUId+0xaG54wpPB7/zOroN3IhnfAPx5/zesNQ9eyRadv38A069MxcTu5amxVj1ounjK04JilODmraD4noqMx+aU7ht2rRRPxdDnPim2iWo9yLenNoFf67fXSU3nSibfCSc2oV/b9qL03GanrmimPIiwu9awvV1J/0tEykRBzduRsZHo9HXyryuj6rJgcoqVDbF7VlMQ7x/LNqppFKZy+9R+aRAVd9Cy8LCgsaNG2fSEY84wj19+rT8jJWFOGXLR6BlkHuJtngPIp/Aq8Z3OCqVijoileTdpqMBH5Onh2fh6WBxmtm+P/ms2l/MPUulo9iIf9OQfsvosJl1NNLgIK00UoiFLqOR04LodpWc4FdRzrnv6O2JetqO1SIiUE3dgEtHtLR79275GTOFZoeGA7Ss5Bt7D/1XBd3wugKDtFTkv3NIRf2d5YODlNVKYgNe2kAVR7O84TeNdoDyNevyIkJmD/mO/ISCHioUKg+iz/hoGhRwoYKOeI2UE0n+b0+njWYcooKF+I+0cDNWK4lrdOvXr4efnx+kDT1GjRpV7BCLOnXq4OLFi3z9rhRE16nNmzermydIAQppp8Us7gfKWHniYiNWq2n38eW2g+VHfH7icxSfp/hcRZGXudxUm7HyxkHKmEQEqm7bQd1AFUdU586dk58xfUQTjI0bN6Jx48YcoKzW4CBlTIt220ERBAMHDnzQJUk0Sd+1a5f8TqZNfD6am2qLr2FhYRygrNbga6SMGSBCQbQdFLy8vNTX+sRpYL5OWkgEqNi50HxGok3joEGDqtHdWBgrOw5SxkqgCYvFixfj1q1baN26NUJDQ2t1WHCAMvYPDlLGDBBVvSEhIerrfidOnJDnAoGBgerOSbWRuCPL+++/r57mAGWMg5QxvcQR14oVKzB37lz1kA1RaNSiRQs0b95cXYAkgqO2hof4+8XddjhAGSvEQcqYDnH69rPPPkNkZCR++uknvh7KGDOIq3YZ06E5ZXvgwAEOUcZYifiIlDEd4rqotbV1pZ62pOSD+GrGepxVxuLwb/txVT3XCi4e7nBs9PAtkVWpSUh/pjU6duuJvgMHoFfLp2vsXXwYqw44SBkzK9m49L0X2rz3GxQjtyDq5xGwKZKSeUi9tAtf+0zGohPt8en2dZj/SnM8HLeMscrCp3YZMyeUhEsnLkgTlujQrQ2e13uoWRfPOHjgw3lj0Fa5C58PnY2NlzT3dmSMVTYOUsbMyf1YRB66IU044dUutniscK4ej8CyfVe4WUqTymPYc/ouVIUvMMYqGQcpY2aDkHs5HH+dU0oHpE5waqWQ55ckC0mZOdK/ZoxVBQ5SxsxGHu5cjMQZaUrRxwUvNDZ01bMAKeeOYX+KmO4ED5fm0jEqY6wqcJAyZjYyEHP+EpTi+qj7i2huaO3Mi8b2VT/hIhRoO20y3upg7NErY6y8cZAyZi5yb+J0aJQ04YhXnK2Lvz5KaYjatBJf/pkDVx9/bPu8H57l8S+MVRkOUsbMhOrWWew/kwIoHODYor48V5sK2fHh2DrnLXT/UomxgX9h5+pRcFTwSV3GqhKPI2XMLOQjYccMtBu8EslPuWPC7EFo/YT2YWY2Es/uxR9RDTBw+Bj4fPA6XuAAZcwscJAyZhZS8bfvMPSYFw7HxSE4Nrc76smvPEDZuHfhIDYvnYNVqa9jud+HGOLQgLsaMVbF+NQuY+Yg9waO/xUpTdiil5MN9DYntHgCjV/ohylfLsCAi19hmMt4fBuZqjPsJQeJJzfj0zGj4D17EXxnvYUuXUZh/vdHEZ/P+8yMVQQOUsbMAN2Jxt9nUkCKLnDr0MTgUabF850w6BVbQPkbPlm6Gzcf5GMB0sP98f6/8zDi35vww9L5mLvsZ+xd0wWH3xuBtxcfQCJnKWPljoOUsSqXj8QzRxGslCY7OKHt83ULZxfH4nHUe/px9aRyfySuZGh6Gt3D0Z9+wPbftiP0aqY87xEoOrpjqHMK9n32DQIvcCtBxsobByljVU6Ja5GRSIEC7Qd1hv1jJVz1pBxkpecUTre0QqMHRUlP4vlWLaXvousRPPaUCOc0KO9zI0HGyhsHKWNVTZWIy+Giv66B66Na6M4p7AoV77dE92HdtIL3aTh98AcyMv7AB05Py/Ok9yfdQGRUCtDWDV3ti5QwMcbKiIOUsSpG96Jx5IAUjIqO6P5CY8NVuJSMkz8HYNOlDCkY38cCL+ei1b0PycbNfTuwNcUZ3gtHodvTvMozVt54rWKsSqmQEX2ysGduhy7o0Lzw2qdelI5rO1dh1md/IsN+PAK2zUH/Z4vrx0vIv3cJx4LXYf78cLy+ag2WvWmPEq6+MsZMwEHKWFWiewjfGYKL0qRVL0e01Ht9NB/K2OP4daE3+r++Dsq31+Lw/tV417G4MaQ5uLk3AN/8+F8cPHkFqc0c8Dzu4PY9+boqY6xccUMGxipdJs5v+gxL99xGUtQ+7DwZXzjbzg2ePXWvkeYj6cINoJ0rXLr1QJ+eL6HHi1Z4qOlRCSj9KL4Y6IEvnpiO7T/PxCtWBo56GWOlxkHKWI2XjUvfe6HNe7/B0icIF/79Gp7jc1GMlRtenRirIVSxgXjPoSEc3gtE7EOjXB5F/WcaqqdSjl1DPI+AYaxccZAyViMQ7secxf8upyA+OQv58txC2Ui4dUv6qkDb1zqiJfe6Z6xccZAyViNY4CnXN+E79g1MGtNV6/6khPy4/fhxzQEo3Gfj24ld0aAU11cZYyXja6SM1SCkvIr9v/6INf57kdWmNRrlxOLwqcfQz2cifMYMglMTLjRirLxxkDLGGGNlwKd2GWOMsTLgIGWMMcbKgIOUMcYYKwMOUsYYY6wMOEgZY4yxMuAgZYwxxkwG/D/IHaznV/VGUgAAAABJRU5ErkJggg==
iVBORw0KGgoAAAANSUhEUgAAAnIAAAMXCAYAAAC+YLjIAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAOQySURBVHhe7N0JWI1p/wfwbyJbMmUZUZaiIV6yjH2JsfO+tjHWKQyGGRn+Y5lhhhiMwWwY+xoz9m3GGLJMkrJUKqVNhShrUUek5fmf++k5VCqh5Zz6fq6ri+c+Jz3TcPqe333fv1tPUgMRERER6ZwSyq9EREREpGMY5IiIiIh0FIMcERERkY5ikCMiIiLSUQxyRERERDqKQY6IiIhIRzHIEREREekoBjkiIiIiHcUgR0RERKSjGOSIiIiIdBSDHBEREZGOYpAjIiIi0lEMckREREQ6ikGOiIiISEcxyBERERHpKAY5IiIiIh3FIEdERESkoxjkiIiIiHQUgxwRERGRjmKQIyIiItJRDHJEREREOopBjoiIiEhHMcgRERER6SgGOSIiIiIdpSepKb8nIiKiokZ6hJAjTlizNxgm7dvD2jAegR6Xkdh4GCbatYZpST3liQUlBaqQY9i85gACTFqis3UFqAIvwDPRBvYTh6C1aWnleQVHUgXhyOZN2BtghPadG8BQFQwPz2dobD8edq2ro6TyPG3EIEdERFRUSTHw/HEM/ufZF84bRqORob4yfg9nHEfgkxv2OLx6OKzKFFSYS0Gc5wp8+D8vDHJeifGNKiLtK6cg9sz36PHJTTgcXoaPrQzl0YIgxZ3Hjx9OhOegzdgwvgkMlW+FFHsajj2m44bDFqz+2Bpl0oa1DqdWiYiIiiQJCd6bMXn6XYz9fOCLECfoVUH7UR/DessCLD4SqX5mAUnwxrrJ8xE0djxGPg9xgj6M2w+Fg/URfLHYGVEFdkOP4L3OEdOD/ofPRzZ+HuIEPePWGOVghS1frMSRqCRlVPswyBEREemERNzzPYhlozvAqvOHsLe3Vz4W4Vh0svKc9J7g2sUz8EBj2NQ1UsZe0DO3RnvLIBx0DUSsMpZr0iOEeodBlUXgklRh8A59lGU4TLnmhUMeJuhsUxvllbHn9KrBur0lYg+643JsijKYWylQhfohVJXF5+Vwr0iJxMVD54HOjVG3fOaqZGmYW9vAMtYdrpdjlDHtwyBHRET02sQ6r4NwnDgLq3duxLLl67DacRO8VKl59HhmiYg++TNm7kxEtyUnEPLvXmzdulX5mIUepjmt4nqGpOS8L3E981mNGZv9MgQkSeWHzTNWw+eZMpClFCQmpeR9FfCZD36e8TsC0oc5dYgL2PwdfvZ5rAxkIzEJ+fAtKhAMckRERK9FQvKNQ5g+6BgafD0HE4faY4TZJcw4GAOUElWdt338ZanhuzFpozm++e4jNKmS280AZVG3zQdoiyAEXItXxl6Qoq/CM6wRhnRtBGNlLNf0KqLh6G/xOZyeh7m0EOcEfP4tRjdMP236gn7d1hjc9hHcAyKRoIw9J93HVc9rMB5ii6bG6aaBc0Ufhg1HYMnnwG+aMKeEuN9ghyWjM06bPqdfG20GtwXcA3EtIXOSS0L01SsIM7ZF16aVlDHtwyBHRET0OqRI/Ok4G38PGI6+NcUS+GTEP3yACj2aoV5pdVp428dfkoRbF71gbt8VFq+1w1QPBtY9MGFYLA64BmcKTimIvXIRzu+PgL2tqRy6pPu+OLJrPRbYj8AyL1Xa03KSPsyt+QNrXhHiZAZW6DOhP1QH3HA5c3CKDYaHcz18ad8WVcW3SeWP3ct+waZde+C0dDJGf70fIU9zKpulD3OrsG/N/JxDnKw8rPsMwzDVabhefqSMacTgiocf3v9yCGyrioqnCiH7FmPOij+wf9evmDJ6GU5FJ6Y9tRAxyBEREb2O+35w3lMew2wbpK3zku7C/0w4OjazQIW8ePwlibgbGQi3Ff+Xbl1c+o/s1siplaqHwbOnwmKPC/wyBKdY+JwKwtA5I9DKMC0K6FVugt5DesIamQNNDtRhzvrD/6HKqklYVeV/+NA6hxAnKwfLwVOwyOIMTvql/zqpiPNxhctQB4xpZaK+VgfNs1sw5Wwl2A4eDLtp/4eeET9i1em7aU/PljrMWffBsCp78eGqdzDsw4Y5hDhBD6Us+2H2IlPsORmYMezGBeCUS0fMGdMC8h7alJtw23AKsOmBgUM+xiDzQ5h7KFR9p4WLQY6IiOg1JN8IwglVfTSqo8Su+Ks4f8wMtv+pgGsu5xER8XaPR760TK4MqlvUQ6WB32Lz83Vx6T+yWyP3EH7HvRFvPQRzRgbhiFe6LQ1x6jAZNhBTelTK5mvmjjyd+tWfqLXDGztq/YmvMq2ZyygVKr/TOB9fH3ZzPsCJI5fxYuVaDDydH2HylC6ofM0DbpHJMPnga7ivGIA6IqkkPcSdSGOYVX5FExB5OvV79b38gls7amHHV5nWzGWm8sfx849hbTcVI0+cgNdjzc2rg6WnK8Imj0WPyjfh4haJVP36GPOPM+Z3eAeqcFf87dcKU7pbqKNj4WKQIyIieg365vXRzdgABiXFj9BERLkexZ8lbdCw+i0c94hDxdpv93j5l34yl4Rp12Ho+NdOHH+tqbxSkEJc4R1riGbDByDeJ/J59SglIgzSqB6oh3A4uzxAmTdIAxnWxDWqjUaZ1sy9rATKSlfxt3cMyjYbDIf4QFx9fkO3ECD1Qt96QKjzOTwsow6mJSuhtpkh9PAUNw5vx6lu02DfrKLyCVnIsCauKao3yrRmLitlUxDyty9iy9pguEMJ+FzV1OSeICKgHEb1tVLfkCtcHuorgekxIs4cwTG3QMRVr4MqZQs7xjHIERERvRa9qraYuqoqXLb9Dqdff8I+2GJajxh4bPkbSd2aw/htH1e+TgZGbTFzVTt4fDkFy/adx42cqkzPlYF53VsYVqkkStQYgA0BkUhropGMu2FeWPJfM5Qw6Ijt1WpCTGa+ltQw7J66JeOauOdr5rZg6u4wZFXk0zc3Q9wwU5QoUQuDNvgjMkb577gbBs8lffFuCUM03F4WFiaagCR2667GLxF9sfqbTqiS7TRpIiJ2f4eVGdbEvVgzt3LqXkRkeUPVUDduBiqVMECNQdsREKmZ7o1BmOc6/PfdUjBoeADVLN5RxsujTof/YpDdVExpcRr95x/H3ZyW7RUAnuxARESkK5LvwvfYERx3PY/LtzXVo/cwfPGMV7Qgya1I7LefiPDJOzGtecGdrpC1FMR6rMWS4PaYbd8Y5UJ34debH2Bql8rK4wUrNXwbBrW4iE+Cf0bfKqmI3PUpaq5siQCXCbAuxMIcgxwRERHJu1b/cb2A0yvW4naf/8OAVm3Qs0OdQjqaSsLTkD8wse8EbAnV7KAdjI3BThhjVTh3hOSbOLV6K7zLW8Ki/AOcP3oTjad9heE57dItAAxyRERERDqKa+SIiIiIdBSDHBEREZGOYpAjIiJ6SyEhIXjy5IlyRVRwGOSIiIjywNy5c5XfERUcBjkiIspEQnL0v/htixfictoOJ8XAa8smrThvsrBZWVmhZs2aWLlyJStzVKAY5IiIKKOkQDj9eBPdRjSDUU59FfRM0HxoC4Qu242QJDZAmDRpEsqVKwdbW1t8/fXXyihR/mKQIyKidFIQc2o3Ltl2Qb1SueiOVcYaAzqHYO2pOyhuUS4mJgZnz56Fk5MTxo0bBz09PXh4eMDIyAhVqlRRnkWUv9hHjohIqyUg/OBW7HT3w8OqVqhqXBHwv446DjMxyKKc8py8dB+nZi7CvUk/YIh5KWUsEdGn1mG5dwU0Lh2G496VMe5XB7QxSqsFSJG78PHKKlj1QxcYySNFk9jQ4O/vj6CgIBw8eFAeE9W31q1bo1GjRjA3N4e3tzfCwsJgZ2cnP06U31iRIyLSZikROBNlha4WDxBs0gtTPrHDiA738ItzOJLvu8Bxwlz8OncmFrveUs62VMFr2Rzsj06Wr15bym2E+FRFraqa454kJPiuw5jfa8Dhy1EY0qMObkVVQCXDFz8+9KrWQgOfENzMzfGfOkJU23x8fORq24wZM+Rq29KlSxEVFYVOnTph//79uHDhApYsWYKBAwfKa+TKli2L06dPo2/fvsqfQpT/GOSIiLSZfkPYT6yF4KNAr9Y1URIJiAq/hnIGwK2Tx2E47ktMHtsMPrP/QlBeBCkpEaoHJVFKXzOt+gDn/jiAan1awFQvBQ8jriCiozVqpf/poV8KpR+o8ESH53dEtc3Z2RmLFi1C//790bNnT/zxxx8wNDTE2LFjkZCQgPXr18vr4Nq1awczMzPlMzMS4c7E5LWPoCd6YwxyRETaLv4G/P3rwsqsDJAQjH+PW8Ohlxke3rmGW/cTkGJgCNP4rIKU2H16HI4Tv8PWFZPRrtMK+MqFuuzG1fRKw7BK+rVxKUhKNEbDWibQk2Lg8+8V9G6WjD9XnEKM8gykJCGxkiHKFuaBk68hq2qb+FWEuRYtWsg7T7OqtuWG+ByigsQgR0Sk1SQkhnrjuFEI/t2xHWt+OA7Tn75FH9N30GTyJsyucxs+/pFIbFsVZZ5mKslJUTg63wnVHL6EXf92MK9dA/KMaXbjgn41WDW+havRScpAZbT5uDuuHdoOp5XbcdnQAokeFxH/fmMYK8+Q7l5HoI0VzPSVAS1z8+ZNudomApqotlWqVOl5tW348OFytU2seRPVtu7du2dbbcsNEfqIChKDHBGRVkvEdd9LqDJpAeZ9aocJ82ZhRMOK0JOuYdfwSfinZAO06GyLFmF/4syNTP3cUm4j6HwD2FiWRnyoP+62kOB3IgIp2Y3Ln2QMmy5GcPO9q+xC1YdR80+xcv4E2DlMxRffrMTq+VMxpnVlpBXgknHP1xfvdHgPFeTrwiV6uIlqm1jDpqm2iYAmqm0iZIkwJ/b4aaptNjY2ua62EWkjBjkiIq0l4WnEKfy+PwClrofj+tN0c6d61dCyX0Wc2LEDO39aA88hczCyQaZdrCXroP2Ix3Db9xsWbguD+aULiChfEfrZjcufpA+TLh+hqcsphOamN1xSCA7/WxcTu1ZXgl3BylxtE33cRLVNpVLlebWNSBux/QgRUZEidq0uwfURczDQVDNf+rrEGjoXrD1mhI/tm2ffFFh6CN8df+JB5yHoYlpaGcw/otoWHByM8PBwnDt3Tt5F2q9fP7Rs2VJe21a7dm1ObVKxwyBHRFSk5EWQ0w6i2nb9+nVcunQJvr6+2LBhA6ZPny73bGvcuLF8JBZ3iFJxxyBHRESFTlTbIiMj5Ya7otrm4uKC6tWrs9pG9AoMckREVOCyqraJfm0dOnSApaUlGjRowGobUS4wyBERUb7L6ngrsTmhfv368lQpq21Eb4ZBjoiI8pRouBsYGCifOXrmzBlW24jyEYMcERG9lVcdJs9qG1H+YZAjIqJcy67a1qRJEzRt2hS1atVirzaiAsQgR0RE2RLVtmvXrsHT01M+fzQqKipDtc3c3JwnIxAVIgY5IiKSiWrbjRs34OfnJ0+Vioa7rLYRaTcGOSKiYipzte3QoUNyw11RbbOwsMB7773HahuRlmOQIyIqBjTHW6Wvtonjrbp27SpvRrC2tma1jUgHMcgRERVBouHulStX5KrbiRMnWG0jKqIY5IiIdFx2h8mz2kZU9DHIERHpmOyqbTxMnqj4YZAjItJiPEyeiHLCIEdEpEWyOkye1TYiyg6DHBFRIcmq2ibwMHkiyi0GOSKiAqI53ip9tY2HyRPR22CQIyLKRyK8rVmz5vlh8qy2EVFeYpAjIspHmiocq21ElB8Y5IiIiIh0VAnlVyIiIiLSMQxyRERERDqKU6tEVMBSoAo5hs1rDiDApCU6W1eAKvACPBNtYD9xCFqbllaeV3AkVRCObN6EvQFGaN+5AQxVwfDwfIbG9uNh17o6SirPIyLSNgxyRFSAUhDnuQIf/s8Lg5xXYnyjitBTxmPPfI8en9yEw+Fl+NjKUB4tCFLcefz44UR4DtqMDeObwDDthiDFnoZjj+m44bAFqz+2Rpm0YSIircKpVSIqOAneWDd5PoLGjsfI5yFO0Idx+6FwsD6CLxY7I6rA3l4+gvc6R0wP+h8+H9n4eYgT9IxbY5SDFbZ8sRJHopKUUSIi7cIgR0RvSELyPR/sX/YJWlp1xkf29rCXP8Zh7rFb6kdflnLNC4c8TNDZpjbKK2PP6VWDdXtLxB50x+XYFGUwt1KgCvVDqCqLz5MeIdQ7DKosbygSFw+dBzo3Rt3y6VKcrDTMrW1gGesO18sxyhgRkXZhkCMqJsQ6sIOOUzBz9TZsWrYCG1cvwVqvWOXRVz+ekTrERZ/AgpkHkNTte7iH/IvdW7diq/yxHvN61EhXbcssBYlJKVkGvbfyzAc/z/gdAenDnDrEBWz+Dj/7PFYGspGYhGQuMiEiHcQgR1QcJEfgwPTJONTAAQsnfozRI2rAbcYJxEM/d49nlnoVOybtg+U3X2NIk6q53gygX7c1Brd9BPeASCQoY89J93HV8xqMh9iiqXE2Xzdb+jBsOAJLPgd+04Q5JcT9BjssGZ1x2vQ5/dpoM7gt4B6IawmZk1wSoq9eQZixLbo2raSMERFpFwY5oiIvCVF/LsXYv9tiTF8LOXRJ8Q8RVaEFmtUTmwpe9fjLpFveOGo+AH0sXnMLgIEV+kzoD9UBN1zOHJxig+HhXA9f2rdF1ezLeTlIH+ZWYd+a+TmHOFl5WPcZhmGq03C9/EgZ04jBFQ8/vP/lENhW5b5VItJODHJERd49eDv/izLDOqKJvA4sGXf8L8K9YxPUqyBeAl71+MtS7kbiotsKfPF8XVz6j+zXyAHlYDl4ChZZnMFJv/TBKRVxPq5wGeqAMa2UY6yke/A9sgsbF4xGl2Ve6rvKDXWYs+6DYVX24sNV72DYhw1zCHGCHkpZ9sPsRabYczIwY5UwLgCnXDpizpgWkOOsqPDtXo5lm3Zin9MSTBztiP0hKvmpRESFhUGOqKhLjkbQicdo2agmKsgDDxF43hc2tg1R5ZoH3CLCc348MlEeTa9kdQu0qTQQ327WrItL/5HdGrlUqPxO43x8fdjN+QAnjlzGi5VrMfB0foTJU7qgsuZr6lVBk96D0Nu6NG4oz3oleTr1e+yo9Qtu7aiFHV9lWjOXmcofx88/hrXdVIw8cQJejzXxUx0sPV0RNnkselS+CRe3SKTGnsP6KRfxru0ADFI/f1bPGxi76qz6zomICg+DHFFRp18N9buZoYyBPGmK5Khz+OtPPXRuWBHhxz3xuGLNnB8vn8W0oqktJnQ8i83HI3NZKRNKoKx0FX97x6Bss8FwiA/EVU3GSrmFAKkX+tYDQp3P4WGZN5jKzLAmrimqN8q0Zi4rZVMQ8rcvYsvaYLhDCfhc1dTkniAioBxG9bVS35ArXB7qo4SJLb5x/wED6oiGxYmIuROD+mYm7C9HRIWKQY6oqNOrjq5TJ6Oyy07scFqOBfuS0WdaK9zz2IXdSa3Qxtj8FY9ntfHABG1mzkNXj7kYv2wfzt1QZTOVmpG+uRnihpmiRIlaGLTBH5ExSsC6GwbPJX3xbglDNNxeFhYmr7vZIRERu7/Dygxr4l6smVs5dS8iUuUnZqQOuXXjZqBSCQPUGLQdAZGa6d4YhHmuw3/fLQWDhgdQzeId9VhpVK5dXf1nq8PuDWesPdUKi+2bolzaJxARFQqe7EBEbyER93xP4q/jrrhwORpP5DED1B7uCMccW5DkVjKi909Ch/BxCJrWXAuOyhJtV05i6dJAtJs+Hh0L4TgxIqL0GOSISItpV5CTYs/ipyXX0HP2UDQsF4qtv97GgKm2MFIeJyIqaJxaJSLtJO9aPYR/zkcg4fK/OHjQDRFPC/F959Mr2P5/Dpi2eCQaVSgJPf0u+KNitbQdrUREhYQVOSIiIiIdxYocERERkY5ikCMiIiLSUQxyRERURIldxv/ity1eiJMkJFzZgc86N0D/bVeft8uR4ryw5bd/EZ3MVUakmxjkiIjy0ZMnTxATw/MfCkVSIJx+vIluI5rBSE8P5eo3RQuDhujZvPrz1jh6Rs0w1DYCy5wCkaSMEekSBjkiem3jxo3D/v375ZBCOXvw4AF69uyJli1bYtGiRfL3LSQkRHmU8k8KYk7txiXbLqhXSoltD6/DL8QKVmbpz+PQQxnrHuh8aTdOaRpUE+kQfUc15fdERLnSrVs3XL16FXPmzMHp06flgFKnTh35gzIyMjKSg2+vXr3wzjvvIDQ0VA5z/fr1Q0JCAqKjoyGaBxgYGKBs2bLKZxVFCQg/uAGrN23CX76h8A0MhPu2g4i2agVr41LKc/JSDDzWn0Dl//VHo4ripBAJib674bDpEspUl3Dj4O84a9QcLauXhZ5eWZSN/xu74t9Htzo8q4N0CytyRPTaROAYOHAgPvvsM6xZswbly5dHly5dlEcpK2ZmZmjXrh0mTZqE9evXyyFu7NixMDQ0xB9//IFKlSqhf//+cih2dnYuelW7lAicibJCV4sHCDbphSmf2GFEh3v4xTkcyfdd4DhhLn6dOxOLXW8h7TQ1FbyWzcH+6Nyf5ptBym2E+FRFraqaNtLPEKUO0fUWLcSCsSNg368KVm27iFj5sZKoWqsqfEJugzU50jUMckT02sSarxkzZmDPnj1yRe7jjz9WHqHcEmHYyspKDsRLliyRq3IrV65EixYt5BAnvr96enryr6KC5+Pjo9tT2foNYT+xFoKPAr1a11RHpwREhV9DOQPg1snjMBz3JSaPbQaf2X8hKC/SlJQI1YOSKKWvWQ0Xjwj/RHR/vyZKIRGRV3zwqHQp5bQQPeiXKokHqsRcnRlMpE0Y5IjotYhqkVjz1ahRIyxfvhzVqlWTq0r09kTVrnv37nLV7uDBg3LVbvjw4fJjompXrlw5uWonAp/4/3Dz5k35MZ0RfwP+/nXT1qglBOPf49Zw6GWGh3eu4db9BKQYGMI0XoUnL6Upsfv0OBwnfoetKyajXacV8JULddmNq+mVhmGV9Kf9PkPCo2qwqF4OSL4Ot38kfDW8hXK8moSUpGRUMiydB+cDExUsBjkiyhVNFW7VqlXYvn077Ozs5KpS5cqVERQUpDyL8pL4/trY2LxUtROVPE9PTznw6U7VTkJiqDeOG4Xg3x3bseaH4zD96Vv0MX0HTSZvwuw6t+HjH4nEtlVR5mmmkpwUhaPznVDN4UvY9W8H89o1IM+YZjcu6FeDVeNbuBqt2YtaFa2G18aF33/Hph+24M7YH/BZE80pucm4e/0ubKyqQaymI9IlDHJE9EoiIGiqcDt27JCDhIaJiQl69+6tXFF+01TtZs2aJVftxK5YUbVTqVTPq3Zic4UIfGfPntWiql0irvteQpVJCzDvUztMmDcLIxpWhJ50DbuGT8I/JRugRWdbtAj7E2duJCqfo0i5jaDzDWBjWRrxof6420KC34kIpGQ3Ln+SMWy6GMHN964yXVoSVTpOxuJp9hgzexGmdTFTplXVpLvwPVMGHRq9owwQ6Q7uWiWibInqztKlS+UPUYUTGxpKlXp5h6GYXqXCIap24vvfpEkTeTexeEmvX78+9PX14eHhgXnz5smbK8Ru2fj4eHlchL2s/j/mHwlPI45j1U87cadcM7RtUxfGJZVJTL0yKJ/sjk2ud5F48TA83p+CL7uZwUDvGaLdz+JR405oULEcSqhOwy3yCo4euAz92yoYtv4ALWsZZz1uLnb/lkDZWlVxe6M7DDs3RqXna+Uyk5AUeggbErpiXCfTF+GOSEfw0HwiypKowo0fP15ekzV16lQ5MJBuEtPigYGBCAsLw5kzZ7BhwwZ5x2yHDh1gaWmJBg0ayJVV7SJ2rS7B9RFzMND0TeOVWEPngrXHjPCxfXMYZZHlJJUvdvwRi85jOsFUEy6JdAiDHBFlIKpwGzduhJOTE9atWyev0aKiR+yM9ff3l9c3iilaQYR2Uc0TU+jpp88LR14EOaKij0GOiJ7TtL0QpxCwCle8aKp2ly5dgq+vr45U7YiIQY6I5Cqc6AknFsgvWLBAXkxPxZv4OxEZGSlX7c6dOwcXFxdUr15dDvmi113t2rW1oGpHRAxyRMWc2NUo2liIH8pfffUVqy6ULfF35fr163LV7sSJEzh06BCmT58uT8U2btwYNWvW5N8fogLGIEdUjIneY4sXL2YVjt6IqNoFBwcjPDxcrtqJ3c3iDFlN1c7a2lpul0JE+YdBjqgYEpUV0ZZCmDt3Ln/YUp4Rf7euXLkir7dMX7Vr3bo1LCws8N5773HtJVEeYpAjKmZEFW7QoEHYt2+ffGIAUX7SVO38/Pzk9Xaaql3Xrl3l6XxW7YjeDoMcUTEhdiXOnDlT/j2rcFSYRLXu2rVr8jFjFy5cQFRUFGxtbeWqnVhvZ25uzqodUS4xyBEVA+KA9W+++UbezMAqHGkb8Sbjxo0bctUufcNicVpF06ZNUatWLb7xIMoGgxxRESZ+QIrNDKICIg5dZ7sI0hVZNSxOX7Xj32WiNAxyREWUODBdNPUVrUUGDx7MqSrSabp5zBhR/mOQIypixOLyn3/+WV57xCocFWWaqp2mYbGgXceMEeU/BjmiIoQH3VNxlr5hseaYMTYspqKOQY6oCNBU4cRaIh50T5Qm8zFjmRsW85gxKgoY5Ih0nJhe4kH3RLmTXcNiTdXuTRoWi13hPBmFCguDHJGOEtUGzUH3ohrXrl075REiyi1Nw+LMx4y9TsPiRYsWYcKECZy2pULBIEeUJQnJ0S5Ye8wIH9s3h5GeMpyZFAOvrQfxqMcIdDEtrQzmP00VTvyg4UH3RHlLU7XTNCx+1TFjoiJXvnx5vpmiQsEgR5SVpCvY9LUX2n8/Elalsktxiqd+WDvbF50X5+K5ecDJyUmuwvGge6KCkb5hseaYsfQNi999911MmzYNO3bs4NIGKnAMckQvSUHMse8wN2kclvetgVdHs2TcPTwPP5T6HMt6VMvF89+M5qB7Y2NjVuGICpmoiqc/Zkz0uDM0NMTx48f5b5MKFIMc6bAEhB/cip3ufnhY1QpVjSsC/tdRx2EmBlmUU57zJu7j1MxFuDfpBwwxL6WMianWf/Hrcm9UaVwaV49fgdG4hZjWJu0FW4rchY9XVsGqH7rASB7JWzzonkh7iSq5CHRdunRBjx49WJWjAlVC+ZVI96RE4EyUFbpaPECwSS9M+cQOIzrcwy/O4UhJjoTz4oVYtX4Whk/chgBVqvoTVPBaNgf7o5PTPj87KbcR4lMVtaqWVAbUEi5h1Zg/1SHxC9gN6Ybat+JgUulFWNSrWgsNfEJwM0UZyCOiCjdu3Dj8888/chsFhjgi7SKWOYhK3PLly+X+jQxxVNAY5Eh36TeE/cRaCD4K9GpdEyWRgKjwayhnUBLPPPfjRNOx+Gzs5xiOdVjmfBO5Lj1LiVA9KIlS+ppJ0lTEnduLZdU6oo1pKeDhdfhFNIR1rXSbG/RLofQDFZ7kYX1bLKAWwa1Xr15Yv349Dw0n0jLijVZcXBzfYFGhYpAj3RZ/A/7+dWFlVgZICMa/x63h0KsWHt2/Dt+Ie0jRexfNuzXEmXD175VPSSOmSo/DceJ32LpiMtp1WgFfTaFOrzQMq6Rf6aZ+btIzlG9YC1X0UvDIxxWHezdE6T83wzlG+VNTkpBYyRBl82CBnFhYLXakrlq1Sp5S5Q8JIu0k3lzNmjVLuSIqHAxypMMkJIZ647hRCP7dsR1rfjgO05++RR/TsqjW9yccm9AIJVQB+POwAWb1qot0E6XqT43C0flOqObwJez6t4N57Rp4PpOqXw1WjW/hanSSZgDGbYbgs2t/YYvTGqy/XAqdEr1wOr4h3jfWl58h3b2OQBsrmKVdvjFRhevZs6fcnFTsgGMVjoiIcsLNDqTDniJk0ydwwLf4Z0z9TO9KRMXtFJb9ehWdHHqgzN3SaNK0Ai4tW4LrI+ZgYBVfLGt5DO09ZsL6rCP6B9hgZoNm6Nq1jjq2vcmu1TmYj8+xIlfPf5loSjp37lx5JxwPuiciotzSd1RTfk+kQyQ8jTiOVT/txJ1yzdC2TV0Yl3yxpk0V4IRP+yxGcIWnuPL3Pvia9cZ/G5RFtPtZPGrcCQ0qlkMJ1Wm4RV7B0QOXoX9bBcPWH6CluVioXAJla1XF7Y3uMOzcGJWer5XLRlIQdm1IQP9xHVH1+T3knjjoXuxI7du3L+bMmYNq1aopjxBR0RWDc8unYsLn4/HVzZYY37kWDJRH8lYKVCFHsXbhEmy+eAeP74fi/P5NWH/iDirXrw+zChnmKgqEpArCkbVL8P3m83jw+B5Czx/EhvUnEVXZCv8xq1DwU4XSI4QcWY+F32/DxQdxuB/qgf0btuJE1Duo/x8zVCjxJm/PC5CoyBEVD/GS59JvpX1RScp1TlKlpKhT0srNntKjVGUoK6mxks/vW6WTUU+VgdxLSEiQFi5cKL3//vvSpUuXlFEiKjZSI6SdQ5pLo/ZdV7/i5Idk6dHFn6VupiOlNZcfpvsayVKM63fS+/U+lZyC45WxgpH66Jy0tHszacgaHyk+3X90aoyLNEf9WjjKKUB6oowViNQH0sWl/STTIeuly/HJyqBa6l3JdU43qd6o7VLwk/z5v5NXuEaOKEt6KGnaGZ+PyuF4LkHvHTQZbvfax3OJKlynTp3k358+fRo2Njby74moGIkPh7erBTo0qpo/jcQTvLFu8nwEjR2PkY0qpvsa+jBuPxQO1kfwxWJnRBXYAqtH8F7niBmB/8XnIxvDMN1/tJ5xa4xysMKWL1biSJRmfXJ+k9Tfos2YPP0uxn4+EI0M0y1y1quC9qM+hvWWBVh8JBKigZW2YpCjYsQQzafNx0DTgp9K0BBr4UTz0PHjx2PdunXyjjf2nSIqnlJuhsC9tE3GVkbZkpB8zwf7l32Cllad8ZG9Pezlj3GYe+yW+tGXpVzzwiEPE3S2qY3yythzetVg3d4SsQfdcTn2dRtgpkAV6odQVRafJz1CqHcYVFneUCQuHjoPdP4P6pbPHF1Lw9zaBpax7nC9HKOM5dYb3g+e4NpFN3igMWzqvtzKXc/cGu0tg3DQNRCxWrybgEGOqICIjQzDhg2Tz2pkFY6oCBBrqw4uwsSZv2Hnpl+xfOMKOK71hEp5OOfHE3HDyw1ula7gwIr12Lnma4z5/jTuZRkYxOatE1gw8wCSun0P95B/sXvrVmyVP9ZjXo+cNlmlIDEpJcug91ae+eDnGb8jIH14Uv/3Bmz+Dj/7PFYGspGYhOS8vqG3uR88Q1Ke31ABUqZYiSifiLVw6hdceS3csWPHlFEi0m1PpOv7vpAajdolXU9KlaTU69K+UfWlJksvSmkrZl/1+D3p5Iw2UpuF7mnrcJM8paWWfaRffbJYs5YSIjkN/FRyCnvN1WOJl6Rf2xpL5t+6Sipl6Dl5fV5tyXjCX9KdN1oClizF+2+VJk7cKvmLtWWpDyX/jV9KEzf6Zlj7llG85PNrH0nPfK7kqsr8pGfSjZ2jJRh/If11JzfrmDN7k/tJlRJ9lktt0Ub61vWBMvZC6o2d0hA0kib8dVNKUca0EStyRPlIdH6fPHmyXIU7evQounfvrjxCRLpMijoCx7EXMGBMV9QUu9WlBDyMMkGPZrUhJkpf9TgSr8H72Luw698kbR1uYgLingXBKyxWPJqBdMsbR80HoI9FGWUklwys0GdCf6gOuOFyQqaKU2wwPJzr4Uv7tqgqvr50D75HdmHjgtHosswLrzjIUE0fhg1HYMnnwG8zVmHfmvn4DXZYMjrj2reMysO6zzAMe3warpcfKWMaMbji4Yf3vxwCW9HUU1TTdi/Hsk07sc9pCSaOdsT+kOe1ziy8yf3owcC6ByYMi8UB12AkKKNpUhB75SKc3x8Be1tTlICEpyH7MXfOCuza/weWT/kMi05F5uL7lP8Y5IjyiTiVwdzcHIMHD5Z7w5mYpB2wT0S6LgX3vV2wp4wtbJu8I49Id67gjPt7aFavYi4eV19HBcLtboO0U2nUUm+F4nxkPTS3fPl1IuVuJC66rcAXz9fFpf/Ifo0cUA6Wg6dgkcUZnPRLH5xSEefjCpehDhjTSvl6elXQpPcg9LYugxtpI7mgDk/WfTCsyl58uOodDB3UMIfQJOihlGU/zFpYHXtOBmYMTnEBOOXSEXPGtIChuI49hw1TL+Jd2wEYZDcVs3rewNhVZ/EgxxnQF/czWH0/wz581f2olaqHwbOnwmKPC/wyhN1Y+JwKwtA5I9DKUESlRNxw24v9aIJeA4fhk0FVsdbxb4S87vLCfMAgR5THMh90zyocUVHzBDeCLkPVsgHqVBA/RlMRH+iJYzYt8Z8qN+HiFoyIHB+PRFLMHfh3bIJ68uPPcPPSWbi36Yp29cqJL5BByeoWaFNpIL7drFkXl/4juzVyqVD5ncb5+Pqwm/MBThy5jBcrxWLg6fwIk6d0QeVrHnCLTFTGX5O8Bu177Kj1C27tqIWdX2dao5aZyh/Hzz+Gtd0UjDxxAl6PNcFJHSw9XRE2eSx6VE77/qSa2GL22R8woI6oXyYi5k4M6puZoExOwSzd/USq72fHV6+4HzyE33FvxFsPwZyRQTjila4aGucH57CBmNKjEq65nEdkahlYjfkDl+d3RAVVKI7/fRV9vvgA9d7yNJ+8wCBHlIc0VTgedE9UlJWBef0mMC5jkHb0X/JNuP7lgpKdrVE9/Aw8HldE7RwfN0CpKuZoqfwEluIuYfemeMxdPhrNymWRVExtMaHjWWw+/jpTeSVQVrqKv71jULbZYDjEB+KqJtOk3EKA1At96wGhzufwsMwb7ORXNhKkTV82RfVGmmnNHMJT2RSE/O2L2DI2GO5QAj5XNTW5J4gIKIdRfa3UN+QKl4f66rsvjcq1q8NQT0LyDWesPdUKi+2bvrz7ViPT/dTIzf2gFKQQV3jHGqLZ8AGI94nE829RRBikUT1QD+FwdnmgBEjRiN4Nh46540pcVdSvUi6HTSYFh0GOKA9oDrrXVOF40D1RUVYSVbtOwKrKZ7Ftx1b8uuBvoM8o9Lh3Blt2J6Fbm2qveLwy9Mw/wOTmF7F+01b8OPcADB1/wZQWJtkEAxO0mTkPXT3mYvyyfTh3Q5WrXaj65maIG2aKEiVqYdAGf0TGKDHlbhg8l/TFuyUM0XB7WViYvG5ZKRERu7/Dygxr0F6sUVs5dS8ismq8pl8NdeNmoLK+AWoM2o6ASM10bwzCvNbjv++WgkHDA6hmkTYdLYJTcvRJLP3lFoau/j90rJJd4HzD+xGBvO4tDKtUEiVqDMCGgEj1nQjJ6m+RF5b81wwlDDpie7WaMJb/TD2UqdMe/QeNwldTGuHIgKU4erfwV8nxrFWityQOuv/mm28wadIk2NnZKaNERHktEfd8T+Kv4664cDkaT+QxA9Qe7gjHHFuQ5FYyovc7oEP4WARNa55WTSxEUuxZ/LTkGnrOHoqG5UKx9dfbGDDVFi93fCsAqaHYNmgEzn5yEGv6VocUuQvDa+1AJ/8/MMH65enwgsQgR/SGRBVu8eLFPOieiHSf2LX6jyu8Tq/DN7e7YfmA1mjesx3q5LgoLR89vYJtn30Mu83eyoApum88hSNj6qNwlqUlIvrUZqzxLgVri3KIOX8aoY0/w/zhOe2KLRgMckRvQByxJU5nEFU4sSuVpzMQEVFhYJAjeg3iiK2ff/4ZBw8exPbt21mFIyKiQsXNDkS5lPmge4Y4IiIqbKzIEb1C+iqcOOieZ6QSEZG2YEWOKAeag+4FHnRPRETahhU5oiyIKtyePXuwcuVKuRrXrl075REiIiLtwYocUSaaKpzmoHuGOCIi0lasyBGlI47YEr3hFixYwDNSiYhI6zHIEamJg+7nzZsn//6HH36AiYmJ/HsiIiJtxqlVKvYyH3TPEEdERLqCFTkqtsQRWzNnzpR/P3fuXJiZmcm/JyIi0hWsyFGxJA6679mz5/MqHEMcERHpIlbkqFjhQfdERFSUsCJHxYamCteoUSPs2LGDIY6IiHQeK3JU5GmO2Lpw4QKrcEREVKSwIkdFmuageyMjI1bhiIioyGFFjookHnRPRETFAStyVOSIjQyiCifwoHsiIirKWJGjIiP9QfeswhERUXHAihwVCZkPumeIIyKi4oAVOdJp6atwPOieiIiKGwY50lmag+6NjY3x1Vdf8YxUIiIqdhjkSCeJg+4HDRqEY8eOsQpHRETFFtfIkU4RVbhx48bhn3/+QWRkJEMcEREVawxypDPEEVvm5uY86J6IiEjBqVXSepqD7mNjYzF37lwGOCIiIgUrcqTV0h90v3z5coY4IiKidFiRI60k2oqI6pvoD8eD7omIiLLGihxpHc1B96IKx4PuiYiIsseKHGkNHnRPRET0eliRI62gqcIJPOieiIgod1iRo0IlqnAbN26Ek5MTq3BERESviRU5KjSag+7j4uJYhSMiInoDrMhRoRC94URbER50T0RE9OYY5KjQiDDHg+6JiIjeHIMcERERkY7iGjkiIiIiHcUgR0RERKSjGOSIiIiIdBSDHBEREZGO4mYHygMpUIUcw+Y1BxBg0hKdrStAFXgBnok2sJ84BK1NSyvPIyIiorzEIEdvKQVxnivw4f+8MMh5JcY3qgg9ZTz2zPfo8clNOBxeho+tDOVRIiIiyjucWqW3k+CNdZPnI2jseIx8HuIEfRi3HwoH6yP4YrEzovh2gYiIKM8xyFE6EpLv+WD/sk/Q0qozPrK3h738MQ5zj91SP/qylGteOORhgs42tVFeGXtOrxqs21si9qA7LsemKINERESUVzi1WoRJqiAcWrYGHu82x3uPH0Iq/wTJLcfh0+bGyjPSU4e46BNYMNsNDb74HIOaVEVJ5ZGcpFxZA9uGP6DGzn+xY0jtdBU5QQWvZf9Fi0XNcfTqD+hhoq+MExERUV5gRa6oSo7AgemTcaiBAxZO/BijR9SA24wTiEc2YSr1KnZM2gfLb77GkFyGOEG/bmsMbvsI7gGRSFDGnpPu46rnNRgPsUVTY4Y4IiKivMYgVyQlIerPpRj7d1uM6WshhzIp/iGiKrRAs3pZbzqQbnnjqPkA9LEoo4zkkoEV+kzoD9UBN1xOyFTcjQ2Gh3M9fGnfFlVFqU66B98ju7BxwWh0WeaF5LRnERER0Rvi1GqRFIXDEz7A+Iq/IeiHLjBSR6bo/Q6w2m2LKzuGwDzj/Kcs2WsZrD91QauGlbJI9waoPdwRjj1qZJo6VTz1w5ohX+HB139gdut3lMFUxJ36Fh33tsY/v/0Xps8/UdzLJHQIH4egac1zXfkjIiKil7EiVxQlRyPoxGO0bFQTFeSBhwg87wsb24aocs0DbpGJ8mh6JatboE2lgfh281Zs3Zr5Yz3mZRniUqHyO43z8fVhN+cDnDhyGY+VR4AYeDo/wuQpXVA5m69JREREb4dBrijSr4b63cxQxkCeVEVy1Dn89aceOjesiPDjnnhcPos6mKktJnQ8i83HI19jyrMEykpX8bd3DMo2GwyH+EBc1WxOTbmFAKkX+tYDQp3P4WEZ1t6IiIjyGoNcUaRXHV2nTkZll53Y4bQcC/Ylo8+0VrjnsQu7k1qhTZYbD0zQZuY8dPWYi/HL9uHcDVWW7UYy0zc3Q9wwU5QoUQuDNvgjMkZJcnfD4LmkL94tYYiG28vCgjtWiYiI8hzXyFEmibjnexJ/HXfFhcvReCKPvWKN3GvhGjkiIqK8wiBHBUfsWv3HFV6n1+Gb292wfEBrNO/ZDnXKvH08JCIiKo4Y5IiIiIh0FNfIEREREekoBjkiIiIiHcUgR0RERKSjGOSIiIiIdBSDHBEREZGOYpCjLPn4+CAmJka5ynuLFi1CSEiIckVERERvgkGOXuLs7IymTZvi4sWLykjea9GiBUaOHAknJydlhIiIiF4X+8iRTFTIHj58iNjYWDRp0gT79u3DoEGDMGnSJOUZeU9U/BYvXix/zblz58LMzEx5hIiIiHKDQY5esnLlSlSvXh3//PNPgQSs/fv3y6FRhMeBAwcqo0RERPQqDHKUwZMnT9CpUyccPXoUCQkJckVOBLv8DnM3b97EvHnz5N+zOkdERJQ7XCNHGXh7e8tTqyYmJnKY2rRpkxzo8pv4WuvXr0evXr3kqpxYp0dEREQ5Y0WOMpgxYwb69euHdu3aKSMFT1TnRCXQysoKX331lRwqiYiI6GUMcvSc2HxQqVIluQJXtmxZZbRwiCnePXv2yNO6CxYsQPfu3ZVHiIiISINBjp4Tmw6ioqLydafq6xK95kSVsGXLlpg6dWqhB0wiIiJtwjVy9Jzo6da+fXvlSjuI6dUdO3bAyMhI3oQhGhUTERFRGgY5kmlOWbCxsZF/1SaiCieqhOvWrcP48ePlnndi6pWIiKi4Y5Ajmdglqu093ETIPH36tPx7UZ3jEV9ERFTccY0cycQaNNE7Tld2iIopVlGdE5W6wYMHc+0cEREVS6zIEc6ePfu8d5yuENU5ETz9/f0xbNgwVueIiKhYYpAjebpy1KhRypXuEMFzyZIl+Oyzz3gAPxERFUucWi3mtKl33NvgAfxERFQcsSJXzHl6emLFihU6v8ZMU50TR3yZm5vLPfGIiIiKOga5Ym7VqlVa1zvubYidt5GRkfjnn38wbtw4+bgvIiKioopBrhgTIUec5KCNvePeBg/gJyKi4oJr5IoxcY6pODHBzs5OGSl6eAA/EREVZazIFWNil2eXLl2Uq6JJVOfEEV+NGjVCz549WZ0jIqIihUGumNL0jisOuzvFRg5Rddy+fbu8JpBHfBERUVHBIFdMid5x4kSE4oQH8BMRUVHDNXLFUFHpHfc2NEd89e/fH1OnTuURX0REpJNYkSuGRO+4hQsXFuvwUjQP4JeQHP0vftvihTj1+7OEKzvwWecG6L/tqvoR5RlxXtjy27+ITub7NyKiooBBrhgS68R69+6tXBVfIsjOmjUL69ate37El06vnUsKhNOPN9FtRDMY6emhXP2maGHQED2bV4ee8hQ9o2YYahuBZU6BSFLGiIhIdzHIFTNFtXfc2ygaB/CnIObUblyy7YJ6pZTY9vA6/EKsYGVWJu1apocy1j3Q+dJunIpJUcaIiEhX6TuqKb+nYuDgwYNo2bKlvGOVXhDVuW7dusl95kTfudKlS+fP9yjpKg6uWoNNa/6C7/UrCAxxwzanaFh1aQBjfU3d7E3EwGP9CVT+X380qqivvpaQ6LsbDpsuoUx1CTcO/o6zRs3RsnpZ6OmVRdn4v7Er/n10q1Mu7dOJiEgnsSJXzIgmwEW9d9zb6N69+/PqXH4c8ZUS6oWopu1gcTUKJr3G4RO7Iehwfx+cQxOQHH0ci+euwPqvxmCikx9U4hOSvbBswn5Ey5+dg5TbCPGpilpVSyoDzxAVGop6ixZiwdgRsO9XBau2XUSs/FhJVK1VFT4ht8GaHBGRbmOQK0bETs3i0jvubeTnAfz61kMwscYNHEV7tLYsByTeQbhvKgxKPobnFk80/eIzjP2/gcBXq+Ecnax8Vi5IiVA9KIlSz6t68YjwT0T392uiFBIRecUHj0qXUkc4QQ/6pUrigSrx+SYIIiLSTQxyxciRI0eKXe+4t5E/B/CnIj4iEP5trWCmLyHB/wyOtx2BXvWScP96ECJuJ0KvahN06xaJ8KinyudoiF2px+E48TtsXTEZ7TqtgK8m6+mVhmGV9FOzz5DwqBosqqvDYvJ1uP0j4avhLWAkPyYhJSkZlQxLP98EQUREuolBrpgQuzFnz56NDh06KCOUG3l/AL8Kod4+MAo6gR071+CHP03x05LeMNWrgb5rtmKCdWmo/J1xWP9D9Hov0/o1KQpH5zuhmsOXsOvfDua1a+D5TKp+NVg1voWr0Zq9qFXRanhtXPj9d2z6YQvujP0BnzVJi3HqZIe71+/CxqoaxGo6IiLSXQxyxcSZM2eKfe+4tyFCnJhiFa1bZsyYITdVfiOpUfA9boxJS+fg06ETMW/eUDQ01MSpRESfWokF/76H7xyb4Vl8pqnVlNsIOt8ANpalER/qj7stJPidiFDWuRnDposR3HzvKtOlJVGl42QsnmaPMbMXYVoXM2VaVU26C98zZdCh0TvKABER6SoGuWJiz549cuNbenNvfwD/Y0Q478X+i49xPfwWMk6cPkLApknoMuM4bnmuxVT7zYjI/M+zZB20H/EYbvt+w8JtYTC/dAER5SsqVTV9mHT5CE1dTiE0KaeVbxKSQk/h3/8MRdfn5TwiynsxOLd8Avq2qI6ac86o//UXlhSoQo5gxf+Nw4QF67Fr/05sXPh/mDjHCeeiE5XnFCxJFYS/V8zA6AkLsHHXPuzauAhTJjpi07kovMbK4LwjPULI3yvwf6MnYcHGndi/az0WTpmMOZs8dKN5ujiii4q2yMhI6f3331euKC8EBwdL/fr1kxYuXCglJCQoo/kgyVNa+uk+KUq5zFmqlBR1Slq52VN6lKoMZZIa7yP9vvZfKSopmycQUd5JjZB2Dmkujdp3Xf2vszAkS48u/ix1Mx0prfGLTXcPyVKM63dSS6tPJafgeGWsYKQ+Oict7d5MGrLGR4pP901JjXGR5qh/To1yCpCeKGMFIvWBdHFpP8l0yHrpcnyyMqiWeldyndNNqjdquxT8RLtfL1mRKwZOnToFOzs75YrygnYewK+Hkqad8fmo5jDKZheDnmETDB9vC9OS3OZAlO/iw+HtaoEOjaoWzsaiBG+smzwfQWPHY0Sjd9Ldgz6M2w/FJOt/8MViZ0QVWNHpEbzXOWJG4H/x+cjGMEz3TdEzbo1RDlbY8sVKHIkqqHNnJPW3aDMmT7+LsZ8PRKPny1zU9Kqg/aiPYb1lARYfiUSqMqyNGOSKAdE7ThwOT3lLrDcUzYPFEV/iAP5Fixbl/RFfJZtj2pqBMFUuiUh3pNwMgXtpG1jXKq2MvA0Jyfd8sH/ZJ2hp1Rkf2dvDXv4Yh7nHbilrYzNKueaFQx4m6GxTG+UzJ0m9arBuZ4nYg+64HPu6HSVToAr1Q6gqi8+THiHUOwyqLG8oEhcPnQc6/wd1X7qh0jC3toFlrDtcL7/uGuQ3vB88wbWLbvBAY9jU1WwGe0HP3BrtLYNw0DUQsVo8w8ogV8SJSlH16tXZOy4fFc0D+InolcTaqoOLMHHmb9i56Vcs37gCjms905p5IxE3vM7CrdIVHFixHjvXfI0x35/GXSUQiHViBx2nYObqbdi0bAU2rl6CtV5pLbtfJloPncCCmQeQ1O17uIf8i91bt2Kr/LEe83rUyKHil4LEpJQsg95beeaDn2f8joD04Un9/QjY/B1+9nnFisDEJOT50rO3uR88Q5IurIXLjjLFSkWUWMN17Ngx5Yry26VLl+T1iOoX2PxdO0dEheyJdH3fF1KjUbuk62LNaep1ad+o+lKTpRelp/Lj96STM9tKbRa6p61ZFetdLftIv16KU/8+XNo3oZs0audVKUn9UGrUPmmUYTdpqecj+TNfkhIiOQ38VHK6+pqvKYmXpF/bGkvm37pmWI8mE+v3htaRjCf8Jd15oyVgyVK8/1Zp4sStkr9YW5b6UPLf+KU0caPvy1/ruXjJ59c+kp75XMlVlflJz6QbO0dLMP5C+uuO+K68rje5n1Qp0We51BZtpG9dHyhjL6Te2CkNQSNpwl83pRRlTBuxIleEaXrHtWjRQhmh/FY0DuAnoleRoo7AcewFDBjTFTXFmlMpAQ+jTNCjWW3IE6mJ1+B9rCrs+jdJW7OamIC4Z0HwCruDqD+XYuzfbTGmr4XcFkiKf4ioCi3QrJ6h+MyXSLe8cdR8AHpbvGb7KAMr9JnQH6oDbrickKniFBuMc8518aV9W1TNvpyXA30YNhyBJZ8Dv81YhX1r5uM32GHJ6Ixr3zIqD+s+wzDs8Wm4Xn6kjGnE4IqHH97/cghs32hH/Zvcjx4MrHtgwrBYHHANRoIymiYFsVcuwvn9EbC3NdXq6UsGuSLM29tb7h0njpyigqM54uuzzz7DyJEj4eTkpDxCREVDCu57u2BPGVvYNknrxyjduYIz7u+pw1jFtOuoQJy92wBWZmXk69RboTgfWQ/NLVPg7fwvygzriCbyOrFk3PH3hHvHJqhXIesfySl3I3HRbQWmjNKsi0v/kf0aOaAcLAdPwSKLMzjl91AZE1IR5+MKlyEOGNNK+fkg3YPvkV3YuGA0uizzymUbEHV4su6DYVX24sNV72DooIY5hCZBD6Us+2HWwurYczIwY3CKC8Apl46YM6YF5DgrpkV3L8eyTTuxz2kJJo52xP6QtEnr7L24n8Hq+xn24avuR61UPQyePRUWe1zglyHsxsLnVBCGzhmBVobi/4uEpyH7MXfOCuza/weWT/kMi05FFk67lEwY5IqwLVu2sHdcIcrvA/iJqLA8wY2gy1C1bIA6cvhKRXygJ47ZtMR/qtyEi1skkmLuwL+DJpw9w81LZ+Hepiva1olD0InHaNmoJirIf9ZDBF7whY1tQ1S55gG3yJd7u5WsboE2lQbim02adXHpP7JbI5cKld9pnI+vD7s5H+DkP/7petnFwNP5ERymdEZlzdfUq4ImvQeht3UZ3FCe9UryGrTvsaPWL7i1oxZ2fp1pjVpmKn8cP/8Y1nZTMPLECXg91gQndbD0dEXY5LHoUTnt+5caew4bpl7Eu7YDMMhuKmb1vIGxq87iQU5L2dLdT6T6fnZ89Yr7UX/v/Y57I956COaMDMKR9GsU4/zgHDYQU3pUwjWX84hMTcQNt73YjyboNXAYPhlUFWsd/0ZITn98AWGQK6LEyQO+vr5o166dMkKFIT8P4CeiwlIG5vWbwLiMQdqJKck34frXaZTsbI3q4Wfg8dgApaqYo6XSzUKKu4Tdm+Ixd/loNDeqjvrdzFDGQJ5URXLUOfz1J9C5YUWEH/fE4/JZTCua2mJCx7PYcuLGa1SASqCsdBV/e8egbLPBmBQfiKua0JFyCwFSL/Stq4dQ53N4WOYNpjKVjQRp05dNUb2RZlozh/BUNgUhf/sitowNhjuUgM9VTU3uCSICymFUXysg1BUuD/VRwsQWs8/+gAF1xER1ImLuxKC+mQnKZFdhy3Q/NXJzPygFKcQV3rGGaDZ8AOJ9IvH8WxQRBmlUD9RDOJxdHqi/bhlYjfkDl+d3RAVVKI7/fRV9vvgA9bTgnEMGuSLq8OHD7B2nRfLnAH4iKhwlUbXrBKyqfBbbdmzFrwv+BvrYo8e9M9iyOwnd2lSGnvkHcGh2Ees3bcWPcw/A0PEXTGlhAj296ug6dTIqu+zEDqflWLAvGX2+bIV7HruwO6kV2hhnlQxM0GbmPHT1cMT4Zftw7oYqV7tQ9c3NEDfMFCVK1MKgDf6IjFFiyt0weC7pi3f1DdFwe1lYmLxuGklExO7vsDLDGrQXa9RWTt2LiKwar+lXQ924Gaisb4Aag7YjIFKzTi4GYV7r8d93S8Gg4QFUsxDT1aVRuXZ19Z+tDrs3nLH2VCsstm+K8mmfkMkb3o8I5HVvYVilkihRYwA2BESq70RIVn+LvLDkv2YoYdAR26vVhLH8Z0p4GuGGQ8fccSWuKupXKZfDbuGCoyd2PCi/pyJE9I0T/ePYdkT7iKrc4sWLsWDBAnn6lYgodxJxz/ck/jruiguXo5HWtdIAtYc7wjHHFiS5lYzo/Q7oED4WQdOavzifudCItisnsXRpINpNH4+OpnnRjy9vpIZsQu82fpgUuAx9C/m4Q1bkiiDNKQMMcdopzw7gJ6JipjSqNOmNMdMWY80r18jpPinWHb8uv4P/zf8MHd+NwNafXRCnPFbgUkOxbUBLTDgcJV/qlS0P49hruHn/mXxdmBjkiiA3NzdOq2q5tz+An4goD8m7Vg/hn/PhSLj8Lw4edEPE00KcsHt6Bdu/nIxpi0eiUYWS0NPvgj8qVstmarUAlKiJrg5j8G7QP9i1fwfWrPwXptvmY2SDcsoTCg+nVosY0TuuXLlyePDgAduO6AjRa05U5lq2bImpU6fKR38RERHlBityRYzoHTd9+nSGOB2inQfwExGRLmBFrogROyJHjRrFtiM6SoQ4cQC/2KzC6hwREb0KK3JFiKZ3XLNmzZQR0jU8gJ9IN4mWQlzrSoWBQa4I0fSOYxVHt4n/f7NmzcK6deueH/El1j4SkfYSG5j27NnDHpFU4BjkihDR0oJ9yYoOHsBPhScR0ac2YYtXTI6NZ6U4L2z57V9EJ3OFjjB37lzMmzdPfi3mmy8qKAxyRYRmgbxYOE9FBw/gp4InISlkN3681hojmpvk2J9Mz6gZhtpGYJlTIJKUseJKLG25fv06rK2tsXr1arl7gDjNhSi/McgVEewdV7TxAH4qMNIdnFobAtu+ViilDGVPD2Wse6Dzpd04pTn+qZgQFXJReVu0aJHcOkj0gxTrW2vVqgVjY2MEBwfL5ysT5TfuWi0CRAlfLIwXP+jZdqToEz88Bg0ahH379smnRFAxkHQVB9fshrv3Q1S1qaEOCknw960Dh8UDYVEqj3v6x53CzM/uYdK2ITDX/NHJN3Hq1w3wrmKB0lfd4W1kj1+ntYGR/GASInfNxMoqs/BDl8rySFEjqm2BgYEICwvDmTNnsGHDBowdOxZNmjRB06ZN0aBBg+evvWfPnpWfxzfWVFBYkSsCRO84W1tbhrhiggfwFz8poV6IatoOFlejYNJrHD6xG4IO9/fBOfQJpPsucJwwF7/OnYnFrrcgnw2e7IVlE/YjWv7sbDwLxq5POqHHpqC0z1Gk3AyBT4NaqPo8H8bBd9XX+L3OGHxp9xF61I5HlIkxDJVH5QPka1WFT8htFJWanKi2iR2ootomWgGJatuhQ4dgaGgo9+lMSEjA+vXrMWnSJLnVU/rX3kuXLqFLly7KFVH+Y5ArAsQLTL9+/ZQrKg7EDjnxg6RXr15ysGPbg6JN33oIJta4gaNoj9aW5YDEOwj3TYVByRTcPHkchuO+xOSxzeAz+y8E5TZNGVRClcqV0dHaNMMPAumJCg9Kl4K+co04T/yxzBB92lSHHh4hwu9xps/Rg36pknigSsxxY4S2EtU2scZYrD8VJ6zo6elh6dKlcpgTMx0rV67EhQsX5LWq4t+aWIecU2eAuLg4nnNNBYpBTseJFyEXFxf2jiumeAB/cZGK+IhA+Le1gpm+hAT/MzjedgR61SuBmDvXcOt+AlIMDGEar8KTl9KUhOTo43Cc+B22rpiMdp1WwDdZPZxyGyHuYbhwZDuWz5yDfRGJ8rP1yhqiivw7RXISEstbolaVkpAeBeDfw3XRrPRJrHC+ozxBQkpSMioZltaJg9s1/d401bZKlSrhjz/+kKttw4cPf6na9rqhTLQOIipIDHI6ToQ49o4r3ngAf3GgQqi3D4yCTmDHzjX44U9T/LSkN0z1yqPJ5E2YXec2fPwjkdi2Kso8zVSSk6JwdL4Tqjl8Cbv+7WBeuwaqllSP3w2BR42vsXLeeAxodh9/XrorP13fzAqNfa4iWhMIjd/Hx5/dw6Etm7By/SUYdnoKj9NP8P77mvVwybh7/S5srKq9qOJpCbF+WFTbxJsdTbVNBDRRbWvRooVcbRPLxDXVNtHyh6+lpGsY5HScmA5o3769ckXFlfjhIwL99u3b5eqcqDawj1URkhoF3+PGmLR0Dj4dOhHz5g1FQ0N1bJKuYdfwSfinZAO06GyLFmF/4syNtMracym3EXS+AWwsSyM+1B93W0jwOxGBxKhwBLSoqw6DMbjiEYfmlsZpz69gjS7v+sP3nijbqemZoLnDD5g/dgwcpn2JbzauxPwpI9DaWIlt0l34nimDDo3eSbsuRJpqmwhootomWoCIaptKpXpebTt48KAc5sROcE6BUlHAIKfDNA1ixbtIIoEH8BdFjxHhvBf7Lz7G9fBbeKqMyvSqoWW/ijih/n++86c18BwyByMblFMeVJSsg/YjHsNt329YuC0M5pcuIKJ8RZSu1w5Dw4/h9+U/4q/GMzCmsbJ9Qe9ddPnUCi6HQ3LRG05CUugp/Pufoegql/kKjnijomkBkr7a5unpKf87EFU2TbVNvMlhtY2KKrYf0WHiXaf4gc1t7pQVEeJ4AH8xJXatTrqOEWsGwlQZej3iZIffcaxif9jn0BRYUvlixx+x6DymE0xL5u8KOVFtEw13xa5Qcaa0aAEidpCKJQWNGzdGzZo1uXOfiiUGOR3F3nGUG+Lvyc8//yxPJ4lpV578UUy8dZArXOLvrWixIxpgnzt3Tl4LLIg3JfXr15fDG/8uE6VhkNNRounkli1b5N1VRK+iqc6JqafBgwezOkdaJbuGux06dIClpWWGhrtElBGDnI4Sa0JE7zixPZ4oN8QPy8WLF8vrisS6IVY0qLCIv4Oi2hYUFCRXiwVW24jeDIOcDhI/kEXvI7EDi5UVel1iV98333wjV+e4vpLym3i9unHjBvz8/LI83kqcTcrdo0RvjkFOB4kfxOIdrfhBTPQmNNW52NhYzJ07lz9IKc+I16Zr167Ju0fFiQhRUVHyEYKtW7eWq23iIHm+ASXKOwxyOkhMQTg6OrLtCL01HsBPbyN9tU1MlYqjrcSSj65du7LaRlRAGOR0jNiCLypxmnUlRG9L/J2aN2+e/HtW5ygn4u/KlStX5KrbiRMn5HOeRQsQUW2zsLDAe++9x2obUQFjkNMx7B1H+UVU58R064IFC+Su91S8iRYgwcHBCA8Pl1uApK+2ic0I1tbWDP1EWoBBTse0bNmSveMo32gqvuIH9VdffcW/Z8VIdtU2Ntwl0m4McjqEveOoIIhKzJ49e+TqL6tzRVNWDXerV68uv1EUh8nXrl2bLUCIdASDnA4RB6GLF1n+YKWCICozol+h+OHOI750m6i2ZT7eStNwl9U2It3GIKcj2DuOCoOo3GzcuBFOTk5Yt25dljulxd9NhgDtIkI4j7ciKh4Y5HSE6B0n+jLNmjVLGSEqODkdwC/GuIu68IggzeOtiIovBjkdwd5xVNhEdS7zAfyi8iOqPtxFXXA01bb0x1ulb7jLahtR8cIgpwPE+hbRrFV0SScqbOkP4BdNX8W6Kwa5/JFVw10eb0VE6THI5ZXkmzi11hUVPx6C5kb6ymBmKYjz2oVtjzri0y5mKKmMvgp7x5G2EQFDcwC/gYEBdu/erTxCb0N8P3m8FRG9Dga5PJGAkE0/w639VIyxKqeMZUeFgLU/43znL3Px3DRi16Bo1sp33qQtRJA7fPiw/HHkyBGcPHkSrVq1Uh6l3NA03M3qeCsxPcqGu0SUGwxyeUCKOYZpc5Mwc3lfVNVTBnMg3T2MyT+UwrxlPWDyiuezdxxpG7HxRvSZ+/zzz+U1myLUCVxQnzMeb0VE+YFBLrOkqzi4ZjfcvR+iqk0NGBsnwd+3DhwWD4RFqaxSVyriTs3HZ/dGYduQ2nj+DDHV+usGeFexQOmr7vA2ssev09rASDwmXcOuj7egyqo56GJUQn56dtg7jrSNWCPHTTe5J3rxaaptmoa7rLYRUV7JOUUUQymhXohq2g4WV6Ng0mscPrEbgg7398E59EnaE575YPmXBxGddqX2FDdDbqNBLeMXIQ5x8F31NX6vMwZf2n2EHrXjEWViDEPlUegZo1aD2wi5+VQZyJqYepk9e7bcRoBIWzDEvR6xOeHBgwfyDlPRPki8KWOII6K8wiCXib71EEyscQNH0R6tLcsBiXcQ7psKg5IlkBp9HutnfIEv7qcqzxZS8UT1BKVLpdvgEOeJP5YZok+b6upw9wgRfo/R0do03TdbH6VKP4HqSfo/52WiJ9TChQs53UKkw8R6N047E1F+YZB7SSriIwLh39YKZvoSEvzP4HjbEehVrwxKmLbCuJlfIOPe0RIoa1he+b0iOQmJ5S1Rq0pJSI8C8O/humhW+iRWON9RnpCCpMSyMCyb87dfrEPq3bu3ckVERESUEYPcS1QI9faBUdAJ7Ni5Bj/8aYqflvSGababEsrAzKoqfK7ex/PFhsbv4+PP7uHQlk1Yuf4SDDs9hcfpJ3j//cppj0uxuB5YDVZmZdKusyAWRoszETmNRURERNnhZofMUoOwqdd3wIqNGGOVRdCK3g/7r4DFWwfCVBl6k12rDvOBOSuyf74421Jg7zgqGKmIO7caXyzYjL1+fXEkcC46lM/FX+Y3IKmCcGTzJuwNMEL7zg1gqAqGh+czNLYfD7vW1XPdXzHPSI8QcsQJa/YGw6R9e1gbxiPQ4zISGw/DRLvWMC2ZP98HIqK8wIpcBo8R4bwX+y8+xvXwW8i8FSE12guH/jmPGzfO459DXohWlrjpmXTAp019cTg0IW0gRwkIPXwJ/5lom2PoE02Au3TpolwR5bcSMGo9HvM/bgx80Bh1y+VTiIs7jx8HDsc2gxFYsfobfDJkEIZ8Mgs/L+qM65P7Y9y2Ky/9u8tXUgw8f7SH7bayGLPiV3zzyVAMHDIOs3/+Ft2uz0WncX8g5Cnf6xKR9mJFLq/k8mQHle8B/PGgNcbkcLKDaO8gzlXlQeRUsO7j1Mx++OG9jfhnTP18eJf3CF7LhqLF8lZwfanil4iIbZ/A4gsj7PP/FQOrl1LG85OEBK+f0LXFPnR1PYz5HTJuSJAitmGAxSKY7DuGjQNrptuVTkSkPViRyyslzdDl8+E5hDhBH4ZNPsT4VxzPJTrlf/bZZ8oVUQFJuY0Qd4NMO6xzkHwXvvuXYXRLG3T+6GPY29unfcw9huis3h6mROLiofNA58ao+9K0bWmYW9vAMtYdrpfTGgznnvoNUqgfQlUpynU60iOEeodBleXb1Se4dvEMPNAYNnXlDo8Z6Jlbo71lEA66BiJWGSMi0jYMclpG0ztONA0lylvqwBNyEI4TZ2H1zo1YtnwdVjtugpcqbY2AdOMSjrolIujAOqzduQozx/yIM/eS5cdeknwTJxfMx86kD7DE/RL+3b0NW7duTfuY1yOHzUFqiUlIzut5gGc++HnG7whIH+bUIS5g83f42eexMpCdZ0jK8xsiIioYDHJaRtM7jn2nKG9JSL5xCNMHHUODr+dg4lB7jDC7hBkHYwD5xJK0tjsX2vTH57P/D58OtcNH1sfw1Q5/dczJLBHhO+Zjo+VkfDekKarkdjOAfm20GdwWcA/EtYTMwSkJ0VevIMzYFl2bVlLGcksfhg1HYMnnwG+aMKeEuN9ghyWjG8Mwy1ssi7ptPkBbBCHgWrwy9oIUfRWeYY0wpGsjGCtjRETahkFOy4jecZ06dVKuiPKIFIk/HWfj7wHD0bem2I2djPiHD1ChRzPUKy1Sjmi7cwmWdr3xvrw84BkS4lRw9wrHA/VVBlI0Lh6tDPs+lq+5w7Q8rPsMwzDVabhefqSMacTgiocf3v9yCGyrij81Gfd9j2HXxu9g3+VneGVTGHwhfZhbhX1r5r8ixAl6MLDugQnDYnHANRgZtyqlIPbKRTi/PwL2tqbqZ6ZAFbAPy5ZtxK59W7F04nh8vT+4YDdmEBFlgUFOi2h6x7Vr104ZIcoj9/3gvKc8htk2UMcpNeku/M+Eo2MzC1RQrq+4qdDWqpo6Eqml3kXo+Zto2twSVcV1eikPEHnRGSu+GPNiXVz6j+zWyKnjUCnLfpi9yBR7TgZmDE5xATjl0hFzxrRQjrIricpNemBI74bAjSzWvmVJHeas+2BYlb34cNU7GPZhwxxCnKJUPQyePRUWe1zgl6FKGAufU0EYOmcEWhmKl8n7OLv+J5x9tyMGD7LHtFkfIGLsepyOye29ERHlDwY5LXLq1Cn2jaN8kXwjCCdU9dGojhzbgPirOH/MDLb/qYBrLucRmfQId/zroVm9ivLD0k1fnHBviOHtaqcFu/RKVoVFm4YY+O3aF+vi0n9kt0ZO5Y/j5x/D2m4qRp44Aa/HmuCUijhPV4RNHoselW/CxS1SPfIG5OnU77Gj1i+4taMWdnyVac3cSx7C77g34q2HYM7IIBzxSrelIU4dfMMGYkqPSmnfn9Sq+OCbHVgxwEL9oikhKeYuIuubonIZvoQSUeHiq5AW2b9/P/r3769cEeUdffP66GZsIJ8ZLNa4RbkexZ8lbdCw+i0c94hD+VImMG+pNMCWYuC1ex8ezHXE+GZpwS6jGug6oRH+2uyC6NfZJFA2BSF/+yK2rA2GO5SAz1VNTe4JIgLKYVRfKyDUFS4P9V//hSnDmrimqN4o05q5LJWCFOIK71hDNBs+APE+kdA8MyUiDNKoHqiHcDi7PECZEnooWbkmzAzVsTb5Gg6vvYBui0egWT712yMiyi0GOS0hescJZmZm8q9EeUmvqi2mrqoKl22/w+nXn7APtpjWIwYeW/5GUrfmMNarie6TG+D0+s3Y8eNi/G74BbZMaQmjLHNKCRi1mYxVXS/hy/E/Yt+569m098hEvxrqxs1ApRIGqDFoOwIiNevkYhDmuQ7/fbcUDBoeQDWLd5Tx3EpExO7vsDLDmrgXa+ZWTt2LiCxLfGVgXvcWhlUqiRI1BmBDQKT6ToRk3A3zwpL/mqGEQUdsr1YTz7ceid26S9cjYuhifNOxGnvLEVGhY0NgLSFOcrCyskL37t2VESJtJyH5nh+O/XUcrhcCcPuJkpZqD8dix1e0IMktcSReh3BMDpqG5gV+dlcm0n14/LQGwT0dYN+wNEK3bsPNAZ+gixHfDxNR4WGQ0wKid1y5cuXw4MEDth0hkoldq6fg6nUSK765jT7LP0Sr5l3QoY68VaMQqBCybRr62q1FqDKC7hsR/M8YWDHHEVEhYpDTAmfPnsXp06cxa9YsZYSIiIjo1fheUgts2bKFveOIiIjotTHIFbKYmBi5d1yzZs2UESIiIqLcYZArZIcPH5Z7x5UtW1YZISIiIsodBrlCJnrHcacqEVFeS0T0qU3Y4hUDCXG4svP/0LnCSGyLSFQeT0Gc1x/47dRNvPIEOCItxiBXiDS940TbESIqmsSbNbGhSSyjoIIiISlkN3681hojmptAD0ao36wRDGzao3nN0spz9GHU/H+wDd0Mp5CMJ+0S6RIGuULk5ubGI7mIioFDhw6hZ8+eaNmyJRYtWgRnZ2eEhIQoj1Kek+7g1NoQ2Pa1Qil5IAUPI64gpK0VzDKcOWcI6wFNcWntGcSwfwPpKLYfKSTsHUdU/Ny8eRPXr1/HpUuX5E1OGzZswPTp09GoUSM0btwYNWvWLLqvB0lXcXDNbrh7P0RVmxowNk6Cv28dOHw/EBYGeXxGRtwpzPzsHiZtGwJz+Y9+hHML+6K3RzssGWmBG24S+i0ci+YV1alOuoZdH29BlVVz2NyZdBL/1hYSb29v+QWcIY6o+BBH8LVr1w6TJk3C+vXrkZCQgOHDh8PQ0BB//PEHKlWqJJ+3rKnaieBXVKSEeiGqaTtYXI2CSa9x+MRuCDrc3wfn0Djcd12KCXOXYu7UX+Ea/SztE5K9sGzCfkSnXWXtWTB2fdIJPTYFIf0pbCk3Q+DToBaqavKhdA+hF82xaMm3GDt0OPrVdsa2c/fSHtMzRq0GtxFy82naNZGOYZArJKJ3XL9+/ZQrIiqOxG51GxsbDBw4EEuWLIGYIBHH9bVo0UKeehWBT09PDzNmzJDX2ol1taKar4v0rYdgYo0bOIr2aG1ZDki8g3DfVBiUjMbJ7aUxbtYXGNvaH7MPheR+84FBJVSpXBkdrU0z/DCTnqjwoHQpPJ9Fjb8B/6hmeF98Xek2rrjdRelSmkf1Uar0E6g0R8wR6RgGuULA3nFElB1RtRM72UWIO3jw4POqnSCqdmJJhqjaicCnW1W7VMRHBMJfXqcmIcH/DI63HYGedZ7ijv8t3H+cDIPyFRGvSsTL630SEX1yCSbOXYMVU3qg03KftLCXchsh7mG4cGQ7ls+cg33KjlS9soaoIv9OkZiARw0tUL00kBxxHv88+QjDWlVWHkxBUmJZGJblj0PSTfybWwhcXFzYO46IciWrqp34Vex29/T0fKlqJyp52lm1UyHU2xdGQSewY+ca/PCnKX5a0hvVDWww2XU66kRchv9NCW1NSuFppiQn3T2O7xYawWHOJ+jfxhK1zSqhpHjgbgg8anyNlfPGY0Cz+/jz0l05BOqbWaGxz1VEa/6cyi0w/D0f/L5jI35Y+QBjt4yHTXll3lWKxfXAarAyK5N2TaRjGOQKgZOTE3vHEdEbEyFOvIaI85lF1U5smhJVO5VKJW+gEFW7cePGyVU70fpEK6p2qVHwPfEOJi2dg0+HTsS8eUPR0FAfUuQuDB/8D0o2bYXOXRoibLM7bqQon6NIiQzC+Q9sYKn/SB0Gn6IF/HEi4imSo8IR0KIuTPVicMUjDs0tjSHHswrW6PKuP3zvKZO0etXQ8av5mDZsLGb/NBldTDUtSMTyOX+ceacFGlXgj0PSTfybW8A0LQfYO46I8orYNCWqdqLSr6naic1U1atXx+nTp+Vqnmh9UnhVu8eIcN6LAxcf43r4LaTfVqBn2hz9qp3Fjt+d8NPPVzBkzTBYy+W2F0rWa4fhD9ywb/kybItIwiW3myhfyUAeHxp+DL8v/xF/NZ6BMY0N0z5B7110+dQKLodDkJQ2ko0EhB6+hP9MtH2xMYJIx7D9SAET75DFi6t4YSUiKihibW5gYCDCwsJw5swZuXI3duxYdOjQAZaWlmjQoIF27aIXu1YnXceINQNhqgy9HnGyw+84VrE/7OWmwJmlQOV7AH88aI0xXczSpmqJdBCDXAES74A7deqEo0ePsu0IERU6UZnz9/dHUFCQPEUriI0U9evXl3vbFerMwVsHOaLigUGuAIm1KqLtiOgfRUSkbbJqWKyp2hX5hsVEOopBrgCJ9Smid5xoCEpEpO3ELEJkZKRctTt37py8414sDRHr7USvu9q1a3O9L1EhY5ArIGJ9iujaLnpCse0IEekqUbW7cuWKPC174sQJ+RzZYnPMGJEWYpArIGKnWFRUlNzziYioqBBVu+DgYISHh8tVu6VLl8ozD127dpWrddbW1nKTYyLKHwxyBUQsIHZ0dJRbBBARFWXZVe1at24NCwsLvPfee5yZIMojDHIFQLyYifVxml1hRETFiVhacuPGDfj5+cnr7dJX7Zo2bYpatWqxakf0hhjkCoDoHWdkZCQ36yQiorQ3uNeuXZOPGbtw4YK89MTW1lau2on1dubm5qzaEeUCg1wBEDu82DuOiCh72TUsbtKkCat2RDlgkMtn7B1HRPRmtLphMZGWYJDLZ4sWLZJPc2DvOCKit6Nzx4wRFQAGuXzE3nFERPknq4bFgqjasWExFRcMcvnI2dlZnhpg7zgiooKR1TFjbFhMRRmDXD5i7zgiosKVuWqnaX3CY8aoqGCQyyfiXeHAgQPlbfVERKQ98rphsWgxxZkXKiwMcvmEveOIiHTD2x4zJl7vxQwM26NQYWCQyyeibC/OV+U/bCIi3ZO5YXFOVTvRZurOnTvyLAxRQWOQywfsHUdEVLRkdcxY+obFv/32G5YsWcI371TgGOTygegdJxbRdu/eXRkhIqKiJn3VTuyOFVO0Fy9eZJijAsUgl8fYO46IqPgQ4W3y5Mno1auXvKSGIY4KWgnlV8oj4p3ZwoULGeKIiIoBEeJGjRolr49jiKPCwCCXx1atWoXevXsrV0REVFSJqVVRieMRjFSYOLWah9g7joiIiAoSK3J56NSpU2wKSURERAWGFbk8xN5xREREVJAY5PKIj4+P3EeIveOIiEgWdw7Lv1gAp70x6H3kMOZ30BzWn6p+aDW+WLAZe/364u8rc9DRMH8myCRVEI5s3oS9AUZo37kBDFXB8PB8hsb242HXujpKKs8rMNIjhBxxwpq9wTBp3x7WhvEI9LiMxMbDMNGuNUxL6ilPLCgpUIUcw+Y1BxBg0hKdrStAFXgBnok2sJ84BK1NSyvP014McnmEveOIiCgzKXIXhlm74KOQFRhomj42JSFy16ewPtoXwRsHono+5Dgp7jx+/HAiPAdtxvrxTVBByUhS7Gk49piOGw6bsfrjhiiTNpz/pBh4/jgG/Tz74tiG0WhkqK+M38MZx5H45IYdDq8eDqsyBRXmUhDnuQIf/s8Lg5xXYnyjikj7yimIPfM9enxyEw6Hl+FjK0N5VFtxjVweEH2EZs+ejQ4dOigjREREqYgP9YVr2/fR6N3Mta9HCPUORtsO1ng3X34SP4L3OkdMD/ofPh/Z+HmIE/SMW2OUgxW2TvkNR6KSlNH8JiHBezMmT7+LTz4b8CLECXpV0H7USFhvWYDFRyLVzywgCd5Y98V3CBo7HiOfhzhBH8bth8LB+gi+WOyMKC0vdzHI5YEzZ86wdxwREWXyFDdDrqB0R2vUyvzTNuU2QtwN0NHaVB0bciH5Lnz3L8Poljbo/NHHsLe3T/uYewzRWQWNlEhcPHQe6NwYdctnrnCVhrm1DSxj3eF6OUYZy60UqEL9EKpKUa7TkUQ4DYMqy+DzBNcunoEHGqNJXSNl7AU9c2u0twzCQddAxCpjuSWpwuAd+iiLAJjDvaqlXPPCnx7G6GxTG+WVsef0qsG6vSViD7rjcmzWn68tGOTywJ49e9CpUyflioiIiguxBu2g4xTMXL0Nm5atwMbVS7DWS4kiUhS8jvqjUtABrFjrhDUzHfD9mWg5cEg3LuGoWyKCDqzD2p2rMHPMjzhzLznt8zJLvomTC+ZjZ9IHWOJ+Cf/u3oatW7emfczrAdOcZiITk5Cc1xWlZz74ZcbvCEgfkNQhLmDzd/jZ57EykJ1nSMrzG3oMn5+/w+aA9GFOHeICfseMn33UXzEnKepvUUrBVQHzAYPcWxK943x9fdkQkoiouEmOwIHpk3GogQMWTPwYo0fUgNuME4jX1Njib8D/giUGfj4TX35qh7Ef1cKmr/fC71kK4iMCcaFNf3w++//w6VA7fGR9DF/t8M8idCQifMd8bLScjPlDmqJKbjcD6NdGm8FtAfdAXEvIHFOSEH31CsKMbdG1aSVlLLf0YdhwBH74HPhNE+aUEPcb7LBkdGMYZnmLZVG3zQdoiyBcuRavjL0gRV+FZ1gjDOnaCMbKWG7pGTbG6CV26hvShDklxP0GfL5kBBqmn8ZNR79ua3zYNg7uAZFIUMaek+7jquc1GA+xRVPjXNVMCw2D3FsSvePs7NR/gYiIqBhJQtSfSzH277YY09cCpdQjUvxDRFVogWb1xOJ4CYmh3jhmOQD93zeBnrhOUOGZewDCHogpyEuwtOuN941ESHiGhDgV3L3C8UD80elJ0bh4tDLs+1jKXyP3ysO6zzAMU52G6+VHyphGDK54+KHF/30E26pi7V4y7vsew66N38G+y8/wyqYw+EJamFsih7lV2Ldmvhzifsg2xAl6MLDugQnDYnHgTHCm4JSC2CsX4fz+CNjbmqqfKYLYPixbthG79m3F0onj8fX+YDxVnp2VF2FuPtbsW/XKECczsEKfT/tDdcANlzOH3dhgeDjXw5f2bVFV/Dc9Dca+ufOwYtc+7Fr+JUYvOomoPK8svhkGube0cuVK9O/fX7kiIqLi4R68nf9FmWEd0UReg5aMO/4X4d6xCepVED9anyHqii/utrWCmZwlEnEr9AoibaxhWUUdpNxUaGtVLa12l3oXoedvomlzS1QV1+mlPEDkRWes+GLMi3Vx6T+yWyOnjkOlLPth9iJT7DkZiAwTnnEBOOXSEXNGt0DafsySqNykB4b0bgi9yNyuB1OHOes+GFZlLz5c9Q6Gfdgww4aKLJWqh8Gzp8Jy72n4ZQhOsfD5NxhD54xAK7kNy32cXf8Tzr7bAYMH2WParA8QMXY9TsfkfG96hg3x4bB3sOrDvagytDescwpxsnKwHPwFFlmcwUm/9GE3FXE+rnAZ6oAxrdJaxqTcOIsN+wGbXgMw5JP+MF+zAn8Gv1THKxQMcm9B9I6rXr06GwATERU3ydEIOvEYLRvVRAV54CECz/vCxrYhqlzzgFukCjF3YtCxmUXa41I0Lp24jNbDW6MeHqlDXz00q1dR/kzppi9OuDfE8Ha1NZOyL5SsCos2DTHw27Uv1sWl/8hujZzKH8fPP4a13VSMPHEC3s93IKhDiqcrwiaPRfcqt+DiFqkeeQPydOr32FHrF9zaUQs7vvodAfE5Ba2H8DvujXjrIfh2RDCOaNYRCnF+OB42AFN6VMI1l/OITK2KD77ZgRUDLNUhRUJSzF1E1jdF5TI5RZa06dSvxL3c+gW1di7OtGYus1So/E7jfHx92M35ACeOXE4XdmPg6fwIk6d0QWX5/2Ui9K3G4J/Lc9Ghggrhx53h1/djdKtXTnl+4WKQewtHjhzBZ599plwREVGxoV8N9buZoYyBmJqUkBx1Dn/9qYfODSuqf9B74nH5cqhiXlv5IZuCOK9D2PTgU/w6rjnK6ZvAvKXSvU2Kgdfu/Xgw1xHjm6UFu4xqoOuERvhrswuikl5jKq9sCkL+9kVsWRsMdygBnzBN9egJIgLKYVRfK+iFusLlof7rB4EMa+KaonqjtGnWVTMzbYDIoBSkEFd4xxqi2fD+iPeJVH9X0qREhCHVvoc64IbD2eUBypTQQ8nKNWEmKmrJ13B47QV0WzwCzcplV/LLuCauUfWmmdbMZaUEykpX8bd3DMo2GwyH+EBcfX5DtxAg9ULfekCo8zk8LKO0jnkagTOHnOF2JR7V61dGWW1JUKIhML2+hAS5Liw9ePBAGSEiouIjVXoSvEP6fML30u9bf5HmLj8gHd8wVZrww1Jp7srz0qNU9TNi3KVlE+dKG/5YJk2Zsk5yj3qqfG6yFOOxXJr47Vrpj6XTpSmr3aSoJPUnZOupFHVikTR89FJpr8c1KT6npz53Wzr6RRP55xRQX/r0z5vK+A1pn52lMt5PWh3wWBlXi9on2dddKnkmKddZeiqF7/xSmrDRN9N9JEvx/lulCWN3SuEpylAGydKDo19KxvLXhWT46V/SXXk8Sf1lP5X0xCJCGEvtV19WP1ORFCmdWPS1tOz0TfWzspcSvlMaO2Gr5B///DNlqfG+0sYJX0o7wzXf90weHJWmmOilfS8MHaS/7iqfr/4+qGNg2nj71VJAxj9W/QUDpY3dm0sT/opU/y0ofDzZ4Q2dPXsWp0+fxqxZs5QRIiKi/CIh+Z4fjv11HK4XAnD7iTIhWns4Fju+ogVJbkXvx6iO4XAInIbmmfsXFzTpPjx+WoPgng6wb1gaoVu34eaAT9DFqDDKYIkI3zYOLc5+hOA1fVFFuoZdw7pjpe0+uEz4z8vT4QWMQe4NjRs3DqNGjWLbESIi0nFi1+opuHqdxIpvbqPP8g/RqnkXdKjzUpvcAqJCyLZp+K/9WoRoEkr3jQj+ZwysCmU6Ux2io12weo0XylvXQfkYTxwN/Q+mzRuChhUKO8YxyL2RmJgY9OzZExcuXFBGiIiIiAqetizV0ymHDx9m7zgiIiIqdAxyb2D//v3sHUdERESFjkHuNYnecQJ7xxEREVFhY5B7TW5ubpxWJSIiIq3AzQ6v4cmTJyhXrhwePHgAE5O0YzuIiIiICgsrcq/B29sb06dPZ4gjIiIircAg9xq2bNmCfv36KVdEREREhYtBLpdE7zhfX180a9ZMGSEiIiIqXAxyuaTpHVe2bFllhIiIiKhwMcjlkugd1717d+WKiIiIqPAxyOWCpneclZWV/CsRERGRNmCQywX2jiMiIiJtxD5yryB6x3Xq1AlHjx5l2xEiIiLSKqzIvYLoHWdra8sQR0RERFqHQe4VDh06xN5xREREpJUY5HIgese5uLiwdxwRERFpJQa5HIgQx95xREREpK0Y5HLg5OSE9u3bK1dERERE2oVBLhshISHyrzY2NvKvRERERNqGQS4bzs7OGDhwoHJFREREpH3YRy4L7B1HREREuoAVuSyI3nFNmjRhiCMiIiKtxiCXBdE7btSoUcoVERERkXbi1GomondcpUqVkJCQwLYjREREpNVYkcvE09MTK1asYIgjIiIirccgl8mqVavYO46IiIh0AoNcOjdv3pR/Ze84IiIi0gUMcukcPHiQveOIiIhIZ3CzQzotW7Zk7zgiIiLSGazIKc6ePcvecURERKRTGOQUp0+fxuDBg5UrIiIiIu3HqVU19o4jIiIiXcSKnGLr1q0McURERKRTWJEjIiIi0lGsyBERERHpKAY5IiIiIh3FIEdERESkoxjkiIiIiHQUgxwRERGRjipmQS4R0a4rMLpldejpVUDdvrOx+8ojcNsuERER6aJi1H5EwjPflehsMxnuyojM+Av8FbQMfauWVAaIiIiIdEMxqsg9xuXj+zOGOCH2MPa4RSsXRERERLqDa+SIiIiIdFQxCnLl8Z9uA9FWuXrOuC8GtzdVLoiIiIh0RzEKcnowaDIee08vx6j3RXAzhGWfWdjlNg99uD6OiIiIdBDPWiUiIiLSUVwjR0RERKSjGOSIiIiIdBSDHBEREZGOYpAjIiIi0lEMckREREQ6ikGOiIiISEcxyCkWLVqk/I6IiIhINzDIKSIiInD27FnlioiIiEj7McgpBg8ejNOnTytXRERERNqPJzsonjx5gnLlyiEhIQFly5ZVRomIiIi0FytyChHeFi5ciDNnzigjRERERNqNQS6d3r17Y8+ePcoVERERkXZjkEvHxsYGvr6+uHnzpjJCREREpL0Y5DKxs7PDqVOnlCsiIiIi7cXNDpmIatzAgQNx4cIFZYSIiIhIO7Eil4mZmRmqV68OHx8fZYSIiIhIOzHIZeGzzz6Dm5ubckVERESknTi1moWYmBhUqlSJPeWIiIhIq7EilwUTExO5p5y3t7cyQkRERKR9GOSy0alTJ2zZskW5IiIiItI+DHLZaNasmdxTTkyzEhEREWkjBrlsiLVxoqfc4cOHlREiIiIi7cIgl4Pu3btj//79yhURERGRdmGQy4GVlZX8a0hIiPwrERERkTZhkHsFMb3q7OysXBERERFpD/aRewWx2aFnz544ffo0e8oRERGRVmFF7hVET7kmTZqwpxwRERFpHQa5XBg1ahQOHTqkXBERERFpB06t5sKTJ09Qrlw5PHjwQK7QEREREWkDVuRyQayNW7FiBTw9PZURIiIiosLHIJdL7du3x6pVq5QrIiIiosLHIJdLNjY2iIqKws2bN5URIiIiosLFIPcaJk2ahIMHDypXRERERIWLQe41dOnSBU5OTsoVERERUeFikHsNZmZmck+5s2fPKiNEREREhYdB7jUNHjxYPuWBiIiIqLCxj9xr0vSUS0hI4JFdREREVKhYkXtNIrwtXLgQZ86cUUaIiIiICgeD3Bvo1KkT9uzZo1wRERERFQ5Orb6hli1bYv/+/fIGCCIiKm5icG75LCxw+hN+vXfhyrwOMNRTHtIqKVCFHMPmNQcQYNISna0rQBV4AZ6JNrCfOAStTUsrzys4kioIRzZvwt4AI7Tv3ACGqmB4eD5DY/vxsGtdHSWV5xUY6RFCjjhhzd5gmLRvD2vDeAR6XEZi42GYaNcapiW18n/scwxyb2jlypUwMjKCnZ2dMkJERMWKdA27hn2Iox/tx8aBNbVwiisFcZ4r8OH/vDDo2AqM/887SIskKYg98z16jr2JSX8tw8dWhvJoQZDizuPHwZ/Bc+AmbBjf5Hn4lWJPw7HHdNxw2ILVH1ujTNpw/pNi4PnjGPzPsy+cN4xGI0N9ZfwezjiOwCc37HF49XBYldHeMMep1TfUv39/uSJHRETFVHw4vF0t0KFRVe38YZrgjXWT5yNo7HiMaKQJcYI+jNsPxSTrf/DFYmdEFVg55xG81zliRuB/8fnIxhkqmHrGrTHKwQpbvliJI1FJymh+k9Tfos2YPP0uxn4+8EWIE/SqoP2oj2G9ZQEWH4lEqjKsjRjk3pBmStXHx0f+lYiIipeUmyFwL20D61oFMT0pIfmeD/Yv+wQtrTrjI3t72Msf4zD32C31oy9LueaFQx4m6GxTG+UzF5T0qsG6nSViD7rjcmyKMphbKVCF+iFUlcXnSY8Q6h0GVZY3FImLh84Dnf+Dui/dUGmYW9vAMtYdrpdjlLHcesP7wRNcu+gGDzSGTV0jZewFPXNrtLcMwkHXQMRq8dwlg9xb+Oyzz+Dm5qZcERFR8ZGIG15ucKt0BQdWrMfONV9jzPencU/+gS/WpR2E48RZWL1zI5YtX4fVjpvgpXpR1xHrxA46TsHM1duwadkKbFy9BGu9YpVHM1OHuOgTWDDzAJK6fQ/3kH+xe+tWbJU/1mNejxrpqm2ZpSAxKSXLoPdWnvng5xm/IyB9eFKHpoDN3+Fnn8fKQDYSk5Cc1zf0NveDZ0jK8xsqOAxyb6FFixZwcHCQe8sREVFxEo8I/3C0Gfg5Zn85HkPHfgjrjUuxw0+F5BuHMH3QMTT46ltMHGqPEWaXMONgDFBKiVvJETgwfTIONXDAwokfY/SIGnCbcUL9J6ab2ksv9Sp2TNoHy9lfYUiTqrneDKBftzUGt30E94BIJGTOKdJ9XPW6BuMhtmhqnM3XzZY+DBuOwJLPgd804UkJTb/BDktGZ5w2fU6/NtoMbgu4B+HaSzeUhOirVxBmbIuuTSspY7n1hveDsqjbpgvaIggB1+KVsRek6KvwDGuEIV0bwTj7pFzoGOTegomJCaZPnw5vb29lhIiIioXEa/A+9i7s+jeBkfghn5iAuGdB8LrqhT8dZ+PvAcPRp6ZoGp+M+IcPUKFHM9QrLZ6YhKg/l2Ls320xpq+FHMqk+IeIqtACzeplvelAuuWNo+YD0NviNZvQG1ihz4T+UB1ww+XMwSk2GOec6+JL+7ao+kYhJX14WoV9a+a/IjQJ5WHdZxiGPT4N18uPlDGNGFzx8MP7Xw6BbdU32bf6JvejBwPrHpgwLBYHXIORoIymSUHslYtwfn8E7G1NtTosMci9pX79+mHLli3KFRERFQdSVCDc7jaAlVna/srUW6E4H1kPzcvfgvOe8hhm2yBtXZp0F/5nwtGxmQUqyM+8B2/nf1FmWEc0kZ+QjDv+nnDv2AT1KmT9IznlbiQuuq3AlFGadXHpP7JfIweUg+XgKVhkcQan/B4qY0Iq4nxc4TLEAWNamaQNSffge2QXNi4YjS7LvNR3lRvq8GTdB8Oq7MWHq97B0EENcwhNgh5KWfbDrIXVsedkYMbgFBeAUy4dMWdMC8hxVlTUdi/Hsk07sc9pCSaOdsT+EJX81Oy9uJ/B6vsZ9uGr7ketVD0Mnj0VFntc4Jch7MbC51QQhs4ZgVaG4v+LhKch+zF3zgrs2v8Hlk/5DItOReby+5S/GOTeUrNmzeDr64uYmNddnElERLoqJeYO/J+Hr2e4eckd7m26omXZmzihqo9GdSqkrVuLv4rzx8xg+58KuOZyHpHPohF04jFaNqqpBLuHCLzgCxvbhqhyzQNukYnyaHolq1ugTaWB+GaTZl1c+o/s1silQuV3Gufj68Nuzgc4+Y8/XqwUi4Gn8yM4TOmMypqvqVcFTXoPQm/rMrihPOuV5OnL77Gj1i+4taMWdn6daY1aZip/HD//GNZ2UzDyxAl4PdYEJ3Ww9HRF2OSx6FH5JlzcIpEaew4bpl7Eu7YDMMhuKmb1vIGxq87iQdaJNU26+4lU38+Or15xP+rvvd9xb8RbD8GckUE4kn6NYpwfnMMGYkqPSmn/31ITccNtL/ajCXoNHIZPBlXFWse/EZLTH19AGOTekjiyS/SSc3FxUUaIiKio069ijpbKT1Ap7hJ2b47D3OWj0aqBNboZG8CgpHgwEVGuR/FnSRs0rH4Lxz3iUL5UNdTvZoYyBvKkKpKjzuGvP4HODSsi/LgnHpfPYlrR1BYTOp7FlhM3XqMCVAJlpav42zsGZZsNxqT4QFzVhI6UWwiQeqFvXT2EOp/DwzJvMJWZYQ1aU1RvlGmNWlbKpiDkb1/ElrHBcIcS8Lmqqck9QURAOYzqawWEusLloT5KmNhi9tkfMKCO2BGciJg7MahvZoJs27llup8aubkflIIU4grvWEM0Gz4A8T6ReP4tigiDNKoH6iEczi4P1F+3DKzG/IHL8zuigioUx/++ij5ffIB6r7u8MB8wyOWB7t27w8nJSbkiIqKiTs/8A0xufhHrN23Fj3MPwHDuL5jSwgR6VW0xdVVVuGz7HU6//oR9sMW0HjHw2PI3kro1h7FedXSdOhmVXXZih9NyLNiXjD5ftsI9j13YndQKbbLceGCCNjPnoauHI8Yv24dzN1S52oWqb26GuGGmKFGiFgZt8EdkjBJT7obBc0lfvKtviIbby8LC5HXTSCIidn+HlRnWoL1Yo7Zy6l5EZNV4Tb8a6sbNQGV9A9QYtB0BkZp1cjEI81qP/75bCgYND6CaxTvqsdKoXLu6+s9Wh90bzlh7qhUW2zdF+bRPyOQN7wdlYF73FoZVKokSNQZgQ0Ck+k6EZPW3yAtL/muGEgYdsb1aTWWzg4SnEW44dMwdV+Kqon6VcjnsFi44PNkhj4gGwUuWLIGVlfodBRERUZ5LxD3fk/jruCsuXI5GWr8EA9Qe7gjHHFuQ5FYyovc7oEP4WARNa17wR2W9RLRdOYmlSwPRbvp4dCyE48SykxqyCb3b+GFS4DL0faPNGXmHFbk8MnDgQDg7OytXREREea00qjTpjTHTFmPNK9fI6T4p1h2/Lr+D/83/DB3fjcDWn10QpzxW4FJDsW1AS0w4HCVf6pUtD+PYa7h5/5l8XZgY5PJI37595elV9pQjIiKdI+9aPYR/zocj4fK/OHjQDRFPC3HC7ukVbP9yMqYtHolGFUpCT78L/qhYLZup1QJQoia6OozBu0H/YNf+HViz8l+YbpuPkQ3KKU8oPJxazUPjxo3DqFGj0K5dO2WEiIiIKP+wIpeHRIg7ffq0ckVERESUv1iRy0NiWrVcuXJ48OCBfOoDERERUX5iRS4PiZ5yCxcuhKenpzJCRETFQUhICNtQUaFgkMtjvXv3xqpVq5QrIiIqDkTrqTNnzuDs2bPKCFHB4NRqPmjZsiX2798PMzMzZYSIiIo6sbxm8uTJaNKkCWxtbdGoUSPlEaL8wyCXD0R5PS4uDpMmTVJGiIioqBIBLjIyEv7+/jh37hz27t0rj124cAHm5ubKs4jyB6dW80GXLl24VoKIqIiKiYmRp1DF67xoOyU2uS1duhQqlQo9e/ZE+/btcfHiRYY4KhCsyOUT8Y/7888/h42NjTJCRES6SGxkENW2oKAgHDx4UB4TxzLWr19fnj5NfzSjCHh37tyRT/shKggMcvlEHNcldq/OmjVLGSEiIm0nqm03btyAn5+fvHlhw4YNGDt2rLzurWnTpqhVq1aO659XrlwphzyukaaCwiCXT8SLQaVKlZCQkCC3JSEiIu0jqm3Xrl2T33iLNW1RUVHyRoXWrVvL1TYxPfo6r+EiyHF9NBUkBrl8tGjRIrRo0QLdu3dXRoiIqLCkr7aJqVKxrq1fv37o2rVrrqptRNqIQS4fibUSW7Zswfr165URIiIqKDdv3sSVK1fkqtuJEydw6NAhTJ8+Xa62WVhY4L333uOMCek8Brl8JnrKHT16lEd2ERHlI9HuIzg4GOHh4XILkPTVNrEZwdramtU2KpIY5PKZWC9hZGQEOzs7ZYSIiN5WdtU2sa6tcePGqFmzJt9AU7HAIJfPxIuNWPiq2bJORESvJ3PDXRcXF1SvXl2e8RDrkGvXrp2hBQhRccIgVwDEVnRHR0f2lCMiygXxBvj69eu4dOkSfH19n7cA6dChA6ttRJkwyBUAce6q2NLOLelERC/TNNzVVNuE7BruElFGDHIFgD3liIjSiNfDwMBAhIWFZWi4K6ptlpaWaNCgAattRK+BQa6AzJgxQ95B1a5dO2WEiKjoy+p4q/QNd1ltI3o7DHIFRPSUE7uqlixZoowQERUtWTXcfZ3jrYjo9THIFRCx66pTp07sKUdERUZeH29FRK+PQa4AiZ5yYsv8wIEDlREiIt2gabib1fFWbLhLVHgY5AqQj4+P3IaEPeWISNvxeCsi3cAgV8DElnqxTo4LfIlIW2R3vJWm4a7uVtskJEe7YO0xI3xs3xxGespwZlIMvLYexKMeI9DFtLQySKQbGOQKmJOTE+Li4thTjogKTfqGu0X6eKukK9j0tRfaLxoJK4PsUpziqR/WzvZF58Xq55Z6xXOJtAiDXAETu7p69uwpLwwmIspvxfd4qxTEHPsOc5PG4de+NVBCGc1eMu4enocfSn2OZT2qgVGOdAWDXCEYN24cRo0axZ5yRJTncjreqvAb7iYg/OBW7HT3w8OqVqhqXBHwv446DjMxyKKc8py8ch+nZi7CvUk/YIh5KWUsEdGn1mG5dwU0Lh2G496VMe5XB7QxSot5UuQufLyyClb90AVG8giR9nv1mxTKc4MHD8bp06eVKyKiNyc2I4hjABctWiRX2cSuePH6IqpuYrpUvFdfv3497Ozs5DePhTplmhKBM1FW6GrxAMEmvTDlEzuM6HAfvziHI0W6A1fHKZj7qyOmLnZBdKr4BBW8ls3B/uhk9e8lPAvZiU9aDMemkKfiwZyl3EaIT1XUqlpSGZCQ4LsOY36vAYcvR2FIjzq4FVUBlQxf/BjUq1oLDXxCcDNFGSDSAQxyhUC8M549e7Y8zUpElFviNUM0FxdrbUVlX09PT96YoFKpnvepFMs2Zs2aJQc6rZsy1W8I+4m1EHwU6NW6JkoiAVHh11DOQB22bp7GdsORmDV5FFr7rsWhoATlkzT0YFCtKio/bgTrWrnYkCAlQvWgJErpayZJH+DcHwdQrU8LmOql4GHEFUR0tEat9D8F9Uuh9AMVnnCeinQIg1whEFv2Fy5cKDfRJCLKjqi2OTs7P6+2ifW1YmOCoaGhXG0T5zdrTbUtt+JvwN+/LqzMygAJwfj3RAM49LKEFHMb/rce4HGKPspXS4XqiVySyyDlZgjck7xwZNuvmDl5HyJSxK7U43Cc+B22rpiMdp1WwCdJebJeaRhWSb/SLQVJicZoWMsEelIMfP4NRO9myfhzxSk8f0udkoTESoYoywVypEMY5ApJ7969sWrVKuWKiIo7UW0TvSZFtU2czayptokwJ6ptYvpUVNtE+yJNtU33+rhJSAz1xnGjEPy7YzvW/HAcpj9+iz6mpVCyiQNcZ1sgwicQNxPNYVImRf3s9JJxN+gKaiz8EfM+6Y9md0/j0p3rODrfCdUcvoRd/3Ywr10Dz2dS9avBqvEtXI3WJLvKaPNxd1w7tB1OK7fjsmEdJHpcRPz7jWGsPEO6ex2BNlYw01cGiHQAg1whsbGxkY+zEQuTiaj4SV9tE/0lK1WqhD/++EOutonNCZpqm2hVJKptRePUhERc972EKpMWYN6ndpgwbxZGNKwIPSQhctdnGPwP0LRFR3RpEY3NZyKRsSb3FFHhj9CibmXoxQbDI7oeLCveR9D5BrCxLI34UH/cbSHh8skIpC1xM4ZNFyO4+d5V/hx9GDX/FCvnT4Cdw1R88c1KrJ4/FWNaq/88+fFk3PP1xTsd3kMF+ZpIN+g7iqMGqFCULl0aERER8oHSRFR0iRYgAQEBcHd3x+bNm9G9e3e5JUjFihXxn//8B/b29vjpp5/QrVs3eVepCHWlSml2WhYVEp5GHMeqn3biTrlmaNumLoxLauYwS6B8+QSc2XQGDxO9scejCeZ/2QXvGiQj2v0sHjXuhAYVDGBY4hb2HL+CsKPeMP92EnrWeAf6qtNwi7yCowcuQ/+2CoatP0BLc1GpLIGytari9kZ3GNo2RqXna+WykRSEXRsS0H9cR1R9fl9E2o/tRwqRqMaJKRL2lCMqukS1jcdbvSmxa3UJro+Yg4GmmjnT15Hbkx0ewnfHn3jQeQhPdiCdwyBXyMSLvCiKiqlWIip6xBQqj+R7U28b5IiKPga5QibWyIjdq6JdABEREdHrYJArZGKnmlgPIxY2c6qFiIiIXgd3rRYy0fdJ9JTz9vZWRoiIiIhyhxU5LSA6tW/ZskVuNUCUP1IRd241pizYjD1+fXEkcC46lC+cnXmSKghHNm/C3gAjtO/cAIaqYHh4PkNj+/Gwa10dBb4SSnqEkCNOWLM3GCbt28PaMB6BHpeR2HgYJtq1hil3MBKRFmOQ0xKia7s4XkcnOrOTjhK9uibA+mgfhGwaCNNCyCdS3Hn8+OFEeA7ajPXjm6CCcg9S7Gk49piOGw6bsfrjhiiTNpz/pBh4/jgG/Tz74tiG0WhkqHSCle7hjONIfHLDDodXD4dVGYY5ItJOnFrVEuKIncOHDytXRPnhEUIvBaNtB2u8Wyi55BG81zlietD/8PnIxs9DnKBn3BqjHKywdcpvOBKl6cSf3yQkeG/G5Ol38clnA16EOEGvCtqPGgnrLQuw+EhkphMGiIi0B4OclhANQsURPET5JuU2QtwN0NHaNG/+4Sffhe/+ZRjd0gadP/pYbmorf8w9huiskk9KJC4eOg90boy6L03rloa5tQ0sY93hevn5yZe5lAJVqB9CVWn9/DOQ1OHVOwyqLJPYE1y7eAYeaIwmdY2UsRf0zK3R3jIIB10DEauMERFpGwY5LaHpMyXOWiTKD9KNSzjm9hRBB9Zh7c5VmDnmR5y5l5z2mEodWBynYObqbdi0bAU2rl6CtV45xJfkmzi5YD52Jn2AJe6X8O/ubdi6dWvax7weOU/bJiYhOa9LXM988MuM3xGQPsypQ1zA5u/ws89jZSA7z5CU5zdERFQwGOS0iJhedXNzU66I8lIq4iMCcaF1f3w++//w6VA7fGR9DF/t8EdicgQOTJ+MQw0csHDixxg9ogbOzjyBeGR3cngiwnfMx0bLyZg/pCmq5HYzgH5ttBncFnAPxLWEzMEpCdFXryDM2BZdm1ZSxnJLH4YNR+CHz4HfNGFOCXG/wQ5LRjeGYZa3WBZ123yAtgjClWvxytgLUvRVeIY1wpCujZ4fqk5EpG0Y5LSIra0tnJyc5HMZifKWCqHel2Bp1wvvG4mA9gwJcSq4ewXC98+lGPt3W4zpayHvGJXiHyKqQgs0q2cof+ZLpGhcPFoZ9n0s8XqngZaHdZ9hGKY6DdfLj5QxjRhc8fBDi//7CLZVxV0k477vMeza+B3su/wMr7TCYQ7SwtwSOcytwr418+UQ90O2IU7Qg4F1D0wYFosDZ4KRoIymSUHslYtwfn8E7G1N1c9MgSpgH5Yt24hd+7Zi6cTx+Hp/MJ4qzyYiKiwMclpE7FgVYY495SjPSXdxxU2FNlbV0upsqXcRev4mmjYvhyhnF5QZ1hFN5HVrybjjfxHuHZqgXoVsXh5SHiDyojNWfDHmxbq49B/ZrZFTx6FSlv0we5Ep9pwMRIYJz7gAnHLpiDmjWyAtPpZE5SY9MKR3Q+hFZrH2LUvqMGfdB8Oq7MWHq97BsA8bZthQkaVS9TB49lRY7j0NvwxVwlj4/BuMoXNGoJWh+D7cx9n1P+Hsux0weJA9ps36ABFj1+N0TG7vjYgofzDIaZl+/frJB2wT5amUR+qAVg/N6laUL6Wbvjjh3hDDW5bD1ZOP0bJRTVSQH3mIwPO+aGJrjSrXPOAWmSiPZlCyKizaNMTAb9e+WBeX/iO7NXIqfxw//xjWdlMx8sQJeD/fgZCKOE9XhE0ei+5VbsHFLVI98gbk6dTvsaPWL7i1oxZ2fPU7AuJzCloP4XfcG/HWQ/DtiGAcSb8mMM4Px8MGYEqPSrjmch6RqVXxwTc7sGKApfpFU0JSzF1E1jdF5TJ8CSWiwsVXIS3TrFkzLF26VD66iyjP6JvAvKXSnU2KgdfufXgw1xHjW1mjfjczlDGQJ1WRHHUOf/2ph87WFRF+3BOPy2fVnrcGuk5ohL82uyAq6TU2CZRNQcjfvogta4PhDiXgE6aZzHyCiIByGNXXCnqhrnB5qP/6L0wZ1sQ1RfVGadOsq2Zm2gCRQSlIIa7wjjVEs+H9Ee8TCc0zUyLCkGrfA/UQDmeXByhTQg8lK9eEmWhRknwNh9deQLfFI9Cs3KtKfkRE+YtBTsuI81ZXrFgBFxcXZYQoD+jVRPfJDXB6wxbs+HExfjf8AlumtISRXnV0neKAyi47scNpORbsS0afaa1w79xu7E5qhTbGWW14KAGjNpOxquslTP/0R+w7dz2b9h6Z6FdD3bgZqFTCADUGbUfAjYfKAzEI81yH/75bCgYND6CaxTvKeG4lImL3d1iZYWPDiw0QK6fuRUSWJb4yMK97C8MqlUSJGgOwISBSfSdCMu6GeWHp/8xQwqAjtleriedtusVu3aXrETF0Mb7pWA2McURU2HiyQ55KRPSp33GsYn/YNzfGkys7Me3z+Yga8xcOfFxXftGX4rywdVscenxqm+3RP6IFiaOjIw4ePKiMEGkjCcn3/HDsr+NwvRCA20+UtFR7OBY7vqIFSW5F78eojuFwCJyG5gV+dlcm0n14/LQGwT0dYN+wNEK3bsPNAZ+gixHfDxNR4WGQyzMSkkK242u35vh+jHXabr7UIGzq9Q2e/eyECdbl5GeJ5z0N2IzZ51tjseZ5Wejfvz9WrlwJMzMzZYSoOBG7Vk/B1eskVnxzG32Wf4hWzbugQ53yyuMFTYWQbdPwX/u1CNG8YnbfiOB/xsCKOY6IChGDXF6RbuPYtN+QNHMu+srtE9RijmFK89P4n++CjO/apVs4PHk9Ss37Fj1Msu7VJdqQxMXFYdKkScoIERERUUZ8L5mlBIQfXI1FMyZixrKfsWzjJiybOhf7wjWLs1XwXb4Q+6PTNbeK///27gWu5vv/A/gr5R5bqMmQlRpHP3eGYW7TjP9c5s4KM/dcNrdh7jO3zYaRmfslNrnMZuSWctdd91QoISoqkS7f//l8+x5OKWJUp17Px6PHOp/vOfquWefV+3N5B+DEbWs0MNbM/0hICfHAgfv+OPKHIzbMnoZVHnHqUTU9EzRonYAT3rmfnN+tWzc5zBERERHlhkEuJ+kRcIu2QifzWARX6oKJX9piUJs7+Nk5HOkZN+G+fha+mhCpPDlTelQIvOuaweTJuqDHiA4NheWi77Fw+CDYdTfGmm2XlJ6NBjAxM4F3yK0nu+SyE2fKNWjQAGfOnFFGiIiIiLJikMuJfj3YjTZD8GGgS4ua6tiVjOjwqyhXygB6JUzR9KtvMN1WOcpBIT1MQmzpkpmHrcoSEeGXgs7NaqIkUhAZ4I376uuZ9To96Jc0QGxSSmaFLhd9+vTBqVOnlEdEREREWTHI5SbxOvz8asOqujqwJQfj5FEV7LuIw0BzplfWEMbK55keI/l+VZhXKwekXcPpfyVMH9gUFeVrEtJT01DZsPRzjy9o06YNZs6cyTPliIiIKEcMcjmSkBLqiaMVQ3DScTsclhyF6U/foatp7p0l9atbob73Fa3WRCb4YGAtXNyxAxuXbMbt4UswpkFmjJPPqboWg4aadkm5EGfKff/993B3d1dGiAoHZ2dn5TN6kUWLFmHv3r0ICQlRRoiIXh/9ueLAMsomBeGH1+FU83n4/auOaNa+DeqblMmsnmXchMdfh+B85BxulHsblarWQrUK6jhWqiwyzv6D6EZtYVVe5OMSKG/2ATq1aohGbTui1XsVn6Zm6RbcHLxg1qeL8tzcVahQAZs3b8Znn32mjBAVvLCwMCxevBiVK1eGsbExrl27Jo+LXz4oqxIlSiA0NFQOc6IF340bN3Dv3j0kJSXB0NCQ3zMi+k94/MgzJDyK+Bc/2M+AR5NFWPVtF7xXJi8nm+ZwjlyOMp83/WQDfD+yPrKutMtZ8+bN5TcBnilHhYmY8hcdSLZt2yYfXn3+/Hl88MEHylXKycOHDxEZGQk/Pz/5+yW+f9WqVZP/H2/atClq1aoFKysr5dlERC/GIPdaaXd2qJTj+jcpyQeOO+PRfthHuXZ2yE4cDFyxYkXY2toqI0QFTwQ5UZW7c+cOUlJSsHPnTuUKvYyoqCi5ounl5YVjx47hwIEDmDJlCqytrVG/fn3UrFlT3sVORJQTBjkdIH7Q9+rVCxcvXlRGiAqWWCM3a9Ys+cDqRo0ayVOH4u8o/XeiahccHIzw8HC5ards2TJ5SrZTp05ytU6lUrE6T0RPMMjpCNGySyxnbNiwoTJClP80VTixcH/p0qVysBCfi8DBivGbI36ZCwgIkL/X2lW7Fi1awNzcHO+//z7X2hEVUwxyOkJUQMTu1RkzZigjRPnL29sbI0aMkKtw4oxD7eDw1VdfYf369cojetM0VTtfX195vR2rdkTFF4OcjhCVELFDMDk5mb95U74SoWHFihXyhobffvstx6qw+PvJdVwFS1Trrl69Kv/CJ5ZhREdHo127dnLVTqy3q1GjBn92EBVBDHI6RJxH9dFHH+HDDz9URojeLE0VTkztT5o0iUFAh4hwff36dblq5+bmht9//x3Dhw+XW/+JdY1mZmas2hEVAQxyOkT0XRVnynEKi940UYX7888/5R3TuVXhSPeIqp2Yig0KCpIrrIII6XXq1JGrdjz6hEj3MMjpEPHmKipyhw8f5jQWvTHizX7atGmwtLTEvHnzWIUrwkTVLjAwUD7gWbtqJ9oDWlhYoG7duvxZQ1TIMcjpGJ4pR2+KdhVuwYIFsLGxUa5QcaKp2mkOLBZYtSMqvBjkdIz4ITt16tQn0yJEr4M43kJU34yMjDB9+nRWYegJ7QOLfXx85KodDywmKjwY5HSQ+O1Yc4YX0X8l2r99/vnnOHLkCDp37qyMEuVMVG6124xpjj5hmzGigsEgp4PEG684WkCc50X0qjRVOGHOnDncwUivLLcDizVVOx5YTPTmMMjpILFA+ZNPPsGpU6f4w5FeiThgWqyBc3JyYmsteu1E1Y5txojyB4OcjhIn6Q8ZMoRnytFLEb8EiBZb8fHxrMJRvtJU7TQHFrPNGNHrwSCno8SZcuIHoVgrR5QX2o3us7fYIspv2gcWa9qM8cBiopfHIKejxNRFuXLlEBsbyx1j9Fzi74qovon1S0uWLJErH0SFkfg7qmkzptmZzzZjRM/HIKfDxHlfYr0JdxpSbp7X6J4oV2lROLHOFW990Q9NDIKwa7I9vooeCt99X+A9PfV1KQ4eW/bjvs0gdDAtnfmaNyC3A4s1VTseWEzEIKfTxJv03LlzeaYcPUNU4V7U6J4oZ8kI2bgCp1tPwjCrcurHj9SPh+HLxzPgMsoa+plPUg/7Yt1MH7RfPBhWJUW6yx+aA4vZZowoUwnln6SDNG/OYhExkYYI+KKVmyB2NjPE0cuQ4tywzqsBulmKECfcR4RvPFpZVX0a4oQyKvRsH4J1J24jQxnKDyKoiZ3WM2bMkDdNiJaF4u+7OJJJrLPT09OTN4Nt3bpVXkssqnpERRkrcjpO/LBKSEjgmXIkV+HY6L4okpAafggOu07C854JGpoYwQih8HlvBBZ/XhsllWe9HhlIODEfY+4MwbZ+tSDX2VLO4/s6g3Gu72QMtrqF08ldsWhcM1RUX5Qid+OL1cb4dXEHvJV/RbnnEv8faB9YLNqMVatWjQcWU5HFipyO69ChgxzmqHgT000DBgyQ37xYhStqHiLULRaNOpnjSnAVdJk4HLaDWiD2l2MITU/DXddlGDVnGeZM+gWuNx/Lr0jzWIlReyPlz/E4GLu//Ag2G4PyUDl7hKiQW6hrZpQZ4tSk6FBcspyCpQtHor/d/6HW2t04F58uX9MzMUNd7xDcyHxYKIh1oJqqndjVL6p24pcbUbUT/5+IFoeiaif+KX52igo2q3akyxjkdJzYni8W/oopBCp+RPVBvBkNHjwYY8aMkd+4uKGhqCkHlV0/vBt8AejSHBYGQEp0OHzKloIBonB8e2l8NWMChrfww6wDIXgmU5WqDOMqVdBWZZqHH/gZeJj0EKVLaiZRM5AYEYTozk1gUVIPUmQAztwvhZIGSszTL4nSsUl4WMjndcTPSXHmppi5EOvqkpOTMXDgQBgaGmLnzp2oXLmyvM5u0aJF8jE9L7tcRYRCTm5RQWGQKwLEbkRRhaHiRbzZjB8/Xq7CiXVC3L1clCUiwi9WWaeWAL+T3mhp3wmW0j3c9ruBuw/SUKr8W0hMSsEzcSL9FkLOhuHioe1YOW02nCJS5F2px+dOwpwtv2Dih59jpc8D5cklUNawvPK5ICElORX1zN9BaTxCxGk3PJzWGy0qKm8d6alIqWyIsoVkWjWvxC87omqtqdqJECaqdmLqVVTtRODTVO1ES0RRtRO/NOWmZs2auHHjhvKIKH8xyBUBbdq0wcyZM5/7g4aKFvHmIs7UEiFevBHxCIYiLuUqPI/eQtDJPdjlsAp/mU7Fkq41oWfQEONdp+C9iMvwi5LQslJJPMqe5GJCcO7db7F63gj0bHwXf3lF4/bhn7Cw6peYbdsdLWu8i+ommiNEyqC6lQm8r9xVAqE+qnzwKd6/uAeOG3/C6tv9sWlMI2i2QUgx1xDY0ArvZtkFoZtE1U78MpS9apeUlCRX7cS5naJqJwJf9qqdOAqFpwdQQWGQKwLEb5fff/+9fM4SFW3izUPsyPv333/lBd2swhUPGdd8cdR4DJbNG4X+o2Zh3qD6qKBsNhjY518YNPoA7TvUQ/jms7iebSFcWnQ4/JvWhqleHALOJaCJRVlEBd1Bp4Y1oJ8YDs+YmoDvOUTIc7IlUKFhS7xz2g93lECoZ9wO0xdPwoBhM/DT5A4w1UyrIg13fHzwdpv35XspajRVO1tb2ydVO/FPsf5OHFgsAp/YQCGqdrdv34arqytOnDihvJoo/zDIFRFiIa/YsUhFl6gCiCrcJ598gvXr17N9UXHxKAzOOw7iUslohF/TTIFm0jNtgu5Vz8Bxx1b8tCIAfdf2R91s1TEDyw/RP/wIdqz8EQfrT8Ww+iawbN0Csaf3YOX3OxBRIxinI0qikvI6vUptMLKRD/4OTc4cyE1qCP4+WRujO1UrNm8kIsSJX57E0SeiAieWNIiqndgs8eDBA3Ts2JHHQVG+4/EjRYj47VBMufENvmgRbxJsdE8vQ+xaHXetJxx61VBGXpJ2Z4eKOcybSvfg4/gXYtv3e6OdHXSBCG7z5s2TlzmIZS7cbET5jRW5IkRMAbC0X7SIKpyowIkT61euXMkQR/nDoDo6jB2Yc4gT9N5Gg4G2xT7ECeL/S/ELlqjUMcRRQWBFrggRvxmKXVji3CTSbWLjiqbRvWZdDhEVLuJnbkBAANeqUoFiRa4IEdUacYK52CpPukvTYktU4RwdHRniiAop8TOXIY4KGityRYyYitOcg0S6RVTh2OieiIheBityRYw40NLe3p5nyukYUYVr166d/DlbbBERUV6xIlcEiXONunfvLrekocJNBG5No/t169bJB4sSkY5IOI+VExZi6544fPrPQcxvW1m58CIZ6peuxYSFm7DHtxv+CZiNtoZvpq4iJQXh0KaN2ONfEa3b14VhUjDOuT9GfbsRsG1RDQbK8/KNdB8hh7bCYU8wKrVuDZVhIgLPXUZK/QEYbdtC65zC/JKOpJAj2OSwD/6VmqO9qgKSAi/CPaUh7Eb3Qwtd2NAjghwVLadPn5aGDx+uPKLCKjg4WFIHbmnKlClScnKyMkpEuiTj+i6pn+EoyenGY2Ukrx5L13cNlQyHOEk30pWh1yzj/nlp2ceNpH4O3lJChjKolhHnIs1u1kwastVPeqiM5YuMWOnSsu5StX7rpcuJacqgWkaM5Dq7s2Q5ZLsU/FDrRt+4NOn+pRXSx6aDJYfL96SnXzlNinNdIDWzHCltDU5UxgovTq0WQY0bN4aPj498/hgVPqIKx0b3REVBBhJDfeDaqhnqvVNSGcur+wj1DEarNiq880beie/D87e5mBL0GcYOzuwEoqFn1AJD7K2wZeKvOBSdqoy+aRKSPTdh/JQYfDmmJ6wNtY620TNG6yGDodq8EIsPRT7bL/hNSfbEbxMWIGj4CAy2fgtPv0X6MGrdH/aqQ5iw2BnRhXzekkGuCBKhQJwp5+LiooxQYSGOK2Cje6Ki4hGiQgJQuq0KZrkcuZer9FsIOVsKbVWm6tiQB2kx8Nm7HEObN0T7vl/Azs4u82POEdzMKWikR+LSgQtA+/qoXT77dGVp1FA1hEX8Wbheftlf+NORFOqL0CS5p1tWkginYUjKMfg8xNVLbjiH+mhQu6Iy9pReDRVaWwRhv2sg4pWxvJKSwuAZej+HAPice1VLv+qBv84ZoX3DWiivjD2hVxWq1haI338Wl+Nzfn1hwSBXRImAIKo+VHiw0T1RESNFw+OwHyoH7cPqdVvhMM0eP7jdUgKFWHu1H3NHz8DaXRuwfOVvWDt3IzwSM5vhSte9cPh0CoL2/YZ1u9Zg2rAf4XYnTb72jLQoHF84H7tSO2LpWS+c/GMbtmzZkvkxzwamz1tWlpKKtNddUXrsjZ+n7oC/dkBShzj/TQuwwjtrG7lnPUbqa7+hB/BesQCb/LXDnPr7778DU1d4q7/i86Srv0Xp+VcFfAMY5Ioozdlj4igSKliiCsdG90RFUOJ1+F20QK+x0/DNSFsM72uGDdP/hO9jCWnXD2Bq7yOo++1sjO5vh0HVvTB1fxykkiJ1ZSAxIhAXW/bA2JlfY2R/W/RVHcF0R78cQkcKwh3nY4PFeMzv1wjGed0MoF8LLfu0As4G4mpy9piSiptXAhBm1A6dGuV1g4aGPgzrDcKSscCvmjCnhLhfYYulQ+vDMMdbLIvaLTuiFYIQcDVRGXtKunkF7mHW6NfJGkbKWF7pGdbH0KW26hvShDklxP0KjF06CPW0p3G16Ndugd6tEnDWPxLPdBaW7uKK+1UY9WuHRkYvW27NXwxyRZjo8iDOlaOCI77/NWvWRJcuXdjonqhIkZAS6okjFj3Ro1kl6InHyUl4fNYfYXfD8dfcmfinxwB0q1lG/dw0JN6LRQWbxrAsLVJOEkI9vWBh+ymayW3QHiM5IQlnPcIRq36UhXQTlw5XgV1XC7zcKrzyUHUdgAFJp+B6+b4yphGHgHO+aPp1X7QzEftW03DX5wh2b1gAuw4r4JFLYfCpzDC3VA5za+DkMF8OcUtyDXGCHkqpbDBqQDz2uQVnC07piA+4BOdmg2DXzlT9TBHEnLB8+QbsdtqCZaNH4Nu9wXikPDsnT8PcfDg4rXlhiJOVskLXkT2QtO80LmcPu/HBOOdsiW/sWsFE/Ds9CobTnHlYtdsJu1d+g6GLjiP6tVcWXw2DXBHWrVs3eXqVZ8rlP7HRRBwDI44WuXbtmhyqiagoeYzoAG/EtLJCdTkrpOBGaAAiG6lgoRcI5z/Lo/9HdTPXXkkx8HMLR9vG5pmbDtSPA04noZVV1cz1cRkxCL0QhUZNLGAiHmtLj0XkJWesmjDs6bo47Y/c1sip41BJi+6YucgUfx4PRJYJzwR/nHBpi9lDm8JQHjBAlQY26PdpPehF5nU9mDrMqbpigPEe9F7zNgb0rpdlQ0WOSlqiz8xJsNhzCr5ZglM8vE8Go//sQfhAPoblLs6s/wln3mmDPp/bYfKMjogYvh6n4p5/b3qG9dB7wNtY03sPjPt/CtXzQpysHCz6TMAiczcc99UOuxlI8HaFS397DPsgcwlM+vUz+H0v0LBLT/T7sgdqOKzCX8HP1PEKBINcESbWYDVo0ACenp7KCOWH7I3uxbo4IipqUhF3Oy4znImH0k14HbuMlgNb4r3oIBxLqoN678lXgMQruHCkOtr9rwKuuVxAZOp93PazRGPLt+TLUpQPjp2th4Ef1np244OBCcxb1kOv79Y9XRen/ZHbGrkkPxy98AAq20kYfOwYPJ/sQFCHFHdXhI0fjs7GN+ByOlI98grk6dQf4Gj2M244msFx+g74Jz4vaN2D71FPJKr64btBwTjkobWlIcEXR8N6YqJNZVwV358ME3Sc5YhVPS3UIUVCalwMIuuYokqZ50WWzOnU6eJebvwMs12Ls62Zyy4DSb6ncCGxDmxnd8SxQ5e1wm4c3J3vY/zEDqhy9RxOR6ZA32oY/r08B20qJCH8qDN8u32Bjy3LKc8vWAxyRdyQIUPkTgH05onKp6jCrVmzBtu3b5d3DvNYEaKiqhSMa9RS3kTTkeBxABtjR2LliMaoUKMOPjYqhdIG4moKol0P4y+DhqhX7QaOnktA+ZKVUKO5mHJVk+Lg8cdexM6ZixGNM4NdVu+i0yhrHNzkgujUl5jKK5uOkH98EF+2IQbal4B3mKZ69BAR/uUwpJsV9EJd4XJP/+WDQJY1cY1QzTpzmnXNtGwbILIoCSnEFZ7xhmg8sAcSvSPV37VM6RFhyLCzgSXC4ewSizIl9GBQpSaqi4pa2lX8ve4iPl48CI3L5Vbyy7omzrpao2xr5nJSAmWlK/jHMw5lG/eBfWIgrjy5oRvwl7qgmyUQ6nwe98ooxyY/ioDbAWecDkhEtTpVULawJCjlPDkqosRBs+I/c2xsrDJCb4KXl5fUrFkzSf0bMg/3JSomMuLOSstHz5F+37lcmjjxN+ls9CPlSqIU7DhNGvX9JmnLz4uklQf/kX4fbi8tWbFIWn0pVsoQB86eWymN/m6dtHPZFGni2tNSdOrzDsJ9JEUfWyQNHLpM2nPuqpSYpzNzb0mHJzSQf/4DdaSRf0Up49clJ1sLZby7tNb/gTKuFu0k2dVeJrmnKo9z9EgK3/WNNGqDT7b7SJMS/bZIo4bvksJzPOA4TYo9/I1kJH9dSIYjD0ox8niq+suOlPTEIkMYSa3XXlY/U5EaKR1b9K20/FSU+lm5Sw/fJQ0ftUXy0z5kWC0j0UfaMOobaVe45r9LNrGHpYmV9DK/F4b20sEY5fXq74M6BmaOt14r+Wf9Y9VfMFDa0LmJNOpgpNYhwgWHLbqKAdH+Sexi5W7J109U4QpPo/sU3DyxA0fe6gG7JmLxdc6kBA9s2ZYAm5HtCqAdDhG9Gglpd3xx5OBRuF70x62HyoRorYFYPPcFR5Dk1c29GNI2HPaBk9Ek33t3ZSPdxbmfHBD8iT3s6pVG6JZtiOr5JTpULIgyWArCt32Fpmf6ItihG4ylq9g9oDNWt3OCy6j/PTsdns8Y5IoB0ZB97ty5ctig10d8X0eMGIEePXpg0qRJBTyNKiE1ZDu+Pd0EPwxTvWB3m4RH/psw80ILLH7hc4mo6BO7Vk/A1eM4Vs26ha4re+ODJh3Q5r1njsnNJ0kI2TYZ/2e3DiGahNJ5A4L/HQarApnOVIfomy5Y6+CB8qr3UD7OHYdD/4fJ8/qhXoWCjnEMcsVG8+bN5QNpefzFf6fd6L7gq3AK6RaOTP4VqdPmoJt8nMALSDfw9/j1KDnvO9hUKvgfRERE9Gr054pSDRV5pUuXlvuvikBHr04csDxq1Cikp6dj8+bNr7YjNfUK9q9xwEaHg/C5FoDAkNPYtvUmrNrXhZH+K86PJF7E+j8M8dng+njryR8hplrXYpFTIO54OGGFw2WYtG+OGmXUT9Ari7KJ/2B3YjN0eq9crtOwRERUuBWWPRf0hnXo0IEtu/6DnBrdlyv3alvP00M9EN3oQ5hfiUalLl/hS9t+aHPXCc6hD5B28ygWz1mF9dOHYfRWX8jnn6d5YPmovbgpv/oBQnaPR1ObjQjROjMgPSoE3nXNMg+ulElI9vkNw3a8C/tvhqCfzXu4EV0BleQzmgQDmJiZwDvk1pOdY0REpHsY5IoJMaUqzpQT67ro5bzuRvf6qn4Y/e51HEZrtLBQh8GU2wj3yUApgwdw3+yORhPGYPjXvYDpa3E0OlV5lUZZVDU2xAPRpFvr/17pYRJiS5fUWnQbi/OO+1G1a1OY6qXjXkQAIrI09taDfkkDxCalqCMfERHpKga5YkQ0az906JDyiPJC0+i+d+/er7HRfWafRT/5RHgJyX5uONpqED6xTMPda0GIuJUCPZMG+PjjSITfzN6U5hGiQoKQevEfbFv5LcY7hcmHeeqVNYRx5hMU6UhNMUI9s0rQk+LgfTIAnzZOw8FVJxAnX5eQnpqGyoalOa1KRKTDGOSKkaZNm2LmzJls2ZUH2Rvd29jYKFdeB9Fn0QcVg47BcZcDlvxlip+WfopqJd5FN4ctGKUqjSQ/Z/yt3xtdrLLvGotF0Pmq+H71bHzZsyFi/vLBbfWofnUr1Pe+otWqpwpaDv4YVw9sx9bV23HZ0Bwp5y4hsVl9pSF1GmKuxaChpkUQERHpJAa5YkRUk77//nu4ubkpI5QT0WJLVOHeWKP7jGj4HHsb45bNxsj+ozFvXn+txs5ig8JqLDz5PhbMbYzHSdm6V6fFINzfHLVNSyA+wBM3m5ijshivoEKHd/zgc0fzfH1UbDISq+ePgq39JEyYtRpr50/CsBZVMitwUgx83MqgjfXbrMgREekwBrli5qOPPpKPzqBnaTe6F1W4N9Po/gEinPdg36UHuBZ+A1knTu/Df+M4dJh6FDfc12GS3SZESNlilsF7aN0vBod3rMKCg/WwZtj/UEqM672DDiOt4PJ3CLKvqnuWhNTQEzj5v/7olJejSoiIqNDiOXLFEM+Ue5aows2aNQvjxo2T1xIWqh6pYtfquGsY5NALpspQzvLY2SHJB44749F+2Efs7EBEpOMY5IohcZBtxYoV5abuxZ1YLzhnzhz5fDixmUG0Mit08hzkiIiouGGQK4bEQn5ReSruLbvEUSwjR47E2LFjC18VjoiIKA+4Rq4Y0kypFtcz5UQVbtGiRXKfVAcHB7kyyRBHRES6iEGumBLh5fTp08qj4kOEV7HhQzh16hQaNWokf05ERKSLOLVaTIkdmpUrV0ZycnKxqEYVykb3RERE/xErcsWUOFNuypQp8PT0VEaKLrGRYcCAAXKLLVGFY4gjIqKigkGuGOvevTsOHDigPCp6cmp0z7VwRERUlDDIFWONGzeGi4uLPM1a1LzuRvdERESFEYNcMSaqU2LTgwhzRYk47LhmzZrykSKvr9E9ERFR4cMgV8y1bt1ann4sCrQb3V+7do1VOCIiKvIY5Io5zcJ/sSFAl2VvdC8+JyIiKuoY5EhuDi+CkC7Kn0b3REREhRODHKFbt246Ob0qwucnn3wCa2trrFy58knHCiIiouKCQY7kzQANGjTAmTNnlJHCTRwrIqpwa9aswfbt29lii4iIii0GOZINGTJEPiy3sNO02BJVOEdHR1hZWSlXiIiIih+26CKZqHKVK1cOsbGxhfK4DnF/K1aswP79+9lii4iISMGKHMnE1OT3338Pd3d3ZaTwyN7oniGOiIgoEyty9IQITHPnzpWrXoUBG90TERE9Hyty9IQIStHR0fLBugVNnGs3cOBANronIiJ6DgY5ymLcuHE4ceKE8iizSpefvVi1G92PGjWKje6JiIieg0GOsujQoYM8lSmI40h+/fXXfAtS2Rvd29jYKFeIiIgoJwxylIU4VLdatWrydObmzZvlg3bzI8iJRveirRYb3RMREeUdNzuQPJ05Z84c+fP4+HiYm5vLVbExY8bgww8/lMffFFGFmzdvnvy5uAd2ZyAiIso7BjnKQoS6TZs2YezYsUhOTn6j1TjRYktMnzo5ObFHKhER0Svg1CplIYKbqMR5eXm98SlVcWYdG90TERG9OlbkiIiIiHQUK3JEREREOopBjoiIiEhHMcgRERER6SgGOSIiIiIdxSBHREREpKO4a7XIykDC+bWYsHAT9vh2w6HAOWhTXk+59npJSUE4tGkj9vhXROv2dWGYFIxz7o9R324EbFtUg4HyPCIiInq9GOSKtFRE7h4J1eFuCNnYC6ZvIMdJCRfwY+/RcP98E34f0QCGyteQ4k9hrs0UXLffhLVf1EOZzGEiIiJ6jTi1WqTdR6hnMFq1UeGdN1KMuw/P3+ZiStBnGDu4/pMQJ+gZtcAQeytsmfgrDkWnKqNERET0OjHIFWXptxBythTaqkzz9h86LQY+e5djaPOGaN/3C9jZ2WV+zDmCmznVbdMjcenABaB9fdR+Ztq2NGqoGsIi/ixcL8cpY0RERPQ6McgVYdJ1Lxw+nYKgfb9h3a41mDbsR7jdSVOuZpMWheML52NXakcsPeuFk39sw5YtWzI/5tk8f1o2JRVpnKAnIiLKdwxyRVYGEiMCcbFlD4yd+TVG9rdFX9URTHf0w2PlGU+lINxxPjZYjMeCfo1gbJDHeVj9WmjZpxVwNhBXk7MnuVTcvBKAMKN26NSosjJGRERErxODXJGVhFBPL1jYfopmFfXVjx8jOSEJZz3CEZv5hKekm7h0uArsulq85A7T8lB1HYABSafgevm+MqYRh4Bzvmj6dV+0MxF/ahru+hzB7g0LYNdhBTxyKQwSERFR3jHIFVVSDAJOJ6GVVVWIGIeMGIReiEKjJhYwkZ+gJT0WkZecsWrCsKfr4rQ/clsjBz2UtOiOmYtM8efxQDxQRmUJ/jjh0hazhzaFoTxggCoNbNDv03rQi0yXR4iIiOi/YZArqtLv47afJRpbviU/lKJ8cOxsPQz8sFZmsNNmYALzlvXQ67t1T9fFaX/ktkYuyQ9HLzyAynYSBh87Bs8kTdrLQIK7K8LGD0dn4xtwOR2pHiEiIqLXjUGuqNKvhBrNldPbpDh4/OGE2DlzMaJxZrDL6l10GmWNg5tccPNldi2UTUfIPz6IL9sQA+1LwDssWbnwEBH+5TCkmxX0Ql3hck+ff9GIiIjeAL6/FlV6NdF5fF2cWr8Jjj8uxg7DCdg8sTkq5riPoQQqthyPNZ288M2IH+F0/hqeFNeeR78qaidMReUSpfDu59vhf/2eciEOYe6/4f/eKYlS9fahqvnbyjgRERG9TuzsQFokpN3xxZGDR+F60R+3HioTorUGYvHcFxxBklc392JI23DYB05GE/buIiIi+k8Y5CifiF2rJ+DqcRyrZt1C15W98UGTDmjzXnnlOhEREb0sBjkiIiIiHcU1ckREREQ6ikGOiIiISEcxyBERERHpKAY5IiIiIh3FIEdERESkoxjkqED06NEDzs7OyiMiIiJ6FTx+hApESEgIpk6dCisrK8ybNw9ly5ZVrhAREVFesSJHBUIEOEdHR1hbW+Ojjz6Cl5eXcoWIiIjyihU5KnDe3t4YOXIkunfvjkmTJrE6R0RElEesyFGBa9iwIVxcXOTPRXVOBDsiIiJ6MVbkqFARIW7EiBEYN24c+vTpw+ocERHRc7AiR4WKqM6dOnUKfn5+GDBggLwpgoiIiHLGihwVWuJ4klmzZrE6R0RElAsGOSrU4uLisHjxYsTHx2POnDmoXr26coWIiIgY5EgniOqcjY0N9uzZg88//1wZJSIiKt64Ro50QufOnREZGYnDhw/jq6++QlRUlHKFiIio+GKQI50hplXXr1+PLl26oEaNGmzxRURExR6nVkkniYqcaO1lZGSE6dOno1KlSsoVIiKi4oMVOdJJojq3cuVKucXXJ598wuocEREVS6zIkc5jA34iIiquWJEjnZe9AT9bfBERUXHBihwVKZoWXz169GADfiIiKvJYkaMiRdPiS2B1joiIijpW5KjIYgN+IiIq6liRoyIrewP+4OBg5QoREVHRwIocFQtswE9EREURgxwVG2zAT0RERQ2DHBU7mgb8Tk5O6NWrlzJKRESke7hGjoodTQP+f//9lw34iYhIpzHIUbHEBvxERFQUcGqVij024CciIl3FihwVe9kb8B85ckS5QkREVLixIkekRTTgnzZtGiwtLdmAn4iICj1W5Ii0iAb8O3fuZAN+IiLSCazIEeWCDfiJiKiwY0WOKBdswE9ERIUdK3JEecAG/EREVBixIkeUB9kb8ItNEURERAWNFTmil8QG/EQkSziPlRMWYuueOHz6z0HMb1tZuZChvrQWExduwp++3XAocA7alNdTruUvKSkIhzZtxB7/imjdvi4Mk4Jxzv0x6tuNgG2LajBQnpdvpPsIObQVDnuCUal1a6gMExF47jJS6g/AaNsWMDXI7+9TOpJCjmCTwz74V2qO9qoKSAq8CPeUhrAb3Q8tTEsrzyu8GOSIXgEb8BORIEXuxgCVC/oGr0SvaiWVUSEVkbtHQXW4K0I29oJpAeQ4KeECfuw9Gu6fb8L6EQ1QQbkHKf4U5tpMwXX7TVj7RT2UyRx+86Q4uP84DN3du+HI70NhbaivjN+B29zB+PK6Lf5eOxBWZfLrm5WOBPdV6P2ZBz53Xo0R1m8h8yunI97tB9h8GQX7v5fjCytDebSw4tQq0SsQ3R+WLl0qV+REi6+9e/cqV4io+MhAYqgPXFs1Q713tEOccB+hXsFo1UaFdwogxImv7/nbXEwJ+gxjB9d/EuIEPaMWGGJvhS0Tf8Wh6FRl9E2TkOy5CeOnxODLMT2fhjhBzxithwyGavNCLD4UqX5mPkn2xG8TFiBo+AgMfhLiBH0Yte4Pe9UhTFjsjOhCXu5ikCP6D7I34BefE1Fx8QhRIQEo3VYFM61cIku/hZCzpdBWZfp63mjTYuCzdzmGNm+I9n2/gJ2dXebHnCO4mVPQSI/EpQMXgPb1UfuZad3SqKFqCIv4s3C9HKeM5VU6kkJ9EZqUrjzWIqnDq2cYknIMPg9x9ZIbzqE+GtSuqIw9pVdDhdYWQdjvGoh4ZSyvpKQweIbezyEAPude1dKveuCvc0Zo37AWyitjT+hVhaq1BeL3n8Xl+JxfX1gwyBH9R9oN+M3MzNiAn6i4kKLhcdgPlYP2YfW6rXCYZo8f3G7JgUK67oUjpx8haN9vWLdrDaYN+xFud9IyX5akDixzJ2La2m3YuHwVNqxdinUez4kvaVE4vnA+dqV2xNKzXjj5xzZs2bIl82OezfOnbVNSkfa6K0qPvfHz1B3w1w5I6hDnv2kBVng/UAZy8xipr/2GHsB7xQJs8tcOc+oQ578DU1d4q7/i86Srv0Xp+VcFfAMY5Ihek169euH69ev4888/MXXqVHkdHREVYYnX4XfRAr3GTsM3I20xvK8ZNkz/E76P05EYEYiLLXpg7MyvMbK/LfqqjmC6ox9S0iKwb8p4HKhrj+9Hf4Ghg97FmWnHkIjsJT2NFIQ7zscGi/GY368RjPO6GUC/Flr2aQWcDcTV5OwxJRU3rwQgzKgdOjXSbNDIK30Y1huEJWOBXzVhTglxv8IWS4fWh2GOt1gWtVt2RCsEIeBqojL2lHTzCtzDrNGvkzWMlLG80jOsj6FLbdU3pAlzSoj7FRi7dBDqaU/jatGv3QK9WyXgrH8kkpWxJ6S7uOJ+FUb92qGRUW7/bQoHBjmi1yh7A35W54iKKgkpoZ44YtETPZpVgp54nJyEx2f9ERYrphi9YGHbBc0qihDwGMkJSTjrEQifv5Zh+D+tMKybubxjVEq8h+gKTdHYMpcF9dJNXDpcBXZdLZB9Fd7zlYeq6wAMSDoF18v3lTGNOASc80XTr/uincmr7FvNDHNL5TC3Bk4O8+UQtyTXECfooZTKBqMGxGOfW3C24JSO+IBLcG42CHbtTLXWquXd0zA3Hw5Oa14Y4mSlrNB1ZA8k7TuNy9nDbnwwzjlb4hu7VjB5lRvKRwxyRK+ZOI7E1tYW27dvx5o16h8oU6fi4cOHylUiKhoeIzrAGzGtrFBdzgopuBEagMhGKlgYq4PS6SS0tKqaWWfLiEHohSg0alIO0c4uKDOgLRrI69bScNvvEs62aQDLCrm8HafHIvKSM1ZNGPZ0XZz2R25r5NRxqKRFd8xcZIo/jwciy4Rngj9OuLTF7KFNkRkf03DX5wh2b1gAuw4r4JE5A/wC6jCn6ooBxnvQe83bGNC7XpYNFTkqaYk+MyfBYs8p+GYJTvHwPhmM/rMH4QND8X0QFTUnLF++AbudtmDZ6BH4dm8wHmU+OVd6hvXQe8DbWNN7D4z7fwrV80KcrBws+kzAInM3HPfVDrsZSPB2hUt/ewz7oFLm0KNgOM2Zh1W7nbB75TcYuug4ol/7FPGrYZAjekNEA35HR0c24CcqklIRdzsObRubo4J4KN2E17HLaDmwJSxxXx3QLNG49lvyM6UoHxw7Ww8Dm5fDleMP0Ny6ZuZrcA+BF3zQoJ0KxlfP4XRkijyahYEJzFvWQ6/v1j1dF6f9kdsauSQ/HL3wACrbSRh87Bg8n+xAUIcUd1eEjR+OzsY34HI6Uj1igCoNbNDv03rQi8zjwn55OvUHOJr9jBuOZnCcvgP+ic977T34HvVEoqofvhsUjEPaawITfHE0rCcm2lTGVZcLiMy4izPrf8KZd9qgz+d2mDyjIyKGr8epuOf9+ZnTqdPFvdz4GWa7FmdbM5ddBpJ8T+FCYh3Yzu6IY4cua4XdOLg738f4iR1QRfnvkn79DH7fCzTs0hP9vuyBGg6r8FfwMxOyBYJBjugN0lTnfvvtN7nF16JFi1idIyoSSsG4Ri3lTTQdCR4HsDF2JFaOaIxy+pVQo7lyOpsUB48/nBA7Zy5GfKBCnY+ro0wpeVIVadHncfAvPbRXvYXwo+54UD6nac530WmUNQ5uckF06ktUgMqmI+QfH8SXbYiB9iXgHaYJHQ8R4V8OQ7pZQS/UFS739F8+CGRZE9cI1awzp1nXTMu2ASKLkpBCXOEZb4jGA3sg0TtS/V3LlB4Rhgw7G3UADoezSyzKlDBBx1mOWNXTQn1vElLjYhBZxxRVyuR2p1nXxFlXa5RtzVxOSqCsdAX/eMahbOM+sE8MxJUnN3QD/lIXdLMEQp3P414ZA+hbDcO/l+egTYUk9X8rZ/h2+wIfW5ZTXlCwGOSI8kH2BvxeXl7y50Skq0qhRucv0OTUZmx0/BlzdpTH3M2j0VSsidOric7j6+LU75vh+ONi7DCcgM0Tm6OiXjV0mmiPKi674Lh1JRY6paHr5A9w5/wf+CP1A7TMcVF9CVRsOR5rOnlhysgf4XT+Wi7He2SjXxW1E6aicolSePfz7fC/fk+5EIcw99/wf++URKl6+1DV/G1lPK9SEPHHAqzOsrHh6QaI1ZP2ICJDfmI2ZVCj9g0MqGyAEu/2xO/+keo7EdIQE+aBZZ9VR4lSbbG9ak2IFYcGVWqiupgaTbuKv9ddxMeLB6FxuZznbjMi9mDS6qxr4p6smVu9AH9E5FDpVNOvUR2JA6uhRAkzfP67HyI1Fb+YMLgv7YZ3Shii3vayMK+k/Hd5FAG3A844HZCIanWqoGwhSVDs7ECUm7QonFjnire+6IcmFR8gYNdcjP0qBsN8N+CL90TbFvFb+G5su98WIztUz3OrGzHFOnLkSIwdO5YtvogojySk3fHFkYNH4XrRH7ceKmmp1kAsnvuCI0jy6uZeDGkbDvvAyWjyKnsgXjdx7MqyNfD+cCwmtH03/9uJ5SYjCBu7DMYl+/1Y0636K23OeJ1YkSPKUTJCtm7B1Y97qEOc+G2sIuo0tkaphq3RpKam954+Kjb5DO1CN2FrSN7XSojqnIuLCxvwE9FL0IOBcQN0HTYZSxw2vXiNnK6T7uLcL5sR+dk0fN22MsK3rMeJhBxLffkgBeHbbFFp1N+4Ix7qlUF5owT4RcWjoO5IG4McUQ6kODes82qAbk/WQKTjXkQAQp7sUNMwhKpnI3itc0PcyyxfKVtWbvE1ZswYDB48GFu3buXaOSIqIGLXqjP2/nsB1x5cxsn9B+EW8aKDfd+kJIRsn4UhU77DUOu3UUKvLN7fqY/q8o7WglAKNTsNxbx3gnBQ7Fp1WIfD1ebCYZAqc1dyAePUKuk4Canhh+Cw6yQ875mgoYkRjBAKn/dGYPHntV/y3CWNDCScmI8xd4ZgW79aStn8Ps5/3w2fnvsQSweb4/ppCd2/H44mb6n/N5auYvcXm2G8ZjY6VHz5HzRswE9ERK+KFTnScQ8R6haLRp3McSW4CrpMHA7bQS0Q+8sxhKan4KbzL5izZhWmD/waW/0yF/umeazEqL1KT9THwdj95Uew2RikVSIX/RNvoa6Z0dO1D9IdhF6qgUVLv8Pw/gPRvZYztp2Xi+zqX4eMYFb3FkKiXnTKUc7YgJ+IiF4VgxzpuHJQ2fXDu8EXgC7NYWEApESHw6dsKRg89sLmY3UwYcxofD0wA9/+eOLZgzNLVYZxlSrZGltn4GHSQ5QuqVU0F614ohujmUU5dai7hYDTMVrX9VGy9EMkaRYfv6LsDfijoqKUK0RERDljkKMiIBERfrFoJZ+ingC/k95oad8Jlvfv4JrPVdxKN4BJk7b4+HQ4orMfcZR+CyFnw3Dx0HasnDYbTvI29RIoa1g+87pGSjLu1zNHtdJAWsQF/PuwLwZ8UEW5mI7UlLIwfA170bUb8Ivq3JEjR5QrRFSYiU1Lq1evVh4R5R8GOdJ9KVfhefQWgk7uwS5x2rbpVCzpWhN6Vf8PDkdGQlXiPvz+OokS33bG+9n3r8eE4Ny732L1vBHo2fgu/vKKgYQyqG5lAu8rd58eJFmlKQa+740djhuwZHUshm8egYZyix01KR7XAqvCqrpyAOhrIBrwi+rcnj172ICfSAeITi7Xr1/HmTNnlBGi/MEgRzov45ovjhqPwbJ5o9B/1CzMG1T/ac8/cRbckp9wsv43mNuoBBKzzX6mRYfDv2ltmOqJJtIJaGIh1sWVQIWGLfHOaT/c0SQ5vapoO30+Jg8Yjpk/jUcHU80RJGL5nB/c3m4K69x6Jb4iNuAn0i3z5s3DgQMH5Mqcq6urMkr0ZjHIkW57FAbnHQdxqWQ0wq9l2y6f5IuNX/bF1NNX4O4wGXbrrjzzN97A8kP0Dz+CHSt/xMH6UzGsfmYLab1KbTCykQ/+Dn3R+XDJCP3bC/8b3Q4mb+Asp5wa8CcnF47+fkSUSRwdJA76/vPPP+XH9vb2GDRoEGJjY+XHRG8Sjx+hYkfsWh13rSccetVQRnKRpbNDTqcFpSPJZx92xrbAsJfo7PCqxJuFeKMQv+2L3q3iYGEiyn9iI1JAQIC8Lu7YsWNyFW7KlClo0aIF3n33XTg4OGDBggU8SojyBYMcFTt5DnKFlPjNXzTg79GjByZNmsQWX0RvkPgFKjg4GOHh4Th//jyWLVuG7t27o3nz5mjatClUKlWWwCbWyN2+fVte50qUHxjkiHSQeHNZsWIF9u/fz+oc0Wskqm3Xrl2Dl5dXlmqbWKtav3591KxZUz77MTeLFi2Sl0OwGkf5hUGOSIdpqnPjxo1jA36ilyR+IRK7w0XfY1FtEz2Qq1Wr9qTaVqtWLXk36ssQ7fZEkCPKLwxyRDpOvBmJ1l5ivY7oEPGybzxExYU4xicwMFCutvn4+OD333/H8OHD0aZNG1hYWKBu3brPrbYRFUYMckRFhDieZNasWazOESnELzei2hYUFCQvQxDE2tI6derIU6X8pYeKAgY5oiJEuwH/7Nmz5e4QRMWBptoWFhYGNzc3Vtuo2GCQIyqCRHVOHCIsOkNw9xwVRaLadvXqVbi7uz+ptrVr104+AkRU28QvMaxKU3HAIEdURIndd+KkeUGsoeMuOtJVotom2l/5+vrKU6XiCBBRbWvQoAEaNWoEMzMz/v2mYotBjqiI27t3Lz7//HO5AX/nzp2VUaLCS7vadvHixSwH7pqbm+P9999ntY1IwSBHVAxoqnNGRkaYPn061wpRoZHbgbudOnWSNyNkP3CXiLJikCMqJsQbpqbF18KFC1mdowLxvPZWrLYRvTwGOaJiRryBiub7otohqnR806Q3JfuBu9nbW73KgbtElBWDHFExpF2dW7dunbxgnOi/0m5vpTlw92XaWxHRy2OQIyrGRIuvkSNHylUSNuCnl5G92ibaWwniwF1W24jyD4McUTEn3pDZgJ9ehAfuEhVODHJEJGMDftLG9lZEuoFBjoieENU5NuAvfnKrtmkO3NXNalsKbp7YgSNv9YBdk0rQU0azkxI8sGVbAmxGtoOpQW7PIiq8GOSI6BlswF+0ZT9wNzo6uoi1t5KQGrId355ugh+GqVBSGc2ZhEf+mzDzQgv5uaWUUSJdwSBHRDnSbsDPFl+6K6f2VpoDd4tseyvpFo5M/hWp0+agm4mBMvgc0g38PX49Ss6dBZvKeXg+USHCIEdEzyWqczY2NnIDftHqK7szZ87gww8/VB5RQdMcuFso21ulXsF+hz9w1vMeTBq+CyOjVPj5vAf7xb1gXvI1TmsmnMC0MXcwbls/1ND8sWlROPHL7/A0NkfpK2fhWdEOv0xuiYryxVRE7p6G1cYzsKRDFXmESFeUUP5JRJQj0QFCHDNx+PBhfPXVV3JQ0LZ582blM8pvYk2j2KQi+umKQ5719PTk6XAxdSqOABHnBIrf1cV6x169esk7kgtyyjQ91APRjT6E+ZVoVOryFb607Yc2sXvhHPpQecbrkR4VAu+6ZjB5kg0T4LPmW+x4bxi+se0Lm1qJuFnpbRgqVwEDmJiZwCfkFtKVESJdwSBHRC8kpt7Wr1+PLl26yOunRJVOEIFBHD9B+UOEaPG9FwFN7CAtV64cdu7ciaSkJAwcOBDJycnyDlMR5kQAL2xTpvqqfhj97nUcRmu0sCgHpNxGuE86ShmUgHTXBXNHzcEvc6ZhsesNZIgXpHlg+ai9uCm/+gFCdtujqc1GhMgX1R4HY/eXH8FmY1Dm8xXSwyTEli4JfeUxEtyxc7khurasBj3cR4TvA7RRmWq9AepBv6QBYpNSwCkq0jUMckSUZ6KqI6pzoiuEqADdv39fuUKvm6i2iaCsqbaJtlYioIkpU7GbWFTZNNU2W1vbAq+25U0GEiMC4dfKCtX1JST7ueFYy0HoYqmPqONHYfjVNxg/vDF8Zh1E0DOlsbKoalwBD9qqYKZ55ypVGcZVqqBtllCmjmVlDWGsfC5LS0VKeQuYGRtAuu+Pk3/XRuNSJ7DK+bbyBAnpqWmobFg6192tRIUVgxwRvRRR5Vm5cqW8u3Hs2LFwdHRUrtB/IaptYr2hqLaJKWxRbRPHgGiqbWJqW1TbZsyYIVfbdPNomCSEenqjYtAxOO5ywJK/TPHjkk9hqvcYcbev4sbdZKSXMkTVxCQ8fKY09ghRIYFIvfgPtq38FuOdwpCefgshZ8Nw8dB2rJw2G04RKfIz9atbob73FdzU/BlGzfDFmDs4sHkjVq/3guFHj3DO9SGaNdOsh0tDzLUYNLCq+rSKR6QjuNmBiF6aWJd16NAhnDhxAsePH891IwTlTlTbcmpvVaQP3M0IwsYuC4BVGzDMqowyqJGCu+qgdjXyPDY6lcPYpYNQr4w3lo+7hkEOvWCKSOy1+wGpC39BX+zFgFkl8dMPwLdfp2KhYy/gjwmYVfJbbO5VQ/3G9gq7Vu1/Bb6bh27vPP+wEqLChhU5InopW7dulUPcqFGjcOzYMXl6jyHu+cQRIKLaJr53otomNiWIY0BEtU0cBSKqbWKHqai2ienronkQ8wNEOO/B3ksPcC38Bh4pozLpKnYPHId/Deqiaft2aBr+F9yuZ1bXnkiLQbi/OWqblkB8gCduNjHHWzfD4d+0Nkz14hBwLgFNLIwyp0b13kGHkVZw+TsEqfKLn0dCaugJnPxff3RkiCMdxIocEb0UEUrYUzNvRHATU6UC21s9zyNE7J6FuVes0aW0N1wrDcPSofVhmO6hVZGLw/nli3HcuBruXqqE4YsHoV7GRSyffhLGde7hkuFgLBavebLILY+dHZJ84LgzHu2HfcTODqSTGOSIiN4QzVEtPEz5FYldq0+CHBHlhFOrRERviAhwDHFE9CaxIkdERESko1iRIyIiItJRrMgRFRtxOL9yBhZu/Qu+n+5G4Pw2KK9cQcJ5rJywEFv3xOHTQ39jXpvcF4f/J9J9hBzaCoc9wajUujVUhokIPHcZKfUHYLRtiwJYbJ6OpJAj2OSwD/6VmqO9qgKSAi/CPaUh7Eb3QwvT0srziIgKJwY5ouJEHPMwoDcO992Ljb1qZglrUuRuDFC5oG/IKvQyzcPZWy9LioP7j8PwmXs3OP8+FNaGytGr0h24zR2EL6/b4eCagXi/bH6FuXQkuK9C78888PmRVRjxv7eV70c64t1+wCfDozDu4HJ8YfW0IycRUWHDqVWi4iQxHJ6u5mhjbZKt4paBxFAfuLZqBut33kCIg4Rkz00YPyUGw8f2ehriBD1jtB7yBVSbF2LJoev51+sy2RO/jZ+PoOEjMMhaE+IEfRi17o9xqn8xYbEzovmrLhEVYgxyRMVIelQIzpZuCJVZ9ilD0f4oAKW1+1g+Vwru+OzH8qFtYNW+N+zs7JSPRTgSnaY8R9tDXL3khnOoj4a1KypjT+nVUKG1RRD2uwUiXhnLKykpDJ6h93MIgOlICvVFaNIzTTtl6Vc9cOBcJbRvWAvlsxcB9apC9aEF4vefxeX4nF9PRFQYMMgRFRspuO5xBqcrB2DfqvXY5fAthv1wCjEiAUnR8Djsh8pB+7Bq3VY4TLPHD263cqmOpeDm8RWYtisFHy89hpCTe7BlyxblYwZsqj2vovcYqWmvu8T1AN4rFmCT/z2t+1WHOP8dmLbCW/0VnycdKanp+VcFJCJ6zRjkiIqNRET4h6Nlr7GY+c0I9B/eG6oNy7DLJ1F96Tr8Llqg19hp+GakLYb3NcOG6X/C9/GzEScj/A+M21ADsxb0RQPjvG4GKIvaLTuiFYLgf1X99bKRbl6Be5g1+nW0hpEylld6hvUxdKktsGahOsyJylxmiJv6KzBmySDU057G1aJfuwX6tLqPs/6RSM7+ryndxRWPqzDq1w6NjNhGnYgKLwY5ouIi5So8j5jAtkcDVBRTiSnJSHgcBI+wOKSEeuKIRU/0aCZ2q0rqS0l4fNYfYbHZpxVTceOSB2rYdYL5S+0w1UMplQ1GDYjHPtdgJCujmdIRH3AJzs0GwbZdNXmtmnTXB4d2r8dCu0FY7vFs8MtODnNL1GHu1/lwcFojhzi56XqF54SwUlboOqoHkvadxuXsSS4+GOeda+Mbu1YwUd+QlOSHP5b/jI27/8TWZeMx9Nu9CHnEOh4RFTwGOaJiQooOxJmYurCqXkZ+nHEjFBciLdHEwhDRAd6IaWWF6nLuScGN0EBENlLBwiT7NGkKYiIDcXrV11rr4rQ/clsjp1bSEn1mToL5ny7wzRKc4uF9Igj9Zw/CBxUyfyTpVWmAT/t9AhXuy4/zQs+wHnoPeBtreu+B8YCuUOVSiXuqHCz6TMQiczec8L2njAkZSPB2hUs/ewz7QPSUVQfNM5sx8UxlfNS7D2wnf41PIn7EmlMxmU8nIipADHJExUR63G34tWkASzksPUaU1xmcbdkJrSxLIe52HNo2NkcF8UTpJryOX0bLgS1h+UwWKoNq5pao3Os7bHqyLk77I7c1cvfge9QTiap+mD04CIc84p+uS0vwhXNYL0y0qYxrLhcQmaGMv5TM6dTpjmZwvPEzzBx/UKZZc5OBJN9TuJBYB7azO+L4v354oFwR5+25O9+H/cT2qHL1HE5HpqFSx29xdlVPmIvvR+o93I40QvUqmYGYiKggMcgRFRP6xjXQXAlmUoIX/tiYiDkrh6JJ+dIwrlFL+WGQjgSPA9h0dwRWjmiMcvKYNgOYdhqAtgd34ejNFGUsL0pCCnGFZ7whGg/siUTvSPVXypQeEQZpiA0sEQ5nl1iUeemfSsrGBmU61bpao8w1c79m3wChrQTKSlfwj2ccyjbug3GJgbjy5IZuwF/qgm619RDqfB73yqiDqUFl1KpuCD08wvW/t+PEx5Nh1/gt5QVERAWHQY6omNCr0RH2jS9h/cYt+HHOPhjO/RkTm4o1caVQo/MXaHJqMzY6/ow5O8pjzubRaFoxl6nJiq0wbc2HOPfNRCx3uoDruRzvkVUZ1Kh9AwMqG6DEuz3xu38k4uSElYaYMA8s/b/qKFGqLba/UwNiMvNlZETswaTVWTc2PNkA8etC/BGRc+DUr1EdCQNMUaKEGT7/3Q+Rccq/R0wY3Jd2wzv6hqi3vSzMK2m+D2K37lr8HNENa2d9BOOXWSJIRPSGsLMDEb2atBj4HDmEo64XcPmWZvvC+xj4w9QXHEGSV5HYazca4eMdMbmJPOlbgNIRf24dlga3xky7+igXuhu/RHXEpA5VlOtERAWDQY6ICh2xa/Vf14s4tWodbnX9Gj0/aIlP2ryHglmVJuFRyE6M7jYKm0OTlLE+2BC8FcOsuE6OiAoWgxwRERGRjuIaOSIiIiIdxSBHREREpKMY5IiIiIh0FIMcERERkY7iZgciojdk6tSp8j9btGgBc3NzvP/++yhbtqw8RkT0OjDIERG9IXFxcbh+/Tp8fX3h5+eHZcuWoXv37ujUqRMaNWoEMzMzVK9eXXk2EdHLY5AjIspHISEhuHr1Ktzd3XHx4kVER0ejXbt2ctXO2toaNWrUYNWOiPKMQY6IqACJql1gYCDCwsLg5uaG33//HcOHD0eDBg3kql3dunVRqdLLNi4jouKCQY6IqJARVTsxFRsUFIT9+/fLYz169ECdOnXkqp2VlZU8RkTEIEdEVMjlVrVr06YNLCwsWLUjKsYY5IiIdMzDhw8RGRkpV+3Onz8PFxcXeVxU7Zo2bYpatWqxakdUTDDIEREVAVFRUbh27Rq8vLzg4+MjV+2mTJkiT8XWr18fNWvWZNWOqAhikCMiKoJE1S44OBjh4eFy1U5z9Enz5s1ZtSMqQhjkiIiKCVG1CwgIkDdTHDt2DAcOHJCrdjywmEh3McgRERVTuVXtxIHFolqnUql4YDFRIccgR0RET2Q/sFi7ascDi4kKHwY5IiLKVU5txrQPLGabMaKCxSBHREQvJacDi9lmjKhgMMgREdF/wgOLiQoOgxwREb12bDNGlD8Y5IiI6I3L6cBiTdWOBxYTvToGOSIiync5tRmrVq0aDywmekkMckREVCjkdmAx24wR5Y5BjoiItEhIu+mCdUcq4gu7xjAI3IXJY+cjethB7PuiNvTEMxI8sGVbAmxGtoOpgRh5M3hgMdGLMcgREdFTqQHY+K0HWv8wGFYl1SEtIwgbu8zC4xVbMUpVTnmShEf+mzDzQgssHqZCSWU0P7DNGFFWJZR/EhFRsZeOuBN/wKtdB1iKECfcuwbfECtYVS+T+VimhzIqG7T3+gMn4tKVsfwhKnCdO3fGuHHj5N2wsbGxGDhwIJKSkrBz506UK1dO3h27evVqnDlzRg5+REUZK3JERIVeMsL3b8Gus764Z2IFE6O3AL9reM9+Gj4311TJXoe7ODFtEe6MW4J+NUSdTULK+R9Q59ML6Lu0L6yu+yK5+zSMa1JJHeVSEbl7GlYbz8DiDlXkKdfCInubsejoaB5YTEUWK3JERIVdegTcoq3QyTwWwZW6YOKXthjU5i5+dg5HunQbrnMnYs4vczFpsQtuZogXJMFj+WzsvZmm/lzC45Bd+LLpQGwMeSQuqj1AyG57NLXZiBD5+Yr0WwjxNoGZiYEy8BjRoaGwXPQ9Fg4fBLvuxli77RLi5WsGMDEzgXfILeRvTe7FxPo5UbWbMWOGXLU7fPjwk6qdWGcnqnZfffUVq3ZUJDDIEREVdvr1YDfaDMGHgS4taqojVDKiw6+iXCl14Io6he2GgzFj/BC08FmHA0HJyos09FCqqgmqPLCGyqy0MlYWVY0r4EFbFcy03wWkFCTFGqCkvqa+logIvxR0blYTJZGCyABv3C9dUv31BT3olzRAbFKKOioWbmKna8OGDWFra4v169dDTESJdXXiuJNTp06hV69e8rEnixYtwt69e+WK3suYOnWq/GcSFQQGOSIiXZB4HX5+tTPXqiUH4+SxurDvYgEp7hb8bsTiQbo+ylfNQNJD7RJbpvSoEJxN9cChbb9g2ngnRKQ/QlRIIFIv/oNtK7/FeKewzKqaXmkYGmtPkj5G8v2qMK9WDki7htP/Spg2oAkqytckpKemobJh6UI1rZpXomonApyo2onpV1G1++ijj55U7fT09OSq3datW+WqnWhDlhtxLEpoaKjyiCh/McgRERV6ElJCPXG0YghOOm6Hw5KjMP3xO3Q1LQmDBvZwnWmOCO9ARKXUQKUy6dkqZGmICQrAu9//iHlf9kDjmFPwun0bQedM8f3q2fiyZ0PE/OWD2+JF+lVhVf8GrtxMzXwpTPDBwFq4uGMHNi7ZjNvDl2BMw7eUa+o/91oMGlpVhb4yostE1e7DDz98UrVLTk6Wq3aGhobyzthPPvkk16pd69at4ezsrDwiyl8MckREhV4Krvl4wXjcQswbaYtR82ZgUL23lA0HY9DnX6BR07bo0PQmNrlFImtN7hGiw++jae0q0IsPxrmblrB4Kxbh/uaobVoC8QGeuNnEHJXlspoRGnaoiNM+MUoYNIBx2/FYPNkOw2YuwuQO1ZVpVTUpBj5uZdDG+m2drMi9iNgMoanaLV26VK7aiQAnqnZi84SmaiemVX19feWNFf/+q/4PQZTPGOSIiAo1CY8iTmDHXn+UvBaOa4+0620GMG3eHlWP/YEdu1ZjhbsNHAbXzVYhKwfL1k0RfngHVi44gfprbFG/vDla94/B4R2rsOBgPawZ9j9krp7TR6UOfdHI5QRCU5+35ktCaugJnPxff3R6sjGi6BNHn4iqnTj6RFO1E/1iS5UqhRs3buDTTz997hQs0ZvA40eIiIocsWt1Ka4Nmo1epi8btLQ7OzRBxRzKbVKSDxx3xqP9sI/eaGcHXSB2vIpgN3nyZHmKlSi/McgRERU5/yXIUV6JFmLjx4/HnDlz2CqMCgyDHBER0SvQtAsTZ9YRFRQGOSIiIiIdxc0ORERERDqKQY6IiIhIR3FqlYiI6JVkIOH8WkxYuAl7fLvhUOActCmv2cUbh/MrZ2Dh1r/g++luBM5vg/LKFfWLsHLCQmzdE4dPD/2NeW0qvZmz+KT7CDm0FQ57glGpdWuoDBMReO4yUuoPwGjbFgWw4zgdSSFHsMlhH/wrNUd7VQUkBV6Ee0pD2I3uhxammhZy+aWw3c8rEkGOiIiIXsVj6fquoVKFIU5SdIYypJERIe3q10Qa4nRNeubS9V1SP8NRklN0qjLymmXESpeWdZdM+62XLiemKYNqGTGS6+yPJcsh26Wg5Ox39SalSfcvrZA+Nh0sOfjGa30/0qQ41wVSc6uR0tbgRGUsP2TeT+dq6vu5fO+Z+2lmmd/38+o4tUpERPTK7iPUMxgt29TFO9kLXInh8HQ1Rxtrk2wVtwwkhvrAtVUzWL/zJo6HkZDsuQnjp8Rg+NhesDbUOiJazxith3wB1eaFWHLoutLBIx8ke+K38fMRNHwEBmXpBqIPo9b9MU71LyYsdkZ0ft2Qcj+BX36FwdaiS4pG5v3Yqw7l7/38BwxyREREryr9FkLOlkLbuqbPvKGmR4XgbOmGUJlln6J7hKiQAJRuq4JZnt6FU3DHZz+WD20Dq/a9YWdnp3wswpHoNOU52h7i6iU3nEN9NKxdURl7Sq+GCq0tgrDfLRDxylheSUlh8Ay9n0MATEdSqC9Ck9KVx1mlX/XAgXOV0L5hLTyZfdbQqwrVhxaI338Wl+Nzfn2uJBGkw5CUQ+DK/V617qeB+n6UsSfE/bR+xfspAAxyREREr0i67oXDp1MQtH891u1ag2nDfoTbHRGuUnDd4wxOVw7AvlXrscvhWwz74RRiRKqQouFx2A+Vg/Zh1bqtcJhmjx/cbuVSHUvBzeMrMG1XCj5eegwhJ/dgy5YtyscM2FR7XkXvMVLTcv5TX90DeK9YgE3+97TuVx3i/Hdg2gpv9Vd8nnSkpKa/9irgY++1mLrJN0uYk5J8sWnqWng/94bezP3kNwY5IiKiV5KBxIhAXGzZA2NmfI2R/W3RV3UE0x391IEmERH+4WjZayxmfjMC/Yf3hmrDMuzySQQSr8PvogV6jZ2Gb0baYnhfM2yY/id8Hz8bKTLC/8C4DTUwa0FfNDDO6+L7sqjdsiNaIQj+V9VfLxvp5hW4h1mjX0drGCljeaVnWB9Dl9oCaxaqw5yodmWGuKm/AmOWDEI97WlcLfq1W6BPq/s46x+J5Oz/mtJdXPG4CqN+7dDIKOfX50rvLdQb+h3GYuuTMCeHuGlbgbHfYWg97WnTp57cT4D6fpSxJ8T9uL/i/RQABjkiIqJXkoRQTy9Y2H6KZm+JN/zHSE5IwlmPcMSmXIXnERPY9miQ2a82JRkJj4PgERaHlFBPHLHoiR7NxG5VSX0pCY/P+iMsNvs0XipuXPJADbtOMH+pHaZ6KKWywagB8djnGpwtqKQjPuASnJsNgm27anLIke764NDu9VhoNwjLPZ4NftnJYW6JOsz9Oh8OTmvkEDd2qTrEVXhO6Cllha6jeiBp32lczp7k4oNx3rk2vrFrBRM9EQydsHz5Bux22oJlo0fg273BeKQ8NUfaYc5hJxymqkPcmFm5hjiZcj8P9p3J8X7OOVsq96N+/CgYTnPmYdVuJ+xe+Q2GLjqOm6+90vnqGOSIiIhehRSDgNNJaGVVFXKEyYhB6IUoNGpiAePoQJyJqQur6mXkp2bcCMWFSEs0sTBEdIA3YlpZobr8ohTcCA1EZCMVLEyyT5OmICYyEKdXfa21Lk77I7c1cmolLdFn5iSY/+kC3yxBJR7eJ4LQf/YgfFAhMwLoVWmAT/t9AhXuy4/zQs+wHnoPeBtreu+B8YCuUOVSiXuqHCz6TMQiczec8L2njAkZSPB2hUs/ewz7oJL68V2cWf8TzrzTFr0/t8PkGR0RMXw9TsW9YK2aOsypen8G4zXjsMb4M3xeV3tDRU4y7+d7i9M47qv9763cT3/N/aij7/Uz2LAPaNilJ/p92QM1HFbhQMhD+VphwCBHRET0KtLv47afJRpbZlZ+pCgfHDtbDwM/rAXE3YZfmwawlMPSY0R5ncHZlp3QyrKU+lIc2jY2RwXxZ0g34XX8MloObAnLZ7JQGVQzt0TlXt9h05N1cdofua2Ruwffo55IVPXD7MFBOOQR/3QdWIIvnMN6YaJNZVxzuYDIDGX8pWROp053NIPjjZ9h5viDMs2amwwk+Z7ChcQ6sJ3dEcf/9cMD5Yo4b8/d+T7sJ7ZHlavncDryLXSc5YhVPc3V4VhCalwMIuuYokqZ58cVeTp1+l/qe/GEo9lf+HZz1jVzWWndz3cdcOzQ5az3c/Q+xk/soNxPCvSthuGQ7xy0qZCE8KPO8O32BTpbllWeX/AY5IiIiF6FfiXUaJ5ZcYMUB48/nBA7Zy5GNH4L+sY10FwJZlKCF/7YmIg5K4eiSfnSMK5RS3nzTUeCxwFsujsCK0c0Rjl5TJsBTDsNQNuDu3D0ZooylhclIYW4wjPeEI0H9kSid6T6K2VKjwiDNMQGlgiHs0ssXpCPcqBsbFCmU62rNcpcM/dr9g0Q2kqgrHQF/3jGoWzjPhiXGIgrT27oBvylLuhWWw+hzudxr0xJGFSpieqiwpd2FX+vu4iPFw9C43K519cyNzYoa+Ksa8E625q5Zz29nzLq+7HPfj8Z6vuxhHI/SlB+FAG3A844HZCIanWqoOzzy335SzlPjoiIiF5KmhR3bqU0+rt10s5lU6SJa09L0anK0bIZd6Rzy7+Rvvt9s7Rs4jRp7dkbkubo34y4s9Ly0XOk33culyZO/E06G/1IuZKTDCk12lmaM2CUtGzPeema9uG+uUqTYg9/Ixmp3+LF27zhyIPSbfm2UqVop5HyGGAktV7jq36mxnXJybartMw9QXmcs/TwXdLwUVskv4Ss95GR6CNtGP2NtCs8l3+X2MPSBKPM+4GhvXQwRnl9tJOkjoGZ463XSv6aPzY1Ujq26Ftp+amoJ9+3HKVfkXZ9NUna4Kd9qK9axj3Jb8MkafiuK1K6MpTFc+7HTk/v2fvRSA+UNnRuIo06GJXzn1sA2KKLiIiosEuLgc+RQzjqegGXb2m2L7yPgT9MfcERJHkVib12oxE+3hGTm8iTvgVHuotzPzkg+BN72NUrjdAt2xDV80t0qFgQk4gpCN82HM3O9EOQQzcYS1exe0BnrG63FydHWeN1fOf/KwY5IiKiYkzsWv3X9SJOrVqHW12/Rs8PWuKTNu9BmTTOZ0kI2TYZ3WzXIVQZQecNCP53GKwKZDGYhLSbLljr4IHyqvdQPs4dh0P/h8nz++V61Ep+Y5AjIiIi0lHc7EBERESkoxjkiIiIiHQUgxwRERGRjmKQIyIiItJRDHJEREREOopBjoiIiEhHMcgRERER6SgGOSIiIiIdxSBHREREpKMY5IiIiIh0FIMcERERkY5ikCMiIiLSUQxyRERERDqKQY6IiIhIRzHIEREREekoBjkiIiIiHcUgR0RERKSjGOSIiIiIdBSDHBEREZGOYpAjIiIi0knA/wP6sclyh2zIhgAAAABJRU5ErkJggg==
iVBORw0KGgoAAAANSUhEUgAAAh4AAAJHCAYAAADfQl91AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAGuMSURBVHhe7d0JWFVl/gfwL7klkopmhgGWKWJqIi5pargiloWijsuYS6WpfzRtFMkltdAxrbHAzCXLbdRySRtXXEHNxpQRAxW3UhAyBBSRRIHzP7/DQdEwAS+Xc+/9fp7nzuW+93Bn5vFw7ve8v3exU1QgIiIiMoNH9GciIiKiYsfgQURERGbD4EFERERmw+BBREREZsPgQURERGbD4EFERERmw+BBREREZsPgQURERGbD4EFERERmw+BBREREZsPgQURERGbD4EFERERmw+BBREREZsPgQURERGbD4EFERERmw+BBREREZsPgQURERGbD4EFERERmw+BBREREZsPgQURERGbD4EFERERmw+BBREREZsPgQURERGbD4EFERERmw+BBREREZsPgQURERGbD4EFERERmw+BBREREZmOnqPSfiYiI6KFkIGHXPMza8RuSD6XCK+SfeP2JM/h27jL8pNTAU0oMth5zhv/s8fBzc9B/J5eCzITdmDXMHxO/L49Bi5cgZPDzcEA8to/7HNffnQK/Gsrdnx88A69XP1vAzzcGBg8iIiJTSQ3H1InJGBrcGicDu6DDj24Y1tILA94ZiJZO5dQDkrHv/a54+cw7iP53b7ja5fya5tYpLB84GN884Y2WiMDXn6Wi59YQDEpdg8+V/vikdx2UvevzfdDxx7p4+97Pn/IqXj496s+fbxAstRAREZlENlIPh+FiO0844QounvodSKiGTiMG6KFAlEKZcqWQdigWiVl6k0ZB+pHvEdpxEb77dAomfvotDh4NhNueQLwR0RITetRG2Xs/P+Y+n182v883DgYPIiIik8jC9cyn0a1pddilnEVEeAoaDOwNH9dH9fdV2Qk4Hn4WDh3d4Vpab9PYoXzDIZg7oB7KaK/LwvGJUrj0SF8smtQJTqWl6+Luzz+ifn79gX/78+fvy+/zjYPBg4iIyCTKwMn7dbziWhbXow9ifYobXm5ZB/b6uyL7zA/4JhR4sXltVNXbctlVqIRKesBIO7URQcGX8NrEPqjvUCrngD99fl283OLPn/9tqJLv5xsFgwcREZFJ/YHz0UcR69AML9SrrLeJ6zi5ewtC4YlXmjjf5wtYDR3RqzF9bRkMuCt05HXn85v/6fM3P+DzSx6DBxERkSkp8TiyLQJo9Dzcn8hT70g/ji3L9wAvdoZXvQrIvrAdX+5JwJ0ZHjIjJgRBu2tiVMDLqKWHDiUtBvuPJd05LvfzPRqpn59TmNHI5y/bA6Wl930+3xgYPIiIiEzp2gVEHYqFc7v6qHm7w0JB+rGdWHawInzf7IDnymbgzM4duFLRHjkTTyR0fIHg2PaY5N9aH9OhUpJxZP4c7Lia81Kjf75LPp+/9GAl+L6R3+cbB4MHERGRySjIOB2B7QmN4PeiGyrorTLj5cbVJFxEO/TtVAelU/6LVdGt0c+zkvpeFlIPz8fw4HNwSFyBtzr0Q8D02fj44yAE9H4Vo5J6wr91VT1A5Pn8Vurn304Vdz6/z58+31i4jgcREZHJZCFx0xjUerc0Vu6diVdrlNXb1ciQdgwrAqZg82PPo+bNqugc8DbayzTY1H2YMTEBff7VC7XKZCMtegVG+Y3E16eewmtBn2DOO51vl13yfv6qsI/Q1elOqUX7/HHvY3PFRnd/vsEweBAREZHZsNRCREREZsPgQURERGbD4EFERERmw+BBREQ2LyAgAKdOndJfUXHi4FIiIrJ5f/zxB9555x0MHDgQrVq10lupODB4EBERqSR8LF68GBcuXICvry+qVasGe3t7ODs760eQKTB4EBER5XHx4kUsW7YMy5cvR82aNbF161b9HTIFjvEgIiJSxcXFYe7cuejevTtu3ryJ6tWrY926dfq7ZCrs8SAiIpt24MABbNy4EXv37oW/vz+6du2Kw4cPo0KFChzvUQwYPIiIyObIeA4poUhJRYwbNw6enp4oX7689lpmuUybNu32azIdllqIiMhm5JZTpDfj5MmTmDVrFjZs2KD1bOQNGSkpKQwdxYTBg4iIrJ6UU6QXw8/PDxUrVsTly5cxYcIEuLm56UfczdHRUf+JTI2lFiIiskrJycnauI37lVP+ypAhQ7Bo0SL9FZkSgwcREVkVWYE0NDQUI0eOREhICLy9ve/bs3E/MgaEpZbiweBBRERWQcopS5YsQWRkJAIDA9G2bVtUqVJFf5eMgsGDiIgsVm45ZebMmWjUqBEGDRrEKbAGx+BBREQWxxTlFCoZDB5ERGQxWE6xfAweRERkaFJO2bRpk7b+hgQN2cCN5RTLxXU8iIjIkKScMmPGDFStWhVXr17F+vXrtQW/GDosG3s8iIjIMGQaa0REBGbPnq29HjBgALp06cKprVaEwYOIiEocyym2g6UWIiIqMXnLKampqSyn2AD2eBARkVlJOWXfvn2YN2+e9nrEiBFo06YNyyk2gsGDiIjMQsopK1eu1PZOkXJKv3794OHhob9LtoLBg4iIitXRo0e1wCErjMpgUQkcXHvDdjF4EBGRybGcQvfD4EFERCbDcgo9CIMHERE9NFnKfOPGjVo5xd/fH127dmU5hfLF4EFEREUi5ZStW7dqvRti3Lhx8PT0ZDmF/hLX8SAiokKJi4vTFvqyt7fHyZMntXU3NmzYoK29wdBBD8IeDyIiKhCWU8gUGDyIiOi+7i2njB07Fk2aNGHPBhUZgwcREf2JLGUeGhqKkSNHIiQkBN7e3nBzc9PfLaos9YP/A8wMBerVAm7GAZGPAVPHAs9V0o8ha8fgQUREt0k5ZcmSJYiMjERgYKA2JdZk5ZSbR4EOQcDcr4BGFdWGDGD5W8AXHsDOdwF7u5zjyKpxcCkRkY2TtTdkc7bmzZtroWPQoEE4dOgQ/Pz8TDuG40YqcFkNH8cu6Q3qV1DZssDJBPW9bL2NrB17PIiIbFTeckpwcDA6d+5sgnJKIaQdAfqPAV6bCwx+Xv1G0tvJqjF4EBHZmGItpxSU8jvw3gjAMwjo5c7QYUMYPIiIbICUUzZt2qStvyFBw9fXV1t3o8Rc+Bb4oiowvQOL/jaG/9xERFZMyikzZsxA1apVkZqaqo3lkAW/SjR0yOyWE6eBlxvzW8gG8Z+ciMjKyNobUk7p1q0bAgIC4O7ujvT0dG3RL2dnZ/2okqQA1zMA+7L6a7IlLLUQEVkJw5VTiPLBHg8iIgtnzHLKX7h1Fpg6GvjmpN5AtoTBg4jIAkk5RabCGrec8hcyLgPhG4Ho37WqC9kWllqIiCyIlFNWrlyp7Z0i5ZR+/frBw8NDf5fI+Bg8iIgswNGjR7XAITvDDhgwQAsc3BmWLBGDBxGRQUk5Zd++fZg3b572esSIEWjTpg13hiWLxuBBRGQwLKeQNWPwICIyCJZTyBYweBARlTCZnZJbThk7diyaNGnCcgpZLQYPIqISJutwCLPuDEtUQhg8iIiIyGy4gBgRERGZDYMHERERmQ2DBxFZJNkIjcjUZFdfmV1ExYfBg6xQBhJ2zcGYwPEY2H44voq+gluJh/HvKaMw+v2ZmD15MNr7Tsb6U2n68WSJdu7c+ZBfEAoyE3bin2MCMXmgLwZ/dQxpty7hyL8/xPDR72P27Anq+dMTgetjcEP/jTvkd3dhhm892Nl55vyujJZT4rF97ESsj7+ZcxhZnOvXr2PLli36q6J6mGuQfm51e+4+59atnMM06hsJB4DRf1Mf04Axo9U/jGPAhkXAj5f0YwxIBpcSWZWrYcqUkd8pF7MTlV0BTRS81E8ZNn6B8kP8Df2AJCV8ckvFoe9q5dcsvYkszvbt25Vx48bpr4rishI+ZbKy7uIN5equ9xQnvKT0H/aeEvzDReWW9n62khY+RXFxeENZfT5Da7ntZoyyrO+LyivvTFWC3nlNeRZtlfFbf1ZOfPO+4r/6lHLP0WRB0tPTta/5pKQkvaUI5Brkr16Dsh58DTqfrTflesC5dVM/TFEyFSVqiaK4tVOUbRdymrIvK8r7LykKHBXli59z2gyIPR5kZbKRejgM8W094YQruBjzu3pHUA2dRgxAS6dy+jGlUKZcKaQdikVilt5EFkeWDpdpqLIGRpGkRmLzRQ/1vACSLsYiAdfh0GkIhresgdL6IaXLlEWptHOITczbg6Eg/cj3CO24CN99OgUTP/0WB48Gwm1PIN6IaIkJPWqjrH4kWR5ZP2XdunUYP368tmR94eVcgy6288STdoW9Bt05t9bnc26951cbZfQj1f8SYMxUoPsEwNslp82uEtConvrsDtSvkdNmQAweZGWycD3zafg2rQ67lLM4Ep6CBgN7w8f1Uf19VXYCjoefhUNHd7jmfsOQxZEvCBnnMWnSJKxfv15vLTjlejZqdvNEdfXL4VREFNCgBwb6PH07dEh3+fnjR/GrQ0O4u+ZdzMsO5RsOwdwB9fQvgbJwfKIULj3SF4smdYJTaTutlSyXn5+f9jxq1CgkJSVpPxdczjWom3oNeqTQ16A751ZOeL373KpRJvfcSgfWBgM71IDRs6n8mk5tP3cOqPyiGjzUEGJUes8HkZXRu8nRRAnYlai35ciKWax4w0nxXnxCOisLRf5k+DDuIyYmRv+XKoS0cOV9VzvFKWCXclVv0mSdUBZ7OynwXqzE3Lckl6lci/lOmRK4Qom6Vtiz6Y78/r/wYZzH0qVL9X+pwijYNej+1d6/OLdu/KQojRwUxWWKolzL8wnqOauo56ziq/7vvbeEYyDs8SAr9QfORx9FrEMzvFCvst4mruPk7s0IhSdeaeKMUnprQal/M3wY7LF//340a9YMISEhsLe31/+lCi7rfDT2xNZG5xdq4zG9Tb5vbp0Mw+rQG3jxFU88ne+VMgtp0asxfW0ZDJjYB/UdCns23ZHf/y8+SvaRnp6Ot956C76+vnj++ef1f6nCkGtQ5AOvQfl/CT/g3Dp/DIhMA/xaAhXyfMKl48APN4DOjfP0ghgPgwdZJyUeR7ZFAB6N4P5Enr7M9OPYsmwP8GJneNWrgOwL2/HlngTttoYsj0x9HDNmDFasWAF/f384Ozvr7xRUBi4c2Y/9eA4vuD+e51qdimNbNmIHXkRvr9oom/0rNn8ZhsTbJ4rMWghB0O6aGBXwMmrpXwxKWgz2H0vi+WThZGyHlFkaNWqEDRs2FG1nYLkGbS/KNagA59a1ZPU/nIDna+YJGNnAicNAmj6+Qz1nsfSg/p6xMHiQdbp2AVGHYuHSrj5q3r5ZUO9iju1U/xYrwffNDniubAbO7NyBKxXtjXxzQPchXw65oaPoe5xcwy9RJwFnD9SvmWcch/rlsG3Zfjj4+sHnOfXL4cxerL5iD3vtRJEvhi8QHNsek/xb3xnToSTjyPw52HE15yVZrsWLF+OZZ57RwmyRqdeg6AJfg8rr16A759bEfM8tJee4KtXV/7AHKleQVzmUFCDsAODQFHCvBJxXf068PRTVUBg8yAopyDgdge0JjeDXyg13/jSzceNqEi6iHfp2qoPSKf/FqujW6Odp4EFYdF9bt27Vto5/qI3VMn5FxPYYVPZrgfoV9Iu8uJGKyxcfxyt926NO6cs4sOo8uvfzUM+lLKQeno/hwefgkLgCb3Xoh4Dps/Hxx0EI6P0qRiX1hH/rqgyyFiw5ORnLli3TQm3R5V6Dni/YNaixlGLuPreG5HNu/V+rx3M+5mkvYLAalE/E5bxW1LS7chYQrj5XdwUcbwJ7fgba1cl532gUIquTqfz+n1GKQ50xyn/i78x6F9nXIpVlw3yV3gHvKwGjP1N23Z5XT5bG19dXiY2N1V8V0e//Ud52aKIM//783WPxsq8oUctGK516/0P5MCBAmb0rNmdtj6vhynT/b5SzN+XoTOVa1BJlsNtjinqLqbwWtFk5+xADTMkY1q1bp4SEhOivikquQSOVx9wKcQ3K59waVMfhPueWekz8HkXp20NRPpyhKG8PV5RNpxQl6QdFec1HUT9YUWao7xt0gCl3pyWyRZmXcerIIez6OgSHvBfgaz/1LsnCyPod3t7e+isqcXLXvXEusC0dqK3ewccdBR7tBkzyAx5i4K25ydowMki58OOFqKAYPIhsTVokvllwEDefvYkDo4Lxx5zdWNrD8oIHGYn6NRKpho5x6o8b/KENhlHOAN19gNargLHNcg4jUnGMB5GtcWiE3v8Yhte7tkJtLrFJJqEGj9Rk4OAh4LfcVV5LA49mAXEyA4PoDgYPIiJ6SOpXSZspwLXlQC1ZFlwNHMe2AJGdgCEtcg4h0jF4EBGRaSXvBUaeBTZ9bOylu6lEMHgQEZEJ3QR2hAJTxwPPVtTbiO5g8CAiIhNKAX6qBjRXH0T5YPAgIiITugmklQXKcRk1yh+DBxERmZALMH8UYMzVuskAuI4HWTRZ3rh8+fLagwpI1vGYvwMXrv6MNZ+uR7LXYAxu64rKnn/D8PauvBuhh6B+nfyyGZj1EzBmLOB2Z79folwMHmR4shlYREQE6tWrhypVqmhtEjhk5crx48fjP//5TxG3rSYi08oGDn8GtFsPbP4OeEnfW4QoDwYPMjwJHvv27cPOnTv1FqBy5co4f/68FkjCwsK0JY6JiMj4GDzIIh09ehRDhw5F69atERQUxOBBRGQhGDzI4kgPiJeXFxYuXIhz586hVq1a8PDw0N8lIiIj4zgysjhz5szBgAEDtLDRvHlz7N+/X3+HiIiMjsGDLIoMKD106BDefPNN7bVsXR0bG6ttZU1ERMbHUgtZDJnJ0qVLFyxfvhxubm56a077G2+8gQ0bNugtRERkVAweZDECAgLQoEEDrcxCRESWiaUWsghSYklJSUHPnj31FiIiskTs8SDDi4uLg4uLizaWQ8Z0EBGR5WKPBxnetGnTsG7dOoYOIiIrwOBBhrZ+/Xrt2c/PT3smIiLLxlILGZZMke3fv78WPtjbQURkHRg8yJBkddJ+/fph+PDh8Pb21luJiMjSsdRChrRmzRrUqVOHoYOIyMqwx4MMJ7fEsnXrVlStWlVvJSIia8AeDzIUKbFI6JD9WBg6iIisD3s8yFBmzJihPU+YMEF7JiIi68LgQYZx9OhRDB06FGFhYShfvrzeSkRE1oSlFjIEKbFI6Fi4cCFDBxGRFWOPBxnC+PHjtWXR/f399RYiIrJG7PGgEicbwMXExODNN9/UW4iIyFqxx4NKVHJyMnx8fLB8+XLUrVtXbyUiImvF4EElKiAgAA0aNMCAAQP0FiIismYstVCJkT1YUlJSGDqIiGwIezyoRMTFxWmDSWNjY7kBHBGRDWGPB5WIadOmYd26dQwdREQ2hsGDzE5KLMLPz097JiIi28FSC5mVbAD3+uuvaxvAValSRW8lIiJbwR4PMhtZnVRmsXz44YcMHURENorBg8xmzZo1cHNzQ6dOnfQWIiKyNSy1kFlIiUW2u9+2bRt7O4iIbBh7PKjYSYlFQodsAMfQQURk2xg8qNjNmTMH3bp1g4eHh95CRES2iqUWKlZHjx7VtrsPCwvjdvdERMQeDyo+UmJ5++23tRILQwcREQn2eFCx4QZwRER0L/Z4ULEIDQ3VZrL07NlTbyEiImKPBxWD5ORk+Pj4YMWKFdq6HURERLkYPMjkWGIhIqL7YamFTEo2gEtJSWHoICKifLHHg0wmLi4OLi4uiI2N5Xb3RESUL/Z4kMl88MEHWLduHUMHERHdF4MHmYSUWKTzzM/PT28hIiL6M5Za6KHlbgC3detWVK1aVW8lIiL6M/Z40EOR1UllFktQUBBDBxERPRCDBz2UNWvWaGt1eHt76y1ERET3x1ILFVluiWXbtm3c7p6I6E8UZCb8gMUffYZdqI9Gdimwe+UNvJL2X/zvydcwsEV12GnH7MLsWTuRnnwCcV4fIuT16oj5diG+/OkWaj2Viaitp+DkPx1T/Ori7l2v5Hd3Y9Ywf0z8vjwGLV6CkMHPwwHx2D7uc1x/dyr8apTRjzUOBg8qEimxeHl5aRvAcbt7IqJ7ZSEtegVGdl+K6iFLEdTZBaWVJOyb2gMvfXAMrb8Ix95hDVAK0vYZEodORMeT0+De4QA6DGuF5gP8MbxlDZRWw8X1fdNQ7+VYzIqahz41y+mfr7p1CssHvYFvqnVCS0Tg689S0XNrCAalrsHnSn/8q3cdGC92sNRCRTRnzhx069aNoYOIKB9K6mHMf3cafvSbiABvNXRIo10l1G5UT/3BHe3q11BDhyo1ElviPdDSCUi6eAEJuA6HTkMwTAsdOUqXKYtSaecQl3hTbxEK0o98jx0dFuK7T6dg4qff4uDRQLjtCcQbES0xoUdtQ4YOweBBhXb06FFs3LgRY8aM0VuIiOiOdJxeG4wPdtTFm72aooqd3qy2x587Bzi+iFb1K2ktyvVsuPp6orrdFZw6EgU06IGBPk/nCQ0ZOH/8KH51aIi6rnkLLXYo33AIQgbU048tC8cnSuHSI32xaGInOJW+/V9qOAweVChSYhk6dCjmz5+P8uXvrjYSEZEq4zi+D/4e15xfwAvuFfVGVXY8Ineq4eKlRnBz1Po7YOfUEcNfeRqPXD+FA+sj4fTyC3jOPk9oyP4V+7/ZD7zoAbequX0gOewqVEIlLWBkIe3URgQFX8JrE/ug/mM5n21UDB5UKFOmTIG/vz8aN26stxARUV7Z549hR2QaHP1aoH6FOyFCuXQc+3+4gdY+jeF6T4dE1vlo7Imtg84v1MZjepuUU26dDMPq0Bt48RVPPJ1vnpCxJKsxfW0ZDJDQ4WDs0CEYPKjAQkNDtZksvXr10luIiOhe2deScRZOaNawJirrbWorrp04jO1pdXPGd2T/is1LDyJFey8DF47sx348hxfcH8edTJKKY1s2YAdeRG+v2ignv/NlGBJvTwnJQMKuEATtrolRAS+jlh46lLQY7D+WpMYWY2LwoAJJTk7GpEmTMGvWLJZYiIj+Qqkq1dEA9niycoU7X7JKCiLDDiChQlM0d68E5fwBfJtYRj1KXMMvUScBFw/Ur5nn+pp+HNuW7oeDrx98nquA7DN7sfqKPXI6USR0fIHg2PaY5N/6zpgOJRlH5s/BjqsyCsSYGDyoQGbOnKmVWGSxMCIiuj+7p70wYHB5RJyMQ7o0KFcRs3IWPgm/CqW6K5wcM3B6z89o2K4OtMmxGb8iYnsMHP1a3lWawY1UJF58HK/0bY86pS/jwKrz6N7PQw0rWUg9PB/Dg8/BIXEF3urQDwHTZ+Pjj4MQ0PtVjErqAf/Wxl1Jmut40APJBnCyD8uiRYv0FiIiuj9Z2CsMn46dizP1mqBaXCzKvzoGo1pexvw3PsDPdd1hX9kXHwS2RTXJGYmbMKzWVDyy6jt83tXlTk+FGliiV0zBmM2l8VLNUni080iMbu+M0qn7MGNiAvr8qxdqlcnW1wvxx5LTzngt6BP8653OeNbAYz0YPOgvxcXFwdXVFRcuXOB290RE9NBYaqG/NG3aNKxdu5ahg4iITILBg+5r2bJl2nP37t21ZyIioofF4EH5kmmzc+fOxUcffQQ7O6OOjSYiMh1ZMoCKH4MH/YmsThoQEICgoCDuOktENkNuuBg+ih+DB/3JmjVrtGmz3t7eegsRkfWTJQMkfMyYMUNbu4iKB2e10F1kAzjZi2Xbtm3s7SAimyTXwc8//xyZmZmoVq0afHx80L59e/1deljs8aDbpMTy9ttvY+HChQwdRGSzZAmBRo0aITo6GsuXL0dGRob+DpkCezzoNuleFBMmTNCeiYhsifR0rFy5Env37sWAAQNQsWJFODg4wM/PTz+CTIHBgzS5JRb5g7O3z9k9gIjI2klP7759+zBv3jzt9YgRI9CmTRttT6ohQ4bgs88+4zXRxFhqIW0QlYQOKbHwD4yIbIGsyixLBsg17/Dhw5g6dSo2bNigDaqX0CGBxNHRkZtiFgMGD7q9AZyHh4feQkRknQ4cOKAtFyDlEymlJCUlaeXle69/sbGxaNGiBdcxKgYstdg4mbMuXYyrVq1isieifGQBp/6j3qGEAvVqATfjgMjHgKljgecq6ccYm/ReyEaXuasxjxs3Dp6enn95zZNptT/++KM21oNMi8HDhkmJRaaJrVixgtvdE1H+bh4FOgQBc78CGlVUGzKA5W8CXzQGdr4L2Bu3R0DKKVI+GTVqlLYgYs+ePQt1rZMbM65nZHostdiwwMBArcTC0EFE93UjFbisho9jl/QG9WujbFngZIL6XrbeZiz3llMuX76slVMKe61j6Cge7PGwUevXr9e6HhctWqS3EBEVQNoR4O+jAd/PgcHPq98iensJkx5cmZUn5RRZ9GvQoEEPLKdQyWDwsEHS/eji4oILFy5oz0REBaL8Drz3f4BnENCrriFCR+7+KiNHjkRISIjWS8FeXGNjqcUGTZs2DevWrWPoIKLCid2rho1hhggdUk6RdTb69++PGjVqaLNTWDq2DAweNka6IWVuOlfiI6LCyQJOnAZeblxioUPKKVImbt68OZYsWaKVUw4dOqRdz7jNg+Vg8LAh0iUpC+bIoFIiosJRgOsZgH0Z/bX55F67qlativj4eG0mnoxPa9WqlX4EWRKO8bARMo+9b9++2nLAHKlNREYn16yIiAitZyMxMVFbT6Nt27bs2bACDB42QkosUVFRmDVrlt5CRFQIt84C00OAesOA3u56o+lJOWXTpk1aD4cEDV9fX/ZsWBmWWmyAbAD3+eefa4NKiYiKJOMyEL4RiM5dz8O0pJwiO2RLOeXq1avaWA65UWLosD7s8bBy0l3p5eWFBQsWoHHjxnorEVHJyy2nzJ49W3st5ZQuXbpw7Q0rx+Bh5eQOQsiqfURERsByim1j8LBiUmKR7e7DwsJ4B0FEJU6uSVu2bNH2T5HejW7dusHZ2Vl/l2wFg4eV4gZwRGQEUk7Zt2+ftgu2kJl1bdq04c2QDWPwsFKyQVKDBg24pTMRlQi5+Vm5cqU2o07KKf369YOHh4f+LtkyzmqxQrJvgYwQ79Wrl95CRGQeUk6RGx/pcRXbtm3TZqcwdFAu9nhYGbnLkFHhy5cvZ4mFiMyC5RQqDAYPKyObJknw4F4sRFTcZKdrGSgq5RQZKPryyy+zZ4MeiMHDisiCO1u3bsXChQthZ2eA/aqJyCrJzrAbN27E3r17tR1hu3btyqXMqcAYPKyE3HnINvexsbGcnkZEJiflFLmxkd4NMW7cOHh6erKcQoXGwaVWQpZDX7duXdFCR+ZZfPNGIDYlZukNREQ55KZGFvqyt7fHyZMntYGiUl6RBb8YOqgoGDysgNyBODo6FmFcxxVErg7CMO8u6PP1FdzMZOcXEeWQcorMTpHrSsWKFZGUlKStgMxB6/SwWGqxcDJttn///tqUtSLXWBPWY2CNUPjGz4WfU2m9kYhsjcyKk3EbueWUsWPHokmTJuzZIJNij4cFk5rr+PHjERQUxIFdRFRkcgMj5RTZGTY+Pv52OaV169YMHWRyDB4WbM2aNahTpw68vb31FiKigpNyikzBl17TGjVqaOUUmaXCcgoVJwYPCyWrA8odytSpU/UWIqIHk3KKTL1v3rw5lixZgkGDBuHQoUPaWA72nJI5MHhYICmxyK6zsl6HjDQnInqQvOWUixcvahtILlq0iNvRk9lxcKkFmjFjhvYsI8wfzhVEfrMMO6KPYPWHp1F/cjc0rN8Zw3o3goN+BBFZNimnSM9GZGQkAgMDtQ3b2LNBJYnBw8JIiUV6O8LCwjjoi4jyJeWUTZs2aT0cEjR8fX3Zs0GGwVKLBZGLiYQO6SJl6CCie0k5RXpEpZySmpqqjeWQGSoMHWQk7PGwIDJ1tn79+hgwYIDeUnQF2cuFpwaR8cmYr4iICMyePVt7LdcH2SiSNydkVAweFiI0NFTbcnrVqlUmvKBkICH8a3y29QbcXOIQGtUYkz7qgwaPldLfJyKjMlw5RbkKbJwLbEsHalcG4o4Cj3YDJvkBDrym0B0MHhZALjA+Pj5Yvnw56tatq7eaQPpBTH8lDB02j0cL+yTsHv8y/MvNxo8feKGifggRGYuUU9auXYuJEyciJCRE246+5DeGVL9GItXQMU79cYM/YG+nNp0BuvsArVcBY5vlHEak4hgPCyAlFhmNbtLQITLSkfrbMRyPy1BfOMC57tM4eeo3XGUUJTIUKadIr6eEDNk/pWnTpkhPT9cW+zLGbtTqRSM1GTh4CPjtpt5WGng0C4hT24nyYI+HwcngMNmKWubbF58MXI7ejOAxy/HIxHmY4uWEB48AIaLiJr2dK1eu1PZOkXJKv3794OHhob9rZGrgiFwA9DkKrJ0N1K+ktxMxeBiabEft4uKC2NjY4rurUZJxfEc4TqZcxH+3xaLu/43BgKbV5V6FiEqITJuXwCEbtslgUQkcFrX2RvIuoNsW4OspwLMs3NLdGDwMTPZQkNHphd/uviiykbp7EuoNz8JX+6ejczVGDyJzknLKvn37tEHkYsSIEWjTpo0Fzk65CXwzGaj2D6D9E3ob0R0c42FQ0rXq6OhYjKEjCym7J6Jel69wKkte26GcvQPKnY7BL4m5NVoiMgfp4fDy8sLOnTu1/ZdkZ1jZ/NEyp8SmAD9VA5qrD6J8sMfDgGTU+uuvv66N7Si+7lUFmQnhmPfhGsQ/8zQex1Wc2X8Olf8eiEm9GsKBgzyIzEZ6O+RhHUuZxwLDvgNCRgFl9CaiPBg8DEYuPn379tW6WbndPRERWRuWWgxm8eLFcHNzQ6dOnfQWIiJLod7H/rIJGD4FOHVNbyO6G4OHgUidV8Z2TJs2rUBLmhMRGYsaPJJOAyt2A7/J+kBEf8ZSi0FIiUUGly1cuNBC5ukTEVkfWYLeGKvBWi8GD4OQHSXFhAkTtGciMqPMeBxc/DFm7spG80alEGfnjdGv3EDo/6qjz8AWqCYdkJlx2DU7GDvSE3Eori1CQnrhiZgNmPvlT1BqVYcSFY5jTm9h9tTucHuUPZaWSoJHxYoVTbIZp7Yf1sHl+GjmbqB5XdjFVcAro9shLTQGT/b5G1poyxaox+yah1k7fkPyoVR4hfwTrz9xBt/OXYaflBp4SonB1mPO8J89Hn5uDjkfe5v69Z3wA/DRZ+rP9dVv9BTglTeAtP8CT74GtKiec5jRSPCgkrV//36lWbNmSnp6ut5CROaSfS1SWTy4udJs/FYl/la22pKpXA3/QGlop17VW3+hRGfKUVlq2yxl5LrzSvbVXUqAk5PyUv/hyvjgffrvqNLClckuzyp9V59TjyZLFRMTY5rrcfYVJWrxUKVOs0nKtvgbOU1Xw5T3Gz6mpgVf5Yvo61qborZNGfmdcjE7UdkV0ETBS/2UYeMXKD/ov6MoSUr45JaKQ9/Vyq93nVjqiRm1RFHc2inKtgs5TdmXFeX9lxQFjoryxc85bQbEMR4lTJZEfvfdd7FixQpuY01kbkoyjsx/H6MPemNmQCc4lZaeilKoWLs+PGEHl3b1UVPbWDUZhzcnoW1LJyDpImISriHBoSNGDG+l/46qdBmUK3UWh2KTZcFwslAyuF9KLXPmzNFbiiILqUe+xrujo+A3cyS8ncpprXYVn0Ejz+qAiwfq15TrfTZSD4chvq0nnHAFF2N+BxKqodOIAWip/46cj2XKlULaoVgk5j2xUg8DY6YC3ScA3i45bXaVgEb11Gd3oH6NnDYDYvAoYTNnzsT//d//aSc7EZmTglunNyBoWjgavPEqWlTJ3bpdQUb8OUTiefi1ckMFrekGMmu2RdPqjyDlVCTC0RQDB7aHa27oUGWfP47wX93R0d2JWw5YuDFjxuCXX37RNuSTm8NCuxWDtUGfYUcDP/RqUe3O3lcZl3Au8hIc/VqifgVpzcL1zKfh27Q67FLO4kh4ChoM7A0f10dzjhfZCTgefhYOHd3V801vQzqwNhjYoQaMnk3VoKE3S/u5c0DlFw29Pw6DRwmS3SZlsbCePXvqLURkPtdw7PvV2JimhoUXnoW93io19/ORh9Tg0QBN3CrnNNk5w3u4D1wfuYroAz8gxaklWj6Xdw+SGzizfxtC0RDN3aoUepNFmcXGh3Ee9vb2+PLLLzF79mxUrVpV26yz4NTgemwLgjf+CueOzeBunzecHsPOyMp4qcmzcNRaysDJ+3W84loW16MPYn1KXbzcsk6ec1H9nTM/4JtQ4MXmtVE196MyjgPB3wMuLwDuec7D7Hg1jEQBLz0POOYGaeNh8CghsgHcpEmTMGvWLO0kJyIzUy/SkXKRdnwRL+a9O1R+R9S+o0Cr1mjimtvdrcuKR/Sek3Do3BT1Hstz+bx1BrtX71e/HdqgydP3/E4BKIrCh8Ee+/fvR7NmzRASEqLtDFxwucG1Efxe1HvMNJm4FPUTfoAnfJrUuCec/oHz0UcR69AML9TTw67mOk7u3qwGWk+80sQZt6OEGmAQmQb4tQQq5DkPL6mB5IcbQOfGeXpBjIfBo4TIWh2BgYEssRCVlOzrSD6bADR7Ds9UzlMcuXYG/91+Gs7tnkPNUhm4sHkN9qfkFNeVC//DNjVfeLzghiduX9gVpB/bjmU7buDF3m1Qr+xN9XdWYU9ipv4+WRrpiZZyi4y98/f3L+RS9pm4lpyoPruh4TN5yx1XcOK/PyHNOWd8R/aFUCzdL8eplHgc2RahnliN4P5EnnMx/Ti2LNujBtrO8KpXQf2d7fhyTwKUa1L+cQKer5knYGQDJw4Dafr4juxfgaUH9feMhcGjBOR225ln11kiylepSqjewAV4sjLudF5kITXyALYkuOPlZs+ighKLsG/jUd5eDsjGtV9O4BDc0U69sN/pyL6KY9s24aBDF7zp44ay2b9g5ze/o2IF43Z10/3JmkoytkMGlxbtxrAMqlR/Sn2ugsqP3QkRSupxhG2JQYWXm8C9wk2cD9uFxPJ679i1C4g6FJtnMLOQQLtTzQ6V4PtmBzxXNgNndu7AlYr2sKsi02Ttgcp3+lOgpABhBwCHpoC7GnjOqz8nGnOzHAYPM5MSS48ePTBlyhS9hYhKhF1NdBjQFY4RMTifLssZZSEt5ltM/WS3+tXxJGo7VcSt0wcQ3vBF1Csnt5VpOB1xBAmOL6LVXQP3MnA1UdZPeA2d6pRDyoFNiO7WHZ55avtkOSIiIrTA0apVK72lsMrh6Q5+GOwYg5Pn07QWJS0aK6cGI7xMGVSv7QTHW2exJ9wZ7eo9Ju8i43QEtic0ujOYWZONG1eTcBHt0LdTHZRO+S9WRbdGP0/13HvaCxhcHjgRl3OochVYOQsIV5+ruwKON4E9PwPt6uS8bzBcQMyMJEm/88472mBSbgBHZACZFxH+6WR8csYVrav9jhPlu2LSqCb4ff4YvPfzk/Cwd0H3D0biJW2hp3hsGu6Dd+2mI+zzV+F0O1eogSV6NcaN2YKKL7ng5qPeCBjd7s40W7Io0tvh6+v7EMFDZCAh/AuM/SQG9VpXQdyJSnh10hC0/H0p3njvf6jr4YjK3QMR+NKTsFPPn8RN76LWu6WwKuwjdHW600uhpB3DinHvY3PFRqh5syo6B7yN9to0W1k4LAz4x1zguSbqHW0s8OoYoOVlNZB8ALi7A5V9gcC2hhzrweBhRrIPS1RUlDaglIiIjEfGd7i4uHBdpWLE4GEmcjL3798fW7du1aZnERER2SKO8TCD3MFKQUFBDB1ED0l2cSYiy8XgYQaLFy9G8+bNOa6DyASOHTumbeRFRJaJwaOYyd2ZjO2QOeFE9PBk19AaNWpgyJAhWgmTiCwLx3gUIymxeHl5YeHChfDw8NBbiYqDgswLazB0pj0+mtcV1fRWayZT0yXUy54aTk5OWtvo0aMLudgTEZkbezyKkSxAI7scMnRQsUqLxOopb8O7/Zv4+vpN2Mp6mc7Ozlqwd3R01FaYlM28GDqIjI/Bo5gcOHAAhw4dYomFip9DI/SZNg//nvV3vcH6yd+XhHrZxMvHxwfPP/88p6kTWQgGj2Igd14SOD766CPOBScyESldynYDMlB748aNGDduHDZs2IBy5cpp2w9ws0Uiy8DgUQxmzpypbSxUt25dvYWIikqCvAQOKav8+OOPWllFejdyV5a8dOkSWrRoof1MRMbH4GFioaGh2kj7Xr166S1EVBQSOGTa7OOPP474+HgtfEjg4I7ORJaNwcOEZJT9pEmTtIslSyxERSPBfcaMGdrYDXH58mWtB1EGkxKR5eN0WhOSdQW6dOnC7e7JvNIi8c387Yj+eQM+jK6DyX2aoH6nAejdqLJ+gGWQNW9WrlyJvXv3IjAwUPtbKkiAl9+TXhEGEyLLwOBhItINLPuwLFq0SG8hooKQGSoyO0WMHTsWTZo0YY8hkRVj8DABKbG4urriwoULvOsis7Kz++s9r4365y0zVPbt24d58+ahWrVqGDRo0ENuQ05EloLB4yHJBXTUqFHaYFLuxUL01+TvRXoGZeZX27Zt8dZbb3GwKJGN4eDSh7RmzRpt5cROnTrpLURmlhmH3R+Px/jp0zDa92UMDg5DQqax7idyZ6jIWhsyQyV3SixDB5HtYfB4CDL6Xi6mMhDuQV3eRMUjA+dW/Qs7PP+BmROnYM6S8XBd8Q4mfh+LbP2IkpT7NyKDP0VSUpI2Q4WBg8h2MXgUkXQZBwQEICgoiPtDUAlKwvEDO7B++zFcUV/ZOXqgi+9jWBN6DJdLsNNDAof8ffTv31/bSfb69eta4ODfChExeBTR4sWLtaWbOa6DSlZ1tB3/JRa/2Qza5FnlD1y9/AeedqmKCiXQCZe7h4qEjo4dOyIsLEybXs5ZKkSUi4NLi0DWDRg6dKh2UeUFlYwjC6mHQ9BrQhoClo5DB6dyenvxkt6/iIiIu6bEtm7dWvuZiOheDB6FJBdZGY2/YMECbndPBpKBhN1z8UGoC0ZO6oHnHErp7cXn3hkq/fr1498EET0Qg0chyVLOYsKECdozUYlTriJ65edYU+Y1jO3VABVStmN8iD3en9IGDvohpiQzVGSF0WXLlmlllZ49e3KwKBEVGMd4FILUrw8dOoTRo0frLUQl7QoiF4yC3+sTMa13Qzz2iB0eqToEp2o5wdSbxMtCeTJDpWrVqtrrbdu2aQGcoYOICoM9HgUkd3myaZWsP8ALLdkSmaHy5Zdf3t5DRcoqnJ1CREXF4FFAMkq/QYMGGDBggN5CZN2kh2/jxo2F3rSNiOivMHgUQGhoqLanxKpVq3jhJauXd9O2cePGcQ8VIjIpBo8HkLq2rEMgu89yAziyVvfOUPH19WXgIKJiweDxALJeh4ztkPBBZG1k7NKmTZu0QaPctI2IzIGzWv6C9HJILmPoIGuTu2mbzFC5evWqNkOFm7YRkTmwx+M+pMTi4uKCCxcuaM9E1kBmqKxduxYbNmzQ9k7p2rUrZ6gQkVkxeORD6t2jRo1Cr169uBcLWQVZ5l8W/eIMFSIqaQwe+ZAVGaOiorSuZyJLdu8MFU9PTwYOIipRDB73kK5o2cpbat7sgiZLlDtDRQJ0tWrVMGjQIM5QISLDYPDIQy7Yffv2xYgRI1hiIYsjA0allJI7JZYzVIjIiDirJY85c+agefPmDB1kUfLOUImPj9dmY3GGChEZFYOHTgbfyfLQY8aM0VuIjE3KgrmBQzouk5KStJkqXOiOiIyMwUMlJRZZKGz+/PlWMvDuBi588y5GbIrXX5M1kcAhewfJWKQaNWogPT0dI0eO5JgkIrIIDB4qKbF069YNjRs31lssVTbSIr/BlGG+aN/ne1y/maW3kzWQGSpynkro6NixI8LCwrTF7ThLhYgsic0PLrXODeBisX5gd2z0/Q5L/bj4mSWT3rh9+/Zp56jgpm1EZOlsusdDBuVNmjRJG4jHu0YyEgkcMkjUy8sLO3fu1M5RWW2UoYOILJ1NBw+ZdiiD8Tj6n4wid4aKBA6ZobJixQrOUCEiq2KzwUNKLDJIT5ZFJyppsjdQ7gwVIQvYMRQTkTWyyeAhF3nZ6l4u9CyxUEnKnaEig0RlhkrulFjOUCEia2WTg0uHDBmibZJlfdvdy6yW9Zi/43/4efVyRNd/HX0aNkanYX5o5MAJTEYiM1SWLFmCxMREDBgwgJu2EZHNsLngIQP2ZB+LhQsXws7OTm8lMo97N23jYFEisjU2FTykxCK9HBI+rG11x4KEKBvs3DKE3E3bcvdQ6devHzw8PPR3iYhsi00Fj9yFl7gXC5mDzFDZtGmTNpaIm7YREeWwqeAhd57WXUdXkJkQji8+2wXFrSp+Cb0Az8nvo3/9SmBRyXwkcKxcuVJbxjwkJETr4eBgUSKiHDY14tD6B+9dxeGvvkJqtzEY9cZITBtaDuN7for9qdn6+1SccmeoyIypihUrcoYKEVE+ONXBqtxEeuoF7D/+G7LUf1oH59poePI84q9yz5biJANGczdta9GihbaHisxUYeAgIvozm5xOa/0UZF7+Gd8HT8H8R97Bv6e0RTXWWkyOM1SIiAqPwcPqZOHK8b3YffJ3XPpvGE7XfQPvDWiGaqWZPEwhd4bKsmXLUK1aNQwaNIiBg4ioEBg8rFnqbox3D8TNrzfik85OrKuZQPPmzTlDhYjoIfC7yJqk7ML4ev3wVcwfOa/L2aNiuTM4/EsSOLzUNGQPFW7aRkRUdOzxsCaZFxE+7xOsiq+GZx+3Q+qZwzhZuTemTvLDcw6l9IOMz/qnPRMR2S4GDzIcmSHC1T2JiKyThQePDCRGhmPPkZP4DU/CvYkX2jd6AqX1d8kyhYaGamtiyBoYDy8DCQeX46OZu4HmdWEXVwGvjG6HtNAYPNnnb2hRjWcLEZE5WW7wyIzDrg/fRrcPtiBNbwJc0O79L/HvyZ3gxFkcFktKLV5eXli+fDnq1q2rtxaBchXRX49D9/nVEbJxEjo7lYOSGo6prV7BB1Ed8EX0Sgx7zl4/mIiIzMFCB5emInLeSHT/MG/oELHY88FbGDjvf0jXW8jyyPiOoKAgvP7669rGfkWThdQjX2PMO9HwmzkS3mroEHYVn0Ejz+pqRvVA/ZocR0JEZG4WGTyU38Mxf+oGXMu3ryYWO6Yuw+7fM/XXZIlkIz8ptchuwrJQV6HdisHaoM+wo6EferWodmevmoxLOBd5CY5+LVG/AnvFiIjMzSKDR1bsSexI0V/kJyUSJ2Nv6C8KRraV58NYj4EDB+Knn35C69attR1eC05BxrEtCN74K1w6Noe7/Z2AkX3+GHZEOuKlJs/CUW8jIiLzscjgYVfeAU76z/mrBIfyhfu/JkNd+DDWY+nSpWjWrBn2799fyIGmGTgf+RMi0Qh+rdxQQW8FMnEp6if8AE/4NKnBHXuJiEqARQaPUnVewmDfp+/7xeHg+xra12H93pLJzBbp5ZAFuwq/JHkmriUnqs9ueP6ZSjlNmis48d+fkKaP78i+EIql++U4IiIyF4sMHihTF3+bNg6vPZZP9HDohRnT/FCnDO9nLZXMapk0aZI2q6VoO7yWQZXqT6nPVVD5sTvTZZXU4wjbEgOHl5vCvcJNnA/bhcTyZfV3iYjIHCwzeKAUHBq9jRWH/4PZg16Eg9bmhGaDZuP7I4vg36gyu9Et2L59+7Rt5Ys+lbYcnu7QHYMdY3DifM68JyUtGiunBiO8TBlUr+0Ex1tnsSfcGe3cK2rvExGReXDlUjIc06xcmoGE8C/wj09i8FzrKog7UQmvThqClr8vxeD3/gd3D0dU7h6IwJeeZEglIjIjBg8yHO7VQkRkvSy01ELWzMihIzk5Wf+JiIiKgsGDqBB8fHy0UtDRo0f1FltyAxe+eRcjNsXrr4mICo/Bg6gQwsLC4Ovri6lTp6Jbt25FW1XV4mQjLfIbTBnmi/Z9vsf1m1l6OxFR4XGMB1ERSehYsmQJEhMTtVk4Xbp0sfKxKbFYP7A7Nvp+h6V+LnobEVHhsMeDqIhkYbNFixZh1qxZ+PHHH7UdddevX89xIEREf4HBg+ghubm5aeFDQkd8fDyqVq2qrbrKAEJE9GcMHkQm4uzsrO0pk5SUpL2WgagzZszAqVOntNdERMTgQWRyssy7BBAZiOru7o7+/fvb8EwYIqK72dzgUpmJIN3gcndKZA6yIFpERARmz56tvR43blwRNr4rSTKrZT3m7/gffl69HNH1X0efho3RaZgfGjnw3oWICsfmgofU4bdu3YqFCxfCzo6LZZN52d5MGCKiu9nkdNohQ4ZoF3w/Pz+9hci8ZNzHl19+ib179yIwMBBt27Yt4k68xe9BAd0GLyFE9BBsMnjExcWhR48e2rbrMiOBqKTIubhhwwaMHDkSwcHB+Pvf/27YAEJEZAo2u4BYaGgo5s2bh1WrVrGrm0qcTL1duXIlli1bpo1D6tmzp4FCsYLMhD34dFYoMh5Px6FdN9Bh6hSMeOkplNaPICIqKJsNHkJmGjRo0ECrtRMZgQxElTFIM2fO1Mov/fr1g4eHh/5uCck+jeUDV+OpTyegfVUgZd8/0dk3HoFRn8GvRhn9ICKigrHpIelSW5cZLlxngYxCet9k7JGh9oRJisGBDVux/ehl9UUpODbvCN9KexAakQiO7iCiwrLpHg8haysMHTpUu9Cz5EJGVOIzYZRU/HLgOG55NIObQykoydvxboOZeHz9d5jYorJ+EBFRwdh88BCyuqSYMGGC9kxkRIaYCaMk4/AnwzDh2hAsndwRTqU5JZ2ICofBQyV1ddnga8GCBWjcuLHeSmRMeWfChISEaONAzBJAMuOwe/YnCK31Jib9rQEcmDmIqAi47KBKuq1lQbFhw4ZpIYTIyPLuCVOxYkVtTxgZKF2cY5WUtGP494crcNl3Kv7Zux5uhs7AtH3cBI+ICo89HnnIVMaoqChtp1EiS3HvTBgZlGrSJdnTIjD/rTcw4pvIPINJ/45l5xbj9WfK6a+JiAqGwSMPuYD37dsXI0aMgLe3t95KZDlkIGrunjBjx45F69attZ+JiIyCweMe0l0tu4lu27aNK0iSxZIAsnHjxtsDUbknDBEZBYNHPqTksm/fPixatEhvIbJMeWfCyLiQrl27MlATUYni4NJ85K5kKjvZElkyWXZdxixJD15qaioef/xxbdE8WaKdiKgksMfjPmTKoouLCy5cuKA9E1kDCRybNm3SwocMRH3rrbe4USIRmRWDx1+QHg+ZLcCSC1mbYp8JQ0R0HwweDzB+/HjUr1+fG8mR1co7E2bcuHEMIERUrBg8HkC6pmWBphUrVrBLmqwaZ8IQkTkweBRAaGgo5s2bh1WrVvFCTFaPM2GIqDhxVksByGJi0tuxZs0avYXIet07E6Zq1aqcCUNEJsMejwLK3UhO9nTx8PDQW4msH2fCEJEpMXgUwtGjRzF06FCtC9re3l5vJbINnAlDRKbA4FFIM2bM0J4nTJigPRPZIs6EIaKiYvAoJLnrk7u9f/3rX7zYks3jTBgiKiwGjyLgRnJEd+NMGCIqKM5qKQIZWCcXV6l1ExFnwhBRwTF4FFGvXr20uzxZ44OIckgvh4TypKQkVKxYUVt8LyAgQPtbISISLLU8BNlIzs/PT9vTxdnZWW8lolycCUNE92LweEi5G8nJ+h52dnZ6KxHd696ZMJ6enhyISmSDGDxMYMiQIdpofun9IKK/JuvhrFy5kjNhiGwUg4cJSMnF1dUVFy5cYMmFqIBk3MfatWuxYcMGbffnfv36cSYMkQ3g4FITkLAho/mnTZum1bSJ6MFkJowsxCd/O0JmwoSEhGhBnoisF4OHichGco6OjtxIjqiQ8s6Eeeqpp7SSZWFnwsixnLpLZBlYajEhufDJ9MEVK1ZwEy2iIsqdCbNs2TJUq1YNgwYNeuBMGBnk3aBBA/7dlaS0k8DHnwFZNYFKt4BDMUDPQKBXA/WbRj+GSMXgYWKyrse8efOwatUqDpgjekgFnQkjPSQyUJVjREpKGhA8UH2eCIzyzGn6ZTlQayVweDXQpFJOG5GKpRYTk5JL8+bNMWfOHL2FiIpKejpk8OnUqVO1PWG8vLy03o17x1JJb8fly5f1V2R+GcDl34E90UC23lS6rPofCWr7jZzXRDr2eBQDuSjKBXLBggVo3Lix3kpED+t+M2FyVxCW4E8GoFwB5g4HInyAkP6AQyn9DSL2eBQL6QqWBcWGDRvGWS5EJpTfTBjZE6ZGjRr44osvtDYqaVnAnn8BZ3swdFC+GDyKiYeHB15//XWWXIiKQd6ZMBI63njjDdy8eVMLIVTClAvAqrLA5O4MHZQvBo9i9Oabb+LQoUPcSI6omEjvooODA1q3bq0Fj/DwcE6rLWkpp4CnvNR0yNBB+eMYj2ImNen+/ftrXcMccU9kOrL0ugw65b4vBpOwHvh3TWBsE72B6G4MHmYg6xFERUVh1qxZegsRPQyZZrtkyRIEBwczcBBZGJZazKBXr15ISUlhyYXIhBg6jCgd2PRPIHAN8AfvaSl/7PEwE9l/wsXFRdtITp6JiKxPCvDxIGCxJ/DjZKAS723pzxg8zEgWPpKloBctWqS3EBGRkUgZr0KFCtrMRCoejKNmJJtf2dnZaQGEiAwmMx4HF7wL37+NxvTp/8DwGdsRE7kRIUt+ROJdt2cKMhN2YYZvPfXv2RODF0ciTd5X4rF97ESsj7+VcxhZpOvXr2P//v36q4cl58oBLBj9N/xt9DRMHzMaM3YeQ+SGRVjy4yX13bwKcl7JMTvxzzGBmDzQF4O/OoZrty7hyL8/xPDR72P27AkY2L4nAtefhKHXi5UeDzKf2NhYpVmzZtozERlD9rVIZfGgZkqz8VuV+FvZakumcjX8A6WBXOlbf6FEZ+Ycp7kZoyzr+6LyyjtTlaB3XlOeRVtl/NaflRPfvK/4rz6l3NQPI8uUlJSkfd3L88PJVK5FLVEG1WmnjN92QbklTdmXlfD3vdTPd1Raf/GzekQeBTqv1N+fMllZd/GGcnXXe4oTXlL6D3tPCf7hYs7nK9lKWvgUxfWxN5TV5zO0FiNij4eZOTs7IygoSFv8iKuaEhmAkowj86fgnR87Y2ZAJziVlq1US6Fi7fqQ7c5c2tVHzdtLUihIP/I9QjsuwnefTsHET7/FwaOBcNsTiDciWmJCj9ooox9JlkmWPVi6dCnGjx+vtxSNknoY89+dhh/9JiLA2wWlpdGuEmo3qqf+4I529WuoZ1muAp5XqZHYfNEDLZ2ApIsXkIDrcOj4Foa3rJHz+arSZcqiVNo5xCbe1FuMh8GjBMh+ErL085o1a/QWIioZCm6d3oDpH4Sh4ZuvocXtRa8UZMSfQyQawa+VGyroreo3B8o3HIK5A+rpAaMsHJ8ohUuP9MWiSbmhhSyd7AMkZNfj9PR07efCScfptcH4YEddvNmrKarcPi3SEX/uHOD4IlrVz7tjb8HOK+V6Nmp280R1uys4dSQKaNADA3yeuR06ZLO+88eP4leHhnB3NfCML73ng8xMuvGk5BITE6O3EJH5XVUOz+6k2KGlMjk8b9f6H0rM4r8pwN+VZedu6G33ylSuxXynTAlcoURdu6vTvFDkMsyHsR9Lly7V/7UK6MZPyuxGDgpcpijhaVK602WdUBZ3rqHAd5lyLk/z3QpwXqWFK5NdoDgF7FKu5P0c+XxvJ8XO+0slJktvMyD2eJQQ6c6TfVxkVdOiJWoiemjZ8Yjcod453nsHqvyOqP1Hgdat0cS1nN6YVxbSoldj+toyGDCxD+o/xJ4k6nWYDwM+5Losq+L6+vri2Wef1f+1Cib7/DHsiEyDo18L1K9wpxdMuXQc+3+4gdY+jeGab+dYwc6rrPPR2BNbB51fqI3Hbn+Oglsnw7A69AZavuyJpw387c7gUYJatWqFbt264dNPP9VbiMissq8j+WwClGb18EzlPBf5a2dwaPtpfXxHBi5sXoP9KVn6mxlI2BWCoN01MSrgZdTSvxyUtBjsP5ak3SKTZZPxd6NGjYKrqytWrVqlXasLI/taMs7CCc0a1kRlvU1txbUTh7E9rW7O+I7sX7F56UFZ+URX0PNKPR+P7Md+PIcX3B/P8yWeimNbNmAHXsTfvGqjrHz+l2H3zMgyBgaPEjZmzBhs3LhR23eCiMysVCVUb+ACuycr47HbV8MspEYewJaEuni5+bOooMQi7Nt4lLeXA+TL4QsEx7bHJP/Wd8Z0aANU52DHVanWk6VbvHgxnnnmGW0SQFFWxy1VpToawB5PVq5w50tWSUFk2AEkVGiK5u6VoJw/gG8Ty6hHicKcV9fwS9RJwMUD9Wvm+d+Wfhzblu6Hg68ffJ5zQPaZvVh9xR55OlwMg8GjhMlJvWDBAgwdOpSzXIjMza4mOgzoCseIUzifLreGWUiL+RZTP9mN0sqTqO1UEbdOH0B4wxdRr1w2Ug/Px/Dgc3BIXIG3OvRDwPTZ+PjjIAT0fhWjknrCv3XVnM8liyW7G8v+WnJTWFR2T3thwODyiDgZJ4vIqwHiKmJWzsIn4VehVHeFk2MGTu/5GQ3b1UE5CbqFOa8yfkXE9hg4+rW8q4yDG6lIvPg4XunbHnXKXMaBVefRvZ+HHmyMhSuXGgQ3kiMqIZkXEf7pZHxyxhWtq/2OE+W7YtKoJvh9/rt47+fq8LB3QfcPRuKlcgcxY1IC+nzSC7XKZCMtegVGdvfHktPOeC3oE8x5p/Pt7nGyXLLAY3x8vNbbUXSy0FcYPh07F2fqNUG1uFiUf3UMRrW8jPlvfICf67rDvrIvPghsi2rX9hXuvErchGG1puKRVd/h864ud3pC1HATvWIKxmwujZdqlsKjnUdidHvnPDNejIPBwyCkt6Nv374YMWKENt2WiIjM79SpU7C3t9fWXKLiweBhIHLCyyyXbdu2abNeiIiIrA2Dh8Hkllw++ugjbV8XIiIia8LBpQYjK+alpKTgu+++01uIiIisB4OHAU2ZMgU9e/ZEXFyc3kJE1kq2YZf1fEJDQzmzjWwCSy0GJSOrt27dikWLFuktRGStZB2flStXYu/evVqvZ79+/TjOi6wWg4eBDRkyBG3atLm9YRERWTdZQ0ICiIz1atu2rbZcd2FXzSQyOgYPA5OLkI+PD1asWKHtZktEtkFKLhEREZg9e7b2Wm4+unTpUqRVNImMhmM8DEy6WoOCgrStmVn7JbIdEjCkp2PDhg3aooInT57U1paYO3cux36RxWPwMDhZTEx6O9asWaO3EJEtkb//CRMmICkpCRUrVoSfn592MyKDUoksEUstFkB6O7y8vLQ9XRo3bqy3EpEtsvgyTNpJ4OPPgKyaQKVbwKEYoGcg0KuB+o2kH0NWjcHDQsio97ffflsb9c46LxEJWe147dq1mDhxIkJCQrRpucZe6jsNCB6oPk8ERnnmNP2yHKi1Eji8GmhSKaeNrBpLLRbCw8NDG+E+Z84cvYWIbF3eMkyNGjW0MozMhjNuGSYDuPw7sCcayNabSpdV/yNBbb+R85qsHns8LEhuyWXhwoVaECEiupeEjiVLliAyMhKBgYHatFzDrgmiXAHmDgcifICQ/gB397UJ7PGwIFJikam1Q4cO1abaEhHdS2bDyMKDcq2Q7d0ff/xxbTaMlGWMJQvY8y/gbA+GDhvDHg8LlLuRnEyzIyL6K3KTImPDZs6ciUaNGmHQoEHGWJRM+QUY+m9g5ntAVYYOW8IeDwvUq1cv7e5F9nYgIvorUmaRsR+HDh3SQoeUYZo3b65ty1CiPacpp4CnvNT/gQwdtobBwwJJyUV6OyZNmoTY2Fi9lYjor+WWYSR0SBmmatWqmDFjRsmUYTKuAw72nEJrg1hqsWDcSI6IHoYMWJdriJRvxbhx4+Dp6ckp+1SsGDwsnAw0lf1cpCuViKioZDbMxo0btfEg/v7+6Nq1azHOhkkHNn0G7K8NTOkJlGe3hy1hqcXCvf/+++jRowf3byCihyJlGCnhSk9qamqqVoaZPn16MZVhMoCTPwIbjwM3ee9ra9jjYQVkkKns5RIcHMwuUiIyCZZhqLgweFgJ2TSqQYMG2r4NRESmJFs2rFy5UivDyDWmX79+xl2UjAyPwcNKyLQ4GeshiwbJMspERKYm1xkJINILIiuiSgDhKspUWAweVkRKLvPmzdMuDPb29norEZFpSRlm37592vVGjBgxAm3atGEZhgqEwcPKyJz8ihUraqPSiYiKG8swVFgMHlZG7kSkC3TBggXsAiUis2EZhgqKwcMKyR2IrO8RFhbGrk8iMqt7yzDSC9KlSxdei+i2UlNV+s9kJZ588kkkJibixx9/1OquRETmUqZMGTz77LPo06ePNv02PDwcHTp00HbJrVGjhlYKJtvGHg8rJXcdffv21QZ9eXt7661EROYnZZhNmzZp2/NLGcbX19cYO+RSiWDwsGKy4mD//v2xbds2DvYiohInN0QRERGYPXu29pplGNvEUosVkyWPy5Urpy2B3LFjR9jZcT8EIio5UoZxdXVlGcbGca8WK9erVy+kpKRgx44degsRUcmThQ4nTJiApKQkLXDIRpeyArNsVkfWjaUWGyAbyMldxoULF+Ds7Ky3EhEZi4SOJUuWIDIyEoGBgdp4EJaJrQ97PCxF5ll882YgNiVm6Q0FJ2Fj7dq1mDZtmt5CRGQ8MuB00aJF2tYP8fHxWrlYBqQWzw65VFIYPAzvCiJXB2GYdxf0+eoKbmYWrYNKujGFjPcgIjIyKcPI6stShpGxHzJIfsiQISzDWAmWWixFwnoMeioUr12cCz+n0npj4UjJRQKIhA+WXIjIkrAMYz3Y42FDJGwEBQVpdxIyrY2IyFLkV4YJCQlhGcYCMXjYGFlMTLox16xZo7cQEVmO3DJMeno6nnrqKW0mTLdu3bQeEd5QWQYGDxsk3ZQyYCsmJkZvISKyLLLomJSON2zYgHHjxmHjxo3w8vLSNqmTlVLJuBg8bJDURefMmYPx48fzDoGILJ6UYWbNmqWNX0tNTdXKMDNmzGAZxqA4uNTwriDym2XYEX0Eqz88jfqTu6Fh/c4Y1rsRHPQjikr+MIUs4kNEZC3khmrr1q1a74cYO3YsmjRpwqXZDYLBw4bJH6d0TS5cuBAeHh56KxGR9ZCxH1KG2bt3rzY2pGvXrgWeDSMlG1l4kddH02LwMLAH7a1iin+6o0ePYujQoQgLC+PdABFZLQkRK1eu1HpBZCpuv379HhgoQkNDUaFCBe6ka2IMHqQNNJVULzVSIiJrJj29+/btw7x587TXI0aMQJs2bfK98ZIxI7Vq1WKPh4kxeBheBhLCv8ZnW2/AzSUOoVGNMXlWH9R3KKW///DkD7Fv377aH6BMtyUisgXS4yu9IFKGkS36pRckbxlGBqdGRUXdXvmZTIOzWowuPQJfTbmCbpPfwRsjAjH0sc/Qc9YBpOpvm4IkfentmDRpkrZEMRGRLZCeDLn2bdu2TXvt4+OjrQsigUTIdv0ySJVMi8HD6DLSkfrbMRyPy1BfOMC57tM4eSoBV03cT5W7KM9HH32ktxAR2Qbp5ZDrn4x169ixI6ZOnaotSnb48GFtxWdOyzUtllosRgYuR29G8JjleGTSF5jy0pP466GnRSMDTSX1s2uRiGyZhA3Z1XvixIl4/vnnsXnzZu5xZSLs8bAESjKOh25FeFQCMp6qC1d7OxR+c/yCef/999GjRw9tQzkiIluVmJiIX375BSNHjoSnpycuX76sv0MPiz0eFiUbqbsnwX1YFr4+MB2dqxVtl9oHkZHcUteUDZmIiGyJDLYfNWqUNtOlV69eXGagGLDHw9CykLJ7Iup1+QqntC4OO5Szd0C50zH4JfGmdkRxyC2zSAAhIrIVuaFj0KBB2iwXho7iwR4PQ1OQmRCOeR+uQfwzT+NxXMWZ/edQ+e/vYVKvBnAojkEeOllsR8Z6yBbUMvCUiMjacaVS82DwoPuSVftkkR2Z525vb6+3EhERFR1LLXRfspiY9HbIyG4iIiJTYI8H/SXpeuzSpQsWLFjA7kciInpoDB70QNxIjoiITKXUVFmijegvPPnkk9qc9h9//FGbYkZERAWVgYSDSzDZ/2NsOxeF7asOo3Sdcji2ai+u1KoH5wp5RzzIhILdmNn/FbzU7yucd22Jjh7VURbx2D5uJo41aIN6j+Xu06UACT8Ak8cC244D2zcApWsAx74HrjgDzg76ccbDHg8qEJlm5uXlhYULF7LkQkRUEMpVRH89Dt3nV0fIxkno7FQOSmo4prZ6BR9EdcAX0Ssx7Lk8A/dvncLygYPxzRPeaIkIfP1ZKnpuDcGg1DX4XOmPT3rXUUOIyAKiVwDdlwLBSwAfV/W/KwmY6gd88DMwLwwY3lA70og4uJQKREosMrVWSi4y7oOIiP5KFlKPfI0x70TDb+ZIeKuhQ9hVfAaNPKsDLh6oXzNv6VpB+pHvEdpxEb77dAomfvotDh4NhNueQLwR0RITetTWQ4cq9TAwZirgNxHwVkOHsKsENKqn/uAO1K+R02ZQDB5UYLkbyc2cORPsKCMi+gu3YrB2ejB2NPRDrxbV7uytlXEJ5yIvwdGvJepXyLsYkx3KNxyCuQPqoYz2uiwcnyiFS4/0xaJJneBUOvfYdGBtMLBDDRi9mub5Flfbz50DHF9Ug4caQgyMwYMKRZYQls2TduzYobcQEdHdFGQc24KQjb/ApWNzuNvfCRjZ549hR6QjXmryLBz1tlx2FSqhkhYwspB2aiOCgi/htYl9UN8hd1yHKuM4EPw94PIC4F5Rb1Rlx6thJAp4qZEaPopnOw1TYfCgQpGSy6xZszB58mSWXIiI8pWB85GHEIlG8Gvlhgp6K5CJS1GH8QM84dOkxn12GFdDR/RqTF9bBgPuDR1CDS6ITAP8WgJ5e0wuqYHkhxuAT2PDf7MzeFChScll/Pjx2oOIiO6ViWvJiYDihuefyVv2uIITh35Cmj6+I/tCKJbuV4+7LQMJu0IQtLsmRgW8jFp66FDSYrD/WJLMY4H6wep/OAHP15RXumzgxGEgTR/fkf0rsPSg/p7xMHhQkXAjOSKi+ymDKtWfAuyqoPJjd8oeSupxhG2JgcPLTeFe4SbOh+1CYvmcQac5oeMLBMe2xyT/1nfGdCjJODJ/DnZczXmpfrD6H/ZA5Tv9KFBSgLADgENTwF0NOufVnxNzRooYEYMHFdmUKVPQo0cPxMXF6S1ERASUw9Md/DDYMQYnzqdpLUpaNFZODUZ46dKoXtsJjrfOYk+4M9rVe0x9Nwuph+djePA5OCSuwFsd+iFg+mx8/HEQAnq/ilFJPeHfumpOaeZpL2BweeCEft1V1ESychYQrj5XdwUcM4A9PwPt6uS8b0Bcx4MeivR4bN26FcHBwVzVlIjotgwkhH+Bf3wSg+daV0HciUp4ddIQtPx9KQa/9z+4eziicvdABL70JOxS92HGxAT0+Vcv1CqTjbToFRjlNxJfn3oKrwV9gjnvdL5ddlGTBpAQBvxjLvBcEyAuFnh1DNDyshpIPgDc3YHKvkBgW5koY0gMHvTQAgIC0KBBAwwYMEBvISIiyh+DBz00md3i4+OD5cuXo27dunorERHRn3GMBz20KlWqICgoSJvlIkurExER3Q+DB5mEt7c3mjdvjsWLF+stREREf8ZSC5kMN5IjIqIHYY8HmYzMapHQIRvJseRCRET5YfAgk5Kejm7dumHOnDl6CxER0R0MHmRyY8aMwaFDh3DgwAG9hYiIKAfHeFCxkB1s+/fvry0uVrVqVb2ViIhsHYMHFZtly5YhKipK282WiIhIsNRCxaZXr144ffo0QkND9RYiIrJ17PGgYiUbyLm4uCA2NhbOzs56KxER2Sr2eFCxkrCxbt06TJs2TW8hIiJbxuBBxc7Pz097lp1siYjItrHUQmYhJRcJIBI+WHIhIrJd7PEgs5CwIRvJ+fv7Iz09XW8lIiJbw+BBZiMbybm5uWHt2rV6CxER2RqWWsiskpOT0aVLFyxfvlwLIUREZFvY40FmVaVKFfzrX/9CQEAAN5IjIrJBDB5kdq1atULz5s25kRwRkQ1iqYVKhPR2eHl5advoy462RERkG9jjQSWifPnyWugYOnQoSy5ERDaEPR5UoubOnYvU1FRMmDBBbyEiImvGHg8qUW+++SYOHTrEjeSIiGwEezyoxJ06dQqvv/46tm7dqs16ISIi68XgQYawbNkyREVFYdasWXoLERFZI5ZayBB69eqFlJQUbiRHRGTl2ONBhiEbybm4uCA2NpYbyRERWSn2eJBhSNhYt24dpk2bprcQEZG1YfAgQ5Gt8wVLLkRE1omlFjIc2UjOx8dH20iubt26eisREVkD9niQ4ciU2qCgIIwfP56rmhIRWRkGDzIkb29vrbdjzZo1egsREVkDllrIsHJLLitWrICbm5veSkRElow9HmRYUnKRjeT69+/PkgsRkZVg8CBDky3zu3Xrhjlz5ugtRERkyVhqIcOT3g4vLy+t90OCCBERWS72eJDhlS9fXgsdQ4cORVJSkt5KRESWiD0eZDG4kRwRkeVjjwdZDNlI7vTp0wgNDdVbiIjI0jB4kMWQkstHH32ESZMmaVNt85JxIEOGDNFfERGRUTF4kEWR9TwCAwO1VU3zWrx4sdYjQkRExsbgQRbn3o3kpPfjwoUL2mqnRERkbBxcShYpLi4OLi4uiI2NxfHjx1GhQgW0atVKf5eIiIyKwYMslvR4bN26Fc888wyGDRumrXRKRCVEuQpsnAtsSwdqV1bvDo4Cj3YDJvkBDqX0g4gYPMiCnDp1SptOm5aWpr12cHDAjh07tDLL5s2btTYiKgnq10ikGjrGqT9u8Afs7dSmM0B3H6D1KmBss5zDiFQc40EWQcZxyDTaWrVqoUWLFtpDfpbeji1btuCnn37SjyQi81ODR2oycPAQ8NtNva008GgWEHf3DDQi9niQxZOekMcff5ylFiLDUANH5AKgz1Fg7WygfiW9nYjBg4iITC15F9BtC/D1FODZinojUQ6WWoiIyIRuAjtCganjGTooXwweRERkQinAT9WA5uqDKB8MHkREZEI3gbSyQDk7/TXR3TjGg4iIiMyGPR5ERGQi6n3sL5uA4VOAU9f0NqK7MXgQEZGJqMEj6TSwYjfwW4beRnQ3Bg8iskhDhgzRfyLjUL9Smo4Bru0DXnpcb7MsBw4cwLJly/RXVBwYPMjKKchM2IUZvvVgZ+eJwV8dQ5qMalLisX3sRKyPz11lkSyRfEk8vAedI7dyDsuMw65/BiBw8mC0H7wU0WnpSDyyElOGj8H7s2di8sCX4Ru4HqducNicJatZsybmzp2rv3pYfz63rv3p3MpAwq45GBM4HgPbD8dX0VdwK/Ew/j1lFEa/PxOz5XzznYz1p3K2irhbAc9dgyk1VaX/TGR9bp3Gv4ePxjZnXwxskY6NEzbicoumcP7fMvy7xgCMbPkEuH2VZapatSqWLFmC1157TW8pIjlHRozBtqfyP0dGtaymniPZSD2wEF+UfwMfv+6CE2P+DwuOX0Bsdmv4vz8Er7Vpg/berjgxzB/rXV9D9waO4JwOy1SxYkWcPn0aMu/i2Wef1VuLKJ/rT9ILTdRza/mdcyv1B3zyxaMY9XFfOJ+YhR4L/ovE2HJo6z8OQ15ri1btX0KtE9PRa30V/L17A1TOe2IV6Nw1IJnVQmSdspXrB2cr/RdHKze11zeU349uUxYHvKK0HL9Vib+VrbWS5XrrrbeUpUuX6q+KIuccef2B50iismv8eGVd/E0l+9wyxRcOSp1h65Tzec+hGweVoKehPDv7sP5ZZKliYmKUZs2aKbGxsXpLURTk+pOlXN31gTJk3XklO/u0sszXRUGdd5R15//QfiPHFeVgUGs1Bc1WfrrrxCrouWs8LLWQFbND+YZDMHdAPZTRXpeF4xOlcOmRvlg0qROcSvOe1NJNmTJF6xaXxx9//KG3FkbOORKS3zkyMc85otxAZs22aFr9EaScikQ4mmLgwPZwzXMOZZ8/jvBf3dHR3Um2RyML5ubmhjlz5sDPzw//+9//9NbCKsj1JwvXM5+Gb9PqsEs5iyPhKWgwsDd8XB/VfkOTnYDj4Wfh0NFdPd/0Nk0Bz10j0gMIkZXLVK7FfKdMCVyhRF3L1NsKT/5k+DDuQ/2S0P+liqIg50iSEj65pQKn95RdV7P0NvGHErO4l/q/oZeyOCbv3WrB5Pf/hQ9jPR5OnnMrNb9zK1tJC5+iuKCJErArUW/LkRWzWPGGk+K9+IT6KfdjmuububDHg2xAFtKiV2P62jIYMLEP6jsUveqp/s3wYbDH/v37tX+b4OBg1K1bV/u58Ap4jmTFI3rPSTh0bop6j+W5fN46g92r1f8dL7ZBk6fL6Y0Fl9//Lz5K9pGeno5x48bB19f39jlWNPecW4/ld279gfPRRxHr0Awv1Kust4nrOLl7M0LhiVeaON9nvIbprm/mwuBBVk5GjIcgaHdNjAp4GbX0P0olLQb7jyVptzJkuWRWy5gxYxAbG4uRI0eifPny+juFUfBzRLnwP2xTv4M8XnDDE7d7stUvqWPbsWzHDbzYuw3qlb2JC5tXYU9ipv4+WaJRo0bB1dUVq1atQqtWrfTWwirguaXE48i2CPXEagT3J/LUU9KPY8uyPWqg7QyvehWQfWE7vtyTkOectMzrG4MHWTH5o/wCwbHtMcm/dZ56fTKOzJ+DHVdzXpJlSk5O1kLH+vXr4ezsrLcW1oPPkTuV8mxc++UEDsEd7erXyHP3eRXHtm3CQYcueNPHDWWzf8HOb35HxQp3jiDLIueU8Pf3L2KYFYU4t65dQNShWLi0q4+at08bCbQ7sfRgJfi+2QHPlc3AmZ07cKWivf57hTl3jYV7tZCVykLq4bkY8OFZNGv9KH7eGgfXDo3xRLkM/H5oK/Y/Ow0bZ3RENaP+ZdID5a61IF8ORfOgc2Sqeo50ynOOpOLIx73QdEZDbDvzETpXyf2GuITtozvD57f3cGFVTzjsn4OgxL/hYz9Xw1746f5kkLKXlxdWrFihDTItmpxza6B6bjV94PVHQcaRT/BC0xVou207Pu1cXfsE+Yzk7eNR2ycZX1xYgL85/IAPglIw5ONuqGFX2HPXYCR4EFmdq+HKdP9vlLM3ZUpZpnItaoky2O0xNWS7K68FbVbOWsAALPprDz3dMZ9zZFAdh9vnyJk/nSMXlf8Ma6jUGf69En/XTEX53RXKsE79lIAPxyujZ+/iVG0LJgOUZZr2Q8k9tzLyObc+3HTP9SdT+f0/oxSHOmOU/8TfPRE7+1qksmyYr9I74H0lYPRnyq74GzlvFPrcNRb2eBDZHAWZl0/jyOGd+Pr94/DeMAd+NXIm5FkSGd9R9No7Uf6khCcDS4tevqMH4RgPIpuSjbTIdfhs7U9IOHUUW37KNOwAtAdh6KDiUKVKFYaOYsbgQWRTHoFDo574x7C/o2srN5TVW4mIzIXBg4iIiMyGwYOIqISFhoZqs3RkfAGRtWPwICIqYU2bNtWefXx8EBAQgKNHj2qviawRgwcRUQmTAY2yHklYWBg6duyIqVOnolu3blpPSNE2vyMyLgYPIiKDkFUyvb29sWHDBi187Ny5U1vMimUYsiYMHkREBuTh4YFZs2Zh27ZtqFix4u0yjKxfQmTJuIAYkU2RdTzWY/6OM7j683/w6bJkeL3TD22dneDZ+3W0dyn8zqpkHlJyiYiIwOzZs7XXAwYMQJcuXR5iLxGiksHgQURkYU6dOoW1a9di4sSJCAkJ0caDcNErshQMHkREFkrGfWzatEkbA9K2bVv4+vpyRVcyPAYPIiILxzIMWRIGDyIiKyJlGJmGO3LkSK0MI7Nkir69O5HpMXgQEVkhKcPs3bsXM2fORKNGjTBo0CCWYcgQGDyIiKycTMFdsmQJIiMjERgYqI0HkUXLiEoCgwcRkY3ILcOMGjUKwcHBLMNQiWDwICKyMSzDUEli8CAismFShtm4caMWRGS/mK5du7IMQ8WKS6YTEdkw6emQpdnXr1+P1NRUVK1aFTNmzNDKMkTFgT0eRER0m6wJsnXrVixbtkx7PW7cOHh6enJNEDIZBg8iIsoXyzBUHFhqISKifOVXhpk+fTrLMPRQ2ONBREQFcm8ZZsSIEWjTpg3LMFQoDB5ERFRoR48excqVK7UyjOwN069fP5ZhqEAYPIiIqMhkTRAJINILIiuiSgDx8PDQ3yX6MwYPIiJ6aFKG2bdvH+bNm6e9ZhmG7ofBg4iITIplGPorDB5ERFQsWIah/DB4EBFRsZIyTEREBGbPnq29ll6QLl26sAxjo7iOBxERFSsJGLImyIYNG7R1QU6ePAl7e3vMnTsXcXFx+lFkK9jjQUREZidlmE2bNmnhQ8owvr6+3CHXRjB4EBHR/SlXgY1zgW3pQO3KQNxR4NFuwCQ/wKGUflDRsQxjexg8iIjoPtSvh0g1dIxTf9zgD9jbqU1ngO4+QOtVwNhmOYeZiCzFvnbtWkycOBEhISHo1q0bnJ2d9XfJWnCMBxER3YcaPFKTgYOHgN9u6m2lgUezgDi13cTc3NwwYcIEJCUloUaNGvDz88OQIUO0zerIerDHg4iICkgNHJELgD5HgbWzgfqV9PbiI6FjyZIliIyMRGBgoDYehGuCWDb2eBARUcEk7wVGngU2fWyW0CFkwOmiRYuwYsUKxMfHazvkyoBU7pBrudjjQUREBXAT+GYyUO0fQPsn9Dbzk9kwsiLqzJkz0ahRIwwaNIizYSwMezyIiKgAUoCfqgHN1UcJkjKLjP04dOiQFjqkDNO8eXOsX79eCyVkfAweRERUADeBtLJAOTv9dcnLLcNI6Mgtw0yfPp1lGINjqYWIiKyCrAmydetWbW8YMW7cOHh6enJNEINh8CAiogdQvyZ+2QzM+gkYMxZwe0xvNy6ZDbNx40ZtPIi/vz+6du3K2TAGwVILERE9gBo8kk4DK3YDv2XobcYmZRjZF0bKMKmpqVoZZsaMGQUuw8h4ETmeTI89HkREZPXuLcOMHTsWTZo0uW8ZRgJKVFSUNpCVTIs9HkREZPUkYEiIkB1yp06diu+//x5eXl7amiD5zYaR3XNlwCqZHoMHERHZFA8PD60Ms23bNu21j48PAgICcPToUe21kD1iZLVUFgVMj6UWIiKyaVKG2bdvH+bNm6e9HjFiBNq0aYM5c+agZ8+e2h4yZDoMHkRERDrp9Vi5cqU2G0Z6Qn799dfb40LINBg8iIiI7iEDSz/77DNtSq7smDt69Gj9HXpYDB5EREQ6GWgq+8C4urqidevW2iDTxx9/nGuAmBCDBxERkSouLk5bbEwGnnJcR/Fh8CAiIlJ1794dISEh2owWKj4MHkRERCops7CkUvwYPIiIiMhsuIAYERERmQ2DBxEREZkNgwcRERGZDcd4EBERFQsFmQm7MWuYPyZ+Xx6DFi9B8ODn8RjisX3c57j+7lT41chGwq55mLXjNyQfSoVXyD/x+hNn8O3cZfhJqYGnlBhsPeYM/9nj4efmoH9uLvXrO+EH4KPP1J/rq9/oKcArbwBp/wWefA1oUT3nMINh8CAiIioOt05h+cDB+OYJb7REBL7+LBU9twRj0LW1+Fzpj3/1roMyqeGYOikZQz9rjZOBPujwY10Ma+mFAe8MREuncuqHJGPf+13x8pl3ELWiN2rerlNkAdErAL+lQLD66Oyi5pAkYKof8MHPwBfhwLAG+rHGwlILERGRySlIP/I9QjsuwnefTsHET7/FwaOBcNv7Ht6IaIkJPWqjDLKRejgM8W094YQruBjzO5BQDZ1GDNBDhyiFMuVKIe1QLBLVrHFb6mFgzFSg+wTAWw0dwq4S0Kie+uwO1K+R02ZADB5EREQmZ4fyDYdg7oB6asAQZeH4RClceqQvFk3qBKfSdmpbFq5nPg3fptVhl3IWR8JT0GBgb/i4Pqr9hiY7AcfDz8KhoztcS+ttSAfWBgM71IDRs6n8V+nU9nPngMovqsFDDSEGxeBBRERUDOwqVEIlPWCkndqIoOBLeG1CH9R3KJVzgBpJnLxfxyuuZXE9+iDWp9TFyy3rwF5/V2Sf+QHfhAIvNq+NqrkBI+M4EPw94PIC4F5Rb1Rlx6thJAp46XnAMfe/w3gYPIiIiIqNGjqiV2P62jIYMFENHY/lFwj+wPnoo4h1aIYX6lXW28R1nNy9GaHwxCtNnHH7N88fAyLTAL+WQIU8X+OX1EDyww2gc+M8vSDGw+BBRERULDKQsCsEQbtrYlTAy6il93QoaTHYfyxJ5qTkUOJxZFsE4NEI7k/crqcA6cexZdke4MXO8KpXAdkXtuPLPQlQriWrbzoBz9fMEzCygROHgTR9fEf2r8DSg/p7xsLgQUREZHISOr5AcGx7TPJvrY/pUCnJODJ/DnZczZMZrl1A1KFYuLSrj5q3uzUUpB/bqWaHSvB9swOeK5uBMzt34EpFe9hVkWmy9kDlCjmHCiUFCDsAODQF3CsB59WfE3NGlxgNgwcREZFJZSH18HyMCD4Hh8QVeKtDPwRMn42PPw5CQO9XMSqpJ/xbV9WPVZBxOgLbExrBr5Ub7kSJbNy4moSLaIe+neqgdMp/sSq6Nfp5qqHiaS9gcHngRFzOoYqaYlbOAsLV5+qugONNYM/PQLs6Oe8bDNfxICIiMqXUfZgxMQF9PumFWmWzkRa9AiO7+2PJaWe89uHHmDPa53bZRUJK4qZ3UevdUlgV9hG6Ot3ppVDSjmHFuPexuWIj1LxZFZ0D3kZ7bZqtLBwWBvxjLvBcEyAuFnh1DNDyshpIPgDc3YHKvkBgW0OO9WDwICIiIrNhqYWIiIjMhsGDiIiIzIbBg4iIiMyGwYOIiIjMhsGDiIiIzIbBg4iIiMyGwYOIiIjMhsGDiIiIzIbBg4iIiMyGwYOIiIjMhsGDiIiIzAT4fxQVwRNhMDN8AAAAAElFTkSuQmCC
iVBORw0KGgoAAAANSUhEUgAAAm4AAALlCAYAAAB932oIAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAIMgSURBVHhe7d0NfI/1/sfx9yrFzD0nc3AkuYls7nYUolMtSmfLzelw3HSSFQcn/xNJOig5opNCOo1KETluImLJvZbORJsooZIt1IZoLTez6399r13TNiPbfrP9fr/X8/HY2X7f6zfX//zPtev3vr6f702AZRMAAABKvMvc7wAAACjhCG4AAABeguAGAADgJQhuAAAAXoLgBgAA4CUIbgAAAF6C4AYAAOAlCG4AAABeguAGAADgJQhuAAAAXoLgBgAA4CUIbgAAAF6C4AYAAOAlCG4AAABeguAGAADgJQhuAAAAXoLgBgAA4CUIbgAAAF6C4AYAAOAlCG4AAABeguAGAADgJQhuAAAAXoLgBgAA4CUIbgAAAF6C4AYAAOAlCG4AAABeguAGAADgJQhuAAAAXoLgBgAA4CUIbgAAAF6C4AYAAOAlCG4AAABeguAGAADgJQhuAAAAXoLgBgAA4CUIbgAAAF6C4AYAAOAlCG4AAABeguAGAADgJQhuAAAAXoLgBgAA4CUIbgAAAF6C4AYAAOAlCG4AAABeguAGAADgJQhuAAAAXoLgBgAA4CUIbgAAAF6C4AYAAOAlCG4AAABeguAGAADgJQhuAAAAXoLgBgAA4CUIbgAAAF6C4AYAAOAlAiyb+zMAAEDJZ32nzdOjFfPTaR0/FKx7ht2vm4NL6UTih1ow+33tLVVO5U6lKOnHeur6995qF3yV+4vnslJ3aekL4zTu31/rhjHjNX7gzQq+IsA+ckL7l7ykldf004Mh5e3X6UrePEvTYr6TdfxHVbtnsAbc/FtdfmK/YhfM16q9Z1S+nP2epJOq2/Uh9Wv3W13hnMGzCG4AAMCL2OHovWf1Yqn7NfoPl2ndox0Vkfh/+vCxUlq19Xfq06uVqjnB6wd99HQX3b7xXn20LEqNrzRtuZzeo/kP9tDjX9dRm2qH7QD2pepOWqCF/whTYOIyjVtQRX//vzaqZP+qlfyeHn+xlB4Z3UFXrBulhhHf6bnNA5Tx3m7V79NVLauZcGgp7aMJah2+VQM3v66HGpfNPI8HUSoFAADew0rU2hWVdE/bagqwTirt+EmlLpuopz+oqwf7hrmhzSitysHVlPphnHYcOu22ZWcHwLXztaFttOLeX6DX57+rTR9P0d3Jr2j4Y6M0eMw36ty/tRPapFNKXPuRgu8JU+WADJ1IS9OJ1Lf1z3HbdH3UvW5oMwJUuvLVqpEar407vrdjnOcR3AAAgNewkj/TlupNdZ3pQft5vxI+2KegG/tpRJ/mCsrRqXZCRw4muz/nJU3J6a31cM9mqmzCXkCggltEavCESRrctLbuGNVPLctfnvlWK1nbt1RUq3qmBy1VXyUk6GhQew167M8KLee+x2HpxJHvdMB9VRQIbgAAwHsENtOg/s0VaIekU3s+1oodpdS0czs1KpsjtUkZydqzdZ/UNFQNq5dyG7Mrr+vvuk31S2f7PeuYds6N1tq6XRVRN9BtNCoodFAvtTTnOLVPcSsS7H/3D2rfqJx7PMspHdrzmfapoVo3rKZc/xd5BMENAAB4jYCgGqpT1ZQmT+vQrnhtV2Pd2qyWrsw8fJaVtE0xq1PU5M6Wmb1zv8aEtnlvKiE0SoNaV80ZugKCVLNOFWeygXXoC320/bQa3hqia3L/u9YBbVm5WamN2yjsOs+PbzMIbgAAwPuY8uX6OKVWaqGwBhVy9W6dUuLmVVqW2kJ/vrWRsved5Sn9W22c9qoSQv6iHo1z/1vZpSt5+2bFpNZRh7Brlbu/zUqM09Jl36nxve3VNPAiwmIBENwAAID3yRrf1r6Frq+aa+EN61ttXrpBqY3DdWvTCnbDGaUm7VdKeh7TBdKTtPalFToREfUroc3IGt8Wqpuuz9UrdzYsttS9bli0Ug9oX8rJzMMeQnADAABeJtv4tltuUM0cacbS6T3rNC97z5f1vWJfWqa9p9y3ZHFCW4zUrY/Ca5fNEcSsg2s0c1VSzpmhZ8e3halpzVzF2dN7tXreWqU2MWGxot2QrpTYuVq49+fM4x5CcAMAAF7mlJK2x51nfNtpHfwkVmuy93wd3KKN1W/MUb60Urdr1hMLZXXrrT/kWKDXUvrRBM2ZtEbl6lXOEeYykj7VuvOMb7MOfqrVa1LU5M8d1NRMYrAOKHZjRd3u9Ph5DsENAAB4FytFn30Yf3Z8W06XK6haDdVUNdWoXFpK368Vrx9U514hZ8e6mdA2b+oGlbvzNl2TFq//jh+svn37Zn71vlutr31Me+8coK45ZpamK+WzbdpwnvFtCqqq2jUrqUZwJZXWSR1Y8ba+7hzp8bFul4+xuT8DAAB4gWPaveJdHfrDQD18Z13lXAnkMpWp1UBNq+7Ue5vitSX2oBo+cJ/aVnOXBLG+1/ppq1Wt/4MKb1BdlSrX1PXNauv0Jys1a/onCripm/4xbbSibqqRa8uqMzq+e7UWHfq9Hnv4DtUpm7PvK6DMb9W4aaA+fW+TPt8Spz0N/6K/ta1ux0jPYssrAAAAL0GpFAAAwEsQ3AAAALwEwQ0AAMBLENwAAAC8BMENAAB43Pjx4/Xzz55dfBYENwAAUAR++OEHTZ48mfDmYSwHAgAAPM4EtiFDhjg/T5gwQVWqVHF+RuHQ4wYAADyuTJkymjFjhtq1a6dq1app2rRp2r17Nz1whURwAwAARaZPnz5KSUlR+fLlNW7cOAUGBiogIECffPKJ+w7kB8ENAAAUKRPckpKSNHv2bN1222166qmn1KxZM/co8oMxbgAAwONMSXTbtm2aNGmS89r0vFWsWFFTpkzRvHnznFIq8o/gBgAAPObIkSNavny5M6atQ4cOioiIUJs2bZxj/fv313333Xf2NfKP4AYAAArNTDxYuHChHn/8cU2dOlWRkZGqWbOmezSzB86MbyN2FA7BDQAAFIgJY5s2bdL06dOd1wMHDnRmkeZVBjXBbubMmZo4caLbgoJgcgIAAMgXUw41pdD27dtr9erVGjNmjJYsWaLw8HDGrhUxghsAALgo8fHxGj58uDp27Oi8jomJcXrQQkNDndcoepRKAQDAeeWnHHohZjkQ0ys3aNAgtwUFQXADAADnMOXQuXPn6o033nBmh/bs2ZOetRKA4AYAAM6KjY3V0qVLtX79emftNRPYKleu7B5FcSO4AQDg50w5dOXKlU7vmvHII4+oRYsWTDQogZicAACAnzLjzszsULO+2q5du5yJBmYcWtu2bQltJRQ9bgAA+Jns5VAzWaBz586UQ70EwQ0AAD+Quxw6bNgwNW/enJ41L0OpFAAAH5a9HPr555+fLYea/UIJbd6HHjcAAHyQKYfOmjVLCQkJGjFihLOkB+VQ70dwAwDAR5i118y4tQkTJigkJET33Xef07MG30FwAwDAy5kN3FetWqXBgwdr6tSpzp6h9evXd4/ClxDcAADwUpRD/Q/BDQAAL0I51L8xqxQAAC9gyqHjx49XlSpVdODAAS1evFgzZswgtPkZetwAACihzNpr27Zt06RJk5zXZu/QTp06sYyHHyO4AQBQwphy6PLly53118y4tYiICHrW4KBUCgBACZG9HHr8+HGnHGoWzCW0IQs9bgAAFCPKocgPghsAAMXAlEPnzp3r7B1qyqE9e/ZUaGioexTIG8ENAIBLKD4+3glsZkkP07tmAhtrr+FiEdwAAChiphy6adMmTZ8+3Xk9cOBAtWvXjnIo8o3gBgBAEaEcCk8juAEA4GGUQ1FUCG4AAHiAKYeuXLnS6V0zhg0bpubNm1MOhUexjhsAAIWQlJTkLJQbGBiozz//3Fl3bcmSJc7aa4Q2eBrBDQCAAoiNjdXw4cPVpUsXlS9fXocPH9bjjz+u+vXru+/wsNQE6c/dpPhUtwH+iFIpAAAXqVjKoekp0uZ10otPS/MrSVvekVqWcw/C39DjBgDAr8heDt21a9elK4ce3ST1f0LadEiqfbXbCH9GjxsAAOdhyqGzZs1SQkKCRowY4SzpUTyzQ9OlxYOkrl/Q4+bn6HEDACAbs/aa2dw9LCzMCW333Xef4uLinLFsLOmB4kZwAwDAtnv3bqccWrVqVR04cEBz5szRjBkznHIoUFIQ3AAAfs2UQ/v3769evXqpRo0aSklJ0aBBg4pudihQCAQ3AIDfoRwKb0VwAwD4DVMOHT9+vKpUqUI5FF6J4AYA8Glm7TVTDo2MjHQWzG3YsKHS0tIoh8IrEdwAAD7JlEPNQrnt27fX0qVLncVyzdprphzKVlTwVgQ3AIBPyV4OPX78uDOWzSyYSzkUvoAFeAEAXs+UQ7dt26ZJkyY5r/v06aNOnTp5f8/amd3Sw/+Sjv8oxb4nfZkqtbhLalxFuuEB6ZF27hvhLwhuAACvZcqhy5cvd9ZfM7saRERE0LMGn0ZwAwB4nfj4eM2dO1fr1693etd69uzJMh7wCwQ3AIBXMOXQTZs2afr06c7rgQMHql27dkw0gF8huAEASjRTDjW9a2aGqCmHmt610NBQ9yjgXwhuAIASiXIocC6CGwCgxKAcClwYwQ0AUOySkpKcxXEHDx6sp59+Wt26dWNXAyAPBDcAQLExi+XOnDnTKYeaLag6d+5MORS4AIIbAKDYmIkHn3/+uZo3b045FLgIBDcAAAAvwV6lAAAAXoLgBgAA4CUIbgAAAF6C4AYAxcwM0F+8eLH7CvAtZm0+s+sFPIPJCQBQzExwq1KlitLS0phZCZ9jglvZsmWVkpLCUi8ecPkYm/szgIuWruTNr2rizJVa984K7QhspBa/K6+AE/sVOy9aMxdv0tat67X0v+/rq7INFGofo3sb52PCmgltJ06cUKNGjdxWD7C+0+bpkzVz/Rq9s2iXAps21e/KXaYTibGa9+IrWvzRVm1d/47+u2KfyjZubB+7wv3FnKzUXVo66WH1ivy3Npepp9+3+J3KXRZgHzmh/Uum6q2TjdWy+lWZbwZyKVWqlPOVmprqY9f3SSnhXen5aOl/CdKK1VLZ+lKlZCk2Uar1G8n5dzzM9LgByJ+M72Osx0avsQ5nnLGOrXnMCg6635r36RbrzWfftLZ8fyLrXdZPm8dbTYK6Wi/tSHXbgLx98cUXVqtWrSw7wLkthXXa+j7mX9boNd/ZV2KytebRllZQjzetTz/9r/Xsa/+zvj+d4b7vqLV5XAcrKPw/1o6TWW3ZnNptvXV/S+vaDl2tPt07WNeqlnX7pI+sHzIyrNPfLLVGP/uBdSSPXwOyK/Lre3gLq1xBr++/tjjn+j72a9d3xg+W9Up/y7promV9697zMw5b1pQRltWrhWXZnwnWNycz2z2MTgAg304pce1HCr4nTJUDMnQi7WedSH1b/xy3TY0fvFctq2U9mQWodOWrVSM1Xht3fK8MtxXIi9neKTIyUqNHj3ZbCslK1Np3K+mettUUYJ1U2vGTSl02UeM+uFYP9g1TtSuyegJKq3JwNaV+GKcdh067bVnSlbx2vja0eVlb3l+g1+e/q00fT9Hdya/o0cdGafCYb9S5f2tVKoJOBfgWc32bnTGGDBnilE4LzZPXd9toxeW6vodf8PpOleY8Kk24QpryN6mGe88PqCxFhEpLtkpNQ6TqpTLbPYzgBuSXlaztWyqq1XVl7Rep+iohQUeD2mvQY39WSNDlme9xWDpx5DsdcF8Bv2bo0KE6evSohg8f7pROC8NK/kxbgpvquivtT52f9yvhg30KurGfHuvTTEE5PohO6MjBZPfn3NKUnN5aD/dspkrmgzAgUMEtIjV4wiQNblpbd4zqp5bls1/zwPl1797d+W7CmxnXWRh5Xd9lb7y/wNd35Yu+vi1p51xp4JtS395S3UC33ZV+yv6PIKlTS8n831YECG5AvlVQ6KBeahlo/1Ge2qe4lQn209Uf1L5ROfd4llM6tOcz7VNDtW5YjT82/Coz1m3KlClq0qSJOnTo4MzEK3DvRGAzDerfXIH2B82pPR9r5Y4r1LRzOzUy1212Gcna8/E++xoOVcNzegjK6/q7blP90tl+xzpmf25Fa23drorI/aEFXIC5vmfMmKF27dqpY8eOHr2+V+wopaZ3XYLr20qSXoy2n9nbS51vcBuzpEufbbWP1ZFCarttRcAtmQIogIxv3rJ6litnNXxig3XMbTsr4yvrrR7XWmoy3tr8U+EGAQUEBJjZ33z54dfhw4fdq6CgTlrfvHW/VS6grfXExhS37RfmGu4RFGQ1Gfeh9ZPbdl4ZP1g73nzRenPHD5anhrXl9d+ZL//58tT1HST7+t6Q7Lb9wuPXt/3v2SezLPu+bp1zX7f/vp5omzm+bV/WWGfPoxMAKLB0JW/frJjU36lD2LXK3d9mJcZp6bLv1OTPHdQ091NgPmVkZJiHLL784Gvq1Klq1aqVtm3b5rwu9PIJprS/Pk6pFVsorEEFtzHLKSVuXqVlqS3151sb6YL9Z+nfauO0V5UQ8hf1aFxBhbuif5H7vz9fvv31+uuvO9f3J5984rz22PVdqYVa5Xl9v+/B6ztD2pvgDHFT2xukMrnedSpRWrPT6d1T9SvdRs8juAEF5o5vKxuqm66vmusP/dwPRCv1gPalnMw8DORh1apVWr16tWJiYtSsWTO3tZCyxv+0b67rq+ZaDsH6VpuXblBqk3Dd2tR86J1RatJ+paSbzpBs0pO09qUVOhER5dHQBv8SGxuradOmOYtNh4ba4cYTssZvtm9hX9+5SqHm+n7Hk9f3KWnfl/b3YKlVPTP/LKekT6Xtp6U7W0pX2QfTD9ttJuV5FsENKCgzvm2FGd/WSk1r5nq6Or1Xq+etzXbDSFdK7Fwt3OuB2VTwSWaw9h133OF8sHlukdJs43863KCaOe74lk7vWad52XuFre8V+9Iy7TXjq7M4H2oxUrc+Cq9dNsdnlXVwjWauSnJqXsCFmOvbTL6ZM2eOatas6bYWVrbr+xb7+s4xjyDz+n4rr+s7+/Nzvq5v+w+orKmt1JDqVM1sOiv3+Db7t3YutNPq+SZGFBzBDSigDPvpap39dNXg1hBdk2v2kHXwU61ek5LthnFAsRsr6nYnxAHnmjt3rlMm9dyHmnFKSdvjtF2NdWuzWsr5eHFaBz/5UGuy9wof3KKN1W88W9q3Urdr1hMLZXXrrT8EZ1+A1FL60QTNmbRG5epVpgcOv2r58uXq06ePsyyI5/za9R1rX98tzrm+byhb0Ou7lNSklTNp9Byp9kP8jKX2D42k+lXs7/ZD+tYUqdnVzmFPIrgBBZKuFPvpaoP9dNWh1bnj2xRUVbVrVlKN4EoqrZM6sOJtfd05stBj3eC7zAy7nj17uq88xErRZx/Gn2f8z+UKqhasmqqm4Mql7Ut6v1a8flCde4W4pf3tmjd1g8rdeZuuSYvXf8cPVt++fTO/et+t1tc+pr13DVRXZpbiIrz44ovOOoUele36NuM3c95dzfVdI8/r2yzkdFHX950Dcl3f9hmuv1vqb4e8VXZQc7ri7P84+on08hdSj3ucdznS7NffNpOu8/zfB1teAQVyRsd3r9GiQ7/XiIfvUJ2yOZ+BAsr8Vo2bBurT9zbpsy1x2tPwL/pb2+r2rQT5c0apO15Vn84fqN5ff6/qPvqomZSUpO+++05//OMf3RZPOabdK97VoT8M1MN3Xiu3o8F1mcrUaqCmVXfqvY2faEvsQTV84D61rVbK/iz6XuunrVa1/g8qvEF1VapcU9c3q63Tn6zUrOmfKOCmbvrHtNGKujFYeW8ihAtK/06a9y/piQX2//jx0tQX7A/5SlKTOtKVvneRm+t7165d6tWrl9viKdmv77p5Xt83VCnE9X1TjXOv7wD7Mb1Ne2nvQmnFx9KHa+z/gsFS3zvlLLr7213Sys3Sx6lSlB3kzrPNVmGwyTyAEshSespubd6wWC8+Nl7zM0Zry+ePqGXuZZgAr2N/oP/nAel/XaQZ3SWz8Kt1RPrXX6TE/naIsz/sz676D5yLUimAEuaMjm56Qf1HvapNyaVV+7fnFKIB73VglTRyr9Trll8CmtkqqZsd4l6eKn18LLMNOA+CG4AS5nJVavewXvvPMxr5UDe1rs0YKviKdOmj96WjdaWauUa4V68jBW+V1nzuNgB5I7gBAHBJ/CR9vsP+XvncsU+BFeyvVOnT/c54d+B8CG4AAFwSx6XdB92fz+PjRDNaADgvghsAAICXILgBAAB4CYIbAACXRHmpfrD783m0rGXm5wDnRXADAOCSKCPVM1s+HZKOZt8Q1nY8RToSZAe3a50F+oHzIbgBAHBJXCndGC4FJdnZLc1tcx362g5zLaS29dwGIG8ENwAALpVat0uja2ZuSJ7qTh9NT5Te+K/08KPS7ytmtgHnwZZXwHns3r1bq1at0qBBg9wWXCpnds/Xw0+v0PGf9yt2wXp9qWC1uOsWNa5SXjc88KQeaVfNfSfghdIP2EFtqrT0qNTWDnFbP5Fa3i891FEKYoAbLozgBr8VHx+vFStWqH379qpWrZrq16/vbIb8zTffaOnSpZo0aZJ69uypN9980/0NAACKF6VS+K0GDRqoZcuW2rBhgxPSAgICnN41E9oqVaqk5s2b65ZbbnHfDQBA8aPHDcjF9Lp16dJFffr0Ufny5Z3vAACUBPS4AbmMHTtWI0aMUHh4uHbsMPsKAgBQMtDjBmSzePFirVy5UjNmzNDPP/+swMBApaWlqUyZMu47AAAoPgQ3wGVKpLVq1VJiYqJq1qzptI0fP14NGzZ0SqcAABQ3SqWAzfSumRLpe++9dza0GWZ824QJE3TkyBG3BQCA4kNwA2wLFixwZpKacW3ZmRBnxrs9+uijbgsAAMWHUin8nllot3fv3s7YtsqVK7utOZn3mHXeAAAoTgQ3+DVTIu3Ro4cGDhx4Tm8bAAAlDaVS+LVXXnlFYWFhhDYAgFegxw1+y2x5FRUV5eycwHIfAABvQI8b/JIpkZrQFh0dTWgDAHgNghv80uTJkxUZGanQ0FC3BQCAko/gBr8TGxuruLg4DR061G0BAMA7MMYNfsUspNupUyfNnj2b5T0AAF6H4Aa/Mnz4cDVp0sTZEQEAAG9DqRR+Y9WqVc5Cut26dXNbAADwLvS4wS+YDeTNRvGLFy/OsRcpAADehOAGv9C/f39nbJsJbwAAeCtKpfB5ppfNILQBALwdPW7waaZEWqtWLSUmJlIiBQB4PXrc4LPM7ghPPvmk3nvvPUIbAMAnENzgsxYsWKCKFSuygTwAwGdQKoVPMst+9OrVSytXrlSVKlXcVgAAvBs9bvA5pkRqFtodN24coQ0A4FMIbvA5r7zyisLCwiiRAgB8DqVS+JT4+HhFRUVpw4YNKlOmjNsKAIBvoMcNPsOUSE1oi46OJrQBAHwSwQ0+Y/LkyYqMjFRoaKjbAgCAbyG4wSfExsYqLi5OQ4cOdVsAAPA9jHGD1zty5Ig6duyo2bNnq0GDBm4rAAC+h+AGr2eW/mjSpIn69OnjtgAA4JsolcKrrVq1yllst3v37m4LAAC+ix43eC2zgXyXLl20ePFi9iIFAPgFghu8Vv/+/dWpUycnvAEA4A8olcIrmV42g9AGAPAn9LjB65gSae3atbV//35KpAAAv0KPG7yK2R1h7NixiomJIbQBAPwOwQ1eZcGCBapUqZJuv/12twUAAP9BqRRewyz70atXL6e3rXLlym4rAAD+gx43eAVTIjUL7Y4bN47QBgDwWwQ3eAWzgXxYWJjCw8PdFgAA/A+lUpR48fHxioqK0oYNG1SmTBm3FQAA/0OPG0o0UyJ98MEHFR0dTWgDAPg9ghtKNFMijYiIUGhoqNsCAID/IrihxDIbyMfFxenhhx92WwAA8G+McUOJdOTIEXXs2FFz5sxR/fr13VYAAPwbwQ0lkln6o0mTJurTp4/bAgAAKJWixDElUrPYbvfu3d0WAABg0OOGEsVsIF+rVi0lJiayFykAALnQ44YS5cknn9SiRYsIbQAA5IHghhJj8eLFMh3AXbp0cVsAAEB2lEpRIpgSqQlsprfNlEoBAMC56HFDsTO7IwwaNMjZQJ7QBgDA+RHcUOwWLFjgrNXGBvIAAFwYpVIUK7PsR69evRQTE6PKlSu7rQAAIC8ENxQbUyLt0aOHhg0bpjZt2ritAADkU/r3Slg+X/PWf6tyNYP04/EaihjwZ91w4lNtOX6N2oX8Rle4b5X1nTZPj1bMT6d1/FCw7hl2v24OLqUTiR9qwez3tbdUOZU7laKkH+up6997q13wVe4vnstK3aWlL4zTuH9/rRvGjNf4gTcr+IoA+8gJ7V/yklZe008PhpTPfLOHENxQbMaPH+98HzlypPMdAID8slK367XBf9Pi657UjOEdnOBkHY/TtKdnKe6d2VrSbKZ2vnmvaps8pXQlv/esXix1v0b/4TKte7SjIhL/Tx8+Vkqrtv5OfXq1UjUneP2gj57uots33quPlkWp8ZXOL+d0eo/mP9hDj39dR22qHVbsgi9Vd9ICLfxHmAITl2ncgir6+/+1UaU8frUwGOOGYhEfH6+lS5dq6NChbgsAAPl04jPNGXy/JgQM0guPZIY2I6B8qCKan9TSL0qpaesGqp4VnqxErV1RSfe0raYA66TSjp9U6rKJevqDunqwb5gb2ozSqhxcTakfxmnHodNuW3Z2AFw7XxvaRivu/QV6ff672vTxFN2d/IqGPzZKg8d8o879W3s8tBkEN1xypkQaFRWl//znPypTpozbCgBAfqRq56wnNXBWOfWNukPX5ugVs5R+6pT9PUR3htXRlZmNspI/05bqTXWdee/P+5XwwT4F3dhPI/o0V1COkHVCRw4muz/nJU3J6a31cM9mqmzCXkCggltEavCESRrctLbuGNVPLctf7r7XswhuuOQmT57sbB7frFkztwUAgPyxDq7Ti8+9q9Sbuqhz8wpuq8tK0Wcfxiu1YohC6ga5jbbAZhrUv7kC7WB3as/HWrGjlJp2bqdGZXN1jWUka8/WfVLTUDWsXsptzK68rr/rNtUvne33rGPaOTdaa+t2VUTdQLfR8whuuKTMBvJxcXHq16+f2wIAQH6dUuLGJZq9R2pyZ8vMHrTsfvxScev3qWzH1mpa7ey0BAUE1VCdqmaywWkd2hWv7WqsW5vVOtsjl8VK2qaY1Sl5/9t5MaFt3ptKCI3SoNZVdRG/UWAEN1wyR44c0ahRozRx4kRKpACAQjiuvdsSlKo6ahtSWzk/USyd+jpBa3aVUtPfZxvflp2VrO3r45RaqYXCGlTIFbTsULh5lZalttCfb22kX+07S/9WG6e9qoSQv6hH49z/lucR3HDJTJgwwdkhwSy2CwBAgWWkaF/8AfuHRmpVv8o5wStpe5y2K0SdnPFtltJT9isp9Yx73JY1vq19C11f9ZceOYf1rTYv3aDUxuG6takpwZ5RatJ+paTnsQhHepLWvrRCJyKiLkloMwhuuCRMifTo0aPq3r272wIAQAEFXKWyVQKl4HqqUz1XoTNrfFulrPFtP2nnvNcUeyQruGUb33bLDaqZIwlZOr1nneYt+06N722vpoF2FLO+V+xLy7TXzHXIzgltMVK3PgqvXTZHaLMOrtHMVUn2v+Z5BDcUObOBfMeOHTV69GhKpACAwgv4jZrcHKps0w5cZ5S6falmzNkhtWqq+lVLSaf3a+s3ddUsOGuSQVaPXF7j207r4CexWpPaUve6ZVLr4BZtrH5jZohzmbXjZj2xUFa33vpDjgV6LaUfTdCcSWtUrl7lIumBI7ihyI0dO1YLFy5UzZo13RYAAAqjrK7v8oD6V9ikVR+nuD1bp3U0YaFe3vE79ejXymkxQSrtszh9e0sHXVfKjVFne+Qyx7fldLmCqtVQTVVTjcqlpfT9WvH6QXXuFXJ2rJsJbfOmblC5O2/TNWnx+u/4werbt2/mV++71frax7T3zgHqWkQzS9k5AUVq8eLFWrlypaKjoxUQUBTPHgAA/3RGqV+t0avT3lNKcHVd9eMZBd/SXX/qUFelD32oVya+rs8r11CFirfooQFZW1HZrEQt/1tPPfebpzR/dAdVy/3RZCYbTP+35h2orN9c9Rvd+lBf3ZzVq2Z9r3XPLVHp+/vpxkqZ67RZqTu0YNwojXzmM9V+6EENeqi3/ph9iy0PI7ihyJgSaZcuXZzwRm8bAACFR6kURcLsjmBmkI4bN47QBgCAhxDcUCQWLFjgLPsRHh7utgAAgMKiVAqP2717t3r16qWYmBhVrlzZbQUAAIVFjxs8ypRIH330UWc/UkIbAPg3s4YnPIvgBo8yga1Vq1Zq06aN2wIA8EfmQd5sc0h48yxKpfCY+Ph4RUVFaf369QoMLJr1awAA3iNrdYE+ffo4E9ZQePS4wSPMk5UJbWa9NkIbAMAwqwqY8c4JCQmKjIxUbGys83mBgqPHDR4xfvx4lS9fnicqAECeTGibNWuWZs6cqXbt2qlBgwbOVogsGZU/9Lih0Mz4hbi4OPXr189tAQAgp0aNGqlTp06KiIjQ999/r8OHD6tKlSruUVwsghsK5ciRI87g04kTJ7KBPADgHGaJqGnTpjkh7cCBA/rrX//qVGjmzJnD50YBENxQKM8884xTHjWL7QIAkMWURvv37++s61mjRg2nh818Xph2swIB46ELhjFuKDBTIjU7JEyZMoWnJgCAU4UxKwtMmDBBISEhuu+++3IsD2UmJpjAlpaWxudGARHcUCBminetWrW0f/9+5zsAwH+Zcqh5mB88eLDzMH/HHXfkWYkx7zOTE8zwGhQMpVIUyNixY7Vo0SJCGwD4KdN7llUOHT58+NlyqAlvDJ8pOgQ35NvixYud72ZRRQCAfzHl0DfeeEPt27fX0qVLnXLokiVLnM8EtjosegQ35IspkZqxC2btHQCAJSV/LI34i/TQE9LT/5AiBkjv7XUO+RJT5jRrdprZocePH3ce4k3Jky0OLy3GuOGimW7xHj16aODAgQoPD3dbAcCPndgu3fuA1HOe/f3azLbjm6WOdoB75E2pyzWZbV7K3Pe3bdumSZMmOa/N1lVmLbbCTCww/yYTEwqO4IaLZrrGd+zYwaBSAHCclhb/XRpUUdo1TiqfVcQ6Ib3aR5rcTPrfCCkwwG33HqYcunz5cmf9tQ4dOjiL5tKzVjJQKsVFMV3kL774okaMsG9CAADJOigtWy3dUE8Kyv5xeqVUx27bsUrafsxt8w7x8fGUQ0s4ght+lenWNgso/vvf/2bgKQBkOXVAWr9Hql4x16ep/aKCuVfuk775IbOpBDP3eLOUh9kEfsyYMWrZsqWzzppZLJd9REseght+lVnh2vxBt23b1m0BAOiIHdzsbHZ+9sHEw+7PJY8ph5pSqJkdunr1aie0mdmhZgwzY9BKLoIbLsh0m5s/5KFDh7otAABvZu7rZt21jh07Oq9jYmKccmhoaKjzGiUbwQ3nZbrPo6KiFB0dzdMXAHix3OXQ2267TRs2bHDKoQyB8S4EN5yXWavNTP3mKQwA8lC5hlTH/TlP9sFaVdyfiwflUN9DcEOezJOZmUnar18/twUAkMOVV0s3Xit99b10xm1z2C9SDtnfr5PqFU9vltmKKqscWr58ecqhPoR13HAO84RmFlicPXs2+80BwHmdkuYPkIbaAS7HOm5p0n96Si/+/pKu42bKoStXrnTW3DQeeeQRtWjRgp41H0OPG85htrT629/+RmgDgAu6UuoUJTWJkeZ96m5xZf/HwY3Sq4elZ/tektBmtiI05dDAwEDt2rXL6Vkz5VCzEgChzffQ44YczGKL5onthRdecG4CAIALMUHtI+n5adKxulKtNCnuJ6n/w9JdDe1PWfdtRcCUQ80m7+vXr3cmGXTu3JmJBn6A4IazzFNbrVq1lJiYyKKLAFAC5S6HDhs2TM2bN6dnzY9QKsVZY8eO1aJFiwhtAFDCmMliWeXQb7/99mw51GxFRWjzLwQ3OEyJ1OjSpYvzHQBQ/Ew5tH///s62gzVq1NDhw4c1ePBgxiD7MUqlcJ7kzE3BhDd62wCgeJmZ/WbcmpkoFhISovvuu49N3nEWwc3PmfESPXv21IABA5wFGQEAxcM8RJs1NE2P2tSpU517Mj1ryI1SqZ9bsGCBrrvuOkIbABSTvMqhZpYooQ15ocfNj2WVSM0MpSpVindbFgDwJ6Ycunz5cmfCQYcOHRQREUE5FBeFHjc/ZUqkJrSZDeQJbQBwaZgH5vHjxzv33ePHjztji80MUUIbLhY9bn7K3DiMkSNHOt8BAEXDPChv27ZNkyZNcl736dPH2VaQZTxQEAQ3PxQfH6+oqCht2LCBGwcAFBHKoSgKlEr9jHnyM6HNlEgJbQDgeZRDUZTocfMzjz76qBo3bux01QMAPMM8FG/atEnTp093Xg8cOFDt2rXjARkeR3DzI2Z9IHNTmTdvHjcTAPAAUw6dO3eus3eoKYeadTFDQ0Pdo4DnEdz8hLm5dOzYUbNnz1aDBg3c1gKyUpW4baOWz5iquPCX9VqX2u4BAPAPZqywCWxmhwNTwTCBrXLlyu5RoOgQ3PzE8OHD1aRJk8KXSI9u0rP/WKQfm5XXV/+aq8umrtXrXQluAHwf5VCUBAQ3P2AGxppFdmfMmOG2eED6Vj3b8F59+gzBDYBvoxyKkoRZpT4uKSlJXbt21ejRo90WAMDFMFtRmWqFGWZixMTEOLNDCW0oTgQ3Hzd27FgtWrRINWvWdFsAAOdjyqGmShEZGeksmGvWXjNrXpq9QxnDhpKA4ObDzM3H6NKli/MdAJA3U50wC+UGBgbq888/d3rWlixZ4qy9xhg2lCQENx9lFoB85plnnC8AQN6yyqHmAbd8+fI6fPiwHn/8cdWvX999B1CyENx8kOnqNzeip556iq59AMjlfOVQM+ueeyZKOoKbD1qwYIHztHj77be7LR50ZrfmD/6r+v51tN767jvFTvs/9e07QM9uSnbfAAAlU/Zy6K5duyiHwiuxHIiPMSXSXr16ObOfeHIEgMxy6KxZs5SQkKARI0Y4S3pwf4S3Irj5ENP93759e2cDeaarA/BnZu01s6vBhAkTFBISovvuu49N3uETCG4+ZPz48c73kSNHOt89KSAgwP3pwricABQnU3Uw+zIPGTJEU6ZMUXh4OBMN4FMIbj7C7JsXFRXlDLBlrAYAf0M5FP6C4OYDTInU3KRefvnloi+Rpn+rjdPH6d8fBiqsxVXavXKnKt07XI/2u0nBV1xcrxwAeILXl0OtY1L0EOnk/0lDQtxG4MIIbj7AYxvI/6rTOrD472o5+0Z9sKi36l5mKX3/AvUPHa2Ame/plS61RXQDUNRMOXThwoXOemtTp051lvXwrt1hTtr/JbZIC1+SHp8rTfpYeqSFewy4MJYD8XJmLIe5iXXr1s1tKUoZOvHTj/px5y7tO3bGfh2gK66urXoVkhSfdNQ+CgBFw1QWTDnUhDTzsNqwYUOlpaU5W1F5V2hLlp4dKr2ySQqq7rYBF48eNy9mygRm8+M5c+YUw+BbS+kpn2nN3H/r4SV1Ne3NYbo1+Cr3GAB4hrnPLV++3Fl/zQwJMYvl+szs0IOLpRpd6XFDvtDj5sXMuA7ztHnJQ1vGfq198d96ftZirVxzVB26/17XlLvCPQgAhWcqCWamfJUqVXT8+HFnpwOzYC5LesDf0ePmpcxNbOXKlZoxY4bbUkxO79B/7rpTz9V7URtevFvBDHIDUECmHLpt2zZnGyrDjNvt1KmT786Up8cNBUCPmxcy27Z07dpVo0ePdlsuEeuQNv17hMYs/1Kn3SaVqqNW4ddqz+z3tTXFjHsDgPwx5VBTCjULiC9dulRjxoxxtqIyG7+zvBGQE8HNCz355JNatGjRpR+Q++NuvT8zWvPjvtXPbpPSD+izjxMVdGuo6lfkcgKQP1ljdQ2zVZ8ph7LzC3B+lEq9TPGWSM8o9bPFGjfmTX1VpoLKKEM/7/9KaWFRGvXwn9WayQkAcPEolaIACG5eJGsDeRPczIBdAIAXI7ihAKhteQkzaNesXTRu3DhCGwAAforg5iUWLFjgLPthNkwGAAD+iVKpF8gqkZqBu2yaDADe7IQ0f4y04ltp//+k9XukoBZSZGPpimbSc4OlSpe77wXORXAr4UyJ1EyRj46OZqYVAMDrmK3KPvnkE2fBeBQewa2EMyuHGyNHjnS+A0D+WUpPTtDytxZofVIZ1Sz/s45XvVMD7r9BJ/6XoOMNwhRS7ZdZ4VZyrKZPW62frOM6VO2PGjbgZgVfnqbE2CWavWqvSpUP1Knkg/qx7j36e7+2Cr6Clbdxfllrj65fv76I1uUrruvbjk/2eWWfV/Z5ZZ9X9nlln1f2eWWfV9nO6zEmuKFksp9QrLCwMCstLc1tAYD8Srd+3DHL+mujLtbTG5Ks027bsS3R1vCH7rUa6lqrx1tfWRlOuy3jgBXz2CRrzeF0yzq2xhoebB+fu8X69M1p1mtbDrm/b/vpQ2tckzpW+EsJ1km3CTif4cOHW++99577ypMyr+/7GtrX9/rEgl3f8z62tud1fd9wzQWub/v37fNa9nkt+7xn2+zzWvZ5Lfu8ln3eosDkhBLKLEoZFRWl//znP6wcDqCALJ3Y/ZYG3zNV+ue/NOzm3ypzV+HLVb7FbWp+fKt2qaFaN6ymrD4FK/EDvRt8m9pWvlzWiTQdP/Gllo2eqg8a/0V9W17t/r6tdCUF1zipDzd+rkPUbfAr+vXrp1GjRjmfbZ7zy/UdMGaCHmlfM+f1fexjfZHH9b0i9/X9zyn64Pqe+bi+7Qb7vDJ/V/Z5ZZ830+WSfV7Z55V9XtnnLQoEtxIqawP5Zs2auS0AkE8nPtWsYaM066qu6n/3dSrlNjusdJ36+YzUpI3CrivrNqYreftuBbeqoyvtD6efv/pUHxytpRv/NkR9Qiqe/fBznDiqgwd+dF8AF2ZWRTCfaY8++qgzdtsjsl3fUXfXs6/ZbC5wfVfPfX0P+rv6hFa6+OvbPq/s88o+r+zz5mCfV+55dfa8nkVwK4FWrVrlzCTt3r272wIA+XVaB1fP0nPvHNNN/Tupedmc43SslC+0ecM+VWp7g+qWyToWoMDQ3urfsoL980/aExerHWqqu9rXV2DmG87KOLRXH+8rpaatG6h6zn8ayFOfPn0UEhKiHj16KD4+3m0tqFzXd+C51/eH9vVdsW2TX72+O9vXd+6IZa7vrXle36cl+7yyzyv7vMp1XtnnlX1e2efV2fN6FsGthDHdyKY72ezXR4kUQIFZSdo49x3tUYjuDKujnEOkM/TjF1u1/mhddezQWNXOfr5crqCatVXVDMa2krXro11Sw1Zqdk3uj7VTStqyQatTM//tHD0dBRAQEMCXn3wNHjxYS5cudapJ5nWB5bq+c16DWdf3terY/mKu79yPJeb6Xm9f303P/bft88o+r+zzyj6WU4Zkn1f2eWWfN2cXnucQ3EoY041supNNtzIAFNiPX2vb+i+lSiEKqRvkNmZJ09efbDlnfFt2VvJOrY/5UpU6tFCDcrk+KqxvtfmdDUptEq5bm5rei8KxLIsvP/lKTExURESEhg0bpg8++MC9AgrgIq/v3xf0+l5qX9+N87i+7fPKPa/yOK/s8xbl+DaD4FaCmA3kDdOdDACFkXFon+IP2j+0aqr6Vc8Ouc6UcVDb1+2UGmeN/zmplH0HlHp2EHbW+J86an9TA1XN/bmWGKd3ln2nJn/uoKamVGSlKmnfYaW7x4G8mGVBunTpooEDBzpVpTZt2rhH8u+irm9nfJsJV79yfedKdub6Xmpf343vbX/u9W2fV+55lcd55Z5X7nlln9fMZfAkglsJYS7obt26afTo0W4LABRcQOmyqmJ/dgSH1lH13MEr9/ifU59r3nOx+mW+X9b4n8a6pWmwmSuXTZr2rH5Hy1Jb6M+3NnLGvlkpsXpp4R7zMQXkyUxIMNUks9+2J7ZuvJjr++z4zV+5vnP+etb13VL35rq+T5nD9nllMpl93nMS1NnxbTdkjm+zzyv7vJ5GcCshxo4dq4ULF6pmzaxpxQBQcAHVG+nmm2q5r7KxftD2+W9oztFgtWpZT1UDLJ3e96m+CW2s4Kyeh6wei7zG/1jf6ZPV/8tWRjqtg7HbVf32688Z4A1kWblypUf3276o67uVfX1fVsDr2xkGUNFu+OX6dt5pn1fnOa/s88o+r+zzyj6v7PPKPq+nx7oR3EqAN96w/8e23XPPPc53ACi0K69Xl//rqQrvrNPHR85ktqUfVsLcudrR6G71u+4K9wPlR3227ohu6fTLciFneyzyGv9jx7Nqta+WalytyqXtf/LAar3+9U3q1bS8exzIyfS2PfPMMxoxYoTb4gEXc307PHx92+eVfV7Z51W288o+r+zzKtt5ZZ9X9nk9jS2vihkbyAMoMtZxfbXqdU2LSVbwb6/Sjyd/q1t6dlGHa67Soc2zNTF6pyrXrqyKt96vAWcX57V/7eAy/e0PL+s3L8/U6Jur5+owsJR+cKOmP7VAB+pU01VlOughs2UQ217hPMzSHy+++KJmzJjhtnhIcV3f9nlln1f2eWWfV/Z5ZZ9X9nlln1f2eWWfV/Z5ZZ/X0whuxcg8hZj1bMxATU91HwMAUJKYMdxpaWmsluAhBLdiZEqkO3bscGbXAAAA/BqCWzExXcdmL9INGzaw0C4AALgoTE4oBqZE+uCDDyo6OprQBvix2NhY5wsALhbBrRhMnjzZWTk6NDTUbQHgj373u99p6NChhVtBHoBfoVR6iWWVSNevX6/AwFzrxwDwO2bgdteuXdW7d2/169ePXngAF0SP2yVkNpA3oW3OnDmENgAOs+i2eZAz2rdvr2nTpjnlU7NUkPkCgOzocbuEhg8friZNmrAXKfyHlarEbRu1fMZUxYVH69UutTy9iLhPMQ93q1at0rJly7RixQrVqlVL27dvd48CAD1ul4y5GZun5+7du7stgI87uknP9hulmR9+pA/f2aMMtxl5M6HN9Lw999xzTo+8CW0mvAFAdgS3S8DckEeNGuWs18b4FfiNSu30yKvPa+yACIUwMuC8zP3BlEerVKmiAwcOaPHixapUqZLGjBnD3sUAzkFwuwTM/mzmi1WjAWQxPfDjx49Xx44dndeHDx/WoEGDnN62SZMmnW0HgOwIbkXMPD2bYYRdunRxWwD4MxPYzHhXs0dxw4YNnUW4TWDL2qt4//79GjZsGL3zAPJEcCtCWdP8//nPf7otAPyVmSkaGRnphDazjqMJbOaBLndA++qrr9S6dWsFBDCNA8C5CG5FaOzYsVq0aJEzyBiA/zG7pJiJSSawmfKn6UlbsmSJ2rRpQ48agAIhuBURs4G8GWBMiRTwPyawmWESZl221atXOxOTsgLbrwkKCnImKQBAXghuRcCMYTGzxMyEBMBvndmt+YP/qr5/Ha23vvtOsVOH6r6+A/TspmT3Db4na4aomWBgwpdZbNuEtvxMTGrZsqVq1KjhvgKAnFiA18PMk3aPHj00cOBAhYeHu60AfJl5WDMl0cGDB2vq1Knq2bPn2ckGAOBJ9Lh52IIFC5yna0Ib4PuyzxA1vWRpaWk5ZogCgKfR4+ZBZgP5Bx980Fn9nIHH8GcXOyPSW28/ZoborFmzlJyc7Gxh16lTJ/7mAVwSBDcPMSVSMxD55ZdfVrNmzdxWAL7C/I1v27bNmR1qmBmiFzPZAAA8ieDmIWYFdGPkyJHOd8DvpSdp7cTH9Vx8hqooSbHbKqjb009p1J9uUJAXLVFmAtvKlSs1YcIEdejQwRm/Fhoa6h4FgEuL4OYBpkQaFRXlLKhJuQQwjithyjC9XvdxTexcW1fopA6+N06Rnd5V43nz9fK916mU+86SyswQnTt3rrO0j1mHrVu3bmxbB6DYMTmhkMzN3YQ2M+2f0Aa4znytDa8v1Mq4fUpzGq5ScHhfDYo4rNde3aSvM5zGEin7pu9GTEyM05NOaANQEhDcCsmUT8wsMm7qQDaX11Pn8VP0xJ31FOg2lXRZM0TN5u7ly5c/u+k7M0QBlCSUSgvBrNs0ffp0zZs3j9424ILSlbz2KXWO3KqI92bpsRurqqQMczMzRJcuXerMBjeLZjNDFEBJRnArIFNOMTf42bNn09sGXNBJHVz7ggY8l6KuY/6hHi2v1hXukeJkAhszRAF4G4JbAfXv398JbuxFClyAdUw7X3tS/z4SrlEP3aa6gd9q7Zz9atS7rYKLocst9wzRiIgIAhsAr8IYtwIwm0cb99xzj/MdwLms1D1aPvov6rahusLr/qT4VUu1eM5MvbD5B11xiUOb6SHP2vT9o48+OruHKKENgLehxy2fkpKSVKtWLSUmJqpmzZpuK4AcMvZpcVRXdX1lm9uQpZLavrRR6x9qosvdlqKUtaTHkCFDNGXKFPYQBeD1CG75RIkUKPnMDNGFCxdqyZIlzpZUBDYAvoLglg9mIc4dO3Y4JRYAJY9ZDNv0sDFDFICvIrhdJPME36tXL2cxTp7cgZIl+wzRRx55RC1atCCwAfBJBLeLYGaimVLLgAEDFB4e7rYCKE5ZM0RNT3i1atV03333MdkAgM8juF0ESqRAyZF7SY8HHniAtRQB+A2C26/I2kDejJkJDPSWzXsA35M1Q3Tw4MGaOnWq0/tNYAPgb1jH7QLMk70JbdHR0YQ2oJiY8aVm0/eqVas6r7P2ECW0AfBH9LhdwPjx453vI0eOdL4DuHRMYJs5cyYzRAEgG4LbeZhZakOHDtWGDRv4sAAuoewzRAcOHKh27drxNwgALoJbHsxYmo4dOzrb4lCOAYqeGZawbdu2HEt6tG3b1vkZAPALglseHn30UTVu3NhZcR1A0ck9Q9QsuxMaGuoeBQDkRnDLZdWqVZo+fbrmzZtHeQYoIlkzRM1SO5GRkerWrRu92wBwEZhVmo3ZQH7UqFF65plnCG1AETB/Y2aGaJUqVZzXZicSM/mH0AYAF4cet2zYQB4oGrlniJqyKFvHAUD+EdxcixcvdsbazJgxw20BUFhmhujSpUud4GbGjLKkBwAUDsHNZso3tWrVUmJiomrWrOm2Aiio7Et6DBs2jD1EAcBD/D64mVltQ4YMoUQKFFLuGaIREREENgDwML+fnLBgwQJVqlTJL0OblbpfW2Om66GwQVp8MN1tBfLHzBA1s0Pbt2+vjz76yFn/cOLEiYQ2ACgCfh3czLibF1980Rks7V/O6Oim59Vv1Gv68MNYvbOF0Ib8M4Eta4bosWPHnBmiJrAxQxQAio7flkpNWadHjx7Oljrh4eFuq/9J3/qsGrXaq2e+naYuwVe4rcD5ZZ8hajZ779y5MzNEAeAS8dset1deeUVhYWF+HdqA/IiPj9fw4cPVq1cvtW7d2tnH18wUJbQBwKXjl8HNfACZMTlmE3kAF2ZmiJrdDcaMGeNMODCBzYwJZVkPALj0/C64mRJpVFSUoqOj+eABzsP8nZi1DU1gmzVrlrOkx5IlS5wJB/zdAEDx8bvgNnnyZOfDiI2sgXOZCQcmsGXNEDWTDcyi1MwQBYCSwa+Cmyn5xMXFUSIFcsk+Q/TAgQNOeGOGKACUPH4zq9R8MJlFdmfPns2Hke3M7vl6+OkV+uHwTi1597hadv+9apdtoQeeG6x2lS533wVfZ2aIrlq1yhnzaSYa9OzZk8kGAFCC+U1wM7PhmjRp4nw4Af4u96bv7CEKAN7BL4Kb6VGYPn265s6dq8DAQLcV8D/Z9xA1axi2a9eOwAYAXsTng5vZQN4sXWDG7LCBvHTZZZfpYv4nz8jIUEBAgPsK3szMEN20aZPz8GKw6TsAeC+fD25m7E5QUBAbyMPv5N70/YEHHmB8JwB4Ob8Z44bsLKUf3Kjpj0/Rh1WbqcVVX2rl/yrq3rHD1O/GGmLjK+9mJuKYYQFZEw7M7iAENgDwDQQ3f2Tt1+J+3TT7lje1qPd1ukwntH/+wwodcJlm7nhBXWqUct8Ib2KGBZhFcgcPHqypU6cyQxQAfJDf7lXq16yT+unoEe3csV/HnIardPXvaqvC0a+VlHzKaYH3MDNEzaxpMxygRo0aOnz4sLP5O6ENAHwPPW5+76RSPlunuc88pSV1xujNJ25T8BVMSvAGZoao2Y4qOTnZKYmypAcA+D6Cmx/LSFyrl+Zv088n92vTZqnjkCHqfXs9BZHbSiwz4WDbtm1nl/RghigA+BeCG2yWTn8Wrbsaz1C9ZW/rxc61RHYrWXLPEDXj19hvFwD8D2Pc/JCVvFH/HjpBy79Oc1sCVKp+S4Vfu1WzlycoxW1FyRAfH++ENbPp+5w5c5w9RAltAOCfCG5+J0M/7lqnmc+/q7ikn902S+n7d+nj7+ro1rC6qui2omRo0KCB09vGpu8AAEql/sg6ps8WPKsxb3yhMlXMYPaftH/nGYUNHK6H+7RmcgIAACUUwQ1+wZQbKS8CALwdpVL4BbOTgAlvAAB4My8JbmeUuvtdPTvgDtULCHA2Pw+od4cGPPuudqeecd8DnN9tt92mFStWuK+KwkklJyzV1BH/p0efnqinR4zVy5sP6HTqV/pg3XYlp9OxDQAoPC8olZ7UwTWT9JfIJ7Qu1W3KJuiWp/T2nGG6rcZVbgtwLrOcRvv27bV48WLVrFnTbfUQ65h2vjZM3RZfp5dnDNHNwfa1aB3Rx9Mm6ZW49/WfJSF6a+dLurf2le4vAABQMCW8x83S6a+W6PEBz+QZ2ozUdc9o4Ki39dVpejRwfmZHgREjRmjs2LFKS8taBsUTUrV7zgjdM+EKjZnyt8zQZgRUVouIUB1bslVqGqqG1dn/FQBQeCU8uB3T1nn/0Wt7zpPaHKna89rLmrc1c9dN4HzMXp7XXHON/v73vzs9cIVn6cTOuRr+tzd1Vd/eurtuoNueyUo/pZ8VpCZ3ttR1VzJTFwBQeCU7uJ1JUnxMgvviQhIUE58kRrvh1wwdOlQhISFO2dTs9VmoAGclafWL0Xrnx5vVv/MNyhnb0pXy2VZtSK2jtiG1xQ6iAABPKNnBzTqp1INH3RcXclQHU0+qoMVSZ7IDX37xFRgYqMGDB2vLli1q27atFixY4F4F+Wclfqi5s7fKanKTwq4r67ZmOaYv4rbqaFCYOjStxhZiAACPKNnB7fJqqtvuOvfFhVyndnWr6XL3VX6Z+Rl8+ceXGd/Wv39/PfDAA/riiy/Up08f9yrIrwz9uDdB61OlSm1vUN0yuaLZqUR9smYn49sAAB5VsoNbQLBa332bKrkvz6vSbbq7dTC9GrggUxYdMmSImjZtqhkzZhRy+6hTOrRvrw4qWK1a1lPVXBdfRtKnWrf99C/j29IPa19SaoF7hQEAMEr45IRSqnH3UL3012bu67w001+nP6y7a9CrgQszZdFKlSrpb3/7m9tSGJepdNlyClINhdapmusPyYxv25ZtfJulUzsXanJssnscAICCKeHBzVbqOv1pyht66+Hb7Q/JXIJu18NvvaEX7q1vRzzg/I4cOaK+ffs6S4KYsW6FV0rVm4TppnMuSslKTdD8mUt1VI3Uqn4VBehn7duaopBmV9MrDAAoFC/aq/SkUj7brI0ffaqvjkiV696g1jffqOursvAuft0bb7yh48ePa9CgQW6LB1gH9N4/umvolWP1wb9uU+UAS+lH4zX/1c919W8/1sAeSRrxxRu6v+bnevnfB/XHUXcqmOQGACgENpmHXxg+fLgzIaFw49rOZaXu1apXZyompaJ+e9UJnQzuoJ5/aqdrSn+nza88r+jPS6t2hZq69aG+vyzOCwBAARHc4BeSkpI8v9UVAACXGMENAADAS5T8yQmAnzO9hWaXBwAACG5ACWcWDX722WcVGRmpVatWeWifVV93RqmJ2xTz0kCF/XWxDlBXAOAjCG5ACWcmVLz99tuaOHGiVq9e7eyzunjxYgLceSVr07MPa9TMtfrww03akuE2A4APYIwb4GV2797t9LyZXSCmTJminj17qnLlyu5R/CJVW5+9Wy0/HaxvZ3VRDZZiAeAD6HEDvIzpgTPr0aWkpDivq1SpomnTpjmBDgDg2whugJcyvWwmwJkxcDVq1FCvXr2c9eoIcADguwhugJcrU6aMunTpog0bNui2225zwpuZyMBMVADwPQQ3wEeYABceHq4lS5Zo2LBhmjRpEjNRAcDHENwAH9SmTRsnwDETFQB8i1/MKjUlo7Jlyyo0NNRtAfxL1kzUwYMHa+rUqT4+E/WEds8fo6dXJOrwznV694cG6t6mtsre8ICee6SdKrnvAgBv5BfBLT4+XlFRUVq/fr0CAwPdVsD/HDlyRHPnzj27lIgprXp6430AQNHxm3XczHIJx48f18iRI90WwH+ZkunKlSs1YcIEdejQQQ888AABDgC8gN8EN/NBZcpDAwYMcHoZAGT+XWzatEnTp093XptJDWZ8nLcKCLi4VXb95LYHwAf51c4JZpyPWesqJiaGleaBXMxYUDMT1Rg4cKDatWvnzFQFAJQcfhXcjDfeeEM7duxwZtsBOJd5wJk5c6YzJnTEiBFOKdW7HnRO6uDaKRr63BZdVSVD+2O/UNluT2jiqK66Puhy9z0A4J38bjmQ7t276+jRo87SCADOZca6mQcb8zdy4MCBs1tqmYkNJZ+ltISZGrS8kZ5bMl+vv75A72+apCbrhipyyEJ9dZoSKQDv5nfBzZR+Ro8era5duyopKcltBZBbzZo1nS21Dh8+7Lzu2LGjxo8fX8K31ErTng3vavHKrfoyzYS0AF0RfIseHPQH7XltkdZ/fTLzbQDgpfxyAV7zgbRo0SKNHTuWQcrAr8jaE9VsqdWwYcOze6KaZXZKnkA16DxUrzxxh+oFXtxEBQDwJn43xi27/v37q1OnTs4+jwAujpmJum3btrMTGUr6TFQrebVGdh6g/0W8pkWPtVUl8hwAL+bXwc2M2THBbfbs2axhBRSAmYk6a9YsJScnq0+fPs7fU8mZiWop/eBaTRwwXcldH9PIHi1U7QpSGwDv5tfBzTDbAJk1rObNm8fSB0ABlbyZqGeUuvNNDf93siJG9Vd43auUtPZd7Wt0t9oFl3LfAwDex+83mc/a8mfBggVuC4D8ymsmqtkTtVhmolrH9dXyp/THbutUN7yOfopfrbcXv6kZL3yoY1f4/S0PgJfz+x43w3y4mBlzc+bMoWQKeEDWnqhm3cTIyEh169btEv1tndT+xcN0W9ep2uO2nNX2Je1c/5CuZyk3AF6M4ObK2ojezJyjZAp4Ru49Uc22c6Ghoe5RAEB+EdyyMWtUGWxED3iWt81EBYCSiuCWjflwad++vV5++WU1a9bMbQXgSSV7JioAlGwEt1xMyfTBBx90yjtsRA8UHe/fExUALj2mWOVixt/87W9/c8bkACg6ec1E9Z49UQGgeBDc8mA2oje9AWaNNwBFyzv3RAWA4kGp9DzMh4bZkzEmJobyDXAJMRMVAM6P4HYBpoRjPkBmzJjhtgC4VHLPRH3kkUfUtm1b52cA8FcEt1/BRvRA8WMmKgBkIrj9iqSkJNWqVUv79+93vgMoPsxEBeDvmJzwK8zA6UWLFunJJ590WwAUl9wzUatWrcpMVAB+heB2EUyZ1DzVm30XARS/rJmoKSkpKl++vDMTdfjw4cxEBeDzKJVeJDaiB0qu3DNRIyIi2FILgE8iuOWDWddt+vTpmjdvHgOjgRLKTGRgT1QAvorglk+mHFO7dm2nTAOg5DIBbunSpWcnMjATFYAvILjlU9ZG9NHR0SwKCniB7DNRzQNX586dmYkKwGsxOSGfzBO7CW1RUVFKS0tzWwGUVFkzUc0uKMePH2dPVABejeBWAKanLTIyUs8//7zbAqCkM71sWXuiMhMVgLeiVFpApmRq9lA02/Aw+BnwPsxEBeCNCG6FwEb0gG9gJioAb0FwKySzKO+OHTucMTQAvBszUQGUdAS3QjLllh49emjgwIEKDw93WwF4M2aiAiipCG4eYDaiN9timf0TzVY8AHyDmXk6d+5cDR48WFOnTnXGtRLgABQnZpV6gAlrpqwyduxYkYMB38FMVAAlDT1uHtS/f39nTIzpfQPge5iJCqC4Edw8yJRMzXZY+/fvp2QK+DhmogIoDgQ3D2MjesC/MBMVwKVEcCsCZgxMkyZN1KdPH7cFgK9jJiqAS4HJCUXAPHWbvRAZwAz4j7z2RDUzUQu6J6pZIxIAciO4FQHzlD158mSn580MZgbgP7LPRK1QoUKBZqKa927atMl9BQC/ILgVETNQOSwszAlwAPyPCXBmuMSGDRvUunVrZ3s8E+DMmLiLUalSJfcn+JaT0ta50p+6Sf/8lzS8l3T/C9JXx93jwIUR3IrQ0KFDtWTJEn3yySduCwB/YyYqmCWC4uLinOVDzEzUyMhIJ8DRI+9vLGnn69LdG6VJs6UnH5Mm2q+j7DDX8Z/SN1wP+HUEtyJkbtjR0dF66KGHuEEDcHrizcPcmDFjnJmo7du3d3ZcyX1/CAwMdHrq4GOsROnfk6Xef5JqZ808vlwK+6N0zWJpDg/5+HUEtyIWGhqq3r17UzIFcJa5L5iJDHPmzNGuXbucAGcmNGVNZMhaB9KsDQkfcuhjacExqUENKcBtMy6ral8Uv5HessN6Ggs94MIIbpdAv379nDKJWeMNALKYmagjR450ZqIaZiaqCXAmsJkHPtM7B19hB7JvdkmpgVLFsm5bltJStXLSjj3S4XS3Dcgbwe0SMCVT83Q9atSoAi8NAMB3ZZ+JWqNGDWdMnJlZaoZasKyQrzgjHdjv/nw+X0vfn3R/BvJGcLtEzJO1uTGbPQ4BIC8mwJnQZtZ/K126tFJSUnT33XfzwAfgLILbJdS9e3cdPXqUkimAPJmJCmYZIbMDg1lCZNasWRo7dixbaAE4iy2vLjEzdqVWrVrORvTmOwCYWaWjR492HuzMhvWmhx6+xv6o/ehf0o2vSovWSV2y3/9TpWfvloZdI+1/WapVym0HzkWP2yVmZostWrRITz75pNsCwJ+Z0Pb3v/9dtWvX1pQpUwhtPitAqnGtFHRE+v6Y25blJ/up/qgUcr30myvcNiBvBLdiYMawBAQEOGURAP7NTEho27atMwaWkqiPqxUm3V1Z+vp7pwPurDPJ0la7rftN0lXZ1wkBzkWptJiYkqkJcGYdJ56wAcAfnJE+nir9cav0nv39hop220n753HSw6el9U9JV1MmxYUR3IqRmaQwffp0zZs3jydtAPALdlD76C3puWVSwxbSiZ1SSqg0or9Uv4L7Ht9jhgTwOecZBLdiZjadbtKkibMZNQAAvsYsZ2MWon/77bfdFhTG5WPMpnkoNi1atNCQIUOcLW/MqukAUDQspScn6J1Xp+o/izdrR9x7ivm8tBqGVFTK5jjtL1Nd1cueOzDeSt2lpZMeVq/If2tzmXr6fYvfqdxlZhzWCe1fMlVvnWysltWvynwzkAfT0zZ//nw1b9686D7n0r9Xwjuv6vn/vK3/7fhIK2L2qmzDBqqUsk2x+69Urepl8xzUf/HXd7qSN7+qiTNXat07K7QjsJFa/K68Ak7sV+y8aM1cvElbt67X0v++r6/KNlCofazIJhGYHjcUr08++cRq1aqV9dNPP7ktAOBJ6daPO2ZZ9zXsYj29Ick67bYd2xJtDX/oXquhrrV6vPWVleG0Z3Nqt/XWX1tY13boavXp3sG6VrWs2yd9ZB3LyLBOf7PUGv3sB9aRc34JONeiRYusYcOGua88K+PHBOuV+9padz291jpwOvOCzDj2P2vK8AFWr4ZBVlCPt6xv8rpO83F9Z3wfYz02eo11+MwZ69iax6zgoPuteZ9usd589k1ry/cnMt9k/wX9tHm81SSoq/XSpz+6bZ7HrNISwGw4HRkZqeeff95tAQBPsXRi91sa0mWqAsZM0LCbf6vMfrXLVb7FbWp+7GPtUkO1blgtx77nTg/D2vna0DZace8v0Ovz39Wmj6fo7uRXNPyxURo85ht17t9alZgEiYvQqVMnrV+/XvHx8W6Lh5z4THMG368JAYP0wiMdFHxF5gUZUD5UEc1PaukXpdS0dQNVP+c6/eX63nK+6/uBrOv7lBLXfqTge8JU+bIMnUhL04nUt/XPcdvU+MF71bJaVo9zgEpXvlo1UuO1ccf3OSYOexLBrYQYOnSoli5d6vmLGoB/O/GpZg0bpVlXdlXU3fWUY86ila5TP5+RmrRR2HW5Nz5PU3J6az3cs5kqmw/DgEAFt4jU4AmTNLhpbd0xqp9alr/cfS9wYaZcavbejYqKclZV8IxU7Zz1pAbOKqe+UXfo2iuzpzNL6adO2d9DdGdYHV2Z2ZjNL9d3pfNd3xXc69tK1vYtFdXK+RtJ1VcJCToa1F6DHvuzQoKy/w3YD0lHvtMB91VRIbiVEOaifvnll52L2sy+AYDCO62Dq2fpuXeO6cYHOqp5YM5uByvlC324YZ8qtb1BdcvkPCaV1/V33ab6pbO1W8e0c2601tbtqoi6gW4jcHFMdWny5MnOrkFmHdPCftZZB9fpxefeVepNXdS5ea4ZuVaKPvswXqkVQxRSN8htzC4/13cFhQ7qpZbm7+fUPsWtSJCa/kHtG5Vzj2c5pUN7PtM+NdTvz+nB9hyCWwliLmqzCKfZ+gYACs1K0sa572iPQtTpnF6HDP34xVatP3qtOnZorGq/9iljPtTmvamE0CgNal3VIx9KZiFyvvzryyw2bXTt2lWBgYGF6H07pcSNSzR7j9Tkzpa6Lkdvm+3HLxW3fp/KdmytptUuYjeKC13fAUGqWaeKM8TAOvSFPtp+Wg1vDdE1uc9pHdCWlZuV6vRg5xUWPYPgVsKYjeh3797NRvQACu/Hr7Vt/ZdSpbx6HdL09SfnG9+WS/q32jjtVSWE/EU9GlfwWE+CZVl8+dlXWlqasx9vRESENm3aVIhZpse1d1uCUlVHbUNqK+cKcZZOfZ2gNbtKqenv8xrflstFX9/pSt7+kWJS66hD2LXK3d9mJcZp6bLv1OTPHdS0rKf+Ss5FcCthTMl04sSJGjVqlLP2DQAUVMahfYo/aP/QqqnqV821In/GQW1fvzPb+LaTStl3QKm5R1SnJ2ntSyt0IiLKo6EN/seURs3yV2ZfXrPwvOl9K/CivBkp2hdvRpM1Uqv6VXJdl6eUtD1O28/2NFtKT9mvpNQz7vFs8nV9Z41vC9VN1+fudT6lxM2rtCy1pf58ayOZvygr9YD2pZzMPOxBBLcSyGyBZUqmjz76qPOEAgAFEVC6rKoEScGhdVQ9193ejG/bnH1826nPNe+5WB3JfstxPtRipG59FF67bI4PKuvgGs1clVRkM+fge8z4tpCQEM/syxtwlcpWCbQv7nqqUz3X1IOs8W1ne5p/0s55ryn2SK7glt/r24xvW2nGt4Wpac1c5zy9V6vnrVVqk3Dd2tSMt0tXSuxcLdzr+THrBLcSKmsnBVaaBlBQAdUb6eabarmvsrF+0Pb5b2jO0epq1aqeqgZYOr3vU30T2vhswLNSt2vWEwtldeutPwRnX2DXUvrRBM2ZtEbl6lX+lR4KIJMZArRkyRJnBwWPCPiNmtwcqnNHkp1R6valmjFnxy89zaf3a+s3ddUs+Jde54u7vivluL4zkj7V+vOMb7MOfqrVa1Iyy6RmEoN1QLEbK+p2J8R5FsGtBDOTFLp16+bBqdMA/MqV16vL//VUhXfW6eMj6Zlt6YeVMHeudjS6W/dfl/VB9qM+W3dEt3S6zpnAYD7U5k3doHJ33qZr0uL13/GD1bdv38yv3ner9bWPae+dA9SVmaW4SK+88orT41bonrazyur6Lg+of4VNWvVxitszdlpHExbq5R2/U49+rZwWE8TSPovTt7d00HWlMsPWRV3fdw1Ul7rZl8hJV8pnW7Uh9Xd5jm9TUFXVrllJNYIrqbRO6sCKt/V158jMEOdh7FVawpkp0ytXrtSMGTPcFgDIB+u4vlr1uqbFJCv4t1fpx5O/1S09u6jDNVfp0ObZmhi9U5VrV1bFW+/XALM4r/W91j23RKXv76cbK2WuUWWl7tCCcaM08pnPVPuhBzXood76Y8hv3IV8gQszY9vKli2rn376yYPBzTij1K/W6NVp7ykluLqu+vGMgm/prj91qKvShz7UKxNf1+eVa6hCxVv00ICbMxfnPe/1/YR9fe+8wPV9WgeXP6pbn6uq/8wfrpvPmal6Ugc3ztRT85JU5zeBKpP19+Qe9SSCmxdgI3oAgLcywW3btm1q06aN24LCILh5ATO7tGPHjpozZ44zcQEAAPgnxrh5gcqVK2vcuHFOzxu7KgAA4L8Ibl4iPDzc6W1bsGCB2wIAAPwNpVIvYnrb2rdv7+xp2qxZM7cVALyXua95dsA64NvocfMi5uYWHR2thx56iJIpAK8XHx/vPIy+8cYb7BQDXCSCm5cxG9GbPd7MejgA4M3M/cwseXT8+HFVrVpV48ePdxZqBXB+lEq9UFbJ1IQ3plcD8AXmvmbWrDS9b4bZiLx58+aUUYFcCG5eyjyV9urVSzExMc6sUwDwFbGxsVq6dKnWr1/v7GvZuXNn7nOAi+DmxcyT6Y4dOzRx4kS3BQB8hxn3NnfuXOde16FDB/Xs2dMprwL+jODmxUxpoUePHho4cKCzXAgA+CJzr9u0aZOmT5/uvDb3vHbt2lFGhV8iuHk5swF9ly5dtGjRItWqVcttBQDfZGaiml44U0Y12wCaXjjKqPAnBDcfwEb0APwNZVT4K4Kbj4iKinL2MzW9bwDgL/yrjHpG2vGa1C9N+nCIdLnbDL9CcPMRpmRqSqWJiYmqWbOm2woA/sPMtl+4cKEef/xxTZkyRffcc4+P3A/tj+mU3dKGxdJj46WMf0q7hklXuIfhV1iA10eYm9N7772nsWPHOk+gAOBvzH7OI0eO1OHDh1WhQgWnAjF8+HBneRHvdUba9II06lUpubT023J2W0DmIfgletx8jLlJNWnSxBm0CwD+zDzEbtu2TZMmTXJem/tip06dvLiMmij1vUWKfUja9Qg9bn6KHjcfM2LECE2bNo1tYwD4PRPQzO4yS5Yscda73LVrlwIDA517pBleAngjgpuPMdPix40b5/S8paWlua0A4N+yl1HLly/vI2VU+COCmw8yi/GGhYXp+eefd1sAAIZ5uDUl07i4OEVERGjWrFnO/dIsq2SWGAFKOoKbjxo6dKiz159ZrBIAcC5TRjXrX86ZM0cHDhxQlSpVGGqCEo/g5qPM2I6XX37ZWd+NWaYAcH6mjGo2szdl1Bo1aqhXr17q378/ZVSUSAQ3H2ZWETclgcmTJ7stAIDzMWVUM/bNlFHvu+8+yqgokQhuPq5fv37OTWjVqlVuCwDg1+Quo1atWpUyKkoEgpuPMyVTMw1+1KhRPDECQD5llVFTUlKcMqqZiRoZGemUURmGguLAArx+wmzEvGPHDj3zzDMKCGDVbQAoKBPazOSv9evXO6Guc+fOTpm1yOyeLz29Qvp5v7Rgvd0QLN11i1SlvPTAk1K7apnvg18guPkJ82Q4ZMgQde/e3VkuBABQOGYRX7O47+DBg/X000+rW7duTg8dUJQIbn7E3GRq166t/fv3sxE9AHiIeTBeuXKlU9kwhg0bpubNm3vx1looyQhufsbMjjI3GDPoFgDgWZe8jAq/Q3DzQ2Z9IrPRspn2DgDwvKwyqumFM5MZ7rzzTmeJJqCwCG5+yNxQTGgz09wZjwEARceUUTdt2qTp06c7rwcOHKh27dpRRkWBEdz8lFnXzdxI5s2bxw0EAC4BswXh3LlznTKqWRy9Z8+elFGRbwQ3P2bWI2rSpIlzAwEAXBpmTU0T4EwZtUOHDk6Ao4yKi0Vw82Pm5tGxY0fNnj1bDRo0cFsBAJcCZVQUBMHNz5mu+wcffNDpuudmAQDFw9yLV6xY4UxoMFUQM6GBZZuQF4IbNH78eOf7yJEjne8AgOJhKiHLly939kU1ZdSIiAhn31QgC8ENTnd9+/btFR0dzTgLACgBzH1527ZtmjRpkvPa9MKZZZyojIBN5uHcCExoi4qKcm4WAIDiZe7LpqfNlE4nTpyoXbt2KTAw0OmJM0s6wX/R44azsjaiNzcJAEDJQhkVBsENZ5neth49ejgzm9iIHgBKpqwy6qxZs5ScnOyUUU2QY004/0BwQw67d+9Wr169nP1Mq1Sp4rYCAEoic882C6oPGTJEU6ZMcR662RHHtxHccA5KpgDgXUwZ1SzrNGHCBIWEhOi+++6jjOqjmJzgA6zU/doaM10PhQ3S4oPpbmvBmW73H374QYsXL3ZbAAAlmSmTmj2o4+LinNBmyqhhYWHOfdyEOvgOety82hkd3TRV/1h0TM3K79a/niqnaQemqUvwFe7xgjOzlmrVqqXExEQWgQQAL5RVRh08eLCmTp1KGdVHENx8RPrWZ9Ww5V5N9FBwM8yTmhnrNmPGDLcFAOBtssqoZhhMtWrVnB655s2bsyacl6JUivMy3e6G+WMHAHinrDKqWRPOhLalS5c6i66beztlVO9DcMMFPfPMM86aQabLHQDg3cyEBTPxzFRUjh8/7qwe8PTTT3OP9yIEN1yQeVIbN26chg8frrS0NLcVAODNzNjlQYMGOff1Ro0aOfd4s7F9bGwsO+iUcAQ3/KqsAa0LFy50WwAAvsCMc8sqow4bNowyqhcguOGijB07Vi+++KLi4+PdFgCAL8mrjDp+/Hju+yUMs0q93Jnd8/Xw0yv0w+GdWvLucbXs/nvVLttCDzw3WO0qXe6+yzPMH6/ZiH7Dhg3MRgIAH2dKpps2bdL06dOd12Y7xHbt2nH/L2YEN+SLefoyRo4c6XwHAPg+8+A+d+5cZ1kRs0h7z549C7U3qinDsrdqwVAqRb4MHTrUGQtB1zkA+I/Q0FCnjBoTE+O87tixozOhoSCfBWYGq9mai36jgqHHzUsFBAS4P11YUfzPa/7ozEb05g+YJyYA8D+FKaOaMXQHDhxwZrUi/+hx81ImkF3MV1EwM0zNHxxPTADgn0xAMysOmArMmDFjtHr1amc2qln389dmowYFBbk/oSAIbl7NUvrBDZpyf1f9efg4TXrir/pD+FC9vPmACr/V/IV1797d6Xl7//333RYAgD/KXkYtX7782TKqWRMuL3Xq1NH+/ft58C8gSqXezNqvxf26afYtb2ph7+t0uU5o//yHFTrgMs3c8YK61CjlvrFomODWu3dvLVq0iI3oAQAOU0bdtm2bJk2a5Lw2kxk6dep0toxqeuTMUiM//fSTAgMDnTZcPHrcvJl1Uj8dPaKdO/brmBO/r9LVv6utCke/VlLyKectRcmUTB999FFnjTcAAAwT0MyacKaManridu3a5QQ0U0ZNSkpyxkabxX4/+eQT9zeQH/S4+YyTSvlsneY+85SW1BmjN5+4TcFXXNwEhsLq37+/8zSVtSk9AADZmV625cuXO+GtQ4cOat68uZ577jnWBS0AgpsPyEhcq5fmb9PPJ/dr02ap45Ah6n17PQVdmtzmPEHVqlVLiYmJlEwBAOeVVUZ98skn9cUXXzgB7s033yS85QPBzadYOv1ZtO5qPEP1lr2taZ1rXbJa+KpVq7RgwQJNmTKFP0AAwDlMaFu5cqWzD6pRrVo1XXHFFXr66adZWiofCG5ezEreqOfGf6gGQ4ao8zXuAM/0rXq2YUuNvW2Zvnyps35ziXrdDDOLqEmTJs5AVAAAspjKjFlGyoyNfuCBB5zvKBgmJ3itDP24a51mPv+u4pJ+Vmb6tpS+f5c+/q6Obg2rq4qXMLQZI0aMcMYvmO5vAAAMswJB165dnQkJZrICoa1w6HHzZtYxfbbgWY154wuVqWLKkz9p/84zChs4XA/3aX3JJidkZ0qmZiXtefPmUTIFAD9nJiWYdd3MRIS2bdu6rSgMghs8zmxEbxZhZDsTAPBvZlzb4cOHmbjmQQQ3eJz5QzVbn0RHRzsragMAAM9gjBs8zpRITWiLiopyQhwAAPAMghuKhOlpi4yM1OTJk90WAABQWAQ3FJmhQ4cqLi7OmbAAAAAKjzFuKFJmGnivXr2cRRfNpsIAAKDgLh9jc38GPM6Etauuukpvv/22br/9drcVAAAPS/9eCe+8quf/87b+t+MjrYjZq7ING6hSyjbF7r9StaqXzbPMaKXu0tJJD6tX5L+1uUw9/b7F71TuMrOc1gntXzJVb51srJbVr8p881knpYR3peejpf8lSCtWS2XrS5WSpdhEqdZvJOff8Dx63FDkzASFv//97+rWrZvCw8PdVgAAPMNK3a7XhgzS4npPasbw9s46ptbxOE17epbi3pmtJc1maueb96p27ix1eo/mP9hDj39dR22qHVbsgi9Vd9ICLfxHmAITl2ncgir6+/+1UaXsv2cdk14bJi2+TpoxRAq2Q511RJo2SYp7X1oSIu2YLv0ud9jzDIIbLgk2ogcAFIkTn2n2gD56KmCYYl7+k+qWykpZp7R//kA1/vNiNX1hrdYNCdWV7pFM6Up+b4JGf3unxvVppsqX/6yD21Zp4X9XaGdANQV8X139nh+oluUvd99vpEqzH5GeukyKeVaq6243aeyfL/tkUtMp0tpB0lVF0+PG5ARcEiasLVq0SGPHjnVbAAAorFTtnPWkBs4qpz79w7OFNsNS+qlT9vcQ3RlWJ1doM9KUnN5aD/e0Q5vZaSggUMEtIjV4wiQNblpbd4zqlyu0WdLOudLAN6W+vXOGNiPdnCtIurNlkYU2g+CGS6ZLly7O98WLFzvfAQAoDOvgOr343LtKvamLOjev6La6rBR9tjleqZVCFFLXDlTnKK/r77pN9UtnC1nWMTubRWtt3a6KyB3MrCRp+gw7K7aXOt/gNmZJlz7bah+rY+fE2m5b0SC44ZIaPXq0JkyY4JROAQAouFNK3LhEs/dITe5sqety93L9+KW2rN+noI43qmm1K9zGCzChbd6bSgiN0qDWVXVOn1nih9JsO5w1aSNdV9ZtzHJMirOPBYXJPpnbVjQIbrikTMl03Lhxzj6maWlpbisAAPl1XHu3JShVddQ2pLbKuK2ZLJ36OkFrdl2hpq0bqPqvVS7Tv9XGaa8qIeQv6tG4wrmhTRnS3gQp1ZLa3iCVyfWOU4nSmp12aAuVqpdyG4sGwQ2XnJlZWr9+fS1cuNBtAQAgnzJStC/+gP1DI7WqXyVXoDmlpO1x2n52fJul9JT9Sko94x7PJj1Ja19aoRMRUecJbcYpad9e+3uw1KqeznlT0qfS9tOZ49uutA+mH7bbUt2DnkVwQ7EYMWKEXnzxRWeBXgAA8i3gKpWtEmhnqXqqUz3X1AMzvu3DeKVWzBrf9pN2zntNsUdyBTcntMVI3foovHbZHHnMOrhGM1clmSkJNjsulS1nf68h1anqtPwi9/g2M4lhoRSbnHnYwwhuKBaVK1fWc8895+yqwEb0AIB8C/iNmtwcauZx5nJGqduXasacHbJa3aD6Va+QTu/X1m/qqlnwL2VMs/bbrCcWyurWW38wa7GdZSn9aILmTFqjcvUqu2HO/r0mYc6k0XOkJkgzlto/NJLqmx2C7M+0rSlSs6udw55GcEOxadOmDRvRAwAKqKyu7/KA+lfYpFUfp5hRaLbTOpqwUC/v+J169Gtlhy4TuyylfRanb2/poOvc5UJMaJs3dYPK3XmbrkmL13/HD1bfvn0zv3rfrdbXPqa9dw5Q17MzS+3fu/5u6YHS0io7qDndcPZ/HP1EevkLqcc9zrscafbrb5tJ1+WaleohLMCLYmV629q3b6/o6GiFhoa6rQAAXIwzSv1qjV6d9p5Sgqvrqh/PKPiW7vpTh7oqfehDvTLxdX1euYYqVLxFDw242dlRQdb3WvfcEpW+v59urJS5TpuVukMLxo3SyGc+U+2HHtSgh3rrjyG/0TlzUVP3Sq/OlFIqSledkII7SH9qJ5X+TnrleelzO9hVqCk91DdzR4UiQHBDsYuPj1dUVJQ2bNigMmVyzgsCAAC/ILihRHjjjTe0Y8cOPfPMMwoIyOzKBgAAOTHGDSVC9+7dnRmm77//vtsCAAByo8cNJYYJbr1799bKlSudWacAACAnghtKlKyS6cSJE90WAACQhVIpSpQ+ffro6NGjbEQPAEAe6HFDiWM2oK9Vq5YSExOdvU0BAEAmetxQ4piwtmjRIo0dO9ZtAQAABsENJVKXLl2c75RMAQD4BaVSlFhHjhxRx44dNXv2bDVo0MBtBQDAf9HjhhLLLAkybtw4Pfroo2xEDwCAjeCGEi08PNzpbVuwYIHbAgCA/6JUihIvq2TKRvQAAH9HcINXYCN6AAAolcJLmJ62yMhITZ482W0BAMD/0OMGr2EmKLRv356SKQDAb9HjBq9hSqRz5sxxSqaHDx92WwEA8B/0uMHrsBE9AMBf0eMGr9O9e3ft2bNHq1atclsAAPAP9LjBK+3evVu9evVSTEyMs1AvAAD+gOAGr2X2MV25cqVmzJjhtgAA4NsolcJrsRE9AMDf0OMGr5aUlKRatWopMTFRNWvWdFsBAPBN9LjBq5mwtmjRIo0dO1ZpaWluKwAAvongBq9nSqaVKlXSwoUL3RYAAHwTpVL4BLMRfadOnTR79mzVr1/fbQUAwLfQ4wafYJYEeeqppzR8+HBnaywAAHwRwQ0+Izw8XGFhYXrllVfcFgAAfAulUvgUNqIHAPgyetzgU8xG9Ca0mY3oKZkCAHwNwQ0+x/S0RUZGavLkyW4LAAC+geAGnzR06FDFxcXpgw8+cFsAAPB+jHGDzzIb0ffu3dvZz5SN6AEAvoDgBp/2xhtvaMeOHZo4caLbAgCA96JUCp/WvXt3p+dt1apVbgsAAN6LHjf4PDaiBwD4Cnrc4POyb0QPAIA3I7jBL5iN6I3Fixc73wEA8EaUSuE3TMnUBDjT+2ZKpwAAeBt63OA3TMl03LhxGjx4MLsqAAC8EsENfsVsRN+gQQMtWLDAbQEAwHtQKoXfOXLkiDp27Kg5c+aofv36bisAACUfPW7wO2YXBbOP6fDhwymZAgC8CsENfqlNmzYKCwtjI3oAgFehVAq/ZXrb2rdvr+joaIWGhrqtAACUXPS4wW+VKVPGCW1RUVFKS0tzWwEAKLnocYPfmzZtmvbv389G9ACAEo8eN/i9fv36ac+ePWxEDwAo8ehxA2y7d+9Wr169FBMT48w6BQCgJKLHDbCZ9dwGDRqkCRMmuC05mbXfzCzUxMREtwUAgEuP4Aa4+vTpo6NHj+a5Eb0JdCbYsccpAKA4USoFsjEb0ZtwZnrWzN6mRmxsrCZNmqR58+Y5M1EBACgu9LgB2ZiwtmjRIo0dO1ZZzzQbNmzQsGHDCG0AgGJHjxuQh/79+6tTp07q0qWLAgICnHXeCG4AgOJGjxuQh2eeecb52rhxoyIiIghtADzPOia93FeakuA2AL+OHjf4PbP11RdffKGvvvrKbZGCgoKUkpKiV199VU2bNtVzzz3nHgGAwjop7d4iLXxJenyuNOlj6ZEW7jHgwuhxg18zy3wEBgZq7lz75pmNWdft+eef1zfffMNG9AA8KFl6dqj0yib7CbG62wZcPHrcgAswExWeeuopxcfHuy0A4CEHF0s1utLjhnyhxw24gK5duxLaAAAlBsENAADASxDcAAAAvATBDQAAwEsQ3AAAALwEwQ0AAMBLENwAAAC8BMENAADAS7AALwAAl8wJaf4YacW30v7/Sev3SEEtpMjG0hXNpOcGS5Uud98LnIvgBgDFLGu/3NDQULcF8C2xsbFq06aN+wqFQakUAIqZCW5RUVHuK8D3vP766+xC4yGXj7G5PwMoICt1l5ZOeli9Iv+tzWXqKazF71TusgD7yAntXzJVb51srJbVr8p8M5BLmTJlFBcXpypVqqh27dpuq2flvkZ/f95rNF3Jm1/VxJkrte6dFdoR2EgtfldeASf2K3ZetGYu3qStW9dr6X/f11dlGyjUPkYPAH7N6dOntXPnToWFhbktnnXx17f93uRYTZ/4mtavW6ZFO0qrqXlvQJoSYxfoxZlv66OtW7R+6SKt+CpQjUNru//OufJzTo8ypVIAhXBqt/XWX1tY13boavXp3sG6VrWs2yduto5lZFinv1lqjX72A+tIhvte4Dw++OADKyIiwn3lYeYavb9lzmt00kfWD3lcoxnfx1iPjV5jHc44Yx1b85gVHHS/NXf7FuvNZ9+0tnx/IvNNVob10+bxVpOgrtZLO1LdNuD8Dh8+bLVq1cpKTEx0Wzwor3uwfX3neQ/OOGDFPDbJWnM43bIvcGt48LVWj3kfW9vfnGa9tuWQddp9m/XTh9a4G66xwl9KsE66TTnk55wexoMSUCjpSl47XxvaRmvL+wv0+vx3tenjKbo75VUNf2yUBo/5Rp37t1alvB/YgLPM+J9q1app2rRpbounuNdom5dzXqPJr+jRc67RU0pc+5GC7wlT5YAMnUhL04nUtzX66a1q/OC9alktq/cgQKUrX60aqfHauON7MVAav6Zy5coaMWKExo4d6wwN8Jxf7sFxua7vvO7BVuIHWhF8m9pWvlzWiTQdP/Gllv1zij64vqf6trxaV2S+TSpdScE1TurDjZ/r0DkX+Hnu+9nP+UAR3vfdAAegQI5ZO5e/b33xc65Hq4wfrB1v/sd6+8uf3Abg12X1SkydOtVt8YR8XKMZSdayfzxvbf7JvPeotXlcB0tBkdbzn/yQefwst8dN11o93vrKfgVcHHNtP/DAA1ZaWprbUlj5uQeftr5bNs4av/mo/XPWNVzLuv2FrdY5/cZOj1s5K6jHW9Y351zgxXvfp8cNKJTyuv6u21S/dLZHK+uYds6N1tq6XRVRN9BtBH6d6ZWIiYlRQkKCIiMjnZl4hZefa7SCQgf1UstA+72n9iluRYLU9A9q36i8ezzLKR3a87n2qaFaN6ymoupYgO8ZNGiQQkJC1L59ey1evNgDvW/5ub4DFBjaW/1bVrB//kl74mK1Q03VuX19lc18w1kZh/Zq675Satq6gaqfc4EX833fDXAAPMF54nrRenPHDx7rhTB/pnz575fHxwRd5DWa8c1bVo+gIKvhExusH3K/MeMr662e9Sw1Ge/2zhVcXv+d+fKfr/fee8+9EjzkYu/B5hruca2lhmOsjcfOuI1ZTlrfvHW/VS6ggzXO6Z37FUVw378QetwAT0n/VhunvaqEkL+oR+MKHuuFsP9O+fKjrw8++MD5333hwoVKS0tTzZo1ndcecdHXaLqSt29WTGoddQi7VuVyvdFKjNM7y75Tkz93UFPTO1cIef3/gC/f/bIfRBQREaGnn35ahw8fVnh4uHsleEA+7sFW8k6tj/lSlTq0UINyuaKQ9a02L92g1MbhurWp6Z27gCK6718IwQ3whPQkrX1phU5ERF2yP174HrPO1dChQ50Pt65duzrLhHhMvq7RVH2VkKCjQaG66fqquT4oTilx8yotS22hP9/aSKYoZKUe0L6Uk5mHgfMwZdEuXbo4XyNHjnSGBnhMvq5vSz9/9ak+OFpH7W9qoKq53mweTJbaDyaN722f+WBipSpp32H7cSaXYrrvE9yAwnL+eGOkbn0UXrtsjj9e6+AazVyV5NQEgAvJWoQ3Ojras71sRn6v0bPj28LUtOaVbqPr9F6tnrc2W29EulJi52rhXk/OFIQvmjx5svr06eN8eVS+78FZ49sa65amwbmCUJr2rH7HfjBpqXuzHkxSYvXSwj32I0s2xXjfJ7gBhWClbtesJxbK6tZbfwjOvtCipfSjCZozaY3K1at8yZ7E4L1WrlzpTEjw9LZXBblGM5I+1brtp9Xw1hBdc2XOq9c6+KlWr0nJ1htxQLEbK+r2Xyspwa/t3r1bS5YsUb9+/dwWzyjQPTjjoLav2yk1bKVm1+SaSGB9p09W/0+pTcyDSUW74bQOxm5X9duvd0KccXHnrFRk9332KgUKyPzxzpu6QVe1vUXNavykj+fP0btfHM88mHFYO9/N0F0LovXErTV/WRsIOA+zovycOXNUv359t6XwCnaNpuv75Y+o4d1rdO+yGE3v/NucvQlH1uixNn/VJ8Pe08r76+rQu//R/Mp/0cM3VuUBBedl1icsX768R3vbLur6/u/LeuK2Wjnuwdb3yzWw4d2af+8y7ZreWb/JcYF/r7WP3aNbP+mnXSv+qmu/i9Gk+eX10MNtnHXZLvZvapT9N1Uqs9XzTHADkE8Z31lrn33Z+vBIuttgN/34qTX/0QjrWl1n3fLQs9ai+O9+WYUbBZLxY7z1n3u7Wi/E+/bq/F988YXnd00o8DV6yjqwbKjV8JanrQ3f53UFn7AObJhmDXhohPXMP5+0pmxI4jrHr4qMjPTsDOlC3IMzDrxjDWh4lzV6w8E8ZoFmWKcPrLdeGPA369Fnxlj/nLLeOnDafdd5zxl5Se/79LgBKHnSU7R78zotfPFpPT6/kiZ9vEyPtAhyD/qmI0eOeHawNlCCcH17DmPcAJQsRzfp2f5P6JVNhxRU+2q30ffxoQZfxvXtOfS4ASih0nVw8SDV6PqFX/S4AcDFoMcNAADASxDcAAAAvATBDQBQbMxuEWYpFLPhuBnADuDCCG4AgGJjFhw269cdOHBAVapUcdb7Mou1AsgbwQ0AUKzMosODBg1yNh2vUaOGevXqpf79+ys2NtZ9B4AsBDcAQIlglowwG5DHxcXpvvvu06xZsyijArkQ3AAAJU6bNm00Y8YMJ7RllVHHjx9PGRV+j+AGACixatas6ZRR09LS1LBhQw0fPtzZjN+UUX/++Wf3XYD/YAFeACXLmd2aP/RfWnHsR+2PfU/rv0xVUIu7FNm4iq644QE990g7VXLfCv9kQtvSpUu1fv16J9R17tyZlfnhNwhuAACvlJSUpCVLlmjIkCEaN26cunXr5kx0AHwZwQ0A4NVMyXTlypV64403nNfDhg1T8+bNVaZMGec14EsIbgAAn2EW9J07d65TRu3Tp4969uxJGRU+heAGAPA5ZvkQE+BML1yHDh2cAGcW+wW8HcENAOCzTBl106ZNmj59uvN64MCBateuHWVUeC2CGwDAL1BGhS8guAEA/AplVHgzghsAwC/lLqOaXrhOnTpRRkWJxs4JAAC/ZAJaeHi4sxbcxIkTtWvXLgUGBmrq1KnOGnFASUSPGwAALlNGXb58uaZNm+aUUSMiIpx9U4GSguAGAEAupoy6bds2TZo0yXlNGRUlBaVSAAByMQHN9LTlLqOanjjKqChO9LgBAHARspdRQ0JCdN9991FGxSVHcAMAIJ9iY2M1a9YsJSQkaMSIEc54ONaEw6VAcAMAoIB2796tVatWafDgwc5sVDNLtX79+u5RwPMIbgAAFJIpo5odGSZMmEAZFUWK4AYAgAdRRkVRIrgBAFAEssqoQ4YM0ZQpUyijwiMIbgAAFCGzJtzKlSudvVGNYcOGqXnz5qwJhwIhuAEAcImYMurSpUud8XCDBg1S586dKaMiX1iAFwCAS8RMWDAL+i5evFjHjx9XlSpVNH78eKesClwMetwAACgmlFGRXwQ3AABKAMqouBgENwAAShCzJtzcuXOdXjizlEjPnj0VGhrqHoW/I7gBAFACmTLqpk2bNH36dOf1wIED1a5dO8qofo7gBgBACRcfH+/0wpkyap8+fZxeOMqo/ongBgCAl6CMCoIbAAAFZn+EJm+V/j1Z+qGuVCtNirO/Bv5DCq9nf8q6b/Mwyqj+i+AGAEBBndgu3fuA1HOe/f3azLbjm6WOdnB75E2pyzWZbUXIrAG3cOFCPf7445o6daoiIyNVs2ZN9yh8DQvwAgBQIKelFf+RttwmdcoW0Mo3kx6wg9Pot6S0ou8bMfufjhw5UocPH1b58uXVpUsXDR8+3FleBL6HHjcAAArC2i/db4e2AyOklfdn6wrJkNaOkm7dLG1+W2pd0W2/NEwZddu2bZo0aZLz2kxm6NSpE2VUH0GPGwAABXHqgLR+j1TdDmY5Pk3tFxXMjM990jc/ZDZdQiagma21lixZ4myvtWvXLgUGBmratGlKSkpy3wVvRXADAKAgjtjBzc5m52cfTDzs/lw8KKP6HoIbAAA+zqz5ZkqmGzZsUEREhGbNmqWwsDBns3uzxAi8B8ENAAA/kVVGnTFjhubMmaMDBw6oatWqThnVzE5FyUdwAwCgICrXkOq4P+fJPlirivtzyWPKqGYz+5SUFNWoUUO9evVS//79KaOWcAQ3AAAK4sqrpRuvlb76XjrjtjnsFymH7O/XSfVK/rZUpoxqxr7FxcXpvvvuo4xawhHcAAAoiIDfShHtpS/3Sz9luI3GSenrvVKTW6RG5dw275C7jFqlShXKqCUMwQ0AgAK5UuoUZQe0GGnep87uV85/HNwovXpYeravFFhEe14VsawyqpmNasqoZiaq2ZHBlFHNOnEoPizACwBAgZmg9pH0/DTpWNZepT9J/R+W7mpYZHuVFgcT2pYuXar169c7oa5z585OmTU/zDpyZoN8s0QJCobgBgAALpoJX2Zx38GDB2vcuHHq3r2700N3MUzJdebMmc7CwCgYSqUAAOCimQ3sTY9bWlqaGjVqRBn1EiO4AQCAfDNrwpnZqKb3bdiwYU4ZtX379k4plNmoRYdSKQAA8IisMqoJb6YX7s4771RoaKh7VE6gMzNViR4FR3ADAAAeZUqmmzZt0vTp053XAwcOVLt27ZxeOrPIr1kvziw9gvwjuAEAgCITHx+vuXPnOrNRzX6p1157rV5++WWnLTAw0H0XLhbBDQAAFDlTJjVhzZRRAwICdMcdd+jJJ590j+JiMTkBAAAUObMn6vHjx5WRkeFsr/XUU085Y+KQPwQ3AABQZMx4N7NkiNnEvmXLllq1apUzOcF8maVFkD+USgEAQJEwoW3IkCEKCQlRv379nMkJKByCGwAA8Ljsoc0s2AvPILgBAIAiYcqi4eHh7it4AsENAADASzA5AQAAwEsQ3AAAALwEwQ0AAMBLENwAAAC8BJMTAACAV7NSd2npC+M07t9f64Yx4zV+4M0KviLAPnJC+5e8pJXX9NODIeXt1+lK3jxL02K+k3X8R1W7Z7AG3PxbXX5iv2IXzNeqvWdUvpz9nqSTqtv1IfVr91td4ZwhLyelhBhp3gapXHXpx5+liP7SDSekLalSuxsk5/8GzyK4AQAA73V6j+Y/2EOPf11HbaodtgPYl6o7aYEW/iNMgYnLNG5BFf39/9qokp2hrOT39PiLpfTI6A66Yt0oNYz4Ts9tHqCM93arfp+ualntKvsftJT20QS1Dt+qgZtf10ONy2aeJzvrmPTaMGnxdVL0EKmG/XvWEWnaJCnufWlJiLTzJan2le4veA6lUgAA4KXSlbx2vja0jbbz0gK9Pv9dbfp4iu5OfkXDHxulwWO+Uef+rZ3QJp1S4tqPFHxPmCoHZOhEWppOpL6tf47bpuuj7nVDmxGg0pWvVo3UeG3c8b0d43JLleY8Kk24Qpryt8zQZgRUliJC7dC2VWpqB7fqpTLbPYzgBgAAvFSaktNb6+GezVTZlCUDAhXcIlKDJ0zS4Ka1dceofmpZ/vLMt1rJ2r6lolrVMz1oqfoqIUFHg9pr0GN/Vmg59z0OSyeOfKcD7quc7Bi3c6408E2pb2+pbqDb7ko/Zf9HkNSppXSl58ukBsENAAB4qfK6/q7bVL90tpBkHbOzVbTW1u2qiBzBqoJCB/VSy7L2e0/tU9yKBKnpH9S+UTn3eJZTOrTnM+1TQ7VuWE054peVJL0Ybee+9lLnG9zGLOnSZ1vtY3WkkNpum+cR3AAAgG8woW3em0oIjdKg1lVzhq6AINWsU8WZbGAd+kIfbT+threG6JrcPWPWAW1ZuVmpjdso7Lpc49sSP5Rm2+GsSRsp9zEdk+LsY0FhdiCs5rZ5HsENAAB4v/RvtXHaq0oI+Yt6NK6QM7TlkK7k7ZsVk1pHHcKuVe7+NisxTkuXfafG97ZX08Ds/0qGtDfBGeKmtjdIZXKd4VSitGanHdpCpeqen5SQheAGAAC8W3qS1r60Qicion4ltBlZ49tCddP1uXrlzASGzau0LLWl7r21kUyh1Uo9oH0pJ51j2vel/T1YalXPzGHIKelTaftp6c6W0lX2wfTDdptJeZ5FcAMAAN7LCW0xUrc+Cq9dNkeesg6u0cxVSTlnhp4d3xampjVz9Yyd3qvV89YqtUm4bm1a0W5IV0rsXC3c+7P9sx2Zypr+uRpSnarm3dnkHt9mJjEslGKTMw97EMENAAB4JSt1u2Y9sVBWt976Q3DWch6GpfSjCZozaY3K1aucI8xlJH2qdecZ32Yd/FSr16SoyZ87qKmZxGAdUOzGirq9aQX7aCmpSStn0ug5Uu0gOGOp/UMjqX4V+7sd9LamSM2udg57EsENAAB4HRPa5k3doHJ33qZr0uL13/GD1bdv38yv3ner9bWPae+dA9Q1x8zSdKV8tk0bzjO+TUFVVbtmJdUIrqTSOqkDK97W150j3bFu9tf1d0v97YC4yg5qTjee/R9HP5Fe/kLqcY9pyJRmv/62mXRdruVCPICdEwAAgHexvte655ao9P39dGOlzDXYrNQdWjBulEY+85lqP/SgBj3UW38M+U2uLatO6+DyR/WH56rq5fnDdXO13BtandTBjTP11Lwk1flNoMrcer+zJVaOd6XulV6dKaVUlK46IQV3kP7UTir9nfTK89LnpaUKNaWH+trHsvcCegbBDQAAwEtQKgUAAPASBDcAAAAvQXADAADwEgQ3AAAAL0FwAwAA8BIENwAAAC9BcAMAAPASBDcAAAAvQXADAADwEgQ3AAAAL0FwAwAA8BIENwAAAC9BcAMAAPASBDcAAAAvQXADAADwEgQ3AAAAL0FwAwAA8BIENwAAAC9BcAMAAPASBDcAAAAvQXADAADwCtL/A/ZbI4zPOuV9AAAAAElFTkSuQmCC
iVBORw0KGgoAAAANSUhEUgAAApcAAALrCAYAAACrjKwrAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAIc8SURBVHhe7d0LXFVlvsbxhzFT8Za3SRw1MzNLErxxnFHSyiEtOxjqlA5pk0rq0SY7aWY26mQeR5ssdWxCLTXTHJS0TInxRkg6mAaGjqmVCWmFl1GJvCDr7HexMEBU1A1s2L/v57Nns9+9cM2cs1j72e//vfhYLgIAAADc4BfOMwAAAHDNCJcAAABwG8IlAAAA3IZwCQAAALchXAIAAMBtCJcAAABwG8IlAAAA3IZwCQAAALchXAIAAMBtCJcAAABwG8IlAAAA3IZwCQAAALchXAIAAMBtCJcAAABwG8IlAAAA3IZwCQAAALchXAIAAMBtCJcAAABwG8IlAAAA3IZwCQAAALchXAIAAMBtCJcAAABwG8IlAAAA3IZwCQAAALchXAIAAMBtCJcAAABwG8IlAAAA3IZwCQAAALchXAIAAMBtCJcAAABwG8IlAAAA3IZwCQAAALchXAIAAMBtCJcAAABwG8IlAAAA3IZwCQAAALchXAIAAMBtCJcAAABwG8IlAAAA3IZwCQAAALchXAIAAMBtCJcAAABwG8IlAAAA3IZwCQAAALchXAIAAMBtCJcAAABwG8IlAAAA3IZwCQAAALchXAIAAMBtCJcAAABwGx/LxfkZAAAAeVnfa/PsSMX8eFYnvvPTQ6Me111+FXUq9RNFvf1P7atYXdXPHFbayWbq9cdHFexXyfnFC1kZu7XytUma9NevdeeEyZo87C75XefjeueUDqx4XWtuHqgnAmq4XmcpffN8zYr5XtaJk6r30AgNvetXqnDqgBKilip23znVqO46Ju20mvYaooHBv9J19hk8A+ESAACgUK4A99HL+lvFxzX+nl9ow7PdFJr6tD55rqJit92k/uHtVc8Oh//RlpfC9NuPH9aWDyLU8nrTVsDZvVr6RF89/3UTdax3xBUSv1TTaVFa9r9B8k39QJOi6uiPT3dULdevWukf6fm/VdQz47voug3j1CL0e72yeaiyP9qj5v17qV09E2AtZW6Zog4h2zRs8wINaVk15zwegLI4AABAYaxUrV9dSw91qicf67QyT5xWxgdT9dKmpnpiQJATLI3Kqu1XTxmfJCrlu7NOW16ukLp+qeI6RSrxn1FasPRDxX86Qw+mz9Po58ZpxIRv1GNwBztYSmeUun6L/B4KUm2fbJ3KzNSpjPf0p0nbdUfEw06wNHxUufaNapCRpI9TfnBFTc9BuAQAACiElb5LW+u30q2mJ/KnA0retF/Vfj1QY/q3UbV8nZOndPRQuvNzYTKVntVBT/VrrdomkPr4yq9tT42YMk0jWjXWfeMGql2NCjmHWunasfUGtW9meiIz9FVyso5V66zhzz2iwOrOMTZLp45+r4POK09CuAQAACiMb2sNH9xGvq4gd2bvp1qdUlGtegTr9qr5kqWUna692/ZLrQLVon5FpzGvGrrjga5qXjnP71nHtXNxpNY37aXQpr5Oo1FTgcPD1c6c48x+Ja5Odv2796jz7dWd93Od0Xd7d2m/WqhDi3oq8N+oVBEuAQAACuFTrYGa1DVl6LP6bneSdqil7m3dSNfnvH2elbZdMWsPy//+djm9nJdjguWSd5QcGKHhHermD4Y+1dSwSR17go713RfasuOsWtwboJsL/rvWQW1ds1kZLTsq6FbPGW9pEC4BAAAuxZSqNyYqo1ZbBd1Ws0Av4Rmlbo7VBxlt9ci9tytvH2Shsr7Vx7PeVHLA79W3ZcF/K68spe/YrJiMJuoSdIsK9ltaqYla+cH3avlwZ7XyLUKgLUGESwAAgEvJHW/Zua3uqFtg0R/rW21eGaeMliG6t1VNV8M5ZaQd0OGsQqbYZKVp/eurdSo04jLB0sgdbxmo39xRoHfzfKBtp4edQGtlHNT+w6dz3i5lhEsAAICLyjPe8u471TBfcrJ0du8GLcnbg2j9oITXP9C+M84huexgGSP17q+QxlXzhUXr0DrNjU3LP+P7/HjLILVqWKAQf3af1i5Zrwx/E2hvcDVk6XDCYi3b91PO+6WMcAkAAHBRZ5S2I/Ei4y3P6tBnCVqXtwfx0FZ9XP/X+UrVVsYOzX9hmazej+qefIusW8o6lqxF09aperPa+QJndtrn2nCR8ZbWoc+1dt1h+T/SRa3MxB/roBI+vkG/tXtOSx/hEgAA4GKsw9r1SdL58Zb5VVC1eg3UUPXUoHZlKeuAVi84pB7hAefHXppguWRmnKrf31U3ZybpH5NHaMCAATmPRx9Uh1ue0777h6pXvhnjWTq8a7viLjLeUtXqqnHDWmrgV0uVdVoHV7+nr3v09JixlxUmuDg/AwAAIJ/j2rP6Q313zzA9dX9T5V+F6Beq0ug2taq7Ux/FJ2lrwiG1GPSYOtVzliOyftDGWWtVb/ATCrmtvmrVbqg7WjfW2c/WaP7sz+Tzm97631njFfGbBgW2bzynE3vWavl3/6XnnrpPTarm7wv0qfIrtWzlq88/ite/tyZqb4vf63861XdFXc/A9o8AAABwG8riAAAAcBvCJQAAANyGcAkAAAC3IVwCAIAy7aefPGN9R+QgXAIAgDLN19dXaWlpziuUNsIlAAAo0zZt2qSwsDDt2bPHaUFpIlwCAIAyrWPHjpo+fbrCw8O1cOFCyuSljHUuAQBAuXD06FEtXrxYI0aM0EsvvaSmTZvqzJkzuueee9SwYUPnKBQ3wiUAAChXvvzyS82fP19vvPGGqlWrpq1bt6pOnTrOuyhulMUBAEC5kJSUpMmTJ6tv3752qGzQoIFiYmIIliWMcAkAAMosM74yNjZWPXv21IQJE9SuXTvFxcWpatWqGjRokJo3b+4ciZJCWRwAAJQ5ueMrzQSeLl26qF+/fgoMDHTelYKCghQdHc1Yy1JAzyUAACgzTOl79OjR6tatm/3alL2nTp2aL1iaNS9NSZxgWToIlwAAwKMVLH137drVLn0PHz5ctWvXdo76WWZmJuXwUkS4BAAAHsn0QM6aNUudO3fW2rVr7WC5YsUKhYSEqEqVKs5R8DSESwAA4FESEhLs0rfZdadGjRqFlr7huZjQAwAASp0pfa9Zs8aeoGOMGjVKbdq0uaoeSvNvffHFF4TRUkK4BAAApcaUvk2pO3dXnd69ezNesowjXAIAgBJnSt8rV67Uxo0b7Yk5PXr0KHRyDsoewiUAACgR7ix9w3MRLgEAQLHas2ePvZTQk08+qRkzZtizvSl9l1+ESwAAUCxM6Xv+/PlKTk7WmDFj7J10KH2Xf4RLAADgNmZbRjOOcsqUKQoICNBjjz2mjh07Ou/CGxAuAQDANcstfZtZ3zNnzqT07cUIlwAA4KpR+kZBhEsAAHBFTOl71apV9taMJkyGhoZS+sZ5bP8IAACKxJS+J0+erDp16ujEiROKjo62t2UkWCIvei4BAMBFmbUpt2/frmnTptmv+/fvr+7du7M2JS6KcAkAAC5A6RtXi7I4AAA4L2/p+/jx45S+ccXouQQAwMuZ0nd8fLxmz55tvx42bJiCg4MpfeOqEC4BAPBSpvS9ePFie69vU/ru16+fAgMDnXeBq0O4BADAyyQlJdmh0uykYybomFDJ2pRwF8IlAABegNI3SgrhEgCAcozSN0oa4RIAgHLIbMu4cuVKu/Q9fPhw9ejRg9I3SgThEgCAcsKUvtesWWP3UhqjRo1SmzZtKH2jRLHOJQAAZVxaWpq92HnVqlW1e/due13KFStW2GtTEixR0ui5BACgjKL0DU9EuAQAoAyh9A1PR7gEAKAMMNsyxsbGasSIEZo5c6ZCQkLUvHlz513AcxAuAQDwYKb0PX/+fCUnJ2vMmDH2ckIlU/o+J6UmS6vmSoldpbfCnHbg0giXAAB4GLM2pRlHOWXKFAUEBOixxx6zJ+eUnHTp5T9LJ2+Svlog/WKitIBwiaIhXAIA4CE8r/Sd4QqZD0qfjyBcoshYiggAgFJmSt+DBw9WeHi4GjRooCNHjtizvxlTibKIcAkAQCkwpW8z4zsoKMgeU2lK34mJiQoLC2M5IZRphEsAAEqQKX1PnjxZderU0fHjxxUdHa05c+aU8JhKoPgQLgEAKGZmbUpT+u7Zs6dGjx6tFi1aKDMz0x5b2bBhQ+cooHwgXAIAUExyS9+dO3e2d9IxC56bbRlN6ZtFz1FeMVscAAA3M6XvZcuW6fnnn7dnfZsey7LVQ3lKWjpBWp0q7dwg/ec2qWNj6c5B0jPBzjFA4QiXAAC4gSl9b9++XdOmTbNf9+/fX927d6eHEl6HcAkAwDUwpe/Fixfb5W+ze06/fv0UGBjovAt4H8IlAABXISkpyQ6VZicd00tpQmW5WELIx8f54TKID7gIwiUAAEVkSt/x8fGaPXu2/XrYsGEKDg6m9A3kQbgEAOAyKH0DRUe4BADgIspt6fuyTkvrZ0ivbJXqZEsJX0i9/ySNC5OqVXCOAQpHuAQAIA9T+l6zZo3dS2mYtSnbtGnjRaVvVyxIni0tuEn6ywNSRVfToY+k0Mcl/+nS338nXV/EcZnwSiyiDgCAS1pammbNmiVfX1/t3r1bU6dOtRc8N9syeteYykwpbpW0ZpvrR9P/5AqSfndLI+6R3loufX0q5zDgIgiXAACvZrZlNFsyml1zatSooSNHjmjs2LFq3ry5c4S38ZV6PC29cJ9UlR5KXDnK4gAAr0Pp+wqlr5UeGCL1nC8918nuzAQuhp5LAIDXoPR9pSzp0Dpp8OvSiHel0R0JlrgswiUAwCuY8rcpfTdo0IDSd5Gck3a+LT2fJL3ylvTondLH77nC5lnnfaBwlMUBAF7BlMLpnSwi64T04SvS6G+kP/VwZof/R1qwS5ozRfrldTnHAYUgXAIAgDxOS9HPSL1mOa/z6PS6tGGIRLbEJRAuAQAA4DaMuQQAAIDbEC4BwMuYsYdAeWX2gUfpIlwCgBfZs2eP+vbt67wCyhcTLAcOHOi8QmlhzCXg8bKUvnm+ZsV8L+vESdV7aISG3vUrVTh1QAlRSxW775xqVHcdk3ZaTXsN0cDgXzHWHpcUFBSk6OhoNWzY0GlxA+t7bZ4dqZgfz+rEd356aNTjusuvok6lfqKot/+pfRWrq/qZw0o72Uy9/viogv0qOb+Yn5WxWytfm6RJf/1ad06YrMnD7pLfdWam8ikdWPG61tw8UE8E1Mg5GCjEQw89pL/85S/uXWaq1K/v01JyjLQkTqpeXzr5kxQ6WLrzlLQ1Qwq+U7L/HQ9hwiUAz5X9Q4z13Ph11pHsc9bxdc9ZftUet5Z8vtV65+V3rK0/nMo9yvpx82TLv1ov6/WUDKcNKNzy5cutl156yXnlDmetH2L+zxq/7nvXlZhurRvd1qrW9x3r88//Yb381r+sH85mO8cdszZP6mJVC/m7lXI6ty2PM3usd//Q1rqlSy+rf58u1i1qZP122hbreHa2dfabldb4lzdZRwv5NSAvc32PGjXKeeUOF17f1Uvy+s7+j2XNG2xZD0y1rG+de372EcuaMcaywttaluszwfrmdE67h6AsDni0M0pdv0V+DwWptk+2TmVm6lTGe/rTpO1q+cTDalcv99uxjyrXvlENMpL0ccoPZk8N4KK6d+9u70qTlJTktFwjK1XrP6ylhzrVk491WpknTivjg6matOkWPTEgSPXO96hUVm2/esr4JFEp3xVciDtL6euXKq5TpLb+M0oLln6o+E9n6MH0eRr93DiNmPCNegzuoFoe1DkDz2Su740bN9qL5ruFm6/vxCu6vjOkRc9KU66TZvyP1MC55/vUlkIDpRXbpFYBUv2KOe0egnAJeDIrXTu23qD2t1Z1vcjQV8nJOlats4Y/94gCqlXIOcZm6dTR73XQeQVcillIPDIyUhEREfZ2iNfKSt+lrX6tdKtZaPunA0retF/Vfj1Qz/VvrWr5PixP6eihdOfngjKVntVBT/VrrVrmw9rHV35te2rElGka0aqx7hs3UO1q5L3mgcKZ63vRokUaOXKkPcb4WhV2fVf99eNXfX3XLvL1bUk7F0vD3pEGPCo19XXaHVlnXP9RzZWm2zmL3HsOwiXg0WoqcHi42vm6bhxn9itxdbLrW+o96nx7def9XGf03d5d2q8W6tDC9e3aaQUuJjAwUNOnT1ejRo3s8ZfXNIPct7WGD24jX9eH4Zm9n2p1SkW16hGs2811m1d2uvZ+ut91DQeqxQU9LTV0xwNd1bxynt+xjrs+WyO1vmkvhRb8YAUuwYy3NNd3eHh48VzfD5TA9W25vvj9LVLK6Cz1uNNpzJUl7drmeq+JFNDYafMgTnkcgIfL/uZdq2+1alaLF+Ks407bedlfWe/2vcWS/2Rr84/XNijN3BZ4eOcjNTXVuQqu1mnrm3cft6qpk/XCx4edtp/lXsP+kz6xfnTaLir7P1bKO3+z3kn5j+WuYZaF/W/m4T0Pt17fcelO28/cfn27/j3XySzLdV+3Lrivu/6+XuiUM95yf+7Ye89BzyVQJmQpfcdmxbi+pXYJukUF+y2t1ESt/OB7+T/SRa0Kfpu+Qq77Ag8veRw5ckSDBg1SaGioNm3adO2zx80wjo2JyqjVVkG31XQac51R6uZYfZDRTo/ce7su2Q+Z9a0+nvWmkgN+r74ta7qtJ76w/xvwKL+PzMxMjRo1yr6+4+Pj3Xp9ty/0+v6nG6/vbGlfsj3kUp3ulKoUOOpMqrRup91LqvrXO42eg3AJlAm54y0D9Zs76ha4GV34oW1lHNT+w6dz3gYKYdYD7NatmwICAuzJPR07dnTeuQa54y07t9UddQssiGV9q80r45ThH6J7W5kP5nPKSDugw1mmUymPrDStf321ToVGuDVYwruYMviTTz6pxo0ba8mSJerUqZPzzjXId30XKHub6/t9d17fZ6T9X7qe/aT2zcyczfzSPpd2nJXubydVcr2ZdcTVZpKoZyBcAmXB+fGWQWrVsMC31LP7tHbJ+jw3tSwdTlisZfvYhQUXN2XKFPXv31/Dhw93Wq5VnvFod9+phvk+XSyd3btBS/L2rls/KOH1D7TPzEnIZX/wxki9+yukcdV8n6fWoXWaG5tm1zeByxk/frz9xclc32aCz7UrcH3nm3uTc32/W9j1nfc7/hVd364/oKqmRtVAalI3p+m8guMtXb+1c5mUcLHJRCWPcAmUAdmub6kbXN9SW9wboJsLzAq0Dn2utesO57mpHVTCxzfot3bQBC5klmgxs2jdFyyNM0rbkagdaql7WzdS/q9AZ3XoswSty9u7fmirPq7/6/PDOKyMHZr/wjJZvR/VPfkWoLaUdSxZi6atU/VmtenJxGWZJbbM9e3enXqKcn23veD6vrPq1V7fFSX/9vZk8AtkJEtzVrp+uF1qXsf1/JO07bDU+kb7bU9AuAQ8XpYOu76lxl1kvKWq1VXjhrXUwK+WKuu0Dq5+T1/36HnNYy9Rfs2fP98ei+ZW1mHt+iTpIuMtK6havQZqqHryq13ZdUkf0OoFh9QjPMAZxrFDS2bGqfr9XXVzZpL+MXmEBgwYkPN49EF1uOU57XtgmHoxYxxFYMrg5vp2T4+lo8D1nf/uevHr2ywiV6Tr+/6hBa5v1xnueFAa7Aqisa4waXdpuv7j2GfSG19IfR+yj7Jlul5/21q61XP+Ptj+EfB4rm/Fq57VPa/U1RtLR+uuegU3dzytQx/P1YtL0tTkl76qcu/j9vaQbAGJwuSOtUxMTHRa3MRK1ar/6adXfvmilo7vonoFv9uYSQyz/6olB2vrl5V+qXuHDNBdpgfH+kEbXlmhyo8P1K9r5dQarYwURU0ap7F/2aXGQ57Q8CGP6r8Dfsk1jcsy13fdunX1448/ujlcltL1nbFPenOudPgGqdIpya+L9LtgqfL30rxXpX+7wmzNhpLrfLrIlpOlgXAJALZzykh5S4Mez9Rzm59UQDldr9tMdPjiiy/sdS7hJawMafvH0pyZUkikFNbIeaP84fr2DJTFAXg5S1mHv1D88qkaFDZSS4+eUcEJnuWJ6c3hg9eLHIuXBo6TPtkivb/XaSy/uL49A+ESgBc75/rsfU2Dx72p+PTKavyrC0a0AmVbrWDpzVeloaG69OKLgPsQLgF4sQquz96n9Nbf/6KxQ3qrQ2M+fQHgWhEuAQAA4DaESwAAALgN4RIAAABuQ7gEAACA2xAuAQAor87tkZ78g/SH8dL330szR0oDhkrxPzgHAO7HIuoAYEtV9IC71SthiD7d/Yzash0MAFwVei4BAADgNoRLAADKIx+foj0AN6MsDpSQo0ePqnbt2s6rn5n2p59+WocOHdJHH33ktKKknNuzVE+9tFonfjqghKiN+lJ+avvA3WpZp4buHPRnPRNczzkSAFAUhEugBCQlJal169YaNGiQAgIC1KBBAx08eFDJycnatm2b0tLSFBoaqjlz5ji/AQBA2US4BErQnj17tH//fmVkZNiv/f39NXfuXJ06dUpdunRRWFiY3Q4AbpGVJk0d5/qGe871wvXz9prS5ElSH39XAsg5BHA3wiVQimJjYzV79mw9+eST2rJli8aOHeu8AwDX6oQ04xmp6fNSj5tcr09LH7mCZbcPpSXvSo80zzkMcDMm9AClxJTCx40bp6lTp6p58+ZKTEx03gEANzj3tTR/mZS432moJIUMkEIPS2/FS9lOM+BmhEuglEycOFFjxoyxg2XDhg3tNlM2BwC3qNBM+r+Z0v23Og1AySBcAqUgOjrafs47xrJ///72+EsAcI+q0n2/lzo0cF5nSRvelta1ksb/NwkAxYYxl0AJM+XwRo0aKTU19XyPpfHTTz+pb9++GjZsmEJCQpxWAHCH09L616RXDksT/1dqe6PTDrgf4RIoQSZAmsk73bt3L3RmuAmepp3xlwDcxjouvfVn6ajrS+uQrpLvt9KiA9KjnZgxjmJBuARK0MKFC5WSkmJP4gGAYpexV5r6tPTNXVLoLU5bkrQ5SHq9R85rwM0Il0AJMZN1wsPDFRMTU+hOPQDgVtn7pcFh0pufOQ25akmz46ShdzqvAfciXAIlgPGUAABvwVwxoATMmzdPQUFBBEsAQLlHzyVQzMy+4hEREYqLi1OVKlWcVgAAyid6LoFiZMrhJlhGRkYSLAEAXoFwCRSj6dOnq2fPngoMDHRaAAAo3wiXQDFJSEiw16scOXKk0wIAQPnHmEugGBw9elTdunXTokWL7L3DAQDwFoRLoBiMHj1a/v7+9n7hAAB4E8rigJvFxsbaC6b36dPHaQEAwHvQcwm4Ue7e4NHR0WrYsKHTCgCA9yBcAm40ePBgde/e3Q6YAAB4I8rigJuY3kqDYAkA8Gb0XAJuYMrhjRo1UmpqKuVwAIBXo+cSuEZmF56JEyfqo48+IlgCALwe4RK4RlFRUapVq5ZCQkKcFgAAvBdlceAamCWHwsPDFRMTo9q1azutAAB4L3ougatkyuFmsfRJkyYRLAEAcBAugas0b948BQUFUQ4HACAPyuLAVUhKSlJERITi4uJUpUoVpxUAANBzCVwhUw43wTIyMpJgCQBAAYRL4ApNnz5dPXv2VGBgoNMCAAByES6BK5CQkKDExESNHDnSaQEAAHkx5hIooqNHj6pbt25atGiRmjdv7rQCAIC8CJdAEZllh/z9/dW/f3+nBQAAFERZHCiC2NhYe8H0Pn36OC0AAKAw9FwCl5GWlqawsDBFR0ezdzgAAJdBuAQuY/DgwerevbsdMAEAwKVRFgcuwfRWGgRLAACKhp5L4CJMObxRo0ZKTU2lHA4AQBHRcwkUwuzCM3HiRH300UcESwAArgDhEihEVFSUatWqpZCQEKcFAAAUBWVxoACz5FB4eLhiYmJUu3ZtpxUAABQFPZdAHqYcbhZLnzRpEsESAICrQLgE8pg3b56CgoIohwMAcJUoiwOOpKQkRUREKC4uTlWqVHFaAQDAlaDnEnAx5XATLCMjIwmWAABcA8Il4DJ9+nT17NlTgYGBTgsAALgahEt4vdjYWCUmJmrkyJFOCwAAuFqMuYRXO3r0qLp166ZFixapefPmTisAALhahEt4NbPskL+/v/r37++0AACAa0FZHF7LlMPNgul9+vRxWgAAwLWi5xJeKS0tTY0aNVJqaip7hwMA4Eb0XMIrTZw4UcuXLydYAgDgZoRLeJ3o6Gj7OSwszH4GAADuQ1kcXoVyOAAAxYueS3gNswvP8OHD9dFHHxEsAQAoJoRLeI2oqCh7LcuQkBCnBQAAuBtlcXgFs+RQeHi4YmJiVLt2bacVAIArlPWDklct1ZKN36p6w2o6eaKBQoc+ojtPfa6tJ25WcMAvdZ1zqKzvtXl2pGJ+PKsT3/npoVGP6y6/ijqV+omi3v6n9lWsrupnDivtZDP1+uOjCvar5PzihayM3Vr52iRN+uvXunPCZE0edpf8rvNxvXNKB1a8rjU3D9QTATVyDi5lhEuUe6Yc3rdvX40aNUodO3Z0WgEAuDJWxg69NeJ/FH3rnzVndBc73FknEjXrpflKfP9trWg9VzvfeViNTeZTltI/ell/q/i4xt/zC214tptCU5/WJ89VVOy2m9Q/vL3q2eHwP9ryUph++/HD2vJBhFpeb/9yfmf3aukTffX8103Usd4RJUR9qabTorTsf4Pkm/qBJkXV0R+f7qhahfxqaaAsjnJv+vTpCgoKIlgCAK7eqV1aNOJxTfEZrteeyQmWhk+NQIW2Oa2VX1RUqw63qX5uwLNStX51LT3UqZ58rNPKPHFaGR9M1UubmuqJAUFOsDQqq7ZfPWV8kqiU7846bXm5Qur6pYrrFKnEf0ZpwdIPFf/pDD2YPk+jnxunERO+UY/BHTwmWBqES5RrSUlJWrFihUaOHOm0AABwpTK0c/6fNWx+dQ2IuE+35OtdtJR15ozrOUD3BzXR9TmNstJ3aWv9VrrVHPvTASVv2q9qvx6oMf3bqFq+IHhKRw+lOz8XJlPpWR30VL/Wqm0CqY+v/Nr21Igp0zSiVWPdN26g2tWo4BzrGQiXKLdMOTwiIkKRkZGqUqWK0woAwJWxDm3Q3175UBm/CVOPNjWdVod1WLs+SVLGDQEKaFrNaXTxba3hg9vI1xU+z+z9VKtTKqpVj2DdXrVAF2N2uvZu2y+1ClSL+hWdxrxq6I4Huqp55Ty/Zx3XzsWRWt+0l0Kb+jqNnoNwiXLLlMP79++vwMBApwUAgCt1Rqkfr9DbeyX/+9vl9ETmdfJLJW7cr6rdOqhVvfNTeeRTrYGa1DUTdM7qu91J2qGWurd1o/M9m7mstO2KWXu48H+7MCZYLnlHyYERGt6hrorwGyWOcIlyKTY2VomJiRo4cKDTAgDA1TihfduTlaEm6hTQWPnrYJbOfJ2sdbsrqtV/5RlvmZeVrh0bE5VRq62CbqtZIAy6guvmWH2Q0VaP3Hu7LtsHmfWtPp71ppIDfq++LQv+W56DcIly5+jRoxo3bpymTp1KORwAcG2yD2t/0kHXD7erffM6F4TDtB2J2qEAdbfHW1rKOnxAaRnnnPddcsdbdm6rO+r+3LNps77V5pVxymgZontbmXL7OWWkHdDhrEIW8slK0/rXV+tUaIRHB0uDcIlyZ8qUKfZOPGbBdAAArolPJVWt4yv5NVOT+gWK2rnjLWvljrf8UTuXvKWEo7nhMs94y7vvVMN8qcvS2b0btOSD79Xy4c5q5euKi9YPSnj9A+0z84PysoNljNS7v0IaV80XLK1D6zQ3Ns31r3kOwiXKFVMOP3bsmPr06eO0AABwDXx+Kf+7ApVnqo7jnDJ2rNScRSlS+1ZqXreidPaAtn3TVK39cifm5PZsFjbe8qwOfZagdRnt9LBTErcObdXH9X+dEzQdZm3N+S8sk9X7Ud2Tb5F1S1nHkrVo2jpVb1bbo3oyCZcoN9LS0nTfffdp/PjxlMMBAG5SVXeEDdLgmvGK/fSw00N4VseSl+mNlJvUd2B7u8WEvcxdifr27i66taIT9c73bOaMt8yvgqrVa6CGqqcGtStLWQe0esEh9QgPOD/20gTLJTPjVP3+rro5M0n/mDxCAwYMyHk8+qA63PKc9t0/VL08bMY4O/Sg3Bg8eLC6d++usLAwpwUAAHc4p4yv1unNWR/psF99VTp5Tn5399HvujRV5e8+0bypC/Tv2g1U84a7NWRo7raMLlaqVv1PP73yyxe1dHwX1SvYvWgm6Mz+q5YcrK1fVvql7h0yQHfl9k5aP2jDKytU+fGB+nWtnHUsrYwURU0ap7F/2aXGQ57Q8CGP6r/zbjfpIQiXKBeio6O1Zs0azZkzx2kBAAClgXCJMs+Uw01vpQmYDRs2dFoBAEBpYMwlyjSzC4+ZGT5p0iSCJQAAHoBwiTItKirKXnIoJCTEaQEAAKWJcIkya8+ePZo1a5bGjBnjtAAAvJGpYvXs2dN+RukjXKJMMjeQ0aNH2/uH165d22kFAHgjs/xc165d9eSTTyozM9NpRWkhXKJMMqEyKChIHTt2dFoAoDw7J6Vul14fJv0h2mlDXmb8fUBAgLp06aKkpCSnFaWB2eIoc8xNIyIiQnFxcSyWDsALpEsv/1k6eZP01QLpFxOlBaznezHmM2LChAmqV6+evfaxv7+/3d6oUSM+M0oI4RJliimHd+7cWZGRkQoMDHRaAcAbZLhC5oPS5yMIl0VgQuayZcu0aNEiffPNN0pNTWVVkRJCWRxliimH9+/fn2AJACjU0aNH7XWPTYXr22+/la+vr+Lj4wmWJYhwiTIjNjZWiYmJGjhwoNMCAECO3BVE6tatq4MHD9o9lg8++KDCw8PVqVMn5yiUBMriKBPMN9Fu3brZNwuzriUAeB/K4gWZoVLbt2/XtGnT7NemsmXGWeaOrTQTP9m9reTRc4kyYcqUKfZMQIIlAMB0OCxcuNAeg79y5UqNGjVKK1assLcCzg2WZmvgBg0aECxLAeESHs+Uw48dO6Y+ffo4LQAAb2RK35MnT1adOnV04sQJu1dy6tSphS5LZ9a7pEOidFAWh0cz3zzN8hHM8gPgvU5JSydIq1OlnRuk/9wmdWws3TlIeibYOab8ulzp+2JMEJ07d64dPlGyCJfwaIMHD7ZvIqbUAQDwHqb0vWrVKnuSjlkYPTQ09Io2ziBclh7K4vBYptxhECwBwHuY9SnN9r5mEuflSt+XYmaNd+jQwXmFkkTPJTySKYebUMksPwBezcfH+eEyyvhHuSl9m7UoZ8+ebb8eNmyYgoOD2VGnjCJcwuOYm0zfvn3tm0tISIjTCgAob0zpe/HixfbMb1P67tevH5tklAOUxeFxoqKi7Bl+BEsAME5L66dJPX4nDegtNbtTGhMlnTznvF/25C19GzExMXbpm2BZPtBzCY9iBmCb3RTMjaZ27dpOKwB4K9dHdPJsacFN0tQHpOtcTYc+kkIfl/xfkd54WKpYxNJ5KaP07T0Il/AYueVwsxjulQ7cBoDy6UdpRm/p9Q7Sv16QapiC42np7YHSgDPS7oVS88o5h3ooM4beLHBuSt89e/bU/fffTw9lOUdZHB5j+vTp9lZdBEsAyOUr9XhaeuE+149lo4cyV0JCgl36NpMza9SoYVekxo4dS7D0AvRcwiOY8TcRERGKi4ujRAIAl5K+VnpgiNTzLem5YNcnudPuAUwFas2aNXYvpWEqUW3atOG+7mXouUSpMzcjEywjIyO5AQHARVnSoXXS4NelEe9Kozt5TLA0pW+z2Lmvr692795tT84xpXBTieK+7n3ouUSpM2WTxo0ba/jw4U4LACC/c9LOd6S/pkvjBktNK0nrP5Ruf1Dyq+gcU/JM6XvlypXauHGjfQ/v0aMHkzFBuETpio2NtWcOLlmyhG+3AFAY64T04SvSqG+k8T2k60135X+kBbukuX+R6lXIOa6EmLUpTZg0pe969erpscceo/SNfAiXKDXmBmXWOFu0aJG9riUAoKDTUvQzUu9ZdlU8n06zpY1DpRLKlmapONMh8OSTT2rGjBn2WsTcu1EYwiVKjSmH+/v7q3///k4LAMDTmNL3/PnzlZycrDFjxtg76VD6xqUQLlEqzJ7hZkah+fZLKQUAPEtu6XvKlCkKCAiwS98sE4eiIlyixJlZhY0aNVJqaqoaNmzotAIASltu6XvEiBGaOXMmpW9cFcIlStzgwYPVvXt3e2FdAEDpMsvBbd++3S59p6en20OVKH3jWhAuUaJyy+Fz5sxxWgAApcGUvletWmWvT2nCZGhoKKVvuAXhEiXGlFvCw8PtgEk5HABKh7kXL1u2TM8//7xd+jb7fXNPhjsRLlEiTNmlb9++GjZsmD2GBwBQcnJL39OmTbNfm9K3GZ7EhEoUB8IlSoRZbDclJcXeEgwAUDIofaM0EC5R7HLL4TExMQwQB4ASkJSUpNWrV9v7e5teSkrfKEmESxQrU4rp3Lmzpk+fzrdlAChG5n4bHx9vb6lrmGFIwcHBlL5R4giXKFaTJ0+2n8eOHWs/AwDcy5S+Fy9ebA8/MqXvfv36KTAw0HkXKHmESxQbU5aJiIhQXFwc35wBwM3MPdaESrOTjil9m1DJ0CN4AsIlikVuOTwyMpJv0ADgJpS+URYQLlEsRo8eLX9/f/vb9DWxMpS6/WOtmjNTiSGReiuskfMGAHgPs22umZxD6RtlwS+cZ8BtzL60ZoZ4nz59nJardCxeLw8cp7mfbNEn7+9VttMMAN4iISHB/rJutsutUaOGveqGWdKNYAlPRs8l3MoMLO/WrZsWLVqk5s2bO63XKGubXm7xsD6fukEL6LkEUM6Z0rfZJtf0UhqjRo1SmzZtKH2jzKDnEm41ZcoUDR8+3H3BEgC8hCl9m8XOq1atqt27d9s9lKYUbpZxI1iiLCFcwm3MnuHHjh279nGWAOBFCpa+Dx8+bC/f5rYv6VaGtG21NKS760ad6jQCxYdwCbcw37h79eql8ePHOy0AgIsxpW/zhdzsnGP2+zbbMppl28yXc7cuJ3QsXho4Tvpki/T+XqcRKF6ES7jFxIkTtXz5crYXA4BLMJMdTenb19dXBw8eLP7Sd61g6c1XpaGhkq/TBhQzwiWumfn2bZiSDgDgQqb0PXjwYIWHh6tBgwY6cuQI49NRbjFbHNfEfAs3N0uzPIbbd4Y4t0dLn/o/rf5PunauiNN/2t2njo3r6c5Bf9YzwfWcgwDAM5nVM8zuOWaiY0BAgB577DG7h7JUZG2TWjwsTd0gseoGihnhElfNjBnq27evvUNESEiI0woA3s186Tbr/Y4YMUIzZ86074+l3kNJuEQJoiyOqxYVFWXfMAmWAEDpG8hFuMRVyR2UPmbMGKfFfXx8fIr0AIDSZkrfZrHzoKAgrVy50i59JyYm2mPQ3T5UCCgjKIvjiplyeOfOnRUZGckWZAC8kvmCvWzZMj3//POaMWOGHnroIc9cLePcHmnk/0nH0qUVcVK7+6TG9aRBE6XgXzoHAe5FuMQVmzx5sv1sFvkFAG9hvlhv377dXpfSMGtSdu/end1zgAIIl7giSUlJioiIsBf7LfYbata3+nj2JP31E18Fta2kPWt2qtbDo/XswN/I7zrK4gBKhil9r1q1yh4K1KVLF3vB81Kb9Q2UAYRLFFnJlsPP6mD0H9Xu7V9r0/JH1fQXlrIORGlw4Hj5zP1I88Iai3gJoDjlLX2bWd9mN50ytVFEUcemEwPgZkzoQZGZrR3NzMeSGWeZrVM/ntTJnbu1//g512sfXXdjYzWrmaaktGOudwHA/cyXaLOMkAmSZr/vdu3aKTMz0773lbkdyExoLMoDcDN6LlEk5mY7e/ZsLVmypBTGF1nKOrxL6xb/VU+taKpZ74zSvX6VnPcA4NqZ0vfixYvtmd+m9N2vX7/yMWExK02aOk5KMl/SXT9vrylNniT18Tff2YFiQbjEZZmbbrdu3bRo0aKSX68t+4DWv/4Pbf/pJ6XFb9fpbsM06tF71LRaBecAALh6Zhy5CZVmJx0zQceEyvKzhNAJacYzUtPnpR43uV6flj5yBctuH0pL3pUeYf1NFA/CJS7LlIb8/f3tG2+pOpuivz9wv15p9jfF/e1B+fGtG8BVMKXv+Ph4uxpjmF3GgoODy9+s73PJUvu7XcHyPenPnXParH3SQ/e4/o8wXlozkMFxKBZcVrik6OhoHTt2rOSDpfWd4v86RhNWfamzTpMqNlH7kFu09+1/atthU+IBgKIzodLM+DYTE9euXasJEyZoxYoV9i5j5XI5oQrNpP+bKd1/q9MAlAzCJS4qLS1NvXr1sifylLiTe/TPuZFamvitfnKalHVQuz5NVbV7A9X8Bi5dAFfGBMgaNWooJiZGU6dO9YJNIKpK9/1e6tDAeZ0lbXhbWtdKGv/fJAAUG8riuCizR65ZINhsY1byziljV7QmTXhHX1WpqSrK1k8HvlJmUITGPfWIOjChBwCuwGlp/WvSK4elif8rtb3RaQfcj3CJQply+Jo1azRnzhynBQBQJlnHpbf+LB0NkYZ0lXy/lRYdkB7txIxxFAvCJS5gFg4ODw+3S0flZ9YkAHihjL3S1Kelb+6SQm9x2pKkzUHS6z1yXgNuRrhEPmbAe9++fe3Zk2aQOwCgjMreLw0Ok978zGnIVUuaHScNvdN5DbgX4RL5mAWEU1JS7MHuAACUJWYiqtlRqcTXZEY+zBXDeaYcbpbpGDNmjNMCAEDZ8c0332jatGnOK5QWei5hM+Vws/ZbZGSkFyzPAaD4WMpKT9aqd6O0Ma2KGtb4SSfq3q+hj9+pU/9K1onbghRQ7+fVHqz0BM2etVY/Wif0Xb3/1qihd8mvQqZSE1bo7dh9qljDV2fSD+lk04f0x4Gd5HcdM1BwceazzGzfaSakFs+cgdK6vl1RzXVeuc4r13nlOq9c55XrvHKdV67zKs95S50Jl8BLL71kPwDg6mVZJ1PmW3+4Pcx6KS7NOuu0Hd8aaY0e8rDVQrdYfd/9ysq2212yD1oxz02z1h3Jsqzj66zRfq73F2+1Pn9nlvXW1u+c33f58RNrkn8TK+T1ZOu00wRczIIFC4rp8yzn+n6shev63ph6ddf3kk+tHYVd33fefInr2/X7rvNarvNarvOeb3Od13Kd13Kd13Kd15NQFoe9t67ZpWLkyJFOCwBcKUun9ryrEQ/NlP70fxp11690nd1eQTXadlWbE9u0Wy3UoUW986vfWKmb9KFfV3WqXUHWqUydOPWlPhg/U5ta/l4D2t3o/L5L5Vrya3Ban3z8b31HrQ2X0adPH/szLSEhwWlxh5+vb58JU/RM54b5r+/jn+qLQq7v1QWv7z/N0KY7+l3B9e1qcJ1X5u/KdV65zpujguQ6r1znleu8cp3XkxAuvZwpIURERNjl8HK5/RmAknHqc80fNU7zK/XS4AdvVUWn2WZl6cxP5yT/jgq6tarTmKX0HXvk176Jrnd9gP701efadKyRfv0/T6p/wA35l188dUyHDp50XgCXZj7LzFrNpsMkNjbWab1Gea7viAebua7ZPC5xfdcveH0P/6P6B9Yq+vXtOq9c55XrvHKdNx/XeeWcV+fP6xkIl17ObO04fPhwxlkCuAZndWjtfL3y/nH9ZnB3tamaf9yYdfgLbY7br1qd7lTTKrnv+cg38FENblfT9fOP2puYoBS10gOdm8s354Dzsr/bp0/3V1SrDrepfv5/GihUw4YN7YA5e/ZsjR492p6wevUKXN++F17fn7iu7xs6+V/2+u7hur4LxkBzfW8r9Po+K7nOK9d55TqvCpxXrvPKdV65zqvz5/UMhEsvZr7RmT84U0IAgKtmpenjxe9rrwJ0f1AT5Z9WkK2TX2zTxmNN1a1LS9U7/xlYQdUaNlZdM4HBStfuLbulFu3V+uaCH71nlLY1Tmszcv7tfD1GV8HHx4eHlzwaNWqklStX2rPHb7vtNucKuAoFru/812Du9X2LunUuyvVd8KuTub43uq7vVhf+267zynVeuc4r13v5ZUuu88p1XrnOm78rtPQRLr3U0aNHNW7cOHs9S8rhAK7Jya+1feOXUq0ABTSt5jTmytTXn229YLxlXlb6Tm2M+VK1urTVbdULfCxZ32rz+3HK8A/Rva1ML9C1sSyLh5c8Zs6cqfbt22vTpk3266tWxOv7v672+l7pur5bFnJ9u84r57wq5LxyndcTx1sahEsv9eyzz9rlcBaaBXCtsr/br6RDrh/at1LzuuenKeTIPqQdG3ZKLXPHo53W4f0HlXH+sz53PFoTdf7Nbapb8LM3NVHvf/C9/B/polamLGhlKG3/EWU57wOFMRuCJCcnKy4uTh07dnRar06Rrm97vKUJgJe5vgukT3N9r3Rd3y0f7nzh9e06r5zzqpDzyjmvnPPKdV4z/8cTEC69kBmHYvTv399+BoBr4VO5quq4Pt/8ApuofsFwWHA82pl/a8krCTrqvP/zeLSWuruVn5kDm0em9q59Xx9ktNUj995uj8W0Difo9WV7zUcpUKjcDUH+8pe/uKUyV5Tr+/x44stc3/l/Pff6bqeHC1zfZ8zbrvPK5EbXeS9Ia+fHW96ZM97SdV65zuspCJdexmyN1atXL3siDwC4g0/923XXbxo5r/Kw/qMdSxdq0TE/tW/XTHV9LJ3d/7m+CWwpv9wenNyen8LGo1nf67O1/8pTMjyrQwk7VP+3d1wwKQLINW/ePHunOXctol6k67u96/r+xVVe3/aQjxtcDT9f3/aRrvPqIueV67xynVeu88p1XrnOK9d5PWXsJeHSy0ycOFHLly+3Z9IBgFtcf4fCnu6nmu9v0KdHz+W0ZR1R8uLFSrn9QQ289TrnQ++kdm04qru7/7xU0fmen8LGo7kiZL3GN0oNblTtyq5/8uBaLfj6NwpvVcN5H8jPzCfYuHGjunfv7rS4QVGub5ubr2/XeeU6r1znVZ7zynVeuc6rPOeV67xynddTsP2jFzFjUOLj4zVnzhynBQDcxDqhr2IXaFZMuvx+VUknT/9Kd/cLU5ebK+m7zW9rauRO1W5cWzfc+7iGnl9g3fVrhz7Q/9zzhn75xlyNv6t+gY4XS1mHPtbsF6N0sEk9VarSRUPM9nlsAYmLMAunf/bZZ/acArcqrevbdV65zivXeeU6r1znleu8cp1XrvPKdV65zivXeeU6r6cgXHoJMwYlPDxcMTExxbTfKgAApctsDMIKKKWPcOkFzB9b3759NWzYMIWEhDitAAAA7seYSy8QFRVlLzlEsAS8lxmLBgAlgXBZziUlJdlLMpiZcwC816effqrBgwfblQwAKE6Ey3LMfIhEREQoMjKScZaAlzOVi4CAAD355JP0YgIoVoTLcmz69Onq2bOnAgMDnRYA3szMoA0ODla3bt3szRToxQRQHAiX5ZQph69YsUIjR450WoByzspQ6rbVen1Id/0hOtVpREFmZ65FixZp9+7d8vX1tUvlv//97/X00087RwDAtSFclkOm5GXK4eYDhCUZ4BWOxevlgeM095Mt+uT9vcp2mlE4M8HPfPE0Gyp8/fXX+uc//6n69es77wLAtWEponJo9OjR8vf3Z+9weJ+sbXq5xcP6fOoGLQgrZNs02KXwNWvWaMqUKerSpYsaN26sAwcOaOrUqc4RAHBt6LksZ2JjY+0F0/v06eO0AEBORcOsHGFK4QcPHrTHXJpAaXbuGjhwoHMUAFw7wmU5Yj48xo0bZ39gUA4HYJgvmyZU1qlTx3595MgRe2JPw4YN7fcaNGhgl8kBwF0Il+XIs88+a69nyQcFABMczRAZs+2rCZCZmZl2qMy7LNn+/fsVFBQkHx/26gbgPoTLcsKUuIywsDD7GYB3SkhIsJcgM8Gya9euiouLs+8LhVUzMjIy1KJFC+cVALgH4bIcSEtLU69evTR+/HinBYA3MZN0zHhrEyqnTZumUaNG2UuRmYXTGSIDoKQRLsuBiRMn2kuKmDFUgFc6t0dLR/xBA/4wXu9+/70SZo7UgAFD9XJ8unNA+WRCpaladO7cWWvXrrXHW5tQ2bFjR+eIS2vatKm2bNkiFg0B4E4sRVTGmZmeKSkpLCMCeBEzeW/x4sX237/prezdu/dVj7U2/xbbwwJwJ8JlGWYG7JvB+jExMXw4AF7ADIExPZMjRozQzJkz1a9fP/72AXgcwmUZZcphffv21bBhw+xxVYC3KupM57J8qzNfJOfOnauNGzfaK0KYxc8JlQA8FeGyjKIcDpR/Zub3/PnzlZ6ebu+41b17dyboAPB4hMsyKCkpyd473CwxwgcNUP6YUGlmfRtm5ndRJ+gAgCcgXJYxphxuZoZGRkYqMDDQaQW8XFaa1k99Xq8kZauO0pSwvaZ6T56kcX38Va2MrA9ecM/v0NBQQiWAMolwWcZMnjzZfh47dqz9DOCEkmc8owVNx2lqj8a6Tqd16KNJCu32ofzfXao3Hr5VFZ0jPZGZrb1q1Sp7i0YTKgcNGsQuWwDKNNa5LENMOdzMFB05cqTTAkDnvlbc/GVak7hfmXZDJfmFDNCI0MN66814fZ1tN3ocEypz9/w+ceKEveqDGUNNsARQ1hEuywjzQWTGWS5atIhxlkBeFZqpx//N1Av3N5Ov0+TJcvf87tatm2rUqKEjR45csOc3AJRllMXLCPNh5O/vb88YBXApWUpf/6IeCN2mnrHz9dyv68oThl2ayoNZ+Dx3OSFmfgMorwiXZYDZM3j27NlasmQJH0bAJZ3WofWvaegrh9Vr4v+qb9sbdZ3zTmlh5jcAb0O49HCmHG7KZ6Yczlgs4BKs49r51p/116MhGjekq5r6fqv1iw7o9kc7ya+Euy5zZ36b9Wjr1aunxx57jFAJwGsQLj3c4MGD7fJZWFiY0wKgICtjrz6cOlKjvums8aG36HrTmJGkBZuDNPf1HqpnH1X8zJdBU/bOXU6Imd8AvBHh0oNFR0fbvR9z5sxxWgBcIHu/ogeHqdebnzkNuWqp0+sfa+MQf1VwWoqLCZVmPGXunt89e/ZUw4YNnXcBwLsQLj1UWlqaGjVqpNTUVD6kAA9lZn4vW7bMXiLMTLbr168fs74BeD3CpYeiHA54LhMq586dy8xvACgE4dIDmUkAKSkp9oLKADxH3pnfw4YNU3BwMKESAAogXHoY0yMSHh5u79ZBeQ0ofWbmd3x8vL0cmMFyQgBwaYRLD2I+xPr27Wv3iISEhDitAEpD7nJCzPwGgCvD9o8eJCoqyv7wIlgCpSd3z29fX18dPHjQXmOWPb8BoOgIlx7CbA1nPtAmTpzotAAoSWaFBvM3WKdOHft17p7fhEoAuDKUxT2AKb917txZkZGRCgwMdFoBlISCM79NCZzxzgBw9QiXHmDy5Mn289ixY+1nAMXPzPyeP3++0tPT7TUqWU4IANyDcFnKTDk8IiJCcXFxfLABxcxUCbZv335+OSFmfgOA+xEuS5GZONCtWzd7wgDjuoDiU3Dmt9lJhyEoAFA8CJelaPTo0fL397dLcgDcz3yBW7VqlT1Rx+z33bt3b77IAUAxY7Z4KYmNjbUnEvTp08dpAeAuucsJmZnfJ06csDclMGOaCZYAUPzouSwFZskTs2c45XDAvfLO/DbLCPXo0YOZ3wBQwgiXpWDw4MH2zFQTMAFcOzPze+XKleeXE2LmNwCUHsJlCYuOjrYnFsyZM8dpAXC1TKhk5jcAeBbCZQky5fBGjRopNTVVDRs2dFq9g5VxQNs3rdKcP+1SyMpXFeZ3nfMOcGUKzvwODQ0lVAKAB2FCTwkxH4hma8fly5d7WbA8p2Pxr2rguLf0yScJen9rltMOXBkzScf0/JvdrLZs2XJ+z2+CJQB4FsJlCYmKilKtWrW8cJxlBdUKfkpvvjpeQ0Nby9dpBYoq78zvgwcP2gHThEomwwGAZyJclgAzg9V8OJqJBgCKxvzdmK1RzUYDxpEjR+wZ4N42pAQAyhrCZTEz5XCzWPqkSZNYEgUoArMlqvmbCQ8PV4sWLeytUU2o5O8HAMoGwmUxmzdvnl2+CwkJcVoAFMbM/Da76EyYMMGepGNCpRlGwpJCAFC2MFu8GJkemIiICPtDkg9IKWvby2rRbp+mHpzFbHHYTM9+fHy8Zs+ebb9mOSEAKPvouSwm5kPTBMvIyEiCJVCA+fvInfm9du1ae4LOihUrCJYAUA7Qc1lMzEQEw+xn7O3O7Vmqp15arf8c2akVH55Quz7/pcZV22rQKyMUXKuCcxS8gZn5vXjxYo0YMUIzZ860h4sw6xsAyhfCZTHI3TVkyZIl9FoCLmbmd2xs7PlQ2a9fPyboAEA5Rbh0M9MzY5ZOMQs80yMDb2dC5dy5c9nzGwC8COHSzcwSKv7+/urfv7/T4r18fHycny6NS7D8Mb338+fPV3p6uoYNG6bg4GBCJQB4CcKlG5myn5n1Sjkc3shM0tm+fbs9JMRg5jcAeCfCpRuZEqCvry87iMCrmFC5Zs0aTZkyRV26dLHHUwYGBjrvAgC8DeESxcxS1qGPNfv5Gfqkbmu1rfSl1vzrBj08cZQG/rqBWO2y7Mqd+b1w4UJ78fPevXszzhgAQLhEMbMOKHpgb7199zta/uit+oVO6cDSpxQ49Beam/KawhpUdA5EWZGWlmavScnMbwBAYVhEHcXLOq0fjx3VzpQDOm43VNKNNzVWzWNfKy39jN2CssEM+zAT1syWjA0aNNCRI0fY8xsAcAF6LlGCTuvwrg1a/JcXtaLJBL3zQlf5XVe0GeUoPWbm98qVK1lOCABQJIRLlIjs1PV6fel2/XT6gOI3S92efFKP/raZqpEtPVbuZgAGM78BAEVFuEQJs3R2V6QeaDlHzT54T3/r0UjkS89RcOZ3aGgooRIAcEUYc4liZaV/rL+OnKJVX2c6LT6q2LydQm7ZprdXJeuw0wrPYNap3LJli73D1NSpUwmWAIArRrhEMcrWyd0bNPfVD5WY9pPTZinrwG59+n0T3RvUVDc4rfAMJkyaUMmSQgCAq0VZHMXLOq5dUS9rwsIvVKWOmQTyow7sPKegYaP1VP8OTOgBAKCcIVwCbjZr1izWfgQAeC3K4oCbnThxQp9++qnzCgAA70K4vMA5Zez5UC8PvU/NfHzkYx7N7tPQlz/UnoxzzjHAxd1///2aPXu286o4nFZ68krNHPO0nn1pql4aM1FvbD6osxlfadOGHUrPohgBACg9lMXzOa1D66bp9z1f0IYMpymPane/qBXvjNK9fpWcFqBwgwcPthcbN7vZuJV1XDvfGqXe0bfqjTlP6i5zLVpH9emsaZqX+E/9fUWA3t35uh5ufL3zCwAAlCx6Ls+zdParFXp+6F8KDZZGxoa/aOjzK/TVWfI4Lm38+PHq1auXkpKSnBZ3yNCeRc/qoSnXacKM/8kJloZPbbUNDdTxFdukVoFqUZ/92gEApYdwed5xbVvyd7219yLJ0pahvW/9XUu25eySDVxMw4YNtWnTJrVu3VqxsbFO67WwdGrnYo0a9o4qDXhUDzb1ddpzWFln9JOqyf/+drr1embgAwBKD+Ey17k0JcUkOy8uJVkxSWm62tGX9hhOHl7x6NSpk/3/8/vuu89+fU29mFaa1v4tUu9ndNbgHncqf7TM0uFd2xSX0USdAhqLXb8BAKWJcJnLOq2MQ8ecF5dyTIcyTutqC+NmiCsP73l88cUX9haKgwYNkq9v/kh4JazUT7T47W2Sf0cF3VrVac11XF8kbtOxakHq0qoe22kCAEoV4TJXhXpqGnyr8+JSblVw03qq4LwCLiYhIUHh4eEaNmyY5syZcw273mTr5L5kbcyQanW6U02rFIiPZ1L12bqdjLcEAHgEwmUuHz91eLCrajkvL6pWVz3YwY/eIVzSnj177LJ4dHS0QkJCnNardUbf7d+nQ/JT+/bNVLfAxZed9rk27Dj783jLrCPan5Zx1b3rAABcC8LleRXV4MGRev0PrZ3XhWmtP7w+Ug82oHcIlzZ69Gh99NFH9sSea/cLVa5aXdXUQIFN6hb4oy043tLSmZ3L9EpCuvM+AAAli3CZV8Vb9bsZC/XuU791fZAXUO23eurdhZrxu1tdMRS4OFMON669xzJXRdX3D9JvLrgoJSsjWUvnrNQx3a72zevIRz9p/7bDCmx9I73rAIBSQbgswKeavx6e/oG+3rlBy+fN0LRpMzRv+Qbt/PoDTX/YX9X4xMZlxMXF2eMs3cdH19/xoJ4eXEnvxybrqF3vtpR17DMtfuML3d73IZ0fLZz5hTZ821rdb736yUMAAFwLdugB3GzhwoXq0aOHateu7bS4h5WxT7FvzlXM4Rv0q0qndNqvi/r9Llg3V/5em+e9qsh/V1bjmg1175ABPy+wDgBACSNcAgAAwG0oiwMAAMBtCJcAzjNbVQ4ePPj8pCQAAK4UZXEA+ZhgOW3aNPvnUaNGqU2bNqpShU0lL+6cMlKTtWnVXP0psatWvBmmBkz8A+DFCJcACmX2Ql+8eLE2btyoMWPGqHv37oTMC6Qr/uU/a/nJm1TjqwV68RcT9e18wiUA70a4BHBJZrchUy4fMWKEZs6cqX79+rl9JnzZl6FtLz+odp+PIFwC8HqMuQRwSWZP9OHDh+vIkSP26zp16mjWrFl26AQAoCDCJYAiMb2VJmRmZmaqQYMGCg8Pt7e5JGQCAPIiXAK4ImbcZVhYmL0TUdeuXe2A2bNnT2aYAwBshEsAV8WETLN/+ooVK+xZ5WaGuQmZZnzmTz/95BwFAPA2hMtiwAcrvE3Hjh3tkDl16lStXbtWnTt3VnR0NH8LAOCFCJduZvaVnj59uvMK8C5m8o8JmIsWLdLBgwfl6+trT/45evSoc0R5c0p7lo7RgAFPaPy7X0gJM/XUYwP0h5fjdcw5AgC8DUsRuZnpqTG9NpGRkQoMDHRaAe9kQqVZKzN3GSNTRjcBFABQfhEui4FZfDoiIsKe8MCi00DOl641a9ZoypQp6tKliwYNGlTmQ6aPT9EWs+QWC8DbEC6LiSkFnjhxQmPHjnVaAJiQGR8fr9mzZ9uvzUQgM14TAFB+EC6LifkQ7du3r4YNG2aXAgHkl3cPc/N3EhwcTE8/AJQDhMtiZBaXNgtNx8TEsF0ecBHm72Tu3LlldA/z0zq0foZGvrJVlepk60DCF6ra+wVNHddLd1Sr4BwDAN6FcFnMzOzxlJQUewYtgIsre3uYW8pMnq1HF9ykmVMfUIPrpKxDH2lcz4GKbvmKYt74nZpWZJNxAN6HpYiKWZ8+fXTs2DF7zT8AF1f29jDP1N64DxW9Zpu+zDTf0X10nd/demL4Pdr71nJt/Pp0zmEA4GUIl8XMlPfGjx+vXr16KS0tzWkFcDFlZw9zX93WY6TmvXCfmvnSQwkAuSiLlxDTc2mWYpkzZ47TAqAoCs4wf+aZZ9SpUyf7Z09jpa/V2B5D9a/Qt7T8uU6qReYE4IUIlyVo8ODB9mSFsLAwpwXAlfDcGeaWsg6t19Shs5Xe6zmN7dtW9a4jWQLwToTLEmR2K+nWrZu9NR67lABXz7NmmJ9Txs53NPqv6QodN1ghTSspbf2H2n/7gwr2q+gcAwDegzGXJciMJZs0aZI9fsyU+gBcnYJ7mFetWrV09jC3TuirVS/qv3tvUNOQJvoxaa3ei35Hc177RMev4/YKwDvRc1kKTLj09/dX//79nRYA16J09jA/rQPRo9S110ztdVrO6/S6dm4cojtY6hKAFyJclgLK40DxKLiHuVkrMzAw0HkXAFASCJelJCkpSREREYqLi2PLO8DNTMjcvn37+ck/7GEOACWHcFmKJk+ebD+PHTvWfgbgfmaG+fz585Wenm4PRSlb20sCQNlDuCxFpnelc+fOioyMpHQHFLOCM8xN2Zw9/wHA/ZjOWIpM74kJlqY8XuKzXAEvkzvD3GxoYGaY524vyd8eALgXPZceYOHChUpJSbE/+ACUjNwZ5ubvr2fPnurduzcT7ADADQiXHsCUx/v27WvvOGKWUAFQcphhDgDuRbj0EGY8WHh4uGJiYhgHBpQCZpgDgHsQLj2IGQtmelDmzJnjtAAoDcwwB4Crx4QeDxIWFmY/m5AJoPSYHkvzJc+Mg96yZYu9qoP5u2TyDwBcHj2XHiYtLU2NGjVSamqqGjZs6LQCKE3m73LFihXnt5c04zIZvgIAhaPn0sOYQLl8+XJNnDjRaQFQ2szf5fDhw3XkyBH7tdm+1WyCYMZKAwDyo+fSQ40ePVr+/v72eC8AnoUZ5gBwcYRLD2XGdpnekUWLFrH2HuChmGEOABciXHqw2NhYzZ49W0uWLGGmKuDhmGEOADkIlx7OlMcbN25sj/cC4PnYwxyAtyNcejhTdjPLoJg9yBnTBZQdeWeYz5gxQ7///e8JmQC8ArPFPZwpq5lgGRERYQdNAGVD3hnmPj4+zDAH4DXouSwjzIeSMXbsWPsZQNnCDHMA3oJwWUaYD6a+ffsyGxUo45hhDqC8I1yWIaacFh4erpiYGMZuAeWAmWG+cuVK+2+bGeYoNhkHpE2rpD/tkla+Kvld57wBFA/CZRmzcOFCpaSk2HseAygf8s4wN+M0e/TowRdIuME5KX6mtPy4VGOP9GJ16eAswiWKHRN6ypg+ffrYH0RmDUwA5YPZKMF8YTRViRMnTqhOnTqaNWuWvZkCcPUqSMFPSa+Ol0JbO21A8SNcljGmZGY+dMaNG2cvdQKg/DC9lbkzzGvUqGHPMDdr3TLDHEBZQrgsg8wSJ2Zx5okTJzotAMoTEzLNGMy4uDh16NDBHmttQqYZowkAno5wWUaFhYXZz9HR0fYzgPLHVCrM33piYqJCQ0PtGeY9e/bUpk2bnCMAwPMwoacMM2XxRo0aKTU11e7NBFD+5c4wz91ekhnmKJJtL0vt9jGhByWCnssyzATKjz76yB6jxe49gHcwa2KayT+LFi3Sli1b7O1hzSoSTP4B4CkIl2VcSEiIPdM0KirKaQHgDQrOMK9bt+5VzTA3xz/00EPOK5Q7e5ZKAwZI4991vVgv/fEP0h9edf0//lzO+0AxoCxeDpgPBzOr1PRkmA8cAN7H3AdWrVplB0yzveSgQYOKdD/IXWOTtXMBuAs9l+WAmVk6ffp0ezYp5XHAOzHDHICnIFyWE2YcVlBQkB0yAXivi80wJ2R6GR+foj2AYkBZvBwxvZZmcH9kZKQCAwOdVgDe7lIzzM19o2rVqsrOzrZfA8C1IlyWM0lJSYqIiLBLYyxPAiCvi+1hbu4ZAwYMsCsgKE9cH++H1ktPz5Sury4d+FSqGiZNHS3dUdM5BnA/wmU5ZAb0m9mjY8eOdVoA4Gdm8s/ixYs1YsQIzZw5U7fccoveeOMNrVixwjkC5ULmdunRZdKMP0m/qixlpUrj+kvRt0trpkm3VHUOBNyLMZfl0MCBA+3xVrGxsU4LAPys4B7m48eP19dff61JkyY5R6Bc2LvJFSTjpS8zcl5f10h64nFXu+tLxMYDOW1AMSBclkOmHG6WFRk3btwVr3kHwHv8+9//VkpKirZu3aodO3bohRdesHf+Qjlx2wPSvCelW6s7DUDJoCxejpldO8wHB+vXAcjLBEjTc2nWwTQzytu0acMYbW9gHZLG9pP+db+07GmpdgXnDcC9CJflmJkF+uSTT6pPnz72Tj4AYGaOd+rUyd46lvuCF8lKk6Y+K6V3cwXM30n1KjlvAO5HuCznTA9Fo0aNlJqaau9FDsB7mftB48aNdeDAAe4H3iRjhzQ6Ugp9Sgpp5roQNkr7m0vBDZwDAPdizGU5Zz5Ali9frokTJzotALxVnTp1CJZe5Zz01SpXqBwqNf219KMrZL63XJozVzpOvxKKDz2XXmLw4MH2wslm5w4AgBc44AqSXR+T9jqzxc8LlVLekVqyFBGKB+HSS5hymAmWixYtsgfxAwBQ3pi5Btu3b2dDgFJGuPQiZt3L2bNna8mSJcwMBQCUO7nbmf744498zpWiChNcnJ9RzpldOMw3usOHDysgIMBpBQB3s5SVnqz335ypv0dvVkriR4r5d2W1CLhBhzcn6kCV+qpf9Trn2J9ZGbu1ctpTCu/5V22u0kz/1fYmVf+Fj+udUzqwYqbePd1S7eozyxkXV7FiRWVmZqpChQr2Z16xyPpBye+/qVf//p7+lbJFq2P2qWqL21Tr8HYlHLhejepXLXRCS9Gv7yylb35TU+eu0Yb3VyvF93a1vamGfE4dUMKSSM2Njte2bRu18h//1FdVb1Og6z2Pm0Bjei7hPY4cOWK1b9/e+uKLL5wWAHCnLOtkynzrsRZh1ktxadZZp+341khr9JCHrRa6xer77ldWtt2ex5k91rt/aGvd0qWX1b9PF+sWNbJ+O22LdTw72zr7zUpr/MubrKMX/BJwIfP5Zj7nXCHTaXGf7JPJ1rzHOlkPvLTeOng254LMPv4va8booVZ4i2pWtb7vWt8Udp1ewfWd/UOM9dz4ddaRc+es4+ues/yqPW4t+Xyr9c7L71hbfziVc5DrL+jHzZMt/2q9rNc/P+m0eQ5mi3sZs+1bZGSkwsPD7fIBALiPpVN73tWTYTPlM2GKRt31K+X0T1ZQjbZd1eb4p9qtFurQop5Mf83PspS+fqniOkUq8Z9RWrD0Q8V/OkMPps/T6OfGacSEb9RjcAfVyv9LQKHMvIKePXtq3rx5ToubnNqlRSMe1xSf4XrtmS7yuy7ngvSpEajQNqe18ouKatXhNtW/4Dr9+freerHre1Du9X1Gqeu3yO+hINX+RbZOZWbqVMZ7+tOk7Wr5xMNqd359Uh9Vrn2jGmQk6eOUH1x/eZ6FcOmFAgMD7T+86dOnOy0A4AanPtf8UeM0//peiniwmSo6zTYrS2d+Oif5d1TQrQVnKWcqPauDnurXWrXNB7aPr/za9tSIKdM0olVj3TduoNrVYDcZFN3IkSOVnJysWbNmuakjJUM75/9Zw+ZX14CI+3TL9XkTpKWsM2dczwG6P6iJrs9pzOPn67vWxa7vms71baVrx9Yb1N7+G8nQV67/Dceqddbw5x5RQLW8fwOuL3JHv9dB55WnIVx6KfOHt2LFCiUlJTktAHAtzurQ2vl65f3j+vWgbmrjm7/7xjr8hT6J269ane5U0yr535Nq6I4Huqp55Tzt1nHtXByp9U17KbSpr9MIFI2ZzDNjxgx7Xde+fftq06ZN1xQyrUMb9LdXPlTGb8LUo01Np9VhHdauT5KUcUOAAppWcxrzupLru6YCh4ernfn7ObNfiauTpVb3qPPtBfeHP6Pv9u7SfrXQf11QCSh9hEsvZf7wTHk8IiKC8jiAa2el6ePF72uvAtT9gt6bbJ38Yps2HrtF3bq0VL3LfRKaD94l7yg5MELDO9R1ywenj48PDy97+Pr6atq0aVq5cqWCg4N15MgR52q4UmeU+vEKvb1X8r+/nW7N12vpcvJLJW7cr6rdOqhVvQsnql3gUte3TzU1bFLHHk5iffeFtuw4qxb3Bujmgue0Dmrrms3KsCsBhQXa0kW49GKmPD58+HCNHz/eaQGAq3Tya23f+KVUq7Dem0x9/dnFxlsWkPWtPp71ppIDfq++LWu6rUfGsiweXvYwvZWG2aXOzCC/+p2pTmjf9mRlqIk6BTRW/gWOLJ35OlnrdldUq/8qbLxlAUW+vrOUvmOLYjKaqEvQLSrYb2mlJmrlB9/L/5EualXVXX8l7kO49HJ9+vTRnj177DUwAeBqZX+3X0mHXD+0b6XmdfONtnS9eUg7Nu7MM97ytA7vP6iMgrMQstK0/vXVOhUa4dZgCe9jhnyZ4V+pqan2BiLXtOZl9mHtTzKjG29X++Z1ClyXZ5S2I1E7zvfYW8o6fEBpGeec9/O4ous7d7xloH5zR8He+zNK3RyrDzLa6ZF7b5f5i7IyDmr/4dM5b3sAwqWXM39wU6dO1bhx43T06FGnFQCujE/lqqpTTfILbKL6BT5ZzHjLzXnHW575t5a8kqCjecOl/cEbI/Xur5DGVfN9mFqH1mlubJrHzYiFZzJDvcyQLzP0yy376PtUUtU6vq6Lu5ma1C8wXSd3vOX5HvsftXPJW0o4WiBcXun1bcZbrjHjLYPUqmGBc57dp7VL1ivDP0T3tjLjP7N0OGGxlu3znCFuhEvYyzaY8vizzz7rtADAlfGpf7vu+k0j51Ue1n+0Y+lCLTpWX+3bN1NdH0tn93+ubwJbng+hVsYOzX9hmazej+oev7yLpFvKOpasRdPWqXqz2pfp6QFyrFmzRl26dLGHfrmFzy/lf1egLhzZeE4ZO1ZqzqKUn3vszx7Qtm+aqrXfz733Rbu+a+W7vrPTPtfGi4y3tA59rrXrDueUxM3EH+ugEj6+Qb+1g6ZnIFzC1r9/f/s5OjrafgaAK3L9HQp7up9qvr9Bnx7NymnLOqLkxYuVcvuDevzW3A/bk9q14aju7n6rPenHfPAumRmn6vd31c2ZSfrH5BEaMGBAzuPRB9Xhlue07/6h6sWMcRTR22+/rUGDBjmv3KGq7ggbpME14xX76WGnh/GsjiUv0xspN6nvwPZ2iwmLmbsS9e3dXXRrxZxAWKTr+4FhCmuad3muLB3etU1xGTcVOt5S1eqqccNaauBXS5V1WgdXv6eve/TMCZoegr3FcV5aWpoaNWpkj1FxSykBgHexTuir2AWaFZMuv19V0snTv9Ld/cLU5eZK+m7z25oauVO1G9fWDfc+rqFmgXXrB214ZYUqPz5Qv66Vs4aflZGiqEnjNPYvu9R4yBMaPuRR/XfAL53F2IFLM8O7Bg4cqPfee89pcZdzyvhqnd6c9ZEO+9VXpZPn5Hd3H/2uS1NV/u4TzZu6QP+u3UA1b7hbQ4belbPA+kWv7xdc1/fOS1zfZ3Vo1bO695W6+vvS0brrghnop3Xo47l6cUmamvzSV1Vy/56cdz0B4RL5mJ5LU1KYM2eO0wIAQNlhxlxe0wQeXDPK4sjHzKqrVauWFi5c6LQAAFB2ECxLHz2XuIApK3Tr1k2LFi2yJ/sAAAAUFT2XuEDt2rU1adIkjR49mt17AMCbZRyQYmZLQcOlQ85ELeAyCJcoVEhIiN1rGRUV5bQAQNllKjJmswi+MBfVOSn+VWncW9InCdJWgiWKjnCJi5o4caJmzZpl73QAAGWZ2f5v7dq16ty5s31fY9OIy6kgBT8lvTpeCm3ttAFFQ7jERZlB0WaHA7PTAd/2AZRlZnk1sxtZTEyM/dqMKzdDf/jyDLgfE3pwWZMnT7afx44daz8DQFlnvjDHx8dr9uzZ9uthw4YpODiYmcaF2fay1G6fdHCW5MeKo7g8wiUuy9yETSlp+vTp6tixo9MKAOWD6b1cvHixNm7caO9W1q9fP3tiIxyES1whyuK4LPNN3ixLNHLkSMYpASh3zB7UlMwB96HnEkVmFlZPSUmxb8IAUF6Zas327ds1bdo0+7Xpzezevbv3lszpucQVoucSRdanTx/t2bPHXs4DAMorEyLNEKAVK1bYX6Z3794tX19fe5Z5Wlqac5QX2LNUGjBAGv+u68V66Y9/kP7wqnT0XM77wEXQc4krYm6sZotIswe5mX0JAN7ADAlatWqVHTC7dOmi0NBQxqADF0G4xBUzwXLNmjWaM2eO0wIA3oGSOXB5lMVxxUzPpWFCJgB4E68omfv4FO0BXAQ9l7gq5ibaqFEjpaamUh4H4NVMydwsYzRlyhQFBAToscceo2QOr0a4xFUzE3vM3uMzZsygJAQALgkJCZo/f76Sk5M1ZswYe3xm2Vwz0xUNDq2Xnp4pXV9dOvCpVDVMmjpauqOmcwxQOMriuGohISGqVauWHTABALJ7LM14dLM28MGDB1WnTh27ZG5W2ihTMj+Thq+TXn5XWvC29M9Yyf8Tqedz0pc/OgcBhSNc4pqYb+Zl8sYJAMWoefPmGj58uI4cOaIGDRooPDxcgwcPtns2y4S9m6ToeFeQzMh5fV0j6YnHXe0rpI0HctqAiyBc4pqYcs+kSZPs3SzMLEoAwM/MPdJMgkxMTLTHYpqSeVBQkD0h0qN3PLvtAWnek9Kt1Z0GoOgYcwm3mDx5sv08duxY+xkAUDgzIdLMNh8xYoT95dxsUGF6Oj2adch1g+8n/et+adnTrtRcwXkDuBDhEm5hei07d+6syMhIe59eAMClmfumWTPYbK1rjBo1Sm3atPG8CZJZadLUZ6X0bq6A+TupXiXnDaBwhEu4TVJSkiIiIhQXF8fscQC4AmYs5sqVK+0ljcxYzR49enjGLPOMHdLoSCn0KSmkmZS2UdrfXApu4BwAXKjCBBfnZ+Ca1K9fX6dPn7bDZXBwsNMKALicxo0b67e//a29249ZxsgsYXT99dfrxhtvtGecl7xz0lerpX5jpKAwqdpRafcuafViqW5XqXkN5zjgQvRcwq1Mmadv374aNmyYvVQRAODKFSyZP/PMM2rbtm3JVYUOLJe6PibtdWaLnxcqpbwjtazqvAYuRLiE25llicyyGzExMWV08WAA8Bx5S+ZmL/N+/fpxb4VHI1yiWJhv2ykpKfbeuwCAa2eWLlq8eLF9fzVlcxMymUAJT0S4RLEwJZ0nn3zSXmKD8jgAuI+5v8bHx2v27Nn2azMMyYxzZyIlPAXhEsXGrOXWqFEjpaamqmHDhk4rAMBdzCodpjeTkjk8CeESxcrsQmEGpZu9dgEAxYOSOTwJ4RLFzuyna5bXMFugAQCKDyVzeALCJYqdKY+bYLlo0SLP3+IMAMoJs3LHsmXL9Pzzz2vmzJnq2bMnQ5RQIgiXKBGxsbH2N+klS5bwDRoASpApma9atUqzZs2yS+ahoaHq2LGj8y7gfoRLlJjRo0fL39/fHnQOAChZpmS+fft2TZs2zX5t7sVmyBJf+OFuhEuUGPPtuVu3bpTHAaCUUTJHcSJcokSZZTMiIiLs/cf5tgwApYuSOYoD4RIlbvLkyfbz2LFj7WcAQOkz20zOnz9fycnJGjNmjB02WTMTV4NwiRJnxv107txZkZGRrMMGAB7GlMzNJMwRI0ZoxowZuu+++xjKhCtCuESpoDwOAJ7NlMzNzj9TpkxRQECAHnvsMUrmKBLCJUqN2UkiJSVFU6dOdVoAAJ6IkjmuxC+cZ6DE9enT53z5BQDguUyPpdnG16z2cfDgQdWpU8eeBGTu4UBB9FziilgZB7R90yrN+dMuhax8VWF+1znvXB1zYwoPD1dMTAzfggGgjDBj59esWWNXoIxnnnlGbdu2ZZgTbIRLFNE5HYufqf9dflyta+zR/71YXbMOzrrmcGlQHgeAssuUzFeuXGmPzxw+fLh69OhBZ4GXoyyOIqqgWsFP6c1Xx2toaGv5Oq3uYHaJOHbsmKKjo50WAEBZYUrmpnPA3MNPnDhhl8zNknOUzL0XPZe4YlnbXlaLdvs01U09l0ZaWpoaNWqk1NRUdokAgDKsYMl81KhRatOmDSVzL0LPJTyCCZTLly/XxIkTnRYAQFlkQmRYWJhWrFhhB0tTMjdrG5uwaZY3QvlHuITHMDcjI/fbLgCgbCtYMu/WrZtGjx5tr3WM8ouyOK5YcZTFc5lvtebmY5a7YEcIAChfTMk8Pj5es2fPtl8PGzZMwcHBlMzLGXou4VHMDMNJkybZ32zNTQgAUH6YEBkSEmKXzCdMmKC1a9faJXOzZiYl8/KDnksU2bk9S/XUS6v1nyM7teLDE2rX57/UuGpbDXplhIJrVXCOcg8TLv39/e2Z5ACA8suEysWLF9tDoszOP/369VNgYKDzLsoiwiU8kum1NN9mIyMjuckAgBegZF5+EC7hscyA74iICMXFxXFzAQAvYu7/q1evtsvnpoLVs2fPq1qmzvSKmsXdcyeMomQw5hKX5ePjU6SHu5keS3NDmT59utMCAPAG5v4/duxYe2vgGjVq2OHQDJcyuwFdiX//+9/asmWL6EcrWfRcwqNRHgcAmM+C7du3a9q0afZr05vZvXv3y1a1cnd+o+eyZNFzCY9mbhxmWSJTHmcmIQB4J/NZYNbMNGVys27m7t275evrq5kzZ9o7vF1M06ZN6bksBYRLFJGlrENxmvF4Lz0yepKmvfAH3RMyUm9sPqgs54jiYta7HD58uKZMmeK0AAC8lflMMCXzI0eOqGbNmpcsmZsAeuzYMecVSgplcRSNdUDRA3vr7bvf0fJHb3V9KzmlA0ufUuDQX2huymsKa1DRObB4mJJI37597dmDZo00AACM3JL5/PnzlZ6ebpfMzZJGZt1kIygoyN7rvE6dOvZrFD96LlE01mn9eOyodqYc0HG7oZJuvKmxah77WmnpZ+yW4mRKIqYUMm7cuEuWQAAA3iW3ZD5nzhz7c+LgwYN2kDQLs+/Zs8cOm2+88YZzNEoCPZe4Cqd1eNcGLf7Li1rRZILeeaGr/K5z/2zxwpjB2eYbqLmJAABQmNwliMxwqpYtW+pf//qX/blhQiiKHz2XuCLZqev1t5dnav57q7XuSFv16XizqlcomWBp5M74y50BCABAQaYkbmaTm6XsatWqpczMTHXq1InKVwmh5xJXydLZXZF6oOUcNfvgPf2tRyOVVMQ0N4dGjRopNTX1qhbVBQCUb7GxsfYwqoCAAPXp00dNmjSx281nx+WWL8K1I1yiSKz0j/XK5E9025NPqsfNvjmNWdv0cot2mtj1A3319x6ql9NaIsyNIyoqSjNmzOBGAQA4z4y1XLt2rT3+0swsR8mjLI4iyNbJ3Rs099UPlZj2k9NmKevAbn36fRPdG9RUNzitJcXMGDelDhMwAQAwTLBMTk7WkiVLCJaliJ5LFI11XLuiXtaEhV+oSh3TU/ijDuw8p6Bho/VU/w4lNqEnLzNgu1u3bvYi69xEAMC7mSFTppo1YcIEe31LlB7CJco0Ux6fPXu2/S2V8jgAAKWPsjjKNFMeNwvkzps3z2kBAACliZ5LlHlmd4bOnTsrMjJSgYGBTisAACgN9FyizDPlcBMsIyIi7KAJAABKD+ES5YLpsezZs6e9YC4AACg9lMVRbphey759+2rYsGH2WEwAAIpF1g9KXrVUSzZ+q+oNq+nkiQYKHfqI7jz1ubaeuFnBAb/Udc6heVkZu7XytUma9NevdeeEyZo87C5ntZVTOrDida25eaCeCKiRc/B5p6XkGGlJnFS9vnTyJyl0sFwnk7ZmSMF3SqWwYsulEC5RruzZs0fh4eGKiYmxt/8CAMCdrIwdeuvJ4Ypu9mfNGd3ZDofWiUTNemm+Et9/Wytaz9XOdx5W44J57+xeLX2ir57/uok61juihKgv1XRalJb9b5B8Uz/QpKg6+uPTHVUr7+9Zx6W3RknRt0pznpT8KrnajkqzpkmJ/5RWBEgps6WbXO0ehHCJcmfhwoVKSUmxd2cAAMBtTu3S20P760WfUYp543dqWjE3CZ7RgaXD1PKRaLV6bb02PBmo6513cmQp/aMpGv/t/ZrUv7VqV/hJh7bHatk/VmunTz35/FBfA18dpnY1KjjHGxnS289IL/5CinlZappn7c4DS+U6mdRqhrR+uFTJs3ouGXOJcsfsI3vs2DF7DUwAANwjQzvn/1nD5ldX/8EheYKlYSnrzBnXc4DuD2pSIFgamUrP6qCn+rmCpSlh+/jKr21PjZgyTSNaNdZ94wYWCJaWtHOxNOwdacCj+YOlkWXOVU26v53HBUuDcIlyx8weHz9+vO677z57xwYAAK6VdWiD/vbKh8r4TZh6tCmw6bF1WLs2JymjVoACmrpC3wVq6I4Huqp55TxB0Druyo+RWt+0l0ILhkfL9dk1e44rz3aWetzpNObKknZtc73XxJVlGzttnoVwiXKpYcOGWr58uSZOnOi0AABwtc4o9eMVenuv5H9/O91asLfw5JfaunG/qnX7tVrVK2wqTwEmWC55R8mBERreoa4u6HtM/UR62xUg/TtKt1Z1GnMdlxJd71ULkutkTptnIVyi3AoLC7Ofo6Oj7WcAAK7OCe3bnqwMNVGngMbKv9mwpTNfJ2vd7uvUqsNtqn+5KnXWt/p41ptKDvi9+raseWGwVLa0L1nKsKROd0pVChxxJlVat9MVLAOl+hWdRs9CuES5ZsrjU6ZMUWqq648RAICrkX1Y+5MOun64Xe2b1ykQns4obUeidpwfb2kp6/ABpWWcc97PIytN619frVOhERcJlsYZaf8+17Of1L6ZLjgo7XNpx9mc8ZbXu97MOuJqy3De9AyES5Rrpjw+adIkjRgxgt17AABXx6eSqtbxdeW9ZmpSv8B0HTPe8pMkZdyQO97yR+1c8pYSjhYIl3awjJF691dI46r5MqN1aJ3mxqaZaTwurmhWtbrruYHUpK7d8rOC4y3NxJ9lUkJ6ztsegnCJcs8sqH7bbbcpKirKaQEA4Ar4/FL+dwWa+dkFnFPGjpWasyhFVvs71bzuddLZA9r2TVO19vu5ZG3Wxpz/wjJZvR/VPWatyvMsZR1L1qJp61S9WW0ncLp+zz/Ingx+gYxkac5K1w+3S83ruJ5/krYdllrfaL/tKQiX8ArPPvusZs2aZS+yDgDAlamqO8IGaXDNeMV+etiMinQ5q2PJy/RGyk3qO7C9KxiaaGgpc1eivr27i251lioywXLJzDhVv7+rbs5M0j8mj9CAAQNyHo8+qA63PKd99w9Vr/Mzxl2/d8eD0qDKUqwrTNrdma7/OPaZ9MYXUt+H7KNsma7X37aWbi0w27yUsYg6vEZCQoJGjhypuLg4e7kiAACK7pwyvlqnN2d9pMN+9VXp5Dn53d1Hv+vSVJW/+0Tzpi7Qv2s3UM0b7taQoc62jtYP2vDKClV+fKB+XStnHUsrI0VRk8Zp7F92qfGQJzR8yKP678K2i8zYJ705Vzp8g1TplOTXRfpdsFT5e2neq9K/XeGzZkNpyICcnXs8COESXmXy5Mn289ixY+1nAADgXoRLeBUzqadz586KjIxUYGCg0woAANyFMZfwKqYcboJlRESEMjMznVYAAOAu9FzCKy1cuFApKSmaOnWq0wIAANyBnkt4pT59+mjv3r2KjY11WgAAgDvQcwmvZZYlCg8PV0xMjGrXru20AgCAa0G4hFejPA4AgHtRFodX69+/v44dO6bo6GinBQAAXAt6LuH10tLS1KhRI6Wmptp7kQMAgKtHzyW8ngmUy5cv18SJE8V3LQAArg3hEnAJCwuzn9977z37GQAAXB3K4oDj6NGj6t69u95++201b97caQUAAFeCnkvAYZYjevHFFzV69Gh7m0gAAHDlCJdAHiEhIXavZVRUlNMCAACuBGVxoABTHu/WrZu9B3lgYKDTCgAAioJwCRQiKSlJERERiouLU5UqVZxWAABwOZTFgUKYHsuePXtq+vTpTgsAACgKei6BizCTejp37qw33nhDrVu3dloBAMCl0HMJXIQphy9atEhDhgyxx2ECAIDLo+cSuIyFCxcqJSVFU6dOdVoAAMDF0HMJXEafPn20Z88excbGOi0AAOBi6LkEisCEy/DwcMXExNiLrQMAgMIRLoEiio6O1po1azRnzhynBQAAFERZHCiisLAw+9mETAAAUDh6LoErkJaWpkaNGunAgQP2MwAAyI+eS+AKNGzYUMuXL9ef//xnex1MAACQH+ESuEKmPG4m9URFRTktAAAgF2Vx4CqYRdW7detmL7LevHlzpxUAANBzCVwF03M5adIkjR49mvI4AAB5EC6BqxQSEqKgoCDNmzfPaQEAAJTFgWtgei07d+6syMhIBQYGOq0AAHgvei6Ba1ClShU7WEZERCgzM9NpBQDAexEugWtkeix79uypV1991WkBAMB7ES4BNxg5cqS2bt2qhIQEpwUAAO/EmEvATfbs2aPw8HDFxMTYs8kBAPBGhEvAjRYuXKiUlBRNnTrVaQEAwLtQFgfcqE+fPnYPZmxsrNMCAIB3oecScLO0tDQ1atRIqamp9l7kAAB4E3ouATczgXL58uWaOHGi+O4GAPA2hEugGISFhdnP7733nv0MAIC3oCwOFBNTHu/Vq5fdi0l5HADgLei5BIqJCZQvvviihg8fbm8TCQCANyBcAsUoJCREzZs3V1RUlNMCAED5RlkcKGZHjx5Vt27dtGjRIjtoAgBQntFzCRQzs1vP9OnTNXr0aMrjAIByj3AJlICOHTsqKCjIDpkAULLOSanbpdeHSX+IdtqA4kO4BErIyJEjtWLFCn322WdOCwAUt3Tp5aekueulT+KlbKcZKEaMuQRKUFJSkp544glt3LhRVapUcVoBoLhluELmg9LnI6QFOevwAsWFnkugBAUGBurRRx/V+PHjnRYAAMoXwiVQwgYOHKg9e/YoNjbWabmQec/MMgcAoKwhXAIlzJTDp06dqnHjxhUaIE2wNO9VrlzZaQEAoOwgXAKlwKx3aXbumTJlitOSwyxVZIKlWRPT19fXaQUAoOwgXAKlpH///jp27Jiio39eGmTNmjV2O4utAwDKKmaLA6UoLS1NjRo10oEDB+znnj172iVzwiUA9zglLZ0grU6Vdm6Q/nOb1LGxdOcg6Zlg5xjAvQiXQCkzPZemx3LGjBl2KZw/SQBAWUa4BDxARESEWrVqZfdgmp5LAADKKsZcAiXI9FKaPcZ9fHzOP8y2kM2aNdNrr72m/fv3O0cCwDVy3V+K9ADcjHAJlJDcZYf69eunzMxMu/xtHiZwmnD5i1/8QlFRUfYxAHDNTGGyKA/AzSiLAx7CLENkxl6GhbE1GwCg7CJcAgBQbp2W1s+QXtkq1cmWEr6Qev9Jet71JbZ6BecYwL0IlwAAlEuuj/fk2dKCm6SpD0jXuZoOfSSFPi75vyK98bBUkTGXcD/GXAIAUC5lSnGrpDXbXD+afiRXkPS7WxpxjzQ/Wvr6dM5hgJsRLgEAKJd8pR5PSy/c5/qRHkqUHMriAAB4i/S10gNDpJ5vSc8F252ZgLsRLgEAKPdcH/WH1ktDZ0u9npP6tpWuI1mieBAuAQAo185JO9+R/poujRssNa0krf9Quv1Bya+icwzgPoy5BACgvLJOSKtelHpvkEKaSElrpWhX0HztE+k6IgCKBz2XAACUS6ddQfIZV7CcZVfF8+k0W9o4VGKpSxQDvrYAgBdJS0uz97eHN6gkhc2Usl3J0vQj5X3El99gGRERcX67XZQOwiUAeJE6depo2rRpfPii3GrSpIk+/fRT5xVKQ4UJLs7PAMoAK2O3Vk57SuE9/6rNVZopqO1Nqv4LM+vzlA6smKl3T7dUu/qVcg4GCqhYsaLq1q2rzz//XEFBQU6rexW8Rv/rotdoltI3v6mpc9dow/urleJ7u9reVEM+pw4oYUmk5kbHa9u2jVr5j3/qq6q3KdD1Hj0iuJzq1avbX6AeeeQRp8W9in59u45NT9DsqW9p44YPtDylslqZY30ylZoQpb/NfU9btm3VxpXLtforX7UMbOz8Oxe6knN6BDPmEkAZcWaP9e4f2lq3dOll9e/TxbpFjazfTt1sHc/Ots5+s9Ia//Im62i2cyxwEUeOHLHM7T81NdVpcSNzjT7eLv81Om2L9Z9CrtHsH2Ks58avs45kn7OOr3vO8qv2uLV4x1brnZffsbb+cCrnICvb+nHzZMu/Wi/r9ZQMpw24tEGDBlnLly93XrlRYfdg1/Vd6D04+6AV89w0a92RLMt1gVuj/W6x+i751Nrxzizrra3fWWedw6wfP7Em3XmzFfJ6snXaacrnSs7pIfgSCJQZWUpfv1RxnSK19Z9RWrD0Q8V/OkMPHn5To58bpxETvlGPwR1Uq/AvvsB5tWvXluuDV8OHD9dPP/3ktLqDc412fCP/NZo+T89ecI2eUer6LfJ7KEi1fbJ1KjNTpzLe0/iXtqnlEw+rXb3cXhgfVa59oxpkJOnjlB8umJcCFGb8+PGaMmWKEhISnBZ3+PkenFjg+i7sHmylbtJqv67qVLuCrFOZOnHqS33wpxnadEc/DWh3o73Vu61yLfk1OK1PPv63vrvgAr/IfT/vOQd54H3fCZkAPN5xa+eqf1pf/FTgK2r2f6yUd/5uvfflj04DUDQzZ8602rdvb+3evdtpuVZXcI1mp1kf/O+r1uYfzbHHrM2Tuliq1tN69bP/5Lx/ntNzqVusvu9+5XoFFM2mTZvs69t9PZhXcg8+a33/wSRr8uZjrp9zr+FG1m9f22Zd0P9u91xWt6r1fdf65oILvGze9wmXQFlmbjCLplozNqe75UPXfN/k4b0PUy53u4tdo9knrdSvD+eUBk9/Zr32m1qWfjPD+uxUwSv5lPXlwketanrAei3ppNN2dQr738zDex6fffaZcyW40UXvwVnWydRvrPSzpvWklfTaA67/DoVfw+e+XGg9VL229ZvXPiu8LF6Qm+/7xYGyOFBWWce1c8k7Sg6M0PAOdd2yRbDrnsDDix6ZmZlasGCB2rdvbz9XqVLFuRLc5FLXqE81NWxSxy4NWt99oS07zqrFvQG6+foCV7J1UFtjNivDv6OCbq3qNF6dwv5vwKN8PzZt2mRf36NGjbInsrnVJe/BFVStYWPVNVtsWunavWW31KK9Wt/s67yf64zStm7U2oxWuj+oia53Wi+qGO77xYFwCZRFWd/q41lvKjng9+rbsqbH3mDgucxYyyeffFLx8fFas2aN+vfv795wWeRrNEvpOzYrJqOJugTdouoFDrRSE/X+B9/L/5EuauXLlY6ii46O1siRI7Vo0SJNnTpVDRs2dN5xgyu4B1vpO7Ux5kvV6tJWt1UvELusb7V5ZZwyWobo3lY1ncaLKEP3fcIlUNZkpWn966t1KjSCYImrNm/ePNWqVUtz5syx1750qyu6RjP0VXKyjlUL1G/uqFvgQ+mMUjfH6oOMtnrk3ttl+nysjIPaf/h0ztvARSQlJdkTekzAbN68udPqJld0fVv66avPtelYE3X+zW2qW+Bg8+VppevLU8uHO+d8ebIylLb/iOsrVwFl7L5PuATKEvsGEyP17q+QxlXz3WCsQ+s0NzbNHlwEXMqePXu0cOFCTZw40Wlxoyu9Rs/sV+LqZKlVkFo1LFAUPLtPa5esz9Ork6XDCYu1bJ87Z7ijvDG98maXnsjISPf2VhpXfA/+UXsTE5Silrq7lV+B0JWpvWvfd315aqeHc788HU7Q68v2ur5W5VEG7/uES6CMsDJ2aP4Ly2T1flT3+OVdLNdS1rFkLZq2TtWb1fb4b7QofcuWLdOYMWPcPsbyaq7R7LTPteEi4y2tQ59r7brDeXp1Dirh4xv028uVD+HVtm/fri5duigwMNBpcY+rugdnH9KODTsLH29pfa/P1v5LGf7my9MNroazOpSwQ/V/e4cdNI2inbOWx933fSwz4hWARzM3mCUz41Sp091q3eBHfbp0kT784kTOm9lHtPPDbD0QFakX7m3489ppQCFMr46vr689mced4fLqrtEs/bDqGbV4cJ0e/iBGs3v8Kn+vzNF1eq7jH/TZqI+05vGm+u7Dv2tp7d/rqV977kQGlD7TazlgwAB17NjRabl2Rbq+//GGXujaKN892PphlYa1eFBLH/5Au2f30C/zXeA/aP1zD+nezwZq9+o/6JbvYzRtaQ0NeaqjvW5lUf+mxrn+pirmtHoOEy4BeLDs7631L79hfXI0y2kwq7h8bi19NtS6Rbdadw952Vqe9P3Puz3gqmSfTLL+/nAv67Wk8r0LjFluyO07l1z1NXrGOvjBSKvF3S9ZcT8UdgWfsg7GzbKGDhlj/eVPf7ZmxKVxneOyFixYYLm+PDmv3OAa7sHZB9+3hrZ4wBofd6iQZYOyrbMHN1qvDf0f69m/TLD+NGOjddBeusi8dbFz9iwT9316LgF4t6zD2rN5g5b97SU9v7SWpn36gZ5pW815EwBwpRhzCcB7HYvXy4Nf0Lz471St8Y1OIwDgWtBzCQDK0qHo4WrQ6wt6LgHgGtFzCQAAALchXAIAvMLRo0eVkJDgvAJQXAiXAACvcPjwYa1cuVJBQUH2IvImbAJwP8IlAMArmG0AzR7TZkvAEydO2NteTp482d6xCID7EC4BAF7FbAk4fPhweyH5Fi1aaPTo0erZs6ddMjeLzAO4NoRLAIBXMjsUhYWFacWKFRo1apRdMu/cuTMlc+AaES4BAF7PbBVYsGT+0ksvUTIHrgLhEgAAR96Sefv27c+XzGNjYymZA0XEIuoAvNe5PVo68v+0+vhJHUj4SBu/zFC1tg+oZ8s6uu7OQXrlmWDVcg6F90pKStLixYu1ceNG9e/fX/369VPt2rWddwEURLgEAKAIzDhMEzLNmMwuXbrYITMwMNB5F0AuwiUAAFfAlMfj4+M1e/Zs+/WwYcMUHBxsTxACQLgEAOCqUTIHLkS4BADgGpmS+apVqzRr1iy7ZB4aGmrPQAe8EeESAAA3MSXz7du3a9q0afZr05vZvXt3SubwKixFBACAm5gQaXoszcLsZt3M3bt3y9fX1+7RTEtLc44Cyjd6LgEAKEaUzOFtCJcAAJQASubwFpTFAQAoAZcqmbPNJMoTei4BACglpmRuljGaMmWKAgIC9Nhjj1EyR5lHuAQAwAMkJCRo/vz5Sk5O1pgxY+zxmayZibKIcAkAgAcxJfLY2FiNGDFCM2fOVEhIiJo3b+68C3g+wiUAAB6IkjnKKsIlAAAejpI5yhJmiwMA4OFMj+WcOXMUHR2tgwcPqk6dOnrppZeYZQ6PRM8lAABljFkzc82aNVq4cKH9etSoUWrTpg1rZsIjEC4BACjDTMl85cqV9vjM4cOHq0ePHpTMUaooiwMAUIaZkrlZlN2UzE+cOGGXzCdPnkzJHKWGnksAAMqRgiXzZ555Rm3btqVkjhJDuAQAoJxKSkrS4sWL7ZK52cu8X79+lMxR7AiXAACUc2bNTBMyTW+mWcbIhMzAwEDnXcC9CJcAAHgJUzKPj4/X7Nmz7dfDhg1TcHAwJXO4FeESAAAvRMkcxYVwCQCAF6NkDncjXAIAALtkvn37dk2bNs1+bXozu3fvTskcV4x1LgEAgB0izZqZK1assNfN3L17t3x9fTVr1iylpaU5RwGXR88lAAAolCmZr1q1yg6YpmQeGhpqB1DgUgiXAAB4vHNSarK0aq6U2FV6K8xpLxmUzHElKIsDAODR0qWXn5Lmrpc+iZeyneYSRMkcV4KeSwAAyoQMV8h8UPp8hLSgZHsuC2NK5mYZoylTpiggIECPPfYYJXPY6LkEAABXzKyJGRYWpsTERDtYzp8/X0FBQYqOjraDJ7wX4RIAAFwT02M5Z84cLVq0SAcPHlSdOnU0c+ZM7dmzxzkC3oRwCQAA3KJ58+YaPny4jhw5ol/96lcKDw/X4MGDlZCQ4BwBb0C4BAAAbkXJ3LsRLgEAQLEprGQ+efJkSublGLPFAQDwaKekpROk1anSzg3Sf25zJbbG0p2DpGeCnWPKDrNm5po1a+y9zI1nnnlGbdu2Zc3McoRwCQAASoUZi7ly5Up7SSMzVrNHjx52SR1lG2VxAABQKkzJ3CzKbsZinjhxgpJ5OUHPJQAAnsrHx/nhMsrJR3nBkvmoUaPUpk2bqyqZm3/riy++UGBgoNOCkkK4BAAAHudaS+am93Pu3Ll2zyhKFmVxAAA82mlp/TSpx++kAb2lZndKY6Kkk+ec98un3JJ5TEyMXTLv1q2bRo8eraSkJOcIeCrCJQAAHsuSkudKq26XViyVFrhCZbwraK7/o/RH189ny3/x0fRWmp7LuLg4de3aVRMmTFDPnj0VGxtrl77heQiXAAB4rEwpbpW0ZpvrRxMkfSS/u6UR90jzo6WvT+cc5gXMuMuQkBCtWLHCDphr165V586dNWvWrIsuzH7s2DHnJ5QkwiUAAB7LV+rxtPTCfa4fizi5xwuYSTq5JXOjsJK52YoyOTmZHYFKARN6AAAoS9LXSg8MkXq+JT0XbHdmejtTHo+Pj9fs2bPt18OGDVNwcLDmzZtnvzZldZQcei4BACgTLOnQOmnw69KId6XRnQiWjrwlc9Oj+emnn8rX11c//vijPWPcLEmEkkPPJQAAHu+ctPMd6a/p0rjBUtNK0voPpdsflPwqOscgry+//FJvvPGG5s+fr5o1a+pf//oXu/+UEMIlAACezDohffiKNOobaXwP6XrTXfkfacEuae5fpHoVco6DLS0tTTNmzLDXxzSzyps2baozZ86wtWQJIlwCAOCxTkvRz0i9Z9lV8Xw6zZY2DpXIlueZhdfNWMtly5ape/fuV7WzD64d4RIAAJR5JliOHDlSy5cvV6NGjZxWlAbCJQAAKNPMbHGz5mV0dLQaNmzotKK0EC4BAADgNixFBAAAALchXAIAAMBtCJcAAABwG8IlAAAA3IZwCQAAALdhtjgAAEARWRm7tfK1SZr0169154TJmjzsLvldZ3ZNOqUDK17XmpsH6omAGq7XWUrfPF+zYr6XdeKk6j00QkPv+pUqnDqghKilit13TjWqu45JO62mvYZoYPCvdJ19hsKclpJjpCVxUvX60smfpNDB0p2npK0ZUvCdkv3fwTMQLgEAAIri7F4tfaKvnv+6iTrWO+IKiV+q6bQoLfvfIPmmfqBJUXX0x6c7qpYr51npH+n5v1XUM+O76LoN49Qi9Hu9snmosj/ao+b9e6ldvUquf9BS5pYp6hCyTcM2L9CQllVzzpOXdVx6a5QUfasU+aTUwPV71lFp1jQp8Z/SigBp5+tS4+udXyh9lMUBAAAuK0vp65cqrlOkK9NFacHSDxX/6Qw9mD5Po58bpxETvlGPwR3sYCmdUer6LfJ7KEi1fbJ1KjNTpzLe058mbdcdEQ87wdLwUeXaN6pBRpI+Tvnhgh0+pQxp0bPSlOukGf+TEywNn9pSaKArWG6TWrnCZf2KOe0egnAJAABwWZlKz+qgp/q1Vm1TgvbxlV/bnhoxZZpGtGqs+8YNVLsazkbvVrp2bL1B7ZuZnsgMfZWcrGPVOmv4c48osHrezeAtnTr6vQ46r/JzRc2di6Vh70gDHpWa+jrtjqwzrv+oJnVvJ13vOSVxg3AJAABwWTV0xwNd1bxyniBnHXflv0itb9pLofnCX00FDg9Xu6quY8/sV+LqZKnVPep8e3Xn/Vxn9N3eXdqvFurQop7yRUQrTfpbpCubdpZ63Ok05sqSdm1zvddECmjstHkOwiUAAMCVMsFyyTtKDozQ8A518wdDn2pq2KSOPUHH+u4LbdlxVi3uDdDNBXsYrYPaumazMlp2VNCtBcZbpn4ive0KkP4dpYLv6biU6HqvWpArtNZz2jwH4RIAAOBKZH2rj2e9qeSA36tvy5r5g2U+WUrfsVkxGU3UJegWFey3tFITtfKD79Xy4c5q5Zv3X8mW9iXbQy7V6U6pSoEznEmV1u10BctAqb7nTOTJRbgEAAAoqqw0rX99tU6FRlwmWBq54y0D9Zs7CvRumkk/m2P1QUY7PXzv7TJFdSvjoPYfPm2/p/1fup79pPbNzLyf/NI+l3acle5vJ1VyvZl1xNVmkqhnIFwCAAAUhR0sY6Te/RXSuGq+zGcdWqe5sWn5Z3yfH28ZpFYNC/Qwnt2ntUvWK8M/RPe2usHVkKXDCYu1bN9Prp9d8ayq6edsIDWpa47Oo+B4SzPxZ5mUkJ7ztgcgXAIAAFyGlbFD819YJqv3o7rHL3cpIcNS1rFkLZq2TtWb1c4XOLPTPteGi4y3tA59rrXrDsv/kS5qZSb+WAeV8PEN+m2rmq53K0r+7e3J4BfIcIXVOStdP9wuNa/jenaF0W2HpdY32m97AsIlAADAJZhguWRmnKrf31U3ZybpH5NHaMCAATmPRx9Uh1ue0777h6pXvhnjWTq8a7viLjLeUtXqqnHDWmrgV0uVdVoHV7+nr3v0dMZeuh53PCgNdoXYWFeYtLtDXf9x7DPpjS+kvg+ZhhyZrtfftpZuLbBUUSlihx4AAICLsX7QhldWqPLjA/XrWjlrVFoZKYqaNE5j/7JLjYc8oeFDHtV/B/yywPaNZ3Vo1bO655W6emPpaN1Vr+Dmjqd16OO5enFJmpr80ldV7n3c3h4y31EZ+6Q350qHb5AqnZL8uki/C5Yqfy/Ne1X6d2WpZkNpyADXe3l7U0sX4RIAAABuQ1kcAAAAbkO4BAAAgNsQLgEAAOA2hEsAAAC4DeESAAAAbkO4BAAAgNsQLgEAAOA2hEsAAAC4DeESAAAAbkO4BAAAgNsQLgEAAOA2hEsAAAC4DeESAAAAbkO4BAAAgNsQLgEAAOA2hEsAAAC4DeESAAAAbkO4BAAAgNsQLgEAAOA2hEsAAAC4DeESAAAAbkO4BAAAgNsQLgEAAOA2hEsAAAC4DeESAAAAbkO4BAAAgNsQLgEAAOA2hEsAAAC4DeESAAAAbkO4BAAAgNsQLgEAAOA2hEsAAAC4ifT/paWW/w6vQ9kAAAAASUVORK5CYII=
iVBORw0KGgoAAAANSUhEUgAAAlAAAALSCAYAAAASmu+WAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAAIKBSURBVHhe7d0LnM11/sfx92wJ45bLtMYOK/ciM66rRVSylJYG27LIJpLFZjeXpNImf9GmRSrUCpEdRIlhkUnSjkszGnKrNDNRzSAak8uY3/98f/MbzYzBnHHGnMvr+XicnTnfc8Zv//v/nd95/76f7yXIchEAAAAK7BfOTwAAABQQAQoAAMBNBCgAAAA3EaAAAADcRIACAABwEwEKAADATQQoAAAANxGgAAAA3ESAAgAAcBMBCgAAwE0EKAAAADcRoAAAANxEgAIAAHATAQoAAMBNBCgAAAA3EaAAAADcRIACAABwEwEKAADATQQoAAAANxGgAAAA3ESAAgAAcBMBCgAAwE0EKAAAADcRoAAAANxEgAIAAHATAQoAAMBNBCgAAAA3EaAAAADcRIACAABwEwEKAADATQQoAAAANxGgAAAA3ESAAgAAcBMBCgAAwE0EKAAAADcRoAAAANxEgAIAAHATAQoAAMBNQZaL8zsAAIB7rO+0ZeYsRZ88qxPfhuq+kQ/qttASOpX0saLm/1cHSpRTuTOpSv6xjrr/ta/ahpZ0/vBCVtoerfjXBE3451e6ZfxETRxym0KvDXK9ckqJy1/R6hsH6OHw8q7nGUrZMlczor+TdeJHhdw3TI/c9itdcypRm6MWa+2BcypfzvWe5NOq1X2wBrT9la61j+A5BCgAAFBIrpCy5gW9XOJBPX3HL/TB6E7qmvQ3ffx4Ca3d/mv169NCIXYA+kGfPBepuz68X5+8N0gNrzNteZzdr8UP99ITX9VU65AjriD0hWpNidKSv7dUcNJ7mhBVWX/9W2tVdP2plbJGT7xcQo893V7XfjBODbp+pxe3PKLMNftUr193NQ8xIc1S+ieT1Krjdg3Z8qYGNyyTdRwPoYQHAAAKx0rShlUVdV+bEAVZp5V+4rTS3pus5z6qpYcfaOmEJ6OUKoWGKO3jWCV8e9Zpy8kVxDYsVkybWYr9b5TeXPy+Nm2bpntTXteox8dp2Piv1WVgKzs8SWeUtOEThd7XUpWCMnUqPV2n0t7RUxN26OZB9zvhyQhSqUq/VLW0OH2Y8L0rTnkWAQoAABSKlbJbW6s2Vl3To/RTouI/Oqiytw7QmH5NVTZXJ9MpHT2c4vyen3SlZLTSo72bqJIJXUHBCm3WTcMmTdGwxjX0u3ED1Lz8NVlvtVK0c+v1alHH9Cil6cv4eB0r205DH/+jIso577FZOnX0Ox1ynnkaAQoAABROcBMNHdhUwa6wcmb/Nq1KKKHGXdrqpjK50pOUmaL92w9KjSPUoGoJpzGn8rr5ng6qVyrH31nHtWvhLG2o1V1dawU7jUYFRQzto+bmGGcOKnZVvOvfvUPtbirnvJ7tjL7dv1sH1UCtGoQoz3+jK0aAAgAAhRJUtppqVjEls7P6dk+cdqqh7mxSXddlvXyelbxD0etS1eju5lm9VZdjwtOitxQfMUhDW1XJHX6CyiqsZmV7ULj17V59svOsGtwZrhvz/rvWIW1dvUVpDVurZV3Pjn8yCFAAAODKmLLaxlilVWymlvUr5OntOaOkLWv1Xloz/fHOm5SzLylfGd/owxlvKD78T+rVMO+/lVOGUnZuUXRaTbVvWVt5+5+spFiteO87Nby/nRoHFyC0uYkABQAArkz2+Kd2zXRzlTwLBljfaMuKGKU17Kg7G1dwNZxTWnKiUjPyGdadkawNr6zSqa6DLhOejOzxTxH67c15eqnOh7bmut8JbVbaIR1MPZ31sgcQoAAAwBXIMf7p9lsUlitZWDq7/wMtytkTZH2vza+8pwNnnLdks8NTtNSjnzrWKJMrEFmH12vO2uTcM+nOj39qqcZheYqGZw9o3aINSmtkQtv1roYMpW5eqCUHfsp63QMIUAAA4AqcUfLO2IuMfzqrw59u1vqcPUGHt+rDqrfmKqtZaTs198klsnr01R25Ftq0lHEsXgumrFe5OpVyharM5M/0wUXGP1mHP9O69alq9Mf2amwGm1uHtPnD63WX3QPmGQQoAABQeFaqdn8cd378U27XqGxINYUpRNUqlZIyErXqzcPq0if8/FgoE54WTY9Rubs76Mb0OP1n4jA98MADWY++96pV7cd14O5H1D3XTLwMpe7eoZiLjH9S2SqqEVZR1UIrqpRO69Cqd/RVl24eHQt1zXgX53cAAAA3Hde+Ve/r2zuG6NG7ayn3Cga/UOnq9dW4yi6t2RSnrZsPq8FD/dUmxFnKwPpeG2esU8jAh9WxflVVrBSmm5vU0NlPV2vuzE8V9Nse+vuMpzXot9XybMVyTif2rdPSb3+jxx/9nWqWyd0fFFT6V2rYOFifrdmkz7fGan+DP+kvbaq64pznsJULAACAmyjhAQAAuIkABQAA4CYCFAAAgJsIUAAA+LmjR486v8FTCFAAAPi5Tp06KS4uznkGTyBAAQDg56ZOnapBgwZp8+bNTguuFMsYAAAQAEwPlAlR/fr1U+/evVWpUiXnFRQGAQoAgABhxkItXLhQw4YN08iRI1WvXj1dd911uuOOOxQWFua8CwVBgAIAIMAcOHBAc+bM0fPPP686derok08+UeXKlZ1XURCMgQIAIECYMVCjRo2yS3g1atRQkyZN9P777xOeCoEeKAAA/NhPP/2k1atXa968efbzxx57TM2aNdPrr79uPx86dKj9E+4hQAEA4IeSk5O1fPlye7zTc889px49ethjnrK1bNlS0dHRDCYvJEp4AAD4kewyXWRkpMqXL68jR45o7NixucKTCVfVqlUjPF0BAhQAAD7OzK5btmyZ3as0d+5cde3aVTExMfaSBfmFpPT09FyBCu4jQAEA4KP27dunGTNm2IPAv/nmGy1YsECzZ89W69atVbp0aeddKAoEKAAAfIwp0w0cOFB9+vSxS3GmTGfGOtGrdPUwiBwAAB9gynQbN27UpEmTFB4erv79+9s9TYVhZuYlJSURuK4AAQoAAC9mynRr1661e5imT5+ujh07Eny8AAEKAAAvY3qIduzYYQ8IT0lJsQeDt2/fnllzXoQABQCAlzBlupUrV9oDw01gMrPpClumQ9FiEDkAAMXMlOkmTpxoz6Y7ceKEvSTB5MmTCU9ejB4oAACKQXaZbsqUKfZzU6br3Lkzyw/4CAIUAABXEWU6/0CAAgDgKoiLi9OqVavs/elMb1O3bt0UFhbmvApfQ4ACAKCImDLdpk2bNHPmTPv5kCFD1LZtW8p0foAABQCAh5ky3cKFCzVv3jy7TNe7d29FREQ4r8IfEKAAAPAQU6YzwcmsGG7KdCY4sXaTfyJAAQBwBSjTBSYCFAAAhZCcnGwPCDdlOjMg/O6776ZMF0AIUAAAuGHz5s1asWKFXaYbOnSounTpQpkuABGgAAC4DFOmW716td3bZIwcOVJNmzalTBfA2MoFAICLMGU6s+BlcHCwPv/8c3t7FVO2MwtfEp4CGz1QAADkQZkOl0OAAgDAxazdZAKTKdOFhISof//+lOlwUQQoAEBA27dvn9auXathw4Zp+vTp6tixo+rVq+e8CuSPAAUACEimTDd37lzFx8drzJgx9orhlOlQUAQoAEDAyC7TTZo0SeHh4XaZzgwIB9xFgAIA+L3sMt3w4cM1bdo0ynS4YgQoAIBfMms37dixwy7TpaSk2HvTUaaDpxCgAAB+xZTpVq5caa/fZAJT165dKdPB41hIEwDgF0yZbuLEiapcubJOnDihZcuW2QtfEp5QFOiBAgD4rOwy3ZQpU+znpkzXuXPnIlq7yfV1mbJd+udU6YdaUvV0Kdb1GPJ3qWMd1zeq8zYEBAIUAMDnFEuZ7tRO6f6HpN6LXD9rZ7Wd2CJ1cgWox96SIm/MakNAoIQHAPAZcXFxxVSmOyutek3a2kHqnCMolW8iPRQmPf22lE5/RCAhQAEAvJop05klCLp166bx48erefPmSk9Pt/eoCwtzhZerwTosrVwn3VJHKpvzq/M6qaarLWGttPO404ZAQIACAHglU6YzJbp27dpp3bp1dnhavny5vYbTVd+f7swhaeN+qer1eb45XU8qmGURDkpf/5DVhIBAgAIAeBVTphs1apQ6depkP4+OjrbLdBEREfbzYnHUFaBcGeniXC8mHXF+RyAgQAEAil3eMl2HDh0UExNjl+lY+BLeiAAFACg2XlWmA9xAgAIAXHWbN28+X6YrX768d5TpLqVSNamm83u+XC9Wr+z8jkBAgAIAXBWmTGeWHTBlOrPwpVm7yZTpzOKXXl+mu+6X0q21pS+/l845bTbXk9RvXT/rSnUoNQYSAhQAoEglJyfbZbrg4GDt2bPH7mkyZTqzdpPPlOmCfiX9vp30RaJ0MtNpNE5LXx2QGt0u3VTOaUMgIEABAIpEdpkuMjLSLtMdOXJEY8eOVb169Zx3+JLrpM4DXUEpWlr0mb2ri/0fhz+U3jgivfCAFMxeLoGErVwAAB5jynSrV6/WvHnz7OcjR45U06ZN/WRAuAlMn0gvzZCOZ++Fd1Ia+Kh0TwP2wgswBCgAwBXbt2+fvQzB8OHDNW3aNHsWnW/2NAEFQ4ACABSaKdPNnTtX8fHxGjNmjL2xL+s2IRAQoAAAbjFrN23cuFGTJk1SeHi4+vfvfxU28wW8CwEKAFAg2WW6YcOGafr06ZTpENAIUACAS6JMB1yIAAUAuIAp061cudJev8kEJrPoJWU64GesAwUAOM+U6SZOnKjKlSvrxIkT9srhZuFLwhOQGz1QAACbKdWZLVbM1iqdO3dmM1/gEghQAAAAbqKEBwAA4CYCFAAAgJsIUAAAAG4iQAFAHmYKP+CvOL89gwAFADmYafwPPvig8wzwLyY8mRmWuHLMwoMfyFDKlrmaEf2drBM/KuS+YXrktl/pmlOJ2hy1WGsPnFP5cq73JJ9Wre6DNaDtr3St85dAflq2bKkFCxZ4dpsS6zttmTlL0SfP6sS3obpv5IO6LbSETiV9rKj5/9WBEuVU7kyqkn+so+5/7au2oSWdP8zNStujFf+aoAn//Eq3jJ+oiUNuU+i1Qa5XTilx+StafeMAPRxePuvNQD7uu+8+Pf3004qIiHBaPKDYz+/TUny0tChGKldV+vEnqetA6ZZT0tY0qe0tkv3veJAJUIAvy/w+2nr86fXWkcxz1vH1j1uhZR+0Fn221Xrrhbesrd+fyn6XdXLLRKtR2e7WKwlpThuQv6VLl1ojR450nnnCWev76P+znl7/netMTLHWj25ule31lvXZZ/+xXvj3/6zvz2Y67ztmbZnQ3irb8VUr4XR2Ww5n9llvP9jcqt2+u9WvZ3urtqpbd035xPohM9M6+/UK6+kXPrKO5vNnQE5Ffn6PamaVK+z5/edmF5zfxy93fmf+YFmvD7SseyZb1jfONT/ziGVNG2NZfZpZlus7wfr6dFa7B1HCg487o6QNnyj0vpaqFJSpU+k/6VTaO3pqwg41fPh+NQ/JvssJUqlKv1S1tDh9mPC9Mp1WID+mxLFx40Z7YUmPsJK04f2Kuq9NiIKs00o/cVpp703WhI9q6+EHWirk/J1xKVUKDVHax7FK+Pas05YtQykbFium9Wva+t8ovbn4fW3aNk33pryu0Y+P07DxX6vLwFaq6OGbbPgfc36bUrVXnt9tZik2z/k96pLnd5q0YLQ06Vpp2l+kas41P6iS1DVCWr5dahwuVS2R1e5BBCj4NitFO7derxZ1y7iepOnL+HgdK9tOQx//o8LLXpP1HpulU0e/0yHnGXApZgXuWbNmacSIEfYXzZWyUnZra2hj1b3OdfX/KVHxHx1U2VsH6PF+TVQ21xfCKR09nOL8nle6UjJa6dHeTVTRfCEFBSu0WTcNmzRFwxrX0O/GDVDz8jnPeSB/5vw22/O0adPGIyEqv/O7zK0PFvr8rlTg89uSdi2UhrwlPdBXqhXstDsyzrj+o6wrMTaXzH83DyNAwcdVUMTQPmoe7PpwnDmo2NXxrruNO9TupnLO69nO6Nv9u3VQDdSqQQgnPi7LjA+ZOnWq+vTpY+8H99NPPzmvFEJwEw0d2FTBrgv+mf3btDrhWjXu0lY3mfM2p8wU7d920HUOR6jBBXfM5XXzPR1Ur1SOv7GOu74/ZmlDre7qmvfLA7gEM77v008/tW8S5s2b59Hze1VCCTW+5yqc31ay9PIs171zO6nLLU5jtgxp93bXazWl8BpOm4c5pTzA52V+/bbVu1w5q8GTMdZxp+28zC+tt3vVttRoorXl5JUNEgkKCjITL3gE4CMpKck5CwrrtPX12w9a5YLaWE9+mOq0/cycw73KlrUaTfjYOum0XVTmD1bCWy9bbyX8YHlq2FN+/zfzCJyHp87vsnKd3zEpTtvPPH5+u/4918Esy3Vdty64rrs+X0+2yRr/dDB7LKxncSMOP5GhlJ1bFJ32a7VvWVt5+5+spFiteO87NfpjezXOe1fkpszMTHPjwSMAHq4vFD300EP2w9yth4WFOWdBIZmS88ZYpV3fTC3rV3Aas51R0pa1ei+tuf54502uu/lLyPhGH854Q/Hhf1KvhhV0ZWf0z/L734CH/z6OHDly/vz+6KOPPHd+V2ymFvme3//14PmdKR2It4dAqc0tUuk87zqTJK3fZfd2qep1TqNnEaDgJ5zxT2Ui9Nubq+T5wF34xWSlHdLB1NNZLwP5MOvlREZGqm3btpo9e7Znpnxnjw9p11Q3V8mzmIb1jbasiFFao466s7H58jmntOREpWaYzoEcMpK14ZVVOtV1kEfDEwKLKdl16tRJ4eHh9vndunVr55UrkD2+r10z1/mdp0Rnzu93PXl+n5EOfuH6GSq1qGPmCeWW/Jm086x0d3OppOvFjCOuNpO2PIcABf9gxj+tMuOfWqhxWJ67jbMHtG7Rhhwf3Aylbl6oJQeuoOYPvzd69GgNHTpU/fr1c1quVI7xIe1vUViuq6+ls/s/0KKcvaTW99r8yns6YMbBZrO/XKKlHv3UsUaZXN8Z1uH1mrM22a7FAJdj1oEy57Y5xz0jx/l9u+v8zjXeO+v8fju/8zvnfaxb57frA1TG1BqqSTWrZDWdl3f8k+uvdi2RNl9sAHvhEKDgFzJddxsfuO426t8ZrhvzzLawDn+mdetTc3xwD2nzh9frLjtMARcyM5NSUlI8GJ6MM0reGaudaqg7m1RX7ph/Voc//Vjrc/aSHt6qD6veer7kbKXt1Nwnl8jq0Vd35FqE0FLGsXgtmLJe5epUokcKl2XObzO7dMCAAU6LJ1zu/N7sOr+bXXB+31KmsOd3CalRC3uS3QXSXDfTs1e4frlJqlfZ9dN1s7w9VWryS/tlTyFAwQ9kKNV1txHjutto3+LC8U8qW0U1wiqqWmhFldJpHVr1jr7q0u2Kx0LBf82dO1cjR450nnmIlardH8ddZHzINSobEqowhSi0UinXKZ2oVW8eVpc+4U7JeacWTY9Rubs76Mb0OP1n4jA98MADWY++96pV7cd14J4h6s5MPBTAu+++a5/fZjkDj8lxfpvxfbmvrub8rpbv+W0WoCnQ+X33I3nOb9cRbr5XGugKW2tdgcnumnL9x7FPpdf2Sr3us99lS3c9/6aJVNeznw+2coEfcN3drBytO16solffHqV2N+TdqOW0Dn84R88uSlbNG4JV+s4H7a1e2M4F+TFjn8zYkNjYWKfFQ6wkrfxLb714w7N6+6n2uiHv7asZODvzn1p0qJJuKHmD7hz8gG4zd+LW9/rgxeUq9eAA3Voxqy5ipSUoasI4jX1+t2oMflhDB/fV78Nv4JzGZZnzu0qVKjp58qSHA9TP5/fip9srJO/9aVGd32kHpDfmSKnXSyVPSaHtpT+0lUp9J73+kvS5K7BVCJNcx9NFto8pLAIUgAI6p7SEf+uhB9M15uPhivDTb2szuHbv3r2e3ScM3s86Ls0a7rrf+ps0PNxp9D+c355DCQ/AZVjKSN2rTUsn66HIEVp89IzyTpzxJ+aunC+XQHJa2veR9H9DpMHzpDMZTrt/4vz2HAIUgEs4p2Ob/qWB497QppRSqvGrC0aYAT4sRXphhPT6JqlsVacNKBhKeAAKKEnLHrhd3TcP1tbPH1Nzz+/NCRSfw8ukat2lKdukx5o5jcDF0QMFAADgJgIUAACAmwhQAAAAbiJAAQAAuIkABQAA4CYCFAAAgJsIUAAAAG4iQMFnJCcnO78BAFC8WEgTXsHsz3TkyBGFhYU5LT/bt2+fJk6cqDNnzmjhwoVOK66Wc/sW69HnVunET4naHLVRXyhUze65XQ0rl9ctD/1Dj7UNcd4J+JpT0uLx0qpvpMT/SRv3S2WbSd0aStc2kV4cJjkb3AJ5EaDgFeLi4jRo0CBVq1ZN9erVU6tWrbRnzx57R/zExES796lPnz568cUXnb8AAKD4EKDgVUxQSk1N1Zdffqlf/vKXCgkJ0Zw5c3Tq1Cm1b99ekZGRzjsBACg+jIGCVzElPLNTuAlKrVu3VkJCgo4dO6Zu3brZPVIAAHgDeqDgtUxvVPXq1ZWUlGQ/Hzp0qJYvX27/DgBAcaIHCl7rmWee0dKlS+1eqezB5WZAOQAAxY0ABa+0bNky+2fOMU/9+vWzx0MBAFDcCFDwOqaXadKkSXr++eedliwmTJnX1q5d67QAAFA8CFDwKmY9qNGjR2vChAmqVKmS0/qzGTNmaN26dc4zAACKB4PI4VXmzZtnz7ybPHmy0wIAgPchQMFrmPKcWSxz9erVqly5stMKAID3oYQHr2BKdyY8zZo1i/AEAPB6BCh4halTp9qLZZpFNAEA8HaU8FDssvfBi4mJUenSpZ1WAAC8Fz1QKFamdGfCkyndEZ4AAL6CHigUK7NkQcOGDe1FMgEA8BX0QKHYmAUx9+7dq549ezotAAD4BnqgUCyOHj2qTp06af78+apfv77TCgCAbyBAoViMGjVKjRo1onQHAPBJlPBw1ZmNgo8dO0Z4AgD4LHqgcFUlJyerevXqSkpKUlhYmNMKAIBvoQcKV9UzzzyjpUuXEp4AAD6NAIWrxpTujMjISPsnAAC+ihIergqzUXDfvn3tjYIrVarktAIA4JvogUKRM6uNm1l3zz77LOEJAOAXCFAoclFRUapXr57uuusupwUAAN9GCQ9FypTu+vTpo+joaHqfAAB+gx4oFBlTujPhyWwUTHgCAPgTAhSKzNSpU9WtWzdFREQ4LQAA+AdKeCgScXFxGjRokGJiYlS6dGmnFQAA/0APFDzOlO4efvhhu3RHeAIA+CN6oOBxbBQMAPB39EDBo9auXWvPvOvRo4fTAgCA/6EHCh5z9OhRderUSQsWLLDXfQIAwF8RoOAxlO4AAIGCEh48wmwUfOzYMcITACAg0AOFK5acnKzq1asrKSlJYWFhTisAAP6LHihcsX/84x9aunQp4QkAEDAIULgipnRnOjEjIyOdFgAA/B8lPBRa9kbBq1evVuXKlZ1WAAD8Hz1QKBSz2riZdTdhwgTCEwAg4BCgUChRUVH2Wk8dO3Z0WgAACByU8OC27I2Co6OjValSJacVAIDAQYCCW0zprl27dvZGwREREU4rAACBhRIe3DJ16lR169aN8AQACGj0QKHATOnu4Ycf1saNG1W6dGmnFQCAwEMPFArEbBRsxj29+uqrhCcAQMCjBwoFwkbBAAD8jB4oXNbatWvtRTN79uzptAAAENjogcIlmdJdp06dtGDBAnvdJwAAQIDCZQwcOFBt27aldAcAQA6U8HBRZqNgg/AEAEBu9EAhX8nJyapRo4YSExMVFhbmtAIAAIMeKOTrmWee0ZIlSwhPAADkgwCFC8ybN8/+ed9999k/AQBAbpTwkItZrqBPnz5sFAwAwCXQA4XzzEbBZsHMCRMmEJ4AALgEAhTOi4qKstd66tixo9MCAADyQwkPNrNRsNnrLiYmhr3uAACFl/G94lcu1qKN36hcWFn9eKKauj7yR91y6jNtPXGj2obfoGudt8r6TltmzlL0ybM68W2o7hv5oG4LLaFTSR8rav5/daBEOZU7k6rkH+uo+1/7qm1oSecPL2Sl7dGKf03QhH9+pVvGT9TEIbcp9Nog1yunlLj8Fa2+cYAeDi+f9WYPIEDBLt21b99er732miIiIpxWAADcY6Xt1L+H/UXL6v5Ds0e1twOMdSJWM56bq9h352t5kzna9db9qmFyjTKUsuYFvVziQT19xy/0wehO6pr0N338eAmt3f5r9evTQiF2APpBnzwXqbs+vF+fvDdIDa+z/zi3s/u1+OFeeuKrmmodckSbo75QrSlRWvL3lgpOek8Toirrr39rrYr5/GlhUcKDpk6dqq5duxKeAACFd2q3Fgx7UJOChupfj2WFJyOofIS6Nj2tFXtLqHGr+qqaHWKsJG1YVVH3tQlRkHVa6SdOK+29yXruo1p6+IGWTngySqlSaIjSPo5VwrdnnbacXEFsw2LFtJml2P9G6c3F72vTtmm6N+V1jXp8nIaN/1pdBrbyaHgyCFABzpTuli9frkcffdRpAQDAXWnaNfcfGjK3nB4Y9DvVztVLZCnjzBnXz3Dd3bKmrstqlJWyW1urNlZd896fEhX/0UGVvXWAxvRrqrK5ws4pHT2c4vyen3SlZLTSo72bqJIJXUHBCm3WTcMmTdGwxjX0u3ED1Lz8Nc57PYcAFcDMRsFm3JPZKDg4ONhpBQDAPdbhD/Tyi+8r7beR6tK0gtPqsFK1++M4pV0frvBaZZ1Gl+AmGjqwqYJdAevM/m1alVBCjbu01U1l8nQVZaZo//aDUuMINahawmnMqbxuvqeD6pXK8XfWce1aOEsbanVX11pF8/1GgApgkyZN0tChQ+2ZdwAAFM4ZJX24XPP3S43ubp7Vo5TTj18oduNBlenUSo1Dzg8fV1DZaqpZxQwKP6tv98RppxrqzibVz/dQZbOSdyh6XWr+/3Z+THha9JbiIwZpaKsqKsBfFAoBKkCtXbvWXjSzZ8+eTgsAAIVxQgd2xCtNNdUmvIZyz+O2dOareK3fU0KNf5Nj/FNOVop2boxVWsVmalm/Qp7A4wpnW9bqvbRm+uOdN+myfUkZ3+jDGW8oPvxP6tUw77/lWQSoAGRKd+PGjdPkyZNZsgAAcGUyU3Uw7pDrl5vUol7lCwJQ8s5Y7VS4OtvjnyxlpCYqOe2c87pL9vinds10c5Wfe6hs1jfasiJGaQ076s7GpjR4TmnJiUrNyGcBgYxkbXhllU51HVTk4ckgQAWgMWPG2A9KdwCAKxZUUmUqB0uhdVSzap4CXPb4p4rZ459Oateif2vz0ewAlWP80+23KCxXKrF0dv8HWvTed2p4fzs1DnZFIut7bX7lPR0wY9JzssNTtNSjnzrWKJMrPFmH12vO2mTXv+ZZBKgAs2zZMpmlvyIjI50WAACuQNANanRbhHIMD3ecU9rOFZq9IEFq0Vj1qpSQziZq+9e11CQ0ezB4dg9VfuOfzurwp5u1Pq257nfKd9bhrfqw6q1ZYcph1p6a++QSWT366o5cC21ayjgWrwVT1qtcnUoe75EiQAWQ5ORkde/eXU899ZTTAgDAlSqjmyMf0sAKm7R2W6rT03NWx+KX6LWEX6vXgBZ2iwk06btj9c3t7VW3hBNnzvdQZY1/yu0alQ2ppjCFqFqlUlJGola9eVhd+oSfHwtlwtOi6TEqd3cH3Zgep/9MHKYHHngg69H3XrWq/bgO3P2IuhfBTDxWIg8gAwcOVOfOnel9AgB42Dmlfbleb8xYo9TQqir54zmF3t5Tf2hfS6W+/VivT35Tn1eqpgrX367Bj2RvseJiJWnlX3rrxRue1eKn2yskbzeRGRQ+859adKiSbih5g+4c/IBuy+5lsr7XBy8uV6kHB+jWilnrPFlpCYqaME5jn9+tGoMf1tDBffX7nFvHeBABKkDMmzdPCQkJ9sBxAABwZQhQAcAsV9CnTx9FR0erUqVKTisAACgsxkD5ObNR8KhRozRhwgTCEwAAHkKA8nNRUVH2cgUdO3Z0WgAAwJUiQPkxs1Hwyy+/rGeeecZpAQAEIlONaNmypb2QMjyDAOWnzIfFbBT86quvsto4AAQ48z3Qr18/jR49WklJSU4rrgQByk9NnTpV3bp1U5MmTZwWAEAgM5vHt23b1l4PcPPmzU4rCotZeH7IlO5M71NMTAy9TwCAXMx3xPjx4+3fzbqAtWvXVkhIiKpXr853hhsIUH7G1Lc7deqkBQsWsNcdAOCi/ve//2n9+vWaMWOGDh8+bJf2wsLCnFdxOZTw/MykSZPsblrCEwAgP+ZG24SmYcOGKTU11V7iZtOmTYQnNxGg/MjatWvtRTN79uzptAAAkMWU7sy6gKZKYZjFlSMiItS7d2+1adPGbkPBUcLzE+aOwuxzN3/+fHqfAAA2MyPb9C7NnDnTfj5kyBB7IHn2WCeztMGyZcvofSoEApSfYKNgAEA2c1O9cOFCex/U9u3b271Mprcpp+TkZHvIx/Lly50WuIMSnh8wdw/GfffdZ/8EAASm/Mp0ZhP5vOHJSE9Pp2JxBeiB8nHmDsJMPWX2BAAEJlOmW716td3bZOQt012MGTM7Z84cO2DBffRA+TizTcvSpUsJTwCQU1q81KuHFH/SafA/5gbazKYLDg7Wnj177CBkynFm71PWcyp6BCgfZu42KlasyLgnAMiWkSptipIeekB6+4jruf8VWcwq4qZMZ6795cuX15EjRzR27Fi3y3FVqlRRhw4dnGdwFyU8H2W6Xvv06WPXt80aHgAQ8I5tkv62UKp7s/TDSmnKGWnbe1Kzss4bfFfeMt1jjz2mZs2a0dNUjAhQPsh8kMyMikceecTuqgUA5JQhLRsq9dgrbfXtAGXKdKYsZxa9fO6559SjRw8GfnsJSng+KCoqSnXr1iU8AYCf8lSZDkWHAOVjzBRVM2gweyNIAIB/MGs3mWVpzOKWc+fOVdeuXRUbG6t+/foxVMMLEaB8iCndDRo0SLNmzbJnXQAAfJ8Z02pujCtXrqxvvvnG3gx+9uzZat26tfMOeCMClA+ZOnWqunXrlu+CaAAA32LKdGYXCTMhqFq1anaZzox1okznGwhQPsJ80MxAwhEjRjgtAABfk7dM179/f7tMZ8Y6UabzLQQoH2A+cCY4mW5dpqwCgO/JWaY7dOgQZTo/QIDyAc8//7y94SPdugDgO8y4VVM9MEMvzIw6U6Yz+89xPfcPBCgvt3btWu3du1c9e/Z0WgAA3sxUDcyCl+3atdOKFSs0cuRIewiGKdNRRfAfLKTpxcwCauYDN3/+fNWvX99pBQDk69w+6dH/k078KG1eI32RJjW7R2pYWbrlIemxts4bi4Yp0y1ZskRPPPGEpk+fbvc8sU+p/yJAeTEzO6Nz5852iAIAeB9TptuxY4emTJliPzdrNpnrNj1N/o8A5aXMLA2z75EZZAgA8C6mTLdy5Up7YHj79u3tRS8ZEB5YCFBeyJTuqlevrqSkJLp/AcCLmN0gFi5cqI0bN9q9TWZfUpYfCEwEKC9juoOHDx9O6Q4AvIS5Lm/atEkzZ860nw8ZMkRt27alTBfgCFBexszcSEhI0OTJk50WAEBxMGU609tkrsumTGd6m9gJAtkIUF7EzODo27evPfaJLmEAKB6U6VAQBCgvYbqIe/XqZXcNd+zY0WkFAFwNlOngLhbS9BKvv/66vTcS4QkArh4zacfMpAsODta2bdvs4RNm0UtzLSY84VLogfICprt40KBBiomJ4QMLAFeB2WLFrBJuynRma5UuXbpQpoNbCFDFzHQbm+X+Z82axeBEAChC5nprxpiaQeGG2WKladOm3LiiUCjhFbOpU6fay/0TngCgaOQs033++efny3Rm4UvCEwqLAFWMTBdybGysRowY4bQAADzFXGNHjRplr6lXvnx5HTlyxN6nrl69es47gMKjhFdMzPoiZrFMs1EwH2YA8AxzbTXjmiZNmqTw8HD179+fMh2KBD1QxcR8uP/yl79ceXiy0pS0fZVeGdxZf16W6DQCQGAx6+iZMl3lypV16NAhLViwwN5LlDIdigoBqhisXbvW/rD36NHDaSmkY5v0woBxmvPxJ/r43f3KpC8RQIAxZbqBAweqT58+qlatml2mM7Pq6NlHUaOEd5WZwYymHr9s2TLPbRScsV0vNLhfnz2/QW92r+E0AoB/yq9MZ3qagKuJHqir7JlnntGYMWM8F54AIEBkl+mqVKlyQZkOuNoIUFeR6XUyTA8UAODyzNpN2WU6M6POlOlSU1Mp06HYUcK7Skzprnr16kpKSvJ87xMlPAB+xpTpVq5cafc4tW/fXl27dqWnCV6FHqirwNxB/eMf/9CaNWso3QHAJZgy3cSJE+3ZdCdOnLB77s3Cl4QneBsC1FUQFRWl66+/no2CASAf2WU6syuDKdM1aNBA6enpdpmOm054K0p4RczcTZnptWb/JXNH5VHn9mnxo/+nVT+kaNfyGP3Q/HdqXSNEtzz0Dz3WNsR5EwB4J8p08GUEqCJk7qp69eqlIUOG0PsEAI64uDitWrXK3o+uX79+ds8TPU3wNQSoImTuqkwNf+zYsU4LAAQmc0O5adMmzZw5035ubizbtm3LKuHwWQSoImLusAYNGqSYmBiPXyCCgoKc3y6N/9cCKG6mTLdw4ULNmzfPLtP17t1bERERzquA7yJAFQFzp9WuXTvNmjWLCwWAgGRuIk1wMiuGmzKdCU6VKlVyXgV8HwGqCJgpuAalOwCBxCfLdBnfSYunSf85IrUJk7Z/Kt36sDTgTqnsNc6bgAsRoDzMTMWdMmWKFi1aVPQXjYxv9OHMCfrnx8Fq2ayk9q3epYr3j9LoAb9V6LUFK/MBwJUyCwWbAeGmTGcGhN99990+0vueJr36kPS/SGl2T8lcN62j0v/9SUoaKE2/L6sNyAcByoNMrb9Tp06aP3++6tev77QWlbM6tOyvaj7/Vn20tK9q/cJSRmKUBkY8raA5a/R6ZA3xsQdQlMwN44oVK+wynVmzqUuXLr5Vpju0TGo0UYpaLd2ZY+mXfW9IDeZLH78jtbreaQRyYyFNDzI7g5uLSNGHJyNTp07+qB937dHB4+dcz4N07S9rqE6FZMUlH3O9CgCeZ8p0ZnVw09NketvN2k1msowZ5+RbY5wypE/+Kx2rJYWVddocVWtKodul9Z87DcCFCFAesnbtWnvRzJ49ezotRa2kavWdrx/3Pac7Kv5CGam7tOa1WVpw42hN6dlAVO4BeJIp05mlWYKDg7Vnzx57exVTtjMLX/rmUgQnpc8TXD9doa/ctVlN2YIruB5p0meJEjUaXAQBygPMhWXcuHH2xeWqX0gyE7Xh5X/qpbnLtHr9MbXv+RvdmPdiAACFZMp0ZnuVyMhIlS9fXkeOHLEnyNSrV895h686Ie077Px+EduSJNPBD+SDMVAeMHDgQHXu3Nm+wBSrswl69Z679WKdlxXz8r0KZRAUgEIw4znNuCYzKDwkJET9+/dX06ZNfbSn6WJc4eiB26V5HaRvpkvVSjjtLhnbpZtaSNZkac9jEvekyAc9UFfIjAUwrnp4sr7Vpn+O0fiVX+is06QSNdWiY23tn/9fbU/ltgmAe0xwMj3pVapU0aFDh+wy3ezZs324TAcUHQLUFTClux49eujpp592Wq6iH/fpv3NmaXHsN/rJaVLGIe3elqSyd0ao3vX8vxaAe8wgcFOaS01NtSfE+H6Z7lLKS/VCnd8vonl1MaAUF0MJr5DMTJThw4fbg8aLZ6Pgc0rbvUwTxr+lL0tXUGll6qfEL5XecpDGPfpHtQot6bwPAHChM9LiR6Q/HpES3pIalnHaXY6uker2lB7fID3W3GkEciNAFZIZG5CQkKDnn3++wHvTAQC8SOJiV3CaIi3Psw7U7lelRq7XWAcKl0CdpxDMcgVmnMCYMWMITwDgq6rfJT0dJs1eIaU540Yzklx3yP+RHh0t/YbwhIujB8pNpnTXq1cve4+n4indAQA8JuOQKzBNl1Yc+3kvvOYPSoM7sRceLokA5SbT83TixAk2CgYA+Bwz+Sk9Pd3PJwhcHZTw3BAXF2ePfRoxYoTTAgCA7zAzLM0WPLhy9EAVkCndtW/fXq+99pqP7DIOwDtZykiJ18q3o7QxubTCyv+kE1Xu1iMP3qJT/4vXifotFR7y8yxaK2WzZs5Yp5PWCX0b8nuNfOQ2hV6TrqTNyzV/7QGVKB+sMymH9WOt+/TXAW0Uei3jMnFx2d9lS5cuVVhYmNPqScV1fruijOu4ch1XruPKdVy5jivXceU6rlzHVY7jeoQJULi85557zn4AQOFlWD8mzLX+fFOk9VxMsnXWaTu+dZY1avD9VgPVtnq9/aWVabe7ZB6yoh+fYq0/kmFZx9dbo0Jdry/can321gzr31u/df7e5eTH1oRGNa2Or8Rbp50m4GJc4ckaOXKk88yTss7v/g1c5/fGpMKd34u2WTvzO79vufES57fr713HtVzHtVzHPd/mOq7lOq7lOq7lOq6nUcIrALNRcGxsrB599FGnBQDcZenUvrc17L7p0lP/p5G3/crZIeQalW/WQU1PbNceNVCrBiHKvse2kj7S+6Ed1KbSNbJOpevEqS/03tPT9VHDP+mB5r/8eYeRUhUVWu20Pv7wc31LTQGXYbYeM7PJzXeb5/x8fgeNn6TH2oXlPr+Pb9PefM7vVXnP76em6aObe7txfrsaXMeV+Vy5jivXcbNcI7mOK9dx5TquXMf1NALUZZitDcxGwWZLA7MLOQAUyqnPNHfkOM0t2V0D762rHDuvub4DMnTmp3NSo9ZqWTd7QccMpezcp9AWNXWd60vipy8/00fHquvWvwxXv/Drz38J2U4d0+FDPzpPgEsz2/KYCVHmu81jISrH+T3o3jquczaHS5zfVfOe30P/qn4RFQt+fruOK9dx5TquXMfNxXVcOcfV+eN6DgHqMiZNmhQAWxoAKFpndXjdXL347nH9dmBnNS2TexyHlbpXW2IOqmKbW1SrdPZrQQqO6KuBzSu4fj+p/bGblaDGuqddPeW9lcv89oC2HSyhxq3qq2rufxrIlxn/ZPZynTlzpkaNGqXNmzc7rxRGnvM7+MLz+2PX+X19m0aXPb+7uM7vvFHHnN/b8z2/z0qu48p1XLmOqzzHleu4ch1XruPq/HE9hwB1CSaZm25Os10LABSalawPF76r/QrX3S1rKvdQ1kz9uHe7Nh6rpU7tGyrk/HX+GpUNq6EqZtCslaI9n+yRGrRQkxvzfr2cUfLWGK1Ly/q3c935F4JZHJhHYDyqV6+uFStW2LPy2rRp45wBhZDn/M59Dmaf37XVqV1Bzu+8twfm/N7oOr8bX/hvu44r13HlOq5cr+WWKbmOK9dx5Tpu7i4tzyBAXYRZK+N3v/ud3c3JLuQArsiPX2nHxi+kiuEKr1XWacyWrq8+3XrB+KecrJRd2hj9hSq2b6b65fJctq1vtOXdGKU16qg7G5u7+StjWRaPAHlMnz5dXbt21d69e+3nhVbA8/s3hT2/V7jO74b5nN+u48o5rvI5rlzHLarxTwYB6iL+8Y9/FOE0TwCBJPPbg4o77PqlRWPVq3J+aGyWzMPa+cEuqWH2+JDTSj14SGnnv8+yx4fUVLvf1leVvN8vSbF6973v1OiP7dXYlDCsNCUfPKIM53UgP2ZNw/j4eC1atOiKh6gU6Py2xz+ZkHOZ8ztPwjLn9wrX+d3w/nYXnt+u48o5rvI5rpzjyjmuXMc1Y849hQCVD1MXNmk8MjLSaQGAwgsqVUaVXdfw0Iiaqpo3AOUdH3Lmcy16cbOOOq//PD6koW5vHGrmFuWQrv3r3tV7ac30xztvssdGWamb9cqS/ebrAshX9n6uZjN8T1RYCnJ+nx/fd5nzO/efZ5/fzXV/nvP7jHnZdVyZbOQ67gVp5vz4p1uyxj+5jivXcT2JAJWHKd11795dTz31lNMCAFcmqOpNuu231Z1nOVg/aOfieVpwLFQtmtdx3X1bOnvwM30d0VCh2Xfi2Xfw+Y0Psb7Tp+v+l6O8cVaHN+9U1btuvmAgLpDt9ddf14QJE1SpUiWn5coU6Pxu4Tq/f1HI89suT5uNnX8+v+13uo6rixxXruPKdVy5jivXceU6rlzH9eRYKAJUDmaFVjPjbs2aNfbgOgDwiOtuVuTfeqvCux9o29HsXf+PKH7hQiXcdK8G1L3WubD/qN0fHNXtnX9e5uD8HXx+40NcMSmkxi+lar9UpVJmX9x1evOr36pP4/LO60BuppNg48aNnt0MvyDnt83D57fruHIdV67jKsdx5TquXMdVjuPKdVy5jutJbOWSg6kJJyQk2Gs+AYBHWSf05do3NSM6RaG/KqkfT/9Kt/eOVPsbS+rbLfM1edYuVapRSdff+aAeOb/IpuvPDr+nv9zxmm54bY6evq1qnhtoSxmHP9TMZ6N0qGaISpZur8FmKwy2c8FFmOUKPv30U7uzwKOK6/x2HVeu48p1XLmOK9dx5TquXMeV67hyHVeu48p1XLmO60kEKIepCffp00fR0dEe69YEAAD+iRKeiyndmYXEpk6dSngCAACXRYByMcGpZcuWat26tdMCINCYbZvMzRQAFETAB6i4uDh7JdYRI0Y4LQAC0bZt2zR8+HClp6c7LQBwcQEdoMzd5qBBg/Tqq6+y2jgQ4MyspPDwcP31r3+1ZyoBwKUEdIAypbt+/fqpSZMmTguAQGZmJnXu3NleRNcsqGvKegCQn4ANUGaj4NjYWA0YMMBpAfyclaak7av0yuDO+vOyJE/uaOBXTHgys3EPHTqkypUr695779Wf/vQnu7wHANkCMkCZu8px48bZ6z1RukNAOLZJLwwYpzkff6KP391v9inHJZjZuObmyuyH+fXXX2vDhg3siwkgl4BcB8osWdCoUSO7fAcElIzteqHB/fps8geaG1ndk7sa+A1zg7Vw4UJ7Yd1u3bqpfPnySkxMZIFdALkEXA+UKd0dO3ZMPXv2dFoAIGuLC7PBapUqVeznpow3duxYO0hR6geQV0AFKHOB7NSpk55++mlKdwBsZhcC0yttxj5Vq1ZNqamp9mByU8Yzr5m2evXqOe8GgCwBFaCeeeYZLVmyhLEMAOw9wUxwMo9WrVopJibGDlE5dyM4ePCgOnTooKAgip0AcguYAGWmJBv33Xef/RNAYDLByYxtmjJlin7/+99r+fLldnDKr1c6LS3N7oECgLwCIkCZ0t2kSZPs0h13kkDgMYvmmpsos2WT2Xlg5MiRdnBq06aN8w4AcI/fByhz4TTjGSZMmEDpDoHr3D4tHvZnPfDnp/X2d99p8/QR6v/AI3phU4rzBv9kZtSZQeDt2rXTJ598ogULFtiz6Qq672WtWrXsvwvAycoALsPvlzEwF8+EhASmIAMBJHspgmHDhmn69Onq3bt3rrFN7jD/VmH/FoD/8usAZWbQ9OnTx56OzAUQ8H/mM28mipjynOl57tKlC599AEXCbwOUKd2Zu87HHnuswN31gD8q6Lg/X74UxMXF2T1OGzdu1JgxY+z97FiqBEBR8tsANXHiRPunWQgPgH8yM+rMbDrDDAxv2rQpwQnAVeGXAcrcjQ4aNMi+Gw0ODnZaAfgD07u8evVqe3xjSEiI+vfvTy8zgKvO7wKUubiaGTezZs1SRESE0woEuIxkbZj8hF6My1RlJWvzjgrq8dyzGveHW1TWR1b2MIO5zU2RWZKkffv2euihh1ghHECx8bsAZUp3ZvNPM4AUgHFC8dNG6s1aT2hylxq6Vqd1eM0Edev8vhouWqzX7q+rEs47vVHOGXXTpk2zF8NlSRIAxc2v1oEyGwXHxsay8SeQ07mvFPPmEq2OPah0u6GkQjs+oKFdj+jfb2zSV5l2o9cxM+rM5r6VK1e2nx85csQOUYQnAN7AbwKUuUsdN26cvd4Tg0iBHK6poy4Tp+nJu+vIF0YEZm/ua5YgMduopKenn9/cFwC8hd+U8EaPHq2GDRuqX79+TguA/GUoZcOz6tJtu7qumavHb60ibxgGlXNG3ZAhQ9S2bVtuhgB4Lb8IUKZ0FxUVZY+P4IILXMppHd7wLz3yYqq6j/+7ejX/pa51XikOZtLHpk2bNHPmTPu5WYqAGXUAfIHPByizUXD16tWVmJho/wRwEdZx7fr3P/TPox01bnAH1Qr+RhsWJOqmvm0UepW7oLKXImBGHQBf5fMBauDAgfaqw5GRkU4LgLystP16f/IIjfy6nZ7uWlvXmca0OL25paXmvNJFIfa7il72jDqzhpMpt3fs2JHgBMAn+XSAWrZsmX0XO3v2bKcFwAUyD2rZoO7q/voOpyFbRbV55UNtHNxI1zgtRcX0FJv96bKXIvjTn/7EoHAAPs1nA5S5IJteJxOimNYMeCczo27OnDnn96gz5TqCEwB/4JMByoyf6NWrlz1Tx5QAAHgXM6Nu7ty5SklJsUt1bO4LwN/4ZIAy4ycSEhLsNZ8AeAdzY7Njx45cm/syow6Av/K5AGVKAn379rXHPlEKAIpf3hl1vXv3Zh9KAH7PpwJUdunuscceU5s2bZxWAMXBzKhbuXKlvd0KSxEACDQ+tZXL1KlT1bJlS8ITUIxMcMreo+7EiROKjo62y+mEJwCBxGd6oOLi4jRo0CDFxMQwGBUoBjln1Jm96bp06UIZHUDA8okAZUp37dq106xZsxhbAVxlZkbdihUrzi9FwIw6APCRAGV2Zq9Ro4Z91wvg6si5uS8z6gAgN68PUGajYLPR6KJFi7jrBYpY9ow6s1RISEiI+vfvT3ACgHx4dYAyg1VNuWD+/PkMUAWKkPmsmRIdm/sCQMF49Sw8czH/y1/+woUcKCI5Z9QdOnTI3hqJGXUAcHleG6DMhfzYsWPq0aOH0wLAU8yMuokTJ6pTp0728yNHjthjDNlXEgAKxitLeGaj4OrVqyspKYkLOuBBeTf3ZUYdABSOVwaogQMH2hf2yMhIpwXAlcg7o65p06YEJwC4Al4XoEzpzswCmj17ttMCoDDMjLpNmzbZs1gNliIAAM/xqgBlygt9+vSxQ1Sgle6stETt+GilZj+1Wx1XvKTI0GudVwD35N3clxl1AOB5XjOI3Fz0R48erQkTJgRYeDqnY5te0oBx/9bHH2/Wu1sznHbAPdkz6sqUKWPPqFuwYAEz6gCgiHhNgIqKilLdunXVsWNHpyVQXKOKbR/VGy89rUe6NlGZIKcZKCDTc5u9FIGRmppqz6gjOAFA0fGKAJX9BWB6oAAUjPncmG2OTNm7WrVqSk9Pt4MTG/wCQNEr9gBlSnfmC2Dq1Knn76ABXJyZUWdmqprw1KpVK8XExNgzVplVBwBXT7EHKBOcunXrxuwg4BLMjYYJTuazYpYjMHvULV++nOAEAMWkWANUXFyc/SUwYsQIpwVATiY4mVmp7dq104oVKzR+/Hj7M8MNBwAUr2ILUOaLYdCgQZo1axZ30EAe2TPqTHDas2fP+Rl1ERERzjsAAMWp2NaBMgPGGzZsqH79+jktgevcvsV69LlV+uHILi1//4Sa9/yNapRppodeHKa2Fa9x3oVAYILTwoULNXz4cE2bNk29e/dmUDgAeKFiCVBr1661V0detGgRvU+AS8496sxMui5duhCcAMCLXfUAZe6wzQ7w8+fPV/369Z1WIDCZgeFmbBOb+wKAb7nqAcpMvW7UqBGlO5df/OIXKsj//JmZmQoKYoVNf5Jzc9/HHntMbdq0sX8HAPiGqxqg2CgYgcxMnMi5R13Xrl2ZTQcAPuqqBigzziM4ODjgNgpGYDNla1OiY3NfAPAfxTKIHDlZyjj8oWY+MU0fV2miZiW/0Or/Xa/7nxmpAbdW07XOu+B7smfUDRs2TNOnT2dGHQD4EQJUcbMStWxAD82//S0t7VtXv9ApJS5+VBGP/EJzEv6lyGolnDfCV5ie1iVLltgLXpqxfgQnAPA/XrGZcECzTuvksaPalZCo43ZDSf3y1zVU4dhXSk45Y7fAN5iV9bM3923QoIG9Rx2b+wKAf6IHyqucVuruD7Tw+We1vOZ4vfVkB4Vey+w7b5dzRt3IkSPVtGlTliIAAD9HgPISmUkb9MriHfrpdKI2bZE6DR+uvnfVUVnyk1fKnlE3b948hYSE2Jv7MqMOAAIHAcrrWDq7e5buaThbdd57Ry93qS4ylPfIuxQBM+oAIDAxBqqYWSkf6p8jJmnlV+lOS5BK1GuujrW3a/7KeKU6rfAOe/fu1aFDh85v7kt4AoDARIAqVpn6cc8HmvPS+4pN/slps5SRuEfbvqupO1vW0vVOK7xDRESEPTCc4AQAgY0SXnGzjmt31AsaP2+vSlc2A49PKnHXObUcMkqP9mvFIHIAALwQAQpX3cSJEzV48GCm9wMAfBYlPFx15cuXt7c2AQDAVxUiQJ1T2r739cIjv1OdoCAFmUed3+mRF97XvrRzznuAi+vYsaM9/b/onFZK/ApNH/M3jX5usp4b84xe23JIZ9O+1Ecf7FRKBp2uAIAr42YJ77QOr5+iP3V7Uh+kOU05lL39Wb2zYKQ6VCvptAD5Myt2t2rVSpGRkU6Lh1jHtevfI9VjWV29Nnu4bgt1nYvWUW2bMUWvx/5Xry4P19u7XtH9Na5z/gAAAPe50QNl6eyXy/XEI8/nG56MtA+e15Bx7+jLs9zh49KGDx9ur6X00UcfOS2ekKZ9C8bovknXavy0v2SFJyOokpp1jdDx5dulxhFqUJX9BQEAV8aNAHVc2xe9qn/vv0h6sqVp/79f06LtWbu6ARcTFhamqVOn6u9//7uWLVvmtF4JS6d2LdSov7ylkg/01b21gp32LFbGGf2ksmp0d3PVvY6ZjQCAK1PwAHUuWXHR8c6TS4lXdFyyCjsayh5TxSMgHm3atFFsbKy6d+9uPzd7yhWalax1L8/Suz/epoFdblHu+JSh1N3bFZNWU23Ca4hd6gAAV6rgAco6rbTDx5wnl3JMh9NOq7BFPDMki0fgPD799FO1aNHC3oTX7ClXWFbSx1o4f7usRr9Vy7plnNZsx7U3druOlW2p9o1D2BoHAHDFCh6grglRrbZ1nSeXUldta4XoGucZcDGmx+nhhx/WrFmzrnBblEz9eCBeG9Okim1uUa3SeSLSmSR9un4X458AAB5T8AAVFKpW93ZQRefpRVXsoHtbhXKXj0vat2+fRowYoSVLltjbo1yZM/r24AEdVqhaNK+jKnlOvszkz/TBzrM/j3/KOKKDyWmF7iUFAMCNQeQlVO3eEXrlz02c5/lpoj/PfFT3VuMuH5dmljGYMGGCqlev7rRciV+oVJlyKqtqiqhZJc9JbcY/7cgx/snSmV1LNHVzivM6AADucyNAuZSoqz9Mm6e3H73L9WWVR9m79Ojb8/Sv++u5ohZwcdmDxc2Cmp5RQlUbtdRvLzgpJSstXovnrNAx3aQW9SorSD/p4PZUhTf5Jb2kAIBCcy9AuQSVbaT7p76nr3Z9oKWvT9OUKdP0+tIPtOur9zT1/kYqx7cSLiMmJsYeNO45Qbru5nv1t4El9d5/43XUrs1Zyjj2qRa+tlc3/bGbzo/eS9+rD75pos51c8/TAwDAHWwmjKvObOPSpUsXj28mbKUd0No35ig69Xr9quQpnQ5tr95/aKsbS32nLa+/pFmfl1KNCmG6c/ADPy+yCQBAIRCgAAAA3OR2CQ8AACDQEaAAN6xdu1bdunW7slXTA845pSXtUPQrQ9Tyz8t0iD5vAH6AAAW4wcwcNAPgV6xYoZYtW9r7+P3000/Oq7hQija98KjGzdmgjz/epK2ZTjMA+DjGQAGFZBYDnTNnjjZu3KihQ4cWycB4/5Gm7S/cq+afDdM3cyNVjdm6AHwcPVBAIZmtZ8wWNNHR0Tpx4oQqV66sGTNm6OjRo847AAD+igAFXCHT62R6oI4cOaLy5curU6dO9krrpocKAOCfCFCAh5gg1a9fP3uh0FatWqlPnz52kGLAOQD4HwIU4GGlS5dWZGSkYmNj1bVrV02ZMoWZewDgZwhQQBFq3bq1li9fzsw9APAzV30WXvYXh7lLBwJN4M3cO6V9i8fruVVJOrLrA73/Q331bF1DZW55SC8+1lYVnXcBgK+56gHK7IOWnJyssWPHOi1A4DEz9RYuXKhhw4Zp2rRp+tOf/sQSCADgQ656Ca9nz552SePTTz91WoDAk3PmXoUKFZi5BwA+plgW0jRfEn379tXq1au56wZcTGnbfB4mTZqk9u3b24PPzfgpXxYUVLDVMovhEgQAV6zYViI3pbyEhAR7IUIAPzOz9czMPcMMPvf1IAUA/qjYZuGZUp7piTKbswL4GTP3AMD7FeteeCZAmcUGzZdDWFiY0wogJ/M5WbJkiR2qzEKdvXv39qHS92kd3jBNI17cqpKVM5W4ea/K9HhSk8d1181lr3HeAwC+p1gDlGHCkxn7MXv2bKcFQH5yztybPn26vTind994WEqPn6m+b/5a0yffo2rXShmH12hctwFa1vBFRb/2B9Uqwa7CAHxTsS+kaVZsNkyQAnBxOWfuVatWzf7sePfMvXTtj3lfy1Zv1xfp5j4tSNeG3q6Hh96h/f9eqo1fnc56GwD4oGLvgTLMulDVq1dXYmKi/RPA5WXP3DMTMkJCQtS/f38vG3Bu6dSX67Twk3Lq/IffKPRa09t0Wl/Nf0i1+p3W63vn6cF6pbLeCgA+xisClGEGk0dFRdmLCrJKOeCenDP3HnvsMTVr1swrP0dWyjqN7fKI/tf131r6eBtVpIIHwEd5TYAyRo8erYYNG9oDZQG4Ly4uzh4nZbaKGTNmjDp37uwlQcpSxuENmvzITKV0f1xjezVTiN0jBQC+yasClBkka1ZkXrBggerVq+e0AnCXd83cO6e0XW9p1D9T1HXcQHWsVVLJG97XwZvuVdvQEs57AMC3FPsg8pzMBX7ChAn2wFjWvAEKz9yAmP0mo6Oj7edVqlTRjBkz7PGGV5V1Ql+ufFa/7/GBanWsqZNx6/TOsrc0+18f6/i1XnX5AQC3eFUPVLaJEyeqfPny9owjAFfO9O6asl72VjEPPfTQVejlPa3EZSPVoft07XdazmvzinZtHKybWQoKgI/yygBlep/atWunWbNmKSIiwmkFcKW8f+YeAPgGrwxQhhkMO2jQIPuuOTg42GkF4Cl599xr2rQpM2ABoIC8NkAZppRnmLEcAIqG987cAwDv5dUBypQbzOyhRx55RB07dnRaARQF395zDwCuLq8OUEb2hsNmNhEXc6Do+d6eewBw9Xl9gDLMgNeEhARNnjzZaQFQ1Ipn5h4A+AafCFCmlDd8+HD17NmTUh5wlTFzDwAu5BMBysjecDgpKYlyAlBMmLkHAFl8JkAZy5Yts++EzfpQQUHsowUUF2buAQh0PrWXQmRkpP3znXfesX8CKB5mgVszJtHsW7lnzx574VuzVYwZNwUAgcCneqAMU8rr3r27li5dSikP8BLM3AMQaHxuN09zUX722WftffLM4FYAxc8sMWI+k0eOHFG1atXs3mKzKbhZhgQA/JHP9UBlMxfnRo0a2Qv+AfAu5uZm06ZNmjlzpv3cDDhn5h4Af+KzAcqUDDp16mSPwWBtGsB75Zy5N2TIELVt25YB5wB8ns8GKMNcmEeMGKGYmBguyICXM+W8OXPmMHMPgF/wuTFQOZmSgBmsOnXqVKcFgLcyPcXZM/cOHTqk4OBgZu4B8Fk+HaAM0wNlNj/99NNPnRYA3swEqewB50blypXtmXsMOAfgS3y6hJfNLOr38MMP26UBSgKAb8neKoY99wD4Er8IUAYbDgO+Le/Mvccee0xt2rSxfwcAb+M3AcpcfHv16mXP8mHDYcC3MXMPgLfzmwBlmDEUffr0UXR0tL2wHwDfxsw9AN7qmvEuzu8+zwxGLVmypL3p8F133eW0AvBV5jNtPstmrz0z1tH0RJm2OnXqEKQAFCufn4WXl1mZ/NixY3aIAuAfsmfupaam2s9NiDJLIDBzD0Bx8asSXjaz4XD16tWVmJho/wTgX5i5B6C4+WWAMkwPlLnAzp4922kB4G/Ycw9AcfHbAGUMGjTIngbNhsOA/2PmHoCrya8DFBsOA4GHmXsArga/G0Sek1nKYMKECRo1apTd1Q/A/5mbJU/vucd+fQDy8usAZZhFNc0FNSoqymkBEAiyZ+5l77lXpUqVQs3cM+FpwIABzjMAyOL3Acp45pln7AunWUcGQGAxPdEmSJ08eVLVqlWzF9s1vdIFDVJm6YS6des6z+CfzkkJc6SW0+xfgYIIiABlxj/MmjXLHlSenp7utAIIJOY6EBkZqZiYGHXo0MEOUd26dbMHnyNQWa6EvFdaOlmKHCEdPWM3AQUREAHKiIiIsC+WL730ktMCIBCZIGVK+8uXL7eXPZg7d659bTBLn1xsrKRZnBf+5py06V/SuDeklFLSr8o57UDB+PUsvLzMxdEsuvfaa6/ZgQoAjLwz98x1Ins/TXPdKFOmjF0CZDafv0qSHrhd2jxY2vOYdK3TDFxCwPRAGebiN3/+fLuUx6waANmyZ+6ZXigzcy97qxhznTDXDbPS+Y4dO5x3A0CABSgje2aO2QICAHIKCwvLNXPPrCM3ceJE3XHHHfYinSyHAiBbwAUoo2fPnnaX/dq1a50WAPhZ9sw9M+C8QYMGevHFF/XVV1/pn//8p/MOAIEuIAOU6ZI33fXjxo2jlAcgX6a3yeyzZ/bU3Lp1q86ePasnn3zS3qwcAAIyQBmmlGcGi44ePVoBNI4eQAGYHup27dpp3bp1+stf/mJfI3bv3m3/NGU+AAjYAGWYNWGMd955x/4JAGZdKLPY5tSpU+2eambsAshPQC1jkB/THV+jRg0lJiZyZwkEOHM96N69u5YuXcr1IKCwjAHcF9A9UIa5SC5ZssTe7oUZNkBgM8sXmDFPhCcAlxPwPVDZzLYOjRo1Ur9+/ZwWAIBf27dYem6V9FOiFLXR1RAq3XO7K0mXlx56Rmp7Q9b7gHwQoBxmNp5Z82XBggX2AHMAAPxN9uxSs50RrgwBKgezLtTMmTO1aNEitmwAAPgdtibynGvGuzi/B7zatWvryy+/tKcrt2zZ0mkFAE+zlJESr3ffmK5Xl21RQuwaRX9eSg3Cr1fqllgllq6qqmUuHMlspe3RiimPqk+3f2pL6Tr6TbNfq9wvglyvnFLi8ul6+3RDNa9aMuvNQD5KlChhP3744QfddNNNTquHZXyv+Hff0EuvvqP/JXyiVdEHVKZBfVVM3aHNidepetUy+Q7ALvj5naGULW9o8pzV+uDdVUoIvknNfl1eQacStXnRLM1Ztknbt2/Uiv/8V1+Wqa8I12tFMuDb9EDhZ+np6VaLFi2sHTt2OC0A4EkZ1o8Jc63+DSKt52KSrbNO2/Gts6xRg++3Gqi21evtL61Muz2HM/ust//czKrdvrvVr2d7q7aqW3dN+cQ6nplpnf16hfX0Cx9ZRy/4I+BCe/futb/nzPedp2X+GG+93r+Ndc9zG6xDZ7NOyMzj/7OmjXrE6tOgrFW219vW1/mdp26c35nfR1uPP73eOnLunHV8/eNWaNkHrUWfbbXeeuEta+v3p7Le5PoEndwy0WpUtrv1ymc/Om2eFfCz8PIyXZqzZs3S4MGDmZUHwMMsndr3toZHTlfQ+EkaeduvnBnz16h8sw5qenyb9qiBWjUIkbnv/pnrjnvDYsW0maXY/0bpzcXva9O2abo35XWNenycho3/Wl0GtlLF3H8E5MuM8+3WrZu91plHndqtBcMe1KSgofrXY+0Vem3WCRlUPkJdm57Wir0l1LhVfVW94Dz9+fzeerHz+6Hs8/uMkjZ8otD7WqrSLzJ1Kj1dp9Le0VMTdqjhw/ereUh2D2yQSlX6paqlxenDhO9dnzzPI0Dlwyyc17VrV8+fXAAC26nPNHfkOM29rrsG3VtHJZxmm5WhMz+dkxq1Vsu6ZZzGbOlKyWilR3s3USXzpRQUrNBm3TRs0hQNa1xDvxs3QM3LX+O8F7i8ESNG2Ps7ms2yPdNZkKZdc/+hIXPL6YFBv1Pt63KmJEsZZ864fobr7pY1dV1WYw4/n98VL3Z+V3DObytFO7derxb2ZyRNX8bH61jZdhr6+B8VXjbnZ8B1s3L0Ox1ynhUFAtRFmJMrNjbWXpUYAK7cWR1eN1cvvntctz7USU2Dc9+GW6l79XHMQVVsc4tqlc79mlReN9/TQfVK5Wi3jmvXwlnaUKu7utYKdhqBgjHVlmnTptm/m22Lli1bdkVByjr8gV5+8X2l/TZSXZpWcFodVqp2fxyntOvDFV6rrNOYkzvndwVFDO2j5ubzc+agYlfFS43vULubyjmvZzujb/fv1kE10G8u6NH1DALURWRvOGyCFBsOA7hiVrI+XPiu9rvuwjtfcBeeqR/3btfGY7XVqX1DhVzuam++XBa9pfiIQRraqopHvhyCgoJ4BNgjODhYTzzxhL1ZtlmB/8iRI87Z4K4zSvpwuebvlxrd3Vx1c/U+ufz4hWI3HlSZTq3UOKQAy7xf6vwOKquwmpXt0rf17V59svOsGtwZrhvzHtM6pK2rtyjN7tHNL7RdOQLUJZg68dChQzVp0iSnBQAK6cevtGPjF1LF/O7C0/XVpxcb/5RHxjf6cMYbig//k3o1rOCxO2vLsngE2OOjjz5SixYttGbNGvt54VfgP6EDO+KVpppqE15DuRdHsHTmq3it31NCjX+T3/inPAp8fmcoZecnik6rqfYtaytv/5OVFKsV732nRn9sr8ZlPPUpyY0AdRk9e/a0d2Y3a0QBQGFlfntQcYddv7RorHpVco1+cr14WDs37sox/um0Ug8eUlreka8Zydrwyiqd6jrIo+EJgScuLs6usJjS3RUvqpmZqoNxZrTRTWpRr3Ke8/KMknfGauf5nldLGamJSk4757yeg1vnd/b4pwj99ua8vbBnlLRlrd5La64/3nmTzCfKSjukg6mns172EALUZZhS3owZM/S73/1OSUlJTisAuCeoVBlVLiuFRtRU1TxXXjP+aUvO8U9nPteiFzfraM4AZX+5REs9+qljjTK5vjCsw+s1Z21ykcw0gv8xY50GDRpkzzj3yL6PQSVVpnKw6+Suo5pV8wwRzx7/dL7n9aR2Lfq3Nh/NE6DcPb/N+KfVZvxTSzUOy3PMswe0btEGpTXqqDsbm/FYGUrdvFBLDnh2Zj0BqgDMCWZ2Z//HP/7htACAe4Kq3qTbflvdeZaD9YN2Lp6nBceqqkWLOqoSZOnswc/0dUTD80HLStupuU8ukdWjr+4IzblQputu/li8FkxZr3J1Kl3mjh3IYjbMNssYmBnnHhF0gxrdFqELRxqdU9rOFZq9IOHnntezidr+dS01Cf25F7Zg53fFXOd3ZvJn2niR8U/W4c+0bn1qVvnODDa3Dmnzh9frLjtMeQ4BqoAiIyPtQXemuxMA3HbdzYr8W29VePcDbTuakdWWcUTxCxcq4aZ79WDd7C+UH7X7g6O6vXNde6C5+XJZND1G5e7uoBvT4/SficP0wAMPZD363qtWtR/XgbsfUXdm4qGAnn/+eQ9vnF9GN0c+pIEVNmnttlSnp+isjsUv0WsJv1avAS3sFhOI0nfH6pvb26tuiazQU6Dz+54hiqyVc2mPDKXu3q6YtF/nO/5JZauoRlhFVQutqFI6rUOr3tFXXbplhSkPYi88NyQnJ9tByoQoj3R7Aggs1gl9ufZNzYhOUeivSurH07/S7b0j1f7Gkvp2y3xNnrVLlWpU0vV3PqhHzCKb1vf64MXlKvXgAN1aMWuNGystQVETxmns87tVY/DDGjq4r34ffoOzICdwaWZW+YABA/TOO+84LZ5yTmlfrtcbM9YoNbSqSv54TqG399Qf2tdSqW8/1uuT39TnlaqpwvW3a/Ajt2UtsnnR8/tJ1/m96xLn91kdXjlad75YRa8uHqXbLpjZd1qHP5yjZxclq+YNwSqd/XlyXvUUApSb2HAYAABQwnOTma1gljeIiopyWgAAQKChB6oQTBdop06dtGDBAjtMAQCAwEIPVCFUqlTJ3idv1KhRSk9Pd1oBAECgIEAVUuvWrdWyZUu99NJLTgsA+C7Ts36l+6EBgYQAdQXMKq4rVqywV3QFAF9metP37Nlj7482ffp0e9YxgItjDNQVMuHJrOgaExPDrDwAPs/0RK1cudLegaF9+/bq2rWr3eMOIDcClAeYC01iYqImT57stACAbzOlvB07dmjKlCn2c7PwYufOnblRBByU8DzALErGhsMA/IkJSqbnafny5fbN4aFDh+zynrlhNNc7INDRA+Uh5oLSp08fRUdH27P0AMDfmPLexo0bNWnSJIWHh6t///6U9xCwCFAeNG/ePCUkJNj7DJl98wDAX23evFlz585VfHy8xowZY4+X4uYRgYQSngeZMQLHjh0rgj2GAMC7mJ6n2bNn2wsKm/Je5cqVKe8hoNAD5WFm6m+NGjXsQeVsOAwgUAROee+0tH2p9PwyqUEz6dQuKbWFNO7PUq3yznsQCAhQRcAsRrd69Wr77gwAAo0p75k18kygGjp0qLp06eIn5T3X1+Uu13X9rh3SJy9JNUq52s65fv+n1O+QtG6S04ZAQAmvCERGRto/TZACgEBjep7MzD1zDTxx4oSqVKmiiRMn+n55z0qS/jlV6vuHHEHpGqnl76UbXdf7+Z86bQgEBKgiYgaSm65sxgMACFRmGIPpgTp58qQaNGhg7x/arVs3u4fKJ7eM+XabFHVcql/NaXD8oooUcYP09kYpnaJOoCBAFRHTXT1hwgT7gsHeUgACmVlTyvTMmzWlRo4caZf32rVrZ89cNmOnfIMrGH29R0oLlq4v47RlKyWFlJMS9ktHMpw2+DsCVBHq2LGj6tWrp6ioKKcFAAJb3vKemb3nG+W9c9KhJOf3i/lK+v608zv8HQGqiJn1UczU3k8/pTYOANmyy3tmE+PmzZufL++ZHR3otYcvIEAVMVPKmzVrlgYPHsxFAQDyMOU901tvynvjx4/XunXr7PKeufH0nfIeAhEB6iqIiIiwdzSfOnWq0wIAyMtcK015z2yJZXTq1MnumYqLi7OfF69rpGrVnd8v5kbphpLO7/B3BKirZMSIEfYdlndcCADAe5mee1Pei4mJUYcOHeyeqeIv7wW5AlRtqexR6fvjTlu2k1LyMSn8ZleAutZpg78jQF0lppvabHkwaNAguqUBoAC8rrxXvaV0byXpq++dBse5FGm7q61na6kk+6AGClYiv8qyNxw23dQAAPeY4LRw4UL7Wmo2MDbDI67eljHnpG3Tpd9vl9bOkBpVcLWdltZMkB49K8W4ftIDFTAIUFeZ6X7u1auXhgwZYt9ZAQDcZ66lO3bs0JQpU+znZjP3zp07271WRcsVmD55W3rxvRx74UVIYwZK9UygQqAgQBUDs95Jnz597P3yzBooAIDCM9fUJUuW6IknntD06dPt8VJs5o6iRoAqJmw4DACeZcp7K1eutMdIXf3yHgINAaoYmQHlZppu9ubDAIArV3zlPQQSAlQxSk5OVvXq1ZWUlER3MwAUAcp7KCoEqGJGKQ8Aip4p723cuFGTJk1SeHi4+vfvT3kPV4QA5QXMSruNGjWyu5kBAEVr8+bNmjt3ruLj4+39Ss14KbN4J+AOApQXMHdGZiyUWWizXr16TisAoCiZ8p5Z3Xz48OGaNm2avbQM12AUFAHKS5gP8cyZM+0F4oKDg51WAEBRo7yHwiBAeRFTyqtRo4a9BxQA4OqjvIeCIkB5ETP11nxYX3vtNXtXcgBA8TCzpM0efMOGDdNzzz2nHj16UN5DLgQoLxMXF2evD2V2IWfNEgAoXubG1syUNnvvGSNHjlTTpk25PoMA5Y0mTpxo/xw7dqz9EwBQ/Ex5b8WKFfZ4KTPUokuXLpT3AtgvnJ/wIiNGjFBsbKz9YQUAeAczsHzy5Mn2+n0nTpyw9zI15T0zmw+Bhx4oL5W94XB0dDR3OADghSjvBTYClBczH8qEhAQ9//zzCgoKcloBAN7GjF81y9CY8p5ZFLl3797c/Po5SnherGfPnnZP1H//+1+nBQDgjczMaVPeM1UDwyyObJamMcEK/okeKA+z0hK146OVmv3UbnVc8ZIiQ691XikcM5W2e/fuWrp0KRtgAoCPMOW9TZs22QskG0OGDFHbtm0p7/kRApTHnNOxTdP196XH1aT8Pv3fs+U049CMKw5QBhsOA4DvorznnwhQRSBj+wtq0PyAJnsoQBkDBw5U586dFRkZ6bQAAHyJ2TLGBCkzvtUsmmyCFIsm+y4CVBEoigBlSnnVq1dXUlISpTwA8GF5y3umV8rcIFPe8y0MIvcRJjStWbPGXrzNfPgAAL7JBKWOHTvaW8WYged79uyxN5GfMWOGfbMM30CA8iHmA2f2YoqKinJaAAC+zFzTza4TR44cUfny5e1hGmb2Hgspez9KeEWgKEp42UwN3UyPnT9/vurXr++0AgD8gakw7NixQ1OmTLGfU97zXvRA+Rgzc2Pq1KkaPXo0pTwA8DMmKJktYyjveT96oDzo3L7FevS5VfrhyC4tf/+Emvf8jWqUaaaHXhymthWvcd7lGWw4DACBwVQeVq5caYcoM3uva9eudshC8SJA+SjT+9SuXTvNmjWLabAAECDM2Ki5c+cqPj5eY8aMsQMVa0oVD0p4Psp085rwNGjQIEp5ABAgTM+TWVR5wYIFOnTokCpXrmz3TJltvwrD9G6ZxZrhPgKUB5iNfgvy8DTT82QGGJoxUQCAwGFm75llbczsvWrVqqlPnz72gsvuzt77/PPP9cknn4hilPsIUB5gTryCPIrCgAEDFBsbq7Vr1zotAIBAYcp3ZukD8z3Qv39/u7zXsmVLu1fJ9C5dznfffadWrVoVyU2+vyNA+ThTyjMzNcaNG2ffiQAAAlN+5b3p06dfsrxXq1YteqAKiQDlMZYyDsdo2oPd9cdREzTlyT/rjo4j9NqWQ8pw3lFUsrtyn3/+eacFABCosr8T0tPT9atf/cpemLNbt252eS/vmFmzREJhx08FOmbheYqVqGUDemj+7W9pSd+6ukanlLj4UUU88gvNSfiXIquVcN5YNMyH4q9//au9yCYbDgMAcjLhacWKFdq4caMdrrp06XJ+9p4p+S1dutTebxUFRw+Up1indfLYUe1KSNRxO5KW1C9/XUMVjn2l5JQz9luKkinlPfXUU+revTuLrQEAcjHlPTPcw4yNOnHihF3eM+sJmt4nsxyC2d0C7qEHqkicVuruD7Tw+We1vOZ4vfVkB4Vee3UG6JkPx+rVq+06OAAA+TFVC/NdMW/ePJ07d05ffPGFvRzCHXfc4bwDl0MPlIdlJm3Qyy9M19x3Vmn9kWbq2fpGlbvm6s1uyC7fsa4HAOBiTNXC7LE3cuRIexmEs2fP6s4776SC4QZ6oIqMpbO7Z+mehrNV5713NKNL9auWVrM3HDYzMcxgQgAAcjJL35jZ29lbw4SEhNjtfGcUHAHKQ6yUD/XixI9Vf/hwdbkxOKsxY7teaNBcz3R4T1+80kU3XMVlNsyHY+bMmVq4cKE9ywIAAFO6e/311+2tYEzvE4Gp8CjheUSmftzzgea89L5ik39SViK1lJG4R9u+q6k7W9bS9Vd5jbKOHTvaH4wlS5Y4LQCAQJcdnqZNm0Z4ukL0QHmKdVy7o17Q+Hl7VbpyaVfDSSXuOqeWQ0bp0X6trtog8pxMKc/UuM3sCj4oABDYzPgmM2h8xIgR9hgoXBkClJ+Li4uzNxyOiYnhAwMAgIdQwvNzZsNhswItGw4DAOA59EAFADNosF27dpo1a5YdqAAAwJWhByoAmNKdCU+mlFeQ3bkBAMCl0QMVQMzgwYSEBHvT4aCgqz+oHQAAf3HNeBfnd/g5MxPP9ESZPZBq167ttAIA4GEZ3yv+3Tf00qvv6H8Jn2hV9AGVaVBfFVN3aHPidapetUy+JTArbY9WTHlUfbr9U1tK19Fvmv1a5X5hbvhPKXH5dL19uqGaVy2Z9ebzTkvx70svzZL+Fy+tWieVqSdVTJE2J0nVb5Dsf8Oz6IEKMGbjyL59+9p7IGXvxA0AgKdYaTv17+FDtazOPzR7VDt7GR/rRKxmPDdXse/O1/Imc7TrrftVI2+mObtfix/upSe+qqnWIUe0OeoL1ZoSpSV/b6ngpPc0Iaqy/vq31qqY8++s49K/R0rL6kqzh0uhrnBlHZVmTJFi/ystD5cSZkq/zhu6rhwBKgCx4TAAoEic2q35j/TTs0EjFf3aH1SrRHbaOaPExUPU8I/L1PhfG/TB8Ahd57ySJUMpaybp6W/u1oR+TVTpmp90eMdaLfnPKu0KClHQ91U14KUhal7+Guf9Rpo0/zHp2V9I0S9ItXLsupG4WK6DSY2nSRuGSiU93wPFIPIAxIbDAADPS9Ouuf/QkLnl1G9gxxzhybCUceaM62e47m5ZM094MtKVktFKj/Z2hSez8HRQsEKbddOwSVM0rHEN/W7cgDzhyZJ2LZSGvCU90Dd3eDIyzLHKSnc3L5LwZBCgAtTTTz+t7t27s/M2AMAjrMMf6OUX31fabyPVpen1TqvDStXuLXFKqxiu8FquYHOB8rr5ng6qVypH2LGOuzLSLG2o1V1d8wYky/XdNXO2K7O1k7rc4jRmy5B2b3e9VtOV12o4bZ5HgApQYWFhWrp0qZ555hmnBQCAwjqjpA+Xa/5+qdHdzVU3b6/Pj19o68aDKtvpVjUOudZpvAQTnha9pfiIQRraqoou6ENK+lia7wpJjVpLdcs4jdmOS7Gu18q2lOtgTpvnEaACmCnlVaxY0V7eAACAwjuhAzvilaaaahNeQ7k3DrN05qt4rd9zrRq3qq+ql6uoZXyjD2e8ofjwP6lXwwoXhidlSgfipTRLanOLVDrPO84kSet3ucJThFS1hNPoeQSoADdmzBjNmDFDe/fudVoAAHBTZqoOxh1y/XKTWtSrnCdcnFHyzljtPD/+yVJGaqKS0845r+eQkawNr6zSqa6DLhKejDPSwQOun6FSizq64E3Jn0k7z2aNf7rO9WLGEVdbmvOi5xCgApxZymDChAkaPXq0veULAABuCyqpMpWDXZmmjmpWzTNE3Ix/+jhOaddnj386qV2L/q3NR/MEKDs8RUs9+qljjTK5cpF1eL3mrE02Q8ddXNGlTDnXz2pSzSp2y8/yjn8yg82XSJtTsl72IAIU1LFjR9WvX19RUVFOCwAAbgi6QY1uizDz3vI4p7SdKzR7QYKsFreoXpVrpbOJ2v51LTUJ/bm8ZtaOmvvkElk9+uoOs5bTeZYyjsVrwZT1KlenkhOqXH/XqKU9ye4CafHS7BWuX26S6lV2/fxJ2p4qNfml/bInEaBgMwvSm1JeXFyc0wIAQEGV0c2RD2lghU1auy3VjFJyOatj8Uv0WsKv1WtAC1f4MfHHUvruWH1ze3vVdZY5MOFp0fQYlbu7g25Mj9N/Jg7TAw88kPXoe69a1X5cB+5+RN3Pz8Rz/d3N90oPlZLWugKT3S3l+o9jn0qv7ZV63We/y5buev5NE6lunll8HsBCmjjPhCez4XBMTIy9ATEAAAV3TmlfrtcbM9YoNbSqSv54TqG399Qf2tdSqW8/1uuT39TnlaqpwvW3a/Ajt9krlMv6Xh+8uFylHhygWytmrfNkpSUoasI4jX1+t2oMflhDB/fV78Nv0AVz99IOSG/MkVKvl0qekkLbS39oK5X6Tnr9JelzV8CqECYNfiBrhXIPI0Ahl4kTJ9o/x44da/8EAAAXIkAhFzOQvF27dpo6dapat27ttAIAgJwIULiA2XC4T58+9n55lSubQXgAACAnAhTyZRbXTEhI0OTJk50WAACQjVl4yFfPnj21f/9+rV271mkBAADZ6IHCRZmNhs12L8uWLbP3zgMAAFkIULgkE57MWKjZs2c7LQAAgBIeLsn0QBkmSAEAgCz0QOGyTCmvevXqSkpKopQHAIALPVC4LBOa1qxZo2eeeUbp6elOKwAAgYsAhQIxGw5XrFhRS5YscVoAAAhclPBQYEePHlXnzp01f/581atXz2kFACDw0AOFAqtUqZKeffZZjRo1yt7yBQCAQEWAgltMKa9ly5b2XnkAAAQqSnhwW/aGw7NmzVJERITTCgBA4KAHCm4rXbq0HZ4GDRpEKQ8AEJDogUKhzZgxQydOnNDYsWOdFgAAAgM9UCi0AQMGKDY2lg2HAQABhx4oXJF9+/apb9++9n55ZpYeAACBgACFKzZv3jwlJCRo8uTJTgsAAP6NEh6uWM+ePXXs2DFKeQCAgEEPFDyCDYcBAIGEHih4hAlNS5cutTccBgDA3xGg4DGRkZH2z2XLltk/AQDwV5Tw4FGmlGeClNlwuH79+k4rAAD+hQAFjzODyWfOnKlFixbZq5YDAOBvKOHB48yGw6b3KSoqymkBAMC/0AOFInH06FF16tRJCxYsUL169ZxWAAD8Az1QKBJmVXKz4XCfPn3YcBgA4HcIUCgyERER6tatm6ZOneq0AADgHyjhoUiZ3qd27drZvVEmUAEA4A/ogUKRMrPwTHgaNGiQ0tPTnVYAAHwbPVC4KthwGADgT+iBwlVhNhzev38/Gw4DAPwCPVC4avbt22fPyouOjrZn6QEA4KsIULiqTClv06ZNmj17ttMCAIDvoYSHq6pfv372TzYcBgD4MnqgcNWZDYerV6+upKQkhYWFOa0AAPgOeqBw1ZnQtHTpUj3zzDMivwMAfBEBCsUiMjJSFStW1Pz5850WAAB8ByU8FBuz4XDnzp3tEMWGwwAAX0IPFIqNWcrg2Wef1ahRo9hwGADgUwhQKFYdO3a0e5+ioqKcFgAAvB8lPBQ7NhwGAPgaeqBQ7HJuOEwpDwDgCwhQ8Aqm56lbt26aOnWq0wIAgPeihAevkV3Ke/HFF9WmTRunFQAA70OAglcxGw737dtXq1evZsNhAIDXIkDB65gNhxMSEjR58mSnBQAA78IYKHidnj172j1Ra9eudVouZF4zC3ECAFAcCFDwOmZW3owZMzRu3Dh74+G8THiaOXOmSpUq5bQAAHB1UcKD11q2bJk9Fmr27NlOS9b2L506ddKCBQvY/gUAUGzogYLXMhsOGyZIZVu5cqX69etHeAIAFCt6oODVTAmvevXqSkxMtH+ataJMeS8sLMx5BwAAVx8BCl7PjHkye+U9//zzqly5sjhlAQDFjQAFnzB69Gg7PKWmprK8AQDPyfhOWjxN+s8RqU2YtP1T6daHpQF3SmWvcd4EXIgxUPAqZg2ogQMHKigo6PyjZcuWuu666+zB5Dt27HDeCQBXKk2a81dpXbi09BVp5Dhp0Wzp5FTX7ytc4Yr+BVwcAQpew8ywK1u2rEaOHGmX6bIf0dHRatu2rUJCQrR+/Xrn3QBwhQ6tlcYekPrcLl0blNUWVEnq0VN6bbq07XhWG5APSnjwGWavvE2bNqljx45OCwAUVoa0bJjU/Yi0502pfmmn3eXEBummbtKQNdITtzqNQG70QMFnmAU2CU8APOOk9HmC62clqdy1WU3Zgiu4HmnSZ4kSXQy4CAIUACAAnZD2HXZ+v4htSdI553cgDwIUAACAmwhQAAAAbiJAAQACUHmpXqjz+0U0ry6xFBQuggAFAAhApaU6Zk/Nb6VjZ7Kasp1IlY6WdQWo2pKzugGQFwEKABCArpNu7SiVTXZlqHSnzfHtV65Q1UxqU8dpAC5EgAIABKbqd0lPh0mzV0hpznS7jCRp3n+kR0dLv7k+qw3IBwtpAgACV8YhV2CaLq049vNeeM0flAZ3Yi88XBIBCgBySE5O1rRp09i0Gn5r0KBBmjRpkipVquS0oDAo4cHvWGl7tPy5PmpeqbX+PC1Gh85vCHpKicun6rX4E85z4EJhYWHauHGjvTdjUcl7jh6+6DmaoZQtc/T008/pqRFjNP3Db8wGJLJOJeqj+VP01NOT9MILEzT60Sf12qas14DLqVmzprZt2+Y887yCn9+u96Zs1stPP6PJT/1df5vuvNc6qaSP3tLEp57RlBem6LnRf9OY1zbl+Hcu5M4xPcb0QAF+48w+6+0/N7Nqt+9u9evZ3qqt6tZdk7dYxzMzrbNfr7CefuEj62im817gIqZPn24/ioQ5Rx9snvscnfKJ9UM+52jm99HW40+vt45knrOOr3/cCi37oLVw51brrRfesrZ+fyrrTVamdXLLRKtR2e7WKwlpThtwcZ9++qnVtWtX55mH5XcNdp3f+V6DMw9Z0Y9PsdYfybBcJ7g1KrS21WvRNmvnWzOsf2/91jrrvM06+bE14ZYbrY6vxFunnaZc3DmmB1HCgx9x3a2vmaSnv7lbz/VroorX/KTDO9ZqyX9WaVdQiIK+r6oBLw1R8/KMa8Clmd6nypUrKykpye6R8hx3ztEzSlz8f1rR4O8aFl5K3698TA3unacq9/+fouY8pPAc43My972hzvUnqvLb/9Vb99/IzHtc1qhRo9SqVStFRkY6LZ7w8/k9wXV+V7rMNdhKjNKjK+pqyrAIlfh+pYY0uFcLqvTT5P+8pMERFX8+jzP36I2779RfK72oXW/drxq5TvACfKamuo5ZoQiu+3aMAvzCcWvXyv9ae3/Kc6uR+YOV8Nar1jtfnHQagMtbs2aN1aJFC8sVopwWT3DjHM1Mtt77+0vWlpPmvcesLRPaWyrbzXrp0x+yXj/P6YGS6+797S9dz4DLM+e1Ob8/+ugjp8UT3LkGn7W+e2+CNXHLMdfv2edwdeuuf223LuhHtXugyllle71tfX3BCV58133GQMGPlNfN93RQvVI5bk+s49q1cJY21OqurrWCnUbg8jp27KihQ4fad+iuLxmn9Uq5c45WUMTQPmoe7HrvmYOKXRUvNb5D7W4q77ye7Yy+3f+5DqqBWjVw3XE7rcClmJ7VZcuWacSIEfbPn376yXnlSrhzfgcpOKKvBjav4Pr9pPbHblaCGqtLu3oqk/WG8zK/PaDtB0uocav6qnrBCV6M130nSAH+x74Dedl6K+EHj92Vm48Mj8B9HDlyxDkTPKSA52jm129bvcqWtRo8GWP9kPeNmV9ab/euY6nRRKe3qvDy+7+ZR+A8zNgojyroNdicw71qW2ow3vrw+DmnMdtp6+u3H7TKBbW3Jti9VZdRBNf9i6EHCv4p4xt9OOMNxYf/Sb0aVvDYXbnrM8MjgB7p6el67rnn1KJFCy1dulSlS5d2zgQPKPA5mqGUnVsUnVZT7VvWVrk8b7SSYvXue9+p0R/bq7HprboC+f1vwMO/H2vWrLHP7+nTp6tKlSrOmeABblyDrZRd2hj9hSq2b6b65fLEEusbbVkRo7SGHXVnY9NbdQlFdN2/GAIU/E9Gsja8skqnug66Kh8i+CdT0hg+fLj9e0xMjF3K81iAcuscTdOX8fE6VjZCv725Sp6L9hklbVmr99Ka6Y933iRTrLDSDulg6umsl4FLmDFjhsaNG2eX8Ey52mMTJtw6vy399OVn+uhYTbX7bX1VyfNmc4OwwnWD0PD+dlk3CFaakg8ecd1W5FEM130CFPyL/SGKlnr0U8caZXJ9iKzD6zVnbbLdVw1cztSpU3XjjTdq7NixHu55cvMcPT/+qaUah13nNDrOHtC6RRty3J1nKHXzQi054InxLPBncXFxmjdvnqKjoz0709Tta3D2+KeGur1xaJ5Qkq7969513SA01/3ZNwipm/XKkv2uW4ccium6T4CC37DSdmruk0tk9eirO0JLOq2GpYxj8VowZb3K1al0Ve5M4Nv27dun5cuX2wNsPakw52hm8mf6YOdZNbgzXDdel/vstQ5/pnXrU3PcnR/S5g+v112XK3UgoJneVbMa+YIFCzy6GnmhrsGZh7Xzg11SgxZqcmOeAd/Wd/p03f+U1sjcIJh9Cc/q8OadqnrXzXaYMgp2zBxLIngQ60DBL5gP0aLpMSrZ5nY1qXZS2xYv0Pt7nZVnM49o1/uZuidqlp68M0zXZrUCF2XWyOnQoYM9E89TCneOZjjrP63X/e9Fa2aXX+W+uz66Xo+3/rM+HblGqx+spW/ff1WLK/1Jj95ahRsFXNTatWu1bt06j25XVKDz+z+v6ckO1XNdgy1n/afF97+nPTO76IZcJ/j32vD4fbrz0wHas+rPqv1dtKYsLq/Bj7ZWRdf7CvqZGuf6TJXIavUsE6AAn5b5nbXhhdesj49mOA2uph8/sxaP7mrVVl3r9sEvWEvjvvt5VVvgEsxMO3NpTE9Pd1o8oNDn6Bnr0HsjrAa3P2fFfJ/fGXzKOhQzw3pk8Bjr+af+YU2LSeY8x2UNHDjQs+s/XcE1OPPQu9YjDe6xno45nM+suUzr7KGN1r8e+Ys1+vnx1lPTNlqHzjrvuugxu1216z49UAAKxEqL16yHntXpx9/U8PC8K7X4D7MKudkLz7MrNAPew4x96tmzp2fH9gUgAhSAS8tI1b4tH2jJy8/picUVNWXbe3qsWVnnRQAITAwiB3BxxzbphYFP6vVN36psjV86jQAAeqAAFECGDi8bqmrd99IDBQAu9EABAAC4iQAFALCZAfRmirtnNpYF/BsBCgBgM3v/mfWB2rVrZ2/zYQIVgPwRoAAANrOlh1lc0WzvYXTq1MleVNRs+wEgNwIUACAXs72H2VzWbKJsVmQfP368unXrRnkPyIEABQDIl1lo0WxnY/YFNCFq27Zt58t7ycnJzruAwESAAgBcVkREhMaOHWuX98qXL2+v1G7Ke5s3b3beAQQWAhQAoMBMea9fv352ea9r166aMmWKXd5btmwZ5T0EFBbSBHBx5/Zp8Yj/06rjPypx8xpt/CJNZZvdo24NK+vaWx7Si4+1VUXnrQhc+/bt05IlS/TEE09o2rRpuu++++wB6YA/I0ABADzCLHuwcuVKe4xU+/bt7R6q1q1bO68C/oUABQDwKFPK27Fjh+bOnauUlBS75GcClSn/Af6CAAUAKDKmvGeWPxg2bJimT59uz+qrV6+e8yrguwhQAIAiZ8p7Gzdu1KRJkxQeHq7+/ftT3oNPI0ABAK4qs/SBKe/Fx8drzJgxlPfgkwhQAIBiQXkPvowABQAoVvmV95o2bWqvhA54KwIUAMBrmPLeihUr7EBl9uPr0qUL5T14JVYiBwB4DTOwfPLkyfbK5idOnFCVKlU0ceJEu9wHeBN6oAAAXsusKbV69WrNmzfPfj5y5EjKe/AKBCgAgE+gvAdvQgkPAOAT8pb3KleuTHkPxYYeKACATzLlvU2bNmnmzJn28yFDhqht27aU93BVEKAAAD4vLi5OCxcutMt7Zu+93r17U95DkSJAAQD8hllTygQpM+jcrHBuglRERITzKuA5BCgAgN+hvIeiRoACAPg1ynsoCgQoAEBAMOW9lStXasaMGXZ5r2vXrvbMPqAwCFAAgIBiyns7duzQlClT7OemV6pz586U9+AW1oECAAQUE5RMz9Py5cvtdaX27Nmj4OBgu2cqOTnZeRdwafRAAQACHuU9uIsABQCAg/IeCooABQBAPswWMWvXrtWwYcM0ffp0dezYUfXq1XNeRaAjQAEAcAmmvGeWQJg0aZLCw8PVv39/ynsgQAEAUFCbN2/W3LlzFR8frzFjxtjjpVhTKjARoAAAcFN2eW/48OGaNm0a5b0AxDIGAAD/kxYv9eohxZ90GjzLhKWhQ4cqNTVV1apVU58+fTRw4EC7hwqBgR4oAID/yEiVtnwgvfyctLiitO09qVlZ58WiZcLTihUr7PFSJlx16dKF8p4fowcKAOAfjm2SBj4pbfpWqvFLp/HqMQPLzcKcy5Yt04kTJ1S5cmVNnDjRLvfB/9ADBQDwMxnSsqFSj73S1qvXA5WXWVNq9erVmjdvnv185MiRatq0KWtK+Ql6oAAAKAImKEVGRtpbxpjwZMp77dq1swOVWRoBvo0ABQBAEcuvvPfcc89R3vNhBCgAAK6SsLAwe4B5enq6brrpJo0aNUrdunWzl0QwJT/4DgIUAABXWc7y3vjx47Vu3Tq7vGc2M6a85xsIUAAAFKOIiAi7vBcdHW0/79Spk90zFRcXZz+Hd2IWHgDAz3jHLLzCMqW8TZs2aebMmfbzIUOGqG3btsze8zL0QAEA4EVMUDJbw1De824EKAAAvBTlPe9FCQ8A4B/O7ZMe/T/pxI/S5jXSF2lSs3ukhpWlWx6SHmvrvNF3mfLejh07NGXKFPt5v3791Llz50KV98y/tXfvXjukwX0EKAAAfJBZQ2rJkiV64oknNH36dHs5BLNMQkGZv58zZ47dwwX3UcIDAMAH1atXT2PHjtWRI0dUvnx5e1kEU94zmxqj6BGgAADwYZUqVbJLeTExMeratatd3jO9UWbVcxbnLDoEKAAA/IAZB2W2jDGz90xZbs+ePQoODrZn7yUnJzvvyo2tZAqPAAUAgJ/JWd6rVq2aXd4bOHBgrvKeec+hQ4dYGqGQGEQOAEAAMOFp7ty5io+P15gxY9S+fXstXLjQfs3szwf30AMFAEAAMOW92bNna8GCBXbPU+XKlXXy5EnNmjXLXs4A7iFAAQAQQEzpzvQ4ffbZZ3aA+vbbb9WlSxdKeW6ihAcAQADJXv9p48aN9uw9M0YqLS1NPXv2ZL89NxCgAAAIEGYc1N/+9jeNHj3aHliOwiNAAQAQAEx4GjFihJYuXarq1as7rSgsAhQAAH7OLKjZrl07e3FNd7Z7wcURoAAAANzELDwAAAA3EaAAAADcRIACAABwEwEKAADATQQoAAAANzELDwAAeIyVtkcr/jVBE/75lW4ZP1ETh9ym0GuDXK+cUuLyV7T6xgF6OLy863mGUrbM1Yzo72Sd+FEh9w3TI7f9StecStTmqMVae+CcypdzvSf5tGp1H6wBbX+la+0j5Oe0FB8tLYqRylWVfvxJ6jpQuuWUtDVNanuLZP938BwCFAAA8Iyz+7X44V564quaah1yxBWEvlCtKVFa8veWCk56TxOiKuuvf2utiq4sY6Ws0RMvl9BjT7fXtR+MU4Ou3+nFLY8oc80+1evXXc1DSrr+QUvpn0xSq47bNWTLmxrcsEzWcXKyjkv/HiktqyvNGi5Vc/2ddVSaMUWK/a+0PFza9YpU4zrnDzyDEh4AAPCADKVsWKyYNrNcuSVKby5+X5u2TdO9Ka9r1OPjNGz81+oysJUdnqQzStrwiULva6lKQZk6lZ6uU2nv6KkJO3TzoPud8GQEqVSlX6paWpw+TPjeFafySpMWjJYmXStN+0tWeDKCKkldI1zhabvU2BWgqpbIavcgAhQAAPCAdKVktNKjvZuokimXBQUrtFk3DZs0RcMa19Dvxg1Q8/LXZL3VStHOrderRR3To5SmL+PjdaxsOw19/I+KKOe8x2bp1NHvdMh5lpsrTu1aKA15S3qgr1Qr2Gl3ZJxx/UdZqXNz6TrPlu8MAhQAAPCA8rr5ng6qVypHWLGOuzLOLG2o1V1dcwWcCooY2kfNy7jee+agYlfFS43vULubyjmvZzujb/fv1kE1UKsGIcoVg6xk6eVZrvzVTupyi9OYLUPavd31Wk0pvIbT5lkEKAAA4HkmPC16S/ERgzS0VZXc4SeorMJqVrYHhVvf7tUnO8+qwZ3hujFvT5F1SFtXb1Faw9ZqWTfP+Kekj6X5rpDUqLWU9zUdl2Jdr5Vt6QpmIU6bZxGgAACAZ2V8ow9nvKH48D+pV8MKucNTLhlK2blF0Wk11b5lbeXtf7KSYrXive/U8P52ahyc81/JlA7E20Og1OYWqXSeI5xJktbvcoWnCKmqZwePZyNAAQAAz8lI1oZXVulU10GXCU9G9vinCP325jy9VGag+Za1ei+tue6/8yaZAqCVdkgHU0/br+ngF66foVKLOmaseW7Jn0k7z0p3N5dKul7MOOJqM2nLcwhQAADAM+zwFC316KeONcrkyjXW4fWaszY590y68+OfWqpxWJ6eorMHtG7RBqU16qg7G1/vashQ6uaFWnLgJ9fvrvhSxvRXVZNqVjHvziHv+Ccz2HyJtDkl62UPIUABAIArZqXt1Nwnl8jq0Vd3hGYvQ2BYyjgWrwVT1qtcnUq5QlVm8mf64CLjn6zDn2nd+lQ1+mN7NTaDza1D2vzh9bqrcQXXqyWkRi3sSXYXSHMFstkrXL/cJNWr7PrpClzbU6Umv7Rf9hQCFAAAuCImPC2aHqNyd3fQjelx+s/EYXrggQeyHn3vVavaj+vA3Y+oe66ZeBlK3b1DMRcZ/6SyVVQjrKKqhVZUKZ3WoVXv6Ksu3ZyxUK7HzfdKA11Bba0rMNndWq7/OPap9Npeqdd9piFLuuv5N02kunmWObhCrEQOAAAKz/peH7y4XKUeHKBbK2at4WSlJShqwjiNfX63agx+WEMH99Xvw2/IsxXLWR1eOVp3vFhFry0epdtC8m7UclqHP5yjZxclq+YNwSp954P2Vi+53pV2QHpjjpR6vVTylBTaXvpDW6nUd9LrL0mfl5IqhEmDH3C9lrNX7MoRoAAAANxECQ8AAMBNBCgAAAA3EaAAAADcRIACAABwEwEKAADATQQoAAAANxGgAAAA3ESAAgAAcBMBCgAAwE0EKAAAADcRoAAAANxEgAIAAHATAQoAAMBNBCgAAAA3EaAAAADcRIACAABwEwEKAADATQQoAAAANxGgAAAA3CL9P7f/qVr7H6blAAAAAElFTkSuQmCC
Für eine Matrix $$A\in M(n,K)$$ gilt
# $$\det(\lambda A)=\lambda^n\det (A)$$
# $$\det$$ ist linear in jeder Spalte und Zeile von $$A$$
# Vertauschen zweier Spalten und Zeilen ändert das Vorzeichen von $$\det(A)$$
# $$\det(A)$$ wird nicht durch das addieren eines Vielfachen zu einer Zeile / Spalte zu einer anderen verändert.
# <$latex text="\det\begin{pmatrix}\lambda_1 & &\star\\ & \ddots &\\0 &&\lambda_n\end{pmatrix}=\lambda_1\cdot\dots\cdot\lambda_n" displayMode="true"></$latex>
!! Beweis
Nach [[Determinanten von Elementarmatrizen]] bleibt nur noch 1. und 5. zu zeigen.
Seien $$a_1,\dots,a_n$$ due Spalten von $$A$$. Dann folgt
<$latex text="\begin{aligned}\det(\lambda A)&=\det\begin{pmatrix}\lambda a_1 & \dots & \lambda a_n\end{pmatrix}\\
& \stackrel{2.}{=} \lambda \det\begin{pmatrix} a_1&\lambda a_2 & \dots & \lambda a_n\end{pmatrix} \\
&\vdots\\
\stackrel{2.}{=}\lambda^n\det(A)
\end{aligned}
" displayMode="true"></$latex>
Für 5.:
Sei $$A=(a_{ij})_{ij}$$ wie gegeben. Dann ist.
<$latex text="\det(A)=\sum_{\sigma\in S_n}\text{sgn}(\sigma)a_{1,\sigma(1)}\cdot\dots\cdot a_{n,\sigma(n)}" displayMode="true"></$latex>
Für $$\sigma\neq \text{id}$$ gibt es aber ein $$i$$ mit $$\sigma(i)<i \implies a_{1,\sigma(1)}\cdot\dots\cdot a_{n,\sigma(n)}=0$$, da jeder Eintrag unter der Diagonalen $$0$$ ist.
<$latex text="\implies\det(A)=\sum_{\sigma\in S_n}\text{sgn}(\sigma)a_{1,\sigma(1)}\cdot\dots\cdot a_{n,\sigma(n)}=a_{1,1}\cdot\dots\cdot a_{n_n}=\lambda_1\cdot\dots\cdot \lambda_n" displayMode="true"></$latex>
Es sei $$f:[a,b]\to\R$$ eine Funktion.
# Ist $$t\in(a,b)$$, so ist $$f$$ genau dann eine [[Regelfunktion|Regelfunktionen]], wenn $$f$$ auf $$[a,t]$$ und $$[t,b]$$ eine Regelfunktion ist. Außerdem gilt in diesem Fall:<$latex text="\int_a^bf(x)dx=\int_a^tf(x)dx+\int_t^bf(x)dx." displayMode="true"></$latex>
# Sind $$x_1,\dots,x_n\in [a,b]$$ und $$g:[a,b]\to\R$$ mit $$f(x)=g(x)$$ für alle $$x\in [a,b] \setminus\{x_1,\dots,x_n\}$$ gilt, so ist $$g$$ genau dann eine Regelfunktion, wenn $$f$$ eine Regelfunktion ist und die Integrale stimmen überein.
!! Beweis
Der Beweis ist eine Übungsaufgabe in Analysis für Informatiker und wird daher hier wegelassen.
Es sei $$(a_n)\in\mathbb{C}^\N$$. Es gebe $$\theta\in\R; 0<\theta<1$$ und ein $$n_0\in\N$$ mit:
<$latex text="n\geq n_0\implies\sqrt[n]{|a_n|}\leq \theta." displayMode="true"></$latex>
Dann konvergiert die [[Reihe|Reihen]] [[absolut|Absolute konvergente Reihen]].
!! Beweis
Die Bedingung ist äquivalent zu $$|a_n|\leq \theta^n$$. Dann folgt die Aussage [[wieder |Quotientenkriterium]]mit der [[geometrischen Reihe|Geometrische Reihe]] als [[Majorante|Majoranten- und Minorantenkriterium]].
Eine Funktion $$p:\Omega\to[0,1]$$ mit
$$\sum_{\omega\in\Omega}p(\omega)=1$$ heißt ''W-Funktion'', ''W-Vektor''
oder ''Zähldichte''.
!! Informatik Beispiele:
* ''Information Retrieval'': relative Termhäufigkeit in Textdokumenten
* ''Google-Suche'': Web-Surfen als stochastischer Prozess. Jede Webseite steuert einen
Zähldichte zur Beschreibung des Web-Surfens bei. Der sog. ''Page-Rank'' bewertet
die Wichtigkeit einer Webseite und basiert auf einem Schrumpfungsprozess, der sich
geometrisch-stochastisch sehr anschaulich beschreiben
lässt, siehe nachfolgendes Schaubild.
[img[simplex_info.png]]
Näheres später!
Seien $$V,W$$ $$K$$-[[Vektorräume]] mit $$\dim_K(V)=n,\dim_K(W)$$.
Sei $$A=(a_{ij})_{\stackrel{1\leq i \leq m}{1 \leq j\leq m}}\in M(m\times n, K)$$ eine Matrix, welche wir als lineare Abbildung $$K^n\to K^m$$ auffassen. Der ''Rang'' dieser Abbildung ist die maximale Anzahl [[linear unabhängiger|Lineare Unabhängigkeit]] Spalten von $$A$$. Der Rang wird im folgenden daher auch ''Spaltenrang'' $$\text{Srg}$$ von $$A$$ fgenannt. Der Zeilenrang $$\text{Zrg}$$ wird analog definiert.
Sei $$A\in M(m\times n, K)$$ beliebig. Durch [[Elementare Zeilen- und Spaltenumformungen|Elementarmatrizen]] lässt sich $$A$$ in die Gestalt<$latex text="\begin{pmatrix}I_p & 0 \\ 0& 0\end{pmatrix}" displayMode="true"></$latex>
mit $$0\leq p\leq \min\{m,n\}$$ überführen. Insbesondere gilt $$\text{Zrg}(A)=\text{Srg}(A)=p$$.
''Beweis per Konstruktion:''
Im Fall $$A=0$$ ist $$\text{Zrg}(A)=\text{Srg}=0$$.
Im Fall $$A\neq 0$$ gibt es $$i_0,j_0$$ mit
$$a_{i_0j_0}\neq 0$$. Dann erhält man durch elementare Zeilen- und Spaltenumformungen
$$A^{(I)}$$ mit $$a_{11}^{(I)}=a_{i_0j_0}\neq 0$$.
Als nächstes multipliziert man Zeile 1 von $$A^{(I)}$$ mit $$\frac{1}{a_{11}^{(1)}}$$. Nun addiere für alle $$i\geq 2$$ $$(-a_{i,1}^{(I)}\cdot \text{Zeile 1})$$ zu Zeile $$i$$. Addiert man danach $$(-a_{i,1}^{(I)}\cdot \text{Spalte1})$$ zu jeder Spalte $$j\geq 2$$.
Das Ergebnis ist eine Matrix, dessen erste Spalte und Zeile bis auf den Eintrag $$a_{11}$$ 0 ist. Sei nun $$A^{(II)}$$ die Matrix $$A^{(I)}$$ ohne die erste Zeile und Spalte. Nun wiederholt man den Vorgang, der nach spätestens $$\min\{m,n\}$$ Schritten terminiert.
Daher wird ab jetzt nur vom Rang einer Matrix gesprochen.
Diese Beispiele führen auf folgende zentrale Aufgaben:
* ''Parameterschätzung'': Aufgabe ist die Entwicklung von Methoden, mit denen man aus zufallsgesteuerten Beobachtungen auf die zugrunde liegenden, oft parameterabhängigen W-Maße schließen kann.
* ''Konfidenzbereiche'': Man schätzt nicht einen Parameter sondern ein Intervall, in dem der Parameter mit sehr hoher Wahrscheinlichkeit liegt.
* ''Testen von Hypothesen'': Hier geht es um statistische Entscheidungsverfahren. (z.B.: Soll die Orangenlieferung akzeptiert werden oder nicht?)
Der ''Supremumsabstand'' zweier Verteilungsfunktionen $$F$$ und $$G$$ ist definiert durch <$latex text="d(F,G):=\sup_{c\in\R}|F(c)-G(c)|." displayMode="true"></$latex>
! Satz
Es sei $$(X_i)_{i\ge 1}$$ eine Folge unabhängiger, identisch verteilter reellwertiger ZVs in $${\mathscr{L}}^2(P)$$ mit $$\textbf{E}_P(X_i)=m$$ und $$\textbf{V}_P(X_i)=v>0$$.\ Sei $$S_n:=X_1+\ldots+X_n$$ die $$n$$-te Partialsumme und <$latex text="S_n^*=\frac{1}{\sqrt{n}}\sum_{i=1}^n\frac{X_i-m}{\sqrt{v}}" displayMode="true"></$latex> die Standardisierung von $$S_n$$. Bezeichnet $$F_n$$ die Verteilungsfunktion von $$S_n^*$$, so konvergiert $$F_n$$ im Supremumsabstand gegen die Verteilungsfunktion $$\Phi$$ der Standardnormalverteilung: <$latex text="\textcolor{blue}{\lim_{n\to\infty}d(F_n,\Phi)=0}." displayMode="true"></$latex>
Für den etwas längeren ''Beweis'' verweisen wir auf die Literatur.
Eine endliche Menge $$Z=\{t_0,\dots,t_n\}$$
heißt ''Zerlegung'' von $$[a,b]$$, falls
<$latex text="a=t_0<t_1<\dots<t_n=b" displayMode="true"></$latex>
gilt.
Eine Funktion $$\varphi:[a,b]\to\R$$ heißt ''Treppenfunktion'', wenn es eine Zerlegung von $$[a,b]$$ gibt, so dass
<$latex text="\forall k\in \{1,\dots,n\}\exists c_k\in\R\forall x\in (t_{k-1},t_k):\varphi(x)=c_k" displayMode="true"></$latex>
gilt. Die Werte an den Sprungstellen sind hierbei beliebig. Mit $$T([a,b])$$ wird die Menge aller Treppenfunktionen auf $$[a,b]$$ bezeichnet.
Bei Variante 1 ergibt sich damit folgende Erfolgswahrscheinlichkeit: <$latex text="\underbrace{\frac{1}{3}\cdot\frac{1}{2}\cdot 1}_{{\text{{$$an\textcolor{red}{a}$$}}}}+ \underbrace{\frac{1}{3}\cdot\frac{1}{2}\cdot 1}_{{\text{{$$az\textcolor{red}{a}$$}}}}=\frac{1}{3}." displayMode="true"></$latex>
[img[WegecdZV1.png]]
Bei Variante 2 ergibt sich damit folgende Erfolgswahrscheinlichkeit: <$latex text="\underbrace{\frac{1}{3}\cdot 1\cdot\frac{1}{2}}_{{\text{{$$nz\textcolor{red}{a}$$}}}}+\underbrace{\frac{1}{3}\cdot\frac{1}{2}\cdot\frac{1}{2}}_{{\text{{$$an\textcolor{red}{a}$$}}}}+\underbrace{\frac{1}{3}\cdot\frac{1}{2}\cdot\frac{1}{2}}_{{\text{{$$az\textcolor{red}{a}$$}}}}
+\underbrace{\frac{1}{3}\cdot 1\cdot\frac{1}{2}}_{{\text{{$$zn\textcolor{red}{a}$$}}}}=\frac{1}{2}." displayMode="true"></$latex>
[img[WegecdZV2.png]]
Bei Variante 3 ergibt sich damit folgende Erfolgswahrscheinlichkeit: <$latex text="\underbrace{\frac{1}{3}\cdot 1\cdot 1}_{{\text{{$$nz\textcolor{red}{a}$$}}}}+
\underbrace{\frac{1}{3}\cdot 1\cdot 1}_{{\text{{$$zn\textcolor{red}{a}$$}}}}=\textcolor{pink}{\frac{2}{3}}." displayMode="true"></$latex>
[img[WegecdZV3.png]]
Beim $n$-maligen Münzwurf (mit fairer Münze) kann man das Zufallsgeschehen unterschiedlich genau protokollieren:
* ''detailliert'': Münzwurffolge
** Ergebnisraum: $$\Omega=\{0,1\}^n$$ (//Zahl// entspricht $$1$$),
** Ereignisalgebra:$2^\Omega$, W-Maß: Gleichverteilung.
* ''gröber'' Anzahlprotokoll (Wie oft ist //Zahl// gefallen?)
** Ergebnisraum: $$\Omega'=\{0,1,\ldots,n\}$$,
** Ereignisalgebra: $$2^{\Omega'}$$, W-Maß: ''?''.
''Idee'': Die Ereignisräume $$(\Omega,2^\Omega)$$ und $$(\Omega',2^{\Omega'})$$ hängen zusammen über die Zuordnung
<$latex text="\textcolor{blue}{X: \Omega\ni(\omega_1,\ldots,\omega_n)\mapsto \omega_1+\ldots+\omega_n\in\Omega'}" displayMode="true"></$latex>
und die W-Funktion $$p=(p_0,p_1,\ldots,p_n)$$ zum Anzahlprotokoll leitet sich aus der Gleichverteilung
auf $$(\Omega,2^\Omega)$$ ab:
<$latex text="p_k=\frac{|\{\omega\in\Omega|X(\omega)=k\}|}{|\Omega|} =\binom{n}{k}\cdot 2^{-n},\quad (k\in[0:n])." displayMode="true"></$latex>
* Sei $$\Omega=[0,\theta]^n$$ und $$P_\theta$$ die Gleichverteilung auf $$\Omega$$.
* Dann ist $$\rho_\theta(\omega):=\theta^{-n}$$ ($$\omega\in\Omega$$) die Dichtefunktion zu $$P_\theta$$.
* $$X:=\text{id}_\Omega$$ modelliert das Gesamtprotokoll der $$n$$ Stichproben, während $$X_i:=p_i\circ X:=(\Omega\ni\omega\mapsto \omega_i)$$ das Ergebnis der $$i$$-ten Stichprobe beschreibt.
! Satz
$$\textcolor{blue}{\textbf{E}_\theta(X_i)=\theta/2}$$ und $$\textcolor{blue}{\textbf{V}_\theta(X_i)=\theta^2/12}$$.
!! Beweis
Mit $$\Omega_j:=[0,\theta]$$ ergibt sich, da $$\rho_\theta$$ die Dichtefunktion zu $$P_\theta$$ ist (siehe Kapitel 6, Folie 16):
<$latex text="\begin{aligned}
\textbf{E}_\theta(X_i)&=&\textbf{E}_\theta(p_i\circ X)=\int_\Omega p_i(\omega)\rho_\theta(\omega)d\omega=\int_{\Omega_1}\ldots\int_{\Omega_n}\omega_i\theta^{-n}d\omega_1\ldots d\omega_n\\
&=&\prod_{j\ne i}\left(\int_0^\theta \frac{1}{\theta}d\omega_j\right)\cdot \int_0^\theta\frac{1}{\theta}\omega_id\omega_i=\frac{1}{\theta}\left[\frac{\omega_i^2}{2}\right]_0^\theta=\frac{\theta}{2}.\\
\textbf{V}_\theta(X_i)&=&\textbf{E}_\theta(X_i^2)-\textbf{E}_\theta(X_i)^2=\int_0^\theta\frac{1}{\theta}\omega_i^2d\omega_i-\left(\frac{\theta}{2}\right)^2=\frac{\theta^2}{12}.
\end{aligned}" displayMode="true"></$latex>
Seien $$V,W$$ und $$\phi_A,\phi_B$$, wie zuvor. Dann ist
<$latex text="M_{A,B}:\text{Hom}_{K}(V,W)\to M(m\times n,K)" displayMode="true"></$latex>
ist Isomorphismus.
!! Beweis
Die Linearität von $$T\mapsto M_{A,B}(T)$$ ist klar. Es genügt nun $$M_{A,B}$$ die Umkehrabbildung anzugeben.
Sei $$L_{A,B}:M(m\times n, K)\to \text{Hom}_{K}(V,W),M\mapsto L_{A,B}(M)\coloneqq \phi_B^{-1}\circ M\circ \phi_A$$. Dann gilt:
<$latex text="L_{A,B}(M_{A,B}(T))=\phi_B^{-1}\circ (\phi_B\circ T\circ \phi_A^{-1})\circ \phi_A=T" displayMode="true"></$latex>
<$latex text="M_{A,B}(L_{A,B}(M))=\phi_B\circ (\phi_B^{-1}\circ M \circ \phi_A)\circ \phi_A^{-1}=M." displayMode="true"></$latex>
Folglich ist $$L_{A,B}\circ M_{A,B}=\text{id}_{\text{Hom}_L(V,W)}$$ und $$M_{A,B}\circ L_{A,B}=\text{id}_{M(m\times n,K)}$$. Somit ist $$M_{A,B}$$ ein Isomorphismus.
Seien $$V,W$$ [[Vektorräume |Vektorraum]]über $$K$$ mit $$\dim_K(V)=n,\dim_K(W)=m$$ und Koordinatensystemen $$\phi:V\to K^n,\psi:W\to K^m$$. Weiter sei $$T\in \text{Hom}_K(V,W).$$
Dann ist $$M_{\phi,\psi}(T)$$ die $$T$$ bezüglich $$\phi,\psi$$ ''zugeordnete Matrix''. Analog ist $$M_{A,B}(T)$$ die $$T$$ bezüglich der Basen $$A,B$$ zugeordnete Matrix.
Das heißt <$latex text="M_{\phi,\psi}(T)\coloneqq \psi \circ T \circ \phi^{-1}." displayMode="true"></$latex>
!! Bemerkung
Die Spalten von $$M_{A,B}(T)$$ sind die Koordinaten der Bilder der Basisvektoren bezüglich der Basis in $$W$$.
<<list-links "[tag[Zusammenfassung: QR-Verfahren mit und ohne Shifts]sort[scriptorder]]">>
<$latex text="
\begin{array}{ccc}
{\color{red} \textbf{SVD}} \qquad & \qquad \text{vs.} &\qquad {\color{blue}\textbf{EVD} }\\
A = U \Sigma V^* \qquad & & \qquad A = V\Lambda V^{-1}
\end{array}
" displayMode="true"></$latex>
*<$latex text="{\color{red} \text{SVD verwendet zwei Basen} (U,V)} \\{\color{blue} \text{EVD verwendet eine Basis} (V)}" displayMode="true"></$latex>
*<$latex text="{\color{red} \text{SVD verwendet orthonormale Basen}}\\ {\color{blue} \text{Basen der EVD sind nicht zwingend orthonormal}}" displayMode="true"></$latex>
*<$latex text="{\color{red}\text{SVD existiert für jede Matrix }A} \\{\color{blue} \text{EVD existiert nicht für jede Matrix }A}" displayMode="true"></$latex>
*<$latex text="{\color{red} \text{SVD ist interessant zum Studium der Matrix }A \text{ selbst}}\\ {\color{blue} \text{EVD ist interessant zum Studium von Matrixpotenzen} \ A^k, e^{tA}:}\\ {\color{blue} A v_i = \lambda_iv_i \quad \Leftrightarrow \quad A^kv_i = \lambda^k_i v_i}" displayMode="true"></$latex>
Für $$T\in \text{End}_K(V)$$ sind folgende Aussagen äquivalent:
# $$\lambda\in K$$ ist ein Eigenwert von $$T$$
# $$\det(\lambda\cdot \text{Id}-T)=0$$
# $$\lambda$$ ist eine Nullstelle von $$ \chi_T(☓)$$
$$1. \iff 2.$$ folgt direkt und $$2.\iff 3.$$ folgt aus der Definition und Wohldefiniertheit vom [[charakteristischen Polynom|Charakteristisches Polynom eines Endomorphismus]].
!! 1. Version
Es sei $$f:[a,b]\to\R$$ [[stetig|Stetige reelle Funktionen (Über Grenzwerte)]] mit $$f(a)f(b)<0$$. Damm existiert mindestens ein $$p\in(a,b)$$ mit $$f(p)=0$$.
!! 2. Version
Es sei $$f:[a,b]\to\R$$ stetig mit $$f(a)<f(b)$$. Damm existiert zu jedem $$c\in [f(a),f(b)]$$mindestens ein $$p\in(a,b)$$ mit $$f(p)=c$$.
!! Beweis der 1. Version
Beweis durch [[Intervallschachtelung]]. o.B.d.A.:
<$latex text="f(a)<0<f(b)." displayMode="true"></$latex>
Sei also $$a_1=a,b_1=b$$.
Nun wählt man iterativ
<$latex text="\begin{aligned}
a_n\coloneqq\begin{cases}a_{n-1} & f\left(\frac{a_{n-1}+b_{n-1}}{2}\right)\geq 0\\
\frac{a_{n-1}+b_{n-1}}{2} & \text{sonst}\end{cases}\\
b_n\coloneqq\begin{cases}b_{n-1} & f\left(\frac{a_{n-1}+b_{n-1}}{2}\right)\leq 0\\
\frac{a_{n-1}+b_{n-1}}{2} & \text{sonst}\end{cases}.
\end{aligned}" displayMode="true"></$latex>
Nach dem Prinzip der Intervallschachtelung folgt, dass $$\lim_{n\to\infty} a_n=\lim_{n\to\infty} b_n=p$$.
Weil $$f$$ stetig ist folgt dann:
<$latex text="0\geq \lim_{n\to\infty} f(a_n)=f(p)=\lim_{n\to\infty} f(b_n)\geq 0\implies f(p)=0." displayMode="true"></$latex>
Das $$a\neq p\neq b$$ gilt folgt direkt aus $$f(a)f(b)<0$$.
!! Beweis der 2. Version
Folgt durch anwenden der ersten Version auf $$g(x)=f(x)-c$$.
https://anma.tiddlyhost.com
https://anma.tiddlyhost.com/thumb.png